Albert Ludwigs Universität Freiburg

TECHNISCHE FAKULTÄT

PicoC-Compiler

Übersetzung einer Untermenge von C in den Befehlssatz der RETI-CPU

BACHELORARBEIT

 $Abgabedatum: 28^{th}$ April 2022

 $\begin{array}{c} Author: \\ \text{J\"{u}rgen Mattheis} \end{array}$

Gutachter: Prof. Dr. Scholl

Betreung: M.Sc. Seufert

Eine Bachelorarbeit am Lehrstuhl für Betriebssysteme

ERKLÄRUNG
ERRLARONG
Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen
als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder
sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht
habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht
auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

Inhaltsverzeichnis

A	bbild	lungsverzeichnis	Ι
\mathbf{C}_{0}	odev	rerzeichnis	II
Ta	abelle	enverzeichnis	III
D	efinit	tionsverzeichnis	V
\mathbf{G}	ramn	matikverzeichnis	VI
1	1.1 1.2 1.3 1.4 1.5	tivation RETI PicoC Aufgabenstellung Eigenheiten der Sprache C Richtlinien	1 1 1 1 1 2
2	2.1 2.2 2.3 2.4 2.5	Compiler und Interpreter 2.1.1 T-Diagramme Formale Sprachen 2.2.1 Mehrdeutige Grammatiken 2.2.2 Präzidenz und Assoziativität Lexikalische Analyse Syntaktische Analyse Code Generierung 2.5.1 Monadische Normalform 2.5.2 A-Normalform 2.5.3 Ausgabe des Maschienencodes Fehlermeldungen 2.6.1 Kategorien von Fehlermeldungen	3 6 8 10 11 12 15 20 21 22 24 25 25
3		Lexikalische Analyse 3.1.1 Konkrette Syntax für die Lexikalische Analyse 3.1.2 Codebeispiel Syntaktische Analyse 3.2.1 Umsetzung von Präzidenz und Assoziativität 3.2.2 Konkrette Syntax für die Syntaktische Analyse 3.2.3 Derivation Tree Generierung 3.2.3.1 Codebeispiel 3.2.3.2 Ausgabe des Derivation Tree 3.2.4 Derivation Tree Vereinfachung 3.2.4.1 Codebeispiel 3.2.5.1 PicoC-Knoten 3.2.5.2 RETI-Knoten	26 28 30 30 35 37 37 38 39 40 41 43 48

3.2.5.3 Kompositionen von PicoC-Knoten und RETI-Knoten mit besonderer	Bedeutung	49
3.2.5.4 Abstrakte Syntax		51
3.2.5.5 Codebeispiel		52
3.2.5.6 Ausgabe des Abstract Syntax Tree		53
3.3 Code Generierung		53
3.3.1 Passes		55
3.3.1.1 PicoC-Shrink Pass		56
3.3.1.1.1 Aufgabe		56
3.3.1.1.2 Abstrakte Syntax		56
3.3.1.1.3 Codebeispiel		57
3.3.1.2 PicoC-Blocks Pass		59
3.3.1.2.1 Aufgabe		59
3.3.1.2.2 Abstrakte Syntax		59
3.3.1.2.3 Codebeispiel		61
3.3.1.3 PicoC-ANF Pass		62
3.3.1.3.1 Aufgabe		62
3.3.1.3.2 Abstrakte Syntax		63
3.3.1.3.3 Codebeispiel		65
3.3.1.4 RETI-Blocks Pass		66
3.3.1.4.1 Aufgabe		66
3.3.1.4.2 Abstrakte Syntax		66
3.3.1.4.3 Codebeispiel		67
3.3.1.5 RETI-Patch Pass		70
3.3.1.5.1 Aufgabe		70
3.3.1.5.2 Abstrakte Syntax		70
3.3.1.5.3 Codebeispiel		71
3.3.1.6 RETI Pass		74
3.3.1.6.1 Aufgabe		74
3.3.1.6.2 Konkrette und Abstrakte Syntax		74
3.3.1.6.3 Codebeispiel		76
Literatur		A

Abbildungsverzeichnis

2.1	Horinzontale Übersetzungszwischenschritte zusammenfassen
2.2	Vertikale Interpretierungszwischenschritte zusammenfassen
2.3	Veranschaulichung von Linksassoziativität und Rechtsassoziativität
2.4	Veranschaulichung von Präzidenz
2.5	Veranschaulichung der Lexikalischen Analyse
2.6	Veranschaulichung der Syntaktischen Analyse
2.7	Codebeispiel für das Trennen von Ausdrücken mit und ohne Nebeneffekten
2.8	Codebeispiel für das Entfernen Komplexer Ausdrücke aus Operationen
3.1	Ableitungsbäume zu den beiden Ableitungen
3.2	Derivation Tree nach Parsen eines Ausdrucks
3.3	Derivation Tree nach Vereinfachung
3.4	Abstract Syntax Tree Generierung ohne Umdrehen
3.5	Abstract Syntax Tree Generierung mit Umdrehen
3.6	Cross-Compiler Kompiliervorgang ausgeschrieben
3.7	Cross-Compiler Kompiliervorgang Kurzform
3.8	Architektur mit allen Passes ausgeschrieben

Codeverzeichnis

3.1	PicoC-Code des Codebeispiels
3.2	Tokens für das Codebeispiel
3.3	Derivation Tree nach Derivation Tree Generierung
3.4	Derivation Tree nach Derivation Tree Vereinfachung
3.5	Aus vereinfachtem Derivation Tree generierter Abstract Syntax Tree
3.6	PicoC Code für Codebespiel
3.7	Abstract Syntax Tree für Codebespiel
3.8	PicoC-Blocks Pass für Codebespiel
3.9	PicoC-ANF Pass für Codebespiel
3.10	RETI-Blocks Pass für Codebespiel
3.11	RETI-Patch Pass für Codebespiel
3 12	RETI Pass für Codehespiel

Tabellenverzeichnis

3.1	Präzidenzregeln von PicoC
3.2	Zuordnung der Bezeichnungen von Produktionsregeln zu Operatoren
3.3	PicoC-Knoten Teil 1
3.4	PicoC-Knoten Teil 2
3.5	PicoC-Knoten Teil 3
3.6	PicoC-Knoten Teil 4
3.7	RETI-Knoten
3.8	Kompositionen von PicoC-Knoten und RETI-Knoten mit besonderer Bedeutung

Definitionsverzeichnis

		_
1.1	Caller-save Register	1
1.2	Callee-save Register	1
1.3	Deklaration	1
1.4	Definition	1
1.5	Allokation	1
1.6	Initialisierung	2
1.7	Scope	2
1.8	Call by value	2
1.9	Call by reference	2
2.1	Interpreter	3
2.2	Compiler	3
2.3	Maschienensprache	4
$\frac{2.5}{2.4}$	Assemblersprache (bzw. engl. Assembly Language)	4
2.4	Assembler	5
$\frac{2.5}{2.6}$	Objectcode	5 5
$\frac{2.0}{2.7}$		
	Linker	5
2.8	Immediate	5
2.9	Transpiler (bzw. Source-to-source Compiler)	6
	Cross-Compiler	6
	T-Diagram Programm	6
	T-Diagram Übersetzer (bzw. eng. Translator)	7
	T-Diagram Interpreter	7
2.14	T-Diagram Maschiene	7
2.15	Wort	9
2.16	Formale Sprache	9
	Chromsky Hierarchie	9
	Syntax	9
	Semantik	9
	Grammatik	9
	Reguläre Sprachen	9
	Kontextfreie Sprachen	9
	Ableitung	9
		10
	Links- und Rechtsableitung	
	Linksrekursive Grammatiken	10
	Ableitungsbaum	10
	Mehrdeutige Grammatik	10
	Wortproblem	10
	LL(k)-Grammatik	10
	Assoziativität	11
	Präzidenz	11
2.32	Pipe-Filter Architekturpattern	12
2.33	Pattern	12
2.34	Lexeme	12
2.35	Lexer (bzw. Scanner oder auch Tokenizer)	13
	Bezeichner (bzw. Identifier)	13
	Literal	14
	Konkrette Syntax	15

2.39	Derivation Tree (bzw. Parse Tree)
2.40	Parser
2.41	Recognizer (bzw. Erkenner)
2.42	Transformer
2.43	Visitor
2.44	Abstrakte Syntax
2.45	Abstract Syntax Tree (AST)
	Pass
2.47	Reiner Ausdruck (bzw. engl. pure expression)
	Unreiner Ausdruck
	Monadische Normalform (bzw. engl. monadic normal form)
	Location
	Atomarer Ausdruck
	Komplexer Ausdruck
	A-Normalform (ANF)
	Fehlermeldung
3.1	Metasyntax
3.2	Metasprache
3.3	Erweiterte Backus-Naur-Form (EBNF)
3.4	Dialekt der EBNF aus Lark
3.5	Abstrakte Syntax Form (ASF)
3.6	Earley Parser
3.7	Label
3.8	Token-Knoten
3.9	Container-Knoten
0.0	
5.10	Symboltabelle

Grammatikverzeichnis

$3.1.1$ Grammatik der Konkretten Syntax der Sprache L_{PicoC} für die Lexikalische Analyse in EBNF 2
$3.2.1$ Undurchdachte Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF $3.2.1$ Undurchdachte Konkrette Syntax der Sprache L_{PicoC}
$3.2.2$ Durchdachte Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF 3
3.2.3 Beispiel für eine unäre rechtsassoziative Produktion
3.2.4 Beispiel für eine unäre linksassoziative Produktion
3.2.5 Beispiel für eine linksassoziative Produktion
3.2.6 Beispiel für eine linksassoziative Produktion
$3.2.7$ Durchdachte Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF 3
$3.2.8$ Grammatik der Konkretten Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF,
Teil 1
$3.2.9$ Grammatik der Konkretten Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF,
Teil 2
3.2.10Abstrakte Syntax der Sprache L_{PiocC}
3.3.1 Abstrakte Syntax der Sprache L_{PiocC_Shrink}
3.3.2 Abstrakte Syntax der Sprache L_{PiocC_Blocks}
3.3.3 Abstrakte Syntax der Sprache L_{PiocC_ANF}
3.3.4 Abstrakte Syntax der Sprache L_{RETI_Blocks}
$3.3.5$ Abstrakte Syntax der Sprache L_{RETI_Patch}
$3.3.6$ Konkrette Syntax der Sprache L_{RETI} für die Lexikalische Analyse in EBNF
$3.3.7$ Konkrette Syntax der Sprache L_{RETI} für die Syntaktische Analyse in EBNF \dots 7
3.3.8 Abstrakte Syntax der Sprache L_{RETI}

VI

1 Motivation

1.1 RETI

.. basiert auf ... der Vorlesung C. Scholl, "Betriebssysteme".

Definition 1.1: Caller-save Register

a

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Definition 1.2: Callee-save Register

a

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

1.2 PicoC

1.3 Aufgabenstellung

1.4 Eigenheiten der Sprache C

Definition 1.3: Deklaration

a

^aP. Scholl, "Einführung in Embedded Systems".

Definition 1.4: Definition

a

 $^a\mathrm{P.}$ Scholl, "Einführung in Embedded Systems".

Definition 1.5: Allokation

a

^aThiemann, "Einführung in die Programmierung".

Kapitel 1. Motivation 1.5. Richtlinien

Definition 1.6: Initialisierung
a—————————————————————————————————————
Definition 1.7: Scope
a Thiemann, "Einführung in die Programmierung".
Definition 1.8: Call by value
a Bast, "Programmieren in C".
Definition 1.9: Call by reference
aBast, "Programmieren in C".

1.5 Richtlinien

Die Laufzeit ist bei Compilern zwar vor allem in der Industrie nicht unwichtig, aber bei Compilern verglichen mit Interpretern weniger zu gewichten, da ein Compiler bei einem fertig implementierten Programm nur einmal Maschinencode generieren muss und dieser Maschinencode danach fortan ausgeführt wird. Beim einem Compiler ist daher eher zu priorisieren, dass der kompilierte Maschinencode möglichst effizient ist.

Beim PicoC-Compiler wurde eher darauf Wert gelegt sauberen, strukturierten Code zu schreiben, den die Studenten sogar selber verstehen könnten und eine unkomplizierte Bibliothek mit guter Dokumentation¹, nämlich das Lark Parsing Toolkit² für das Parsen zu verwenden. Vor allem, da zu erwarten ist, dass der PicoC-Compiler vielleicht in einigen anderen Projekten eingebunden werden könnte, ist es von Vorteil bei der Notwendigkeit kleiner Erweiterungen, diese Erweiterungen unkompliziert durchführen zu können.

 $^{^{1} |} Welcome \ to \ Lark's \ documentation! - Lark \ documentation.$

²Lark - a parsing toolkit for Python.

2 Einführung

2.1 Compiler und Interpreter

Der wohl wichtigsten zu klärenden Begriffe, sind die eines Compilers (Definition 2.2) und eines Interpreters (Definition 2.1), da das Schreiben eines Compilers von der PicoC-Sprache L_{PicoC} in die RETI-Sprache L_{RETI} das Thema dieser Bachelorarbeit ist und die Definition eines Interpreters genutzt wird, um zu definieren was ein Compiler ist. Des Weiteren wurde zur Qualitätsicherung ein RETI-Interpreter implementiert, um mithilfe des GCC¹ und von Tests die Beziehungen in 2.46.1 zu belegen (siehe Subkapitel ??).

Definition 2.1: Interpreter

Interpretiert die Instructions bzw. Statements eines Programmes P direkt.

Auf die Implementierung bezogen arbeitet ein Interpreter auf den compilerinternen Sub-Bäumen des Abstract Syntax Tree (Definition 2.45) und führt je nach Komposition der Nodes des Abstract Syntax Tree, auf die er während des Darüber-Iterierens stösst unterschiedliche Anweisungen aus.^a

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Definition 2.2: Compiler

Kompiliert ein Program P_1 , welches in einer Sprache L_1 geschrieben ist, in ein Program P_2 , welches in einer Sprache L_2 geschrieben ist.

Wobei Kompilieren meint, dass das Program P_1 so in das Program P_2 übersetzt wird, dass bei beiden Programmen, wenn sie von Interpretern ihrer jeweiligen Sprachen L_1 und L_2 interpretert werden, der gleiche Output rauskommt. Also beide Programme P_1 und P_2 die gleiche Semantik haben und sich nur syntaktisch durch die Sprachen L_1 und L_2 , in denen sie geschrieben stehen unterscheiden.

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

¹Sammlung von Compilern für Linux bzw. GNU-Linux, steht für GNU Compiler Collection

Im Folgenden wird ein voll ausgeschriebener Compiler als $C_{i_w_k_min}^{o_j}$ geschrieben, wobei C_w die Sprache bezeichnet, die der Compiler als Input nimmt und zu einer nicht näher spezifizierten Maschienensprache L_{B_i} einer Maschiene M_i kompiliert. Fall die Notwendigkeit besteht die Maschiene M_i anzugeben, zu dessen Maschienensprache L_{B_i} der Compiler kompiliert, wird das als C_i geschrieben. Falls die Notwendigkeit besteht die Sprache L_o anzugeben, in der der Compiler selbst geschrieben ist, wird das als C^o geschrieben. Falls die Notwendigkeit besteht die Version der Sprache, in die der Compiler kompiliert (L_{w_k}) oder in der er selbst geschrieben ist (L_{o_j}) anzugeben, wird das als $C_{w_k}^{o_j}$ geschrieben. Falls es sich um einen minimalen Compiler handelt (Definition ??) kann man das als C_{min} schreiben.

Üblicherweise kompiliert ein Compiler ein Program, dass in einer Programmiersprache geschrieben ist zu Maschienenncode, der in Maschienensprache (Definition 2.3) geschrieben ist, aber es gibt z.B. auch Transpiler (Definition 2.9) oder Cross-Compiler (Definition 2.10). Des Weiteren sind Maschienensprache und Assemblersprache (Definition 2.4) voneinander zu unterscheiden.

Definition 2.3: Maschienensprache

Programmiersprache, deren mögliche Programme die hardwarenaheste Repräsentation eines möglicherweise zuvor hierzu kompilierten bzw. assemblierten Programmes darstellen. Jeder Maschienenbefehl entspricht einer bestimmten Aufgabe, die die CPU im vereinfachten Fall in einem Zyklus der Fetch- und Execute-Phase, genauergesagt in der Execute-Phase übernehmen kann oder allgemein in einer geringen konstanten Anzahl von Fetch- und Execute Phasen im Komplexeren Fall. Die Maschienenbefehle sind meist so designed, dass sie sich innerhalb bestimmter Wortbreiten, die 2er Potenzen sind codieren lassen. Im einfachsten Fall innerhalb einer Speicherzelle des Hauptspeichers.

^aViele Prozessorarchitekturen erlauben es allerdings auch z.B. zwei Maschienenbefehle in eine Speicherzelle des Hauptspeichers zu komprimieren, wenn diese zwei Maschienenbefehle keine Operanden mit zu großen Immediates (Definition 2.8) haben.

^bC. Scholl, "Betriebssysteme".

Definition 2.4: Assemblersprache (bzw. engl. Assembly Language)

Eine sehr hardwarenahe Programmiersprache, derren Instructions eine starke Entsprechung zu bestimmten Maschienenbefehlen bzw. Folgen von Maschienenbefehlen haben. Viele Instructions haben eine ähnliche übliche Struktur Operation <Operanden>, mit einer Operation, die einem Opcode eines Maschienenbefehls bezeichnet und keinen oder mehreren Operanden, wie die späteren Maschienenbefehle, denen sie entsprechen. Allerdings gibt es oftmals noch viel "syntaktischen Zucker" innerhalb der Instructions und drumherum".

Ein Assembler (Definition 2.5) ist in üblichen Compilern in einer bestimmten Form meist schon integriert sein, da Compiler üblicherweise direkt Maschienencode bzw. Objectcode (Definition 2.6) erzeugen. Ein Compiler soll möglichst viel von seiner internen Funktionsweise und der damit verbundenen Theorie für den Benutzer abstrahieren und dem Benutzer daher standardmäßig einfach nur den Output liefern, den er in den allermeisten Fällen haben will, nämlich den Maschienencode bzw. Objectcode, der direkt ausführbar ist bzw. wenn er später mit dem Linker (Definition 2.7) zu Maschiendencode zusammengesetzt wird ausführbar

^aInstructions der Assemblersprache, die mehreren Maschienenbefehlen entsprechen werden auch als Pseudo-Instructions bezeichnet und entsprechen dem, was man im allgemeinen als Macro bezeichnet.

 $[^]b$ Z.B. erlaubt die Assemblersprache des GCC für die X_{86_64} -Architektur für manche Operanden die Syntax $\mathbf{n}(\%\mathbf{r})$, die einen Speicherzugriff mit Offset n zur Adresse, die im Register $\%\mathbf{r}$ steht durchführt, wobei z.B. die Klammern () usw. nur "syntaktischer Zucker"sind und natürlich nicht mitcodiert werden.

 $^{^{}c}$ Z.B. sind im X_{86_64} Assembler die Instructions in Blöcken untergebracht, die ein Label haben und zu denen mittels jmp <label> gesprungen werden kann. Ein solches Konstrukt, was vor allem auch noch relativ beliebig wählbare Bezeichner verwendet hat keine direkte Entsprechung in einem handelsüblichen Prozessor und Hauptspeicher.

 $[^]d$ P. Scholl, "Einführung in Embedded Systems".

ist.

Definition 2.5: Assembler

Übersetzt im allgemeinen Assemblercode, der in Assemblersprache geschrieben ist zu Maschienencode bzw. Objectcode in binärerer Repräsentation, der in Maschienensprache geschrieben ist.^a

^aP. Scholl, "Einführung in Embedded Systems".

Definition 2.6: Objectcode

Bei Komplexeren Compilern, die es erlauben den Programmcode in mehrere Dateien aufzuteilen wird häufig Objectcode erzeugt, der neben der Folge von Maschienenbefehlen in binärer Repräsentation auch noch Informationen für den Linker enthält, die im späteren Maschiendencode nicht mehr enthalten sind, sobald der Linker die Objektdateien zum Maschienencode zusammengesetzt hat.^a

^aP. Scholl, "Einführung in Embedded Systems".

Definition 2.7: Linker

Programm, dass Objektcode aus mehreren Objektdateien zu ausführbarem Maschienencode in eine ausführbare Datei oder Bibliotheksdatei linkt, sodass unter anderem kein vermeidbarer doppelter Code darin vorkommt.^a

^aP. Scholl, "Einführung in Embedded Systems".

Der Maschienencode, denn ein üblicher Compiler einer Programmiersprache generiert, enthält seine Folge von Maschienenbefehlen üblicherweise in binärer Repräsentation, da diese in erster Linie für die Maschiene die binär arbeitet verständlich sein sollen und nicht für den Programmierer.

Der PicoC-Compiler, der den Zweck erfüllt für Studenten ein Anschauungs- und Lernwerkzeug zu sein generiert allerdings Maschienencode, der die Maschienenbefehle bzw. RETI-Befehle in menschenlesbarer Form mit ausgeschriebenen RETI-Operationen, RETI-Registern und Immediates (Definition 2.8) enthält. Für den RETI-Interpreter ist es ebenfalls nicht notwendig, dass der Maschienencode, denn der PicoC-Compiler generiert in binärer Darstellung ist, denn es ist für den RETI-Interpreter ebenfalls leichter diese einfach direkt in menschenlesbarer Form zu interpretieren, da der RETI-Interpreter nur die sichtbare Funktionsweise einer RETI-CPU simulieren soll und nicht deren mögliche interne Umsetzung².

Definition 2.8: Immediate

Konstanter Wert, der als Teil eines Maschienenbefehls gespeichert ist und dessen Wertebereich dementsprechend auch durch die die Anzahl an Bits, die ihm innerhalb dieses Maschienenbefehls zur Verfügung gestellt sind, beschränkter ist als bei sonstigen Werten innerhalb des Hauptspeichers, denen eine ganze Speicherzelle des Hauptspeichers zur Verfügung steht.^a

^aLjohhuh, What is an immediate value?

²Eine RETI-CPU zu bauen, die menschenlesbaren Maschienencode in z.B. UTF-8 Codierung ausführen kann, wäre dagegen unnötig kompliziert und aufwändig, da Hardware binär arbeitet und man dieser daher lieber direkt die binär codierten Maschienenbefehle übergibt, anstatt z.B. eine unnötig platzverbrauchenden UTF-8 Codierung zu verwenden, die nur in sehr vielen Schritt einen Befehl verarbeiten kann, da die Register und Speicherzellen des Hauptspeichers üblicherweise nur 32- bzw. 64-Bit Breite haben.

Definition 2.9: Transpiler (bzw. Source-to-source Compiler)

Kompiliert zwischen Sprachen, die ungefähr auf dem gleichen Level an Abstraktion arbeiten^{ab}

^aDie Programmiersprache TypeScript will als Obermenge von JavaScript die Sprachhe Javascript erweitern und gleichzeitig die syntaktischen Mittel von JavaScript unterstützen. Daher bietet es sich Typescript zu Javascript zu transpilieren.

 b Thiemann, "Compilerbau".

Definition 2.10: Cross-Compiler

Kompiliert auf einer Maschine M_1 ein Program, dass in einer Sprache L_w geschrieben ist für eine andere Maschine M_2 , wobei beide Maschinen M_1 und M_2 unterschiedliche Maschinensprachen B_1 und B_2 haben. ^{ab}

 $^a\mathrm{Beim}$ PicoC-Compiler handelt es sich um einen Cross-Compiler C^{Python}_{PicoC}

Ein Cross-Compiler ist entweder notwendig, wenn eine Zielmaschine M_2 nicht ausreichend Rechenleistung hat, um ein Programm in der Wunschsprache L_w selbst zeitnah zu kompilieren oder wenn noch kein Compiler C_w für die Wunschsprache L_w und andere Programmiersprachen L_o , in denen man Programmieren wollen würde existiert, der unter der Maschienensprache B_2 einer Zielmaschine M_2 läuft.³

2.1.1 T-Diagramme

Um die Architektur von Compilern und Interpretern übersichtlich darzustellen eignen sich T-Diagramme deren Spezifikation aus dem Paper Earley und Sturgis, "A formalism for translator interactions" entnommen ist besonders gut, da diese optimal darauf zugeschnitten sind die Eigenheiten von Compilern in ihrer Art der Darstellung unterzubringen.

Die Notation setzt sich dabei aus den Blöcken für ein Program (Definition 2.11), einen Übersetzer (Definition 2.12), einen Interpreter (Definition 2.13) und eine Maschiene (Definition 2.14) zusammen.

Definition 2.11: T-Diagram Programm

Repräsentiert ein Programm, dass in der Sprache L₁ geschrieben ist und die Funktion f berechnet.^a

^aEarley und Sturgis, "A formalism for translator interactions".

Es ist bei T-Diagrammen nicht notwendig beim entsprechenden Platzhalter, in den man die genutzte Sprache schreibt, den Namen der Sprache an ein L dranzuhängen, weil hier immer eine Sprache steht. Es würde in Definition 2.11 also reichen einfach eine 1 hinzuschreiben.

^bEarley und Sturgis, "A formalism for translator interactions".

³Die an vielen Universitäten und Schulen eingesetzen programmierbaren Roboter von Lego Mindstorms nutzen z.B. einen Cross-Compiler, um für den programmierbaren Microcontroller eine C-ähnliche Sprache in die Maschienensprache des Microcontrollers zu kompilieren, da der Microcontroller selbst nicht genug Rechenleistung besitzt, um ein Programm selbst zeitnah zu kompilieren.

Definition 2.12: T-Diagram Übersetzer (bzw. eng. Translator)

Repräsentiert einen Übersetzer, der in der Sprache L_1 geschrieben ist und Programme von der Sprache L_2 in die Sprache L_3 kompiliert.

Für den Übersetzer gelten genauso, wie für einen Compiler^a die Beziehungen in 2.46.1.^b

^aZwischen den Begriffen Übersetzung und Kompilierung gibt es einen kleinen Unterschied, Übersetzung ist kleinschrittiger als Kompilierung und ist auch zwischen Passes möglich, Kompilierung beinhaltet dagegen bereits alle Passes in einem Schritt. Kompilieren ist also auch Übsersetzen, aber Übersetzen ist nicht immer auch Kompilieren. ^bEarley und Sturgis, "A formalism for translator interactions".

Definition 2.13: T-Diagram Interpreter

Repräsentiert einen Interpreter, der in der Sprache L_1 geschrieben ist und Programme in der Sprache L_2 interpretiert.

^aEarley und Sturgis, "A formalism for translator interactions".

Definition 2.14: T-Diagram Maschiene

Repräsentiert eine Maschiene, welche ein Programm in Maschienensprache L_1 ausführt. ab

^aWenn die Maschiene Programme in einer höheren Sprache als Maschienensprache ausführt, ist es auch erlaubt diese Notation zu verwenden, dann handelt es sich um eine Abstrakte Maschiene, wie z.B. die Python Virtual Machine (PVM) oder Java Virtual Machine (JVM).

Aus den verschiedenen Blöcken lassen sich Kompostionen bilden, indem man sie adjazent zueinander platziert. Allgemein lässt sich grob sagen, dass vertikale Adjazents für Interpretation und horinzontale Adjazents für Übersetzung steht.

Sowohl horinzontale als auch vertikale Adjazents lassen sich, wie man in den Abbildungen 2.1 und 2.2 erkennen kann zusammenfassen.

^bEarley und Sturgis, "A formalism for translator interactions".

Abbildung 2.1: Horinzontale Übersetzungszwischenschritte zusammenfassen

Abbildung 2.2: Vertikale Interpretierungszwischenschritte zusammenfassen

2.2 Formale Sprachen

Das Kompilieren eines Programmes hat viel mit Formalen Sprachen zu tuen, da bereits das Kompilieren an sich, das Übersetzen eines Programmes aus der Sprache L_1 in eine Sprache L_2 (Definition 2.16) ist, wobei die Semantik (Definition 2.19) gleich bleiben muss. Beide Sprachen L_1 und L_2 haben eine Grammatik (Definition 2.20), welche diese beschreibt und können in verschiedenen Syntaxen (Definition 2.18)⁴ dargestellt werden.

Aus diesem Grund ist es wichtig die Grundlagen Formaler Sprachen vorher eingeführt zu haben, was die den Begriff eines Wortes (Definition 2.15), die Chromsky Hierarchie (Definition 2.17), Reguläre Sprachen (Definition 2.15), Kontextfreie Sprachen (Definition 2.15), den Begriff der Ableitung (Definition 2.15), das Wortproblem (Definition 2.15) usw. einschließt.

⁴Damit sind die später Erwähnung findenden Konkretten und Abstrakten Syntaxen gemeint.

Kapitel 2. Einführung 2.2. Formale Sprachen

Definition 2.15: Wort
"Ein Wort text ist endliche Folge von Symbolen aus einem Alphabet \sum " a
"Nebel, "Theoretische Informatik".
Nebel, "Theoretische informatik".
Definition 2.16: Formale Sprache
"Eine Formale Sprache ist eine Menge von Wörtern über \sum "."
"Nebel, "Theoretische Informatik".
Nosel, "Theoretical information".
Definition 2.17: Chromsky Hierarchie
a
^a Nebel, "Theoretische Informatik".
Definition 2.18: Syntax
Der Aufbau eines Programmes, der Regelsystem , welches durch eine Grammatik oder Natürliche
Sprache ausgedrückt werden kann darstellt. ^a
^a Thiemann, "Einführung in die Programmierung".
Definition 2.19: Semantik
Die Bedeutung eines Programmes. ^a
^a Thiemann, "Einführung in die Programmierung".
D-6-:4: 2 20. C
Definition 2.20: Grammatik
<u> </u>
^a Nebel, "Theoretische Informatik".
Definition 2.21: Reguläre Sprachen
^a Nebel, "Theoretische Informatik".
Definition 2.22: Kontextfreie Sprachen
a
^a Nebel, "Theoretische Informatik".
redet, 3 1 neorensene informatik .
Der Kompiliervorgang lässt sich in viele verschiedene Phasen unterteilen
Definition 2.23: Ableitung
a
^a Nebel, "Theoretische Informatik".
Nobel, 9 I neoreoische informatik .

Kapitel 2. Einführung 2.2. Formale Sprachen

Definition 2.24: Links- und Rechtsableitung

a

^aNebel, "Theoretische Informatik".

Definition 2.25: Linksrekursive Grammatiken

 $Eine\ Grammatik\ ist\ linksrekursiv,\ wenn\ sie\ ein\ Nicht-Terminal symbol\ enthält,\ dass\ linksrekursiv\ ist$

Ein Nicht-Terminalsymbol ist linksrekursiv, wenn das linkeste Symbol in einer seiner Produktionen es selbst ist oder zu sich selbst gemacht werden kann durch eine Folge von Ableitungen:

$$A \Rightarrow^* Aa$$
,

wobei a eine beliebige Folge von Terminalsymbolen und Nicht-Terminalsymbolen ist. a

 $^aParsing\ Expressions\ \cdot\ Crafting\ Interpreters.$

2.2.1 Mehrdeutige Grammatiken

Definition 2.26: Ableitungsbaum

a

^aNebel, "Theoretische Informatik".

Definition 2.27: Mehrdeutige Grammatik

"Eine Grammatik ist mehrdeutig, wenn es ein Wort $w \in L(G)$ gibt, das mehrere Ableitungsbäume zulässt". ab

 a Alternativ, wenn es für w mehrere unterschiedliche Linksableitungen gibt.

 ${}^b{
m Nebel},$ "Theoretische Informatik".

Definition 2.28: Wortproblem

a

^aNebel, "Theoretische Informatik".

Definition 2.29: LL(k)-Grammatik

Eine Grammatik ist LL(k) für $k \in \mathbb{N}$, falls jeder Ableitungsschritt eindeutig durch die nächsten k Symbole des Eingabeworts bzw. in Bezug zu Compilerbau Token des Inputstrings zu bestimmen ist^a. Dabei steht LL für left-to-right und leftmost-derivation, da das Eingabewort von links nach rechts geparsed und immer Linksableitungen genommen werden müssen^b, damit die obige Bedingung mit den nächsten k Symbolen gilt.

^cNebel, "Theoretische Informatik".

^aDas wird auch als Lookahead von k bezeichnet.

 $[^]b$ Wobei sich das mit den Linksableitungen automatisch ergibt, wenn man das Eingabewort von links-nach-rechts parsed und jeder der nächsten k Ableitungsschritte eindeutig sein soll.

Kapitel 2. Einführung 2.2. Formale Sprachen

2.2.2 Präzidenz und Assoziativität

Will man die Operatoren aus einer Programmiersprache in einer Grammatik für eine Konkrette Syntax ausdrücken, die nicht mehrdeutig ist, so lässt sich das nach einem klaren Schema machen, wenn die Assoziativität (Definiton 2.30) und Präzidenz (Definition 2.31) dieser Operatoren festgelegt ist. Dieses Schema wird in Unterkapitel 3.2.1 genauer erklärt.

Definition 2.30: Assoziativität

"Bestimmt, welcher Operator aus einer Reihe gleicher Operatoren zuerst ausgewertet wird."

Es wird grundsätzlich zwischen linksassoziativen Operatoren, bei denen der linke Operator vor dem rechten Operator ausgewertet wird und rechtsassoziativen Operatoren, bei denen es genau anders rum ist unterschieden.^a

Bei Assoziativität ist z.B. der Multitplikationsoperator * ein Beispiel für einen linksassoziativen Operator und ein Zuweisungsoperator = ein Beispiel für einen rechtsassoziativen Operator. Dies ist in Abbildung 2.3 mithilfe von Klammern () veranschaulicht.

Abbildung 2.3: Veranschaulichung von Linksassoziativität und Rechtsassoziativität

Definition 2.31: Präzidenz

"Bestimmt, welcher Operator zuerst in einem Ausdruck, der eine Mischung verschiedener Operatoren enthält, ausgewertet wird. Operatoren mit einer höheren Präzidenz, werden vor Operatoren mit niedrigerer Präzidenz ausgewertet."

Bei Präzidenz ist die Mischung der Operatoren für Subraktion '-' und für Multiplikation * ein Beispiel für den Einfluss von Präzidenz. Dies ist in Abbildung 2.4 mithilfe der Klammern () veranschaulicht. Im Beispiel in Abbildung 2.4 ist bei den beiden Subtraktionsoperatoren '-' nacheinander und dem darauffolgenden Multitplikationsoperator * sowohl Assoziativität als auch Präzidenz im Spiel.

Abbildung 2.4: Veranschaulichung von Präzidenz

 $^{{}^}a\overline{Parsing~Expressions}$ · Crafting Interpreters.

^a Parsing Expressions \cdot Crafting Interpreters.

2.3 Lexikalische Analyse

Die Lexikalische Analyse bildet üblicherweise die erste Ebene innerhalb des Pipe-Filter Architekturpatterns (Definition 2.32) bei der Implementierung von Compilern. Die Aufgabe der lexikalischen Analyse ist vereinfacht gesagt, in einem Inputstring, z.B. dem Inhalt einer Datei, welche in UTF-8 codiert ist, Folgen endlicher Symbole (auch Wörter genannt) zu finden, die bestimmte Pattern (Definition 2.33) matchen, die durch eine reguläre Grammatik spezifiziert sind.

Definition 2.32: Pipe-Filter Architekturpattern

Ist ein Archikteturpattern, welches aus Pipes und Filtern besteht, wobei der Ausgang eines Filters der Eingang des durch eine Pipe verbundenen adjazenten nächsten Filters ist, falls es einen gibt.

Ein Filter stellt einen Schritt dar, indem eine Eingabe weiterverarbeitet wird und weitergereicht wird. Bei der Weiterverarbeitung können Teile der Eingabe entfernt, hinzugefügt oder vollständig ersetzt werden.

Eine Pipe stellt ein Bindeglied zwischen zwei Filtern dar. ab

^aDas ein Bindeglied eine eigene Bezeichnung erhält, bedeutet allerdings nicht, dass es eine eigene wichtige Aufgabe erfüllt. Wie bei vielen Pattern, soll mit dem Namen des Pattern, in diesem Fall durch das Pipe die Anlehung an z.B. die Pipes aus Unix, z.B. cat /proc/bus/input/devices | less zum Ausdruck gebracht werden. Und so banal es klingt, sollen manche Bezeichnungen von Pattern auch einfach nur gut klingen.

Diese Folgen endlicher Symoble werden auch Lexeme (Definition 2.34) genannt.

Definition 2.33: Pattern

Beschreibung aller möglichen Lexeme, die eine Menge \mathbb{P}_T bilden und einem bestimmten Token T zugeordnet werden. Die Menge \mathbb{P}_T ist eine möglicherweise unendliche Menge von Wörtern, die sich mit den Produktionen einer regulären Grammatik G_{Lex} einer regulären Sprache L_{Lex} beschreiben lassen a, die für die Beschreibung eines Tokens T zuständig sind.

Definition 2.34: Lexeme

Ein Lexeme ist ein Wort aus dem Inputstring, welches das Pattern für eines der Token T einer Sprache L_{Lex} matched.

Diese Lexeme werden vom Lexer (Definition 2.35) im Inputstring identifziert und Tokens T zugeordnet Das jeweils nächste Lexeme fängt dabei genau nach dem letzten Symbol des Lexemes an, das zuletzt vom Lexer erkannt wurde. Die Tokens (Definition 2.35) sind es, die letztendlich an die Syntaktische Analyse weitergegeben werden.

^bWestphal, "Softwaretechnik".

 $[^]a\mathrm{Als}$ Beschreibungswerkzeug können aber auch z.B. reguläre Ausdrücke hergenommen werden.

^bThiemann, "Compilerbau".

^aThiemann, "Compilerbau".

Definition 2.35: Lexer (bzw. Scanner oder auch Tokenizer)

Ein Lexer ist eine partielle Funktion $lex : \Sigma^* \to (N \times W)^*$, welche ein Wort bzw. Lexeme aus Σ^* auf ein Token T mit einem Tokennamen N und einem Tokenwert W abbildet, falls dieses Wort sich unter der regulären Grammatik G_{Lex} , der regulären Sprache L_{Lex} abbleiten lässt bzw. einem der Pattern der Sprache L_{Lex} entspricht.

^aThiemann, "Compilerbau".

Ein Lexer ist im Allgemeinen eine partielle Funktion, da es Zeichenfolgen geben kann, die kein Pattern eines Tokens der Sprache L_{Lex} matchen. In Bezug auf eine Implementierung, wird, wenn der Lexer Teil der Implementierung eines Compilers ist, in diesem Fall eine Fehlermeldung ausgegeben.

Um Verwirrung verzubäugen ist es wichtig folgende Unterscheidung hervorzuheben:

Wenn von Symbolen die Rede ist, so werden in der Lexikalischen Analyse, der Syntaktische Analyse und der Code Generierung, auf diesen verschiedenen Ebenen unterschiedliche Konzepte als Symbole bezeichnet.

In der Lexikalischen Analyse sind einzelne Zeichen eines Zeichensatzes die Symbole.

In der Syntaktischen Analyse sind die Tokennamen die Symbole.

In der Code Generierung sind die Bezeichner (Definition 2.36) von Variablen, Konstanten und Funktionen die Symbole^a.

^aDas ist der Grund, warum die Tabelle, in der Informationen zu Bezeichnern gespeichert werden, in Kapitel 3 Symboltabelle genannt wird.

Definition 2.36: Bezeichner (bzw. Identifier)

Tokenwert, der eine Konstante, Variable, Funktion usw. innerhalb ihres Scopes eindeutig benennt. ab

Eine weitere Aufgabe der Lekikalischen Analyse ist es jegliche für die Weiterverarbeitung unwichtigen Symbole, wie Leerzeichen $_{-}$, Newline \n^5 und Tabs \t aus dem Inputstring herauszufiltern. Das geschieht mittels des Lexers, der allen für die Syntaktische Analyse unwichtige Zeichen das leere Wort ϵ zuordnet Das ist auch im Sinne der Definition, denn $\epsilon \in (N \times W)^*$ ist immer der Fall beim Kleene Stern Operator * . Nur das, was für die Syntaktische Analyse wichtig ist, soll weiterverarbeitet werden, alles andere wird herausgefiltert.

Der Grund warum nicht einfach nur die Lexeme an die Syntaktische Analyse weitergegeben werden und der Grund für die Aufteilung des Tokens in Tokenname und Tokenwert ist, weil z.B. die Bezeichner von Variablen, Konstanten und Funktionen beliebige Zeichenfolgen sein können, wie my_fun, my_var oder my_const und es auch viele verschiedenen Zahlen gibt, wie 42, 314 oder 12. Die Überbegriffe bzw. Tokennamen für beliebige Bezeichner von Variablen, Konstanten und Funktionen und beliebige Zahlen sind aber trotz allem z.B. NAME und NUM⁶, bzw. wenn man sich nicht Kurzformen sucht IDENTIFIER und NUMBER. Für Lexeme, wie

^aAußer wenn z.B. bei Funktionen die Programmiersprache das Überladen erlaubt usw. In diesem Fall wird die Signatur der Funktion als weiteres Unterschiedungsmerkmal hinzugenommen, damit es eindeutig ist.

 $^{{}^}b\mathrm{Thiemann}$, "Einführung in die Programmierung".

⁵In Unix Systemen wird für Newline das ASCII Symbol line feed, in Windows hingegen die ASCII Symbole carriage return und line feed nacheinander verwendet. Das wird aber meist durch die verwendete Porgrammiersprache, die man zur Inplementierung des Lexers nutzt wegabstrahiert.

⁶Diese Tokennamen wurden im PicoC-Compiler verwendet, da man beim Programmieren möglichst kurze und leicht verständliche Bezeichner für seine Nodes haben will, damit unter anderem mehr Code in eine Zeile passt.

if oder } sind die Tokennamen bzw. Überbegriffe genau die Bezeichnungen, die man diesen Zeichenfolgen geben würde, nämlich IF und RBRACE.

Ein Lexeme ist damit aber nicht immer das gleiche, wie der Tokenwert, denn z.B. im Falle von PicoC kann der Wert 99 durch zwei verschiedene Literale (Definition 2.37) dargestellt werden, einmal als ASCII-Zeichen c'c', dass den entsprechenden Wert in der ASCII-Tabelle hat und des Weiteren auch in Dezimalschreibweise als 99⁷. Der Tokenwert ist jedoch der letztendlich verwendete Wert an sich, unabhängig von der Darstellungsform.

Die Grammatik G_{Lex} , die zur Beschreibung der Token T der Sprache L_{Lex} verwendet wird ist üblicherweise regulär, da ein typischer Lexer immer nur ein Symbol vorausschaut⁸, sich nichts merken muss und unabhängig davon, was für Symbole davor aufgetaucht sind läuft. Die Grammatik 3.1.1 liefert den Beweis, dass die Sprache L_{PicoC_Lex} des PicoC-Compilers auf jeden Fall regulär ist, da sie fast die Definition 2.21 erfüllt. Einzig die Produktion CHAR ::= "'"ASCII_CHAR"'" sieht problematisch aus, kann allerdings auch als {CHAR ::= "'"CHAR2, CHAR2 ::= ASCII_CHAR"'"} regulär ausgedrückt werden⁹. Somit existiert eine reguläre Grammatik, welche die Sprache L_{PicoC_Lex} beschreibt und damit ist die Sprache L_{PicoC_Lex} regulär.

Definition 2.37: Literal

Eine von möglicherweise vielen weiteren Darstellungsformen (als Zeichenkette) für ein und denselben Wert eines Datentyps.^a

^aThiemann, "Einführung in die Programmierung".

Um eine Gesamtübersicht über die Lexikalische Analyse zu geben, ist in Abbildung 2.5 die Lexikalische Analyse an einem Beispiel veranschaulicht.

⁷Die Programmiersprache Python erlaubt es z.B. dieser Wert auch mit den Literalen 0b1100011 und 0x63 darzustellen.

⁸Man nennt das auch einem **Lookahead** von 1

⁹Eine derartige Regel würde nur Probleme bereiten, wenn sich aus ASCII_CHAR beliebig breite Wörter ableiten liesen.

Abbildung 2.5: Veranschaulichung der Lexikalischen Analyse

2.4 Syntaktische Analyse

In der Syntaktischen Analyse ist für einige Sprachen eine Kontextfreie Grammatik G_{Parse} notwendig, um diese Sprachen zu beschreiben, da viele Programmiersprachen z.B. für Funktionsaufrufe fun(arg) und Codeblöcke if(1){} syntaktische Mittel verwenden, die es notwendig machen sich zu merken, wieviele öffnende runde Klammern '(' bzw. öffnende geschweifte Klammern '{' es momentan gibt, die noch nicht durch eine entsprechende schließende runde Klammer ')' bzw. schließende geschweifte Klammer '}' geschlossen wurden.

Die Syntax, in welcher der Inputstring aufgeschrieben ist, wird auch als Konkrette Syntax (Definition 2.38) bezeichnet. In einem Zwischenschritt, dem Parsen wird aus diesem Inputstring mithilfe eines Parsers (Definition 2.40), ein Derivation Tree (Definition 2.39) generiert, der als Zwischenstufe hin zum einem Abstract Syntax Tree (Definition 2.45) dient. Beim Compilerbau ist es förderlich kleinschrittig vorzugehen, deshalb erst die Generierung des Derivation Tree und dann erst des Abstract Syntax Tree.

Definition 2.38: Konkrette Syntax

Syntax einer Sprache, die durch die Grammatiken G_{Lex} und G_{Parse} zusammengenommen beschrieben wird.

Ein Programm in seiner Textrepräsentation, wie es in einer Textdatei nach den Produktionen der Grammatiken G_{Lex} und G_{Parse} abgeleitet steht, bevor man es kompiliert, ist in Konkretter Syntax aufgeschrieben.^a

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Definition 2.39: Derivation Tree (bzw. Parse Tree)

Compilerinterne Darstellung eines in Konkretter Syntax geschriebenen Inputstrings als Baumdatenstruktur, in der Nichtterminalsymbole die Inneren Knoten der Baumdatenstruktur und Terminalsymbole die Blätter der Baumdatenstruktur bilden. Jedes zum Ableiten des Inputstrings verwendetete Nicht-Terminalsymbol einer Produktion der Grammatik G_{Parse}, die ein Teil der Konkrette Syntax ist, bildet einen eigenen Inneren Knoten.

Der Derivation Tree wird optimalerweise immer so konstruiert bzw. die Konkrette Syntax immer so definiert, dass sich möglichst einfach ein Abstract Syntax Tree daraus konstruieren lässt.^a

 $[^]a JSON\ parser$ - Tutorial — $Lark\ documentation$.

Definition 2.40: Parser

Ein Parser ist ein Programm, dass aus einem Inputstring, der in Konkretter Syntax geschrieben ist, eine compilerinterne Darstellung, den Derivation Tree generiert, was auch als Parsen bezeichnet wird^a.^b

^aEs gibt allerdings auch alternative Definitionen, denen nach ein Parser in Bezug auf Compilerbau ein Programm ist, dass einen Inputstring von Konkretter Syntax in Abstrakte Syntax übersetzt. Im Folgenden wird allerdings die Definition 2.40 verwendet.

An dieser Stelle könnte möglicherweise eine Verwirrung enstehen, welche Rolle dann überhaupt ein Lexer hier spielt.

In Bezug auf Compilerbau ist ein Lexer ein Teil eines Parsers. Der Lexer ist auschließlich für die Lexikalische Analyse verantwortlich und entspricht z.B., wenn man bei einem Wanderausflug verschiedenen Insekten entdeckt, dem Nachschlagen in einem Insektenlexikon und dem Aufschreiben, welchen Insekten man in welcher Reihenfolge begegnet ist. Zudem kann man bestimmte Sehenswürdigkeiten an denen man während des Ausflugs vorbeikommt ebenfalls festhalten, da es eine Rolle spielen kann in welchem örtlichen Kontext man den Insekten begegnet ist^a.

Der Parser vereinigt sowohl die Lexikalische Analyse, als auch einen Teil der Syntaktischen Analyse in sich und entspricht, um auf das Beispiel zurückzukommen, dem Darstellen von Beziehungen zwischen den Insektenbegnungen in einer für die Weiterverarbeitung tauglichen Form^b.

In der Weiterverarbeitung kann der Interpreter das interpretieren und daraus bestimmte Schlüsse ziehen und ein Compiler könnte es vielleicht in eine für Menschen leichter entschüsselbare Sprache kompilieren.

Die vom Lexer im Inputstring identifizierten Token werden in der Syntaktischen Analyse vom Parser als Wegweiser verwendet, da je nachdem, in welcher Reihenfolge die Token auftauchen, dies einer anderen Ableitung in der Grammatik G_{Parse} entspricht. Dabei wird in der Grammatik L_{Parse} nach dem Tokennamen unterschieden und nicht nach dem Tokenwert, da es nur von Interesse ist, ob an einer bestimmten Stelle z.B. eine Zahl steht und nicht, welchen konkretten Wert diese Zahl hat. Der Tokenwert ist erst später in der Code Generierung in 2.5 wieder relevant.

Ein Parser ist genauergesagt ein erweiterter Recognizer (Definition 2.41), denn ein Parser löst das Wortproblem (Definition 2.28) für die Sprache, die durch die Konkrette Syntax beschrieben wird und konstruiert parallel dazu oder im Nachgang aus den Informationen, die während der Ausführung des Recognition Algorithmus gesichert wurden den Derivation Tree.

Definition 2.41: Recognizer (bzw. Erkenner)

Entspricht dem Maschienenmodell eines Automaten. Im Bezug auf Compilerbau entspricht der Recognizer einem Kellerautomaten, in dem Wörter bestimmter Kontextfreier Sprachen erkannt werden. Der Recognizer erkennt, ob ein Inputstring bzw. Wort sich mit den Produktionen der Konkrette Syntax ableiten lässt, also ob er bzw. es Teil der Sprache ist, die von der Konkretten Syntax beschrieben wird oder nicht^{ab}

 $[^]b JSON\ parser$ - Tutorial — $Lark\ documentation$.

^aDas würde z.B. der Rolle eines Semikolon; in der Sprache L_{PicoC} entsprechen.

^bZ.B. gibt es bestimmte Wechselbeziehungen zwischen Insekten, Insekten beinflussen sich gegenseitig.

^aDas vom Recognizer gelöste Problem ist auch als Wortproblem bekannt.

^bThiemann, "Compilerbau".

Für das Parsen gibt es grundsätzlich zwei verschiedene Ansätze:

• Top-Down Parsing: Der Derivation Tree wird von oben-nach-unten generiert, also von der Wurzel zu den Blättern. Dementsprechend fängt die Generierung des Derivation Tree mit dem Startsymbol der Grammatik an und wendet in jedem Schritt eine Linksableitung auf die Nicht-Terminalsymbole an, bis man Terminalsymbole hat, die sich zum gewünschten Inputstring abgeleitet haben oder sich herausstellt, dass dieser nicht abgeleitet werden kann.

Der Grund, warum die Linksableitung verwendet wird und nicht z.B. die Rechtsableitung, ist, weil der Eingabewert bzw. der Inputstring von links nach rechts eingelesen wird, was gut damit zusammenpasst, dass die Linksableitung die Blätter von links-nach-rechts generiert.

Welche der Produktionen für ein Nicht-Terminalsymbol angewandt wird, wenn es mehrere Alternativen gibt, wird entweder durch Backtracking oder durch Vorausschauen gelöst.

Eine sehr einfach zu implementierende Technik für Top-Down Parser ist hierbei der Rekursive Abstieg. Dabei wird jedem Nicht-Terminalsymbol eine Prozedur zugeordnet, welche die Produktionen dieses Nicht-Terminalsymbols umsetzt. Prozeduren rufen sich dabei wechselseitig gegenseitig entsprechend der Produktionsregeln auf, falls eine Produktionsregel ein entsprechendes Nicht-Terminal enthält.

Mit dieser Methode ist das Parsen Linksrekursiver Grammatiken (Definition 2.25) allerdings nicht möglich, ohne die Grammatik vorher umgeformt zu haben und jegliche Linksrekursion aus der Grammatik entfernt zu haben, da diese zu Unendlicher Rekursion führt.

Rekursiver Abstieg kann mit Backtracking verbunden werden, um auch Grammatiken parsen zu können, die nicht LL(k) (Definition 2.29) sind. Dabei werden meist nach dem Depth-First-Search Prinzip alle Produktionen für ein Nicht-Terminalsymbol solange durchgegangen bis der gewüschte Inpustring abgeleitet ist oder alle Alternativen für einen Schritt abgesucht sind, bis man wieder beim ersten Schritt angekommen ist und da auch alle Alternativen abgesucht sind, was dann bedeutet, dass der Inputstring sich nicht mit der verwendeten Grammatik ableiten lässt.^b

Wenn man eine LL(k) Grammatik hat, kann man auf Backtracking verzichten und es reicht einfach nur immer k Token im Inputstring vorauszuschauen. Mehrdeutige Grammatiken sind dadurch ausgeschlossen, weil LL(k) keine Mehrdeutigkeit zulässt.

- Bottom-Up Parsing: Es wird mit dem Eingabewort bzw. Inputstring gestartet und versucht Rechtsableitungen entsprechend der Produktionen der Konkretten Syntax rückwärts anzuwenden, bis man beim Startsymbol landet.^d
- Chart Parser: Es wird Dynamische Programmierung verwendet und partielle Zwischenergebnisse werden in einer Tabelle (bzw. einem Chart) gespeichert und können wiederverwendet werden. Das macht das Parsen Kontextfreier Grammatiken effizienter, sodass es nur noch polynomielle Zeit braucht, da Backtracking nicht mehr notwendig ist. ^e

Der Abstract Syntax Tree wird mithilfe von Transformern (Definition 2.42) und Visitors (Definition 2.43)

^a What is Top-Down Parsing?

^bDiese Form von Parsing wurde im PicoC-Compiler implementiert, als dieser noch auf dem Stand des Bachelorprojektes war, bevor er durch den nicht selbst implementierten Earley Parser von Lark (siehe Lark - a parsing toolkit for Python) ersetzt wurde.

^cDiese Art von Parser ist im RETI-Interpreter implementiert, da die RETI-Sprache eine besonders simple LL(1) Grammatik besitzt. Diese Art von Parser wird auch als Predictive Parser oder LL(k) Recursive Descent Parser bezeichnet, wobei Recursive Descent das englische Wort für Rekursiven Abstieg ist.

^dWhat is Bottom-up Parsing?

 $[^]e$ Der Earley Parser, den Lark und damit der PicoC-Compiler verwendet fällt unter diese Kategorie.

generiert und ist das Endprodukt der Syntaktischen Analyse, welches an die Code Generierung weitergegeben wird. Wenn man die gesamte Syntaktische Analyse betrachtet, so übersetzt diese einen Inputstring von der Konkretten Syntax in die Abstrakte Syntax (Definition 2.44).

Definition 2.42: Transformer

Ein Programm, dass von unten-nach-oben, nach dem Breadth First Search Prinzip alle Knoten des Derivation Tree besucht und beim Antreffen eines bestimmten Knoten des Derivation Tree einen entsprechenden Knoten des Abstract Syntax Tree erzeugt und diesen anstelle des Knotens des Derivation Tree setzt und so Stück für Stück den Abstract Syntax Tree konstruiert.^a

Definition 2.43: Visitor

Ein Programm, dass von unten-nach-oben, nach dem Breadth First Search Prinzip alle Knoten des Derivation Tree besucht und in Bezug zu Compilerbau, beim Antreffen eines bestimmten Knoten des Derivation Tree, diesen in-place mit anderen Knoten tauscht oder manipuliert, um den Derivation Tree für die weitere Verarbeitung durch z.B. einen Transformer zu vereinfachen. ab

Definition 2.44: Abstrakte Syntax

Syntax, die beschreibt, was für Arten von Komposition bei den Knoten eines Abstract Syntax Trees möglich sind.

Jene Produktionen, die in der Konkretten Syntax für die Umsetzung von Präzidenz notwendig waren, sind in der Abstrakten Syntax abgeflacht.^a

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Definition 2.45: Abstract Syntax Tree (AST)

Compilerinterne Darstellung eines Programs, in welcher sich anhand der Knoten auf dem Pfad von der Wurzel zu einem Blatt nicht mehr direkt nachvollziehen lässt, durch welche Produktionen dieses Blatt abgeleitet wurde.

Der Abstract Syntax Tree hat einmal den Zweck, dass die Kompositionen, die die Knoten bilden können semantisch näher an den Instructions eines Assemblers dran sind und, dass man mit einem Abstract Syntax Tree bei der Betrachtung eines Knoten, der für einen Teil des Programms steht, möglichst schnell die Fragen beantworten kann, welche Funktionalität der Sprache dieser umsetzt, welche Bestandteile er hat und welche Funktionalität der Sprache diese Bestandteile umsetzen usw.^a

Die Baumdatenstruktur des Derivation Tree und Abstract Syntax Tree ermöglicht es die Operationen die ein Compiler bzw. Interpreter bei der Weiterverarbeitung des Inputstrings ausführen muss möglichst effizient auszuführen und auf unkomplizierte Weise direkt zu erkennen, welche er ausführen muss.

Um eine Gesamtübersicht über die Syntaktische Analyse zu geben, ist in Abbildung 2.6 die Syntaktische mit dem Beispiel aus Subkapitel 2.3 fortgeführt.

^a Transformers $\, \& \, \, Visitors \, - \, Lark \, \, documentation.$

^aKann theoretisch auch zur Konstruktion eines Abstract Syntax Tree verwendet werden, wenn z.B. eine externe Klasse verwendet wird, welches für die Konstruktion des Abstract Syntax Tree verantwortlich ist. Aber dafür ist ein Transformer besser geeignet.

 $[^]b$ Transformers & Visitors — Lark documentation.

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Abstract Syntax Tree File Name './example1.ast', FunDef VoidType 'void', Tokenfolge Name 'main', [], [Token('FILENAME', './example1.picoc'), Token('VOID_DT', 'void'), Token('NAME', 'main'), Token('LPAR', '('), Ιf \hookrightarrow Token('RPAR', ')'), Token('LBRACE', '{'), Token('IF', Num '42', $_{\hookrightarrow}$ 'if'), Token('LPAR', '('), Token('NUM', '42'), → Token('RPAR', ')'), Token('LBRACE', '{'),] Token('RBRACE', '}'), Token('RBRACE', '}')]] Parser Visitors und Transformer **Derivation Tree** file ./example1.dt decls_defs decl_def fun_def type_spec prim_dt void pntr_deg name main fun_params decl_exec_stmts exec_part exec_direct_stmt if_stmt logic_or logic_and eq_exp rel_exp arith_or arith_oplus arith_and arith_prec2 arith_prec1 un_exp post_exp prim_exp 42 exec_part compound_stmt

Abbildung 2.6: Veranschaulichung der Syntaktischen Analyse

2.5 Code Generierung

In der Code Generierung steht man nun dem Problem gegenüber einen Abstract Syntax Tree einer Sprache L_1 in den Abstract Syntax Tree einer Sprache L_2 umformen zu müssen. Dieses Problem lässt sich vereinfachen, indem man das Problem in mehrere Schritte unterteilt, die man Passes (Definition 2.46) nennt. So wie es auch schon mit dem Dervivation Tree in der Syntaktischen Analyse gemacht wurde, den man als Zwischenstufe zum Abstract Syntax Tree kontstruiert hatte. Aus dem Derivation konnte, dann unkompliziert und einfach mit Transformern und Visitors ein Abstract Syntax Tree generiert werden.

Man spricht hier von dem "Abstrakt Syntax Tree einer Sprache L_1 (bzw. L_2)" und meint hier mit der Sprache L_1 (bzw. L_2) nicht die Sprache, welche durch die Abstrakte Syntax, nach welcher der Abstract Syntax Tree abgeleitet ist beschrieben wird. Es ist damit immer die Sprache gemeint, die kompiliert werden soll und zu deren Zweck der Abstrakt Syntax Tree überhaupt konstruiert wird. Für die tatsächliche Sprache, die durch die Abstrakt Syntax beschrieben wird, interessiert man sich nie wirklich explizit. Diese Redeart wurde aus der Quelle G. Siek, Course Webpage for Compilers (P423, P523, E313, and E513) übernommen.

Definition 2.46: Pass

Einzelner Übersetzungsschritt in einem Kompiliervorgang von einem Abstract Syntax Tree A_i einer Sprache L_i zu einem Abstract Syntax Tree A_{i+1} einer Sprache L_{i+1} , der meist eine bestimmte Teilaufgabe übernimmt, die sich mit keiner Teilaufgabe eines anderen Passes überschneidet und möglichst wenig Ähnlichkeit mit den Teilaufgaben anderer Passes haben sollte.

Für jeden Pass gilt ähnlich, wie bei einem vollständigen Compiler in 2.46.1, dass:

wobei man hier so tut, als gäbe es zwei Interpreter für die zwei Sprachen L_i und L_{i+1} , welche den jeweiligen den Abstract Syntax Tree A_i bzw. A_{i+1} fertig interpretieren. cd

Die von den Passes umgeformten Abstract Syntax Trees sollten dabei mit jedem Pass der Syntax von Maschienenbefehlen immer ähnlicher werden, bis es schließlich nur noch Maschienenbefehle sind.

^aEin Pass kann mit einem Transpiler 2.9 (Definition 2.9) verglichen werden, da sich die zwei Sprachen L_i und L_{i+1} aufgrund der Kleinschrittigkeit meist auf einem ähnlichen Abstraktionslevel befinden. Der Unterschied ist allerdings, dass ein Transpiler zwei Programme, die in L_i bzw. L_{i+1} geschrieben sind kompiliert. Ein Pass ist dagegen immer kleinschrittig und operiert auschließlich auf Abstract Syntax Trees, ohne Parsing usw.

^bDer Begriff kommt aus dem Englischen von "passing over", da der gesamte Abstract Syntax Tree in einem Pass durchlaufen wird.

^cInterpretieren geht immer von einem Programm in Konkretter Syntax aus, wobei der Abstract Syntax Tree ein Zwischenschritt bei der Interpretierung ist.

^dG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

2.5.1 Monadische Normalform

Hat man es mit einer Sprache zu tuen, welche Unreine Ausdrücke (Definition 2.48) besitzt, so ist es sinnvoll einen Pass einzuführen, der Reine (Definition 2.47) und Unreine Ausdrücke voneinander trennt Das wird erreicht, indem man aus den Unreinen Ausdrücken vorangestellte Statements macht, die man vor den jeweiligen reinen Ausdruck, mit dem sie gemischt waren stellt. Der Unreine Ausdruck muss als erstes ausgeführt werden, für den Fall, dass der Effekt, denn ein Unreiner Ausdruck hatte den Reinen Ausdruck, mit dem er gemischt war in irgendeinerweise beeinflussen könnte.

Definition 2.47: Reiner Ausdruck (bzw. engl. pure expression)

Ein Reiner Ausdruck ist ein Ausdruck, der rein ist. Das bedeutet, dass dieser Ausdruck keine Nebeneffekte erzeugt. Ein Nebeneffekt ist eine Bedeutung, die ein Ausdruck hat, die sich nicht mit RETI-Code darstellen lässt. ab

Definition 2.48: Unreiner Ausdruck

Ein Unreiner Ausdruck ist ein Ausdruck, der kein Reiner Ausdruck ist.

Auf diese Weise sind alle Statements und Ausdrücke in Monadischer Normalform (Definiton 2.49).

Definition 2.49: Monadische Normalform (bzw. engl. monadic normal form)

Ein Statement oder Ausdruck ist in Monadischer Normalform, wenn er nach einer Konkretten Syntax in Monadischer Normalform abgeleitet wurde.

Eine Konkrette Syntax ist in Monadischer Normalform, wenn sie reine Ausdrücke und unreine Ausdrücke nicht miteinander mischt, sondern voneinander trennt.^a

Eine Abstrakte Syntax ist in Monadischer Normalform, wenn die Konkrette Syntax für welche sie definiert wurde in Monadischer Normalform ist.

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Ein Beispiel für dieses Vorgehen ist in Abbildung 2.7 zu sehen, wo der Einfachheit halber auf die Darstellung in Abstrakter Syntax verzichtet wurde und die Codebeispiele in der entsprechenden Konkretten Syntax¹⁰ aufgeschrieben wurden.

In der Abbildung 2.7 ist der Ausdruck mit dem Nebeneffekt eine Variable zu allokieren: int var, mit dem Ausdruck für eine Zuweisung exp = 5 % 4 gemischt, daher muss der Unreine Ausdruck als eigenständiges Statement vorangestellt werden.

^aSondern z.B. intern etwas am Kompilierprozess ändert.

^bG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

¹⁰Für deren Kompilierung die Abstrakte Syntax überhaupt definiert wurde.

Abbildung 2.7: Codebeispiel für das Trennen von Ausdrücken mit und ohne Nebeneffekten

Die Aufgabe eines solchen Passes ist es, den Abstract Syntax Tree der Syntax von Maschienenbefehlen anzunähren, indem Subbäume vorangestellt werden, die keine Entsprechung in RETI-Knoten haben. Somit wird eine Seperation von Subbäumen, die keine Entsprechung in RETI-Knoten haben und denen, die eine haben bewerkstelligt wird. Ein Reiner Ausdruck ist Maschienenbefehlen ähnlicher als ein Ausdruck indem ein Reiner und Unreiner Ausdruck gemischt sind. Somit sparrt man sich in der Implementierung Fallunterscheidungen, indem die Reinen Ausdrücke direkt in RETI-Code übersetzt werden können und nicht unterschieden werden muss, ob darin Unreine Ausdrücke vorkommen.

2.5.2 A-Normalform

Im Falle dessen, dass es sich bei der Sprache L_1 um eine höhere Programmiersprache und bei L_2 um Maschienensprache handelt, ist es fast unerlässlich einen Pass einzuführen, der Komplexe Ausdrücke (Definition 2.52) aus Statements und Ausdrücken entfernt. Das wird erreicht, indem man aus den Komplexen Ausdrücken vorangestellte Statements macht, in denen die Komplexen Ausdrücke temporären Locations zugewiesen werden (Definiton 2.50) und dann anstelle des Komplexen Ausdrucks auf die jeweilige temporäre Location zugegriffen wird.

Sollte in dem Statemtent, indem der Komplexe Ausdruck einer temporären Location zugewiesen wird, der Komplexe Ausdruck Teilausdrücke enthalten, die komplex sind, muss die gleiche Prozedur erneut für die Teilausdrücke angewandt werden, bis Komplexe Ausdrücke nur noch in Statements zur Zuweisung an Locations auftauchen, aber die Komplexen Ausdrücke nur Atomare Ausdrücke (Definiton 2.51) enthalten.

Sollte es sich bei dem Komplexen Ausdruck um einen Unreinen Ausdruck handeln, welcher nur einen Nebeneffekt ausführt und sich nicht in RETI-Befehle übersetzt, so wird aus diesem ein vorangestelltes Statement gemacht, welches einfach nur den Nebeneffekt dieses Unreinen Ausdrucks ausführt.

Definition 2.50: Location

Kollektiver Begriff für Variablen, Attribute bzw. Elemente von Variablen bestimmter Datentypen, Speicherbereiche auf dem Stack, die temporäre Zwischenergebnisse speichern und Register.

Im Grunde genommen alles, was mit einem Programm zu tuen hat und irgendwo gespeichert ist oder als Speicherort dient.^a

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Auf diese Weise sind alle Statements und Ausdrücke in A-Normalform (Definition 2.53). Wenn eine Konkrette Syntax in A-Normalform ist, ist diese auch automatisch in Monadischer Normalform (Definition 2.53), genauso, wie ein Atomarer Ausdruck auch ein Reiner Ausdruck ist (nach Definition 2.51).

Definition 2.51: Atomarer Ausdruck

Ein Atomarer Ausdruck ist ein Ausdruck, der ein Reiner Ausdruck ist und der in eine Folge von RETI-Befehlen übersetzt werden kann, die atomar ist, also nicht mehr weiter in kleinere Folgen von RETI-Befehlen zerkleinert werden kann, welche die Übersetzung eines anderen Ausdrucks sind.

Also z.B. im Fall der Sprache L_{PicoC} entweder eine Variable var, eine Zahl 12, ein ASCII-Zeichen 'c' oder ein Zugriff auf eine Location, wie z.B. stack(1).

^aG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Definition 2.52: Komplexer Ausdruck

Ein Komplexer Ausdruck ist ein Ausdruck, der nicht atomar ist, wie z.B. 5 % 4, -1, fun(12) oder int var. ab

^aint var ist eine Allokation.

^bG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Definition 2.53: A-Normalform (ANF)

Ein Statement oder Ausdruck ist in A-Normalform, wenn er nach einer Konkretten Syntax in A-Normalform abgeleitet wurde.

Eine Konkrette Syntax ist in A-Normalform, wenn sie in Monadischer Normalform ist und wenn alle Komplexen Ausdrücke nur Atomare Ausdrücke enthalten und einer Location zugewiesen sind.

Eine Abstrakte Syntax ist in A-Normalform, wenn die Konkrette Syntax für welche sie definiert wurde in A-Normalform ist. abc

^aA-Normalization: Why and How (with code).

^bBolingbroke und Peyton Jones, "Types are calling conventions".

^cG. Siek, Course Webpage for Compilers (P423, P523, E313, and E513).

Ein Beispiel für dieses Vorgehen ist in Abbildung 2.8 zu sehen, wo der Einfachheit halber auf die Darstellung in Abstrakter Syntax verzichtet wurde und die Codebeispiele in der entsprechenden Konkretten Syntax¹¹ aufgeschrieben wurden.

Der PicoC-Compiler nutzt, anders als es geläufig ist keine Register und Graph Coloring inklusive Liveness Analysis, um Werte von Variablen, temporäre Zwischenergebnisse usw. abzuspeichern, sondern immer nur den Hauptspeicher, wobei temporäre Zwischenergebnisse auf den Stack gespeichert werden. 12

Aus diesem Grund verwendet das Beispiel in Abbildung 2.8 eine andere Definition für Komplexe und Atomare Ausdrücke, da dieses Beispiel, um später keine Verwirrung zu erzeugen der Art nachempfunden ist, wie im PicoC-ANF Pass der Abstract Syntax Tree umgeformt wird. Weil beim PicoC-Compiler temporäre Zwischenergebnisse auf den Stack gespeichert werden, wird nur noch ein Zugriffen auf den Stack, wie z.B. stack('1') als Atomarer Ausdrück angesehen. Dementsprechend werden Ausdrücke für Zahl 4, Variable var und ASCII-Zeichen 'c' nun ebenfalls zu den Komplexen Ausdrücken gezählt.

Im Fall, dass Register für z.B. temporäre Zwischenergebnisse genutzt werden und der Maschienen-

¹¹Für deren Kompilierung die Abstrakte Syntax überhaupt definiert wurde.

¹²Die in diesem Paragraph erwähnten Begriffe werden nicht genauer erläutert, da sie für den PicoC-Compiler keine Rolle spielen. Aber sie wurden erwähnt, damit in dieser Bachelorarbeit auch das übliche Vorgehen Erwähnung findet und vom Vorgehen beim PicoC-Compiler abgegrenzt werden kann.

befehlssatz es erlaubt zwei Register miteinander zu verechnen¹³, ist es möglich Ausdrücke für Zahl 4, Variable var und ASCII-Zeichen 'c' als atomar zu definieren, da sie mit einem Maschinenbefehl verarbeitet werden können¹⁴. Werden allerdings keine Register für Zwischenergebnisse genutzt werden braucht man mehrere Maschinenbefehle, um die Zwischenergebnisse vom Stack zu holen, zu verrechnen und das Ergebnis wiederum auf den Stack zu speichern und das SP-Register anzupassen. Daher werden die Ausdrücke für Zahl 4, Variable var und ASCII-Zeichen 'c' als Komplexe Ausdrücke gewertet, da sie niemals in einem Maschinenbefehl miteinander verechnet werden können.

Die Statements 4, x, usw. für sich sind in diesem Fall Statements, bei denen ein Komplexer Ausdruck einer Location, in diesem Fall einer Speicherzelle des Stack zugewiesen wird, da 4, x usw. in diesem Fall auch als Komplexe Ausdrücke zählen. Auf das Ergebnis dieser Komplexen Ausdrücke wird mittels stack(2) und stack(1) zugegriffen, um diese im Komplexen Ausdruck stack(2) % stack(1) miteinander zu verrechnen und wiederum einer Speicherzelle des Stack zuzuweisen.

Abbildung 2.8: Codebeispiel für das Entfernen Komplexer Ausdrücke aus Operationen

Ein solcher Pass hat vor allem in erster Linie die Aufgabe den Abstrakt Syntax Tree der Syntax von Maschinenbefehlen besonders dadurch anzunähren, dass er auf der Ebene der Konkretten Syntax die Statements weniger komplex macht und diese dadurch den ziemlich simplen Maschinenbefehlen syntaktisch ähnlicher sind. Des Weiteren vereinfacht dieser Pass die Implementierung der nachfolgenden Passes enorm, da Statements z.B. nur noch die Form global(rel_addr) = stack(1) haben, die viel einfacher verarbeitet werden kann.

Alle weiteren denkbaren Passes sind zu spezifisch auf bestimmte Statements und Ausdrücke ausgelegt, als das sich zu diesen allgemein etwas mit einer Theorie dahinter sagen lässt. Alle Passes, die zur Implementierung des PicoC-Compilers geplant und ausgedacht wurden sind im Unterkapitel 3.3.1 definiert.

2.5.3 Ausgabe des Maschienencodes

Nachdem alle Passes durchgearbeitet wurden, ist es notwendig aus dem finalen Abstract Syntax Tree den eigentlichen Maschinencode in Konkretter Syntax zu generieren. In üblichen Compilern wird hier für den Maschinencode eine binäre Repräsentation gewählt¹⁵. Der Weg von Abstrakter Syntax zu Konkretter Syntax ist allerdings wesentlich einfacher, als der Weg von der Konkretten Syntax

¹³Z.B. Addieren oder Subtraktion von zwei Registerinhalten.

¹⁴ Mit dem RETI-Befehlssatz wäre das durchaus möglich, durch z.B. MULT ACC IN2.

¹⁵Da der PicoC-Compiler vor allem zu Lernzwecken konzipiert ist, wird bei diesem der Maschienencode allerdings in einer menschenlesbaren Repräsentation ausgegeben.

Kapitel 2. Einführung 2.6. Fehlermeldungen

zur Abstrakten Syntax, für die eine gesamte Syntaktische Analyse, die eine Lexikalische Analyse beinhaltet durchlaufen werden musste.

Jeder Knoten des Abstract Syntax Trees erhält dazu eine Methode, welche hier to_string genannt wird, die eine Textrepräsentation seiner selbst und all seiner Knoten mit an den richtigen Stellen passend gesetzten Semikolons; usw. ausgibt. Dabei wird nach dem Depth-First-Search Schema der gesamte Abstract Sybtax Tree durchlaufen und die Methode to_string zur Ausgabe der Textrepräsentation der verschiedenen Knoten aufgerufen, die immer wiederum die Methode to_string ihrer Kinder aufrufen und die zurückgegebene Textrepräsentation passend zusammenfügen und selbst zurückgebeben.

2.6 Fehlermeldungen

Definition 2.54: Fehlermeldung

Benachrichtigung beliebiger Form, die darüber informiert, dass:

- 1. Ein Program beim Kompilieren von der Konkretten Syntax abweicht, also der Inpustring sich nicht mit der Konrektten Syntax ableiten lässt oder auf etwas zugegriffen werden soll, was noch nicht deklariert oder definiert wurde.
- 2. Beim Ausführen eine verbotene Operation ausgeführt wurde.^a

^aErrors in C/C++ - Geeks for Geeks.

2.6.1	Kategorien	von	Fehlerme	ldungen

3 Implementierung

In diesem Kapitel wird, nachdem im Kapitel 2 die nötigen theoretischen Grundlagen des Compilerbau vermittelt wurden, nun auf die Implementierung des PicoC-Compilers eingegangen. Aufgeteilt in die selben Kategorien Lexikalische Analyse 3.1, Syntaktische Analyse 3.2 und Code Generierung 3.3, wie in Kapitel 2, werden in den folgenden Unterkapiteln die einzelnen Zwischenschritte vom einem Programm in der Konkretten Syntax der Sprache L_{PicoC} hin zum einem Programm mit derselben Semantik in der Konkretten Syntax der Sprache L_{RETI} erklärt.

Für das Parsen¹ des Programmes in der Konkretten Syntax der Sprache L_{PicoC} wird das Lark Parsing Toolkit^{2 3} verwendet. Das Lark Parsing Toolkit ist eine Bibliothek, die es ermöglicht mittels eines in einem eigenen Dialekt der Erweiterten Back-Naur-Form (Definition 3.3 bzw. für den Dialekt von Lark Definition 3.4) spezifizierten Grammatik der Konkretten Syntax ein Programm in ebendieser Konkretten Syntax zu parsen und daraus einen Derivation Tree für die kompilerintere Weiterverarbeitung zu generieren.

Definition 3.1: Metasyntax

Steht für den Aufbau einer Metasprache (Definition 3.2), der durch eine Grammatik oder Natürliche Sprache beschrieben werden kann.

Definition 3.2: Metasprache

Eine Metasprache ist eine Sprache, die dazu genutzt wird andere Sprachen zu beschreiben^a.

^aDas "Meta" drückt allgemein aus, dass sich etwas auf einer höheren Ebene befindet. Um über die Ebene sprechen zu können, in der man sich selbst befindet, muss man von einer höheren, außenstehenden Ebene darüber reden.

Definition 3.3: Erweiterte Backus-Naur-Form (EBNF)

Die Erweiterte Backus-Naur-Form^a ist eine Metasyntax (Definition 3.1) die dazu verwendet wird Kontextfreier Grammatiken darzustellen. ^{b c}

Die Erweiterte Backus-Naur-Form ist zwar standartisiert und die Spezifikation des Standards kann unter $Link^d$ aufgefunden werden, allerdings werden in der Praxis, wie z.B. in Lark oft eigene Notationen verwendet.

^aDer Name kommt daher, dass es eine Erweiterung der Backus-Naur-Form ist, die hier allerdings nicht weiter erläutert wird.

^bNebel, "Theoretische Informatik".

 $[^]c Grammar\ Reference\ --\ Lark\ documentation.$

dhttps://standards.iso.org/ittf/PubliclyAvailableStandards/.

Wobei beim Parsen auch das Lexen inbegriffen ist.

²|Lark - a parsing toolkit for Python.

³Shinan, *lark*.

Definition 3.4: Dialekt der EBNF aus Lark

Das Lark Parsing Toolkit verwendet eine eigene Notation für die Erweiterte Backus-Naur-Form, die sich teilweise in einzelnen Aspekten von der Syntax aus dem Standard unterscheidet und unter Link^a dokumentiert ist.

Ein für die Grammatiken des PicoC-Compilers wichtiger Unterschied ist z.B., dass dieser Dialekt anstelle von geschweiften Klammern {} für die Darstellung von Wiederholung, den aus regulären Ausdrücken bekannten *-Quantor optional zusammen mit runden Klammern () verwendet: ()*.

Das Lark Parsing Toolkit wurde vor allem deswegen gewählt, weil es sehr einfach in der Verwendung ist. Andere derartige Tools, wie z.B. ANTLR⁴ sind Parser Generatoren, die zur Konkretten Syntax einer Sprache einen Parser in einer vorher bestimmten Programmiersprache generieren, anstatt wie das Lark Parsing Toolkit bei Angabe einer Konkretten Syntax direkt ein Programm in dieser Konkretten Syntax parsen und einen Derivation Tree dafür generieren zu können.

Eine möglichst geringe Laufzeit durch Verwenden der effizientesten Algorithmen zu erreichen war keine der Hauptzielsetzungen für den PicoC-Compiler, da der PicoC-Compiler vor allem als Lerntool konzipiert ist, mit dem Studenten lernen können, wie der Kompiliervorgang von der Programmiersprache L_{PicoC} zur Maschinensprache L_{RETI} funktioniert. Eine ausführliche Diskussion zur Priorisierung Laufziet wurde in Unterkapitel 1.5 geführt. Lark besitzt des Weiteren eine sehr gute Dokumentation Welcome to Lark's documentation! — Lark documentation, sodass anderen Studenten, die den PicoC-Compiler vielleicht in ihr Projekt einbinden wollen, unkompliziert Erweiterungen für den PicoC-Compiler schreiben können.

Neben den Konkretten Syntaxen⁵, die aufgrund der Verwendung des Lark Parsing Toolkit in einem eigenen Dialekt der Erweiterter Back-Naur-Form spezifiziert sind, werden in den folgenden Unterkapiteln die Abstrakte Syntaxen, welche spezifizieren, welche Kompositionen für die Abstract Syntax Trees der verschiedenden Passes erlaubt sind in einer bewusst anderen Notation aufgeschrieben, die allerdings Ähnlichkeit mit dem Dialekt der Erweiterten Backus-Naur-Form aus dem Lark Parsing Toolkit hat.

Die Notation für die Abstrakte Syntax unterscheidet sich bewusst von der Erweiterten Backus-Naur-Form, da in der Abstrakten Syntax Kompositionen von Knoten beschrieben werden, die klar auszumachen sind, wodurch es die Grammatik nur unnötig verkomplizieren würde, wenn man die Erweiterte Backus-Naur-Form verwenden würde. Es gibt leider keine Standardnotation für die Abstrakte Syntax, die sich deutlich durchgesetzt hat, daher wird für die Abstrakte Syntaxen eine eigene Abstract Syntax Form Notation (Definition 3.5) verwendet. Des Weiteren trägt das Verwenden einer unterschiedlichen Notation für Konkrette und Abstrakte Syntax auch dazu bei, dass man beide direkter voneinander unterscheiden kann.

Definition 3.5: Abstrakte Syntax Form (ASF)

Die Abstrakte Syntax Form ist eine eigene Metasyntax für die Grammatiken von Abstrakten Syntaxen, die für diese Bachelorarbeit definiert wurde und sich von dem Dialekt der Backus-Naur-Form des Lark Parsing Toolkit nur dadurch unterschiedet, dass Terminalsymbole nicht von "" engeschlossen sein müssen, da die Knoten in der Abstrakten Syntax, sowieso schon klar auszumachen sind und von anderen Symbolen der Metasprache leicht zu unterschiden sind.

Letztendlich geht es allerdings nur darum, dass aufgrund der Verwendung des Lark Parsing Toolkit die Konkrette Syntax in einem eigenen Dialekt der Erweiterter Backus-Naur-Form angegeben sein muss

 $[^]a$ https://lark-parser.readthedocs.io/en/latest/grammar.html.

^bBzw. kann der *-Quantor auch keinmal wiederholen bedeuteten.

 $^{^{4}}ANTLR$

⁵Der Plural von Syntax ist Syntaxen, wie es in Quelle Syntax verifiziert werden kann.

und für das Implementieren der Passes die Abstrakte Syntax für den Programmierer möglichst einfach verständlich sein sollte, weshalb sich die Abstrake Syntax Form gut dafür eignet.

3.1 Lexikalische Analyse

Für die Lexikalische Analyse ist es nur notwendig eine Grammatik zu definieren, die den Teil der Konkretten Syntax beschreibt, der die verschiedenen Pattern für die verschiedenen Token der Sprache L_{PicoC} beschreibt, also den Teil der für die Lexikalische Analyse wichtig ist. Diese Grammatik wird dann vom Lark Parsing Toolkit dazu verwendet ein Programm in Konkretter Syntax zu lexen und daraus Tokens für die Syntaktische Analyse zu erstellen, wie es im Unterkapitel 2.3 erläutert ist.

3.1.1 Konkrette Syntax für die Lexikalische Analyse

In der Grammatik 3.1.1 für die Lexikalische Analyse stehen großgeschriebene Nicht-Terminalsymbole entweder für einen Tokennamen oder einen Teil der Beschreibung eines Tokennamen. Zum Beispiel handelt es sich bei dem großgeschriebenen Nicht-Terminalsymbol NUM um einen Tokennamen, der durch die Produktion NUM ::= "0" | DIG_NO_O DIG_WITH_O* beschrieben wird und beschreibt, wie ein möglicher Tokenwert, in diesem Fall eine Zahl aufgebaut sein kann. Das ist daran festzumachen, dass das Nicht-Terminalsymbol NUM in keiner anderen Produktion vorkommt, die auf der linken Seite des "kann abgeleitet werden zu"-Symbols ::= ebenfalls ein großgeschriebenen Nicht-Terminalsymbol hat. Dagegen dient das großgeschriebene Nicht-Terminalsymbol DIG_NO_O aus der Produktion NUM ::= "0" | DIG_NO_O DIG_WITH_O* nur zu Beschreibung von NUM.

Die in der Grammatik 3.1.1 definierten Nicht-Terminalsymbole können in der Grammatik 3.2.8 der Konkretten Syntax für die Syntaktischen Analayse verwendet werden, um z.B. zu beschreiben, in welchem Kontext z.B. eine Zahl NUM stehen darf.

Die in der Konkrette Syntax vereinzelt **kleingeschriebenen** Nicht-Terminalsymbole, wie name haben nur den Zweck mehrere **Tokennamen**, wie NAME | INT_NAME | CHAR_NAME unter einem Überbegriff zu sammeln.

In Lark steht eine Zahl .ZAHL, die an ein Nicht-Terminalsymbol angehängt ist, dass auf der linken Seite des "kann abgeleitet werden zu"-Symbols ::= einer Produktion steht für die Priorität der Produktion dieses Nicht-Terminalsymbols. Es gibt den Fall, dass ein Wort von mehreren Produktionen erkannt wird, z.B. wird das Wort int sowohl von der Produktion NAME, als auch von der Produktion INT_DT erkannt. Daher ist es notwendig für INT_DT eine Priorität INT_DT.2 zu setzen⁶, damit das Wort int den Tokennamen INT_DT zugewiesen bekommt und nicht NAME.

Allerdings muss für den Fall, dass int der Präfix eines Wortes ist, z.B. int_var noch die Produktion INT_NAME.3 definiert werden, da der im Lark Parsing Toolkit verwendete Basic Lexer sobald ein Wort von einer Produktion erkannt wird, diesem direkt einen Tokennamen zuordnet, auch wenn das Wort eigentlich von einer anderen Produktion erkannt werden sollte. In diesem Fall würden aus int_var die Token Token('INT_DT', 'int'), Token('NAME', '_var') generiert, anstatt Token(NAME, 'int_var'). Daher muss die Produktion INT_NAME.3 eingeführt werden, die immer zuerst geprüft wird. Wenn es sich nur um das Wort int handelt, wird zuerst die Produktion INT_NAME.3 nicht erkannt wird, daher wird als nächstes INT_DT.2 geprüft, welches int erkennt.

Der Basic Lexer des Lark Parsing Toolkit funktioniert grundlegend so wie es im Unterkapitel 2.3 erklärt wurde, allerdinds berücksichtigt der Basic Lexer ebenfalls Priortiäten, sodass für den aktuellen Index im Eingabeprogramm zuerst alle Produktionen der höchsten Priorität geprüft werden. Sobald eine dieser Produktionen ein Wort an dem aktuellen Index im Eingabeprogramm erkennt, bekommt es direkt den

⁶Es wird immer die höchste Priorität zuerst genommen

Tokenwert dieser Produktion zugewiesen, weitere Produktionen werden nicht mehr geprüft. Ansonsten werden alle Produktionen der nächstniedrigeren Priorität geprüft usw.

```
"/*" /(. | \n)*? / "*/"
COMMENT
                           "//" /[\wedge \backslash n]*/
                                                                        L\_Comment
                           "//""""?"#"/[\land \ n]*/
RETI\_COMMENT.2
                      ::=
                                  "2"
                                         "3"
DIG\_NO\_0
                           "1"
                                                 "4"
                      ::=
                                                                        L_Arith
                           "7"
                                  "8"
                                         "9"
DIG\_WITH\_0
                           "0"
                                  DIG\_NO\_0
                      ::=
                           "0"
                                 DIG\_NO\_0 DIG\_WITH\_0*
NUM
                      ::=
                           "<sub>_</sub>".."~"
ASCII\_CHAR
                      ::=
                           "'"ASCII\_CHAR"'"
CHAR
                      ::=
                           ASCII\_CHAR + ".picoc"
FILENAME
                      ::=
                           "a"..."z" | "A"..."Z"
LETTER
                      ::=
NAME
                          (LETTER \mid "\_")
                      ::=
                               (LETTER | DIG_WITH_0 | "_")*
                           NAME | INT_NAME | CHAR_NAME
name
                      ::=
                           VOID\_NAME
LOGIC\_NOT
                           " | "
                      ::=
                           " \sim "
NOT
                      ::=
REF\_AND
                           "&"
                      ::=
                           SUB_MINUS | LOGIC_NOT | NOT
un\_op
                      ::=
                           MUL\_DEREF\_PNTR \mid REF\_AND
MUL\_DEREF\_PNTR
                           "*"
                      ::=
DIV
                      ::=
                           "%"
MOD
                      ::=
                           MUL\_DEREF\_PNTR \mid DIV \mid MOD
prec1\_op
                      ::=
ADD
                           "+"
                      ::=
                           "—"
SUB\_MINUS
                      ::=
                      ::=
                                 | SUB_MINUS
prec2\_op
                          ADD
                           "<"
LT
                                                                        L_{-}Logic
                      ::=
LTE
                      ::=
                           "<="
GT
                           ">"
                      ::=
GTE
                           ">="
                      ::=
                           LT
rel\_op
                                  LTE \mid GT \mid GTE
EQ
                           "=="
                           "!="
NEQ
                           EQ \mid NEQ
eq\_op
                      ::=
                           "int"
INT\_DT.2
                                                                        L\_Assign\_Alloc
                      ::=
                           "int" (LETTER \mid DIG\_WITH\_0 \mid "\_")+
INT\_NAME.3
                      ::=
CHAR\_DT.2
                          "char"
                      ::=
CHAR\_NAME.3
                           "char" (LETTER | DIG_WITH_0 | "_")+
                      ::=
VOID\_DT.2
                      ::=
                          "void" (LETTER \mid DIG\_WITH\_0 \mid "_")+
VOID\_NAME.3
                      ::=
                          INT\_DT \mid CHAR\_DT \mid VOID\_DT
prim_{-}dt
```

Grammar 3.1.1: Grammatik der Konkretten Syntax der Sprache L_{PicoC} für die Lexikalische Analyse in EBNF

3.1.2 Codebeispiel

In den folgenden Unterkapiteln wird das Beispiel in Code 3.1 dazu verwendet die Konstruktion eines Abstract Syntax Trees in seinen einzelnen Zwischenschritten zu erläutern.

```
1 struct st {int *(*attr)[4][5];};
2
3 void main() {
4   struct st *(*var[3][2]);
5 }
```

Code 3.1: PicoC-Code des Codebeispiels

Die vom Basic Lexer des Lark Parsing Toolkit erkannten Token sind Code 3.2 zu sehen.

```
1 [Token('FILENAME', './verbose_dt_simple_ast_gen_array_decl_and_alloc.picoc'), Token('STRUCT',
    'struct'), Token('NAME', 'st'), Token('LBRACE', '{'), Token('INT_DT', 'int'),
    Token('MUL_DEREF_PNTR', '*'), Token('LPAR', '('), Token('MUL_DEREF_PNTR', '*'),
    Token('NAME', 'attr'), Token('RPAR', ')'), Token('LSQB', '['), Token('NUM', '4'),
    Token('RSQB', ']'), Token('LSQB', '['), Token('NUM', '5'), Token('RSQB', ']'),
    Token('SEMICOLON', ';'), Token('RBRACE', '}'), Token('SEMICOLON', ';'), Token('VOID_DT',
    'void'), Token('NAME', 'main'), Token('LPAR', '('), Token('RPAR', ')'), Token('LBRACE',
    '{'}, Token('STRUCT', 'struct'), Token('NAME', 'st'), Token('MUL_DEREF_PNTR', '*'),
    Token('LPAR', '('), Token('MUL_DEREF_PNTR', '*'), Token('NAME', 'var'), Token('LSQB',
    '['), Token('NUM', '3'), Token('RSQB', ']'), Token('LSQB', '['), Token('NUM', '2'),
    Token('RSQB', ']'), Token('RPAR', ')'), Token('SEMICOLON', ';'), Token('RBRACE', '}')]
```

Code 3.2: Tokens für das Codebeispiel

3.2 Syntaktische Analyse

In der Syntaktischen Analyse ist es die Aufgabe des Parsers aus einem Programm in Konkretter Syntax unter Verwendung der Tokens aus der Lexikalischen Analyse eine Derivation Tree zu generieren. Es ist danach die Aufgabe möglicher Visitors und die Aufgabe des Transformers aus diesem Derivation Tree einen Abstract Syntax Tree in Abstrakter Syntax zu generieren.

3.2.1 Umsetzung von Präzidenz und Assoziativität

Die Programmiersprache L_{PicoC} hat dieselben **Präzidenzregeln** implementiert, wie die Programmiersprache L_C^7 . Die **Präzidenzregeln** der Programmiersprache L_{PicoC} sind in Tabelle 3.1 aufgelistet.

⁷C Operator Precedence - cppreference.com.

Präzidenzst	ufe Operatoren	Beschreibung	Assoziativität
1	a()	Funktionsaufruf	
	a[]	Indexzugriff	Links, dann rechts \rightarrow
	a.b	Attributzugriff	
2	-a	Unäres Minus	
	!a ~a	Logisches NOT und Bitweise NOT	Pachta dann linka /
	*a &a	Dereferenz und Referenz, auch	Rechts, dann links \leftarrow
		Adresse-von	
3	a*b a/b a%b	Multiplikation, Division und Modulo	
4	a+b a-b	Addition und Subtraktion	
5	a <b a="" a<="b">b a>=b	Kleiner, Kleiner Gleich, Größer,	
		Größer gleich	
6	a==b a!=b	Gleichheit und Ungleichheit	Links, dann rechts \rightarrow
7	a&b	Bitweise UND	Links, dami fecitis →
8	a^b	Bitweise XOR (exclusive or)	
9	a b	Bitweise ODER (inclusive or)	
10	a&&b	Logiches UND	
11	a b	Logisches ODER	
12	a=b	Zuweisung	Rechts, dann links \leftarrow

Tabelle 3.1: Präzidenzregeln von PicoC

Würde man diese Operatoren ohne Beachtung von Präzidenzreglen (Definiton 2.31) und Assoziativität (Definition 2.30) in eine Grammatik verarbeiten wollen, so könnte eine Grammatik, wie Grammatik 3.2.1 dabei rauskommen.

 ${
m Grammar}$ 3.2.1: Undurchdachte Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF

Die Grammatik 3.2.1 ist allerdings mehrdeutig, d.h. verschiedene Linksableitungen in der Grammatik können zum selben Wort abgeleitet werden. Z.B. kann das Wort 3 * 1 & 4 sowohl über die Linksableitung 3.5.1 als auch über die Linksableitung 3.5.2 abgeleitet werden.

$$\begin{array}{lll} \exp & \Rightarrow & \text{bin_exp} \Rightarrow & \exp & \text{bin_op} & \exp \Rightarrow & \text{bin_exp} & \text{bin_op} & \exp \\ & \Rightarrow & \exp & \text{bin_op} & \exp \Rightarrow^* & 3*1 & \&\& & 4 \end{array}$$

$$\begin{array}{l} \exp \Rightarrow \operatorname{bin_exp} \Rightarrow \exp \ \operatorname{bin_op} \ \exp \ \Rightarrow \operatorname{prim_exp} \ \operatorname{bin_op} \ \exp \Rightarrow \operatorname{NUM} \ \operatorname{bin_op} \ \exp \\ \Rightarrow \operatorname{3} \ \operatorname{bin_op} \ \exp \Rightarrow \operatorname{3} \ \ast \ \operatorname{bin_exp} \Rightarrow \operatorname{3} \ \ast \ \operatorname{2} \ \&\& \ \operatorname{4} \end{array}$$

Beide Wörter sind gleich, allerdings sind die Ableitungsbäume unterschiedlich, wie in Abbildung 3.1 zu sehen ist.

Abbildung 3.1: Ableitungsbäume zu den beiden Ableitungen

Der linke Baum entspricht Ableitung 3.5.1 und der rechte Baum entspricht Ableitung 3.5.2. Würde man in den Ausdrücken, die von diesen Bäumen darsgestellt sind in Klammern setzen, um die Präzidenz sichtbar zu machen, so würde Ableitung 3.5.1 die Klammerung (3 * 1) & 4 haben und die Ableitung 3.5.2 die Klammerung 3 * (1 & 4) haben.

Aus diesem Grund ist es wichtig die Präzidenzregeln und die Assoziativität der Operatoren beim Erstellen der Grammatik miteinzubeziehen. Hierzu wird nun Tabelle 3.1 betrachtet. Für jede Präzidenzstufe in der Tabelle 3.1 wird eine eigene Regel erstellt werden, wie es in Grammatik 3.2.2 dargestellt ist. Zudem braucht es eine Produktion prim_exp für die höchste Präzidenzstufe, welche Literale, wie 'c', 5 oder var und geklammerte Ausdrücke wie (3 && 14) abdeckt.

$prim_exp$::=	 $L_Arith + L_Array$
$post_exp$::=	 + $LPntr$ $+$ $LStruct$
un_exp	::=	 $+ L_{-}Fun$
$arith_prec1$::=	
$arith_prec2$::=	
$arith_and$::=	
$arith_oplus$::=	
$arith_or$::=	
rel_exp	::=	 L_Logic
eq_exp	::=	
$logic_and$::=	
$logic_or$::=	
$assign_stmt$::=	 L_Assign

Grammar 3.2.2: Durchdachte Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF

Einigen Bezeichnungen der Produktionen sind in Tabelle 3.2 ihren jeweiligen Operatoren zugeordnet für welche sie zuständig sind.

Bezeichnung der Produktionsregel	Operatoren
post_exp	a() a[] a.b
un_exp	-a !a ~a *a &a
$arith_prec1$	a*b a/b a%b
arith_prec2	a+b a-b
$\operatorname{arith_and}$	a <b a="" a<="b">b a>=b
arith_oplus	a==b a!=b
arith_or	a&b
rel_exp	a^b
eq_exp	a b
logic_and	a&&b
logic_or	a b
assign	a=b

Tabelle 3.2: Zuordnung der Bezeichnungen von Produktionsregeln zu Operatoren

Als nächstes müssen die einzelnen **Produktionen** entsprechend der **Ausdrücke** für die sie zuständig sind definiert werden. Jede der **Produktionen** soll nur Ausdrücke **erkennen** können, deren **Präzidenzstufe** die ist, für welche die jeweilige Produktion verantwortlich ist oder deren Präzidenzstufe **höher** ist. Z.B. soll un_op sowohl den Ausdruck -(3 * 14) als auch einfach nur (3 * 14)⁸ erkennen können, aber nicht 3 * 14 ohne Klammern, da dieser Ausdruck eine **geringe Präzidenz** hat. Des Weiteren muss bei Produktionen für Ausdrücke mit **Operatoren** unterschieden werden, ob die Operatoren linksassoziativ oder rechtsassoziativ, unär, binär usw. sind.

Bei z.B. der Produktion un_exp in 3.2.3 für die rechtsassoziativen unären Operatoren -a, !a ~a, *a und &a ist die Alternative un_op un_exp dafür zuständig, dass diese unären Operatoren rechtsassoziativ geschachtelt werden können (z.B. !-~42). Die Alternative post_exp ist dafür zuständig, dass die Produktion auch terminieren kann und es auch möglich ist auschließlich einen Ausdruck höherer Präzidenz (z.B. 42) zu haben.

$$un_exp ::= un_op un_exp \mid post_exp$$

Grammar 3.2.3: Beispiel für eine unäre rechtsassoziative Produktion

Bei z.B. der Produktion post_exp in 3.2.4 für die linksassoziativen unären Operatoren a(), a[] und a.b sind die Alternativen post_exp"["logic_or"]" und post_exp"."name dafür zuständig, dass diese unären Operatoren linksassoziativ geschachtelt werden können (z.B. ar[3][1].car[4]). Die Alternative name"("fun_args")" ist für einen einzelnen Funktionsaufruf zuständig. Die Alternative prim_exp ist dafür zuständig, dass die Produktion nicht nur bei name"("fun_args")" terminieren kann und es auch möglich ist auschließlich einen Ausdruck der höchsten Präzidenz (z.B. 42) zu haben.

$$post_exp \ ::= \ post_exp"["logic_or"]" \ | \ post_exp"."name \ | \ name"("fun_args")" \ | \ prim_exp$$

Grammar 3.2.4: Beispiel für eine unäre linksassoziative Produktion

Bei z.B. der Produktion prec2_exp in 3.2.5 für die binären linksassoziativen Operatoren a+b und a-b ist die Alternative arith_prec2 prec2_op arith_prec1 dafür zuständig, dass mehrere Operationen der Präzidenzstufe 4 in Folge erkannt werden können⁹ (z.B. 3 + 1 - 4, wobei - und + beide Präzidenzstufe 4 haben). Das Nicht-Terminalsymbol arith_prec1 auf der rechten Seite ermöglicht es, dass zwischen den

⁸Geklammerte Ausdrücke werden nämlich von prim_exp erkannt, welches eine höhere Präzidenzstufe hat.

⁹Bezogen auf Tabelle 3.1.

Operationen der Präzidenzstufe 4 auch Operationen der Präzidenzstufe 3 auftauchen können (z.B. 3 + 1 / 4 - 1, wobei - und + beide Präzidenzstufe 4 haben und / Präzidenzstufe 3). Mit der Alternative arith_prec1 ist es möglich, dass auschließlich ein Ausdruck höherer Präzidenz erkannt wird (z.B. 1 / 4).

 $arith_prec2$::= $arith_prec2$ $prec2_op$ $arith_prec1$ | $arith_prec1$

Grammar 3.2.5: Beispiel für eine linksassoziative Produktion

Manche Parser^a haben allerdings ein Problem mit Linksrekursion (Definition 2.25), wie sie z.B. in der Produktion 3.2.5 vorliegt. Dieses Problem lässt sich allerdings einfach lösen, indem man die Produktion 3.2.5 zur Produktion 3.2.6 umschreibt.

 $arith_prec2$::= $arith_prec1$ ($prec2_op$ $arith_prec1$)*

Grammar 3.2.6: Beispiel für eine linksassoziative Produktion

Die von Produktion 3.2.6 erkannten Ausdrücke sind dieselben, wie für die Produktion 3.2.5, allerdings ist die Produktion3.2.6 flach gehalten und ruft sich nicht selber auf, sondern nutzt den in der EBNF (Definition 3.3) definierten *-Operator, um mehrere Operationen der Präzidenzstufe 4 in Folge erkennen zu können (z.B. 3 + 1 - 4, wobei - und + beide Präzidenzstufe 4 haben).

Das Nicht-Terminalsymbol arith_prec1 erlaubt es, dass zwischen der Folge von Operationen der Präzidenzstufe 4 auch Operationen der Präzidenzstufe 3 auftauchen können (z.B. 3 + 1 / 4 - 1, wobei - und + beide Präzidenzstufe 4 haben und / Präzidenzstufe 3). Da der in der EBNF definierte *-Operator auch bedeutet, dass das Teilpattern auf das er sich bezieht kein einziges mal vorkommen kann, ist es mit dem linken Nicht-Terminalsymbol arith_prec1 möglich, dass auschließlich ein Ausdruck höherer Präzidenz erkannt wird (z.B. 1 / 4).

 $^a\mathrm{Darunter}$ zählt der Earley Parser, der im Pico
C-Compiler verwendet wird nicht.

Alle Operatoren der Sprache L_{PicoC} sind also entweder binär und linksassoziativ (z.B. a*b, a-b, a>=b oder a&&b), unär und rechtsassoziativ (z.B. &a oder !a) oder unär und linksassoziativ (z.B. a[] oder a()) Somit ergibt sich die Grammatik 3.2.7.

```
L_{-}Misc
prec1\_op
prec2\_op
rel\_op
eq\_op
                     [logic\_or("," logic\_or)*
fun\_args
                                                       "("logic\_or")"
                               NUM
                                           CHAR
prim_{-}exp
                                                                                              L_-Arith
                                            post\_exp"."name
post\_exp
                    post\_exp"["logic\_or"]"
                                                                  | name"("fun\_args")"
                                                                                              + L_Array
                                                                                              + L_-Pntr
                    prim_{-}exp
                    un_op un_exp | post_exp
                                                                                              + L_Struct
un_{-}exp
               ::=
arith\_prec1
                    arith_prec1 prec1_op un_exp
                                                    un_exp
                                                                                              + L_Fun
arith\_prec2
                    arith_prec2 prec2_op arith_prec1 | arith_prec1
               ::=
                    arith_and "&" arith_prec2
arith\_and
               ::=
                                                     arith\_prec2
arith\_oplus
                    arith\_oplus "\land" arith\_and
                                                     arith\_and
               ::=
arith\_or
               ::=
                    arith_or "|" arith_oplus
                                                  arith\_oplus
rel\_exp
                    rel_exp rel_op arith_or
                                                 arith\_or
                                                                                              L\_Logic
               ::=
eq_exp
               ::=
                     eq_exp eq_op rel_exp | rel_exp
                    logic_and "&&" eq_exp | eq_exp
logic\_and
               ::=
logic\_or
                    logic_or "||" logic_and
                                                logic\_and
               ::=
                    un_exp "=" logic_or";"
assign\_stmt
                                                                                              L_Assign
               ::=
```

Grammar 3.2.7: Durchdachte Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF

3.2.2 Konkrette Syntax für die Syntaktische Analyse

Die gesamte Grammatik 3.2.8, welche die Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse beschreibt ergibt sich wenn man die Grammatik 3.2.7 um die restliche Syntax der Sprache L_{PicoC} erweitert, die sich nach einem ähnlichen Prinzip wie in Unterkapitel 3.2.7 erläutert ergibt.

Später in der Entwicklung des PicoC-Compilers wurde die Konkrette Syntax an die aktuellste konstenlos auffindbare Version der echten Grammatik ANSI C grammar (Yacc) der Sprache L_C angepasst¹⁰ damit es sicherer gewährleistet werden kann, dass der PicoC-Compiler sich genauso verhält, wie geläufige Compiler der Programmiersprache L_C , wobei z.B. die Compiler GCC¹¹ und Clang¹² zu nennen wären.

In der Grammatik 3.2.8, welche die Konkrette Syntax der Sprache L_{PicoC} für die Syntaktische Analyse beschreibt, werden einige der Tokennamen aus der Grammatik 3.1.1 der Konkretten Syntax für die Lexikalischen Analyse verwendet, wie z.B. NUM aber auch name, welches eine Produktion ist, die mehrere Tokennamen unter einem Überbegriff zusammenfasst.

Terminalsymbole, wie; oder && gehören eigentlich zur Lexikalischen Analyse, jedoch erlaubt das Lark Parsing Toolkit um die Grammatik leichter lesbar zu machen einige Terminalsymbole einfach direkt in die Grammatik 3.2.8 der Konkretten Syntax für die Syntaktische Analyse zu schreiben. Der Tokenname für diese Terminalsymbole wird in diesem Fall vom Lark Parsing Toolkit bestimmt, welches einige sehr häufige verwendete Terminalsymbole, wie; oder && bereits einen Tokennamen zugewiesen hat.

¹⁰An der für die Programmiersprache L_{PicoC} relevanten Syntax hat sich allerdings über die Jahre nichts verändert, wie die Grammatiken für die Syntaktische Analyse $ANSI\ C\ grammar\ (Lex)$ und Lexikalische Analyse noauthor ansi nodate-2 aus dem Jahre 1985 zeigen.

¹¹ GCC, the GNU Compiler Collection - GNU Project.

 $^{^{12}}$ clang: C++ Compiler.

```
name | NUM | CHAR |
                                                         "("logic_or")"
                                                                            L_Arith + L_Array
prim_{-}exp
                  ::=
post\_exp
                  ::=
                       array\_subscr \mid struct\_attr \mid fun\_call
                                                                            + L_{-}Pntr + L_{-}Struct
                       input_exp | print_exp | prim_exp
                                                                             + L_Fun
un\_exp
                  ::=
                       un\_op \ un\_exp \mid post\_exp
                       "input""("")"
input\_exp
                  ::=
                       "print""("logic_or")"
print_exp
                  ::=
arith\_prec1
                       arith_prec1 prec1_op un_exp | un_exp
                  ::=
arith\_prec2
                       arith_prec2 prec2_op arith_prec1 | arith_prec1
arith\_and
                       arith_and "&" arith_prec2 | arith_prec2
                  ::=
                       arith_oplus "\\" arith_and | arith_and
arith\_oplus
                  ::=
                       arith_or "|" arith_oplus | arith_oplus
arith\_or
                  ::=
rel_{-}exp
                  ::= rel\_exp rel\_op arith\_or | arith\_or
                                                                            L_{-}Logic
                       eq\_exp eq\_op rel\_exp | rel\_exp
eq_exp
                  ::=
                       logic_and "&&" eq_exp | eq_exp
logic_and
                  ::=
                       logic\_or "||" logic\_and | logic\_and
logic\_or
                  ::=
                       prim_dt | struct_spec
                                                                            L\_Assign\_Alloc
type\_spec
                  ::=
alloc
                       type\_spec\ pntr\_decl
                  ::=
                       un_exp "=" logic_or";"
assign\_stmt
                  ::=
                       logic_or | array_init | struct_init
initializer\\
                  ::=
                       alloc "=" initializer";"
init\_stmt
                  ::=
const\_init\_stmt
                       "const" type_spec name "=" NUM";"
                  ::=
                       "*"*
pntr\_deq
                  ::=
                                                                            L_{-}Pntr
pntr\_decl
                  ::=
                       pntr_deg array_decl | array_decl
                       ("["NUM"]")*
array\_dims
                                                                            L_Array
                  ::=
array\_decl
                       name array_dims | "("pntr_decl")"array_dims
                  ::=
                       "{"initializer("," initializer)*"}"
array_init
                  ::=
                       post_exp"["logic_or"]"
array\_subscr
                  ::=
                       "struct"\ name
                                                                            L\_Struct
struct\_spec
                  ::=
struct\_params
                       (alloc";")+
                  ::=
                       "struct" name "{"struct_params"}"
struct\_decl
                  ::=
                       "\{""."name"="initializer"\}
struct\_init
                  ::=
                            ("," "."name"="initializer)*"}"
struct\_attr
                       post\_exp"."name
                  ::=
                       "if""("logic_or")" exec_part
if\_stmt
                  ::=
                                                                            L_If_Else
                       "if"" ("logic\_or")" \ exec\_part "else" \ exec\_part
if\_else\_stmt
                  ::=
                       "while""("logic_or")" exec_part
while\_stmt
                                                                            L_{-}Loop
                       "do" exec_part "while""("logic_or")"";"
do\_while\_stmt
                  ::=
```

Grammar 3.2.8: Grammatik der Konkretten Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF, Teil 1

```
decl\_exp\_stmt
                         alloc";"
                                                                                                 L_Stmt
                   ::=
decl\_direct\_stmt
                   ::=
                         assign_stmt | init_stmt | const_init_stmt
decl\_part
                         decl\_exp\_stmt \mid decl\_direct\_stmt \mid RETI\_COMMENT
                   ::=
                         "{"exec\_part*"}"
compound\_stmt
                   ::=
                         logic_or";"
exec\_exp\_stmt
                   ::=
exec\_direct\_stmt
                         if\_stmt \mid if\_else\_stmt \mid while\_stmt \mid do\_while\_stmt
                   ::=
                         assign\_stmt \mid fun\_return\_stmt
                         compound\_stmt \mid exec\_exp\_stmt \mid exec\_direct\_stmt
exec\_part
                         RETI\_COMMENT
decl\_exec\_stmts
                         decl\_part * exec\_part *
                   ::=
                         [logic\_or(","\ logic\_or)*]
fun\_args
                   ::=
                                                                                                 L_{-}Fun
                         name"("fun\_args")"
fun\_call
                   ::=
fun\_return\_stmt
                         "return" [logic_or]";"
                   ::=
                         [alloc("," alloc)*]
fun\_params
                   ::=
                         type_spec pntr_deg name"("fun_params")"
fun\_decl
                   ::=
fun\_def
                         type_spec_pntr_deg_name"("fun_params")" "{"decl_exec_stmts"}"
                   ::=
                                          fun\_decl)";" | fun\_def
decl\_def
                         (struct\_decl
                                                                                                 L_File
                   ::=
decls\_defs
                         decl\_def*
                   ::=
file
                   ::=
                         FILENAME decls_defs
```

Grammar 3.2.9: Grammatik der Konkretten Syntax der Sprache L_{PicoC} für die Syntaktische Analyse in EBNF, Teil 2

In der Grammatik 3.2.8 sind alle Grammatiksymbole ausgegraut, die das Bachelorprojekt betreffen. Alle nicht ausgegrauten Grammatiksymbole wurden für die Implementierung der neuen Funktionalitäten, welche die Bachelorarbeit betreffen hinzugefügt.

3.2.3 Derivation Tree Generierung

Die in Unterkapitel 3.2.2 definierte Konkrette Syntax, die von der Grammatik 3.2.8 beschrieben wird lässt sich mithilfe des Earley Parsers (Definition 3.6) von Lark dazu verwenden Code, der in der Sprache L_{PicoC} geschrieben ist zu parsen um einen Derivation Tree zu generieren.

Definition 3.6: Earley Parser

3.2.3.1 Codebeispiel

Der Derivation Tree, der mithilfe des Earley Parsers und der Token der Lexikalischen Analyse aus dem Beispiel in Code 3.1 generiert wurde, ist in Code 3.3 zu sehen. Im Code 3.3 wurden einige Zeilen markiert die später in Unterkapitel 3.2.4.1 zum Vergleich wichtig sind.

```
struct_params
              alloc
 9
                type_spec
10
                  prim_dt
                                   int
                pntr_decl
12
                  pntr_deg
13
                  array_decl
14
                     pntr_decl
15
                       pntr_deg
16
                       array_decl
17
                         name
                                      attr
18
                         array_dims
19
                     array_dims
20
                       4
21
                       5
22
       decl_def
23
         fun_def
24
            type_spec
25
                               void
              prim_dt
26
            pntr_deg
27
           name
                         main
28
            fun_params
29
            decl_exec_stmts
30
              decl_part
31
                decl_exp_stmt
32
                  alloc
33
                     type_spec
34
                       struct_spec
35
                         name
                                      st
36
                     pntr_decl
37
                       pntr_deg
38
                       array_decl
39
                         pntr_decl
40
                           pntr_deg
41
                           array_decl
42
                             name
                                           var
43
                             array_dims
                                3
45
                                2
46
                         array_dims
```

Code 3.3: Derivation Tree nach Derivation Tree Generierung

3.2.3.2 Ausgabe des Derivation Tree

Die Ausgabe des Derivation Tree wird komplett vom Lark Parsing Toolkit übernommen. Für die Inneren Knoten werden die Nicht-Terminalsymbole, welche in der Grammatik den linken Seiten des "kann abgeleitet werden zu"-Symbols ::= 13 entsprechen hergenommen und die Blätter sind Terminalsymbole, genauso, wie es in der Definition 2.39 eines Derivation Tree auch schon definiert ist. Die EBNF-Grammatik 3.2.8 des PicoC-Compilers erlaubt es allerdings auch, dass in einem Blatt garnichts ε steht, weil es z.B. Produktionen, wie array_dims ::= ("["NUM"]")* gibt, in denen auch das leere Wort ε abgeleitet werden kann.

Die Ausgabe des Abstract Syntax Tree ist bewusst so gewählt, dass sie sich optisch vom Derivation

¹³Grammar: The language of languages (BNF, EBNF, ABNF and more).

Tree unterscheidet, indem die Bezeichner der Knoten in UpperCamelCase geschrieben sind, im Gegensatz zum Derivation Tree, dessen Innere Knoten im snake_case geschrieben sind, wie auch die Nicht-Terminalsymbole auf den linken Seiten des "kann abgeleitet werden zu"-Symbols ::=.

3.2.4 Derivation Tree Vereinfachung

Der Derivation Tree in Code 3.3, dessen Generierung in Unterkapitel 3.2.3.1 besprochen wurde ist noch untauglich, damit aus ihm mittels eines Tramsformers ein Abstract Syntax Tree generiert werden kann. Das Problem ist, dass um den den Datentyp einer Variable in der Programmiersprache L_C und somit auch die Programmiersprache L_{PicoC} korrekt bestimmen zu können, wie z.B. ein "Array der Mächtigkeit 3 von Pointern auf Arrays der Mächtigkeit 2 von Integern" int (*ar[3]) [2] die Spiralregel¹⁴ in der Implementeirung des PicoC-Compilers umgesetzt werden muss und das ist nicht alleinig möglich, indem man die entsprechenden Produktionen in der Grammatik 3.2.8 der Konkretten Syntax auf eine spezielle Weise passend spezifiziert.

Was man erhalten will, ist ein entarteter Baum von PicoC-Knoten, an dem man den Datentyp direkt ablesen kann, indem man sich einfach über den entarteten Baum bewegt, wie z.B. PntrDecl(Num('1'),ArrayDecl([Num('3'),Num('2')],PntrDecl(Num('1'),StructSpec(Name('st'))))) für den Ausdruck struct st *(*var[3][2]).

Es sind hierbei mehrere Probleme zu lösen. Hat man den Ausdruck struct st *(*var[3][2]) wird dieser zu einem Derivation Tree, wie er in Abbildung 3.2 zu sehen ist.

Abbildung 3.2: Derivation Tree nach Parsen eines Ausdrucks

Dieser Derivation Tree für den Ausdruck struct st *(*var[3][2]) hat allerdings einen Aufbau welcher durch die Syntax der Pointerdeklaratoren pntr_decl(num, datatype) und Arraydeklaratoren array_decl(datatype, nums) bestimmt ist, die spiralähnlich ist. Man würde allerdings gerne einen entarteten Baum erhalten, bei dem der Datentyp immer im zweiten Attribut weitergeht, anstatt abwechselnd im zweiten und ersten, wie beim Pointerdeklarator pntr_decl(num, datatype) und Arraydeklarator array_decl(datatype, nums). Daher muss beim ArrayDeclarator array_decl(datatype, nums) immer das erste Attribut datatype mit dem zweiten Attribut nums getauscht werden.

Des Weiteren befindet sich in der Mitte dieser Spirale, die der Derivation Tree bildet der Name der

¹⁴Clockwise/Spiral Rule.

Variable name(var) und nicht der innerste Datentyp struct st, da der Derivation Tree einfach nur die kompilerinterne Darstellung, die durch das Parsen eines Programms in Konkretter Syntax (z.B. struct st *(*var[3][2])) generiert wird darstellt. Der Name der Variable name(var) sollte daher mit dem innersten Datentyp struct st ausgetauscht werden.

In Abbildung 3.3 ist daher zu sehen, wie der **Derivation Tree** aus Abbildung 3.2 mithilfe eines **Visitors** (Definition 2.43) **vereinfacht** wird, sodass er die gerade erläuterten Ansprüche erfüllt.

Abbildung 3.3: Derivation Tree nach Vereinfachung

3.2.4.1 Codebeispiel

In Code 3.4 ist der Derivation Tree aus Code 3.3 nach der Vereinfachung mithilfe eines Visitors zu sehen.

```
1
 2
     ./verbose\_dt\_simple\_ast\_gen\_array\_decl\_and\_alloc.dt\_simple\\
     decls_defs
 4
       decl_def
         struct_decl
 6
           name
            struct_params
              alloc
                pntr_decl
10
                  pntr_deg
11
                  array_decl
12
                     array_dims
13
                       4
14
                       5
15
                     pntr_decl
16
                       pntr_deg
17
                       array_decl
18
                         array_dims
19
                         type_spec
20
                           prim_dt
                                            int
                             attr
                name
```

```
decl_def
23
         fun_def
24
            type_spec
25
              prim_dt
                              void
26
            pntr_deg
27
           name
                         main
28
            fun_params
29
            decl_exec_stmts
30
              decl_part
31
                decl_exp_stmt
32
                  alloc
33
                     pntr_decl
34
                       pntr_deg
35
                       array_decl
36
                         array_dims
37
                         pntr_decl
38
                           pntr_deg
39
                           array_decl
40
                              array_dims
41
                                3
42
                                2
43
                              type_spec
44
                                struct_spec
45
                                  name
                                               st
                     name
```

Code 3.4: Derivation Tree nach Derivation Tree Vereinfachung

3.2.5 Abstrakt Syntax Tree Generierung

Nachdem der Derviation Tree in Unterkapitel 3.2.4 vereinfacht wurde, ist der vereinfachte Derivation Tree in Code 3.4 nun dazu geeignet, um mit einem Transformer (Definition 2.42) einen Abstract Syntax Tree aus ihm zu generieren. Würde man den vereinfachten Derivation Tree des Ausdrucks struct st *(*var[3][2]) auf passende Weise in einen Abstract Syntax Tree umwandeln, so würde dabei ein Abstract Syntax Tree wie in Abbildung 3.4 rauskommen.

Den Teilbaum, der den Datentyp darstellt würde man von von oben-nach-unten¹⁵ als "Pointer auf einen Pointer auf ein Array der Mächtigkeit 2, 3 von Structs des Typs st" lesen, also genau anders herum, als man den Ausdruck struct st *(*var[3][2]) mit der Spiralregel lesen würde. Bei der Spiralregel fängt man beim Ausdruck struct st *(*var[3][2]) bei der Variable var an und arbeitet sich dann auf "Spiralbahnen", von innen-nach-außen durch den Ausdruck, um herauszufinden, dass dieser Datentyp ein "Array der Mächtigkeit 3, 2 von Pointern auf einen Pointer auf einen Struct vom Typ st" ist.

¹⁵In der Informatik wachsen Bäume von oben-nach-unten, von der Wurzel zur den Blättern, bzw. in diesem Beispiel von links-nach-rechts.

Abbildung 3.4: Abstract Syntax Tree Generierung ohne Umdrehen

Dieser Abstract Syntax Tree ist für die Weiterverarbeitung ungeeignet, denn für die Adressberechnung für eine Aneinandereihung von Zugriffen auf Pointerelemente, Arrayelemente oder Structattribute, welche in Unterkapitel ?? genauer erläutert wird, will man den Datentyp in umgekehrter Reihenfolge. Aus diesem Grund muss der Transformer bei der Konstruktion des Abstract Syntax Tree zusätzlich dafür sorgen, dass jeder Teilbaum, der für einen Datentyp steht umgedreht wird. Auf diese Weise kommt ein Abstract Syntax Tree mit richtig rum gedrehtem Datentyp, wie in Abbildung 3.5 zustande, der für die Weiterverarbeitung geeignet ist.

Abbildung 3.5: Abstract Syntax Tree Generierung mit Umdrehen

Die Weiterverarbeitung des Abstract Syntax Trees geschieht mithilfe von Passes, welche im Unterkapitel 2.5 genauer beschrieben werden. Da die Knoten des Abstract Syntax Tree anders als beim Derivation Tree nicht die gleichen Bezeichnungen haben wie Produktionen der Grammatik der Konkretten Syntax

ist es in den folgenden Unterkapiteln 3.2.5.1, 3.2.5.2 und 3.2.5.3 notwendig die Bedeutung der einzelnen PicoC-Knoten, RETI-Knoten und bestimmter Kompositionen dieser Knoten zu dokumentieren, die alle in den unterschiedlichen von den Passes umgeformten Abstract Syntax Trees vorkommen.

Des Weiteren gibt die Abstrakte Syntax die durch die Grammatik 3.2.1 in Unterkapitel 3.2.5.4 beschrieben wird aufschluss darüber welche Kompositionen von PicoC-Knoten, neben den bereits in Tabelle 3.2.10 definierten Kompositionen mit Bedeutung insgesamt überhaupt möglich sind.

3.2.5.1 PicoC-Knoten

Bei den PicoC-Knoten handelt es sich um Knoten, die irgendeinen Ausdruck aus der Sprache L_{PicoC} darstellen. Für die PicoC-Knoten wurden möglichst kurze und leicht verständliche Bezeichner gewählt, da auf diese Weise bei der Implementierung der einzelnen Passes möglichst viel Code in eine Zeile passt und dieser Code auch durch leicht verständliche Bezeichner von Knoten intuitiv verständlich sein sollte¹⁶. Alle PicoC-Knoten, die in den von den verschiedenen Passes generierten Abstract Syntax Trees vorkommen sind in Tabelle 3.3 mit einem Bschreibungstext dokumentiert.

¹⁶Z.B. steht der PicoC-Knoten Name(str) für einen Bezeichner. Anstatt diesen Knoten in englisch Identifier(str) zu nennen, wurde dieser als Name(str) gewählt, da Name(str) kürzer ist und inuitiver verständlich.

PiocC-Knoten	Beschreibung
Name(val)	Ein Bezeichner, z.B. my_fun, my_var usw., aber da es keine gute Kurzform für Identifier() (englisches Wort für Bezeichner) gibt, wurde dieser Knoten Name() genannt.
Num(val)	Eine Zahl, z.B. 42, -3 usw.
Char(val)	Ein Zeichen der ASCII-Zeichenkodierung, z.B. 'c', '*' usw.
<pre>Minus(), Not(), DerefOp(), RefOp(), LogicNot()</pre>	Die unären Operatoren un_op: -a, ~a, *a, &a !a.
Add(), Sub(), Mul(), Div(), Mod(), Oplus(), And(), Or(), LogicAnd(), LogicOr()	Die binären Operatoren bin_op: a + b, a - b, a * b, a / b, a % b, a % b, a % b, a b, a & b, a b.
Eq(), NEq(), Lt(), LtE(), Gt(), GtE()	Die Relationen rel: a == b, a != b, a < b, a <= b, a > b, a >= b.
<pre>Const(), Writeable()</pre>	Die Type Qualifier type_qual: const, was für ein nicht beschreibbare Konstante steht und das nicht Angeben von const, was für einen beschreibbare Variable steht.
<pre>IntType(), CharType(), VoidType()</pre>	Die Type Specifier für Primitiven Datentypen, die in der Abstrakten Syntax, um eine intuitive Bezeichnung zu haben einfach nur unter Datentypen datatype eingeordnet werden: int, char, void.
Placeholder()	Platzhalter für einen Knoten, der diesen später ersetzt.
BinOp(exp, bin_op, exp)	Container für eine binäre Operation mit 2 Expressions: <exp1> <bin_op> <exp2></exp2></bin_op></exp1>
UnOp(un_op, exp)	Container für eine unäre Operation mit einer Expression: <un_op> <exp>.</exp></un_op>
Exit(num)	Container für einen Exit Code , der vor der Beendigung in das ACC Register geschrieben wird und steht für die Beendigung des laufenden Programmes.
Atom(exp, rel, exp)	Container für eine binäre Relation mit 2 Expressions: <exp1> <rel> <exp2></exp2></rel></exp1>
ToBool(exp)	Container für einen Arithmetischen Ausdruck, wie z.B. 1 + 3 oder einfach nur 3, der nicht nur 1 oder 0 als Ergebnis haben kann und daher bei einem Ergebnis $x > 1$ auf 1 abgebildet wird.
Alloc(type_qual, datatype, name, local_var_or_param)	Container für eine Allokation <type_qual> <datatype> <name> mit den notwendigen Knoten type_qual, datatype und name, die alle für einen Eintrag in der Symboltabelle notwendigen Informationen enthalten. Zudem besitzt er ein verstecktes Attribut local_var_or_param, dass die Information trägt, ob es sich bei der Variable um eine Lokale Variable oder einen Parameter handelt.</name></datatype></type_qual>
Assign(lhs, exp)	Container für eine Zuweisung , wobei 1hs ein Subscr(exp1, exp2), Deref(exp1, exp2), Attr(exp, name) oder Name('var') sein kann und exp ein beliebiger Logischer Ausdruck sein kann: 1hs = exp.

Tabelle 3.3: PicoC-Knoten Teil 1

PiocC-Knoten	Beschreibung
<pre>Exp(exp, datatype, error_data)</pre>	Container für einen beliebigen Ausdruck, dessen Ergebnis auf den Stack soll. Zudem besitzt er 2 versteckte Attribu- te, wobei datatype im RETI Blocks Pass wichtig ist und error_data für Fehlermeldungen wichtig ist.
Stack(num)	Container, der für das temporäre Ergebnis einer Berechnung, das num Speicherzellen relativ zum Stackpointer Register SP steht.
Stackframe(num)	Container, der für eine Variable steht, die num Speicherzellen relativ zum Begin-Aktive-Funktion Register baf steht.
Global(num)	Container, der für eine Variable steht, die num Speicherzellen relativ zum Datensegment Register DS steht.
StackMalloc(num)	Container, der für das Allokieren von num Speicherzellen auf dem Stack steht.
PntrDecl(num, datatype)	Container, der für den Pointerdatentyp steht: <prim_dt> *<var>, wobei das Attribut num die Anzahl zusammenge- fasster Pointer angibt und datatype der Datentyp ist, auf den der oder die Pointer zeigen.</var></prim_dt>
Ref(exp, datatype, error_data)	Container, der für die Anwendung des Referenz-Operators & var> steht und die Adresse einer Location (Definition 2.50) auf den Stack schreiben soll, die über exp eingegrenzt wird. Zudem besitzt er 2 versteckte Attribute, wobei datatype im RETI Blocks Pass wichtig ist und error_data für Fehlermeldungen wichtig ist.
Deref(lhs, exp)	Container für den Indexzugriff auf einen Array- oder Pointerdatentyp: <var>[<i>], wobei exp1 eine angehängte weitere Subscr(exp1, exp2), Deref(exp1, exp2), Attr(exp, name) oder ein Name('var') sein kann und exp2 der Index ist auf den zugegriffen werden soll.</i></var>
ArrayDecl(nums, datatype)	Container, der für den Arraydatentyp steht: <prim_dt> <var>[<i>], wobei das Attribut nums eine Liste von Num('x') ist, die die Dimensionen des Arrays angibt und datatype der Datentyp ist, der über das Anwenden von Subscript() auf das Array zugreifbar ist.</i></var></prim_dt>
Array(exps, datatype)	Container für den Initializer eines Arrays, dessen Einträge exps weitere Initializer für eine Array-Dimension oder ein Initializer für ein Struct oder ein Logischer Ausdruck sein können, z.B. {{1, 2}, {3, 4}}. Des Weiteren besitzt er ein verstecktes Attribut datatype, welches für den PicoC-ANF Pass Informationen transportiert, die für Fehlermeldungen wichtig sind.
Subscr(exp1, exp2)	Container für den Indexzugriff auf einen Array- oder Pointerdatentyp: <var>[<i>], wobei exp1 eine angehängte weitere Subscr(exp1, exp2), Deref(exp1, exp2) oder Attr(exp, name) Operation sein kann oder ein Name('var') sein kann und exp2 der Index ist auf den zugegriffen werden soll.</i></var>
StructSpec(name)	Container für einen selbst definierten Structdatentyp: struct <name>, wobei das Attribut name festlegt, welchen selbst definierte Structdatentyp dieser Container-Knoten repräsentiert.</name>
Attr(exp, name)	Container für den Attributzugriff auf einen Structdatentyp: <var>.<attr>, wobei exp1 eine angehängte weitere Subscr(exp1, exp2), Deref(exp1, exp2) oder Attr(exp, name) Operation sein kann oder ein Name('var') sein kann und name das Attribut ist, auf das zugegriffen werden soll.</attr></var>

PiocC-Knoten	Beschreibung
Struct(assigns, datatype)	Container für den Initializer eines Structs, z.E
	{. <attr1>={1, 2}, .<attr2>={3, 4}}, dessen Eintrag assigns</attr2></attr1>
	eine Liste von Assign(lhs, exp) ist mit einer Zuordnung
	eines Attributezeichners, zu einem weiteren Initializer für
	eine Array-Dimension oder zu einem Initializer für ein
	Struct oder zu einem Logischen Ausdruck. Des Weiteren
	besitzt er ein verstecktes Attribut datatype, welches für der
	PicoC-ANF Pass Informationen transportiert, die für
	-
ap. 1/	Fehlermeldungen wichtig sind.
StructDecl(name, allocs)	Container für die Deklaration eines selbstdefinierter
	Structdatentyps, z.B. struct <var> {<datatype> <attr1></attr1></datatype></var>
	<pre><datatype> <attr2>;};, wobei name der Bezeichner des</attr2></datatype></pre>
	Structdatentyps ist und allocs eine Liste von Bezeichnern
	der Attribute des Structdatentyps mit dazugehörigem Da
	tentyp, wofür sich der Container-Knoten Alloc(type_qual
	datatype, name) sehr gut als Container eignet.
If(exp, stmts)	Container für ein If Statement if(<exp>) { <stmts> } in</stmts></exp>
-	klusive Condition exp und einem Branch stmts, inden
	eine Liste von Statements stehen kann oder ein einzelnes
	GoTo(Name('block.xyz')).
IfElse(exp, stmts1, stmts2)	Container für ein If-Else Statement if(<exp>) { <stmts2></stmts2></exp>
IIIISC(CKP, Bumbbi, Bumbbz)	} else { <stmts2> } inklusive Codition exp und 2 Bran</stmts2>
	ches stmts1 und stmts2, die zwei Alternativen Darstel
	len in denen jeweils Listen von Statements oder
	GoTo(Name('block.xyz'))'s stehen können.
While(exp, stmts)	Container für ein While-Statement while (<exp>) { <stmts></stmts></exp>
	} inklusive Condition exp und einem Branch stmts, indem
	eine Liste von Statements stehen kann oder ein einzelnes
	<pre>GoTo(Name('block.xyz')).</pre>
DoWhile(exp, stmts)	Container für ein Do-While-Statement do { <stmts> }</stmts>
	while(<exp>); inklusive Condition exp und einem Branch</exp>
	stmts, indem eine Liste von Statements stehen kann oder
	ein einzelnes GoTo(Name('block.xyz')).
Call(name, exps)	Container für einen Funktionsaufruf: fun_name(exps), wobe
	name der Bezeichner der Funktion ist, die aufgerufen werder
	soll und exps eine Liste von Argumenten ist, die an die
	Funktion übergeben werden soll.
Return(exp)	Container für ein Return-Statement: return <exp>, wobei das</exp>
neturn(exp)	Attribut exp einen Logischen Ausdruck darstellt, desser
	Ergebnis vom Return-Statement zurückgegeben wird.
FunDecl(datatype, name, allocs)	Container für eine Funktionsdeklaration, z.B.

PiocC-Knoten	Beschreibung
FunDef(datatype, name, allocs, stmts_blocks)	Container für eine Funktionsdefinition, z.B. <datatype> <fun_name>(<datatype> <param/>) {<stmts>}, wobei datatype der Rückgabewert der Funktion ist, name der Bezeichner der Funktion ist, allocs die Parameter der Funktion sind, wobei der Container-Knoten Alloc(type_spec, datatype, name) als Cotainer für die Parameter dient und stmts_blocks eine Liste von Statemetns bzw. Blöcken ist, welche diese Funktion beinhaltet.</stmts></datatype></fun_name></datatype>
NewStackframe(fun_name, goto_after_call)	Container für die Erstellung eines neuen Stackframes und Speicherung des Werts des BAF-Registers der aufrufenden Funktion und der Rücksprungadresse nacheinander an den Anfang des neuen Stackframes. Das Attribut fun name stehte dabei für den Bezeichner der Funktion, für die ein neuer Stackframe erstellt werden soll. Das Attribut fun name dient später dazu den Block dieser Funktion zu finden, weil dieser für den weiteren Kompiliervorang wichtige Information in seinen versteckte Attributen gespeichert hat. Des Weiteren ist das Attribut goto_after_call ein GoTo(Name('addr@next_instr')), welches später durch die Adresse des Befehls, der direkt auf die Jump Instruction folgt, ersetzt wird.
RemoveStackframe()	Container für das Entfernen des aktuellen Stackframes durch das Wiederherstellen des im noch aktuellen Stackframe gespeicherten Werts des BAF-Registes der aufrufenden Funktion und das Setzen des SP-Registers auf den Wert des BAF-Registesr vor der Wiederherstellung.
File(name, decls_defs_blocks)	Container für alle Funkionen oder Blöcke, welche eine Datei als Ursprung haben, wobei name der Dateiname der Datei ist, die erstellt wird und decls_defs_blocks eine Liste von Funktionen bzw. Blöcken ist.
Block(name, stmts_instrs, instrs_before, num_instrs, param_size, local_vars_size)	Container für Statements, der auch als Block bezeichnet wird, wobei das Attribut name der Bezeichners des Labels (Definition 3.7) des Blocks ist und stmts_instrs eine Liste von Statements oder Instructions. Zudem besitzt er noch 3 versteckte Attribute, wobei instrs_before die Zahl der Instructions vor diesem Block zählt, num_instrs die Zahl der Instructions ohne Kommentare in diesem Block zählt, param_size die voraussichtliche Anzahl an Speicherzellen aufaddiert, die für die Parameter der Funktion belegt werden müssen und local_vars_size die voraussichtliche Anzahl an Speicherzellen aufaddiert, die für die lokalen Variablen der Funktion belegt werden müssen.
GoTo(name)	Container für ein Goto zu einem anderen Block, wobei das Attribut name der Bezeichner des Labels des Blocks ist zu dem Gesprungen werden soll.
SingleLineComment(prefix, content)	Container für einen Kommentar, den der Compiler selber während des Kompiliervorangs erstellt, der im RETI-Interpreter selbst später nicht sichtbar sein wird, aber in den Immediate-Dateien, welche die Abstract Syntax Trees nach den verschiedenen Passes enthalten.
RETIComment(value)	Container für einen Kommentar im Code der Form: // # comment, der im RETI-Intepreter später sichtbar sein wird und zur Orientierung genutzt werden kann, allerdings in einer tatsächlichen Implementierung einer RETI-CPU nicht umsetzbar ist und auch nicht sinnvoll wäre umzusetzen. Der Kommentar ist im Attribut value, welches jeder Knoten besitzt gespeichert.

Definition 3.7: Label

Durch einen Bezeichner eindeutig zuordenbares Sprungziel im Programmcode.^a

^aThiemann, "Compilerbau".

Die ausgegrauten Attribute der PicoC-Nodes sind versteckte Attribute, die nicht direkt bei der Erstellung der PicoC-Nodes mit einem Wert initialisiert werden, sondern im Verlauf der Kompilierung beim Durchlaufen der verschiedenen Passes etwas zugewiesen bekommen, dass im weiteren Kompiliervorgang Informationen transportiert, die später im Kompiliervorgang nicht mehr so leicht zugänglich wären.

Jeder Knoten hat darüberhinaus auch noch 2 Attribute value und position, wobei value bei einem Token-Knoten (Definition 3.8) dem Tokenwert des Tokens, welches es ersetzt entspricht und bei Container-Knoten (Definition 3.9) unbesetzt ist. Das Attribut position wird später für Fehlermeldungen gebraucht.

Definition 3.8: Token-Knoten

Ersetzt ein Token bei der Generierung des Abstract Syntax Tree, damit der Zugriff auf Knoten des Abstract Syntax Tree möglichst simpel ist und keine vermeidbaren Fallunterscheidungen gemacht werden müssen.

Token-Knoten entsprechen im Abstract Syntax Tree Blättern.^a

^aThiemann, "Compilerbau".

Definition 3.9: Container-Knoten

Dient als Container für andere Container-Knoten und Token-Knoten. Die Container-Knoten werden optimalerweise immer so gewählt, dass sie mehrere Produktionen der Konkretten Syntax abdecken, die einen gleichen Aufbau haben und sich auch unter einem Überbegriff zusammenfassen lassen.^a

Container-Knoten entsprechen im Abstract Syntax Tree Inneren Knoten.^b

"Wie z.B. die verschiedenen Arithmetischen Ausdrücke, wie z.B. 1 % 3 und Logischen Ausdrücke, wie z.B. 1 & 2 < 3, die einen gleichen Aufbau haben mit immer einer Operation in der Mitte haben und 2 Operanden auf beiden Seiten und sich unter dem Überbegriff Binäre Operationen zusammenfassen lassen.

bThiemann, "Compilerbau".

3.2.5.2 RETI-Knoten

Bei den RETI-Knoten handelt es sich um Knoten, die irgendeinen Ausdruck aus der Sprache L_{RETI} darstellen. Für die RETI-Knoten wurden aus bereits in Unterkapitel 3.2.5.1 erläutertem Grund, genauso wie für die RETI-Knoten möglichst kurze und leicht verständliche Bezeichner gewählt. Alle RETI-Knoten, die in den von den verschiedenen Passes generierten Abstract Syntax Trees vorkommen sind in Tabelle 3.2.5.1 mit einem Beschreibungstext dokumentiert.

RETI-Knoten	Beschreibung
Program(name, instrs)	Container für alle Instructions: <name> <instrs>, wobei</instrs></name>
-	name der Dateiname der Datei ist, die erstellt wird und
	instrs eine Liste von Instructions ist.
<pre>Instr(op, args)</pre>	Container für eine Instruction: <op> <args>, wobei op ei-</args></op>
•	ne Operation ist und args eine Liste von Argumenten
	für dieser Operation.
Jump(rel, im_goto)	Container für eine Jump-Instruction: JUMP <rel> <im>,</im></rel>
•	wobei rel eine Relation ist und im_goto ein Immediate
	Value Im(val) für die Anzahl an Speicherzellen, um
	die relativ zur Jump-Instruction gesprungen werden soll
	oder ein GoTo(Name('block.xyz')), das später im RETI-
	Patch Pass durch einen passenden Immediate Value
	ersetzt wird.
Int(num)	Container für einen Interruptaufruf: INT <im>, wobei num</im>
	die Interrruptvektornummer (IVN) für die passende
	Speicherzelle in der Interruptvektortabelle ist, in der
	die Adresse der Interrupt-Service-Routine (ISR) steht.
Call(name, reg)	Container für einen Prozeduraufruf: CALL <name> <reg>,</reg></name>
(,6,	wobei name der Bezeichner der Prozedur, die aufgerufen
	werden soll ist und reg ein Register ist, das als Argu-
	ment an die Prozedur dient. Diese Operation ist in der
	Betriebssysteme Vorlesung ^a nicht deklariert, sondern wur-
	de dazuerfunden, um unkompliziert ein CALL PRINT ACC
	oder CALL INPUT ACC im RETI-Interpreter simulieren zu
	können.
Name(val)	Bezeichner für eine Prozedur , z.B. PRINT oder INPUT oder
	den Programnamen, z.B. PROGRAMNAME. Dieses Argu-
	ment ist in der Betriebssysteme Vorlesung ^a nicht dekla-
	riert, sondern wurde dazuerfunden, um Bezeichner, wie
	PRINT, INPUT oder PROGRAMNAME schreiben zu können.
Reg(reg)	Container für ein Register.
Im(val)	Ein Immediate Value, z.B. 42, -3 usw.
Add(), Sub(), Mult(), Div(), Mod(),	Compute-Memory oder Compute-Register Operatio-
Oplus(), Or(), And()	nen: ADD, SUB, MULT, DIV, OPLUS, OR, AND.
Addi(), Subi(), Multi(), Divi(), Modi(),	Compute-Immediate Operationen: ADDI, SUBI, MULTI,
Oplusi(), Ori(), Andi()	DIVI, MODI, OPLUSI, ORI, ANDI.
Load(), Loadin(), Loadi()	Load Operationen: LOAD, LOADIN, LOADI.
Store(), Storein(), Move()	Store Operationen: STORE, STOREIN, MOVE.
Lt(), LtE(), Gt(), GtE(), Eq(), NEq(),	Relationen: <, <=, >, >=, ==, !=, _NOP.
Always(), NOp()	
Always(), NUp() Rti()	Return-From-Interrupt Operation: RTI.
	Return-From-Interrupt Operation: RTI. Register: PC, IN1, IN2, ACC, SP, BAF, CS, DS.

^a C. Scholl, "Betriebssysteme"

Tabelle 3.7: RETI-Knoten

3.2.5.3 Kompositionen von PicoC-Knoten und RETI-Knoten mit besonderer Bedeutung

In Tabelle 3.8 sind jegliche Kompositionen von PicoC-Knoten und RETI-Knoten aufgelistet, die eine besondere Bedeutung haben und nicht bereits in der Abstrakten Syntax 3.2.8 enthalten sind.

Komposition	Beschreibung		
Ref(Global(Num('addr')))	Speichert Adresse der Speicherzelle, die Num('addr') Speicherzellen relativ zum Datensegment Register DS steht auf den Stack.		
Ref(Stackframe(Num('addr')))	Speichert Adresse der Speicherzelle, die Num('addr') Speicherzellen relativ zum Begin-Aktive-Funktion Register BAF steht auf den Stack.		
<pre>Ref(Subscr(Stack(Num('addr1')), Stack(Num('addr2'))))</pre>	Berechnet die nächste Adresse aus der Adresse, die an Speicherzelle Stack(Num('addr1')) steht und dem Subscript Index, der an Speicherzelle Stack(Num('addr2')) steht und speichert diese auf den Stack. Die Berechnung ist abhängig davon ob der Datentyp ArrayDecl(datatype) oder PntrDecl(datatype) ist. Der Datentyp ist ein verstecktes Attribut von Ref(exp).		
<pre>Ref(Attr(Stack(Num('addr1')), Name('attr')))</pre>	Berechnet die nächste Adresse aus der Adresse, die an Speicherzelle Stack(Num('addr1')) steht und dem Attributnamen Name('attr') und speichert diese auf den Stack. Zur Berechnung ist der Name des Struct in StructSpec(Name('st')) notwendig, dessen Attribut Name('attr') ist. StructSpec(Name('st')) ist ein verstecktes Attribut von Ref(exp).		
<pre>Assign(Stack(Num('size'))), Global(Num('addr')))</pre>	Schreibt Num('size') viele Speicherzellen, die ab Global(Num('addr')) relativ zum Datensegment Register DS stehen, versetzt genauso auf den Stack.		
<pre>Assign(Stack(Num('size')),</pre>	Schreibt Num('size') viele Speicherzellen, die ab		
Stackframe(Num('addr')))	Stackframe(Num('addr')) relativ zum Begin-Aktive-Funktion Register BAF stehen, versetzt genauso auf den Stack.		
<pre>Exp(Global(Num('addr'))</pre>	Speichert Inhalt der Speicherzelle, die Num('addr') Speicherzellen relativ zum Datensegment Register DS steht auf den Stack.		
<pre>Exp(Stackframe(Num('addr'))</pre>	Speichert Inhalt der Speicherzelle, die Num('addr') Speicherzellen relativ zum Begin-Aktive-Funktion Register BAF steht auf den Stack.		
<pre>Exp(Stack(Num('addr')))</pre>	Speichert Inhalt der Speicherzelle, die Num('addr') Speicherzellen relativ zum Stackpointer Register SP steht auf den Stack.		
Assign(Stack(Num('addr1')), Stack(Num('addr2')))	Speichert Inhalt der Speicherzelle Stack(Num('addr2')), die Num('addr2') Speicherzellen relativ zum Stackpoin- ter Register SP steht an der Adresse in der Speicherzelle, die Num('addr1') Speicherzellen relativ zum Stackpoin- ter Register SP steht.		
Assign(Global(Num('addr')),	Schreibt Num('size') viele Speicherzellen, die auf dem		
Stack(Num('size')))	Stack stehen, versetzt genauso auf die Speicherzellen ab Num('addr') relativ zum Datensegment Register DS.		
<pre>Assign(Stackframe(Num('addr')), Stack(Num('size')))</pre>	Schreibt Num('size') viele Speicherzellen, die auf dem Stack stehen, versetzt genauso auf die Speicherzellen ab Num('addr') relativ zum Begin-Aktive-Funktion Register BAF.		
<pre>Exp(Reg(reg))</pre>	Schreibt den aktuellen Wert des Registers reg auf den Stack.		
<pre>Instr(Loadi(), [Reg(Acc()), GoTo(Name('addr@next_instr'))])</pre>	Lädt in das Register ACC die Adresse der Instruction, die in diesem Kontext direkt nach dem Sprung zum Block einer anderen Funktion steht.		

Tabelle 3.8: Kompositionen von PicoC-Knoten und RETI-Knoten mit besonderer Bedeutung

Um die obige Tabelle 3.8 nicht mit unnötig viel repetetiven Inhalt zu füllen, wurden die zahlreichen Kompostionen ausgelassen, bei denen einfach nur exp durch $Stack(Num('x')), x \in \mathbb{N}$ ersetzt wurde.

Zudem sind auch jegliche Kombinationen ausgelassen, bei denen einfach nur eine Expression an ein Exp(exp) bzw. Ref(exp) drangehängt wurde.

3.2.5.4 Abstrakte Syntax

Die Abstrakte Syntax der Sprache L_{PicoC} wird durch die Grammatik 3.2.10 beschrieben.

stmt	::=	$SingleLineComment(str, str) \mid RETIComment()$	$L_Comment$
un_op bin_op	::=	$egin{array}{c c c c c c c c c c c c c c c c c c c $	L_Arith
exp $stmt$::= ::=	$Name(str) \mid Num(str) \mid Char(str)$ $BinOp(\langle exp \rangle, \langle bin_op \rangle, \langle exp \rangle)$ $UnOp(\langle un_op \rangle, \langle exp \rangle) \mid Call(Name('input'), Empty())$ $Call(Name('print'), \langle exp \rangle)$ $Exp(\langle exp \rangle)$	
			T. Logio
un_op rel	::= ::=	LogicNot() $Eq() \mid NEq() \mid Lt() \mid LtE() \mid Gt() \mid GtE()$	L_Logic
bin_op	::=	$LogicAnd() \mid LogicOr()$	
exp	::=	$Atom(\langle exp \rangle, \langle rel \rangle, \langle exp \rangle) ToBool(\langle exp \rangle)$	
$type_qual$::=	Const() Writeable()	L_Assign_Alloc
datatype	::=	$IntType() \mid CharType() \mid VoidType()$	
exp	::=	$Alloc(\langle type_qual \rangle, \langle datatype \rangle, Name(str))$	
stmt	::=	$Assign(\langle exp \rangle, \langle exp \rangle)$	
datatype	::=	$PntrDecl(Num(str), \langle datatype \rangle)$	L_Pntr
exp	::=	$Deref(\langle exp \rangle, \langle exp \rangle) \mid Ref(\langle exp \rangle)$	
datatype	::=	$ArrayDecl(Num(str)+, \langle datatype \rangle)$ $Subscr(\langle exp \rangle, \langle exp \rangle) \mid Array(\langle exp \rangle +)$	L_Array
exp	::=		T. C.
datatype	::=	StructSpec(Name(str)) $Attr(\langle exp \rangle, Name(str))$	L_Struct
exp	::=	$Struct(Assign(Name(str), \langle exp \rangle) +)$	
$decl_def$::=	StructDecl(Name(str), (Supple))	
·		$Alloc(\dot{W}riteable(),\langle datatype\rangle,Name(str))+)$	
stmt	::=	$If(\langle exp \rangle, \langle stmt \rangle *)$	L_If_Else
		$IfElse(\langle exp \rangle, \langle stmt \rangle *, \langle stmt \rangle *)$	
stmt	::=	$While(\langle exp \rangle, \langle stmt \rangle *)$	L_Loop
		$DoWhile(\langle exp \rangle, \langle stmt \rangle *)$	
exp	::=	$Call(Name(str), \langle exp \rangle *)$	L _ Fun
stmt	::=	$Return(\langle exp \rangle)$	
$decl_def$::=	$FunDecl(\langle datatype \rangle, Name(str),$	
	ı	$Alloc(Writeable(), \langle datatype \rangle, Name(str))*)$ $FunDef(\langle datatype \rangle, Name(str),$	
	ı	$Alloc(Writeable(), \langle datatype \rangle, Name(str))*, \langle stmt \rangle *)$	

Man spricht hier von der "Abstrakten Syntax der Sprache L_{PicoC} " und meint hier mit der Sprache L_{PicoC} nicht die Sprache, welche durch die Abstrakte Syntax beschrieben wird. Es ist damit immer die Sprache gemeint, die kompiliert werden soll und zu deren Zweck die Abstrakt Syntax überhaupt definiert wird. Für die tatsächliche Sprache, die durch die Abstrakt Syntax beschrieben wird, interessiert man sich nie wirklich explizit. Diese Redeart wurde aus der Quelle G. Siek, Course Webpage for Compilers (P423, P523, E313, and E513) übernommen.

3.2.5.5 Codebeispiel

In Code 3.5 ist der Abstract Syntax Tree zu sehen, der aus dem vereinfachten Derivation Tree aus Code 3.4 mithilfe eines Transformers generiert wurde.

```
1
  File
     Name './verbose_dt_simple_ast_gen_array_decl_and_alloc.ast',
       StructDecl
         Name 'st',
         Γ
           Alloc
              Writeable,
              PntrDecl
10
                Num '1',
                ArrayDecl
12
13
                    Num '4',
                    Num '5'
14
                  ],
15
                  PntrDecl
16
                    Num '1',
17
18
                    IntType 'int',
19
              Name 'attr'
20
         ],
21
       FunDef
         VoidType 'void',
22
23
         Name 'main',
24
         [],
25
         [
26
           Exp
27
              Alloc
28
                Writeable,
29
                ArrayDecl
30
31
                    Num '3',
32
                    Num '2'
33
                  ],
34
                  PntrDecl
35
                    Num '1',
36
                    PntrDecl
                       Num '1',
37
38
                       StructSpec
39
                         Name 'st',
40
                Name 'var'
41
         ]
     ]
```

Code 3.5: Aus vereinfachtem Derivation Tree generierter Abstract Syntax Tree

3.2.5.6 Ausgabe des Abstract Syntax Tree

Ein Knoten eines Abstract Syntax Tree kann entweder in der Konkretter Syntax der Sprache, für dessen Kompilierung er generiert wurde oder in der Abstrakter Syntax, die beschreibt, wie der Abstract Syntax Tree selbst aufgebaut sein darf ausgegeben werden.

Das Ausgeben eines Abstract Syntax Trees wird im PicoC-Compiler über die Magische Methode __repr__()¹⁷ der Programmiersprache Python umgesetzt. Sobald ein PicoC-Knoten oder RETI-Knoten ausgegeben werden soll, gibt seine Magische Methode __repr__() eine nach der Abstrakten oder Konkretten Syntax aufgebaute Textrepräsentation seiner selbst und all seiner Knoten mit an den richtigen Stellen passend gesetzten runden öffnenden (und schließenden) Klammern, sowie Kommas ',', Semikolons; usw. zur Darstellung der Hierarchie und zur Abtrennung zurück. Dabei wird nach dem Depth-First-Search Schema der gesamte Abstract Sybtax Tree durchlaufen und die Magische __repr__()-Methode der verschiedenen Knoten aufgerufen, die immer jeweils die __repr__()-Methode ihrer Kinder aufrufen und die zurückgegebene Textrepräsentation passend zusammenfügen und selbst zurückgeben.

Im PicoC-Compiler wurden Abstrakte und Konkrette Syntax miteinander gemischt. Für PicoC-Knoten wurde die Abstrakte Syntax verwendet, da Passes schließlich auf Abstract Syntax Trees operieren Bei RETI-Knoten wurde die Konkrette Syntax verwendet, da Maschienenbefehle in Konkretter Syntax schließlich das Endprodukt des Kompiliervorgangs sein sollen. Da die Abstrakte Syntax von RETI-Knoten so simpel ist, macht es kaum einen Unterschied in der Erkennbarkeit, bis auf fehlende gescheifte Klammern () usw., ob man die RETI-Knoten in Abstrakter oder Konkretter Syntax schreibt. Daher kann man auch einfach gleich die RETI-Knoten in Konkretter Syntax ausgeben und muss nicht beim letzten Pass daran denken, am Ende die Konkrette, statt der Abstrakten Syntax für die RETI-Knoten auszugeben.

3.3 Code Generierung

Nach der Generierung eines Abstract Syntax Tree als Ergebnis der Lexikalischen und Syntaktischen Analyse in Unterkapitel??, wird in diesem Kapitel mit den verschiedenen Kompositionen von PicoC-Knoten und RETI-Knoten im Abstract Syntax Tree als Basis das gewünschte Endprodukt des PicoC-Compilers, der RETI-Code generiert.

Man steht nun dem Problem gegenüber einen Abstract Syntax Tree der Sprache L_{PicoC} , der durch die Abstrakte Syntax in Grammatik 3.2.10 spezifiziert ist in einen entsprechenden Abstract Syntax Tree der Sprache L_{RETI} umzuformen. Das ganze lässt sich, wie in Unterkapitel 2.5 bereits beschrieben vereinfachen, indem man dieses Problem in mehrere Passes (Definition 2.46) herunterbricht.

Beim PicoC-Compiler handelt es sich um einen Cross-Compiler (Definiton 2.10). Damit RETI-Code erzeugt werden kann, der auf der RETI-Architektur läuft, muss erst, wie im T-Diagram (siehe Unterkapitel 2.1.1) in Abbildung 3.6 zu sehen ist, der Python-Code des PicoC-Compilers mittels eines Compilers, der z.B. auf einer X_{86_64}-Architektur laufen könnte zu Bytecode kompiliert werden. Dieser Bytecode wird dann von der Python-Virtual-Machine (PVM) interpretiert, welche wiederum auf einer X_{86_64}-Architektur laufen könnte. Und selbst dieses T-Diagram könnte noch ausführlicher ausgedrückt werden, indem nachgeforscht wird, in welcher Sprache eigentlich die Python-Virtual-Machine geschrieben war, bevor sie zu X_{86_64}-kompiliert wurde usw.

¹⁷Spezielle Methode, die immer aufgerufen wird, wenn das Object, dass in Besitz dieser Methode ist als String mittels print() oder zur Repräsentation ausgegeben werden soll.

Abbildung 3.6: Cross-Compiler Kompiliervorgang ausgeschrieben

Dieses längliche **T-Diagram** in Abbildung 3.6 lässt sich zusammenfassen, sodass man das **T-Diagram** in Abbildung 3.7 erhält, in welcher direkt angegeben ist, dass der **PicoC-Compiler** in **X**_{86_64}-Maschienensprache geschrieben ist.

Abbildung 3.7: Cross-Compiler Kompiliervorgang Kurzform

Nachdem der Kompilierprozess des PicoC-Compiler im vertikalen nun genauer angesehen wurde, wird

der Kompilierprozess im Folgenden im horinzontalen, auf der Ebene der verschiedenen Passes genauer betrachtet. Die Abbildung 3.8 gibt einen guten Überblick über alle Passes und wie diese in der Pipe-Architektur (Definition 2.32) des PicoC-Compilers aufeinanderfolgen. In der Pipe-Architektur nutzt der jeweils nächste Pass den generierten Abstract Syntax Tree des vorherigen Passes oder der Syntaktischen Analyse, um einen eigenen Abstract Syntax Tree in seiner eigenen Sprache zu generieren.

Abbildung 3.8: Architektur mit allen Passes ausgeschrieben

Im Unterkapitel 3.3.1 werden die unterschiedlichen Passes des PicoC-Compilers erklärt. In den darauffolgenden Unterkapiteln ??, ??, ?? und ?? zu Pointern, Arrays, Structs und Funktionen werden einzelne Aspekte die Thema dieser Bachelorarbeit sind genauer betrachtet und erklärt, die im Unterkapitel 3.3.1 nicht ausreichend vertieft wurden. Viele der verwendenten Ansätze zur Lösung dieser Probleme basieren auf der Vorlesung C. Scholl, "Betriebssysteme" und wurden in dieser Bachelorarbeit weiter ausgearbeitet, wo es nötig war, sodass diese mit dem PicoC-Compiler auch in der Praxis implementiert werden konnten.

Um die verschiedenen Aspekte besser erklären zu können, werden Codebeispiele verwendet, in welchen ein kleines repräsentatives PicoC-Programm für einen spezifischen Aspekt in wichtigen Zwischenstadien der Kompilierung gezeigt wird¹⁸. Die Codebeispiele wurden alle mit dem PicoC-Compiler kompiliert und danach nicht mehr verändert, also genauso, wie der PicoC-Compiler sie kompiliert aus den Dateien in dieses Dokument eingelesen. Alle hier zur Repräsentation verwendeten PicoC-Programme lassen sich unter dem Link¹⁹ finden und mithilfe der im Ordner /code_examples beiliegenden Makefile und dem Befehl

> make compile-all genauso kompilieren, wie sie hier dargestellt sind²⁰.

3.3.1 Passes

Im Folgenden werden die verschiedenen Passes des PicoC-Compilers für die Generierung von RETI-Code besprochen. Viele dieser Passes haben Aufgaben, die eher unter die Themenbereiche des Bachelorprojekts fallen. Allerdings ist das Verständnis der Passes auch für das Verständnis der veschiedenen Aspekte²¹ der

¹⁸Also die verschiedenen in den Passes generierten Abstract Syntax Trees, sofern der Pass für den gezeigten Aspekt relevant ist.

 $^{^{19} \}verb| https://github.com/matthejue/Bachelorarbeit/tree/master/code_examples.$

²⁰Es wurden zu diesem Zweck spezielle neue Command-line Optionen erstellt, die bestimmte Kommentare herausfiltern und manche Container-Knoten einzeilig machen, damit die generierten Abstract Syntax Trees in den verscchiedenen Zwischenstufen der Kompilierung nicht zu langgestreckt und überfüllt mit Kommentaren sind.

²¹In kurz: Pointer, Arrays, Streuts und Funktionen.

Bachelorarbeit wichtig.

Auf jedes Detail der einzelnen Passes wird in diesem Unterkapitel allerdings nicht eingegangen, da diese einerseits in den Unterkapiteln ??, ??, ?? und ?? zu Pointern, Arrays, Structs und Funktionen im Detail erklärt sind und andererseits viele Aufgaben dieser Passes eher dem Bachelorprojekt zuzurechnen sind.

3.3.1.1 PicoC-Shrink Pass

3.3.1.1.1 Aufgabe

Der Aufgabe des PicoC-Shrink Pass ist in Unterkapitel ?? ausführlich an einem Beispiel erklärt. Kurzgefasst hat der PicoC-Shrink Pass die Aufgabe, die Eigenheit auszunutzen, dass der Dereferenzierungoperator *pntr und die damit einhergehende Pointer Arithmetik *(pntr + i) sich in der Untermenge der Sprache L_C , welche die Sprache L_{PicoC} darstellt genau gleich verhält, wie der Operator für den Zugriff auf den Index eines Arrays ar[i].

Daher wandelt der PicoC-Shrink Pass alle Verwendungen des Knoten Deref(exp, i) im jeweiligen Abstract Syntax Tree in Knoten Subscr(exp, i) um, sodass sich dadurch viele vermeidbare Fallunterscheidungen und doppelter Code bei der Implementierung vermeiden lassen. Man lässt die Derefenzierung *(var + i) einfach von den Routinen für einen Zugriff auf einen Arrayindex var[i] übernehmen.

3.3.1.1.2 Abstrakte Syntax

Die Abstrakte Syntax der Sprache L_{PicoC_Shrink} in Tabelle 3.3.1 ist fast identisch mit der Abstrakten Syntax der Sprache L_{PicoC} in Tabelle 3.2.10, nach welcher der erste Abstract Syntax Tree in der Syntaktischen Analyse generiert wurde. Der einzige Unterschied liegt darin, dass es den Knoten Deref(exp. exp) in Tabelle 3.3.1 nicht mehr gibt. Das liegt daran, dass dieser Pass alle Vorkommnisse des Knoten Deref(exp. exp) durch den Knoten Subscr(exp. exp) auswechselt, der ebenfalls bereits in der Abstrakten Syntax der Sprache L_{PicoC} definiert ist.

stmt	::=	$SingleLineComment(str, str) \mid RETIComment()$	$L_{-}Comment$
un_op bin_op exp	::=	$\begin{array}{c cccc} Minus() & & Not() \\ Add() & & Sub() & & Mul() & & Div() & & Mod() \\ Oplus() & & And() & & Or() \\ Name(str) & & Num(str) & & Char(str) \\ BinOp(\langle exp\rangle, \langle bin_op\rangle, \langle exp\rangle) & & & UnOp(\langle un_op\rangle, \langle exp\rangle) & & Call(Name('input'), Empty()) \\ Call(Name('print'), \langle exp\rangle) & & & & & & & & & \\ \end{array}$	L_Arith
stmt	::=	$Exp(\langle exp \rangle)$	
un_op rel bin_op exp	::= ::= ::=	$ \begin{array}{c cccc} LogicNot() & \\ Eq() & & NEq() & & Lt() & & LtE() & & Gt() & & GtE() \\ LogicAnd() & & LogicOr() & \\ Atom(\langle exp \rangle, \langle rel \rangle, \langle exp \rangle) & & ToBool(\langle exp \rangle) \\ \end{array} $	L_Logic
type_qual datatype exp stmt	::= ::= ::=	$Const() \mid Writeable() \\ IntType() \mid CharType() \mid VoidType() \\ Alloc(\langle type_qual \rangle, \langle datatype \rangle, Name(str)) \\ Assign(\langle exp \rangle, \langle exp \rangle)$	L_Assign_Alloc
$\begin{array}{c} datatype \\ exp \end{array}$::=	$PntrDecl(Num(str), \langle datatype \rangle)$ $Deref(\langle exp \rangle, \langle exp \rangle) \mid Ref(\langle exp \rangle)$	L_Pntr
$\begin{array}{c} datatype \\ exp \end{array}$::=	$\begin{array}{c c} ArrayDecl(Num(str)+,\langle datatype\rangle) \\ Subscr(\langle exp\rangle,\langle exp\rangle) & & Array(\langle exp\rangle+) \end{array}$	L_Array
datatype exp decl_def	::= ::= ::=	$StructSpec(Name(str)) \\ Attr(\langle exp \rangle, Name(str)) \\ Struct(Assign(Name(str), \langle exp \rangle) +) \\ StructDecl(Name(str), \\ Alloc(Writeable(), \langle datatype \rangle, Name(str)) +) \\$	L_Struct
stmt	::=	$If(\langle exp \rangle, \langle stmt \rangle *)$ $IfElse(\langle exp \rangle, \langle stmt \rangle *, \langle stmt \rangle *)$	L_If_Else
stmt	::=	$While(\langle exp \rangle, \langle stmt \rangle *) $ $DoWhile(\langle exp \rangle, \langle stmt \rangle *)$	L_Loop
$\begin{array}{c} exp \\ stmt \\ decl_def \end{array}$::=	$Call(Name(str), \langle exp \rangle *)$ $Return(\langle exp \rangle)$ $FunDecl(\langle datatype \rangle, Name(str),$ $Alloc(Writeable(), \langle datatype \rangle, Name(str)) *)$ $FunDef(\langle datatype \rangle, Name(str),$	L_Fun
	ı	$Alloc(Writeable(), \langle datatype \rangle, Name(str))*, \langle stmt \rangle*)$	

Grammar 3.3.1: Abstrakte Syntax der Sprache L_{PiocC_Shrink}

Der rot markierte Knoten bedeutet, dass dieser im Vergleich zur voherigen Abstrakten Syntax nicht mehr da ist.

3.3.1.1.3 Codebeispiel

In den nächsten Unterkapiteln wird das Beispiel in Code 3.6 zur Anschauung der verschiedenen Passes verwendet. Im Code 3.6 ist in der Funktion faculty ein iterativer Algorithmus implementiert, der die Fakultät eines übergebenen Arguments berechnet. Der Algorithmus basiert auf einem Beispielprogramm

aus der Vorlesung C. Scholl, "Betriebssysteme", welcher in der Vorlesung allerdings rekursiv implementiert ist.

Dieser rekursive Algoirthmus ist allerdings kein gutes Anschaungsbeispiel, dass viele der Aufgaben der verschiedenen Passes bei der Kompilierung veranschaulicht hätte. Viele Aufgaben der Passes, wie z.B. bei der Kompilierung von if-, if-else-, while- und do-while-Statements wären im Beispiel aus der Vorlesung nicht enthalten gewesen. Daher wurde das Beispiel aus der Vorlesung zu einem iterativen Algorithmus 3.6 umgeschrieben, um if- und while-Statemtens zu enthalten.

Beide Varianten des Algorithmus wurden zum Testen des PicoC-Compilers verwendet und sind als Tests im Ordner /tests unter Link²², unter den Testbezeichnungen example_faculty_rec.picoc und example_faculty_it.picoc zu finden.

Die Codebeispiele in diesem und den folgenden Unterkapiteln dienen allerdings nur als Anschauung des jeweiligen Passes, der in diesem Unterkapitel beschrieben wird und werden nicht im Detail erläutert, da viele Details der Passes später in den Unterkapiteln ??, ??, ?? und ?? zu Pointern, Arrays, Structs und Funktionen mit eigenen Codebeispielen erklärt werden und alle sonstigen Details dem Bachelorprojekt zuzurechnen sind.

```
/ based on a example program from Christoph Scholl's Operating Systems lecture
3 int faculty(int n){
    int res = 1;
    while (1) {
      if (n == 1) {
        return res;
      res = n * res:
10
      n = n - 1:
11
12 }
13
14 void main() {
    print(faculty(4));
15
16 }
```

Code 3.6: PicoC Code für Codebespiel

In Code 3.7 sieht man den Abstract Syntax Tree, der in der Syntaktischen Analyse generiert wurde.

```
1 File
2  Name './example_faculty_it.ast',
3  [
4  FunDef
5  IntType 'int',
6  Name 'faculty',
7  [
8  Alloc(Writeable(), IntType('int'), Name('n'))
9  ],
```

https://github.com/matthejue/PicoC-Compiler/tree/new_architecture/tests.

```
Γ
11
           Assign(Alloc(Writeable(), IntType('int'), Name('res')), Num('1')),
12
           While
             Num '1',
14
             Γ
15
               Ιf
                 Atom(Name('n'), Eq('=='), Num('1')),
16
17
18
                    Return(Name('res'))
19
20
               Assign(Name('res'), BinOp(Name('n'), Mul('*'), Name('res')))
21
               Assign(Name('n'), BinOp(Name('n'), Sub('-'), Num('1')))
22
             ]
23
         ],
24
       FunDef
25
         VoidType 'void',
26
         Name 'main',
27
         [],
28
         Γ
29
           Exp(Call(Name('print'), [Call(Name('faculty'), [Num('4')])))
30
31
     ]
```

Code 3.7: Abstract Syntax Tree für Codebespiel

Im PicoC-Shrink-Pass ändert sich nichts im Vergleich zum Abstract Syntax Tree in Code 3.7, da das Codebeispiel keine Dereferenzierung enthält.

3.3.1.2 PicoC-Blocks Pass

3.3.1.2.1 Aufgabe

Die Aufgabe des PicoC-Blocks Passes ist es die Knoten If(exp, stmts), IfElse(exp, stmts1, stmts2), While(exp, stmts) und DoWhile(exp, stmts) mithilfe von Block(name, stmts_instrs-, GoTo(lable)- und IfElse(exp, stmts1, stmts2)-Knoten umzusetzen. Der IfElse(exp, stmts1, stmts2)-Knoten wird zur Umsetzung der Bedingung verwendet und es wird, je nachdem, ob die Bedingung wahr oder falsch ist mithilfe der GoTo(label)-Knoten in einen von zwei alternativen Branches gesprungen oder ein Branch erneut aufgerufen usw.

3.3.1.2.2 Abstrakte Syntax

Zur Umsetzung dieses Passes ist es notwendig die Abstrakte Syntax der Sprache L_{PicoC_Shrink} in Tabelle 3.3.1 um die Knoten zu erweitern, die im Unterkapitel 3.3.1.2.1 erwähnt wurden. Die Knoten If(exp, stmts), While(exp, stmts) und DoWhile(exp, stmts) gibt es nicht mehr, da sie durch Block(name, stmts_instrs-, GoTo(lable)- und IfElse(exp, stmts1, stmts2)-Knoten ersetzt wurden. Die Funktionsdefinition FunDef($\langle datatype \rangle$, Name(str), Alloc(Writeable(), $\langle datatype \rangle$, Name(str))*, $\langle block \rangle$ *) ist nun ein Container für Blöcke Block(Name(str), $\langle stmt \rangle$ *) und keine Statements stmt mehr. Das resultiert in der Abstrakten Syntax der Sprache L_{PicoC_Blocks} in Tabelle 3.3.2.

stmt	::=	$SingleLineComment(str, str) \mid RETIComment()$	$L_{-}Comment$
un_op bin_op exp	::=	$\begin{array}{c cccc} Minus() & & Not() \\ Add() & & Sub() & & Mul() & & Div() & & Mod() \\ Oplus() & & And() & & Or() \\ Name(str) & & Num(str) & & Char(str) \\ BinOp(\langle exp\rangle, \langle bin_op\rangle, \langle exp\rangle) & & Call(Name('input'), Empty()) \\ Call(Name('print'), \langle exp\rangle) & & Emp(\langle exp\rangle) \\ \end{array}$	L_Arith
stmt un_op	::=	$Exp(\langle exp \rangle)$ $LogicNot()$	L_Logic
rel bin_op exp	::= ::= ::=	$Eq() \mid NEq() \mid Lt() \mid LtE() \mid Gt() \mid GtE()$ $LogicAnd() \mid LogicOr()$ $Atom(\langle exp \rangle, \langle rel \rangle, \langle exp \rangle) \mid ToBool(\langle exp \rangle)$	L_Dog ic
type_qual datatype exp stmt	::= ::= ::=	$Const() \mid Writeable() \\ IntType() \mid CharType() \mid VoidType() \\ Alloc(\langle type_qual \rangle, \langle datatype \rangle, Name(str)) \\ Assign(\langle exp \rangle, \langle exp \rangle)$	L_Assign_Alloc
$\begin{array}{c} datatype \\ exp \end{array}$::=	$PntrDecl(Num(str), \langle datatype \rangle)$ $Ref(\langle exp \rangle)$	L_Pntr
$\begin{array}{c} datatype \\ exp \end{array}$::=	$\begin{array}{c c} ArrayDecl(Num(str)+,\langle datatype\rangle) \\ Subscr(\langle exp\rangle,\langle exp\rangle) & & Array(\langle exp\rangle+) \end{array}$	L_Array
datatype exp decl_def	::= ::= ::=	$StructSpec(Name(str)) \\ Attr(\langle exp \rangle, Name(str)) \\ Struct(Assign(Name(str), \langle exp \rangle) +) \\ StructDecl(Name(str), \\ Alloc(Writeable(), \langle datatype \rangle, Name(str)) +) \\$	L_Struct
stmt	::=	$If(\langle exp \rangle, \langle stmt \rangle *)$ $IfElse(\langle exp \rangle, \langle stmt \rangle *, \langle stmt \rangle *)$	L_If_Else
stmt	::=	$While(\langle exp \rangle, \langle stmt \rangle *) \\ DoWhile(\langle exp \rangle, \langle stmt \rangle *)$	$L_{-}Loop$
exp stmt decl_def	::= ::=	$Call(Name(str), \langle exp \rangle *)$ $Return(\langle exp \rangle)$ $FunDecl(\langle datatype \rangle, Name(str),$ $Alloc(Writeable(), \langle datatype \rangle, Name(str)) *)$ $FunDef(\langle datatype \rangle, Name(str),$ $Alloc(Writeable(), \langle datatype \rangle, Name(str)) *, \langle block \rangle *)$	L_Fun
block	::=	$Block(Name(str), \langle stmt \rangle *)$ GoTo(Name(str))	L_Blocks
stmt	::=	301 0(11 anic (501))	

Grammar 3.3.2: Abstrakte Syntax der Sprache L_{PiocC_Blocks}

Alles rot markierte bedeutet, es wurde entfernt oder abgeändert. Alles ausgegraute bedeutet, es hat sich im Vergleich zur letzten Abstrakten Syntax nichts geändert. Alle normal in schwarz geschriebenen Knoten wurden neu hinzugefügt.

Die Abstrakte Syntax soll im Gegensatz zur Konkretten Syntax meist nur vom Programmierer

verstanden werden, der den Compiler implementiert und sollte daher vor allem einfach verständlich sein und stellt daher eine Obermenge aller tatsächlich möglichen Kompositionen von Knoten dar^a.

Man bezeichnet hier die Abstrakte Syntax als "Abstrakte Syntax der Sprache L_{Picoc_Blocks} ". Diese Sprache L_{Picoc_Blocks} wird durch eine Konkrette Syntax beschrieben, die allerdings nicht weiter relevant ist, da in den Passes nur Abstract Syntax Trees umgeformt werden. Es ist hierbei nur wichtig zu wissen, dass die Abstrakte Syntax theoretisch zur Kompilierung der Sprache L_{Picoc_Blocks} definiert ist, also die Sprache L_{Picoc_Blocks} nicht die Sprache ist, die von der Abstrakten Syntax beschrieben ist.

^aD.h. auch wenn dort **exp** als Attribut steht, kann dort nicht jeder Knoten, der sich aus der Produktion **exp** ergibt auch wirklich eingesetzt werden.

3.3.1.2.3 Codebeispiel

In Code 3.8 sieht man den Abstract-Syntax-Tree des PiocC-Blocks Passes für das aus Unterkapitel 3.6 weitergeführte Beispiel, indem nun eigene Blöcke für die Funktion faculty und die main-Funktion erstellt werden, in denen die ersten Statements der jeweiligen Funktionen bis zum letzten Statement oder bis zum ersten Auftauchen eines If(exp, stmts)-, IfElse(exp, stmts1, stmts2)-, While(exp, stmts)-Knoten stehen. Je nachdem, ob ein If(exp, stmts)-, IfElse(exp, stmts1, stmts2)-, While(exp, stmts)- oder DoWhile(exp, stmts)- Knoten auftaucht, werden für die Bedingung und mögliche Branches eigene Blöcke erstellt.

```
1 File
     Name './example_faculty_it.picoc_blocks',
 3
 4
       FunDef
 5
         IntType 'int',
 6
         Name 'faculty',
 8
           Alloc(Writeable(), IntType('int'), Name('n'))
 9
         ],
10
         Γ
11
           Block
12
             Name 'faculty.6',
13
14
                Assign(Alloc(Writeable(), IntType('int'), Name('res')), Num('1'))
15
                // While(Num('1'), [])
16
                GoTo(Name('condition_check.5'))
17
             ],
18
           Block
19
             Name 'condition_check.5',
20
              Γ
21
                IfElse
22
                 Num '1',
23
                    GoTo(Name('while_branch.4'))
25
                 ],
26
                  Γ
27
                    GoTo(Name('while_after.1'))
28
                 1
29
             ],
30
             Name 'while_branch.4',
```

```
Γ
33
               // If(Atom(Name('n'), Eq('=='), Num('1')), []),
34
               IfElse
                  Atom(Name('n'), Eq('=='), Num('1')),
36
37
                    GoTo(Name('if.3'))
38
                 ],
                  Γ
39
40
                    GoTo(Name('if_else_after.2'))
41
             ],
42
43
           Block
44
             Name 'if.3',
45
             Γ
46
               Return(Name('res'))
47
             ],
48
           Block
49
             Name 'if_else_after.2',
50
51
               Assign(Name('res'), BinOp(Name('n'), Mul('*'), Name('res')))
52
               Assign(Name('n'), BinOp(Name('n'), Sub('-'), Num('1')))
53
               GoTo(Name('condition_check.5'))
             ],
54
55
           Block
56
             Name 'while_after.1',
57
              58
         ],
59
       FunDef
60
         VoidType 'void',
61
         Name 'main',
62
         [],
63
         Γ
64
           Block
65
             Name 'main.0',
66
               Exp(Call(Name('print'), [Call(Name('faculty'), [Num('4')])))
67
68
69
         ]
     ]
```

Code 3.8: PicoC-Blocks Pass für Codebespiel

3.3.1.3 PicoC-ANF Pass

3.3.1.3.1 Aufgabe

Die Aufgabe des PicoC-ANF Passes ist es den Abstract Syntax Tree der Sprache L_{PicoC_Blocks} in die Abstrakte Syntax der Sprache L_{PicoC_ANF} umzuformen, welche in A-Normalform (Definition 2.53) und damit auch in Monadischer Normalform (Definition 2.49) ist. Um Wiederholung zu vermeiden wird zur Erklärung der A-Normalform auf Unterkapitel 2.5.2 verwiesen.

Zudem wird eine Symboltabelle (Definition 3.10) eingeführt. In der Symboltabelle wird beim Anlegen eines neuen Eintrags für eine Variable zunächst eine Adresse zugewiesen, die dem Wert einer von zwei Countern rel_global_addr und rel_stack_addr entspricht. Der Counter rel_global_addr ist für Variablen in den Globalen Statischen Daten und der Counter rel_stack_addr ist für Variablen auf dem Stackframe. Einer der beiden Counter wird entsprechend der Größe der angelegten Variable hochgezählt.

Kommt im Programmcode an einer späteren Stelle diese Variable Name('symbol') vor, so wird mit dem Symbol²³ als Schlüssel in der Symboltabelle nachgeschlagen und anstelle des Name(str)-Knotens die in der Symboltabelle nachgeschlagene Adresse in einem Global(Num('addr'))- bzw. Stackframe(Num('addr'))-Knoten eingesetzt eingefügt. Ob der Global(Num('addr'))- oder der Stackframe(Num('addr'))-Knoten zum Einsatz kommt, entscheidet sich anhand des Scopes (z.B. @scope), der in der Symboltabelle an den Bezeichner drangehängt ist (z.B. identifier@scope).²⁴

Definition 3.10: Symboltabelle

Eine über ein Assoziatives Feld umgesetzte Datenstruktur, die notwendig ist, um das Konzept einer Variablen in einer Sprache umzusetzen. Diese Datenstruktur ordnet jedem Symbol^a einer Variablen, Konstanten oder Funktion aus einem Programm, Informationen, wie die Adresse, die Position im Programmcode oder den Datentyp zu.

Die Symboltabelle muss nur während des Kompiliervorgangs im Speicher existieren, da die Einträge in der Symboltabelle beeinflussen, was für Maschinencode generiert wird und dadurch im Maschinencode bereits die richtigen Adressen usw. angesprochen werden und es die Symboltabelle selbst nicht mehr braucht.

^aIn einer Symboltabelle werden Bezeichner als Symbole bezeichnet.

3.3.1.3.2 Abstrakte Syntax

Zur Umsetzung dieses Passes ist es notwendig die Abstrakte Syntax der Sprache L_{PicoC_Blocks} in Tabelle 3.3.2 in die A-Normalform zu bringen. Darunter fällt es unter anderem, dafür zu sorgen, dass Komplexe Knoten wie z.B. BinOp(exp, bin_op, exp) nur Atomare Knoten, wie z.B. Stack(Num(str)) enthalten können. Des Weiteren werden auch Funktionen und Funktionsaufrufe aufgelöst, sodass u.a. die Blöcke Block(Name(str), stmt*) nun direkt im File(Name(str), block*)-Knoten liegen usw., was in Unterkapitel ?? genauer erklärt wird. Die Symboltabelle ist ebenfalls als Abstract Syntax Tree umgesetzt, wofür in der Abstrakten Syntax der Sprache L_{PicoC_ANF} in Grammatik 3.3.3 neue Knoten eingeführt werden.

Das ganze resultiert in der Abstrakten Syntax der Sprache L_{PicoC_ANF} in Grammatik 3.3.3.

²³Bzw. der **Bezeichner**

²⁴Die Umsetzung von Scopes wird in Unterkapitel ?? genauer beschrieben

```
SingleLineComment(str, str)
                                                                 RETIComment()
                                                                                                              L_{-}Comment
stmt
                 ::=
                                                                                                              L_Arith
un\_op
                 ::=
                        Minus()
                                        Not()
bin\_op
                 ::=
                        Add()
                                 Sub()
                                                 Mul() \mid Div() \mid Mod()
                        Oplus() \mid And() \mid Or()
                        Name(str) \mid Num(str) \mid Char(str) \mid Global(Num(str))
exp
                        Stackframe(Num(str)) \mid Stack(Num(str))
                        BinOp(Stack(Num(str)), \langle bin\_op \rangle, Stack(Num(str)))
                        UnOp(\langle un\_op \rangle, Stack(Num(str))) \mid Call(Name('input'), Empty())
                        Call(Name('print'), \langle exp \rangle)
                        Exp(\langle exp \rangle)
un\_op
                        LogicNot()
                                                                                                              L\_Logic
                 ::=
                        Eq() \mid NEq() \mid Lt() \mid LtE() \mid Gt() \mid GtE()
rel
                 ::=
                        LogicAnd()
                                          LogicOr()
bin\_op
                 ::=
                        Atom(Stack(Num(str)), \langle rel \rangle, Stack(Num(str)))
exp
                 ::=
                        ToBool(Stack(Num(str)))
type\_qual
                        Const()
                                      Writeable()
                                                                                                              L_Assign_Alloc
                 ::=
datatype
                        IntType() \mid CharType() \mid VoidType()
                 ::=
                        Alloc(\langle type\_qual \rangle, \langle datatype \rangle, Name(str))
exp
                 ::=
stmt
                        Assign(Global(Num(str)), Stack(Num(str)))
                 ::=
                        Assign(Stack frame(Num(str)), Stack(Num(str)))
                        Assign(Stack(Num(str)), Global(Num(str)))
                        Assign(Stack(Num(str)), Stackframe(Num(str)))
                        PntrDecl(Num(str), \langle datatype \rangle)
                                                                                                              L_{-}Pntr
datatype
                 ::=
                        Ref(Global(str)) \mid Ref(Stackframe(str))
                        Ref(Subscr(\langle exp \rangle, \langle exp \rangle \mid Ref(Attr(\langle exp \rangle, Name(str))))
                        ArrayDecl(Num(str)+, \langle datatype \rangle)
                                                                                                              L_-Array
datatype
                 ::=
                        Subscr(\langle exp \rangle, Stack(Num(str)))
                                                                   Array(\langle exp \rangle +)
exp
                 ::=
                        StructSpec(Name(str))
                                                                                                              L_{-}Struct
datatype
                 ::=
                        Attr(\langle exp \rangle, Name(str))
exp
                 ::=
                        Struct(Assign(Name(str), \langle exp \rangle) +)
decl\_def
                        StructDecl(Name(str),
                 ::=
                              Alloc(Writeable(), \langle datatype \rangle, Name(str)) +)
stmt
                        IfElse(Stack(Num(str)), \langle stmt \rangle *, \langle stmt \rangle *)
                                                                                                              L_If_Else
                 ::=
                        Call(Name(str), \langle exp \rangle *)
                                                                                                              L-Fun
exp
                 ::=
                        StackMalloc(Num(str)) \mid NewStackframe(Name(str), GoTo(str))
                 ::=
stmt
                        Exp(GoTo(Name(str))) \mid RemoveStackframe()
                        Return(Empty()) \mid Return(\langle exp \rangle)
decl\_def
                        FunDecl(\langle datatype \rangle, Name(str))
                 ::=
                              Alloc(Writeable(), \langle datatype \rangle, Name(str))*)
                        FunDef(\langle datatype \rangle, Name(str),
                             Alloc(Writeable(), \langle datatype \rangle, Name(str))*, \langle block \rangle*)
block
                        Block(Name(str), \langle stmt \rangle *)
                                                                                                              L\_Blocks
                 ::=
stmt
                        GoTo(Name(str))
                  ::=
file
                                                                                                              L_File
                        File(Name(str), \langle block \rangle *)
symbol\_table
                        SymbolTable(\langle symbol \rangle *)
                                                                                                              L\_Symbol\_Table
                 ::=
symbol
                        Symbol(\langle type\_qual \rangle, \langle datatype \rangle, \langle name \rangle, \langle val \rangle, \langle pos \rangle, \langle size \rangle)
                 ::=
                        Empty()
type\_qual
                 ::=
datatype
                 ::=
                        BuiltIn()
                                        SelfDefined()
name
                        Name(str)
                  ::=
                        Num(str) \mid Empty()
val
                        Pos(Num(str), Num(str)) \mid Empty()
pos
                 ::=
                        Num(str)
                                         Empty()
size
                                                                                                                               64
```

3.3.1.3.3 Codebeispiel

In Code 3.9 sieht man den Abstract-Syntax-Tree des PiocC-ANF Passes für das aus Unterkapitel 3.6 weitergeführte Beispiel, indem alls Statements und Ausdrücke in A-Normalform sind. Die IfElse(exp, stmts, stmts)-Knoten sind hier in A-Normalform gebracht worden, indem ihre Komplexe Bedingung vorgezogen wurde und das Ergebnis der Komplexen Bedingung einer Location zugewiesen ist und sie selbst das Ergebnis über den Atomaren Ausdruck Stack(Num(str)) vom Stack lesen: IfElse(Stack(Num(str)), stmts, stmts). Funktionen sind nur noch über die Labels von Blöcken zu erkennen, die den gleichen Bezeichner haben, wie die ursprüngliche Funktion und es lässt sich nur durch das Nachverfolgen der GoTo(Name('label'))-Knoten nachvollziehen, was ursprünglich zur Funktion gehörte.

```
1
  File
 2
     Name './example_faculty_it.picoc_mon',
 4
       Block
 5
         Name 'faculty.6',
 6
           // Assign(Name('res'), Num('1'))
           Exp(Num('1'))
 9
           Assign(Stackframe(Num('1')), Stack(Num('1')))
10
           // While(Num('1'), [])
11
           Exp(GoTo(Name('condition_check.5')))
12
         ],
13
       Block
14
         Name 'condition_check.5',
15
           // IfElse(Num('1'), [], [])
16
17
           Exp(Num('1')),
18
           IfElse
19
             Stack
20
                Num '1',
21
             Γ
22
                GoTo(Name('while_branch.4'))
23
             ],
24
             [
25
                GoTo(Name('while_after.1'))
26
27
         ],
28
       Block
29
         Name 'while_branch.4',
30
31
           // If(Atom(Name('n'), Eq('=='), Num('1')), [])
32
           // IfElse(Atom(Name('n'), Eq('=='), Num('1')), [], [])
33
           Exp(Stackframe(Num('0')))
34
           Exp(Num('1'))
           Exp(Atom(Stack(Num('2')), Eq('=='), Stack(Num('1')))),
35
36
           IfElse
37
             Stack
                Num '1',
38
39
40
                GoTo(Name('if.3'))
41
             ],
42
             [
43
                GoTo(Name('if_else_after.2'))
44
             ]
         ],
```

```
Block
47
         Name 'if.3',
48
49
           // Return(Name('res'))
           Exp(Stackframe(Num('1')))
50
51
           Return(Stack(Num('1')))
52
         ],
53
       Block
54
         Name 'if_else_after.2',
55
56
           // Assign(Name('res'), BinOp(Name('n'), Mul('*'), Name('res')))
57
           Exp(Stackframe(Num('0')))
58
           Exp(Stackframe(Num('1')))
59
           Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
60
           Assign(Stackframe(Num('1')), Stack(Num('1')))
61
           // Assign(Name('n'), BinOp(Name('n'), Sub('-'), Num('1')))
62
           Exp(Stackframe(Num('0')))
63
           Exp(Num('1'))
           Exp(BinOp(Stack(Num('2')), Sub('-'), Stack(Num('1'))))
64
65
           Assign(Stackframe(Num('0')), Stack(Num('1')))
           Exp(GoTo(Name('condition_check.5')))
66
67
         ],
68
       Block
69
         Name 'while_after.1',
70
71
           Return(Empty())
72
         ],
       Block
         Name 'main.0',
74
           StackMalloc(Num('2'))
           Exp(Num('4'))
           NewStackframe(Name('faculty'), GoTo(Name('addr@next_instr')))
           Exp(GoTo(Name('faculty.6')))
80
           RemoveStackframe()
81
           Exp(ACC)
           Exp(Call(Name('print'), [Stack(Num('1'))]))
82
83
           Return(Empty())
84
85
    ]
```

Code 3.9: Pico C-ANF Pass für Codebespiel

3.3.1.4 RETI-Blocks Pass

3.3.1.4.1 Aufgabe

Die Aufgabe des RETI-Blocks Passes ist es die Statements in der Blöcken, die durch PicoC-Knoten im Abstract Syntax Tree der Sprache L_{PicoC_ANF} dargestellt sind durch ihren entsprechenden RETI-Knoten zu ersetzen.

3.3.1.4.2 Abstrakte Syntax

Die Abstrakte Syntax der Sprache L_{RETI_Blocks} in Grammatik 3.3.4 ist verglichen mit der Abstrakten Syntax der Sprache L_{PicoC_ANF} in Grammatik 3.3.3 stark verändert, denn der Großteil der PicoC-Knoten wird in diesem Pass durch entsprechende RETI-Knoten ersetzt. Die einzigen verbleibenden PicoC-Knoten

sind Exp(GoTo(str)), Block(Name(str), (instr)*) und File(Name(str), (block)*), da das gesamte Konzept mit den Blöcken erst im RETI-Pass in Unterkapitel 3.3.8 aufgelöst wird.

```
ACC() \mid IN1() \mid IN2() \mid PC()
                                                              SP()
                                                                         BAF()
                                                                                                           L_{-}RETI
reg
        ::=
              CS() \mid DS()
              Reg(\langle reg \rangle)
                              Num(str)
arq
              Eq() \mid NEq()
                                  | Lt() | LtE() | Gt() | GtE()
rel
              Always() \mid NOp()
                                      Sub() \mid Subi() \mid Mult() \mid Multi()
op
              Add()
                         Addi()
              Div() \mid Divi() \mid Mod() \mid Modi() \mid Oplus() \mid Oplusi()
              Or() \mid Ori() \mid And() \mid Andi()
              Load() | Loadin() | Loadi() | Store() | Storein() | Move()
              Instr(\langle op \rangle, \langle arg \rangle +) \mid Jump(\langle rel \rangle, Num(str)) \mid Int(Num(str))
instr
                       | Call(Name('print'), \langle reg \rangle) | Call(Name('input'), \langle reg \rangle)
              RTI()
              SingleLineComment(str, str)
              Instr(Loadi(), [Reg(Acc()), GoTo(Name(str))]) \mid Jump(Eq(), GoTo(Name(str)))
              Exp(GoTo(str))
                                                                                                           L_{-}PicoC
instr
              Block(Name(str), \langle instr \rangle *)
block
        ::=
              File(Name(str), \langle block \rangle *)
file
        ::=
```

Grammar 3.3.4: Abstrakte Syntax der Sprache L_{RETI_Blocks}

3.3.1.4.3 Codebeispiel

In Code 3.10 sieht man den Abstract-Syntax-Tree des RETI-Blocks Passes für das aus Unterkapitel 3.6 weitergeführte Beispiel, indem die Statements, die durch entsprechende PicoC-Knoten im Abstrakt Syntax Tree der Sprache L_{PicoC_ANF} in Grammatik 3.3.3 repräsentiert waren nun durch ihre entsprechennden RETI-Knoten ersetzt werden.

```
2
    Name './example_faculty_it.reti_blocks',
 3
       Block
 5
         Name 'faculty.6',
           # // Assign(Name('res'), Num('1'))
 8
           # Exp(Num('1'))
           SUBI SP 1;
           LOADI ACC 1;
           STOREIN SP ACC 1;
11
12
           # Assign(Stackframe(Num('1')), Stack(Num('1')))
13
           LOADIN SP ACC 1;
14
           STOREIN BAF ACC -3;
15
           ADDI SP 1;
16
           # // While(Num('1'), [])
17
           # Exp(GoTo(Name('condition_check.5')))
18
           Exp(GoTo(Name('condition_check.5')))
19
         ],
20
       Block
21
         Name 'condition_check.5',
22
           # // IfElse(Num('1'), [], [])
           # Exp(Num('1'))
```

```
SUBI SP 1;
26
           LOADI ACC 1;
27
           STOREIN SP ACC 1;
28
           # IfElse(Stack(Num('1')), [], [])
29
           LOADIN SP ACC 1;
30
           ADDI SP 1;
31
           JUMP== GoTo(Name('while_after.1'));
32
           Exp(GoTo(Name('while_branch.4')))
33
         ],
34
       Block
35
         Name 'while_branch.4',
36
37
           # // If(Atom(Name('n'), Eq('=='), Num('1')), [])
38
           # // IfElse(Atom(Name('n'), Eq('=='), Num('1')), [], [])
39
           # Exp(Stackframe(Num('0')))
40
           SUBI SP 1;
41
           LOADIN BAF ACC -2;
42
           STOREIN SP ACC 1;
43
           # Exp(Num('1'))
44
           SUBI SP 1;
45
           LOADI ACC 1;
46
           STOREIN SP ACC 1;
47
           LOADIN SP ACC 2;
48
           LOADIN SP IN2 1;
49
           SUB ACC IN2;
50
           JUMP == 3;
51
           LOADI ACC 0;
52
           JUMP 2;
53
           LOADI ACC 1;
54
           STOREIN SP ACC 2;
55
           ADDI SP 1;
           # IfElse(Stack(Num('1')), [], [])
56
57
           LOADIN SP ACC 1;
58
           ADDI SP 1;
           JUMP== GoTo(Name('if_else_after.2'));
59
60
           Exp(GoTo(Name('if.3')))
61
         ],
62
       Block
63
         Name 'if.3',
64
         Ε
65
           # // Return(Name('res'))
66
           # Exp(Stackframe(Num('1')))
67
           SUBI SP 1;
68
           LOADIN BAF ACC -3;
69
           STOREIN SP ACC 1;
70
           # Return(Stack(Num('1')))
71
           LOADIN SP ACC 1;
72
           ADDI SP 1;
73
           LOADIN BAF PC -1;
74
         ],
75
       Block
76
         Name 'if_else_after.2',
           # // Assign(Name('res'), BinOp(Name('n'), Mul('*'), Name('res')))
           # Exp(Stackframe(Num('0')))
           SUBI SP 1;
           LOADIN BAF ACC -2;
```

```
82
           STOREIN SP ACC 1;
83
           # Exp(Stackframe(Num('1')))
84
           SUBI SP 1;
85
           LOADIN BAF ACC -3;
86
           STOREIN SP ACC 1;
           # Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
87
88
           LOADIN SP ACC 2;
           LOADIN SP IN2 1;
89
90
           MULT ACC IN2;
91
           STOREIN SP ACC 2;
92
           ADDI SP 1;
93
           # Assign(Stackframe(Num('1')), Stack(Num('1')))
94
           LOADIN SP ACC 1;
95
           STOREIN BAF ACC -3;
96
           ADDI SP 1;
97
           # // Assign(Name('n'), BinOp(Name('n'), Sub('-'), Num('1')))
98
           # Exp(Stackframe(Num('0')))
99
           SUBI SP 1;
100
           LOADIN BAF ACC -2;
101
           STOREIN SP ACC 1;
102
           # Exp(Num('1'))
103
           SUBI SP 1;
104
           LOADI ACC 1;
105
           STOREIN SP ACC 1;
106
           # Exp(BinOp(Stack(Num('2')), Sub('-'), Stack(Num('1'))))
           LOADIN SP ACC 2;
107
108
           LOADIN SP IN2 1;
109
           SUB ACC IN2;
110
           STOREIN SP ACC 2;
111
           ADDI SP 1;
112
           # Assign(Stackframe(Num('0')), Stack(Num('1')))
113
           LOADIN SP ACC 1;
114
           STOREIN BAF ACC -2;
           ADDI SP 1;
115
116
           # Exp(GoTo(Name('condition_check.5')))
117
           Exp(GoTo(Name('condition_check.5')))
118
         ],
L19
       Block
120
         Name 'while_after.1',
121
         Γ
122
           # Return(Empty())
123
           LOADIN BAF PC -1;
124
         ],
125
       Block
126
         Name 'main.0',
127
128
           # StackMalloc(Num('2'))
129
           SUBI SP 2;
130
           # Exp(Num('4'))
131
           SUBI SP 1;
132
           LOADI ACC 4;
133
           STOREIN SP ACC 1;
134
           # NewStackframe(Name('faculty'), GoTo(Name('addr@next_instr')))
135
           MOVE BAF ACC;
136
           ADDI SP 3;
L37
           MOVE SP BAF;
138
           SUBI SP 4;
```

```
STOREIN BAF ACC 0;
           LOADI ACC GoTo(Name('addr@next_instr'));
40
41
            ADD ACC CS;
            STOREIN BAF ACC -1;
            # Exp(GoTo(Name('faculty.6')))
            Exp(GoTo(Name('faculty.6')))
145
            # RemoveStackframe()
           MOVE BAF IN1;
146
L47
           LOADIN IN1 BAF 0;
148
           MOVE IN1 SP;
149
            # Exp(ACC)
150
            SUBI SP 1;
151
            STOREIN SP ACC 1;
152
            LOADIN SP ACC 1;
153
            ADDI SP 1;
154
            CALL PRINT ACC;
155
            # Return(Empty())
156
            LOADIN BAF PC -1;
157
158
     ]
```

Code 3.10: RETI-Blocks Pass für Codebespiel

Wenn der Abstract Syntax Tree ausgegeben wird, ist die Darstellung nicht auschließlich in Abstrakter Syntax, da die RETI-Knoten aus bereits im Unterkapitel 3.2.5.6 vermitteltem Grund in Konkretter Syntax ausgeben werden.

3.3.1.5 RETI-Patch Pass

3.3.1.5.1 Aufgabe

Die Aufgabe des RETI-Patch Passes ist das Ausbessern (engl. to patch) des Abstract Syntax Trees, durch:

- das Einfügen eines start.<nummer>-Blockes, welcher ein GoTo(Name('main')) zur main-Funktion enthält wenn in manchen Fällen die main-Funktion nicht die erste Funktion ist und daher am Anfang zur main-Funktion gesprungen werden muss.
- das Entfernen von GoTo()'s, deren Sprung nur eine Adresse weiterspringen würde.
- das Voranstellen von RETI-Knoten, die vor jeder Division Instr(Div(), args) prüfen, ob, nicht durch 0 geteilt wird.²⁵
- das Überprüfen darauf, ob bestimmte Immediates Im(str) in Befehlen, wie z.B. Jump(rel, Im(str)), Instr(Loadin(), [reg, reg, Im(str)]), Instr(Loadi(), [reg, Im(str)]) usw. kleiner -2²¹ oder größer 2²¹ 1 sind. Im Fall dessen, dass es so ist, muss der gewünschte Zahlenwert durch Bitshiften und Anwenden von bitweise Oder berechnet werden. Im Fall, dessen, dass der Immediate allerdings kleiner -(2³¹) oder größer 2³¹ 1 ist, wird eine Fehlermeldung TooLargeLiteral ausgegeben.

3.3.1.5.2 Abstrakte Syntax

 $^{^{25}}$ Das fällt unter die Themenbereiche des Bachelorprojekts und wird daher nicht genauer erläutert.

Die Abstrakte Syntax der Sprache L_{RETI_Patch} in Grammatik 3.3.5 ist im Vergleich zur Abstrakten Syntax der Sprache L_{RETI_Blocks} in Grammatik 3.3.4 kaum verändert. Es muss nur ein Knoten Exit() hinzugefügt werden, der im Falle einer Division durch 0 die Ausführung des Programs beendet.

```
SP()
                                                                                                              L_{-}RET
               ACC() \mid IN1() \mid IN2() \mid PC()
                                                                           BAF()
reg
              CS() \mid DS()
               Reg(\langle reg \rangle) \mid Num(str)
arq
        ::=
              Eq() \mid NEq() \mid Lt() \mid LtE() \mid Gt() \mid GtE()
rel
              Always() \mid NOp()
                                       Sub() \mid Subi() \mid Mult() \mid Multi()
              Add()
                          Addi()
op
                          Divi() \mid Mod() \mid Modi() \mid Oplus() \mid Oplusi()
               Div()
              Or() \mid Ori() \mid And() \mid Andi()
               Load() \mid Loadin() \mid Loadi() \mid Store() \mid Storein() \mid Move()
              Instr(\langle op \rangle, \langle arg \rangle +) \mid Jump(\langle rel \rangle, Num(str)) \mid Int(Num(str))
instr
               RTI() \mid Call(Name('print'), \langle reg \rangle) \mid Call(Name('input'), \langle reg \rangle)
               SingleLineComment(str, str)
              Instr(Loadi(), [Reg(Acc()), GoTo(Name(str))]) \mid Jump(Eq(), GoTo(Name(str)))
              Exp(GoTo(str)) \mid Exit(Num(str))
                                                                                                              L_{-}PicoC
instr
               Block(Name(str), \langle instr \rangle *)
block
        ::=
              File(Name(str), \langle block \rangle *)
file
        ::=
```

Grammar 3.3.5: Abstrakte Syntax der Sprache L_{RETI_Patch}

3.3.1.5.3 Codebeispiel

In Code 3.11 sieht man den Abstract-Syntax-Tree des PiocC-Patch Passes für das aus Unterkapitel 3.6 weitergeführte Beispiel. Durch den RETI-Patch Pass wurde hier ein start.<nummer>-Block²⁶ eingesetzt, da die main-Funktion nicht die erste Funktion ist. Des Weiteren wurden durch diesen Pass einzelne GoTo(Name(str))-Statements entfernt²⁷, die nur einen Sprung um eine Position entsprochen hätten.

```
File
    Name './example_faculty_it.reti_patch',
       Block
         Name 'start.7',
           # // Exp(GoTo(Name('main.0')))
           Exp(GoTo(Name('main.0')))
 9
         ],
10
       Block
11
         Name 'faculty.6',
12
13
           # // Assign(Name('res'), Num('1'))
14
           # Exp(Num('1'))
15
           SUBI SP 1;
16
           LOADI ACC 1;
17
           STOREIN SP ACC 1;
           # Assign(Stackframe(Num('1')), Stack(Num('1')))
18
19
           LOADIN SP ACC 1;
           STOREIN BAF ACC -3;
20
```

²⁶Dieser Block wurde im Code 3.8 markiert.

Diese entfernten GoTo (Name(str))'s' wurden ebenfalls im Code 3.8 markiert

```
ADDI SP 1;
22
           # // While(Num('1'), [])
23
           # Exp(GoTo(Name('condition_check.5')))
24
           # // not included Exp(GoTo(Name('condition_check.5')))
25
         ],
26
       Block
         Name 'condition_check.5',
27
28
29
           # // IfElse(Num('1'), [], [])
30
           # Exp(Num('1'))
31
           SUBI SP 1;
32
           LOADI ACC 1;
33
           STOREIN SP ACC 1;
34
           # IfElse(Stack(Num('1')), [], [])
35
           LOADIN SP ACC 1;
36
           ADDI SP 1;
37
           JUMP== GoTo(Name('while_after.1'));
38
           # // not included Exp(GoTo(Name('while_branch.4')))
39
         ],
40
       Block
41
         Name 'while_branch.4',
42
43
           # // If(Atom(Name('n'), Eq('=='), Num('1')), [])
44
           # // IfElse(Atom(Name('n'), Eq('=='), Num('1')), [], [])
45
           # Exp(Stackframe(Num('0')))
46
           SUBI SP 1;
47
           LOADIN BAF ACC -2;
48
           STOREIN SP ACC 1;
49
           # Exp(Num('1'))
50
           SUBI SP 1;
51
           LOADI ACC 1;
52
           STOREIN SP ACC 1;
53
           LOADIN SP ACC 2;
54
           LOADIN SP IN2 1;
55
           SUB ACC IN2;
56
           JUMP == 3;
57
           LOADI ACC 0;
58
           JUMP 2;
59
           LOADI ACC 1;
60
           STOREIN SP ACC 2;
61
           ADDI SP 1;
62
           # IfElse(Stack(Num('1')), [], [])
63
           LOADIN SP ACC 1;
64
           ADDI SP 1;
65
           JUMP== GoTo(Name('if_else_after.2'));
66
           # // not included Exp(GoTo(Name('if.3')))
67
         ],
68
       Block
69
         Name 'if.3',
70
71
           # // Return(Name('res'))
72
           # Exp(Stackframe(Num('1')))
73
           SUBI SP 1;
74
           LOADIN BAF ACC -3;
           STOREIN SP ACC 1;
           # Return(Stack(Num('1')))
           LOADIN SP ACC 1;
```

```
78
           ADDI SP 1;
79
           LOADIN BAF PC -1;
80
         ],
81
       Block
         Name 'if_else_after.2',
82
83
84
           # // Assign(Name('res'), BinOp(Name('n'), Mul('*'), Name('res')))
85
           # Exp(Stackframe(Num('0')))
           SUBI SP 1;
86
87
           LOADIN BAF ACC -2;
88
           STOREIN SP ACC 1;
89
           # Exp(Stackframe(Num('1')))
90
           SUBI SP 1;
           LOADIN BAF ACC -3;
91
92
           STOREIN SP ACC 1;
93
           # Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
94
           LOADIN SP ACC 2;
95
           LOADIN SP IN2 1;
96
           MULT ACC IN2:
97
           STOREIN SP ACC 2;
98
           ADDI SP 1;
99
           # Assign(Stackframe(Num('1')), Stack(Num('1')))
100
           LOADIN SP ACC 1;
101
           STOREIN BAF ACC -3;
102
           ADDI SP 1;
103
           # // Assign(Name('n'), BinOp(Name('n'), Sub('-'), Num('1')))
104
           # Exp(Stackframe(Num('0')))
105
           SUBI SP 1;
           LOADIN BAF ACC -2;
106
107
           STOREIN SP ACC 1;
108
           # Exp(Num('1'))
109
           SUBI SP 1;
110
           LOADI ACC 1;
           STOREIN SP ACC 1;
111
           # Exp(BinOp(Stack(Num('2')), Sub('-'), Stack(Num('1'))))
112
113
           LOADIN SP ACC 2;
114
           LOADIN SP IN2 1;
L15
           SUB ACC IN2;
116
           STOREIN SP ACC 2;
           ADDI SP 1;
117
           # Assign(Stackframe(Num('0')), Stack(Num('1')))
L18
119
           LOADIN SP ACC 1;
120
           STOREIN BAF ACC -2;
121
           ADDI SP 1;
122
           # Exp(GoTo(Name('condition_check.5')))
123
           Exp(GoTo(Name('condition_check.5')))
124
         ],
125
       Block
126
         Name 'while_after.1',
127
L28
           # Return(Empty())
L29
           LOADIN BAF PC -1;
130
         ],
131
       Block
132
         Name 'main.0',
133
           # StackMalloc(Num('2'))
```

```
SUBI SP 2;
136
            # Exp(Num('4'))
137
            SUBI SP 1;
            LOADI ACC 4;
            STOREIN SP ACC 1;
40
            # NewStackframe(Name('faculty'), GoTo(Name('addr@next_instr')))
41
           MOVE BAF ACC;
            ADDI SP 3;
142
143
           MOVE SP BAF;
144
            SUBI SP 4;
L45
            STOREIN BAF ACC 0;
46
            LOADI ACC GoTo(Name('addr@next_instr'));
47
            ADD ACC CS;
            STOREIN BAF ACC -1;
148
149
            # Exp(GoTo(Name('faculty.6')))
150
            Exp(GoTo(Name('faculty.6')))
L51
            # RemoveStackframe()
152
           MOVE BAF IN1;
153
           LOADIN IN1 BAF 0;
154
           MOVE IN1 SP;
155
            # Exp(ACC)
156
            SUBI SP 1;
157
            STOREIN SP ACC 1;
158
            LOADIN SP ACC 1;
159
            ADDI SP 1;
160
            CALL PRINT ACC;
161
            # Return(Empty())
162
           LOADIN BAF PC -1;
163
         ]
164
     ]
```

Code 3.11: RETI-Patch Pass für Codebespiel

3.3.1.6 RETI Pass

3.3.1.6.1 Aufgabe

Die Aufgabe des RETI-Patch Passes ist es die GoTo(Name(str))-Knoten in den den Knoten Instr(Loadi(), [reg, GoTo(Name(str))]), Jump(Eq(), GoTo(Name(str))) und Exp(GoTo(Name(str))) durch eine entsprechende Adresse zu ersetzen, die entsprechende Distanz oder einen entsprechenden Sprungbefehl mit passender Distanz Jump(Always(), Im(str(distance))). Die Distanz- und Adressberechnung wird in Unterkapitel?? genauer mit Formeln erklärt.

3.3.1.6.2 Konkrette und Abstrakte Syntax

Die Abstrakte Syntax der Sprache L_{RETI} in Grammatik 3.3.8 hat im Vergleich zur Abstrakten Syntax der Sprache L_{RETI_Patch} in Grammatik 3.3.5 nur noch auschließlich RETI-Knoten. Alle RETI-Knoten stehen nun einem Program(Name(str), instr)-Knoten.

Ausgegeben wird der finale Maschinencode allerdings in Konkretter Syntax, die sich aus den Grammatiken 3.3.6 und 3.3.7 für jeweils die Lexikalische und Syntaktische Analyse zusammensetzt. Der Grund, warum die Konkrette Syntax der Sprache L_{RETI} auch nochmal in einen Teil für die Lexikalische und Syntaktische Analyse unterteilt ist, hat den Grund, dass für die Bachelorarbeit zum Testen des PicoC-Compilers ein RETI-Interpreter implementiert wurde, der den RETI-Code lexen und parsen muss, um ihn später interpretieren zu können.

```
L\_Program
    dig\_no\_0
                ::=
                      "7"
                              "8"
                                      "9"
    dig_with_0
                      "0"
                              dig\_no\_0
                ::=
                      "0"
                              dig\_no\_0 dig\_with\_0* | "-"dig\_no\_0*
    num
                     "a"..."Z"
    letter
                ::=
                     letter(letter \mid dig\_with\_0 \mid \_)*
    name
                                  "IN1" | "IN2" | "PC" | "SP"
                      "ACC"
    reg
                ::=
                                 "CS" | "DS"
                      "BAF"
    arg
                      reg \mid num
                ::=
                      "=="
                                "!=" | "<" | "<=" | ">"
    rel
                ::=
                      ">="
                                "\_NOP"
Grammar 3.3.6: Konkrette Syntax der Sprache L<sub>RETI</sub> für die Lexikalische Analyse in EBNF
```

```
"ADD" reg\ arg\ \mid\ "ADDI"\ reg\ num\ \mid\ "SUB"\ reg\ arg
instr
                                                                       L_{-}Program
         ::=
             "SUBI" reg num | "MULT" reg arg | "MULTI" reg num
             "DIV" reg arg | "DIVI" reg num | "MOD" reg arg
             "MODI" reg num | "OPLUS" reg arg | "OPLUSI" reg num
             "OR" reg arg | "ORI" reg num
             "AND" reg arg | "ANDI" reg num
             "LOAD" reg num | "LOADIN" arg arg num
             "LOADI" reg num
             "STORE" reg num | "STOREIN" arg argnum
             "MOVE" req req
             "JUMP"rel num | INT num | RTI
             "CALL" "INPUT" "reg | "CALL" "PRINT" "reg
             name\ (instr";")*
program
        ::=
```

Grammar 3.3.7: Konkrette Syntax der Sprache L_{RETI} für die Syntaktische Analyse in EBNF

```
::=
                      ACC() \mid IN1() \mid
                                                   IN2() \mid PC()
                                                                               SP()
                                                                                             BAF()
                                                                                                                                      L_RETI
reg
                     CS() \mid DS()
                     Reg(\langle reg \rangle) \mid Num(str)
arq
                      Eq() \mid NEq() \mid Lt() \mid LtE() \mid Gt() \mid GtE()
rel
                      Always() \mid NOp()
                      Add() \mid Addi() \mid Sub() \mid Subi() \mid Mult() \mid Multi()
                                 Divi() \mid Mod() \mid Modi() \mid Oplus() \mid Oplusi()
                      Div()
                      Or() \mid Ori() \mid And() \mid Andi()
                      Load() \hspace{0.1in} | \hspace{0.1in} Loadin() \hspace{0.1in} | \hspace{0.1in} Loadi() \hspace{0.1in} | \hspace{0.1in} Store() \hspace{0.1in} | \hspace{0.1in} Storein() \hspace{0.1in} | \hspace{0.1in} Move()
                      Instr(\langle op \rangle, \langle arg \rangle +) \quad | \quad Jump(\langle rel \rangle, Num(str)) \quad | \quad Int(Num(str))
instr
                      RTI() \mid Call(Name('print'), \langle reg \rangle) \mid Call(Name('input'), \langle reg \rangle)
                      SingleLineComment(str, str)
                      Instr(Loadi(), [Reg(Acc()), GoTo(Name(str))]) \mid Jump(Eq(), GoTo(Name(str)))
                     Program(Name(str), \langle instr \rangle *)
program
                                                                                                                                      L_PicoC
instr
                     Exp(GoTo(str)) \mid Exit(Num(str))
              ::=
block
                      Block(Name(str), \langle instr \rangle *)
              ::=
file
                      File(Name(str), \langle block \rangle *)
              ::=
```

Grammar 3.3.8: Abstrakte Syntax der Sprache L_{RETI}

3.3.1.6.3 Codebeispiel

Nach dem RETI-Pass ist das Programm komplett in RETI-Knoten übersetzt, die allerdings in ihrer Konkretten Syntax ausgegeben werden, wie in Code 3.12 zu sehen ist. Es gibt keine Blöcke mehr und die RETI-Befehle in diesen Blöcken wurden zusammengesetzt, wie sie in den Blöcken angeordnet waren Die letzten Nicht-RETI-Befehle oder RETI-Befehle, die nicht auschließlich aus RETI-Ausdrücken bestehen²⁸, die sich in den Blöcken befunden haben, wurden durch RETI-Befehle ersetzt.

Der Program(Name(str), instr)-Knoten, indem alle RETI-Knoten stehen gibt alleinig die RETI-Knoten die er beinhaltet aus und fügt ansonsten nichts hinzu, wodurch der Abstract Syntax Tree, wenn er in eine Datei ausgegeben wird, direkt RETI-Code in menschenlesbarer Repräsentation erzeugt.

```
1 # // Exp(GoTo(Name('main.0')))
 2 JUMP 67;
 3 # // Assign(Name('res'), Num('1'))
 4 # Exp(Num('1'))
 5 SUBI SP 1;
 6 LOADI ACC 1;
 7 STOREIN SP ACC 1;
 8 # Assign(Stackframe(Num('1')), Stack(Num('1')))
 9 LOADIN SP ACC 1;
10 STOREIN BAF ACC -3;
11 ADDI SP 1;
12 # // While(Num('1'), [])
# Exp(GoTo(Name('condition_check.5')))
14 # // not included Exp(GoTo(Name('condition_check.5')))
15 # // IfElse(Num('1'), [], [])
16 # Exp(Num('1'))
17 SUBI SP 1;
18 LOADI ACC 1;
19 STOREIN SP ACC 1;
20 # IfElse(Stack(Num('1')), [], [])
21 LOADIN SP ACC 1;
22 ADDI SP 1;
23 JUMP== 54;
24 # // not included Exp(GoTo(Name('while_branch.4')))
25 # // If(Atom(Name('n'), Eq('=='), Num('1')), [])
26 # // IfElse(Atom(Name('n'), Eq('=='), Num('1')), [], [])
27 # Exp(Stackframe(Num('0')))
28 SUBI SP 1;
29 LOADIN BAF ACC -2;
30 STOREIN SP ACC 1;
31 # Exp(Num('1'))
32 SUBI SP 1;
33 LOADI ACC 1;
34 STOREIN SP ACC 1;
35 LOADIN SP ACC 2;
36 LOADIN SP IN2 1;
37 SUB ACC IN2;
38 JUMP== 3;
39 LOADI ACC 0;
40 JUMP 2;
41 LOADI ACC 1;
42 STOREIN SP ACC 2;
```

²⁸Wie z.B. LOADI ACC GoTo(Name('addr@next_instr')), Exp(GoTo(Name('main.0'))) und JUMP== GoTo(Name('if_else after.2')).

```
43 ADDI SP 1:
44 # IfElse(Stack(Num('1')), [], [])
45 LOADIN SP ACC 1;
46 ADDI SP 1;
47 JUMP== 7;
48 # // not included Exp(GoTo(Name('if.3')))
49 # // Return(Name('res'))
50 # Exp(Stackframe(Num('1')))
51 SUBI SP 1;
52 LOADIN BAF ACC -3;
53 STOREIN SP ACC 1;
54 # Return(Stack(Num('1')))
55 LOADIN SP ACC 1;
56 ADDI SP 1;
57 LOADIN BAF PC -1;
58 # // Assign(Name('res'), BinOp(Name('n'), Mul('*'), Name('res')))
59 # Exp(Stackframe(Num('0')))
60 SUBI SP 1;
61 LOADIN BAF ACC -2:
62 STOREIN SP ACC 1;
63 # Exp(Stackframe(Num('1')))
64 SUBI SP 1;
65 LOADIN BAF ACC -3;
66 STOREIN SP ACC 1;
67 # Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
68 LOADIN SP ACC 2;
69 LOADIN SP IN2 1;
70 MULT ACC IN2;
71 STOREIN SP ACC 2;
72 ADDI SP 1;
73 # Assign(Stackframe(Num('1')), Stack(Num('1')))
74 LOADIN SP ACC 1;
75 STOREIN BAF ACC -3;
76 ADDI SP 1;
77 # // Assign(Name('n'), BinOp(Name('n'), Sub('-'), Num('1')))
78 # Exp(Stackframe(Num('0')))
79 SUBI SP 1;
80 LOADIN BAF ACC -2;
81 STOREIN SP ACC 1;
82 # Exp(Num('1'))
83 SUBI SP 1;
84 LOADI ACC 1;
85 STOREIN SP ACC 1;
86 # Exp(BinOp(Stack(Num('2')), Sub('-'), Stack(Num('1'))))
87 LOADIN SP ACC 2;
88 LOADIN SP IN2 1;
89 SUB ACC IN2;
90 STOREIN SP ACC 2;
91 ADDI SP 1;
92 # Assign(Stackframe(Num('0')), Stack(Num('1')))
93 LOADIN SP ACC 1;
94 STOREIN BAF ACC -2;
95 ADDI SP 1;
96 # Exp(GoTo(Name('condition_check.5')))
97 JUMP -58;
98 # Return(Empty())
99 LOADIN BAF PC -1;
```

```
100 # StackMalloc(Num('2'))
101 SUBI SP 2;
102 # Exp(Num('4'))
103 SUBI SP 1;
104 LOADI ACC 4;
105 STOREIN SP ACC 1;
106 # NewStackframe(Name('faculty'), GoTo(Name('addr@next_instr')))
107 MOVE BAF ACC;
108 ADDI SP 3;
109 MOVE SP BAF;
110 SUBI SP 4;
111 STOREIN BAF ACC 0;
112 LOADI ACC 80;
113 ADD ACC CS;
114 STOREIN BAF ACC -1;
115 # Exp(GoTo(Name('faculty.6')))
116 JUMP -78;
117 # RemoveStackframe()
118 MOVE BAF IN1;
119 LOADIN IN1 BAF 0;
120 MOVE IN1 SP;
121 # Exp(ACC)
122 SUBI SP 1;
123 STOREIN SP ACC 1;
124 LOADIN SP ACC 1;
125 ADDI SP 1;
126 CALL PRINT ACC;
127 # Return(Empty())
128 LOADIN BAF PC -1;
```

Code 3.12: RETI Pass für Codebespiel

Literatur

Online

- A-Normalization: Why and How (with code). URL: https://matt.might.net/articles/a-normalization/(besucht am 23.07.2022).
- ANSI C grammar (Lex). URL: https://www.lysator.liu.se/c/ANSI-C-grammar-1.html (besucht am 29.07.2022).
- ANSI C grammar (Yacc). URL: http://www.quut.com/c/ANSI-C-grammar-y.html (besucht am 29.07.2022).
- ANTLR. URL: https://www.antlr.org/ (besucht am 31.07.2022).
- C Operator Precedence cppreference.com. URL: https://en.cppreference.com/w/c/language/operator_precedence (besucht am 27.04.2022).
- clang: C++ Compiler. URL: http://clang.org/ (besucht am 29.07.2022).
- Clockwise/Spiral Rule. URL: https://c-faq.com/decl/spiral.anderson.html (besucht am 29.07.2022).
- Errors in C/C++ GeeksforGeeks. URL: https://www.geeksforgeeks.org/errors-in-cc/ (besucht am 10.05.2022).
- GCC, the GNU Compiler Collection GNU Project. URL: https://gcc.gnu.org/ (besucht am 13.07.2022).
- Grammar Reference Lark documentation. URL: https://lark-parser.readthedocs.io/en/latest/grammar.html (besucht am 31.07.2022).
- Grammar: The language of languages (BNF, EBNF, ABNF and more). URL: https://matt.might.net/articles/grammars-bnf-ebnf/ (besucht am 30.07.2022).
- JSON parser Tutorial Lark documentation. URL: https://lark-parser.readthedocs.io/en/latest/json_tutorial.html (besucht am 09.07.2022).
- Ljohhuh. What is an immediate value? 4. Apr. 2018. URL: https://reverseengineeringstackexchange.com/q/17671 (besucht am 13.04.2022).
- Parsing Expressions · Crafting Interpreters. URL: https://www.craftinginterpreters.com/parsing-expressions.html (besucht am 09.07.2022).
- Transformers & Visitors Lark documentation. URL: https://lark-parser.readthedocs.io/en/latest/visitors.html (besucht am 09.07.2022).
- Welcome to Lark's documentation! Lark documentation. URL: https://lark-parser.readthedocs_io/en/latest/ (besucht am 31.07.2022).

Literatur Literatur

• What is Bottom-up Parsing? URL: https://www.tutorialspoint.com/what-is-bottom-up-parsing (besucht am 22.06.2022).

• What is Top-Down Parsing? URL: https://www.tutorialspoint.com/what-is-top-down-parsing (besucht am 22.06.2022).

Bücher

• G. Siek, Jeremy. Course Webpage for Compilers (P423, P523, E313, and E513). 28. Jan. 2022. URL: https://iucompilercourse.github.io/IU-Fall-2021/ (besucht am 28.01.2022).

Artikel

• Earley, J. und Howard E. Sturgis. "A formalism for translator interactions". In: *CACM* (1970). DOI 10.1145/355598.362740.

$\mathbf{Vorlesungen}$

- Bast, Hannah. "Programmieren in C". Vorlesung. Vorlesung. Universität Freiburg, 2020. URL: https://ad-wiki.informatik.uni-freiburg.de/teaching/ProgrammierenCplusplusSS2020 (besucht am 09.07.2022).
- Nebel, Prof. Dr. Bernhard. "Theoretische Informatik". Vorlesung. Vorlesung. Universität Freiburg, 2020 URL: http://gki.informatik.uni-freiburg.de/teaching/ss20/info3/index_de.html (besucht am 09.07.2022).
- Scholl, Christoph. "Betriebssysteme". Vorlesung. Vorlesung. Universität Freiburg, 2020. URL: https://abs.informatik.uni-freiburg.de/src/teach_main.php?id=157 (besucht am 09.07.2022).
- Scholl, Philipp. "Einführung in Embedded Systems". Vorlesung. Vorlesung. Universität Freiburg, 2021 URL: https://earth.informatik.uni-freiburg.de/uploads/es-2122/ (besucht am 09.07.2022).
- Thiemann, Peter. "Compilerbau". Vorlesung. Vorlesung. Universität Freiburg, 2021. URL: http://proglang.informatik.uni-freiburg.de/teaching/compilerbau/2021ws/ (besucht am 09.07.2022)
- — "Einführung in die Programmierung". Vorlesung. Vorlesung. Universität Freiburg, 2018. URL: http://proglang.informatik.uni-freiburg.de/teaching/info1/2018/ (besucht am 09.07.2022).
- Westphal, Dr. Bernd. "Softwaretechnik". Vorlesung. Vorlesung. Universität Freiburg, 2021. URL: https://swt.informatik.uni-freiburg.de/teaching/SS2021/swtvl (besucht am 19.07.2022).

Sonstige Quellen

Bolingbroke, Maximilian C. und Simon L. Peyton Jones. "Types are calling conventions". In: Proceedings of the 2nd ACM SIGPLAN symposium on Haskell - Haskell '09. the 2nd ACM SIGPLAN symposium Edinburgh, Scotland: ACM Press, 2009, S. 1. ISBN: 978-1-60558-508-6. DOI: 10.1145/1596638.1596640 URL: http://portal.acm.org/citation.cfm?doid=1596638.1596640 (besucht am 23.07.2022).

Literatur Literatur

• Lark - a parsing toolkit for Python. 26. Apr. 2022. URL: https://github.com/lark-parser/lark (besucht am 28.04.2022).
• Shinan, Erez. lark: a modern parsing library. Version 1.1.2. URL: https://github.com/lark-parser/lark (besucht am 31.07.2022).
• Syntax. In: Wiktionary. Page Version ID: 9196998. 7. Juni 2022. URL: https://de.wiktionary.org/w/index.php?title=Syntax&oldid=9196998 (besucht am 31.07.2022).