Math 33B Fall 2023

MIDTERM 1 PRACTICE

Aaron Palmer

Suggested textbook problems: (practice these until you can solve them routinely and quickly)

- Section 2.2 Separable, 1-22.
- Section 2.4 Linear, 1-26.
- Section 2.5 Mixing, 1-14.
- Section 2.6 Exact, 1-30.
- Section 2.7 Existence and Uniqueness, 1-16.
- Section 2.9 Autonomous, 1-31.

Problem 1. Solve the following initial value problems for y(t):

- (a) $-xy + \frac{1}{x} \frac{x^2}{2} \frac{dy}{dx} = 0$, y(1) = -2.
- (b) $y' = \cos(t)y + \cos(t)$, y(0) = 2.

Problem 2. Consider the initial value problem $y' = \cos(y) - 1$, $y(0) = y_0$.

- (a) Find all possible equilibrium solutions and classify them as I) stable, II) unstable, or III) semi-stable.
- (b) For what range of y_0 values will $\lim_{t\to\infty} y(t) = 0$?

Problem 3. Consider the initial value problem (IVP): ty' = y, $y(t_0) = y_0$.

- (a) Show that if $t_0 = 0$ and $y_0 \neq 0$, there is no solution.
- (b) Show that for all c, y(t) := ct is a solution and so if $t_0 = 0$ and $y_0 = 0$, there is more than one solution.

Problem 4. Consider the following initial value problem:

$$\begin{cases} y' + xy = x^3, \\ y(0) = 1. \end{cases}$$
 (1)

- (a) Use the integrating factor or variation of parameters method to express the solution the problem (1) in terms of an indefinite integral with a constant of integration.
- (b) Evaluate the integral and the constant to find an explicit solution to the problem (1).
- (c) What is the maximum interval of existence for the solution of part (a)?