In [1]: # import pandas library import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder

In [2]: # Reading csv file data = pd.read_csv("Heart.csv") # creating a dataframe of it data = pd.DataFrame(data) data.head()

Out[2]:

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Са
0	1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0
1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0
2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0
3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0
4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0

4

```
In [3]: val = data['ChestPain'].value_counts()
        print(val)
        labels = ['Typical', 'asymptomatic', 'Nontypical', 'Nonanginal']
        x = [23, 144, 50, 86]
        plt.pie(x, labels=labels, autopct='%1.1f%%')
        asymptomatic
                        144
        nonanginal
                         86
        nontypical
                         50
        typical
                         23
        Name: ChestPain, dtype: int64
Out[3]: ([<matplotlib.patches.Wedge at 0x20ccbbf34f0>,
          <matplotlib.patches.Wedge at 0x20ccbbf3a60>,
          <matplotlib.patches.Wedge at 0x20ccbc3c130>,
          <matplotlib.patches.Wedge at 0x20ccbc3c7c0>],
         [Text(1.0688703878101182, 0.25983859232732825, 'Typical'),
          Text(-0.4275284961750052, 1.0135183199914735, 'asymptomatic'),
          Text(-0.7343469291842987, -0.8189838750534658, 'Nontypical'),
          Text(0.6909220905824778, -0.8559361335667157, 'Nonanginal')],
         [Text(0.5830202115327917, 0.14173014126945177, '7.6%'),
          Text(-0.2331973615500028, 0.5528281745408037, '47.5%'),
          Text(-0.4005528704641629, -0.4467184773018904, '16.5%'),
          Text(0.3768665948631697, -0.46687425467275395, '28.4%')])
```



```
In [4]: |val = data['Thal'].value_counts()
        print(val)
        labels = ['Fixed', 'Normal', 'Reversable']
        x = [166, 117, 18]
        plt.pie(x, labels=labels, autopct='%1.1f%%')
        normal
                       166
        reversable
                       117
        fixed
                       18
        Name: Thal, dtype: int64
Out[4]: ([<matplotlib.patches.Wedge at 0x20ccde48040>,
          <matplotlib.patches.Wedge at 0x20ccde48670>,
          <matplotlib.patches.Wedge at 0x20ccde48d00>],
         [Text(-0.17717879093667105, 1.0856369909146517, 'Fixed'),
          Text(-0.02869897117848817, -1.0996255585667771, 'Normal'),
          Text(1.0806448558683255, -0.2054426817516895, 'Reversable')],
         [Text(-0.09664297687454783, 0.5921656314079917, '55.1%'),
          Text(-0.015653984279175363, -0.599795759218242, '38.9%'),
          Text(0.5894426486554503, -0.11205964459183064, '6.0%')])
```



```
In [6]: sns.set_theme(style="ticks")
sns.pairplot(data, hue="AHD", diag_kind="hist", height=1.5)
```

Out[6]: <seaborn.axisgrid.PairGrid at 0x20ccde4aad0>


```
In [7]: sns.histplot(data=data,x=data['Age'], hue='AHD')
```

Out[7]: <AxesSubplot: xlabel='Age', ylabel='Count'>

In [8]: sns.histplot(data=data,x=data['Sex'], hue='AHD')

Out[8]: <AxesSubplot: xlabel='Sex', ylabel='Count'>


```
In [9]: sns.histplot(data=data,x=data['ChestPain'], hue='AHD')
```

Out[9]: <AxesSubplot: xlabel='ChestPain', ylabel='Count'>

In [10]: sns.histplot(data=data,x=data['RestBP'], hue='AHD')

Out[10]: <AxesSubplot: xlabel='RestBP', ylabel='Count'>

In [11]: sns.countplot(data=data, x=data['Sex'])

Out[11]: <AxesSubplot: xlabel='Sex', ylabel='count'>

In [12]: sns.countplot(data=data, x=data['ChestPain'])

Out[12]: <AxesSubplot: xlabel='ChestPain', ylabel='count'>


```
In [13]: sns.countplot(data=data, x=data['RestECG'])
```

Out[13]: <AxesSubplot: xlabel='RestECG', ylabel='count'>


```
In [14]: sns.countplot(data=data, x=data['ExAng'])
```

Out[14]: <AxesSubplot: xlabel='ExAng', ylabel='count'>


```
In [15]: sns.scatterplot(data=data, x="Age", y="RestBP", hue="AHD")
```

Out[15]: <AxesSubplot: xlabel='Age', ylabel='RestBP'>

In [16]: sns.scatterplot(data=data, x="Age", y="Chol", hue="AHD")

Out[16]: <AxesSubplot: xlabel='Age', ylabel='Chol'>


```
In [17]: sns.scatterplot(data=data, x="RestBP", y="MaxHR", hue="AHD")
```

Out[17]: <AxesSubplot: xlabel='RestBP', ylabel='MaxHR'>

In [18]: sns.scatterplot(data=data, x="MaxHR", y="Age", hue="AHD")

Out[18]: <AxesSubplot: xlabel='MaxHR', ylabel='Age'>


```
In [19]: sns.scatterplot(data=data, x="Chol", y="Oldpeak", hue="AHD")
```

Out[19]: <AxesSubplot: xlabel='Chol', ylabel='Oldpeak'>

In [20]: sns.scatterplot(data=data, x="Oldpeak", y="RestBP", hue="AHD")

Out[20]: <AxesSubplot: xlabel='Oldpeak', ylabel='RestBP'>

In [22]: sns.boxplot(x=data["Age"])

Out[22]: <AxesSubplot: xlabel='Age'>


```
In [23]: sns.boxplot(x=data["Sex"])
```

Out[23]: <AxesSubplot: xlabel='Sex'>


```
In [24]: sns.boxplot(x=data["RestBP"])
```

Out[24]: <AxesSubplot: xlabel='RestBP'>


```
In [25]: sns.boxplot(x=data["Chol"])
```

Out[25]: <AxesSubplot: xlabel='Chol'>


```
In [26]: sns.boxplot(x=data["MaxHR"])
```

Out[26]: <AxesSubplot: xlabel='MaxHR'>

In [27]: sns.violinplot(x=data["Age"])

Out[27]: <AxesSubplot: xlabel='Age'>

In [28]: sns.violinplot(x=data["Sex"])

Out[28]: <AxesSubplot: xlabel='Sex'>

In [29]: sns.violinplot(x=data["RestBP"])

Out[29]: <AxesSubplot: xlabel='RestBP'>

In [30]: sns.violinplot(x=data["Chol"])

Out[30]: <AxesSubplot: xlabel='Chol'>

In [31]: sns.violinplot(x=data["MaxHR"])

Out[31]: <AxesSubplot: xlabel='MaxHR'>


```
In [33]: sns.kdeplot(data=data, x=data['Age'])
```

Out[33]: <AxesSubplot: xlabel='Age', ylabel='Density'>

In [34]: sns.kdeplot(data=data, x=data['Sex'])

Out[34]: <AxesSubplot: xlabel='Sex', ylabel='Density'>


```
In [35]: sns.kdeplot(data=data, x=data['MaxHR'])
```

Out[35]: <AxesSubplot: xlabel='MaxHR', ylabel='Density'>


```
In [36]: sns.kdeplot(data=data, x=data['Chol'])
```

Out[36]: <AxesSubplot: xlabel='Chol', ylabel='Density'>


```
In [38]: sns.kdeplot(data=data, x=data['RestBP'])
```

Out[38]: <AxesSubplot: xlabel='RestBP', ylabel='Density'>

In []:		