My Contribution to the Testing and Characterization of the CMS Prototype 3D Silicon Pixel Detectors

Matthew Kress

Friday Nov 1, 2013

Introduction

This presentation is to go over my contribution to the characterization and test results of the 3D silicon CMS Pixel detectors at Purdue University.

Software

- Set up local server to store pixel information.
- To avoid data loss that had happened with previous tests I created a redundant backup system both local and on the Purdue network.
- Created a MySQL database on the server that was interfaced through a custom written GUI for the storage of the data.
- All calculations and plotting automatically done with C++, root, and Perl.

Before/After Wire-Bonding

 All of the measurements that I personally did were after wire-bonding.

Comparing with the previous measurements done by measuring on the wafer we were able to see that there was an improvement across all the modules after wire-bonding. This is because when the sensors were tested on the wafers only a temporary metal layer was used to connect the columns led to extra leakage current.

I-V Measurement

- On the ROC measured each pixel response for a set bias voltage.
- For each pixel I fit the IV curve to an S-curve (step function convoluted with a Gaussian).
- From the slope of the S curve at efficiency of 0.5 we calculate the equivalent noise charge (ENC).

$$ENC = \frac{1}{\sqrt{2\pi}} \frac{1}{s} \tag{1}$$

Noise

- After finding the ENC for each pixel the distribution is fit with a Gaussian.
- (1 VCAL = 65.5 electrons)

Bias Voltage

- Additionally you can calculate these values for varying bias voltages.
- We found that up till 40 V there is significant improvement but afterward the improvement levels off.

Threshold

- The threshold is the voltage where efficiency equals 0.5 on the IV curve.
- This was measured both with and without trimming.

Conclusion

- The conclusion from my measurements with others in the group was that the signal to threshold (S/T) ratio for these detectors is around 3
- For the Super LHC you need a S/T ratio of around 4 in midlife and around 3 at the end of life so there needs to be more improvement in the noise for these types of 3D pixels to be acceptable.