인 공 지 능

인공신경망

소프트웨어융합대학 소프트웨어학부

본 자료는 해당 수업의 교육 목적으로만 활용될 수 있음. 일부 내용은 다른 교재와 논문으로부터 인용되었으며, 모든 저작권은 원 교재와 논문에 있음.

■ 인공지능과 기계학습

- 기계학습
 - A computer program
 - improve their **performance P** (accuracy, error rate,...)
 - at some **task T** (classification, regression, detection,...)
 - with **experience E** (data)

Traditional programming

Machine learning

■ 기계학습 문제 분류

given (x, y) x is data, y is its label

> Goal: learn a function to map $x \rightarrow y$

Examples: Classification Regression Object detection Segmentation Image captioning

준교사 학습

given (x) just data, no label

Goal: learn some underlying hidden structure of the data

Examples:
Clustering
Dimensionality reduction
Feature learning
Density estimation

given
Problems involving an agent
interacting with an environment which
provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

> Examples: Robotics Self-driving

- 기계학습
 - A computer program
 - improve their **performance P** (accuracy, error rate,...)
 - at some **task T** (classification, regression, detection,...)
 - with **experience E** (data)

Traditional programming

Machine learning

■ 기계학습 문제 분류

given (x, y) x is data, y is its label

> Goal: learn a function to map $x \rightarrow y$

Examples: Classification Regression Object detection Segmentation Image captioning

준교사 학습

given (x) just data, no label

Goal: learn some underlying hidden structure of the data

Examples:
Clustering
Dimensionality reduction
Feature learning
Density estimation

given
Problems involving an agent
interacting with an environment which
provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

> Examples: Robotics Self-driving

- 표현학습 Representation learning
 - 기계학습의 파생 방법
 - 표현 문제 Representation matter
 - 표현의 차이 비교

- 심층학습 deep learning: 표현학습 representation learning의 주요 방법
 - : 표현에서 출력으로의 사상mapping뿐만 아니라 표현 자체를 학습하여 보다 좋은 성능을 가짐
 - 데이터에서 주어진 작업에 필요한 표현representation을 자동 추출
 - 데이터 중심 특징 data-driven feature의 계층적 학습

■ 기계학습 문제화

■ 사례: 신용 승인 credit approval

• given: 신청자 정보

feature	value
age	23 years
gender	female
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000

• task: 승인? 혹은 거절?

■ 표기 정리

component	symbol	credit approval metaphor
input output target function data hypothesis	$egin{array}{c} \mathbf{x} \ y \ f: \mathcal{X} ightarrow \mathcal{Y} \ (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N) \ g: \mathcal{X} ightarrow \mathcal{Y} \end{array}$	customer application approve or deny ideal credit approval formula historical records formula to be used

- ► f: unknown target function
- \triangleright \mathcal{X} : input space (set of all possible inputs x)
- y: output space (set of all possible outputs)
- \triangleright N: the number of input-output examples (i.e. training examples)
- $\triangleright \mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}: \text{ data set where } y_n = f(\mathbf{x}_n)$

■ 문제 해결

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$
 where x_1 : age and x_2 : annual salary in USD

$$N=11$$
, $d=2$, $\mathcal{X}=\mathbb{R}^2$, and $\mathcal{Y}=\{\mathsf{approve}, \mathsf{deny}\}$

data set \mathcal{D} :

n	x_1	x_2	y
1	29	56k	approve
2	64	89k	approve
3	33	17k	deny
4	45	94k	approve
5	24	26k	deny
6	55	24k	deny
7	35	52k	approve
8	57	65k	approve
9	45	32k	deny
10	52	75k	approve
11	62	31k	deny

■ 기계학습 개요

■ 기계학습 절차: 훈련training 과 추론inference

■ 기계학습 도구

■ 심층학습 도구

이 장에서는...

- 깊은 인공신경망의 해석을 위한 배경
 - 인공신경망artificial neural network의 변천사와 종류
 - 인공신경망의 핵심 요소인 퍼셉트론perceptron 구조와 동작
 - 퍼셉트론의 한계와 다층 퍼셉트론multilayer perceptron
 - 다층 퍼셉트론의 구조와 동작, 학습
 - 깊은 인공신경망과 심층학습deep learning

- 사람의 뉴런neuron
 - 두뇌의 가장 작은 정보처리 단위
 - 세포체^{cell body}는 간단한 연산, 수상돌기^{dendrite}는 신호 수신, 축삭^{axon}은 처리 결과를 전송

사람은 10¹¹개 정도의 뉴런을 가지며,
 각 뉴런은 1000여개의 다른 뉴런과 연결되어 10¹⁴개 정도 복잡한 연결 구조를 가짐

뉴런의 개수 비교

- 두 줄기 연구의 시너지synergy 효과
 - 컴퓨터 과학
 - 계산(연산) 능력의 획기적 발전으로 지능 처리에 대한 욕구 확대
 - 뇌(의학) 과학
 - 뇌의 정보처리 방식 연구
 - → 뇌의 정보처리 모방하여 사람처럼 지능적 행위를 할 수 있는 인공지능 도전
 - 뉴런의 동작 이해를 모방한 인공 신경망artificial neural networks (ANN) 연구 수행됨
 - 페셉트론 고안

■ 사람의 신경망과 인공신경망 비교

사람의 신경망	인공신경망	
세포체	노드	
수상돌기	입력	
축삭	출력	
시냅스	가중치	

- 인공신경망의 역사
 - 1940-1960: cybernetics
 - 1980-1990: connectionism (or parallel distributed processing)
 - 2006-today: deep learning

■ 현대 인공신경망은 다양한 파생 모델들이 존재

- 대표적인 인공신경망 종류
 - 전방forward 인공신경망과 순환recurrent 인공신경망
 - 얕은shallow 인공신경망과 깊은deep 인공신경망

- 퍼셉트론은
 - 연산 노드node, 가중치weight, 층layer과 같은 새로운 개념을 도입
 - 선형+비선형 연산으로 구성됨
 - 학습 알고리즘을 제안

■ 퍼셉트론은

- 원시적 인공신경망이지만,
- 현대 인공신경망은 퍼셉트론을 토대로 다양한 다층 구조로 결합함
- → 깊은 인공신경망의 중요한 구성 요소: 심층 학습deep learning

- 퍼셉트론의 구조
 - 입력층과 출력층을 가짐
 - 입력층은 연산을 하지 않으므로 퍼셉트론은 단일층 구조라고 간주
 - 입력층의 i번째 노드는 (입력) 특징 벡터 $\mathbf{x} = (x_1, x_2, \dots, x_d)^{\mathrm{T}}$ 의 요소 x_i 를 담당
 - 항상 1이 입력되는 편향bias 노드 포함
 - 출력층은 한 개의 노드
 - ullet i번째 입력 노드와 출력 노드를 연결하는 변 $^{
 m edge}$ 는 가중치 w_i 를 가짐

선형대수

■ 데이터와 특징공간

- 퍼셉트론의 동작
 - 1. [내적 $^{inner\ product}$; 선형연산] 입력(특징)값과 가중치를 곱하고, 합한 $_{S}$ 를 구함
 - 2. [비선형연산] 비선형 활성함수 τ 를 적용

 \rightarrow 활성함수 τ 로 계단함수step function를 사용하여 최종 출력 y는 +1 또는 -1 (이진 분류)

$$y = \tau(s)$$

$$\text{ord} \ s = w_0 + \sum_{i=1}^d w_i x_i, \qquad \tau(s) = \begin{cases} 1 & s \ge 0 \\ -1 & s < 0 \end{cases}$$

■ 행렬 표기 matrix vector notation

$$s = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0, \qquad \Leftrightarrow \mathsf{T} \mathsf{A} \mathsf{A} = (x_1, x_2, \cdots, x_d)^{\mathsf{T}}, \ \mathbf{w} = (w_1, w_2, \cdots, w_d)^{\mathsf{T}}$$

■ 바이어스 항을 벡터에 추가하면,

$$s = \mathbf{w}^{\mathrm{T}}\mathbf{x}$$
, 여기서 $\mathbf{x} = (1, x_1, x_2, \dots, x_d)^{\mathrm{T}}$, $\mathbf{w} = (w_0, w_1, w_2, \dots, w_d)^{\mathrm{T}}$

■ 퍼셉트론의 동작을 식 (3.4)로 표현할 수 있음 $y = \tau(\mathbf{w}^{\mathrm{T}}\mathbf{x})$

■ 퍼셉트론의 동작 예

2차원 특징 벡터로 표현되는 샘플을 4개 가진 훈련집합 $\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}, \mathbb{Y} = \{y_1, y_2, y_3, y_4\}$ 를 생각하자. [그림 (a)]는 이 데이터를 보여준다.

$$\mathbf{x}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ y_1 = -1, \ \mathbf{x}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ y_2 = 1, \ \mathbf{x}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ y_3 = 1, \ \mathbf{x}_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ y_4 = 1$$

OR 논리 게이트를 이용한 퍼셉트론의 동작 예시

샘플 4개를 하나씩 입력하여 제대로 분류하는지 확인해 보자.

$$\mathbf{x}_1$$
: $s = -0.5 + 0 * 1.0 + 0 * 1.0 = -0.5$, $\tau(-0.5) = -1$
 \mathbf{x}_2 : $s = -0.5 + 1 * 1.0 + 0 * 1.0 = 0.5$, $\tau(0.5) = 1$
 \mathbf{x}_3 : $s = -0.5 + 0 * 1.0 + 1 * 1.0 = 0.5$, $\tau(0.5) = 1$
 \mathbf{x}_4 : $s = -0.5 + 1 * 1.0 + 1 * 1.0 = 1.5$, $\tau(1.5) = 1$

결국 [그림(b)]의 퍼셉트론은 샘플 4개를 모두 맞추었다. 이 퍼셉트론은 훈련집합을 100% 성능으로 분류한다고 말할 수 있다.

- 기하학적 관점에서 살펴본 퍼셉트론의 동작
 - 결정 직선 $d(\mathbf{x}) = d(x_1, x_2) = w_1 x_1 + w_2 x_2 + w_0 = 0 \rightarrow x_1 + x_2 0.5 = 0$
 - w_1 과 w_2 는 직선의 방향, w_0 은 절편 intercept 을 결정
 - 결정 직선은 전체 공간을 +1과 -1의 두 부분공간으로 분할하는 이진 분류기 역할

퍼셉트론에 해당하는 결정 직선

- d차원 공간의 경우, $d(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + w_0 = 0$
 - 2차원은 결정 직선decision line, 3차원은 결정 평면decision plane,
 4차원 이상은 결정 초평면decision hyperplane

- 퍼셉트론의 학습 문제 (훈련)
 - 지금까지는 학습된 퍼셉트론의 동작을 설명
 - <u>학습</u> 문제: *w*₁과 *w*₂, *w*₀이 어떤 값을 가져야 올바르게 분류할까?
 - 예시에서는 2차원 공간에 4개 샘플 데이터가 있는 훈련집합
 - 현실 세계는 d차원 공간에 수백~수만 개의 샘플 데이터가 존재
 - MNIST는 784차원에 6만개 데이터 샘플 존재

(a) AND 분류 문제

(b) Haberman survival 분류 문제 UCI 데이터 (유방암 수술 생존 관련 데이터)

- 학습 문제
 - 일반적인 분류기의 학습 과정
 - 단계1: 문제^{task} 정의 (예, 분류, 회기)
 - 단계2: 목적함수 $J(\Theta)$ 정의 (학습이 잘 진행되고 있는지를 정량적으로 판단하는 기준)
 - 퍼셉트론의 매개변수를 $\mathbf{w} = (w_0, w_1, w_2, \cdots, w_d)^{\mathrm{T}}$ 라 표기하면, 매개변수 집합은 $\Theta = \{\mathbf{w}\}$
 - 단계3: /(Θ)를 최소화하는 Θ를 찾기 위한 반복 최적화 방법 수행
 - 일반적으로 반복적인 최적화 접근iterative optimization인 경사 하강법gradient descent 활용

- (3단계) 경사 하강법
 - 최소 J(⊕) 값을 얻기 위해
 학습 모델의 현재 매개변수 기울기 (경사)를 구하고
 반대 방향으로 이동(가중치 갱신)하는 반복 탐색을 통해 극값을 찾음

1차원 공간에서의 예

2차원 공간에서의 예

■ 퍼셉트론 학습 알고리즘 동작 (델타^{delta} 규칙)

■ 퍼셉트론 학습 알고리즘 동작 예

- 퍼셉트론은 선형 분류기linear classifier라는 한계
 - 선형 분리 불가능한 상황에서는 일정한 양의 오류
 - 예) XOR 문제에서는 75%가 정확도 한계

- 1969년 퍼셉트론의 한계를 지적
- 1986년 다층 퍼셉트론 이론 정립 인공신경망 부활

- 다층 퍼셉트론의 핵심
 - 여러 개의 퍼셉트론들을 병렬 구조의 층으로 구성하여 은닉층을 둠
 - → 은닉층은 원래 특징 공간을 문제를 해결에 유리한 새로운 공간으로 변환함 (표현학습)
 - == 데이터로부터 자동 특징 추출 extracting data-driven feature
 - 시그모이드sigmoid 활성함수 도입 (출력 연속적임)

퍼셉트론: 계단함수 (경성hard 혹은 이산적인 의사결정) → 다층 퍼셉트론 (연성soft 의사결정)

- 오류 역전파backpropagation 알고리즘 사용
 - 다층 퍼셉트론 여러 개의 층이 순차적으로 연결된 구조
 - 학습을 위해 출력부터 입력까지 역방향으로 기울기 미분을 계산하여 해당 가중치 갱신 (경사 하강 최적화 gradient descent optimization)

- 특징 공간 변환: 퍼셉트론 2개를 사용한 XOR 문제의 해결
 - 퍼셉트론①과 퍼셉트론②가 모두 +1이면 부류이고 그렇지 않으면 □ 부류임

(a) 퍼셉트론 2개를 이용한 공간분할

(b) 퍼셉트론 2개

- 퍼셉트론 2개를 병렬 결합하면,
 - 원래 특징 공간 $\mathbf{x} = (x_1, x_2)^{\mathrm{T}}$ 를 새로운 공간 $\mathbf{z} = (z_1, z_2)^{\mathrm{T}}$ 로 변환
 - 새로운 공간 z에서는 선형 분리 가능함

(a) 두 퍼셉트론을 병렬로 결합

(b) 원래 특징 공간 x를 새로운 특징 공간 z로 변환

막 퍼셉트론은
 입력과 가중치의 내적을 통해 유사성을 정량화하고 분할하여 특징 분별하는 필터 역할
 → 여러 개의 퍼셉트론을 층으로 구성하여 입력의 다양한 특징들을 자동 추출함

- 이후, 퍼셉트론 1개를 순차 결합하면,
 - 새로운 특징 공간 z에서 선형 분리를 수행하는 퍼셉트론③을 순차 결합하면,
 [그림 (b)]의 다층 퍼셉트론이 됨

(a) 새로운 특징 공간에서 분할

(b) 퍼셉트론 3개를 결합한 다층 퍼셉트론

- 다층 퍼셉트론의 (은닉)층 의미
 - [그림]처럼 3개 퍼셉트론을 결합하면, 2차원 공간을 7개 영역으로 나누고 각 영역을 3차원 점으로 변환
 - ◆ 활성함수 τ로 계단함수를 사용하므로 영역을 점으로 변환 (시그모이드 함수의 경우, 연속적인 새로운 공간으로 변환)

• 일반화하여, p개 퍼셉트론을 결합하면 p차원 공간으로 변환

■ 다층 퍼셉트론의 용량capacity

구 조	결정 구역	Exclusive -or	Classes with Meshed Regions	Most General Region Shapes
Single-layer j	Half Plane Bounded by Hyperplane	B A	A) B	
Two-layer k j	Convex Open or Closed Regions	B A	B	
Three-layer l k j i	Arbitrary (Complexity limited by Number of Units)		B	

- 활성함수: 비선형 함수 변화
 - 계단함수는 딱딱한 공간 분할 (영역을 점으로 변환)
 나머지 활성함수는 부드러운 공간 분할 (영역을 영역으로 변환)

퍼셉트론의 공간 분할 유형

- 신경망이 사용하는 다양한 활성함수
 - 일반적으로 은닉층에서 로지스틱 시그모이드를 활성 함수로 많이 사용했음
 - 하지만, 시그모이드의 넓은 포화곡선은 경사 (기울기 미분) 기반한 학습을 어렵게 함
 - → 현재, 깊은 신경망은 ReLU를 사용

- 다층 퍼셉트론 구조
 - [그림 (a)]는 입력층-은닉층-출력층의 2층 구조
 - [그림 (b)]는 입력층-은닉층-은닉층-출력층의 3층 구조

2층 퍼셉트론의 가중치 행렬:

$$\mathbf{U}^{1} = \begin{pmatrix} u_{10}^{1} & u_{11}^{1} & \cdots & u_{1d}^{1} \\ u_{20}^{1} & u_{21}^{1} & \cdots & u_{2d}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ u_{p0}^{1} & u_{p1}^{1} & \cdots & u_{pd}^{1} \end{pmatrix}, \quad \mathbf{U}^{2} = \begin{pmatrix} u_{10}^{2} & u_{11}^{2} & \cdots & u_{1p}^{2} \\ u_{20}^{2} & u_{21}^{2} & \cdots & u_{2p}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ u_{c0}^{2} & u_{c1}^{2} & \cdots & u_{cp}^{2} \end{pmatrix}$$

lacksquare 특징 벡터 f x를 출력 벡터 f o로 연결 $^{
m mapping}$ 하는 비선형함수로 간주할 수 있음

■ 깊은 인공신경망deep neural networks은 $\mathbf{o} = \mathbf{f}_L \left(\cdots \mathbf{f}_2 \big(\mathbf{f}_1(\mathbf{x}) \big) \right)$, $L \ge 4$. \leftarrow 깊은 인공신경망의 학습 방법: 심층학습deep learning

- 은닉층은 특징 자동 추출기 (여러 개의 필터들을 적용함과 같음)
 - 은닉층은 특징 벡터를 분류에 더 유리한 새로운 특징 공간으로 변환
 - 표현 학습representation learning 을 통해 데이터로부터 자동으로 특징data-driven feature 추출함
 (깊은 인공신경망은 더 많은 층을 거쳐 계층적인 표현학습을 함)

■ 기본 구조

- 범용적 근사 이론universal approximation theorem
 - 하나의 은닉층은 함수의 근사를 표현
- → 다층 퍼셉트론도 공간을 변환하는 함수로 근사됨
- 얕은 은닉층의 구조
 - 더 과잉적합 되기 쉬움
- → 일반적으로 깊은 은닉층의 구조가 좋은 성능을 가짐

- 은닉층의 깊이에 따른 이점
 - 공간 변환과 지수의 표현exponential representation

- 은닉층은 특징 공간 변환 > 지수적으로 많은 선형적인 영역 조각들로 표현
- 여러 은닉층을 통해 계층적으로 특징을 추출, 특징은 층이 깊어짐에 따라 점차 추상화됨

■ 좋은 성능

