MACHINE LEARNING

PART 33

ARIMA models for Time Series Analysis

ARIMA (AutoRegressive Integrated Moving Average) models are a class of statistical models used for time series forecasting and analysis.

ARIMA models capture different components of a time series, including autoregressive (AR) terms, differencing (I), and moving average (MA) terms.

Here are the key components and steps involved in understanding and building ARIMA models:

Components of ARIMA

AutoRegressive (AR) Component (p):

 Represents the relationship between the current observation and its previous observations.

Integrated (I) Component (d):

 Represents the number of differencing required to make the time series stationary.

Moving Average (MA) Component (q):

• Represents the relationship between the current observation and a residual error from a moving average model.

Stationarity and Differencing

Stationary Time Series:

 ARIMA assumes stationarity. If the time series is not stationary, differencing is applied.

Differencing (Integration):

ullet $\operatorname{Diff}_d(Y_t) = Y_t - Y_{t-d}$ where d is the order of differencing.

Choosing p, d, and q

ACF and PACF Plots:

 Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots help in selecting appropriate values of p and q.

Identification of Trends:

 Observe the time series data to identify trends and determine the value of d.

Building and Training

Model Initialization:

ARIMA(p,d,q)

Model Fitting:

Use historical data to estimate the model parameters.

Model Diagnostics

Residual Analysis:

 Examine the residuals to ensure they are white noise.

Ljung-Box Test:

 Tests the null hypothesis that residuals have no autocorrelation.

Forecasting

Out-of-Sample Predictions:

 Use the trained ARIMA model to make predictions on future data points.

Confidence Intervals:

Provide a range of possible values for each forecast.

Seasonal ARIMA

Seasonal Component:

• Extends ARIMA to handle seasonality in the data.

Seasonal Differencing:

Additional differencing for handling seasonality.

Seasonal Autoregressive and Moving Average Terms:

Corresponding to seasonal patterns.

Grid Search

Iterative Testing:

 Test different combinations of p, d, and q to find the best-performing model.

Validation Set:

Use a validation set to evaluate model performance.

Implementation

```
import pandas as pd
from statsmodels.tsa.arima.model import
ARIMA
data =
pd.read_csv('time_series_data.csv',
parse_dates=['Date'], index_col='Date')
p, d, q = 1, 1, 1
model = ARIMA(data, order=(p, d, q))
results = model.fit()
forecast = results.get_forecast(steps=12)
```