Intégrales généralisées

Exercice 1 Soit $f: \mathbb{R} \to \mathbb{R}$ continue et périodique de période T. On note $m = \frac{1}{T} \int_0^T f(t) dt$. Montrer que $\int_T^{+\infty} \frac{f(t)}{t} dt$ converge si et seulement si m = 0.

Exercice 2 Soit f continue de $[1, +\infty[$ dans \mathbb{R} . Montrer que si $\int_1^{+\infty} f(t)dt$ converge, il en est de même de $\int_1^{+\infty} \frac{f(t)}{t}dt$. On pourra introduire la primitive de f s'annulant en 1.

Exercice 3 Soit $f:[0,+\infty[\to\mathbb{R}$ uniformément continue, telle que $\int_0^{+\infty} f(t)dt$ converge.

- 1. Montrer que f tend vers 0 à l'infini.
- 2. Si f est positive, montrer que $\int_0^{+\infty} f^2(t)dt$ converge.
- 3. Donner un contre-exemple si f n'est pas de signe constant.

Exercice 4 Montrer que $\int_0^{+\infty} \left| \frac{\sin(t)}{t} \right| dt$ diverge. Donner un équivalent de $\int_0^x \left| \frac{\sin(t)}{t} \right| dt$ quand $x \to \infty$.

Exercice 5 On pose $f(x) = \int_{t=x}^{+\infty} \frac{\exp(-t)}{t} dt$.

- 1. Calculer $\lim_{x\to\infty} f(x)$.
- 2. En intégrant par parties, donner un équivalent de f(x) pour $x \to \infty$.
- 3. Donner un équivalent de f(x) pour $x \to 0^+$.

Exercice 6 Calculer $\int_1^{+\infty} \frac{t-E(t)}{t^2} dt$ en fonction de la constante d'Euler-Mascheroni.