3/13/24, 1:36 AM FFT

Algorithm Steps:

Now, let's break down the steps of the Winograd 1D FFT algorithm implemented in the provided code:

Initialize Variables:

N: Length of the input signal x.

Transformation Matrix F:

A matrix F of size $N \times N$ is created.

Each element F(u, m) of F is computed using the formula:

$$F(u,m) = \cos\left(\frac{\pi}{N} \cdot (m - \frac{1}{2}) \cdot (u - 1)\right)$$

This matrix represents the transformation of the input signal x to the frequency domain.

Pointwise Multiplication Matrix *D*:

Another matrix D of size $N \times N$ is created.

Each element D(u, m) of D is computed using the formula:

$$D(u,m) = \frac{2}{N} \cdot \cos\left(\frac{\pi}{N} \cdot (u - \frac{1}{2}) \cdot (m - \frac{1}{2})\right)$$

This matrix is used for pointwise multiplication with the result of $F \cdot x$ later in the algorithm.

Compute $F_u = F \cdot x$:

A vector F_u of size N is initialized to zeros.

Each element $F_u(u)$ is computed as the dot product of the uth row of F with the input signal \mathbf{x} .

Perform Pointwise Multiplication: $F_u \cdot D$:

Each element of F_u is multiplied pointwise with the corresponding row of matrix D.

Compute the Final Result: $F_u = F \cdot (F_u \cdot D)$:

The final output vector F_u is computed as the dot product of matrix F with the pointwise multiplied vector F_u .

Understanding the Code:

The algorithm calculates the 1D Winograd FFT of the input signal x using matrix operations.

The main steps involve creating the transformation matrix F, the pointwise multiplication matrix D, computing $F_u = F \cdot x$, performing pointwise multiplication, and finally computing the result $F_u = F \cdot (F_u \cdot D)$.

This implementation avoids explicit trigonometric computations in the inner loops, making it efficient for larger input sizes N.