# Análise e Tratamento de Dados para Simulação de Sistemas

Principal fonte: Capítulo 5 do livro: *Introdução à Modelagem* e Simulação de Sistemas, 2ª Ed., Visual Books, 2008

Prof. Paulo José de Freitas Filho, Dr. Eng.
Universidade Federal de Santa Catarina
Dep. Informática e Estatística
freitas@inf.ufsc.br

## **Tópicos**

- Introdução;
- Processo de Amostragem e Coleta dos dados;
- Tratamento dos Dados;
- Identificação da distribuição estatística;
- Estimação dos parâmetros;
- Testes de aderência;
- Ajuste de Distribuições com o Arena Input Analyzer

## **Tópicos**

- ◆ Introdução;
- Processo de Amostragem e Coleta dos dados;
- Tratamento dos Dados;
- **♦ Identificação da distribuição estatística**;
- **◆** Estimação dos parâmetros;
- **♦** Testes de aderência;
- ◆ Ajuste de Distribuições com o Arena Input Analyzer

### Tratamento de Dados

- ♦ Buscar a Representação Gráfica --> Histogramas
- ◆ **Dados brutos -** *Identificar os limites* (6, 114)

| 46 | 52 | 39 | 43  | 69 | 31  | 53 | 52 | 68  | 17 |
|----|----|----|-----|----|-----|----|----|-----|----|
| 6  | 64 | 25 | 88  | 67 | 85  | 57 | 60 | 76  | 60 |
| 58 | 96 | 67 | 94  | 60 | 73  | 68 | 66 | 41  | 60 |
| 11 | 38 | 70 | 82  | 40 | 94  | 8  | 86 | 105 | 65 |
| 79 | 65 | 88 | 54  | 51 | 114 | 59 | 93 | 64  | 31 |
| 66 | 68 | 37 | 109 | 67 | 59  | 60 | 62 | 41  | 50 |
| 78 | 97 | 78 | 55  | 74 | 67  | 22 | 40 | 100 | 27 |
| 20 | 44 | 62 | 72  | 49 | 82  | 54 | 73 | 68  | 38 |
| 74 | 75 | 57 | 86  | 31 | 82  | 69 | 51 | 53  | 63 |
| 49 | 70 | 62 | 46  | 26 | 36  | 65 | 83 | 78  | 19 |
|    |    |    |     |    |     |    |    |     |    |

#### ◆ Tabela de distribuição de freqüências

| Classes     | Ponto Médio | Freqüência  |
|-------------|-------------|-------------|
| (defeitos   | $X_i$       | Absoluta    |
| reportados) |             |             |
| 0 - 9       | 4,5         | 2           |
| 10 - 19     | 14,5        | 3           |
| 20 - 29     | 24,5        | 4           |
| 30 - 39     | 34,5        | 6           |
| 40 - 49     | 44,5        | 10          |
| 50 - 59     | 54,5        | 15          |
| 60 - 69     | 64,5        | 27          |
| 70 - 79     | 74,5        | 13          |
| 80 - 89     | 84,5        | 9           |
| 90 - 99     | 94,5        | 5           |
| 100 - 109   | 104,5       | 3           |
| 10 - 119    | 114,5       | 1           |
|             |             | Total = 100 |

#### Histograma



Exemplo de um histograma para os dados abaixo.

```
26.4
            17.3
                 11.2 23.9
                             24.8
                                    18.7
                                          13.9
                                                9.0
                                                      13.2
                        17.5
22.7
      9.8
            6.2
                  14.7
                              26.1
                                    12.8
                                          28.6
                                                17.6
                                                      23.7
26.8
     22.7
            18.0
                  20.5
                       11.0
                             20.9
                                    15.5
                                         19.4
                                                16.7
                                                      10.7
19.1
     15.2
            22.9
                 26.6
                       20.4
                             21.4
                                    19.2
                                         21.6
                                               16.9
                                                      19.0
18.5
     23.0
                 20.1 16.2
                             18.0
                                    7.7
                                          13.5
                                                23.5
            24.6
                                                      14.5
14.4
     29.6
           19.4
                 17.0
                       20.8
                             24.3
                                    22.5
                                          24.6
                                               18.4
                                                      18.1
                       13.3
                                               25.7
8.3
     21.9
            12.3
                  22.3
                             11.8
                                    19.3
                                          20.0
                                                      31.8
25.9
     10.5
           15.9
                 27.5
                       18.1
                              17.9
                                          24.1
                                                20.1
                                                      28.5
                                    9.4
```

#### Distribuição de Freqüências

| Classes     | Freqüências $(f_j)$ |
|-------------|---------------------|
| 5.0   8.0   | 2                   |
| 8.0   11.0  | 7                   |
| 11.0   14.0 | 8                   |
| 14.0   17.0 | 11                  |
| 17.0   20.0 | 18                  |
| 20.0   23.0 | 15                  |
| 23.0   26.0 | 10                  |
| 26.0   29.0 | 7                   |
| 29.0   32.0 | 2                   |
| Total       | 80                  |



## Medidas Descritivas e Medidas de Dispersão

#### Dados não Agrupados

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Média

$$S^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}{n-1}$$

Variância

#### Dados Agrupados

$$\overline{X} = \frac{\sum_{j=1}^{k} f_j x_j}{n}$$

Média

$$S^{2} = \frac{\sum_{j=1}^{k} f_{j} x_{j}^{2} - n \overline{X}^{2}}{n-1}$$

Variância

## **Tópicos**

- ◆ Introdução;
- ◆ Processo de Amostragem e Coleta dos dados;
- Tratamento dos Dados;
- Identificação da distribuição estatística;
- Estimação dos parâmetros;
- ◆ Testes de aderência;
- ◆ Ajuste de Distribuições com o Arena Input Analyzer

## Identificação da Distribuição Teórica de Probabilidades

- O terceiro passo no processo de análise dos dados coletados é a identificação de uma distribuição teórica de probabilidades
- ◆ A utilização de gráficos, tais como um histograma, são muito úteis para a identificação ou delineamento da distribuição teórica de probabilidades.
- ◆ A construção de um histograma permite dar inicio ao processo de inferência sobre uma distribuição teórica de probabilidades.
- As hipóteses sobre qual distribuição adotar devem estar baseadas no contexto do assunto investigado e no perfil do histograma obtido

## Principais Distribuições Contínuas

- Normal
- Uniforme
- ◆ Triangular
- Lognormal
- Erlang
- Gamma
- Beta
- Weibull

## Principais Distribuições Discretas

- Poisson
- ◆ Uniforme discreta

## **Tópicos**

- ◆ Introdução;
- Processo de Amostragem e Coleta dos dados;
- Tratamento dos Dados;
- ◆ Identificação da distribuição estatística;
- Estimação dos parâmetros;
- ◆ Testes de aderência;
- ◆ Ajuste de Distribuições com o Arena Input Analyzer

## Estimação de Parâmetros

- Passo seguinte ao delineamento distribuição de probabilidades feito por meio do histograma dos dados coletados.
- Inicia com a determinação das
  - medidas descritivas: média, a moda e/ou mediana;
  - medidas de dispersão: variância e o desvio-padrão amostral.
- ◆ Tais medidas são a base das estimativas para os parâmetros das distribuições sob hipótese.
- Para aquelas distribuições que não possuem parâmetros de forma e escala, tais como a normal e a exponencial, por exemplo a média e a variância amostral são bons estimadores.

## Estimação de Parâmetros

No caso das distribuições Gama, Erlang e Beta, que necessitam dos parâmetros de forma (α) e de escala (β), as referências sugerem que é possível também realizar uma estimação destes elementos com utilização da média e da variância amostral

$$\alpha = (\mu/\sigma)^2 \quad \beta = \sigma^2/\mu$$

No caso das distribuições Uniforme e Triangular, os valores de mínimo e de máximo são obtidos diretamente dos valores amostrais. O valor modal da distribuição Triangular pode ser estimado por:

$$\left| Mo = 3\bar{x} - (x_{\min} + x_{\max}) \right|$$

## Estimação de Parâmetros

| Distribuição      | Parâmetros          | Estimadores                                            |
|-------------------|---------------------|--------------------------------------------------------|
| Uniforme:         | UNIF (a, b)         | $a = x_{min}$ ; $b = x_{max}$                          |
| Exponencial       | EXPO (β)            | $\beta = \overline{X}$                                 |
| Normal            | $NORM(\mu, \sigma)$ | $\mu = \overline{X}; \sigma = \sqrt{\frac{n-1}{n}S^2}$ |
| Triangular        | TRIA (a, b, c)      | $a = x_{min}$ ; $b = Moda$ ; $c = x_{max}$             |
|                   |                     | onde: $Moda = 3\bar{x} - (x_{min} + x_{max})$          |
| Uniforme Discreta | UNIF DISC (i, j)    | $i = x_{\min}; j = x_{\max}$                           |
| Poisson           | POIS (λ)            | $\lambda = \overline{X}$                               |

## **Tópicos**

- ◆ Introdução;
- ◆ Processo de Amostragem e Coleta dos dados;
- Tratamento dos Dados;
- ◆ Identificação da distribuição estatística;
- Estimação dos parâmetros;
- Testes de aderência;
- ◆ Ajuste de Distribuições com o Arena Input Analyzer

#### Testes de Aderência

- O **objetivo** dos testes de aderência é a **verificação da qualidade** na escolha da distribuição que se acredita melhor represente os dados da população.
- Assim como grande parte das etapas da análise de dados, os testes de aderência também podem ser realizados com auxílio computacional.
- Convém, no entanto, enfatizar uma vez mais que, mesmo adotando tal procedimento (plenamente recomendável), é fundamental que o analista entenda o significado da aplicação do teste e os seus resultados.

#### Testes de Aderência

- Usualmente, os testes de aderência empregam métodos gráficos e/ou teóricos (estatísticos).
  - Graficamente, a qualidade é medida de forma visual, isto é, de acordo com a proximidade ou "aderência" entre o desenho da distribuição teórica e aquele referente aos dados coletados. Quanto menor a diferença entre eles melhor a aderência entre os dados e a determinada distribuição.
  - Teoricamente, procura-se provar a hipótese (teste de hipóteses) de que o conjunto de dados amostrais não diferem, de maneira significativa, daqueles esperados de uma distribuição teórica especificada.

#### Testes de Aderência

Os dois principais métodos teóricos são:

#### Qui-quadrado e Kolmogorov-Smirnov (K-S).

- Medir e avaliam os desvios entre a distribuição amostral e a teórica.
- ◆ A decisão de quando aplicar um ou outro teste baseia-se no tamanho da amostra disponível e na natureza da distribuição.
  - O teste **K-S** é valido apenas para distribuições **contínuas**
  - Qui-quadrado pode ser aplicado a contínuas e discretas.
  - Não é recomendável a aplicação do teste Qui-quadrado a pequenas amostras.
  - Geralmente, a aplicação deste teste exige amostras com pelo menos 100 valores
  - O teste **K-S**, é aplicável à **pequenas** amostras.

## Teste Qui-quadrado

#### Procedimentos

- ightharpoonup Arranjo das n observações em um conjunto de k classes de intervalos;
- Cálculo do teste estatístico dado pela seguinte fórmula:

$$\chi^2 = \sum_{i=1}^k \frac{(fo_i - fe_i)^2}{fe_i}$$

#### onde

k = número de classes ou intervalos

 $f_0$  = frequência observada nas classes

 $f_e$  = frequência esperada nas classes

 $\sum_{k}$  = somatório de todas as classes

- Se  $\chi^2 = 0$ , então as duas distribuições estão "**casando**" perfeitamente, isto é, não existem diferenças entre a distribuição de teórica e a observada.
- Quanto maior o valor de  $\chi^2$ , maior a discrepância entre as duas distribuições.

## Teste Qui-quadrado...

- Deve-se demonstrar que  $\chi^2$  segue, aproximadamente, a distribuição Qui-quadrado com v = k-1-p graus de liberdade, onde p é o número de parâmetros da distribuição sob hipótese.
- As hipóteses a serem testadas são as seguintes:
  - $H_0$ : a variável aleatória X, segue a distribuição sob hipótese com o(s) parâmetro(s) estimado(s);
  - $H_1$  a variável aleatória X, não segue a distribuição sob hipótese com o(s) parâmetro(s) estimado(s).
- Compara-se o valor calculado de  $\chi^2$ com os valores críticos de  $\chi^2_{\alpha, k-1-p}$ .
- Os valores críticos são fornecidos pela tabela da distribuição Qui-quadrado. A hipótese nula  $H_0$  é rejeitada se  $\chi^2 > \chi^2_{\alpha, k-1-p}$ .

## Teste Qui-quadrado...

- Recomenda-se que para a aplicação do teste Qui-quadrado, a amostra possua pelo menos 25 elementos.
- A Tabela abaixo apresenta sugestões para o número de classes para este teste no caso de dados contínuos.

| Tamanho da Amostra (n) | Número de Classes (K)    |
|------------------------|--------------------------|
| 20                     | Não use o teste $\chi^2$ |
| 50                     | 5 a 10                   |
| 100                    | 10 a 20                  |
| > 100                  | $\sqrt{n}$ até n/5       |

- ◆ Com a intenção de **monitorar o tráfego** chamadas telefônicas sobre uma central, o seguinte experimento foi realizado.
  - A cada intervalo de cinco minutos, foi registrado o número de chamadas ocorridas.
  - Os valores esperados são: 0, 1, 2, . . . , 13 para o número de chamadas em cada intervalo.
  - Um total de 400 intervalos são registrados.
  - As **frequências relativas** aos valores observados foram: 3, 15, 47, 76, 68, 74, 46, 39, 15, 9, 5, 2, 0 e 1, respectivamente.
- A hipótese relativa ao experimento é verificar a aderência dos dados com relação a uma distribuição de Poisson, com  $\lambda = 4,6$ .

#### Distribuições das freqüências observadas e esperadas

| <u> </u> | <u> </u>    |                |             |   |
|----------|-------------|----------------|-------------|---|
| Número   | Freqüências | Probabilidades | Freqüências |   |
| de       | Observadas  | de Poisson     | Esperadas   |   |
| Chamadas |             |                |             |   |
| 0        | 3           | 0,010          | 4,0         | _ |
| 1        | 15          | 0,046          | 18,4        |   |
| 2        | 47          | 0,107          | 42,8        |   |
| 3        | 76          | 0,163          | 65,2        |   |
| 4        | 68          | 0,187          | 74,8        |   |
| 5        | 74          | 0,173          | 69,2        |   |
| 6        | 46          | 0,132          | 52,8        |   |
| 7        | 39          | 0,087          | 34,8        |   |
| 8        | 15          | 0,050          | 20,0        |   |
| 9        | 9           | 0,025          | 10,0        |   |
| 10       | 5           | 0,012          | 4,8         |   |
| 11       | 2           | 0,005          | 2,0         |   |
| 12       | 0           | 0,002          | 0,8         |   |
| 13       | 1           | 0,001          | 0,4         |   |
|          | 400         |                | 400,0       |   |

#### Teste de aderência visual



#### Teste de Hipóteses

- $H_0$ : A variável aleatória possui distribuição de Poisson com  $\lambda=4,6$ ;
- $H_1$ : A variável aleatória não possui distribuição de Poisson com  $\lambda=4,6$

#### Comparando

- Valor calculado de  $\chi^2$ , logo  $\chi^2 = \frac{(18-22,4)^2}{22,4} + \frac{(47-42,8)^2}{42,8} + ... + \frac{(8-8,0)^2}{8,0} = 6,749$
- Valor crítico de  $\chi^2_{\alpha, k-1-p}$ .
- Os valores críticos fornecidos pela tabela da distribuição Quiquadrado para  $\alpha = 5\%$  e  $\upsilon = 10-1-1=8$  é igual 15,5.
- A hipótese nula  $H_0$  é rejeitada se  $\chi^2 > \chi^2_{\alpha,k-1-p}$
- Como 6,749 < 15,5 não se pode rejeitar a hipótese de que com 95% de confiança, os dados da amostra seguem uma distribuição Poisson com parâmetro  $\lambda = 4,6$ .

## **Teste Kolmogorov-Smirnov**

- Aplica-se com a mesma intenção que o Chi-quadrado, isto é, testar se uma distribuição amostral segue uma determinada distribuição teórica contínua.
- O teste baseia-se na comparação das probabilidades acumuladas das duas distribuições (observada e teórica).
- Para a consulta em uma tabela de valores críticos, toma-se a o maior valor K-S observado, isto é, o que corresponde ao maior desvio entre as duas distribuições

## Teste Kolmogorov-Smirnov - Exemplo

 Avaliar o conjunto de dados e verificar sua aderência a uma distribuição Uniforme com α= 5%

| 17,38 | 18,09 | 22,47 | 15,29 | 10,33 | 28,98 | 14,70 | 11,26 | 27,49 | 15,90 | 13,47 | 14,43 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 23,73 | 18,09 | 19,09 | 29,29 | 22,12 | 11,86 | 28,31 | 15,79 | 17,48 | 27,78 | 10,27 | 11,94 |
| 11,77 | 11,72 | 10,72 | 22,20 | 12,05 | 24,28 | 17,33 | 10.42 | 28,78 | 10,16 | 13,63 | 17,31 |
| 21,56 | 12,61 | 11,76 | 18,37 | 27,00 | 11,86 | 19,90 | 23,92 | 18,61 | 17,38 | 12,66 | 28,29 |
| 23,17 | 22,28 | 25,24 | 17,58 | 14,66 | 14,41 | 28,59 | 21,72 | 10,56 | 12,48 | 13,02 | 27,84 |
|       |       |       |       |       |       |       |       |       |       |       |       |

## Teste Kolmogorov-Smirnov - Exemplo

#### Tabela de Distribuição de Freqüências

| Limites       | Freqüência | Freqüência | Freqüência | Freqüência | Diferenças |
|---------------|------------|------------|------------|------------|------------|
| Das Classes   | Absoluta   | Relativa   | Acumulada  | Acumulada  | Freqüência |
| Inf. Sup.     | Observada  | Observada  | Observada  | Teórica    | Acumulada  |
| 10,00   12,00 | 13         | 0.2167     | 0.2167     | 0.1        | 0.1167     |
| 12,00   14,00 | 7          | 0.1167     | 0.3334     | 0.2        | 0.1334     |
| 14,00   16,00 | 7          | 0.1167     | 0.4501     | 0.3        | 0.1501*    |
| 16,00   18,00 | 6          | 0.1000     | 0.5501     | 0.4        | 0.1501*    |
| 18,00   20,00 | 6          | 0.1000     | 0.6501     | 0.5        | 0.1501*    |
| 20,00   22,00 | 2          | 0.0333     | 0.6834     | 0.6        | 0.0834     |
| 22,00   24,00 | 7          | 0.1167     | 0.8001     | 0.7        | 0.1001     |
| 24,00   26,00 | 2          | 0.0333     | 0.8334     | 0.8        | 0.0334     |
| 26,00   28,00 | 4          | 0.0666     | 0.9000     | 0.9        | 0.0000     |
| 28,00   30,00 | 6          | 0.1000     | 1.0000     | 1.0        | 0.0000     |

## Teste Kolmogorov-Smirnov - Exemplo

- As maiores diferenças são observadas nas classes que iniciam em 14,00 e vão até 20,00.
- ♦ O valor da diferença é de 0.1501.
- Compara-se este valor com o obtido da tabela de valores críticos do teste K-S, com  $\alpha = 5\%$  e  $\upsilon = 60$  (60 valores na tabela), isto é, 0,1756.
- O mesmo critério de rejeição deve ser então aplicado.
- ◆ Como o **valor crítico tabelado** é **maior** que o **valor calculado** a partir dos dados da amostra, não se pode rejeitar a hipótese H₀ de que os dados levantados seguem uma distribuição Uniforme.

## **Tópicos**

- ◆ Introdução;
- Processo de Amostragem e Coleta dos dados;
- Tratamento dos Dados;
- **♦ Identificação da distribuição estatística**;
- **♦** Estimação dos parâmetros;
- **♦** Testes de aderência;
- ♦ Ajuste de Distribuições com o Arena *Input Analyzer*

## Ajuste de Distribuições com o Arena Input Analyzer

#### Objetivos e necessidades:

- Selecionar uma distribuição de probabilidade para ser usada na geração de dados para o modelo de simulação;
- Possuir uma amostra de dados (IID Independente e Identicamente Distribuída) coletados no sistema real.

#### ♦ Arena Input Analyzer

- Aplicação independente.
- Também acessível via menu Tools;
- Realiza um processo de aderência.
- Fornece uma expressão válida no Arena passando-a diretamente a um modelo (Copy/Paste).

## Ajuste de Distribuições com o Arena Input Analyzer (cont...)

- Ajuste = decidir sobre o tipo de distribuição (exponencial, normal, empírica, etc.) e estimar seus parâmetros;
  - Diferentes métodos (Max. semelhança, menores quadrados, ...)
  - Realização de Testes de Hipóteses para avaliar a melhor distribuição
    - H<sub>0</sub>: a distribuição escolhida representa adequadamente os dados
    - testar o valor de *p* (maior = melhor)
- Verificar ajuste entre distribuição "teórica" X empírica;
- Trabalha com dados de distribuições contínuas e discretas;
- Realiza "Best fit" entre várias distribuições.

## Arquivos de Dados para o *Input* Analyzer

- Criar um arquivo de dados (editores, planilhas, etc...)
  - Deve ser do tipo ASCII (salve ou exporte);
  - Dados separados por brancos (espaços, tab., novas linhas)
  - Aceita também formato livre
- Abrir arquivo a partir do Input Analyzer
  - menu File/New ou
  - menu File/Data File/Use Existing ...
  - Get histogram, basic summary of data
  - Para ver dados: menu Window/Input Data
- ◆ Pode gerar dados "falsos" para aprendizado ou estudos.
  - menu File/Data File/Generate

#### O Menu Fit

- Verifica distribuições (testes de aderência);
- Verifica a forma de distribuições específicas
  - Desenha a função densidade sobre um histograma (visual);
  - Fornece a expressão exata (parâmetros) para *Copy* e *Paste* ao modelo de simulação;
  - Pode incluir limites (offset), dependendo da distribuição;
  - Fornece os resultados do teste de aderência.
    - Testes Chi-quadrado e Kolmogorov-Smirnov
    - O mais importante: *valor de p*, sempre entre 0 e 1;
    - *p* pequeno (< 0.05): aderência pobre;
    - O uso da distribuição ajustada pode apresentar um conjunto de dados mais inconsistente do que o conjunto de dados da amostra, em função da probabilidade de pontos extremos.

#### O Menu Fit (cont...)

- Ajuste de todas as distribuições (teóricas) do Arena
  - Fit/Fit All menu ou
  - Retorna a distribuição com o mínimo square-error
    - Square error = soma dos quadrados das diferenças entre as freqüências do histograma e da distribuição ajustada (teórica);
    - Pode depender do nº de intervalos escolhidos: diferentes intervalos podem levar a uma solução diferente;
  - O valor de **p** pode indicar se o ajuste é + ou pobre;
  - Para ver o resultado de todos os testes: *Window/Fit All Summary* ou então

#### O Menu Fit (cont ...)

- Ajusta à distribuições empíricas (contínuas ou discretas):
   Fit/Empirical
  - Pode interpretar resultados como dist.. contínuas ou discretas
    - Discretas: toma pares (probabilidade cumulativa, valor);
    - Contínuas: Arena faz interpolação linear dentro dos limites dos dados. Não gera dados fora dos limites (pode ser bom ou ruim);
  - Distribuições empíricas podem ser usadas intencionalmente ou, quando distribuições "teóricas" tem ajuste pobre.

# Alguns Comentários sobre Ajuste de Distribuições

- Não se trata de uma ciência exata não tem resposta "certa";
- Considere distribuições teóricas X empíricas;
- Considere os limites das distribuições
  - infinito de ambos os lados (ex.. normal);
  - positiva (ex.. exponencial, gamma);
  - limitadas (e.g., beta, uniforme);
- Considere a facilidade de manipulação dos parâmetros afetando médias e variâncias;
- Possibilidade de realização de análise de sensibilidade;
- Dados multimodais, dados fora dos limites esperados, etc..

#### Falta de Dados?

- Acontece com + freqüência do que o esperado;
- Não existem boas soluções. Algumas soluções (ruins);
  - Entrevistas com "experts"
    - Min, Max: Uniforme
    - média., % erros ou erro absoluto: Uniforme
    - Min, Moda, Max: Triangular
      - Moda pode ser diferente da Média permite assimetria
  - Chegadas independentes, estacionárias
    - Exponencial necessita de um valor para a média;
  - Número de eventos "randômicos" num intervalo: Poisson
  - Soma de elementos independentes: normal

### Processo de Chegadas Não-estacionário

- Eventos externos (geralmente chegadas) cujas taxas variam ao longo do tempo;
  - restaurantes tipo fast-food;
  - Hora do Rush do tráfego das cidades;
  - Call-centers (telefone);
  - Demandas sazonais por produtos manufaturados;
- Pode ser crítica a modelagem deste processo nãoestacionário considerando a validação do modelo;
  - Ignorar picos e vales pode mascarar o comportamento;
- ◆ Um bom modelo: *Processo Poisson Não-estacionário*

### Processo de Chegadas Não-estacionário

(cont...)

#### Duas questões:

- Como especificar/estimar a "função" taxa de chegada?
- Como gerar apropriadamente da função durante a simulação
- Vários métodos
- Pequena idéia do método constante
  - Dividir a "janela" de tempo em períodos sobre os quais imagina-se a taxa seja quase constante;
  - Computar a taxa observada em cada subintervalo;
  - Seja *muito* cuidadoso com as unidades de tempo!
    - Unidades de tempo do Modelo = minutos
    - Subintervalos = meia hora (= 30 minutes)
    - -45 chegadas na meia hora; taxa = 45/30 = 1.5 por minuto

#### Dados Multivariados e Correlacionados

- Usualmente assumimos que todas as observações aleatórias geradas ao longo da simulação são independentes (mesmo que de diferentes distribuições)
- Algumas vezes isto não é verdade:
  - Uma "peça" mais complicada poderá requerer um longo tempo de processo em dois servidores em seqüência
  - Isto pode resultar em uma correlação positiva;
- Ignorar tais relações pode invalidar o modelo

#### Distribuições Multimodais

 Quando dois ou mais valores são mais frequentes que os demais numa mesma amostra.



 Amostra perfil de consumidores (número de itens comprados em um supermercado

## Distribuições - Exercícios

- 1. Analise os dados do arquivo "chegada 1011.txt" e ajuste uma função exponencial para estes dados e analise os resultados apresentados pela ferramenta.
- 2. Repita o exercício anterior utilizando a opção *Fit All* e compare com os resultados obtidos anteriormente.
- 3. Repita os procedimentos do exercício 2 empregando o arquivo "chegada 1011-100.txt". Compare os resultados e analises com aquelas realizadas no exercício 2.
- 4. Usando o *Input Analyzer* faça o processo de ajuste ao arquivo: "dados exercício 5. txt"



















#### Análise do 5º Exercício: Distribuição Empírica

