Bayesian networks (Chapter 14)

Instructor: Qiang Yu

Why Joint Distributions are Important

- Joint distributions gives P(X1...Xn)
- Can calculate probability of any event, then be used for:
 - Classification/Diagnosis... P(X1|X2...Xn)
 - Co-occurrence...P(X1X2)

Specifying probability distributions

- Specifying a probability for every atomic event is impractical
- $P(X_1, ..., X_n)$ would need to be specified for **every** combination $x_1, ..., x_n$ of values for $X_1, ..., X_n$
 - If there are k possible values per variable...
 - ... we need to specify kⁿ 1 probabilities!
- We have already seen it can be easier to specify probability distributions by using (conditional) independence
- Bayesian networks allow us
 - to specify any distribution,
 - to specify such distributions concisely if there is (conditional) independence, in a natural way

Conditional Independence

- We say that two variables, A and B, are conditionally independent given C if:
 - -P(A|BC) = P(A|C)
 - P(AB|C) = P(A|C)P(B|C)
- How does this help?
- We store only a conditional probability table (CPT) of each variable given its parents

What is Bayes Net?

- A directed acyclic graph (DAG)
- Given parents, each variable is independent of non-descendants
- Joint probability decomposes:

$$P(x_1..x_n) = \prod_i P(x_i | parents(x_i))$$

- For each node X_i, store P(X_i | parents(X_i))
- Call this a Conditional Probability Table (CPT)
- CPT size is exponential in number of parents

Rigged casino example

A general approach to specifying probability distributions

- Say the variables are X₁, ..., X_n
- $P(X_1, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)...P(X_n|X_1, ..., X_{n-1})$
- or:
- $P(X_1, ..., X_n) = P(X_n)P(X_{n-1}|X_n)P(X_{n-2}|X_n, X_{n-1})...P(X_1|X_n, ..., X_2)$
- Can specify every component
 - For every combination of values for the variables on the right of |,
 specify the probability over the values for the variable on the left
- If every variable can take k values,
- P(X_i|X₁, ..., X_{i-1}) requires (k-1)kⁱ⁻¹ values
- $\Sigma_{i=\{1,...,n\}}(k-1)k^{i-1} = \Sigma_{i=\{1,...,n\}}k^{i}-k^{i-1} = k^{n}-1$
- Same as specifying probabilities of all atomic events of course, because we can specify any distribution!

Graphically representing influences

$$P(X_1, ..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)...P(X_n|X_1, ..., X_{n-1})$$

Conditional independence to the rescue!

- Problem: $P(X_i|X_1, ..., X_{i-1})$ requires us to specify too many values
- Suppose X₁, ..., X_{i-1} partition into two subsets, S and T, so that X_i is conditionally independent from T given S
- $P(X_i|X_1, ..., X_{i-1}) = P(X_i|S, T) = P(X_i|S)$
- Requires only (k-1)k^{|S|} values instead of (k-1)kⁱ⁻¹ values

Graphically representing influences

... if X₄ is conditionally independent from X₂ given X₁ and X₃

Rain and sprinklers example

sprinklers is independent of raining, so no edge between them

$$P(Z=1 | X=0, Y=0) = .1$$

 $P(Z=1 | X=0, Y=1) = .8$
 $P(Z=1 | X=1, Y=0) = .7$
 $P(Z=1 | X=1, Y=1) = .9$

Rigged casino example

die 2 is conditionally independent of die 1 given casino rigged, so no edge between them

Rigged casino example with poorly chosen order

both the dice have relevant information for whether the casino is rigged

need 36 probabilities here!

More elaborate rain and sprinklers example

- Can easily calculate the probability of any atomic event
- P(+r,+s,+n,+g,+d) = P(+r)P(+s)P(+n|+r)P(+g|+r,+s)P(+d|+n,+g)
- Can also sample atomic events easily

Inference

- Want to know: P(+r|+d) = P(+r,+d)/P(+d)
- Let's compute P(+r,+d)

Inference...

• $P(+r,+d) = \Sigma_s \Sigma_g \Sigma_n P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) = P(+r)\Sigma_s P(s)\Sigma_g P(g|+r,s)\Sigma_n P(n|+r)P(+d|n,g)$

Variable elimination

- From the factor $\Sigma_n P(n|+r)P(+d|n,g)$ we sum out n to obtain a factor only depending on g
- $[\Sigma_n P(n|+r)P(+d|n,+g)] = P(+n|+r)P(+d|+n,+g) + P(-n|+r)P(+d|-n,+g) = .3*.9+.7*.5 = .62$
- $[\Sigma_n P(n|+r)P(+d|n,-g)] = P(+n|+r)P(+d|+n,-g) + P(-n|+r)P(+d|-n,-g) = .3*.4+.7*.3 = .33$
- Continuing to the left, g will be summed out next, etc.

Elimination order matters

- $P(+r,+d) = \Sigma_n \Sigma_s \Sigma_g P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) = P(+r)\Sigma_n P(n|+r)\Sigma_s P(s)\Sigma_g P(g|+r,s)P(+d|n,g)$
- Last factor will depend on two variables in this case!

Don't always need to sum over all variables

- Can drop parts of the network that are irrelevant
- P(+r, +s) = P(+r)P(+s) = .6*.2 = .12
- $P(+n, +s) = \Sigma_r P(r, +n, +s) = \Sigma_r P(r) P(+n|r) P(+s) = P(+s) \Sigma_r P(r) P(+n|r) = P(+s) (P(+r) P(+n|+r) + P(-r) P(+n|-r)) = .6*(.2*.3 + .8*.4) = .6*.38 = .228$
- $P(+d \mid +n, +g, +s) = P(+d \mid +n, +g) = .9$

Trees are easy

- Choose an extreme variable to eliminate first
- Its probability is "absorbed" by its neighbor
- ... $\Sigma_{x_4} P(x_4|x_1,x_2)...\Sigma_{x_5} P(x_5|x_4) = ...\Sigma_{x_4} P(x_4|x_1,x_2)[\Sigma_{x_5} P(x_5|x_4)]...$

Clustering algorithms

- Merge nodes into "meganodes" until we have a tree
 - Then, can apply special-purpose algorithm for trees
- Merged node has values {+n+g,+n-g,-n+g,-n-g}
 - Much larger CPT

Logic gates in Bayes nets

Not everything needs to be random...

Modeling satisfiability as a Bayes Net

• (+X₁ OR -X₂) AND (-X₁ OR -X₂ OR -X₃)

More about conditional independence

- A node is conditionally independent of its non-descendants, given its parents
- A node is conditionally independent of everything else in the graph, given its parents, children, and children's parents (its Markov blanket)

