

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alcassedan, Virginia 22313-1450 www.emplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/706,282	11/13/2003	Aviv Bachar	82031-0016US	5641
27623 7590 11/19/2009 OHLANDT, GREELEY, RUGGIERO & PERLE, LLP ONE LANDMARK SQUARE, 10TH FLOOR			EXAMINER	
			COLUCCI, MICHAEL C	
STAMFORD, CT 06901			ART UNIT	PAPER NUMBER
			2626	
			MAIL DATE	DELIVERY MODE
			11/19/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/706,282 BACHAR ET AL Office Action Summary Examiner Art Unit MICHAEL C. COLUCCI 2626 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 28 August 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4)\(\times\) Claim(s) 1-3.9-12.15-19.21.23.25-30.32-39.41-43.46 and 47 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-3,9-12,15-19,21,23,25-30,32-39,41-43,46 and 47 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413)

PTOL-326 (Rev. 08-06)

Notice of Draftsparson's Catent Drawing Review (CTO-948)

Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date _______

Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Art Unit: 2626

DETAILED ACTION

Response to Arguments

Applicants arguments with respect to claims 1 and 19 have been considered but are moot in view of the new grounds of rejection. Examiner believes that the combinational selection of the first analysis component and the second analysis component for the purposes of together rendering the second analysis component to require more computing resources than the first analysis component overcome the teaching of Scarano, wherein Examiner believes that even though Scarano teaches various analysis routines such as word spotting and CTI, selecting component order for the purposes of resource optimization is not in fact taught by Scarano. Examiner incorporates Brown while giving claims their broadest reasonable interpretation in light of the supporting disclosure without importing limitations from the specification into the claims unnecessarily. Examiner understands "the first analysis component and the second analysis component are selected such that the second analysis component requires more computing resources than the first analysis component" in light of the specification, whereby "less resource expensive analysis tests will be used in lieu of resource cheap tests to optimize the selected region so that resource expensive tests will be used on the more "interesting" segments selected for analysis" (present invention spec. [0011]). in other words, Examiner interprets the order of analysis components is selected to allocate the most resources for the most impotent data, wherein the second component is in fact the more important/interesting data. Examiner does however

Art Unit: 2626

maintain that Scarano teaches resource minimization and time minimization in CTI operations (Scarano [0010]) as well as selecting the best matches in word spotting (Scarano [0030]). Please see rejection below.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 1-3, 9, 10, 15-17, 19, 21, 23, 25-27, 29, 32-39, 41, and 46-47 are rejected under 35 U.S.C. 103(a) as being unpatentable over Scarano et al. US 20040083099 A1 (hereinafter Scarano) in view of Brown et al. US 20020093913 A1 (hereinafter Brown).

Re claims 1 and 19, Scarano teaches an apparatus for event-driven content analysis of an audio captured interaction captured in a call center, within a computerized system having a processing unit and a storage unit ([0161]), the apparatus comprising the elements of:

an audio or video recording device for recording the audio interaction ([0162]);
a pivot spot defining component for automatically marking an at least one time
position in the audio interaction that indicates the occurrence of an at least one predefined event or data item ([0030]);

a first analysis component (Fig. 19 item 1902):

Art Unit: 2626

a region of interest defining component for defining an initial region of interest, by determining the time limits of an at least one segment of the audio interaction ([0108]), the segment containing the time position of a pivot spot ([0115]),

and for activating the first analysis component for dynamically reducing the time ([0010]) limits of the initial region of interest to obtain the region of interest ([0098-0102], phrase isolation);

a second analysis component for analyzing the region of interest of the audio interaction ([0098-0102] & Fig. 19 items 1906-1908),

However, Scarano fails to teach the first analysis component and the second analysis component are selected such that the second analysis component requires more computing resources than the first analysis component.

Brown teaches a dynamic resource allocation method for selecting important data and the best order of resource operations wherein Brown teaches that besides adjusting the complexity of MCD 104 based on channel conditions, complexity controller 206 can also dynamically adjust the complexity of MCD 104 to reduce the load on host processor 201 in high load conditions or to eliminate wasteful operations, such as decompressing a compressed file that need not be compressed to begin with. To reduce the processor load in high load conditions, the data transfer-related operations can be sub-divided into component operations and then only select component operations are performed. Alternatively, the data transfer-related operations might be ranked according to their level of importance and then gradually disabled in inverse

Art Unit: 2626

order to level of importance until the demand for the host processor's resources is reduced to an acceptable level (Brown [0042] & Fig. 4).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano to incorporate the first analysis component and the second analysis component are selected such that the second analysis component requires more computing resources than the first analysis component as taught by Brown to allow for dynamically adjust the complexity of components to reduce the load or to eliminate wasteful operations, such as decompressing a compressed file that need not be compressed to begin with, wherein only certain operations are performed in an order or importance and resource consumption (Brown [0042] & Fig. 4).

Re claim 2, Scarano teaches the apparatus of claim 1 further comprising a content analysis input selector component to determine an at least one input or parameter for an at least one analyzer component ([0115])

Re claim 3, Scarano teaches the apparatus of claim 1 further comprises an analysis type selector component to identify and to select an at least one analyzer component type for determining the Region of Interest ([0098-0102].

Art Unit: 2626

Re claim 9, Scarano teaches the apparatus of claim 1 further comprises the element of an audio analyzer component to analyze the audio elements of the interaction data ([0108])

Re claim 10, Scarano teaches the apparatus of claim 1 wherein the first analysis component of the second analysis component is a computer telephony interface events analyzer component for analyzing at least one common telephony events associated with the interaction data ([0006]).

Re claim 15, Scarano teaches the apparatus of claim 14 wherein the interaction media is at least one data packet carrying voice or other media over internet protocol ([0156]).

Re claim 16, Scarano teaches the apparatus of claim 1 wherein the region of interest is a specific segment of the interaction media that is analyzed to extract meaningful interaction-specific information in an organization ([0108])

Re claim 17, Scarano teaches the apparatus of claim 1 wherein the interaction associated with an at least one computer telephony integration event occurring during the interaction ([0006]).

Art Unit: 2626

Re claim 21, Scarano teaches the method of claim 19 further comprising the step of selecting a method for the analysis of the at least one interaction media based on the at least one event associated with the interaction ([0108]).

Re claim 23, Scarano teaches the method of claim 19 further comprising the step of selecting the parameters to be used in the at least one analysis instruction step on the at least one segment of the interaction ([0098-0102] & Fig. 19 items 1906-1908).

Re claim 25, Scarano teaches the method of claim 19 wherein the region of interest is predetermined by a user or an apparatus ([0115])

Re claim 26, Scarano teaches the method of claim 19 further comprises the steps of receiving interaction data and associated meta-data from an at least one interaction ([0078]).

Re claim 27, Scarano teaches the method of claim 19 wherein the at least one first analysis or the second analysis instruction step comprises the step of analyzing the-speech elements of the interaction data for the presence of pre-defined words or phrases ([0108]).

Art Unit: 2626

Re claim 29, Scarano teaches the method of claim 19 wherein the at least one first analysis instruction step or the second analysis comprises the steps of analyzing t4ae-speech elements of the interaction data for pre-defined speech patterns ([0108]).

Re claim 32, Scarano teaches the method of claim 19 further comprises performing an at least one content analysis step during capturing of the interaction data and the interaction meta-data ([0065], start and end times embedded).

Re claim 33, Scarano teaches the method of claim 19 wherein the at least one pivot spot or the region of interest ([0115]) are determined based on an event external to the interaction ([0055], separate CTI actions).

Re claims 34 and 35, Scarano teaches the apparatus of claim 1 wherein the pivot spot is determined using at least one item selected from the group consisting of: a Computer Telephony Integration event ([0065]); a screen event; an emotional level; and a spotted word.

Re claims 36 and 37, Scarano teaches the apparatus of claim 1 wherein the first analysis component used for reducing the initial region of interest is selected form the group consisting of: a predetermined length, speaker separation component, audio analysis component, event analysis component, a Computer Telephony Integration event analysis component ([0065]), CRM event analysis component, a screen event

Art Unit: 2626

analysis component; an emotional level analysis component, a word spotting analysis component, audio event analysis component, dual tone multi frequency (DTMF) event analysis component, and even priority analysis component.

Re claims 38 and 39, Scarano teaches the apparatus of claim 1 wherein the captured interaction is between an agent and a customer ([0028], well known call center operations between caller/customer and agent).

Re claim 41, Scarano teaches the method of claim 19 wherein the method is used for detecting customer churn indications ([0098-0102], cancel service), wherein the pivot spot is defined using a CTI hold event or a cancellation-related screen event; and wherein the region of interest is defined using emotion analysis or word spotting ([0065], audio segments).

Re claim 46, Scarano teaches the apparatus of claim 1 wherein the at least one pivot spot or the region of interest are determined based on an event external to the interaction ([0055], separate CTI actions).

Re claim 47, Scarano teaches the method of claim 19 wherein the reducing step is repeated two or more times ([0036], more than one audio segment from multiple extraction operations).

Art Unit: 2626

 Claims 11, 18, and 30 are rejected under 35 U.S.C. 103(a) as being unpatentable over Scarano et al. US 20040083099 A1 (hereinafter Scarano) in view of Brown et al. US 20020093913 A1 (hereinafter Brown) and further in view of Bscheider et al. US 6937706 B2 (hereinafter Bscheider).

Re claim 11, Scarano in view of Brown fails to teach the apparatus of claim 1 further comprises a screen event analyzer component to identify and capture an at least one screen and an at least one screen event associated with the interaction data and capture at least one screen based on the screen event

Bscheider teaches that the term "Call Control" refers to the part of the metadata concerning the creation and termination of call records. The term "Media" refers to the actual data that is being recorded. This term is used interchangeably with audio since the primary design of the CRG is to support audio recording. However, the CRG could apply to any data being recorded including multimedia or screen image data (Col. 31 lines 29-40).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano in view of Brown to incorporate a screen event analyzer component to identify and capture an at least one screen and an at least one screen event associated with the interaction data and capture at least one screen based on the screen event as taught by Bscheider to allow for the integration of

Art Unit: 2626

image/screen capture in accordance with synchronized audio, wherein metadata is present that indicates audio and image association data (Col. 31 lines 29-40).

Re claims 18, Scarano in view of Brown fails to teach the apparatus of claim 1 wherein the interaction meta-data is associated with the at least one screen event.

Bscheider teaches that the term "Call Control" refers to the part of the metadata concerning the creation and termination of call records. The term "Media" refers to the actual data that is being recorded. This term is used interchangeably with audio since the primary design of the CRG is to support audio recording. However, the CRG could apply to any data being recorded including multimedia or screen image data (Col. 31 lines 29-40).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano in view of Brown to incorporate meta-data is associated with the at least one screen event as taught by Bscheider to allow for the integration of image/screen capture in accordance with synchronized audio, wherein metadata is present that indicates audio and image association data (Col. 31 lines 29-40).

Re claim 30, Scarano teaches the method of claim 19 further comprises the steps of:

identifying an at least one pre-defined computer telephony integrated event in the interaction data (f01081):

Art Unit: 2626

However, Scarano in view of Brown fails to teach identifying an at least one predefined screen event in the interaction data

Bscheider teaches that the term "Call Control" refers to the part of the metadata concerning the creation and termination of call records. The term "Media" refers to the actual data that is being recorded. This term is used interchangeably with audio since the primary design of the CRG is to support audio recording. However, the CRG could apply to any data being recorded including multimedia or screen image data (Col. 31 lines 29-40).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano in view of Brown to incorporate identifying an at least one pre-defined screen event in the interaction data as taught by Bscheider to allow for the integration of image/screen capture in accordance with synchronized audio, wherein metadata is present that indicates audio and image association data (Col. 31 lines 29-40).

4. Claims 12 and 28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Scarano et al. US 20040083099 A1 (hereinafter Scarano) in view of Brown et al. US 20020093913 A1 (hereinafter Brown) and further in view of Petrushin US 20020194002 A1 (hereinafter Petrushin).

Re claims 12, Scarano teaches the apparatus of claim 9, wherein the audio analyzer component further comprises the elements of:

Art Unit: 2626

a word spotting component to locate and identify pre-defined terms or patterns in the speech elements of the interaction data ([0115]);

a talk analyzer component to identify and locate specific pre-defined speech events in the speech elements of the information data ([0108])

However, Scarano in view of Brown fails to teach an emotion analysis component to locate and identify positive or negative emotions in the interaction data

Petrushin teaches logic for receiving and analyzing a speech signal, logic for dividing the speech signal, and logic for extracting at least one feature from the speech signal. The system comprises logic for calculating statistics of the speech, and logic for at least one neural network for classifying the speech as belonging to at least one of a finite number of emotional states. The system also comprises logic for outputting an indication of the at least one emotional state (Petrushin [0011]).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano in view of Brown to incorporate an emotion analysis component to locate and identify positive or negative emotions in the interaction data as taught by Petrushin to allow for the classification of a speech based on emotion, wherein features from a signal are used to determine an emotional state (Petrushin [0011]).

Re claim 28, Scarano teaches the method of claim 19 wherein the at least one first analysis instruction step or the second analysis comprises the step of analyzing Art Unit: 2626

the-speech elements of the interaction data ([0115]) to detect positive and negative emotions.

However, Scarano in view of Brown fails to teach analyzing the-speech elements of the interaction data ([0115]) to detect positive and negative emotions.

Petrushin teaches logic for receiving and analyzing a speech signal, logic for dividing the speech signal, and logic for extracting at least one feature from the speech signal. The system comprises logic for calculating statistics of the speech, and logic for at least one neural network for classifying the speech as belonging to at least one of a finite number of emotional states. The system also comprises logic for outputting an indication of the at least one emotional state (Petrushin [0011]).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano in view of Brown to incorporate analyzing the-speech elements of the interaction data ([0115]) to detect positive and negative emotions as taught by Petrushin to allow for the classification of a speech based on emotion, wherein features from a signal are used to determine an emotional state (Petrushin [0011]).

Claim 42 rejected under 35 U.S.C. 103(a) as being unpatentable over
 Scarano et al. US 20040083099 A1 (hereinafter Scarano) in view of Brown et al. US
 20020093913 A1 (hereinafter Brown) and further in view of Eilbacher et al. US
 6724887 B1 (hereinafter Eilbacher).

Art Unit: 2626

Re claim 42, Scarano teaches the method of claim 19 wherein the method is used for verifying that an agent requested a customer's permission to put the customer on hold, wherein the pivot spot ([0030]) is the time the agent put the customer on hold, the initial region of interest is the whole interaction ([0010]), and wherein the region of interest is defined by a first predetermined number of seconds prior to the pivot spot and a second predetermined number of seconds following the hold.

However, Scarano in view of Brown fails to teach the region of interest is defined by a first predetermined number of seconds prior to the pivot spot and a second predetermined number of seconds following the hold

Eilbacher teaches a contact center 200 of FIG. 2, and in particular a telephone call center. Referring to FIG. 3, customers 100 access the contact center through the public switched telephone network (PSTN) 101 and an automatic call distribution system 102 (PBX/ACD) directs the communication to one of a plurality of agent work stations 104. Each agent work station 104 includes, for example, a computer and a telephone set. Communications are directed to the agent stations 104 based on the availability of the agent. In those contact centers handling communications for a number of different clients, communications to a particular client may be routed to a finite group of agents specifically trained to respond to the needs of that customer or that client. Alternatively, the PBX/ACD 102 may include an interactive voice response (IVR) system that presents an audio menu to a customer, requesting a response by way of the customer's telephone key pad or by way of a voice response. Then, a call is directed to a particular group of agent stations 104 or to a particular information retrieval

Art Unit: 2626

system, based on the responses of the customer. For example, the system can provide the customer 100 with the address to which products should be returned or the Internet address for obtaining additional product information. All data associated with the customer's communication and the agents responsive interaction with the customer may be recorded by a monitor module 210 within monitoring system 204. Examples of the data typically recorded by a telephone call center system include the audio communication between the customer and the agent, key pad data input by the customer, screens viewed by the agent on the computer at the agent station 104 (carried by data line 105), the start and end time for the customer's communication, the identity of the customer, including the originating telephone number and the called number, the identity of the various agents servicing the communications, the length of time the customer is on hold and the steps the customer navigated before terminating the communication (Eilbacher Col. 8 lines 29-67).

Further, Eilbacher teaches incoming and outgoing calls can be recorded in their entirety; particular calls can be identified for recording, such as by client or agent; and calls can be recorded by event, such as calls exceeding five minutes. If "cradle-to-grave" recording is used, then all information related to a particular telephone call or caller-initiated transaction is recorded, from the time the call enters the contact center to the later of: the caller hanging up or the agent completing the transaction. All of the interactions during the call are recorded, including interaction with the IVR system, time spent on hold, data keyed through the caller's key pad, conversations with the agent, and screens displayed by the agent at his/her station 104 during the transaction. These

Art Unit: 2626

types of recordings allow for evaluation of the full customer experience throughout the transaction. As an example, the length of time a customer was on hold during a purchase transaction can be analyzed as a possible deterrent to completing a purchase. Such information may be used by contact center managers to modify their procedures, staffing, and/or equipment to improve the customer's experience when using the contact center. The comprehensiveness of the data capture of the present invention also allows for the subsequent verification of transaction content. For example, a dispute over what information was verbally provided by a caller applying for insurance coverage over the telephone can easily be resolved by replaying the application call in its entirety. Whether a customer selected size 10 can also be proven, as can whether the customer/investor authorized the purchase of 100 shares of a particular stock. (Eilbacher Col. 9 lines 10-39).

Furthermore, Eilbacher teaches types of parameters which can be analyzed by the customer experience analyzing unit 208 include the number of key strokes entered by the customer during a telephone call, the length of a telephone call, time on hold, number of transfers, or length of a queue. That is, if the length of the telephone call, the number of key strokes entered during the call or the length of a queue exceeded predetermined levels, the customer experience analyzing unit 208 can determine that the communication was likely unsatisfactory. In addition, speech detection or word spotting can be used to detect certain inflammatory words such as curse words. For example, in the case of word spotting, an analysis is performed on recorded audio such as a telephone call. The audio is automatically processed, searching for any key words

Application/Control Number: 10/706,282 Page 18

Art Unit: 2626

on a predefined list which have been identified as cause for concern. If any of the words are found, the call is marked as a potentially negative customer experience. This word spotting analysis can be done separately, or in addition to the stress analysis. Similarly, in connection with an e-mail communication, a text search can be used to look for words such as curse words, which might tend to indicate an unsatisfactory customer experience (Eilbacher Col. 11 lines 25-61).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano in view of Brown to incorporate verifying that an agent requested a customer's permission to put the customer on hold, wherein the pivot spot is the time the agent put the customer on hold, the initial region of interest is the whole interaction, and wherein the region of interest is defined by a first predetermined number of seconds prior to the pivot spot and a second predetermined number of seconds following the hold as taught by Eilbacher to allow for the monitoring of a customer and agent interaction, wherein various retrieval methods are implemented based on responses during the wait time as well as during the actual interaction with an agent (Eilbacher Col. 6 lines 35-40) and key locations of media selected based on the customer responses (i.e. images, keywords, etc.) to create and ideal/optimal retrieval of information (Eilbacher Col. 11 lines 25-61).

Claim 43 is rejected under 35 U.S.C. 103(a) as being unpatentable over
 Scarano et al. US 20040083099 A1 (hereinafter Scarano) in view of Eilbacher et al.

Art Unit: 2626

US 6724887 B1 (hereinafter Eilbacher) and Brown et al. US 20020093913 A1 (hereinafter Brown) and further in view of further in view of Bernard et al. US 5918213 A (hereinafter Bernard).

Re claim 43, Scarano in view of Brown and Eilbacher fails to teach the method of claim 19 wherein the method is used for measuring the effectiveness of a promotion offer to a customer requesting the termination of the service, wherein the pivot spot is the time of a screen event related to offering a promotion or to an account being saved or lost, and wherein the region of interest is defined by a first predetermined number of seconds prior to the pivot spot.

Bernard teaches that promotional items are offered to a customer 182 based on his or her calling and purchasing history. For example, in one embodiment, the automated product purchasing system review calling and purchasing statistics maintained for a shopper 182. Statistics can be maintained by VRU 104, interactive transaction database 112, or even by reporting database 438. If these statistics indicate that the shopper is a particularly good customer of the automated product purchasing system, interface unit 104 may offer a promotional or special item to that shopper 182. For example, where shopper 182 is a frequent purchaser, interface unit 104 may inform him or her that upon the next purchase, he or she will receive a bonus CD (Bernard Col. 51 lines 29-41).

Further, Bernard teaches a caller 182 decides to delete all of the items in his or her virtual shopping cart, as indicated by input step 3724, VRU 104 simply deletes these items from the order. This deletion step is illustrated by a step 3728. In one

Art Unit: 2626

embodiment this is accomplished by deleting all the order information from the previous call and beginning anew with fresh order information for the present call. In an alternative embodiment, the deletion is accomplished by simply removing the items' catalog ID numbers 1008 from the order information in interactive transaction database 112. A confirmation script can be played by VRU 104 announcing that the order has been canceled. As with the other options, at this time the caller is returned to the shopping mode where he or she can sample additional selections or terminate the phone call. Although not illustrated, in one embodiment, caller 182 is given the option of hearing a listing of the items in his or her virtual shopping cart before deciding whether to keep or cancel the order entirely. Finally, caller 182 may decide to individually review the items in the virtual shopping cart and determine whether each individual item is to be kept. If this is the case, caller 182 elects to review the items on hold as illustrated by input step 3732. In response, in a step 3736, VRU 104 reviews the order with caller 182. In one embodiment, this is accomplished by a process similar to that illustrated in FIG. 36 where each item is reviewed one at a time, and caller 182 selects whether to accept or delete each item. Once the review order process is complete, caller 182 is forwarded to the shopping mode where he or she can sample additional selections, immediately purchase the selections remaining in his or her virtual shopping cart, or terminate the call (Bernard Col. 50 lines 1-32).

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to modify the system of Scarano in view of Brown and Eilbacher to incorporate measuring the effectiveness of a promotion offer to a customer requesting

Art Unit: 2626

the termination of the service, wherein the pivot spot is the time of a screen event related to offering a promotion or to an account being saved or lost, and wherein the region of interest is defined by a first predetermined number of seconds prior to the pivot spot as taught by Bernard to allow for the automated and statistical determination of whether a promotional/coupon should be applied to a caller based on the callers history (Bernard Col. 51 lines 29-41), wherein an order can be cancelled based on a caller history (Bernard Col. 50 lines 1-32).

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in
this Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP
§ 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37
CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of

Art Unit: 2626

the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Michael C. Colucci whose telephone number is (571)-270-1847. The examiner can normally be reached on 9:30 am - 6:00 pm, Monday-Friday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Richemond Dorvil can be reached on (571)-272-7602. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/706,282 Page 23

Art Unit: 2626

/Michael C Colucci/ Examiner, Art Unit 2626 Patent Examiner AU 2626 (571)-270-1847 Michael.Colucci@uspto.gov

/Richemond Dorvil/ Supervisory Patent Examiner, Art Unit 2626