

More is Less: A More Complicated Network with Less Inference Complexity

Xuanyi Dong¹, Junshi Huang², Yi Yang¹, Shuicheng Yan^{2,3}

¹University of Technology Sydney, ²360 AI Insitute,

²National University of Singapore

2017/04/12 @ VALSE

Outline

- Introduction
- Overview of Existing Methods
- The Proposed Model
- Experiments

CNNs cost a lot

	Parameters	FLOPs	Top-5 Error
AlexNet	61M	725M	17.0
VGG-16	138M	15484M	8.43
GoogleNet-V1	6.9M	1566M	7.89
ResNet-50	25.5M	3800M	5.25

	Forward(ms)	Backward(ms)
VGG-16	143	379
GoogleNet-V1	63	102

Why CNN Acceleration? Real-World Applications need Real-Time

Self Driving

Face Detection

Popular Dataset & Networks

	Training	Testing	Classes
MNIST	60,000	10,000	10
CIFAR10	50,000	10,000	10
CIFAR100	50,000	10,000	100
ImageNet	1.2M	150,000	1000

	AlexNet	VGG-16	GoogleNet	ResNet
Frequency	Most	Most	Few	Rare

Related Works

- Low Rank
- Fixed Point
- Product Quantization
- Sparse
- Architecture
- Dynamic CNN

Low Rank

• Zhang, et al. "Accelerating very deep convolutional networks for classification and detection." TPAMI 2016

Fixed Point

	Network Variations	Operations used in Convolution	Memory Saving (Inference)	Computation Saving (Inference)	Accuracy on ImageNet (AlexNet)
Standard Convolution	0.11 -0.210.34 · -0.25 0.61 0.52 · Real-Value Weights	+,-,×	1x	1x	%56.7
Binary Weight	0.11 -0.210.34 ·0.25 0.61 0.52 ·	+ , -	~32x	~2x	%56.8
BinaryWeight Binary Input (XNOR-Net)	Binary Inputs 1 -11 · Binary Weights 1 -1 1 1 · Binary Weights	XNOR , bitcount	~32x	~58x	%44.2

• Rastegari, et al. "Xnor-Net: Imagenet classification using binary convolutional neural networks." ECCV 2016

Product Quantization

• Wu, Jiaxiang, et al. "Quantized convolutional neural networks for mobile devices." CVPR 2016

Sparse

• Han S, Pool J, Tran J, et al. "Learning both weights and connections for efficient neural network". NIPS 2015

Architecture

Network	# layers	# params	# mult	Acc	Speed-up	Compression rate
Teacher	5	~9M	∼725M	90.18%	1	1
FitNet 1	11	~250K	\sim 30M	89.01%	13.36	36
FitNet 2	11	∼862K	\sim 108M	91.06%	4.64	10.44
FitNet 3	13	~1.6M	~392M	91.10%	1.37	5.62
FitNet 4	19	~2.5M	~382M	91.61 %	1.52	3.60

Dynamic CNN

Problems

Focus on the Compression rather than Acceleration

Focus on the Fully-Connected layer not Convolution layer

• High Theoretical Time but hard to adapt Practical Implementation

Motivation

1.3	2.1	-1.2	0.3		1.3	2.1	0	0.3
-0.5	0.1	-1.7	1.9	ReLU Activation	0	0.1	0	1.9
0.8	1.1	0.6	-0.1	MELO ACTIVATION	0.8	1.1	0.6	0
1.0	-0.9	0.7	0.2		1.0	0	0.7	0.2

Dense Sparse

Efficient: More (complicated structure) is Less (computation complexity)

original residual block

Frequently, >30% outputs are almost zeros after the ReLU operation, and thus their exact convolution values before ReLU are meaningless.

Can these positions be roughly estimated with very low computational cost?

Efficient: More (complicated structure) is Less (computation complexity)

More is Less Structure

Theoretically, model accuracy can be lossless, yet complexity is less.

If 1x1 or low-cost conv $\frac{1}{2}$ outputs zero, then its corresponding convolution operation in conv $\frac{1}{2}$ is not required.

Proposed Architecture

Implementation

Implementation – weight sharing

Trade off – acceleration and accuracy

Acceleration - Sparsity

Collaborative Layer	Sparsity	Trainable
Conv + Relu	< 10 %	Stable
Conv + Regularization + Relu	5 % - 70%	Unstable
Conv + BatchNorm + Relu	~30%	Stable

Accuracy - Kernel

Input tensor : U

Height & Width : X & Y

Collaborative Kernel : W'_t

Output tensor : V'_t

Sparsity Ratio : r

k <i>i</i>	$\boldsymbol{\mathcal{C}}$
$V_t'(x,y) = \sum_{t=0}^{\infty} V_t'(x,y) = \sum_{t=0}^{\infty} V_t'$	$\sum W'_t(i,j,c)U(x+i-1,y+j-1,c)$
i,j=1	$\frac{1}{c}$

Architecture	FLOPs	Speed-Up Ratio
CNN	$XYTk^2C$	0
basic	$XYTC(k'^2 + k^2r)$	$1 - (k'^2/k^2 + r)$
$(1 \times 1 \text{ kernel})$	$XYTC(1+k^2r)$	$1 - (1/k^2 + r)$
(weight sharing)	$XYTk^2(1+Cr)$	1 - (1/C + r)

Accuracy - Kernel

Architecture	FLOPs	Speed-Up Ratio
CNN	$XYTk^2C$	0
basic	$XYTC(k'^2 + k^2r)$	$1 - (k'^2/k^2 + r)$
$(1 \times 1 \text{ kernel})$	$XYTC(1+k^2r)$	$1 - (1/k^2 + r)$
(weight sharing)	$XYTk^2(1+Cr)$	1 - (1/C + r)

Model	$1 \times 1 \times C \times T$			$k \times k \times C \times 1$		
Model	FLOPs	Ratio	Error	FLOPs	Ratio	Error
ResNet-20	3.2E7	20.3%	8.57	2.6E7	34.9%	8.32
ResNet-32	4.7E7	31.2%	9.26	4.9E7	28.1%	7.44
ResNet-44	6.3E7	34.8%	8.57	6.5E7	32.5%	7.29

Details on Pre-Activation Residual Network

Residual Block with LCCL

Experiments

Structure	Top-1 Err.	Speed-Up
Aft-Aft	8.32	34.9%
Aft-Bef	8.71	24.1%
Bef-Bef	11.62	39.8%
Bef-Aft	12.85	55.4%

Experiments – CIFAR10

Experiments – CIFAR10 & CIFAR100

	Depth	Ori. Err	LCCN	Speed-up
ResNet [12]	110	6.37	6.56	34.21%
	164*	5.46	5.91	27.40%
WRN [35]	22-8	4.38	4.90	51.32%
	28-2	5.73	5.81	21.40%
	40-1	6.85	7.65	39.36%
	40-2	5.33	5.98	31.01%
	40-4	4.97	5.95	54.06%
	52-1	6.83	6.99	41.90%

	Depth Ori. Err		LCCN	Speed-up	
ResNet [12]	164*	24.33	24.74	21.30%	
WRN [35]	16-4	24.53	24.83	15.19%	
	22-8	21.22	21.30	14.42%	
	40-1	30.89	31.32	36.28%	
	40-2	26.04	26.91	45.61%	
	40-4	22.89	24.10	34.27%	
	52-1	29.88	29.55	22.96%	

CIFAR10

Experiments – ImageNet

Depth	Approach	Speed-Up	Top-1 Acc. Drop	Top-5 Acc. Drop
	LCCL	34.6%	3.65	2.30
18	BWN	$\approx 50.0\%$	8.50	6.20
	XNOR	$\approx 98.3\%$	18.10	16.00
34	LCCL	24.8%	0.43	0.17
	PFEC	24.2%	1.06	-

Model	FLOPs		Time (ms)		Speed-up	
	CNN	LCCL	CNN	LCCL	Theo	Real
ResNet-18	1.8E9	1.2E9	97.1	77.1	34.6%	20.5%
ResNet-34	3.6E9	2.7E9	169.3	138.6	24.8%	18.1%

