清华大学本科生考试试题专用纸

考试课程 微积分 A(2) B 卷

2021年6月15日

一. 填空题 (每空3分,共10题)

1.
$$i \Re \mathbf{F}(x, y, z) = (e^{x+y+z}, 1, 1)$$
, $P_0 = (0, 0, 0)$, $\Re \operatorname{rot} \mathbf{F}(P_0) = \underline{\hspace{1cm}}$

2.
$$i \otimes \mathbf{F}(x, y, z) = (x \ln(y+z), y \ln(z+x), z \ln(x+y)), P_0 = (1,1,1), \emptyset \text{ div } \mathbf{F}(P_0) = \underline{\hspace{1cm}}$$

3. 设
$$a$$
 为常数,且 $\forall A, B \in \mathbb{R}^2$,积分 $\int_{L(A)}^{(B)} (x^2 + ayz) dx + (y^2 + 2zx) dy + (z^2 + 2xy) dz$ 与路径无关,则 $a =$

4. 设
$$2\pi$$
 周期函数 $f(x) = \begin{cases} x, & x \in (0,\pi]; \\ 0, & x \in (-\pi,0] \end{cases}$ 的形式 Fourier 级数的和函数为 $S(x)$,则 $S(\pi) = (-\pi,0)$

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{2^n + \ln n}$$
 的收敛性(指明"条件收敛","绝对收敛"或"发散")_____。

6. 微分方程
$$(y\cos x + \cos y)dx + (\sin x - x\sin y)dy = 0$$
 的通解为______

8 设
$$D = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le x\}$$
, $f \in C[0,1]$, 将二重积分 $I = \iint_D (f(x) + f(y)) dxdy$

9. 设
$$L$$
 为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的上半周, $A = (-a, 0), B = (a, 0)$,则 $\int_{L(A)}^{(B)} (x + y) dx + (x - y) dy = (a, 0)$

10.
$$2\pi$$
周期函数在区间 $[-\pi,\pi)$ 的定义为 $f(x) = \begin{cases} x+1, & x \in (0,\pi]; \\ 1, & x \in (-\pi,0] \end{cases}$, 设 $f(x)$ 的形式 Fourier

级数为
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
,则 $b_n = _____$

二. 解答题(共6题)(请写出详细的计算过程和必要的根据!)

11. (12 分) 设
$$D = \{(x,y) | x^2 + 4y^2 \le 1\}$$
, 求 $\iint_D (x^2 + y^2) dx dy$ 。

12. (16 分)设 S^+ : $z=1-x^2-y^2$ ($z \ge 0$), 其正法向量的 z 分量大于等于 0 ,求 $\iint_{S^+} x^3 \mathrm{d}y \wedge \mathrm{d}z + y^3 \mathrm{d}z \wedge \mathrm{d}x + (x^2+y^2) \mathrm{d}x \wedge \mathrm{d}y$ 。

① (12 分) 设
$$S$$
 为 上 半 球 面 $z = \sqrt{R^2 - x^2 - y^2}$ ($R > 0$) 包 含 在 圆 柱 面
$$\left(x - \frac{R}{2} \right)^2 + y^2 = \frac{R^2}{4} \text{ 内的部分, } \, x \iint_S z^3 \mathrm{d}S \, .$$

- 14. (10 分) 设 L 为曲线 $\begin{cases} x = \cos t + t \sin t \\ y = \sin t t \cos t \end{cases}$, $t \in [0, 2\pi]$, 求 $\int_{L} (x^2 + y^2) dt$.
- 15. (12 分) 设 $a_n > 0, n = 1, 2, 3, \cdots$
 - (1) 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,级数 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 是否收敛? 若收敛,证明之;若不收敛,举反例;
 - (II) 若级数 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 收敛,级数 $\sum_{n=1}^{\infty} a_n$ 是否收敛?若收敛,证明之;若不收敛,举反例;
 - (III) 若 $\{a_n\}$ 单调,且级数 $\sum_{n=1}^{\infty}\sqrt{a_na_{n+1}}$ 收敛,此时级数 $\sum_{n=1}^{\infty}a_n$ 是否收敛?若收敛,证明之;若不收敛,举反例。
- 16. (8分)设 $\Omega \subset \mathbb{R}^3$ 为有界闭区域,其边界面 $\partial \Omega$ 为光滑正则曲面。

(1) 设
$$f,g \in \mathbb{C}^{(2)}$$
, 求证:
$$\iint_{\partial\Omega} f \frac{\partial g}{\partial \mathbf{n}} dS = \iiint_{\Omega} f \Delta g dx dy dz + \iiint_{\Omega} \nabla f \bullet \nabla g dx dy dz$$
, 其中 $\mathbf{n} \to \partial\Omega$

的外法向量,算子
$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$
 , $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$;

(川) 函数 $u=u(x,y,z), v=v(x,y,z)\in C^{(2)}(\Omega)$ 。若 u 为调和函数($\Delta u=0$),且当 $(x,y,z)\in\partial\Omega$ 时,u(x,y,z)-v(x,y,z)=0,求证:

$$\iiint_{\Omega} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z \leq \iiint_{\Omega} \left(\left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z \ .$$

三. 附加题:
$$2 \sin \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, 求证: $\lim_{x \to 1^-} \sum_{n=1}^{\infty} \frac{x^n (1-x)}{n(1-x^{2n})} = \frac{\pi^2}{12}$.