

Neural Machine Translation & Attention

TAVE Research DLOOT

Changdae Oh

- Seq2Seq for Machine Translation
- Decoding & Training process
- * Attention model

- Seq2Seq for Machine Translation
- Decoding & Training process
- Attention model

Seq2Seq for Machine Translation

Recap

Language Modeling

- Learn a model that can predict the next symbol given a sequence of symbols
- After observing inputs w_0 , ..., w_k (one-hot vectors) it predicts w_{k+1} (probability distribution)

Training LM

$$Y(t,i) = P(V_i|w_0 ... w_{t-1})$$

$$Div(w(1 ... T), \mathbf{Y}(0 ... T - 1)) = \sum_{t} KL(w(t + 1), \mathbf{Y}(t)) = -\sum_{t} \log Y(t, w_{t+1})$$

Probability assigned to the correct next word

Seq2Seq for Machine Translation

Recap

Generating Language

- Feed the drawn word as the next word in the series
- Continue until the model draws an <eos>

Seq2Seq for Machine Translation

object

I ate an apple
$$\rightarrow$$
 Seq2seq \rightarrow Ich habe einen apfel gegessen

problem

- No expected synchrony between input and output
- So, we can't solve the problem well by using only one RNN

model

- Seq2Seq for Machine Translation
- Decoding & Training process
- Attention model

Generating outputs

• Goal: produce the most likely output

$$\underset{O_{1},...,O_{L}}{\operatorname{argmax}} P(O_{1},...,O_{L}|W_{1}^{in},...,W_{N}^{in})$$

$$= \underset{O_{1},...,O_{L}}{\operatorname{argmax}} y_{1}^{O_{1}} y_{2}^{O_{2}} ... y_{L}^{O_{L}}$$

- Greedy drawing
- Random sampling
- Beam search

Problems of greedy drawing

• Impossible to know a priori which word leads to the more promising future

Drawing by random sampling

- Randomly draw a word at each time according to the output probability distribution
- Sometimes give more likely output than greedy
- But, not guaranteed to give the most likely output

- Making a poor choice at any time commits us to poor future
- But we cannot know at that time the choice was poor

Solution: don't choose

Multiple choices & pruning : beam search

- At each time, retain only the top K scoring forks
- Terminate when the current most likely path overall ends in <eos>
 - select the most likely sequence ending in <eos> across all terminating sequences

- ✓ Can reversing the input seq
- ✓ Can randomly choose some output words for backprop gradients

forward

- Input source seq to encoder & target seq (ground truth) to decoder (Use teacher forcing) => easier training, calculate divergence
- Compute the divergence between the output distribution and target word sequence

backward

• Backprop DIV through whole end2end network

- Seq2Seq for Machine Translation
- Decoding & Training process
- Attention model

Problem with naïve enc-dec net

- Information bottleneck
 (all the information about the input seq is embedded into a single vector)
- In reality: all hidden values carry information
 some of which may be diluted downstream

Feasible solution:

Attention mechanism

- e: attention scores, w: attention weights
- Weights vary by output time (time-varying weight that specifies relationship of output time to input time)
- The weights are a distribution over the input

<Query - Key - Value> : Generalize the Attention

- The weight is a function of key and query
- The actual context is a weighted sum of value

Special case:
$$k_i = v_i = h_i$$

 $q_t = s_{t-1}$

Multi-head attention

- Can have multiple Q/K/V sets (each attention head uses one of these sets)
- Each attender focuses on a different aspect of the input

Inference & train

• If attention function is parametric , back propagation also updates parameters of the attention function

• Pass drawn output instead of ground truth, as input