Poznámka (Exam)

Oral, similar as in FA1.

Poznámka (Credit) Similar as in FA1.

1 Banach algebras

1.1 Basic properties

Definice 1.1 (Algebra)

 $(A, +, -, 0, \cdot_S, \cdot)$ is algebra over \mathbb{K} , if

- $(A, +, -, 0, \cdot_S)$ is vector space over \mathbb{K} ;
- $(A, +, -, 0, \cdot)$ is ring (that is we have $a \cdot (b+c) = a \cdot b + a \cdot c$, $(a+b) \cdot c = a \cdot c + b \cdot c$ and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$);
- $\forall \lambda \in \mathbb{K} \ \forall x, y \in A : \lambda(x \cdot y) = (\lambda x)y = x(\lambda y).$

Důsledek

1) $e \in A$ is left unit $\equiv e \cdot a = a$, right unit $\equiv a \cdot e = a$, unit $\equiv a \cdot e = e \cdot a = a$ ($\forall a \in A$).

If e_1 is left unit and e_2 is right unit, then $e_1 = e_2$ is unit. $(e_1 = e_1 \cdot e_2 = e_2)$

2) (Algebra) homomorphism $\varphi: A \to B \equiv \varphi$ preserves $+, \cdot, \cdot_S$, that is $\varphi(x+y) = \varphi(x) + \varphi(y)$, $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$ and $\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x)$.

Tvrzení 1.1

Let A be algebra over \mathbb{K} . Put $A_e = A \times \mathbb{K}$ with operations A_e defined coordinate-wise and multiplication defined by

$$(a,\alpha)\cdot(b,\beta):=(a\cdot b+\alpha\cdot b+\beta\cdot a,\alpha\cdot\beta),\qquad a,b\in A\land\alpha,\beta\in\mathbb{K}.$$

Then A_e is algebra with a unit $(\mathbf{o}, 1)$ and $A \equiv A \times \{0\} \subset A_e$. Moreover, if A is commutative, then A_e is commutative.

We have A_e is vector space (from linear algebra). We easy proof from definition, that A_e is algebra, $(\mathbf{o}, 1)$ is a unit in A_e and on $A \times \{0\}$ we have $(a, 0) \cdot (b, 0) = (a \cdot b, 0)$, so $a \mapsto (a, 0)$ is homomorphism. Commutativity is easy too.

Definice 1.2 (Normed algebra)

 $(A, \|\cdot\|)$ is normed algebra $\equiv A$ is algebra and $(A, \|\cdot\|)$ is NLS and $\|a\cdot b\| \leqslant \|a\|\cdot\|b\|$ $(\forall a, b \in A)$.

Definice 1.3 (Banach algebra)

 $(A, \|\cdot\|)$ is Banach algebra $\equiv (A, \|\cdot\|)$ is normed algebra and Banach space.

Například

 $l_{\infty}(I)$ is commutative Banach algebra with a unit (all ones).

If T is Hausdorff topological space, then $C_b(T) = \{f : T \to \mathbb{K} | f \text{ is continuous and bounded}\} \subseteq l_{\infty}(T)$ is closed subalgebra.

If T is locally compact, Hausdorff, not compact. Then $C_0(T) = \{f : T \to \mathbb{K} \text{ continuous } | \forall \varepsilon \} > 0 : \{t \in T \in C_b(T) \text{ is closed subalgebra, which doesn't have unit.} \}$

If X is Banach, dim X > 1, then $\mathcal{L}(X)$, with $S \cdot T := S \circ T$, $S, T \in \mathcal{L}(X)$, is Banach algebra with unit (identity), which isn't commutative.

If X is Banach, dim $X = +\infty$, then $\mathcal{K}(X) \subset \mathcal{L}(X)$ is closed subalgebra which is not commutative and doesn't have unit.

 $(L_1(\mathbb{R}^d), *)$, where * is convolution, is (commutative) Banach algebra (without unit).

 $(l_1(\mathbb{Z}), *)$, where $x * y(n) = \sum_{k=-\infty}^{+\infty} x_k y_{n-k}$ is (commutative) Banach algebra (with unit).

Tvrzení 1.2

If $(A, \|\cdot\|)$ is normed algebra, then $\cdot: A \oplus_{\infty} A \to A$ is Lipschitz on bounded sets.

 \Box Důkaz

$$\forall r > 0 : \forall (a, b) \in B_{A \oplus_{\infty} A}(\mathbf{o}, r) \ \forall (c, d) \in B_{A \oplus_{\infty} A}(\mathbf{o}, r) :$$

$$||ab-cd|| \leqslant ||a(b-d)|| + ||(a-c)\cdot d|| \leqslant ||a|| \cdot ||b-d|| + ||a-c|| \cdot ||d|| \leqslant R \cdot (||b-d|| + ||a-c||) \leqslant 2R||(a,b) - (c,d)||.$$

Tvrzení 1.3

Let $(A, \|\cdot\|)$ be a Banach algebra. On A_e we consider the norm

$$\|(a,\alpha)\| := \|a\| + |\alpha|, \qquad (a,\alpha) \in A \times \mathbb{K} = A_e.$$

Then $(A_e, \|\cdot\|)$ is Banach algebra.

 $D\mathring{u}kaz$

It is a Banach space, because $A_e = A \oplus_1 \mathbb{K}$. Now we need only check, that

$$\|(a, \alpha) \cdot (b, \beta)\| \le \|(a, \alpha)\| \cdot \|(b, \beta)\|,$$

which is easy.

Poznámka

There is more (natural) ways to define norm on A_e (unlike \cdot on A_e , which is natural).

A has a unit ... we may still consider A_e .

If $e \in A \setminus \{\mathbf{o}\}$ is a unit, then $||e|| \ge 1$, because $||e|| = ||e^2|| \le ||e||^2$.

Věta 1.4

Let A be a Banach algebra, for $a \in A$ consider $L_a \in \mathcal{L}(A)$ defined as $L_a(x) := a \cdot x$, $x \in A$. Then $I : A \to \mathbb{L}(A)$, $a \mapsto L_a$ is continuous algebra homomorphism, $||I|| \leqslant 1$.

Moreover, if A has a unit e, then I is isomorphism into and I(e) = id.

If $||x^2|| = ||x||^2$, $x \in A$, then I is isometry into.

 $"L_a \in \mathcal{L}(A)$ and $I \in \mathcal{L}(A, \mathcal{L}(A)), ||I|| \leq 1$ ": Linearity is obvious, $||L_a(x)|| = ||a \cdot x|| \leq ||a|| \cdot ||x||$, so $||L_a|| \leq ||a||$ and so $||I|| \leq 1$. Since it is easily I preserves multiplication, so we are left to prove the "Moreover" part.

"A has a unit e": WLOG $A \neq \{\mathbf{o}\}$.

$$\forall a \in A : ||Ia|| = ||L_a|| \geqslant ||L_a\left(\frac{e}{||e||}\right) = \frac{a}{||e||} = \frac{1}{||e||} \cdot a.$$

So I is bounded from below, so I is isomorphism.

$$I(e)(x) = L_e(x) = x$$
, so $I(e) = id$.

Finally, if $||x^2|| = ||x||^2$, $x \in A$, then $\forall a \in A$:

$$||a|| \ge ||I(a)|| = ||L_a|| \ge ||L_a\left(\frac{a}{||a||}\right)|| = \frac{||a^2||}{||a||} = ||a||.$$

So I is isometry.

Poznámka

 $A \neq \{\mathbf{o}\}$ Banach algebra with a unit $\implies \exists$ equivalent norm $\|\cdot\|$ on A such that $(A, \|\cdot\|)$ is Banach algebra and $\|e\| = 1$.

 $D\mathring{u}kaz$

Let $I: A \to \mathcal{L}(A)$ be as before. Put $|\|x\|| := \|I(x)\|$, $x \in A$. Since I is isomorphism, $|\|\cdot\||$ is equivalent norm. Moreover, $|\|x \cdot y\|| = \|I(x \cdot y)\| \le \|I(x)\| \cdot \|I(y)\| = \|\|x\|\| \cdot \|\|y\|\|$, $x, y \in A$. So $(A, |\|\cdot\||)$ is a Banach algebra. Finally

$$|||e||| = ||I(e)|| = ||\operatorname{id}|| = 1.$$

1.2 Inverse elements

Definice 1.4

 (M, \cdot, e) is monoid (\cdot is associative, e is unit). Then invertible elements form a group $(e^{-1} = e, \exists x^{-1}, y^{-1} \implies (x \cdot y)^{-1} = y^{-1} \cdot x^{-1})$; if $x \in M$, and $y \in M$ is its left inverse and $z \in M$ is its right inverse, then y = z is inverse:

$$y = y \cdot e = y \cdot x \cdot z = e \cdot z = z.$$

We denote $M^{\times} := \{x \in M \mid \exists x^{-1}\}\$

Tvrzení 1.5

If (A, \cdot, e) is monoid and $x_1, \dots, x_n \in A$ commute, then $x_1 \cdot \dots \cdot x_n \in A^x \Leftrightarrow \{x_1, \dots, x_n\} \subset A^x$.

 $D\mathring{u}kaz$

It suffices to prove it for n = 2 (and use induction). "If x^{-1} and y^{-1} exists, then $(xy)^{-1}$ is easy from associativity.

If we have $(xy)^{-1}$. Put $z := (xy)^{-1}x$. Then $zy = (xy)^{-1}(xy) = e$, so z is left inverse to y. Next we show that there is also right inverse: Put $\tilde{z} := x(xy)^{-1}$: $y\tilde{z} = (xy)(xy)^{-1} = e$, so \tilde{z} is right inverse. And we already know that if there is left and right inverse, then they are same and they are inverse.

Lemma 1.6

Let A be a Banach algebra with a unit.

•
$$||x|| < 1 \implies \exists (e-x)^{-1} \land (e-x)^{-1} = \sum_{n=0}^{\infty} x^n;$$

•
$$\exists x^{-1} \land \|h\| < \frac{1}{\|x^{-1}\|} \implies \exists (x+e)^{-1} \land \|(x+h)^{-1} - x^{-1}\| \leqslant \frac{\|x^{-1}\|^2 \cdot \|h\|}{1 - \|x^{-1}\| \cdot \|h\|}$$

 $D\mathring{u}kaz$

"First item": We have $||x^n|| \le ||x||^n$, so $\sum_{n=0}^{\infty} x^n$ is absolute convergent series, so $\sum_{n=0}^{\infty} ||x^n|| \le A$. Moreover,

$$(e-x)\cdot\left(\sum_{n=0}^{\infty}x^{n}\right) = \lim_{N\to\infty}(e-x)\cdot(e+x+\ldots+x^{N}) = \lim_{N\to\infty}e-x^{N+1} = e,$$

because $\lim_{N\to\infty} \|x^{n+1}\| \le \lim_{N\to\infty} \|x\|^N = 0$. And similarly $(\sum x^n) \cdot (e-x) = e$.

"Second item": $x+h=x\cdot(e+x^{-1}h)$ we have x^{-1} exists and $(e+x^{-1}h)^{-1}$ exists (from first item), so from previous fact $(x+h)^{-1}$ exists. Moreover

$$(x+h)^{-1} = (e+x^{-1}h)^{-1} \cdot x^{-1} \stackrel{1)}{=} \sum_{n=0}^{\infty} (-x^{-1}h)^n x^{-1},$$

SO

$$\begin{aligned} \|(x+h)^{-1} - x^{-1}\| &= \|\sum_{n=1}^{\infty} \left(-x^{-1}h\right)^n x^{-1}\| \leqslant \|x^{-1}\| \cdot \sum_{n=1}^{\infty} \|x^{-1}h\|^n \leqslant \\ &\leqslant \|x^{-1}\| \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left(\|x^{-1}\| \cdot \|h\|\right)^n = \|x^{-1}\| \cdot \frac{\|x^{-1}\| \|h\|}{1 - \|x^{-1}\| \cdot \|h\|}. \end{aligned}$$

Důsledek

A Banach algebra with a unit $\implies A^x \subset A$ is open and A^x is topological group.

 $D\mathring{u}kaz$

 $A^x \subset A$ is open by previous lemma (second item). So it remains to prove $x \mapsto x^{-1}$ is continuous:

$$A^{x} \ni x_{n} \to x \in A^{x} \stackrel{?}{\Longrightarrow} x_{n}^{-1} \to x^{-1}.$$

$$\|x_{n}^{-1} - x^{-1}\| \stackrel{h := x_{n} - x}{\leqslant} \frac{\|x^{-1}\|^{2} \cdot \|x_{n} - x\|}{1 - \|x^{-1}\| \cdot \|x_{n} - x\|} \to 0.$$

1.3 Spectral theory

Definice 1.5 (Resolvent set, spectrum and resolvent)

A Banach algebra with a unit, $x \in A$. We define resolvent set of x as $\varrho_A(x) := \{\lambda \in \mathbb{K} | \exists (\lambda \cdot e - x)^{-1} \}$. Next we define spectrum of x as $\sigma_A(x) := \mathbb{K} \setminus \varrho_A(x)$. Finally we define resolvent of x as $R_x : \varrho(x) \to A$, $R_x(\lambda) := (\lambda \cdot e - x)^{-1}$.

If A doesn't have a unit, then notions above are defined with respect to A_e .

Tvrzení 1.7

A Banach algebra

- a) $\forall x \in A : 0 \in \sigma_{A_e}(x)$ (in particular, if A has no unit, then $0 \in \sigma_A(x)$);
- b) A has unit $\implies \sigma_{A_e}(x) = \sigma_A(x) \cup \{0\}.$

 $D\mathring{u}kaz$ (a))

$$\forall (b,\beta) \in A_e : (x,0) \cdot (b,\beta) = (\dots,0) \neq (\mathbf{0},1) \implies \nexists (x,0)^{-1} \implies 0 \in \sigma_{A_e}(x).$$

 $D\mathring{u}kaz$ (b))

By a) we have $0 \in \sigma_{A_e}(x)$. So it suffices: $\forall \lambda \neq 0 : \lambda \in \varrho_A(x) \Leftrightarrow \lambda \in \varrho_{A_e}(x)$. First means $(\lambda \cdot e - x)^{-1}$ exists in A and second means that $((0, \lambda) - (x, 0))^{-1} = (-x, \lambda)^{-1}$ exists in A. We take " $x \to -x$ ".

" \Longrightarrow ": find $(b,\beta) \in A_e$ such that $(x,\lambda) \cdot (b,\beta) = (\mathbf{o},1)$. So $(x \cdot b + \lambda \cdot b + \beta \cdot x, \lambda \cdot \beta) = (\mathbf{o},1)$. So $\beta = \frac{1}{\lambda}$ and $b = -\frac{1}{\lambda}(\lambda e + x)^{-1} \cdot x$. Similarly we find left inverse $\left(-\frac{1}{\lambda}x(x + \lambda e)^{-1}, \frac{1}{\lambda}\right)(x,\lambda)$. And next we prove that they are really inverses.

" = ": Put $(b, \beta) := (x, \lambda)^{-1}$. Then $(\lambda e + x)^{-1} = b + \beta \cdot e$. We have $(x, \lambda) \cdot (b, \beta) = (\mathbf{o}, 1)$, so $\lambda \cdot \beta = 1$ and $x \cdot b + \lambda \cdot b + \beta \cdot x = \mathbf{o}$. Then

$$(\lambda e + x) \cdot (b + \beta \cdot e) = \lambda \cdot b + \lambda \cdot \beta \cdot e + x \cdot b + \beta \cdot x = e.$$

Similarly second inverse.

Věta 1.8

 $\{\mathbf{o}\} \neq A \ complex \ Banach \ algebra, \ x \in A. \ Then \ \sigma(x) \subseteq B_{\mathbb{C}}(0, \|x\|) \ is \ compact, \ nonempty.$

Důkaz

After theory.

Definice 1.6 (Derivative)

Y Banach space, $\Omega \subset \mathbb{K}$, $f:\Omega \to Y$, $a\in\Omega$. Then

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

is the derivative of f at a.

Tvrzení 1.9 (Fact)

 $Y \ Banach, \ \Omega \subset \mathbb{K}, \ f: \Omega \to Y, \ a \in \Omega. \ Then \ f'(a) \ exists \implies f \ is \ continuous \ at \ a \land \forall x^* \in Y^*: (x^* \circ f)'(a) = x^*(f'(a)).$

 $D\mathring{u}kaz$

Continuity: $\lim_{x\to a} f(x) - f(a) = \lim_{x\to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a) = f'(a) \cdot 0 = 0.$

 $x^* \in Y^*$ given, then

$$\lim_{x \to a} \frac{x^*(f(x)) - x^*(f(a))}{x - a} = \lim_{x \to a} x^* \left(\frac{f(x) - f(a)}{x - a} \right) = x^*(f'(a)).$$

Tvrzení 1.10

A Banach algebra with a unit, $x \in A$. Then

- $\varrho(x)$ is open set;
- $\forall |\lambda| > ||x|| : \lambda \in \varrho(x) \land R_x(\lambda) = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}};$
- (important!) $\varrho(x) \ni \lambda \mapsto R_x(\lambda)$ has derivative at each $\lambda \in \varrho(x)$;
- $\forall \mu, \nu \in \varrho(x) : R_x(\mu) \cdot R_x(\nu) = R_x(\nu) \cdot R_x(\mu);$
- $\forall \mu, \nu \in \varrho(x) : R_x(\mu) R_x(\nu) = (\nu \mu) \cdot R_x(\mu) \cdot R_x(\nu)$.

 $D\mathring{u}kaz$

First is proved by lemma. Second by lemma we have

$$(\lambda e - x)^{-1} = \lambda^{-1} \left(e - \frac{x}{\lambda} \right)^{-1} = \lambda^{-1} \sum_{n=0}^{\infty} \left(\frac{x}{\lambda} \right)^n.$$

For third we fix $\lambda \in \varrho(x)$ and $t \in (0, \delta)$ for δ small enough $(\lambda + t \in \varrho(x))$ and *). We shall prove that $R'_x(\lambda) = -R_x(\lambda)^2$:

$$0 \stackrel{?}{=} \left\| \frac{R_x(\lambda + t) - R_x(\lambda)}{t} + R_x(\lambda)^2 \right\| = \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} + (\lambda e - x)^{-1} \cdot t \cdot (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|} \left\| (\lambda e - x + te)^{-1} - (\lambda e - x)^{-1} \right\| \le \frac{1}{|t|}$$

* for existence of the inverse
$$\frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \|(e + t(\lambda e - x)^{-1})^{-1} - e + (\lambda e - x)^{-1} \cdot t\| = \frac{1}{|t|} \|(a + t(\lambda e - x)^{-1})^{-1} - e + (a + t(\lambda e - x)^{-1})^{-1} + e + (a + t(\lambda e - x)^{-1})^{-1}$$

$$= \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \left\| \sum_{n=0}^{\infty} (-t)^n (\lambda e - x)^{-n} - e + (\lambda e - x)^{-1} \cdot t \right\| \leqslant$$

$$\stackrel{\|x^n\| \leq \|x\|^n}{\leq} \frac{1}{|t|} \|(\lambda e - x)^{-1}\| \cdot \sum_{n=2}^{\infty} \|t(\lambda e - x)^{-1}\|^n =$$

$$= \frac{1}{|t|} \|t(\lambda e - x)^{-1}\| \cdot \frac{\|t(\lambda e - x)^{-1}\|^2}{1 - \|t(\lambda e - x)^{-1}\|} \overset{\text{* for denominator } \leqslant 1/2}{\leqslant} \frac{2|t|^2}{|t|} \|t(\lambda e - x)^{-1}\| \to 0.$$

Fourth: In general $uv = vu \implies u^{-1}v^{-1} = v^{-1}u^{-1}$ (proof: $u^{-1}v^{-1} = (vu)^{-1}$). And we apply it for $u = (\mu e - x)$ and $v = (\nu e - x)$.

Fifth: In general $u \cdot v = v \cdot u \implies u^{-1} \cdot v = v \cdot u^{-1}$ (proof: $u^{-1}v = v \cdot v^{-1}u^{-1}v = v \cdot u^{-1}v^{-1}v = v \cdot u^{-1}$) so:

$$R_x(\mu) - R_x(\nu) = R_x(\mu) R_x(\nu) (R_x(\nu)^{-1}) - R_x(\mu) (R_x(\mu))^{-1} R_x(\nu) = R_x(\mu) R_x(\nu) (R_x(\nu)^{-1}) - R_x(\mu) (R_x(\nu)^{-1}) (R_x(\nu)^{-1}) - R_x($$

[

Věta 1.11 (Liouville for Banach space valued functions)

Y Banach space over \mathbb{C} , $f:\mathbb{C}\to Y$ has derivative at each point, f is bounded ($\equiv \|f\|$ is bounded). Then $f\equiv \mathrm{const.}$

 $D\mathring{u}kaz$

Assume $f \not\equiv \text{const}$, so there are $a \neq b \in \mathbb{C}$: $f(a) \neq f(b) \Longrightarrow$ (by Hahn–Banach theorem) $\exists x^* \in Y^* : x^*(f(x)) \neq x^*(f(x))$. From fact $x^* \in f : \mathbb{C} \to \mathbb{C}$ has derivative at each point is bounded, not constant which is in contradiction with Liouville theorem for complex valued functions.

Důkaz (Theorem before theory)

First case: "A has a unit": Then $\sigma(x) \subseteq B_{\mathbb{C}}(0, ||x||)$ is closed, so $\sigma(x)$ is compact. Assume that $\varrho(x) = \mathbb{C}$. By previous tyrzeni we have $R_x : \mathbb{C} \to A$ has derivative everywhere, and it is bounded because $\lim_{|\lambda| \to \infty} |\lambda| \to \infty$ and $\lim_{|\lambda| \to \infty} \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}} = 0$. From previous theorem $R_x \equiv \text{const so } \lim_{|\lambda| \to \infty} R_x(\lambda) = 0 \implies R_x \equiv 0$. In particular $0 = R_x(0) = (-x)^{-1}$. 4(If $A \neq \{0\}$ then $x^{-1} \neq 0$ for $x \in A$.)

Second case: "A hasn't a unit", then $\sigma(x) := \sigma_{A_e}((x,0))$ so we apply the already proven case.

Poznámka (Convention)

If not said otherwise, in chapter about Banach algebras, all Banach spaces are complex.

Věta 1.12 (Gelfand–Mazur)

 $\{\mathbf{o}\} \neq A \ Banach \ algebra \ with \ a \ unit. \ Assume \ \forall x \in A \setminus \{\mathbf{o}\} : \exists x^{-1}. \ Then \ A \ is isomorphic \ to \ \mathbb{C}.$ If moreover e is a unit in A and ||e|| = 1, then A is isometrically isomorphic to \mathbb{C} .

 $D\mathring{u}kaz$

Consider $\psi : \mathbb{C} \to A$ defined as $\psi(\lambda) := \lambda \cdot e$. This is algebraic homomorphism and $\|\psi(\lambda)\| = |\lambda| \cdot \|e\|$, so it is isomorphism (and isometry, if $\|e\| = 1$).

It remains " φ is surjective": Pick $a \in A$. From previously proved theorem $\exists \lambda \in \sigma(a)$, then $(\lambda e - a) \notin A^x$. So, $\lambda \cdot e - a = 0$, then $\psi(\lambda) = a$.

Definice 1.7 (Spectral radius)

A Banach algebra, $x \in A$. Then $r(x) := \sup\{|\lambda|, \lambda \in \sigma(x)\}$ is called spectral radius of x.

Věta 1.13 (Beurling–Gelfand)

A Banach algebra, $x \in A \implies r(x) = \inf_{n \in \mathbb{N}} \sqrt[n]{\|x^n\|} = \lim_n \sqrt[n]{\|x^n\|}$.

Lemma 1.14

A Banach algebra with a unit, $x \in A$. For $p(z) = \sum_{j=1}^{n} \alpha_j z^j \in \mathbb{C}$ a polynom (with complex coefficients) we put $p(x) = \sum_{j=1}^{n} \alpha_j x^j \in A$. Then $\sigma(p(x)) = p(a(x))$.

 $D\mathring{u}kaz$

Fix $\lambda \in \mathbb{C}$ and write $(\lambda - p)(z) = c \cdot \prod_{i=1}^{m} (z - z_i)$, where z_1, \ldots, z_m are roots of $\lambda - p$. Then $\lambda \in \sigma(p(x)) \Leftrightarrow (\lambda e - p(x))^{-1}$ does not exists. $(\lambda e - p(x))^{-1} = c \cdot \prod_{i=1}^{m} (x - z_i \cdot e)$, so it does'nt exists if and only if $\exists i \in [m]$, such that $(x - z_i \cdot e)^{-1}$ doesn't exists $\Leftrightarrow z_i \in \sigma(x) \Leftrightarrow \exists \text{ root } \nu \text{ of } \lambda - p \text{ such that } \nu \in \sigma(x) \Leftrightarrow \exists \nu \in \sigma(x) : p(\nu) = \lambda \Leftrightarrow \lambda \in p(\sigma(x))$.

Důkaz (Beurling-Gelfand)

WLOG A has a unit. Step 1, $r(x) \leq \inf_n \sqrt[n]{\|x^n\|}$ ": fix $\lambda \in \sigma(x)$. By previous lemma $\forall n : \lambda^n \in \sigma(x^n)$. By theorem 'Before theory' we have $\forall n : |\lambda|^n \leq \|x^n\|$.

Step 2, $,r(x) \geqslant \limsup_n \sqrt[n]{\|x^n\|}$ ": Pick r > r(x). Claim: $,\frac{x^n}{r^n} \to^w 0$ ": Fix $x^* \in A^*$ and put $f(\lambda) := \lambda \cdot x^*(R_x(\lambda))$. By fact and tvrzeni after it, f has derivative at each $\lambda \in \varrho(x)$. Moreover for $|\lambda| \geqslant \|x\|$ we have $f(\lambda) = \lambda \cdot x^*\left(\sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}\right) = \sum_{n=0}^{\infty} \frac{x^*(x^n)}{\lambda^n}$. Thus $f(\lambda) = \sum_{n=0}^{\infty} \frac{x^*(x^n)}{\lambda^n}$, $\lambda \in P(0, r(x), \infty)$. From Complex analysis $f \in H(P(0, r, \infty))$ is uniquely given by Laurent series. In particular $f(r) = \sum_{n=0}^{\infty} \frac{x^*(x^n)}{r^n}$, so $x^*\left(\frac{x^n}{r^n}\right) \to 0$.

From princip of unique boundedness (last semester): $\frac{x^n}{r^n}$ if $\|\cdot\|$ -bounded, so $\exists c>0$: $\|x^n\| \leqslant cr^n$, $\sqrt[n]{\|x^n\|} \leqslant \sqrt[n]{c} \cdot r \to r$. So $\limsup \sqrt[n]{\|x^n\|} \leqslant r$.

Důsledek

A Banach algebra, $x \in A$ and $|\lambda| > r(x)$. Then $\sum_{n=1}^{\infty} \frac{x^n}{\lambda^n}$ is absolutely convergent and $R_x(\lambda) = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$.

 $D\mathring{u}kaz$

Fix q, such that $\frac{r(x)}{|\lambda|} < q < 1$. By previous theorem, $\exists n_0 \ \forall n \ge n_0 : \frac{\sqrt[n]{\|x^n\|}}{\lambda} < q$, so $\frac{\|x^n\|}{|\lambda|^n} < q^n$, $n \ge n_0$. Thus $\sum \left\|\frac{x^n}{\lambda^n}\right\| \le \infty$, so the sum is absolutely convergent.

Now we easily check that $(\lambda e - x)^{-1} = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}$.

1.4 Subalgebra

Věta 1.15

A Banach algebra with a unit $e, B \subset A$ is closed subalgebra such that $e \in B$. Fix $x \in B$. Then

• $C \subset \varrho_A(x)$ is component (maximum connected subset) $\Longrightarrow C \subseteq \sigma_B(x)$ or $C \cap \sigma_B(x) = \emptyset$;

- $\partial \sigma_B(x) \subseteq \sigma_A(x) \subseteq \sigma_B(x)$;
- $\varrho_A(x)$ is connected $\implies \sigma_A(x) = \sigma_B(x)$;
- int $\sigma_B(x) = \emptyset \implies \sigma_A(x) = \sigma_B(x)$.

 $\sigma_A(x) \subseteq \sigma_B(x)$: $(\lambda e - x)^{-1}$ exists in B implies it exists (it's same) in A.

"First item": Let $C \subset \varrho_A(x)$ be component. Pick $\lambda_0 \in C \cap \sigma_B(x)$. Wanted: " $C \setminus \sigma_B(x) = \varnothing$ ". Pick $x^* \in A^* : x^*|_B = 0 \wedge x^*(R_x(\lambda)) = 1$ (separate B and $R_x(\lambda) \notin B$). Then $C \ni \lambda \mapsto x^*(R_x(\lambda))$ is holomorphic function on open (because maximum) connected set C. Which is zero^a on $C \setminus \sigma_B(x)$.

Since $C \setminus \sigma_B(x)$ is open, if it is nonempty it contains a ball, so it has cluster point. Thus $C \ni \lambda \mapsto x^*(R_x(\lambda))$ is such that $\{\lambda \in C | x^*(R_x(\lambda))\} = 0$ has a cluster point, so from complex analysis (uniqueness theorem) it is constant zero. 4with $x^*(R_x(\lambda_0)) = 1$.

"Second item": Pick $\lambda \in \sigma_B(x) \backslash \sigma_A(x)$ and let $C \subset \varrho_A(x)$ be a component containing λ . By first item, $C \subseteq \sigma_B(x)$, C is open, so $\lambda \in C \subseteq \operatorname{int}(\sigma_B(x))$.

"Third item": If $\varrho_A(x)$ is connected, we can apply first item to $C = \varrho_A(x)$, we have either $\varrho_A(x) \subseteq \sigma_B(x)$ or $\varrho_A(x) \cap \sigma_B(x) = \emptyset$. But first is not possible, because $\varrho_A(x)$ is unbounded and $\sigma_B(x)$ is bounded. Therefore $\sigma_B(x) \subseteq \sigma_A(x)$.

"Fourth item": If $\operatorname{int}(\sigma_B(x)) = \emptyset$, then (by second item) $\sigma_B(x) \subseteq \partial \sigma_B(x) \subseteq \sigma_A(x) \subseteq \sigma_B(x)$.

For $\lambda \in C \setminus \sigma_B(x)$, $(\lambda e - x)^{-1}$ exists in B so $R_x(\lambda) \in B$ and therefore, $x^*(R_x(\lambda)) = 0$

Důsledek

A Banach algebra, $B \subseteq A$ closed subalgebra, $x \in B$. Then all items from previous theorem hold as well if we replace $\sigma_A(x)$ and $\sigma_B(x)$ by $\sigma_A(x) \cup \{0\}$ and $\sigma_B(x) \cup \{0\}$.

 $D\mathring{u}kaz$

Without proof. (Basically same that previous; we add unit to A and B, so this unit is same $((\mathbf{o}, 1))$, etc.)

1.5 Holomorphic calculus

Definice 1.8

X Banach, $\gamma:[a,b]\to\mathbb{C}$ path (continuous, piecewise smooth (C^1)), $f:\langle\gamma\rangle\to X$ continuous. Then

$$\int_{\gamma} f := \int_{[a,b]} \gamma'(t) f(\gamma(t)) dt.$$
 (As Bochner integral.)

If $\Gamma = \gamma_1 + \ldots + \gamma_n$ is chain in \mathbb{C} , $f : \langle \Gamma \rangle \to X$ continuous, then

$$\int_{\Gamma} f := \sum_{i=1}^{n} \int_{\gamma_i} f.$$

Lemma 1.16

 Γ chain in \mathbb{C} , X Banach, $f: \langle \Gamma \rangle \to X$, $x \in X$. Then

$$\int_{\Gamma} f = x \Leftrightarrow \forall x^* \in X^* : x^*(x) = \int_{\Gamma} x^* \circ f.$$

 $D\mathring{u}kaz$

oxdot

 $, \longleftarrow$ "by Hahn–Banach theorem. $, \Longrightarrow$ ": (by previous semester x^* and \int "commutes")

$$x^* \left(\int_{\Gamma} f \right) = \sum_{i=1}^n x^* \left(\int_{\gamma_i} f \right) = \sum_{i=1}^n \int_{[a_i,b_i]} \gamma_i'(t) x^* (f(\gamma_i(t))) dt = \int_{\Gamma} x^* \circ f.$$

Poznámka (Recall)

If $\Omega \subset \mathbb{C}$ open, $K \subset \Omega$ compact. Then there is a cycle Γ such that $\langle \Gamma \rangle \subset \Omega \backslash K$ and $\operatorname{ind}_{\Gamma} z = 1$ if $z \in K$ and 0 if $z \notin \Omega$.

Then we say that Γ circulates K in Ω .

Definice 1.9

Let A be a Banach algebra with unit, $x \in A$, $\Omega \subset \mathbb{C}$ open and $\sigma(x) \subset \Omega$, $f \in \mathcal{H}(\Omega)$. Then $f(x) := \frac{1}{2\pi i} \int_{\Gamma} f \cdot R_x$, where is any cycle which circulates $\sigma(x)$ in Ω .

Poznámka

f(x) exists $(f \cdot R_x)$ is continuous on $\langle \Gamma \rangle$, f(x) does not depend on the choice of Γ (Pick $x^* \in X^*$, then $(x^* \circ f \cdot R_x)(\lambda) = f(\lambda) \cdot x^*(R_x(\lambda))$ is holomorphic. Pick Γ_1, Γ_2 cycles circulating $\sigma(x)$ in Ω , then $\int_{\Gamma_1 - \Gamma_2} x^* \circ f \cdot R_x = 0$ from Cauchy).

Věta 1.17 (Holomorphic calculus)

A Banach algebra with unit, $x \in A$, $\Omega \subset \mathbb{C}$ open such that $\sigma(x) \subset \Omega$, $f \in \mathcal{H}(\Omega)$. Then $\Phi : \mathcal{H}(\Omega) \to A$ defined as $\Phi(f) = f(x)$ (from definition above) has the following properties:

- Φ is algebra homomorphism, $\Phi(1) = e$, $\varphi(id) = x$;
- $f_n \stackrel{loc.}{\Rightarrow} f$ in $H(\Omega)$, then $f_n(x) \to f(x)$;
- $f(x)^{-1}$ exists $\Leftrightarrow f \neq 0$ on $\sigma(x)$, in this case $f(x)^{-1} = \frac{1}{f}(x)$;

- $\sigma(f(x)) = f(\sigma(x));$
- if Ω_1 is open and $f(\sigma(x)) \in \Omega_1$, $g \in \mathcal{H}(\Omega_1)$, then $(g \circ f)(x) = g(f(x))$;
- if $y \in A$ commutes with x, then y commutes with f(x).

Moreover, if $\psi : \mathcal{H}(\Omega) \to A$ satisfy first two item, then $\psi = \Phi$.

Lemma 1.18

 (Ω, μ) complete measurable space, A Banach algebra, $f \in L_1(\mu, A)$. Let $x \in A$ and $E \subset \Omega$ is measurable. Then

$$x\cdot \left(\int_E f(t)d\mu(t)\right) = \int_E x\cdot f(t)d\mu(t), \qquad \left(\int_E f(t)d\mu(t)\right)\cdot x = \int_E f(t)\cdot xd\mu(t).$$

 $D\mathring{u}kaz$

Easy (by commutation of integral and linear operator from last semester), skipped.

Důkaz (Holomorphic calculus)

"1st item": " Φ is linear" is easy, " Φ is multiplicative": Pick $f, g \in \mathcal{H}(\Omega)$, open set U such that $\sigma(x) \subset U \subset \overline{U} \subset \Omega$. Let Γ cycle circulating $\sigma(x)$ in U, Λ cycle circulating \overline{U} in Ω . Then

because $\langle \Lambda \rangle \cap \langle \Gamma \rangle = \emptyset$, we can use theorem after definition of R_x :

$$= \frac{1}{(2\pi i)^2} \int_{\Gamma} \int_{\Lambda} f(t) \cdot g(s) \cdot \frac{R_x(t) - R_x(s)}{s - t} ds dt$$
 Fubini to $x^*(\dots)$ and lemma

$$=\frac{1}{(2\pi i)^2}\int_{\Gamma}f(t)\left(\int_{\Lambda}\frac{g(s)}{s-t}ds\right)R_x(t)dt-\frac{1}{(2\pi i)^2}\int_{\Lambda}g(s)\left(\int_{\Gamma}\frac{f(t)}{s-t}\right)R_x(s)ds=$$

(Now we use Cauchy theorem $(f(z) \operatorname{ind}_{\Gamma} z = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w-z} dw)$. $\forall s \in \langle \Lambda \rangle : (t \mapsto \frac{f(t)}{s-t}) \in \mathcal{H}(U) \land \operatorname{ind}_{\Gamma} z = 0, z \notin U$, so $\int_{\Gamma} \frac{f(t)}{s-t} dt = 0$. $\forall t \in \langle \Gamma \rangle : \operatorname{ind}_{\Lambda} t = 1 \land (s \mapsto g(s)) \in \mathcal{H}(\Omega) \implies g(t) = \frac{1}{2\pi i} \int_{\Lambda} \frac{g(s)}{s-t} ds$.)

$$= \frac{1}{2\pi i} \int_{\Gamma} f(t)g(t)R_x(t)dt - 0.$$

It remains that "if $f(z) = z^k$, $k \in \mathbb{N} \cup \{0\}$ then $f(x) = x^k$ " (we want it for k = 0 and

k=1). Put $\Gamma(t)=r\cdot e^{it},\,t\in[0,2\pi]$, where $r>\|x\|$ arbitrary. By some theorem:

$$R_x(\lambda) = \sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}, \qquad |\lambda| > ||x||.$$

Thus (we switch integral and sum, because later we realize that sum of integral of absolute value is finite)

$$\forall x^* \in A^* : x^*(f(x)) = \frac{1}{2\pi i} \int_{\Gamma} \lambda^k x^* (\sum_{n=0}^{\infty} \frac{x^n}{\lambda^{n+1}}) d\lambda = \frac{1}{2\pi i} \int_{\Gamma} \sum_{n=0}^{\infty} \frac{x^*(x^n)}{\lambda^{n-k+1}} d\lambda = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\Gamma} \frac{x^n}{\lambda^{n-k+1}} d\lambda = \frac{1}{2\pi$$

because Γ (is 2π periodic).

",2nd item": For $\Gamma = \gamma_1 + \ldots + \gamma_N$:

$$||f_n(x) - f(x)|| = \frac{1}{2\pi i} ||\int_{\Gamma} (f_n(\lambda) - f(\lambda)) R_x(\lambda) d\lambda|| \leq \frac{1}{2\pi} \int_{\Gamma} |f_n(\lambda) - f(\lambda)| \cdot ||R_x(\lambda)|| d\lambda \leq \frac{1}{2\pi} \sum_{i=1}^{N} \int_{a}^{b_i} |\gamma_i'(t)| \sup_{z \in \langle \Gamma - f(\lambda) \rangle} ||f_n(\lambda) - f(\lambda)|| d\lambda \leq \frac{1}{2\pi} \sum_{i=1}^{N} \int_{a}^{b_i} |\gamma_i'(t)| \sup_{z \in \langle \Gamma - f(\lambda) \rangle} ||f_n(\lambda) - f(\lambda)|| d\lambda \leq \frac{1}{2\pi} \sum_{i=1}^{N} \int_{a}^{b_i} ||\gamma_i'(t)|| d\lambda \leq \frac{1}{2\pi} \sum_{i=1}^{N} \int_{a}^{b_i} ||f_n(\lambda) - f(\lambda)|| d\lambda \leq \frac{1}{2\pi} \sum_{i=1}^{N} \int$$

"Moreover part": By Runge theorem (and second item) it is enough prove it for rational functions. If R was polynom, then $\Phi(R) = \Psi(R)$ by second item. So it suffices " $\forall p$ polynom: $\frac{1}{p} \in \mathcal{H}(\Omega) \implies \Phi(\frac{1}{p}) = \psi(\frac{1}{p})$ ". Pick p polynom. Then $e = \psi(1) = \psi(p \cdot \frac{1}{p}) = \psi(p) \cdot \psi(\frac{1}{p}) = \Phi(p) \cdot \psi(\frac{1}{p})$ (similarly for $\frac{1}{p} \cdot p$). So $\psi(\frac{1}{p}) = \Phi(p)^{-1} = \Phi(\frac{1}{p})$.

"3rd item": " \Longrightarrow " Let f(z)=0 for some $z\in\sigma(x)$. Then exists $g\in H(\Omega): f(u)=(z-u)g(z)$. By item one, we have (ze-x)g(x)=f(x)=g(x)(ze-x). But $(ze-x)^{-1}$ does not exist, so $f(x)^{-1}$ does not exists.

" \Leftarrow " Suppose $f \neq 0$ on $\sigma(x)$ by compactness. $\exists \Omega_1 \subset \Omega$ open: $\sigma(x) \subset \Omega_1$ and $f \neq 0$ on Ω_1 . Then $\frac{1}{f} \in H(\Omega_1)$ and by first item we have $e = (f \cdot \frac{1}{f})(x) = f(x)\frac{1}{f}(x) = \dots = \frac{1}{f}(x) \cdot f(x) \implies f(x)^{-1} = \frac{1}{f}(x)$.

Poznámka

f=g on a neighbourhood of $\sigma(x) \implies f(x)=g(x)$ (from definition), other implication doesn't hold!

1.6 Multiplicative functionals

Definice 1.10 (Multiplicative functional)

Let A be a Banach algebra. We say $\varphi:A\to\mathbb{C}$ is multiplicative linear functional $\equiv\varphi$ preserves $+,\cdot,\cdot_S$.

 $\Delta(A) := \{ \varphi : A \to \mathbb{C} | \varphi \text{ multiplicative linear functional }, \varphi \not\equiv 0 \}.$

Tvrzení 1.19

A Banach algebra, $\varphi \in \Delta(A) \cup \{0\}$. Then

• $\exists ! \tilde{\varphi} \in \Delta(A_e) : \tilde{\varphi}((x,0)) = \varphi(x), \forall x \in A. \text{ It is given by}$

$$\tilde{\varphi}((x,\lambda)) = \varphi(x) + \lambda.$$

Moreover, $\Delta(A_e) = \{ \tilde{\varphi} | \varphi \in \Delta(A) \cup \{0\} \}.$

- $\forall x \in A : \varphi(x) \in \sigma(x)$ whenever $\varphi \equiv 0$.
- $\Delta(A) \subseteq B_{A^*}$.
- A has a unit, $\varphi \not\equiv 0 \implies \|\varphi\| \geqslant \frac{1}{\|e\|}$. In particular if $\|e\| = 1$, then $\|\varphi\| = 1$.

 \Box $D\mathring{u}kaz$

",1. uniqueness": For $\tilde{\varphi} \in \Delta(A_e)$ such that $\tilde{\varphi}((x,0)) = \varphi(x), x \in A$:

$$\tilde{\varphi}((x,\lambda)) = \varphi(x) + \lambda \tilde{\varphi}((\mathbf{0},1)) = \varphi(x) + \lambda,$$

second equality by $\varphi \in \Delta(A) \implies \varphi(e) = \varphi(e^2) = \varphi^2(e)$. "1. existence" is proven by check that defined $\tilde{\varphi}$ is multiplicative linear functional (and it is nonzero, but $\tilde{\varphi}((0,1)) = 1 \neq 0$). This is easy (omitted).

 $,\Delta(A_e) = \{\tilde{\varphi}|\varphi \in \Delta(A) \cup \{0\}\}$ ": $,\subseteq$ ": $\varphi \in LHS$, put $\varphi(x) := \psi((x,0))$. Then $\varphi \in \Delta(A) \cup \{0\}$ and $\tilde{\varphi} = \psi$ became:

$$\tilde{\varphi}((x,\lambda)) = \varphi(x) + \lambda = \psi((x,0)) + \lambda = \psi((x,\lambda)).$$

 $,\supseteq$ ": We know already that $\tilde{\varphi} \in \Delta(A_e)$.

"2. with A has unit e": $\varphi \neq 0$, $\varphi \in \Delta(A)$: If $\lambda \in \varrho(x)$, then $\varphi(\lambda e - x) \neq 0$ ($\varphi(x) \neq 0$ if x^{-1} exists). $0 \neq \varphi(\lambda e - x) = \lambda - \varphi(x) \implies \lambda \neq \varphi(x)$. Thus $\varphi(x) \notin \varrho(x)$, so $\varphi(x) \in \sigma(x)$. "2. with A hasn't unit", then $\varphi(x) = \tilde{\varphi}((x,0)) \in \sigma_{A_e}((x,0)) = \sigma_A(x)$.

",3.": $\varphi \in \Delta(A)$. Then $\forall x \in A : \varphi(x) \in \sigma(x) \subseteq B(\mathbf{0}, ||x||)$, so $|\varphi(x)| \leq ||x||$.

"4.": A has a unit e, then $\|\varphi\| \geqslant \left|\varphi\left(\frac{e}{\|e\|}\right)\right| = \frac{1}{\|e\|}$.

Věta 1.20

A Banach algebra, $M := \Delta(A) \cup \{0\}$. Then $M \subset (B_{A^*}, w^*)$ is compact, $\Delta(A)$ is locally compact and if A has u unit, then $\Delta(A)$ is compact. The mapping $\Phi : M \to \Delta(A_e)$, $\Phi(\varphi) = \tilde{\varphi}$ is w^*-w^* homeomorphism.

By previous proposition, $M \subset (B_{A^*}, w^*)$ ((B_{A^*}, w^*) is compact by previous semester). So, it suffices to check that M is w^* -closed.

$$M = \bigcap_{x,y \in A} \{ \varphi \in A^* | \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) \}.$$

Sets from RHS is closed by previous semester, so, M is closed. Thus M is compact.

 $\Delta \subset M$ is open, so $\Delta(A)$ is locally compact (and M is 1-point compactification of $\Delta(A)$). If Δ has a unit, then $\Delta(A) = \{\varphi \in M | \varphi(e) = 1\}$ is w^* -closed, so $\Delta(A)$ is compact (and 0 is isolated in M).

Finally, by previous proposition, Φ is bijection. Φ is w^* -continuous:

$$\varphi_i \stackrel{w^*}{\to} \varphi \implies \forall (x,\lambda) : \tilde{\varphi}_i((x,\lambda)) = \varphi_i(x) + \lambda \to \varphi(x) + \lambda = \tilde{\varphi}((x,\lambda)) \implies \tilde{\varphi}_i \stackrel{w^*}{\to} \tilde{\varphi}$$

So, Φ is homeomorphism (continuous bijection on compact, last semester?).

Například

 $\Delta(\mathcal{C}(K)) = \{\delta_x | x \in K\}. \ (f \mapsto f(x) \text{ is multiplicative. Suppose } \varphi \in \Delta(\mathcal{C}(K)), \varphi \notin \{\delta_x | x \in K\}.$ So for $x \in K$ there is $g_x \in C(x) : \varphi(g_x) \neq g_x(x)$. Consider $f_x = g_x - \varphi(g_x)$. Then $\varphi(f_x) = 0$, $f_x(x) \neq 0$. So there is U_x open neighbourhood of x such that $f_x \neq 0$ on U_x . Compactness implies $\exists x_1, \ldots, x_n \in K : K \subset \bigcup_{i=1}^n U_{x_i}$. Consider $h := \sum_{i=1}^n |f_{x_i}|^2$. Then h > 0 on K, so h^{-1} exists and therefore $\varphi(h) \neq 0$. But $\varphi(h) = \sum_{i=1}^n \varphi(f_{x_i}) \overline{\varphi_{x_i}} = 0$.)

 $\Delta\{M_n\} = \emptyset$, $n \ge 2$, where M_n is (non-commutative) algebra of $n \times n$ matrices. $(M_n = \text{LO}\{E^{i,j}\}, E^{ij} \cdot E^{kl} = E^{il} \text{ if } j = k$, else 0. So $\varphi(E^{ij}) \cdot \varphi(E^{ij}) = \varphi(E^{ij} \cdot E^{ij}) = 0$ if $i \ne j$. $\varphi(E^{ii}) = \varphi(E^{in}E^{ni}) = \varphi(E^{in})\varphi(E^{in}) = 0$.

Definice 1.11 (Ideal, maximal ideal)

A Banach algebra. Ideal in A is a subspace $I \subset A$ if $\forall x \in I \ \forall y \in A : x \cdot y \in I \land y \cdot x \in I$.

Maximal ideal \equiv proper $(I \neq A)$ ideal and it is maximal proper ideal with respect to inclusion.

 $Nap\check{r}iklad$ (2021, Johnson-Schetman, Acta mathematica) $\mathcal{L}(L_p)$ has $2^{2^{\omega}}$ non-isomorphic closed ideals.

Tvrzení 1.21

A Banach algebra with a unit. Then:

• Any proper ideal is contained in a maximum ideal. (From Zorn's lemma. And $I \subset A$ ideal is proper $\Leftrightarrow e \notin I$.)

• $I \subset A$ proper ideal $\Longrightarrow \overline{I} \in A$ is proper ideal. In particular, maximal ideals are closed. (Easy: \overline{I} is ideal. Moreover, $I \cap A^* = \emptyset$ (if $x \in I$ was invertible thus $e = x \cdot x^{-1} \in I$, but $e \notin I$). So $(A^*$ is open) $\overline{I} \cap A^* = \emptyset$ and therefore $e \notin \overline{I}$.)

Tvrzení 1.22

A Banach algebra, $I \subseteq A$ closed ideal $\implies A/I$ is Banach algebra $([x] \cdot [y] := [x \cdot y])$.

Důkaz

Straightforward from definition. (Omitted.)

Poznámka

From now on, A will be commutative.

Step 1: "Hahn-Banach": $I \subset A$ closed ideal $\implies \exists \varphi \in \Delta(A) : \varphi/I \equiv \dots$

Věta 1.23

A commutative Banach algebra with a unit. Then $\Phi : \Delta(A) \to \{\text{maximal ideals in } A\},\ \Phi(\varphi) := \text{Ker } \varphi, \text{ is bijection.}$

Pick $\varphi \in \Delta(A)$. Then "Ker φ is maximal ideal": ideal: $y \in \text{Ker } \varphi, x \in A : \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = \ldots \cdot 0 = 0$, proper: $\varphi \not\equiv 0$, maximal: codim Ker $\varphi = 1$: pick $x_0 : \varphi(x_0) \neq 0$, $a = a - \varphi(a) \cdot \frac{x_0}{\varphi(x_0)} + \varphi(a) \cdot \frac{x_0}{\varphi(x_0)} \in \text{Ker } \varphi \oplus \mathbb{R}$.

" Φ is one-to-one": Pick $\varphi, \psi \in \Delta(A)$: Ker $\varphi = \text{Ker } \psi$. Then (by lemma from previous semester) $\varphi = c \cdot \psi$ for some $c \in \mathbb{K}$. But $\varphi(e) = 1 = \psi(1)$ so $\varphi = \psi$.

" Φ is surjective": Let $I \subset A$ be maximal ideal (\Longrightarrow closed). Step 1 "Any nonzero element in A/I is invertible": For contradiction assume $\exists q(x) \in A/I$ (q(x) = [x]), $q(x) \ne 0 \land q(x)^{-1}$ does not exist. By next lemma q(x)(A/I) is proper ideal. Then $q^{-1}(q(x)(A/I))$ is an ideal in A which is proper and $I \subsetneq q^{-1}(q(x)(A/I))$, which contradicts maximality of I. It follows from: ideal: follows from the fact that q is algebra homomorphism; proper: $q(e) = [e] \notin q(x)A/I$; $I \subseteq q^{-1}(\ldots)$: $0 \in q(x)A/I$; $I \ne q^{-1}(\ldots)$: $q(x) \ne 0 \Longrightarrow x \notin I$, but $q(x) = q(x)q(e) \in q(x)(A/I)$, so $x \in q^{-1}(\ldots)$.

From Gelfand–Mazur theorem \exists surjective isomorphism $j:A/I\to\mathbb{C}$. Then $\varphi:=j\circ q\in\Delta(A)$. It remains $_{,}I=\operatorname{Ker}\varphi^{,}:x\in\operatorname{Ker}\varphi\Leftrightarrow j(q(x))=0\Leftrightarrow q(x)=0\Leftrightarrow x\in I.$

Lemma 1.24

A commutative Banach algebra with a unit, $x \in A$ does not have inverse $\implies xA$ is proper ideal.

Důkaz

xA is ideal, because A is commutative. Then xA is proper $(e \notin xA)$.

Důsledek (Hahn–Banach like theorem)

A is commutative Banach algebra with a unit, $I \subset A$ proper ideal. Then $\exists \varphi \in \Delta(A): \varphi/I \equiv 0$.

 $D\mathring{u}kaz$

Let $\tilde{I} \supseteq I$ be maximal ideal. By previous theorem there is $\varphi \in \Delta(A)$: $\tilde{I} = \operatorname{Ker} \varphi$.

Tvrzení 1.25

 $A,\ B\ Banach\ algebras,\ \Phi:A\to B\ algebraic\ isomorphism.$ Then $\Phi^\#:\Delta(B)\to\Delta(A)$ defined as $\Phi^\#(\varphi):=\varphi\circ\Phi$ is homeomorphism.

 $D\mathring{u}kaz$

$$\Phi^{\#}(\varphi) \in \Delta(A)$$
": $\Phi^{\#}(\varphi) = \varphi \circ \Phi \in \Delta(A) \cup \{0\} \text{ and } \varphi \not\equiv 0 \land \Phi \text{ is onto } \Longrightarrow \varphi \circ \Phi \neq 0.$

$$,\Phi^{\#}$$
 is w^* - W^* continuous": $\varphi_i \xrightarrow{w^*} \varphi \implies \varphi_i \circ \Phi \xrightarrow{w^*} \varphi \circ \Phi$.

Apply the proven part to Φ^{-1} , obtain that $(\Phi^{-1})^{\#}: \Delta(A) \to \Delta(B)$ is w^*-W^* continuous. Moreover we have $\Phi^{\#} \circ (\Phi^{-1})^{\#} = \mathrm{id} \wedge (\Phi^{-1})^{\#} \circ \Phi^{\#}$.

Tvrzení 1.26

L locally compact T_2 . Then $\delta: L \to \Delta(C_0(L)), x \mapsto \delta_x$ is homeomorphism onto.

 $D\mathring{u}kaz$

"Case 1: L is compact": By example δ is onto. Of course, δ is one-to-one, continuous. So δ is homeomorphism.

"Case 2: L is not compact": Then there is $K = L \cup \{\infty\}$, one-point compactification, and $\{f \in \mathcal{C}(K) | f(\infty) = 0\} \ni f \mapsto f|_L \in C_0(L)$ is isometric isomorphism. Moreover $\Phi : \mathcal{C}_0(L)_e \to \mathcal{C}(K), \ \Phi(f, \lambda) := f + \lambda$, is algebraic isomorphism.

So, we have $K \xrightarrow{\eta} \Delta(C(K)) \xrightarrow{\Phi^{\#}} \Delta(C_0(L)_e) \xrightarrow{\psi} \Delta(C_0(L)) \cup \{0\}$, where η is homeomorphism from case 1 and $\psi(\varphi) := \varphi|_{C_0(L)}$.

Thus $\delta := \psi \circ \Phi^{\#} \circ \eta$ is homeomorphism between $L \cup \{\infty\}$ and $\Delta(C_0(L)) \cup \{0\}$. Finally, for $x \in K$ and $f \in C_0(L)$:

$$\Phi^{\#} \circ \eta(x)(f) = (\eta(x) \circ \Phi)(f) = f(x),$$

so $\psi \circ \Phi^{\#} \circ \eta(x) = \Phi^{\#} \circ \eta(x)|_{C_0(L)} = \delta_x|_{C_0(L)}.$

Věta 1.27

K, L locally compact T_2 . Then following is ekvivalent

- $C_0(K) \equiv C_0(L)$ as Banach algebra;
- $C_0(K) \equiv C_0(L)$ as algebras;
- $K \approx L$ as topological spaces.

$D\mathring{u}kaz$

"1 \Longrightarrow 2" trivial. "2 \Longrightarrow 3": $K \approx \Delta(\mathcal{C}_0(K)) \approx \Delta(\mathcal{C}_0(L)) \approx L$ from previous two tvrzeni. "3 \Longrightarrow 1": Given $h: K \to L$ homeomorphism, $f \mapsto f \circ h$ is isometry between Banach algebras.

Definice 1.12 (Semi-simple Banach algebra)

A commutative Banach algebra. It is semi-simple $\equiv \Delta(A)$ separates points of A. $(\Leftrightarrow \bigcap \{\operatorname{Ker} \varphi | \varphi \in \Delta(A)\} = \{\mathbf{o}\}.)$

Poznámka

Semi-simple \Longrightarrow commutative. (Semi-simple and $x \cdot y \neq y \cdot x \Longrightarrow \exists \varphi \in \Delta(A): \varphi(x) \cdot \varphi(y) = \varphi(x \cdot y) \neq \varphi(y \cdot x) = \varphi(y) \cdot \varphi(x)$ 4.)

Věta 1.28

A, B Banach algebras, B is semi-simple, then every (algebra) homomorphism $\Phi: A \to B$ is continuous.

 $D\mathring{u}kaz$

Use Closed graph theorem. Pick $x_n \to x$, $\varphi(x_n) \to y$. Wanted $\Phi(x) = y$ ($\Leftrightarrow \forall \varphi \in \Delta(B) : \varphi(\Phi(x)) = \varphi(y)$). For $\varphi \in \Delta(B)$ we have $\varphi(y) = \lim_n \varphi(\Phi(x_n)) = \varphi(\Phi(x_n)$ $\varphi \circ \Phi(\lim_n x_n) = \varphi(\Phi(x))$.

Důsledek

 $(A, \|\cdot\|)$ semi-simple Banach algebra and $(A, \||\cdot\|)$ is Banach algebra (with other norm), then $\|\cdot\|$ and $\|\cdot\|$ are equivalent.

 $D\mathring{u}kaz$

We have that id: $(A, \||\cdot|\|) \to (A, \|\cdot\|)$ is algebra homomorphism, so continuous by previous theorem. Similarly inverse is continuous (semi-simplicity doesn't depend on norm). So, id is isomorphism.

2 Gelfand transformation

Definice 2.1 (Gelfand transformation)

A Banach algebra. For $x \in A$ we define $\hat{x}: \Delta(A) \to \mathbb{C}$, $\hat{x}(\varphi) := \varphi(x)$. We say that \hat{x} is Gelfand transformation of x.

Poznámka

 $\hat{x} \in \mathcal{C}_0(\Delta(A)).$

$$A = \mathcal{C}_0(L) \implies \Delta(A) = \{\delta_x | x \in L\} \implies \forall f \in A : \hat{f}(\delta_x) = f(x), x \in L. \text{ So, } \hat{f} = f.$$

 $A = L_1(\mathbb{R}^d) \implies \Delta(A) = \{e^{it \cdot x} | x \in \mathbb{R}\} \subseteq L_{\infty}(\mathbb{R}^d) = A^* \text{ and } \hat{f} \text{ is Fourier transformation.}$

Věta 2.1

A commutative Banach algebra, $x \in A$. Then

- A has a unit $\implies \sigma(x) = \operatorname{Rng} \hat{x};$
- A doesn't have a unit $\implies \sigma(x) = \operatorname{Rng} \hat{x} \cup \{0\};$
- $\|\hat{x}\|_{\infty} = r(x) = \sup\{|\lambda| | \lambda \in \sigma(x)\}.$

Důkaz

"a) \subseteq ": $\lambda \in \sigma(x) \Leftrightarrow (\lambda \cdot e - x)^{-1}$ does not exists \Longrightarrow (Lemma above) $(\lambda e - x)A$ is proper ideal $\Longrightarrow \exists \varphi \in \Delta(A) : \varphi|_{(\lambda e - x)A} \equiv 0 \Longrightarrow \exists \varphi \in \Delta(A) : 0 = \varphi(\lambda e - x) = \lambda - \varphi(x) = \lambda - \hat{x}(\varphi) \Longrightarrow \lambda \in \operatorname{Rng} \hat{x}.$

"⊇" follows from Tvrzeni above, $\varphi(x) \in \sigma(x)$ for $\varphi \in \Delta(A)$.

"b)" For $x \in A$:

$$\sigma(x) = \sigma_{A_e}((x,0)) \stackrel{\text{a.}}{=} \operatorname{Rng}(\hat{x,0}) = (\{\tilde{\varphi} | \varphi \in \Delta(A) \cup \{0\}\}) =$$
$$= \{\varphi(x) | \varphi \in \Delta(A) \cup \{0\}\} = \operatorname{Rng} \hat{x} \cup \{0\}.$$

"c)" $\|\hat{x}\|_{\infty} = \sup\{|\lambda||\lambda \in \operatorname{Rng} \hat{x}\} = \sup\{|\lambda||\lambda \in \operatorname{Rng} \hat{x} \cup \{0\}\} = \sup\{|\lambda||\lambda \in \sigma(x)\} = r(x)$.

Definice 2.2 (Gelfand transformation of algebra)

A Banach algebra, then $\Gamma: A \to \mathcal{C}_0(\Delta(A)), \ \Gamma(x) := \hat{x}$ is the Gelfand transformation of A.

Věta 2.2

A commutative Banach algebra, Γ Gelfand transformation. Then

- Γ is algebra transformation, continuous, $\|\Gamma\| \leq 1$;
- $\Gamma(A)$ separates the points of $\Delta(A)$;
- Γ is one-to-one \Leftrightarrow A is semi-simple;
- Γ is an isomorphism into $\Leftrightarrow \exists K > 0 : \|x^2\| \geqslant K \cdot \|x\|^2$, $x \in A$; $(\Leftrightarrow \Gamma$ is one-to-one and $\Gamma(A)$ is closed;)
- Γ is an isometry into $\Leftrightarrow ||x^2|| = ||x||^2, x \in A$.

 $D\mathring{u}kaz$

"a)": Γ is linear (obvious), Γ preserves multiplication (obvious). Finally, $\|\Gamma(x)\|_{\infty} = \|\hat{x}\|_{\infty} = r(x) \leq \|x\|$. So $\|\Gamma\| \leq 1$.

"b)": Let
$$\varphi \neq \psi \in \Delta(A)$$
 and $x \in A : \hat{x}(\varphi) = \varphi(x) \neq \psi(x) = \hat{x}(\psi)$.

"c)": $\Gamma(x) = 0 \Leftrightarrow \hat{x}(\varphi) = 0, \varphi \in \Delta(A) \Leftrightarrow \varphi(x) = 0, \varphi \in \Delta(A)$. So, Γ is one-to-one $\Leftrightarrow \forall x \neq 0 \ \exists \varphi \in \Delta(A) : \varphi(x) \neq 0 \Leftrightarrow A$ is semi-simple.

"d) second": Γ is isomorphism into $\Leftrightarrow \Gamma$ is bijection between A and $\Gamma(A) \wedge \Gamma(A)$ is closed. ($\Gamma(A)$ is closed, then we use Open mapping theorem; if Γ is isomorphism, $\Gamma(A)$ is a Banach space.).

"d) + e),
$$\Longrightarrow$$
 ": Suppose $\exists c > 0$: $\|\Gamma(x)\| \ge c \cdot \|x\|$, $x \in A$. Then $\forall x \in A : \|x^2\| \stackrel{\text{a)}}{\ge} \|\Gamma(x^2)\| = \|\Gamma(x)\|^2 \ge c^2 \cdot \|x\|^2$.

"d) + e), \iff ": Let d) hold with K (this holds in every algebra). Then (proven by induction)

$$\forall x \in A : \|x^{2^n}\| \geqslant K^{2^{n-1}} \|x\|^{2^n}, \qquad n \in \mathbb{N}.$$

$$\implies \sqrt[2^n]{\|x^{2^n}\|} \geqslant K^{1-2^{-n}} \|x\|,$$

where left side converges (by Beurling) to r(x) and right side converges to ||x||. So $r(x) \ge K \cdot ||x||$ and from previous theorem $r(x) \ge ||\hat{x}||_{\infty} = ||\Gamma(x)||$.

2.1 C^* -algebras

Definice 2.3 (Involution)

A is a Banach algebra. Involution is a mapping $*: A \rightarrow A$ such that

$$\forall x, y \in A \ \forall \lambda \in \mathbb{C}$$
:

$$(x+y)^* = x^* + y^*, \qquad (\lambda x)^* = \overline{\lambda} x^*, \qquad (xy)^* = y^* \cdot x^*, \qquad (x^*)^* = x.$$

Definice 2.4 (C^* -algebra)

Banach algebra with involution * is a C^* -algebra, if

$$\forall x \in A : ||x \cdot x^*|| = ||x||^2, x \in A.$$

Definice 2.5 (Self-adjoint element, normal element)

For A with involution * and $x \in A$ we say that x is self-adjoint $\equiv x = x^*$, and x is normal $\equiv x \cdot x^* = x^* \cdot x$.

Tvrzení 2.3 (Properties)

A Banach algebra with involution, $x \in A$. Then

- e is left/right unit \implies e is unit and $e = e^*$. (e is left unit \Leftrightarrow e^* is right unit. So there is unit.)
- A is C^* -algebra $\Leftrightarrow \|x \cdot x^*\| \geqslant \|x\|^2$, $x \in A$. Then $\|x^*\| = \|x\|$, $x \in A$. (,, \Longrightarrow ": clear, , \Longleftrightarrow ": Then $\forall x \in A : \|x\|^2 \leqslant \|x \cdot x^*\| \leqslant \|x\| \cdot \|x^*\|$, so $\|x\| \leqslant \|x^*\|$, and applying to x^* we get $\|x^*\| \leqslant \|x\|$. But then we have $\|x \cdot x^*\| \leqslant \|x\| \cdot \|x^*\| = \|x\|^2$.)
- Let A has a unit. then x^{-1} exists $\Leftrightarrow (x^*)^{-1}$ exists. Then $(x^*)^{-1} = (x^{-1})^*$. $(" \Longrightarrow ": x^* \cdot (x^{-1})^* = (x^{-1}x)^* = e^* = e$, analogically $(x^{-1})^*x^* = e$. $" \Leftarrow ": Apply the proven part to <math>x^*$.)
- $\lambda \in \sigma(x) \Leftrightarrow \overline{\lambda} \in \sigma(x^*)$. (A has a unit: $\lambda \notin \sigma(x) \Leftrightarrow \exists (\lambda e x)^{-1} \Leftrightarrow \exists ((\lambda e x)^*)^{-1} \Leftrightarrow \overline{\lambda} \notin \sigma(x^*)$. If A has not a unit, then we use previous sentence and next theorem?)
- $x + x^*$, $x^* \cdot x$, $x \cdot x^*$, $i \cdot (x x^*)$ are self-adjoint. (Easy, omitted.)
- $\exists ! u, v \in A \text{ self-adjoint: } x = u + i \cdot v. \text{ Then } x^* = u i \cdot v, \text{ and } x \text{ is normal} \Leftrightarrow uv = vu. \ (\text{,Existence}": u := \frac{1}{2}(x + x^*), v := \frac{1}{2i}(x x^*). \text{ Then } x = u + iv. \text{,Formulas}": (u + i \cdot v)^* = u^* + \bar{i}v^*. \text{,} \text{Uniqueness}": \text{Pick } a, b \in A_{sa} : x = a + i \cdot b. \text{ Then } a + i \cdot b = x = u + i \cdot v, \ a i \cdot b = x^* = u i \cdot v. \text{ By subtracting or summing equation we get } a = u \text{ and } b = v. \text{,Normality}": x \text{ normal} \Leftrightarrow (u + i \cdot v)(u i \cdot v) = (u i \cdot v)(u + i \cdot v) \Leftrightarrow -i \cdot u \cdot v + i \cdot v \cdot u = i \cdot u \cdot v i \cdot v \cdot u \Leftrightarrow u \cdot v = v \cdot u.)$

Věta 2.4

A is C^* -algebra, $x \in A$ is normal. Then r(x) = ||x||.

"Step 1: $||x^2|| = ||x||^2$ ":

$$||x||^4 = ||x^*x||^2 = ||(x^*x)^*(x^*x)|| = ||x^*xx^*x|| = ||x^*x^*xx|| = ||(xx)^*xx|| = ||xx||^2 = ||x^2||^2.$$

Thus inductively, we obtain $||x^{2^k}|| = ||x||^{2^k}$, $k \in \mathbb{N}$. Thus, Beurling gives $r(x) = \lim_k \sqrt[2^k]{||x^{2^k}||} = ||x||$.

Důsledek

A (Banach) algebra with involution. Then there is at most one norm $\|\cdot\|$ on A, such that $(A,\|\cdot\|)$ is C^* -algebra.

Důkaz

If $\|\cdot\|_1$ and $\|\cdot\|_2$ are norms on A such that $(A,\|\cdot\|)$ is C^* -algebra, then by previous theorem

$$\forall x \in A : \|x\|_1^2 = \|x^*x\|_1 = r(x^*x) = \|x^*x\|_2 = \|x\|_2^2.$$

Věta 2.5

 $(A, \|\cdot\|)$ Banach algebra.

- $(a,\lambda)^* = (a^*,\overline{\lambda}), (a,\lambda) \in A_e$ defines an involution on A_e . (Trivial.)
- If A is C*-algebra, then on A_e there exists a norm $\||\cdot|\|$ (equivalent to the norm from $A \oplus_1 \mathbb{K}$) such that $(A_e, \||\cdot\||)$ is C*-algebra and $\||(a, 0)|\| = \|a\|$, $a \in A$.

Věta 2.6

A is C^* -algebra, $x \in A$. Then

- $x = x^* \implies \sigma(x) \subseteq \mathbb{R}$:
- A has a unit and $x^* = x^{-1}$ (that is, x is unitary) $\implies \sigma(x) \subseteq \{\lambda | |\lambda| = 1\}.$

Důkaz

By previous theorem, WLOG A has a unit.

"a)": Let $\alpha + i\beta \in \sigma(x)$, $\alpha, \beta \in \mathbb{R}$. We want $\beta = 0$. Trick: $x_t := x + i \cdot t \cdot e$, $t \in \mathbb{R}$. Then

$$\alpha + i \cdot (\beta + t) \in \sigma(x_t) (\iff (\alpha + i(\beta + t))e - x_t = (\alpha + i \cdot \beta)e - x),$$

$$\alpha^{2} + (\beta + t)^{2} = |\alpha + i(\beta + t)|^{2} \le ||x_{t}||^{2} = ||x_{t}^{*}x_{t}|| = ||(x - i \cdot t \cdot e) \cdot (x + i \cdot t \cdot e)|| = ||x^{2} + (t \cdot e)^{2}|| \le ||x^{2}|| + t^{\frac{1}{2}}.$$
So, $\alpha^{2} + (\beta + t)^{2} - t^{2} \le ||x^{2}||$, $t \in \mathbb{R} \implies \beta = 0$ (Otherwise $LHS \to +\infty$ for $t \to \pm \infty$.)

"b)": $(\|e\| = \|e^2\| = \|e\|^2)$. $1 = \|e\| = \|x^*x\| = \|x\|^2$, so $\|x\| = 1$. Then, for $\lambda \in \sigma(x)$, we have $|\lambda| \leq \|x\| = 1$. On the other hand $\frac{1}{\lambda} \in \sigma(x^{-1})$ (because if not, then $\frac{1}{\lambda}e - x^{-1}$ ha inverse $\implies \lambda e - x = (\lambda e - x)x^{-1}x = (\lambda x^{-1} - e)x = -\lambda(\frac{1}{\lambda}e - x^{-1})x \implies \lambda e - x$ has inverse.) So

$$\left|\frac{1}{\lambda}\right| \le ||x^{-1}|| = ||x^*|| = ||x|| = 1.$$

Definice 2.6

A, B are C^* -algebras, then $\Phi: A \to B$ is *-homomorphism if Φ is homomorphism preserving * (that is, $\Phi(x^*) = (\Phi(x))^*$).

Důsledek

Let A be a C^* -algebra and $\Phi \in \Delta_A$. Then Φ is *-homomorphism.

 $D\mathring{u}kaz$

"If
$$x = x^*$$
", then $\Phi(x) \in \sigma(x) \subseteq \mathbb{R}$, so $\Phi(x^*) = \Phi(x) = \overline{\Phi(x)}$.

$$\frac{\text{,In general"}, \text{ if } x = u + i \cdot v \text{ } (u = u^*, v = v^*), \text{ then } \Phi(x^*) = \Phi(u - i \cdot v) = \Phi(u) - i \cdot \Phi(v) = \Phi(u) + i \cdot \Phi(v) = \Phi(u) - i \cdot \Phi(v) =$$

Tvrzení 2.7 (Automatical continuous)

Let A, B be C^* -algebras, $\Phi: A \to B$ is *-homomorphism. Then Φ is continuous and $\|\Phi\| \leq 1$.

Důkaz

$$\forall x \in A : \|\Phi(x)\|^2 = \|\Phi(x)^* \cdot \Phi(x)\| = r(\Phi(x^*) \cdot \Phi(x)) = r(\Phi(x^*x)) \stackrel{*}{=} r(x^*x) = \|x^*x\| = \|x\|^2.$$

Thus it suffices to show that (by following lemma)

$$\sigma(\Phi(x^*x)) \subseteq \sigma(x^*x) \cup \{0\}.$$

Lemma 2.8

Let A, B be Banach algebras, $\Phi : A \to B$ algebra homomorphism. Then $\forall x \in A : \sigma_B(\varphi(x)) \subseteq \sigma_A(x) \cup \{0\}$.

 $D\mathring{u}kaz$

Consider $\tilde{\Phi}: A_e \to B_e$ defined as $\tilde{\Phi}(a, \lambda) := (\Phi(a), \lambda)$. Then $\tilde{\Phi}$ is algebra homomorphism preserving unit. Moreover $\sigma_B(\Phi(x)) \subseteq \sigma_{B_e}((\Phi(x), 0)) \cup \{0\}$ and $\sigma_{A_e}((x, 0)) \subseteq \sigma_A(x) \cup \{0\}$. Thus, WLOG A, B have units and $\Phi(e_A) = e_B$.

But then for $\lambda \neq 0$ and $x \in A$: $\lambda e - x$ has inverse in A, then $\Phi(\lambda e - x) = \lambda \Phi(e) - \Phi(x)$ has inverse in B. So, $\lambda \notin \sigma_A(x) \cup \{0\} \implies \lambda \notin \sigma_B(\Phi(x))$.

Věta 2.9 (Gelfand–Naimark)

A commutative C^* -algebra. Then the Gelfand transformation $\Gamma: A \to \mathcal{C}_0(\Delta(A))$ is isometric *-isomorphism onto.

 $D\mathring{u}kaz$

By proposition above, Γ is algebra homomorphism, $\|\Gamma\| \leq 1$ and from theorem above $\|\Gamma(x)\|_{\infty} = r(x), x \in A$. " Γ is *-homomorphism":

$$\forall a \in A \ \forall \varphi \in \Delta(A) : \Gamma(a^*)(\varphi) = \varphi(a^*) = \overline{(\varphi(a))} = \overline{\Gamma(a)}(\varphi).$$

" Γ is isometry":

$$\forall x \in A : \|\Gamma(x)\|^2 = \|\overline{\Gamma(x)} \cdot \Gamma(x)\| = \|\Gamma(x^*x)\| = r(x^*x) = \|x^*\| = \|x\|^2.$$

" Γ is onto": $\Gamma(A)$ is Banach space so $\Gamma(A) \subseteq \mathcal{C}_0(\Delta(A))$ is closed and *-subalgebra. And $\Gamma(A)$ separates points of $\Delta(A)$. So from Stone–Weierstrass theorem $(A \subset \mathcal{C}_0(K))$ is *-subalgebra separating the points, then $\overline{A}^{\|\cdot\|} = \mathcal{C}_0(K)$ $\Gamma(A) = \mathcal{C}_0(\Delta(A))$.

Důsledek

A, B commutative C^* -algebras. Then the following items are equivalent:

• A and B are isometrically *-isomorphic;

- A and B are algebraically isomorphic;
- $\Delta(A)$ and $\Delta(B)$ are homeomorphic.

 $,2. \Leftrightarrow 3.$ " follows from theorem above (where it is proved for $\mathcal{C}_0(K)$ -spaces). $,1. \implies 2.$ ": trivial.

"3. \Longrightarrow 1.": easy for $\mathcal{C}_0(K)$ -spaces, because if $h:K\to L$ is homeomorphism, then $f\mapsto f\circ h$ is isometrical *-isomorphism.

Definice 2.7

A Banach algebra, $M \subset A$. Then $alg(M) = \bigcap \{B \supseteq M | B \text{ is subalgebra of } A\}$.

Poznámka (Easy)

$$= \left\{ \sum_{i=1}^{n} \alpha_i \prod_{j=1}^{m} x_{ij} | n, m \in \mathbb{N}, \alpha_i \in \mathbb{C}, x_{ij} \in M \right\}.$$

Moreover $\overline{alg}M = \bigcap \{B \supseteq M | B \text{ is closed subalgebra of } A\}.$

Poznámka (Easy)

$$= \overline{algM}^{\|\cdot\|}.$$

Tvrzení 2.10 (Fact)

A is C^* -algebra, $M \subset A$ is commutative and closed under *, then $\overline{alg}M$ is commutative C^* -subalgebra of A.

Věta 2.11

 $A, B \text{ are } C^*\text{-algebras}, h: A \to B \text{ is } *\text{-homomorphism}, \text{ one-to-one. Then } h \text{ is isometry}.$

WLOG A and B have units and h(e) is a unit $((a, \lambda) \mapsto (h(a), \lambda)$ is one-to-one *-homomorphism). Suffices: $\forall x \in A \text{ self-adjoint: } \|x\| = \|h(x)\| \ (\forall y \in A : \|h(y)\|^2 = \|h(y^*y)\| = \|y^*y\| = \|y\|^2$). Let $x \in A$ be self-adjoint. Put $A_0 := \overline{alg} \{e, x\} = \overline{LO} \{e, x, x^2, x^3, \ldots\}$ is commutative and C^* -subalgebra.

$$B_y := \overline{alg} \{e, h(x)\} = \overline{LO} \{e, h(x), h(x^2), \ldots\}$$

is commutative and C^* -subalgebra. So, we have $A_0 \stackrel{h}{\to} B_0 \stackrel{\Gamma}{\to} \mathcal{C}(\Delta(B_0))$, $A_0 \stackrel{\Gamma}{\to} \mathcal{C}(\Delta(A_0))$. So there is $\tilde{h} : \mathcal{C}(\Delta(A_0)) \to \mathcal{C}(\Delta(B_0))$ one-to-one *-homeomorphism, $\tilde{h}(1) = 1$. So, it suffices to prove the following lemma.

Lemma 2.12

Let K, L be T_2 compact spaces, $\varphi : \mathcal{C}(K) \to \mathcal{C}(L)$ *-homomorphism, $\varphi(1) = 1$. Then $\exists \alpha : L \to K$ continuous mapping such that $\varphi(f) := f \circ \alpha$, $f \in \mathcal{C}(K)$.

Moreover, if φ is one-to-one, then α is onto and so φ is isometry.

 \Box $D\mathring{u}kaz$

By proposition above $\|\varphi\| \le 1$ and φ is continuous. Consider $\varphi^* : \mathcal{M}(L) \to \mathcal{M}(K)$. Then $\varphi^*(\Delta(\mathcal{C}(L))) \subseteq \Delta(\mathcal{C}(K))$ ":

$$\forall h \in \Delta(\mathcal{C}(L)) \ \forall f,g: \varphi^*h(fg) = h(\varphi(fg)) = h(\varphi(f))h(\varphi(g)) = \varphi^*h(f)\varphi^*h(g).$$

So, we have: $L \stackrel{\delta}{\to} \Delta(\mathcal{C}(L)) \stackrel{\varphi^*}{\to} \Delta(\mathcal{C}(K)) \stackrel{\delta^{-1}}{\to} K$. So, $\alpha(x) := \delta^{-1}(\varphi^*(\delta(x))), x \in L$ is continuous from L to K.

For this α we have:

$$\forall x \in L \ \forall f \in \mathcal{C}(K) : \varphi(f)(x) = \delta_x(\varphi(f)) = (\varphi^* \circ \delta_x)(f) = f(\delta^{-1}\varphi^*\delta_x) = f(\alpha(x)).$$

Moreover, "if φ is one-to-one, then α is onto": Suppose $\alpha(L) \subsetneq K \Longrightarrow \exists f \in C(K) \setminus \{0\} : f|_{\alpha(L)} \equiv 0$. But then $\varphi(f) \equiv 0$, but $f \neq 0$. $\varphi(\varphi)$ should be one-to-one.) Thus φ is isometry.

Poznámka (GNS construction)

A is C^* -algebra $\implies \exists H$ Hilbert $\exists \varphi : A \to B(H)$ *-isomorphism into.

Důkaz (Sketch)

 $f \geqslant 0$ $(\sigma(f) \geqslant 0)$ on $A|_{\{a|f(a*a)=0\}}$ constructs inner product $\langle [x], [y] \rangle := f(y^*x)$. Put $H := \overline{A|_{\{a|f(a*a)=0\}}}$. Then $\varphi(a)([x]) = [ax]$.

3 Continuous calculus for formal elements of C^* -algebras

Poznámka

Idea: $\varphi(\sigma(x)) \ni f \mapsto f(x) \in A$.

For A = C(K):

$$g \in \mathcal{C}(K), \varphi(\sigma(x)) \ni f \implies g \circ f \in C(K).$$

Let A be C^* -algebra with a unit, $x \in A$ normal. Consider

$$B = \overline{alg} \{ e, x, x^* \} \in A \implies \Gamma_B : B \to \mathcal{C}(\Delta(B)) \land f(x) := \Gamma_B^{-1}(f \circ \Gamma_B(x)), f \in \mathcal{C}(\sigma_A(x)).$$

Problem is when $\Gamma_B(x) \subseteq \sigma_A(x)$.

Lemma 3.1

A is C^* -algebra, $B \subset A$ is C^* -algebra. Then

- If A and B have the same unit $\implies \forall x \in B : \exists x^{-1} \in B \Leftrightarrow \exists x^{-1} \in A$;
- $\forall x \in B : B \text{ has a unit, which is not a unit in } A \implies \sigma_A(x) = \sigma_B(x) \cup \{0\}, \text{ otherwise } \sigma_A(x) = \sigma_B(x);$
- (In any case $\sigma_B(x) = \sigma_A(x)$).

Důkaz

"1.": Pick $x \in B$. " \Longrightarrow ": easy. " \Longleftrightarrow ": If x^{-1} exists in A, then $(x^*x)^{-1}$ exists in A. So $0 \notin \sigma_A(x^*x) = \sigma_B(x^*x) \Longrightarrow (x^*x)^{-1}$ exists in B. $x^{-1} = x^{-1}(x^*)^{-1}x^* = x^{-1}(x^*x)^{-1}x^*$.

"2.": If A and B have the same unit, we have $\sigma_A(x) = \sigma_B(x)$. WLOG A has a unit $e \notin B$ (Because $B \in A_e$ and $\sigma_{A_e}(x) = \sigma_A(x)$ if A has not unit). Then $\sigma_A(x) = \sigma_{B+LO(e)}(x) \stackrel{*}{=} \sigma_{B_e}((x,0)) = \sigma_B(x)$ if B has no unit and $\sigma_B(x) \cup \{0\}$ if B has a unit.

*: $\varphi: B + LO(e) \to B_e, b + \lambda e \mapsto (b, \lambda)$ is algebra homomorphism.

Věta 3.2

Let A be a C*-algebra with a unit, $x \in A$ normal, $f \in \mathcal{C}(\sigma(x))$. Then the mapping

$$\Phi: \mathcal{C}(\sigma(x)) \to A, \qquad \Phi(g) := g(x) := \Gamma_B^{-1}(g \circ \Gamma_B(x))$$

has the following properties:

1. Φ is isometric *-isomorphism onto $B = \overline{alg} \{e, x, x^*\}, \ \Phi(1) = e \ and \ \Phi(\mathrm{id}) = x.$

- 2. If $\psi : \mathcal{C}(\sigma(x)) \to A$ is *-homomorphism, $\psi(1) = e$, $\psi(\mathrm{id}) = x$, then $\psi = \Phi$.
- 3. If $g \in \mathcal{H}(\Omega)$, where $\Omega \subset \mathbb{C}$ open, $\sigma(x) \subset \Omega$, then $\Phi(g|_{\sigma(x)}) = \psi(g)$, where ψ is from holomorphic calculus.
- 4. $f(x)^{-1}$ exists in $A \Leftrightarrow f \neq 0$ on $\sigma(x)$. In this case $f(x)^{-1} = \left(\frac{1}{f}\right)(x)$.
- 5. $\sigma(f(x)) = f(\sigma(x))$.
- 6. $\forall g \in \mathcal{C}(f(\sigma(x))) : (g \circ f)(x) = g(f(x)).$
- 7. $\forall y \in A : yx = xy : yf(x) = f(x)y$.

Důkaz

"1.": Recall theorem above $\Gamma_B(x):\Delta(B)\to\mathcal{C}$ continuous and onto $\sigma_B(x)$. And it is "one-to-one":

$$\forall \varphi_1, \varphi_2 \in \Delta(B) : \varphi_1(x) = \varphi_2(x) \implies \varphi_1 = \varphi_2 \text{ on } B.$$

So $\Gamma_B(x): \Delta(B) \to \sigma(x)$ is homeomorphism, then $\mathcal{C}(\sigma(x)) \ni g \mapsto g \circ \Gamma_B(x) \in \mathcal{C}(\Delta(A))$ is isometric *-isomorphism onto. Thus $\mathcal{C}(\sigma(x)) \ni g \mapsto \Gamma_B^{-1}(g \circ \Gamma_B(x)) \in B$ is isometric *-isomorphism onto.

Moreover,
$$\Phi(1) = \Gamma_B^{-1}(1) = e \ (\forall \varphi \in \Delta(B) : \varphi(e) = 1). \ \Phi(\mathrm{id}) = \Gamma_B^{-1}(\Gamma_B(x)) = x.$$

"2.": By theorem above, ψ is continuous (because it is *-isomorphism), moreover $\psi = \Phi$ on complex polynomials. Since complex polynomials are dense in $\mathcal{C}(\sigma(x))$ by (S-W), by continuity $\Phi = \psi$ everywhere.

"3.": Omitted (on polynomials, on inverse, on rationals, rationals are dense in \mathcal{H}).

"4.": Since $f(x) \in B$, we have $f(x)^{-1}$ exists in $B \Leftrightarrow f(x)^{-1}$ exists in $A \stackrel{\Phi \text{ is ?}}{\Leftrightarrow} f^{-1}$ exists in $\mathcal{C}(\sigma(x)) \Leftrightarrow f \neq 0$ on $\sigma(x)$. And if $f \neq 0$ on $\sigma(x)$, then $f(x)^{-1} = \Phi(f^{-1}) = \Phi\left(\frac{1}{f}\right) = \left(\frac{1}{f}\right)(x)$.

"5.":
$$f(x) \in B$$
, so $\sigma_A(f(x)) \stackrel{\text{Lemma}}{=} \sigma_B(f(x)) = \sigma_B(\Phi(f)) \stackrel{\Phi \text{is isomorphism}}{=} \sigma_{\mathcal{C}(\sigma(x))} = \text{Rng } f = f(\sigma(x)).$

"6.": Omitted.

"7.": Next time.

TODO!!!

4 Borel measurable calculus

Lemma 4.1 (Lax–Milgram)

H Hilbert, $S: H \times H \to C$ sesquilinear, $||S|| := \sup_{x,y \in S_H} |S(x,y)| < \infty$. Then $\exists ! T \in \mathcal{L}(H) : ||T|| = ||S|| \land \langle Tx, y \rangle = S(x,y)$.

 $D\mathring{u}kaz$

Fix $y \in H$. Then $H \ni x \mapsto S(x,y)$ is a point in $H^* \implies \exists ! U(y) \in H : S(x,y) = \langle x, U(y) \rangle, x \in H$. Then $U \in \mathcal{L}(H), \|U\| = \|S\|$.

",Linearity": Easy:

$$\forall y, z \in H, \alpha \in \mathbb{K} \implies \forall x \in H : \langle x, U(\alpha y + z) \rangle = S(x, \alpha y + z) = \overline{\alpha}S(x, y) + S(x, z) = \overline{\alpha}\langle x, Uy \rangle + \langle x, Uz \rangle$$

 $||U|| \leq ||S||$ ":

$$\forall y \in H: \|Uy\|^2 = \langle Uy, Uy \rangle = S(Uy, y) \leqslant \|S\| \cdot \|Uy\| \cdot \|y\| \implies \|Uy\| \leqslant \|S\| \cdot \|y\|.$$

 $||U|| \ge ||S||$ ":

$$\forall x, y \in S_H : ||S(x, y)| = |\langle x, Uy \rangle| \le ||x|| \cdot ||U|| \cdot ||y|| = ||U||.$$

"Uniqueness": Bounded operator is given by values of $\langle Tx, y \rangle$.

Definice 4.1

H Hilbert, $T \in \mathcal{L}(H)$ normal, $\Phi : \mathcal{C}(\sigma(T)) \to \mathcal{L}(H)$ continuous ?.

• $\forall x, y \in H: \mu_{x,y} \in M(\sigma(T))$ is the unique measure satisfying

$$\int_{\sigma(T)} f d\mu_{x,y} = \langle \Phi(f)x, y \rangle, \qquad f \in \mathcal{C}(\sigma(T)).$$

• $\forall f \in Bor_0(\sigma(T))$ (bounded, Borel) we get $\Phi(f) \in \mathcal{L}(H)$ be the unique operator such that

$$\langle \Phi(f)x, y \rangle = \int_{\sigma(T)} f d\mu_{x,y}, \qquad x, y \in H$$

Důkaz

"1.": $f \mapsto \langle \Phi(f)x, y \rangle$ is linear and $|\langle \Phi(f)x, y \rangle| \leq ||\Phi(f)|| \cdot ||x|| \cdot ||y||$. So $f \mapsto \langle \Phi(f)x, y \rangle \in \mathcal{C}(\sigma(T))^* = M(\sigma(T)) \implies \mu$ exists by Riesz representation theorem.

,,2.":

$$\forall x, x_2, y \in H \ \forall \alpha \in \mathbb{K} \ \forall f \in \mathcal{C}(\sigma(T)) : \langle \Phi(f)(\alpha x_1 + x_2), y \rangle = \alpha \langle \Phi(f) x_1, y \rangle + \langle \Phi(f) x_2, y \rangle = \alpha \mu_{x,y}^{\downarrow}(f) + \mu_{x_2,y}^{\downarrow}(f) + \mu_{x_2,y}^$$

Thus $\cdot \mapsto \mu_{\cdot,y}$ is linear (for each y). Analogously $\cdot \mapsto \mu_{x,\cdot}$ is conjugate-linear.

Thus, $(x, y) \mapsto \mu_{x,y}(f) \in \mathbb{C}$ is sesquilinear form.

$$\forall x, y \in S_H : |\mu_{x,y}(f)| \le \int |f| d|\mu_{x,y}| \le ||f||_{\infty} \cdot ||x|| \cdot ||y|| = ||f||_{\infty}.$$

And from Lax–Milgram:

$$\exists ! \Phi(f) \in \mathcal{L}(H) : \langle \Phi(f)x, y \rangle = \mu_{x,y}.$$

Moreover $\|\Phi(f)\| \leq \|f\|_{\infty}$.

Poznámka

H Hilbert, $T \in \mathcal{L}(H)$ normal:

• Mapping $H \times H \ni (x,y) \mapsto \mu_{x,y}$ is sesquilinear, so

$$\mu_{x,y} = \frac{1}{4} \left(\mu_{x+y,x+y} - \mu_{x-y,x-y} + i\mu_{x+iy,x+iy} - i\mu_{x-iy,x-iy} \right).$$

- $\forall x \in H : \mu_{x,x} \geqslant 0$. (Proof: $f \geqslant 0 \implies \mu_{x,x}(f) \geqslant 0, f \in \mathcal{C}(\sigma(T))$)": $f \geqslant 0 \implies \Phi(f) \geqslant 0$ ($\sigma(\Phi(f)) = f(\sigma(T)) \subseteq [0,\infty) \implies \Phi(f) \geqslant 0$.) So $\int_{\sigma(T)} f d\mu_{x,x} = \Phi(f)x, x \geqslant 0$.)
- $Bor_b(\sigma(T)) \subseteq l_{\infty}(\sigma(x)) \mapsto \mathcal{L}(H)$ is C^* -subalgebra.
- The mapping $\Phi: Bor_b(\sigma(x)) \to \mathcal{L}(H)$ from previous definition, is extension of continuous calculus from theorem above.

Věta 4.2

Let P be a metric space, Φ be the smallest system of functions such that $C_b(P) \subset \Phi$ and Φ is closed under point-wise bounded convergent sequences. Then $\Phi = Bor_b(P)$.

Důkaz (Sketch)

Suffices: $\forall A \subset P$ Borel: $\chi_A \in \Phi$."

$$\mathcal{F} := \{ A \subset P \text{ Borel } | \chi_A \in \Phi \}$$

is σ -algebra containing closed sets $\Longrightarrow \mathcal{F} = Bor(P)$.

Definice 4.2

Let X, Y be normed linear spaces. On $\mathcal{L}(X, Y)$ we define the following two Hausdorff locally convex topologies:

- τ_{SOT} generated by pseudonorms $\{P_x(T) = ||T_x|| | x \in X\}$ (so, $T_i \stackrel{\text{SOT}}{\to} T \Leftrightarrow \forall x \in X : T_i x \stackrel{\|\cdot\|}{\to} Tx$);
- τ_{WOT} generated by pseudonorms $\{P_{x,y*}(T) = y^*(Tx) | x \in X \land y^* \in Y^* \}$ (so, $T_i \stackrel{\text{WOT}}{\to} T \Leftrightarrow \forall x \in X : T_i x T x$) (in X = Y = H Hilbert: $\Leftrightarrow \forall x, y \in H : \langle T_i x, y \rangle \to \langle T x, y \rangle$).

Poznámka

$$T_i \stackrel{\|\cdot\|}{\to} T \implies T_i \stackrel{\text{SOT}}{\to} T \implies T_i \stackrel{\text{WOT}}{\to} T.$$

Například

 $R_n x := (0, 0, \dots, 0, x_{n+1}, x_{n+2}, \dots), \ x \in l_2.$ Then $R_n \in \mathcal{L}(l_2), \ n \in \mathbb{N}$, and $R_n \stackrel{\|\cdot\|}{\Rightarrow} 0$, because $\|R_n(e_{n+1})\| = 1, \ n \in \mathbb{N}$. But $R_n \stackrel{\text{SOT}}{\Rightarrow} 0$, because $\forall x \in l_2 : \|R_n x\|_2^2 = \sum_{i=n+1}^{\infty} |x_i|^2 \to 0$.

 $S_n x := (0, 0, \dots, 0, x_1, x_2, \dots), x \in l_2$. Then $S_n \in \mathcal{L}(l_2)$ is isometry $\forall n \in \mathbb{N}$. But $S_n \stackrel{\text{SOT}}{\to} 0$, because $||S_n(e_1)|| = 1 \to 0$. But $S_n \stackrel{\text{WOT}}{\to} 0$, because $\forall x, y \in l_2$:

$$|\langle S_n x, y \rangle| = |\sum_{i=1}^{\infty} x_i y_{n+i}| \le ||x||_2 \sqrt{\sum_{i=n+1}^{\infty} |y_i|^2} \to 0.$$

Věta 4.3

H Hilbert, $T \in \mathcal{L}(H)$ normal, $f \in Bor_b(\sigma(T))$, $\Phi : Bor_b(\sigma(T)) \to \mathcal{L}(H)$ as in definition above. Then

 Φ is continuous *-homomorphism and $\|\Phi\| = 1$;

 Φ is linear (easy from definition). $\|\Phi\| \le 1$ follows from the second point of the previous theorem, and $\|\Phi(1)\| = \|\operatorname{id}\| = 1$, so $\|\Phi\| = 1$.

" Φ is multiplicative": Step 1: " $\mathcal{F} := \{g \in Bor_b(\sigma(T)) | \forall f \in \mathcal{C}(\sigma(t)) : \Phi(gf) = \Phi(g) \cdot \Phi(f) \}$ then $\mathcal{F} = Bor_b(\sigma(T))$ ": $\mathcal{F} \subseteq \mathcal{C}(\sigma(T))$ follows from continuous calculus, " \mathcal{F} closed under point-wise limits of bounded sequences": Let $\mathcal{F} \ni g_n \to g$ and $f \in \mathcal{C}(\sigma(T))$. Then $g_n f \to gf$ point-wise. So, for $x, y \in H$:

$$\langle \Phi(g, f)x, y \rangle = \int_{\sigma(T)} gf d\mu_{x,y} = \lim \int g_n f d\mu_{x,y} = \lim \langle \Phi(g_n)x, y \rangle = \lim \langle \Phi(g_n)(\Phi(f)x), y \rangle = \lim \int g_n d\mu_{x,y} = \lim \int g_n f d\mu_{x,y} = \lim \int g_n$$

Step 2: " $\mathcal{H} := \{g \in Bor_b(\sigma(T)) | \forall f \in Bor_b(\sigma(t)) : \Phi(gf) = \Phi(g) \cdot \Phi(f) \}$, then $\mathcal{H} = Bor_b(\sigma(T))$ ": " \mathcal{H} is closed under point-wise limits of bounded sequences": $\mathcal{H} \ni f_n f$, f_n bounded, then $\forall x, y \in H \ \forall g \in Bor_b(\sigma(T))$:

$$\langle \Phi(gf)x,y\rangle \stackrel{\text{Lebesgue}}{=} \lim_{n} \langle \varphi(gf_n)x,y\rangle = \lim_{n} \langle \Phi(g)\Phi(f_n)x,y\rangle = \lim_{n} \langle \Phi(f_n)x,\Phi(g)^*y\rangle = \lim_{n} \int f_n d\mu_{x,\Phi(g)^*y} d\mu_{x,\Phi($$

Thus $\Phi(gf) = \Phi(g)\Phi(f)$.

" Φ preserves *": $\mathcal{F} := \{g \in Bor_b(\sigma(T)) | \Phi(g)^* = \Phi(\overline{g}) \}$. Then $\mathcal{F} \subseteq \mathcal{C}(\sigma)$ by continuous calculus and \mathcal{F} is "closed under taking limits" analogously as above. $\Longrightarrow \mathcal{F} = Bor_b(\sigma(T))$.

 $(f_n) \in Bor_b(\sigma(T))^{\mathbb{N}}$ bounded and $f_n f$, then $\Phi(f_n) \stackrel{SOT}{\longrightarrow} \Phi(f)$.

 $D\mathring{u}kaz$

L

Step 1: $,\Phi(f_n) \stackrel{\text{WOT}}{\Phi} (f)$ ":

$$\forall x, y \in H : \langle \Phi(f_n)x, y \rangle \stackrel{\text{Lebesgue}}{\longrightarrow} \langle \Phi(f)x, uy \rangle.$$

Step 2: $\|\Phi(f_n)x\| \to \|\Phi(f)x\|, x \in H$ ":

$$\|\Phi(f_n)x\|^2 = \left\langle \Phi(\overline{f_n})\Phi(f_n)x, x \right\rangle = \left\langle \Phi(\overline{f_n}f_n)x, x \right\rangle \stackrel{\text{Lebesgue}}{\longrightarrow} \left\langle \Phi(\overline{f_n}f_n)x, x \right\rangle = \|\Phi(f)x\|^2.$$

Step 3: From steps 1 and 2:

$$\|\Phi(f_n)x - \Phi(f)x\|^2 \stackrel{\text{Cos. věta}}{=} \|\Phi(f_n)x\|^2 + \|\Phi(f)x\|^2 - 2\Re\langle\Phi(f_n)x, \Phi(f)x\rangle \to 0.$$

If $K \subset \mathbb{C}$ is compact, $K \supseteq \sigma(T)$, $\psi : Bor_b(K) \to \mathcal{L}(H)$ is continuous *-homomorphism, $\psi(1) = \mathrm{id}$, $\psi(\mathrm{id}) = T$ and $f_n \stackrel{\tau_p}{\to} f \implies \psi(f_n) \stackrel{WOT}{\to} \psi(f)$. Then $\psi(g) = \Phi(g|_{\sigma(T)})$,

 $g \in Bor_b(K).$ $D\mathring{u}kaz$ Skipped. Using characterization of Bor_b . $\Phi(f) \text{ is normal, } \Phi(f) \text{ is self-adjoint} \Leftrightarrow f \text{ is real.}$ $D\mathring{u}kaz$ Skipped. Easy from first part of theorem. $\sigma(\Phi(f)) \subseteq \overline{f(\sigma(T))}.$ $g \in Bor_b(\overline{\text{Rng }f}) \implies (g \circ f)(T) = g(f(T)).$ $\forall S \in \mathcal{L}(H), ST = TS : Sf(T) = f(T)S.$

5 Spectral decomposition of normal operator

Definice 5.1 (Spectral measure)

H Hilbert space, (X, \mathcal{A}) measurable space. Then $E : \mathcal{A} \mapsto \mathcal{L}(H)$ is spectral measure for (X, \mathcal{A}, H) if

- $\forall A \in \mathcal{A} : E(A)$ is orthogonal projection;
- E(X) = id, $E(\emptyset) = 0$;
- if $\{A_n, n \in \mathbb{N}\} \subset \mathcal{A}$ is point-wise disjoint, then

$$E(\bigcup A_n)x = \sum_{n=1}^{\infty} E(A_n)x, x \in H.$$

Tvrzení 5.1 (Properties of spectral measure)

H Hilbert, (X, A) measurable space, E is spectral measure for (X, A, H). Then

- 1. $\forall A, B \in \mathcal{A}, A \subset B : E(A) \leqslant E(B) \text{ (that's } E(B) E(A) \geqslant 0);$
- 2. $\forall A, B \in \mathcal{A} : E(A \cap B) = E(A) \cdot E(B)$, in particular, if $A \cap B = \emptyset$, then $E(A) \cdot E(B) = \emptyset$.
- 3. $\forall x, y \in H : A \ni A \mapsto \langle E(A)x, y \rangle$ is a complex measure (denoted by $E_{x,y}$), with total variation $||E_{x,y}|| \leq ||x|| \cdot ||y||$.
- 4. $(x,y) \mapsto E_{x,y}$ is sesquilinear mapping.

5.
$$\forall x, y \in H \ \forall A \in \mathcal{A}$$
:

$$|E_{x,y}(A)| \leq \frac{1}{2} (E_{x,x}(A) + E_{y,y}(A)).$$

6.
$$\forall x, y \in H$$
:

$$E_{x+y,x+y} \leqslant 2 \left(E_{x,x} + E_{y,y} \right).$$

",1.":
$$E(A) + E(B \setminus A) = E(B)$$
, so $E(B) - E(A) = E(B \setminus A) \ge 0$.

"2.": "Step 1: $A \cap B = \emptyset$ ":

$$id = E(X) = E(A) + E(A^c) \ge E(A) + E(B),$$

so $E(B) \leq \operatorname{id} - E(A)$, which is orthogonal projection onto $(\operatorname{Rng} E(A))^{\perp}$. Thus $(P, Q \in \mathcal{L}(A))$ orthogonal projections, $Q - P \geq 0$, then $\operatorname{Rng} P \subset (\operatorname{Rng} Q)^{\perp}$:

$$||Px||^2 = ||QPx||^2 + ||(\mathrm{id} - Q)Px||^2 = \langle QPx, Px \rangle + ||(\mathrm{id} - Q)Px||^2 \geqslant \underbrace{\langle PPx, Px \rangle}_{||Px||^2} + ||(\mathrm{id} - Q)Px||^2,$$

thus, $(\operatorname{id} - Q)Px = 0$, so $\operatorname{Rng} P \subseteq \operatorname{Ker}(\operatorname{id} - Q) = \operatorname{Rng} Q$.) $\operatorname{Rng} E(B) \subseteq (\operatorname{Rng} E(A))^{\perp}$. Thus $\operatorname{Rng} E(A) \perp \operatorname{Rng} E(B)$, so $E(A) \cdot E(B) = 0$.

"Step 2: In general":

$$E(A) = E(A \cap B) + E(A \setminus B), \qquad E(B) = E(A \cap B) + E(B \setminus B) \Longrightarrow$$

$$\implies E(A) \cdot E(B) = (E(A \setminus B) + E(A \setminus B)) \cdot (E(A \cap B) + E(B \setminus A)) = E^2(A \cap B) + 0 + 0 + 0 = E(A \cap B).$$

"3.": " $E_{x,y}$ is countably additive" is easy. By this it is a complex measure. "Calculation of $||E_{x,y}||$ ": Fix $A_1, \ldots, A_n \in \mathcal{A}$ disjoint such that $\bigcup_{i=1}^n A_i = X$. For $i \in [n]$ pick $\alpha_i \in S_{\mathbb{C}}$: $\alpha_i \langle E(A_i)x, y \rangle = |\langle E(A_i)x, y \rangle|$. Then

$$\sum_{i=1}^{n} |E_{x,y}(A_i)| = \sum_{i=1}^{n} \alpha_i \langle E(A_i)x, y \rangle \overset{\text{Cauchy-Schwartz}}{\leqslant} \| \sum_{i=1}^{n} \alpha_i E(A_i)x \| \cdot \|y\|.$$

$$\|\sum_{i=1}^{n} E(A_i)(\alpha_i x)\|^2 \stackrel{\text{Pythagoras}}{=} \sum_{i=1}^{n} \|E(A_i)(\alpha_i x)\| = \sum_{i=1}^{n} \|E(A_i)(x)\| = \sum_{i=1}^{n} \langle E(A_i)x, x \rangle = \langle E(\bigcup A_i)x, x \rangle = \langle x \rangle$$

",4.": Easy, using definition. ",5.":

$$|E_{x,y}(A)| = |\langle E(A)x, y \rangle| = |\langle E(A)x, E(A)y \rangle| \overset{\text{Cauchy-Schwartz}}{\leqslant} ||E(A)x|| \cdot ||E(A)y|| = \sqrt{E_{x,x}(A)} \cdot \sqrt{E_{y,y}(A)} \overset{\text{Cauchy-Schwartz}}{\leqslant} ||E(A)x|| \cdot ||E(A)y|| = \sqrt{E_{x,x}(A)} \cdot ||E(A)x|| \cdot |$$

,,6.":

$$E_{x+y,x+y}(A) = E_{x,x}(A) + E_{y,x}(A) + E_{x,y}(A) + E_{y,y}(A) \leqslant E_{x,x}(A) + 2\Re E_{y,x}(A) + E_{y,y}(A) \leqslant E_{x,x}(A) + 2\frac{1}{2} \left(E_{x+y,x+y}(A) + E_{y,x}(A) + E_{y,x$$

Poznámka

From 4. we get $E_{x,y}(A) = \frac{1}{4} \sum_{k=0}^{3} i^k \langle E(A)(x+i^k y), x+iky \rangle$. Thus 3. is equivalent to $\forall x \in H : E_{x,x} \ge 0$ is measure.

Definice 5.2 (Integral)

H Hilbert space, (X, \mathcal{A}) measurable space, E spectral measure for (X, \mathcal{A}, H) . $f: X \to \mathbb{C}$ bounded \mathcal{A} -measurable function. Then integral of f with respect to E is the operator $T \in \mathcal{L}(H)$ such that

$$\langle Tx, y \rangle = \int_X f dE_{x,y}, \quad x, y \in H.$$

Notation: Then $\int f dE := T$.

Poznámka

It always exists due to Lax–Milgram: $(x,y) \mapsto \int f dE_{x,y}$ is sesquilinear and $\left| \int f dE_{x,y} \right| \le \|f\|_{\infty} \cdot \|E_{x,y}\| \le \|f\|_{\infty} \cdot \|x\| \cdot \|y\|$. So T exists and $\|T\| \le \|f\|_{\infty}$.

Tvrzení 5.2

H Hilbert, (X, A) measurable space, E spectral measure for (X, A, H), $f: X \to \mathbb{C}$ bounded A-measurable. Then for $\varepsilon > 0$ pick $A_1, \ldots, A_m \in A$ disjoint partition of X such that diam $f(A_i) < \varepsilon$ and for $x_i \in A_i$, $i \in [n]$

$$\|\int f dE - \sum_{i=1}^{n} f(x_i) E(A_i)\| < \varepsilon.$$

 $D\mathring{u}kaz$

Denote $T = \int f dE$. For $x, y \in H : |\langle Tx, y \rangle - \langle \sum f(x_i)E(A_i)x, y \rangle| =$

$$= |\sum_{i=1}^{n} \int_{A_i} (f(t) - f(x_i)) dE_{x,y}| \leq \sum_{i=1}^{n} \int_{A_i} |f(t) - f(x_i)| d|E_{x,y}| \leq \varepsilon \int_X d|E_{x,y}| \leq \varepsilon \cdot ||x|| \cdot ||y||.$$

This finishes the proof. $(|\langle Sx, y \rangle| \leq \varepsilon \cdot ||x|| \cdot ||y|| \implies ||S|| < \varepsilon.)$

Definice 5.3 (Notation)

 (X, \mathcal{A}) measurable space, $B(X, \mathcal{A}) \subset l_{\infty}(X)$ c^* algebra consisting of bounded $f: X \to \mathcal{C}$ \mathcal{A} -measurable functions.

Tvrzení 5.3

H Hilbert, (X, A) measurable space, E spectral measure for (X, A, H). Consider ϱ : $B(X, A) \to \mathcal{L}(H)$, $\varrho(f) = \int f dE$. Then

- 1. ϱ is continuous *-homomorphism, $\|\varrho\|=1$, $\varrho(1)=\mathrm{id}$.
- 2. $\forall f \in B(X, A) : \varrho(f) \text{ is normal. } f \text{ is real } \Longrightarrow \varrho(f) \text{ is self-adjoint, } f \geqslant 0 \Longrightarrow \varrho(f) \geqslant 0.$
- 3. $f_n \in B(X, \mathcal{A})^n$ bounded, $f_n \to f$ point-wise $\Longrightarrow \varrho(f_n) \stackrel{WOT}{\to} \varrho(f)$.

4.
$$\forall f \in B(X, \mathcal{A}) \ \forall x \in H : \|\varrho(f)x\| = \sqrt{\int |f|^2 dE_{x,x}}.i$$

5. $\int f dE$ is the unique $T \in \mathcal{L}(H)$: $\langle Tx, y \rangle = \int f dE_{x,y}, x, y \in H$.

 $D\mathring{u}kaz$

1.) " ϱ is linear": easy. " $\|\varrho\| \le 1$ ": easy as well. " ϱ preserves *":

$$\forall x \in H : \langle \varrho(f)^*x, x \rangle = \langle x, \varrho(f)x \rangle = \overline{\langle \varrho(f)x, x \rangle} = \overline{\int f dE_{x,x}} = \int \overline{f} dE_{x,x} = \langle \varrho(\overline{f})x, x \rangle.$$

" ϱ is multiplicative": For $f, g \in B(X, \mathcal{A})$, $\varepsilon > 0$. Find disjoint partition $A_1, \ldots, A_n \in \mathcal{A}$ of X such that for $\omega \in \{f, g, f \cdot g\}$ we have diam $\omega(A_i) < \varepsilon$ for $i \in [n]$. Pick $x_1 \in A_1, x_2 \in A_2, \ldots, x_n \in A_n$. Thus using previous proposition we have

$$\|\int fgdE - \left(\int fdE\right)\left(\int gdE\right)\| \leqslant \varepsilon + \|\sum_{i=1}^{n} (f \cdot g)(x_i)E(A_i) - (\sum f(x_i)E(A_i))(\sum g(x_i)E(A_i))\| + \|(\sum f(A_i)E(A_i))\| + \|(\sum f(A_i)E(A_i)\| + \|(\sum f(A_i)E$$

 $\|\rho\| = 1$ ": TODO!!!

$$, \varrho(1) = \mathrm{id}^{"}: \forall x \in H : \langle \varrho(1)x, x \rangle = \int_{X} 1 dE_{x,x} = \langle E(X)x, x \rangle = \langle x, x \rangle = \langle \mathrm{id}\,x, x \rangle.$$

2.)
$$\varrho(f)^*\varrho(f) = \varrho(\overline{f}f) = \varrho(f)\varrho(f)^* \implies \varrho(f) \text{ is normal.}$$

$$f \text{ is real } \implies f = \overline{f} \implies \varrho(f) = \varrho(f)^*.$$

$$f \geqslant 0 \implies \forall x \in H : \langle \varrho(f)x, x \rangle = \int f dE_{x,x} \geqslant 0 \implies \varrho(f) \geqslant 0.$$

3.)
$$\forall x, y \in H : \langle \varrho(f_n)x, y \rangle = \int f_n dE_{x,y} \xrightarrow{\text{Lebesgue}} \int f dE_{x,y} = \langle \varrho(f)x, y \rangle.$$

4.)
$$\|\varrho(f)x\|^2 = \langle \varrho(f)x, \varrho(f)x \rangle = \langle \varrho(\overline{f}f)x, x \rangle = \int \overline{f}f dE_{x,x} = \int |f|^2 dE_{x,x}.$$

Düsledek (Spectral decomposition of normal operator)

H Hilbert, $T \in \mathcal{L}(H)$ normal $\Longrightarrow \exists !$ spectral measure E for $(\sigma(T), Bor(\sigma(T)), H)$: $T = \int \operatorname{id} dE$. Moreover $E(A) = \Phi(\chi_A)$ for any $A \in Bor(\sigma(T))$, where $\Phi : Bor_b(\sigma(T)) \to \mathcal{L}(H)$ is borel calculus from definition above.

Whenever E is spectral measure for $(\sigma(T), Bor(\sigma(T)), H)$ satisfying $T = \int id dE$, then $\int f dE = \Phi(f), f \in \mathcal{B}(\sigma(T), Bor(\sigma(T)))$. This proves uniqueness.

"Existence": Put $E(A) := \Phi(A)$, $A \subset \sigma(T)$ borel. Then E is spectral measure: E(A) is orthogonal projection $(\chi_A^2 = \chi_A, \chi_A \text{ is real})$, $E(\sigma(T)) = \text{id}$, $E(\varnothing) = 0$ $(\chi_{\sigma(T)} = 1 \text{ and } \Phi(1) = \text{id}, \chi_{\varnothing} = 0)$, $A_i \in Borel(\sigma(T))$ disjoint, $x \in H$, then

$$||E(\bigcup A_n)x - \sum E(A_i)x|| = \left\langle E(\bigcup A_i)x, E(\bigcup A_i)x \right\rangle = \left\langle E(\bigcup A_i)x, x \right\rangle = \int \chi_{\bigcup A_i} d\mu_{x,x} = \sum_{N+1}^{\infty} \mu_{x,x}(A_i)$$

"
$$T = \int \operatorname{id} dE$$
": $E_{x,y} = \mu_{x,y} \ (E_{x,y}(A) = \langle E(A)x, y \rangle = \int \chi_A d\mu_{x,y} = \mu_{x,y}(A))$. Thus
$$\left\langle \int \operatorname{id} dEx, y \right\rangle = \int \operatorname{id} dE_{x,y} = \int \operatorname{id} d\mu_{x,y} = \langle \Phi(\operatorname{id})x, y \rangle = \langle Tx, y \rangle.$$

6 Unbounded operators

Definice 6.1

X,Y Banach spaces. Operator from X to Y is a linear mapping defined on a linear space $D(T) \subset X$ with values in $R(T) \subset Y$. If X = Y, we say T is operator on X. Then graph of T is $G(T) = \{(x,Tx)|x \in D(T)\} \subseteq X \times Y$.

We say that T is densely defined $\equiv \overline{D(T)} = X$. We say that T is closed $\equiv G(T) \subset X \times Y$ is closed.

Definice 6.2 (Notations)

X, Y Banach spaces. If T, S is operator from X to Y, then S+T is operator from X to Y defined as (S+T)(x)=Sx+T(x) for $x\in D(S+T)=D(S)\cap D(T)$.

If T is operator from X to Y and S is operator from Y to a Banach space Z, then ST is operator with $D(ST) = \{x \in D(T) | Tx \in D(S)\}$ defined as (ST)x = S(Tx) for $x \in D(ST)$.

Operator S from X to Y is extension of T, if $G(S) \supset G(T)$ (and we write $T \subset S$).

Například

 $D(T) = c_{00} \subset l_2 = X$, $Tx = (\sum_{n=1}^{\infty} x_n, 0, 0, 0, 0, \dots)$. Then T is densely defined, butt it doesn't have closed extension.

Consider $x^n = \left(\frac{1}{2^n}, \dots, \frac{1}{2^n}, 0, \dots\right)$ then $(x_n, Tx_n) \to (\mathbf{o}, e_1)$, so if there is extension, then $(\mathbf{o}, e_1) \in G(S)$, but $S\mathbf{o} = \mathbf{o}$, because of linearity.

Poznámka

It is easy to check:

$$(S+T) + V = S + (T+V),$$

$$(ST)V = S(TV),$$

$$(S+T)V = SV + TV.$$

Pozor

$$V(S+T) \supseteq VS + VT$$
.

Lemma 6.1

 $X, Y \ Banach \ and \ L \subseteq X \times Y. \ Then \ \exists \ operator \ T \ from \ X \ to \ Y \ such \ that \ L = G(T) \Leftrightarrow L$ is a subspace and $\{(x,y) \in L | x=0\} = \{(0,0)\}.$

 $D\mathring{u}kaz$

": Easy.

"." Put $D(T) = \{x \in X | \exists y \in Y : (x,y) \in L\}$. Then $\forall x \in D(T) \exists ! y \in Y : (x,y) \in L$. $((x,y_1),(x,y_2) \in L \implies (0,y_1-y_2) \in L$.) So, we put Tx := y, where $y \in L$ is such that $(x,y) \in L$. Then T is linear and G(T) = L

Tvrzení 6.2

X, Y Banach spaces, T operator from X to Y.

- $D(T) = X \wedge T \text{ is closed} \implies T \in \mathcal{L}(X, Y).$
- Equivalence:
 - 1. T has closed extension;
 - 2. $(x_n, Tx_n) \rightarrow (0, y)$ in $D(T) \times Y \implies y = 0$;
 - 3. $\overline{G(T)} \subset X \times Y$ is graph of an operator from X to Y.
- T is one-to-one and closed $\implies T^{-1}$ is closed.

First point follows immediately from closed graph theorem.

- "1.) \Longrightarrow 2.)": Let $S \supset T$ be closed. If $(x_n, Tx_n) \rightarrow (\mathbf{o}, y)$, then $(\mathbf{o}, y) \in G(S)$, so $\mathbf{o} = S\mathbf{o} = y$.
- "2.) \Longrightarrow 3.)" We will show, using the previous lemma, that G(T) is graph of an operator: $\overline{G(T)}$ is linear, because G(T) is linear. If $(\mathbf{o}, y) \in \overline{G(T)}$, then $\exists (x_n) \in D(T)^{\mathbb{N}} : (x_n, Tx_n) \to (\mathbf{o}, y)$, so $y = \mathbf{o}$ from 2)..
 - $,3.) \implies 1.$)": Clear.

Third point $\Phi: X \times Y \to Y \times X$ defined as $(x,y) \mapsto (y,x)$ is homeomorphism, so, G(T) is closed $\Leftrightarrow \Phi(G(T)) = G(T^{-1})$ is closed.

Definice 6.3 (Closure of operator)

X,Y Banach spaces, T operator from X to Y,T has closed extension. Then \overline{T} is operator satisfying $\overline{T} \supset T$ and $G(\overline{T}) = \overline{G(T)}$.

Tvrzení 6.3

X, Y, Z Banach spaces, T operator from X to Y, which is closed.

- If $S \in \mathcal{L}(X,Y)$, then S+T is closed and D(S+T)=D(T).
- If $S \in \mathcal{L}(Y, Z)$, then D(ST) = D(T) and if S is isomorphism into, then ST is closed.
- If $S = \mathcal{L}(Z, X)$, then TS is closed.

 $D\mathring{u}kaz$

Of course $D(S+T)=D(S)\cap D(T)=D(T)$. If $(x_n,(S+T)x_n)\to (x,y)$, then $Tx_n=(S+T)x_n-Sx_n\to y-Sx$. So $(x_n,Tx_n)\to (x,y-Sx)\in G(T)$, so $Tx=y-Sx\implies y=(T+S)x$.

$$D(ST) = \{x \in D(T) | Tx \in D(S) = Y\} = D(T).$$

Suppose S is isomorphism into, $(x_n, STx_n) \to (x, z)$, then $Tx_n = S^{-1}STx_n \to S^{-1}z$. So $(x_n, Tx_n) \to (x, S^{-1}z) \in G(T)$, so $Tx = S^{-1}z$, then STx = z.

$$(z_n, TSz_n) \to (x, y)$$
, then $Sz_n \to Sx$, so $(Sz_n, TSz_n) \to (Sx, y) \in G(T)$, thus $TSx = y$.

TODO example?

Tvrzení 6.4

X,Y Banach, T one-to-one closed operator from X to Y. Then following statements are equivalent:

- Rng $T = Y \wedge T^{-1} \in \mathcal{L}(Y, X)$;
- $\operatorname{Rng} T = Y$;
- Rng T is dense and $T^{-1} \in \mathcal{L}(\operatorname{Rng} T, X)$.

Důkaz

"1) \implies 2)": trivial. "2) \implies 3)": Rng T is dense and $T^{-1}(\operatorname{Rng} T, X)$ due to previous proposition (by which T^{-1} is closed).

3 \Longrightarrow 1)": Let $S \in \mathcal{L}(Y,X)$ be continuous extension of T^{-1} . Pick $y \in Y$. Since $\overline{\operatorname{Rng} T} = Y$, there is $(x_n) \in X^{\mathbb{N}}$ such that $Tx_n \to y$. Then $STx_n = T^{-1}Tx_n = x_n \to Sy$. So $(x_n, Tx_n) \to (Sy, y) \in G(T)$, thus $TSy = y \in \operatorname{Rng} T$.

Definice 6.4 (Resolvent set, resolvent function, spectrum of operator)

X Banach, T linear operator on X. Then resolvent set is

$$\varrho(T) := \{ \lambda \in \mathbb{K} | \lambda I - T \text{ has inverse which belongs to } \mathcal{L}(X) \};$$

resolvent function is

$$R_T(\lambda) := (\lambda I - T)^{-1}, \qquad \lambda \in \varrho(T);$$

spectrum of T is

$$\sigma(T) := \mathbb{K} \backslash \varrho(T).$$

Věta 6.5

X Banach, T linear operator on X. Then $\varrho(T)$ is open, $\varrho(T)$ is closed and R_T has derivative at each point of $\varrho(T)$. (So, if X is complex, then R_t is holomorphic on $\varrho(T)$).

Důkaz

" $\varrho(T)$ is open": Pick $\lambda \in \varrho(T)$ and $h \in \mathbb{K}$ small $(|\cdot|)$ enough: $|h| < \frac{1}{\|(\lambda I - T)^{-1}\|}$. Then $h(\lambda I - T)^{-1} =: S \in \mathcal{L}(X), \|S\| < 1$. Thus, $(I + S)^{-1}$ exists, so $(\lambda + h)I - T = (I + S) \cdot (\lambda I - T)$ has inverse $(\lambda I - T)^{-1} \circ (I + S)^{-1} \in \mathcal{L}(X)$. $(\lambda I - T)^{-1} \circ (I + S)^{-1} \in \mathcal{L}(X)$. So $U(\lambda, \frac{1}{\|(\lambda I - T^{-1})\|}) \subset \varrho(T)$.

 R_T has derivative at each $\lambda \in \varrho(T)$: $R'_T(\lambda) = -R_T(\lambda)^2$:

$$\forall h \text{ small enough} : \| \frac{R_t(\lambda + h) - R_t(\lambda)}{h} + R_T(\lambda)^2 \| = \frac{1}{h} \| R_T(\lambda + h) - R_T(\lambda) + R_T(\lambda) h R_T(\lambda) \| = \frac{\| R_T(\lambda) \|}{\| h \|} \cdot \| (I + S)^{-1} - I + h R_T(\lambda) \| = \frac{1}{h} \| R_T(\lambda) \| = \sum_{n=0}^{\infty} (-S)^n = I - S + \sum_{n=2}^{\infty} (-S)^n = I - h R_T(\lambda) + \sum_{n=2}^{\infty} (-h R_T(\lambda))^n$$

$$= \frac{\| R_T(\lambda) \|}{|h|} \cdot \| \sum_{n=2}^{\infty} (-h R_T(\lambda))^n \| \leq \frac{\| R_t(\lambda) \|}{|h|} \sum_{n=2}^{\infty} \| h R_t(\lambda) \|^n = \frac{\| R_T(\lambda) \|}{|h|} \cdot \frac{\| h R_T(\lambda) \|^2}{1 - \| h R_T(\lambda) \|} \leq \frac{\| R_T(\lambda) \|}{|h|} \cdot \frac{|h|^2 \| R_T(\lambda) \|^2}{1/2} = 2|h| \cdot \| R_T(\lambda) \|^3 \to 0.$$

Lemma 6.6

X Banach space, T operator in X, $0 \notin \sigma(T)$. Then $\forall \lambda \neq 0 : \lambda \in \sigma(T) \Leftrightarrow \frac{1}{\lambda} \in \sigma(T^{-1})$.

 $D\mathring{u}kaz$

Since $0 \in \varrho(T)$, so $T^{-1} \in \mathcal{L}(X)$. Moreover, $T = (T^{-1})^{-1}$ is closed (by proposition above). In the same time, since T is closed, we have $\lambda \in \varrho(T) \Leftrightarrow \lambda I - T$ is bijection (" \Longrightarrow ": trivial, " \Longleftrightarrow ": $\lambda I - T$ is bijection and closed operator, so by previous proposition $(\lambda I - T)^{-1} \in \mathcal{L}(X)$).

So, it suffices: " $\forall \lambda \neq 0$: $\lambda I - T$ bijection $\Leftrightarrow \frac{1}{\lambda}I - T^{-1}$ bijection":

$$\frac{1}{\lambda}I - T^{-1} = -\frac{1}{\lambda}(\lambda I - T)T^{-1} \qquad \left(\text{so } (\lambda I - T)^{-1} \text{ exists } \implies (\frac{1}{\lambda}I - T^{-1})^{-1} \text{ exists}\right)$$

$$\lambda I - T = -\lambda (\frac{1}{\lambda}I - T^{-1})T$$
 (so $(\frac{1}{\lambda}I - T^{-1})^{-1}$ exists $\Longrightarrow (\lambda I - T)^{-1}$ exists).

Důsledek

X complex Banach, T operator on X, $\sigma(T)=\emptyset$. Then $T^{-1}\in\mathcal{L}(X)$ and $\sigma(T^{-1})=\{0\}$.

```
\begin{array}{l}
D\mathring{u}kaz \\
0 \in \varrho(T) \implies T^{-1} \in \mathcal{L}(x). \text{ By previous lemma, } \forall \lambda \neq 0 : \frac{1}{\lambda} \notin \sigma(T^{-1}). \text{ So } \sigma(T^{-1}) \subset \{0\}. \\
\text{Since } \sigma(T^{-1}) \neq \emptyset, \text{ we have } \sigma(T^{-1}) = \{0\}.
\end{array}
```

6.1 Unbounded operators in Hilbert spaces

Definice 6.5 (Convention)

From now, all Banach spaces are over $\mathbb{K} = \mathbb{C}$ (if not said otherwise).

Definice 6.6 (Hilbert adjoint of operator)

H Hilbert, T densely defined operator on H. Hilbert adjoint of T, denoted as T^* , is defined on $D(T^*) := \{y \in H | x \mapsto \langle Tx, y \rangle \text{ is continuous linear on } D(T)\}$. For $y \in D(T^*)$, T^*y is the unique point from H satisfying $\langle Tx, y \rangle = \langle x, T^*y \rangle$, $x \in D(T)$.

```
D\mathring{u}kaz

"T^*y exists": any \varphi \in D(T)^* can be extended to H^* = H.
```

Tvrzení 6.7

H Hilbert, S and T densely defined in H.

• $S \subset T \implies T^* \subset S^*$. \Box $D\mathring{u}kaz$ $D(T^*) = \{y|x \mapsto \langle Tx, y \rangle = \langle Sx, y \rangle \text{ is continuous on } D(T) \supset D(S)\} \subset D(S^*).$ And for $y \in D(T^*)$: $\forall x \in D(S) : \langle x, T^*y \rangle = \langle Tx, y \rangle = \langle Sx, y \rangle = \langle x, S^*y \rangle \implies T^*y = S^*y.$

$$\forall x \in D(S) : \langle x, T^*y \rangle = \langle Tx, y \rangle = \langle Sx, y \rangle = \langle x, S^*y \rangle \implies T^*y = S^*y.$$

• S+T is densely defined $\implies S^*+T^*\subset (S+T)^*$ and if $S\in\mathcal{L}(H)$, then there is equality.

Г

For $y \in D(S^* + T^*) = D(S^*) \cap D(T^*)$ and $x \in D(S + T)$:

$$\langle (S+T)x, y \rangle = \langle x, S^*y \rangle + \langle x, T^*y \rangle = \langle x, (S^*+T^*)y \rangle.$$

So, $y \in D((S+T)^*)$ and $(S+T)^*y = (S^*+T^*)(y)$. This proves the inclusion.

"If $S \in \mathcal{L}(H)$ " For $y \in D((S+T)^*)$ and for $x \in D(S+T) = D(T)$:

$$D(T) \ni x \mapsto \langle Tx, y \rangle = \langle (S+T)x, y \rangle - \langle Sx, y \rangle$$

is constant on D(T). So, $y \in D(T^*) = D(T^*) \cap D(S^*) = D(S^* + T^*)$. Thus, $D(S^* + T^*) = D((S + T)^*) \wedge S^* + T^* \subset (S + T)^*$, so $S^* + T^* = (S + T)^*$.

• ST is densely defined $\implies T^*S^* \subset (ST)^*$ and if $S \in \mathcal{L}(H)$ then there is equality.

 $D\mathring{u}kaz$

Pick $y \in D(T^*S^*)$. Then for $x \in D(ST)$:

$$\langle STx, y \rangle = \langle Tx, S^*y \rangle = \langle x, T^*S^*y \rangle.$$

So, $y \in D((ST)^*)$ and $(ST)^*y = T^*S^*y$.

"If $S \in \mathcal{L}(H)$ ": Then D(ST) = D(T) and for $y \in D((ST)^*)$ we want " $S^*y \in D(T^*)$ " (then $y \in D(T^*S^*)$ and we are done):

$$D(T) \ni \mapsto \langle Tx, S^*y \rangle = \langle STx, y \rangle = \langle x, (ST)^*y \rangle.$$

So, $x \mapsto \langle Tx, S^*y \rangle$ is continuous on D(T).

Tvrzení 6.8

H Hilbert, T densely defined on H.

- T* is closed operator on H;
- T has closed extension $\Leftrightarrow T^*$ is densely defined. Then $(T^*)^* = \overline{T}$.
- T is closed $\Leftrightarrow T^*$ is densely defined and $T = (T^*)^*$.

Lemma 6.9

H Hilbert, T densely defined on H. Consider $V \in \mathcal{L}(H \oplus H)$ such that V(x,y) := (-y,x). Then V is unitary and $G(T^*) = V(G(T))^{\perp}$.

 V_{ij} is unitary:" obvious (V_{ij} is isometry onto).

"
$$G(T^*) \subseteq V(G(T))^{\perp}$$
": Pick $y \in D(T^*)$ and $x \in D(T)$. Then

$$\langle (y, T^*y), V(x, Tx) \rangle = \langle (y, T^*y), (-Tx, x) \rangle = \langle y, -Tx \rangle + \langle T^*y, x \rangle = 0.$$

$$V(G(T))^{\perp} \subseteq G(T^*)$$
": Pick $(x,y) \in V(G(T))^{\perp}$. Then for $z \in D(T)$:

$$0 = \langle (x, y), (-Tz, z) \rangle = -\langle x, Tz \rangle + \langle y, z \rangle,$$

so $\langle x, Tz \rangle = \langle y, z \rangle$, so $D(T) \ni z \mapsto \langle Tz, x \rangle$ (= $\langle z, y \rangle$) is continuous. So $x \in D(T^*)$ and $T^*x = y$, co $(x, y) \in G(T^*)$.

Poznámka

 $U \in \mathcal{L}(H)$ unitary, $A \subset H$. Then $U(A^{\perp}) = U(A)^{\perp}$.

Důkaz

$$x \in U(A)^{\perp} \Leftrightarrow \forall a \in A: 0 = \left\langle x, Ua \right\rangle = \left\langle U^*x, a \right\rangle \Leftrightarrow U^*x \in A^{\perp} \Leftrightarrow x \in U(A^{\perp}).$$

 $D\mathring{u}kaz$ (Of the previous proposition)

First point follows from the previous lemma.

"Second point, \Longrightarrow ": Pick $y_0 \in D(T^*)^{\perp}$. Wanted: $y_0 = 0$. We have $(y_0, 0) \in G(T^*)^{\perp}$ ($\forall z \in D(T^*) : \langle (z, T^*z), (y_0, 0) \rangle = 0$). $G(T^*)^{\perp} = V(G(T))^{\perp \perp} = \overline{V(G(T))} = V(\overline{G(T)})$. So $(0, -y_0) = V^*(y_0, 0) \in V^*V(\overline{G(T)}) = \overline{G(T)}$. Thus $y_0 = 0$ (because T is closed).

"Second point, \Leftarrow ": T^* is densely defined. Then $(T^*)^*$ is defined and, by first point, it is closed. Moreover, $T \subset (T^*)^*$ ": Pick $x \in D(T)$. Then $D(T^*) \ni y \mapsto \langle T^*y, x \rangle = \langle y, Tx \rangle$, so $x \in D((T^*)^*)$ and $(T^*)^*x = Tx$.

"Second point, then part": $T\subseteq (T^*)^*$ is done, " $(T^*)^*\subseteq \overline{T}$ ": it suffices to prove " $G((T^*)^*)=\overline{G(T)}$ ": By previous lemma, $G((T^*)^*)=V(G(T^*))^\perp=V^*(G(T^*))^\perp=V^*(G(T))^\perp=V^*$

"Third point": " \Longrightarrow " follows directly from second point, " \Longleftrightarrow " by second point, T has closed extension and $\overline{T} = (T^*)^* = T$, so ti is closed.

Tvrzení 6.10

H Hilbert, T densely defined on H. Then

• $\operatorname{Rng}(T)^{\perp} = \operatorname{Ker} T^*;$

• If T is moreover closed, then $\operatorname{Ker} T = (\operatorname{Rng} T^*)^{\perp}$.

 $D\mathring{u}kaz$

By the previous proposition T^* is densely defined and $T^{**} = T$. By the previous point, $\operatorname{Ker} T = \operatorname{Ker} T^{**} = (\operatorname{Rng} T^*)^{\perp}$.

Tvrzení 6.11

H Hilbert, T is one-to-one densely defined on H, $\overline{\text{Rng }T} = H$. Then T^* is one-to-one and $(T^*)^{-1} = (T^{-1})$.

 $D\mathring{u}kaz$

Proof omitted (using the previous proposition and lemma).

Definice 6.7 (Self-adjoint operator, symmetric operator, maximally symetric operator)

H Hilbert, T operator on H. T is self-adjoint $\equiv T = T^*$. T is symmetric $\equiv \forall x, y \in D(T)$: $\langle Tx, y \rangle = \langle x, Ty \rangle$. T is maximally symmetric $\equiv T$ is symmetric, and there is no $S \supsetneq T$ symmetric.

Poznámka

T is self-adjoint $\Longrightarrow T$ is densely defined. T is densely defined, then it is symmetric $\Leftrightarrow T \subseteq T^*$. If T is densely defined, then T is self-adjoint \Longrightarrow symmetric. (And the other implication doesn't hold.)

Tvrzení 6.12

H Hilbert, T densely defined and symmetric.

- T has closed extension and \overline{T} is symmetric;
- R(T) is dense \implies T is one-to-one;
- $D(T) = H \implies T = T^* \text{ and } T \in \mathcal{L}(H);$
- $R(T) = H \implies T$ is one-to-one, self-adjoint and $T^{-1} \in \mathcal{L}(H)$;
- T is self-adjoint $\implies T$ is maximally symmetric.

Důkaz Omitted.

Věta 6.13

H Hilbert space, $H \neq \{0\}$, T is self-adjoint operator on H. Then $\emptyset \neq \sigma(T) \subseteq \mathbb{R}$.

 \Box $D\mathring{u}kaz$

Let $T \neq 0$ be self-adjoint. " $\sigma(T) \neq 0$ ": If $\sigma(T) = 0$, then by corollary above, $T^{-1} \in \mathcal{L}(H)$ and $\sigma(T^{-1}) = \{0\}$. Moreover T^{-1} is self-adjoint by the previous proposition (third point). So $0 = r(T^{-1}) = ||T^{-1}||$, so $T^{-1} = 0$. 4.

 $,\sigma(T)\subseteq\mathbb{R}^{"}$:

Lemma 6.14

T is symmetric on Hilbert H, $\lambda \in \mathbb{C}\backslash\mathbb{R}$. Then $(\lambda I - T)$ is one-to-one, $(\lambda I - T)^{-1}$ is continuous on $R(\lambda I - T)$, and moreover T is closed $\Leftrightarrow R(\lambda I - T)$ is closed.

Důkaz

 $\lambda = \alpha + i \cdot \beta, \ \beta \neq 0, \ \alpha, \beta \in \mathbb{R}$. Then $\alpha I - T$ is symmetric, so

 $\forall x \in D(T) : \|(\lambda I - T)x\|^2 = \|(\alpha I - T)x + i \cdot \beta x\|^2 = \|i \cdot \beta \cdot x\|^2 + \|(\alpha I - T)x\|^2 + 2\Re\langle i \cdot \beta \cdot x, (\alpha I - T)x\rangle = \|\beta\|^2 \cdot \|x\|^2 + \|(\alpha I - T)x\|^2 + 0 \ge |\beta|^2 \cdot \|x\|^2,$

cause S is symmetric, then $\langle Sx, x \rangle \in \mathbb{R}$, $x \in D(S)$. So, $\|(\lambda I - T)x\| \ge |\beta| \cdot \|x\|$, $x \in D(T)$, thus $(\lambda I - T)$ is one-to-one. And $(\lambda I - T)^{-1}$ is bounded on its domain, so continuous on its domain.

It suffices: For $S := \lambda I - T$: S is closed $\Leftrightarrow R(S)$ is closed. And proof of this is omitted.