

LA MINE D'ALIBABA

MÉTHODES ET PROGRAMMATION POUR LES

DONNÉES MASSIVES

MATHIEU STEINBACH HUGO - ZIMOL GUILLAUME 2023 - 2024

⁰¹ ÉTAPE 1

62 ÉTAPE 2

оз **ÉTAPE 3**

ÉTAPE 4

étape 1

02

ÉTAPE 2

03

ÉTAPE 3

ÉTAPE 4

ÉTAPE 1 - TÂCHES

MAPPER:

- 1. Obtient la date de début et de fin.
- 2. Émet le nom de la tâche avec sa durée.

REDUCER:

- 1. Pour chaque tâche, le reducer additionne la durée de toutes ses instances et compte leur nombre total.
- 2. Le reducer calcule la durée moyenne de toutes les instances d'une tâche.
- 3. Identification des Stragglers.
- 4. Tri et écriture des résultats.

TÂCHES	DURÉE	NOMBRES D'INSTANCES	STRAGGLERS
J10_1_2_9	11650	556	101
J11_4_10	101	9	0
J11_9_10	111	2	0
J12_11_16	1	1	0
J13_3_12	161	1	0
J14_13_22	350	25	0
J16_12_14_15	2	2	0

ÉTAPE 1 - JOBS

MAPPER:

- 1. Obtient le job et la tâche.
- 2. Émet le même couple.

REDUCER:

- 1. Compte le nombre d'instances et identifie la plus grande tâche pour chaque job.
- 2. Calcule le nombre total de tâches uniques.
- 3. Trie et écrit les résultats (nom du job, nombre de tâches, nombre d'instances).

TÂCHES	DURÉE	NOMBRES D'INSTANCES
j_1008775	21	23531
j_1155151	15	29

⁰¹ ÉTAPE 1

02

ÉTAPE 2

03

ÉTAPE 3

04

ÉTAPE 4

0.5

ÉTAPE 2 - Pic de consommation

MAPPER:

- 1. Obtient le début et la fin ainsi que l'utilisation max de cœur.
- 2. Émet la consommation des cœurs pour chaque seconde de la tâche

REDUCER:

- 1. Calcule la consommation totale des cœurs pour chaque seconde.
- 2. Identifie et enregistre les pics de consommation des cœurs.
- 3. Trie ces pics par consommation moyenne décroissante et les écrit dans le fichier de sortie.

Horodatage	DURÉE	MOYENNE
Peak from 920 to 932	duration: 12	1026589
Peak from 921 to 932	duration: 11	1028442

01 **ÉTAPE 1**

02 **ÉTAPE 2**

ÉTAPE 4

ÉTAPE 3 - Puissance machine

MAPPER:

- 1. Obtient la consommation max et la machineld associé.
- 2. Émet la consommation max pour chaque machine.

REDUCER:

1. Calcule et émet la consommation maximale des cœurs pour chaque machinelD fourni.

Machine ID	DURÉE	
m_1	586	
m_10	250	

o₁ ÉTAPE 1

⁰² ÉTAPE 2

étape 3

64 ÉTAPE 4

ÉTAPE 4 - Capacités mémoire

Class annexe:

• MachineMemoryWritable

MAPPER:

- 1. Obtient la taskID, machineID et l'utilisation maximale de la mémoire.
- 2. Émet l'utilisation max pour chaque machine via la class MachineMemoryWritable.

EXEMPLE DE SORTIE

Machine ID	DURÉE	RATIO
m_3069	m_2861	0.9767441
m_3069	m_1433	0.7241379
m_3069	m_334	0.76363635
m_3069	m_2828	0.9767441

REDUCER:

1. Calcule et émet les ratios d'utilisation maximale de la mémoire entre toutes les paires uniques de machines pour une tâche donnée, en excluant les ratios égaux à 1.

o₁ ÉTAPE 1

⁰² ÉTAPE 2

⁰³ **ÉTAPE 3**

ÉTAPE 4

o₅ ÉTAPE 5 **《**

ÉTAPE 5 - Options

- Modification des mappers et reducers
- MultipleOutput
- Commandes personnalisées

EXEMPLE DE SORTIE

- jobs_complete_0-10.csv
 - jobs_complete_10-15.csv
 - jobs_complete_15-1000.csv

Pour obtenir cette sortie nous avons exécuté cette commande :

hadoop jar MyHadoopApps.jar JobAnalysisDriver -D mapreduce.job.reduces=2 /corpus/selectionCourt.csv /etape5/etape5_2_court_separate -separateFiles 1 3 0-10,10-15,15-1000

MERCI DE VOTRE ATTENTION!

DES QUESTIONS?

MATHIEU STEINBACH HUGO - ZIMOL GUILLAUME

