Financial Markets

Exercise Set 1

1. [Exercises 1.B.1 and 1.B.2 in Mas-Colell et al. (copied below)]

Prove the following:

Proposition If \succeq is rational then:

- i. \succ is both *irreflexive* ($x \succ x$ never holds) and transitive.
- ii. \sim is reflexive $(x \sim x \ \forall x \in X)$, transitive, and symmetric (if $x \sim y$ then $y \sim x$).
- iii. if $x \succ y \succeq z$, then $x \succ z$.

2. Lexicographic preference

Consider the lexicographic preference relation \succsim over \mathbb{R}^2 defined by $(x_1,x_2) \succsim (y_1,y_2)$ if $x_1 > y_1$ or $x_1 = y_1$ and $x_2 \ge y_2$.

- i. Show that \succeq is transitive.
- ii. Show that \succeq is not continuous.

Hint: Consider the sequence $(x_1^n, x_2^n) = (1 - 1/n, 1)$ and $(y_1, y_2) = (1, 0)$.

3. [Exercise 3.C.6 in Mas-Colell et al. (copied below) + Plotting]

Suppose that in a two-commodity world, the consumer's utility function takes the form

$$U(x) = \left[\alpha_1 x_1^{\rho} + \alpha_2 x_2^{\rho}\right]^{1/\rho}.$$

This utility function is known as the constant elasticity of substitution (or CES) utility function.

- i. Show that when $\rho = 1$, indifference curves become linear.
- ii. Show that as $\rho \to 0$, this utility function comes to represent the same preferences as the (generalized) Cobb-Douglas utility function $U(x)=x_1^{\alpha_1}x_2^{\alpha_2}$.
- iii. Plot the lower contour set for U(x)=1 for $\rho=1/2$, when $\alpha_1=\alpha_2=1$.
- iv. Plot in difference curves for $\rho=1/2$ and $\rho=2,$ when $\alpha_1=\alpha_2=1.$
- v. What happens to the shape of the indifference curves as $\rho \to -\infty$? You can use a plot for this.

Hint: For ii., use L'Hôpital's rule and the fact that monotonic transformations of a utility function represents the same preference relation by considering log(U(x)).