Saturated Semantics for Coalgebraic Logic Programming

Filippo Bonchi, Fabio Zanasi

École Normale Supérieure de Lyon, France

CALCO 2013

[E. KOMENDANTSKAYA, G. McCusker & J. Power 2010]

```
\begin{array}{lll} r(b,c) & \leftarrow & q(a),q(b),q(c) \\ r(b,b) & \leftarrow & r(b,a),r(b,c) \\ r(b,b) & \leftarrow & q(c) \\ q(c) & \leftarrow & \end{array}
```

[E. KOMENDANTSKAYA, G. McCusker & J. Power 2010]

$$\begin{array}{lll} r(b,c) & \leftarrow & q(a),q(b),q(c) \\ r(b,b) & \leftarrow & r(b,a),r(b,c) \\ r(b,b) & \leftarrow & q(c) \\ q(c) & \leftarrow & \end{array}$$

$$p: At \to \mathcal{P}_f \mathcal{P}_f(At)$$

[E. KOMENDANTSKAYA, G. McCusker & J. Power 2010]

$$p(r(b,b)) = \{ \{r(b,a),r(b,c)\}, \{q(c)\} \}$$

$$\begin{array}{lcl} r(b,c) & \leftarrow & q(a),q(b),q(c) \\ r(b,b) & \leftarrow & r(b,a),r(b,c) \\ r(b,b) & \leftarrow & q(c) \\ q(c) & \leftarrow & \end{array}$$

$$p: At \to \mathcal{P}_f \mathcal{P}_f(At)$$

[E. KOMENDANTSKAYA, G. McCusker & J. Power 2010]

$$\begin{array}{lll} r(b,c) & \leftarrow & q(a),q(b),q(c) \\ r(b,b) & \leftarrow & r(b,a),r(b,c) \\ r(b,b) & \leftarrow & q(c) \\ q(c) & \leftarrow & \end{array}$$

$$p: At \to \mathcal{P}_f \mathcal{P}_f(At)$$

$$p(r(b,b)) = \{ \{r(b,a),r(b,c)\}, \{q(c)\} \}$$

[E. KOMENDANTSKAYA, G. McCusker & J. Power 2010]

$$r(b,c) \leftarrow q(a),q(b),q(c)$$

$$r(b,b) \leftarrow r(b,a),r(b,c)$$

$$r(b,b) \leftarrow q(c)$$

$$q(c) \leftarrow$$

$$p: At \to \mathcal{P}_f \mathcal{P}_f(At)$$

$$p(r(b,b)) = \{ \{r(b,a),r(b,c)\}, \{q(c)\} \}$$

[E. KOMENDANTSKAYA, G. McCusker & J. Power 2010]

$$r(b,c) \leftarrow q(a),q(b),q(c)$$

$$r(b,b) \leftarrow r(b,a),r(b,c)$$

$$r(b,b) \leftarrow q(c)$$

$$q(c) \leftarrow$$

$$p: At \to \mathcal{P}_f \mathcal{P}_f(At)$$

$$p(r(b,b)) = \{ \{r(b,a),r(b,c)\}, \{q(c)\} \}$$

[E. KOMENDANTSKAYA, G. McCusker & J. Power 2010]

$$r(b,c) \leftarrow q(a),q(b),q(c)$$

$$r(b,b) \leftarrow r(b,a),r(b,c)$$

$$r(b,b) \leftarrow q(c)$$

$$q(c) \leftarrow$$

$$p : At \to \mathcal{P}_f \mathcal{P}_f(At)$$
$$[[-]]_p : At \to \mathcal{C}(\mathcal{P}_f \mathcal{P}_f)(At)$$

$$p(r(b,b)) = \{ \{r(b,a),r(b,c)\}, \{q(c)\} \}$$

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

```
\begin{aligned} \text{List}(c(\mathbf{x}_1, \mathbf{x}_2)) &\leftarrow \text{Nat}(\mathbf{x}_1), \text{List}(\mathbf{x}_2) \\ &\quad \text{List}(\text{nil}) \leftarrow \\ \text{Nat}(\text{succ}(\mathbf{x}_1)) &\leftarrow \text{Nat}(\mathbf{x}_1) \\ &\quad \text{Nat}(\text{zero}) \leftarrow \end{aligned}
```

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

```
\begin{aligned} \text{List}(\textbf{c}(\textbf{x}_1, \textbf{x}_2)) &\leftarrow \text{Nat}(\textbf{x}_1), \text{List}(\textbf{x}_2) \\ \text{List}(\textbf{nil}) &\leftarrow \\ \text{Nat}(\text{succ}(\textbf{x}_1)) &\leftarrow \text{Nat}(\textbf{x}_1) \\ \text{Nat}(\text{zero}) &\leftarrow \end{aligned}
```

$\overline{L_\Sigma}$ free Lawvere Theory on Σ

objects natural numbers $(n \approx \langle x_1, \dots, x_n \rangle).$ arrow $\theta: n \to m$ a substitution $[x_1 \mapsto t_1, \dots, x_n \mapsto t_n]$, where t_1, \dots, t_n are Σ -terms on variables x_1, \dots, x_m .

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

```
\label{eq:list_condition} \begin{split} \operatorname{List}(\operatorname{c}(\mathbf{x}_1, \mathbf{x}_2)) &\leftarrow \operatorname{Nat}(\mathbf{x}_1), \operatorname{List}(\mathbf{x}_2) \\ \operatorname{List}(\operatorname{nil}) &\leftarrow \\ \operatorname{Nat}(\operatorname{succ}(\mathbf{x}_1)) &\leftarrow \operatorname{Nat}(\mathbf{x}_1) \\ \operatorname{Nat}(\operatorname{zero}) &\leftarrow \end{split}
```

\mathbf{L}_{Σ} free Lawvere Theory on Σ

objects natural numbers $(n \approx \langle x_1, \dots, x_n \rangle).$

arrow $\theta: n \to m$ a substitution $[x_1 \mapsto t_1, \dots, x_n \mapsto t_n]$, where t_1, \dots, t_n are Σ -terms on variables x_1, \dots, x_m .

 $At: \mathbf{L}_{\Sigma} \to \mathbf{Set}$ space of \mathbf{L}_{Σ} -typed atoms

At(n) the set of atoms on variables x_1, \dots, x_n .

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

$$\begin{aligned} \text{List}(c(x_1, x_2)) &\leftarrow \text{Nat}(x_1), \text{List}(x_2) \\ &\quad \text{List}(\text{nil}) \leftarrow \\ \text{Nat}(\text{succ}(x_1)) &\leftarrow \text{Nat}(x_1) \\ &\quad \text{Nat}(\text{zero}) \leftarrow \end{aligned}$$

Coalgebra in $Set^{L_{\Sigma}}$

$$p : At \to \widetilde{\mathcal{P}_f}\widetilde{\mathcal{P}_f}(At)$$
$$[[-]]_p : At \to \mathcal{C}(\widetilde{\mathcal{P}_f}\widetilde{\mathcal{P}_f})(At)$$

$|\mathbf{L}_{\Sigma}|$ free Lawvere Theory on Σ

objects natural numbers $(n \approx \langle x_1, \dots, x_n \rangle).$

arrow $\theta: n \to m$ a substitution $[x_1 \mapsto t_1, \dots, x_n \mapsto t_n]$, where t_1, \dots, t_n are Σ -terms on variables x_1, \dots, x_m .

$At: \mathbf{L}_{\Sigma} \to \mathbf{Set}$ space of \mathbf{L}_{Σ} -typed atoms

At(n) the set of atoms on variables x_1, \dots, x_n .

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011] Term-Matching

Atom
$$A$$
 \Rightarrow $A = \tau(H) \Leftrightarrow \exists \tau$ Clause $H \leftarrow B_1, \dots, B_k$
$$\{\tau(B_1), \dots, \tau(B_k)\} \in p_n(A)$$

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

Term-Matching

Atom
$$A$$
 \Rightarrow $A = \tau(H) \Leftrightarrow T$ Clause $H \leftarrow B_1, \dots, B_k$
$$\{\tau(B_1), \dots, \tau(B_k)\} \in p_n(A)$$

The problem

 $p:At \to \widetilde{\mathcal{P}_f}\widetilde{\mathcal{P}_f}(At)$ is **not** a natural transformation.

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

Term-Matching

Atom
$$A$$
 \Rightarrow $A = \tau(H) \Leftrightarrow T$ Clause $H \leftarrow B_1, \dots, B_k$
$$\{\tau(B_1), \dots, \tau(B_k)\} \in p_n(A)$$

The problem

$$p:At \to \widetilde{\mathcal{P}_f}\widetilde{\mathcal{P}_f}(At)$$
 is **not** a natural transformation.

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

Term-Matching

Atom
$$A$$
 \Rightarrow $A = \tau(H) \Leftrightarrow T$ Clause $H \leftarrow B_1, \dots, B_k$
$$\{\tau(B_1), \dots, \tau(B_k)\} \in p_n(A)$$

The problem

 $p:At \to \widetilde{\mathcal{P}_f}\widetilde{\mathcal{P}_f}(At)$ is **not** a natural transformation.

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

Term-Matching

Atom
$$A$$
 \Rightarrow $A = \tau(H) \Leftrightarrow \exists \tau$ Clause $H \leftarrow B_1, \dots, B_k$
$$\{\tau(B_1), \dots, \tau(B_k)\} \in p_n(A)$$

The problem

 $p:At \to \widetilde{\mathcal{P}_f}\widetilde{\mathcal{P}_f}(At)$ is **not** a natural transformation.

The final semantics is **not compositional**:

$$[[\theta(A)]]_p \neq \overline{\theta}([[A]]_p).$$

[E. KOMENDANTSKAYA & J. POWER, CALCO 2011]

Term-Matching

Atom
$$A$$
 \Rightarrow $A = \tau(H) \Leftrightarrow$ Clause $A = \overline{\tau}(H) \Leftrightarrow$ Cfr.
$$\{\tau(B_1), \dots, \tau(B_k)\} \in p_n(A)$$

$$t = \overline{a} < x > |b(y)| \longrightarrow \alpha(t)$$
 The problem
$$[b \mapsto a] + \overline{a} \Leftrightarrow a = \tau(H) \Leftrightarrow a = \tau(H$$

$$p:At \to \widetilde{\mathcal{P}_f}\widetilde{\mathcal{P}_f}(At)$$
 is **not** a natural transforma $t' = \overline{a} < x > |a(y)| \longrightarrow \alpha(t')$

$$List(\mathbf{x}_1) \vdash \stackrel{p_1}{\longrightarrow} \varnothing$$

$$At([x_1 \mapsto p_i t])$$

$$\mathcal{P}_f\widetilde{\mathcal{P}_f}(At)([x_1 \mapsto p_i t])$$

$$At([x_1 \mapsto nil]) \int_{p_0} \int_{p_0} \widetilde{\mathcal{P}_f}(At)([x_1 \mapsto nil])$$

$$List(nil) \vdash_{p_0} \int_{p_0} \widetilde{\mathcal{P}_f}(At)([x_1 \mapsto nil])$$

The final semantics is **not compositional**:

$$[[\theta(A)]]_p \neq \overline{\theta}([[A]]_p).$$

$$p \mapsto p^{\dagger}$$

$$p \mapsto p^{\sharp}$$

$$p \mapsto p^{\ddagger}$$

$$p \mapsto p^{\ddagger}$$

$$p \mapsto p^{\ddagger}$$

Saturated Semantics

$$p \mapsto p^{\sharp}$$

Coalgebra in $\mathbf{Set}^{\mathbf{L}_{\Sigma}}$

$$\begin{array}{rcl} p^{\sharp} & : & At \to \mathcal{K}\hat{\mathcal{P}}_{f}\hat{\mathcal{P}}_{f}\mathcal{U}(At) \\ \left[\left[- \right] \right]_{p^{\sharp}} & : & At \to \mathcal{C}(\mathcal{K}\hat{\mathcal{P}}_{f}\hat{\mathcal{P}}_{f}\mathcal{U})(At) \end{array}$$

$$At \xrightarrow{I_{|At}} \mathcal{K}\mathcal{U}(At)$$

$$\downarrow^{K(p)}$$

$$\mathcal{K}\hat{\mathcal{P}}_{f}\hat{\mathcal{P}}_{f}\mathcal{U}(At)$$

 $\mathcal{U}(At)$

Saturated Semantics

Coalgebra in $\mathbf{Set}^{\mathbf{L}_{\Sigma}}$

$$p^{\sharp} : At \to \mathcal{K}\hat{\mathcal{P}}_f\hat{\mathcal{P}}_f\mathcal{U}(At)$$

$$\begin{array}{ccc} p^{\sharp} & : & At \to \mathcal{K}\hat{\mathcal{P}}_{f}\hat{\mathcal{P}}_{f}\mathcal{U}(At) \\ \left[\left[- \right] \right]_{p^{\sharp}} & : & At \to \mathcal{C}(\mathcal{K}\hat{\mathcal{P}}_{f}\hat{\mathcal{P}}_{f}\mathcal{U})(At) \end{array}$$

Saturated Semantics

p ~ term-matching $p^{\sharp} \sim \text{unification}$

Coalgebra in $\mathbf{Set}^{\mathbf{L}_{\Sigma}}$

$$p^{\sharp} : At \to \mathcal{K}\hat{\mathcal{P}}_f\hat{\mathcal{P}}_f\mathcal{U}(At)$$

$$\begin{array}{rcl} p^{\sharp} & : & At \to \mathcal{K}\hat{\mathcal{P}}_{f}\hat{\mathcal{P}}_{f}\mathcal{U}(At) \\ \left[\left[- \right] \right]_{p^{\sharp}} & : & At \to \mathcal{C}(\mathcal{K}\hat{\mathcal{P}}_{f}\hat{\mathcal{P}}_{f}\mathcal{U})(At) \end{array}$$

Term-Matching Semantics

