4h ■ ■ ■

Partie I : Étude de suites

Pour un calcul célèbre, Archimède considéra les relations de récurrence :

$$c_{n+1} = \sqrt{\frac{1+c_n}{2}}$$
 et $\lambda_{n+1} = \frac{\lambda_n}{c_{n+1}}$.

- **1.** On suppose dans cette question que $c_1 = 0$ et $\lambda_1 = 2$.
 - a) Montrer que les suites $(c_n)_{n\geqslant 1}$ et $(\lambda_n)_{n\geqslant 1}$ sont bien définies et que pour tout $n\geqslant 1$:

$$c_n = \cos\frac{\pi}{2^n}, \ \lambda_n = 2^n \sin\frac{\pi}{2^n}.$$

- **b)** Montrer que la suite $(\lambda_n)_{n\geqslant 1}$ converge et déterminer sa limite.
- **2.** En utilisant, avec précision, une formule de Taylor appliquée à la fonction sinus, montrer que, pour tout $n \ge 1$,

$$|\pi - \lambda_n| \leqslant \frac{\pi^3}{6 \cdot 4^n}.$$

3. Montrer que pour tout entier naturel p donné, λ_n admet, lorsque n tend vers l'infini, le développement :

$$\lambda_n = \pi - \frac{\pi^3}{3!} \cdot \frac{1}{4^n} + \dots + (-1)^p \frac{\pi^{2p+1}}{(2p+1)!} \cdot \frac{1}{4^{pn}} + o\left(\frac{1}{4^{pn}}\right).$$

- **4.** Pour tout entier n supérieur à 1, on pose $\lambda_n^{(1)} = \frac{-\lambda_n + 4\lambda_{n+1}}{3}$.
 - **a)** Montrer que $\left(\lambda_n^{(1)}\right)_{n\geqslant 1}$ converge et que, lorsque n tend vers l'infini,

$$\lambda_n^{(1)} - \pi = o\left(\frac{1}{4^n}\right).$$

- **b)** Déterminer un équivalent de $\lambda_n^{(1)} \pi$.
- **5. a)** Montrer qu'il existe un réel α (que l'on déterminera) tel que la suite $(\lambda_n^{(2)})_{n\geqslant 1}$ définie pour tout $n\geqslant 1$ par $\lambda_n^{(2)}=\alpha\lambda_n^{(1)}+(1-\alpha)\lambda_{n+1}^{(1)}$ vérifie, lorsque n tend vers l'infini,

$$\lambda_n^{(2)} - \pi = o\left(\frac{1}{16^n}\right).$$

- **b)** Déterminer $(\beta, \gamma, \delta) \in \mathbb{R}^3$ tel que pour tout $n \ge 1$, $\lambda_n^{(2)} = \beta \lambda_n + \gamma \lambda_{n+1} + \delta \lambda_{n+2}$.
- **c)** Montrer, à l'aide d'une formule de Taylor appliquée à la fonction sinus, que pour tout n supérieur à 1,

$$\left|\lambda_n^{(2)} - \pi\right| \leqslant \frac{17\pi^7}{576 \cdot 7!} \cdot \frac{1}{4^{3n}}.$$

Partie II: Polynômes de Bernoulli

1. Soit f une fonction continue sur [0,1], à valeurs réelles. Montrer que les conditions ci-dessous définissent une unique fonction F de classe \mathscr{C}^1 sur [0,1]:

$$F' = f$$
, $\int_0^1 F(t) dt = 0$

et exprimer F à l'aide de $G: x \mapsto \int_0^x f(t) dt$.

2. a) Montrer que les conditions :

$$B_0 = 1, B'_{n+1} = B_n \text{ et } \int_0^1 B_{n+1}(t) dt = 0 \text{ pour tout } n \geqslant 0$$

définissent une unique suite de fonctions polynomiales. Préciser le degré de B_n et son terme de plus haut degré.

- **b)** Expliciter, sous forme canonique, les polynômes B_1 , B_2 , B_3 et B_4 .
- 3. Montrer, pour tout entier naturel supérieur ou égal à 2, l'égalité :

$$B_n(0) = B_n(1).$$

- **4.** Pour tout n entier naturel, on pose $C_n(X) = (-1)^n B_n(1-X)$.
- a) Montrer que la suite (C_n) vérifie les conditions de la question 2. définissant la suite (B_n) et en déduire que, pour tout entier naturel $n, B_n = C_n$.
- **b)** Qu'en déduire pour les graphes des B_n et pour les valeurs, lorsque n est impair supérieur ou égal à 3, de $B_n(0)$, $B_n(1/2)$ et $B_n(1)$?
- **5.** Soit m un entier naturel.
- a) Montrer que les polynômes B_{2m+1} ne s'annulent pas sur l'intervalle]0, 1/2[. On pourra procéder par récurrence sur m et utiliser le théorème de Rolle.
 - **b)** En déduire que les polynômes $B_{2m}(X) B_{2m}(0)$ sont de signes constants sur [0,1].

Partie III : Séries de Riemann et nombres de Bernoulli

1. Montrer que pour N entier naturel non nul :

$$\forall t \in]0,1[, 1+2\sum_{k=1}^{N}\cos(2k\pi t) = \frac{\sin((2N+1)\pi t)}{\sin(\pi t)}.$$

Pour tout entier naturel n strictement positif, on pose :

$$\forall t \in]0,1[, \varphi_n(t) = \frac{B_n(t) - B_n(0)}{\sin(\pi t)}.$$

- **2.** Montrer que pour tout entier $n \ge 2$, la fonction φ_n est prolongeable par continuité à [0,1] et que le prolongement est de classe \mathscr{C}^1 .
- **3.** Montrer (en utilisant éventuellement une intégration par parties) que pour toute fonction f de classe \mathscr{C}^1 sur [0,1],

$$\lim_{x \to +\infty} \int_0^1 f(t) \sin(xt) dt = 0.$$

4. Pour k et n entiers strictement positifs, on définit :

$$I_{n,k} = \int_0^1 B_n(t) \cos(2k\pi t) dt.$$

Trouver une relation entre $I_{n,k}$ et $I_{n-2,k}$ et en déduire selon la parité de n, l'epression de $I_{n,k}$ en fonction de n et de k.

5. a) En utilisant les questions précédentes, trouver, pour N entier naturel, une expression de

$$\int_0^1 \varphi_{2m}(t) \sin((2N+1)\pi t) \, \mathrm{d}t$$

en fonction de m, N et $B_{2m}(0)$

- **b)** En déduire la valeur de $\sum_{k=1}^{\infty} \frac{1}{k^{2m}}$ en fonction de m et de $B_{2m}(0)$.
- **c)** Donner les valeurs de $\sum_{k=1}^{\infty} \frac{1}{k^2}$ et de $\sum_{k=1}^{\infty} \frac{1}{k^4}$.
- **6.** Montrer, pour tout m entier naturel non nul, la majoration :

$$\sum_{k=1}^{\infty} \frac{1}{k^{2m}} \leqslant 2$$

et en déduire la majoration $|B_{2m}(0)| \leq \frac{4}{(4\pi^2)^m}$.

Pour toute la suite du problème, les fonctions considérées seront supposées définies sur $\left[0,1\right]$ et indéfiniment dérivables.

Partie IV: Formule sommatoire d'Euler

1. Montrer pour m entier strictement supérieur à 0 (formule sommatoire à l'ordre m):

$$\int_0^1 f(t) dt = \frac{f(0) + f(1)}{2} - \sum_{k=1}^m B_{2k}(0) \left[f^{(2k-1)}(1) - f^{(2k-1)}(0) \right] - \int_0^1 f^{(2m+1)}(t) B_{2m+1}(t) dt.$$

2. Montrer, en utilisant la partie \mathbf{H} , que pour m entier naturel,

$$\int_0^1 f^{(2m+1)}(t)B_{2m+1}(t) dt \leqslant \frac{4}{(4\pi^2)^{m+1}} \sup_{x \in [0,1]} \left| f^{(2m+2)}(x) \right|$$

- **3.** Soit $0 = x_0 < x_1 < \dots < x_n = 1$ une subdivision régulière de pas $h = \frac{1}{n}$ de l'intervalle [0,1] (on a donc $x_i = \frac{i}{n} = ih$ pour $i \in [0,n]$). Rappeler l'expression T(h) obtenue par application de la méthode des trapèzes à la fonction f pour cette subdivision.
- **4.** Expliciter la formule sommatoire à l'ordre 2 pour les fonctions $f_i: t \mapsto f(x_i + ht)$ lorsque $i \in [0, n-1]$.

En déduire l'existence des réels a_2 et a_2 et d'une fonction r tels que

$$\int_0^1 f(t) dt = T(h) + a_1 h^2 + a_2 h^4 - r(h)$$

avec $|r(h)| \leqslant \frac{h^6}{16\pi^6} \cdot ||f^{(6)}||$, où $||f^{(6)}|| = \sup_{[0,1]} |f^{(6)}|$.

Partie V : Accélération de Romberg

On reprend la méthode utilisée dans la partie ${\bf I}$ et on définit $T_0,\,T_1,\,T_2$ en posant :

$$T_0(h) = T(h)$$

$$T_1(h) = \frac{-T_0(h) + 4T_0\left(\frac{h}{2}\right)}{3}$$

$$T_2(h) = \frac{-T_1(h) + 16T_1\left(\frac{h}{2}\right)}{15}.$$

1. Montrer que pour k = 0, 1 ou 2, lorsque h tend vers 0,

$$T_k(h) - \int_0^1 f(t) dt = o(h^{2k+1}).$$

- **2. a)** Exprimer $T_2(h)$ en fonction de $\int_0^1 f(t) dt$ et de r(h), $r(\frac{h}{2})$ et $r(\frac{h}{4})$.
 - **b)** En déduire la majoration :

$$\left| T_2(h) - \int_0^1 f(t) \, dt \right| \le \frac{17}{9216} \cdot \frac{h^6}{\pi^6} \left\| f^{(6)} \right\|.$$

3. On se propose d'appliquer la méthode décrite ci-dessus à la fonction $f: t \mapsto \frac{1}{1+t}$ de façon à calculer une valeur approchée de $\ln(2) = \int_0^1 \frac{\mathrm{d}t}{1+t}$. Montrer que $||f^{(6)}|| = 720$. On pourrait alors montrer qu'il suffit de choisir n = 12 pour que $T_2(h)$ soit une approximation de $\ln(2)$ à la précision de 10^{-12} (En supposant les erreurs d'arrondis négligeables).