Using deep learning to diagnose knee injuries on magnetic resonance images: current potential and limitations

Nicolai Sandau, MD Stig Brorson, MD PhD DMSc

Centre for Evidence-Based Orthopedics, Dept. of Orthopedic Surgery, Zealand University Hospital

Background

RESEARCH ARTICLE

Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet

Nicholas Bien 1°, Pranav Rajpurkar 1°, Robyn L. Ball 2, Jeremy Irvin 1, Allison Park 1, Erik Jones 1, Michael Bereket 1, Bhavik N. Patel 3, Kristen W. Yeom 3, Katie Shpanskaya 3, Safwan Halabi 3, Evan Zucker 3, Gary Fanton 4, Derek F. Amanatullah 4, Christopher F. Beaulieu 3, Geoffrey M. Riley 3, Russell J. Stewart 3, Francis G. Blankenberg 3, David B. Larson 3, Ricky H. Jones 3, Curtis P. Langlotz 3, Andrew Y. Ng 1‡, Matthew P. Lungren 3‡

1 Department of Computer Science, Stanford University, Stanford, California, United States of America, 2 Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, California, United States of America, 3 Department of Radiology, Stanford University, Stanford, California, United States of America, 4 Department of Orthopedic Surgery, Stanford University, Stanford, California, United States of America

Methods: Data

• 1250 cases

• Training: 1130

Validation: 120

• Labels with diagnosis of meniscus and/or acl tear

$\int 1$	203	130	26	62	$43 \setminus$
206	51	120	40	18	5
0	53	231	102	158	191
31	41	99	156	224	139
209	79	153	156	168	89
72	132	83	65	134	230

Methods: Deep learning model

Results: ACL

Results: Meniscus

Results: GradCAM

Limitations

- Lack of generalizability
 - Patient population
 - Different scanners
 - Other pathologies
- Potential solution: More high quality data

Conclusions

- Deep learning methods has the potential to aid radiologists and orthopedic surgeons in the diagnosis of meniscus and ACL injuries on MRI.
- More high quality data is needed to improve generalizability.

Thank you!

Nicolai Sandau, MD
Centre for Evidence-Based Orthopedics,
Dept. of Orthopedic Surgery,
Zealand University Hospital,
Denmark
✓ nicsa@regionsjaelland.dk