Question Number	Answer		Mark
3(a)	Any PAIR from		
	$\ln \theta = \ln \theta_0 - \lambda n$	(1)	
	Is in the form $y = c + mx$ where $-\lambda$ is the gradient	(1)	
	Or		
	$\ln \theta = -\lambda n + \ln \theta_0$	(1)	
	Is in the form $y = mx + c$ where $-\lambda$ is the gradient	(1)	2
	MP2 dependent on MP1		
3(b)(i)	Values of $\ln \theta$ correct to 2 d.p. Accept 3 d.p.	(1)	
	Axes labelled: y as $\ln (\theta / ^{\circ})$ and x as n Accept degrees for $^{\circ}$	(1)	
	Appropriate scales chosen	(1)	
	Values plotted accurately	(1)	
	Best fit line drawn	(1)	5
3(b)(ii)	Calculation of gradient using large triangle shown	(1)	
	Value of λ in range (-)0.038 to (-)0.042	(1)	
	Value of λ given to 2 or 3 s.f, positive, no unit	(1)	3
	Example of calculation		
	$-\lambda = (4.82 - 3.20) / (1050) = -1.62 / 40 = -0.0405$		
	$-\lambda = -0.0405$		
	$\lambda = 0.041$		
3(b)(iii)	Correct value of $\ln \theta_0$ obtained using value of λ and data point from best fit line Or		
	Correct value of $\ln \theta_0$ obtained using y-intercept	(1)	
	Conversion of $\ln \theta_0$ to θ_0	(1)	
	Valid conclusion based on calculated value of θ_0	(1)	3
	Example of calculation		
	$\ln \theta = \ln \theta_0 - \lambda n$		
	$\ln \theta_0 = \ln \theta + \lambda n = 3.2 + (0.041 \times 50) = 5.25$		
	$\theta_0 = e^{5.25} = 191^{\circ}$		
	As this is greater than 180° the claim is correct		
	Total for question 3		13