Script

Taran Lynn

- 1. Start off by asking what the purpose of data visualization is.
 - (a) The purpose is to see how data is structured.
 - (b) This is done through manifold learning. [Show example of 2D manifold in 3D space being put on a 2D space]
- 2. Broad overview of how Stochastic Network Embedding works.
 - (a) SNE tries to preserve the higher dimensional distances between point on a 2D or 3D plain.
 - (b) If we imagine that each data pair of points in higher dimensional space is connected by a spring of length $p_{j|i}$. SNE can be thought of as trying to squash points down into lower dimensional space. The spring lengths will $q_{j|i}$ probably be different, but their force, caused by gradient descent, will make them to approach $p_{j|i}$. Not a completely accurate analogy because $p_{j|i} \neq p_{i|j}$, so spring length is different when viewed from x_i and x_j (important later). [Show spring graphic]
 - (c) First, each data point is assigned a similarity $p_{j|i}$ to every other point based on where it is in a higher-dimensional Gaussian probability density centered on x_i . Ignore how σ_i is chosen for now. [Use 2D Gaussian as an example]
 - (d) Then we come with create a set of lower dimensional points equal in number to the higher dimensional ones. These point get similarity values $q_{j|i}$. We then perform gradient descent to minimize the difference between every $p_{j|i}$ and $q_{j|i}$ for every i and j, as measured by the Kullbeck-Leibler divergence. [Note that since P_i and Q_i are probability distributions, KL is ≥ 0]
 - (e) σ_i is chosen via binary search on perplexity. Can be interpreted as a smooth measure the number of neighbors. [$H(P_i)$ is the entropy in the neighborhood sample, i.e. the number of bits needed to represent the uncertainty, so $2^{H(P_i)}$ is like the number of neighbors.]

what is a manifold, how do we learn?

3.

Problems with SNE