

Cálculo II Ingeniería Civil

Prof. Víctor Aros Quinán

Segundo Semestre 2021

Clase Nº6: Cálculo II Integral de Riemann y Aproximación Numérica de una Integral Definida

La siguiente definición de integral es mucho más general que la dada anteriormente pues no considera sólo a funciones continuas, y es conocidad como Integral de Riemann.

Definición

Sea $f:[a,b]\to\mathbb{R}$ una función y sea $P=\{a=x_0,...,x_n=b\}$ una partición del intervalo [a,b], si escogemos $t_k\in[x_{k-1},x_k]$ con k=1,...,n. La suma de Riemann de f asociada a la partición P es definida por:

$$S(f, P) = \sum_{k=1}^{n} f(t_k) \Delta x_k = \sum_{k=1}^{n} f(t_k) (x_k - x_{k-1})$$

Definición

Diremos que una función es **Riemann - Integrable** en [a,b] si existe $L \in \mathbb{R},$ tal que:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall \text{ partición } P : ||P|| < \delta \Rightarrow \left| L - \sum_{k=1}^{n} f(t_k) \Delta x_k \right| < \varepsilon$$

donde L está dado por:

$$L = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(t_k) \Delta x_k = \int_{a}^{b} f(x) \, dx$$

Observación: El valor de el limite anterior es llamado integral de Riemann de f en el intervalo [a, b]. Además,

$$\int_{a}^{b} f(x) \ dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} m_{k} \Delta x_{k} = \lim_{\|P\| \to 0} \sum_{k=1}^{n} M_{k} \Delta x_{k}$$

4/15

A continuación definiremos una partición regular que nos ayudarán a realizar algunos cálculos de integrales definidas.

Sea $n \in \mathbb{N}$, se define la partición regular P_n del intervalo [a,b] como:

$$x_0 = a, \quad x_1 =$$

lo cual se puede visualizar en la siguiente figura,

Además, si consideramos $t_k \in [x_{k-1},x_k]$ con k=1,2,...,n, la suma de Riemann de f con respecto a P_n está dada por:

$$S(f, P_n) =$$

Corolario

Si $f:[a,b]\to\mathbb{R}$ es una función continua, entonces:

$$\int_{a}^{b} f(x) \ dx =$$

El corolario anterior nos aclara el uso de la notación $\int_a^b f(x) dx$ para representar la integral de una función, pues para n suficientemente grande,

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{n} \sum_{k=1}^{n} f(t_{k})$$

Con lo anterior se puede pensar que para n muy grande, el símbolo dx representa $\Delta x=\frac{b-a}{n}$ y \int representa el símbolo de la suma, escrito como un S alargada.

Observaciones: Las elecciones más típicas de $t_k \in [x_{k-1}, x_k]$ son:

- 1. el extremos izquierdo $t_k = x_{k-1} = a + (k-1)\frac{b-a}{n}$.
- 2. el extremo derecho $t_k = x_k = a + k \frac{b-a}{n}$.
- 3. el punto medio $t_k = \frac{x_{k-1} + x_k}{2} = a + (k \frac{1}{2}) \frac{b-a}{n}$.

Ejercicios

1. Utilice la definición de integral de Riemann para con P una partición regular cualquiera para comprobar los siguientes resultados.

(a)
$$\int_{a}^{b} c \, dx = c(b-a)$$

(b) $\int_{a}^{b} x \, dx = \frac{1}{2}(b^{2} - a^{2})$

- 2. Utilizando la suma de Riemann $\frac{b-a}{n} \sum_{k=1}^{n} f(t_k)$, evalúe las siguientes integrales definidas:
 - (a) $\int_1^3 (x^2 x) dx$; eligiendo a t_k como el punto medio y n = 10.
 - (b) $\int_{0}^{\pi/4} \tan(x) dx$; eligiendo a t_k como el extremo superior y n = 10.
 - (c) $\int_1^2 \frac{1}{x}; dx$; eligiendo a t_k como extremo inferior y n = 10.

Condición de Integrabilidad

Teorema

Si f es una función continua en todo [a,b], entonces f es una función Riemann Integrable en [a,b].

Observación: La clase de funciones integrables en [a,b] es más amplia que la indicada en el teorema anterior. Por ejemplo, se puede probar que son funciones integrables todas aquellas funciones continuas en todo punto del intervalo [a,b], excepto en un número finito de ellos, por ejemplo $x_1,x_2,...,x_n$ donde los límites laterales existen. Lo anterior se puede visualizar en la siguiente figura.

Ejercicios

1. Muestre que la función $f:[0,1]\to\mathbb{R}$ definida por:

$$f(x) = \begin{cases} 0 & , x \in \mathbb{Q} \cap [0, 1] \\ 1 & , x \in \mathbb{Q}^c \cap [0, 1] \end{cases}$$

no es Riemann Integrable. **Hint:** determina la suma inferior y superior.

2. Sea $f:[0,5] \to \mathbb{R}$ la función definida por:

$$f(x) = \begin{cases} x & 0 \le x < 2\\ 3 & 2 \le x \le 5 \end{cases}$$

Determine el valor de las siguientes integrales definidas:

$$\int_0^2 f(x) \, dx; \qquad \int_2^5 f(x) \, dx; \qquad \int_0^5 f(x) \, dx$$

A continuación daremos una muestra de cómo obtener métodos para integrales de manera aproximada. Denotaremos por

$$E_n = \left| \int_a^b f(x) \, dx - \frac{b-a}{n} \sum_{k=1}^n f(t_k) \right|$$

al error obtenido al calcular $\int_a^b f(x) \ dx$ usando la suma de Riemann

$$\frac{b-a}{n}\sum_{k=1}^{n}f(t_k)$$

asociada a la partición regular P_n . El siguiente teorema nos entrega cotas para el cálculo aproximado de integrales definidas usando este tipo de sumas.

Teorema

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Si f' es continua en [a,b] y $K\in\mathbb{R}$ es tal que $|f'(x)|\leq K$, para todo $x\in[a,b]$, entonces:

$$E_n \le \frac{K}{2n}(b-a)^2$$

siempre y cuando t_k sea o el extremo inferior o el extremo superior de $[x_{k-1},x_k]\subset [a,b].$

Observación: Si queremos calcular $\int_a^b f(x) dx$ de manera aproximada usando la suma de Riemann con un error de magnitud menor que $\varepsilon > 0$, entonces lo único que debemos hacer es plantearnos la siguiente inecuacaión:

$$E_n \le \frac{K}{2n}(b-a)^2 < \varepsilon$$

De lo expresión anterior, podemos despejar n, es decir,

$$\frac{K}{2\varepsilon}(b-a)^2 < n$$

Así, eligiendo el entero n mayor que $\frac{k}{2\varepsilon}(b-a)^2$, sabremos cuantos intervalos requerimos para obtener una buena aproximación del valor de la integral definida con un error menor que el $\varepsilon > 0$ elegido, esto es,

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{n} \sum_{k=1}^{n} f(t_{k})$$

Ejemplo:

Calcular el valor aproximado de la integral definida

$$\int_0^1 \sqrt{1+x^4} \, dx$$

con un error estimado de $\varepsilon = 0, 1$.

Observación: La siguiente tabla resume el valor aproximado de la integral y cota para el error cometido para distintos valores de ε teniendo en consideración que:

$$\int_0^1 \sqrt{1+x^4} \, dx \approx 1,08943$$

ε	n^{Ω} subin.	valor aproximado	error	cota del error
10^{-1}	10	1,0716	0,0178	0,09
10^{2}	10^{2}	1,0874	0,0002	0,009
10^{3}	10^{3}	1,0894	0,00003	0,0009