Cholesky Factorization

Project of CS594
By: Amir Saadat
PhD student of Chemical and Biomolecular Eng. Dep.
University of Tennessee

Motivation:

- Application in Monte Carlo simulation.
- Brownian Dynamic Simulation of Bead-rod and Bead-Spring polymers with Hydrodynamic Interaction .
- Solving linear system of equations (resulting in symmetric positive definite A in Ax=b)

• ...

Definition:

A = L . LT

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{21} & a_{22} & a_{32} & a_{42} \\ a_{31} & a_{32} & a_{33} & a_{43} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 & 0 \\ l_{21} & l_{22} & 0 & 0 \\ l_{31} & l_{32} & l_{33} & 0 \\ l_{41} & l_{42} & l_{43} & l_{44} \end{bmatrix} * \begin{bmatrix} l_{11} & l_{21} & l_{31} & l_{41} \\ 0 & l_{22} & l_{32} & l_{42} \\ 0 & 0 & l_{33} & l_{43} \\ 0 & 0 & 0 & l_{44} \end{bmatrix}$$

$$\begin{bmatrix} l_{11}^{2} & l_{11}l_{21} & l_{11}l_{31} & l_{11}l_{41} \\ l_{11}l_{21} & l_{21}^{2} + l_{22}^{2} & l_{21}l_{31} + l_{22}l_{32} & l_{21}l_{41} + l_{22}l_{42} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^{2} + l_{32}^{2} + l_{33}^{2} & l_{31}l_{41} + l_{32}l_{42} + l_{33}l_{43} \\ l_{11}l_{41} & l_{21}l_{41} + l_{22}l_{42} & l_{31}l_{41} + l_{32}l_{42} + l_{33}l_{43} & l_{41}^{2} + l_{42}^{2} + l_{43}^{2} + l_{44}^{2} \end{bmatrix}$$

Using Row Cholesky in Serial Comparison with dpotrf_() LAPACK

Data Storage

$ \begin{pmatrix} a_{00} \\ a_{10} \\ a_{20} \end{pmatrix} $	a_{11} a_{21}	a_{22}	$a_{00} \ a_{10} \ a_{20} \ * \ a_{11} \ a_{21} \ * \ * \ a_{22}$
$\left(\begin{array}{c} a_{00} \\ a_{10} \\ a_{20} \end{array}\right)$	a_{11} a_{21}	a_{22}	$a_{00} * * a_{10} a_{11} * a_{20} a_{21} a_{22}$

Advantages:

- √ Row major access pattern in doing Column Cholesky
- ✓ Ease of access
- ✓ Decreasing the amount of cache misses

Disadvantage

• Increment in floating point operations

$$a_{i,j} \rightarrow a_{i,j*(2n-j-1)/2}$$

Parallelizing in Shared Memory using OpenMP

```
Cholesky_Parallel_OMP( ) {
    for j = 1 to n
    begin
    Pick up task Task_col(j) from task queue
    end
}
```

```
Col_mod( j, k ) {
    for i = j to n
    begin
        A [i, j] = A [i, j] – A [j, k] * A [i, k]
    end
    }
```

```
Task_col(j) {
	for k = 1 to j-1
	begin
	Wait until the ready[k] flaq has been set
	Perform Col_mod(j,k) operation
	end
	Perform Col_div(j) operation
	Set the ready[j] flag
	}
```

MKL_CBLAS calls:

- ✓ Cblas_daxpy()
- √ Cblas_dscal()

Time

UNPACKED

	Sequential run- time (sec)	P = 2		p = 4		p = 8	
Order of matrix (n)		Parallel run- time (sec)	Speedup	Parallel run- time (sec)	Speedup	Parallel run- time (sec)	Speedup
500	0.066575	0.573751	0.11	0.253307	0.26	0.180856	0.39
1500	2.741704	17.194054	0.15	5.325873	0.52	5.500979	0.5
2000	6.591150	15.413304	0.42	11.252013	0.58	17.690219	0.37
2500	14.660367	63.760863	0.23	22.191439	0.66	19.195476	0.76
3000	26.775183	44.543718	0.60	55.401160	0.48	29.904158	0.90
3500	40.449806	165.01936	0.24	53.391307	0.75	43.333751	0.93
5000	152.30613	345.0206	0.44	222.24456	0.68	121.26268	1.25

1	Order of matrix (n)	Sequential run- time (sec)	P = 2		p = 4		p = 8		p = 8, PLASMA
			Parallel run- time (sec)	Speedup	Parallel run- time (sec)	Speedup	Parallel run- time (sec)	Speedup	Speedup
	500	0.025132	0.072621	0.35	0.011709	2.14	0.005930	4.23	1.33
	1500	0.504532	0.344995	1.46	0.168797	2.98	0.114359	4.41	5.01
	2000	1.492682	0.885646	1.68	0.412234	3.62	0.277910	5.37	5.37
	2500	3.784008	2.047774	1.85	1.042373	3.63	0.687795	5.50	6.09
	3000	6.834918	3.703445	1.85	2.033217	3.36	1.268673	5.38	6.01
	3500	8.773805	5.767410	1.52	3.036204	2.88	2.072095	4.23	6.21
	5000	34.09648	16.31397	2.00	8.589718	3.96	5.906355	5.77	7.23

PACKED

Parallelizing in Distributed Memory using MPI

Summary:

- I. Powerful LAPACK dpotrf() in serial Cholesky.
- Column Cholesky in Parallelization (shared Memory).
- 3. Significant improvement of parallel Cholesky by using packed storage.
- 4. Efficient PLASMA in multicore system.
- 5. Block Cyclic distribution and high performance as a result in scaLAPACK.

References:

- A. George, M.T. Heath and J. Liu, Parallel Cholesky Factorization on Shared-Memory Multiprocessor, Linear Algebra and its Applications 77:165-187, 1986.
- 2. Ref[2]. http://www.netlib.org/blas/blast-forum/chapter2.pdf