Unit test: Integration as the area under a curve, volumes of rotation (46 marks)

1a. Consider a function f(x) such that $\int_1^6 f(x) \mathrm{d}x = 8$. Find $\int_1^6 2f(x) \mathrm{d}x$. [2 marks]

1b. Find $\int_1^6 \left(f(x)+2\right) \mathrm{d}x$. [4 marks]

2a. Find $\int_4^{10} (x-4) \mathrm{d}x$ [4 marks]

2b. Part of the graph of $f(x)=\sqrt{x-4}$, for $x\geq 4$, is shown below. The shaded region R is enclosed by the graph of f , the line x=10 , and the x-axis.

Find the area of the shaded region.

[3 marks]

3. The following diagram shows the graph of $f(x)=rac{x}{x^2+1}$, for $0\leq x\leq 4$, and the line x=4 .

Let R be the region enclosed by the graph of f , the x-axis and the line x=4.

Find the area of R. [6 marks]

BECA / Huson / 12.1 IB Math SL 8 February 2019

Name:

4a. Let $f(x) = x^2$ and $g(x) = 3 \ln(x+1)$, for x > -1.

Solve
$$f(x) = g(x)$$
. [3 marks]

4b. Find the area of the region enclosed by the graphs of f and g.

[3 marks]

5. Let $f(x) = \cos x$, for $0 \le x \le 2\pi$. The following diagram shows the graph of f .

There are x-intercepts at $x=rac{\pi}{2}, \; rac{3\pi}{2}$.

The shaded region R is enclosed by the graph of f , the line x=b , where $b>rac{3\pi}{2}$, and the x-axis. The

area of
$$R$$
 is $\left(1-rac{\sqrt{3}}{2}
ight)$. Find the value of b .

6a. A particle P moves along a straight line. Its velocity $v_{\rm P} \, \, {
m m \, s^{-1}}$ after t seconds is given by $v_{\rm P} = \sqrt{t} \sin \left(\frac{\pi}{2} t \right)$, for $0 \leqslant t \leqslant 8$. The following diagram shows the graph of $v_{\rm P}$.

Write down the first value of t at which P changes direction.

[1 mark]

6b. Find the **total** distance travelled by P, for $0 \leqslant t \leqslant 8$.

[2 marks]

6c. A second particle Q also moves along a straight line. Its velocity, $v_{\rm Q} \, {
m m \, s}^{-1}$ after t seconds is given by $v_{\rm Q} = \sqrt{t}_{\rm \ for} \, 0 \leqslant t \leqslant 8$. After k seconds Q has travelled the same total distance as P.

Find k.

[4 marks]

7a. All lengths in this question are in metres.

Let $f(x)=-0.8x^2+0.5$, for $-0.5\leqslant x\leqslant 0.5$. Mark uses f(x) as a model to create a barrel. The region enclosed by the graph of f, the x-axis, the line x=-0.5 and the line x=0.5 is rotated 360° about the x-axis. This is shown in the following diagram.

Use the model to find the volume of the barrel.

[3 marks]

7b. The empty barrel is being filled with water. The volume V ${
m m}^3$ of water in the barrel after t minutes is given by $V=0.8(1-{
m e}^{-0.1t})$. How long will it take for the barrel to be half-full? [3 marks]