CS215: Discrete Math (H) for Computer Science 2021 Fall Semester Written Assignment # 3 Due: Nov. 5th, 2021, please submit at the beginning of class

Q.1 What are the prime factorizations of

- (a) 511
- (b) 6560
- (c) 12!

Solution:

- (a) $511 = 7 \cdot 73$.
- (b) $6560 = 2^5 \cdot 5 \cdot 41$.
- (c) $12! = 2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11$.

Q.2

- (a) Use Euclidean algorithm to find gcd(561, 234).
- (b) Find integers s and t such that gcd(561, 234) = 234s + 561t.

Solution:

(a) By Euclidean algorithm, we have

$$561 = 2 \cdot 234 + 93$$

$$234 = 2 \cdot 93 + 48$$

$$93 = 1 \cdot 48 + 45$$

$$48 = 1 \cdot 45 + 3.$$

Thus, gcd(561, 234) = 3.

(b) By (a), we have

$$3 = 1 \cdot 48 - 1 \cdot 45$$

$$= 1 \cdot 48 - 1 \cdot (93 - 48)$$

$$= 2 \cdot 48 - 1 \cdot 93$$

$$= 2 \cdot (234 - 2 \cdot 93) - 1 \cdot 93$$

$$= 2 \cdot 234 - 5 \cdot 93$$

$$= 2 \cdot 234 - 5 \cdot (561 - 2 \cdot 234)$$

$$= 12 \cdot 234 - 5 \cdot 561.$$

Q.3 For three integers a, b, y, suppose that $gcd(a, y) = d_1$ and $gcd(b, y) = d_2$. Prove that

$$\gcd(\gcd(a,b),y)=\gcd(d_1,d_2).$$

Solution: To begin, we show $\gcd(\gcd(a,b),y) \leq \gcd(d_1,d_2)$. Suppose that $d|\gcd(a,b)$ and d|y. As $d|\gcd(a,b)$ we know d|a and d|b. Thus, d|a and d|y so $d|\gcd(a,y)=d_1$. Similarly, d|b and d|y so $d|\gcd(b,y)=d_2$. Because $d|d_1$ and $d|d_2$ we know $d|\gcd(d_1,d_2)$. Hence we have $d\leq\gcd(d_1,d_2)$.

Next we show $\gcd(d_1,d_2) \leq \gcd(\gcd(a,b),y)$. Suppose that $d|d_1$ and $d|d_2$. As $d|\gcd(a,y)=d_1$ we know d|a and d|y. Similarly, as $d|\gcd(b,y)=d_2$, we know d|b and d|y. Thus, d|a, d|b, and d|y. Because d|a and d|b, we show $d|\gcd(a,b)$. Then $d|\gcd(a,b)$ and d|y. We know $d|\gcd(\gcd(a,b),y)$. The theorem follows.

[Alternate solution.] We can also prove this via unique prime factorizations. Let p_1, p_2, \ldots, p_k be the first k primes for some large k, then for a, b and y, we can define sequences of integers (possibly zero) $a_1, \ldots, a_k, b_1, \ldots, b_k$ and y_1, \ldots, y_k such that

$$a = \prod_{i=1}^k p_i^{a_i} = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}, \quad b = \prod_{i=1}^k p_i^{b_i} \quad \text{ and } y = \prod_{i=1}^k p_i^{y_i}.$$

Now we have

$$\gcd(a,b) = \prod_{i=1}^{k} p_i^{\min\{a_i,b_i\}}$$
 and $\gcd(a,b) = \prod_{i=1}^{k} p_i^{\min\{\min\{a_i,b_i\},y\}}$.

Similarly,

$$d_1 = \gcd(a, y) = \prod_{i=1}^k p_i^{\min\{a_i, y_i\}}$$
 and $d_2 = \gcd(b, y) = \prod_{i=1}^k p_i^{\min\{b_i, y_i\}}$

SO

$$\gcd(d_1, d_2) = \prod_{i=1}^k p_i^{\min\{\min\{a_i, y_i\}, \min\{b_i, y_i\}\}}.$$

But, since min $\{\min\{a_i,b_i\},y_i\}=\min\{\min\{a_i,y_i\},\min\{b_i,y_i\}\}$, these values are equal.

Q.4 For two integers a, b, suppose that gcd(a, b) = 1. Prove that

$$\gcd(b+a, b-a) \le 2.$$

Solution: W.l.o.g., assume that $b \ge a$. Now suppose that d|(b+a) and d|(b-a). Then d|(b+a)+b-a)=2b and d|(b+a)-(b-a)=2a. Thus, $d|\gcd(2b,2a)=2\gcd(a,b)=2$. Thus, $d\le 2$ and so $\gcd(b+a,b-a)\le 2$.

[Alternate solution.] Since gcd(b, a) = 1, then by Bezout's identity, there exist integers s and t such that sb + ta = 1. This gives us

$$(s+t)(b+a) + (s-t)(b-a) = sb + sa + tb + ta + sb - sa - tb + ta$$

= $2sb + 2ta$
= $2.$

from which we conclude that gcd(b+a,b-a) cannot exceed 2.

Q.5 Prove that for three integers a, b, c, if $c|(a \cdot b)$, then $c|(a \cdot \gcd(b, c))$. **Solution:** Since $c|(a \cdot b)$, we know that kc = ab for some integer k. By Euclidean algorithm, we also know that $\gcd(b, c) = sb + tc$ for some integers s and t. Thus, we have

$$a \cdot \gcd(b, c) = a \cdot (sb + tc)$$

= $asb + atc$
= $skc + atc$
= $(sk + at) \cdot c$.

Therefore, we have $c|(a \cdot \gcd(b, c))$.

Q.6

- (a) Use Euclidean algorithm to find gcd(312, 97).
- (b) Find integers s and t such that gcd(312, 97) = 312s + 97t.
- (c) Solve the modular equation

$$312x \equiv 3 \pmod{97}.$$

Solution:

(a) Applying Euclidean algorithm, we have

$$\gcd(312, 97) = \gcd(97, 21) \qquad [312 = 3 \cdot 97 + 21]$$

$$= \gcd(21, 13) \qquad [97 = 4 \cdot 21 + 13]$$

$$= \gcd(13, 8) \qquad [21 = 1 \cdot 13 + 8]$$

$$= \gcd(8, 5) \qquad [13 = 1 \cdot 8 + 5]$$

$$= \gcd(5, 3) \qquad [8 = 1 \cdot 5 + 3]$$

$$= \gcd(3, 2) \qquad [5 = 1 \cdot 3 + 2]$$

$$= \gcd(2, 1) \qquad [3 = 1 \cdot 2 + 1]$$

$$= 1.$$

(b) Reading Euclidean algorithm backwards we have

$$1 = 37 \cdot 312 - 119 \cdot 97.$$

(c) So $312 \cdot 37 \equiv 1 \pmod{97}$. Thus, $312 \cdot (37 \cdot 3) \equiv 3 \pmod{97}$. Now $37 \cdot 3 = 111 \equiv 14 \pmod{97}$. Hence, the solution is $x \equiv 14 \pmod{97}$.

Q.7 Solve the following modular equations.

(a) $312x \equiv 3 \pmod{97}$.

(b) $778x \equiv 10 \pmod{379}$.

Solution:

(a) Applying Euclidean algorithm, we have

$$312 = 3 \cdot 97 + 21$$

$$97 = 4 \cdot 21 + 13$$

$$21 = 1 \cdot 13 + 8$$

$$13 = 1 \cdot 8 + 5$$

$$8 = 1 \cdot 5 + 3$$

$$5 = 1 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

Reading Euclidean algorithm backwards we have $1 = 37 \cdot 312 - 119 \cdot 97$. So, $312 \cdot 37 \equiv 1 \pmod{97}$. Thus, $x \equiv 37 \cdot 3 \equiv 111 \equiv 14 \pmod{97}$.

(b) Note that 379 is a prime. To find the modular inverse of 778, we first apply Euclidean algorithm.

$$778 = 2 \cdot 239 + 20$$

$$379 = 18 \cdot 20 + 19$$

$$20 = 1 \cdot 19 + 1.$$

Reading backwards we have $1 = 19 \cdot 778 - 39 \cdot 379$. Thus, we have $x \equiv 10 \cdot 10 \equiv 190 \pmod{379}$. Reading Euclidean algorithm backwards we have $1 = 37 \cdot 312 - 119 \cdot 97$. So, $312 \cdot 37 \equiv 1 \pmod{97}$. Thus, $x \equiv 37 \cdot 3 \equiv 111 \equiv 14 \pmod{97}$.

Q.8 Let a and b be positive integers. Show that gcd(a, b) + lcm(a, b) = a + b if and only if a divides b, or b divides a.

Solution:

"only if" Assume that gcd(a,b) = d, then we have $lcm(a,b) = \frac{ab}{d}$, where d is an integer. Then we have $d + \frac{ab}{d} = a + b$, and we further have $d^2 - (a + b)d + ab = 0$, Solving this equation, we have d = a or d = b. This means a divides b or b divides a.

"if" W.l.o.g., assume that a|b. Then we have $\gcd(a,b)=a$ and $\operatorname{lcm}(a,b)=b$. The conclusion then follows.

Q.9 Prove that if a and m are positive integers such that $gcd(a, m) \neq 1$ then a does not have an inverse modulo m.

Solution: We prove this by contrapositive. Assume that a has an inverse modulo m, i.e., there exists an integer b such that

$$ab \equiv 1 \pmod{m}$$
.

This is equivalent to m|(ab-1), which means that there is an integer k such that

$$ab - 1 = mk$$
,

which is

$$ba + (-k)m = 1.$$

Suppose that d is any common divisor of a and m, i.e., d|a and d|m. Since b and k are integers, it follows that d|(ba-km), so d|1. Thus, we must have d=1, which completes the proof.

Q.10

- (a) Show that if n is an integer then $n^2 \equiv 0$ or 1 (mod 4).
- (b) Show that if m is a positive integer of the form 4k+3 for some nonnegative integer k, then m is not the sum of the squares of two integers.

Solution:

- (a) There are two cases. If n is even, then n=2k for some integer k, so $n^2=4k^2$, which means that $n^2\equiv 0\pmod 4$. If n is odd, then n=2k+1 for some integer k, so $n^2=4k^2+4k+1=4(k^2+k)+1$, which means that $n^2\equiv 1\pmod 4$.
- (b) By (a), the sum of two squares must be either 0 + 0 = 0, 0 + 1 = 1, or 1 + 1 = 2, modulo 4, never 3, and therefore not of the form 4k + 3.

Q.11 Find counterexamples to each of these statements about congruences.

- (a) If $ac \equiv bc \pmod{m}$, where a, b, c, and m are integers with $m \geq 2$, then $a \equiv b \pmod{m}$.
- (b) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, where a, b, c, d, and m are integers with c and d positive and $m \geq 2$, then $a^c \equiv b^d \pmod{m}$.

Solution:

- (a) Let m = c = 2, a = 0 and b = 1. Then $0 = ac \equiv bc = 2 \pmod{2}$, but $0 = a \not\equiv b = 1 \pmod{2}$.
- (b) Let m = 5, a = b = 3, c = 1, and d = 6. Then $3 \equiv 3 \pmod{5}$ and $1 \equiv 6 \pmod{5}$, but $3^1 = 3 \not\equiv 4 \equiv 729 = 3^6 \pmod{5}$.

Q.12 Convert the decimal expansion of each of these integers to a binary expansion.

(a) 321 (b) 1023 (c) 100632

Solution: (a) 101000001

- (b) 1111111111
- (c) 11000100100011000

Q.13

Convert the binary expansion of each of these integers to a octal expansion.

- (a) $(1111 \ 0111)_2$
- (b) $(111\ 0111\ 0111\ 0111)_2$

Solution:

- (a) $(1111\ 0111)_2 = (011\ 110\ 111)_2 = (367)_8$
- (b) $(111\ 0111\ 0111\ 0111)_2 = (111\ 011\ 101\ 110\ 111)_2 = (73567)_8$

Q.14 Show that $\log_2 3$ is an irrational number. Recall that an irrational number is a real number x cannot be written as the ratio of two integers. **Solution:** Suppose that $\log_2 3 = a/b$ where $a, b \in \mathbf{Z}^+$ and $b \neq 0$. Then $2^{a/b} = 3$, so $2^a = 3^b$. This violates the fundamental theorem of arithmetic. Hence $\log_2 3$ is irrational.

Q.15

Prove that for every positive integer n, there are n consecutive composite integers.

Solution: There are n numbers in the sequences (n+1)!+2, (n+1)!+3, \cdots , (n+1)!+(n+1). The first of these is composite because it is divisible by 2; the second is composite because it is divisible by 3; \cdots ; the last is composite because it is divisible by n+1. This gives us the desired n consecutive composite integers.

Q.16 Show that if a and m are relatively prime positive integers, then the inverse of a modulo m is unique modulo m.

Solution:

Suppose that b and c are both the inversed of a modulo m. Then $ba \equiv 1 \pmod{m}$ and $ca \equiv 1 \pmod{m}$. Hence, $ba \equiv ca \pmod{m}$. Because $\gcd(a,m)=1$ it follows by Theorem 7 in Section 4.3 that $b\equiv c \pmod{m}$.

Q.17 Prove that there are infinitely many primes of the form 4k + 3, where k is a nonnegative integer. [Hint: Suppose that there are only finitely many such primes q_1, q_2, \ldots, q_n , and consider the number $4q_1q_2 \cdots q_n - 1$.] **Solution:** Suppose that there are only finitely many primes of the form 4k + 3, namely q_1, q_2, \ldots, q_n , where $q_1 = 3$, $q_2 = 7$, and so on.

Let $Q = 4q_1q_2\cdots q_n - 1$. Note that Q is of the form 4k + 3 (where $k = q_1q_2\cdots q_n - 1$). If Q is prime, then we have found a prime of the desired form different from all those listed.

If Q is not prime, then Q has at least one prime factor not in the list q_1, q_2, \ldots, q_n , because the remainder when Q is divided by q_j is $q_j - 1$, and $q_j - 1 \neq 0$. Because all odd primes are either of the form 4k + 1 or of the form 4k + 3, and the product of primes of the form 4k + 1 is also of this form (because (4k + 1)(4m + 1) = 4(4km + k + m) + 1), there must be a factor of Q of the form 4k + 3 different from the primes we listed.

Q.18

- (a) State Fermat's little theorem.
- (b) Show that Fermat's little theorem does not hold if p is not prime.
- (c) Use Fermat's little theorem to compute $3^{302} \mod 5$, $3^{302} \mod 7$, and $3^{302} \mod 11$.
- (d) Use your results from part (c) and the Chinese remainder theorem to find 3^{302} mod 385. (Note that $385 = 5 \cdot 7 \cdot 11$.)

Solution:

- (a) If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.
- (b) Take p = 4 and a = 6. Note that 6 is not divisible by 4 and that

$$6^{4-1} \bmod 4 \equiv (3 \cdot 2)^3 \pmod 4$$
$$\equiv 2^3 \cdot 3^3 \pmod 4$$
$$\equiv 8 \cdot 3^3 \pmod 4$$
$$= 0$$

(c) By Fermat's little theorem we know that $3^4 \equiv 1 \pmod{5}$; therefore $3^{300} = (3^4)^{75} \equiv 1^{75} \equiv 1 \pmod{5}$, and so $3^{302} = 3^2 \cdot 3^{300} \equiv 9 \cdot 1 = 9 \pmod{5}$, so $3^{302} \mod 5 = 4$. Similarly, $3^6 \equiv 1 \mod 7$; therefore $3^{300} = (3^6)^{50} \equiv 1 \pmod{5}$, and so $3^{302} = 3^2 \cdot 3^{300} \equiv 9 \pmod{7}$, so $3^{302} \mod 7 = 2$. Finally, $3^{10} \equiv 1 \pmod{11}$; therefore $3^{300} = (3^{10})^{30} \equiv 1 \pmod{11}$, and so $3^{302} = 3^2 \cdot 3^{300} \equiv 9 \pmod{11}$, so $3^{302} \mod 11 = 9$.

(d) Since 3³⁰² is congruent to 9 modulo 5, 7, and 11, it is also congruent to 9 modulo 385. (This is a particularly trivial application of the Chinese remainder theorem.)

Q.19 Let m_1, m_2, \ldots, m_n be pairwise relatively prime integers greater than or equal to 2. Show that if $a \equiv b \pmod{m_i}$ for $i = 1, 2, \ldots, n$, then $a \equiv b \pmod{m}$, where $m = m_1 m_2 \cdots m_n$.

Solution:

Suppose that p is a prime appearing in the prime factorization of $m_1m_2\cdots m_n$. Because the m_i 's are relatively prime, p is a factor of exactly one of the m_i 's, say m_j . Because m_j divides a-b, it follows that a-b has the factor p in its prime factorization to a power at least as large as the power to which it appears in the prime factorization of m_j . It follows that $m_1m_2\cdots m_n$ divides a-b, so $a \equiv b \pmod{m_1m_2\cdots m_n}$.

Q.20 Solve the system of congruence $x \equiv 3 \pmod{6}$ and $x \equiv 4 \pmod{7}$ using the method of Chinese Remainder Theorem or back substitution.

Solution:

By definition, the first congruence can be written as x = 6t + 3 where t is an integer. Substituting this expression for x into the second congruence tells us that $6t + 3 \equiv 4 \pmod{7}$, which can be easily be solved to show that $t \equiv 6 \pmod{7}$. From this we can write t = 7u + 6 for some integer u. Thus, $x = 6t + 3 = 6 \cdot (7u + 6) + 3 = 42u + 39$. Thus, our answer is all numbers congruent to 39 modulo 42.

Q.21 Show that we can easily factor n when we know that n is the product of two primes, p and q, and we know the value of (p-1)(q-1).

Solution: Suppose that we know both n = pq and (p-1)(q-1). To find p and q, first note that (p-1)(q-1) = pq - p - q + 1 = n - (p+q) + 1. From this we can find s = p+q. Then with n = pq, we can use the quadratic formula to find p and q.

Q.22 Consider the RSA encryption method. Let our public key be (n, e) = (65, 7), and our private key be d.

- (a) What is the encryption \hat{M} of a message M=8?
- (b) To decrypt, what value d do we need to use?
- (c) Using d, run the RSA decryption method on \hat{M} .

Solution:

(a) To encrypt M = 8, we have

$$\hat{M} = M^e \mod n$$
 $= 8^7 \mod 65$
 $= 8^{2 \cdot 3 + 1} \mod 65$
 $= 64^3 \cdot 8 \mod 65$
 $= (-1)^3 \cdot 8 \mod 65$
 $= -8 \mod 65$
 $= 57 \mod 65$.

So the encrypted message is $\hat{M} = 57$.

(b) Recall we can find d by running Euclidean algorithm.

$$\gcd(\phi(n), e) = \gcd(48, 7)$$

= $\gcd(7, 6)$ as $48 = 6 \cdot 7 + 6$
= $\gcd(6, 1)$ as $7 = 1 \cdot 6 + 1$
= 1.

Thus $d = \gcd(48,7) = 1$. Reading backwards we get $1 = 7 \cdot 7 - 1 \cdot 48$. Then the private key d = 7.

(c) To complete the RSA decryption, we calculate

$$\hat{M}^d \mod n = 57^7 \mod 65$$

= $(-8)^7 \mod 65$
= $(-8)^{2 \cdot 3 + 1} \mod 65$
= $(64)^3 \cdot (-8) \mod 65$
= $8 \mod 65$.

Therefore, the original message is M=8 as desired.

Q. 23 Consider the RSA system. Let (e, d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \mod n = M$)

Solution: Case I: gcd(M, n) = 1.

$$C^{d'} \bmod n = M^{ed'} \bmod n = M^{k\lambda(n)+1} \bmod n$$

$$= (M^{k\lambda(n)} \bmod n)M \bmod n$$

$$= (M^{(p-1)(q-1)/\gcd(p-1,q-1)} \bmod n)^k M \bmod n$$

By Fermat's theorem, $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod p = \left(M^{(q-1)/\gcd(p-1,q-1)}\right)^{p-1} \mod p = 1$ and $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod q = 1$. Then by Chinese Remainder Theorem, we have $C^{d'} \mod n = M$.

<u>Case II:</u> gcd(M, n) = p. M = tp for some integer 0 < t < q. We have gcd(M, q) = 1 and $ed' = k\lambda(n) + 1$ for some integer k. By Fermat's theorem, we have

$$(M^{k\lambda(n)} - 1) \bmod q = (M^{k(p-1)(q-1)/\gcd(p-1,q-1)} - 1) \bmod q = 0.$$

Then

$$(M^{ed'} - M) \bmod n = M(M^{ed'-1} - 1) \bmod n$$
$$= tp(M^{k\lambda(n)} - 1) \bmod pq$$
$$= 0$$

<u>Case III:</u> gcd(M, n) = q. Similar to Case II. <u>Case IV:</u> gcd(M, n) = pq. Trivial.