Bibliographic Information

Preparation of [(nitroguanidino)methyl]pyridine derivatives as pesticides. Haga, Takahiro; Toki, Tadaaki; Koyanagi, Toru; Yoshida, Kyomitsu; Sasaki, Hiroshi; Morita, Masayuki. (Ishihara Sangyo Kaisha, Ltd., Japan). Jpn. Kokai Tokkyo Koho (1991), 11 pp. CODEN: JKXXAF JP 03279359 A2 19911210 Heisei. Patent written in Japanese. Application: JP 90-77220 19900327. CAN 116:214354 AN 1992:214354 CAPLUS (Copyright 2004 ACS on SciFinder (R))

Patent Family Information

Patent No.	<u>Kind</u>	<u>Date</u>	Application No.	<u>Date</u>
JP 03279359	A2	19911210	JP 1990-77220	19900327

Priority Application

JP 1990-77220 19900327

Abstract

The title compds. [I; R1-R3 = H, alkyl, acyl; but ≤1 of them is acyl] are prepd. Refluxing a mixt. of H2NC(:NNO2)SMe and amine II in EtOH gave I (R1 = R2 = H, R3 = Me), which killed 100% Laodelphax striatellus, Nephotettix bipunctatus cincticeps, and Mygus persicae at 800 ppm. Also prepd. and tested were 18 addnl. I.

$$R^{1}R^{2}N$$
 C
 $NR^{3}CH_{2}$
 $NR^{3}CH_{2}$

THIS PAGE BLANK (USPTO)

® 公 開 特 許 公 報 (A) 平3-279359

⑤Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)12月10日

C 07 D 213/53 A 01 N 47/44 6701-4C 6779-4H

審査請求 未請求 請求項の数 5 (全11頁)

◎発明の名称 ニトログアニジン誘導体、それらの製造方法及びそれらを含有する 有害生物防除剤

②特 願 平2-77220

②出 願 平2(1990)3月27日

⑩発 明 者 芳 賀 隆 弘 滋賀県草津市西渋川2丁目3番1号 石原産業株式会社中 央研究所内

⑩発 明 者 土 岐 忠 昭 滋賀県草津市西渋川2丁目3番1号 石原産業株式会社中央研究所内

⑩発 明 者 小 柳 徹 滋賀県草津市西渋川2丁目3番1号 石原産業株式会社中 央研究所内

①出 願 人 石原産業株式会社 大阪府大阪市西区江戸堀1丁目3番22号 最終頁に続く

明細霉

1. 発明の名称

ニトログアニジン誘導体、それらの製造方 法及びそれらを含有する有害生物防除剤

2. 特許請求の範囲

(式中、R'、R*及びR*はそれぞれ独立して水素原子、アルキル基又はアシル基であり、但し、R'、R*及びR*のいずれか1つがアシル基の場合、他の2つは水素原子又はアルキル基である)で衷わされるニトログアニジン誘導体又はそれらの塩。

2. 一般式(I)

(式中、R¹、R²及びR²はそれぞれ独立して水素原子、アルキル基又はアシル基であり、但し、R¹、R²及びR²のいずれか1つがアシル基の場合、他の2つは水素原子又はアルキル基である)で表わされるニトログアニジン誘導体又はそれらの塩を有効成分として含有することを特徴とする有害生物防除剤。

(式中、R P及びR はそれぞれ独立して水素原子、アルキル基又はアシル基であり、但し、R P及びR は同時にアシル基でない)で衷わされる

化合物と

一般式 (四)

(式中R³ は水素原子、アルキル基又はアシル基であり、但し、R¹ 又はR³ のどちらか一方がアシル基の場合、R³ は水素原子又はアルキル基である)で表わされる化合物とを反応させることを特徴とする

一般式(1)

(式中、R¹、R²及びR²は前述の通りである) で表わされるニトログアニジン誘導体又はそれら の塩の製造方法。

4. 一般式 (1-1)

の製造方法。

$$N = CH_z$$
 $N = CH_z$
 $N = CH_z$
 $N = CH_z$
 $N = CH_z$

(式中、R d はアルキル基又はアシル基である)で表わされる化合物と、

一般式(V)

$$R^4 = X \cdot \cdot \cdot (V)$$

(式中、R・はアルキル基であり、Xは脱離基である)で表わされる化合物とを反応させることを特徴とする

一般式 (1-3)

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

(式中、R 4 及びR 4 は前述の通りである) で表

(式中、 R ⁴ はアルキル基又はアシル基である) で表わされる化合物と、

一般式 (N)

$$R^5 - X \cdot \cdot \cdot \cdot (IV)$$

(式中、 R ⁵ はアルキル基又はアシル基であり、 X は脱離基であり、但し、 R ⁴ がアシル基の場合、 R ⁵ はアシル基でない)で表わされる化合物とを 反応させることを特徴とする

一般式(I-2)

(式中、R ⁴ 及びR ⁵ は前述の通りである)で表わされるニトログアニジン誘導体又はそれらの塩

わされるニトログアニジン誘導体又はそれらの塩 の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、新規なニトログアニジン誘導体、それらの製造方法及びそれらを含有する有害生物防 除剤に関する。

(先行技術及び発明に至った経緯)

特開昭64-70468 号、特開平2-171 号などには、1-ニトロー 2.2-ジアミノエチレン誘導体が、特開昭64-47766 号、特開昭64-70467 号などにはシアノグアニジン誘導体が、そして特開昭63-156786号などには2-ニトロイミノイミグ昭リジン誘導体が、殺虫剤などの有効成分として有用である旨聞示されている。しかしながら、そこには、一般式(I)で表わされる本発明のニトログアニジン誘導体は開示されていない。

(発明の開示)

本発明は、次記一般式 (I) で表わされるニトログアニジン誘導体又はそれらの塩、それらの製

造方法及びそれらを含有する有害生物防除剤に関する。

一般式(1)

(式中、R¹、R²及びR²はそれぞれ独立して 水素原子、アルキル基又はアシル基であり、但し、 R¹、R²及びR²のいずれか1つがアシル基の 場合、他の2つは水素原子又はアルキル基である)

前記一般式(I)中、R¹、R²及びR²が表 わすアルキル基としては炭素数1~6のもの、例 えばメチル基、エチル基、プロピル基、ブチル基、 ペンチル基、ヘキシル基などが挙げられ、R¹、 R²及びR³が表わすアシル基としては、ホルミ ル基;アセチル基、プロピオニル基、ブチリル基、 バレリル基、ヘキサノイル基のようなアルキルカ ルボニル基;ペンゾイル基などが挙げられ、前述 のアルキル基及びアルキルカルボニル基は、直鎖

$$\begin{array}{c|c}
 & & & & \\
 & & & & \\
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

で表わされる互変異性体を表わす化合物をも含む。 前記一般式 (I) で表わされる化合物は、例え ば次の反応工程 a の方法によって製造できる。

(反応工程 a)

又は技分れ脂肪鎖の構造異性のものも含む。

前記一般式(I)で表わされる化合物の塩としては、酸性物質との塩が挙げられ、例えば、塩酸塩、臭化水素酸塩、リン酸塩、硫酸塩、硝酸塩のような無機酸塩などが挙げられる。

前記一般式 (I) で表わされる化合物には、E 体、 Z 体の異性体が存在するが、本発明にはE体、 Z 体及びそれらの混合物も包含される。

本発明は、前記一般式 (I) 中、R'、R²又はR²の少なくとも1つが水素原子である場合に、

(式中、R¹、R²及びR³は前述の通りである)

反応工程aは通常溶媒の存在下で行なわれる。 溶媒としては例えば、水;メタノール、エタノー ル、プロパノール、イソプロパノール、ブタノー ル、tーブタノールのようなアルコール類;ジメ チルホルムアミド、ジメチルスルホキシドのよう な非プロトン性極性溶媒;などが挙げられ、これ らを混合して使用することもできる。

反応工程 a の反応温度は通常 3 0 ~ 1 5 0 ℃、 望ましくは 5 0 ~ 1 0 0 ℃であり、反応時間は 1 ~ 2 4 時間、望ましくは 2 ~ 1 2 時間である。

前記一般式(!) 中、R¹ 及びR² のどちらか一方が水素原子で、他方がアルキル基又はアシル基であり、かつR² がアルキル基又はアシル基である化合物は、例えば次の反応工程 b の方法によっても製造することができる。

〔反応工程 b〕

(式中、R ⁶ 及び R ⁵ はそれぞれ独立してアルキル基又はアシル基であり、 X は脱離基であり、但し、 R ⁴ がアシル基の場合、 R ⁵ はアシル基ではない)

前記一般式 (N) において X が表わす脱離基と しては、ハロケン原子、- SO₄-Y基 (Y はアルキル 基である)、- SO₃-Z基 (Z はアルキル基又はフェ ニル基である)などが挙げられる。

反応工程 b は通常塩基及び溶媒の存在下で行な

一のアルキル基を有し、かつR³がアルキル基又はアシル基である化合物は、例えば次の反応工程。の方法によっても製造することができる。

〔反応工程 c 〕

(式中、 R⁴ 及び X は前述の通りであり、 R♪ は アルキル基である)

反応工程 c は通常塩基及び溶媒の存在下で行なわれる。塩基及び溶媒としては前記反応工程 b で用いられるものと同様のものが挙げられる。又、

われる。塩基としては例えば、水素化ナトリウム、水素化カリウムのようなアルカリウムのようなアルカリウムのようなアルカリウムのようなアルカリウム、水酸化カリウム、水酸化カリウム、水酸化カリウム、水酸化カリウム、水酸化カリウム、水酸化カリウム、水酸化カリウム、水酸化カリウム、溶解 三級アミン・メチルス がいまから でいた できる でいた ない できる でいた はい できる の でいた はい できる の でいま しい できる の でいま しい できる の でいま しい できる の でい できる の でい とい できる の でい とい できる の でい とい できる の でい はい はい の に はい はい の に はい はい の に はい の に

又、反応工程 b の原料の一般式 (I-1) で表わされる化合物及び一般式 (IV) で表わされる化合物の使用量は一般式 (I-1) で表わされる化合物 1 モルに対し、一般式 (IV) で表わされる化合物は $0.9 \sim 1.2$ モルである。

又、前記一般式 (I-1) で表わされる化合物 も、前述のように互変異性体を含む。

前記一般式(I)中、R'及びR'が同時に同

反応工程 c の反応温度及び反応時間も前記反応工程 b と同様である。

又、反応工程 c の原料の一般式 (I-1) で表わされる化合物及び一般式 (V) で表わされる化合物の使用量は一般式 (I-1) で表わされる化合物 1 モルに対し、一般式 (V) で表わされる化合物は 1.8 モル以上である。

次に本発明化合物の具体的合成例の一例を記載 する。

合成例:1

1- (6-クロロー3-ピリジルメチル) - 1 -メチルー2-ニトログアニジン (化合物No.1) の合成

N.S-ジメチル-N'-ニトロイソチオ尿素
2.46gとN-(6-クロロ-3-ピリジルメチル)-N-メチルアミン2.85gとをエタノール15mlに加えた後、遅流下で12時間反応させた。反応終了後、反応溶液を冷却し、折出した結晶を遺取後、冷エタノールで洗浄することにより、融点156.7~157.2 ての目的物(化合物 & 1)

2.1 gを得た。

合成例 2

1-(6-クロロ-3-ビリジルメチル)1,3,3-トリメチル-2-ニトローグアニジン
(化合物No.2) の合成

前記合成例1で得られた、1-(6-クロロー3-ピリジルメチル)-1-メチルー2-ニトローグアニジン(化合物 Ma 1) 1.0 gをジメチルホルムアミド10 m l に溶解させた後、そこ為物) 0.34 gを徐々に加えた。水素がスの発生が終結下でに水素化ナトリウム(60%オイル懸き氷冷ないが、134 gを徐々に加えた。水素がスの発生が終結下で、134 gを徐々に加えた。水素を容とが、134 gを徐々に加えた。水素を容とが、134 gを徐った。 134 g

化合物心	R ¹	R *	R³	物 性
1	Н	Н	CII 3	融点156.7~157.2 で
2	CH,	CII 3	CII a	n s 1.5819
3	CII.	H	CH 3	融点129.1~130.1 で
4	CII 3	CII 3	Н	融点157.6~158.0 で
5	CII 2	Н	Calls	
6	CII₃CO-	н	CII 3	無定形固体
7	CII 2CO- · ·	CH3	CII 3	n p 1.3578
8	CII :	Н	Н	融点147.0~152.0 ℃
9	Calls.	Н	CH a	
1 0	n-C ₃ B ₇	Н	Н	
1 1	iso-Calla	н	CH 3	
1 2	n-C411-	н	H	_
1 3	iso-Calle	Н	CII 3	
1 4	sec-Calla	н	Н	
1 5	tert-Call,	Н	CII,	

り、屈折率 n 3 · · ° 1.5819の目的物 (化合物 Na 2) 0.2 2 g を得た。

次に前記一般式 (I) で表わされる化合物の代 表例を第1表に記載する。

以下余白

化合物Mu	R'	R ²	Вз	物 性
1 6	CH 3	CH,	CII3CO-	
1 7	CO-	н	CII 2	_
1 8	n-C4R+C0-	н	CII a	
1 9	IICO-	CII 3	CII 3	

化合物ね6のNMRスペクトルデータ

"H-NMR(CDC ℓ_2): $\delta = 2.23$ (s. 3 H, COCH₂);

3.00 (s, 3H, NCH_2); 4.70 (s, 2H, CH_2);

7.30 (d.18, J = 7.8 Hz); 7.74 (d.18, J = 7.8 Hz);

8.30 (d. 1 H. J = 2.0 Hz); 9.80 (broad, 1 H)

本発明化合物は有害生物防除剤の有効成分として優れた活性を示す。

例えば、ナミハダニ、ニセナミハダニ、ミカン ハダニ、ネダニなどのような植物寄生性ダニ類、 コナガ、ヨトウムシ、ハスモンヨトウ、コドリン ガ、ボールワーム、タバコバッドワーム、マイマ イガ、コロラドハムシ、ウリハムシ、ボールウィ ーピル、アブラムシ類、ウンカ類、ヨコパイ類、 カイガラムシ類、カメムシ類、コナジラミ類、ア ザミウマ類、バッタ類、ハナバエ類、コガネムシ 類、タマナヤガ、カブラヤガ、アリ類などのよう な農業客虫類、イエダニ、ゴキブリ類、イエバエ、 アカイエカのような衛生客虫類、バクガ、アズキ ゾウムシ、コクヌストモドキ、ゴミムシダマシ類 などのような貯穀客虫類、イガ、ヒメカツオブシ ムシ、シロアリ類などのような衣類、家屋客虫類、 その他家畜などに寄生するノミ類、シラミ類、ハ エ類などに対しても有効であり、更にはネコブセ ンチュウ類、シストセンチュウ類、ネグサレセン チュウ類、イネシンガレセンチュウ、イチゴメセ

ンチュウ、マツノザイセンチュウなどのような植

物寄生性線虫類に対しても有効である。また、土

本発明化合物を有害生物防除剤の有効成分として使用するに際しては、従来の農薬の製剤の場合と同様に農薬補助剤と共に乳剤、粉剤、粒剤、水和剤、液剤、エアゾール剤、ベースト剤などの種々の形態に製剤することができる。これらの配合剤合は通常有効成分 0.5~90 重量部で農薬補助

剤10~99.5重量部である。ごれらの製剤の実際の使用に際しては、そのまま使用するか、または水等の希釈剤で所定濃度に希釈して使用することができる。

ここにいう農薬補助剤としては、担体、乳化剤、 懸濁剤、分散剤、展着剤、浸透剤、湿潤剤、増粘 剤、安定剤などが挙げられ、必要により適宜添加 すればよい。担体としては、固体担体と液体担体 に分けられ、固体担体としては、澱粉、活性炭、 大豆粉、小麦粉、木粉、魚粉、粉乳などの動植物 性粉末、タルク、カオリン、ベントナイト、炭酸 カルシウム、ゼオライト、珪藻土、ホワイトカー ポン、クレー、アルミナ、硫黄粉末などの鉱物性 粉末などが挙げられ、液体担体としては、水、メ チルアルコール、エチレングリコールなどのアル コール類、アセトン、メチルエチルケトンなどの ケトン類、ジオキサン、テトラヒドロフランなど のエーテル類、ケロシン、灯油などの脂肪族炭化 水素類、キシレン、トリメチルベンゼン、テトラ - メチルベンゼン、シクロヘキサン、ソルベントナ

フサなどの芳香族炭化水素類、クロロホルム、クロロベンゼンなどのハロゲン化炭化水素類、ジメチルホルムアミドなどの酸アミド類、酢酸エチルエステル、脂肪酸のグリセリンエステルなどのエステル類、アセトニトリルなどのニトリル類、ジメチルスルホキシドなどの含硫化合物類などが挙げられる。

また、必要に応じて他の農薬、例えば殺虫剤、 殺グニ剤、殺線虫剤、殺菌剤、抗ウイルス剤、誘 引剤、除草剤、植物生長調整剤などと混用、併用 することができ、この場合に一層優れた効果を示 すこともある。

例えば、殺虫剤、殺ダニ剤、或いは殺線虫剤としては、O-(4-プロモー2-クロロフェニル)O-エチルS-プロピルホスホロチオエート、2.2 -ジクロロビニル、ジメチルホスフェート、エチル3-メチルー4-(メチルチオ)フェニルイソプロピルホスホロアミデート、0.0 -ジメチルO-4-ニトローmートリルホスホロチオニート、O-エチルO-4-ニトロフェニルフェニル

ホスホノチオエート、0.0 -ジエチル〇-2-イ . ソプロピルー6ーメチルピリミジンー4ーイルホ スホロチオエート、0.0 -ジメチル〇-(3.5.6-トリクロロー 2 - ピリジル) ホスホロチオエート、 0.S -ジメチルアセチルホスホロアミドチオエー ト、〇‐(2.4‐ジクロロフェニル)〇‐エチル S-プロピルホスホロジチオエートのような有機 リン酸エステル系化合物;1-ナフチルメチルカ ーパーメート、2 -イソプロポキシフェニルメチ ルカーパーメート、2-メチル-2-(メチルチ オ) プロピオンアルデヒドローメチルカルバモイ ルオキシム、2,3 -ジヒドロ-2,2 -ジメチルベ ンプフラン・1-イルメチルカーパメート、ジメ チルN.N ′ - 〔チオピス〔(メチルイミノ)カル ポニルオキシ) 〕 ピスエタンイミドチオエート、 S-メチルN- (メチルカルバモイルオキシ) チ オアセトイミデート、N.N -ジメチルー2-メチ ルカルバモイルオキシイミノー2- (メチルチオ) アセトアミド、2~ (エチルチオメチル) フェニ ルメチルカーバメート、2-ジメチルアミノー

5,6 -ジメチルピリミジン-4-イルジメチルカ ーパメート、S.S '-2-ジメチルアミノトリメ チレンピス (チオカーバメント) のようなカーバ メート系化合物;2.2.2 - トリクロロー1.1 - ビ ス(4-クロロフェニル)エタノール、4-クロ ロフェニルー2.4.5 ートリクロロフェニルスルホ ンのような有機塩素系化合物;トリシクロヘキシ ルチンヒドロキシドのような有機金属系化合物; $(RS) - \alpha - \vartheta T J - 3 - 7 \pm J + \vartheta \alpha \gamma \beta \gamma \nu (RS)$ - 2 - (4 - クロロフェニル) - 3 - メチルプチ レート、3-フェノキシベンジル(1RS) -シス、 トランスー3ー (2,2-ジクロロビニル) -2,2 ジメチルシクロプロパンカルボキシレート、(RS) -α-シアノ-3-フェノキシベンジル(1RS) -シス. トランスー3ー (2,2-ジクロロビニル) -2.2 -ジメチルシクロプロパンカルボキシレー ト、(S) -α-シアノ-3-フェノキシベンジル (1R) - y - 3 - (2,2 - y) (2 + y) - y2.2 - ジメチルシクロプロパンカルボキシレート、

-シス, トランス-3-(2-クロロ-3.3.3 -トリフルオロプロペニル)-2.2 -ジメチルシク ロプロパンカルボキシレート、4-メチル-2.3, 5.6 -テトラフルオロベンジル-3-(2-クロ ロー3.3.3 ートリフルオロー1ープロペン-1-イル) -2.2 -ジメチルシクロプロパンカルボン 酸のようなピレスロイド系化合物;1-(4-ク ロロフェニル) - 3 - (2,6-ジフルオロベンゾ イル) ウレア、1-(3,5-ジクロロ-4-(3 -クロロー5ートリフルオロメチルー2ーピリジ ルオキシ) フェニル) -3-(2.6-ジフルオロ ベンゾイル) ウレア、1- (3.5-ジクロロ-2.4 -ジフルオロフェニル) - 3 - (2,6-ジフルオ ロベンゾイル) ウレアのようなベンゾイルウレア 系化合物; 2 - tert-プチルイミノ-3-イソプ ロピルー5ーフェニルー3,4,5,6 ーテトラヒドロ - 2 H - 1, 3, 5 - チアジアジン - 4 - オン、トラ ンスー (4-クロロフェニル) - N - シクロヘキ シルー4-メチル-2-オキソチアゾリジノン-3 - カルボキサミド、N - メチルピス (2,4 - キ

シリルイミノメチル)アミンのような化合物;イソプロピル(2 E. 4 E) - 1 1 - メトキシー3.7.11-トリメチル-2.4 - ドデカジエノエートのような幼若ホルモン様化合物;また、その他の化合物として、ジニトロ系化合物、有機硫黄化合物、尿素系化合物、トリアジン系化合物などが挙げられる。更に、BT剤、昆虫病原ウイルス剤などのような微生物農薬などと、混用、併用することもできる。

例えば、殺菌剤としては、 S ーベンジルー0.0 ージイソプロピル、ホスホロチオエート、O ーエチル、S,S ージフェニルホスホロジチオエート、のよっか、エボルハイドロゲンホスホネートののような有機リン系化合物: 4.5.6.7 ーテトラクロロカックリド、テトラクロロイソフクロニアトリルのような有機塩素系化合物: マンガニーズエジントンはス(ジチオカーバメート)の重合物、ジンクピス(ジチオカーバメイト)エチレンピス(ジチオカーバメイト)エチレンピス(ジチオカーバメイト)エチレンピス(ジチオカーバメイト)エチレンピス(ジチオカーバメイト)エチレンピス(ジチオ

カーパメイト)、ジンクプロピレンピス(ジチオ カーバメート)の重合物のようなジチオカーバメ ート系化合物;3a,4.7,7a ーテトラヒドローN-(トリクロロメチルスルフェニル) フタルイミド、 3a.4.7.7a ーテトラヒドローN-(1.1.2.2ーテ トラクロロエチルスルフェニル)フタルイミド、 N - (トリクロロメチルスルフェニル) フタルイ ミドのようなN-ハロゲノチオアルキル系化合物; 3 - (3,5-ジクロロフェニル) - N - イソプロ ピルー2,4 ージオキソイミダゾリジンー1ーカル ボキサミド、(RS) - 3 - (3,5-ジクロロフェニ ル) - 5 - メチル - 5 - ピニル - 1,3 - オキサゾ リジン-2.4 -ジオン、N-(3.5-ジクロロフェニル) -1,2 -ジメチルシクロプロパン-1,2 ージカルボキシミドのようなジカルボキシミド系 化合物;メチル1-(ブチルカルパモイル)ベン ズイミダゾールー 2 ーイルカーパメート、ジメチ ル4.4 ′ - (0 - フェニレン) ピス (3 - チオア ロファネート)のようなベンズィミダゾール系化 合物:1-(4-クロロフェノキシ)-3.3 -ジ

メチルー1 - (1 H -1,2,4 -トリアゾールー1 - イル) ブタノン、I- (ピフェニイルー4-イ ルオキシ) -3.3 -ジメチル-1 - (1H-1.2,4 ートリアゾールー1ーイル) プタンー2ーオー ル、1-(N-(4-クロロ-2-トリフルオロ メチルフェニル) -2-プロポキシアセトイミド イル] イミダゾール、1 - [2 - (2,4-ジクロ ロフェニル) - 4 - エチル-1,3 - ジオキソラン - 2 - イルメチル] - 1 H - 1, 2, 4 - トリアゾー ル、1 - [2 - (2.4 - ジクロロフェニル) - 4ープロピルー1,3 ージオキソランー2ーイルメチ ル) -1 H-1.2.4 -トリアゾール、1 - (2-(2.4-ジクロロフェニル) ベンチル) - i H -1.2.4 -トリアゾールのようなアゾール系化合物; 2.4 ' -ジクロローαー (ピリミジン-5-イル) ベンズヒドリルアルコール、(±) -2.4 ′ -ジ フルオロー α - (1 H - 1, 2, 4 - トリアゾールー I - イルメチル) ベンズヒドリルアルコールのよ うなカルピノール系化合物;3′ーイソプロポキ $\dot{\nu}$ - σ - $\dot{\nu}$ - $\dot{\nu}$

本発明の有害生物防除剤の施用は、一般に1~20,000ppm 望ましくは20~2,000ppmの有効成分 濃度で行なう。これらの有効成分濃度は、製がの 形態及び施用する方法、目的、時期、場所及の 生成で発生状況等によって適当に変更できる。例え ば、水生有害虫の場合、上記濃度範囲の薬液を 生場所に散布しても防除できることから、水中で の有効成分濃度範囲は上記以下である。単位 あたりの施用量は10 a 当り、有効成分化合物として約0.1~5,000 g、好ましくは10~1,000 gが使用される。しかし、特別の場合には、これらの範囲を逸脱することも可能である。

試験例1 ヒメトピウンカ殺虫試験

有効成分濃度800ppm に調整した薬液にイネ 幼苗を約10秒間浸潤し、風乾した後湿った脱脂

綿で根部を包んで試験管に入れた。次いで、この 中へヒメトピウンカの幼虫10頭を放ち、笹口に ガーゼでふたをして26℃の照明付恒温器内に放 置した。放虫後5日目に生死を判定し、下記の計 算式により死虫率を求めた。

化合物 Na.1、2、4、6及び8が100%の死 虫率を示した。

試験例2 ツマグロヨコバイ殺虫試験

ヒメトピウンカの幼虫をツマグロヨコバイの幼 虫に代えること以外は、前記試験例1の場合と同 様にして試験を行ない、死虫率を求めた。

化合物 1 1 、 2 、 4 、 6 、 7 及び 8 が 1 0 0 % の死虫率を示した。

試験例3 モモアカアプラムシ殺虫試験

有効成分化合物のそれぞれの製剤品を水に分散 させ、濃度を 8 0 0 ppm に調整した。ナスの本葉 1枚だけを残したものをカップ(直径8㎝、高さ 7㎝)に移植し、これにモモアカアプラムシ無翅

器内に放置した。処理5日後に生死を判定し、前 記試験例3の場合と同様にして死虫率を求めた。 なお、離脱虫は死亡したものとみなした。

化合物 № 1、2、4、6、7及び8が100% の死虫率を示した。

試験例5 ハスモンヨトウ殺虫試験

有効成分化合物のそれぞれの製剤品を水に分散 させ800ppm の濃度に調整した薬液に、キャベ ツの葉片を約10秒間浸漬し、風乾した。直径9 cmのペトリ皿に湿った滤紙を敷き、その上に風乾 した葉片を置いた。そこへ2~3令のハスモンヨ トウ幼虫10頭を放ち、ふたをして26℃の照明 付恒温器内に放置した。放虫後5日目に生死を判 定し、前記試験例1の場合と同様にして死虫率を 求めた。

化合物 Na.1、6及び8が100%の死虫率を示 した.

次に本発明の製剤例を記載するが、本発明にお ける化合物、配合割合、剤型などは記載例のみに 限定されるものではない。

胎生雌成虫を2~3頭接種し、産仔させた。接種 2日後成虫を除去し、幼虫数をかぞえた。この幼 虫の寄生したナス葉を前記の濃度に調整した薬液 に約10秒間浸漬処理し、風乾後26℃の照明付 恒温器内に放置した。放虫後5日目に生死を判定 し、下記の計算式により死虫率を求めた。なお、 雕脱虫は死亡したものとみなした。

化合物 № 1、2、4、6、7及び8が100% の死虫率を示した。

試験例4 モモアカアプラムシ没透移行性試験 有効成分化合物のそれぞれの製剤品を水に分散 させ、濃度を800ppm に調整した。ナスの本葉 1枚だけを残したものをカップ (直径8㎝、高さ 7 cm) に移植し、これにモモアカアプラムシ無翅 胎生雌成虫を2~3頭接種し、産仔させた。接種 2日後成虫を除去し、幼虫数をかぞえた。この幼 虫の寄生したナスに、前配の濃度に調整した薬液 10mlを土壌灌注処理し、26℃の照明付恒温

製剤例1

(イ) 化合物 № 4

2 0 重量部

(ロ) カオリン

72重量部

(ハ)リグニンスルホン酸ソーダ 8重量部 以上のものを均一に混合して水和剤とする。

製剤例2

(イ) 化合物 № 1

5 重量部

(ロ) タルク

9 5 重量部

以上のものを均一に混合して粉剤とする。

製剤例3

(イ) 化合物 № 2

20重量部

(ロ) N,N 'ージメチルホルムアミド

2 0 重量部

(ハ) ポリオキシエチレンアルキルフェニルエ

ーテル 10厘量部

(ニ) キシレン

5 0 重量部

以上のものを均一に混合、溶解して乳剤とする。

製剤例 4

(イ) カオリン ニ

68重量部

(ロ) リグニンスルホン酸ソーダ 2 重量部

特別平3-279359 (10)

(ハ) ポリオキシエチレンアルキルアリールサ ルフェート 5重量部

(ニ) 微粉シリカ 2 5 重量部

以上の各成分の混合物と、化合物ぬ4とを4: 1の重量割合で混合し、水和剤とする。

製剤例5

(イ) 化合物 № 8 4 0 重量部

(ロ) オキシレーテッドポリアルキルフェノー ルフォスフェートートリエタノールアミ ン

2重量部

(ハ)シリコーン

0.2 重量部

(ニ) ザンサンガム

0.1 重量部

`(ホ) エチレングリコール

5重量部

(へ) 水

5 2.7 重量部

以上のものを均一に混合、粉砕してフロアブル 剤とする。

製剤例6

(イ) 化合物 Na 6

5 0 重量部

(ロ) オキシレーテッドポリアルキルフェニル

製剤例8

(イ) 化合物 № 8

2. 5 重量部

(ロ) N-メチル-2-ピロリドン

2. 5 重量部

(ハ)大豆油

9 5. 0 重量部

以上のものを均一に混合、溶解して欲量散布剤 (ultra low volume formulation) とする。

製剤例 9

(イ) 化合物 Na. 4.

5重量部

(ロ) N,N ′ージメチルホルムアミド

15重量部

(ハ) ポリオキシエチレンアルキルアリール

(aryl) エーテル

10重量部

(ニ) キシレン

7 0 重量部

以上のものを均一に混合し乳剤とする。

特許出願人 石原産業株式会社

フォスフェートートリエタノールアミン 2 重量部

(ハ)シリコーン

0.2 重量部

(ニ) 水

47.8重量部

以上のものを均一に混合、粉砕した原液に更に

(ホ)ポリカルボン酸ナトリウム 5 重量部

(へ) 無水硫酸ナトリウム 42.8 重量部

を加え均一に混合、乾燥してドライフロアブル剤 とする.

製剤例7

(イ) 化合物 № 7

5重量部

(ロ) ポリオキシエチレンオクチルフェニルエ 1重量部

(ハ) ポリオキシエチレンの燐酸エステル

0.5 重量部

(ニ)粒状炭酸カルシウム 9 3.5 重量部

(イ)~(ハ)を予め均一に混合し、適量のア セトンで希釈した後、(二)に吹付け、アセトン を除去して粒剤とした。

第1頁	その	売き						
@発	明	者	吉	Ħ	潔	充	滋賀県草津市西渋川2丁目3番1号 央研究所内	石原産業株式会社中
@発	明	者	佐	々 木	広	志	滋賀県草津市西渋川2丁目3番1号 央研究所内	石原産業株式会社中
@発	明	者	森	Ħ	雅	之	滋賀県草津市西渋川2丁目3番1号 央研究所内	石原産業株式会社中

THIS PAGE BLANK (USPTO)