Opportunistic Mobile Networks

Barun Saha

http://barunsaha.me/

July 18, 2015

Why the Internet Model Fails?

- Try loading a web page over an unstable connection
 - Timeout

Why the Internet Model Fails?

- TCP:
 - Connection oriented
 - End-to-end communication path
- Support or reject the claim:
 - Since TCP is connection oriented, if we replace TCP with UDP, we would not require OMNs.

OMNs: Characteristics

- Hop-by-hop message transfer
- Store-carry-and-forward
- Message replication, not forwarding
- Optimal decision based on locally available information
- Delivery latency: In the order of hours

Epidemic Routing

- Summary vectors
 - Probabilistic set query using Bloom filters
- Immune:
 - Maintain a list
- Vaccine:
 - Let others know
- Sequence diagrams
 - Insightful for implementation

Epidemic Routing: Quiz

- A: {m1, m4} B: {m7, m8, m12} C: {m3}
- Destination of m4 is B
- Nodes A and B meet
- Nodes A and C meet
- C generates m15
- Messages with C?

Epidemic Routing: Solution

- A: {m1, m4} B: {m7, m8, m12} C: {m3}
- Destination of m4 is B
- Nodes A and B meet $A = \{m1, m7, m8, m12\}$
- Nodes A and C meet $C = \{m1, m3, m7, m8, m12\}$
- C generates m15
- Messages with C?

```
C = \{m1, m3, m7, m8, m12, m15\}
```

Spray-and-Wait

- Message replication limit, L
- Binary and non-binary modes

SnW: Quiz

- A: {m1, m4} B: {m7, m8, m12} C: {m3}
- All messages have L = 2 copies
- Destination of m4 is B
- Nodes A and B meet
- A generates m14
- Nodes A and C meet
- C generates m15
- Messages with C?

SnW: Solution

- A: {m1, m4} B: {m7, m8, m12} C: {m3}
- All messages have L = 2 copies
- Destination of m4 is B
- Nodes A and B meet A: {m1, m7, m8, m12}
- A generates m14
- Nodes A and C meet A: {m1, m3, m7, m8, m12, m14}
- C generates m15
- Messages with C?
 C: {m3, m14, m15}

PROPHET

- Delivery predictability likelihood of meeting a node
- Transitivity:
 - "Chinese whisper"
 - John meets with Paul
 - Paul meets with Henry
 - Pass a message from John to Henry

Comparison

	Epidemic	SnW	PRoPHET
Intelligence			
# of replications	Unlimited	L	Unlimited
Overhead	High	Low	High

Inter-contact Time

- Contact
- Inter-contact time (ICT):
 - Aggregate
 - Pairwaise
 - Friends vs. familiar strangers
- Power law paradox

Inter-contact Time: Quiz

- Process X follows exponential distribution
- Process Y follows Pareto (Power law) distribution
- Given two set of sample data from both the processes
- (Pictorially) Guess which sample is from which process

Inter-contact Time: Solution

- CCDF: P(X > x)
- Exponential distribution:
 - Semi-log plot would be a straight line
- Power law distribution:
 - Log-log plot would give a straight line
- Caution: Straight line CCDF in a log-log plot does not necessarily mean power law!

Human Mobility

- Truncated Levy Walk:
 - Flight length, L
 - Direction, a
 - Flight time, t
 - Pause time, p
- L and p follow Levy distribution (Power law)
 - Results in heavy-tailed ICTs
- We are not alone:
 - Monkeys and other animals do so too!

Let's Play a Game

- Select an option
- Option A:
 - Win \$1,000 with a 50% chance
 - Win nothing with a 50% chance
- Option B:
 - Win \$450 for sure!

Let's Play a Game (Again)

- Select an option
- Option C:
 - Lose \$1,000 with a 50% chance
 - Lose nothing with a 50% chance
- Option D:
 - Lose \$450 for sure!

Experimental Outcomes

- Expected payoffs:
 - Option A: \$500
 - Option B: \$450
 - About 82% people chose B
- Expected loss:
 - Option C: \$500
 - Option D: \$450
 - About 82% people chose C

Prospect Theory

- Developed by Tversky and Kahneman
 - Kahneman later proposed cumulative prospect theory
 - Won Nobel prize in economics
- Expected Utility Theory:
 - Rational choices
- Human decision making is far from rational!
 - Risk averse in the domain of gains
 - Risk seeking in the domain of loss
- Objective vs. subjective probabilities

TLW + Exploration = TLWE

- **B. K. Saha**, S. Misra, and S. Pal, "Utility-based Exploration for Performance Enhancement in Opportunistic Mobile Networks," *IEEE Transactions on Computers*, DOI: 10.1109/TC.2015.2441700, March 2015.
- Points of Interest (Pol)
- Pol discovery; explore to Pol probabilistically
- PT-based utilities for exploration
- Better performance than TLW

OOP/Java

- Class:
 - public class A {}
- Inheritance:
 - public class A extends B {}
- Override methods

Network Simulation

- Simulation vs. real life
- Your toolkit:
 - Java (JDK & JRE) preferably version 6
 - The ONE simulator
 - [Optional] NetBeans / Eclipse
 - [Optional] Python or other scripts
 - Gnuplot => EPS figures
 - Latex
 - [Optional] Git
- "One script to rule them all" [With apologies to JRR Tolkien]

Opportunistic Network Environment

- ONE:
 - Modules
 - External events
 - Reports
 - Unit tests
- The DTN Blog:
 - http://delay-tolerant-networks.blogspot.in/
- The ONE Knowledge Base:
 - http://theonekb-barunsaha.rhcloud.com/

Setting Up a Scenario

- # of groups, nodes
- Transmission speed, range
- Terrain size
- Mobility / connection patterns
 - Real life traces available at CRAWDAD
- Traffic, TTL, buffer size
- Routing protocol
- Simulation duration

Multiple Scenarios

- Parametrized simulations
- # of parameter values = Relative prime numbers
 - -GCD(i, j) = 1

Performance Evaluation

- Why?
- Typical metrics:
 - Delivery ratio of messages
 - Average delivery latency
 - Overhead ratio
- Confidence intervals

Develop a Routing Protocol

- SnW with utility (SnWU)
- Utility, U(i, j) = total # of contacts i had with j
- Node i has a message m; comes in contact with j
- Classical SnW:
 - Replicate to j: L(m) > 1
- SnWU:
 - Replicate to j: L(m) > 1 and U(j, d) > U(i, d)
 - d is the destination of m

Hands-on Session

Heterogeneity in OMNs

- **B. K. Saha** and S. Misra, "Effects of Heterogeneity on the Performance of Pocket Switched Networks," *IET Networks*, vol. 3, no. 2, pp. 110–118, June 2014.
- Harware and software
- Diverse routing protocols
 - Protocol Translation Units

The Big Picture

- OMNs: Hop-by-hop message forwarding
- Intelligent routing (overhead?)
- Mobility pattern => ICT
 - Real-life traces
 - TLW, TLWE
- Human decision making
- The ONE simulator

Thank you!

