Teoria do Risco Aula 13

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley

Modelo de Risco individual

Modelo de Risco coletivo X_i Independentes e identicamente distribuídas

 X_i Independentes

$$S_{ind} = \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} B_i I_i$$

$$S_{col} = \sum_{i=1}^{N} X_i$$

$$E(S_{ind}) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

$$E(S_{col}) = E\left(\sum_{i=1}^{N} X_i\right)$$

 S_{col}, X_i, N

 S_{ind}, X_i, B_i, I_i

$$M_{S_{col}}(t) = M_N(\ln M_X(t))$$

$$M_{S_{ind}}(t) = \prod_{i=1}^{n} M_{X_i}(t)$$

$$E(S_{col}) = E(N)E(X)$$

$$E(S_{ind}) = \sum_{i=1}^{n} E(B_i)q_i$$

$$var(S_{col}) = E(X)^2 \ var(N) + E(N)var(X)$$

$$var(S_{ind}) = \sum_{i=1}^{n} var(B_i)q_i + \sum_{i=1}^{n} E(B_i)^2 q_i (1 - q_i)$$

Modelos de risco Coletivo- A distribuição de $S_{\rm col}$, os sinistros coletivos.

D método da convolução a partir da distribuição de X e N.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} F^{*k}(s) \ p(N=k) \quad F^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$

$$f_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) \ p(N=k) \ p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$$

Modelos de risco Coletivo

O processo de convolução no modelo de risco coletivo leva em consideração a convolução entre os sinistros ocorridos dado que quantidade ocorrida também é uma variável aleatória.

Modelo de risco individual	Modelo de risco coletivo
$F^{(k)} = F_k * F^{(k-1)}$	$P^{(k)} = P_k * P^{(k-1)}$
$F_{S_{\text{ind}}}^{(2)}(s) = \sum_{j=0}^{\infty} F_X(s - y_j) p_Y(y_j)$	$F_{S_{col}}^{(2)}(s) = \sum_{k=0}^{\infty} F^{*k}(s) p_N(k)$

$$X (discreto) \rightarrow S_{col} (discreto)$$

 $X (continuo) \rightarrow S_{col} (continuo)$

Modelos de risco Coletivo

Pelo método de convolução a partir da distribuição de X e N.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} F^{*k}(s) p_{N}(k) \qquad p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_{N}(k)$$

$$F^{*k}(s) = P(X_{1} + X_{2} + \dots + X_{k} \le s) \qquad p^{*k}(s) = p(X_{1} + X_{2} + \dots + X_{k} = s)$$

$$p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_{N}(k)$$

$$F^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$

$$p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$$

X contínuo.

$$F^{*k}(s) = \int_0^s F^{*k-1}(s-h)p(h)dh$$
$$F^{*k-1}F$$

$$F^{*k}(s) = \int_0^s F^{*k-1}(s-h)p(h)dh$$

$$F^{*k-1*}F$$

$$p^{*k}(s) = \int_0^s p^{*k-1}(s-h)p(h)dh$$

$$p^{*k-1*}p$$

Exemplo 1

Calcular $F_{S_{col}}(s)$, quando $X \sim Exp(\alpha)$ e $N \sim Po(\lambda)$.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} P^{*k}(s) p(N = k)$$

$$F^{*k}(s) = \int_0^s F^{*k-1}(s-h)p(h)dh$$

Assim:

$$F_{S_{col}}(s) = \sum_{k=0}^{n} F^{*k}(s) \frac{e^{-\lambda} \lambda^{k}}{k!}$$

Cálculo de $P^{*k}(x)$

$$p(x) = \alpha e^{-\alpha x} \qquad F$$

$$F(x) = 1 - e^{-\alpha x}$$
; $x > 0$

$$F^{*k}(s) = \int_{h} F^{*k-1}(s-h) \, p(h) dh$$

$$F^{*(2)}(s) = \int_0^s F^{*2-1}(s-h)p(h)dh = \int_0^s F(s-h)p(h)dh$$
$$F^{*(2)}(s) = \int_0^s \left[1 - e^{-\alpha(s-h)}\right] \alpha e^{-\alpha h} dh$$

$$F^{*(2)}(s) = 1 - e^{-\alpha s}(1 + \alpha s)$$

$$F^{*3}(s) = \int_0^s F^{*3-1}(s-h)p(h)dh = \int_0^s F^{*2}(s-h)p(h)dh$$

$$F^{*3}(s) = \int_0^s \{1 - e^{-\alpha(s-h)}[1 + \alpha(s-h)]\} \alpha e^{-\alpha h} dh$$

$$F^{*3}(s) = 1 - e^{-\alpha s} \left| 1 + \alpha s + \frac{(\alpha s)^2}{2!} \right|$$

ullet Desta forma, então, chega-se à seguinte formula de $P^{st k}$

$$F(s) = 1 - e^{-\alpha s}$$

$$F^{*(2)}(s) = 1 - e^{-\alpha s}(1 + \alpha s)$$

$$F^{*3}(s) = 1 - e^{-\alpha s} \left[1 + \alpha s + \frac{(\alpha s)^2}{2!} \right]$$

...

$$F^{*k}(s) = 1 - e^{-\alpha s} \sum_{i=0}^{k-1} \frac{(\alpha s)^i}{i!}$$

Como:

$$F_{S_{col}}(s) = \sum_{k=1}^{n} F^{*k}(s) \frac{e^{-\lambda} \lambda^{k}}{k!}$$

Tem-se que:

$$F_{S_{col}}(s) = \sum_{i=0}^{n} \left[1 - e^{-\alpha s} \sum_{i=0}^{k-1} \frac{(\alpha s)^i}{i!} \right] \frac{e^{-\lambda} \lambda^k}{k!}$$

$$F_{S_{col}}(s) = \sum_{k=1}^{n} \left[1 - e^{-\alpha s} \sum_{i=0}^{k-1} \frac{(\alpha s)^{i}}{i!} \right] \frac{e^{-\lambda} \lambda^{k}}{k!}$$

Comportamento de $F_{s_{col}}(S)$ com $\alpha=0,2,\lambda=10$ para diferentes quantidade de apólices n.

Exemplo 2

Adicionalmente pode-se calcular p^{*k} e $f_{S_{col}}(s)$, quando $X \sim Exp(\alpha)$ e $N \sim Po(\lambda)$

$$f_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) \frac{e^{-\lambda} \lambda^{k}}{k!}$$

Cálculo de $p^{*k}(x)$

$$p(x) = \alpha e^{-\alpha x}$$
; $x > 0$

$$p^{*k}(s) = \int_{h} p^{*k-1}(s-h) \, p(h) dh$$

$$p^{*(2)}(s) = \int_0^s p^{*2-1}(s-h)p(h)dh = \int_0^s p(s-h)p(h)dh$$

$$p^{*(2)}(s) = \int_0^s \left[\alpha e^{-\alpha(s-h)} \right] \alpha e^{-\alpha h} dh = \alpha^2 s \ e^{-\alpha s},$$

Cálculo de $p^{*k}(x)$

$$p(x) = \alpha e^{-\alpha x}$$
; $x > 0$

$$p^{*k}(s) = \int_{h} p^{*k-1}(s-h) \, p(h) dh$$

$$p^{*(2)}(s) = \alpha^2 s e^{-\alpha s}$$

$$p^{*3}(s) = \int_0^s p^{*3-1}(s-h)p(h)dh = \int_0^x p^{*2}(s-h)p(h)dh$$
$$p^{*3}(s) = \int_0^s \alpha^2(s-h) e^{-\alpha(s-h)}\alpha e^{-\alpha h}dh = \frac{\alpha^3 s^2 e^{-\alpha s}}{2}$$

Cálculo de $p^{*k}(x)$

$$p(x) = \alpha e^{-\alpha x}$$
; $x > 0$

$$p^{*(2)}(s) = \alpha^2 s e^{-\alpha s},$$

$$p^{*3}(s) = \frac{\alpha^3 s^2 e^{-\alpha s}}{2}$$

. . .

$$p^{*k}(s) = \frac{\alpha^k s^{k-1} e^{-\alpha s}}{(k-1)!}$$

$$f_{S_{col}}(s) = \sum_{k=1}^{n} \left[\frac{\alpha^{k} s^{k-1} e^{-\alpha s}}{(k-1)!} \right] \frac{e^{-\lambda} \lambda^{k}}{k!}$$

Comportamento de $f_{s_{col}}(S)$ com $\alpha=0$, 2, $\lambda=10$ para diferentes quantidade de apólices n.

Modelos de risco Coletivo

Pelo método de convolução a partir da distribuição de X e N.

$$F_{S_{col}}(s) = \sum_{k=0}^{n} F^{*k}(s) p_{N}(k) \qquad p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_{N}(k)$$

$$F^{*k}(s) = P(X_{1} + X_{2} + \dots + X_{k} \le s) \qquad p^{*k}(s) = p(X_{1} + X_{2} + \dots + X_{k} = s)$$

$$F^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$

$$p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_N(k)$$

$$p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$$

Modelos de risco Coletivo

Pelo método de convolução a partir da distribuição de X e N.

$$p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_N(k)$$

$$p^{*k}(s) = p(X_1 + X_2 + ... + X_k = s)$$

Quando X é discreto tem-se

$$p^{*0}(s) = \begin{cases} 0 \text{ se } s \neq 0 \\ 1 \text{ se } s = 0 \end{cases}$$

$$p^{*k}(s) = \sum_{h \le s} p^{*k-1}(s-h)p(h)$$

Considere h como um dos valores possíveis para X.

Exemplo 3

Uma carteira de seguros produz 0,1 ou 2 sinistros com as respetivas probabilidades: 20%,50% e 30%. Um sinistro dessa carteira assume os valores R\$100, R\$200 ou R\$300, com as respectivas probabilidades: 20%, 70% e 10%.

Construa a distribuição convoluta dos sinistros agregados S_{col} .

N	P(N)	S_{col}		-
0	0,2	$S_{col} = 0$		
1	0,5	$S_{col} = X_1$	$\{R\$100, R\$200, R\$300\}$	
2	0,3	$S_{col} = X_1 + X_2$	{ <i>R</i> \$200, <i>R</i> \$300, <i>R</i> \$400, <i>R</i> \$500, <i>R</i> \$600}	nifa

Universidade Federal de Alfenas

Em primeiro lugar, computemos todas as combinações possíveis de frequência e severidades e assim explicitemos os valores possíveis de sinistros agregados e associados as probabilidades de ocorrência

Por definição tem-se que
$$p^{*0}(s) = egin{cases} \mathbf{0} & se & s \neq \mathbf{0} \\ \mathbf{1} & se & s = \mathbf{0} \end{bmatrix}$$

• Logo para k = 0:

$$p^{*0}(0) = 1$$

$$p^{*0}(100) = 0$$

$$p^{*0}(200) = 0$$

$$p^{*0}(300) = 0$$

$$p^{*0}(400) = 0$$

$$p^{*0}(500) = 0$$

$$p^{*0}(600) = 0$$

Para k=1:

Usando $p^{*k}(s) = \sum_{h \le s} p^{*k-1}(s-h)p(h)$ sendo k os possíveis valores assumidos por N.

$$p^{*1}(0) = \sum_{h=0}^{0} p^{*1-1}(0-h)p(h)$$

$$p^{*1}(100) = \sum_{h=0}^{100} p^{*1-1}(100 - h)p(h)$$

$$p^{*1}(200) = \sum_{h=0}^{200} p^{*1-1} (200 - h)p(h)$$

$$p^{*1}(300) = \sum_{h=0}^{300} p^{*1-1} (300 - h)p(h)$$

$$p^{*1}(400) = \sum_{h=0}^{400} p^{*1-1} (400 - h)p(h)$$

$$p^{*1}(500) = \sum_{h=0}^{500} p^{*1-1} (500 - h)p(h)$$

$$p^{*1}(600) = \sum_{h=0}^{600} p^{*1-1} (600 - h)p(h)$$

$$p^{*1}(\mathbf{0}) = p^{*0}(0)p(0) = 0$$

$$p^{*1}(100) = p^{*0}(100)p(0) + p^{*0}(0)p(100) = 0,2$$

$$p^{*1}(200) = p^{*0}(200)p(0) + p^{*0}(100)p(100) + p^{*0}(0)p(200) = 0,7$$

$$p^{*1}(300) = p^{*0}(300)p(0) + p^{*0}(200)p(100) + p^{*0}(100)p(200) + p^{*0}(0)p(300) = 0, 1$$

$$p^{*1}(400) = p^{*0}(400)p(0) + p^{*0}(300)p(100) + p^{*0}(200)p(200) + p^{*0}(100)p(300) + p^{*0}(0)p(400) = 0$$

$$p^{*1}(\mathbf{500}) = p^{*0}(500)p(0) + p^{*0}(400)p(100) + p^{*0}(300)p(200) + p^{*0}(200)p(300) + p^{*0}(100)p(400) + p^{*0}(0)p(500) = \mathbf{0}$$

$$p^{*1}(\mathbf{600}) = p^{*0}(600)p(0) + p^{*0}(500)p(100) + p^{*0}(400)p(200) + p^{*0}(300)p(300) + p^{*0}(200)p(400) + p^{*0}(100)p(500) + p^{*0}(0)p(600) = \mathbf{0}$$

S_{col}	N = 0	N = 1
0	$p^{*0}(0)=1$	$p^{*1}(0)=0$
100	$p^{*0}(100) = 0$	$p^{*1}(100) = 0, 2$
200	$p^{*0}(200) = 0$	$p^{*1}(200) = 0,7$
300	$p^{*0}(300) = 0$	$p^{*1}(300)=0$, 1
400	$p^{*0}(400) = 0$	$p^{*1}(400) = 0$
500	$p^{*0}(500) = 0$	$p^{*1}(500) = 0$
600	$p^{*0}(600) = 0$	$p^{*1}(600) = 0$

Para k=2:

$$p^{*2}(\mathbf{0}) = \sum_{h=0}^{0} p^{*2-1}(0-h)p(h)$$

$$p^{*2}(100) = \sum_{h=0}^{100} p^{*2-1}(100 - h)p(h)$$

$$p^{*2}(200) = \sum_{h=0}^{200} p^{*2-1} (200 - h)p(h)$$

$$p^{*2}(300) = \sum_{h=0}^{300} p^{*2-1} (300 - h)p(h)$$

$$p^{*2}(400) = \sum_{h=0}^{400} p^{*2-1} (400 - h)p(h)$$

$$p^{*2}(500) = \sum_{h=0}^{500} p^{*2-1} (500 - h)p(h)$$

$$p^{*2}(600) = \sum_{h=0}^{600} p^{*2-1} (600 - h)p(h)$$

Para k=2:

$$p^{*2}(\mathbf{0}) = p^{*1}(0)p(0) = 0$$

$$p^{*2}(100) = p^{*1}(100)p(0) + p^{*1}(0)p(100) = 0$$

$$p^{*2}(200) = p^{*1}(200)p(0) + p^{*1}(100)p(100) + p^{*1}(0)p(200) = 0.04$$

$$p^{*2}(300) = p^{*1}(300)p(0) + p^{*1}(200)p(100) + p^{*1}(100)p(200) + p^{*1}(0)p(300) = 0,28$$

$$p^{*2}(400) = p^{*1}(400)p(0) + p^{*1}(300)p(100) + p^{*1}(200)p(200) + p^{*1}(100)p(300) + p^{*1}(0)p(400) = 0,53$$

$$p^{*2}(500) = p^{*1}(500)p(0) + p^{*1}(400)p(100) + p^{*1}(300)p(200) + p^{*1}(200)p(300) + p^{*1}(100)p(400) + p^{*1}(0)p(500) = 0,14$$

$$p^{*2}(600) = p^{*1}(600)p(0) + p^{*1}(500)p(100) + p^{*1}(400)p(200) + p^{*1}(300)p(300) + p^{*1}(200)p(400) + p^{*1}(100)p(500) + p^{*1}(0)p(600) = 0,01$$

	P(N=0)=0,2	P(N=1)=0,5	P(N=2)=0,3
S_{col}	N = 0	N = 1	N = 2
0	$p^{*0}(0) = 1$	$p^{*1}(0)=0$	$p^{*2}(0) = 0$
100	$p^{*0}(100) = 0$	$p^{*1}(100) = 0, 2$	$p^{*2}(100) = 0$
200	$p^{*0}(200) = 0$	$p^{*1}(200) = 0,7$	$p^{*2}(200) = 0,04$
300	$p^{*0}(300) = 0$	$p^{*1}(300) = 0,1$	$p^{*2}(300) = 0.28$
400	$p^{*0}(400) = 0$	$p^{*1}(400) = 0$	$p^{*2}(400) = 0.53$
500	$p^{*0}(500) = 0$	$p^{*1}(500) = 0$	$p^{*2}(500) = 0,14$
600	$p^{*0}(600) = 0$	$p^{*1}(600) = 0$	$p^{*2}(600) = 0.01$
	1	1	1

Agora se faz necessário sumarizar todas as combinações que resultam no mesmo valor de sinistros.

$$p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_N(k)$$

Logo

$$P_{S_{col}}(\mathbf{0}) = p^{*0}(0)p_N(0) + p^{*1}(0)p_N(1) + p^{*2}(0)p_N(2) = 0,2$$

$$P_{S_{col}}(100) = p^{*0}(100)p_N(0) + p^{*1}(100)p_N(1) + p^{*2}(100)p_N(2) = 0,1$$

$$P_{S_{col}}(200) = p^{*0}(200)p_N(0) + p^{*1}(200)p_N(1) + p^{*2}(200)p_N(2) = 0,362$$

$$P_{S_{col}}(300) = p^{*0}(300)p_N(0) + p^{*1}(300)p_N(1) + p^{*2}(300)p_N(2) = 0,134$$

$$P_{S_{col}}(400) = p^{*0}(400)p_N(0) + p^{*1}(400)p_N(1) + p^{*2}(400)p_N(2) = 0,159$$

$$P_{S_{col}}(500) = p^{*0}(500)p_N(0) + p^{*1}(500)p_N(1) + p^{*2}(500)p_N(2) = 0,042$$

$$P_{S_{col}}(\mathbf{600}) = p^{*0}(600)p_N(0) + p^{*1}(600)p_N(1) + p^{*2}(600)p_N(2) = 0,003$$

$$p_{S_{col}}(s) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,2 & 0 \\ 0 & 0,7 & 0,04 \\ 0 & 0,1 & 0,28 \\ 0 & 0 & 0,53 \\ 0 & 0 & 0,14 \\ 0 & 0 & 0,01 \end{bmatrix} \xrightarrow{P_N(0)} P_N(1)$$

$$p^{*0}(s)$$

$$p^{*0}(s)$$

$$P_{S_{col}}(\mathbf{0}) = 1 \times 0.2 + 0 \times 0.5 + 0 \times 0.3 = 0.2$$

$$P_{S_{col}}(100) = 0 \times 0.2 + 0.2 \times 0.5 + 0 \times 0.3 = 0.1$$

...

$$P_{S_{col}}(600) = 0 \times 0.2 + 0 \times 0.5 + 0.01 \times 0.3 = 0.003$$

$$p_{Scol}(s) = \begin{cases} 0.2 & s = 0 \\ 0.1 & s = 100 \\ 0.362 & s = 200 \\ 0.134 & s = 300 \\ 0.159 & s = 400 \\ 0.042 & s = 500 \\ 0.003 & s = 600 \end{cases}$$

$$F_{Scol}(s) = \begin{cases} 0 & s < 0 \\ 0.2 & 0 \le s < 100 \\ 0.2 + 0.1 = 0.3 & 100 \le s < 200 \\ 0.3 + 0.362 = 0.662 & 200 \le s < 300 \\ 0.662 + 0.134 = 0.796 & 300 \le s < 400 \\ 0.796 + 0.159 = 0.955 & 400 \le s < 500 \\ 0.955 + 0.042 = 0.997 & 500 \le s < 600 \\ 1 & s \ge 600 \end{cases}$$

Teoria do Risco

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley

Modelos de risco Coletivo-Convolução

$$F_{S_{col}}(s) = \sum_{k=0}^{n} F^{*k}(s) p_N(k)$$

$$F^{*k}(s) = P(X_1 + X_2 + \dots + X_k \le s)$$

Quando X é discreto tem-se

$$F^{*0}(s) = \begin{cases} 0 \text{ se } s \leq 0 \\ 1 \text{ se } s > 0 \end{cases}$$

$$F^{*k}(s) = \sum_{h \le s} F^{*k-1}(s-h)p(h)$$

Considere h como um dos valores possíveis para X.

Exemplo 4

Uma carteira de seguros produz 0,1 ou 2 sinistros com as respetivas probabilidades: 20%,50% e 30%. Um sinistro dessa carteira assume os valores R\$100, R\$200 ou R\$300, com as respectivas probabilidades: 20%,70% e 10%.

Construa a distribuição convoluta dos sinistros agregados S_{col} .

X_i	<i>R</i> \$100	<i>R</i> \$200	R\$300
$P_{X_i}(x_i)$	0,2	0,7	0,1

N	P(N)	S_{col}		
0	0,2	$S_{col} = 0$		
1	0,5	$S_{col} = X_1$	{ <i>R</i> \$100, <i>R</i> \$200, <i>R</i> \$300}	
2	0,3	$S_{col} = X_1 + X_2$	{R\$200, R\$300, R\$400, R\$500, R\$600}	nifalz

Por definição tem-se que
$$F^{*0}(s) = \begin{cases} 0 \text{ se } s \leq 0 \\ 1 \text{ se } s > 0 \end{cases}$$

Logo para k = 0:

$$F^{*0}(0) = 0$$

$$F^{*0}(100) = 1$$

$$F^{*0}(200) = 1$$

$$F^{*0}(300) = 1$$

$$F^{*0}(400) = 1$$

$$F^{*0}(500) = 1$$

$$F^{*0}(600) = 1$$

Para k=1:

Usando $F^{*k}(s) = \sum_{h \leq s} F^{*k-1}(s-h)p(h)$ sendo k os possíveis valores assumidos por N.

$$F^{*1}(0) = \sum_{h=0}^{0} F^{*1-1}(0-h)p(h)$$

$$F^{*1}(100) = \sum_{h=0}^{100} F^{*1-1}(100 - h)p(h)$$

$$F^{*1}(200) = \sum_{h=0}^{200} F^{*1-1} (200 - h) p(h)$$

$$F^{*1}(300) = \sum_{h=0}^{300} F^{*1-1} (300 - h) p(h)$$

$$F^{*1}(400) = \sum_{h=0}^{400} F^{*1-1} (400 - h) p(h)$$

$$F^{*1}(500) = \sum_{h=0}^{500} F^{*1-1} (500 - h) p(h)$$

$$F^{*1}(600) = \sum_{h=0}^{600} F^{*1-1} (600 - h) p(h)$$

$$F^{*1}(\mathbf{0}) = F^{*0}(0)p(0) = 0$$

$$F^{*1}(\mathbf{100}) = F^{*0}(100)p(0) + F^{*0}(0)p(100) = 0$$

$$F^{*1}(\mathbf{200}) = F^{*0}(200)p(0) + F^{*0}(\mathbf{100})p(\mathbf{100}) + F^{*0}(0)p(200) = 0,2$$

$$F^{*1}(\mathbf{300}) = F^{*0}(300)p(0) + F^{*0}(\mathbf{200})p(\mathbf{100}) + F^{*0}(\mathbf{100})p(\mathbf{200}) + F^{*0}(0)p(300) = 0,9$$

$$F^{*1}(400) = F^{*0}(400)p(0) + F^{*0}(300)p(100) + F^{*0}(200)p(200) + F^{*0}(100)p(300) + F^{*0}(0)p(400) = 1$$

$$F^{*1}(\mathbf{500}) = F^{*0}(500)p(0) + F^{*0}(\mathbf{400})p(\mathbf{100}) + F^{*0}(\mathbf{300})p(\mathbf{200}) + F^{*0}(\mathbf{200})p(\mathbf{300}) + F^{*0}(100)p(400) + F^{*0}(0)p(500) = \mathbf{1}$$

$$F^{*1}(\mathbf{600}) = F^{*0}(600)p(0) + F^{*0}(\mathbf{500})p(\mathbf{100}) + F^{*0}(\mathbf{400})p(\mathbf{200}) + F^{*0}(\mathbf{300})p(\mathbf{300}) + F^{*0}(200)p(400) + F^{*0}(100)p(500) + F^{*0}(0)p(600) = \mathbf{1}$$

S_{col}	N = 0	N = 1
0	$F^{*0}(0) = 0$	$F^{*1}(0) = 0$
100	$F^{*0}(100) = 1$	$F^{*1}(100) = 0$
200	$F^{*0}(200) = 1$	$F^{*1}(200) = 0.2$
300	$F^{*0}(300) = 1$	$F^{*1}(300) = 0.9$
400	$F^{*0}(400) = 1$	$F^{*1}(400) = 1$
500	$F^{*0}(500) = 1$	$F^{*1}(500) = 1$
600	$F^{*0}(600) = 1$	$F^{*1}(600) = 1$

Para k=2:

$$F^{*2}(0) = \sum_{h=0}^{0} F^{*2-1}(0-h)p(h)$$

$$F^{*2}(100) = \sum_{h=0}^{100} F^{*2-1}(100 - h)p(h)$$

$$F^{*2}(200) = \sum_{h=0}^{200} F^{*2-1} (200 - h) p(h)$$

$$F^{*2}(300) = \sum_{h=0}^{300} F^{*2-1} (300 - h)p(h)$$

$$F^{*2}(400) = \sum_{h=0}^{400} F^{*2-1} (400 - h)p(h)$$

$$\Gamma*2(\Gamma00)$$
 $\Sigma500$ $\Gamma*2-1(\Gamma00)$ $L>...(L)$

$$F^{*2}(500) = \sum_{h=0}^{500} F^{*2-1} (500 - h) p(h)$$
$$F^{*2}(600) = \sum_{h=0}^{600} F^{*2-1} (600 - h) p(h)$$

Para k=2:

$$F^{*2}(0) = F^{*1}(0)p(0) = 0$$

$$F^{*2}(100) = F^{*1}(100)p(0) + F^{*1}(0)p(100) = 0$$

$$F^{*2}(200) = F^{*1}(200)p(0) + F^{*1}(100)p(100) + F^{*1}(0)p(200) = 0$$

$$F^{*2}(300) = F^{*1}(300)p(0) + F^{*1}(200)p(100) + F^{*1}(100)p(200) + F^{*1}(0)p(300) = 0,04$$

$$F^{*2}(400) = F^{*1}(400)p(0) + F^{*1}(300)p(100) + F^{*1}(200)p(200) + F^{*1}(100)p(300) + F^{*1}(0)p(400) = 0.32$$

$$F^{*2}(500) = F^{*1}(500)p(0) + F^{*1}(400)p(100) + F^{*1}(300)p(200) + F^{*1}(200)p(300) + F^{*1}(100)p(400) + F^{*1}(0)p(500) = 0.85$$

$$F^{*2}(600) = F^{*1}(600)p(0) + F^{*1}(\mathbf{500})p(\mathbf{100}) + F^{*1}(\mathbf{400})p(\mathbf{200}) + F^{*1}(\mathbf{300})p(\mathbf{300}) + F^{*1}(200)p(400) + F^{*1}(100)p(500) + F^{*1}(0)p(600) = 0,99$$

	P(N=0)=0,2	P(N=1)=0,5	P(N=2)=0,3
S_{col}	N = 0	N = 1	N=2
0	$F^{*0}(0) = 0$	$F^{*1}(0) = 0$	$F^{*2}(0) = 0$
100	$F^{*0}(100) = 1$	$F^{*1}(100) = 0$	$F^{*2}(100) = 0$
200	$F^{*0}(200) = 1$	$F^{*1}(200) = 0.2$	$F^{*2}(200) = 0$
300	$F^{*0}(300) = 1$	$F^{*1}(300) = 0.9$	$F^{*2}(300) = 0.04$
400	$F^{*0}(400) = 1$	$F^{*1}(400) = 1$	$F^{*2}(400) = 0.32$
500	$F^{*0}(500) = 1$	$F^{*1}(500) = 1$	$F^{*2}(500) = 0.85$
600	$F^{*0}(600) = 1$	$F^{*1}(600) = 1$	$F^{*2}(600) = 0,99$

$$F_{S_{col}}(s) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0,2 & 0 \\ 1 & 0,9 & 0,04 \\ 1 & 1 & 0,32 \\ 1 & 1 & 0,85 \\ 1 & 1 & 0,99 \end{bmatrix} \xrightarrow{P_N(0)} P_N(1)$$

$$F^{*0}(s) F^{*0}(s)$$

$$F_{S_{col}}(s) = \sum_{k=0}^{n} F^{*k}(s) p_N(k)$$

$$F_{Scol}(s) = \begin{cases} 0 & s < 0 \\ 0,2 & 0 \le s < 100 \\ 0,3 & 100 \le s < 200 \\ 0,662 & 200 \le s < 300 \\ 0,796 & 300 \le s < 400 \\ 0,955 & 400 \le s < 500 \\ 0,997 & 500 \le s < 600 \\ 1 & s \ge 600 \end{cases}$$

$$F_{Scol}(s) = \begin{cases} 0 & s < 0 \\ 0.2 & 0 \le s < 100 \\ 0.2 + 0.1 = 0.3 & 100 \le s < 200 \\ 0.3 + 0.362 = 0.662 & 200 \le s < 300 \\ 0.662 + 0.134 = 0.796 & 300 \le s < 400 \\ 0.796 + 0.159 = 0.955 & 400 \le s < 500 \\ 0.955 + 0.042 = 0.997 & 500 \le s < 600 \\ 1 & s \ge 600 \end{cases}$$

> Exemplo 5

Suponha uma carteira composta por 2 apólices identicamente distribuídas e independentes.

$\overline{X_i}$	R\$0,00	R\$1000,00	R\$2000,00	R\$3000,00
$P(X_i)$	0,6	0,02	0,06	0,32

Modelando essa carteira de acordo com $\,$ modelo de $\,$ risco individual. Obtenha a função de probabilidade de S_{ind} .

X	i ·	R\$0,00	R\$1000,00	R\$2000,00	R\$3000,00
P(X	(X_i)	0,6	0,02	0,06	0,32
	$p_S(s)$	$=p_{X_1}*p$	$p_{X_2}(s) = \sum_{\forall x_1 \le s}$		$p_{X_1}(x_1)$
S			$S(X_1, X_2)$		P_S
0		(0,0)			
1000		(1000,0) (0,1000)			0,024
2000	(2	(2000,0)(1000,1000)(0,2000)			0,0724
3000	(3000,0	(3000,0)(2000,1000)(1000,2000)(0,3000)			0,3864
4000	(300	(3000,1000)(2000,2000)(1000,3000)			
5000		(3000,2000)(2000,3000)			0,0384
6000	(3000,3000)			0,1024	

> Exemplo 6

Suponha uma carteira composta por 2 apólices identicamente distribuídas e independentes.

X_i	R\$0,00	R\$1000,00	R\$2000,00	R\$3000,00
$P(X_i)$	0,6	0,02	0,06	0,32

Modelando essa carteira de acordo com modelo de **risco coletivo.** Obtenha a função de probabilidade de S_{col} .

Solução:	X _i	$P(X_i = x_i)$	I _i	$P(I_i = i_i)$	$B_i = (X_i I_i = 1)$	$P(B_i = b_i)$
	R\$0,00	0,6	0	0,6		
	R\$1000,00	0,02	1	0,4	R\$1000,00	$\frac{0,02}{0,4} = 0,05$
	R\$2000,00	0,06			R\$2000,00	$\frac{0,06}{0,4} = 0,15$
	R\$3000,00	0,32			R\$3000,00	$\frac{0,32}{0,4} = 0.8$

N	$P(N) = {2 \choose n} 0,4^n 0,6^{2-n}$	S_{col}	Possíveis valores para S_{col} .
0	0,36	$S_{col} = 0$	
1	0,48	$S_{col} = X_i \ \forall \ i = 1,2$	$\{R\$1000, R\$2000, R\$3000\}$
2	0,16	$S_{col} = X_1 + X_2$	$\{R\$2000, R\$3000, R\$4000, R\$5000, R\$6000\}$

$$p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_N(k)$$

$$p^{*k}(s) = p(X_1 + X_2 + \dots + X_k = s)$$

Quando X é discreto tem-se

$$p^{*0}(s) = \begin{cases} 0 \text{ se } s \neq 0 \\ 1 \text{ se } s = 0 \end{cases}$$

$$p^{*k}(s) = \sum_{h \le s} p^{*k-1}(s-h)p(h)$$

Considere h como um dos valores possíveis para X.

	P(N=0)=0,36	P(N=1)=0,48	P(N=2)=0,16
S_{col}	N = 0	N = 1	N=2
0	$p^{*0}(0) = 1$	$p^{*1}(0) = 0$	$p^{*2}(0) = 0$
1000	$p^{*0}(1000) = 0$	$p^{*1}(1000) = 0.05$	$p^{*2}(1000) = 0$
2000	$p^{*0}(2000) = 0$	$p^{*1}(2000) = 0.15$	$p^{*2}(2000) = 0,0025$
3000	$p^{*0}(3000) = 0$	$p^{*1}(3000) = 0.8$	$p^{*2}(3000) = 0.015$
4000	$p^{*0}(4000) = 0$	$p^{*1}(4000) = 0$	$p^{*2}(4000) = 0,1025$
5000	$p^{*0}(5000) = 0$	$p^{*1}(5000) = 0$	$p^{*2}(5000) = 0.24$
6000	$p^{*0}(6000) = 0$	$p^{*1}(6000) = 0$	$p^{*2}(6000) = 0,64$
	1	1	1

$$p_{S_{col}}(s) = \sum_{k=0}^{n} p^{*k}(s) p_N(k)$$

$$p_{S_{col}}(s) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.2 & 0 \\ 0 & 0.7 & 0.04 \\ 0 & 0.1 & 0.28 \\ 0 & 0 & 0.53 \\ 0 & 0 & 0.14 \\ 0 & 0 & 0.01 \end{bmatrix} \xrightarrow{P_N(0)} P_N(1)$$

$$s = 0$$

$$p^{*0}(s)$$

$$s = 1000$$

$$4 \quad s = 2000$$

$$p_{Scol}(s) = \begin{cases} 0,36 & s = 0 \\ 0,0240 & s = 1000 \\ 0,0724 & s = 2000 \\ 0,3864 & s = 3000 \\ 0,0164 & s = 4000 \\ 0,0384 & s = 5000 \\ 0,1024 & s = 6000 \end{cases}$$

$$\frac{S}{0} \frac{S(X_{1}, X_{2})}{0} \frac{P_{S}}{0}$$

$$\frac{1000}{1000} \frac{(0,0)}{(1000,0)(0,1000)} \frac{0,024}{0,0240}$$

$$\frac{2000}{3000} \frac{(2000,0)(1000,1000)(0,2000)}{(3000,1000)(2000,1000)(1000,2000)(0,3000)} \frac{0,0724}{0,0384}$$

$$\frac{4000}{4000} \frac{(3000,1000)(2000,2000)(1000,3000)}{(3000,2000)(2000,3000)} \frac{0,0164}{0,0384}$$

$$\frac{5000}{5000} \frac{(3000,2000)(2000,3000)}{(3000,2000)(2000,3000)} \frac{0,0384}{0,1024}$$

$$E(S_{ind}) = \sum_{i=1}^{2} E(B_{i})q_{i}$$

$$E(S_{ind}) = \sum_{i=1}^{2} E(B_{i})q_{i}$$

$$E(S_{ind}) = 2200$$

$$var(S_{ind}) = \sum_{i=1}^{2} [var(B_{i})q_{i} + E(B_{i})^{2}var(I_{i})]$$

$$var(S_{col}) = E(X)^{2}var(N) + E(N)var(X)$$

$$var(S_{col}) = 3860000$$

Calcule o valor de prêmio puro de modo que a probabilidade do sinistro o superar não exceda a 5% utilizando o principio do percentil, (utilizando aproximação pela distribuição normal)

Calcule o valor de prêmio puro de modo que a probabilidade do sinistro o superar não exceda a 5% utilizando o principio do percentil, (utilizando aproximação pela distribuição normal)

$$P(S_{col} \leq \Pi_S) = 0.95$$

$$P\left(Z \le \frac{\Pi_S - E(S_{col})}{\sigma_{S_{col}}}\right) = 0.95$$

$$\frac{\Pi_S - E(S_{col})}{\sigma_{S_{col}}} = z_{0,95}$$

$$\Pi_S = E(S_{col}) + \sigma_{S_{col}} z_{0,95}$$

$$\Pi_S = 2200 + 1964,688 (1,645) = R$5431,91$$

$$p_{Scol}(s) = \begin{cases} 0,36 & s = 0 \\ 0,0240 & s = 1000 \\ 0,0724 & s = 2000 \\ 0,3864 & s = 3000 \\ 0,0164 & s = 4000 \\ 0,0384 & s = 5000 \\ 0,1024 & s = 6000 \end{cases}$$

Calcule o prêmio puro de risco considerando que o limite de indenização para essa carteira seja de R\$4000,00.

$$p_{Scol}(s) = \begin{cases} 0,36 & s = 0 \\ 0,0240 & s = 1000 \\ 0,0724 & s = 2000 \\ 0,3864 & s = 3000 \\ 0,0164 & s = 4000 \\ 0,0384 & s = 5000 \\ 0,1024 & s = 6000 \end{cases}$$

Calcule o prêmio puro de risco considerando que o limite de indenização para essa carteira seja de R\$4000,00.

$$Y = \begin{cases} S_{col}, & S_{col} < 4000 \\ 4000, & S_{col} \ge 4000 \end{cases}$$

$$\Pi_Y = E(Y) = E(S_{col}; 4000)$$

$$\Pi_Y = \sum_{s=0}^{3000} s \, p(s) + \sum_{s=4000}^{6000} 4000 \, p(s) = R\$1956.8$$

Fórmula recursiva de Panjer

Alguns modelos de probabilidade podem ser escritos como

$$P(n) = P(n-1)\left(a + \frac{b}{n}\right), n = 1,2,3,...$$

A família de distribuição (a,b) de Panjer.

Fórmula recursiva de Panjer

$$P(n) = P(n-1)\left(a + \frac{b}{n}\right), n = 1,2,3,...$$

• Poisson(λ)

$$P(N = n) = \frac{e^{-\lambda} \lambda^n}{n!}$$

$$P(N = n) = \frac{\lambda}{n} P(N = n - 1)$$

$$a=0,$$
 $b=\lambda$ e $P(N=0)=e^{-\lambda}$.

• **Binomial**(k, q)

$$P(N = n) = \binom{k}{n} q^n (1 - q)^{k - n}$$

$$P(N = n) = \frac{(k - n + 1)q}{n(1 - q)}P(N = n - 1)$$

$$a = -\frac{q}{1-q}, b = \frac{(k+1)q}{1-q} e$$

$$P(N=0) = (1-q)^k.$$

• Binomial Negativa (r, q)

$$P(N = n) = \binom{n+r-1}{n} q^r (1-q)^n$$

$$P(N=n) = \frac{r+n-1}{n}P(N=n-1)$$

$$a = 1 - q, b = \frac{r-1}{1-q} e P(N = 0) = (1-q)^n.$$

Considere que o número de sinistros N tal que $N \sim Po(5)$, calcule P(N=3)?

SOLUÇÃO

$$P(N=3) = \frac{e^{-5}5^3}{3!} \approx 0,140$$

ou

$$P(N=n) = \frac{\lambda}{n} P(N=n-1) \ a = 0, \quad b = 3 \quad \text{e} \quad P(N=0) = e^{-5}.$$

$$P(N = 3) = \frac{5}{3}P(N = 2)$$

$$P(N = 3) = \frac{5}{3}\frac{5^{2}}{2}e^{-5} = \frac{5^{3}}{3!}e^{-5}$$

$$P(N = 2) = \frac{5}{2}P(N = 1)$$

$$P(N = 2) = \frac{5}{2}5e^{-5} = \frac{5^{2}}{2}e^{-5}$$

$$P(N = 1) = \frac{5}{1}P(N = 0) = \frac{5}{2}e^{-5}$$

Fórmula recursiva de Panjer

$$P(n) = P(n-1)\left(a + \frac{b}{n}\right), n = 1,2,3,...$$

• Poisson(λ)

$$P(N = n) = \frac{e^{-\lambda} \lambda^n}{n!}$$

$$P(N = n) = \frac{\lambda}{n} P(N = n - 1)$$

$$a = 0, \quad b = \lambda \quad \mathbf{e} \quad P(N = 0) = e^{-\lambda}.$$

• Binomial(k, q)

$$P(N = n) = \binom{k}{n} q^n (1 - q)^{k - n}$$

$$P(N = n) = \frac{(k - n + 1)q}{n(1 - q)} P(N = n - 1)$$

$$a = -\frac{q}{1 - q}, b = \frac{(k + 1)q}{1 - q} e P(N = 0) = (1 - q)^k.$$

poi<-function(n,λ){
 if(n==0){
 poi<-exp(-λ)
 } else{
 poi<-(λ/n)*poi(n-1,λ)
 }
 return(poi)
}</pre>

Bin<-function(n,k,q){
 if(n==0){
 Bin<-(1-q)^k
 } else{
 Bin<-((k-n+1)*q)/(n*(1-q))*Bin(n-1,k,q)

return(Bin)

Fórmula recursiva de Panjer para $P(S_{col})$

• Sendo $S_{col} = \sum_{i=1}^{N} X_i$, então:

$$P(S=s) = \frac{1}{1 - aP(X=0)} \sum_{i \in S} \left[\left(a + \frac{bi}{s} \right) P(X=i) P(S=s-i) \right]$$

em que a e b vem da distribuição de N.

N	$P(N) = \binom{2}{n} 0,4^{n} 0,6^{2-n}$	S_{col}	Possíveis valores para S_{col} .
0	0,36	$S_{col} = 0$	0,05 0,15 0,8
1	0,48	$S_{col} = X_i \ \forall \ i = 1,2$	{ <i>R</i> \$1000, <i>R</i> \$2000, <i>R</i> \$3000}
2	0,16	$S_{col} = X_1 + X_2$	$\{R\$2000, R\$3000, R\$4000, R\$5000, R\$6000\}$

$$P(S=s) = \frac{1}{1 - aP(X=0)} \sum_{i \in S} \left[\left(\frac{a}{s} + \frac{bi}{s} \right) P(X=i) P(S=s-i) \right]$$

$$P(S=s) = \frac{1}{1 + \frac{q}{1-q}P(X=0)} \sum_{i < s} \left[\left(-\frac{q}{1-q} + \frac{(k+1)qi}{(1-q)s} \right) P(X=i) P(S=s-i) \right]$$

$$P(S=s) = \sum_{i=1000}^{S} \left[\left(-\frac{0.4}{0.6} + \frac{2i}{s} \right) P(X=i) P(S=s-i) \right]$$

N	$P(N) = \binom{2}{n} 0,4^{n} 0,6^{2-n}$	S_{col}	Possíveis valores para S_{col} .
0	0,36	$S_{col} = 0$	0,05 0,15 0,8
1	0,48	$S_{col} = X_i \ \forall \ i = 1,2$	{ <i>R</i> \$1000, <i>R</i> \$2000, <i>R</i> \$3000}
2	0,16	$S_{col} = X_1 + X_2$	$\{R\$2000, R\$3000, R\$4000, R\$5000, R\$6000\}$

$$P(S=s) = \sum_{i=1}^{S} \left[\left(-\frac{0.4}{0.6} + \frac{2x_i}{s} \right) P(X=x_i) P(S=s_{i-1}) \right]$$

•
$$P(S = 0) = P(N = 0) = 0.36$$

•
$$P(S = 1000) = \left(-\frac{0.4}{0.6} + \frac{2 \times 1000}{1000}\right) P(X = 1000) P(S = 0) = 0.024$$

•
$$P(S = 2000) = \left(-\frac{0.4}{0.6} + \frac{2 \times 1000}{2000}\right) P(X = 1000) P(S = 1000) + \left(-\frac{0.4}{0.6} + \frac{2 \times 2000}{2000}\right) P(X = 1000) P(S = 10$$

