10 Qüestions de TEORIA (6 punts). Puntuació: BÉ:+0.6 punts., MAL: -0.15 punts, N.C: 0

- Donat el circuit retallador de la figura, i tenint en compte una V_{γ} de 0.7V per als díodes, calcule el valor de V_{S} quan Ve = 6V
- [A] 7.3V
- [B] 3V
- [C] 3.7V
- [D] 6V

En el circuit de la figura hi ha dos subcircuits digitals fets amb díodes, transistors i resistències: el 1), amb entrades A i B, i eixida C; i el 2), amb entrada D, i eixida F.

Suposant que es connecta C i D, assenyale l'afirmació CORRECTA:

DADES: $V\gamma = 0.7V$ (per a tots els díodes); $V_{BEON} = 0.7V$ (per al transistor)

- [A] El primer subcircuit actua com una porta OR de dos entrades i el segon subcircuit com un inversor.
- [B] Quan les entrades són A = 1 i B = 1, llavors D3 condueix i l'eixida en F és 0.
- [C] Quan D1 i/o D2 condueix, llavors també ho fa el díode D3.
- [D] Quan D = 0 el transistor condueix i l'eixida en F és 0.
- En un transistor bipolar NPN que està funcionant en un circuit i que té un guany de corrent β de 100, es mesuren els següents corrents i tensions de continua:

$$V_{BF} = 0.7V$$
 $I_{B} = 0.1 \text{mA}$ $I_{F} = 3.5 \text{mA}$

- Està en tall. [A]
- [B] Està funcionant en zona activa.
- [C] No podem indicar la zona de funcionament, perquè ens falta el valor de V_{CE}.
- [D] Està saturat.
- El circuit de la figura és un inversor lògic. ¿Quin és el valor mínim de la tensió d'entrada per arribar a la saturació del transistor? (Ve_{MIN(SAT)})
- Vcc [A] $V_{eMIN(SAT)} = 1.2V$ Dades: β: 100 $V_{eMIN(SAT)} = 1.9V$ [B] R1= 100k [C] $V_{eMIN(SAT)} = 3.7V$ R2 = 4k[D] $V_{eMIN(SAT)} = 5V$ Vcc= 5V $V_{BEON} = 0.7, V_{CESAT} = 0.2V$

- 5. Indique la resposta CORRECTA sobre la polarització del transistor PMOS del circuit.
- [A] Si Vi = 0 el transistor està en tall.
- [B] Si Vi = 2V el transistor està en saturació
- [C] Si Vi = 2V el transistor està en òhmica (lineal).
- [D] Con Vi = 2V, la $V_{GS} = 2V$

Fòrmules PMOS:

Tall: V_{GS} ≥ - V_T

Saturació: $I_{SD} = K(V_{GS} + V_T)^2, V_{DS} < V_{GS} + V_T$

Ohmica: $I_{SD} \approx 2K(V_{GS}+V_T)V_{DS}$

- 6. Sobre el transistor MOSFET, assenyale la resposta FALSA.
- [A] En la zona de saturació, el canal del transistor s'estrangula i no permet que augmente el corrent a pesar d'augmentar VDS.
- [B] El transistor Mosfet té una gran versatilitat, podent funcionar com interruptor, resistència variable i fins i tot com a condensador.
- [C] Per evitar la ruptura de la capa thinox del transistor, es sol utilitzar un retallador a dos nivells en el terminal G.
- [D] En els circuits digitals pseudo-NMOS, les càrregues actives es dissenyen amb transistors NMOS amb el terminal de porta connectat a masa.
- 7. El circuit de la figura està compost de portes NAND amb eixida en col.lector obert. A partir de les especificacions de la taula (tensions i corrents) i per a les entrades (A=4V, B=0.2V, C=4.5V, D=0.6V), **CALCULE** el voltatge en F.

V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}
2.5 V	0.8 V	3.0 V	0.5 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
600 μΑ	-0.36 mA	200 μΑ	7 mA

- 8. Quina de les següents afirmacions relacionades amb una mateixa família lògica és FALSA?:
- [A] Sempre es compleix V_{OHmin}>=V_{IHmin}.
- [B] El marge de soroll es defineix como NM=min(NM_L,NM_H)
- [C] Els corrents en les entrades són sempre positius; en canvi, els corrents en les eixides són sempre negatius.
- [D] Si no es compleixen els temps de t_{su} (setup) i de t_h (hold) durant l'escriptura d'un biestable, aquest pot entrar en mode metaestable i no efectuar correctament el magatzematge de la dada d'entrada.

9. Es desitja connectar entre sí dos famílies lògiques A i B (A →B) amb les especificacions que s'indiquen en les taules adjuntes. Seleccione l'opció **CORRECTA** d'entre les següents:

Família A (+5V)			Família B (+5V)				
V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}	V_{IHmin}	V_{ILmax}	V_{OHmin}	V_{OLmax}
3.5 V	1.5 V	4.9 V	0.1 V	2 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}	I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
10 pA	-10 pA	-0.5 mA	0.5 mA	40 μΑ	-1.6 mA	-400 μΑ	16 mA

- [A] Es pot realitzar la connexió directament.
- [B] Els nivells lògics són compatibles i el marge de soroll global és de 2.9 V
- [C] No hi ha compatibilitat en tensions, i per tant s'ha d'afegir un buffer en col.lector obert entre A i B amb una resistència de pull-up en la seva eixida, connectada a +5V.
- [D] Els corrents són incompatibles, llavors hi ha que intercalar un buffer de la família A amb l'alimentació connectada a +5V.
- 10. Donat el següent circuit seqüencial, dissenyat amb biestables D, assenyale l'afirmació CORRECTA:

Paràmetres temporals: Biestables: (Set up: t_{su} = 10 ns, Hold: t_h = 5 ns, Retard: $t_{pd(max)}$ = 20 ns), Portes NOT: (Retard: $t_{pd(max)}$ = 20 ns).

- [A] La freqüència de funcionament no deu superar els 20MHz.
- [B] La freqüència de funcionament ha de ser major de 15 MHz.
- [C] El període de rellotge no deu superar els 50ns.
- [D] El circuit no funciona bé, perquè te un temps de hold molt baix.

(PÀGINA INTENCIONADAMENT EN BLANC)

Cognoms:	Nom:
_	

PROBLEMA (4 PUNTS)

El circuit digital de la figura, dissenyat amb transistors MOSFET, té entrades A i B, i eixida F.

Nota: En zona òhmica (lineal) utilitze l'expressió aproximada $R_{ON} \approx 1/(2K(V_{GS} - V_T))$

Paràmetres transistors:	
$V_T = 0.5 \text{ V}$	
$K = 0.1 \text{ mA/V}^2$	

[A] (0.5 Punts) Òmpliga la següent taula de veritat i indique l'expressió lògica de F en funció de les entrades A i B.

Α	В	X	F
0	0		
0	1		
1	0		
1	1		

[B] (1.5 Punts) Supose que A = 0V ("0" lògic) i B = 5V ("1" lògic). <u>Nota</u>: com el circuit és digital, els transistors funcionen en commutació, entre tall i zona lineal (R_{on}).

• Dibuixe el circuit elèctric equivalent (substituïsca cada transistor per R_{on} o un interruptor obert) i efectue els càlculs per omplir la taula següent.

Òmpliga la següent taula de funcionament del circuit.

$R_{on}(k\Omega)$	Zona T1	Zona T2	Zona T3	$V_X(Volt)$	V_F (Volt)	Consum estàtic (mA)	Consum estàtic (mW)

[C] (1.5 Punts) Supose que A = 5V ("1" lògic) i B = 0V ("0" lògic).

• Dibuixe el circuit elèctric equivalent (substituïsca cada transistor per R_{on} o un interruptor obert) i efectue els càlculs per omplir la taula següent.

Òmpliga la següent taula de funcionament del circuit.

$R_{on}(k\Omega)$	Zona T1	Zona T2	Zona T3	$V_X(Volt)$	V _F (Volt)	Consum estàtic (mA)	Consum estàtic (mW)

[D] (1 Punts) Per controlar el funcionament d'un motor per part del circuit lògic anterior, es dissenya el següent esquema. El motor funciona amb 18V i 60mA. El mosfet funciona en commutació (tall/lineal).

Òmpliga la següent taula (justifique els càlculs):

F	Motor (marxa/parat)	Potència dissipada	Potència dissipada
		motor (mW)	transistor (mW)
"0"			
"1"			

Indique el valor de R_{on} del transistor: