

## **General Disclaimer**

### **One or more of the Following Statements may affect this Document**

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

**NASA TECHNICAL  
MEMORANDUM**

NASA TM X-64994

(NASA-TM-X-64994) ATLAS OF SKYLAB ATM/S056  
CORONAL HOLE OBSERVATIONS (NASA) 28 p HC  
\$4.00 CSCL 03B

N76-20055

Unclassified  
G3/92 21408

**ATLAS OF SKYLAB ATM/S056 CORONAL HOLE OBSERVATIONS**

By Robert M. Wilson  
Space Sciences Laboratory

March 15, 1976

**NASA**



*George C. Marshall Space Flight Center  
Marshall Space Flight Center, Alabama*

|                                                                                                                                          |                             |                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|
| 1. REPORT NO.<br>NASA TM X-64994                                                                                                         | 2. GOVERNMENT ACCESSION NO. | 3. RECIPIENT'S CATALOG NO.                                      |
| 4. TITLE AND SUBTITLE<br><br>Atlas of Skylab ATM/S056 Coronal Hole Observations                                                          |                             | 5. REPORT DATE<br>March 15 1976                                 |
| 7. AUTHOR(S)<br>Robert M. Wilson                                                                                                         |                             | 6. PERFORMING ORGANIZATION CODE                                 |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><br>George C. Marshall Space Flight Center<br>Marshall Space Flight Center, Alabama 35812 |                             | 8. PERFORMING ORGANIZATION REPORT #                             |
| 12 SPONSORING AGENCY NAME AND ADDRESS<br><br>National Aeronautics and Space Administration<br>Washington, D. C. 20546                    |                             | 10. WORK UNIT NO.                                               |
|                                                                                                                                          |                             | 11. CONTRACT OR GRANT NO.                                       |
|                                                                                                                                          |                             | 13. TYPE OF REPORT & PERIOD COVERED<br><br>Technical Memorandum |
|                                                                                                                                          |                             | 14. SPONSORING AGENCY CODE                                      |

## 15. SUPPLEMENTARY NOTES

Prepared by Space Sciences Laboratory, Science and Engineering

## 16. ABSTRACT

An atlas of coronal hole observations (Patrol Long and Single Frame Long Filter 3) recorded by the Skylab Apollo Telescope Mount/S056 X-Ray Telescope during the first two manned missions is presented. A total of 279 operations (excluding Super Long frames) were determined. Comparisons are made between coronal hole observations performed in the first manned mission and those in the second manned mission, and between a Super Long Filter 3 image and a typical Single Frame (or Patrol) Long image. Additional studies to enhance the S056 coronal hole observations and perhaps to extend coverage into the last manned mission are suggested. The data presented in this report are still in preliminary form.

|                                                            |                                                                                           |                        |                   |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|-------------------|
| 17. KEY WORDS                                              | 18. DISTRIBUTION STATEMENT<br><br>Unclassified - Unlimited<br><br><i>Robert M. Wilson</i> |                        |                   |
| 19. SECURITY CLASSIF. (of this report)<br><br>Unclassified | 20. SECURITY CLASSIF. (of this page)<br><br>Unclassified                                  | 21. NO. OF PAGES<br>28 | 22. PRICE<br>NTIS |

## TABLE OF CONTENTS

|                                     | Page |
|-------------------------------------|------|
| I. INTRODUCTION.....                | 1    |
| II. S056 CORONAL HOLE IMAGERY ..... | 2    |
| III. APPROACH.....                  | 3    |
| IV. TABULAR INFORMATION .....       | 3    |
| REFERENCES .....                    | 20   |

## LIST OF ILLUSTRATIONS

| Figure | Title                                                                                                                                                                                                                                                                               | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     | Photograph of a typical S056 coronal hole observation (SL 2 load 1); Patrol Long Filter 3 (6 to 14, 27 to 47 Å), June 1, 1973 (DOY 152), 0212:23½ UT, exposure 2:39, CH1 observed near central meridian, north is to upper left, east is to lower left .....                        | 5    |
| 2.     | Photograph of a typical S056 coronal hole observation (SL 3 load 2); Single Frame Long Filter 3 (6 to 14, 27 to 47 Å), August 16, 1973 (DOY 228), 1459:03½ UT, exposure 2:38¼, north is to upper right, east is to upper left .....                                                 | 6    |
| 3.     | Photograph of a typical S056 coronal hole observation (SL 3 load 2); Super Long Filter 3 (6 to 14, 27 to 47 Å), August 16, 1973 (DOY 228), 1519:33¼ UT, exposure 10:00¼, CH2 observed near central meridian, CH1 on east limb, north is to upper right, east is to upper left ..... | 7    |

## LIST OF TABLES

| Table | Title                                           | Page |
|-------|-------------------------------------------------|------|
| 1.    | PL 3 Observations (SL 2 Load 1) .....           | 8    |
| 2.    | PL 3 and SFL 3 Observations (SL 3 Load 2) ..... | 11   |
| 3.    | PL 3 and SFL 3 Observations (SL 3 Load 3) ..... | 15   |

TECHNICAL MEMORANDUM X-64994

ATLAS OF SKYLAB ATM/S056 CORONAL  
HOLE OBSERVATIONS

I. INTRODUCTION

Long-term observations of coronal holes, regions of depressed emission bounded by apparently large-scale loop structure, were accomplished by the instruments of the Skylab Apollo Telescope Mount (ATM). Initial findings concerning these features have been reported by Vaiana et al. [1, 2], Tousey et al. [3], Harvey et al. [4], Huber et al. [5], Krieger et al. [6], Timothy et al. [7, 8], Bohlin et al. [9], Feldman et al. [10], and Nolte et al. [11].

Nolte et al. [12] and Wetherbee and Reeves [13] have compiled "atlases" of coronal hole observations from the ATM/S054 and S055 instruments, respectively. This report presents similar findings based on observations performed by the ATM/S056 instrument.

The ATM/S056 X-Ray Telescope observed the Sun during all manned operational phases of the Skylab. It obtained some 27 000 photographs (filter-heliograms) of the Sun, as well as more than 1100 hours of X-ray proportional counter data. The instrument has been described by Walsh et al. [14] and Underwood et al. [15, 16], and its orbital performance has been reported by deLoach et al. [17].

One of the S056 X-ray filters was especially designed to reveal the faint X-ray emanations from the Sun. This soft X-ray filter, designated Filter 3, was an 0.086 mil foil of titanium (bandpass: 6 to 14, 27 to 47 Å, where bandpass is defined as that wavelength region in which the product of filter transmission and telescope reflectivity exceeds  $10^{-4}$ ). Operations were performed with this filter (and the other four X-ray filters) in the instrument's Patrol, Single Frame, and Active modes and have yielded some data concerning coronal holes and X-ray bright points. The titanium filter, when used in conjunction with the other X-ray filters, also allows the determination of line-of-sight temperatures and densities following the techniques described by Vaiana et al. [18].

Approximately midway through the second manned mission (i.e., late August 1973), the titanium filter developed a visible light leak. This light leak appeared in the images to varying degrees and, in fact, progressively deteriorated the value of the filter through the last manned mission. In some cases, the light leak appeared as a very faint marking near the edge of the film; in others, it appeared diagonally across the image. Sometimes it would appear in a frame and then disappear for several operations before reappearing. The orientation of the marking and its "degree of blackness" varied, rarely being exactly the same for consecutive Filter 3 operations. The exact cause of this problem is not yet understood.

In addition to the occasional marking on some Filter 3 images, overlapping frames (i.e., a frame superimposed upon the preceding frame's data-block lights because of insufficient film advance) sometimes occurred. The analysis of these frames, however, is a problem only for those X-ray features whose images are found to be in proximity to the data-block light images.

While Filter 3 was the best S056 filter for observing coronal holes, especially when used in conjunction with the Patrol Long (PL), Single Frame Long (SFL), or Super Long ( $S^L$ ) operational modes, Filter 2 (a 0.250 mil foil of aluminum; bandpass: 6 to 8, 8 to 22 Å) and, possibly, Filter 4 (1.000 mil beryllium; bandpass: 6 to 18 Å), when used in the  $S^L$  mode with exposures of several minutes, also sometimes revealed coronal holes. Wilson [19] has compiled a listing of the 552  $S^L$  frames obtained by the S056 instrument and determined their exposure times. Thus, only PL 3 and SFL 3 operations for the first two manned missions (loads 1, 2, and 3) have been included in this report. While all entries may not be frames that specifically show coronal holes, these entries represent all S056 operations (except those found in Reference 19) that were performed to detect their presence. The use of radiography to enhance faint features contained in these data may prove useful in the study of coronal holes, as perhaps will the use of image data processing systems, such as the MSFC IDAPS [20, 21].

### III. S056 CORONAL HOLE IMAGERY

An example of a typical S056 coronal hole photograph observed in the first manned mission through Filter 3 is shown in Figure 1. The coronal hole appears as the elongated area near central meridian which has no X-ray emission. It extends from the north pole (polar coronal hole also noted) to approximately 20°S and is approximately 15° wide at the equator. Following Timothy et al. [8], this hole is known as coronal hole 1 (CH1).

Coronal holes are much more discernible in the observations of the first manned mission (load 1) than in those of the second manned mission (loads 2 and 3), apparently because of conditions on the Sun during these periods. Figure 2 shows the soft X-ray Sun on August 16, 1973 (second mission), and little evidence of an X-ray Sun, except for an active region or two, is observed. Improved viewing of this same August 16 Sun is observed in Figure 3, which shows an S<sup>L</sup> 3. CH1 is noted near the east limb and CH2 is noted near central meridian. The polar coronal hole can also be discerned.

Additional studies concerning the PL, SFL, and S<sup>L</sup> Filter 3 images of the first two manned missions are presently underway. Also, an attempt to recover coronal hole photographic data for the last manned mission from the S<sup>L</sup> 2 and/or 4 exposures is being considered. Of particular interest is the period from November 27 to December 26, 1973, during which the S054 instrument experienced operational anomalies [12].

### III. APPROACH

All PL and SFL Filter 3 operations, as recorded in the "S056 Operations Log," for the first two manned missions were compiled. A total of 279 operations were determined. A review of a third generation Houston-produced (NASA-Johnson Spacecraft Center Photolab) film was then made to reveal those frames whose images were full disk and those that were partial disk. Finally, the results of this study were recorded in Tables 1 through 3 in this report.

### IV. TABULAR INFORMATION

Table 1 lists the PL 3 observations obtained during the first manned mission (SL 2 load 1). No SFL 3 operations were performed. Tables 2 and 3 identify the PL 3/SFL 3 observations performed during the second manned mission (SL 3 loads 2 and 3, respectively). For the S<sup>L</sup> 3 observations, see Reference 19.

In Tables 1 through 3 'Date' identifies the date of the operation, "F.N." identifies the frame numbers of the observation as identified in the S056 Operations Log, 'DOY' is the day-of-year of the observation, "UT" is the universal time of the start of the exposure, "FD/PD" denotes whether the frame is full disk or partial disk, and "Comments" are the remarks relative to the specific frames. The following is an explanation of the abbreviated annotations written in the "Comments" column of Tables 1 through 3:

**OLI:** Overlapping image

**SFL 3:** Single Frame Long, Filter 3

**VLL:** Visible light leak

**VLL (VF):** Visible light leak, very faint

**VLL (VD):** Visible light leak, very dark

**\*:** Very darkened image frame

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 1. Photograph of a typical S056 coronal hole observation (SL 2 load 1); Patrol Long Filter 3 (6 to 14, 27 to 47 Å), June 1, 1973 (DOY 152), 0212:23 $\frac{1}{2}$  UT, exposure 2:39, CH1 observed near central meridian, north is to upper left, east is to lower left. (The "fishhooks" noticeable in the photograph are pressure marks which randomly occurred on all film loads (see Reference 17).)



Figure 2. Photograph of a typical S056 coronal hole observation (SL 3 load 2); Single Frame Long Filter 3 (6 to 14, 27 to 47 Å), August 16, 1973 (DOY 228), 1459:03 $\frac{1}{2}$  UT, exposure 2:38 $\frac{1}{4}$ , north is to upper right, east is to upper left.

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 3. Photograph of a typical S056 coronal hole observation (SL 3 load 2);  
Super Long Filter 3 (6 to 14, 27 to 47 Å), August 16, 1973 (DOY 228),  
1519:33 $\frac{1}{4}$  UT, exposure 10:00 $\frac{1}{4}$ , CH2 observed near central  
meridian, CH1 on east limb, north is to  
upper right, east is to upper left.

TABLE 1. PL 3 OBSERVATIONS (SL 2 LOAD 1)

| Date    | F.N. | DOY | UT       | FD/PD | Comments |
|---------|------|-----|----------|-------|----------|
| 5/29/73 | 51   | 149 | 1945:03½ | FD    |          |
| 5/30    | 69   | 150 | 0013:10½ | FD    |          |
|         | 102  |     | 0155:09¼ | FD    |          |
|         | 141  |     | 1432:46  | FD    |          |
|         | 238  |     | 1716:45¾ | ~FD   |          |
| 5/31    | 376  | 151 | 0111:24¾ | FD    |          |
|         | 415  |     | 1342:42½ | FD    |          |
|         | 439  |     | 1646:52  | PD    |          |
|         | 457  |     | 1709:39¼ | PD    |          |
|         | 475  |     | 1814:51½ | PD    |          |
|         | 493  |     | 1839:28¾ | PD    |          |
|         | 568  |     | 2113:14¼ | PD    |          |
| 6/1     | 672  | 152 | 0212:23½ | FD    |          |
| 6/2     | 690  | 153 | 1359:28¼ | FD    |          |
| 6/3     | 924  | 154 | 0049:10½ | PD    |          |
|         | 930  |     | 0108:56½ | PD    |          |
|         | 942  |     | 0214:16  | FD    |          |
|         | 960  |     | 1452:55  | FD    |          |
|         | 972  |     | 1607:33  | FD    |          |
|         | 1023 |     | 1801:36¾ | PD    |          |
|         | 1056 |     | 2100:37¾ | PD    |          |
| 6/4     | 1133 | 155 | 0134:14½ | FD    |          |
|         | 1172 |     | 1539:31½ | FD    |          |
|         | 1205 |     | 1838:16  | FD    |          |
|         | 1211 |     | 1905:21  | FD    |          |

TABLE 1. (Continued)

| Date   | F.N. | DOY | UT                                  | FD/PD | Comments |
|--------|------|-----|-------------------------------------|-------|----------|
| 6/5/73 | 1313 | 156 | 0052:50 <sup>3</sup> / <sub>4</sub> | PD    |          |
|        | 1337 |     | 0222:09 <sup>3</sup> / <sub>4</sub> | FD    |          |
|        | 1355 |     | 1503:09                             | FD    |          |
|        | 1433 |     | 2106:16                             | PD    |          |
|        | 1451 |     | 2128:36 <sup>3</sup> / <sub>4</sub> | PD    |          |
|        | 1470 |     | 2235:37 <sup>3</sup> / <sub>4</sub> | PD    |          |
|        | 1488 |     | 2258:27 <sup>3</sup> / <sub>4</sub> | PD    |          |
| 6/6    | 1500 | 157 | 0142:28 <sup>3</sup> / <sub>4</sub> | FD    |          |
|        | 1518 |     | 1425:14 <sup>1</sup> / <sub>2</sub> | FD    |          |
|        | 1530 |     | 2013:13 <sup>3</sup> / <sub>4</sub> | PD    |          |
| 6/7    | 1563 | 158 | 0058:43 <sup>1</sup> / <sub>2</sub> | FD    |          |
| 6/8    | 1581 | 159 | 0207:45 <sup>1</sup> / <sub>2</sub> | FD    |          |
|        | 1616 |     | 1614:04 <sup>1</sup> / <sub>4</sub> | FD    |          |
| 6/9    | 1634 | 160 | 0133:15 <sup>1</sup> / <sub>2</sub> | FD    |          |
|        | 1646 |     | 1348:55                             | FD    |          |
| 6/10   | 1731 | 161 | 0022:37                             | PD    |          |
|        | 1759 |     | 0201:10 <sup>1</sup> / <sub>4</sub> | FD    |          |
|        | 1817 |     | 1616:29 <sup>3</sup> / <sub>4</sub> | FD    |          |
|        | 1873 |     | 1905:09 <sup>1</sup> / <sub>4</sub> | PD    |          |
|        | 1879 |     | 1921:44 <sup>3</sup> / <sub>4</sub> | PD    |          |
| 6/11   | 1995 | 162 | 0124:00 <sup>3</sup> / <sub>4</sub> | FD    |          |
|        | 2034 |     | 1357:26 <sup>1</sup> / <sub>2</sub> | FD    |          |
|        | 2092 |     | 1958:23 <sup>1</sup> / <sub>4</sub> | PD    |          |
|        | 2110 |     | 2020:59 <sup>1</sup> / <sub>2</sub> | PD    |          |
| 6/12   | 2270 | 163 | 0209:51                             | FD    |          |

TABLE 1. (Concluded)

| Date    | F.N. | DOY | UT                                  | FD/PD | Comments |
|---------|------|-----|-------------------------------------|-------|----------|
| 6/12/73 | 2288 | 163 | 1450:16 <sup>3</sup> / <sub>4</sub> | FD    |          |
|         | 2300 |     | 1607:37                             | PD    |          |
|         | 2384 |     | 1922:48 <sup>1</sup> / <sub>4</sub> | PD    |          |
|         | 2390 |     | 1938:13 <sup>1</sup> / <sub>4</sub> | PD    |          |
| 6/13    | 2521 | 164 | 0134:06                             | FD    |          |
|         | 2538 |     | 1551 25 <sup>3</sup> / <sub>4</sub> | FD    |          |
|         | 2584 |     | 1844:55 <sup>1</sup> / <sub>2</sub> | PD    |          |
|         | 2602 |     | 2008:39 <sup>1</sup> / <sub>4</sub> | PD    |          |
|         | 2620 |     | 2031:08 <sup>1</sup> / <sub>4</sub> | PD    |          |
|         | 2638 |     | 2140:22                             | PD    |          |
|         | 2C56 |     | 2203:23 <sup>3</sup> / <sub>4</sub> | PD    | OLI      |
| 6/14    | 2733 | 165 | 0112:31                             | FD    |          |
|         | 2745 |     | 1340:33 <sup>3</sup> / <sub>4</sub> | FD    |          |
|         | 2791 |     | 1819:50 <sup>3</sup> / <sub>4</sub> | FD    |          |
| 6/15    | 2937 | 166 | 0005:20 <sup>1</sup> / <sub>2</sub> | FD    |          |
|         | 2955 |     | 1110:54                             | FD    |          |
|         | 2967 |     | 1224:19 <sup>1</sup> / <sub>2</sub> | ~FD   |          |
|         | 3010 |     | 1358:18 <sup>1</sup> / <sub>2</sub> | PD    |          |
|         | 3352 |     | 2201:35 <sup>1</sup> / <sub>4</sub> | FD    |          |
| 6/16    | 3370 | 167 | 1032:10                             | FD    |          |
|         | 3424 |     | 2109:38 <sup>1</sup> / <sub>2</sub> | FD    |          |
| 6/17    | 3463 | 168 | 0941:48 <sup>1</sup> / <sub>2</sub> | FD    |          |
| 6/18    | 3769 | 169 | 1036:01 <sup>3</sup> / <sub>4</sub> | FD    |          |
|         | 3972 |     | 2121:20 <sup>1</sup> / <sub>4</sub> | FD    |          |
|         | 3976 |     | 2133:11                             | FD    |          |

TABLE 2. PL 3 AND SFL 3 OBSERVATIONS (SL 3 LOAD 2)

| Date   | F.N. | DOY | UT                    | FD/PD | Comments |
|--------|------|-----|-----------------------|-------|----------|
| 8/8/73 | 304  | 220 | 0102:36               | ~FD   | SFL 3    |
|        | 320  |     | 1501:38 $\frac{1}{4}$ | FD    |          |
| 8/9    | 476  | 221 | 0146:59 $\frac{3}{4}$ | PD    |          |
|        | 512  |     | 1547:55 $\frac{3}{4}$ | FD    |          |
| 8/10   | 711  |     | 1845:21 $\frac{1}{4}$ | FD    |          |
|        | 858  |     | 2146:38 $\frac{3}{4}$ | FD    |          |
| 8/11   | 936  | 222 | 1432:12 $\frac{3}{4}$ | FD    |          |
| 8/11   | 1034 | 223 | 0133:04               | FD    |          |
|        | 1082 |     | 1401:08               | FD    |          |
| 8/11   | 1188 |     | 1841:30               | PD    |          |
|        | 1206 |     | 1905:01 $\frac{3}{4}$ | PD    |          |
| 8/11   | 1224 |     | 2010:35 $\frac{1}{4}$ | PD    |          |
|        | 1242 |     | 2032:58 $\frac{1}{4}$ | PD    |          |
| 8/11   | 1260 |     | 2146:00 $\frac{3}{4}$ | PD    |          |
|        | 1278 |     | 2209:22 $\frac{1}{4}$ | PD    |          |
| 8/12   | 1290 | 224 | 0049:20               | FD    |          |
| 8/12   | 1332 |     | 1804:29               | FD    |          |
|        | 1492 | 225 | 0142:56 $\frac{1}{4}$ | FD    |          |
| 8/13   | 1534 |     | 1431:03               | FD    |          |
|        | 1709 |     | 2048:11 $\frac{1}{4}$ | FD    |          |
| 8/14   | 1866 | 226 | 0105:26 $\frac{3}{4}$ | FD    |          |
|        | 1885 |     | 1332:34               | FD    |          |
| 8/14   | 1921 |     | 1500:26 $\frac{1}{4}$ | PD    |          |
|        | 1939 |     | 1524:28               | PD    |          |
| 8/14   | 1957 |     | 1632:23               | PD    |          |

TABLE 2. (Continued)

| Date    | F.N. | DOY | UT                    | FD/PD | Comments |
|---------|------|-----|-----------------------|-------|----------|
| 8/14/73 | 1975 | 226 | 1706:42 $\frac{1}{4}$ | PD    |          |
|         | 1991 |     | 1817:49 $\frac{1}{4}$ | PD    |          |
|         | 2182 |     | 2247:01 $\frac{3}{4}$ | PD    |          |
|         | 2251 | 227 | 0021:27 $\frac{1}{2}$ | PD    |          |
|         | 2308 |     | 0155:49 $\frac{1}{2}$ | PD    |          |
|         | 2374 |     | 1320:58               | PD    | SFL 3    |
| 8/15    | 2383 |     | 1436:32 $\frac{1}{4}$ | FD    |          |
|         | 2800 |     | 2332:23               | PD    |          |
|         | 2848 | 228 | 0119:19 $\frac{1}{2}$ | FD    |          |
|         | 2872 |     | 1220:52 $\frac{1}{2}$ | PD    |          |
|         | 2890 |     | 1346:23 $\frac{1}{2}$ | FD    |          |
|         | 2918 |     | 1459:03 $\frac{1}{2}$ | FD    | SFL 3    |
|         | 3003 |     | 2004:36 $\frac{3}{4}$ | PD    |          |
|         | 3009 |     | 2024:04 $\frac{1}{2}$ | PD    |          |
|         | 3025 |     | 2130:17 $\frac{3}{4}$ | PD    |          |
|         | 3043 |     | 2156:49 $\frac{3}{4}$ | PD    |          |
| 8/16    | 3057 |     | 2256:18               | PD    |          |
|         | 3075 |     | 2331:39 $\frac{3}{4}$ | PD    |          |
|         | 3093 | 229 | 0033:12 $\frac{3}{4}$ | PD    |          |
|         | 3111 |     | 0057:49               | PD    |          |
|         | 3124 |     | 0205:15 $\frac{1}{4}$ | FD    |          |
|         | 3136 |     | 0227:54 $\frac{1}{4}$ | PD    |          |
|         | 3166 |     | 1146:50 $\frac{1}{2}$ | FD    |          |
|         | 3310 |     | 1619:24 $\frac{3}{4}$ | PD    |          |
|         | 3415 |     | 1913:44 $\frac{1}{4}$ | PD    |          |

TABLE 2. (Continued)

| Date    | F.N. | DOY | UT                    | FD/PD | Comments |
|---------|------|-----|-----------------------|-------|----------|
| 8/17/73 | 3433 | 229 | 1936:03 $\frac{1}{4}$ | PD    |          |
|         | 3451 |     | 2058:16 $\frac{3}{4}$ | PD    |          |
| 8/18    | 3470 | 230 | 0014:05               | PD    |          |
|         | 3488 |     | 0124:41 $\frac{1}{2}$ | FD    |          |
|         | 3550 |     | 1354:56 $\frac{1}{2}$ | FD    |          |
|         | 3586 |     | 1529:25 $\frac{1}{4}$ | FD    |          |
|         | 3628 |     | 1700:33 $\frac{1}{4}$ | PD    |          |
|         | 3803 |     | 2201:09               | PD    |          |
|         | 3821 |     | 2317:14 $\frac{1}{2}$ | PD    |          |
| 8/19    | 3839 | 231 | 0042:05 $\frac{3}{4}$ | PD    |          |
|         | 3881 |     | 1142:32 $\frac{1}{2}$ | FD    |          |
|         | 3905 |     | 1323:45               | FD    |          |
|         | 4039 |     | 1921:03 $\frac{1}{2}$ | FD    | SFL 3    |
|         | 4043 |     | 1942:59 $\frac{1}{2}$ | PD    |          |
| 8/20    | 4214 | 232 | 0021:42               | FD    |          |
|         | 4238 |     | 0135:23 $\frac{1}{2}$ | FD    |          |
|         | 4326 |     | 1240:04 $\frac{3}{4}$ | FD    |          |
|         | 4428 |     | 1543:26 $\frac{1}{2}$ | FD    |          |
|         | 4531 |     | 1847:16               | FD    |          |
| 8/21    | 4714 | 233 | 0058:39 $\frac{1}{4}$ | FD    |          |
|         | 4739 |     | 0232:48 $\frac{3}{4}$ | FD    |          |
|         | 4825 |     | 1323:36               | FD    |          |
|         | 4909 |     | 1632:29 $\frac{3}{4}$ | PD    |          |
|         | 5018 |     | 1923:29 $\frac{3}{4}$ | PD    | SFL 3    |
|         | 5021 |     | 1934:49               | PD    | SFL 3    |

TABLE 2. (Concluded)

| Date    | F.N. | DOY | UT                                  | FD/PD | Comments       |
|---------|------|-----|-------------------------------------|-------|----------------|
| 8/21/73 | 5022 | 233 | 1939:12 <sup>3</sup> / <sub>4</sub> | PD    | SFL 3          |
|         | 5027 |     | 2003:07 <sup>3</sup> / <sub>4</sub> | PD    | SFL 3          |
|         | 5028 |     | 2008:19                             | PD    | SFL 3          |
|         | 5043 |     | 2123:43 <sup>3</sup> / <sub>4</sub> | PD    | SFL 3; VLL(VF) |
|         | 5045 |     | 2130:29 <sup>1</sup> / <sub>2</sub> | PD    | SFL 3          |
|         | 5047 |     | 2137:12 <sup>1</sup> / <sub>2</sub> | PD    | SFL 3          |
|         | 5049 |     | 2142:29 <sup>1</sup> / <sub>4</sub> | PD    | SFL 3          |
|         | 5053 |     | 2235:14 <sup>1</sup> / <sub>2</sub> | FD    | VLL(VF)        |
|         | 5059 |     | 2253:30                             | FD    | VLL(VF)        |
| 8/22    | 5078 | 234 | 0007:49                             | FD    |                |
|         | 5084 |     | 0025:13 <sup>1</sup> / <sub>2</sub> | FD    |                |
|         | 5097 |     | 0151:06 <sup>3</sup> / <sub>4</sub> | FD    |                |
|         | 5139 |     | 1306:00 <sup>3</sup> / <sub>4</sub> | FD    |                |
|         | 5241 |     | 1736:18                             | FD    |                |
|         | 5277 |     | 1918:57 <sup>1</sup> / <sub>4</sub> | PD    | VLL(VF)        |
|         | 5407 |     | 2328:28 <sup>1</sup> / <sub>2</sub> | FD    |                |
|         | 5413 |     | 2346:26                             | FD    | VLL(VF)        |
| 8/23    | 5426 | 235 | 0109:56 <sup>1</sup> / <sub>4</sub> | FD    |                |
|         | 5458 |     | 1218:17 <sup>3</sup> / <sub>4</sub> | ~FD   |                |
|         | 5464 |     | 1233:58                             | ~FD   | VLL(VF)        |
| 8/24    | 5476 | 236 | 1344:07                             | FD    | VLL(VF)        |
|         | 5645 |     | 0040:40                             | FD    | VLL(VF)        |

**TABLE 3. PL 3 AND SFL 3 OBSERVATIONS (SL 3 LOAD 3)**

| Date    | F.N. | DOY | UT                                  | FD/PD | Comments        |
|---------|------|-----|-------------------------------------|-------|-----------------|
| 8/24/73 | 3    | 236 | 2344:11 <sup>3</sup> / <sub>4</sub> | ~FD   | VLL(VF)         |
| 8/25    | 120  | 237 | 0145:38 <sup>1</sup> / <sub>4</sub> | FD    |                 |
|         | 138  |     | 1238:21 <sup>1</sup> / <sub>4</sub> | FD    |                 |
|         | 337  |     | 1844:14                             | FD    | VLL(VF)         |
| 8/26    | 600  | 238 | 0053:10                             | FD    | VLL(VF)         |
|         | 636  |     | 1327:25                             | FD    | VLL(VF)         |
| 8/27    | 949  | 239 | 0009:42 <sup>1</sup> / <sub>2</sub> | FD    | VLL             |
|         | 985  |     | 1241:35 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VF)         |
|         | 1089 |     | 1700:17 <sup>1</sup> / <sub>2</sub> | PD    | VLL(VF)         |
|         | 1206 |     | 2020:54                             | PD    | VLL(VD)         |
|         | 1218 |     | 2048:57 <sup>1</sup> / <sub>4</sub> | PD    | VLL(VD)         |
|         | 1235 |     | 2153:08 <sup>3</sup> / <sub>4</sub> | PD    | VLL(VF)         |
|         | 1253 |     | 2215:35 <sup>3</sup> / <sub>4</sub> | PD    |                 |
|         | 1271 |     | 2324:28 <sup>1</sup> / <sub>4</sub> | PD    |                 |
|         | 1316 | 240 | 0058:41 <sup>1</sup> / <sub>4</sub> | FD    | VLL(VD)         |
| 8/28    | 1406 |     | 1140:34 <sup>1</sup> / <sub>2</sub> | PD    | VLL(VF)         |
|         | 1449 |     | 1224:26 <sup>1</sup> / <sub>2</sub> | PD    | SFL 3; VLL(VD); |
|         | 1476 |     | 1331:36 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD)         |
|         | 1613 |     | 1651:53 <sup>3</sup> / <sub>4</sub> | PD    | SFL 3           |
|         | 1666 |     | 1936:57 <sup>3</sup> / <sub>4</sub> | PD    | VLL(VD)         |
|         | 1669 |     | 2000:20                             | PD    | VLL(VD)         |
|         | 1938 | 241 | 0147:09 <sup>1</sup> / <sub>4</sub> | FD    | VLL(VD)         |
| 8/29    | 1977 |     | 1240:20 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD)         |
|         | 2001 |     | 1425:33 <sup>1</sup> / <sub>2</sub> | PD    |                 |
|         | 2054 |     | 2033:21 <sup>1</sup> / <sub>4</sub> | PD    | VLL(VF)         |

TABLE 3. (Continued)

| Date    | F.N. | DOY | UT                    | FD/PD | Comments        |
|---------|------|-----|-----------------------|-------|-----------------|
| 8/29/73 | 2074 | 241 | 2055:42 $\frac{1}{2}$ | PD    | VLL(VF)         |
|         | 2135 |     | 2346:25               | PD    | VLL( VD)        |
| 8/30    | 2153 | 242 | 0243:36               | FD    | VLL( VD)        |
|         | 2192 |     | 1210:59               | PD    | SFL 3; VLL(VF)  |
| 8/31    | 2194 |     | 1217:23 $\frac{3}{4}$ | PD    | SFL 3; VLL(VF)  |
|         | 2196 |     | 1224:52               | PD    | SFL 3; VLL(VF)  |
| 9/1     | 2198 |     | 1231:07 $\frac{3}{4}$ | PD    | SFL 3; VLL(VF)  |
|         | 2207 |     | 1338:21 $\frac{1}{2}$ | FD    | VLL( VD)        |
| 9/2     | 2249 |     | 1458:53 $\frac{1}{2}$ | PD    | VLL( VD)        |
|         | 2255 |     | 1516:28 $\frac{3}{4}$ | PD    | VLL( VD)        |
| 9/2     | 2417 | 243 | 2303:20               | PD    | VLL( VD)        |
|         | 2435 |     | 0027:24 $\frac{1}{2}$ | FD    | VLL( VD)        |
| 9/2     | 2491 |     | 1312:01 $\frac{3}{4}$ | FD    | VLL( VD)        |
|         | 2515 |     | 1435:06 $\frac{3}{4}$ | PD    | VLL( VF)        |
| 9/2     | 2527 |     | 1550:05 $\frac{3}{4}$ | PD    | VLL( VF)        |
|         | 2533 |     | 1607:25               | PD    | VLL( VF)        |
| 9/2     | 2551 |     | 1723:51 $\frac{1}{4}$ | PD    | VLL( VF)        |
|         | 2557 |     | 1751:57 $\frac{1}{2}$ | PD    | VLL( VF)        |
| 9/2     | 2599 |     | 1930:09 $\frac{1}{2}$ | PD    |                 |
|         | 2762 | 244 | 0114:55               | FD    | VLL( VD)        |
| 9/2     | 2772 |     | 0125:58               | FD    | SFL 3; VLL( VD) |
|         | 2782 |     | 1219:10 $\frac{1}{2}$ | FD    | VLL( VD)        |
| 9/2     | 2812 |     | 1335:51 $\frac{3}{4}$ | PD    | VLL( VF)        |
|         | 2875 |     | 1658:56 $\frac{1}{2}$ | PD    | VLL( VF)        |
| 9/2     | 3008 | 245 | 0036:36 $\frac{3}{4}$ | FD    | VLL( VD)        |

TABLE 3. (Continued)

| Date   | F.N. | DOY | UT                    | FD/PD | Comments                                         |
|--------|------|-----|-----------------------|-------|--------------------------------------------------|
| 9/2/73 | 3123 | 245 | 1318:20               | FD    | VLL(VD)                                          |
|        | 3229 |     | 2036:30 $\frac{1}{4}$ | PD    | SFL 3; VLL(VF)                                   |
|        | 3233 |     | 2058:51               | PD    | SFL 3; VLL(VD)                                   |
|        | 3240 |     | 2114:55 $\frac{1}{4}$ | PD    | SFL 3; exposure :04 $\frac{3}{4}$ ; VLL(VD); OLI |
| 9/3    | 3268 | 246 | 0124:29               | FD    | VLL(VD)                                          |
|        | 3290 |     | 1223:18 $\frac{1}{4}$ | FD    | VLL(VD)                                          |
|        | 3327 |     | 1817:55 $\frac{1}{4}$ | PD    | SFL 3; VLL(VD)                                   |
|        | 3329 |     | 1855:17               | PD    | SFL 3; VLL(VD)                                   |
| 9/4    | 3369 | 247 | 0047:20 $\frac{3}{4}$ | FD    | VLL(VD)                                          |
|        | 3385 |     | 0212:52 $\frac{1}{4}$ | FD    | SFL 3; VLL(VD)                                   |
|        | 3392 |     | 0228:55               | FD    | SFL 3; VLL(VD)                                   |
|        | 3422 |     | 1318:23               | FD    | VLL(VD)                                          |
|        | 3479 |     | 1948:24               | FD    | VLL(VD)                                          |
|        | 3533 |     | 2234:59 $\frac{3}{4}$ | PD    | VLL(VD)                                          |
|        | 3545 | 248 | 0007:36 $\frac{3}{4}$ | PD    | VLL(VD)                                          |
| 9/5    | 3569 |     | 0137:48 $\frac{1}{4}$ | FD    | VLL(VD)                                          |
|        | 3586 |     | 1241:59               | FD    | VLL(VD)                                          |
|        | 3850 | 249 | 0101:06 $\frac{1}{4}$ | FD    | VLL(VD)                                          |
| 9/6    | 3887 |     | 1318:19 $\frac{1}{2}$ | FD    | VLL(VD)                                          |
|        | 3995 |     | 2308:51 $\frac{1}{4}$ | FD    | SFL 3; VLL(VD); *                                |
|        | 4014 | 250 | 0146:44               | FD    | VLL(VD); *                                       |
| 9/7    | 4197 |     | 1441:48               | FD    | SFL 3; exposure :30; VLL(VD)                     |
|        | 4320 | 251 | 0104:10 $\frac{3}{4}$ | FD    | VLL(VD); *                                       |
| 9/8    | 4369 |     | 1331:06 $\frac{3}{4}$ | FD    | VLL(VD); *                                       |
|        | 4424 |     | 1809:51 $\frac{1}{2}$ | FD    | SFL 3; VLL(VD); OLI; *                           |

TABLE 3. (Continued)

| Date   | F.N. | DOY | UT                                  | FD/PD | Comments               |
|--------|------|-----|-------------------------------------|-------|------------------------|
| 9/8/73 | 4439 | 251 | 1931:29 <sup>3</sup> / <sub>4</sub> | FD    | SFL 3; VLL(VD); *      |
| 9/9    | 4486 | 252 | 0158:14                             | FD    | VLL(VD); OLI; *        |
|        | 4511 |     | 1248:52 <sup>1</sup> / <sub>2</sub> | FD    | VLL(VD); *             |
| 9/10   | 4892 | 253 | 0422:13 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD); *             |
|        | 4925 |     | 1205:52 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD); *             |
|        | 5027 |     | 1649:26                             | PD    | VLL(VD)                |
| 9/11   | 5079 | 254 | 0202:32                             | FD    | VLL(VD); *             |
|        | 5090 |     | 1131:04 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD); *             |
|        | 5102 |     | 1153:50                             | ?     | SFL 3; VLL(VD); OLI; * |
|        | 5112 |     | 1501:38                             | ?     | SFL 3; VLL(VD); OLI; * |
| 9/12   | 5215 | 255 | 0122:21 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD); *             |
|        | 5235 |     | 1351:07                             | FD    | VLL(VD); OLI; *        |
|        | 5291 |     | 2133:28 <sup>1</sup> / <sub>2</sub> | ?     | SFL 3; VLL(VD); *      |
| 9/13   | 5326 | 256 | 0213:46                             | FD    | VLL(VD); OLI; *        |
|        | 5343 |     | 1148:11 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD); OLI; *        |
| 9/14   | 5424 | 257 | 0129:50 <sup>1</sup> / <sub>4</sub> | FD    | VLL(VD); OLI; *        |
|        | 5448 |     | 1238:42 <sup>1</sup> / <sub>2</sub> | FD    | VLL(VD); OLI; *        |
|        | 5500 |     | 1553:17                             | PD    | SFL 3; VLL(VD); *      |
| 9/16   | 5547 | 259 | 0152:44 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD); OLI; *        |
|        | 5564 |     | 1237:54 <sup>1</sup> / <sub>4</sub> | FD    | VLL(VD); OLI; *        |
|        | 5583 |     | 2334:04                             | FD    | VLL(VD); OLI; *        |
| 9/17   | 5595 | 260 | 1025:49 <sup>1</sup> / <sub>4</sub> | FD    | VLL(VD); OLI; *        |
|        | 5618 |     | 2134:24 <sup>1</sup> / <sub>4</sub> | ?     | SFL 3; VLL(VD); OLI; * |
| 9/18   | 5635 | 261 | 0947:26 <sup>3</sup> / <sub>4</sub> | FD    | VLL(VD); *             |
|        | 5657 |     | 2219:31                             | FD    | VLL(VD); OLI; *        |

TABLE 3. (Concluded)

| Date    | F.N. | DOY | UT                    | FD/PD | Comments               |
|---------|------|-----|-----------------------|-------|------------------------|
| 9/19/73 | 5674 | 262 | 0900:28               | FD    | VLL(VD); OLI; *        |
|         | 5699 |     | 2127:01 $\frac{1}{4}$ | FD    | VLL(VD); OLI; *        |
| 9/20    | 5719 | 263 | 1013:15 $\frac{3}{4}$ | FD    | VLL(VD); OLI; *        |
|         | 5745 |     | 2222:38 $\frac{3}{4}$ | FD    | VLL(VD); OLI; *        |
| 9/21    | 5761 | 264 | 0749:11               | FD    | VLL(VD); *             |
|         | 5771 |     | 0805:33 $\frac{1}{4}$ | ?     | SFL 3; VLL(VD); OLI; * |
|         | 5795 |     | 1834:39               | FD    | VLL(VD); OLI; *        |

## REFERENCES

1. Vaiana, G. S.; Davis, J. M.; Giacconi, R.; Krieger, A. S.; Silk, J. K.; Timothy, A. F.; and Zombeck, M.: X-Ray Observations of Characteristic Structures and Time Variations from the Solar Corona: Preliminary Results from Skylab. *Astrophys. J. (Letters)*, vol. 185, 1973, pp. L47-L51.
2. Vaiana, G. S.; Chase, R.; Davis, J.; Gerassimenko, M.; Golub, L.; Kahler, S.; Krieger, A. S.; Petrasso, R.; Silk, J. K.; Simon, R.; Timothy, A. F.; Zombeck, M.; and Webb, D.: Skylab and the ASE X-Ray Telescope Experiment: A New View of the X-Ray Corona. Included in *Skylab Solar Workshop: Preliminary Results from the S-054 X-Ray Telescope and the Correlated Ground-Based Observations* (ed. by G. Righini), *Osservazioni e Memorie Fascicolo 104*, Arcetri Astrophysical Observatory, Baccini and Chiappi, Florence, Italy, 1974, pp. 3-47.
3. Tousey, R.; Bartoe, Jr., D. F.; Bohlin, J. D.; Brueckner, G. E.; Purcell, J. D.; Scherrer, V. E., Sheeley, N. R., Jr.; Schumacher, R. J.; and Van Hoosier, M. E.: A Preliminary Study of the Extreme Ultraviolet Spectroheliograms from Skylab. *Sol. Phys.*, vol. 33, 1973, pp. 265-280.
4. Harvey, J.; Krieger, A. S.; Timothy, A. F.; and Vaiana, G. S.: Comparison of Skylab X-Ray and Ground-Based Helium Observations. Included in *Skylab Solar Workshop: Preliminary Results from the S-054 X-Ray Telescope and the Correlated Ground-Based Observations* (ed. by G. Righini), *Osservazioni e Memorie Fascicolo 104*, Arcetri Astrophysical Observatory, Baccini and Chiappi, Florence, Italy, 1974, pp. 50-58.
5. Huber, M. C. E.; Foukal, P. V.; Noyes, R. W.; Reeves, E. M.; Schmahl, E. J.; Timothy, J. G.; Vernazza, J. E.; and Withbroe, G. L.: Extreme Ultraviolet Observations of Coronal Holes: Initial Results from Skylab. *Astrophys. J. (Letters)*, vol. 194, 1974, pp. L115-L118.
6. Krieger, A. S.; Timothy, A. F.; Vaiana, G. S.; Lazarus, A. J.; and Sullivan, J. D.: X-Ray Observations of Coronal Holes and Their Relation to High Velocity Solar Wind Streams. Included in *Solar Wind Three* (ed. by C. T. Russell), Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 1974, pp. 132-139.

## REFERENCES (Continued)

7. Timothy, A. F.; Gerassimenko, M.; Golub, L.; Krieger, A. S.; Petrasso, R.; and Vaiana, G. S.: The Long-Term Development of the Large-Scale Corona and the Evolution of Coronal Holes. Included in Skylab Solar Workshop: Preliminary Results from the S-054 X-Ray Telescope and the Correlated Ground-Based Observations (ed. by G. Righini), Osservazioni e Memorie Fascicolo 104, Arcetri Astrophysical Observatory, Baccini and Chiappi, Florence, Italy, 1974, pp. 93-110.
8. Timothy, A. F.; Krieger, A. S.; and Vaiana, G. S.: The Structure and Evolution of Coronal Holes. *Sol. Phys.*, vol. 42, 1975, pp. 135-156.
9. Bohlin, J. D.; Vogel, S. N.; Purcell, J. D.; Sheeley, N. R., Jr.; Tousey, R.; and Van Hoosier, M. E.: A Newly Observed Solar Feature: Macrospicules in HeII 304Å. *Astrophys. J. (Letters)*, vol. 197, 1975, pp. L133-L135.
10. Feldman, U.; Doschek, G. A.; Van Hoosier, M. E.; and Tousey, R.: The 1640.4 H $\alpha$  Line of HeII Observed from Skylab. *Astrophys. J. (Letters)*, vol. 199, 1975, pp. L67-L70.
11. Nolte, J. T.; Krieger, A. S.; Timothy, A. F.; Gold, R. E.; Roelof, E. C.; Vaiana, G.; Lazarus, A. J.; Sullivan, J. D.; and McIntosh, P.S.: Coronal Holes as Sources of Solar Wind. ASE-3817 (submitted to *Sol. Phys.*), 1976.
12. Nolte, J. T.; Krieger, A. S.; Timothy, A. F.; Vaiana, G. S.; and Zombeck, M. V.: An Atlas of Coronal Hole Boundary Positions May 28 to November 21, 1973. ASE-3787 (submitted to *Sol. Phys. Suppl.*), 1976.
13. Wetherbee, P. K. and Reeves, E. M.: Preliminary Atlas of Coronal Hole Observations with the HCO Spectrometer on Skylab. Private communication, 1975.
14. Walsh, E. J.; Sokolowski, T. I.; Miller, G. M.; Cofield, K. L., Jr.; Douglas, J. D.; Lewter, B. J.; Burke, H. O.; and Davis, A. J.: Design Characteristics of a Skylab Soft X-Ray Telescope. *Proc. S.P.I.E.*, vol. 44, 1974, pp. 175-184.

## REFERENCES (Concluded)

15. Underwood, J. H.; Chapman, G. A.; Janssens, T. J.; Mayfield, E. B.; McKenzie, D. L.; Vorpahl, J. A.; Walker, A. B. C., Jr., Milligan, J. E.; deLoach, A. C.; Hoover, R. B.; McGuire, J. P.; and Wilson, R. M.: Preliminary Results from the S056 X-Ray Telescope Experiment Aboard the Skylab/Apollo Telescope Mount. *Advances in Aeronautics and Astronautics* (ed. by E. Stuhlinger, S. T. Wu, and M. Kent), A.I.A.A. (in press), 1975.
16. Underwood, J. H.; Milligan, J. E.; deLoach, A. C.; and Hoover, R. B.: The S-056 X-Ray Telescope Experiment on the Skylab-Apollo Telescope Mount. *Appl. Opt.* (submitted), 1976.
17. deLoach, A. C.; Hoover, R. B.; Wilson, R. M.; Milligan, J. E.; and Underwood, J. H.: The Skylab/ATM S056 Solar X-Ray Telescope: Design and Performance. NASA Technical Note (submitted), 1976.
18. Vaiana, G. S.; Krieger, A. S.; and Timothy, A. F.: Identification and Analysis of Structures in the Corona from X-Ray Photography. *Sol. Phys.*, vol. 32, 1973, pp. 81-116.
19. Wilson, R. M.: Atlas of Skylab/ATM S056 Super-Long Exposures and Stepped-Image Frames. NASA TM X- 64992, February 1976.
20. Wilson, R. M.; Teuber, D. L.; Watkins, J. R.; Thomas, D. T.; and Cooper, C. M.: A Unique Image Data Processing System for Solar Astronomy. *Appl. Opt.* (submitted), 1976.
21. Wilson, R. M.; Teuber, D. L.; Watkins, J. R.; Thomas, D. T.; and Cooper, C. M.: IDAPS — A Unique Approach to Image Data Processing. *I.E.E.E. Trans. on Computers* (submitted), 1976.

## APPROVAL

### ATLAS OF SKYLAB ATM/S056 CORONAL HOLE OBSERVATIONS

By Robert M. Wilson

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.



ANTHONY C. deLOACH  
Chief, Solar Sciences Branch



WILLIAM C. SNODDY  
Chief, Astronomy and Solid State Physics Division



CHARLES A. LUNDQUIST  
Director, Space Sciences Laboratory