Projeto e Análise de Algoritmos I Notação Assintótica

Antonio Luiz Basile

Faculdade de Computação e Informática Universidade Presbiteriana Mackenzie

February 27, 2018

Crescimento de Funções (CLR)

- Quando olhamos para entradas com tamanhos suficientemente grandes para tornar apenas a ordem de crescimento do tempo de execução relevante, estamos estudando a eficiência assintótica dos algoritmos.
- As notações utilizadas para descrever o tempo de execução assintótico de um algoritmo são definidas em termos das funções cujos domínios são o conjunto dos **números naturais** $\mathbb{N} = \{0,1,2,\dots\}$.
- Em geral usaremos a notação assintótica para caracterizar o tempo de execução dos algoritmos. A notação assintótica, no entanto, pode ser aplicada a funções que caracterizam outros aspectos dos algoritmos, como por exemplo, o espaço utilizado.

Notação Θ

Para uma dada função g(n), denotamos por $\Theta(g(n))$ o conjunto de funções

 $\Theta(g(n))=\{f(n): \text{ existem constantes positivas } c_1,\ c_2\in n_0 \text{ tal que} \ 0\leq c_1g(n)\leq f(n)\leq c_2g(n) \text{ para todo } n\geq n_0\}.$

Notação ⊖

Uma função f(n) pertence ao conjunto $\Theta(g(n))$ se existem constantes positivas c_1 e c_2 tal que ela possa ser sanduichada entre $c_1g(n)$ e $c_2g(n)$ para n suficientemente grande. Diz-se que g(n) é um limite assintoticamente justo para f(n).

Notação O

Para uma dada função g(n), denotamos por O(g(n)) o conjunto de funções

$$O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tal que}$$
 $0 \le f(n) \le cg(n) \text{ para todo } n \ge n_0\}.$

Usamos a notação O (lê-se "ó grande") como um limite superior para uma função, dentro de um fator constante.

Notação Ω

Para uma dada função g(n), denotamos por $\Omega(g(n))$ o conjunto de funções

$$\Omega(g(n))=\{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tal que} \ 0 \leq cg(n) \leq f(n) \text{ para todo } n \geq n_0\}.$$

Usamos a notação Ω (lê-se "ômega grande") como um limite assintótico inferior para uma função, dentro de um fator constante.

Comparando Funções

$$f(n) = \Theta(g(n)) \in g(n) = \Theta(h(n)) \text{ implica } f(n) = \Theta(h(n))$$
 (1)

$$f(n) = O(g(n)) e g(n) = O(h(n)) \text{ implica } f(n) = O(h(n))$$
 (2)

$$f(n) = \Omega(g(n)) \in g(n) = \Omega(h(n)) \text{ implica } f(n) = \Omega(h(n))$$
 (3)

$$f(n) = \Theta(f(n)) \in f(n) = O(f(n)) \in f(n) = \Omega(f(n))$$
(4)

$$f(n) = \Theta(g(n))$$
 se e somente se $g(n) = \Theta(f(n))$ (5)

$$f(n) = O(g(n))$$
 se e somente se $g(n) = \Omega(f(n))$ (6)

Exemplos

- **1** $2n + 10 \in O(n)$?
- ② $n^2 \in O(n)$?
- 3 $3n^3 + 20n^2 + 5 \notin O(n^3)$?
- **3** $\log n + 5 \in O(\log n)$?
- **5** $2^{n+2} \notin O(2^n)$?

Exemplo 1: $2n + 10 \in O(n)$?

Podemos realizar uma manipulação para encontrar c e n_0 :

$$2n + 10 \le c.n$$

$$c.n - 2n \ge 10$$

$$(c - 2)n \ge 10$$

$$n \ge \frac{10}{c - 2}$$

A afirmação é válida para c = 3 e $n_0 = 10$.

Exemplo 2: $n^2 \in O(n)$?

É preciso encontrar c que seja maior ou igual a n para todo valor de n_0 :

$$n^2 \leq c.n$$

$$n \le c$$

 $\acute{\mathsf{E}}$ impossível, pois c deve ser constante.

Exemplo 3: $3n^3 + 20n^2 + 5 \notin O(n^3)$?

É preciso encontrar c>0 e $n_0\geq 1$, tais que $3n^3+20n^2+5\leq c.n^3$, para $n\geq n_0$. Como

$$3n^3 + 20n^2 + 5 \le (3 + 20 + 5).n^3$$

podemos tomar c = 28 e qualquer $n_0 > 1$

Exemplo 4: $3 \log n + 5 \notin O(\log n)$?

É preciso encontrar c>0 e $n_0\geq 1$, tais que $3\log n+5\leq c.\log n$, para $n\geq n_0$. Note que

$$3 \log n + 5 \le (3+5)$$
. $\log n$ se $n > 1 (\log 1 = 0)$

basta tomar, por exemplo, c = 8 e qualquer $n_0 > 2$

Exemplo 5: $2^{n+2} \in O(2^n)$?

É preciso c>0 e $n_0\geq 1$, tais que $2^{n+2}\leq c.2^n$, para todo $n\geq n_0$. Note que

$$2^{n+2} = 2^2 \cdot 2^n = 4 \cdot 2^n$$

Assim, basta tomar, por exemplo, c = 4 e qualquer n_0