NUMERICAL METHODS FOR QUANTUM DISCRETE PHASE SPACE DYNAMICS

Tamra Nebabu July 3rd 2020

Motivation

- Exact diagonalization methods are unable to access large system sizes (N>>10)
- Methods like tDMRG, which are suitable for larger systems, are mostly applicable to low energies and are inefficient for >1D systems
- MFT is limited in capturing quantum correlations

Solution: Use the Wigner picture for QM to choose probability distribution and perform Monte Carlo!

Outline

- 1. Review of quantum phase space dynamics
- 2. Construction of a discrete phase space
- 3. DTWA protocol + Benchmarking
- 4. Case Studies: a) Squeezing a) Power Law Dynamics
- 5. Future Directions

Wigner Picture for Quantum Phase Space

equivalent formulation of QM in terms quasi-probability distribution

Wavefunction

Wigner function

$$\psi(x) \leftrightarrow \psi(p)$$

$$W(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} ds \ e^{ips/\hbar} \ \psi^*(x+s/2) \ \psi(x-s/2)$$

easily generalized for density matrix QM

Phase point operator

$$\langle \boldsymbol{q}' | \hat{A}(\boldsymbol{q}, \boldsymbol{p}) | \boldsymbol{q}'' \rangle = \frac{1}{(2\pi)^D} \delta \left(\boldsymbol{q} - \frac{\boldsymbol{q}' + \boldsymbol{q}''}{2} \right) e^{i\boldsymbol{p}\cdot(\boldsymbol{q}' - \boldsymbol{q}'')}$$

Weyl symbol

$$O_W(q,p) = Tr(\hat{A}\hat{O})$$

Wigner Function Examples

Gaussian wave packet

1st excited state of QHO

Momentum squeezed

Cat state

Wigner Picture

- behaves something like a joint x-p probability distribution but can be negative
 - negatives restricted to areas of $\sim\hbar$ or less
 - joint (x,p) measurements associated to POVM with coherent state basis
- can show in the semiclassical limit $\hbar \to 0$ Wigner function reduces to classical probability distribution

$$\langle x \rangle = \iint dx dp \ x W(x, p)$$

$$\langle p \rangle = \iint dx dp \ pW(x,p)$$

$$H(\hat{x}, \hat{p}) = T(\hat{p}) + U(\hat{x})$$

$$\langle T \rangle = \iint dx dp \ T(p)W(x,p)$$

$$\langle U \rangle = \iint dx dp \ U(x)W(x,p)$$

Wigner Phase Space Dynamics

Heisenberg

Heisenberg Wigner $\frac{d}{dt}\hat{O}(t) = \frac{1}{i\hbar}[\hat{H},\hat{O}(t)] \longleftrightarrow \frac{\partial}{\partial t}O_W = \{\{H,O_W\}\} \qquad \stackrel{\hbar \to 0}{\longrightarrow} \qquad \frac{\partial}{\partial t}O_W = \{H,O_W\} + \mathcal{O}(\hbar^2)$ Moyal bracket

Wigner approximation

$$\frac{\partial}{\partial t}O_{W} = \{H, O_{W}\} + \mathcal{O}(\hbar^{2})$$

$$\uparrow$$
Poisson bracket

Time evolution of expectation values

$$\langle \hat{O}(\hat{\boldsymbol{x}}, \hat{\boldsymbol{p}}, t) \rangle = \int d\boldsymbol{x} d\boldsymbol{p} \ O_{W}(\boldsymbol{x}(t), \boldsymbol{p}(t), t) \ W(\boldsymbol{x}_{0}, \boldsymbol{p}_{0}) \xrightarrow{\hbar \to 0} \int d\boldsymbol{x} d\boldsymbol{p} \ O_{W}(\boldsymbol{x}_{cl}(t), \boldsymbol{x}_{cl}(t), t) \ W(\boldsymbol{x}_{0}, \boldsymbol{x}_{0})$$

⇒ Can perform Monte Carlo numerics!

- can perform \hbar^2 quantum corrections —> makes contact with Feynman path integral

Truncated Wigner Approximation (TWA)

- Takes first order quantum fluctuations into account
- continuous dof

$$\langle O \rangle(t) = \int d\mathbf{x} d\mathbf{p} \ O_W(\mathbf{x}_{cl}(t), \mathbf{p}_{cl}(t), t) \ W_0(\mathbf{x}_0, \mathbf{p}_0)$$

- In Heisenberg picture:
 - 1. Calculate initial Wigner function
 - 2. Calculate classical EOM for x_{cl} and p_{cl}
 - 3. Plug expressions into Weyl symbol for operator
 - 4. Integrate over phase space

Phase Space

Continuous phase space

- conjugate variables with canonical commutation relation assigned to axes
- lines associated to variables of the form aq + bp

*More details in Wootters

Discrete phase space

- non-commuting observables assigned to coordinate axes
- lines associated to variables of the form ax + bz

Discrete Phase space

$$\tilde{Z} \equiv \left(\mathbb{I} - \frac{1}{2}\hat{Z}\right) \qquad \qquad \tilde{X} \equiv \left(\mathbb{I} - \frac{1}{2}\hat{X}\right)$$

- Expectation values of \tilde{Z} , \tilde{X} obtained by summing quasi probabilities over vertical, horizontal slices
- ullet Expectation value of $ilde{Y}$ obtained by summing over diagonal

Phase point operator

$$\hat{A}(\alpha) = \mathbb{I} + r_{\alpha} \cdot \sigma$$

$$\hat{O}_{W}(\alpha) = Tr(\hat{O}\hat{A}_{\alpha})$$

$$\hat{A}(\alpha) = \mathbb{I} + \mathbf{r}_{\alpha} \cdot \boldsymbol{\sigma} \qquad (0,0) \leftrightarrow \mathbb{I} + \hat{X} + \hat{Y} + \hat{Z}$$

$$\hat{A}(\alpha) = \mathbb{I} + \mathbf{r}_{\alpha} \cdot \boldsymbol{\sigma} \qquad (1,0) \leftrightarrow \mathbb{I} + \hat{X} - \hat{Y} - \hat{Z}$$

$$O_{W}(\alpha) = Tr(\hat{O}\hat{A}_{\alpha}) \qquad (0,1) \leftrightarrow \mathbb{I} - \hat{X} + \hat{Y} - \hat{Z}$$

$$(1,1) \leftrightarrow \mathbb{I} - \hat{X} - \hat{Y} + \hat{Z}$$

Discrete Wigner Picture

• degrees of freedoms match: $2 \mathbb{C}$ numbers = $4 \mathbb{R}$ per qubit

Examples:

+1 eigenstate of Y

	+z	-Z
-X	0	1/2
+x	1/2	0

mixed state $\rho = 1/2$

	+z	-Z
-X	1/4	1/4
+x	1/4	1/4

- 1. Initialize configurations using chosen discrete weyl probability distribution
 - a) probabilities must be strictly positive

2. Simulate classical evolution of each configuration within probability distribution

3. Compute expectation values classically

Observable

$$\frac{1}{n_t} \sum_{t=0}^{n_t} \mathcal{O}^{W_t}$$

1. Initialize configurations

1. Initialize configurations

$$N = 10, n_t = 10^4$$

2. Simulate classical evolution

$$\dot{s}_{i}^{\alpha} = \{s_{i}^{\alpha}, H_{cl}\} = 2 \sum_{\beta} \epsilon_{\alpha\beta\gamma} s_{i}^{\gamma} \frac{\partial H}{\partial s_{i}^{\beta}}$$

3. Compute expectation values

Ex:
$$S_y = \frac{1}{n_t} \sum_{n_t} \left(\sum_{i} s_i^y \right)$$

Scalability

- Most challenging aspect is finding classical EOM. For simple Hamiltonians like the Ising Hamiltonian, exact evolution can be computed.
- can simulate ~100 spins on a laptop
- not strongly computationally limited by system size, but rather by number of trajectories and resolution of time dynamics

Benchmarking

Examining runtime dependence on system size

$$N = 10, n_t = 10^4, \text{trials} = 20$$

Range of Validity

- Require: strictly positive initial probability distribution
- Semiclassical limit: large system size and large energies
- Becomes "exact" for quadratic potentials error for certain observables is computable
- Error in expectation values is operator-dependent

What we've won

- traded exponential complexity in space for smaller time complexity with vanishingly small error
 - diagonalizing large matrices $\sim\mathcal{O}\left(2^{N^3}\right)$ vs. weak $\sim\mathcal{O}\left(N^2\right)$ dependence
- can easily accommodate various interactions, spin geometries, etc
- can accommodate $\frac{1}{\hbar^2}$ corrections via quantum jumps
- The unique content of DTWA is the sampling scheme. Using an initial configuration that echoes initial probability distribution instead of mean-field approximation + Gaussian initial conditions wins us the ability to capture late time quantum dynamics.

Performance compared to other methods

Figure 2. Dynamics for Ising interactions. Circles denote the exact solution, dashed lines are traditional TWA results, solid lines denote DTWA results, for 1D, N = 100 spins. (a-b) Evolution of $\langle S_x \rangle$, for all-to-all (decay exponent $\alpha = 0$) and dipolar $(\alpha = 3)$ interactions, respectively. Traditional TWA captures only the initial decay and no oscillations or revivals. In contrast, DTWA becomes exact (on top of the black symbols). (c/d) The evolution of the correlation functions $\Delta S_x = \langle S_x^2 \rangle - \langle S_x \rangle^2$ and $\text{Re}\langle S_y S_z \rangle$ for dipolar interactions. While the latter one is exactly captured in DTWA, ΔS_x shows deviations. DTWA improves traditional TWA predictions in all panels.

- Good way to diagnose if method captures quantum correlations
- Examined evolution squeezing parameter as a function of time under Ising interactions and compared results to known analytics/ ED
- Squeezing useful for applications in high-precision metrology + interferometry, quantum sources of light, etc

Squeezing Basics

 Uncertainty relation: lower bound on product of uncertainties of operators set by their anticommutator

$$\Delta A \Delta B \ge \frac{1}{2} \left| \langle [A, B] \rangle \right|$$

- A system of 2S spins has a representation as a spin-S particle
 - If spins are uncorrelated, variances will add to give $(\Delta S)^2 = S/2$
 - If correlations develop, the covariances can conspire to reduce variance in one quadrature at the expense of the other

Squeezing Basics

Squeezing parameter

$$\xi = \frac{\sqrt{N\Delta S_{\alpha}}}{|S|}$$

Examined squeezing under Ising Hamiltonian with uniform and power law interactions

https://nicholsonlabs.quantumlah.org/research/

$$H = \sum_{ij} J_{ij}(\mathbf{r}_i - \mathbf{r}_j) s_i^z s_j^z = \sum_{i \neq j} 2J_{ij}(\mathbf{r}_i - \mathbf{r}_j) s_i^z s_j^z$$

- 1. Initialize configurations with all spins with x = +1/2 and with y, z chosen randomly
- 2. **Simulate classical evolution** by switching to ladder basis +/-/z and using the solution to the EOM:

using the solution to the EOM:
$$s_n^{\pm}(t) = s_n^{\pm}(0) \exp\left(\pm 2it \sum_{j \neq n} J_{jn} s_j^z\right)$$

3. Reconvert back to x/y/z basis to **compute expectation** values classically

Dependence on System Size

1/L scaling of error, as expected

Numerical Convergence

Average squeezing parameter is constant with fluctuations decreasing as a function of number of trajectories

Case Study: Power Law Interactions in 2D

$$J_{ij}(r) \sim J_z \frac{1}{1 + (r/r_c)^6}$$

DTWA is still able to track ED results well

Case Study: Power Law Interactions in 2D

Conclusions

- Explored theoretical backing for the DTWA
- Examined scaling behavior of runtime, dependency on trajectories, and system size
- Demonstrated proof-of-principle numerics with uniform and power-law interactions

Future Directions

- Designing optimal pulse sequences for
 - extreme squeezing
 - QAOA
- Time-evolving spatial maps of correlations

Coding Suite

- Will be available soon on GitHub with:
 - Python library
 - IPython Tutorial
 - presentation + notes

```
]: # IMPORT LIBRARIES
from fractions import Fraction

from DTWA_Lib import *

%matplotlib notebook
```

```
#### Generates general all-to-all Heisenberg model
# Hamilt: sum_ij[ (Jx_ij(X_i X_j) + Jy_ij(Y_i Y_j)) + Jz_ij(Z_i Z_j)] + hx * sum_i[X_i] + hz * sum_i[Z_i]
# if Jperp = (Jx, Jy), then have XYZ. ow have XXZ w/ Jx = Jy = Jperp/2
# L = vector containing number of spins along each dimension
# PauliBool = (optional) True to switch to Pauli operators; False to use Spin Operators
# opList = (optional) to provide list
# Jfunc = (optional) list of functions for Jx, Jy, Jz to compute interaction between every pair of spins; may be distance—dependent
# coord = (optional) Nxd numpy arrays representing the d coordinates of each spin; default gives regular lattice with spacing a=1
# alpha = (optional) exponent of decay for interaction strength J_i \sim 1/|r_i|/\alpha
def Heisenberg_A2A(L, Jperp, Jz, hx, hz, PauliBool = False, opList=[], Jfunc=[], coord = [], alpha=[]:
    if not coord==[] and np.prod(L)!=coord.shape[0]:
        raise Exception("Number of coordinates doesn't match number of spins!")
        print(np.prod(L))
    N = np.prod(L) # total number of spins = product of number of spins along each direction
    # print("N: %d" %N)
    if opList=[]:
        if PauliBool:
            opList = genPauliList(N)
            opList = genSpinOpList(N)
    sx, sy, sz, sp, sm = opList
    # print("number of spin ops: %d" %len(sx))
    # print("dimension of spin op: %s" %(sx[0].shape,))
    # Generate coupling strengths
        Jx = Jperp/2
        Jy = Jperp/2
    elif isinstance(Jperp,(list,tuple,np.ndarray)) and len(Jperp)=2:
        Jy = Jperp[1]
        raise Exception("Wrong number of elements in Jperp!")
    # print("Jx: %g \t Jy: %g \t Jz: %g" % (Jx,Jy,Jz))
    H_int = []
```

Thanks for listening!

REFERENCES

• DTWA:

1. https://arxiv.org/abs/1408.4441

Discrete phase space:

1. https://www.sciencedirect.com/science/article/pii/000349168790176X

Wigner Picture:

- 1. http://www.physics.miami.edu/~curtright/QMPSIntro.pdf
- 2. http://www.stat.physik.uni-potsdam.de/~pikovsky/teaching/stud_seminar/Wigner_function.pdf

• TWA and \hbar corrections:

1. https://arxiv.org/abs/0905.3384

Squeezing:

- 1. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.47.5138
- 2. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119009719.ch5
- 3. https://arxiv.org/abs/1109.3752

REFERENCES

• DTWA:

1. Schachenmayer, J., Pikovski, A., & Rey, A. M. (2015). Many-body quantum spin dynamics with Monte Carlo trajectories on a discrete phase space. *Physical Review X*, 5(1), 011022.

Discrete phase space:

1. Wootters, William K. "A Wigner-function formulation of finite-state quantum mechanics." Annals of Physics 176.1 (1987): 1-21.

Wigner Picture:

- 1. Curtright, T. L., Fairlie, D. B., & Zachos, C. K. (2013). A concise treatise on quantum mechanics in phase space. World Scientific Publishing Company.
- 2. Case, W. B. (2008). Wigner functions and Weyl transforms for pedestrians. American Journal of Physics, 76(10), 937-946.

• TWA and \hbar corrections:

1. Polkovnikov, A. (2010). Phase space representation of quantum dynamics. Annals of Physics, 325(8), 1790-1852.

Squeezing:

- 1. Kitagawa, Masahiro, and Masahito Ueda. "Squeezed spin states." Physical Review A 47.6 (1993): 5138.
- 2. Lvovsky, A. I. (2015). Squeezed light. Photonics: Scientific Foundations, Technology and Applications, 1, 121-163.
- 3. Leroux, I. D., Schleier-Smith, M. H., Zhang, H., & Vuletić, V. (2012). Unitary cavity spin squeezing by quantum erasure. Physical Review A, 85(1), 013803.