libgac v0.1.0

Generated by Doxygen 1.8.17

| 1 GAC - Gaze Analysis C Library             | 1  |
|---------------------------------------------|----|
| 2 Data Structure Index                      | 5  |
| 2.1 Data Structures                         | 5  |
| 3 File Index                                | 7  |
| 3.1 File List                               | 7  |
| 4 Data Structure Documentation              | 9  |
| 4.1 gac_filter_fixation_t Struct Reference  | 9  |
| 4.1.1 Detailed Description                  | 9  |
| 4.1.2 Field Documentation                   | 9  |
| 4.1.2.1 duration                            | 9  |
| 4.1.2.2 duration_threshold                  | 10 |
| 4.1.2.3 is_collecting                       | 10 |
| 4.1.2.4 is_heap                             | 10 |
| 4.1.2.5 new_samples                         | 10 |
| 4.1.2.6 normalized_dispersion_threshold     | 10 |
| 4.1.2.7 point                               | 10 |
| 4.1.2.8 screen_point                        | 10 |
| 4.1.2.9 window                              | 11 |
| 4.2 gac_filter_gap_t Struct Reference       | 11 |
| 4.2.1 Detailed Description                  | 11 |
| 4.2.2 Field Documentation                   | 11 |
| 4.2.2.1 is enabled                          | 11 |
| 4.2.2.2 is_heap                             | 11 |
| 4.2.2.3 max_gap_length                      | 12 |
| 4.2.2.4 sample_period                       | 12 |
| 4.3 gac_filter_noise_t Struct Reference     | 12 |
| 4.3.1 Detailed Description                  | 12 |
| 4.3.2 Field Documentation                   | 12 |
| 4.3.2.1 is enabled                          | 12 |
| 4.3.2.2 is_heap                             | 13 |
| 4.3.2.3 mid                                 | 13 |
| 4.3.2.4 type                                | 13 |
| 4.3.2.5 window                              | 13 |
| 4.4 gac_filter_parameter_t Struct Reference | 13 |
| 4.4.1 Detailed Description                  | 14 |
| 4.4.2 Field Documentation                   | 14 |
| 4.4.2.1 dispersion_threshold                | 14 |
| 4.4.2.2 duration threshold                  | 14 |
| 4.4.2.3 fixation                            | 14 |
| 4.4.2.4 gap                                 | 14 |
| +.+.c.+ yap                                 | 14 |

| 4.4.2.5 is_neap                           | <br>14 |
|-------------------------------------------|--------|
| 4.4.2.6 max_gap_length                    | <br>14 |
| 4.4.2.7 mid_idx                           | <br>15 |
| 4.4.2.8 noise                             | <br>15 |
| 4.4.2.9 saccade                           | <br>15 |
| 4.4.2.10 sample_period                    | <br>15 |
| 4.4.2.11 type                             | <br>15 |
| 4.4.2.12 velocity_threshold               | <br>15 |
| 4.5 gac_filter_saccade_t Struct Reference | <br>15 |
| 4.5.1 Detailed Description                | <br>16 |
| 4.5.2 Field Documentation                 | <br>16 |
| 4.5.2.1 is_collecting                     | <br>16 |
| 4.5.2.2 is_heap                           | <br>16 |
| 4.5.2.3 new_samples                       | <br>16 |
| 4.5.2.4 velocity_threshold                | <br>16 |
| 4.5.2.5 window                            | <br>17 |
| 4.6 gac_fixation_t Struct Reference       | <br>17 |
| 4.6.1 Detailed Description                | <br>17 |
| 4.6.2 Field Documentation                 | <br>17 |
| 4.6.2.1 duration                          | <br>17 |
| 4.6.2.2 first_sample                      | <br>17 |
| 4.6.2.3 is_heap                           | <br>18 |
| 4.6.2.4 point                             | <br>18 |
| 4.6.2.5 screen_point                      | <br>18 |
| 4.7 gac_plane_t Struct Reference          | <br>18 |
| 4.7.1 Detailed Description                | <br>18 |
| 4.7.2 Field Documentation                 | <br>18 |
| 4.7.2.1 e1                                | <br>19 |
| 4.7.2.2 e2                                | <br>19 |
| 4.7.2.3 is_heap                           | <br>19 |
| 4.7.2.4 m                                 | <br>19 |
| 4.7.2.5 norm                              | <br>19 |
| 4.7.2.6 p1                                | <br>19 |
| 4.7.2.7 p2                                | <br>19 |
| 4.7.2.8 p3                                | <br>20 |
| 4.8 gac_queue_item_t Struct Reference     | <br>20 |
| 4.8.1 Detailed Description                | <br>20 |
| 4.8.2 Field Documentation                 | <br>20 |
| 4.8.2.1 data                              | <br>20 |
| 4.8.2.2 next                              | <br>20 |
| 4.8.2.3 prev                              | <br>21 |
| 4.9 gac_queue_t Struct Reference          | <br>21 |

| 4.9.1 Detailed Description          | <br>21 |
|-------------------------------------|--------|
| 4.9.2 Field Documentation           | <br>21 |
| 4.9.2.1 count                       | <br>21 |
| 4.9.2.2 head                        | <br>21 |
| 4.9.2.3 is_heap                     | <br>22 |
| 4.9.2.4 length                      | <br>22 |
| 4.9.2.5 rm                          | <br>22 |
| 4.9.2.6 tail                        | <br>22 |
| 4.10 gac_saccade_t Struct Reference | <br>22 |
| 4.10.1 Detailed Description         | <br>22 |
| 4.10.2 Field Documentation          | <br>23 |
| 4.10.2.1 first_sample               | <br>23 |
| 4.10.2.2 is_heap                    | <br>23 |
| 4.10.2.3 last_sample                | <br>23 |
| 4.11 gac_sample_t Struct Reference  | <br>23 |
| 4.11.1 Detailed Description         | <br>23 |
| 4.11.2 Field Documentation          | <br>24 |
| 4.11.2.1 is_heap                    | <br>24 |
| 4.11.2.2 label                      | <br>24 |
| 4.11.2.3 label_onset                | <br>24 |
| 4.11.2.4 origin                     | <br>24 |
| 4.11.2.5 point                      | <br>24 |
| 4.11.2.6 screen_point               | <br>24 |
| 4.11.2.7 timestamp                  | <br>24 |
| 4.11.2.8 trial_id                   | <br>25 |
| 4.11.2.9 trial_onset                | <br>25 |
| 4.12 gac_screen_t Struct Reference  | <br>25 |
| 4.12.1 Detailed Description         | <br>25 |
| 4.12.2 Field Documentation          | <br>25 |
| 4.12.2.1 height                     | <br>25 |
| 4.12.2.2 is_heap                    | <br>26 |
| 4.12.2.3 origin                     | <br>26 |
| 4.12.2.4 plane                      | <br>26 |
| 4.12.2.5 width                      | <br>26 |
| 4.13 gac_t Struct Reference         | <br>26 |
| 4.13.1 Detailed Description         | <br>27 |
| 4.13.2 Field Documentation          | <br>27 |
| 4.13.2.1 fixation                   | <br>27 |
| 4.13.2.2 gap                        | <br>27 |
| 4.13.2.3 is_heap                    | <br>27 |
| 4.13.2.4 last_sample                | <br>27 |
| 4.13.2.5 noise                      | <br>27 |

| 4.13.2.6 parameter                                      | 27 |
|---------------------------------------------------------|----|
| 4.13.2.7 saccade                                        | 28 |
| 4.13.2.8 samples                                        | 28 |
| 4.13.2.9 screen                                         | 28 |
| 5 File Documentation                                    | 29 |
| 5.1 include/gac.h File Reference                        | 29 |
| 5.1.1 Typedef Documentation                             | 31 |
| 5.1.1.1 gac_filter_noise_type_t                         | 31 |
| 5.1.2 Enumeration Type Documentation                    | 31 |
| 5.1.2.1 gac_filter_noise_type_e                         | 31 |
| 5.1.3 Function Documentation                            | 32 |
| 5.1.3.1 gac_create()                                    | 32 |
| 5.1.3.2 gac_destroy()                                   | 32 |
| 5.1.3.3 gac_filter_fixation()                           | 32 |
| 5.1.3.4 gac_filter_fixation_create()                    | 34 |
| 5.1.3.5 gac_filter_fixation_destroy()                   | 34 |
| 5.1.3.6 gac_filter_fixation_init()                      | 34 |
| 5.1.3.7 gac_filter_fixation_step()                      | 35 |
| 5.1.3.8 gac_filter_gap()                                | 35 |
| 5.1.3.9 gac_filter_gap_create()                         | 36 |
| 5.1.3.10 gac_filter_gap_destroy()                       | 36 |
| 5.1.3.11 gac_filter_gap_init()                          | 36 |
| 5.1.3.12 gac_filter_noise()                             | 37 |
| 5.1.3.13 gac_filter_noise_average()                     | 37 |
| 5.1.3.14 gac_filter_noise_create()                      | 38 |
| 5.1.3.15 gac_filter_noise_destroy()                     | 38 |
| 5.1.3.16 gac_filter_noise_init()                        | 38 |
| 5.1.3.17 gac_filter_saccade()                           | 39 |
| 5.1.3.18 gac_filter_saccade_create()                    | 39 |
| 5.1.3.19 gac_filter_saccade_destroy()                   | 40 |
| 5.1.3.20 gac_filter_saccade_init()                      | 40 |
| 5.1.3.21 gac_filter_saccade_step()                      | 40 |
| 5.1.3.22 gac_fixation_create()                          | 41 |
| 5.1.3.23 gac_fixation_destroy()                         | 41 |
| 5.1.3.24 gac_fixation_init()                            | 41 |
| 5.1.3.25 gac_fixation_normalised_dispersion_threshold() | 42 |
| 5.1.3.26 gac_get_filter_parameter()                     | 42 |
| 5.1.3.27 gac_get_filter_parameter_default()             | 43 |
| 5.1.3.28 gac_init()                                     | 43 |
| 5.1.3.29 gac_plane_create()                             | 44 |
| 5.1.3.30 gac plane destroy()                            | 44 |

| 5     | 5.1.3.31 gac_plane_init()                    | 44 |
|-------|----------------------------------------------|----|
| 5     | 5.1.3.32 gac_plane_intersection()            | 45 |
| 5     | 5.1.3.33 gac_plane_point()                   | 45 |
| 5     | 5.1.3.34 gac_queue_clear()                   | 46 |
| 5     | 5.1.3.35 gac_queue_create()                  | 46 |
| 5     | 5.1.3.36 gac_queue_destroy()                 | 46 |
| 5     | 5.1.3.37 gac_queue_grow()                    | 47 |
| 5     | 5.1.3.38 gac_queue_init()                    | 47 |
| 5     | 5.1.3.39 gac_queue_pop()                     | 47 |
| 5     | 5.1.3.40 gac_queue_push()                    | 48 |
| 5     | 5.1.3.41 gac_queue_remove()                  | 48 |
| 5     | 5.1.3.42 gac_queue_set_rm_handler()          | 49 |
| 5     | 5.1.3.43 gac_saccade_create()                | 49 |
| 5     | 5.1.3.44 gac_saccade_destroy()               | 49 |
| 5     | 5.1.3.45 gac_saccade_init()                  | 50 |
| 5     | 5.1.3.46 gac_sample_copy()                   | 50 |
| 5     | 5.1.3.47 gac_sample_copy_to()                | 50 |
| 5     | 5.1.3.48 gac_sample_create()                 | 51 |
| 5     | 5.1.3.49 gac_sample_destroy()                | 51 |
| 5     | 5.1.3.50 gac_sample_init()                   | 52 |
| 5     | 5.1.3.51 gac_sample_window_cleanup()         | 52 |
| 5     | 5.1.3.52 gac_sample_window_fixation_filter() | 53 |
| 5     | 5.1.3.53 gac_sample_window_saccade_filter()  | 53 |
| 5     | 5.1.3.54 gac_sample_window_update()          | 53 |
| 5     | 5.1.3.55 gac_sample_window_update_screen()   | 54 |
| 5     | 5.1.3.56 gac_sample_window_update_vec()      | 55 |
| 5     | 5.1.3.57 gac_samples_average_origin()        | 56 |
| 5     | 5.1.3.58 gac_samples_average_point()         | 56 |
| 5     | 5.1.3.59 gac_samples_average_screen_point()  | 56 |
| 5     | 5.1.3.60 gac_samples_dispersion()            | 57 |
| 5     | 5.1.3.61 gac_screen_create()                 | 57 |
| 5     | 5.1.3.62 gac_screen_destroy()                | 57 |
| 5     | 5.1.3.63 gac_screen_init()                   | 58 |
| 5     | 5.1.3.64 gac_screen_point()                  | 58 |
| 5     | 5.1.3.65 gac_set_screen()                    | 59 |
| Index |                                              | 61 |

# **Chapter 1**

# **GAC - Gaze Analysis C Library**

This is a pure C library to perform basic gaze analysis.

#### Features:

- · Sample filtering with moving average
- Sample gap fill-in through linear interpolation (lerp)
- · Fixation detection with I-DT algorithm
- · Saccade detection with I-VT algorithm

## **Quick Start**

Initialise the gaze analysis handler:

```
gac_t h;
gac_init( &h, NULL );
```

To parse gaze data for fixations and saccades, for each new sample do the following:

At the end, destroy the gaze analysis handler:

```
gac_destroy( &h );
```

## **Basic Concept**

The library provides several functions to work with gaze data. The easiest approach is to use the functions gaccample\_window\_\* as these maintain their own sample window and noise and gap filters can be configured through the gac\_filter\_paramter\_t structure.

Alternatively it is possible to manually maintain a sample window and work with each filter individually. This means filter structures have to be created and destroyed manually and filtering has to be applied manually to a custom sample window. Refer to the API for more information.

#### 3d vs 2d Data

All calculations are performed on 3d data. If only 2d data is available this library cannot be used (yet). The reason for this is that with 3d data it is possible to compute an accurate dispersion and velocity threshold based on the distance of the gaze origin to the gaze point. For 2d data the dispersion and velocity threshold would need to be estimated based on the measured data which is not (yet) supported by the library.

However, it is possible to provide 2d data alongside 3d data for each data sample which will propagated to fixation and saccade result structures. To add 2d data for each sample instead of the function gac\_sample\_window\_update() use gac\_sample\_window\_update\_screen().

If 2d data is not available it is possible to compute it from 3d data. gac\_sample\_window\_update()
does this automatically if the screen location is defined. To define the screen location use the function gac\_set\_screen().

### Sample annotations

Each sample has two fields available for custom data annotation:

- trial\_id: expects an integer number and can be used to e.g. associate a data point to a trial.
- label: expects a string and can be used to e.g. describe the currently displayed stimuli.

The annotations are propagated to the fixation and saccade result structures.

Further, each sample has two additional timestamp fields for onset information of the annotations:

- trial\_onset: the amount of milliseconds since the last change in the field trial\_id.
- label\_onset: the amount of milliseconds since the last change in the field label.

# **Building the library on Linux (Ubuntu)**

In order to build the library the following packages are required:

```
sudo apt install build-essential
sudo apt install autoconf autogen libtool
```

To build the library use the command

To run tests use

make test

Build and run the example with the following commands:

```
cd example
make
make run
```

# **Building the library on Windows**

Build the library on windows with msys2. Once installed start msys2.exe.

Some dependencies need to be installed. To do this type the following commands:

```
pacman -Syyu
pacman -Sy mingw-w64-x86_64-gcc
pacman -Sy autogen autoconf automake libtool
```

#### Finally, to build the library type

nake

Build the example with the following commands:

cd example make

To run the example make sure that the system knows the location of msys2.dll (either by adding the location to the PATH or by copying the file to the example folder). Run the example by starting example.exe.

# **Chapter 2**

# **Data Structure Index**

# 2.1 Data Structures

Here are the data structures with brief descriptions:

| gac_filter_fixation_t  | 9  |
|------------------------|----|
| gac_filter_gap_t       | 11 |
| gac_filter_noise_t     | 12 |
| gac_filter_parameter_t | 13 |
| gac_filter_saccade_t   | 15 |
| gac_fixation_t         |    |
| gac_plane_t            |    |
| gac_queue_item_t       |    |
| gac_queue_t            |    |
| gac_saccade_t          |    |
| gac_sample_t           |    |
| gac_screen_t           |    |
| gac t                  | 26 |

6 Data Structure Index

# **Chapter 3**

# File Index

# 3.1 File List

| Here is a list of all documented files with brief descriptions: |    |
|-----------------------------------------------------------------|----|
| include/gac.h                                                   | 29 |

8 File Index

# **Chapter 4**

# **Data Structure Documentation**

# 4.1 gac\_filter\_fixation\_t Struct Reference

```
#include <gac.h>
```

### **Data Fields**

- bool is\_heap
- double normalized\_dispersion\_threshold
- double duration\_threshold
- bool is\_collecting
- gac\_queue\_t window
- uint32\_t new\_samples
- double duration
- vec2 screen\_point
- vec3 point

## 4.1.1 Detailed Description

The fixation filter structure holding filter parameters.

```
gac_filter_fixation_s
```

## 4.1.2 Field Documentation

### 4.1.2.1 duration

double gac\_filter\_fixation\_t::duration

The fixation duration

#### 4.1.2.2 duration\_threshold

 $\verb"double gac_filter_fixation_t:: \verb"duration_threshold"$ 

The duration threashold

#### 4.1.2.3 is collecting

```
bool gac_filter_fixation_t::is_collecting
```

A flag indicating whether a fixation is ongoing.

## 4.1.2.4 is\_heap

```
bool gac_filter_fixation_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

#### 4.1.2.5 new\_samples

```
uint32_t gac_filter_fixation_t::new_samples
```

Counter to keep track of new items in the parent queue.

## 4.1.2.6 normalized\_dispersion\_threshold

```
\verb|double gac_filter_fixation_t::normalized_dispersion_threshold|\\
```

The pre-computed dispersion threshold at unit distance

## 4.1.2.7 point

```
vec3 gac_filter_fixation_t::point
```

The fixation point

#### 4.1.2.8 screen\_point

```
vec2 gac_filter_fixation_t::screen_point
```

The fixation screen point

#### 4.1.2.9 window

```
gac_queue_t gac_filter_fixation_t::window
```

A pointer to the sample queue

The documentation for this struct was generated from the following file:

· include/gac.h

# 4.2 gac\_filter\_gap\_t Struct Reference

```
#include <gac.h>
```

#### **Data Fields**

- · bool is heap
- bool is\_enabled
- double max\_gap\_length
- double sample\_period

## 4.2.1 Detailed Description

The gap fill-in filter structure.

```
gac_filter_gap_s
```

## 4.2.2 Field Documentation

#### 4.2.2.1 is\_enabled

```
bool gac_filter_gap_t::is_enabled
```

A flag indicating whether the filter is active or not

### 4.2.2.2 is\_heap

```
bool gac_filter_gap_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

#### 4.2.2.3 max\_gap\_length

```
double gac_filter_gap_t::max_gap_length
```

The maximal allowed gap length to be filled-in

#### 4.2.2.4 sample\_period

```
double gac_filter_gap_t::sample_period
```

The sample period to compute the number of required fill-in samples

The documentation for this struct was generated from the following file:

· include/gac.h

## 4.3 gac\_filter\_noise\_t Struct Reference

```
#include <gac.h>
```

## **Data Fields**

- bool is\_heap
- bool is\_enabled
- gac\_queue\_t window
- uint32\_t mid
- gac\_filter\_noise\_type\_t type

## 4.3.1 Detailed Description

The noise filter parameters.

```
gac_filter_noise_s
```

## 4.3.2 Field Documentation

## 4.3.2.1 is\_enabled

```
bool gac_filter_noise_t::is_enabled
```

A flag indicating whether the noise filter is active or not

#### 4.3.2.2 is\_heap

```
bool gac_filter_noise_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

#### 4.3.2.3 mid

```
uint32_t gac_filter_noise_t::mid
```

The mid-point counter

#### 4.3.2.4 type

```
gac_filter_noise_type_t gac_filter_noise_t::type
```

The noise filter type

#### 4.3.2.5 window

```
gac_queue_t gac_filter_noise_t::window
```

The noise filter window

The documentation for this struct was generated from the following file:

· include/gac.h

## 4.4 gac\_filter\_parameter\_t Struct Reference

```
#include <gac.h>
```

## **Data Fields**

```
• bool is_heap
struct {
    double max_gap_length
    double sample period
 } gap
• struct {
    gac_filter_noise_type_t type
   uint32_t mid_idx
 } noise
struct {
    float velocity threshold
 } saccade
struct {
    double duration threshold
   float dispersion_threshold
 } fixation
```

## 4.4.1 Detailed Description

The filter parameter structure to initialise the gaze analysis handeler.

```
gac_filter_parameter_s
```

## 4.4.2 Field Documentation

#### 4.4.2.1 dispersion\_threshold

```
float gac_filter_parameter_t::dispersion_threshold
```

The dispersion threshold in degrees.

## 4.4.2.2 duration\_threshold

```
double gac_filter_parameter_t::duration_threshold
```

The duration threshold in milliseconds.

#### 4.4.2.3 fixation

```
struct { ... } gac_filter_parameter_t::fixation
```

Fixation detection.

## 4.4.2.4 gap

```
struct { ... } gac_filter_parameter_t::gap
```

The gap filter parameter

#### 4.4.2.5 is\_heap

```
bool gac_filter_parameter_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

## 4.4.2.6 max\_gap\_length

```
double gac_filter_parameter_t::max_gap_length
```

The maximal allowed gap length to be filled-in. Set to zero to disable gap fill-in filter.

#### 4.4.2.7 mid\_idx

```
uint32_t gac_filter_parameter_t::mid_idx
```

The mid index of the window. This is used to compute the length of the window: window\_length =  $mid_idx * 2 + 1$ . Set to zero to disable noise filtering.

#### 4.4.2.8 noise

```
struct { ... } gac_filter_parameter_t::noise
```

Noise filter parameter

#### 4.4.2.9 saccade

```
struct { ... } gac_filter_parameter_t::saccade
```

Saccade detection.

#### 4.4.2.10 sample period

```
double gac_filter_parameter_t::sample_period
```

The sample period to compute the number of required fill-in samples

## 4.4.2.11 type

```
gac_filter_noise_type_t gac_filter_parameter_t::type
```

The noise filter type.

#### 4.4.2.12 velocity\_threshold

```
{\tt float \ gac\_filter\_parameter\_t::} {\tt velocity\_threshold}
```

The velocity threshold in degrees per seconds.

The documentation for this struct was generated from the following file:

· include/gac.h

## 4.5 gac\_filter\_saccade\_t Struct Reference

```
#include <gac.h>
```

## **Data Fields**

- bool is\_heap
- · float velocity\_threshold
- · bool is\_collecting
- uint32\_t new\_samples
- gac\_queue\_t window

## 4.5.1 Detailed Description

The saccade filter structure holding filter parameters.

```
gac_filter_saccade_s
```

#### 4.5.2 Field Documentation

#### 4.5.2.1 is collecting

```
bool gac_filter_saccade_t::is_collecting
```

A flag indicating whether a saccade is ongoing

## 4.5.2.2 is\_heap

```
bool gac_filter_saccade_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

### 4.5.2.3 new\_samples

```
uint32_t gac_filter_saccade_t::new_samples
```

Counter to keep track of new items in the parent queue.

## 4.5.2.4 velocity\_threshold

```
float gac_filter_saccade_t::velocity_threshold
```

The velocity threshold

#### 4.5.2.5 window

```
gac_queue_t gac_filter_saccade_t::window
```

A pointer to the sample queue

The documentation for this struct was generated from the following file:

· include/gac.h

## 4.6 gac\_fixation\_t Struct Reference

```
#include <gac.h>
```

## **Data Fields**

- bool is heap
- vec2 screen\_point
- vec3 point
- double duration
- gac\_sample\_t first\_sample

## 4.6.1 Detailed Description

A fixation sample.

gac\_fixation\_s

### 4.6.2 Field Documentation

#### 4.6.2.1 duration

```
double gac_fixation_t::duration
```

The fixation duration in milliseconds.

## 4.6.2.2 first\_sample

```
gac_sample_t gac_fixation_t::first_sample
```

The first sample of the fixation.

#### 4.6.2.3 is\_heap

```
bool gac_fixation_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

## 4.6.2.4 point

```
vec3 gac_fixation_t::point
```

The fixation gaze point.

## 4.6.2.5 screen\_point

```
vec2 gac_fixation_t::screen_point
```

The 2d fixation gaze point on the screen.

The documentation for this struct was generated from the following file:

• include/gac.h

# 4.7 gac\_plane\_t Struct Reference

```
#include <gac.h>
```

## **Data Fields**

- bool is\_heap
- vec3 p1
- vec3 p2
- vec3 p3
- vec3 e1
- vec3 e2
- vec3 norm
- mat4 m

## 4.7.1 Detailed Description

A genaral plane definition.

gac\_plane\_s

## 4.7.2 Field Documentation

#### 4.7.2.1 e1

```
vec3 gac_plane_t::e1
```

The vector pointing from p1 to p2.

#### 4.7.2.2 e2

```
vec3 gac_plane_t::e2
```

The vector pointing from p1 to p3.

## 4.7.2.3 is\_heap

```
bool gac_plane_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

#### 4.7.2.4 m

```
mat4 gac_plane_t::m
```

Transformation matrix to transform a 3d gaze point to a 2d gaze point.

#### 4.7.2.5 norm

```
vec3 gac_plane_t::norm
```

The normal of the screen surface.

## 4.7.2.6 p1

```
vec3 gac_plane_t::p1
```

A point on the plane 3d space.

## 4.7.2.7 p2

```
vec3 gac_plane_t::p2
```

A point on the plane 3d space.

#### 4.7.2.8 p3

```
vec3 gac_plane_t::p3
```

A point on the plane 3d space.

The documentation for this struct was generated from the following file:

• include/gac.h

## 4.8 gac\_queue\_item\_t Struct Reference

```
#include <gac.h>
```

#### **Data Fields**

- gac\_queue\_item\_t \* next
- gac\_queue\_item\_t \* prev
- void \* data

## 4.8.1 Detailed Description

A generic queue item.

```
gac_queue_item_s
```

## 4.8.2 Field Documentation

#### 4.8.2.1 data

```
void* gac_queue_item_t::data
```

A pointer to the arbitrary data structure

#### 4.8.2.2 next

```
gac_queue_item_t* gac_queue_item_t::next
```

A pointer to the next queue item (towards the head).

#### 4.8.2.3 prev

```
gac_queue_item_t* gac_queue_item_t::prev
```

A pointer to the previous queue item (towards the tail).

The documentation for this struct was generated from the following file:

• include/gac.h

## 4.9 gac\_queue\_t Struct Reference

```
#include <gac.h>
```

#### **Data Fields**

```
• bool is_heap
```

- gac\_queue\_item\_t \* tail
- gac\_queue\_item\_t \* head
- uint32\_t count
- uint32\_t length
- void(\* rm )(void \*)

## 4.9.1 Detailed Description

A generic queue structure.

```
gac_queue_s
```

## 4.9.2 Field Documentation

#### 4.9.2.1 count

```
uint32_t gac_queue_t::count
```

The number of occupied spaces.

#### 4.9.2.2 head

```
gac_queue_item_t* gac_queue_t::head
```

A pointer to the tail to write to

#### 4.9.2.3 is\_heap

```
bool gac_queue_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

#### 4.9.2.4 length

```
uint32_t gac_queue_t::length
```

The number of total available spaces

#### 4.9.2.5 rm

```
void( * gac_queue_t::rm) (void *)
```

The handler to remove data items

#### 4.9.2.6 tail

```
gac_queue_item_t* gac_queue_t::tail
```

A pointer to the head of the queue to read from.

The documentation for this struct was generated from the following file:

• include/gac.h

## 4.10 gac\_saccade\_t Struct Reference

```
#include <gac.h>
```

#### **Data Fields**

- bool is\_heap
- gac\_sample\_t first\_sample
- gac\_sample\_t last\_sample

## 4.10.1 Detailed Description

A saccade sample.

```
gac_saccade_s
```

## 4.10.2 Field Documentation

#### 4.10.2.1 first\_sample

```
gac_sample_t gac_saccade_t::first_sample
```

The first sample of the saccade.

#### 4.10.2.2 is\_heap

```
bool gac_saccade_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

## 4.10.2.3 last\_sample

```
gac_sample_t gac_saccade_t::last_sample
```

The last sample of the saccade.

The documentation for this struct was generated from the following file:

· include/gac.h

## 4.11 gac\_sample\_t Struct Reference

```
#include <gac.h>
```

#### **Data Fields**

- bool is\_heap
- uint32 t trial id
- vec2 screen\_point
- vec3 point
- vec3 origin
- double timestamp
- double trial\_onset
- · double label onset
- char \* label

## 4.11.1 Detailed Description

The gaze data sample.

```
gac_sample_s
```

## 4.11.2 Field Documentation

#### 4.11.2.1 is\_heap

```
bool gac_sample_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

#### 4.11.2.2 label

```
char* gac_sample_t::label
```

Arbitrary label to annotate the sample.

#### 4.11.2.3 label onset

```
double gac_sample_t::label_onset
```

The time in milliseconds since the last change of label.

## 4.11.2.4 origin

```
vec3 gac_sample_t::origin
```

The gaze origin.

## 4.11.2.5 point

```
vec3 gac_sample_t::point
```

The gaze point.

## 4.11.2.6 screen\_point

```
vec2 gac_sample_t::screen_point
```

The 2d gaze point on the screen.

## 4.11.2.7 timestamp

```
double gac_sample_t::timestamp
```

The sample timestamp.

#### 4.11.2.8 trial\_id

```
uint32_t gac_sample_t::trial_id
```

The ID of a ongoing trial.

#### 4.11.2.9 trial\_onset

```
\verb"double gac_sample_t::trial_onset"
```

The time in milliseconds since the last change of trial ID.

The documentation for this struct was generated from the following file:

• include/gac.h

## 4.12 gac\_screen\_t Struct Reference

```
#include <gac.h>
```

## **Data Fields**

- bool is\_heap
- float width
- float height
- vec2 origin
- gac\_plane\_t plane

## 4.12.1 Detailed Description

Screen definition of the eye tracker.

gac\_screen\_s

## 4.12.2 Field Documentation

## 4.12.2.1 height

float gac\_screen\_t::height

The height of the screen.

#### 4.12.2.2 is\_heap

```
bool gac_screen_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

#### 4.12.2.3 origin

```
vec2 gac_screen_t::origin
```

The screen origin in 2d space.

#### 4.12.2.4 plane

```
gac_plane_t gac_screen_t::plane
```

The underlying plane definition of the screen

#### 4.12.2.5 width

```
float gac_screen_t::width
```

The width of the screen.

The documentation for this struct was generated from the following file:

· include/gac.h

## 4.13 gac t Struct Reference

```
#include <gac.h>
```

## **Data Fields**

- bool is\_heap
- gac\_queue\_t samples
- gac\_filter\_fixation\_t fixation
- gac\_filter\_gap\_t gap
- gac\_filter\_saccade\_t saccade
- gac\_filter\_noise\_t noise
- gac\_filter\_parameter\_t parameter
- gac\_screen\_t \* screen
- gac\_sample\_t \* last\_sample

## 4.13.1 Detailed Description

The gaze analysis handler structure.

gac\_s

## 4.13.2 Field Documentation

#### 4.13.2.1 fixation

```
\verb"gac_filter_fixation_t gac_t:: fixation"
```

The fixation filter structure

## 4.13.2.2 gap

```
gac_filter_gap_t gac_t::gap
```

The gap filter structure

#### 4.13.2.3 is\_heap

```
bool gac_t::is_heap
```

Flag to indicate whether the struct was allocated on the heap.

## 4.13.2.4 last\_sample

```
gac_sample_t* gac_t::last_sample
```

The last sample entered to the window. This remains even if the sample window is cleared.

#### 4.13.2.5 noise

```
gac_filter_noise_t gac_t::noise
```

The noise filter structure

#### 4.13.2.6 parameter

```
gac_filter_parameter_t gac_t::parameter
```

The parameters passed during configuration

## 4.13.2.7 saccade

```
gac_filter_saccade_t gac_t::saccade
```

The saccade filetr structure

## 4.13.2.8 samples

```
gac_queue_t gac_t::samples
```

The sample queue

## 4.13.2.9 screen

```
gac_screen_t* gac_t::screen
```

The screen information.

The documentation for this struct was generated from the following file:

• include/gac.h

# **Chapter 5**

# **File Documentation**

## 5.1 include/gac.h File Reference

```
#include <stdint.h>
#include <cglm/cglm.h>
#include <sys/time.h>
Include dependency graph for gac.h:
```



### **Data Structures**

- struct gac\_sample\_t
- struct gac\_fixation\_t
- struct gac\_saccade\_t
- struct gac\_queue\_item\_t
- struct gac\_queue\_t
- struct gac\_filter\_fixation\_t
- struct gac\_filter\_saccade\_t
- struct gac\_filter\_noise\_t
- struct gac\_filter\_gap\_t
- struct gac\_filter\_parameter\_t
- struct gac\_plane\_t
- struct gac\_screen\_t
- struct gac\_t

### **Typedefs**

typedef enum gac\_filter\_noise\_type\_e gac\_filter\_noise\_type\_t

#### **Enumerations**

enum gac\_filter\_noise\_type\_e { GAC\_FILTER\_NOISE\_TYPE\_AVERAGE, GAC\_FILTER\_NOISE\_TYPE\_MEDIAN }

#### **Functions**

- gac\_t \* gac\_create (gac\_filter\_parameter\_t \*parameter)
- void gac\_destroy (gac\_t \*h)
- bool gac init (gac t \*h, gac filter parameter t \*parameter)
- bool gac get filter parameter (gac t \*h, gac filter parameter t \*parameter)
- bool gac\_get\_filter\_parameter\_default (gac\_filter\_parameter\_t \*parameter)
- bool gac\_set\_screen (gac\_t \*h, float top\_left\_x, float top\_left\_y, float top\_left\_z, float top\_right\_x, float top\_right\_x, float bottom\_left\_y, float bottom\_left\_z)
- bool gac\_filter\_fixation (gac\_filter\_fixation\_t \*filter, gac\_sample\_t \*sample, gac\_fixation\_t \*fixation)
- gac filter fixation t \* gac filter fixation create (float dispersion threshold, double duration threshold)
- void gac filter fixation destroy (gac filter fixation t \*filter)
- bool gac filter fixation init (gac filter fixation t \*filter, float dispersion threshold, double duration threshold)
- bool gac filter fixation step (gac filter fixation t \*filter, gac sample t \*sample, gac fixation t \*fixation)
- uint32\_t gac\_filter\_gap (gac\_filter\_gap\_t \*filter, gac\_queue\_t \*samples, gac\_sample\_t \*sample)
- gac\_filter\_gap\_t \* gac\_filter\_gap\_create (double max\_gap\_length, double sample\_period)
- void gac\_filter\_gap\_destroy (gac\_filter\_gap\_t \*filter)
- bool gac\_filter\_gap\_init (gac\_filter\_gap\_t \*filter, double max\_gap\_length, double sample\_period)
- gac sample t \* gac filter noise (gac filter noise t \*filter, gac sample t \*sample)
- gac\_filter\_noise\_t \* gac\_filter\_noise\_create (gac\_filter\_noise\_type\_t type, uint32\_t mid\_idx)
- void gac filter noise destroy (gac filter noise t \*filter)
- bool gac filter noise init (gac filter noise t \*filter, gac filter noise type t type, uint32 t mid idx)
- gac\_sample\_t \* gac\_filter\_noise\_average (gac\_filter\_noise\_t \*filter)
- bool gac filter saccade (gac filter saccade t \*filter, gac sample t \*sample, gac saccade t \*saccade)
- gac\_filter\_saccade\_t \* gac\_filter\_saccade\_create (float velocity\_threshold)
- void gac filter saccade destroy (gac filter saccade t \*filter)
- bool gac\_filter\_saccade\_init (gac\_filter\_saccade\_t \*filter, float velocity\_threshold)
- bool gac\_filter\_saccade\_step (gac\_filter\_saccade\_t \*filter, gac\_sample\_t \*sample, gac\_saccade\_← t \*saccade)
- gac\_fixation\_t \* gac\_fixation\_create (vec2 \*screen\_point, vec3 \*point, double duration, gac\_sample\_
   t \*first sample)
- void gac\_fixation\_destroy (gac\_fixation\_t \*fixation)
- bool gac\_fixation\_init (gac\_fixation\_t \*fixation, vec2 \*screen\_point, vec3 \*point, double duration, gac\_
   sample\_t \*first\_sample)
- float gac\_fixation\_normalised\_dispersion\_threshold (float angle)
- gac plane t \* gac plane create (vec3 \*p1, vec3 \*p2, vec3 \*p3)
- void gac plane destroy (gac plane t \*plane)
- bool gac\_plane\_init (gac\_plane\_t \*plane, vec3 \*p1, vec3 \*p2, vec3 \*p3)
- bool gac\_plane\_intersection (gac\_plane\_t \*plane, vec3 \*origin, vec3 \*dir, vec3 \*intersection)
- bool gac\_plane\_point (gac\_plane\_t \*plane, vec3 \*point3d, vec2 \*point2d)
- bool gac\_queue\_clear (gac\_queue\_t \*queue)
- gac\_queue\_t \* gac\_queue\_create (uint32\_t length)
- void gac\_queue\_destroy (gac\_queue\_t \*queue)
- bool gac\_queue\_grow (gac\_queue\_t \*queue, uint32\_t count)

- bool gac\_queue\_init (gac\_queue\_t \*queue, uint32\_t length)
- bool gac\_queue\_pop (gac\_queue\_t \*queue, void \*\*data)
- bool gac\_queue\_push (gac\_queue\_t \*queue, void \*data)
- bool gac queue remove (gac queue t \*queue)
- bool gac\_queue\_set\_rm\_handler (gac\_queue\_t \*queue, void(\*rm)(void \*))
- gac saccade t \* gac saccade create (gac sample t \*first sample, gac sample t \*last sample)
- void gac\_saccade\_destroy (gac\_saccade\_t \*saccade)
- bool gac\_saccade\_init (gac\_saccade\_t \*saccade, gac\_sample\_t \*first\_sample, gac\_sample\_t \*last\_sample)
- gac\_sample\_t \* gac\_sample\_create (vec2 \*screen\_point, vec3 \*origin, vec3 \*point, double timestamp, uint32\_t trial\_id, const char \*label)
- gac\_sample\_t \* gac\_sample\_copy (gac\_sample\_t \*sample)
- bool gac sample copy to (gac sample t \*dest, gac sample t \*sample)
- void gac\_sample\_destroy (void \*sample)
- bool gac\_sample\_init (gac\_sample\_t \*sample, vec2 \*screen\_point, vec3 \*origin, vec3 \*point, double times-tamp, uint32\_t trial\_id, const char \*label)
- bool gac sample window cleanup (gac t \*h)
- bool gac\_sample\_window\_fixation\_filter (gac\_t \*h, gac\_fixation\_t \*fixation)
- bool gac\_sample\_window\_saccade\_filter (gac\_t \*h, gac\_saccade\_t \*saccade)
- uint32\_t gac\_sample\_window\_update (gac\_t \*h, float ox, float oy, float oz, float px, float py, float pz, double timestamp, uint32\_t trial\_id, const char \*label)
- uint32\_t gac\_sample\_window\_update\_vec (gac\_t \*h, vec2 \*screen\_point, vec3 \*origin, vec3 \*point, double timestamp, uint32 t trial id, const char \*label)
- uint32\_t gac\_sample\_window\_update\_screen (gac\_t \*h, float ox, float oy, float oz, float px, float px, float px, float sx, float sy, double timestamp, uint32\_t trial\_id, const char \*label)
- bool gac\_samples\_average\_point (gac\_queue\_t \*samples, vec3 \*avg, uint32\_t count)
- bool gac\_samples\_average\_origin (gac\_queue\_t \*samples, vec3 \*avg, uint32\_t count)
- bool gac\_samples\_average\_screen\_point (gac\_queue\_t \*samples, vec2 \*avg, uint32\_t count)
- bool gac samples dispersion (gac queue t \*samples, float \*dispersion, uint32 t count)
- gac\_screen\_t \* gac\_screen\_create (vec3 \*top\_left, vec3 \*top\_right, vec3 \*bottom\_left)
- void gac\_screen\_destroy (gac\_screen\_t \*screen)
- bool gac screen init (gac screen t \*screen, vec3 \*top left, vec3 \*top right, vec3 \*bottom left)
- bool gac\_screen\_point (gac\_screen\_t \*screen, vec3 \*point3d, vec2 \*point2d)

### 5.1.1 Typedef Documentation

### 5.1.1.1 gac\_filter\_noise\_type\_t

```
typedef enum gac_filter_noise_type_e gac_filter_noise_type_t
gac filter noise type e
```

### 5.1.2 Enumeration Type Documentation

### 5.1.2.1 gac\_filter\_noise\_type\_e

```
enum gac_filter_noise_type_e
```

The available noise filter types

#### Enumerator

| GAC_FILTER_NOISE_TYPE_AVERAGE | Moving average filtering                  |
|-------------------------------|-------------------------------------------|
| GAC_FILTER_NOISE_TYPE_MEDIAN  | [not implemented] Moving median filtering |

### 5.1.3 Function Documentation

### 5.1.3.1 gac create()

Allocate the gaze analysis structure on the heap. This must be freed. If no parameter structure is provided default values are used. Refer to gac\_init() for more information.

#### **Parameters**

|  | parameter | An optional filter parameter structure. |  |
|--|-----------|-----------------------------------------|--|
|--|-----------|-----------------------------------------|--|

### Returns

A pointer to the allocated structure or NULL on failure.

### 5.1.3.2 gac\_destroy()

```
void gac_destroy (  \text{gac\_t} \ * \ h \ )
```

Destroy the gaze analysis handler.

#### **Parameters**

 $h \mid A$  pointer to the gaze analysis handler.

### 5.1.3.3 gac\_filter\_fixation()

```
gac_sample_t * sample,
gac_fixation_t * fixation )
```

The fixation detection algorithm I-DT.

#### **Parameters**

| filter                   | The gap filter structure holding the configuration parameters.                                   |  |
|--------------------------|--------------------------------------------------------------------------------------------------|--|
| sample The lastes sample |                                                                                                  |  |
| fixation                 | A location where a detected fixation is stored. This is only valid if the function returns true. |  |

#### Returns

True if a fixation was detected, false otherwise.

### 5.1.3.4 gac\_filter\_fixation\_create()

Allocate a new fixation filter structure on the heap. This structure must be freed.

#### **Parameters**

| dispersion_threshold | The dispersion thresholad in degrees.   |
|----------------------|-----------------------------------------|
| duration_threshold   | The duration threshold in milliseconds. |

#### Returns

The allocated fixation filter structure or NULL on failure.

### 5.1.3.5 gac\_filter\_fixation\_destroy()

Destroy the fixation filter structure.

#### **Parameters**

| filter | A pointer to the structure to destroy. |
|--------|----------------------------------------|
|--------|----------------------------------------|

### 5.1.3.6 gac\_filter\_fixation\_init()

```
float dispersion_threshold,
double duration_threshold )
```

Initialise a fixation filter structure.

#### **Parameters**

| filter               | The filter structure to initialise.     |
|----------------------|-----------------------------------------|
| dispersion_threshold | The dispersion thresholad in degrees.   |
| duration_threshold   | The duration threshold in milliseconds. |

#### Returns

True on success, false on failure.

### 5.1.3.7 gac\_filter\_fixation\_step()

Internal function to compute the fixation detection algorithm I-DT. Do not use this function. INstead use either the function gac\_sample\_window\_fixation\_filter() or gac\_filter\_fixation().

#### **Parameters**

| filter   | The gap filter structure holding the configuration parameters.                                   |  |
|----------|--------------------------------------------------------------------------------------------------|--|
| sample   | le The lastes sample                                                                             |  |
| fixation | A location where a detected fixation is stored. This is only valid if the function returns true. |  |

### Returns

True if a fixation was detected, false otherwise.

### 5.1.3.8 gac\_filter\_gap()

Fill in gaps between the last sample and the current sample if any. The number of samples to be filled in depends on the sample period. To avoid filling up large gaps the gap filling is limited to a maximal gap length (in milliseconds). The sample passed to the function is added as well.

### **Parameters**

| filter  | The gap filter structure holding the configuration parameters. |
|---------|----------------------------------------------------------------|
| samples | The sample queue to be filled in                               |
| sample  | The lastes sample                                              |

#### Returns

The number of samples added to the sample window.

### 5.1.3.9 gac\_filter\_gap\_create()

Allocate the filter gap structure on the heap. this needs to be freed.

#### **Parameters**

| max_gap_length | The maximal gap length in milliseconds to fil-in. Larger gaps are ignored. If set to 0 the filt is disabled. |  |
|----------------|--------------------------------------------------------------------------------------------------------------|--|
| sample_period  | The expected average sample period in milliseconds (1000 / sample_rate).                                     |  |

### Returns

A pointer to the allocated filter gap structure.

### 5.1.3.10 gac\_filter\_gap\_destroy()

Destroy the gap filter structure.

### **Parameters**

|--|

### 5.1.3.11 gac\_filter\_gap\_init()

```
bool gac_filter_gap_init (
```

```
gac_filter_gap_t * filter,
double max_gap_length,
double sample_period )
```

Initialise a filter gap structure.

#### **Parameters**

| filter         | A pointer to the struct to be initialised.                                                        |
|----------------|---------------------------------------------------------------------------------------------------|
| max_gap_length | The maximal gap length in milliseconds to fil-in. Larger gaps are ignored. If set to 0 the filter |
|                | is disabled.                                                                                      |
| sample_period  | The expected average sample period in milliseconds (1000 / sample_rate).                          |

#### Returns

True on success, false on failure.

### 5.1.3.12 gac\_filter\_noise()

A noise filter. The filter consecutively collects samples into a window and returns a filtered value when the window is full, otherwise the passed sample is returned. The filter maintains its won sample window.

### **Parameters**

| filter | The filter parameters.                  |
|--------|-----------------------------------------|
| sample | The sample to add to the filter window. |

### Returns

A filtered sample if the filter window is full or the sample passed to the function otherwise.

### 5.1.3.13 gac\_filter\_noise\_average()

A moving average noise filter. It computes the average sample point and origin from all samples in the filter window and assigns the timestamp of the median sample (the sample in the middle of the window) to the averaged sample.

| filter The filter parameters |  |
|------------------------------|--|
|------------------------------|--|

#### Returns

A new averaged sample if the filter window is full or the sample passed to the function otherwise.

### 5.1.3.14 gac\_filter\_noise\_create()

Allocate the noise filter structure. This needs to be freed.

### **Parameters**

| type    | The noise filter type.                                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| mid_idx | The mid index of the window. This is used to compute the length of the window: window_length = $mid_idx * 2 + 1$ . If set to 0 the filter is disabled. |

#### Returns

A pointer to the allocated structure or NULL on failure.

### 5.1.3.15 gac\_filter\_noise\_destroy()

Destroy the noise filter structure.

#### **Parameters**

| filter | A pointer to the structure to destroy. |
|--------|----------------------------------------|
|--------|----------------------------------------|

### 5.1.3.16 gac\_filter\_noise\_init()

Initialises a noise filter structure.

#### **Parameters**

| filter  | A pointer to the structure to initialise.                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| type    | The noise filter type.                                                                                                                                 |
| mid_idx | The mid index of the window. This is used to compute the length of the window: window_length = $mid_idx * 2 + 1$ . If set to 0 the filter is disabled. |

#### Returns

True on success, false on failure.

### 5.1.3.17 gac\_filter\_saccade()

The saccade detection algorithm I-VT.

### **Parameters**

| filter  | The filter parameters                                                                           |
|---------|-------------------------------------------------------------------------------------------------|
| sample  | The lastes sample                                                                               |
| saccade | A location where a detected saccade is stored. This is only valid if the function returns true. |

### Returns

True if a saccade was detected, false otherwise.

### 5.1.3.18 gac\_filter\_saccade\_create()

Allocate a new saccade filter structure on the heap. This needs to be freed.

#### **Parameters**

| velocity_threshold | The velocity threshold in degrees per second. |
|--------------------|-----------------------------------------------|

### Returns

A pointer to the allocated filter structure or NUII on failure.

### 5.1.3.19 gac\_filter\_saccade\_destroy()

```
void gac_filter_saccade_destroy ( \label{eq:gac_filter} \texttt{gac_filter\_saccade\_t} \ * \ filter \ )
```

Destroy the saccade filter structure.

#### **Parameters**

| filter | A pointer to the structure to destroy. |
|--------|----------------------------------------|
|--------|----------------------------------------|

### 5.1.3.20 gac\_filter\_saccade\_init()

Initialise a saccade filter structure.

#### **Parameters**

| filter             | A pointer to the filter structure to initialise. |
|--------------------|--------------------------------------------------|
| velocity_threshold | The velocity threshold in degrees per second.    |

### Returns

True on success, false on failure.

### 5.1.3.21 gac\_filter\_saccade\_step()

Internal function to compute the I-VT algorithm. Do not use this function. Instead use either the function gac\_sample\_window\_saccade\_filter() or gac\_filter\_saccade().

| filter  | The filter parameters                                                                           |
|---------|-------------------------------------------------------------------------------------------------|
| sample  | The lastes sample                                                                               |
| saccade | A location where a detected saccade is stored. This is only valid if the function returns true. |

#### Returns

True if a saccade was detected, false otherwise.

### 5.1.3.22 gac\_fixation\_create()

Allocate a new fixation structure on the heap. This structure must be freed.

#### **Parameters**

| screen_point | The fixation screen point.        |
|--------------|-----------------------------------|
| point        | The fixation point.               |
| duration     | The duration of the fixation.     |
| first_sample | The first sample in the fixation. |

### Returns

The allocated fixation structure or NULL on failure.

### 5.1.3.23 gac\_fixation\_destroy()

```
void gac_fixation_destroy ( \label{eq:gac_fixation} \text{gac_fixation} \ \ \text{$\star$} \ \ \text{$fixation$} \ \ )
```

Destroy a fixation structure.

#### **Parameters**

```
fixation A pointer to the fixation structure to destroy.
```

### 5.1.3.24 gac\_fixation\_init()

```
double duration,
gac_sample_t * first_sample )
```

Initialise a fixation structure.

#### **Parameters**

| fixation     | The fixation structure to initialise. |
|--------------|---------------------------------------|
| screen_point | The fixation screen point.            |
| point        | The fixation point.                   |
| duration     | The duration of the fixation.         |
| first_sample | The first sample in the fixation.     |

### Returns

True on success, false on failure.

### 5.1.3.25 gac\_fixation\_normalised\_dispersion\_threshold()

```
\label{local_problem} \begin{tabular}{ll} float $\tt gac\_fixation\_normalised\_dispersion\_threshold ( \\ &\tt float $\tt angle \end{tabular}) \end{tabular}
```

Compute a dispersion threashold assuming a unit distance. To get the actual dispersion threshold multiply this by the distance of the gaze origin to the gaze point.

### **Parameters**

| angle | The angel in degrees for which the dispersion threshold is computetd. Usual values range from 0.5 to 1 | 1 |
|-------|--------------------------------------------------------------------------------------------------------|---|
|       | degree.                                                                                                |   |

### Returns

The normalized dispersion threshold.

### 5.1.3.26 gac\_get\_filter\_parameter()

Get the filter parameters.

|   | h         | A pointer to the gaze analysis structure to initialise.     |  |
|---|-----------|-------------------------------------------------------------|--|
| ſ | parameter | A location where the filter parameter values can be stored. |  |

#### Returns

True on success, false on failure.

### 5.1.3.27 gac\_get\_filter\_parameter\_default()

```
bool gac_get_filter_parameter_default ( {\tt gac\_filter\_parameter\_t * parameter})
```

Get the default filter parameter values.

#### **Parameters**

| parameter A location where the filter para | ameter values can be stored. |
|--------------------------------------------|------------------------------|
|--------------------------------------------|------------------------------|

#### Returns

True on success, false on failure.

### 5.1.3.28 gac\_init()

Initialise the gaze analysis structure.

If no parameter structure is provided the following default values are set:

- fixation.dispersion\_threshold = 0.5;
- fixation.duration\_threshold = 100;
- saccade.velocity\_threshold = 20;
- noise.mid\_idx = 1;
- noise.type = GAC\_FILTER\_NOISE\_TYPE\_AVERAGE;
- gap.max\_gap\_length = 50;
- gap.sample\_period = 16.67;

| h                                                 | A pointer to the gaze analysis structure to initialise. |  |
|---------------------------------------------------|---------------------------------------------------------|--|
| parameter An optional filter parameter structure. |                                                         |  |

#### Returns

True on success, false on failure.

### 5.1.3.29 gac\_plane\_create()

Allocate a plane in 3d space. This need to be freed with gac\_plane\_destroy().

### **Parameters**

| p1 | The 3d coordinates of a point in 3d space. |
|----|--------------------------------------------|
| p2 | The 3d coordinates of a point in 3d space. |
| рЗ | The 3d coordinates of a point in 3d space. |

#### Returns

A pointer to the allocated plane or NULL on failure.

### 5.1.3.30 gac\_plane\_destroy()

Destroy a plane structure.

#### **Parameters**

### 5.1.3.31 gac\_plane\_init()

Initialise a plane in 3d space.

#### **Parameters**

| plane | A pointer to the plane structure to initialise. |
|-------|-------------------------------------------------|
| p1    | The 3d coordinates of a point in 3d space.      |
| p2    | The 3d coordinates of a point in 3d space.      |
| рЗ    | The 3d coordinates of a point in 3d space.      |

### Returns

True on succes and false on failure.

### 5.1.3.32 gac\_plane\_intersection()

Compute the 3d intersection point with a plane.

#### **Parameters**

| plane        | A pointer to the plane structure.                                                            |
|--------------|----------------------------------------------------------------------------------------------|
| origin       | The origin of the gaze.                                                                      |
| dir          | The gaze direction.                                                                          |
| intersection | A location to store the intersection point. This is only valid if the function returns true. |

### Returns

True if an intersection was found, false otherwise.

### 5.1.3.33 gac\_plane\_point()

Transform a 3d gaze point into a 2d point on a plane. This only works for 3d points which coincide with the plane. To compute an intersection use the function gac\_plane\_intersection().

| plane                              | A pointer to the plane structure.                                                                |
|------------------------------------|--------------------------------------------------------------------------------------------------|
| point3d The 3d point to transform. |                                                                                                  |
| சேற <i>ளர்</i> ஷ் <u>ச</u> ிஞ்     | PoAvisoation where the 2d point will be stored. This is only valid if the function returns true. |

#### Returns

True on success, false otherwise.

### 5.1.3.34 gac\_queue\_clear()

```
bool gac_queue_clear ( \label{eq:gac_queue_t * queue} \ \ )
```

Remove all data items from the queue. The queue remove handler is used to free the data.

#### **Parameters**

| queue | The queue to clear |
|-------|--------------------|
|-------|--------------------|

### Returns

True on success, false on failure.

### 5.1.3.35 gac\_queue\_create()

Allocate a new queue structure. This needs to be freed.

#### **Parameters**

| length The length of the que | eue. |
|------------------------------|------|
|------------------------------|------|

### Returns

The allocated queue structure.

### 5.1.3.36 gac\_queue\_destroy()

Destroy a queue, all ist items and all data inside the items.

### **Parameters**

| queue | A pointer to the queue to destroy |
|-------|-----------------------------------|
|-------|-----------------------------------|

### 5.1.3.37 gac\_queue\_grow()

Grow the queue.

#### **Parameters**

| queue | A pointer to the queue to grow. |
|-------|---------------------------------|
| count | The number of spaces to add.    |

### Returns

True on success, false on failure.

### 5.1.3.38 gac\_queue\_init()

Initialise a queue structure.

### **Parameters**

| queu   | е | A pointer to the queue to initialise. |
|--------|---|---------------------------------------|
| lengti | h | The length of the queue               |

#### Returns

True on success, false on failure.

### 5.1.3.39 gac\_queue\_pop()

Remove a the data from the head of the queue and link the the now free space to the tail of the queue.

#### **Parameters**

| queue | A pointer to the queue.                        |
|-------|------------------------------------------------|
| data  | An optional location to store the popped data. |

#### Returns

True on success, false on failure.

### 5.1.3.40 gac\_queue\_push()

Add a new item to the tail of the queue. If no more space is available, the queue is grown by one.

#### **Parameters**

| queue | A pointer to the queue.                               |
|-------|-------------------------------------------------------|
| data  | The data sample to be added to the tail of the queue. |

### Returns

True on success, false on failure.

### 5.1.3.41 gac\_queue\_remove()

The same as gac\_queue\_pop() but also freeing the data item with the configured remove handler.

### **Parameters**

| queue | A pointer to the queue. |
|-------|-------------------------|
|-------|-------------------------|

### Returns

True on success, false on failure.

### 5.1.3.42 gac\_queue\_set\_rm\_handler()

Set a remove handler which will be called whenever an item is removed from the queue.

### **Parameters**

| queue | A pointer to the queue. |
|-------|-------------------------|
| rm    | The renmove handler.    |

#### Returns

True on success, false on failure.

### 5.1.3.43 gac\_saccade\_create()

Allocate a new saccade structure on the heap. This needs to be freed.

### **Parameters**

| first_sample | The first sample of the saccade, holding the source point. |
|--------------|------------------------------------------------------------|
| last_sample  | The last sample of the saccade, holding the target point.  |

### Returns

The allocated saccade structure on success or NULL on failure.

### 5.1.3.44 gac\_saccade\_destroy()

Destroy a saccade structure.

| saccade | A pointer to the saccade structure to destroy. |  |
|---------|------------------------------------------------|--|
| bubbuub | The point of the baccade of action to acction. |  |

### 5.1.3.45 gac\_saccade\_init()

Initialise a saccade structure.

#### **Parameters**

| saccade      | A pointer to the saccade structure to initialise.          |
|--------------|------------------------------------------------------------|
| first_sample | The first sample of the saccade, holding the source point. |
| last_sample  | The last sample of the saccade, holding the target point.  |

#### Returns

True on success, false on failure.

### 5.1.3.46 gac\_sample\_copy()

Create a deep copy of a sample. This needs to be freed with gac\_sample\_destroy().

#### **Parameters**

| sample | The sample to copy |
|--------|--------------------|

#### Returns

A pointer to the new sample or NULL.

### 5.1.3.47 gac\_sample\_copy\_to()

Deep copy of a sample to a target. This needs to be freed with gac\_sample\_destroy().

#### **Parameters**

| dest   | The location where the sample will be copied to. |
|--------|--------------------------------------------------|
| sample | The sample to copy                               |

#### Returns

A pointer to the new sample or NULL.

### 5.1.3.48 gac\_sample\_create()

```
gac_sample_t* gac_sample_create (
    vec2 * screen_point,
    vec3 * origin,
    vec3 * point,
    double timestamp,
    uint32_t trial_id,
    const char * label )
```

Allocate a new sample structure on the heap. This needs to be freed.

#### **Parameters**

| screen_point | The 2d screen gaze point vector.                   |
|--------------|----------------------------------------------------|
| origin       | The gaze origin vector.                            |
| point        | The gaze point vector.                             |
| timestamp    | The timestamp of the sample.                       |
| trial_id     | The ID of the ongoing trial.                       |
| label        | An optional arbitrary label annotating the sample. |

### Returns

The allocated sample structure or NULL on failure.

### 5.1.3.49 gac\_sample\_destroy()

Destroy a sample structure.

| sample A pointer to the structure to be destroyed | ١. |
|---------------------------------------------------|----|
|---------------------------------------------------|----|

### 5.1.3.50 gac\_sample\_init()

Initialise a sample structure.

#### **Parameters**

| sample       | The sample structure to initialise.                |
|--------------|----------------------------------------------------|
| screen_point | The 2d screen gaze point vector.                   |
| origin       | The gaze origin vector.                            |
| point        | The gaze point vector.                             |
| timestamp    | The timestamp of the sample.                       |
| trial_id     | The ID of the ongoing trial.                       |
| label        | An optional arbitrary label annotating the sample. |

### Returns

True on success, false on failure.

### 5.1.3.51 gac\_sample\_window\_cleanup()

```
bool gac_sample_window_cleanup ( \label{eq:gac_tau} \text{gac\_t} \ * \ h \ )
```

Cleanup the sample window. This removes all sample data from the sample window which is no longer used for the gaze analysis.

### **Parameters**

h A pointer to the gaze analysis handler.

### Returns

True on success, false on failure.

#### 5.1.3.52 gac\_sample\_window\_fixation\_filter()

The fixation detection algorithm I-DT. This acts on the sample window managed by the functions gac\_sample\_window\_update() and gac\_sample\_window\_cleanup().

#### **Parameters**

| h        | A pointer to the gaze analysis handler.                                                          |
|----------|--------------------------------------------------------------------------------------------------|
| fixation | A location where a detected fixation is stored. This is only valid if the function returns true. |

### Returns

True if a fixation was detected, false otherwise.

### 5.1.3.53 gac\_sample\_window\_saccade\_filter()

The saccade detection algorithm I-VT. This acts on the sample window managed by the functions gac\_sample\_window\_update() and gac\_sample\_window\_cleanup().

#### **Parameters**

| h       | A pointer to the gaze analysis handler.                                                         |
|---------|-------------------------------------------------------------------------------------------------|
| saccade | A location where a detected saccade is stored. This is only valid if the function returns true. |

#### Returns

True if a saccade was detected, false otherwise.

#### 5.1.3.54 gac\_sample\_window\_update()

```
float pz,
double timestamp,
uint32_t trial_id,
const char * label )
```

Update the sample window with a new sample. If noise filtering is enabled the filtered data is added to the sample window and the raw sample is dismissed. If gap filtering is enabled, sample gaps are filled-in with interpolated data samples.

#### **Parameters**

| h         | A pointer to the gaze analysis handler.            |
|-----------|----------------------------------------------------|
| OX        | The x coordinate of the gaze origin.               |
| oy        | The y coordinate of the gaze origin.               |
| OZ        | The z coordinate of the gaze origin.               |
| рх        | The x coordinate of the gaze point.                |
| ру        | The y coordinate of the gaze point.                |
| pz        | The z coordinate of the gaze point.                |
| timestamp | The timestamp of the sample.                       |
| trial_id  | The ID of the ongoing trial.                       |
| label     | An optional arbitrary label annotating the sample. |

### Returns

The number of new samples added to the window.

### 5.1.3.55 gac\_sample\_window\_update\_screen()

Update the sample window with a new sample. If noise filtering is enabled the filtered data is added to the sample window and the raw sample is dismissed. If gap filtering is enabled, sample gaps are filled-in with interpolated data samples.

| h  | A pointer to the gaze analysis handler. |
|----|-----------------------------------------|
| OX | The x coordinate of the gaze origin.    |

### **Parameters**

| oy        | The y coordinate of the gaze origin.               |
|-----------|----------------------------------------------------|
| OZ        | The z coordinate of the gaze origin.               |
| рх        | The x coordinate of the gaze point.                |
| ру        | The y coordinate of the gaze point.                |
| pz        | The z coordinate of the gaze point.                |
| SX        | The x coordinate of the screen gaze point.         |
| sy        | The y coordinate of the screen gaze point.         |
| timestamp | The timestamp of the sample.                       |
| trial_id  | The ID of the ongoing trial.                       |
| label     | An optional arbitrary label annotating the sample. |

### Returns

The number of new samples added to the window.

### 5.1.3.56 gac\_sample\_window\_update\_vec()

Update sample window with a new sample.

#### **Parameters**

| h            | A pointer to the gaze analysis handler.            |
|--------------|----------------------------------------------------|
| screen_point | The 2d screen gaze point                           |
| origin       | The gaze origin.                                   |
| point        | The gaze point.                                    |
| timestamp    | The timestamp of the sample.                       |
| trial_id     | The ID of the ongoing trial.                       |
| label        | An optional arbitrary label annotating the sample. |

### Returns

The number of new samples added to the window.

### 5.1.3.57 gac\_samples\_average\_origin()

Compute the average gaze origin of samples in the sample window.

#### **Parameters**

| samples | A pointer to the sample window.                                                                      |
|---------|------------------------------------------------------------------------------------------------------|
| avg     | A location to store the average gaze origin. This is only valid if the function returns true.        |
| count   | The number of samples to perform the computation on, starting by the queue tail (newest first). If 0 |
|         | is passed, all samples are included.                                                                 |

### 5.1.3.58 gac\_samples\_average\_point()

Compute the average gaze point of samples in the sample window.

### **Parameters**

| samples | A pointer to the sample window.                                                                                                           |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------|
| avg     | A location to store the average gaze point. This is only valid if the function returns true.                                              |
| count   | The number of samples to perform the computation on, starting by the queue tail (newest first). If 0 is passed, all samples are included. |

### 5.1.3.59 gac\_samples\_average\_screen\_point()

Compute the average screen gaze point of samples in the sample window.

| samples | A pointer to the sample window.                                                                      |
|---------|------------------------------------------------------------------------------------------------------|
| avg     | A location to store the average gaze point. This is only valid if the function returns true.         |
| count   | The number of samples to perform the computation on, starting by the queue tail (newest first). If 0 |
|         | is passed, all samples are included.                                                                 |

#### 5.1.3.60 gac samples dispersion()

Compute the gaze point dispersion of samples in the sample window.

#### **Parameters**

| samples    | A pointer to the sample window.                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| dispersion | A location to store the dispersion value. This is only valid if the function returns true.                                                |
| count      | The number of samples to perform the computation on, starting by the queue tail (newest first). If 0 is passed, all samples are included. |

### 5.1.3.61 gac\_screen\_create()

Allocate the screen structure. This needs to be freed with gac\_screen\_destroy(). The screen is defined through the top left, the top right and the bottom left point of the screen in 3d space. The width, the height, and the bottom right point of the screen are computed based on these three points. Make sure to provide points that describe a rectangle for this to make sense.

### **Parameters**

| top_left    | The 3d coordinates of the top left screen point.    |
|-------------|-----------------------------------------------------|
| top_right   | The 3d coordinates of the top right screen point.   |
| bottom_left | The 3d coordinates of the bottom left screen point. |

### Returns

A pointer to the allocated screen structure or NULL on failure.

### 5.1.3.62 gac\_screen\_destroy()

Destroy a screen structure.

#### **Parameters**

| screen | A pointer to the screen structure to destroy |
|--------|----------------------------------------------|
|--------|----------------------------------------------|

### 5.1.3.63 gac\_screen\_init()

Initialise a screen structure through the top left, the top right and the bottom left point of the screen in 3d space. The width, the height, and the bottom right point of the screen are computed based on these three points. Make sure to provide points that describe a rectangle for this to make sense.

#### **Parameters**

| screen                                               | A pointer to the screen structure to initialise.    |
|------------------------------------------------------|-----------------------------------------------------|
| top_left                                             | The 3d coordinates of the top left screen point.    |
| top_right The 3d coordinates of the top right screen |                                                     |
| bottom_left                                          | The 3d coordinates of the bottom left screen point. |

### Returns

True on succes and false on failure.

### 5.1.3.64 gac\_screen\_point()

Transform a 3d gaze point into a normalized 2d point on the screen. (0, 0) represents the top left corner of the screen and (1, 1) represents the bottom right corner.

| screen  | A pointer to the screen structure.                                                             |  |
|---------|------------------------------------------------------------------------------------------------|--|
| point3d | The 3d point to transform.                                                                     |  |
| point2d | A location where the 2d point will be stored. This is only valid if the function returns true. |  |

#### Returns

True on success, false otherwise.

### 5.1.3.65 gac\_set\_screen()

Configure the screen position in 3d space. This allows to compute 2d gaze point coordinates.

### **Parameters**

| h            | A pointer to the gaze analysis handler.            |  |  |
|--------------|----------------------------------------------------|--|--|
| top_left_x   | The x coordinate of the top left screen corner.    |  |  |
| top_left_y   | The y coordinate of the top left screen corner.    |  |  |
| top_left_z   | The z coordinate of the top left screen corner.    |  |  |
| top_right_x  | The x coordinate of the top right screen corner.   |  |  |
| top_right_y  | The y coordinate of the top right screen corner.   |  |  |
| top_right_z  | The z coordinate of the top right screen corner.   |  |  |
| bottom_left⇔ | The x coordinate of the bottom left screen corner. |  |  |
| _X           |                                                    |  |  |
| bottom_left⇔ | The y coordinate of the bottom left screen corner. |  |  |
| _y           |                                                    |  |  |
| bottom_left← | The z coordinate of the bottom left screen corner. |  |  |
| _Z           |                                                    |  |  |

### Returns

True on success, false on failure.

## Index

```
gac_filter_saccade_init, 40
count
                                                             gac_filter_saccade_step, 40
     gac_queue_t, 21
                                                             gac fixation create, 41
data
                                                             gac_fixation_destroy, 41
     gac_queue_item_t, 20
                                                             gac_fixation_init, 41
dispersion_threshold
                                                             gac_fixation_normalised_dispersion_threshold, 42
     gac_filter_parameter_t, 14
                                                             gac_get_filter_parameter, 42
duration
                                                             gac get filter parameter default, 43
     gac_filter_fixation_t, 9
                                                             gac init, 43
     gac fixation t, 17
                                                             gac_plane_create, 44
duration_threshold
                                                             gac plane destroy, 44
     gac filter fixation t, 9
                                                             gac plane init, 44
     gac_filter_parameter_t, 14
                                                             gac_plane_intersection, 45
                                                             gac_plane_point, 45
e1
                                                             gac_queue_clear, 46
     gac plane t, 18
                                                             gac_queue_create, 46
e2
                                                             gac queue destroy, 46
     gac_plane_t, 19
                                                             gac queue grow, 47
                                                             gac_queue_init, 47
first_sample
                                                             gac queue pop, 47
     gac_fixation_t, 17
                                                             gac queue push, 48
     gac_saccade_t, 23
                                                             gac_queue_remove, 48
fixation
                                                             gac_queue_set_rm_handler, 48
     gac_filter_parameter_t, 14
                                                             gac saccade create, 49
     gac t, 27
                                                             gac_saccade_destroy, 49
                                                             gac saccade init, 50
gac.h
                                                             gac_sample_copy, 50
     gac_create, 32
                                                             gac sample copy to, 50
     gac_destroy, 32
                                                             gac sample create, 51
     gac filter fixation, 32
                                                             gac_sample_destroy, 51
     gac_filter_fixation_create, 34
                                                             gac_sample_init, 52
     gac_filter_fixation_destroy, 34
                                                             gac sample window cleanup, 52
     gac_filter_fixation_init, 34
                                                             gac_sample_window_fixation_filter, 52
     gac filter fixation step, 35
                                                             gac_sample_window_saccade_filter, 53
     gac_filter_gap, 35
                                                             gac sample window update, 53
     gac_filter_gap_create, 36
                                                             gac sample window update screen, 54
     gac filter gap destroy, 36
                                                             gac sample window update vec, 55
     gac_filter_gap_init, 36
                                                             gac samples average origin, 55
     gac_filter_noise, 37
                                                             gac_samples_average_point, 56
     gac_filter_noise_average, 37
                                                             gac_samples_average_screen_point, 56
     gac_filter_noise_create, 38
                                                             gac samples dispersion, 57
     gac_filter_noise_destroy, 38
                                                             gac_screen_create, 57
     gac filter noise init, 38
     GAC FILTER NOISE TYPE AVERAGE, 32
                                                             gac_screen_destroy, 57
     gac filter noise type e, 31
                                                             gac screen init, 58
     GAC FILTER NOISE TYPE MEDIAN, 32
                                                             gac screen point, 58
                                                             gac_set_screen, 59
     gac filter noise type t, 31
     gac filter saccade, 39
                                                        gac create
     gac_filter_saccade_create, 39
                                                             gac.h, 32
     gac_filter_saccade_destroy, 40
                                                        gac_destroy
```

|             | gac.h, 32                                            | gac_filter_parameter_t, 13                      |
|-------------|------------------------------------------------------|-------------------------------------------------|
| gac_        | _filter_fixation                                     | dispersion_threshold, 14                        |
|             | gac.h, 32                                            | duration_threshold, 14                          |
| gac_        | filter_fixation_create                               | fixation, 14                                    |
| _           | gac.h, 34                                            | gap, 14                                         |
| gac         | filter_fixation_destroy                              | is_heap, 14                                     |
| 0 -         | gac.h, <mark>34</mark>                               | max_gap_length, 14                              |
| gac         | filter_fixation_init                                 | mid_idx, 14                                     |
| 3           | gac.h, 34                                            | noise, 15                                       |
| gac         | filter_fixation_step                                 | saccade, 15                                     |
| 3           | gac.h, 35                                            | sample_period, 15                               |
| gac         | filter_fixation_t, 9                                 | type, 15                                        |
| 9           | duration, 9                                          | velocity_threshold, 15                          |
|             | duration_threshold, 9                                | gac_filter_saccade                              |
|             | is_collecting, 10                                    | gac.h, 39                                       |
|             | is_heap, 10                                          | gac_filter_saccade_create                       |
|             | new_samples, 10                                      | gac.h, 39                                       |
|             | normalized_dispersion_threshold, 10                  | gac_filter_saccade_destroy                      |
|             | point, 10                                            | gac.h, 40                                       |
|             | screen_point, 10                                     | gac_filter_saccade_init                         |
|             | window, 10                                           | gac.h, 40                                       |
| 200         |                                                      | _                                               |
| yac_        | _filter_gap                                          | gac_filter_saccade_step                         |
|             | gac.h, 35                                            | gac.h, 40                                       |
| gac_        | _filter_gap_create                                   | gac_filter_saccade_t, 15                        |
|             | gac.h, 36                                            | is_collecting, 16                               |
| gac_        | _filter_gap_destroy                                  | is_heap, 16                                     |
|             | gac.h, 36                                            | new_samples, 16                                 |
| gac_        | _filter_gap_init                                     | velocity_threshold, 16                          |
|             | gac.h, 36                                            | window, 16                                      |
| gac_        | _filter_gap_t, 11                                    | gac_fixation_create                             |
|             | is_enabled, 11                                       | gac.h, 41                                       |
|             | is_heap, 11                                          | gac_fixation_destroy                            |
|             | max_gap_length, 11                                   | gac.h, 41                                       |
|             | sample_period, 12                                    | gac_fixation_init                               |
| gac_        | _filter_noise                                        | gac.h, 41                                       |
|             | gac.h, 37                                            | gac_fixation_normalised_dispersion_threshold    |
| gac_        | _filter_noise_average                                | gac.h, 42                                       |
|             | gac.h, 37                                            | gac_fixation_t, 17                              |
| gac_        | _filter_noise_create                                 | duration, 17                                    |
|             | gac.h, 38                                            | first_sample, 17                                |
| gac_        | _filter_noise_destroy                                | is_heap, 17                                     |
|             | gac.h, 38                                            | point, 18                                       |
| gac_        | _filter_noise_init                                   | screen_point, 18                                |
|             | gac.h, 38                                            | gac_get_filter_parameter                        |
| gac_        | _filter_noise_t, 12                                  | gac.h, 42                                       |
|             | is_enabled, 12                                       | gac_get_filter_parameter_default                |
|             | is_heap, 12                                          | gac.h, 43                                       |
|             | mid, 13                                              | gac_init                                        |
|             | type, 13                                             | gac.h, 43                                       |
|             | window, 13                                           | gac_plane_create                                |
|             | FILTER_NOISE_TYPE_AVERAGE                            | gac.h, 44                                       |
| GAC         | gac.h, 32                                            | gac_plane_destroy                               |
| GAC         | filter_noise_type_e                                  |                                                 |
|             | iliter rioise type e                                 | gac.h, 44                                       |
|             |                                                      | gac.h, 44<br>gac plane init                     |
| gac_        | gac.h, 31                                            | gac_plane_init                                  |
| gac_        | gac.h, 31<br>S_FILTER_NOISE_TYPE_MEDIAN              | gac_plane_init<br>gac.h, 44                     |
| gac_<br>GAC | gac.h, 31<br>c_FILTER_NOISE_TYPE_MEDIAN<br>gac.h, 32 | gac_plane_init gac.h, 44 gac_plane_intersection |
| gac_<br>GAC | gac.h, 31<br>S_FILTER_NOISE_TYPE_MEDIAN              | gac_plane_init<br>gac.h, 44                     |

| gac.h, 45                | gac.h, <mark>52</mark>            |
|--------------------------|-----------------------------------|
| gac_plane_t, 18          | gac_sample_t, 23                  |
| e1, 18                   | is_heap, 24                       |
| e2, 19                   | label, 24                         |
| is_heap, 19              | label_onset, 24                   |
| m, 19                    | origin, 24                        |
| norm, 19                 | point, 24                         |
| p1, 19                   | screen_point, 24                  |
| p2, 19                   | timestamp, 24                     |
| p3, 19                   | trial_id, 24                      |
| gac_queue_clear          | trial_onset, 25                   |
| gac.h, 46                | gac_sample_window_cleanup         |
| gac_queue_create         | gac.h, 52                         |
| gac.h, 46                | gac_sample_window_fixation_filter |
| gac_queue_destroy        | gac.h, 52                         |
| gac.h, 46                | gac_sample_window_saccade_filter  |
| gac_queue_grow           | gac.h, 53                         |
| gac.h, 47                | gac_sample_window_update          |
| gac_queue_init           | gac.h, 53                         |
| gac.h, 47                | gac_sample_window_update_screen   |
| gac_queue_item_t, 20     | gac.h, 54                         |
| data, 20                 | gac_sample_window_update_vec      |
| next, 20                 | gac.h, 55                         |
| prev, 20                 | gac_samples_average_origin        |
| gac_queue_pop            | gac.h, 55                         |
| gac.h, 47                | gac_samples_average_point         |
| gac_queue_push           | gac.h, 56                         |
| gac.h, 48                | gac_samples_average_screen_point  |
| gac_queue_remove         | gac.h, 56                         |
| gac.h, 48                | gac_samples_dispersion            |
| gac_queue_set_rm_handler | gac.h, 57                         |
| gac.h, 48                | gac_screen_create                 |
| gac_queue_t, 21          | gac.h, 57                         |
| count, 21                | gac_screen_destroy                |
| head, 21                 | gac.h, 57                         |
| is_heap, 21              | gac_screen_init                   |
| length, 22               | gac.h, 58                         |
| rm, 22                   | gac_screen_point                  |
| tail, 22                 | gac.h, 58                         |
| gac_saccade_create       | gac_screen_t, 25                  |
| gac.h, 49                | height, 25                        |
| gac_saccade_destroy      | is_heap, 25                       |
| gac.h, 49                | origin, 26                        |
| gac_saccade_init         | plane, 26                         |
| gac.h, 50                | width, 26                         |
| gac_saccade_t, 22        | gac_set_screen                    |
| first_sample, 23         | gac.h, 59                         |
| is_heap, 23              | gac_t, 26                         |
| last_sample, 23          | fixation, 27                      |
| gac_sample_copy          | gap, 27                           |
| gac.h, 50                | is_heap, 27                       |
| gac_sample_copy_to       | last_sample, 27                   |
| gac.h, 50                | noise, 27                         |
| gac_sample_create        | parameter, 27                     |
| gac.h, 51                | saccade, 27                       |
| gac_sample_destroy       | samples, 28                       |
| gac.h, 51                | screen, 28                        |
| gac_sample_init          | gap                               |
|                          |                                   |

| gac_filter_parameter_t, 14 gac_t, 27 | normalized_dispersion_threshold<br>gac_filter_fixation_t, 10 |
|--------------------------------------|--------------------------------------------------------------|
| head                                 | origin                                                       |
| gac_queue_t, 21                      | gac_sample_t, 24                                             |
| height                               | gac_screen_t, 26                                             |
| gac_screen_t, 25                     |                                                              |
|                                      | p1                                                           |
| include/gac.h, 29                    | gac_plane_t, 19                                              |
| is_collecting                        | p2                                                           |
| gac_filter_fixation_t, 10            | gac_plane_t, 19                                              |
| gac_filter_saccade_t, 16             | p3                                                           |
| is_enabled                           | gac_plane_t, 19 parameter                                    |
| gac_filter_gap_t, 11                 | gac_t, 27                                                    |
| gac_filter_noise_t, 12               | plane                                                        |
| is_heap gac_filter_fixation_t, 10    | gac_screen_t, 26                                             |
| gac_filter_gap_t, 11                 | point                                                        |
| gac_filter_noise_t, 12               | gac_filter_fixation_t, 10                                    |
| gac filter parameter t, 14           | gac_fixation_t, 18                                           |
| gac_filter_saccade_t, 16             | gac_sample_t, 24                                             |
| gac_fixation_t, 17                   | prev                                                         |
| gac_plane_t, 19                      | gac_queue_item_t, 20                                         |
| gac_queue_t, 21                      |                                                              |
| gac_saccade_t, 23                    | rm                                                           |
| gac_sample_t, 24                     | gac_queue_t, 22                                              |
| gac_screen_t, 25                     | saccade                                                      |
| gac_t, 27                            | gac_filter_parameter_t, 15                                   |
|                                      | gac_t, 27                                                    |
| label                                | sample_period                                                |
| gac_sample_t, 24                     | gac_filter_gap_t, 12                                         |
| label_onset                          | gac_filter_parameter_t, 15                                   |
| gac_sample_t, 24                     | samples                                                      |
| last_sample                          | gac_t, 28                                                    |
| gac_saccade_t, 23                    | screen                                                       |
| gac_t, 27<br>length                  | gac_t, 28                                                    |
| gac_queue_t, 22                      | screen_point                                                 |
| gac_queue_i, 22                      | gac_filter_fixation_t, 10                                    |
| m                                    | gac_fixation_t, 18                                           |
| gac_plane_t, 19                      | gac_sample_t, 24                                             |
| max_gap_length                       | tail                                                         |
| gac_filter_gap_t, 11                 | gac_queue_t, 22                                              |
| gac_filter_parameter_t, 14           | timestamp                                                    |
| mid                                  | gac_sample_t, 24                                             |
| gac_filter_noise_t, 13               | trial id                                                     |
| mid_idx                              | gac_sample_t, 24                                             |
| gac_filter_parameter_t, 14           | trial_onset                                                  |
|                                      | gac_sample_t, 25                                             |
| new_samples                          | type                                                         |
| gac_filter_fixation_t, 10            | gac_filter_noise_t, 13                                       |
| gac_filter_saccade_t, 16             | gac_filter_parameter_t, 15                                   |
| next                                 |                                                              |
| gac_queue_item_t, 20                 | velocity_threshold                                           |
| noise                                | gac_filter_parameter_t, 15                                   |
| gac_filter_parameter_t, 15           | gac_filter_saccade_t, 16                                     |
| gac_t, 27<br>norm                    | width                                                        |
| gac_plane_t, 19                      | gac screen t, 26                                             |
| 940_piano_t, 10                      | 940_0010011_1, 20                                            |

### window

gac\_filter\_fixation\_t, 10 gac\_filter\_noise\_t, 13 gac\_filter\_saccade\_t, 16