CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 5 MARZO 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di anello booleano e fornirne due esempi, uno finito ed uno infinito.

Esercizio 2. Posto $S = \{1, 2, 3, 4\}$, si verifichi che la relazione binaria \sim , definita in $\mathcal{P}(S)$ da:

$$(\forall X, Y \in \mathcal{P}(S))(X \sim Y \iff ((2 \in X \iff 2 \in Y) \land (\{1, 3\} \subseteq X \iff \{1, 3\} \subseteq Y)))$$

è una relazione di equivalenza.

- (i) Elencare gli elementi di $[S]_{\sim}$.
- (ii) Dire quanti elementi ha $\mathcal{P}(S)/\sim$, senza calcolare esplicitamente le classi.
- (iii) Elencare gli elementi di $[\varnothing]_{\sim}$.

Se cambiamo la definizione di \sim , sostituendo " $(2 \in X \iff 2 \in Y)$ " con " $(2 \notin X \iff 2 \notin Y)$ ", otteniamo ancora una relazione di equivalenza? Cosa cambia?

Esercizio 3. Definamo l'applicazione $\varphi \colon \mathbb{N}^* \setminus \{1\} \to \mathbb{N}^*$ in questo modo: per ogni $n \in \mathbb{N}^* \setminus \{1\}$, scritto n come prodotto di primi nella forma $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, dove $r \in \mathbb{N}^*$, i p_i sono numeri primi positivi tra loro distinti e, per ogni $i \in \{1, 2, \dots, r\}$, $\alpha_i \in \mathbb{N}^*$, poniamo $\varphi(n) = \alpha_1 \alpha_2 \cdots \alpha_r$.

- (i) Spiegare perché l'applicazione φ è ben definita (da quale teorema dipende questo fatto?).
- (ii) φ è iniettiva? φ è suriettiva?
- (iii) Descrivere le antiimmagini $\overline{\varphi}(\{1\}), \overline{\varphi}(\{2\}), \overline{\varphi}(\{4\})$ e $\overline{\varphi}(\{p\})$ per un arbitrario numero primo p.
- (iv) Verificare che, detto \mathcal{R} il nucleo di equivalenza di φ , per ogni numero primo p, in ciascuna classe di equivalenza modulo \mathcal{R} esiste una ed una sola potenza di p;

Definiamo ora in $\mathbb{N}^* \setminus \{1\}$ la relazione d'ordine σ ponendo, per ogni $a, b \in \mathbb{N}^* \setminus \{1\}$,

$$a \sigma b \iff ((a = b) \lor (\varphi(a) < \varphi(b))).$$

- (v) Stabilire se σ è totale.
- (vi) Vero o falso (e perché?): se $a, b \in \mathbb{N}^* \setminus \{1\}$ e $\varphi(a) \neq \varphi(b)$ allora a e b sono confrontabili rispetto a σ .
- (vii) Determinare, se possibile, un sottoinsieme X di $\mathbb{N}^* \setminus \{1\}$ tale che:
 - (a) |X| = 6 e (X, σ) sia totalmente ordinato;
 - (b) |X| = 6 e (X, σ) sia un reticolo non distributivo;
 - (c) |X| = 6 e (X, σ) sia un reticolo distributivo non totalmente ordinato;
 - (d) |X| = 6 e (X, σ) sia un reticolo distributivo e complementato;
 - (e) |X| = 8 e (X, σ) sia un reticolo distributivo e complementato.

Esercizio 4. Per quali $k \in \mathbb{Z}_{17}$ il polinomio $f_k = \overline{5}kx^3 + (\overline{3}k + \overline{2})x^2 + \overline{11}kx + \overline{6}k \in \mathbb{Z}_{17}[x]$ ammette $\overline{1}$ come radice? (Si usi una equazione congruenziale). Scelto uno di questi valori, si fattorizzi f_k come prodotto di polinomi irriducibili in $\mathbb{Z}_{17}[x]$.

Esercizio 5. Si dica quanti elementi ha $S := \mathbb{Z}_8^* \times \mathbb{Z}_8$ (dove $\mathbb{Z}_8^* = \mathcal{U}(\mathbb{Z}_8)$). Si consideri l'operazione binaria * definita in S da:

$$(\forall (a,b), (c,d) \in S) \big((a,b) * (c,d) = (ac,ad+b) \big).$$

- (i) Che tipo di struttura è (S,*)? (Semigruppo, monoide, gruppo? Commutativo?).
- (ii) Di ciascuna di $T = \mathbb{Z}_8^* \times \mathbb{Z}_8^*$ e $U = \mathbb{Z}_8^* \times (\mathbb{Z}_8 \setminus \mathbb{Z}_8^*)$ si dica se è una parte chiusa di (S, *) e, nel caso, che tipo di struttura sia la quella indotta.