ОСНОВИ СИСТЕМ ШТУЧНОГО ІНТЕЛЕКТУ, НЕЙРОННИХ МЕРЕЖ та ГЛИБОКОГО НАВЧАННЯ

Модуль 2. Навчання з вчителем

Лекція 2.8. Класифікація. Метод SVM.

Класифікація

Формально:

Маємо множину \mathbb{O} об'єктів $o^{(j)}$, j=1,2,...,M Кожен об'єкт $o^{(i)}$ має сукупність характеристик - ознак $x_i^{(j)}$, i=1,2,...,N з множини \mathbb{X} . Маємо множину \mathbb{C} класів $\mathbf{c}^{(k)}$, k=2,...,K

Існує невідома залежність (правило) $\mathbb F$, яка на підставі пар $\langle o^{(j)}, c^{(k)} \rangle$ визначає, чи належить об'єкт $o^{(j)}$ до класу $c^{(k)}$.

Завдання: знайти правило $\tilde{\mathbb{F}}$, максимально наближене до \mathbb{F} . Тобто, знайти вирішальне правило, що дозволяє класифікувати довільний об'єкт o за його ознаками.

Методи Класифікації

- Регресійні методи, логістична регресія
- Метод k-найближчих сусідів (KNN)
- Метод опорних векторів (SVM)
- Наївний Байєс (ймовірнісний класифікатор)
- Дерева рішень

•

Метод опорних векторів (Support Vector machine, SVM, опорно-векторна машина) — комплекс алгоритмів навчання з учителем.

Основна ідея: Якщо розмірність простору ознак N, будується гіперплощина (розмірність N-I), що розділяє об'єкти вибірки деяким оптимальним (?) способом.

Особлива властивість SVM - безперервне зменшення емпіричної помилки класифікації та збільшення зазору, тому метод також відомий як метод класифікатора з максимальним зазором.

Приклад. Двовимірний простір, дві сепарабельні (лінійно-

розділені) множини

Приклад. Двовимірний простір, дві сепарабельні (лінійнорозділені) множини

Обираємо пряму, що має найбільший зазор (проміжок)

Формально:

Маємо множину \mathbb{O} об'єктів $o^{(j)}$, j=1,2,...,MКожен об'єкт $o^{(i)}$ має сукупність характеристик ознак $x_i^{(j)}$, i=1,2,...,N з множини \mathbb{X} . Тобто $x^{(j)} \in \mathbb{R}^N$ - N-вимірний вектор.

Маємо два класи $c^{(0)} \rightarrow y = -1$, $c^{(1)} \rightarrow y = 1$.

Завдання: знайти правило \mathbb{F} , що за довільним вектором $x \in \mathbb{R}^N$ дозволяє визначити його клас, тобто повертає -1, або +1.

Два лінійно сепарабельні класи.

Правило F шукається як функція

$$F(x) = sign (\langle W, x \rangle + b)$$

де W – нормальний вектор до гіперплощини, b - зсув гіперплощини від початку координат.

Обираються дві паралельні гіперплощини, які розділяють два класи даних так, що відстань між ними якомога більша. Ці дві гіперплощини може бути описано рівняннями:

$$\langle W, x \rangle + b = 1$$
 $\langle W, x \rangle + b = -1$

Область, обмежена цими двома гіперплощинами, називається «розділенням» (margin), а максимально розділова гіперплощина лежить посередині між цими двома.

Відстань між гіперплощинами: m $argin = {}^2/_{\|W\|}$ Тобто необхідно мінімізувати $\|W\|$ при виконанні обмежень

$$Wx^{(j)} + b \ge 1$$
, $\forall o^{(j)} \in c^{(1)}$
 $Wx^{(j)} + b \le -1$, $\forall o^{(j)} \in c^{(0)}$

Лінійно НЕ сепарабельні класи.

Загальна ідея: все об'єкти вкладаються у простір \mathbb{R}^{N+1} - простір вищої розмірності з допомогою спеціального відображення $\varphi \colon \mathbb{R}^N \to \mathbb{R}^{N+1}$.

При цьому відображення φ вибирається так, щоб у новому просторі об'єкти були розділені лінійно.

Лінійно НЕ сепарабельні класи.

Функцію, що розділяє класи шукають у вигляді

$$F(x) = sign (\langle W, \boldsymbol{\varphi}(x) \rangle) + b)$$

Функція $\varphi(.)$ - ядро (kernel) класифікатора. Як обрати $\varphi(.)$???

Типові ядра:

- Лінійне ('linear')
- Поліноміальне ('poly') $\varphi(x,x')=(\langle x,x'\rangle+const)^d, d>1$
- Сігмоїд ('sigmoid') $\varphi(x,x')=tanh(k\langle x,x'\rangle+c\)$, k>0,c>0
- Експоненційне ('rbf) ...

-

Поліноміальне ядро (d=2)

Гіперплощини для kernel="poly", degree=2

Scikit-learn: модуль Scikit-learn.svm включає наступні SVM алгоритми

<pre>svm.LinearSVC([penalty, loss, dual, tol, C,])</pre>	Linear Support Vector Classification.
<pre>svm.LinearSVR(*[, epsilon, tol, C, loss,])</pre>	Linear Support Vector Regression.
<pre>svm.NuSVC(*[, nu, kernel, degree, gamma,])</pre>	Nu-Support Vector Classification.
<pre>svm.NuSVR(*[, nu, C, kernel, degree, gamma,])</pre>	Nu Support Vector Regression.
<pre>svm.OneClassSVM(*[, kernel, degree, gamma,])</pre>	Unsupervised Outlier Detection.
<pre>svm.SVC(*[, C, kernel, degree, gamma,])</pre>	C-Support Vector Classification.
<pre>svm.SVR(*[, kernel, degree, gamma, coef0,])</pre>	Epsilon-Support Vector Regression.

Приклади дивись:

Приклад 1. lec_02_08_Exmpl_1.md Приклад 2. lec_02_08_Exmpl_2.md

Переваги та недоліки SVM

Переваги SVM перед методом стохастичного градієнта та нейронними мережами:

- Завдання опуклого квадратичного програмування добре вивчене і має єдине рішення.
- Метод опорних векторів еквівалентний двошарової нейронної мережі, де число нейронів на прихованому шарі визначається автоматично як число опорних векторів.
- Принцип оптимальної роздільної гіперплощини призводить до максимізації ширини смуги, що розділяє, а отже, до більш впевненої класифікації.

Переваги та недоліки SVM

Недоліки класичного SVM:

- Нестійкість до шуму: викиди у вихідних даних стають опорними об'єктами-порушниками та безпосередньо впливають на побудову роздільної гіперплощини.
- Не описані загальні методи побудови ядер та спрямовуючих просторів, що найбільш підходять для конкретного завдання.
- Немає відбору ознак.
- Необхідно підбирати константу С за допомогою крос-валідації.

Контрольні запитання

- Надайте загальну постановку задачі класифікації.
- Пояснить сутність методу SVM вирішення задачі класифікації.
- Пояснить, як вирішується завдання класифікації коли класи не сепарабельні.

Корисні та цікави посилання

• Машинне навчання

https://uk.wikipedia.org/wiki/машинне_навчання

• Львівська політехніка

http://www.mmf.lnu.edu.ua/ar/1739

http://www.mmf.lnu.edu.ua/ar/1743

Рекомендована ЛІТЕРАТУРА

- Глибинне навчання: Навчальний посібник / Уклад.: В.В. Литвин, Р.М. Пелещак, В.А. Висоцька В.А. Львів: Видавництво Львівської політехніки, 2021. 264 с.
- Тимощук П. В., Лобур М. В. Principles of Artificial Neural Networks and Their Applications: Принципи штучних нейронних мереж та їх застосування: Навчальний посібник. Львів: Видавництво Львівської політехніки, 2020. 292 с.
- Morales M. **Grokking Deep Reinforcement Learning.** Manning, 2020. 907 c.
- Trask Andrew W. **Grokking Deep Learning.** Manning, 2019. 336 c.

The END Модуль 2. Лекція 2.8.