EXERCICE 1 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$3^{2} + 3^{2} = AC^{2}$$

$$18 = AC^{2}$$

Donc :
$$AC = \sqrt{18}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 2 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 3^2 + 3^2 & = & AC^2 \\ 18 & = & AC^2 \\ & \quad \text{Donc}: AC = \sqrt{18} \end{array}$$

EXERCICE 3 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$
$$3^{2} + 3^{2} = AC^{2}$$
$$18 = AC^{2}$$

Donc : $AC = \sqrt{18}$

EXERCICE 4 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$
$$3^{2} + 3^{2} = AC^{2}$$
$$18 = AC^{2}$$

$$Donc: AC = \sqrt{18}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 5 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$3^2 + 3^2 = AC^2$$

$$3^2 + 3^2 = AC^2$$

$$18 = AC^2$$

Donc :
$$AC = \sqrt{18}$$

EXERCICE 6 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$3^2 + 3^2 = AC^2$$

$$18 = AC^2$$

Donc : $AC = \sqrt{18}$

EXERCICE 7 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$3^{2} + 3^{2} = AC^{2}$$

$$18 = AC^{2}$$

Donc :
$$AC = \sqrt{18}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 8 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 3^2 + 3^2 & = & AC^2 \\ 18 & = & AC^2 \\ & \quad \text{Donc}: AC = \sqrt{18} \end{array}$$

EXERCICE 9 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$
$$3^{2} + 3^{2} = AC^{2}$$
$$18 = AC^{2}$$

Donc : $AC = \sqrt{18}$

EXERCICE 10 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$
$$3^{2} + 3^{2} = AC^{2}$$
$$18 = AC^{2}$$

Donc :
$$AC = \sqrt{18}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 11 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 3^2 + 3^2 & = & AC^2 \\ 18 & = & AC^2 \\ & \quad \text{Donc}: AC = \sqrt{18} \end{array}$$

EXERCICE 12 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$3^2 + 3^2 = AC^2$$

 $18 = AC^2$

Donc : $AC = \sqrt{18}$

EXERCICE 13 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$3^2 + 3^2 = AC^2$$

$$18 = AC^2$$

Donc :
$$AC = \sqrt{18}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 14 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$3^2 + 3^2 = AC^2$$

$$3^2 + 3^2 = AC^2$$

$$18 = AC^2$$

Donc :
$$AC = \sqrt{18}$$

EXERCICE 15 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 3 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$3^2 + 3^2 = AC^2$$

$$18 = AC^2$$

Donc :
$$AC = \sqrt{18}$$

EXERCICE 16 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 4^2 + 3^2 & = & AC^2 \\ 25 & = & AC^2 \\ & \quad \text{Donc}: AC = \sqrt{25} \end{array}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 17 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

 $4^{2} + 3^{2} = AC^{2}$
 $25 = AC^{2}$
Donc : $AC = \sqrt{25}$

EXERCICE 18 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$4^2 + 3^2 = AC^2$$

$$25 = AC^2$$

Donc : $AC = \sqrt{25}$

EXERCICE 19 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$4^2 + 3^2 = AC^2$$

$$25 = AC^2$$

Donc : $AC = \sqrt{25}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 20 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 3^2 = AC^2$$

$$25 = AC^2$$

Donc : $AC = \sqrt{25}$

EXERCICE 21 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 3^{2} = AC^{2}$$

$$25 = AC^{2}$$

Donc : $AC = \sqrt{25}$

EXERCICE 22 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 3^{2} = AC^{2}$$

$$25 = AC^{2}$$

Donc :
$$AC = \sqrt{25}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 23 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 4^2 + 3^2 & = & AC^2 \\ 25 & = & AC^2 \\ & \quad \text{Donc}: AC = \sqrt{25} \end{array}$$

EXERCICE 24 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 4^2 + 3^2 & = & AC^2 \\ 25 & = & AC^2 \\ & & {\rm Donc}: \ AC = \sqrt{25} \end{array}$$

EXERCICE 25 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 3^2 = AC^2$$

$$25 = AC^2$$

Donc :
$$AC = \sqrt{25}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 26 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 3^2 = AC^2$$

$$25 = AC^2$$

Donc :
$$AC = \sqrt{25}$$

EXERCICE 27 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 3^{2} = AC^{2}$$

$$25 = AC^{2}$$

Donc : $AC = \sqrt{25}$

EXERCICE 28 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 3^2 = AC^2$$

$$25 = AC^2$$

Donc :
$$AC = \sqrt{25}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 29 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 3^2 = AC^2$$

$$25 = AC^2$$

Donc :
$$AC = \sqrt{25}$$

EXERCICE 30 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 3^2 = AC^2$$
$$25 = AC^2$$

Donc :
$$AC = \sqrt{25}$$

EXERCICE 31 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 4^{2} = AC^{2}$$

$$32 = AC^{2}$$

Donc :
$$AC = \sqrt{32}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 32 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 4^{2} = AC^{2}$$

$$32 = AC^{2}$$

Donc :
$$AC = \sqrt{32}$$

EXERCICE 33 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 4^{2} = AC^{2}$$

$$32 = AC^{2}$$

Donc : $AC = \sqrt{32}$

EXERCICE 34 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc :
$$AC = \sqrt{32}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 35 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc :
$$AC = \sqrt{32}$$

EXERCICE 36 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc : $AC = \sqrt{32}$

EXERCICE 37 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc: $AC = \sqrt{32}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 38 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc : $AC = \sqrt{32}$

EXERCICE 39 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 4^2 + 4^2 & = & AC^2 \\ 32 & = & AC^2 \\ & & \text{Donc}: AC = \sqrt{32} \end{array}$$

EXERCICE 40 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$4^2 + 4^2 = AC^2$$
$$32 = AC^2$$

Donc:
$$AC = \sqrt{32}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 41 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc :
$$AC = \sqrt{32}$$

EXERCICE 42 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 4^{2} = AC^{2}$$

$$32 = AC^{2}$$

Donc : $AC = \sqrt{32}$

EXERCICE 43 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc : $AC = \sqrt{32}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 44 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$4^2 + 4^2 = AC^2$$

$$32 = AC^2$$

Donc : $AC = \sqrt{32}$

EXERCICE 45 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 4 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$4^{2} + 4^{2} = AC^{2}$$

$$32 = AC^{2}$$

Donc : $AC = \sqrt{32}$

EXERCICE 46 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 3^{2} = AC^{2}$$

$$34 = AC^{2}$$

Donc :
$$AC = \sqrt{34}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 47 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc :
$$AC = \sqrt{34}$$

EXERCICE 48 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 3^{2} = AC^{2}$$

$$34 = AC^{2}$$

Donc : $AC = \sqrt{34}$

EXERCICE 49 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 50 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

EXERCICE 51 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 3^{2} = AC^{2}$$

$$34 = AC^{2}$$

Donc: $AC = \sqrt{34}$

EXERCICE 52 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 53 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

EXERCICE 54 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

EXERCICE 55 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 3^{2} = AC^{2}$$

$$34 = AC^{2}$$

Donc : $AC = \sqrt{34}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 56 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

EXERCICE 57 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc :
$$AC = \sqrt{34}$$

EXERCICE 58 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 59 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$

$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

EXERCICE 60 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 3

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 3^2 = AC^2$$

$$34 = AC^2$$

Donc : $AC = \sqrt{34}$

EXERCICE 61 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 4^{2} = AC^{2}$$

$$41 = AC^{2}$$

Donc :
$$AC = \sqrt{41}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 62 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc :
$$AC = \sqrt{41}$$

EXERCICE 63 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 4^{2} = AC^{2}$$

$$41 = AC^{2}$$

Donc : $AC = \sqrt{41}$

EXERCICE 64 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$
$$41 = AC^2$$

Donc :
$$AC = \sqrt{41}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 65 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc : $AC = \sqrt{41}$

EXERCICE 66 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$\begin{array}{rcl} AB^2 + BC^2 & = & AC^2 \\ 5^2 + 4^2 & = & AC^2 \\ 41 & = & AC^2 \\ & & {\rm Donc}: \ AC = \sqrt{41} \end{array}$$

EXERCICE 67 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc :
$$AC = \sqrt{41}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 68 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc :
$$AC = \sqrt{41}$$

EXERCICE 69 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 4^{2} = AC^{2}$$

$$41 = AC^{2}$$

Donc : $AC = \sqrt{41}$

EXERCICE 70 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc : $AC = \sqrt{41}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 71 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc : $AC = \sqrt{41}$

EXERCICE 72 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 4^{2} = AC^{2}$$

$$41 = AC^{2}$$

Donc : $AC = \sqrt{41}$

EXERCICE 73 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc : $AC = \sqrt{41}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 74 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 4^2 = AC^2$$

$$5^2 + 4^2 = AC^2$$

$$41 = AC^2$$

Donc : $AC = \sqrt{41}$

EXERCICE 75 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 4

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 4^{2} = AC^{2}$$

$$41 = AC^{2}$$

Donc : $AC = \sqrt{41}$

EXERCICE 76 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

$$Donc: AC = \sqrt{50}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 77 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

 $5^{2} + 5^{2} = AC^{2}$
 $50 = AC^{2}$
Donc: $AC = \sqrt{50}$

EXERCICE 78 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB=5 et BC=5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

Donc : $AC = \sqrt{50}$

EXERCICE 79 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

Donc: $AC = \sqrt{50}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 80 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

 $5^{2} + 5^{2} = AC^{2}$
 $50 = AC^{2}$
Donc: $AC = \sqrt{50}$

EXERCICE 81 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

Donc : $AC = \sqrt{50}$

EXERCICE 82 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

Donc: $AC = \sqrt{50}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 83 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

 $5^{2} + 5^{2} = AC^{2}$
 $50 = AC^{2}$
Donc: $AC = \sqrt{50}$

EXERCICE 84 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

Donc : $AC = \sqrt{50}$

EXERCICE 85 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

Donc :
$$AC = \sqrt{50}$$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 86 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

 $5^{2} + 5^{2} = AC^{2}$
 $50 = AC^{2}$
Donc: $AC = \sqrt{50}$

EXERCICE 87 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^{2} + BC^{2} = AC^{2}$$

$$5^{2} + 5^{2} = AC^{2}$$

$$50 = AC^{2}$$

 $Donc: AC = \sqrt{50}$

EXERCICE 88 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 5^2 = AC^2$$

$$50 = AC^2$$

Donc: $AC = \sqrt{50}$

2. Calculer l'angle \widehat{ABC} au degré près. [2.0 point(s)]

EXERCICE 89 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 5^2 = AC^2$$

$$5^2 + 5^2 = AC^2$$

$$50 = AC^2$$

Donc: $AC = \sqrt{50}$

EXERCICE 90 (Tous les résultats doivent être justifiés)

Soit ABC un triangle rectangle en B. On sait que AB = 5 et BC = 5

1. Calculer la longueur de AC [2.0 point(s)]

SOLUTION : Le triangle ABC est rectangle en B,, donc avec le théorème de Pythagore on a :

$$AB^2 + BC^2 = AC^2$$
$$5^2 + 5^2 = AC^2$$

$$50 = AC^2$$

Donc :
$$AC = \sqrt{50}$$

