TD 3: Estimation d'erreur a posteriori et Approximation de flux

1 Position du problème

Soit Ω un ouvert régulier borné de $\mathbb{R}^d(d=2,3), f\in L^2(\Omega), k,\alpha>0$. On considère l'équation aux dérivées partielles

$$\begin{cases} -\operatorname{div}(k\nabla u) + \alpha u = f & \operatorname{dans} \Omega \\ u = 0 & \operatorname{sur} \partial\Omega \end{cases}$$
 (1)

On rappelle que la formulation variationnelle associée à cette équation aux dérivées partielles consiste à déterminer $u \in V := H_0^1(\Omega)$ tel que pour tout $v \in V$,

$$\int_{\Omega} k \nabla u \cdot \nabla v + \alpha u v dx = \int_{\Omega} f v dx$$

Afin de déterminer une approximation numérique de u, on utilise une méthode de type Galerkin. En d'autres termes, on considère un sous espace V_h de dimension fini de V et on note u_h l'élément de V_h tel que pour tout $v_h \in V_h$,

$$\int_{\Omega} k \nabla u_h \cdot \nabla v_h + \alpha u_h v_h dx = \int_{\Omega} f v_h dx$$

On introduit alors l'erreur d'approximation $e_h = u_h - u$, on connait certaines estimations a priori. En particulier si on utilise la méthode des éléments finis \mathbb{P}_1 de Lagrange, il existe une constante C indépendante de f telle que si le potentiel u est régulier et h est la taille du maillage (supposé régulier) de Ω , on a

$$||e_h||_V \le Ch||u||_{H^2(\Omega)}$$

où on note $\|\cdot\|_V$ la norme d'énergie, c'est à dire

$$||v||_V = \left(\int_{\Omega} k \nabla v \cdot \nabla v + \alpha |v|^2 dx\right)^{1/2}$$

Malheureusement, on ne connait a priori pas la solution u. De ce fait, l'estimation précédente ne fournit qu'un ordre de grandeur de l'erreur. On souhaite majorer l'erreur par une quantité qui ne fait intervenir que des données connues ou calculables explicitement.

Question 1. Estimation a posteriori. L'erreur d'approximation e_h est elle même solution d'un problème variationnel. En effet $e_h \in V$ est tel que pour tout $v \in V$,

$$\int_{\Omega} k \nabla e_h \cdot \nabla v + \alpha e_h v dx = \int_{\Omega} k \nabla u_h \cdot \nabla v + \alpha u_h v dx - \int_{\Omega} f v dx$$

montrer

$$\forall \sigma \in H(\text{div}) := \{ \tau \in L^2(\Omega)^n \text{ tel que } \nabla \cdot \tau \in L^2(\Omega) \}$$

on a

$$\frac{1}{2} \|e_h\|_V^2 \le -G_h(\sigma), \tag{2}$$

$$G_h(\sigma) = -\frac{1}{2} \int_{\Omega} k^{-1} \left| \sigma - k \nabla u_h \right|^2 dx - \frac{1}{2} \int_{\Omega} \alpha^{-1} \left| f - \alpha u_h + \nabla \cdot \sigma \right|^2 dx.$$

Question 2. Approximation du flux. On cherche à optimiser le second membre de l'inégalité (2) sur un espace W_h . Plus précisément, on introduit $\sigma_h \in W_h \subset H(\text{ div})$ tel que

$$G_h\left(\sigma_h\right) = \max_{\tau \in W_h} G_h(\tau)$$

Montrer que $\sigma_h \in W_h$ est tel que pour tout $\tau \in W_h$,

$$\int_{\Omega} k^{-1} \sigma_h \cdot \tau dx + \int_{\Omega} \alpha^{-1} \left(f + \nabla \cdot \sigma_h \right) \nabla \cdot \tau dx = 0.$$

En déduire que σ_h est une approximation du flux $\sigma = k\nabla u$.

2 Cas unidimensionnel

On considère le cas $\Omega = (0, 1)$. On utilise une discrétisation de type éléments finis afin de déterminer une approximation u_h du potentiel u et approximation σ_h du flux σ . Plus précisément, on décompose le domaine Ω en N+1 intervalles (x_i, x_{i+1}) avec $i = 0, \dots, N$ où $x_i = ih$ et h = 1/(N+1).

On introduit l'espace V_h des éléments finis \mathbb{P}_1 sur (0,1) s'annulant sur le bord du domaine. Autrement dit,

$$V_h = \left\{ v_h \in H^1_0(\Omega) \text{ tel que } v_h|_{(x_{i+1}, x_i)} \in \mathbb{P}_1 \text{ pour tout } i = 0, \cdots, N \right\}$$

Par ailleurs, on note U_h les coordonnées de la solution u_h .

Question 3. Conditions d'optimalité pour le potentiel. Montrer que U_h est solution du système linéaire

$$A_h U_h = b_h, (3)$$

où A_h est la matrice $A_h = kh^{-1}K + \alpha hM$, avec, K, M deux matrices et b un vecteur à déterminer.

<u>Question 4</u>. Calcul du potentiel. Calculer numériquement la solution de (3) pour une fonction f constante. Tracer le graphe de u.

Application numérique : N = 100, f = 1, k = 1 et $\alpha = 1$.

On procède de manière similaire pour le calcul de l'approximation du flux $\Sigma_h \in \mathbb{R}^{N+1}$. On choisit comme espace d'approximation pour le flux σ_h l'ensemble des éléments finis \mathbb{P}_1 ,

$$W_h = \left\{ \sigma_h \in H^1(\Omega) \text{ tel que } v_h|_{(x_{i+1}, x_i)} \in \mathbb{P}_1 \text{ pour tout } i = 0, \dots, N \right\}$$

On note Σ_h les coordonnées de σ_h , approximation de Galerkin de σ_h sur W_h .

Question 5. Conditions d'optimalité pour le flux. Montrer que Σ_h est solution du système

$$B_h \Sigma_h = (k^{-1}hM' + \alpha^{-1}h^{-1}K')\Sigma_h = c_h, \tag{4}$$

avec K', M' deux matrices et c_h un vecteur à déterminer.

Question 6. Calcul du flux. Calculer numériquement la solution de (4). Tracer le graphe de σ_h en utilisant les mêmes valeur numériques qu'à la question précédente. On introduit l'espace X_h des éléments finis \mathbb{P}_{1^-} discontinus, ensemble des fonctions sur (0,1) dont les restrictions aux intervalles (x_i, x_{i+1}) sont affines (elles peuvent avoir des discontinuités aux noeuds x_i).

$$X_h = \left\{ \tau_h : (0,1) \to \mathbb{R} \text{ tel que } \tau_h|_{(x_i, x_{i+1})} \in \mathbb{P}_1 \text{ pour tout } i = 0, \dots, N \right\}$$

On munit X_h de la base des $(\psi_k)_{k=0,\dots,2N+1}$ définie pour tout $i=0,\dots,N$ et k=2i par

$$\psi_k|_{(x_i,x_{i+1})}(x_i) = 1, \quad \psi_k|_{x_i,x_{i+1}}(x_{i+1}) = 0$$

et $\psi_k(x) = 0$ pour $x \in (0,1) \setminus (x_i, x_{i+1})$ et pour k = 2i + 1 par

$$|\psi_k|_{(x_i,x_{i+1})}(x_i) = 0, \quad |\psi_k|_{(x_i,x_{i+1})} = 1,$$

et $\psi_k(x) = 0$ pour $x \in (0,1) \setminus (x_i, x_{i+1})$.

Question 7. Discrétisation de l'opérateur d'injection V_h dans W_h . Montrer que la matrice I_V qui associe à U_h , coordonnées de u_h dans la base de V_h , ses coordonnées dans W_h est la matrice $(N+2)\times N$ de la forme

$$I_V = \left(\begin{array}{c} 0 \\ \mathrm{Id} \\ 0 \end{array}\right)$$

Question 8. Discrétisation de l'opérateur d'injection W_h dans X_h . Montrer que la matrice I_W qui associe à Σ_h , coordonnées de σ_h dans W_h , ses coordonnées dans X_h est la matrice $2(N+1)\times (N+2)$ de la forme

$$I_W = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & c & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & c & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \text{ avec } c = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Question 9. Discrétisation de l'opérateur gradient sur X_h . Soit v_h un élément de X_h et $\overline{\tau_h \in X_h}$ défini pour tout $i = 0, \dots, N$ par $\overline{\tau_h}|_{(x_i, x_{i+1})} = \nabla v_h|_{(x_i, x_{i+1})}$. En notant V et T les coordonnées respectives de v_h et $\overline{\tau_h}$ dans X_h , montrer que

$$T = D_h V$$

où D_h est la matrice $2(N+1) \times 2(N+1)$

$$D_h = h^{-1} \begin{pmatrix} D & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & D \end{pmatrix} \text{ avec } D = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$$

Question 10. Discrétisation de l'opérateur de masse sur X_h . Soit τ_h un élément de X_h de coordonées T. Montrer que

$$\int_{\Omega} |\tau_h|^2 \, dx = N_h T \cdot T$$

οù

$$N_h = \frac{h}{6} \begin{pmatrix} N & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & N \end{pmatrix} \text{ avec } N = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Question 11. Estimation d'erreur. Pour simplifier légèrement l'analyse, on suppose que $f \in \overline{X_h}$. Soit $\overline{F_h}$ les coordonnées de f dans X_h . Déduire de l'estimation (2) que

$$2\|e_{h}\|_{V} \leq k^{-1}N_{h}\left(I_{W}\Sigma_{h} - kD_{h}I_{W}I_{V}U_{h}\right) \cdot \left(I_{W}\Sigma_{h} - kD_{h}I_{W}I_{V}U_{h}\right) + \alpha^{-1}N_{h}\left(F_{h} - \alpha I_{W}I_{V}U_{h} + D_{h}I_{W}\Sigma_{h}\right) \cdot \left(F_{h} - \alpha I_{W}I_{V}U_{h} + D_{h}I_{W}\Sigma_{h}\right)$$
(5)

À l'aide de cette estimation, calculer une majoration de l'erreur $||e_h||_V$ effectuée sur le calcul u. On utilisera à nouveau les mêmes données que dans les questions précédentes avec N = 100 et N = 1000.

3 Cas bidimensionnel

On considère dorénavant le cas bidimensionnel avec comme domaine Ω le disque unité.

Question 12. Calcul du potentiel. Déterminer à l'aide de FreeFem++ une approximation du potentiel à l'aide de la méthode des éléments finis P_1 . On utilisera un maillage comportant une densité δn de mailles par unité de longueur avec $\delta n = 10$. Par ailleurs, on choisira f = 1, $\alpha = 1$ et k = 1. Représenter les isovaleurs du potentiel et donner la moyenne de u_h sur Ω .

Question 13. Calcul du flux. Déterminer à l'aide de FreeFem++ une approximation du flux. On utilisera des éléments de Raviart-Thomas de degré zéro (RT0 sous FreeFem++). On utilisera le même maillage et les mêmes données que ceux utilisés pour le calcul du potentiel dans la question précédentes. Représenter le champs σ_h ainsi obtenu sur un graphique.

<u>Question 14</u>. Estimation d'erreur. Déterminer une borne sur l'erreur $||e_h||_V$. On utilisera à nouveau le même maillage et les mêmes données qu'aux deux questions précédentes.

Question 15. Taux de convergence. Tracer le graphe, en coordonnées logarithmiques, de l'erreur $||e_h||_V$ en fonction de la densité δn de points sur la frontière par unité de longueur (on choisira δn variant de 10 à 100). Quel est le taux de convergence observé. Comparer le taux ainsi obtenu au taux théorique de convergence de l'erreur.