Licence ST Informatique – S4 – 2007/2008

Automates et Langages

Le 22 mai 2008 – durée 3h – tous documents autorisés

Examen

Exercice 1 : Un vol a été commis à Villeneuve d'Ascq et l'inspecteur Maigret mène l'enquête. Les trois principaux suspects André, Bernard et Claude font les dépositions suivantes :

- André (TA): "Bernard est coupable. Claude n'a rien à voir là dedans".
- Bernard (TB) : "Si André a fait le coup alors Claude est innocent".
- Claude (TC): "Je suis innocent mais l'un des deux autres au moins est coupable".

Question 1.1 : Transformez les trois témoignages TA, TB et TC en formules de la logique des propositions, avec trois variables propositionnelles qui représentent la culpabilité de chacun des suspects.

Question 1.2 : Cet ensemble de formules est-il satisfiable ? Pour répondre à cette question, construisez la table de vérité de ces formules.

Question 1.3 : En vous aidant de la table de vérité, et en supposant que les trois suspects n'ont pas menti, que pouvez-vous dire concernant leur culpabilité ?

Question 1.4 : La police découvre qu'André a menti, contrairement à Bernard et Claude. La déposition d'André étant fausse, qu'en déduisez-vous concernant la culpabilité des trois suspects ?

Exercice 2: les deux dernières questions sont indépendantes des trois premières Soit l'expression rationnelle $r = a.(bab + aa)^*.a^*$

Question 2.1 : Construisez l'automate de Glushkov G pour l'expression r.

Question 2.2 : Déterminisez l'automate G afin d'obtenir un automate D.

Question 2.3 : Minimalisez l'automate D, vous obtenez l'automate minimal déterministe et complet M qui reconnaît L(r).

Question 2.4 : Calculez les langages résiduels de L(r).

Question 2.5 : Déduisez de la question précédente l'automate des résiduels de L(r).

Exercice 3 : Dans un langage de manipulation de données, on définit un format pour les dates.

- une date est composée d'une année puis éventuellement d'un mois puis éventuellement d'un jour, séparés par des tirets (-).
- Le mois et le jour sont optionnels mais si le jour existe alors le mois aussi.
- une année est un nombre qui ne commence pas par 0 (l'année 0 n'existe pas). Ce nombre a au moins un chiffre, mais on ne lui donne pas de longueur maximale.
- un mois est un entier entre 1 et 12, écrit sur 2 chiffres (donc de 01 à 12)
- un jour est un entier entre 1 et 31, écrit aussi sur 2 chiffres.

Question 3.1 : Donner un automate déterministe qui reconnaît les dates écrites sous ce format. On ne tient pas compte de la vérification du jour en fonction du mois et de l'année. Ainsi, l'automate acceptera des dates qui n'existent pas, comme 2005-02-31.

Exercice 4 : On définit une nouvelle opération sur les mots, notée $\sqcup \sqcup$ et appelée produit de mélange.

```
Si X est un alphabet et u, v deux mots sur cet alphabet, u \sqcup u = \{u_1.v_1 \cdots u_n.v_n \mid u = u_1.\cdots.u_n, v = v_1.\cdots.v_n, n \geq 1, \forall i \ u_i \in X^*, v_i \in X^*\} Par exemple, ab \sqcup cc = \{abcc, acbc, cacb, ccab, accb\} On étend naturellement cette opération aux langages : L_1 \sqcup \sqcup L_2 = \{w \mid w \in u \sqcup \sqcup v, u \in L_1, v \in L_2\}
```

Question 4.1 : Donner une expression rationnelle définissant les langages suivants :

- 1. $aab \coprod ab$
- $2. \ a^* \coprod bb$
- $3. \ a^* \coprod b^*$

Etant donnés deux langages reconnaissables, leur produit de mélange est aussi un langage reconnaissable.

Question 4.2 : A partir de deux automates M_1 et M_2 , comment construire un automate qui reconnaît $L(M_1) \sqcup L(M_2)$?

Examen 3

Exercice 5: On considère la famille \mathcal{F} des formules de la logique des prédicats construites à l'aide des deux prédicats unaires I et F et du prédicat binaire chemin. On considère également la famille \mathcal{A} des automates non nécessairement déterministes sur l'alphabet $\{a,b\}$ et, pour tout automate $M=(\{a,b\},Q,I,F,\delta)\in\mathcal{A}$, on associe l'interprétation \mathcal{I}_M pour les formules de la famille \mathcal{F} de la façon suivante :

- l'ensemble des valeurs pour les variables est Q, l'ensemble des états de M.
- I(x) signifie que l'état x est un état initial de M.
- F(x) signifie que l'état x est un état final de M.
- chemin(x, y) signifie qu'il existe un chemin de x vers y, i.e. il existe un mot $w \in X^+$ tel que $\delta^*(x, w)$ contient l'état y.
- x = y a le sens habituel de l'égalité et signifie que l'état x est égal à l'état y.

On dira qu'un automate $M \in \mathcal{A}$ est un modèle d'une formule $f \in \mathcal{F}$, noté $M \models f$, si la formule f est vraie pour l'interprétation \mathcal{I}_M .

On a

 $M_0 \models \forall x \ \forall y \ chemin(x,y)$, car à partir de tout état x, on peut atteindre les 3 états de l'automate M_0 en suivant les transitions de δ .

Revenons au cas général:

Question 5.1: Donner une formule accessible(x) qui exprime que x est un état accessible.

Question 5.2 : Donner une formule co-accessible (x) qui exprime que x est un état co-accessible.

Question 5.3 : Donner une formule vérifiée par un automate si et seulement si celui-ci reconnaît un langage non vide.

Question 5.4 : Un automate reconnaît un langage fini s'il n'existe pas de cycle sur un chemin partant d'un état initial et allant dans un état final. Donner une formule vérifiée par un automate si et seulement si celui-ci reconnaît un langage fini.

Question 5.5: Quel est le nombre minimum d'états que doit posséder un automate qui reconnaît un langage fini ? (ce nombre dépend du langage que l'on considère, donner une borne inférieure la plus grande possible !). Donner un langage fini F et un automate reconnaissant F qui possède ce nombre minimum d'états.