Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMID23887
Project Name	Project - Developing a Flight Delay Prediction
	Model using Machine Learning
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics Classification Model: Confusion Matrix , Accuracy Score & Classification Report	Confusion Matrix ,	<pre>In [24]: #Model Evaluation from sklearn.metrics import accuracy_score,confusion_matrix, classification_report print(accuracy_score(y_test, pred))</pre>
		Accuracy Score &	0.9163899788711138
		<pre>In [26]: print(confusion_matrix(y_test, pred))</pre>	
			[[2732 164] [113 304]]
		In [27]: print(classification_report(y_test, pred)) precision recall f1-score support	
			accuracy 0.92 3313 macro avg 0.80 0.84 0.82 3313
			weighted avg 0.92 0.92 0.92 3313

2.	Tune the Model	Hyperparameter Tuning , Validation Method	<pre>In [31]: from sklearn.model_selection import cross_val_score, KFold, GridSearchCV kf = KFold(n_splits = 6, shuffle = True, random_state = 25) params = {'max_depth': [4,5,6],</pre>
			<pre>In [32]: grid_cv = GridSearchCV(clf, params, cv = kf) grid_cv.fit(X_train,y_train)</pre>
			Out[32]: - GridSearchCV - estimator: DecisionTreeClassifier - DecisionTreeClassifier
			<pre>In [35]: grid_cv.best_params_ Out[35]: {'criterion': 'entropy', 'max_depth': 6, 'min_samples_split': 2}</pre>
			<pre>In [34]: cv_results = cross_val_score(clf, X_train,y_train, cv = kf) print(cv_results)</pre>
			[0.92552366 0.9193173 0.91925466 0.92934783 0.92313665 0.9060559]