ID	Problem Name	Problem Description
1	Multiples of 3 and 5	If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000.
2	Even Fibonacci numbers	Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
3	Largest prime factor	The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143?
4	Largest palindrome product	A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers.
5	Smallest multiple	2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?

		
6	Sum square difference	The sum of the squares of the first ten natural numbers is, 12 + 22 + + 102 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + + 10)2 = 552 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
7	10001st prime	By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the
,	1000 13t prime	6th prime is 13. What is the 10 001st prime number?

		The four adjacent digits in the 1000-
		digit number that have the greatest
		product are $9 \times 9 \times 8 \times 9 = 5832$.
		7316717653133062491922511967442
		6574742355349194934
		9698352031277450632623957831801
		6984801869478851843
		8586156078911294949545950173795
		8331952853208805511
		1254069874715852386305071569329
		0963295227443043557
		6689664895044524452316173185640
8	Largest product in a series	3098711121722383113
	_a. g.s. p. e. a. a a se	6222989342338030813533627661428
		2806444486645238749
		3035890729629049156044077239071
		3810515859307960866
		7017242712188399879790879227492
		1901699720888093776
		6572733300105336788122023542180
		9751254540594752243
		5258490771167055601360483958644
		6706324415722155397
		5369781797784617406495514929086
		2569321978468622482
		A Pythagorean triplet is a set of three
	Special Pythagorean triplet	natural numbers, a < b < c, for which,
		a2 + b2 = c2
		For example, $32 + 42 = 9 + 16 = 25 =$
9		52.
		There exists exactly one Pythagorean
		triplet for which $a + b + c = 1000$.
		Find the product abc.
		·
10	Summation of primes	The sum of the primes below 10 is 2 +
		3 + 5 + 7 = 17. Find the sum of all the prime as below.
		Find the sum of all the primes below
		two million.

		In the 20×20 grid below, four numbers
		along a diagonal line have been
		marked in red.
		08 02 22 97 38 15 00 40 00 75 04 05
		07 78 52 12 50 77 91 08
		49 49 99 40 17 81 18 57 60 87 17 40
		98 43 69 48 04 56 62 00
		81 49 31 73 55 79 14 29 93 71 40 67
		53 88 30 03 49 13 36 65
		52 70 95 23 04 60 11 42 69 24 68 56
		01 32 56 71 37 02 36 91
		22 31 16 71 51 67 63 89 41 92 36 54
11	Largest product in a grid	22 40 40 28 66 33 13 80
		24 47 32 60 99 03 45 02 44 75 33 53
		78 36 84 20 35 17 12 50
		32 98 81 28 64 23 67 10 26 38 40 67
		59 54 70 66 18 38 64 70
		67 26 20 68 02 62 12 20 95 63 94 39
		63 08 40 91 66 49 94 21
		24 55 58 05 66 73 99 26 97 17 78 78
		96 83 14 88 34 89 63 72
		21 36 23 09 75 00 76 44 20 45 35 14
		00 61 33 97 34 31 33 95
		78 17 53 28 22 75 31 67 15 94 03 80
		04 62 16 14 09 53 56 92

Highly divisible triangular number	The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle
	Highly divisible triangular number

		Work out the first ten digits of the sum
		of the following one-hundred 50-digit
		numbers.
		3710728753390210279879799822083
		7590246510135740250
		4637693767749000971264812489697
		0078050417018260538
		7432498619952474105947423330951
		3058123726617309629
		9194221336357416157252243056330
		1811072406154908250
		2306758820753934617117198031042
13	Large sum	1047513778063246676
		8926167069662363382013637841838
		3684178734361726757
		2811287981284997940806548193159
		2621691275889832738
		4427422891743252032192358942287
		6796487670272189318
		4745144573600130643909116721685
		6844588711603153276
		7038648610584302543993961982891
		7593665686757934951
		6217645714185656062950215722319
		6586755079324193331

14	Longest Collatz sequence	The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million.
15	Lattice paths	Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 20×20 grid?
16	Power digit sum	215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 21000?

17	Number letter counts	If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in
		compliance with British usage.

		,
		By starting at the top of the triangle
		below and moving to adjacent
		numbers on the row below, the
		maximum total from top to bottom is
		23.
		3
		7 4
		2 4 6
		8 5 9 3
		That is, 3 + 7 + 4 + 9 = 23.
		Find the maximum total from top to
		bottom of the triangle below:
18	Maximum path sum I	75
		95 64
		17 47 82
		18 35 87 10
		20 04 82 47 65
		19 01 23 75 03 34
		88 02 77 73 07 63 67
		99 65 04 28 06 16 70 92
		41 41 26 56 83 40 80 70 33
		41 48 72 33 47 32 37 16 94 29
		53 71 44 65 25 43 91 52 97 51 14
		70 11 33 28 77 73 17 78 39 68 17 57
		91 71 52 38 17 14 91 43 58 50 27 29

		
19	Counting Sundays	You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?
20	Factorial digit sum	n! means n × (n - 1) × × 3 × 2 × 1 For example, $10! = 10 \times 9 \times \times 3 \times 2$ × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100!
21	Amicable numbers	Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. Evaluate the sum of all the amicable numbers under 10000.

		1
22	Names scores	Using names.txt (right click and 'Save Link/Target As'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score. For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would obtain a score of 938 × 53 = 49714. What is the total of all the name scores in the file?

23	Non-abundant sums	A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number. A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n. As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this
24	Lexicographic permutations	abundant numbers is less than this limit. A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: 012 021 102 120 201 210 What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?

25	1000-digit Fibonacci number	The Fibonacci sequence is defined by the recurrence relation: Fn = Fn-1 + Fn-2, where F1 = 1 and F2 = 1. Hence the first 12 terms will be: F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21 F9 = 34 F10 = 55 F11 = 89 F12 = 144 The 12th term, F12, is the first term to contain three digits. What is the index of the first term in
		contain three digits.
		What is the index of the first term in
		the Fibonacci sequence to contain
		1000 digits?
1		1000 angitta

26	Reciprocal cycles	A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given: 1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1 Where 0.1(6) means 0.166666, and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle. Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
----	-------------------	---

		Euler discovered the remarkable
		quadratic formula:
		n
		2
		- +n+41
		n l
		It turns out that the formula will
		produce 40 primes for the consecutive
		· ·
		integer values
		0≤n≤39
		0
		. However, when
27	Quadratic primes	n=40,
		40
		2
		+40+41=40(40+1)+41
		n
		is divisible by 41, and certainly when
		n=41,
		41
		2
		+41+41
		n
		is clearly divisible by 41.
		The incredible formula
		Starting with the number 1 and
		moving to the right in a clockwise
		direction a 5 by 5 spiral is formed as
		follows:
		21 22 23 24 25
		20 7 8 9 10
28		19 6 1 2 11
	Number spiral diagonals	18 5 4 3 12
		17 16 15 14 13
		It can be verified that the sum of the
		numbers on the diagonals is 101.
		What is the sum of the numbers on the
		diagonals in a 1001 by 1001 spiral
		formed in the same way?

29	Distinct powers	Consider all integer combinations of ab for $2 \le a \le 5$ and $2 \le b \le 5$: $22=4, 23=8, 24=16, 25=32$ $32=9, 33=27, 34=81, 35=243$ $42=16, 43=64, 44=256, 45=1024$ $52=25, 53=125, 54=625, 55=3125$ If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms: 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 How many distinct terms are in the sequence generated by ab for $2 \le a \le 100$ and $2 \le b \le 100$?
30	Digit fifth powers	Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits: 1634 = 14 + 64 + 34 + 44 8208 = 84 + 24 + 04 + 84 9474 = 94 + 44 + 74 + 44 As 1 = 14 is not a sum it is not included. The sum of these numbers is 1634 + 8208 + 9474 = 19316. Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.
31	Coin sums	In England the currency is made up of pound, £, and pence, p, and there are eight coins in general circulation: 1p, 2p, 5p, 10p, 20p, 50p, £1 (100p) and £2 (200p). It is possible to make £2 in the following way: 1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p How many different ways can £2 be made using any number of coins?

32	Pandigital products	We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital. The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital. Find the sum of all products whose
		multiplicand/multiplier/product identity can be written as a 1 through 9 pandigital. HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.
33	Digit cancelling fractions	The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that 49/98 = 4/8, which is correct, is obtained by cancelling the 9s. We shall consider fractions like, 30/50 = 3/5, to be trivial examples. There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator. If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
34	Digit factorials	145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are equal to the sum of the factorial of their digits. Note: as 1! = 1 and 2! = 2 are not sums they are not included.

35	Circular primes	The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there below one million?
36	Double-base palindromes	The decimal number, 585 = 10010010012 (binary), is palindromic in both bases. Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2. (Please note that the palindromic number, in either base, may not include leading zeros.)
37	Truncatable primes	The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. Find the sum of the only eleven primes that are both truncatable from left to right and right to left. NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.

38	Pandigital multiples	Take the number 192 and multiply it by each of 1, 2, and 3: 192 × 1 = 192 192 × 2 = 384 192 × 3 = 576 By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3) The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5). What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an
39	Integer right triangles	integer with (1,2,, n) where n > 1? If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120. {20,48,52}, {24,45,51}, {30,40,50} For which value of p ≤ 1000, is the number of solutions maximised?
40	Champernowne's constant	An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192 021 It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 × d10 × d100 × d10000 × d100000 × d1000000 × d10000000

41	Pandigital prime	We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists?
42	Coded triangle numbers	The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, By converting each letter in a word to a number corresponding to its alphabetical position and adding these values we form a word value. For example, the word value for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a triangle number then we shall call the word a triangle word. Using words.txt (right click and 'Save Link/Target As'), a 16K text file containing nearly two-thousand common English words, how many are triangle words?

43	Sub-string divisibility	The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits 0 to 9 in some order, but it also has a rather interesting sub-string divisibility property. Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note the following: d2d3d4=406 is divisible by 2 d3d4d5=063 is divisible by 3 d4d5d6=635 is divisible by 5 d5d6d7=357 is divisible by 7 d6d7d8=572 is divisible by 11 d7d8d9=728 is divisible by 17 Find the sum of all 0 to 9 pandigital numbers with this property.
44	Pentagon numbers	Pentagonal numbers are generated by the formula, Pn=n(3n-1)/2. The first ten pentagonal numbers are: 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 - 22 = 48, is not pentagonal. Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference are pentagonal and D = Pk - Pj is minimised; what is the value of D?

Г		
		Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:
		Triangle Tn=n(n+1)/2 1, 3, 6, 10, 15,
		$\begin{bmatrix} 111a \text{ ingle} & 111-11(11+1)/2 & 1, 3, 6, 16, 13, 1 \\ 1 & 1 & 1 \end{bmatrix}$
		 Pentagonal Pn=n(3n–1)/2 1, 5, 12,
45	Triangular pontagonal and havegonal	-
45	Triangular, pentagonal, and hexagonal	22, 35,
		Hexagonal Hn=n(2n-1) 1, 6, 15, 28,
		45,
		It can be verified that T285 = P165 =
		H143 = 40755.
		Find the next triangle number that is
		also pentagonal and hexagonal.
	Goldbach's other conjecture	It was proposed by Christian Goldbach
		that every odd composite number can
		be written as the sum of a prime and
		twice a square.
		$9 = 7 + 2 \times 12$
		15 = 7 + 2×22
		$21 = 3 + 2 \times 32$
46		25 = 7 + 2×32
		27 = 19 + 2×22
		33 = 31 + 2×12
		It turns out that the conjecture was
		false.
		What is the smallest odd composite
		that cannot be written as the sum of a
		prime and twice a square?
		'

47	Distinct primes factors	The first two consecutive numbers to have two distinct prime factors are: $14 = 2 \times 7$ $15 = 3 \times 5$ The first three consecutive numbers to have three distinct prime factors are: $644 = 2^2 \times 7 \times 23$ $645 = 3 \times 5 \times 43$ $646 = 2 \times 17 \times 19.$ Find the first four consecutive integers to have four distinct prime factors each. What is the first of these numbers?
48	Self powers	The series, 11 + 22 + 33 + + 1010 = 10405071317. Find the last ten digits of the series, 11 + 22 + 33 + + 10001000.
49	Prime permutations	The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another. There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence. What 12-digit number do you form by concatenating the three terms in this sequence?

50	Consecutive prime sum	The prime 41, can be written as the sum of six consecutive primes: 41 = 2 + 3 + 5 + 7 + 11 + 13 This is the longest sum of consecutive primes that adds to a prime below one-hundred. The longest sum of consecutive primes below one-thousand that adds to a prime, contains 21 terms, and is equal to 953. Which prime, below one-million, can be written as the sum of the most consecutive primes?
51	Prime digit replacements	By replacing the 1st digit of the 2-digit number *3, it turns out that six of the nine possible values: 13, 23, 43, 53, 73, and 83, are all prime. By replacing the 3rd and 4th digits of 56**3 with the same digit, this 5-digit number is the first example having seven primes among the ten generated numbers, yielding the family: 56003, 56113, 56333, 56443, 56663, 56773, and 56993. Consequently 56003, being the first member of this family, is the smallest prime with this property. Find the smallest prime which, by replacing part of the number (not necessarily adjacent digits) with the same digit, is part of an eight prime value family.
52	Permuted multiples	It can be seen that the number, 125874, and its double, 251748, contain exactly the same digits, but in a different order. Find the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and 6x, contain the same digits.

53	53 Combinatoric selections	There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 235, 245, and 345 In combinatorics, we use the notation, (5 3)=10 (. In general, (n
)= n! r!(n-r)! (, where r≤n r r n!=n×(n-1)××3×2×1 n

		In the card game poker, a hand
		1
		consists of five cards and are ranked,
		from lowest to highest, in the following
		way:
		High Card: Highest value card.
		One Pair: Two cards of the same value.
		Two Pairs: Two different pairs.
		Three of a Kind: Three cards of the
		same value.
		Straight: All cards are consecutive
		values.
		Flush: All cards of the same suit.
54	Poker hands	Full House: Three of a kind and a pair.
		Four of a Kind: Four cards of the same
		value.
		Straight Flush: All cards are
		consecutive values of same suit.
		Royal Flush: Ten, Jack, Queen, King,
		Ace, in same suit.
		The cards are valued in the order:
		2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen,
		Z, 3, 4, 3, 6, 7, 6, 3, 10, 3ack, Queen, King, Ace.
		1
		If two players have the same ranked
ı		hands then the rank made up of the
		highest value wins; for example, a pair

55	Lychrel numbers	If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindromes so quickly. For example, 349 + 943 = 1292, 1292 + 2921 = 4213 4213 + 3124 = 7337 That is, 349 took three iterations to arrive at a palindrome. Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers,
		and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a
56	Powerful digit sum	A googol (10100) is a massive number: one followed by one-hundred zeros; 100100 is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1. Considering natural numbers of the form, ab, where a, b < 100, what is the maximum digital sum?

		It is possible to show that the savers
		It is possible to show that the square
		root of two can be expressed as an
		infinite continued fraction.
		2
		_
		√
		=1+
		1
		2+
		1
		2+
		1
57	Square root convergents	2+
		2
		By expanding this for the first four
		iterations, we get:
		1+
		1
		2
		=
		3
		2
		=1.5
		1

anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 \approx 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			Starting with 1 and spiralling
square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of $8/13 \approx 62\%$. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			' '
formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 \approx 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of $8/13 \approx 62\%$. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of $8/13 \approx 62\%$. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
$40\ 19\ 6\ 1\ 2\ 11\ 28$ $41\ 20\ 7\ 8\ 9\ 10\ 27$ $42\ 21\ 22\ 23\ 24\ 25\ 26$ $43\ 44\ 45\ 46\ 47\ 48\ 49$ It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 \approx 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
Spiral primes It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
Spiral primes It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of $8/13 \approx 62\%$. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
Spiral primes It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			
squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			43 44 45 46 47 48 49
squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both	50		It is interesting to note that the odd
is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both	58	Spiral primes	squares lie along the bottom right
along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			diagonal, but what is more interesting
a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			is that 8 out of the 13 numbers lying
If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			along both diagonals are prime; that is,
around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			a ratio of 8/13 ≈ 62%.
spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			If one complete new layer is wrapped
If this process is continued, what is the side length of the square spiral for which the ratio of primes along both			around the spiral above, a square
side length of the square spiral for which the ratio of primes along both			spiral with side length 9 will be formed.
which the ratio of primes along both			If this process is continued, what is the
diagonals first falls bolow 100/2			·
ulagorials first falls below 10%!			diagonals first falls below 10%?

		Each character on a computer is assigned a unique code and the preferred standard is ASCII (American Standard Code for Information Interchange). For example, uppercase A = 65, asterisk (*) = 42, and lowercase k = 107. A modern encryption method is to take a text file, convert the bytes to ASCII, then XOR each byte with a given value, taken from a secret key. The
59	XOR decryption	advantage with the XOR function is that using the same encryption key on the cipher text, restores the plain text; for example, 65 XOR 42 = 107, then 107 XOR 42 = 65. For unbreakable encryption, the key is the same length as the plain text message, and the key is made up of random bytes. The user would keep the encrypted message and the encryption key in different locations, and without both "halves", it is impossible to decrypt the message. Unfortunately, this method is
60	Prime pair sets	The primes 3, 7, 109, and 673, are quite remarkable. By taking any two primes and concatenating them in any order the result will always be prime. For example, taking 7 and 109, both 7109 and 1097 are prime. The sum of these four primes, 792, represents the lowest sum for a set of four primes with this property. Find the lowest sum for a set of five primes for which any two primes concatenate to produce another prime.

		Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae: Triangle P3,n=n(n+1)/2 1, 3, 6, 10, 15, Square P4,n=n2 1, 4, 9, 16, 25, Pentagonal P5,n=n(3n-1)/2 1, 5, 12, 22, 35, Hexagonal P6,n=n(2n-1) 1, 6, 15,
61	Cyclical figurate numbers	Hexagonal P6,n=n(2n-1) 1, 6, 15, 28, 45, Heptagonal P7,n=n(5n-3)/2 1, 7, 18, 34, 55, Octagonal P8,n=n(3n-2) 1, 8, 21, 40, 65, The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties. The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first). Each polygonal type: triangle
62	Cubic permutations	(P3,127=8128), square (P4,91=8281), The cube, 41063625 (3453), can be permuted to produce two other cubes: 56623104 (3843) and 66430125 (4053). In fact, 41063625 is the smallest cube which has exactly three permutations of its digits which are also cube. Find the smallest cube for which exactly five permutations of its digits
		are cube.

		1
		The 5-digit number, 16807=75, is also
63		a fifth power. Similarly, the 9-digit
	Powerful digit counts	number, 134217728=89, is a ninth
	. onena. argre coarre	power.
		How many n-digit positive integers
		exist which are also an nth power?
		All square roots are periodic when
		written as continued fractions and can
		be written in the form:
		N
		-
		√
		=
	Odd period square roots	a
		0
		+
C 4		1
64		a
		1
		† 1
		· ·
		a 2
		+
		1
		a3+
		N
		For example, let us consider
		23
		_
		<u> </u>

	The square root of 2 can be written as
	an infinite continued fraction.
	2
	_
	\checkmark
	=1+
	1
	2+
	1
	2+
	1
	2+
Convergents of e	1
	2+
	2
	The infinite continued fraction can be
	written,
	2
	2
	\checkmark
	=[1;(2)]
	2
	,
	(2)
	(
	Convergents of e

		Consider quadratic Diophantine
		equations of the form:
		$x^2 - Dy^2 = 1$
		For example, when D=13, the minimal
		solution in x is $6492 - 13 \times 1802 = 1$.
		It can be assumed that there are no
		solutions in positive integers when D is
		square.
		By finding minimal solutions in x for D
		= {2, 3, 5, 6, 7}, we obtain the
66	Diophantine equation	following:
	Бюрнанине еquation	32 – 2×22 = 1
		22 – 3×12 = 1
		$92 - 5 \times 42 = 1$
		$52 - 6 \times 22 = 1$
		$82 - 7 \times 32 = 1$
		Hence, by considering minimal
		solutions in x for $D \le 7$, the largest x is
		obtained when D=5.
		Find the value of D ≤ 1000 in minimal
		solutions of x for which the largest
		value of x is obtained.

		By starting at the ten of the triangle
		By starting at the top of the triangle
		below and moving to adjacent
		numbers on the row below, the
		maximum total from top to bottom is
		23.
		3
		7 4
		2 4 6
		8 5 9 3
		That is, $3 + 7 + 4 + 9 = 23$.
		Find the maximum total from top to
67	Maximum path sum II	bottom in triangle.txt (right click and
	Widximam path sam ii	'Save Link/Target As'), a 15K text file
		containing a triangle with one-
		hundred rows.
		NOTE: This is a much more difficult
		version of Problem 18. It is not
		possible to try every route to solve this
		problem, as there are 299 altogether! If
		you could check one trillion (1012)
		routes every second it would take over
		twenty billion years to check them all.
		There is an efficient algorithm to solve
		it. ;o)

		Consider the following "magic" 3-gon
		ring, filled with the numbers 1 to 6,
		and each line adding to nine.
		Working clockwise, and starting from
		the group of three with the numerically
		lowest external node (4,3,2 in this
		example), each solution can be
		described uniquely. For example, the
		above solution can be described by
		the set: 4,3,2; 6,2,1; 5,1,3.
		It is possible to complete the ring with
68	Magic 5-gon ring	four different totals: 9, 10, 11, and 12.
		There are eight solutions in total.
		Total Solution Set
		9 4,2,3; 5,3,1; 6,1,2
		9 4,3,2; 6,2,1; 5,1,3
		10 2,3,5; 4,5,1; 6,1,3
		10 2,5,3; 6,3,1; 4,1,5
		11 1,4,6; 3,6,2; 5,2,4
		11 1,6,4; 5,4,2; 3,2,6
		12 1,5,6; 2,6,4; 3,4,5
		12 1,6,5; 3,5,4; 2,4,6
		By concatenating each group it is
		possible to form 9-digit strings; the

69	Totient maximum	Euler's Totient function, $\varphi(n)$ [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, $\varphi(9)=6$. n Relatively Prime $\varphi(n)$ n/ $\varphi(n)$ 2 1 1 2 3 1,2 2 1.5 4 1,3 2 2 5 1,2,3,4 4 1.25 6 1,5 2 3 7 1,2,3,4,5,6 6 1.1666 8 1,3,5,7 4 2 9 1,2,4,5,7,8 6 1.5 10 1,3,7,9 4 2.5 It can be seen that n=6 produces a maximum n/ $\varphi(n)$ for n \leq 10. Find the value of n \leq 1,000,000 for which n/ $\varphi(n)$ is a maximum.
70	Totient permutation	Euler's Totient function, $\phi(n)$ [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, $\phi(9)=6$. The number 1 is considered to be relatively prime to every positive number, so $\phi(1)=1$. Interestingly, $\phi(87109)=79180$, and it can be seen that 87109 is a permutation of 79180 . Find the value of n, 1 < n < 107 , for which $\phi(n)$ is a permutation of n and the ratio $n/\phi(n)$ produces a minimum.

71	Ordered fractions	Consider the fraction, n/d, where n and d are positive integers. If n < d and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8 It can be seen that 2/5 is the fraction immediately to the left of 3/7. By listing the set of reduced proper fractions for d ≤ 1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7.
72	Counting fractions	Consider the fraction, n/d, where n and d are positive integers. If n < d and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8 It can be seen that there are 21 elements in this set. How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?

	T	1
		Consider the fraction, n/d, where n and d are positive integers. If n <d 8="" a="" and="" ascending="" called="" d="" for="" fraction.="" fractions="" hcf(n,d)="1," if="" in="" is="" it="" list="" of="" order<="" proper="" reduced="" set="" td="" the="" we="" ≤=""></d>
73	Counting fractions in a range	of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
		It can be seen that there are 3 fractions between 1/3 and 1/2.
		How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d ≤ 12,000?
74	Digit factorial chains	The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145: 1! + 4! + 5! = 1 + 24 + 120 = 145 Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist: 169 → 363601 → 1454 → 169 871 → 45361 → 871 872 → 45362 → 872 It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example, 69 → 363600 → 1454 → 169 → 363601 (→ 1454) 78 → 45360 → 871 → 45361 (→ 871) 540 → 145 (→ 145) Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms. How many chains, with a starting

		It turns out that 12 cm is the smallest
		length of wire that can be bent to form
		an integer sided right angle triangle in
		exactly one way, but there are many
		more examples.
		12 cm: (3,4,5)
		24 cm: (6,8,10)
		30 cm: (5,12,13)
		36 cm: (9,12,15)
		40 cm: (8,15,17)
		48 cm: (12,16,20)
		In contrast, some lengths of wire, like
75	Singular integer right triangles	20 cm, cannot be bent to form an
		integer sided right angle triangle, and
		other lengths allow more than one
		solution to be found; for example,
		using 120 cm it is possible to form
		exactly three different integer sided
		right angle triangles.
		120 cm: (30,40,50), (20,48,52),
		(24,45,51)
		Given that L is the length of the wire,
		for how many values of L ≤ 1,500,000
		can exactly one integer sided right
		angle triangle be formed?
		It is possible to write five as a sum in
		exactly six different ways:
		4 + 1
76		3 + 2
	Counting summations	3 + 1 + 1
		2 + 2 + 1
		2 + 1 + 1 + 1
		1 + 1 + 1 + 1 + 1
		How many different ways can one
		hundred be written as a sum of at least
		two positive integers?

77	Prime summations	It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different ways?
78	Coin partitions	Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so p(5)=7. OOOOO OOO OO OOO OO OOO OO OOO OO OOO OO Find the least value of n for which p(n) is divisible by one million.
79	Passcode derivation	A common security method used for online banking is to ask the user for three random characters from a passcode. For example, if the passcode was 531278, they may ask for the 2nd, 3rd, and 5th characters; the expected reply would be: 317. The text file, keylog.txt, contains fifty successful login attempts. Given that the three characters are always asked for in order, analyse the file so as to determine the shortest possible secret passcode of unknown length.

It is well known that if the square root of a natural number is not an integer, then it is irrational. The decimal expansion of such square roots is infinite without any repeating pattern at all. The square root of two is 1.41421356237309504880, and the digital sum of the first one hundred decimal digits is 475. For the first one hundred natural numbers, find the total of the digital sums of the first one hundred decimal digits for all the irrational square roots.
In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by only moving to the right and down, is indicated in bold red and is equal to 2427. Path sum: two ways 131 201 630 537 805 673 96 803 96 803 699 732

		NOTE: This problem is a more
		challenging version of Problem 81.
		The minimal path sum in the 5 by 5
		matrix below, by starting in any cell in
		the left column and finishing in any cell
		in the right column, and only moving
		up, down, and right, is indicated in red
		and bold; the sum is equal to 994.
		('
		\
		l
		l
82	Path sum: three ways	l
	,	I
		1
		1
		131
		201
		630
		537
		805
		673
		96
		803
		699

r		
		NOTE: This problem is a significantly
		more challenging version of Problem
		81.
		In the 5 by 5 matrix below, the minimal
		path sum from the top left to the
		bottom right, by moving left, right, up,
		and down, is indicated in bold red and
		is equal <i>f</i> to 2297.
		is equalite 2237.
		\
		ľ
		i
0.2	Path and form	i
83	Path sum: four ways	i i
		¦
		l l
		l l
		131
		201
		630
		537
		805
		673
		96
		803
		699

		,
		In the game, Monopoly, the standard
		board is set up in the following way:
		GO A1 CC1 A2 T1 R1 B1 CH1 B2 B3
		JAIL
		H2 C1
		T2 U1
		H1 C2
		CH3 C3
		R4 R2
		G3 D1
		CC3 CC2
		G2 D2
84	Monopoly odds	G1 D3
		G2J F3 U2 F2 F1 R3 E3 E2 CH2 E1 FP
		A player starts on the GO square and
		adds the scores on two 6-sided dice to
		determine the number of squares they
		advance in a clockwise direction.
		Without any further rules we would
		expect to visit each square with equal
		probability: 2.5%. However, landing on
		G2J (Go To Jail), CC (community chest),
		and CH (chance) changes this
		distribution.
		In addition to G2J, and one card from
		By counting carefully it can be seen
		that a rectangular grid measuring 3 by
		2 contains eighteen rectangles:
85	Counting rectangles	Although there exists no rectangular
		grid that contains exactly two million
		rectangles, find the area of the grid
		with the nearest solution.

86	Cuboid route	A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the opposite corner. By travelling on the surfaces of the room the shortest "straight line" distance from S to F is 10 and the path is shown on the diagram. However, there are up to three "shortest" path candidates for any given cuboid and the shortest route doesn't always have integer length. It can be shown that there are exactly 2060 distinct cuboids, ignoring rotations, with integer dimensions, up to a maximum size of M by M by M, for which the shortest route has integer length when M = 100. This is the least value of M for which the number of solutions first exceeds two thousand; the number of solutions when M = 99 is 1975. Find the least value of M such that the number of solutions first exceeds one
87	Prime power triples	million. The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is 28. In fact, there are exactly four numbers below fifty that can be expressed in such a way: 28 = 22 + 23 + 24 33 = 32 + 23 + 24 49 = 52 + 23 + 24 47 = 22 + 33 + 24 How many numbers below fifty million can be expressed as the sum of a prime square, prime cube, and prime fourth power?

		A set selected by the
		A natural number, N, that can be
		written as the sum and product of a
		given set of at least two natural
		numbers, {a1, a2, , ak} is called a
		product-sum number: N = a1 + a2 +
		$+ ak = a1 \times a2 \times \times ak$.
		For example, $6 = 1 + 2 + 3 = 1 \times 2 \times$
		3.
		For a given set of size, k, we shall call
		the smallest N with this property a
		minimal product-sum number. The
		minimal product-sum numbers for sets
88	Product-sum numbers	of size, k = 2, 3, 4, 5, and 6 are as
		follows.
		$k=2: 4 = 2 \times 2 = 2 + 2$
		$k=3: 6 = 1 \times 2 \times 3 = 1 + 2 + 3$
		$k=4: 8 = 1 \times 1 \times 2 \times 4 = 1 + 1 + 2 + 4$
		$k=5: 8 = 1 \times 1 \times 2 \times 2 \times 2 = 1 + 1 + 2$
		+ 2 + 2
		k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 +
		1+1+1+2+6
		Hence for 2≤k≤6, the sum of all the
		minimal product-sum numbers is
		4+6+8+12 = 30; note that 8 is only
		counted once in the sum.
		counted office in the balli.

		
		For a number written in Roman
		numerals to be considered valid there
		are basic rules which must be followed.
		Even though the rules allow some
		numbers to be expressed in more than
		one way there is always a "best" way of
		writing a particular number.
		For example, it would appear that
		there are at least six ways of writing
		the number sixteen:
		111111111111111
		VIIIIIIIII
89	Roman numerals	VVIIIII
		XIIIII
		VVVI
		XVI
		However, according to the rules only
		XIIIIII and XVI are valid, and the last
		example is considered to be the most
		efficient, as it uses the least number of
		numerals.
		The 11K text file, roman.txt (right click
		and 'Save Link/Target As'), contains
		one thousand numbers written in valid,
		but not necessarily minimal, Roman

90	Cube digit pairs	Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers. For example, the square number 64 could be formed:
		In fact, by carefully choosing the digits on both cubes it is possible to display all of the square numbers below one-hundred: 01, 04, 09, 16, 25, 36, 49, 64, and 81. For example, one way this can be achieved is by placing {0, 5, 6, 7, 8, 9} on one cube and {1, 2, 3, 4, 8, 9} on the other cube. However, for this problem we shall allow the 6 or 9 to be turned upsidedown so that an arrangement like {0, 5, 6, 7, 8, 9} and {1, 2, 3, 4, 6, 7} allows for all nine square numbers to be displayed; otherwise it would be impossible to obtain 09.
91	Right triangles with integer coordinates	The points P (x1, y1) and Q (x2, y2) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ. There are exactly fourteen triangles

92	Square digit chains	A number chain is created by continuously adding the square of the digits in a number to form a new number until it has been seen before. For example, 44 → 32 → 13 → 10 → 1 → 1 85 → 89 → 145 → 42 → 20 → 4 → 16 → 37 → 58 → 89 Therefore any chain that arrives at 1 or 89 will become stuck in an endless loop. What is most amazing is that EVERY starting number will eventually arrive at 1 or 89. How many starting numbers below ten million will arrive at 89?
93	Arithmetic expressions	By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic operations (+, -, *, /) and brackets/parentheses, it is possible to form different positive integer targets. For example, 8 = (4 * (1 + 3)) / 2 14 = 4 * (3 + 1 / 2) 19 = 4 * (2 + 3) - 1 36 = 3 * 4 * (2 + 1) Note that concatenations of the digits, like 12 + 34, are not allowed. Using the set, {1, 2, 3, 4}, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering the first non-expressible number. Find the set of four distinct digits, a < b < c < d, for which the longest set of consecutive positive integers, 1 to n, can be obtained, giving your answer as a string: abcd.

94	Almost equilateral triangles	It is easily proved that no equilateral triangle exists with integral length sides and integral area. However, the almost equilateral triangle 5-5-6 has an area of 12 square units. We shall define an almost equilateral triangle to be a triangle for which two sides are equal and the third differs by no more than one unit. Find the sum of the perimeters of all almost equilateral triangles with integral side lengths and area and whose perimeters do not exceed one billion (1,000,000,000).
95	Amicable chains	The proper divisors of a number are all the divisors excluding the number itself. For example, the proper divisors of 28 are 1, 2, 4, 7, and 14. As the sum of these divisors is equal to 28, we call it a perfect number. Interestingly the sum of the proper divisors of 220 is 284 and the sum of the proper divisors of 284 is 220, forming a chain of two numbers. For this reason, 220 and 284 are called an amicable pair. Perhaps less well known are longer chains. For example, starting with 12496, we form a chain of five numbers: 12496 → 14288 → 15472 → 14536 → 14264 (→ 12496 →) Since this chain returns to its starting point, it is called an amicable chain. Find the smallest member of the longest amicable chain with no element exceeding one million.

96	Su Doku	Su Doku (Japanese meaning number place) is the name given to a popular puzzle concept. Its origin is unclear, but credit must be attributed to Leonhard Euler who invented a similar, and much more difficult, puzzle idea called Latin Squares. The objective of Su Doku puzzles, however, is to replace the blanks (or zeros) in a 9 by 9 grid in such that each row, column, and 3 by 3 box contains each of the digits 1 to 9. Below is an example of a typical starting puzzle grid and its solution grid. 0 0 3 9 0 0 0 0 1 0 2 0 3 0 5 8 0 6 6 0 0 0 0 1 4 0 0 0 0 8 7 0 0 0 0 6 1 0 2 0 0 0
97	Large non-Mersenne prime	The first known prime found to exceed one million digits was discovered in 1999, and is a Mersenne prime of the form 26972593–1; it contains exactly 2,098,960 digits. Subsequently other Mersenne primes, of the form 2p–1, have been found which contain more digits. However, in 2004 there was found a massive non-Mersenne prime which contains 2,357,207 digits: 28433×27830457+1. Find the last ten digits of this prime number.

		By replacing each of the letters in the word CARE with 1, 2, 9, and 6 respectively, we form a square number: 1296 = 362. What is remarkable is that, by using the same digital substitutions, the anagram, RACE, also forms a square number: 9216 = 962. We shall
98	Anagramic squares	call CARE (and RACE) a square anagram word pair and specify further that leading zeroes are not permitted, neither may a different letter have the same digital value as another letter. Using words.txt (right click and 'Save Link/Target As'), a 16K text file containing nearly two-thousand common English words, find all the square anagram word pairs (a palindromic word is NOT considered to
		be an anagram of itself). What is the largest square number formed by any member of such a pair? NOTE: All anagrams formed must be contained in the given text file.

		Comparing two numbers written in index form like 211 and 37 is not difficult, as any calculator would confirm that 211 = 2048 < 37 = 2187. However, confirming that 632382518061 > 519432525806 would be much more difficult, as both
99	Largest exponential	numbers contain over three million digits. Using base_exp.txt (right click and 'Save Link/Target As'), a 22K text file containing one thousand lines with a base/exponent pair on each line, determine which line number has the greatest numerical value. NOTE: The first two lines in the file represent the numbers in the example given above.
100	Arranged probability	If a box contains twenty-one coloured discs, composed of fifteen blue discs and six red discs, and two discs were taken at random, it can be seen that the probability of taking two blue discs, P(BB) = (15/21)×(14/20) = 1/2. The next such arrangement, for which there is exactly 50% chance of taking two blue discs at random, is a box
		containing eighty-five blue discs and thirty-five red discs. By finding the first arrangement to contain over 1012 = 1,000,000,000,000 discs in total, determine the number of blue discs that the box would contain.

		If we are presented with the first k
		·
		terms of a sequence it is impossible to
		say with certainty the value of the next
		term, as there are infinitely many
		polynomial functions that can model
		the sequence.
		As an example, let us consider the
		sequence of cube numbers. This is
		defined by the generating function,
		un = n3: 1, 8, 27, 64, 125, 216,
		Suppose we were only given the first
		two terms of this sequence. Working
101	Optimum polynomial	on the principle that "simple is best"
		we should assume a linear relationship
		and predict the next term to be 15
		(common difference 7). Even if we
		were presented with the first three
		terms, by the same principle of
		simplicity, a quadratic relationship
		should be assumed.
		We shall define OP(k, n) to be the nth
		term of the optimum polynomial
		generating function for the first k
		terms of a sequence. It should be clear
		that OP(k, n) will accurately generate
		that of (K, H) will accurately generate

102 Triangle containment Triangle containment It can be verifie contains the original triangle state. Using triangles.txt Link/Target As	ints are plotted at sian plane, for which 000, such that a s formed. wing two triangles: 3,-910), C(835,-947)
thousand "rando number of trian interior con	sian plane, for which 000, such that a s formed. wing two triangles:
represent the tria	gles in the example above.

104	Pandigital Fibonacci ends	The Fibonacci sequence is defined by the recurrence relation: Fn = Fn-1 + Fn-2, where F1 = 1 and F2 = 1. It turns out that F541, which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not necessarily in order). And F2749, which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1-9 pandigital. Given that Fk is the first Fibonacci number for which the first nine digits AND the last nine digits are 1-9 pandigital, find k.
-----	---------------------------	--

		
		Let S(A) represent the sum of elements
		in set A of size n. We shall call it a
		special sum set if for any two non-
		empty disjoint subsets, B and C, the
		following properties are true:
		$S(B) \neq S(C)$; that is, sums of subsets
		cannot be equal.
		If B contains more elements than C
		then $S(B) > S(C)$.
		For example, {81, 88, 75, 42, 87, 84, 86,
		65} is not a special sum set because 65
		+ 87 + 88 = 75 + 81 + 84, whereas
105	Special subset sums: testing	{157, 150, 164, 119, 79, 159, 161, 139,
		158} satisfies both rules for all possible
		subset pair combinations and S(A) =
		1286.
		Using sets.txt (right click and "Save
		Link/Target As"), a 4K text file with
		one-hundred sets containing seven to
		twelve elements (the two examples
		given above are the first two sets in
		the file), identify all the special sum
		sets, A1, A2,, Ak, and find the value
		of $S(A1) + S(A2) + + S(Ak)$.
		NOTE: This problem is related to

		_
		Let S(A) represent the sum of elements
		in set A of size n. We shall call it a
		special sum set if for any two non-
		empty disjoint subsets, B and C, the
		following properties are true:
		$S(B) \neq S(C)$; that is, sums of subsets
		cannot be equal.
		If B contains more elements than C
		then $S(B) > S(C)$.
		For this problem we shall assume that
		a given set contains n strictly
		increasing elements and it already
106	Special subset sums: meta-testing	satisfies the second rule.
		Surprisingly, out of the 25 possible
		subset pairs that can be obtained from
		a set for which n = 4, only 1 of these
		pairs need to be tested for equality
		(first rule). Similarly, when n = 7, only
		70 out of the 966 subset pairs need to
		be tested.
		For n = 12, how many of the 261625
		subset pairs that can be obtained need
		to be tested for equality?
		NOTE: This problem is related to
		Problem 103 and Problem 105.

		The following undirected network
		consists of seven vertices and twelve
		edges with a total weight of 245.
107	Minimal network	edges with a total weight of 243. The same network can be represented by the matrix below. A B C D E F G A - 16 12 21 B 16 17 20 C 12 28 - 31 - D 21 17 28 - 18 19 23 E - 20 - 18 11 F 31 19 27 G 23 11 27 - However, it is possible to optimise the network by removing some edges and still ensure that all points on the network remain connected. The network which achieves the maximum saving is shown below. It has a weight of 93, representing a saving of 243 - 93 = 150 from the original network.
		·
		Using network.txt (right click and 'Save
		Link/Target As'), a 6K text file

		T
		In the following equation x, y, and n
		are positive integers.
		1
	х	
	+	
		1
		у
		=
		1
		n
		1x+1y=1n
		For n = 4 there are exactly three
100	Diambantina nasimna sala l	distinct solutions:
108	Diophantine reciprocals I	
		1
		5
		+
		1
		20
		1
		6
		+
		1
		12
		1
		8

		In the game of darts a player throws
		three darts at a target board which is
		split into twenty equal sized sections
		numbered one to twenty.
		The score of a dart is determined by
		the number of the region that the dart
		lands in. A dart landing outside the
		red/green outer ring scores zero. The
		black and cream regions inside this
		ring represent single scores. However,
		the red/green outer ring and middle
109	Darts	ring score double and treble scores
		respectively.
		At the centre of the board are two
		concentric circles called the bull region,
	or bulls-eye. The outer bull is worth 25	
		points and the inner bull is a double,
		worth 50 points.
		There are many variations of rules but
		in the most popular game the players
		will begin with a score 301 or 501 and
		the first player to reduce their running
		total to zero is a winner. However, it is
		normal to play a "doubles out" system,

110	Diophantine reciprocals II	In the following equation x, y, and n are positive integers. 1 x + 1 y = 1 n It can be verified that when n = 1260 there are 113 distinct solutions and this is the least value of n for which the total number of distinct solutions exceeds one hundred. What is the least value of n for which the number of distinct solutions exceeds four million? NOTE: This problem is a much more difficult version of Problem 108 and as it is well beyond the limitations of a
		it is well beyond the limitations of a brute force approach it requires a clever implementation.

		Considering 4-digit primes containing
		repeated digits it is clear that they
		cannot all be the same: 1111 is
		divisible by 11, 2222 is divisible by 22,
		and so on. But there are nine 4-digit
		primes containing three ones:
		1117, 1151, 1171, 1181, 1511, 1811,
		2111, 4111, 8111
		We shall say that M(n, d) represents
		the maximum number of repeated
		digits for an n-digit prime where d is
		the repeated digit, N(n, d) represents
111	Primes with runs	the number of such primes, and S(n, d)
		represents the sum of these primes.
		So $M(4, 1) = 3$ is the maximum number
		of repeated digits for a 4-digit prime
		where one is the repeated digit, there
		are $N(4, 1) = 9$ such primes, and the
		sum of these primes is $S(4, 1) = 22275$.
		It turns out that for d = 0, it is only
		possible to have $M(4, 0) = 2$ repeated
		digits, but there are $N(4, 0) = 13$ such
		cases.
		In the same way we obtain the
		following results for 4-digit primes.
		Tollowing results for 4-digit primes.

		Working from left-to-right if no digit is
		exceeded by the digit to its left it is
		called an increasing number; for
		example, 134468.
		Similarly if no digit is exceeded by the
		digit to its right it is called a decreasing
		number; for example, 66420.
		We shall call a positive integer that is
		neither increasing nor decreasing a
		"bouncy" number; for example,
		155349.
		Clearly there cannot be any bouncy
112	Bouncy numbers	numbers below one-hundred, but just
		over half of the numbers below one-
		thousand (525) are bouncy. In fact, the
		least number for which the proportion
		of bouncy numbers first reaches 50% is
ı		538.
		Surprisingly, bouncy numbers become
ı		more and more common and by the
		time we reach 21780 the proportion of
1		bouncy numbers is equal to 90%.
		Find the least number for which the
		proportion of bouncy numbers is
		exactly 99%.

113	Non-bouncy numbers	Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468. Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420. We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number; for example, 155349. As n increases, the proportion of bouncy numbers below n increases such that there are only 12951 numbers below one-million that are not bouncy and only 277032 non-bouncy numbers below 1010. How many numbers below a googol
114	Counting block combinations I	A row measuring seven units in length has red blocks with a minimum length of three units placed on it, such that any two red blocks (which are allowed to be different lengths) are separated by at least one grey square. There are exactly seventeen ways of doing this. How many ways can a row measuring fifty units in length be filled? NOTE: Although the example above does not lend itself to the possibility, in general it is permitted to mix block sizes. For example, on a row measuring eight units in length you could use red (3), grey (1), and red (4).

		NOTE: This is a more difficult version of
		Problem 114.
		A row measuring n units in length has
		red blocks with a minimum length of
		m units placed on it, such that any two
		red blocks (which are allowed to be
		different lengths) are separated by at
		least one black square.
		Let the fill-count function, F(m, n),
		represent the number of ways that a
		row can be filled.
		For example, F(3, 29) = 673135 and
115	Counting block combinations II	F(3, 30) = 1089155.
		That is, for $m = 3$, it can be seen that n
		= 30 is the smallest value for which the
		fill-count function first exceeds one
		million.
		In the same way, for m = 10, it can be
		verified that F(10, 56) = 880711 and
		F(10, 57) = 1148904, so n = 57 is the
		least value for which the fill-count
		function first exceeds one million.
		For m = 50, find the least value of n for
		which the fill-count function first
		exceeds one million.
		exceeds one million.

116	Red, green or blue tiles	A row of five grey square tiles is to have a number of its tiles replaced with coloured oblong tiles chosen from red (length two), green (length three), or blue (length four). If red tiles are chosen there are exactly seven ways this can be done. If green tiles are chosen there are three ways. And if blue tiles are chosen there are two ways. Assuming that colours cannot be mixed there are 7 + 3 + 2 = 12 ways of replacing the grey tiles in a row measuring five units in length. How many different ways can the grey tiles in a row measuring fifty units in length be replaced if colours cannot be mixed and at least one coloured tile must be used? NOTE: This is related to Problem 117.
117	Red, green, and blue tiles	Using a combination of grey square tiles and oblong tiles chosen from: red tiles (measuring two units), green tiles (measuring three units), and blue tiles (measuring four units), it is possible to tile a row measuring five units in length in exactly fifteen different ways. How many ways can a row measuring fifty units in length be tiled? NOTE: This is related to Problem 116.

118	Pandigital prime sets	Using all of the digits 1 through 9 and concatenating them freely to form decimal integers, different sets can be formed. Interestingly with the set {2,5,47,89,631}, all of the elements belonging to it are prime. How many distinct sets containing each of the digits one through nine exactly once contain only prime elements?
119	Digit power sum	The number 512 is interesting because it is equal to the sum of its digits raised to some power: 5 + 1 + 2 = 8, and 83 = 512. Another example of a number with this property is 614656 = 284. We shall define an to be the nth term of this sequence and insist that a number must contain at least two digits to have a sum. You are given that a2 = 512 and a10 = 614656. Find a30.
120	Square remainders	Let r be the remainder when $(a-1)n + (a+1)n$ is divided by a2. For example, if $a = 7$ and $n = 3$, then $r = 42$: $63 + 83 = 728 \equiv 42 \mod 49$. And as n varies, so too will r, but for $a = 7$ it turns out that rmax = 42. For $3 \le a \le 1000$, find $\sum rmax$.

121 Disc game prize fund	A bag contains one red disc and one blue disc. In a game of chance a player takes a disc at random and its colour is noted. After each turn the disc is returned to the bag, an extra red disc is added, and another disc is taken at random. The player pays £1 to play and wins if they have taken more blue discs than red discs at the end of the game. If the game is played for four turns, the probability of a player winning is exactly 11/120, and so the maximum prize fund the banker should allocate for winning in this game would be £10 before they would expect to incur a loss. Note that any payout will be a whole number of pounds and also includes the original £1 paid to play the game, so in the example given the player actually wins £9. Find the maximum prize fund that should be allocated to a single game in which fifteen turns are played.
--------------------------	---

122	Efficient exponentiation	The most naive way of computing n15 requires fourteen multiplications: $n \times n \times \times n = n15$ But using a "binary" method you can compute it in six multiplications: $n \times n = n2$ $n2 \times n2 = n4$ $n4 \times n4 = n8$ $n8 \times n4 = n12$ $n12 \times n2 = n14$ $n14 \times n = n15$ However it is yet possible to compute it in only five multiplications: $n \times n = n2$ $n2 \times n = n3$ $n3 \times n3 = n6$ $n6 \times n6 = n12$ $n12 \times n3 = n15$ We shall define m(k) to be the minimum number of multiplications to compute nk; for example m(15) = 5. For $1 \le k \le 200$, find $\sum m(k)$.
123	Prime square remainders	Let pn be the nth prime: 2, 3, 5, 7, 11,, and let r be the remainder when $(pn-1)n + (pn+1)n$ is divided by pn2. For example, when $n = 3$, $p3 = 5$, and $43 + 63 = 280 \equiv 5 \mod 25$. The least value of n for which the remainder first exceeds 109 is 7037. Find the least value of n for which the remainder first exceeds 1010.

		The radical of n, rad(n), is the product of the distinct prime factors of n. For
		example, $504 = 23 \times 32 \times 7$, so rad(504) = $2 \times 3 \times 7 = 42$.
		If we calculate rad(n) for $1 \le n \le 10$,
		then sort them on rad(n), and sorting
		on n if the radical values are equal, we
		get:
		Unsorted
		Sorted
		n
124	Ordered radicals	"
	Ordered radicals	rad(n)
		n
		rad(n)
		rad(ii)
		k
		1
		1
		1
		1

125 Palindromic sums 4 col	the sum of consecutive squares: 62 + 72 + 82 + 92 + 102 + 112 + 122. There are exactly eleven palindromes below one-thousand that can be written as consecutive square sums, and the sum of these palindromes is 4164. Note that 1 = 02 + 12 has not been included as this problem is oncerned with the squares of positive integers. Find the sum of all the numbers less than 108 that are both palindromic and can be written as the sum of consecutive squares.
----------------------------	---

		The minimum number of cubes to
		cover every visible face on a cuboid
		inleasuring 5 x 2 x 1 is twenty-two.
126	Cuboid layers	measuring 3 x 2 x 1 is twenty-two. If we then add a second layer to this solid it would require forty-six cubes to cover every visible face, the third layer would require seventy-eight cubes, and the fourth layer would require one-hundred and eighteen cubes to cover every visible face. However, the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes; similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1 all contain forty-six cubes. We shall define C(n) to represent the number of cuboids that contain n cubes in one of its layers. So C(22) = 2, C(46) = 4, C(78) = 5, and C(118) = 8. It turns out that 154 is the least value of n for which C(n) = 10. Find the least value of n for which C(n)
		= 1000.

127	abc-hits	The radical of n, rad(n), is the product of distinct prime factors of n. For example, $504 = 23 \times 32 \times 7$, so $rad(504) = 2 \times 3 \times 7 = 42$. We shall define the triplet of positive integers (a, b, c) to be an abc-hit if: $GCD(a, b) = GCD(a, c) = GCD(b, c) = 1$ a < b a + b = c $rad(abc) < c$ For example, $(5, 27, 32)$ is an abc-hit, because: $GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1$ $5 < 27$ $5 + 27 = 32$ $rad(4320) = 30 < 32$ It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for c < 1000, with $\sum c = 12523$. Find $\sum c$ for c < 120000.

128	Hexagonal tile differences	A hexagonal tile with number 1 is surrounded by a ring of six hexagonal tiles, starting at "12 o'clock" and numbering the tiles 2 to 7 in an anticlockwise direction. New rings are added in the same fashion, with the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram below shows the first three rings. By finding the difference between tile n and each of its six neighbours we shall define PD(n) to be the number of those differences which are prime. For example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and 13. So PD(8) = 3. In the same way, the differences around tile 17 are 1, 17, 16, 1, 11, and 10, hence PD(17) = 2. It can be shown that the maximum value of PD(n) is 3. If all of the tiles for which PD(n) = 3 are listed in ascending order to form a sequence, the 10th tile would be 271.
129	Repunit divisibility	A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111. Given that n is a positive integer and GCD(n, 10) = 1, it can be shown that there always exists a value, k, for which R(k) is divisible by n, and let A(n) be the least such value of k; for example, A(7) = 6 and A(41) = 5. The least value of n for which A(n) first exceeds ten is 17. Find the least value of n for which A(n) first exceeds one-million.

130	Composites with prime repunit property	A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111. Given that n is a positive integer and GCD(n, 10) = 1, it can be shown that there always exists a value, k, for which R(k) is divisible by n, and let A(n) be the least such value of k; for example, A(7) = 6 and A(41) = 5. You are given that for all primes, p > 5, that p - 1 is divisible by A(p). For example, when p = 41, A(41) = 5, and 40 is divisible by 5. However, there are rare composite values for which this is also true; the first five examples being 91, 259, 451, 481, and 703. Find the sum of the first twenty-five composite values of n for which GCD(n, 10) = 1 and n - 1 is divisible by
131	Prime cube partnership	A(n). There are some prime values, p, for which there exists a positive integer, n, such that the expression n3 + n2p is a perfect cube. For example, when p = 19, 83 + 82×19 = 123. What is perhaps most surprising is that for each prime with this property the value of n is unique, and there are only four such primes below one-hundred. How many primes below one million have this remarkable property?

132	Large repunit factors	A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k. For example, R(10) = 11111111111 = 11×41×271×9091, and the sum of these prime factors is 9414. Find the sum of the first forty prime factors of R(109).
133	Repunit nonfactors	A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111. Let us consider repunits of the form R(10n). Although R(10), R(100), or R(1000) are not divisible by 17, R(10000) is divisible by 17. Yet there is no value of n for which R(10n) will divide by 19. In fact, it is remarkable that 11, 17, 41, and 73 are the only four primes below one-hundred that can be a factor of R(10n). Find the sum of all the primes below one-hundred thousand that will never be a factor of R(10n).
134	Prime pair connection	Consider the consecutive primes p1 = 19 and p2 = 23. It can be verified that 1219 is the smallest number such that the last digits are formed by p1 whilst also being divisible by p2. In fact, with the exception of p1 = 3 and p2 = 5, for every pair of consecutive primes, p2 > p1, there exist values of n for which the last digits are formed by p1 and n is divisible by p2. Let S be the smallest of these values of n. Find ∑ S for every pair of consecutive primes with 5 ≤ p1 ≤ 1000000.

135	Same differences	Given the positive integers, x, y, and z, are consecutive terms of an arithmetic progression, the least value of the positive integer, n, for which the equation, x2 - y2 - z2 = n, has exactly two solutions is n = 27: 342 - 272 - 202 = 122 - 92 - 62 = 27 It turns out that n = 1155 is the least value which has exactly ten solutions. How many values of n less than one million have exactly ten distinct solutions?
136	Singleton difference	The positive integers, x, y, and z, are consecutive terms of an arithmetic progression. Given that n is a positive integer, the equation, x2 - y2 - z2 = n, has exactly one solution when n = 20: 132 - 102 - 72 = 20 In fact there are twenty-five values of n below one hundred for which the equation has a unique solution. How many values of n less than fifty million have exactly one solution?

		Consider the infinite polynomial series
		A
	F	
		(x)=x
		F
		1
		+
		x
		2
		F
		2
		+
137	Fibonacci golden nuggets	x
		3
		F
		3
		+
		А
		, where
		F
		k
		F
		is the
		k
		k

		Consider the isosceles triangle with base length,
		b=16
		b
		, and legs,
		L=17
		L
		By using the Pythagorean theorem it
		can be seen that the height of the
		triangle,
		h=
138	Special isosceles triangles	17
		2
		-
		8
		2
		-
		-
		-
		-
		-
		-
		-
		√

139	Pythagorean tiles	Let (a, b, c) represent the three sides of a right angle triangle with integral length sides. It is possible to place four such triangles together to form a square with length c. For example, (3, 4, 5) triangles can be placed together to form a 5 by 5 square with a 1 by 1 hole in the middle and it can be seen that the 5 by 5 square can be tiled with twenty-five 1 by 1 squares. However, if (5, 12, 13) triangles were used then the hole would measure 7 by 7 and these could not be used to tile the 13 by 13 square. Given that the perimeter of the right triangle is less than one-hundred million, how many Pythagorean triangles would allow such a tiling to take place?

		Consider the infinite polynomial series
		Α
		G
		(x)=x
		G
		1
		+
		х
		2
		G
		2
		+
140	Modified Fibonacci golden nuggets	х
		3
		G
		3
		+
		Α
		, where
		G
		k
		G
		is the
		k
		k

141	ing progressive numbers, n, which are al	A positive integer, n, is divided by d and the quotient and remainder are q and r respectively. In addition d, q, and r are consecutive positive integer terms in a geometric sequence, but not necessarily in that order. For example, 58 divided by 6 has quotient 9 and remainder 4. It can also be seen that 4, 6, 9 are consecutive terms in a geometric sequence (common ratio 3/2). We will call such numbers, n, progressive. Some progressive numbers, such as 9 and 10404 = 1022, happen to also be perfect squares. The sum of all progressive perfect squares below one hundred thousand is 124657. Find the sum of all progressive perfect squares below one trillion (1012).
142	Perfect Square Collection	Find the smallest x + y + z with integers x > y > z > 0 such that x + y, x - y, x + z, x - z, y + z, y - z are all perfect squares.

		Lat ABC has a triangle with all interior
		Let ABC be a triangle with all interior
		angles being less than 120 degrees. Let
		X be any point inside the triangle and
		let $XA = p$, $XC = q$, and $XB = r$.
		Fermat challenged Torricelli to find the
		position of X such that $p + q + r$ was
		minimised.
		Torricelli was able to prove that if
		equilateral triangles AOB, BNC and
		AMC are constructed on each side of
		triangle ABC, the circumscribed circles
		of AOB, BNC, and AMC will intersect at
143	vestigating the Torricelli point of a triang	a single point, T, inside the triangle.
		Moreover he proved that T, called the
		Torricelli/Fermat point, minimises p +
		q + r. Even more remarkable, it can be
		shown that when the sum is
		minimised, $AN = BM = CO = p + q + r$
		and that AN, BM and CO also intersect
		at T.
		If the sum is minimised and a, b, c, p, q
		and r are all positive integers we shall
		call triangle ABC a Torricelli triangle.
		For example, a = 399, b = 455, c = 511
		is an example of a Torricelli triangle,
\		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

In laser physics, a "white cell" is a mirror system that acts as a delay line for the laser beam. The beam enters the cell, bounces around on the mirrors, and eventually works its way back out. The specific white cell we will be considering is an ellipse with the equation 4x2 + y2 = 100 The section corresponding to −0.01 ≤ x ≤ +0.01 at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the normal line at the point of incidence.
for the laser beam. The beam enters the cell, bounces around on the mirrors, and eventually works its way back out. The specific white cell we will be considering is an ellipse with the equation 4x2 + y2 = 100 The section corresponding to −0.01 ≤ x ≤ +0.01 at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
the cell, bounces around on the mirrors, and eventually works its way back out. The specific white cell we will be considering is an ellipse with the equation 4x2 + y2 = 100 The section corresponding to −0.01 ≤ x ≤ +0.01 at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
mirrors, and eventually works its way back out. The specific white cell we will be considering is an ellipse with the equation 4x2 + y2 = 100 The section corresponding to −0.01 ≤ x ≤ +0.01 at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
back out. The specific white cell we will be considering is an ellipse with the equation 4x2 + y2 = 100 The section corresponding to −0.01 ≤ x ≤ +0.01 at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
The specific white cell we will be considering is an ellipse with the equation $4x2 + y2 = 100$ The section corresponding to $-0.01 \le x \le +0.01$ at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point $(0.0,10.1)$ just outside the white cell, and the beam first impacts the mirror at $(1.4,-9.6)$. Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
considering is an ellipse with the equation $4x2 + y2 = 100$ The section corresponding to $-0.01 \le x \le +0.01$ at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point $(0.0,10.1)$ just outside the white cell, and the beam first impacts the mirror at $(1.4,-9.6)$. Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
equation $4x2 + y2 = 100$ The section corresponding to $-0.01 \le x \le +0.01$ at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point $(0.0,10.1)$ just outside the white cell, and the beam first impacts the mirror at $(1.4,-9.6)$. Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
The section corresponding to $-0.01 \le x \le +0.01$ at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point $(0.0,10.1)$ just outside the white cell, and the beam first impacts the mirror at $(1.4,-9.6)$. Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
x \leq +0.01 at the top is missing, allowing the light to enter and exit through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflected beams make the same angle with the
allowing the light to enter and exit through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
stigating multiple reflections of a laser b through the hole. The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
The light beam in this problem starts at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
at the point (0.0,10.1) just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
white cell, and the beam first impacts the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
the mirror at (1.4,-9.6). Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
usual law of reflection "angle of incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
incidence equals angle of reflection." That is, both the incident and reflected beams make the same angle with the
That is, both the incident and reflected beams make the same angle with the
beams make the same angle with the
In the figure on the left, the red line
m and night on the length of the
Some positive integers n have the
property that the sum [n + reverse(n)]
consists entirely of odd (decimal)
digits. For instance, 36 + 63 = 99 and
409 + 904 = 1313. We will call such
numbers reversible; so 36, 63, 409, and y reversible numbers are there below or
904 are reversible. Leading zeroes are
not allowed in either n or reverse(n).
There are 120 reversible numbers
below one-thousand.
How many reversible numbers are
1
there below one-billion (109)?

146	Investigating a Prime Pattern	The smallest positive integer n for which the numbers n2+1, n2+3, n2+7, n2+9, n2+13, and n2+27 are consecutive primes is 10. The sum of all such integers n below one-million is 1242490. What is the sum of all such integers n below 150 million?
147	Rectangles in cross-hatched grids	In a 3x2 cross-hatched grid, a total of 37 different rectangles could be situated within that grid as indicated in the sketch. There are 5 grids smaller than 3x2, vertical and horizontal dimensions being important, i.e. 1x1, 2x1, 3x1, 1x2 and 2x2. If each of them is cross-hatched, the following number of different rectangles could be situated within those smaller grids: 1x1 1 2x1 4 3x1 8 1x2 4 2x2 18 Adding those to the 37 of the 3x2 grid, a total of 72 different rectangles could be situated within 3x2 and smaller grids. How many different rectangles could be situated within 47x43 and smaller grids?

148	Exploring Pascal's triangle	We can easily verify that none of the entries in the first seven rows of Pascal's triangle are divisible by 7: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		not divisible by 7 in the first one billion (109) rows of Pascal's triangle.

-	T	
		Looking at the table below, it is easy to
		verify that the maximum possible sum
		of adjacent numbers in any direction
		(horizontal, vertical, diagonal or anti-
		diagonal) is 16 (= 8 + 7 + 1).
		-2 5 3 2
		9 –6 5 1
		3 2 7 3
		-18-48
		Now, let us repeat the search, but on a
		much larger scale:
		First, generate four million pseudo-
149	arching for a maximum-sum subsequen	random numbers using a specific form
		of what is known as a "Lagged
		Fibonacci Generator":
		For $1 \le k \le 55$, $sk = [100003 -$
		200003k + 300007k3] (modulo
		1000000) – 500000.
		For $56 \le k \le 4000000$, $sk = [sk-24 +$
		sk-55 + 1000000] (modulo 1000000)
		– 500000.
		Thus, $s10 = -393027$ and $s100 =$
		86613.
		The terms of s are then arranged in a
		2000×2000 table, using the first 2000

		In a triangular array of positive and
		In a triangular array of positive and
		negative integers, we wish to find a
		sub-triangle such that the sum of the
		numbers it contains is the smallest
		possible.
		In the example below, it can be easily
		verified that the marked triangle
		satisfies this condition having a sum of
		-42.
		We wish to make such a triangular
		array with one thousand rows, so we
		generate 500500 pseudo-random
150	iangular array for a sub-triangle having i	numbers sk in the range ±219, using a
		type of random number generator
		(known as a Linear Congruential
		Generator) as follows:
		t := 0
		for k = 1 up to k = 500500:
		t := (615949*t + 797807) modulo
		220
		sk := t-219
		Thus: $s1 = 273519$, $s2 = -153582$, $s3 = -153582$
		450905 etc
		Our triangular array is then formed
		using the pseudo-random numbers

A printing shop runs 16 batches (jobs) every week and each batch requires a sheet of special colour-proofing paper of size A5. Every Monday morning, the foreman opens a new envelope, containing a large sheet of the special paper with size A1. He proceeds to cut it in half, thus getting two sheets of size A2. Then he cuts one of them in half to get two sheets of size A3 and so on until he 151 obtains the A5-size sheet needed for ets of standard sizes: an expected-value the first batch of the week. All the unused sheets are placed back in the envelope. At the beginning of each subsequent batch, he takes from the envelope one sheet of paper at random. If it is of size A5, he uses it. If it is larger, he repeats the 'cut-in-half' procedure until he has what he needs and any remaining sheets are always placed back in the envelope. Excluding the first and last batch of the

-	-	
		There are several ways to write the
		number 1/2 as a sum of inverse
		squares using distinct integers.
		For instance, the numbers
		{2,3,4,5,7,12,15,20,28,35} can be used:
		1
		2
		=
		1
		2
		2
		+
152	Writing 1/2 as a sum of inverse squares	1
		3
		2
		+
		1
		4
		2
		+
		1
		5
		2
		+
		1

		As we all know the equation x2=-1 has
		no solutions for real x.
		If we however introduce the imaginary
		number i this equation has two
		solutions: x=i and x=-i.
		If we go a step further the equation (x-
		3)2=-4 has two complex solutions:
		x=3+2i and x=3-2i.
		x=3+2i and x=3-2i are called each
		others' complex conjugate.
		Numbers of the form a+bi are called
		complex numbers.
153	Investigating Gaussian Integers	In general a+bi and a-bi are each
		other's complex conjugate.
		A Gaussian Integer is a complex
		number a+bi such that both a and b
		are integers.
		The regular integers are also Gaussian
		integers (with b=0).
		To distinguish them from Gaussian
		integers with $b \neq 0$ we call such
		integers "rational integers."
		A Gaussian integer is called a divisor of
		a rational integer n if the result is also
		a Gaussian integer.

		A triangular pyramid is constructed
		using spherical balls so that each ball
		rests on exactly three balls of the next
		lower level.
		Then, we calculate the number of
		paths leading from the apex to each
		position:
		A path starts at the apex and
		progresses downwards to any of the
		three spheres directly below the
		current position.
154	Exploring Pascal's pyramid	Consequently, the number of paths to
		reach a certain position is the sum of
		the numbers immediately above it
		(depending on the position, there are
		up to three numbers above it).
		The result is Pascal's pyramid and the
		numbers at each level n are the
		coefficients of the trinomial expansion
		(x + y + z)n.
		How many coefficients in the
		expansion of $(x + y + z)200000$ are
		multiples of 1012?

		An electric circuit uses exclusively
		identical capacitors of the same value
		C
		The capacitors can be connected in
		series or in parallel to form sub-units,
		which can then be connected in series
		or in parallel with other capacitors or
		other sub-units to form larger sub-
		units, and so on up to a final circuit.
		Using this simple procedure and up to
		n identical capacitors, we can make
		circuits having a range of different
155	Counting Capacitor Circuits	total capacitances. For example, using
		up to n=3 capacitors of 60 F each, we
		can obtain the following 7 distinct total
		capacitance values:
		If we denote by D(n) the number of
		distinct total capacitance values we can
		obtain when using up to n equal-
		valued capacitors and the simple
		procedure described above, we have:
		D(1)=1, D(2)=3, D(3)=7
		Find D(18).
		Reminder : When connecting
		capacitors C1, C2 etc in parallel, the
		1 11 11 11 11 11 11 11 11 11 11 11 11 1

		Starting from zero the natural numbers
		are written down in base 10 like this:
		0 1 2 3 4 5 6 7 8 9 10 11 12
		Consider the digit d=1. After we write
		down each number n, we will update
		the number of ones that have occurred
		and call this number f(n,1). The first
		values for f(n,1), then, are as follows:
		n f(n,1)
		0 0
		1 1
		2 1
156	Counting Digits	3 1
		4 1
		5 1
		6 1
		7 1
		8 1
		9 1
		10 2
		11 4
		12 5
		Note that f(n,1) never equals 3.
		So the first two solutions of the
		equation $f(n,1)=n$ are $n=0$ and $n=1$.

		Consider the diophantine equation
		1/a+1/b= p/10n with a, b, p, n positive
		integers and $a \le b$.
		For n=1 this equation has 20 solutions
		that are listed below:
		1/1+1/1=20/10 1/1+1/2=15/10
		1/1+1/5=12/10 1/1+1/10=11/10
		1/2+1/2=10/10
		1/2+1/5=7/10 1/2+1/10=6/10
157	ng the diophantine equation 1/a+1/b= p	1/3+1/6=5/10 1/3+1/15=4/10
		1/4+1/4=5/10
		1/4+1/20=3/10 1/5+1/5=4/10
		1/5+1/10=3/10 1/6+1/30=2/10
		1/10+1/10=2/10
		1/11+1/110=1/10 1/12+1/60=1/10
		1/14+1/35=1/10 1/15+1/30=1/10
		1/20+1/20=1/10
		How many solutions has this equation
		for 1 ≤ n ≤ 9?

1	
	Taking three different letters from the
	26 letters of the alphabet, character
	strings of length three can be formed.
	Examples are 'abc', 'hat' and 'zyx'.
	When we study these three examples
	we see that for 'abc' two characters
	come lexicographically after its
	neighbour to the left.
	For 'hat' there is exactly one character
	that comes lexicographically after its
	neighbour to the left. For 'zyx' there
	are zero characters that come
ly one character comes lexicographically	lexicographically after its neighbour to
	the left.
	In all there are 10400 strings of length
	3 for which exactly one character
	comes lexicographically after its
	neighbour to the left.
	We now consider strings of $n \le 26$
	different characters from the alphabet.
	For every n, p(n) is the number of
	strings of length n for which exactly
	one character comes lexicographically
	after its neighbour to the left.
	What is the maximum value of $p(n)$?
	ly one character comes lexicographically

		A composite number can be factored many different ways. For instance, not including multiplication by one, 24 can be factored in 7 distinct ways: 24 = 2x2x2x3 24 = 2x3x4
		24 = 2x2x6 24 = 4x6
		24 = 3x8
		24 = 2x12
		24 = 24
		Recall that the digital root of a
159	Digital root sums of factorisations	number, in base 10, is found by adding
		together the digits of that number, and
		repeating that process until a number
		is arrived at that is less than 10. Thus
		the digital root of 467 is 8.
		We shall call a Digital Root Sum (DRS)
		the sum of the digital roots of the
		individual factors of our number.
		The chart below demonstrates all of
		the DRS values for 24.
		Factorisation Digital Root Sum
		2x2x2x3
		9 For any N, let f(N) be the last five digits
		before the trailing zeroes in N!.
160	Factorial trailing digits	For example,
		9! = 362880 so f(9)=36288
		10! = 3628800 so f(10)=36288
		20! = 2432902008176640000 so
		f(20)=17664
		Find f(1,000,000,000,000)

		
		A triomino is a shape consisting of
		three squares joined via the edges.
		There are two basic forms:
		If all possible orientations are taken
		into account there are six:
		Any n by m grid for which nxm is
		divisible by 3 can be tiled with
161	Triominoes	triominoes.
		If we consider tilings that can be
		obtained by reflection or rotation from
		another tiling as different there are 41
		ways a 2 by 9 grid can be tiled with
		triominoes:
		In how many ways can a 9 by 12 grid
		be tiled in this way by triominoes?
		In the hexadecimal number system
		numbers are represented using 16
		different digits:
		0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
		The hexadecimal number AF when
		written in the decimal number system
	Hexadecimal numbers	equals 10x16+15=175.
		In the 3-digit hexadecimal numbers
		10A, 1A0, A10, and A01 the digits 0,1
		and A are all present.
		Like numbers written in base ten we
		write hexadecimal numbers without
162		leading zeroes.
		How many hexadecimal numbers
		containing at most sixteen
		hexadecimal digits exist with all of the
		digits 0,1, and A present at least once?
		Give your answer as a hexadecimal
		number.
		(A,B,C,D,E and F in upper case, without
		any leading or trailing code that marks
		the number as hexadecimal and
		without leading zeroes , e.g. 1A3F and
		not: 1a3f and not 0x1a3f and not
		\$1A3F and not #1A3F and not
]		y imbi and not # imbr and not

1		
		Consider an equilateral triangle in
		which straight lines are drawn from
		each vertex to the middle of the
		opposite side, such as in the size 1
		triangle in the sketch below.
		Sixteen triangles of either different
		shape or size or orientation or location
		can now be observed in that triangle.
		Using size 1 triangles as building
		blocks, larger triangles can be formed,
		such as the size 2 triangle in the above
		sketch. One-hundred and four
163	Cross-hatched triangles	triangles of either different shape or
		size or orientation or location can now
		be observed in that size 2 triangle.
		It can be observed that the size 2
		triangle contains 4 size 1 triangle
		building blocks. A size 3 triangle would
		contain 9 size 1 triangle building
		blocks and a size n triangle would thus
		contain n2 size 1 triangle building
		blocks.
		If we denote T(n) as the number of
		triangles present in a triangle of size n,
		then
164	three consecutive digits have a sum gre	How many 20 digit numbers n (without
		any leading zero) exist such that no
		three consecutive digits of n have a
		sum greater than 9?
		=

I		A composition or investigation and the state
		A segment is uniquely defined by its
		two endpoints.
		By considering two line segments in
		plane geometry there are three
		possibilities:
		the segments have zero points, one
		point, or infinitely many points in
		common.
		Moreover when two segments have
		exactly one point in common it might
		be the case that that common point is
		an endpoint of either one of the
165	Intersections	segments or of both. If a common
		point of two segments is not an
		endpoint of either of the segments it is
		an interior point of both segments.
		We will call a common point T of two
		segments L1 and L2 a true intersection
		point of L1 and L2 if T is the only
		common point of L1 and L2 and T is an
		interior point of both segments.
		Consider the three segments L1, L2,
		and L3:
		L1: (27, 44) to (12, 32)
		L2: (46, 53) to (17, 62)
		A 4x4 grid is filled with digits d, $0 \le d$
		≤ 9.
		It can be seen that in the grid
		6330
		5 0 4 3
		0714
166	Cuica Cua sa	1 2 4 5
166	Criss Cross	the sum of each row and each column
		has the value 12. Moreover the sum of
		each diagonal is also 12.
		In how many ways can you fill a 4x4
		grid with the digits d, $0 \le d \le 9$ so that
		each row, each column, and both
		diagonals have the same sum?

167	Investigating Ulam sequences	For two positive integers a and b, the Ulam sequence U(a,b) is defined by U(a,b)1 = a, U(a,b)2 = b and for $k > 2$, U(a,b)k is the smallest integer greater than U(a,b)(k-1) which can be written in exactly one way as the sum of two distinct previous members of U(a,b). For example, the sequence U(1,2) begins with 1, 2, 3 = 1 + 2, 4 = 1 + 3, 6 = 2 + 4, 8 = 2 + 6, 11 = 3 + 8; 5 does not belong to it because $5 = 1 + 4 = 2 + 3$ has two representations as the sum of two previous members, likewise $7 = 1 + 6 = 3 + 4$. Find $\sum U(2,2n+1)k$ for $2 \le n \le 10$, where $k = 1011$.
168	Number Rotations	Consider the number 142857. We can right-rotate this number by moving the last digit (7) to the front of it, giving us 714285. It can be verified that 714285=5×142857. This demonstrates an unusual property of 142857: it is a divisor of its right-rotation. Find the last 5 digits of the sum of all integers n, 10 < n < 10100, that have this property.

<u> </u>		1
		Define $f(0)=1$ and $f(n)$ to be the
		number of different ways n can be
		expressed as a sum of integer powers
		of 2 using each power no more than
		twice.
		For example, $f(10)=5$ since there are
169	lifferent ways a number can be expresse	
		1 + 1 + 8
		1 + 1 + 4 + 4
		1 + 1 + 2 + 2 + 4
		2 + 4 + 4
		2 + 8
		What is f(1025)?
		Take the number 6 and multiply it by
		each of 1273 and 9854:
		6 × 1273 = 7638
	9 pandigital that can be formed by con	6 × 9854 = 59124
		By concatenating these products we
		get the 1 to 9 pandigital 763859124.
		We will call 763859124 the
		"concatenated product of 6 and
		(1273,9854)". Notice too, that the
170		concatenation of the input numbers,
		612739854, is also 1 to 9 pandigital.
		The same can be done for 0 to 9
		pandigital numbers.
		What is the largest 0 to 9 pandigital 10-
		digit concatenated product of an
		integer with two or more other
		integers, such that the concatenation
		of the input numbers is also a 0 to 9
		pandigital 10-digit number?

_	Ţ	1
171	for which the sum of the squares of the	For a positive integer n, let f(n) be the sum of the squares of the digits (in base 10) of n, e.g. f(3) = 32 = 9, f(25) = 22 + 52 = 4 + 25 = 29, f(442) = 42 + 42 + 22 = 16 + 16 + 4 = 36 Find the last nine digits of the sum of all n, 0 < n < 1020, such that f(n) is a perfect square.
172	estigating numbers with few repeated di	How many 18-digit numbers n (without leading zeros) are there such that no digit occurs more than three times in n?
173	iles how many different "hollow" square	We shall define a square lamina to be a square outline with a square "hole" so that the shape possesses vertical and horizontal symmetry. For example, using exactly thirty-two square tiles we can form two different square laminae: With one-hundred tiles, and not necessarily using all of the tiles at one time, it is possible to form forty-one different square laminae. Using up to one million tiles how many different square laminae can be formed?

174	/" square laminae that can form one, two	We shall define a square lamina to be a square outline with a square "hole" so that the shape possesses vertical and horizontal symmetry. Given eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1 hole in the middle. However, using thirty-two tiles it is possible to form two distinct laminae. If t represents the number of tiles used, we shall say that t = 8 is type L(1) and t = 32 is type L(2). Let N(n) be the number of t ≤ 1000000 such that t is type L(n); for example, N(15) = 832. What is ∑N(n) for 1 ≤ n ≤ 10?
		Wind(13 Z 14(11) 101 1 2 11 2 10;

		Dafina (10) 4 and (1) and all
		Define $f(0)=1$ and $f(n)$ to be the
		number of ways to write n as a sum of
		powers of 2 where no power occurs
		more than twice.
		For example, f(10)=5 since there are
		five different ways to express 10:
		10 = 8+2 = 8+1+1 = 4+4+2 =
		4+2+2+1+1 = 4+4+1+1
		It can be shown that for every fraction
		p/q ($p>0$, $q>0$) there exists at least one
175	r of different ways a number can be exp	integer n such that
173	or different ways a number can be expi	f(n)/f(n-1)=p/q.
		1(11)/1(11-1) – p/ q.
		For instance, the smallest n for which
		f(n)/f(n-1)=13/17 is 241.
		The binary expansion of 241 is
		11110001.
		Reading this binary number from the
		·
		most significant bit to the least
		significant bit there are 4 one's, 3
		zeroes and 1 one. We shall call the
		string 4,3,1 the Shortened Binary
		Expansion of 241.
		The four right-angled triangles with
		sides (9,12,15), (12,16,20), (5,12,13) and
		(12,35,37) all have one of the shorter
176		sides (catheti) equal to 12. It can be
		shown that no other integer sided
	ght-angled triangles that share a cathet	right-angled triangle exists with one of
		the catheti equal to 12.
		Find the smallest integer that can be
		the length of a cathetus of exactly
		47547 different integer sided right-
		angled triangles.

177	Integer angled Quadrilaterals	Let ABCD be a convex quadrilateral, with diagonals AC and BD. At each vertex the diagonal makes an angle with each of the two sides, creating eight corner angles. For example, at vertex A, the two angles are CAD, CAB. We call such a quadrilateral for which all eight corner angles have integer values when measured in degrees an "integer angled quadrilateral". An example of an integer angled quadrilateral is a square, where all eight corner angles are 45°. Another example is given by DAC = 20°, BAC = 60°, ABD = 50°, CBD = 30°, BCA = 40°, DCA = 30°, CDB = 80°, ADB = 50°. What is the total number of nonsimilar integer angled quadrilaterals? Note: In your calculations you may assume that a calculated angle is integral if it is within a tolerance of 10-9 of an integer value.
178	Step Numbers	Consider the number 45656. It can be seen that each pair of consecutive digits of 45656 has a difference of one. A number for which every pair of consecutive digits has a difference of one is called a step number. A pandigital number contains every decimal digit from 0 to 9 at least once. How many pandigital step numbers less than 1040 are there?

179	Consecutive positive divisors	Find the number of integers 1 < n < 107, for which n and n + 1 have the same number of positive divisors. For example, 14 has the positive divisors 1, 2, 7, 14 while 15 has 1, 3, 5, 15.
180	tional zeros of a function of three variab	For any integer n, consider the three functions $f1, n(x,y,z) = xn+1 + yn+1 - zn+1$ $f2, n(x,y,z) = (xy + yz + zx)*(xn-1 + yn-1 - zn-1)$ $f3, n(x,y,z) = xyz*(xn-2 + yn-2 - zn-2)$ and their combination $fn(x,y,z) = f1, n(x,y,z) + f2, n(x,y,z) - f3, n(x,y,z)$ We call (x,y,z) a golden triple of order k if x , y , and z are all rational numbers of the form a / b with $0 < a < b \le k$ and there is (at least) one integer n , so that $fn(x,y,z) = 0$. Let $s(x,y,z) = x + y + z$. Let $t = u / v$ be the sum of all distinct $s(x,y,z)$ for all golden triples (x,y,z) of order 35. All the $s(x,y,z)$ and t must be in reduced form. Find $u + v$.
181	many ways objects of two different colo	Having three black objects B and one white object W they can be grouped in 7 ways like this: (BBBW) (B,BBW) (B,B,BW) (B,B,B,W) (B,BB,W) (BBB,W) (BB,BW) In how many ways can sixty black objects B and forty white objects W be thus grouped?

		The RSA encryption is based on the
		following procedure:
		Generate two distinct primes p and q.
		Compute n=pq and ϕ =(p-1)(q-1).
		Find an integer e, 1 <e<φ, such="" td="" that<=""></e<φ,>
		gcd(e,φ)=1.
		A message in this system is a number
		in the interval [0,n-1].
		A text to be encrypted is then
		somehow converted to messages
		(numbers in the interval [0,n-1]).
		To encrypt the text, for each message,
182	RSA encryption	m, c=me mod n is calculated.
		To decrypt the text, the following
		procedure is needed: calculate d such
		that ed=1 mod φ, then for each
		encrypted message, c, calculate m=cd
		mod n.
		There exist values of e and m such that
		me mod n=m.
		We call messages m for which me mod
		n=m unconcealed messages.
		An issue when choosing e is that there
		should not be too many unconcealed
		messages.

		1
		Let N be a positive integer and let N
		be split into k equal parts, $r = N/k$, so
		that $N = r + r + + r$.
		Let P be the product of these parts, P
		$= r \times r \times \times r = rk.$
		For example, if 11 is split into five
		equal parts, 11 = 2.2 + 2.2 + 2.2 + 2.2
		+ 2.2, then P = 2.25 = 51.53632.
		Let M(N) = Pmax for a given value of
		N.
		It turns out that the maximum for $N =$
		11 is found by splitting eleven into
183	Maximum product of parts	four equal parts which leads to Pmax =
		(11/4)4; that is, M(11) = 14641/256 =
		57.19140625, which is a terminating
		decimal.
		However, for $N = 8$ the maximum is
		achieved by splitting it into three equal
		parts, so M(8) = 512/27, which is a non-
		terminating decimal.
		Let $D(N) = N$ if $M(N)$ is a non-
		terminating decimal and $D(N) = -N$ if
		M(N) is a terminating decimal.
		For example, $\sum D(N)$ for $5 \le N \le 100$ is
		2438.

		Consider the set Ir of points (x,y) with
		integer co-ordinates in the interior of
		the circle with radius r, centered at the
		origin, i.e. x2 + y2 < r2.
		For a radius of 2, I2 contains the nine
		points (0,0), (1,0), (1,1), (0,1), (-1,1), (-
		1,0), (-1,-1), (0,-1) and (1,-1). There are
		eight triangles having all three vertices
		in I2 which contain the origin in the
184	Triangles containing the origin	interior. Two of them are shown below,
		the others are obtained from these by
		rotation.
		For a radius of 3, there are 360
		triangles containing the origin in the
		interior and having all vertices in I3
		and for I5 the number is 10600.
		How many triangles are there
		containing the origin in the interior
		and having all three vertices in I105?

	I=
	The game Number Mind is a variant of
	the well known game Master Mind.
	Instead of coloured pegs, you have to
	guess a secret sequence of digits. After
	each guess you're only told in how
	many places you've guessed the
	correct digit. So, if the sequence was
	1234 and you guessed 2036, you'd be
	told that you have one correct digit;
	however, you would NOT be told that
	you also have another digit in the
	wrong place.
Number Mind	For instance, given the following
	guesses for a 5-digit secret sequence,
	90342 ;2 correct
	70794 ;0 correct
	39458 ;2 correct
	34109 ;1 correct
	51545 ;2 correct
	12531 ;1 correct
	The correct sequence 39542 is unique.
	Based on the following guesses,
	5616185650518293 ;2 correct
	3847439647293047 ;1 correct
	5855462940810587 ;3 correct
	Number Mind

		T 11 11 11 11 11 11 11 11 11 11 11 11 11
		Here are the records from a busy
		telephone system with one million
		users:
		RecNr Caller Called
		1 200007 100053
		2 600183 500439
		3 600863 701497
		The telephone number of the caller
		and the called number in record n are
		Caller(n) = $S2n-1$ and $Called(n) = S2n$
		where S1,2,3, come from the "Lagged
186	Connectedness of a network	Fibonacci Generator":
		For 1 ≤ k ≤ 55, Sk = [100003 -
		200003k + 300007k3] (modulo
		1000000)
		For $56 \le k$, $5k = [5k-24 + 5k-55]$
		(modulo 1000000)
		If $Caller(n) = Called(n)$ then the user is
		assumed to have misdialled and the
		call fails; otherwise the call is
		successful.
		From the start of the records, we say
		that any pair of users X and Y are
		friends if X calls Y or vice-versa.
		mends if A calls 1 of vice-versa.
	Semiprimes	A composite is a number containing at
		least two prime factors. For example,
		$15 = 3 \times 5$; $9 = 3 \times 3$; $12 = 2 \times 2 \times 3$.
187		There are ten composites below thirty
		containing precisely two, not
		necessarily distinct, prime factors: 4, 6,
		9, 10, 14, 15, 21, 22, 25, 26.
		How many composite integers, n <
		108, have precisely two, not necessarily
		distinct, prime factors?
		.,

188	The hyperexponentiation of a number	The hyperexponentiation or tetration of a number a by a positive integer b, denoted by att or ba, is recursively defined by: att = a, att(k+1) = a(att). Thus we have e.g. 3tt = 33 = 27, hence 3tt = 327 = 7625597484987 and 3tt is roughly 103.6383346400240996*10^12. Find the last 8 digits of 1777tt1855.
189	Tri-colouring a triangular grid	Consider the following configuration of 64 triangles: We wish to colour the interior of each triangle with one of three colours: red, green or blue, so that no two neighbouring triangles have the same colour. Such a colouring shall be called valid. Here, two triangles are said to be neighbouring if they share an edge. Note: if they only share a vertex, then they are not neighbours. For example, here is a valid colouring of the above grid: A colouring C' which is obtained from a colouring C by rotation or reflection is considered distinct from C unless the two are identical. How many distinct valid colourings are there for the above configuration?

190	Maximising a weighted product	Let $Sm = (x1, x2,, xm)$ be the m-tuple of positive real numbers with $x1 + x2 + + xm = m$ for which $Pm = x1 * x22 * * xmm$ is maximised. For example, it can be verified that $[P10] = 4112$ ([] is the integer part function). Find $\Sigma[Pm]$ for $2 \le m \le 15$.
191	Prize Strings	A particular school offers cash rewards to children with good attendance and punctuality. If they are absent for three consecutive days or late on more than one occasion then they forfeit their prize. During an n-day period a trinary string is formed for each child consisting of L's (late), O's (on time), and A's (absent). Although there are eighty-one trinary strings for a 4-day period that can be formed, exactly forty-three strings would lead to a prize: OOOO OOOA OOOL OOAO OOAA OOAL OOLO OOLA OAOO OAOA OAOL OAAO OAAL OALO OALA OLOO OLOA OLAO OLAA AOOO AOOA AOOL AOAO AOAA AOAL AOLO AOLA AAOO AAOA AAOL AALO AALA ALOO ALOA ALAO ALAA LOOO LOOA LOAO LOAA LAOO LAOA LAAO How many "prize" strings exist over a 30-day period?

192	Best Approximations	Let x x be a real number. A best approximation to x x for the denominator bound d d is a rational number r s r in reduced form, with s≤d s , such that any rational number which is closer to x x than r s
193	Squarefree Numbers	A positive integer n is called squarefree, if no square of a prime divides n, thus 1, 2, 3, 5, 6, 7, 10, 11 are squarefree, but not 4, 8, 9, 12. How many squarefree numbers are there below 250?

194	Coloured Configurations	Consider graphs built with the units A: and B: , where the units are glued along the vertical edges as in the graph . A configuration of type (a,b,c) is a graph thus built of a units A and b units B, where the graph's vertices are coloured using up to c colours, so that no two adjacent vertices have the same colour. The compound graph above is an example of a configuration of type (2,2,6), in fact of type (2,2,c) for all c ≥ 4. Let N(a,b,c) be the number of configurations of type (a,b,c). For example, N(1,0,3) = 24, N(0,2,4) = 92928 and N(2,2,3) = 20736. Find the last 8 digits of N(25,75,1984).
195	l circles of triangles with one angle of 60	Let's call an integer sided triangle with exactly one angle of 60 degrees a 60-degree triangle. Let r be the radius of the inscribed circle of such a 60-degree triangle. There are 1234 60-degree triangles for which r ≤ 100. Let T(n) be the number of 60-degree triangles for which r ≤ n, so T(100) = 1234, T(1000) = 22767, and T(10000) = 359912. Find T(1053779).

_		
		Build a triangle from all positive
		integers in the following way:
		1
		2 3
		4 5 6
		7 8 9 10
		11 12 13 14 15
		16 17 18 19 20 21
		22 23 24 25 26 27 28
		29 30 31 32 33 34 35 36
		37 38 39 40 41 42 43 44 45
		46 47 48 49 50 51 52 53 54 55
196	Prime triplets	56 57 58 59 60 61 62 63 64 65 66
		Each positive integer has up to eight
		neighbours in the triangle.
		A set of three primes is called a prime
		triplet if one of the three primes has
		the other two as neighbours in the
		triangle.
		For example, in the second row, the
		prime numbers 2 and 3 are elements
		of some prime triplet.
		If row 8 is considered, it contains two
		primes which are elements of some
		Given is the function f(x) =
		[230.403243784-x2] × 10-9 ([] is the
197		floor-function),
	ng the behaviour of a recursively defined	the sequence un is defined by $u0 = -1$
		and un+1 = f(un).
		Find un + un+1 for $n = 1012$.
		Give your answer with 9 digits after the
		decimal point.

		A best approximation to a real number
		x
		x
		for the denominator bound
		d
		d
		is a rational number
		r
		s
		r
		(in reduced form) with
		s≤d
198	Ambiguous Numbers	s
	-	, so that any rational number
		р
		q
		р
		which is closer to
		х
		х
	than	
	r	
		S
		r
		has

199	Iterative Circle Packing	Three circles of equal radius are placed inside a larger circle such that each pair of circles is tangent to one another and the inner circles do not overlap. There are four uncovered "gaps" which are to be filled iteratively with more tangent circles. At each iteration, a maximally sized circle is placed in each gap, which creates more gaps for the next iteration. After 3 iterations (pictured), there are 108 gaps and the fraction of the area which is not covered by circles is 0.06790342, rounded to eight decimal places. What fraction of the area is not covered by circles after 10 iterations? Give your answer rounded to eight decimal places using the format x.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
200	ne-proof sqube containing the contiguo	We shall define a sqube to be a number of the form, p2q3, where p and q are distinct primes. For example, 200 = 5223 or 120072949 = 232613. The first five squbes are 72, 108, 200, 392, and 500. Interestingly, 200 is also the first number for which you cannot change any single digit to make a prime; we shall call such numbers, prime-proof. The next prime-proof sqube which contains the contiguous sub-string "200" is 1992008. Find the 200th prime-proof sqube containing the contiguous sub-string "200".

· · · · · · · · · · · · · · · · · · ·		
		For any set A of numbers, let sum(A)
		be the sum of the elements of A.
		Consider the set B = {1,3,6,8,10,11}.
		There are 20 subsets of B containing
		three elements, and their sums are:
		sum({1,3,6}) = 10,
		sum({1,3,8}) = 12,
		sum({1,3,10}) = 14,
		sum({1,3,11}) = 15,
		sum({1,6,8}) = 15,
		sum({1,6,10}) = 17,
		sum({1,6,11}) = 18,
201	Subsets with a unique sum	sum({1,8,10}) = 19,
		sum({1,8,11}) = 20,
		sum({1,10,11}) = 22,
		$sum({3,6,8}) = 17,$
		sum({3,6,10}) = 19,
		$sum({3,6,11}) = 20,$
		$sum({3,8,10}) = 21,$
		sum({3,8,11}) = 22,
		sum({3,10,11}) = 24,
		sum({6,8,10}) = 24,
		sum({6,8,11}) = 25,
		sum({6,10,11}) = 27,
		sum({8,10,11}) = 29.

202 Laserbeam	Three mirrors are arranged in the shape of an equilateral triangle, with their reflective surfaces pointing inwards. There is an infinitesimal gap at each vertex of the triangle through which a laser beam may pass. Label the vertices A, B and C. There are 2 ways in which a laser beam may enter vertex C, bounce off 11 surfaces, then exit through the same vertex: one way is shown below; the other is the reverse of that. There are 80840 ways in which a laser beam may enter vertex C, bounce off 1000001 surfaces, then exit through the same vertex. In how many ways can a laser beam enter at vertex C, bounce off 12017639147 surfaces, then exit through the same vertex?
---------------	--

		The binemial coefficients
		The binomial coefficients
		(
		n
		k
)
		(
		can be arranged in triangular form,
		Pascal's triangle, like this:
		1
		1 1
		1 2 1
		1 3 3 1
203	Squarefree Binomial Coefficients	1 4 6 4 1
	·	1 5 10 10 5 1
		1 6 15 20 15 6 1
		1 7 21 35 35 21 7 1
		It can be seen that the first eight rows
		of Pascal's triangle contain twelve
		<u> </u>
		distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10,
		15, 20, 21 and 35.
		A positive integer n is called squarefree
		if no square of a prime divides n. Of
		the twelve distinct numbers in the first
		eight rows of Pascal's triangle, all

204	Generalised Hamming Numbers	A Hamming number is a positive number which has no prime factor larger than 5. So the first few Hamming numbers are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15. There are 1105 Hamming numbers not exceeding 108. We will call a positive number a generalised Hamming number of type n, if it has no prime factor larger than n. Hence the Hamming numbers are the generalised Hamming numbers of type 5. How many generalised Hamming numbers of type 100 are there which don't exceed 109?
205	Dice Game	Peter has nine four-sided (pyramidal) dice, each with faces numbered 1, 2, 3, 4. Colin has six six-sided (cubic) dice, each with faces numbered 1, 2, 3, 4, 5, 6. Peter and Colin roll their dice and compare totals: the highest total wins. The result is a draw if the totals are equal. What is the probability that Pyramidal Pete beats Cubic Colin? Give your answer rounded to seven decimal places in the form 0.abcdefg
206	Concealed Square	Find the unique positive integer whose square has the form 1_2_3_4_5_6_7_8_9_0, where each "_" is a single digit.

207	Integer partition equations	For some positive integers k, there exists an integer partition of the form $4t = 2t + k$, where $4t$, $2t$, and k are all positive integers and t is a real number. The first two such partitions are $41 = 21 + 2$ and $41.5849625 = 21.5849625 + 6$. Partitions where t is also an integer are called perfect. For any $m \ge 1$ let $P(m)$ be the proportion of such partitions that are perfect with $k \le m$. Thus $P(6) = 1/2$. In the following table are listed some values of $P(m)$ $P(5) = 1/1$ $P(10) = 1/2$ $P(15) = 2/3$ $P(20) = 1/2$ $P(25) = 1/2$ $P(30) = 2/5$ $P(180) = 1/4$ $P(185) = 3/13$
208	Robot Walks	A robot moves in a series of one-fifth circular arcs (72°), with a free choice of a clockwise or an anticlockwise arc for each step, but no turning on the spot. One of 70932 possible closed paths of 25 arcs starting northward is Given that the robot starts facing North, how many journeys of 70 arcs in length can it take that return it, after the final arc, to its starting position? (Any arc may be traversed multiple times.)

		
209	Circular Logic	A k-input binary truth table is a map from k input bits (binary digits, 0 [false] or 1 [true]) to 1 output bit. For example, the 2-input binary truth tables for the logical AND and XOR functions are: x y x AND y 0 0 0 1 1 0 1 0 0 1 1 1 x y x XOR y 0 0 0 0 1 1 1 0 1 1 0 0 How many 6-input binary truth tables, τ, satisfy the formula τ(a, b, c, d, e, f) AND τ(b, c, d, e, f, a XOR (b AND c)) = 0 for all 6-bit inputs (a, b, c, d, e, f)?
210	Obtuse Angled Triangles	Consider the set S(r) of points (x,y) with integer coordinates satisfying $ x + y \le r$. Let O be the point (0,0) and C the point (r/4,r/4). Let N(r) be the number of points B in S(r), so that the triangle OBC has an obtuse angle, i.e. the largest angle α satisfies 90° < α <180°. So, for example, N(4)=24 and N(8)=100. What is N(1,000,000,000)?

211	Divisor Square Sum	For a positive integer n, let σ 2(n) be the sum of the squares of its divisors. For example, σ 2(10) = 1 + 4 + 25 + 100 = 130.
		Find the sum of all n, $0 < n < 64,000,000$ such that σ 2(n) is a perfect square.
212	Combined Volume of Cuboids	An axis-aligned cuboid, specified by parameters { (x0,y0,z0), (dx,dy,dz) }, consists of all points (X,Y,Z) such that x0 ≤ X ≤ x0+dx, y0 ≤ Y ≤ y0+dy and z0 ≤ Z ≤ z0+dz. The volume of the cuboid is the product, dx × dy × dz. The combined volume of a collection of cuboids is the volume of their union and will be less than the sum of the individual volumes if any cuboids overlap. Let C1,,C50000 be a collection of 50000 axis-aligned cuboids such that Cn has parameters x0 = S6n-5 modulo 10000 y0 = S6n-4 modulo 10000 z0 = S6n-3 modulo 10000 dx = 1 + (S6n-2 modulo 399) dy = 1 + (S6n-1 modulo 399) dz = 1 + (S6n modulo 399) where S1,,S300000 come from the "Lagged Fibonacci Generator": For 1 ≤ k ≤ 55, Sk = [100003 - 200003k + 300007k3] (modulo 1000000)

213	Flea Circus	A 30×30 grid of squares contains 900 fleas, initially one flea per square. When a bell is rung, each flea jumps to an adjacent square at random (usually 4 possibilities, except for fleas on the edge of the grid or at the corners). What is the expected number of unoccupied squares after 50 rings of the bell? Give your answer rounded to six decimal places.
214	Totient Chains	Let φ be Euler's totient function, i.e. for a natural number n, φ(n) is the number of k, 1 ≤ k ≤ n, for which gcd(k,n) = 1. By iterating φ, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4: 5,4,2,1 7,6,2,1 8,4,2,1 9,6,2,1 10,4,2,1 12,4,2,1 14,6,2,1 18,6,2,1 Only two of these chains start with a prime, their sum is 12. What is the sum of all primes less than 40000000 which generate a chain of length 25?

215	Crack-free Walls	Consider the problem of building a wall out of 2×1 and 3×1 bricks (horizontal×vertical dimensions) such that, for extra strength, the gaps between horizontally-adjacent bricks never line up in consecutive layers, i.e. never form a "running crack". For example, the following 9×3 wall is not acceptable due to the running crack shown in red: There are eight ways of forming a crack-free 9×3 wall, written W(9,3) = 8.
		Calculate W(32,10). Consider numbers $t(n)$ of the form $t(n)$ = 2n2-1 with $n > 1$.
216	ating the primality of numbers of the for	The first such numbers are 7, 17, 31, 49, 71, 97, 127 and 161. It turns out that only $49 = 7*7$ and 161 $= 7*23$ are not prime. For $n \le 10000$ there are 2202 numbers $t(n)$ that are prime. How many numbers $t(n)$ are prime for $n \le 50,000,000$?
217	Balanced Numbers	A positive integer with k (decimal) digits is called balanced if its first [k/2] digits sum to the same value as its last [k/2] digits, where [x], pronounced ceiling of x, is the smallest integer ≥ x, thus [π] = 4 and [5] = 5. So, for example, all palindromes are balanced, as is 13722. Let T(n) be the sum of all balanced numbers less than 10n. Thus: T(1) = 45, T(2) = 540 and T(5) = 334795890. Find T(47) mod 315

		Consider the right angled triangle with sides a=7, b=24 and c=25. The area of this triangle is 84, which is divisible by the perfect numbers 6 and 28. Moreover it is a primitive right angled
218	Perfect right-angled triangles	triangle as gcd(a,b)=1 and gcd(b,c)=1. Also c is a perfect square. We will call a right angled triangle perfect if -it is a primitive right angled triangle
		-its hypotenuse is a perfect square We will call a right angled triangle super-perfect if -it is a perfect right angled triangle and -its area is a multiple of the perfect numbers 6 and 28. How many perfect right-angled
		triangles with c≤1016 exist that are not super-perfect?

		Let A and B be bit strings (sequences of 0's and 1's). If A is equal to the leftmost length(A) bits of B, then A is said to be a prefix of B. For example, 00110 is a prefix of 001101001, but not of 00111 or
219	Skew-cost coding	100110. A prefix-free code of size n is a collection of n distinct bit strings such that no string is a prefix of any other. For example, this is a prefix-free code of size 6: 0000, 0001, 001, 01, 10, 11 Now suppose that it costs one penny to transmit a '0' bit, but four pence to transmit a '1'. Then the total cost of the prefix-free code shown above is 35 pence, which happens to be the cheapest possible for the skewed pricing scheme in question. In short, we write Cost(6) = 35. What is Cost(109) ?

		Let D0 be the two-letter string "Fa".
		For n≥1, derive Dn from Dn-1 by the
		string-rewriting rules:
		"a" → "aRbFR"
		"b" → "LFaLb"
		Thus, D0 = "Fa", D1 = "FaRbFR", D2 =
		"FaRbFRRLFaLbFR", and so on.
		These strings can be interpreted as
		instructions to a computer graphics
		program, with "F" meaning "draw
		forward one unit", "L" meaning "turn
		left 90 degrees", "R" meaning "turn
220	Heighway Dragon	right 90 degrees", and "a" and "b"
		being ignored. The initial position of
		the computer cursor is (0,0), pointing
		up towards (0,1).
		Then Dn is an exotic drawing known as
		the Heighway Dragon of order n. For
		example, D10 is shown below;
		counting each "F" as one step, the
		highlighted spot at (18,16) is the
		position reached after 500 steps.
		What is the position of the cursor after
		1012 steps in D50 ?
		Give your answer in the form x,y with

221	Alexandrian Integers	We shall call a positive integer A an "Alexandrian integer", if there exist integers p, q, r such that: $A = p \cdot q \cdot r \text{and}$ 1 A $=$ 1 p $+$ 1 q $+$ 1 r For example, 630 is an Alexandrian
221	Alexandrian Integers	+ 1 q +
		1 r For example, 630 is an Alexandrian integer (p = 5, q = -7, r = -18). In fact, 630 is the 6th Alexandrian integer, the first 6 Alexandrian integers being: 6, 42, 120, 156, 420 and 630. Find the 150000th Alexandrian integer.
222	Sphere Packing	What is the length of the shortest pipe, of internal radius 50mm, that can fully contain 21 balls of radii 30mm, 31mm,, 50mm? Give your answer in micrometres (10-6 m) rounded to the nearest integer.
223	Almost right-angled triangles I	Let us call an integer sided triangle with sides $a \le b \le c$ barely acute if the sides satisfy $a2 + b2 = c2 + 1$. How many barely acute triangles are there with perimeter $\le 25,000,000$?

224	Almost right-angled triangles II	Let us call an integer sided triangle with sides $a \le b \le c$ barely obtuse if the sides satisfy $a2 + b2 = c2 - 1$. How many barely obtuse triangles are there with perimeter $\le 75,000,000$?
225	Tribonacci non-divisors	The sequence 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201 is defined by T1 = T2 = T3 = 1 and Tn = Tn-1 + Tn-2 + Tn-3. It can be shown that 27 does not divide any terms of this sequence. In fact, 27 is the first odd number with this property. Find the 124th odd number that does not divide any terms of the above sequence.

		The blancmange gumes is the set of
		The blancmange curve is the set of
		points
		(x,y)
		(
		such that
		0≤x≤1
		0
		and
		y=
		Σ
		n=0
		∞
226	A Scoop of Blancmange	s(
	,	2
		n
		x)
		2
		n
		у
		, where
		s(x)
		S
		is the distance from
		x
		X

227	The Chase	"The Chase" is a game played with two dice and an even number of players. The players sit around a table; the game begins with two opposite players having one die each. On each turn, the two players with a die roll it. If a player rolls a 1, he passes the die to his neighbour on the left; if he rolls a 6, he passes the die to his neighbour on the right; otherwise, he keeps the die for the next turn. The game ends when one player has both dice after they have been rolled and passed; that player has then lost. In a game with 100 players, what is the expected number of turns the game lasts?
		Give your answer rounded to ten significant digits.
228	Minkowski Sums	Let Sn be the regular n-sided polygon or shape – whose vertices vk (k = 1,2,,n) have coordinates: xk = cos(2k-1/n ×180°) yk = sin(2k-1/n ×180°) Each Sn is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior. The Minkowski sum, S+T, of two shapes S and T is the result of adding every point in S to every point in T, where point addition is performed coordinate-wise: (u, v) + (x, y) = (u+x, v+y). For example, the sum of S3 and S4 is the six-sided shape shown in pink below: How many sides does S1864 + S1865 + + S1909 have?

		Consider the number 3600. It is very
		special, because
		3600 = 482 + 362
		3600 = 202 + 2×402
		3600 = 302 + 3×302
		3600 = 452 + 7×152
		Similarly, we find that 88201 = 992 +
229	Four Poprocontations using Course	2802 = 2872 + 2×542 = 2832 + 3×522 = 1972 + 7×842.
229	Four Representations using Squares	In 1747, Euler proved which numbers
		are representable as a sum of two
		squares. We are interested in the
		numbers n which admit
		representations of all of the following
		four types:
		n = a12 + b12
		n = a22 + 2 b22
		n = a32 + 3 b32

1		1
		For any two strings of digits, A and B,
		we define FA,B to be the sequence
		(A,B,AB,BAB,ABBAB,) in which each
		term is the concatenation of the
		previous two.
		Further, we define DA,B(n) to be the
		nth digit in the first term of FA,B that
		contains at least n digits.
		Example:
		Let A=1415926535, B=8979323846.
		We wish to find DA,B(35), say.
		The first few terms of FA,B are:
230	Fibonacci Words	1415926535
		8979323846
		14159265358979323846
		897932384614159265358979323846
		1415926535897932384689793238461
		4159265358979323846
		Then DA,B(35) is the 35th digit in the
		fifth term, which is 9.
		Now we use for A the first 100 digits of
		π behind the decimal point:
		1415926535897932384626433832795
		0288419716939937510
		5820974944592307816406286208998
		5820974944592307816406286208998

		The binomial coefficient
		(
		10
		3
)=120
		(
		120=
		2
		3
		×3×5=2×2×2×3×5
		120
231	prime factorisation of binomial coefficie	, and
		2+2+2+3+5=14
		2
		So the sum of the terms in the prime
		factorisation of
		(
		10
		3
)
		(
		is
		14

232	The Race	Two players share an unbiased coin and take it in turns to play "The Race". On Player 1's turn, he tosses the coin once: if it comes up Heads, he scores one point; if it comes up Tails, he scores nothing. On Player 2's turn, she chooses a positive integer T and tosses the coin T times: if it comes up all Heads, she scores 2T-1 points; otherwise, she scores nothing. Player 1 goes first. The winner is the first to 100 or more points. On each turn Player 2 selects the number, T, of coin tosses that maximises the probability of her winning. What is the probability that Player 2 wins? Give your answer rounded to eight
		wins?
233	Lattice points on a circle	Let $f(N)$ be the number of points with integer coordinates that are on a circle passing through $(0,0)$, $(N,0)$, $(0,N)$, and (N,N) . It can be shown that $f(10000) = 36$. What is the sum of all positive integers $N \le 1011$ such that $f(N) = 420$?

234	Semidivisible numbers	For an integer n ≥ 4, we define the lower prime square root of n, denoted by lps(n), as the largest prime ≤ √n and the upper prime square root of n, ups(n), as the smallest prime ≥ √n. So, for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37. Let us call an integer n ≥ 4 semidivisible, if one of lps(n) and ups(n) divides n, but not both. The sum of the semidivisible numbers not exceeding 15 is 30, the numbers are 8, 10 and 12. 15 is not semidivisible because it is a multiple of both lps(15) = 3 and ups(15) = 5. As a further example, the sum of the 92 semidivisible numbers up to 1000 is 34825. What is the sum of all semidivisible numbers not exceeding 999966663333
		numbers not exceeding 999966663333
235	An Arithmetic Geometric sequence	Given is the arithmetic-geometric sequence $u(k) = (900-3k)rk-1$. Let $s(n) = \Sigma k=1nu(k)$. Find the value of r for which $s(5000) = -600,000,000,000$. Give your answer rounded to 12 places behind the decimal point.

		Cumplians IAI and IDI masside delle
		Suppliers 'A' and 'B' provided the
		following numbers of products for the
		luxury hamper market:
		Product 'A' 'B'
		Beluga Caviar 5248 640
		Christmas Cake 1312 1888
		Gammon Joint 2624 3776
		Vintage Port 5760 3776
		Champagne Truffles 3936 5664
		Although the suppliers try very hard to
		ship their goods in perfect condition,
		there is inevitably some spoilage - i.e.
236	Luxury Hampers	products gone bad.
		The suppliers compare their
		performance using two types of
		statistic:
		The five per-product spoilage rates for
		each supplier are equal to the number
		of products gone bad divided by the
		number of products supplied, for each
		of the five products in turn.
		The overall spoilage rate for each
		supplier is equal to the total number of
		products gone bad divided by the total
		number of products provided by that
		Let T(n) be the number of tours over a
	Tours on a 4 x n playing board	4 × n playing board such that:
		The tour starts in the top left corner.
		The tour consists of moves that are up,
		down, left, or right one square.
237		The tour visits each square exactly
		once.
		The tour ends in the bottom left
		corner.
		The diagram shows one tour over a 4
		× 10 board:
		T(10) is 2329. What is T(1012) modulo
		108?
]		

238	Infinite string tour	Create a sequence of numbers using the "Blum Blum Shub" pseudo-random number generator: s0 = 14025256 sn+1 = sn2 mod 20300713 Concatenate these numbers s0s1s2 to create a string w of infinite length. Then, w = 1402525674101495847003805364 6 For a positive integer k, if no substring of w exists with a sum of digits equal to k, p(k) is defined to be zero. If at least one substring of w exists with a sum of digits equal to k, we define p(k) = z, where z is the starting position of the earliest such substring. For instance: The substrings 1, 14, 1402, with respective sums of digits equal to 1, 5, 7, start at position 1, hence p(1) = p(5) = p(7) = = 1. The substrings 4, 402, 4025, with respective sums of digits equal to
239	Twenty-two Foolish Primes	A set of disks numbered 1 through 100 are placed in a line in random order. What is the probability that we have a partial derangement such that exactly 22 prime number discs are found away from their natural positions? (Any number of non-prime disks may also be found in or out of their natural positions.) Give your answer rounded to 12 places behind the decimal point in the form 0.abcdefghijkl.

240	Top Dice	There are 1111 ways in which five 6-sided dice (sides numbered 1 to 6) can be rolled so that the top three sum to 15. Some examples are: D1,D2,D3,D4,D5 = 4,3,6,3,5 D1,D2,D3,D4,D5 = 4,3,3,5,6 D1,D2,D3,D4,D5 = 3,3,3,6,6 D1,D2,D3,D4,D5 = 6,6,3,3,3 In how many ways can twenty 12-sided dice (sides numbered 1 to 12) be rolled so that the top ten sum to 70?
241	Perfection Quotients	For a positive integer n, let $\sigma(n)$ be the sum of all divisors of n, so e.g. $\sigma(6) = 1 + 2 + 3 + 6 = 12$. A perfect number, as you probably know, is a number with $\sigma(n) = 2n$. Let us define the perfection quotient of a positive integer as $p(n) = \sigma(n)$ n Find the sum of all positive integers n ≤ 1018 for which $p(n)$ has the form k + $1/2$, where k is an integer.

242	Odd Triplets	Given the set $\{1,2,,n\}$, we define $f(n,k)$ as the number of its k-element subsets with an odd sum of elements. For example, $f(5,3) = 4$, since the set $\{1,2,3,4,5\}$ has four 3-element subsets having an odd sum of elements, i.e.: $\{1,2,4\}$, $\{1,3,5\}$, $\{2,3,4\}$ and $\{2,4,5\}$. When all three values n, k and $f(n,k)$ are odd, we say that they make an odd-triplet $[n,k,f(n,k)]$. There are exactly five odd-triplets with $n \le 10$, namely: $[1,1,f(1,1)=1]$, $[5,1,f(5,1)=3]$, $[5,5,f(5,5)=1]$, $[9,1,f(9,1)=5]$ and $[9,9,f(9,9)=1]$. How many odd-triplets are there with
		n ≤ 1012? A positive fraction whose numerator is less than its denominator is called a proper fraction.
243	Resilience	For any denominator, d, there will be d-1 proper fractions; for example, with d = 12: 1/12, 2/12, 3/12, 4/12, 5/12, 6/12, 7/12, 8/12, 9/12, 10/12, 11/12. We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4/11. In fact, d = 12 is the smallest denominator having a resilience R(d) < 4/10. Find the smallest denominator d, having a resilience R(d) < 15499/94744

	Vari probably know the game Cife
	You probably know the game Fifteen
	Puzzle. Here, instead of numbered
	tiles, we have seven red tiles and eight
	blue tiles.
	A move is denoted by the uppercase
	initial of the direction (Left, Right, Up,
	Down) in which the tile is slid, e.g.
	starting from configuration (S), by the
	sequence LULUR we reach the
	configuration (E):
	(S) , (E)
	For each path, its checksum is
Sliders	calculated by (pseudocode):
	checksum = 0
	checksum = (checksum × 243 + m1)
	mod 100 000 007
	checksum = (checksum × 243 + m2)
	mod 100 000 007
	checksum = (checksum × 243 + mn)
	mod 100 000 007
	where mk is the ASCII value of the kth
	letter in the move sequence and the
	ASCII values for the moves are:
	L 76
	Sliders

245	Coresilience	We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = $4/11$. The resilience of a number d > 1 is then $\phi(d)$ $d-1$, where ϕ is Euler's totient function. We further define the coresilience of a number n > 1 as C(n) = $n-\phi(n)$ $n-1$. The coresilience of a prime p is C(p) = 1 $p-1$. Find the sum of all composite integers $1 < n \le 2 \times 1011$, for which C(n) is a unit fraction.

		A definition for an ellipse is:
		Given a circle c with centre M and
		radius r and a point G such that
		d(G,M) <r, locus="" of="" points="" td="" that<="" the=""></r,>
		are equidistant from c and G form an
		ellipse.
		The construction of the points of the
		ellipse is shown below.
		Given are the points M(-2000,1500)
		and G(8000,1500).
246	Tangants to an allinga	Given is also the circle c with centre M
240	Tangents to an ellipse	and radius 15000.
		The locus of the points that are
		equidistant from G and c form an
		ellipse e.
		From a point P outside e the two
		tangents t1 and t2 to the ellipse are
		drawn.
		Let the points where t1 and t2 touch
		the ellipse be R and S.
		For how many lattice points P is angle
		RPS greater than 45 degrees?

247	Squares under a hyperbola	Consider the region constrained by 1 ≤ x and 0 ≤ y ≤ 1/x. Let S1 be the largest square that can fit under the curve. Let S2 be the largest square that fits in the remaining area, and so on. Let the index of Sn be the pair (left, below) indicating the number of squares to the left of Sn and the number of squares below Sn. The diagram shows some such squares labelled by number. S2 has one square to its left and none below, so the index of S2 is (1,0). It can be seen that the index of S32 is (1,1) as is the index of S50. 50 is the largest n for which the index of Sn is (1,1). What is the largest n for which the
248	ers for which Euler's totient function equ	index of Sn is (3,3)? The first number n for which φ(n)=13! is 6227180929. Find the 150,000th such number.
249	Prime Subset Sums	Let S = {2, 3, 5,, 4999} be the set of prime numbers less than 5000. Find the number of subsets of S, the sum of whose elements is a prime number. Enter the rightmost 16 digits as your answer.
250	250250	Find the number of non-empty subsets of {11, 22, 33,, 250250250250}, the sum of whose elements is divisible by 250. Enter the rightmost 16 digits as your answer.

		A triplet of positive integers (a,b,c) is
		called a Cardano Triplet if it satisfies
		the condition:
		a+b
		С
		\checkmark
		-
		-
		-
		-
		-
		_
251	Cardano Triplets	_
	'	\checkmark
		3
		+
		a–b
		C ,
		\checkmark
		-
		-
		-
		-
		-
		_

		Given a set of points on a plane, we
		define a convex hole to be a convex
		polygon having as vertices any of the
		given points and not containing any of
		the given points in its interior (in
		addition to the vertices, other given
		points may lie on the perimeter of the
		polygon).
		As an example, the image below shows
		a set of twenty points and a few such
		convex holes. The convex hole shown
		as a red heptagon has an area equal to
252	Convex Holes	1049694.5 square units, which is the
		highest possible area for a convex hole
		on the given set of points.
		For our example, we used the first 20
		points $(T2k-1, T2k)$, for $k = 1, 2,, 20$,
		produced with the pseudo-random
		number generator:
		S0 = 290797
		Sn+1 = Sn2 mod 50515093
		Tn = (Sn mod 2000) - 1000
		i.e. (527, 144), (-488, 732),
		(-454, -947),
		What is the maximum area for a

253	Tidying up	A small child has a "number caterpillar" consisting of forty jigsaw pieces, each with one number on it, which, when connected together in a line, reveal the numbers 1 to 40 in order. Every night, the child's father has to pick up the pieces of the caterpillar that have been scattered across the play room. He picks up the pieces at random and places them in the correct order. As the caterpillar is built up in this way, it forms distinct segments that gradually merge together. The number of segments starts at zero (no pieces placed), generally increases up to about eleven or twelve, then tends to drop again before finishing at a single segment (all pieces placed). For example: Piece Placed Segments So Far 12 1 4 2 29 3 6 4
254	Sums of Digit Factorials	Define f(n) as the sum of the factorials of the digits of n. For example, $f(342) = 3! + 4! + 2! = 32$. Define sf(n) as the sum of the digits of $f(n)$. So $sf(342) = 3 + 2 = 5$. Define g(i) to be the smallest positive integer n such that $sf(n) = i$. Though $sf(342)$ is 5, $sf(25)$ is also 5, and it can be verified that $g(5)$ is 25. Define sg(i) as the sum of the digits of $g(i)$. So $sg(5) = 2 + 5 = 7$. Further, it can be verified that $g(20)$ is 267 and $\sum sg(i)$ for $1 \le i \le 20$ is 156 . What is $\sum sg(i)$ for $1 \le i \le 150$?

		We define the rounded-square-root of a positive integer n as the square root of n rounded to the nearest integer. The following procedure (essentially Heron's method adapted to integer
		arithmetic) finds the rounded-square- root of n:
		Let d be the number of digits of the
		number n.
		If d is odd, set
		х
		0
255	Rounded Square Roots	=2×
		10
		(d-1)/2
		Х
		If d is even, set
		х
		0
		=7×
		10
		(d-2)/2
		х

		Tatami are rectangular mats, used to
		completely cover the floor of a room,
		without overlap.
		Assuming that the only type of
		available tatami has dimensions 1×2,
		there are obviously some limitations
		for the shape and size of the rooms
		that can be covered.
		For this problem, we consider only
		rectangular rooms with integer
		dimensions a, b and even size s = a·b.
		We use the term 'size' to denote the
256	Tatami-Free Rooms	floor surface area of the room, and —
		without loss of generality — we add
		the condition a ≤ b.
		There is one rule to follow when laying
		out tatami: there must be no points
		where corners of four different mats
		meet.
		For example, consider the two
		arrangements below for a 4×4 room:
		The arrangement on the left is
		acceptable, whereas the one on the
		right is not: a red "X" in the middle,
		J : : : : : : : : : : : : : : : : : : :

257	Angular Bisectors	Given is an integer sided triangle ABC with sides a ≤ b ≤ c. (AB = c, BC = a and AC = b). The angular bisectors of the triangle intersect the sides at points E, F and G (see picture below). The segments EF, EG and FG partition the triangle ABC into four smaller triangles: AEG, BFE, CGF and EFG. It can be proven that for each of these four triangles the ratio area(ABC)/area(subtriangle) is rational. However, there exist triangles for which some or all of these ratios are integral. How many triangles ABC with perimeter≤100,000,000 exist so that the ratio area(ABC)/area(AEG) is integral?
258	A lagged Fibonacci sequence	A sequence is defined as: $gk = 1$, for $0 \le k \le 1999$ $gk = gk-2000 + gk-1999$, for $k \ge 2000$. Find $gk \mod 20092010$ for $k = 1018$.

259	Reachable Numbers	A positive integer will be called reachable if it can result from an arithmetic expression obeying the following rules: Uses the digits 1 through 9, in that order and exactly once each. Any successive digits can be concatenated (for example, using the digits 2, 3 and 4 we obtain the number 234). Only the four usual binary arithmetic operations (addition, subtraction, multiplication and division) are allowed. Each operation can be used any number of times, or not at all. Unary minus is not allowed. Any number of (possibly nested) parentheses may be used to define the order of operations. For example, 42 is reachable, since (1/23) * ((4*5)-6) * (78-9) = 42. What is the sum of all positive

		,
		A game is played with three piles of
		stones and two players.
		At her turn, a player removes one or
		more stones from the piles. However, if
		she takes stones from more than one
		pile, she must remove the same
		number of stones from each of the
		selected piles.
		In other words, the player chooses
		some N>0 and removes:
		N stones from any single pile; or
		N stones from each of any two piles
260	Stone Game	(2N total); or
		N stones from each of the three piles
		(3N total).
		The player taking the last stone(s) wins
		the game.
		A winning configuration is one where
		the first player can force a win.
		For example, (0,0,13), (0,11,11) and
		(5,5,5) are winning configurations
		because the first player can
		immediately remove all stones.
		A losing configuration is one where the
		second player can force a win, no

261 Pivotal Square Sums	Let us call a positive integer k a square-pivot, if there is a pair of integers $m > 0$ and $n \ge k$, such that the sum of the $(m+1)$ consecutive squares up to k equals the sum of the m consecutive squares from $(n+1)$ on: $(k-m)2 + + k2 = (n+1)2 + + (n+m)2$. Some small square-pivots are $4: 32 + 42 = 52$ $21: 202 + 212 = 292$ $24: 212 + 222 + 232 + 242 = 252 + 262 + 272$ $110: 1082 + 1092 + 1102 = 1332 + 1342$ Find the sum of all distinct square-pivots ≤ 1010 .
-------------------------	---

		,
		The following equation represents the
		continuous topography of a
		mountainous region, giving the
		elevation h at any point (x,y):
		A mosquito intends to fly from
		A(200,200) to B(1400,1400), without
		leaving the area given by $0 \le x$, $y \le x$
		1600.
		Because of the intervening mountains,
		it first rises straight up to a point A',
		having elevation f. Then, while
262	Mountain Range	remaining at the same elevation f, it
		flies around any obstacles until it
		arrives at a point B' directly above B.
		First, determine fmin which is the
		minimum constant elevation allowing
		such a trip from A to B, while
		remaining in the specified area.
		Then, find the length of the shortest
		path between A' and B', while flying at
		that constant elevation fmin.
		Give that length as your answer,
		rounded to three decimal places.
		Note: For convenience, the elevation

		Consider the number 6. The divisors of
		6 are: 1,2,3 and 6.
		Every number from 1 up to and
		including 6 can be written as a sum of
		distinct divisors of 6:
		1=1, 2=2, 3=1+2, 4=1+3, 5=2+3, 6=6.
		A number n is called a practical
		number if every number from 1 up to
		and including n can be expressed as a
		sum of distinct divisors of n.
		A pair of consecutive prime numbers
		with a difference of six is called a sexy
263	An engineers' dream come true	pair (since "sex" is the Latin word for
		"six"). The first sexy pair is (23, 29).
		We may occasionally find a triple-pair,
		which means three consecutive sexy
		prime pairs, such that the second
		member of each pair is the first
		member of the next pair.
		We shall call a number n such that :
		(n-9, n-3), (n-3,n+3), (n+3, n+9) form a
		triple-pair, and
		the numbers n-8, n-4, n, n+4 and n+8
		are all practical,
		an engineers' paradise.

		Consider all the triangles having:
		All their vertices on lattice points.
		Circumcentre at the origin O.
		Orthocentre at the point H(5, 0).
		There are nine such triangles having a
		perimeter ≤ 50.
		Listed and shown in ascending order
		of their perimeter, they are:
		A(-4, 3), B(5, 0), C(4, -3)
		A(4, 3), B(5, 0), C(-4, -3)
		A(-3, 4), B(5, 0), C(3, -4)
264	Triangle Centres	
		A(3, 4), B(5, 0), C(-3, -4)
		A(0, 5), B(5, 0), C(0, -5)
		A(1, 8), B(8, -1), C(-4, -7)
		A(8, 1), B(1, -8), C(-4, 7)
		A(2, 9), B(9, -2), C(-6, -7)
		A(9, 2), B(2, -9), C(-6, 7)
		The sum of their perimeters, rounded
		to four decimal places, is 291.0089.
		Find all such triangles with a perimeter
		≤ 105.

265	Binary Circles	2N binary digits can be placed in a circle so that all the N-digit clockwise subsequences are distinct. For N=3, two such circular arrangements are possible, ignoring rotations: For the first arrangement, the 3-digit subsequences, in clockwise order, are: 000, 001, 010, 101, 011, 111, 110 and 100. Each circular arrangement can be encoded as a number by concatenating the binary digits starting with the subsequence of all zeros as the most significant bits and proceeding clockwise. The two arrangements for N=3 are thus represented as 23 and 29: 00010111 2 = 23 00011101 2 = 29 Calling S(N) the sum of the unique numeric representations, we can see that S(3) = 23 + 29 = 52. Find S(5).
266	Pseudo Square Root	The divisors of 12 are: 1,2,3,4,6 and 12. The largest divisor of 12 that does not exceed the square root of 12 is 3. We shall call the largest divisor of an integer n that does not exceed the square root of n the pseudo square root (PSR) of n. It can be seen that PSR(3102)=47. Let p be the product of the primes below 190. Find PSR(p) mod 1016.

267	Billionaire	You are given a unique investment opportunity. Starting with £1 of capital, you can choose a fixed proportion, f, of your capital to bet on a fair coin toss repeatedly for 1000 tosses. Your return is double your bet for heads and you lose your bet for tails. For example, if f = 1/4, for the first toss you bet £0.25, and if heads comes up you win £0.5 and so then have £1.5. You then bet £0.375 and if the second toss is tails, you have £1.125. Choosing f to maximize your chances of having at least £1,000,000,000 after 1,000 flips, what is the chance that you become a billionaire? All computations are assumed to be exact (no rounding), but give your answer rounded to 12 digits behind the decimal point in the form 0.abcdefghijkl.
268	ers with at least four distinct prime facto	It can be verified that there are 23 positive integers less than 1000 that are divisible by at least four distinct primes less than 100. Find how many positive integers less than 1016 are divisible by at least four distinct primes less than 100.

269	Polynomials with at least one integer roo	A root or zero of a polynomial P(x) is a solution to the equation P(x) = 0. Define Pn as the polynomial whose coefficients are the digits of n. For example, P5703(x) = 5x3 + 7x2 + 3. We can see that: Pn(0) is the last digit of n, Pn(1) is the sum of the digits of n, Pn(10) is n itself. Define Z(k) as the number of positive integers, n, not exceeding k for which the polynomial Pn has at least one integer root. It can be verified that Z(100 000) is 14696. What is Z(1016)?
270	Cutting Squares	A square piece of paper with integer dimensions N×N is placed with a corner at the origin and two of its sides along the x- and y-axes. Then, we cut it up respecting the following rules: We only make straight cuts between two points lying on different sides of the square, and having integer coordinates. Two cuts cannot cross, but several cuts can meet at the same border point. Proceed until no more legal cuts can be made. Counting any reflections or rotations as distinct, we call C(N) the number of ways to cut an N×N square. For example, C(1) = 2 and C(2) = 30 (shown below). What is C(30) mod 108?

271	Modular Cubes, part 1	For a positive number n, define S(n) as the sum of the integers x, for which 1 <x<n 16,="" 22,="" 29,="" 53,="" 63.="" 74,="" 79,="" 8="" 81.="" 9,="" and="" are="" find="" for="" mod="" n="91," n.="" namely:="" possible="" s(13082761331670030).<="" s(91)="9+16+22+29+53+74+79+81=3" th="" there="" thus,="" values="" when="" x,="" x3="1"></x<n>
272	Modular Cubes, part 2	For a positive number n, define C(n) as the number of the integers x, for which 1 <x<n 16,="" 22,="" 29,="" 53,="" 74,="" 79,="" 8="" 81.="" 9,="" and="" are="" c(91)="8." c(n)="242.</td" find="" for="" mod="" n="91," n.="" namely:="" numbers="" n≤1011="" of="" positive="" possible="" sum="" the="" there="" thus,="" values="" when="" which="" x,="" x3≡1=""></x<n>
273	Sum of Squares	Consider equations of the form: a2 + b2 = N, $0 \le a \le b$, a, b and N integer. For N=65 there are two solutions: $a=1$, $b=8$ and $a=4$, $b=7$. We call S(N) the sum of the values of a of all solutions of a2 + b2 = N, $0 \le a \le b$, a, b and N integer. Thus S(65) = 1 + 4 = 5. Find \sum S(N), for all squarefree N only divisible by primes of the form $4k+1$ with $4k+1 < 150$.

	•	
		For each integer p > 1 coprime to 10
		there is a positive divisibility multiplier
		m < p which preserves divisibility by p
		for the following function on any
		positive integer, n:
		f(n) = (all but the last digit of n) + (the
		last digit of n) * m
		That is, if m is the divisibility multiplier
		for p, then f(n) is divisible by p if and
		only if n is divisible by p.
		(When n is much larger than p, f(n) will
		be less than n and repeated
274	Divisibility Multipliers	application of f provides a
		multiplicative divisibility test for p.)
		For example, the divisibility multiplier
		for 113 is 34.
		f(76275) = 7627 + 5 * 34 = 7797 :
		76275 and 7797 are both divisible by
		113
		f(12345) = 1234 + 5 * 34 = 1404 :
		12345 and 1404 are both not divisible
		by 113
		The sum of the divisibility multipliers
		for the primes that are coprime to 10
		and less than 1000 is 39517. What is

		,
		Let us define a balanced sculpture of
		order n as follows:
		A polyomino made up of n+1 tiles
		known as the blocks (n tiles)
		and the plinth (remaining tile);
		the plinth has its centre at position
		(x = 0, y = 0);
		the blocks have y-coordinates greater
		than zero (so the plinth is the unique
		lowest tile);
		the centre of mass of all the blocks,
		combined, has x-coordinate equal to
275	Balanced Sculptures	zero.
		When counting the sculptures, any
		arrangements which are simply
		reflections about the y-axis, are not
		counted as distinct. For example, the
		18 balanced sculptures of order 6 are
		shown below; note that each pair of
		mirror images (about the y-axis) is
		counted as one sculpture:
		There are 964 balanced sculptures of
		order 10 and 360505 of order 15.
		How many balanced sculptures are
		there of order 18?
		Consider the triangles with integer
		sides a, b and c with a \leq b \leq c.
		An integer sided triangle (a,b,c) is
276	Primitive Triangles	called primitive if gcd(a,b,c)=1.
		How many primitive integer sided
		triangles exist with a perimeter not
		exceeding 10 000 000?

1		
		A modified Collatz sequence of
		integers is obtained from a starting
		value
		а
		1
		а
		in the following way:
		a
		n+1
		=
		а
		n
277	A Modified Collatz sequence	3
	·	а
		if
		a
		n
		a
		is divisible by
		3
		3
		. We shall denote this as a large
		downward step, "D".
		a
		n+1

		Given the values of integers
		1<
		а
		1
		<
		a
		2
		<<
		a
		n
		1
		, consider the linear combination
278	Linear Combinations of Semiprimes	q
		1
		а
		1
		+
		q
		2
		a
		2
		+…+
		q
		n
		a
279	gles with integral sides and an integral a	How many triangles are there with
		integral sides, at least one integral
		angle (measured in degrees), and a
		perimeter that does not exceed 108?

280	Ant and seeds	A laborious ant walks randomly on a 5x5 grid. The walk starts from the central square. At each step, the ant moves to an adjacent square at random, without leaving the grid; thus there are 2, 3 or 4 possible moves at each step depending on the ant's position. At the start of the walk, a seed is placed on each square of the lower row. When the ant isn't carrying a seed and reaches a square of the lower row containing a seed, it will start to carry the seed. The ant will drop the seed on the first empty square of the upper row it eventually reaches. What's the expected number of steps until all seeds have been dropped in the top row? Give your answer rounded to 6
281	Pizza Toppings	decimal places. You are given a pizza (perfect circle) that has been cut into m·n equal pieces and you want to have exactly one topping on each slice. Let $f(m,n)$ denote the number of ways you can have toppings on the pizza with m different toppings $(m \ge 2)$, using each topping on exactly n slices $(n \ge 1)$. Reflections are considered distinct, rotations are not. Thus, for instance, $f(2,1) = 1$, $f(2,2) = f(3,1) = 2$ and $f(3,2) = 16$. $f(3,2)$ is shown below: Find the sum of all $f(m,n)$ such that $f(m,n) \le 1015$.

		For non nogative integers
		For non-negative integers
		m
		m
		,
		n
		n
		, the Ackermann function
		A(m,n)
		А
		is defined as follows:
		A(m,n)={
		n+1
282	The Ackermann function	A(m-1,1)
		A(m-1,A(m,n-1))
		if m=0
		if m>0 and n=0
		if m>0 and n>0
		$A(m,n)=\{n+1 \text{ if } m=0 A(m-1,1) \text{ if } m>0$
		and $n=0A(m-1,A(m,n-1))$ if $m>$
		For example
		A(1,0)=2
		Α
		, , , , ,
		A(2,2)=7
		A
		Consider the triangle with sides 6, 8
		and 10. It can be seen that the
		perimeter and the area are both equal
		to 24. So the area/perimeter ratio is
		equal to 1.
		Consider also the triangle with sides
202		13, 14 and 15. The perimeter equals 42
283	triangles for which the area/perimeter ra	while the area is equal to 84. So for
		this triangle the area/perimeter ratio is
		equal to 2.
		Find the sum of the perimeters of all
		integer sided triangles for which the
		area/perimeter ratios are equal to
		·
		positive integers not exceeding 1000.

		The 3-digit number 376 in the decimal
		numbering system is an example of
		numbers with the special property that
		its square ends with the same digits:
		3762 = 141376. Let's call a number
		with this property a steady square.
		Steady squares can also be observed in
		other numbering systems. In the base
		14 numbering system, the 3-digit
		number c37 is also a steady square:
		c372 = aa0c37, and the sum of its
		digits is c+3+7=18 in the same
284	Steady Squares	numbering system. The letters a, b, c
		and d are used for the 10, 11, 12 and
		13 digits respectively, in a manner
		similar to the hexadecimal numbering
		system.
		For $1 \le n \le 9$, the sum of the digits of
		all the n-digit steady squares in the
		base 14 numbering system is 2d8 (582
		decimal). Steady squares with leading
		0's are not allowed.
		Find the sum of the digits of all the n-
		digit steady squares in the base 14
		numbering system for

285	Pythagorean odds	Albert chooses a positive integer k, then two real numbers a, b are randomly chosen in the interval [0,1] with uniform distribution. The square root of the sum $(k\cdot a+1)2 + (k\cdot b+1)2$ is then computed and rounded to the nearest integer. If the result is equal to k, he scores k points; otherwise he scores nothing. For example, if $k = 6$, $a = 0.2$ and $b = 0.85$, then $(k\cdot a+1)2 + (k\cdot b+1)2 = 42.05$. The square root of 42.05 is 6.484 and
		when rounded to the nearest integer, it becomes 6. This is equal to k, so he scores 6 points. It can be shown that if he plays 10 turns with k = 1, k = 2,, k = 10, the expected value of his total score, rounded to five decimal places, is 10.20914. If he plays 105 turns with k = 1, k = 2, k = 3,, k = 105, what is the expected value of his total score, rounded to five
286	Scoring probabilities	Barbara is a mathematician and a basketball player. She has found that the probability of scoring a point when shooting from a distance x is exactly (1 x/q), where q is a real constant greater than 50. During each practice run, she takes shots from distances x = 1, x = 2,, x = 50 and, according to her records, she has precisely a 2 % chance to score a total of exactly 20 points. Find q and give your answer rounded to 10 decimal places.

		The quadtree encoding allows us to
		describe a 2N×2N black and white
		image as a sequence of bits (0 and 1).
		Those sequences are to be read from
		left to right like this:
		the first bit deals with the complete
		2N×2N region;
		"0" denotes a split:
		the current 2n×2n region is divided
		into 4 sub-regions of dimension 2n-
		1×2n-1,
		the next bits contains the description
287	ree encoding (a simple compression algo	of the top left, top right, bottom left
		and bottom right sub-regions - in that
		order;
		"10" indicates that the current region
		contains only black pixels;
		"11" indicates that the current region
		contains only white pixels.
		Consider the following 4×4 image
		(colored marks denote places where a
		split can occur):
		This image can be described by several
		sequences, for example :
		"001010101001011111011010101010"
		For any prime p the number N(p,q) is
		defined by $N(p,q) = \sum_{n=0}^{\infty} n = 0$ to $q Tn*pn$
		with Tn generated by the following
		random number generator:
		S0 = 290797
		Sn+1 = Sn2 mod 50515093
288	An enormous factorial	Tn = Sn mod p
		Let Nfac(p,q) be the factorial of N(p,q).
		Let NF(p,q) be the number of factors p
		in Nfac(p,q).
		You are given that NF(3,10000) mod
		320=624955285.
		Find NF(61,107) mod 6110
	ļ	

		<u></u>
289	Eulerian Cycles	Let C(x,y) be a circle passing through the points (x, y), (x, y+1), (x+1, y) and (x+1, y+1). For positive integers m and n, let E(m,n) be a configuration which consists of the m·n circles: { C(x,y): 0 ≤ x < m, 0 ≤ y < n, x and y are integers } An Eulerian cycle on E(m,n) is a closed path that passes through each arc exactly once. Many such paths are possible on E(m,n), but we are only interested in those which are not self-crossing: A non-crossing path just touches itself at lattice points, but it never crosses itself. The image below shows E(3,3) and an example of an Eulerian non-crossing path. Let L(m,n) be the number of Eulerian non-crossing paths on E(m,n). For example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290. Find L(6,10) mod 1010.
290	Digital Signature	How many integers $0 \le n < 1018$ have the property that the sum of the digits of n equals the sum of digits of 137n?

		A prime number
		р
		р
		is called a Panaitopol prime if
		p=
		х
		4
		-
		у
		4
		х
		3
291	Panaitopol Primes	+
		у
		3
		р
		for some positive integers
		х
		х
		and
		у
		y
		Find how many Panaitopol primes are
		less than 5×1015.

292	Pythagorean Polygons	We shall define a pythagorean polygon to be a convex polygon with the following properties: there are at least three vertices, no three vertices are aligned, each vertex has integer coordinates, each edge has integer length. For a given integer n, define P(n) as the number of distinct pythagorean polygons for which the perimeter is ≤ n. Pythagorean polygons should be considered distinct as long as none is a translation of another. You are given that P(4) = 1, P(30) = 3655 and P(60) = 891045. Find P(120).
293	Pseudo-Fortunate Numbers	An even positive integer N will be called admissible, if it is a power of 2 or its distinct prime factors are consecutive primes. The first twelve admissible numbers are 2,4,6,8,12,16,18,24,30,32,36,48. If N is admissible, the smallest integer M > 1 such that N+M is prime, will be called the pseudo-Fortunate number for N. For example, N=630 is admissible since it is even and its distinct prime factors are the consecutive primes 2,3,5 and 7. The next prime number after 631 is 641; hence, the pseudo-Fortunate number for 630 is M=11. It can also be seen that the pseudo-Fortunate number for 16 is 3. Find the sum of all distinct pseudo-Fortunate numbers for admissible numbers N less than 109.

294	Sum of digits - experience #23	For a positive integer k, define d(k) as the sum of the digits of k in its usual decimal representation. Thus d(42) = 4+2 = 6. For a positive integer n, define S(n) as the number of positive integers k < 10n with the following properties: k is divisible by 23 and d(k) = 23. You are given that S(9) = 263626 and S(42) = 6377168878570056. Find S(1112) and give your answer mod 109.
295	Lenticular holes	We call the convex area enclosed by two circles a lenticular hole if: The centres of both circles are on lattice points. The two circles intersect at two distinct lattice points. The interior of the convex area enclosed by both circles does not contain any lattice points. Consider the circles: C0: x2+y2=25 C1: (x+4)2+(y-4)2=1 C2: (x-12)2+(y-4)2=65 The circles C0, C1 and C2 are drawn in the picture below. C0 and C1 form a lenticular hole, as well as C0 and C2. We call an ordered pair of positive real numbers (r1, r2) a lenticular pair if there exist two circles with radii r1 and r2 that form a lenticular hole. We can verify that (1, 5) and (5, √65) are the lenticular pairs of the example above. Let L(N) be the number of distinct lenticular pairs (r1, r2) for which 0 < r1

296	Angular Bisector and Tangent	Given is an integer sided triangle ABC with BC ≤ AC ≤ AB. k is the angular bisector of angle ACB. m is the tangent at C to the circumscribed circle of ABC. n is a line parallel to m through B. The intersection of n and k is called E. How many triangles ABC with a perimeter not exceeding 100 000 exist such that BE has integral length?
297	Zeckendorf Representation	Each new term in the Fibonacci sequence is generated by adding the previous two terms. Starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. Every positive integer can be uniquely written as a sum of nonconsecutive terms of the Fibonacci sequence. For example, 100 = 3 + 8 + 89. Such a sum is called the Zeckendorf representation of the number. For any integer n>0, let z(n) be the number of terms in the Zeckendorf representation of n. Thus, z(5) = 1, z(14) = 2, z(100) = 3 etc. Also, for 0 <n<106, 0<n<1017.<="" find="" for="" td="" ∑z(n)=""></n<106,>

		1
		Larry and Robin play a memory game
		involving of a sequence of random
		numbers between 1 and 10, inclusive,
		that are called out one at a time. Each
		player can remember up to 5 previous
		numbers. When the called number is in
		a player's memory, that player is
		awarded a point. If it's not, the player
		adds the called number to his memory,
		removing another number if his
		memory is full.
		Both players start with empty
298	Selective Amnesia	memories. Both players always add
		new missed numbers to their memory
		but use a different strategy in deciding
		which number to remove:
		Larry's strategy is to remove the
		number that hasn't been called in the
		longest time.
		Robin's strategy is to remove the
		number that's been in the memory the
		longest time.
		Example game:
		Turn Called
		number Larry's

		Four points with integer coordinates
		are selected:
		A(a, 0), B(b, 0), C(0, c) and D(0, d), with
		0 < a < b and 0 < c < d.
		Point P, also with integer coordinates,
		is chosen on the line AC so that the
		three triangles ABP, CDP and BDP are
		all similar.
		It is easy to prove that the three
		triangles can be similar, only if a=c.
		So, given that a=c, we are looking for
		triplets (a,b,d) such that at least one
299	Three similar triangles	point P (with integer coordinates)
		exists on AC, making the three
		triangles ABP, CDP and BDP all similar.
		For example, if $(a,b,d)=(2,3,4)$, it can be
		easily verified that point P(1,1) satisfies
		the above condition. Note that the
		triplets (2,3,4) and (2,4,3) are
		considered as distinct, although point
		P(1,1) is common for both.
		If b+d < 100, there are 92 distinct
		triplets (a,b,d) such that point P exists.
		If b+d < 100 000, there are 320471
		distinct triplets (a,b,d) such that point P
		Taisance arpices (a,b,a) such that point i

		In a very simplified form, we can
		consider proteins as strings consisting
		of hydrophobic (H) and polar (P)
		elements, e.g. ННРРНННРННРН.
		For this problem, the orientation of a
		protein is important; e.g. HPP is
		considered distinct from PPH. Thus,
		there are 2n distinct proteins
		consisting of n elements.
		When one encounters these strings in
		nature, they are always folded in such
		a way that the number of H-H contact
300	Protein folding	points is as large as possible, since this
		is energetically advantageous.
		As a result, the H-elements tend to
		accumulate in the inner part, with the P
		elements on the outside.
		Natural proteins are folded in three
		dimensions of course, but we will only
		consider protein folding in two
		dimensions.
		The figure below shows two possible
		ways that our example protein could
		be folded (H-H contact points are
		shown with red dots).

		-
		Nim is a game played with heaps of
		stones, where two players take it in
		turn to remove any number of stones
		from any heap until no stones remain.
		We'll consider the three-heap normal-
		play version of Nim, which works as
		follows:
		- At the start of the game there are
		three heaps of stones.
		- On his turn the player removes any
		positive number of stones from any
		single heap.
301	Nim	- The first player unable to move
		(because no stones remain) loses.
		If (n1,n2,n3) indicates a Nim position
		consisting of heaps of size n1, n2 and
		n3 then there is a simple function
		X(n1,n2,n3) — that you may look up or
		attempt to deduce for yourself — that
		returns:
		zero if, with perfect strategy, the player
		about to move will eventually lose; or
		non-zero if, with perfect strategy, the
		player about to move will eventually
		win.

		A positive integer n is powerful if p2 is a divisor of n for every prime factor p
	Strong Achilles Numbers	in n. A positive integer n is a perfect power if n can be expressed as a power of another positive integer.
		A positive integer n is an Achilles number if n is powerful but not a perfect power. For example, 864 and 1800 are Achilles numbers: 864 =
302		25.33 and 1800 = 23.32.52. We shall call a positive integer S a
302		Strong Achilles number if both S and φ(S) are Achilles numbers.1 For example, 864 is a Strong Achilles
		number: $\varphi(864) = 288 = 25.32$. However, 1800 isn't a Strong Achilles
		number because: φ(1800) = 480 = 25·31·51.
		There are 7 Strong Achilles numbers below 104 and 656 below 108.
		How many Strong Achilles numbers are there below 1018?
		1 φ denotes Euler's totient function.

303	Multiples with small digits	For a positive integer n, define f(n) as the least positive multiple of n that, written in base 10, uses only digits \leq 2. Thus f(2)=2, f(3)=12, f(7)=21, f(42)=210, f(89)=1121222. Also, $\sum_{n=1}^{\infty} n=1$ 100 $f(n)$ n $=11363107$ $\sum_{n=1}^{\infty} n=1$ 10000 $f(n)$ n $\sum_{n=1}^{\infty} n=1$
304	Primonacci	For any positive integer n the function next_prime(n) returns the smallest prime p such that p>n. The sequence a(n) is defined by: a(1)=next_prime(1014) and a(n)=next_prime(a(n-1)) for n>1. The fibonacci sequence $f(n)$ is defined by: $f(0)=0$, $f(1)=1$ and $f(n)=f(n-1)+f(n-2)$ for $n>1$. The sequence $b(n)$ is defined as $f(a(n))$. Find $\sum b(n)$ for $1 \le n \le 100$ 000. Give your answer mod 1234567891011.

		Let's call S the (infinite) string that is
		made by concatenating the
		consecutive positive integers (starting
		from 1) written down in base 10.
		Thus, S =
		1234567891011121314151617181920
		212223242
305	Reflexive Position	It's easy to see that any number will
		show up an infinite number of times in
		S.
		Let's call f(n) the starting position of
		the nth occurrence of n in S.
		For example, f(1)=1, f(5)=81, f(12)=271
		and f(7780)=111111365.
		Find ∑ f(3k) for 1≤k≤13.

306	Paper-strip Game	The following game is a classic example of Combinatorial Game Theory: Two players start with a strip of n white squares and they take alternate turns. On each turn, a player picks two contiguous white squares and paints them black. The first player who cannot make a move loses. If n = 1, there are no valid moves, so the first player loses automatically. If n = 2, there is only one valid move, after which the second player loses. If n = 3, there are two valid moves, but both leave a situation where the second player loses. If n = 4, there are three valid moves for the first player; she can win the game by painting the two middle squares. If n = 5, there are four valid moves for the first player (shown below in red); but no matter what she does, the second player (blue) wins.
307	Chip Defects	So, for 1 ≤ n ≤ 5, there are 3 values of k defects are randomly distributed amongst n integrated-circuit chips produced by a factory (any number of defects may be found on a chip and each defect is independent of the other defects). Let p(k,n) represent the probability that there is a chip with at least 3 defects. For instance p(3,7) ≈ 0.0204081633. Find p(20 000, 1 000 000) and give your answer rounded to 10 decimal places in the form 0.abcdefghij

	1
	A program written in the programming
	language Fractran consists of a list of
	fractions.
	The internal state of the Fractran
	Virtual Machine is a positive integer,
	which is initially set to a seed value.
	Each iteration of a Fractran program
	multiplies the state integer by the first
	fraction in the list which will leave it an
	integer.
	For example, one of the Fractran
	programs that John Horton Conway
n amazing Prime-generating Automato	
	the following 14 fractions:
	17
	91
	,
	78
	85
	,
	, 19
	51
	23
	38
	n amazing Prime-generating Automato

309	Integer Ladders	In the classic "Crossing Ladders" problem, we are given the lengths x and y of two ladders resting on the opposite walls of a narrow, level street. We are also given the height h above the street where the two ladders cross and we are asked to find the width of the street (w). Here, we are only concerned with instances where all four variables are positive integers. For example, if x = 70, y = 119 and h = 30, we can calculate that w = 56. In fact, for integer values x, y, h and 0 < x < y < 200, there are only five triplets (x,y,h) producing integer solutions for w: (70, 119, 30), (74, 182, 21), (87, 105, 35), (100, 116, 35) and (119, 175, 40). For integer values x, y, h and 0 < x < y < 1 000 000, how many triplets (x,y,h) produce integer solutions for w?
310	Nim Square	Alice and Bob play the game Nim Square. Nim Square is just like ordinary three-heap normal play Nim, but the players may only remove a square number of stones from a heap. The number of stones in the three heaps is represented by the ordered triple (a,b,c). If 0≤a≤b≤c≤29 then the number of losing positions for the next player is 1160. Find the number of losing positions for the next player if 0≤a≤b≤c≤100 000.

311	Biclinic Integral Quadrilaterals	ABCD is a convex, integer sided quadrilateral with 1 ≤ AB < BC < CD < AD. BD has integer length. O is the midpoint of BD. AO has integer length. We'll call ABCD a biclinic integral quadrilateral if AO = CO ≤ BO = DO. For example, the following quadrilateral is a biclinic integral quadrilateral: AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23. Let B(N) be the number of distinct biclinic integral quadrilaterals ABCD that satisfy AB2+BC2+CD2+AD2 ≤ N. We can verify that B(10 000) = 49 and B(1 000 000) = 38239. Find B(10 000 000 000).
312	Cyclic paths on Sierpiński graphs	- A Sierpiński graph of order-1 (S1) is an equilateral triangle Sn+1 is obtained from Sn by positioning three copies of Sn so that every pair of copies has one common corner. Let C(n) be the number of cycles that pass exactly once through all the vertices of Sn. For example, C(3) = 8 because eight such cycles can be drawn on S3, as shown below: It can also be verified that: C(1) = C(2) = 1 C(5) = 71328803586048 C(10 000) mod 108 = 37652224 C(10 000) mod 138 = 617720485 Find C(C(C(10 000))) mod 138.

313	Sliding game	In a sliding game a counter may slide horizontally or vertically into an empty space. The objective of the game is to move the red counter from the top left corner of a grid to the bottom right corner; the space always starts in the bottom right corner. For example, the following sequence of pictures show how the game can be completed in five moves on a 2 by 2 grid. Let S(m,n) represent the minimum number of moves to complete the game on an m by n grid. For example, it can be verified that S(5,4) = 25. There are exactly 5482 grids for which S(m,n) = p2, where p < 100 is prime. How many grids does S(m,n) = p2, where p < 106 is prime?
-----	--------------	---

		The moon has been opened up, and
		land can be obtained for free, but
		there is a catch. You have to build a
		wall around the land that you stake
		out, and building a wall on the moon is
		expensive. Every country has been
		allotted a 500 m by 500 m square area,
		but they will possess only that area
		which they wall in. 251001 posts have
		been placed in a rectangular grid with
		1 meter spacing. The wall must be a
		closed series of straight lines, each line
314	The Mouse on the Moon	running from post to post.
		The bigger countries of course have
		built a 2000 m wall enclosing the entire
		250 000 m2 area. The Duchy of Grand
		Fenwick, has a tighter budget, and has
		asked you (their Royal Programmer) to
		compute what shape would get best
		maximum enclosed-area/wall-length
		ratio.
		You have done some preliminary
		calculations on a sheet of paper. For a
		2000 meter wall enclosing the 250 000
		m2 area the enclosed-area/wall-length

-		1
		Sam and Max are asked to transform
		two digital clocks into two "digital
		root" clocks.
		A digital root clock is a digital clock
		that calculates digital roots step by
		step.
		When a clock is fed a number, it will
		show it and then it will start the
		calculation, showing all the
		intermediate values until it gets to the
		result.
		For example, if the clock is fed the
315	Digital root clocks	number 137, it will show: "137" → "11"
		ightarrow "2" and then it will go black, waiting
		for the next number.
		Every digital number consists of some
		light segments: three horizontal (top,
		middle, bottom) and four vertical (top-
		left, top-right, bottom-left, bottom-
		right).
		Number "1" is made of vertical top-
		right and bottom-right, number "4" is
		made by middle horizontal and vertical
		top-left, top-right and bottom-right.
		Number "8" lights them all.

316	Numbers in decimal expansions	Let p = p1 p2 p3 be an infinite sequence of random digits, selected from {0,1,2,3,4,5,6,7,8,9} with equal probability. It can be seen that p corresponds to the real number 0.p1 p2 p3 It can also be seen that choosing a random real number from the interval [0,1) is equivalent to choosing an infinite sequence of random digits selected from {0,1,2,3,4,5,6,7,8,9} with equal probability. For any positive integer n with decimal digits, let k be the smallest
		decimal digits, let k be the smallest index such that pk, pk+1,pk+d-1 are the decimal digits of n, in the same order. Also, let g(n) be the expected value of k; it can be proven that g(n) is always finite and, interestingly, always an integer number. For example, if n = 535, then for p = 31415926535897, we get k = 9 for p =
317	Firecracker	A firecracker explodes at a height of 100 m above level ground. It breaks into a large number of very small fragments, which move in every direction; all of them have the same initial velocity of 20 m/s. We assume that the fragments move without air resistance, in a uniform gravitational field with g=9.81 m/s2. Find the volume (in m3) of the region through which the fragments move before reaching the ground. Give your answer rounded to four decimal places.

· ·		
		Consider the real number
	2	
		-
		\checkmark
		+
		3
		_
		\checkmark
		2
		·
		When we calculate the even powers of
		2
318	2011 nines	-
		\checkmark
		+
		3
		_
		\checkmark
		·
		2
		we get:
		(
		2
		-
		\checkmark
		+

319	Bounded Sequences	Let x1, x2,, xn be a sequence of length n such that: $x1 = 2$ for all $1 < i \le n : xi-1 < xi$ for all i and j with $1 \le i, j \le n : (xi) j < (xj + 1)i$ There are only five such sequences of length 2, namely: {2,4}, {2,5}, {2,6}, {2,7} and {2,8}. There are 293 such sequences of length 5; three examples are given
319	Bounded Sequences	and {2,8}. There are 293 such sequences of
320	Factorials divisible by a huge integer	Let $S(u) = \sum N(i)$ for $10 \le i \le u$. S(1000) = 614538266565663. Find $S(1\ 000\ 000)$ mod 1018 .

		A horizontal row comprising of 2n + 1
		squares has n red counters placed at
		one end and n blue counters at the
		other end, being separated by a single
		empty square in the centre. For
		example, when $n = 3$.
		A counter can move from one square
		to the next (slide) or can jump over
		another counter (hop) as long as the
		square next to that counter is
		unoccupied.
		Let M(n) represent the minimum
321	Swapping Counters	number of moves/actions to
		completely reverse the positions of the
		coloured counters; that is, move all the
		red counters to the right and all the
		blue counters to the left.
		It can be verified $M(3) = 15$, which also
		happens to be a triangle number.
		If we create a sequence based on the
		values of n for which M(n) is a triangle
		number then the first five terms would
		be:
		1, 3, 10, 22, and 63, and their sum
		would be 99.
		Let T(m, n) be the number of the
322	Binomial coefficients divisible by 10	binomial coefficients iCn that are
		divisible by 10 for $n \le i < m(i, m \text{ and } n)$
		are positive integers).
		You are given that T(109, 107-10) =
		989697000.
		Find T(1018, 1012-10).

	 	
323	itwise-OR operations on random integer	Let y0, y1, y2, be a sequence of random unsigned 32 bit integers (i.e. 0 ≤ yi < 232, every value equally likely). For the sequence xi the following recursion is given: x0 = 0 and xi = xi-1 yi-1, for i > 0. (is the bitwise-OR operator) It can be seen that eventually there will be an index N such that xi = 232 -1 (a bit-pattern of all ones) for all i ≥ N. Find the expected value of N. Give your answer rounded to 10 digits after the decimal point.
324	Building a tower	Let f(n) represent the number of ways one can fill a 3×3×n tower with blocks of 2×1×1. You're allowed to rotate the blocks in any way you like; however, rotations, reflections etc of the tower itself are counted as distinct. For example (with q = 100000007): f(2) = 229, f(4) = 117805, f(10) mod q = 96149360, f(103) mod q = 24806056, f(106) mod q = 30808124. Find f(1010000) mod 100000007.

		A game is played with two piles of stones and two players. At her turn, a player removes a number of stones
		from the larger pile. The number of
		stones she removes must be a positive
		multiple of the number of stones in the smaller pile.
		E.g., let the ordered pair(6,14) describe
		a configuration with 6 stones in the
		smaller pile and 14 stones in the larger
		pile, then the first player can remove 6
		or 12 stones from the larger pile.
325	Stone Game II	The player taking all the stones from a
		pile wins the game.
		A winning configuration is one where
		the first player can force a win. For
		example, (1,5), (2,6) and (3,12) are
		winning configurations because the
		first player can immediately remove all
		stones in the second pile.
		A losing configuration is one where the
		second player can force a win, no
		matter what the first player does. For
		example, (2,3) and (3,4) are losing
		configurations: any legal move leaves a

		Let
		а
		n
		a
		be a sequence recursively defined by:
		a
		1
		=1,
		a
		n
		=(
		Σ
326	Modulo Summations	k=1
		n-1
		k∙
		a
		k
)modn
		a
		So the first 10 elements of
		a
		n
		a
		are: 1,1,0,3,0,3,5,4,1,9.

		A series of three rooms are connected
		to each other by automatic doors.
		Each door is operated by a security
		card. Once you enter a room the door
		automatically closes and that security
		card cannot be used again. A machine
		at the start will dispense an unlimited
		number of cards, but each room
		(including the starting room) contains
		scanners and if they detect that you
		are holding more than three security
		cards or if they detect an unattended
327	Rooms of Doom	security card on the floor, then all the
		doors will become permanently locked.
		However, each room contains a box
		where you may safely store any
		number of security cards for use at a
		later stage.
		If you simply tried to travel through
		the rooms one at a time then as you
		entered room 3 you would have used
		all three cards and would be trapped in
		that room forever!
		However, if you make use of the
		storage boxes, then escape is possible.

		We are trying to find a hidden number selected from the set of integers {1, 2,, n} by asking questions. Each number (question) we ask, has a cost equal to the number asked and we get one of
		three possible answers: "Your guess is lower than the hidden number", or "Yes, that's it!", or "Your guess is higher than the hidden
328	Lowest-cost Search	number". Given the value of n, an optimal strategy minimizes the total cost (i.e.
		the sum of all the questions asked) for the worst possible case. E.g. If n=3, the best we can do is obviously to ask the number "2". The answer will
		immediately lead us to find the hidden number (at a total cost = 2). If n=8, we might decide to use a
		"binary search" type of strategy: Our first question would be "4" and if the hidden number is higher than 4 we will
		need one or two additional questions. Let our second question be "6". If the

		1
		Susan has a prime frog.
		Her frog is jumping around over 500
		squares numbered 1 to 500. He can
		only jump one square to the left or to
		the right, with equal probability, and
		he cannot jump outside the range
		[1;500].
		(if it lands at either end, it
		automatically jumps to the only
		available square on the next move.)
		When he is on a square with a prime
		number on it, he croaks 'P' (PRIME)
329	Prime Frog	with probability 2/3 or 'N' (NOT
		PRIME) with probability 1/3 just before
		jumping to the next square.
		When he is on a square with a number
		on it that is not a prime he croaks 'P'
		with probability 1/3 or 'N' with
		probability 2/3 just before jumping to
		the next square.
		Given that the frog's starting position
		is random with the same probability
		for every square, and given that she
		listens to his first 15 croaks, what is the
		probability that she hears the

		An infinite sequence of real numbers
		a(n) is defined for all integers n as
		follows:
		a(n)=
		(
		1
		l i l
		1 1
		Σ
		i=1
330	Euler's Number	∞
330	Euler's Number	
		a(n-i)
		i!
		n<0
		n≥0
		a(n)={1n<0∑i=1∞a(n−i)i!n≥0
		For example,
		a(0) =
		1
		1!
		+
		1
		2!

		Ny N dicks are placed on a square
		N×N disks are placed on a square
		game board. Each disk has a black side
		and white side.
		At each turn, you may choose a disk
		and flip all the disks in the same row
		and the same column as this disk: thus
		2×N-1 disks are flipped. The game
		ends when all disks show their white
		side. The following example shows a
		game on a 5×5 board.
		It can be proven that 3 is the minimal
		number of turns to finish this game.
331	Cross flips	The bottom left disk on the N×N
		board has coordinates (0,0);
		the bottom right disk has coordinates
		(N-1,0) and the top left disk has
		coordinates (0,N-1).
		Let CN be the following configuration
		of a board with N×N disks:
		A disk at (x,y) satisfying
		N-1≤
		x
		2
		+
		\ \ \ \
		,

-		
		A spherical triangle is a figure formed
		on the surface of a sphere by three
		great circular arcs intersecting pairwise
		in three vertices.
		Let C(r) be the sphere with the centre
		(0,0,0) and radius r.
		Let Z(r) be the set of points on the
		surface of C(r) with integer
		coordinates.
		Let T(r) be the set of spherical triangles
		with vertices in Z(r). Degenerate
		spherical triangles, formed by three
332	Spherical triangles	points on the same great arc, are not
		included in T(r).
		Let A(r) be the area of the smallest
		spherical triangle in T(r).
		For example A(14) is 3.294040 rounded
		to six decimal places.
		Find
		Σ
		r=1
		50
		A(r)
		Σ
		. Give your answer rounded to six

		1.,, ,, ,
		All positive integers can be partitioned
		in such a way that each and every term
		of the partition can be expressed as
		2ix3j, where i,j ≥ 0.
		Let's consider only those such
		partitions where none of the terms can
		divide any of the other terms.
		For example, the partition of $17 = 2 +$
		6 + 9 = (21x30 + 21x31 + 20x32)
		would not be valid since 2 can divide 6.
		Neither would the partition $17 = 16 +$
		1 = (24x30 + 20x30) since 1 can divide
333	Special partitions	16. The only valid partition of 17 would
		be 8 + 9 = (23x30 + 20x32).
		Many integers have more than one
		valid partition, the first being 11
		having the following two partitions.
		11 = 2 + 9 = (21x30 + 20x32)
		11 = 8 + 3 = (23x30 + 20x31)
		Let's define P(n) as the number of valid
		partitions of n. For example, $P(11) = 2$.
		Let's consider only the prime integers
		q which would have a single valid
		partition such as P(17).
		The sum of the primes q <100 such

		In Plato's heaven, there exist an infinite
		number of bowls in a straight line.
		Each bowl either contains some or
		none of a finite number of beans.
		A child plays a game, which allows only
		one kind of move: removing two beans
		from any bowl, and putting one in
		each of the two adjacent bowls.
		The game ends when each bowl
		contains either one or no beans.
		For example, consider two adjacent
		bowls containing 2 and 3 beans
334	Spilling the beans	respectively, all other bowls being
		empty. The following eight moves will
		finish the game:
		You are given the following sequences:
		t
		0
		t
		i
		b
		i
		=123456,
		={
		t

335	Gathering the beans	Whenever Peter feels bored, he places some bowls, containing one bean each, in a circle. After this, he takes all the beans out of a certain bowl and drops them one by one in the bowls going clockwise. He repeats this, starting from the bowl he dropped the last bean in, until the initial situation appears again. For example with 5 bowls he acts as follows: So with 5 bowls it takes Peter 15 moves to return to the initial situation. Let M(x) represent the number of moves required to return to the initial situation, starting with x bowls. Thus, M(5) = 15. It can also be verified that M(100) = 10920. Find M(2k+1). Give your answer modulo 79.
-----	---------------------	--

		A train is used to transport four
		carriages in the order: ABCD. However,
		sometimes when the train arrives to
		collect the carriages they are not in the
		correct order.
		To rearrange the carriages they are all
		shunted on to a large rotating
		turntable. After the carriages are
		uncoupled at a specific point the train
		moves off the turntable pulling the
		carriages still attached with it. The
		remaining carriages are rotated 180
336	Maximix Arrangements	degrees. All of the carriages are then
		rejoined and this process is repeated
		as often as necessary in order to
		obtain the least number of uses of the
		turntable.
		Some arrangements, such as ADCB,
		can be solved easily: the carriages are
		separated between A and D, and after
		DCB are rotated the correct order has
		been achieved.
		However, Simple Simon, the train
		driver, is not known for his efficiency,
		so he always solves the problem by
		Let {a1, a2,, an} be an integer
		sequence of length n such that:
		a1 = 6
		for all 1 ≤ i < n : φ(ai) < φ(ai+1) < ai <
		ai+11
		Let S(N) be the number of such
337	Totient Stairstep Sequences	sequences with an ≤ N.
		For example, S(10) = 4: {6}, {6, 8}, {6, 8,
		9} and {6, 10}.
		We can verify that S(100) = 482073668
		and S(10 000) mod 108 = 73808307.
		Find S(20 000 000) mod 108.
		1 φ denotes Euler's totient function.

		A rectangular sheet of grid paper with
		integer dimensions w × h is given. Its
		grid spacing is 1.
		When we cut the sheet along the grid
		lines into two pieces and rearrange
		those pieces without overlap, we can
		make new rectangles with different
		dimensions.
		For example, from a sheet with
		dimensions 9 × 4 , we can make
		rectangles with dimensions 18×2 , 12
		\times 3 and 6 \times 6 by cutting and
338	Cutting Rectangular Grid Paper	rearranging as below:
330	catting Rectangular and ruper	rearranging as below.
		Similarly, from a sheet with dimensions
		9 × 8 , we can make rectangles with
		dimensions 18×4 and 12×6 .
		For a pair w and h, let F(w,h) be the
		number of distinct rectangles that can
		be made from a sheet with dimensions
		w × h .
		For example, $F(2,1) = 0$, $F(2,2) = 1$,
		F(9,4) = 3 and $F(9,8) = 2$.
		Note that rectangles congruent to the
		initial one are not counted in F(w,h).

-		
		"And he came towards a valley,
		through which ran a river; and the
		borders of the valley were wooded,
		and on each side of the river were level
		meadows. And on one side of the river
		he saw a flock of white sheep, and on
		the other a flock of black sheep. And
		whenever one of the white sheep
		bleated, one of the black sheep would
		cross over and become white; and
		when one of the black sheep bleated,
		one of the white sheep would cross
339	Peredur fab Efrawg	over and become black."
		en.wikisource.org
		Initially each flock consists of n sheep.
		Each sheep (regardless of colour) is
		equally likely to be the next sheep to
		bleat. After a sheep has bleated and a
		sheep from the other flock has crossed
		over, Peredur may remove a number
		of white sheep in order to maximize
		the expected final number of black
		sheep. Let E(n) be the expected final
		number of black sheep if Peredur uses
		an optimal strategy.

340	Crazy Function	For fixed integers a, b, c, define the crazy function $F(n)$ as follows: $F(n) = n - c \text{ for all } n > b$ $F(n) = F(a + F(a + F(a + F(a + n)))) \text{ for all } n \le b.$ Also, define $S(a,b,c) = \sum_{n=0}^{\infty} n = 0$ b $F(n)$ S
		. For example, if a = 50, b = 2000 and c = 40, then F(0) = 3240 and F(2000) =

		The Golomb's self-describing sequence
		(G(n))
		(
		is the only nondecreasing sequence of
		natural numbers such that
		n
		n
		appears exactly
		G(n)
		G
		times in the sequence. The values of
		G(n)
341	Golomb's self-describing sequence	G
		for the first few
		n
		n
		are
		n
		G(n)
		1
		1
		2
		2
		3
		2
		Consider the number 50.
342	The totient of a square is a cube	$502 = 2500 = 22 \times 54$, so $\varphi(2500) = 2$
		× 4 × 53 = 8 × 53 = 23 × 53. 1
		So 2500 is a square and φ(2500) is a
		cube.
		Find the sum of all numbers n, 1 < n <
		1010 such that φ(n2) is a cube.
		1 φ denotes Euler's totient function.

		For any positive integer k, a finite
		sequence ai of fractions xi/yi is defined
		by:
		a1 = 1/k and
		ai = (xi-1+1)/(yi-1-1) reduced to lowest
	Fractional Sequences	terms for i>1.
		When ai reaches some integer n, the
343		sequence stops. (That is, when yi=1.)
343		Define $f(k) = n$.
		For example, for $k = 20$:
		1/20 → 2/19 → 3/18 = 1/6 → 2/5 →
		$3/4 \rightarrow 4/3 \rightarrow 5/2 \rightarrow 6/1 = 6$
		So $f(20) = 6$.
		Also $f(1) = 1$, $f(2) = 2$, $f(3) = 1$ and
		$\sum f(k3) = 118937 \text{ for } 1 \le k \le 100.$
		Find $\sum f(k3)$ for $1 \le k \le 2 \times 106$.

		One variant of N.G. de Bruijn's silver dollar game can be described as follows:
344	Silver dollar game	On a strip of squares a number of coins are placed, at most one coin per square. Only one coin, called the silver dollar, has any value. Two players take turns making moves. At each turn a player must make either a regular or a special move. A regular move consists of selecting one coin and moving it one or more squares to the left. The coin cannot move out of the strip or jump on or over another coin. Alternatively, the player can choose to make the special move of pocketing the leftmost coin rather than making a regular move. If no regular moves are possible, the player is forced to pocket the leftmost coin. The winner is the player who pockets the silver dollar. A winning configuration is an

		Tarrest Constitution of the Constitution of th
		We define the Matrix Sum of a matrix
		as the maximum sum of matrix
		elements with each element being the
		only one in his row and column. For
		example, the Matrix Sum of the matrix
		below equals 3315 (= 863 + 383 +
		343 + 959 + 767):
		7 53 183 439 863
		497 383 563 79 973
		287 63 343 169 583
		627 343 773 959 943
		767 473 103 699 303
345	Matrix Sum	Find the Matrix Sum of:
		7 53 183 439 863 497 383 563 79
		973 287 63 343 169 583
		627 343 773 959 943 767 473 103 699
		303 957 703 583 639 913
		447 283 463 29 23 487 463 993 119
		883 327 493 423 159 743
		217 623 3 399 853 407 103 983 89
		463 290 516 212 462 350
		960 376 682 962 300 780 486 502 912
		800 250 346 172 812 350
		870 456 192 162 593 473 915 45 989
		873 823 965 425 329 803
		The number 7 is special, because 7 is
		111 written in base 2, and 11 written in
		base 6
		(i.e. $710 = 116 = 1112$). In other words,
		7 is a repunit in at least two bases b >
		1.
		We shall call a positive integer with this
346	Strong Repunits	property a strong repunit. It can be
	eareng neperme	verified that there are 8 strong
		repunits below 50:
		{1,7,13,15,21,31,40,43}.
		Furthermore, the sum of all strong
		repunits below 1000 equals 15864.
		Find the sum of all strong repunits
		below 1012.
		Delow 1012.

347	Largest integer divisible by two primes	The largest integer ≤ 100 that is only divisible by both the primes 2 and 3 is 96, as 96=32*3=25*3. For two distinct primes p and q let M(p,q,N) be the largest positive integer ≤N only divisible by both p and q and M(p,q,N)=0 if such a positive integer does not exist. E.g. M(2,3,100)=96. M(3,5,100)=75 and not 90 because 90 is divisible by 2,3 and 5. Also M(2,73,100)=0 because there does not exist a positive integer ≤ 100 that is divisible by both 2 and 73. Let S(N) be the sum of all distinct M(p,q,N). S(100)=2262. Find S(10 000 000).
348	Sum of a square and a cube	Many numbers can be expressed as the sum of a square and a cube. Some of them in more than one way. Consider the palindromic numbers that can be expressed as the sum of a square and a cube, both greater than 1, in exactly 4 different ways. For example, 5229225 is a palindromic number and it can be expressed in exactly 4 different ways: 22852 + 203 22232 + 663 18102 + 1253 11972 + 1563 Find the sum of the five smallest such palindromic numbers.

	An ant moves on a regular grid of
	squares that are coloured either black
	or white.
	The ant is always oriented in one of the
	cardinal directions (left, right, up or
	down) and moves from square to
	adjacent square according to the
	following rules:
	- if it is on a black square, it flips the
Langton's ant	colour of the square to white, rotates
	90 degrees counterclockwise and
	moves forward one square.
	- if it is on a white square, it flips the
	colour of the square to black, rotates
	90 degrees clockwise and moves
	forward one square.
	Starting with a grid that is entirely
	white, how many squares are black
	after 1018 moves of the ant?
	Langton's ant

350	aining the least greatest and the greates	A list of size n is a sequence of n natural numbers. Examples are $(2,4,6)$, $(2,6,4)$, $(10,6,15,6)$, and (11) . The greatest common divisor, or gcd, of a list is the largest natural number that divides all entries of the list. Examples: $gcd(2,6,4) = 2$, $gcd(10,6,15,6) = 1$ and $gcd(11) = 11$. The least common multiple, or lcm, of a list is the smallest natural number divisible by each entry of the list. Examples: $lcm(2,6,4) = 12$, $lcm(10,6,15,6) = 30$ and $lcm(11) = 11$. Let $f(G, L, N)$ be the number of lists of size N with $gcd \ge G$ and $lcm \le L$. For example: $f(10, 100, 1) = 91$. $f(10, 100, 2) = 327$. $f(10, 100, 3) = 1135$. $f(10, 100, 1000)$ mod $1014 = 3286053$. Find $f(106, 1012, 1018)$ mod 1014 .
-----	---	---

		A hexagonal orchard of order n is a triangular lattice made up of points within a regular hexagon with side n. The following is an example of a hexagonal orchard of order 5:
		Highlighted in green are the points which are hidden from the center by a
351	Hexagonal orchards	point closer to it. It can be seen that
		for a hexagonal orchard of order 5, 30
		points are hidden from the center.
		Let H(n) be the number of points
		hidden from the center in a hexagonal
		orchard of order n.
		H(5) = 30. H(10) = 138. H(1 000) =
		1177848.
		Find H(100 000 000).

		Each one of the 25 sheep in a flock must be tested for a rare virus, known to affect 2% of the sheep population. An accurate and extremely sensitive PCR test exists for blood samples, producing a clear positive / negative result, but it is very time-consuming and expensive.
		Because of the high cost, the vet-in- charge suggests that instead of
		performing 25 separate tests, the
		following procedure can be used
352	Blood tests	instead:
		The sheep are split into 5 groups of 5
		sheep in each group. For each group,
		the 5 samples are mixed together and a single test is performed. Then,
		If the result is negative, all the sheep in
		that group are deemed to be virus-
		free.
		If the result is positive, 5 additional
		tests will be performed (a separate test
		for each animal) to determine the
		affected individual(s).

		A magan sould be described by the
		A moon could be described by the
		sphere
		C(r)
		С
		with centre
		(0,0,0)
		(
		and radius
		r
		r
		There are stations on the moon at the
353	Risky moon	points on the surface of
		C(r)
		С
		with integer coordinates. The station at
		(0,0,r)
		(
		is called North Pole station, the station
		at
		(0,0,-r)
		(
		is called South Pole station.
		All stations are connected with each
		other via the shortest road on the

354	Distances in a bee's honeycomb	Consider a honey bee's honeycomb where each cell is a perfect regular hexagon with side length 1 1 . One particular cell is occupied by the queen bee. For a positive real number L L , let B(L) B count the cells with distance L L from the queen bee cell (all distances are measured from centre to centre); you may assume that the honeycomb is large enough to accommodate for any distance we wish to consider. For example, B(3
		3 Define Co(n) to be the maximal
355	Maximal coprime subset	possible sum of a set of mutually coprime elements from {1, 2,, n}. For example Co(10) is 30 and hits that maximum on the subset {1, 5, 7, 8, 9}. You are given that Co(30) = 193 and Co(100) = 1356. Find Co(200000).

		<u> </u>
356	Largest roots of cubic polynomials	Let an be the largest real root of a polynomial $g(x) = x3 - 2n \cdot x2 + n$. For example, $a2 = 3.86619826$ Find the last eight digits of $\sum_{i=1}^{30} i=1$ a 987654321 i j $\sum_{i=1}^{30} i$ l a 987654321 i j i j i $represents the floor function.$
357	Prime generating integers	Consider the divisors of 30: 1,2,3,5,6,10,15,30. It can be seen that for every divisor d of 30, d+30/d is prime. Find the sum of all positive integers n not exceeding 100 000 000 such that for every divisor d of n, d+n/d is prime.

		A cyclic number with n digits has a
		very interesting property:
		When it is multiplied by 1, 2, 3, 4, n,
		all the products have exactly the same
		digits, in the same order, but rotated in
		a circular fashion!
		The smallest cyclic number is the 6-
		digit number 142857 :
		142857 × 1 = 142857
		142857 × 2 = 285714
		142857 × 3 = 428571
		142857 × 4 = 571428
358	Cyclic numbers	142857 × 5 = 714285
		142857 × 6 = 857142
		The next cyclic number is
		0588235294117647 with 16 digits :
		0588235294117647 × 1 =
		0588235294117647
		0588235294117647 × 2 =
		1176470588235294
		0588235294117647 × 3 =
		1764705882352941
		0588235294117647 × 16 =
		9411764705882352

		An infinite number of records
		An infinite number of people
		(numbered 1, 2, 3, etc.) are lined up to
		get a room at Hilbert's newest infinite
		hotel. The hotel contains an infinite
		number of floors (numbered 1, 2, 3,
		etc.), and each floor contains an infinite
		number of rooms (numbered 1, 2, 3,
		etc.).
		Initially the hotel is empty. Hilbert
		declares a rule on how the nth person
		is assigned a room: person n gets the
		first vacant room in the lowest
359	Hilbert's New Hotel	numbered floor satisfying either of the
		following:
		the floor is empty
		the floor is not empty, and if the latest
		person taking a room in that floor is
		person m, then m + n is a perfect
		square
		Person 1 gets room 1 in floor 1 since
		floor 1 is empty.
		Person 2 does not get room 2 in floor
		1 since 1 + 2 = 3 is not a perfect
		square.
		Person 2 instead gets room 1 in floor 2
		Given two points (x1,y1,z1) and
		(x2,y2,z2) in three dimensional space,
		the Manhattan distance between those
		points is defined as
		x1-x2 + y1-y2 + z1-z2 .
		Let C(r) be a sphere with radius r and
		center in the origin O(0,0,0).
360	Scary Sphere	Let I(r) be the set of all points with
		integer coordinates on the surface of
		C(r).
		Let S(r) be the sum of the Manhattan
		distances of all elements of I(r) to the
		origin O.
		E.g. S(45)=34518.
		Find S(1010).
		5(1010).

		The Thue-Morse sequence {Tn} is a
		binary sequence satisfying:
		TO = 0
		T2n = Tn
		T2n+1 = 1 - Tn
		The first several terms of {Tn} are given
		as follows:
		0110100110010110100101100110100
		1
		We define {An} as the sorted sequence
		of integers such that the binary
		expression of each element appears as
361	Subsequence of Thue-Morse sequence	a subsequence in {Tn}.
		For example, the decimal number 18 is
		expressed as 10010 in binary. 10010
		appears in {Tn} (T8 to T12), so 18 is an
		element of {An}.
		The decimal number 14 is expressed as
		1110 in binary. 1110 never appears in
		{Tn}, so 14 is not an element of {An}.
		The first several terms of An are given
		as follows:
		n 0 1 2 3 4 5 6 7 8 9 10 11 12
		An 0 1 2 3 4 5 6 9 10 11 12 13 18
		We can also verify that A100 = 3251

362	Squarefree factors	Consider the number 54. 54 can be factored in 7 distinct ways into one or more factors larger than 1: 54, 2×27 , 3×18 , 6×9 , $3 \times 3 \times 6$, $2 \times 3 \times 9$ and $2 \times 3 \times 3 \times 3$. If we require that the factors are all squarefree only two ways remain: $3 \times 3 \times 6$ and $2 \times 3 \times 3 \times 3$. Let's call Fsf(n) the number of ways n can be factored into one or more squarefree factors larger than 1, so Fsf(54)=2. Let S(n) be \sum Fsf(k) for k=2 to n. S(100)=193. Find S(10 000 000 000).

		A cubic Bézier curve is defined by four
		points: P0, P1, P2 and P3.
		The curve is constructed as follows:
		On the segments P0P1, P1P2 and P2P3
		the points Q0,Q1 and Q2 are drawn
		such that
		P0Q0 / P0P1 = P1Q1 / P1P2 = P2Q2 /
		P2P3 = t (t in [0,1]).
		On the segments Q0Q1 and Q1Q2 the
		points R0 and R1 are drawn such that
		Q0R0 / Q0Q1 = Q1R1 / Q1Q2 = t for
		the same value of t.
363	Bézier Curves	On the segment R0R1 the point B is
		drawn such that R0B / R0R1 = t for the
		same value of t.
		The Bézier curve defined by the points
		P0, P1, P2, P3 is the locus of B as Q0
		takes all possible positions on the
		segment P0P1.
		(Please note that for all points the
		value of t is the same.)
		At this (external) web address you will
		find an applet that allows you to drag
		the points P0, P1, P2 and P3 to see
		what the Bézier curve (green curve)

364 Comfortable distance	There are N seats in a row. N people come after each other to fill the seats according to the following rules: If there is any seat whose adjacent seat(s) are not occupied take such a seat. If there is no such seat and there is any seat for which only one adjacent seat is occupied take such a seat. Otherwise take one of the remaining available seats. Let T(N) be the number of possibilities that N seats are occupied by N people with the given rules. The following figure shows T(4)=8. We can verify that T(10) = 61632 and T(1 000) mod 100 000 007 = 47255094. Find T(1 000 000) mod 100 000 007.
--------------------------	---

		The binomial coefficient
		(
	10	
		18
		10
		9
)
		(
		is a number with more than 9 billion (
		9×
		10
		9
365	A huge binomial coefficient	9
) digits.
		Let
		M(n,k,m)
		M
		denote the binomial coefficient
		(
		n
		k
)
		(
		modulo
		m

		Two players Anton and Dambard are
		Two players, Anton and Bernhard, are
		playing the following game.
		There is one pile of n stones.
		The first player may remove any
		positive number of stones, but not the
		whole pile.
		Thereafter, each player may remove at
		most twice the number of stones his
		opponent took on the previous move.
		The player who removes the last stone
		wins.
		E.g. n=5
366	Stone Game III	If the first player takes anything more
		than one stone the next player will be
		able to take all remaining stones.
		If the first player takes one stone,
		leaving four, his opponent will take
		also one stone, leaving three stones.
		The first player cannot take all three
		because he may take at most 2x1=2
		stones. So let's say he takes also one
		stone, leaving 2. The second player can
		take the two remaining stones and
		wins.
		So 5 is a losing position for the first

		D
		Bozo sort, not to be confused with the
		slightly less efficient bogo sort,
		consists out of checking if the input
		sequence is sorted and if not swapping
		randomly two elements. This is
		repeated until eventually the sequence
		is sorted.
		If we consider all permutations of the
		first 4 natural numbers as input the
		expectation value of the number of
		swaps, averaged over all 4! input
		sequences is 24.75.
367	Bozo sort	The already sorted sequence takes 0
		steps.
		In this problem we consider the
		following variant on bozo sort.
		If the sequence is not in order we pick
		three elements at random and shuffle
		these three elements randomly.
		All 3!=6 permutations of those three
		elements are equally likely.
		The already sorted sequence will take 0
		steps.
		If we consider all permutations of the
		first 4 natural numbers as input the

		The harmonic series
		1+
		1
		2
		+
		1
		3
		+
		1
		4
		+
		1
368	A Kempner-like series	is well known to be divergent.
		If we however omit from this series
		every term where the denominator has
		a 9 in it, the series remarkably enough
		converges to approximately
		22.9206766193.
		This modified harmonic series is called
		the Kempner series.
		Let us now consider another modified
		harmonic series by omitting from the
		harmonic series every term where the
		denominator has 3 or more equal
		consecutive digits. One can verify that
		consecutive argues. One can verify that
	Badugi	In a standard 52 card deck of playing
		cards, a set of 4 cards is a Badugi if it
		contains 4 cards with no pairs and no
		two cards of the same suit.
369		Let f(n) be the number of ways to
		choose n cards with a 4 card subset
		that is a Badugi. For example, there are
		2598960 ways to choose five cards
		from a standard 52 card deck, of which
		514800 contain a 4 card subset that is
		a Badugi, so f(5) = 514800.
		Find $\sum f(n)$ for $4 \le n \le 13$.

	,	
370	Geometric triangles	Let us define a geometric triangle as an integer sided triangle with sides $a \le b \le c$ so that its sides form a geometric progression, i.e. $b2 = a \cdot c$. An example of such a geometric triangle is the triangle with sides $a = 144$, $b = 156$ and $c = 169$. There are 861805 geometric triangles with perimeter ≤ 106 . How many geometric triangles exist with perimeter $\le 2.5 \cdot 1013$?
371	Licence plates	Oregon licence plates consist of three letters followed by a three digit number (each digit can be from [09]). While driving to work Seth plays the following game: Whenever the numbers of two licence plates seen on his trip add to 1000 that's a win. E.g. MIC-012 and HAN-988 is a win and RYU-500 and SET-500 too. (as long as he sees them in the same trip). Find the expected number of plates he needs to see for a win. Give your answer rounded to 8 decimal places behind the decimal point. Note: We assume that each licence plate seen is equally likely to have any three digit number on it.

		<u> </u>
		Let
		R(M,N)
		R
		be the number of lattice points
		(x,y)
		(
		which satisfy
		M <x≤n< td=""></x≤n<>
		M
		,
		M <y≤n< td=""></y≤n<>
		М
372	Pencils of rays	and
	,	L
		y
		2
		X
		2
		I
		<u>.</u> I
		is odd.
		We can verify that
		R(0,100)=3019
		R
		and
		Every triangle has a circumscribed
		circle that goes through the three
		vertices. Consider all integer sided
		triangles for which the radius of the
373		_
	Circumscribed Circles	circumscribed circle is integral as well. Let S(n) be the sum of the radii of the
	Circumscribed Circles	circumscribed circles of all such
		triangles for which the radius does not exceed n.
		S(100)=4950 and S(1200)=1653605.
		Find S(107).

		An integer partition of a number n is a
		way of writing n as a sum of positive
		integers.
		Partitions that differ only in the order
		of their summands are considered the
		same. A partition of n into distinct
		parts is a partition of n in which every
		part occurs at most once.
		The partitions of 5 into distinct parts
		are:
		5, 4+1 and 3+2.
		Let f(n) be the maximum product of
374	Maximum Integer Partition Product	the parts of any such partition of n into
		distinct parts and let m(n) be the
		number of elements of any such
		partition of n with that product.
		So f(5)=6 and m(5)=2.
		For n=10 the partition with the largest
		product is 10=2+3+5, which gives
		f(10)=30 and m(10)=3.
		And their product, $f(10) \cdot m(10) = 30.3 =$
		90
		It can be verified that
		$\sum f(n) \cdot m(n) \text{ for } 1 \le n \le 100 =$
		1683550844462.

1					
		Let			
		S			
		n			
		S			
	be an integer sequence produced with				
		the following pseudo-random number			
		generator:			
		S			
		0			
		S			
		n+1			
		=290797			
375	Minimum of subsequences	=			
	·	S			
		2			
		n			
		mod50515093			
		S0=290797Sn+1=Sn2mod50515093			
		Let			
		A(i,j)			
		A			
		be the minimum of the numbers			
		S			
		i			
		·			
		1			

		Consider the following set of dice with
		nonstandard pips:
		Die A: 1 4 4 4 4 4
		Die B: 2 2 2 5 5 5
		Die C: 3 3 3 3 6
		A game is played by two players
		picking a die in turn and rolling it. The
		player who rolls the highest value wins.
		If the first player picks die A and the
		second player picks die B we get
		P(second player wins) = 7/12 > 1/2
		If the first player picks die B and the
376	Nontransitive sets of dice	second player picks die C we get
		P(second player wins) = 7/12 > 1/2
		If the first player picks die C and the
		second player picks die A we get
		P(second player wins) = 25/36 > 1/2
		So whatever die the first player picks,
		the second player can pick another die
		and have a larger than 50% chance of
		winning.
		A set of dice having this property is
		called a nontransitive set of dice.
		We wish to investigate how many sets
		of nontransitive dice exist. We will

377	Sum of digits, experience 13	There are 16 positive integers that do not have a zero in their digits and that have a digital sum equal to 5, namely: 5, 14, 23, 32, 41, 113, 122, 131, 212, 221, 311, 1112, 1121, 1211, 2111 and 11111. Their sum is 17891. Let f(n) be the sum of all positive integers that do not have a zero in their digits and have a digital sum equal to n. Find \[\Sigma i = 1 \\ 17 \\ f(\\ 13 \\ i \\) \[\Sigma \] Give the last 9 digits as your answer.
378	Triangle Triples	Let T(n) be the nth triangle number, so $T(n) = n (n+1)$ 2 . Let dT(n) be the number of divisors of $T(n).$ E.g.: T(7) = 28 and dT(7) = 6. Let Tr(n) be the number of triples (i, j, k) such that $1 \le i < j < k \le n$ and dT(i) $> dT(j) > dT(k).$ $Tr(20) = 14, Tr(100) = 5772 \text{ and}$ $Tr(1000) = 11174776.$ Find Tr(60 000 000). Give the last 18 digits of your answer.

	379	Least common multiple count	Let $f(n)$ be the number of couples (x,y) with x and y positive integers, $x \le y$ and the least common multiple of x and y equal to y . Let y be the summatory function of y , i.e.: y
•	380	Amazing Mazes!	An m×n maze is an m×n rectangular grid with walls placed between grid cells such that there is exactly one path from the top-left square to any other square. The following are examples of a 9×12 maze and a 15×20 maze: Let C(m,n) be the number of distinct m×n mazes. Mazes which can be formed by rotation and reflection from another maze are considered distinct. It can be verified that C(1,1) = 1, C(2,2) = 4, C(3,4) = 2415, and C(9,12) = 2.5720e46 (in scientific notation rounded to 5 significant digits). Find C(100,500) and write your answer in scientific notation rounded to 5 significant digits. When giving your answer, use a lowercase e to separate mantissa and exponent. E.g. if the answer is 1234567891011 then the answer format would be 1.2346e12.

		For a prime p let $S(p) = (\sum (p-k)!)$			
		$mod(p)$ for $1 \le k \le 5$.			
		For example, if p=7,			
		(7-1)! + (7-2)! + (7-3)! + (7-4)! + (7-5)!			
381	(prime k) festerial	= 6! + 5! + 4! + 3! + 2! =			
301	(prime-k) factorial	720+120+24+6+2 = 872.			
		As 872 mod(7) = 4, S(7) = 4.			
		It can be verified that $\sum S(p) = 480$ for			
		5 ≤ p < 100.			
		Find $\sum S(p)$ for $5 \le p < 108$.			
		A polygon is a flat shape consisting of			
		straight line segments that are joined			
		to form a closed chain or circuit. A			
		polygon consists of at least three sides			
		and does not self-intersect.			
		A set S of positive numbers is said to			
		generate a polygon P if:			
		no two sides of P are the same length,			
		the length of every side of P is in S,			
		and			
		the length of every side of P is in S,			
		and			
382	Generating polygons	· ·			
		with sides 3, 4, and 5 (a triangle).			
		The set {6, 9, 11, 24} generates a			
		polygon with sides 6, 9, 11, and 24 (a			
		quadrilateral).			
		The sets {1, 2, 3} and {2, 3, 4, 9} do not			
		generate any polygon at all.			
		Consider the sequence s, defined as			
		follows:			
		s1 = 1, s2 = 2, s3 = 3			
		sn = sn-1 + sn-3 for n > 3.			
		Let Un be the set {s1, s2,, sn}. For			
		example, U10 = {1, 2, 3, 4, 6, 9, 13, 19,			

	1	ı								
		Let	f5(n)			_		_	er x fo	or
383				whi	ch 5>	k div	ides	n.		
		For example, f5(625000) = 7.								
		Let T5(n) be the number of integers i								
	Pivisibility comparison between factorial	which satisfy f5((2·i-1)!) < 2·f5(i!) and 1								
		≤ i ≤ n.								
		It can be verified that $T5(103) = 68$ and $T5(109) = 2408210$.								
				-	-			10.		
				Fi	nd T	5(10	18).			
			efine		•					
			number of adjacent pairs of ones in							
		the	bina	•	•			ı (pc	ssib	ly
						appii	•			
		E.g.:							a(11	02)
		_			. ,	a(1	•			
			ine t		•					
		Ih	is se	•					udın	-
			Shapiro sequence. Also consider the summatory							
		1								
		sequence of b(n):								
384	Pudin Chanira caguanca					(n)=				
304	Rudin-Shapiro sequence					Σ				
		i=0								
					ı	n b(i)				
					,	S (1)				
						3				
		l _{Th}	e firs	t coi	unle	of v	alue	s of	these	ے ا
		'''	C 11112		•	nces			ci ies	
		n	0	1	2	3	4	5	6	7
		a(n)	0	0	0		0	0	1	2
		b(n)		1	1	-1	1	1	-1	1
			1	2	3	2	3	4	3	4
		The :	sequ	ence	s(n)) has	the	rem	arka	ble

385	Ellipses inside triangles	For any triangle T in the plane, it can be shown that there is a unique ellipse with largest area that is completely inside T. For a given n, consider triangles T such that: - the vertices of T have integer coordinates with absolute value ≤ n, and - the foci1 of the largest-area ellipse inside T are (√13,0) and (-√13,0). Let A(n) be the sum of the areas of all such triangles. For example, if n = 8, there are two such triangles. Their vertices are (-4,-3),(-4,3),(8,0) and (4,3),(4,-3),(-8,0), and the area of each triangle is 36. Thus A(8) = 36 + 36 = 72. It can be verified that A(10) = 252, A(100) = 34632 and A(1000) = 3529008. Find A(1 000 000 000). 1The foci (plural of focus) of an ellipse are two points A and B such that for every point P on the boundary of the
386	Maximum length of an antichain	Let n be an integer and S(n) be the set of factors of n. A subset A of S(n) is called an antichain of S(n) if A contains only one element or if none of the elements of A divides any of the other elements of A. For example: S(30) = {1, 2, 3, 5, 6, 10, 15, 30} {2, 5, 6} is not an antichain of S(30). {2, 3, 5} is an antichain of S(30). Let N(n) be the maximum length of an antichain of S(n). Find ∑N(n) for 1 ≤ n ≤ 108

		A Lloughood on Nivers reversity of			
		A Harshad or Niven number is a			
		number that is divisible by the sum of			
		its digits.			
		201 is a Harshad number because it is			
		divisible by 3 (the sum of its digits.)			
		When we truncate the last digit from			
		201, we get 20, which is a Harshad			
		number.			
		When we truncate the last digit from			
		20, we get 2, which is also a Harshad			
		number.			
		Let's call a Harshad number that, while			
387	Harshad Numbers	recursively truncating the last digit,			
		always results in a Harshad number a			
		right truncatable Harshad number.			
		recursively truncating the last digit, always results in a Harshad number a right truncatable Harshad number. Also: 201/3=67 which is prime. Let's call a Harshad number that, when divided by the sum of its digits, results in a prime a strong Harshad number. Now take the number 2011 which is			
		· '			
		in a prime a strong Harshad number.			
		'			
		I -			
		I			
		' '			
		I -			
		number. When we truncate the last digit from 20, we get 2, which is also a Harshad number. Let's call a Harshad number that, while recursively truncating the last digit, always results in a Harshad number a right truncatable Harshad number. Also: 201/3=67 which is prime. Let's call a Harshad number that, when divided by the sum of its digits, results in a prime a strong Harshad number.			
200	Distinct Lines	` '			
388	Distinct Lines				
		I - I			
		nine digits.			

		An unbiased single 4-sided die is
	thrown and its value, T, is noted.	
		T unbiased 6-sided dice are thrown
		and their scores are added together.
		The sum, C, is noted.
		C unbiased 8-sided dice are thrown
		and their scores are added together.
200	Platavia Dias	The sum, O, is noted.
389	Platonic Dice	O unbiased 12-sided dice are thrown
		and their scores are added together.
		The sum, D, is noted.
		D unbiased 20-sided dice are thrown
		and their scores are added together.
		The sum, I, is noted.
		Find the variance of I, and give your
		answer rounded to 4 decimal places.

		Consider the triangle with sides
		5
		_
		\checkmark
		5
		, 65
		03
		_
		\checkmark
		65
		and
390	gles with non rational sides and integral	68
		-
		_
		\checkmark
		68
		. It can be shown that this triangle has
		area
		9
		9
		·
		S(n)
		S
		is the sum of the areas of all triangles

		Let sk be the number of 1's when
		writing the numbers from 0 to k in
		binary.
		For example, writing 0 to 5 in binary,
		we have 0, 1, 10, 11, 100, 101. There
		are seven 1's, so s5 = 7.
		The sequence $S = \{sk : k \ge 0\}$ starts $\{0, \}$
		1, 2, 4, 5, 7, 9, 12,}.
		A game is played by two players.
		Before the game starts, a number n is
		chosen. A counter c starts at 0. At each
		turn, the player chooses a number
391	Hopping Game	from 1 to n (inclusive) and increases c
		by that number. The resulting value of
		c must be a member of S. If there are
		no more valid moves, the player loses.
		For example:
		Let n = 5. c starts at 0.
		Player 1 chooses 4, so c becomes 0 + 4
		= 4.
		Player 2 chooses 5, so c becomes 4 + 5
		= 9.
		Player 1 chooses 3, so c becomes 9 + 3
		= 12.
		etc.

		A roctilingar grid is an authoronal axid
		' '
		A rectilinear grid is an orthogonal grid where the spacing between the gridlines does not have to be equidistant. An example of such grid is logarithmic graph paper. Consider rectilinear grids in the Cartesian coordinate system with the following properties: The gridlines are parallel to the axes of the Cartesian coordinate system. There are N+2 vertical and N+2 horizontal gridlines. Hence there are (N+1) x (N+1) rectangular cells. The equations of the two outer vertical gridlines are x = -1 and x = 1. The equations of the two outer horizontal gridlines are y = -1 and y = 1. The grid cells are colored red if they overlap with the unit circle, black otherwise. For this problem we would like you to find the positions of the remaining N inner horizontal and N inner vertical An n×n grid of squares contains n2 ants, one ant per square. All ants decide to move simultaneously
		'
		, , , , , , , , , , , , , , , , , , , ,
		· ·
		_ · ·
		· I
392	Enmeshed unit circle	horizontal gridlines. Hence there are
		equidistant. An example of such grid is logarithmic graph paper. Consider rectilinear grids in the Cartesian coordinate system with the following properties: The gridlines are parallel to the axes of the Cartesian coordinate system. There are N+2 vertical and N+2 horizontal gridlines. Hence there are (N+1) x (N+1) rectangular cells. The equations of the two outer vertical gridlines are x = -1 and x = 1. The equations of the two outer horizontal gridlines are y = -1 and y = 1. The grid cells are colored red if they overlap with the unit circle, black otherwise. For this problem we would like you to find the positions of the remaining N inner horizontal and N inner vertical An n×n grid of squares contains n2 ants, one ant per square.
		gridlines are $x = -1$ and $x = 1$.
		gridlines does not have to be equidistant. An example of such grid is logarithmic graph paper. Consider rectilinear grids in the Cartesian coordinate system with the following properties: The gridlines are parallel to the axes of the Cartesian coordinate system. There are N+2 vertical and N+2 horizontal gridlines. Hence there are (N+1) x (N+1) rectangular cells. The equations of the two outer vertical gridlines are x = -1 and x = 1. The equations of the two outer horizontal gridlines are y = -1 and y = 1. The grid cells are colored red if they overlap with the unit circle, black otherwise. For this problem we would like you to find the positions of the remaining N inner horizontal and N inner vertical An n×n grid of squares contains n2 ants, one ant per square. All ants decide to move simultaneously to an adjacent square (usually 4 possibilities, except for ants on the edge of the grid or at the corners). We define f(n) to be the number of
		horizontal gridlines are $y = -1$ and $y =$
		1.
		The grid cells are colored red if they
		overlap with the unit circle, black
		horizontal gridlines are y = -1 and y = 1. The grid cells are colored red if they overlap with the unit circle, black otherwise. For this problem we would like you to find the positions of the remaining N
		For this problem we would like you to
		inner horizontal and N inner vertical
		An n×n grid of squares contains n2
		'
		1
		1
		where the spacing between the gridlines does not have to be equidistant. An example of such grid is logarithmic graph paper. Consider rectilinear grids in the Cartesian coordinate system with the following properties: The gridlines are parallel to the axes of the Cartesian coordinate system. There are N+2 vertical and N+2 horizontal gridlines. Hence there are (N+1) x (N+1) rectangular cells. The equations of the two outer vertical gridlines are x = -1 and x = 1. The equations of the two outer horizontal gridlines are y = -1 and y = 1. The grid cells are colored red if they overlap with the unit circle, black otherwise. For this problem we would like you to find the positions of the remaining N inner horizontal and N inner vertical An n×n grid of squares contains n2 ants, one ant per square. All ants decide to move simultaneously to an adjacent square (usually 4 possibilities, except for ants on the edge of the grid or at the corners). We define f(n) to be the number of ways this can happen without any ants ending on the same square and without any two ants crossing the
		edge of the grid or at the corners).
393	Migrating ants	We define f(n) to be the number of
		ways this can happen without any ants
		ending on the same square and
		without any two ants crossing the
		Find f(10).
		1

		1
		Jeff eats a pie in an unusual way.
		The pie is circular. He starts with slicing
		an initial cut in the pie along a radius.
		While there is at least a given fraction F
		of pie left, he performs the following
		procedure:
		- He makes two slices from the pie
		centre to any point of what is
		remaining of the pie border, any point
		on the remaining pie border equally
		likely. This will divide the remaining pie
		into three pieces.
394	Eating pie	- Going counterclockwise from the
		initial cut, he takes the first two pie
		pieces and eats them.
		When less than a fraction F of pie
		remains, he does not repeat this
		procedure. Instead, he eats all of the
		remaining pie.
		For $x \ge 1$, let E(x) be the expected
		number of times Jeff repeats the
		procedure above with F = 1/x.
		It can be verified that E(1) = 1, E(2) ≈
		1.2676536759, and E(7.5) ≈
		2.1215732071.

		The Pythagorean tree is a fractal
		1 ' "
		generated by the following procedure:
		Start with a unit square. Then, calling
		one of the sides its base (in the
		animation, the bottom side is the
		base):
		Attach a right triangle to the side
		opposite the base, with the
		hypotenuse coinciding with that side
		and with the sides in a 3-4-5 ratio.
		Note that the smaller side of the
		triangle must be on the 'right' side
395	Pythagorean tree	with respect to the base (see
		animation).
		Attach a square to each leg of the right
		triangle, with one of its sides
		coinciding with that leg.
		Repeat this procedure for both
		squares, considering as their bases the
		sides touching the triangle.
		1
		The resulting figure, after an infinite
		number of iterations, is the
		Pythagorean tree.
		It can be shown that there exists at
		least one rectangle, whose sides are

		1
		For any positive integer n, the nth
		weak Goodstein sequence {g1, g2, g3,
		} is defined as:
		g1 = n
		for k > 1, gk is obtained by writing gk-
		1 in base k, interpreting it as a base k
		+ 1 number, and subtracting 1.
		The sequence terminates when gk
		becomes 0.
		For example, the 6th weak Goodstein
		sequence is {6, 11, 17, 25,}:
		g1 = 6.
396	Weak Goodstein sequence	g2 = 11 since 6 = 1102, 1103 = 12,
	·	and 12 - 1 = 11.
		g3 = 17 since 11 = 1023, 1024 = 18,
		and 18 - 1 = 17.
		g4 = 25 since 17 = 1014, 1015 = 26,
		and 26 - 1 = 25.
		and so on.
		It can be shown that every weak
		Goodstein sequence terminates.
		Let G(n) be the number of nonzero
		elements in the nth weak Goodstein
		sequence.
		It can be verified that $G(2) = 3$, $G(4) =$
		On the parabola $y = x2/k$, three points
	Triangle on parabola	A(a, a2/k), B(b, b2/k) and C(c, c2/k) are
		chosen.
		Let F(K, X) be the number of the
397		integer quadruplets (k, a, b, c) such
		that at least one angle of the triangle
		ABC is 45-degree, with $1 \le k \le K$ and -
		X ≤ a < b < c ≤ X.
		For example, $F(1, 10) = 41$ and $F(10, 10)$
		100) = 12492.
		Find F(106, 109).
		1 111d 1 (100, 103).

398 Cutting rope	Inside a rope of length n, n-1 points are placed with distance 1 from each other and from the endpoints. Among these points, we choose m-1 points at random and cut the rope at these points to create m segments. Let E(n, m) be the expected length of the second-shortest segment. For example, E(3, 2) = 2 and E(8, 3) = 16/7. Note that if multiple segments have the same shortest length the length of the second-shortest segment is defined as the same as the shortest length. Find E(107, 100). Give your answer rounded to 5 decimal places behind the decimal point.
------------------	--

		The first 15 fibonacci numbers are:
		1,1,2,3,5,8,13,21,34,55,89,144,233,377,6
		10.
		It can be seen that 8 and 144 are not
		squarefree: 8 is divisible by 4 and 144
		is divisible by 4 and by 9.
		So the first 13 squarefree fibonacci
		numbers are:
		1,1,2,3,5,13,21,34,55,89,233,377 and
		610.
		The 200th squarefree fibonacci
		number is:
399	Squarefree Fibonacci Numbers	9711838745993391295476499882895
		94072811608739584170445.
		The last sixteen digits of this number
		are: 1608739584170445 and in
		scientific notation this number can be
		written as 9.7e53.
		Find the 100 000 000th squarefree
		fibonacci number.
		Give as your answer its last sixteen
		digits followed by a comma followed
		by the number in scientific notation
		(rounded to one digit after the decimal
		point).

		A Fibonacci tree is a binary tree recursively defined as: T(0) is the empty tree. T(1) is the binary tree with only one
400	Fibonacci tree game	node. T(k) consists of a root node that has T(k-1) and T(k-2) as children. On such a tree two players play a takeaway game. On each turn a player selects a node and removes that node along with the subtree rooted at that node. The player who is forced to take the root node of the entire tree loses. Here are the winning moves of the first player on the first turn for T(k) from k=1 to k=6. Let f(k) be the number of winning moves of the first player (i.e. the moves for which the second player has no winning strategy) on the first turn of the game when this game is played on T(k). For example, f(5) = 1 and f(10) = 17.
		Find f(10000). Give the last 18 digits of
401	Sum of squares of divisors	The divisors of 6 are 1,2,3 and 6. The sum of the squares of these numbers is 1+4+9+36=50. Let sigma2(n) represent the sum of the squares of the divisors of n. Thus sigma2(6)=50. Let SIGMA2 represent the summatory function of sigma2, that is SIGMA2(n)=∑ sigma2(i) for i=1 to n. The first 6 values of SIGMA2 are: 1,6,16,37,63 and 113. Find SIGMA2(1015) modulo 109.

		1
402	Integer-valued polynomials	It can be shown that the polynomial n4 $+ 4n3 + 2n2 + 5n$ is a multiple of 6 for every integer n. It can also be shown that 6 is the largest integer satisfying this property. Define M(a, b, c) as the maximum m such that n4 + an3 + bn2 + cn is a multiple of m for all integers n. For example, M(4, 2, 5) = 6. Also, define S(N) as the sum of M(a, b, c) for all $0 < a$, b, $c \le N$. We can verify that S(10) = 1972 and S(10000) = 2024258331114. Let Fk be the Fibonacci sequence: $F0 = 0, F1 = 1 \text{ and}$ $Fk = Fk-1 + Fk-2 \text{ for } k \ge 2.$ Find the last 9 digits of $\sum S(Fk)$ for $2 \le k \le 1234567890123$.
403	ttice points enclosed by parabola and lii	For integers a and b, we define D(a, b) as the domain enclosed by the parabola $y = x2$ and the line $y = a \cdot x + b$: $D(a, b) = \{ (x, y) \mid x2 \le y \le a \cdot x + b \}.$ $L(a, b) \text{ is defined as the number of lattice points contained in D(a, b).}$ For example, L(1, 2) = 8 and L(2, -1) = 1. We also define S(N) as the sum of L(a, b) for all the pairs (a, b) such that the area of D(a, b) is a rational number and $ a , b \le N$. We can verify that S(5) = 344 and S(100) = 26709528. Find S(1012). Give your answer mod 108.

404	Crisscross Ellipses	Ea is an ellipse with an equation of the form x2 + 4y2 = 4a2. Ea' is the rotated image of Ea by θ degrees counterclockwise around the origin O(0, 0) for 0° < θ < 90°. b is the distance to the origin of the two intersection points closest to the origin and c is the distance of the two other intersection points. We call an ordered triplet (a, b, c) a canonical ellipsoidal triplet if a, b and c are positive integers. For example, (209, 247, 286) is a canonical ellipsoidal triplet. Let C(N) be the number of distinct canonical ellipsoidal triplets (a, b, c) for a ≤ N. It can be verified that C(103) = 7, C(104) = 106 and C(106) = 11845. Find C(1017).
405	A rectangular tiling	We wish to tile a rectangle whose length is twice its width. Let T(0) be the tiling consisting of a single rectangle. For n > 0, let T(n) be obtained from T(n-1) by replacing all tiles in the following manner: The following animation demonstrates the tilings T(n) for n from 0 to 5: Let f(n) be the number of points where four tiles meet in T(n). For example, f(1) = 0, f(4) = 82 and f(109) mod 177 = 126897180. Find f(10k) for k = 1018, give your answer modulo 177.

		We are trying to find a hidden number
		selected from the set of integers {1, 2,
		, n} by asking questions. Each number
		(question) we ask, we get one of three
		possible answers:
		"Your guess is lower than the hidden
		number" (and you incur a cost of a), or
		"Your guess is higher than the hidden
		number" (and you incur a cost of b), or
		"Yes, that's it!" (and the game ends).
		Given the value of n, a, and b, an
		optimal strategy minimizes the total
406	Guessing Game	cost for the worst possible case.
		For example, if $n = 5$, $a = 2$, and $b = 3$,
		then we may begin by asking "2" as
		our first question.
		If we are told that 2 is higher than the
		hidden number (for a cost of b=3),
		then we are sure that "1" is the hidden
		number (for a total cost of 3).
		If we are told that 2 is lower than the
		hidden number (for a cost of a=2),
		then our next question will be "4".
		If we are told that 4 is higher than the
		hidden number (for a cost of $b=3$),
		If we calculate a2 mod 6 for $0 \le a \le 5$
		we get: 0,1,4,3,4,1.
407	Idempotents	The largest value of a such that $a2 \equiv a$
		mod 6 is 4.
		Let's call M(n) the largest value of a <
		n such that $a2 \equiv a \pmod{n}$.
		So M(6) = 4.
		Find $\sum M(n)$ for $1 \le n \le 107$.

		1
408	Admissible paths through a grid	Let's call a lattice point (x, y) inadmissible if x, y and x + y are all positive perfect squares. For example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9, 4) are not. Consider a path from point (x1, y1) to point (x2, y2) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible. Let P(n) be the number of admissible paths from (0, 0) to (n, n). It can be verified that P(5) = 252, P(16) = 596994440 and P(1000) mod 1 000 000 007 = 341920854. Find P(10 000 000) mod 1 000 000 007.
409	Nim Extreme	Let n be a positive integer. Consider nim positions where: There are n non-empty piles. Each pile has size less than 2n. No two piles have the same size. Let W(n) be the number of winning nim positions satisfying the above conditions (a position is winning if the first player has a winning strategy). For example, W(1) = 1, W(2) = 6, W(3) = 168, W(5) = 19764360 and W(100) mod 1 000 000 007 = 384777056. Find W(10 000 000) mod 1 000 000 007.

410	Circle and tangent line	Let C be the circle with radius r, x2 + y2 = r2. We choose two points P(a, b) and Q(-a, c) so that the line passing through P and Q is tangent to C. For example, the quadruplet (r, a, b, c) = (2, 6, 2, -7) satisfies this property. Let F(R, X) be the number of the integer quadruplets (r, a, b, c) with this property, and with $0 < r \le R$ and $0 < a \le X$. We can verify that F(1, 5) = 10, F(2, 10) = 52 and F(10, 100) = 3384. Find F(108, 109) + F(109, 108).
411	Uphill paths	Let n be a positive integer. Suppose there are stations at the coordinates (x, y) = (2i mod n, 3i mod n) for 0 ≤ i ≤ 2n. We will consider stations with the same coordinates as the same station. We wish to form a path from (0, 0) to (n, n) such that the x and y coordinates never decrease. Let S(n) be the maximum number of stations such a path can pass through. For example, if n = 22, there are 11 distinct stations, and a valid path can pass through at most 5 stations. Therefore, S(22) = 5. The case is illustrated below, with an example of an optimal path: It can also be verified that S(123) = 14 and S(10000) = 48. Find ∑S(k5) for 1 ≤ k ≤ 30.

412	Gnomon numbering	For integers m, n (0 ≤ n < m), let L(m, n) be an m×m grid with the top-right n×n grid removed. For example, L(5, 3) looks like this: We want to number each cell of L(m, n) with consecutive integers 1, 2, 3, such that the number in every cell is smaller than the number below it and to the left of it. For example, here are two valid numberings of L(5, 3): Let LC(m, n) be the number of valid numberings of L(m, n). It can be verified that LC(3, 0) = 42,
		LC(5, 3) = 250250, LC(6, 3) = 406029023400 and LC(10, 5) mod 76543217 = 61251715. Find LC(10000, 5000) mod 76543217.
413	One-child Numbers	We say that a d-digit positive number (no leading zeros) is a one-child number if exactly one of its sub-strings is divisible by d. For example, 5671 is a 4-digit one-child number. Among all its sub-strings 5, 6, 7, 1, 56, 67, 71, 567, 671 and 5671, only 56 is divisible by 4. Similarly, 104 is a 3-digit one-child number because only 0 is divisible by 3. 1132451 is a 7-digit one-child number because only 245 is divisible by 7. Let F(N) be the number of the one-child numbers less than N. We can verify that F(10) = 9, F(103) = 389 and F(107) = 277674. Find F(1019).

	6174 is a remarkable number; if we
	sort its digits in increasing order and
	subtract that number from the number
	you get when you sort the digits in
	decreasing order, we get 7641-
	1467=6174.
	Even more remarkable is that if we
	start from any 4 digit number and
	repeat this process of sorting and
	subtracting, we'll eventually end up
	with 6174 or immediately with 0 if all
	digits are equal.
Kaprekar constant	This also works with numbers that
	have less than 4 digits if we pad the
	number with leading zeroes until we
	have 4 digits.
	E.g. let's start with the number 0837:
	8730-0378=8352
	8532-2358=6174
	6174 is called the Kaprekar constant.
	The process of sorting and subtracting
	and repeating this until either 0 or the
	Kaprekar constant is reached is called
	the Kaprekar routine.
	We can consider the Kaprekar routine
	Kaprekar constant

415	Titanic sets	A set of lattice points S is called a titanic set if there exists a line passing through exactly two points in S. An example of a titanic set is S = {(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (1, 0)}, where the line passing through (0, 1) and (2, 0) does not pass through any other point in S. On the other hand, the set {(0, 0), (1, 1), (2, 2), (4, 4)} is not a titanic set since the line passing through any two points in the set also passes through the other two. For any positive integer N, let T(N) be the number of titanic sets S whose every point (x, y) satisfies 0 ≤ x, y ≤ N. It can be verified that T(1) = 11, T(2) = 494, T(4) = 33554178, T(111) mod 108 = 63259062. Find T(1011) mod 108.
416	A frog's trip	A row of n squares contains a frog in the leftmost square. By successive jumps the frog goes to the rightmost square and then back to the leftmost square. On the outward trip he jumps one, two or three squares to the right, and on the homeward trip he jumps to the left in a similar manner. He cannot jump outside the squares. He repeats the round-trip travel m times. Let F(m, n) be the number of the ways the frog can travel so that at most one square remains unvisited. For example, F(1, 3) = 4, F(1, 4) = 15, F(1, 5) = 46, F(2, 3) = 16 and F(2, 100) mod 109 = 429619151. Find the last 9 digits of F(10, 1012).

		A unit fraction contains 1 in the
	numerator. The decimal representation	
		of the unit fractions with denominators
		2 to 10 are given:
		1/2 = 0.5
		1/3 = 0.(3)
		1/4 = 0.25
		1/5 = 0.2
		1/6 = 0.1(6)
		1/7 = 0.(142857)
		1/8 = 0.125
		1/9 = 0.(1)
417	Reciprocal cycles II	1/10 = 0.1
		Where 0.1(6) means 0.166666, and
		has a 1-digit recurring cycle. It can be
		seen that 1/7 has a 6-digit recurring
		cycle.
		Unit fractions whose denominator has
		no other prime factors than 2 and/or 5
		are not considered to have a recurring
		cycle.
		We define the length of the recurring
		cycle of those unit fractions as 0.
		Let L(n) denote the length of the
		recurring cycle of 1/n. You are given
		Let n be a positive integer. An integer
	Factorisation triples	triple (a, b, c) is called a factorisation
		triple of n if:
418		1 ≤ a ≤ b ≤ c
		a∙b·c = n.
		Define f(n) to be a + b + c for the
		factorisation triple (a, b, c) of n which
		minimises c / a. One can show that this
		triple is unique.
		For example, f(165) = 19, f(100100) =
		142 and f(20!) = 4034872.
		Find f(43!).

		The look and say sequence goes 1, 11,
		21, 1211, 111221, 312211, 13112221,
		1113213211,
		The sequence starts with 1 and all
		other members are obtained by
		describing the previous member in
		terms of consecutive digits.
		It helps to do this out loud:
		1 is 'one one' → 11
		11 is 'two ones' → 21
		21 is 'one two and one one' → 1211
		1211 is 'one one, one two and two
419	Look and say sequence	ones' → 111221
		111221 is 'three ones, two twos and
		one one' → 312211
		Define A(n), B(n) and C(n) as the
		number of ones, twos and threes in the
		n'th element of the sequence
		respectively.
		One can verify that $A(40) = 31254$,
		B(40) = 20259 and $C(40) = 11625$.
		Find A(n), B(n) and C(n) for $n = 1012$.
		Give your answer modulo 230 and
		separate your values for A, B and C by

420	2x2 positive integer matrix	A positive integer matrix is a matrix whose elements are all positive integers. Some positive integer matrices can be expressed as a square of a positive integer matrix in two different ways. Here is an example: (40 48 12 40)= (2 12 3 2) 2 = (6 4 1
421	Prime factors of n15+1	Numbers of the form n15+1 are composite for every integer n > 1. For positive integers n and m let s(n,m) be defined as the sum of the distinct prime factors of n15+1 not exceeding m. E.g. 215+1 = $3 \times 3 \times 11 \times 331$. So s(2,10) = 3 and s(2,1000) = $3+11+331=345$. Also $1015+1=7 \times 11 \times 13 \times 211 \times 241 \times 2161 \times 9091$. So s(10,100) = 31 and s(10,1000) = 483. Find $\sum $ s(n,108) for $1 \le n \le 1011$.

		1
		Let H be the hyperbola defined by the
		equation 12x2 + 7xy - 12y2 = 625.
		Next, define X as the point (7, 1). It can
		be seen that X is in H.
		Now we define a sequence of points in
		H, {Pi : i ≥ 1}, as:
		P1 = (13, 61/4).
		P2 = (-43/6, -4).
		For i > 2, Pi is the unique point in H
		that is different from Pi-1 and such
		that line PiPi-1 is parallel to line Pi-2X.
		It can be shown that Pi is well-defined,
422	Sequence of points on a hyperbola	and that its coordinates are always
		rational.
		You are given that P3 = (-19/2, -
		229/24), P4 = (1267/144, -37/12) and
		P7 = (17194218091/143327232,
		274748766781/1719926784).
		Find Pn for n = 1114 in the following
		format:
		If $Pn = (a/b, c/d)$ where the fractions
		are in lowest terms and the
		denominators are positive, then the
		answer is (a + b + c + d) mod 1 000
		000 007.

		Let n be a positive integer.
		A 6-sided die is thrown n times. Let c
		be the number of pairs of consecutive
		throws that give the same value.
	F	For example, if $n = 7$ and the values of
		the die throws are (1,1,5,6,6,6,3), then
		the following pairs of consecutive
		throws give the same value:
		(1,1,5,6,6,6,3)
		(1,1,5,6,6,6,3)
		(1,1,5,6,6,6,3)
		Therefore, $c = 3$ for $(1,1,5,6,6,6,3)$.
423	Consecutive die throws	Define C(n) as the number of
		outcomes of throwing a 6-sided die n
	times such that c does not exceed	
		π(n).1
		For example, $C(3) = 216$, $C(4) = 1290$,
		C(11) = 361912500 and C(24) =
		4727547363281250000.
		Define S(L) as $\sum C(n)$ for $1 \le n \le L$.
		For example, S(50) mod 1 000 000 007
		= 832833871.
		Find S(50 000 000) mod 1 000 000 007.
		1 π denotes the prime-counting
		function, i.e. $\pi(n)$ is the number of

		1
		The above is an example of a cryptic
		kakuro (also known as cross sums, or
		even sums cross) puzzle, with its final
		solution on the right. (The common
		rules of kakuro puzzles can be found
		easily on numerous internet sites.
		Other related information can also be
		currently found at krazydad.com
		whose author has provided the puzzle
		data for this challenge.)
		The downloadable text file
		(kakuro200.txt) contains the
424	Kakuro	description of 200 such puzzles, a mix
		of 5x5 and 6x6 types. The first puzzle
		in the file is the above example which
		is coded as follows:
		6,X,X,(vCC),(vI),X,X,X,(hH),B,O,(vCA),(vJE
),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,
		O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X
		The first character is a numerical digit
		indicating the size of the information
		grid. It would be either a 6 (for a 5x5
		kakuro puzzle) or a 7 (for a 6x6 puzzle)
		followed by a comma (,). The extra top
		line and left column are needed to

		Two positive numbers A and B are said to be connected (denoted by "A ↔ B") if one of these conditions holds: (1) A and B have the same length and differ in exactly one digit; for example, 123 ↔ 173. (2) Adding one digit to the left of A (or
425	Prime connection	B) makes B (or A); for example, 23 ↔ 223 and 123 ↔ 23. We call a prime P a 2's relative if there exists a chain of connected primes between 2 and P and no prime in the
		chain exceeds P. For example, 127 is a 2's relative. One of the possible chains is shown below: 2 ↔ 3 ↔ 13 ↔ 113 ↔ 103 ↔ 107 ↔ 127 However, 11 and 103 are not 2's relatives. Let F(N) be the sum of the primes ≤ N
		which are not 2's relatives. We can verify that F(103) = 431 and F(104) = 78728. Find F(107).

		Consider an infinite row of boxes.
		Some of the boxes contain a ball. For
		example, an initial configuration of 2
		1 ' 1
		consecutive occupied boxes followed
		by 2 empty boxes, 2 occupied boxes, 1
		empty box, and 2 occupied boxes can
		be denoted by the sequence (2, 2, 2, 1,
		2), in which the number of consecutive
		occupied and empty boxes appear
		alternately.
		A turn consists of moving each ball
		exactly once according to the following
426	Box-ball system	rule: Transfer the leftmost ball which
		has not been moved to the nearest
		empty box to its right.
		After one turn the sequence (2, 2, 2, 1,
		2) becomes (2, 2, 1, 2, 3) as can be
		seen below; note that we begin the
		new sequence starting at the first
		occupied box.
		A system like this is called a Box-Ball
		System or BBS for short.
		It can be shown that after a sufficient
		number of turns, the system evolves to
		a state where the consecutive numbers

427	n-sequences	A sequence of integers $S = \{si\}$ is called an n-sequence if it has n elements and each element si satisfies $1 \le si \le n$. Thus there are nn distinct n-sequences in total. For example, the sequence $S = \{1, 5, 5, 10, 7, 7, 7, 2, 3, 7\}$ is a $10-sequence$. For any sequence S , let $L(S)$ be the length of the longest contiguous subsequence of S with the same value. For example, for the given sequence S above, $L(S) = 3$, because of the three consecutive T 's. Let S f(n) = S L(S) for all n-sequences S . For example, S f(1) = S f(2) = S f(3) = S f(7) = S f(8) f(8) f(8) f(8) f(8) f(8) f(8) f(8)
-----	-------------	--

	Let a, b and c be positive numbers.
	Let W, X, Y, Z be four collinear points
	where WX = a, XY = b, YZ = c and
	WZ = a + b + c.
	Let Cin be the circle having the
	diameter XY.
	Let Cout be the circle having the
	diameter WZ.
	The triplet (a, b, c) is called a necklace
	triplet if you can place $k \ge 3$ distinct
	circles C1, C2,, Ck such that:
	Ci has no common interior points with
Necklace of circles	any Cj for $1 \le i, j \le k$ and $i \ne j$,
	Ci is tangent to both Cin and Cout for
	1 ≤ i ≤ k,
	Ci is tangent to Ci+1 for 1 ≤ i < k, and
	Ck is tangent to C1.
	For example, (5, 5, 5) and (4, 3, 21) are
	necklace triplets, while it can be shown
	that (2, 2, 5) is not.
	Let T(n) be the number of necklace
	triplets (a, b, c) such that a, b and c are
	positive integers, and b ≤ n. For
	example, T(1) = 9, T(20) = 732 and
	T(3000) = 438106.
	A unitary divisor d of a number n is a
	divisor of n that has the property
	gcd(d, n/d) = 1.
	The unitary divisors of 4! = 24 are 1, 3,
	8 and 24.
	The sum of their squares is 12 + 32 +
Sum of squares of unitary divisors	82 + 242 = 650.
	Let S(n) represent the sum of the
	squares of the unitary divisors of n.
	Thus S(4!)=650.
	Find S(100 000 000!) modulo 1 000
	000 009.
	Necklace of circles Sum of squares of unitary divisors

		N. P. L. L. L. L. L.
		N disks are placed in a row, indexed 1
		to N from left to right.
		Each disk has a black side and white
		side. Initially all disks show their white
		side.
		At each turn, two, not necessarily
		distinct, integers A and B between 1
		and N (inclusive) are chosen uniformly
		at random.
		All disks with an index from A to B
		(inclusive) are flipped.
		The following example shows the case
430	Range flips	N = 8. At the first turn $A = 5$ and $B = 2$,
	3 .	and at the second turn A = 4 and B =
		6.
		Let E(N, M) be the expected number of
		disks that show their white side after M
		turns.
		We can verify that $E(3, 1) = 10/9$, $E(3, 1)$
		$(2) = 5/3$, E(10, 4) ≈ 5.157 and E(100,
		10) ≈ 51.893.
		Find E(1010, 4000).
		Give your answer rounded to 2
		decimal places behind the decimal
		point.
		point.

		Telu c
		Fred the farmer arranges to have a
		new storage silo installed on his farm
		and having an obsession for all things
		square he is absolutely devastated
		when he discovers that it is circular.
		Quentin, the representative from the
		company that installed the silo,
		explains that they only manufacture
		cylindrical silos, but he points out that
		it is resting on a square base. Fred is
		not amused and insists that it is
		removed from his property.
431	Square Space Silo	Quick thinking Quentin explains that
		when granular materials are delivered
		from above a conical slope is formed
		and the natural angle made with the
		horizontal is called the angle of repose.
		For example if the angle of repose,
		α=30
		α
		degrees, and grain is delivered at the
		centre of the silo then a perfect cone
		will form towards the top of the
		cylinder. In the case of this silo, which
		has a diameter of 6m, the amount of
		Let $S(n,m) = \sum \varphi(n \times i)$ for $1 \le i \le m$. (φ
432	Totient sum	is Euler's totient function)
		You are given that S(510510,106)=
		45480596821125120.
		Find S(510510,1011).
		Give the last 9 digits of your answer.

		1
		Let E(x0, y0) be the number of steps it
		takes to determine the greatest
		common divisor of x0 and y0 with
		Euclid's algorithm. More formally:
		$x1 = y0, y1 = x0 \mod y0$
		$xn = yn-1$, $yn = xn-1 \mod yn-1$
		E(x0, y0) is the smallest n such that yn
433	Steps in Euclid's algorithm	= 0.
		We have $E(1,1) = 1$, $E(10,6) = 3$ and
		E(6,10) = 4.
		Define S(N) as the sum of E(x,y) for $1 \le$
		x,y ≤ N.
		We have S(1) = 1, S(10) = 221 and
		S(100) = 39826.
		Find S(5·106).
		Recall that a graph is a collection of
		vertices and edges connecting the
		vertices, and that two vertices
	Rigid graphs	·
		connected by an edge are called
		adjacent.
		Graphs can be embedded in Euclidean
		space by associating each vertex with a
		point in the Euclidean space.
		A flexible graph is an embedding of a
		graph where it is possible to move one
		or more vertices continuously so that
		the distance between at least two
434		nonadjacent vertices is altered while
		the distances between each pair of
		adjacent vertices is kept constant.
		A rigid graph is an embedding of a
		graph which is not flexible.
		Informally, a graph is rigid if by
		replacing the vertices with fully
		rotating hinges and the edges with
		rods that are unbending and inelastic,
		no parts of the graph can be moved
		independently from the rest of the
		graph.
		The grid graphs embedded in the
<u> </u>		ine gira grapito embedaca in the

		The Fibonacci numbers
		{
		f
		n
		,n≥0}
		{
		are defined recursively as
		f
		n
		=
		f
		n-1
435	Polynomials of Fibonacci numbers	+
433	r dignomials of ribonacci numbers	f
		n-2
		f
		with base cases
		f
		0
		=0
		f
		and
		f
		1 1
		=1
		- 1

		Julia propagas the following was as to
		Julie proposes the following wager to
		her sister Louise.
		She suggests they play a game of
		chance to determine who will wash the
		dishes.
		For this game, they shall use a
		generator of independent random
		numbers uniformly distributed
		between 0 and 1.
		The game starts with $S = 0$.
		The first player, Louise, adds to S
		different random numbers from the
436	Unfair wager	generator until S > 1 and records her
		last random number 'x'.
		The second player, Julie, continues
		adding to S different random numbers
		from the generator until S > 2 and
		records her last random number 'y'.
		The player with the highest number
		wins and the loser washes the dishes,
		i.e. if y > x the second player wins.
		For example, if the first player draws
		0.62 and 0.44, the first player turn ends
		since $0.62+0.44 > 1$ and $x = 0.44$.
		If the second players draws 0.1, 0.27

		When we calculate 8n modulo 11 for
		n=0 to 9 we get: 1, 8, 9, 6, 4, 10, 3, 2, 5,
		7.
		·
		As we see all possible values from 1 to
		10 occur. So 8 is a primitive root of 11.
		But there is more:
		If we take a closer look we see:
		1+8=9
		8+9=17≡6 mod 11
		9+6=15≡4 mod 11
		6+4=10
		4+10=14≡3 mod 11
437	Fibonacci primitive roots	10+3=13≡2 mod 11
		3+2=5
		2+5=7
		5+7=12≡1 mod 11.
		So the powers of 8 mod 11 are cyclic
		with period 10, and $8n + 8n + 1 \equiv 8n + 2$
		(mod 11).
		8 is called a Fibonacci primitive root of
		11.
		Not every prime has a Fibonacci
		primitive root.
		There are 323 primes less than 10000
		with one or more Fibonacci primitive

438	eger part of polynomial equation's soluti	For an n-tuple of integers $t = (a1,, an)$, let $(x1,, xn)$ be the solutions of the polynomial equation $xn + a1xn-1 + a2xn-2 + + an-1x + an = 0$. Consider the following two conditions: $x1,, xn$ are all real. If $x1,, xn$ are sorted, $[xi] = i$ for $1 \le i \le n$. ($[\cdot]$: floor function.) In the case of $n = 4$, there are $12 n$ -tuples of integers which satisfy both conditions. We define $S(t)$ as the sum of the absolute values of the integers in t . For $n = 4$ we can verify that $\sum S(t) = 2087$ for all n -tuples t which satisfy both conditions. Find $\sum S(t)$ for $n = 7$.
439	Sum of sum of divisors	Let d(k) be the sum of all divisors of k. We define the function $S(N) = \frac{\sum_{i=1}^{N} N_{i=1}}{\sum_{i=1}^{N} N_{i=1}}$ $\frac{\sum_{i=1}^{N} N_{i=1}}{\sum_{i=1}^{N} N_{i=1}}}$ $\frac{\sum_{i=1}^{N} N_{i=1}}}{\sum_{i=1}^{N} N_{i=1}}}$ $\frac{\sum_{i=1}^$

		We want to tile a board of length n and height 1 completely, with either 1 × 2 blocks or 1 × 1 blocks with a single decimal digit on top: For example, here are some of the
440	GCD and Tiling	ways to tile a board of length n = 8: Let T(n) be the number of ways to tile a board of length n as described above. For example, T(1) = 10 and T(2) = 101. Let S(L) be the triple sum $\sum a,b,c$ gcd(T(ca), T(cb)) for $1 \le a,b,c \le L$. For example: S(2) = 10444 S(3) = 1292115238446807016106539989 S(4) mod 987 898 789 = 670616280. Find S(2000) mod 987 898 789.
441	he inverse summation of coprime couple	For an integer M, we define R(M) as the sum of $1/(p \cdot q)$ for all the integer pairs p and q which satisfy all of these conditions: $1 \le p < q \le M$ $p + q \ge M$ p and q are coprime. We also define S(N) as the sum of R(i) for $2 \le i \le N$. We can verify that S(2) = R(2) = 1/2, S(10) \approx 6.9147 and S(100) \approx 58.2962. Find S(107). Give your answer rounded to four decimal places.

		1
442	Eleven-free integers	An integer is called eleven-free if its decimal expansion does not contain any substring representing a power of 11 except 1. For example, 2404 and 13431 are eleven-free, while 911 and 4121331 are not. Let E(n) be the nth positive eleven-free integer. For example, E(3) = 3, E(200) = 213 and E(500 000) = 531563. Find E(1018).
443	GCD sequence	Let g(n) be a sequence defined as follows: g(4) = 13, g(n) = g(n-1) + gcd(n, g(n-1)) for n > 4. The first few values are: n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 g(n) 13 14 16 17 18 27 28 29 30 31 32 33 34 51 54 55 60 You are given that g(1 000) = 2524 and g(1 000 000) = 2624152. Find g(1015).

		A group of p people decide to sit
		down at a round table and play a
		lottery-ticket trading game. Each
		person starts off with a randomly-
		assigned, unscratched lottery ticket.
		Each ticket, when scratched, reveals a
		whole-pound prize ranging anywhere
		from £1 to £p, with no two tickets
		alike. The goal of the game is for each
		person to maximize his ticket winnings
		upon leaving the game.
		An arbitrary person is chosen to be the
444	The Roundtable Lottery	first player. Going around the table,
		each player has only one of two
		options:
		1. The player can scratch his ticket and
		reveal its worth to everyone at the
		table.
		2. The player can trade his unscratched
		ticket for a previous player's scratched
		ticket, and then leave the game with
		that ticket. The previous player then
		scratches his newly-acquired ticket and
		reveals its worth to everyone at the
		table.
		155.5.5.

		For every integer
		n>1
		n
		, the family of functions
		f
		n,a,b
		f
		is defined by
		f
		n,a,b
		(x)≡ax+bmodn
		f
445	Retractions A	for
		a,b,x
		a
		integer and
		0 <a<n,0≤b<n,0≤x<n< td=""></a<n,0≤b<n,0≤x<n<>
		0
		We will call
		f
		n,a,b
		f
		a retraction if
		f

	For every integer
	n>1
	n
	, the family of functions
	f
	n,a,b
	f
	is defined by
	f
	n,a,b
	(x)≡ax+bmodn
	f
Retractions B	for
	a,b,x
	a
	integer and
	0 <a<n,0≤b<n,0≤x<n< td=""></a<n,0≤b<n,0≤x<n<>
	0
	We will call
	f
	n,a,b
	f
	a retraction if
	f
	Retractions B

		For every integer
		n>1
		n
		, the family of functions
		f
		n,a,b
		f
		is defined by
		f
		n,a,b
		(x)≡ax+bmodn
		f
447	Retractions C	for
		a,b,x
		a
		integer and
		0 <a<n,0≤b<n,0≤x<n< td=""></a<n,0≤b<n,0≤x<n<>
		0
		We will call
		f
		n,a,b
		f
		a retraction if
		f
	Average least common multiple	The function lcm(a,b) denotes the least
		common multiple of a and b.
448		Let A(n) be the average of the values
		of lcm(n,i) for 1≤i≤n.
		E.g: A(2)=(2+2)/2=2 and
		A(10)=(10+10+30+20+10+30+70+40
		+90+10)/10=32.
		Let $S(n)=\sum A(k)$ for $1 \le k \le n$.
		S(100)=122726.
		Find S(99999999019) mod 999999017.
]

449	Chocolate covered candy	Phil the confectioner is making a new batch of chocolate covered candy. Each candy centre is shaped like an ellipsoid of revolution defined by the equation: b2x2 + b2y2 + a2z2 = a2b2. Phil wants to know how much chocolate is needed to cover one candy centre with a uniform coat of chocolate one millimeter thick. If a=1 mm and b=1 mm, the amount of chocolate required is 28 3 π mm3 If a=2 mm and b=1 mm, the amount of chocolate required is approximately 60.35475635 mm3. Find the amount of chocolate in mm3 required if a=3 mm and b=1 mm. Give your answer as the number rounded to 8 decimal places behind the decimal point.
-----	-------------------------	---

		A hypocycloid is the curve drawn by a point on a small circle rolling inside a larger circle. The parametric equations of a hypocycloid centered at the origin, and starting at the right most point is given by: x(t)=(R-r)cos(t)+rcos(R-r t) x
450	Hypocycloid and Lattice points	y(t)=(R-r)sin(t)-rsin(R-r r t) y Where R is the radius of the large circle and r the radius of the small circle. Let C(R,r) C be the set of distinct points with integer coordinates on the hypocycloid with radius R and r and for which there

		Canadanaha walio 45
		Consider the number 15.
		There are eight positive numbers less
		than 15 which are coprime to 15: 1, 2,
		4, 7, 8, 11, 13, 14.
		The modular inverses of these
		numbers modulo 15 are: 1, 8, 4, 13, 2,
		11, 7, 14
		because
		1 ⋅ 1 mod 15=1
		2 · 8=16 mod 15=1
451	Modular inverses	4 · 4=16 mod 15=1
		7 · 13=91 mod 15=1
		11 · 11=121 mod 15=1
		14 · 14=196 mod 15=1
		Let I(n) be the largest positive number
		m smaller than n-1 such that the
		modular inverse of m modulo n equals
		m itself.
		So I(15)=11.
		Also I(100)=51 and I(7)=1.
		Find ∑ I(n) for 3≤n≤2×107
		Define F(m,n) as the number of n-
	Long Products	tuples of positive integers for which
452		the product of the elements doesn't
		exceed m.
		F(10, 10) = 571.
		F(106, 106) mod 1 234 567 891 =
		252903833.
		Find F(109, 109) mod 1 234 567 891.

		A simple quadrilateral is a polygon that has four distinct vertices, has no
		straight angles and does not self-
		intersect.
		Let Q(m, n) be the number of simple
		quadrilaterals whose vertices are lattice
453	Lattice Quadrilaterals	points with coordinates (x,y) satisfying
755	Lattice Quadrilaterals	$0 \le x \le m$ and $0 \le y \le n$.
		For example, $Q(2, 2) = 94$ as can be
		seen below:
		It can also be verified that $Q(3, 7) =$
		39590, Q(12, 3) = 309000 and Q(123, 45) = 70542215894646.
		Find Q(12345, 6789) mod 135707531.
		Tilla Q(12343, 0703) filoa 133707331.
		In the following equation x, y, and n
		are positive integers.
	Diophantine reciprocals III	1
		х
		+
		1
		У
454		=
454		n l
		1x+1y=1n
		For a limit L we define F(L) as the
		number of solutions which satisfy x < y
		≤ L.
		We can verify that F(15) = 4 and
		F(1000) = 1069.
		Find F(1012).

455	Powers With Trailing Digits	Let f(n) be the largest positive integer x less than 109 such that the last 9 digits of nx form the number x (including leading zeros), or zero if no such integer exists. For example: $f(4) = 411728896 (4411728896 =490411728896)$ $f(10) = 0$ $f(157) = 743757 (157743757 =567000743757)$ $\sum f(n), 2 \le n \le 103 = 442530011399$ Find $\sum f(n), 2 \le n \le 106$.
456	Triangles containing the origin II	Define: xn = (1248n mod 32323) - 16161 yn = (8421n mod 30103) - 15051 Pn = {(x1, y1), (x2, y2),, (xn, yn)} For example, P8 = {(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)}. Let C(n) be the number of triangles whose vertices are in Pn which contain the origin in the interior. Examples: C(8) = 20 C(600) = 8950634 C(40 000) = 2666610948988 Find C(2 000 000).
457	polynomial modulo the square of a prin	Let $f(n) = n2 - 3n - 1$. Let p be a prime. Let R(p) be the smallest positive integer n such that $f(n) \mod p2 = 0$ if such an integer n exists, otherwise R(p) $= 0$. Let SR(L) be $\sum R(p)$ for all primes not exceeding L. Find SR(107).

		1
458	Permutations of Project	Consider the alphabet A made out of the letters of the word "project": A={c,e,j,o,p,r,t}. Let T(n) be the number of strings of length n consisting of letters from A that do not have a substring that is one of the 5040 permutations of "project". T(7)=77-7!=818503.
		Find T(1012). Give the last 9 digits of your answer.
459	Flipping game	The flipping game is a two player game played on a N by N square board. Each square contains a disk with one side white and one side black. The game starts with all disks showing their white side. A turn consists of flipping all disks in a rectangle with the following properties:
		the upper right corner of the rectangle contains a white disk the rectangle width is a perfect square (1, 4, 9, 16,) the rectangle height is a triangular number (1, 3, 6, 10,) Players alternate turns. A player wins by turning the grid all black. Let W(N) be the number of winning moves for the first player on a N by N board with all disks white, assuming perfect play. W(1) = 1, W(2) = 0, W(5) = 8 and W(102) = 31395. For N=5, the first player's eight winning first moves are:

		On the Euclidean plane, an ant travels
		from point A(0, 1) to point B(d, 1) for
		an integer d.
		In each step, the ant at point (x0, y0)
		chooses one of the lattice points (x1,
		y1) which satisfy $x1 \ge 0$ and $y1 \ge 1$ and
		goes straight to (x1, y1) at a constant
		velocity v. The value of v depends on
		y0 and y1 as follows:
		If $y0 = y1$, the value of v equals $y0$.
		If y0 \neq y1, the value of v equals (y1 -
		y0) / (ln(y1) - ln(y0)).
460	An ant on the move	The left image is one of the possible
		paths for d = 4. First the ant goes from
		A(0, 1) to P1(1, 3) at velocity (3 - 1) /
		$(ln(3) - ln(1)) \approx 1.8205$. Then the
		required time is sqrt(5) / 1.8205 ≈
		1.2283.
		From P1(1, 3) to P2(3, 3) the ant travels
		at velocity 3 so the required time is 2 /
		$3 \approx 0.6667$. From P2(3, 3) to B(4, 1) the
		ant travels at velocity (1 - 3) / (ln(1) -
		$ln(3)$) ≈ 1.8205 so the required time is
		sqrt(5) / 1.8205 ≈ 1.2283.
		Thus the total required time is 1.2283

		T
		Let $fn(k) = ek/n - 1$, for all non-
		negative integers k.
		Remarkably, f200(6) + f200(75) +
		f200(89) + f200(226) =
		3.141592644529 ≈ π.
		In fact, it is the best approximation of
		π of the form fn(a) + fn(b) + fn(c) +
461	Alexant Di	fn(d) for n = 200.
461	Almost Pi	Let $g(n) = a2 + b2 + c2 + d2$ for a, b,
		c, d that minimize the error: fn(a) +
		$fn(b) + fn(c) + fn(d) - \pi$
		(where x denotes the absolute value
		of x).
		You are given g(200) = 62 + 752 + 892
		+ 2262 = 64658.
		Find g(10000).

		A 3-smooth number is an integer
		which has no prime factor larger than
		, , ,
		3. For an integer N, we define S(N) as
		the set of 3-smooth numbers less than
		or equal to N . For example, $S(20) = \{$
		1, 2, 3, 4, 6, 8, 9, 12, 16, 18 }.
		We define F(N) as the number of
		permutations of S(N) in which each
		element comes after all of its proper
		divisors.
		This is one of the possible
		permutations for $N = 20$.
462	Permutation of 3-smooth numbers	- 1, 2, 4, 3, 9, 8, 16, 6, 18, 12.
		This is not a valid permutation because
		12 comes before its divisor 6.
		- 1, 2, 4, 3, 9, 8, 12, 16, 6, 18.
		We can verify that $F(6) = 5$, $F(8) = 9$,
		$F(20) = 450 \text{ and } F(1000) \approx$
		8.8521816557e21.
		Find F(1018). Give as your answer its
		scientific notation rounded to ten
		digits after the decimal point.
		When giving your answer, use a
		lowercase e to separate mantissa and
		exponent. E.g. if the answer is
		2

		The function
		f
		f
		is defined for all positive integers as
		follows:
		f(1)=1 f
		f(3)=3
		f
		f(2n)=f(n)
		f
		f(4n+1)=2f(2n+1)-f(n)
463	A weird recurrence relation	f
		f(4n+3)=3f(2n+1)-2f(n)
		f
		The function
		S(n)
		S
		is defined as
		Σ
		n
		i=1
		f(i)
		Σ

464	Möbius function and intervals	The Möbius function, denoted $\mu(n)$, is defined as: $\mu(n) = (-1)\omega(n) \text{ if } n \text{ is squarefree}$ (where $\omega(n)$ is the number of distinct prime factors of n) $\mu(n) = 0 \text{ if } n \text{ is not squarefree}.$ Let $P(a,b)$ be the number of integers n in the interval $[a,b]$ such that $\mu(n) = 1$. Let $N(a,b)$ be the number of integers n in the interval $[a,b]$ such that $\mu(n) = -1$. For example, $P(2,10) = 2$ and $P(2,10) = 4$. Let $P(a,b)$ be the number of integer pairs $P(a,b)$ such that: $P(a,b)$ such
-----	-------------------------------	--

		The Lead of the Land
		The kernel of a polygon is defined by
		the set of points from which the entire
		polygon's boundary is visible. We
		define a polar polygon as a polygon
		for which the origin is strictly
		contained inside its kernel.
		For this problem, a polygon can have
		collinear consecutive vertices.
		However, a polygon still cannot have
		self-intersection and cannot have zero
		area.
		For example, only the first of the
465	Polar polygons	following is a polar polygon (the
		kernels of the second, third, and fourth
		do not strictly contain the origin, and
		the fifth does not have a kernel at all):
		Notice that the first polygon has three
		consecutive collinear vertices.
		Let P(n) be the number of polar
		polygons such that the vertices (x, y)
		have integer coordinates whose
		absolute values are not greater than n.
		Note that polygons should be counted
		as different if they have different set of
		edges, even if they enclose the same
		Let P(m,n) be the number of distinct
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		terms in an m×n multiplication table.
		For example, a 3×4 multiplication table looks like this:
		× 1 2 3 4
		11234
466		2 2 4 6 8
466	Distinct terms in a multiplication table	3 3 6 9 12
		There are 8 distinct terms
		$\{1,2,3,4,6,8,9,12\}$, therefore $P(3,4) = 8$.
		You are given that:
		P(64,64) = 1263,
		P(12,345) = 1998, and
		P(32,1015) = 13826382602124302.
		Find P(64,1016).

		An integer s is called a superinteger of
		another integer n if the digits of n form
		a subsequence of the digits of s.
		For example, 2718281828 is a
		superinteger of 18828, while 314159 is
		not a superinteger of 151.
		Let p(n) be the nth prime number, and
		let c(n) be the nth composite number.
		For example, $p(1) = 2$, $p(10) = 29$, $c(1)$
		= 4 and c(10) = 18.
		$\{p(i): i \ge 1\} = \{2, 3, 5, 7, 11, 13, 17, 19,$
		23, 29,}
467	Superinteger	$\{c(i): i \ge 1\} = \{4, 6, 8, 9, 10, 12, 14, 15,$
		16, 18,}
		Let PD the sequence of the digital
		roots of {p(i)} (CD is defined similarly
		for {c(i)}):
		PD = {2, 3, 5, 7, 2, 4, 8, 1, 5, 2,}
		CD = {4, 6, 8, 9, 1, 3, 5, 6, 7, 9,}
		Let Pn be the integer formed by
		concatenating the first n elements of
		PD (Cn is defined similarly for CD).
		P10 = 2357248152
		C10 = 4689135679
		Let f(n) be the smallest positive integer

		An integer is called B-smooth if none
		of its prime factors is greater than
		В
		В
		·
		Let
		S
		В
		(n)
		S
		be the largest
		В
468	Smooth divisors of binomial coefficients	В
		-smooth divisor of
		n
		n
		Examples:
		S
		1
		(10)=1
		S
		S
		4

469	Empty chairs	In a room N chairs are placed around a round table. Knights enter the room one by one and choose at random an available empty chair. To have enough elbow room the knights always leave at least one empty chair between each other. When there aren't any suitable chairs left, the fraction C of empty chairs is determined. We also define E(N) as the expected value of C. We can verify that E(4) = 1/2 and E(6) = 5/9. Find E(1018). Give your answer rounded to fourteen decimal places in the form 0.abcdefghijklmn.
-----	--------------	--

		Consider a single game of Ramvok:
		Let t represent the maximum number
		of turns the game lasts. If t = 0, then
		the game ends immediately.
		Otherwise, on each turn i, the player
		rolls a die. After rolling, if i < t the
		player can either stop the game and
		receive a prize equal to the value of
		the current roll, or discard the roll and
		try again next turn. If $i = t$, then the roll
		cannot be discarded and the prize
		must be accepted. Before the game
470	Super Ramvok	begins, t is chosen by the player, who
		must then pay an up-front cost ct for
		some constant c. For $c = 0$, t can be
		chosen to be infinite (with an up-front
		cost of 0). Let R(d, c) be the expected
		profit (i.e. net gain) that the player
		receives from a single game of
		optimally-played Ramvok, given a fair
		d-sided die and cost constant c. For
		example, R(4, 0.2) = 2.65. Assume that
		the player has sufficient funds for
		paying any/all up-front costs.
		Now consider a game of Super

		T TI
		The triangle ΔABC is inscribed in an
		ellipse with equation
		X
		2
		a
		2
		+
		y
		2
		b
		2
		=1
471	Triangle inscribed in ellipse	x
		, 0 < 2b < a, a and b integers.
		Let r(a,b) be the radius of the incircle
		of ΔABC when the incircle has center
		(2b, 0) and A has coordinates
		(
		a
		2
		3
		J √
		2
		b)

		There are N seats in a row. N people
		come one after another to fill the seats
		according to the following rules:
		No person sits beside another.
		The first person chooses any seat.
		Each subsequent person chooses the
		seat furthest from anyone else already
		seated, as long as it does not violate
		rule 1. If there is more than one choice
		satisfying this condition, then the
		person chooses the leftmost choice.
		Note that due to rule 1, some seats will
472	Comfortable Distance II	surely be left unoccupied, and the
		maximum number of people that can
		be seated is less than N (for $N > 1$).
		Here are the possible seating
		arrangements for $N = 15$:
		We see that if the first person chooses
		correctly, the 15 seats can seat up to 7
		people.
		We can also see that the first person
		has 9 choices to maximize the number
		of people that may be seated.
		Let f(N) be the number of choices the
		first person has to maximize the

		Lot
		Let
		φ
		φ
		be the golden ratio:
		φ=
		1+
		5
		√
		2
		φ
473	Phigital number base	Remarkably it is possible to write every
		positive integer as a sum of powers of
		φ
		φ
		even if we require that every power of
		φ
		φ
		is used at most once in this sum.
		Even then this representation is not
		unique.
		We can make it unique by requiring
		that no powers with consecutive
		exponents are used and that the
		exponents are used and that the
		For a positive integer n and digits d,
		we define F(n, d) as the number of the
		divisors of n whose last digits equal d.
		For example, F(84, 4) = 3. Among the
		divisors of 84 (1, 2, 3, 4, 6, 7, 12, 14, 21,
474	Last digits of divisors	28, 42, 84), three of them (4, 14, 84)
	Last aigits of airisols	have the last digit 4.
		We can also verify that $F(12!, 12) = 11$
		and F(50!, 123) = 17888.
		Find F(106!, 65432) modulo (1016 +
		61).
		J , .

475	Music festival	12n musicians participate at a music festival. On the first day, they form 3n quartets and practice all day. It is a disaster. At the end of the day, all musicians decide they will never again agree to play with any member of their quartet. On the second day, they form 4n trios, each musician avoiding his previous quartet partners. Let f(12n) be the number of ways to organize the trios amongst the 12n musicians. You are given f(12) = 576 and f(24) mod 1 000 000 007 = 509089824.
476	Circle Packing II	Find f(600) mod 1 000 000 007. Let R(a, b, c) be the maximum area covered by three non-overlapping circles inside a triangle with edge lengths a, b and c. Let S(n) be the average value of R(a, b, c) over all integer triplets (a, b, c) such that $1 \le a \le b \le c < a + b \le n$ You are given S(2) = R(1, 1, 1) \approx 0.31998, S(5) \approx 1.25899. Find S(1803) rounded to 5 decimal places behind the decimal point.

		The number sequence game starts
		with a sequence S of N numbers
		written on a line.
		Two players alternate turns. At his turn,
		a player must select and remove either
		the first or the last number remaining
		in the sequence.
		The player score is the sum of all the
		numbers he has taken. Each player
		attempts to maximize his own sum.
		If N = 4 and S = {1, 2, 10, 3}, then each
		player maximizes his score as follows:
477	Number Sequence Game	Player 1: removes the first number (1)
		Player 2: removes the last number
		from the remaining sequence (3)
		Player 1: removes the last number
		from the remaining sequence (10)
		Player 2: removes the remaining
		number (2)
		Player 1 score is 1 + 10 = 11.
		Let F(N) be the score of player 1 if both
		players follow the optimal strategy for
		the sequence S = {s1, s2,, sN}
		defined as:
		s1 = 0

		T
		Let us consider mixtures of three
		substances: A, B and C. A mixture can
		be described by a ratio of the amounts
		of A, B, and C in it, i.e., (a : b : c). For
		example, a mixture described by the
		ratio (2 : 3 : 5) contains 20% A, 30% B
		and 50% C.
		For the purposes of this problem, we
		cannot separate the individual
		components from a mixture. However,
		we can combine different amounts of
		different mixtures to form mixtures
478	Mixtures	with new ratios.
		For example, say we have three
		mixtures with ratios (3 : 0 : 2), (3 : 6 :
		11) and (3:3:4). By mixing 10 units of
		the first, 20 units of the second and 30
		units of the third, we get a new mixture
		with ratio (6 : 5 : 9), since:
		(10·3/5 + 20·3/20 + 30·3/10 : 10·0/5 +
		20.6/20 + 30.3/10 : 10.2/5 + 20.11/20
		+ 30·4/10) = (18 : 15 : 27) = (6 : 5 : 9)
		However, with the same three
		mixtures, it is impossible to form the
		ratio (3 : 2 : 1), since the amount of B is

		Let
		a
		k
		a
		,
		b
		k
		b
		, and
		C
		k
		С
479	Roots on the Rise	represent the three solutions (real or
		complex numbers) to the equation
		1
		×
		=(
		k
		X
		,
) 2
		(k+
		X 2
		2
)-kx

		Consider all the words which can be
		formed by selecting letters, in any
		order, from the phrase:
		thereisasyetinsufficientdataforameanin
		gfulanswer
		Suppose those with 15 letters or less
		are listed in alphabetical order and
		numbered sequentially starting at 1.
		The list would include:
		1:a
		2 : aa
		3 : aaa
480	The Last Question	4 : aaaa
		5 : aaaaa
		6 : аааааа
		7 : аааааас
		8 : aaaaaacd
		9 : aaaaaacde
		10 : aaaaaacdee
		11 : aaaaaacdeee
		12 : aaaaaacdeeee
		13 : aaaaaacdeeeee
		14 : aaaaaacdeeeeee
		15 : aaaaaacdeeeeeef
		16 : aaaaaacdeeeeeg

		1
		A group of chefs (numbered #1, #2,
		etc) participate in a turn-based
		strategic cooking competition. On
		each chef's turn, he/she cooks up a
		dish to the best of his/her ability and
		gives it to a separate panel of judges
		for taste-testing. Let S(k) represent
		chef #k's skill level (which is publicly
		known). More specifically, S(k) is the
		probability that chef #k's dish will be
		assessed favorably by the judges (on
		any/all turns). If the dish receives a
481	Chef Showdown	favorable rating, then the chef must
		choose one other chef to be
		eliminated from the competition. The
		last chef remaining in the competition
		is the winner.
		The game always begins with chef #1,
		with the turn order iterating
		sequentially over the rest of the chefs
		still in play. Then the cycle repeats
		from the lowest-numbered chef. All
		chefs aim to optimize their chances of
		winning within the rules as stated,
		assuming that the other chefs behave
		ABC is an integer sided triangle with
		incenter I and perimeter p.
		The segments IA, IB and IC have
		integral length as well.
482	The incenter of a triangle	Let L = p + $ IA $ + $ IB $ + $ IC $.
		Let $S(P) = \sum L$ for all such triangles
		where $p \le P$. For example, $S(103) =$
		3619.
		Find S(107).
-		

483	Repeated permutation	We define a permutation as an operation that rearranges the order of the elements {1, 2, 3,, n}. There are n! such permutations, one of which leaves the elements in their initial order. For n = 3 we have 3! = 6 permutations: - P1 = keep the initial order - P2 = exchange the 1st and 2nd elements - P3 = exchange the 1st and 3rd elements - P4 = exchange the 2nd and 3rd elements - P5 = rotate the elements to the right - P6 = rotate the elements to the left If we select one of these permutations, and we re-apply the same permutation repeatedly, we eventually restore the
		For a permutation Pi, let f(Pi) be the number of steps required to restore the initial order by applying the permutation Pi repeatedly. For n = 3, we obtain:
484	Arithmetic Derivative	The arithmetic derivative is defined by $p' = 1$ for any prime p (ab)' = a'b + ab' for all integers a, b (Leibniz rule) For example, $20' = 24$. Find $\sum \gcd(k,k')$ for $1 < k \le 5 \times 1015$. Note: $\gcd(x,y)$ denotes the greatest common divisor of x and y.

485	Maximum number of divisors	Let d(n) be the number of divisors of n. Let M(n,k) be the maximum value of d(j) for $n \le j \le n+k-1$. Let S(u,k) be the sum of M(n,k) for $1 \le n \le u-k+1$. You are given that S(1000,10)=17176. Find S(100 000 000,100 000).
486	Palindrome-containing strings	Let F5(n) be the number of strings s such that: s consists only of '0's and '1's, s has length at most n, and s contains a palindromic substring of length at least 5. For example, F5(4) = 0, F5(5) = 8, F5(6) = 42 and F5(11) = 3844. Let D(L) be the number of integers n such that $5 \le n \le L$ and F5(n) is divisible by 87654321. For example, D(107) = 0 and D(5·109) = 51. Find D(1018).
487	Sums of power sums	Let fk(n) be the sum of the kth powers of the first n positive integers. For example, $f2(10) = 12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102 = 385$. Let Sk(n) be the sum of fk(i) for $1 \le i \le n$. For example, S4(100) = 35375333830 . What is \sum (S10000(1012) mod p) over all primes p between $2 \cdot 109$ and $2 \cdot 109 + 2000$?

To illustrate: - Alice moves to $(2,4,3)$ - Bob moves to $(0,4,3)$ - Alice moves to $(0,2,3)$ - Alice moves to $(0,2,1)$ Unlike ordinary three-heap Nim, $(0,1,2)$ and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of $a+b+c$ for all the losing positions for the next player, with $0 < a < b < c < N$. For example, F(8) = 42, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.		1	All IDII
got bored of playing ordinary three-heap Nim. So, they added an extra rule: - Must not make two heaps of the same size. The triple (a,b,c) indicates the size of three heaps. Under this extra rule, (2,4,5) is one of the losing positions for the next player. To illustrate: - Alice moves to (2,4,3) - Bob moves to (0,4,3) - Alice moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			
heap Nim. So, they added an extra rule: - Must not make two heaps of the same size. The triple (a,b,c) indicates the size of three heaps. Under this extra rule, (2,4,5) is one of the losing positions for the next player. To illustrate: - Alice moves to (2,4,3) - Bob moves to (0,4,3) - Alice moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			
So, they added an extra rule: - Must not make two heaps of the same size. The triple (a,b,c) indicates the size of three heaps. Under this extra rule, (2,4,5) is one of the losing positions for the next player. To illustrate: - Alice moves to (2,4,3) - Bob moves to (0,2,3) - Bob moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			
- Must not make two heaps of the same size. The triple (a,b,c) indicates the size of three heaps. Under this extra rule, (2,4,5) is one of the losing positions for the next player. To illustrate: - Alice moves to (2,4,3) - Bob moves to (0,2,3) - Bob moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			·
same size. The triple (a,b,c) indicates the size of three heaps. Under this extra rule, (2,4,5) is one of the losing positions for the next player. To illustrate: - Alice moves to (2,4,3) - Bob moves to (0,2,3) - Bob moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			So, they added an extra rule:
The triple (a,b,c) indicates the size of three heaps. Under this extra rule, (2,4,5) is one of the losing positions for the next player. To illustrate: - Alice moves to (2,4,3) - Bob moves to (0,2,3) - Alice moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			- Must not make two heaps of the
three heaps. Under this extra rule, (2,4,5) is one of the losing positions for the next player. To illustrate: - Alice moves to (2,4,3) - Bob moves to (0,2,3) - Bob moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			same size.
Under this extra rule, $(2,4,5)$ is one of the losing positions for the next player. To illustrate: - Alice moves to $(2,4,3)$ - Bob moves to $(0,4,3)$ - Alice moves to $(0,2,3)$ - Bob moves to $(0,2,1)$ Unlike ordinary three-heap Nim, $(0,1,2)$ and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of $a+b+c$ for all the losing positions for the next player, with $0 < a < b < c < N$. For example, $F(8) = 42$, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which gcd $(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because gcd $(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			The triple (a,b,c) indicates the size of
the losing positions for the next player. To illustrate: - Alice moves to $(2,4,3)$ - Bob moves to $(0,2,3)$ - Alice moves to $(0,2,3)$ - Bob moves to $(0,2,1)$ Unlike ordinary three-heap Nim, $(0,1,2)$ and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of $a+b+c$ for all the losing positions for the next player, with $0 < a < b < c < N$. For example, F(8) = 42, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			three heaps.
To illustrate: - Alice moves to $(2,4,3)$ - Bob moves to $(0,4,3)$ - Alice moves to $(0,2,3)$ - Alice moves to $(0,2,1)$ Unlike ordinary three-heap Nim, $(0,1,2)$ and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of $a+b+c$ for all the losing positions for the next player, with $0 < a < b < c < N$. For example, F(8) = 42, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			Under this extra rule, (2,4,5) is one of
 488 Unbalanced Nim - Alice moves to (2,4,3) - Bob moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5. 			the losing positions for the next player.
- Bob moves to (0,4,3) - Alice moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest non- negative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			To illustrate:
- Alice moves to (0,2,3) - Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest non- negative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.	488	Unbalanced Nim	- Alice moves to (2,4,3)
- Bob moves to (0,2,1) Unlike ordinary three-heap Nim, (0,1,2) and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest non- negative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			- Bob moves to (0,4,3)
Unlike ordinary three-heap Nim, $(0,1,2)$ and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of $a+b+c$ for all the losing positions for the next player, with $0 < a < b < c < N$. For example, $F(8) = 42$, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			- Alice moves to (0,2,3)
and its permutations are the end states of this game. For an integer N, we define F(N) as the sum of $a+b+c$ for all the losing positions for the next player, with $0 < a < b < c < N$. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for $0 \le n < 5$.			- Bob moves to (0,2,1)
of this game. For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with 0 < a < b < c < N. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for 0 ≤ n < 5.			Unlike ordinary three-heap Nim, (0,1,2)
For an integer N, we define F(N) as the sum of a+b+c for all the losing positions for the next player, with $0 < a < b < c < N$. For example, F(8) = 42, because there are 4 losing positions for the next Let G(a, b) be the smallest nonnegative integer n for which gcd(n3 + b, (n + a)3 + b) is maximized. For example, G(1, 1) = 5 because gcd(n3 + 1, (n + 1)3 + 1) reaches its maximum value of 7 for n = 5, and is smaller for $0 \le n < 5$.			and its permutations are the end states
sum of a+b+c for all the losing positions for the next player, with $0 < a < b < c < N$. For example, $F(8) = 42$, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			of this game.
positions for the next player, with $0 < a < b < c < N$. For example, $F(8) = 42$, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			For an integer N, we define F(N) as the
$< b < c < N.$ For example, $F(8) = 42$, because there are 4 losing positions for the next $ \text{Let } G(a, b) \text{ be the smallest non-negative integer n for which } \gcd(n3 + b, (n + a)3 + b) \text{ is maximized.} $ For example, $G(1, 1) = 5$ because $\gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			sum of a+b+c for all the losing
For example, $F(8) = 42$, because there are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			positions for the next player, with $0 < a$
are 4 losing positions for the next Let $G(a, b)$ be the smallest nonnegative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			< b < c < N.
Let $G(a, b)$ be the smallest non-negative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			For example, $F(8) = 42$, because there
negative integer n for which $gcd(n3 + b, (n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			are 4 losing positions for the next
b, $(n + a)3 + b)$ is maximized. For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.			Let G(a, b) be the smallest non-
For example, $G(1, 1) = 5$ because $gcd(n3 + 1, (n + 1)3 + 1)$ reaches its maximum value of 7 for $n = 5$, and is smaller for $0 \le n < 5$.	489	Common factors between two sequence	negative integer n for which gcd(n3 +
489 Common factors between two sequence			b, $(n + a)3 + b)$ is maximized.
489 Common factors between two sequence $\frac{1}{2}$ maximum value of 7 for n = 5, and is smaller for $0 \le n < 5$.			For example, $G(1, 1) = 5$ because
489 Common factors between two sequence smaller for 0 ≤ n < 5.			gcd(n3 + 1, (n + 1)3 + 1) reaches its
smaller for $0 \le n < 5$.			maximum value of 7 for $n = 5$, and is
Let $H(m, n) = \sum G(a, b)$ for $1 \le a \le m$, 1	403		smaller for $0 \le n < 5$.
			Let H(m, n) = \sum G(a, b) for $1 \le a \le m$, 1
≤ b ≤ n.			≤ b ≤ n.
You are given H(5, 5) = 128878 and			You are given H(5, 5) = 128878 and
H(10, 10) = 32936544.			H(10, 10) = 32936544.
Find H(18, 1900).			Find H(18, 1900).

		There are n stones in a pond,
		numbered 1 to n. Consecutive stones
		are spaced one unit apart.
		A frog sits on stone 1. He wishes to
		visit each stone exactly once, stopping
		on stone n. However, he can only jump
		from one stone to another if they are
		at most 3 units apart. In other words,
		from stone i, he can reach a stone j if 1
		$\leq j \leq n$ and j is in the set {i-3, i-2, i-1,
		i+1, i+2, i+3}.
		Let f(n) be the number of ways he can
490	Jumping frog	do this. For example, f(6) = 14, as
	. 3 3	shown below:
		$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
		$1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 6$
		$1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 5 \rightarrow 6$
		$1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 6$
		$1 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 6$
		$1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 6$
		$1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 6$
		$1 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 6$
		$1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 6$
		$1 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow 4 \rightarrow 6$
		$1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6$
		We call a positive integer double
		pandigital if it uses all the digits 0 to 9
491	Double pandigital number divisible by 1	exactly twice (with no leading zero).
		For example, 40561817703823564929
		is one such number.
		How many double pandigital numbers
		are divisible by 11?
		,

		· · · · · · · · · · · · · · · · · · ·
492	Exploding sequence	Define the sequence a1, a2, a3, as: $a1 = 1$ $an+1 = 6an2 + 10an + 3 \text{ for } n \ge 1.$ $Examples: \\ a3 = 2359$ $a6 = 2692212809813202167504890445763$ 19 $a6 \mod 1 \ 000 \ 000 \ 007 = 203064689$ $a100 \mod 1 \ 000 \ 000 \ 007 = 456482974$ $Define \ B(x,y,n) \ as \ \sum \ (an \ mod \ p) \ for $ $every \ prime \ p \ such \ that \ x \le p \le x+y.$ $Examples: \\ B(109, 103, 103) = 23674718882$ $B(109, 103, 1015) = 20731563854$ $Find \ B(109, 107, 1015).$
493	Under The Rainbow	70 coloured balls are placed in an urn, 10 for each of the seven rainbow colours. What is the expected number of distinct colours in 20 randomly picked balls? Give your answer with nine digits after the decimal point (a.bcdefghij).

		The Collatz sequence is defined as:
		a
		i+1
		={
		a
		i
		2
		3
		а
		i
		+1
		if
494	Collatz prefix families	а
		i
		is even
		if
		а
		i
		is odd
		a
		The Collatz conjecture states that
		starting from any positive integer, the
		sequence eventually reaches the cycle
		1,4,2,1
		1,¬,∠, 1

495	n as the product of k distinct positive in	Let W(n,k) be the number of ways in which n can be written as the product of k distinct positive integers. For example, W(144,4) = 7. There are 7 ways in which 144 can be written as a product of 4 distinct positive integers: 144 = 1×2×4×18 144 = 1×2×8×9 144 = 1×2×6×12 144 = 1×3×4×12 144 = 1×3×6×8 144 = 2×3×4×6 Note that permutations of the integers themselves are not considered distinct. Furthermore, W(100!,10) modulo 1 000 000 007 = 287549200. Find W(10000!,30) modulo 1 000 000 007.
496	Incenter and circumcenter of triangle	Given an integer sided triangle ABC: Let I be the incenter of ABC. Let D be the intersection between the line AI and the circumcircle of ABC (A ≠ D). We define F(L) as the sum of BC for the triangles ABC that satisfy AC = DI and BC ≤ L. For example, F(15) = 45 because the triangles ABC with (BC,AC,AB) = (6,4,5), (12,8,10), (12,9,7), (15,9,16) satisfy the conditions. Find F(109).

497	Drunken Tower of Hanoi	Bob is very familiar with the famous mathematical puzzle/game, "Tower of Hanoi," which consists of three upright rods and disks of different sizes that can slide onto any of the rods. The game begins with a stack of n disks placed on the leftmost rod in descending order by size. The objective of the game is to move all of the disks from the leftmost rod to the rightmost rod, given the following restrictions: Only one disk can be moved at a time. A valid move consists of taking the top disk from one stack and placing it onto another stack (or an empty rod). No disk can be placed on top of a smaller disk. Moving on to a variant of this game, consider a long room k units (square tiles) wide, labeled from 1 to k in ascending order. Three rods are placed at squares a, b, and c, and a stack of n disks is placed on the rod at square a. Bob begins the game standing at
498	Remainder of polynomial division	For positive integers n and m, we define two polynomials Fn(x) = xn and Gm(x) = (x-1)m. We also define a polynomial Rn,m(x) as the remainder of the division of Fn(x) by Gm(x). For example, R6,3(x) = 15x2 - 24x + 10. Let C(n, m, d) be the absolute value of the coefficient of the d-th degree term of Rn,m(x). We can verify that C(6, 3, 1) = 24 and C(100, 10, 4) = 227197811615775. Find C(1013, 1012, 104) mod 999999937.

		A gambler decides to participate in a
		special lottery. In this lottery the
		gambler plays a series of one or more
		games.
		Each game costs m pounds to play and
		starts with an initial pot of 1 pound.
		The gambler flips an unbiased coin.
		Every time a head appears, the pot is
		doubled and the gambler continues.
		When a tail appears, the game ends
		and the gambler collects the current
		value of the pot. The gambler is certain
499	St. Petersburg Lottery	to win at least 1 pound, the starting
		value of the pot, at the cost of m
		pounds, the initial fee.
		The gambler cannot continue to play if
		his fortune falls below m pounds. Let
		pm(s) denote the probability that the
		gambler will never run out of money in
		this lottery given his initial fortune s
		and the cost per game m.
		For example p2(2) ≈ 0.2522, p2(5) ≈
		0.6873 and p6(10 000) ≈ 0.9952 (note:
		pm(s) = 0 for s < m).
		Find p15(109) and give your answer
		The number of divisors of 120 is 16.
500	Problem 500!!!	In fact 120 is the smallest number
		having 16 divisors.
		Find the smallest number with
		2500500 divisors.
		Give your answer modulo 500500507.
		-

		The eight divisors of 24 are 1, 2, 3, 4, 6,
		8, 12 and 24. The ten numbers not
		exceeding 100 having exactly eight
		divisors are 24, 30, 40, 42, 54, 56, 66,
501	Eight Divisors	70, 78 and 88. Let f(n) be the count of
301	Light Divisors	numbers not exceeding n with exactly
		eight divisors.
		You are given f(100) = 10, f(1000) =
		180 and f(106) = 224427.
		Find f(1012).
		We define a block to be a rectangle
		with a height of 1 and an integer-
		valued length. Let a castle be a
		configuration of stacked blocks.
		Given a game grid that is w units wide
		and h units tall, a castle is generated
		according to the following rules:
		Blocks can be placed on top of other
	Counting Castles	blocks as long as nothing sticks out
		past the edges or hangs out over open
		space.
		All blocks are aligned/snapped to the
502		grid.
		Any two neighboring blocks on the
		same row have at least one unit of
		space between them.
		The bottom row is occupied by a block
		of length w.
		The maximum achieved height of the
		entire castle is exactly h.
		The castle is made from an even
		number of blocks.
		The following is a sample castle for
		w=8 and h=5:
		Let F(w,h) represent the number of

503	Compromise or persist	Alice is playing a game with n cards numbered 1 to n. A game consists of iterations of the following steps. (1) Alice picks one of the cards at random. (2) Alice cannot see the number on it. Instead, Bob, one of her friends, sees the number and tells Alice how many previously-seen numbers are bigger than the number which he is seeing. (3) Alice can end or continue the game. If she decides to end, the number becomes her score. If she decides to continue, the card is removed from the game and she returns to (1). If there is no card left, she is forced to end the game. Let F(n) be the Alice's expected score if she takes the optimized strategy to minimize her score. For example, F(3) = 5/3. At the first iteration, she should continue the game. At the second iteration, she should end the game if Bob says that
504	Square on the Inside	Let ABCD be a quadrilateral whose vertices are lattice points lying on the coordinate axes as follows: A(a, 0), B(0, b), C(-c, 0), D(0, -d), where 1 ≤ a, b, c, d ≤ m and a, b, c, d, m are integers. It can be shown that for m = 4 there are exactly 256 valid ways to construct ABCD. Of these 256 quadrilaterals, 42 of them strictly contain a square number of lattice points. How many quadrilaterals ABCD strictly contain a square number of lattice points for m = 100?

	1
	Let:
	x(0)
	x(1)
	x(2k)
	x(2k+1)
	у
	n
	(k)
	A(n)
	=0
	=1
	=(3x(k)+2x([
Bidirectional Recurrence	k
	2
	J)) mod
	2
	60
	for k≥1, where [] is the floor function
	=(2x(k)+3x([
	k
	2
	J)) mod
	2
	60
	for k≥1
	Bidirectional Recurrence

		Consider the infinite repeating
		sequence of digits:
		1234321234321234321
		Amazingly, you can break this
		sequence of digits into a sequence of
		integers such that the sum of the digits
		in the n'th value is n.
		The sequence goes as follows:
506	Clock sequence	1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234,
		32123,
		Let vn be the n'th value in this
		sequence. For example, $v2 = 2$, $v5 = 32$
		and v11 = 32123.
		Let S(n) be v1 + v2 + + vn. For
		example, S(11) = 36120, and S(1000)
		mod 123454321 = 18232686.
		Find S(1014) mod 123454321.

		Let
		t
		n
		t
		be the tribonacci numbers defined as:
		t
		0
		=
		t
		1
		=0
		t
507	Shortest Lattice Vector	;
		t
		2
		=1
		t
		;
		t
		n
		=
		t
		n-1
		+
		t

508	Integers in base i-1	Consider the Gaussian integer i-1. A base i-1 representation of a Gaussian integer a+bi is a finite sequence of digits dn-1dn-2d1d0 such that: a+bi = dn-1(i-1)n-1 + dn-2(i-1)n-2 + + d1(i-1) + d0 Each dk is in {0,1} There are no leading zeroes, i.e. dn-1 ≠ 0, unless a+bi is itself 0 Here are base i-1 representations of a few Gaussian integers: 11+24i → 111010110001101 24-11i → 110010110011 8+0i → 111000000 -5+0i → 11001101 0+0i → 0 Remarkably, every Gaussian integer has a unique base i-1 representation of the unique base i-1 representation of
		Define $f(a+bi)$ as the number of 1s in the unique base i-1 representation of a+bi. For example, $f(11+24i) = 9$ and $f(24-11i) = 7$.

		Anton and Bertrand love to play three
		pile Nim.
		· '
		However, after a lot of games of Nim
		they got bored and changed the rules
		somewhat.
		They may only take a number of
		stones from a pile that is a proper
		divisor of the number of stones
		present in the pile.
		E.g. if a pile at a certain moment
		contains 24 stones they may take only
		1,2,3,4,6,8 or 12 stones from that pile.
509	Divisor Nim	So if a pile contains one stone they
303	DIVISOI IVIII	can't take the last stone from it as 1
		isn't a proper divisor of 1.
		· · ·
		The first player that can't make a valid
		move loses the game.
		Of course both Anton and Bertrand
		play optimally.
		The triple (a,b,c) indicates the number
		of stones in the three piles.
		Let S(n) be the number of winning
		positions for the next player for 1 ≤ a,
		b, c ≤ n.
		S(10) = 692 and S(100) = 735494.
		Circles A and B are tangent to each
		other and to line L at three distinct
		points.
		Circle C is inside the space between A,
		B and L, and tangent to all three.
		Let rA, rB and rC be the radii of A, B
		and C respectively.
510	Tangent Circles	Let $S(n) = \sum rA + rB + rC$, for $0 < rA \le 1$
		· · · -
		$rB \le n$ where rA, rB and rC are integers.
		The only solution for $0 < rA \le rB \le 5$ is
		rA = 4, $rB = 4$ and $rC = 1$, so $S(5) = 4 + 1$
		4 + 1 = 9. You are also given S(100) =
		3072.
		Find S(109).

		Let Seq(n,k) be the number of positive- integer sequences $\{ai\}1 \le i \le n$ of length n such that: n is divisible by ai for $1 \le i \le n$, and n + a1 + a2 + + an is divisible by k. Examples: Seq(3,4) = 4, and the 4 sequences are: $\{1, 1, 3\}$ $\{1, 3, 1\}$
511	Sequences with nice divisibility propertie	Seq(3,4) = 4, and the 4 sequences are: {1, 1, 3} {1, 3, 1} {3, 1, 1} {3, 3, 3} Seq(4.11) = 8, and the 8 sequences are:

		T
		Let
		φ(n)
		φ
		be Euler's totient function.
		Let
		f(n)=(
		Σ
		n
		i=1
		φ(
		n
		i
512	Sums of totients of powers)) mod (n+1)
	·	f
		Let
		g(n)=
		Σ
		n
		i=1
		f(i)
		g
		g(100)=2007
		g
		ABC is an integral sided triangle with
		sides a≤b≤c.
		mc is the median connecting C and the
		midpoint of AB.
513	Integral median	F(n) is the number of such triangles
	integral median	with c≤n for which mc has integral
		length as well.
		F(10)=3 and F(50)=165.
		Find F(100000).
		rina r(100000).

		I
		A geoboard (of order N) is a square
		board with equally-spaced pins
		protruding from the surface,
		representing an integer point lattice
		for coordinates $0 \le x,y \le N$.
		John begins with a pinless geoboard.
		Each position on the board is a hole
		that can be filled with a pin. John
		decides to generate a random integer
		between 1 and N+1 (inclusive) for each
		hole in the geoboard. If the random
		integer is equal to 1 for a given hole,
514	Geoboard Shapes	then a pin is placed in that hole.
		After John is finished generating
		numbers for all (N+1)2 holes and
		placing any/all corresponding pins, he
		wraps a tight rubberband around the
		entire group of pins protruding from
		the board. Let S represent the shape
		that is formed. S can also be defined as
		the smallest convex shape that
		contains all the pins.
		The above image depicts a sample
		layout for N = 4. The green markers
		indicate positions where pins have

·		,
515	Dissonant Numbers	Let $d(p,n,0)$ be the multiplicative inverse of n modulo prime p, defined as $n \times d(p,n,0) = 1 \mod p$. Let $d(p,n,k) = \frac{\sum}{\sum}$ n i=1 \sum $d(p,i,k-1)$ for $k \ge 1$. Let $D(a,b,k) = \frac{\sum}{\sum}$ ($d(p,p-1,k)$ mod p) for all primes $a \le p$ $< a + b$. You are given: $D(101,1,10) = 45$ $D(103,102,102) = 8334$ $D(106,103,103) = 38162302$ Find $D(109,105,105)$.
516	5-smooth totients	5-smooth numbers are numbers whose largest prime factor doesn't exceed 5. 5-smooth numbers are also called Hamming numbers. Let S(L) be the sum of the numbers n not exceeding L such that Euler's totient function φ(n) is a Hamming number. S(100)=3728. Find S(1012). Give your answer modulo 232.

		For every real number
		a>1
		a is given the sequence
		is given the sequence
		g
		a
		g
		by:
		g
		a
		(x) = 1
		g
517	A real recursion	for
		x <a< td=""></a<>
		х
		g
		а
		(x)=
		g
		a
		(x-1)+
		g
		a
		(x-a)
		Let $S(n) = \Sigma a + b + c$ over all triples
	Prime triples and geometric sequences	(a,b,c) such that:
		a, b, and c are prime numbers.
		a < b < c < n.
		a+1, b+1, and c+1 form a geometric
		sequence.
518		For example, S(100) = 1035 with the
		following triples:
		(2, 5, 11), (2, 11, 47), (5, 11, 23), (5, 17,
		53), (7, 11, 17), (7, 23, 71), (11, 23, 47),
		(17, 23, 31), (17, 41, 97), (31, 47, 71),
		(71, 83, 97)
		Find S(108).
		1 5(1.55).

519	Tricoloured Coin Fountains	An arrangement of coins in one or more rows with the bottom row being a block without gaps and every coin in a higher row touching exactly two coins in the row below is called a fountain of coins. Let f(n) be the number of possible fountains with n coins. For 4 coins there are three possible arrangements: Therefore f(4) = 3 while f(10) = 78. Let T(n) be the number of all possible colourings with three colours for all f(n) different fountains with n coins, given the condition that no two touching coins have the same colour. Below you see the possible colourings for one of the three valid fountains for 4 coins: You are given that T(4) = 48 and T(10)
520	Simbers	= 17760. Find the last 9 digits of T(20000). We define a simber to be a positive integer in which any odd digit, if present, occurs an odd number of times, and any even digit, if present, occurs an even number of times. For example, 141221242 is a 9-digit simber because it has three 1's, four 2's and two 4's. Let Q(n) be the count of all simbers with at most n digits. You are given Q(7) = 287975 and Q(100) mod 1 000 000 123 = 123864868. Find (∑1≤u≤39 Q(2u)) mod 1 000 000 123.

521	Smallest prime factor	Let smpf(n) be the smallest prime factor of n. smpf(91)=7 because $91=7\times13$ and smpf(45)=3 because $45=3\times3\times5$. Let S(n) be the sum of smpf(i) for $2 \le i$ $\le n$. E.g. S(100)=1257. Find S(1012) mod 109.
522	Hilbert's Blackout	Despite the popularity of Hilbert's infinite hotel, Hilbert decided to try managing extremely large finite hotels, instead. To cut costs, Hilbert wished to power the new hotel with his own special generator. Each floor would send power to the floor above it, with the top floor sending power back down to the bottom floor. That way, Hilbert could have the generator placed on any given floor (as he likes having the option) and have electricity flow freely throughout the entire hotel. Unfortunately, the contractors misinterpreted the schematics when they built the hotel. They informed Hilbert that each floor sends power to another floor at random, instead. This may compromise Hilbert's freedom to have the generator placed anywhere, since blackouts could occur on certain floors. For example, consider a sample flow diagram for a three-story hotel:

		Consider the following algorithm for
		sorting a list:
		1. Starting from the beginning of the
		list, check each pair of adjacent
		elements in turn.
		2. If the elements are out of order:
		a. Move the smallest element of the
		pair at the beginning of the list.
		b. Restart the process from step 1.
		3. If all pairs are in order, stop.
		For example, the list { 4 1 3 2 } is sorted
		as follows:
523	First Sort I	4 1 3 2 (4 and 1 are out of order so
		move 1 to the front of the list)
		1 4 3 2 (4 and 3 are out of order so
		move 3 to the front of the list)
		3 1 4 2 (3 and 1 are out of order so
		move 1 to the front of the list)
		1 3 4 2 (4 and 2 are out of order so
		move 2 to the front of the list)
		2 1 3 4 (2 and 1 are out of order so
		move 1 to the front of the list)
		1 2 3 4 (The list is now sorted)
		Let F(L) be the number of times step 2a
		is executed to sort list L. For example,

	Canaidan tha fallauinan almanithus fass
	Consider the following algorithm for
	sorting a list:
	1. Starting from the beginning of the
	list, check each pair of adjacent
	elements in turn.
	2. If the elements are out of order:
	a. Move the smallest element of the
	pair at the beginning of the list.
	b. Restart the process from step 1.
	3. If all pairs are in order, stop.
	For example, the list { 4 1 3 2 } is sorted
	as follows:
First Sort II	4 1 3 2 (4 and 1 are out of order so
	move 1 to the front of the list)
	1 4 3 2 (4 and 3 are out of order so
	move 3 to the front of the list)
	3 1 4 2 (3 and 1 are out of order so
	move 1 to the front of the list)
	1 3 4 2 (4 and 2 are out of order so
	move 2 to the front of the list)
	2 1 3 4 (2 and 1 are out of order so
	move 1 to the front of the list)
	1 2 3 4 (The list is now sorted)
	Let F(L) be the number of times step 2a
	is executed to sort list L. For example,
	First Sort II

		1
		An ellipse E(a, b) is given at its initial
		position by equation:
		Х
		2
		а
		2
		+
		(y-b
)
		2
		b
		2
525	Rolling Ellipse	=1
		x
		The ellipse rolls without slipping along
		the x axis for one complete turn.
		Interestingly, the length of the curve
		generated by a focus is independent
		from the size of the minor axis:
		$F(a,b)=2\pi \max(a,b)$
		F
		This is not true for the curve generated
		by the ellipse center. Let C(a,b) be the
		length of the curve generated by the
		center of the ellipse as it rolls without

	T	
		Let f(n) be the largest prime factor of
		n.
		Let $g(n) = f(n) + f(n+1) + f(n+2) +$
		f(n+3) + f(n+4) + f(n+5) + f(n+6) +
		f(n+7) + f(n+8), the sum of the largest
		prime factor of each of nine
		consecutive numbers starting with n.
526	gest prime factors of consecutive numb	Let h(n) be the maximum value of g(k)
320	gest prime factors of consecutive numb	for $2 \le k \le n$.
		You are given:
		f(100) = 5
		f(101) = 101
		g(100) = 409
		h(100) = 417
		h(109) = 4896292593
		Find h(1016).

527	Randomized Binary Search	A secret integer t is selected at random within the range 1 ≤ t ≤ n. The goal is to guess the value of t by making repeated guesses, via integer g. After a guess is made, there are three possible outcomes, in which it will be revealed that either g < t, g = t, or g > t. Then the process can repeat as necessary. Normally, the number of guesses required on average can be minimized with a binary search: Given a lower bound L and upper bound H (initialized to L = 1 and H = n), let g = [(L+H)/2] where [·] is the integer floor function. If g = t, the process and services and services are desired.
		function. If g = t, the process ends. Otherwise, if g < t, set L = g+1, but if g > t instead, set H = g-1. After setting the new bounds, the search process repeats, and ultimately ends once t is found. Even if t can be deduced without searching, assume that a search will be required anyway to confirm the value. Your friend Bob believes that the
528	Constrained Sums	Let $S(n,k,b)$ represent the number of valid solutions to $x1 + x2 + + xk \le n$, where $0 \le xm \le bm$ for all $1 \le m \le k$. For example, $S(14,3,2) = 135$, $S(200,5,3) = 12949440$, and $S(1000,10,5)$ mod 1 000 000 007 = 624839075. Find $(\sum 10 \le k \le 15 S(10k,k,k))$ mod 1 000 000 007.

529	10-substrings	A 10-substring of a number is a substring of its digits that sum to 10. For example, the 10-substrings of the number 3523014 are: 3523014 3523014 3523014 A number is called 10-substringfriendly if every one of its digits belongs to a 10-substring. For example, 3523014 is 10-substringfriendly, but 28546 is not. Let T(n) be the number of 10-substringfriendly numbers from 1 to 10n (inclusive). For example T(2) = 9 and T(5) = 3492. Find T(1018) mod 1 000 000 007.
-----	---------------	--

530	GCD of Divisors	Every divisor d of a number n has a complementary divisor n/d. Let f(n) be the sum of the greatest common divisor of d and n/d over all positive divisors d of n, that is $f(n) = \sum_{\substack{\sum \\ \text{d} \mid n}} \text{d} \mid n$ $gcd(d, n)$ f $.$ Let F be the summatory function of f, that is $F(k) = \sum_{\substack{\sum \\ n=1 \\ k}} n=1$ k $f(n)$ F $.$ You are given that F(10)=32 and F(1000)=12776.
531	Chinese leftovers	Let $g(a,n,b,m)$ be the smallest non- negative solution x to the system: $x = a \mod n$ $x = b \mod m$ if such a solution exists, otherwise 0. E.g. $g(2,4,4,6)=10$, but $g(3,4,4,6)=0$. Let $\phi(n)$ be Euler's totient function. Let $f(n,m)=g(\phi(n),n,\phi(m),m)$ Find $\sum f(n,m)$ for $10000000 \le n < m < 1005000$

		Bob is a manufacturer of nanobots and
		wants to impress his customers by
		giving them a ball coloured by his new
		nanobots as a present.
		His nanobots can be programmed to
		select and locate exactly one other bot
		precisely and, after activation, move
		towards this bot along the shortest
		possible path and draw a coloured line
		onto the surface while moving. Placed
		on a plane, the bots will start to move
		towards their selected bots in a
532	Nanobots on Geodesics	straight line. In contrast, being placed
		on a ball, they will start to move along
		a geodesic as the shortest possible
		path. However, in both cases,
		whenever their target moves they will
		adjust their direction instantaneously
		to the new shortest possible path. All
		bots will move at the same speed after
		their simultaneous activation until each
		bot reaches its goal.
		Now Bob places n bots on the ball
		(with radius 1) equidistantly on a small
		circle with radius 0.999 and programs
		The Carmichael function λ(n) is defined
		as the smallest positive integer m such
		that am = 1 modulo n for all integers a
		coprime with n.
		For example $\lambda(8) = 2$ and $\lambda(240) = 4$.
533		Define I (n) as the smallest positive
	linimum values of the Carmichael function	integer m such that $\lambda(k) \ge n$ for all $k \ge n$
		m.
		For example, L(6) = 241 and L(100) =
		20 174 525 281.
		Find L(20 000 000). Give the last 9
		digits of your answer.
		argits or your unswer.

	The about 1 2 10
	The classical eight queens puzzle is the
	well known problem of placing eight
	chess queens on a 8×8 chessboard so
	that no two queens threaten each
	other. Allowing configurations to
	reappear in rotated or mirrored form, a
	total of 92 distinct configurations can
	be found for eight queens. The general
	case asks for the number of distinct
	ways of placing n queens on a n×n
	board, e.g. you can find 2 distinct
	configurations for n=4.
Weak Queens	Let's define a weak queen on a n×n
	board to be a piece which can move
	any number of squares if moved
	horizontally, but a maximum of n-1-w
	squares if moved vertically or
	diagonally, 0≤w <n being="" td="" the<=""></n>
	"weakness factor". For example, a weak
	queen on a n×n board with a
	weakness factor of w=1 located in the
	bottom row will not be able to
	threaten any square in the top row as
	the weak queen would need to move
	n-1 squares vertically or diagonally to
	Weak Queens

		Consider the infinite integer sequence
535	Fractal Sequence	2, ⑦, ⑧, 4, ⑨, 1, ⑩, ⑪, 5, The sequence is characterized by the following properties: The circled numbers are consecutive integers starting with 1. Immediately preceding each noncircled numbers ai, there are exactly [√ai] adjacent circled numbers, where [] is the floor function. If we remove all circled numbers, the remaining numbers form a sequence identical to S, so S is a fractal sequence. Let T(n) be the sum of the first nelements of the sequence.
		You are given T(1) = 1, T(20) = 86, T(103) = 364089 and T(109) = 498676527978348241.
536	Modulo power identity	Let S(n) be the sum of all positive integers m not exceeding n having the following property: a m+4 \equiv a (mod m) for all integers a. The values of m \leq 100 that satisfy this property are 1, 2, 3, 5 and 21, thus S(100) = 1+2+3+5+21 = 32. You are given S(106) = 22868117. Find S(1012).

		Let $\pi(x)$ be the prime counting
		function, i.e. the number of prime
		numbers less than or equal to x.
		For example, $\pi(1)=0$, $\pi(2)=1$,
		π(100)=25.
		Let T(n,k) be the number of k-tuples
		(x1,,xk) which satisfy:
		1. every xi is a positive integer;
		2.
		Σ
		i=1
		k
537	Counting tuples	π(
		x
		i
)=n
		Σ
		For example T(3,3)=19.
		The 19 tuples are (1,1,5), (1,5,1), (5,1,1),
		(1,1,6), (1,6,1), (6,1,1), (1,2,3), (1,3,2),
		(2,1,3), (2,3,1), (3,1,2), (3,2,1), (1,2,4),
		(1,4,2), (2,1,4), (2,4,1), (4,1,2), (4,2,1),
		(2,2,2).
		You are given T(10,10) = 869 985 and
		$T(103,103) \equiv 578\ 270\ 566\ (mod\ 1\ 004)$

		Consider a positive integer sequence S
		= (s1, s2,, sn).
		Let f(S) be the perimeter of the
		maximum-area quadrilateral whose
		side lengths are 4 elements (si, sj, sk,
		sl) of S (all i, j, k, I distinct). If there are
		many quadrilaterals with the same
		maximum area, then choose the one
		with the largest perimeter.
		For example, if S = (8, 9, 14, 9, 27),
		then we can take the elements (9, 14,
		9, 27) and form an isosceles trapezium
538	Maximum quadrilaterals	with parallel side lengths 14 and 27
		and both leg lengths 9. The area of this
		quadrilateral is 127.611470879 It can
		be shown that this is the largest area
		for any quadrilateral that can be
		formed using side lengths from S.
		Therefore, $f(S) = 9 + 14 + 9 + 27 = 59$.
		Let un = $2B(3n) + 3B(2n) + B(n+1)$,
		where B(k) is the number of 1 bits of k
		in base 2.
		For example, $B(6) = 2$, $B(10) = 2$ and
		B(15) = 4, and $u5 = 24 + 32 + 2 = 27$.
		Also, let Un be the sequence (u1, u2,,

		Start from an ordered list of all
		integers from 1 to n. Going from left to
		right, remove the first number and
		every other number afterward until the
		end of the list. Repeat the procedure
		from right to left, removing the right
		most number and every other number
		from the numbers left. Continue
		removing every other numbers,
		alternating left to right and right to
		left, until a single number remains.
		Starting with $n = 9$, we have:
539	Odd elimination	123456789
		2 4 6 8
		2 6
		6
		Let P(n) be the last number left starting
		with a list of length n.
		Let
		S(n)=
		Σ
		k=1
		n
		P(k)
		S

		A Pythagorean triple consists of three
		positive integers
		a,b
		a
		and
		С
		С
		satis fying
		a
		2
		+
		b
540	Counting primitive Pythagorean triples	2
	31 7 3 1	=
		С
		2
		a
		<u> </u>
		The triple is called primitive if
		a,b
		a
	and	
		С
		С
		are relatively prime.

		The nth harmonic number Hn is
		defined as the sum of the
		multiplicative inverses of the first n
		positive integers, and can be written as
		a reduced fraction an/bn.
		Н
		n
		=
		Σ
		k=1
		n
		1
541	isibility of Harmonic Number Denomina	k
		=
		a
		n
		b
		n
		Н
		, with
		gcd(
		а
		n
		,
		b

		Let S(k) be the sum of three or more
		distinct positive integers having the
	following properties:	
		No value exceeds k.
		The values form a geometric
		progression.
		The sum is maximal.
		S(4) = 4 + 2 + 1 = 7
		S(10) = 9 + 6 + 4 = 19
		S(12) = 12 + 6 + 3 = 21
		S(1000) = 1000 + 900 + 810 + 729 =
		3439
542	eometric Progression with Maximum Su	Let
		T(n)=
		Σ
		n
		k=4
		(–1
)
		k
		S(k)
		Т
		T(1000) = 2268
		Find T(1017).

543	Prime-Sum Numbers	Define function $P(n,k) = 1$ if n can be written as the sum of k prime numbers (with repetitions allowed), and $P(n,k) = 0$ otherwise. For example, $P(10,2) = 1$ because 10 can be written as either $3 + 7$ or $5 + 5$, but $P(11,2) = 0$ because no two primes can sum to 11. Let $S(n)$ be the sum of all $P(i,k)$ over $1 \le i,k \le n$. For example, $S(10) = 20$, $S(100) = 2402$, and $S(1000) = 248838$. Let $F(k)$ be the kth Fibonacci number (with $F(0) = 0$ and $F(1) = 1$). Find the sum of all $S(F(k))$ over $3 \le k \le 44$
544	Chromatic Conundrum	Let $F(r,c,n)$ be the number of ways to colour a rectangular grid with r rows and c columns using at most n colours such that no two adjacent cells share the same colour. Cells that are diagonal to each other are not considered adjacent. For example, $F(2,2,3) = 18$, $F(2,2,20) = 130340$, and $F(3,4,6) = 102923670$. Let $S(r,c,n) = \sum_{n} n$ $k=1$ $\sum_{r(r,c,k)} F(r,c,k)$. For example, $F(4,4,15) \mod 109+7 = 325951319$. Find $F(4,112131415) \mod 109+7$.

		The sum of the kth powers of the first
		n positive integers can be expressed as
		a polynomial of degree k+1 with
		rational coefficients, the Faulhaber's
		Formulas:
		1
		k
		+
		2
		k
		++
		n
545	Faulhaber's Formulas	k
		=
		Σ
		n
		i=1
		i
		k
		=
		Σ
		k+1
		i=1
		a
		i

		Define fk(n) =
		Σ
		n
		i=0
		Σ
		£ fk(
		ı`
		i
		k
		ı.
		1
		L
) where fk(0) = 1 and
546	The Floor's Revenge	[x]
		L
		denotes the floor function.
		For example, f5(10) = 18, f7(100) =
		1003, and f2(103) = 264830889564.
		Find
		(
		Σ
		10
		k=2
		·· <u>-</u>
		fk(1014)
		18(1014)
)

547	e of random points within hollow square	with side length n ≥ 3 consisting of n2 unit squares from which a rectangle consisting of x × y unit squares (1 ≤ x,y ≤ n - 2) within the original square has been removed. For n = 3 there exists only one hollow square lamina: For n = 4 you can find 9 distinct hollow square laminae, allowing shapes to reappear in rotated or mirrored form: Let S(n) be the sum of the expected
		distance between two points chosen
548	Gozinta Chains	A gozinta chain for n is a sequence {1,a,b,,n} where each element properly divides the next. There are eight gozinta chains for 12: {1,12}, {1,2,12}, {1,2,4,12}, {1,2,6,12}, {1,3,12}, {1,3,6,12}, {1,4,12} and {1,6,12}. Let g(n) be the number of gozinta chains for n, so g(12)=8. g(48)=48 and g(120)=132. Find the sum of the numbers n not exceeding 1016 for which g(n)=n.

549	Divisibility of factorials	The smallest number m such that 10 divides m! is m=5. The smallest number m such that 25 divides m! is m=10. Let $s(n)$ be the smallest number m such that n divides m!. So $s(10)=5$ and $s(25)=10$. Let $S(n)$ be $\sum s(i)$ for $2 \le i \le n$. $S(100)=2012$. Find $S(108)$.
550	Divisor game	Two players are playing a game. There are k piles of stones. When it is his turn a player has to choose a pile and replace it by two piles of stones under the following two conditions: Both new piles must have a number of stones more than one and less than the number of stones of the original pile. The number of stones of each of the new piles must be a divisor of the number of stones of the original pile. The first player unable to make a valid move loses. Let f(n,k) be the number of winning positions for the first player, assuming perfect play, when the game is played with k piles each having between 2 and n stones (inclusively). f(10,5)=40085. Find f(107,1012). Give your answer modulo 987654321.

		Let a0, a1, a2, be an integer
		sequence defined by:
		a0 = 1;
		for $n \ge 1$, an is the sum of the digits of
551	Sum of digits sequence	all preceding terms.
		The sequence starts with 1, 1, 2, 4, 8,
		16, 23, 28, 38, 49,
		You are given a106 = 31054319.
		Find a1015.
		Let An be the smallest positive integer
		satisfying An mod pi = i for all 1 ≤ i ≤
		n, where pi is the i-th prime.
		For example $A2 = 5$, since this is the
		smallest positive solution of the system
		of equations
	Chinese leftovers II	A2 mod 2 = 1
		A2 mod $3 = 2$
		The system of equations for A3 adds
		another constraint. That is, A3 is the
		smallest positive solution of
		A3 mod 2 = 1
552		A3 mod 3 = 2
		A3 mod 5 = 3
		and hence A3 = 23. Similarly, one gets
		A4 = 53 and A5 = 1523.
		Let S(n) be the sum of all primes up to
		n that divide at least one element in
		the sequence A.
		For example, $S(50) = 69 = 5 + 23 + 41$,
		since 5 divides A2, 23 divides A3 and
		41 divides A10 = 5765999453. No
		other prime number up to 50 divides
		an element in A.
		Find S(300000).

		_
		Let P(n) be the set of the first n
		positive integers {1, 2,, n}.
		Let Q(n) be the set of all the non-
		empty subsets of P(n).
		Let R(n) be the set of all the non-
		empty subsets of Q(n).
		An element $X \in R(n)$ is a non-empty
		subset of Q(n), so it is itself a set.
		From X we can construct a graph as
		follows:
		Each element Y ∈ X corresponds to a
		vertex and labeled with Y;
553	Power sets of power sets	Two vertices Y1 and Y2 are connected
		if Y1 ∩ Y2 ≠ Ø.
		For example, X = {{1}, {1,2,3}, {3}, {5,6},
		{6,7}} results in the following graph:
		This graph has two connected
		components.
		Let C(n,k) be the number of elements
		of R(n) that have exactly k connected
		components in their graph.
		You are given C(2,1) = 6, C(3,1) = 111,
		C(4,2) = 486, C(100,10) mod 1 000 000
		007 = 728209718.
		Find C(104,10) mod 1 000 000 007.

		On a chess board, a centaur moves like
		a king or a knight. The diagram below
		shows the valid moves of a centaur
		(represented by an inverted king) on
		an 8x8 board.
		It can be shown that at most n2 non-
		attacking centaurs can be placed on a
		board of size 2n×2n.
		Let C(n) be the number of ways to
		place n2 centaurs on a 2n×2n board so
		that no centaur attacks another
		directly.
554	Centaurs on a chess board	For example $C(1) = 4$, $C(2) = 25$, $C(10)$
		= 1477721.
		Let Fi be the ith Fibonacci number
		defined as F1 = F2 = 1 and Fi = Fi-1 +
		Fi-2 for i > 2.
		Find
		(
		Σ
		i=2
		90
		C(
		F .
		i

	The McCarthy 91 function is defined as
	follows:
	M
	91
	(n)={
	n-10
	М
	91
	(
	М
	91
	(n+11))
McCarthy 91 function	if n>100
	if 0≤n≤100
	M91(n)={n-10if
	n>100M91(M91(n+11))if 0≤n≤100
	We can generalize this definition by
	abstracting away the constants into
	new variables:
	М
	m,k,s
	(n)={
	n-s
	M
	m,k,s
	McCarthy 91 function

1		
		A Gaussian integer is a number z = a +
		bi where a, b are integers and i2 = -1.
		Gaussian integers are a subset of the
		complex numbers, and the integers are
		the subset of Gaussian integers for
		which $b = 0$.
		A Gaussian integer unit is one for
		which a2 + b2 = 1, i.e. one of 1, i, -1, -i.
		Let's define a proper Gaussian integer
		as one for which $a > 0$ and $b \ge 0$.
		A Gaussian integer z1 = a1 + b1i is
		said to be divisible by z2 = a2 + b2i if
556	Squarefree Gaussian Integers	z3 = a3 + b3i = z1/z2 is a Gaussian
		integer.
		z
		1
		z
		2
		=
		a
		1
		+
		b
		1
		i

		A triangle is cut into four pieces by two
		straight lines, each starting at one
		vertex and ending on the opposite
		edge. This results in forming three
		smaller triangular pieces, and one
		quadrilateral. If the original triangle
		has an integral area, it is often possible
		to choose cuts such that all of the four
		pieces also have integral area. For
		example, the diagram below shows a
		triangle of area 55 that has been cut in
		this way.
557	Cutting triangles	Representing the areas as a, b, c and d,
		in the example above, the individual
		areas are a = 22, b = 8, c = 11 and d =
		14. It is also possible to cut a triangle
		of area 55 such that a = 20, b = 2, c =
		24, d = 9.
		Define a triangle cutting quadruple (a,
		b, c, d) as a valid integral division of a
		triangle, where a is the area of the
		triangle between the two cut vertices,
		d is the area of the quadrilateral and b
		and c are the areas of the two other
		triangles, with the restriction that b ≤

		<u> </u>
		Let r be the real root of the equation
		x3 = x2 + 1.
		Every positive integer can be written as
		the sum of distinct increasing powers
		of r.
		If we require the number of terms to
		be finite and the difference between
		any two exponents to be three or
		more, then the representation is
		unique.
		For example, $3 = r - 10 + r - 5 + r - 1 + r$
		2 and 10 = r -10 + r -7 + r 6.
558	Irrational base	Interestingly, the relation holds for the
		complex roots of the equation.
		Let w(n) be the number of terms in this
		unique representation of n. Thus w(3)
		= 4 and w(10) = 3.
		More formally, for all positive integers
		n, we have:
		n =
		Σ
		∞
		Σ
		bk rk

		An ascent of a column j in a matrix occurs if the value of column j is smaller than the value of column j+1 in all rows.
		Let $P(k, r, n)$ be the number of $r \times n$ matrices with the following properties:
		The rows are permutations of {1, 2, 3,
		, n}.
		Numbering the first column as 1, a
		column ascent occurs at column j <n if<="" td=""></n>
		and only if j is not a multiple of k.
559	Permuted Matrices	For example, P(1, 2, 3) = 19, P(2, 4, 6) =
		65508751 and P(7, 5, 30) mod
		1000000123 = 161858102.
		Let Q(n) =
		Σ
		k=1
		n –
		Σ P(k, n, n).
		, , , ,
		For example, Q(5) = 21879393751 and Q(50) mod 1000000123 = 819573537.
		Find Q(50000) mod 1000000123.
		Tina Q(30000) mod 1000000123.

560	Coprime Nim	Coprime Nim is just like ordinary normal play Nim, but the players may only remove a number of stones from a pile that is coprime with the current size of the pile. Two players remove stones in turn. The player who removes the last stone wins. Let L(n, k) be the number of losing starting positions for the first player, assuming perfect play, when the game is played with k piles, each having between 1 and n - 1 stones inclusively. For example, L(5, 2) = 6 since the losing initial positions are (1, 1), (2, 2), (2, 4), (3, 3), (4, 2) and (4, 4). You are also given L(10, 5) = 9964, L(10, 10) = 472400303, L(103, 103)
		You are also given L(10, 5) = 9964,

	Let
	S(n)
	S
	be the number of pairs
	(a,b)
	(
	of distinct divisors of
	n
	n
	such that
	a
	a
Divisor Pairs	divides
	b
	b
	For
	n=6
	n
	we get the following pairs:
	(1,2),(1,3),(1,6),(2,6)
	(
	and
	(3,6)
	(
	Divisor Pairs

		Construct triangle ABC such that:
		Vertices A, B and C are lattice points
		inside or on the circle of radius r
		centered at the origin;
		the triangle contains no other lattice
		point inside or on its edges;
		the perimeter is maximum.
		Let R be the circumradius of triangle
		ABC and $T(r) = R/r$.
		For r = 5, one possible triangle has
		vertices (-4,-3), (4,2) and (1,0) with
		perimeter
562	Maximal perimeter	13
		-
		-
		√
		+
		34
		-
		-
		\checkmark
		+
		89
		-
		_

		1
		A company specialises in producing
		large rectangular metal sheets, starting
		from unit square metal plates. The
		welding is performed by a range of
		robots of increasing size.
		Unfortunately, the programming
		options of these robots are rather
		limited. Each one can only process up
		to 25 identical rectangles of metal,
		which they can weld along either edge
		to produce a larger rectangle. The only
		programmable variables are the
563	Robot Welders	number of rectangles to be processed
		(up to and including 25), and whether
		to weld the long or short edge.
		For example, the first robot could be
		programmed to weld together 11 raw
		unit square plates to make a 11×1
		strip. The next could take 10 of these
		11×1 strips, and weld them either to
		make a longer 110×1 strip, or a 11×10
		rectangle. Many, but not all, possible
		dimensions of metal sheets can be
		constructed in this way.
		One regular customer has a

	1
	A line segment of length
	2n-3
	2
	is randomly split into
	n
	n
	segments of integer length (
	n≥3
	n
). In the sequence given by this split,
	the segments are then used as
	consecutive sides of a convex
Maximal polygons	n
	n
	-polygon, formed in such a way that its
	area is maximal. All of the
	(
	2n-4
	n-1
)
	(
	possibilities for splitting up the initial
	line segment occur with the same
	probability.
	Let
	Maximal polygons

		Let
		σ(n)
		σ
		be the sum of the divisors of
		n
		n
		·
		E.g. the divisors of 4 are 1, 2 and 4, so
		σ(4)=7
		σ
		The numbers
565	Divisibility of sum of divisors	n
		n
		not exceeding 20 such that 7 divides
		σ(n)
		σ
		are: 4,12,13 and 20, the sum of these
		numbers being 49.
		Let
		S(n,d)
		S S
		be the sum of the numbers
		! !
		İ

		Adam plays the following game with
		his birthday cake.
		He cuts a piece forming a circular
		sector of 60 degrees and flips the
		piece upside down, with the icing on
		the bottom.
		He then rotates the cake by 60
		degrees counterclockwise, cuts an
		adjacent 60 degree piece and flips it
		upside down.
		He keeps repeating this, until after a
		total of twelve steps, all the icing is
566	Cake Icing Puzzle	back on top.
	3	Amazingly, this works for any piece
		size, even if the cutting angle is an
		irrational number: all the icing will be
		back on top after a finite number of
		steps.
		Now, Adam tries something different:
		he alternates cutting pieces of size
		X=
		360
		9
		х
		degrees,

		Tom has built a random generator that
		is connected to a row of
		n
		n
		light bulbs. Whenever the random
		generator is activated each of the
		n
		n
		lights is turned on with the probability
		of
		1
		2
567	Reciprocal games I	1
		, independently of its former state or
		the state of the other light bulbs.
	While discussing with his friend Jerry	
		how to use his generator, they invent
		two different games, they call the
		reciprocal games:
		Both games consist of
		n
		n l
		turns. Each turn is started by choosing
		a number
		k
		**

		7
		Tom has built a random generator that
		is connected to a row of
		n
		n
		light bulbs. Whenever the random
		generator is activated each of the
		n
		n
		lights is turned on with the probability
		of
		1
		2
568	Reciprocal games II	1
	, 3	, independently of its former state or
	the state of the other light bulbs.	
		While discussing with his friend Jerry
		how to use his generator, they invent
		two different games, they call the
		reciprocal games:
		Both games consist of
		n
		n
		turns. Each turn is started by choosing
		a number
		k
		I N

		1
		A mountain range consists of a line of
		mountains with slopes of exactly 45°,
		and heights governed by the prime
		numbers, pn. The up-slope of the kth
		mountain is of height p2k-1, and the
		downslope is p2k. The first few foot-
		hills of this range are illustrated below.
		Tenzing sets out to climb each one in
		turn, starting from the lowest. At the
		top of each peak, he looks back and
		counts how many of the previous
		peaks he can see. In the example
569	Prime Mountain Range	above, the eye-line from the third
		mountain is drawn in red, showing that
		he can only see the peak of the second
		mountain from this viewpoint.
		Similarly, from the 9th mountain, he
		can see three peaks, those of the 5th,
		7th and 8th mountain.
		Let P(k) be the number of peaks that
		are visible looking back from the kth
		mountain. Hence $P(3)=1$ and $P(9)=3$.
		Also
		Σ
		k=1

		A snowflake of order n is formed by overlaying an equilateral triangle (rotated by 180 degrees) onto each equilateral triangle of the same size in a snowflake of order n-1. A snowflake of order 1 is a single equilateral triangle. Some areas of the snowflake are
		overlaid repeatedly. In the above picture, blue represents the areas that
		are one layer thick, red two layers thick, yellow three layers thick, and so
570	Snowflakes	on.
		For an order n snowflake, let A(n) be
		the number of triangles that are one
		layer thick, and let B(n) be the number
		of triangles that are three layers thick.
		Define $G(n) = gcd(A(n), B(n))$.
		E.g. $A(3) = 30$, $B(3) = 6$, $G(3)=6$
		A(11) = 3027630, B(11) = 19862070,
		G(11) = 30
		Further, G(500) = 186 and
		Σ
		500
		n=3

571 Super Pandigital Numbers	A positive number is pandigital in base b if it contains all digits from 0 to b - 1 at least once when written in base b. A n-super-pandigital number is a number that is simultaneously pandigital in all bases from 2 to n inclusively. For example 978 = 11110100102 = 11000203 = 331024 = 124035 is the smallest 5-super-pandigital number. Similarly, 1093265784 is the smallest 10-super-pandigital number. The sum of the 10 smallest 10-super-pandigital numbers is 20319792309. What is the sum of the 10 smallest 12-super-pandigital numbers?
------------------------------	---

ī		
		A matrix
		M
		M
		is called idempotent if
		M
		2
		=M
		М
		Let
		M
		M
572	Idempotent matrices	be a three by three matrix :
372	idempotent matrices	M/=
		\\\^-
		ı
		a
		d
		g
		b
		е
		h
		С
		f

· ·		
		n
		n
r	runners in very different training states	
		want to compete in a race. Each one of
		them is given a different starting
		number
		k
		k
		(1≤k≤n)
		(
		according to his (constant) individual
		racing speed being
573	Unfair race	v
		k
		=
		k
		n l
		v v
		·
		In order to give the slower runners a
		chance to win the race,
		n
		n ''
		different starting positions are chosen
		randomly (with uniform distribution)

		Let
		q
		q
		be a prime and
		A≥B>0
		А
		be two integers with the following
		properties:
		А
		А
		and
		В
574	Verifying Primes	В
		have no prime factor in common, that
		is
		gcd(A,B)=1
		gcd
		The product
		АВ
		А
		is divisible by every prime less than q.
		It can be shown that, given these
		conditions, any sum
		A+B<

		It was quite an ordinary day when a
		mysterious alien vessel appeared as if
		from nowhere. After waiting several
		hours and receiving no response it is
		decided to send a team to investigate,
		of which you are included. Upon
		entering the vessel you are met by a
		friendly holographic figure, Katharina,
		who explains the purpose of the vessel,
		Eulertopia.
		She claims that Eulertopia is almost
		older than time itself. Its mission was
575	Wandering Robots	to take advantage of a combination of
		incredible computational power and
		vast periods of time to discover the
		answer to life, the universe, and
		everything. Hence the resident
		cleaning robot, Leonhard, along with
		his housekeeping responsibilities, was
		built with a powerful computational
		matrix to ponder the meaning of life as
		he wanders through a massive 1000 by
		1000 square grid of rooms. She goes
		on to explain that the rooms are
		numbered sequentially from left to

		A Is a constitution of the
		A bouncing point moves
		counterclockwise along a circle with
		circumference
		1
		1
		with jumps of constant length
		l<1
		I
		, until it hits a gap of length
		g<1
		g
		, that is placed in a distance
576	Irrational jumps	d
		d
		counterclockwise from the starting
		point. The gap does not include the
		starting point, that is
		g+d<1
		g
		Let
		S(l,g,d) S
		be the sum of the length of all jumps,
		until the point falls into the gap. It can

		1
		An equilateral triangle with integer
		side length
		n≥3
		n
		is divided into
		n
		2
		n
		equilateral triangles with side length 1
		as shown in the diagram below.
		The vertices of these triangles
		constitute a triangular lattice with
577	Counting hexagons	(n+1)(n+2)
		2
		(
		lattice points.
		Let
		H(n)
		Н
		be the number of all regular hexagons
		that can be found by connecting 6 of
		these points.
		For example,
		H(3)=1
		Н

578	Integers with decreasing prime powers	Any positive integer can be written as a product of prime powers: p1a1 × p2a2 × × pkak, where pi are distinct prime integers, ai > 0 and pi < pj if i < j. A decreasing prime power positive integer is one for which ai ≥ aj if i < j. For example, 1, 2, 15=3×5,
		For example, 1, 2, 15=3×5, 360=23×32×5 and 1000=23×53 are decreasing prime power integers. Let C(n) be the count of decreasing prime power positive integers not exceeding n. C(100) = 94 since all positive integers not exceeding 100 have decreasing prime powers except 18, 50, 54, 75, 90
		and 98. You are given C(106) = 922052. Find C(1013).

		A lattice cube is a cube in which all
		vertices have integer coordinates. Let
		C(n) be the number of different lattice
		cubes in which the coordinates of all
		vertices range between (and including)
		0 and n. Two cubes are hereby
		considered different if any of their
		vertices have different coordinates.
		For example, C(1)=1, C(2)=9, C(4)=100,
		C(5)=229, C(10)=4469 and
		C(50)=8154671.
		Different cubes may contain different
579	Lattice points in lattice cubes	numbers of lattice points.
		For example, the cube with the vertices
		(0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3), (0, 3,
		3), (3, 0, 3), (3, 3, 0), (3, 3, 3) contains
		64 lattice points (56 lattice points on
		the surface including the 8 vertices and
		8 points within the cube).
		In contrast, the cube with the vertices
		(0, 2, 2), (1, 4, 4), (2, 0, 3), (2, 3, 0), (3, 2,
		5), (3, 5, 2), (4, 1, 1), (5, 3, 3) contains
		only 40 lattice points (20 points on the
		surface and 20 points within the cube),
		although both cubes have the same
579	Lattice points in lattice cubes	numbers of lattice points. For example, the cube with the veriliary (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3), (3, 3, 3), (3, 0, 3), (3, 3, 3) contains (3, 0, 3), (3, 3, 3) contains (4 lattice points (56 lattice points) the surface including the 8 vertices 8 points within the cube). In contrast, the cube with the vertice (0, 2, 2), (1, 4, 4), (2, 0, 3), (2, 3, 0), (3, 5, 2), (4, 1, 1), (5, 3, 3) contains (3, 5, 2), (4, 1, 1), (5, 3, 3) contains (40 lattice points) (20 points) on surface and 20 points within the cube.

		A Hilbert number is any positive
		A Hilbert number is any positive
		integer of the form
		4k+1
		4
		for integer
		k≥0
		k
		. We shall define a squarefree Hilbert
		number as a Hilbert number which is
		not divisible by the square of any
		Hilbert number other than one. For
		example,
580	Squarefree Hilbert numbers	117
300	Squarence i insere namiceis	117
		is a squarefree Hilbert number,
		equaling
		9×13
		9
		. However
		6237
		6237
		is a Hilbert number that is not
		squarefree in this sense, as it is
		divisible by
		9
		A number is p-smooth if it has no
	47-smooth triangular numbers	prime factors larger than p.
F01		Let T be the sequence of triangular
581		numbers, ie $T(n)=n(n+1)/2$.
		Find the sum of all indices n such that
		T(n) is 47-smooth.
		Let a, b and c be the sides of an
582	Nearly isosceles 120 degree triangles	integer sided triangle with one angle
		of 120 degrees, $a \le b \le c$ and $b-a \le 100$.
		Let T(n) be the number of such
		triangles with c≤n.
		T(1000)=235 and T(108)=1245.
		Find T(10100).

583	Heron Envelopes	A standard envelope shape is a convex figure consisting of an isosceles triangle (the flap) placed on top of a rectangle. An example of an envelope with integral sides is shown below. Note that to form a sensible envelope, the perpendicular height of the flap (BCD) must be smaller than the height of the rectangle (ABDE). In the envelope illustrated, not only are all the sides integral, but also all the diagonals (AC, AD, BD, BE and CE) are integral too. Let us call an envelope with these properties a Heron envelope. Let S(p) be the sum of the perimeters of all the Heron envelopes with a perimeter less than or equal to p. You are given that S(104) = 884680. Find S(107).
-----	-----------------	--

	A 1 1
	A long long time ago in a galaxy far far
	away, the Wimwians, inhabitants of
	planet WimWi, discovered an
	unmanned drone that had landed on
	their planet. On examining the drone,
	they uncovered a device that sought
	the answer for the so called "Birthday
	Problem". The description of the
	problem was as follows:
	If people on your planet were to enter
	a very large room one by one, what
	will be the expected number of people
Birthday Problem Revisited	in the room when you first find 3
	people with Birthdays within 1 day
	from each other.
	The description further instructed them
	to enter the answer into the device and
	send the drone into space again.
	Startled by this turn of events, the
	Wimwians consulted their best
	mathematicians. Each year on Wimwi
	has 10 days and the mathematicians
	assumed equally likely birthdays and
	ignored leap years (leap years in
	Wimwi have 11 days), and found
	Birthday Problem Revisited

		Consider the term
	x+	
		у
		, √
		+
		z
		V
		_
		_
		_
		_
		-
585	Nested square roots	-
		-
		-
		-
		-
		_
		√
		x
		that is representing a nested square
		root.
		х
		Х
		,

		The number 209 can be expressed as
		a
		2
		+3ab+
		b
		2
		a
		in two distinct ways:
		209=
		8
		2
		+3.8.5+
586	Binary Quadratic Form	5
		2
		209
		209=
		13
		2
		+3.13.1+
		1
		2
		209
		Let
		f(n,r)

		A square is drawn around a circle as
		shown in the diagram below on the
		left.
		We shall call the blue shaded region
		the L-section.
		A line is drawn from the bottom left of
		the square to the top right as shown in
		the diagram on the right.
		We shall call the orange shaded region
		a concave triangle.
		It should be clear that the concave
		triangle occupies exactly half of the L-
587	Concave triangle	section.
		Two circles are placed next to each
		other horizontally, a rectangle is drawn
		around both circles, and a line is drawn
		from the bottom left to the top right
		as shown in the diagram below.
		This time the concave triangle occupies
		approximately 36.46% of the L-section.
		If n circles are placed next to each
		other horizontally, a rectangle is drawn
		around the n circles, and a line is
		drawn from the bottom left to the top
		right, then it can be shown that the

		The seefficients in the company is a set
		The coefficients in the expansion of
		(x+1
)
		k
		(
		are called binomial coefficients.
		Analoguously the coefficients in the
		expansion of
		(
		x
		4
		+
588	Quintinomial coefficients	X
		3
		+
		X
		2
		+x+1
)
		k
		are called quintinomial coefficients.
		(quintus= Latin for fifth).
		Consider the expansion of
		(
		\

	T .	
		Christopher Robin and Pooh Bear love
		the game of Poohsticks so much that
		they invented a new version which
		allows them to play for longer before
		one of them wins and they have to go
		home for tea. The game starts as
		normal with both dropping a stick
		simultaneously on the upstream side
		of a bridge. But rather than the game
		ending when one of the sticks emerges
		on the downstream side, instead they
		fish their sticks out of the water, and
589	Poohsticks Marathon	drop them back in again on the
		upstream side. The game only ends
		when one of the sticks emerges from
		under the bridge ahead of the other
		one having also 'lapped' the other stick
		- that is, having made one additional
		journey under the bridge compared to
		the other stick.
		On a particular day when playing this
		game, the time taken for a stick to
		travel under the bridge varies between
		a minimum of 30 seconds, and a
		maximum of 60 seconds. The time

590	Sets with a given Least Common Multiple	Let H(n) denote the number of sets of positive integers such that the least common multiple of the integers in the set equals n. E.g.: The integers in the following ten sets all have a least common multiple of 6: {2,3}, {1,2,3}, {6}, {1,6}, {2,6}, {1,2,6}, {3,6}, {1,3,6}, {2,3,6} and {1,2,3,6}. Thus H(6)=10. Let L(n) denote the least common multiple of the numbers 1 through n. E.g. L(6) is the least common multiple of the numbers 1,2,3,4,5,6 and L(6) equals 60. Let HL(n) denote H(L(n)). You are given HL(4)=H(12)=44. Find HL(50000). Give your answer modulo 109.
-----	---	--

	1	
		Given a non-square integer
		d
		d
		, any real
		х
		х
		can be approximated arbitrarily close
		by quadratic integers
		a+b
		d
		-
		-
591	est Approximations by Quadratic Intege	\checkmark
		a
		, where
		a,b
		a
		are integers. For example, the
		following inequalities approximate
		π
		π
		with precision
		10
		-13
		10
		For any N, let f(N) be the last twelve
	Factorial trailing digits 2	hexadecimal digits before the trailing
		zeroes in N!.
		For example, the hexadecimal
592		representation of 20! is
		21C3677C82B40000,
		so f(20) is the digit sequence
		21C3677C82B4.
		Find f(20!). Give your answer as twelve
		hexadecimal digits, using uppercase
		for the digits A to F.
<u> </u>		

<u> </u>		
		We define two sequences
		S={S(1),S(2),,S(n)}
		S
		and
		S
		2
		={
		S
		2
		_ (1),
		S
		2
F02	Florida Modern	
593	Fleeting Medians	(2),,
		S
		2
		(n)}
		S
		:
		S(k)=(
		р
		k
		,
		k
		S .
		mod

		For a polygon
		P
		Р
		, let
		t(P)
		t
		be the number of ways in which
		P
		P
		can be tiled using rhombi and squares
		with edge length 1. Distinct rotations
		and reflections are counted as
594	Rhombus Tilings	separate tilings.
	5	For example, if
		0
		О
		is a regular octagon with edge length
		1, then
		t(O)=8
		t
		. As it happens, all these 8 tilings are
		rotations of one another:
		Let
		0
		a,b

•		
		A deck of cards numbered from 1 to n
		is shuffled randomly such that each
		permutation is equally likely.
		The cards are to be sorted into
		ascending order using the following
		technique:
		Look at the initial sequence of cards. If
		it is already sorted, then there is no
		need for further action. Otherwise, if
		any subsequences of cards happen to
		be in the correct place relative to one
		another (ascending with no gaps), then
595	Incremental Random Sort	those subsequences are fixed by
		attaching the cards together. For
		example, with 7 cards initially in the
		order 4123756, the cards labelled 1, 2
		and 3 would be attached together, as
		would 5 and 6.
		The cards are 'shuffled' by being
		thrown into the air, but note that any
		correctly sequenced cards remain
		attached, so their orders are
		maintained. The cards (or bundles of
		attached cards) are then picked up
		randomly. You should assume that this
		Let T(r) be the number of integer
		quadruplets x, y, z, t such that x2 + y2
596		$+ z2 + t2 \le r2$. In other words, T(r) is
	Number of lattice points in a hyperball	the number of lattice points in the four-
		dimensional hyperball of radius r.
		You are given that T(2) = 89, T(5) =
		3121, T(100) = 493490641 and T(104)
		= 49348022079085897.
		Find T(108) mod 1000000007.
<u> </u>	ļ.	<u> </u>

		The Torpids are rowing races held
		l '
		annually in Oxford, following some
		curious rules:
		A division consists of
		n
		n
		boats (typically 13), placed in order
		based on past performance.
		All boats within a division start at 40
		metre intervals along the river, in order
		with the highest-placed boat starting
		furthest upstream.
597	Torpids	The boats all start rowing
	·	simultaneously, upstream, trying to
		catch the boat in front while avoiding
		being caught by boats behind.
		Each boat continues rowing until either
		it reaches the finish line or it catches
		up with ("bumps") a boat in front.
		The finish line is a distance
		The infisit file is a distance
		L
		metres (the course length, in reality
		about 1800 metres) upstream from the
		starting position of the lowest-placed

		Consider the number 48.
		There are five pairs of integers
		a
		a
		and
		b
		b
		(
		a≤b
		a
) such that
		a×b=48
598	Split Divisibilities	a
		: (1,48), (2,24), (3,16), (4,12) and (6,8).
		It can be seen that both 6 and 8 have 4
		divisors.
		So of those five pairs one consists of
		two integers with the same number of
		divisors.
		In general:
		Let
		C(n)
		C
		be the number of pairs of positive
		integers

		The well-known Rubik's Cube puzzle
		has many fascinating mathematical
		properties. The 2×2×2 variant has 8
		cubelets with a total of 24 visible faces,
		each with a coloured sticker.
		Successively turning faces will
		rearrange the cubelets, although not
		all arrangements of cubelets are
		reachable without dismantling the
		puzzle.
		Suppose that we wish to apply new
		stickers to a 2×2×2 Rubik's cube in a
599	Distinct Colourings of a Rubik's Cube	non-standard colouring. Specifically,
		we have
		n
		n
		different colours available (with an
		unlimited supply of stickers of each
		colour), and we place one sticker on
		each of the 24 faces in any
		arrangement that we please. We are
		not required to use all the colours, and
		if desired the same colour may appear
		in more than one face of a single
		cubelet.
		Let H(n) be the number of distinct
	Integer sided equiangular hexagons	integer sided equiangular convex
		hexagons with perimeter not
		exceeding n.
600		Hexagons are distinct if and only if
		they are not congruent.
		You are given H(6) = 1, H(12) = 10,
		H(100) = 31248.
		Find H(55106).
		Equiangular hexagons with perimeter
		not exceeding 12
<u> </u>		9

		For every positive number
		n
		n
		we define the function
		streak(n)=k
		S
		as the smallest positive integer
		k
		k
		such that
		n+k
		n
601	Divisibility streaks	is not divisible by
	, , , , , , , , , , , , , , , , , , ,	k+1
		k
		K
		E a:
		E.g:
		13 is divisible by 1
		14 is divisible by 2
		15 is divisible by 3
		16 is divisible by 4
		17 is NOT divisible by 5
		So
		streak(13)=4
		S

		Alice enlists the help of some friends
		to generate a random number, using a
		single unfair coin. She and her friends
		sit around a table and, starting with
		Alice, they take it in turns to toss the
		coin. Everyone keeps a count of how
		many heads they obtain individually.
		The process ends as soon as Alice
		obtains a Head. At this point, Alice
		multiplies all her friends' Head counts
		together to obtain her random
		number.
602	Product of Head Counts	As an illustration, suppose Alice is
		assisted by Bob, Charlie, and Dawn,
		who are seated round the table in that
		order, and that they obtain the
		sequence of Head/Tail outcomes
		THHH—TTTT—THHT—H beginning
		and ending with Alice. Then Bob and
		Charlie each obtain 2 heads, and Dawn
		obtains 1 head. Alice's random number
		is therefore
		2×2×1=4
		2

		
		Let
		S(n)
		S
		be the sum of all contiguous integer-
		substrings that can be formed from
		the integer
		n
		n
		. The substrings need not be distinct.
		For example,
		S(2024)=2+0+2+4+20+02+24+202+0
		24+2024=2304
603	Substring sums of prime concatenations	S
	,	
		Let
		P(n)
		P
		be the integer formed by
		concatenating the first
		n
		n
		primes together. For example,
		P(7)=2357111317
		P
		.

		1
		Let
		F(N)
		F
		be the maximum number of lattice
		points in an axis-aligned
		N×N
		N
		square that the graph of a single
		strictly convex increasing function can
		pass through.
		You are given that
		F(1)=2
604	Convex path in square	F
		,
		F(3)=3
		F
		F(9)=6
		F F
		·
		, F(11)=7
		F
		٢
		, F(100) 20
		F(100)=30
		F

		Consider an
		n
		n
		-player game played in consecutive
		pairs: Round
		1
		1
		takes place between players
		1
		1
		and
		2
605	Pairwise Coin-Tossing Game	2
	_	, round
		2
		2
		takes place between players
		2
		2
		and
		3
		3
		, and so on and so forth, all the way up
		to round
		n
		A gozinta chain for n is a sequence
		{1,a,b,,n} where each element
		properly divides the next.
		For example, there are eight distinct
		gozinta chains for 12:
		{1,12}, {1,2,12}, {1,2,4,12}, {1,2,6,12},
606	Carinta Chaina II	{1,3,12}, {1,3,6,12}, {1,4,12} and {1,6,12}.
	Gozinta Chains II	Let S(n) be the sum of all numbers, k,
		not exceeding n, which have 252
		distinct gozinta chains.
		You are given S(106)=8462952 and
		S(1012)=623291998881978.
		Find S(1036), giving the last nine digits
		of your answer.
		,

		F. J J.C
		Frodo and Sam need to travel 100
		leagues due East from point A to point
		B. On normal terrain, they can cover 10
		leagues per day, and so the journey
		would take 10 days. However, their
		path is crossed by a long marsh which
		runs exactly South-West to North-East,
		and walking through the marsh will
		slow them down. The marsh is 50
		leagues wide at all points, and the mid-
		point of AB is located in the middle of
		the marsh. A map of the region is
607	Marsh Crossing	shown in the diagram below:
		The marsh consists of 5 distinct
		regions, each 10 leagues across, as
		shown by the shading in the map. The
		strip closest to point A is relatively light
		marsh, and can be crossed at a speed
		of 9 leagues per day. However, each
		strip becomes progressively harder to
		navigate, the speeds going down to 8,
		7, 6 and finally 5 leagues per day for
		the final region of marsh, before it
		ends and the terrain becomes easier
		again, with the speed going back to 10
		1 5 5 6 6

		Let
		D(m,n)=
		Σ
		d m
		Σ
		k=1
		n
		σ
		0
		(kd)
		D
		where
608	Divisor Sums	d
		d
		runs through all divisors of
		m
		m
		and
		σ
		0
		(n)
		σ
		is the number of divisors of
		n
		n

		For every
		n≥1
		n
		the prime-counting function
		π(n)
		π
		is equal to the number of primes not
		exceeding
		n
		n
		E.g.
609	π sequences	π(6)=3
		π
		and
		π(100)=25
		π
		We say that a sequence of integers
		u=(
		u u
		0
		,···,
		u m
		m

		A random ganaratar produces
		A random generator produces a
		sequence of symbols drawn from the
		set {I, V, X, L, C, D, M, #}. Each item in
		the sequence is determined by
		selecting one of these symbols at
		random, independently of the other
		items in the sequence. At each step,
		the seven letters are equally likely to
		be selected, with probability 14% each,
		but the # symbol only has a 2% chance
		of selection.
		We write down the sequence of letters
610	Roman Numerals II	from left to right as they are
		generated, and we stop at the first
		occurrence of the # symbol (without
		writing it). However, we stipulate that
		what we have written down must
		always (when non-empty) be a valid
		Roman numeral representation in
		minimal form. If appending the next
		letter would contravene this then we
		simply skip it and try again with the
		next symbol generated.
		Please take careful note of About
		Roman Numerals for the definitive
		Noman Numerals for the definitive

	Datar mayor in a ballyyay with N : 1
	Peter moves in a hallway with N+1
	doors consecutively numbered from 0
	through N. All doors are initially
	closed. Peter starts in front of door 0,
	and repeatedly performs the following
	steps:
	First, he walks a positive square
	number of doors away from his
	position.
	Then he walks another, larger square
	number of doors away from his new
	position.
Hallway of square steps	He toggles the door he faces (opens it
	if closed, closes it if open).
	And finally returns to door 0.
	We call an action any sequence of
	those steps. Peter never performs the
	exact same action twice, and makes
	sure to perform all possible actions
	that don't bring him past the last door.
	Let F(N) be the number of doors that
	are open after Peter has performed all
	possible actions. You are given that
	F(5) = 1, F(100) = 27, F(1000) = 233
	and $F(106) = 112168$.
	Hallway of square steps

г		
		Let's call two numbers friend numbers
		if their representation in base 10 has at
		least one common digit.
		E.g. 1123 and 3981 are friend numbers.
		Let
		f(n)
		f
		be the number of pairs
		(p,q)
		with
		1≤p <q<n< td=""></q<n<>
612	Friend numbers	1
		such that
		р
		p p
		and
		q
		q
		are friend numbers.
		f(100)=1539
		f
		Find
		f(
		.,

		Dave is doing his homework on the
		balcony and, preparing a presentation
		about Pythagorean triangles, has just
		cut out a triangle with side lengths
		30cm, 40cm and 50cm from some
		cardboard, when a gust of wind blows
		the triangle down into the garden.
		Another gust blows a small ant straight
		onto this triangle. The poor ant is
642	D. il	completely disoriented and starts to
613	Pythagorean Ant	crawl straight ahead in random
		direction in order to get back into the
		grass.
		Assuming that all possible positions of
		the ant within the triangle and all
		possible directions of moving on are
		equiprobable, what is the probability
		that the ant leaves the triangle along
		its longest side?
		Give your answer rounded to 10 digits
		after the decimal point.
		1

		An integer partition of a number
		-
		n
		n
		is a way of writing
		n
		n
		as a sum of positive integers. Partitions
		that differ only by the order of their
		summands are considered the same.
		We call an integer partition special if 1)
		all its summands are distinct, and 2) all
		its even summands are also divisible
614	Special partitions 2	by 4.
		For example, the special partitions of
		10
		10
		are:
		10=1+4+5=3+7=1+9
		10=1+4+5=3+7=1+9
		The number
		10
		10
		admits many more integer partitions (a
		total of 42), but only those three are
		special.

	Alice plays the following game, she
	starts with a list of integers
	L
	L
	and on each step she can either:
	remove two elements
	а
	a
	and
	b
	b
	from
Creative numbers	L
	L
	and add
	a
	b
	a
	to
	L
	L
	or conversely remove an element
	c
	С
	from
	Creative numbers

ı		
		For two integers
		n,e>1
		n
	, we define a	
		(n,e)
		(
		-MPS (Mirror Power Sequence) to be
		an infinite sequence of integers
		(
		а
		i
)
617	Mirror Power Sequence	i≥0
		(
		such that for all
		i≥0
		i
		,
		a
		i+1
		=min(
		a
		e
		i
		,n-
		<u>'</u>

	Consider the numbers 15, 16 and 18:
	15=3×5
	15
	and
	3+5=8
	3
	16=2×2×2×2
	16
	and
	2+2+2=8
	2
Numbers with a given prime factor sum	
Indifibers with a given prime factor sum	18=2×3×3
	18
	and
	2+3+3=8
	2
	15, 16 and 18 are the only numbers
	that have 8 as sum of the prime factors
	(counted with multiplicity).
	We define
	S(k)
	S
	Numbers with a given prime factor sum

		For a set of positive integers
		_
		{a,a+1,a+2,,b}
		{
		, let
		C(a,b)
		С
		be the number of non-empty subsets
		in which the product of all elements is
		a perfect square.
		For example
		C(5,10)=3
		С
619	Square subsets	, since the products of all elements of
		{5,8,10}
		{
		,
		{5,8,9,10}
		{
		and
		{9}
		{
		are perfect squares, and no other
		subsets of
		{5,6,7,8,9,10}
		{

ı		
		A circle
		С
		С
		of circumference
		С
		С
		centimetres has a smaller circle
		S
		S
		of circumference
		S
		S
620	Planetary Gears	centimetres lying off-centre within it.
	•	Four other distinct circles, which we
		call "planets", with circumferences
		р
		р
		,
		р
		р
		,
		q
		q
		·
		, q

		Gauss famously proved that every
		positive integer can be expressed as
		the sum of three triangular numbers
		(including 0 as the lowest triangular
		number). In fact most numbers can be
		expressed as a sum of three triangular
		numbers in several ways.
		Let
		G(n)
		G
		be the number of ways of expressing
		n
621	ing an integer as the sum of triangular n	n
		as the sum of three triangular
		numbers, regarding different
		arrangements of the terms of the sum
		as distinct.
		For example,
		G(9)=7
		G
		, as 9 can be expressed as: 3+3+3,
		0+3+6, 0+6+3, 3+0+6, 3+6+0, 6+0+3,
		6+3+0.
		You are given
		G(1000)=78

		A :: (() = = (() = := = = = = = = = = = = = = = = = = =
		A riffle shuffle is executed as follows: a
		deck of cards is split into two equal
		halves, with the top half taken in the
		left hand and the bottom half taken in
		the right hand. Next, the cards are
		interleaved exactly, with the top card in
		the right half inserted just after the top
		card in the left half, the 2nd card in the
		right half just after the 2nd card in the
		left half, etc. (Note that this process
		preserves the location of the top and
		bottom card of the deck)
622	Riffle Shuffles	Let
		s(n)
		S
		be the minimum number of
		consecutive riffle shuffles needed to
		restore a deck of size
		n
		n
		to its original configuration, where
		n
		n.
		is a positive even number.
		Amazingly, a standard deck of
		Amazingiy, a standard deck of

		The lambda-calculus is a universal
		model of computation at the core of
		functional programming languages. It
		is based on lambda-terms, a minimal
		programming language featuring only
		function definitions, function calls and
		variables. Lambda-terms are built
		according to the following rules:
		Any variable
		x
		x
		(single letter, from some infinite
623	Lambda Count	alphabet) is a lambda-term.
		If
		M
		M
		and
		N
		N
		are lambda-terms, then
		(MN)
		(
		is a lambda-term, called the
		application of
		М

	T
	An unbiased coin is tossed repeatedly
	until two consecutive heads are
	obtained. Suppose these occur on the
	(M-1)
	(
	th and
	M
	M
	th toss.
	Let
	P(n)
	Р
Two heads are better than one	be the probability that
	M
	М
	is divisible by
	n
	n
	. For example, the outcomes HH,
	HTHH, and THTTHH all count towards
	P(2)
	P
	, but THH and HTTHH do not.
	You are given that
	P(2)=
	Two heads are better than one

625	Gcd sum	G(N)= Σ N j=1 Σ j i=1 gcd(i,j) G . You are given: G(10)=122 G . Find G(10 11
		10
)
		G . Give your answer modulo 998244353

		1
		A binary matrix is a matrix consisting
		entirely of 0s and 1s. Consider the
		following transformations that can be
		performed on a binary matrix:
		Swap any two rows
		Swap any two columns
		Flip all elements in a single row (1s
		become 0s, 0s become 1s)
		Flip all elements in a single column
		Two binary matrices
		A
		A
626	Counting Binary Matrices	and
		В
		В
		will be considered equivalent if there is
		a sequence of such transformations
		that when applied to
		Α
		Α
		yields
		В
		В
		. For example, the following two
		matrices are equivalent:

		Consider the set
		S
		S
		of all possible products of
		n
		n
		positive integers not exceeding
		m
		m
		, that is
		S={
		X
627	Counting products	1
<u> </u>	production	×
		2
		۷
		
		X
		1≤
		X
		1
		,
		X
		2
		,,
		n 1≤ x 1 ,

		A position in chess is an (orientated)
		arrangement of chess pieces placed on
		a chessboard of given size. In the
		following, we consider all positions in
		which
		n
		n
		pawns are placed on a
		n×n
		n
		board in such a way, that there is a
		single pawn in every row and every
628	Open chess positions	column.
		We call such a position an open
		position, if a rook, starting at the
		(empty) lower left corner and using
		only moves towards the right or
		upwards, can reach the upper right
		corner without moving onto any field
		occupied by a pawn.
		Let
		f(n)
		f
		be the number of open positions for a
		n×n

		Alice and Bob are playing a modified
		game of Nim called Scatterstone Nim,
		with Alice going first, alternating turns
		with Bob. The game begins with an
		arbitrary set of stone piles with a total
		number of stones equal to
		n .
		n
		During a player's turn, he/she must
		pick a pile having at least
		2
629	Scatterstone Nim	2
023	Seatterstone Willi	stones and perform a split operation,
		dividing the pile into an arbitrary set of
		and arbitrary set of
		Ρ
		p
		non-empty, arbitrarily-sized piles
		where
		2≤p≤k
		2
		for some fixed constant
		k
		k
		. For example, a pile of size

		Given a set,
		L
		L
		, of unique lines, let
		M(L)
		М
		be the number of lines in the set and
		let
		S(L)
		S
		be the sum over every line of the
		number of times that line is crossed by
630	Crossed lines	another line in the set. For example,
		two sets of three lines are shown
		below:
		In both cases M(L) is 3 and S(L) is 6:
		each of the three lines is crossed by
		two other lines. Note that even if the
		lines cross at a single point, all of the
		separate crossings of lines are
		counted.
		Consider points (
		T
		2k-1
		T T
		'

П		
		Let
		(
		p
		1
		р
		2
		_
		 n
		p L
		k
)
		(
		denote the permutation of the set
631	Constrained Permutations	1,,k
		1
		that maps
		р
		i
		⊢i
		р
		. Define the length of the permutation
		to be
		k
		k
		; note that the empty permutation
		0

· ·		
		For an integer
		n
		n
		, we define the square prime factors of
		n
		n
		to be the primes whose square divides
		n
		n
		. For example, the square prime factors
		of
		1500=
632	Square prime factors	2
		2
		×3×
		5
		3
		1500
		are
		2
		2
		and
		5
		5

		For an integer
		n
		n
		, we define the square prime factors of
		n
		n
		to be the primes whose square divides
		n
		n
		. For example, the square prime factors
		of
		1500=
633	Square prime factors II	2
		2
		×3×
		5
		3
		1500
		are
		2
		2
		and
		5
		5
		•

	D.C.
	Define
	F(n)
	F
	to be the number of integers
	x≤n
	X
	that can be written in the form
	x=
	a
	2
	b
	3
Numbers of the forma2b3a	x
	, where
	a
	a
	and
	b
	b
	are integers not necessarily different
	and both greater than 1.
	For example,
	32=
	2
	2
	Numbers of the forma2b3a

		Let
		А
		q
		(n)
		А
		be the number of subsets,
		В
		В
		, of the set
		{1,2,,q⋅n}
		{
		that satisfy two conditions:
635	Subset sums	1)
		В
		В
		has exactly
		n
		n
		elements;
		2) the sum of the elements of
		В
		В
		is divisible by
		n
		n

		Consider writing a natural purchases
		Consider writing a natural number as
		product of powers of natural numbers
		with given exponents, additionally
		requiring different base numbers for
		each power.
		For example,
		256
		256
		can be written as a product of a square
		and a fourth power in three ways such
		that the base numbers are different.
		That is,
636	Restricted Factorisations	256=
		1
		2
		×
		4
		4
		=
		4
		2
		×
		2
		4
		=

		Given any positive integer
		Given any positive integer
		n
		n
		, we can construct a new integer by
		inserting plus signs between some of
		the digits of the base
		В
		В
		representation of
		n
		n
		, and then carrying out the additions.
637	Flexible digit sum	For example, from
		n=
		123
		10
		n
		n
		n
		in base 10) we can construct the four
		base 10 integers
		123
		10
		123

		Let
		Р
		a,b
		Р
		denote a path in a
		a×b
		a
		lattice grid with following properties:
		The path begins at
		(0,0)
		and ends at
638	Weighted lattice paths	(a,b)
	ga.a.aaaaa paasa	(
		`
		The path consists only of unit moves
		upwards or to the right; that is the
		coordinates are increasing with every
		move.
		Denote
		A(
		P
		a,b
)
		A

		A multiplicative function
		f(x)
		f
		is a function over positive integers
		satisfying
		f(1)=1
		f
		and
		f(ab)=f(a)f(b)
		f
		for any two coprime positive integers
		а
639	Summing a multiplicative function	а
		and
		b
		b
		·
		For integer
		k
		k
		let
		f
		k
		(n)
		f

		Bob plays a single-player game of
		chance using two standard 6-sided
		dice and twelve cards numbered 1 to
		12. When the game starts, all cards are
		placed face up on a table.
		Each turn, Bob rolls both dice, getting
		numbers
		x
		Х
		and
		y
		y
640	Shut the Box	respectively, each in the range 1,,6.
		He must choose amongst three
		options: turn over card
		x
		х
		, card
		y
		y
		, or card
		x+y
		×
		. (If the chosen card is already face
		down, it is turned to face up, and vice

		Consider a row of
		n
		n
		dice all showing 1.
		First turn every second die,
		(2,4,6,)
		(
		, so that the number showing is
		increased by 1. Then turn every third
		die. The sixth die will now show a 3.
		Then turn every fourth die and so on
		until every
641	A Long Row of Dice	n
		n
		th die (only the last die) is turned. If
		the die to be turned is showing a 6
		then it is changed to show a 1.
		Let
		f(n)
		f
		be the number of dice that are
		showing a 1 when the process finishes.
		You are given
		f(100)=2
		f

		1.4
		Let
		f(n)
		f
		be the largest prime factor of
		n
		n
		and
		F(n)=
		Σ
		i=2
		n
		f(i)
642	Sum of largest prime factors	F
042	Sum of largest prime factors	
		For example
		F(10)=32
		F
		,
		F(100)=1915
		F
		and
		F(10000)=10118280
		F
		[
		<u>.</u>
		Find

		The constitution in the const
		Two positive integers
		а
		а
		and
		b
		b
		are 2-friendly when
		gcd(a,b)=
		2
		t
		,t>0
		gcd
643	2-Friendly	. For example, 24 and 40 are 2-friendly
	•	because
		gcd(24,40)=8=
		2
		3
		gcd
		while 24 and 36 are not because
		gcd(24,36)=12=
		2
		2
		- ·3
		gcd
		not a power of 2.
		not a power or 2.

		
		Sam and Tom are trying a game of
		(partially) covering a given line
		segment of length
		L
		L
		by taking turns in placing unit squares
		onto the line segment.
		As illustrated below, the squares may
		be positioned in two different ways,
		either "straight" by placing the
		midpoints of two opposite sides on the
		line segment, or "diagonal" by placing
644	Squares on the line	two opposite corners on the line
		segment. Newly placed squares may
		touch other squares, but are not
		allowed to overlap any other square
		laid down before.
		The player who is able to place the last
		unit square onto the line segment
		wins.
		With Sam starting each game by
		placing the first square, they quickly
		' ' ' ' ' ' ' ' ' '
		realise that Sam can easily win every
		time by placing the first square in the
		middle of the line segment, making

s for by the two
by the two
y the two
y the two
gn of the
hday is
nat year
ifter a day
ay.
ays. Let
Emperors
of the year
at their
nt and
ghout the
li l

		Let
		n
		n
		be a natural number and
		р
		α
		1
		1
		р
		α
		2
646	Bounded Divisors	2
		р
		α
		k
		k
		р
		its prime factorisation.
		Define the Liouville function
		λ(n)
		λ
		as
		λ(n)=(-1

		It is possible to final positive intereses
		It is possible to find positive integers
		Α
		А
		and
		В
		В
		such that given any triangular number,
		Т
		n
		Т
		, then
		Α
647	ear Transformations of Polygonal Numb	Т
		n
		+B
		А
		is always a triangular number. We
		define
		F
		3
		(N)
		F
		to be the sum of
		(A+B)
		((,,,,)
		\

		For some fixed
		ρ∈[0,1]
		ρ
		, we begin a sum
		s
		S
		at
		0
		0
		and repeatedly apply a process: With
		probability
		ρ
648	Skipping Squares	ρ
		, we add
		1
		1
		to
		S
		S
		, otherwise we add
		2
		2
		to
		S
		S

r		
		Alice and Bob are taking turns playing
		a game consisting of
		С
	С	
		different coins on a chessboard of size
		n
		n
		by
		n
		n
		The game may start with any
649	Low-Prime Chessboard Nim	arrangement of
		C
		С
		coins in squares on the board. It is
		possible at any time for more than one
		coin to occupy the same square on the
		board at the same time. The coins are
		distinguishable, so swapping two coins
		gives a different arrangement if (and
		only if) they are on different squares.
		On a given turn, the player must
		choose a coin and move it either left or
		up
		ω γ

		Let
		B(n)=
		П
		k=0
		n
		(
		n
		k
)
		B
		, a product of binomial coefficients.
		For example,
650	Divisors of Binomial Product	B(5)=(
		5
		0
)×(
		5
		1
)×(
		5
		2
)×(
		5
		3
)×(

		An infinitely long cylinder has its curved surface fully covered with different coloured but otherwise identical rectangular stickers, without overlapping. The stickers are aligned with the cylinder, so two of their edges are parallel with the cylinder's axis, with four stickers meeting at each
		corner. Let
		a>0
		а
651	Patterned Cylinders	and suppose that the colouring is
		periodic along the cylinder, with the
		pattern repeating every
		а
		а
		stickers. (The period is allowed to be
		any divisor of
		a
		a
		.) Let
		b
		b
		be the number of stickers that fit

		Consider the values of
		log
		2
		(8)
		log
		,
		log
		4
		(64)
		log
		and
		log
652	tinct values of a proto-logarithmic funct	
		(27)
		log
		. All three are equal to
		3
		3
		Generally, the function
		f(m,n)=
		log
		m
	(n)	
		f

		Consider a horizontal frictionless tube
		with length
		L
		L
		millimetres, and a diameter of 20
		millimetres. The east end of the tube is
		open, while the west end is sealed. The
		tube contains
		N
		N
		marbles of diameter 20 millimetres at
		designated starting locations, each one
653	Frictionless Tube	initially moving either westward or
		eastward with common speed
		V
		v
		'
		Cin so the are are resulting to the
		Since there are marbles moving in
		opposite directions, there are bound to
		be some collisions. We assume that
		the collisions are perfectly elastic, so
		both marbles involved instantly change
		direction and continue with speed
		v
		V

		Let
		T(n,m)
		Т
		be the number of
		m
		m
		-tuples of positive integers such that
		the sum of any two neighbouring
		elements of the tuple is
		≤n
		≤
654	Neighbourly Constraints	For example,
		T(3,4)=8
		Т
		, via the following eight
		4
		4
		-tuples:
		(1,1,1,1)
		(1,1,1,1)
		,
		(1 1 1 2)
		(1,1,1,2)
		(

		The numbers
		545
		545
		,
		5995
		5
		and
		15151
		15
		are the three smallest palindromes
		divisible by
		109
655	Divisible Palindromes	109
		. There are nine palindromes less than
		100000
		100
		which are divisible by
		109
		109
		How many palindromes less than
		10
		32
		10
		are divisible by

		Given an irrational number
		α
		α
		, let
		S
		α
		(n)
		S
		be the sequence
		S
		α
		$(n)=[\alpha \cdot n]-[\alpha \cdot (n-1)]$
656	Palindromic sequences	S
		for
		n≥1
		n
		(
		[]
		L
		is the floor-function.)
		It can be proven that for any irrational
		α
		α
		there exist infinitely many values of

		I
		In the context of formal languages, any
		finite sequence of letters of a given
		alphabet
		Σ
		Σ
		is called a word over
		Σ
		Σ
		. We call a word incomplete if it does
		not contain every letter of
		Σ
		Σ
657	Incomplete words	
031	incomplete words	For example, using the alphabet
		$\Sigma = \{a,b,c\}$
		Σ-(α,δ,ε)
		<u></u>
		, ab
		ab
		a
		ı
		abab
		a
		' and '
		' (the empty word) are incomplete
		words over

		1
		In the context of formal languages, any
		finite sequence of letters of a given
	alphabet	
		Σ
		Σ
		is called a word over
		Σ
		Σ
		. We call a word incomplete if it does
		not contain every letter of
		Σ
		Σ
658	Incomplete words II	
	, , , , , , , , , , , , , , , , , , ,	For example, using the alphabet
		Σ={a,b,c}
		Σ
		[
		, ab
		a
		,
		abab
		a
		' and '
		' (the empty word) are incomplete
		words over

		Consider the sequence
		n
	2	
		+3
		n
		with
		n≥1
		n
		If we write down the first terms of this
		sequence we get:
		4,7,12,19,28,39,52,67,84,103,124,147,1
659	Largest prime	72,199,228,259,292,327,364,
		4
		We see that the terms for
		n=6
		n
		and
		n=7
		n
		(
		39
		39
		and

1		
		We call an integer sided triangle
		n
		n
		-pandigital if it contains one angle of
		120 degrees and, when the sides of the
		triangle are written in base
		n
		n
		, together they use all
		n
		n
		digits of that base exactly once.
660	Pandigital Triangles	For example, the triangle (217, 248,
		403) is 9-pandigital because it contains
		one angle of 120 degrees and the
		sides written in base 9 are
		261
		9
		,
		305
		9
		,
		487
		9
		261

		Two friends
		А
		А
		and
		В
		В
		are great fans of Chess. They both
		enjoy playing the game, but after each
		game the player who lost the game
		would like to continue (to get back at
		his opponent) and the player who won
		would prefer to stop (to finish on a
661	A Long Chess Match	high).
		So they come up with a plan. After
		every game, they would toss a (biased)
		coin with probability
		р
		р
		of Heads (and hence probability
		1-p
		1
		of Tails). If they get Tails, they will
		continue with the next game.
		Otherwise they end the match. Also,
		after every game the players make a

		Alice walks on a lattice grid. She can
		step from one lattice point
		A(a,b)
		Α
		to another
		B(a+x,b+y)
		В
		providing distance
		AB=
		x
		2
		+
662	Fibonacci paths	у
		2
		_
		_
		_
		_
		_
		_
		\checkmark
		Α
		is a Fibonacci number
		{1,2,3,5,8,13,}
		{

		Let
		t
		k
		t
		be the tribonacci numbers defined as:
		t
		0
		=
		t
		1
		=0
		t
663	Sums of subarrays	;
		t
		2
		=1
		t
		;
		t
		k
	=	
		t
		k-1
		+
		t

		I But a standard to a superior and a
		Peter is playing a solitaire game on an
		infinite checkerboard, each square of
		which can hold an unlimited number of
		tokens.
		Each move of the game consists of the
		following steps:
		Choose one token
		Т
		Т
		to move. This may be any token on the
		board, as long as not all of its four
		adjacent squares are empty.
664	An infinite game	Select and discard one token
	, and the second	D
		D
		from a square adjacent to that of
		T
		, , , , , , , , , , , , , , , , , , ,
		·
		Move
		T
		<u> </u>
		to any one of its four adjacent squares
		(even if that square is already
		occupied).

		Two players play a game with two piles
		of stones.
		On his or her turn, a player chooses a
		positive integer
		n
		n
		and does one of the following:
		removes
		n
		n
		stones from one pile;
		removes
665	Proportionate Nim	n
		n
		stones from both piles; or
		removes
		n
		n
		stones from one pile and
		2n
		2
		stones from the other pile.
		The player who removes the last stone
		wins.
		We denote by

		Members of a species of bacteria occur
		in two different types:
		α
		α
		and
		β
		β
		. Individual bacteria are capable of
		multiplying and mutating between the
		types according to the following rules:
		Every minute, each individual will
		simultaneously undergo some kind of
666	Polymorphic Bacteria	transformation.
	, ,	Each individual
		Α
		A
		of type
		α
		α
		will, independently, do one of the
		following (at random with equal
		probability):
		clone itself, resulting in a new
		bacterium of type
		α
		<u>~</u>

		After buying a Gerver Sofa from the
		Moving Sofa Company, Jack wants to
		buy a matching cocktail table from the
		same company. Most important for
		him is that the table can be pushed
		through his L-shaped corridor into the
		living room without having to be lifted
		from its table legs.
		Unfortunately, the simple square
		model offered to him is too small for
		him, so he asks for a bigger model.
		He is offered the new pentagonal
667	Moving Pentagon	model illustrated below:
	g. cgen	Note, while the shape and size can be
		ordered individually, due to the
		production process, all edges of the
		pentagonal table have to have the
		same length.
		Given optimal form and size, what is
		the biggest pentagonal cocktail table
		(in terms of area) that Jack can buy
		that still fits through his unit wide L-
		shaped corridor?
		Give your answer rounded to 10 digits
		after the decimal point (if Jack had
		and the desired point (in such fluor

Square root smooth Numbers	A positive integer is called square root smooth if all of its prime factors are strictly less than its square root. Including the number 1 1 , there are 29 29 square root smooth numbers not exceeding 100 100 .
	How many square root smooth numbers are there not exceeding 1000000000000000000000000000000000000
	Square root smooth Numbers

		The Knights of the Order of Fibonacci
		are preparing a grand feast for their
		king. There are
		n
		n
		knights, and each knight is assigned a
		distinct number from 1 to
		n
		n
		When the knights sit down at the
		roundtable for their feast, they follow a
669	The King's Banquet	peculiar seating rule: two knights can
		only sit next to each other if their
		respective numbers sum to a Fibonacci
		number.
		When the
		n
		n
		knights all try to sit down around a
	circular table with	
		n
		n
		chairs, they are unable to find a
		suitable seating arrangement for any

		A certain type of tile comes in three
		different sizes - 1×1 , 1×2 , and 1×3 -
		and in four different colours: blue,
		green, red and yellow. There is an
		unlimited number of tiles available in
		each combination of size and colour.
		These are used to tile a
		2×n
		2
		rectangle, where
		n
		n
670	Colouring a Strip	is a positive integer, subject to the
	,	following conditions:
		The rectangle must be fully covered by
		non-overlapping tiles.
		It is not permitted for four tiles to have
		their corners meeting at a single point.
		Adjacent tiles must be of different
		colours.
		For example, the following is an
		acceptable tiling of a
		2×12
		2
		rectangle:

		A contain turns of flouible tile comes in
		A certain type of flexible tile comes in
		three different sizes - 1×1, 1×2, and
		1×3 - and in
		k
		k
		different colours. There is an unlimited
		number of tiles available in each
		combination of size and colour.
		These are used to tile a closed loop of
		width
		2
		2
671	Colouring a Loop	and length (circumference)
		n
		n
		, where
		n
		n
		is a positive integer, subject to the
		following conditions:
		The loop must be fully covered by non-
		overlapping tiles.
		It is not permitted for four tiles to have
		their corners meeting at a single point.
		Adjacent tiles must be of different

		1
		Consider the following process that
		can be applied recursively to any
		positive integer
		n
		n
		:
		if
		n=1
		n
		do nothing and the process stops,
		if
		n
672	One more one	n
		is divisible by 7 divide it by 7,
		otherwise add 1.
		Define
		g(n)
		g
		to be the number of 1's that must be
		added before the process ends. For
		example:
		125
		_
		
		+1
		' 1

		At Euler University, each of the
		·
		n
		n
		students (numbered from 1 to
		n
		n
) occupies a bed in the dormitory and
		uses a desk in the classroom.
		Some of the beds are in private rooms
		which a student occupies alone, while
		the others are in double rooms
		occupied by two students as
673	Beds and Desks	roommates. Similarly, each desk is
		either a single desk for the sole use of
		one student, or a twin desk at which
		two students sit together as desk
		partners.
		We represent the bed and desk
		sharing arrangements each by a list of
		pairs of student numbers. For example,
		with
		·
		n=4
		n .,
		, if
		(2,3)

		We define the
		l I
		l I
		operator as the function
		I(x,y) = (1+x+y)
)
		2
		+y-x
		I(x,y)=(1+x+y)2+y-x
		and
		1
		l I
674	SolvingII-equations	-expressions as arithmetic expressions
		built only from variables names and
		applications of
		l I
		l I
		. A variable name may consist of one
		or more letters. For example, the three
		expressions
		х
		х
		, ,
		l(x,y)
ĺ		

L

		Let
		ω(n)
		ω
		denote the number of distinct prime
		divisors of a positive integer
		n
		n
		So
		ω(1)=0
		ω
		and
675	2ω(n)2	ω(360)=ω(
		2
		3
		×
		3
		2
		×5)=3
		ω
		Let
		S(n)
		S
		be

		Let
		d(i,b)
		d
		be the digit sum of the number
		i
		i
		in base
		b
		b
		. For example
		d(9,2)=2
		d
676	Matching Digit Sums	, since
		9=
		1001
		2
		9
		. When using different bases, the
		respective digit sums most of the time
		deviate from each other, for example
	d(9,4)=3≠d(9,2)	
		d
		However, for some numbers
		i

		Let
		g(n)
		g
		be the number of undirected graphs
		with
		n
		n
		nodes satisfying the following
		properties:
		The graph is connected and has no
		cycles or multiple edges.
		Each node is either red, blue, or yellow.
677	Coloured Graphs	A red node may have no more than 4
		edges connected to it.
		A blue or yellow node may have no
		more than 3 edges connected to it.
		An edge may not directly connect a
		yellow node to a yellow node.
		For example,
		g(2)=5
		g
		(2) 45
		g(3)=15
		g
		, and

	If a triple of positive integers
	(a,b,c)
	(
	satisfies
	а
	2
	+
	b
	2
	=
	С
	2
Fermat-like Equations	a
	, it is called a Pythagorean triple. No
	triple
	(a,b,c)
	(a,b,c)
	(
	satisfies
	a
	е
	+
	b
	e
	=
	С
	Fermat-like Equations

		Let
		S
	k	S
		be the set consisting of the four letters
		{`A',`E',`F',`R'}
		{
		For
		n≥0
		n
		, let
		S
679	Freefarea	*
		(n)
		S
		denote the set of words of length
		n
		n
		consisting of letters belonging to
		S
		S
		We designate the words
		FREE,FARE,AREA,REEF
		FREE

		Let
		N
		N
		and
		К
		К
		be two positive integers.
	Yarra Gnisrever	F
		n
		F
		is the
		n
680		n
		-th Fibonacci number:
		F
		1
		=
		F
		2
		_ =1
		F
		, F
		n
		=
		_

		Given positive integers
		a≤b≤c≤d
	Maximal Area	a
		, it may be possible to form
		quadrilaterals with edge lengths
		a,b,c,d
		a
		(in any order). When this is the case, let
		M(a,b,c,d)
		М
		denote the maximal area of such a
		quadrilateral.
681		For example,
		M(2,2,3,3)=6
		М
		, attained e.g. by a
		2×3
		2
		rectangle.
		Let
		SP(n)
		S
		be the sum of
		a+b+c+d
		a

· · · · · · · · · · · · · · · · · · ·		
		5-smooth numbers are numbers
		whose largest prime factor doesn't
	5-Smooth Pairs	exceed 5.
		5-smooth numbers are also called
		Hamming numbers.
		Let
		Ω(a)
		Ω
		be the count of prime factors of
		a
		a
		(counted with multiplicity).
682		Let
		s(a)
		S
		be the sum of the prime factors of
		a
		а
		(with multiplicity).
		For example,
		Ω(300)=5
		Ω
		and
		s(300)=2+2+3+5+5=17
		S

		Consider the following variant of "The
		Chase" game. This game is played
	The Chase II	1
		between
		n
		n
		players sitting around a circular table
		using two dice. It consists of
		n-1
683		n
		rounds, and at the end of each round
		one player is eliminated and has to pay
		a certain amount of money into a pot.
		The last player remaining is the winner
		and receives the entire contents of the
		pot.
		At the beginning of a round, each die
		1
		is given to a randomly selected player.
		A round then consists of a number of
		turns.
		During each turn, each of the two
		players with a die rolls it. If a player
		rolls a 1 or a 2, she passes the die to
		her neighbour on the left; if she rolls a
		5 or a 6, she passes the die to her
		neighbour on the right; otherwise, she