

Docket No. 241072US-2SRD

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Naoki SHUTOH, et al.

GAU:

1753

SERIAL NO: 10/629,624

EXAMINER: FICK, A. D.

FILED:

July 30, 2003

FOR:

THERMOELECTRIC MATERIAL AND THERMOELECTRIC ELEMENT

SUBMISSION NOTICE REGARDING PRIORITY DOCUMENT(S)

COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313

SIR:

Certified copies of the Convention Application(s) corresponding to the above-captioned matter:

are submitted herewith ☐ were filed in prior application filed ☐ were submitted to the International Bureau in PCT Application Number Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIRR &/NEUSTADT P.C.

Eckhard H. Kuesters Registration No. 28,870

Customer Number 22850 Tel. (703) 413-3000

Fax. (703) 413-2220 (OSMMN 11/04)

Joseph E. Wrkich

Registration No. 53,796

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

2003年 7月24日

Date of Application:

出

· [ST. 10/C]:

特願2003-201294

Application Number:

[JP2003-201294]

当 願 人 ipplicant(s):

株式会社東芝

特許庁長官 Commissioner, Japan Patent Office 2003年 8月12日

今井康

【書類名】

特許願

【整理番号】

A000302571

【提出日】

平成15年 7月24日

【あて先】

特許庁長官 殿

【国際特許分類】

H01L 35/14

【発明の名称】

熱電変換材料および熱電変換素子

【請求項の数】

11

【発明者】

【住所又は居所】

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研

究開発センター内

【氏名】

首藤 直樹

【発明者】

【住所又は居所】

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研

究開発センター内

【氏名】

桜田 新哉

【発明者】

【住所又は居所】

東京都港区芝一丁目1番1号 株式会社東芝本社事業所

内

【氏名】

近藤 成仁

【発明者】

【住所又は居所】

神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東

芝京浜事業所内

【氏名】

竹澤 伸久

【特許出願人】

【識別番号】

000003078

【氏名又は名称】 株式会社 東芝

【代理人】

【識別番号】 100058479

【弁理士】

【氏名又は名称】 鈴江 武彦

【電話番号】 03-3502-3181

【選任した代理人】

【識別番号】 100091351

【弁理士】

【氏名又は名称】 河野 哲

【選任した代理人】

【識別番号】 100088683

【弁理士】

【氏名又は名称】 中村 誠

【選任した代理人】

【識別番号】 100108855

【弁理士】

【氏名又は名称】 蔵田 昌俊

【選任した代理人】

【識別番号】 100084618

【弁理士】

【氏名又は名称】 村松 貞男

【選任した代理人】

【識別番号】 100092196

【弁理士】

【氏名又は名称】 橋本 良郎

【先の出願に基づく優先権主張】

【出願番号】 特願2002-328628

【出願日】 平成14年11月12日

【先の出願に基づく優先権主張】

【出願番号】 特願2003-90186

【出願日】 平成15年 3月28日

【手数料の表示】

【予納台帳番号】 011567

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9705037

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 熱電変換材料および熱電変換素子

【特許請求の範囲】

【請求項1】 下記組成式(1)で表わされ、MgAgAgAs型結晶構造を有する相を主相とすることを特徴とする熱電変換材料。

 $(T i_{al} Z r_{b1} H f_{cl})_{x} N i_{y} S n_{100-x-y}$ 組成式 (1) (上記組成式 (1) 中、0 < al < 1、0 < bl < 1、0 < cl < 1、al + bl + cl = 1、 $3 0 \le x \le 3 5$ 、 $3 0 \le y \le 3 5$ である。)

【請求項2】 下記組成式(2)で表わされ、MgAgAgAs型結晶構造を有する相を主相とすることを特徴とする熱電変換材料。

 $(L n_d (T i_{a2} Z r_{b2} H f_{c2})_{1-d})_x N i_y S n_{100-x-y}$ 組成式 (2) (上記組成式 (2) 中、 $L n は Y および希土類元素からなる群から選択される少なくとも一種であり、<math>0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2+b2+c2=1、 $0 < d \le 0$. 3、 $30 \le x \le 35$ 、 $30 \le y \le 35$ である。)

【請求項3】 前記組成式(1)または(2)におけるTi, ZrおよびH f の一部が、V, Nb, Ta, Cr, Mo, およびWからなる群から選ばれる少なくとも一種の元素で置換されていることを特徴とする請求項1または2に記載の熱電変換材料。

【請求項4】 前記組成式(1)または(2)におけるNiの一部が、Mn, Fe, Co, およびCuからなる群から選ばれる少なくとも一種の元素で置換されていることを特徴とする請求項1ないし3のいずれか1項に記載の熱電変換材料。

【請求項5】 前記組成式(1)または(2)におけるSno一部が、As, Sb, Bi, Ge, Pb, GaおよびInからなる群から選ばれる少なくとも一種の元素で置換されていることを特徴とする請求項1ないし4のいずれか1項に記載の熱電変換材料。.

【請求項6】 下記組成式(3)で表わされ、MgAgAgAs型結晶構造を有する相を主相とすることを特徴とする熱電変換材料。

LnlxN i yS b 100-x-y

組成式(3)

(上記組成式(3)中、Ln1は、S c, Y, G d, T b, D y, H o, E r, T m, Y b, L u, T h, Uの中から選ばれる少なくとも一種であり、 $3.0 \le X \le 3.5$ 、 $3.0 \le Y \le 3.5$ である。)

【請求項7】 下記組成式(4)で表わされ、MgAgAgAs型結晶構造を有する相を主相とすることを特徴とする熱電変換材料。

(Ln2_pY_{1-p}) χN i γS b_{100-X-Y} 組成式 (4)

(Ln2は、Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U の中から選ばれる少なくとも一種であり、 $0.01 \le P \le 0.999$ 、 $30 \le X \le 35$ 、 $30 \le Y \le 35$ である。)

【請求項8】前記組成式(3)におけるLn1の一部または前記組成式(4)におけるLn2の一部がTi, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Be, Mg, Ca, Sr, Baからなる群より選ばれる少なくとも一種で置換されていることを特徴とする請求項6または7に記載の熱電変換材料。

【請求項9】 前記組成式(3) または(4) におけるNiの一部がV, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Rh, Ir, Pd, Pt, Cu, Ag, Au, Znからなる群より選ばれる少なくとも一種で置換されていることを特徴とする請求項6ないし8のいずれか1項に記載の熱電変換材料。

【請求項10】 前記組成式(3) または(4) におけるSbの一部がAl, Si, Ga, Ge, As, In, Sn, Pb, Biからなる群より選ばれる少なくとも一種で置換されていることを特徴とする請求項6ないし9のいずれか1項に記載の熱電変換材料。

【請求項11】 交互に直列に接続されたp型熱電変換材料およびn型熱電変換材料を含み、前記p型熱電変換材料および前記n型熱電変換材料の少なくとも一方は、請求項1ないし10のいずれか1項に記載の熱電変換材料を含むことを特徴とする熱電変換素子。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、熱電変換材料に係り、特にMgAgAs型結晶構造を有するハーフ

ホイスラー化合物を主相とする熱電変換材料、およびこれを用いた熱電変換素子に関する。

[0002]

【従来の技術】

近年、地球環境問題に対する意識の高揚から、フロンレス冷却であるペルチェ効果を利用した熱電冷却素子に関する関心が高まってきている。地球温暖化問題から二酸化炭素排出量を削減するために、未利用廃熱エネルギーを電気エネルギーに直接変換する熱電発電素子に対する関心もまた、同様に高まりつつある。

[0003]

このような熱電変換素子に用いられる p 型や n 型の熱電冷却材料および熱電発電材料には、効率の高さから、B i -T e 系の単結晶構造あるいは多結晶構造のものが多く用いられる。室温より高温の条件下で使用される熱電材料においても、効率の高さから p 型および n 型のいずれにも P b -T e 系材料が用いられている。

[0004]

Pb-Te系材料に含有されているPb(鉛)は、人体にとって有毒有害であり、また地球環境問題の観点からも好ましくない。Bi-Te系材料には、一般的に不純物としてSeが添加されており、これも人体にとって有毒有害な元素である。地球環境問題の観点からも、Seは好ましくない。さらに、こうした材料系に用いられているTeは地球上の埋蔵量が非常に少なく、資源的に供給上の困難がある。このため、Bi-Te系材料およびPb-Te系材料よりも効率が高く、しかも無害な熱電変換材料が求められている。

[0005]

ハーフホイスラー化合物は、化学式ABXで表わされ、立方晶系のMgAgAs型結晶構造の金属間化合物であり、AXのNaCl型結晶格子にB原子が挿入された構造である。こうした構造を有する化合物は室温で高いゼーベック係数を有し、例えばTiNiSnは -142μ V/K、ZrNiSnは -176μ V/K、また、HfNiSnは -124μ V/Kと報告されている(例えば、非特許文献1参照)。

[0006]

なお、熱電変換材料の性能指数 Z は、下記数式(1)式で表される。

[0007]

$$Z = \alpha^2 \sigma / \kappa \tag{1}$$

上記数式 (1) 中、 α は熱電変換材料のゼーベック係数、 σ は熱電変換材料の 導電率であり、 κ は熱電変換材料の熱伝導率である。導電率 σ の逆数は、電気抵抗率 ρ として表わされる。

[0008]

Zは温度の逆数の次元を有し、この性能指数Zに絶対温度を乗ずると無次元の値となる。この値ZTは、無次元性能指数と呼ばれ、熱電変換材料の熱電変換効率に相関関係を有して、このZTの大きな材料ほど熱電変換効率は大きくなる。すなわち、熱を通しにくく、電気をよく通して、熱起電力が大きい材料ほど高効率な熱電変換材料となる。例えば、現在知られている材料の中で最も大きな無次元性能指数を有するBi-Te系の無次元性能指数は、300Kで約1.0である。

[0009]

[0010]

一方、希土類を含むハーフホイスラー化合物としては、例えばHoPdSbが報告されている(例えば、非特許文献 2 参照)。このHoPdSbは、室温におけるゼーベック係数は $150\mu V/K$ であり、熱伝導率は6W/mKとZrNiSnよりやや小さいものの、やはり抵抗率が $9m\Omegacm$ と大きいため、無次元性能指数ZTは0.01に留まる。Ho0.5Er0.5PdSb1.05、Er0.25Dy0.75Pd1.02Sb、および<math>Er0.25Dy0.75PdSb1.05には、室温における無次

元性能指数は小さく、それぞれ0.04、0.03、および0.02と報告されている。

$[0\ 0\ 1\ 1]$

【非特許文献1】

J. Phys. : Condens. Matter 11 1697-1709 (1999)

[0012]

【非特許文献2】

Appl. Phys. Lett., 74, 1414-1417 (1999)

$[0\ 0\ 1\ 3]$

【発明が解決しようとする課題】

本発明は上記問題に鑑み、ハーフホイスラー化合物を主相とする材料において、高いゼーベック係数と低い抵抗率とを維持しつつ熱伝導率を十分に低減して、無次元性能指数 Z T の大きな熱電変換材料、およびこれを用いた熱電変換素子を提供することを目的とする。

$[0\ 0\ 1\ 4]$

【課題を解決するための手段】

本発明の一態様にかかる熱電変換材料は、下記組成式(1)で表わされ、Mg AgAs型結晶構造を有する相を主相とすることを特徴とする。

 $(T i_{al} Z r_{b1} H f_{cl})_{x} N i_{y} S n_{100-x-y}$ 組成式 (1) (上記組成式 (1) 中、0 < al < 1、0 < bl < 1、0 < cl < 1、al + bl + cl = 1、30 ≤ x ≤ 35、30 ≤ y ≤ 35 である。)

本発明の他の態様にかかる熱電変換材料は、下記組成式(2)で表わされ、M g A g A s 型結晶構造を有する相を主相とすることを特徴とする。

[0015]

 $(L n_d (T i_{a2} Z r_{b2} H f_{c2})_{1-d})_x N i_y S n_{100-x-y}$ 組成式 (2) (上記組成式 (2) 中、 $L n は Y および希土類元素からなる群から選択される少なくとも一種であり、<math>0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2+b2+c2=1、 $0 < d \le 0$. $3 \cdot 30 \le x \le 35 \cdot 30 \le y \le 35$ of $0 \le y \le 35$

本発明の他の態様にかかる熱電変換材料は、下記組成式(3)で表わされ、M g A g A s 型結晶構造を有する相を主相とすることを特徴とする。

[0016]

LnlxN i y S b 100-x-y 組成式 (3)

(上記組成式(3)中、Ln1は、S c, Y, G d, T b, D y, H o, E r, T m, Y b, L u, T h, Uの中から選ばれる少なくとも一種であり、 $3.0 \le X \le 3.5$ 、 $3.0 \le Y \le 3.5$ である。)

本発明の他の態様にかかる熱電変換材料は、下記組成式(4)で表わされ、M g A g A s 型結晶構造を有する相を主相とすることを特徴とする。

$[0\ 0\ 1\ 7]$

 $(Ln2_pY_{1-p})$ $\chi N i \gamma S b_{100-\chi-\gamma}$ 組成式 (4)

(Ln2は、Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U の中から選ばれる少なくとも一種であり、 $0.001 \le P \le 0.999$ 、 $30 \le X \le 35$ 、 $30 \le Y \le 35$ である。)

本発明の一形態にかかる熱電変換素子は、交互に直列に接続されたp型熱電変換材料およびn型熱電変換材料を含み、前記p型熱電変換材料および前記n型熱電変換材料の少なくとも一方は、前述の熱電変換材料を含むことを特徴とする。

[0018]

以下、本発明の実施形態を説明する。

[0019]

一般に熱の伝導は、フォノン、すなわち結晶格子振動の伝播によるものと、導電キャリア、すなわち自由電子の移動によるものとに分けられる。したがって、 熱伝導率κは下記数式(2)式で表される。

[0020]

κ = κ_{ph} + κ_{el} 数式 (2)

上記数式 (2) 中、 κ_{ph} は格子熱伝導率、 κ_{el} は電子熱伝導率である。

[0021]

電子熱伝導率 κ_{el} は、ビーデマンフランツ則により下記数式(3)式で表され

る。

[0022]

 $\kappa_{el} = L T \sigma$ 数式 (3)

上記数式 (3) 中、 σ は導電率、T は絶対温度、またL はローレンツ因子であり、下記数式 (4) で表わされる。

[0023]

$$L = (\pi^2/3) (k_B/e)^2$$
 (4)

上記数式(4)中、 k_B はボルツマン定数(1.38×10-23 J / K)であり、e は電子の電荷量(-1.60×10-19C)である。

[0024]

したがって、ローレンツ因子は定数となり、その値は $2.44 \times 10^{-8} \text{V}^2$ / K^2 である。上記数式(3)式に示されるように、電子熱伝導率 κ_{el} は絶対温度 および導電率に比例することから、同一温度で電子熱伝導率を小さくするために は、導電率を小さくする必要がある。

[0025]

しかしながら、上記数式(1)式からわかるように、無次元性能指数Z Tを大きくするためには導電率を大きくしなければならない。したがって、電子熱伝導率を小さくして全体の熱伝導率 κ を低減し、それによって無次元性能指数を大きくすることはできない。また、上記数式(3)式からわかるように、導電率が温度依存性をもたず温度変化に対して一定だとすると、電子熱伝導率は温度に比例して増加する。そのため、格子熱伝導率が温度依存性をもたず一定であっても、上記数式(2)式より全体の熱伝導率 κ は温度が高い領域ほど大きくなり、無次元性能指数は小さくなってしまう。

[0026]

以上から、全体の熱伝導率 κ を低減して無次元性能指数 Z T を大きくするためには、格子熱伝導率 κ phをいかに小さくするかが重要である。格子熱伝導率は、結晶格子の種類、構成される元素に大きく依存し、格子の規則性を乱すことによって低下させることができる。ハーフホイスラー構造を持つMN i S n においてはMとして T i , Z r , H f を単独に用いた場合には格子熱伝導率は 6 . $7\sim 9$

. 3 W/m K である。

[0027]

本発明者らは鋭意研究した結果、図1に示されるハーフホイスラー構造を有するMN i Snにおいて、Aサイトの原子の原子半径不規則性を導入することによって、熱伝導率をさらに低減できることを見出した。なお、図1中、参照符号1, 2, 3 は、それぞれA元素(M)、B元素(N i)およびX元素(Sn)を表わし、参照符号4 は空孔を表わす。

[0028]

具体的には、Aサイトにある原子がTi, Zr, Hf全てを含むようにすることにより、原子半径および原子量の不均一性によるフォノンの散乱、および結晶格子の大きさに不均一性を生じさせて、熱伝導率を大幅に低減することを可能とした。

[0029]

さらに、Aサイトにある原子がTi, Zr, Hf全てを含むようにすることは、フェルミ面近傍における電子密度分布変化を急峻にし、ゼーベック係数の増加にも効果があることを本発明者らは見いだした。

[0030]

すなわち、本発明の一形態にかかる n 型の熱電変換材料は、下記組成式 (1) で表わされ、M g A g A s 型結晶構造を有する相を主相とすることを特徴とする

[0031]

(TialZrblHfcl) xNivSnl00-x-v 組成式(1)

Aサイトにある原子がT i , Z r , H f 全でを含むようにするために、前記組成式(1)におけるal , bl , cl は、0 より大きいことが必要である。したがって、al , bl , cl の数値は、0 <al < 1 、0 <bl < 1 、0 <cl < 1 、al +bl +cl = 1 に規定される。さらにより好ましくは、0.1 <al < 0.9、al +bl +cl = 1 に規定される。

[0032]

また、MgAgAs型結晶構造を有する相の体積占有率を高めて、高いゼーベ

ック係数を得るために、x および y は、 $3.0 \le x \le 3.5$ および $3.0 \le y \le 3.5$ の範囲にそれぞれ規定される。x および y のより好ましい範囲は、 $3.3 \le x \le 3.4$ 、および $3.3 \le y \le 3.4$ である。

[0033]

さらに本発明者らは、Ti, Zr, Hf のいずれの元素よりも原子半径が大きい希土類元素に着目した。希土類元素は、Ni またはSn との間に合金相を形成しやすいため、これに起因する熱伝導率の低減も期待される。こうした知見に基づいて鋭意ら調査を行なった結果、本発明者らは、N-7 ホイスラー化合物MN i Sn (X=Ti, Zr, Hf) におけるMの一部を、Yおよび希土類元素からなる群から選択される少なくとも一種の元素で置換することによっても、熱伝導率を大幅に改善できることを見出した。

[0034]

すなわち、本発明の他の態様にかかるn型の熱電変換材料は、下記組成式(2)で表わされ、MgAgAgAs型結晶構造を有する相を主相とすることを特徴とする。

[0035]

(Lnd (Tia2Zrb2Hfc2) 1-d) xNivSn100-x-v 組成式(2)

Lnは、Yおよび希土類元素からなる群から選択される少なくとも一種の元素であり、希土類元素には、周期律表における原子番号57のLaから、原子番号71のLuまでの全ての元素が含まれる。融点および原子半径を考慮すると、Er, Gd, およびNdが、Lnとして特に好ましい。

[0036]

Lnは、前述したように熱伝導率を低減するのに有効な元素である。少量でもその効果を発揮するが、熱伝導率をより低減するめには、Lnの配合量は、Lnと(Ti, Zr, Hf)との総量のうち、0.1原子%以上とすることが好ましい。Lnの配合量が、Lnと(Ti, Zr, Hf)との総量の30原子%を越えた場合には、MgAgAs型結晶構造を有する相以外の相、例えばLnSn3相の析出が顕著になって、ゼーベック係数の劣化を招くおそれがある。このため、dの値は0<d \leq 0.3の範囲内に規定され、より好ましくは0.001 \leq d \leq

0.3の範囲内である。

[0037]

前記組成式(2) においては、T i、Z r およびH f は、必ずしもすべてが同時に存在する必要はない。このため、a2, b2, c2は、 $0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2 + b2 + c2 = 1の範囲内となる。

[0038]

[0039]

これに対して、前述の組成式(2)で表わされるようにTi, Zr, Hf の一部を希土類元素で置換した場合には、Ce, Eu, Yb を除く希土類元素は(5 d^16 s e^2)の外殻電子配置により e^3 3 価となる場合が多いため、総価電子数が e^3 からずれてしまうおそれがある。そこで、 e^3 x および e^3 y e^3 を適宜調整してこれを補うことが可能である。

$[0\ 0\ 4\ 0]$

前述の組成式(1)および(2)において、Ti, ZrおよびHfの一部は、V, Nb, Ta, Cr, Mo, およびWからなる群から選ばれる少なくとも一種の元素で置換されていてもよい。これらの元素は、単独で、あるいは二種以上を組み合わせて用いて、Ti, ZrおよびHfの一部を置換することができる。このような置換によって、主相であるMgAgAs相における総価電子数を調整して、ゼーベック係数や導電率を増大させることが可能である。前述したように、ハーフホイスラー化合物においては総価電子数が18近傍の場合に大きなゼーベック係数が観測されるため、これらの置換元素と希土類元素とを併用することによって、総価電子数を調整することが有効である。ただし、置換量は、Ti, Z

r, Hf総量の30原子%以下とすることが好ましい。30原子%を越えると、MgAgAs型結晶構造を有する相以外の相の析出が顕著となって、ゼーベック係数の劣化を招くおそれがある。

[0041]

また、前記組成式(1)または(2)におけるNiの一部は、Mn, Fe, Co, およびCuからなる群から選ばれる少なくとも一種の元素で置換されてもよい。これらの元素は、単独で、あるいは二種以上を組み合わせて用いて、Niの一部を置換することができる。このような置換によって、主相であるMgAgAs相における総価電子数を調整するなどしてゼーベック係数や導電率を増大させることが可能である。置換量は、一般的には、Niの50原子%以下にとどめることが望まれる。特に、Cuで置換する場合には、その置換量が多すぎるとMgAgAs相の生成を阻害するおそれがあるため、Niの30原子%以下とすることが好ましい。

[0042]

さらに、前記組成式(1)または(2)におけるSnの一部は、As,Sb,Bi,Ge,Pb,Ga,およびInからなる群から選ばれる少なくとも一種の元素で置換されてもよい。これらの元素は、単独で、あるいは二種以上を組み合わせて用いて、Snの一部を置換することができる。このような置換によって、主相であるMgAgAs相における総価電子数を調整するなどしてゼーベック係数や導電率を増大させることが可能である。ただし、Snを置換する元素は有害性、有毒性、材料コストを考慮すると、Sb、Biが特に好ましい。置換量は、Snの30原子%以下とすることが好ましい。30原子%を越えた場合には、MgAgAs型結晶構造を有する相以外の相の析出が顕著となって、ゼーベック係数の劣化を招くおそれがある。

$[0\ 0\ 4\ 3]$

以上、n型の熱電変換材料について説明したが、同様の理論はp型の熱電変換材料にも適用することができる。B元素としてPdを用いた場合に比べて、Niを用いることによりパワーファクターが増大することが、本発明者らによって見出された。

[0044]

本発明の一実施形態にかかるp型の熱電変換材料は、下記組成式(3)で表わされ、MgAgAgAs型結晶構造を有する相を主相とすることを特徴とする。

[0045]

LnlxN i yS b 100-x-y 組成式 (3)

図1に示した結晶構造と対応させると、A元素1がLn1、B元素2がNi, X元素3がSbに相当する。

$[0\ 0\ 4\ 6]$

組成式(3)中、Ln1は、Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Uの中から選ばれる少なくとも一種の元素である。MgAgAs As 型結晶構造を有する相の体積占有率を高めて、高いゼーベック係数を得るためには、X およびY は、 $30 \le X \le 35$ および $30 \le Y \le 35$ の範囲にそれぞれ規定される。X およびY のより好ましい範囲は、 $33 \le X \le 34$ 、および $33 \le Y \le 34$ である。

[0047]

結晶格子の大きさに不均一性を生じさせて、熱伝導率を大幅に低減させるためには、Ln1の一部としてYを含有することが好ましい。

[0048]

本発明の他の実施形態にかかるp型の熱電変換材料は、下記組成式(4)で表わされ、MgAgAgAs型結晶構造を有する相を主相とすることを特徴とする。

[0049]

(Ln2pY1-p) xN i yS b 100-X-Y 組成式 (4)

図1に示した結晶構造と対応させると、A元素1がLn2およびY、B元素2がNi、X元素3がSbである。

[0050]

組成式(4)中、Ln2は、Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Uの中から選ばれる少なくとも一種の元素である。MgAgAs 型結晶構造を有する相の体積占有率を高めて、高いゼーベック係数を得るためには、P、XおよびYは、0. $001 \le P \le 0$. 999、 $30 \le X \le 35$ 、 $30 \le X$

 $Y \le 35$ の範囲にそれぞれ規定される。P、XおよびYのより好ましい範囲は、 $0.01 \le P \le 0.99$ 、 $33 \le X \le 34$ 、および $33 \le Y \le 34$ である。

$[0\ 0\ 5\ 1]$

前述の組成式(4)で表わされるp型熱電変換材料は、Yを必須とし、このYが熱伝導度を低下させる。したがって、性能指数をよりいっそう高めることができる。

[0052]

前述の組成式(3)または(4)において、Ln1もしくはLn2の一部は、Ti, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Be, Mg, Ca, Sr, Ba からなる群より選ばれる少なくとも一種の元素で置換されていてもよい。これらの元素は、単独で、あるいは二種以上を組み合わせて用いて、Ln1もしくはLn2の一部を置換することができる。このような置換によって、主相であるMgA gA s 相における総価電子数を調整して、導電率を増大させることが可能である。特に、Be, Mg, Ca, Sr, Ba o0 様な 26 価の元素で置換することは、36 価のLn1, Ln26 26 価の元素で置換することとなるため、電気的なホールが形成される。

[0053]

本実施形態の熱電変換材料はp型であるため、キャリアー濃度を増加させ、導電率の増大に有効である。ただし、置換量は、Ln1若しくはLn2の総量の約30原子%以下とすることが好ましい。約30原子%を越えると、MgAgAgAs型結晶構造を有する相以外の相の析出が顕著となって、ゼーベック係数の劣化を招くおそれがある。

[0054]

また、前記組成式(3)または(4)において、Niの一部は、V,Nb,Ta,Cr,Mo,W,Mn,Fe,Co,Rh,Ir,Pd,Pt,Cu,Ag,Au,Znからなる群より選ばれる少なくとも一種の元素で置換されてもよい。これらの元素は、単独で、あるいは二種以上を組み合わせて用い、Niの一部を置換することができる。このような置換によって、主相であるMgAgAs相における総価電子数を調整するなどしてゼーベック係数や導電率を増大させるこ

とが可能である。特に、Co, Rh, Irの様なNiよりも外殻価電子数が一つ 少ない元素で置換することは、電気的なホールが形成され、キャリアー濃度を増加させ、導電率の増大に有効である。

[0055]

ただし、置換量は、Niの30原子%以下にとどめることが望ましい。30原子%を越えると、MgAgAgAs型結晶構造を有する相以外の相の析出が顕著となって、ゼーベック係数の劣化を招くおそれがある。

[0056]

さらに、前記組成式(3)または(4)において、Sbの一部は、A1,Si,Ga,Ge,As,In,Sn,Pb,Biからなる群より選ばれる少なくとも一種の元素で置換されてもよい。これらの元素は、単独で、あるいは二種以上を組み合わせて用いて、Sbの一部を置換することができる。このような置換によって、主相であるMgAgAs相における総価電子数を調整するなどしてゼーベック係数や導電率を増大させることが可能である。特に、Si,Ge,Sn,Pbの様なSbよりも外殻価電子数が一つ少ない元素で置換することは、電気的なホールが形成されることによりキャリアー濃度を増加させ、導電率の増大に有効である。

[0057]

ただし、置換量は、Sbの30原子%以下にとどめることが望ましい。30原子%を越えると、MgAgAs型結晶構造を有する相以外の相の析出が顕著となって、ゼーベック係数の劣化を招くおそれがある。また、SbをBiで置換することは、より原子半径が大きく原子量が大きな元素で置換することとなるため、フォノン散乱効果が大きくなり、格子熱伝導率の低下に有効である。

[0058]

本発明の実施形態にかかる熱電変換材料は、例えば以下のような方法により製造することができる。

[0059]

まず、所定量の各元素を含有する合金を、アーク溶解や高周波溶解などによって作製する。合金の作製に当たっては、単ロール法、双ロール法、回転ディスク

法、ガスアトマイズ法などの液体急冷法、あるいはメカニカルアロイング法などの固相反応を利用した方法などを採用することもできる。液体急冷法やメカニカルアロイング法といった方法は、合金を構成する結晶相を微細化する、結晶相内への元素の固溶域を拡大するなどの点で有利である。このため、熱伝導率を大幅に低減することができる。

[0060]

あるいは、前述したような溶解プロセスを経ずに、原料金属粉末をホットプレスして合金を作製することも可能である。

[0061]

作製された合金は、必要に応じて熱処理を施してもよい。この熱処理によって合金が単相化され、結晶粒子径も制御されるので、熱電特性をさらに高めることができる。溶解、液体急冷、メカニカルアロイングおよび熱処理などの工程は、合金の酸化を防止するという観点から、例えばArなどの不活性雰囲気中で行なわれることが好ましい。

[0062]

次に、合金をボールミル、ブラウンミル、またはスタンプミルなどにより粉砕して合金粉末を得、合金粉末を焼結法、ホットプレス法、またはSPS法などによって一体成型する。合金の酸化を防止するという観点から、一体成型は、例えばArなどの不活性雰囲気中で行なわれることが好ましい。次いで、得られた成型体を所望の寸法に加工することによって、本発明の実施形態にかかる熱電変換材料が得られる。成型体の形状や寸法は適宜選択することができる。例えば、外形 $0.5\sim10\,\mathrm{mm}\,\phi$ 、厚み $1\sim30\,\mathrm{mm}$ の円柱状や、($0.5\sim10\,\mathrm{mm}$)×($0.5\sim10\,\mathrm{mm}$)×厚み($1\sim30\,\mathrm{mm}$)程度の直方体状などとすることができる。

[0063]

こうして得られた熱電変換材料を用いて、本発明の実施形態にかかる熱電変換素子を製造することができる。その一例の構成を表わす概略断面図を、図2に示す。

[0064]

図2に示される熱電変換素子においては、本発明の実施形態にかかる n 型半導体の熱電変換材料 9 と、p 型半導体の熱電変換材料 8 が並列に配置されている。 n 型熱電変換材料 9 および p 型熱電変換材料 8 のそれぞれの上面には、電極 1 0 a および 1 0 b がそれぞれ配置され、その外側に上側絶縁性基板 1 1 a を接続される。 n 型熱電変換材料 9 および p 型熱電変換材料 8 の下面は、下側絶縁性基板 1 1 b に支持された電極 1 0 c によって接続されている。

[0065]

上下の絶縁性基板11aと11bとの間に温度差を与えて上部側を低温度に、下部側を高温度にした場合、p型半導体熱電変換材料8内部においては、正の電荷を持ったホール14が低温度側(上側)に移動し、電極10bは電極10cより高電位となる。一方、n型半導体熱電変換材料9内部では、負の電荷を持った電子15が低温度側(上側)に移動して、電極10cは電極10aより高電位となる。

[0066]

その結果、電極10aと電極10bとの間に電位差が生じる。図2に示したように、上部側を低温度として下部側を高温度にした場合、電極10bは正極となり、電極10aは負極となる。

[0067]

図3に示すように、複数のp型熱電変換材料8とn型熱電変換材料9とを交互に直列に接続することによって、図2に示した構造よりも高い電圧を得て、より大きな電力を確保することができる。

[0068]

上述した熱電変換素子16は、熱電池に適用することができる。その構成の一例を図4に示す。図示するように、電変換素子16の上部側を低温度にして、下部側を高温度にすると、熱電変換素子16の終端電極19に電位差が生じる。電極19aと電極19bとに負荷20を接続すると、図示する矢印方向に電流21が流れて熱電池として機能する。

[0069]

あるいは、上述した熱電変換素子は冷却器に適用することができる。その一例

の構成を図5に示す。図示するように、熱電変換素子16の終端電極19に直流電源22を用いて図中の矢印方向に直流電流23を流す。その結果、熱電変換素子16の上部側は高温になり、一方の下部側は低温になって冷却器として機能する。

[0070]

本発明の熱電変換材料について、実施例を示して以下に詳細に説明する。

[0071]

(実施例 I)

本実施例においては、n型の熱電変換材料について説明する。

[0072]

(実施例 I - 1)

純度99.9%のTi、純度99.9%のZr、純度99.9%のHf、純度99.99%のNi、および純度99.99%のSnを原料として用意し、これを組成式 (Ti_{0.3}Zr_{0.35}Hf_{0.35}) Ni Snになるように秤量した。

[0073]

秤量された原料を混合し、アーク炉内の水冷されている銅製のハースに装填して、 2×10^{-3} Paの真空度まで真空引きした。その後、純度 9 9. 9 9 9 %の高純度 Arを-0. 0 4 MPaまで導入して減圧 Ar雰囲気として、アーク溶解した。溶解後、水冷されている銅製のハースで急冷されて得られた金属塊を、石英管に 10^{-4} Pa以下の高真空で真空封入し、1073 Kで 72 時間熱処理した

[0074]

得られた金属塊を粉砕し、内径20mmの金型を用いて圧力50MPaで成形した。得られた成形体を内径20mmのカーボン製モールドに充填し、Ar雰囲気中、80MPa、1200℃で1時間加圧焼結して、直径20mm円盤状の焼結体を得た。

[0075]

この焼結体を粉末X線回折法にて調べたところ、MgAgAgAs型結晶構造を有する相を主としていることが確認された。

[0076]

また、得られた焼結体の組成をICP発光分光法で分析した所、ほぼ所定の組成であることが確認された。

[0077]

得られた焼結体は以下の方法によって熱電特性を評価した。

[0078]

(1)抵抗率

焼結体を $2 \text{ mm} \times 0$. $5 \text{ mm} \times 1 \text{ 8 mm}$ に切断し、電極を形成し直流4端子法で測定した。

[0079]

(2) ゼーベック係数

焼結体を $4 \text{ mm} \times 1 \text{ mm} \times 0$. 5 mmに切断し、この両端に2 Cの温度差を付け起電力を測定し、ゼーベック係数を求めた。

[0080]

(3) 熱伝導率

焼結体を ϕ 10mm×t2.0mmに切断し、レーザーフラッシュ法により熱拡散率を測定した。これとは別にDSC測定により比熱を求めた。アルキメデス法により焼結体の密度を求め、これらより熱伝導率を算出した。

[0081]

こうして得られた抵抗率、ゼーベック係数、および熱伝導率の値を用い、前述の数式(1)により無次元性能指数 Z T を求めた。 3 0 0 K および 7 0 0 K における抵抗率、ゼーベック係数、格子熱伝導率、および無次元性能指数は、以下のとおりである。

[0082]

300K:抵抗率8.62×10⁻³Ωcm ゼーベック係数-333μV/K 格子熱伝導率3.05W/mK ZT=0.12

700K:抵抗率2.35×10-3Ωcm

ゼーベック係数-328μV/K 格子熱伝導率1.95W/mK ZT=1.20

(実施例 I-1) で作製された熱電変換材料の無次元性能指数 Z T の温度依存性を、図 6 中に曲線 a として示す。図示するように最大で 1. 2 1 程度の無次元性能指数 Z T が得られる。

[0083]

すでに説明したように、既存の熱電変換材料についての無次元性能指数ZTの最大値は、Bi-Te系材料の1.0である。本実施例においては、($Ti_{0.3}$ $Zr_{0.35}$ Hf $_{0.35}$)NiSnという組成としているので、これを越える高性能の熱電変換材料が得られた。

[0084]

(比較例 I - 1)

[0085]

300K:抵抗率9.6×10⁻³Ωcm ゼーベック係数−180μV/K 格子熱伝導率3.95W/mK ZT=0.02

700K:抵抗率2.3×10⁻³Ωcm ゼーベック係数-272μV/K 格子熱伝導率3.49W/mK ZT=0.53

(比較例I-1) で作製された熱電変換材料の無次元性能指数2Tの温度依存

性を、図6中に曲線 c として示す。無次元性能指数 Z T は最大でも 0.5 4 程度 にとどまっていることがわかる。

[0086]

このように、 $Zr_{0.5}Hf_{0.5}NiSn$ という組成の場合には、Bi-Te系材料の1.0を越える高性能の熱電変換材料は得られなかった。

[0087]

(実施例 $I - 2 \sim I - 21$ 、比較例 $I - 2 \sim I - 3$)

組成式($Ti_{al}Zr_{bl}Hf_{cl}$)NiSnで表わされる種々の組成の熱電変換材料を、前述の実施例 1 と同様の手法により作製した。各熱電変換材料について、300 K および 700 K における特性を前述と同様にして評価し、得られた結果を下記表 1 にまとめる。なお、表 1 には、前述の(実施例 I-1)および(比較例 I-1)の結果も併せて示した。

[0088]

【表1】

表 1

				1	300K		7 0 0 K	
		Ti量	7.r 量	Hf 量				
		a ₁	b ₁	°1		無次元性能		無次元性能
		Ğ I	~1		熱伝導率	指数 ZT	熱伝導率	指数 乙丁
	I-1	0.3	0.35	0.35	3.05	0.12	1.95	1.20
	I-2	0.01	0.01	0.98	3.66	0.06	2.50	1.01
	I-3	0.01	0.98	0.01	3.7	0.05	2.51	1.00
	I-4	0.98	0.01	0.01	3.71	0.05	2.55	1.00
	I-5	0.02	0.49	0.49	3.61	0.07	2.40	1.05
	I-6	0.49	0.02	0.49	3.79	0.07	2.45	1.03
	I-7	0.49	0.49	0.02	3.80	0.06	2.47	1.02
	I-8	0.1	0.1	0.8	3.55	0.08	2.10	1.10
	I-9	0.1	0.8	0.1	3.50	0.08	2.16	1.08
実	I-10	0.8	0.1	0.1	3.58	0.09	2.20	1.07
施	I-11	0.35	0.3	0.35	2.95	0.13	1.90	1.17
加也	I-12	0.35	0.35	0.3	3.00	0.12	1.95	1.20
例	I-13	0.1	0.45	0.45	3.67	0.08	2.25	1.09
	I-14	0.45	0.1	0.45	3.45	0.07	2.08	1.07
	I-15	0.45	0.45	0.1	3.55	0.07	2.15	1.10
	I-16	0.2	0.4	0.4	3.36	0.10	2.10	1.16
	I-17	0.4	0.2	0.4	3.20	0.09	1.99	1.13
	I-18	0.4	0.4	0.2	3.28	0.10	2.05	1.11
	I-19	0.5	0.25	0.25	3.27	0.12	2.05	1.18
	1-20	0.25	0.5	0.25	3.18	0.12	2.01	1.16
	I-21	0.25	0.25	0.5	3.23	0.11	2.02	1.15
比	I-1	0.0	0.5	0.5	3.95	0.02	3.49	0.53
較	I-2	0.5	0.0	0.5	4.11	0.02	3.61	0.48
例	I-3	0.5	0.5	0.0	4.65	0.01	4.05	0.35
	I-4	1.0	0.0	0.0	9.75	0.01	6.35	0.27
	I-5	0.0	1.0	0.0	8.25	0.01	5.55	0.24
	1-6	0.0	0.0	1.0	7.75	0.01	5.15	0.20
	I-7	0.0	0.85	0.15		0.01	4.15	0.39
	I-8	0.0	0.7	0.3	4.45	0.01	3.85	0.48
	I-9	0.15			5.81	0.01	4.50	0.30
	I-10	0.3	0.7	0.0	4.92	0.01	4.22	0.33

[0089]

表1に示されるように、Ti、ZrおよびHfの3種類の元素を含有し、前述

の組成式(1)で表わされる種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。これに対し、Ti、Zr およびHf のいずれかを含有しない比較例 I-1、I-2 および I-3 は、無次元性能指数 ZTが劣っていることが、表 1 の結果に明確に示されている。

[0090]

(実施例 I - 2 2 ~ I - 4 5)

前述の実施例 I-1 で作製された、組成式($Ti_{0.3}Zr_{0.35}Hf_{0.35}$) Ni S n で表わされる熱電変換材料における Ti, Zr, Hf の一部を、V, Nb, Ta の群から選ばれる少なくとも一種の元素で置換して、組成式(($Ti_{0.3}Zr_{0.35}Hf_{0.35}$) 1-eXe) Ni S n で表わされる熱電変換材料を作製した。

[0091]

[0092]

【表2】

表 2

		置換	置換	300K		700K	
		元素種X	元素量e	格子	無次元	格子	無次元
				熱伝導率	性能指数	熱伝導率	
					_ Z T		ZT
	I -22	٧	0.003	3.21	0.24	1.93	1.19
	1 - 23	V	0.01	3.10	0.27	1.84	1.27
	I -24	V	0.03	3.04	0.24	1.81	1.20
	I -25	V	0.10	2.95	0.22	1.77	1.08
実	I -26	Nb	0.003	3.08	0.26	1.85	1.24
施	I -27	Nb	0.01	3.05	0.28	1.81	1.29
例	I -28	Nb	0.03	3.01	0.27	1.77	1.22
	I -29	Nb	0.10	2.95	0.25	1.70	1.10
	I -30	Ta	0.003	3.00	0.27	1.83	1.26
	I -31	Ta	0.01	2.94	0.28	1.79	1.30
	I -32	Та	0.03	2.90	0.28	1.74	1.28
	I -33	Ta	0.10	2.85	0.24	1.69	1.23

[0093]

さらに、組成式($Ti_{0.5}Zr_{0.25}Hf_{0.25}$)NiSnで表わされる熱電変換材料におけるTi, Zr, Hfの一部を、V, Nb, Ta の群から選ばれる少なくとも一種の元素で置換して、組成式(($Ti_{0.5}Zr_{0.25}Hf_{0.25}$) $_{1-e}X_e$)NiSnで表わされる熱電変換材料を作製した。

[0094]

具体的には、XとしてのV, N b \pm たはT a \pm を、下記表 \pm 3 に示す置換元素量 \pm でさらに添加した以外は、(実施例 \pm \pm \pm 1 と同様の手法により熱電変換材料を作製した。各熱電変換材料について、 \pm 3 0 0 K および \pm 7 0 0 K における特性を前述と同様にして評価し、得られた結果を下記表 \pm 3 にまとめる。

[0095]

【表3】

表 3

		置換	置換	300K		700K	
		元素種	元素量	格子	無次元	格子	無次元
		X	е	熱伝導率	性能指数	熱伝導率	性能指数
					ZT		ZT
	I-34	V	0.003	3.35	0.21	2.08	1.17
	I-35	V	0.01	3.26	0.24	2.00	1.24
	I-36	V	0.03	3.20	0.20	1.95	1.16
	I-37	V	0.10	3.06	0.18	1.90	1.06
実	I-38	Nb	0.003	3.22	0.24	2.00	1.21
施	I-39	Nb	0.01	3.19	0.26	1.95	1.26
例	I-40	Nb	0.03	3.14	0.24	1.90	1.18
	I-41	Nb	0.10	3.09	0.21	1.83	1.08
	I-42	Ta	0.003	3.13	0.25	1.98	1.23
	1-43	Ta	0.01	3.07	0.27	1.93	1.28
	I-44	Та	0.03	3.04	0.26	1.87	1.24
	I-45	Та	0.10	2.97	0.22	1.80	1.20

[0096]

表 2 に示されるように、組成式((T i $_{0.3}$ Z r $_{0.35}$ H f $_{0.35}$) $_{1-e}$ X $_{e}$)N i S n, (X = V, N b, T a)で表わされる種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。表 3 に示されるように、組成式((T i $_{0.5}$ Z r $_{0.25}$ H f $_{0.25}$) $_{1-e}$ X $_{e}$)N i S n, (X = V, N b, T a)で表わされる種々の組成の熱電変換材料もまた、いずれも良好な熱電変換特性を有することが認められた。

[0097]

(実施例 I-31)で作製された熱電変換材料の無次元性能指数 Z T の温度依存性を、曲線 b として図 6 のグラフに示した。(実施例 I-31)の熱電変換材料は、実施例 1 の熱電変換材料よりも無次元性能指数 Z T が高い。これは、 4 価のT i , Z r 、 H f e 5 価のT a で置換したことに起因して、キャリア濃度が増加し抵抗率が小さくなったためであると推測される。

[0098]

また、実施例 $I-2\sim I-1$ 8 で作製された熱電変換材料における Ti, Zr

およびHfの一部を、V,NbおよびTaの群から選ばれる少なくとも一種の元素で置換した熱電変換材料においても、同様に良好な熱電変換特性が確認された。

[0099]

[0100]

(実施例 I - 4 6 ~ I - 5 3)

前述の実施例 I-1 で作製された、組成式($Ti_{0.3}Zr_{0.35}Hf_{0.35}$)Ni S n で表わされる熱電変換材料における Ni の一部を、Cu で置換して組成式($Ti_{0.3}Zr_{0.35}Hf_{0.35}$) $Ni_{1-f}Cu_fSn$ で表わされる熱電変換材料を作製した。

[0101]

下記表4に示す置換元素量fでCuをさらに添加した以外は、前述の実施例I-1と同様の手法により熱電変換材料を作製した。各熱電変換材料について、300Kおよび700Kにおける特性を前述と同様にして評価し、得られた結果を下記表4にまとめる。

[0102]

【表4】

表 4

		置換	3 0 0 K		700K							
		元素量	格子	無次元性能		無次元性能						
		İ	熱伝導率	指数 乙丁	熱伝導率	指数 ZT						
	I-46	0.003	3.15	0.26	1.89	1.21						
実	I-47	0.01	3.08	0.29	1.83	1.28						
施例	I-48	0.03	3.01	0.26	1.79	1.22						
	I-49	0.10	2.96	0.24	1.73	1.17						

[0103]

さらに、組成式($Ti_{0.5}Zr_{0.25}Hf_{0.25}$) NiSnで表わされる熱電変換材料におけるNiの一部を、Cuで置換して組成式($Ti_{0.5}Zr_{0.25}Hf_{0.25}$) $Ni_{1-f}Cu_fSn$ で表わされる熱電変換材料を作製した。

[0104]

下記表5に示す置換元素量fでCuをさらに添加した以外は、前述の実施例I-1と同様の手法により熱電変換材料を作製した。各熱電変換材料について、300Kおよび700Kにおける特性を前述と同様にして評価し、得られた結果を下記表5にまとめる。

[0105]

【表5】

	_
	-
4X	J

		置換	300K		700K			
		元素量 f	格子 熱伝導率	無次元性能 指数 ZT		無次元性能 指数 ZT		
	I-50	0.003	3.30	0.22	1.95	1.17		
実	I-51	0.01	3.21	0.26	1.90	1.25		
施	I-52	0.03	3.11	0.21	1.82	1.17		
例	I - 53	0.10	3.06	0.19	1.78	1.12		

[0106]

表 4 に示されるように、組成式(T i 0.3 Z r 0.35 H f 0.35) N i 1-f C u f S n で表わされる種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。表 5 に示されるように、組成式(T i 0.5 Z r 0.25 H f 0 .25) N i 1-f C u f S n で表わされる種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。

[0107]

また、実施例 $I-2\sim I-1$ 8 で作製された熱電変換材料における N i の一部を、C u で置換した熱電変換材料においても、同様に良好な熱電特性を有することが確認された。

[0108]

さらに、実施例 $I-1\sim I-18$ で作製された熱電変換材料におけるNiの一

部を、Mn, FeおよびCoからなる群から選ばれる少なくとも一種の元素で置換した熱電変換材料もまた、熱電変換特性は同様に良好であることが確認された。

[0109]

(実施例 I - 5 4 ~ I - 6 9)

前述の実施例 I-1 で作製された組成式($Ti_{0.3}Zr_{0.35}Hf_{0.35}$) NiS n で表わされる熱電変換材料における Sn の一部を、Sb および Bi からなる群から選ばれる少なくとも一種の元素で置換して、組成式($Ti_{0.3}Zr_{0.35}Hf_{0.35}$) $NiSn_{1-g}X_g$ で表わされる熱電変換材料を作製した。

$[0\ 1\ 1\ 0]$

具体的には、XとしてのS b またはB i を、下記表 6 に示す置換元素量 g でさらに添加した以外は、実施例 I-1 と同様の手法により熱電変換材料を作製した。各熱電変換材料について、3 0 0 K および 7 0 0 K における特性を前述と同様にして評価し、得られた結果を下記表 6 にまとめる。

[0111]

【表 6】

表 6

		置換	置換	300K		700K		
		元素種 X	元素量	格子 熱伝導率	無次元性能 指数 ZT	格子 熱伝導率	無次元性能 指数 ZT	
	I-54	Sb	0.003	3.07	0.29	1.95	1.07	
	I - 55	Sb	0.01	3.01	0.32	1.89	1.19	
cts +/- /rol	I-56	Sb	0.03	2.95	0.28	1.83	1.14	
実施例	I-57	Sb	0.10	2.91	0.25	1.77	1.08	
	I-58	Bi	0.003	2.97	0.29	1.81	1.04	
	I-59	Bi	0.01	2.90	0.33	1.72	1.15	
	I-60	Bi	0.03	2.83	0.29	1.67	1.11	
	I-61	Bi	0.10	2.77	0.26	1.61	1.04	

[0112]

さらに、組成式($Ti_{0.5}Zr_{0.25}Hf_{0.25}$)NiSnで表わされる熱電変換材料におけるSnの一部を、SbおよびBiからなる群から選ばれる少なくとも

一種の元素で置換して、組成式($Ti_{0.53}Zr_{0.25}Hf_{0.25}$) $NiSn_{1-g}X_g$ で表わされる熱電変換材料を作製した。

[0113]

具体的には、XとしてのS b またはB i を、下記表7に示す置換元素量gでさらに添加した以外は、実施例 I-1 と同様の手法により熱電変換材料を作製した。各熱電変換材料について、300 K および700 K における特性を前述と同様にして評価し、得られた結果を下記表7にまとめる。

$[0\ 1\ 1\ 4]$

【表7】

	表 7												
		置換	置換	3 (0 K	7 0 0 K							
		元素種	元素量	格子	無次元性能	格子	無次元性能						
		X	g	熱伝導率	指数 ZT	熱伝導率	指数 ZT						
	I-62	Sb	0.003	3.27	0.26	2.05	1.20						
	I-63	Sb	0.01	3.21	0.28	1.98	1.22						
_	I-64	Sb	0.03	3.14	0.27	1.94	1.16						
実施	I-65	Sb	0.10	3.10	0.23	1.86	1.12						
施	I-66	Bi	0.003	3.16	0.26	1.90	1.15						
",	I-67	Bi	0.01	3.10	0.29	1.83	1.19						
	I-68	Bi	0.03	3.04	0.28	1.77	1.13						
	I-69	Bi	0.10	2.96	0.26	1.70	1.08						

[0115]

表 6 に示されるように、組成式(T i $_{0.3}$ Z r $_{0.35}$ H f $_{0.35}$) N i S n $_{1-g}$ X g (X = S b , B i) で表わされる種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。表 7 に示されるように、組成式(T i $_{0.5}$ Z r $_{0.25}$ H f $_{0.25}$) N i S n $_{1-g}$ X g (X = S b , B i) で表わされる種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた

[0116]

また、実施例 $I-2\sim I-1$ 8 で作製された熱電変換材料における Sn の一部を、Sb, Bi の群から選ばれる少なくとも一種の元素で置換した熱電変換材料

においても、同様に良好な熱電特性を有することが確認された。

[0117]

さらに、実施例 $I-1\sim I-1$ 8 で作製された熱電変換材料における S n の一部を、A s 、G e 、P b 、G a および I n からなる群から選ばれる少なくとも一種の元素で置換した熱電変換材料もまた、熱電変換特性は同様に良好であることが確認された。

[0118]

(実施例 I - 70~ I - 93)

組成式($L n_d$ ($T i_{a2} Z r_{b2} H f_{c2}$) $_{1-d}$) $_x N i_y S n_{100-x-y}$ (L n は E r , G d , および N d からなる群から選ばれる少なくとも一種の元素、 $0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2 + b2 + c2 = 1 、 $0 < d \le 0$. 3 、 $3 0 \le x \le 3 5$ 、 $3 0 \le y \le 3 5$)で表わされる熱電変換材料を、前述の実施例(I - 1)と同様の手法により作製した。各熱電変換材料について、3 0 0 K および 7 0 0 K における特性を前述と同様にして評価し、得られた結果を下記表 8 にまとめる。

[0119]

【表8】

表	R
1X	v

		- 10:6	Ln 量	Ti 量	Zr 量	Hf 量			30	0K	700K	
		Ln 種	d	a ₂	b ₂	c ₂	x	У	$\kappa_{\rm ph}$	ZT	κ _{ph}	ZT
	I-70	Er	0.001	0.0	0.5	0.5	33.3	33.3	3.70	0.06	٠,	1.02
	I-71	Er	0.01	0.0	0.5	0.5	33.3	33.4	3.60	0.08	2.37	1.07
	I-72	Er	0.1	0.0	0.5	0.5	32.8	33.9	3.41	0.09	2.25	1.10
	I-73	Er	0.3	0.0	0.5	0.5	31.7	34.9	3.33	0.07	2.20	1.05
	I-74	Er	0.001	0.5	0.5	0.0	33.3	33.3	3.91	0.05	2.61	1.01
	I-75	Er	0.01	0.5	0.5	0.0	33.3	33.4	3.79	0.07	2.50	1.05
	I-76	Er	0.1	0.5	0.5	0.0	32.8	33.9	3.53	0.09	2.37	1.09
	I-77	Er	0.3	0.5	0.5	0.0	31.7	34.9	3.46	0.06	2.31	1.04
	I-78	Er	0.001	0.5	0.0	0.5	33.3	33.3	3.94	0.05	2.62	1.00
実	I-79	Er	0.01	0.5	0.0	0.5	33.3	33.4	3.81	0.07	2.44	1.05
施例	I-80	Er	0.1	0.5	0.0	0.5	32.8	33.9	3.57	0.08	2.40	1.09
103	1-81	Er	0.3	0.5	0.0	0.5	31.7	34.9	3.51	0.06	2.33	1.03
	I-82	Er	0.001	0.3	0.35	0.35	33.3	33.3	2.97	0.13	1.96	1.10
	1-83	Er	0.01	0.3	0.35	0.35	33.3	33.4	2.63	0.14	1.73	1.17
	I-84	Er	0.1	0.3	0.35	0.35	32.8	33.9	2.30	0.16	1.52	1.22
	I-85	Er	0.3	0.3	0.35	0.35	31.7	34.9	2.25	0.12	1.50	1.14
	I-86	Nd	0.001	0.3	0.35	0.35	33.3	33.3	3.01	0.13	1.98	1.10
	I-87	Nd	0.01	0.3	0.35	0.35	33.3	33.4	2.71	0.14	1.81	1.15
	I-88	Nd	0.1	0.3	0.35	0.35	32.8	33.9	2.41	0.15	1.57	1.19
	1-89	Nd	0.3	0.3	0.35	0.35	31.7	34.9	2.37	0.14	1.54	1.11
	I-90	Gd	0.001	0.3	0.35	0.35	33.3	33.3	2.99	0.12	1.98	1.10
	I-91	Gd	0.01	0.3	0.35	0.35	33.3	33.4	2.67	0.13	1.75	1.17
	I-92	Gd	0.1	0.3	0.35	0.35	32.8	33.9	2.35	0.15	1.52	1.21
	1-93	Gd	0.3	0.3	0.35	0.35	31.7	34.9	2.30	0.12	1.49	1.13

[0120]

表 8 に示されるように、組成式(L n_d(T i $_{a2}$ Z r $_{b2}$ H f $_{c2}$) $_{1-d}$) $_x$ N i $_y$ S n $_{100-x-y}$ (L n は E r , G d , および N d からなる群から選ばれる少なくとも一種の元素、 $0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2+b2+c2=1、 $0 < d \le 0$. 3、30 $\le x \le 35$ 、30 $\le y \le 35$)で表わされる種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。

[0121]

(実施例 I - 9 4 ~ I - 1 0 5)

組成式($L n_d$ ($T i_{a2} Z r_{b2} H f_{c2}$) $_{1-d}$) $_x N i_y S n_{100-x-y}$ ($L n は E_r$,G d および N d からなる群から選ばれる少なくとも一種の元素、 $0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2+b2+c2=1 、 $0 < d \le 0$. 3 、 3 $0 \le x \le 3$ 5 、 3 $0 \le y \le 3$ 5)で表わされる熱電変換材料において、($T i_a Z r_b H f_c$)の一部を V,N b,T a の群から選ばれる少なくとも一種の元素で置換して、組成式($L n_d$ ($T i_{a2} Z r_{b2} H f_{c2}$) $_{1-d-e} X_e$) $_x N i_y S n_{100-x-y}$ で表わされる熱電変換材料を作製した。

[0122]

具体的には、XとしてのV, N b またはT a を、下記表 6 に示す配合量 e でさらに添加し、(実施例 I-1)と同様の手法により熱電変換材料を作製した。各熱電変換材料について、3 0 0 K および 7 0 0 K における特性を前述と同様にして評価した。L n としてE r が含有された熱電変換材料についての結果を、下記表 9 にまとめる。

[0123]

【表9】

表 9

						10	_						
		X種	X量	Er 量	Ti 量	Zr 量	Hf 量			3 0 0	ΣK	700K	
		入性	е	d	a ₂	b ₂	c ₂	X	У	κ _{ph}	ZT	κ _{ph}	ZT
	I-94	٧	0.011	0.001	0.3	0.35	0.35	33.3	33.3	2.50	0.21	1.90	1.16
	I-95	V	0.02	0.01	0.3	0.35	0.35	33.3	33.3	2.37	0.24	1.75	1.21
	I-96	٧	0.11	0.1	0.3	0.35	0.35	33.3	33.3	2.32	0.21	1.68	1.18
	I-97	٧	0.31	0.3	0.3	0.35	0.35	33.3	33.3	2.29	0.19	1.66	1.14
実	I-98	Nb	0.011	0.001	0.3	0.35	0.35	33.3	33.3	2.45	0.23	1.82	1.20
施	I-99	Nb	0.02	0.01	0.3	0.35	0.35	33.3	33.3	2.34	0.27	1.70	1.24
例	I-100	Nb	0.11	0.1	0.3	0.35	0.35	33.3	33.3	2.29	0.25	1.64	1.21
	I-101	Nb	0.31	0.3	0.3	0.35	0.35	33.3	33.3	2.26	0.22	1.61	1.16
	I-102	Та	0.011	0.001	0.3	0.35	0.35	33.3	33.3	2.39	0.24	1.70	1.21
	I-103	Та	0.02	0.01	0.3	0.35	0.35	33.3	33.3	2.26	0.26	1.61	1.25
	I-104	Та	0.11	0.1	0.3	0.35	0.35	33.3	33.3	2.21	0.26	1.55	1.23
	I-105	Та	0.31	0.3	0.3	0.35	0.35	33.3	33.3	2.18	0.23	1.53	1.18

[0124]

[0125]

また、前述の組成式において、LnとしてGdまたはNdが含有された熱電変換材料においても、同様に良好な熱電変換特性が確認された。

[0126]

さらに、XとしてV, NbまたはTaが含有された熱電変換材料もまた、Ln として含有される元素によらず、熱電特性は同様に良好であった。

[0127]

(実施例 I-106~I-109)

組成式($L n_d$ ($T i_{a2} Z r_{b2} H f_{c2}$) $_{1-d}$) $_x N i_y S n_{100-x-y}$ (L n d E r , G d および N d からなる群から選ばれる少なくとも一種の元素、 $0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2 + b2 + c2 = 1 、 $0 < d \le 0$. 3 、 $3 0 \le x \le 3 5$ 、 $3 0 \le y \le 3 5$)で表わされる熱電変換材料において、N i の一部をC u で置換して、組成式($L n_d$ ($T i_{a2} Z r_{b2} H f_{c2}$) $_{1-d}$) $_x$ ($N i_{1-f} C u_f$) $_y S n_{100-x-y}$ で表わされる熱電変換材料を作製した。

[0128]

具体的には、下記表10に示す配合量fでCuをさらに添加し、実施例I-1 と同様の手法により熱電変換材料を作製した。各熱電変換材料について、300 Kおよび700Kにおける特性を前述と同様にして評価した。LnとしてErが 含有された熱電変換材料についての結果を、下記表10にまとめる。

[0129]

【表10】

表 10

		Cu 量	Er 量	Ti 量	Zr 量	Hf 量			30	0 K	70	0 K
		f	d	a ₂	b ₂	c ₂	х	у	κ ph	ZT	κ ph	ZT
実施例	I-106	0.011	0.001	0.3	0.35	0.35	33.3	33.3	2.47	0.21	1.88	1.18
	I-107	0.02	0.01	0.3	0.35	0.35	33.3	33.3	2.35	0.26	1.73	1.22
	I-108	0.11	0.1	0.3	0.35	0.35	33.3	33.3	2.30	0.24	1.66	1.20
	I-109	0.31	0.3	0.3	0.35	0.35	33.3	33.3	2.28	0.20	1.64	1.14

[0130]

[0131]

また、前述の組成式において、LnとしてGdまたはNdが含有された熱電変換材料においても、同様に良好な熱電変換特性が確認された。

[0132]

さらに、Cuの代わりにMn、Fe、またはCoでNiの一部が置換された熱電変換材料もまた、Lnとして含有される元素によらず、熱電特性は同様に良好であった。

[0133]

(実施例 I - 1 1 0 ~ I - 1 1 7)

組成式($L n_d$ ($T i_{a2} Z r_{b2} H f_{c2}$) $_{1-d}$) $_x N i_y S n_{100-x-y}$ (L n は E r , G d , N d から選ばれる少なくとも一種の元素、 $0 \le a2 \le 1$ 、 $0 \le b2 \le 1$ 、 $0 \le c2 \le 1$ 、a2 + b2 + c2 = 1 、 $0 < d \le 0$. 3 、 $3 0 \le x \le 3 5$ 、 $3 0 \le y \le 3 5$)で表わされる熱電変換材料において、S n の一部をS b ,B i の群から選ばれる少なくとも一種の元素で置換して、組成式($L n_d$ ($T i_{a2} Z r_{b2} H f_{c2}$) $_{1-d}$) $_x N i_y$ ($S n_{1-g} X_g$) $_{100-x-y}$ で表わされる熱電変換材料を作製した。

[0134]

[0135]

【表11】

表 11													
		37. ££	X量	Er 量	Ti	Zr 量	Hf 量			300K		700K	
		X種	g	d	a ₂	b ₂	c ₂	x	У	κ ph	ZT	κ ph	ZΤ
	I-110	Sb	0.011	0.001	0.3	0.35	0.35	33.3	33.3	2.45	0.24	1.83	1.11
	I-111	Sb	0.02	0.01	0.3	0.35	0.35	33.3	33.3	2.33	0.27	1.72	1.18
-	I-112	Sb	0.11	0.1	0.3	0.35	0.35	33.3	33.3	2.27	0.29	1.66	1.18
実施	I-113	Sb	0.31	0.3	0.3	0.35	0.35	33.3	33.3	2.25	0.24	1.64	1.16
例	I-114	Bi	0.011	0.001	0.3	0.35	0.35	33.3	33.3	2.34	0.26	1.75	1.07
'	I-115	Bi	0.02	0.01	0.3	0.35	0.35	33.3	33.3	2.23	0.30	1.69	1.10
	I-116	Bi	0.11	0.1	0.3	0.35	0.35	33.3	33.3	2.28	0.27	1.64	1.10
	I-117	Bi	0.31	0.3	0.3	0.35	0.35	33.3	33.3	2.15	0.23	1.61	1.05

[0136]

[0137]

また、前述の組成において、LnとしてGdまたはNdが含有された熱電変換材料においても、同様に良好な熱電変換特性が確認された。

[0138]

さらに、XとしてAs, Ge、Pb, GaまたはInが含有された熱電変換材料もまた、Lnとして含有される元素によらず、熱電特性は同様に良好であった

[0139]

(実施例 I - 1 1 8)

p型熱電変換材料として $CeCoFe_3Sb_{12}$ を使用し、n型熱電変換材料として実施例 I-30の熱電変換材料を使用して、図 3に示すような熱電変換素子を作製した。

[0140]

p型およびn型の各熱電変換材料とも3.0mm角、高さ10.0mmに切り出し、各60個、全120個を10列×12行になるようp,n交互に並べ、全120個を銀電極板で直列に接続した。さらに、銀電極板の他方の面、すなわち熱電変換素子を接合した面の反対面には窒化アルミニウム焼結体板を接合し、終端電極に電流リード線を接合して熱電変換素子を作製した。

[0141]

得られた熱電変換素子について、高温度側を570 $\mathbb C$ 、低温度側を55 $\mathbb C$ にして発電特性を評価した。この温度条件における内部抵抗は、2.22 Ω であった。負荷として、この熱電変換モジュールの内部抵抗と同じ2.22 Ω の負荷を繋ぐ、整合負荷条件で発電特性を測定した。その結果、発生した電圧は5.0 $\mathbb C$ \mathbb

$[0 \ 1 \ 4 \ 2]$

(実施例II)

本実施例においては、p型の熱電変換材料について説明する。

[0143]

(実施例II-1)

純度99.9%のY、純度99.9%のEr、純度99.99%のNi、および純度99.99%のSbを原料として用意し、これを組成式 $Y_{0.5}$ Er $_{0.5}$ Ni Sbになるように秤量した。

[0144]

秤量された原料を混合し、アーク炉内の水冷されている銅製のハースに装填して、 2×10^{-3} Paの真空度まで真空引きした。その後、純度 9.9.99 %の

高純度Arを-0.04MPaまで導入して減圧Ar雰囲気として、 $r-\rho$ 溶解した。溶解後、水冷されている銅製のハースで急冷されて得られた金属塊を、石英管に $10^{-4}Pa$ 以下の高真空で真空封入し、1073 Kで72 時間熱処理した

[0145]

得られた金属塊を粉砕し、内径20mmの金型を用いて圧力50MPaで成形した。得られた成形体を内径20mmのカーボン製モールドに充填し、Ar雰囲気中、80MPa、1200℃で1時間加圧焼結して、直径20mm円盤状の焼結体を得た。

[0146]

この焼結体を粉末X線回折法にて調べたところ、MgAgAgAs型結晶構造を有する相を主としていることが確認された。

[0147]

また、得られた焼結体の組成をICP発光分光法で分析した所、ほぼ所定の組成であることが確認された。

[0148]

得られた焼結体は以下の方法によって熱電特性を評価した。

[0149]

(1) 抵抗率

焼結体を2mm×0.5mm×18mmに切断し、電極を形成し直流4端子法で測定した。

[0150]

(2) ゼーベック係数

[0151]

(3) 熱伝導率

焼結体を ϕ 10mm×t2.0mmに切断し、レーザーフラッシュ法により熱拡散率を測定した。これとは別にDSC測定により比熱を求めた。アルキメデス

法により焼結体の密度を求め、これらより熱伝導率を算出した。

[0152]

こうして得られた抵抗率、ゼーベック係数、および熱伝導率の値を用い、前述の数式(1)により無次元性能指数 Z T を求めた。 300 K および 700 K における抵抗率、ゼーベック係数、格子熱伝導率、および無次元性能指数は、以下のとおりである。

[0153]

300 K:抵抗率 47. 5×10⁻³Ω c m ゼーベック係数 351 μ V / K 格子熱伝導率 3. 18 W / m K Z T = 0. 02

7 0 0 K:抵抗率 2. 8 2×1 0⁻³Ω c m ゼーベック係数 3 1 1 μ V / K 格子熱伝導率 1. 7 9 W / m K Z T = 1. 0 4

(実施例II-1)で作製された熱電変換材料の無次元性能指数 Z T の温度依存性を、図 7 中に曲線 d として示す。図示するように最大で 1.05程度の無次元性能指数 Z T が得られる。

[0154]

[0155]

(比較例II-1)

純度99.9%のY、純度99.9%のEr、純度99.99%のPd、および純度99.99%のSbを原料として用意し、これを組成式Y0.5Er0.5Pd

Snになるように秤量した。秤量された原料粉末を用いて、実施例II-1と同様の方法で焼結体を作製し、同様の手法により熱電特性を評価した。300Kおよび700Kにおける抵抗率、ゼーベック係数、格子熱伝導率、および無次元性能指数は、以下のとおりである。

[0156]

300K:抵抗率29.0×10⁻³Ωcm ゼーベック係数155μV/K 格子熱伝導率2.97W/mK ZT=0.00

7 0 0 K:抵抗率 2. 1×10⁻³Ω c m ゼーベック係数 1 9 0 μ V / K 格子熱伝導率 1. 2 9 W / m K Z T = 0. 5 7

本比較例では、ハーフホイスラー化合物 ABX のB 元素をPd としていることから、Bi-Te 系材料の1.0 を越える高性能の熱電変換材料は得られなかった。

[0157]

(実施例II-2~II-31)

組成式($Ln3_SLn4_{1-S}$)NiSb(Ln3, Ln4は、Y, Gd, Tb, Dy, Ho, Er, Ybの中から選ばれた異なる元素である)で表わされる種々の組成の熱電変換材料を、前述の実施例II-1と同様の手法により作製した。各熱電変換材料について、300 Kおよび700 Kにおける特性を前述と同様にして評価し、得られた結果を下記表12にまとめる。なお、実施例II-1についても同様に表12に示す。

[0158]

【表12】

表12

		元素	元素	置換量	無次元性	能指数 ZT	
		Ln ₃	Ln ₄	S	300K	700K	
	II-2	Y	Gd	0.2	0.01	1.00	
	II-3	Y	Gd	0.5	0.02	1.01	
	II-4	Y	Gd	0.7	0.01	1.00	
	II-5	Y	Tb	0.2	0.01	1.01	
	11-6	Y	Tb	0.5	0.02	1.02	
	II-7	Y	Tb	0.7	0.01	1.02	
	11-8	Y	Dy	0.2	0.02	1.01	
	11-9	Y	Dy	0.5	0.02	1.03	
	II-10	Y	Dy	0.7	0.02	1.02	
	II-11	Y	Но	0.2	0.02	1.02	
実	II-12	Y	Но	0.5	0.03	1.03	
施	II-13	Y	Но	0.7	0.02	1.01	
例	II-14	Y	Er	0.2	0.02	1.02	
	II-1	Y	Er	0.5	0.02	1.04	
	II-15	Y	Er	0.7	0.02	1.03	
	II-16	Y	Yb	0.2	0.01	1.01	
	II-17	Y	Yb	0.5	0.02	1.02	
	II-18	Y	Yb	0.7	0.01	1.01	
Ì	II-19	Gd	Tb	0.5	0.01	1.00	
	II-20	Gd	Dy	0.5	0.01	1.00	
	II-21	Gd	Но	0.5	0.01	1.01	
	II-22	Gd	Er	0.5	0.01	1.02	
	II-23	Gd	Yb	0.5	0.02	1.03	
	II-24	Tb	Dy	0.5	0.01	1.01	
	II - 25	Tb	Но	0.5	0.01	1.01	
	II-26	Tb	Er	0.5	0.01	1.02	
	II-27	Tb	Yb	0.5	0.02	1.02	
	II-28	Dy	Но	0.5	0.01	1.02	
	11-29	Dy	Er	0.5	0.01	1.02	
	11-30	Dy	Yb	0.5	0.02	1.03	
	II-31	Er	Yb	0.5	0.02	1.02	

[0159]

表12に示されるように、組成式(Ln3gLn41-g)NiSb(Ln3, Ln4は、Y,

Gd, Tb, Dy, Ho, Er, Ybの中から選ばれる元素)で表される種々の組成の熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。

[0160]

(実施例II-32~II-51)

前述の実施例II-1で作製された組成式 $Y_{0.5}$ E $r_{0.5}$ N i S b で表わされる熱電変換材料における Y, E r の一部を、B e, M g, C a, S r, B a の群から選ばれる少なくとも一種の元素で置換して、組成式($Y_{0.5}$ E $r_{0.5}$) $_{1-a}$ X $_a$ N i S b (X=B e, M g, C a, S r, B a)で表わされる熱電変換材料を、実施例II-1と同様の手法により作製した。

[0 1 6 1]

各熱電変換材料について、300 K および700 K における特性を評価し、得られた結果を下記表13 に示す。

[0162]

【表13】

表13

		置換 元素種	置換 元素量	1	生能指数 T
		х	a	300K	700K
	II-32	Ве	0.003	0.16	1.08
	II-33	Ве	0.01	0.17	1.12
	II-34	Be	0.03	0.13	1.10
	II-35	Be	0.10	0.10	1.05
	II-36	Mg	0.003	0.17	1.08
	II-37	Mg	0.01	0.20	1.11
	II-38	Mg	0.03	0.16	1.07
	II-39	Mg	0.10	0.14	1.04
, ,,	II-40	Ca	0.003	0.20	1.08
実施	II-41	Ca	0.01	0.22	1.12
例	11-42	Ca	0.03	0.20	1.09
	II-43	Ca	0.10	0.17	1.04
	II-44	Sr	0.003	0.17	1.07
	II-45	Sr	0.01	0.20	1.11
	II-46	Sr	0.03	0.16	1.05
	II-47	Sr	0.10	0.14	1.02
	II-48	Ва	0.003	0.15	1.05
	II-49	Ba	0.01	0.18	1.09
	II-50	Ba	0.03	0.15	1.06
	II-51	Ва	0.10	0.12	1.01

[0163]

表 13 に示されるように、組成式($Y_{0.5}$ E $r_{0.5}$) $_{1-a}$ X $_a$ N i S b(X=B e , Mg, Ca, Sr, Ba)で表わされる熱電変換材料は、いずれも良好な熱電変換特性を有することが認められた。つまり、実施例II $-2\sim$ II-31の熱電変換材料のLn3, Ln4の一部を、Be, Mg, Ca, Sr, Baの群から選ばれる少なくとも一種の元素で置換した組成においても同様に良好な熱電特性を有することが確認された。

[0164]

(実施例II-52~II-63)

組成式 $Y_{0.5}$ E $r_{0.5}$ NiSbで表わされる熱電変換材料におけるNiの一部を、

Co, Rh, Ir の群から選ばれる少なくとも一種の元素で置換して、組成式($Y_{0.5}Er_{0.5}$) $Ni_{1-b}Z_bSb$ (Z=Co, Rh, Ir)で表わされる熱電変換材料を実施例II-1 と同様の手法により作製した。

[0165]

各熱電変換材料について、300Kおよび700Kにおける特性を評価し、得られた結果を下記表14に示す。

[0166]

【表14】

表14 置換 置換 無次元性能指数 元素種 元素量 ZT300K 700K II-52 Co 0.003 0.19 1.09 0.01 II-53 0.21 1.13 Co 0.03 0.19 1.11 II**-**54 Co II-55 0.10 0.15 1.06 Co II-56 Rh 0.003 0.18 1.07 実 0.01 0.20 1.11 II-57 Rh 施 0.03 0.17 1.05 例 II-58 Rh II-59 0.10 0.15 1.02 Rh 1.05 II-60 Ir 0.003 |0.16|0.01 0.19 1.10 II-61 Ir 0.03 II-62 Ir 0.16 1.04 1.01 0.13 II-63 Ir 0.10

[0167]

[0168]

実施例II-53で作製された熱電変換材料の無次元性能指数ZTの温度依存性を、曲線eとして図7のグラフに示した。実施例II-53の熱電変換材料は、実

施例II-1の熱電変換材料よりも無次元性能指数 Z Tが高い。これは、10価のNiを9価のCoで置換したため、キャリア濃度が増加し、抵抗率が小さくなったためであると推測される。

[0169]

(実施例II-64~II-79)

組成式 $Y_{0.5}$ E $r_{0.5}$ N i S b で表される熱電変換材料における S b の一部を、 S i , G e , S n , P b の群から選ばれる少なくとも一種の元素で置換して、組成式($Y_{0.5}$ E $r_{0.5}$) N i S b $_{1-c}$ T $_{c}$ (T=S i , G e , S n , P b)で表される熱電変換材料を実施例 II-1 と同様の手法により作製した。

[0170]

各熱電変換材料について、300Kおよび700Kにおける特性を評価し、得られた結果を下記表15に示す。

[0171]

【表15】

表15

	······································	置換	置換	無次元性	生能指数
,		元素種	元素量	Z	Т
		Х	a	300K	700K
	II-64	Si	0.003	0.15	1.06
	II-65	Si	0.01	0.17	1.09
	II-66	Si	0.03	0.14	1.05
	II-67	Si	0.10	0.12	1.01
	II-68	Ge	0.003	0.17	1.08
	II-69	Ge	0.01	0.20	1.11
実	II-70	Ge	0.03	0.19	1.06
施	II-71	Ge	0.10	0.16	1.03
例	II-72	Sn	0.003	0.17	1.07
	II-73	Sn	0.01	0.22	1.11
	II-74	Sn	0.03	0.19	1.05
	II-75	Sn	0.10	0.16	1.02
	II-76	Pb	0.003	0.15	1.05
	II-77	Pb	0.01	0.20	1.09
	II-78	Pb	0.03	0.15	1.06
	II-79	Pb	0.10	0.12	1.01

[0172]

表 15 に示されるように、組成式($Y_{0.5}$ E $r_{0.5}$)N i S b_{1-c} T $_c$ (T=S i , G e , S n , P b)で表される熱電変換材料で、いずれも良好な熱電変換特性を有することが認められた。実施例 $II-2\sim II-3$ 1 の熱電変換材料のS b の一部を、S i , G e , S n , P b の群から選ばれる少なくとも一種の元素で置換した組成においても、同様に良好な熱電特性を有することが確認された。

[0173]

(実施例II-80)

p型熱電変換材料として実施例II-53の熱電変換材料を使用し、n型熱電変換材料としては、組成式($Ti_{0.3}Zr_{0.35}Hf_{0.35}$) $0.99Ta_{0.1}NiSn$ で表わされる組成の熱電変換材料を使用して、図3に示すような熱電変換素子を作製した。このn型熱電変換材料は、実施例I-31に相当する。

[0174]

p型およびn型の各熱電変換材料とも3.0mm角、高さ10.0mmに切り出し、各60個、全120個を10列×12行になるようp,n交互に並べ、全120個をSUS410電極板で直列に接続した。さらに、銀電極板の他方の面、すなわち熱電変換素子を接合した面の反対面には窒化アルミニウム焼結体板を接合し、終端電極に電流リード線を接合して熱電変換素子を作製した。

[0175]

[0176]

(実施例II-81)

n型の熱電変換材料を $Ce_{0.2}$ ($Co_{0.97}Pd_{0.03}$) $_4Sb_{12}$ に変更した以外は、前述の実施例 II-80 と同様の手法により熱電変換素子を作成した。ここで用いた n型の熱電変換材料は、従来の材料であり、ハーフホイッスラー化合物を主相としない。

[0177]

得られた熱電変換素子について、前述と同様の条件で発電特性を評価した。この温度条件における内部抵抗は、 1.23Ω であった。負荷として、この熱電変換モジュールの内部抵抗と同じ 1.23Ω の負荷を繋ぐ、整合負荷条件で発電特性を測定した。その結果、発生した電圧は4.87Vであり、3.96Aの電流が流れ、19.3Wの電力が得られ、発電が確認された。

[0178]

(従来例)

p型の熱電変換材料を $CeCoFe_3Sb_{12}$ に変更した以外は、前述の実施例 II-81と同様の手法により熱電変換素子を作成した。ここで用いたp型の熱

電変換材料は、従来の材料でありハーフホイッスラー化合物を主相としない。

[0179]

得られた熱電変換素子について、前述と同様の条件で発電特性を評価した。この温度条件における内部抵抗は、 1.43Ω であった。負荷として、この熱電変換モジュールの内部抵抗と同じ 1.43Ω の負荷を繋ぐ、整合負荷条件で発電特性を測定した。その結果、発生した電圧は4.80Vであり、3.37Aの電流が流れた。電力は、16.1Wにとどまっていた。

[0180]

【発明の効果】

以上説明したように、本発明の一態様によれば、ハーフホイスラー化合物を主相とする材料において、高いゼーベック係数と低い抵抗率とを維持しつつ熱伝導率を十分に低減して、無次元性能指数 Z T の大きな熱電変換材料、およびこれを用いた熱電変換素子が提供される。

[0181]

本発明により、強い毒性を有する元素を含有せず、安全性が高く、安価であり、しかも、熱電変換材料としての性能が極めて優れた熱電変換材料が得られる。かかる熱電変換材料を用いることによって、熱電変換素子、熱電変換モジュールを容易に作製することが可能となり、その工業的価値は絶大である。

【図面の簡単な説明】

- 【図1】 ハーフホイスラーABXの構造を表わす模式図。
- 【図2】 本発明の一実施形態にかかる熱電変換素子を表わす模式図。
- 【図3】 本発明の他の実施形態にかかる熱電変換素子を表わす模式図。
- 【図4】 本発明の他の実施形態にかかる熱電変換素子を表わす模式図。
- 【図5】 本発明の他の実施形態にかかる熱電変換素子を表わす模式図。
- 【図 6 】 本発明の一実施形態にかかる熱電変換材料の無次元性能指数の温度依存性を表わすグラフ図。
- 【図7】 本発明の他の実施形態にかかる熱電変換材料の無次元性能指数の 温度依存性を表わすグラフ図。

【符号の説明】

1 ··· A元素, 2 ··· B元素, 3 ··· X元素, 4 ···空孔, 8 ··· p 型熱電変換材料, 9 ··· n 型熱電変換材料, 10, 19 ···電極, 11 ··· 絶縁性基板, 14 ···ホール, 15 ···電子, 16 ···熱電変換素子, 20 ···負荷, 21 ···電流, 22 ···直流電源, 23 ···電流。

【書類名】

図面

【図1】

【図2】

【図3】

【図5】

[図6]

【図7】

【書類名】

要約書

【要約】

【課題】 ハーフホイスラー化合物を主相とする材料において、高いゼーベック 係数と低い抵抗率とを維持しつつ熱伝導率を十分に低減して、無次元性能指数 Z Tの大きな熱電変換材料を提供する。

【解決手段】 下記組成式(1)または下記組成式(2)で表わされ、MgAgAs型結晶構造を有する相を主相とすることを特徴とする。

 $(T i_{al} Z r_{b1} H f_{c1})_{x} N i_{y} S n_{100-x-y}$ 組成式 (1) $(L n_{d} (T i_{a2} Z r_{b2} H f_{c2})_{1-d})_{x} N i_{y} S n_{100-x-y}$ 組成式 (2) $(ここで、0 < al < 1、0 < bl < 1、0 < cl < 1、al + bl + cl = 1、30 <math>\leq$ x \leq 35、30 \leq y \leq 35、L n は Y および希土類元素からなる群から選択される少なくとも一種であり、0 \leq a2 \leq 1、0 \leq b2 \leq 1、0 \leq c2 \leq 1、a2 + b2 + c2 = 1、0 \leq d \leq 0.3 である。)

【選択図】 なし

認定・付加情報

特許出願の番号 特願2003-201294

受付番号 50301225223

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年 7月29日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000003078

【住所又は居所】 東京都港区芝浦一丁目1番1号

【氏名又は名称】 株式会社東芝

【代理人】 申請人

【識別番号】 100058479

【住所又は居所】 東京都千代田区霞が関3丁目7番2号 鈴榮特許

綜合法律事務所内

【氏名又は名称】 鈴江 武彦

【選任した代理人】

【識別番号】 100091351

【住所又は居所】 東京都千代田区霞が関3丁目7番2号 鈴榮特許

綜合法律事務所内

【氏名又は名称】 河野 哲

【選任した代理人】

【識別番号】 100088683

【住所又は居所】 東京都千代田区霞が関3丁目7番2号 鈴榮特許

綜合法律事務所内

【氏名又は名称】 中村 誠

【選任した代理人】

【識別番号】 100108855

【住所又は居所】 東京都千代田区霞が関3丁目7番2号 鈴榮特許

綜合法律事務所内

【氏名又は名称】 蔵田 昌俊

【選任した代理人】

【識別番号】 100084618

【住所又は居所】 東京都千代田区霞が関3丁目7番2号 鈴榮特許

綜合法律事務所内

【氏名又は名称】 村松 貞男

【選任した代理人】

【識別番号】 100092196

【住所又は居所】 東京都千代田区霞が関3丁目7番2号 鈴榮特許

綜合法律事務所内

【氏名又は名称】 橋本 良郎

特願2003-201294

出願人履歴情報

識別番号

[000003078]

2001年 7月 2日

1. 変更年月日 [変更理由]

里由] 住所変更

住 所 氏 名 東京都港区芝浦一丁目1番1号

株式会社東芝