PC 2 (Chaînes de Markov : irréductibilité, loi invariante, ...)

Exercice 1 (ÉTATS ET LOIS INVARIANTES). Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov d'espace d'états $E = \{1, 2, 3, 4, 5\}$ et de matrice de transition

$$P = \begin{pmatrix} 1/2 & 0 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{pmatrix}.$$

Trouver les classes irréductibles et toutes les lois invariantes.

Exercice 2 (ÉQUATION AUX DÉRIVÉES PARTIELLES DISCRÉTISÉE).

L'objet de cet exercice est d'étudier par une méthode probabiliste une version discrète de l'équation suivante. Pour $\gamma \geq 0$ fixé, on cherche $f: [-1,1] \times \mathbb{R}_+ \to \mathbb{R}$ solution de

$$\forall x \in]-1, 1[, \forall t \ge 0, \qquad \partial_t f(x, t) = \frac{1}{2} \partial_x^2 f(x, t) - \gamma f(x, t), \tag{1}$$

avec conditions au bord f(-1,t) = a et f(1,t) = b et la condition initiale $f(\cdot,0) = f_0(\cdot)$, avec f_0 une fonction donnée dans $C^2([-1,1])$ vérifiant les conditions au bord $f_0(-1) = a$ et $f_0(1) = b$.

Version discrète : soit $\alpha \in [0,1]$ et $L \in \mathbb{N}$. On considère la chaîne de Markov $(X_n)_{n \in \mathbb{N}}$ sur $\{-L,\ldots,L\} \cup \{\dagger\}$ avec matrice de transition P de seuls termes non nuls

$$\forall i \in \{-L+1, \dots, L-1\}, \qquad P(i,i-1) = P(i,i+1) = \frac{1-\alpha}{2}, \quad P(i,\dagger) = \alpha,$$

$$P(-L,-L) = 1, \qquad P(L,L) = 1, \qquad P(\dagger,\dagger) = 1.$$

On pose $T = \inf\{n \geq 0 : X_n = \dagger\}$. Soit ϕ sur $\{-L, \ldots, L\}$ une fonction connue telle que $\phi(-L) = a$ et $\phi(L) = b$.

1. Pour tout $n \in \mathbb{N}$ et $i \in \{-L, \ldots, L\}$ on pose $u_n(i) = \mathbb{E}_i \left[\phi(X_n) \mathbb{1}_{\{n < T\}}\right] = \mathbb{E}\left[\phi(X_n) \mathbb{1}_{\{n < T\}} \mid X_0 = i\right]$. Montrer que si $i \in \{-L + 1, \ldots, L - 1\}$ alors

$$u_{n+1}(i) - u_n(i) = \frac{1-\alpha}{2} \left(u_n(i+1) + u_n(i-1) - 2u_n(i) \right) - \alpha u_n(i),$$
 (2)

tandis que $u_n(-L) = a$ et $u_n(L) = b$, et $u_0 = \phi$ sur $\{-L, \dots, L\}$.

2. On prend $\alpha = 0$. Pour $\beta \geq 0$ et $n \in \mathbb{N}$ et $i \in \{-L, \ldots, L\}$ on pose

$$v_n(i) = \mathbb{E}_i \left[\phi(X_n) \exp\left(-\beta \sum_{k=0}^{n-1} \mathbb{1}_{\{X_k \notin \{-L, L\}\}}\right) \right]$$

où une somme vide est nulle. Donner l'équation suivie par $v_n(i)$. Commenter.

Exercice 3 (TEMPS D'ATTEINTE).

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov homogène sur un espace d'états dénombrable E et soit $A\subset E$ un sous-ensemble non vide. On notera $\tau=\inf\{n\geq 0: X_n\in A\}$ le temps d'atteinte de A. On suppose qu'il existe $m\geq 1$ et $\alpha>0$ tels que

$$\forall x \in A^c, \qquad \mathbb{P}_x(X_m \in A) = \mathbb{P}(X_m \in A \mid X_0 = x) \ge \alpha.$$

1. Montrer que pour tout $k \in \mathbb{N}$ et pour tout $x \in A^c$,

$$\mathbb{P}_x(\tau > km) \le (1 - \alpha)^k.$$

2. Montrer que pour tout $u \in \mathbb{N}$,

$$\mathbb{P}_x(\tau > u) \le (1 - \alpha)^{-1} (1 - \alpha)^{u/m}.$$

En déduire que $\mathbb{E}_x[\tau] < +\infty$, et donc que $\tau < +\infty$ presque sûrement.

Exercice 4 (LANCERS DE PIÈCES : SUITES DE 1 CONSÉCUTIFS). On lance une pièce truquée : les résultats des lancers sont représentés par une suite $(Y_n)_{n\in\mathbb{N}^*}$ de v.a. i.i.d. de loi de Bernoulli de paramètre p. On définit $(N_n)_{n\in\mathbb{N}}$ par $N_0=0$ et, pour $n\geq 1$,

$$N_n = \begin{cases} 0 & \text{si } Y_n = 0, \\ \max\{k \in \{1, \dots, n\} : Y_{n-k+1} = Y_{n-k+2} = \dots = Y_n = 1\} & \text{si } Y_n = 1. \end{cases}$$

Alors N_n est la taille de la suite de 1 consécutifs qui se termine à l'instant n inclus.

- 1. Montrer que $(N_n)_{n\in\mathbb{N}}$ est une chaîne de Markov et donner sa matrice de transition P.
- 2. Pour $k \ge 0$ on pose

$$T_k = \inf\{n \ge 0 : N_n = k\}, \qquad M_{k,n} = N_{T_k \land n} = \begin{cases} N_n & \text{si } n \le T_k, \\ k & \text{si } n > T_k. \end{cases}$$

- (a) Montrer que $(M_{k,n})_{n\in\mathbb{N}}$ est une chaîne de Markov et donner sa matrice Q_k .
- (b) Déterminer $\mathbb{P}(M_{k,n}=j)$ en fonction de Q_k pour $0 \leq j \leq k$.

Pour aller plus loin : le 1/4h python Calculs numériques liés à la question 2

- 3. Soit $L_n = \max_{0 \le i \le n} N_i$ la taille de la plus longue suite de 1 consécutifs obtenue avant l'instant $n \in \mathbb{N}$ (inclus).
 - (a) Exprimer la loi de L_n à l'aide de ce qui précède.
 - (b) Justifier que $(L_n)_{n\in\mathbb{N}}$ n'est pas une chaîne de Markov.