Data Mining and Machine Learning

Assignment Project Exam Help

Language https://eduassistpro.github.io/
Speech P

 $Speech \ R \ _{Add \ WeChat \ edu_assist_pro}$

Peter Jančovič

Objectives

 Understand role of language model in speech recognition

Assignment Project Exam Help

Approaches

https://eduassistpro.github.io/

– Rule-Bas

Add WeChat edu_assist_pro
 Statistical Language M

- N-gram Language Models

Speech Recognition: Statistical Methods

• Given an unknown utterance y, want to find the word sequence W such that P(W/y) is maximised Assignment Project Exam Help By Bayes' T

https://eduassistprovgithub.io/ $P(W \mid y) = \frac{P(W \mid y)}{Add WeChat edu}$ assist_pro

• P(W) - probability that the word sequence W is in application language - **language model probability**

Language Modelling

• Language Model (Grammar) used to compute the probability P(W) that the sequence of words W 'belongs to' the language

Assignment Project Exam Help

Constrains recog ssible interpretations

https://eduassistpro.github.io/

- Basically there are two types of Add WeChat edu_assist_pro
 - Rule-based (traditional) lang
 - Probabilistic language model

- Language models in linguistics and natural language processing typically rule-based
- A rule-based language model consists of:
 - A set of non-terminal units (e.g. sentence, noun-phrase, verb-phrashttps://eduassistpro.github.io/
 - A set of te
 - A set of rules, defining no edu_assist_aproints can be expanded into sequences of non-terminal and terminal units
- Corresponds to formal notion of grammar like in school

- Let *S* denote the non-terminal root node corresponding to 'sentence'
- A sequence of words is **grammatical** if it can be derived from *S* by a sequence o https://eduassistpro.github.io/
- Example: Consider the edu_assist_pro "The cat devoured the tiny mouse"

(From Geoffrey Finch, "How to study linguistics", MacMillan, 1998)

Example rules:

$$-$$
 S:- NP + VP

$$-$$
 NP:- det + noun

– det:- "the"

– noun:- "cat"

– verb:- "devoured"

– adj:- "tiny"

VP:- verb + NP.
Assignment Project Example puse"
NP:- det + adj + noun

https://eduassistpro.github.io/

Add WeChat edu_assist_pro det verb noun det adi noun

the The cat devoured tiny mouse

- Disadvantages
 - Normally applied to written language
 - A determinent depisct listy be falsy not be able to acc https://eduassistpro.github.lo/hanguage
 - Cannot easily handle un

 Add WeChat edu_assist_pro
 - Cannot be derived automatically from example data and is - based on human knowledge

- Advantages
 - Can model complex structure, e.g. non-local dependencies
 - Significa https://eduassistpro.githubwite/dge already exists Add WeChat edu_assist_pro
 - Much effort has already ted to the construction of large language models of this type

"She ran, waving enthusiastically, across the bridge"

Finite State Language Models

- Describe all possible sentences as routes through a finite state network
- Typically hand-crafted using graphical design tools https://eduassistpro.github.io/
- Not normally used for yoc edu_assist_pro
 ~1,000 words

Finite-State Syntax

Expansion of Macros

UNIVERSITY^{OF} BIRMINGHAM

Statistical Language Models

- With a rule based language model, a sequence of words W is either
 - in the language (grammatical) or Help
 - outside the cal)
- With a statisti https://eduassistpro.github.jp/words W is in the language (grandmixtical) at edu_assisityprow)
- The most common statistical language model is known as the N-gram model

N-gram Language Models

- Let $W = W_1, W_2, ..., W_K$ be a sequence of words
- In general:

$$P(W) = P(W AP(W y W hent Project Exam(W W W y ..., W_1))$$

- In an N-gram 1 e: https://eduassistpro.github.io/ $P(W_k/W_{k-1}, W_{k-2}, ..., 1 k k-1)$ i.e. the probability of the k^{th} wo under the previous N-1 words
- The most commonly used *N*-gram models are 2-gram (**bigram**) and 3-gram (**trigram**) models

Bigram and Trigram Models

■ In a **Bigram Language Model**, we assume:

$$P(W_k/W_{k-1}, W_{k-2}, ..., W_1) = P(W_k/W_{k-1})$$

Assignment Project Exam Help

Similarly, in assume: Model, we https://eduassistpro.github.io/

$$P(W_k/W_{k-1},W_{k-2},...,W_1) \qquad \qquad k \qquad k-1,W_{k-2})$$

These probabilities can be estimated from data

Estimation of Bigram Probabilities

• For example, given a training text, an estimate of the bigram probability $P(W_2/W_1)$ is given by:

 $P(W_2/W_1)$ Assignable and Project Exam Help

where: https://eduassistpro.github.io/

- $-N(W_1,W_2) =$ Author of three du_assistaip W_1,W_2 occurs in the training text
- and $N(W_I)$ = number of times the word W_I occurs in the training text

Bigram Probabilities - Example

Consider the training text:

"John sat on the old chair. John read the old book. John was interesting. The book was interesting"

- Suppose this is used to train a bigram grammar.
- 'the' occurs 3 https://eduassistpro.getbugbains 'the old' and 'the book' e respectively. Hence Add WeChat edu_assist_pro

P(`old'|'the')=2/3, and P(`book'|'the')=1/3.

Similarly, if the symbol # denotes start of sentence, then

$$P('john'|\#)=3/4$$
, and $P('the'|\#)=1/4$

Example Continued

- The probability of the sentence S
 "John sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(S)

 = P(john sat on the old chair" is given by:

 P(chair)

 P(chair)

 = 3/4 · 1/3 · https://eduassistpro.github.io/
- Similarly Add WeChat edu_assist_pro P("The old chair")=1/12 P("John read the old chair")=1/12
- But P("John read the interesting book")=0

Bigram & Trigram Estimation

- Most practical systems use a trigram language model
- In reality, there is never enough text to estimate trigram probabilities in this simple way
- E.g. experiments with trigrand anguage models for a 1,000
 - word vocabular https://eduassistpro.github.io/ nd 300,000 words to test the model WeChat edu_assist_pro
 - 23% of the trigrams in the **t** ere absent from the training corpus
- Hence much more sophisticated training procedures are needed

Estimation of N-gram statistics

- In general, there will not be enough data to estimate *N*-gram statistics reliably.
- Possible Solutions

 Project Exam Help
 - Robust esti https://eduassistpro.gitthub.io/
 - Deleted interpolation Add WeChat edu_assist_pro
 - 'Back-off'

Deleted interpolation

 'Interpolate' trigram probability from estimated trigram, bigram and unigram probabilities: Assignment Project Exam Help

$$\hat{P}(w_3 \mid w_2 w_1) \approx 1$$

Add WeChat edu_assist_pro

• Estimate λ_1 , λ_2 , λ_3 through recognition experiments

'Backoff'

- Decide how many examples T are needed for robust estimation.
- Then: Assignment Project Exam Help

$$\hat{P}(w_3 \mid w_2 w_1) = \begin{cases} \text{https://eduassistpro.github.io/} \\ P(w_3 \mid w_2 w_3) \geq T \\ \text{Act | WeChat edu_assist_pro} |w_1 w_2| \geq T \\ P(w_3) & \text{erwise} \end{cases}$$

N-gram Language Models - Summary

- Advantages
 - Can be trained automatically from data
 - Probabilistic model

 Project Éxam Help
 - Consistent https://eduassistpro.github.io/
 - Mathematically woundaledu_assist_pro

N-gram Language Models - Summary

- Disadvantages
 - Large amounts of training data needed
 Assignment Project Exam Help
 Difficult t
 - nowledge
 - Cannot m https://eduassistpro.github.io/ "She walkeddawdCinapedu_assisickdro across the bridge"

Summary

- Role of language modelling in speech recognition
- Rule based language models
 Assignment Project Exam Help
 Finite state l
- N-gram lang https://eduassistpro.github.io/
- Difficulty of Astimatench At-edu_assistipso

