

Física Nivel medio Prueba 1

Viernes 6 de mayo de 2016 (mañana)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Se necesita una copia sin anotaciones del cuadernillo de datos de física para esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

1. Una esfera encaja dentro de un cubo.

La longitud del cubo y el diámetro de la esfera son 10,0±0,2 cm.

¿Cuál es el cociente incertidumbre en porcentaje en el volumen de la esfera nicertidumbre en porcentaje en el volumen del cubo?

- A. $\frac{3}{4\pi}$
- B. 1
- C. 2
- D. 8
- 2. Una piscina contiene 18×10^6 kg de agua pura. La masa molar del agua es de $18\,\mathrm{g\,mol^{-1}}$. ¿Cuál es la estimación correcta del número de moléculas de agua en la piscina?
 - A. 10⁴
 - B. 10²⁴
 - C. 10²⁵
 - D. 10³³

3. Un avión se desplaza en horizontal. Una paracaidista salta del avión y pocos segundos después abre su paracaídas. ¿Cuál de las gráficas muestra la variación de la rapidez vertical *v* frente al tiempo *t* para la paracaidista desde el instante en que salta del avión hasta que está a punto de tocar tierra?

4. Un objeto de masa m reposa sobre un plano horizontal. Se hace aumentar lentamente desde cero el ángulo θ que forma el plano con la horizontal. Cuando $\theta = \theta_0$, el objeto comienza a deslizarse. ¿Cuáles son el coeficiente de rozamiento estático μ_s y la fuerza de reacción normal N del plano en $\theta = \theta_0$?

	μ_{s}	N
A.	$\operatorname{sen}\theta_{\scriptscriptstyle 0}$	$mg\cos heta_{\scriptscriptstyle 0}$
B.	$ an heta_{\scriptscriptstyle 0}$	\emph{mg} sen $ heta_{\scriptscriptstyle 0}$
C.	$\operatorname{sen}\theta_{\scriptscriptstyle 0}$	\emph{mg} sen $ heta_{\scriptscriptstyle 0}$
D.	$ an heta_{\!\scriptscriptstyle 0}$	$\emph{mg}\cos heta_{\scriptscriptstyle 0}$

- **5.** Una piedra cae a velocidad constante en vertical por un tubo lleno de aceite. ¿Cuáles de las siguientes afirmaciones sobre los cambios de energía de la piedra durante su movimiento son correctas?
 - I. La ganancia en energía cinética es menor que la pérdida en energía potencial gravitatoria.
 - II. La suma de las energías cinética y potencial gravitatoria de la piedra es constante.
 - III. El trabajo efectuado por la fuerza de gravedad tiene la misma magnitud que el trabajo efectuado por el rozamiento.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **6.** Un resorte (muelle) de masa despreciable y longitud l_0 cuelga de un punto fijo. Cuando se fija una masa m al extremo libre del resorte, aumenta la longitud de este hasta l. La tensión en el resorte es igual a $k\Delta x$, en donde k es una constante y Δx es la extensión del resorte. ¿Qué es k?
 - A. $\frac{mg}{l_0}$
 - B. $\frac{mg}{l}$
 - C. $\frac{mg}{l-l_0}$
 - D. $\frac{mg}{l_0 l}$

7. Una pelota de masa m se desplaza en horizontal con rapidez u. La pelota choca con una pared vertical y rebota en sentido opuesto con rapidez v < u. La duración de la colisión es T. ¿Cuáles serán la magnitud (módulo) de la fuerza media ejercida por la pared sobre la pelota y la pérdida de energía cinética de la pelota?

	Fuerza media	Pérdida de energía cinética
A.	$\frac{m(u+v)}{T}$	$\frac{m(u^2-v^2)}{2}$
B.	$\frac{m(u+v)}{T}$	$\frac{m(u-v)^2}{2}$
C.	$\frac{m(u-v)}{T}$	$\frac{m(u^2-v^2)}{2}$
D.	$\frac{m(u-v)}{T}$	$\frac{m(u-v)^2}{2}$

8. Un tren sobre una vía horizontal recta se desplaza desde el reposo a aceleración constante. Las fuerzas horizontales sobre el tren son la fuerza del motor y una fuerza de resistencia que aumenta con la rapidez. ¿Cuál de las gráficas representa la variación con el tiempo *t* de la potencia *P* desarrollada por el motor?

9. En la gráfica se muestra cómo varía la aceleración a de un objeto frente a la distancia recorrida x.

La masa del objeto es 3,0 kg. ¿Cuál será el trabajo total efectuado sobre el objeto?

- A. 300 J
- B. 400 J
- C. 1200 J
- D. 1500 J

10. Se calienta una sustancia a potencia constante. En la gráfica se muestra cómo varía la temperatura *T* de la sustancia frente al tiempo *t* mientras el estado de la sustancia cambia de líquido a gas.

¿Qué se puede determinar a partir de la gráfica?

- A. El calor específico del gas es menor que el calor específico del líquido.
- B. El calor específico del gas es mayor que el calor específico del líquido.
- C. El calor latente específico de fusión de la sustancia es menor que su calor latente específico de vaporización.
- D. El calor latente específico de fusión de la sustancia es mayor que su calor latente específico de vaporización.
- **11.** ¿Cuál de las siguientes afirmaciones **no** es una suposición del modelo cinético de los gases ideales?
 - A. Todas las partículas en el gas tienen la misma masa.
 - B. Todas las partículas en el gas tienen la misma rapidez.
 - C. La duración de las colisiones entre partículas es muy breve.
 - D. Las colisiones con las paredes del contenedor son elásticas.

- **12.** ¿Qué condiciones de densidad y presión hacen que se describa mejor un gas real mediante la ecuación de estado para un gas ideal?
 - A. Baja densidad y baja presión
 - B. Baja densidad y alta presión
 - C. Alta densidad y baja presión
 - D. Alta densidad y alta presión
- **13.** Una fuente puntual emite ondas sonoras de amplitud *A*. La intensidad del sonido a una distancia *d* de la fuente es *I*. ¿Cuál será la intensidad de sonido a una distancia 0,5*d* de la fuente cuando esta emita ondas de amplitud 2*A*?
 - A. 16*I*
 - B. 4*I*
 - C. *I*
 - D. $\frac{1}{4}I$

14. Una onda de agua se desplaza sobre la superficie de un lago. P y Q son dos puntos sobre la superficie del agua. La onda se desplaza hacia la derecha.

El diagrama muestra la onda en el tiempo t = 0. ¿Cuál de las gráficas muestra cómo varían frente a t los desplazamientos de P y Q?

A.

В.

C.

D.

15. En un polarizador P cuyo eje de polarización forma un ángulo de θ grados con la horizontal entra luz horizontalmente polarizada de intensidad I_0 . La luz que sale de P incide a continuación en un polarizador A con eje de polarización vertical fijo.

Se hace variar el ángulo θ de 0 a 90 grados. ¿Cuál de las siguientes gráficas representará la variación frente a θ de la intensidad I de la luz transmitida a través de A?

В.

C.

D.

16. Una tubería de longitud L tiene sus dos extremos abiertos. Otra tubería de longitud L' tiene un extremo abierto y el otro cerrado.

La frecuencia del primer armónico para ambas tuberías es la misma. ¿Cuánto valdrá $\frac{L'}{L}$?

- A. 2
- B. $\frac{3}{2}$
- C. 1
- D. $\frac{1}{2}$
- 17. Un rayo de luz pasa del aire al agua como se muestra.

¿Cómo serán los cambios en la longitud de onda de la luz y en el ángulo que forma el rayo con la normal a la superficie?

	Longitud de onda	Ángulo con la normal
A.	aumenta	aumenta
B.	aumenta	disminuye
C.	disminuye	aumenta
D.	disminuye	disminuye

18. Tres cargas fijas, +Q, -Q y -2Q, se encuentran en los vértices de un triángulo equilátero. ¿Cuál es la fuerza resultante sobre un electrón en el centro del triángulo?

○ **-**Q

19. La gráfica muestra la variación de la corriente *I* en un dispositivo en el que hay una diferencia de potencial *V*.

¿Cuál es la resistencia del dispositivo en P?

- A. cero
- B. $0,1\Omega$
- C. 10Ω
- D. infinito

20. Un circuito consta de una celda de fuerza electromotriz (f.e.m.) $6.0\,\mathrm{V}$ y resistencia interna despreciable conectada a dos resistores de $4.0\,\Omega$.

La resistencia del amperímetro es de 1,0 Ω . ¿Cuál será la lectura del amperímetro?

- A. 2,0A
- B. 3,0A
- C. 4,5A
- D. 6,0A

21. Se coloca un cable que transporta una corriente I en una región de campo magnético uniforme B, tal como se muestra en el diagrama.

El sentido del campo *B* sale de la página hacia fuera y la longitud del cable es *L*. ¿Qué respuesta describe correctamente la dirección y magnitud (módulo) de la fuerza que actúa sobre el cable?

	Dirección	Magnitud
A.	7	igual a <i>BIL</i>
B.	7	menor que <i>BIL</i>
C.	7	igual a <i>BIL</i>
D.	7	menor que <i>BIL</i>

22. Una masa conectada a un extremo de una barra rígida rota a rapidez constante en un plano vertical alrededor del otro extremo de la barra.

La fuerza ejercida por la barra sobre la masa es

- A. cero en todas partes.
- B. constante en magnitud (módulo).
- C. en sentido siempre hacia el centro.
- D. mínima en el extremo superior de la trayectoria circular.

23. El planeta X tiene masa *M* y radio *R*. El planeta Y tiene masa 2*M* y radio 3*R*. La intensidad del campo gravitatorio en la superficie del planeta X es *g*. ¿Cuál será la intensidad del campo gravitatorio en la superficie del planeta Y?

- A. $\frac{2}{9}$
- B. $\frac{2}{3}$
- C. $\frac{3}{2}$
- D. $\frac{9}{2}$ 9

Un modelo sencillo de un átomo tiene cinco niveles de energía. ¿Cuál es el máximo número de

24.

	frecuencias diferentes en el espectro de emisión de ese átomo?		
	A.	4	
	B.	6	
	C.	10	
	D.	25	
25.	¿Cua	ál de las siguientes definiciones es la correcta para la energía de enlace de un núcleo?	
	A.	El producto de la energía de enlace por nucleón por el número de nucleones	
	B.	El mínimo trabajo requerido para separar completamente los nucleones entre sí	
	C.	La energía que mantiene al núcleo unido	
	D.	La energía liberada durante la emisión de una partícula alfa	
26.	_	Cuál de las siguientes respuestas enumera tres fuerzas fundamentales en orden creciente e intensidad?	
	A.	electromagnética, gravedad, nuclear fuerte	
	B.	nuclear débil, gravedad, nuclear fuerte	
	C.	gravedad, nuclear débil, electromagnética	
	D.	electromagnética, nuclear fuerte, gravedad	
27.	¿Por	qué razón se introdujeron originalmente los quarks?	
	A.	Para explicar la existencia de isótopos	
	B.	Para describir espectros de emisión y absorción nuclear	
	C.	Para justificar patrones en las propiedades de las partículas elementales	
	D.	Para justificar la energía y cantidad de movimiento que faltaban en la desintegración beta	

- **28.** Un panel solar tiene una área superficial de 0,40 m² y un rendimiento del 50 %. La intensidad de radiación media que alcanza la superficie del panel es de 0,25 kW m⁻². ¿Cuál será la potencia de salida media de un conjunto de 10 de estos paneles solares?
 - A. 0,5W
 - B. 5W
 - C. 50 W
 - D. 500 W
- **29.** ¿Cuál es el orden correcto de las transformaciones de energía en una central energética de carbón?
 - A. $térmica \rightarrow química \rightarrow cinética \rightarrow eléctrica$
 - B. $quimica \rightarrow térmica \rightarrow cinética \rightarrow eléctrica$
 - C. $quimica \rightarrow cinética \rightarrow térmica \rightarrow eléctrica$
 - D. $cinética \rightarrow química \rightarrow eléctrica \rightarrow térmica$
- **30.** Un cuerpo negro con superficie de $1.0 \,\mathrm{m}^2$ emite radiación electromagnética con longitud de onda pico $2.90 \times 10^{-6} \,\mathrm{m}$. ¿Cuáles de las siguientes afirmaciones sobre el cuerpo son correctas?
 - I. La temperatura del cuerpo es de 1000 K.
 - II. La energía radiada por el cuerpo en un segundo es de 5.7×10^4 J.
 - III. El cuerpo absorbe perfectamente la radiación electromagnética.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III