Dans tout l'exercice, on notera $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 et I la matrice

identité d'ordre 3. On considère la matrice
$$A$$
 définie par : $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{bmatrix}$

L'objet de cet exercice est déterminer l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.

Partie A: Étude de la matrice A

- 1. Calculer les matrices $(A-I)^2$ et $(A-I)^3$.
- **2.** En déduire l'ensemble des valeurs propres de A.
- **3.** La matrice A est-elle inversible? Est-elle diagonalisable?

Partie B: Recherche d'une solution particulière

On note, pour tout $x \in]-1;1[, \varphi(x) = \sqrt{1+x}]$.

- 4. Justifier que la fonction φ est de classe \mathcal{C}^2 sur]-1;1[et déterminer les valeurs de $\varphi'(0)$ et $\varphi''(0)$.
- 5. En utilisant la formule de Taylor-Young pour φ en 0 à l'ordre 2, déterminer un réel α non-nul tel que : $\sqrt{1+x} = 1 + \frac{1}{2} \cdot x + \alpha \cdot x^2 + x^2 \cdot \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$. **6.** On note : $P(x) = 1 + \frac{1}{2} \cdot x + \alpha \cdot x^2$ la fonction polynomiale de degré 2 ainsi obtenue.
- Développer $(P(x))^2$.
- **7.** Soit C = A I.

En utilisant les résultats de la question 1., vérifier que $(P(C))^2 = A$. Expliciter alors une matrice M telle que $M^2 = A$.

Partie C : Résolution complète de l'équation

On munit l'espace vectoriel \mathbb{R}^3 de sa base canonique $\mathcal{B}=(e_1,e_2,e_3)$. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base \mathcal{B} est la matrice A.

Dans cette partie, on pose : $T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 8. Soient u, v, w les vecteurs définis par : $\begin{cases} w = (1, 0, 1), \\ v = f(w) w, \\ u = f(v) v. \end{cases}$
 - b) Démontrer que la famille $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 .
 - c) Déterminer la matrice représentative de f dans la base \mathcal{B}' .
 - d) En déduire qu'il existe une matrice $P \in \mathcal{M}_3(\mathbb{R})$ inversible telle que $T = P^{-1} \cdot A \cdot P$.
- 9. Soit $N \in \mathcal{M}_3(\mathbb{R})$.
 - a) Montrer que si $N^2 = T$, alors NT = TN. En déduire que N est de la forme : $N = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$, où a, b, c sont trois réels.
 - b) Démontrer alors que l'équation matricielle $N^2 = T$ admet exactement deux solutions : N_1 et N_2 .

- 10. Montrer que l'équation matricielle $M^2=A$, d'inconnue $M\in\mathcal{M}_3(\mathbb{R})$ admet exactement deux solutions que l'on écrira en fonction de P,P^{-1},N_1 et N_2 .
- 11. L'ensemble E des matrices M appartenant à $\mathcal{M}_3(\mathbb{R})$ telles que $M^2=A$ est-il un espace vectoriel?