Долганёв Антон ПМИ-22 Вариант: 9

Цель: Сформировать практические навыки применения правила Рунге для оценки ошибки численного интегрирования и уточнения по Ричардсону для повышения точности решения прикладных задач.

Формулировка задания.

- 1. Разработать класс, реализующий схемы численного интегрирования в соответствии с вариантом задания.
- 2. Вычислить аналитически $I^* = \int\limits_{0}^{b} \varphi(x) dx$
- 3. Для отрезка [a,b] постройте три вложенные сетки с равномерным шагом h, h/2 и h/4. Для каждой из реализованных схем численного интегрирования выполните оценку порядка аппроксимации относительно шага равномерного сеточного разбиения.
- 4. Для каждой квадратурной формулы заполнить таблицу

				· ·			
	№	a	b	$\varphi(x)$	Квадратуры		
	9	0	1	$1/(x^2-4)$	Параболы	Гаусс-2	
г				_			

Результаты

```
Parabola Results:
h = 0.10000000000 : -0.2746538762 Error: 0.0000008040
h = 0.05000000000 : -0.2746531233 Error: 0.00000000511
h = 0.02500000000 : -0.2746530754 Error: 0.00000000032
Parabola Error Analysis (Runge and Richardson):
              h
                         Runge
                                   RichardsonError Richardson
   0.0500000000 -0.0000000502 -0.2746531735
                                               0.0000001013
                                                0.0000000064
   0.0250000000 -0.00000000032 -0.2746530786
Gauss-2 Results:
h = 0.10000000000 : -0.2746530381 Error: 0.00000000341
h = 0.05000000000 : -0.2746530700 Error: 0.00000000021
h = 0.0250000000 : -0.2746530720 Error: 0.00000000001
Gauss-2 Error Analysis (Runge and Richardson):
              h
                                   RichardsonError Richardson
                         Runge
   0.0500000000
                  0.00000000021
                               -0.2746530679
                                                0.00000000043
   0.0250000000 0.0000000001 -0.2746530719 0.0000000000
```

Результаты численного интегрирования, представленные в таблицах:

h	$I^* - I^h$	$\frac{I^{h/2}-I^h}{2^k-1}$	I^{R}	$I^* - I^R$
0,05	0.000000511	0.000000502	-0.2746531735	0.000001013
0.025	0.000000032	0.000000032	-0.2746530786	0.000000064

h	I^*-I^h	$\frac{I^{h/2}-I^h}{2^k-1}$	I^R	$I^* - I^R$
0,05	0.000000021	0.0000000021	-0.2746530679	0.000000043
0.025	0.000000001	0.000000001	-0.2746530719	0.000000003

Выводы:

Метод парабол: При уменьшении шага h, результаты интегрирования с каждым разом становятся более точными, что подтверждается уменьшением ошибки. Оценка ошибки методом Рунге и уточнение по Ричардсону показывают, что с уменьшением h, ошибка значительно сокращается, что является характерным признаком сходимости метода.

Гаусс2: Результаты аналогичны: снижение h ведет к улучшению точности (ошибка также уменьшается). Ошибка по Ричардсону для Гаусса-2 также уменьшается при меньших шагах, и её значения значительно близки к нулю. Оба метода демонстрируют хорошую сходимость с уменьшением шага.

В целом, оба метода (парабола и Гаусс-2) дают схожие результаты с малой ошибкой. Снижение шага приводит к улучшению точности, что подтверждает правильность реализации алгоритмов и правильный выбор шагов интегрирования.