ОТВЕТЫ НА ВОПРОСЫ по ХиУД ЛР3

СОДЕРЖАНИЕ

ЧАСТЬ 1	3
1. Уровни инфраструктуры ЦОД	3
2. Компоненты и функции каждого уровня ЦОД	
3. Межуровневые функции в ЦОД	
4. Отличия лучшей в своем классе инфраструктуры и конвергированной	
инфраструктуры	
5. Физические и логические компоненты вычислительной системы	4
6. Типы вычислительных систем	4
7. Виртуализация вычислительных ресурсов, гипервизор и виртуальная	
машина	5
8. Виртуализация приложений и используемые для этого методы	5
9. Виртуализация рабочих мест, используемые для этого методы	5
10. Развитие архитектуры систем хранения данных	5
11. Типы устройств хранения данных	
12. Возможности подключения вычислительной системы к вычислитель	ной
системе и к системе хранения	
13. Протоколы подключения систем хранения	
14. Архитектура программно-определяемого ЦОД	
15. Программно-определяемый контроллер	
16. Преимущества программно-определяемой архитектуры	
ЧАСТЬ 2	
1. Компоненты интеллектуальной системы хранения	
2. Компоненты, адресация и производительность жестких дисков (HDD)	
3. Компоненты, адресация и производительность твердых дисков (SSD)	8
4. Описание методов реализации массивов RAID	
5. Описание трех методов RAID	
6. Описание часто используемых уровней RAID	
7. Описание воздействия массивов RAID на производительность	
8. Сравнение уровней RAID исходя из стоимости, производительности и	
защиты	
9. Методы доступа к данным	
10. Типы интеллектуальных систем хранения	
11. Вертикально и горизонтально масштабируемые архитектуры	11

ЧАСТЬ 1.

1. Уровни инфраструктуры ЦОД

Центр обработки данных (ЦОД) имеет несколько уровней, которые обеспечивают масштабируемость, доступность и управление инфраструктурой:

- **Физический уровень**: включает в себя серверы, системы хранения, сетевое оборудование, источники бесперебойного питания (ИБП), кондиционеры и системы безопасности.
- Уровень виртуализации: включает гипервизоры и виртуализированные ресурсы (виртуальные машины, виртуальные хранилища).
- Уровень оркестрации: управление виртуализированными ресурсами, автоматизация процессов развертывания, масштабирования и мониторинга.
- Уровень приложения: взаимодействие с конечными пользователями через приложения, работающие на виртуализированных или физических серверах.

2. Компоненты и функции каждого уровня ЦОД Физический уровень:

- Компоненты: серверы, системы хранения данных, сетевые устройства, ИБП, системы охлаждения.
- Функции: предоставление физической инфраструктуры для размещения вычислительных ресурсов и хранения данных, поддержание надежности и устойчивости работы.

Уровень виртуализации:

- Компоненты: гипервизоры, виртуальные машины, виртуальные хранилища.
- Функции: создание виртуальных ресурсов, изоляция ресурсов, эффективное использование аппаратных средств.

Уровень оркестрации:

- Компоненты: системы управления виртуальными машинами, автоматизация процессов.
- **Функции**: автоматическое распределение ресурсов, управление нагрузкой, мониторинг и управление состоянием инфраструктуры.

Уровень приложения:

- Компоненты: приложения и сервисы, работающие в виртуализированной среде.
- Функции: взаимодействие с пользователями, обработка данных, выполнение бизнес-логики.

3. Межуровневые функции в ЦОД

Межуровневые функции в ЦОД включают:

- Мониторинг и управление: отслеживание состояния инфраструктуры на всех уровнях (физическом, виртуальном, оркестрационном).
- Масштабирование: автоматическое добавление ресурсов (серверов, хранилищ) в зависимости от нагрузки.
- Резервирование и восстановление: обеспечение отказоустойчивости и быстрого восстановления после сбоев.
- **Безопасность**: обеспечение защиты данных и инфраструктуры на всех уровнях.

4. Отличия лучшей в своем классе инфраструктуры и конвергированной инфраструктуры

Лучшая в своем классе инфраструктура: это высококачественные, лучшие решения для каждой категории (например, лучший сервер, лучший блок хранения данных, лучшие сети и т. д.). Она предоставляет максимальную гибкость, но требует больше усилий по интеграции.

Конвергированная инфраструктура: интегрированное решение, которое объединяет вычислительные, сетевые и системы хранения в одном комплекте. Она упрощает развертывание, но может ограничивать гибкость в выборе отдельных компонентов.

5. Физические и логические компоненты вычислительной системы

Физические компоненты: процессоры, память, хранилища, сетевые устройства, интерфейсы ввода-вывода.

Логические компоненты: операционная система, виртуальные машины, приложения, сетевые протоколы и сервисы, которые управляют физическими ресурсами и их взаимодействием.

6. Типы вычислительных систем

Персональные компьютеры: для индивидуальных пользователей.

Серверы: для обработки больших объемов данных, обеспечивающие сервисы для множества пользователей.

Системы для больших данных: для анализа и хранения данных больших объемов.

Системы в облаке: для удаленной обработки данных и предоставления вычислительных ресурсов по запросу.

7. Виртуализация вычислительных ресурсов, гипервизор и виртуальная машина

Виртуализация вычислительных ресурсов позволяет создавать виртуальные экземпляры аппаратных ресурсов, которые работают независимо друг от друга.

Гипервизор — это программное обеспечение, которое управляет виртуальными машинами. Он может быть **тип 1** (работает напрямую на аппаратуре, например VMware ESXi) или **тип 2** (работает поверх операционной системы, например VirtualBox).

Виртуальная машина (ВМ) — это программная эмуляция компьютера, которая выполняет приложения так, как если бы она была физической машиной.

8. Виртуализация приложений и используемые для этого методы

Виртуализация приложений включает в себя создание изолированных сред для запуска приложений на одном и том же сервере без необходимости их полного переноса на виртуальную машину.

Методы:

- **Контейнеризация** (например, Docker) приложения и их зависимости упаковываются в контейнеры, которые могут быть развернуты на любом сервере.
- **Программные виртуализаторы приложений** (например, Microsoft App-V) изоляция приложения от операционной системы.

9. Виртуализация рабочих мест, используемые для этого методы

Виртуализация рабочих мест (VDI — Virtual Desktop Infrastructure) позволяет предоставлять пользователям доступ к виртуальным рабочим столам.

Метолы:

- **Традиционная VDI** каждый пользователь имеет отдельный виртуальный рабочий стол.
- **Программная виртуализация приложений** приложения виртуализированы и запускаются на сервере, а пользователи получают доступ к ним через клиент.

10. Развитие архитектуры систем хранения данных

Системы хранения данных развиваются от простых локальных решений до распределенных и облачных систем с акцентом на:

- 1. Высокую доступность и отказоустойчивость.
- 2. Масштабируемость.
- 3. Поддержку различных типов данных и рабочих нагрузок (блочное, файловое, объектное хранение).

11. Типы устройств хранения данных

Жесткие диски (HDD) — традиционные устройства хранения, обеспечивающие высокую емкость.

Твердотельные накопители (SSD) — более быстрые, но дороже HDD.

Ленточные устройства — используемые для долговременного архивного хранения данных.

Системы SAN (Storage Area Network) — сети хранения данных, соединяющие серверы и устройства хранения.

Системы NAS (Network Attached Storage) — устройства хранения, доступные по сети.

12. Возможности подключения вычислительной системы к вычислительной системе и к системе хранения

Подключение к вычислительной системе: через сетевые интерфейсы (Ethernet, InfiniBand, Fibre Channel).

Подключение к системе хранения: через NAS, SAN, iSCSI, Fibre Channel.

13. Протоколы подключения систем хранения

Fibre Channel — высокоскоростной протокол для подключения SAN.

iSCSI — IP-ориентированный протокол для подключения системы хранения.

NFS и SMB/CIFS — протоколы для подключения NAS.

FCoE — интеграция Fibre Channel в Ethernet-сети.

14. Архитектура программно-определяемого ЦОД

Программно-определяемый ЦОД (SDDC) использует автоматизацию и виртуализацию для управления всеми аспектами инфраструктуры: вычислительными ресурсами, хранилищем, сетью и даже безопасностью.

15. Программно-определяемый контроллер

Программно-определяемый контроллер — это программный компонент, который управляет и контролирует различные элементы инфраструктуры в программно-определяемом ЦОД, например, сетевое оборудование или устройства хранения.

16. Преимущества программно-определяемой архитектуры

Гибкость: возможность изменения конфигурации и развертывания ресурсов по запросу.

Автоматизация: автоматическое управление инфраструктурой, что снижает затраты и ошибки.

Масштабируемость: лёгкое расширение ресурсов без вмешательства в физическую инфраструктуру.

Интеграция: возможность интеграции различных технологий и решений в рамках одной системы.

ЧАСТЬ 2

1. Компоненты интеллектуальной системы хранения

Интеллектуальная система хранения данных (Intelligent Storage System) — это система, которая использует интеллектуальные технологии для управления данными, обеспечивая автоматическое распределение данных и оптимизацию их хранения. Основные компоненты интеллектуальных систем хранения:

Контроллеры хранения: управляют процессом чтения и записи данных, обеспечивают интерфейсы для подключения к системам.

Механизмы кэширования: используются для ускорения доступа к данным путем хранения часто используемых данных в быстрых запоминающих устройствах.

Средства мониторинга и управления: для контроля за состоянием системы хранения, мониторинга производительности и предсказания сбоев.

Механизмы балансировки нагрузки: направляют запросы на наименее загруженные устройства хранения.

Программное обеспечение для виртуализации и управления данными: обеспечивают виртуализацию хранения, автоматизацию процессов и предоставляют интерфейсы для администрирования.

2. Компоненты, адресация и производительность жестких дисков (HDD)

Компоненты HDD:

- Пластина: диск, на который записываются данные.
- Чтение/запись головки: отвечает за чтение и запись данных с/на пластину.
- Мотор: вращает пластину.
- Электроника: контролирует работу устройства.

Адресация HDD:

- Сектора и кластеры: данные на жестком диске адресуются через логические сектора (обычно по 512 байт или 4КБ).
- Цилиндры: определяется местоположение данных на диске с учетом расположения головки и сектора.

Производительность HDD:

- Скорость вращения: выражается в оборотах в минуту (RPM). Чем выше скорость вращения, тем быстрее данные могут быть прочитаны или записаны.
- Время поиска: время, которое нужно для перемещения головки к нужному месту.
- **Пропускная способность**: определяется скоростью передачи данных и зависит от интерфейса подключения (например, SATA, SAS).

3. Компоненты, адресация и производительность твердых дисков (SSD)

Компоненты SSD:

- **Чипы NAND флеш-памяти**: основной элемент для хранения данных.
- **Контроллер SSD**: управляет чтением/записью данных, кэшированием и управлением носителями.
- **Кэш-память** (например, DRAM или SLC cache): используется для временного хранения данных, ускоряя операции записи.

Адресация SSD:

- Страницы и блоки: данные в SSD хранятся в страницах (обычно 4–16 КБ), которые группируются в блоки.
- Логическая адресация: использует карты отображения логических блоков (LBA) для адресации.

Производительность SSD:

- **Частота чтения/записи**: зависит от типа флеш-памяти (например, TLC, MLC, SLC).
- **Время отклика**: значительно ниже, чем у HDD, поскольку нет механических частей.
- **Пропускная способность**: высокая скорость передачи данных (например, до 5000 МБ/с для SSD с интерфейсом PCIe NVMe).

4. Описание методов реализации массивов RAID

RAID (Redundant Array of Independent Disks) — это технологии, которые используют несколько жестких дисков или SSD для повышения производительности и отказоустойчивости. Методы реализации массивов RAID включают:

RAID 0 (Striping): данные разделяются между дисками без дублирования. Повышает производительность, но не предоставляет избыточности.

RAID 1 (Mirroring): данные дублируются на двух и более дисках, обеспечивая отказоустойчивость.

- **RAID 5** (Striping with Parity): данные распределяются по всем дискам, а избыточные данные (параллельные данные для восстановления) хранятся на одном из дисков. Защищает от отказа одного диска.
- **RAID 6 (Double Parity)**: аналог RAID 5, но с дополнительной параллельной защитой для двух дисков.

5. Описание трех методов RAID

RAID 0 (Striping):

- Особенность: данные равномерно распределяются по всем дискам массива.
- Преимущества: высокая производительность (нет избыточности, максимальная скорость).
- **Недостатки**: отсутствие избыточности отказ одного диска приведет к потере данных.

RAID 1 (Mirroring):

- Особенность: данные зеркалируются, то есть одинаковые данные записываются на два или более диска.
- Преимущества: высокая отказоустойчивость (один диск может выйти из строя, данные останутся).
- **Недостатки**: удвоение стоимости хранения (неэффективное использование дисков).

RAID 5 (Striping with Parity):

- Особенность: данные и контрольные суммы (параллельная информация) распределяются по всем дискам массива.
- Преимущества: хорошее сочетание отказоустойчивости и производительности. Может восстанавливать данные при отказе одного диска.
- Недостатки: процесс восстановления данных может занять значительное время, если диск выходит из строя.

6. Описание часто используемых уровней RAID

- **RAID 0**: используется для повышения производительности без избыточности.
- **RAID 1**: применяется для обеспечения отказоустойчивости и защиты данных.
- **RAID** 5: применяется в сценариях, где требуется баланс производительности, защиты данных и экономии пространства.
- **RAID** 6: используется в сценариях, требующих дополнительной защиты, позволяя потерять два диска, не потеряв данные.

7. Описание воздействия массивов RAID на производительность

RAID 0: максимальная производительность за счет параллельного чтения и записи на несколько дисков. Однако отсутствие избыточности делает его неустойчивым к сбоям.

RAID 1: высокая доступность, но производительность записи ограничена из-за необходимости синхронной записи на два диска.

RAID 5: хорошая производительность чтения, но запись медленнее изза необходимости вычисления паритета. Отказоустойчивость — потеря одного диска не приводит к потере данных.

RAID 6: имеет характеристики RAID 5, но с улучшенной защитой за счет дополнительного паритета. Однако производительность записи еще ниже из-за дополнительной вычислительной нагрузки.

8. Сравнение уровней RAID исходя из стоимости, производительности и защиты

RAID 0:

- Стоимость: минимальная (нет избыточности).
- Производительность: высокая (максимальная скорость).
- Защита: отсутствует (при потере одного диска данные теряются).

RAID 1:

- Стоимость: высокая (нужно удваивать дисковое пространство).
- Производительность: средняя (низкая производительность записи, высокая чтения).
- Защита: высокая (данные зеркалируются).

RAID 5:

- Стоимость: средняя (один диск используется для паритета).
- Производительность: высокая (хорошая производительность чтения, средняя записи).
- Защита: высокая (потеря одного диска не приводит к потере данных).

RAID 6:

- Стоимость: высокая (два диска используются для паритета).
- **Производительность**: ниже, чем у RAID 5, из-за дополнительного паритета.
- Защита: очень высокая (потеря двух дисков возможна без потери данных).

9. Методы доступа к данным

Прямой доступ (Direct Access): данные записываются и считываются с использованием уникальных адресов (например, с жесткого диска).

Последовательный доступ: данные считываются по порядку, как в лентах или на магнитных кассетах.

Параллельный доступ: данные могут считываться одновременно с нескольких устройств, например в RAID-массивах.

10. Типы интеллектуальных систем хранения

Централизованные интеллектуальные системы хранения: все данные и операции управления хранятся и обрабатываются в одном месте.

Распределенные интеллектуальные системы хранения: данные распределены по множеству узлов, и система автоматически управляет их расположением и доступом.

Гибридные системы: сочетание централизованных и распределенных подходов для оптимизации производительности и отказоустойчивости.

11. Вертикально и горизонтально масштабируемые архитектуры

Вертикальное масштабирование (Scale-Up): увеличение мощности существующих серверов или устройств хранения путем добавления ресурсов (например, увеличение объема памяти, процессоров, дисков в одном сервере).

Горизонтальное масштабирование (Scale-Out): добавление новых узлов или устройств хранения в систему для увеличения общей мощности (например, добавление дополнительных серверов или дисков в кластер).