EEM Scattering Remover (ESR) 工具特点

- 1、自动识别Rayleigh、Raman、二级Rayleigh散射条带,不受仪器和波长范围影响
- 2、使用弛豫算法对受散射条带干扰的有效数据边缘进行补正
- 3、程序界面友好,使用和设置容易

使用方法

- 1、双击打开esr.exe
- 2、等几秒出现界面后,将数据文件直接拖进对话框,也可以在对话框里输入文件的路径。回车继续。

这里数据文件的格式类似下列内容,以空格或制表符(Tab)分隔:

[空格或0.0]	200	205	210	
250	1.823	1.785	1.13	
252	1.248	1.808	1.077	
254	1.031	0.454	0.927	

- 3、出现预览图。
- 4、关闭预览图,数据自动保存到[原文件名]_corrected.csv,回车退出。
- 5、预览图的效果不佳时,可修改esr-parmas.txt里的参数,若这个文件丢失或格式错误,则会使用默认值。

程序错误时,最可能的原因是**数据的格式不对**,建议直接从excel里将数据文本复制到一个空白txt里。 注意:程序所用到的各文件的内容**不能有**非英文字符,保存路径里也**不能有**非英文字符和空格。

参数说明

参数	默认值	说明
ray-remove-	10.0	Rayleigh散射条带切除的半径(宽度的一半)。
secray- remove-rad	12.0	二级Rayleigh散射条带切除的半径。

参数	默认值	说明
ram-remove-	10.0	Raman散射条带切除的半径。
ram- wavenumber	3600.0	Raman散射的波数(取决于溶剂的性质), 会影响Raman散射条带切除的位置。
relaxation- disp	3.0	弛豫位移(整数)。
		当散射条带被切除后,程序会在被切除的点附近寻找临近参考点, 上下左右四个(边角不够四个的,值取0), 使用其平均值填补被切除的空白。
		弛豫位移是上下左右移动的数据块数, 弛豫位移乘以激发或发射的波长间距才是坐标上的真实距离。 设置的弛豫位移值越大,最终效果里接近被切除的地方越模糊, 越小则越锐利,过大或过小会失去物理意义。 设置为0则不使用弛豫算法,直接切除。