Vijay(P15) 03/08/2023

```
In [1]:
             import numpy as np
           1
           2
             import pandas as pd
             import seaborn as sns
             import matplotlib.pyplot as plt
             df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\madrid_2015.csv")
In [2]:
Out[2]:
                             date BEN
                                        CO EBE NMHC
                                                         NO NO 2 O 3 PM10 PM25 SO 2 TCH TOL
                                                                                                      station
              0 2015-10-01 01:00:00
                                  NaN
                                        8.0
                                            NaN
                                                        90.0
                                                              82.0
                                                                   NaN
                                                                         NaN
                                                                               NaN
                                                                                     10.0
                                                                                          NaN
                                                                                               NaN
                                                                                                    28079004
                                                   NaN
              1 2015-10-01 01:00:00
                                                   0.33 40.0
                                                                    4.0
                                                                                                8.3
                                                                                                    28079008
                                   2.0
                                        0.8
                                             1.6
                                                              95.0
                                                                         37.0
                                                                               24.0
                                                                                     12.0
                                                                                          1.83
              2 2015-10-01 01:00:00
                                                              97.0
                                                                                                7.1
                                                                                                    28079011
                                   3.1
                                       NaN
                                                   NaN
                                                        29.0
                                                                   NaN
                                                                               NaN
                                                                                     NaN
                                                                                          NaN
                                             1.8
                                                                         NaN
              3 2015-10-01 01:00:00
                                                                                                    28079016
                                                        30.0
                                                             103.0
                                                                    2.0
                                  NaN
                                        0.6
                                            NaN
                                                   NaN
                                                                         NaN
                                                                               NaN
                                                                                     NaN
                                                                                          NaN
                                                                                               NaN
                 2015-10-01 01:00:00
                                                                                                    28079017
                                  NaN NaN
                                            NaN
                                                   NaN
                                                        95.0
                                                              96.0
                                                                    2.0
                                                                         NaN
                                                                               NaN
                                                                                      9.0
                                                                                          NaN
                                                                                               NaN
          210091 2015-08-01 00:00:00
                                  NaN
                                        0.2
                                            NaN
                                                   NaN
                                                        11.0
                                                              33.0
                                                                   53.0
                                                                         NaN
                                                                               NaN
                                                                                     NaN
                                                                                          NaN
                                                                                               NaN
                                                                                                    28079056
          210092 2015-08-01 00:00:00
                                  NaN
                                        0.2
                                            NaN
                                                   NaN
                                                         1.0
                                                               5.0
                                                                  NaN
                                                                         26.0
                                                                               NaN
                                                                                     10.0 NaN
                                                                                               NaN
                                                                                                    28079057
          210093 2015-08-01 00:00:00
                                  NaN NaN
                                            NaN
                                                   NaN
                                                         1.0
                                                               7.0
                                                                   74.0
                                                                         NaN
                                                                               NaN
                                                                                     NaN NaN
                                                                                               NaN
                                                                                                    28079058
          210094 2015-08-01 00:00:00
                                  NaN NaN
                                            NaN
                                                   NaN
                                                         3.0
                                                               7.0
                                                                   65.0
                                                                         NaN
                                                                               NaN
                                                                                     NaN
                                                                                          NaN
                                                                                               NaN
                                                                                                    28079059
          210095 2015-08-01 00:00:00 NaN NaN
                                            NaN
                                                   NaN
                                                         1.0
                                                               9.0
                                                                   54.0
                                                                         29.0
                                                                               NaN
                                                                                     NaN
                                                                                          NaN
                                                                                              NaN
                                                                                                    28079060
         210096 rows × 14 columns
In [3]:
           1 df=df.dropna()
In [4]:
          1 df.columns
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25',
                 'SO_2', 'TCH', 'TOL', 'station'],
               dtype='object')
In [5]:
          1 df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 16026 entries, 1 to 210078
         Data columns (total 14 columns):
              Column
                       Non-Null Count Dtype
          #
          0
              date
                        16026 non-null object
          1
              BEN
                        16026 non-null
                                         float64
          2
              CO
                        16026 non-null
                                         float64
          3
              EBE
                        16026 non-null
                                        float64
          4
              NMHC
                        16026 non-null
                                        float64
          5
              NO
                        16026 non-null
                                        float64
              NO_2
          6
                        16026 non-null
                                        float64
          7
              0 3
                        16026 non-null float64
          8
              PM10
                        16026 non-null float64
              PM25
                        16026 non-null float64
          10
              SO 2
                        16026 non-null float64
          11
              TCH
                        16026 non-null float64
          12 TOL
                        16026 non-null float64
          13 station 16026 non-null int64
         dtypes: float64(12), int64(1), object(1)
         memory usage: 1.8+ MB
```

```
In [6]: 1 data=df[['BEN', 'TOL', 'TCH']]
2 data
```

Out[6]:

	BEN	TOL	TCH
1	2.0	8.3	1.83
6	0.5	4.8	1.29
25	1.6	6.9	1.93
30	0.4	7.8	1.27
49	2.2	13.9	2.05
210030	0.1	0.2	1.18
210049	0.4	1.2	1.45
210054	0.1	0.2	1.18
210073	0.1	0.6	1.44
210078	0.1	0.4	1.18

16026 rows × 3 columns

In [7]: 1 data.plot.line(subplots=True)

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

In [8]: 1 data.plot.line()

Out[8]: <AxesSubplot:>

In [9]: 1 b=data[0:50]

```
In [10]: 1 b.plot.bar()
```

Out[10]: <AxesSubplot:>


```
In [12]: 1 data.plot.hist()
```

Out[12]: <AxesSubplot:ylabel='Frequency'>

In [13]: 1 data.plot.area()

Out[13]: <AxesSubplot:>

In [14]: 1 data.plot.box()

Out[14]: <AxesSubplot:>

In [15]: 1 b.plot.pie(y='BEN')

Out[15]: <AxesSubplot:ylabel='BEN'>


```
In [16]: 1 data.plot.scatter(x='BEN' ,y='TOL')
```

Out[16]: <AxesSubplot:xlabel='BEN', ylabel='TOL'>

In [17]: 1 df.describe()

Out[17]:

	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	
count	16026.000000	16026.000000	16026.000000	16026.000000	16026.000000	16026.000000	16026.000000	16026.000000	16026.
mean	0.504823	0.380594	0.394247	0.123099	23.842256	40.948771	48.089792	22.183764	11
std	0.716896	0.260805	0.678592	0.092368	51.255660	33.236098	35.847298	15.993825	8.0
min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000	1.000000	1.000000	0.0
25%	0.100000	0.200000	0.100000	0.070000	1.000000	14.000000	15.000000	11.000000	6.1
50%	0.200000	0.300000	0.100000	0.100000	6.000000	35.000000	46.000000	19.000000	10.
75%	0.700000	0.500000	0.400000	0.140000	24.000000	60.000000	73.000000	29.000000	16.
max	17.700001	4.500000	12.100000	1.090000	960.000000	369.000000	217.000000	196.000000	88.

In [19]: 1

1 sns.pairplot(df1[0:50])

Out[19]: <seaborn.axisgrid.PairGrid at 0x1adc206fa00>


```
In [20]: 1 sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `di splot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for his tograms).

warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='BEN', ylabel='Density'>


```
In [21]: 1 sns.heatmap(df1.corr())
```

Out[21]: <AxesSubplot:>


```
In [23]: 1 from sklearn.model_selection import train_test_split
2 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[24]: LinearRegression()

```
In [25]: 1 lr.intercept_
```

Out[25]: 28079038.18771696

```
In [26]: 1 coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
2 coeff
```

Out[26]:

	Co-emcient
BEN	1.328184
со	-9.525241
EBE	-0.680495
NMHC	13.550123
NO	0.081748
NO_2	-0.018620
O_3	-0.013259
PM10	0.006421
PM25	0.093514
SO_2	-1.120140
тсн	-9.621722
TOL	-0.125403

Co-efficient

```
In [27]: 1 prediction =lr.predict(x_test)
2 plt.scatter(y_test,prediction)
```

Out[27]: <matplotlib.collections.PathCollection at 0x1adcf27a0d0>


```
In [28]:
          1 lr.score(x_test,y_test)
Out[28]: 0.8776852904220687
In [29]:
          1 lr.score(x_train,y_train)
Out[29]: 0.8691210440709395
In [30]:
           1 from sklearn.linear_model import Ridge,Lasso
           1 rr=Ridge(alpha=10)
In [31]:
           2 rr.fit(x_train,y_train)
Out[31]: Ridge(alpha=10)
In [32]:
          1 rr.score(x_test,y_test)
Out[32]: 0.8766762101663818
In [33]:
          1 rr.score(x_train,y_train)
```

Out[33]: 0.8683060891347234

```
In [34]:
           1 la=Lasso(alpha=10)
           2 la.fit(x train,y train)
Out[34]: Lasso(alpha=10)
In [35]:
          1 la.score(x_test,y_test)
Out[35]: 0.7318409704608069
In [36]:
          1 la.score(x_train,y_train)
Out[36]: 0.7284061635440928
In [37]:
          1 from sklearn.linear_model import ElasticNet
           2 en=ElasticNet()
           3 en.fit(x_train,y_train)
Out[37]: ElasticNet()
In [38]:
         1 en.coef_
Out[38]: array([-0.
                                        , -0.
                                                     , -0.
                           , -0.
                                                                  , 0.07630632,
                -0.05407965, -0.01126557, 0.0192436, 0.05271942, -1.31074793,
                           , -0.09677337])
In [39]:
          1 en.intercept_
Out[39]: 28079025.94073986
In [40]:
          1 prediction=en.predict(x_test)
In [41]:
          1 en.score(x_test,y_test)
Out[41]: 0.8255964162574249
In [42]:
           1 from sklearn import metrics
           2 print(metrics.mean_absolute_error(y_test,prediction))
           3 print(metrics.mean_squared_error(y_test,prediction))
          4 print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
         2.5145796038979005
         11.156404129066058
         3.340120376433469
In [43]:
          1 from sklearn.linear model import LogisticRegression
In [44]:
           1 feature_matrix=df[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
             'PM10', 'SO_2', 'TCH', 'TOL']]
           3 target_vector=df[ 'station']
In [45]:
          1 feature_matrix.shape
Out[45]: (16026, 10)
In [46]:
          1 target_vector.shape
Out[46]: (16026,)
In [47]:
           1 | from sklearn.preprocessing import StandardScaler
In [48]:
           1 | fs=StandardScaler().fit_transform(feature_matrix)
```

```
In [49]:
           1 logr=LogisticRegression(max iter=10000)
           2 logr.fit(fs,target vector)
Out[49]: LogisticRegression(max_iter=10000)
In [50]:
           1 observation=[[1,2,3,4,5,6,7,8,9,10]]
In [51]:
           1 prediction=logr.predict(observation)
           2 print(prediction)
         [28079008]
In [52]:
          1 logr.classes_
Out[52]: array([28079008, 28079024], dtype=int64)
In [53]:
           1 logr.score(fs,target_vector)
Out[53]: 0.9947585174092101
In [54]:
           1 logr.predict_proba(observation)[0][0]
Out[54]: 1.0
           1 logr.predict_proba(observation)
In [55]:
Out[55]: array([[1.00000000e+00, 5.69793111e-39]])
In [56]:
           1 from sklearn.ensemble import RandomForestClassifier
In [57]:
           1 rfc=RandomForestClassifier()
             rfc.fit(x_train,y_train)
Out[57]: RandomForestClassifier()
In [58]:
           1
              parameters={'max_depth':[1,2,3,4,5],
              'min_samples_leaf':[5,10,15,20,25],
           3
              'n_estimators':[10,20,30,40,50]
In [59]:
           1 from sklearn.model selection import GridSearchCV
           2 grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
           3 grid_search.fit(x_train,y_train)
Out[59]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [60]:
           1 grid_search.best_score_
Out[60]: 0.994651453021929
In [61]:
           1 rfc_best=grid_search.best_estimator_
```

```
In [62]:
                           1 from sklearn.tree import plot tree
                           2
                                  plt.figure(figsize=(80,40))
                                 plot tree(rfc best.estimators [5],feature names=x.columns,class names=['a','b','c','d'],filled=True
Out[62]: [Text(1380.3157894736842, 1993.2, 'CO <= 0.25\ngini = 0.5\nsamples = 7084\nvalue = [5559, 5659]\nclass
                       = b'),
                        4269]\nclass = b'),
                         Text(234.94736842105263, 1268.4, 'gini = 0.0\nsamples = 2667\nvalue = [0, 4264]\nclass = b'),
                         Text(704.8421052631579, 1268.4, 'NO_2 \le 28.5 \neq 0.091 = 0.091 = 66 \neq 0.091 = [100, 5] = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 100, 5 = 1000
                       a'),
                         Text(469.89473684210526, 906.0, 'gini = 0.0\nsamples = 61\nvalue = [99, 0]\nclass = a'),
                         Text(939.7894736842105, 906.0, 'gini = 0.278\nsamples = 5\nvalue = [1, 5]\nclass = b'),
                         Text(2290.7368421052633, 1630.80000000000000, 'NMHC <= 0.075\ngini = 0.324\nsamples = 4351\nvalue = [54
                       59, 1390]\nclass = a'),
                         Text(1644.6315789473683, 1268.4, 'SO 2 <= 6.5\ngini = 0.499\nsamples = 509\nvalue = [387, 418]\nclass
                         Text(1409.6842105263158, 906.0, 'gini = 0.0\nsamples = 266\nvalue = [0, 418]\nclass = b'),
                         Text(1879.578947368421, 906.0, 'gini = 0.0\nsamples = 243\nvalue = [387, 0]\nclass = a'),
                         Text(2936.842105263158, 1268.4, 'SO_2 <= 6.5\ngini = 0.27\nsamples = 3842\nvalue = [5072, 972]\nclass
                       = a'),
                         Text(2349.4736842105262, 906.0, 'NO <= 16.5\ngini = 0.073\nsamples = 577\nvalue = [35, 881]\nclass =
                       b'),
                        Text(2114.5263157894738, 543.599999999999, '0 3 <= 74.0\ngini = 0.174\nsamples = 225\nvalue = [35, 32
                       8] \nclass = b'),
                        Text(1879.578947368421, 181.19999999999982, 'gini = 0.02\nsamples = 188\nvalue = [3, 301]\nclass = [3, 301]\ncl
                       b'),
                        Text(2349.4736842105262, 181.1999999999999, 'gini = 0.496\nsamples = 37\nvalue = [32, 27]\nclass =
                       a'),
                        Text(2584.4210526315787, 543.599999999999, 'gini = 0.0\nsamples = 352\nvalue = [0, 553]\nclass = b'),
                         Text(3524.2105263157896, 906.0, 'NO <= 47.5\ngini = 0.035\nsamples = 3265\nvalue = [5037, 91]\nclass =
                       a'),
                        Text(3054.315789473684, 543.599999999999, 'NMHC <= 0.325\ngini = 0.006\nsamples = 2546\nvalue = [398
                       7, 12]\nclass = a'),
                        Text(2819.3684210526317, 181.1999999999999, 'gini = 0.002\nsamples = 2526\nvalue = [3965, 4]\nclass =
                       a'),
                        Text(3289.2631578947367, 181.1999999999982, 'gini = 0.391\nsamples = 20\nvalue = [22, 8]\nclass =
                       a'),
                        Text(3994.1052631578946, 543.599999999999, 'CO <= 0.55\ngini = 0.13\nsamples = 719\nvalue = [1050, 7
                       9] \nclass = a'),
                        Text(3759.157894736842, 181.1999999999982, 'gini = 0.363\nsamples = 94\nvalue = [112, 35]\nclass =
                       a'),
                        Text(4229.0526315789475, 181.1999999999999, 'gini = 0.086\nsamples = 625\nvalue = [938, 44]\nclass =
                       a')]
```


Conclusion

Linear Regression=0.8691210440709395

Ridge Regression=0.8683060891347234

Lasso Regression=0.7284061635440928

ElasticNet Regression=0.8255964162574249

Logistic Regression=0.9947585174092101

Random Forest=0.994651453021929

Logistic Regression is suitable for this dataset

In []:

1