Testing Hypothesis

- A statistical hypothesis is an assertion or conjecture concerning one or more populations.
- Important factors of Hypothesis Testing
- Population: The complete collection of all the elements to be studied. Sample: A sub collection of elements drawn from a population.
- Hypothesis
 - 1) Null (H_0)
 - 2) Alternative (H_a or H_1)
- Test (Statistics)
- 1) χ^2 test (Chi-square test)
- 2) t-student test or t-test
- 3) Fisher's z-test

Procedure for testing the Hypothesis:

- 1) To set the hypothesis.
- 2) To set the suitable significant level.
- 3) To set the test criteria.
- 4) Computation.
- 5) Decision.

- 1) To set the hypothesis.
 - a) Null (H_0)
 - b) Alternative (H_a or H_1)
- 2) To set the suitable significant level.

Test the validity of H_0 against H_1 at certain level of significance, i.e. 5% or 1%, etc.

One-Tail Test (left tail)

$$H_0: \mu = \mu_0$$

$$H_0: \mu = \mu_0$$

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0$$

$$H_1: \mu \neq \mu_0$$

- For 1% level of significance
 - acceptance region is $\alpha = 1\%$
- for two tailed

$$P(z_1 < z < z_2) = 1 - \alpha = 1 - 0.01 = 0.99$$

since acceptance region is symmetric about mean

$$P(z_1 < z < z_2) = \frac{0.99}{2} = 0.495$$

The area under the normal curve with 0.495 is z=2.58 rejection region is =0.5-0.495=0.005

For one tailed

right tailed:

$$P(Z > Z_{\alpha}) = \alpha = 0.01$$

 $P(O < Z < Z_1) = 0.5 - 0.01 = 0.49$

the area under the normal curve with 0.49 is $z_1 = 2.33$

left tailed:

$$P(Z < Z_{\alpha}) = \alpha = 0.01$$

 $P(O < Z < Z_2) = 0.5 - 0.01 = 0.49$

the area under the normal curve with 0.49 is $z_2 = 2.33$

• For 5% level of significance

acceptance region is $\alpha = 5\%$

for two tailed

$$P(z_1 < z < z_2) = 1 - \alpha = 1 - 0.05 = 0.95$$

since acceptance region is symmetric about mean

$$P(z_1 < z < z_2) = \frac{0.95}{2} = 0.475$$

The area under the normal curve with 0.475 is z=1.96 rejection region is =0.5-0.475=0.025

• Similarly,

3) Test Statistic

compute the test statistic
$$z=\frac{t-E(t)}{S.E.of \ t}$$

$$z=\frac{Observed\ value\ -Expected\ value}{S.E.of\ t}$$

under the null hypothesis.

here t is sample statistic

5) Decision

compare the test statistic z with the critical value z_{α} at given level of significance (α) .

if $|z| < z_{\alpha}$, we conclude that it is not significant, we <u>accept</u> the null hypothesis.

if $|z| > z_{\alpha}$, then the difference is significant and hence we <u>reject</u> the null hypothesis.

- Errors of sampling
 - (1) Type I error or α error If the Null hypothesis H_0 is true but it is rejected by test procedure, then the error made is called Type I error.
 - (2) Type II error or β error If the null hypothesis H_0 is false but it is accepted by test, the error committed is called Type II error.

	Accept H_0	Reject H_0
H_0 is true	Correct decision	Type I error
H_0 is false	Type II error	Correct decision

Test of hypothesis for large samples:

- Under large sample test, the following are the important tests to test the significance Z-TEST
 - (1). Testing the significance of single mean
 - (2). Testing the significance of difference of means
 - (3). Testing the significance of single proportion
 - (4). Testing the significance of difference of proportions

Testing the significance of single mean

- Aim: to test whether the difference between sample mean and population mean is significant or not.
- Procedure:
- Null hypothesis: let $\mu = \mu_0$
- Alternative hypothesis: may be $\mu \neq \text{ or } \mu > \mu_0 \text{ or } \mu < \mu_0$ (depending on the given data)
- Level of significance: choose either 1% or 5%

➤ Test statistic:

$$z = \frac{\bar{x} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)}$$
 (where σ is known)

Conclusion:

compare the test statistic z with the critical value z_{α} at given level of significance (α).

if $|z| < z_{\alpha}$, we conclude that it is not significant, we <u>accept</u> the null hypothesis.

if $|z| > z_{\alpha}$, then the difference is significant and hence we <u>reject</u> the null hypothesis.

Example 1:

 A company manufacturing electric bulbs claims that the average life of its bulbs is 1600 hours. The average life and standard deviation of a random sample of 100 such bulbs were 1570 hours and 120 hours respectively. Should we accept the claim of the company?

Solution:

Given mean of population $\mu=1600$, σ is unknown from a sample of n= 100, mean $\bar{x}=1570$, s=120

- let the null hypothesis be : $\mu = 1600$
- And the alternative hypothesis be: $\mu \neq 1600$
- Level of significance be: 5% then p = 1.96
- test of statistic: here σ is unknown $z = \frac{\bar{x} \mu}{\left(\underline{s}\right)} = \frac{1570 1600}{\left(\underline{120}\right)} = -2.5$

• Conclusion:

Since |z| = 2.5 > 1.96

therefore, the null hypothesis is rejected at 5% LOS.

Hence, we conclude that the claim of the company should not be accepted at 5% level of significance(LOS).