Chapter 1, Section 5

James Lee

April 23, 2025

- 1. Locate the singular points and sketch the following curves in \mathbb{A}^2 (assume char $k \neq 2$):
 - (a) $x^2 = x^4 + y^4$:
 - (b) $xy = x^6 + y^6$;
 - (c) $x^3 = y^2 + x^4 + y^4$;
 - (d) $x^2y + xy^2 = x^4 + y^4$.

Proof.

f	$\partial f/\partial x$	$\partial f/\partial y$	$\langle \partial f/\partial x, \partial f/\partial y \rangle = \langle 0, 0 \rangle$	$\int \operatorname{Sing} f$
$x^4 - x^2 + y^4$	$4x^3 - 2x$	$4y^3$	$(0,0),(\pm 1/\sqrt{2},0)$	(0,0)
$x^6 + y^6 - xy$	$6x^5 - y$	$6y^5 - x$	$(0,0), (6^{-1/4}, 6^{-1/4})$	(0,0)
$x^4 + y^4 - x^3 + y^2$	$4x^3 - 3x^2$	$4y^3 - 2y$	$(0,0),(3/4,0),(0,\pm 1/\sqrt{2}),(3/4,\pm 1/\sqrt{2})$	(0,0)
$x^4 + y^4 - x^2y - xy^2$	$4x^3 - 2xy - y^2$	$4y^3 - 2xy - x^2$	(0,0), (3/4,3/4)	(0,0)

- (a) is the tacnode, (b) is the node, (c) is the cusp, and (d) is the triple point.
- **2.** Locate the singular points and describe the singularities of the following surfaces in \mathbb{A}^3 (assume char $k \neq 2$).
 - (a) $xy^2 = z^2$;
 - (b) $x^2 + y^2 = z^2$;
 - (c) $xy + x^3 + y^3 = 0$.

Proof.

f	$\partial f/\partial x$	$\partial f/\partial y$	$\partial f/\partial z$	$\operatorname{Sing} f$
$xy^2 - z^2$	y^2	2xy	-2z	$(t,0,0), t \in k$
$x^2 + y^2 - z^2$	2x	2y	-2z	(0,0,0)
$x^3 + y^3 + xy$	$3x^2 + y$	$3y^2 + x$	0	$(0,0,t),\ t\in k$

- (a) is the pinch point, (b) is the conical double point, and (c) is the double line.
- **3.** Multiplicities. Let $Y \subseteq \mathbb{A}^2$ be a curve defined by the equation f(x,y) = 0. Let P = (a,b) be a point of \mathbb{A}^2 . Make a linear change of coordinates so that P becomes the point (0,0). Then write f as a sum $f = f_0 + f_1 + \cdots + f_d$, where f_i is a homogenous polynomial of degree i in x and y. Then we define the multiplicity of P on Y, denoted $\mu_P(Y)$, to be the least r such that $f_r \neq 0$. (Note that $P \in Y \iff \mu_P(Y) > 0$.) The linear factors of f_r are called the tangent directions at P.
 - (a) Show that $\mu_P(Y) = 1 \iff P \text{ is a nonsingular point of } Y$.
 - (b) Find the multiplicity of each of the singular points in Exercise 1 above.

Proof.

- (a) Let f' be the polynomial f(x,y) after change of coordinates so that P becomes the origin and let O=(0,0) be the origin. Then, P is a nonsingular point of $Y\iff (\partial f/\partial x)(P),\ (\partial f/\partial y)(P)\neq 0\iff (\partial f'/\partial x)(O),\ (\partial f'/\partial y)(O)\neq 0 \iff \partial f'/\partial x,\ \partial f'/\partial y= \text{higher degree terms}+\text{constant}\iff f' \text{ has linear terms}\iff \mu_P(Y)=1.$
- (b) (a), (b), and (c) has multiplicity 2, and (d) has multiplicity 3 at O.

- **6.** Blowing Up Curve Singularities.
 - (a) Let Y be the cusp or node of Exercise 1. Show that the curve \widetilde{Y} obtained by blowing up Y at O=(0,0) is nonsingular.
 - (b) We define a node (also called ordinary double point) to be a double point (i.e., a point of multiplicity 2) of a plane curve with distinct tangent directions. If P is a node on a plane curve Y, show that $\varphi^{-1}(P)$ consists of two distinct nonsingular points on the blown-up curve \widetilde{Y} . We say that "blowing up P resolves the singularity at P".
 - (c) Let $P \in Y$ be the tacnode of Exercise 1. If $\varphi : \widetilde{Y} \to Y$ is the blowing-up at P, show that $\varphi^{-1}(P)$ is a node. Using (b) we see that the tacnode can be resolved by two successive blowing-ups.
 - (d) Let Y be the plane curve $y^3 = x^5$, which has a "high order cusp" at O. Show that O is a triple point; that blowing up O gives rise to a double point (what kind?) and that one further blowing up resolves the singularity.

Proof.

(a) Let Y be the curve defined by the equation $xy = x^6 + y^6$. It is the node of Exercise 1. We consider the equations $xy = x^6 + y^6$ and xu = ty in $\mathbb{A}^2 \times \mathbb{P}^1$, where t, u are homogenous coordinates for \mathbb{P}^1 . Now \mathbb{P}^1 is covered by open sets $t \neq 0$ and $u \neq 0$, which we can consider separately. If $t \neq 0$, we can set t = 1, and use u as an affine parameter. Then we have the equations

$$xy = x^6 + y^6$$
$$y = xu$$

in \mathbb{A}^3 with coordinates x, y, u. Substituting, we get $x^2u=x^6+x^6u^6$, which factors. Thus, we obtain two irreducible components, one defined by x=0, y=0, u arbitrary, which is the exceptional curve E, and the other defined by $u=x^4+x^4u^6$. This is Y, which meets E at the point u=0. This curve is nonsingular since if we set $f(x,y,u)=x^4(1+u^6)-u$, then

$$\frac{\partial f}{\partial x} = 0, \quad \frac{\partial f}{\partial y} = 0, \quad \frac{\partial f}{\partial u} = -1,$$

so \widetilde{Y} is nonsingular for all points $t \neq 0$. The curve Y is symmetric with respect to x = y, so \widetilde{Y} is also nonsingular for all points $u \neq 0$, hence \widetilde{Y} is nonsingular.

(b) We can assume P is the origin so that Y is defined by $f = f_2 + f_3 + \cdots + f_r$. Thus, we can write $f_2 = (ax + by)(cx + dy)$, where $(a, b) \neq (c, d)$ as points in \mathbb{P}^1 . Take t, u to be homogenous coordinates for \mathbb{P}^1 . If $t \neq 0$, substituting y = xu we have the equation

$$F_u = (a + bu)(c + du) + f_3' + \dots + f_r' = 0,$$

where f_i' is obtained by substituting y = xu into f_i and dividing by x^2 , which is possible since f_i is homogenous of degree i > 2. This equation defines \widetilde{Y} , which meets the exceptional curve at (b, -a) and (d, -c). Similarly, if $u \neq 0$, then we obtain the equation

$$F_t = (at + b)(ct + d) + \hat{f}_3 + \dots + \hat{f}_r = 0,$$

thus (b, -a) and (d, -c) are the only points \widetilde{Y} meets the exceptional curve, that is $\varphi^{-1}(P) = \{(a, b), (c, d)\}$. Also, \widetilde{Y} is nonsingular at both points since

$$\frac{\partial F_u}{\partial u} = b\left(c - \frac{ad}{b}\right) \neq 0, \quad \frac{\partial F_t}{\partial u} = b\left(a - \frac{bc}{d}\right) \neq 0.$$

(c) Let Y be the plane curve defined by $x^2 = x^4 + y^4$ and let t, u, be homogenous coordinates for \mathbb{P}^1 . If $t \neq 0$, then we have the equations

$$x^2 = x^4 + y^4$$
$$y = xu$$

in \mathbb{A}^3 with coordinates x, y, u. Substituting, we get $x^2 = x^4 + x^4u^4$, thus \widetilde{Y} is defined by $1 = x^2 + x^2u^4$, which intersects the exceptional curve at u = 0. Similarly, if $u \neq 0$, then \widetilde{Y} is defined by $t^2 = t^2y^2 + y^2$ and intersects the exceptional curve at t = 0. These two points correspond to the slopes of the two branches of Y at P, which are the two distinct tangent directions on the node P.

- (d) If $t \neq 0$, then we have the equation $x^2 = u^3$, which is a cusp. If $u \neq 0$, then we have the equation $1 = t^5 y^2$, which does not meet the exceptional curve.
- **8.** Let $Y \subseteq \mathbb{P}^n$ be a projective variety of dimension r. Let $f_1, \ldots, f_t \in S = k[x_0, \ldots, x_n]$ be homogenous polynomials which generate the ideal of Y. Let $P \in Y$ be a point, with homogenous coordinates $P = (a_0, \ldots, a_n)$. Show that P is nonsingular on Y if and only if the rank of the matrix $\|(\partial f_i/\partial x_j)(a_0, \ldots, a_n)\|$ is n-r.

Proof. We follow the hint. The matrix $\|(\partial f_i/\partial x_i)(a_0,\ldots,a_n)\|$ has rank n-r if and only if there exists a $(n-r)\times(n-r)$ submatrix with nonzero determinant. The determinant of a matrix of homogenous polynomials where entries of the same row have same degree is also a homogenous polynomial, hence the rank of $\|(\partial f_i/\partial x_j)(a_0,\ldots,a_n)\|$ is independent of the choice of homogenous coordinates of P. Assuming $a_0 \neq 0$, we can pass to an open affine $U_0 \subseteq \mathbb{P}^n$ containing P and use the affine Jacobian matrix, where U_0 is the open affine subset consisting of all points with nonzero 0th coordinate. In particular, f we set $Y_0 = Y \cap U_0$, then $g_i(y_1,\ldots,y_n) = f_i(1,y_1,\ldots,y_n)$ $(1 \leq i \leq t)$ generate the ideal of Y_0 . Thus, P is nonsingular if and only if the rank of the matrix $\|(\partial g_i/\partial y_j)(a_1/a_0,\ldots,a_n/a_0)\|$ is n-r. Then, we have

$$\frac{\partial g_i}{\partial y_j} = \frac{\partial f_i(1, y_1, \dots, y_n)}{\partial y_j} = \frac{\partial f_i(1, x_1, \dots, x_n)}{\partial x_j},$$

so $||(\partial g_i/\partial y_j)(a_1/a_0,\ldots,a_n/a_0)||$ has an invertible $(n-r)\times(n-r)$ submatrix if and only if $||(\partial f_i/\partial x_j)(a_0,\ldots,a_n)||$ has an invertible $(n-r)\times(n-r)$ submatrix since the rank of a matrix is independent of the homogenous coordinates chosen for P.

- 10. For a point P on a variety X, let \mathfrak{m} be the maximal ideal of the local ring \mathscr{O}_P . We define the Zariski tangent space $T_P(X)$ of X at P to be the dual k-vector space of $\mathfrak{m}/\mathfrak{m}^2$.
 - (a) For any point $P \in X$, dim $T_P(X) \ge \dim X$, with equality if and only if P is nonsingular.
 - (b) For any morphism $\varphi: X \to Y$, there is a natural induced k-linear map $T_P(\varphi): T_P(X) \to T_{\varphi(P)}(Y)$.
 - (c) If φ is the vertical projection of the parabola $x=y^2$ onto the x-axis, show that the induced map $T_0(\varphi)$ of tangent spaces at the origin is the zero map.

Proof.

- (a) Since $\mathfrak{m}/\mathfrak{m}^2$ is a finite dimension k-vector space, $\dim_k T_p(X) = \dim_k \mathfrak{m}/\mathfrak{m}^2 \ge \dim X$ by (5.2A), and $\dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim \mathscr{O}_{P,X} = \dim X$ by definition of nonsingular points and Exercise 3.12.
- (b) A morphism $\varphi: X \to Y$ induces a map $\varphi_P^*: \mathscr{O}_{\varphi(P),Y} \to \mathscr{O}_{P,X}$ between local rings, where the maximal ideal \mathfrak{n} of $\mathscr{O}_{\varphi(P),Y}$ is mapped into the maximal ideal \mathfrak{m} of $\mathscr{O}_{P,X}$. Thus, we can define $T_P(\varphi)F$ as

$$(T_P(\varphi)F)f = F(d_{\varphi}f) = F(f \circ \varphi),$$

where $d_{\varphi}: \mathfrak{n}/\mathfrak{n}^2 \to \mathfrak{m}/\mathfrak{m}^2$ is the map induced by φ_P^* . It is clearly k-linear.

(c) By the formula above, it suffices to show d_{φ} is the zero map at 0. Let X be the parabola $x=y^2$ and let Y by the x-axis. The maximal ideal \mathfrak{m} of the local ring $\mathscr{O}_{0,X}$ is generated by y, thus $\mathfrak{m}/\mathfrak{m}^2$ is a one dimensional k-vector space spanned by y, and similarly $\mathfrak{n}/\mathfrak{n}^2$ of $\mathscr{O}_{0,Y}$ is a one dimensional k-vector space spanned by x. Thus, we have $\varphi^*x=y^2\in\mathfrak{m}^2$, hence $d_{\varphi}=0$, hence $T_0(\varphi)=0$.