ÁLGEBRA III - 2023 Práctico 1

Repaso de Álgebra Lineal

Nota: F denota, salvo mención contraria, un cuerpo a lo largo de este práctico.

1. Sea \mathbb{F} un subcuerpo de los números complejos y sea A una matriz 2×2 sobre \mathbb{F} ,

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}.$$

Para cada uno de los siguientes polinomios f sobre \mathbb{F} , calcular f(A).

- (i) $f = x^2 x + 2$,
- (ii) $f = x^3 1$,
- (iii) $f = x^2 5x + 7$.
- 2. Sea T el operador lineal en \mathbb{R}^3 definido por $T(x_1, x_2, x_3) = (x_1, x_3, -2x_2 x_3)$. Sea f el polinomio sobre \mathbb{R} definido por $f = -x^3 + 2$. Hallar f(T),
- 3. (a) Sea S un conjunto de polinomios no nulos sobre \mathbb{F} tal que si f y g están en S, no tienen el mismo grado. Mostrar que S es un conjunto linealmente independientes de $\mathbb{F}[x]$.
 - (b) Si $a ext{ y } b \in \mathbb{F}$ con $a \neq 0$, demostrar que los polinomios $1, ax + b, (ax + b)^2, (ax + b)^3, \ldots$ forman una base de $\mathbb{F}[x]$.
- 4. Si $h \in \mathbb{F}[x]$ tiene grado mayor o igual a 1, demostrar que la asignación $f \to f(h)$ es una transformación lineal inyectiva de $\mathbb{F}[x]$ en $\mathbb{F}[x]$. Además, mostrar que esta transformación es un isomorfismo si y sólo si gr(h) = 1.
- 5. Usando la interpolación de Lagrange, hallar un polinomio f, con coeficientes reales, tal que f tenga grado ≤ 3 y que f(-1) = -6, f(0) = 2, f(1) = -2, f(2) = 6.
- 6. Sea $\mathbb{F} = \mathbb{R}$,

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$y p = (x-2)(x-3)(x-1).$$

- (a) Demostrar que p(A) = 0.
- (b) Sean P_1, P_2, P_3 los polinomios de Lagrange para $t_1 = 2, t_2 = 3, t_3 = 1$. Calcular $E_i = P_i(A)$ para i = 1, 2, 3.)
- (c) Demostrar que $E_1 + E_2 + E_3 = I$, $E_i E_j = \delta_{i,j} E_i$ y que $A = 2E_1 + 3E_2 + E_3$.
- 7. Sean A y P matrices $n \times n$ sobre \mathbb{F} con P inversible. Si f es cualquier polinomio sobre \mathbb{F} , mostrar que

$$f(P^{-1}AP_1) = P^{-1}f(A)P.$$

- 8. Determinar cuáles de los siguientes subconjuntos de $\mathbb{Q}[x]$ son ideales. En caso de serlo, encontrar su generador mónico
 - (a) todos los f de grado par;
 - (b) todos los f de grado 5;
 - (c) todos los f con f(0) = 0;
 - (d) todos los f con f(2) = f(4) = 0;
 - (e) todos los f en la imagen del operador lineal

$$T(\sum_{i=0}^{n} c_i x^i) = \sum_{i=0}^{n} \frac{c_i}{i+1} x^{i+1}$$

- 9. Encontrar el m.c.d de cada uno de los siguientes polinomios.
 - (a) $x^2 4$, $x^2 x 6$ y $x^2 + 4x + 4$.
 - (b) $x^4 x^3 + x^2 + x 1$ y $x^3 1$,
- 10. (a) Sea A una matriz $n \times n$ sobre \mathbb{F} . Demostrar que el conjunto de todos los polinomios $f \in \mathbb{F}[x]$ tales que f(A) = 0 es un ideal.
 - (b) Si

$$A = \left(\begin{array}{cc} 1 & -2 \\ 0 & 3 \end{array}\right);$$

encontrar el generador mónico del ideal de todos los polinomios $f \in \mathbb{F}[x]$ tales que f(A) = 0.

- 11. Mostrar que la intersección de cualquier número de ideales en $\mathbb{F}[x]$ es un ideal.
- 12. Sean p un polinomio mónico sobre \mathbb{F} , f y g dos polinomios primos relativos sobre \mathbb{F} . Mostrar que el máximo común divisor de pf y pg es p.
- 13. Usando el teorema fundamental del álgebra, demostrar que en \mathbb{C} , dos polinomios son primos relativos si y sólo si no tienen raíces en común.
- 14. Sea $h \in \mathbb{F}[X]$ un polinomio no nulo. Dados $f; g \in \mathbb{F}[X]$, se dice que f es congruente a g módulo h si h|f-g. En tal caso se escribe $f \equiv g \pmod{h}$. Probar que
 - i) (mod h) es una relación de equivalencia en $\mathbb{F}[X]$.
 - ii) Si $f_1 \equiv g_1 \pmod{h}$ y $f_2 \equiv g_2 \pmod{h}$ entonces $f_1 + f_2 \equiv g_1 + g_2 \pmod{h}$ y $f_1 f_2 \equiv g_1 g_2 \pmod{h}$.
 - iii) Si $f \equiv g \pmod{h}$ entonces $f^n \equiv g^n \pmod{h}$ para todo $n \in \mathbb{N}$.
 - iv) r es el resto de la división de f por h si y sólo si $f \equiv r \pmod{h}$ y r = 0 o gr(r) < gr(h).
 - v) Si h es un polinomio irreducible y $fg \equiv 0 \pmod{h}$ mostrar que $f \equiv 0 \pmod{h}$ o $g \equiv 0 \pmod{h}$. Mostrar con un contraejemplo que esto es falso si h no es irreducible.