Нижегородский государственный технический университет им. Р.Е. Алексеева

МОДЕЛЬ И АЛГОРИТМЫ РАСПОЗНАВАНИЯ ДОРОЖНЫХ ЗНАКОВ

Выполнила: Густякова А.П., М18-ИВТ-3

Научный руководитель: к.т.н., доцент, Гай В.Е.

Нижний Новгород, 2020 г.

Цель работы и задачи исследования

Цель: разработка и исследование новых моделей и алгоритмов решения задачи обнаружения объектов на изображении с использованием глобального признакового описания.

Задачи:

- Обзор и анализ существующих методов решения задачи, определение их достоинств и недостатков
- Создание модели обнаружения объекта на изображении
- Создание нового алгоритма формирования глобального признакового описания изображения
- > Создание модели классификации объектов
- Проведение вычислительного эксперимента для установления корректности работы созданных моделей и алгоритмов

Этапы решения задачи

Научная новизна

- Научная новизна данного метода детектирования дорожных знаков на изображении заключается в подходе, разработанном на основе теории активного восприятия
- Теория активного восприятия применяется на этапе формирования признакового описания

Подготовка системы

Инициализация системы для локализации знаков

Инициализация системы для классификации знаков

Распознавание дорожных знаков на изображении

Локализация знаков на изображении

Для локализации знаков выбрана нейронная сеть SSD. Нейронная сеть SSD хорошо работает на графических процессорах среднего уровня и имеет оптимальное соотношение скорости и точности для данной задачи.

Разметка знаков для локализации

- Для обучения нейронной сети локализации, искомые знаки размечались подобным образом на фотографиях
- Размер датасета для локализации 200 изображений

Предварительная обработка

- Изображения представлены в формате RGB
- Преобразование изображения в функцию яркости:

$$I(x,y) = \frac{(R_{xy} + G_{xy} + B_{xy})}{3}, x \in X, y \in Y$$

Нормирование изображения

Признаковое описание. U-преобразование

Признаковое описание. Q-преобразование

Разбиваем изображение на блоки размером $\frac{N}{4} \times \frac{M}{4}$

$$\frac{N}{4} \times \frac{M}{4} = \frac{8}{4} \times \frac{8}{4} = 2 \times 2$$

0.1	0.1	0	0.3	0.1	0.1	0	0
0.2	0.2	0	0	0.2	0.2	0	0.7
0	0	8.0	0.7	0	0.2	8.0	0.7
0.1	0	0.9	1	0	0	0.9	1
0.1	0.1	0	0	0.1	0.1	0	0
	0.1						
0.2		0	0	0.2	0.2	0	0

Матрица
$$I$$
 размером $8 \times 8 (N \times M)$ пикселей

Q-преобр.
$$0.6 \qquad 0.3 \qquad 0.6 \qquad 0.7$$

$$B_{kl} = \sum_{i=1}^{2} \sum_{j=1}^{2} A_{kl}[i,j] \qquad 0.6 \qquad 0 \qquad 0.6 \qquad 0$$

$$k = \overline{1,4} \qquad l = \overline{1,4} \qquad 0.9 \qquad 3.4 \qquad 0 \qquad 3.4$$

Матрица «визуальных масс» размером 4×4 пикселей

Признаковое описание. Фильтры

Признаковое описание

Вектор спектральных коэффициентов:

если
$$\mu_i \leq 0 \longrightarrow \overline{V}_i$$

если
$$\mu_i > 0 \rightarrow V_i$$

если $\mu_i = 0 \rightarrow$ оператор V_i отсутствует в описании изображения

▶ Вычисление оператора Vi:

	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
μ=	18.2	-0.4	0.4	1.4	-1.2	-1.6	0.6	0.6	1.4	-11	11.4	-1.6	-1.2	0.4	-0.4	-13.8
	V_0	\overline{V}_1	V_2	V_3	\overline{V}_4	\overline{V}_5	V_6	V_7	V_8	\overline{V}_{9}	V_{10}	\overline{V}_{11}	\overline{V}_{12}	V_{13}	\overline{V}_{14}	\overline{V}_{15}

Признаковое описание. Алгебра групп

- С учётом возможных инверсий операторов, входящих в описание полной и замкнутой группы, всего существует 140 полных групп и 840 замкнутых
- С позиций ТАВ операторы, а также полные и замкнутые группы могут использоваться для формирования признакового описания изображения
- Итоговое описание изображения будет представлено в виде матрицы чисел, соответствующих номерам замкнутых, полных групп на операторах сложения и полных групп на операторах умножения. Иерархия представлена на рисунке, где Psi замкнутые группы, Pni полные группы, Vi операторы

Классификация на основе алгебры групп

Полные группы находят корреляционные связи между операторами, замкнутые группы - связи между полными группами. В качестве признаков для классификации используются замкнутые группы.

Классификация

▶ Классифицируемые знаки

▶ Пример изображений в обучающей выборке

Классификация

- > Размер тренировочной выборки: 3000 изображений
- > Размер тестовой выборки: 750 изображений
- > Количество классов для обучения: 10
- > Используемые признаки: замкнутые группы

Классификация

Классификатор	Точность на тестовой выборке	Точность на тренировочной выборке
KNeighborsClassifier	0.78	0.84
SVC	0.64	0.99
DecisionTreeClassifier	0.85	0.99
GradientBoostingClassi fier	0.95	0.99

Параметры классификатора

При параметрах:

- > learning rate = 0.5
- > n-estimators = 1500
- > max_depth = 6

Точность классификатора GradientBoostingClassifier:

- > 99% на тестовой выборке
- > 100% на тренировочной выборке

Вычислительный эксперимент

- 3 выборки по 12 фотографий
- ▶ 1 выборка: фотографии сделаны при дневном свете, хорошей погоде, без наклона
- 2 выборка: фотографии сделаны при дневном свете, хорошей погоде, с разными углами поворота
- > 3 выборка: фотографии сделаны в дождь/снег, в темное время суток, при искусственном освещении

Выборка	Точность
1	97 %
2	96%
3	94%

Сравнение подходов

Метод	Точность
HOG	70%
Viola-Jones	91%
Modified GHT with preprocessing	97%
Modified GHT without preprocessing	89%
ConvNet	99%
Предлагаемый метод	96%

Преимущества подхода

- Преимуществами предлагаемого подхода является то, что ТАВ позволяет вычислять, по отношению к спектральным коэффициентам, признаки более высокого уровня (за счёт использования алгебры групп)
- При вычислении U преобразования используются только операции сложения и вычитания, таким образом вычисления являются простыми и быстрыми.

Итоги работы

- ▶ Произведен обзор существующих методов решения задачи
- Предложен новый алгоритм решения задачи распознавания дорожных знаков на изображении
- ▶ Разработан программный продукт для проведения исследования на языках R, Python
- ► Разработан программный продукт, реализующий работу системы на ОС Android с помощью языка Kotlin
- Проведен вычислительный эксперимент, подтверждающий работоспособность предложенного метода

Публикации

▶ А.П. Густякова, В.Е. Гай - Модель и алгоритмы распознавания дорожных знаков // Материалы XXVI международной научно-технической конференции «Информационные системы и технологии - 2020», ИСТ-2020, Россия, Н. Новгород, 2020 г.

Спасибо за внимание!