Osnove mikroprocesorske elektronike

Marko Jankovec

Primeri števcev in časovnikov

ATmega 328PB

- 8 bitni števec TCNTO
- 16 bitni števci TCNT1, 3 in 4
 - Zajemanje (CAPTURE)
- 8 bitni števec TCNT2
 - Poseben oscilator za vir ure
- Skupno vsem trem
 - 2xPrimerjalnik (COMPARE)
 - Nastavljiva TOP vrednost
 - Ločeni delilniki ure (PRESCALER)
 - Neodvisna nastavitev frekvence štetja
 - Zunanji viri štetja

Osnovni 8- bitni števec – TCNTO

Osnovni 8- bitni števec – TCNTO

http://paris.fe.uni-lj.si/fileadmin/files/Izobrazevanje/OME/microschematics/ztc.html

Viri ure

http://paris.fe.uni-lj.si/fileadmin/files/Izobrazevanje/OME/microschematics/ztcpresa.html

Prekinitev ob prelivu

Dodatne funkcije TCNT0

Možnosti hitrega PWM pri 8-bitnem števcu

Mode	WGM2	WGM1	WGM0	Timer/Counter Mode of Operation	ТОР	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	ТОР	воттом
2	0	1	0	СТС	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	воттом	MAX
4	1	0	0	Reserved	_	_	_
5	1	0	1	PWM, Phase Correct	OCRA	TOP	воттом
6	1	1	0	Reserved	_	_	_
7	1	1	1	Fast PWM	OCRA	воттом	TOP

16-bitni števec v AVR – TCNT1, 3 in 4

Primeri števcev in časovnikov

2021/2022

Mode	WGM3	WGM2 (CTC1) ⁽¹⁾	WGM1 (PWM11) ⁽¹⁾	WGM0 (PWM10) ⁽¹⁾	Timer/ Counter Mode of Operation	TOP	Update of OCRnx at	TOV1 Flag Set on
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	ТОР	воттом
4	0	1	0	0	СТС	OCR4A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8- bit	0x00FF	воттом	TOP
6	0	1	1	0	Fast PWM, 9- bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10- bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICR1	воттом	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCR4A	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICR1	ТОР	воттом
11	1	0	1	1	PWM, Phase Correct	OCR4A	ТОР	воттом
12	1	1	0	0	СТС	ICR1	Immediate	MAX
13	1	1	0	1	Reserved	-	-	-
14	1	1	1	0	Fast PWM	ICR1	воттом	TOP
15	1	1	1	1	Fast PWM	OCR4A	воттом	TOP

Branje vrednosti 16-bitnega števca TCNT1

Branje 16-bitnega registra

Pisanje v 16-bitni register

STM32G4 časovniki in števci

Tip	Timer	Resolucija	Štetje	Prescaler	CCR kanali	Komp. Izhodi
Basic	TIM6, TIM7	16-bit	Gor	1-65536	0	/
General purpose	TIM15, TIM16, TIM17	16-bit	Gor	1-65536	1, 2	1
General purpose	TIM3, TIM4	16-bit	Gor/Dol	1-65536	4	/
General purpose	TIM2, TIM5	32-bit	Gor/Dol	1-65536	4	/
Advanced control	TIM1, TIM8, TIM20	16-bit	Gor/Dol	1-65536	4	4
High resolution	HRTIM	16-bit	Gor	/1 /2 /4 x2 x4 x8 x16 x32, DLL	12	Da
Low power	LPTIM					

2021/2022

Basic timer (TIM6 in TIM7)

Figure 480. Basic timer block diagram

2021/2022

General purpose TIM2, TIM5 TIM3, TIM4

Figure 358. General-purpose timer block diagram

General purpose TIM15

Figure 439. TIM15 block diagram

General purpose TIM16 - TIM17

Figure 440. TIM16/TIM17 block diagram

RM0440

2021/2022

Advanced control timers (TIM1/8/20)

Figure 269. Advanced-control timer block diagram

Način delovanja kot števec

- Input capture mode
- PWM input mode

Uporaba kot števec – PWM input mode

 The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only tim ti1fp1 and tim ti2fp2 are connected to the slave mode controller.

Način delovanja kot časovnik

- Output compare mode
- PWM mode
- One-pulse mode
- Encoder mode

Sprememba delilnika ure med delovanjem

Figure 483. Counter timing diagram with prescaler division change from 1 to 4

2021/2022

Primer preliva (update event) TIMX_ARR = 0x36

Figure 486. Counter timing diagram, internal clock divided by 4

Vpliv ARPE=1: TIMx_ARR register is buffered

Vpliv ARPE=0: TIMx_ARR register is unbuffered

Štetje gor/dol, poravnano na sredino

Figure 372. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

Capture/compare kanal

Figure 384. Capture/compare channel 1 main circuit

Izhodna stopnja časovnika

Figure 385. Output stage of capture/compare channel (channel 1, idem ch.2, 3 and 4)

Output compare mode

Hitri PWM – Edge aligned

Figure 388. Edge-aligned PWM waveforms (ARR=8)

Fazno pravilni PWM – Center aligned

Figure 389. Center-aligned PWM waveforms (ARR=8)

Asimetrični PWM

• Dva fazno pravilna PWM, zakasnjena za določen čas

Figure 1. Asymmetric PWM mode versus center Aligned PWM mode

Kombinirani PWM

Dva PWM, kombinirana z ALI ali IN logiko

Kombinirani tri-fazni PWM

Generacija mrtvih časov

Protifazno krmiljenje polmostiča

Figure 6. Two signals are generated with insertion of a deadtime

Povečanje ločljivosti - dithering

Figure 490. Dithering principle

Povečanje ločljivosti s tresenjem - dithering

Povečanje ločljivosti PWM s tresenjem

Figure 1. Duty-cycle adjustment for PWM dithering technique

$$R_{PWM} = \frac{f_{clk}}{f_{PWM}}$$

$$R_{PWM+dith} = R_{PWM} + R_{dith}$$

$$N_{period_dith} = 2^{R_{dith}}$$

Vpliv povečane ločljivosti s tresenjem

Figure 8. Dithering effect applied on the rising slope of the triangular waveform

Monostabilni način – One-pulse mode

Figure 400. Example of One-pulse mode

Monostabilni način: Retriggerable one-pulse mode

Enkoderski način – kvadraturni enkoder

Enkoderski način – kvadraturni enkoder

Figure 405. Example of counter operation in encoder interface mode

2021/2022

High resolution timer **HRTIM**

HRTIM osnovne frekvence

DLL –delay locked loop

Timer	TIMx	HRTIMER
Timer resolution Equivalent Clock frequency		184ps 5.44GHz
Resolution (F _{PWM} = 300kHz)	566 levels (9.1 bit)	18133 levels (14.1 bit)
Frequency adjustment step (F _{PWM} = 300kHz)	532Hz	16.5 Hz

Table 215. Timer resolution and min. PWM frequency for f_{HRTIM} = 170 MHz

CKPSC[2:0]	Prescal- ing ratio	f _{HRCK} equivalent frequency	Resolution	Min PWM frequency
000	1	170 x 32 MHz = 5.44 GHz	184 ps	83.0 kHz
001	2	170 x 16 MHz = 2.72 GHz	368 ps	41.5 kHz
010	4	170 x 8 MHz = 1.36 GHz	735 ps	20.8 kHz
011	8	170 x 4 MHz = 680 MHz	1.47 ns	10.4 kHz
100	16	170 x 2 MHz = 340 MHz	2.94 ns	5.19 kHz
101	32	170 MHz	5.88 ns	2.59 kHz
110	64	170/2 MHz = 85 MHz	11.76 ns	1.30 kHz
111	128	170/4 MHz = 42.5 MHz	23.53 ns	0.65 kHz

Posamezne enote časovnikov znotraj HRTIM

Aplikacija HRTIM – sinhroni pretvornik navzdol

Figure 263. Synchronous rectification depending on output current

Figure 264. Buck with synchronous rectification

Časovnik z nizko porabo energije - LPTIM

LPTIM Kernel dock domain Up/down lptim in2 1 lptim_in2_2 lptim_in2_3 En∞der Glitch lptim_in2_4 filter LPTIM IN2 APB dock lptim in1 1 lptim_in1_2 lptim_in1_3 domain Glitch 32-bit APB bus lptim_in1_4 filter LPTIM_IN1 **LPTIM** lptim ext trigx register interface Synchronzation LPTIM ETR CNTSTRT/ Glitch APB dock SNGSTRT 16-bit ARR filter Mux trigger LPTIM IRQ interface interrupt 16-bit counter LPTIM OUT RCC Count mode APB CLK -> lptim_out⁽¹⁾ Prescaler LSE -CLKMUX LSI → HSI16 → 16-bit compare Wakeup -MSv47458V2

Figure 494. Low-power timer block diagram

RM0440

Ura realnega časa - RTC

