ABSTRACT

In this thesis, Islanding and Power Quality(PQ) Issues in Hybrid Distributed Generation (DG) System consists of Photovoltaic(PV) system and Wind Power Plant connected to grid through a Point of Common Coupling(PCC), are detected and classified, using Wavelet Transform and Artificial Neural Networks. Wavelet Transform indices are extracted from the Negative Sequence component of the voltage signal at PCC to detect the disturbances. A feature vector is modeled with WT indices and loading of DG system to train Artificial Neural Network. The proposed method is compared with a conventional method. The results demonstrate the advantages of Wavelet over conventional method in detection and classification of disturbances in the system and robustness in application of Machine Learning (ML) Classifier. The trained ANN is deployed as a Web Service using Microsoft Azure Machine Learning Studio. It enhances the implementation feasibility of proposed method.

ACKNOWLEDGEMENT

I express my sincere thanks to P.R. Subadhra, Assistant Professor, Department of Electrical and Electronics Engineering for her valuable guidance from conceptualization to finalization of my project.

I am very grateful to Dr. M. Nandakumar, Head of the Electrical and Electronics Engineering Department for providing the necessary support and environment to complete this project.

In particular, I express my heartfelt gratitude to Dr.Reji P, Prof. Rathi K, Dr. M V Jayan and Prof. Bindumol.E.K for their moral support and guidance to complete my project on time.

I also acknowledge my deep sense of gratitude to all the faculty members of Electrical and Electronics Engineering Department who have helped me directly or indirectly to complete this work.

I take this opportunity to thank all my friends who helped me throughout this project and for their suggestions and discussions.

It gives me great pleasure to thank my parents and family for their blessings and suitable help.

Last but not the least I give all thanks and praise to GOD Almighty for His abundant blessings without which this venture would not have been successful.

TABLE OF CONTENTS

ABSTRACT	1
ACKNOWLEDGEMENT	ii
LIST OF FIGURES	v
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii
CHAPTER 1 INTRODUCTION	1
1.1.Conventional Electric Power Grid	1
1.2.Distributed Generators	2
1.3.Benefits of Connecting DG's into Existing Distribution Network	5
1.4.Technical Challenges	6
1.5.Problem Statement	8
1.6.Thesis Objectives	9
1.7.Thesis Outline	10
CHAPTER 2 LITRATURE REVIEW	11
2.1. Review of Established Islanding Detection Methods	11
2.1.1. Remote Islanding Detection Techniques	11
2.1.2. Active Islanding Detection Method	13
2.1.3. Passive Islanding Detection Method	13
CHAPTER 3 DETCTION OF HARMONICS METHOD	15
3.1. Theory of Detection of Harmonics Method	15
3.2. Hybrid System	16
3.3. Simulation Results	22
CHAPTER 4 PROPOSED DETECTION TECHNIQUE	26
4.1. Wavelet Transform	26
4.2. Artificial Neural Networks	32
4.3. Methodology	35
CHAPTER 5 SIMULATION RESULTS AND DATA COLLECTION	40
5.1. Normal Operation	40

5.2. Islanding	42
5.3. L-G Fault	44
5.4. L-L Fault	46
5.5. L-L Nonlinear Load Switch	48
5.6. Results	50
CHAPTER 6 IMPLEMENTATION	51
6.1. Microsoft Azure Machine Learning Studio	51
6.1.1 Request Response Service (RRS)	52
6.1.2 Batch Execution Service (BES)	52
CHAPTER 7 CONCLUSION AND FUTURE SCOPE	56
REFERENCES	
APPENDIX	

LIST OF FIGURES

Figure	Caption	Page
Fig. 1.1	Different phases and their voltage rating	2
Fig. 1.2	Inverter interface topology	3
Fig. 1.3	Cost of photovoltaic electricity	4
Fig. 1.4	Distributed generation technology classification	5
Fig. 1.5	Typical hybrid distribution system	7
Fig. 2.1	Classification of islanding detection methods	11
Fig. 2.2	Remote Islanding detection scenario	12
Fig. 3.1	Hybrid System Layout	16
Fig. 3.2	Simulation Diagram	17
Fig. 3.3	Working of a PV cell	18
Fig. 3.4	Single-Diode model of the theoretical PV cell	19
Fig. 3.5	Photvoltaic Hierarchy	20
Fig. 3.6	WECS block diagram	22
Fig. 3.7	Phase Voltage at PCC before Islanding	22
Fig. 3.8	THD of Phase Voltage at PCC before Islanding	23
Fig. 3.9	Phase Voltage at PCC after Islanding	24
Fig. 3.10	THD of Phase Voltage at PCC after Islanding	24
Fig. 4.1	Wavelet Decomposition tress	28
Fig. 4.2	Wavelet Function of db4	31
Fig. 4.3	Scaling Fucntion of db4	32
Fig. 4.4	Quardrature Filter Bank of db4	32
Fig. 4.5	Neuron	33
Fig. 4.6	General Methodology block diagram	37
Fig. 4.7	Comparison of harmonic distribution	38
Fig. 5.1	Three Phase Voltage at PCC during normal conditions	40
Fig. 5.2	Negative Voltage at PCC at normal conditions	40
Fig. 5.3	Details of Wavelet Transform at normal conditions	41
Fig. 5.4	Three Phase Voltage at PCC at Islanding	42
Fig. 5.5	Negative Sequence Voltage at PCC at Islanding	42
Fig. 5.6	Details of Wavelet Transform at Islanding	43
Fig. 5.7	Three Phase Voltage at PCC at L-G Fault	44

Fig. 5.8	Negative Voltage at PCC at L-G fault	44
Fig. 5.9	Details of Wavelet Transform at L-G fault	45
Fig. 5.10	Three Phase Voltage at PCC at L-L Fault	46
Fig. 5.11	Negative Voltage at PCC at L-L fault	46
Fig. 5.12	Details of Wavelet Transform at L-L fault	47
Fig. 5.13	Three Phase Voltage at PCC during Non- Linear Load Switch	48
Fig. 5.14	Negative Sequence Voltage at PCC during Non- Linear Load	48
	Switch	
Fig. 5.15	Details of Wavelet Transform during Non Linear Load Switch	49
Fig. 6.1	Overview of Azure ML Studio	51
Fig. 6.2	Data diagram for training	53
Fig. 6.3	Deploying trained model as a Web Service	54
Fig. 6.4	Python GUI	55

LIST OF TABLES

Table	Title	Page
Table. 3.1	Performance of THD in various loading during Islanding	25
Table. 3.2	Performance of THD in various loading at various	25
	disturbances	
Table. 4.1	Frequency band information of different levels	38
Table. 4.2	Labels for ANN Training	39
Table. 5.1	Feature Vector for ANN Training of Normal Operation	41
Table. 5.2	Feature Vector for ANN Training of Islanding	43
Table. 5.3	Feature Vector for ANN Training of L-G Fault	45
Table. 5.4	Feature Vector for ANN Training of L-L Fault	47
Table. 5.5	Feature Vector for ANN Training of Non-Linear Load Switch	49
Table. 5.6	ANN Prediction Results	50

LIST OF ABBREVIATIONS

DG	Distributed Generation	
WT	Wavelet Transform	
ANN	Artificial Neural Network	
SD	Standard Deviation	
MPPT	Maximum power point tracking	
VSI	Voltage source inverter	
PCC	Point of common coupling	
HPF	PF High pass filte	
LPF	F Low pass filte	
THD	Total harmonic distortion	
SD3	Standard Deviation of Wavelet Details at Level 3	
SD4	Standard Deviation of Wavelet Details at Level 4	
E3	Energy of Wavelet details at Level 3	
E4	Energy of Wavelet details at Level 4	