Введение

Полезность нелинейных преобразований последовательностей для улучшения И даже индуцирования сходимости была достаточно продемонстрирована Шенксом. Однако эвристическая основа преобразований Шенкса Путём некоторые недостатки. имеет соответствующей модификации, предложенной Левиным, генерируются преобразования, которые дают значительное улучшение по сравнению с преобразованиями Шенкса. Дополнительным преимуществом является то, преобразования простой что выражены В замкнутой форме без необходимости вычисления высокопорядковых детерминант, ЭТО происходит в некоторых преобразованиях Шенкса.

От Шенкса к Левину

Для последующего упоминания резюмируем подход Шенкса и преобразования, которые он получает. Шенкс начинает с последовательности

$$A = \{A_r\}, \qquad r = 0, 1, 2, \dots, \#(1)$$

и, сравнивая её с «математическим транзиентом k-го порядка», то есть, как если бы A_r была бы функцией r вида

$$A_r = B + \sum_{i=1}^k a_i q_i^r$$
 $(q_i \neq 1,0), \#(2)$

он может вычислить её «спектр амплитуд» a_i , её «отношения» q_i и её «базу» B. Здесь особое внимание уделяется вычислению базы B. Если $\{A_r\}$ является математическим транзиентом, то есть, если он удовлетворяет (2), и если каждое отношение удовлетворяет $|q_i| < 1$, то очевидно, что

$$B = \lim_{r \to \infty} A_r. \#(3)$$

Если $\{A_r\}$ является транзиентом и одно или более $|q_i| \ge 1$, A_r не сходится, и тогда Шенкс утверждает, что « A_r расходится от B», и называется «антипределом» $\{A_r\}$.

Но многие последовательности, которые возникают естественным образом при решении задач, являются математическими транзиентами, но мы можем во многих случаях сказать, что $\{A_r\}$ почти k-го порядка для некоторого k, по крайней мере для r больше некоторого фиксированного N. Тогда по аналогии c (2) мы стремимся определить локальную базу k-го порядка B_{kn} , решая 2k+1 уравнений

$$A_r = B_{kn} + \sum_{i=1}^k a_{in} q_{in}^r, \qquad n - k \le r \le n + k, \qquad n \ge k, \qquad (q_{in} \ne 1, 0) \# (4)$$

(которые центрированы вокруг A_n) для 2k+1 величин B_{kn} , a_{in} , q_{in} (i=1,2,...,k), и рассматриваем B_{kn} как метод сходимости для $\{A_r\}$. Алгебраически мы получаем для B_{kn} формулу

$$B_{kn} = \frac{\begin{vmatrix} A_{n-k} & \cdots & A_{n-1} & A_n \\ \Delta A_{n-k} & \cdots & \Delta A_{n-1} & \Delta A_n \\ \Delta A_{n-k+1} & \cdots & \Delta A_n & \Delta A_{n+1} \\ \vdots & & & \vdots \\ \Delta A_{n-k+1} & \cdots & \Delta A_{n+k-2} & \Delta A_{n+k-1} \\ 1 & \cdots & 1 & 1 \\ \Delta A_{n-k} & \cdots & \Delta A_{n-1} & \Delta A_n \\ \Delta A_{n-k+1} & \cdots & \Delta A_n & \Delta A_{n+1} \\ \vdots & \cdots & & \vdots \\ \Delta A_{n-1} & \cdots & \Delta A_{n+k-2} & \Delta A_{n+k-1} \end{vmatrix}, \#(5)$$

где

$$\Delta A_n = A_{n+1} - A_n.\#(6)$$

Тогда преобразование Шенкса определяется как

$$e_k(A)_n = e_k(A_n) = B_{kn} \qquad (n \ge k), \#(7)$$

а диагональное или e_d преобразование Шенкса как

$$e_d(A)_n = e_d(A_n) = B_{nn}.\#(8)$$

Обозначим

$$\Delta A_n = a_{n+1}, \#(9)$$

таким образом,

$$A_n = \sum_{i=0}^n a_i$$
, #(10)

если мы определим

$$a_0 = A_0$$
. #(11)

Таким образом, мы идентифицируем члены нашей последовательности $\{A_r\}$ с частичными суммами бесконечного ряда

$$\sum_{i=2}^{\infty} a_i \cdot \#(12)$$

Тогда мы можем легко проверить, что (5) для B_{kn} также получается, если мы решим для B_{kn} систему уравнений

$$A_r = B_{kn} + \sum_{i=0}^{k-1} \beta_{in} a_{r+i+1} \qquad n-k \le r \le n \qquad n \ge k. \#(13)$$

Здесь имеется только k+1 уравнений для k+1 величин B_{kn} и β_{in} с $i=0,\,1,\,2,\,\ldots,\,k-1.$

Идея Шенкса заключается в том, чтобы рассматривать A_r как функцию r, вычисленную для целых значений r, и аппроксимировать эту функцию как сумму степеней с произвольными коэффициентами, как в (2), и таким образом, получать информацию о поведении последовательности при $r \to \infty$ из конечного числа членов последовательности. В соответствии с (13), мы видим, что также можем рассматривать эту аппроксимацию функции A_r как аппроксимацию с помощью линейной комбинации функций am (как функций

от m) для $r+1 < m \le k+r$ с произвольными коэффициентами и включая константный член B_{kr} . Шенкс показывает в своей статье, что если A_r являются частичными суммами степенного ряда разложения рациональной функции от z, то преобразование e_k работает наиболее эффективным образом, так что при достаточно больших k и n $e_k(A_n)$ является точно этой рациональной функцией во всей z-плоскости. Однако функции ап очень похожи друг на друга, и кажется, неэффективным аппроксимировать функцию A_r с помощью линейной комбинации таких положений функций, как это делается в (13).

Кроме того, аппроксимация A_r с помощью линейной комбинации степеней может быть не подходящей для последовательностей, скорость сходимости или расходимости которых меньше скорости, с которой q^r стремится к нулю или к бесконечности соответственно. В качестве примеров можно упомянуть последовательности $A_r = r^{-2}$ и $A_r = r^2$.

Алгоритм Левина

Алгоритм Левина относится к классу нелинейных методов ускорения сходимости и основывается на построении преобразований, полученных в результате аппроксимации A_r с помощью других функций от r. Он имеет несколько вариаций. Рассмотрим каждую из них.

t-преобразование. По аналогии с (13) записываем k+1 уравнений для последовательности $A = \{A_r\}$:

$$A_r = T_{kn} + R_k(r)$$
 $n \le r \le n + k, \#(14)$

где $R_k(r)$ — функции от r, включающие k произвольных констант, и стремимся решить систему (14) для T_{kn} полагая, что T_{kn} должно быть аппроксимацией предела последовательности A. Если последовательность A расходится, но одномерная последовательность $\{B_r\}$, которую мы можем

сформировать из T_{kn} , стремится к пределу b, то мы будем называть b антипределом $A = \{A_r\}$ относительно соответствующего преобразования.

В случае k = 1 получаем два уравнения

$$A_r = T_{1n} + R_1(r)$$
 $r = n_1, n + 1\#(15)$

и хотим выбрать $R_1(r)$ такое, чтобы

$$T_{1n} \doteq b, \#(16)$$

то есть, чтобы

$$R_1(r) \doteqdot A_r - b. \#(17)$$

Предположим, что каким-то образом мы нашли функцию $R_1(r)$. Тогда очевидно, что желательно улучшить эту аппроксимацию, поэтому для k > 1 мы определяем

$$R_k(r) = R_1(r) \sum_{i=0}^{k-1} \gamma_{in} f_i(r), \#(18)$$

где γ_{in} – константы, которые должны быть определены из (14), в то время как $f_i(r)$ – функции от r, которые мы выберем на основе удобства и взаимной независимости. Уравнения (14) теперь принимают форму:

$$A_r = T_{kn} + R_1(r) \sum_{i=0}^{k-1} \gamma_{in} f_i(r) \qquad n \le r \le n + k. \#(19)$$

Для удобства обозначим $R_r \equiv R_1(r)$, и мы получаем T_{kn} с помощью правила Крамера:

$$T_{kn} = \frac{\begin{vmatrix} A_n & A_{n+1} & \cdots & A_{n+k} \\ R_n f_0(n) & R_{n+1} f_0(n+1) & \cdots & R_{n+k} f_0(n+k) \\ R_n f_1(n) & R_{n+1} f_1(n+1) & \cdots & R_{n+k} f_1(n+k) \\ \vdots & \vdots & & \vdots \\ R_n f_{k-1}(n) & R_{n+1} f_{k-1}(n+1) & \cdots & R_{n+k} f_{k-1}(n+k) \end{vmatrix}}{\frac{1}{R_n f_0(n)}} \cdot \#(20)$$

Детерминанты в T_{kn} не удобны для вычислений в общем случае, но для частного случая

$$f_i(r) \equiv r^{-i} \# (21)$$

и при условии, что $R_n \neq 0$ для любого n, мы можем легко выразить их через детерминанты Вандермонда, деля последовательные столбцы на $R_n, R_{n+1}, \ldots, R_{n+k}$ соответственно и разлагая по первой строке. Это элементарное вычисление даёт нам результат

$$T_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{A_{n+j}}{R_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{1}{R_{n+j}}}.\#(22)$$

Теперь нам нужно подходящее выражение для $R_r \equiv R_1(r)$, которое обладает свойством, выраженным в (17). В этом и следующих разделах мы рассмотрим несколько возможных выражений для $R_1(r)$, каждое из которых подходит для определённого класса последовательностей.

Известные преобразования, такие как

По аналогии с (13) теперь записываем k+1 уравнений для последовательности $A = \{A_r\}$

Стоит учитывать, что, следуя Шенксу, мы нумеруем члены нашей последовательности с A_0 . Однако дальше в некоторых случаях будет удобнее начинать с A_1 как с первого члена последовательности.

Известные преобразования, такие как e_k и преобразования Эйлера, часто значительно улучшают сходимость последовательностей, сформированных из частичных сумм чередующихся рядов:

$$A_n = \sum_{k=1}^n (-1)^{k+1} d_k; \qquad d_k > 0, \qquad n = 1, 2, \dots \#(23)$$

Соответственно, мы сначала рассмотрим оценку для $R_1(r)$, которая подходит для таких последовательностей. Если мы предполагаем, что d_n является достаточно гладкой функцией от n, и что

$$\lim_{n\to\infty} A_n = d\#(24)$$

(когда последовательность расходится, d – антипредел), то очевидно, что

$$A_r - d = O(d_r) \# (25)$$

и более точно

$$A_r - d = \frac{1}{2}(-1)^{r+1}d_r = \frac{1}{2}\Delta A_{r-1}\#(26)$$

В соответствии с (19) мы видим, что достаточно выбрать $R_1(r)$ с точностью до константного множителя, и поэтому мы берём

$$R_1(r) = \Delta A_{r-1} = a_r. \#(27)$$

Кроме того, $R_1(r)=a_r$ является хорошей аппроксимацией для последовательности, которая расходится очень быстро, так как тогда A_r имеет порядок величины $\Delta A_{r-1}=a_r$, и если A имеет антипредел b относительно разрабатываемого преобразования, то для больших r

$$A_r - b \doteqdot A_r \doteqdot a_r, \#(28)$$

что именно то, что мы требуем от $R_1(r)$ (см. (17)). Соответственно, принимая $R_1(r) = a_r$, мы можем ожидать получения из (22) хороших аппроксимаций к пределу или антипределу последовательности, сгенерированной частичными суммами чередующегося ряда, и к антипределу очень быстро сходящегося ряда.

При условии, что $a_r \neq 0$ для всех $r \geq 1$, мы подставляем $R_r \equiv R_1(r) = a_r$ в (22) и получаем

$$T_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{A_{n+j}}{a_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{1}{a_{n+j}}}.\#(29)$$

Мы видим из (29), что T_{kn} является взвешенным средним последовательности и использует $A_n, A_{n+1}, \dots, A_{n+k}$, а сами веса зависят от $A_{n-1}, A_{n_1}, \dots, A_{n+k}$. Таким образом, преобразование, заданное двумерной таблицей T_{kn} , является нелинейным.

Теперь определим t_k преобразование аналогично e_k преобразованию Шенкса:

$$t_k(A)_n = T_{kn}.\#(30)$$

Мы также определяем преобразование t_d

$$t_d(A)_n = T_{n1}. \#(31)$$

Это определение не соответствует диагональному преобразованию e_d Шенкса, но t_d и e_d имеют общее — для последовательности $A=\{A_r\}$, начиная с A_I , мы ассоциируем последовательность $A'=\{A'_r\}$ согласно

$$A'_{i} = A_{i+1}$$
 $i = 0,1,2,...,\#(32)$

так что A' начинается с A'_0 , тогда как $t_d(A)_{2n}$, так и $e'_d(A)_n$ зависят лишь от $A_1, A_2, \ldots, A_{2n+1}$. Мы предполагаем обозначить это слегка модифицированное диагональное преобразование Шенкса (лишь в индексации) как e'_d :

$$e'_d(A)_{n+1} = e_d(A')_n. \#(33)$$

Таким образом, мы можем сказать, что $t_d(A)_{2n}$ и $e_d'(A)_n$ оба зависят от первых 2n+ элементов $A_1,A_2,...,A_{2n+1}$ последовательности A. Также в ряде случаев e_d' и t_d оказываются наиболее эффективными преобразованиями из e_k и t_k соответственно.

Важно отметить принципиальную разницу между t и e преобразованиями. Обращаясь к (5) и (29), мы видим, что способ нумерации членов последовательности влияет на t, но не на e преобразования, так как индекс n появляется (то есть не только как индекс) в формуле для T_{kn} , но не в формуле для B_{kn} . Таким образом, t_k на самом деле представляет собой целую последовательность преобразований в зависимости от того, как мы нумеруем первый член нашей последовательности. Например, можно нумеровать члены последовательностей с A_I , но нетрудно придумать примеры (например, частичные суммы экспоненциального ряда e^{-x} для больших положительных x), где другая нумерация даёт лучшие результаты.

Свойства t_k и t_d преобразований. Преобразования t_k , t_d , или в общем, любое преобразование t, которое мы можем сформировать их T_{kn} (29), не являются линейными, но, как и с преобразованиями Шенкса, есть два простых, но важных свойства:

$$t(A + C) = t(A) + c$$
 $n > 1#(34)$
 $t(\gamma \cdot A) = \gamma \cdot t(A), #(35)$

где C используется для обозначения последовательности

$$C = \{C_n\}; \qquad C_n = c, \#(36)$$

содержащей каждый член, равный одной и той же константе c. Доказательство этого элементарно.

Преобразования t_k , t_d не являются регулярными, то есть существуют сходящиеся последовательности, для которых t_k и t_d приводят к последовательностям, которые расходятся или имеют другой предел, но если A является последовательностью частичных сумм сходящегося ряда, то $t_k(A)$ и $t_d(A)$ сходятся к пределу A. Это можно показать, записав преобразование t_k , например, в форме метода суммирования γ_{ij} : $T_k(A)_1 = \sum_{j=1}^{\infty} \gamma_{ij} A_j$, где $\gamma_{ij} = \gamma_{ij}(A)$. Тогда для фиксированного чередующегося ряда A мы можем использовать теорему Сильвермана-Тёплица, чтобы показать, что $\gamma_{ij}(A)$ является регулярным методом суммирования, который, в частности, суммирует A к его пределу.

Покажем, в какой степени улучшение сходимости — общее правило. Укажем улучшение, достигнутое t_1 , t_2 при применении к определённому классу чередующихся рядов. В первую очередь, мы можем отметить из выражений для t_k и e_k , что $t_1 = e_1$. Кроме того, для e_1 Шенкс доказал следующий результат:

Если f(m), g(m) — полиномы степеней M_1 , M_2 соответственно, и g(m) не обращается в ноль при m — положительном целом числе или нуле, и если

$$A_n = \sum_{m=0}^{n} (-1)^m \frac{f(m)}{g(m)}, \#(37)$$

ТО

$$\Delta e_1(A)_n = \Delta A_n \left[\frac{M_1 - M_2}{4n^2} + O\left(\frac{1}{n^3}\right) \right] . \#(38)$$

Это даёт меру улучшения сходимости, достигнутого $e_1 = t_1$, при применении к последовательности (37). Теперь мы хотим установить результат этого типа для t_2 .

Предположим теперь, что $A = \{A_n\}$ является последовательностью

$$A_n = \sum_{m=1}^{n} \frac{x^m}{h(m)}, \#(39)$$

когда $x \neq 1$ и h(m) имеет разложение вида

$$h(m) = m^k + O(m^{k-1}) \# (40)$$

и $h(m) \neq 0$ для m — положительного целого числа. Тогда нетрудно по вычислению, аналогичному тому, что у Шенкса, показать, что

$$\Delta t_2(A)_n = \Delta A_n \cdot O\left(\frac{1}{n^k}\right). \#(41)$$

Легко показать, что, если A сходится, $t_2(A)$ сходится к тому же пределу, и (41) показывает улучшение, достигнутое в скорости сходимости.

и-преобразование. Рассмотрим последовательность

$$A_n = \sum_{m=1}^n \frac{1}{m_2}, \#(42)$$

для которой

$$\lim_{n\to\infty} A_n = \frac{\pi^2}{6} = 1.64493046 \dots \#(43)$$

Как объяснялось раннее, мы не ожидаем, что e_k' или t_d будут особенно эффективны для этого ряда, и вычисления это подтверждают. Однако простым изменением T_{kn} мы можем получить преобразование, которое даёт

очень хорошие результаты для таких медленно сходящихся монотонных рядов.

Рассмотрим ряд

$$\sum_{n=1}^{\infty} a_n \qquad a_n > 0, \#(44)$$

когда a_n имеет асимптотическое разложение

$$a_n = n^{-k} + \gamma n^{-k-1} + O(n^{-k-2}), \#(45)$$

и k>1, так что ряд сходится. Мы пытаемся получить выражение для $R_1(r)$, которое подходит для такого рода. Запишем

$$A_r = \sum_{n=1}^r a_n$$
, #(46)

и тогда в соответствии с (17) нам нужно

$$R_1(r) \doteqdot A_r - \lim_{n \to \infty} A_n = \sum_{n=r+1}^{\infty} a_n \cdot \#(47)$$

Мы можем легко оценить этот остаток, рассматривая выражение (45) для a_n как функцию от n, определённую для всех положительных действительных n, и сравнивая

$$\sum_{n=r+1}^{\infty} a_n$$

с интегралом

$$\int_{r}^{\infty} a_n \, dn.$$

Таким образом, мы находим

$$R_1(r)
displane \frac{r^{-k} + 1}{-k + 1} + O(r^{-k}) = \frac{ra_r}{1 - k} \left[1 + O\left(\frac{1}{r}\right) \right], \#(48)$$

и так как достаточно определить $R_1(r)$ с точностью до константного множителя, то целесообразно взять

$$R_1(r) = ra_r \cdot \#(49)$$

Мы подставляем это в (22) и получаем величину U_{kn} , заданную

$$U_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-2} \frac{A_{n+j}}{a_{n+j}}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-2} \frac{1}{a_{n+j}}}. \#(50)$$

Здесь стоит отметить, что это уравнение для U_{kn} очень похоже на (29) для T_{kn} и может быть получено из (19), взяв $R_1(r)=a_r$ как прежде, но выбрав $f_i(r)=r^{1-i}$ вместо r^{-i} как в (21).

Так же, как с помощью T_{kn} мы определили t-преобразования, мы теперь определяем u-преобразования с помощью U_{kn} . В особенности, мы определяем

$$u_k(A)_n = U_{kn}, \#(51)$$

$$u_n(A)_n = U_{n1}.\#(52)$$

Как для *t*-преобразований, мы наблюдаем, что *u*-преобразования удовлетворяют условиям (34) и (35), и можем показать, что последовательности частичных сумм сходящихся чередующихся рядов преобразуются в последовательности, сходящиеся к тому же пределу, и кажется, что для таких последовательностей *t* и *u* оказывают примерно одинаковую степень улучшения скорости сходимости. Однако для медленно сходящихся монотонных последовательностей *u*-преобразования более эффективны.

v-преобразования. v-преобразование, которое мы сейчас представим, является примером использования известных преобразований для получения более эффективных преобразований. Начнём с преобразования $t_1=e_1$, применённого к любой последовательности $A=(A_n)$.

$$e_1(A)_n = \frac{A_{n-1}a_{n+1} - A_na_n}{a_{n+1} - a_n} = A_n + \frac{a_na_{n+1}}{a_n - a_{n+1}}. \#(53)$$

Предполагая, что $e_1(A)_n$ является аппроксимацией предела или антипредела A, мы можем использовать (17), чтобы получить выражение для $R_1(r)$:

$$R_1(r) \doteqdot A_r - b \doteqdot A_r - e_1(A)_r \doteqdot \frac{a_r a_{r+1}}{a_{r+1} - a_r}. \#(54)$$

Подстановка этого значения для $R_1(r)$ в (22) даёт

$$V_{kn} = \frac{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{a_{n+j-1} - a_{n+j}}{a_{n+j} a_{n+j+1}} A_{n+j}}{\sum_{j=0}^{k} (-1)^{j} {k \choose j} \left(\frac{n+j}{n+k}\right)^{k-1} \frac{a_{n+j-1} - a_{n+j}}{a_{n+j} a_{n+j+1}}}, \#(55)$$

и используя V_{kn} , мы определяем v-преобразования

$$v_k(A)_n = V_{kn}, \#(56)$$

$$v_n(A)_n = V_{n1}.\#(57)$$

Также *v*-преобразования имеют свойства (34) и (35), и они регулярны для последовательностей, сгенерированных как частичные суммы чередующихся рядов. *v*-преобразования так же хороши, как t- или u-, разница же заключается в том, что они хороши для обоих типов рядов.

Заключение

Полученные преобразования могут быть применены к вычислению бесконечных интегралов от осциллирующих функций путём интегрирования между нулями функции, а затем преобразования полученного чередующегося ряда. Также, как другое применение, можно упомянуть улучшение простой численной интеграции.

Во многих случаях последовательность будет монотонной, и тогда обычные методы для ускорения сходимости не так эффективны. Но тогда u-или v-преобразование должно быть подходящим.

Преобразования t-, u-, v- могут быть использованы для генерации рациональных аппроксимаций функций f(z), имеющих формальные разложения в степенные ряды. При определённых условиях эти аппроксимации превосходят сопоставимые члены таблицы Паде функции f(z).

Список литературы

- 1. Scalar Levin-type sequence transformations // Homeier H.H.H. 2018. P. 1-58.
- 2. On remainder estimates for Levin-type sequence transformations // Computer Physics Communications // Homeier H.H.H., Weniger E.J. 1995. P. 1-10.
- 3. Mathematical properties of a new Levin-type sequence transformation // Weniger E. J. 2004. P. 1-45.
- 4. Non-Linear Transformations of Divergent and Slowly Convergent Sequences // Shanks D. C. 1955. P. 1-42.
- 5. Development of non-linear transformations for improving convergence of sequences // International Journal of Computer Mathematics // Levin D. A. 1972. P. 371-388.