Quantum Mechanics

H: Hilbert space

4: state

A: observable

 $W_{+}(A) = \langle + | A + \rangle$: expectation of observable A

for state ψ .

Ols:= l.i.h. ({M.M. m, m (N, M; observable, j=1, m, n})

linear hull

* - algebra.

It is important to consider the totality

of observables.

Algebraic Quantum Mechanics

. We start with C*-alg without considering representation (Hilbert) repare.

or more generally *-alg.

Axiom 1

For each Quantum System, there exists a unital C*-alg. Ol.
when observates are described by self-adj. dom. of Ul
and the state of the system are described by a state on Ol.

Axioma

For state $\omega: \Omega \to \mathbb{C}$, expectation value of measuring result for observable A. is given by $\omega(A)$

$$\omega: \mathbb{C} \longrightarrow \mathbb{C}$$
 : state

$$(A=A^*, A \in \mathcal{B}(\mathcal{H}_{a}))$$

$$A = \int a E_A(da)$$

(Borel set of \mathbb{R}
 $E_A(J) \in \mathbb{R}$

Axiom I'. (ii)
$$W(E_A(J))$$
 gives probability

that "measuring result" $\in J$.

(i). W is weak-continuous

· Axiom I) Axiom I

Expedition is given by
$$\int_{J} 2 \, \omega \left(E_{A}(da) \right) = \omega \left(\int_{J} 2 \, E_{A}(da) \right)$$
Axiom $I_{(i)} = \omega \left(E_{A}(J) \right)$