

Toward Activity Discovery in the Personal Web

Tara Safavi, Adam Fourney, Robert Sim, Marcin Juraszek, Shane Williams, Ned Friend, Danai Koutra, Paul N. Bennett

Overview

Research problem

Identify high-level "activities" from low-level entities in individuals' heterogeneous personal information collections (personal webs) in a private, unsupervised, online manner.

Why activity discovery?

- Task detection and reflection
- Entity search and recommendation
- Email prioritization and filtering

Graph-based representations

: INTUITION

- Model collection of personal information entities (emails, files, contacts, appts, web searches) as a graph
- Learn representations
 via graph propagation
 from a set of seeds

CONTRIBUTION

- Derive exact online updates of representations via outer product
- $\Delta \hat{\mathbf{X}}$: Update to entity representations
- u: Update strengths for each entity
- v: Update values from each attribute

$$\begin{array}{ll} \Delta \hat{\mathbf{X}} = \hat{\mathbf{X}}_{new} - \hat{\mathbf{X}} & \text{Linear in max} \text{\# of} \\ = \mathbf{u} \mathbf{v}^\top & \text{edges, \# of new} \\ = \mathbf{u} \mathbf{v}^\top & \text{attributes} \end{array}$$

Seeds: Noun phrases, latent topics, user labels indicating activities

Entity representations: Rows of matrix after propagation

References

- [1] Dredze et al. Automatically classifying emails into activities. IUI 2006.
- [2] Grover and Leskovec. node2vec: Scalable feature learning for networks. KDD 2016.
- [3] Qadir et al. Activity modeling in email. NAACL-HLT 2016.

This material is partially based upon work supported by the National Science Foundation and an Army Young Investigator Award.

Intrinsic evaluation

Data

- Participants: 10 interns, researchers, managers
- 2-7 days of data from local logging application
- Recent emails, appts, contacts, searches, files
- Around 100 to 1k entities per participant
- Extract noun phrases (NP) and topics (LSA) from text

Privacy-preserving task setup

- Task hosted locally on participants' machines via USB
- Display pairs of personal information entities [1, 2]
- Participants rate the "activity relatedness" of pairs:
 - Scope (low-, mid-, high-level) and grade (0-4 points)
- All feedback anonymized and aggregated

Entity A: document	Entity B: email
https://en.wikipedia.org/wiki/Peregrine_falcon Title: Peregrine falcon - Wikipedia Last access: 2019-06-10 10:40:52 AM	Birdwatching photos from hiking trip Timestamp: 2019-06-10 10:34:23 AM From: teammate@company.com To: me@company.com
	Here are the bird photos from the hiking trip. Note the fall

☐ High-level: Same general life category

Participant	P1	P2	P3	P4	P5	P6	P 7	P8	P9	P10	Avec enodo (nontr)
# entities in G	157	258	320	303	256	291	203	232	1468	1637	Avg. grade (rank)
					All pair	s of entit	ies				
People Overlap	2.00(4)	2.47 (1)	2.67(4)	1.87 (4)	2.77(1)	2.00(1)	2.00(2)	2.00(3)	2.43(3)	2.13(3)	$2.22 \pm 1.23 (2.60)$
node2vec	2.33(1)	2.40(2)	3.07(3)	1.93(3)	2.33(2)	1.87(2)	1.80(3)	1.93(4)	2.20(4)	1.73(4)	$2.16 \pm 1.38(2.80)$
Ours-NP	2.27(2)	1.93(4)	3.53(1)	2.13(1)	2.27(3)	1.87(2)	1.80(3)	2.53(1)	2.73(1)	2.60(2)	$2.37 \pm 1.43 (2.00)$
Ours-LSA	2.13(3)	2.13(3)	3.27(2)	2.07(2)	2.27(3)	1.87(2)	2.27(1)	2.47(2)	2.53(2)	2.80(1)	$2.38 \pm 1.38 (2.10)$
				,	Email-En	ail pairs	only				
People Overlap	2.60(2)	2.67(1)	2.44(4)	1.75(3)	2.55(4)	1.69(4)	2.20(1)	2.33(3)	2.46(2)	2.13(3)	$2.26 \pm 1.30 (2.70)$
node2vec	2.60(2)	1.88(3)	2.78(3)	1.80(2)	3.71(1)	2.00(1)	1.00(3)	1.62(4)	2.14(4)	1.73(4)	$2.07 \pm 1.39(2.70)$
Ours-NP	2.40(4)	1.83(4)	3.29(1)	1.67(4)	3.62(2)	2.00(1)	1.00(3)	2.57(1)	2.50(1)	2.33(2)	$2.40 \pm 1.40 (2.30)$
Ours-LSA	2.80(1)	2.29(2)	2.88(2)	2.00(1)	3.62(2)	1.89(3)	2.11(2)	2.43(2)	2.42(3)	2.79(1)	$2.54 \pm 1.30 (1.90)$

The pairs retrieved by our representations were rated the most "activity-related" by participants, especially those in senior-level roles

Our representations perform best at identifying "low-level" relationships among entities:
Short-term tasks and goals

Extrinsic evaluation

Data + task setup

- Avocado dataset: 128 inboxes, 500 to 12k entities per inbox
- Learn models on training emails, predict last recipient on test emails
- Baselines: Email features [3] and node2vec [2]

	Hits@1	Hits@2	MRR
Random	0.019 ± 0.023	0.038 ± 0.040	0.081 ± 0.060
Freq. Recipients	0.107 ± 0.106	0.184 ± 0.136	0.229 ± 0.105
Cond. On Sender	$0.143 \pm 0.094^{\dagger}$	$0.247 \pm 0.113^{\blacktriangle}$	$0.282 \pm 0.090^{\dagger}$
Average NP	0.128 ± 0.088	0.209 ± 0.119	0.259 ± 0.102
node2vec	0.062 ± 0.072	0.092 ± 0.108	0.126 ± 0.114
Ours NP, $\lambda = 10^{-1}$	0.111 ± 0.059	0.182 ± 0.096	0.225 ± 0.082
Ours-NP, $\lambda=10^0$	$0.158 \pm 0.084^{\blacktriangle}$	$0.247 \pm 0.105^{\blacktriangle}$	$0.290 \pm 0.089^{\blacktriangle}$
Ours NP, $\lambda = 10^2$	$0.143 \pm 0.085^{\dagger}$	$0.225 \pm 0.112^{\dagger}$	$0.267 \pm 0.093^{\dagger}$
Ours-LSA	0.110 ± 0.093	0.180 ± 0.126	0.224 ± 0.111
Ours-LDA	0.082 ± 0.080	0.141 ± 0.123	0.189 ± 0.111

Our representations match or outperform strong baselines on the task, suggesting their versatility

