Hometask-3

Please submit your solutions by email: Boris.Kirikov@edu.mamk.fi

- 1. Proove some basic facts about matricies:
 - a. Matrix power is defined as:

$$A^k = \underbrace{A \cdot A \cdots A}_{k}$$

Proove, that: $A = diag(d_1, d_2, d_3, \dots, d_n) \Rightarrow A^k = diag(d_1^k, d_2^k, d_3^k, \dots, d_n^k)$

b.

$$J(2,\lambda) = \left(\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}\right)$$

Matrix $J(2,\lambda)$ is called Jordan block of size 2. Proove that:

$$J(2,\lambda)^k = \begin{pmatrix} \lambda^k & k\lambda^{k-1} \\ 0 & \lambda^k \end{pmatrix}$$

c. «In my paper the fact that XY was not equal to YX was very disagreable to me. I felt this was the only point of difficulty in the whole scheme.» (Werner von Heisenberg)

«Now when Heisenberg noticed that, he was really scared.» (Paul Dirac)

Let $X, Y \in M(n, \mathbb{R})$.

- Show that if both X and Y are diagonal, XY = YX.
- Show that Jordan blocks commute: $J(n,\lambda)J(n,\mu) = J(n,\mu)J(n,\lambda)$
- d. We are used to think that 0 has no divisors. But when it comes to matrix multiplications, this is not true. Give exmaple of two matrices A and B such that $A \neq 0$, $B \neq 0$, AB = 0.
- 2. Let's apply matrix multiplication to some discrete math:
 - a. (We have already solved this at first lection) Remember Fibonacci numbers: $F_{n+2} = F_{n+1} + F_n$, $F_0 = 0$, $F_1 = 1$. We can rewrite it in matrix form:

$$\left(\begin{array}{c} F_{n+2} \\ F_{n+1} \end{array}\right) = A \left(\begin{array}{c} F_{n+1} \\ F_n \end{array}\right)$$

Find out, what matrix A looks like. How can we compute F_n ?

- **3. Def**: A bipartite graph is a graph G = (V, E) whose whose vertices can be partitioned into two sets $(V = V_1 \cup V_2)$ and $V_1 \cap V_2 = V_2$ such that there are no edges between vertices in the same set (for instance, if $u, v \in V_1$, there is no $e \in E$, $e = \{u, v\}$).
 - a. Give a linear-time algorithm to determine whether an undirected graph is bi[partite.
 - b. Proove that undirected graph is bipartite, iff it contains no cycles of odd length.
- 4. For each vertex in undirected graph compute sum of it's neighbors degrees in O(E) time. Graph is given as adjacency list.

1