1 Metodologia chyb

Na vstupe su trajektórie buniek ako 3D tenzory. Y je požadovaná, \hat{Y} je predpovedaná sieť ou. **Pre úplnosť poznámka** o tvare a indexovaní tenzorov Y a \hat{Y} :

- \bullet rozmer tenzora je Y[depth][height][width],
- indexovanie Y[k][j][i]
- index k určuje bunku, $k = \langle 0, depth \rangle$, v experimente $k = \langle 0, 38 \rangle$
- index j určuje časový krok, $j = \langle 0, height \rangle$, v experimente $j = \langle 0, 9057 \rangle$
- index i určuje súradnicu polohy, $i = \langle 0, width \rangle$, v experimente $i = \langle 0, 3 \rangle$

Najprv sa definuje chyba ako rozdiel požadovanej a predpovedanej hodnoty

$$E = Y - \hat{Y} \tag{1}$$

Vypocet relativnej chyby je nasledovny : v L1 norme pomer chyboveho tenzora E a prislusnej dlzky tenzora Y, dostaneme pomocny tenzor r_t . Tenzor ϵ ma nepatrnu kladnu hodnotu a zabranuje deleniu nulou. Nakoniec sa hodnoty spriemeruju a vynasobia 100.

$$r_t = \frac{|E|}{|\hat{Y}| + \epsilon} \tag{2}$$

$$relative_error = \bar{r_t}100\% \tag{3}$$

Pre modelovanie rozlozenia pravdepodobnosti chyby, normalnym rozdelenim je potrebne mat priemer chyby a rozptyl. Z pythonu som pouzil hotove funkcie

- E.mean(), https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.mean.html
- numpy.std(E), https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.std. html

$$mean = E.mean()$$
 (4)

$$sigma = numpy.std(E) (5)$$

Tu neviem ci to vrati σ alebo σ^2 .

Dalsia vhodna metrika je root mean square error (RMS). Pocitana ako odmocnina z priemeru druhych mocnin chyb. https://en.wikipedia.org/wiki/Root_mean_square Indexovanie α je len formalne zjednodusenie - aby sa nemuseli pisat 3 sumy cez i,j,k. Hodnota N je potom N=width*height*depth.

$$rms = \sqrt{\frac{1}{N} \sum_{\alpha=1}^{N} E_{\alpha}^{2}}$$
 (6)

v pythone ako

rms = numpy.sqrt(numpy.mean(numpy.square(error)))

Dalsia vhodna metrika je absolutna priemerna chyba. Pocitana ako primer absolutnych hodnot chyby E v L1 norme.

$$ams = \frac{1}{N} \sum_{\alpha=1}^{N} |E_{\alpha}| \tag{7}$$

v pythone ako

ams = numpy.mean(numpy.absolute(error))

2 Spočítané výsledky

Tabuľ ka uvádza chyby pre siete 0 až 7. Chyby majú priamu interpretáciu ako chyba polohy [um]. Zeleným sú v danej metrike znázornené najlepšie a červeným najhoršie výsledky.

ID	error mean [um]	error sigma [um]	rms [um]	ams [um]	relative_error [%]
0	-8.937	37.229	38.287	14.473	14.681
1	-33.725	205.573	208.321	41.814	42.588
2	-3.513	22.089	22.367	9.055	12.907
3	-0.292	15.36	15.363	6.942	11.321
4	-1.151	10.928	10.988	3.824	7.701
5	-0.224	10.765	10.767	4.248	7.95
6	-0.777	11.711	11.736	4.156	8.428
7	-1.526	11.373	11.474	3.735	7.556

3 Je treba

Treba overiť či je to správne. Z každého pohľadu : metodológia, vzorce, interpretácia aj programovanie.