Graphs

2nd Semester

Ivan Canet \cdot Feb 19, 2018 (Feb 19, 2018)

TABLE OF CONTENT

I. MAIN CONCEPTS	2
1. Undirected	2
2. Directed	2
II. GRAPH CLASSES	3
1. Regular graph	3
2. Simple graph	
3. Complete graph	3
4. Cycle	3
5. Tournament	3
6. Tree	3
7. Bipartite graph	3
8. Complete bipartite graph	3
9. Planar	3
10. Subsets of graphs	3
10.1. Subgraph	3
10.2. Clique	3
10.3. Stable / Independent set	3
11. Proper coloration	3
11.1. Definition	3
11.2. How to color a graph?	3
First-fit	
$Welsh ext{-}Powell$	
III. APPENDICES	5
1. Lexical index	5

I. MAIN CONCEPTS

1. Undirected	2. Directed
A Graph (G) is a set of vertices: G(V, I) • V={a,b,c,d} • E={[a,b],[b,c],}	E is a set of directed edges/arcs: $E=\{(a,b),(b,c),\}$
We call $n= V $ the number of vertices , and $m= E $ the number of edges .	
The degree of a vertex is the number of incident edges; it's written $d(v)$ and can be described as such: $d(v) = \{e \in E v \in e\} $.	We differentiate between the in-going degree and the out-going degree : In: $d^-(v) = \{(u, w) \in E/w = v\} $ Out: $d^+(v) = \{(u, w) \in E/u = v\} $
A loop is an edge which links the same vertex twice. Multiple edges is a case where two edges link the same two vertices.	Multiple edges is a case where two edges going the same way link the same two vertices.
Two vertices which share an edge are called neighbors .	If an edge goes from u to v , we say that: • u is a predecessor of v • v is a successor of u
A path is a sequence of vertices $(P=u_1,u_2u_k)$ such that any vertices are linked pairwise $(\forall u_n,u_{n+1} \in P)$ are neighbors). The length of P is $k-1$.	A directed path is a path where $\forall u_n, u_{n+1} \in P, u_{n+1}$ is a successor of u_n . An undirected path is a path where $\forall u_n, u_{n+1} \in P, u_{n+1}$ is either a successor or a predecessor of u_n .
A graph is connected if a path exists linking any two vertices.	A graph is strongly connected if a directed path exists between them. A graph is weakly connected if an undirected path exists between them.
An elementary path is a path where no vertex appears more than once. An elementary cycle is an elementary path that begins and ends with the same vertex.	
A Eulerian path is a path where every vertex appears exactly once. For one to exists, every vertex' degree must be even, except for 2 vertices. A Eulerian cycle is a cycle where every vertex appears exactly once. For one to exists, every vertex' degree must be even.	

II. GRAPH CLASSES

1. Regular graph

A regular graph is a graph such that all degrees are the same: $\forall u, v \in V, d(u) = d(v)$.

2. Simple graph

A simple graph has neither loops nor multiple edges.

3. Complete graph

A complete graph is a graph such that every vertex shares an edge with any other.

4. Cycle

A cycle is a graph where the whole graph is a cycle.

5. Tournament

A tournament is a directed graph that is complete in only one direction.

6. Tree

A tree is a graph that has no cycles.

7. Bipartite graph

A bipartite graph can be split in two sets of vertices in which no neighbors exist.

8. Complete bipartite graph

A bipartite graph that is complete.

9. Planar

A planar graph <u>can</u> be drawn without crossing edges.

10. Subsets of graphs

In this section, we'll assume a graph G.

10.1. Subgraph

A subgraph G' of G is a graph such that any vertex of G' exists within G. A subgraph may not be connected.

10.2. Clique

A clique G' of G is a subgraph that is complete.

The clique number of G ($\omega(G)$) is the maximum size of a clique of G (the size of the biggest complete subgraph).

10.3. Stable / Independent set

A stable G' of G is a subgraph of G such that no two vertices in G' are neighbors.

The stability number of G ($\alpha(G)$) is the maximum size of a stable of G.

11. Proper coloration

11.1. Definition

A proper coloration is a graph where every vertex has a color (represented as an integer) such that no neighbors have the same color.

If the graph is a planar graph, 4 colors are sufficient. In any other graph, the number of colors needed is in worst case the maximum degree plus one.

The chromatic number of a graph ($\chi(G)$) is the minimum number of colors needed to give a proper coloration of G.

11.2. How to color a graph?

Two main algorithm exist today:

First-fit

Take any non-colored vertex; give it the first available color.

```
Function FirstFit(G:Graph)
:Map<Vertex,Integer>
Var m: Map<Vertex,Integer>,
color: Integer

Begin
m←new Map<Vertex,Integer>
For each v in G.getVertices()
For each n in G.getNeighbors(v)
color←0
While m.get(n)=color
color←color+1
m.put(v, color)

Return m
End
```

Welsh-Powell

Same as First-fit, in decreasing order of degree. This algorithm is faster most of the time.

III. APPENDICES

1. Lexical index