ITCS 531: Number Theory 2 solutions

Rob Egrot

Suppose $x \equiv_n y$, and suppose m|n. Show that $x \equiv_m y$.

- Suppose x y = kn, and n = am.
- $\blacktriangleright \text{ Then } x-y=(ka)m.$

Complete the proof of proposition 2.8(2) (if $x \equiv_n x'$ and $y \equiv_n y'$ then $xy \equiv_n x'y'$).

Suppose (x - x') = kn and (y - y') = ln. xy - x'y' = xy - xy' + xy' - x'y' = x(y - y') - y'(x - x') = xln - y'kn = (xl - y'k)n. Calculate $2^{2^{13543}} \mod 3$.

- ▶ $2 \equiv_3 -1$, and 2^{13543} is an even number.
- ightharpoonup -1 to the power of any even number is 1.
- ► So $2^{2^{13543}} \equiv_3 1$.

Q4

Let p and q be distinct primes, and let $x \in \mathbb{Z}$. Prove that if p|x and q|x, then pq|x.

- We know $x = (\pm 1)p_1 \dots p_n$ for some primes p_1, \dots, p_n .
- ▶ Also, since $p|p_1...p_n$ we must have $p=p_i$ for some i.
- ▶ We also have q|x, and so $q = p_j$ for some j.
- Since p and q are distinct, we can't have i = j.
- Assume without loss of generality that i = 1 and j = 2.
- ► Then $x = (\pm 1)(pq)p_3...p_n$.
- ightharpoonup So pq|x.

- a) Prove that $4 = 9 = -1 \mod 5$.
- b) Prove that $4^{1536} \equiv_7 9^{4824}$ (HINT: $9 \equiv_7 2$ and $8 \equiv_7 1$).
- c) Prove that $4^{1536} \equiv_{35} 9^{4824}$.

Q5, a) and b)

- a) Prove that $4 = 9 = -1 \mod 5$.
- ▶ 4-(-1)=5, and 9-(-1)=2(5).
- b) Prove that $4^{1536} \equiv_7 9^{4824}$

$$4^{1536} = 2^{2(1536)}$$

$$= 2^{3072}$$

$$= 2^{3(1024)}$$

$$= 8^{1024}$$

$$\equiv_{7} 1^{1024}$$

$$\equiv_{7} 1.$$

$$9^{4824} \equiv_{7} 2^{4824}$$

$$= 2^{3(1608)}$$

$$= 8^{1608}$$

$$\equiv_{7} 1^{1608}$$

$$\equiv_{7} 1.$$

Q5, c)

- c) Prove that $4^{1536} \equiv_{35} 9^{4824}$.
- From part a):

$$ightharpoonup 4^{1536} \equiv_5 (-1)^{1536} \equiv_5 1.$$

$$ightharpoonup 9^{4824} \equiv_5 (-1)^{4824} \equiv_5 1.$$

- ► This means $4^{1536} \equiv_5 9^{4824}$.
- ightharpoonup So $5|(4^{1536}-9^{4824}).$
- ▶ In part b) we proved that $4^{1536} \equiv_7 9^{4824}$.
- ightharpoonup So $7|(4^{1536}-9^{4824})$.
- ightharpoonup By Q4 this means $35|(4^{1536} 9^{4824})$.
- ► I.e. $4^{1536} \equiv_{35} 9^{4824}$.

Let X be a set and let $\{Y_i : i \in I\}$ be a partition of X. Prove that the binary relation R, defined by $R(x,y) \iff x$ and y are in Y_i for some $i \in I$, is an equivalence relation.

- R is reflexive:
 - R(x,x) because x is always in the same part of the partition as itself.
- R is symmetric:
 - ► Suppose R(x, y).
 - Then x and y are in the same part of the partition.
 - ▶ But then R(y,x) by definition.
- R is transitive:
 - Suppose R(x, y) and R(y, z).
 - ► Then x is in the same part of the partition as y, and y is in the same part of the partition as z.
 - But this means x is in the same part of the partition as z.
 - ightharpoonup So R(x,z).

- a) Prove that $R(x,y) \iff R_{P_R}(x,y)$ for all $x,y \in X$.
- b) State and prove a similar conjecture on converting from partitions to equivalence relations and back to partitions.
- Proof for a):
- Suppose first that R(x, y).
- ▶ Then $y \in [x]$.
- ▶ I.e. y and x are in the same part of the partition P_R .
- ▶ But this means $R_{P_R}(x, y)$.
- ▶ Conversely, if $R_{P_R}(x, y)$, then $y \in [x]$.
- ▶ I.e. R(x, y).
- ► This shows $R = R_{P_R}$.

Q7, b)

- State and prove a similar conjecture on converting from partitions to equivalence relations and back to partitions.
- ▶ The sensible conjecture is that $P_{R_P} = P$.
- ▶ To prove this, let $P = \{X_i : i \in I\}$.
- ▶ We want to show that $\{X_i : i \in I\} = \{[x]_{R_P} : x \in X\}.$
- ▶ First, given any $x \in X$ we must have $x \in X_i$ for some i, as P is a partition.
- We must prove that $[x]_{R_P} = X_i$.

$$y \in [x]_{R_P} \iff R_P(x, y)$$

 $\iff y \in X_i.$

This proves the claim because, because every $[x]_{R_P}$ is equal to X_i where $x \in X_i$, and every X_i is equal to $[x]_{R_P}$ for $x \in X_i$.