

FCC RADIO TEST REPORT-BLE FCC ID:2AF9Q-ST3007

Product: sensor mirror ST3007

Trade Name: Simplehuman

Model No.: ST3007

Serial Model: N/A

Report No.: NTEK-2016NT01254076F2

Issue Date: 10 Mar. 2016

Prepared for

simplehuman

19850 Magellan Drive, Torrance, California 90502, United States

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, P.R. China

Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website: www.ntek.org.cn

TABLE OF CONTENTS

1 7	TEST RESULT CERTIFICATION	3
2 5	SUMMARY OF TEST RESULTS	4
3 I	FACILITIES AND ACCREDITATIONS	5
3.1	11101211120	
3.2 3.3		
4 (GENERAL DESCRIPTION OF EUT	6
5 I	DESCRIPTION OF TEST MODES	8
6 5	SETUP OF EQUIPMENT UNDER TEST	9
6.1	BEGGIE BITGIUM TO COTATION TO TEST STEET TEST STEET TO THE STEET T	
6.2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	10
6.3		
7	TEST REQUIREMENTS	12
7.1	001/2 00122 21/1100101/0 1201	
7.2		
7.3	02 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
7.4	201101022	
7.5		30
7.6		
7.7 7.8		
1.0	ANTENNAATTECATION	

1 TEST RESULT CERTIFICATION

Applicant's name:	simplehuman
Address:	19850 Magellan Drive, Torrance, California 90502, United States
Manufacture's Name:	simplehuman
Address	19850 Magellan Drive, Torrance, California 90502, United States
Product description	
Product name:	sensor mirror ST3007
Model and/or type reference:	ST3007
Serial Model	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J:2015		
FCC 47 CFR Part 15, Subpart C:2015		
KDB 174176 D01 Line Conducted FAQ v01r01	Complied	
ANSI C63.10-2013		
FCC KDB 558074 D01 DTS Meas Guidance v03r04		

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:_	25 Jan. 2016 ~ 10 Mar. 2016
Testing Engineer		Eileen Wu.
		(Eileen Liu)
Technical Manager	:	Jason chen
	-	(Jason Chen)
Authorized Signatory	:	Sam. Chew
		(Sam Chen)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.247 (c)	Radiated Spurious Emission	PASS	
15.247 (d)	Power Spectral Density	PASS	
15.205	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS, 2014.09.04

The certificate is valid until 2017.09.03

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.

Accredited by Industry Canada, August 29, 2012 The Certificate Registration Number is 9270A-1.

Name of Firm : NTEK Testing Technology Co., Ltd

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power, conducted	±0.16dB	
3	Spurious emissions, conducted	±0.21dB	
4	All emissions, radiated(<1G)	±4.68dB	
5	All emissions, radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	sensor mirror ST3007		
Trade Name	Simplehuman		
Model No.	ST3007		
Serial Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK		
Number of Channels	40 Channels		
Antenna Type	PCB Antenna		
Antenna Gain	1.0 dBi		
	☑DC supply: DC 3.7/7200mAh from Li-ion Battery or DC 5V from USB Port.		
Power supply	⊠Adapter supply: Model:KSA29B0500200D5 Input:100-240~,50/60Hz,0.5A Output: 5.0V==-, 2.0A		
HW Version	N/A		
SW Version	N/A		

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
NTEK-2016NT01254076F2	Rev.01	Initial issue of report	Mar 10, 2016

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
	112
19	2440
20	2442
	112
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode Description		
Mode 4	normal link mode	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	CH00(2402MHz)	
Mode 2	CH19(2440MHz)	
Mode 3	CH39(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 1	CH00(2402MHz)	
Mode 2	CH19(2440MHz)	
Mode 3	CH39(2480MHz)	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF	EQUIPMENT UNDER TEST	
0.4 DI 001/ DIA 0		
6.1 BLOCK DIAG	GRAM CONFIGURATION OF TEST SYSTEM	
For AC Conducted	I Emission Mode	
1 01710 0011440104	EUT	C1 Adapter
		C1 Adapter
Fam De Per 17 1	0	
For Radiated Test	Cases	
	EUT	
<u> </u>		i
For Conducted Tes	st Cases	
	Measurement Attenuator C2	
	Instrument Attenuator EUT	
<u> </u>		

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
1	sensor mirror ST3007	Simplehuman	ST3007	2AF9Q-ST3007	EUT
2	Adapter	N/A	KSA29B0500200D5	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C1	USB Cable	NO	NO	1.2m
C2	RF Cable	NO	NO	0.3m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2015.07.06	2016.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2015.06.07	2016.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2015.07.06	2016.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.07	2016.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.06.07	2016.06.06	1 year
6	Horn Antenna	EM	EM-AH-1018 0	2011071402	2015.07.06	2016.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2015.07.06	2016.07.05	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2015.07.06	2016.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2015.07.06	2016.07.05	1 year
12	Test Cable	N/A	R-01	N/A	2015.07.06	2016.07.05	1 year
13	Test Cable	N/A	R-02	N/A	2015.07.06	2016.07.05	1 year
14	Test Receiver	R&S	ESCI	101160	2015.06.06	2016.06.05	1 year
15	LISN	R&S	ENV216	101313	2015.08.24	2016.08.23	1 year
16	LISN	EMCO	3816/2	00042990	2015.08.24	2016.08.23	1 year
17	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.06.07	2016.06.06	1 year
18	Passive Voltage Probe	R&S	ESH2-Z3	100196	2015.06.07	2016.06.06	1 year
19	Absorbing clamp	R&S	MOS-21	100423	2015.06.08	2016.06.07	1 year
20	Test Cable	N/A	C01	N/A	2015.06.08	2016.06.07	1 year
21	Test Cable	N/A	C02	N/A	2015.06.08	2016.06.07	1 year
22	Test Cable	N/A	C03	N/A	2015.06.08	2016.06.07	1 year
23	Attenuation	MCE	24-10-34	BN9258	2015.06.08	2016.06.07	1 year

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Fraguanov(MHz)	Conducted	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average				
0.15-0.5	66-56*	56-46*				
0.5-5.0	56	46				
5.0-30.0	60	50				

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Humidity:

56 %

AC 120V/60Hz

Site NTEK 9*6*6 Chamber #1

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Mode: BT Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1	*	0.1739	41.28	10.12	51.40	64.77	-13.37	QP	
2		0.1739	27.11	10.12	37.23	54.77	-17.54	AVG	
3		0.2059	37.23	10.13	47.36	63.37	-16.01	QP	
4		0.2059	21.57	10.13	31.70	53.37	-21.67	AVG	
5		0.5220	28.93	9.80	38.73	56.00	-17.27	QP	
6		0.5220	22.05	9.80	31.85	46.00	-14.15	AVG	
7		1.1539	30.13	9.83	39.96	56.00	-16.04	QP	
8		1.1539	18.92	9.83	28.75	46.00	-17.25	AVG	
9		2.5459	28.58	9.74	38.32	56.00	-17.68	QP	
10		2.5459	16.85	9.74	26.59	46.00	-19.41	AVG	
11		3.5580	14.90	9.75	24.65	46.00	-21.35	AVG	
12		3.8580	26.46	9.75	36.21	56.00	-19.79	QP	

Power:

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

AC 120V/60Hz Power:

Humidity:

56 %

Mode: BT Note:

MHz dBuV dB dBuV dB uV dB uV<	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
2 0.1737 29.35 10.12 39.47 54.78 -15.31 AVG 3 0.2099 40.98 10.13 51.11 63.21 -12.10 QP 4 0.2099 27.51 10.13 37.64 53.21 -15.57 AVG 5 0.2540 36.70 10.14 46.84 61.62 -14.78 QP 6 0.2540 21.39 10.14 31.53 51.62 -20.09 AVG 7 0.5817 30.69 9.79 40.48 56.00 -15.52 QP 8 0.5817 18.40 9.79 28.19 46.00 -17.81 AVG 9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP			MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector	Comment
3 0.2099 40.98 10.13 51.11 63.21 -12.10 QP 4 0.2099 27.51 10.13 37.64 53.21 -15.57 AVG 5 0.2540 36.70 10.14 46.84 61.62 -14.78 QP 6 0.2540 21.39 10.14 31.53 51.62 -20.09 AVG 7 0.5817 30.69 9.79 40.48 56.00 -15.52 QP 8 0.5817 18.40 9.79 28.19 46.00 -17.81 AVG 9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	1	*	0.1737	45.18	10.12	55.30	64.78	-9.48	QP	
4 0.2099 27.51 10.13 37.64 53.21 -15.57 AVG 5 0.2540 36.70 10.14 46.84 61.62 -14.78 QP 6 0.2540 21.39 10.14 31.53 51.62 -20.09 AVG 7 0.5817 30.69 9.79 40.48 56.00 -15.52 QP 8 0.5817 18.40 9.79 28.19 46.00 -17.81 AVG 9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	2		0.1737	29.35	10.12	39.47	54.78	-15.31	AVG	
5 0.2540 36.70 10.14 46.84 61.62 -14.78 QP 6 0.2540 21.39 10.14 31.53 51.62 -20.09 AVG 7 0.5817 30.69 9.79 40.48 56.00 -15.52 QP 8 0.5817 18.40 9.79 28.19 46.00 -17.81 AVG 9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	3		0.2099	40.98	10.13	51.11	63.21	-12.10	QP	
6 0.2540 21.39 10.14 31.53 51.62 -20.09 AVG 7 0.5817 30.69 9.79 40.48 56.00 -15.52 QP 8 0.5817 18.40 9.79 28.19 46.00 -17.81 AVG 9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	4		0.2099	27.51	10.13	37.64	53.21	-15.57	AVG	
7 0.5817 30.69 9.79 40.48 56.00 -15.52 QP 8 0.5817 18.40 9.79 28.19 46.00 -17.81 AVG 9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	5		0.2540	36.70	10.14	46.84	61.62	-14.78	QP	
8 0.5817 18.40 9.79 28.19 46.00 -17.81 AVG 9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	6		0.2540	21.39	10.14	31.53	51.62	-20.09	AVG	
9 1.2500 30.73 9.82 40.55 56.00 -15.45 QP 10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	7		0.5817	30.69	9.79	40.48	56.00	-15.52	QP	
10 1.2500 19.35 9.82 29.17 46.00 -16.83 AVG 11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	8		0.5817	18.40	9.79	28.19	46.00	-17.81	AVG	
11 2.5419 28.89 9.74 38.63 56.00 -17.37 QP	9		1.2500	30.73	9.82	40.55	56.00	-15.45	QP	
	10		1.2500	19.35	9.82	29.17	46.00	-16.83	AVG	
12 2 5419 17 13 9 74 26 87 46 00 -19 13 AVG	11		2.5419	28.89	9.74	38.63	56.00	-17.37	QP	
12 2.0410 17.10 0.14 20.07 40.00 -10.10 AVO	12		2.5419	17.13	9.74	26.87	46.00	-19.13	AVG	

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

Phase: L1

26 Temperature:

Mode: BT

AC 230√/50Hz Power:

Humidity: 56 %

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1739	33.02	10.12	43.14	64.77	-21.63	QP	
2	0.1739	22.02	10.12	32.14	54.77	-22.63	AVG	
3	0.2059	30.02	10.13	40.15	63.37	-23.22	QP	
4	0.2059	14.80	10.13	24.93	53.37	-28.44	AVG	
5	0.3140	24.90	10.13	35.03	59.86	-24.83	QP	
6	0.3140	17.29	10.13	27.42	49.86	-22.44	AVG	
7	0.5859	29.75	9.79	39.54	56.00	-16.46	QP	
8 *	0.5859	22.35	9.79	32.14	46.00	-13.86	AVG	
9	1.0820	30.88	9.84	40.72	56.00	-15.28	QP	
10	1.0820	20.13	9.84	29.97	46.00	-16.03	AVG	
11	2.4620	27.87	9.73	37.60	56.00	-18.40	QP	
12	2.4620	16.13	9.73	25.86	46.00	-20.14	AVG	

Power:

Limit: FCC Part 15B_(0.15-30MHz) _Main_QP

AC 230V/50Hz

Temperature:

Humidity: 56 %

Mode: BT Note:

MHz dBuV dB dBuV dB uV dB uV<	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
2 0.1780 18.68 10.05 28.73 54.57 -25.84 AVG 3 0.2100 30.49 10.03 40.52 63.20 -22.68 QP 4 0.2100 15.42 10.03 25.45 53.20 -27.75 AVG 5 0.5580 29.83 9.82 39.65 56.00 -16.35 QP 6 0.5580 18.22 9.82 28.04 46.00 -17.96 AVG 7 1.0300 30.45 9.87 40.32 56.00 -15.68 QP 8 1.0300 18.70 9.87 28.57 46.00 -17.43 AVG 9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
3 0.2100 30.49 10.03 40.52 63.20 -22.68 QP 4 0.2100 15.42 10.03 25.45 53.20 -27.75 AVG 5 0.5580 29.83 9.82 39.65 56.00 -16.35 QP 6 0.5580 18.22 9.82 28.04 46.00 -17.96 AVG 7 * 1.0300 30.45 9.87 40.32 56.00 -15.68 QP 8 1.0300 18.70 9.87 28.57 46.00 -17.43 AVG 9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	1	0.1780	32.71	10.05	42.76	64.57	-21.81	QP	
4 0.2100 15.42 10.03 25.45 53.20 -27.75 AVG 5 0.5580 29.83 9.82 39.65 56.00 -16.35 QP 6 0.5580 18.22 9.82 28.04 46.00 -17.96 AVG 7 * 1.0300 30.45 9.87 40.32 56.00 -15.68 QP 8 1.0300 18.70 9.87 28.57 46.00 -17.43 AVG 9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	2	0.1780	18.68	10.05	28.73	54.57	-25.84	AVG	
5 0.5580 29.83 9.82 39.65 56.00 -16.35 QP 6 0.5580 18.22 9.82 28.04 46.00 -17.96 AVG 7 * 1.0300 30.45 9.87 40.32 56.00 -15.68 QP 8 1.0300 18.70 9.87 28.57 46.00 -17.43 AVG 9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	3	0.2100	30.49	10.03	40.52	63.20	-22.68	QP	
6 0.5580 18.22 9.82 28.04 46.00 -17.96 AVG 7 * 1.0300 30.45 9.87 40.32 56.00 -15.68 QP 8 1.0300 18.70 9.87 28.57 46.00 -17.43 AVG 9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	4	0.2100	15.42	10.03	25.45	53.20	-27.75	AVG	
7 * 1.0300 30.45 9.87 40.32 56.00 -15.68 QP 8 1.0300 18.70 9.87 28.57 46.00 -17.43 AVG 9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	5	0.5580	29.83	9.82	39.65	56.00	-16.35	QP	
8 1.0300 18.70 9.87 28.57 46.00 -17.43 AVG 9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	6	0.5580	18.22	9.82	28.04	46.00	-17.96	AVG	
9 2.4140 28.01 9.74 37.75 56.00 -18.25 QP 10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	7 *	1.0300	30.45	9.87	40.32	56.00	-15.68	QP	
10 2.4140 16.49 9.74 26.23 46.00 -19.77 AVG 11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	8	1.0300	18.70	9.87	28.57	46.00	-17.43	AVG	
11 3.7260 26.50 9.72 36.22 56.00 -19.78 QP	9	2.4140	28.01	9.74	37.75	56.00	-18.25	QP	
	10	2.4140	16.49	9.74	26.23	46.00	-19.77	AVG	
12 3 7260 14 80 9 72 24 52 46 00 21 48 AVG	11	3.7260	26.50	9.72	36.22	56.00	-19.78	QP	
12 3.7200 14.00 3.72 24.32 40.00 -21.40 AVG	12	3.7260	14.80	9.72	24.52	46.00	-21.48	AVG	

7.2 RADIATED SPURIOUS EMISSION

7.2.1 **Applicable Standard**

According to FCC Part 15.247(d) and 15.209 and DA 00-705

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FCC Part 15.205, Restricted bands							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed

restricted barid specified off	13.203(a), then the 13.209(a) little the table below has to be followed.					
Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance			
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300			
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30			
1.705~30.0	30	29.5	30			
30-88	100	40	3			
88-216	150	43.5	3			
216-960	200	46	3			
Above 960	500	54	3			

Limits of Radiated Emission Measurement(Above 1000MHz)

Elimic of Radiated Emission Wedearement(Neovo Toodwin)2)						
Frequency(MHz)	Class B (dBuV	/m) (at 3M)				
Frequency(wiriz)	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

<u></u>								
Spectrum Parameter	Setting							
Attenuation	Auto							
Start Frequency	1000 MHz							
Stop Frequency	10th carrier harmonic							
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average							

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

H-111.	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV ´		PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Humidity:

50 %

Site NTEK 9*6*6 Chamber #1 Polarization: Vertical
Limit: FCC_PART15_B_03m_QP Power: AC 120V/60Hz

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBu∀/m	dBu∨/m	dB	Detector	cm	degree	Comment
1		44.2751	21.40	12.38	33.78	40.00	-6.22	QP			
2	İ	61.9951	28.62	5.83	34.45	40.00	-5.55	QP			
3		115.7256	25.16	10.24	35.40	43.50	-8.10	QP			
4	*	127.2176	27.75	10.76	38.51	43.50	-4.99	QP			
5		196.5098	23.18	11.44	34.62	43.50	-8.88	QP			
6		404.6665	24.56	14.79	39.35	46.00	-6.65	QP			

Limit: FCC_PART15_B_03m_QP

Polarization: Horizontal Power: AC 120V/60Hz

50 %

Humidity:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		69.1140	16.78	8.55	25.33	40.00	-14.67	QP			
2		125.8863	19.57	10.70	30.27	43.50	-13.23	QP			
3		133.6188	20.43	10.95	31.38	43.50	-12.12	QP			
4	*	197.8928	24.47	11.45	35.92	43.50	-7.58	QP			
5	:	204.9550	23.75	11.57	35.32	43.50	-8.18	QP			
6	;	379.9141	11.09	15.00	26.09	46.00	-19.91	QP			

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

H-111.	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

All the modulation modes have been tested, and the worst result was report as below:

_										
Frequency	Meter Reading	Factor	Emission Level	Limits Margin		Remark	Comment			
(MHz)	MHz) $(dB\mu V)$ (dB) $(dB\mu V/m)$		(dBµV/m)	(dB)						
	Low Channel (2402 MHz)-Above 1G									
4804.148	59.68	-3.64	56.04	74.00	-17.96	Pk	Vertical			
4804.148	40.17	-3.64	36.53	54.00	-17.47	AV	Vertical			
7206.225	59.63	-0.95	58.68	74.00	-15.32	Pk	Vertical			
7206.225	40.82	-0.95	39.87	54.00	-14.13	AV	Vertical			
4804.364	62.25	-3.64	58.61	74.00	-15.39	Pk	Horizontal			
4804.364	41.34	-3.64	37.70	54.00	-16.30	AV	Horizontal			
7206.207	59.83	-0.95	58.88	74.00	-15.12	Pk	Horizontal			
7206.207	40.16	-0.95	39.21	54.00	-14.79	AV	Horizontal			
		Mid Chanr	nel (2441 MHz)-Abo	ve 1G						
4880.299	60.92	-3.68	57.24	74.00	-16.76	Pk	Vertical			
4880.299	41.16	-3.68	37.48	54.00	-16.52	AV	Vertical			
7320.266	60.85	-0.82	60.03	74.00	-13.97	Pk	Vertical			
7320.266	40.75	-0.82	39.93	54.00	-14.07	AV	Vertical			
4880.193	62.39	-3.68	58.71	74.00	-15.29	Pk	Horizontal			
4880.193	40.41	-3.68	36.73	54.00	-17.27	AV	Horizontal			
7320.102	59.86	-0.82	59.04	74.00	-14.96	Pk	Horizontal			
7320.102	42.18	-0.82	41.36	54.00	-12.64	AV	Horizontal			
		High Chani	nel (2480 MHz)- Abo	ove 1G						
4960.107	60.96	-3.59	57.37	74.00	-16.63	Pk	Vertical			
4960.107	41.14	-3.59	37.55	54.00	-16.45	AV	Vertical			
7440.263	59.82	-0.68	59.14	74.00	-14.86	Pk	Vertical			
7440.263	48.55	-0.68	47.87	54.00	-6.13	AV	Vertical			
4960.396	59.63	-3.59	56.04	74.00	-17.96	Pk	Horizontal			
4960.396	41.27	-3.59	37.68	54.00	-16.32	AV	Horizontal			
7440.114	60.21	-0.68	59.53	74.00	-14.47	Pk	Horizontal			
7440.114	41.46	-0.68	40.78	54.00	-13.22	AV	Horizontal			

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

IF()).	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode3	Test By:	Eileen Liu

All the modulation modes were tested, the data of the worst mode are described in the following table

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Commont				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment				
	1Mbps										
2390	58.96	-13.06	45.9	74	-28.10	peak	Vertical				
2390	60.14	-13.06	47.08	74	-26.92	peak	Horizontal				
2483.5	60.33	-12.78	47.55	74	-26.45	peak	Vertical				
2483.5	59.87	-12.78	47.09	74	-26.91	peak	Horizontal				

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100KHz

 $VBW \geq 3^*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

H-111.	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	641.285	500	Pass
Middle	2440	682.685	500	Pass
High	2480	716.575	500	Pass

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074)6)b), issued 06/09/2015

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074(issued 06/09/2015)

The largest availble value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Zero Span

RBW = 8MHz(the largest available value)

VBW = 8MHz (≥ RBW)

Number of points in Sweep >100

Detector function = peak

Trace = Clear write

Measure T_{total} and T_{on}

Calculate Duty Cycle = T_{on} / T_{total} and Duty Cycle Factor=10*log(1/Duty Cycle)

7.4.6 Test Results

H-111.	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode5	Test By:	Eileen Liu

Modulation Mode	Data rate	T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)
GFSK	1Mbps	426.7	613.3	0.6957	1.576

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Set the RBW \ge DTS bandwidth(about 1MHz).

Set VBW = 3*RBW(about 3MHz)

Set the span ≥3*RBW

Set Sweep time = auto couple.

Set Detector = peak.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

H-111.	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Test Channel	Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict		
	1Mbps						
00	2402	MAXIMUM	6.15	30	PASS		
19	2440	MAXIMUM	6.70	30	PASS		
39	2480	MAXIMUM	6.22	30	PASS		

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Set RBW =3KHz

Set VBW =10KHz

Set the span =1.5 times the DTS bandwidth

Set Sweep time = auto couple.

Set Detector = peak.

Set Trace mode = max hold.

7.6.6 Test Results

IFIII.	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3	Test By:	Eileen Liu

Test Channel	Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Verdict		
	1Mbps					
00	2402	-13.26	8	PASS		
19	2440	-13.83	8	PASS		
39	2480	-13.60	8	PASS		

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

H-111.	Next Gen Sensor Mirror	Model No.:	ST3007
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode5/Mode7	Test By:	Eileen Liu

Frequency Band	Delta Peak to band emission(dBc)	>Limit(dBc)	Verdict
Left-band	38.33	20	Pass
Right-band	46.99	20	Pass

7.8 ANTENNA APPLICATION

7.8.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.8.2 **Result**

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END OF REPORT