Specification

Softmax(input,axis)= Exp(input) / ReduceSum(Exp(Input), axis=axis, keepdims=1)

$$s(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

• Runtime errors Operator SoftMax may overflow (resp. underflow) for large (resp. small) input input values. In that case, the operator will return a nan.

Every implementation should provide a correct (or correctly approximated) result without any error if $\forall \ 1 \leq j \leq K$. $z_j \leq 80$ for $K \leq 4000$.

Better: K*exp(max(z_i)) < FLT_MAX too much connected to a naïve implementation in float32?

- A non-naïve implementation should provide wider conditions for which it delivers a correctly approximated result. It should also provide the list of possible errors as well as conditions that produce elements or subsets of this list.
- Any implementation may return an error or a correct result outside the case K*exp(max(z_i)) < FLT_MAX

Robust implementation answer

The implementation that computes

•
$$z_{max} = max_{1 \le j \le K}(z_j)$$

•
$$S(Z_i)$$
 as $SoftMax(x_i) = \frac{e^{x_i - max(x)}}{\sum_{j=1}^{K} e^{x_j - max(x)}}$

• provides a correctly approximated result if all z_i are finite.

Naïve implementation answer in double

• provides a correctly approximated result if $\forall \ 1 \leq j \leq K$. $z_j \leq 700$ for $K \leq 16000$, which contains the specification requirements.

The naive implementation produces results in [0, 1] or it raises a NaN - Infinity results are not possible -. More precisely,

- If $\forall \ 1 \le j \le K$. $z_j \le 700$ and $K \le 16000$, $s(z_i) \in [0, 1]$ and it produces a correctly approximated result (an implementation error formula could be produced);
- If $z_i \ge 710$, result is NaN;
- If $(\exists \ 1 \le j \le K \ . j \ne i \ and \ z_j \ge 710)$ and if $z_i \le 700$, result is 0 (underflow);
- In any other cases, result is in [0, 1] or NaN (partial specification)