!id curves-basic-results-definitions gen-page true! !section Basic results !snippet curve-equivalence-same-support **Proposition** Let $\varphi_1: I_1 \to \mathbb{R}^n$ and $\varphi_2: I_2 \to \mathbb{R}^n$ be two curves. If $\varphi_1 \sim \varphi_2$ then φ_1 and φ_2 have the same support. !endsnippet !snippet lipschitz-curve-is-rectifiable **Proposition** Let $\varphi \colon I \to \mathbb{R}^n$ be a curve that is lipschitz. Then, φ is rectifiable. !endsnippet !snippet lipschitz-curve-is-rectifiable-proof **Proof** We have that $\forall t, s \in I, ||\varphi(s) - \varphi(t)|| \le L|t - s|$ thus $L(\varphi, P) = \sum_{i=1}^{n} ||\varphi(t_i) - \varphi(t_{i-2})||$ $\leq \sum_{i=1}^{n} L|t_i - t_{i-1}| = L(b-a)$ meaning that $L(\varphi) \leq L(b-a)$. !endsnippet !snippet curve-length-example1 **Example** Let $\varphi(t) = (\cos t, \sin t)$ defined on $I = [0, \pi]$. We have $||\varphi(t) - \varphi(s)|| = \left\{ (\cos t - \cos s)^2 + (\sin t - \sin s)^2 \right\}^{1/2}$ $= \left\{ (-\sin \alpha (t-s))^2 + (\cos \beta (t-s))^2 \right\}^{1/2}$ $\leq \sqrt{2}|t-s|$ We thus have that $L(\varphi) \leq \sqrt{2}\pi$. !endsnippet !snippet curve-length-upper-bound **Proposition** $\left\| \int_{a}^{b} \varphi(t) dt \right\| \leq \int_{a}^{b} ||\varphi(t)|| dt$ where the integral of a vector is the vector of the integrals. !endsnippet !snippet curve-length-upper-bound-proof **Proof** Let $v = \left(\int_{-\infty}^{b} \varphi_1(t) dt, \cdots, \int_{-\infty}^{b} \varphi_n(t) dt \right)$ then $\left| \left| \int_{0}^{b} \varphi(t) dt \right| \right| = ||v||^{2} = \langle v, v \rangle = \sum_{i=1}^{n} v_{i} \int_{0}^{b} \varphi_{i}(t) dt$ $= \int \sum_{i=1}^{n} v_i \varphi_i(t) dt$ $= \int_{0}^{b} \langle v, \varphi(t) \rangle dt$ $\leq \int_{-\infty}^{b} ||v|| \cdot ||\varphi(t)|| \, dt$ $=||v||\int\limits_{0}^{b}||\varphi(t)||\,dt$!endsnippet !section Curve length formula !snippet curve-length-formula-theorem Theorem Curve length formula Let $\varphi \colon I \to \mathbb{R}^n$ with $\varphi \in \mathcal{C}^1(I)$. Then, φ is rectifiable and $L(\varphi) = \int_{0}^{\infty} ||\varphi'(t)|| dt$!endsnippet !snippet curve-length-formula-proof **Proof** Curve length formula Clearly the function is lipschitz. $L(\varphi, P) = \sum_{i=1}^{n} ||\varphi(t_i) - \varphi(t_{i-1})||$ $= \sum_{i=1}^{n} \left\| \int_{-\infty}^{t_i} \varphi'(t) dt \right\|$ $\leq \sum_{i=1}^{n} \int_{0}^{t_i} ||\varphi'(t)|| dt$ $= \int ||\varphi'(t)|| dt$ We thus have $L(\varphi) \le \int_{-\infty}^{\infty} ||\varphi'(t)|| dt$ 2. we will now prove the other direction. Since [a,b] is compact and φ is continuous, then it is uniformly continuous. Hence, $\forall \varepsilon > 0, \exists \delta > 0 \mid \delta > |t - s| \implies ||\varphi(t) - \varphi(s)|| < \varepsilon$ We now take a partition P such that $|t_i - t_{i-1}| < \delta$. We then have $\int_{0}^{t} ||\varphi'(t)|| dt = \int_{0}^{t} ||\varphi'(t) - \varphi'(t_{i-1})| + \varphi'(t_{i-1})|| dt$ $\leq \int_{-\infty}^{t_i} ||\varphi'(t) - \varphi'(t_{i-1})|| dt + \int_{-\infty}^{t_i} ||\varphi'(t_{i-1})|| dt$ $\leq \varepsilon(t_i - t_{i-1}) + \varphi'(t_{i-1})(t_i - t_{i-1}) = \varepsilon(t_i - t_{i-1}) + ||(t_i - t_{i-1})\varphi'(t_{i-1})||$ $=\varepsilon(t_i-t_{i-1})+\left\|\int\limits_{-\infty}^{t_i}\varphi'(t_{i-1})\,dt\right\|=\varepsilon(t_i-t_{i-1})+\left\|\int\limits_{-\infty}^{t_i}\varphi'(t_{i-1})-\varphi'(t)-\varphi'(t)\,dt\right\|$ $= \varepsilon(t_i - t_{i-1}) + \left\| \int_{-\infty}^{t_i} \varphi'(t_{i-1}) - \varphi'(t) dt \int_{-\infty}^{t_i} \varphi'(t) dt \right\|$ $\leq \varepsilon(t_i - t_{i-1}) + \left\| \int_{-\tau_i}^{\tau_i} \varphi'(t_{i-1}) - \varphi'(t) dt \right\| + \left\| \int_{-\tau_i}^{\tau_i} \varphi'(t) dt \right\|$ $\leq \varepsilon(t_i - t_{i-1}) \int_{-\infty}^{\infty} \varphi'(t_{i-1}) - \varphi'(t) dt + ||\varphi(t_i) - \varphi(t_{i-1})||$ $\leq 2\varepsilon(t_i - t_{i-1}) + ||\varphi(t_i) - \varphi(t_{i-1})||$ by adding we obtain $\int_{-\infty}^{\infty} ||\varphi'(t)|| dt = \sum_{i=1}^{n} \int_{-\infty}^{\omega_i} ||\varphi'(t)|| dt$ $\leq 2\varepsilon(b-a) + \sum_{i=1}^{n} ||\varphi(t_i) - \varphi(t_{i-1})||$ $\leq 2\varepsilon + L(\varphi)$ $\int_{0}^{b} ||\varphi'(t)|| dt \le L(\varphi)$ meaning that the equivalence is true. !endsnippet !snippet curve-length-formula-bidimensional-case For the bidimensional case $\varphi(t) = (t, f(t))$ we have $\int_{0}^{b} ||\varphi'(t)|| dt = \int_{0}^{b} ||(1, f'(t))|| dt = \int_{0}^{b} \sqrt{1 + \frac{df^{2}}{dt}^{2}} dt$!endsnippet !snippet non-rectifiable-curve-example1 **Example** The curve $\varphi:[0,1]\to\mathbb{R}^2$ defined as a segment which bounces between the two bisector at the point 1/i, and coming closer to the origin, is not rectifiable. Consider the partition $P = \{0, \frac{1}{n}, \frac{1}{n-1}, \dots, \frac{1}{2}, 1\}$ which are n+1 point. Consider $||\varphi(t_i) - \varphi(t_{i-1})|| = \left| \left| \varphi\left(\frac{1}{i}\right) - \varphi\left(\frac{1}{i-1}\right) \right| \right|$ $= \left| \left| \left(\frac{1}{i}, \frac{(-1)^{-1}}{i} \right) - \left(\frac{1}{i-1}, \frac{(-1)^{i-1}}{i-1} \right) \right| \right|$ $= \left\{ \left(\frac{1}{i} - \frac{1}{i-1} \right)^2 + \left(\frac{(-1)^i}{i} - \frac{(-1)^{i-1}}{i-1} \right)^2 \right\}^{1/2}$ $\geq \left(\left(\frac{1}{i} + \frac{1}{i-1} \right)^2 \right)^{1/2} = \frac{1}{i} + \frac{1}{i-1} \geq \frac{2}{i}$ then, the sum $\sum_{i=1}^{n} ||\varphi(t_i) - \varphi(t_{i-1})|| \ge \sum_{i=1}^{n} \frac{2}{i}$ diverges for $n \to \infty$. ! endsnippet