Contents

~-6-	iai & L	Systems (Fundamental)	1
1.1	Signal	Definition	1
1.2	Classif	ication of Signals	2
	1.2.1	Dimensionality	2
	1.2.2	Time characteristics	2
	1.2.3	Value Characteristics	2
	1.2.4	Determinstic vs Random Signals	2
1.3	Transf	formation of CT Signals	2
	1.3.1	Transformations	2
1.4	Signal	Characteristic	3
	1.4.1	Periodic signals	3
	1.4.2	Even and Odd Symmetry	4
	1.3	1.2 Classif 1.2.1 1.2.2 1.2.3 1.2.4 1.3 Transf 1.3.1 1.4 Signal 1.4.1 1.4.2	1.2.1 Dimensionality 1.2.2 Time characteristics 1.2.3 Value Characteristics 1.2.4 Determinstic vs Random Signals 1.3 Transformation of CT Signals 1.3.1 Transformations 1.4 Signal Characteristic 1.4.1 Periodic signals 1.4.2 Even and Odd Symmetry

1 Signal & Systems (Fundamental)

1.1 Signal Definition

Definition 1.1.1 (Signal). Any "physical" quantity that varies with time or space (or other independent variables).

Example 1.1 (Ambulance Siren:).

$$s(t) = (1+t)\sin(2\pi[1000t + 10t^2 + 300\sin(2\pi t/2)])$$
 (1)

- \bullet (1 + t): amplitude term represents incresing loudness as ambulance approaches
- 1000t: represents 1kHz siren oscillatione
- $10t^2$: increasing pitch due to the *Doppler effect* as the ambulance approaches.
- $300sim(2\pi 2t)$: the eeh-ooh-eeh-ohh periodic variation in pitch.

Definition 1.1.2 (Systems). A physical "devicec" that performs an operation on a signal.

Definition 1.1.3 (Signal Processing). Take some input signals and produce some related output signals.

Example 1.2 (audio amplifier).

$$S_{out}(t) = aS_{in}(t) \tag{2}$$

Emphasize on continuous-time of analog signals.

1.2 Classification of Signals

1.2.1 Dimensionality

- By the domain of the function, i.e. how many arguments a function has.
- By the dimension of the range of the function, i.e. the space of values the function can take.

1.2.2 Time characteristics

Definition 1.2.1 (Continuous-time Signal). A function defined for all times $t \in (-\infty, \infty)$, or at least some interval (a, b).

Classify signals by time characteristics

- Continuous-11:10 signals or analog signals
- Discrete-time signals

1.2.3 Value Characteristics

Definition 1.2.2 (continuous-valued signal or continuous-amplitude signal). Can take any value in some continuous interval.

Definition 1.2.3 (discrete-valued signal or discrete-amplitude signal). Only takes values from a discrete set of possible values.

1.2.4 Determinstic vs Random Signals

Definition 1.2.4 (Determinstic signals). Can be described by an explicit mathematical representation.

Definition 1.2.5 (Random signals). Evolve over time in an unpredictable manner.

1.3 Transformation of CT Signals

1.3.1 Transformations

- Time transformations
 - $\ Folding/reflecting/time-reversal\\$

$$y(t) = x(-t) \tag{3}$$

- Time-scaling

$$y(t) = x(at) \tag{4}$$

- Time-shifting

$$y(t) = x(t - t_0) \tag{5}$$

General time transformations
 Involves all three of the above time transformations.

$$y(t) = x(at - b) = x(\frac{t - t_0}{w}) \tag{6}$$

where $t_0 = b/a$, w = 1/a

- Amplitude transformations
 - reverse

$$y(t) = -x(t) \tag{7}$$

- scaling

$$y(t) = ax(t) \tag{8}$$

- shifting

$$y(t) = x(t) + b (9)$$

• Differentiator

$$y(t) = \frac{d}{dt}x(t) \tag{10}$$

Example 1.3.

$$y(t) = -RC\frac{d}{dt}x(t) \tag{11}$$

• Integrator

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau \tag{12}$$

Example 1.4.

$$y(t) = -\frac{1}{RC} \int_{-\infty}^{t} x(\tau)d\tau \tag{13}$$

• Operation with two signals Sum or product at any point

1.4 Signal Characteristic

1.4.1 Periodic signals

$$x(t+T) = x(t)\forall t \tag{14}$$

if no T exists, called aperiodic.

Definition 1.4.1 (Fundamental Period). Smallest T_0 of T.

Theorem 1.4.1. With period T > 0,

$$x(t+nT) = x(t) (15)$$

Sum of two periodic signals

Suppose a value T > 0 satisfies $T = n_1 T_1$ and $T = n_2 T_2$ then, $\mathbf{x}(\mathbf{t})$ is periodic with period T.

Theorem 1.4.2. A sum of two periodic signals is period iff the ratio od their periods is rational.

1.4.2 Even and Odd Symmetry

Definition 1.4.2 (Even Symmetry). iff $x(-t) = x(t) \forall t$

Definition 1.4.3 (Odd Symmetry). iff $x(-t) = x(t) \forall t$

Even and Odd Components

We can decompose any signal into even and odd components:

$$x(t) = x_e(t) + x_o(t) \tag{16}$$

$$x_e(t) = \frac{1}{2}[x(t) + x(-t)], \quad x_o(t) = \frac{1}{2}[x(t) - x(-t)]$$
 (17)

1.4.3 Average value and energy

Definition 1.4.4 (Average Value).

$$A = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)dt \tag{18}$$

Definition 1.4.5 (Energy).

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{19}$$

Definition 1.4.6 (Average Power).

$$E = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{20}$$

Definition 1.4.7 (Energy Signal). If E is finite, then x(t) is called energy signal and P = 0.

Definition 1.4.8 (Power Signal). If E is infinite and P is finite and nonzero, x(t) is called power signal.