APPLICAZIONI INDUSTRIALI ELETTRICHE ED ELETTRONICA (MODULO 1)

kanopo

2022

Indice

I	Intr	roduzione
	1.1	Tensione
	1.2	Corrente
	1.3	Legge di Ohm
	1.4	Componenti reattivi
		1.4.1 Condensatore
		1.4.2 Induttore
	1.5	Generatori dipendenti
	1.6	Circuiti
2	Met	todo dei nodi
	2.1	Leggi di Kirchhoff
		2.1.1 Prima L.D.K delle correnti(KCL)
		2.1.2 Seconda L.D.K delle tensioni(KVL)
	2.2	Metodo dei nodi
3	Met	todo agli anelli
	3.1	Metodo degli anelli / maglie
_	_	
\mathbf{E}	len	co delle figure
	1	Verso tensione
	2	Esempio di ramo

Elenco delle tabelle

1 Introduzione

1.1 Tensione

L'unità di misura della tensione è il Volt [V].

Figura 1: Verso tensione

1.2 Corrente

L'unità di misura della corrente è il Ampere [A].

1.3 Legge di Ohm

Prima legge

La **resistenza** si indica con $R[\Omega]$ (ohm) e si calcola:

$$V = R \cdot I$$

L'induttanza è l'opposto della resistenza e si indica con G[S] (Siemens)

$$R = \frac{1}{G}$$
$$I = G \cdot V$$

Seconda legge

La **resistività** si indica con $\rho[\Omega \cdot m]$ (ohm per metro) e si calcola: L'**conducibilità** è l'opposto della resistività e si indica con $\sigma[\frac{S}{m}]$ (Siemens fratto metri)

$$\rho = \frac{1}{\sigma}$$

$$R = \rho \cdot \frac{l}{S}$$

$$G = \sigma \cdot \frac{S}{I}$$

Dove l è la lunghezza del materiale e S è la sezione.

1.4 Componenti reattivi

1.4.1 Condensatore

$$Q = C \cdot V$$

$$\epsilon_C = \frac{1}{2}C \cdot V^2$$

In circuiti statici il condensatore viene visto come un pezzo di circuito aperto.

Quando siamo in presenza di una corrente variabile(i) e di una tensione variabile(v)(ovviamente), usiamo queste formuline swag:

$$i = C \cdot \frac{\delta v}{\delta t}$$

1.4.2 Induttore

$$\lambda = L \cdot I$$

$$\epsilon_L = \frac{1}{2}L \cdot I^2$$

In circuiti statici il solenoide viene visto come un pezzo di circuito cortocircuitato. Quando siamo in presenza di una corrente variabile(i) e di una tensione variabile(v)(ovviamente), usiamo queste formuline swag:

$$i = L \cdot \frac{\delta i}{\delta t}$$

1.5 Generatori dipendenti

- dipendenti da tensione
 - Generatore di tensione dipendente da tensione (VCVS)

$$V = aV_r$$

- Generatore di corrente dipendente da tensione (VCCS)

$$I = bI_x$$

- dipendenti da corrente
 - Generatore di tensione dipendente da corrente (CCVS)

$$V = rI_x$$

- Generatore di corrente dipendente da corrente (CCCS)

$$I = gI_x$$

1.6 Circuiti

Definizione: Un circuito è un percorso chiuso che contiene componenti elettriche.

Definizione: Un ramo è una sequenza di componenti senza deviazioni?!

Figura 2: Esempio di ramo

Definizione: Un nodo è un punto d'incontro di 3 o più rami.

Definizione: Un maglia è percorso chiuso in un circuito

2 Metodo dei nodi

2.1 Leggi di Kirchhoff

2.1.1 Prima L.D.K delle correnti(KCL)

La somma algebrica delle correnti dei rami convergenti in un nodo è sempre nulla.

2.1.2 Seconda L.D.K delle tensioni(KVL)

La somma algebrica delle tensioni lungo una maglia è sempre nulla.

2.2 Metodo dei nodi

- 1. Identificare i nodi e fra questi decidere quale è il nodo di riferimento
- 2. Identificare i versi (in modo arbitrario) delle correnti di ciascun ramo
- 3. Scrivere le equazioni costitutive dei modelli dei componenti per esprimere le correnti di cui al punto 2 in funzione dei soli potenziali fra i nodi
 - (a) se ancora vi sono correnti non in funzione dei potenziali, applicare KVL
- 4. Risolvere il sistema che ha come incognite i soli potenziali di nodo
- 5. Se necessario, determinare le altre tensioni con la KVL e le correnti usando le eqauzioni dei componenti

3 Metodo agli anelli

3.1 Metodo degli anelli / maglie

- 1. Identificare gli anelli e attribuire loro un verso di percorrenza.
- 2. identificare i versi delle tensioni di ciascun componente ad anello
- 3. scrivere la KVL per tutti gli anelli
- 4. Utilizzare le equazioni costitutive per esprimere le tensioni di cui al punto 2 in funzione dele solo correnti di maglia.
 - (a) se ci sono ancora formule non in funzione della corrente, applicare KCL
- 5. risolvere il sistema che ha come incognite le correnti di maglia
- 6. se serve, determinare le altre correnti con la KCL e le tensioni usando le equazioni costitutive.