

Rajshahi University of Engineering & Technology

Department of Electrical & Computer Engineering

Lab Report

Experiment No: 02

Name of the experiment: Study the relationship between phase & line current & voltage of a Delta (Δ) connected three-phase balanced system.

Course Code	1202
Course Title	Circuit & System – II Sessional

Submitted	Ву:	Submitted To:		
Name	: Sharmin Akter	Oishi Jyoti,		
Roll	: 2210055	Lecturer.		
T.O.II	. 2210033	Electrical & Computer		
Registration: 1109		Engineering, RUET.		
Session	: 2022-23			

INDEX

- 1. Experiment No
- 2. Experiment Name
 - 3. Objectives
- 4. Required Apparatus
 - 5. Theory
 - 6. Circuit Diagram
 - 7. Procedure
 - 8. Data Table
 - 9. Result
 - 10.Discussion

Experiment No: 01

Name of the Experiment: Study the relationship between phase & line current & voltage of a Delta (Δ) connected three-phase balanced system.

Objectives:

- To learn how to make Delta (Δ) connections
- To study the relationship between voltage & current in three-phase system

Required Apparatus:

- Voltmeter
- AC Voltage source
- Ammeter
- Connecting wires
- Resistors

Theory: In a Delta (Δ) connected three-phase system, the line and phase quantities are related by,

$$V_p = V_L$$

$$I_p = I_L/\sqrt{3}$$

Where V_p is phase voltage, V_L line voltage. $I_L \& I_p$ are line current & phase current respectively.

Circuit Diagram:

Procedure:

- A circuit was created following the circuit diagram using the components required.
- Voltmeter and ammeter were connected in the places marked in the diagram.
- Readings of the meters were recorded in a data table and error was calculated.

Calculations:

Delta Connection, Vp = V_L ; finding errors for $I_L \& I_p$ For 1, Ip(c) = $1.5/\sqrt{3} = 0.86$ Error = (0.86-0.8)/0.86= 6.97%

For 2,

$$Ip(c) = 2.3/\sqrt{3} = 1.32$$

$$Error = (1.32-1.2)/1.32$$

$$= 9.09\%$$
For 3,

$$Ip(c) = 3.8/\sqrt{3} = 2.19$$

$$Error = (2.19-2.1)/2.19$$

$$= 4.11\%$$
For 4,

$$Ip(c) = 4.3/\sqrt{3} = 2.48$$

$$Error = (2.48-2.3)/2.48$$

$$= 7.26\%$$

Data Table:

SI	I_L	Ip(m)	Ip(c)	V_L	Vp	Error
1	1.5	0.8	0.86	40	40	6.97%
2	2.3	1.2	1.32	60	60	9.09%
3	3.8	2.1	2.19	80	80	4.11%
4	4.3	2.3	2.48	100	100	7.26%

Data Ta	ble:	-						
Roll:	5)	14	Ipm	Ipc	Vp	VL	%	
2210055	1	1.5	0.8	6.86	40	40	6.97	
2210056	2	2.3	1.2	1.32	60	60	9.09	
2210057	3	13.8	2.1	2.19	30	80	9.11	
2210059	19	4.3	2.2	2.48	.100	100	7.26	1
2210061				-				
205	24							
ng.								

Result:

The measured line and phase voltages are the same as it was a Delta (Δ) connection. But the relation between line and phase current is - $I_p = I_L/\sqrt{3}$ as it can be seen from the calculations.

Discussion:

Ignoring the small margin of error, the experiment proved the theory. Error could have been avoided but due to some external & internal factors it was unavoidable.