## 5.1

- a. Let  $f_0(x)=x^2+1$  and  $f_1(x)=(x-2)(x-4)$ . First,  $f_0(x)$  has no implicit constraints, and  $f_1(x)=(x-2)(x-4)\leq 0 \Rightarrow 2\leq x\leq 4$ . Therefore, the feasible set is  $2\leq x\leq 4$ .
  - $f_0(x)$  is strictly increasing when x>0 because  $f_0'(x)=2x>0$  if x>0. Therefore, the optimal point is at  $x^*=2$ , and the optimal value  $p^*=2^2+1=5$ .
- b. The Lagrangian  $L(x,\lambda)=(x^2+1)+\lambda(x-2)(x-4)=(\lambda+1)x^2-6\lambda x+(8\lambda+1)$ . If  $\lambda=0$ , then  $L(x,\lambda)=L(x,0)$  is exactly the objective function  $f_0(x)$ . The optimal point  $(x^*,p^*)$  is (2,5) as shown in the plot.

To minimize  $L(x,\lambda)$  over x, we let  $\nabla_x L(x,\lambda) = 2(\lambda+1)x - 6\lambda = 0$ , and  $x = 3\lambda/(\lambda+1)$  if  $\lambda \neq -1$ . Plugging x into  $L(x,\lambda)$  gives the dual function  $g(\lambda) = \inf_x L(x,\lambda) = -9\lambda^2/(\lambda+1) + (8\lambda+1), \lambda \neq -1$ .

To maximize  $g(\lambda)$ , we let  $g'(\lambda) = -9\lambda(\lambda+2)/(\lambda+1)^2 + 8 = 0$ , and  $\lambda = -4, 2$ . Plugging  $\lambda = 2$  (because we want  $\lambda \geq 0$ ) into  $g(\lambda)$  gives g(2) = 5.

Therefore,  $p^* = g(2) \ge g(\lambda) = \inf_x L(x, \lambda)$ . The lower bound property holds. From the plot, we can also see that lower bound property holds. The minimum of  $L(x, \lambda)$  over x given  $\lambda$  is always no greater than  $p^*$ .



c. The dual problem is  $g(\lambda)=\inf_x L(x,\lambda)=-9\lambda^2/(\lambda+1)+(8\lambda+1)$  subject to  $\lambda\geq 0$ .

Concavity:  $-g(\lambda) = 9\lambda^2/(\lambda+1) - (8\lambda+1)$ , and  $-g'(\lambda) = 9\lambda(\lambda+2)/(\lambda+1)^2 - 8$ , and  $-g''(\lambda) = 18/(\lambda+1)^3$ . When  $\lambda \geq 0$ ,  $-g''(\lambda)$  is always greater than 0. Therefore,  $-g(\lambda)$  is a convex function when  $\lambda \geq 0$ , and  $g(\lambda)$  is a concave function when  $\lambda \geq 0$ .

To maximize  $g(\lambda)$ , we let  $g'(\lambda) = -9\lambda(\lambda+2)/(\lambda+1)^2 + 8 = 0$ , and  $\lambda = -4, 2$ . Plugging  $\lambda = 2$  (because we want  $\lambda \geq 0$ ) into  $g(\lambda)$  gives g(2) = 5.

Therefore,  $\lambda^*=2$ , and strong duality holds because  $p^*=g(\lambda^*)=5$ .

To simplify the notation, we let  $A = [a_1^{\mathrm{T}}, \ldots, a_m^{\mathrm{T}}] \in \mathbb{R}^{m \times n}$ 

- a. The dual function is  $g(\nu)=\inf_{x,y}L(x,y,\nu)=\inf_{x,y}(\max\{y\}+\nu^{\mathrm{T}}(Ax+b-y))$ . To minimize over x, we let  $A^{\mathrm{T}}\nu=0$ . If not so,  $\inf_{x,y}L(x,y,\nu)=-\infty$ . Plugging  $A^{\mathrm{T}}\nu=0$  into  $L(x,y,\nu)$  gives  $g(\nu)=\inf_yL(y,\nu)=\inf_y(\max\{y\}+\nu^{\mathrm{T}}(b-y))=b^{\mathrm{T}}\nu+\inf_y(\max\{y\}-\nu^{\mathrm{T}}y)$  To minimize over y, we consider two conditions: (1)  $\nu\not\succeq 0$  and (2)  $\mathbf{1}^{\mathrm{T}}\nu\not=1$ .
  - 1.  $\nu \not\succeq 0$ , that is there exist some  $\nu_i < 0$ . If  $y_i$  goes to  $-\infty$ , then  $\inf_y (\max\{y\} \nu^T y) = \inf_y (\max\{y\} \infty) = -\inf_y (\max\{y\} \infty)$ . We need  $\nu \succeq 0$ .
  - 2.  $\mathbf{1}^{\mathrm{T}}\nu \neq 1$ . If  $\mathbf{1}^{\mathrm{T}}\nu > 1$ ,  $y = t\mathbf{1}$ , and t goes to  $\infty$ , then  $\inf_y (\max\{y\} \nu^{\mathrm{T}}y) = \inf_y (t \nu^{\mathrm{T}}t\mathbf{1})$   $= \inf_y t(1 \nu^{\mathrm{T}}\mathbf{1}) = -\infty$ . Otherwise, if  $\mathbf{1}^{\mathrm{T}}\nu < 1$ ,  $y = t\mathbf{1}$ , and t goes to  $-\infty$ , then  $\inf_y (\max\{y\} \nu^{\mathrm{T}}y) = \inf_y (t \nu^{\mathrm{T}}t\mathbf{1}) = \inf_y t(1 \nu^{\mathrm{T}}\mathbf{1}) = -\infty$ . Therefore, to avoid  $g(\nu)$  goes to  $-\infty$ , we need  $\mathbf{1}^{\mathrm{T}}\nu = 1$ .

If under the restriction that  $\nu \succeq 0$  and  $\mathbf{1}^{\mathrm{T}}\nu = 1$ , then  $\max\{y\} - \nu^{\mathrm{T}}y \geq \max\{y\} - \nu^{\mathrm{T}}\max\{y\} 1$  =  $\max\{y\}(1-\nu^{\mathrm{T}}1) = 0$ . Therefore,  $\inf_y(\max\{y\}-\nu^{\mathrm{T}}y) = 0$ .  $g(\nu) = \begin{cases} b^{\mathrm{T}}\nu \text{ if } \nu \succeq 0, \mathbf{1}^{\mathrm{T}}\nu = 1\\ -\infty \text{ otherwise} \end{cases}.$ 

The dual problem: maximize  $g(\nu) = b^{\mathrm{T}} \nu$  subject to  $A^{\mathrm{T}} \nu = 0, \nu \succeq 0, \mathbf{1}^{\mathrm{T}} \nu = 1$ .

b. The equivalent LP problem: minimize t subject to  $Ax + b \le t1$ .

The Lagrangian is  $L(x, t, \lambda) = t + \lambda^{T} (Ax + b - t1)$ .

The dual function is  $g(\lambda) = \inf_{x,t} L(x,t,\lambda) = \inf_{x,t} (t + \lambda^{\mathrm{T}} (Ax + b - t1)).$ 

To minimize over x, we let  $A^{\mathrm{T}}\lambda=0$ . If not so,  $\inf_{x,y}L(x,t,\nu)=-\infty$ . Plugging  $A^{\mathrm{T}}\lambda=0$  into  $L(x,t,\lambda)$  gives  $g(\lambda)=\inf_t L(t,\lambda)=\inf_t (t+\lambda^{\mathrm{T}}(b-t1))$ . To minimize over t, we let  $1^{\mathrm{T}}\lambda=1$ .

If not so,  $\inf_t L(t,\lambda) = -\infty$ . Plugging  $\mathbf{1}^T \lambda = \mathbf{1}$  into  $L(t,\lambda)$  gives  $g(\lambda) = b^T \lambda$ .

The dual problem: maximize  $g(\lambda) = b^{\mathrm{T}} \lambda$  subject to  $A^{\mathrm{T}} \lambda = 0, 1^{\mathrm{T}} \lambda = 1, \lambda \geq 0$ .

5.27

First, the Lagrangian is  $L(x,\nu) = ||Ax - b||_2^2 + \nu^{\mathrm{T}}(Gx - h) = (Ax - b)^{\mathrm{T}}(Ax - b) + \nu^{\mathrm{T}}(Gx - h)$ =  $x^{\mathrm{T}}A^{\mathrm{T}}Ax + (G^{\mathrm{T}}\nu - 2A^{\mathrm{T}}b)^{\mathrm{T}}x + (b^{\mathrm{T}}b - \nu^{\mathrm{T}}h)$ .

$$abla_x L(x, 
u) = 2A^{\mathrm{T}}Ax + (G^{\mathrm{T}}
u - 2A^{\mathrm{T}}b) = 0 \Rightarrow x = -(1/2)(A^{\mathrm{T}}A)^{-1}(G^{\mathrm{T}}
u - 2A^{\mathrm{T}}b).$$

Plugging x into  $L(x,\nu)$  gives  $g(\nu)=-(1/4)(G^{\mathrm{T}}\nu-2A^{\mathrm{T}}b)^{\mathrm{T}}(A^{\mathrm{T}}A)^{-1}(G^{\mathrm{T}}\nu-2A^{\mathrm{T}}b)-\nu^{\mathrm{T}}h$ .

KKT conditions: Gx = h,  $\nabla_x L(x, \nu) = 0$ , complementary slackness always holds, and no dual constraints (because no primal inequality constraints). Since the primal problem is convex,  $x^*$  and  $\nu^*$  satisfying KKT conditions are primal solutions, and strong duality holds.

With  $Gx^*=h$  and  $x^*=-(1/2)(A^{\mathrm{T}}A)^{-1}(G^{\mathrm{T}}\nu^*-2A^{\mathrm{T}}b)$ , we can derive:

$$u^* = -2(G(A^{\mathrm{T}}A)^{-1}G^{\mathrm{T}})^{-1}(h - G(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}b)$$

$$x^* = (A^{\mathrm{T}}A)^{-1}(G^{\mathrm{T}}(G(A^{\mathrm{T}}A)^{-1}G^{\mathrm{T}})^{-1}(h - G(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}b) + A^{\mathrm{T}}b)$$