Memoria practica 1 ONELE

Daniel Vilardell

Ejercicio 1: Al laboratori vam prendre les següents mesures:

	Potencia
P_{ref}	2.62
P_{vidrio}	2.33
P_{pyrex}	2.35

Per tant obtenim que

$$T_{pyrex} = \frac{2.35}{2.62} = 0.896$$
 $T_{pyrex} = \frac{2.33}{2.62} = 0.889$

Veiem que els valors de transmitivitat son molt propers al teoric (T = 0.917).

Ejercicio 2: Els valors de potencia mesurats amb el laser i el pyrex en contes del led son els seguents. Es van fer varies mesures per a poguer agafar la mitja

	Potencia
P_{ref}	2.02
P_1	1.90
P_2	1.82
P_3	1.88
P_4	1.72

Per tant tenim que

$$\frac{1.90 + 1.82 + 1.88 + 1.72}{4 \cdot 2.02} = 0.923$$

Veiem que el resultat es proper al teoric pero les mostres son bastant irregulars. El LED es menys coeerent que el laser temporalment.

Busquem ara T_{max} i T_{min} .

	Potencia
P_{ref}	8.46
P_{min}	6.93
P_{max}	7.48

I d'aquí obtenim que

$$T_{min} = \frac{6.93}{8.46} = 0.819$$
 $T_{max} = \frac{7.48}{8.46} = 0.884$

Rarament dona mes petit que el teoric o el trobat al exercici 1. S'hauria de tornar a fer les mesures per a assegurar que son correctes.

Exercici 3: Tenim que els medis tenen permeavilitats $n_1=n_4=1,$ $n_2=4.1,$ $n_3=1.52.$ Per tant d'aquí podem calcular $\tau_{21},$ $\tau_{32},$ $\tau_{43}.$

$$\tau_{21} = 1 + \rho_{21} = \frac{2n_2}{n_2 + n_1} = 1.61 \quad \tau_{32} = 1 + \rho_{32} = \frac{2n_3}{n_3 + n_2} = 0.54$$

$$\tau_{43} = \frac{2n_4}{n_4 + n_3} = 0.79$$

$$T = \frac{|\tau_{21}|^2 |\tau_{32}|^2 |\tau_{43}|^2}{|1 + \rho_{21}\rho_{32}e^{-2jkn_2d}|^2}$$

Ara que tenim T en funció de la distancia ho grafiquem a matlab i despres busquem la T per les tres lamines estudiades al laboratori.

```
1 -
       x = linspace(50e-9, 150e-9, 100);
 2
 3 -
       k = 3200000*pi;
       n1 = 1;
 4 -
 5 -
       n2 = 4.1;
 6 -
       n3 = 1.52;
7 -
       n4 = 1;
8 -
       t21 = 2*n2/(n2+n1);
       t32 = 2*n3/(n3+n2);
9 -
       t43 = 2*n4/(n4+n3);
10 -
11 -
       p21 = t21-1;
       p32 = -(t32-1);
12 -
13
14 -
       T = ((t21*t32*t43)./(abs(1+p21*p32*exp(-1i*2*k*n2*x)))).^2;
15
16 -
       plot(x,T);
17
18 -
       xlabel("Grosor lamina[m]");
19 -
       ylabel("Transmitividad");
```

Figura 1: Codi matlab usat per a generar la grafica

Figura 2: Transmitividad en funcion del grosor de la lamina

D'aquí, tenint en conte que $P_{ref}=1.66$ podem obtenir a partir de les dades experimentals que que les lamines tenen transmitivitat

$$T_{08} = 0.6$$
 $T_{12} = 1.1$ $T_{16} = 0.49$

i per tant podem veure a la grafica que els grossors son de

 $G_{08} = 105nm$ o 123nm $G_{12} = 115nm$ $G_{16} = 51nm, 100nm$ o 130nm