探索

本多 淳也 jhonda@k.u-tokyo.ac.jp http://www.ms.k.u-tokyo.ac.jp

参考書

- ■ラッセル, ノーヴィグ: エージェントアプローチ 人工知能 第2版, 共立出版, 2008年
- ■谷口:イラストで学ぶ人工知能概論, 講談社, 2014年

講義の流れ

- 1. 状態空間
 - A) 15パズル
 - B) 迷路
- 2. コスト無しグラフの探索
- 3. コスト付きグラフの探索
- 4. ゲーム木の探索

15パズル

- ■目的:与えられた配置から元の配置に戻す
 - できればなるべく少ない手数で完了したい(可能か?)
- ルール:
 - 一度に動かせるのは1パネルのみ
 - 空きマスに隣のパネルをずらす操作のみ可能

状態空間

- ■ありうる局面の一つ一つを状態とよび, それら全体からなる集合を状態空間という
- ■状態の数は 16! 通り (実際にはその半数は到達不可能)

状態遷移

■以下の状態から遷移できるのは4通り

状態空間の探索

■目的:初期状態から出発して,許される状態 遷移を繰り返し,最終状態へたどり着く

■ これは, グラフ(graph)の探索(search)問題と 等価(ノード: 状態, エッジ: 状態遷移)

講義の流れ

- 1. 状態空間
 - A) 15パズル
 - B) 迷路
- 2. コスト無しグラフの探索
- 3. コスト付きグラフの探索
- 4. ゲーム木の探索

迷路問題

■ロボットをスタートからゴールまで誘導する

状態と行動

- ■状態(state) s : ロボットが移動できる場所
- ■行動(action) a:ロボットが進む方向

- ■状態や行動が連続値を取ることもある
 - 例: ロボットのx-y座標, 進む角度

状態空間の探索

■離散状態,離散行動,確定的状態遷移のとき,迷路問題はグラフの探索問題と等価

講義の流れ

- 1. 状態空間
- 2. コスト無しグラフの探索
- 3. コスト付きグラフの探索
- 4. ゲーム木の探索

用語

- ■オープンリスト(open list):
 - これから探索するノードの候補リスト
- ■クローズドリスト(closed list):
 - 探索が終わったノードのリスト

- ■スタック(stack):
 - 後入れ先出し

探索の基本アルゴリズム

- ■初期化:
 - オープンリストは初期状態のみ
 - クローズドリストは空
- ■オープンリストが空になるまで以下を繰り返す
 - オープンリストから(何らかの規準で)状態sを取り出す
 - sをクローズドリストに追加する
 - sが最終状態ならば探索終了
 - sから遷移可能でまだクローズドリストに入っていない 状態をオープンリストに追加する
- ■オープンリストからどの要素を選ぶか?

深さ優先探索 (depth-first search)

- ■行き止まりに当たるまで進み、ゴールが見つからなかったら直近の分岐に戻って別の道を探す
- メモリ使用量が少ない
- ③ ゴールが近くにあっても、他の深い別れ道に迷い 込むと時間がかかる
- ③ ゴールが複数ある時, 一番近くのものが見つかる とは限らない ①

深さ優先探索アルゴリズム

- ■オープンリストはスタックにする(後入れ先出し)
- ■初期化:

- ●オープンリストは初期状態のみ
- クローズドリストは空
- ■オープンリストが空になるまで以下を繰り返す
 - ・オープンリストの先頭の状態sを取り出す
 - sをクローズリストに追加する
 - ・sが最終状態ならば探索終了
 - sから遷移可能でまだクローズリストに入っていない 状態をオープンリストの先頭に追加する

幅優先探索

(breadth-first search)

- 分かれ道に来たらそれぞれの道を一歩ずつ進み、 ゴールが見つからなかったらそれぞれの道をもう 一歩ずつ進む
- ゴールが近くにある時、早く見つかる.
- ゴールが複数ある時、一番近くのものが見つかる
- ⊗ 分かれ道での分岐数が多いとメモリ使用量が多い

幅優先探索アルゴリズム

- ■オープンリストはキューにする(先入れ先出し)
- ■初期化:

- オープンリストは初期状態のみ
- クローズドリストは空
- ■オープンリストが空になるまで以下を繰り返す
 - ・オープンリストの末尾の状態sを取り出す
 - sをクローズリストに追加する
 - ・sが最終状態ならば探索終了
 - sから遷移可能でまだクローズリストに入っていない 状態をオープンリストの先頭に追加する

演習

- ■有向グラフ(directed graph)に対しても同様に 探索を行える
- ■以下の有向グラフに対して、ノードAから深さ優先探索・幅優先探索で訪れるノードの順をそれぞれ求めよ. ただし、左側のノードを優先する

クローズドリストの有無

- ■クローズドリストと照合するのは時間・メモリが かかる
- ■クローズドリストなしで探索を行うと:
 - 幅優先探索: ABCEDFG...
 - 深さ優先探索: ABDFEABDFEABDFE...
- ■深さ優先探索は無限ループに陥る

反復深化探索

(iterative deepening search)

- ■深さに制限をつけて深さ優先探索を行い、徐々に 深さを深くしていく
- ■右の例では
 - 深さ制限1: ABCE
 - 深さ制限2: ABDFCGEF
 - 深さ制限3: ABDFECGEFB

Wikipediaより

- ゴールが近くにある時、早く見つかる
- ゴールが複数ある時、一番近くのものが見つかる
- 窓 同じノードを何度も訪れる(分岐が多いと影響小)

コスト無し探索:まとめ

■深さ優先探索、幅優先探索、反復深化探索は、 グラフに関する特別な知識を使わずにオープン リストから状態を選択することから、ブラインド 探索(blind search)とよばれる

	深さ優先探索	幅優先探索	反復深化探索
完全性(必ず解が見つかるか) (completeness)	mが有限なら Yes	Yes	Yes
時間計算量 (time complexity)	$O(b^m)$	$O(b^d)$	$O(b^d)$
空間計算量 (space complexity)	O(bm)	$O(b^d)$	O(bd)
最適性(一番近くの解が見つかるか) (optimality)	No	Yes	Yes

b:最大分岐数,d:一番浅い解の深さ,m:最大の深さ

講義の流れ

- 1. 状態空間
- 2. コスト無しグラフの探索
- 3. コスト付きグラフの探索
- 4. ゲーム木の探索

コスト付きグラフ

■各エッジに遷移コストが割り当てられている

貪欲探索(greedy search)

- ■現在の状態からの遷移コストが最小の状態を選ぶ
 - 深さ優先探索に対応

最適探索(optimal search)

- ■初期状態からの遷移コスト和が最小の状態を選ぶ
 - 各コストが1だと幅優先探索になる
 - ダイクストラ法(Dijkstra's algorithm)ともよばれる

様々な探索法

- ■ブラインド探索:グラフに関する特別な知識を 使わずにオープンリストから状態を選択する
 - 貪欲探索(次のコスト最小)
 - 最適探索(累積コスト最小)
- ■ヒューリスティック探索

(最良優先探索, best-first search):

グラフに関する何らかの知識を使ってオープンリストから適切と思われる状態を選択

- 貪欲最良優先探索
- A*探索

ヒューリスティクス(heuristics):

問題に関する事前知識を使って、 最適とは限らないが、十分に精度 の良い解を簡便に得る方法

15パズル

- ■ダイクストラ法での探索は非常に遅い
- ■一般に24パズル、35パズル、48パズル、…の 最短手順の探索は計算量理論的にはほぼ不可能 (NP困難)
- ■最短手順を諦める/最悪ケースの場合は諦める ことによって良い手順を高速に求めたい

貪欲最良優先探索

- $\widehat{h}(s)$ を最小にする状態を選ぶ
 - h(s): s から最終状態までの遷移コスト和の 最小値
 - ullet $\widehat{h}(s)$: h(s)の推定(ヒューリスティック関数)
 - 一度オープンリストに入った s の評価値更新は 不要
- \blacksquare ヒューリスティック関数 $\widehat{h}(s)$ の選び方:
 - ●ユーザが事前知識により構築(例:直線距離)
 - データから機械学習により自動構築
- ■一般には完全性も最適性もないが、実用上は (そこそこ)うまくいくことが(それなりに)多い

貪欲最良優先探索

■例: $\widehat{h}(s)$ としてゴールまでのマンハッタン距離 (XY各方向への距離の和)を使用


```
A(5)
B(6), D(3)
B(6), E(2)
B(6), F(4)
B(6), G(3)
B(6), C(4), H(2)
B(6), C(4), I(3), J(0)
累積遷移コスト9
```

A*探索(A-star search)

- sを経由する場合の遷移コスト和の推定値 $\widehat{g}(s) + \widehat{h}(s)$ を最小にする状態を選ぶ

 - $\widehat{g}(s)$: 探索済みノードから遷移する場合の最小値(最適探索と同じ)
 - lacktriangleノードsを訪れると隣接ノードの $\widehat{g}(s')$ が更新される
 - ullet h(s): s から最終状態までの遷移コスト和の最小値
 - \bullet $\hat{h}(s)$: h(s) のヒューリスティック推定値

A*探索

■例: $\widehat{h}(s)$ としてゴールまでのマンハッタン距離 (XY各方向への距離の和)を使用


```
A(0,5)
B(1,6), D(2,3)
B(1,6), E(3,2)
B(1,6), F(5,4)
C(3,4), F(5,4)
G(4,3), F(5,4)
H(5,2), F(5,4)
I(6,3), J(7,0), F(5,4)
累積遷移コスト7
```

A*探索(A-star search)

- \mathbf{z} を経由する場合の遷移コスト和の推定値 $\widehat{g}(s) + \widehat{h}(s)$ を最小にする状態を選ぶ
- $\forall s, \ 0 \leq \widehat{h}(s) \leq h(s)$ が成り立つとき $\widehat{h}(s)$ は 許容的(admissible)であるといい、この場合には A^* 探索は最適性をもつ
 - 最適探索(ダイクストラ法)は $\widehat{h}(s)=0$ の場合に対応

演習

■以下のグラフに対して、マンハッタン距離を 用いてノードAからのA*探索を行え.

スタート

ゴール

講義の流れ

- 1. 状態空間
- 2. コスト無しグラフの探索
- 3. コスト付きグラフの探索
- 4. ゲーム木の探索

ゲーム木

- ■二人のプレイヤーが交互に遷移先を決める
 - 将棋, 囲碁, リバーシ(オセロ®), ○×など

ミニ・マックス探索

- ■自分は一番良い(点数を最大化する)手を選ぶ
- ■相手は一番悪い(点数を最小化する)手を選ぶ

アルファ・ベータ探索

- ミニ・マックス探索では、全ての局面に対する 点数を求める必要があり、時間がかかる
- ■不要な点数計算を省略する
 - α:max計算の際の下限値
 - •β:min計算の際の上限値

アルファ・ベータ探索

- ■IJKDLEMの時点で,
 - Fは7以上が確定, Bは5以下が確定
 - Fは選ばれないので、Nの点数は計算不要(αカット)
- ■OPGの時点で,
 - Cは4以下が確定
 - Hは選ばれないので、QRSの点数は計算不要(βカット)

演習

■以下のゲーム木に対してアルファ・ベータ探索 を行え(点数は左側のノードから計算)

モンテカルロ木探索

- ■アルファ・ベータ法を用いても、ゲーム木を深く探索するのは困難(b^d が $b^{d/2}$ になる程度)
- ■全探索せず,ランダムに手を打つ
- ■囲碁やスケジューリングなどで活用されている

Wikipediaより

乱数を用いてシミュレーションを行うことを モンテカルロ法(Monte Carlo method)という。 モンテカルロはモナコにあるカジノの名前

評価値の計算

- ■初手以外は(何らかのルールに従って)ランダム に打つ
 - 適当に定めた深さまで進めてから評価値を計算
 - 終局まで進めて勝敗を直接判定 (プレイアウトまたはロールアウトという)

試行する手の選択

- ■各手の勝率・試行回数に基づいて各試行 t で 試行すべき手を選択
 - 勝率 \hat{p}_i が高いか試行回数 n_i が少ない手を優遇

• 例: UCBスコア:
$$\hat{p}_i + \sqrt{\frac{2 \log t}{n_i}}$$

(UCB: Upper Confidence Bound, 信頼上界)

木の拡張

■試行回数が一定数に達したノードは拡張する

- 最終的な着手は試行数最大の手を選ぶのが標準的
- ■理論面では「無限回試行した場合には最適手順 に収束」程度のことしか分かっていない

まとめ

- ■広大な状態空間を効率よく探索したい
 - コスト無しグラフの探索
 - コスト付きグラフの探索
 - ゲーム木の探索
- ■膨大な状態空間の探索には, 近似的な 手法が有用:
 - 事前知識や機械学習によるヒューリスティック 関数の構築
 - モンテカルロ木探索

宿題1

■ 貪欲探索, 最適探索(ダイクストラ法)によって 以下の迷路を探索せよ

宿題2

- ■以下の5パズルの最短手順をA*探索によって 求めよ
- \blacksquare ヒント: 以下の $\widehat{h}(s)$ はいずれも許容的
 - 位置が間違っているパネルの個数(左図では5)
 - 各パネルの正しい位置へのマンハッタン距離の和 (左図では2+2+1+1+2=8)

