Lecture 11 Introduction to probability

Review

Disjoint vs independent

- Two events A and B are said to be mutually exclusive/disjoint when there is no interaction/overlap between them.
 - Mathematically if $A \cap B = \emptyset$ Then A and B are disjoint
- If two events, A and B are independent, then the outcome of one event has no impact on the outcome of the other event

Disjoint ≠ independent!!!

Practice:

• Ex 1). What is the $P(A \cup B)$?

$$P(A) = 0.2 + 0.3 = 0.5$$

 $P(B) = 0.2 + 0.3 = 0.5$
 $P(A \cap B) = 0.2$

$$P(A \cup B) = 0.5 + 0.5 - 0.2 = 0.8$$

• Ex 2). What is the $P(A \cup B)$? P(A) = 0.45 P(B) = 0.35 $P(A \cap B) = 0$ $P(A \cup B) = 0.45 + 0.35 - 0 = 0.8$

Practice

• Suppose I roll a pair of fair six-sided dice. What is the probability that the roll sums to a value of 8?

A =the pair of dice sums to 8

How to find P(A)?

Remember

$$P(A) = \frac{\text{# of ways to get } A}{\text{total # of possible outcomes}}$$

	1	2	3	4	5	6	
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)	
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)	
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	
		2	3	4	5	6	7
	(1,1)	2 (1,2)		4 (1,4)	5 (1,5)	6 (1,6)	7
		(1,2)	(1,3)	(1,4)			-
		(1,2) (2,2)	(1,3)	(1,4) (2,4)	(1,5)	(1,6)	8
	(2,1)	(1,2) (2,2)	(1,3) (2,3)	(1,4) (2,4)	(1,5) (2,5)	(1,6) (2,6)	8
	(2,1) (3,1)	(1,2) (2,2) (3,2) (4,2)	(1,3) (2,3) (3,3)	(1,4) (2,4) (3,4)	(1,5) (2,5) (3,5)	(1,6) (2,6) (3,6)	8 9 10

Practice

Suppose a select a card at random from a well-shuffled deck of cards. What is the probability that the card is a king or hearts?

A = card is a king

B =the suit is hearts

Question: What is $P(A \cup B)$

Random Variables and Probability Distributions

- Review: Randomly sampling a population represents a random trial just like rolling a die or flipping a coin.
- The value of a variable measured on a randomly sampled individual is an outcome of a random trial. The following are therefore also random trials:
 - Measuring the heights of a randomly selected college students
 - Randomly sampling the diameter of trees on a plot of land
- A **Random Variable** occurs when we assign values to the outcomes of random processes. Formally, it is a function that maps from the sample space of event to a value.
 - discrete random variables have a countable number of values
 - -continuous random variables have an uncountable number of values

Probability Distributions

- The distribution of a random variable is called a **probability distribution** a function that gives the probabilities of different possible outcomes of a random variable.
- Discrete random variables have a countable number of values such as (0, 1, 2,)
 - we will denote a random variable using the capital letters X and Y
- A random variable is called a **continuous random variable** if the possible values are not countable (more on these later)
- The probability distribution of a <u>discrete</u> random variable assigns a probability to each possible outcome
 - for each possible value of $X = \{0, 1, 2 ...\}$ the probability P(X) is a value between 0 and 1
 - The sum of the probabilities for all possible values of X equals 1

$$\sum_{x} P(x) = 1$$

Probability Distribution of Flipping A Fair Coin

X	P(X)
H T	$0.5 \\ 0.5$

Probability Distribution for Rolling A Fair Die

X	P(X)
1	0.167
2	0.167
3	0.167
4	0.167
5	0.167
6	0.167

Probability Distribution of The Sum of Two Die

X	P(X)
2	0.03
3	0.06
4	0.08
5	0.11
6	0.14
7	0.17
8	0.14
9	0.11
10	0.08
11	0.06
12	0.03

Computing Probabilities from Discrete Probability Distributions

- Often probabilities concerning a discrete random variables can be computed from its probability distribution using summation.
- That is, if we wish to know the probability of observing a value of the discrete random variable X between α and b we can simply sum the values of X in the given interval

$$P(a \le X \le b) = \sum_{a \le x \le b} P(x)$$

$$P(X > a) = \sum_{x > a} P(x)$$

Computing Probabilities

- Suppose the following probability distribution gives the probabilities for number of goals scored by the well-known football player Lionel Messi in given match. Assume that goals are independent
- What is the probability that Messi scores More than two goals in a game?

$$P(X > 2) = 0.06 + 0.021 + 0.008 = 0.089$$

What is the probability that Messi scores at most one goal in a game?

$$P(X \le 1) = 0.25 + 0.54 = 0.79$$

 What is the probability that Messi scores between 1 and 3 goals in a game?

$$P(1 \le X \le 3) = 0.54 + 0.121 + 0.06 = 0.721$$

What is the probability that Messi scores 2 goals or 5 goals in a game?

$$P(X = 2)$$
 or $P(X = 5) = 0.121 + 0.008 = 0.129$

X	P(X)
0	0.250
1	0.540
2	0.121
3	0.060
4	0.021
5	0.008

Two important probability distributions in statistical inference

A **Population Distribution** — is the probability distribution for a single observation

A Sampling
Distribution — is the probability distribution of a statistic

Deriving Sampling Distributions

$$S = \begin{bmatrix} T, T, T & = 0, 0, 0 \\ H, T, T & = 1, 0, 0 \\ T, H, T & = 0, 1, 0 \\ T, T, H & = 0, 0, 1 \\ H, H, T & = 1, 1, 0 \\ H, T, H & = 1, 0, 1 \\ T, H, H & = 0, 1, 1 \\ H, H, H, H & = 1, 1, 1 \end{bmatrix}$$

- Imagine flipping a coin three times. We are interested in the number of times the coin comes up Heads
- Suppose the coin is not fair, and P(Heads) = 0.4 and P(Tails) = 0.6
 - We now consider Heads a "success" and Tails a "Failure" – we assign Heads a value of 1 and Tails a value of 0

Deriving Sampling Distributions

Population Distribution

Probability distribution for a single roll of a 4-sided die

X	P(X)
1	0.25
2	0.25
3	0.25
4	0.25

Sampling Distribution

Probability distribution for the average of n = 2 rolls of a 4-sided die

\overline{x}	Possible Outcomes	
1	(1,1)	1/16
1.5	(1,2), (2,1)	2/16
2	(1,3), (3,1),(2,2)	3/16
2.5	(3,2), (2,3), (4,1),(1,4)	4/16
3	(3,3), (4,2), (2,4)	3/16
3.5	(3,4),(4,3)	2/16
4	(4,4)	1/16

Mean and Standard Deviation of <u>Discrete</u> Random Variables

• The mean of a probability distribution is defined as

$$\mu = \sum_{x} x P(x)$$

The variance and standard deviation of a probability distribution are defined as

$$\sigma^2 = \sum_{x} (x - \mu)^2 P(x)$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$

Where x denotes an outcome of the random variable X and P(x) denotes the probability of the outcome

The Bernoulli distribution

- The **probability mass function (PMF)** of a discrete random is a function that gives the probability that the variable is exactly equal to some value
- A Bernoulli random variable is on which there are two possible outcomes with probabilities p and 1-p
- Whenever we assign the outcomes of a random variable to either "success" or "failure" (1 or 0) we are dealing with a Bernoulli random variable mean = p

variance =
$$p(1-p)$$

PMF:
$$P(X = x) = \begin{cases} p, & \text{if success} \\ (1-p), & \text{else} \end{cases}$$

X	P(X)
1 (success) 0 (failure)	p $1-p$

The Binomial Distribution

• A discrete distribution which describes the probabilities for the number of successful outcomes in a given number of independent trials where each trial has the same probability of success

It has two parameters:

```
n= the number of trials p= the probability of "success" or the probability of the outcome of interest. 
mean = np variance = np(1-p)
```

- It describes the proportion of trials in which a particular outcome of interest occurs
- It is a sum of n independent Bernoulli random variables
- There are many examples of binomial random variables
 - the number of heads observed in n flips of a coin where (each times heads has probability $p=\frac{1}{2}$ of occurring)
 - The proportion of deer with chronic wasting disease (CWD)
 - The number of patients who experience headaches as side of effect of taking a drug

The Binomial Distribution

Probability Mass Function:

$$P(X = k) = \binom{n}{k} \cdot p^k (1 - p)^{n - k}$$

- n is the total number of trials (e.g flips of a coin)
- k successes occur with probability p^k
- n-k failures occur with probability p^{n-k}
- $\binom{n}{k}$ is called the binomial coefficient it represents the number of ways to arrange k successes in n trials

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

The Poisson Distribution

- A Poisson distribution is a discrete probability distribution. It gives the probability of an event happening a certain number of times k within a given interval of time or space.
- The Poisson distribution has only one parameter, λ (lambda), which is the mean number of events. $\lambda > 0$

Probability Mass Function:
$$P(X = x) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Examples:

The number of traffic accidents at a particular intersection in a given day can be modeled using a Poisson distribution.

The number of defective items produced by a machine in a fixed period of time can be modeled with a Poisson distribution, assuming a constant defect rate.