

MINISTERUL EDUCAȚIEI CERCETĂRII ȘI INOVĂRII

Olimpiada de Fizică - Etapa pe județ 17 ianuarie 2009

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema I Geamandura	Puncta	aj
a.	 y - distanța dintre capătul superior al geamandurii şi suprafața apei h = 1m - lungimea cilindrului; x - lungimea "camerei de aer" a geamandurii; p - presiunea a aerului din cilindrul aflat la o adâncime oarecare în apă 	3р	
	condiția de echilibrul a cilindrului $(p_0 + \rho \cdot g \cdot y) \cdot S + M \cdot g - p \cdot S = 0$ 0,5	0р	
	legea transformării izoterme aplicată aerului din cilindru $p_0 \cdot V = p \cdot S \cdot x$ 0,5	0р	
	$p = p_0 \cdot \frac{h}{x}$ $((p_0 + \rho \cdot g \cdot y) \cdot S + M \cdot g - p \cdot S = 0$		
	$\begin{cases} (p_0 + \rho \cdot g \cdot y) \cdot S + M \cdot g - \rho \cdot S = 0 \\ p_0 \cdot V = \rho \cdot S \cdot x \end{cases}$ 0.5	0p	
	$M = \frac{p_0 \cdot S}{g} \left[\left(\frac{h}{x} - 1 \right) - \frac{\rho \cdot g \cdot y}{p_0} \right]$ $\left[y_0 + b_0 \cdot B \right] = \frac{8}{3} \text{ ms}$	0p	
	$\begin{cases} x = h - D = ; \ x = \frac{8}{9}m \\ y = \frac{\ell}{2} \ ; \ y = 1m \end{cases}$	5p	
	Rezultat final: $M = 100 kg$	0р	
b.	Pentru: H - adâncimea apei în situația descrisă la punctul a x' - lungimea "camerei de aer" a geamandurii, în condițiile precizate la punctul b $y' = \ell/4$ - distanța de la capătul superior al cilindrului la suprafața apei p' - noua presiune a aerului din cilindru	3p	
	$\begin{cases} (p_0 + \rho \cdot g \cdot y') \cdot S + M \cdot g - p' \cdot S = 0 \\ p_0 \cdot V = p' \cdot S \cdot x' \end{cases}$	0р	

	$\left[(p_0 + \rho \cdot q \cdot v') \cdot S + M \cdot q = \frac{p_0 \cdot V}{\rho} \right]$		
	$\begin{cases} (p_0 + \rho \cdot g \cdot y') \cdot S + M \cdot g = \frac{p_0 \cdot V}{x'} \\ (p_0 + \rho \cdot g \cdot y) \cdot S + M \cdot g = \frac{p_0 \cdot V}{x} \end{cases}$	0,50p	
	$\begin{cases} \rho \cdot g \cdot S(y - y') = \rho_0 \cdot V\left(\frac{1}{x} - \frac{1}{x'}\right) \\ sau \\ \frac{1}{x'} = \frac{1}{x} - \frac{\rho \cdot g \cdot S}{\rho_0 \cdot V}(y - y') = \frac{1}{x} - \frac{\rho \cdot g \cdot S \cdot \ell}{4\rho_0 \cdot V} \end{cases}$	0,50p	
	$x' = \frac{40}{43} m \cong 0.93 m$	0,25p	
	adâncimea apei corespunzătoare situației precizate la punctul \mathbf{a} $H = d + x + y$	0,25p	
	adâncimea apei corespunzătoare situației precizate la punctul \mathbf{b} $H'=d+x'+y'$	0,25p	
	$\Delta H = H - H' = (d + x + y) - (d + x' + y') = x + y - x' - y'$	0,25p	
	Rezultat final: $\Delta H = \frac{355}{774} \cong 0.45 \text{ m}$	0,50p	
C.	Pentru:		3p
	y'' - distanța dintre capătul de sus al cilindrului și suprafața apei x'' - lungimea coloanei de aer din cilindru condiția de echilibru a pistonului $p''\cdot S + mg + T - (p_0 + (x'' + y'')\cdot \rho\cdot g)\cdot S = 0$	0,75p	
	$\begin{cases} T = (p_0 + (x'' + y'') \cdot \rho \cdot g) \cdot S - p'' \cdot S - m \cdot g \\ sau \\ T = (p_0 + (x'' + y'') \cdot \rho \cdot g) \cdot S - \frac{p_0 \cdot V}{x''} - m \cdot g \end{cases}$	0,25p	
	condiția de echilibrul a cilindrului $(p_0 + \rho \cdot g \cdot y'') \cdot S = \frac{p_0 \cdot V}{x''} - M \cdot g$	0,50p	
	$x'' = \frac{1}{\left(1 + \frac{\rho \cdot g \cdot \ell}{p_0}\right) \cdot \frac{1}{h} + \frac{M \cdot g}{p_0 \cdot V}}, \text{ pentru } y'' = \ell$	0,25p	
	$x'' = \frac{40}{49}m \cong 0.81m$	0,25p	
	$T = x'' \cdot \rho \cdot g \cdot S - (m+M) \cdot g$	0,50p	
	Rezultat final: $T \cong 2100 \text{ N}$	0,50p	
Oficiu TOTAC	Problema I		1p 10p
TOTAL	TIVUKIIH 1		ιυμ

MINISTERUL EDUCAȚIEI CERCETĂRII ȘI INOVĂRII

Olimpiada de Fizică - Etapa pe județ 17 ianuarie 2009

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a II-a Uşa frigiderului	Punctaj
a.	Pentru:	2p
	presiunea $p_{\it aer rece}$ a aerului, răcit izocor în frigider, până la temperatura $t_{\it frigider}$	
	$p_{aerrece} = p_{atmosferica} \cdot \frac{T_{frigider}}{T_{camera}}$ 1,5	Ор
	Rezultat final: $p_{aerrece} \cong 8.4 \cdot 10^4 \text{N/m}^2$	0р
b.	Pentru:	4,5p
	forța $F_{elementara}$, perpendiculară pe uşă şi îndreptată spre interiorul frigiderului, exercitată pe cea de a k porțiune îngustă din uşă , cu lățimea ℓ / n $F_{elementara} = \frac{\ell^2}{n} \cdot \left(p_{atmosferica} - p_{aerrece} \right)$	0р
	momentul elementar, determinat de apariția forței $F_{elementara}$ $M_{elementar} = F_{elementara} \cdot \frac{\ell \cdot k}{n} = \frac{\ell^3 \cdot k}{n^2} \cdot \left(p_{atmosferica} - p_{aerrece} \right)$ 1,0	Ор
	momentul total M determinat de acțiunea forțelor de presiune asupra uşii $M = \frac{\ell^3}{n^2} \cdot \left(p_{atmosferica} - p_{aerrece} \right) \cdot \sum_{k=1}^n k$	Ор
	momentul total M , pentru n foarte mare $M = \frac{\ell^3}{2} \cdot \left(p_{atmosferica} - p_{aer rece} \right)$ 1,0	Ор
	forța minimă f_{\min} care trebuie aplicată mânerului pentru deschiderea uşii $f_{\min} = \frac{M}{\ell} = \frac{\ell^2}{2} \cdot \left(p_{\mathit{atmosferica}} - p_{\mathit{aer rece}} \right)$	Ор
	Rezultat final: $f_{\min} \cong 8 \cdot 10^3 N$ 0,5	Ор

C.	Pentru:	2,5p
	ecuația termică de stare, corespunzătoare masei de aer aflată în frigider, imediat după deschiderea uşii $p_{atmosferica} \cdot I^3 = \frac{m_{initial}}{\mu_{apa}} \cdot R \cdot T_{camera} $ 0,50p	
	ecuația termică de stare, corespunzătoare masei de aer aflată în frigider, după închiderea uşii, după egalarea presiunii şi după atingerea temperaturii de funcționare $p_{\textit{atmosferica}} \cdot I^3 = \frac{m_{\textit{final}}}{\mu_{\textit{apa}}} \cdot R \cdot T_{\textit{frigider}}$	
	masa de aer Δm intrată în frigider în timpul τ $\Delta m = \frac{p_{atmosferica} \cdot I^3 \cdot \mu_{aer}}{R} \cdot \left(\frac{1}{T_{frigider}} - \frac{1}{T_{camera}}\right)$ 0,50p	
	viteza medie de variație a masei de aer din frigider, în intervalul de timp τ $\frac{\Delta m}{\tau} = \frac{p_{atmosferica} \cdot I^3 \cdot \mu_{aer}}{R \cdot \tau} \cdot \left(\frac{1}{T_{frigider}} - \frac{1}{T_{camera}}\right)$ 0,50p	
Oficial	Rezultat final: $\frac{\Delta m}{\tau} \cong 0.235 \text{g/s}$ 0,50p	4n
Oficiu TOTAL	Problema a II -a	1p 10p

MINISTERUL EDUCAȚIEI CERCETĂRII ȘI INOVĂRII

Olimpiada de Fizică - Etapa pe județ 17 ianuarie 2009

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a III-a Frânghia care cade		Punctaj
a.	Pentru:	_	3р
	$ \begin{cases} m_1 g + T = m_1 a \\ m_2 g - T = m_2 a \end{cases} $	a	
	$\begin{cases} a = g \\ T = 0 \end{cases}$	0,50p	
	$\begin{cases} a = g \\ y = \frac{g \cdot t^2}{2} \end{cases}$	0,50p	
	intervalul de timp t_m necesar pentru ca frânghia să se deruleze complet $\begin{cases} y(t_m) = 2\ell \\ \frac{g \cdot t_m^2}{2} = 2\ell \end{cases}$	0,50p	
	$t_m = 2 \cdot \sqrt{\frac{\ell}{g}}$	0,25p	
	Rezultat final: $y_A(t) = \frac{g \cdot t^2}{2}$ pentru $t \le 2 \cdot \sqrt{\frac{\ell}{g}}$	0,50p	
b.	Pentru: legea de mişcare a punctului B de curbură a frânghiei $a = \frac{g}{2}$		2р
	$\begin{cases} a = \frac{g}{2} \\ y_B(t) = \ell + \frac{g \cdot t^2}{4} \end{cases}$	1,50p	

	Rezultat final: $y_B(t) = \ell + \frac{g \cdot t^2}{4}$ pentru $t \le 2 \cdot \sqrt{\frac{\ell}{g}}$ 0,50p	
C.	Pentru:	2p
	reprezentări grafice corecte $\ell = \ell = \ell $ 2,00p	
d.	Pentru:	2р
	masa porţiunii AB a frânghiei care cade $m' = \frac{m}{\ell} \cdot \left(\ell - \frac{y}{2}\right)$, 0,50p	
	viteza porțiunii din frânghia în mişcare $v(y) = \sqrt{2gy}$ 0,50p	
	energia cinetică a porțiunii de frânghie în mişcare $E_{cin}(y) = \frac{m'v^2}{2} = \frac{m}{\ell} \cdot \left(\ell - \frac{y}{2}\right) \cdot g \cdot y$ 0,50p	
	Rezultat final: $E_{cin}(t) = \frac{m'v^2}{2} = mg\left(1 - \frac{1}{2\ell}\left(\frac{gt^2}{2}\right)\right)\frac{gt^2}{2}$ pentru $t \le 2 \cdot \sqrt{\frac{\ell}{g}}$ 0,50p	
Oficiu		1p 10p
TOTAL Problema a III - a		

Delia DAVIDESCU – Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar – Ministerul Educației Cercetării și Tineretului Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București