oulfor? 5.2.2. Find the Upper Bound of rmax, scalar upper bound

Find $(\alpha + 1)$ received vectors that span a subspace of dimension h. This implies that the α links from the middle layer carry α vectors which span a subspace of $\mathbb{F}_{q_s}^h$ whose dimension is at least (h-1), with $q_s = q^t$.

Following to Theorem (4.1), we are interested in the following range: $\ell + \epsilon + 1 \le h \le \alpha \ell + \epsilon$.

For $3 \le \alpha < h$ all α links must be distinct $\Rightarrow r \le \alpha$ why? were explanation q_s

For $\alpha \geq h \geq 3$: to achieve $(h \neq 1)$ -subspaces of $\mathbb{F}_{q_s}^h$, no α links will contain a vector which

Hence, $for \ \mathcal{E}>1$, shouldn't it and why? This is be $n-\mathcal{E}$ and $n-\mathcal{E}-1$? and why? This is not a sentence that makes be $n-\mathcal{E}$ and $n-\mathcal{E}-1$? n a sentence that makes n and n

5.2.3. Calculate Gap

+ a sentence

 $= min \{r_{max,vector}\}$ Tmax, scalar $h - \alpha - 1 + 2 + O(t)$

state as

Theorem?

* do you mean lon.

Proof. Being similar with the previous subsections, we have:

$$d \le \alpha \left(\begin{array}{c} r-1 \\ \alpha-1 \end{array} \right) = 2 \frac{(r-1)\dots(r-1)}{1!} \le 2r$$

Theorem 5.3. If $r \leq \Omega\left(q^{t^2+\mathcal{O}(t)}\right)$, then there exists a vector solution for the $(\epsilon = 1, \ell \geq 2)$ - $\mathcal{N}_{h=2\ell,r,s=2\ell+1}$ network.

Proof. As previous, we need $4 \cdot p \cdot d(r) \leq 1, \forall r \leq r_{max,vector}$ so that a vector solution exists. Following to Lemma 5.7, we have $d \leq 2r \Rightarrow 4 \cdot p \cdot 2r \leq 1 \Rightarrow r \leq \frac{1}{8p}$. We still need to maximize p to get lower on $r_{max,vector}$, and we have $p \leq \Theta\left(q^{-t^2-2t-1}\right), \forall t \geq 2$ in Lemma 5.6. Thus, $min\{r_{max,vector}\}\in\Omega\left(\frac{1}{8p}\right)=\Omega\left(q^{t^2+2t+1}\right)$.

Hence, the Local lemma in 5.1 is satisfied, when $r \leq \Omega\left(q^{t^2/2 + \mathcal{O}(t)}\right)$. None of bad events occurs, so there exists a vector solution for such r.

Lemma 5.8. A scalar solution for the $(\epsilon = 1, \ell \geq 2) - \mathcal{N}_{h=2\ell,r,s=2\ell+1}$ network exists, if and only if there exists a Grasmannian code $\mathcal{G}_q(h=2\ell,\ell)$ such that any $\alpha=2$ subspaces of the set span a subspace of dimension at least $2\ell - 1$. This is a subspace

Proof. Let's denote any 2 subspaces of $\mathcal{G}_q(h=2\ell,\ell)$ as \mathcal{U} and \mathcal{V} . If \mathcal{U} and \mathcal{V} span a subspace of dimension at least $2\ell - 1$, then we have $\dim (\mathcal{U} + \mathcal{V}) = 2\ell - 1$, with $\mathcal{U} + \mathcal{V}$.

an apper bound on cose d=2, cose d=2, ruaxiscalar. (all based on theory of gubspace codes)

Therefore, $dim(\mathcal{U} \cap \mathcal{V}) = dim(\mathcal{U}) + dim(\mathcal{V}) - dim(\mathcal{U} + \mathcal{V}) = 1$, which leads to the subspace distance $d_s(\mathcal{U}, \mathcal{V}) = 2dim(\mathcal{U} + \mathcal{V}) - dim(\mathcal{U}) - dim(\mathcal{V}) = 2\ell - 2$. No 2 ℓ dimensional subspaces of $\mathbb{F}_{q_s}^{2\ell}$ will contain a vector which is contained in the same $(2\ell-2)$ subspace, but $(2\ell-1)$ of such subspaces can have such vectors,

$$\Rightarrow r_{scalar} \leq (2\ell - 1) \begin{bmatrix} 2\ell \\ 2\ell - 2 \end{bmatrix}_{q_s} \Rightarrow r_{scalar} \leq \mathcal{O} \begin{pmatrix} i \\ q_s \end{pmatrix}$$
There are general upper codes
$$\text{bound}, \text{ or subspace codes}$$

Corollary 5.2. The $(\epsilon = 1, \ell \geq 2) - \mathcal{N}_{h=2\ell,r,s=2\ell+1}$ network has a vector solution with a La rours. $gap q^{t^2} (4 + \mathcal{O}(t))$

Following to Section 3.4.2 and Theorem 5.3, we have the gap size

$$r_{max,scalar} = min \{r_{max,vector}\}$$

$$\Leftrightarrow q_{s}^{\ell} = q^{t^{2}/2+\mathcal{O}(t)}$$

$$\Leftrightarrow q_{s} = q^{t^{2}/2\ell+\mathcal{O}(t)}$$

$$\Rightarrow g = q_{s} - q_{v} = q^{t^{2}/2\ell+\mathcal{O}(t)}$$
(5.9)

This shows us that there exists a better vector solution by comparison with the gap in [EW18, Fig. 4].