Машинное обучение: Объяснительный ИИ (Explainable Al (XAI) or ML) Объяснительный ИИ (Explainable AI or ML)

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого

Термины и составляющие

- Прозрачность (transparency): рассматривает подход на основе машинного обучения
- Интерпретируемость (interpretability): рассматривает модель машинного обучения совместно с данными
- Объяснимость (explainability): рассматривает модель, данные и участие человека

Прозрачность (1)

- Подход МО прозрачен, если его разработчик может описать процессы, которые извлекают параметры модели из обучающих данных и генерируют метки тестовых данных.
- Прозрачность подхода МО касается его различных компонентов: общей структуры модели, отдельных элементов модели, алгоритма обучения и того, как конкретное решение получается с помощью алгоритма.

Прозрачность глубоких нейронных сетей (пример)

- Модель прозрачна, так как соотношение вход-выход и ее структура могут быть записаны в мат-ких терминах.
- НО: слои их число, размер или функции активации выбираются эвристически и не определяются знанием, поэтому эти решения не являются прозрачными.
- Алгоритм обучения прозрачен, например, градиентный спуск.
- НО: выбор параметров (скорость обучения, размер пакета и другие) эвристический, непрозрачный.
- Нескольких локальных минимумов -> решение часто не воспроизводимо -> не является (полностью) алгоритмически прозрачным.

Интерпретируемость (1)

- Цель интерпретируемости представить человеку некоторые свойства модели ML в понятных терминах.
- В идеале ответить на вопрос: "Можем ли мы понять, на чем алгоритм ML основывется в своем решении?"

Интерпретируемость (2)

- Интерпретация может быть получена посредством прокси-моделей, которые аппроксимируют предсказания исходной сложной модели.
- Деревья решений, линейные модели.
- Пример LIME (Local Interpretable Model-Agnostic Explanations) (Ribeiro et al., 2016): линейная прокси-модель в окрестности данного.
- В отличие от прозрачности, для достижения интерпретируемости всегда используются данные.

Критерии для методов интерпретации

- Intrinsic or post hoc
- Model-specific or model-agnostic
- Local or global

Критерии (intrinsic or post hoc)

- Внутренняя интерпретируемость использование модели МО, которая интерпретируема (линейные модели, модели на основе деревьев).
- Post hoc интерпретируемость выбор и обучение модели черного ящика (композиции, нейронные сети) и применение методов интерпретируемости после обучения (значимость признаков).

Критерии (model-specific or model-agnostic)

- Специфичные для модели методы интерпретации специфичны зависят исключительно от каждой модели. Это могут быть коэффициенты, p-values, оценки AIC, правила из дерева решений и так далее.
- Независимые от модели методы интерпретации (агностические) могут использоваться для любой модели МО. Работают путем анализа (и возмущений входов) признаков пар вход-выход.
- Эти методы не имеют доступа к каким-либо внутренним компонентам модели, таким как веса, ограничения или допущения.

Критерии (local or global)

• Эта классификация интерпретации говорит о том, объясняет ли метод интерпретации одно предсказание или все поведение модели.

Глобальная интерпретация

- Ответы на вопросы:
 - Как модель делает прогнозы?
 - Как подмножества модели влияют на решения модели?
- Глобальная интерпретируемость это способность объяснять и понимать решения модели на полном наборе данных.

Локальная интерпретация

- Ответы на вопросы:
 - Почему модель принимает конкретное решение для одного примера?
 - Почему модель принимает конкретные решения для группы примеров?
- Для локальной интерпретируемости рассматриваем модель как черный ящик.

Локальная интерпретация (2)

- Для понимания решений по прогнозированию для одной точки данных рассматриваем локальную область вокруг этой точки.
- Локальные распределения данных и пространство признаков могут вести себя совершенно иначе и давать более точные объяснения в отличие от глобальных интерпретаций.
- Используют комбинацию глобальной и локальных интерпретаций, чтобы объяснить решения для группы примеров.

Локальная и глобальная интерпретации

Объяснимость

- Объяснение это набор признаков интерпретируемой области, которые внесли вклад в данный пример для принятия решения (Montavon et al., 2018)
- Интерпретация может быть объяснением только при наличии дополнительной контекстуальной информации, основанной на знании предметной области (domain knowledge) и цели анализа, т.е. объяснимость не может быть достигнута чисто алгоритмически.
- Сама по себе интерпретация модели для отдельных данных может не дать объяснения для понимания решения. Например, наиболее выжные признаки могут быть одинаковыми для нескольких примеров.
- Объяснение зависит от основной цели анализа.

Противоречивые объяснения (1)

- Обычно спрашивают, не почему был сделан определенный прогноз, а почему этот прогноз был сделан вместо другого прогноза.
- Для прогноза стоимости дома человека может интересовать, почему прогнозируемая цена была выше по сравнению с более низкой ценой, которую он ожидал.
- Когда заявка на кредит отклонена, меня не интересует, почему отказ. Меня интересуют факторы моей заявки, которые должны измениться, чтобы она была принята.
- Противоречивые объяснения легче понять, чем полные объяснения.

Противоречивые объяснения (2)

- Врач задается вопросом: «Почему лечение не сработало на пациенте?»
- Полное объяснение, почему лечение не работает, включает: пациент болеет с 10 лет, 11 генов сверхэкспрессированы, что делает болезнь более тяжелой, организм пациента разрушается, лекарство неэффективно
- Сравнительное объяснение отвечает на вопрос по сравнению с другим пациентом, для которого препарат работал, может быть проще: у пациента есть комбинация генов, которые делают лекарство неэффективным, по сравнению с другим пациентом
- Лучшее объяснение это то, что подчеркивает наибольшую разницу между объектом интереса и эталонным объектом

Объяснения снова

- Люди не ожидают, что объяснения охватят полный список причин события. Выбирается одна или две причины из огромного числа возможных причин в качестве объяснения.
- Люди больше фокусируются на аномальных причинах, чтобы объяснить события. Если один из признаков был аномальным и он влиял на прогноз, его следует включить в объяснение, даже если другие «нормальные» признаки имеют такое же влияние на прогноз как аномальный.
- Хорошие объяснения подтверждаются в реальности. Когда говорим, что три балкона увеличивают цену дома, это должно быть верно для других домов.

Глобальная интерпретация - feature importance

- Значимость признаков какие признаки оказывают наибольшее влияние на прогнозируемые значения?
- Алгоритм: значимость перестановок (permutation importance)
 - Получить обученную модель и записать признаки в виде таблицы (столбец - признак)
 - Перемешать значения в одном столбце, сделать прогнозы, используя полученный набор данных.
 Снижение точности - значимость признака, который перемешали.
 - Вернуться к исходной таблице (отмена перемешивания из шага 2). Повторить шаг 2 со следующим столбцом в таблице, пока не будут найдены значимости каждого столбца.

Глобальная интерпретация - Partial Dependence Plot

- Значимость признаков показывает, какие признаки больше всего влияют на прогнозы, график частичной зависимости показывает, как признак влияет на прогнозы
- График частичной зависимости показывает, какая зависимость между признаком и выходом: линейнеая, монотонная или более сложная

График частичной зависимости (пример 1)

График частичной зависимости (пример 2 - взаимодействие признаков)

График частичной зависимости

• Частичная зависимость:

$$f_{\mathsf{x}_{\mathsf{S}}}(\mathsf{x}_{\mathsf{S}}) = \mathbb{E}_{\mathsf{x}_{\mathsf{C}}}[f(\mathsf{x}_{\mathsf{S}}, \mathsf{x}_{\mathsf{C}})] = \int f(\mathsf{x}_{\mathsf{S}}, \mathsf{x}_{\mathsf{C}}) d\mathbb{P}(\mathsf{x}_{\mathsf{C}})$$

- х_S множество признаков, для которых график частичной зависимости определяется
- x_C все другие признаки, используемые в модели f; $x = x_S || x_C$ (конкатенация)
- Частичная зависимость работает путем маргинализации выходных данных модели f по распределению признаков x_C , так что оставшаяся функция показывает связь между x_S и прогнозом

График частичной зависимости

• Частичная зависимость по данным из датасета:

$$f_{x_S}(x_S) = \frac{1}{n} \sum_{i=1}^n f(x_S, x_{C_i})$$

- x_{C_i} фактические значения признаков из датасета, в которых мы не заинтересованы
- Используемое предположение: признаки x_S не коррелируют с признаками x_C

Локальная интерпретация - Метод LIME $\left(1 ight)$

- Local Interpretable Model-agnostic Explanations (Ribeiro, Singh, Guestrin, 2016)
- Агностицизм: LIME не делает никаких предположений относительно модели, прогноз которой объясняется, для него модель как «черный ящик»
- Интерпретируемость: LIME использует представление данных (называемое интерпретируемым представлением), которое отличается от исходного пространства признаков
- Локальность: LIME дает объяснение в окрестности примера, который хотим объяснить.

Meтод LIME (2)

Meтод LIME (3)

LIME минимизирует функцию

$$\xi = \arg\min_{g \in G} L(f, g, \pi_X) + \Omega(g)$$

g - объяснительная модель для оригинальной модели f; π_X - веса в виде ядер

$$g(z) = \phi_0 + \sum_{i=1}^{M} \phi_i z_i$$

Meтод LIME (4)

M.T. Ribeiro, S. Singh, C. Guestrin. "Why should I trust you?: Explaining the predictions of any classifier". In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016

Meтод LIME (5)

(a) Original Image

(b) Explaining Electric quitar (c) Explaining Acoustic quitar

(d) Explaining Labrador

Объяснение вариантов классификации. Три основных прогнозируемых класса: "Electric Guitar" (p = 0.32), "Acoustic guitar" (p = 0.24) и "Labrador" (p = 0.21)

Shapley Values (1)

- IME (Interactions-based Method for Explanation) (Strumbelj and Kononenko, 2010)
- Числа Шепли это вклад каждого игрока, усредненный по каждой возможной последовательности, в которой игроки могли быть добавлены в группу

$$\phi_{i} = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[f_{S \cup \{i\}} \left(x_{S \cup \{i\}} \right) - f_{S} \left(x_{S} \right) \right]$$

- |F| размер полной коалиции; S подмножество коалиции, которое не включает игрока i, а |S| размер S, S! число перестановок множества S
- В квадратных скобках: «насколько больше выигрыш, когда мы добавляем игрока i к подмножеству S»

Shapley Values (2)

- А как теперь с признаками?
- Вклад *i*-го признака:

$$\phi_{i} = \sum_{z' \subseteq x'} \frac{|z'|!(M - |z'| - 1)!}{M!} \left[f_{x}\left(z'\right) - f_{x}\left(z'\setminus i\right) \right]$$

- M общее число признаков; z' подмножество признаков, которое является объяснением
- Оцениваем значение модели с и без i-го признака $(f_x(z')$ и $f_x(z' \setminus i))$

Shapley Values (3)

 Интерпретация числа Шепли X: Значение признака А сделало вклад X в прогнозируемое значение конкретного примера по сравнению со средним прогнозируемым значением для набора обучающих данных.

Это вклад значения признака в разность между фактическим прогнозируемым значением и средним прогнозируемым значением.

Shapley Values - интерпретация (4)

- Интерпретация числа Шепли х: Значение признака А сделало вклад х в прогнозируемое значение конкретного примера по сравнению со средним прогнозируемым значением для набора обучающих данных.
- Это вклад значения признака в разность между фактическим прогнозируемым значением и средним прогнозируемым значением.

Вопросы

?