Exercise 10.1

1. In the given figure.

$$\overline{AB} \cong \overline{CB}, \angle 1 \cong \angle 2.$$

Prove that

ΔABD ≅ΔCBE

Given

$$\overline{AB} \cong \overline{CB}$$

$$\angle 1 = \angle 2$$

To Prove

 $\triangle ABD \cong \triangle CBE$

	Statements	Reasons
In	$\triangle ABD \leftrightarrow \triangle CBE$	
	AB ≅CB	Given
}	∠1 ≅ ∠2	Given
	∠ABD ≅ ∠CBE	Common angle
·:	$\triangle ABD \equiv \triangle CBE$	A.S.A ≅ A.S.A

(2) From a point on the bisector of an angle, perpendiculars are drawn to the arms of the angle. Prove that these perpendiculars are equal in measure.

Given

 $\angle ABC$, \overline{BL} he bisector of $\angle ABC$, M any point on \overline{BL} , \overline{MP} perpendicular on \overline{AB} , \overline{MQ} | $|\overline{BC}|$.

To Prove

 $\overline{MP}\cong \overline{MQ}$

	Statements	Reasons
În	$\Delta BMP \leftrightarrow \Delta BMQ$	
	∠1 ≅ ∠2	BL bisects ∠PBQ
	∠3 ≅ ∠4	$Each = 90^{\circ}$
Ì	$\overline{BM} \cong \overline{BM}$	Common
	$\Delta BMP \cong \Delta BMQ$	A.S.A≅ A.S.A
	PM ≅ QM	Corresponding sides of the congruent triangles.

(3) In a triangle ABC, the bisectors of $\angle B$ and $\angle C$ meet in a point I. Prove that I is equidistant from the three sides of $\triangle ABC$.

Given

In $\triangle ABC$, \overrightarrow{BT} , \overrightarrow{CS} are the bisectors of the angles B and C respectively.

To Prove

I is equidistant from the three sides of $\triangle ABC$ i.e. $\overrightarrow{IP} \cong \overrightarrow{IQ} \cong IR$

Construction

$$\overline{IR} \perp \overline{AC}, \overline{IQ} \perp \overline{BC}, \overline{IP} \perp \overline{AB}$$

	Statements	Reasons
In	$\Delta IPB \leftrightarrow \Delta IQB$	
Í	∠1 ≅ ∠2	Given
	$\angle P \cong \angle Q$	Each = 90°
	$\overline{IB} \cong \overline{IB}$	Common
	$\Delta IPB \cong \Delta IQB$	$A.S.A \cong A.S.A$
1	$\overline{IP} \cong \overline{IQ} \dots (i)$	Corresponding sides of congruent triangles
Simil	larly $\triangle IRC \cong \triangle IQC$	
	$\overline{IQ} \cong \overline{IR} \dots (ii)$	Corresponding sides of congruent triangles
	$\overline{IP} \cong \overline{IQ} \cong \overline{IR}$	By (i) and (ii)

Theorem

If two angles of a triangle are congruent, then the sides opposite to them are also congruent.

Given

In
$$\triangle ABC$$
, $\angle B \cong \angle C$

To Prove

$$\overrightarrow{AB} \cong \overrightarrow{AC}$$

Construction

Draw the bisector of $\angle A$, meeting \overline{BC} at the point D.

Proof

	Statements	Reasons
In	$\Delta ABD \leftrightarrow \Delta ACD$	
	$\overline{\mathrm{AD}}\cong\overline{\mathrm{AD}}$	Common
	$\angle B \cong \angle C$	Given
	$\angle BAD \cong \angle CAD$	Construction
·:.	$\triangle ABD \cong \triangle ACD$	$S.A.A. \cong S.A.A.$
Hend	ce $\overline{AB} \cong \overline{AC}$	Corresponding sides of congruent triangles

Example

If one angle of a right triangle is of 30°, the hypotenuse is twice as long as the side opposite to the angle.

Given

In $\triangle ABC$, $m\angle B = 90^{\circ}$ and $m\angle C = 30^{\circ}$

To Prove

$$m\overline{AC} = 2m\overline{AB}$$

Construction

At B, construct \angle CBD of 30°. Let \overline{BD} cut \overline{AC} at the point D.

Proof

	Statements	Reasons
In	ΔABD , m $\angle A = 60^{\circ}$	$m\angle ABC = 90^{\circ}, m\angle C = 30^{\circ}$
mZ/	$ABD = m \angle ABC - m \angle CBD = 60^{\circ}$	
		$m\angle ABC = 90^{\circ}, m \angle CBD = 30^{\circ}$
<i>:</i> .	$m\angle ADB = 60^{\circ}$	Sum of measures of ∠s of a∆ is 180°
<i>:</i> .	ΔABD is equilateral	Each of its angles is equal to 60°
<i>:</i> .	$\overline{AB} \cong \overline{BD} \cong \overline{AD}$	Sides of equilateral Δ
	$In\Delta BCD$, $\overline{BD} \cong \overline{CD}$	$\angle C = \angle CBD$ (each of 30°).
Thus	;	`
	$\overline{MAC} = \overline{MAD} + \overline{MCD}$	$\overline{AD} \cong \overline{AB}$ and $\overline{CD} \cong \overline{BD} \cong \overline{AB}$
	$= m\overline{AB} + m\overline{AB}$	
	=2(mAB)	

Example

If the bisector of an angle of a triangle bisects the side opposite to it, the triangle is isosceles.

Given

In $\triangle ABC$, \overrightarrow{AD} bisects $\angle A$ and $\overrightarrow{BD} \cong \overrightarrow{CD}$

To Prove

$$\overrightarrow{AB} \cong \overrightarrow{AC}$$

Construction

Produce \overrightarrow{AD} to E, and take $\overrightarrow{ED} \cong \overrightarrow{AD}$.

joint C to E Proof

	Statements	Reasons
In	$\triangle ABD \leftrightarrow \triangle EDC$	
	AD≅ED	Construction
	∠ADB ≅ ∠EDC	Vertical angles
	BD≅CD	Given
··.	ΔADB ≅ ΔEDC	S.A.S. Postulate
··.	$\overline{\mathbf{AB}} \cong \overline{\mathbf{EC}}$ (1)	Corresponding sides of $\cong \Delta s$
and	$\angle BAD \equiv \angle E$	Corresponding angles of $\cong \Delta s$
But	∠BAD ≅ ∠CAD	Given
·.	∠E ≅ ∠CAD	Each ≅ ∠BAD
In	$\triangle ACE, \overline{AC} \cong \overline{EC} \dots (2)$	$\angle E \cong \angle CAD$ (proved)
Hence	AB≅AC	From (1) and (2)