Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Method 1: Using Taylor series with pivot at zero

$$e^{i\theta} = \sum_{n=0}^{\infty} i^n e^{i\theta} |_{\theta=0} (\theta-0)^n = \sum_{n=0}^{\infty} i^n \theta^n$$

$$\cos\theta = \sum_{n=0}^{\infty} \cos(n\pi/2 + \theta) |_{\theta=0} (\theta-0)^n = \sum_{n=0}^{\infty} \cos(n\pi/2) \theta^n$$

$$\sin\theta = \sum_{n=0}^{\infty} \sin(n\pi/2 + \theta) |_{\theta=0} (\theta-0)^n = \sum_{n=0}^{\infty} \sin(n\pi/2) \theta^n$$

$$\cos\theta + i\sin\theta = \sum_{n=0}^{\infty} \cos(n\pi/2) \theta^n + i\sum_{n=0}^{\infty} \sin(n\pi/2) \theta^n$$

$$= \sum_{n=0}^{\infty} [\cos(n\pi/2) + i\sin(n\pi/2)] \theta^n$$

Since: for
$$n = 4m$$
 $\cos(4m\pi/2) + i\sin(4m\pi/2) = 1 = i^{4m}$
for $n = 4m + 1$ $\cos((4m + 1)\pi/2) + i\sin((4m + 1)\pi/2) = i = i^{4m+1}$
for $n = 4m + 2$ $\cos((4m + 2)\pi/2) + i\sin((4m + 2)\pi/2) = -1 = i^{4m+2}$
for $n = 4m + 3$ $\cos((4m + 3)\pi/2) + i\sin((4m + 3)\pi/2) = -i = i^{4m+3}$

Hence finally we have : $\cos \theta + i \sin \theta = e^{i\theta}$

${\it Method}~2: Consider~the~following~ratio$

$$f(\theta) = (\cos \theta + i \sin \theta)e^{-i\theta}$$

$$f'(\theta) = -i(\cos \theta + i \sin \theta)e^{-i\theta} + (-\sin \theta + i \cos \theta)e^{-i\theta}$$

$$= (-i \cos \theta + \sin \theta - \sin \theta + i \cos \theta)e^{-i\theta}$$

$$= 0$$

Since $f'(\theta) = 0$ for all θ , thus $f(\theta)$ is a constant. Lets find the value of the constant by putting θ with any value.

$$(\cos 0 + i \sin 0)e^{-i0} = 1$$

$$\Rightarrow (\cos \theta + i \sin \theta)e^{-i\theta} = 1$$

$$\Rightarrow \cos \theta + i \sin \theta = e^{i}$$

Method 3: Consider the following differential equation

$$f'(\theta) = if(\theta)$$
 with initial condition $f(0) = 1$

We are going to prove that $\cos \theta + i \sin \theta$ is a specific solution.

$$f'(\theta) = -\sin\theta + i\cos\theta = i(i\sin\theta + \cos\theta) = if(\theta)$$

$$f(0) = \cos\theta + i\sin\theta = 1$$

We are going to prove that $e^{i\theta}$ is a specific solution.

$$f'(\theta) = ie^{i\theta} = if(\theta)$$

$$f(0) = e^{i0} = 1$$

Specific solution is not a general solution. Specific solution satisfies initial condition, and thus it is unique. Hence:

$$\Rightarrow \cos\theta + i\sin\theta = e^{i\theta}$$