DESIGN & ANALYSIS OF ALGORITHM

(CS 617-01) (SP18)

Homework 2

Submitted by

Ashok Kumar Shrestha

Due Date: Feb 8, 2018

Page 61, 3-3 (a). You could skip functions containing log* if you have trouble with it.

3-3 a. Ordering by asymptotic growth rates

Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \dots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \dots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

lg(lg*n)	2 ^{lg * n}	$(\sqrt{2})^{\lg n}$	n²	n!
(lg n)!	(3/2) ⁿ	n^3	lg² n	lg(n!)
2 ^{2 ^ n}	n ^{1/lg n}	ln ln n	lg* n	$n \cdot 2^n$
n ^{lg lg n}	ln n	1	2 ^{lg n}	(lg n) ^{lg n}
e^n	4 ^{lg n}	(n+1)!	√(lgn)	lg*(lg n)
2 √(2 lg n)	n	2 ⁿ	n la n	2 ^{2^(n+1)}

Answer:

Order of Growth:

Some simplifications:

1.
$$n^{1/\lg n} = n^{\lg 2/\lg n} = 1$$

2.
$$\lg^*(\lg n) = \lg^* n - 1$$

3.
$$\lg^2 n = (\lg n)^2 = 2 \lg n$$

4.
$$(\sqrt{2})^{\lg n} = n^{1/2} = \sqrt{n}$$

5.
$$2^{\lg n} = n$$

6. Using Stirling's Approximation:

$$\begin{split} n! &= \sqrt{(2\pi n)(n/e)^n(1+\Theta(1/n))} = \Theta(n^{n+\frac{1}{2}} e^{-n}) \\ & lg(n!) = \Theta(n \ lg \ n) \\ & (lg \ n)! = \Theta(lg \ n^{lg \ n+\frac{1}{2}} e^{-lg \ n}) \end{split}$$

7.
$$(\lg n)^{\lg n} = n^{\lg \lg n}$$