MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5\}$$

$$A = \{(1,2), (1,3), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1,3)	(2,3)	(2,4)	(2,5)	(3, 4)	(3, 5)	(4,5)
c_{ij}	8	7	3	4	20	3	20	5
d_{ij}	6	11	5	4	10	1	1	6

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5
b_i	+4	0	0	0	-4

Verificare che alla terna

$$B = \{(1,2), \ (1,3), \ (2,5), \ (2,4)\} \quad N_0 = \{(2,3), \ (3,4), \ (4,5)\} \quad N_1 = \{(3,5)\}.$$

corrisponde una soluzione di base ammissibile e partire da questa per determinare una soluzione ottima e il valore ottimo per questo problema.

ESERCIZIO 2. (9 punti)

Si consideri l'algoritmo di branch-and-bound per il problema KNAPSACK. Per ciascuna delle seguenti affermazioni dire se è vera o falsa MOTIVANDO LA RISPOSTA:

- l'upper bound calcolato per un determinato nodo dell'albero di branch-and-bound è sempre maggiore del valore della soluzione ammissibile individuata tramite il calcolo dell'upper bound stesso;
- un nodo viene cancellato solo nel momento in cui tutti gli oggetti in I_f , per i quali si deve ancora prendere una decisione, possono essere inseriti nello zaino;
- se in un nodo $I_f = \emptyset$, allora o il nodo contiene un'unica soluzione ammissibile oppure non contiene alcuna soluzione ammissibile.

ESERCIZIO 3. (6 punti) Si illustri il funzionamento dell'algoritmo MST-1 per il problema dell'albero di supporto a peso minimo, si spieghi il significato delle funzioni e degli insiemi in esso utilizzati e si dica qual è la sua complessità.

ESERCIZIO 4. (6 punti) Si dimostri la correttezza dell'algoritmo di Ford-Fulkerson per il problema di flusso massimo.