| NAME: |  |  |
|-------|--|--|
|       |  |  |

## LRS FS 2013 - Modulendprüfung - 29. Juni 2013

Dozierende: Prof. Dr. Ch. Eck, Prof. Dr. P. Gruber, K. Schuster, Dr. M. Bächtold, M.

Birbaumer, Dr. P. Scheiblechner Assistent: BSc C. Zgraggen

#### Hinweise:

- 1. Bitte lesen Sie alle Hinweise durch.
- 2. Bitte tragen Sie sofort nach Erhalt der Aufgabenstellung Ihren **Namen** ein. Verwenden Sie dieses Blatt als Deckblatt für die Abgabe Ihre Lösungen. Legen Sie bitte alle Blätter zusammen. Schreiben Sie bitte Ihren Namen auf jedes Ihrer Lösungsblätter.
- 3. **Erlaubte Hilfsmittel**: Skripte, Bücher, Ordner, Taschenrechner. **Nicht erlaubt** sind Laptop, Funksysteme, Handy, Kameras, etc.
- 4. Die Prüfungsdauer beträgt 240min (240 Punkte).
- 5. Schreiben Sie Ihre Antworten und Lösungen deutlich lesbar.
- 6. Die Prüfung ist erst zu Ende, wenn alle Prüfungen eingesammelt sind. Während der gesamten Prüfungsdauer ist das **Reden untersagt**.
- 7. Wir wünschen Ihnen viel Erfolg!

#### **Aufgabe 1** (20 min = 20 Punkte, Fragen zur Regelungstechnik)

| Nr. | Aussage                                                                                                                  | JA | NEIN |
|-----|--------------------------------------------------------------------------------------------------------------------------|----|------|
| 1   | Eine Phasenreserve von über 90° ist nicht möglich.                                                                       |    |      |
| 2   | Die Impulsantwort eines Systems erster Ordnung kann schwingen.                                                           |    |      |
| 3   | Ein System 2. Ordnung, dessen Nennerkoeffizienten alle grösser als Null sind, ist stabil.                                |    |      |
| 4   | Kann eine Nullstelle das Einschwingverhalten beeinflussen?                                                               |    |      |
| 5   | Ist die Differentialgleichung $5\dot{y}^2 + 3t \cdot y = 2u$ zeitvariant?                                                |    |      |
| 6   | Ist die Differentialgleichung $5\dot{y}^2 + 3t \cdot y = 2u$ linear?                                                     |    |      |
| 7   | Ein PD-Regler hat für alle Frequenzen eine Phase grösser oder gleich Null.                                               |    |      |
| 8   | Der Amplitudengang einer Totzeit ist abhängig von der Frequenz.                                                          |    |      |
| 9   | Ein PD-Regler reagiert langsamer als ein PI-Regler.                                                                      |    |      |
| 10  | Impulsantwort und Frequenzgang eines LZI Systems sind direkt miteinander verknüpft.                                      |    |      |
| 11  | Ein System ohne Ausgleich kann mit einem I-Regler geregelt werden.                                                       |    |      |
| 12  | Stör und Führungsverhalten besitzen dieselben                                                                            |    |      |
|     | Stabilitätseigenschaften. Stabilitätsverhalten.                                                                          |    |      |
| 13  | Konjugiert komplexe Pollagen in der LHE nahe an der imaginären                                                           |    |      |
|     | Achse haben einen starken Einfluss auf das Einschwingverhalten.                                                          |    |      |
| 14  | Ist für eine Übertragungsfunktion der Nennergrad = Zählergrad, dann beginnt die Schrittantwort mit einem endlichen Wert. |    |      |
| 15  | Bei einem System 2. Ordnung ist das prozentuale Überschwingen von der Eigenfrequenz abhängig.                            |    |      |
| 16  | Ein System mit grosser Bandbreite hat auch eine grosse Anstiegszeit (Reaktionszeit).                                     |    |      |
| 17  | Instabile Pole der Regelstrecke dürfen beim Reglerentwurf mit Pol/Nullstellenkürzung nicht gekürzt werden.               |    |      |
| 18  | Ein System mit endlicher Phasenreserve und unendlicher Amplitudenreserve ist nicht möglich.                              |    |      |
| 19  | Ein BIBO stabiles System hat eine Impulsantwort die für $t \to \infty$                                                   |    |      |
|     | gegen Null abklingt.                                                                                                     |    |      |
| 20  | Das Verhalten eines nichtlinearen Systems ist vom Arbeitspunkt                                                           |    |      |
|     | unabhängig.                                                                                                              |    |      |

# **Aufgabe 2** (18 min = 18 Punkte, Schrittantworten)

Ordnen Sie die folgenden Schrittantworten 1...6 mit jeweiliger Begründung den unten angegebenen Strecken 2.Ordnung a)...f) zu.

1



2



3



4



5



6



a) 
$$G(s) = \frac{5s+8}{s^2+s+4}$$

b) 
$$G(s) = \frac{8}{s^2 + 5s + 4}$$

c) 
$$G(s) = \frac{s^2}{s^2 + 0.5s + 4}$$

d) 
$$G(s) = \frac{0.4}{2s^2 + s}$$

e) 
$$G(s) = \frac{8}{s^2 + s + 4}$$
 f)  $G(s) = \frac{s}{s^2 + 0.5s + 4}$ 

f) 
$$G(s) = \frac{s}{s^2 + 0.5s + 4}$$

# **Aufgabe 3** (22 min = 22 Punkte, Laplace-Transformation)

Gegeben sei folgendes Signal x(t).



- a) (3 Punkte) Schreiben Sie das Signal x(t) in Termen der Sprungfunktion  $\varepsilon(t)$ .
- b) (3 Punkte) Bestimmen Sie die einseitige Laplace-Transformation  $L_I\{x(t)\}$ .
- c) (3 Punkte) Bestimmen Sie die verallgemeinerte Ableitung  $\dot{x}(t)$ .
- d) (3 Punkte) Bestimmen Sie die einseitige Laplace-Transformation  $L_I\{\dot{x}(t)\}$  .
- e) (6 Punkte) Lösen Sie das Anfangswertproblem

$$\dot{y} - 2y = \dot{x}, y(0) = 1$$

mit obigem Eingangssignal x(t).

f) (4 Punkte) Skizzieren Sie grob den Verlauf von y(t).

## Aufgabe 4 (22 min = 22 Punkte), Fourier Transformation

Ein Signal s(t) hat folgendes Amplitudenspektrum  $A(\omega)$ 



wobei  $\omega$  die Kreisfrequenz ist mit der Einheit [rad/s]. Das zugehörige Phasenspektrum ist gegeben mit

$$\varphi(\omega) = -\omega.$$

#### Aufgaben:

- a) (2 Punkte) Enthält das Signal Frequenzen im Bereich von 0.2 ... 0.3 Hz? Begründen Sie Ihre Antwort.
- b) (2 Punkte) Wie verhält sich die Phase in Abhängigkeit mit der Kreisfrequenz?
- c) (2 Punkte) Das Amplitudenspektrum ist Null für  $|\omega| > 2$ . Was können Sie daraus über das Signal s(t) im Zeitbereich aussagen?
- d) (8 Punkte) Berechnen Sie das Signal s(t) anhand des gegebenen Amplituden- und Phasenspektrums.
- e) (4 Punkte) Skizzieren Sie das Signal s(t).
- f) (4 Punkte) Wie ändern sich die Graphen von  $A(\omega)$  und  $\varphi(\omega)$  wenn das Signal eine Sekunde später übermittelt wird? Begründen Sie Ihre Antwort.

## **Aufgabe 5** (18 min = 18 Punkte, Lineare Systeme)

Gegeben sind die beiden folgenden Systeme 1 und 2:



- a) (6 Punkte) Bestimmen Sie die Übertragungsfunktionen der beiden Systeme und geben Sie jeweils deren Pole und Nullstellen an.
- b) (4 Punkte) Berechnen Sie die Schrittantworten der beiden Systeme im Laplacebereich.
- c) (6 Punkte) Berechnen Sie die Schrittantworten im Zeitbereich und skizzieren Sie diese zwischen 0<t<10sec in derselben Grafik.
- d) (2 Punkte) Gibt es unterschiedliche Reaktionszeiten der beiden Systeme? Falls ja, begründen Sie diese.

| NAME: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

## Aufgabe 6 (30 min = 30 Punkte, Blockschaltbild und Linearisierung)

Die folgende nichtlineare Differentialgleichung ist gegeben:

$$\ddot{y} + \dot{y}^2 + u \cdot \sqrt{y} = 8u^2$$

- a) (4 Punkte) Welche Nichtlinearitäten treten auf?
- b) (7 Punkte) Skizzieren Sie den detaillierten Wirkungsplan des Systems für eine Implementierung in Simulink mit dem Eingang u(t) und dem Ausgang y(t).
- c) (2 Punkte) Bestimmen Sie den stationären Arbeitspunkt  $(\overline{u}, \overline{y})$  mit  $\overline{u} \neq 0$ .
- d) (7 Punkte) Linearisieren Sie die Differentialgleichung um die allgemeine Gleichgewichtslage  $(\overline{u},\overline{y})$ . Wie lautet die linearisierte Differentialgleichung in den  $\Delta$ -Grössen?
- e) (4 Punkte) Beschreiben Sie den Typ der vorliegenden linearen Differentialgleichung. Wie ist die Stabilität des linearisierten Systems?
- f) (6 Punkte) Zeichnen Sie den Wirkungsplan des linearisierten Systems aus Teilaufgabe d) und berücksichtigen Sie hierbei den Arbeitspunkt aus Teilaufgabe c).

| NAME: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

## **Aufgabe 7** (25 min = 25 Punkte, direkter Reglerentwurf)

Sie wollen die Reglerparameter mit Hilfe der Pollagen des geschlossenen Regelkreises festlegen. Die Regelanordnung sieht wie folgt aus:



- a) (2 Punkte) Für den Regler wird ein idealer PD-Regler verwendet. Wie lautet die Übertragungsfunktion des Reglers mit den Parametern  $K_p$  und  $K_D$ ?
- b) (4 Punkte) Bestimmen Sie die Führungsübertragungsfunktion mit  $K_p$  und  $K_D$  als Parameter.
- c) (6 Punkte) Für welche Werte von  $K_P$  und  $K_D$  ist der geschlossene Regelkreis stabil? Geben Sie diesen Bereich in der  $K_D$ ,  $K_P$ -Ebene an.
- d) (5 Punkte) Für den geschlossenen Kreis wird nun eine Dämpfung d=0.7 und eine Eigenfrequenz  $\omega_0=4$  vorgegeben. Bestimmen Sie die beiden Reglerparameter  $K_P$  und  $K_D$  die hierfür notwendig sind.
- e) (4 Punkte) Skizzieren Sie den Pol/Nullstellen-Plan für den geschlossenen Regelkreis gemäss der Berechnung in Teilaufgabe d). Achten Sie auf eine korrekte Achsenbeschriftung.
- f) (4 Punkte) Wie gross wird der stationäre Regelfehler, falls am Führungseingang eine Rampe anliegt?

| NAME: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

## **Aufgabe 8** (30 min = 30 Punkte, Bodediagramm)

Gegeben ist der folgende Regelkreis:



$$G_r(s) = K_p \frac{(1 + sT_n)}{sT_n}$$
  $G_s(s) = \frac{5}{s(1 + 0.05s)^2}$ 

- a) (2 Punkte) Bestimmen Sie die Übertragungsfunktion  $G_0(s)$  des offenen Regelkreises.
- b) (10 Punkte) Wählen Sie nun  $T_n=1\sec$  und skizzieren Sie das Bodediagramm des offenen Regelkreises für  $K_p=1$ . Zeichnen Sie die jeweiligen Asymptoten ein und geben Sie beim Amplitudengang die jeweilige Steigung der Asymptoten in [dB/Dek] an.
- c) (7 Punkte) Skizzieren Sie das dazugehörende Nyquistdiagramm.
- d) (6 Punkte) Wie gross müsste  $K_p$  gewählt werden, damit eine Amplitudenreserve  $A_r$  von 6dB erreicht werden kann?
- e) (5 Punkte) Sie möchten nun als Alternative den Regler mit dem Kürzen von Polen und Nullstellen bestimmen, indem Sie einen der negativen reellen Doppel-Streckenpole wegkürzen. Wie gross wird nun  $T_n$ ? Begründen Sie weshalb diese Regelung nicht funktionieren kann.

## **Aufgabe 9** (25 min = 25 Punkte, empirischer Entwurf)

Von einer Strecke wurde die folgende Schrittantwort aufgenommen. Dabei befindet sich die Strecke zunächst in einer Ruhelage und der Schritt wird nach 1 Sekunde angelegt.



- a) (2 Punkte) Wie gross sind der Eingang u und der Ausgang y in der Ruhelage des Systems vor dem Anlegen des Sprunges. Handelt es sich um ein System mit oder ohne Ausgleich?
- b) (6 Punkte) Bestimmen Sie aus der Sprungantwort ein Ersatzmodell der Art

$$G_s(s) = \frac{K_s e^{-sT_u}}{1 + sT_g} .$$

- c) (4 Punkte) Bestimmen Sie gemäss den Einstellregeln von Ziegler-Nichols für die Stellübergangsfunktion die Reglerparameter für einen PI-Regler.
- d) (7 Punkte) Skizzieren Sie für Ihr Ersatzmodell das zugehörige Bodediagramm und lesen Sie aus Ihrem Bodediagramm die Amplitudenreserve sowie die Phasenschnittkreisfrequenz  $\omega_{\pi}$  ab.
- e) (6 Punkte) Bestimmen Sie mit den Werten aus der Teilaufgabe d)  $K_{p,krit}$  sowie  $T_{krit}$ . Verwenden Sie diese Werte zum Einstellen eines PI-Reglers gemäss den experimentellen Einstellregeln von Ziegler-Nichols.

| NAME: |  |  |
|-------|--|--|
|-------|--|--|

## **Aufgabe 10** (15 min = 15 Punkte, Phasenreserve)

Der Füllstand eines Reaktors wird mit einem P-Regler geregelt. Die Übertragungsfunktion der Regelstrecke ist gegeben:

$$G_{S}(s) = \frac{K_{IS}}{s} \cdot e^{-sT_{t}}$$

Das Bodediagramm des aufgeschnittenen Regelkreises mit  $K_p = 1$  ist unten gezeigt:



- a) (3 Punkte) Bestimmen Sie aus dem Bodediagramm die Streckenparameter  $K_{\rm IS}$  und  $T_{\rm t}$ .
- b) (4 Punkte) Bestimmen Sie den Proportionalbeiwert  $K_p$  des P-Reglers, bei dem die Phasenreserve  $\varphi_R=45^\circ$  erreicht wird.
- c) (3 Punkte) Welche Totzeitreserve ergibt sich für die Reglereinstellung nach Teilaufgabe b)?
- d) (5 Punkte) Nun wird die Totzeit  $T_t$  der Regelstrecke verdoppelt, d.h.  $T_t^* = 2 \cdot T_t$ . Zeichnen Sie den neuen Phasengang in das obige Diagramm ein. Wie soll der Proportionalbeiwert des P-Reglers geändert werden, um auch in diesem Fall die Phasenreserve  $\varphi_R = 45^\circ$  zu behalten?

## **Aufgabe 11** (15 min = 15 Punkte, Wirkungsplan)

Gegeben ist die nachfolgende Übertragung:



- a) (8 Punkte) Wie lautet die Laplace-Übertragungsfunktion  $G(s) = \frac{Y(s)}{U(s)}$ ?
- b) (3 Punkte) Welche Ordnung besitzt die unter Teilaufgabe a) berechnete Übertragungsfunktion? Was fällt Ihnen dabei auf? Welcher Typ von Strecke liegt hier vor?
- c) (2 Punkte) Berechnen Sie den Wert y(0+) falls am Eingang der folgende Sprung anliegt

$$u(t) = 1.5 \cdot \varepsilon(t)$$

d) (2 Punkte) Bestimmen Sie die Pole und die Nullstellen von G(s).