ROB311 Quiz 2

Hanhee Lee

March 13, 2025

Contents

1	Bay	resian Networks	3
	1.1	Junction	3
		1.1.1 Causal Chain	3
		1.1.2 Common Cause	3
		1.1.3 Common Effect	4
	-		
2	_	pendence Separation	5
	2.1	Independence	5
		2.1.1 Blocked Undirected Path	5
		2.1.2 Blocked Junction	5
	2.2	Consequence of Dependence Separation	5
	2.3	Canonical Problems	7
		2.3.1 Undirected Path Blocked?	7
		2.3.2 Independence	7
3	Pro	babilistic Inference	12
J	3.1		$\frac{12}{12}$
	0.1	1	$\frac{12}{12}$
	3.2	· ·	$\frac{12}{12}$
	5.4		$\frac{12}{12}$
			$\frac{12}{12}$
			13
			13
			13
	3.3		13 14
	0.0		14 14
	9 4	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\frac{14}{15}$
	3.4		_
			16
			23
		3.4.3 Inference via Sampling	27
4	Mai	rkov	28
	4.1	General	28
		4.1.1 Random Process	28
		4.1.2 Markov Process	28
	4.2		28
			28
	4.3	Markov Reward Processes (MRPs)	29
			$\frac{-9}{29}$
	4.4	·	$\frac{-0}{30}$
	1.1		30
			$\frac{32}{32}$
			$\frac{32}{32}$
	4.5		$\frac{32}{33}$
	1.0		33
			~

ROB311	Hanhee Lee
D/AD911	паппее цее

4.5.2	Markov Reward Processes	33
4.5.3	Markov Decision Processes	34

Probabilistic Inference Problems

1 Bayesian Networks

Definition: Vertices represent random variables and edges represent dependencies between variables.

1.1 Junction

Definition: A junction \mathcal{J} consists of three vertices, X_1 , X_2 , and X_3 , connected by two edges, e_1 and e_2 :

Figure 1

• X_1 and X_2 are not independent, X_2 and X_3 are not independent, but when is X_1 and X_3 independent?

1.1.1 Causal Chain

Definition: A causal chain is a junction $\mathcal J$ s.t.

Figure 2

• X_1 and X_3 are not independent (unconditionally), but are independent given X_2 .

Notes:

- Analogy: Given X_2 , X_1 and X_3 are independent. Why? X_2 's door closes when you know X_2 , so X_1 and X_3 are independent.
- Distinction b/w Causal and Dependence: X_1 and X_2 are dependent. However, from a causal perspective, X_1 is influencing X_2 (i.e. $X_1 \to X_2$).

1.1.2 Common Cause

Definition: A common cause is a junction \mathcal{J} s.t.

Figure 3

• X_1 and X_3 are not independent (unconditionally), but are independent given X_2 .

Notes:

- Analogy: Given X_2 , X_1 and X_3 are independent. Why? Consider the following example:
 - Let X_2 represent whether a person smokes or not, X_1 represent whether they have yellow teeth, X_3 represent whether they have lung cancer.
- Without knowing X_2 , observing X_1 provides information about X_3 because yellow teeth are associated with smoking, which in turn increases the likelihood of lung cancer.
- If X_2 is known, then knowing whether a person has yellow teeth provides no additional information about whether they have lung cancer beyond what is already known from smoking status.

1.1.3 Common Effect

Definition: A common effect is a junction \mathcal{J} s.t.

Figure 4

• X_1 and X_3 are independent (unconditionally), but are not independent given X_2 or any of X_2 's descendents.

Notes:

- **Analogy:** Consider the following example:
 - Let X_2 represent whether the grass is wet, X_1 represent whether it rained, X_3 represent whether the sprinkler was on.
- Without knowing whether the grass is wet (X_2) , the occurrence of rain (X_1) and the sprinkler being on (X_3) are independent events. The rain may occur regardless of the sprinkler, and vice versa.
- However, once we observe that the grass is wet (X_2) , the two events become dependent:
 - If we learn that the sprinkler was not on, then the wet grass must have been caused by rain.
 - If we learn that it did not rain, then the wet grass must have been caused by the sprinkler.

2 Dependence Separation

2.1 Independence

Theorem: Any two variables, X_1 and X_2 , in a Bayesian network, $\mathcal{B} = (\mathcal{V}, \mathcal{E})$, are independent given $\mathcal{K} \subseteq \mathcal{V}$ if every undirected path is blocked.

2.1.1 Blocked Undirected Path

Definition: An undirected path,

$$p = \langle (X_1, e_1, X_2), \dots, (X_{|p|-1}, e_{|p|-1, |p|}, X_{|p|}) \rangle,$$

Figure 5

is **blocked** given $\mathcal{K} \subseteq \mathcal{V}$ if any of its junctions,

$$\mathcal{J}^{(n)} = \{ (X_{n-1}, X_n, X_{n+1}), (e_{n-1}, e_n) \},\$$

is blocked given K.

2.1.2 Blocked Junction

Definition: $\mathcal{J} = (\{X_1, X_2, X_3\}, \{e_1, e_2\})$ is **blocked** given $\mathcal{K} \subseteq \mathcal{V}$ if X_1 and X_3 are independent given \mathcal{K} .

2.2 Consequence of Dependence Separation

Theorem: For any variable, $X \in \mathcal{V}$, it can be shown that X is independent of X's non-descendants, $\mathcal{V} \setminus \operatorname{des}(X)$, given X's parents, $\operatorname{pts}(X)$.

Notes:

Figure 6

- Given X's parent, apply junction rules to determine that X is independent of its non-descendants.
- $\mathcal{J} = \{(Z_1, \operatorname{pt}(X), X), (e_1, e)\}$ shows that Z_1 and X are independent given $\operatorname{pt}(X)$ (causal chain).
- $\mathcal{J} = \{(Z_2, \operatorname{pt}(X), X), (e_2, e)\}$ shows that Z_2 and X are independent given $\operatorname{pt}(X)$ (common cause).
- Given ch(X)'s parent, apply junction rules to determine that ch(X) is independent of its non-descendants.
- $\mathcal{J} = \{ \operatorname{pt}(X), X, \operatorname{ch}(X), (e, e') \}$ shows that $\operatorname{pt}(X)$ and $\operatorname{ch}(X)$ are independent given X (causal chain).

- Given Z₄'s parent, apply junction rules to determine that Z₄ is independent of its non-descendants.
 J = {X, ch(X), Z₄, (e', e₄)} shows that X and Z₄ are independent given ch(X) (causal chain).
 CHECK THIS OVER AGAIN WITH THE PROFESSOR.

2.3 Canonical Problems

2.3.1 Undirected Path Blocked?

Process:

- 1. Given: Undirected path p and K
- 2. Check if any of the junctions on the undirected path are blocked given K.
 - i.e. Check if X_1 and X_3 of the junction are independent given \mathcal{K} .

2.3.2 Independence

Process:

- 1. Given a Bayesian network $\mathbf{w}/$ 2 variables to find independence.
- 2. Find all undirected paths between the 2 variables in the Bayesian network.
- 3. Identify a set of variables, K, that block at least one junction in all undirected paths.
 - Test a junction by seeing junction given relationships.
- 4. If all undirected paths are blocked, then the 2 variables are independent given \mathcal{K} .

Warning:

• Be careful of common effect, in which it is blocked by default.

Example:

1. **Given:** Bayesian network.

Figure 7

- 2. **Problem:** A and E are
 - independent if $\mathcal{K} =$
 - not necessarily independent for $\mathcal{K} =$
- 3. **Soln:**
 - (a) Undirected Paths:
 - $A \rightarrow G \rightarrow H \rightarrow B \rightarrow E$
 - $\bullet \ A \to G \to D \to B \to E$
 - $\begin{array}{ccc} \bullet & A \rightarrow C \rightarrow F \rightarrow B \rightarrow E \\ \bullet & A \rightarrow C \rightarrow D \rightarrow B \rightarrow E \end{array}$

Example: Independent:

\mathcal{K}

$\{G,C\}$

- $A \iff G \iff H \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(A, G, H), (e_1, e_2)\}$ is blocked given G since A, H independent given G (causal chain)
- $A \iff G \iff D \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(A,G,D),(e_1,e_2)\}$ is blocked given G since A,D independent given G (causal chain)
- $A \iff C \iff F \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(A, C, F), (e_1, e_2)\}$ is blocked given C since A, F independent given C (causal chain)
- $A \iff C \iff D \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(A, C, D), (e_1, e_2)\}$ is blocked given C since A, D independent given C (causal chain)

$\{D,F\}$

- $A \iff G \iff H \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(G, H, B), (e_1, e_2)\}$ is blocked NOT given H since G, B independent NOT given H (common effect)
- $A \iff G \iff D \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(G, D, B), (e_1, e_2)\}$ is blocked given D since G, B independent given D (causal chain)
- $A \iff C \iff F \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(C, F, B), (e_1, e_2)\}$ is blocked given F since C, B independent given F (causal chain)
- $A \iff C \iff D \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(C, D, B), (e_1, e_2)\}$ is blocked given D since C, B independent given D (causal chain)

Not Necessarily Independent:

\mathcal{K}

$\{H, D, F\}$

- $A \iff G \iff B \iff E$ is unblocked given \mathcal{K} since $\mathcal{J} = \{(G, H, B), (e_1, e_2)\}$ is unblocked given H since G, B not independent given H (common effect)
- $A \iff G \iff D \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(G, D, B), (e_1, e_2)\}$ is blocked given D (causal chain) since G, B independent given D (causal chain)
- $A \iff C \iff F \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(C, F, B), (e_1, e_2)\}$ is blocked given F since C, B independent given F (causal chain)
- $A \iff C \iff D \iff B \iff E$ is blocked given \mathcal{K} since $\mathcal{J} = \{(C, D, B), (e_1, e_2)\}$ is blocked given D since C, B independent given D (causal chain)

Example: Determine all subsets of $\{B, C, D, F, G, H\}$ for which A and E are independent.

Figure 8

1. Undirected Paths:

- $\bullet \ A \to G \to H \to B \to E$
- $\bullet \ A \to G \to D \to B \to E$
- $\bullet \ A \to C \to F \to B \to E$
- $\bullet \ A \to C \to D \to B \to E$

\mathcal{K}

$\{B\}$ (Any subset that contains B will be independent)

- AGHBE is b given K since $\mathcal{J} = \{(H, B, E), (e_1, e_2)\}$ is b since H, E indep. given B (causal chain)
- AGDBE is b given K since $\mathcal{J} = \{(D, B, E), (e_1, e_2)\}$ is b since D, E indep. given B (causal chain)
- ACFBE is b given K since $\mathcal{J} = \{(F, B, E), (e_1, e_2)\}$ is b since F, E indep. given B (causal chain)
- ACDBE is b given K since $\mathcal{J} = \{(D, B, E), (e_1, e_2)\}$ is b since D, E indep. given B (causal chain)

$\{C\}$ (Not independent)

• AGDBE is ub given K since $\forall \mathcal{J}$ on p, all are ub.

$\{D\}$ (Not indepedent)

• ACFBE is ub given K since $\forall \mathcal{J}$ on p, all are ub.

$\{F\}$ (Not independent)

• AGDBE is ub given K since $\forall \mathcal{J}$ on p, all are ub.

$\{G\}$ (Not independent)

• ACFBE is ub given K since $\forall \mathcal{J}$ on p, all are ub.

$\{H\}$ (Not independent)

• ACFBE is ub given K since $\forall \mathcal{J}$ on p, all are ub.

Example:

\mathcal{K}

 $\{C, D\}$ (Any subset that contains C and D except H will be independent)

- AGHBE is b given K since $\mathcal{J} = \{(G, H, B), (e_1, e_2)\}$ is b since G, B indep. not given H (causal effect)
- AGDBE is b given K since $\mathcal{J} = \{(G, D, B), (e_1, e_2)\}$ is b since G, B indep. given D (causal chain)
- ACFBE is b given \mathcal{K} since $\mathcal{J} = \{(A, C, F), (e_1, e_2)\}$ is b since A, F indep. given C (causal chain)
- ACDBE is b given K since $\mathcal{J} = \{(A, C, D), (e_1, e_2)\}$ is b since A, D indep. given C (causal chain)

. . .

Example: Any set with

$$B \vee [(G \vee (D \wedge (\neg H))) \wedge (C \vee F)]$$

Example:

3 Probabilistic Inference

3.1 Problem Setup

Definition: Given a Bayesian network, $\mathcal{B} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{X_1, \dots, X_{|\mathcal{V}|}\}$, we want to find the value of:

$$\operatorname{pr}(\mathbf{Q} \mid \mathbf{E}) := \operatorname{pr}(Q_1, \dots, Q_{|\mathbf{Q}|} \mid E_1, \dots, E_{|\mathbf{E}|}) = \frac{\sum_{\mathcal{V} \setminus (\mathbf{Q} \cup \mathbf{E})} p(X_1, \dots, X_{|\mathcal{V}|})}{\sum_{\mathcal{V} \setminus \mathbf{E}} p(X_1, \dots, X_{|\mathcal{V}|})}$$

$$\operatorname{pr}(\mathbf{Q} \mid \mathbf{E}) \propto \sum_{\mathcal{V} \setminus (\mathbf{Q} \cup \mathbf{E})} \left(p(X_1) \prod_{i \neq 1} p(X_i \mid \operatorname{pts}(X_i)) \right)$$

- $\mathbf{Q} = \{Q_1, \dots, Q_{|\mathbf{Q}|}\}$: Query variables
- $\mathbf{E} = \{E_1, \dots, E_{|\mathbf{E}|}\} \subseteq \mathcal{V}$: Evidence variables
- $\mathbf{Q} \cap \mathbf{E} = \emptyset$.

Warning:

- Denominator: Normalization constant (assuming E is fixed)
- Therefore, only need to compute numerator (w/o specifying Q), which we can then normalize w.r.t. Q

3.1.1 Joint Distribution in a Bayesian Network

Derivation: For any joint distribution, the following factorization holds:

$$p(X_1, \dots, X_{|p|}) = p(X_1) \prod_{i \neq 1} p(X_i \mid X_1, \dots, X_{i-1})$$

Bayesian Network Conditions: If

- at least 1 variable will be an orphan (i.e. no parents)
- no variable is both ancestor and descendant of another.

then this allows us to order $X_1, \ldots, X_{|\mathcal{V}|}$, so that if X_j is a descendent of X_i , then for any j > i,

$$pts(X_i) \subseteq \{X_1, ..., X_{i-1}\} \text{ and } X_1, ..., X_{i-1} \notin des(X_i)$$

Therefore, using the consequence of dependence separation, then

$$p(X_1, \dots, X_{|\mathcal{V}|}) = p(X_1) \prod_{i \neq 1} p(X_i \mid \text{pts}(X_i))$$

3.2 Method 1: Bayesian Network Inference

3.2.1 Markov Blanket

Definition: The Markov blanket of a variable X, denoted mbk(X), consists of the following variables:

- X's children
- X's parents
- The other parents of X's children, excluding X itself.

which is when a variable, X, is "eliminated", the resulting factor's scope is the Markov blanket of X.

3.2.2 Graphical Interpretation

Notes: Pictorially, eliminating X is equivalent to replacing all hyper-edges that include X with their union minus X, and then removing X.

3.2.3 Elimination Ordering

Definition: The order that the variables are eliminated.

• This creates a sequence of hyper-graphs that depend on the elimination ordering.

3.2.4 Elimination Width

Definition: The **elimination width** of a sequence of hyper-graphs is the # of variables in the hyper-edge within the sequence with the most variables.

3.2.5 Heuristics for Elimination Ordering

Definition: Choose the elimination ordering to minimize the elimination width using the following heuristics:

- 1. Eliminate variable with the fewest parents.
- 2. Eliminate variable with the smallest domain for its parents, where

$$|\operatorname{dom}(\operatorname{pts}(X))| = \prod_{Z \in \operatorname{pnt}(X)} |\operatorname{dom}(Z)|.$$

- 3. Eliminate variable with the smallest Markov blanket.
- 4. Eliminate variable with the smallest domain for its Markov blanket, where

$$|\operatorname{dom}(\operatorname{mbk}(X))| = \prod_{Z \in \operatorname{embk}(X)} |\operatorname{dom}(Z)|.$$

Warning: Choosing the variable with the smallest domain for its Markov blanket is the most effective heuristic.

3.3 Method 2: Inference via Sampling

Definition: Generate a large # of samples and then approximate as:

$$p(\mathbf{Q}\mid\mathbf{E}) \approx \frac{\text{\# of samples w/ }\mathbf{Q} \text{ and }\mathbf{E}}{\text{\# of samples w/ }\mathbf{E}}.$$

• As # of samples $\to \infty$, the approximation becomes exact.

3.3.1 Inference via Sampling with Likelihood Weighting

Motivation: Most of the samples are wasted since they are not consistent with the evidence.

Definition: Generate a large # of samples and then approximate as:

$$p(\mathbf{Q}\mid\mathbf{E}) \approx \frac{\text{weight of samples w/ }\mathbf{Q} \text{ and }\mathbf{E}}{\text{weight of samples w/ }\mathbf{E}}.$$

• Weight for each sample: Probability of forcing the evidence, i.e. probability of the evidence given the sample.

3.4 Canonical Problems:

Example:

- 1. Given: Caveman is deciding whether to go hunt for meat. He must take into account several factors:
 - Weather
 - Possibility of over-exertion
 - Possibility encountering lion

These factors can result in Cavemen's death. His decision will ultimately depend on the **chances** of his death.

- 2. Binary Variables:
 - $W = \{Sun, Rainy\}$: Weather
 - \bullet H: Whether the Cavemen goes hunting or not.
 - L: Whether the Cavemen encounters a lion or not.
 - T: Whether the Cavement is tired or not.
 - \bullet D: Whether the Cavemen dies or not
- 3. **Problem:** Cavemen must decide whether to go hunting or not.
 - He must consider the conditional probabilities (i.e. dependence) of each event.

Warning: Have to be discrete.

Bayesian Inference via Variable Elimination

Process:

- 1. Given Bayesian network w/ variables and their conditional probabilities.
- 2. Find the probability of the query variable given the evidence variable, $p(\mathbf{Q} \mid \mathbf{E})$.
- 3. Use $p(\mathbf{Q} \mid \mathbf{E}) = \frac{\sum_{\mathcal{V} \setminus (\mathbf{Q} \cup \mathbf{E})} p(X_1, \dots, X_{|\mathcal{V}|})}{\sum_{\mathcal{V} \setminus \mathbf{E}} p(X_1, \dots, X_{|\mathcal{V}|})}$.

 4. Determine $p(X_1) \prod_{i \in \mathcal{V}} p(X_i \mid \operatorname{pts}(X_i))$ using the Bayesian network.
- 5. Write out the summation of the numerator in an order using heuristics to determine elimination ordering.
- 6. Start with inner summation and work outwards.
- 7. Calculate the probability of the query variable(s) given the evidence variable(s).

Example:

1. Given:

Figure 9

Variables	Values
\overline{W}	$P(Sunny) = 0.5 \mid P(Rainy) = 0.5$
H	$P(h) = 0.5 \mid P(\neg h) = 0.5$
T	$P(t \mid \text{Sunny}, h) = 1 \mid P(t \mid \text{Sunny}, \neg h) = 0.5 \mid P(t \mid \text{Rainy}, h) = 0.25 \mid P(t \mid \text{Rainy}, \neg h) = 0 \\ P(\neg t \mid \text{Sunny}, h) = 0 \mid P(\neg t \mid \text{Sunny}, \neg h) = 0.5 \mid P(\neg t \mid \text{Rainy}, h) = 0.75 \mid P(\neg t \mid \text{Rainy}, \neg h) = 1$
L	$P(l \mid h) = 1 \mid P(l \mid \neg h) = 0.75$ $P(\neg l \mid h) = 0 \mid P(\neg l \mid \neg h) = 0.25$
D	$P(d \mid t, l) = 0.75 \mid P(d \mid t, \neg l) = 1 \mid P(d \mid \neg t, l) = 0 \mid P(d \mid \neg t, \neg l) = 0$ $P(\neg d \mid t, l) = 0.25 \mid P(\neg d \mid t, \neg l) = 0 \mid P(\neg d \mid \neg t, l) = 1 \mid P(\neg d \mid \neg t, \neg l) = 1$

- 2. **Problem:** $p(d \mid h)$?
- - (a) $p(d \mid h) = \frac{p(d,h)}{p(h)} = \frac{\sum_{W,T,L} p(W,h,T,L,d)}{\sum_{W,T,L,D} p(W,h,T,L,d)}$ by definition of query and evidence equations. (b) $p(W,h,T,L,D) = p(h)p(W)p(L \mid h)p(t \mid W,h)p(D \mid T,L)$ by Bayesian network and $p(X_1,\ldots,X_{|\mathcal{V}|}) = \sum_{W,T,L,D} p(W,h,T,L,d)$
 - $p(X_1) \prod p(X_i \mid \operatorname{pts}(X_i)).$

Summation

$$\operatorname{Numerator}: p(h) \sum_{L} p(L \mid h) \underbrace{\sum_{T} p(D \mid T, L)}_{g_1(T)} \underbrace{\sum_{W} p(W) p(T \mid W, h)}_{g_2(L, D)}$$

$$g_1(T) = p(\operatorname{Sunny})p(T \mid \operatorname{Sunny}, h) + p(\operatorname{Rainy})p(T \mid \operatorname{Rainy}, h)$$

$$g_1(t) = p(\text{Sunny})p(t \mid \text{Sunny}, h) + p(\text{Rainy})p(t \mid \text{Rainy}, h) = 0.5 \cdot 1 + 0.5 \cdot 0.25 = 0.625$$

 $g_1(\neg t) = p(\text{Sunny})p(\neg t \mid \text{Sunny}, h) + p(\text{Rainy})p(\not t \mid \text{Rainy}, h) = 0.5 \cdot 0 + 0.5 \cdot 0.75 = 0.375$

$$g_2(L, D) = p(D \mid t, L)g_1(t) + p(D \mid \neg t, L)g_1(\neg t)$$

$$\begin{split} g_2(l,d) &= p(d \mid t, l)g_1(t) + p(d \mid \neg t, l)g_1(\neg t) = 0.75 \cdot 0.625 + 0 \cdot 0.375 = 0.46875 \\ g_2(l, \neg d) &= p(\neg d \mid t, l)g_1(t) + p(\neg d \mid \neg t, l)g_1(\neg t) = 0.25 \cdot 0.625 + 1 \cdot 0.375 = 0.53125 \\ g_2(\neg l, d) &= p(d \mid t, \neg l)g_1(t) + p(d \mid \neg t, \neg l)g_1(\neg t) = 1 \cdot 0.625 + 0 \cdot 0.375 = 0.625 \\ g_2(\neg l, \neg d) &= p(\neg d \mid t, \neg l)g_1(t) + p(\neg d \mid \neg t, \neg l)g_1(\neg t) = 0 \cdot 0.625 + 1 \cdot 0.375 = 0.375 \end{split}$$

$$g_3(D) = p(h)p(l \mid h)g_2(l, D) + p(h)p(\neg l \mid h)g_2(\neg l, D)$$

$$g_3(d) = p(h)p(l \mid h)g_2(l, d) + p(h)p(\neg l \mid h)g_2(\neg l, d) = (0.5)(1)(0.46875) + (0.5)(0)(0.625) = 0.234375$$

$$g_3(\neg d) = p(h)p(l \mid h)g_2(l, \neg d) + p(h)p(\neg l \mid h)g_2(\neg l, \neg d) = (0.5)(1)(0.53125) + (0.5)(0)(0.375) = 0.265625$$

$$p(d \mid h) = \frac{g_3(d)}{g_3(d) + g_3(\neg d)} = \frac{0.234375}{0.234375 + 0.265625} = \frac{0.234375}{0.5} = 0.46875$$

Example: Summation $\text{Numerator}: p(h) \sum_{L} p(L \mid h) \sum_{W} p(W) \underbrace{\sum_{T} p(T \mid W, h) p(D \mid T, L)}_{}$ $g_2(D,L)$ $g_3(D)$ $g_1(D,T)$ $g_2(D,W)$ $g_3(D)$ $g_1(W,D,L)$ $g_2(W,D)$ $g_3(D)$ $g_1(D,T)$ $g_2(\dot{D},T)$ $g_3(D)$

Example:

1. Given:

Figure 10

- 2. **Problem:** Compute $Pr(s=1 \mid t=1)$ if Pr(G=1)=0.3, Pr(E=1)=0.4, and the conditional probability tables for S, Y, and T are given below.
- 3. Solution:

(a)
$$p(s=1 \mid t=1) = \frac{p(s=1,t=1)}{p(t=1)} = \frac{\sum_{E,G,Y} p(E,G,Y,s=1,t=1)}{\sum_{S} p(t=1,S)}$$

(b) $p(E,G,Y,s=1,t=1) = p(G)p(E)p(s=1 \mid G,E)p(t=1 \mid s=1)p(Y \mid s=1)$

- - \bullet Conditional probability and individual probabilities come from Bayesian network, and set t, s = 1due to the query and evidence variables.

Summation

$$\text{Numerator}: p(t=1 \mid s=1) \sum_{E} p(E) \underbrace{\sum_{G} p(G) p(s=1 \mid G, E)}_{g_{1}} \underbrace{\sum_{Y} p(Y \mid s=1)}_{g_{2}}$$

$$q_1 = p(Y = 1 \mid S = 1) + p(Y = 0 \mid S = 1) = 0.9 + 0.1 = 1$$

$$g_2(E) = (p(g=1)p(s=1 \mid g=1, E) + p(g=0)p(s=1 \mid g=0, E))g_1$$

$$g_2(e=1, s=1) = 0.3(0.7) + 0.7(0.4) = 0.49$$

$$g_2(e = 0, s = 1) = 0.3(0.5) + 0.7(0.1) = 0.22$$

$$g_2(e=1, s=0) = 0.3(0.3) + 0.7(0.6) = 0.51$$

$$g_2(e = 0, s = 0) = 0.3(0.5) + 0.7(0.9) = 0.78$$

•
$$g_3(t=1 \mid s=1) = 0.9p(e=1)g_2(e=1) + 0.9p(e=0)g_2(e=0) = 0.9(0.4)(0.49) + 0.9(0.6)(0.22) = 0.2952$$

•
$$g_3(t=1 \mid s=0) = 0.2p(e=1)g_2(e=1) + 0.2p(e=0)g_2(e=0) = 0.2(0.4)(0.51) + 0.2(0.6)(0.78) = 0.1344$$

$$p(s=1 \mid t=1) = \frac{g_3}{\sum_{S} p(t=1,S)} = \frac{0.2952}{0.2952 + 0.1344} = \frac{0.2952}{0.4296} = 0.6875$$

Example:

1. Given: Consider the following Bayesian network, where A, B, C, D are binary R.V. over $\{0, 1\}$

Figure 11

Figure 12

- 2. **Problem:** Find P(A = 0 | C = 0) and P(D = 1 | C = 0).
- 3. Solution:
 - (a) Derivation of $P(D=1 \mid C=0)$:

$$\begin{split} P(D=1 \mid C=0) &= \frac{P(D=1,C=0)}{P(C=0)} \quad \text{by definition} \\ &= \frac{P(D=1,C=0)}{\sum_d P(D=d,C=0)} \quad \text{marginalize over } D \\ &= \frac{\sum_{A,B} P(A,B,C=0,D=1)}{\sum_d \sum_{A,B} P(A,B,C=0,D=d)} \quad \text{equation in problem setup} \end{split}$$

- Summing over the variables that are not in the query and evidence variables.
- (b) Summation Term:

$$\begin{split} &\sum_{A,B} P(A)P(B\mid A)P(C=0\mid A)P(D=d\mid B,C=0) \quad \text{Bayesian network} \\ &\sum_{A} P(A)P(C=0\mid A)\sum_{B} P(B\mid A)P(D=d\mid B,C=0) \quad \text{(1st ordering)} \\ &\sum_{B} P(D=d\mid B,C=0)\sum_{A} P(A)P(B\mid A)P(C=0\mid A) \quad \text{(2nd ordering)} \end{split}$$

(c) Choose:

$$\underbrace{\sum_{B} P(D=d\mid B,C=0)\underbrace{\sum_{A} P(A)P(B\mid A)P(C=0\mid A)}_{g_{1}(B)}}_{g_{2}(d)}$$

(d) $g_1(B)$:

$$\begin{split} g_1(B) &= P(A=0)P(B \mid A=0)P(C=0 \mid A=0) + P(A=1)P(B \mid A=1)P(C=0 \mid A=1) \\ &= \begin{cases} 0.9(0.6)(0.8) + 0.1(0.5)(0.6) & \text{if } B=0 \\ 0.9(0.4)(0.8) + 0.1(0.5)(0.6) & \text{if } B=1 \end{cases} \\ &= \begin{cases} 0.462 & \text{if } B=0 \\ 0.318 & \text{if } B=1 \end{cases} \end{split}$$

(e) $g_2(d)$:

$$\begin{split} g_2(d) &= P(D=d \mid B=0, C=0)g_1(B=0) + P(D=d \mid B=1, C=0)g_1(B=1) \\ &= \begin{cases} 0.5(0.462) + 0.5(0.318) & \text{if } d=0 \\ 0.5(0.462) + 0.5(0.318) & \text{if } d=1 \end{cases} \\ &= \begin{cases} 0.39 & \text{if } d=0 \\ 0.39 & \text{if } d=1 \end{cases} \end{split}$$

(f)
$$P(D=1 \mid C=0) = \frac{g_2(1)}{g_2(0) + g_2(1)} = \frac{0.39}{0.39 + 0.39} = 0.5$$

- 4. Solution 2:
 - (a) Derivation of $P(A = 0 \mid C = 0)$:

$$P(A = 0 \mid C = 0) = \frac{P(A = 0, C = 0)}{P(C = 0)}$$

$$= \frac{P(A = 0, C = 0)}{\sum_{a} P(A = a, C = 0)}$$

$$= \frac{\sum_{B,D} P(A = 0, B, C = 0, D)}{\sum_{a} \sum_{B,D} P(A = a, B, C = 0, D)}$$

(b) Summation Term:

$$\sum_{B,D} P(A=a)P(B\mid A=a)P(C=0\mid A=a)P(D\mid B,C=0) \quad \text{Bayesian network}$$

$$P(C=0\mid A=a)\sum_{B} P(B\mid A=a)P(A=a\mid B,C=0)\sum_{D} P(D\mid B,C=0) \quad \text{(1st ordering)}$$

$$P(C=0\mid A=a)\sum_{D} P(D\mid B,C=0)\sum_{B} P(B\mid A=a)P(A=a\mid B,C=0) \quad \text{(2nd ordering)}$$

(c) Choose:

$$P(C = 0 \mid A = a) \sum_{B} P(B \mid A = a) P(A = a \mid B, C = 0) \underbrace{\sum_{D} P(D \mid B, C = 0)}_{g_1(B)}$$

(d) Same as before.

Warning:

- Write the complement probability to make life easier.
- To determine the conditional probability summation of a variable, look at its parents (inward arrows)
- ullet Inner sum must have all probabilities with that variable in it that you are summing over.

3.4.2 Hypergraph

Process: Process of eliminating a variable.

- 1. Create a Hyper-graph by creating a node for each variable.
- 2. Create hyper-edges (factors) by circling the nodes based on of its parents (i.e. arrows pointing into a variable). If no parents, circle itself.
- 3. Select a variable v that we are summing over.
 - (a) Circle all the variables that have v in their hyperedge into one big hyperedge (i.e. union of hyper-edges).
 - (b) Eliminate v by removing the node.
 - (c) Calculate the factor by multiplying the support of the variables in the union of hyperedges.
- 4. Repeat the process for all other v.
- 5. Select the smallest factor to eliminate first.
- 6. Repeat until all variables are eliminated to determine the best ordering of elimination.
 - The first eliminated variable will be the inner sum.

Example:

Figure 13

• Since these are all binary variables, we are selecting the factor with the least number of variables to eliminate first.

Example:

1. Given: Bayesian network

Figure 15

with cardinality of the support of each variable (i.e. number of values each variable can take on) as follows:

- $A: 2^4$
- $B: 2^2$
- \bullet C: 2^{12}
- $D: 2^2$
- $E: 2^3$
- $F: 2^6$

Suppose elimination ordering is chosen so that the next variable eliminated is the one that results in the smallest factor (breaking ties alphabetically).

- 2. **Problem 1:** How many variables must be eliminated to compute $P(A, F \mid C)$?
- 3. Solution 1:
 - (a) Since A, F are query, and C is evidence, we must eliminate B, D, and E, so 3 variables must be eliminated
- 4. **Problem 2:** What is the first variable to be eliminated to compute $P(F \mid A)$?
- 5. Solution 2:
 - (a) Try eliminating all variables that aren't query or evidence and count # of variables in union of hyperedges.

Figure 16

- i. Eliminate B: Hyperunion is ACDF $\rightarrow 2^4 \cdot 2^{12} \cdot 2^2 \cdot 2^6 = 2^{24}$
- ii. Eliminate C: Hyperunion is ABDEF $\rightarrow 2^4 \cdot 2^2 \cdot 2^3 \cdot 2^6 = 2^{17}$
- iii. Eliminate D: Hyperunion is BCF $\rightarrow 2^2 \cdot 2^{12} \cdot 2^6 = 2^{20}$
- iv. Eliminate E: Hyperunion is AC \rightarrow $2^4 \cdot 2^{12} = 2^{16}$
- (b) Choose E as the first variable to be eliminated because it has the lowest support in its hyperunion.
- 6. **Problem 3:** What is the second variable to be eliminated to compute $P(F \mid A)$?
- 7. Solution 3:
 - (a) Try eliminating all variable except F, A, E.

Figure 17

- i. Eliminate B: Hyperunion is ACDF $\rightarrow 2^4 \cdot 2^{12} \cdot 2^2 \cdot 2^6 = 2^{24}$ ii. Eliminate C: Hyperunion is ABDF $\rightarrow \boxed{2^4 \cdot 2^2 \cdot 2^2 \cdot 2^6 = 2^{14}}$ iii. Eliminate D: Hyperunion is BCF $\rightarrow 2^2 \cdot 2^{12} \cdot 2^6 = 2^{20}$
- (b) Choose C as the second variable to be eliminated because it has the lowest support in its hyperunion.

Inference via Sampling

Process:

- 1. Given samples
- 2. Calculate number of samples $\mathbf{w}/$ the query and evidence variables.
- 3. Calculate number of samples w/ the evidence variables.
- 4. Approximate the probability of the query variable given the evidence variable by dividing the # of samples w/ the query and evidence variables by the # of samples w/ the evidence variables.

Example:

1. Given: Samples

W	H	T	L	D
	h	t	l	d
	h	t	l	d
**	$\neg h$	$\neg t$	l	$\neg d$
	$\neg h$	t	l	d
	h	t	l	$\neg d$
	h	$\neg t$	l	d
**	$\neg h$	$\neg t$	l	d
**	$\neg h$	$\neg t$	$\neg l$	$\neg d$
**	h	$\neg t$	$\neg l$	$\neg d$
-	$\neg h$	$\neg t$	$\neg l$	d

Figure 18

- 2. **Problem:** Find the probability of $p(d \mid h)$.

 3. **Soln:** $p(d \mid h) \approx \frac{\# \text{ of samples w}/ d \text{ and } h}{\# \text{ of samples w}/ h} = \frac{3}{5} = 0.6.$

4 Markov

4.1 General

4.1.1 Random Process

Definition: Time-varying random variables S_0, S_1, S_2, \ldots

4.1.2 Markov Process

Definition: Random process + depends on previous time step only (memoryless)

• w.l.o.g. states can contain history of previous states.

4.2 Markov Chains (MCs)

Summary: In a Markov Chain, we assume that:

- there are no agents
- state transitions occur automatically
- S_t is the state after transition t
- the state transition process is stochastic and memoryless:

$$S_t \perp S_0, \dots, S_{t-2} \mid S_{t-1}$$

- S_t is independent of all previous states given S_{t-1}

Name	Function:
initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
transition distribution	$p(s' s) := \mathbb{P}[S_{t+1} = s' S_t = s]$
Prob. that state of the env. after T transitions is s	$p_T(s) := \mathbb{P}[S_T = s]$

Prob. that state of the env. after T transitions is s $p_T(s) := \mathbb{P}[S_T = s]$ $= \sum_{s'} p_{T-1}(s')p(s|s')$

- $p_{T-1}(s')$: Prob. s' at T-1 (given)
 - $-p_0(s)$: Base case
- p(s|s'): Prob. s given s' (from graph)

4.2.1 Bayesian Network

Notes: S_0, S_1, S_2, \ldots form a Bayesian Network:

Figure 19

4.3 Markov Reward Processes (MRPs)

Summary: In a Markov Reward Process, we assume that:

- there is one agent
- state transitions occur automatically (i.e. agent has no control over actions)
- S_t is the state after transition t
- the state transition process is stochastic and memoryless:

$$S_t \perp S_0, \dots, S_{t-2} \mid S_{t-1}$$

- S_t is independent of all previous states given S_{t-1}
- R_t is the reward for transition t, i.e., $(S_{t-1}, \emptyset, S_t)$

Name	Function:
Initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
Transition distribution	$p(s' s) := \mathbb{P}[S_{t+1} = s' S_t = s]$
Reward function	$r(s,s') := \text{reward for transition } (s,\varnothing,s')$
Discount factor	$\gamma \in [0,1]$
Return after T transitions	$U_T = \sum_{t=1}^{T} \gamma^{t-1} R_t$ = $U_{T-1} + \gamma^{T-1} R_T$

- i.e. The (possibly discounted) sum of the rewards after T transitions (sequence of rewards)
- Why?
 - Future rewards are less valuable than immediate rewards.
 - Won't converge if sum goes to ∞ if $\gamma = 1$.

Expected return after
$$T$$
 transitions $\mathbb{E}[U_T] = \mathbb{E}[U_{T-1}] + \gamma^{T-1} \mathbb{E}[R_t]$
= $\mathbb{E}[U_{T-1}] + \gamma^{T-1} \sum_{s,s'} p_{T-1}(s) p(s'|s) r(s,s')$

- $p_{T-1}(s)p(s'|s)$: Prob. $s \to s'$
- r(s, s'): rwd $s \to s'$
- $\mathbb{E}[U_0] := 0$: Base case

4.3.1 Bayesian Network

Notes: $S_0, R_1, S_1, R_2, S_2, \ldots$ form a Bayesian Network:

Figure 20

Markov Decision Processes (MDPs)

4.4.1 Setup

Summary: In a Markov Decision Process (MDP), we assume that:

- there is one agent
- state transitions occur manually (after each action)
- S_t is the state after transition t
- A_t is the action inducing transition t
- the state transition process is stochastic and memoryless:

$$S_t \perp S_0, A_1, \dots, S_{t-2}, A_{t-1} \mid S_{t-1}, A_t$$

- S_t is independent of all previous states and actions given S_{t-1} and A_t
- R_t is the reward for transition t, i.e., (S_{t-1}, A_t, S_t)

Name	Function:
initial state distribution	$p_0(s) := \mathbb{P}[S_0 = s]$
transition distribution	$p(s' s,a) := \mathbb{P}[S_t = s' A_t = a, S_{t-1} = s]$
reward function	r(s, a, s') := reward for transition (s, a, s')
a time-invariant policy for choosing actions	$\pi(a s) := \mathbb{P}[A_t = a S_t = s]$
Maximum number of transitions	T_{\max}

- A Markov Decision Process can be either:
 - **Finite**: T_{max} is finite
 - **Infinite**: T_{max} is infinite
 - * For infinite MDPs, we must have $\gamma < 1$.

Prob. that state of the env. after T transitions is s

$$p_T(s) = \sum_{a,s'} p_{T-1}(s) \pi(a|s') p(s|s',a)$$

- $p_{T-1}(s)$: Prob. s' at T-1
- $\pi(a|s')$: Action a from s'
- p(s|s',a): Prob. s given s',a

Expected return after T transitions

$$\mathbb{E}_{\pi}[U_T] = \mathbb{E}_{\pi}[U_{T-1}] + \gamma^{T-1}\mathbb{E}_{\pi}[R_t]$$

- $\mathbb{E}_{\pi}[R_t] = \sum_{s,a,s'} p_{T-1}(s)\pi(a \mid s)p(s' \mid s,a)r(s,a,s')$
- $\mathbb{E}_{\pi}[U_0] = 0$: Base case.

Future return after τ transitions

$$G_{\tau} = \sum_{t=\tau+1}^{T} \gamma^{t-(\tau+1)} R_t$$
$$= R_{\tau+1} + \gamma G_{\tau+1}$$

• Starting at $\tau + 1$ for the future return.

 $\mathbb{E}_{\pi}[G_{\tau} \mid S_{\tau} = s] = \mathbb{E}_{\pi}[R_{\tau+1} \mid S_{\tau} = s] + \gamma \mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau} = s]$ Expected future return after τ transitions given $S_{\tau} = s$ $= \sum_{a,s'} \pi(a \mid s) p(s' \mid s, a) (r(s, a, s') + \gamma \mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau+1} = s'])$

• $\mathbb{E}_{\pi}[G_{T_{\text{max}}} \mid S_{T_{\text{max}}} = s] = 0$: Base case.

Summary:

Name Function: $v_{\pi}(s,T) := \mathbb{E}_{\pi}[G_{T_{\max}-T} \mid S_{T_{\max}-T} = s]$ $= \sum_{a,s'} \pi(a \mid s)p(s' \mid s,a) \left(r(s,a,s') + \gamma v_{\pi}(s',T-1)\right)$

- Value of state s under the policy π with T transitions remaining.
 - i.e. How good the state is at time T (e.g. If v(s,T)=5, then the expected future return at T is 5).
- v(s,0) = 0 for all s: Base case

Optimal action
$$a^*(s,T) = \arg\max_{a \in \mathcal{A}(s)} \sum_{s'} p(s' \mid s,a) \left(r(s,a,s') + \gamma v_{\pi^*}(s',T-1) \right)$$
$$= \arg\max_{a \in \mathcal{A}(s)} q^*(s,a,T)$$

Optimal policy
$$\pi^*(a \mid s, T) = \arg\max_{\pi(a \mid s, T)} \mathbb{E}_{\pi}[G_{\tau} \mid S_{\tau} = s] = \begin{cases} 1 & \text{if } a = a^*(s, T) \\ 0 & \text{otherwise} \end{cases}$$

- Choose $\pi(\cdot \mid s)$ to maximize the expected future return after T transitions given $S_{\tau} = s$.
- Note: Policy always depends on transitions remaining so may omit.

Optimal value function
$$v^*(s,T) = \max_{a} \sum_{s'} p(s' \mid a,s) \left(r(s,a,s') + \gamma v^*(s',\tau+1) \right)$$

- Assume we use an optimal policy π^* .
- $v^*(s,0) = 0$ for all s: Base case.

Q function (quality)
$$q_{\pi}(s, a, T) := \mathbb{E}_{\pi}[G_{T_{\max}-T} \mid S_{T_{\max}-T} = s, A_{T_{\max}-(T-1)} = a]$$
$$= \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a', T-1) \right)$$

- Quality of move (s, a) under policy π with T transitions remaining.
- $q_{\pi}(s, a, 0) = 0$ for all s, a: Base case.

• $q^*(s, a, 0) = 0$ for all s, a: Base case.

Bayesian Network

Notes: $S_0, A_1, R_1, S_1, A_2, R_2, S_2, \ldots$ form a Bayesian Network:

Figure 21

4.4.3 Intuition on Formulae

Notes:

$$\mathbb{E}_{\pi}[R_{\tau+1} \mid S_{\tau} = s] = \sum_{a,s'} \pi(a \mid s) p(s' \mid a, s) r(s, a, s')$$

- $\pi(a \mid s)p(s' \mid a, s)$: Prob. of getting to s' from $s \neq s'$ action a
- r(s, a, s'): Reward of getting to s' from s w/ action a

$$\mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau} = s] = \sum_{a,s'} \pi(a \mid s) p(s' \mid a, s) \mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau+1} = s']$$

- $\pi(a \mid s)p(s' \mid a, s)$: Prob. of getting to s' from s w/ action a• $\mathbb{E}_{\pi}[G_{\tau+1} \mid S_{\tau+1} = s']$: Expected future return at $\tau+1$ from s' at $\tau+1$.
- \sum : Sum over all possible future states and current actions to get expected future return at $\tau + 1$ from s at

4.5 Canonical Examples

4.5.1 Markov Chains

Example:

1. Given: Caveman needs to predict the weather, W, which is either sunny or rainy. Suppose the weather tomorrow depends on the weather today:

Figure 22

2. **Problem:** Caveman wants to predict the weather on a given day.

4.5.2 Markov Reward Processes

Example:

1. Given: Caveman needs to predict the weather, W, which is either sunny or rainy. Suppose the weather tomorrow depends on the weather today:

Figure 23

- Depending on the transition, caveman may feel happier/sadder. This is quantified w/ the rewards.
- 2. Problem: Caveman wants to predict the weather on a given day that maximizes his happiness.

4.5.3 Markov Decision Processes

Example:

1. Given:

Figure 24

- Solid straight line: Outcome of action a from state s.
- \bullet Dotted straight line: Choice of action (policy) from state s.
 - If policy known, then reduced to MRP.
- Squiggly line: Reward for action a from state s to state s'.
- Assume uniform probability.
 - Since $\sum p = 1$, therefore count # of arrows going out of s and divide by 1 to get p.
- Same states have the same connections (i.e. all can use them just to hard to draw)
- 2. **Problem:** Find the optimal policy for $\gamma = 1$ and $T_{\text{max}} = 5$.
- 3. **Soln:**

Warning:

- Be careful with the problems. Verify the answers. Go up to at least 2 steps since that tests everything.
- Be able to go through the formula quickly.
- 1st question on the quiz.

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

0 - - 0

• Best Action: $a^*(s,0) = NA$

1 seed wait
$$q^*(\text{seed, wait}, 1) = \underbrace{0.5(-2+0)}_{c'=\text{seed}} + \underbrace{0.5(0+0)}_{c'=\text{res}} = -1$$

• Best Action: $a^*(\text{seed}, 1) = \text{wait}$

1 ga wait
$$q^*(ga, wait, 1) = \underbrace{0.25(-2+0)}_{s'=ga} + \underbrace{0.5(0+0)}_{s'=rea} + \underbrace{0.25(0+0)}_{s'=rea} = -0.5$$
1 ga eat
$$q^*(ga, eat, 1) = \underbrace{0.1(0+0)}_{s'=dead} + \underbrace{0.9(6+0)}_{s'=seed} = 5.4$$
1 ga hunt
$$q^*(ga, hunt, 1) = \underbrace{0.5(24+0)}_{s'=dead} + \underbrace{0.5(0+0)}_{s'=seed} = 12$$

• Best Action: $a^*(ga, 1) = hunt$

1 rea eat
$$q^*(\text{rea}, \text{eat}, 1) = \underbrace{1(12+0)}_{q'=\text{read}} = 12$$

• Best Action: $a^*(rea, 1) = eat$

1 roa eat
$$q^*(\text{roa}, \text{eat}, 1) = \underbrace{0.25(0+0)}_{s'=\text{dead}} + \underbrace{0.75(2+0)}_{s'=\text{seed}} = 1.5$$
1 roa hunt $q^*(\text{roa}, \text{hunt}, 1) = \underbrace{0.5(0+0)}_{s'=\text{dead}} + \underbrace{0.5(18+0)}_{s'=\text{seed}} = 9$

• Best Action: $a^*(roa, 1) = hunt$

1 dead -
$$q^*(\text{dead}, -, 1) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,1) = -$

• Optimal Policy w/ 1 Transition Remaining: $\pi^*(a \mid s, 1) = \begin{cases} 1 & \text{if } a = a^*(s, 1) \\ 0 & \text{otherwise} \end{cases}$

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

2 seed wait
$$q^*(\text{seed}, \text{wait}, 2) = \underbrace{0.5(-2-1)}_{s'=\text{seed}} + \underbrace{0.5(0+12)}_{s'=\text{ga}} = 4.5$$

• Best Action: $a^*(\text{seed}, 2) = \text{wait}$

2 ga wait
$$q^*(ga, wait, 2) = 0.25(-2 + 12) + 0.5(0 + 12) + 0.25(0 + 9) = 10.75$$

2 ga eat
$$q^*(ga, eat, 2) = 0.1(0+0) + 0.9(6-1) = 4.5$$

2 ga hunt
$$q^*(ga, hunt, 2) = \underbrace{0.5(24-1)}_{s' = \text{seed}} + \underbrace{0.5(0+0)}_{s' = \text{dead}} = 11.5$$

• Best Action: $a^*(ga, 2) = hunt$

2 rea eat
$$q^*(\text{rea}, \text{eat}, 2) = \underbrace{1(12-1)}_{s'=\text{seed}} = 11$$

• Best Action: $a^*(rea, 2) = eat$

2 roa eat
$$q^*(\text{roa}, \text{eat}, 2) = 0.25(0+0) + 0.75(2-1) = 0.75$$

2 roa hunt
$$q^*(\text{roa}, \text{hunt}, 2) = \underbrace{0.5(0+0)}_{s'-\text{dead}} + \underbrace{0.5(18-1)}_{s'-\text{seed}} = 8.5$$

• Best Action: $a^*(roa, 2) = hunt$

2 dead -
$$q^*(\text{dead}, -, 2) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,2) = -$

• Optimal Policy w/ 2 Transitions Remaining: $\pi^*(a \mid s, 2) = \begin{cases} 1 & \text{if } a = a^*(s, 2) \\ 0 & \text{otherwise} \end{cases}$

Example:

$$T \qquad s \qquad \qquad a \qquad \qquad q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

$$3 \text{seed wait} q^*(\text{seed, wait}, 3) = \underbrace{0.5(-2 + 4.5)}_{s' = \text{seed}} + \underbrace{0.5(0 + 11.5)}_{s' = \text{ga}} = 7$$

• Best Action: $a^*(\text{seed}, 3) = \text{wait}$

3 ga wait
$$q^*(ga, wait, 3) = 0.25(-2 + 11.5) + 0.5(0 + 11) + 0.25(0 + 8.5) = 10$$

3 ga eat
$$q^*(ga, eat, 3) = 0.1(0+0) + 0.9(6+4.5) = 9.45$$

3 ga hunt
$$q^*(ga, hunt, 3) = \underbrace{0.5(24 + 4.5)}_{s' = \text{seed}} + \underbrace{0.5(0 + 0)}_{s' = \text{dead}} = 14.25$$

• Best Action: $a^*(ga, 3) = hunt$

3 rea eat
$$q^*(\text{rea}, \text{eat}, 3) = \underbrace{1(12+4.5)}_{s' = \text{seed}} = 16.5$$

• Best Action: $a^*(rea, 3) = eat$

3 roa eat
$$q^*(\text{roa}, \text{eat}, 3) = 0.25(0+0) + 0.75(2+4.5) = 4.875$$

3 roa hunt
$$q^*(\text{roa}, \text{hunt}, 3) = \underbrace{0.5(0+0)}_{s'=\text{dead}} + \underbrace{0.5(18+4.5)}_{s'=\text{seed}} = 11.25$$

• Best Action: $a^*(roa, 3) = hunt$

3 dead -
$$q^*(\text{dead}, -, 3) = \underbrace{1(0+0)}_{s' = \text{end}} = 0$$

• Best Action: $a^*(s,3) = -$

• Optimal Policy w/ 3 Transitions Remaining: $\pi^*(a \mid s, 3) = \begin{cases} 1 & \text{if } a = a^*(s, 3) \\ 0 & \text{otherwise} \end{cases}$

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

4 seed wait
$$q^*(\text{seed, wait}, 4) = \underbrace{0.5(-2+7)}_{s'=\text{seed}} + \underbrace{0.5(0+14.25)}_{s'=\text{ga}} = 9.625$$

• Best Action: $a^*(\text{seed}, 4) = \text{wait}$

4 ga wait
$$q^*(\mathrm{ga,wait},4) = 0.25(-2+14.25) + 0.5(0+16.5) + 0.25(0+11.25) = 14.125$$

4 ga eat
$$q^*(ga, eat, 4) = 0.1(0+0) + 0.9(6+7) = 11.7$$

4 ga hunt
$$q^*(ga, hunt, 4) = \underbrace{0.5(24+7)}_{s' = \text{seed}} + \underbrace{0.5(0+0)}_{s' = \text{dead}} = 15.5$$

• Best Action: $a^*(ga, 4) = hunt$

4 rea eat
$$q^*(\text{rea}, \text{eat}, 4) = \underbrace{1(12+7)}_{2'=\text{read}} = 19$$

• Best Action: $a^*(rea, 4) = eat$

4 roa eat
$$q^*(\text{roa}, \text{eat}, 4) = 0.25(0+0) + 0.75(2+7) = 6.75$$

4 roa hunt
$$q^*(\text{roa}, \text{hunt}, 4) = \underbrace{0.5(0+0)}_{s' = \text{dead}} + \underbrace{0.5(18+7)}_{s' = \text{seed}} = 12.5$$

• Best Action: $a^*(roa, 4) = hunt$

4 dead -
$$q^*(\text{dead}, -, 4) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,4) = -$

• Optimal Policy w/ 4 Transitions Remaining:
$$\pi^*(a \mid s, 4) = \begin{cases} 1 & \text{if } a = a^*(s, 4) \\ 0 & \text{otherwise} \end{cases}$$

Example:

$$T s a q^*(s, a, T) = \sum_{s'} p(s' \mid s, a) \left(r(s, a, s') + \gamma \max_{a'} q^*(s', a', T - 1) \right)$$

5 seed wait
$$q^*(\text{seed, wait, 5}) = \underbrace{0.5(-2 + 9.625)}_{s' = \text{seed}} + \underbrace{0.5(0 + 15.5)}_{s' = \text{ga}} = 11.5625$$

• Best Action: $a^*(\text{seed}, 5) = \text{wait}$

5 ga wait
$$q^*(ga, wait, 5) = 0.25(-2 + 15.5) + 0.5(0 + 19) + 0.25(0 + 12.5) = 16$$

5 ga eat
$$q^*(ga, eat, 5) = 0.1(0+0) + 0.9(6+9.625) = 14.0625$$

5 ga hunt
$$q^*(ga, hunt, 5) = \underbrace{0.5(24 + 9.625)}_{s' = seed} + \underbrace{0.5(0 + 0)}_{s' = dead} = 16.8125$$

• Best Action: $a^*(ga, 5) = hunt$

5 rea eat
$$q^*(\text{rea}, \text{eat}, 5) = \underbrace{1(12 + 9.625)}_{s' = \text{real}} = 21.625$$

• Best Action: $a^*(rea, 5) = eat$

5 roa eat
$$q^*(\text{roa}, \text{eat}, 5) = 0.25(0+0) + 0.75(2+9.625) = 8.71875$$

5 roa hunt
$$q^*(\text{roa}, \text{hunt}, 5) = \underbrace{0.5(0+0)}_{s'=\text{dead}} + \underbrace{0.5(18+9.625)}_{s'=\text{seed}} = 13.8125$$

• Best Action: $a^*(roa, 5) = hunt$

5 dead -
$$q^*(\text{dead}, -, 5) = \underbrace{1(0+0)}_{s'=\text{end}} = 0$$

• Best Action: $a^*(s,5) = -$

• Optimal Policy w/ 5 Transitions Remaining:
$$\pi^*(a \mid s, 5) = \begin{cases} 1 & \text{if } a = a^*(s, 5) \\ 0 & \text{otherwise} \end{cases}$$