Scilab Textbook Companion for Physical Chemistry by G. H. Duffey¹

Created by
Chaitanya Potti
Chemical engineering
Chemical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
Lavitha Pereira

May 25, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Physical Chemistry

Author: G. H. Duffey

Publisher: Maple Press Company, New York

Edition: 2

Year: 1985

ISBN: 1429218126

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Matter and its atomic nature	5
2	Particles Atomic and subatomic	8
3	Waves and Quanta	11
4	Molecular energy levels	12
6	Valence electrons in molecules	14
7	Gases and Introductory stastical thermodynamics	17
8	First law of thermodynamics	21
9	Boltzmann distribution law	24
10	Second law of thermodynamics	26
11	Condensed phases	29
12	Physical Equilibria	31
13	Thermodynamic changes accompanying chemical reaction	36
14	Development and use of activity concepts	41
15	Electrochemistry	49

16 Typical mechanisms and rate laws	53
17 Resolving Kinetic data	55
18 Catalysis	58
19 Photochemistry	60

List of Scilab Codes

Exa 1.1	Example 1													5
Exa 1.2	Example 2													5
Exa 1.5	Example 5													6
Exa 1.6	Example 6													6
Exa 1.10	Example 10													7
Exa 2.2	Example 2													8
Exa 2.3	Example 3													8
Exa 2.4	Example 4													9
Exa 2.6	Example 6													9
Exa 3.9	Example 9													11
Exa 4.1	Example 1													12
Exa 4.2	Example 2													12
Exa 4.3	Example 3													13
Exa 4.4	Example 4													13
Exa 6.1	Example 1													14
Exa 6.3	Example 3													14
Exa 6.4	Example 4													15
Exa 6.5	Example 5													15
Exa 6.9	Example 9													15
Exa 6.10	Example 10													16
Exa 7.2	Example 2													17
Exa 7.3	Example 3													17
Exa 7.4	Example 4													18
Exa 7.5	Example 5													18
Exa 7.6	Example 6													19
Exa 7.7	Example 7													19
Exa 7.8	Example 8													20
Exa 8.1	Example 1													21

Exa 8.2	Example 2													21
Exa 8.3	Example 3													22
Exa 8.4	Example 4													22
Exa 8.5	Example 5													23
Exa 9.1	Example 1													24
Exa 9.2	Example 2													24
Exa 10.1	Example 1													26
Exa 10.3	Example 3													26
Exa 10.5	Example 5													27
Exa 10.6	Example 6													27
Exa 10.7	Example 7													28
Exa 11.1	Example 1													29
Exa 11.2	Example 2													29
Exa 12.1	Example 1													31
Exa 12.2	Example 2													31
Exa 12.3	Example 3													32
Exa 12.4	Example 4													32
Exa 12.5	Example 5													33
Exa 12.6	Example 6													33
Exa 12.7	Example 7													33
Exa 12.8	Example 8													34
Exa 12.9	Example 9													34
Exa 13.1	Example 1													36
Exa 13.2	Example 2													36
Exa 13.3	Example 3													37
Exa 13.4	Example 4													37
Exa 13.5	Example 5													38
Exa 13.6	Example 6													38
Exa 13.7	Example 7													39
Exa 13.8	Example 8													39
Exa 13.9	Example 9													40
Exa 13.10	Example 10													40
Exa 14.1	Example 1													41
Exa 14.2	Example 2													41
Exa 14.3	Example 3													42
Exa 14.4	Example 4													42
Exa 14.5	Example 5													43
Exa. 14 6	Example 6													43

Exa 14.7	example 7											44
Exa 14.8	Example 8 .											45
Exa 14.9	Example 9 .											45
Exa 14.10	Example 10.											46
Exa 14.11	Example 11.											47
Exa 14.12	Example 12.											47
Exa 14.13	Example 13.											48
Exa 15.1	Example 1 .											49
Exa 15.2	Example 2											49
Exa 15.3	Example 3 .											50
Exa 15.4	Example 4 .											50
Exa 15.5	Example 5 .											51
Exa 15.6	Example 6 .											51
Exa 15.7	Example 7											52
Exa 16.1	Example 1 .											53
Exa 16.2	Example 2 .											53
Exa 16.3	Example 3 .											54
Exa 17.1	Example 1 .											55
Exa 17.2	Example 2 .											55
Exa 17.3	Example 3											56
Exa 17.5	Example 5 .											56
Exa 18.1	Example 1 .											58
Exa 18.2	Example 2 .											58
Exa 19.1	Example 1 .											60
Exa 19.2	Example 2											60
Exa 19.3	Example 3											61
Exa 19.4	Example 4 .											61
Exa 19.5	Example 5 .											62
Exa 19.6	Example 6 .											62
Exa 19.7	Example 7											62
Exa 19.8	Example 8 .											63
Exa 19.9	Example 9 .											63

Matter and its atomic nature

Scilab code Exa 1.1 Example 1

```
1 clc
2 //Initialization of variables
3 l=0.71 *10^-8 //cm
4 n=200 //lines/cm
5 v=0.00145 //radian
6 //calculations
7 d=1/n
8 phi2=2*1/d +v^2
9 phi=sqrt(phi2)
10 //results
11 printf('Angle required = %.2e radian',phi)
```

Scilab code Exa 1.2 Example 2

```
1 clc
2 //Initialization of variables
3 angle=37.25 //degrees
4 l=1.539 //A
```

```
5 n=1 //order
6 //calculations
7 d=n*1/(2*sind(angle))
8 //results
9 printf("Interplanar distance = %.3 f A",d)
```

Scilab code Exa 1.5 Example 5

```
1 clc
2 //Initialization of variables
3 r1=sqrt(3)
4 r2=1
5 //calculations
6 ratio=r1-r2
7 //results
8 printf('Ratio of radii = %.3f',ratio)
```

Scilab code Exa 1.6 Example 6

```
1 clc
2 //Initialization of variables
3 d=2.64 //g/cc
4 l=4.016*10^-8 //cm
5 n=4
6 M=25.94 //g/mol
7 //calculations
8 m=d*1^3 /n
9 NO=M/m
10 //results
11 printf("Avagadro number = %.3e molecule/mol", NO)
```

Scilab code Exa 1.10 Example 10

```
1 clc
2 //Initialization of variables
3 A=[-1 -1 -1 ]
4 B=[1 1 -1]
5 //calculations
6 Ad=sqrt(1+1+1)
7 Bd=sqrt(1+1+1)
8 dot=A.*B /(Ad*Bd)
9 theta=acosd(dot)
10 //results
11 printf("Angle = %.2f degrees",theta(1,1))
```

Particles Atomic and subatomic

Scilab code Exa 2.2 Example 2

```
1 clc
2 //Initialization of variables
3 m1=1.008142
4 m2=1.008982
5 //calculations
6 dm=m1-m2
7 dt=abs(dm) *931
8 //results
9 printf("Increase in kinetic energy = %.3 f Mev",dt)
```

Scilab code Exa 2.3 Example 3

```
1 clc
2 //Initialization of variables
3 d=8.642 //g/cc
4 M=112.41 //g/mol
5 ratio=0.01/100
6 nb=2400
```

```
7 //calculations
8 n=d*6.02*10^23 /M
9 sigma=nb*10^-24
10 x=-2.303*log10(ratio) /(sigma*n)
11 //results
12 printf("Thickness = %.3 f cm",x)
```

Scilab code Exa 2.4 Example 4

```
1 clc
2 //Initialization of variables
3 M1=4
4 M2=14
5 E=-1.2 //Mev
6 //calculations
7 R1=1.5*10^-13 *(M1)^(1/3)
8 R2=1.5*10^-13 *(M2)^(1/3)
9 V1=2*7*(4.8*10^-10)^2 /(R1+R2)
10 V2=V1/(1.6*10^-6)
11 x=(M1+M2)*V2/M2
12 //results
13 printf("Threshold = %.1 f Mev",x)
```

Scilab code Exa 2.6 Example 6

```
1 clc
2 //Initialization of variables
3 t=1622 //years
4 per=1 //percent
5 //calculations
6 Nratio=1-per/100
7 x=t*log10(Nratio) / log10(0.5)
8 //results
```

9 printf("Time taken = $\%.1 \, f$ years",x)

Waves and Quanta

Scilab code Exa 3.9 Example 9

```
1 clc
2 //initialization of variables
3 atoms=5
4 //calculations
5 f=3*atoms
6 fvib=f-3-3
7 //results
8 printf("Vibrational degrees of freedom = %d",fvib)
```

Molecular energy levels

Scilab code Exa 4.1 Example 1

```
1 clc
2 //initialization of variables
3 B=10.34 //cm^-1
4 c=2.998*10^10 //cm/s
5 h=6.625*10^-27 //erg sec
6 //calculations
7 I=h/(8*%pi^2 *B*c)
8 //results
9 printf("Moment of inertia = %.2e g cm^2",I)
```

Scilab code Exa 4.2 Example 2

```
1 clc
2 //Initialization of variables
3 ma=1.0080
4 mb=35.457
5 Na=6.0232*10^23
6 I=2.707*10^-40 //g cm^2
```

```
7 //calculations
8 mu1=ma*mb/(ma+mb)
9 mu2=mu1/Na
10 r=sqrt(I/mu2)
11 //results
12 printf("Bond length = %.2e cm",r)
```

Scilab code Exa 4.3 Example 3

```
1 clc
2 //Initialization of variables
3 c=2.998*10^10 //cm/s
4 wave=2990 //cm^-1
5 mu=1.627*10^-24 //g
6 //calculations
7 k=mu*(2*%pi*c*wave)^2
8 //results
9 printf("Force constant = %.2e dynes/cm",k)
```

Scilab code Exa 4.4 Example 4

```
1 clc
2 //initialization of variables
3 l1=2886 //cm^-1
4 l2=5668 //cm^-1
5 //calculations
6 wave=2*11-12
7 wave2= wave+11
8 x=wave/(2*wave2)
9 //results
10 printf("anharmonicity constant = %.4f",x)
```

Valence electrons in molecules

Scilab code Exa 6.1 Example 1

```
1 clc
2 //initialization of variables
3 a2=1/8
4 //calculations
5 b2=1-a2
6 a1=sqrt(a2)
7 b1=sqrt(b2)
8 //results
9 printf(" Wave function is %.2f phi1 +%.2f phi2",a1,b1)
```

Scilab code Exa 6.3 Example 3

```
1 clc
2 //initialization of variables
3 sinu=2/sqrt(3)
4 cosu=sqrt(2/3)
5 //calculations
```

```
6 tanu=sinu/cosu
7 u=atand(sinu/cosu)
8 //results
9 printf("Bond anagle = %.2f degrees",2*u)
```

Scilab code Exa 6.4 Example 4

```
1 clc
2 //initialization of variables
3 cosu=1/sqrt(3)
4 sinu=sqrt(2/3)
5 //calculations
6 f=1/2 + sqrt(3) /2 *cosu + sqrt(3/2) *sinu
7 //results
8 printf("Pauling strength = %d ",f)
```

Scilab code Exa 6.5 Example 5

```
1 clc
2 //initialization of variables
3 alpha=60
4 //calculations
5 cosa=cosd(alpha)
6 sina=sind(alpha)
7 //results
8 printf("Wave function = %.2 f s + %.2 f pz",cosa,sina)
```

Scilab code Exa 6.9 Example 9

```
1 clc
2 //initialization of variables
3 DHH=103 //kcal/mol
4 //calculations
5 DHHp=0.5*(DHH)
6 //results
7 printf("Bond energy = %.1 f kcal/mol", DHHp)
```

Scilab code Exa 6.10 Example 10

```
1 clc
2 //initialization of variables
3 DHH=42 //kcal/mol
4 //calculations
5 DHHp=0.5*(DHH)
6 //results
7 printf("Exchange energy = %.1 f kcal/mol", DHHp)
```

Gases and Introductory stastical thermodynamics

Scilab code Exa 7.2 Example 2

```
1 clc
2 //Initialization of variables
3 h=76 //cm
4 d=13.5951 //g/cc
5 g=980.655 //cm/s^2
6 T=273.15 //K
7 v=22414.6 //cm^3 /mol
8 //calculations
9 P=h*d*g
10 R=P*v/(T)
11 //results
12 printf("Gas constant = %.3e ergs/deg. mol",R)
```

Scilab code Exa 7.3 Example 3

1 clc

```
//Initialization of variables
cal=4.184*10^7 //ergs
R=8.315*10^7 //ergs/deg/mol
//calculations
Rdash=R/cal
//results
printf("R in calories = %.3f cal/ deg mol",Rdash)
```

Scilab code Exa 7.4 Example 4

```
1 clc
2 //Initialization of variables
3 R=8.315*10^7 //ergs/deg/mol
4 T=273.2 //deg
5 M=4 //g/mol
6 //calculations
7 u2=3*T*R/M
8 u=sqrt(u2)
9 //results
10 printf("root mean square velocity = %.2e cm/sec",u)
```

Scilab code Exa 7.5 Example 5

```
1 clc
2 //Initialization of variables
3 n1=2
4 n2=10
5 n3=3
6 P=720 //mm of Hg
7 //calculations
8 n=n1+n2+n3
9 x1=n1/n
10 P1=x1*P
```

Scilab code Exa 7.6 Example 6

```
1 clc
2 //Initialization of variables
3 T=273.2+25 //K
4 n=1 //mol
5 R=1.987 //cal/deg mol
6 //calculations
7 Etr=1.5*n*R*T
8 Erot=1.5*n*R*T
9 Evib=0
10 Eel=0
11 Etot=Etr+Erot+Evib+Eel
12 //results
13 printf("Total energy = %d cal",Etot)
```

Scilab code Exa 7.7 Example 7

```
1 clc
2 //Initialization of variables
3 b=24.1 //cm<sup>2</sup>/mol
4 N=6.023*10<sup>23</sup> //mole<sup>-1</sup>
5 //calculations
6 d=(3*b/(2*%pi*N))<sup>(1/3)</sup>
```

```
7 //results 8 printf("Molecular diameter of He = \%.2\,\mathrm{e} cm",d)
```

Scilab code Exa 7.8 Example 8

```
1 clc
2 //Initialization of variables
3 P = 100 / atm
4 T = 200 / K
5 \text{ n=1} //\text{mole}
6 R=0.08206 //1 \text{ atm/deg mol}
7 disp("From psychrometric charts,")
8 Tc=126.2 //K
9 Pc = 33.5 / K
10 //calculations
11 Pr=P/Pc
12 \text{ Tr}=T/Tc
13 disp("From z charts,")
14 z = 0.83
15 V = z * n * R * T / P
16 // results
17 printf("Volume = \%.3 f liter", V)
```

First law of thermodynamics

Scilab code Exa 8.1 Example 1

```
1 clc
2 //Initialization of variables
3 P=1.0132*10^6 //dynes/cm^2
4 A=100 //cm^2
5 z=10 //cm
6 //calculations
7 w=P*A*z*10^-7
8 //results
9 printf("Joules = %.4e J",w)
```

Scilab code Exa 8.2 Example 2

```
1 clc
2 //Initialization of variables
3 P=1.0132*10^6 //dynes/cm^2
4 A=100 //cm^2
5 z=10 //cm
6 //calculations
```

```
7 w=P*A*z*10^-7
8 cal=w/4.184
9 //results
10 printf("Calories = %.3 f cal", cal)
```

Scilab code Exa 8.3 Example 3

```
1 clc
2 //Initialization of variables
3 T=373.2 //K
4 n=1 //mol
5 qp=9720 //cal/mol
6 //calculations
7 q=n*qp
8 w=1.987*T
9 dE=q-w
10 //results
11 printf("Heat of vaporization = %d cal",q)
12 printf("\n Change in energy = %d cal",dE)
```

Scilab code Exa 8.4 Example 4

```
1 clc
2 // Initialization of variables
3 T1=25+273 //K
4 T2=25+273 //K
5 // calculations
6 disp("Since, T2=T1, dE=0")
7 dE=0
8 w=0
9 q=dE+w
10 // results
11 printf("\n Work done = %d", w)
```

```
12 printf("\n Heat transferred = %d ",q)
13 printf("\n Change in energy = %d",dE)
```

Scilab code Exa 8.5 Example 5

```
1 clc
2 //Initialization of variables
3 R=1.987 //cal/deg mol
4 //calculations
5 Cvtr=1.5*R
6 Cvrot=1.5*R
7 Cvt=Cvtr+Cvrot
8 disp("Observed Cv= 6.43")
9 Cvobs=6.43
10 Cvvib=Cvobs-Cvt
11 //results
12 printf("Vibrational = %.2f cal/deg mol",Cvvib)
```

Boltzmann distribution law

Scilab code Exa 9.1 Example 1

```
1 clc
2 //Initialization of variables
3 r=2.1*10^-6 //cm
4 n=889
5 x=0.1 //cm
6 T=298.2 //K
7 //calculations
8 V=4/3 *%pi *r^3
9 rho=19.3-1
10 ffd=rho*V*980.7
11 eps=ffd*x
12 logN=-6.96*10^-14 /(2.303*1.38*10^-16 *T)
13 N=10^logN *n
14 //results
15 printf("No. of particles = %d",N+1)
```

Scilab code Exa 9.2 Example 2

```
1 clc
2 //Initialization of variables
3 x=1 //percent
4 wave=1595 //cm^-1
5 //calculations
6 E=2.8593*wave
7 Nratio=(100-x)/x
8 logN=log10(Nratio)
9 T=E/(2.303*1.987*logN)
10 //results
11 printf("Temperature = %d K",T)
```

Second law of thermodynamics

Scilab code Exa 10.1 Example 1

```
1 clc
2 //Initialization of variables
3 T2=100+273.2 //K
4 T1=50+273.2 //K
5 n=1 //mol
6 R=1.987 //cal/deg mol
7 //calculations
8 dS=5/2 *n*R*2.303*log10(T2/T1)
9 //results
10 printf("Change in entropy = %.3 f eu",dS)
```

Scilab code Exa 10.3 Example 3

```
1 clc
2 //Initialization of variables
3 H=380 //cal
4 T=273.2+32.1 //K
5 //calculations
```

```
6 dS=H/T
7 //results
8 printf("Entropy change = %.2 f eu",dS)
```

Scilab code Exa 10.5 Example 5

```
1 clc
2 //Initialization of variables
3 Ha=0
4 Hb=0
5 //calculations
6 H=Ha+Hb
7 q=H
8 U=0
9 w=q-H
10 //results
11 printf("Work done = %d",w)
```

Scilab code Exa 10.6 Example 6

```
1 clc
2 //Initialization of variables
3 prob=0.001
4 R=1
5 N=6.023*10^23
6 //calculations
7 dS=1.987*2.303*log10(prob) /N
8 //results
9 printf("change in entropy = %.1e eu",dS)
```

Scilab code Exa 10.7 Example 7

```
1 clc
2 //Initialization of variables
3 T=373.2 //K
4 c=1.987 //cal/deg
5 //calculations
6 w=c*T
7 A=-w
8 //results
9 printf("Change in A = %d cal", A)
```

Condensed phases

Scilab code Exa 11.1 Example 1

```
1 clc
2 //Initialization of variables
3 A=7.6546
4 B=1686.8
5 T=60+273.2
6 //calculations
7 logP=A-B/T
8 P=10^logP
9 //results
10 printf("Vapor Pressure = %d mm",P+1)
```

Scilab code Exa 11.2 Example 2

```
1 clc
2 //Initialization of variables
3 alpha=4.92*10^-5 //deg^-1
4 beta=7.85*10^-7 //atm^-1
5 d=8.93 //g/cm^3
```

```
6 T=298.15 //K
7 //calculations
8 dC=63.54*T*alpha^2 *1.987/(d*beta*82.06)
9 //results
10 printf("Change in c values = %.3 f cal/deg mol",dC)
```

Physical Equilibria

Scilab code Exa 12.1 Example 1

```
1 clc
2 //Initialization of variables
3 p=3
4 c=2
5 // calculations
6 f=2-p+c
7 // results
8 printf("no. of degrees of freedom = %d ",f)
```

Scilab code Exa 12.2 Example 2

```
1 clc
2 //Initialization of variables
3 T=273.2 //K
4 vw=1.0001 //cm^3 /g
5 vi=1.0907 //cm^3 /g
6 hf=79.7 //cal/g
7 P1=76 //cm
```

```
8 P2=4.6 //cm
9 //calculations
10 dT=T*(vw-vi)*(P2-P1)*13.6*980.7/(hf*4.184*10^7)
11 //results
12 printf("change in temperature = %.4 f deg",dT)
```

Scilab code Exa 12.3 Example 3

```
1 clc
2 //Initialization of variables
3 V=6.84 //cm^3 /g
4 //calculations
5 dPbydT=-1.7*4.184*10^7 /(2.19*V*0.06*1.01*10^6)
6 //results
7 printf("dPbydT = %d atm/deg",dPbydT)
```

Scilab code Exa 12.4 Example 4

```
1 clc
2 //Initialization of variables
3 P=6 //atm
4 T=273.2+25 //K
5 P=23.8 //mm
6 V=0.018 //lt/mol
7 R=0.08206 //lt am/deg mol
8 //calculations
9 dPa=V*P*4536/(R*T*760)
10 Pa=dPa+P
11 //results
12 printf("Pressure = %.1 f mm", Pa)
```

Scilab code Exa 12.5 Example 5

```
1 clc
2 //Initialization of variables
3 x=0.25
4 Ps1=96 //mm
5 Ps2=43.9 //mm
6 //calculations
7 P1=x*Ps1
8 P2=(1-x)*Ps2
9 P=P1+P2
10 Xdash=P1/P
11 //results
12 printf("mole fraction of methanol in vapor = %.3f", Xdash)
```

Scilab code Exa 12.6 Example 6

```
1 clc
2 //Initialization of variables
3 Hv=539.6 //cal/g
4 T=273.2+100 //K
5 //calculations
6 Kb=1.987*T^2 /(1000*Hv)
7 //results
8 printf("Molal elevation constant = %.3f deg /mole / kg", Kb)
```

Scilab code Exa 12.7 Example 7

```
1 clc
2 //Initialization of variables
3 ms=0.5 //mol/kg
```

Scilab code Exa 12.8 Example 8

```
1 clc
2 //Initialization of variables
3 dT=0.23 //C
4 Kb=1.86 //deg/mol/kg
5 //calculations
6 m=dT/Kb
7 //results
8 printf("molality of solution = %.2 f m",m)
```

Scilab code Exa 12.9 Example 9

```
1 clc
2 //Initialization of variables
3 p=0.1 //m
4 T=30+273.2 //K
5 R=0.08206 //lt atm /deg/mol
6 P1=1 //atm
7 //calculations
8 w=1000/p
9 V=w/1000
10 dP=R*T/V
11 P=dP+P1
12 //results
```

printf("Osmotic Pressure = %.2 f atm ",P)

Thermodynamic changes accompanying chemical reaction

Scilab code Exa 13.1 Example 1

```
1 clc
2 //Initialization of variables
3 n1=10 //mol
4 n2=12 //mol
5 //calculations
6 dn=n1-n2
7 //results
8 printf("dHp = dEv- %d *RT",dn)
```

Scilab code Exa 13.2 Example 2

```
1 clc
2 //Initialization of variables
3 Ht1=-22063 //cal
```

Scilab code Exa 13.3 Example 3

```
1 clc
2 //Initialization of variables
3 Cp=0.797 //cal/deg/mol
4 //calculations
5 S=Cp/3
6 //results
7 printf("Entropy = %.3 f eu/mol",S)
```

Scilab code Exa 13.4 Example 4

```
1 clc
2 //Initialization of variables
3 T1=77.32 //K
4 P=1 //atm
5 T2=126 //K
6 Pc=33.5 //atm
7 //calculations
8 dS=27/32 *1.987*P/Pc *(T2/T1)^3
9 //results
10 printf("Change in entropy = %.2 f eu/mol",dS)
```

Scilab code Exa 13.5 Example 5

```
1 clc
2 //Initialization of variables
3 \text{ S1} = 57.47
4 S2=50.34
5 S3 = 49
6 H1=8.09
7 H2 = 21.06
8 \ H3 = 0
9 F1=12.39
10 F2 = 20.72
11 F3=0
12 //calculations
13 dS = S1 - S2 - 0.5 * S3
14 \quad dH = H1 - H2 - 0.5 * H3
15 	ext{ dF=F1-F2-0.5*F3}
16 //results
17 printf("Change in entropy = \%.2 f eu", dS)
18 printf("\n Change in enthalpy = \%.2 \, \text{f kcal}", dH)
19 printf("\n Change in free energy = \%.2 \, \text{f kcal}", dF)
```

Scilab code Exa 13.6 Example 6

```
1 clc
2 //Initialization of variables
3 P1=0.01
4 P2=0.1
5 P3=0.01
6 dF0=-54640 //cal
7 T=298.15 //K
8 R=1.987 //cal/deg
9 //calculations
10 Qp=P1/(P2*P3^0.5)
11 dF=dF0+R*T*log(Qp)
```

```
//results
printf("change in free energy = %d cal",dF)
```

Scilab code Exa 13.7 Example 7

```
1 clc
2 //Initialization of variables
3 disp("From table 13.4")
4 logKfwater=40.04724
5 logKfH2=0
6 logKf02=0
7 //calculations
8 logK=logKfwater-logKfH2-0.5*logKf02
9 K=10^logK
10 //results
11 printf("Equilibrium constant = %.4e",K)
```

Scilab code Exa 13.8 Example 8

```
1 clc
2 //Initialization of variables
3 Kp=1.1*10^40 //atm^-0.5
4 dn=-0.5
5 R=0.08206 //lt atm/deg mol
6 T=298.15 //K
7 //calculations
8 Kc=Kp*(R*T)^(-dn)
9 //results
10 printf("Kc = %.1e (mol/lt)^-0.5",Kc)
```

Scilab code Exa 13.9 Example 9

```
1 clc
2 //Initialization of variables
3 \text{ Kp} = 0.141 //\text{atm}
4 P=1 //atm
5 \text{ nu}=2
6 R=0.08206 //lt atm/deg mol
7 T = 298.15 / K
8 M = 92.02 //g/mol
9 //calculations
10 a=poly(0,"a");
11 p=Kp*a^2 + 4*a^2*P - Kp
12 z=roots(p)
13 \text{ alpha=z}(1)
14 wbyV = P*M/(R*T*(1+(nu-1)*alpha))
15 //results
16 printf("Density of the equilibrium mixture = \%.2 \, \mathrm{f} g/
      lt", wbyV)
```

Scilab code Exa 13.10 Example 10

Development and use of activity concepts

Scilab code Exa 14.1 Example 1

```
1 clc
2 //Initialization of variables
3 x1=0.0200
4 Kx=812
5 //calculations
6 disp("Neglecting 2x in comparison with x1,")
7 x=x1/Kx
8 //results
9 printf("Moles of Iodine present = %.2e mole",x)
```

Scilab code Exa 14.2 Example 2

```
1 clc
2 //Initialization of variables
3 Kc=1.749*10^-5 //M
4 n1=0.1 //mole
```

```
5 n2=0.01 //mole
6 //calculations
7 c=n1/n2 *Kc
8 //results
9 printf("Concentration of Hplus ions = %.1e M",c)
```

Scilab code Exa 14.3 Example 3

```
1 clc
2 //Initialization of variables
3 c=0.01 //M
4 kc=1.749*10^-5 //M
5 //calculations
6 x2=c*kc
7 x=sqrt(x2)
8 //results
9 printf("Concentraton of Hplus ions = %.1e M",x)
```

Scilab code Exa 14.4 Example 4

```
1 clc
2 //Initialization of variables
3 K2=1.0008*10^-14 //m^2
4 K1=1.754*10^-5 //m
5 c=0.1
6 //calculations
7 disp("Neglecting x w.r.t c,")
8 x2=c*K2/K1
9 x=sqrt(x2)
10 //results
11 printf("Concentration of OH minus ions = %.1e m",x)
```

Scilab code Exa 14.5 Example 5

```
1 clc
2 //Initialization of variables
3 disp("from table 14.1,")
4 r1=7.47*10^-5 //m
5 r2=4.57*10^-3 //m
6 mp=1.008*10^-14 //m^2
7 //calculations
8 r3=r2/r1
9 mH2=r3*mp
10 mH=sqrt(mH2)
11 //results
12 printf("Concentraton of Hplus ions = %.2e M",mH)
```

Scilab code Exa 14.6 Example 6

```
1 clc
2 //Initialization of variables
3 disp("from table 14.1,")
4 r1=1.75*10^-5 //m
5 r2=1.772*10^-4 //m
6 mp=1.008*10^-14 //m^2
7 //calculations
8 r3=r2/r1
9 mH2=r3*mp
10 mH=sqrt(mH2)
11 //results
12 printf("Concentraton of Hplus ions = %.1e M",mH)
```

Scilab code Exa 14.7 example 7

```
1 clc
2 //Initialization of variables
3 c=1*10^-6 /m
4 K=1.754*10^-5 //m
5 Kp=1.008*10^-14 //m^2
6 //calculations
7 \text{ mH} = c
8 //Iteration 1
9 \text{ mOH} = \text{Kp/mH}
10 \quad mA = mH - mOH
11 mHA = mH * mA/K
12 \quad mH2 = mH - mHA + mOH
13 //Iteration 2
14 \text{ mOH2=Kp/mH2}
15 \text{ mA2=mH2-mOH2}
16 \text{ mHA2=mH2*mA2/K}
17 \quad mH3=mH2-mHA2+mOH2
18 / \text{From } x2
19 x2=sqrt(Kp)
20 \times 1 = c
21 \text{ mOH3=Kp/x2}
22 y2 = x1
23 //From x1
24 \text{ mOH4=Kp/c}
25 \text{ mA4} = \text{mH} - \text{mOH4}
26 \quad mHA4 = mH * mA4 / K
27 y1 = c - mHA4 - mA4
28 //upon further iterations, we get
29 mHplus=mH3
30 // results
31 printf("Concentration of H plus ions = \%.2e m",
       mHplus)
32 //The answer is a bit different due to rounding off
       error.
```

Scilab code Exa 14.8 Example 8

```
1 clc
2 //Initialization of variableH
3 disp("From table 14-3,")
4 HH=0
5 \text{ HHcoo} = -98
6 \text{ HHcooh} = -98
7 SH=0
8 \text{ SHcoo}=21.9
9 \text{ SHcooh} = 39.1
10 \text{ KH} = 0
11 KHcoo=58.64
12 KHcooh=62.38
13 //calculationH
14 dH=HH+HHcoo-HHcooh
15 dS=SH+SHcoo-SHcooh
16 dK=KH+KHcoo-KHcooh
17 K = 10^d K
18 //results
19 printf(" dS0 = \%.1 f eu", dS)
20 printf("\n dH0 = %.1 f kcal", dH)
21 printf("\n log Krm = \%.2 \,\mathrm{f}", dK)
22 printf("\n Krm = %.1e m",K)
```

Scilab code Exa 14.9 Example 9

```
1 clc
2 //Initialization of variables
3 mca=0.01 //m
4 mcl=0.02 //m
5 //calculations
```

```
6 Mu=0.5*(mca*4 + mcl*1)
7 disp("From table 14-5,")
8 aca=6 //A
9 acl=3 //A
10 disp("From table 14-6,")
11 gaca=0.555
12 gacl=0.843
13 Aca=gaca*mca
14 Acl=gacl*mcl
15 //results
16 printf("Activity of cl = %.4f",Acl)
17 printf("\n Activity of ca = %.4f",Aca)
```

Scilab code Exa 14.10 Example 10

```
1 clc
2 //Initialization of variables
3 \text{ m1} = 0.1 / \text{m}
4 \text{ m} 2 = 0.1 / \text{m}
5 \text{ K}=1.754*10^-5 / \text{m}
6 //calculations
7 \text{ mu} = 0.5*(\text{m1}*1^2 + \text{m2}*1^2)
8 disp("From table 14.5,")
9 aH=9 //A
10 aA = 4.5 / A
11 disp("From table 14.6")
12 \text{ gH} = 0.825
13 gA = 0.775
14 gHA=1
15 x1=gHA*K/(gH*gA)
16 disp("Assuming x to be small w.r.t m1,")
17 \quad x = sqrt(x1*m1)
18 //results
19 printf("Concentration of H plus ions = \%.2e m",x)
```

Scilab code Exa 14.11 Example 11

```
1 clc
2 //Initialization of variables
3 \text{ K}=1.754*10^-5 / \text{m}
4 c = 0.1
5 //calculations
6 disp("Neglecting x w.r.t c,")
7 \times 2 = K
8 x = sqrt(K)
9 \text{ mu} = x
10 disp("From tables 14-5 and 14-6,")
11 \text{ gH} = 0.963
12 \text{ gA} = 0.960
13 \times 22 = K/(gH*gA)
14 a=poly(0,"a");
15 p=a^2 +a*x22 -c*x22
16 z=roots(p)
17 \text{ alpha=z}(2)
18 //results
19 printf("concentration of H plus ions = \%.2e m", alpha
      )
```

Scilab code Exa 14.12 Example 12

```
1 clc
2 //Initialization of variables
3 disp("From table 14.3")
4 K1=-13.5089
5 K2=-22.9792
6 K3=19.2218
7 c=0.1 //m
```

```
8 // calculations
9 logK=K1-K2-K3
10 K=10^logK
11 mu=0.5*(c*1^2 + c*1^2)
12 disp("From tables 14-5 and 14-6,")
13 gAg=0.745
14 gCl=0.755
15 x2=K/(gAg*gCl)
16 x=sqrt(x2)
17 // results
18 printf("Solubility of Agcl = %.2e m",x)
```

Scilab code Exa 14.13 Example 13

```
1 clc
2 //Initialization of variables
3 \text{ Cna} = 0.11
4 Ccl=0.1
5 //calculations
6 x = poly(0, "x");
7 p=99*x^2 - 2.1*x+Cna*Ccl
8 z = roots(p)
9 \text{ alpha=z}(2)
10 \text{ Na1=Cna-10*alpha}
11 Cl1=Ccl-10*alpha
12 //results
13 printf(" Concentration of Na in 1 = \%.4 \, \text{f M}", Na1)
14 printf ("\n Concentration of Cl in 1 = \%.4 \, \text{f M}", Cl1)
15 printf("\n Concentration of Na in 2 = \%.4 \, \mathrm{f} \, \mathrm{M}", alpha
16 printf ("\n Concentration of Cl in 2 = \%.4 \, \text{f M}", alpha
```

Electrochemistry

Scilab code Exa 15.1 Example 1

```
1 clc
2 //Initialization of variables
3 I=0.5 //amp
4 t=55 //min
5 we=31.77
6 //calculations
7 Q=I*t*60
8 n=Q/96496
9 w=n*we
10 //results
11 printf("Weight of copper leaving = %.3 f g",w)
```

Scilab code Exa 15.2 Example 2

```
1 clc
2 //Initialization of variables
3 w1=0.7532 //g
4 w2=0.9972 //g
```

```
5 wdep=0.4 //g
6 we=31.77 //g
7 //calculations
8 dn=w2/we - w1/we
9 t=dn/(wdep/we)
10 dne=wdep/we
11 dnmig=dn-dne
12 tplus=-dnmig/dne
13 tminus=1-tplus
14 //results
15 printf("tplus = %.3f",tplus)
16 printf("\n tminus= %.3f",tminus)
```

Scilab code Exa 15.3 Example 3

```
1 clc
2 //Initialization of variables
3 R1=312 //ohms
4 R2=1043 //ohms
5 c=0.01 //N
6 kdash=0.002768 //ohm^-lcm^-1
7 //calculations
8 k=kdash*R1
9 kdash2=k/R2
10 lambda=kdash2/(c/1000)
11 //results
12 printf("Equivalent conductance = %.1 f ohm^-1 cm^2 equiv^-1", lambda)
```

Scilab code Exa 15.4 Example 4

```
1 clc
2 //Initialization of variables
```

```
3 11=349.8
4 12=40.9
5 //calculations
6 1=11+12
7 //results
8 printf("Conductance for acetic acid = %.1 f ohm^-1 cm ^2",1)
```

Scilab code Exa 15.5 Example 5

```
1 clc
2 //Initialization of variables
3 11=63.6
4 12=79.8
5 n=1 //mg/lt
6 we=116.7 //g/equiv
7 //calculations
8 l=11+12
9 c=n*10^-3 /we
10 k=c*1/1000
11 //results
12 printf("Specific conductance = %.2e ohm^-1 cm^-1",k)
```

Scilab code Exa 15.6 Example 6

```
1 clc
2 //Initialization of variables
3 e1=0.763 //volt
4 e2=0.337 //volt
5 //calculations
6 e0=e1+e2
7 //results
```

8 printf("Standard electrode potential of the cell = % .3 f volts", e0)

Scilab code Exa 15.7 Example 7

```
1 clc
2 //Initialization of variables
3 aZn=0.1
4 aCu=0.01
5 e1=0.763 //volt
6 e2=0.337 //volt
7 //calculations
8 e0=e1+e2
9 Q=aZn/aCu
10 E=e0- 0.05915*log10(Q) /2
11 //results
12 printf("Emf of the cell = %.3 f volts", E)
```

Typical mechanisms and rate laws

Scilab code Exa 16.1 Example 1

```
1 clc
2 // Initialization of variables
3 P1=69.2 //mm
4 P2=39.8 //mm
5 t=20 //min
6 // calculations
7 k=2.303*log10(P1/P2) /(t*60)
8 // results
9 printf("Rate constant = %.2e sec^-1",k)
```

Scilab code Exa 16.2 Example 2

```
1 clc
2 //Initialization of variables
3 t=10 //min
4 x=90
```

```
5  // calculations
6  k=2.303*log10(100/(100-x)) /t
7  // results
8  printf("Rate constant = %.3 f min^-1",k)
```

Scilab code Exa 16.3 Example 3

```
1 clc
2 //Initialization of variables
3 t=242 //sec
4 P=229 //mm
5 P0=363 //mm
6 //calculations
7 k=(1/P -1/P0)/t
8 //results
9 printf("rate constant= %.2e sec^-1 mm^-1",k)
```

Resolving Kinetic data

Scilab code Exa 17.1 Example 1

```
1 clc
2 //Initialization of variablesx1=5
3 x2=20
4 x1=5
5 n1=7.49
6 n2=5.14
7 //calculations
8 n=(log(n1)-log(n2))/(log(100-x1) - log(100-x2))
9 //results
10 printf("Order of the reaction = %.2 f",n)
```

Scilab code Exa 17.2 Example 2

```
1 clc
2 //Initialization of variables
3 p2=169
4 p1=363
5 t1=410
```

```
6 t2=880
7 //calculations
8 ndash=(log(t2) - log(t1))/(log(p1) - log(p2))
9 n=ndash+1
10 //results
11 printf("Order of the reaction = %.2f",n)
```

Scilab code Exa 17.3 Example 3

```
1 clc
2 //Initialization of variables
3 R=1.987 //cal/deg/mol
4 k1=4.45*10^-5
5 k2=2.52*10^-6
6 T1=283+273.2 //K
7 T2=356+273.2 //K
8 //calculations
9 Ea=2.303*R*1.7530 /(1/T1 - 1/T2)
10 logZ= log10(k1) +Ea/(2.303*R*T1)
11 Z=10^logZ
12 //results
13 printf("Activation energy = %d cal/mol",Ea)
14 printf("\n Z = %.1e lt /mol sec",Z)
```

Scilab code Exa 17.5 Example 5

```
1 clc
2 //Initialization of variables
3 g1=0.661
4 g2=0.899
5 g3=0.405
6 g4=0.803
7 g5=0.946
```

```
8  g6=0.614
9  k=1.33
10  //calculations
11  k0=k*g3/(g1*g2)
12  k2=k0*g4*g5/g6
13  //results
14  printf("Equlibrium constant = %.2 f lt/mol min",k2)
```

Catalysis

Scilab code Exa 18.1 Example 1

```
1 clc
2 //Initialization of variables
3 V1=0.284 //cm^3 /g
4 V2=1.43 //cm^3 /g
5 P1=142.4 //mm
6 P2=760 //mm
7 //calculations
8 z=(1/V1 - 1/V2)/(1/P1 - 1/P2)
9 invVm=1/V2 - z/P2
10 Vm=1/invVm
11 //results
12 printf("Volume = %.1 f cm^3/g", Vm)
13 //The answer in the textbook is a bit different due to rounding off error.
```

Scilab code Exa 18.2 Example 2

```
1 clc
```

```
2 //Initialization of variables
3 Vm=2.86 //cc/g
4 P=1 //atm
5 R=82.06 //cm^3 atm/deg mol
6 T=273.2 //deg
7 N=6.023*10^23
8 sigma=16.2*10^-16 //cm^2 /molecule
9 //calculations
10 n=P*Vm/(R*T)
11 A=N*n*sigma
12 //results
13 printf("total area = %.2e cm^2 (g catalyst)^-1",A)
```

Photochemistry

Scilab code Exa 19.1 Example 1

```
1 clc
2 //Initialization of variables
3 r1=0.727
4 r2=0.407
5 //calculations
6 r3=r1*r2
7 //results
8 printf("Overall transmittance = %.3f",r3)
```

Scilab code Exa 19.2 Example 2

```
1 clc
2 //Initialization of variables
3 r=0.450
4 c=0.02 //M
5 l=4 //cm
6 //calculations
7 e=-log10(r) /(c*l)
```

Scilab code Exa 19.3 Example 3

```
1 clc
2 //Initialization of variables
3 r1=0.850
4 r2=0.50
5 //calculations
6 Da=-log10(r1)
7 Db=-log10(r2)
8 D=Da+Db
9 r3=10^(-D)
10 //results
11 printf("Transmittance of solution = %.3 f ",r3)
```

Scilab code Exa 19.4 Example 4

```
1 clc
2 //Initialization of variables
3 c=0.000025 //M
4 l=2 //cm
5 D=0.417
6 //calculations
7 e=D/(c*1)
8 //result
9 printf("Extinction coefficient = %d liters mole^-1 cm^-1",e)
```

Scilab code Exa 19.5 Example 5

```
1 clc
2 //Initialization of variables
3 c=0.5 //M
4 c1=0.000025 //M
5 D2=0.280
6 D1=0.417
7 //calculations
8 c2=D2*c1/(D1)
9 dC=c1-c2
10 SCN=c- 6*c2 -4*dC
11 K=dC*SCN^2 /c2
12 //results
13 printf("Kc for dissociation = %.2f M^2",K)
```

Scilab code Exa 19.6 Example 6

```
1 clc
2 //Initialization of variables
3 D2=0.249
4 D1=0.172
5 a2=0.00752
6 a1=0.00527
7 //calculations
8 m=(log(D2) -log(D1))/(log(a2) - log(a1))
9 //results
10 printf("m = %.2f",m)
```

Scilab code Exa 19.7 Example 7

```
1 clc
2 //Initialization of variables
```

```
3  c=0.1 //M
4  V=100 //ml
5  v1=25 //ml
6  D=0.980
7  d1=0.090
8  d2=0.150
9  // calculations
10  a=v1*c/V
11  b=(V-v1)*c/V
12  Da=a*d1/c
13  Db=b*d2/c
14  Ddash=Da+Db
15  dD=D-Ddash
16  // results
17  printf("Increase in optical density = %.3f",dD)
```

Scilab code Exa 19.8 Example 8

```
1 clc
2 //Initialization of variables
3 E=50000 //cal/mol
4 //calculations
5 lam=2.8593/E
6 //results
7 printf("For the reaction to occur lambda < %d A",lam *10^8)</pre>
```

Scilab code Exa 19.9 Example 9

```
1 clc
2 //Initialization of variables
3 lam=3000*10^-8 //cm
4 yield=0.420
```

```
5 Et=70000 //cal
6 //calculations
7 E=2.8593/lam
8 n=yield*Et/E
9 //results
10 printf("Amount of reactant disappeared = %.3 f mol",n
)
```