KLPT2 & isogeny-based cryptography without isogenies

based on a paper by Wouter Castryck, Thomas Decru, Péter Kutas, **Abel Laval**, Christophe Petit, Yan Bo Ti

April 4, 2025

Definition (Elliptic curve)

An elliptic curve E over a field \mathbb{F}_q is the set of solution of a cubic equation, with a special *point at infinity*.

$$E = \{y^2 = x^3 + ax + b, \quad x, y \in \overline{\mathbb{F}}_q\} \cup \{\infty\}$$

with $a, b \in \mathbb{F}_q$ and $4a^3 + 27b^2 \neq 0$.

Definition (Elliptic curve)

An elliptic curve E over a field \mathbb{F}_q is the set of solution of a cubic equation, with a special *point at infinity*.

$$E = \{y^2 = x^3 + ax + b, \quad x, y \in \overline{\mathbb{F}}_q\} \cup \{\infty\}$$

with $a, b \in \mathbb{F}_q$ and $4a^3 + 27b^2 \neq 0$.

E is the elliptic curve; $E(\mathbb{F}_q)$ is the set of rational points over K.

 $E(\mathbb{F}_q)$ is an abelian group. Its neutral element is ∞ .

Definition (Elliptic curve)

An elliptic curve E over a field \mathbb{F}_q is the set of solution of a cubic equation, with a special *point at infinity*.

$$E = \{y^2 = x^3 + ax + b, \quad x, y \in \overline{\mathbb{F}}_q\} \cup \{\infty\}$$

with $a, b \in \mathbb{F}_q$ and $4a^3 + 27b^2 \neq 0$.

E is the elliptic curve; $E(\mathbb{F}_q)$ is the set of rational points over K.

 $E(\mathbb{F}_q)$ is an abelian group. Its neutral element is ∞ .

Example

Let's take $E: y^2 = x^3 + 1$ over \mathbb{F}_5 . It has 6 rational points :

$$E(\mathbb{F}_5) = \{(0,1), (0,4), (2,2), (2,3), (4,0), \infty\}$$

Definition (Isogeny)

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q .

Definition (Isogeny)

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q .

An isogeny $\varphi: E_1 \to E_2$ is a group homomorphism with finite kernel.

Definition (Isogeny)

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q . An isogeny $\varphi: E_1 \to E_2$ is a group homomorphism with finite kernel. It can be represented with rational maps.

Definition (Isogeny)

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q .

An isogeny $\varphi: E_1 \to E_2$ is a group homomorphism with finite kernel.

It can be represented with rational maps.

The degree of a (separable) isogeny is the size of it kernel.

Definition (Isogeny)

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q .

An isogeny $\varphi: E_1 \to E_2$ is a group homomorphism with finite kernel.

It can be represented with rational maps.

The degree of a (separable) isogeny is the size of it kernel.

Example

Over \mathbb{F}_5 , we take :

$$\begin{cases} E_1 : y^2 = x^3 + 1 \\ E_2 : y^2 = x^3 + 2 \end{cases}$$

Definition (Isogeny)

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q .

An isogeny $\varphi: E_1 \to E_2$ is a group homomorphism with finite kernel.

It can be represented with rational maps.

The degree of a (separable) isogeny is the size of it kernel.

Example

Over \mathbb{F}_5 , we take :

$$\begin{cases} E_1 : y^2 = x^3 + 1 \\ E_2 : y^2 = x^3 + 2 \end{cases}$$

We can consider the isogeny $\varphi: E_1 \to E_2$ given by the map

$$\varphi: (x,y) \mapsto \left(\frac{x^2 + x - 2}{x + 1}, \frac{x^2 + 2x - 2}{x^2 + 2x + 1}y\right)$$

Definition (Isogeny)

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_q .

An isogeny $\varphi: E_1 \to E_2$ is a group homomorphism with finite kernel.

It can be represented with rational maps.

The degree of a (separable) isogeny is the size of it kernel.

Example

Over \mathbb{F}_5 , we take :

$$\begin{cases} E_1 : y^2 = x^3 + 1 \\ E_2 : y^2 = x^3 + 2 \end{cases}$$

We can consider the isogeny $\varphi: E_1 \to E_2$ given by the map

$$\varphi: (x,y) \mapsto \left(\frac{x^2 + x - 2}{x + 1}, \frac{x^2 + 2x - 2}{x^2 + 2x + 1}y\right)$$

The kernel of φ is $\{(4,0),\infty\} \leftrightarrow \deg(\varphi) = 2$.

Isogeny graphs

Figure: The ℓ -isogeny graph over $\mathbb{F}_{p^2} \simeq \mathbb{F}_p[i]$, for p = 431 and $\ell = 2$.

[Cos]: Costello, SIKE for beginners

Definition (The quaternion algebra ramified at p and ∞)

We will make use of the quaternion algebra $B_{p,\infty}$ defined as :

$$B_{p,\infty} = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = -1$$
, $j^2 = -p$, $k := ij = -ji$.

Definition (The quaternion algebra ramified at p and ∞)

We will make use of the quaternion algebra $B_{p,\infty}$ defined as :

$$B_{p,\infty} = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = -1$$
, $j^2 = -p$, $k := ij = -ji$.

We can define "rings of integers" for this algebra :

Definition (The quaternion algebra ramified at p and ∞)

We will make use of the quaternion algebra $B_{p,\infty}$ defined as :

$$B_{p,\infty} = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = -1$$
, $j^2 = -p$, $k := ij = -ji$.

We can define "rings of integers" for this algebra :

Definition (Order of an algebra)

Definition (The quaternion algebra ramified at p and ∞)

We will make use of the quaternion algebra $\mathcal{B}_{p,\infty}$ defined as :

$$B_{\rho,\infty} = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = -1$$
, $j^2 = -p$, $k := ij = -ji$.

We can define "rings of integers" for this algebra :

Definition (Order of an algebra)

An order \mathcal{O} of $B_{p,\infty}$ is a full-rank lattice in B that is also a ring.

Definition (The quaternion algebra ramified at p and ∞)

We will make use of the quaternion algebra $\mathcal{B}_{p,\infty}$ defined as :

$$B_{\rho,\infty} = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = -1$$
, $j^2 = -p$, $k := ij = -ji$.

We can define "rings of integers" for this algebra :

Definition (Order of an algebra)

An order \mathcal{O} of $\mathcal{B}_{p,\infty}$ is a full-rank lattice in \mathcal{B} that is also a ring. An order is called *maximal* if not contained in any other order.

Definition (The quaternion algebra ramified at p and ∞)

We will make use of the quaternion algebra $B_{p,\infty}$ defined as :

$$B_{\rho,\infty} = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = -1$$
, $j^2 = -p$, $k := ij = -ji$.

We can define "rings of integers" for this algebra :

Definition (Order of an algebra)

An order \mathcal{O} of $\mathcal{B}_{p,\infty}$ is a full-rank lattice in \mathcal{B} that is also a ring. An order is called *maximal* if not contained in any other order.

Example

$$\mathcal{O} = \mathbb{Z} + i\mathbb{Z} + j\mathbb{Z} + k\mathbb{Z}$$
 is an order.

Definition (The quaternion algebra ramified at p and ∞)

We will make use of the quaternion algebra $B_{p,\infty}$ defined as :

$$B_{\rho,\infty} = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = -1$$
, $j^2 = -p$, $k := ij = -ji$.

We can define "rings of integers" for this algebra :

Definition (Order of an algebra)

An order \mathcal{O} of $\mathcal{B}_{p,\infty}$ is a full-rank lattice in \mathcal{B} that is also a ring. An order is called *maximal* if not contained in any other order.

Example

$$\mathcal{O} = \mathbb{Z} + i\mathbb{Z} + j\mathbb{Z} + k\mathbb{Z}$$
 is an order.

$$\mathcal{O}_0 = \mathbb{Z} + i\mathbb{Z} + \frac{i+j}{2}\mathbb{Z} + \frac{1+k}{2}\mathbb{Z}$$
 is a maximal order.

The Deuring Correspondence in one slide

Theorem (Deuring)

Supersingular elliptic curves can be

 $\left\{ \begin{array}{c} \text{Isomorphism classes of} \\ \text{(supersingular) elliptic curves} \\ \text{over } \mathbb{F}_{p^2} \text{ and their isogenies} \end{array} \right\} \stackrel{\textbf{2-to-1}}{\longleftrightarrow} \left\{ \begin{array}{c} \text{Maximal orders of } B_{p,\infty} \\ \text{and their connecting ideals} \end{array} \right\}$

The Deuring Correspondence in one slide

Theorem (Deuring)

Supersingular elliptic curves can be

$$\left\{ \begin{array}{c} \text{Isomorphism classes of} \\ \text{(supersingular) elliptic curves} \\ \text{over } \mathbb{F}_{p^2} \text{ and their isogenies} \end{array} \right\} \stackrel{\text{2-to-1}}{\longleftrightarrow} \left\{ \begin{array}{c} \text{Maximal orders of } B_{p,\infty} \\ \text{and their connecting ideals} \end{array} \right\}$$

The canonical example

Take
$$E_0: y^2 = x^3 + x$$
 over \mathbb{F}_{p^2} , with $p = 3 \mod 4$.

Then, we have

End(
$$E_0$$
) = $\mathbb{Z} + \iota \mathbb{Z} + \frac{\iota + \pi}{2} \mathbb{Z} + \frac{1 + \pi \iota}{2} \mathbb{Z}$
 \mathcal{O}_0 = $\mathbb{Z} + i \mathbb{Z} + \frac{i + j}{2} \mathbb{Z} + \frac{1 + k}{2} \mathbb{Z}$

Translating the ℓ-isogeny path problem

The ℓ-isogeny path problem

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_{p^2} . Let ℓ be a small prime.

Compute an isogeny $\varphi: E_1 \to E_2$ with degree ℓ^e .

$$E_1 \stackrel{\varphi}{\longrightarrow} E_2$$

The quaternion ℓ -isogeny path problem

Let $\mathcal{O}_1, \mathcal{O}_2$ be two maximal orders in the quaternion algebra $\mathcal{B}_{p,\infty}$.

Compute an ideal I of norm ℓ^e such that connect \mathcal{O}_1 to \mathcal{O}_2 .

$$\mathcal{O}_1 \stackrel{l}{\longrightarrow} \mathcal{O}_2$$

Translating the ℓ -isogeny path problem

The ℓ -isogeny path problem

Let E_1 , E_2 be two elliptic curves over \mathbb{F}_{p^2} . Let ℓ be a small prime.

Compute an isogeny $\varphi: E_1 \to E_2$ with degree ℓ^e .

$$E_1 \stackrel{\varphi}{\longrightarrow} E_2$$

The quaternion ℓ -isogeny path problem

Let $\mathcal{O}_1, \mathcal{O}_2$ be two maximal orders in the quaternion algebra $\mathcal{B}_{p,\infty}$.

Compute an ideal I of norm ℓ^e such that connect \mathcal{O}_1 to \mathcal{O}_2 .

$$\mathcal{O}_1 \stackrel{\prime}{\longrightarrow} \mathcal{O}_2$$

[Isogeny Club – S1E4]: **Antonin Leroux**, A new algorithm for the constructive Deuring correspondence: making SQISign faster

Instance of the problem

Solution of the problem

Geometric world

$$E_1$$
 E_2

$$E_1 \stackrel{\varphi}{\longrightarrow} E_2$$

Instance of the problem

Solution of the problem

Geometric world

$$E_1$$
 E_2

$$E_1 \stackrel{\varphi}{\longrightarrow} E_2$$

Quaternion world

What about an analogue in dimension 2 ??

■ Replace the elliptic curves by *polarized abelian surfaces*.

- Replace the elliptic curves by *polarized abelian surfaces*.
- Replace the maximal orders by matrices in $M_2(\mathcal{O}_0)$.

- Replace the elliptic curves by *polarized abelian surfaces*.
- Replace the maximal orders by matrices in $M_2(\mathcal{O}_0)$.
- Replace the Deuring correpsondence by the Ibukiyama-Katsura-Oort correspondence.

- Replace the elliptic curves by *polarized abelian surfaces*.
- Replace the maximal orders by matrices in $M_2(\mathcal{O}_0)$.
- Replace the Deuring correpsondence by the Ibukiyama-Katsura-Oort correspondence.
- Replace KLPT by KLPT2!

Overview of KLPT²

Instance of the problem

Solution of the problem

Geometric world

$$(A_1,\lambda_1)$$
 (A_2,λ_2)

$$(A_1,\lambda_1) \stackrel{arphi}{\longrightarrow} (A_2,\lambda_2)$$

- ullet (A_1, λ_1) and (A_2, λ_2) are principally polarized superspecial abelian surfaces.
- \leadsto analogue of supersingular elliptic curves in dimension 2.

Overview of KLPT²

Instance of the problem

Solution of the problem

Geometric world

$$(A_1,\lambda_1)$$
 (A_2,λ_2)

$$(A_1,\lambda_1)\stackrel{arphi}{\longrightarrow} (A_2,\lambda_2)$$

Quaternion world

- (A_1, λ_1) and (A_2, λ_2) are principally polarized superspecial abelian surfaces.
- \leadsto analogue of supersingular elliptic curves in dimension 2.

- (A_1, λ_1) and (A_2, λ_2) are principally polarized superspecial abelian surfaces.
- → analogue of supersingular elliptic curves in dimension 2.
- g_1, g_2 are matrices encoding the abelian surfaces.

- (A_1, λ_1) and (A_2, λ_2) are principally polarized superspecial abelian surfaces.
- → analogue of supersingular elliptic curves in dimension 2.
- g_1, g_2 are matrices encoding the abelian surfaces.
- ullet γ is a matrix encoding an isogeny.

- ullet (A_1, λ_1) and (A_2, λ_2) are principally polarized superspecial abelian surfaces.
- → analogue of supersingular elliptic curves in dimension 2.
- g_1, g_2 are matrices encoding the abelian surfaces.
- ullet γ is a matrix encoding an isogeny.

- ullet (A_1, λ_1) and (A_2, λ_2) are principally polarized superspecial abelian surfaces.
- → analogue of supersingular elliptic curves in dimension 2.
- g_1, g_2 are matrices encoding the abelian surfaces.
- ullet γ is a matrix encoding an isogeny.

Setting the frame

For everything that follows, we fix

- A prime $p = 3 \mod 4$ of cryptographic size,
- A small prime ℓ . Typically $\ell \in \{2,3\}$
- $E_0: y^2: x^3 + x$, the curve with j-invariant 1728 over \mathbb{F}_{p^2} ,
- End $(E_0) \simeq \mathcal{O}_0 = \mathbb{Z} + i\mathbb{Z} + \frac{i+j}{2}\mathbb{Z} + \frac{1+k}{2}\mathbb{Z}$,
- \blacksquare $B_{p,\infty} = \mathcal{O}_0 \otimes \mathbb{Q}$, the underlying quaternion algebra,
- $\mathbf{n}(x) = x\bar{x}$ is the norm; $\mathbf{tr}(x) = x + \bar{x}$ is the trace.

KLPT in dimension 2

Quaternion path problem in dimension 2

Given $g_1,g_2\in \mathsf{Mat}(\mathcal{O}_0)$, find $\gamma\in \mathsf{M}_2(\mathcal{O}_0)$ such that :

$$\gamma^* g_2 \gamma = \ell^n g_1$$

for some small prime ℓ and with :

$$\quad \mathsf{Mat}(\mathcal{O}_0) = \left\{ \begin{pmatrix} s & r \\ \overline{r} & t \end{pmatrix}, \quad s,t \in \mathbb{Z}_>, st - \mathsf{n}(r) = 1 \right\}.$$

$$\blacksquare$$
 $-^*: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix}$ is the conjugate-transpose.

KLPT in dimension 2

Quaternion path problem in dimension 2

Given $g_1, g_2 \in \mathsf{Mat}(\mathcal{O}_0)$, find $\gamma \in \mathsf{M}_2(\mathcal{O}_0)$ such that :

$$\gamma^* g_2 \gamma = \ell^n g_1$$

for some small prime ℓ and with :

$$\quad \mathsf{Mat}(\mathcal{O}_0) = \left\{ \begin{pmatrix} s & r \\ \overline{r} & t \end{pmatrix}, \quad s,t \in \mathbb{Z}_>, st - \mathsf{n}(r) = 1 \right\}.$$

$$\blacksquare$$
 $-^*: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix}$ is the conjugate-transpose.

Theorem (KLPT2)

This problem can be solved in polynomial time with output norm $\ell^n = O(p^{25})$.

Some useful lemmas

Definition (Connecting matrix)

Let $h_1, h_2 \in \mathsf{Mat}(A_0)$ and $u \in \mathsf{M}_2(\mathcal{O}_0)$.

We say that u is a connecting matrix between h_1 and h_2 if it satisfies

$$u^*h_2u=\mathcal{N}(u)h_1$$

for some integer $\mathcal{N}(u)$ called its norm.

We write $u: h_1 \rightarrow h_2$.

Some useful lemmas

Definition (Connecting matrix)

Let $h_1, h_2 \in Mat(A_0)$ and $u \in M_2(\mathcal{O}_0)$.

We say that u is a connecting matrix between h_1 and h_2 if it satisfies

$$u^* h_2 u = \mathcal{N}(u) h_1$$

for some integer $\mathcal{N}(u)$ called its norm.

We write $u: h_1 \rightarrow h_2$.

Lemma (Inversion lemma)

If $u: h_1 \to h_2$ is invertible in $\mathsf{M}_2(B_{p,\infty})$, then $\mathcal{N}(u)u^{-1} \in \mathsf{M}_2(\mathcal{O}_0)$ and $\mathcal{N}(u)u^{-1}: h_2 \to h_1$.

$$h_1 \underbrace{\overset{u}{\swarrow}}_{\mathcal{N}(u)u^{-1}} h_2$$

Some useful lemmas

Lemma (Composition lemma)

Let h_1, h_2, h_3, u_1, u_2 be matrices such that

$$\left\{
\begin{array}{l}
u_1:h_1\to h_2\\ u_2:h_2\to h_3
\end{array}\right.$$

Then, $u_1u_2: h_1 \rightarrow h_3$.

$$h_1 \xrightarrow{u_1} h_2 \xrightarrow{u_2} h_3$$

The inputs of the algorithm

Two matrices
$$g_1 = \begin{pmatrix} s_1 & r_1 \\ \overline{r}_1 & t_1 \end{pmatrix}$$
 and $g_2 = \begin{pmatrix} s_2 & r_2 \\ \overline{r}_2 & t_2 \end{pmatrix}$.

The strategy

 g_1 g_2

The inputs of the algorithm

Two matrices
$$g_1 = \begin{pmatrix} s_1 & r_1 \\ \bar{r}_1 & t_1 \end{pmatrix}$$
 and $g_2 = \begin{pmatrix} s_2 & r_2 \\ \bar{r}_2 & t_2 \end{pmatrix}$.

The strategy

• We note that if the inputs have a certain shape, there exists a connecting matrix τ between them.

$$g_1 \qquad \begin{pmatrix} \ell^f & r_1' \\ \overline{r}_1' & t_1' \end{pmatrix} \stackrel{ au}{\longrightarrow} \begin{pmatrix} \ell^f & r_2' \\ \overline{r}_2' & t_2' \end{pmatrix} \qquad g_2$$

The inputs of the algorithm

Two matrices
$$g_1 = \begin{pmatrix} s_1 & r_1 \\ \bar{r}_1 & t_1 \end{pmatrix}$$
 and $g_2 = \begin{pmatrix} s_2 & r_2 \\ \bar{r}_2 & t_2 \end{pmatrix}$.

The strategy

- We note that if the inputs have a certain shape, there exists a connecting matrix τ between them.
- We transform our inputs so they have the aforementioned shape.

$$g_1 \xrightarrow{\ u_1 \ } \begin{pmatrix} \ell^f & r_1' \\ \overline{r}_1' & t_1' \end{pmatrix} \xrightarrow{\ \tau \ } \begin{pmatrix} \ell^f & r_2' \\ \overline{r}_2' & t_2' \end{pmatrix} \xleftarrow{\ u_2 \ } g_2$$

The inputs of the algorithm

Two matrices
$$g_1 = \begin{pmatrix} s_1 & r_1 \\ \bar{r}_1 & t_1 \end{pmatrix}$$
 and $g_2 = \begin{pmatrix} s_2 & r_2 \\ \bar{r}_2 & t_2 \end{pmatrix}$.

The strategy

- \blacksquare We note that if the inputs have a certain shape, there exists a connecting matrix au between them.
- We transform our inputs so they have the aforementioned shape.
- We output the product of the three connecting matrices.

$$g_1 \xrightarrow{u_1} \begin{pmatrix} \ell^f & r_1' \\ \overline{r}_1' & t_1' \end{pmatrix} \xrightarrow{\tau} \begin{pmatrix} \ell^f & r_2' \\ \overline{r}_2' & t_2' \end{pmatrix} \xleftarrow{u_2} g_2$$

The output of the algorithm

The composition $\gamma := u_1 \cdot \tau \cdot \mathcal{N}(u_2)u_2^{-1}$.

The norm of γ is $\mathcal{N}(u_1)\mathcal{N}(u_2)\mathcal{N}(\tau)$.

Connecting matrices between special inputs

Lemma (Step 1: Connecting special matrices)

Let
$$h_1 = \begin{pmatrix} \ell^f & r_1' \\ \overline{r}_1' & t_1' \end{pmatrix}$$
 and $h_2 = \begin{pmatrix} \ell^f & r_2' \\ \overline{r}_2' & t_2' \end{pmatrix}$ be two "input" matrices such that $\det(h_1) = \det(h_2)$.

Connecting matrices between special inputs

Lemma (Step 1: Connecting special matrices)

Let
$$h_1 = \begin{pmatrix} \ell^f & r_1' \\ \overline{r}_1' & t_1' \end{pmatrix}$$
 and $h_2 = \begin{pmatrix} \ell^f & r_2' \\ \overline{r}_2' & t_2' \end{pmatrix}$ be two "input" matrices such that $\det(h_1) = \det(h_2)$.

Then, there exists $\tau \in M_2(\mathcal{O}_0)$ connecting h_1 to h_2 .

Connecting matrices between special inputs

Lemma (Step 1: Connecting special matrices)

Let
$$h_1 = \begin{pmatrix} \ell^f & r_1' \\ \overline{r}_1' & t_1' \end{pmatrix}$$
 and $h_2 = \begin{pmatrix} \ell^f & r_2' \\ \overline{r}_2' & t_2' \end{pmatrix}$ be two "input" matrices such that $\det(h_1) = \det(h_2)$.

Then, there exists $\tau \in M_2(\mathcal{O}_0)$ connecting h_1 to h_2 .

Proof.

Take
$$\tau = \begin{pmatrix} \ell^f & r_1 - r_2 \\ 0 & \ell^f \end{pmatrix}$$
.

Lemma (Step 2: Transforming the input matrices)

For any $g \in \mathsf{Mat}(\mathcal{O}_0)$, one can compute $u \in \mathsf{M}_2(\mathcal{O}_0)$ with the following properties :

Lemma (Step 2: Transforming the input matrices)

For any $g \in Mat(\mathcal{O}_0)$, one can compute $u \in M_2(\mathcal{O}_0)$ with the following properties :

1. u is a connecting matrix from g to some matrix $h = \begin{pmatrix} \ell^f & r' \\ \overline{r}' & t' \end{pmatrix}$.

Lemma (Step 2: Transforming the input matrices)

For any $g \in \mathsf{Mat}(\mathcal{O}_0)$, one can compute $u \in \mathsf{M}_2(\mathcal{O}_0)$ with the following properties :

- 1. u is a connecting matrix from g to some matrix $h = \begin{pmatrix} \ell^f & r' \\ \overline{r}' & t' \end{pmatrix}$.
- 2. u has norm ℓ^e .

Lemma (Step 2: Transforming the input matrices)

For any $g \in \mathsf{Mat}(\mathcal{O}_0)$, one can compute $u \in \mathsf{M}_2(\mathcal{O}_0)$ with the following properties :

- 1. u is a connecting matrix from g to some matrix $h = \begin{pmatrix} \ell^f & r' \\ \overline{r}' & t' \end{pmatrix}$.
- 2. u has norm ℓ^e .
- 3. The integers e and f does not depends on the input matrix g.

Lemma (Step 2: Transforming the input matrices)

For any $g \in \mathsf{Mat}(\mathcal{O}_0)$, one can compute $u \in \mathsf{M}_2(\mathcal{O}_0)$ with the following properties :

- 1. u is a connecting matrix from g to some matrix $h = \begin{pmatrix} \ell^f & r' \\ \overline{r}' & t' \end{pmatrix}$.
- 2. u has norm ℓ^e .
- 3. The integers e and f does not depends on the input matrix g.

Proof.

Read the paper :)

Or check my talk at The Isogeny Club – S6E1

Why do we do this?

Why do we do this?

1. Because it's an obvious question.

Why do we do this?

- 1. Because it's an obvious question.
- 2. It's a piece of the constructive IKO correspondence.

Why do we do this?

- 1. Because it's an obvious question.
- 2. It's a piece of the constructive IKO correspondence.
- 3. It's a cryptanalytic tool for niche theoretical hash functions based on isogenies (2D CGL).

Why do we do this?

- 1. Because it's an obvious question.
- 2. It's a piece of the constructive IKO correspondence.
- 3. It's a cryptanalytic tool for niche theoretical hash functions based on isogenies (2D CGL).

Future work:

Why do we do this?

- 1. Because it's an obvious question.
- 2. It's a piece of the constructive IKO correspondence.
- 3. It's a cryptanalytic tool for niche theoretical hash functions based on isogenies (2D CGL).

Future work:

1. Optimize the algorithm. Lower the bound $\ell^e = O(p^{25})$.

Why do we do this?

- 1. Because it's an obvious question.
- 2. It's a piece of the constructive IKO correspondence.
- 3. It's a cryptanalytic tool for niche theoretical hash functions based on isogenies (2D CGL).

Future work:

- 1. Optimize the algorithm. Lower the bound $\ell^e = O(p^{25})$.
- 2. Complete the work on the constructive IKO correspondence.

[GSS25] : Gaudry-Soumier-Spaenlehauer, Isogeny-based Cryptography using Isomorphisms of Superspecial Abelian Surfaces, eprint : 2025/136

Why do we do this?

- 1. Because it's an obvious question.
- 2. It's a piece of the constructive IKO correspondence.
- 3. It's a cryptanalytic tool for niche theoretical hash functions based on isogenies (2D CGL).

Future work:

- 1. Optimize the algorithm. Lower the bound $\ell^e = O(p^{25})$.
- 2. Complete the work on the constructive IKO correspondence.
- 3. Some constructive applications? Another SQIsign??

[GSS25]: Gaudry-Soumier-Spaenlehauer, Isogeny-based Cryptography using Isomorphisms of Superspecial Abelian Surfaces, eprint: 2025/136

Why do we do this?

- 1. Because it's an obvious question.
- 2. It's a piece of the constructive IKO correspondence.
- 3. It's a cryptanalytic tool for niche theoretical hash functions based on isogenies (2D CGL).

Future work:

- 1. Optimize the algorithm. Lower the bound $\ell^e = O(p^{25})$.
- 2. Complete the work on the constructive IKO correspondence.
- 3. Some constructive applications? Another SQIsign??

Thank you for your attention!

[GSS25]: Gaudry-Soumier-Spaenlehauer, Isogeny-based Cryptography using Isomorphisms of Superspecial Abelian Surfaces, eprint: 2025/136