

連絡

■補講

July 20, 2015

□対象: 1組, 補講日: 7/27(月), 1限•2限, 113教室 □対象: 2組, 補講日: 7/27(月), 1限-2限, 122教室 ロレポート採点結果の貼り出しと提出状況の確認

■ 授業内期末試験 7/27 3限・5限

□筆記(個人)

範囲:講義スライドと演習内容(手書きの作図あり)

持ち込み:教科書、授業資料、ノート のみ

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

ソフトウェア設計法及び演習

ソフトウェア工学概論及び演習

大山 勝徳

日本大学 工学部

ソフトウェア設計法及び演習, Lesson13

- テスト技法(教科書の12章から13章まで)
 - ロトップダウンテストとボトムアップテスト
 - ロテストケースの設計
 - ロホワイトボックステスト
 - ロブラックボックステスト
- ■演習
 - ロテストケースの設計

- テスト技法(教科書の12章から13章まで)
 - ロトップダウンテストとボトムアップテスト
 - ロテストケースの設計
 - ロホワイトボックステスト
 - ロブラックボックステスト
- ■演習
 - ロテストケースの設計

トップダウンテストとボトムアップテスト(1)**べ.**

- ■システムの統合手順
 - ロモジュールのコーディング順序. テストケースの 設計、テストツールの準備に影響を与える

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

5

7

ソフトウェア設計法及び演習, Lesson13

6

テストの種類と検証内容

■ 結合テスト: 設計の結果が検証できる

■ 統合テスト:要件定義の結果が検証できる

トップダウンテストとボトムアップテスト(2) **べ**・

- ■ボトムアップテスト
 - ロ最下位モジュールから順に単体テスト. 結合テスト. 統合テスト
 - ロ上位モジュールの代用として、下位モジュールの 呼び出しが行えるテストドライバを置く
- ■トップダウンテスト
 - ロ最上位モジュールから順にテスト
 - ロ必要に応じて、下位モジュールにスタブ (テスト用のダミー)を置く

p.222 (図12.10)

(図12.6)

July 20, 2015

- テスト技法(教科書の12章から13章まで)
 - ロトップダウンテストとボトムアップテスト
 - ロテストケースの設計
 - ロホワイトボックステスト
 - ロブラックボックステスト
- ■演習
 - ロテストケースの設計

テストケースの設計

- テストケース
 - ロプログラムが要件に沿っているか検証するため の入力に対する出力や実行パスをまとめたもの
 - ロ現実にはすべてのテストケースの試行は不可能 →プログラム品質はテストケースの良否に左右される
- ホワイトボックステストとブラックボックステスト 口(テストケース例の紹介後,次節にて解説)

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

テストケース用のサンプルプログラム(2) **ペ**.

11

- 例: S = 3, T = 0, $X = 6 \rightarrow \text{testCalc}(3, 0, 6)$ ロこのテストケースから以下のことが検証可能
 - a → c → e をたどるのか
 - Xの値は仕様通りの 戻り値となるか

テストケース用のサンプルプログラム(1) **ペ.**

■ テスト用の関数: short testCalc (short S, short T, short X)

oS, T, Xをパラメータとする計算を行い.

計算結果のXを戻り値とする

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

10

- テスト技法(教科書の12章から13章まで)
 - ロトップダウンテストとボトムアップテスト
 - ロテストケースの設計
 - ロホワイトボックステスト
 - ロブラックボックステスト
- ■演習
 - ロテストケースの設計

ホワイトボックステスト

■定義

- ロプログラムあるいはモジュールの内部論理を検 証するためのテスト
- □基本的に単体テストで行い、網羅率(カバレッジ) が十分になるまで以下の方法を実施
- 1) 命令網羅
- 2) 分岐網羅
- 3) 条件網羅
- 4) 複数条件網羅

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

13

ホワイトボックステスト(命令網羅2)

15

- 命令網羅で十分か?
 - **ロ**S = 3, T = 0, X = 6 だけでは, 条件判定がFのと きに正しい結果が得られるのか不明

ホワイトボックステスト(命令網羅1)

■命令網羅

ロテストするプログラムまたはモジュール内にある すべての命令を少なくとも1回は実行

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

14

ホワイトボックステスト(分岐網羅1)

■分岐網羅

ロテストするプログラムまたはモジュール内にある すべての判定条件に対し、真と偽の分岐を少なく とも1回は実行

□右図において真と偽の 分岐をそれぞれ ✓1回以上経由する 経路の組み合わせを 考える

ホワイトボックステスト(分岐網羅2)

- 分岐網羅のテストケース1

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

17

ホワイトボックステスト(分岐網羅4)

- 分岐網羅で十分か?
 - □判定条件に複数の式がある場合,各式に対する 真と偽のテストケースが用意されないため, 必ずしも十分とはいえない
 - ロ例えばテストケース2を見てみると、

$$S = 3$$
, $T = 0$, $X = 0$

S = 3, T = 1, X = 2

の2組だけでは S!= 3 の場合が抜けるため,

式(S == 3)の真と偽を網羅しない

ホワイトボックステスト(分岐網羅3)

- 分岐網羅のテストケース2
 - □また, $3a \rightarrow c \rightarrow d \land 4a \rightarrow b \rightarrow e \land b$ たどることによっても分岐網羅となる

終了

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

18

ホワイトボックステスト(条件網羅1)

- 条件網羅
 - □判定条件について、各式に対する真と偽のテスト を少なくとも1回は実行

- 条件網羅のテストケース
 - 口分岐網羅に用いたテストケース1

S = 3, T = 0, X = 6

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

21

■ テスト技法(教科書の12章から13章まで)

ロトップダウンテストとボトムアップテスト

ロテストケースの設計

ロホワイトボックステスト

ロブラックボックステスト

■演習

ロテストケースの設計

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

22

ブラックボックステスト

- ■定義
 - □内部論理ではなく、プログラム仕様の内容を忠実 に実行しているかどうかを検証するテスト
 - 1) 同值分析
 - 2) 限界值分析
 - 3) 因果グラフ

ブラックボックステスト(同値分析1)

- ■同値分析
 - □同じ特性を持つテストデータをグループ化したものを**同値クラス**とし、各同値クラスから代表値だけを選択してテスト

23

■ 例(社員の生年月日と性別の妥当性) 「社員レコード作成プログラムで入力された社員の生年 月日と性別データの妥当性をチェックしたい」

- 同値クラスを表にまとめる
- ロ 無効データもテストできるように、以下のテストケースを設計

入力条件	有効同値クラス	無効同値クラス
年	(a) 1949 ≦ 年≦ 1991	(<mark>b</mark>) 年 < 1949, (c) 1991 < 年
月	(d) Jan, Feb,, Dec	(e) Non
日	(f) 1 ≦ 日 ≦ 31	(g) 日<1, (h) 31<日
性別	(i) M, (j) W	(k) X

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

25

ブラックボックステスト(同値分析4)

- ■例(testCalc関数の場合)
 - □問題:上記例では少なくともいくつのテストケース を作るべきか?

入力条件	有効同値クラス	無効同値クラス (型の範囲外)
S	S≦1, 1 <s<3, 3<s<="" s="3," td=""><td>S<-32768, 32767<s< td=""></s<></td></s<3,>	S<-32768, 32767 <s< td=""></s<>
Т	T<0, T=0, 0 <t< td=""><td>T<-32768, 32767<t< td=""></t<></td></t<>	T<-32768, 32767 <t< td=""></t<>
Х	X≦1,1 <x< td=""><td>X<-32768, 32767<x< td=""></x<></td></x<>	X<-32768, 32767 <x< td=""></x<>

ブラックボックステスト(同値分析3)

■ テストケース設計の結果:8種類(有効データをまとめてテストし, 無効データを個々にテストする)

1.	1950 May19	M	(<mark>a, d, f, i</mark> をカバー)
2.	1991 Jan 14	W	(<mark>a, d, f, j</mark> をカバー)
3.	1948 Dec 2	W	(無効同値クラス b をカバー)
4.	1992 Feb 20	M	(無効同値クラス c をカバー)
5.	1980 Non 15	M	(無効同値クラス <u>e</u> をカバー)
6.	1985 Jan 0	W	(無効同値クラス g をカバー)
7.	1965 May 33	M	(無効同値クラス h をカバー)
8.	1970 Dec 15	X	(無効同値クラス <u>k</u> をカバー)

入力条件	有効同値クラス	無効同値クラス	
年	(a) 1949 ≦ 年≦ 1991	(b) 年 < 1949, (c) 1991 < 年	
月	(d) Jan, Feb,, Dec	(e) Non	
日	(f) 1 ≦ 日 ≦ 31	(g) 日<1, (h) 31<日	
性別	(i) M, (j) W	(k) X	

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

26

ブラックボックステスト(限界値分析)

- ■限界値分析
 - □ 同値クラスのデータ群に対し、範囲の限界値ある いはその近辺のデータ値をもとにテスト
 - □各クラスの境界値をテスト値とする

 July 20, 2015
 ソフトウェア設計法及び演習, Lesson13
 27
 July 20, 2015
 ソフトウェア設計法及び演習, Lesson13

ブラックボックステスト(因果グラフ)

- ロプログラムの入力と出力を識別し、その因果関係 をグラフ化し、テストケースを設計する手法
- ロ以下の手順に従って行う
 - 1. プログラム仕様をもとに原因(入力)と 結果(出力)を明確にする
 - 2. 原因と結果の間の論理関係を明確にして. グラフ化する
 - 3. グラフをデシジョンテーブルに変換し、 必要なテストケースを決定する

July 20, 2015

ソフトウェア設計法及び演習, Lesson13

30

ソフトウェア設計法及び演習, Lesson13

31

演習13

32

■ テスト用の関数: char testCalc2(char S, char T, char X) □ S, T, Xをパラメータとする計算を行い, 計算結果のXを戻り値とする

まとめ

- ロトップダウンテストとボトムアップテスト
- ロテストケースの設計
- ロホワイトボックステスト
- ロブラックボックステスト
- ■演習
 - ロテストケースの設計

July 20, 2015

演習13-1

■ 前ページのtestCalc2関数について. 講義スライドのP.14からP.21を参考にして、 命令網羅と分岐網羅のテストケースを 設計せよ

演習13-2

■ testCalc2関数について,講義スライドの P.24からP.28を参考にして, 同値分析のテストケースを設計せよ■ 有効同値クラスと無効同値クラスの表も作成せよ

July 20, 2015

ソフトウェア設計法及び演習, Lesson13