Introto Agural Networks

BA865 – Mohannad Elhamod

Transformers

Last time on BA865...

Catastrophic forgetting...!

- We started with having one memorization path...
- There were some attempts to solve the issue by adding more paths (e.g., LSTM added long and short term paths).
- Still a struggle to learn long sequences...

An Embedding Per Token?

Instead of having embedding(s) that represent entire sequences, how about we...

- Learn different embeddings for different tokens.
- Learn the relationship(s) (or similarity) between these tokens to represent the sequence (e.g., the sentence).

- So, let's not bother with memories that represent entire sequences anymore...
- We are only interested in the <u>attention</u> between tokens.

- How do we capture similarity?
 - Dot product (i.e., cosine similarity)
 - Based on the similarities between the tokens, we can create new embeddings!
 - How is this implemented?

- The objective is to learn more sophisticated embeddings that capture the semantics of the sentence.
 - Query: Source of attention (e.g., I am looking for an adjective)...
 - Key: Target of attention (e.g., I am your adjective)...
 - Their dot product gives the <u>attention scores</u>.
 - Value: used as an <u>embedding</u> weighted by these scores.

- How are these key, value, and query calculated?
- This is called an "attention head".

$$\left[\begin{array}{c} W_{K} \end{array} \right] \times \begin{array}{c} \circ \\ \circ \\ \circ \end{array} = \begin{array}{c} \circ \\ \circ \\ \circ \end{array}$$

$$\left[\begin{array}{c} W_{V} \end{array} \right] \times \left[\begin{array}{c} \circ \\ \circ \end{array} \right] = \left[\begin{array}{c} \circ \\ \circ \end{array} \right]$$

Lena-voita

- Examples

Subject -> verb

Verb -> subject

- If one head can learn some relationship in the sequence...
- multiple heads can learn multiple relationships.

Multi-head attention

- Note that the word embeddings are now learned as part of model training.
- Since the order of tokens in the sequence matters, we add a "positional encoding" to the word embedding.

Lena-voita

Attention in an Encoder-Decoder Framework

- One can think of the attention head(s) as the layer(s) in an encoder.
- Instead of having an embedding of the entire sequence (e.g., RNN), now we have an embedding per token.
- A decoder can be learned to do other tasks (e.g., translation, text-to-audio, etc.).

Mohannad Elhamod – BA865 4/25/2024

The Transformer is Born!

GPT (Decoder only) version

Mohannad Elhamod – BA865 4/25/2024

The Transformer is Born!

Model	Examples	Tasks
Encoder	ALBERT, BERT, DistilBERT, ELECTRA, ROBERTa	Sentence classification, named entity recognition, extractive question answering
Decoder	CTRL, GPT, GPT-2, Transformer XL	Text generation
Encoder- decoder	BART, T5, Marian, mBART	Summarization, translation, generative question answering

<u>Javinkara</u>

Mohannad Elhamod - BA865 4/25/2024

Images as Tokens!

Input Image

Mohannad Elhamod - BA865 4/25/2024

DNA as Tokens

Bioinformatics, 37(15), 2021, 2112–2120 doi: 10.1093/bioinformatics/btab083 Advance Access Publication Date: 4 February 2021 Original Paper

Genome analysis

DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome

Yanrong Ji^{1,†}, Zhihan Zhou^{2,†}, Han Liu^{2,*} and Ramana V. Davuluri (1) ^{3,*}

¹Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA, ²Department of Computer Science, Northwestern University, Evanston, IL 60208, USA and ³Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA

Received on September 10, 2020; revised on December 31, 2020; editorial decision on January 25, 2021; accepted on February 1, 2021

^{*}To whom correspondence should be addressed.

[†]The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. Associate Editor: Dr. Janet Kelso

Why so many?

Where do the differences come from?

- Data.
- Model type and size.
- Hyperparameters (context size, embedding size,...).
- Training process (the cost function, fine-tuning, human feedback, etc.).

The GPT evolution...

The GPT evolution...

Al Coffee Beak with Letitia

Different model sizes

117M Parameters

345M Parameters

762M Parameters

1,542M Parameters

Jay Alamma

