南京理工大学

2005 年硕士学位研究生入学考试题

试题编号: 200501003

考试科目: 机械原理 (满分 150 分)

<u>考生注意:所有答案(包括填空题)按试题序号写在答题纸上,写在试卷上不给分</u>

一、计算下列机构的自由度,凡有复合铰、局部自由度、虚约束,应明确指出;并 指明机构具有确定运动的条件。 (20分)

1.

2.

- 二、在图示机构中,已知 l_{AB} =30mm, l_{AC} =70mm, l_{CD} =15mm,匀角速 ω_1 =10rad/s,转向如图所示, ϕ_1 =45°。
 - 1. 取 μ /=1mm/mm, 绘机构运动简图:
 - 2. 用相对运动图解法求构件 3 的角速度 ω_3 和角加速度 ϵ_3 。 (20 分)

- 三、在图示连杆机构中已知 l_{AB} =15mm, l_{BC} =45mm, l_{CD} =35mm, l_{AD} =40mm, lor=40mm, e=15mm, 构件 1 为原动件。
 - 1. 画出机构在 Φ₁=60° 位置时的运动简图,标出曲柄摇杆机构 ABCD 的极 位夹角θ及滑块的行程H。
 - 2. 若要求滑块 6 自左向右运动为快行程,试确定曲柄 1 的转向。(20 分)

四、图示凸轮机构, 凸轮为偏心轮, 转向如图。 已知: R=32mm, l_{OA}=10mm, e=15mm, 试在图上标出:

- (1) 凸轮的基圆半径 re:
- (2) 图示位置从动件的压力角 a:
- (3) 在从动件最大行程时,应用反转法确定从动 件与凸轮的相对位置,并在图上标出最大位移 Smax。

(20分)

- 五、在一对正常齿制的渐开线标准外啮合直齿圆柱齿轮机构中,齿数 $z_1=30$,传动 比 i_{12} =2.5, 压力角 α =20°, 模数 m=10mm, 试求下列各量的值: (1)齿轮 2 的 分度圆、基圆和齿根圆半径 r_2 , r_{b2} , r_{f2} ; (2) 齿厚 s, 基节 p_b 和标准中心距 a; (3)当安装中心距 a'比标准中心距 a 大 2mm 时的啮合角 α '及节圆半径 r_1 , r_2 。 (20分)
- 六、在图示轮系中,已知各轮齿数 z_1 =60, z_2 =40, z_2 = z_3 =20, z_4 =20, z_5 =40, $z_5'=z_6$, $z_7=60$, 蜗杆 $z_6'=1$, 旋向如图。若轮 1 按图示方向转动,求 i_{17} 的

七、图示斜面机构,滑块在垂直力 Q(含重力)与平行斜面的力 F 作用下匀速运动,滑块与斜面的摩擦系数为 f,试推导:(1)滑块匀速上升时机构的效率;(2)滑块匀速下降时机构的效率及自锁条件。(15分)

八、已知图示机构 l_{AB} =25mm, l_{BC} =55mm, e=8mm, ω_1 =10rad/s, Φ_1 =45°

- (1) 取 μ=1mm/mm 作机构运动简图:
- (2) 作图求出构件 1 与 3 的速度瞬心 P_{13} 及构件 2 与机架 4 的速度瞬心 P_{24} ,用速度瞬心法求构件 3 的速度 \bar{v}_3 的大小和方向。(15 分)

第3页 共3页