Why your machine learning code is slow

Designing algorithms for modern hardware (disclaimer - this isn't a deep learning talk)

Alexander Smola, Amazon AWS <u>alex@smola.org</u>

Most important slide - free AWS credits

- Register at AWS Educate for credit http://www.awseducate.com
- Use PEK_DEEPLEARNING for extra \$25 credits
- Use the AWS account option
 Do not use the capped AWS Educate Starter Account.
- To apply for a position email CV/GitHub/short intro to aws-ai-event-recruiting@amazon.com

Thanks

- Amazon
 Mu Li, Anima Anandkumar, Vishy Vishwanathan
- CMU
 Yu-Xiang Wang (+Amazon), Manzil Zaheer (+Amazon),
 Dave Andersen, Zichao Yang, Ziqi Liu
- Google Amr Ahmed, Vanja Josifovski, Steffen Rendle, Sujith Ravi

Outline

- Memory
 Cache, RAM, SSD, Harddisk, Network
- Computation
 vectorization, multicore
- MxNet language, parallelization, AWS Templates

Memory

Numbers you should know

	Manoseconds (ns)	Microseconds (us)	Miliseconds (msec)	If L1 access is 1 second	
L1 cache reference	0.5			1 sec	
L2 cache reforence	7			14 secs	
DRAM access	200			6 mins 40 secs	
NVDIMM-N	5,000	5		2 hours 46 mins 40 secs	
NVMe PCIs SSD write	30,000	30		16 hours 40 mins	
Mangstor NX NVMoF array write	30,000	30		16 hours 40 mins	
Zelor NVMe-F SSD array read	30,660	30		16 hours 40 mine	
DSSD DS NVMe-F array	100000000000000000000000000000000000000	488		55 hours 33 mins 20 secs	
Mongstor NX NVMe= array read	ia	norant (code ca	61 hours 6 mins 40 secs	
NVMe PCIe SSD read			CIT INCIDENCE THE IN THE SHEET		
Zefor NVVe-F SSD array write	· .	ill perfo	61 hours 6 mins 40 sees		
Random 4K read from SSD		iii perre		3 days, 11 nours, 20 mins	
Sequential Food 1MB from DRAM	250,000	250		5 days, 10 hours, 50 mins, 20 secs	
Round trip i datacenter	500,000	500	0.5	11 days, 13 hours, 46 mirs, 40 secs	
Sequential read 1MB from GSD	1,000,000	1,000	1	23 days, 3 hours, 33 mms, 20 secs	
Dak seek	10,000,000	10,000	10	231 days, 11 hours, 33 mins, 20 sees	
Sequential read 1MB from disk	20,000,000	20,000	20	1 year, 97 days, 23 hours, 6 mire, 40 secs	
DAS disk access	100,000,000	100,000	100	5 years, 119 days, 19 hours , 33 mirs, 20 sees	
Send packet CA->Netherland->CA	150,000,000	150,000	150	9 years, 185 days, 5 hours, 20 mins, 0 secs	
SAN array access	300,000,000	200,000	300	19 years, 5 days, 10 hours, 40 mins, C secs	

Use Case: Recommender Systems

- Users u, movies m (or projects)
- Function class

$$r_{um} = \langle v_u, w_m \rangle + b_u + b_m$$

Loss function for recommendation (Yelp, Netflix)

$$\sum_{u \sim m} \left(\langle v_u, w_m \rangle + b_u + b_m - y_{um} \right)^2$$

Use Case: Recommender Systems

Regularized Objective

$$\sum_{u \sim m} (\langle v_u, w_m \rangle + b_u + b_m + b_0 - r_{um})^2 + \frac{\lambda}{2} \left[||U||_{\text{Frob}}^2 + ||V||_{\text{Frob}}^2 \right]$$

Update operations

$$v_u \leftarrow (1 - \eta_t \lambda) v_u - \eta_t w_m \left(\langle v_u, w_m \rangle + b_u + b_m + b_0 - r_{um} \right)$$

$$w_m \leftarrow (1 - \eta_t \lambda) w_m - \eta_t v_u \left(\langle v_u, w_m \rangle + b_u + b_m + b_0 - r_{um} \right)$$

Very simple SGD algorithm (random pairs)

This should be cheap ...

memory subsystem

Not so cheap ...

Netflix contest

- 100M samples, 2048 dimensions, 30 steps
- 100M × 2048 × 30 × 4 × 8byte burst reads
- 100M × 30 × 4 random reads

Runtime (1h 15 min)

- 3300s for burst reads (@60GB/s)
- 1200s for random reads (@10ns/read)

Better engineering gets 9.5 min. How?

Liu, Wang, Smola, RecSys 2015

Power law in Collaborative Filtering

Key Ideas

- Stratify ratings by users

 (only 1 cache miss / read per user / out of core)
- Keep frequent movies in cache (stratify by blocks of movie popularity)
- Avoid false sharing between sockets
 (key cached in the wrong CPU causes miss)

K	SC-S	SGD	GraphChi	
	L1 Cache	L3 Cache	L1 Cache	L3 Cache
16	2.84%	0.43%	12.77%	2.21%
256	2.85%	0.50%	12.89%	2.34%
2048	3.3%	1.7%	15%	9.8%

Key Ideas

K	SC-S	SGD	GraphChi	
	L1 Cache	L3 Cache	L1 Cache	L3 Cache
16	2.84%	0.43%	12.77%	2.21%
256	2.85%	0.50%	12.89%	2.34%
2048	3.3%	1.7%	15%	9.8%

Key Ideas

K	SC-S	SGD	GraphChi	
	L1 Cache	L3 Cache	L1 Cache	L3 Cache
16	2.84%	0.43%	12.77%	2.21%
256	2.85%	0.50%	12.89%	2.34%
2048	3.3%	1.7%	15%	9.8%

Speed (c4.8xlarge)

Netflix - 100M, 15 iterations

Yahoo - 250M, 30 iterations

Convergence

Use Case: SVM Optimization

- LibLinear / SMO style optimization
 - Read data from disk
 - Update parameters w in memory (soft margin, logistic)
- CPU is much faster than HDD

Use Case: SVM Optimization

Use Case: SVM Optimization

trainer - read data
repeatedly from RAM
update model

200x bandwidth reader - get data from disk and write to memory

10MB 1ns 1TB/s

10GB 100ns 50GB/s

5TB 10ms 100MB/s

Technical challenge

 If we just reuse observations we might overweight some data relative to the rest

$$\sum_{i} l(x_i, y_i, f(x_i)) \longrightarrow \sum_{j} \sum_{i \in S_j} l(x_i, y_i, f(x_i))$$

- Primal descent impossible (without bookkeeping)
- Dual ascent is accurate (leaves objective unchanged)

Speed (DNA dataset, different C)

Effect of caching

Matsushima, Vishwanathan, Smola, KDD'12

5th Gen Intel® Core™ Processor Die Map Intel® HD Graphics 6000 or Intel® Iris™ Graphics 6100

Dual Core Die Shown Above

Transistor Count: 1.9 Billion

4th Gen Core Processor (U series): 1.3B

** Cache is shared across both cores and processor graphics

Die Size: 133 mm²

4th Gen Core Processor (U series): 181mm2

Vectorization

Per Core (up to 18 per chip - Xeon E5)

- Multiple integer and FP units (each one needs to be fed with data)
- Naive calculation (i7-5960X)
 8 × 3 GHz = 24 GFlops but benchmark has 183 GFlops

AVX Instructions (256 bit or 512 bit wide on Xeon)

- Works on arrays of numbers (8 floats = 256 bit)
- In one clock cycle
- Improved calculation (i7-5960X)
 8 × 3 × 8 GHz = 192 GFlops (much better)

BLAS/LAPACK/EISPACK/whateverPACK libraries highly optimized - don't write your own code needlessly

Use Case: SimHash

Basic Idea

- Goemans & Williamson, 1995
 Use this for an SDP relaxation of graph cut
- Charikar, 2003
 Use this for hashing angles between vectors

Use Case: SimHash

Basic Idea

Hash map is very memory efficient (n bits)

$$x \to h(x) = (\operatorname{sgn} \langle x, w_1 \rangle, \dots, \operatorname{sgn} \langle x, w_n \rangle)$$

Compute with matrix-vector product

Inner product estimation

Cosine similarity

- Similarity measure for many problems (search, retrieval, recommendation)
- Very expensive if we need to compute it many times for high dimensional data
- Good enough approximation for first step

Clustering

- Text clustering via exponential family distributions
- Discrete distribution (approximate with SimHash)
 Once per cluster is expensive for 10k clusters

Results

No Locks for Multicore

A boring problem (worth \$100B)

Logistic Regression

Linear function class

$$f(x) = \langle w, x \rangle$$

Logistic regression

$$p(y|x, w) = \frac{1}{1 + \exp(-y\langle w, x \rangle)}$$

Optimization Problem

$$\underset{w}{\text{minimize}} \sum_{i=1}^{m} \log(1 + \exp(-y_i \langle w, x_i \rangle)) + \lambda \|w\|_1$$

Small network
 100M users, 10 days = 1B examples, 1 big server

sparse models for advertising

Stochastic gradient descent

Compute gradient on data

$$g_i = \partial_w l(x_i, y_i, w) \text{ e.g. } \partial_w \log (1 + \exp(-y_i \langle x_i, w \rangle))$$

Update parameter with gradient (for I₂ penalty)

$$w \leftarrow (1 - \lambda \eta)w - \eta g_i$$

Update parameter with prox operator (I₁ penalty)

$$w \leftarrow \underset{w}{\operatorname{argmin}} \|w\|_{1} + \frac{\gamma}{2} \|w - (w_{i} - \eta g_{i})\|^{2}$$

- This is sequential. Most cores will be idle
- But most updates are sparse. Discard locks! (Hogwild - Recht, Re, Wright, 2014)

Dataflow

Why yet another deep networks tool?

- Frugality & resource efficiency Engineered for cheap GPUs with smaller memory, slow networks
- Speed
 - Linear scaling with #machines and #GPUs
 - High efficiency on single machine, too (C++ backend)
- Simplicity Mix declarative and imperative code

frontend

backend

single implementation of backend system and common operators

performance guarantee regardless which frontend language is used

Imperative Programs


```
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
print c
d = c + 1
    Easy to tweak
    with python
    codes
```

Pro

- Straightforward and flexible.
- Take advantage of language native features (loop, condition, debugger)

Con

Hard to optimize

Declarative Programs

Pro

- More chances for optimization
- Cross different languages

Con

Less flexible

C can share memory with D, because C is deleted later

Imperative vs. Declarative for Deep Learning

Computational Graph of the Deep Architecture

Needs heavy optimization, fits **declarative** programs

Updates and Interactions with the graph

- Iteration loops
- Parameter update

$$w \leftarrow w - \eta \partial_w f(w)$$

- · Beam search
- Feature extraction ...

Needs mutation and more language native features, good for imperative programs amazo

MXNet: Mix the Flavors Together

```
Import mxnet as mx
a = mx.nd.zeros((100, 50))
b = mx.nd.ones((100, 50))
c = a + b
c += 1
print(c)
```

texec.backward()

texec.forward(data=c)

import mxnet as mx

Imperative NDArray can be set as input to the graph

Mixed API for Quick Extensions

- Runtime switching between different graphs depending on input
- · Useful for sequence modeling and image size reshaping
- Use of imperative code in Python, 10 lines of additional Python code

3D Image Construction

https://github.com/piiswrong/deep3d

What We Heard from Users

Programming Languages:

- Python is nice, but I like R/Julia/ Matlab more
- I want Scala to work with the Spark pipeline
- I need C++ interface to run on embedded systems
- I prefer Javascript to run on user browsers

Frameworks:

- I used Torch for 7 years
- All my codes are in Caffe
- I like Keras
- I started deep learning with Tensorflow
- I only used Numpy before, how should I start?

Multiple Programming Languages

frontend

backend

single implementation of backend system and common operators

performance guarantee regardless of which frontend language is used

Bringing Caffe to MXNet

Caffe is widely used in computer vision

Call Caffe Operators in MXNet

Bringing Torch to MXNet

Torch is a popular Lua framework for both scientific computing and deep learning

Tensor Computation

```
import mxnet as mx
x = mx.th.randn(2, 2, ctx=mx.gpu(0))
y = mx.th.abs(x)
print y.asnumpy()
```

Modules (Layers)

```
import mxnet as mx
data = mx.symbol.Variable('data')
fc = mx.symbol.TorchModule(data_0=data, lua_string='nn.Linear(784, 128)',...
mlp = mx.symbol.TorchModule(data_0=fc, lua_string='nn.LogSoftMax()',...
```

MinPy: NumPy in MxNet

Printing & Debugging

```
1 import tensorflow as tf
2 x = tf.zeros((2, 3))
3 with tf.control_dependencies([x]):
4    tf.Print(x, [x])
5 sess = ... # (reate session.
6 sess.run([x], ...)
1 import minpy.numpy as np
2 x = np.zeros((2, 3))
3 print x
```

Tensorflow Program

MinPy Program

Data-dependent execution (with AutoGrad)

... Keras coming very soon ...

Writing Parallel Programs is Painful

Dependency graph for 2-layer neural networks with 2 GPUs

Each forward-backward-update involves O(num_layer), which is often 100—1,000, tensor computations and communications

Auto Parallelization

Write **serial** programs

```
import mxnet as mx
A = mx.nd.ones((2,2)) *2
C = A + 2
B = A + 1
D = B * C
```

Run in parallel

Data Parallelism

- 1. Read a data partition
- 2. Pull the parameters
- 3. Compute the gradient
- 4. Push the gradient
- 5. Update the parameters

Distributed Experiments

- Google Inception v3
- Increasing machines from 1 to 47
- 2x faster than
 TensorFlow if using more than 10 machines

Distributed Training Speedup

- Cloud formation with Deep Learning AMI
- 16x P2.16xlarge
- Mounted on EFS
- ImageNet1.2M images1K classes
- 152-layer ResNet
 5.4d on 4x K80s
 (1.2h per epoch)
 0.22 top-1 error

Scaling on p2.16xlarge

Distributed Training Convergence

3. AMIs and Cloud Formation Templates

- Amazon Machine Images (AMI)
- Deep Learning Frameworks
- Cloud Formation Templates

Amazon Machine Image for Deep Learning

bit.ly/deepami bit.ly/deepubuntu

- Tool for data scientists and developers
- Setting up a DL system takes (install) time & skill
 - Keep packages up to date and compiled (MXNet, TensorFlow, Caffe, Torch, Theano, Keras)
 - Anaconda, Jupyter, Python 2 and 3
 - NVIDIA Drivers for G2 and P2 instances
 - Intel MKL Drivers for all other instances (C4, M4, ...)

Getting started

This is beta version of the Deep Learning AMI for Amazon Linux.

```
The README file for the AMI →→→→→→→→→→→ /home/ec2-user/src/README.md
Tests for deep learning frameworks →→→→→→→→ /home/ec2-user/src/bin
```

```
7 package(s) needed for security, out of 75 available
Run "sudo yum update" to apply all updates.
Amazon Linux version 2016.09 is available.
[ec2-user@ip-172-31-55-21 ~]$ cd src/
[ec2-user@ip-172-31-55-21 src]$ ls
anaconda2 bazel caffe cntk keras mxnet OpenBLAS
anaconda3 bin caffe3 demos logs Nvidia Cloud EULA.pdf opency
```


AWS CloudFormation Template for Deep Learning

github.com/awslabs/deeplearning-cfn

AWS CloudFormation Components

- VPC in the customer account.
- The requested number of **worker instances** in an Auto Scaling group within the VPC. Workers are launched in a **private subnet**.
- Master instance in a separate Auto Scaling group that acts as a proxy to enable connectivity to the cluster via SSH.
- Two security groups that open ports on the **private subnet** for communication between the master and workers.
- IAM role that allows users to access and query Auto Scaling groups and the private IP addresses of the EC2 instances.
- NAT gateway used by instances within the VPC to talk to the outside.

Summary

- Memory
 - Recommender Systems
 - SVM optimization
- Computation
 - Hashing and samplers
 - Lock free optimization
- MxNet language, parallelization, AWS Templates

We are hiring!

