1. Sarah bought a new car in 2001 for \$24,000. The dollar value of her car changed each year as shown in

the table below.

Value of Sarah's Car

Year Value

2001 \$24,000

2002 \$22,500

2003 \$19,700

2004 \$17,500

2005 \$14,500

2006 \$10,000

2007 \$ 5,800

Represent the following information using a line graph with following style properties

- X- axis Year
- Y –axis Car Value
- title –Value Depreciation (left Aligned)
- Line Style dashdot and Line-color should be red
- point using * symbol with green color and size 20

CODE:

import matplotlib.pyplot as plt import numpy as np

```
xaxis = np.array([2007, 2006, 2005, 2004, 2003, 2002, 2001])
yaxis = np.array([5800, 10000, 14500, 17500, 19700, 22500, 24000])
```

```
plt.plot(xaxis, yaxis, linestyle="dashdot", c='r', marker= '*', ms='20', mfc='green', mec='green')
plt.title("Value Depreciation", loc='left')
plt.xlabel("Year")
plt.ylabel("Car Value")
plt.show()
```

OUTPUT:

2. Following table gives the daily sales of the following items in a shop. Subplot() provides multiple plots in one figure.

Day	Mon	Tues	Wed	Thurs	Fri
Drinks	300	450	150	400	650
Food	400	500	350	300	500

Use subplot function to draw the line graphs with grids(color as blue and line style dotted) for the above information as 2 separate graphs in two rows

- a) Properties for the Graph 1:
 - X label- Days of week
 - Y label-Sale of Drinks
 - Title-Sales Data1 (right aligned)
 - Line –dotted with cyan color
 - Points- hexagon shape with color magenta and outline black
- b) Properties for the Graph 2:
 - X label- Days of Week
 - Y label-Sale of Food
 - Title-Sales Data2 (center aligned)
 - Line –dashed with yellow color
 - Points- diamond shape with color green and outline red

```
CODE:
import matplotlib.pyplot as plt
import numpy as np
\#xaxis = np.array([300, 450, 150, 400, 650])
\text{#yaxis} = \text{np.array}([400, 500, 350, 300, 500])
#plot1
xaxis = np.array(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri'])
yaxis = np.array([300, 450, 150, 400, 650])
plt.subplot(1, 2, 1)
plt.plot(xaxis, yaxis, ':c', )
plt.plot(xaxis,yaxis,'Hm',mec='k')
plt.grid(color = 'blue', linestyle = 'dotted')
plt.title("Sales Data1", loc='right')
plt.xlabel("Days of Week")
plt.ylabel("Sale of Drinks")
plt.show()
#plot2
xaxis = np.array(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri'])
yaxis = np.array([400, 500, 350, 300, 500])
plt.subplot(1, 2, 1)
plt.plot(xaxis, yaxis)
plt.plot(xaxis,yaxis,'--y')
plt.plot(xaxis,yaxis,'Dg',mec='r')
plt.grid(color = 'blue', linestyle = 'dotted')
plt.title("Sales Data2", loc='center')
plt.xlabel("Days of Week")
plt.ylabel("Sale of Food")
plt.show()
```

OUTPUT:

3. Create scatter plot for the below data:(use Scatter function)

Product	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Affordable Segment	173	153	195	147	120	144	148	109	174	130	172	131
Luxury Segment	189	189	105	112	173	109	151	197	174	145	177	161
Super Luxury Segment	185	185	126	134	196	153	112	133	200	145	167	110

Create scatter plot for each Segment with following properties within one graph

- X Label- Months of Year with font size 18
- Y-Label- Sales of Segments
- Title –Sales Data
- Color for Affordable segment- pink
- Color for Luxury Segment- Yellow
- Color for Super luxury segment-blue

CODE:

```
import matplotlib.pyplot as plt
import numpy as np
plt.title("Sales Data")
plt.xlabel("Months of Year")
plt.ylabel("Sale of Food")
x = np.array(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])
y1 = np.array([173,153,195,147,120,144,148,109,174,130,172,131])
plt.scatter(x,y1, color = 'hotpink')
```

y2 = np.array([185,185,126,134,196,153,112,133,200,145,167,110])

```
plt.scatter(x, y2, color = 'yellow')

y3 = np.array([189,189,105,112,173,109,151,197,174,145,177,161])

plt.scatter(x, y3, color = 'blue')

plt.show()
```

OUTPUT:

- 4. Display the above data using multiline plot(3 different lines in same graph)
 - Display the description of the graph in upper right corner(use legend())
 - Use different colors and line styles for 3 different lines

CODE:

```
import numpy as np
# create data
x = [1,2,3,4,5]
y = [3,3,3,3,3]
z = [4,4,4,4,4]

# plot lines
plt.plot(x, y, label = "line 1")
plt.plot(y, x, label = "line 2")
plt.plot(z, x, label = "line 3")
plt.legend()
plt.show()
```

import matplotlib.pyplot as plt

OUTPUT:

 $5.\ 100$ students were asked what their primary mode of transport for getting to school was. The results of

this survey are recorded in the table below. Construct a bar graph representing this information.

Mode of transport	Frequency				
Walking	29				
Cycling	15				
Car	35				
Bus	18				
Train	3				

Create a bar graph with

- X axis -mode of Transport and Y axis 'frequency'
- Provide appropriate labels and title
- Width .1, color green

CODE:

import matplotlib.pyplot as plt import numpy as np

```
x = np.array(["walking", "cycling", "car", "bus", "train"])
y = np.array([29,15,35,18,3])
```

plt.bar(x,y, color="#4CAF50",width=0.1)
plt.show()

OUTPUT:

6. We are provided with the height of 30 cherry trees.

The height of the trees (in inches): 61, 63, 64, 66, 68, 69, 71, 71.5, 72, 72.5, 73, 73.5, 74, 74.5, 76, 76.2,

76.5, 77, 77.5, 78, 78.5, 79, 79.2, 80, 81, 82, 83, 84, 85, 87. Create a histogram with a bin size of 5

CODE:

import matplotlib.pyplot as plt height = [61, 63, 64, 66, 68, 69, 71, 71.5, 72, 72.5, 73, 73.5, 74, 74.5, 76, 76.2,76.5, 77, 77.5, 78, 78.5, 79, 79.2, 80, 81, 82, 83, 84, 85, 87] plt.hist(height, edgecolor="red", bins=5) plt.show()

OUTPUT:

