1 Syntactic Definitions

1.1 Axiomatic System

We also define an axiomatization of ReLo based on other dynamic logics tailored to reason about programs. We discuss and define ReLo's axioms as follows. Let φ and ψ be formulas.

Definition 1. Axiomatic System

(PL) Enough Propositional Logic tautologies

(K)
$$[t,\pi](\varphi \to \psi) \to ([t,\pi]\varphi \to [t,\pi]\psi)$$

(And)
$$[t,\pi](\varphi \wedge \psi) \leftrightarrow [t,\pi]\varphi \wedge [t,\pi]\varphi$$

(Du)
$$[t,\pi]\varphi \leftrightarrow \neg \langle t,\pi \rangle \neg \varphi$$

(R)
$$\langle t, \pi \rangle \varphi \leftrightarrow \varphi \text{ if } f(t, \pi) = \epsilon$$

(It)
$$\varphi \wedge [t,\pi][t,\pi^{\star}]\varphi \leftrightarrow [t,\pi^{\star}]\varphi$$

(In)
$$\varphi \wedge [t, \pi^*](\varphi \rightarrow [t, \pi]\varphi) \rightarrow [t, \pi^*]\varphi$$

and the following rules.

Axioms (**PL**), (**K**), (**And**) and (**Du**) are standard in Modal Logic literature (along with rules (**MP**) and (**Gen**)). Axiom (**It**) respectively denotes the reasoning over nondeterministic iteration denoted by the operator * , following a similar idea portrayed by Axiom (vii) as in Propositional Dynamic Logic (PDL), denoting an intuitive meaning regarding the notion of program iteration: if φ holds in the current state and after a single execution of π with t, any finite nondeterministic number of iterations of π with t preserves φ 's truth value, then φ must hold after any (nondeterministic finite) number of iterations of π with t.

Axiom (In) is an axiom which carries the same ideia for PDL. It enables the inductive reasoning on programs by carrying the following intuitive meaning: "considering that φ holds in the current state, if after any (nondeterministic finite) number of iterations of π with its respective input $t \varphi$ holds, then it will hold after any number of iterations of π taking t as its input.

We discuss the proofs of validity (w.r.t. ReLo's model) of (\mathbf{R}) , (\mathbf{It}) and (\mathbf{In}) as follows.

Definition 2. Validity of ReLo's axiomatic system

1. (R)

Proof.

Suppose by contradiction that exists a state s from a model $\mathcal{M} = \langle S, R_{\pi}, \delta, \lambda, V \rangle$ where (**R**) does not hold. There are two possible scenarios this can happen.

 (\rightarrow)

Suppose by contradiction $\mathcal{M}, s \Vdash \langle t, \pi \rangle \varphi$ and $\mathcal{M}, s \nvDash \varphi$. $\mathcal{M}, s \Vdash \langle t, \pi \rangle \varphi$ iff there is a state $w \in S$ such that $vR_{\pi}w$. Because $f(t, \pi) = \epsilon, v = w$ (i.e., in this execution no other state is reached from v). Therefore, $\mathcal{M}, s \Vdash \varphi$, contradicting $\mathcal{M}, s \nvDash \varphi$.

 (\leftarrow)

Suppose by contradiction $\mathcal{M}, s \Vdash \varphi$ and $\mathcal{M}, s \nvDash \langle t, \pi \rangle \varphi$. In order to $\mathcal{M}, s \nvDash \langle t, \pi \rangle \varphi$, for every state $w \in S$ such that $vR_p iw$, $\mathcal{M}, w \nvDash \neg \varphi$. Because $f(t, \pi) = \epsilon, v = w$ (i.e., in this execution no other state is reached from v). Therefore, $\mathcal{M}, w \Vdash \varphi$, which contradicts $\mathcal{M}, w \nvDash \neg \varphi$.

2. (It)

Proof.

Suppose by contradiction that exists a state s from a model $\mathcal{M} = \langle S, R_{\pi}, \delta, \lambda, V \rangle$ where (It) does not hold. There are two possible scenarios this can happen.

 (\rightarrow)

Suppose by contradiction $\mathcal{M}, s \Vdash \varphi \land [t, \pi][t, \pi^*]\varphi$ and $\mathcal{M}, s \nvDash [t, \pi^*]\varphi$. Therefore, $\mathcal{M}, s \Vdash \varphi$ and $\mathcal{M}, s \Vdash [t, \pi][t, \pi^*]\varphi$. For $\mathcal{M}, s \Vdash [t, \pi][t, \pi^*]\varphi$, every state $w \in S$ such that $vR_{\pi}w$, $\mathcal{M}, w \Vdash [t, \pi^*]\varphi$. Then, for $\mathcal{M}, w \Vdash [t, \pi^*]\varphi$, every state $v \in S$ such that $wR_{\pi^*}v$, $\mathcal{M}, v \Vdash \varphi$. From $\mathcal{M}, s \nvDash [t, \pi^*]\varphi$, there is a state $u \in S$ such that $sR_{\pi^*}u$ and $\mathcal{M}, u \nvDash \varphi$. Because $sR_{\pi}w$ and $wR_{\pi^*}v$, From $R_{\pi^*}sR_{\pi^*}w$. Then, for each all u such that $sR_{\pi^*}u$, $\mathcal{M}, u \Vdash \varphi$ which contradicts the existence of a state u such that $sR_{\pi^*tar}u$ and $\mathcal{M}, u \nvDash \varphi$.

 (\leftarrow)

Suppose by contradiction $\mathcal{M}, s \Vdash [t, \pi^*]\varphi$ and $\mathcal{M}, s \nvDash \varphi \land [t, \pi][t, \pi^*]\varphi$. Then, $\mathcal{M}, s \Vdash \neg(\varphi \land [t, \pi][t, \pi^*]\varphi)$ which is $\mathcal{M}, s \Vdash \neg\varphi$ or $\mathcal{M}, s \Vdash \neg[t, \pi][t, \pi^*]\varphi$. In order to $\mathcal{M}, s \Vdash [t, \pi^*]\varphi$, for each state $w \in S$ such that vR_{π}^*w , $\mathcal{M}, w \Vdash \varphi$. By the definition of R_{π}^*, sR_{π}^*s . Then, $\mathcal{M}, s \Vdash \varphi$ which contradicts $\mathcal{M}, s \Vdash \neg\varphi$. Now, considering $\mathcal{M}, s \Vdash \neg[t, \pi][t, \pi^*]\varphi$, for each state $v \in S$ such that $sR_{\pi}v$, $\mathcal{M}, v \nvDash [t, \pi^*]\varphi$. Then, to $\mathcal{M}, v \nvDash [t, \pi^*]\varphi$, there exists a state $u \in S$ such that vR_{π}^*u and $\mathcal{M}, u \nvDash \varphi$. Because $sR_{\pi}v$ and vR_{π}^*u , sR_{π}^*u . From $\mathcal{M}, w \Vdash \neg\varphi$, there is no state u such that $\mathcal{M}, u \nvDash \varphi$, which is a contradiction.

3. (Ind)

Proof.

Suppose by contradiction that exists a state s from a model $\mathcal{M} = \langle S, R_{\pi}, \delta, \lambda, V \rangle$ where (Ind) does not hold. Therefore, suppose $\mathcal{M}, s \Vdash \varphi \land [t, \pi^*](\varphi \rightarrow [t, \pi]\varphi)$ and $\mathcal{M}, s \nvDash [t, \pi^*]\varphi$. Then, $\mathcal{M}, s \Vdash \varphi$ and $\mathcal{M}, s \varphi \land [t, \pi^*](\varphi \rightarrow [t, \pi]\varphi)$. Then, for all states $w \in S$ such that sR_{π}^*w , $\mathcal{M}, w \Vdash \varphi \rightarrow [t, \pi]\varphi$ which is the same as $\mathcal{M}, w \Vdash \neg \varphi \lor [t, \pi]\varphi$. Then, $\mathcal{M}, w \Vdash \neg \varphi$ or $\mathcal{M}, w \Vdash [t, \pi]\varphi$. Considering $\mathcal{M}, w \Vdash \neg \varphi$, from R_{π}^*, sR_{π}^*s . Because $\mathcal{M}, s \Vdash \varphi$, there is a state w (namely, s = w) where $\mathcal{M}, w \Vdash \neg \varphi$ does not hold, resulting in a contradiction. Now, considering $\mathcal{M}, w \Vdash [t, \pi]\varphi$, for each state $v \in S$ such that $wR_{\pi}v$, $\mathcal{M}, v \Vdash \varphi$. Because sR_{π}^*w and $wR_{\pi}v$, from the definition of $R_{\pi}^* sR_{\pi}^*v$. Then, if $\mathcal{M}, s \nvDash [t, \pi^*]\varphi$ then there is a state $u \in S$ such that $sR_{\pi}u$ and $\mathcal{M}, u \Vdash \varphi$. Because for each state $v \in S$ such that $wR_{\pi}v$, $\mathcal{M}, v \Vdash \varphi$. Such state u cannot exist, a contradiction.