An Algebraic Perspective on Boolean Function Learning

Ricard Gavaldà¹ Denis Thérien²

¹LARCA research group Univ. Politècnica de Catalunya Barcelona, Spain

²School of Computer Science McGill University Montréal, Canada

ALT'09, Porto, october 5th 2009

Introduction

We can learn boolean functions represented in many ways:

Conjunctions, *k*-CNF, *k*-DNF, monotone DNF, Deterministic Finite Automata, *k*-term DNF, *k*-decision lists, read-once formulas, bounded rank decision trees, constant-degree polynomials, sparse polynomials, threshold gates, decision trees, CDNF formulas, multisymmetric concepts, conjunctions of Horn clauses, *O*(log *n*)-term DNF, nested subspaces, counter languages, OBDD, Multiplicity (Weighted) Automata, ...

Introduction

Programs over monoids

• ... yet another representation of boolean functions!!

yes, but

- gives context: detailed, deep taxonomies of monoids
- highlights a few unnoticed learnable classes
- suggests limits of current techniques

Summary

- Membership queries: algorithm for MOD_p ∘ MOD_m circuits
- Equivalence queries: decision lists over constant-degree polynomials over \mathbb{F}_p
- Membership + Equivalence:
 Maximal class of functions learnable as Multiplicity
 Automata
- Unifies many known results
- Does not capture: monotonicity, threshold circuits, read-k conditions, sensitivity to variable ordering

Background: Algebra and circuits

Semigroups

- A semigroup is set with a binary, associative operation
- A monoid is a semigroup with an identity
- A group is a monoid where each element has an inverse
- A monoid A divides a monoid B if A is a homomorphic image of a subsemigroup of B
- An aperiodic (aka group-free) monoid is one that is divided by no nontrivial group

Monoid products

• The direct product of A and B, $A \times B$ is defined by

$$(a_1,b_1)\cdot(a_2,b_2)=(a_1\cdot a_2,b_1\cdot b_2)$$

 A semidirect product of A and B is defined by choosing a function f: A × B → A and

$$(a_1,b_1)\cdot(a_2,b_2)=(a_1\cdot f(a_2,b_1),b_1\cdot b_2)$$

 The wreath product of A and B, denoted A ★ B, generalizes semidirect product by accounting for all choices of f

Decomposition theorem

Theorem [Krohn-Rhodes 62]

- 1. Every finite semigroup *M* divides a wreath product of finite simple groups and copies of the flip-flop monoid*
- 2. Only finite simple groups are required if *M* is a group
- 3. Only flip-flop monoids are required if M is aperiodic

* A particular 3-element aperiodic monoid

Boolean functions

Functions $f: \{0,1\}^n \to \{0,1\}$

- AND, OR, NOT, threshold gates
- Generalized MOD_m gates

$$MOD_m^A(x_1,\ldots,x_n)=1$$
 iff $(\sum_{i=1}^n x_i)\in A$

- Decision lists, decision trees
- Deterministic Finite Automata
- Weighted Automata or Multiplicity Automata over rings $M(x_1,...,x_n) = \text{sum over all paths consistent with } x_1...x_n$ of product of labels in path

Programs over monoids

- An instruction over a monoid M is a triple (i, u, v)Interpreted as "read x_i and emit u if $x_i = 0$, v if $x_i = 1$ "
- A program over M is a sequence of instructions $L = (I_1, ..., I_s)$ plus an accepting set $A \subseteq M$

$$(L,A)(x) = \begin{cases} 1 & \text{if } \prod_{i=1}^{s} I_i(x) \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Programs over monoids (2)

- Each program P over M computes a boolean function B(P)
- B(M) is the set of boolean functions computed by programs over M
- For a class of monoids M

$$B(\mathscr{M}) = \bigcup_{M \in \mathscr{M}} B(M)$$

From monoids to boolean functions

Division: If M_1 divides M_2 then $B(M_1) \subseteq B(M_2)$

Direct product:

$$B(M_1 \times M_2) \equiv \text{boolean combinations of } B(M_1) \text{ and } B(M_2)$$

 $\equiv NC^0 \circ (B(M_1) \cup B(M_2))$

Wreath product: For G a group,

$$B(M\star G)=B(M)\circ B(G)$$

Examples

Classical examples [Barrington 87, Barrington-Thérien 89]:

Monoidland	Circuitland
all monoids	NC ¹
any nonsolvable group	NC ¹
Abelian groups	boolean combinations of MOD gates
solvable groups	poly-size, constant-depth circuits
	made of MOD gates
aperiodic monoids	poly-size constant-depth circuits
	made of AND, OR, NOT gates

For learning we should remain well below NC¹

Dramatis personae, groups

Group	Description
Abelian groups	direct products cyclic groups
G_p or p -groups	groups of cardinality p^k
Nilpotent groups	direct products of <i>p</i> -groups
Solvable groups	wreath product of cyclic groups

Dramatis personae, groups

Groupland	Circuitland
Abelian groups	MOD_m ,
	degree 1 polynomials over Z_m
G _p or p-groups	$MOD_{p^k} \circ NC^0$, $MOD_p \circ NC^0$,
	constant degree polynomials over $\mathbb{F}_{ ho}$
Nilpotent groups	$MOD_m \circ NC^0$,
	constant degree polynomials over Z_m
Solvable groups	constant-depth, poly-size modular circuits

Dramatis personae, aperiodic

DA monoids: $(stu)^k t (stu)^k = (stu)^k$ for some k

In circuitland [GT03]:

$$B(\mathbf{DA}) = \bigcup_{k} \operatorname{rank-}k \operatorname{decision} \operatorname{trees}$$

 $B(\mathbf{DA}) \circ NC^0 = \bigcup_{k} k\operatorname{-decision} \operatorname{lists}$

Borderline of expressivity in several contexts (descriptive complexity, communication complexity)

(Almost) nothing between $B(\mathbf{DA})$ and DNF, in monoidland

Membership queries

Negative results

Fact [GT06]

Learning programs over M requires 2^n Membership queries if

- M is not a group
- or *M* is a *nonsolvable* group

Reason: Can compute singletons in polynomial size

What about solvable groups?

Two subclasses of solvable groups *provably* weaker than NC¹:

- Nilpotent groups
 - Equivalent to polynomials of constant degree over some Z_m
 - Includes Abelian groups and G_p
- G_p ★ Abelian
 - Equivalent to depth-2, MOD_p-of-MOD_m circuits

Group lower bounds

If G nilpotent, any two programs of length s over G differ on some assignment of weight c_G [PT88]

If $G \in G_p \star Abelian$, any two programs of length s over G differ on some assignment of weight $c_G \log s$ [BST89]

Learning strategy:

- Ask Membership queries with all assignments of weight c_G (or weight $c_G \log s$)
- Build unique program consistent with the answers

Part 2 is a purely computational problem

Abelian groups

Theorem

If G is Abelian, then B(G) is learnable from Membership queries in $n^{O(1)}$ time

Equivalent to MOD_m gates and degree-1 polynomials over Z_m

Open: extend to degree-O(1) polynomials (= nilpotent groups)

G_p ⋆ Abelian

Theorem

If $G \in G_p \star Abelian$, then B(G) is learnable from Membership queries in $n^{O(\log s)}$ time

Equivalent to MOD_p -of- MOD_m circuits

Known to be learnable in time $(n+s)^{O(1)}$ from Membership and *Equivalence* queries [BBTV97]

Equivalence queries

$DL \circ MOD_p \circ NC^0$

Theorem [from known results]

Decision lists having constant-degree polynomials over \mathbb{F}_p at the nodes are learnable from $n^{O(1)}$ Equivalence queries

Combine:

- Tricks to make MOD_p gates 0/1-valued [Fermat,BT94]
- Subspace learning algorithm [HSW87]
- Decision list / nested difference algorithm [R87,HSW87]
- Composition theorem

 $DL \circ MOD_p \circ NC^0$

$DL \circ MOD_p \circ NC^0$ subsumes:

- $DL \circ MOD_p$: nested differences of linear subspaces of \mathbb{F}_p
- DL ∘ NC⁰: k-DL, so rank-k DT's, k-CNF and k-DNF
- $MOD_p \circ NC^0$: constant-degree polynomials over \mathbb{F}_p
- strict width-2 branching programs [BBTV97]

Note: All these classes are nonuniversal

Algebraic equivalent

Theorem

- 1. $DL \circ MOD_p \circ NC^0 = B(\mathbf{DA} \star G_p)$
- 2. $\bigcup_m DL \circ MOD_m \circ NC^0 = B(\mathbf{DA} \star Nilpotent)$

Hence $B(\mathbf{DA} \star G_p)$ learnable from $n^{O(1)}$ Equivalence queries With Equivalence queries, $B(\mathbf{DA} \star Abelian)$ learnable iff $B(\mathbf{DA} \star Nilpotent)$ learnable

What's the ceiling?

- If $M \in \mathbf{DA} \star G_p$ then M is *not* universal
- If $M \notin \mathbf{DA} \star Nilpotent$ then M is universal ¹
- For *M* in between, we don't know; basic first question

¹ subtle lie here; see proceedings

Membership and Equivalence queries

Multiplicity Automata

Theorem [BBBKV00]

Functions $\Sigma^* \to \mathbb{F}_p$ computed by Multiplicity Automata over \mathbb{F}_p are polynomial-time learnable from Membership and Equivalence queries.

Subsumes, besides DFA:

- ullet polynomials over \mathbb{F}_p
- unambiguous DNF (hence decision trees and k-term DNF)
- MOD_p-of-MOD_m circuits

Algebraic characterization

LG_p (m) Com [Weil 87]

The value of $m_1
ldots m_s$ can be determined by counting mod p the number of factorizations of the form $a_0 L a_1 L a_2
ldots a_{k-1} L a_k$, for L a commutative language (bool comb of)

Theorem

- 1. $B(L\mathbf{G_p} \odot \mathbf{Com})$ is polynomially simulated by MA over \mathbb{F}_p
- 2. unambiguous DNF, polynomials, and MOD_p -of- MOD_q circuits are polynomially simulated in $B(L\mathbf{G}_p \mathbin{\textcircled{m}} \mathbf{Com})$

Order sensitivity

Conjecture

 $L\mathbf{G_p} \mathbin{\textcircled{m}} \mathbf{Com}$ is the largest class of monoids that is polynomially simulated by MA

Intuition: If $M \notin L\mathbf{G}_{\mathbf{p}}$ @ Com there is a function $f \in B(M)$ such that f has MA of size poly(n) but the smallest MA for some $f(x_{\pi(1)}, \ldots, x_{\pi(n)})$ has size $2^{\Omega(n)}$

There is an explicit characterization [TT07] of monoids *not* in $L\mathbf{G_p}$ @ \mathbf{Com}

In summary

Conclusions

- Many learning results can be unified into 3 algorithms for learning large classes of monoids
- Extending to larger classes seems to require either proving new lower bounds or learning DNF
- Open problem: Efficiently learn one $MOD_m \circ NC^0$ gate