Historical Perspectives

Farming in the olden times

-Agricultural practices (from Roman books)

- Crop rotation
- Manure application
- Green manure
- Tillage
- Use of lime
- Growth of legumes for soil improvement

-traditional(natural) farming

no synthetic check for chemicals, practiced for thousands of years

-industrial revolution

- Introduced inorganic methods
- Conventional farming —>used synthetic chemical fertilisers and pesticides

PRE-WORLD WAR II

- first 40 years of 20th century—rapidly changed farming
 - gasoline-powered engines
 - reduced need for farm labor
 - improved plant varieties
 - labor-saving machinery
 - chemical fertilisers and pesticides
- -farmer population —decreasing
 - bigger fields, more specialised cropping

Justus von Liebig:

- German chemist
- Father of chemical fertiliser promoted importance of adding inorganic minerals as plant nutrition
- Law of the minimum growth controlled not by total amount of resources available but by the scarcest resource (limiting factor)

Sir John Lawes:

- Produced super phosphate
- & Sir Joseph Gilbert Rothamsted Research Station: investigates impacts of inorganic and organic fertilisers in crop yields

Haber and Bosch

- Developed process that converts nitrogen gas into ammonia
- -NH4NO3 nitrate fertiliser
- -Organophosphatesphate nerve gas insecticides
- -DDT pesticide

AFTER WORLD WAR II

- widespread use of DDT
 - Insect became resistant
 - Chemicals did not decomposed rapidly, persisted in environment
 - Banned in many countries
 - "Silent Spring" Rachel Carson
- -biomagnification when chemical become concentrated in tissues as they move up the food chain
 - Fat soluble chemicals
 - Long life span
 - Biologically active
- pesticide overuse.

The green revolution 1960's

- increase in crop production
 - New high-yielding varieties
 - Controlled irrigation
 - Chemical fertiliser
 - Chemical pesticides
 - Machinery
- consequences of orienting toward economic profit
 - Increased yield
 - Negative impact on farmers and environment
 - Lead to monoculture cropping system
 - Lead to loss of genetic diversity

PROBLEMS WITH CHEMICAL FARMING

- Decrease in soil fertility
- Need to use more chemical fertilisers every year (pesticide resistance)
- Increase in disease and pest problems
- Contaminated water
- Contaminate produce

MODERN ORGANIC FARMING

- **Sir Albert Howard**: "Father of modern organic agriculture"
- An Agricultural Testament: problems of plant diseases, soil erosion under chemical agriculture

- Natural farming:

- No-till system for small-scale grain production
- Principles:
 - no plowing
 - no chemical Fertilisers
 - no pesticides
 - ducks, carps helps eat pests and slugs
 - ground covers using straw from previous crop as mulch

- Kyusei(saving) nature farming

 Effective microorganisms (EM) to improve soil's production power

Lower cost to farmer Inputs made from natural materials Higher yield High quality food Sustainable, easily practiced

ORGANIC AGRICULTURE

- Crop rotation
 - Avoid buildup of pathogens and pests when continuously cropped
 - Balance fertility demands
 - Impove soil structure and fertility alternate deep-rooted & shallow-rooted plants
- Replenish nitrogen grow legumes or use green manure Organic gardening principles
- no chemicals
- Use biologycal pest control
- Weeds controlled mechanically and through covers crops and mulch
- Rely on crop rotation, crop residues, manures, compost to maintain soil productivity
- Grow variety of crops rather than 1