### الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: الرياضيات

# على المترشح أن يختار أحد الموضوعين التاليين:

## الموضوع الأول

التمرين الأول: ( 5,50 نقاط )

 $(z-i)(z^2-2\sqrt{3}z+4)=0$  المعادلة:  $(z-i)(z^2-2\sqrt{3}z+4)=0$  المعادلة:  $(z-i)(z^2-2\sqrt{3}z+4)=0$ 

 $(0; \vec{u}, \vec{v})$  المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

 $z_3=i$  و  $z_2=\sqrt{3}-i$  ، و  $z_1=\sqrt{3}+i$  نقط المستوي التي لاحقاتها على الترتيب  $z_3=i$  على الترتيب B ، A و المستوي التي المستوي التي الحقاتها على الترتيب على الترتيب المستوي التي المستوي المستوي التي المستوي المستوي التي المستوي المستوي المستوي التي المستوي المست

أ) أكتب العدد  $\frac{z_1}{z_2}$  على الشكل الأسي.

ب) هل توجد قيم للعدد الطبيعي n يكون من أجلها العدد المركب  $\left(\frac{z_1}{z_2}\right)^n$  تخيليا صرفا ؟ برّر إجابتك.

(3 أ) عين العبارة المركبة للتشابه المباشر S الذي مركزه A ويحول B إلى C، محددا نسبته وزاويته.

ب) استنج طبيعة المثلث ABC

4) أ) عين العناصر المميزة لـ (E) مجموعة النقط M من المستوي ذات اللاحقة z والتي تحقق:

$$|z-z_1|^2 + |z-z_3|^2 = 5$$

 $|z-z_1|=|z-z_3|$  مجموعة النقط M من المستوي التي لاحقتها z حيث (E') مجموعة النقط E' مجموعة التمرين الثاني: (04,5 نقاط)

 $(O; \vec{i}, \vec{j}, \vec{k})$  الفضاء منسوب إلى المعلم المتعامد المتجانس

و  $(\Delta_2)$  مستقيمان من الفضاء معرفان بتمثيليهما الوسيطيين التاليين:

$$\left(\Delta_{2}\right) : \begin{cases} x = 1 \\ y = -1 - t' & \left(t' \in \mathbb{R}\right) \\ z = 4 + 2t' \end{cases}$$
 
$$\left(\Delta_{1}\right) : \begin{cases} x = 3 + 2t \\ y = -2 - 2t & \left(t \in \mathbb{R}\right) \\ z = 1 - t \end{cases}$$

 $(\Delta_2)$  و  $(\Delta_1)$  عين إحداثيات النقطة B تقاطع المستقيمين إحداثيات النقطة  $(\Delta_2)$ 

 $(\Delta_2)$  و  $(\Delta_1)$  عين تمثيلا وسيطيا للمستوي (P) المعيّن بالمستقيمين وسيطيا للمستوي

(P) أثبت أن النقطة A(6;4;4) لا تتتمي إلى المستوي (2)

(P) بيّن أن النقطة B هي المسقط العمودي للنقطة A على المستوي (P

(3) أ) عين معادلة ديكارتية للمستوي (Q) الذي يشمل النقطة A و (5;1;-7) شعاع ناظمي له.

. ب عين إحداثيات D و D نقطتي تقاطع Q) مع كل من  $\Delta_1$  و  $\Delta_2$  على الترتيب C

ABCD عين طبيعة المثلث BCD، ثم أحسب حجم رباعي الوجوه (4

ب) استنتج مساحة المثلث A CD

## التمرين الثالث: (04 نقاط)

 $f(x) = x - \ln(x - 1)$  بي الدالة المعرفة على المجال  $f(x) = x - \ln(x - 1)$  بي الدالة المعرفة على المجال  $f(x) = x - \ln(x - 1)$ 

f(x)-x مدد حسب قیم x، اشاره (1

2) أ) عين اتجاه تغير f

 $f(x) \in [2;e+1]$ بين أنه إذا كان  $x \in [2;e+1]$  فإن (ب

 $u_{n+1}=u_n-\ln\left(u_n-1
ight)$  ، N من  $u_n=u_n=u_n-\ln\left(u_n-1
ight)$  المتتالية المعرفة على N كما يلي:  $u_0=e+1$  ومن أجل كل  $u_n$  من  $u_n=u_n$ 

 $u_n \in [2;e+1]$  ،  $\mathbb{N}$  من n من أجل أبه من أجل أبه من أجل كل n من n (1

 $(u_n)$  أدرس اتجاه تغير المتتالية (2

3) برر تقارب المتتالية  $(u_n)$ ، ثم أحسب نهايتها.

#### التمرين الرابع: ( 06 نقاط )

 $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$  المستوي منسوب إلى المعلم المتعامد المتجانس

 $g(x) = x \ln x + x$  إن المعرفة على المجال [3] بين  $g(x) = x \ln x + x$ 

1) أدرس تغيرات الدالة g

]0;3] نقبل حلا وحيدا  $\alpha$  في g(x) = 2 في أن المعادلة 2 و g(x) = 2 نقبل حلا وحيدا  $\alpha$ 

ثم تحقق أن 1,45 < α < 1,46 ثم

g(x)-2 با استتج إشارة

التمثيل البياني المقابل ( $C_f$ ) هو للدالة f المعرفة على (II

 $f(x) = |x - 2| \ln x := ]0;3]$ المجال

2 عند f عند الدالة اشتقاق الدالة f عند ( $C_f$ ) عند (1

2) أثبت صحة تخمينك.

3) أدرس تغيرات الدالة f

 $h(x) = (2 - \cos x) \ln(\cos x)$  كما يلي:  $(0; \frac{\pi}{2})$  كما يلي  $h(x) = (2 - \cos x) \ln(\cos x)$  الدالة المعرفة على  $h(x) = (2 - \cos x) \ln(\cos x)$ 

h البياني للدالة  $x=\frac{\pi}{2}$  مقارب للمنحنى  $(C_h)$ ؛ حيث  $(C_h)$ هو التمثيل البياني للدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني للدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين البياني الدالة (1) بين أن المستقيم ( $\Delta$ ) هو التمثيل البياني الدالة (1) بين البياني ال

 $(C_h)$  و  $(\Delta)$  ادرس اتجاه تغیر الداله h، ثم شکل جدول تغیراتها وارسم



## الموضوع الثاني

التمرين الأول: (04,5 نقاط)

 $z_0 = 1 + i$  ذات اللاحقة A ذات اللاحقة المتعامد المتجانس ( $O; \vec{u}, \vec{v}$ ) النقطة A ذات اللاحقة المعلم نعتبر في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس

 $\mathbb{R}$  مستوي حيث:  $z=z_0+2e^{i\theta}$  و مستوي حيث  $M\left(z\right)$  مجموعة النقط  $M\left(z\right)$  مجموعة النقط (1) أ) عين ثم أنشئ ( $\gamma$ ) مجموعة النقط (1)

 $\mathbb{R}^+$ ب عين ثم أنشئ  $(\gamma')$  مجموعة النقط  $M\left(z\right)$  من المستوي حيث:  $M\left(z\right)$  مجموعة النقط و X

 $(\gamma')$  عين إحداثيات نقطة تقاطع  $(\gamma)$  و

 $z_1=z_0+2e^{i\left(rac{3\pi}{4}
ight)}$  نسمي B النقطة التي لاحقتها  $z_1=z_0+2e^{i\left(rac{3\pi}{4}
ight)}$  حيث (2

OAB أ) عين الشكل الجبري للعدد المركب المركب  $\frac{z_1-z_0}{z_0}$ ، ثم استنتج طبيعة المثلث أ

 $-rac{\pi}{2}$ ب) عيّن  $z_2$  لاحقة النقطة C صورة النقطة B بالدوران الذي مركزه A وزاويته  $z_2$ 

 $\alpha+\beta=\sqrt{2}$  و  $\{(A;\alpha),(C;\beta)\}$  عين العددين الحقيقيين  $\alpha$  و  $\beta$  بحيث تكون النقطة  $\alpha$  مرجحا للجملة و $\alpha$ 

 $((1+\sqrt{2})\overline{MA}-\overline{MC}).(\overline{MA}-\overline{MC})=0$  : مجموعة النقط M من المستوي حيث (E) عين ثم أنشئ (E) مجموعة النقط (E)

التمرين الثاني: (04,5 نقاط)

 $(O; \vec{i}, \vec{j}, \vec{k})$  الفضياء منسوب إلى المعلم المتعامد المتجانس

 $C\left(-1;3;4
ight)$  و  $B\left(1;3;2
ight)$  ،  $A\left(0;-1;1
ight)$  حيث B ، A و C ثلاث نقط من الفضاء حيث B ، A

 $\widehat{BAC}$  ، ثم استنج القيمة المدورة إلى الوحدة، بالدرجات، للزاوية  $\widehat{ABAC}$  ) أ) أحسب الجداء السلمي  $\widehat{ABAC}$  ، ثم استنج القيمة المدورة إلى الوحدة، بالدرجات، للزاوية

بين أن النقط C ، B ، A تعين مستويا.

(ABC) بيّن أن الشعاع  $\vec{n}(2;-1;2)$  ناظمي للمستوي (2)

(ABC) ب) أكتب معادلة ديكارتية للمستوي

 $x^2 + y^2 + z^2 - 4x + 6y - 2z + 5 = 0$  اليكن (S) سطح الكرة الذي معادلته: 3 اليكن (S) سطح الكرة الذي معادلته:

 $\Omega$  نسمي  $\Omega$  و R مركز و نصف قطر (S) احسب R وعيّن احداثيات

(ABC) والموازيين للمستويين  $(P_1)$ و  $(P_2)$  مماسي سطح الكرة (S) والموازيين للمستوي (4 التمرين الثالث: (50 نقاط)

n و p عددان طبیعیان.

 $5^n$  العدد n أدرس، حسب قيم n، بواقي القسمة الإقليدية على 16 للعدد 1

 $D_p = 5^p$  و  $C_n = 16n + 9$  نضع: (2

 $C_n=D_p$  حيث k عدد طبيعي، فإنه يوجد عدد طبيعي p=4k+2 أ) بيّن أنه إذا كان p=4k+2 حيث k عدد طبيعي

p = 6 ب من أجل n عيّن n من أجل

$$f(x) = 5^{(4x+2)} - 9$$
 بـ:  $9 = [0; +\infty]$  برا المعرفة على المجال  $f(x) = 5^{(4x+2)} - 9$ 

f(x) أدرس تغيرات الدالة f، ثم استنتج إشارة

$$u_{n+1} = 5^4 \left( u_n + \frac{9}{16} \right) - \frac{9}{16}$$
 (N) in  $u_n$  if  $u_n = 1$  is  $u_0 = 1$  in  $u_0 = 1$  in  $u_n = 1$  in  $u_n$ 

$$u_n = \frac{5^{(4n+2)} - 9}{16}$$
 ،  $n$  عدد طبیعي  $n$  و أ

ب) برهن أنه من أجل كل عدد طبيعي n، فإن  $u_n$  عدد طبيعي.

 $(u_n)$  استنتج اتجاه تغیر المتتالیة (5

#### التمرين الرابع: ( 06 نقاط )

 $f(x)=(x-1)e^x$  بين  $\mathbb{R}$  الدالة المعرفة على f

 $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$  تمثيلها البياني في المستوي المنسوب المنسوب إلى المعلم المتعامد المتجانس  $\left(C_{f}\right)$ 

 $+\infty$  عين نهاية f عند كل من  $\infty$  و  $\infty$  (1

2) أدرس اتجاه تغير الدالة f على  $\mathbb{R}$  ثم شكل جدول تغيراتها.

 $1,27 < \alpha < 1,28$  أ) بين أن المعادلة f(x) = f(x) تقبل حلا وحيدا  $\alpha$  على  $\alpha$ ، ثم تحقق أن

(T) عند النقطة ذات الفاصلة 1 وحدّد وضعية (T) مماس المنحنى  $(C_f)$  عند النقطة ذات الفاصلة 1 وحدّد وضعية  $(C_f)$  بالنسبة إلى  $(C_f)$  أرسم  $(C_f)$  و  $(C_f)$  م

 $\mathbb{R}$  عين قيم العدد الحقيقي m التي من أجلها تقبل المعادلة  $e^m=-1$  عين قيم العدد الحقيقي m التي من أجلها تقبل المعادلة  $(x-1)e^m=-1$  عين قيم العدد الحقيقي  $(x-1)e^m=-1$ 

و الدالة المعرفة على  $\mathbb{R}$  بــ:  $\mathbb{R}$  بــ:  $h(x) = (|x|+1)e^{-|x|}$  يَمثيلها البياني  $h(x) = (|x|+1)e^{-|x|}$  تمثيلها البياني  $h(x) = (|x|+1)e^{-|x|}$ 

أ) بين أنّ الدالة h زوجية.

 $(C_f)$  ارسم  $(C_h)$  مستعینا بالمنحنی ( $C_h$ )

و دالة معرفة على  $\mathbb{R}$  بي:  $g(x) = (ax + b)e^x$  عددان حقيقيان g(x) = g(x) = b، g'(x) = f(x) عين g(x) = a من أجل كل g(x) = a عين g(x) = a عين g(x) = a من أجل كل g(x) = a

#### الإجابة النموذجية لموضوع امتحان بكالوريا دورة: 2014

المدة: 04 ساعات ونصف

اختبار مادة: الوياضيات الشعبة: تقني رياضي

| العلامة |        | 7 1 - kn n                                                                                                                                                                                                  |
|---------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع   | مجزأ   | (الموضوع الأول) عناصر الإجابة                                                                                                                                                                               |
|         |        | التمرين الأول: ( 05.5 نقطة)<br>1) حل المعادلة:                                                                                                                                                              |
|         | 4x0.25 | $z_3 = i$ , $z_2 = \sqrt{3} - i$ , $z_1 = \sqrt{3} + i$ , $\Delta = (2i)^2$                                                                                                                                 |
|         | 01     |                                                                                                                                                                                                             |
| 05.5    | 0.5    | $\mathbb N$ ب) ب $e^{i\left(nrac{\pi}{3} ight)}$ بخیلي صرف معناه $2n=3+6$ لیس لها حل في $\left(rac{Z_1}{Z_2} ight)^n$ با الما $\left(rac{Z_1}{Z_2} ight)^n$ با الما حل في $\left(rac{Z_1}{Z_2} ight)^n$ |
|         | 0.25   | 3+6k لأن $2n$ زوجي و $3+6k$ فردي ومنه لا يوجد أي عدد طبيعي يحقق المطلوب                                                                                                                                     |
|         | 0.5    |                                                                                                                                                                                                             |
|         | 0.5    | $-\frac{\pi}{2}$ الزاوية ( $z'=-\frac{\sqrt{3}}{2}iz+\frac{\sqrt{3}}{2}+\frac{5}{2}i$ الزاوية $z'-z_1=\frac{\sqrt{3}}{2}e^{i\left(-\frac{\pi}{2}\right)}(z-z_1)$                                            |
|         | 0.5    | ب) المثلث $ABC$ قائم في $A$ ، مع قبول أي تبرير صحيح                                                                                                                                                         |
|         | 0.75   | $c=rac{\sqrt{7}}{2}$ هي الدائرة التي مركزها $\omega\left(rac{\sqrt{3}}{2};1 ight)$ ونصف قطرها $E$ ( $E$ ) (أ (4)                                                                                          |
|         | 0.5    | (E') هي محور القطعة $[AC]$ (أو معادلة $(E')$ (ب $(E')$ هي محور القطعة $(E')$                                                                                                                                |
|         |        | <u>التمرين الثاني:</u> ( 04.5 نقط)                                                                                                                                                                          |
|         | 0.5    | B(1;0;2) و $t=-1$ و $t=-1$ أ) بحل الجملة نجد $t=-1$ و $t=-1$                                                                                                                                                |
|         | 0.5    | $(P):\begin{cases} x=1+2t \\ y=-2t-t'; (t;t') \in \mathbb{R}^2 \end{cases} $ $(z=2-t+2t')$                                                                                                                  |
|         |        |                                                                                                                                                                                                             |
| 04.5    | 0.5    | ان $A(6;4;4)$ لا تتتمي إلى المستوي $(P)$ ، لأن الجملة $A(6;4;4)$ ليس لها حل. $A(6;4;4)$                                                                                                                     |
|         |        | $(\Delta_2)$ و $(\Delta_1)$ و $(\Delta_1)$ میث $(B \in P)$ (ب $(\Delta_2)$ و $(\Delta_1)$ و $(\Delta_1)$ ب $(\Delta_2)$ و $(\Delta_1)$ بازر $(\Delta_2)$ و $(\Delta_1)$                                     |
|         | 0.5    | يذن $B$ هي المسقط العمودي للنقطة $A$ على المستوي $(P)$                                                                                                                                                      |
|         | 0.5    | (Q): $5x + y - 7z - 6 = 0$ (1)                                                                                                                                                                              |
|         | 0.5    | ب) C(3;-2;1) و D(1;1;0) و C(3;-2;1)                                                                                                                                                                         |

| 01                                 | $W(ABCD) = \frac{15}{2} uv$ ، $B$ قائم في $BCD$ (أ (4                                                             |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                    | $=\frac{3\times\frac{15}{2}}{\sqrt{3}}=\frac{15\sqrt{3}}{2}ua$ ومنه $S(ACD)=\frac{3\times V(ABCD)}{d(B,(Q))}$ (ب) |
|                                    | التمرين الثالث: ( 04 نقط)                                                                                         |
| 0.5                                | ]2;+∞[ و $f(x)-x<0$ في $f(x)-x<0$ في $f(x)-x<0$                                                                   |
| على [1;2]                          | و متناقصة تماما على $x-2$ و متناقصة تماما $f$ ، $f'(x)=rac{x-2}{x-1}$ و متناقصة تماما                            |
| $0.5 \qquad 2 = f(2) \le f(x) \le$ | $f(e+1) = e$ ومنه $2 \le x \le e+1$ ، $[2;e+1]$ ومنه $f(e+1)$                                                     |
|                                    | . محقق $u_0 \in [2;e+1]$ (1 (II                                                                                   |
| $0.75$ پڌن $u_{n+1}$               | $=f\left(u_{n} ight)\in\left[2;e+1 ight]$ نفرض $u_{n}\in\left[2;e+1 ight]$ ومنه ،حسب $u_{n}\in\left[2;e+1 ight]$  |
| $u_{n+1}$                          | $u_n \le 0$ ويما أن $u_n \in [2;e+1]$ فإن $u_{n+1} - u_n = f(u_n) - u_n$ (2                                       |
| 0.5                                | ومنه $\left(u_{n} ight)$ متناقصة                                                                                  |
| 0.5                                | متناقصة ومحدودة من الأسفل ( بالعدد 2 ) فهي متقاربة $(u_n)$                                                        |
| 0. 5                               | $I=2$ بفرض $I=I$ فإن $I=f\left( I\right)$ بفرض في $\lim_{n\to +\infty}u_n=I$ بفرض                                 |
|                                    | التمرين الرابع: ( 06 نقط )                                                                                        |
| 0.25                               | $\lim_{x \to 0} g(x) = 0 \ (1(I)$                                                                                 |
| 0.25                               | $g'(x) = 2 + \ln x$                                                                                               |
| 0.25                               | $0-e^{-2}+3:g'(x)$ اشارة $g'(x)$                                                                                  |
| 0.25                               | $g(e^{-2}) = -e^{-2}$ و $g(3) = 3 + 3 \ln 3$                                                                      |
| 0.25                               | $\left[0;e^{-2} ight]$ ومنه المعادلة $g\left(x ight)$ لا تقبل حلّا في $\left[0;e^{-2} ight]$ (أ $\left(2 ight)$   |
| $0.25$ $e^{-2};3$ المجال $e^{-2}$  | . و مستمرة ومتزايدة تماما على $\left[e^{-2};3+3\ln 3 ight]$ و $\left[e^{-2};3+3\ln 3 ight]$ إذن للمعادلة حل       |
| 0.25                               | . $1,45 < \alpha < 1,46$ ومنه $g(1,45) \simeq 1,99; g(1,46) \simeq 2,01$ و                                        |
| 0.25                               | $g(x)-2$ ب $g(x)$ ب $g(x)$ ب $g(x)$                                                                               |
| ذات الفاصلة 2 و 0.25               | لا يقبل مماسا في النقطة و الأشتقاق عند $(C_f)$ لا يقبل مماسا في النقطة $f$ ( $I(II)$                              |
| 0. 5                               | 2) العدد المشتق من اليمين هو In 2 والعدد المشتق من اليسار هو In 2–                                                |
| 0.25                               | $\lim_{x \to \infty} f(x) = -\infty $ (3                                                                          |
| 06 0.5 $f'(x) = \frac{g(x)-2}{}$   | $(x \in ]2;3]$ من أجل $f'(x) = -\frac{g(x)-2}{x}$ $(x \in ]0;2[$ من أجل                                           |
| 0.5 X                              | X $0+lpha-2+3$ : $f'(x)$ اشارة                                                                                    |
| ات 0.25                            | جدول النغير $f(3) = \ln 3$ ، $f(2) = 0$ ، $f(\alpha) = (2-\alpha) \ln \alpha$                                     |

| p) |      |                                                                                                                                           |
|----|------|-------------------------------------------------------------------------------------------------------------------------------------------|
|    | 0.25 | $\dots \sum_{x = -\infty} \frac{\pi}{2}$ و منه $x = \frac{\pi}{2}$ معادلة مستقيم مقارب $h(x) = -\infty$ (1( $III$                         |
|    | 0.25 | $h(x) = f(\cos x)(2)$                                                                                                                     |
|    | 0.25 | مركب الدالة $x\mapsto \cos x$ متبوعة بالدالة $f\left(x ight)$ مركب الدالة مركب الدالة متبوعة بالدالة متبوعة بالدالة متبوعة بالدالة المتبا |
|    |      | الدالة " $\cos$ " متناقصة تماما على $\frac{\pi}{2}$ و $f$ متزيدة تماما على $[0;1]$ و منه $h$ متناقصة تماما                                |
|    | 0.25 | $\left[0;rac{\pi}{2} ight]$ علی $\left[0;rac{\pi}{2} ight]$                                                                             |
|    | 0.25 | h'(0)=0 و جدول التغيرات $h'(0)=0$                                                                                                         |
|    | 0. 5 | رسم $(C_{_h})$ و $(\Delta)$                                                                                                               |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
|    |      |                                                                                                                                           |
| 1  |      |                                                                                                                                           |

| العلامة |       | Table ation ( 18th c - 5 - th)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع   | مجزأة | (الموضوع الثاني) عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | 0.75  | التمرين الأولى: ( 04.5 نقط) $(\gamma)$ التمرين الأولى: ( $(\gamma)$ نقط) التي مركزها $(\gamma)$ ونصف قطرها $(\gamma)$ الشاء $(\gamma)$ الدائرة التي مركزها $(\gamma)$ ونصف قطرها $(\gamma)$ الشاء $(\gamma)$ المناء                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | 0.75  | $(\gamma)$ ب $(\gamma)$ نصف مستقیم مبدؤه $A$ ومعامل توجیهه ا $(\gamma)$ ومعامل زوجیهه از رازی $(\gamma)$ نصف مستقیم مبدؤه $(\gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 0.5   | ج) إحداثيات نقطة تقاطع $(\gamma)$ و $(\gamma)$ هي: $(1-\sqrt{2};1+\sqrt{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 0.5   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 04.5    | 0.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 0. 5  | AB ومنه $CAB$ ومنه $CAB$ ومنه $CAB$ ومنه $CAB$ ومنه $CAB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 0.25  | $z_2 = 1 + \sqrt{2} - i(1 + \sqrt{2})$ (ب)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 0. 5  | $ (\alpha; \beta) = (1 + \sqrt{2}; -1) $ و منه $\begin{cases} \alpha + (1 + \sqrt{2})\beta = 0 \\ \alpha + \beta = \sqrt{2} \end{cases} $ (**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | 0.5   | $\overline{AC}=0$ د) و $\overline{AC}$ شعاع ناظمي له د) هي المستقيم المار من $\overline{OM}.\overline{AC}=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 0.25  | (y=-x تبریر آخر: معادلة $(E)$ هي $(E)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 0.25  | (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |       | التمرين الثاني: (4.5 نقطة)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 01    | $\overrightarrow{BAC} = 34^{\circ}  \overrightarrow{AB.AC} = 18 \text{ (i)} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 0.5   | $BAC \neq 0$ ومنه $BAC \neq 0$ تعین مستویا $BAC \neq 0$ و منه $BAC \neq 0$ تعین مستویا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 0.5   | $ \overrightarrow{n}.\overrightarrow{AC} = 0  \overrightarrow{n}.\overrightarrow{AB} = 0  (1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 04.5    | 0.5   | (ABC): $2x - y + 2z - 3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 04.5    | 01    | $R = 3$ $\Omega(2;-3;1)$ $(x-2)^2 + (y+3)^2 + (z-1)^2 = 9$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | 0.25  | (P): $2x - y + 2z + d = 0$ (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 0.5   | $d=-18$ ، $d=0$ ومنه $\left 9+d\right =9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 0.25  | $(P_2): 2x - y + 2z - 18 = 0$ $(P_1): 2x - y + 2z = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 01    | n قيم $n$ قيم $n$ قيم $n$ قيم $n$ قيم $n$ قيم $n$ التمرين الثالث: ( $n$ نقط ) العدد $n$ الباقي $n$ الباقي $n$ الباقي $n$ الباقي $n$ الباقي $n$ العدد $n$ الباقي $n$ الباق                                                                                                                                                                      |
| 05      | 0. 5  | $5^p = 9 + 16n$ يحقق $n \in \mathbb{N}$ يحقق $n \in \mathbb{N}$ ومنه يوجد $n \in \mathbb{N}$ من أجل $p = 4k + 2$ ومنه يوجد $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ يحقق $(k \in \mathbb{N}), p = 4k + 2$ |
|         | 0.5   | n=976 ، $p=6$ ب) من أجل $p=6$ ، $p=976$ ، $p=976$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| pt. |          | $[0;+\infty[$ متز ایدهٔ تماما علی $f$ ، $f'(x)=4\ln 5 \times 5^{4x+2}>0$ ، $\lim_{x\to\infty} f(x)=+\infty$ (3                                                                                               |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 0.75     | «+←x جدول التغير ات                                                                                                                                                                                          |
|     | 0.5      | استتاج أن $f(x) > 0$                                                                                                                                                                                         |
|     | 27046 89 | $u_{n+1} = \frac{5^{4n+6}-9}{16}  \dot{\omega}_{n+1} = 5^4(u_n + \frac{9}{16}) - \frac{9}{16}  \text{ومن}  u_n = \frac{5^{(4n+2)}-9}{16}  \dot{\omega}_n = \frac{5^{(4n+2)}-9}{16} = 1 = u_0  \text{(§ (4)}$ |
|     | 0.75     | $u_n = rac{5^{(4n+2)}-9}{16}$ , $n \in \mathbb{N}$ ومنه لکل                                                                                                                                                 |
|     | 0.5      |                                                                                                                                                                                                              |
|     | 0.5      | $[0;+\infty[$ ومنه $(u_n)$ متزایدة تماما لأن $f$ متزایدة تماما علی $u_n=\frac{1}{16}$ ومنه $u_n=\frac{1}{16}$                                                                                                |
|     |          | التمرين الرابع: ( 06 نقطة )                                                                                                                                                                                  |
|     | 0.5      | $\lim_{x \to -\infty} f(x) = 0 \lim_{x \to +\infty} f(x) = +\infty  (1)$                                                                                                                                     |
|     | 0.75     | $[0;+\infty[$ منز ایدهٔ تماما علی $f$ ، $f'(x)=xe^x$ ومتناقصهٔ تماما علی $f$ ، ومتناقصهٔ $f$ ، ومتناقصهٔ تماما علی المناطق $f$                                                                               |
|     | 0.25     | جدول التغيرات                                                                                                                                                                                                |
|     | 0.25     | (3 أ) 1;0[ −1;0] ≠1 ومنه المعادلة لا تقبل حلولا على [0;∞−[                                                                                                                                                   |
|     |          | مستمرة ومتزايدة تماما على $]\infty+0$ و $]\infty+(-1;+\infty]$ مستمرة ومتزايدة تماما على $]\infty+(0;+\infty]$ عقبل حلا $f$                                                                                  |
|     | 0. 25    | اوحيدا في $\mathbb R$                                                                                                                                                                                        |
| 06  | 0.5      | $f(1,27) \approx 0.96; f(1,28) \approx 1.01$ \(\frac{1}{27} < 1 < f(1,28)                                                                                                                                    |
|     | 0.75     | $(C_f)$ ، $(T): y = ex - e$ اب $(C_f)$ ، $(T): y = ex - e$                                                                                                                                                   |
|     | 0.75     | $\left[ egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                    |
|     | 0.25     | $\left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                  |
|     | 0.25     | $f(m)-1\geq 0$ نقبل حلا واحدا إذا كان $f(m)-1=-1$ أو $f(m)-1\geq 0$ نقبل حلا واحدا إذا كان                                                                                                                   |
|     | 0. 25    | $m=1$ أي $m=1$ أو $m\geq lpha$ أمتز ايدة تماما على $m=1$ و $m=1$                                                                                                                                             |
|     | 0.25     | دالة زوجية لأنها معرفة على $\mathbb{R}$ و $h(-x)=h(-x)=h$ دالة زوجية لأنها معرفة على $h(-x)=h(-x)=h$                                                                                                         |
|     |          | ب) إذا كان $x \leq 0$ فإن $h(x) = -f(x)$ ومنه $(C_h)$ نظير $(C_f)$ بالنسبة إلى محور                                                                                                                          |
|     | 0.25     | الفواصل على المجال [0;∞-[ثم نكمل الرسم بالتناظر بالنسبة إلى محور التراتيب                                                                                                                                    |
|     | 0.25     | $oxed{C_h}$ رسم $oxed{C_h}$                                                                                                                                                                                  |
|     | 0. 5     | $b=-2$ ، $a=1$ ، بالمطابقة نجد، $g'(x)=(ax+a+b)e^x$ (6                                                                                                                                                       |
|     |          |                                                                                                                                                                                                              |
|     |          |                                                                                                                                                                                                              |
|     |          |                                                                                                                                                                                                              |
|     |          |                                                                                                                                                                                                              |