| Please check the examination details belo        | ow before enter    | ring your candidate information |
|--------------------------------------------------|--------------------|---------------------------------|
| Candidate surname                                |                    | Other names                     |
|                                                  |                    |                                 |
| Centre Number Candidate Nu                       | ımber              |                                 |
|                                                  |                    |                                 |
| Pearson Edexcel Inter                            | nation             | al Advanced Level               |
| Tuesday 13 May 202                               | 25                 |                                 |
| Morning (Time: 1 hour 30 minutes)                | Paper<br>reference | WMA12/01                        |
| Mathematics                                      |                    | • •                             |
| I                                                |                    |                                 |
| International Advanced Su                        | ubsidiary          | //Advanced Level                |
| International Advanced Su<br>Pure Mathematics P2 | ıbsidiary          | //Advanced Level                |
| 1                                                | ıbsidiary          | //Advanced Level                |
| 1                                                | ıbsidiary          | //Advanced Level                |
| 1                                                |                    | Total Marks                     |

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

## **Instructions:**

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
  there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

### **Information:**

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

#### **Advice:**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶







1: (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$(1-4x)^7$$

giving each term in simplest form.

**(4)** 

In the series expansion of

$$(5 + kx)(1 - 4x)^7$$
 where k is a constant

the coefficient of the term in  $x^2$  is 1316

(b) Use the answer to part (a) to find the value of k.

**(2)** 

| Question 1 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 1 is 6 marks) |
| (Total for Question 1 is 6 marks) |



| 2: | The line joining the points $(-2, 5)$ and $(4, 15)$ is the diameter of a circle $C$ . |     |  |
|----|---------------------------------------------------------------------------------------|-----|--|
|    | (a) Find an equation for C.                                                           | (5) |  |
|    | (b) Hence find the exact coordinates of the point on C that is nearest the x-axis.    | (2) |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |
|    |                                                                                       |     |  |

| Question 2 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 2 is 7 marks) |





Figure 1

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

Figure 1 shows a sketch of the curve C with equation

$$y = 3x + \frac{16}{x^2} - 8 \qquad x > 0$$

The points P(1, 11) and Q(4, 5) lie on C and are shown in Figure 1.

The region R, shown shaded in Figure 1, is bounded by C and line segment PQ.

Use algebraic integration to find the area of R.

**(5)** 

| Question 3 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 3 is 5 marks) |
|                                   |



4: The function f(x) is defined by

$$f(x) = ax^3 + bx^2 + 5x - 3$$

where a and b are constants.

Given that (x + 3) is a factor of f(x),

(a) show that

$$b = 3a + 2$$

**(2)** 

Given further that when f(x) is divided by (2x-1) the remainder is  $\frac{7}{4}$ 

(b) find the value of a and the value of b.

**(4)** 

(c) Using algebra, find the quotient and the remainder when f(x) is divided by (x-2)

**(3)** 



| Question 4 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 4 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

| Question 4 continued |                                 |
|----------------------|---------------------------------|
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
| (To                  | otal for Question 4 is 9 marks) |



| x | -2 | -0.5  | 1   | 2.5   | 4     | 5.5   | 7     |
|---|----|-------|-----|-------|-------|-------|-------|
| у | 12 | 4.243 | 1.5 | 0.530 | 0.188 | 0.066 | 0.023 |

The table above shows corresponding values of x and y for

$$y = 3\left(\frac{1}{2}\right)^x$$

The values of y are given to 3 decimal places as appropriate.

(a) Using the trapezium rule with all the values of y in the given table, obtain an estimate for

$$\int_{-2}^{7} 3\left(\frac{1}{2}\right)^x dx$$

giving the answer to one decimal place.

(3)

Using the answer to part (a) and making your method clear, estimate

(b) (i) 
$$\int_{-2}^{7} 3\left(\frac{1}{2}\right)^{x+2} dx$$

(ii) 
$$\int_{-2}^{7} (2^{-x} + 2x) \, \mathrm{d}x$$
 (3)

| Question 5 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 5 is 6 marks) |



- 6: In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
  - (i) Solve

$$2\log_2(4-x) = 3 + \log_2\left(\frac{x+11}{2}\right)$$
 (5)

(ii) The curves  $C_1$  and  $C_2$  with equations

$$y = 3^{2x+1} \qquad \text{and} \qquad y = 6 \times 3^x$$

meet at the point P.

Find the exact coordinates of P, writing your answer in the form  $(\log_3 a, b)$  where a and b are integers.

**(5)** 

| Question 6 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |



| Question 6 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 6 continued               |  |
|------------------------------------|--|
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
|                                    |  |
| (Total for Question 6 is 10 marks) |  |



# 7: In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

(i) A geometric series begins

$$10 + 8 + 6.4 + \dots$$

(a) Find the sum to infinity of this series.

**(2)** 

Given that the kth term of this series is less than 0.0005

(b) use algebra to find the smallest possible value of k.

(3)

(ii) An arithmetic series begins

$$850 + 843 + 836 + \dots$$

Given that the sum of the first n terms of this series is  $S_n$  find the greatest possible value of  $S_n$ 

**(4)** 



| Question 7 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| Question 7 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 7 continued              |  |
|-----------------------------------|--|
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
|                                   |  |
| (Total for Question 7 is 9 marks) |  |
| (10tai ioi Question / is / marks) |  |



## 8: In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

(i) Solve, for  $0 \le x < \pi$ , the equation

$$3\tan\left(2x + \frac{\pi}{5}\right) = \sqrt{3}$$

giving the answers in radians in the form  $k\pi$ , where k is a rational constant to be found.

**(3)** 

(ii) Solve, for  $0 \le \theta < 360^{\circ}$ , the equation

$$5\sin\theta\tan\theta = \cos\theta + 4$$

giving your answers, in degrees, to one decimal place.

**(5)** 



| Question 8 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| Question 8 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 8 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 8 is 8 marks) |





Figure 2

Figure 2 shows a sketch of an open container.

The sides *CDEF* and *ABFE* are rectangles.

The ends ADE and BCF are congruent (identical) right-angled triangles.

The container is made from metal of negligible thickness.

Given that

- AE = BF = 3x metres
- DE = CF = 2x metres
- AB = DC = EF = L metres

and the capacity of the container is 12 m<sup>3</sup>

(a) show that the area of metal used to make the container,  $Sm^2$ , is given by

$$S = Px^2 + \frac{Q}{x}$$

where P and Q are positive integers to be found.

**(4)** 

Given that *x* can vary,

(b) use algebraic calculus to find the minimum value of S, giving your answer to one decimal place.

**(5)** 

(c) Justify that the value of S found in part (b) is a minimum.

**(2)** 

| Question 9 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |



| Question 9 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 9 continued          |        |
|-------------------------------|--------|
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
|                               |        |
| (Total for Question 9 is 11 i | narks) |



| 10: | In this question you must show detailed reasoning.   |
|-----|------------------------------------------------------|
| IV. | TH THIS QUESTION VOIL HIUST SHOW DETAILED LEASONING. |

Use algebra to prove by exhaustion that,

for all positive integers m that are **not** multiples of 3, the value of

$$m^2 + 3m + 2$$

| is | always | a | multiple | of | 3 |
|----|--------|---|----------|----|---|
|----|--------|---|----------|----|---|

**(4)** 

| Question 10 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



| Question 10 continued              |  |  |  |  |
|------------------------------------|--|--|--|--|
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
|                                    |  |  |  |  |
| (Total for Question 10 is 4 marks) |  |  |  |  |
| TOTAL FOR PAPER IS 75 MARKS        |  |  |  |  |

