Internship Program Report

By

BOLLEPOGU NARENDRA-19485A0248

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11 th May2021: Classification of Transformers and Generators	9
12 th May2021: Classification of Switchgare construction and power factor improvement	10
17 th May2021: Detailing about UPS system and Busducts	11
18 th May2021: Detailing about Motor Starters and Sizing of motors	12
19 th May2021: Discribing about Earthing system and Lighting Protection	13
20 th May2021: Lighting or illumination systems and calculations	14
21 th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	
25 th May2021: Cabling calculations and Cable gland selection	17
28 th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations.	19
2nd june2021: Caluculations of Earthing and Lighting protection	20
5 th june 2021: Cable sizing and cable tray sizing calculations	21
Conclusion	22
Faadhack:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Z

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

A	A AUTOCAD BASIC KEYS						
STAND	STANDARD DRAW MODIFY FORMAT						
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO
OPEN	Ctrl+0	RAY	RAY	COPY	CO	SELECT COLOR	COL
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI
PASTE	Ctrl+V	CIRCLE	C	SCALE	SC	DIMEN. STYLE	D
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX		
		POINT	PO	BRAKE	BR		
		HATCH	Н	CHAMFER	CHA		
		GRADIENT	GD	FILLET	F		
		REGION	REG	EXPLODE	Х		
		BOUNDARY	ВО				
		DONUT	DO				

	EXTRA			DRAF	ring	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID D	F7, Ctrl+G	A1=594*841
ALL	A	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Internz

1C. DETAILED ENGINEERING

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic diagram
			ulagralli

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

(6 Classification of		
	Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

7	Classification of Switchgare construction and power factor improvement	Different types of Switchgare assembles	Power factor improvement
	1		

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or Illumination using DIALUX	Lighting or illumination systems	Operation software	of	dialux
	software				

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their				
	types and claculations	Cabling calculations	Types materials	of	cabling
			materiais		

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and cable gland	Cabling calculations	Cable gland selection
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland Size	(Alternat	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion	
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min Max		Max	Max	Length "F"	
20516	M20	10.0	8.7	13.2	8.0	1.25	24.0	26.4	35.2	
205	M20	10.0	11.7	15.9	8.0	1.25	24.0	26.4	32.2	
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6	
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.5	36.4	
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6	
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6	
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6	
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1	
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0	
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	0.88	49.8	
755	M75	15.0	62.0	72,1	2.0	2.5	90.0	99.0	63.7	
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3	
90	M90	24.0	80.0	90.4	3.15	4.0	114,3	125.7	66.6	

28 th May2021: Load calculations and Transformer sizing calculations

15	Load calcu	ulations		
	and	TR	Load calculations	TR calculations
	calculation	ns		

Topic details:

List of electrical load calculations.

T/F calculation:

Page **18** of **22**

29th May2021: DG set calculations

16	DG set
	calculations

Topic details:

Transformer and DG set calculations, types, sizing or selections

2nd june2021: Caluculations of Earthing and Lighting protection.

17	Calculation of Earthing and Lighting	Earthing calculations	Lighting protection calculation
	protection calculations		Calculation

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculation

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and		
	cable tray	Cable sizing calculations	Cable tray calculation
	sizing	_	
	calculations		

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

LT CAB	ILES								
CABLET	RAY: FROM	LT-4		то		T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (KpMt)	Total Weight of Cable (Kg/Mt)	Remarks
	PU2315	4	95	1	33	33	4	4	
2	PU 2314A	4	25	1	22	22	1.4	1.4	
3	PU2324	4	6	1	18	18	0.9	0.9	
4	PU2305	4	70	1	29	29	3.25	3,25	
5	MX2305	4	70	- 1	29	29	3.25	3.25	fi
6	MX2308	4	70		29	29	3.25	3,25	
7	BW2313	4	35	1	24	24	1.8	1.8	
	SC2314	4	10	11	18	18	0.9	0.9	3
9	AG2324A	4	. 6	- 1	18	18	0.9	0.9	
10	AG2305	4	25	1	22	22	1.4	1.4	3
11	AG2309	4	10	1	18	18	0.9	0.9	
12	AG2310	4	18	1	18	18	0.9	0.9	
13	AG2314	4	18	1	21	21	1	,	
8		8 0 0							
	Total	10.		13		299	23.85	23.85	75 75
Calcutation Maximum Cable Disarveter: Consider Spare Capacity of Cable Tray: Distance between each Cable: Calcutated Wittin of Cable Tray: Distance between each Cable: Calcutated Wittin of Cable Tray: No of Layer of Cables in Cables Tray:		33 30% 0 389 12827	mm mm Sq.mm	mm Se mm Se mm Se sem Se		Result Selected Cable Tray width: Selected Cable Tray Depth: Selected Cable Tray Weight: Selected Cable Tray Size: Required Cable Tray Size:		Including Spare Capacity Including Spare Capacity	
Selectiod No of Cable Tray: Befected Cable Tray Width: Selected Cable Tray Depth: Selected Cable Tray Weight Capacity: Type of Cable Tray:			1 300 100 90 Liedder	Nos. mm mm Kg/Meter		Required Nos of Cable Tray: Required Cable Tray Weight: Type of Cable Tray: Cable Tray Width Area Remaning		90.00 Ladder 35%	No Kg/Moter/Tray

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Assignment - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

SI. No.	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor	Efficiency at Load	Power Factor at	kW = [A] / [D] Continuo		Consumed I		kVAR = kW Stand-l		Remarks
140.	140.		rating	Турс	Poles	rtating	Load	rating	[A] / [B]	Factor [C]			ous		ittorit	Gland	O y	
							[A]	[B]	[C]	[D]	1 40101 [0]							
			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
	DUIDOAE	OW. Ch. C. I					00.40	00.00	0.00	0.00	0.00	04.00	20.40					
		Silica filter feed pump					88.18		0.98				66.18					
		Absorbesnt/Neutral oil pump (W)					25.62		0.85				22.6			24.0	40.4	
	PU 2314 -B	Absorbesnt/Neutral oil pump (S)					22.03		0.73				00.0			24.2	19.4	
	PU2305	Feed Pump (Seperator)					89.06		0.99				66.8					
	MX2305	MIXER (W)					89.75		1.00				67.4			00.5	07.4	
	MX 2308	MIXER (S)					89.75		1.00							96.5	67.4	
	BW2313	Blower				\vdash	38.53		0.86				34.0					
	Rotary valve	TK 2313B (I)					3.74		0.80					4.4	4.1			
9		Screw conveyor (I)	-	-			8.65		0.94					10.18	9.53		ļ	
10		Citric acid tan agitator (W)					6.50		0.87				7.16					
11		Citric acid tank agitator (S)				 	6.50		0.87							7.6	7.2	
12	AG 2305	Citric oil rection vessol agitator					23.63		0.79				20.83					
13	AG 2309	Lye oil reaction vessel agitator					8.60		0.93				9.47					
14	AG 2310	Lye oil reaction vessel agitator					8.60	9.20	0.93				9.47					
15	AG 2314	Soap Adsorbant Tank Agitator					15.04	18.50	0.81	0.85	0.73	17.69	16.57					
			1			<u> </u>												
	Maximum of norm (Est. x%E + y%F)	al running plant load : 433.5 kW		324.5	kVAR		sqrt (kW² +kVAR²) =	541.5	kVA	TOTAL	429.12	320.45	14.58	13.65	128.36	93.94	
	Peak Load :	446.3 kW		333.9	kVAR		sart ((kW² +kVAR²) = 557.4 kVA		kVA	kVA 535.57		7	19.97		159.07		
	(Est. x%E + y%F						-4 (,										
	Assumptions 1) Load factor, Eff	iciency and Power factor.																
		Load Rating (kW)	Effici	ency		Power fa	ctor											
		<= 20	0.0			0.73												
		> 20 - <= 45	0.9			0.78												
		> 45 - < 150	0.9	93		0.82												
		>= 150	0.0	94		0.91												
	2) Coincidence fa	ctors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermitte	ent and star	ndby load.														
				-														

Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	429.12	320.5	535.57	(i)
b. Intermittent load / Diversity Factor	14.58	13.7	19.97	(ii)
c. Stand-by load required as consumed load	128.36	93.9	159.06	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	446.3	333.9	557.43	
Future expansion load (20% capacity)	89.3	66.8	111.49	

535.6

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 557.4 kVA

 Spare capacity
 =
 111.5 kVA

 Required capacity
 =
 668.9 kVA

 Transformer rated capacity
 =
 750 kVA

1.3 Voltage regulation check

Total Load =

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

400.7

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 6.5%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

750 kVA transformer selected.

	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.94	Avg
	Efficiency	0.7673	Avg
	Total operating load on DG set in kVA at 0.94 power factor	541.5	, and the second
	Largest motor to start in the sequence - load in KW	90	KW
	Running kVA of last motor (CosØ= 0.91)	125	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	-	749	KVA
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)		
		417	KVA
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	41/	KVA
	(Total operating load in KV/K - Kallining KV/Kor last motor)		
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	417	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	1165	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' =(Xd"+Xd')/2	0.089875	
	Transient Voltage Dip	15%	(Max)
			(
	Transient Voltage dip during Soft starter starting of Last motor	594	
	P2 = Total momentary load in KVA x Xd" x (1-Transient Voltage Dip) (Transient Voltage Dip)		KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	1165	KVA
	·		
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA	777	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	417	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	594	KVA
	Overload capacity P3	777	KVA
	Considering the last value amongst P1, P2 and P3	777	KVA
	Hann Frieding Connector 777 WAS in advantage to activate to		
	Hence, Existing Generator 777 KVA is adequate to cater the loads as per re	: -	

Earthing calculations inputs			TERM	VALUE	FORMULA	VALUE
Maximum line-to-ground fault in kA for 1 sec	18		Buried length(L)	380	1+[1/(1+hv(20/A))]	1.834407233
Earthing material (Earth rod & earth strip)	GI		area(A)	8125	{1/V(20*A)}*{1+[1/(1+hV(20/A))}	0.004550604
Average depth of Earth rod	4.0		soil resistivity(p)	9	(1/L)+{1/V(20*A)}*{1+[1/(1+hV(20/A))}	0.007182183
Soil resistivity Ω-meter	9		depth of burial (h)	4	$\rho^*(1/L) + \{1/V(20^*A)\}^*\{1 + [1/(1 + hV(20/A))\}$	0.064639649
Ambient temperature in deg C	50					
Plot dimensions (earth grid) L x B	65	125			Grid resistance is (Rg)	0.064639649
Number of earth rods in nos.	6					

	16
Location	Rajkot
Building	Concrete, School
Type of Building	Triangle Roofs (c)
Building Length (L)	12
Building breadth (W)	6
Building Height (H)	8

Risk Factor Calculation

1 Collection Area (A _c)				
A_c			=	3.14*h*h +2(h*l)
				240.96
2 Probability of Being Struck (P)				
P			=	$A_c * N_g * 10^{-6}$
				0.000168672
3 Overall weighing factor				
a) Use of structure (A)			=	1.7
b) Type of construction (B)			=	0.4
c) Contents or consequential effects (C)			=	1.0
d) Degree of isolation (D)			=	0.4
e) Type of country (E)			=	0.3
Wo - Overall weighing factor			=	A * B * C * D * E
	Wo		=	0.082
4 Overall Risk Factor		Po	=	P * Wo
		Po	=	1.37636E-05
		Pa		10 ⁻⁵
				5

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

=	2(L+W)	
=	36	Mts.
=	36	Mts.
=	2	Nos.
		= 36

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

									Assign		•																						
S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)	No. of Curre (A)	Starting			Motor P.F Staring	SIN Φ Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)	Cable Length (M)	Cable Resistance (Ohms/kM)	Cable Reactance (Ohms/kM)	Voltage drop (Running) (V)	(%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)	Cable size result	OD of Cable (mm)	Gland size
1	LV MCC	PU2315	Silica filter feed pump	88.18	90	415	3 153.	920.10	0.8	0.6	0.8	0.5	2	1	4.0	95	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
2	LV MCC	PU 2314A	Absorbesnt/Neutral oil pump	25.62	30	415	3 44.6	267.33	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	60	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
3	LV MCC	PU2324	Citric Acid Tank pump	6.50	7.5	415	3 11.3	67.82	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
4	LV MCC	PU2305	Feed Pump(Seperator)	89.06	90	415	3 154.	929.28	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
5	LV MCC	MX2305	Mixer	89.75	90	415	3 156.	936.48	0.8	0.6	8.0	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
6	LV MCC	MX2308	Mixer	89.75	90	415	3 156.	1 936.48	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
7	LV MCC	BW2313	Blower	38.53	45	415	3 67.0	402.04	0.8	0.6	0.8	0.5	2	1	4.0	35	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
8	LV MCC	SC2314	Screw conveyor	8.65	9.2	415	3 15.0	90.26	0.8	0.6	0.8	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	65	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
9	LV MCC	AG2324A	citric acid tan agitator	6.50	7.5	415	3 11.3	67.82	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
10	LV MCC	AG2305	citric oil rection vessol agitator	23.63	30	415	3 41.1	246.56	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
11	LV MCC	AG2309	lye oil reaction vessel agitator	8.60	9.2	415	3 15.0	89.74	0.8	0.6	8.0	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	65	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!		#REF!	20s
12	LV MCC	AG2310	lye oil reaction vessel agitator	8.60	9.2	415	3 15.0	89.74	0.8	0.6	8.0	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	65	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
13	LV MCC	AG2314	Soap adsorbant tank agitator	11.37	18.5	415	3 19.8	118.64	0.8	0.6	0.8	0.5	2	1	4.0	16	#REF!	0.98	0.9	1	1	0.882	#REF!	65	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
																														'			
																												ı		,	1		
																														,			
					-																												

Basis

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors : Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed

TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

1

	DI 50	Assignment	-7						
	BLES TRAY: FROM	LT-4		то	1.	T-5		ı	1
ABLL	TRAT. FROM	L1-4		10		1-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4	95	1	33	33	4	4	
2	PU 2314A	4	25	1	22	22	1.4	1.4	
3	PU2324	4	6	1	18	18	0.9	0.9	
4	PU2305	4	70	1	29	29	3.25	3.25	
5	MX2305	4	70	1	29	29	3.25	3.25	
6	MX2308	4	70	1	29	29	3.25	3.25	
7	BW2313	4	35	1	24	24	1.8	1.8	
8	SC2314	4	10	1	18	18	0.9	0.9	
9	AG2324A	4	6	1	18	18	0.9	0.9	
10	AG2305	4	25	1	22	22	1.4	1.4	
11	AG2309	4	10	1	18	18	0.9	0.9	
12	AG2310	4	10	1	18	18	0.9	0.9	
13	AG2314	4	16	1	21	21	1	1	
N-1	Total		1	13		299	23.85	23.85	
	lation m Cable Diameter:		22			Result Selected Cable T	ray width:	0.14	
	er Spare Capacity of Cable Tray:		33 30%	mm		Selected Cable 1		0.K 0.K	
	e between each Cable:		30% 0	mm		Selected Cable I		O.K	Including Spare Capacity
	ted Width of Cable Tray:		389	mm		Selected Cable 1		0.K	Including Spare Capacity
	ted Area of Cable Tray:		12827	Sq.mm			-		g -ppaon)
	ayer of Cables in Cable Tray:		2			Required Cable T		300 x 100	mm
	d No of Cable Tray:		1	Nos.		Required Nos of		1	No
	d Cable Tray Width: d Cable Tray Depth:		300	mm		Required Cable T Type of Cable Tra		90.00	Kg/Meter/Tray
	d Cable Tray Depth: d Cable Tray Weight Capacity:		100 90	mm Kg/Meter		Type of Cable In	ay.	Ladder	
	Cable Tray:		Ladder	. ig/iniciel		Cable Tray Width	Area Remaning	35%	
	ea of Cable Tray:		30000	Sq.mm		Cable Tray Area I		57%	