ST 705 Linear models and variance components Homework problem set 4

February 2, 2022

- 1. Let V be a finite-dimensional inner product space over \mathbb{C} , and let $\{v_1, \ldots, v_n\}$ be an orthonormal basis for V.
 - (a) Show that for any $x, y \in V$,

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

This is called Parseval's identity.

- (b) For $V = \mathbb{R}^2$ use Parseval's identity to prove the Pythagorean theorem. Generalize this result to \mathbb{R}^n .
- 2. Let V be an inner product space over \mathbb{C} , and let $\{v_1, \ldots, v_n\} \subset V$ be orthonormal.
 - (a) Prove that for any $x \in V$,

$$||x||^2 \ge \sum_{i=1}^n |\langle x, v_i \rangle|^2.$$

This is called Bessel's inequality.

- (b) Show that Bessel's inequality is an equality if and only if $x \in \text{span}\{v_1, \dots, v_n\}$.
- 3. The defining property of a projection matrix A is that $A^2 = A$ (recall the definition of the square of a matrix from your linear algebra course). Establish the following facts.
 - (a) If A is a projection matrix, then all of its eigenvalues are either zero or one.
 - (b) If $A \in \mathbb{R}^{p \times p}$ is a projection and symmetric (i.e., an orthogonal projection matrix), then for every vector v the projection Av is orthogonal to v Av.
 - (c) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.
 - (d) tr(AB) = tr(BA).

- 4. Show that a $p \times p$ matrix A is symmetric and idempotent with rank s if and only if there exists a $p \times s$ matrix G with orthonormal columns such that A = GG'. Note that G is called a *semi-orthogonal* matrix.
- 5. Exercise 2.8 from Monahan.
- 6. Exercise 2.9 from Monahan.
- 7. Exercise 2.11 from Monahan.