Numerical Analysis FMN011

Carmen Arévalo
Lund University
carmen@maths.lth.se

Eigenvalues and Power Iteration

Eigenvalues and Eigenvectors

If A is a square matrix such that

$$Au = \lambda u$$
,

 λ is an eigenvalue of A and u is a corresponding eigenvector.

The characteristic polynomial of a matrix A is

$$p(\lambda) = \det(A - \lambda I)$$

The eigenvalues of A are the roots of this polynomial.

The eigenvectors are vectors in the null space of $A - \lambda I$.

Some Properties of Eigenvalues and Eigenvectors

- ullet If u is an eigenvector, then ku is one too.
- ullet The corresponding eigenvalue of u is the Rayleigh quotient,

$$\lambda = \frac{u^T A u}{u^T u}$$

- λ eigenvalue of $A \Rightarrow \lambda^{-1}$ eigenvalue of A^{-1} (same eigenvector)
- λ eigenvalue of $A \Rightarrow \lambda s$ eigenvalue of A sI (same eigenvector)
- $(\lambda s)^{-1}$ eigenvalue of $(A sI)^{-1}$ (same eigenvector)
- If $A = S^{-1}BS$, then A and B have the same eigenvalues (but not the same eigenvectors)

Computing Eigenvalues and Eigenvectors with the Characteristic Polynomial

$$A = \begin{bmatrix} -1 & 10 \\ 0 & -2 \end{bmatrix} \Rightarrow \det(\lambda I - A) = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = -2$$

$$\begin{bmatrix} -1 & 10 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = -1 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 10 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = -2 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c \begin{bmatrix} -10 \\ 1 \end{bmatrix}$$

Arévalo FMN011

The Power Method

Computing the dominant eigenvalue/eigenvector

Suppose:

- The eigenvectors of A form a basis
- ullet A has unique λ_1 of maximum modulus

Start with x_0 and define the iteration method

$$x_k = Ax_{k-1}$$

If $\{u_1, u_2, \dots, u_n\}$ is the basis of eigenvectors,

$$x_0 = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$$

and

$$x_k = Ax_{k-1} = A^2x_{k-2} = \dots = A^kx_0 = \sum_{i=1}^n A^kc_iu_i$$

$$egin{array}{lll} x_k &=& \displaystyle\sum_{i=1}^n A^k c_i u_i \ &=& \displaystyle\sum_{i=1}^n \lambda_i^k c_i u_i \ &=& \displaystyle\lambda_1^k (c_1 u_1 + \displaystyle\sum_{i=2}^n (rac{\lambda_i}{\lambda_1})^k c_i u_i)
ightarrow \lambda_1^k c_1 u_1 ext{ as } k
ightarrow \infty \end{array}$$

$$u \cong \frac{x_k}{\|x_k\|}, \quad \lambda \cong \frac{u^T A u}{u^T u}$$

Arévalo FMN011

Normalization

Iterates could converge to zero or become unboundedly large, so we require the largest component of each iterate to have modulus 1.

Given the initial vector x_0 . Take

$$y_{k-1} = \frac{x_{k-1}}{\|x_{k-1}\|_2}$$
 $x_k = Ay_{k-1}$
 $\lambda_k = y_{k-1}^T x_k$

Speed of convergence is linear, and governed by $|\lambda_2/\lambda_1|$

Example: Power Method

From Scientific Computing by Heath

$$A = \left[egin{array}{ccc} 1.5 & 0.5 \ 0.5 & 1.5 \end{array}
ight] \qquad {
m and} \qquad x_0 = \left[egin{array}{c} 0 \ 1 \end{array}
ight]$$

i	1	2	3	4		14	15
	0.3162	0.5145	0.6139	0.6616		0.7070	0.7071
y_i	0.9487	0.8575	0.7894	0.7498	•••	0.7072	0.7071
$y_i^T A y_i$	1.50	1.80	1.941	1.985		1.999	2.000

$$\lambda \approx 2.000$$
, $u \approx [0.7071, 0.7071]^T$

The inverse power method

The smallest eigenvalue (in magnitude) of A is the inverse of the dominant eigenvalue of A^{-1} .

$$Ax = \lambda x$$
$$\lambda^{-1}x = A^{-1}x$$

Apply the power method to A^{-1} ,

$$x_{k+1} = A^{-1} x_k$$

and take
$$\lambda=1/\eta$$
, where $\eta=\frac{x_j^TA^{-1}x_j}{x_j^Tx_j}=\frac{x_j^Tx_{j+1}}{x_j^Tx_j}.$

To avoid calculation of the inverse, for each iteration solve the system

$$Ax_{k+1} = x_k.$$

The Shifted Inverse Power Method

To find the eigenvalue nearest to s look for the smallest eigenvalue (in magnitude) of A-sI, because

$$(A - sI)x = (\lambda - s)x$$

$$(A - sI)^{-1}x = \frac{1}{\lambda - s}x$$
$$(A - sI)x_{k+1} = \eta x_k$$
$$\lambda = \frac{1}{\eta} + s$$

The Shifted Inverse Power Method algorithm

Start with
$$x_0$$

Set $B=A-sI$
Set $y_{k-1}=x_{k-1}/\|x_{k-1}\|_2$
Solve $Bx_k=y_{k-1}$
Set $\eta_k=x_k^Ty_{k-1}$

$$\lambda = \frac{1}{\eta} + s$$

Speed of convergence is linear.

Example: Inverse Power Method (s=0)

$$A = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 2.5 \end{bmatrix}, \qquad x_0 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

1	2	•••	13	14
-0.9806	-0.9558	•••	-0.9239	-0.9239
0.1961	0.2941	•••	0.3826	0.3827
1.4000	1.3188	•••	1.2929	1.2929

 $\lambda \approx 1.2929$, $u \approx [-0.9239, 0.3827]^T$,

Residual vector: $Au - \lambda u = [-0.00001508, -0.00003640]^T$