

Aula 1

Prof.: Dr. Rudinei Goularte

(rudinei@icmc.usp.br)
Instituto de Ciências Matemáticas e de Computação - ICMC
Sala 4-234

Conteúdo

- Apresentação da disciplina
- Conceitos e definições em multimídia
- Princípios de compressão

2

1. Apresentação da Disciplina

Ementa do Curso

Objetivos:

 Apresentar os fundamentos de multimídia abordando questões relevantes às características dos diferentes tipos de mídia e de seus respectivos métodos de codificação. Analisar ferramentas, aplicações e sistemas disponíveis, considerando suas capacidades e limitações. Capacitar o aluno a discutir os tópicos envolvidos em áreas atuais de pesquisa.

4

Ementa do Curso

Justificativa

Diversas áreas de atividade utilizam aplicações computacionais que manipulam diferentes tipos de mídia, de modo integrado ou não. O volume de informações gerado e a necessidade de sincronização entre as mídias tornam necessário o uso de técnicas de codificação e de padrões que garantam eficiência e interoperabilidade, sendo que o conhecimento destes é fundamental para alunos de mestrado e doutorado desenvolverem pesquisas em Multimídia e áreas afins.

Ementa do Curso

- Conteúdo
 - Definicões de multimídia.
 - Introdução à digitalização e compressão de diferentes tipos de mídia.
 - Técnicas básicas de compressão.
 Codificação espacial e temporal.
 - Padrões.
 - Segmentação e Adaptação.
 - Autoria Multimídia.

Bibliografia

- 1 HALSALL, F. "Multimedia Communications applications, networks, protocols and standards" ed. Addison-Wesley, 2001.
- 2 MANDAL, M. Kr. "Multimedia Signals and Systems". Kluwer Academic Publishers, 2003.
- 3 GONZALES, R. C.; WOODS, R. E. "Digital Image Processing". ed. Prentice Hall, 2a, edição, 2002.
- 4 PEREIRA, F.; EBRAHIMI, T. The MPEG-4 Book. Upper Saddle River: Prentice Hall PTR, 2002.
- 5 RICHARDSON, L. E. G. H.264 and MPEG-4 Video Compression. Wiley, 2003.
- 6 Artigos de periódicos e conferências da área. (ACM DL, IEEExplore, Springer Link, ...)

Aula 5

Aula 6

Seminários Corpus Christ

Prova

Avaliação

- 1 Prova.
- 1 Seminário (dupla).
- 1 Prova substitutiva (da prova!).
- Média Final: 40% Seminário + 60% Prova.

Atendimento

Sala 4-234

16/06

30/06

• Quartas: das 16:00 às 19:00.

Site do curso

- http://agora.tidia-ae.usp.br
 - Nosso canal de comunicação.
 - Visitem Sempre!!!!!!

2. Multimídia: definições e conceitos.

-

Qual a motivação para usar multimídia?

- Comunicação: monomídia x multimídia.
 - Psicologia.
- Origem: artes e educação.
 - Tradição em como a informação é transmitida (expressa).
 - Usam canais sensoriais e modos de expressão como meios de comunicação.

21

O que é multimídia?

- O termo:
 - Bob Goldstein July 1966 "LightWorks at L'Oursin" show. Southampton.
 - Tay Vaughan 1993 Multimedia: Making It Work, McGraw-Hill: "Multimedia is any combination of text, graphic art, sound, animation, and video that is delivered by computer".
 - Interativa.
 - Hipermídia.

22

O que é multimídia?

Dicionário:

multi [latim]: muitos; vários mídia [latim: *media; medium*]: meios; meio

mídia: substância através da qual alguma coisa é transportada; um meio de comunicação de massa, como jornal ou televisão.

- Daí, uma definição comum é: multimídia é o uso simultâneo de diferentes tipos de mídia.
 - Comunicação.

าว

O que é multimídia?

- Confusão?
 - Uso da definição (comum) fora de contexto.
 - Pleonasmo coleção de CDs.
 - Ambiguidade Livro; Vídeo.

Definição:

 "Multimídia é o uso simultâneo de duas ou mais mídias diferentes integradas e entregues (delivered) por computador".

__

Definindo Mídia.

- Mídia: meio de representação, armazenamento, distribuição e apresentação de informação.
 - Exemplos: Texto, gráficos, fala, música, imagens estáticas e moventes, CDs, lousas, MP3, ASCII,

26

Classificando Mídia.

- Percepção
 - Mídias visuais e auditivas.
 - E as outras?
- Representação
 - Formatos
- Apresentação
 - Papel, ...
- Armazenamento
 - Papel, ...
- Transmissão
 - Portadoras que habilitam a transmissão contínua da informação

27

Classificando Mídia.

- Discretas ou Contínuas: mídias podem ser divididas em dois grupos:
 - Independentes do tempo ou discretas.
 - Dependentes do tempo ou contínuas.

28

Sistemas Multimídia.

- Principais Propriedades de um Sistema Multimídia.
 - Combinação de mídias.
 - Deve incluir duas ou mais mídias.
 - Como especificar o tipo de mídia?

4

Sistemas Multimídia.

- Principais Propriedades de um Sistema Multimídia.
 - Independência entre mídias.
 - Isso permite:
 - processamento independente das mídias.
 - flexibilidade para combinar mídias de diferentes modos.

30

Sistemas Multimídia.

- Principais Propriedades de um Sistema Multimídia.
 - Integração auxiliada por computador.
 - Sistemas de comunicação.*

31

3. Princípios de Compressão

Por quê Comprimir?

- Preencher o "gap" demanda x capacidade
 - Usuários têm demandado aplicações com mídias cada vez mais sofisticadas.
 - Meios de transmissão e armazenamento são limitados.
 - Vídeo digital com "qualidade de TV" (aproximadamente):
 1 segundo = 216Mbits.
 - 2 horas = 194GB = 42 DVDs ou 304 CD-ROMs!
 - "Compressão vai se tornar redundante em breve, conforme as capacidades de armazenamento e transmissão aumentem."
 - Esta frase tem sido repetida nos últimos 25 anos.

33

Codificador e Decodificador

- Compressão x Descompressão.
 - (A)simetria
- Implementação do algoritmo de compressão:
 - Em software ou em hardware.

34

Tipos de Algoritmos de Compressão

- Compressão sem perdas: Lossless.
 - Reversível.
- Compressão com perdas: Lossy.
 - Não reversível.
 - Taxas de compressão x qualidade.

Compressão Sem Perdas

Qual a quantidade mínima de bits necessária para representar uma informação sem que ocorram perdas?

Teoria da Informação

- Entropia:
 - Ferramenta matemática para determinar a quantidade mínima de dados para representar informação.
 - Premissa: a geração da informação pode ser modelada como um processo probabilístico.
 - Incerteza.

3

Teoria da Informação

- Fonte de informação (source) e PDF.
 - Fonte gera símbolos estatisticamente independentes probabilidade não uniforme de ocorrência.
- Incerteza

Se
$$P(E) = 1 => I(E) = 0$$

• $I(E) = log \underline{1}_{E} = -log P(E)$ unidades de informação

38

Teoria da Informação

- Teorema de Shannon
 - Transferência de informação em canais de comunicação.
 - Fórmula de Shannon:

$$H = -\sum_{i=1}^{11} P_i \log_2 P_i$$

 n = número de diferentes símbolos; P_i = probabilidade de ocorrência do símbolo i.

H = Entropia da fonte!

39

Teoria da Informação

- Eficiência de um esquema de compressão:
 - Entropia da fonte x Número médio de bits por código do esquema.
 - Número médio de bits por código:
 NMB = Σ, N_i P_i

40

Teoria da Informação

- Exemplo.
 - Novo método de compressão. Alfabeto: M,
 F, Y, N, 0 e 1. Freqüência: 0.25, 0.25,
 0.125, 0.125, 0.125 e 0.125. Códigos: M =
 10, F = 11, Y = 010, N = 011, 0 = 000, 1
 = 001.
 - A) Qual a entropia da fonte?
 - B) Qual o número médio de bits por código?

41

Codificação de Huffman

- Conjunto de dados e freqüência relativa dos símbolos.
- Árvore binária não balanceada.
 - Os símbolos estão nas folhas.
 - Propriedade do prefixo.
 - Árvore de Huffman.

Codificação de Huffman

- Para construir uma árvore de Huffman é necessário obter a freqüência dos símbolos:
 - Os símbolos com maior freqüência devem ter os menores códigos.
 - Monta-se uma lista ordenada pela frequência:
 - A4
 - B2
 - . C1
 - D1

44

Codificação de Huffman

- Codificação:
 - AAAABBCD será 11110101001000
- Decodificação:
 - Árvore como índice.
 - Percurso da raiz para as folhas.

46

Codificação de Huffman

- Observações:
 - Ambos, codificador e decodificador devem conhecer a tabela de códigos.
 - Se a tabela é enviada/codificada junto com os dados, ocorre overhead.
 - O decodificador pode conhecer a tabela com antecedência.
 - Análise estatística do uso dos caracteres em uma determinada língua.
 - Esse método não é exato.
 - Alguns textos n\u00e3o v\u00e3o atingir o m\u00e1ximo de compress\u00e3o que poderiam.

Exercício

- Seja uma tabela de freqüências relativas como segue:
 - A e B = 0,25; C e D = 0,14; E, F, G e H = 0,055.
- Derive um conjunto de códigos usando o método de Huffman.
- Derive o número médio de bits por caracter de seu código e compare com:
 - A entropia da fonte.
 - Um código binário de tamanho fixo.
 - Códigos ASCII de 7 bits.

Codificação por Diferença

- Codificação por diferença
 - Quando usar?
 - O quê codificar?
 - Perdas?

49

Codificação por Diferença

- Exemplo:
 - **12**, 13, 11, 11, 10, ...

50

Codificação por Carreira

- Também chamada Run-Length Encoding (RLE)
 - (skip, value)
 - 6, 7, 3, 3, 3, 2, 2, 2, 0, 0, 0, ...0.

51

Codificação por Carreira

- Exemplo:
 - **6**, 7, 0, 0, 0, 3, -1, 0, ..., 0.

52

Codificação Aritmética

- Método de Huffman atinge o valor da Entropia apenas em algumas situações.
 - Depende da probabilidade de aparecimento dos caracteres no texto.
- Codificação Aritmética sempre atinge o valor da Entropia.
 - Mais complexa que Huffman.
 - Iremos estudar apenas o modo básico.

53

Codificação Aritmética

- String a ser codificada: went
- Probabilidades:
 - e = 0,3; n = 0,3; t = 0,2; w = 0,1; . = 0,1
 - . = terminador de string
- Conjunto de caracteres deve ser dividido no intervalo de 0 a 1, respeitando-se a proporção das probabilidades.

Codificação Aritmética

- Nesse exemplo, o código pode ser qualquer número entre 0,81602 e 0,8162.
 - 0,8161, por exemplo.
- Decodificador conhece o alfabeto, as probabilidades e os intervalos.
 - Então pode seguir o mesmo processo do codificador para decodificar a mensagem 0,8161.

57

Codificação Aritmética

- Nesse método, o número de dígitos no código cresce linearmente de acordo com o tamanho da string.
- Logo, o número máximo de caracteres em uma string é determinado pela precisão de ponto flutuante na máquina destino.
 - Strings grandes podem ser quebradas em duas ou mais substrings.

4

Para Saber Mais

- Gonzales, R.; Woods, R. E. Digital Image Processing. Segunda edição, 2002. Capítulo 8.
- Gibbs e Tsichritzis, Multimedia Programming, Addison-Wesley, 1995, capítulo 2.
- Mandal, M. K. Multimedia Signals and Systems. Kluwer Academic Publishers, 2002. ISBN: 1402072708. Capítulos 1 e 6.
- Halsall, F. Multimedia Communications: Applications, Networks, Protocols, and Standards, Addison-Wesley Publishing, 2001. ISBN: 0201398184. Capítulo 3.

Temas para seminários

- Áudio: padrões
- Vídeo: padrões
- Autoria Multimídia
- Televisão Digital Interativa (TVDI)
- Social TV
- Engenharia de Documentos Aplicada a Multimídia
- Vídeo 3D