

Figure 1: Problem 1: Part (i)

CS335: Compiler Design Assignment 3

Yash Gupta (190997)

1 Problem 1

1.1 Part (i)

Figure 1

1.2 Part (ii)

The value at V computed by the translation scheme for the input string 43#43@443 is 21.

1.3 Part (iii)

The grammar is S-attributed as it uses only synthesized attributes.

Figure 2: Problem 2: Annotated parse tree (part 1)

2 Problem 2

2.1 Annotated parse tree

Figures 2 and 3

Figure 3: Problem 2: Annotated parse tree (part 2)

2.2 3AC code sequence

 $t_1 = i * 240$ $t_2=j*24$ $t_3 = t_1 + t_2$ $t_4=k*4$ $t_5 = t_3 * t_4$ $t_6 = C[t_5]$ $t_7=i*32$ $t_8=k*4$ $t_9 = t_7 + t_8$ $t_{10}=A[t_9] \\$ $t_{11}=i*24$ $t_{12}=j*4$ $t_{13} = t_{11} + t_{12} \\$ $t_{14}=B[t_{13}] \\$ $t_{15}=t_{10}/t_{14} \\$ $t_{16} = t_6 - t_{15}$

3 Problem 3

3.1 Part (i)

Production	Semantic Actions
$S \rightarrow id = E$	gen(symtop.get(id.lexeme) " = " E.addr)
$S \to L = E$	gen(L.array.base "[" L.addr "]" " = " E.addr)
$E \rightarrow E_1 + E_2$	E.addr = new Temp();
	$\operatorname{gen}(\operatorname{E.addr}$ " = " $\operatorname{E_1.addr}$ " + " $\operatorname{E_2.addr}$)
$E \to L$	$\mathrm{E.addr} = \mathrm{L.addr}$
$L o ext{id}$	L.addr = symtop.get(id.lexeme)
$L \rightarrow id[Elist]$	L.array = symtop.get(id.lexeme)
	L.type = L.array.type.elem;
	L.addr = new Temp();
	$\gcd(L.addr " = "L.array.base" "["Elist.addr"]")$
$Elist \rightarrow E$]	Elist.addr = new Temp()
	gen(Elist.addr = E.addr * Elist.type.width)
$Elist \rightarrow E, Elist_1$	t = new Temp()
	$\operatorname{Elist.addr} = \operatorname{new} \operatorname{Temp}()$
	gen(t = E.addr * Elist.type.width)
	gen(Elist.addr = t + Elist1.addr)

3.2 Part (ii)

gen(): generates 3AC code

new Temp(): creates new temporary variable

addr: used for computing the offset for array reference

array: points to the symbol table entry for the array name. L.array.base gives the base address of the array

type: the type of the array generated by L. For an array of type t, t.width is the width of type t and t.elem gives the element type

3.3 Part (iii)

Figure 4

Figure 4: Problem 3: Part (iii)

3.4 Part (iv)

$$t_1 = j * 40$$

 $t_2 = i * 4$
 $t_3 = t_1 + t_2$
 $t_4 = A[t_3]$
 $t_5 = c + t_4$
 $x = t_5$