# 0.1 定义、定理和命题

### 命题 0.1 (行列式计算常识)

(2) 设 n 阶行列式  $D = \det(a_{ij})$ , 把 D 上下翻转 (行倒排)、或左右翻转 (列倒排) 分别得到  $D_1$ 、 $D_2$ ; 把 D 逆时针旋转  $90^\circ$ 、或顺时针旋转  $90^\circ$  分别得到  $D_3$ 、 $D_4$ ; 把 D 依副对角线翻转、或依主对角线翻转分别得到  $D_5$ 、 $D_6$ . 易知

$$D_{1} = \begin{vmatrix} a_{n1} & \cdots & a_{nn} \\ \vdots & & \vdots \\ a_{11} & \cdots & a_{1n} \end{vmatrix}, D_{2} = \begin{vmatrix} a_{1n} & \cdots & a_{11} \\ \vdots & & \vdots \\ a_{nn} & \cdots & a_{n1} \end{vmatrix}, D_{3} = \begin{vmatrix} a_{1n} & \cdots & a_{nn} \\ \vdots & & \vdots \\ a_{11} & \cdots & a_{n1} \end{vmatrix},$$

$$D_{4} = \begin{vmatrix} a_{n1} & \cdots & a_{11} \\ \vdots & & \vdots \\ a_{nn} & \cdots & a_{1n} \end{vmatrix}, D_{5} = \begin{vmatrix} a_{nn} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{11} \end{vmatrix}, D_{6} = \begin{vmatrix} a_{nn} & \cdots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{11} \end{vmatrix}.$$

则一定有

$$D_1 = D_2 = D_3 = D_4 = (-1)^{\frac{n(n-1)}{2}} D,$$
  
 $D_5 = D_6 = D.$ 

- (3) 设  $A = (a_{i,j})$  为 n 阶复矩阵, 则一定有  $|A| = \overline{|A|}$ .
- (4) 若 |A| 是 n 阶行列式,|B| 是 m 阶行列式,它们的值都不为零,则

$$\begin{vmatrix} A & O \\ O & B \end{vmatrix} = (-1)^{mn} \begin{vmatrix} O & A \\ B & O \end{vmatrix}.$$

证明 (1) 运用行列式的定义即可得到结论

$$(2) D_{1} = \begin{vmatrix} a_{n1} & \cdots & a_{nn} \\ \vdots & \vdots \\ a_{11} & \cdots & a_{1n} \end{vmatrix} = \frac{r_{i} \longleftrightarrow r_{i+1}}{i=1,2,\cdots,n-1} (-1)^{n-1} \begin{vmatrix} a_{n-1,1} & \cdots & a_{n-1,n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = \frac{r_{i} \longleftrightarrow r_{i+1}}{i=1,2,\cdots,n-2} (-1)^{n-1+n-2} \begin{vmatrix} a_{n-2,1} & \cdots & a_{n-2,n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{2} = \begin{vmatrix} a_{1n} & \cdots & a_{11} \\ \vdots & \vdots \\ a_{nn} & \cdots & a_{n1} \end{vmatrix} \xrightarrow{j_{i} \longleftrightarrow j_{i+1}} (-1)^{n-1} \begin{vmatrix} a_{1,n-1} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n,n-1} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{j_{i} \longleftrightarrow j_{i+1}} (-1)^{n-1+n-2} \begin{vmatrix} a_{1,n-2} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n,n-2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$= \cdots = (-1)^{n-1+n-2+\cdots+1} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{3} = \begin{vmatrix} a_{1n} & \cdots & a_{nn} \\ \vdots & & \vdots \\ a_{11} & \cdots & a_{n1} \end{vmatrix} \xrightarrow{\text{ff} \oplus \text{iff}} (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D^{T} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{4} = \begin{vmatrix} a_{n1} & \cdots & a_{11} \\ \vdots & & \vdots \\ a_{nn} & \cdots & a_{1n} \end{vmatrix} \xrightarrow{\text{ff} \oplus \text{iff}} (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{nn} \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} D^{T} = (-1)^{\frac{n(n-1)}{2}} D.$$

$$D_{5} = \begin{vmatrix} a_{nn} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{11} \end{vmatrix} \xrightarrow{\text{if } \oplus \text{if } \oplus \text{if$$

(3) 复数的共轭保持加法和乘法: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2},\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$ , 故由行列式的组合定义可得

$$|A| = \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} a_{k_{11}} a_{k_{22}} \dots a_{k_{nn}}$$

$$= \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} \overline{a_{k_{11}}} \cdot \overline{a_{k_{22}}} \dots \overline{a_{k_{nn}}} = |\overline{A}|.$$

(4) 将 |A| 的第一列依次和 |B| 的第 m 列, 第 m-1 列, …, 第一列对换, 共换了 m 次; 再将 |A| 的第二列依次和 |B| 的第 m 列, 第 m-1 列, …, 第一列对换, 又换了 m 次; … 依次类推, 经过 mn 次对换可将第二个行列式变为第一个行列式. 因此  $|D| = (-1)^{mn} |C|$ , 于是由行列式的基本性质可得

$$\begin{vmatrix} A & O \\ O & B \end{vmatrix} = (-1)^{mn} \begin{vmatrix} O & A \\ B & O \end{vmatrix}.$$

### 命题 0.2 (奇数阶反对称行列式的值等于零)

如果 n 阶行列式 |A| 的元素满足  $a_{ij}=-a_{ji}(1\leq i,j\leq n)$ , 则称为反对称行列式. 求证: 奇数阶反对称行列式的值等于零.

笔记 证法二的想法是将行列式按组合的定义写成 (n-1)! 个单项的和. 然后将其两两分组再求和 (因为一共有 (n-1)! 个单项, 即和式中共有偶数个单项, 所以只要使用合适的分组方式就一定能够将其两两分组再求和), 最后发现 每组的和均为 0.

构造的这个映射  $\varphi$  的目的是为了更加准确、严谨地说明分组的方式. 证明这个映射  $\varphi$  是一个双射是为了保证原来的和式中的每一个单项都能与和式中另一个单项一一对应. 然后利用反证法证明了这两个一一对应的单项一定互不相同 (注: 我认为这步有些多余. 这里应该只需要说明这两个一一对应的单项是原和式中不同的单项即可,即这两个单项的角标不完全相同就行, 其实, 这个在我们定义映射  $\varphi$  的时候就已经满足了. 满足这个条件就足以说明原和式可以按照这种方式进行分组. 并且利用反对称行列式的性质也能够证明这两个单项不仅互不相同,还能进一步得到这两个单项互为相反数). 于是我们就可以将原和式中的每一个单项与其在双射  $\varphi$  作用下的像看成一组, 按照这种方式就可以将原和式进行分组再求和.

证明 证法一 (行列式的性质): 由反对称行列式的定义可知,|A| 的转置 |A'| 与 |A| 的每个元素都相差一个符号,将 |A'| 的每一行都提出公因子 -1 可得  $|A| = |A'| = (-1)^n |A| = -|A|$ ,从而 |A| = 0.

证法二(行列式的组合定义): 由于 |A| 的主对角元全为 0, 故由组合定义, 只需考虑下列单项:

$$T = \{a_{k_1} 1 a_{k_2} 2 \cdots a_{k_{nn}} \mid k_i \neq i (1 \leq i \leq n)\}$$

定义映射  $\varphi: T \to T, a_{k_11}a_{k_22}\cdots a_{k_{nn}} \mapsto a_{1k_1}a_{2k_2}\cdots a_{nk_n}$ . 显然  $\varphi^2 = \mathrm{Id}_T$ , 于是  $\varphi$  是一个双射. 我们断言: $a_{k_11}a_{k_22}\cdots a_{k_{nn}}$ 

和  $a_{1k_1}a_{2k_2}\cdots a_{nk_n}$  作为 |A| 的单项不相同,否则  $\{1,2,\cdots,n\}$  必可分成若干对  $(i_1,j_1),\cdots,(i_t,j_t)$ ,使得  $a_{k_11}a_{k_22}\cdots a_{k_{nn}}=a_{i_1j_1}a_{j_1i_1}\cdots a_{i_tj_t}a_{j_ti_t}$ ,这与 n 为奇数矛盾. 将上述两个单项看成一组,则它们在 |A| 中符号均为  $(-1)^{\tau(k_1k_2\cdots k_n)}$ . 由于 |A| 反对称,故

$$a_{1k_1}a_{2k_2}\cdots a_{nk_n}=(-1)^n a_{k_11}a_{k_22}\cdots a_{k_{nn}}=-a_{k_11}a_{k_22}\cdots a_{k_{nn}}$$

从而每组和为0,于是|A|=0.

## 命题 0.3 (" 爪" 型行列式)

证明 n 阶行列式:

$$|\mathbf{A}| = \begin{vmatrix} a_1 & b_2 & \cdots & b_n \\ c_2 & a_2 & & \\ \vdots & & \ddots & \\ c_n & & & a_n \end{vmatrix} = a_1 a_2 \cdots a_n - \sum_{i=2}^n a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i.$$

室 笔记 记忆"爪"型行列式的计算方法和结论。

证明 当  $a_i \neq 0 (\forall i \in [2, n] \cap \mathbb{N})$  时, 我们有

$$|A| = \begin{vmatrix} a_1 & b_2 & \cdots & b_n \\ c_2 & a_2 & & \\ \vdots & \ddots & & \\ c_n & & a_n \end{vmatrix} = \frac{\left(-\frac{c_i}{a_i}\right)j_i + j_1}{i = 2, \dots, n} \begin{vmatrix} a_1 - \sum_{i=2}^n \frac{b_i c_i}{a_i} & b_2 & \cdots & b_n \\ 0 & & a_2 & & \\ \vdots & & \ddots & \\ 0 & & & a_n \end{vmatrix}$$
$$= \left(a_1 - \sum_{i=2}^n \frac{b_i c_i}{a_i}\right) \prod_{i=2}^n a_i = a_1 a_2 \cdots a_n - \sum_{i=2}^n a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i.$$

当  $\exists i \in [2,n] \cap \mathbb{N}$  s.t.  $a_i = 0$  时,则  $a_1a_2 \cdots a_n - \sum_{i=2}^n a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i = -a_2 \cdots \widehat{a_i} \cdots a_n b_i c_i$ . 此时,我们有

$$|A| = \begin{vmatrix} a_1 & b_2 & \cdots & b_{i-1} & b_i & b_{i+1} & \cdots & b_n \\ c_2 & a_2 & & & & & \\ \vdots & & \ddots & & & & \\ c_{i-1} & & & a_{i-1} & & & \\ c_{i} & & & & 0 & & \\ c_{i+1} & & & & & a_{i+1} & & \\ \vdots & & & & \ddots & & \\ c_n & & & & & a_n \end{vmatrix} \underbrace{\frac{k \hat{\pi}i \hat{\pi} R \pi}{(k c_i \hat{\pi} \hat{\pi} \hat{\tau} R \pi)}}_{\frac{k \hat{\pi}i \hat{\pi} R \pi}{(k c_i \hat{\pi} \hat{\pi} \hat{\tau} R \pi)}}_{\frac{k \hat{\pi}i \hat{\pi} R \pi}{(k c_i \hat{\pi} \hat{\pi} \hat{\tau} R \pi)}}_{\frac{k \hat{\pi}i \hat{\pi} R \pi}{(k c_i \hat{\pi} \hat{\pi} \hat{\tau} R \pi)}}_{\frac{k \hat{\pi}i \hat{\pi} R \pi}{(k c_i \hat{\pi} \hat{\pi} \hat{\tau} R \pi)}}_{-1}(-1)^{i+1} c_i + & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

综上所述,原命题得证.

## 命题 0.4 (分块" 爪" 型行列式)

计算 n 阶行列式  $(a_{ii} \neq 0, i = k+1, k+2, \dots, n)$ :

$$|A| = \begin{vmatrix} a_{11} & \cdots & a_{1k} & a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} & a_{k,k+1} & \cdots & a_{kn} \\ a_{k+1,1} & \cdots & a_{k+1,k} & a_{k+1,k+1} & & & \vdots \\ \vdots & & \vdots & & \ddots & & \vdots \\ a_{n1} & \cdots & a_{nk} & & & a_{nn} \end{vmatrix}$$

🕏 笔记 记忆分块"爪"型行列式的计算方法即可, 计算方法和"爪"型行列式的计算方法类似.

解

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & \cdots & a_{1k} & a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} & a_{k,k+1} & \cdots & a_{kn} \\ a_{k+1,1} & \cdots & a_{k+1,k} & a_{k+1,k+1} & & & \vdots \\ \vdots & & \vdots & & & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} & & & & a_{nn} \end{vmatrix}$$

$$\frac{-\frac{a_{i1}}{a_{ii}}j_{i}+j_{1}, -\frac{a_{i2}}{a_{ii}}j_{i}+j_{2}, \cdots, -\frac{a_{in}}{a_{ii}}j_{i}+j_{k}}{i=k+1, k+2, \cdots, n} = \begin{vmatrix} c_{11} & \cdots & c_{1k} & a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ c_{k1} & \cdots & c_{kk} & a_{k,k+1} & \cdots & a_{kn} \\ 0 & \cdots & 0 & a_{k+1,k+1} & & & \vdots \\ \vdots & & \vdots & & \ddots & & \vdots \\ 0 & \cdots & 0 & & & & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} C & B \\ O & \Lambda \end{vmatrix} = |C| \cdot |\Lambda| = |C| \prod_{i=k+1}^{n} a_{ii}.$$

其中 
$$C = \begin{pmatrix} c_{11} & \cdots & c_{1k} \\ \vdots & & \vdots \\ c_{k1} & \cdots & c_{kk} \end{pmatrix}, B = \begin{pmatrix} a_{1,k+1} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k,k+1} & \cdots & a_{kn} \end{pmatrix}, \Lambda = \begin{pmatrix} a_{k+1} & & & \\ & \ddots & & \\ & & & a_n \end{pmatrix}.$$
 并且  $c_{pq} = a_{pq} - \sum_{i=k+1}^{n} \frac{a_{iq}a_{pi}}{a_{ii}}, p, q = 1, 2, \cdots, n.$ 

# 推论 0.1 (" 爪" 型行列式的推广)

计算 n 阶行列式:

$$|A| = \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - a_n \end{vmatrix}.$$

🕏 笔记 这是一个有用的模板 (即**行列式除了主对角元素外, 每行都一样**).

记忆该命题的计算方法即可. 即先化为"爪"型行列式, 再利用"爪"型行列式的计算结果.

解 当  $a_i \neq 0 (\forall i \in [2, n] \cap \mathbb{N})$  时, 我们有

$$|\mathbf{A}| = \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n - a_n \end{vmatrix} = \frac{(-1)r_1 + r_i}{i=2, \dots, n} \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ a_1 & -a_2 & 0 & \cdots & 0 \\ a_1 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & 0 & 0 & \cdots & -a_n \end{vmatrix}$$

$$\frac{\text{Res}_{0.3}}{\text{Im}} \left[ (x_1 - a_1) + \sum_{i=2}^n \frac{a_1 x_i}{a_i} \right] \prod_{i=2}^n (-a_i) = (-1)^{n-1} \left[ (x_1 - a_1) + \sum_{i=2}^n \frac{a_1 x_i}{a_i} \right] \prod_{i=2}^n a_i$$

$$= (-1)^{n-1} \left[ (x_1 - a_1) \prod_{i=2}^n a_i + \sum_{i=2}^n a_1 a_2 \cdots \widehat{a_i} \cdots a_n x_i \right].$$

当  $\exists i \in [2, n] \cap \mathbb{N}$  s.t.  $a_i = 0$  时, 我们有

$$|\mathbf{A}| = \begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n - a_n \end{vmatrix} = \frac{\begin{vmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ a_1 & -a_2 & 0 & \cdots & 0 \\ a_1 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_1 & 0 & 0 & \cdots & -a_n \end{vmatrix}$$

$$\stackrel{\text{\tiny $\Rightarrow \pm 0.3}}{=} (x_1 - a_1) (-a_2) (-a_3) \cdots (-a_n) - \sum_{i=2}^n (-a_2) \cdots \widehat{(-a_i)} \cdots (-a_n) a_1 x_i$$

$$= (-1)^{n-1} (x_1 - a_1) \prod_{i=2}^n a_i + (-1)^{n-1} \sum_{i=2}^n a_1 a_2 \cdots \widehat{a_i} \cdots a_n x_i$$

$$= (-1)^{n-1} \left[ (x_1 - a_1) \prod_{i=2}^n a_i + \sum_{i=2}^n a_1 a_2 \cdots \widehat{a_i} \cdots a_n x_i \right].$$

$$\Leftrightarrow \pm \text{ fix.} |\mathbf{A}| = (-1)^{n-1} \left[ (x_1 - a_1) \prod_{i=2}^n a_i + \sum_{i=2}^n a_1 a_2 \cdots \widehat{a_i} \cdots a_n x_i \right].$$

#### 命题 0.5

设  $|A| = |a_i|$  是一个 n 阶行列式,  $A_{ij}$  是它的第 (i, j) 元素的代数余子式, 求证:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ y_1 & y_2 & \cdots & y_n & z \end{vmatrix} = z|A| - \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i y_j.$$

Ŷ 笔记 根据这个命题可以得到一个关于行列式 |A| 的所有代数余子式求和的构造:

$$-\sum_{i,j=1}^{n} A_{ij} = \begin{vmatrix} \mathbf{A} & \mathbf{1} \\ \mathbf{1'} & 0 \end{vmatrix} = \begin{vmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} & \mathbf{1} \\ 1 & 1 & \cdots & 1 & 0 \end{vmatrix} = \begin{vmatrix} \boldsymbol{\beta}_{1} & 1 \\ \boldsymbol{\beta}_{2} & 1 \\ \vdots & \vdots \\ \boldsymbol{\beta}_{n} & 1 \\ \mathbf{1'} & 0 \end{vmatrix}.$$

其中 |A| 的列向量依次为  $\alpha_1,\alpha_2,\cdots,\alpha_n,|A|$  的行向量依次为  $\beta_1,\beta_2,\cdots,\beta_n$ . 并且 1 表示元素均为 1 的列向量,1' 表示 1 的转置. (令上述命题中的  $z=0,x_i=y_i=1,i=1,2,\cdots,n$  即可得到.)

 $\dot{z}$  如果需要证明的是矩阵的代数余子式的相关命题, 我们可以考虑一下这种构造, 即令上述命题中的 z=0 并且 特定/任取  $x_i, y_i$ .

证明 证法一: 将上述行列式先按最后一列展开,展开式的第一项为

$$(-1)^{n+2} x_1 \begin{vmatrix} a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ y_1 & y_2 & \cdots & y_n \end{vmatrix}.$$

再将上式按最后一行展开得到

$$(-1)^{n+2} x_1 \left[ (-1)^{n+1} (-1)^{1+1} y_1 A_{11} + (-1)^{n+2} (-1)^{1+2} y_2 A_{12} + \dots + (-1)^{n+n} (-1)^{1+n} y_n A_{1n} \right]$$

$$= (-1)^{n+2} x_1 (-1)^{n+1} \left[ (-1)^2 y_1 A_{11} + (-1)^4 y_2 A_{12} + \dots + (-1)^{2n} y_n A_{1n} \right]$$

$$= -x_1 \left( y_1 A_{11} + y_2 A_{12} + \dots + y_n A_{1n} \right)$$

$$= -x_1 \sum_{j=1}^n y_j A_{1j}.$$

同理可得原行列式展开式的第  $i(i=1,2,\cdots,n-1)$  项为

$$(-1)^{n+1+i} x_i \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i-1,1} & a_{i-1,2} & \cdots & a_{i-1,n} \\ a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1,n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ y_1 & y_2 & \cdots & y_n \end{vmatrix}$$

将上式按最后一行展开得到 z |A|.

$$\begin{aligned} &(-1)^{n+1+i} \, x_i \, \left[ (-1)^{n+1} \, (-1)^{i+1} \, y_1 A_{i1} + (-1)^{n+2} \, (-1)^{i+2} \, y_2 A_{i2} + \dots + (-1)^{n+n} \, (-1)^{i+n} \, y_n A_{in} \right] \\ &= (-1)^{n+1+i} \, x_i \, (-1)^{n+1} \, \left[ (-1)^{i+1} \, y_1 A_{i1} + (-1)^{i+2+1} \, y_2 A_{i2} + \dots + (-1)^{i+n+n-1} \, y_n A_{in} \right] \\ &= (-1)^{2i+1} \, y_1 A_{i1} + (-1)^{2i+3} \, y_2 A_{i2} + \dots + (-1)^{2i+2n-1} \, y_n A_{in} \\ &= -x_i \, \left( y_1 A_{i1} + y_2 A_{i2} + \dots + y_n A_{in} \right) \\ &= -x_i \, \sum_{j=1}^n y_j A_{ij}. \end{aligned}$$

而展开式的最后一项为z|A|.

因此,原行列式的值为

$$z|A| - \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i y_j.$$

证法二:设 $\mathbf{x} = (x_1, x_2, \dots, x_n)', \mathbf{y} = (y_1, y_2, \dots, y_n)'$ . 若 A 是非异阵,则由降阶公式可得

$$\begin{vmatrix} A & \mathbf{x} \\ \mathbf{y}' & z \end{vmatrix} = |A|(z - \mathbf{y}'A^{-1}\mathbf{x}) = z|A| - \mathbf{y}'A^*\mathbf{x}.$$

对于一般的方阵 A,可取到一列有理数  $t_k \rightarrow 0$ ,使得  $t_k I_n + A$  为非异阵. 由非异阵情形的证明可得

$$\begin{vmatrix} t_k I_n + A & \mathbf{x} \\ \mathbf{y}' & z \end{vmatrix} = z|t_k I_n + A| - \mathbf{y}'(t_k I_n + A)^* \mathbf{x}.$$

注意到上式两边都是关于  $t_k$  的多项式, 从而关于  $t_k$  连续. 上式两边同时取极限, 令  $t_k \to 0$ , 即有

$$\begin{vmatrix} A & x \\ y' & z \end{vmatrix} = z|A| - y'A^*x = z|A| - \sum_{i=1}^n \sum_{j=1}^n A_{ij}x_iy_j.$$

例题 0.1 设 n 阶行列式  $|A| = |a_{ij}|, A_{ij}$  是元素  $a_{ij}$  的代数余子式, 求证:

$$|B| = \begin{vmatrix} a_{11} - a_{12} & a_{12} - a_{13} & \cdots & a_{1,n-1} - a_{1n} & 1 \\ a_{21} - a_{22} & a_{22} - a_{23} & \cdots & a_{2,n-1} - a_{2n} & 1 \\ a_{31} - a_{32} & a_{32} - a_{33} & \cdots & a_{3,n-1} - a_{3n} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} - a_{n2} & a_{n2} - a_{n3} & \cdots & a_{n,n-1} - a_{nn} & 1 \end{vmatrix} = \sum_{i,j=1}^{n} A_{ij}.$$

证明 证法一:设 |A| 的列向量依次为  $\alpha_1, \alpha_2, \cdots, \alpha_n$ , 并且 1 表示元素均为 1 的列向量. 则

$$|B| = |\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \cdots, \alpha_{n-1} - \alpha_n, 1| = \frac{j_i + j_{i-1}}{i = n-1, n-2, \cdots, 2} |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, 1|.$$

将最后一列写成  $(\alpha_n + 1) - \alpha_n$ , 进行拆分可得

$$\begin{aligned} |B| &= |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, (\alpha_n + 1) - \alpha_n| \\ &= |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, \alpha_n + 1| - |\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \cdots, \alpha_{n-1} - \alpha_n, \alpha_n| \\ &= |\alpha_1 + 1, \alpha_2 + 1, \cdots, \alpha_{n-1} + 1, \alpha_n + 1| - |\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \alpha_n|. \end{aligned}$$

根据行列式的性质将  $|\alpha_1+1,\alpha_2+1,\cdots,\alpha_{n-1}+1,\alpha_n+1|$  每一列都拆分成两列, 然后按 1 所在的列展开得到

$$|B| = |\alpha_1 + 1, \alpha_2 + 1, \dots, \alpha_{n-1} + 1, \alpha_n + 1| - |\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n|$$

$$= |\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n| + \sum_{i,j=1}^n A_{ij} - |\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n| = \sum_{i,j=1}^n A_{ij}.$$

证法二:设|A|的列向量依次为 $\alpha_1,\alpha_2,\cdots,\alpha_n$ ,并且1表示元素均为1的列向量.注意到

$$-\sum_{i,j=1}^{n} A_{ij} = \begin{vmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n & \mathbf{1} \\ 1 & 1 & \cdots & 1 & 0 \end{vmatrix}.$$

依次将第i列乘以-1加到第i-1列上去 $(i=2,3,\cdots,n)$ ,再按第n+1行展开可得

$$-\sum_{i,j=1}^{n} A_{ij} = \begin{vmatrix} \alpha_1 - \alpha_2 & \alpha_2 - \alpha_3 & \cdots & \alpha_{n-1} - \alpha_n & \alpha_n & 1 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{vmatrix}$$
$$= -|\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \cdots, \alpha_{n-1} - \alpha_n, 1| = -|B|.$$

结论得证.

例题 0.2 设 n 阶矩阵 A 的每一行、每一列的元素之和都为零,证明:A 的每个元素的代数余子式都相等.

证明 证法一:设  $A = (a_{ij}), x = (x_1, x_2, \dots, x_n)', y = (y_1, y_2, \dots, y_n)',$  不妨设  $x_i y_j$  均不相同, $i, j = 1, 2, \dots, n$ . 考虑如下 n+1 阶矩阵的行列式求值:

$$B = \begin{pmatrix} A & \mathbf{x} \\ \mathbf{y'} & 0 \end{pmatrix}$$

一方面, 由命题 0.5可得  $|B| = -\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i y_j$ . 另一方面, 先把行列式 |B| 的第二行, …, 第 n 行全部加到第一行上; 再将第二列, …, 第 n 列全部加到第一列上, 可得

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & x_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ y_1 & y_2 & \cdots & y_n & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & \cdots & 0 & \sum_{i=1}^{n} x_i \\ a_{21} & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & x_n \\ y_1 & y_2 & \cdots & y_n & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & \cdots & 0 & \sum_{i=1}^{n} x_i \\ 0 & a_{22} & \cdots & a_{2n} & x_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} & x_n \\ \sum_{j=1}^{n} y_j & y_2 & \cdots & y_n & 0 \end{vmatrix}$$

依次按照第一行和第一列进行展开, 可得  $|B| = -A_{11} \sum_{i=1}^n \sum_{j=1}^n x_i y_j$ . 比较上述两个结果, 又由于  $x_i y_j$  均不相同, 因此可得 A 的所有代数余子式都相等.

证法二:由假设可知 |A| = 0(每行元素全部加到第一行即得),从而 A 是奇异矩阵. 若 A 的秩小于 n-1,则 A 的 任意一个代数余子式  $A_{ij}$  都等于零,结论显然成立. 若 A 的秩等于 n-1,则线性方程组 Ax=0 的基础解系只含一 个向量. 又因为 A 的每一行元素之和都等于零, 所以由命题??可知, 我们可以选取  $\alpha = (1,1,\cdots,1)'$  作为 Ax = 0的基础解系. 由命题??的证明可知  $A^*$  的每一列都是 Ax=0 的解, 从而  $A^*$  的每一列与  $\alpha$  成比例, 特别地,  $A^*$  的每 一行都相等. 对 A' 重复上面的讨论, 可得  $(A')^*$  的每一行都相等. 注意到  $(A')^* = (A^*)'$ , 从而  $A^*$  的每一列都相等, 于是A的所有代数余子式 $A_{ij}$ 都相等.

### 命题 0.6 (三对角行列式)

求下列行列式的递推关系式(空白处均为0):

$$D_{n} = \begin{vmatrix} a_{1} & b_{1} \\ c_{1} & a_{2} & b_{2} \\ & c_{2} & a_{3} & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots & \ddots \\ & & & \ddots & a_{n-1} & b_{n-1} \\ & & & & c_{n-1} & a_{n} \end{vmatrix}$$

笔记 记忆三对角行列式的计算方法和结果:  $D_n = a_n D_{n-1} - b_{n-1} c_{n-1} D_{n-2} (n \ge 2)$ ,

即按最后一列(或行)展开得到递推公式.

解 显然  $D_0 = 1, D_1 = a_1$ . 当  $n \ge 2$  时, 我们有

$$= a_n D_{n-1} - b_{n-1} c_{n-1} D_{n-2}.$$

### 推论 0.2

计算 n 阶行列式 ( $bc \neq 0$ ):

$$D_n = \begin{vmatrix} a & b & & & & & \\ c & a & b & & & & \\ & c & a & b & & & \\ & & \ddots & \ddots & \ddots & \ddots & \\ & & & c & a & b \\ & & & c & a \end{vmatrix}.$$

**笔记** 解递推式: $D_n = aD_{n-1} - bcD_{n-2} (n \ge 2)$  对应的特征方程: $x^2 - ax - bc = 0$  得到两复根  $\alpha = \frac{a + \sqrt{a^2 - 4bc}}{2}, \beta = 0$  $\frac{a-\sqrt{a^2-4bc}}{2}$ , 由 Vieta 定理可知  $a=\alpha+\beta$ ,  $bc=\alpha\beta$ .

解 由命题0.6可知, 递推式为  $D_n=aD_{n-1}-bcD_{n-2} (n\geq 2)$ . 又易知  $D_0=1, D_1=a$ . 令  $\alpha=\frac{a+\sqrt{a^2-4bc}}{2}, \beta=0$  $\frac{a-\sqrt{a^2-4bc}}{2}$ , 则  $a=\alpha+\beta,bc=\alpha\beta$ , 于是  $D_n=(\alpha+\beta)\,D_{n-1}-\alpha\beta D_{n-2} (n\geq 2)$ . 从而

$$D_n - \alpha D_{n-1} = \beta (D_{n-1} - \alpha D_{n-2}), D_n - \beta D_{n-1} = \alpha (D_{n-1} - \beta D_{n-2}).$$

于是

$$D_n - \alpha D_{n-1} = \beta^{n-1} (D_1 - \alpha D_0) = \beta^{n-1} (a - \alpha) = \beta^n,$$
  

$$D_n - \beta D_{n-1} = \alpha^{n-1} (D_1 - \beta D_0) = \alpha^{n-1} (a - \beta) = \alpha^n.$$

因此, 若  $a^2 \neq 4bc(\text{即}\alpha \neq \beta)$ , 则联立上面两式, 解得

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta};$$

若  $a^2=4bc($ 即 $\alpha=\beta)$ , 则由  $a=\alpha+\beta$  可知, $\alpha=\beta=\frac{a}{2}$ . 又由  $D_n-\alpha D_{n-1}=\beta^n$  可得

$$D_{n} = \left(\frac{a}{2}\right)^{n} + \frac{a}{2}D_{n-1} = \left(\frac{a}{2}\right)^{n} + \frac{a}{2}\left(\left(\frac{a}{2}\right)^{n-1} + \frac{a}{2}D_{n-2}\right) = 2\left(\frac{a}{2}\right)^{n} + \left(\frac{a}{2}\right)^{2}D_{n-2} = \dots = n\left(\frac{a}{2}\right)^{n} + \left(\frac{a}{2}\right)^{n}D_{0} = (n+1)\left(\frac{a}{2}\right)^{n}.$$
 综上,我们有

$$D_n = \begin{cases} \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, a^2 \neq bc, \\ (n+1) \left(\frac{\alpha}{2}\right)^n, a^2 = bc. \end{cases}$$

## 命题 0.7 (大拆分法)

设 t 是一个参数,

$$|A(t)| = \begin{vmatrix} a_{11} + t & a_{12} + t & \cdots & a_{1n} + t \\ a_{21} + t & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + t & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix}$$

求证:

$$|A(t)| = |A(0)| + t \sum_{i,j=1}^{n} A_{ij},$$

其中  $A_{ij}$  是  $a_{ij}$  在 |A(0)| 中的代数余子式.

# 🕏 笔记 大拆分法的想法: 将行列式的每一行/列拆分成两行/列, 得到

大拆分法的关键是**拆分**, 根据行列式的性质将原行列式拆分成  $2^n$  个行列式.(不一定需要公共的 t). 不仅要熟悉大拆分法的想法还要记住大拆分法的这个命题.

注 大拆分法后续计算不一定要按行/列展开, 拆分的方式一般比较多, 只要拆分的方式方便后续计算即可.

证明 将行列式第一列拆成两列再展开得到

$$|A(t)| = \begin{vmatrix} a_{11} & a_{12} + t & \cdots & a_{1n} + t \\ a_{21} & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix} + \begin{vmatrix} t & a_{12} + t & \cdots & a_{1n} + t \\ t & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & & \vdots \\ t & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix}.$$

将上式右边第二个行列式的第一列乘-1加到后面每一列上,得到

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} + t & \cdots & a_{1n} + t \\ a_{21} & a_{22} + t & \cdots & a_{2n} + t \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} + t & \cdots & a_{nn} + t \end{vmatrix} + \begin{vmatrix} t & a_{12} & \cdots & a_{1n} \\ t & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ t & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

再对上式右边第一个行列式的第二列拆成两列展开,不断这样做下去就可得到

$$|A(t)| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} t & a_{12} & \cdots & a_{1n} \\ t & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ t & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \cdots + \begin{vmatrix} a_{11} & a_{1n} & \cdots & t \\ a_{21} & a_{2n} & \cdots & t \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{nn} & \cdots & t \end{vmatrix} = |A(0)| + \sum_{j=1}^{n} |A_{j}|.$$

其中 
$$A_j = \begin{pmatrix} a_{11} & \cdots & t & \cdots & a_{1n} \\ a_{21} & \cdots & t & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & t & \cdots & a_{nn} \end{pmatrix}, j = 1, 2, \cdots, n.$$
 将  $A_j$  按第  $j$  列展开可得

$$A_{j} = \begin{vmatrix} a_{11} & \cdots & t & \cdots & a_{1n} \\ a_{21} & \cdots & t & \cdots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & t & \cdots & a_{nn} \end{vmatrix} = t \left( A_{1j} + A_{2j} + \cdots + A_{nj} \right) = t \sum_{i=1}^{n} A_{ij}.$$

从而

$$|A(t)| = |A(0)| + \sum_{i=1}^{n} A_i = |A(0)| + t \sum_{i=1}^{n} \sum_{i=1}^{n} A_{ij} = |A(0)| + t \sum_{i,j=1}^{n} A_{ij}.$$

## 推论 0.3 (推广的大拆分法)

设

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix},$$

则

$$|A(t_1, t_2, \dots, t_n)| = \begin{vmatrix} a_{11} + t_1 & a_{12} + t_2 & \dots & a_{1n} + t_n \\ a_{21} + t_1 & a_{22} + t_2 & \dots & a_{2n} + t_n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + t_1 & a_{n2} + t_2 & \dots & a_{nn} + t_n \end{vmatrix} = |A| + \sum_{j=1}^n \left( t_j \sum_{i=1}^n A_{ij} \right).$$

# 室 笔记 记忆这种推广的大拆分法的想法(即将行列式的每一行/列拆分成两行/列)。

这里推广的大拆分法的关键也是**要找到合适的**  $t_1, t_2, \cdots, t_n$  进行拆分将原行列式拆分成更好处理的形式. 注 大拆分法后续计算不一定要按行/列展开, 拆分的方式一般比较多, 只要拆分的方式方便后续计算即可. 证明 运用大拆分法的证明方法不难得到.

### 命题 0.8 (小拆分法)

设

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix},$$

并且  $a_{in}$  可以拆分成  $b_{in} + c_{in}$ ,  $i = 1, 2, \dots, n$ .

则

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & b_{1n} + c_{1n} \\ a_{21} & a_{22} & \cdots & b_{2n} + c_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & b_{1n} + c_{1n} \\ a_{21} & a_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & b_{nn} + c_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & c_{1n} \\ a_{21} & a_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & b_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & c_{1n} \\ a_{21} & a_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & c_{nn} \end{vmatrix}.$$

# 室记记记忆小拆分法的想法(即拆边列/行,再展开得到递推式).

注 若已知的拆分不是最后一列而是其他的某一行或某一列,则可以通过<mark>倒排、旋转、翻转、两行或两列对换</mark>的方 法将这一行或一列变成最后一列,再按照上述方法进行拆分即可.

小拆分法后续计算也不一定要按行/列展开,拆分的方式一般比较多,只要拆分的方式方便后续计算即可. 证明 由行列式的性质可直接得到结论.

# 命题 0.9 (行列式的求导运算)

设  $f_{ij}(t)$  是可微函数,

$$F(t) = \begin{vmatrix} f_{11}(t) & f_{12}(t) & \cdots & f_{1n}(t) \\ f_{21}(t) & f_{22}(t) & \cdots & f_{2n}(t) \\ \vdots & \vdots & & \vdots \\ f_{n1}(t) & f_{n2}(t) & \cdots & f_{nn}(t) \end{vmatrix}$$

求证: 
$$\frac{d}{dt}F(t) = \sum_{j=1}^{n} F_{j}(t)$$
, 其中

$$F_{j}(t) = \begin{vmatrix} f_{11}(t) & f_{12}(t) & \cdots & \frac{d}{dt} f_{1j}(t) & \cdots & f_{1n}(t) \\ f_{21}(t) & f_{22}(t) & \cdots & \frac{d}{dt} f_{2j}(t) & \cdots & f_{2n}(t) \\ \vdots & \vdots & & \vdots & & \vdots \\ f_{n1}(t) & f_{n2}(t) & \cdots & \frac{d}{dt} f_{nj}(t) & \cdots & f_{nn}(t) \end{vmatrix}$$

证明 证法一(数学归纳法):对阶数 n 进行归纳. 当 n=1 时结论显然成立. 假设 n-1 阶时结论成立, 现证 n 阶的情形.

将 F(t) 按第一列展开得

$$F(t) = f_{11}(t) A_{11}(t) + f_{21}(t) A_{21}(t) + \dots + f_{n1}(t) A_{n1}(t).$$

其中  $A_{i1}(t)$  是元素  $f_{i1}(t)$  的代数余子式. $(i = 1, 2, \dots, n)$ 

从而由归纳假设可得

于是,我们就有

$$\frac{d}{dt}F(t) = \frac{d}{dt} \left[ f_{11}(t) A_{11}(t) + f_{21}(t) A_{21}(t) + \dots + f_{n1}(t) A_{n1}(t) \right] 
= f'_{11}(t) A_{11}(t) + f'_{21}(t) A_{21}(t) + \dots + f'_{n1}(t) A_{n1}(t) + f_{11}(t) A'_{11}(t) + f_{21}(t) A'_{21}(t) + \dots + f_{n1}(t) A'_{n1}(t) 
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + f_{11}(t) \sum_{k=2}^{n} A_{11}^{k}(t) + f_{21}(t) \sum_{k=2}^{n} A_{21}^{k}(t) + \dots + f_{n1}(t) \sum_{k=2}^{n} A_{n1}^{k}(t) 
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + \sum_{i=1}^{n} \left( f_{i1}(t) \sum_{k=2}^{n} A_{i1}^{k}(t) \right) 
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + \sum_{i=1}^{n} f_{i1}(t) \left( A_{i1}^{2} + A_{i1}^{3} + \dots + A_{i1}^{n} \right) 
= \sum_{i=1}^{n} f'_{i1}(t) A_{i1}(t) + \sum_{i=1}^{n} f_{i1}(t) A_{i1}^{2} + \sum_{i=1}^{n} f_{i1}(t) A_{i1}^{3} + \dots + \sum_{i=1}^{n} f_{i1}(t) A_{i1}^{n} 
= F_{1}(t) + F_{2}(t) + F_{3}(t) + \dots + F_{n}(t) 
= \sum_{i=1}^{n} F_{i}(t).$$

故由数学归纳法可知结论对任意正整数都成立.

证法二(行列式的组合定义):由行列式的组合定义可得

$$F(t) = \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_1 1}(t) f_{k_2 2}(t) \dots f_{k_n n}(t).$$

因此

$$\frac{d}{dt}F(t) = \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_{11}}(t) f_{k_{22}}(t) \dots f_{k_{nn}}(t) 
+ \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_{11}}(t) f_{k_{22}}(t) \dots f_{k_{nn}}(t) 
+ \dots + \sum_{1 \le k_1, k_2, \dots, k_n \le n} (-1)^{\tau(k_1 k_2 \dots k_n)} f_{k_{11}}(t) f_{k_{22}}(t) \dots f_{k_{nn}}(t) 
= F_1(t) + F_2(t) + \dots + F_n(t).$$

## 命题 0.10 (直接计算两个矩阵和的行列式)

设 A, B 都是 n 阶矩阵, 求证:

其中 $\widehat{\boldsymbol{B}}$  $\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 是 $|\boldsymbol{B}|$ 的k阶子式 $\boldsymbol{B}$  $\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$ 的代数余子式.

笔记 当 A,B 之一是比较简单的矩阵 (例如对角矩阵或秩较小的矩阵) 时, 可利用这个命题计算 |A+B|. 解 设  $|A| = |\alpha_1, \alpha_2, \cdots, \alpha_n|, |B| = |\beta_1, \beta_2, \cdots, \beta_n|,$  其中  $\alpha_j, \beta_j (j = 1, 2, \cdots, n)$  分别是 A 和 B 的列向量. 注意到  $|A+B| = |\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_n + \beta_n|$ .

对 |A+B|, 按列用行列式的性质展开, 使每个行列式的每一列或者只含有  $\alpha_j$ , 或者只含有  $\beta_j$ (即利用大拆分法按列向量将行列式完全拆分开), 则 |A+B| 可以表示为  $2^n$  个这样的行列式之和. 即 (并且单独把 k=0,n 的项分离出来, 即将 |A|、|B| 分离出来)

$$|\mathbf{A} + \mathbf{B}| = |\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_n + \beta_n|$$

$$= |\mathbf{A}| + |\mathbf{B}| + \sum_{1 \leq k \leq n-1} \sum_{1 \leq j_1 \leq j_2 \leq \cdots \leq j_k \leq n} |\beta_1, \cdots, \alpha_{j_1}, \cdots, \alpha_{j_2}, \cdots, \alpha_{j_k}, \cdots, \beta_n| .$$

再对上式右边除 |A|、|B| 外的每个行列式用 Laplace 定理按含有 A 的列向量的那些列展开得到

$$|\mathbf{A} + \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}| + \sum_{1 \leq k \leq n-1} \sum_{1 \leq j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |\mathbf{A}| - \sum_{j_1 \leq j_2 \leq \dots \leq j_k \leq n} |$$

例题 0.3 设

$$f(x) = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix},$$

其中x 是未定元, $a_{ij}$  是常数. 证明: f(x) 是一个最高次项系数为 1 的 n 次多项式, 且其 n-1 次项的系数等于  $-(a_{11}+a_{22}+\cdots+a_{nn})$ .

笔记 注意 f(x) 的每行每列除主对角元素外, 其他元素均不相同. 因此 f(x) 并不是推广的"爪"型行列式. 解 由行列式的组合定义可知, f(x) 的最高次项出现在组合定义展开式中的单项  $(x-a_{11})(x-a_{22})\cdots(x-a_{nn})$  中, 且展开式中的其他单项作为 x 的多项式其次数小于等于 n-2. 因此 f(x) 是一个最高次项系数为 1 的 n 次多项式, 且其 n-1 次项的系数等于  $-(a_{11}+a_{22}+\cdots+a_{nn})$ .

注 将这个例题进行推广再结合直接计算两个矩阵和的行列式的结论可以得到下述推论.

### 推论 0.4

设 $A = (a_{ij})$ 为n阶方阵,x为未定元,

$$f(x) = |xI_n - A| = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix}$$

证明: $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ , 其中

$$a_k = (-1)^k \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ i_1 & i_2 & \dots & i_k \end{pmatrix}, 1 \le k \le n.$$

 $\stackrel{ ext{$\checkmark$}}{ ext{$\checkmark$}}$  笔记 需要注意上述推论中  $a_1 = -(a_{11} + a_{22} + \cdots + a_{nn}), a_n = (-1)^n |A|$ .

证明 注意到  $xI_n$  非零的 n-k 阶子式只有 n-k 阶主子式,并且其值为  $x^{n-k}$ ,其余 n-k 阶子式均为零. 记  $\widehat{xI_n}\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$  是  $xI_n\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$  的代数余子式,则  $\widehat{xI_n}\begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$  是  $xI_n$  非零的 n-k 阶子式,于是我们有

$$\widehat{xI_n} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} = x^{n-k}.$$

再利用直接计算两个矩阵和的行列式的结论就可以得到

$$f(x) = |xI_n - A| = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix} = \begin{vmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix} + \begin{vmatrix} x & 0 & \cdots & 0 \\ 0 & x & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & x \end{vmatrix}$$

$$= \begin{vmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & -a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & x \end{vmatrix} + \sum_{1 \le k \le n-1} \sum_{\substack{1 \le i_1, i_2, \cdots, i_k \le n \\ 1 \le j_1, j_2, \cdots, j_k \le n}} (-A) \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix} \widehat{xI_n} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ j_1 & j_2 & \cdots & j_k \end{pmatrix}$$

$$= (-1)^n |A| + x^n + \sum_{1 \le k \le n-1} \sum_{1 \le i_1, i_2, \cdots, i_k \le n} (-1)^k A \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix} \widehat{xI_n} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix}$$

$$= x^n + \sum_{1 \le k \le n-1} (-1)^k \sum_{1 \le i_1, i_2, \cdots, i_k \le n} A \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix} \cdot x^{n-k} + (-1)^n |A|$$

$$= x^n + \sum_{1 \le k \le n-1} x^{n-k} (-1)^k \sum_{1 \le i_1, i_2, \cdots, i_k \le n} A \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix} + (-1)^n |A|.$$

因此  $f(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ , 其中

$$a_k = (-1)^k \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} A \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ i_1 & i_2 & \dots & i_k \end{pmatrix}, 1 \le k \le n.$$

命题 0.11

设 
$$f_k(x) = x^k + a_{k1}x^{k-1} + a_{k2}x^{k-2} + \dots + a_{kk}$$
, 求下列行列式的值:

$$\begin{vmatrix} 1 & f_1(x_1) & f_2(x_1) & \cdots & f_{n-1}(x_1) \\ 1 & f_1(x_2) & f_2(x_2) & \cdots & f_{n-1}(x_2) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & f_1(x_n) & f_2(x_n) & \cdots & f_{n-1}(x_n) \end{vmatrix}$$

Ŷ 笔记 知道这类行列式化简的操作即可. 以后这种行列式化简操作不再作额外说明.

解 利用行列式的性质可得

$$\begin{vmatrix} 1 & f_{1}(x_{1}) & f_{2}(x_{1}) & \cdots & f_{n-1}(x_{1}) \\ 1 & f_{1}(x_{2}) & f_{2}(x_{2}) & \cdots & f_{n-1}(x_{2}) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & f_{1}(x_{n}) & f_{2}(x_{n}) & \cdots & f_{n-1}(x_{n}) \end{vmatrix} = \begin{vmatrix} 1 & x_{1} + a_{11} & x_{1}^{2} + a_{21}x_{1} + a_{22} & \cdots & x_{1}^{n-1} + a_{n-1,1}x_{1}^{n-2} + \cdots + a_{n-1,n-2}x_{1} + a_{n-1,n-1} \\ 1 & x_{2} + a_{11} & x_{2}^{2} + a_{21}x_{2} + a_{22} & \cdots & x_{2}^{n-1} + a_{n-1,1}x_{2}^{n-2} + \cdots + a_{n-1,n-2}x_{2} + a_{n-1,n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n} + a_{11} & x_{n}^{2} + a_{21}x_{n} + a_{22} & \cdots & x_{n}^{n-1} + a_{n-1,1}x_{n}^{n-2} + \cdots + a_{n-1,n-2}x_{n} + a_{n-1,n-1} \\ -a_{i,i-1}j_{2} + j_{i+1}, i = 1, 2, \cdots n - 1 \\ -a_{i,i-1}j_{2} + j_{i+1}, i = 2, 3, \cdots, n - 1 \\ & \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1} \\ -a_{n-1,1}j_{n-1} + j_{n} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_{j} - x_{i}).$$

### 命题 0.12 (多项式根的有限性)

设多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

若 f(x) 有 n+1 个不同的根  $b_1, b_2, \dots, b_{n+1}$ , 即  $f(b_1) = f(b_2) = \dots = f(b_{n+1}) = 0$ , 求证: f(x) 是零多项式, 即  $a_n = a_{n-1} = \dots = a_1 = a_0 = 0$ .

证明 由  $f(b_1) = f(b_2) = \cdots = f(b_{n+1}) = 0$ , 可知  $x_0 = a_0, x_1 = a_1, \cdots, x_{n-1} = a_{n-1}, x_n = a_n$  是下列线性方程组的解:

$$\begin{cases} x_0 + b_1 x_1 + \dots + b_1^{n-1} x_{n-1} + b_1^n x_n = 0, \\ x_0 + b_2 x_1 + \dots + b_2^{n-1} x_{n-1} + b_2^n x_n = 0, \\ \dots \\ x_0 + b_{n+1} x_1 + \dots + b_{n+1}^{n-1} x_{n-1} + b_{n+1}^n x_n = 0. \end{cases}$$

上述线性方程组的系数行列式是一个 Vandermode 行列式, 由于  $b_1, b_2, \cdots, b_{n+1}$  互不相同, 所以系数行列式不等于零. 由 Crammer 法则可知上述方程组只有零解. 即有  $a_n = a_{n-1} = \cdots = a_1 = a_0 = 0$ .

### 命题 0.13 (Cauchy 行列式)

证明:

$$|\mathbf{A}| = \begin{vmatrix} (a_1 + b_1)^{-1} & (a_1 + b_2)^{-1} & \cdots & (a_1 + b_n)^{-1} \\ (a_2 + b_1)^{-1} & (a_2 + b_2)^{-1} & \cdots & (a_2 + b_n)^{-1} \\ \vdots & \vdots & & \vdots \\ (a_n + b_1)^{-1} & (a_n + b_2)^{-1} & \cdots & (a_n + b_n)^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \le i < j \le n} (a_j - a_i)(b_j - b_i)}{\prod\limits_{1 \le i < j \le m} (a_i + b_j)}.$$

# \$

## 笔记 需要记忆 Cauchy 行列式的计算方法.

- 1. 分式分母有公共部分可以作差, 得到的分子会变得相对简便.
- 2. 行列式内行列做加减一般都是加减同一行(或列). 但是在循环行列式中, 我们一般采取相邻两行(或列)相加减的方法.

#### 证明

$$|A| = \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_n} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_1 + b_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_n + b_n} \end{vmatrix}$$

$$\frac{-j_n + j_i}{i = n - 1, \dots, 1} \begin{vmatrix} \frac{b_n - b_1}{a_1 + b_1} & \frac{b_n - b_2}{a_1 + b_1} & \frac{b_n - b_2}{a_2 + b_2} & \cdots & \frac{b_n - b_{n-1}}{a_1 + b_n} & \frac{1}{a_1 + b_n} \\ \frac{b_n - b_1}{a_2 + b_1} & \frac{b_n - b_2}{a_2 + b_2} & \cdots & \frac{b_n - b_{n-1}}{a_1 + b_{n-1}} & \frac{1}{a_1 + b_n} \\ \frac{b_n - b_1}{a_n + b_1} & \frac{b_n - b_2}{a_n + b_2} & \cdots & \frac{b_n - b_{n-1}}{a_1 + b_{n-1}} & \frac{1}{a_n + b_n} \end{vmatrix}$$

$$= \frac{n-1}{i} (b_n - b_i) \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_{n-1}} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_1 + b_{n-1}} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_n + b_{n-1}} & 1 \\ \frac{1}{a_1 + b_1} & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_n + b_{n-1}} & 1 \\ \frac{1}{a_1 + b_1} & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_n + b_{n-1}} & 1 \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_n + b_{n-1}} & 1 \\ \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_n + b_{n-1}} & 1 \\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \cdots & \frac{a_n - a_1}{a_1 + b_{n-1}} & \cdots & \frac{a_n - a_1}{a_1 + b_{n-1}} & 0 \\ \frac{a_n - a_1}{a_n + b_1} & \frac{a_n - a_1}{a_n + b_1} & \frac{a_n - a_1}{a_n + b_2} & \cdots & \frac{a_n - a_{n-1}}{a_1 + b_{n-1}} & 0 \\ \frac{a_n - a_{n-1}}{a_n + b_1} & \frac{a_n - a_1}{a_n + b_1} & \frac{a_n - a_1}{a_n + b_2} & \cdots & \frac{a_n - a_{n-1}}{a_1 + b_{n-1}} & 0 \\ \frac{a_n - a_{n-1}}{a_n + b_1} & \frac{a_n - a_1}{a_n + b_1} & \frac{a_n - a_1}{a_n + b_2} & \cdots & \frac{a_n - a_{n-1}}{a_{n-1} + b_{n-1}} & 0 \\ \frac{a_n - a_{n-1}}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & 0 \\ \frac{a_n - a_1}{a_n + b_1} & \frac{a_n - a_1}{a_n + b_2} & \frac{a_n - a_1}{a_n + b_n} & 0 \\ \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & 0 \\ \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & 0 \\ \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_n} & \frac{a_n - a_1}{a_n + b_$$

$$= \frac{\prod_{i=1}^{n-1} (b_n - b_i) (a_n - a_i)}{\prod_{i=1}^{n} (a_j + b_n) \prod_{k=1}^{n-1} (a_n + b_k)} \cdot D_{n-1}.$$

不断递推下去即得

$$D_{n} = \frac{\prod\limits_{i=1}^{n-1} (b_{n} - b_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n} (a_{j} + b_{n}) \prod\limits_{k=1}^{n-1} (a_{n} + b_{k})} \cdot D_{n-1} = \frac{\prod\limits_{i=1}^{n-1} (b_{n} - b_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n} (a_{j} + b_{n}) \prod\limits_{k=1}^{n-1} (a_{n} + b_{k})} \cdot \frac{\prod\limits_{i=1}^{n-1} (b_{n-1} - b_{i}) (a_{n-1} - a_{i})}{\prod\limits_{j=1}^{n} (a_{j} + b_{n}) \prod\limits_{k=1}^{n-1} (a_{n} + b_{k})} \cdot \frac{\prod\limits_{i=1}^{n-1} (b_{n-1} - b_{i}) (a_{n-1} - a_{i})}{\prod\limits_{j=1}^{n} (a_{j} + b_{n}) \prod\limits_{k=1}^{n-1} (a_{n} + b_{k})} \cdot \frac{\prod\limits_{i=1}^{n-2} (b_{n-1} - b_{i}) (a_{n-1} - a_{i})}{\prod\limits_{j=1}^{n} (a_{j} + b_{n}) \prod\limits_{k=1}^{n-1} (a_{n} + b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-2} (b_{n-1} - b_{i}) (a_{n-1} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{j} + b_{n-1}) \prod\limits_{j=1}^{n-2} (a_{j} + b_{n-1}) \prod\limits_{k=1}^{n-2} (a_{n-1} + b_{k})} \cdot \frac{\prod\limits_{j=1}^{n} (a_{j} + b_{n}) \prod\limits_{k=1}^{n} (a_{j} + b_{k})}{\prod\limits_{j=1}^{n-1} (a_{n} + b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-2} (b_{n-1} - b_{i}) (a_{n-1} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{j} + b_{n-1}) \prod\limits_{j=1}^{n-2} (a_{n-1} + b_{k})} \cdot \frac{\prod\limits_{j=1}^{n} (a_{n} + b_{n}) \prod\limits_{j=1}^{n-2} (a_{n} + b_{n})}{\prod\limits_{j=1}^{n-1} (a_{n} + b_{n}) \prod\limits_{j=1}^{n-2} (a_{n-1} - b_{i}) (a_{n-1} - a_{i})}} \cdot \frac{\prod\limits_{j=1}^{n-2} (b_{n-1} - b_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{j} + b_{n-1}) \prod\limits_{j=1}^{n-2} (a_{n-1} + b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-2} (b_{n} - b_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} + b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-2} (b_{n-1} - b_{i}) (a_{n-1} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} + b_{n}) \prod\limits_{k=1}^{n-1} (a_{n} + b_{k})} \cdot \frac{\prod\limits_{j=1}^{n-2} (b_{n-1} - b_{i}) (a_{n-1} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} + b_{n}) \prod\limits_{j=1}^{n-1} (a_{n} + b_{n})} \cdot \frac{\prod\limits_{j=1}^{n-2} (a_{n} - a_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} + b_{n})} \cdot \frac{\prod\limits_{j=1}^{n-2} (a_{n} - a_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} - a_{i})} \cdot \frac{\prod\limits_{j=1}^{n-2} (a_{n} - a_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} - a_{i})} \cdot \frac{\prod\limits_{j=1}^{n-2} (a_{n} - a_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} - a_{i})} \cdot \frac{\prod\limits_{j=1}^{n-2} (a_{n} - a_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1} (a_{n} - a_{i})} \cdot \frac{\prod\limits_{j=1}^{n-2} (a_{n} - a_{i}) (a_{n} - a_{i})}{\prod\limits_{j=1}^{n-1$$

例题 0.4 证明:

$$A = \left(\frac{1}{i+j}\right)_{1 \leqslant i, j \leqslant n} \in \mathbb{R}^{n \times n}$$

是正定矩阵.

证明 由Cauchy 行列式可知,对A的所有m 阶顺序主子式,我们都有

$$\begin{vmatrix} (1+1)^{-1} & (1+2)^{-1} & \cdots & (1+m)^{-1} \\ (2+1)^{-1} & (2+2)^{-1} & \cdots & (2+m)^{-1} \\ \vdots & \vdots & & \vdots \\ (m+1)^{-1} & (m+2)^{-1} & \cdots & (m+m)^{-1} \end{vmatrix} = \frac{\prod\limits_{1 \leq i < j \leq m} (j-i)^2}{\prod\limits_{1 \leq i < j \leq m} (i+j)} > 0.$$

故 A 是正定矩阵.

### 命题 0.14

计算下列行列式的值:

$$|\mathbf{A}| = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_1^{n-1} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \end{vmatrix}.$$

解 若所有的  $a_i(i = 1, 2, \dots, n)$  都不为 0, 则有

$$|\mathbf{A}| = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_1^{n-1} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \end{vmatrix} = \prod_{i=1}^n a_i^{n-1} \begin{vmatrix} 1 & \frac{b_1}{a_1} & \cdots & \frac{b_1^{n-2}}{a_1^{n-2}} & \frac{b_1^{n-1}}{a_1^{n-1}} \\ 1 & \frac{b_2}{a_2} & \cdots & \frac{b_2^{n-2}}{a_2^{n-2}} & \frac{b_2^{n-1}}{a_2^{n-1}} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & \frac{b_n}{a_n} & \cdots & \frac{b_n^{n-2}}{a_n^{n-2}} & \frac{b_n^{n-2}}{a_n^{n-2}} \end{vmatrix}$$

$$= \prod_{i=1}^n a_i^{n-1} \prod_{1 \le i < j \le n} \left( \frac{b_j}{a_j} - \frac{b_i}{a_i} \right) = \prod_{i=1}^n a_i^{n-1} \prod_{1 \le i < j \le n} \frac{a_i b_j - a_j b_i}{a_j a_i} = \prod_{1 \le i < j \le n} (a_i b_j - a_j b_i).$$

若只有一个 $a_i$ 为0,则将原行列式按第i行展开得到具有相同类型的n-1阶行列式

为 0, 则将原行列式按第 
$$i$$
 行展开得到具有相同类型的  $n-1$  阶行列式 
$$|A| = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_1^{n-1} \\ a_2^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_i^{n-1} & a_i^{n-2}b_i & \cdots & a_ib_i^{n-2} & b_i^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \end{vmatrix} = \begin{vmatrix} a_1^{n-1} & a_1^{n-2}b_1 & \cdots & a_1b_1^{n-2} & b_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} & b_n^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_n^{n-2}b_1 & \cdots & a_1b_1^{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ a_n^{n-1} & a_2^{n-2}b_2 & \cdots & a_2b_2^{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1}^{n-1} & a_{n-1}^{n-2}b_{i+1} & \cdots & a_{i-1}b_{i-1}^{n-2} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1}^{n-1} & a_n^{n-2}b_n & \cdots & a_nb_n^{n-2} \end{vmatrix}$$

此时同理可得

$$|A| = (-1)^{n+i} b_i^{n-1} \prod_{\substack{1 \le k \le n \\ k \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k^{n-1} \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} a_k \prod_{\substack{1 \le k < l \le n \\ k, l \ne i}} (a_k b_l - a_l b_k)$$

$$= \prod_{1 \le k < l \le n} (a_k b_l - a_l b_k) \cdot (a_i = 0) \cdot a_l b_k \cdot (a_i = 0) \cdot (a_i + b_i + b$$

若至少有两个  $a_i = a_j = 0$ , 则第 i 行与第 j 行成比例, 因此行列式的值等于 0. 经过计算发现, 后面两种情形的答案 都可以统一到第一种情形的答案.

综上所述, $|A| = \prod_{1 \le i \le j \le n} (a_i b_j - a_j b_i)$ .

### 结论 连乘号计算小结论:

$$(1)\prod_{1 \le i \le i \le n} a_i a_j = \prod_{i=1}^n a_i^{n-1}.$$

证明: 
$$\prod_{1 \leq i < j \leq n} a_i a_j = \underbrace{a_2 a_1 \cdot a_3 a_2 a_3 a_1 \cdot a_4 a_3 a_4 a_2 a_4 a_1 \cdots \underbrace{a_k a_{k-1} a_k a_{k-2} \cdots a_k a_1}_{n-1} \cdots \underbrace{a_n a_{n-1} a_n a_{n-2} \cdots a_n a_1}_{n-1}$$

$$\frac{\text{从左往右按组计数}}{a_1^{n-1} a_2^{1+n-2} a_3^{2+n-3} a_4^{3+n-4} \cdots a_k^{k-1+n-k} \cdots a_n^{n-1}} = \prod_{i=1}^{n} a_i^{n-1}.$$

$$(2)$$
 $\prod_{\substack{1 \le i < j \le n \\ i, i \ne k}} a_i a_j = \prod_{\substack{1 \le i \le n \\ i \ne k}} a_i^{n-2}$ , 其中  $k \in [1, n] \cap \mathbb{N}_+$ .

证明: 
$$\prod_{\substack{1 \leq i < j \leq n \\ i,j \neq k}} a_i a_j = \underbrace{a_2 a_1 \cdot a_3 a_2 a_3 a_1 \cdot \cdots \cdot a_{k-1} a_{k-2} \cdot \cdots a_{k-1} a_1}_{k-1} \cdot \underbrace{a_{k+1} a_{k-1} \cdot \cdots a_{k+1} a_1}_{n-2} \cdot \cdots \underbrace{a_n a_{n-1} \cdot \cdots a_n a_{k+1} a_n a_{k-1} \cdot \cdots a_n a_1}_{n-2}$$

$$\xrightarrow{\text{从左往右接组计数}} a_1^{n-2} a_2^{1+n-3} a_3^{2+n-4} a_4^{3+n-4} \cdot \cdots a_{k-1}^{k-2+n-k} a_{k+1}^{k-1+n-k-1} \cdot \cdots a_n^{n-2} = \prod_{1 \leq i \leq n} a_i^{n-2}.$$

注意: 从第 k-1 组开始, 后面每组都比原来少一对 (后面每组均缺少原本含  $a_k$  的那一对).

### 命题 0.15 (行列式的刻画)

设 f 为从 n 阶方阵全体构成的集合到数集上的映射, 使得对任意的 n 阶方阵 A, 任意的指标  $1 \le i \le n$ , 以及任意的常数 c, 满足下列条件:

- (1) 设 A 的第 i 列是方阵 B 和 C 的第 i 列之和, 且 A 的其余列与 B 和 C 的对应列完全相同, 则 f(A) = f(B) + f(C);
- (2) 将  $\boldsymbol{A}$  的第 i 列乘以常数 c 得到方阵  $\boldsymbol{B}$ , 则  $f(\boldsymbol{B}) = cf(\boldsymbol{A})$ ;
- (3) 对换  $\boldsymbol{A}$  的任意两列得到方阵  $\boldsymbol{B}$ , 则  $f(\boldsymbol{B}) = -f(\boldsymbol{A})$ ;
- (4)  $f(I_n) = 1$ , 其中  $I_n$  是 n 阶单位阵.

求证:f(A) = |A|.

 $\hat{\mathbf{y}}$  **笔记** 这个命题给出了**行列式的刻画**: 在方阵 n 个列向量上的多重线性和反对称性, 以及正规性 (即单位矩阵处的取值为 1), 唯一确定了行列式这个函数.

证明 设  $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$ , 其中  $\alpha_k$  为 A 的第 k 列,  $e_1, e_2, \dots, e_n$  为标准单位列向量, 则

$$\alpha_j = a_{1j}e_1 + a_{2j}e_2 + \dots + a_{nj}e_n = \sum_{k=1}^n a_{kj}e_k, j = 1, 2, \dots, n.$$

从而由条件(1)和(2)可得

$$f(A) = f(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) = f\left(\sum_{k_{1}=1}^{n} a_{k_{1}1} e_{k}, \alpha_{2}, \dots, \alpha_{n}\right)$$

$$= a_{11} f(e_{1}, \alpha_{2}, \dots, \alpha_{n}) + a_{21} f(e_{2}, \alpha_{2}, \dots, \alpha_{n}) + \dots + a_{n1} f(e_{n}, \alpha_{2}, \dots, \alpha_{n})$$

$$= \sum_{k_{1}=1}^{n} a_{k_{1}1} f(e_{k_{1}}, \alpha_{2}, \dots, \alpha_{n}) = \sum_{k_{1}=1}^{n} a_{k_{1}1} f\left(e_{k_{1}}, \sum_{k_{2}=1}^{n} a_{k_{2}2} e_{k_{2}}, \dots, \alpha_{n}\right)$$

$$= \sum_{k_{1}=1}^{n} a_{k_{1}1} \left[a_{12} f(e_{k_{1}}, e_{1}, \dots, \alpha_{n}) + a_{22} f(e_{k_{1}}, e_{2}, \dots, \alpha_{n}) + \dots + a_{n2} f(e_{k_{1}}, e_{n}, \dots, \alpha_{n})\right]$$

$$= \sum_{k_{1}=1}^{n} a_{k_{1}1} \sum_{k_{2}=1}^{n} a_{k_{2}2} f(e_{k_{1}}, e_{k_{2}}, \dots, \alpha_{n}) = \dots = \sum_{k_{1}=1}^{n} a_{k_{1}1} \sum_{k_{2}=1}^{n} a_{k_{2}2} \dots \sum_{k_{n}=1}^{n} a_{k_{n}n} f(e_{k_{1}}, e_{k_{2}}, \dots, e_{k_{n}})$$

$$=\sum_{k_1=1}^n\sum_{k_2=1}^n\cdots\sum_{k_n=1}^na_{k_1}a_{k_2}\cdots a_{k_n}f\left(\boldsymbol{e}_{k_1},\boldsymbol{e}_{k_2},\cdots,\boldsymbol{e}_{k_n}\right)=\sum_{(k_1,k_2,\cdots,k_n)}a_{k_1}a_{k_2}\cdots a_{k_n}f\left(\boldsymbol{e}_{k_1},\boldsymbol{e}_{k_2},\cdots,\boldsymbol{e}_{k_n}\right).$$

若  $k_i = k_j$ ,则  $(e_{k_1}, e_{k_2}, \cdots, e_{k_n})$  的第 i 列和第 j 列对换后仍然是  $(e_{k_1}, e_{k_2}, \cdots, e_{k_n})$ . 由条件 (3) 可知,  $f(e_{k_1}, e_{k_2}, \cdots, e_{k_n}) = -f(e_{k_1}, e_{k_2}, \cdots, e_{k_n})$ ,于是  $f(e_{k_1}, e_{k_2}, \cdots, e_{k_n}) = 0$ . 因此在 f(A) 的表示式中,只剩下  $k_i (i = 1, 2, \cdots, n)$  互不相同的项. 通过  $\tau(k_1 k_2 \cdots k_n)$  次相邻对换可将  $(e_{k_1}, e_{k_2}, \cdots, e_{k_n})$  变成  $(e_1, e_2, \cdots, e_n) = I_n$ ,故由条件 (3) 和 (4) 可得

$$f(\mathbf{e}_{k_1}, \mathbf{e}_{k_2}, \cdots, \mathbf{e}_{k_n}) = (-1)^{\tau(k_1 k_2 \cdots k_n)} f(\mathbf{I}_n) = (-1)^{\tau(k_1 k_2 \cdots k_n)}.$$

于是由行列式的组合定义可知

$$f(\boldsymbol{A}) = \sum_{(k_1, k_2, \cdots, k_n)} a_{k_1 1} a_{k_2 2} \cdots a_{k_n n} f(\boldsymbol{e}_{k_1}, \boldsymbol{e}_{k_2}, \cdots, \boldsymbol{e}_{k_n}) = \sum_{(k_1, k_2, \cdots, k_n)} (-1)^{\tau(k_1 k_2 \cdots k_n)} a_{k_1 1} a_{k_2 2} \cdots a_{k_n n} = |\boldsymbol{A}|.$$