W = emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm,dp);

emgr – Empirical Gramian Framework (Version 5.2)

Mandatory Arguments				Option	Flags			
•		x = f(x,u,p,t) y = g(x,u,p,t) y = x	i.e.: f = @(x,u,p,t) A*x+B*u+F*p; i.e.: g = @(x,u,p,t) C*x+D*u;	nf(1)	Trajectory Centering O None (Default) I Initial State	nf(8)	Extra Input o No Extra Input (Default) 1 Parameter Perturbation Only	
t Time	(Vector)	s = [M, N, Q] t = [h, T]	(Inputs, States, Outputs) 2 Final Stea (Time Step, Time Horizon) 3 Arithmeti 4 Root-Mea		2 Final Steady State3 Arithmetic Average4 Root-Mean-Squared	nf(9)	Center Param. Scales (Ws,Wi,Wj only) 0 No Centering 1 Arithmetic Mean Centering	
	'c' Empirical Controllability Gramian (returns Wc) 'o' Empirical Observability Gramian (returns Wo) 'x' Empirical Cross Gramian (returns Wx) 'y' Empirical Linear Cross Gramian (returns Wy)		nf(2)	5 MidrangeInput Scale Sequence0 Single (Default)1 Linear	nf(10)	 Logarithmic Mean Centering Ichur complement Options (WI,WJ only) Detailed Schur-Complement (Default) Approximate Schur-Complement 		
	's' 'i' 'j'	Empirical Sensitivity Gramian (returns {Wc,Ws}) Empirical Identifiability Gramian (returns {Wo,Wi}) Empirical Joint Gramian (returns {Wx,Wj})			2 Geometric3 Logarithmic4 Sparse	nf (11) Partitioned cross Gramian (Wx,Wj only) o Full cross Gramian <n cross="" gramian="" partition="" size<="" td=""></n>		
Optional Arguments pr Parameters	(Vector)	Set of Parameter Column Vectors ('s','i','j' requires two) Twelve Components (Default: nf = 0), see Option Flags Input function u = ut(t) (Default: ut = 1) Delta Impulse Input Linear Chirp Function			State Scale Sequence o Single (Default) Linear	nf(12)	Partitioned cross Gramian (Wx,Wj only) o Full cross Gramian o Partition running index	
nf Options	(Matrix) (Vector) (Handle)				2 Geometric 3 Logarithmic 4 Sparse	Custom Solver Global variable ODE to handle with signature:		
·	1 &				Input Transformation O Unit (Default)	y = solver(f,g,t,x,u,p); Default: RK - SSP32		
, ,	(Scalar) (Vector) (Scalar)	Individual Steady-S	·	nf(5)	1 Inverse State Transformation 0 Unit (Default)	Minima	l Usage: W = emgr(f,g,s,t,w);	
um Input Scales	(Vector) (Scalar) (Vector)	Individual Steady S Uniform Maximum		nf(6)	1 Inverse Preconditioning 0 None (Default)		Info: V = emgr('version'); To at: http://gramian.de	
xm Steady-State Scales	(Matrix) (Scalar) (Vector)	Individual Maximui	Steady-State Scales (Default: xm = 1) m Steady-State Scales (N x 1)	nf(7)				
	(Matrix) (Handle) 1	Custom Steady-Sta Handle to custom i Default Matrix prod	nner product $z = dp(x,y)$	0 Off (Default)1 Non-Sym. Cross Gramian				