Midterm 1 Batch B

Questions

Table of contents

Penguins	1
Question 1	2
NYC Flights	2
Question 2	4
Question 3	4
Countries and populations	5
Question 4	5
Question 5	5
Duke Forest houses	7
Question 6	8
Question 7	8
Law & Order	9
Question 8	9
Question 9	11
Romance and comedy	12
Question 10	12
Data	14
Question 11	15
Question 12	15
Question 13	17
Question 14	19

Penguins

The penguins data set includes measurements for penguin species, including: flipper length, body mass, bill dimensions, and sex. The following table summarizes information on which species of penguins (Adelie, Gentoo, and Chinstrap) live on which islands (Biscoe, Dream, or Torgersen).

Island	Adelie	Gentoo	Chinstrap	Total
Biscoe	44	124	0	168
Dream	56	0	68	124
Torgersen	52	0	0	52
Total	152	124	68	344

Which of the following plots is the result of the following code?

NYC Flights

The flights dataset includes characteristics of all flights departing from New York City airports (JFK, LGA, EWR) in 2013. Below is a peek at the first ten rows of the flights data.

A tibble: $336,776 \times 19$

	year	${\tt month}$	day	arr_delay	carrier	${\tt dep_time}$	${\tt sched_dep_time}$	dep_delay
	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>
1	2013	1	1	11	UA	517	515	2
2	2013	1	1	20	UA	533	529	4
3	2013	1	1	33	AA	542	540	2
4	2013	1	1	-18	B6	544	545	-1
5	2013	1	1	-25	DL	554	600	-6
6	2013	1	1	12	UA	554	558	-4
7	2013	1	1	19	B6	555	600	-5
8	2013	1	1	-14	EV	557	600	-3
9	2013	1	1	-8	B6	557	600	-3
10	2013	1	1	8	AA	558	600	-2

[#] i 336,766 more rows

[#] i 11 more variables: arr_time <int>, sched_arr_time <int>, flight <int>,

[#] tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

[#] hour <dbl>, minute <dbl>, time_hour <dttm>

Based on this output, which of the following must be $\underline{\mathbf{true}}$ about the flights data frame? Select all that are true.

- a. The flights data frame is a tibble.
- b. The flights data frame has 10 rows.
- c. The flights data frame has 8 columns.
- d. The carrier variable in the flights data frame is a character variable.
- e. There are no missing data in the flights data frame.

Question 3

Which of the following pipelines produce(s) the output shown below? **Select all that apply.**

A tibble: 336,776 x 5

	arr_delay	carrier	year	month	day
	<dbl></dbl>	<chr></chr>	<int></int>	<int></int>	<int></int>
1	1272	HA	2013	1	9
2	1127	MQ	2013	6	15
3	1109	MQ	2013	1	10
4	1007	AA	2013	9	20
5	989	MQ	2013	7	22
6	931	DL	2013	4	10
7	915	DL	2013	3	17
8	895	DL	2013	7	22
9	878	AA	2013	12	5
10	875	MQ	2013	5	3

i 336,766 more rows

a.

b.

c.

d.

e.

Countries and populations

We have a small dataset of six countries and their populations:

18.0

333288.

A tibble: 6 x 2
country population
<chr> <chr> 1 Curacao 150
2 Ecuador 18001
3 Iraq 44496.
4 New Zealand 5124.

And another small dataset of five countries and the continent they're in:

A tibble: 5 x 3 entity code continent <chr> <chr> <chr> 1 Angola AGO Africa 2 Curacao CUW North America 3 Ecuador ECU South America 4 Iraq IRQ Asia 5 New Zealand NZL Oceania

You join the two datasets with the following:

Question 4

5 Palau

6 United States

How many rows will the resulting data frame have?

a. 4 b. 5 c. 6 d. 7 e. 8

Question 5

What will be the columns of the resulting data frame?

a. country, population

b. country, population, code, continent

c. entity, code, continent

- $\ d. \ \ \text{entity}, \ \text{population}, \ \text{code}, \ \text{continent}$
- $e. \ \ \mathsf{country}, \ \mathsf{entity}, \ \mathsf{population}, \ \mathsf{code}, \ \mathsf{continent}$

	Built earlier than 1950	Built in 1950 or later
Garage	5	33
No garage	3	57

Duke Forest houses

The duke_forest dataset includes information on prices and various other features (number of bedrooms, bathrooms, area, year built, type of cooling, type of heating, etc.) of houses in the Duke Forest neighborhood of Durham, NC.

```
Rows: 98
Columns: 13
            <chr> "1 Learned Pl, Durham, NC 27705", "1616 Pinecrest Rd, Durha~
$ address
            <dbl> 1520000, 1030000, 420000, 680000, 428500, 456000, 1270000, ~
$ price
$ bed
            <dbl> 3, 5, 2, 4, 4, 3, 5, 4, 4, 3, 4, 4, 3, 5, 4, 5, 3, 4, 4, 3,~
$ bath
            <dbl> 4.0, 4.0, 3.0, 3.0, 3.0, 5.0, 3.0, 5.0, 2.0, 3.0, 3.0,~
            <dbl> 6040, 4475, 1745, 2091, 1772, 1950, 3909, 2841, 3924, 2173,~
$ area
            <chr> "Single Family", "Single Family", "Single Family", "Single ~
$ type
$ year_built <dbl> 1972, 1969, 1959, 1961, 2020, 2014, 1968, 1973, 1972, 1964,~
            <chr> "Other, Gas", "Forced air, Gas", "Forced air, Gas", "Heat p~
$ heating
$ cooling
            <fct> central, central, central, central, central, central, central
$ parking
            <chr> "O spaces", "Carport, Covered", "Garage - Attached, Covered~
$ lot
            <dbl> 0.97, 1.38, 0.51, 0.84, 0.16, 0.45, 0.94, 0.79, 0.53, 0.73,~
$ hoa
            $ url
            <chr> "https://www.zillow.com/homedetails/1-Learned-Pl-Durham-NC-~
```

The following summary table gives us some information about whether homes in this data set have garages and when they were built.

See next page for questions on this dataset.

The pipeline below produces a data frame with a fewer number of rows than duke_forest.

A tibble: 5 x 5 parking year_built price area price_per_sqfeet <dbl> <dbl> <dbl> 1 Garage 307. 1945 900000 2933 2 Garage 1938 265000 1300 204. 3 Garage 1934 600000 2514 239. 4 Garage 1941 412500 1661 248. 5 Garage 1940 105000 1094 96.0

Question 6

Which of the following goes in blanks (1) and (2)?

	(1)	(2)
a.	&	<
b.	- 1	<
c.	&	>=
d.		>=
e.	&	!=

Question 7

Which function or functions go into blank (3)? Select all that apply.

- a. arrange()
- b. mutate()
- c. filter()
- d. summarize()
- e. slice()

Law & Order

You've heard of the tidyverse, now let's visit the Law & Order-verse. Doink doink!¹

Law & Order is a police procedural and legal drama television series that has been running since the 1990s. The Law & Order franchise includes a number of series such as Law & Order, Law & Order: SVU, Law & Order: Criminal Intent, etc.

You will work with data on average ratings for each season of three series from the Law & Order-verse – a subset of the data from the previous questions. Below is a peek at the first ten rows of the Law & Order data.

The plot below shows the distributions of average ratings of various Law & Order series across seasons.

Question 8

Based on the information from the side-by-side box plots, fill in the legend of the plot below with Law & Order series titles.

Warning: Removed 21 rows containing missing values or values outside the scale range (`geom_point()`).

¹"Doink doink" is the scene and episode introductory sound on the Law & Order series. If you've never heard it, you're not at any disadvantage for the exam. If you've ever heard it, good luck getting it out of your head!

The following code calculates the standard deviations of average season ratings of the five Law & Order series. Unfortunately, the output is partially erased and replaced with blanks.

Based on the visualizations you've seen of these data so far, which of the following is <u>true</u> about the blanks in the output? **Select all that are true.**

- a. The **mean** of average ratings (Blank 1) of Law & Order seasons is **lower** than the other two means.
- b. The **mean** of average ratings (Blank 1) of Law & Order seasons is **higher** than the other two means.
- c. The **standard deviation** of average ratings of Law & Order: SVU seasons (Blank 2) is **lower** than the other two standard deviations.
- d. The **standard deviation** of average ratings of Law & Order: SVU seasons (Blank 2) is **higher** than the other two standard deviations.
- e. The **standard deviation** of average ratings of Law & Order: SVU seasons (Blank 2) is **between** the other two standard deviations.

Romance and comedy

Finally, we focus on romance and comedy shows. We first filter the dataset for any shows that have romance or comedy as their genre (genre_1, genre_2, or genre_3) and then remove shows that have both of these genre labels. For the next two questions, we focus on these shows that we identify as either romance or comedy. We then calculate the mean of the average season ratings for each show, to obtain a single "mean average rating" value per show.

The plot below shows the distributions of mean average ratings of seasons of comedy and romance shows.

Question 10

Which of the following statements is $\underline{\mathbf{true}}$ about these distributions? Select all that are true.

- a. Mean average ratings of romance shows are bimodal.
- b. Mean average ratings of comedy are unimodal.
- c. Mean average ratings of romance shows is left skewed.
- d. Mean average ratings of comedy shows is right skewed.
- e. There are more romance shows than comedy shows.

"I'll be Bach"

The following data frame, composers, contains information on the numbers of symphonies, operas, and concertos composed by two famous composers: Beethoven and Mozart.

Aside: Classical music historians might disagree on the precise counts, but these values are widely accepted counts.

#	A tibble:	6 x 3	
	composer	genre	count
	<chr></chr>	<chr></chr>	<dbl></dbl>
1	${\tt Beethoven}$	symphony	9
2	${\tt Beethoven}$	opera	1
3	${\tt Beethoven}$	concerto	9
4	Mozart	symphony	41
5	Mozart	opera	22
6	Mozart	concerto	37

Variable	Description
	•

Data

The data for the next few questions come from the Internet Movie Database (IMDB). Specifically, the data are a random sample of movies released between 1980 and 2020.

The name of the data frame used for this analysis is movies, and it contains the variables shown in Table 1.

Table 1: Data dictionary for movies

Variable	Description
name	name of the movie
rating	rating of the movie (R, PG, etc.)
genre	main genre of the movie.
runtime	duration of the movie
year	year of release
release_date	release date (YYYY-MM-DD)
release_country	release country
score	IMDB user rating
votes	number of user votes
director	the director
writer	writer of the movie
star	main actor/actress
country	country of origin
budget	the budget of a movie (some movies don't have this, so it appears as 0)
gross	revenue of the movie
company	the production company

The first thirty rows of the movies data frame are shown in Table 2, with variable types suppressed (since we'll ask about them later).

The name and runtime variables are shown below, with the variable types suppressed.

#	A tibble: 500 x 2		What is the type of the runtime variable?
	name	runtime	Cl
1	Blue City	83 mins	a. Character
2	Winter Sleep	196	b. Double
3	Rang De Basanti	167	
4	Pokémon Detective Pikachu	104	c. Factor
5	A Bad Moms Christmas	104	1 7 / .
6	Replicas	107	d. Integer
#	i 494 more rows		e. Logical

Question 12

The code below summarizes the data in a certain way.

Which of the following is TRUE about the code and its result? Select all that are true.

- a. Evaluates whether each release_country is equal to "United States" or not, which results in a logical variable.
- b. Filters out rows where release_country is not equal to "United States" and counts the remaining rows.
- c. Sums the logical values, where each TRUE is considered a 1 and each FALSE is considered a 0.
- d. Results in a character vector.
- e. The result shows there are 435 movies released in the United States.

 $\label{eq:Table 2} \mbox{Table 2}$ First 30 rows of $\mbox{movies},$ with variable types suppressed.

# A tibble: 500 x 16			
name score runtim	e genre rating	release_country	release date
1 Blue City 4.4 83 min	-	United States	1986-05-02
2 Winter Sleep 8.1 196	Drama Not Rate		2014-06-12
3 Rang De Basan~ 8.1 167		d United States	2006-01-26
4 Pokémon Detec~ 6.6 104	Action PG	United States	2019-05-10
5 A Bad Moms Ch~ 5.6 104	Comedy R	United States	2017-11-01
6 Replicas 5.5 107	Drama PG-13	United States	2019-01-11
7 Windy City 5.8 103	Drama R	Uruguay	1986-01-01
8 War for the P~ 7.4 140	Action PG-13	United States	2017-07-14
9 Tales from th~ 6.4 98	Crime R	United States	1995-05-24
10 Fire with Fire 6.5 103	Drama PG-13	United States	1986-05-09
11 Raising Helen 6 119	Comedy PG-13	United States	2004-05-28
12 Feeling Minne~ 5.4 99	Comedy R	United States	1996-09-13
13 The Babe 5.9 115	Biography PG	United States	1992-04-17
14 The Real Blon~ 6 105	Comedy R	United States	1998-02-27
15 To vlemma tou~ 7.6 176	<i>J</i>	d United States	1997-11-01
16 Going the Dis~ 6.3 102	Comedy R	United States	2010-09-03
17 Jung on zo 6.8 103	Action R	Hong Kong	1993-06-24
18 Rita, Sue and 6.5 93	Comedy R	United Kingdom	1987-05-29
19 Phone Booth 7 81	Crime R	United States	2003-04-04
20 Happy Death D~ 6.6 96	Comedy PG-13	United States	2017-10-13
21 Barely Legal 4.7 90	Comedy R	Thailand	2006-05-25
22 Three Kings 7.1 114	Action R	United States	1999-10-01
23 Menace II Soc~ 7.5 97	Crime R	United States	1993-05-26
24 Four Rooms 6.8 98	Comedy R	United States	1995-12-25
25 Quartet 6.8 98	Comedy PG-13	United States	2013-03-01
26 Tape 7.2 86	Drama R	Denmark	2002-07-12
27 Marked for De~ 6 93	Action R	United States	1990-10-05
28 Congo 5.2 109	Action PG-13	United States	1995-06-09
29 Stop-Loss 6.4 112	Drama R	United States	2008-03-28
30 Con Air 6.9 115	Action R	United States	1997-06-06
	year director		star
baaget grobb votob	your ulicous	WIIOOI	Dual
1 10000000 6947787 1100	1986 Michelle Manni:	ng Ross Macdona~	Judd Nelson
2 NA 4018705 48000	2014 Nuri Bilge Cey	•	Haluk Bilgin~
3 NA 10800778 115000	2006 Rakeysh Omprak		
4 150000000 433921300 146000	2019 Rob Letterman		
5 28000000 130560428 46000	2017 Jon Lucas		Mila Kunis
6 30000000 9330075 34000	2018 Jeffrey Nachma		
7 NA 343890 262	1984 Armyan Bernste		
8 150000000 490719763 235000	2017 Matt Reeves	Mark Bomback	
9 6000000 11837928 7400	1995 Rusty Cundieff		•
10 NA 4636169 1500	1986 Duncan Gibbins	•	
11 50000000 49718611 36000	2004 Garry Marshall	-	•
12 NA 3124440 11000	1996 Steven Baigelm		
13 NA 19930973 9300	1992 Arthur Hiller	•	John Goodman
14 NA 83488 3900	1997 Tom DiCillo		Matthew Modi~
15 NA NA 6400	1995 Theodoros Ange		
16 3000000 40050111 57000	2010 Namatta Barata		•

2010 Namette Burstein Geoff LaTuli~ Drew Barrymo~

16 32000000 42059111

Suppose you want a visualization that shows the number of movies in the sample in each genre. Your first attempt is as follows.

A friend of yours says that the visualization is difficult to read and they suggest using the following visualization instead.

Which of the following modifications would your friend have made to your code to create their version? **Select all that apply.**

- a. Combine movies in genres other than Comedy, Drama, Action, and Horror into a new level called "Other".
- b. Reorder the levels in descending order of numbers of observations, except for the "Other" level.
- c. Map genre to the y aesthetic.

- d. Add a title, x and y-axis labels, and a caption.
- e. Filter out all moves in genres other than Comedy, Drama, Action, and Horror before plotting.

Which of the following is TRUE about the code and its result? Select all that are true.

A tibble: 6 x 6 rating Other Drama Action Comedy Horror <fct> <int> <int> <int> <int> <int> 1 G 5 1 1 1 0 2 PG 38 13 10 18 0 25 35 3 PG-13 19 35 0 4 R 45 50 57 96 21 5 NC-17 2 1 0 1 0 4 4 6 1 6 Not Rated 11

- a. The code counts how many movies are in each rating and genre combination.
- b. The code sorts the results in descending order.
- c. Each row of the output is a movie.
- d. The output shows that there are six distinct ratings in the dataset.
- e. The code reduces the number of variables and observations in the movies data frame to six.