Série Nº1 : S-e. supplémentaires et Coordonnées sphériques

Exercice 1

- 1. Soit E un espace vectoriel sur \mathbb{R} et f un endomorphisme de E tel que : $f \circ f = f$. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- 2. Soit E un \mathbb{R} -espace vectoriel et f un endomorphisme de E tel que $f \circ f = \mathrm{Id}_E$. On pose $E_1 = \mathrm{Ker}(f \mathrm{Id}_E)$ et $E_2 = \mathrm{Ker}(f + \mathrm{Id}_E)$.
 - (a) Montrer que E_1 et E_2 sont deux sous-espaces vectoriels de E.
 - (b) Montrer que $E = E_1 \oplus E_2$.

Exercice 2

Soit F le sous-ensemble de \mathbb{R}^3 défini par

$$F = \{X = (x, y, z) \in \mathbb{R}^3 \ / \ x + y - 2z = 0\}$$

- 1. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Déterminer une base de F.
- 3. Montrer que $\mathbb{R}^3=F\oplus G$ où G est le sous-espace vectoriel de \mathbb{R}^3 engendré par le vecteur u=(2,1,1).

Exercice 3

On considère $\mathbb{P}_3[X]$ l'espace vectoriel des polynômes de degré ≤ 3 . Soient

$$P_0 = 1$$
, $P_1 = 1 + X$, $P_2 = (1 + X)^2$, et $P_3 = (1 + X)^3$.

- 1. Montrer que le système (P_0, P_1, P_2, P_3) est une base de $\mathbb{P}_3[X]$
- 2. Soit $P = -3X + X^3$, écrire P comme combinaison linéaire dans le système (P_0, P_1, P_2, P_3) .
- 3. Trouver une matrice A telle que

$$\begin{pmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{pmatrix} = A \begin{pmatrix} 1 \\ X \\ X^2 \\ X^3 \end{pmatrix}$$

Exercice 4

Soit E l'espace physique muni d'un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soit $(\rho, \theta, \varphi) \in [0, +\infty[\times[0, 2\pi[\times[0, \pi/2]. \text{Soit } M \text{ un point de la sphère de centre } O \text{ et de rayon } \rho \text{ tel que } (\overrightarrow{OM}, \overrightarrow{k}) = \varphi \text{ et } M' \text{ la projection orthogonale de } M \text{ sur le plan } (xOy) \text{ tel que } (\overrightarrow{i}, \overrightarrow{OM}) = \theta$

- 1. Déterminer les coordonnées de M dans le repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.
- 2. Déterminer le vecteur \overrightarrow{OM} dans la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.
- 3. Trouver les expressions des vecteurs $\overrightarrow{e_{\rho}} = \frac{\partial \overrightarrow{OM}}{\partial \rho}$, $\overrightarrow{e_{\theta}} = \frac{\partial \overrightarrow{OM}}{\partial \theta}$ et $\overrightarrow{e_{\varphi}} = \frac{\partial \overrightarrow{OM}}{\partial \varphi}$.
- 4. Calculer \overrightarrow{i} , \overrightarrow{j} et \overrightarrow{k} en fonction de $\overrightarrow{e_{\rho}}$, $\overrightarrow{e_{\theta}}$ et $\overrightarrow{e_{\varphi}}$.
- 5. Que peut-on déduire?