

Lógica Matemática

Tema 03 – Lógica Proposicional – Parte 3

Prof. Dr. Diego Saqui

Email: diego.saqui@muz.ifsuldeminas.edu.br

Regras de Inferências

Regras de Inferência

Regra	Nome da Regra
$\alpha, \alpha \rightarrow \beta \vDash \beta$	Modus Ponens
$\alpha \rightarrow \beta$, $\neg \beta \vDash \neg \alpha$	Modus Tollens
$\alpha \to \beta, \beta \to \gamma \vDash \alpha \to \gamma$	Silogismo hipotético (regra da cadeia)
$\alpha \vee \beta, \neg \alpha \vDash \beta$ $\alpha \vee \beta, \neg \beta \vDash \alpha$	Silogismo disjuntivo
$\alpha \wedge \beta \vDash \alpha$ $\alpha \wedge \beta \vDash \beta$	Simplificação
$\alpha, \beta \vDash \alpha \land \beta$	Conjunção
$\alpha \rightarrow \beta$, $\neg \alpha \rightarrow \beta \vDash \beta$	De casos
$\alpha \vDash \alpha \lor \beta$ $\beta \vDash \alpha \lor \beta$	Adição

Regras de Inferência

Regra	Nome da Regra
$\alpha \rightarrow \beta, \gamma \rightarrow \delta, \alpha \vee \gamma \vDash \beta \vee \delta$	Dilema Construtivo
$\alpha \rightarrow \beta, \gamma \rightarrow \delta, \neg \beta \lor \neg \delta \vDash \neg \alpha \lor \neg \gamma$	Dilema Destrutivo
$\alpha \to \beta \vDash \neg \beta \to \neg \alpha$	Contraposição
α , $\neg \alpha \vDash \beta$	Da inconsistência
$\alpha \to \beta, \beta \to \alpha \vDash \alpha \leftrightarrow \beta$	Introdução da Equivalência
$\alpha \leftrightarrow \beta \vDash \alpha \rightarrow \beta$ $\alpha \leftrightarrow \beta \vDash \beta \rightarrow \alpha$	Eliminação da Equivalência
$\alpha \vee \beta$, $\neg \alpha \vee \gamma \vDash \beta \vee \gamma$	Resolução

Ref.:

https://edisciplinas.usp.br/pluginfile.php/4848806/mod_resource/content/3/2019-Logica.pdf

De onde que vem essas regras?

- Para saber precisamos entender dois símbolos:
 - , (vírgula), que neste caso funciona como o operador lógico ∧(e)
 - | = que significa <u>Consequência Lógica.</u>

Consequência Lógica

- Na **consequência lógica** temos que:
 - sempre que a primeira parte da expressão é verdade na linha, a segunda parte também é verdade (mas não diz nada sobre "falso"). Então o seguinte exemplo é verdade:

	p	q	(p v q)
I,	v	v	v
I ₂	v	f	v
I ₃	f	v	v
I ₄	f	f	f

$$p| = (p \lor q)$$

$$q|=(p \lor q)$$

Consequência Lógica

- Juntando a **consequência lógica** com o operador ∧ **(na forma de vírgulas)** construímos a tabela de inferências, como o exemplo a seguir:
- Modus Ponens:

α	β	$\alpha \rightarrow \beta$	$\alpha, \alpha \to \beta$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

Observem aqui que sempre que a coluna do α , $\alpha \to \beta$ é **Verdade** a coluna do β

é **Verdade** também. Foi daí que tiramos a regra do <u>Modus Ponens</u>: α , $\alpha \rightarrow \beta \models \beta$

Utilidade de Inferência Lógica: Sistemas de derivação e argumentos

Para discutir argumentos considere o seguinte exemplo 1:

Se as uvas caem, então a raposa as come.

Se a raposa as come, então estão maduras.

As uvas estão verdes ou caem.

Logo,

A raposa come as uvas se e somente se as uvas caem.

Utilidade de Inferência Lógica: Sistemas de derivação e argumentos

- Para resolver o exemplo precisamos lembrar do que são as premissas e o que é a conclusão.
 - A parte da expressão anterior antes da palavra logo são as premissas.
 - e a parte que vem depois dela a conclusão.

Obs.: A conclusão é útil para expressar um padrão de raciocínio sendo colocada após as premissas e é "anunciada" por palavras indicativas, tais como: "então", "logo", "portanto", "como consequência", "conclui-se", etc. Ao conjunto de premissas + conclusão damos o nome de "argumentos".

Utilidade de Inferência Lógica: Sistemas de derivação e argumentos

Um argumento é correto se a conclusão segue logicamente das premissas, como formalmente estabelecido na definição a seguir:

• **Definição A:** Um argumento é uma sequência α_1 , α_2 , α_3 ,..., α_n (n>=1) de proposições, na qual as proposições α_i (1 <= i <= n-1) são chamadas de premissas e a proposição α_n é chamada de conclusão.

Indica-se um argumento α_1 , α_2 , α_3 ,..., $\alpha_{n-1} \vdash \alpha_n$ e ele é um argumento válido se e somente se a fórmula

$$\alpha_1 \wedge \alpha_2 \wedge \alpha_3 \wedge ... \wedge \alpha_{n-1} \rightarrow \alpha_n$$
 for uma tautologia

ou de outra forma, um argumento é válido se e somente se, sendo as premissas verdadeiras a conclusão também é verdadeira (isso é tautologia).

Exemplo

- O argumento $p, q \to r, \sim r, \sim q$ é válido pois a fórmula $(p \land (q \to r) \land \sim r) \to \sim q$ é uma <u>tautologia</u>.
- Um argumento é correto se a conclusão segue logicamente das premissas:
- O que verificamos nas linhas onde as premissas são verdadeiras que a conclusão também é verdadeira (tabela verdade a seguir, linha 4).

Exemplo

р	q	r	р	$q \rightarrow r$	~ r	$\sim q$	$(p \land (q \to r) \land \sim r) \to \sim q$ (Tautologia)
V	٧	V	٧	V	F	F	V
V	V	F	٧	F	V	F	V
V	F	V	٧	V	F	V	V
V	F	F	V	V	v	v	V
F	V	V	F	V	F	F	V
F	V	F	F	F	V	F	V
F	F	V	F	V	F	V	V
F	F	F	F	V	V	V	V

Lembrando

• Eventualmente, a verificação da validade de um argumento por meio de tabelas-verdade pode ser um trabalho longo, dado que depende do número de átomos nele existentes. Outra maneira de evidenciar a validade de argumentos é por meio de um procedimento descrito por uma sequência de passos, que faz uso de argumentos válidos já conhecidos e de equivalências, processo que leva à noção de derivação ou prova formal.

Sistema Dedutivo

 Um sistema dedutivo consiste de um conjunto finito de axiomas lógicos (ou esquemas de axiomas) e um conjunto finito de regras de inferência que são usados para derivar os teoremas do sistema.

 Na lógica tradicional, um axioma ou postulado é uma sentença ou proposição que não é provada ou demonstrada e é considerada como óbvia ou como um consenso inicial necessário para a construção ou aceitação de uma teoria.

Dedução/prova

Definição B: Considerando as fórmulas α_1 , α_2 , α_3 , ..., α_n e β da Lógica Proposicional. Diz-se que uma sequência finita de fórmulas C_1 , C_2 , ..., C_k é uma prova (ou dedução ou derivação) de β a partir de α_1 , α_2 , α_3 , ..., α_n (consideradas premissas) se e somente se:

- 1. cada C_i for uma premissa a_j $(1 \le j \le n)$; ou
- 2. C_i provém das fórmulas precedentes, pelo uso de um argumento válido de L; ou;
- 3. C_i provém do uso do princípio de substituição usado em uma fórmula anterior; ou
- 4. $C_k \in \beta$.

Dedução

• Diz-se, então, que β é <u>dedutível</u> a partir de α_1 , α_2 , α_3 ,..., α_n ou que β é um <u>teorema</u>. Se a sequência puder ser construída, isto é, se existir uma derivação para a conclusão β , dado que α_1 , α_2 , α_3 ,..., α_n são as premissas e dado que L <u>é</u> um conjunto de regras de inferência admissíveis, diz-se que o argumento é válido, ou seja, α_1 , α_2 , α_3 ,..., $\alpha_n \vdash \beta$ é válido.

Dedução

• Regras de inferência devem ser escolhidas de tal maneira que possam derivar apenas resultados que estejam corretos. Isso significa que *L* não deve conter qualquer falácia. Uma falácia permite encontrar uma conclusão que não possa ser derivada das premissas e, consequentemente, não correta.

Dedução – retomando o exemplo 1

Para discutir argumentos considere o seguinte exemplo 1:

Se as uvas caem, então a raposa as come.

Se a raposa as come, então estão maduras.

As uvas estão verdes ou caem.

Logo,

A raposa come as uvas se e somente se as uvas caem.

Passo 1

- Identificando as <u>proposições atômicas</u> nas sentenças em língua natural neste exemplo e nomeando-as com os símbolos convencionados para átomos na Lógica Proposicional, tem-se:
- p: as uvas caem
- q: a raposa come as uvas
- r: as uvas estão maduras

Passo 2

 Reescrevendo o enunciado anterior usando a linguagem da Lógica Proposicional, tem-se:

$$p \rightarrow q$$
$$q \rightarrow r$$
$$\neg r \lor p$$
$$\log o$$
$$p \leftrightarrow q$$

Passo 3

 A Tabela a seguir exibe a prova da conclusão como estabelecida na Definição B.

Tabela 1.45 Construção da prova de $p \leftrightarrow q$.

Tem-se	C,	$p \rightarrow q$	premissa
	$\mathbf{C_2}$	$q \rightarrow r$	premissa
	C_3	$\neg r \lor p$	premissa
Deduz-se	C_4	$r \rightarrow p$	(C ₃ : equivalência)
	C ₅	$q \rightarrow p$	$(C_2 + C_4 + \text{silogismo hipotético})$
	C_6	$(p \to q) \land (q \to p)$	$(C_1 + C_5 + \text{conjunção})$
	\mathbf{C}_{7}	$(p \leftrightarrow q)$	(C ₆ : equivalência)

A seqüência C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 é uma prova da conclusão $p \leftrightarrow q$ e o argumento $(p \rightarrow q)$, $(q \rightarrow r)$, $(\neg r \lor p) | - (p \leftrightarrow q)$ é válido.

Lembrete!

- O problema discutido aqui é a verificação da validade de uma conclusão lógica a partir de um conjunto de proposições dadas (premissas).
- É apresentado um conjunto de regras de inferência lógica que nos permite, a partir de um conjunto inicial de fatos, obter conclusões logicamente válidas, muitas vezes não óbvias à primeira vista.
- Argumento válido: Podemos expressar padrões de raciocínio de diversas maneiras. Na linguagem natural, em geral, a conclusão é colocada após as premissas e indicada por algumas palavras-chave como então, logo, portanto, como consequência, conclui-se, etc (NICOLETTI, 2009, p. 45).
- Dizemos que um argumento é válido se a conclusão segue logicamente as premissas ou, em outras palavras, se a conclusão é uma consequência lógica das premissas

Lembrete!

- Argumento válido: quando é possível justificar adequadamente a conclusão através das premissas
 - Se é válido, dizemos que a conclusão é consequência lógica das premissas.
 - determinar, para cada argumento, se suas premissas são verdadeiras ou não, não é uma questão lógica.
 - a lógica não se ocupa de conteúdos, mas apenas da forma e eis a razão pela qual ela é chamada de lógica formal.
- Argumento correto: Um argumento é correto se for válido e, além disso, tiver premissas verdadeiras.

Considerando exemplo anterior: $(p \rightarrow q), (q \rightarrow r), (\neg r \lor p) \vdash (p \leftrightarrow q)$

p	q	r	$\neg r$	$(p \rightarrow q)$	$(q \rightarrow r)$	(¬ <i>r</i> ∨ <i>p</i>)	$(p o q), \ (q o r), \ (\neg r \lor p)$	$(p \leftrightarrow q)$	⊢ (Tautologia)
V	V	٧	F	V	V	V	V	V	V
V	V	F	V	V	F	V	F	V	V
V	F	V	F	F	V	V	F	F	V
V	F	F	V	F	V	V	F	F	V
F	V	V	F	V	V	F	F	F	V
F	V	F	V	V	F	V	F	F	V
F	F	V	F	V	V	F	F	V	V
F	F	F	V	V	V	V	V	V	V

Exemplo 2

- No seguinte link:
 - https://docs.google.com/document/d/1hnHxSvwulTddwUj bYjl09P6w
 o2e0g4iy1jat2zOsmc/edit?usp=sharing

Regra de introdução da condicional e teorema da dedução

Regra de introdução da condicional e teorema da dedução

• A regra da introdução da condicional pode ser enunciada como: dada a derivação de uma fórmula β a partir de uma hipótese α , pode-se descartar a hipótese e inferir a fórmula $\alpha \to \beta$. Essa regra é dada pelo Teorema da Dedução.

Teorema da Dedução: Sejam α e β duas fórmulas bem formadas e $\delta_1,\ \delta_2,\ \delta_3,...$ premissas. Se juntos $\alpha,\ \delta_1,\ \delta_2,\ \delta_3,...$ logicamente implica em β , então $\delta_1,\ \delta_2,\ \delta_3,...$ logicamente implicam $\alpha \to \beta$.

As regras de inferência da Tabela dos slides 3 e 4 com o Teorema da Dedução formam um sistema completo.

Exemplo 3

- No seguinte link:
 - https://docs.google.com/document/d/1hnHxSvwulTddwUj bYjl09P6w
 o2e0g4iy1jat2zOsmc/edit?usp=sharing

Exercício

Pratiquem usando teorema da dedução

Considere que:

- → Se o universo é finito, então a vida é curta.
- Se a vida vale a pena, então a vida é complexa.
- Se a vida é curta ou complexa, então a vida tem sentido.
- A vida não tem sentido.

Verifique, usando regras de inferência e equivalências lógicas:

a-) Se o universo é finito e a vida vale a pena, então a vida tem sentido.