	Numeric Integration
	V
	Trying to approximate integrals via
	summations?
	(et f(x) x f Ca,b), thin
	C P C P C P C P C P C P C P C P C P C P
	() f(x) dx & 2 C; f(x,)
	for XiE[a,b] and weights Ci,
	I dea is to chouse (xi, ci) in an appropriate manner,
	appropriate manner,
_	Left-Point Rule
	1/1/11
	$\stackrel{\cdot}{\longleftrightarrow}$
	\sim \sim \sim \sim
	(b) f(x) dx x f(a) (b-a) = f(a) h
	19 (2) (0-4) -1-(4)
	What is the error of this method?

To do that, integrate the Taylor Series over the range (O, h) (f(0) + x f(0) + 112 xy f(1) (0) + 1-1) qx = hf(1) + 1/2 ha f (0) + 1/6 h3 f (1) + 1, Erron in then $E = \int_{\mathcal{V}} f(x) \, dx - f(0) \, \mathcal{V}$ the approx; matron = h HOT + 1/2 h2 f (10) + H, O, T, - h HOT = 1/2 h2 f'(0) + H,0, T, = From 15 thus O(h2) This scheme approximates flx) as

Error for mid point:

$$|E| = \int_{a}^{a} \int_{a}^{b} (M) (b-a)^{2} = \int_{a}^{b} \int_{a}^{b} (M) h^{2}$$

for some $M \in \mathbb{Z}[q][b]$

- Simpson's Rule: Model $f(x)$ as a quadratic polynomial

Set $x_{1} = a_{1}$ $x_{2} = \underbrace{a+b}_{a}$, $x_{3} = b$

Pecall the Leganse Polynomial

$$f(x) = \int_{a}^{b} \int_{a}^{b}$$

Do integration over a distance h < c b - g

Newton-Cutes is useful, but it It can not integrate pulpnumials exactly
part 120-0000, exist un a non-unsform grid

wini mize errans, ex.) Let f(x) be given the set $x_1 = 9$, $x_2 = 5$ Then $\binom{b}{a}f(y) = C_1f(x_1) + C_2f(x_2)$ 2 nyknorvi Consition #12 Integrate P(x)= 1 exactly C-no.tion #2: Integrate f(x)=x exactly $\int_{a}^{b} 1 dx = b - a = C_{1} + (2 (a) f(x) = 1)$ (a x dx = b - a = c a + c = x) = x) => C1 = (2= b-9 (M,2) point Rule)

Craw Qued nature: What A
$$C_{11} \times_{11} C_{11} \times_{21}$$

are all unknown:

For Simplicity compute our C_{-1} , C_{-1}
 $C_{-1} = C_{-1} = C_{-1}$

Since $\chi_1 \neq \chi_2 = \gamma \quad \chi_1 = -\chi_2$

 α n=2,