# TRAINED TERNARY QUANTIZATION

• Chenzhuo Zhu, Song Han, Huizi Mao, William J. Dally

Tensorflow

• ICLR 2017

#### Overview

• two quantization factors for positive and negative weights

• trained quantization by back propagating two gradients



Figure 1: Overview of the trained ternary quantization procedure.

#### TTQ

$$w_l^t = \begin{cases} W_l^p : \tilde{w}_l > \Delta_l \\ 0 : |\tilde{w}_l| \le \Delta_l \\ -W_l^n : \tilde{w}_l < -\Delta_l \end{cases}$$

$$\frac{\partial L}{\partial W_l^p} = \sum_{i \in I_l^p} \frac{\partial L}{\partial w_l^t(i)}, \frac{\partial L}{\partial W_l^n} = \sum_{i \in I_l^n} \frac{\partial L}{\partial w_l^t(i)}$$

 $\frac{\partial L}{\partial \tilde{w}_l} = \begin{cases} W_l^p \times \frac{\partial L}{\partial w_l^t} : \tilde{w}_l > \Delta_l \\ 1 \times \frac{\partial L}{\partial w_l^t} : |\tilde{w}_l| \le \Delta_l \\ W_l^n \times \frac{\partial L}{\partial w_l^t} : \tilde{w}_l < -\Delta_l \end{cases}$ 

(6)

(7) Here  $I_l^p = \{i | \tilde{w}_l(i) > \Delta_l \}$  and  $I_l^n = \{i | (i)\tilde{w}_l < -\Delta_l \}$ .

(8)

### QUANTIZATION HEURISTIC

different heuristics: 1) use the maximum absolute value of the weights as a reference to the layer's threshold and maintain a constant factor t for all layers:

$$\Delta_l = t \times \max(|\tilde{w}|) \tag{9}$$

and 2) maintain a constant sparsity r for all layers throughout training. By adjusting the hyper-parameter r we are able to obtain ternary weight networks with various sparsities. We use the first method and set t to 0.05 in experiments on CIFAR-10 and ImageNet dataset and use the second one to explore a wider range of sparsities in section 5.1.1.

## Experiments

| Model     | Full resolution | Ternary (Ours) | Improvement |
|-----------|-----------------|----------------|-------------|
| ResNet-20 | 8.23            | 8.87           | -0.64       |
| ResNet-32 | 7.67            | 7.63           | 0.04        |
| ResNet-44 | 7.18            | 7.02           | 0.16        |
| ResNet-56 | 6.80            | 6.44           | 0.36        |

Table 1: Error rates of full-precision and ternary ResNets on Cifar-10

| Error | Full precision | 1-bit<br>(DoReFa) | 2-bit<br>(TWN) | 2-bit<br>(Ours) |
|-------|----------------|-------------------|----------------|-----------------|
| Top1  | 42.8%          | 46.1%             | 45.5%          | 42.5%           |
| Top5  | 19.7%          | 23.7%             | 23.2%          | 20.3%           |

Table 2: Top1 and Top5 error rate of AlexNet on ImageNet

| Error | Full precision | 1-bit<br>(BWN) | 2-bit<br>(TWN) | 2-bit<br>(Ours) |
|-------|----------------|----------------|----------------|-----------------|
| Top1  | 30.4%          | 39.2%          | 34.7%          | 33.4%           |
| Top5  | 10.8%          | 17.0%          | 13.8%          | 12.8%           |

Table 3: Top1 and Top5 error rate of ResNet-18 on ImageNet