Least Square & Gradient Descent

Loss/Cost Function:
$$J = \Sigma(\hat{y}_i - y_i)^2 >> J(\theta_i) = \sum (h(\theta_i) - y_i)^2$$

>> to optimize by minimizing loss function

Least Square >> find min J

$$\text{Gradient Descent} >> J(\theta_0, \theta_1, \cdots, \theta_n) = \sqrt[1]{2} m \sum\nolimits_{i=0}^m \left(h_\theta\left(x_0^{(j)}, x_1^{(j)}, \ldots, x_n^{(j)}\right) - y_i\right)^2$$

Take partial derivative >> $\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1 \dots, \theta_n)$

>> set a step length α

Then
$$\alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1, ..., \theta_n)$$

$$\alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1, \dots, \theta_n) = \alpha \frac{1}{m} \Sigma \left(h_\theta \left(x_0^{(j)}, x_1^{(j)}, \dots, x_n^{(j)} \right) - y_i \right) x_i^{(j)}$$

Each time after a step, we need to update our θ_i

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1, ..., \theta_n)$$

That is
$$\theta_i = \theta_i - \alpha \frac{1}{m} \Sigma \left(h_\theta \left(x_0^{(j)}, x_1^{(j)}, \dots, x_n^{(j)} \right) - y_i \right) x_i^{(j)}$$

Which means, the current step direction depends on the samples, and $\alpha \frac{1}{m}$

Can also be seen as a constant

In machine learning algorithms, we usually use matrix method to do calculations

Therefore, here we regard the former functions as a matrix function with

Y.hats as a matrix transformed by sample matrix **X** and parameter vector θ , that is **Y.hats** = $h_{\theta}(X) = X\theta$

Then, the loss function becomes $I(\theta) = (X\theta - Y)^T(X\theta - Y)$

We take the gradients/ partial derivatives for the J(θ), then get: $\frac{\partial}{\partial \theta_i} J(\theta) = X^T (X\theta - Y)$

With the update of θ , the matrix expression function can be written as $\theta = \theta - \alpha X^T (X\theta - Y)$

Notes for Gradient Descent to Optimize models

- The choice of step length
- The choice of initial value
- Regularization

Gradient Descent Family

>> Batch GD, Stochastic GD, Mini Batch GD