USN					
CDI					

RV COLLEGE OF ENGINEERING®

(Autonomous Institution affiliated to VTU)

IVSemester B. E. Fast Track ExaminationsJuly-19

Computer Science and Engineering THEORY OF COMPUTATIONS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART A

1	1.1	Consider two RE $r = 0 * +1 *$ and $s = 01 * +10 * +1 * 0 + (0 * 1) *$						
		i. Find a string in {0,1}* corresponding to neither r nor s.						
		ii. Find a string in $\{0,1\}^*$ corresponding to r and s						
	1.2							
	1.3	Find a RE corresponding to subsets of {0,1} *, whose second symbol from left	02					
	1.0	and right end is same.	01					
	1.4	Define left recursion. Eliminate left recursion from the following grammar:						
	1.1	S \rightarrow (L) x						
		$L \to L, S \mid S$	02					
	1.5	Transition Table of Turing machine is given below.	04					
	1.5	State q Input X Move $\delta(q, X)$						
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$						
		$\begin{array}{c ccccc} q & A & & (q 2, u, K) \\ \hline q & 2 & B & & (q 3, b, R) \end{array}$						
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
		q 3 Δ $(q$ 4, Δ , $S)$						
		Define the language accepted by Turing machine assuming q0 as initial sate						
		and $q4$ as final sate.	01					
	1.6	Consider the following \in -NFA. Find \in -closure($q0$).	01					
	1.0	Consider the following e-NFA. Find e-closure(qu).						
		ie						
		(92 × 93/E)						
		(E/N)						
		(96) × (90)						
		-79 × (9)						
		WE I						
		The part of						
		(4)						
		ϵ						
	1.7							
	1.7	Differentiate recursive and recursively enumerable languages.						
	1.0	For Σ ={0,1}, design a Turing machine that accepts the language denoted by						
	1.0	the regular expression $(a + b) * ab(a + b) *$.	02					
	1.9	Define Context Sensitive Grammar.						

1.10	CFLs are not closed underand	01
1.11	Define inherently ambiguous grammar and give an example for inherently	
	ambiguous language.	02
1.12	Consider homomorphism h from alphabet {0,1,2}to {a, b}defined by	
	h(0) = ab, h(1) = b and h(2) = aa.	
	Find $h(0210)$, $h(2201)$, $h(1*02*)$ and $h^{-1}(ababb)$.	02
1.13	Show a derivation tree for the string aabbbb with the grammar and describe	
	the language generated by this grammar	
	$S \to AB \mid \epsilon$	
	A o aB,	
	$B \rightarrow Sb$.	02

PART B

3	а	Define CFG. Construct a CFG for the following languages:	
		i. $L = \{a^n b^m : n \le m + 3\}$	
		ii. $L = \{a^n W W^R b^n : W \in (a, b) *\}$	05
	b	Define CNF. Convert the following grammar into Chomsky Normal form:	
		$S \rightarrow AB \mid aB$	
		$A \rightarrow aab \mid \epsilon$	
		$B \rightarrow bbA$	06
	С	State and prove pumping lemma for regular languages.	05
		OR	
4	a	Remove all unit-productions, all useless productions, and all ∈-productions	
		from the grammar. Describe the language generated by the grammar.	
		$S \rightarrow aA aBB$,	
		$A \rightarrow aaA/\epsilon$,	
		$B \rightarrow bB \dot{b}bC$,	
		$C \rightarrow B$.	05

b	Define LMD,RMD and Ambiguous grammar. Show that the following	
	grammar is ambiguous. Construct An unambiguous grammar equivalent to	
	this grammar.	
	$S \rightarrow AB aaB$,	
	$A \rightarrow a Aa$,	
	$B \rightarrow b$.	07
С	Discuss the applications of Context Free Grammars	04
	D' 11 DDA '-11 1 C 1	0.5

	1		T			
5	a	Discuss the languages accepted by PDA with an example for each	05			
	b	Construct PDA that accept the language $L = \{N_a(w) = 2N_b(w)\}$ on $\Sigma = \{a, b\}$	07			
	С	Construct the NPDA corresponding to the grammar				
		$S \rightarrow aABB aAA$,				
		$A \rightarrow aBB a$,				
		$B \to bBB A.$				
		OR				
6	a	Consider the NPDA with transitions				
		$\delta(q_0, a, Z) = \{(q0, AZ)\},$				
		$\delta(q_0, a, A) = \{(q_0, A)\},\$				
		$\delta(q_0, b, A) = \{(q1, \epsilon)\},\$				
		$\delta(q_1, \epsilon, Z) = \{(q2, \epsilon)\},\$				
		using q0 as initial state and q2 as final state. Construct an equivalent CFG.	07			
	b	Prove that CFLs are closed under Union, Concatenation and Closure.	05			
	С	Show that the language $L=\{WW \mid W \in (0,1)^*\}$ is not context free.	04			

7	а	Define Linear Bounded Automata. Design a linear bounded automata to	
		accept the language $L = \{a^n b^n c^n n >= 0\}.$	08
	b	Define left linear and right linear grammars. Construct right and left-linear	
		grammar for the language $L = \{a^n b^m : n \ge 2, m \ge 3\}$. Construct DFA for	
		both left and right linear grammars.	08

8	а	Define PCP. Given an instance of PCP, check whether this instance has a					
		solution.					
				List A	List B		
			i	Wi	Xi		
			1	110	110110		
			2	0011	00		
			3	0110	110		04
	b	If L_1 and L_2 are re	ecursively e	numerable lan	guages over	Σ , then prove that	
		$L_1 \cap L_2$ and $L_1 \cup L_2$ are recursively enumerable.					
	С	Define multi-dimensional TM. Discuss how Multi-dimensional TM can be					
		simulated using st	andard sing	le tape TM.			06