NCTU-CS Digital System Lab.

Online Test 02

Data Preparation

Extract LAB data from TA's directory.
 % tar xvf ~2016dlabtestta05/Online Test2.tar

Design Description and Examples

Two operations selected by Mode are as below:

Input:

In:
$$A_0$$
 A_1 B_0 B_1

Mode 0:

Four inputs A₀, A₁, B₀, B₁ which get from **in** port by 4 cycles are 16-bits **signed complex numbers**. For each input, the former 8 bits are the real part of each number and last 8 bits are the image part otherwise. Two parts of this complex number, real part and image part, all are **twos-complement representation**. First two inputs belong to A series, and the last two inputs belong to B series, otherwise.

$$E_{X}: \begin{tabular}{c|cccc} A_1 & Real Part & Imaginary Part \\ \hline \end{tabular}$$

You should convolute A and B series, and complex conjugate all of the answers

$$\overline{A \circ B} = \overline{\sum_{k=-\infty}^{\infty} A_k * B_{n-k}}$$

$$0 A_0 A_1 \qquad A_0 A_1 \qquad A_0 A_1$$

$$\times \times \times \qquad \times \qquad \times$$

$$B_1 B_0 0 \qquad B_1 B_0 \qquad B_2 B_1$$

$$\underline{\text{Output}}: \qquad \overline{\text{A}_0\text{B}_0} \qquad \text{A}_0\text{B}_1 + \text{A}_1\text{B}_0 \qquad \text{A}_1\text{B}_1$$

Mode 1:

You should cut each input **a set of 4 bits**. Each set is representing the range of 4bits numbers: 0~15. Count each set and output sequentially how many pattern 0(0000), 2(0010), 4(0100), 6(0110), 8(1000), 10(1010) in 6 continuous cycles:

You should output sequentially in 6 continuous cycles: 4 0 0 1 1 1

Your goal is to compute these operations by above rules and output the correct answer.

Inputs

- 1. Four input data for **in[15:0]** each will be sequentially input in **4 continuous** cycles while **in_valid** is high.
- 2. **in_mode** valid at the *first* input cycle.
- 3. All inputs will be changed at clock *negative* edge.

Input Signals	Bit Width	Description
clk	1	clock
rst_n	1	synchronous active-high reset
in	16	4 of 16 bit inputs
in_valid	1	high when in is valid
in_mode	1	select the operations should be compute
		by two MODE discuss above

Outputs

- 1. Your answer should be output at **out[35:0]** for **only 3 cycle** when **MODE = 0**; Whereas, output at **out[35:0]** for **6 cycle** when **MODE = 1**.
- 2. For <u>mode 0</u>, **out[35:0]** is signed complex number, also. The former 18 bits are the real part, and last 18 bits are the image part otherwise.
- 3. For mode 1, out [35:0] is unsigned integer.
- 4. **out valid** should be low and **out** should be set to zero after initial reset.
- 5. **out valid** should be set to high when output value is valid.
- 6. All outputs are synchronized at clock *positive* edge.
- 7. Test pattern will check whether your answer is correct or not at clock **negative edge** when **out_valid** is high.

Output Signals	Bit Width	Description
out	36	output result
out_valid	1	high when out is valid

Specifications

- 1. Top module name : Online_test2 (File name : Online_test2.v)
- 2. Input pins: clk, rst_n, in_valid, in[15:0], in_mode.
- 3. Output pins: out_valid, out[35:0].
- 4. **out_valid** should not be raised when **in_valid** is high (when **in** data is transferring).
- 5. It is **active-high synchronous** reset.
- 6. The latency of your design in each pattern should not be larger than 100 cycles.

Note

- 1. Simulation step:
 - Put your design in 01_RTL
 - Simulation to check design: ./01_run.f
 - Show wave to debug: nWave &
 - Go to folder 02 SYN/ and check synthesis: ./01 run dc
 - Clear up: ./09_clean_up
- 2. Please add your student ID and name to the file name of .v file before upload file on e3 platform:

Online_test2_0556123_陳小明.v

3. Sample waveform:

