Universidad Nacional de Río Negro Física III B - 2021

Unidad 02

Clase U02 C02 - 08/30

Fecha 10 Abr 2021

Cont Transformaciones y Ciclos

Cátedra Asorey - Calderón

Web https://gitlab.com/asoreyh/unrn-f3b

Unidad 2: Primer Principio

Módulo 1 - Unidad 2: Primer Principio

Nada se gana, nada se pierde, todo se transforma

 La conservación de la energía para un sistema termodinámico se expresa de la siguiente forma

Primer principio de la termodinámica

Q= Calor cedido al sistema (signo de Δ T) Δ U= Cambio de la energía interna del sistema (signo de Δ T) W = Trabajo realizado por el sistema (signo de Δ V)

Nueva transformación

- Vimos transformaciones a P=cte (isobara) y V=cte (isocora)
 - Isobara:

•
$$\Delta U = z/2 n R \Delta T$$

•
$$Q = \Delta U + W$$

•
$$Q = C_V n \Delta T$$

•
$$Q = \Delta U$$

- ¿Cómo será una expansión isotérmica?
 - Baño térmico (p. ej.: Atmósfera, Océano, ...)
 - Reservorio de calor a una temperatura T dada
 - Puede ceder o absorber calor sin que T se vea afectada
 - Un sistema en contacto con un baño → evolución isotérmica

F3B 2O21 5/28

Transformación Isotérmica, Tecte

Si $T = \text{cte pV} = nRT \rightarrow p V = \text{cte (a n cte)}$

Transformación isotérmica

El gas se encuentra en el estado "B"
 Evoluciona en forma isotérmica (baño térmico a T_R=T_C)

3) El gas finaliza en el estado "C"

F3B 2O21 7/28

Transformación isotérmica

En resumen....

Isobara:

•
$$\Delta U = (z/2) n R \Delta T$$

•
$$Q = \Delta U + W$$

Isoterma:

• W = n R T ln
$$(V_f / V_i)$$

•
$$Q = \Delta U + W \rightarrow Q = W$$

• socora:

•
$$Q = C_V n \Delta T$$

•
$$Q = \Delta U$$

Adiabática

Índice adiabático

$$\gamma = \frac{C_p}{C_v} \rightarrow \gamma = \frac{z+2}{z}$$

F3B 2O21 9/28

Último caso: No hay intercambio de calor

- No hay intercambio de calor con el medio
 - Recipiente muy aislado (calorímetro); ó
 - Transformación muy rápida (abriendo una Coca Cola)
- En este caso: Q = O ← Transformación Adiabática
- $Q = \Delta U + W \rightarrow O = \Delta U + W \rightarrow W = -\Delta U$
- En una expansión adiabática, el trabajo se realiza a costa de la energía interna del gas
- Expansión adiabática → Brusco descenso de T
 Y viceversa: en una compresión adiabática, todo el trabajo se convierte en energía interna (Zonda)

F3B 2O21 10/28

Sepa física y sea el alma de la fiesta

F3B 2O21 11/28

El zonda: efecto Föhn

F3B 2O21 12/28

El primer principio dice:

- Q=0 → W = ∆U → límite: dW = -dU → p dV=-dU
- Pero dU = (z/2) d (n R T) y por la ec. Estado, nRT=pV:

$$dU = \left(\frac{z}{2}\right)d(pV) \rightarrow dU = \left(\frac{z}{2}\right)(dpV + pdV)$$

$$\Rightarrow$$
 pdV = $-\frac{z}{2}$ V dp $-\frac{z}{2}$ pdV

$$p dV + \left(\frac{z}{2}\right) p dV = -\left(\frac{z}{2}\right) V dp \rightarrow \left(\frac{z+2}{2}\right) p dV = -\left(\frac{z}{2}\right) V dp$$

$$\left(\frac{z+2}{z}\right)p\,dV = -V\,dp \rightarrow \gamma p\,dV = -V\,dp \rightarrow -\gamma \left(\frac{dV}{V}\right) = \frac{dp}{p}$$

13/28

Integrando ambos lados:

$$-\gamma \int_{V_{i}}^{V_{f}} \frac{dV}{V} = \int_{p_{i}}^{p_{f}} \frac{dp}{p}$$

$$-\gamma \ln \left(\frac{V_{f}}{V_{i}}\right) = \ln \left(\frac{p_{f}}{p_{i}}\right)$$

$$\ln \left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \ln \left(\frac{p_{f}}{p_{i}}\right)$$

$$\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \left(\frac{p_{f}}{p_{i}}\right)$$

Transformación Adiabática

$$p_i V_i^{\gamma} = p_f V_f^{\gamma} \rightarrow p V^{\gamma} = cte \rightarrow T V^{\gamma-1} = cte$$

F3B 2O21 14/28

La cuenta "a mano"

Curvas adiabáticas

F3B 2O21 16/28

Adiabáticas vs isotermas

- Se aproximan asintóticamente a los ejes
- Cada adiabática intersecta a una isoterma en un único punto (volveremos...)
- Las adiabáticas son isentrópicas (volveremos...)

F3B 2O21 17/28

Trabajo adiabático

Según el primer principio y teniendo en cuenta Q=0:

$$W = -\Delta U \rightarrow W = -\frac{z}{2} nR\Delta T \rightarrow W = -\frac{z}{2} nR(T_f - T_i)$$

$$W = -\frac{z}{2} (P_f V_f - P_i V_i)$$

$$W = -\left(\frac{P_f V_f - P_i V_i}{\gamma - 1}\right)$$

F3B 2O21 18/28

En resumen.... II

Isobara:

- W = p ∆V
- $\Delta U = (z/2) n R \Delta T$
- $Q = \Delta U + W$

Isoterma:

- W = n R T ln (V_f / V_i)
- ∆U = O
- $Q = \Delta U + W \rightarrow Q = W$

$$Q = \Delta U + W$$

Isocora:

- W = O
- $Q = C_V n \Delta T$
- $Q = \Delta U$

Adiabática

- W = $-\Delta U$
- $\Delta U = (z/2) n R \Delta T$
- $Q = O \rightarrow W = -\Delta U$

$$PV = nRT$$

Sucesión de transformaciones

20/28

Cuadro de estados

Estado	р	V	T	n
A 1	p _A	V _A	T _A	n _A
B 2	$p_B = 3p_A$	V _B =V _A	T _B	n _A
C 3	p _c =p _A	V _c	$T_{c}=T_{B}$	n _A
$\rightarrow A$	p _A	V _A	T _A	n _A

- Identificar los datos en el problema
- Determinar datos faltantes con las transformaciones
- Calcular datos faltantes con ec. de estado → pV=nRT

F3B 2O21 21/28

Cuadro de transformaciones

Transf	Q	W	ΔU
1: isocora	= ΔU	0	$=(z/2) n R (T_B-T_A)$
2: isoterma	= W	=nRT In(V _C /V _A)	0
3: isobara	= ΔU+W	$=P(V_A-V_C)$	$=(z/2) n R (T_A-T_C)$

- Identificar aquellos valores que no cambian en cada transformación
- Dejar el calor Q para el final (evita confusiones)
- En un ciclo $\Delta U_{total} = O \leftarrow El$ gas vuelve a su estado inicial $U_f = U_i$

F3B 2O21 22/28

Entendiendo el ciclo

- A medida que el ciclo avanza, el sistema intercambia calor (Q) y trabajo mecánico (W) con el medio
- El sistema "almacena" energía en forma de energía interna (→ Temperatura → Energía Cinética)
- Al finalizar el ciclo, U_f = U_i → ∆U = O
- Para el ciclo completo, el primer principio garantiza

$$Q = W$$

Pero esos valores son "netos"

F3B 2O21 23/28

Otro ciclo, el cuadrado letal n=cte

El gas se encuentra en estado A

•
$$P_A, n_A, V_A \rightarrow T_A$$

1) Transformación isócora hasta B,
 P_B=3 P_A

•
$$P_B = 3P_A$$
, n_A , $V_B = V_A \rightarrow T_B$

2) Transformación isóbara hasta C, V_c=3V_A

•
$$P_C = P_B, n_A, V_C = 3V_B \rightarrow T_C$$

3) Transformación isócora hasta D

•
$$V_D = V_C$$
, n_A , $P_D = P_A \rightarrow T_D$

Transformación isóbara hasta AV

24/28

Cuadro de estados

Estado	р	V	T	n
Α	p _A	V _A	T _A	n _A
1:B	$p_B = 3p_A$	V _B =V _A	T _B	n _A
2:C	$\mathbf{p}_{C} = \mathbf{p}_{B}$	$V_c = 3V_B$	T _c	n _A
3:D	$\mathbf{p}_{\mathrm{D}} = \mathbf{p}_{\mathrm{A}}$	$V_D = V_C$	T _D	n _A
4:A	p _A	V _A	T _A	n _A

F3B 2O21 25/28

Cuadro de transformaciones

Transf	Q	W	ΔU
1 _{A→B} :isócora	= ΔU	0	$=(z/2) n R (T_B-T_A)$
2 _{B→c} :isóbara	=∆U+W	$= p_B (V_C - V_B)$	$=(z/2) n R (T_c-T_B)$
3 _{c→D} :isócora	= ΔU	0	$=(z/2) n R (T_D-T_C)$
4 _{D→A} :isóbara	=∆U+W	$= p_D (V_D - V_A)$	$=(z/2) n R (T_A - T_D)$

F3B 2O21 26/28

Calor

- Q>0 ← Calor entra al sistema desde una fuente
- Q<0 ← Calor sale del sistema → No es aprovechable

Trabajo

- W>O ← Trabajo producido por el sistema → Útil
- W<O ← Trabajo realizado sobre el sistema → Costo
- ¿Qué obtuve luego de un ciclo? → Trabajo Neto
- ¿Que tuve que poner para lograr el ciclo? → Calor Q>O

F3B 2O21 27/28

Rendimiento

Definimos al rendimiento como

En términos del ciclo,

F3B 2O21 28/28