

NB-IoT

- Defined in R13, another mode instead of LTE-M
- Bandwidth 200KHz
 - One resource block in GSM/LTE
- Based in LTE protocol, stripped down
 - OFDMA(down)/FDMA(up), QPSK
 - 200kbps (down)/20kbps(up)
- Three modes of operation

NB-IoT

- Uses LTE design extensively
- Lower cost in terms of channel utilization
- Extended coverage
- Low Receiver sensitivity = -141 dBm
- Long battery life: 10 years with 5 Watt Hour battery (depending on traffic and coverage needs)
- Support for massive number of devices: at least 50.000 per cell
- > 3 modes of operation:
 - Stand-alone: stand-alone carrier, e.g. spectrum currently used by GERAN (GSM Edge Radio Access Network) systems as a replacement of one or more GSM carriers
 - Guard band: unused resource blocks within a LTE carrier's guard-band
 - In-band: resource blocks within a normal LTE carrier

NB-IoT - Architecture

NB-IoT – Spectrum & Access

Designed with a number of deployment options for licensed GSM, WCDMA or LTE spectrum to achieve efficiency

NB-IoT (@2019)

Cellular technologies

- Two strategies, for different scenarios
 - No MIMO for lower end device energy.

SigFox

- Provide and maintain a PAID connectivity platform
 - Ultra Narrow Band: 100Hz per message
 - Ultra Low Bit rate: 12 byte messages, 140 messages per day (max!)
 - Long Range: ~50KM
 - Sensors lasting 10 years
 - Only provides connectivity, access control and a broker
- Business Model: connectivity service for alarms, smart meters, etc..

SigFox

- Low Power Wide Area Sensor Network (LPWASN)
- Thousands of millions ©
 - A million per access point ;)
- - You have to use its access infrastructure (built with operators) and software
 - Open market for the endpoints
- 30-50km range in rural areas, and 3-10km range in urban
- Ultra narrow band, 868 (EU) or 902 (US) frequency (MHz)
- Low energy consumption
- Dedicated network

SigFox

- Each device can send up to 140 messages per day
 - Payload: 12 octets (~96 bytes)
 - Datarate: up to 100bps
- (Duty cycle: the time occupied by the operation of a device, which operates intermittently)
 - Common in the IoT
- Sigfox exploits this:
 - When a device has a message to be sent, the Sigfox interface wakes up, and the message is transmitted uplink
 - Then, the device listens for a short duration, if there is data to be sent to it
 - This is good for data acquisition scenarios
 - But not so good for command-and-control situations
- Use cases:
 - Smart meters, smoke detectors

Sigfox - Architecture

LoRa

- Stands for "Long Range"
- To be used in long-lived battery-powered devices scenarios
- Semi-proprietary
 - Parts of the protocol are well documented, others not
 - They own the radio part (but sub-licensing is on the way)
 - You can install your own gateways
- LoRa usually means two different things:
 - LoRa: a physical layer that uses Chirp Spread Spectrum (CSS) modulation
 - LoRaWAN: a MAC layer protocol

LoRa Stack

LoRa (the physical layer ©)

- Developed by Semtech
- Low-range, low-power and low-throughput
- Operates on 433-, 868- (EU) or 915 (US) MHz bands
- Payload from 2 to 255 octets (2Kb)
 - Depends on configuration parameters
- Datarate: up to 50Kbps

LoRa (the physical layer ©)

• In Europe, 8 channels with a bandwidth of 0.3MHz are used

- MAC mechanism for controlling communications between end devices and LoRaWAN gateways. For all devices, it manages:
 - Communication frequencies
 - Data rate
 - Power
- Open Standard developed by the LoRa Alliance

LoRA Network

- Star of stars topology
- Devices transmit data asynchronously
 - Data is received by multiple gateways
 - Each gateway forwards received data to a centralized network server, using a backhaul link (Ethernet or cellular)
 - The network server:
 - Filters duplicate packets
 - Packet with the strongest signal gets decoded
 - Realizes security checks
 - Manages the network

LORA - Architecture

- Modulation
 - (changing a signal, the carrier, in a way that allows it to contain information to be transmitted)
- LoRa uses a proprietary Spread-Spectrum modulation technique: Chirp Spread Spectrum (CSS)
 - (A chirp is a signal in which frequency raises or lowers with time)
 - Tries to increase range by:
 - Sending information with more power (within regulated values <14dBm or 25mW)
 - Or by lowering the data rate
 - Increases link budget
 - Increases immunity to in-band interference
- This, along with Forward Error Correction techniques, contribute to extend the range and robustness of radio communication links
 - Compared to FSK

- Has different Spread Factors (SF7 to SF12)
 - Spread factors can set the modulation rate and tune the distance
 - They indicate how fast or slow is the chirp (how many chirps you get per second) → how much data you can encode per second
 - The higher the SF, the lower the datarate
 - Each SF is 2x slower than the one before
 - The slower you send your data, the farther you can send it
 - The higher the SF, the more energy is required (time on air)
 - The interface has more time to decode and sensitivity is increased
- This helps on scaling the network
 - Closer nodes receive data much faster
 - Air is "cleared" for other nodes to transmit
 - By adding more gateways, devices get nearer to them, applying the above

Source: Thomas Telkamp

• For a 125kHz bw (configurable by design)

Spreading Factor	Symbols/second	SNR limit	Time-on-air (10 byte packet) - ms	Bitrate - bps
7	976	-7.5	56	5469
8	488	-10	103	3125
9	244	-12.5	205	1758
10	122	-15	371	977
11	61	-17.5	741	537
12	30	-20	1483	293

- The Bandwidth (kHz), Spreading Factor and Coding Rate are design variables that allow a system to optimize the trade-off between
 - Occupied bandwidth
 - Data rate
 - Link budget
 - Interference immunity
- By using software, it is possible to combine these values to define a transmission mode

Bandwidth

- Show how wide is going to be the transmission signal
- 3 options: 125 kHz, 250 kHz or 500 kHz
- Greater reach: 125 kHz
- Greater transmission speed: 500 kHz
- Less bandwidth = more airtime = more sensitivity = more battery consumed

- Coding Rate
 - 4 options: 4/5, 4/6, 4/7 and 4/8
 - Meaning:
 - Every 4 useful bytes are going to be encoded by 5, 6, 7 or 8 transmission bits
 - Smaller coding rate: 4/8
 - Lower coding rate = more airtime

- Spreading Factor
 - Number of chips per symbol used in data treatment before the transmission signal
 - 7 options: 6, 7, 8, 9, 10, 11 and 12
 - Greater Spreading Factor = Greater Range = more air time

Mode	BW	CR	SF	Sensitivity (dB)	Transmission time (ms) for a 100-byte packet sent	Transmission time (ms) for a 100-byte packet sent and ACK received	Comments
1	125	4/5	12	-134	4245	5781	max range, slow data rate
2	250	4/5	12	-131	2193	3287	-
3	125	4/5	10	-129	1208	2120	-
4	500	4/5	12	-128	1167	2040	-
5	250	4/5	10	-126	674	1457	-
6	500	4/5	11	-125,5	715	1499	-
7	250	4/5	9	-123	428	1145	-
8	500	4/5	9	-120	284	970	-
9	500	4/5	8	-117	220	890	-
10	500	4/5	7	-114	186	848	min range, fast data rate, minimum battery impact

LoRa Physical Layer - Practical

- On the LoPy
 - Method
 - lora.init(mode, * , frequency=868000000, tx_power=14, bandwidth=LoRa.BW_125KHZ, sf=7, preamble=8, coding_rate=LoRa.CODING_4_5, power_mode=LoRa.ALWAYS_ON, tx_iq=False, rx_iq=False, adr=False, public=True, tx_retries=1, device_class=LoRa.CLASS_A)
- Bandwidth: LoRa.BW_125KHZ / LoRa.BW_250KHZ / LoRa.BW_500KHZ
- SF: sf=6 / sf=7 / sf=8 / sf=9 / sf=10 / sf=11 / sf=12
- Coding Rate: LoRa.CODING_4_5 / LoRa.CODING_4_6 / LoRa.CODING_4_7 / LoRa.CODING_4_8

Components

• End-Device

- Devices (low-power) that communicate with the LoRa Gateway
- They are not associated to a particular gateway.
- They are, however, associated to a Network Server.

Gateway

- Intermediate devices that relay packets between end-devices and a network server.
- Linked to the Network server via a higher bandwidth backhaul network.
- They add information about the quality of reception, when forwarding a packet from an end-device to a network server.
- They are transparent to the end-devices.
- There are multiple gateways in a network
- Multiple gateways can receive the same packet transmitted from the same enddevice

Network Server

- Decodes and de-duplicates packets sent from devices.
- Generates packets to be sent towards devices
- Choses the appropriate gateway to send packets to a specific end-device

LORA – Device Classes

Classes	Description	Intended Use	Consumption	Examples of Services
A (« all »)	Listens only after end device transmission	Modules with no latency constraint	The most economic communication Class energetically Supported by all modules. Adapted to battery powered modules	Fire DetectionEarthquake Early Detection
B (« beacon »)	The module listens at a regularly adjustable frequency	Modules with latency constraints for the reception of messages of a few seconds	Consumption optimized. Adapted to battery powered modules	Smart meteringTemperature rise
C (« continuous »)	Module always listening	Modules with a strong reception latency constraint (less than one second)	Adapted to modules on the grid or with no power constraints	Fleet managementReal Time Traffic Management

Any LoRa object can transmit and receive data

- End-devices classes
 - Class A bi-directional
 - Lowest power consumption
 - Devices schedule uplink transmissions according to their requirements, with a small variation before transmission.
 - Each uplink transmission is followed by two short downlink receive windows
 - Downlink transmissions at any other time have to wait until the next uplink transmission
 - · Less flexibility for downlink

- End-devices classes
 - Class B bi-directional with scheduled receive slots
 - Devices open more receive windows at scheduled times
 - There is a synchronized beacon from the gateway to the network server, indicating when the device is listening

- End-devices classes
 - Class C bi-directional with maximal receive slots
 - Greatest power consumption
 - Almost continuous receiving windows
 - Server can initiate transmission almost anytime

- End-Device Duty Cycle
 - Besides transmission frequency, duty cycle regulations apply
 - Delay between successive frames sent by a device
 - 1% limitation for end-devices
 - Device has to wait 100x the time it took for it to send the message, in order to be able to send again in the same channel
 - Gateways: 10%

LoRaWAN - Payload

- DevAddr short address of the device.
- FPort multiplexing port field.
- FCnt frame counter.
- MIC cryptographic message integrity code
- MType message type (uplink, downlink, confirmed (requires an ACK, ...).
- Major LoRaWAN version
- ADR and ADRAckReq data rate control adaptation mechanism by the network server.
- ACK acknowledges the last received frame.
- Fpending indicates that there is still data to be sent by the network server (end-device is required to send another message to open a receive window).
- FOptsLen length of the FOpts field in bytes.
- FOpts contains MAC commands on a data message.
- CID MAC command ID.
- Args -optional arguments of the command.
- FRMPayload payload, encrypted using AES with a key length of 128 bits.

The minimal size of the MAC header is 13 bytes; its maximal size is 28 bytes.

There is no destination address on uplink packets, or source address on downlink packets.

- MAC Commands
 - Allows the network to customize end-device parameters
- Checks
 - Link status (this can be send by the end-device itself)
 - Device battery
 - Device margin (SNR)
- Settings
 - Datarate
 - TX power
 - TX and RX channels
 - RX timing
 - Repetition
 - Duty cycle
 - Dwell time

- End-Device Connection to a network
 - Also known as Activation
- This process provides the end-device with:
 - End-device address (*DevAddr*): An identifier composed by the network identifier (7bit) and by the end-device's network address (25bit)
 - App identifier (AppEUI): Unique identification of the end-device owner
 - Network Session Key (*NwkSKey*): A key used by both the network server and end-device to verify and ensure message integrity
 - App Session Key (AppSKey): A key used by both the network server and end-device to encrypt the payload of received messages
- Note on security:
 - LoRaWAN protocol security is based on 802.15.4
 - AES-128

- To activate the device, there are two procedures:
 - Over-the-Air Activation (OTAA)
 - Join-Request and Join-Response messages are exchanged in each new session, allowing the end-devices to obtain the network and application session keys
 - Activation By Personalization (ABP)
 - The devices have both keys already stored internally

- Adaptive Data Rate
 - The network tells the node at which data rate it can send data
 - Manages the SF for each end-device
 - The aim is to:
 - Optimize for fastest data rate versus range
 - Maximize battery life
 - Maximize network capacity

- Typically, there is no node-to-node direct communication
 - LoRaWAN allows this by having 2 gateways and a network server in between the nodes
- However, most end-device vendors also include (for testing, mostly) a raw form of LoRa
 - Allows peer-to-peer communication between nodes
 - Contains only the link layer protocol
 - Only allows a very small number of nodes in a topology
 - There is no packet management

(useful for a first try with LoRa)

CM 23/24