04.09.2020

Digital Image Processing (CSE/ECE 478)

Lecture-8: Bilateral Filtering, Linearity
Intro to Frequency Domain Processing

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

- ☐ Mean: blurs image, removes simple noise, no details are preserved
- \Box Gaussian: blurs image, preserves details only for small σ .
- ☐ Median: preserves some details, good at removing strong noise

original

3x3 mean

3x3 gaussian

3x3 median

Edge Preserving Filtering

- Edges ⇒ smooth only along edges
- "Smooth" regions ⇒ smooth isotropically

It is clear that in weighting this neighborhood, we would like to preserve the step

Gaussian Weights

☐ Gaussian Weights

Filtered Output

 \Box Weighted sum on the $W_c(p)$

Edge loss

☐ Edge is smoothed/lost

Photometric Weights

☐ Introducing Photometric weights

☐ Fitler Weights derived from both geometric and photometric distances

☐ Illustration of bilateral filter changes

☐ Illustration of bilateral filter changes

input

☐ Filtering process

Original

$$\sigma_c = 3$$
, $\sigma_s = 3$

$$\sigma_c = 6$$
, $\sigma_s = 3$

$$\sigma_c = 12,$$

$$\sigma_s = 3$$

$$\sigma_c = 12$$
, $\sigma_s = 6$

$$\sigma_c = 15$$
, $\sigma_s = 8$

Linear Spatial Filter

$$I'(u,v) \leftarrow \sum_{i=-1}^{1} \sum_{j=-1}^{1} I(u+i,v+j)$$
 • $H(i,j)$

Linear Spatial Filter

$$I'(u,v) \leftarrow \sum_{i=1}^{1} \sum_{j=1}^{1} I(u+i,v+j)$$
 • $H(i,j)$

$$g(i,j) = \frac{\sum_{k,l} f(k,l) \mathbf{vd}(i,j,k,l)}{\sum_{k,l} \mathbf{vd}(i,j,k,l)}$$

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$$

The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

$$d(i, j, k, l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),$$

and a data-dependent range kernel (Figure 3.19d),

$$\underbrace{r(i,j,k,l)}_{q} = \exp\left(-\frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$

(3.37)

The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

$$d(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),\tag{3.35}$$

and a data-dependent range kernel (Figure 3.19d),

$$r(i, j, k, l) = \exp\left(-\frac{\|f(i, j) - f(k, l)\|^2}{2\sigma_r^2}\right).$$

When multiplied together, these yield the data-dependent bilateral weight function

$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$

Usual Gaussian Filtering

Same Gaussian kernel everywhere.

output

The kernel shape depends on the image content.

Fig. 2.4 Iterations: the bilateral filter can be applied iteratively, and the result progressively approximates a piecewise constant signal. This effect can help achieve a limited-palette, cartoon-like rendition of images [72]. Here, $\sigma_s = 8$ and $\sigma_r = 0.1$.

me cur

Effects of noise

Consider a single row or column of the image

Where is the edge?

Source: S. Seitz

Solution: smooth first

$$\frac{d}{dx}(f \circledast g) = f * \frac{d}{dx}(g)$$

g(x)
g'(x)

This saves us one operation:

Source: S. Seitz

Other Important Filters

- Laplacian of Gaussian
 - Noise Suppression

Robert Collins CSE486

1D Gaussian and Derivatives

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$

$$g''(x) = (\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})e^{-\frac{x^2}{2\sigma^2}}$$

Other Important Filters

- Laplacian of Gaussian
 - Noise Suppression

Robert Collins CSE486

Second Derivative of a Gaussian

$$g''(x) = (\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})e^{-\frac{x^2}{2\sigma^2}}$$

LoG "Mexican Hat"

Other Important Filters

- Laplacian of Gaussian
 - Noise Suppression

- Difference of Gaussian
 - Band-pass

$$x_1[n] \rightarrow T \qquad y_1[n] \qquad x_2[n] \rightarrow T \qquad y_2[n]$$

$$\Rightarrow x_1[n] + x_2[n] \rightarrow T \qquad y_1[n] + y_2[n]$$

'Linear' Spatial Filtering

Convolution / Linear Filters

- Smoothing (Average, Gaussian)
- Edge Filters (Prewitt, Sobel, Laplacian)

$$I'(u,v) \leftarrow \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j) \bullet H(i,j)$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

、j i、	-1	0	1	
-1	а	b	С	
0	d	е	f	
1	g	h	i	

References

- ► GW Chapter 3.4
- Convolution:
- http://www.songho.ca/dsp/convolution/convolution.html
- http://www.ceri.memphis.edu/people/smalley/ESCI7355/Ch6_Linear_Systems_Conv.pdf

Image Processing – Two Paradigms

Directly manipulating pixels in spatial domain

Manipulating in transform domain

Spatial vs. Transform Domain Processing

Spatial vs. Transform Domain Processing

Bandhani / Bandhej

Tie Dye

Spatial vs. Transform Domain Processing

Transform (Tie)

Process (Dye)

Inverse Transform (Untie)

Image Enhancement in Frequency Domain –

Preliminary Concepts

Periodic Signals

Simple periodic signals

- $x(t) = A \cos(t)$
- $x(t) = A\cos(2t)$
- $x(t) = A\cos(t/2)$

•
$$x(t) = A\cos(\omega t) = A\cos(2\pi f t) = A\cos(\frac{2\pi}{T}t)$$

Signal and Frequency Domains

Periodic Images

Sinusoid pattern repeats every 16 pixels f = 1/16 cycles/pixel

Periodic Images

Spatial period = Minimal # of pixels between two identical patterns in a "periodic" image

Scribe List