

Bioinformatics Workflow - specificity of ATAC-seq -

General ATAC-seq Workflow

Peak calling

- MACS2 can be used to perform peak calling for ATAC-seq data
- Difference with ChIP-seq
 - ATAC-seq is mostly paired end, ChIP-seq (still) mostly single-end
 - ATAC-seq has no control dataset!
- Background level must be estimated from the ATAC-seq dataset itself.

Peak calling

- Identification of local noise parameter from signal file
 - slide a window of size 2*d across signal
 - at each position, estimate parameter λ_{local} of Poisson distribution USING
 A RANGE OF 5kb/10kb

estimate parameter λ_{local} over different ranges, take max.

Peak calling

MACS2: typical command for ATAC-seq

```
macs2 callpeak \
  --treatment atac.bam \
  --name ATAC-Rep1 \
  --format BAMPE \
  --nomodel \
  --keep-dup all \
  --gsize 2.7e9 \
  --qvalue 0.05 \
  --outdir ATAC
```

bam file with IP

name of the experiment (choose freely!)

format of input files (BAM = single-end; BAMPE = paired-end)

do not determine fragment length;

use fragment length from paired-end bam

should duplicate read be kept? (auto / all) effective (= mappable) genome size FDR threshold to call a peak output directory

Hands on: from reads to peak for ATAC-seq

https://hdsu-bioquant.github.io/chipatac2020/01_ATAC_Intro.html https://hdsu-bioquant.github.io/chipatac2020/02_ATAC_ReadQC.html https://hdsu-bioquant.github.io/chipatac2020/03_ATAC_Trimming.html https://hdsu-bioquant.github.io/chipatac2020/04_ATAC_Alignment.html https://hdsu-bioquant.github.io/chipatac2020/05_ATAC_PeakCalling.html https://hdsu-bioquant.github.io/chipatac2020/06_ATAC_PeakAnnotation.html

Bioinformatics Workflow - footprinting ATAC-seq -

Use ATAC-seq profile to highlight specific TF binding events

[Sung, Nature Method, 2016]

- Average profiles around predicted TFBS
- Different profiles depending of TF (shallow / deep)

Challenge

• the Tn5 has an insertion bias which needs to be corrected for; if not, false positive/negative predictions!

[Li et al., Genome Biol. 2019]

[Bentsen, Nature Com., 2020]

- Many methods published
 - HINT-ATAC [Li. et al, Genome Biology 2019]
 - PIQ [Sherwood et al., Nature Biotech, 2014]
 - TOBIAS [Bentsen et al., Nature Comm. 2020]
 - DeFCOM [Quach, Furey, Bioinformatics 2016]
- With sufficiently high sequencing depth, footprinting can be used as a proxy for TF specific ChIP-seq
- Recommended minimal number of aligned reads
 - Peak calling: 20 million reads
 - Footprinting: 50-100 million reads (depending on the TF)

TOBIAS workflow

- determine insertion preference matrix; determine expected cut-sites; correct (tool: ATACorrect)
- Score corrected profile for probability of TF binding (tool: ScoreBigWig)

TOBIAS workflow

- Score motif occurences for each transcription factor; distinguish bound/unbound motif occurences (tool: BINDetect)
- Produce aggregate profile plots for each TF (tool: PlotAggregate)

Hands-on: ATAC-seq footprinting for CTCF

https://hdsu-bioquant.github.io/chipatac2020/07_ATAC_Footprinting.html

Bioinformatics Workflow- ATAC-seq specific QC -

- Some QC measures from the ChIP-seq analysis can be used
 - QC for sequenced reads (FastQC)
 - fingerprinting (= Lorenz Curve): shows how the signal is restricted to specific regions or spread across the genome
 - Fraction of reads in peaks (FRiP)
- Other QC measures are specific to ATAC-seq:
 - proportion of mitochondrial reads
 - nucleosome patterning

- Mitochondrial read contamination
- Initial protocols of ATAC-seq had contamination of mitochondrial reads up to 80%
- Hyper-accessibility of mitochondrial DNA (no chromatin packaging!)
- Recent protocols have improved this a lot used different lysis conditions
 - Omni-ATAC [Corces et al., Nature methods 2017]
 - fast-ATAC [Corces et al. Nature Genetics 2016]
- Fraction of mt-reads to total library size is an important QC parameter!

- Nice example of data recycling!
- Some papers have use the mitochondrial reads obtained as a sideproduct from ATAC-seq sequencing to determine mitochondrial mutation rates
- Infer cell lineages and clonality in 65 sub-clonal populations from TF1
 cell line

[Ludwig et al., Cell 2019]

Nucleosome patterning

Clear periodicity of fragment length 150-200bp should be observable

[Buenrostro et al., Nature Methods 2013]

- R/Bioconductor package to perform ATAC-seq QC: ATACseqQC
- Check the vignette here

Nucleosome patterning

Heatmaps

Profile plots

Hands-on: ATAC-seq QC using ATACseqQC

https://hdsu-bioquant.github.io/chipatac2020/08_ATAC_QC.html