Winter 2023 MACT 2132

Linear Algebra

First Exam

Name: ID number:		
	Name:	ID number:

Question 1 (4 marks). Find the solution set of the system of linear equations below using Gaussian or Gauss–Jordan elimination. State which elementary row operations are used.

$$x + y - z = 0$$
$$x + 2y - z = 2$$
$$2x + 4y - 2z = 4$$

Question 2 (3 marks). Consider the matrix A below.

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 0 & 9 \\ 0 & 1 & 1 \end{bmatrix}.$$

- (i) Find the determinant of A.
- (ii) As A is invertible, find the inverse of A.

Question 3 (6 marks). Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be 2×2 matrices where their entries are given by $a_{ij} = i + j$ and $b_{ij} = i \cdot j$.

(i) Write down the matrices A and B.

(ii) Find the matrix C where $C = (3A + AB)^2$.

Question 4. Answer the following.

- (i) (1 mark) Define what it means for a square matrix to be invertible.
- (ii) (1 mark) Suppose A is invertible. Prove that $det(A^{-1}) = 1/det(A)$.

(iii) (3 marks) Suppose that A is a 3×3 matrix. The matrix B is obtained from A by multiplying the second row of A by a nonzero real number c. Prove that $\det(B) = c \det(A)$.

Winter 2023 MACT 2132

Question 5 (12 marks). Determine	e whether each of the	e following statements is	true or false.
Moreover, explain your answer.			

1. Suppose that A is an invertible matrix. If matrix B is row equivalent to A, then B must be invertible too.

True False

2. If A is a singular square matrix, then A^2 must be singular too.

True False

3. Any square matrix in reduced row echelon form (RREF) contains only 0s and 1s.

True False

4. For any $n \times n$ matrices A and B, it is true that $\det(A+B) = \det(A) + \det(B)$.

True False

5. Let A and B be $n \times n$ matrices. If det(A) = det(B), then A = B.

True False

6. Choose any real number $c \in \mathbb{R}$. Then one can find a square matrix A such that $\det(A) = c$.

True False

Best wishes!

Daoud Siniora