

Overview

Datasets:

Dataset	Training Set]	Developm	ent Set		Testset			
	Positive	Negative	Neutral	Total	Positive	Negative	Neutral Total		Positive	Positive Negative		Total
SemEval	3,168	1,380	4,111	8,659	500	340	1160	2000	1,570	601	1,638	3,809
CrowdScale	14,253	15,513	20,234	50,000	3,237	3,496	4,510	11,243	3,237	3,496	4,510	11,243

Classifiers:

Two-class logistic regression

Technology:

Azure Machine Learning Studio, R, Python

Data Preprocessing

Cleaning text:

- Change negation words (not, cannot, never, etc.) to "not"
- Remove numbers, Unicode characters, URLs and stop words
- Replace more than 2 consecutive characters by only 2 (i.e. heeeey heey)
- Replace emoticons by their polarity (i.e. :=) positive_emoticon)

Stemming using Porter's algorithm Tokenization using CMU tokenizer

Pipeline approach

Feature extraction

Baseline features

N-Grams:

- Uni/bigrams using binary word presence
- Apply Log Likelihood scoring to select the top 20K ngrams

Example:

N-Gram	Score
hate	235.0607
love	200.4914
positive_emoticon	167.5600
spain	111.5650
ger	106.3451
Germany	93.3149
amazing	91.9482
support	90.7155

Senti-Features

Polar features:

- # of (+/-) POS (JJ, RB, VB, NN)
- # of negation words, positive words, negative words
- # of positive and negative emoticons
- # of (+/-) hashtags and capitalized words
- For POS JJ, RB, VB, NN, sum of polarity scores
- Sum of prior polarity for all words

Non-polar features:

- # of JJ, RB, VB, NN
- # of slangs, Latin alphabets, dictionary words, words
- # of hashtags, URLs, mentions
- Percentage of capitalized text
- Exclamation, capitalized text

Sentiment Specific Word Embedding

- RNN trained on 10M auto-labeled tweets using emoticons
- For each tweet, calculate the mean/min/max and generate a feature vector of size 150

Example:

Twe	at anno	1 4211	AVAT	IODA										
	good		0.1059199		0.569301 8		0.813515		1.189322		-2.537077	7 1.463798	- 0.5817627	-1.51455
	day		0.0682571 8		0.754171		-0.4899379		-0.7972742		-1.958613	0.5648658	0.3248749	-1.03408
	everyon		-1.861	-1.861807 1		930682 1.77		1	0.3432329		-3.497849) - n 1/20023	0.7691697	-0.06457
	mea -0.		56254 1.0		84718 0.		.698744 0		.245094		2.66451	0.628857	0.170761	-0.87107
	n													
	min	n -1.86		0.5	0.569302 -		0.48994 -		0.79727	-	3.49785	-0.14209	-0.58176	-1.51456
	may	0.	10592	1.9	30682	1.	772654	1	.189322	-	1.95861	1.463798	0.76917	-0.06457

NRC Features

Counting features:

- All-caps words
- Number of occurrences of each POS tag
- Number of hashtags
- # of elongated words (i.e. heey)
- Number of negated contexts (i.e. I don't like Arsenal today!)
- Presence in the pre-defined clusters (provided by CMU POS tagger)
- Punctuation: contiguous sequences of exclamation marks, questions marks or both

Lexicon features:

- Lexicon features for all tokens in the tweet, each POS, hashtags and all-caps. For each token w, calculate the following:
 - 1. Total count of tokens with score(w,p) > 0
 - 2. Total score for all tokens
 - 3. Maximal score among all tokens
 - 4. Score of the last token where score(w,p) > 0

Experimentation results

Subjectivity Classifier

Fig. 2. Macro-F1 of subjectivity classifier for each feature set on each dataset

Polarity Classifier

Fig. 3. Macro-F1 of polarity classifier for each feature set on each dataset

Ensemble

Dataset	Features	Positive	Negative	Neutral	Macro-F1	Relative Gain
CrowdScale	Baseline	0.71	0.63	0.79	0.71	
Crowuscale	Best	0.77	0.76	0.82	0.78	9.9%
SemEval	Baseline	0.66	0.43	0.67	0.59	
Semevai	Best	0.70	0.57	0.70	0.66	11.9%

Resources

Microsoft Cognitive Services (Text Analytics API):

• https://www.microsoft.com/cognitive-services/en-us/text-analytics-api

Publication:

http://rd.springer.com/chapter/10.1007%2F978-3-319-18117-2_7

