Algoritmos Genéticos Avaliação Multiobjetivo

Avaliação

Alguns problemas podem apresentar múltiplos objetivos como, por exemplo, uma empresa que tem como objetivo:

- Entregar todas as quantidades de pedidos de forma correta e pontual;
- Minimizar o número de caminhões que fazem a entrega;
- Diminuir o custo das entregas;
- Reduzir o tempo despendido

Avaliação

Alguns métodos permitem lidar com problemas multiobjetivos:

- Agregação de objetivos;
- Minimização de energia;
- Distância ao alvo;

- Métodos baseados em pesos;
- Separando os objetivos;
- Conjuntos pareto;
- Priorizando objetivos;

Avaliação

Agregação de objetivos

• é um método bastante simples que, para uma determinada solução, o valor de avaliação final é dado pela soma ponderada dos valores de avaliação de todos os objetivos.

$$F = \sum_{i=1}^{n} w_i . f_i$$

onde:

 f_i - avaliação da solução em relação ao objetivo i w_i - peso aplicado ao objetivos i n - número de objetivos

Avaliação

Distância ao Alvo

- as avaliações dos objetivos são combinadas por meio do cálculo da distância entre:
 - um vetor alvo user, formado pelos valores ideais de cada objetivo quando considerados isoladamente; e
 - um vetor f formado pelos valores de avaliação de todos os objetivos para uma determinada solução;

Avaliação

Distância ao Alvo

 a avaliação final é dada pelo somatório das distâncias calculadas para todos os objetivos.

$$F = \left(\sum_{i=1}^{n} \left| user_i - f_i \right|^p \right)^{\frac{1}{p}} \quad p \ge 1$$

onde:

 f_i - avaliação da solução em relação ao objetivo i $user_i$ - valor ideal do objetivos i n - número de objetivos p - pressão exercida

Avaliação

Distância ao Alvo

- o parâmetro p determina a pressão exercida em cima das soluções ruins, ou seja, quanto maior o valor de p, maior será a penalidade aplicada às soluções que apresentam resultados ruins para algum objetivo;
- no caso desse método, a sua utilização está limitada a situações em que se sabe previamente a solução desejada para cada objetivo.

Avaliação

Minimização de Energia

- durante o processo de otimização, os pesos são atualizados de maneira que pesos maiores são atribuídos aos objetivos que forem menos satisfeitos por uma população de soluções;
- assim, o objetivo do método é minimizar os pesos aplicados aos objetivos.

Avaliação

Minimização de Energia

$$F = \sum_{i=1}^{n} w_{i}.fnorm_{i}$$

onde:

 w_i - peso associado ao objetivo i n - número de objetivos

• O termo $fnorm_i$ é o vetor normalizado de avaliações do objetivo i e é dado por: $fnorm_i = \frac{f_i}{\overline{f}}$

onde:

 f_i - avaliação da solução em relação ao objetivo i $\overline{f_i}$ - média das avaliações das soluções para o objetivo i

Avaliação

Minimização de Energia

• a atualização dos pesos é feita pela seguinte equação

$$w_{i,t+1} = k_1 \cdot \alpha \cdot w_{i,t} + k_2 \cdot (1 - \alpha) \cdot e_{i,t}$$

onde:
 $k_1 e k_2$ - constantes de normalização
 α - constante

 o termo e_{i,t} mede o erro percentual entre o valor ideal para o objetivo i e a avaliação média da população para o objetivo i no instante t.

Avaliação

Minimização de Energia

• o cálculo do erro é dado por:

$$e_{i,t} = \frac{|user_i - \overline{f}_{i,t}|}{user_i}$$

onde:

 $user_i$ - valor ideal do objetivo i $\overline{f_i}$ - média das avaliações das soluções para o objetivo i

• O objetivo das constantes *k1* e *k2* é fazer com que a soma dos valores dos pesos em um instante arbitrário *t*, forneça uma medida do estado de convergência do sistema em relação às especificações do usuário.

Avaliação

Minimização de Energia

• o estado de convergência corresponde à energia do sistema e a sua minimização corresponde ao processo de satisfação de múltiplos objetivos. O cálculo da energia é dado por:

$$E = \sum_{i=1}^{n} w_i^2$$

Avaliação

Métodos baseados em pesos

 Seu funcionamento é através da aplicação de pesos a cada um dos objetivos, ou seja, a função de avaliação passa a ser o somatório de todas as avaliações dos objetivos ponderadas pelos seus respectivos pesos;

Avaliação

Métodos baseados em pesos

[0,10000] [0,10] [0,100]

1 2 1

x1 150; 10; 99
$$F(x1) = 150 + 2 * 10 + 99 = 269$$

x2 220; 3; 50 $F(x2) = 220 + 2 * 3 + 50 = 276$

Avaliação

Métodos baseados em pesos

[0,10000] [0,10] [0,100]

0,001 2 0,1

x1
$$150; 10; 99$$
 $F(x1) = 0,001*150 + 2*10 + 0,1*99 = 30,05$

x2 $220; 3; 50$ $F(x2) = 0,001*220 + 2*3 + 0,1*50 = 11,22$

Avaliação – exercício 1

Avaliações						
	Indivíduo A	Indivíduo B	Indivíduo C	Indivíduo D		
Função de Avaliação 1	150	205	180	200		
Função de Avaliação 2	10	8	7	9		
Função de Avaliação 3	99	40	88	50		

	Função de Avaliação 1	Função de Avaliação 2	Função de Avaliação 3
PESOS	1	1	1
	1	2	1
	1	1	3
	2	1	1

Avaliação

Separando os objetivos

- Consiste em tratar cada função objetivo de forma independente, pegando o máximo obtido em cada objetivo e aplicando ao problema;
- Este tipo de abordagem de separação de objetivos é chamada de abordagem de otimização não-Pareto

Avaliação

Separando os objetivos

Avaliação

Abordagens baseadas em conjuntos Pareto

- Compara soluções sem combinar avaliações;
- Dominância:
 - Solução A domina a solução B se:
 - Para nenhum dos objetivos a avaliação de A é pior que a avaliação de B;
 - Para no mínimo um objetivo a avaliação de A é melhor que a avaliação de B;

Avaliação

Abordagens baseadas em conjuntos Pareto

• Exemplo: Em um problema de planejamento, deseja-se minimizar os custos de produção (f1) e de distribuição (f2):

Avaliação

Abordagens baseadas em conjuntos Pareto

- Conjunto Pareto-Ótimo é o conjunto de todas as soluções que não são dominadas por nenhuma outra;
- Assim, a evolução é feita privilegiando os indivíduos do Conjunto Pareto-Ótimo;
- A avaliação final de uma solução pode levar em consideração o número de indivíduos na população que ela domina (baseada em ranking).

Avaliação – exercício 2

Dadas as avaliações a seguir identifique o conjunto pareto ótimo dos indivíduos, sabendo que este é um problema de minimização.

	f1	f2
Α	2	10
В	4	6
C	4	8
D	5	9
E	8	7
F	1	9
G	3	8
Н	6	1
I	9	3