學號:R06725005 系級: 資管碩一 姓名:郝思喬

1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何? 答:

4 層 Convolution layers,每層都使用 BatchNormalization、MaxPooling2D、Dropout(0.3)、並且使用 selu 當 activation,filter 數量分別為 64,256,212,512。外加 2 層 Dense layers,每層使用 BatchNormalization、Dropout(0.3)、並且使用 selu 當 activation,神經元數量分別為 256,512。最後再加一層 Dense 使用 softmax 當 output。訓練過程有使用 ImageDataGenerator 前處理圖片產生更多資料,batch_size 設為 64,並且跑 300 個 epochs,過程中儲存 loss 最低的 model。最終準確率為 validation 以及 Kaggle 都接近 0.68。

架構圖:

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 46, 46, 64)	640
batch_normalization_1 (Batch	(None, 46, 46, 64)	256
activation_1 (Activation)	(None, 46, 46, 64)	0
max_pooling2d_1 (MaxPooling2	(None, 23, 23, 64)	0
dropout_1 (Dropout)	(None, 23, 23, 64)	0
conv2d_2 (Conv2D)	(None, 21, 21, 256)	147712
activation_2 (Activation)	(None, 21, 21, 256)	0
batch_normalization_2 (Batch	(None, 21, 21, 256)	1024
max_pooling2d_2 (MaxPooling2	(None, 10, 10, 256)	0
dropout_2 (Dropout)	(None, 10, 10, 256)	0
conv2d_3 (Conv2D)	(None, 8, 8, 512)	1180160
activation_3 (Activation)	(None, 8, 8, 512)	0
batch_normalization_3 (Batch	(None, 8, 8, 512)	2048
max_pooling2d_3 (MaxPooling2	(None, 4, 4, 512)	0
dropout_3 (Dropout)	(None, 4, 4, 512)	0

conv2d_4 (Conv2D)	(None, 2, 2, 512)	2359808
activation_4 (Activation)	(None, 2, 2, 512)	0
batch_normalization_4 (Batch	(None, 2, 2, 512)	2048
max_pooling2d_4 (MaxPooling2	(None, 1, 1, 512)	0
dropout_4 (Dropout)	(None, 1, 1, 512)	0
flatten_1 (Flatten)	(None, 512)	0
dense_1 (Dense)	(None, 256)	131328
batch_normalization_5 (Batch	(None, 256)	1024
dropout_5 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 512)	131584
batch_normalization_6 (Batch	(None, 512)	2048
dropout_6 (Dropout)	(None, 512)	0
dense_3 (Dense)	(None, 7)	3591

Total params: 3,963,271 Trainable params: 3,959,047 Non-trainable params: 4,224

Loss 以及 Accuracy 變化:

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼? 答:

為 6 層 Dense layers,每層都加 BatchNormalization、Dropout(0.3),使用 selu 當 activation,參數量分別為 256,512,512,1024,1024,1024,最後再加一層 Dense 使用 softmax 當 output。訓練過程與 CNN 相同 batch_size=64 跑 300 個 epochs,紀錄 loss 最低的 model,準確率為 0.43。

DNN 用相同的參數量得到的準確率遠遠比 CNN 訓練出來的結果還要差很多。架構圖:

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	256)	590080
batch_normalization_1 (Batch	(None,	256)	1024
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	512)	131584
batch_normalization_2 (Batch	(None,	512)	2048
dropout_2 (Dropout)	(None,	512)	0
dense_3 (Dense)	(None,	512)	262656
batch_normalization_3 (Batch	(None,	512)	2048
dropout_3 (Dropout)	(None,	512)	0
dense_4 (Dense)	(None,	1024)	525312

batch_normalization_4 (Batch	(None,	1024)	4096
dropout_4 (Dropout)	(None,	1024)	0
dense_5 (Dense)	(None,	1024)	1049600
batch_normalization_5 (Batch	(None,	1024)	4096
dropout_5 (Dropout)	(None,	1024)	0
dense_6 (Dense)	(None,	1024)	1049600
batch_normalization_6 (Batch	(None,	1024)	4096
dropout_6 (Dropout)	(None,	1024)	0
dense_7 (Dense)	(None,	7)	7175
Total params: 3,633,415 Trainable params: 3,624,711 Non-trainable params: 8,704			=======

Loss 以及 Accuracy 變化:

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析] 答:

各個類別的準確率皆有到達 0.6。

Fear、Angry、Neutral 常會 與 Sad 類別用混,機率皆 高於 0.1

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份? 答:

舉兩張圖為例

由這兩張圖可知 model 是處要 focus 在眼睛以及嘴巴輪廓的部分。

5. (1%) 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate。

答:

以第一層 convolution 為例,這 64 個 filters 最容易被 happy 這類別 active,下圖顯示出這張 happy 的輪廓接清晰可見。而前面的 confusion matrix 也顯示此 CNN 架構 happy 類別的準確率最高。

