Introduction to Financial Engineering (HW6)

Organizer: Albert Ferreiro-Castilla

room: PC email: aferreiro@mat.uab.cat

- Please follow the guidelines for assignments given in the Module Handbook.
- All programs should be written in R (compilable without errors or warnings).
- You should submit a write-up (.pdf) of the program as well as the source code (.r).
- File names should be as yoursurname_yourname_HW6.extension
- You should submit via moddle.
- Deadline: 1st December 2023 at 10am.

The objective of the laboratory is to plot the efficient frontier for a set of 4 stocks.

- 1. The first task consists in plotting a large set of possible portfolios.
 - (a) **Download data**: Use quantmod library to download the <u>adjusted</u> prices for FaceBook (FB), Apple (AAPL), Microsoft (MSFT) and Google (GOOG) between 01/01/2015 and 31/12/2015.
 - (b) **Returns and Covariances**: Compute the mean of daily returns and the covariance matrix of the daily returns. Let us denote the vector of mean returns, μ , and the matrix of covariance return, C. Therefore μ is a vector of dimension 4×1 and C has dimension 4×4 . Remember that the download data from quantmod are prices, hence you need to transform them to returns.
 - (c) **Portfolio weights simulation**: Draw four uniform random numbers from [0,1] and normalize them. That means, drawing $W_i \sim U[0,1]$ for $i=1,\ldots,4$, and computing the normalized weights as

$$\omega_i = \frac{W_i}{\sum_{j=1}^4 W_j}$$

In other words, we have $\sum_{i=1}^{4} \omega_i = 1$. Therefore, ω represents the amount of money invested in each of the 4 stocks. Compute the mean and variance of the portfolio associated with the weights ω :

$$\mu_P = \omega^t \mu$$

$$\sigma_P^2 = \omega^t C \omega$$

where t represents the transpose.

- (d) **Feasible set**: Repeat the previous computation drawing 1000 random vectors ω and plot the pairs (σ_P, μ_P) in a plot.
- 2. Now we are going to plot the efficient frontier using the Lagrangian multipliers derived in the lecture notes.
 - (a) Construct the following vector:

rbase <- seq(min(mu),max(mu),length=N)

where N is some large number, say 500.

(b) **Building up the linear model**: For each element in $r \in rbase$, build up the following matrix Q and vector b:

$$Q = \begin{pmatrix} 2C & \mu & \mathbb{1} \\ \mu^t & 0 & 0 \\ \mathbb{1}^t & 0 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ r \\ 1 \end{pmatrix}$$

where $\mathbb{1} = (1, 1, 1, 1)^t$, the unitary vector of length 4. (Hint: use the functions rbind and cbind to form a matrix from a collection of matrices).

(c) **Solve the linear model**:Use the following function to solve the linear model of the Lagrange multipliers:

y <- solve (Q, b)

where

$$y = \left(\begin{array}{c} \omega_r \\ \lambda_1 \\ \lambda_2 \end{array}\right)$$

and ω_r is a 1×4 vector representing the weights of the optimal portfolio with a given level of return r. The parameters λ_1 and λ_2 are the Lagrange multipliers and of no use for us right now.

- (d) Plot the efficient frontier: Use ω_r for each $r \in \mathtt{rbase}$ to compute the return and volatility as done in section c of the first exercise. Plot the resulting pairs in a plot.
- 3. **Portfolio Optimization**: Plot in a single figure, the resulting plots from last section of exercise 1 and last section of exercise 2. Show the feasible set of portfolios, the efficient portfolio and the minimum variance portfolio in the figure.