

Génie logiciel 3

NF X 50-109

Définition

Aptitude d'un produit ou d'un service à satisfaire les besoins des utilisateurs.

En termes de fonctionnalités, délais, coûts.

Non qualité:

- Les défauts apparaissent lors de l'exploitation du logiciel
- coût de correction élevé

© A. Beugnard ENST Bretagne

Génie logiciel 4

Coût de correction des erreurs

Génie logiciel 5

NF X 50-109

Définitions

Assurance qualité: Mise en œuvre d'un ensemble approprié de dispositions préétablies et systématiques destinées à donner confiance en l'obtention d'une qualité requise.

Manuel qualité: Document décrivant les dispositions générales prises par l'entreprise pour obtenir la qualité de ses produits ou de ses services.

Plan qualité logiciel : Document décrivant les dispositions <u>spécifiques</u> prises par une entreprise pour obtenir la qualité du produit ou du service considéré.

© A. Beugnard

ENST Bretagne

6

Génie logiciel

Vocabulaire

Clauses qualité : expression des exigences (contractuelles ou non)

Logiciel : Ensemble des programmes, procédés et règles et éventuellement de la documentation, relatifs au fonctionnement d'un ensemble de traitement de l'information (arrêté du 22 décembre 1981).

Produit : Programmes sources et machines, des procédures et des ensembles de données enregistrées.

Plan de développement : Document décrivant pour une réalisation donnée, la décomposition en produits et en fournitures, les moyens à mettre en œuvre, les tâches nécessaires à la réalisation et les délais à respecter.

Client et Fournisseur : Le client commande un logiciel, le fournisseur le réalise.

Génie logiciel 7

Plan de développement

• la description du logiciel à réaliser en différents niveaux de produits (programmes et documents).

- les moyens matériels et/ou logiciel à mettre à disposition ou à réaliser (Méthodes, Techniques, Outils).
- le découpage du cycle de vie en phases, la définition des tâches à effectuer dans chaque phase et l'identification des responsables associés.
- les supports de suivi de l'avancement (Planning et calendriers).
- les moyens utilisés pour gérer le projet.
- les points clés avec ou sans intervention du client.

© A. Beugnard ENST Bretagne

Génie logi<u>ciel</u> 8

Organismes de normalisation

AFNOR

- Recommandation de Plan qualité logiciel Z67-130
- Guide de rédaction de Plan qualité logiciel Z67-130
- Gérer et assurer la qualité : document AFNOR
- Du bricolage à l'industrialisation : la qualité des logiciels, J-P Martin

DGA

- Méthodologie de développement des logiciels intégrés dans les systèmes militaires : GAM-T-17 version 2 (juin 88)

IEEE

- IEEE 730, 732 et 738

Std 828-1983 : Standard for software test documentation

Std 829-1983: Standard for software configuration management plans

Génie logiciel 9

Introduction au génie logiciel #3

Organismes de normalisation

ESA

- PSS: PSS01, PSS05 Assurance qualité logiciel

OTAN

- AQAP 13 et 14 (mai 1984)

DOD

- DoD-STD-2167A: Military standard-Defense system software development (2/88)

AFCIQ

- Recommandation de Plan assurance qualité logiciel (V0 du 23-03-89)
- Recommandation de Plan de développement logiciel (V1 du 17-06-88)

© A. Beugnard ENST Bretagne

Génie logiciel 10

Qualité logiciel

La qualité d'un logiciel n'a pas de mesure objective, ni de définition formelle:

Perceptions différentes (par exemple, en fonction de la position dans l'organisation de l'entreprise)

Quelques facteurs de qualité :

d'un **Produit**Conformité
Portabilité
Maintenabilité
Flexibilité

d'un Service
Efficacité
Disponibilité
Sécurité
Flexibilité
Fiabilité

Comment mesurer

Génie logiciel 11

Le processus qualité

© A. Beugnard ENST Bretagne

Génie logiciel 12

Qualité

- Introduction
 - vocabulaire, normes, processus
- Facteurs, Critères, Métriques
 - facteurs AFCIQ, compatibilité, critères, relation Facteur-critère, métrique
- Démarche qualité
 - manuel et plan qualité, contrôle, évaluation

Génie logiciel 13

Facteurs, critères

© A. Beugnard ENST Bretagne

Génie logiciel 14

Métriques

Génie logiciel 15

Mesure de qualité globale

© A. Beugnard ENST Bretagne

Génie logiciel 16

Facteur qualité

caractéristique du logiciel qui contribue à sa qualité et possède les propriétés suivantes :

- orienté utilisateur
- être relié à un coût par l'intermédiaire des activités qu'il engendre

maintenabilité : effort pour localiser et corriger une anomalie

Génie logiciel 17

Critère qualité

attribut du logiciel par l'intermédiaire duquel un facteur peut être évalué.

- Il est orienté réalisateur
- peut affecter plusieurs facteurs.

© A. Beugnard ENST Bretagne

Génie logiciel 18

Facteurs (McCall, 1977)

- Correctness Conformité - Reliability Robustesse - Efficiency Efficacité - Usability Maniabilité - Integrity Sécurité - Maintenability Maintenabilité - Flexibility Adaptabilité - Testability Testabilité - Portability Portabilité - Reusability Réutilisabilité Interoperability Interopérabilité

Génie logiciel 19

Définition des facteurs (1)

Facteur de qualité: aptitude du logiciel à	Note
Adaptabilité: minimiser l'effort nécessaire pour le modifier par suite d'évolution des spécifications	0 1 2 3
Conformité: contenir un minimum d'erreurs, à satisfaire aux spécifications et à remplir ses missions dans les situations opérationnelles définies.	
Efficacité : se limiter à l'utilisation des ressources strictement nécessaires à l'accomplissement de ses fonctions.	
Maintenabilité: minimiser l'effort pour localiser et corriger les fautes.	

© A. Beugnard ENST Bretagne

Génie logiciel 20

Définition des facteurs (2)

Facteur de qualité: aptitude du logiciel à		
Maniabilité: minimiser l'effort nécessaire pour l'apprentissage, la mise en œuvre des entrées et l'exploitation des sorties.	0 1 2 3	
Réutilisabilité : être partiellement ou totalement utilisé dans une autre application.		
Sécurité : surveiller, recenser, protéger et contrôler les accès au code et aux données ou fichiers.		
Robustesse: accomplir sans défaillance l'ensemble des fonctionnalités spécifiées, dans un environnement opérationnel de référence et pour une durée d'utilisation donnée.		

Génie logiciel 21

Définition des facteurs (3)

Facteur de qualité : aptitude du logiciel à		
Testabilité : faciliter les procédures de test permettant de s'assurer de l'adéquation des fonctionnalités	0 1 2 3	
Interopérabilité : s'interconnecter à d'autres systèmes.		
Portabilité: minimiser l'effort pour se faire transporter dans un autre environnement matériel et/ou logiciel.		

© A. Beugnard ENST Bretagne

Génie logiciel 22

Qualification des facteur

Exigences

Facteur	Sous-rubrique	faible	moyenne	forte
Efficacité	occupation mémoire	< 50%	>50%	>75%
	mémoire auxiliaire	< 50%	>50%	>75%
	occupation lignes	< 50%	>50%	>75%
	charge calcul	< 50%	>50%	>75%
	% avec contr. durée	< 20%	<50%	>50%
Maniabilité	IHM	Non	peu imp	imp.
	utilisateur	infor.	techn.	public
	résultats formatés	Non		Oui
	Aide en ligne	Non		Oui
Robustesse	reprise ap. coupure secteu	r Non	A froid	A chaud
	protec. vs pannes	Non.		Oui
	contr. validité données	Non	Partielle	Oui
	Redondance	Non		Oui

Génie logiciel 23

Facteurs qualité & cycle de vie

© A. Beugnard ENST Bretagne

Génie logiciel 24

Dépendances entre facteurs

Génie logiciel 25

Critères et facteurs

Conformité Traceabilité, consistance, complétude

- Robustesse Tolérance aux fautes, consistance, précision, simplicité

- Efficacité d'exécution, de stockage

Maniabilité
 Opérabilité, formation, communicativité, volume et taux

d'entrées/sorties

Sécurité Contrôle des accès, audit des accès

- Maintenabilité Consistance, simplicité, concision, modularité,

auto-descriptivité

© A. Beugnard ENST Bretagne

Génie logiciel 26

Critères et facteurs

 Adaptabilité Modularité, généralité, "expandability", autodescriptivité

 Testabilité Simplicité, modularité, instrumentation, autodescriptivité

Portabilité Modularité, auto-descriptivité, indépendance matérielle

et logicielle

Réutilisabilité Généralité, modularité, auto-descriptivité, indépendance

matérielle et logicielle

- Interopérabilité Modularité, "commonality" des communications et des

données

Génie logiciel 27

Eléments de mesure

Mesure directe et objective

- comptage de nombre de ligne de code source

- comptage de nombre d'homme-jours
- comptage du nombre d'abort système

Métriques obtenues par réponse oui/non (liste de contrôle)

- cohérence de la présentation des écrans
- respect de la procédure de signalisation des incidents
- capacité de raccordement satisfaisante

Métriques obtenues par enquête (note de 0 à 5)

- clarté de la présentation des résultats
- apport de l'assurance qualité
- disponibilité du système aux heures de pointe

Qualité du

produit processus

service

produit processus service

produit

processus service

© A. Beugnard ENST Bretagne

Génie logiciel 28

Métriques techniques

- Métriques du code
 - lignes de code, nombres d'opérandes, d'opérateurs
 - complexité cyclomatique
 - taux de commentaires
- Métriques de la spécification
 - cohésion et couplage des modules
 - taille et fréquence de communication de données

Génie logiciel 29

Métriques autres

- Métriques du processus de gestion
 - mesure de la capacité à estimer
 - mesures liées à la documentation (taille, modularité, ...)
- Métriques du processus qualité
 - nombres de revues, d'inspection

© A. Beugnard ENST Bretagne

Génie logiciel 30

Qualité

- Introduction
 - vocabulaire, normes, processus
- Facteurs, Critères, Métriques
 - facteurs AFCIQ, compatibilité, critères, relation Facteur-critère, métrique
- Démarche qualité
 - manuel et plan qualité, contrôle, évaluation

Génie logiciel 31

Activités de contrôle

Objectif mise en évidence de non conformités

Gestion

Projet

Modification

Configuration

respect des modalités de déroulement (organisation et résultats) :

- des lectures croisées,

Contrôle Processus

- des tests
- des activités de gestion
- de la qualité

Techniques

Analyse

Conception

Réalisation

Test

Contrôle technique

lecture simple ou croisée

inspection

test

© A. Beugnard **ENST Bretagne**

Génie logiciel 32

Contrôle technique

Portée

- document de spécification
- code source

Modalités

- lecture simple, croisée, inspection
- test

Contrôle de fond

- contradiction, silence, omission, ambiguïté, ajout fonctionnel

Contrôle de forme

- redondance, bruit, sur-détail, normes non respectées

Génie logiciel 33

Contrôle de processus

Portée

- procédure de gestion
- démarche technique

Modalités

- revue, audit

Contrôle de fond

 existence des processus, respect de la procédure, pertinence des tests

Contrôle de forme

- conformité des contenus, conformité des circuits de validation

© A. Beugnard ENST Bretagne

Génie logiciel 34

Coût de la démarche qualité coût du logiciel total développement maintenance niveau qualité optimum coût ... développement total maintenance

Génie logiciel 35

Introduction au génie logiciel # 3

La règle 80-20

© A. Beugnard ENST Bretagne

Génie logiciel 36

Mise en place de la démarche qualité

- Utilisation de techniques : Génie logiciel, contrôle
- Mise en place de méthodes : prototypage, ...
- Utilisation d'outils : spécification, simulation, gestion de projet
- Etablir, mettre à jour diffuser des références
- Formaliser la chaîne de production
- Définir des métriques adaptées à chaque activité ou produit
- Essayer la démarche sur des projets
- Contrôler la qualité et comparer
- Evaluer la démarche

Génie logiciel 37

Bibliographie

- J.A. McCall, Quality factors, in Encyclopædia of Software Engineering, Vol 1, pp 958--969, John Wiley & Sons, 1994
- T. Forse, Qualimétrie des systèmes complexes, mesure de la qualité du logiciel, Les éditions d'organisation

© A. Beugnard ENST Bretagne

Génie logiciel 38

plan

Génie logiciel 39

Les catégories de test

Les tests peuvent être classés en fonction des critères suivants :

- · les objectifs des tests
- la source de l'ensemble de tests
- le moment où les tests sont effectués

© A. Beugnard ENST Bretagne

Génie logiciel 40

Objectifs des test

- détecter les déviations par rapport aux spécifications
- détecter des erreurs
- augmenter la confiance dans le programme
- déterminer un niveau de fiabilité dans le logiciel
- évaluer les performances
- évaluer le comportement en charge

Génie logiciel 41

Source de l'ensemble de tests

- Spécification
 - Black box testing, tests fonctionnels
- Implantation
 - White box testing, tests structuraux (couverture d'instructions, de branchements, de chemins)
- Faute
 - Essai de provoquer des fautes détectées dans des versions ou expériences précédentes (système, méthode, langage,etc)
- Utilisation
 - Jeu de tests réels

© A. Beugnard ENST Bretagne

Génie logiciel 42

Moment où les tests sont effectués

- Test unitaires (développement d'environnement de tests)
- Test de modules
- Test d'intégration (détecter les problèmes d'interface)
- Test du système
 - alpha : système final prêt, utilisation interne
 - beta : utilisation chez des utilisateurs externes avertis
 - final

Génie logiciel 43

Exemple

Retourne l'inverse de la racine carrée d'un nombre pour tout positif, sinon le nombre...

Quel jeu de test?

```
function klouk(x: float): float
  begin
    if x > 0 then
        return 1/sq(x);
  else
        return x;
  endif
end;
    Le jeu de test {1, 0, -1} est falatieux;
    il fait croire que cette fonction est correcte
```

© A. Beugnard ENST Bretagne

Génie logiciel 44

Fiabilité et tests aléatoires

```
    Jeux de tests aléatoires : N points
```

- Seuil de confiance : 1 e = 95% par exemple
- $\theta < 1 (1-e)^{1/N}$
- MTBF = $1/\theta$
- ⇒ 1.000.000 points de tests pour 95% de confiance
- ⇒ MTBF de 220.000 exécutions

Génie logiciel 45

Stratégies de test

- Bottom-up testing
- Bottom-up testing
- Sandwich testing
- · Build testing

Graphe d'appel

© A. Beugnard ENST Bretagne

Génie logiciel 46

Bottom-up testing

- D, driver(D)
- E, driver(E)
- H, driver(H)
- G, driver(G)

Graphe d'appel

Génie logiciel 47

Bottom-up testing

- D, driver(D)
- E, driver(E)
- H, driver(H)
- G, driver(G)
- H, F, driver(F)

Graphe d'appel

© A. Beugnard ENST Bretagne

Génie logiciel 48

Bottom-up testing

- D, driver(D)
- E, driver(E)
- H, driver(H)
- G, driver(G)
- H, F, driver(F)
- D, E, F,B, driver(B), driver(F)

Graphe d'appel

Génie logiciel 49

Bottom-up testing

- D, driver(D)
- E, driver(E)
- H, driver(H)
- G, driver(G)
- H, F, driver(F)
- D, E, F,B, driver(B), driver(F)
- H, F, G, C, driver(C), driver(F)

Graphe d'appel

© A. Beugnard ENST Bretagne

Génie logiciel 50

Bottom-up testing

- D, driver(D)
- E, driver(E)
- H, driver(H)
- G, driver(G)
- H, F, driver(F)
- D, E, F,B, driver(B), driver(F)
- H, F, G, C, driver(C), driver(F)
- D, E, H, G, F, B, C, A

Graphe d'appel

Génie logiciel 51

Top-down testing

Graphe d'appel

© A. Beugnard ENST Bretagne

Génie logiciel 52

Sandwich testing

Génie logiciel 53

54

Classes autodocumentées

Génie logiciel

 On exploite la caractéristique d'encapsulation des classes :

cohérence entre données et services

 Chaque classe dispose de son jeu de tests...qui éventuellement lance un jeu de tests d'autres classes

Appliqué à java, on peut définir un main() pour chaque classe.

Génie logiciel 55

Bibliographie

- B. Beizer, Software Testing Techniques, 2nd ed, Van Nostrand Reinhold, New York, 1990
- R.A. DeMillo, R.J Lipton et F.G Sayward, *Hints on Test Data Selection:* Help for Practicing Programmer, Computer 11(4), 34-41, Apr 1978
- G. Myers, *The Art of Program Testing,* John Wiley & Sons, Inc, New York, 1979
- I. Sommerville, Software Engineering, 4th ed, Addison-Wesley Reading, Mass., 1992
- T.J. Ostrand, Categories of Testing, Encyclopædia of Software Engineering, J.J. Marciniak ed, John Wiley & Sons, Inc, New York, 1994
- R. Hamlet, Test du logiciel & confiance, Génie logiciel et systèmes experts, 30, mars 1993
- L.J. White et H.K.N. Leung, *Integration Testing*, Encyclopædia of Software Engineering, J.J. Marciniak ed, John Wiley & Sons, Inc, New York, 1994

© A. Beugnard ENST Bretagne

Génie logiciel 56

Quelques liens

- Top 1O des « bugs » : http://www.cnet.com/Content/Features/Dlife/Bugs/ss05.html
- Rapport de l'accident « Ariane V » http://www.cnes.fr/actualites/news/rapport_501.html
- Histoires amusantes ou parfois inquiétantes...
 http://www.ozemail.com.au/~sphampel/Fun/Computer/famous.bug.txt ou
 http://www2.southwind.net/~rwweeks/bugs.html