

OPEN DATA NATION

FIVAR:

Food Inspection Violation, Anticipating Risk

Nicole Donnelly and Jonathan Boyle General Assembly DSI-DC-1 Capstone 8 July 2016

Outline

Issue

- Food borne illness
 - Better predict

Approach

- Model
 - Selection
 - Optimization
- Results

Plan of Action

- Needed Data
- Next steps
 - Modeling,
 analysis, and
 reports
- Product development

Issue

Food borne illness from restaurants

- Not enough health inspectors
- Annual inspections
- Present approach not optimal for public health protection

Different approach

- Machine Learning
 - Predict when violations will occur
 - Reduce illness
- Open Data Nation
 - FIVAR model

Data

- Multiple sources compiled
 - DC restaurant health inspection reports
 - o 311 complaints
 - Crime records
 - Construction permits
 - Weather data
 - Yelp data
- Additional data reviewed
 - Liquor permits
 - Business licenses

Selection

- Binary classifier
 - RandomForest → Log Reg, KNN
 - Model(s) chosen based on prior work
 - Chicago
 - Montgomery county, MD

Optimization

- Mix
 - Prototype code
 - Automated functions and scripts
- Feature selection
- Parameter optimization

Testing

- Test-train split
 - 2013-2015 data
- Out-of-sample
 - 2016 data

Results

Metric	75/25			
	Log Reg	KNN		
Accuracy	0.69	0.73		
F1	0.00	0.10		
Roc_Auc	0.60	0.55		

Testing

- Test-train split
 - o 2013-2015 data
 - Effects from unbalanced data
 - ~6% (77 of 1284) 0 violations
 - More work/different data needed

Results

Other models in progress:

- Naive Bayes
- RandomForest (full process)
- Regression models for split-off analysis

Results

Rank	Important Features				
1	Inspector badge #				
2	Time since last inspection				
3	3-day average high temp				
4	# yelp reviews				
5	Local crime count				
6	Local construction permit count				
7	Yelp rating				
8	Sandwich shop				

Next steps

Immediate Actions

- Perform other model methods
- Expand dataset with additional Yelp matches
- Statistical tests for feature selection
- Develop metrics for comparison to other cities/prior work

Immediate Actions

- Analyze data concerning specific inspectors
- Coordinate further with Open Data Nation about specific metrics and direction of efforts
 - Discussions with DC government about "openness/accessibility" of data

Supplementary Slides

Rating Number of Reviews Category

Places

Data Sources

Metric	"As is"		50/50		75/25	
	Log Reg	KNN	Log Reg	KNN	Log Reg	KNN
Accuracy	0.93	0.95	0.56	0.56	0.69	0.73
F1	0.96	0.97	0.61	0.58	0.00	0.10
Roc_Auc	0.52	0.52	0.60	0.57	0.60	0.55
2016_accuracy	0.93	0.93	0.57	0.59	0.78	0.79
2016_F1	0.96	0.96	0.46	0.45	0.00	0.18
2016_Roc_Auc	0.56	0.59	0.59	0.57	0.56	0.65

