

Deep Learning

Content

- Gradient Vanishing & Activation Functions
- Regularization: Dropout
- Stochastic Gradient Descent
- 그외주제들
 - Momentum
 - Adam
 - Batch Normalization

Gradient Vanishing & Activation Functions

Gradient Vanishing & Exploding

Gradient is easy to vanish or explode

- To many terms are multiplied.
- If some are small numbers, gradient becomes very small.
- If some are large numbers, gradient becomes very large.

Vanishing Gradient

The major terms are the derivatives of the activation function

Using another functions instead of sigmoid

Rectified Linear Unit (ReLU)

$$f(x) = \begin{cases} x & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Vanishing Gradient

The major terms are the derivatives of the activation function

Advantage

- No vanishing gradient problems.
 - Deep networks can be trained without pre-training
- Sparse activation
 - In a randomly initialized network, only about 50% of hidden units are activated
- Fast computation:
 - 6 times faster than sigmoid function

Disadvantage

Knockout Problem

You may use another

Leaky ReLU

$$f(x) = \begin{cases} x & \text{if } x > 0\\ 0.01x & \text{otherwise} \end{cases}$$

Swish (or SiLU-Sigmoid Linear Unit)

$$f(x) = \frac{x}{1 + e^{-x}}$$

Regularization

Overfitting

Overfitting

Regularization

What is Regularization

Introducing additional information to prevent over-fitting

Approaches

Proper Learning: Early stopping

Proper Structure: Weight decay, Dropout,

DropConnect, Stochastic pooling

Early Stopping

Split data into 3 groups

of updates

- How can we reduce the structural complexity without removing nodes?
 - Hmm??

- How can we reduce the structural complexity without removing nodes?
 - Hmm??

- How can we reduce the structural complexity without removing nodes?
 - Hmm??

- How can we reduce the structural complexity without removing nodes?
 - Hmm??

- How can we reduce the structural complexity without removing nodes?
 - Hmm??

- How can we reduce the structural complexity without removing nodes?
 - Hmm??

Do this at every epoch

- Randomly choose nodes with a probability of p
 - Usually p = 0.5
- Train the simplified neural network
 - At every epoch, we train different neural network which share connection weight each other

Testing

Use all the nodes without dropout

The effect of the dropout rate p:

- An architecture of 784-2048-2048-2048-10 is used on the MNIST dataset.
- The dropout rate p is changed from small numbers (most units are dropped out) to 1.0 (no dropout).

Summary

- Dropout is a very good and fast regularization method.
- Dropout is a bit slow to train (2-3 times slower than without dropout).
- If the amount of data is average-large dropout excels.
 When data is big enough, dropout does not help much.
- Dropout achieves better results than former used regularization methods (Weight Decay).

Stochastic Gradient Descent

Batch Gradient Descent

Batch mode

Mini-batch

Mini-batch

Mini-batch

Mini-batch

Stochastic Gradient Descent

Usual Batch Size

Dependent on datasets from several thousands to several tens

Advantage

- Good estimation of real gradient
- High throughput: may use the large number of cores at once in a GPU.
- Faster convergence: Good estimation + High throughput

Disadvantage

Inaccurate: dataset with large variances

그 외 주제

Gradient Descent

Local Minimum을 찾음

- 더 좋은 local mimimum을 찾을 수 없을까?
- 해결방법: Momentum, Adam optimizer 사용

Batch Normalization

Deep Learning

- NN이 deep 해 질수록
- 한 레이어에 있는 노드들의 출력값의 범위가 매우 넓게 됨
- 출력값의 범위가 넓을수록 학습이 느려지고
 출력 결과도 불안정 해짐
- 이를 해결하는 기법이 Batch Normalization