

Denoising Diffusion Probabilistic Models for Synthetic Histopathologic Image Generation

Diffusion process as described in Ho et. al

Cosine beta schedule (above)

Linear beta schedule (above)

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, ..., T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on
- 5: $\nabla_{\theta} || \epsilon \epsilon_{\theta} \left(\sqrt{\bar{\alpha}} \mathbf{x}_0 + \sqrt{1 \bar{\alpha}_t} \epsilon, t \right) ||^2$
- 7: until converged

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: **for**
$$t = T, ..., 1$$
 do

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 if $t > 1$, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: return x₀

$$\begin{split} \mathcal{L}_{\text{simple}} &= \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[\left| \left| \epsilon - \epsilon_{\theta}(\mathbf{x}_t, t) \right| \right|^2 \right] \\ &= \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[\left| \left| \epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right| \right|^2 \right] \end{split}$$

Table 2. Average SSIM & Maximum Likelihood Results

Sched.	Attn.	SSIM (†)	Log. Likelihood (\psi)
linear	none	0.00013885	0.01569078
linear	self	0.00010798	0.01568433
cosine	none	0.00026722	0.01448672
cosine	self	0.00015712	0.01710702

$$BCE = -\sum_{s,b} \left[y \times \log(p) + (1 - y) \times \log(1 - p) \right]$$

$$SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\gamma}$$

x2 Models Cancerous/ Non-Cancerous

Generate 512 images of each class using selected architecture (cosine schedule, no attention)

Table 3. Four Questions of +/- Class Matching

Correct (%)	Incorrect (%)
7 (58.3%)	5 (41.7%)

Table 5. Four Questions of Generated/Ground-Truth Matching

Class	Correct (%)	Incorrect (%)
+	4 (66.7%)	2 (33.3%)
-	4 (66.7%)	2 (33.3%)

Table 4. Four Questions of +/- Class Identification

Class	Correct (%)	Incorrect (%)	
+	4 (66.7%)	2 (33.3%)	
-	2 (33.3%)	4 (66.7%)	

Table 6. Four Questions of Generated/Ground-Truth Identification

Class	Correct (%)	Incorrect (%)
GT+	3 (75%)	1 (25%)
GT -	3 (75%)	1 (25%)
Gen +	3 (75%)	1 (25%)
Gen -	4 (100%)	0 (0%)

Table 7. Two Questions of Overall Quality (Scores range from 1

Class	Cellularity	Atypia	Color	Overall
+	4.33	4.67	4	3.33
-	3.67	4.67	4.67	3.67

Cancerous

Non-Cancerous

