Realizzare un nuovo tipo di dato che si chiamera' MATRICE che sara' un record costituito da 3 campi:

VALORI che sara' un array di interi a 1 dimensione

RIGHE che sara' un intero

COLONNE che sara' un intero

Realizzare le operazioni di accesso al tipo di dato:

- LeggereRighe
- LeggereColonne
- LeggereValore
- ScrivereRighe
- ScrivereColonne
- ScrivereValore

Realizzare le operazioni di somma tra 2 matrici, prodotto scalare di una matrice per un valore intero

TIPO DI DATO

Matrice, che rappresenta la struttura matematica a due dimensioni, che contiene valori interi

12	34	1	0	-12	23
11	67	45	67		

Record con 3 campi

Valori, che contiene i valori della matrice, array di interi a 1 dimensione, dimensione >1

Righe, che indica il numero di righe della matrice. Intero, >1

Colonne, che indica il numero di colonne della matrice, intero, >1

```
LeggereRighe
INPUT
Mat, matrice di interi, di dimensione nxm, n>1,m>1
OUTPUT
R, numero di righe di Mat, intero, >1
ALGORITMO
R:=campo righe di mat
LeggereColonne
INPUT
Mat, matrice di interi, di dimensione nxm, n>1,m>1
OUTPUT
C, numero di colonne di Mat, intero, >1
ALGORITMO
C:= campo colonne di Mat
ScrivereRighe
INPUT
Mat, matrice di interi, di dimensione nxm, n>1,m>1
R, numero di righe di mat, intero, >1
OUTPUT
Mat, matrice di interi con un nuovo numero di righe, di dimensione rxm, r>1,m>1
ALGORITMO
Campo righe di mat:= r
ScrivereColonne
INPUT
Mat, matrice di interi, di dimensione nxm, n>1,m>1
C, numero di colonne di mat, intero, >1
OUTPUT
```

Mat, matrice di interi con un nuovo numero di colonne, di dimensione nxc, n>1,c>1

ALGORITMO

Campo colonne di mat:= c

LeggereValore

INPUT

Mat, matrice di valori interi, dimensioni nxm, n>1, m>1

R, numero di riga del valore da leggere, r>0 <=n

C, numero di colonna del valore da leggere, c>0, c<=m

OUTPUT

Valore, valore di mat in posizione r e c, intero

LAVORO

I, posizione nel campo valori di mat, intero, >0, <n*m

ALGORITMO

I:=(r-1)*m+c //ma r e c sono da convertire per il linguaggio, quindi entrambe -1

Valore:=elemento del campo valori di mat in posizione i

1,1		1,2		1,3		
2,1		2,2	1 / /		2,3	
1,1	1,2	1,3	2,1	2,2	2,3	
1,1	2,1	1,2	2,2	1,3	2,3	

ScrivereValore

INPUT

Mat, matrice di valori interi, dimensioni nxm, n>1, m>1

R, numero di riga del valore da leggere, r>0 <=n

C, numero di colonna del valore da leggere, c>0, c<=m

V, valore da scrivere in mat in posizione r e c, intero

OUTPUT

Mat, matrice di interi con il valore in posizione r e c, modificato, dimensioni nxm, n>1, m>1

LAVORO

I, posizione nel campo valori di mat, intero, >=0, <n*m

ALGORITMO

I:=(r-1)*m+(c-1) //ma r e c sono da convertire per il linguaggio, quindi entrambe -1

elemento del campo valori di mat in posizione i:=v

```
SommareMatrici
NPUT
M1, prima matrice da sommare, dimensioni nxm, n>1, m>1
M2, seconda matrice da sommare, dimensioni nxm, n>1, m>1
OUTPUT
R, matrice risultato della somma tra M1 e M2, dimensioni nxm, n>1, m>1
LAVORO
I, indice per scandire le righe delle matrici, intero, >1, <=n
J, indice per scandire le colonne delle matrici, intero, >1, <=m
ALGORITMO
l:=1
MENTRE (i<=LeggereRighe(M1))
       J:=1
       MENTRE(j<=LeggereColonne(m1))
              R:=ScrivereValore(R, i, j, LeggereValore(M1,i,j)+LeggereValore(M2, i, j))
              J:=j+1
       FINE
       l:=i+1
FINE
```

```
ProdottoScalareMatrice
NPUT
M1, matrice da moltiplicare per lo scalare, dimensioni nxm, n>1, m>1
scalare, valore da moltiplicare per M1, intero
OUTPUT
R, matrice risultato del prodotto di M1 per scalare, dimensioni nxm, n>1, m>1
LAVORO
I, indice per scandire le righe delle matrici, intero, >1, <=n
J, indice per scandire le colonne delle matrici, intero, >1, <=m
ALGORITMO
l:=1
MENTRE (i<=LeggereRighe(M1))
       J:=1
       MENTRE(j<=LeggereColonne(m1))
              R:=ScrivereValore(R, i, j, LeggereValore(M1,i,j)*scalare)
              J:=j+1
       FINE
       l:=i+1
```

FINE

TraspostaMatrice

1,1	1,2	1,3
2,1	2,2	2,3

1,1	2,1
1,2	2,2
1,3	2,3

Moltiplicare Matrici

1,1a	1,2a	1,3a
2,1a	2,2a	2,3a

1,1b	1,2b	1,3b	1,4b
2,1b	2,2b	2,3b	2,4b
3,1b	3,2b	3,3b	3,4b

(1,1a*1,1b)+(1,2a*2,1	(1,1a*1,2b)+(1,2a*2,2	(1,1a*1,3b)+(1,2a*2,3	(1,1a*1,4b)+(1,2a*2,4
b)+(1,3a*3,1b)	b)+(1,3a*3,2b)	b)+(1,3a*3,3b)	b)+(1,3a*3,4b)
(2,1a*1,1b)+(2,2a*2,1	(2,1a*1,2b)+(2,2a*2,2	(2,1a*1,3b)+(2,2a*2,3	(2,1a*1,4b)+(2,2a*2,4
b)+(2,3a*3,1b)	b)+(2,3a*3,2b)	b)+(2,3a*3,3b)	b)+(2,3a*3,4b)