## COL 351 Lecture 24 2023/03/13

Topic: Flows and Cuts



What is the max # people that can reach t froms per second?

Definition: A network is a tuple (G, s,t, C), where - G=(V,E) is a directed graph (such that (u,v) EE iff (v,u) EE.) - s, t e V - C: E → TR≥0 U2003 is a capacity function. Definition: A flow in a network (G, s, t, C), where G = (V, E), is a function  $f: E \rightarrow \mathbb{R} \cup \{-\infty, \infty\}$ such that 1.  $\forall (u,u) \in E. f(u,u) = -f(v,u) (skew-symmetry)$ 2.  $\forall v \neq s, t$ ;  $\sum_{u, n \in r} f(v, u) = 0$  (conservation) 3. ∀ (u,v) ∈ E: f(u,v) ≤ C(u,v), (:f(u,v) ≥ - C(v,u))

Notation: ((uiv) = 0 and f(41V) = 0 if (41V) & E

Definition: Value of a flow  $f: |f| = \sum_{v} f(s_i v)$ .  $(= \sum_{v} f(v,t))$ 

The Max-flow problem.

Input: Network (G, s, t, C)

Output: A flow of max possible value.

Q1: Does there exist a flow in every network? Yes; f(u,v)=0  $\forall$  u,v is a flow.

Q2: When does there exist a nonzero flow in a network?

Iff ∃ s → t path in which all edges have a tre capacity. (If: obvious only if:?)

Q2: When does there exist an infinite flow in a network?

Iff  $J s \rightarrow t$  path in which all edges have as capacity (If: obvious only if:?)



Intuition for proving upper bounds on flow values: All flow emerging from s must go from S to VIS, Claim: Let (G, s, t, C) be a network and f be a flow in it. Let  $S \subseteq V$  be such that  $S \in S$ ,  $t \notin S$ .

Then  $|f| = \sum_{u \in S} \sum_{v \notin S} f(u,v)$ .

Proof:  $|f| = \sum_{v \in S} f(s,v)$  (def)  $= \sum_{v \in S} f(s,v) + \sum_{u \in S} \sum_{v \in S} f(v,v)$   $= \sum_{u \in S} \sum_{v \in S} f(u,v) + \sum_{u \in S} \sum_{v \notin S} f(u,v)$ o by skew- $= \sum_{u \in S} \sum_{v \notin S} f(u,v)$ o by skew- $= \sum_{u \in S} \sum_{v \notin S} f(u,v)$ o by skew- $= \sum_{u \in S} \sum_{v \notin S} f(u,v)$ 

Claim: Let (G,s,t,C) be a network and f be a flow in it. Let  $S \subseteq V$  be such that  $S \in S$ ,  $t \notin S$ . Then  $|f| \leq \sum_{u \in S} \sum_{v \notin S} C(u,v)$ 

Proof:  $|f| = \sum_{u \in S} \sum_{v \notin S} f(u_1 v) \leq \sum_{u \in S} \sum_{v \notin S} C(u_1 v)$ .