

ELEC 3210 Introduction to Mobile Robotics Lecture 14

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

Recap L7 to L12

- Pose is the ``flow'' in the navigation paradigm
- With sensings, we estimate the poses using
- Bayes Filter
 - Particle Filter, Extended Kalman Filter, EKF SLAM
- Graph-based
 - Pose graph optimization, or with landmarks

Case Studies in L7 - L12

All with laser sensings

Particle Filter on a Given Map

3

Visual Perception This Week

- We touch upon the pose estimation using visual perception
- Cameras as sensors, Lecture 4 Sensors
- From 2D image plane to 3D pose estimation

Feature Detection

- We cannot process the entire image directly
 - "landmark detection" in LiDAR scans
- Requirements:
 - Repeatability
 - Saliency
 - Locality
 - Compactness and efficiency
- Popular features
 - Corners (FAST, Harris , ...)
 - Blob (SIFT ; SURF, ...)
 - Line (Canny, ...)

Feature Matching

- Match features in different images
 - Across multiple cameras
 - Across time
- Common methods:
 - Descriptor matching 🙂
 - Optical flow

Courtesy: Shaojie Shen

Feature (Keypoint) Detection

Image Matching

by Divan Sian

by swashford

Courtesy: Steve Seitz and Richard Szeliski

8

Harder Case

by Divan Sian

by scgbt

Even Harder Case

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Harder Still?

NASA Mars Rover Images

Look for Tiny Colored Squares...

NASA Mars Rover images with SIFT feature matches
Figure by Noah Snavely

Image Matching

Image Matching

Invariant Local Features

- Find features that are invariant to transformations
 - geometric invariance: translation, rotation, scale
 - photometric invariance: brightness, exposure, ...

Advantages of Local Features

- Locality
 - Features are local, so robust to occlusion and clutter
- Distinctiveness
 - Can differentiate a large database of objects
- Quantity
 - Hundreds or thousands in a single image
- Efficiency
 - Real-time performance achievable
- Generality
 - Exploit different types of features in different situations

More Motivation...

- Feature points are used for:
 - Image alignment (e.g., mosaics)
 - 3D reconstruction
 - Motion tracking
 - Object recognition
 - Indexing and database retrieval
 - Robot navigation
 - ... other

Want Uniqueness

- Look for image regions that are unusual
 - Lead to unambiguous matches in other images
- How to define "unusual"?

Local Measures of Uniqueness

Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad candidate?

Feature Detection

- Local measure of feature uniqueness
 - How does the window change when you shift it?
 - Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Feature Detection

- Consider shifting the window W by (u,v)
 - How do the pixels in W change?
 - Compare each pixel before and after by summing up the squared differences (SSD)
 - This defines an SSD "error" of E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

Feature Detection

Small Motion Assumption

• Taylor Series expansion of *I*:

$$I(x + u, y + v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

• If the motion (u,v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

$$\approx I(x, y) + \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

Image Gradients

$$I_x = I(x + 1, y) - I(x - 1, y)$$

$$I_y = I(x, y + 1) - I(x, y - 1)$$

- Plugging gradients into the formula on the previous slide...
- Consider shifting the window W by (u,v)
 - How do the pixels in W change?
 - Compare each pixel before and after by summing up the squared differences
 - This defines an "error" of *E(u,v)*:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in W} [I(x,y) + [I_{x} \quad I_{y}] \begin{bmatrix} u \\ v \end{bmatrix} - I(x,y) \end{bmatrix}^{2}$$

$$\approx \sum_{(x,y)\in W} [[I_{x} \quad I_{y}] \begin{bmatrix} u \\ v \end{bmatrix}]^{2}$$

This can be rewritten:

- For the example above
 - You can move the center of the window to anywhere on the blue unit circle
 - Which directions will result in the largest and smallest E values?
 - We can find these directions by looking at the **eigenvectors** of H

Quick Eigenvalue/vector Review

The eigenvectors of a matrix A are the vectors x that satisfy:

$$Ax = \lambda x$$

- The scalar λ is the **eigenvalue** corresponding to **x**
 - The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

• In our case, **A** = **H** is a 2x2 matrix, so we have

$$\det \begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} = 0$$

• The solution:

$$\lambda_{\pm} = \frac{1}{2} \Big[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \Big]$$

• Once you know λ , you find **x** by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

This can be rewritten:

$$E(u,v) = \sum_{(x,y)\in W} [u \quad v] \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

- Eigenvalues and eigenvectors of H (structure matrix)
 - Define shifts with the smallest and largest change (E value)
 - x_+ = direction of **largest** increase in E.
 - λ_{+} = amount of increase in direction x_{+}
 - x_{_} = direction of smallest increase in E.
 - λ = amount of increase in direction x_+

$$Hx_{+} = \lambda_{+}x_{+}$$

$$Hx_{-} = \lambda_{-}x_{-}$$

- How are λ_{+} , x_{+} , λ_{-} , and x_{-} relevant for feature detection?
 - What's our feature scoring function?

- How are λ_{+} , \mathbf{x}_{+} , λ_{-} , and \mathbf{x}_{-} relevant for feature detection?
 - What's our feature scoring function?
- Want E(u,v) to be *large* for small shifts in *all* directions
 - the minimum of *E(u,v)* should be large, over all unit vectors [u v]
 - this minimum is given by the smaller eigenvalue $(\lambda_{\underline{\cdot}})$ of H

Feature Detection Summary

- Here's what you do
 - Compute the gradient at each point in the image
 - Create the *H* matrix from the entries in the gradient
 - Compute the eigenvalues
 - Find points with large response (λ_{-} > threshold)
 - Choose those points where $\lambda_{\underline{\ }}$ is a local maximum as features

Feature Detection Summary

- Here's what you do
 - Compute the gradient at each point in the image
 - Create the **H** matrix from the entries in the gradient
 - Compute the eigenvalues.
 - Find points with large response (λ_{-} > threshold)
 - Choose those points where λ_{-} is a local maximum as features

λ_

Harris Corner

• λ_{-} is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

$$= \frac{\det(H)}{trace(H)}$$

- The trace is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Very similar to $\lambda_{\underline{}}$ but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

The Harris Operator

Harris Detector Example

f value (red high, blue low)

Threshold (f > value)

Find Local Maxima of f

Harris Features (in red)

Courtesy: Steve Seitz and Richard Szeliski

Invariance

- Suppose you **rotate** the image by some angle
 - Will you still pick up the same features?
- What if you change the brightness?
- Scale?

Scale invariant detection

Suppose you're looking for corners

- Key idea: find scale that gives local maximum of f
 - f is a local maximum in both position and scale

Lindeberg et al., 1996

$$f(I_{i_1\dots i_m}(x,\sigma))$$

$$f(I_{i_1\dots i_m}(x,\sigma))$$

$$f(I_{i_1\dots i_m}(x,\sigma))$$

$$f(I_{i_1\dots i_m}(x,\sigma))$$

$$f(I_{i_1\dots i_m}(x,\sigma))$$

Courtesy: Steve Seitz and Richard Szeliski

Normalize: rescale to fixed size

Feature Descriptors

- We know how to detect good points
- Next question: How to match them?

Next Lecture

- Visual Descriptor and Matching
 - SIFT Descriptor
 - RANSAC
 - Introduction to PnP (2D-3D pose estimation)

