A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS)

Derek Holmes, Cargill Financial Services (formerly University of Michigan)

Contents

- What is POSTS?
- How to get POSTS?
- Suggested reporting rules for POSTS problems?
- Problem Descriptions
- Problem Sizes and Solutions

What is POSTS?

POSTS is a small test set of stochastic programming recourse problems (SLP) designed to highlight different qualities of general linear recourse problems. This test set is meant as a common test bed for reporting the computational characteristics of state-of-the-art SLP algorithms and their implementations. The problems are generally extendible to an arbitrary number of periods and scenarios. Each is given in standard SMPS format (Birge, at. al.). Go Back to Contents

How to get POSTS

The POSTS test set is available as a zip file, <u>posts.zip</u>, or a compressed tar file <u>posts.tar.Z</u>. To uncompress the files, type (from a UNIX prompt) either

```
unzip posts.zip
for the zip file or
zcat posts.tar.Z | tar -xvf -
```

Instructions and solution values are in README files in each package. Go Back to Contents

How should the problems be solved?

To further "standardize" any computational results that may be reported using POSTS, we suggest using the following guidelines:

- Tolerances and solutions
 - All stages should be solved to a relative tolerance of 10^(-6), i.e. if UB and LB are upper and lower bounds on the recourse objective in any given stage, (UB-LB)/(|LB|+0.1) <= 10^(-6). Interior point codes should use the same tolerance, but are not required to provide a basic solution.
 - Primal and dual solutions should be given for all nodes in the solution tree. (If not, at least primal solutions should be given, and the absence of dual solutions should be reported.)
- Reporting
 - Complete descriptions of the hardware and software used should be given, including machines make, model, memory, and speed
 (if applicable). If parallel codes are used, some indication of processor-processor bandwidth and message latency should be
 reported. (Ideally, the guidelines presented in Section 7 of Barr and Hickman should be followed.) If external routines are used
 (e.g. LP solvers), they should be cited.
 - Both algorithmic solution times and total times should be reported. Algorithmic solution times exclude input, problem set-up, and output. System times should be used if uniprocessor codes are used. If a parallel code is being used, the best and average wall clock times over a group of tests should be used. Using machines loaded with other processes should be avoided, if possible.

Any suggestions or comments would be GREATLY appreciated, and can be forwarded to jrbirge@northwestern.edu . Go Back to Contents

Problem Descriptions

Here is a summary of the problems in the set. For more detailed descriptions, (and descriptions of more problems) Click here!.

• Costs and RHS stochastic, time dependent scenarios. The only problems not arbitrarily created from those with only RHS stochasticity are the SGPF problems submitted courtesy of Prof. Karl Frauendorfer. The SGPF problems arise from a portfolio management application approximated with his discrete barycentric approximation system. (Frauendorfer, 1992). There is a set of small size problems and a set of large size problems publicly available. Due to their excessive size, only the smaller set will be used. The problems in the set and their filenames are given in the table below.

Stages	Scenarios	Cor	Time	STOCH

3	25	sgpf3y3.cor	sgpf3y3.tim	sgpf3y3.sce
4	125	sgpf3y4.cor	sgpf3y4.tim	sgpf3y4.sce
5	625	sgpf3y5.cor	sgpf3y5.tim	sgpf3y5.sce
6	3125	sgpf3y6.cor	sgpf3y6.tim	sgpf3y6.sce

• RHS random: Finding feasibility The most tightly constrained problem in the test set is SCFXM1, which is tightly coupled in at least the first few stages. (See note below) The problem first appeared in Ho and Loute. There are 2,3, and 4 stage versions of this problem, and 2 and 16 scenarios per stage STOCH versions. The problems and their descriptions are given below

	Stages	Scens/stage	Cor Time		STOCH
_	2	6 16	fxm.cor	fxm2.tim	fxm2_6.sto fxm2_16.sto
	3	6 16	fxm.cor	fxm3.tim	fxm3_6.sto fxm3_16.sto
	4	6 16	fxm.cor	fxm4.tim	fxm4_6.sto fxm4_16.sto

Note: The period partitions in the core file are different from those originally used in Gassman 1988. The original fxm file from the netlib test set was partitioned so as to have roughly equal size blocks.

- RHS random: A moderate number of optimal bases. A problem with a relatively few number of optimal second stage bases is the PLTEXP problem (Sims), which is the linear relaxation of a stochastic capacity expansion problem. The problem is extendable to an arbitrary number of stages and an arbitrary number of scenarios.
- Thick tree version. This test set has either 6 or 16 scenarios per stage. The associated file names are shown below

Stages	Scens/stage	Cor	Time	STOCH
2	6 16	pltexpA2.cor	pltexpA2.tim	pltexpA2_6.sto pltexpA2_16.sto
3	6 16	pltexpA3.cor	pltexpA3.tim	pltexpA3_6.sto pltexpA3_16.sto
4	6 16	pltexpA4.cor	pltexpA4.tim	pltexpA4_6.sto pltexpA4_16.sto
5	6 16	pltexpA5.cor	pltexpA5.tim	pltexpA5_6.sto pltexpA5_16.sto
6	6	pltexpA6.cor	pltexpA6.tim	pltexpA6_6.sto

• Thin tree version. This test set has 6 scenarios in the first stage, and two scenarios per stage thereafter. These problems are provided as a contrast with those in (4.1), and may show results less dependent on subproblem solution.

Stages	Scens in Stg	2 Cor	Time	STOCH
3	6	pltexpA3.cor	pltexpA3.tim	pltexpB3_6.sto
4	6	pltexpA4.cor	pltexpA4.tim	pltexpB4_6.sto
5	6	pltexpA5.cor	pltexpA5.tim	pltexpB5_6.sto

• RHS random: Huge number of optimal bases. Due to its size and the high dimension of its support, STORM (Mulvey and Ruszczy/'{n}ski, 1992) is a problem well known for its difficulty. The problem as originally received was a very large two-stage only problem, with dim (Supp) = 118. Prof. H.I. Gassmann modified the model by enforcing some dependence among the RHSs. These instantiations form the basis of this test set. However, in the spirit of the original model, the smaller two-stage model has extended to include up to 1000 scenarios.

	Stages	Scenarios	s Cor	Time	STOCH
-	2	8 27 125 1000	stormG2.cor	stormG2.tim	stormG2_8.sto stormG2_27.sto stormG2_125.sto

References (please excuse the varied styles)

• J. R. Birge, M.A.H. Dempster, H. I. Gassman, E. A. Gunn, A. J. King, and S. W. Wallace, 1987. "A Standard forinput format for multiperiod stochastic linear programs," *COAL newsletter*, 17, pp. 1-20.

- K. Frauendorfer, Lecture Notes in Economics and Mathematical Systems No 392, **Stochastic Two-Stage Programming** (Springer-Verlag, Berlin, 1993).
- H. I. Gassman, 1990. ``MSLiP: A computer code for the multistage stochastic linear programming problem." *Mathematical Programming*, 47, pp. 407-423.
- J. K. Ho, 1975. "Optimal Design of Multistage Structures: A Nested Decomposition Approach," *Computers and Structures*, Vol. 5, pp 249-255.
- M. J. Sims, 1992. "Use of a stochastic capacity planning model to find the optimal level of flexibility for a manufacturing system,"
 Senior Design Project, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109.
- J. M. Mulvey, and A. Ruszczynski, 1992. ``A New Scenario Decomposition Method for Large Scale Stochastic Optimization," Technical Report SOR-91-19, Dept. of Civil Engineering and Operations Research, Princeton Univ. Princeton, N.J. 08544

>Go Back to Contents

Problem sizes and solutions

This table describes the characteristics of the stochasticity for each problem, as well as the size of the Deterministic Equivalent and the optimal objective value.

	Det. Equiv.						
Problem	Stages	Scen/Stage	Rows	Columns	Total Scen.	Opt. Obj. Value	
PLTEXP							
pltexpA2 6	2	6	686	1856	6	-9.479354	
pltexpA2 10		16	1726	4636	16	-9.663308	
pltexpA3 6	3	6	4430	11864	36	-13.969368	
pltexpA3 10		16	28350	75804	256	-14.267458	
pltexpA4 6	4	6	26894	71912	216	-19.599417	
pltexpA4_1	5 4	16	454334	1214492	4096	-18.849337	
pltexpA5 6	5	6	161678	432200	1296	-23.214073	
pltexpA6 6	5	6	970382	2593928	7776	-28.134408	
pltexpB3_6	3	6+1+1			6	-13.643226	
pltexpB4_6	3	6+1+1+1			6	-17.928191	
pltexpB5_6	3	6+1+1+1+1	L		6	-23.846166	
SCFXM							
fxm2.6	2	6	780	1047	6	18416.686	
fxm2.16	2	16	1680	2227	16	18416.655	
fxm3.6	3	6	4020	5295	36	18615.932	
fxm3.16	3	16	24720	32435	256	18438.891	
fxm4.6	4	6	23460	30783	216	18616.224	
fxm4.16	4	16	393360	515763	4096	18438.891	
STORM							
stormG2.8	2	8	2985	11456	8	15535231.897	
stormG2.27	2	27	9635	37809	27	15508982.306	
stormG2.12	5 2	125	43935	173735	125	15512090.180	
stormG2.10	90 2	1000	350185	1387360	1000	15802589.698	
SGPF							
sgpf3y3	3	5	1220	1595	25	-2967.917	
sgpf3y4	4	5	6097	7974	125	-3994.198	
sgpf3y5	5	5	30487	39868	625	-5172.165	
sgpf3y6	6	5	152434	199341	3125	-6463.323	
sgpf5y3	3	5	1282	1342	25	-3027.706	
sgpf5y4	4	5	5657	5726	125	-4031.391	
sgpf5y5	5	5	24407	24476	625	-5201.282	
sgpf5y6	6	5	246077	308733	3125	-6479.614	
Go Back to Contents							

This page was last modified on . Send questions to jrbirge@northwestern.edu.