DEPARTMENT OF THE INTERIOR

REPORT

OF THE

CHIEF ASTRONOMER

FOR THE

YEAR ENDING MARCH 31

1911

PRINTED BY ORDER OF PARLIAMENT

OTTAWA
PRINTED FOR J. DE L. TACHÉ, PRINTER TO THE KING'S MOST
EXCELLENT MAJESTY
1915

[No. 25a-1913.]

Report of the Chief Astronomer

Page 5

CONTENTS

	of the Chief Advanced in the Chief and the C	-
App	endix 1.—Report by Otto Klotz, LL.D., on Seismology, Terrestrial Magnetism	
	and Gravity	11
	2.—Report by J. S. Plaskett, B.A., on Astrophysical Work	93
	Appendix A.—By W. E. Harper, M.A.	154
	B.—By J. B. Cannon, M.A.	202
	C.—By T. H. Parker, M.A.	234
	D.—By R. E. De Lury, M.A., Ph.D.	254
		294
	E.—By R. M. Motherwell, M.A	
	3.—Report by R. M. Stewart, M.A., on Meridian Work and Time Service	303
	Appendix A.—By D. B. Nugent, B.A	326
	4.—Report by J. Macara, on Latitude and Longitude Work	517
	5.—Report by J. D. Wallis, on work done in the Photographic Division	549
	or respect by or by manife on work done in the r new graphs between	
	YEAR ON A MICANO	
	ILLUSTRATIONS	
	Appendix 1 Otto Klotz, LL.D Seismology, Terrestrial Magnetism and Gravity.	
1.	Anemograph	92
		92
	Anemograph	
	Anemograph	92
	Anemograph	92
5.	Micro-barogram and Thermogram	92
6	Anemogram	92
7. 8	Seismogram	92
	Microseisms	92
	Charts showing Magnetic Declination (Sheets Nos. 1 and 2)	92
٠	Charles showing stangactic Decimation (onecos 1105: 1 and 2)	-
	Appendix 2,-J. S. Plaskett, B.A Astrophysical Work.	
1.	Velocity Curve of € Ursæ Minoris	116
2.	Reflecting Prism arrangement	120
3.	Guide Plate	120
4.	Toepfer Measuring Machine	122
	200pts recently based on the second of the s	
	Appendix A.	
5.	Velocity Curve of v Orionis	174
6.	Velocity Curve of 7 Camelopardalis.	184
0.	velocity Curve of a Cametopardans	101
	Appendix B.	
7	Velocity Curve of 93 Leonis	220
8.	Velocity Curve of 93 Leonis (Comparator measurement)	220
	Appendix C.	
0	V-lit- O	040

Appendix D.										
10.	The Solar Spectrograph.	PAGE 256								
11.	Focal Curves from two Plane Gratings in the Solar Spectrograph.	256								
12.	Focal irregularities due to a Plane Grating.	256								
13.	Double-slit Apparatus	267								
14.	The effect of Sky Spectrum on the measurements of the Solar Rotation	283								
15.	Rotation Spectrum photographed without and with air-currents in the Spectro-									
	graph	286								
16.	A proposed arrangement of reflecting Prisms for the Solar Rotation apparatus	290								
	Appendix E.									
	Appendix E.									
17.	Photographs of Halley's Comet	302								
18.	Photographs of Halley's Comet	302								
19.	Photographs of Halley's Comet	302								
	Abbendix 4Longitude and Latitude Observations.									

REPORT OF THE CHIEF ASTRONOMER AND INTERNATIONAL BOUNDARY COMMISSIONER.

DEPARTMENT OF THE INTERIOR,

Dominion Astronomical Observatory, Ottawa, Canada, May 1, 1911.

W. W. Cory, Esq., C.M.G., Deputy Minister of the Interior,

Sir,—I have the honour to present the report of the Astronomical Branch of the Department of the Interior for the year ending 31st March, 1911.

The correspondence in the twelve months was:-

Ottawa.

Letters	received	 										 			2,1	
Letters	sent														3,3	
Accoun	ts examined														8	6

A statement of the work of the photographic division appears as Appendix No. 5.

The library contains 3,839 bound books and some 410 bound pamphlets. These are entered in a card catalogue under author and title. A further classification by subject was contemplated, but has been postponed, as, especially in the case of volumes of transactions of societies, collected works, etc., it calls for a great number of entries and cross references, on account of the diversity of the subjects treated. For lack of time, the librarian, who has other duties to perform, has been unable to make this classification. Sixty scientific periodicals are procured by subscription, and the number of observatories, societies, etc. (principally astronomical and meteorological), from which regular publications are received, is over 90. The bookbinder who has been employed here for some years numbering bound volumes for the library and preparing periodicals, unbound reports, etc., for binding at the Printing Bureau, has been provided with machinery and appliances, so that the binding may be done in the building. Since the bindery has been fully equipped (in February last) some 300 volumes have been bound; there are still 500 volumes or more awaiting binding.

The mechanicians have been kept busy with repairs and minor alterations to field and observatory instruments. No construction of special importance has been undertaken.

Fourteen meetings of the Ottawa Centre of the Royal Astronomical Society of Canada have been held, beginning in October. These meetings are fortnightly, alternately afternoon meetings in the Observatory and evening meetings usually held in a hall in the city. The number stated includes the annual meeting in December and a very enjoyable reception at the Observatory, for members of the society and their friends, on March 23rd.

3 GEORGE V., A. 1913

The Saturday 'open evenings,' when the public is invited to visit the Observatory to look through the equatorial telescope, continue to be appreciated. There are also many day-time visitors, who, though they have not the opportunity of viewing the sky, are interested in examining the instruments and equipment.

The Observatory grounds have been terraced and sodded, with the exception of the northeastern corner, and the necessary roads laid out and prepared. Electric lights have been placed on the grounds and along the pathway leading to the electric railway. The residence of the Chief Astronomer was completed and was occupied by him at the end of July.

The foundation of the small building to house an instrument to earry the micrometer and stellar camera was laid last summer, but the superstructure was not proceeded with. The piers for the meridian marks have been erected, and the foundations laid of the buildings which are to cover them. Wooden sheds have been built over the piers to protect them from the weather, pending completion of the permanent structures. These piers are built for underground reference marks.

Mr. J. S. Plaskett attended the meeting of the Astronomical and Astrophysical Society of America, at Harvard, and that of the International Union for Co-operation in Solar Research at Mt. Wilson, Cal., last summer. At the former Mr. Plaskett was placed on three committees; those on the Solar Rotation, Radial Velocities, and the Classification of Spectra. At the meeting of the Solar Research Union, a share of the work of determining the solar rotation was allotted to this Observatory, associated with the observatories at Pulkowa, Edinburgh, Cambridge (England), Allepheny and Mt. Wilson. The invitation which Mr. Plaskett was authorized to convey to the Astronomical and Astrophysical Society to hold their annual meeting here next August has been accepted.

The apparatus for the solar work consists of a coclostat telescope, of 80 feet focus, and a Littow grating spectrograph of 23 feet focus. Three different gratings have been thoroughly tested and the most suitable is now permanently mounted and is in regular use. A device consisting of two reflecting prisms has been applied, for bringing the opposite limbs of the sun on the slit together. One of the problems in regard to the solar rotation is whether the rotational velocity varies for different lines of the spectrum. An investigation of the errors which may thus arise has been undertaken. Experimenting has been done on the kind of plate that should be used, the development, etc., for the regions of the spectrum which are to be investigated, λ 5500 to λ 5700 and λ 4220 to λ 4280. The work of obtaining and measuring plates for the solar rotation is under way.

Four orbits of spectroscopic binary stars have been completed, a Camelogualdis, v Orionis, 93 Louis and 4 Ursae Minoris. Work on three or four others is nearing completion, and a good deal of preliminary observing and measuring has been done on several other binaries. The weather for observing has been unusually bad during the past year; the average number of spectra obtained monthly has been 65, as against 76 last year. Part of this decrease may be accounted for by the fact that fainter stars have been observed upon, requiring larger exposure time. The aperture of the telescope is relatively small, compared with the instruments used in many of the observatories engaged in this branch of astronomical work. A larger telescope is much to be desired.

The telescope has also been used in measuring the position angles and distances of visual double stars, and in observing occultations of stars by the moon.

Photographs were taken of Halley's Comet, when it was near the earth, with the Brashear Doublet and also with a large Zeiss Tessar wide-angle lens. The weather at this time was, however, extremely unfavourable.

The underground lenses and long focus collimating lenses for the meridian marks, with the necessary mountings, have been ordered.

Improvements have been made in the mounting of the microscopes of the transit-circle and in the illuminating apparatus. The ventilation of the room has been improved by using ventilating fans, but it is still found that the temperature within does not follow that of the air without in a satisfactory manner, and further improvements in ventilation are contemplated.

The system of controlled clocks and dials has worked satisfactorily. Two hundred and ninety-two dials are now in operation.

The Bosch photographic seismograph has been in constant operation throughout the year. To one of the pendulums, magnetic damping has been applied by means of a powerful horseshoe magnet, the other pendulum retaining the air damping. The magnetic damping reduces the effect of the microscients, and allows the phases of the greater disturbances to be more surely identified. Earthquake bulletins are issued regularly, and are sent to other earthquake stations in exchange for their bulletins. Twenty-four bulletins have been issued during the year, giving records of 89 earthquakes, and have been distributed to 55 stations. No earthquakes occurring in Canada have been recorded.

To assist in distinguishing earthquakes not of seismic origin, a Fuess electric recording Anemograph has been installed. It records the direction, velocity and pressure of the wind in ink on paper moved by clock-work.

The longitude of the transit house at Winnipeg, on Fort Osborne barrack ground, which is intended to serve as a base for longitude determinations in the prairie provinces, was determined early last summer by telegraphic exchange of time with Ottawa, using one of the copper wires of the Canadian Pacific Railway Company's telegraph. The low resistance and self-inductance of this wire made it possible to dispense altogether with repeaters, thereby obviating the uncertainty which prevails in using them as to the speed of response of the relays to current passing in the two directions, and materially increasing the accuracy of the exchanges. The time of transmission was six one-hundredths of a second, indicating a velocity of nearly 22,000 miles per second, and was remarkably constant from night to night, throughout the series of exchanges.

The longitudes of eight other stations were determined, namely, Walsh, Coutts, and Pincher in Alberta; North Portal and Mordtach, Saskatchewan; Emerson, Manitoba; and Sault Ste. Marie and Windsor, in Ontario. The last two were determined by exchange of signals with Ottawa, the others by exchanges with Winnipeg. The latitudes of all the stations, including Winnipeg, were also determined.

The work of the Magnetic Survey comprised the determination of declination, inclination, borizontal intensity, and the diurnal variation of declination at forty-eight points along the Canadian Pacific Railway between Chapleau and Mosejaw, and at forty-four points in southern and southwestern Ontario. The average distance between points was twenty-five miles. Two observers were employed on this work.

The negotiations referred to in my last annual report in regard to the questions at issue in Passamaquoddy bay, culminated in a treaty which was signed at Washington on May 21st, and ratified on June 6th, 1910.

3 GEORGE V., A. 1913

By this treaty the boundary line through the southern part of the bay is defined by seven bearings and distances, beginning at the point between Treat island and Friar Head referred to in Article I. of the Treaty of 1908, and terminating in the middle of Grand Manan channel.

The boundary line as thus defined passes to the east of Pope's Folly island, and through the dredged channel to the west of the Middle Grounds.

The commissioners have not yet undertaken the marking of this line, nor of any part of the line defined by the first article of the Treaty of 1908.

The operations under the second article of the same treaty were continued by Mr. A. J. Brabazon, D.L.S., on behalf of Canada, and Mr. J. E. McGrath for the United States. They comprised the placing of reference monuments on each side of the river St. Croix, from the terminal point of last season's operations near St. Stephen, to near the outlet of the lower lake, at Vanceboro, and the making of a triangulation to determine the positions of these monuments.

The work on the third section of the boundary line was carried on by a joint survey party under Mr. Geo. C. Rainboth, D.L.S., on behalf of Canada, and Mr. Jas. B. Baylor, of the United States Coast and Geodetic Survey, for the United States. The work consisted in the survey of the boundary line along the St. John river from last season's terminal point, near Edmundston, N.B., up the river to the mouth of St. Francis river, and up the latter river, the line being defined by reference to monuments placed on each side of the rivers. These monuments are connected by triangulation. The survey operations were terminated near the boundary line of Temiscoutat county, Quebec.

It is with very great regret that I record here the death of Mr. Rainboth. He was taken ill in eamp just at the time that he was ready to bring the season's work to a close. His desire to see personally to the arrangements necessary in this connection led him to delay placing himself under medical care until it was too late. He was finally brought by canoe to Edmundston, and then placed on the train with the hope of getting him safely home in Ottawa. He died on the train at Rivière-du-Loup. He was one of the best known surveyors in the Ottawa valley, where he had practised his profession from his youth. He had also made many surveys for the Department of the Interior in the Northwest. Since 1905, he was in charge of the fieldwork of the resurvey of the 'Ashburton Line,' that is, the boundary line from the St. Lawrence river to the source of the St. Croix.

The resurvey of the 49th parallel (section 6 of the Treaty of 1908) was carried on by a Canadian party under Mr. J. J. McArthur, D.L.S., for a distance of about 150 miles from a point a short distance west of North Portal, eastward along the southern boundary of the Provinces of Saskatchewan and Manitoba. An American party at the same time was engaged on the resurvey of the same line farther west.

Mr. Geo. White-Fraser, D.T.S., continued the work of defining the boundary line through the straits of Georgia and Fuca, by means of reference monuments on the shores. This work is done under the eighth article of the Treaty of 1908.

Two surveying parties were employed on the survey of the boundary of the Alaska Coast Strip (Treaty of 1903); one under Mr. N. J. Ogilvie, D.L.S., in the Lynn Canal region, the other under Mr. F. H. Mackie, D.L.S., at the head of Portland canal.

The survey of the 141st meridian under the provisions of the Treaty of 1906 was continued by two large parties, one Canadian, one American, each divided into a number of sub-parties. The chiefs of the Canadian parties were Messrs. J. D. Craig, F. Lambart and A. G. Stewart, Dominion land surveyors.

The vista cutting and the placing of the final monuments were completed between White river and Yukon, also north of the latter about half-way to Porcupine river. On the latter section, the triangulation and topographical work were completed.

The survey of the line is therefore completed between the last mentioned point and the Natazhat range, south of White river. The projection of the meridian was carried to a point about ten miles north of Porcupine river.

Mr. D. H. Nelles, D.L.S., completed the precise levelling to a point on the 141st meridian. This line of levels is now complete from the summit of White Pass, along the White Pass Railway and the Dawson Road to Dawson, and thence west to the meridian. An American surveyor has completed the connection with tide-water by carrying a line of precise levels from Skagway, along the railway, to the summit.

On the Geodetic survey, two observers were employed, one in the province of Ontario, one in Quebee, measuring the angles of the primary triangles. Three reconnaissance parties, to select points for the extension of the triangulation, worked respectively in the western part of Ontario, to the south and east of Georgian bay, and on the British Columbia coast. A station-building party worked north and northwest of Toronto, erecting the towers for the triangulation, where these were required. Three parties were employed on the precise levelling. One of these parties worked in Ontario and one in Nova Scotia. The third, beginning at a bench-mark of the U.S. Coast and Geodetic Survey at Stephen, Minn., carried a line of levels north to Emerson, Man., and thence west along the railways, paralleling the international boundary.

Herewith are submitted, as appendices, reports by Dr. O. Klotz and Messrs. Plakett, Stewart, and Macara, upon the work under their charge respectively; also a statement of the work done in the photographer's office.

I have the honour to be, sir,

Your obedient servant,

W. F. KING, Chief Astronomer.

APPENDIX 1.

REPORT OF THE CHIEF ASTRONOMER, 1911.

SEISMOLOGY, TERRESTRIAL MAGNETISM AND GRAVITY

BY

OTTO KLOTZ, LL.D., F.R.A.S.

PAGE

CONTENTS

SE	ISMOLOGY	19
	Pressure Table	19
	Earthquakes	20
	Microseisms	26
	Phase Table	27
	Transmission Times	29
	Record of Earthquakes	32
TE	ERRESTRIAL MAGNETISM	48
	Passage of Halley's Comet	65
	Agincourt—Base Station.	67
	Description of Stations occupied, 1910.	67
	Magnetic Results, 1910	88
	Secular Change	90:
Gi	RAVITY	92
	ILLUSTRATIONS.	
		PAGE
1.	Anemograph	92
2.	Anemograph	92
3.	Anemograph	92
4.	Anemograph	92
5.	Micro-barogram and Thermogram	92
6.	Anemogram	92
7.	Seismogram.	92
9	Migrospieme	00

APPENDIX 1.

SEISMOLOGY, TERRESTRIAL MAGNETISM AND GRAVITY, BY OTTO KLOTZ, LL.D., F.R.A.S.

OTTAWA, ONT., April 1st, 1911.

W. F. King, LL.D., C.M.G., Chief Astronomer,

net Astronomer Departmen

Department of the Interior,

Ottawa.

SIR,—I have the honour to make the following report of the work carried out under my charge, during the fiscal year April 1, 1910, to March 31, 1911, and which is classified under the three headings—Seismology, Terrestrial Magnetism, and Gravity.

Seismology.

Instruments.—The instruments which are in service are: two Bosch photographic seismographs, described in the report of 1906; a Callendar electric thermograph; a Shaw-Dines micro-barograph; a Fuess electric anemograph; besides wet and dry bulb thermometers. The new instrument acquired during the year is the anemograph.

The above instruments, outside of the seismographs, serve as auxiliary instruments for the interpretation of the seismograms, which show at times disturbances and movements that are not readily attributable to carthquakes. In this respect they have served their purpose well, as illustrated by the accompanying reproductions showing an intercomparison of micro-barogram, thermogram, anemogram and seismogram. (Figs. 5, 6 and 7)

Beginning with the micro-barograph, which records rapid change of atmospheric pressure, but not the absolute pressure shown by a barometer, we find that almost simultaneous with the sudden increase of pressure, cold air pouring down from the higher regions, the thermograph shows a marked corresponding decrease of temperature. Again, this rapid increase of atmospheric pressure manifests itself by the pressure plate of the anemograph, and lastly the resulting steep gradients of the isobars induce strong winds, setting up oscillations of the observatory and ground, producing motion more or less irregular of the seismograph pier, as shown on the seismogram.

Owing to the proximity of our machine shop to the seismograph room, it has not been considered safe to draw conclusions as to the movement of the horizontal pendulum zero due to the diurnal heating of the earth by the sun, whereby the ground leaves or bulges following the course of the sun. It is expected that in the near future other quarters will be provided for the machine shop, and that the necessary delicate observations of earth movements due to heat may be made. As an example of the sensitiveness of the seismograph or horizontal pendulum, may be mentioned

3 GEORGE V., A. 1913

an incident of last August, when a party of the Sons of England, in convention here, visited the Observatory. Their presence in the room above the seismograph room, which is in the basement, was duly recorded by the seismograph, in fact the time of their coming and going to and from the room was clearly shown. The 'impression' they left behind amounted to .097 seconds of are, that is, they had compressed the earth equivalent to a gradient of one inch in thirty-three miles, or one in two million. Weighty Englishmen!

A brief description of the anemograph No. 1792, Fuess, Steglitz-Berlin, may be given. The accompanying illustrations will assist in understanding the working of the instrument. It records, by means of six pens, the direction, velocity and pressure of the wind, four pens being required for direction and one each for velocity and pressure.

Velocity.—Referring to Figs. 1, 2, 3, 4, C represents four copper hemispherical cups, each 204 cm. in diameter and 80 cm. between centres of opposite cups. The cup-cross is secured to a steel rod by a nut, and has a ball-bearing. The cups move very freely, being set rotating with the slightest movement of the air. The steel rod <math display="inline">R terminating in a point, rests in a small steel cup, and has a worm near its lower extremity which gears into the wheel G_i having 144 teeth, so that 144 revolutions of the cups C are equivalent to one revolution of the wheel G_i . The electric record that is made of the velocity is the record of each revolution of the wheel G_i and which is effected by an electric contact at T_i closing the circuit momentarily thereby actuating through an electro-magnet the ratchet wheel I in the recording device, to be described later, and moving the paper forward a half-millimetre, which is recorded by the pen O_i which also furnishes the time scale.

Direction.—The part of the apparatus WPV moves freely, being ball-bearing under the cap where the chain is seen. V is a copper vane, 58 cm. long, 30 cm. wide at the back and 18 cm. in front. The two plates forming the vane are 9 cm. apart in front and 29\frac12 cm. at the back. W is simply a counter-weight. The motion or direction of WPV is communicated through the brass rod E to the two gear wheels D, the axis of the left-hand one terminating in a quadrantally-divided cylinder, upon which electric contact is made by a split copper brush, so that the latter may rest either wholly on one quadrant or on two adjoining ones. The quadrants represent respectively the directions N., E., S., W. When the brush rests only on one quadrant, one of the cardinal points will be recorded as the direction of the wind; if it rests on two then the direction of the wind will be shown as being either N.E., N.W., S.E., or S.W. In short, the apparatus records eight different wind directions, N., N.E., E., S.E., S., S.W., W., N.W. With reference to the electric recording it may be mentioned here that the circuit for direction is in circuit with that for velocity, so that direction is only recorded when the circuit is closed at the gear wheel G, hence the records for direction and velocity are simultaneous; while the one pen O records that gear wheel G has made another revolution, one or two of the direction pens F records the direction of the wind at that moment.

Pressure.—P represents the pressure plate and, of course, being attached to the vane frame, always faces the wind. It is 25½ cm. in diameter, and is attached to the system of levers terminating in the spring S, which presses against a plate. The motion in and out of the plate P is communicated to the rod B, which in turn moves the arm A (Fig. 2) making, successively, twelve electric contacts H, representing twelve different pressures from 0 to 7.52 pounds to the square foot. How these different pressures from 0 to 7.52 pounds to the square foot.

In Fig. 2, N shows the connection for 20 wires. The mechanism of the anemometer is tightly closed in. The 20 wires are gathered into a lead-covered cable, not shown, which, in passing out of the lower part, is covered with a nut having packing so as to prevent moisture or snow from entering the lower case or compartment. The cable leads along the stone cornice of the Observatory and into the building to the recording apparatus.

The steel skeleton, made of 2-inch pipes (Fig. 3), supporting the anemometer, is m in height, and the cup-cross 2 m. above this, and 20 m. (66 ft.) above the ground. The skeleton is anchored in a heavy cement bed specially built in the corner of the Observatory roof.

In Fig. 4 is seen the connection of the wires of the cable to the lightning arrester L, to which also are connected the wires of the recorder and the wires K for the current of six volts supplied by a storage battery of three cells. The eight-day clock gives the time scale by means of the rod U carrying the pen O. This rod, with rack, rests on a pinion of the clock-work, and moves uniformly to the right about halfway across the paper. At each hour the minute hand a XII slightly raises the rod, when the weight within the damping cylinder Z draws it over to the left-hand edge of the paper. When the minute hand, tupped with a platinum point, disengages the rod U it also makes electric contact whereby the ratchet wheel I is moved one tooth, and the paper descends \(\frac{1}{2} \) mm. The hour line drawn across the paper consists, therefore, of a series of steps each of \(\frac{1}{2} \) mm., there being as many steps as the velocity gear wheel G, already described, has made revolutions during the hour, plus one step for each hour. Instead of counting the number of steps in an hour, a glass scale is provided, graduated to a hundred half-millimetres, with an extra half-millimetre at zero for the hour contact, which is not counted in with the velocity breaks or steps.

The direction of the wind is recorded by the four pens F, being in the order from the felt—north, east, south and west. They are connected to the armatures of four electro-magnets seen to the left, so that when the circuit is closed one or two of the pens makes a jog in the respective line.

The recording of the pressure is done by an ingenious device. It has already been stated that the pressure arm A makes twelve different contacts, there being, therefore, twelve different circuits or currents therefor, represented by the twelve coils Y above and below the iron plate X, which acts as an armature. This iron plate, carrying a vertical rod, rests on a pivot, and is free to move thereon, i.e., to be attracted to any corresponding pair of coils, so that the vertical rod describes, in going the rounds of all the contacts, a cone. This motion of the rod is communicated to the axis of a pinion which gears in the rack on the carriage M on which is supported the pen J for registering the pressure. The pressure is recorded for twelve definite pressures, the pen moving 3 mm. (6 half-mm.) for each pressure from zero pressure. The pressure record is thus represented by a to-and-fro movement of the carriage M, and this motion is recorded by the pen J. By comparing the length of the lines made by J with the table of constants, which I especially determined for this instrument, we obtain the pressure in pounds per square foot of the wind at any particular time.

Constants.—For velocity, we have the diameter of the cup-cross between centres of 80 cm. Hence pathway of one revolution is 251.33 cm. As the gear wheel G has 144 teeth, one revolution of the wheel is equivalent to 362 cm. Taking for an approximation that the cup velocity is one-third that of the wind, we obtain the indicated velocity of the wind as 1.086 km. for one revolution of the gear wheel G, that is for each electric contact.

3 GEORGE V., A. 1913

Professor Marvin's direct experiments for the relationship between cup and wind velocities with an anemometer whose cups were 4 inches in diameter and arms 13.44 inches, centre to centre of cups, gave the empirical formula:

*log
$$V = .509 + .9012 \log v$$

in which V is the true velocity of the wind, and v the velocity of the cups, the indicated velocity being 3 v. Although the dimensions of the Fuese supercoss are considerably larger than those of the Marvin anemometer, yet the above formula is fairly applicable to the former, as deduced from comparison of indicated velocities with recorded pressures, the latter having been directly measured, as about to be explained.

Before the anemometer was mounted outside, tests were made on the presserings which passed over small brass pulleys, and then weights were successively attached to the connected strings. Beginning with zero and increasing by one pound up to twelve pounds, readings were taken of the position of the arm A_0 , as it passed over the various contacts from 0 to 12. Each of the twelve small brass plates on which electric contact is made was subdivided by estimation to tenths when taking the readings of the arm A for the different weights. From a number of careful readings the following mean values were obtained:—

	IENTS WITH WEIGHTS OVER SING PRESSURE PLATE.	Interpolated	VALUES.
Pounds	Readings on Arm.	Readings on Arm.	Pounds.
0	1·62 3·20	1-62 2-50	0
2	4.66	3.50	1.21
2 3	5.95	4.50	1.89
4 5	7.17	5.50	2.65
5 6	8·03 8·74	6.50 7.50	3·45 4·38
5	9-32	8.50	5.66
ś	9.91	9-50	7.30
9	10.42	10.50	9.14
10	10-98	11.50	11.12
11	11.45	12-50	13.68
10	11.88		

It was intended to have the adjustment of the spring S so that the centre of the first small brass plate, which would be equivalent to 1.50 in the above method of reading, should indicate zero pressure, but after adjustment it was found that zero pressure read 1.62, a matter of no consequence. It must be remembered that the pressure plate is 25° cm. in diameter, giving a surface of 79.10 square inches. Hence, if the wind were blowing against a square foot, in order to produce the same arm reading, which is the record we get on our anemogram, the pounds pressure represented would be $\frac{79.16}{14} = .55$, that shown by the actual pressure plate of 25°

cm. diameter.

^{*} Circular D. Instrument Room, Washington, 1893.

Applying the constant .55 to the last column of the preceding table, we obtain the pressure per square foot when the contact is centrally over the twelve small brass plates, and equivalent to the arm readings of 1.50 (1.62), 2.50 to 12.50. On the anemogram, or pen record, it would be equivalent to scale readings 0 to 66 half-millimetres, there being, as aiready stated, a movement of the pen of 3 millimetres or 6 divisions of the half-millimetre scale for each successive electric contact.

Interpolating for the pressures thus obtained the indicated velocities, and from the latter the true velocities from the tables given in Marvin's paper, Circular D, referred to above, these latter are reproduced in Moore's 'Descriptive Meteorology,' 1910, as tables XXVII and XXVI respectively, we obtain the following table in which there is an interpolation for the mean between two successive contacts, or for every 3 half-millimetres:—

PRESSURE TABLE.

Glass Scale Reading	Press- ure per sq. ft.	Indicated Velocity	True Velocity	Glass Scale Reading	Press- ure per sq. ft.	Indicated Velocity	True Velocity
mm.	Pounds.	Miles.	Miles.	½ mm.	Pounds.	Miles.	Miles.
0 3 6 9	0 · 15 · 31 · 49	0 6 9 11.7	0 6 8.7 11.0	36 39 42 45	2·41 2·76 3·11 3·56	28·5 30·7 32·8 35·3	24-6 26-3 27-9 29-8
12 15 18 21	·67 ·85 1·04 1·25	14-0 16-0 17-9 19-9	12·9 14·6 16·1 17·7	48 51 54 57	4·01 4·52 5·03 5·57	37·8 40·3 42·8 45·3	31·7 33·6 35·4 37·3
24 27 30 33	1.46 1.68 1.90 2.15	21.7 23.4 25.0 26.7	19·2 20·5 21·8 23·2	60 63 66	6·12 6·82 7·52	47·8 50·7 53·5	39·1 41·3 43·4

Having constructed this table, a comparison became possible between the deduced true velocity from the formula for log V, based upon the actual revolution of the cups, and the deduced true velocity from the actual pressure recorded by the pressure plate. This comparison is not very simple or easy, especially for the higher velocities and pressures, as for these we seldom find them here continuous for any length of time, say an hour or hours. For such, it is necessary to take measurements for shorter intervals, for one or several revolutions of the velocity gear wheel G, as recorded on the time scale, and compare this with the offset on the pressure record opposite to it. For instance, on Oct. 1 there was a pretty high wind for some hours, fluctuating, however. Between 2 and 3 p.m. the maximum was reached, when, during an interval of about 4 minutes, the measurements for velocity gave an indicated velocity of 39 miles, while the measurement for pressure, 4.01 pounds to the square foot, gave an indicated velocity of 38 miles, a fair interagreement. Again, on that same day, the pressure for several hours kept pretty constant at .67 pounds, indicating by the above table a velocity of 14 miles, while the average velocity for that time was 16.5 miles, an agreement not so accordant as the preceding one. Reducing those indicated velocities to true velocities would not change the comparison of the two independently determined quantities.

The instrument has worked satisfactorily except on one or two occasions when glare ice (the freezing of rain in mild winter weather) prevented the free action of

the pressure plate. A change has been effected in the bearing of the anemometer rod, which rested in a steel cup. This latter serves now only as a guide, the weight being borne at a shoulder at the upper part of the rod on a ball-bearing.

It may be observed here that the standardizing of the large anemometers of the Imperial Meteroological Observatory at Potsdam, Germany, is done by means of a small anemometer which has been standardized at the Deutsche Seewarte, Hamburg, in the usual manner by mounting it on the extremity of a long arm which can be revolved at any given speed. The revolutions of both arm and anemometer are electrically recorded. The small anemometer is then set up in the proximity of the large one to be standardized, and from the records of both the constants of the latter are determined.

Earthquakes.

During the fiscal year there were recorded here 89 earthquakes of various degrees of intensity, as shown on the subjoined record. The most destructive, as far as human lives are concerned, were the earthquake at Cartago, in Costa Rica, on May 5, 1910, and the one of January 3-4, 1911, in Turkestan, Asiatic Russia, where many lives were lost. The distance to the epicentre of the former was 4,000 km. (2,500 miles), and to the latter, 9,800 km. (6,100 miles). It may be opportune here to refer to the method of the determination of the distance to an epicentre of a well-recorded quake, and a severe quake may be well recorded even if situate on the opposite side of the earth, but in such case the seat of disturbance must not be shallow, as was the case in the Massina destructive quake, but it must be deep-seated, say extending beyond 50 km. beneath the surface of the earth, so that it may obtain a thorough grip, so to speak, to give the earth a world-shaking.

The routine of a seismogram here is as follows:-Every morning at 10 a.m. a fresh photographic sheet is put upon the cylinder, the exposed one taken to the photographic room, developed and brought to my room, where it is examined. If an earthquake is recorded the diagram is analyzed into its constituent parts or phases. It is always gratifying if, during the quake, microseisms are absent. These are small pulsations of about 5 seconds period and are due to steep barometric gradients over the ocean, producing winds and consequent waves beating on the shores, setting up vibrations of the land, particularly if the surf pounds on and against rocky shores. On sand dunes it is less effective. We first look for the beginning of the quake, or first preliminary tremors, as is the technical term. As our seismograph (there are two) is a horizontal pendulum, and consequently records horizontal displacements of the motion of the ground, it is obvious that the more distant the quake the less effective will be the horizontal component of the longitudinal or compressional wave first arriving from the epicentre, the horizontal component disappearing completely at the antipodal point to the earthquake, where only the vertical component would be in evidence for that kind of wave, which is the one travelling with the greatest speed.

We minutely follow our zero line, which, in the absence of a disturbance, is a straight line, broken electrically by a short two-second interval every minute by our standard mean-time clock, and note the first deviation of the zero line, at times barely visible, although the motion is theoretically magnified 120 times. We measure along the respective minute, represented by 15 mm., the time of arrival of the first preliminary tremors, designated by P, and record it to the individual second. Generally the first indication of the arrival of a wave is followed within a second or so by a well-marked impulse or offset to the zero line.

We are next concerned with the finding of the second preliminary tremors S, produced by waves having transverse oscillations, like those of light,—distortional

waves. The horizontal components of these, for distant quakes, are generally better marked or recorded than those of the preceding or longitudinal waves, waves like those of sound. Having thus identified the arrival of these S waves, we have the data for determining the distance to the epicentre. However, we look for corroborative evidence, and continue our analysis of the seismogram. As explained in former reports, seismologists recognize in the energy of earthquakes three distinct forms of waves—the longitudinal wave, producing compression and dilatation; the transverse wave, producing distortion; and the surface wave. The first two travel through the earth, from the epicentre to any point on the surface, along the 'brachistochronic' line or curve, being the shortest time-line between the points, and is concave to the straight line joining the points, the curvature being dependent upon the constants of the material within the earth along its path, while the last travels along the surface.

As might be surmised, the velocity of the first two, as they dip into the earth to various depths with changing constants within certain limits, is variable, while for the surface waves the velocity is fairly constant, as established from our own records here of various quakes, and of the same quake using the records of widely separate stations.

Wiechert and Zöppritz compiled, a few years ago, the data of severe quakes whose geographical co-ordinates were well known, as well as the local time of occurrence. From these time-curves, improperly called by some, hodographs, were constructed the abscissae representing distance and the ordinates, time. From these, then, having S-P from a seismogram, or the difference in arrival of the second and first preliminary tremors, the corresponding distance to produce the difference in time is found. Professor Zeissig has interpolated the distances to 10 km. intervals and published a table for S-P to 12m. 56s. corresponding to a distance of 13,000 km. Although there is some room for improvement in the table, as the compilers well recognize, yet when the distances are not too great, say 7,000 km. the distance of S-P are in pretty good accord, say within about 50 km, with the actual distances obtained later from accounts of the earthquake in situ.

Having now obtained the distance, Δ , we look for corroboration. From our time-curve we have the time of propagation of either the first or second preliminary for that distance, i. e., we find the time of local occurrence of the quake. Knowing the rate of propagation of the surface waves, which is approximately 200 km. per minute, we have immediately the time when they should make their appearance on the seismogram, and this we compare with what we actually find to corroborate our S-P distance. Again, it is found that the longitudinal waves record themselves after having been once or even twice reflected. That is to say, such waves, striking midway between the epicentre and the respective recording station, are reflected. pursuing a similar course to their preceding one, and emerge at the station in a time equal to twice the time of propagation for half the distance a corresponding to S-P. The horizontal component of this reflected wave, if there has not been too much absorption owing to the longer course or path, often manifests itself more sharply owing to the smaller angle of emergence, calling the latter the angle made by the impulse with the surface of the earth, the horizontal component being a function of the cosine of this angle. Thus the comparison of the computed time of arrival of this reflected wave, PR_1 , with the actually recorded time is another means of checking our original deduced Δ from S-P. We may proceed similarly for P R2 for a wave twice reflected, that is, for a wave that divides the distance into three equal paths. This wave is, however, less often clearly definable. We may in some cases be able to identify reflected S waves. By the time the S waves arrive there begins a medley of interferences that are not really distinguishable. By the time the surface, or long waves L, arrive, the field is generally pretty clear, the P and S waves having spent themselves. Unfortunately, the earthquake waves and pulsations do not accommodate themselves for ease of reading and interpretation of the seismogram. Probably in the less number of cases is the break-down or cataclysm one single effort, but a series of shocks sending out their waves, producing thereby a rather complicated record that taxes one's skill to the utmost in deciphering it.

The most important record is, of course, the accuracy of the time of arrival of the first waves. From the nature of our instrument, having photographic registration, and therefore free from the friction inherent to mechanical registration, so much in vogue on account of cheapness, we have been able to detect movements of the earth so slight that mechanical registration would not respond to them.

We have now shown how the distance, Δ , of an earthquake is found from a single seismogram. For earthquakes that occur in inhabited regions we can subsequently compare our deduced distance with the actual one. This gives a measure, on the one hand, of the accuracy of our reading of the seismogram, and on the other, of the accuracy of the above time-curves.

With world-shaking quakes we obtain sometimes a record of long waves that have travelled along the longer part of the great circle passing through the epicentre and station. In such case the maximum amplitudes of the waves by the shorter and longer paths give us a measure of the absorption. By absorption, we understand the absorption of energy per unit distance, per kilometre. Assuming that the periods of the two sets of waves are the same, for our amplitude depends on the magnification of the instrument, and the magnification in turn on the period of the wave and on the damping co-efficient, we may write the general expression for absorption in the form

$$E_{\alpha} = E_{\varepsilon} e^{-s_{\Delta}}$$

in which $E_{\varepsilon} =$ original energy.
 $E_{\Delta} =$ energy at distance Δ from epicentre.

e=base of Naperian logarithms.

and k=co-efficient of absorption.

Hence the ratio of the energy at distance Δ to that at $40000 - \Delta$, would be as $e^{-k\Delta}$ to $e^{-k(40000-\Delta)}$ or as 1 to $e^{-k(40000-2\Delta)}$.

The manifestation of the energy we have expressed in our seismogram by the maximum amplitude. The energy at different distances varies as the square of the amplitudes, hence we have

$$\left(\frac{a_{40000-2\Delta}}{a_{\Delta}}\right)^{*} = e^{-k(40000-2\Delta)}$$

and, therefore,

$$k = \frac{2 \cdot 30}{40000 - 2\Delta} 2 \log \left(\frac{a_{\Delta}}{a_{4000 - \Delta}} \right)$$

where 2.30 is the reciprocal of log e.

The distance, 40000—2∆, is represented by the time interval between the M_E , M waves, that is, the times of arrival over the distances 40000— Δ , and over Δ . If we multiply this time interval by the rate of propagation or velocity, which we assume to be uniform, we obtain the desired distance. We may take the average

velocity of surface waves to be 200 km, per minute. Hence, if we express $M_\kappa-M$ in minutes, our formula becomes

$$k = \frac{.023}{M_{\odot} - M} \log \left(\frac{a}{a}\right)$$
.

In general, the former expression for k is preferable, as we eliminate M_k-M , also the assumed velocity of the L waves to which M belongs.

It is found that for a_c its value does not vary appreciably within a fairly wide range of the time $M_{s,a}$ and furthermore, that its actual measure on the seismogram is small, very small, and difficult to express with much accuracy, the error of reading being large compared with the quantity to measure. However, admitting these uncertainties, yet it is found by different investigators, and from the records of different earthquakes, that the co-efficient of absorption appears to lie between .00015 and .00035.

Taking the seismogram here of the recent severe earthquake, January 3-4, 1911, in Turkestan, where we had a record of the M and M_x waves, the value of k is found to be .00032.

Having dealt with the interpretation of the seismogram, as far as Δ and k are concerned, we shall turn to the location of an earthquake, i.e., of its epicentre. In my previous report it was shown how such location may be effected graphically by means of the stereographic projection, our data being the values of Δ for three stations, not too close together, and the geographical co-ordinates of the latter. This method has proved very satisfactory, and, for accuracy, quite in keeping with the accuracy of Δ . It goes without saying that careful plotting or drawing is essential for obtaining satisfactory results.

Instead of computing for every world-shaking earthquake the necessary values of d and r, required in our stereographic projection, the following tables: were computed, so that by simple inspection or interpolation for any distance Δ up to 13,000 km. the corresponding values of d and r are obtained. It will be remembered that d represents the distance from the Pole along the respective meridian line to the centre of the circle or arc, radius r, on which the epicentre lies. The values of d and r are computed from

$$d = \frac{\cos \varphi}{\sin \varphi + \cos \Delta}, r = \frac{\sin \Delta}{\sin \varphi + \cos \Delta}.$$

We may give an example of the application of the above tables for locating an epicentre, taking the Turkestan earthquake already referred to. As stations, we take Strassburg, Pulkowa and Ottawa, using their published time records of P and S for obtaining Δ , Zeissig's tables. We thus have the following data:—

Strassburg
$$\varphi=48°35'$$
, $\lambda=7°40'E$, $\lambda=5300$ km.= $47°42'$
Pulkowa $\varphi=59°46'$, $\lambda=30°20'E$, $\lambda=3690$ km.= $33°13'$
Ottawa $\varphi=45°24'$, $\lambda=75°43'W$, $\lambda=9800$ km.= $88°12'$

Interpolating from our above table we get for

$$\begin{array}{lll} {\rm Strassburg} & d = 4.65, \ r = \ 5.20 \\ {\rm Pulkowa} & d = 2.95, \ r = \ 3.16 \\ {\rm Ottawa} & d = 9.45, \ r = 13.45 \end{array}$$

in terms of radius = 10 cm.

^{*} These tables will appear in the Publications of the Dominion Observatory as Vol I, No. 1.

In the accompanying figure we have the primitive circle on which the projection is made of 10 cm. radius. We proceed to draw the meridian lines for each station, being simply the longitude from Greenwich, or zero meridian. d is laid off from the Pole along the respective meridian, and gives the centre of the circle of which r is the radius. Laying off the three d's and describing the three arcs we find them to intersect, if not at a mathematical point, yet very close to each other.

Theoretically if the earthquake emanated from a point, and our \(^{\alpha}\)'s were absolutely correct, then the intersection with careful drawing would practically represent a point for the epicentre. As a matter of fact, however, the earthquake or break-down is not a point, but more properly a plane, so that we can scarcely expect our intersections to have a common point, but instead to form a minute triangle, of which we take the centre of gravity as the most probable point of the greatest intensity of the seismic disturbance.

From the distance of the Pole to this point in our construction we obtain the latitude of the epicentre, for this distance is equal to tan $(45^\circ-\frac{1}{2}\varphi_o)$, where φ_o is the latitude of the epicentre. The longitude is read directly on our circle, simply

by drawing the meridian line from the Pole through the point or epicentre. In our diagram, the distance from the Pole is 4.28 cm., representing the tangent of $22^{\circ}10'$, hence $\varphi_0 = 43^{\circ}40'$, and the longitude we find to be $78^{\circ}20'E$. The epicentre of this quake has thus been found to be in

$$\omega = 43^{\circ} 40'$$
, $\lambda = 78^{\circ} 20'E$,

Prince Galitzin found, by his method, the geographical co-ordinates to be $\varphi = 43^{\circ}14'$, $\lambda = 78^{\circ}24'$, a very close agreement.

The epicentre has thus been found in a simple and expeditious manner, and with an accuracy quite in keeping with our data.

With a larger scale, say of 20 cm. for radius of our circle, we can attain somewhat greater accuracy. However, I find that with careful plotting that the 10 cm. radius serves the purpose quite well. To force the accuracy of our result within a few kilometres when our data lack such, is like cracking walnuts with a sledge-harmer. With the present conditions, I think we are doing pretty well if we feel fairly sure of our half degree in the location of our epicentre. As the absolute time at some, perhaps many, stations is not very accurately known, thereby affecting the time record, it will be noted that in the above method the absolute time does not enter, but only the time difference S-P, in short, the method is independent of the time correction. However, for other reasons, it is highly desirable that all stations have their time accurate within a second.

From our stereographic projection we may also deduce the azimuth of the epicentre. The azimuth is the angle at the station between the meridian and the tangent to the great circle passing through the station and epicentre. For describing this circle we have three points, the station, its nadir, and the epicentre. The station is projected on the meridian line at the distance of $\tan (45^2 - \frac{1}{2}\varphi)$, and the nadir at, and in the opposite direction, of $\cot (45^\circ - \frac{1}{2}\varphi)$. We have thus three points cut by the circle. The three points form a triangle in the circle, and the angle at the epicentre, from simple geometrical relations, is equal to $180^\circ - A$, where A is the required azimuth.

In the figure, the points for tan and cot $(45^{\circ} - \frac{1}{2}\varphi)$ for the three stations, and the connecting lines to the epicentre, are not drawn, to avoid confusion.

In the original drawing we find graphically for Ottawa $A=18^\circ$, and solving trigonometrically the spherical triangle, Pole – station –epicentre, we obtain $A=18^\circ 27^\circ$. Similarly, for Strassburg we find graphically $A=111^\circ 30^\circ$, computed, $A=112^\circ 30^\circ$, and for Pulkowa graphically $A=97^\circ 25^\circ$, computed, $A=97^\circ 25^\circ$. Prince Galitzin obtains the mean, from the maximum amplitudes at the beginning of the first pre-liminary termors, $A=97^\circ 25^\circ$.

The above azimuths are reckoned from north through east.

In some other methods the azimuth enters into the determination of the epicentre, which is not the case in the method described. It will now be shown briefly how the stereographic projection adapts itself also for plotting with azimuth and distance. We have given A and A. On the meridian line of any station we have three known points, their distances from the Pole being respectively

$$\frac{\cos \varphi}{\sin \varphi + \cos \Delta}$$
, tan $(45^{\circ} - \frac{1}{2}\varphi)$, and cot $(45^{\circ} - \frac{1}{2}\varphi)$,

as already explained; furthermore, the angle A at the station, which gives the tangent to the circle through the station and its nadir. Hence the circle can be described having given a chord (station to its nadir) and tangent.

Finally we draw an arc with radius $r = \frac{\sin \phi}{\sin \phi + \cos \Delta}$ at the distance d from the centre.

Where this arc cuts the above circle is the epicentre, whose geographical coordinates are then determined, as already described.

The stereographic projection for the location of the epicentre of a worldshaking earthquake has already been adopted by quite a number of stations on account of its simplicity.

Microseisms.

These pulsations that are world wide, and are recorded by modern instruments at every earthquake station, have been dealt with somewhat fully in former reports. Although their complete analysis has not vet been effected by any one, vet their cause, with the additional data as obtained here, is, as was deduced from previous years' records, due to the presence of a barometric 'Low' with steep gradients on the ocean near the coast, thereby setting up winds, followed by waves beating on the rocky shores of Eastern Canada and the New England States. If these shores were sandy beaches or lined with sand dunes throughout, the effect of the waves or surf would be materially lessened in producing these microseisms. The period of these pulsations does not vary very much, lying generally between 4 and 6 seconds. The steeper the gradients of the 'Low' the greater will be the amplitudes of the oscillations shown on the seismogram, while the period generally increases somewhat, but not by any means in the proportion of the amplitudes. Whether the periods synchronize exactly with the surf has not yet been established. The writer has on several occasions, during stormy weather on a trip across the Atlantic, counted the period of the waves as manifested by the pitching and dipping of the steamer, and found the period to be 8, 9, or 10 to the minute, i. e., 6 to 71 seconds.

At the meeting of the International Seismological Association at Zermatt, in September, 1909, a special committee on microseisms was constituted, of which the writer is a member, to have an instrument designed, constructed and mounted at the sea-shore for counting the waves, that is, of determining their period, so that the relationship between the latter and microseisms may be studied, The instrument is now in course of construction by the Cambridge Scientific Instrument Company, so that results may be looked forward to during the present year. One thing has been definitely established here, and that is, that microseisms have their origin on the ocean. One cannot but marvel that at a station hundreds of miles from the nearest sea-shore, as Ottawa is, the earth should be set in vibration, and such vibration be recorded, in consequence of an agitated sea.

In the accompanying Fig. 8, the prevalence of microseisms during the year 1910 is graphically shown. The daily record has been grouped by five days. The mean of the maximum amplitudes for every five days has been taken, or six groups for each month, and plotted as ordinate. A smooth curve was then drawn between the points so plotted.

It will be observed that the microseisms become very marked in October and continue so with some variation till the end of March, corresponding to more or less boisterous weather on the North Atlantic. February shows the most sustained large amplitude of microseisms. July and August are almost quiescent, which, too, agrees with the long barometric gradients in the gulf of St. Lawrence and adjoining Atlantic.

The effective beating of the surf, due to steep gradients, is undoubtedly affected by the direction of the wind, i. e., blowing on-shore or off-shore. This differentiation of direction has not yet been earried out in the analysis of microsesisms.

Microseisms, especially if of much amplitude, are a very disturbing element in reading the first phase of an earthquake record, more particularly of a distant one, for which the horizontal component is always weak, and at best sometimes difficult to read.

For the identification of the various phases and as an aid for the reading of seismograms, the following table, being re-arranged from the one of Dr. V. Conrad*, of time intervals between phases, as indicated at the head of each column, is given.

PHASE TABLE.

Distance	S-P	PR ₁ -P	PR ₂ -P	PR ₂ -P	SR ₁ -S	SR ₂ -S	SR ₁ -S	eL-P
km.	s.	s.	s.	s.	S.	s.	s.	min.
1000	108							1.9
1100	118							2.1
1200	128							2.3
1300	137							2.5
1400	147							2.7
1500	157							2.9
1600	166							3.1
1700	175							3.4
1800	185							3.6
1900	194	. 22	::	::	22			3.8
2000	203	15	18	19	28	34	36	4.0
2100 2200	211 220	17 19	21 24	22 25	32 35	39 44	42 48	4·3 4·5
2300	228	21	27	28	39	48	54	4.8
2400	237	23	30	31	42	53	60	5.0
2500	245	25	33	34	46	58	66	5.3
2600	253	28	36	37	51	65	73	5.5
2700	260	31	40	41	56	71	81	5-8
2800	268	34	43	44	61	78	88	6.0
2900	275	37	47	48	66	84	96	6.3
3000	283	40	50	51	71	91	103	6.5
3100	290	43	55	56	77	99	111	6.8
3200	297	46	59	61	83	107	119	7.1
3300	303	49	64	66	89	114	128	7.3
3400	310	52	68	71	95	122	136	7.6
3500	317	55	73	76	101	130	144	7.9
3600	323	58	77	81	107	138	153	8.2
3700	329	62	82	86	113	146	161	8-4
3800	335	65	86	92	119	153	170	8.7
3900	341	69	91	97	125	161	178	9.0
4000	347	72	95	102	131	169	187	9.3
4100	353	76	100	107	137	178	197	9.6
4200	359	80	105	113	144 150	187	207 216	9.9
4300 4400	364	84	109	118 124	157	196 205	226	10.2
4500	370 376	88 92	114 119	124	163	205	236	10·5 10·8
4600	381	92 95	124	135	170	223	247	11.1
4700	386	98	129	141	177	233	258	11.4
4800	391	102	133	146	183	242	269	11.7
4900	396	102	138	152	190	252	280	12.0
5000	401	108	143	158	197	261	291	12.3
5500	101	100	4 41)	400	- 40.1	201	~31	15.0

^{* &}quot;Seismische Registrierungen in Wien." K. Akad. d. Wissen. Neue Folge No. 39.

PHASE TABLE (Continued).

Distance	S-P	PR_1-P	PR_2-P	PR_4-P	SR ₁ -S	SR ₂ -S	SR ₂ -S	eL-P
km.	8.	8.	S.	S.	S.	s.	ь.	min.
5100	407	112	149	164	203	270	302	12.6
5200	412	116	155	171	209	280	313	12.9
5300	418	119	160	177	214	289	324	13.3
5400	423	123	166	184	220	299	335	13.6
5500	429	127	172	190 197	226 232	308 317	346 356	13·9 14·2
5600 5700	434 410	130 134	177 183	204	232	326	366	14.5
5800	445	137	188	210	243	334	376	14.8
5900	451	141	194	217	248	343	386	15.1
6000	456	144	199	224	254	352	396	15.5
6100	461	147	204	230	259	360	407	15.8
6200	467	150	209	236	263	368	417	16.1
6300	472	153	215	242	268	377	428	16.5
6400	478	156	220	248	272	385	438	16·8 17·1
6500	483	159 162	225 230	254 260	277 281	393 401	449 459	17.4
6600 6700	488 493	162	235	266	285	408	468	17.7
6800	499	167	240	271	290	416	478	18.0
6900	504	170	245	277	294	423	487	18.3
7000	509	173	250	283	298	431	497	18.6
7100	514	175	254	289	301	439	507	18.9
7200	519	177	258	294	305	447	517	19.3
7300	524	179	262	300	308	455	527	19.6
7400	529	181	266	305	312	463	537	20.0
7500	534	183	270	311	315	471	547 556	20.3
7600 7700	539 545	186 188	274 279	317 323,	318 321	478 484	565	20.0
7800	550	191	283	328	323	491	573	21.3
7900	556	193	288	334	326	497	582	21.6
8000	561	196	292	340	329	504	591	21.9
8100	566	198	296	346	332	511	600	22.2
8200	571	199	300	351	334	518	610	22.5
8300	575	201	303	357	337	525	619	22.9
8400	580	202	307	362	339	532 539	629 638	23·2 23·5
8500	585	204	311 315	368 373	342 344	545	647	23.8
8600 8700	590 595	206 208	319	379	347	551	656	24.1
8800	600	208	323	384	349	557	664	24.5
8900	606	211	327	390	352	563	673	24.8
9000	611	213	331	395	354	569	682	25.1
9100	616	215	335	400	356	575	691	25.4
9200	621	217	338	405	358	581	699	25.8
9300	625	220	342	411	361	587	708	26·1 26·5
9400	630	222 224	345 349	416 421	363 365	593 599	716	26.8
9500 9600	635 640	224	353	426	367	605	725 733	27.1
9700	641	226	357	431	368	611	742	27.4
9800	649	227	362	435	370	617	750	27.8
9900	653	228	366	440	371	623	759	28.1
10000	658	229	370	445	373	629	767	28.4
10100	662	230	373	451	376	635	776	28·7 29·1
10200	667	230	376	456	379	640 646	784 793	29-1
10300	671	231	380 383	462 467	381 384	651	793 801	29-4
10400 10500	676 680	231 232	383 386	407	384	657	S10	30.1
10500	684	232	390	478	389	662	819	30-1
10700	688	235	394	483	391	668	827	30-8
10800	693	237	397	488	393	673	836	31-1
10300	095	201	001	200	050	310		

Phase Table (Concluded).

Distance	S-P	PR_1-P	PR_2-P	PR_2-P	SR_1-S	SR ₂ -S	SR ₂ -S	eL-P
km,	s.	8.	S.	S.	S.	s,	s.	min.
10900	697	238	401	493	395	679	844	31.5
11000	701	240	405	498	397	684	853	31.8
11100	705	241	409	503	400	689	859	32-1
11200	709	242	412	507	403	695	865	32.5
11300	713	243	416	512	405	700	872	32.8
11400	717	244	419	516	408	706	878	33-2
11500	721	245	423	521	411	711	884	33.5
11600	725	247	426	526	414	716	894	33-8
11700	729	249	429	530	417	722	904	34.2
11800	733	252	432	535	421	727	915	34.5
11900	737	254	435	539	424	733	925	34.9
12000	741	256	438	544	427	738	935	35-2
12100	745	257	442	549	430	744	944	35.5
12200	748	259	445	555	434	750	952	35.9
12300	752	260	419	560	437	755	961	36-2
12400	755	262	452	566	441	761	969	36-6
12500	759	263	456	571	441	767	978	36-9
12600	762	265	459	576	448	773	986	37-3
12700	766	267	462	581	452	778	994	37-6
12800	769	269	466	585	455	784	1001	38-0
12900	773	271	469	590	459	789	1009	38-3
13000	776	273	472	595	463	795	1017 4	38-7

The following table gives the times of transmission along the respective paths of the longitudinal (P), and transverse (S) waves (first and second preliminary tremors) from the earthquake centre to points on the surface of the earth, distant the respective number of kilometres (every $100~\rm km$), measured on the surface, from the epicentre. The original table or curve by Zöppritz gives the values for every $500~\rm km$. The intermediate values have been interpolated.

TRANSMISSION TIMES OF P AND S WAVES.

Distance	P	s	Distance.	P	s	Distance.	P	S
km.	8.	s	km.	s.	s.	km.	s.	S.
100 200 300 400 500 600 700 800 900 1000 1200 1300 1400 1500 1600	14 28 41 55 69 82 96 109 123 136 149 161 174 186 199 211	25 50 74 99 124 148 172 196 220 244 266 289 311 334 356 377	1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200	222 234 245 257 268 278 289 299 310 320 329 339 348 358 367 376	398 418 439 460 479 498 517 536 555 572 589 607 624 641 657 672	3300 3400 3500 3500 3700 3800 3900 4000 4100 4200 4300 4400 4500 4500 4500 4500	384 393 402 410 418 426 434 442 449 456 464 471 478 485 492 496	688 703 719 733 747 761 775 789 802 815 828 841 854 866 878 889

3 GEORGE V., A. 1913

TRANSMISSION TIMES OF P AND S WAVES .- Concluded.

Distance.	P	S	Distance.	P	S	Distance.	P	S
km.	s.	s.	km.	s.	8.	km.	8.	8.
4900	505	901	7700	671	1216	10400	815	1491
5000	512	913	7800	677	1227	10500	820	1500
5100	518	925	7900	682	1238	10600	825	1509
5200	524	936	8000	688	1249	10700	830	1518
5300	530	948	8100	694	1259	10800	834	1527
5400	536	959	8200	699	1270	10900	S39	1536
5500	542	971	S300	705	1280	11000	844	1545
5600	548	982	S400	710	1291	11100	849	1554
5700	554	994	8500	716	1301	11200	853	1560
5800	560	1995	8600	721	1312	11300	858	1571
5900	566	1017	8700	727	1322	11100	862	1579
6000	572	1028	8800	732	1333	11500	S67	1589
6100	578	1039	8900	738	1343	11600	871	1596
6200	584	1050	9000	743	1354	11700	875	160
6300	589	1062	9100	748	1364	11800	880	1613
6400	595	1073	9200	753	1374	11900	884	1623
6500	601	1084	9300	759	1384	12000	888	1629
6600	607	1095	9400	764	1394	12100	892	1637
6700	613	1106	9500	769	1404	12200	896	164
6800	619	1118	9600	774	1414	12300	901	1655
6900	625	1129	9700	779	1424	12400	905	166
7000	631	1140	9800	785	1433	12500	909	166
7100	637	1151	9900	790	1443	12600	913	167
7200	643	1162	10000	795	1453	12700	917	168
7300	648	1172	10100	800	1462	12800	921	169
7400	654	1183	10200	805	1472	12900	925	169
7500	660	1194	10300	810	1481	13000	929	170
7600	666	1205						

This table is useful for finding the time of occurrence of the quake at the epicentre, and thereby one is enabled to check the times of arrival of the P and S waves at different stations. When making comparisons of the different records for a given quake one is almost sure to find discordances in the times given for the phases, particularly for the first, or P phase.

It happens, not infrequently, that for a distant quake the P waves fail to record at all, the horizontal component of the impulse being so small, and that, instead, the S waves are read for P waves. In such a case the above table helps to show up such erroneous readings.

Frequently, in dealing with the determination of the epicentre of an earthquake, we have before us a collection of records far from harmonious; on the contrary, the records are conflicting, and, like a case before a judge, the evidence of each witness has to be carefully weighed, circumstantial evidence must be taken into account, so that the verdiet may harmonize, as well as possible, with the nature of the evidence submitted.

A great drawback in the location of earthquakes in uninhabited parts, or in the ocean, is the very unsymmetrical distribution of earthquake stations, reliable ones, around the earth.

The determination of an epicentre is generally in the nature of a triangulation, graphically or mathematically, for which purpose it is obvious that our triangles should be 'well-conditioned' for reliable results.

When we are obliged to use the data of stations that are close together, we do not have the conditions necessary for getting satisfactory results. For such stations, an inaccuracy of some seconds in the reading of a seismogram, when combined with those of nearby stations, may give widely different geographical co-ordinates for the epicentre.

Although Japan has many earthquake stations for studying the seismic condition of the country, it is to be regretted that Japan does not publish weekly or monthly bulletins, as so many other stations do, of the earthquakes recorded elsewhere. It would be so helpful in their location.

The following table, computed for radius 6,367 km., gives the chord and middle ordinate for successive values of the arc from 1,000 to 20,000 km., or 9° to 180°.

1000 km.	Angular.	Chord.	Middle Ordinate.	1000 km.	Angular.	Chord.	Middle Ordinate
		km.	km.			km.	km.
1 1.5 2.5 3.5 4.5 5.5 6.6 7.7 7.5 8.5 9.5 10	9° 00' 13° 30' 15° 00' 22° 30' 27° 00' 31° 30' 40° 30' 45° 00' 45° 00' 58° 30' 63° 00' 63° 00' 63° 30' 83° 30'	999 1497 1992 2484 2973 3456 4407 4873 3331 5781 6222 6654 7074 8270 8644 9004	20 44 78 122 176 239 312 394 485 585 694 812 938 1073 1216 1216 1267 1562 1662	11 11.5 12.5 13 13.5 14.5 15.5 16.5 17.5 18 18.5 19.5	99° 00′ 103° 30′ 108° 00′ 112° 30′ 117° 00′ 121° 30′ 121° 30′ 128° 00′ 138° 00′ 138° 30′ 144° 00′ 148° 30′ 157° 30′ 166° 30′ 171° 00′ 171° 30′ 171° 30′ 180° 00′	9683 10000 10302 10588 10858 11110 11346 11564 11765 11947 12111 12256 12382 12489 12577 12646 12095 12724 12724	2232 2425 2625 2830 3040 3256 3477 3702 3930 4163 4400 4639 4881 5125 5371 5619 6117 6367

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada. Latitude 45° 23′ 38″, Longitude 75° 42′ 57″ or 5° 02° 51′.8 W. Greenwich. Time: Mean Greenwich, midnight to midnight. Instruments: Two Boseh photographic horizontal pendulums. Nomenclature: Göttinger.

						Amplitude		
No.	Date	Char.	Phase	Time	Period			Remarks
						A_E	A_N	
	1910.			h. m. s.	8.	μ	μ	
1	Apl. 3	I	eL	19-35-5	14			
			F	19-57				
2	Apl. 11	I	eL	S-17				Earthquake report- ed from Califor- nia.
3	Apl. 12	II_{u}	eP?	0-35-20				ma.
			e	0-40-50				
			iPR_2	0-41-31				Epicentre 11,000 km.
			iS	0-46-44	4			KIII.
			M	0-46-50		12	18	
			PS_{E}	0-48-07				
			eL?	0-50-15				
			eL_{N}	1-03-36	14			
			eL_E	1-06-20				
			$L_{\mathcal{E}}$	1-10	20			
			F	2-0				
4	Apl. 13	I	е	6-50-48				
			еL	7-02	14			
			F	7-38				
5	Apl. 27	I	eS _E ?	1-38-49		. 2		N component very weak.
			eL	1-47	17			weak.
			F	2-10				
6	May 1	$I_{\mathcal{H}}$	e	19-01				
			$eL_{\mathcal{E}}$	19–32 to 19–37	24	3		
			L_E	19–43 to 19–51	17	3		
			F	20-25				

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa,
Canada, etc.—Continued.

						Ampl	litude.	
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1910.			h. m. s.	s.	μ	μ	
7	May 5	I	P_N ?	0-34-50	3			Distance, 4000 km.
			PR ₁ ?	0.36-07				Earthquake re- ported Cartago,
			S_B	0-40-35	4			Costa Rica.
			$L_{\mathcal{E}}$	0-45-5				
			L	46 to 50	20			
			M_B	0-49		4		
			M_N	0-51			2	
			F	1-20			2	
8	May 11	I	P_N	7-31-39	2			
			PR_1	7-32-23	2.3			Distance, 3000 km.
			S_E	7-36-5				(San Domingo)?
			L_E	7-40	20	1		
			F	8-03				
9	May 12	I	P_N	9-11-03	2.5			Distance, 2500 km.
			SB	9-15-06				No L recognizable.
			ϵ_Z	9-18-40				
			ε_{EN}	9-20-06				
			egn	9-20-08				
			M_E	9-28		5		
			F	9-45				
10	May 13	II	P	8-07-20				
			S	8-14-36				Distance, 5600 km.
			L	8-21-16	8			
			L	8-25	14			
			M	8-32		12	7	
			L	8-43	12			
			L	8-53	11			
25	a-3							

3 GEORGE V., A. 1913

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Char.	Phase. Time.	Period	A_B	A_N	Remarks.	
	1910.			h. m. s.	S.	μ	μ	
	May 13	II	F	10-27				
11	May 15	I	P_N ?	16-04-20	3			Sheet changed be- tween 15-50 and
			eLE?	16-07	S			15-54
			F	16-20				
12	May 20	I	P	12-12-18				
			S	12-17-10				
			L	12-20-20	16			Distance, 3200 km.
			L	12-22	36			
			L	12-24	20			
			M	12-26-5	15	10		
			L	12-32	}			
			F	12-55				
13	May 22	$I_{\mathfrak{u}}$	P	6-36-28				Distance, 9600 km.
			PR_1	6-39-33				
			S	6-47-13				No distinct max- imum.
			L	6-57				mum.
			L_E	7-07	36			
			$L_{\mathcal{S}}$	7-15	19			
			L_{NB}	7-22	16			
			F	S-00				
14	May 31	II	P	5-02-22				
			M	5-02-38		25	9	Distance, 4000 km.
			PR ₁	5-03-51				
			S	5-08-00	ļ			
			SR_1	5-08-30				
			L	5-15-20				
			L	5-21	16			

SESSIONAL PAPER No. 25a

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Amp	litude.	
No.	Date.	Char.	Phase. Time.	Time.	Period	A_B	A_N	Remarks.
	1910.			h. m. s.	s.	μ	μ	
	May 31	II	F	6-20				
15	June 1	I_u	e?	6-16-07				
			e?	6-21-37				
			еL	6-33-5				No record on N-S
			Nil	6-35 to 6-55				component.
			L	6-55-5	26			No maximum.
			L	6-59 to 7-05	20			
			L	7-08 to 7-16	16.5			
			L	7-52 to 7-55	20			
			F	S-15				
16	June 14	I	P	19-46-00				
			s	19-51-46				Distance, 4000 km.
			eL?	19-54				
			L	19-55-40	20			
			F	20-26	·			
17	June 16	II	eP(?)	6-50-00				Strong microseisms
			i	6-51-00	5	8		prevail.
			s	7-00-50				
			L	7-07-40	20			Distance, 8600 km.
			M	7-08-5	20	17		
			L	7-28	42			
			L	7-34 to 7-37	20	15		
			L	7-48 to 7-52	16			
			L	8-42 to 8-44	20			
			L	8-51 to 8-53	16			
			F	9-25				

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Date. Char. Phase. Time.	Time.	Period	A_E	A_N	Remarks.	
	1910.			h. m. s.	8.	μ	μ	
18	June 25	I	e	19-42	7			Small microseisms
			L_N	19-57-0	23			obscure first pre- liminary tremors.
			F	20-55				
19	June 29	I	eP?	8-29-34				
			S?	8-36-52				Distance, 5800 km.
			L	8-47-13	20			
			M	8-53-40			6	The amplitudes by
			L	8-55	14.5			E-W component are about 3/3 of others.
			F	10-20				others.
			Lr	11-13				
			Mr	11-47	18		6	
			Lr	11-51	17		5	
			Lr	12-05	16		5	
			Lr	13-02	16		1	
			Fr	13-42				
20	July 2	I	e	17-25				
			L	17-29	9			
			M_N	17-30-10	7	4	3	
			F	17-50				
21	July 3	I	e	9-25-36				
			i	9-27-28				
			M_E	9-28-23	5	8		
			M_N	9-28-30	12		6.5	
			F	10-00				
22	July 4	I	e	4-51				
			i	5-08			J	
			L?	5-09	9	3	2	

SESSIONAL PAPER No. 25a

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Char.	Phase.	Time.	Period	A_{B}	A_N	Remarks.
	1910.			h. m. s.	s.	μ	μ	
	July 4	I	F	6-03				
23	July 7	II	P	4-51-30				
			S?	4-56-15	6			Distance, 3000 km.
			L	4-58-31	16			
			M	4-59-20		112	100	
			F	6-02				
24	July 7	I	е	8-35-16	6			No maximum
			i	8-39-22	6			
			eL	9-34	30			
			L	9-43	20			
			F	10-20				
25	July 17	I	e	8-14				
			F	8-22				
26	July 17	I	P	10-07-12	4			Distance, 4000 km.
			S	10-13-00	7			
	-		M	10-20-16	9	8	13	
			F	10-57				
27	July 20	I	iP?	3-47-19				
			i	3-56-08	7	3	5	
			i	3-56-52	6	6		
			L_N	4-01	20			
			F	4-25				
28	July 22	I	L	3-01				L very weak and
			F	3-54				not continuous.
29	July 29	I	е	10-48				Light of N com-
			L	10-59-14	19			ponent too weak for distinct re-
			L	11-33 to 11-41	22			cord.

3 GEORGE V., A. 1913

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampli	tude.	
No.	Date.	Char.	Phase.	Time.	Period	A_B	A_N	Remarks.
	1810.			h. m. s.	s.	μ	μ	
	July 29	I	F	12-35				
30	Aug. 5	II	iP	1-38-30				
			iS	1-44-11				
			L_N	1-48	11			
			L_{E}	1-49-4	12			Distance, 3900 km.
			M_N	1-51-7	14		100	
			M_E	1-54		25		
			F	3-25				
			L_{RN}	4-08	22			
31	Aug. 11	I	P(?)	16-36-20	}			
			iS	16-41-31				Distance about 3400 km.
			L	16-42-10	12			5400 Km.
			M	16-47	12	12	10	
	1		F	17-48				
32	Aug. 21	A	P_N	5-56-22				M not well defined in L.
			P_E	5-56-36				Distance, 3600 km.
			iS_N	6-01-56	6			
			iS_E	6-01-51	6			
			SR_1	6-03-00	5	6		
			SR ₂	6-03-53	5	4		
			L	6-05	12			
			F	7-18				
33	Sep. 1	I	eL	1-37				
			L	1-50	20			
	1		F	2-12				
34	Sep. 6	I	iP	20-14-37				
			iS	20-24-08	l			

SESSIONAL PAPER No. 25a

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Char.	Phase.	Time.	Period	A_R	An	Remarks.
						· A B	ZAŅ	
	1910.			h. m. s.	s.	μ	μ	
	Sep. 6	I	L	20-41	12			Distance, 8250 km.
			M	20-46	20-23	2	4	
			L	20-46 to 50	20-23			
			F	21-35				
35	Sep. 7	I	iP	7-31-49				
			iS	7-38-44	5			
			PS	7-41-40				
			eL	7-45-5				
			L	8-14 to 32	20			Distance, 5300 km.
			M	8-20	20	. 4	6	
			F	9-32				
36	Sep. 7	I	eL	10-47	8			
			M	11-00	8	2	4	Possibly belongs to
			F	12-08				preceding quake.
37	Sep. 9	II	iP	1-23-42	5			
			iS	1-32-00	8			
			L	1-42	40			Distance, 6750 km.
			M	1-50	23	12		
			F	3-37				
38	Sep. 9	I	e	9-33				
			L_E	10-07	20			
			F	10-35				
39	Sep. 16	I	е	19-25-36				
			M	19-29	5-7	6	4	
			F	19-44				
40	Sep. 22	I	P?	12-50-51	4			
	1		S?	12-53-51	7			

3 GEORGE V., A. 1913

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1910			h. m. s.	s.	μ	μ	
	Sep. 22	I	eL_N	12-58	10			
			eL_E	13-02	10			
			F	13-27				
41	Sep. 24	II	iP	3-39-20	3			
			iS	3-44-52	5			
			L	3-50-5	32			Distance, 3750 km.
			M_N	3-58	24		13	
			F	5-05				
42	Sep. 24	I	iP	4-20-47	3-4			Shock during pre-
			eЕ	4-23	10			ceding disturb- ance.
			M_N	4-23.7	6		12	
			M_E	4-24-7	5	25		
43	Sep. 24	I	eP?	18-47-17	5			
			S?	18-53-00	5			
			εL	19-02	16			
			M	19-02-5	16	2	2	
			F	19–46				
44	Oct. 4	I	iP_N	23-10-52				
			iS	23-19-34	5-6	15	15	Distance, 7200 km.
			cL	23-31-4	24			No distinct max-
			F	24-18				imum.
45	Oct. 16	I	е	2-31				Microseisms ob-
			F	2-45				literate phases.
46	Oct. 18	I	е	3-30				Microseisms ob-
			L	3-42	17			literate phases.
			F	4-05				

SESSIONAL PAPER No. 25a

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Amp	litude.	
No.	Date.	Char.	Phase.	Time.	Period	A_{E}	A_N	Remarks.
	1910			h. m. s.	s.	μ	μ	
47	Nov. 6	II	P?	20-43-52				N-S component not
			L	20-50				working.
			M	20-50-7		50		
			F	22-00				
48	Nov. 9	II	P_E	6-28-22				No distinct max-
			S_E	6-34-00				imum.
			L_N	6-36-20	10			Record conspicuous
			L	6-56	24			for the continuous and well-marked
			L	7-02 to 8-38	20-17			long waves.
			F	9-05				Distance, 3850 km.
49	Nov. 10	I	e	12-57				
			LE	13-21	24			Strong micro-
			$L_{\mathcal{Z}}$	13-31	16			seisms. No phases recog- nizable.
			L_N	13-34	15			nizabie.
			F	14-15				
50	Nov. 12	I	e	18-27				
			F	18-50				
51	Nov. 14	I	e	8-27				
			$L_{\mathcal{E}}$	8-33	22			
			L_N	8-35	24			
			$L_{\mathcal{B}}$	8-41	15			
			M_N	8-47	14		6	
			F	9-21				
52	Nov. 15	I	e _N	0-30-3				
			F	0-51				
53	Nov. 15	I	e_N	14-32				
			L_N	14-41	13			

3 GEORGE V., A. 1913

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampli	tude.	
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1910			h. m. s.	s.	μ	μ	
	Nov. 15	I	M_N	14-50			6	
			L_N	15-20	20			
			F	15-47				
54	Nov. 26	II	P?	5-07-16				Microseisms mask
			S?	5-11-20				P and S.
			eL	5-18	20			
			L	5-26	20			
			M_N	5-42-5	20		8	Period of L de-
			M_{B}	5-48	20	8		creases.
			L	5-42 to 6-18	24-16			
			F	7-55				
55	Nov. 29	I	eL_N	3-18	20			E component very feeble.
			L_{N}	3-29 to 3-43	20-16			reeble.
			F	3-56				
56	Dec. 4	I	e _N ?	11-43-5				
			е	11-51				
			е	12-12				
			L	12-16 to 12-30	20-16			L decrease in
			F	13-07				period
57	Dec. 10	I	е	9+				Unfortunately a
			L_{NE}	10-35 to 10-44	16-5			poor photo- graphic sheet makes the dia-
			F	13			ļ	gram only read- able in patches.
58	Dec. 13	II	P_B	11-56-10				note in pateries.
			$S_{\mathcal{B}}$	12-05-46				Distance, 8300 km.
			L_N	12-21-5	28			Strong micro- seisms prevailed.
			L_N	12-29	24			ociono prevaneu.
			L_{E}	12-31 to 12-33	20			

SESSIONAL PAPER No. 25a

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

				The state of the s		Amplitude.		
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1910.			h. m. s.	s.	μ	μ	
	Dec. 13	II	M_N	12-31-5	20		21	
			M	12-39	18-16	15	17	
			L_N	12-40 to 12-45	16			
			F	14-48				
59	Dec. 14	I	P_E	21-04-18	3			Microseisms pre-
			ig	21-09-32				vailed. Phases difficult to
			Sz?	21-10-35	5		4	Long waves almost
			i _N	21-11-20		4		wholly wanting. No maximum.
			ig	21-11-25				
			L_{E}	21-17-3				
			in	21-19-19				
			i _N	21-23-23				
			L_N	21-25	12			
			F	22-00				
60	Dec. 16	I	P	15-05-20				No record 15-21 to
			M7	16-00	24		12	15-38. Changing sheet, etc.
			L	16-09 to 16-13	18	5	10	
			L	16-26 to 16-28	16			
			F	18-00				
61	Dec. 21	I	P_N	10-31-00				
			PR_1	10-32-24				Distance, 4300 km.
			SN	10-37-00				Microseisms pre- vailed.
			L_N	10-46-9	20			
			L	10-48 to 10-53	15-11			
			F	11-25				
62	Dec. 23	I	P?	0-50-32				Microseisms pre- vailed.

3 GEORGE V., A. 1918

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampli	itude.	
No.	Date.	Char.	Phase.	Time.	Period	A_{E}	A_N	Remarks.
	1910.			h. m. s.	s.	μ	μ	
	Dec. 23	I	P?	0-58-38				P difficult to read.
			L	1-05	25			S not recognized.
			L	1-11 to 1-14	16-15			
			M_N	1-11-5	15		6	
			M_B	1-12-2	16	6		
			F	2-20				
63	Dec. 28	I	P?	17-46-14	2			
			S?	17-49-06				
			F?	18-30				
6-4	Dec. 29	I	eL_N	14-18-3	16			
			L_N	14-23	20			
			F	14-55	,			
65	Dec. 30	I	P?	1-07-49				E-W Component weaker.
			S?	1-15-34				weaker.
			eL?	1-18-2				
			L	1-26	10			
			F	2-00				
66	Dec. 30	I	P	3-26-42	2			
			S	3-31-28				E-W Component weaker.
			L	3-43	18			weaker.
	1911		F	4-13				
67	Jan. 1	I	e_N	10-41-36				
			L_N	11-09-7	20			Preceded by ex-
			L_N	11-25	13			tremely strong microseisms.
			F	11-55				
68	Jan. 2	I-	e_E	11-07				
			e_N	11-09-7				

SESSIONAL PAPER No. 25a

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1911			h. m. s.	s.	μ	μ	
	Jan. 2	I	L_N	11-36 to 11-39	29			
			L	11-41	20			
			F	12-00				
69	Jan. 2	I	e	23-19				
			L	23-48 to 23-53	20			
			L	23-55	18			
			L	24-00	16			
			F	24-55				
70	Jan. 3	I	e_N	8-12-5				
			L_N	8-18-5	20			E comp. shows only
			F	8-43				traces.
71	Jan. 3-4	II	P_N	23-38-36	3			
			P_E	23-38-43	3			
			PR_1	23-42-20				
			S_N	23-49-16	s			Distance, 9800 km.
			S_E	23-49-40	8			
			L_N	23-55-40				Turkestan quake.
			L_Z	23-56				
			L	23-57	36-40	50	135	
			M	0-16	20	170		
			M	0-18	20		335	
			L	0-36 to 1-06	15			
			F	2-50				
72	Jan. 7	I	е	2-33-12				
			S?	2-44-18				Partly masked by wind effect.
			L	3-03	16			wind effect.
			L	3-20	20			

3 GEORGE V., A. 1913

RECORD of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1911			h. m. s.	s.	μ	μ	
	Jan. 7	I	L	3-28	19			
			F	4-10				
73	Jan. 9	I	e	4-46				Waves appear to continue for some
								hours, but diffi- cult to different- iate from wind effect as shown by anemogram.
74	Jan. 10	I	е	11-00-32				
E.			F	11-10				
75	Jan. 10	I	e	12-31				
			F	12-57				
76	Feb. 5	II	P	4-30-42	4			
			PR_1	4-32-40				
			S	4-36-02	6			Distance, 3560 km.
			L	4-38-34	19			
			M	4-40-20	19	67	60	
			L_N	4-41	20			
			F	6-07				
77	Feb. 7	I	P	2-27-18				
			S	2-32-36	ļ			
			L	2-35-08	8-12			
			M_N	2-36-9	12		6	
			M_E	2-38.7	6	8		
78	Feb. 16	I	e	20-24-57				
			F	20-31				
79	Feb. 17	I	е	2-50-50				
			M	2-51-20	5.5	8	4	
	1		F	3-06	I	·		

SESSIONAL PAPER No. 25a

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Continued.

						Ampl	itude.	
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1911			h. m s.	s.	μ	μ	
80	Feb. 17	I	е	14-40-25				
			M	14-40-46	5.5	8	4	
			F	15-07				
81	Feb. 18	I	е	2-05				
			i	2-12				
			L	2-13	10			
			F	2-57				
82	Feb. 18	II	e_N	19-04-30				
			$\epsilon_{\rm g}$	19-01-34				
			iP_N	19-04-45				No distinct S.
			iP_E	19-01-43				
			L_E	19-23	16			Press report quake in Monastir.
			L_N	19-24-5	20			in Monastir.
			M_N	19-35	20		60	Distant 7350 km.
			M_E	19-36	14	30		
			$L_{\mathcal{B}}$	19-41 to 19-43	14			
			L_N	19-45 to 19-50	14			
			F	20-54				
83	Feb. 19	I	e	2-31-6	20			
			F	2-42				
84	Feb. 26	I	e	13-00-20	10			
			L	13-07-5	30			
			F	13-25				
85	Mar. 11	I	eL	4-14				N-S component
			L	4-17	20			has now magnetic damping.
			L	4-22	19			E-W component re- tains air damp- ing.

Record of the Earthquake Station, Dominion Astronomical Observatory, Ottawa, Canada, etc.—Concluded.

						Amp	litude.	
No.	Date.	Char.	Phase.	Time.	Period	A_E	A_N	Remarks.
	1911			h. m. s.	s.	-μ	μ	
	Mar. 11	I	L	4-34	16			E-W considerably
			F	5-00				masked by mic- roseisms.
86	Mar. 13	I	P	7-40-31				
			ϵL	7-41-16	10			
			F	7-56				
87	Mar. 15	I	е	2-26-4				
			F	2-44				
88	Mar. 19	I	P	4-31-07				Epicentre 4040 km.,
			S	4-36-56				
			L	4-44-00	20			croseisms, being very small. Air
			L	4-47	14			damping shows them and there-
			F	5-01				by almost masks quake.
89	Mar. 21	I	eL	3-20	14			

Terrestrial Magnetism.

The magnetic survey of Canada has been continued during the past year. Two observers were in the field. Mr. C. A. French occupied 48 stations along the line of the Canadian Pacific railway between Chapleau and Mosejaw, a distance of 1.200 miles, giving an average distance between the stations of about 25 miles.

Mr. J. W. Menzies occupied 44 stations distributed over western Ontario between Napanee and Windsor, with intervals approximately of 25 miles also.

At all the stations observations were taken for declination, dip and intensity, besides the necessary ones for azimuth and latitude. Mr. French used the magnetic outfit of preceding years, and described in previous reports, being a Tesdorpf magnetometer, Kew dip circle, and Watt transit. Mr. Menzies had a Cooke magnetometer, Kew dip circle, and Watt transit. As usual, both observers made comparison observations at the Agincourt Magnetic Observatory, before and after the season's work, to standardize the field instruments.

At all the stations along the Canadian Pacific railway the eastern and western magnetic elongations were observed, and the mean taken for the magnetic meridian or declination. Observations were taken at other times, also, for the purpose of eventually preparing a diurnal variation table for those northern parts or regions.

The observations in Ontario for declination did not include those of elongation, but invariably were duplicated; the general order of observations being: Azimuth, declination, dip, oscillations, deflections, deflections, oscillations, dip and declination. To the declination observations was then applied the correction or diurnal variation obtained from data tabulated from the continuous records of the Aginocut Magnetic Observatory.

A number of the stations occupied during the past season had been occupied by the Carnegie Institution in 1906, so that by the comparison of the observations in 1906 and 1910 we obtain a value for the secular variation for the interval, and also the value for the average annual change in declination. The true nature of the secular variation is still unknown, as well as of the law of its slow change. We can interpolate with a fair degree of accuracy, but extrapolation is very uncertain, especially if the time is anything but a very few years in advance. For example, the Toronto Magnetic Observatory (now at Agincourt, some 13 miles away, to avoid influence of trully lines) has the longest reliable magnetic record in America, so that the empirical formula deduced from the long period would be expected to give a pretty accurate value for extrapolation. The formula for Toronto, given in Appendix No. 9, Report for 1879 of the United States Coast and Geodetic Survey, deduced from 40 years' observations (1840 –1880), is:

 $D=+3\,^{\circ}.60+2\,^{\circ}.82$ sin $(1.4\mathrm{m}-44\,^{\circ}.7)+0\,^{\circ}.09$ sin $(9.3\mathrm{m}+136\,^{\circ})+0\,^{\circ}.08$ sin $(19\mathrm{m}+247\,^{\circ}),$ where m=t-1850,t being the year for which the declination is sought.

Taking t=1910, hence m=60, we obtain

D=5°17′, whereas the actually observed declination was 6°02′ (January, 1910). Although the stations are not quite identical, yet the difference of three-quarters of a degree shows the unreliability of extrapolating for years in advance.

We may cite an interesting case of secular variation in connection with Haussmann's magnetic survey of Württenberg, in 1900. Kornthal, near Stuttgart, was his base station, and comparison observations were made with the magnetic observatory at Potsdam. From the subsequent observations in 1902, the annual change for Kornthal was found to be 4′.5. Based on this, values for declination—1905, Bavaria undertook a magnetic survey of its state, and amongst the stations was Ulm, a border city between the above two states. The declination observed here was found to show a greater annual change than had been found only a few years before. The continuous records of Potsdam confirmed this. Thus Potsdam showed an annual decrease in declination, up to 1903, of from 4′.2 to 4′.0, and from 1904 to 1910 it increased to 7′.4, which, for Kornthal, would be 7′.5, i.e., 3′.0 more than was determined in 1900-1902, and which was supposed to hold for some years, but which was subsequently found to be materially unreliable to be thus applied.

Although the same annual change holds for a fairly large area, say a hundred miles square, yet individual places in such an area show deviations from the normal.

As in the past few years, a magnetic map accompanies this report, showing the direction of the magnetic meridian at the stations occupied during the year. It is found that these magnetic maps find favour with the public, more so than do those showing irregular curved lines of equal declination, i.e., isogonic lines. Although these lines are based on magnetic observations at particular places, yet the continuous line is more or less hypothetical, and its meaning is not so readily understood by the public as a definite direction at a station of the magnetic meridian, together with its declination or variation of the compass as it is called by the ordinary man. Mr. C. A. French reports on his work during the season as follows:-

The instruments used on the Magnetic Survey during the season of 1910 included a Testorpf fibre declinometer and magnetometer, No. 1977, for measuring declination and horizontal intensity; Dover dip circle, No. 145, for inclination; Troughton and Simms 6-inch theodolite for time, latitude and azimuth, and a halfseconds mean-time chromometer, Bond 511, for determining the time of oscillations.

With few exceptions, latitude was obtained from meridian altitudes of the sun, circle right and left. The azimuth of the reference point, and time were obtained from the altitude of the sun, and, whenever possible, two observations were taken, one about 9 a.m., and one about 3 p.m., at each station. In every case, the magnetic declination was obtained by taking the mean of the eastern elongation, which usually occurs between 7 and 8 a.m., and the western elongation between 1 and 2 p.m.

It frequently happened that the number of days of morning elongations differed from the number of days of afternoon elongations, in which case the mean of the mornings was taken as one observation and the mean of the afternoons as one. In addition to the elongations, there were taken a number of observations for declination which were not used to obtain a mean value, owing to the fact that no corrections for diurnal variation were available for this region. It is boped, however, that from these results, combined with those of the preceding and next year, a table of diurnal variations will be compiled, which will be of service in reducing observations in succeeding years. A summary of the corrections obtained from observations during the season are given below. In table A are given the actual observations for declination, and the time of each; the mean declination obtained from the mean of the elongations; and the difference between the mean declination and the individual observations. These differences reduced to the even hour and half-hour, are given in table B.

TABLE A.

Station.	Date.	L. M. Time.	Observed Declination.	Mean of E & W Elongations.	Correction for Diurnal Variation
	1910	h. m.	۰ ,	0 /	,
Chapleau	May 7	7-14 8-55 10-05 10-40 11-37 1-11 3-04 3-51 5-01	4-07·7W 13·1 17·5 20·3 23·0 24·0 22·2 20·9 18·9	4-,16·4W	- 8·7 - 3·3 + 1·1 + 3·9 + 6·6 + 7·6 + 5·8 + 4·5 + 2·5
	May 9	7-34 8-55 9-34 9-51 10-24 10-58 11-46 1-06 2-36	10·2 10·3 12·1 13·9 14·6 17·7 21·0 21·5 23·7		$\begin{array}{c} -6.2 \\ -6.1 \\ -4.3 \\ -2.5 \\ -1.8 \\ +1.3 \\ +4.6 \\ +5.1 \\ +7.3 \end{array}$

TABLE A-Continued.

Station.	Date.	L. M. Time.	Observed Declination.	Mean of E & W	Correction for
			Declination.	Elongations.	Diurnal Variation
	1910	h. m.	۰ ,	۰ ,	,
Wayland	May 10	10-07 12-55 3-27 5-05	5-09-0W 14-8 13-6	5-08-8W	+ 0·2 + 6·0 + 4·8
	May 11	5-05 8-07 9-34 10-26 12-50	10·6 2·7 4·3 8·6		+ 1·8 - 6·1 - 4·5 - 0·2
Missinaibi	May 14	12-52 4-17	15·0 5-58·8W 51·5 48·6	5-48·8W	+ 6·2 +10·0 + 2·7 - 0·2
- 1	May 16	6-19 7-29 8-49 10-03 10-28	48-0 48-0 51-7 54-7		- 0.2 - 6.8 - 0.8 + 5.9 + 5.9
		11-25 11-25 12-49 2-08 3-42	53·7 52·5 53·0 53·0		+ 3·9 + 4·9 + 3·7 + 4·2 + 4·2
Grasett	May 19	7-22 9-05 12-52 4-20	3-39·8W 42·8 53·6	3-46·1W	- 6·3 - 3·3 + 7·5
	May 20	5-43 7-27 9-02 9-56	47-0 42-2 39-8 39-2 41-3	-	+ 0.9 - 3.9 - 6.3 - 6.9 - 1.8
White River	May 23	10-28 1-02 2-51 3-36 5-27 7-34 8-40 9-40 10-29	48·4 51·0 54·1 50·5 46·0 3-05·2 9·2 14·3 16·6	3-11-9W	+ 2·3 + 4·9 + 8·0 + 4·4 - 0·1 - 6·7 - 2·7 + 2·4 + 4·7
	May 25	11-28 1-09 3-26 7-54 9-46	18-8 21-5 17-6 3-0 9-3		+ 6·9 + 9·6 + 5·7 - 8·9 - 2·6
Montizambert.	May 27	10-26 12-45 7-35 9-08 10-30	13·4 17·6 2—15·7W 19·1 24·4	2-22·3W	+ 1·5 + 5·7 - 6·6 - 3·2 + 2·1
Heron_Bay	May 28 May 30	1-02 3-27 4-11 7-42 7-34 9-05 10-04 11-30 1-00	28·6 28·6 23·6 16·4 2-25·4W 28·5 28·1 37·2 40·2	2-33·4W	+ 6.3 + 6.3 + 1.3 - 5.9 - 4.9 - 5.3 + 3.8 + 6.8
		3-34	36.5		+ 3.1

TABLE A-Continued.

Station.	ion. Date. L. M. Time. Observed Declination.		Mean of E & W Elongations.	Correction for Diurnal Variation	
	1910	h. m.	0 /	0 /	,
Heron Bay	May 31.	7-37 S-45	2-27·8 24·6	2-33.4W	- 5·6 - 8·8
		9-44 10-24 1-07	31·6 30·1 40·2		- 1·8 - 3·3 + 6·8
Middleton	June 4	7-20 9-18	17-58-7E 51-4	17-48-9E	- 9.8 - 2.5
		10-28 12-59 3-00	47·0 39·1 41·4		+ 1.9 + 9.8 + 7.5
Schreiber	June 7	5-55 7-21	47·7 0-25·2W	0-31·7W	- + 1·2 - 6·5
		9-09 10-02	24·1 28·1 31·6		- 7·6 - 3·6 - 0·1
		10-32 11-19 1-29	35·6 37·7		+ 3·9 + 6·0
		3-18 4-48	38·1 35·1		+ 6·4 + 3·4
Gravel	June 10	7-47 9-15	0-30-8E 30-3 26-2	0-25·1E	- 5·7 - 5·2 - 1·1
		10-21 1-37 3-31	19·3 20·5		+ 5·8 + 4·6
Nipigon	June 11	8-02	1-14-6E 00-9	1-07·0E	- 7·6 + 6·1
	June 13	7-32 9-28 10-18	13.6 8.3 4.1		- 6.6 - 1.3 + 2.9
		1-09 11-20	0-58·8 1-00·3		+ 8·2 + 6·7
Dorion	June 14	3-03 7-24	1-8 1-41-9E	1-39-5E	+ 5·2 - 5·4 - 1·5
		9-20 10-31 1-14	41·0 37·8 33·6		- 1.5 + 1.7 + 5.9
Mackenzie	June 15	4-01 7-40	34·1 2-54·9E	2-49·3E	+ 5·4 - 5·6
		9-02 10-34 1-40	54·9 49·5 43·6		- 5.6 - 0.2 + 5.7
Fort William	June 17.	4-09 7-48	47·4 3-21·3E	3-16·5E	+ 1.9 - 4.8
		10-33 1-15 3-53	12·3 11·5 15·1		+ 4·2 + 5·0 + 1·4
	June 18		24·0 9·4		- 7·5 + 7·1
Kaministikwia	June 22	8-04 10-32	0-33·2E 26·6	0-25·3E	- 7·9 - 1·3
Savanne	June 27.	1-42 4-01 7-41	17·4 25·3 4-35·7E	4-28·1E	+ 7.9 0.0 - 7.6
Savame	ounc 21.	9-26 10-32	33·2 29·0	. 50 15	- 5·1 - 0·9
		1-34	21.6		+ 6.5

TABLE A-Continued.

Station.	Date.	L. M. Time.	Observed Declination.	Observed Mean of E & W Elongations.	
	1910	h. m.	0 /	0 /	,
Savanne	June 28	4-04 4-43 7-48 10-31 11-40	4-23·5 24·1 35·7 28·5 23·3	4-28.1E	+ 4.6 + 4.0 - 7.6 - 0.4 + 4.8
Niblock	June 30	1-11 7-43 9-33 10-34 1-36	19-3 4-62-0E 59-6 55-9 47-2	4-54-5E	+ 4.8 + 8.8 - 7.5 - 5.1 - 1.4 + 7.3
	July 1	4-33 7-23 10-34 12-58 7-33	51.9 62.0 53.0 46.8		+ 7·3 + 2·6 - 7·5 + 1·5 + 7·7
Martin	July 2	9-33 10-32 11-46	5-05·3E 2·8 4-57·9 55·1	4-58·1E	- 7·2 - 4·7 + 0·2 + 3·0
	July 4	1-36 4-34 7-52 9-26 9-56 10-36	53·1 54·9 5-05·1 2·2 0·6 4-58·9		+ 5·0 + 3·2 - 7·0 - 4·1 - 2·5 - 0·8
Ignace	July 6	10-36 10-56 1-21 7-29 9-25 10-24 1-19 3-49	55·1 49·4 6-15·2E 9·2 5·9 1·0	6-10·5E	+ 3·0 + 8·7 - 4·7 + 1·3 + 4·6 + 9·5
	July 7	4-49 7-34 10-32 1-22	5-6 8-8 19-5 8-2 4-2		+ 4.9 + 1.7 - 9.0 + 2.3 + 6.3
	July 8	7-17 9-29 10-30 1-24 3-34	19·2 13·1 11·0 4·0 6·7		- 8·7 - 2·6 - 0·5 + 6·5
Taché	July 11	7-41 9-38 10-37 1-41	6-63·7E 65·6 57·5 50·7	6-57-4E	+ 3·8 - 6·3 - 8·2 - 0·1 + 6·7
	July 12	4-38 7-31 7-51 8-01 8-21	54-2 65-0 64-4 63-8 64-2		+ 3·2 - 7·6 - 7·0 - 6·4
Wabigoon	July 13	9-36 10-34 1-51 1-50	62·4 58·8 49·9 7-33·2E	7-39-0E	- 6.8 - 5.0 - 1.4 + 7.5 + 5.8
	July 14	$^{4-46}_{8-00}_{10-00}$	37·2 46·7 43·6		+ 1·8 - 7·7 - 4·6

TABLE A-Continued.

Station.	Date.	L. M. Time.	Observed Declination.		Correction for Diurnal Variation
	1910	h. m.	0 /	. ,	,
Vabigoon		10-35	7-41-0	7-39.0E	- 2.0
Oryden	July 16	1-30 8-09	29·2 8-24·8E	8-14-1E	+ 9·8 -10·7
		10-32 1-41	14·7 2·9		- 0.6 +11.2
	July 17	4-42 7-24	9·6 23·9		+ 4·5 - 9·8
Eagle	July 18	1-24 2-27	4·8 6-27·7E	6-34·7E	+ 9·3 + 7·0
	July 19	4-29 7-18	31·4 42·2		+ 3·3 - 7·5
	July 15	9-31 10-34	38·3 34·0		- 3·6 + 0·7
		11-52 2-00	27·5 28·0		+ 7·2 + 6·7
		7-38	41-4		- 9.7
ermilion	July 20 July 21	4-59 7-37	30·4 7-51·3E	7-42-8E	+ 4·3 - 8·5
		9-00 9-39	49·3 46·0		- 6·5 - 3·2
		10-33 1-47	42·2 34·2		+ 0.6 + 8.6
fawk¶Lake	July 92	4-55 7-42	39·3 7-38·8E	7-28-4E	+ 3·5 -10·4
awkilake	July 25	10-31 2-04	30·2 19·3	1-20-42	- 1·8 + 9·1
		4-56	23.5		+ 4.9
	July 24	7-42 10-26	35·7 30·8		- 7·3 - 2·4
		12-05 1-54	25·8 19·7	1	+ 2.6 + 8.7
enora	July 26	10-37 1-49	9-60·2E 51·8	10-00-4E	+ 0·2 + 8·6
	July 27	4-48 7-39	54·3 67·8	1	+ 6.1
	July 21	10-31 1-57	62·5 54·2		- 2·1 + 6·2
almar	July 28	10-35	9-31·4E 25·4	9-31-7E	+ 0·3 + 6·3
		2-05 4-41	25.8		+ 5.9
	July 29	6-27 7-02	26·8 37·9		+ 4·9 - 6·2
ennie	July 29	2-03 4-38	10-13·4E 16·2	10-19·7E	+ 6·3 + 3·5
	July 30	7-53 10-26	26·1 20·5		- 6·4 - 0·8
		1-46 4-28	13·5 16·3		+ 6·2 + 3·4
C1 14	July 31	7-56 1-39	25-9 10-49-4E	10-57-0E	- 6·2 + 7·6
Vhitemouth	Aug. 1	4-58	54.6	10-57-02	+ 2.4
	Aug. 2	7-42 10-04	66·1 54·7		- 9·1 + 2·3
		10-53 1-45	52·5 46·3		+ 4·5 +10·7

TABLE A-Continued.

Station.	Date.	L. M. Time.	Observed Declination.		Correction for Diurnal Variation
	1910	,	. ,	0 /	,
	1910	h. m.			
Whitemouth Norquay	Aug. 4	7-40 1-49	10-59·9(omit) 11-13·0E	10-57.0E 11-23.0E	+10.0
1.orquuy		4-33	19-6	11 20 02	+ 3.4
	Aug. 5	7-54 10-40	32·1 23·6		- 9·1 - 0·6
		1-56 4-29	14·8 20·6		+ 8·2 + 2·4
Winnipeg	Aug. 8	10-33	13-58·1E	$13 - 56 \cdot 7E$	- 1.4
	Aug. 9	1-42 7-34	47·9 63·6		+ 8.8
		10-32	59·9 51·7		- 6.9 - 3.2
Marquette	Aug. 11	1-30	13-09-6E	13-17·7E	+ 5·0 + 8·1
	Aug. 12	4-40 7-22	12·4 25·3		+ 5.3
		10-36	18-5		- 7·6 - 0·8
Portage-la-		1-33	10-6		+ 7.1
Prairie	Aug. 15	10-42 1-32	9-24·4E 20·9	$9-26 \cdot 9E$	+ 2·5 + 6·0
	Aug. 16	7-50	34-8		- 7.9
		10-32 1-37	25·2 16·9		+ 1·7 +10·0
McGregor	Aug. 17	10-35 1-55	13-08·7E 1·1	13-09·8E	+ 1·1 + 8·7
		4-37	4.0		+ 5.8
Carberry	Aug. 18 Aug. 19	7-50 7-43	18·5 15-51·6E	15-44-0E	- 8·7 - 7·6
Canada y Tritti		1-38 4-28	36·3 40·0	10 11 02	+ 7.7
	Aug. 20	8-06	52-1		+ 4·0 - 8·1
		10-33 1-35	40·8 36·1		+ 3·2 + 7·9
Brandon	Aug. 23	7-36 10-33	15-12·0E 15-03·9	15-03-9E	- 8·1
		1-34	14-53-5		0·0 +10·4
	Aug. 24	4-49 7-59	14-58-0 15-13-9		+ 5.9 -10.0
	1106. 211.	10-33	15-02-9		+ 1.0
	Aug. 25	1-39 7-34	14-56-4 15-10-9		+ 7·5 - 7·0
Griswold	Aug. 26.,	1-31 7-41	14-56·5 16-11·3E	16-04-6E	+ 7·4 - 6·7
Onsword	ug. 20	10-33	4.7	10-01-02	- 0.1
		1-44 4-24	15-57·8 61·4		+ 6.8 + 3.2
Virden	Aug. 27	7-57 10-32	16-49-9E 45-0	$16-43\cdot 1E$	- 6.8 - 1.9
		1-37	36-6		+ 6.5
Kirkella	Aug. 28 Aug. 30	7-37 1-25	. 49-4 16-08-0E	16-13-9E	- 6·3 + 5·9
	Aug. 31	4-35 8-00	15.4	10 10 01	- 1.5
	Aug. 51	10-30	19·5 9·1		- 5·6 + 4·8
		1-23	8-6		+ 5.3

TABLE A-Concluded.

Station.	Date.	L. M. Time.	Observed Declination.	Mean of E & W Elongations.	Correction for Diurnal Variation
Wapella	1910 Sep. 1	h. m. 7-38 10-28	° , 17-58-7E 47-7	° , 17-50-6E	- 8·1 + 2·9
Broadview	Sep. 3	1-48 7-36 10-28 1-21 7-33 10-29 1-25	44.2 57.7 48.6 42.0 17-20.9E 11.9 6.4	17-13·3E	+ 6·4 - 7·1 + 2·0 + 8·6 - 7·6 + 1·4 + 6·9
	Sep. 5	4-20 7-45 10-30 1-35 3-40	12-8 19-5 13-2 6-5 11-5		+ 0.5 + 0.5 - 6.2 + 0.1 + 6.8 + 1.8
Wolseley	Sep. 9 Sep. 10	1-35 4-22 8-07 9-37 10-32	18-10-2E 14-0 27-0 19-7 14-0	18-18-1 <i>E</i>	+ 7·9 + 4·1 - 8·9 - 1·6 + 4·1
Indian Head	Sep. 12 Sep. 13	1-32 1-56 4-33 8-01	8·1 19-28·4E 32·0 38·5	19-32·7E	+10·0 + 4·3 + 0·7 - 5·8
Balgonie	Sep. 14	9-26 10-31 1-31 1-43 4-18 8-03 10-29	35·3 31·8 25·1 18-50·9E 54·0 63·9 54·1	18-57-6E	-2.6 + 0.9 + 7.6 + 6.7 + 3.6 - 6.3 + 3.5
Regina	Sep. 16	1-20 10-31 1-35 4-40	51·5 19-23·0E 20·3 27·8	19-26-8E	+ 5·5 + 6·1 + 3·8 + 6·5 - 1·0
Pense	Sep. 17 Sep. 19	7-52 10-32 1-32 7-45	33·0 24·0 21·0 19-52·5E	19-45-5E	- 6·2 + 2·8 + 5·8 - 7·0
	Sep. 20	10-31 1-58 4-42 10-30	43·3 38·5 43·4 19-48·1E	19-52-9E	+ 2·2 + 7·0 + 2·1 + 4·8
	Sep. 21	1-18 4-12 7-41 10-24	50.5 48.9 54.6 50.0	20.02	+ 2·4 + 4·0 - 1·7 + 2·9
	Sep. 22	1-23 7-30 10-28 1-37	51·7 56·6 52·2 50·4		+ 1·2 - 3·7 + 0·7 + 2·5
	Sep. 23	4-23 7-22 10-29 1-32	50·1 58·8 50·5 47·5		+ 2·8 - 5·9 + 2·4 + 5·4

TABLE B. Hours in Local Mean Time.

11 -	DR 110. 20a
2-00	
6-30	0 0 5
9-00	
2-30	22
2 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4-30	4 d c c c
4-00	4 24-0 T 8-11 04 4 5 F-99 8 4-04 05 6
3-30	4 40 0 0 04 3 40 3 3 3 3 40 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3-00	20 · · · · · · · · · · · · · · · · · · ·
2-30	9
2-00	6
-30	0 00 000 100 100 100 00 00 00 00 00 00 0
1-60	0-000 54000 00 000 00 00 00 00 00 00 00 00 00 0
30	
12-00 12-30	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
11-30 12	тара таран
9-30 10-00 10-30 11-00 11-30	.e
30	0 10 0 0 12 00 0 0 0 0 0 0 0 0 0 0 0 0 0
01 00	-0%
010	
00-6	
8-30	
800	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7-30	\$\text{\$\pi\$}\$ \$\phi\$ \$\phi\$\$
2-00	
fonth	nno

3 GEORGE V., A. 1913

TABLE B.—Concluded. HOURS IN LOCAL MEAN TIME.

2-1KO		:
6-30	#	2.3
6-(9)		
2-30		2.0
2-00-5		3.5
4-30 5		3.4
4-00		3.0
		10 =
00 3-30		& 4 4
00		2 %
2-30		-
2-00	x みあいみ 立x x x x x x x x x x x x x x x x x x x x x x	7.5
1-30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.3
1-00		6.9
98		3.7
00 12		9.4
30 12		1-0
00 11		2.9 4
0-11-0	Fix :04040 :00F4 :000 - :0 :0041 :1 :00 :xx041	
9-30 10-00 10-30 11-00 11-30 12-00 12	000 000-00 -00-0 00-0 00-0 00-0 00-000	9.0+8
10-00		1.3
	- 2.0	- 3.6
00-6		4.8
8-30		6.1
8-00-8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.3
7-30 8	4	7.2
7-00-7	I it is it y it at a sail it. I that all the transport to	6.2-7
	39	
Month	Aug	Mean

The mean value for each hour and half-hour is given at the foot of the corresponding column, the small figures underneath indicating the number of observations from which the mean value was determined. Owing to the range of declination at Middleton and Dryden being rather large, the results at these places were left out of consideration.

At least two observations were taken for dip, one in the morning and one in the afternoon. In case the number of morning and number of afternoon observations differed, the mean of the morning was always combined with the mean of the afternoon values. The horizontal force was obtained from a complete set (oscillations and deflections) both in the morning and afternoon, the mean of the morning being always taken as one observation, the mean of the afternoon values as one, in case there were not the same number of each.

A complete day's observations consisted of the following, and in the order named: Declination (clongation), azimuth, declination, dip, declination, delections, oscillations, latitude, declination (clongation), oscillations, deflections, azimuth, dip and declination. Frequently, when no astronomical observations were necessary, one or two extra observations for declination were taken. At a number of stations, two complete days' observations were taken.

Before commencing, and after completing the field work for the season, observations were made at the Magnetic Observatory at Agincourt, Ont, for comparing the field instruments with the standard instruments. The following table gives the corrections that were applied to the observed values, not only for the season 1910, but also for the two preceding seasons 1909 and 1908; also the value of $\log P$ where P is a constant depending on the distribution of the magnetism in the intensity magnet.

	Tesdorpf 1977		Dover 145.		Tesdor Log			
Year.	Corr. Decl.	Corr. Hor. Int.	Needle.	Corr. Dip.	Short Dist.	Long Dist.	Remarks.	
1908	+3'-2	· 00061H						
1909	+1'.8	00104H	No. 1 & 2	-'·5	9-99106	9.99475		
1910	+3'.6	00128H	No. 1	-'-8	9-99178	9.99541	Log P, determined	
			No. 2	-'·2			from 31 observa- tions, distributed over the entire season.	

Note:-Western declination reckoned negative, eastern declination positive.

3 GEORGE V., A. 1913

During the season, 48 stations, lying between Chapleau, Ont., and Moosejaw, Sask., were occupied. Below is given a summary of the work done at each station.

		No.	OF OBSER	RVATION	Remarks.	
Station.	Date.	Declination.		D.		
		E. Elong.	W. Elong.	Dip.	Hor.Int.	
Chapleau	May 7, 9	2	2	2	4	Relocation of the Car- negie Institution sta- tion of 1906. Needle steady. Auroral dis- play on night of 9th.
Wayland	May 10-11	1	2	3	4	Weather cold and cloudy. Needle steady. As- tronomical observa- tions not completed until May 13.
Missinaibi	May 14-16	1	2	4	3	The greatest westerly declination recorded on the 16th occurred about 11 a.m.; not much change for about 5 hours following.
Grasett	May 19-20	2	2	3	2	Disturbance on May 18. Needle slightly disturbed on 19th. Declination observations taken during the disturbance on May 18, on which day Halley's comet was nearest the earth, are given below. See p. 65.
White River	May 23-25	2	2	4	2	Approximately, a reloca- tion of the Carnegie Institution station of 1906, but, owing to the removal of reference points, it was impos- sible to be sure of the precise point. Observ- ing was discontinued on May 24, owing to a slight disturbance.
Montizambert	May 27-28	2	1	2	2	Faint aurora on night of May 26. Needle slight- ly unsteady on morning of 27th and again on morning of 28th; how- ever, no observations were discarded.
Heron Bay	. May 30-31	2	2	4	4	Cloudy with snow on 30th; rained nearly all day of 31st, and needle slightly unsteady. Unable to complete the astronom- ical observations until June 3.

		No.	of Obsei	RVATIONS		
Station.	DATE.	Declination.		D:-	TT T	Remarks.
		E. Elong.	W. Elong.	Dip.	Hor.Int.	
Middleton	June 4	1	1	2	2	Considerable local attraction. Range of declination, 19'.6, and dip was 80°20'. Sample of rock taken from cliff near station de-
Schreiber	June 7-8	1	1	2	4	flected the needle. Weather fine. Needle remained practically stationary for about stationary for about two hours on morning of the 7th, and for about same length of time at noon. Dis- turbance on morning of Sth. so discarded the declination observa- tions.
Gravel	June 9-10	1	1	3	2	Worked only part of the 9th owing to a disturb- ance.
Nipigon	June 11-13.	2	2	4	4	observed about 15 feet southerly from the Carnegie Institution station of 1906. Weather conditions good for observing.
Dorion	June 14	1	1	2	2	Only one day spent at Dorion. Needle steady.
Mackenzie	June 15	1	1	2	2	Only one day spent at Mackenzie.
Fort William	June 17-18.	2	2	4	4	Needle slightly unsteady, probably due to the electric car line which is about ½ mile to the east.
Kaministikwia	June 21-22.	1	1	2	2	Discontinued observing on 21st, owing to a disturbance.
Raith	June 23-25.	2	2	3	2	Weather conditions good for observing. Needle steady.
Savanne	June 27-28.	2	2	4	4	Approximately, a reloca- tion of the Carnegie Institution station of 1906. Needle steady.
Niblock	June 30- July 1	2	2	3	3	Smoky owing to bush fires.
Martin	July 2-4	2	2	3	4	The Western elongation about 3'.7 less on July 4th than it was on July 2nd; needle some- what unsteady at noon on 4th.

		No. of Observations for							
STATION.	DATE.	Declination.		Die	Hor.Int.	Remarks.			
		E. Elong.	W. Elong.	Dip.	Hor.inc.				
Ignace	July 6-8	3	3	4	4	Discarded observation of July 5th, owing to a dis- turbance. Slight dis- turbance on July 7th. Thunder storms on 6th and 7th.			
Taché	July 11-12	2	2	4	4	No astronomical observations, except latitude obtained on the 11th, owing to clouds and showers. Thunder and hail storm about noon on the 12th, and unsettled during most of the afternoon.			
Wabigoon	July 13-14	1	2	3	3	Conditions on both days satisfactory for observ- ing.			
Dryden	July 16-17	2	2	2	2	Judging from the results obtained here there is apparently consider- able local attraction, although the surface conditions do not in- dicate it.			
Eagle	July 18–20.	. 2	2	2	2	Approximately, a relo- cation of the Carnegie Institution station of 1906. Conditions fa- yourable for observing.			
Vermilion	July 21	. 1	1	2	2	Completed the work in one day. Needle steady.			
Hawk Lake	July 23-24.	. 2	2	4	4	Weather conditions not very favourable; other- wise everything was quite satisfactory.			
Kenora	July 26–27.	. 1	2	2	4	Re-occupied the Carne- gie Institution station of 1906. Apparently favourable conditions, though there is a good deal of rock in the vicinity.			
Kalmar	. July 28-29	1	1	2	2	Had difficulty in locating a suitable place for ob- serving, owing to the uneven nature of the locality, which is, for the most part, covered with small trees.			
Rennie	. July 29–30.	. 2	2	3	3	Conditions favourable for observing.			

		No.	of Obsei	RVATIONS				
STATION.	Date.	Declination.		Di-	Hor.Int.	Remarks.		
		E. Elong.	W. Elong.	Dip.	nor.int.			
Whitemouth	Aug. 1-2	1	2	2	3	The necdle manifested a slight unsteadiness on Aug. Ist and 2nd, though the variation during the day seems quite regular. The range is rather large, being IS 2. Observed for declanation on Aug. are suits, as there was a marked disturbance.		
Norquay	Aug. 4-5	1	2	3	3	There was no apparent disturbance at the time of observing, though the range seems rather large, being 18'.2.		
Winnipeg	Aug. 8-9	1	2	3	4	The station is a reloca- tion of the Carnegie Institution station of 1906. Point is marked by a stone pier marked 'C. I. 1908.' The needle showed signs of un- steadiness. There was an auroral display on		
Marquette	Aug. 11-12	1	2	2	2	the 9th. Conditions favourable for observing.		
Portage-la-Prairie.	Aug. 15–16.	1	2	2	4	Thunder storms on after- noon and evening of the 15th; otherwise, condi- tions were favourable.		
McGregor	Aug. 17-18.	1	1	2	2	Needle slightly unsteady on the morning of the 18th.		
Carberry	Aug. 19-20.	2	2	4	4	Needle slightly unsteady Aug. 19.		
Brandon		3	3	4	4	Aug. 19. Was unable to occupy the Carnegie Institution station of 1906, owing to the erection of build- ings in the vicinity. Lo- cated on the Experi- mental Farm. Was un- able to complete the astronomical work un- til the 25th.		
Griswold	Aug. 26	2	2	2	2	Completed the work in		
Virden	Aug. 27-28	2	1	2	2	one day. Slight unsteadiness of the needle on the 28th. Took an eastern elongation on the 29th, but a disturbance apparently existed.		

		No.	OF OBSER	RVATIONS	FOR			
STATION.	Date.	Declination.				Remarks.		
		E. Elong.	W. Elong.	Dip.	Hor.Int.			
Kirkella	Aug. 30-31	1	2	2	3	The station is approxi- mately a relocation of the Carnegie Institu- tion station of 1906. Range only 11' 2.		
Wapella	Sep. 1-2	2	2	4	4	Rained most of day of 1st. Fine and warm on 2nd.		
Broadview	Sep. 3-5	2	2	4	4	Station approximately a relocation of the Carn- egie Institution station of 1906. Unable to complete the astron- omical work until Sept. 8th, owing to bad weather.		
Wolseley	Sep. 9–10	1	2	2	2	Slight disturbance on morning of 10th, and cold and windy during day.		
Indian Head•	Sep. 12-13.	1	2	2	2	Located on the Experimental Farm. Unable to find a place where it was possible to take the bearings of a number of well-defined objects, owing to the level nature of the land, and the trees surrounding the fields. Needle slightly disturbed on morning of the 13th.		
Balgonie	Sep. 14-15	1	2	2	3	Conditions favourable for work.		
Regina	Sep. 16-17	1	2	2	4	Unable to occupy the Carnegie Institution station of 1906. Located about one-fourth of a mile in a south-westerly direction, on the jail grounds. No apparent disturbance, though there was only about 3° change in decided of the western elongation. Observations on the two days are concordant.		
Pense	Sep. 19	1	1	2	2	Completed the work in one day, conditions being quite favourable.		
Moosejaw	Sep. 20-23.	. 3	4	4	4	Disturbance, though slight, on 20th, 21st and 22nd. Range on 21st, 22nd and 23rd was 6'.5, 6'.2, and 11'.3, respectively.		

Observations for Declination, taken at Grasett, Ont., on May 18, 1910, preceding, during, and following the computed passage of Halley's Comet.

75th	Mer. Time.	Declination.	Temp.	Remarks.		
h.		0 /				
7	25 a.m.	3 56-8 W. of N.		Snowing.		
	30 "	56-8 " 4 2-6 "				
	40 = "	2.6 "				
	43 "	4-4 "				
	45 "	4.4 "				
	46 " 48 "	4·2 " 3·6 "				
	50 "	4.4 "				
	55 "	4-6 "				
8	00 "	7.0 "				
	05 "	7.8 "				
9	35 " 36 "	2·8 " 2·2 "				
	37 "	1.4 "				
	40 "	3 59-2 "				
	45 "	59.2 "				
	50 "	58-6 "				
	55 "	4 3.0				
10	00 "	3·2 " 4·4 "				
	05 " 10 "	5.2 "				
	15 "	5.6 "				
	20 "	8-6 "				
	25 "	13.2 "				
	30 "	13.8 "				
	35 "	19.61				
	40 " 45 "	16-2 " 11-0 "				
	50 "	11.4 "				
	55 "	12-4 "				
11	00 "	16-4 "				
	15 "	12-4 "				
	20 "	10.9				
	30 "	10·6 " 8·8 "				
	35 "	10.4 "				
1	30 p.m.	00.4 "				
	35 "	3 59-2 "				
	45 " 50 "	56·8 " 56·8 "				
2	05 "	55.0 "	58° ⋅ 0 F			
_	15 "	54.4 "				
	20 "	52-6 "				
	30 "	29.0				
	35 " 40 "	54·4 " 53·2 "	56° · 0 F			
	50 "	54.4 "	30 ·0 F			
3	00 "	52-4 "				
	15 "	47-4 "				
	25 "	48-8 "				
4	00 " 50 "	49-2 " 48-8 "				
5	00 ×	46.0 "	52° ⋅ 0 F			
	40 "	46.8 "				
25a-						

3 GEORGE V., A. 1913

OBSERVATIONS for Declination, taken at Grasett, Ont., on May 18, 1910, preceding, during, and following the computed passage of Halley's Comet.—Con.

	D	m	
75th Mer. Time.	Declination.	Temp.	Remarks.
1	0 /		
h. m. 6 10 p.m.	3 48-8 W. of N.	52° ⋅ 0 F	
20 ' "	47-2 "		
30 "	47.8 "		
40 " 7 25 "	45·4 " 45·2 "	46°.0 F	Clouds and showers.
35 4	42.2 "	10 .0 1	Ciodas and showers.
40 "	43.2 "		
45 [#]	39·2 " 47·0 "		
50 " 55 "	43-4 "		
8 00 "	43.2 "		
05 "	43.2 "		
10 " 20 "	43.2 "		
25 "	56.4 "		
30 "	54.2 "	46°-0 F	Clouds.
35 "	54.8 "		Showers.
40 " 45 "	49.6 "		
50 "	49-4 "	44°-0 F	
55 "	50-6 "		
9 00 "	47.6 "		Clouds.
05 " 10 "	46·4 " 43·4 "		
15 "	45.2 "		
20 "	36-4 "		
25 " 30 "	39·0 " 32·2 "		
35 "	35.4 4		
40 "	39.0 "		
45 "	37.2 "	42°-0 F	
50 " 10 00 "	38-4 "		
05 "	35.2 "		
10 "	36.8 "		
15 " 20 "	39-8 "		
20 "	52·6 "		
24 "	4 2.8 "		
26 "	10.8 "		
30 "	8.2 "		Cloudy and showery during
40 "	3 54.4 "		the night, but rifts in the
45 "	52-2 "	44°-0 F	clouds revealed what
50 "	55.0 "		appeared to be an auroral
55 " 11 00 "	4 01·2 " 01·2 "		display.
05 "	01.2 "		
10 "	3.0 "		
15 " 20 "	8·2 " 3 58·2 "		
20 ° 25 α	3 58·2 " 4 3·0 "		
30 "	3 53.6 "		
35 "	52.8 "		
40 " 45 "	45·2 " 39·2 "		
50 "	29.4 "	38°-0 F	

AGINCOURT.

(Base station)

Month	Declination.			Inclination.			Horizontal Intensity.		
	1906.	1910.	Diff. 06–10	1906.	1910.	Diff. 06–10.	1906.	1910.	Diff. 06-10.
JanFebMarch.April.May.June.July.August.SepOct.Nov.Dec.	-5 42·8 43·3 43·5 43·9 43·7 43·6 47·3 47·3 47·5 47·7 48·9	-6 01.7 1.7 2.5 3.0 3.1 3.5 3.7 4.7 5.1 5.4 6.1	18-9 18-4 19-0 19-1 19-4 19-9 19-1 17-4 17-8 17-9 18-4 17-2	° 74 35-0 35-0 35-3 35-3 35-7 34-3 34-3 33-1 35-9 36-5 35-3 35-5	o / 74 38-4 38-3 38-6 38-4 38-3 37-8 38-5 38-5 38-8 39-4 38-8	-3·4 -3·3 -3·3 -2·7 -4·0 -2·9 -3·5 -5·4 -2·9 -3·5 -3·5	·164031 ·163971 ·163988 ·164074 ·164051 ·164061 ·163960 ·163884 ·163857 ·163887 ·163833	·162860 ·162860 ·162755 ·162667 ·162750 ·162840 ·162630 ·162630 ·162440 ·162490 ·162480	-00117 -00111 -00123 -00140 -00130 -00127 -00133 -00127 -00142 -00140 -00135

Results for 1906 taken from Meteorological Service Report for 1906; and results for 1910 taken from the Journal of the Royal Astronomical Society of Canada for 1910.

Description of Magnetic Stations occupied by C. A. French in 1910.

Chapleau, Ont.—The station is a relocation of the Carnegic Institution station. It is near the river bank on the east side of the town, just at the end of the street, lying between the Protestant and Catholic cemeteries. It is 60 feet southeast of the southeast corner of the Protestant emetery, and 59 feet northeast of the northeast corner of the Catholic cemetery. True bearings of the following points were determined:—

Pole on Algoma hotel, 72°31′.3 west of south. Pole on water-tank (R.O.), 73°21′.1 west of south.

Wayland, Ont.—The station is 24f feet southwesterly from the southwesterly corner of the C. P. R. depot. From the station, all of the depot, except the southerly end, is hidden from view by a large boulder, which is about 94 feet distant in a northeasterly direction. A stake, 2 inches in diameter, and projecting 15 inches above ground, marks the point. True bearings of the following points were determined:—

Chimney on C. P. R. water-tank (R.O.), 19°14'.2 east of north. South gable of C. P. R. depot, 41°57'.8 east of north.

Missinaibi, Ont.—The station is approximately a relocation of the Carnegie Institution station of 1906. It is about one-fourth of a mile west of the old Hudson's Bay Company's post and about 400 feet south of the railroad. From the station the C. P. R. pump-house and tank may be seen slightly to the west of the centre of

the top of the Hudson's Bay Company's new store. The point is 56 feet from the southeasterly corner and 49.5 feet from the southwesterly corner of the Episcopal church. True bearings of the following points were determined:—

Chimney on C. P. R. Co.'s water-tank (R.O.), 24° 29'.9 west of north. Pole on school, 2° 36'.2 west of north.

Southeasterly corner of Hudson's Bay Co.'s store, 19 ° 8'.5 west of north.

The point is marked by a stake, 2 inches in diameter, and 6 inches above ground.

Grazett, Ont.—The station is in a small clearing northeast of the C. P. R. depot. It is 360 feet northeast of the northeast corner of the section-house on the south side of the C. P. R. tracks. The line joining the station with the corner of the section-house intersects the track 72 feet from the house. The joint is marked by a stake, 3 by 3 inches, and projecting 2 inches above ground. True bearings of the following points were determined:—

Pole on east end of south section-house, 136° 26'.5 west of north. Pole on west end of south section-house, 133° 53'.3 west of north. Gable of north end of north section-house, 122° 26'.3 west of north.

White River, Out.—The station is probably within 20 feet of the Carnegie Institution station. It is 10.5 feet east of the Y. M. C. A building and slightly to the north of a line extending from, and at right angles to, the middle of the eastern side of the building. It is 18.25 feet southeasterly from the southeast corner of the main part of the Methodist church. The tip of the pole on the C. P. R. water-tank may be seen over the east gable of the school, and also over a building used as a dwelling-house and pool-room. True bearings of the following points were determined:—

Tip of ventilator on C. P. R. roundhouse, $63\,^\circ$ 5'.4 west of north. Tip of pole on C. P. R. water-tank, $52\,^\circ$ 14'.4 west of north.

Chimney on English church, 22° 4'.5 west of north.

Spire on Catholic church (R.O.), 17° 28'.4 west of north.

The point is marked by a stake, 2 inches by 3 inches, projecting 3 inches above ground.

Montizambert, Ont.—The station is on a clearing, northwest of the C. P. R. depot, being 540 feet westerly from the depot, 165 feet north of the C. P. R. tracks, and 90 feet south of the White river. The east end of the section-house, on the south side of the track, may be seen to the east of a log building, which is distant 51 feet from the station. True bearings of the following points were determined:—

West gable of C. P. R. depot (R.O.), 52° 7'.9 east of north. East gable of C. P. R. section-house, 133° 55'.1 east of north.

The point is marked by a stake, 2 inches in diameter, and projecting 2 inches above ground.

Heron Bay, Ont.—The station is in a field lying to the northwest of the C. P. R. depot. It is about \$25 feet north of the C. P. R. tracks, and is in line with, and 40 feet north of, the end of a fence, which, if continued in a southerly direction, would pass about 20 feet west of the depot. About 30 feet south of the station is a ridge of rock extending 40 feet in an easterly and westerly direction. The point

is marked by a stake, 2 inches by 4 inches, and projecting 3 inches above ground. True bearings of the following points were determined:—

North gable of Begg's house and store, 119° 12'.8 east of north.

West gable of C. P. R. depot, 155° 00'.9 east of north.

North gable of Miller's store (R.O.), 172° 22'.1 east of north.

Middleton, Ont.—The station is about 450 feet south of the C. P. R. tracks, and 75 feet north of the edge of a gravel beach on Lake Superior. It is 35 feet west of a rocky bluff and 12 feet north of an excavation. To the west, about 12 feet and beyond, the soil consists, for the most part, of stones and coarse gravel. The point is marked by a stake, 3 inches in diameter, and projecting 1 inch above ground. True bearings of the following points were determined:

Top of second telegraph pole west of C. P. R. depot, 2° 26'.1 east of north. West gable of C. P. R. depot (R. O.), 34° 23'.1 east of north.

East gable of C. P. R. depot, 38°9',1 east of north.

A piece of rock taken from the bluff to the east of the station showed marked magnetic action.

Schreiber, Ont.—The station is a relocation of the Carnegie Institution station of 1906. It is in an open field about one-third of a mile east of the town, near the cemetery, being 100 feet from the southwest corner, and directly in line with the picket fence on the south side. It is one-quarter of a mile east of the railroad. True bearings of the following points were determined:

Tip of ventilator on C. P. R. shops, 12 ° 47'.7 west of south.

Tip of pole on C. P. R. water-tank (R.O.), 28° 56'.3 west of south.

Spire on Presbyterian church, 56 ° 24'.5 west of south.

East gable of Y. M. C. A. building, 78° 2'.5 west of south.

Tip of belfry on school, $85\,^{\circ}$ 19′.5 west of north.

Gravel, Ont.—The station is at the summit of a slope, 224 feet north of the C. P. R. tracks. It is in line with the east side, and 182 feet from the northeast corner of the C. P. R. depot. It is 97 feet northwest of the northwest corner of a small red house, belonging to Mr. Roy. True bearings of the following points were determined:—

East gable of C. P. R. depot, 34°9'.8 west of south.

Top of pole on C. P. R. water-tank (R.O.), 78 ° 55'.4 west of north.

 Λ stake, 2 inches in diameter and projecting 4 inches above ground, marks the point.

Nipigon, Ont.—The station is approximately 11.5 feet south and 5 feet west of the Carnegie Institution station of 1906. It is in the northeastern part of the town, about 400 feet east of the C. P. R. tracks. It is 11.5 feet south of the fence along the north side of the street running from the C. P. R. water-tank eastward to the river, and 17 feet from the bank of the river. True bearings of the following points were determined:—

Spire on Presbyterian church, 142° 40'.1 west of north.

Top of pole on Hudson's Bay Co's store, 118° 52'.1 west of north.

Spire on C. P. R. water-tank, 88° 35'.2 west of north.

Dorion, Out.—The station is in an open field, north of the C. P. R. traeks and depot. It is 190 feet north of the fence on the south side of the field which is adjacent to the C. P. R., and 84 feet east of the middle of the road which crosses the field. True bearings of the following points were determined:—

South gable of Mr. Kohler's stable, 32 ° 50'.7 west of north.

South gable of house on farm lying to north of Mr. Kohler's, 28°28'.8 west of north.

South gable of Mr. Kohler's house, 22° 51'.4 west of north.

Mackenzie, Ont.—The station is on a small clearing northwest of the C. P. R. depot. It is 263 feet north of the tracks, and is in line with the west end of the section-house, being 228 feet from the northwest corner of the main part of the building. True bearings of the following points were determined:—

West gable of C. P. R. depot, 125° 59'.3 east of north.

East pole on section-house, 155° 30'.0 east of north.

West pole on section-house (R.O.), 161° 2'.8 east of north.

Tip of pipe on C. P. R. water-tank, 176° 56'.8 east of north.

Fort William, Ont.—The station is in an open field, lying north of Leith street

Fort William, Ont.—The station is in an open field, lying north of Leith street and west of Archibald street. It is 22 feet west of the west side of Archibald street, and is north of, and in line with, the east end of the 'Arena,' being 96.5 feet north of the fence on the north side of the enclosure surrounding the building. True bearings of the following points were determined:—

Bottom of flagstaff on school, 3° 41'.2 east of north.

Pole on C. P. R. elevator B, 40 ° 0'.1 east of north.

Top of pole on Central school, 140° 55'.3 east of north.

Top of pole on City hall (R.O.), 160° 1'.8 east of north.

Top of pole on the 'Arena,' 0 ° 6',6 west of south.

Kaministikwia, Ont.—The station is about 380 feet north of the C. P. R. tracks. It is almost in line with the easterly end, and is 99 feet southerly from the southeasterly corner of a log house on the west side of the road, and further, is 109 feet southwesterly from the southwest corner of another log house on the east side of the road. These are the only houses in the immediate vicinity.

The point is marked by a stake, 2 by 3 inches, and projecting 2 inches above ground. True bearings of the following points were determined:—

West gable of C. P. R. freight-shed, 59 ° 18'.2 west of south.

Northwest corner of C. P. R. depot, 74° 39'.0 west of south.

Top of pole on C. P. R. water-tank (R.O.), 64° 28'.4 west of north.

Raith, Ont.—The station is 150 feet north of the Grand Trunk Pacific railway.
It is in line with the south side of Mr. Johnson's house, and 240 feet east of the southeast corner.

A stake, 2 by 4 inches, and 1 inch above ground, marks the point. True bearings of the following points were determined:—

Top of pole on C. P. R. water-tank, 78° 13'.6 west of south.

East gable of C. P. R. depot, 75 $^{\circ}$ 17'.4 west of north.

Top of pole on G. T. P. water-tank (R.O.), 64 ° 37'.1 west of north.

East gable of C. P. R. section-house, 54 ° 56'.0 west of north.

Savanne, Ont.—This is approximately a relocation of the Carnegie Institution station of 1906. The station is near the Savanne river, about one-quarter of a mile south of the C. P. R. tracks. It is about 54 feet north of the bank of the river, in a path which leads south from the railroad, leaving the railroad at a point 800 feet east of the depot. There is a telegraph pole about 20 feet west of the continuation of a line joining the station and the pole on the Hudson's Bay Company's store (now vacated). The point is marked by a stake, 3 inches in diameter, and projecting 3 inches above ground. True bearing of the following point was determined:—

Pole on Hudson's Bay Company's store, 24° 30'.1 east of north.

Niblock, Ont.—The station is on a small clearing southwest of the C. P. R. depot, being on the summit of a small ridge which runs in an easterly and westerly direction. It is 270 feet southwesterly from the southwest corner of the main part of the depot. The point is marked by a stake, 2 inches in diameter, and projecting 3 inches above ground. True bearings of the following points were obtained:—

South gable of small car-house west of depot (R.O.), 7° 21'.1 east of north. Southwest corner of main part of C. P. R. depot, 62° 7'.8 east of south.

Martin, Ont.—The station is near the northeasterly corner of a field surrounding the section-house, being 17 feet from the fence on the northerly side and 24 feet from the fence on the easterly side of field. It is 226 feet in a northerly direction from the C. P. R. tracks, and 206 feet northeasterly from the northeast corner of the section-house. A stake, 2 inches in diameter and projecting 3 inches above ground, marks the point.

The east gable of the section-house bears 76° 18'.2 east of north.

Jymace, Ont.—The station is approximately a relocation of the Carnegic Institution station of 1906. It is in an open field, about 500 feet south of the C. P. R. tracks and about 600 feet southeast of the C. P. R. roundhouse. It is 208 feet east of the east side of the first street east of the Y. M. C. A. building, and 52 ft. north of the fence on the south side of the field. True bearings of the following points were determined:—

Tip of pole on C. P. R. water-tank, 61° 15'.8 west of north.

Tip of pole on Y. M. C. A. building (Ignace hotel) (R.O.), 35° 18'.9 west of north.

East gable of store, 26° 30'.1 west of north.

Tacké, Ont.—The station is east of the river, and 260 feet south of the C. P. R. tracks. It is about 12 feet east of a point which is in line with the cast end of the railway bridge over the river, 18 feet from the edge of a small ravine on the west, and 15 feet from the edge of one on the south. The point is marked by a stake, 2 inches in diameter, and projecting 3 inches above ground. True bearings of the following points were determined:—

East gable of C. P. R. depot (R. O.), 16 ° 24'.9 west of north.

Top of pipe on chimney of C. P. R. depot, 16° 6'.2 west of north. Tip of pole on C. P. R. water-tank, 6° 25'.8 east of north.

South gable of car-house, 61° 22'.7 east of north.

3 GEORGE V., A. 1913

Wabigoon, Ont.—The station is 34 feet south of the foot of a ridge of rock which terminates Stanley avenue at its northerly end, and is in line with the fence on the easterly side of the street. The point is marked by a stake, 2 inches by 3 inches, projecting 3 inches above ground. True bearings of the following points were determined.

Top of cross on English church, 44°51'.7 east of south.

Pole on Imperial hotel (R.O.), 28°54'.9 east of south.

Gable of house on southerly side of bay, 16° 44'.5 west of south.

Dryden, Ont.—The station is about \(^1_1\) of a mile northeast of the town on the cast side of the Wabigoon river. It is on an unused portion of the Government road which runs from the river into the country in a northeasterly direction, and is about midway between the river and the end of Florenee street, which intersects the road at right angles. The road leading from the town meets the main road where the latter and Florenee street intersect. The pole on the C. P. R. watertank may be seen about midway between the cross on the English church and the pole on the Central hotel. The point is 34 feet from the southerly side of the Government road and 290 feet from the northeasterly corner formed by the intersection of Florence street and the Government road. The point is marked by a 3 by 3-inch stake, projecting 2 inches above ground. True bearings of the following points were determined:—

North chimney on Mr. Swanson's house, 99 ° 32'.3 east of north.

Cross on English church, 121 ° 51'.4 east of north.

Pole on C. P. R. water-tank (R. O.), 123 ° 00′.0 east of north.

Eagle, Ont.—The station is approximately a relocation of the Carnegic Institution of 1906. It is about \(^1\) of a mile east of the C. P. R. depot (moved since 1906), and about 500 feet south of the C. P. R. tracks. A line, which is a continuation of the east side of Mr. J. A. Gardiner's house (formerly the Central hotel) in a southerly direction, intersects a line joining the station and pole on the C. P. R. watertank, 177 feet from the southeast corner of the house and 64 feet westerly from the station. True bearings of the following points were determined:—

Top of pole on C. P. R. water-tank (R. O.), 74° 33'.8 west of south.

East gable of C. P. R. depot, 77° 24'.5 west of south.

Bottom of pole on 'Blue' store, 74° 37'.4 west of north.

Left edge of chimney on Mrs. Mitchell's house, 60° 55'.9 west of north.

East gable of Mrs. Mitchell's house, 58° 27'.5 west of north.

Vermilion, Ont.—The station is north of the C. P. R. tracks about 400 feet. It is 6 feet west of being in line with the west side of the Grand Trunk house, and is 158 feet north of the northwest corner of the main part of the building. It is 30 feet west of being in line with the west side of the C. P. R. depot, and is 288 feet north of the fence on the north side of the C. P. R. ayard. A stake, 2 by 2 inches, and 2 inches above ground, marks the precise point. True bearings of the following points were determined:—

East gable of freight-shed, west of C. P. R. tank (R. O.), 34 ° 52'.5 west of south.

Top of pole on C. P. R. water-tank, 24° 43′.3 west of south. East gable of C. P. R. depot, 14° 0′.9 east of south.

Hawk Lake, Ont.—The station is located on a clearing slightly to the west of south from the C. P. R. depot, and about 300 feet south of the C. P. R. tracks. It is 25 feet from the shore of the lake and 100 feet southwesterly from a rocky beach, exposed part of the rock being about 20 feet in width. The central portion of this part of the beach is in line with the west end of the C. P. R. depot. The point is marked by a stake, 2 inches in diameter, and projects 4 inches above ground. True bearings of the following points were determined:—

West gable of C. P. R. depot (R.O.), 9° 40′.4 west of north. East gable of C. P. R. depot, 1° 27′.2 west of north. First telegraph pole east of C. P. R. depot, 6° 52′.2 east of north.

Kenora, Ont.—The station is approximately a relocation of the Carnegie Institution station of 1906. The point is west of and slightly to the north of being in line with the front of Mr. Wilson's house. It is 58 feet west of the fence along the west side of Mr. Wilson's lot, and 16 feet north of the north side of Park street (East Third street). True bearings of the following points were determined:—

Spire on Knox church (R. O.), 67°24′.0 west of south. Pole on Central school, 84°43′.4 west of north. Spire on Episcopal church, 78°7′.1 west of north. Spire on Catholic church, 74°38′.6 west of north.

Kalmar, Ont.—The station is on a level portion of ground near the summit of a slope lying to the east of the western section-house. It is reached by a path, which leaves the C. P. R. tracks at a point about 50 fect east of the section-house. It is about 245 fect north of the tracks, and about 300 fect northeast of the northeast corner of the house. The point is marked by a stake, 2 inches in diameter, and projecting I foot above ground. A mound of stones surrounds the stake.

The east gable of the section-house bears 57° 30'.1 west of south.

Rennie, Man.—The station is on the property of Mr. Shepherd. It is about 300 feet northeast of the C. P. R. depot, being near the southeast corner of the second enclosure, east of the C. P. R. tracks. It is 33 feet north of the fence on the south, and 90 feet west of the fence on the east side of the enclosure. A stake, 3 inches in diameter and 6 inches above ground, marks the precise point. True bearings of the following points were determined:—

Top of pole on C. P. R. water-tank (R. O.), 56°21'.1 east of south. Left edge of east chimney on C. P. R. depot, 52°38'.1 west of south.

Whitemouth, Man.—The station is northeast of the C. P. R. depot, and about 600 feet north of the C. P. R. tracks, being on property belonging to Mr. McKinley. It is at the summit of a slope adjacent to the river, and is 15 feet north of the fence which marks the northerly limit of the first enclosure north of the main street of the village. It is 75 feet west of a gate which is on the west side of a lane running from the main street to the river; 140 feet northeast of a church, and about 225 feet west of the C. P. R. pump-house. A stake, 2 inches in diameter and 4 inches above ground, marks the precise point. True bearings of the following points were determined:—

Top of pole on C. P. R. water-tank (R. O.), $35 \circ 34'$.0 west of south. Pole on east end of C. P. R. depot, $53 \circ 41'$.4 west of south.

Norquay, Man.—The station is in an open field belonging to Mr. Black. It is 360 feet south of the south limit of the C. P. R. right-of-way, and 140 feet east of the west limit of the Government road allowance. A squatter's house is about 100 feet northwesterly from the station. True bearings of the following points were determined:—

East gable of section-house (R. O.), 26° 16'.0 west of north. West gable of C. P. R. depot, 4° 1'.6 cast of north.

Wimipeg, Mon.—The station is a relocation of the Carnegie Institution station of 1906. A stone pier, marked "C. I., 1908," represents the precise point. It is in River park, about one-half mile east of the park entrance, in the first cleared space beyond the grove of small trees that surround the entrance. It is about 45 feet from the top of the north bank of the Red river, and in line with the fence bounding the buffalo pasture on the side adjacent to the river. It is about 30 feet southwest of the south corner of the pasture. Two grain elevators in the distance, and a small red barn in the pasture, are seen nearly in line from the station. A red water-tank is seen near the elevators and a little to the west of the barn. The following true bearings were determined:—

Pole on red water-tank (R. O.), 23° 36′.9 east of north. Smoke-stack near International elevator, 39° 17′.1 east of north. West gable of large white house, 47° 25′.9 east of north.

Marquette, Man.—The station is about 300 feet southwesterly from Mr. Smith's store, and about 500 feet south of the C. P. R. tracks. It is 76 feet east of the middle of a north-south road, 161 feet north of the middle of the east-west road, and 169 feet southwest of the southwest corner of a red barn. Mr. Smith's store appears midway between the west end of the C. P. R. depot and the east end of the C. P. R. section-house. A stake, 2 inches in diameter and 3 inches above ground, marks the point. True bearings of the following points were determined:—

West gable of C. P. R. freight-shed, 45° 57′.9 east of north.

West gable of C. P. R. depot, 49° 15′.5 east of north.

East gable of C. P. R. section-house, 64° 4′.7 east of north.

Pole on west end of Mr. Brown's stable (R.O.), 121 ° 37'.2 east of north.

Portage-la-Prairie, Man.—The station is on the grounds of the Agricultural Association, near the east end of the enclosure, which is inside the race-track. It is 132 feet west of the easterly extremity of the curved portion of the fence, 190 feet north of the fence on the south side, and 200 feet south of the fence on the north side of the enclosure. The bearings of the following points were determined:—

Bottom of pole on judges' stand, near barns (R.O.), 77° 52'.5 west of north.

West pole on grandstand, 63°39′.3 west of north. East pole on grandstand, 54°10′.6 west of north.

Bottom of pole on pavilion, 46° 38'.8 west of north.

McGregor, Man.—The station is near the northwest corner of a small field belonging to Mr. F. E. Lewin. The field is adjacent to the south side of the school grounds and the street which passes to the west of the school. The point is 26 feet south of the fence on the south side of the school grounds, and 38 feet east of

the street fence. The point is marked by a stake, 2 inches by 4 inches, and projecting 2 inches above ground. True bearings of the following points were determined:—

Tip of pole on C. P. R. water-tank, 16 ° 25'.2 east of south.

Bottom of spire on Methodist church (R. O.), 43 ° 37'.6 east of south.

Tip of pole on public school, 62° 6'.9 east of north.

Caberry, Man.—The station is in an open field in the northwestern part of the town, being in block 6, between First and Second avenues, on the north and south, and Dufferin and Lisgar streets on east and west, respectively. It is 88 feet east of Lisgar street, and 172 feet south of First avenue. The point is marked by a 2 by 2 lineh stake, driven flush with the ground. True bearings of the following points were determined:—

Top of short pole on front of public school, 89° 13'.9 east of south.

Spire on Presbyterian church, 65° 16'.6 east of south.

Top of pole on bell-tower near town-hall, 52° 4'.8 east of south.

Top of pole on town-hall, 50° 54'.6 east of south. Spire on English church, 24° 42'.6 east of south.

Top of pole on elevator (R. O.), 12° 42'.2 east of south.

Brandon, Man.—The station is on the Dominion Experimental Farm, being near the summit of the second small ridge lying to the northeast of the farm buildings. It is 231 feet east, and 180 feet north of the southeast corner of the large barn (trees preventing measurements being taken from the northeast corner), 230 feet northwesterly from the Meteorological station, and 24 feet southeast of a flag-pole. A stake, 2 by 4 inches, driven flush with the ground, marks the point. True bearings of the following points were determined:

West gable of the Superintendent's house, 55° 15'.2 east of south.

Spire on Catholic church in city, 43 ° 41'.0 east of south.

Top of dome of public school in city, 29 °8'.2 east of south.

Top of central dome of Brandon college, $23\,^{\circ}\,22'.2$ east of south.

Smokestack on mill, 2° 19'.8 east of south.

Griswold, Man.—The station is in an open field, south of the C. P. R. tracks and in line with the west end of the C. P. R. depot. It is 460 feet south of the tracks, and 123 feet south of a well, which is about 6 feet east of a line joining the south-west corner of the C. P. R. depot and station. True bearings of the following points were determined:—

South gable of elevator No. 188, 21° 26'.0 west of north.

West pole of C. P. R. depot, 12° 56′.7 west of north. East pole of C. P. R. depot, 9° 27′.7 west of north.

East pole of C. P. R. depot, 9° 27'.7 west of north. East pole on hotel (R. O.), 2° 32'.7 east of north.

South gable of Ogilvie's elevator, 19° 43'.4 east of north.

South gable of International Elevator Company's elevator, 33° 17'.1 east

South game of international Elevator Company's elevator, 55° 17'.1 east of north.

Virden, Man.—The station is located near the northeast corner of the Agricultural grounds. It is about 70 feet outside the race-track, 57 feet west of the fence on the east side, and 63 feet south of the fence on the north side of the grounds.

The top of the C. P. R. depot may be seen a little to the left of the pole on the Alexandra hotel. The point is marked by a 2 by 2-inch stake which projects 1 inch above ground. True bearings of the following points were determined:—

Bottom of pole on C. P. R. water-tank, 68° 27'.0 west of south.

Bottom of pole on Alexandra hotel (R. O.), 89° 32′.9 west of south. East gable of Ogilvie's elevator, 83° 2′.4 west of north.

East gable of Impl. Elevator Co's elevator, 69° 29'.7 west of north.

Kirkella, Man.—The station is approximately a relocation of the Carnegie Institution station of 1906. It is southeast of the group of houses comprising the village. It is in line with the west end and 112 fect south of the southwest corner of the main part of the Episcopal church, 109 fect east of the east boundary of the school yard, and 42 fect west of the west side of the street which passes to the rear of the church. A stake, 2 by 2 inches, and 3 inches above ground, marks the point. True bearings of the following points were determined:—

Southeast corner of upper part of elevator No. 27, 37° 54′.5 west of north. South gable of elevator No. 27 (R. O.), 37° 53′.7 west of north.

Left edge of west chimney on C. P. R. depot. 14° 59'.6 east of north.

Left edge of east chimney on C. P. R. depot, 17° 55'.9 east of north.

Wapella, Sask.—The station is northeast of the town near the northwest corner of the Agricultural grounds. It is 51 feet south of the north fence, and 156 feet east of the west fence. The point is marked by a stake, 4 by 4 inches, and projecting 4 inches above ground. True bearings of the following points were determined:—

North gable of elevator No. 158, 57° 10'.9 west of south. Top of pole on C. P. R. water-tank 79° 58'.9 west of south. Bottom of spire on English church, 87° 5'.3 west of north. Tip of belfry on school (R. O.), 72° 20'.9 west of north.

Broadview, Sask.—The station is a relocation of the Carnegie Institution station of 1906. The point is 54 feet southwest from the southwest corner of the main part of the Grenfell Milling Company's implement house, and 61 feet northwesterly from the southwest corner of the shed at rear of and adjoining the building. True bearines of the following points were determined:

Southwest corner of stone house on hill (R.O.), 77° 16′.9 west of north. Southwest corner of west abutment of C. P. R. bridge, 33° 53′.6 west of north.

Spire on Baptist church, $35\,^{\circ}$ 4′.3 east of south.

Wolseley, Sask.—The station is in an open field north of the town, being 40 feet east of a fence which is in line with the west side of the street passing the town-hall. It is west of and in line with the south side of a white cottage, and about 520 feet north of the street passing along the north side of the court-house grounds. True bearings of the following points were determined:

Tip of spire on German church, 76° 28'.4 east of south.

Bottom of pole on court-house, 9° 33'.8 east of south. Bottom of pole on town-hall, 3° 32'.2 west of south.

Tip of cross on Catholic church (R.O.), 63° 41'.4 west of south.

Indian Head, Sask.—The station is on the Dominion Experimental Farm, being about 650 feet southeast of the barns. It is on a low-lying field, and about 50 feet northwesterly from a slough. It is 57 feet east of a row of trees on the east side of a lane which passes to the east of the barns, 42 feet northwesterly from the middle of a road running along the north side of the slough, and 190 feet northeasterly from a windmill. A stake, 2 by 2 inches, and 2 inches above ground, marks the point.

The east ventilator of a barn, south of the C. P. R. tracks, bears 4° 56′.6 west of south.

Balgonie, Sask.—The station is in the northeastern part of the town. It is in line with the south side and 119 feet east of the southeast corner of the Methodist church. The point is marked by a stake, 2 inches in diameter and 3 inches above ground. True bearings of the following points were determined:—

Tip of spire on English church (R. O.), 48° 29′.3 west of south.

Bottom of pole on town-hall, 74° 30′.2 west of south.

South gable of elevator No. 77, 63° 33′.6 west of north.

Northwest corner of lower part of elevator No. 11, 1 $^{\circ}$ 49′.9 west of north.

Reqina, Sask.—The station is about one-quarter mile southwesterly from the Carnegie Institution station of 1906. It is on the south side of the city, in an open field, which is part of the jail property. It is approximately in the centre of Osler street produced, is 51 feet south of the south side of 16th avenue, and 300 feet east of the east side of Broad street. True bearings of the following points were determined:—

Flag pole in yard south of jail, 44° 49'.2 west of south.

Top of cross on Catholic church, 31° 16'.5 west of north.

Top of cross on Roumanian church, 19° 3'.5 east of north.

Northeast corner of Regina General Hospital, 31° 0'.1 east of north.

Southeast corner of Regina General Hospital, 35° 22′.5 east of north.

Penae, Soak.—The station is in an open field, about 470 feet south of the C. P. R. tracks. It is in line with the east side of the main part of elevator No. 78, and is 450 feet south of the south side of the shed adjoining the elevator. The west chimney of the C. P. R. depot appears slightly to the right of the elevator, and the spire of the English church appears midway between the chimney and north end of 'Hardware' store. True bearings of the following points were determined:—

Southwest corner of Springrice's elevator, 34° 12'.2 west of north.

Spire of English church (R. O.), 21° 55'.0 west of north.

South gable of elevator No. 78, 11° 9'.3 west of north.

South gable of Winnipeg Elevator Co's. elevator, 11° 2'.0 east of north.

Moosejaw, Sask.—The station is in the northern part of the city, being near the southeast corner of the enclosure comprising the Agricultural grounds. The point is 108 feet north of the south fence, 122 feet west of the east fence of grounds, and 73 feet southeast of the fence around the race-course. The point is marked by

a 2 by 4-inch stake, which projects 3 inches above ground. True bearings of the following points were obtained:—

Spire on English church at corner of East High street and 10th avenue, 10° 33'.2 west of south.

Pole on Collegiate Institute (R. O.), 53° 50'.4 west of south. Spire on dome of house over reservoir, 85° 7'.4 west of south. Spire on dome west of grandstand, 87° 51'.0 west of north.

Description of Magnetic Stations occupied by J. W. Menzies in 1910.

Vapance.—The station is situated on the circus grounds which border on the third street southwest from the G. T. R. station. The grounds are owned by Sir Richard Cartwright. Transit was placed 162 feet east of the west limit of the street on the west of the grounds and 291 feet north of the north limit of the street bordering the circus grounds on the south. The transit station was also 35.5 feet from the rear lot line of lots facing on the west side of the next street to the east and 55 feet from the intersection of this rear lot line with the street bounding the grounds on the north. The magnetometer was placed 10.3 feet behind the transit and on line with the reference object and the transit. The following true bearings were obtained from the transit station:—

Spire, Western Methodist church, 40° 44′.6 east of south. Spire, Roman Catholic church, (R.O.), 28° 54′.9 east of south. Flag pole on High school, 21° 33′.9 west of south.

Belleville.—The station is situated in West Belleville in rear of a lot owned by Mr. Harris, market gardener. The station was 294.5 feet west of the west side of the road allowance in front of Mr. Harris' lot. The Agricultural grounds are in a southerly direction along this road. It is also 5 if set from the south limit of the road allowance on the south of Mr. Harris' lot and 55 feet from a line fence running north from this limit, the road allowance ending at this fence. Mr. Harris' lot does not extend back to this line fence. The following true bearings were obtained from the transit station;—

Spire on church (in Belleville), 80°41′.7 east of north. Largest spire on tower, which has 3 smaller ones, 82°08′.9 east of south. Spire. Western Methodist church (R.O.), 75°46′.3 east of south.

A large grove of pine trees is situated in the field south of the station.

Briphton.—The station is situated in a field on the west side of the town, the field belonging to Mr. Nesbitt. This field is in the second block west of Station street, and is the second field north of the C. N. R. tracks. The transit was placed 128.5 feet west of the west side of the first street west of Station street and 118 feet north of the line fence on the south of this field. A large elm tree stands in the northeast corner of this field. The magnetometer was placed 12.3 feet behind the transit and on line with the transit and the reference object. The following true bearings were determined from the transit station:—

Spire of St. Andrews church (R. O.), 42°51'.8 east of north. Cross on Roman Catholic church, 78°54'.5 east of north. Ornament on centre of Nesbitt's barn, 67°05'.2 west of north.

Peterborough.—The station is on a plot of ground in rear of a lot owned by Mr. Rogers, a veterinary surgeon. Mr. Rogers lot is on the south side of Charlotte street about one mile west of the G. T. R. tracks. Lot on which station is placed faces on a private lane running south from Charlotte street. The transit was 123 feet west from the west side of this lane and 52 feet north of the line fence bounding this lot on the south. It was also 91 feet and 91.5 feet respectively from the southwest and southeast corners of Mr. Rogers' carriage shed. The magnetometer was placed 11.2 feet behind the transit and on line with the transit and reference object. A large grove of pine trees was just west of the station. The following true bearings were determined from the transit station:

Pole on stone tower, 65° 34'.7 east of north.

Top of belfry on town-hall (R. O.), 74° 59'.7 east of north.

Top of Rogers' house, 33° 47'.0 west of north.

Neucosile.—The station is situated in a field north of the G. T. R. tracks and in the second block west of the street running under the tracks. The field is owned by Mr. Montague. A creek, dry at times, runs lengthwise of the lot. The transit was placed 144 feet west of the westerly limit of the first street west of the abovementioned street, and 38.5 feet from the fence on the northerly boundary. It is also 83 feet and 64 feet respectively from the furthest easterly and westerly of five small trees along the north side of the creek. The magnetometer was placed 10.4 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station.

English church spire, 2° 51'.7 east of north.

Pole on school belfry, 50° 21'.7 east of north.

Spire on Methodist church (R. O.), 5° 20'.6 west of north.

Kinmount.—The station is in a field, belonging to Mr. Craige, which is on the north side of the road in front of Mr. Craige's house and is also about 500 feet cast of said house. The station is on the south side of a rocky bill, and transit was placed 266 feet from the easterly side of the only gate on the south side of the road and 239 feet from the intersection of the road fences at the fork of the roads. An abandoned iron mine is on the northerly slope of the hill. The magnetometre was placed 8.5 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Flag pole on grandstand, 41° 42'.2 east of north.

South side of chimney on house at foot of road, 71° 15',1 east of north,

Cross on Roman Catholic church, 17° 33'.3 west of south.

Pole on public school belfry (R. O.), 55° 54.'7 west of south.

Lindsay.—The station is situated in the same field as the waterworks pumphouse, the pumphouse being on the southerly limits of the town and on the west bank of the river flowing through the town. The remaining part of the field belongs to the Roman Catholic parish. The transit was placed 154 feet from the south side of the road alongside the pumphouse, and 22 feet from the fence on the westerly boundary of said field, and is also 8 feet to the west of the easterly side of street running into the field. The magnetometer was placed 12.4 feet behind transit and no line with transit and reference object.

The following true bearings were determined from the transit station.—

Middle of iron smoke-stack, 29° 07'.9 east of north.

East corner of pump-house chimney (at top), 60° 30'.7 east of north.

Cross on Roman Catholic church (R. O.), 9° 51'.0 west of north.

Pickering.—The station is situated in the second field north of the G. T. R. tracks, and on west side of the road leading to the grist-mill. This field is used as a pasture, but the southeast corner of the field is fenced off and cultivated. The cemetery is just across the road from the cultivated portion. The transit was placed 128 feet from the westerly side of above-mentioned road and 34 feet from the northerly boundary of cultivated portion, and is also 130 feet in a southerly direction from a large elm tree. The magnetometer was placed 11.4 feet behind transit and in line with transit and reference object. The following true bearings were obtained from the transit station:

Ornament on town-hall tower, 22° 23'.1 east of north.

Cross on Roman Catholic church (R. O.), 39° 21'.8 east of north.

Flag pole on grist-mill, 13° 30'.7 west of north.

Niagona Falls (Stanford).—The station is situated in a large open field belonging to Mr. Emmet, on the south side of the road leading westwards at the fork of the main road at Stamford Green. The station is about one-quarter of a mile westerly along this road and is on a clear patch between a grapery and a raspberry patch. The transit was placed 55 feet from the west side of the berry patch and 116 feet from the east side of the grapery and 63 feet from the southerly side of the road allowance. The Niagara, St. Catharine and Toronto Electric Ry. is distant about 12 miles in a southerly direction. The magnetometer was placed 11.2 feet behind the transit and on line with the transit and reference object. The following true bearings were determined from the transit station:

North gable of house on main road, 75° 53'.5 east of south. Pole on school-house tower (R. O.), 34° 23'.1 east of south. Windmill on Mr. Emmet's barn, 13° 01'.1 west of south.

Beaveron.—The station is situated in a large open field at the end of the road leading from the G. T. R. tracks on the east side of the G. T. R. station. The field is used as a pasture and is full of small hummocks, the ground being generally of marshy nature. Mr. Trelevan is the owner of the field. The transit was placed 129 feet from the south side of the road running westerly along the southerly boundary of the field, and 28.5 feet from the westerly boundary fence of the field. The above-mentioned boundary road ends at this line fence. The magnetometer was placed 2 feet behind transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Spire on Roman Catholic church, 3° 55'.6 east of south.

Spire on St. Andrews (Presbyterian) church (R. O.), $7\,^\circ$ 39'.4 west of south. Pole on water-tank, $58\,^\circ$ 41'.4 west of south.

Port Colborne.—The station is situated in a field on the south side of the G. T. R. tracks. The field is on the east side of the fourth street from the station running in a southerly direction. The station was about 1,000 feet from the tracks. The transit was placed 32 feet from the easterly limit of the street and 37 feet from the northerly limit of the third street south of the tracks. It was also 355 feet from the southerly limit of the second street south of the tracks. An oil well is situated in the next block to the west. The following true bearings were determined:—

Round iron smoke-stack, 28° 51'.8 west of south.

Top of lighthouse tower (R. O.), 43° 00'.0 west of south.

Storm signal post, 88° 42'.3 west of south.

Orillia.—The station is situated in a large marshy field at the end of the first street south of Watson's brickyards, which street runs westerly from the street crossing the G. T. R. tracks west of the station. The elay pits of the brickyard are in this field. The transit was placed 89.5 feet from the westerly boundary of the last lot facing on first street mentioned above, and 104 feet from the intersection of this lot line with southerly street line, and was also 69 feet from the end of the southerly street line fence. A small sand pit is about 150 feet to southwest. The magnetometer was placed 14.2 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Easterly tower on Orillia asylum, 22° 22′.5 west of south. Southerly tower on town-hall, 55° 58′.3 west of north. Spire of Anglican church [largest in sight] (R.O.), 39° 18′.5 west of north.

Beomsville,—The station is situated in the second field north from the G. T. R. tracks. The field is not cultivated, but is dotted with scrubby trees and has a grove of trees in the northern part. The field which is on the west side of the road leading to the lake is owned by Rev. Mr. Trueaxe. The transit was placed 25 feet from the westerly boundary fence and 83 feet from the southerly boundary fence of above field. Surrounding fences were of the irregular, rail variety and measurements were taken to the inside fence him. The magnetometer was placed 11 feet behind the transit and on line with the transit and reference object. The following true bearings were determined from the transit station:—

Church spire, visible just over G. T. R. freight-shed (R. O.), 1° 09'.4 west of south.

Factory chimney (middle), 88° 44′.7 west of south.

Barrie.—The station is situated in the northwestern portion of the town, in a field belonging to Mr. Hickeys, and just west of the field in which Mr. Hickey's house stands.

The transit was placed 86.5 feet from the northerly limit of the street marking the southerly boundary of the field, and 58 feet from the westerly limit of street marking the easterly boundary. The magnetometer was placed 10.8 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Cross on separate school, 52° 19'.0 west of south.

Cross on Roman Catholic church (R. O.), 62° 00'.2 west of south.

North side of water-tower, 76° 36'.5 west of south.

Brompton.—The station is situated in a pasture field at the end of Nelson street. The field is owned by Mr. Ackroyd. The station is on line with the westerly side of Nelson street produced, and is 248 feet from the intersection of this line with the northerly limit of West street. Reference object was spire of Grace Methodist church.

Azimuth of R. O., 22°52′ east of north.

Cayaga.—The station is situated in the third field south of the G. T. R. tracks and on the east side of the road leading to the town. A group of elm trees is situated in the southeast part of the field. The transit was placed 31.5 feet from the northerly boundary fence of said field and 53 feet from the easterly limit of road leading to the town. The field is about 800 feet from the track. The magnetometer was placed 10.3 feet behind the transit and on line with the transit

reference object. The following true bearings were determined from the transit station.

Pole on water-tank (R. O.), 45° 05′.9 east of north.

Lightning conductor on northwest gable of house across the road, $81^{\circ}\,08'.3$ west of north.

Hamilton.—The station is situated in the second field west of the road leading from the Incline railway and fronting on the Chedokee road. A grove of trees lies just over the south boundary of this field. The transit was placed 79 feet from the east boundary fence of said field and 99 feet from the south boundary fence. The magnetometer was placed 11 feet behind the transit and on line with the transit and the reference object. The following true bearings were obtained from transit station:—

Flag pole of tower on a house, 67° 04'.7 east of north.

Top of tower on school-house, 87° 06'.0 east of north,

Flag pole on concert hall on main road (R. O.), 39° 27'.6 west of north.

Penetanguishene.—The station is situated in a field lying on the east side of the fourth parallel street east from the G. T. R. depot. The field lies immediately behind Mr. Gendron's lot, which fronts on the first street from the depot running eastward off Main street. The transit was placed 114 feet north from the southerly boundary and 184 feet from the easterly limit of the above first-mentioned street. It is also 34 feet and 32 feet respectively from two apple trees, one about north and one about northwest from the transit. The following true bearings were determined:—

West end of cross on Catholic church (R. O.), 30° 38'.1 west of south. Top of small tower on school hill, 35° 04'.1 west of south.

Orangeville.—The station is situated in the third field east from the C. P. R. tracks and fronting on the south side of Chisholm street. Mr. Augustine, who owns the field, lives just east of it. The transit was placed 181 feet from the southerly limit of Chisholm street and 64.5 feet from the westerly boundary of said field. The magnetometer was placed 10.8 feet behind the transit and in line with transit and reference object. The following true bearings were determined from the transit station:—

Top of windmill on hill, 60° 46′.8 east of north.

West side of chimney on cement mills, 35° 29′.3 west of south.

Spire on church in Orangeville (R. O.), 49° 09′.9 west of north.

Gulph.—The station is situated in a pasture field in the northern limits of the town. The field fronts on the east side of Lemon street, and is on the south side of the first road north of and parallel to Stewart street. The magnetometer was placed 22 feet east of the easterly limit of Lemon street and 88 feet south of the southerly limit of above-mentioned road, and is also 508 feet from the northerly limit of substant street. The transit was placed 11 feet in front of the magnetometer and on line with magnetometer and reference object. The following true bearings were obtained from the transit station:—

Flag pole on General Hospital (R. O.), 80° 18′.5 west of north. Eastern gable on Macdonald's barn, 4° 33′.3 west of north.

Brautford.—The station is situated in the rear of a field owned by Mr. Hull, whose house is at the southwest corner of Market street and Grandview avenue. The station was 27 feet at right angles from the south limit of Grandview avenue and 85 feet from the westerly boundary fence. The station is on a hill overlooking the town to the south. The following true bearings were determined:—

Spire of Congregational church (right-hand spire), 1° 34′.7 west of south.

Tower, market-hall, 4° 07'.9 west of south.

Pole on belfry, 11° 41'.0 west of south.

Simoce.—The station is situated in a field fronting on the south side of the first street, running east and west, north of the grist-mill on Norfold street. The field contains some sand pits which are on the east side of Norfolk street. The station was 25.8 feet from the boundary fence on the east and 40 feet from the south limit of the above-mentioned street. The station was on the hill above the sand pits. The following true bearings were determined:—

Ornament on grist-mill, 57° 09'.4 west of south.

Ornament on station tower (R. O.), 49° 33'.3 west of north.

Pole on barn just visible over a clump of trees, 14° 49'.4 west of north.

The first street mentioned above ends at easterly boundary fence of the field.

Port Rowan.—The station is situated in the southerly part of the field south of the brick-yards at the G. T. R. tracks. The transit was placed 234 feet from the east side of street bordering this field on the west, and 17 feet north from the north street line produced, of the street which runs westward from the Free Methodist church. The magnetometer was placed 11.3 feet behind transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Tower on Free Methodist church, 48° 01'.9 west of south.

Windmill on barn (R. O.), 48° 49'.8 west of north.

Berlin.—The station is about 1½ miles west of the town on the north side of the St. Petersburg road, and is situated in a field belonging to Mr. J. Shafer. The above field is the first field west of the field in front of Mr. Shafer's house. The transit was placed 126 feet from the northerly limit of the road, and 104 feet from the easterly boundary fence of said field. The magnetometer was placed 13 feet behind transit and on line with reference object and transit. The following true bearings were determined from the transit station:

North side of large water-tower, 15° 35'.8 east of north.

Church spire in Berlin, 59° 30'.2 east of north.

Bottom of lightning rod on Shafer's barn (R. O.), 64° 11'.2 east of south.

Flesherton.—The station is situated in a field belonging to Mr. Gullinson and is fat the northwest corner of the intersection of the first cross-road eastwards from the C. P. R. on the road to Flesherton. The transit was placed 24.5 feet from westerly boundary fence and 117 feet from the southerly boundary fence. The above-mentioned road forms the southerly boundary for about one-half the length of the field. The magnetometer was placed 11 feet behind transit and on line with

reference object and transit. The following true bearings were determined at transit station:—

Belfry pole on school (R. O.), 32° 30′ cast of south.

North gable of grain elevator, 18° 48'.3 west of south. Church spire, Flesherton, 49° 12'.5 east of north.

Woodstock.—The station is situated in a small pasture field belonging to Mr. Hart. This field is on the south side of a short street running easterly from the street bounding Woodstock College grounds on the cast, and adjoins Mr. Hart's house and lot at the intersection of the above-mentioned streets. The trunsit was placed 51.5 feet from the westerly boundary fence and 75 feet from the southerly limit of above-mentioned short street. The magnetometer was placed 13.8 feet behind transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Top of Hydro-electric tower, 10° 13'.0 west of south.

Top of tower Woodstock college [one on which are the wind gauges] (R. O.), 77° 26′.3 west of south.

Smoke-stack on grist-mill, 41° 30'.9 west of north.

Mount Forest.—The station is situated in a small field belonging to Mr. Duke, about one-quarter of a mile west of the G. T. R. tracks on the main road. A short road runs into the main road from the north at this point at an angle, making the field triangular in shape. This field adjoins the field on which Mr. Duke's house is placed. The transit was placed 178 feet from the easterly boundary fence and 65 feet at right angles from the easterly limit of the short road. A large maple tree stands on the northerly part of the field. The magnetometer was placed 11.4 feet behind transit and on line with transit and reference object. The following true bearings were determined from the transit station—

Spire of Methodist church [left hand spire] (RæQi), 75° 01'.1 east of north. Church spire, Mount Forest, 82° 42'.4 east of north.

Top of station tower, 87° 21'.1 east of north.

Port Burwell.—The station is situated in a field on the north side of Pitt street, and adjoining the English church on the east side. A creek runs across the easterly part of the field. The station was 49 feet from the westerly boundary fence and 135 feet from the northerly limit of Pitt street. The following true bearings were determined:—

Southeast corner of Baptist church tower, 54° 23'.2 east of north.

Tower, English church, 73° 48'.3 west of south.

Belfry on school-house (R.O.), $10^{\circ}\,31'.4$ west of north.

Owen Sound.—The station is situated in the Agricultural grounds on top of hill in the casterly section of the town. The transit was placed 202.5 feet from the northeast corner of north wing and 235 feet from the southeast corner of south wing of the main building; also 97.2 feet from northwest corner of the grandstand. Magnetometer was placed 13.3 feet behind transit and on hine with transit and reference object. The following true bearings were determined from the transit station:—

Spire on Roman Catholic church (R. O.), 12° 21′.0 east of north. Flag pole on Strathcona school, 81° 19′.3 west of north.

Stratford.—The station is situated in Queens park, near the Avon river. The station was 230 feet east of the east side of the Normal school and 580 feet north of the north side of the school. It was also 198 feet from the westerly tree of a clump of three trees on the river bank and 171 feet from the easterly tree. The following true bearings were determined:—

Flag pole on Normal school, 23° 02'.4 west of south. Spire, Knox Presbyterian church (R. O.), 67° 05'.4 west of south.

Top of house with peculiar mushroom top, 64° 23'.1 west of north.

Port Stanley.—The station is situated in a small pasture field belonging to Mr. Mitchell, on the road leading westerly from the town and about one-half mile distant. This field is between Fraser Heights and the road, and is the second field west of the second road leading up to Fraser Heights. There is a line of apple trees along the boundary fence at the road. The transit was placed 121.5 feet from the westerly boundary fence and 103.3 feet from the southerly limit of the road. The magnetometer was placed 8.4 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Small church spire, pyramid in form (R. O.), 55° 52′.7 east of north. Flag pole on hotel on Fraser Heights, 47° 18′.3 east of south. South gable of red brick house, 5° 26′.4 west of north.

London—The station is situated in a field belonging to Mr. D. Barelay and is on the north side of the road leading westerly from the G. T. R. station. This field adjoins, on the east side, the field in which Mr. T. Lewis' house is situated. The magnetometer was placed 49 feet from the westerly boundary fence and 26 feet from the northerly limit of the road. The following true bearings were determined from the transit station which was SI feet in a northeasterly direction from the magnetometer station:—

Middle of three lightning roads on red barn north of tracks (R. O.), 24° 43′.4 east of north.

South gable of barn, 46° 30'.4 east of north.

Wingham—The station is situated in a small field at the northeast corner of the intersection of St. Patrick street and Carling avenue. The transit was placed 78 feet from the northerly limit of St. Patrick street, and 62.5 feet from the easterly limit of Carling avenue. The magnetometer was placed 15 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Top of G. T. R. semaphore, 45° 41′.3 east of north. East side of water-tower, 24° 04′.8 west of south.

Lightning rod on south end of red barn north of tracks (R. O.), 11° 17′.2 west of north.

Lucan.—The station is situated in a field west of the G. T. R. station and south of the tracks. The field, which belongs to Mr. J. Babb, adjoins on the west side the field in which Mr. Babb's house is placed. The transit was placed 43 feet north of the southerly boundary fence and 363 feet west of the easterly boundary fence. The magnetometer was placed 10 feet behind the transit and on line with transit and

reference object. The following true bearings were determined from the transit station:

North side chimney on grist-mill, 51° 53'.1 east of north.

Windmill, 67°10'.4 east of north.

Tower on High school (R. O.), 3° 39', 1 west of north.

Kincardine.—The station is situated in a field across the road from the High school in a southerly direction and bordering the Penetangore on the west side. The field is owned by Miss McCaskey. The transit was placed 170.5 feet from the southerly limit of the road and 38 feet from the easterly boundary fence. The magnetometer was placed 13 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Ornament on western gable of Methodist church (R. O.), 73°24′.1 west of south.

Flag pole on post-office, 89° 54′.6 west of south. Spire, Presbyterian church, 47° 46′.9 west of north.

Rodney.—The station is situated in a small pasture field on the south side of Harper street. This field is owned by Mr. Hugo and is the second field west of the first street intersection on Harper street west of Furnivale street. Mr. Hugo's house is on the southeast corner of this intersection. The station was 131 feet from the westerly boundary fence, and 56 feet from the southerly limit of Harper street. The following true bearings were determined:—

Smoke-stack on planing mill, 2° 59'.7 east of north.

Spire on Presbyterian church (R. O.), 43° 23′.6 east of north.

Smoke-stack on box factory, 75° 13'.1 east of south.

Goderich.—The station is situated on the commons bordering on the G. T. R. tracks and opposite to McEwan's wood-yard. The station was 524 feet from the northerly limit of the street and 209 feet from the fence bordering the commons on the east. This last measurement was taken on a line parallel to the road. The following true bearings were determined:

Top of station tower (R. O.), 14°43'.9 east of south.

Church spire, Goderich, 77° 01'.1 west of south.

Forest.—The station is situated in the Agricultural grounds on Argyle street.

The station was 87 feet from the southerly boundary fence of grounds and 107 feet from the westerly boundary fence. The following true bearings were determined:—

Spire, Roman Catholic church 69°15′.2 east of north.

Spire, Presbyterian church (R. O.), 88°48'.9 east of north.

Tower on High school, 46° 04'.2 east of south.

Chatham.—The station is situated in a field fronting on the north side of the front road south of Queen street, and running parallel with it. The field is opposite the Agricultural grounds on Queen street and is owned by Mr. Hoff. The transit was placed 46.8 feet from the easterly boundary fence and 137.3 feet from the northerly limit of the above-mentioned road. The magnetometer was placed 10.8 feet

behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Flag pole on main building of Agricultural grounds (R. O.), 30°55′.6 east of

Flag pole on main building of Agricultural grounds (R. O.), 30°55′.6 east o north.

Church spire (only one to be seen), $13^{\circ}05'.4$ west of north.

Top of G. T. R. water-tank, 32°11'.4 west of north.

Samia.—The station is in a field on the east side of Telford street and south of Russell street. The field adjoins, on the north side, a lot containing a house and orchard. The field is owned by Mr. Shannon and is south of his house which fronts on Wellington street. The transit was placed 57 feet from the southerly boundary fence and 190.5 feet from the easterly limit of Telford street. The magnetometer was 10.5 feet behind the transit and on line with transit and reference object. The following bearings were observed from the transit station:—

School tower (Russell street), 24°49'.2 west of south.

Flag pole on post-office, 77°50'.8 west of north.

Spire, St. Andrews church (R. O.), 54°28', 2 west of north.

Port Lambton.—The station is situated in rear of a large cultivated field east of the Pere Marquette railway. This field belongs to Mr. McDonald and adjoins, on the north side, his large pasture field. The field is also about 1,000 feet north of the road leading east from the railway station. The transit was placed 87.5 feet from the easterly boundary fence and 72.5 feet from the southerly boundary fence. The magnetometer was 10 feet behind the transit and in line with transit and reference object. The following true bearings were determined from the transit station:—

South end of the only barn to be seen in this direction, 35°47′.0 east of north. North end of red barn, 48°11′.3 west of south.

Flag pole on the 'Ohio' cottage (R. O.), 48°08'.9 west of north.

Belle River.—The station is situated in a field about one-quarter mile east of the town and on the north side of Main street produced. The field is owned by Mr. Dube and adjoins, on the east side, a field containing a house and a large vegetable patch. The transit was placed 238 feet from the easterly boundary fence and 246 feet from the northerly limit of road. The magnetometre was 11.3 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Spire, Roman Catholic church (R. O.), 75°49'.1 west of south.

Tower on school-house, 85°10'.5 west of south.

Smoke-stack on cannery, 76°10′.5 west of north.

Kingsuille.—The station is situated in a field on the west side of a private lane which turns off the Main street, produced, at Mr. C. McDonald's house. This field is the second field from the main road and belongs to Mr. C. McDonald. The transit was placed 204.6 feet from the northerly boundary fence and 149 feet from the westerly limit of private lane. The magnetometer was 9.3 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station:—

Spire, Roman Catholic church (R. O.), 71°35′.5 east of south. North end of McDonald's barn, 23°06′.1 east of south.

N.W. gable of barn, 75°16′.9 west of south.

Windsor.—The station is situated in a large pasture field on the north side of the Teeumsch road and about 700 feet east of the intersection of the C. P. R. branch to the Walkerville Bridge and Iron works and the Teeumsch road. The field, which is owned by Mr. Stanley, is full of stumps and many small bushes are scattered about. The transit was placed 186 feet from the westerly boundary fence and 214 feet from the northerly limit of the Teeumsch road. The magnetometer was placed 9.3 feet behind the transit and on line with transit and reference object. The following true bearings were determined from the transit station;—

East gable of red barn, 13°01'.3 west of south.

Spire, St. Alphonse church (R. O.), 57°34′.8 west of north.

Spire on tower close to large building in Detroit, 26°26'.1 west of north.

MAGNETIC RESULTS FOR 1910—ONTARIO.
OBSERVER, J. W. MENZIES

D. D. Hor, Tol	
Station φ λ Date Decl. Dip. Int. In	
0 / 0 / 1910 0 / 0 /	
Napanee	946
Belleville	
Brighton 44 2 · 0 77 44 · 0 " 19 8 42 · 0W 74 48 · 6 · 15957 · 609	
Peterborough 44 18-6.78 18-5 " 5, 7 8 45-5W 74 42-6 -16327 -619	
Newcastle 43 54·378 31·8 " 22 7 47·5W 74 43·3 ·16083 ·616	
Kinmount	
Lindsay 7 35-6W 75 09-9 -15726 -61-	
Pickering	
Niagara Falls 43 07:7 79 6:3 Sept. 20, 21 6 00:3W 74 12:0 :16490 :600	
Beaverton	267
Port Colborne 42 53-2 79 14-3 Sept. 17 5 47-5W 73 58-1 -16754 -606	
Orillia	
Beamsville 43 11.5.79 28.5 Sept. 22 5 51.3W 74 31.4 .16481 .615	762
Barrie 6 46-1W 75 20-1 -15535 -613	
Brampton 43 40.9 79 45.5 Aug. 1, 2 5 56.5W 74 34.7 .16293 .612	270
Cayuga 42 58-079 51-0 Sept. 16 6 34-7W 73 50-3 -17044 -612	233
Hamilton 43 14 4 79 54 0 23-27 5 32 4W 74 19 2 16534 611	
Penetanguishene. 44 46-479 58-0 Oct. 20, 21 7 29-6W 75 32-4 -15318 -613	
Orangeville. 43 54.7 80 05.0 " 17 6 01.8W 74 42.9 .16190 .61	414
Guelph	395
Brantford. 43 08-7 80 15-5 Sept. 29 4 43-8W 74 13-8 -16623 -611	164
Simcoc	329
Berlin 43 26.9 80 30.0 " 15 5 34.0W 74 27.7 .16467 .61-	471
Port Rowan 42 38 0 80 27 5 Aug. 6, 8 4 39 6W 73 49 3 17033 6H	
Flesherton 44 14-9 80 33-5 Oct. 15 5 26-2W 74 56-6 -15592 -600	021
Woodstock 43 07.5 80 43.5 Sept. 30, Oct. 1. 3 53.6W 74 07.8 .16730 .61	180
Mount Forest 43 59-2 80 45-0 Oct. 11, 12 5 07-0W 74 46-4 -16086 -612	
Port Burwell 42 38-9 80 49-0 Sept. 2 4 15-1W 73 45-9 -17014 -008	856
Owen Sound 44 33-3 80 55-0 Oct. 13, 14 6 01-5W 75 13-4 -15703 -615	568
Stratford	575
Port Stanley 42 39-9 81 13-5 30.31 2 40-7W 74 05-4 16705 606	939
London (Hyde Park	
Jet.). 42 59-3 81 19-0 Oct. 3 3 34-0W 73 59-8 -16795 -609	919
Wingham 43 54-1 81 20-8 " 8 4 30-4 W 74 39-7 -16241 -615	398
Lucan	258
Kincardine 44 10-3 S1 37-5 Oct. 10. 5 25-6W 74 38-0 -16333 -616	635
Rodney 42 34 · 0 81 · 41 · 0 Aug. 29 3 · 29 · 9W 73 · 47 · 3 · 17138 · 61;	373
Goderieh	393
Forest 43 05 · 6 82 00 · 8 Aug. 13 3 41 · 3W 73 57 · 8 · 16907 · 61:	201
Chatham 42 23 1 82 10 0 " 19, 20, 2 25 9W 73 37 5 17252 -61	194
Sarnia 42 57.7 82 22.5 " 16 3 01.3W 73 50.5 .17045 -61:	248
Port Lambton 42 39.0 82 30.0 " 17, 18 2 48.7W 73 33.0 .17333 -613	
Belle River. 42 17 482 41 8 " 22, 23 1 49 8W 73 21 7 17443 609	
Kingsville	
Windsor 12 17 · 9 83 15 · 0 " 24, 25 1 59 · 0W 73 14 · 6 · 17547 · 600	862

SESSIONAL PAPER No. 25a

MAGNETIC RESULTS FOR 1910—ALONG MAIN LINE, CANADIAN PACIFIC RAILWAY OBSERVER, C. A. FRENCH.

Station									
Station									D' . 1
Station. \$\varphi\$ A					D 1	To 1	Hor.	Total	
Ottawa	Station.	φ	λ	Date.	Decl.	Dip.		Int	
Ottawa									in Dec.
Ottawa									
Aginecent 43 47-0 70 16-0 May 6 3 1W 74 88-3 16275 61435 92-1 Chapleau 75 75-3 8 32 56-6 " 7, 0 4 16-4W 75 15-7 13210 26226 18-8 Wayland, 8 4 24 8 349-5 " 7, 14 16-1 5 8-8W 77 18-0 13057 6257 12-2 Wayland, 8 4 24 8 349-5 " 18-0 16-1 5 8-8W 77 18-0 13057 6257 12-2 Wayland, 8 4 24 8 349-5 " 18-0 16-1 5 8-8W 77 18-0 13057 6257 12-2 Wayland, 8 4 24 8 349-5 " 18-0 16-1 5 8-2 Wayland, 8 4 24 8 349-5 " 18-0 16-1 5 8-2 Wayland, 8 4 24 8 349-5 " 18-0 16-1 5 8-2 Wayland, 8 4 24 8 37-6 " 18-0 16-1 5 8-2 Wayland, 8 4 27 8 8 37-6 " 18-0 2.5 3 1-1 19-W 78 19-4 12768 6057 15-6 White River, 8 35-2 8 16-3 " 2 22-3 W 78-2 5-3 1298 6-2 Wayland, 8 4 27 8 8 37-8 4 2 22-3 W 78-2 5-3 1298 6-2 Wayland, 8 4 27 8 8 37-8 4 16-3 Wayland, 8 4 27 8 8 37-8 4 16-3 Wayland, 8 4 27 8 8 37-8 4 16-3 Wayland, 8 4 27 8 8 37-8 4 16-3 Wayland, 8 4 27 8 8 37-8 4 16-3 Wayland, 8 4 27 8 8 2 2 2 2 3 Wayland, 8 2 2 2 2 2 3 Wayland, 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
Chapleau	Ottawa	45 23 - 6	75 43.0	Apr. 1 to 20	13 2·2W	75 39 - 8	-15114	·61037	
Chapleau.	Agincourt	43 47 - 0	79 16-0	May	6 3·1W				9-2
Wayland 48 24 83 49 9 10 11 5 88W 77 78 0.3667 62.07 12 63 68 WT 78 9.0 3657 62.07 12 63 68 WT 78 9.0 32.05 3 11 90 32.25 3 11 90 82.25 63 63 83 83 63 63 83 33 83 63 83 <t< td=""><td>Chapleau</td><td>47 50.3</td><td>83 25-6</td><td>" 7. 9</td><td>4 16 · 4W</td><td>77 51 - 7</td><td>+13219</td><td>-62866</td><td>14.8</td></t<>	Chapleau	47 50.3	83 25-6	" 7. 9	4 16 · 4W	77 51 - 7	+13219	-62866	14.8
Missinabib 88 18 88 27 3 81 3 7 6 8 10 20 3 3 6 1 W 77 49 9 1327 6 2926 5 12 6 10 20 20 3 3 6 1 W 77 49 9 1327 6 2926 5 12 6 20 20 20 20 20 20 20 20 20 20 20 20 20	Wayland	48 2.4	83 49-9	" 10, 11	5 8.8W	77 58 - 0	-13067	-62677	12.2
Grasett 8 27-8 84 37-6 " 19, 20 3 46-1W 78 9-6 12878-6705 12-6 White Hiver 1 83 72 8 16-3 " 23, 25 1 3 11-0W 78 9-6 12878-6705 12-6 White Hiver 1 84 13-8 83 2-8 16-3 " 25, 25 1 3 11-0W 78 19-4 12785-6705 12-6 White Hiver 1 84 13-8 83 2-8 16-3 " 25, 25 1 3 11-0W 78 25-2 12726-6288 12-9 White Hiver 1 84 13-8 84 13-	Missinaibi	48 18-8	84 5.2		5 48-8W	77 49-9	+13272	-62965	13.6
White River.					3 46 · 1W				12-6
Montizambert 83 + 1-8 85 38 - 6 27 7.8 2 22 33 78 25 3 1298 - 6326 12-6	White River	48 35.2							
Heron Bay				4 27 28					
Middleton									
Schreibert									
Gravel. 48 54-7 87 43-6 4 10. 0 25-1 E 78 35-0 12433 69012 11-5 Nippion									
Nipigon 90	Crowd	49 54.7							
Dorbon	Vision	10 0 7							
Mackenzie 8 35-0 85-5.5 "15 2 90-3E R 33-0 38-16 12 13 16-55 7 19-4 1322-13 131-13 13-13 12-13 13-13 12-13 13-13 13-13 12-13 13-13	Dorigon	10 46 0		11, 10					
Figure 1.6 1	Markenia	46 22 0							
Kaminitikwia									
National Color				14, 10					
Savanae 8 57 0 90 14:0 9 77.28 4 28 15 78 12 2 12631 6339 12 9 18 18 18 18 18 18 18 18 18 18 18 18 18				44					
Nicola N									
Martin. 9 15:3 91 7:0 July 2. 4. 4 85:1 F. 8 9:3 :1988 65766 10-19 11-									
	Niblock	49 16.3							
Taché. 99 35-0 92 10-7 8 11-12 6 67-4E 78 22-9 12-772 63419 14-12 Mabigoon. 99 35-0 93-88 13 14 7 39-0 71 90 133-0 23-375 15-37 20-13 18-12 7 29-0 14-12 70 20-13 165-0 25-23 20-12 18-12 18-12 18-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12 18-12 19-12 18-12 19-12 18-12 19-12 18-12									
Wabigoon 19 35-0 92 36-8 a 3,1 4 73-0-0E 77 49-6 1366 36-75 19-0 19-0 77 49-6 126-73 20-0 19-0 19-0 79-0 28-17 8-14-1E 92-26-11656 63-73 20-0 19-0 20-27 20-28-12 20-20 20-37 20-28-27 20-28-27 79-12 88-83-23 89-9 1218-68 30-37 79-12 88-83-38 30-37-28 22-23 7-7 28-84-78 89-9 1218-68 30-11 18-82-32 7-7 28-84-78 89-9 1218-68 30-11 18-82-32 7-7 28-84-78 89-9 1218-68 30-11 18-82-32 7-7 28-84-78 7-89-9 218-68 30-11 18-82-32 18-82-32 18-82-18 18-82-32 18-82-32 18-82-32 18-82-32 18-82-32 18-82-32 18-82-32 19-11 18-82-32 19-11 18-82-32 19-11 18-82-32 19-11 18-82-32 19-11 18-82-32 1				" 6-8					
Depth 10									
Egigle. 9 677 9 31.1 1 8 8-20. 6 34 75 78 10 4 19309 65324 17 2 9 1 19309 65324 17 2 9 1 19309 65324 17 2 1 19309 65324 17 2 1 19309 65324 17 2 1 19309 65324 17 2 1 19309 65324 17 1 19309 65324 17 1 19309 65324 17 1 19309 65324 17 1 19309 65324 17 1 19309 65324 17 1 19309 65324 17 1 19309 65324 17 1 19309 65324 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wabigoon	49 43.6		10, 14					
Value Valu				10, 17					
Hawk Lide. 6 58.3 65.97	Eagle	49 47.7		18-20					
Kenora	Vermilion	49 51.3							17 - 1
Kalmar. 9 4.5.7 94 58 0 28, 29 9 31.7E 77 32.7 13245 65531 12.9 1324 67531 12.	Hawk Lake	49 58-3	93 59 7			78 26 8	-12806	-63941	17.7
Rennie. 9 51-5 95 33:3 ** 29-93. 10 19-7E 77 277-13779 63771 12-6 Whitemorth 9 57-6 0 557-8 Mg; 1, 2 10 57-0 17 78-75 Mg; 1, 2 10 57-0 17 81-5 12-294 6395 18-2 Norquay. 9 59-6 9 53-9 4 5 4 5 11 23-0 17 78-17 12-294 6395 18-2 Portage-la-Prairie 49 58-5 98-17 9 ** 15, 16 9 26-95 78 29-0 12-310 64101 15-9 Prairie 49 58-5 98-17 9 ** 15, 16 9 26-95 78 29-0 12-310 64101 15-9 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 89-8 88-8 28-35 13 3-9 17 73-2 2 13307 63301 18-5 McGregor 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Kenora	49 46 - 2			10 0·4E	77 59 4	+13122	-63062	
Rennie. 9 51-5 95 33:3 ** 29-93. 10 19-7E 77 277-13779 63771 12-6 Whitemorth 9 57-6 0 557-8 Mg; 1, 2 10 57-0 17 78-75 Mg; 1, 2 10 57-0 17 81-5 12-294 6395 18-2 Norquay. 9 59-6 9 53-9 4 5 4 5 11 23-0 17 78-17 12-294 6395 18-2 Portage-la-Prairie 49 58-5 98-17 9 ** 15, 16 9 26-95 78 29-0 12-310 64101 15-9 Prairie 49 58-5 98-17 9 ** 15, 16 9 26-95 78 29-0 12-310 64101 15-9 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 88-4 88-47-4 ** 17, 18 33 9-61 77 40-4 13302 63246 17-4 McGregor 9 89-8 88-8 28-35 13 3-9 17 73-2 2 13307 63301 18-5 McGregor 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Kalmar	49 45 - 7	94 58 0	" 28, 29	9 31·7E	77 52.7	-13345	-63551	12.5
Whitemouth 9 57-0 9 57-8 Aug. 1, 2	Rennie	49 51 - 5	95 33 - 3	" 29-31	10 19.7E	77 27 - 7	-13779	-63471	
Norquay. 49 50-6 96 33-9 4 4, 5 11 23-01; F8 41-5 12249 63966 18-2 Winnipeg. 49 51-9 97 7-9 8, 9. 13 367-75 18 13-33304 63827 13-8 Marquette 50 4-1 97 43-6 11, 12 13 17-75 78 5-9 13039 63225 13-2 Marquette 50 4-1 97 43-6 11, 12 13 17-75 78 5-9 13039 63225 13-2 Marquette 50 4-1 97 43-6 11, 12 13 17-75 78 5-9 1-13039 63225 13-2 MacGregor. 49 88-4 98 47-4 17, 18 13 9-65 77 19-4 1302 63236 17-6 MacGregor. 49 88-4 98 47-4 17, 18 13 9-65 77 19-4 1302 63236 17-6 17-6 17-6 17-6 17-6 17-6 17-6 17-	Whitemouth	49 57 . 0	95 57.8	Aug. 1, 2,	10 57 · 0E				18-2
Wimbrige 40 51-9 97 7-9 8 8,9 13 56-7E 78 11-3 13606 (6887) 13.8 Marquetta 50 4-1 97 4.0 8 11,12 13 17-7E 5.9 1,3309 62525 5.2 Portage-la-				# 4.5	11 23.0E	78 41-5	-12549	-63996	18-2
Marquette 50 4-1 97 4-0 11 12 13 17-7E 78 5-9 13339 68225 15-2 Portage-la 9 8-9 9 8-9 8-9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 10 14 16 77 30 11 320 6236 17 14 130 6236 17 30 11 1302 6236 17 18 3 9-6 17 30 11 330 6236 17 30 13 30 15 44 67 73 31 13 30 18 40 77 32 2338 1-6 18 30 17 30 31 18 30 18 10 18 30 30 18 16 40 75 19 10 18 <t< td=""><td>Winnipeg</td><td>49 51 9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>13.8</td></t<>	Winnipeg	49 51 9							13.8
Portage-la- Prairie 49 58-5 98 17-9 " 15, 16. 9 26-9E 78 29-0 12810 64161 15-9 McGregor 49 58-4 8 47-4 " 17, 18. 33 9-6E 77 40-4 1302 63246 17-4 McGregor 49 58-4 8 47-4 " 17, 18. 33 9-6E 77 40-4 1302 63246 17-4 McGregor 49 58-9 10 58-8 " 28-25 18 49-6E 77 40-4 1302 63246 17-4 McGregor 49 58-9 100 28-7 " 26. 16 4-6E 77 15-9 1405 63531 13-8 McGregor 49 59-100 28-7 " 26. 16 4-6E 77 15-9 1405 63531 13-8 McGregor 49 51-3100 55-7 " 27, 28. 16 43-1E 7 15-9 1405 63531 13-8 McGregor 49 51-3100 55-7 " 27, 28. 16 43-1E 7 17-10 1-13076 6230 13-9 McGregor 49 51-3100 55-7 " 27, 28. 16 43-1E 7 12-9 1303 16-3336 13-2 McGregor 49 51-3100 55-5 " 29, 10. 18 18-1E 77 29-7 13850 63219 17-8 McGregor 49 50 22-10 310 15-5 " 9, 10. 18 18-1E 77 29-7 13850 63219 17-8 McGregor 50 22-610 16-1 " 14, 15 18 37-6E 77 3-8 1447-6582 12-7 McGregor 49 50 29-910 36-8 " 10, 11 19 28-EE 78 36-8 14426 62771 14-9 McGregor 40 34 79-07 18-08-20 19-20 19-20 18-30 14-20 14-	Marquette.	50 4.1							
Prairie 49 88-59 89 17-9 15 16 9 26-9E 18 29-12-12810 64101 15-9 McGregor 9 88-4 84-74 17 18 13 9-66 77 94 13202-62266 17-4 Carberry 9 52-5 99 21-6 19 30 15 44-05 77 39-1 13320-62326 16-3 Griswold 19 40 20 28 16 46-6 77 72-2 1387 33-31 16-8 Kirkella 30 19 10 22-4 30 31 16 34-9 77 75-3 4905 33-35 12 Wapella 50 18 18 18 18 18 77 77 78 13330 6325 12 Wapella 50 18 18 18 18 77 75 38 3355 12 33 34 </td <td></td> <td></td> <td> 0</td> <td>,</td> <td></td> <td></td> <td>10000</td> <td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td></td>			0	,			10000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
McGregory 99 88-4 98 47-4 " 17, 18, " 3 9-6 17, 73 9-1 13202 63246 17-4 (Carberry, 9-6 25-5 99 21-6 " 19, 20. " 15 44-0 17, 73 9.1 13202 6323 15-6 18 9.1 18 9.1 18 9.2 19 18 9.2 19 18 9.2 18		49 58-5	98 17-9	" 15. 16	9.26-9E	78 29 0	-12810	-64161	15.9
	McGregor.	49 58-4							
Brandon. 49 52-0 99 58 8 23-25. 15 3-95 77 32-2 13887 63420 108-5 (Griswold. 4) 46 5-9 100 28-7 2 25 25 16 4-65 77 15 9-14056 53331 13-5 (Griswold. 4) 40 5-9 100 28-7 2 25 25 25 25 25 25 25 25 25 25 25 25 2	Carberry	49 52-5							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Brandon	49 52.0							
Virden. 49 51-3 100 55-7 " 27, 28. 16 43-1E 77 10-1 13976 e2800 130 22-24 " 30, 31. 16 13-9E 77 17-5 13836 5335 11-2 Wapella. 50 15-8101 58-4 Sept. 1, 2. 17 59-6E 77 22-9 13836 e3355 15-2 Wapella. 50 15-8101 58-4 Sept. 1, 1. 17 13-3E 77 82-9 13356 5315 13-8 Wolseley. 50 22-3 103 34-7 3, 5. 17 13-3E 77 89-9 13356 5315 13-8 Molestey. 50 22-3 103 34-7 3, 5. 12, 13 19 32-TE 73 6-14447 6315 13-8 Indian Head. 50 32-10 39-5 12, 13 19 32-TE 73 6-14447 6316 13-8 Region. 50 20-3 104 36-8 16, 17 9 26-8E 75 8-3 31-120 6304 12-13 Pense. 50 24-7 104 59-1 19 9 55-E 75 33-64 1422 6377 17-14 Mosejaw. 50 22-9 105 30-9 20-23 19 25-9E 77 0-64 4496 6270 13 Aigneout. 43 47-0 79 16-0 0-t 6 5-444 73 94 44424 63310 9-2	Griewold	40 46.0	100 28.7						
	Virdon	40 51 2	100 55 7						
Wapells. 50 18 100 58 8ept. 11 2. 17 30 6E 77 29 1838 60318 18 Broadview 50 22 310 34 7 4 3. 7 13 35 7 8.9 135 30 18 88 18 17 70 7 38 9 32 10 30 8 18 17 70 7 36 144 63 32 10 30 18 18 17 70 36 144 63 18 18 17 70 36 144 63 18 18 17 70 36 144 63 18 18 17 70 36 144 11 18 37 66 77 36 144 68 22 10 33 18 18 11 18 76 76 17 36 144 <									
Broaderies 50 23 102 34 7 4 3 5 11 13 8 18 18 7 78 9 13 18 18 79 20 13 35 29 18 18 79 79 7 36 36 29 19 18 18 77 20 7 36 36 29 19 18 18 77 36 144 63 63 18 37 18 70 20 18 18 70 78 9 43 76 78 9 43 76 78 9 43 78 79 18 18 76 78 9 23 9 32 9 32 9 33 18 18 78 66 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18				30, 31					
Wobseley. 50 20-3 108 15-5 " 9, 10. 18 18-1E 77 20-7 13850 63219 17-8 101dian Head. 50 32-210 30 55 " 12, 13, 19 32-TE 73 -6 14147 63176 13-4 Balgonie 50 22-6 101 16-11 41, 15 18 37-6 E 77 3.8 44147 6382 127 8486 13 10 20 20 10 13 18 18 18 18 18 18 18 18 18 18 18 18 18									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
Balgonie 50 29-6 104 16-1	wolseley	50 20-3	103 10.5	9, 10					
Regent: 59 24-914 36-8 14, 17 18 34-64 76 38-3 14210 6802 12-4									
Perse. 50 24 7104 59-1 " 19. 19 45-5E 76 53-6 14222 02717 14-0 Moseejaw 50 23-9105 30-9 " 20-23 19 52-9E 77 0-6 14096 02709 11-3 "Agincourt 43 47-0 79 16-0 Oct. 6 5-4W 74 39-4 16244 -61391 9				- 14, 10					
Moosejaw 50 23-9 105 30-9 " 20-23 19 52-9E 77 0-6 ·14096 ·62709 11-3 *Agincourt 43 47-0 79 16-0 Oct 6 5-4W 74 39-4 ·16244 ·61391 9-2	negina	50 26.9	104 36.8	10, 17					
*Agincourt. 43 47.0 79 16.0 Oct. 6 5.4W 74 39.4 .16244 .61391 9.2	Pense	50 24 - 7	104 59 1						
	Moosejaw	50 23 - 9	105 30 - 9						
Ottawa 45 23 · 6 75 43 · 0									
	Ottawa	45 23 6	75 43.0	* 20–26	13 3.2W	75 41.1	-15096	·61053	11.2

^{*} The values for Agineourt represent the means of the month, and were obtained from the Journal of the Royal Astronomical Society of Canada for May-June, and for November-December, 1910.

Secular Change.

We have now for a few stations in our survey, data wherefrom we can deduce secular change in declination, by comparison of the magnetic results obtained by the Carnegie Institution in 1906 and by the Dominion Observatory in 1910 at corresponding stations, as shown in the following table. From them is deduced the average annual change for the mean period of the respective observations.

Westerly declination is negative, easterly declination positive. In the column "Average Annual Change" for declination, a minus sign indicates that western declination is increasing, and eastern declination decreasing, while the plus sign means the reverse.

SESSIONAL PAPER No. 25a

			Declination.	tion.			Dip.		Hori	Horizontal Intensity.	ity.
Station.	II.	Carnegie Institution, 1906	Obs	Dom. Observatory, 1910	Average Annual Change	Carnegie Ins. 1906	Dom. Obs. 1910	Average Annual Change.	Carnegie Ins. 1906	Dom. Obs. 1910	Average Annual Change
Ottawa	Oct.	-12 44.4	Oct.	-13 03.2	- 4.7	75 39.1	75 41-1	0.5	c. c. s.	c. g. s. -15096	31
Chapleau	3	- 4 04.4	May	- 4 16.4	- 3.5	77 50-6	77 51-7	0.3	.13292	.13219	30
Missinaibi	Sep.	- 5 39.1	и	8.88 9	- 2:7	77 51.6	77 49-9	-0.5	.13303	.13272	œ
White River	's	9-00-6	*	- 3 11.9	- 3.1	78 15-9	78 19-4	6-0	.12909	.12768	88
Schreiber	а	- 0 22.4	June	- 0 31.7	- 2.5	78 24.8	78 26-2	0.4	.12707	.12626	83
Nipigon*	з	1 17.5	3	1 07.0	- 2.8	78 28-6	78 29-6	0.3	.12742	. 12653	24
Fort William‡.	в	3 37-2	ч	3 16.5	- 5.5	77 48.0	77 49-4	0.4	-13414	. 13322	151
Savanno	8	4 33.8	3	4 28-1	1.5	6-60-82	78 12.2	9.0	· 13038	.12051	23
Ignace	н	6 14-6	July	6 10.5	- 1:1	78 27-4	78 30-1	0.7	.12791	.12678	65
Eagle	я	6 39.7	3	6 34.7	- 1.3	78 07-8	78 10-4	0.7	.13135	.13050	55
Kenora	3	9 54-1	3	10 00:4	+ 1.6	77 58-9	77 59-4	0.1	.13176	.13122	14
Winnipeg	а	13 50.0	Aug.	13 56-7	9.0 -	78 07-4	78 11-3	1.0	.13163	. 13061	98
Brandon†	и	15 00.2	з	15 03.9	6.0 +	77 28-7	77 32-2	6-0	.13807	. 13687	31
Kirkella	з	16 02-4	ä	16 13-9	+ 2.9	7.71 77	77 17-5	0.1	.13996	13931	17
Broadview	и	17 05-7	Sept.	17 13.3	+ 1.9	77 37-5	77 38-9	0.3	.13588	.13515	18
Regina†	=	19 12.0	ä	19 26.8	+ 3.7	8-92-92	76 58-3	9.4	.14285	.14210	19

 * C. I. Station about 15 feet from D. O. Station. \dagger C. I. Station and D. O. stations not identical.

GRAVITY

During the past season no member of the staff was available for making gravity observations.

I have the honour to be, sir,

Your obedient servant,

OTTO KLOTZ.

FIGURE 1.

FIGURE 2

FIGURE 3.

FIGURE 4.

FIGURE 5.

6 5 4 Booch Seconograph E-W COMP. 122 Michaelpan and Houngan and aroundran

FIGURE 7.

TGURE S.

APPENDIX 2.

REPORT OF THE CHIEF ASTRONOMER, 1911.

ASTROPHYSICAL WORK

 ${\rm BY}$

J. S. PLASKETT, B.A.

CONTENTS.

Introduction Stellar Spectroscopy Spectrographs Data of Spectra obtained. Miscellaneous Measures. Spectroscopic Binaries under Investigation. The Spectroscopic Binary v Urses Minoris. Record of Spectrograms.	97
Stellar Spectroscopy.	98 99
Data of Spectra obtained.	100
Miscellaneous Measures	101
Spectroscopic Binaries under Investigation The Spectroscopic Binary & Ursæ Minoris	104
Record of Spectrograms	107
Measures	109
Discussion	113
Measures of Plates	121
Solar Research Measures of Plates Summary of Values Committee Work	129
Committee Work	130 139
Committee on Determination of the Solar Rotation by the Displacements of	100
the Spectral Lines	143
Committee on Classification of Stellar Spectra. Micrometric Work and Celestial Photography.	151
Mechanical Work	151
Mechanical Work. General	151
4 v. 4. m. n. m	
Appendix AW. E. Harper, M.A.	
The Orbit of p Orionis	154
Record of Spectrograms	157
Measures	171
Record of Spectrograms Measures Summary of Measures and Discussion The Spectroscopic Binary 7 Camelopardalis.	175
Record of Spectrograms. Measures. Summary of Measures and Discussion.	177 179
Measures	182
Andromedæ.	185
o Andromedæ. c Cassiopeiæ. Miscellaneous.	191
Miscellaneous	200
Appendix B J. B. Cannon, M.A.	
The Elements of 93 Leonis	202
Record of Spectrograms.	203
Measures.	206 216
Summary of Measures and Discussion	221
a Ophiuchi	221
σ Cassiopeiæ. 9 Camelopardalis.	228 231
9 Camelopardalis	231
Appendix CT. H. Parker, M.A.	
The Orbit of ω Ursæ Majoris.	234
Doorwood of Spootwooms	226
Measures. Summary of Measures and Discussion.	238 245
Summary of Measures and Discussion.	248
v Cygni	251
Appendix D.—Solar Physics.—Ralph E. De Lury, M.A., Ph.D.	
Outline of Work done with the Spectrograph	254
Changes in Focus Produced by Plane Gratings. Plates of the Solar Rotation Effect, etc.	256 259
riates of the Solar Rotation Effect, etc	200

Appendix DSolar PhysicsRalph E. De Lury, M.A., Ph.D. (continued).	PAGE
Error; in the Measurement of Spectral Line Displacements. Tables of Measures Arbitrary Displacements. Discussion of Measures The Effect of Sky Spectrum on the Determination of the Rate of Rotation of the Effect of Sky Spectrum of the Sun. The Effect of Air Currents in Spectrographs Distortion and Dispersion of the Solar Image. Suggestions for Puture Work and New Apparatus Photography of the Sun. Laboratory Work.	269 278 281 284 286 287 288 291
Appendix ER. M. Motherwell, M.A.	
Double Star Measures. Occultations of Stars by the Moon. Halley's Comet.	. 299
ILLUSTRATIONS	
1. Velocity Curve of Ursa Minoris 2. Reflecting Prisa arrangement 3. Guide Plate 4. Toepfer Measuring Machine 5. Velocity Curve of a Chronis 6. Velocity Curve of su Loonis 7. Velocity Curve of su Loonis 8. Velocity Curve of su Loonis 9. Velocity Curve of su Loonis 10. The Solar Spectroraph. 10. The Solar Spectroraph. 12. Focal irregularities due to a Plane Grating 13. Double-slit apparatus 14. The effect of Sky Spectrum on the measurements of the Solar Kotation. 15. Rotation Spectrum photographed without and with air-currents in the Spectro. 16. Rotation Spectrum Protecting Prisa for the Solar Rotation apparatus 16. A proposed arrangement of reflecting prisas for the Solar Rotation apparatus	120 120 122 174 184 220 220 248 256 256 256 267 283
 A proposed arrangement of reflecting prisms for the Solar Rotation apparatus. 	. 290

APPENDIX 2.

ASTROPHYSICAL WORK BY J. S. PLASKETT, B.A.

Ottawa, Canada, April 1, 1911.

W. F. King, Esq., C.M.G., LL.D.,

Chief Astronomer,

Ottawa.

SIR.—I have the honour to submit the following report upon the work carried on in the Astrophysical Division and in other departments of the work of the Observatory during the past year.

This report contains a summary of the whole work of the division followed by detailed accounts, generally in the form of appendices, of the various pieces of work carried on by the observers under my charge. Each of these appendices, as in former years, is written by the observer responsible for the work and appears over his signature, and in this regard I can only repeat the commendation given in previous reports of the zeal and efficiency of my assistants, to which is due in a large measure the amount and quality of the work.

For convenience of treatment the work will be classified under the following headings:—

- Stellar Spectroscopy.—The main work under this heading is the determination of the radial velocities of selected stars. These consist almost wholly of spectroscopic binaries whose velocity curves and orbits are being investigated, but a few star spectra for other purposes have been obtained.
- Solar Research.—This subdivision includes the work on the solar rotation and allied investigations with the coclostat telescope and grating spectrograph, daily solar photographs with the equatorial telescope, and miscellaneous work along similar lines.
- 3. Micrometric and Photographic Work.—This includes the measurement of the position angle and distance of double stars, the observation of the occultation of stars by the moon, and comet and stellar photography.
- 4. Mechanical Work.—The work of the mechanicians and carpenter in theconstruction of new and the repair and alteration of existing instruments is also included as being under my charge.
- 5. In addition to the above, directly in connection with and purely the work of the Observatory, it seems desirable to add a subdivision for the work being done by myself as representing the Observatory on several international committees dealing with important astrophysical questions. These committees were organized last

year, and I was appointed thereon at the meetings of the 'Astronomical and Astrophysical Society of America' at Cambridge, Mass., and of the 'International Union for Co-operation in Solar Research' at Mount Wilson, Cal., which I had the honour of attending as the representative of this Observatory. A report of these meetings and of the work of the committees will be given later.

The division of the work has followed practically the same lines as last year. Messrs. Harper, Cannon and Parker devoting their whole time to radial velocity work, Dr. DeLury to solar and allied chemical research, and Mr. Motherwell to the micrometric and photographic work, and to the supervision of the surveying and astronomical instruments. My own time has been occupied principally with stellar spectroscopy and work on the solar rotation. The radial velocity work having become well systematized and arranged, has left me free to devote more time to other branches of the work, and consequently considerable of my energy has been devoted to working with Dr. DeLury in the difficult problem of the Spectroscopic Determination of the Solar Rotation.

STELLAR SPECTROSCOPY.

As in previous years, satisfactory progress has been made in the determination of stellar radial velocities, especially of spectroscopic binaries. Part of my own time and the whole time of Messrs, Harper, Cannon and Parker is devoted to this work. The observing is divided between the four above mentioned, about nine half nights per week being allotted for work with the spectrograph. A regular programme of observation is followed, no attempt being made to have any observer secure the spectra of any particular stars. After the spectra are obtained, however, a division is made, each one undertaking the measurement and reduction of all the plates of one or more binaries and the computation of the orbits, this arrangement tending to more uniform treatment of the binaries and also making the work much more interesting. Following this scheme, as in former years, each observer discusses the work he has done and this appears as an appendix to this report.

A change has been made this year in the method of publishing the measures of the spectra. For the last two years all the measures have been published in an appendix by themselves, so that in the discussion of the orbit only the summary of the plate velocities appeared. This was for the purpose of preventing the breaking up of the continuity of the text by the introduction of many pages of measures, but had the disadvantage that each orbit was in a sense incomplete as the individual measures were not included. Furthermore, owing to the large number of measures of the year before last, this part of the report occupied a very disproportionate amount of the space, and it was felt desirable to abbreviate it if possible. Various schemes were considered, and the one appearing in the present report was finally adopted as containing all the necessary information in less than a quarter of the space. This saving was effected, in the first place, by omitting the micrometer settings and corrections for the star and comparison lines, and, in the second place, by grouping a number of plates together so that the annual diurnal and curvature corrections occupy relatively much less space. The velocities for each star line measured with their weights, the weighted mean and the final radial velocity of the plate are given in a tabular and compact form. This change would have been applied last year but for the fact that the long delay in the publication of the reports prevented us from realizing how much space the measures actually occupied. It is believed that in this new method there will not be more than three or four pages of measures for an average spectroscopic binary.

In obtaining the spectra discussed herein, five different adaptations of two spectrographs have been used, designated as I L, III L, III S, III R and I. The following table gives some of the constants of the instruments:—

SPECTOGRAPHS.

D	Mesignation.	Spe	ectrograph.	No. of Prisms.	Focus of Coll.	Focus of Camera.	$\mathop{\rm at}_{\gamma_*}^{\circ}$
	IL	Ottawa	Spectrograph	1	525 mm.	525 mm.	30.2
	III L		# .	3	525 "	525 "	10.1
	III S	а	4 .	3	525 "	300 "	17.5
	III R	41	и .	. 3	525 "	260 "	20.2
	I	New Sin	gle-Pr. Spect	1	765 "	455 "	33.4

The Ottawa spectrograph referred to above was described in my report of 1906-7, p. 73, while the new single-prism spectrograph was described in my report of 1908-9, p. 163. The differences in III L, III S and III R consist only in the camera objectives employed. III L has a Hartmann-Zeiss 'chromat' objective; III S a Bausch and Lomb Giess-Tessar and III R a specially designed Ross homocentric. The form of field of all these three objectives and of the others used has been fully discussed and described in my report for 1908-9, p. 170.

Since my last report only changes in minor details of these instruments have been made. No material improvements have suggested themselves, as they all work satisfactorily. As will be mentioned more fully later, it is proposed to design and construct a grating spectrograph as soon as a grating giving a sufficiently bright first order spectrum has been obtained.

The method of measurement and reduction follows that already fully described in the report for 1906-7, p. 95, 1907-8, p. 84, and 1908-9, p. 175, so far as micrometer measures are concerned. The stereo-comparator has been used on the plates of c Urses Minoris which have been measured and reduced as described in the 1908-9 report, p. 177. It may be as well to state that the method of reducing the micrometer measures which has been followed for five years has proved itself emimently satisfactory, requiring a minimum amount of labour—a couple of subtractions from tabular values to get the millimetre displacement, which latter is multiplied by a tabular velocity constant to give the radial velocity—and giving equal accuracy with other methods requiring several times the work.

The observing weather during the year covered by this report has been very poor, the worst on record since the Observatory was organized. This will be evident by a comparison of the spectra obtained in the last three years; details of which are given in the amenced table.

SPECTRA OBTAINED.

Month.	190	8-9	190	9-10	1910-11		
	Spectra.	Nights.	Spectra.	Nights.	Spectra.	Nights.	
April	65	8	77	11	51	14	
May	49	11	22	5	44	10	
June	90	16	49	12	41	11	
July	108	20	94	15	49	11	
August	100	16	77	16	55	10	
September,	43	8	59	12	103	17	
October	47	8	94	13	76	11	
November	38	9	57	11	23	5	
December	99	15	94	14	101	13	
January	129	18	84	41	68	10	
February	102	15	89	12	53	12	
March	141	14	115	15	118	16	
Totals	1011	158	911	147	782	140	

It will be noticed that not only have the number of spectra and the number of nights steadily decreased, but the average number of spectra obtained per night has decreased from 6.4 in 1908–9 to 6.2 in 1909–10 and to 5.6 in 1910–11.

Of the 782 spectra obtained during the past year, 111 are of the binaries completed during the year, 524 are of binaries under observation, 75 of binaries, work on which has been discontinued, 50 are additional plates of binaries previously completed in which for various reasons it was felt desirable to obtain further observation, and 22 are spectra of various stars obtained for miscellaneous purposes.

There have been completed, during the interval covered by this report, the elements of the orbits of five spectroscopic binaries, some details of which are given in the apprexed table.

DATA OF BINARIES COMPLETED.

Star.	R. A. 1900.	Decl. 1900.	Visual Mag.	Type.	No. of Plates used.	Computer.
7 Camelopardalis. » Orionis	h. m. 4 49·3 6 1·9 10 48·2 11 42·8 16 56·2	+53 35 +14 47 +43 43 +20 46 +82 12	4·44 4·40 4·84 4·54 4·40	A2 B2 A F8 G5	44 117 60 72 42	W. E. Harper. T. H. Parker. J. B. Cannon. J. S. Plaskett.

ELEMENTS OF ORBITS.

Star.	Period.	e	K	ω	γ	Julian Day.	a sin i
7 Camelop	131 · 26 15 · 840 71 · 70	·013 ·599 ·264 ·008 ·0113	km. 35·15 34·09 20·64 26·54 31·954	217 · 14 1 · 58 11 · 95 270 · 81 359 · 76	km. - 8.93 +22.10 -18.45 + 0.17 -11.398	2418281 · 176 2417975 · 16 2417991 · 101 2418088 · 405 2418005 · 75	km. 1877000 49270000 4336000 26170000 17346000

Complete data including measures will be given of these five spectroscopic binaries later, of & Ursæ Minoris above my own signature and of the other four in the Appendices A. B and C to this report above the signatures of the observers who measured the plates and computed the orbits. Although there is a reduction from last year in the number of orbits published, from eight to five, this reduction is perhaps more apparent than real, for only three of the eight of last year were new orbits, the remainder being new discussions of previously published results to which further data had in some cases been added. However, a reduction in the number of orbits is to be expected from two reasons-first, on account of the poorer observing weather and fewer spectra obtained, and second, because of the fact that the brighter spectroscopic binaries are rapidly becoming exhausted and it is necessary to observe fainter stars requiring more exposure time. This last cause will tend to become more serious as time goes on, for the number of spectroscopic binaries brighter than the fifth magnitude, which is approaching the practical limit with our equipment, is rapidly becoming smaller. There is a still further reason which leads us to expect that the number of orbits obtained must necessarily decrease, and that is the fact that the binaries selected for observation first, are those in which a large range of velocity combined with lines suitable for fairly accurate measurement enables the elements of the orbit to be comparatively easily determined. As time goes on, however, and selection has to be made from stars whose spectra are poor or which have only a small range of velocity, it is evident that many more plates will be required to obtain a statisfactory orbit even if it is possible to determine the orbit at all. In previous reports I have mentioned the abandonment of work on two binaries, & Aquilæ and a Andromedæ. As stated above, 75 spectra were obtained of eight stars on which work has been discontinued for the reasons stated above, and, although it by no means follows that the orbits of these stars cannot be determined, yet, as we have 23 binaries under observation where the chances of securing orbits with a reasonable number of plates seem greater, the others were discontinued for the present. In order to render the measures we have obtained available for others working along similar lines, who may desire to take up any of these binaries, it has been decided to publish these measures at once, and they will be found in Appendices A, B and C, given by the observers who have measured the plates. There are thus given the measures of 119 plates of 11 stars. For convenience, the principal data of the stars observed and the plates measured are collected in the following tables, while the observing records and detailed measures are given in the appendices just cited.

MISCELLANEOUS MEASURES.

Star.	R.A.	Dec.	Type.	Mag.	No. of Plates.	Measurer.
9 Canaelopardalis. # Orionis. # Ursæ Majoris # Ursæ Mooris. # Ophuch Aquilæ * Cygni • Cygni • Andromedæ C Cassiopeiæ	12 49 4 17 30 1 19 01 19 27 20 53 22 57	1 +66 10 9 + 9 39 +54 32 + 7 06 6 +56 30 3 +12 38 +13 43 +51 32 +40 47	Ap A5 A A A B3	4·4 3·4 4·7 4·6 1·7 2·1 3·3 3·9 4·2 3·4	4 2 1 2 2 24 12 7 7 50 8	Cannon. Harper. " " Cannon. Parker. Cannon. Parker. Harper. Cannon.

3 GEORGE V., A. 1913

summary of measures. 9 Camelopardalis.

Plate.	G. M. T. Date.	Year.	Velocity.	Plate.	G. M. T. Date.	Year.	Velocity.
2805 2842 2874	Sept. 20·78 Oct. 4·74	66	-6·4 +2·2 +1·5	2874 2875 2875	Oct. 8·79 " 8·79 " 8·79	44	-1·7 -7·3 -7·4

μ Orionis.

Plate.	G. M. T. Date.	Year.	Velocity.	Plate.	G. M. T. Date.	Year.	Velocity.
1139	Nov. 11·88	1907	+68.4	1159	Nov. 23·75	1907	+50.3

φ Ursæ Majoris.

Plate.	G. M. T. Date.	Year.	Velocity.	Plate.	G. M. T. Date.	Year.	Velocity.
1476	April 13.72	1908	-11.0				

$\pi^{\scriptscriptstyle S}$ Virginis.

Plate.	G. M. T. Date.	Year.	Velocity.	Plate.	G. M. T. Date.	Year.	Velocity
3349	Mar. 18-88	1910	-28-5	3383	Apr. 11-77	1910	-20.2

€ Ursæ Majoris.

Plate.	G. M. T. Date.	Year.	Velocity.	Plate.	G. M. T. Date	Year.	Velocity.
456	Dec. 11·75	1906	-0.4	489	Dec. 18-69	1906	-7.0

a Ophiuchi.

Plate.

G. M. T. Date. Year. Velocity.

Plate. G. M. T. Date. Year. Velocity.

1481	Apr.	13.86	1908	- 4.8	1752	July 31.68	1908	+ 1.4
1542	May	18.83	44	+15.4	1765	Aug. 5-67	44	+15-4
44	44	18-83	44	+ 0.1	1819	" 24-61	44	+ 3.5
1549	66	22.83	44	+16.3	u	4 4	64	-14.7
1612	June	17.81	44	+ 9.3	1834	" 27·55	44	+ 2.3
44	64	4	41	+ 5-6	1843	" 28.56	64	+17.7
1632	44	24.74	44	+17.7	1854	" 31·61	64	+28.5
1649	66	27.74	44	+13-1	1862	Sep. 3.55	44	+ 8.3
1654	July	1.74	41	+15.9	1863	" 3·56	44	+18.2
1688	u"	10.71	44	+13-4	1884	" 14·56	64	+ 2.8
1701	ex.	13.74	44	- 0.8	1885	" 14-57	66	+23.0
1702	64	13.76	44	- 7.3	ec .	u u	66	+39.9
1715	ш	15.79	41	- 0.1	1890	" 16-53	64	+ 0.9
1724	ш	24 · 60	44	+14.4	1891	" 16·55	ec	+ 3.9

o Andromedæ.

Plate.	G. M. T. Date.		Velocity.	Plate.		
369	Aug. 6.80	1906	- 4	970	July 27 · 80 1907	-10.8
374	" 8·81	44	- 1	977	Aug. 1.77 "	+ 5.3
379	" 15.77	ec.	- 4	984		-17.3
401	Sep. 27.69		0	999		-22.1
410	Oct. 16.71	66	- 8 - 2	1002	" 10·70 " " " " " " " " " " " " " " " " "	-10·9 -24·9
414			- 2 -20	1008	" 22·78 "	-24.9
419	Nov. 1.74	4	-20 -11	1021	Sep. 6.70 "	-30.4
432 439	" 8·71 " 19·60	66	-13	1042	12·82"	-17.5
450	Dec. 11.53	66	-10	1044	" 14.78 "	- 9.2
462	" 13·61	44	-15	1052	" 18·71 "	-12.8
482	" 18·46	44	-24	1053	" 18.74 "	-24.5
491	" 19-53	44	-30	1065	" 20·71 "	-16.1
526	Jan. 11.55	1907	-19	1066	" 20·75 "	-11.7
531	" 15-47	ш	-19	1087	Oct. 1.67 "	-16.8
538	" 16·60	44	-13	1088	" 1·69 "	- 6.6
865	June 14-84	44	-12.9	1130	Nov. 8-65 "	- 5.2
867	" 20.81	44	- 5.9	1131	" 8·68"	-15.4
874	" 21·83	4	-12.9	1133	" 11.02	- 2.0
899	# 27·82	44	-17.0	1134	11.00	-19.6
907	July 2.83	44	- 4.7	1151	10.01	- 7.9
935	w 9⋅82	44	- 9.0	1152		- 9.9
948	" 16·77 " 18·75		-10.4	1174	Dec. 4.09	-15.6
954		44	-19·7 -20·6	1175 1176	" 4·67 " " 4·70 "	-18·7 -15·5
960	" 20·79	"	-20.6	1170	4.70	-10.0

Plate.	G. M. 7	Γ. Date	Year.	Velocity.	Plate.	G. M	. T. Date.	Year.	Velocity.
805 852 864 947 1039 1644 1680 4 1778	June 14 " 20 July 16 Sep. 12 June 26 July 8	1 · 83	1907 " " " 1908 "	$\begin{array}{c} -29\cdot 6 \\ -34\cdot 0 \\ -41\cdot 4 \\ -31\cdot 0 \\ -22\cdot 3 \\ -18\cdot 0 \\ -68\cdot 4 \\ -37\cdot 1 \\ -50\cdot 1 \end{array}$	1802 1821 " p " s " p " s 1856 1887	Aug.	20·72 24·66 " " " 31·63 14·61	1908	- 26·5 - 14·8 +111·0 - 26·9 +116·3 - 21·7 - 16·3 - 8·2

p Primary. s Secondary.

، Cygni.

Plate.	G. M. T. Date.	Year.	Velocity.	Plate.	G. M. T. Date.	Year.	Velocity.
932 1718 1804	July 9.74 15.85 Aug. 20.76	1908	-20·2 - 4·7 -20·9	1824 1839 1845	Aug. 24·76 27·70 28·63	ш	-18·7 -15·9 -21·0
1824	" 24·76		-19·9 -23·1	1886	Sep. 14-61		-22.0

ν Cygni.

Plate.	G. M. T. Date	Year.	Velocity.	Plate.	G. M. T. Date.	Year.	Velocity.
934 1758 1830 "	July 9.78 " 31.83 Aug. 24.81	1908	-46·6 -35·6 -32·4 -10·8	1825 1846 1857 1892	Aug. 26·81	64 64	- 5·1 -19·2 -57·0 -29·1

σ Cassiopeiæ.

Plate.	G. M. T. Date.	Year.	Velocity.	Plate.	G. M. T. Date.	Year.	Velocity.
2660 2680 2784 2839	July 14·86 " 27·83 Sep. 14·57 Oct. 4·66		$ \begin{array}{r} -21 \cdot 3 \\ -21 \cdot 8 \\ -16 \cdot 6 \\ + 4 \cdot 9 \\ + 3 \cdot 6 \end{array} $	2902 3009 3521 3527	Oct. 20·70 Dec. 2·42 July 11·77 13·73	1909 " " 1910	-28·7 -30·0 -38·8 + 6·0 -25·6

The spectroscopic binaries under investigation are contained in the following table. The arrangement given here is arbitrary following the order in which the stars were selected from the observing list.

ρ Leonis	
β Coronæ Borealis	
72 Ophiuchi	
γ Corvi	
d Boötis	
B. A. C. 5890	
γ Aquarii	
4 Cyeni	

Cygni
Cassiopeiæ
Tauri
69 (v) Tauri

\$ Tauri

ξ Persei
τ Orionis
ν Geminorum
η Geminorum
S6 ρ Tauri
23 Comæ
α Pegasi
σ Geminorum
68 Ophiuchi

γ Ophiuchi

The above list includes the majority of the discovered binaries (whose orbits are undetermined and which are not under observation at other places) in which the range of velocity and character of the spectrum offer a reasonable chance of obtaining an orbit. In the other 200 or so spectroscopic binaries, the chances of obtaining satisfactory orbits, or even any orbit at all, are, in the majority of cases, poor. This is owing chiefly, as stated above, to a total range of velocity not sufficiently greater than the probable error of measurement to allow the period to be

The method of selection of binaries for observation depends then, first, on the character of spectrum or type of star, and second, on the range of velocity observed. A low range is evidently due either to a long period or to a small inclination of the orbital plane to the tangent plane, to the sphere, or to a combination of both causes. There is an objection to such a method of selection of stars, that the material obtained will not be representative of the stars as a whole, and that general conclusions

easily determined. If the period were known it is likely that a sufficient number of observations would enable a fairly satisfactory orbit to be obtained.

cannot safely be drawn from the discussion of data limited in this peculiar way. But under present conditions such a method of selection cannot well be remedied, as, even in the cases which are apparently most suitable, it is sometimes difficult to secure an orbit and it would be simply a waste of time to obtain observations on many of the discovered binaries. Indeed, in my opinion, judging from our experience with early type spectra, the range of velocity obtained in many of the published binaries is insufficient to prove that they are binaries.

It is evident from the foregoing that our output in radial velocity observations of spectroscopic binaries is likely to diminish materially under present conditions, instead of increasing as is to be wished. The only remedy for this state of affairs is an increase in telescope aperture. Such an increase would not only enable us to keep up our work on spectroscopic binaries but to take part in the great work of obtaining the radial velocities of the fainter stars, a work than which none is more urgent and none offers greater returns for the labour expended. As is well known, the radial velocities of all stars with spectra reasonably accurately measurable, brighter than 5.0 visual magnitude are now practically completed by the ability and energy of Dr. W. W. Campbell, director of the Liek Observatory. But the radial velocities of stars fainter than 5.0 visual magnitude are needed, and there seems no immediate prospect of obtaining them. If our Observatory could take part in such work it would place it in the first rank among observatories, and would undoubtedly give Canada a very high standing in the scientific world.

The desired increase in telescopic aperture can be most economically obtained by the use of a reflecting telescope, which can be erected for less than a quarter the cost of a refractor of the same aperture, and which, for spectroscopic use, is almost equally efficient and indeed possesses some advantages over the refractor, notably in that it is perfectly achromatic and that the shorter, photographic, wave lengths of light are not absorbed to the same extent as when passing through glass. As to the size of aperture desirable I would say, after the performance of the 5-foot reflector on Mount Wilson, that we should not be satisfied with a smaller aperture, but, on the contrary, perhaps aim at something greater, 6-foot say, which would give us the distinction of having the largest in the world, and, a far more important consideration, enable us to reach fainter stars and to obtain sufficient exposure on the brighter ones in considerably less time. The question of covering such an instrument by a movable roof, which can be rolled back out of the way when obvervations are to be made, instead of by the ordinary dome, is worth considering, for, if a suitable wind shield could be devised, there is a decided advantage so far as the seeing is concerned in working in the open, and, in addition, a building with a movable roof would only cost a small fraction of one with a dome.

I would, therefore, strongly urge up on you the desirability of the installation of a large reflecting telescope principally for radial velocity investigations, though it would be desirable to make it suitable for other lines of work also, especially as this can be done without much additional cost. Such an instrument would place our Observatory in the first rank, so far as equipment goes, among observatories, and would enable our staff, who have already obtained an enviable record for the quantity and quality of the work done with a very modest equipment, to excel that record and to place our Observatory in the forefront in the production of valuable scientific work. There is, as I have previously stated, a pressing need for just the kind of work that we would be best prepared to do with such a telescope, and our taking up of this work would add much to our prestige as an Observatory and as a nation. It may not be amiss to point out that, as it would take two or three years to construct such a telescope, all that would be necessary in the meantime would

be to have its construction authorized, no money would require to be voted for the present. Some further remarks concerning this question will be found under the report of my attendance at the two notable astronomical meetings of last year.

The only spectroscopic binary on which the measures and discussion have been made by myself is the last in the preceding list, c Ursæ Minoris, whose orbit will now be given, those of the others appearing in the appendices.

The Spectroscopic Binary & Ursæ Minoris.

The star ϵ Ursæ Minoris ($\alpha = 16^b 56.2^m, \delta = +82^\circ 12'$) was announced to be variable in its velocity by Professor Campbell in 1899.* It was placed on our observing list with the three-prism spectrograph in 1908 and a few plates were obtained. The star, however, is so faint—photographic magnitude 5.3—that even two and one half hours' exposure gave only a very weak spectrum, quite unsuitable for accurate measurement. When a short-focus camera was applied to the three-prism spectrograph in 1909, the star was again observed, and although greater intensity of spectrum was obtained the exposure time was inconveniently long. If the Lumiere "Sigma" plates were used, a fair spectrum could be obtained in an hour if the night was reasonably good, but these plates have the disadvantage of being very coarse grained, thus diminishing considerably the ease and accuracy of measurement, Consequently, the spectra obtained were not felt to be of satisfactory quality, and after May, 1910, the star was observed with the new single-prism spectrograph on Seed "27" plates. Even with this low dispersion over an hour's exposure was required, and many of the spectra obtained were of poor quality. It almost seemed, therefore, that this star was below the effective range of our equipment, and it was thought preferable to work up the plates already obtained, even if of inferior quality, than to attempt to obtain good high dispersion plates of so faint an object. Of the 55 plates obtained of this star, 42 of the best were selected for use in determining the orbit, but the majority even of these 42 were not of good quality.

The star is of the spectral class G5 with good lines only slightly advanced in type beyond the sun, and consequently well adapted for the employment of the spectro-comparator, on which all the plates were measured and which is quite a satisfactory method for stars of this type. The record of observations is given below, followed immediately by the detailed measures which are placed in a similar form to that described above for those measured on the micrometer microscope.

As has been described in the two previous reports, the spectro-comparator determines the actual linear displacement of the star lines relatively to the displacement of the lines in a spectrum of the sun. The measurements of these lines are made at a number of selected regions of the spectrum, and the number of these regions measured varies from plate to plate, depending on the quality. In the tables of measures the wave length of the centre of the region is given in the first column and the kilometre values of the measured displacements in the succeeding columns. The tables are grouped so that the measures of plates made on each form of the spectrograph, of which III L, III S, III R and I were employed, are kept together, the encetrocraph used being indicated at the head of the table.

Astrophysical Journal, Vol. X., p. 179, October 1899.

SESSIONA

RECORD OF SPECTROGRAMS.

PAPER	Remarks.	Hazy 30°° Off 45°°	Temperature uncertain.
	Observen	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	детет то тотапать
	Sceing.	Fair Good Fair	ಗ್ರಾ <u>ತಿ</u> ತನ್ನೂ ಬಲ್ಲಿ ಪ್ರನಸ್ಕೆಗೆಲ್ಲೂ
Slit Width	in Inches.	.0018 .0017 .0018 	.0002 .0016 .002 .0017 .0017
	Box.	113.4 113.4 113.4 113.4 113.4	9.50 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TUBE TADE.	Prism Beg. 1	0.0 1.7 13.4 18.7 25.5 21.1	1 1 1 1 1 1 1 1 1 1
TEMPERATURE CENTIGRADE.	- ig	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
FO	Room.	200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 6 4 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Į.	Angle at End.	055E 058E 000W	20 WW 25 WW
H	Ang	4 00000000	re r∞ ∞∞ ⊕⊕=⊕r€€
1	Duration	1115 1115 1110 1110 1135 1135	81825 55 8185858
Middle	of Exposure G.M.T.	117 a 22.2 23.3 a 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25	00 33 15 15 15 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
Mic	G.N.	4 777 20 21 18 18 18 18 18 18 18 18 18 18 18 18 18	45151 15 1187587
	Date.	1908. ar. 20 pr. 3 ay 4 ay 15 25 pr. 7	ec. 139 27 27 27 30 1910. In. 4 In. 4 In. 4 In. 25 In. 25 In. 25 In. 25 In. 27
	Da	Mar. Apr. May June Sept. 1909	Oct. Dec.
	Plate.	Seed 27	а Мяяя — яя впазата
	Сатета	1	Ø 23 33 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3
No.	of Neg.	1418 1454 1516 1530 1555 1587 1587	2917 3023 3023 3023 3057 3051 3117 3131 3151 3151 3151 3151 3153 3224 3224 3224 3310
	Star.	rUrsæ Minoris	****

P. Plaskett, H. Harper, P. Parker, C. Cannon,

RECORD OF SPECTROGRAMS,—Concluded.

	31																							
	Remarks					Off 20m							Off 15m			Off 25°					Off 15m			
197	1961	OP		ы	1	_	2	2	2	2	೮	4	2	12.	2	2	-	2	2	id.	d	Ξ	U	E.
	Seeing.			5-4	3-4	3-4	d	z	B	03	4	3-4	45"	00	00	4	*	2-3-4	co	0-1-3	÷	4.5	4	2
Slit Width	in Inches.			.0017	.0018	-005	ı	4	B	H	в	в	=	3	3	3	3	3	z	a	20	а	ū	B
	Box.	End.		2.9																				
PEMPERATURE. CENTIGRADE.	Prism Box	Beg.		3.0																			15.9	10.4
FEMPERATURE CENTIGRADE.	Ė	End.			- 1																		-	2.6
	Room.	Beg. End		- 2.0	9.6 -	3.0	0.9	0.6	oc oc	13.1	9.6	0.9	11.8	11.0	17.6	10.0	12.0	18.4	19.2	18:1	19.2	14.0		3.5
Hour	Angle at		E q	_	2 (0) E	9	55	5.0	30	0.5	30	35	45	0.5	9	20	45	30	50	15	8	43	0.5	8
uo	ijen	Du	8	96	20	9	98	75	20	57	222	22	22	33	99	95	57	80	98	115	20	96	08	64
Middle	Of	G.M.T.	m m		16 40																			
	Date.		1910.		17			May 5						a 27								Sept. 1		
	Plate.			A	:	35	ä	Sood 27	N	Seed 27	70	3	3	77	3	4	3	ъ	3	1	3	3	3	2
E	1900	Cau		HIR	3	19	4	100	III B	-	4	19	3	2	3	3	75	3	3	3	25	3	3	3
No	Jo N			3326	3337	3359	3372	349%	3427	3435	3439	3448	3455	3461	3463	3470	3476	3492	3495	3554	3566	3611	3630	3732
	Star.			e Ursæ Minoris	12	я	15	4	3	3	33	4	3	3	3	3	a	4	3	3	7/	ě	*	

COMPARATOR MEASURES OF CURSE MINORIS (III L).

Centre of Region	1418	1454	1516	1536	1555	1587	1868
	Vel.	Vel.	Vel.	Vel.	Vel.	Vel.	Vel.
4069-0 4028-7 4528-7 4530-2 4534-6 4533-9 4490-3 4400-3 4429-6 4374-5 4346-5 4322-8	32·12 35·33 33·90 33·52 32·20 31·31 35·32 31·03 37·12			8.10	+20·47 23·18 21·05 22·55 22·42 19·06 20·20 22·93 22·40 21·60 20·16		-22·23 23·32 25·25 22·60 21·48 21·20 26·11
Va		$\begin{array}{r} -4.48 \\ -8.21 \\ +0.03 \\ +0.35 \\ \hline -12.3 \end{array}$	-37·62 - 6·64 - 0·01 + 0·35	+ 8.84 - 5.63 + 0.03 + 0.35 + 3.6	$\begin{array}{r} +21 \cdot 47 \\ -4 \cdot 54 \\ -0 \cdot 01 \\ +0 \cdot 35 \\ \hline +17 \cdot 3 \end{array}$	$ \begin{array}{r} -32.60 \\ -3.07 \\ -0.02 \\ +0.35 \\ \hline -35.3 \end{array} $	-23·17 + 7·59 - 0·03 + 0·35

COMPARATOR MEASURES OF ¢ URSÆ MINORIS (III S).

Centre of Region.	2917 Vel.	3023 Vel.	3042 Vel.	3053 Vel	3067 Vel.	Vel.
1960-0 . 1928-7 . 1928-7 . 1930-2 . 1930-2 . 1934-6 . 1932-9 . 1940-3 . 194	-22·35 25·51 20·52 24·27 24·16 25·39 23·75 26·08 26·50 27·40 28·15 24·42 24·15	-34·57 33·94 32·62 35·14 35·29 33·29 32·59 35·97 37·14 36·36 34·64	-41.83 42.48 46.12 43.72 43.44 46.94 46.06	$\begin{array}{c} + 3 \cdot 29 \\ + 1 \cdot 58 \\ - 1 \cdot 52 \\ + 1 \cdot 46 \\ - 5 \cdot 64 \\ - 2 \cdot 04 \\ \cdot 00 \\ - 1 \cdot 26 \\ - 1 \cdot 83 \\ - 5 \cdot 28 \\ - 1 \cdot 70 \\ - 6 \cdot 03 \end{array}$	+11-05 12-14 9-52 5-64 6-21 11-73 10-73 10-96	
	+ 7·26 - 0·04	$\begin{array}{r} -34 \cdot 93 \\ + \ 2 \cdot 62 \\ - \ 0 \cdot 04 \\ - \ 0 \cdot 30 \end{array}$	+ 1.63	$\begin{array}{rrr} - & 1.58 \\ + & 0.32 \\ - & 0.04 \\ - & 0.30 \end{array}$	+ 9·75 - 0·12 - 0·04 - 0·30	+22·10 - 0·86 - 0·04 - 0·30
Radial Velocity	- 17.9	- 32.6	- 43.2	- 1.6	+ 9 ·3	+ 20.9

COMPARATOR MEASURES OF & URS.E MINORIS (III S).

	3084	3117	3131	3151	3183	3224
Centre of Region.	Vel.	Vel.	Vel.	Vel.	Vel.	Vel.
1628-7		-13·17 9·57	-30·45 27·62	-39·46 36·41	+23.68	-15:39
1554 · 6	. 18-20	12·14 13·18	26·55 29·28	38·07 35·26	22·75 22·70	12·14 12·08
1492·0	23.98	12.69 11.54	25·39 27·15	36·65 33·90	23·27 23·75	13.75 14.93
1429 · 6	. 22.09	10·43 10·10	24 · 77 25 · 24	35·34 35·92	21·51 25·67	10·43 13·88
374 · 5		9 · 97 11 · 93	28.00 28.74 28.39	37 · 54 35 · 05 36 · 22		
1298-2			30.73	37.12		1
	a - 1·29	-11.63 -2.44	-27.52 -2.99	-36.53 -3.85	+23.54 -5.67	-13·53 - 6·99
Correction to Standar	d - 0.04 d - 0.30	- 0.04 - 0.30	- 0.04 - 0.30	+ 0.02 - 0.30	+ 0.04 - 0.30	+ 0.04 - 0.30
Radial Velocit	y + 19·5	- 14-4	- 30.8	- 40.7	+ 17.7	- 20.2

COMPARATOR MEASURES OF & URS.E MINORIS (III R).

Centre of Region.	3292 Vel.	3310 Vel.	3326 Vel.	3337 Vel.	3359 Vel.	3372 Vel.	3427 Vel.
4588-3 4538-0 4489-5 4489-5 4439-8 4598-1 4556-8 4316-6 4276-2 4239-3 4209-9	-34·51 34·47 33·58 33·71 33·61 33·42 36·19 36·30 35·82 32·97	-26·68 22·26 27·77 28·60 27·28 21·83 24·71 23·77 23·27	- 9.66 16.66 17.83 21.15 14.96 22.05 18.30	+10·14 9·17 10·77 12·55 10·47 11·37 8·46 9·00	+33·60 31·40 35·21 29·40 29·13 29·52 25·04 25·40	- 0.92 + 5.68 + 1.66 + 4.32 + 3.74 + 4.98 - 1.69 + 1.29 + 3.98	+24·40 27·50 26·12 24·31 27·30 28·78 22·34 27·00
	- 7·60 + 0·03	$ \begin{array}{r} -24 \cdot 97 \\ -7 \cdot 85 \\ +0 \cdot 04 \\ +0 \cdot 26 \end{array} $	-17.47 -7.90 $+0.01$ $+0.26$	+10·41 - 8·10 + 0·04 + 0·26	+29·52 - 8·25 + 0·02 + 0·26	+ 2·77 - 8·23 + 0·02 + 0·26	+25.99 -6.60 $+0.01$ $+0.26$
Radial Velocity.	- 41.8	- 32.5	- 25.1	+ 2.3	+ 21.5	- 5.4	+ 19.6

COMPARATOR MEASURES OF CURSÆ MINORIS (I).

Centre of Region.	3426 Vel.	3435 Vel.	3439 Vel.	3448 Vel.	3455 Vel.	3461 Vel.	3463] Vel.
4590	28 · 90 27 · 20 30 · 25 29 · 06 28 · 01 31 · 70 31 · 03	+15·74 11·82 19·50 18·15 16·60 21·26 17·23 20·30 18·12 18·77	+ 9·20 10·70 11·48 4·65 6·71 2·69 5·20	- 7·52 7·22 1·89 ·00 1·16 7·83 8·62 7·01 5·77	-33·54 41·40 36·51 31·43 34·91 36·32 35·02 35·39 35·20 34·68		-28·75 21·67 25·80 24·80 26·20 30·21 30·73 22·89
	- 6.60 + 0.02 + 0.26	+18·07 - 6·43 + 0·01 + 0·26 +11·9	+ 7·05 - 6·16 ·00 + 0·26 + 1·1	- 5·00 - 5·98 + 0·02 + 0·26	-35·40 - 5·04 + 0·02 + 0·26	-31·85 - 4·35 - 0·02 + 0·26	-26.42 -4.25 $+0.01$ $+0.26$ -30.4

COMPARATOR MEASURES OF & URSÆ MINORIS (I).

Centre of Region.	3470	3476	3492	3495	3554	3566	3611
Centre of Region.	Vel.	Vel.	Vel.	Vel.	Vel.	Vel.	Vel.
4590	+ 5.48			-23.98	-27.40		+ 2.05
4525		+14.44	-21.67	24.94	29.53	-36.73	5.91
4461	1.26	17.00	25.80	26.42	30.20	51.00	8.81
4403	3.02	19.37	20.57	27.21	28.42	49.59	9.15
4349	1.75	14.55	20.94	27.91	31 - 41	49 - 45	9.35
4290 4244	·00	19.57	18·45 21·01	29·62 26·93	30·74 28·55	47·52 44·16	10.70
4199	6.76	20.29	20.28	27.02	27.04	49.92	10.40
4148		18.02	21.53	21 02		40 02	6.51
4101			17.31				10.51
Weighted mean		$+17 \cdot 22$	-20.71	-26.91	-29.01	$-47 \cdot 04$	+ 7.90
V. a	- 3.39	- 2.75	- 0.88	- 0.61	+ 4.38	+ 5.38	+ 7.20
Correction to Standard	+ 0.26	-0.01 + 0.26	- 0·01 + 0·26	- 0·01 + 0·26	- 0.03 + 0.26	+ 0.02 + 0.26	- 0.02 + 0.26
Radial Velocity	- 0.5	+ 14.7	- 21.3	$-27 \cdot 3$	- 24-4	- 41 · 4	+ 15.3

COMPARATOR MEASURES OF & URS.E MINORIS (1),

Centre of Region.	3630 Vel.	3732 Vel.	Vel.	Vel.	Vel.	Vel.	Vel.
4590	28·87 27·89 27·81 23·27 24·60 24·80	- 5·48 + 3·94 + 7·55 + 3·02 + 2·91 - 2·80 + 2·15 + 1·56					
Weighted mean V_a V_d Correction to Standard	$ \begin{array}{r} -25 \cdot 14 \\ + 7 \cdot 67 \\ - 0 \cdot 02 \\ + 0 \cdot 26 \end{array} $	+ 1.63 + 8.09 - 0.03 + 0.26					
Radial Velocity	-17-2	+ 10.0					

Collecting together the above measures we have the following table in which, in addition to the plate number, the dispersion, the Julian date, and the velocity, we have the phase and the residual (O-C) computed from the final elements.

MEASURES OF CURSAC MINORIS.

Plate Number.	*Dispersion.	Julian Date.	Phase.	Velocity.	Residua O - C.
1418	III L	2.418.021.72	21.72	-41.2	- 3.7
1454	66	035.73	35.73	-12.3	- 2.0
1516	4	066-85	27.368	-43.9	- 2.1
1530	66	077 - 73	38-248	+ 3.6	+ 1.2
1555	66	. 087.77	8-806	+17.3	+ 0.2
1587	"	099.79	20.826	-35.3	- 0.6
1868	66	192.62	34.992	-15.3	- 1.5
2917	III S	609.58	17.35	-17.9	+ 2.3
3023	44	652 - 44	20.728	$-32 \cdot 6$	+ 1.8
3042	66	659 - 46	27.748	-43·2	- 2.0
3053	44	668-44	36.728	- 1.6	— 3⋅5
3067	44	671.47	0.276	+ 9.3	+ 0.6
3081	44	676 - 47	5.276	+20.9	+ 0.1
3084	44	679 - 45	8.256	+19.5	+ 1.1
3117		687 - 46	16 - 266	-14-4	+ 0.6
3131		691 - 47	20.276	-30.8	+ 1.9
3151	6	697 - 98	26.786	-40.7	+ 1.7
3183		713.73	3.054	+17.7	.(
3224		727 - 65	16.974	-20.2	- 1.8
3292	III R	736.82	26 - 144	-41.8	+ 1.0
3310		741.72	31.044	-32·5 -25·1	- 0.6
3326 3337		742·91 748·70	32 · 234 38 · 024	+ 2·3	+ 1.9 + 1.0
3359	4	757 - 79	7.632	+2.3	+ 2.1
3372	а	764.78	14-622	- 5.4	+ 1.1
3426	I	797-69	8-05	+22.1	+ 3.4
3427	III R	797 - 75	8-11	+19.6	+ 1.0
3435	I	799.77	10-13	+11.9	- 1.4
3439	a a	802.78	13 - 14	+ 1.1	+ 0.1
3448	44	804-69	15-05	-10.7	- 2.1
3455	a	811.70	22.06	-40.2	- 1.7
3461	а	819-85	30-21	-36.0	- î·0
3463	ш	820.70	31.06	-30.4	+ 1.4
3470	а	827.72	38.08	- 0.5	- 2-1
3476	44	832.75	3.628	+14.7	- 4.2
3492	и	846.70	17.578	-21.3	-0
3495	а	848.70	19.578	$-27 \cdot 3$	+ 2.6
3554	a	886.77	18-166	-24.4	+ 0.6
3566	а	895.70	27 - 096	-41.4	+ 0.7
3611	44	916-67	8.584	+15.3	- 2.2
3630	ш	$924 \cdot 52$	16.434	-17.2	- 1.6
3732	4	957 - 56	9.992	+10.0	- 3.7

^{*} III L 10-1, III S 18-6, III R 20-2, I 33-4 tenth-metres per mm. at $H_{\gamma}.$

The period was soon seen to be in the neighbourhood of 40 days, and, when all the observations were plotted and compared with the early measures of Campbell in 1897 and 1899, the period was finally accurately determined as 30.482 days, which can hardly be in error more than one figure in the last place. The initial epoch was taken as Julian Day 2,418,000 and with this and the period of 39.482 days the phases given in the fourth column were computed.

3 GEORGE V., A. 1913

As it was intended to apply a least-squares correction to the graphically determined orbit, the above 42 plates were collected into 14 normal places well distributed over the velocity curve and with no great difference of phase in any one group. Through these normal places various velocity curves with slightly differing values of the elements were rapidly drawn by your graphical method. The curve best fitting the observations had the following values for elements:—

```
Period, l'=39.482 days

Eccentricity, e=0.05

Half Amplitude, K=32.0 km.

Long, of Aps. \omega=0^6

Time of Periastron, T=5.75 days=Julian Day 8,005.75

Velocity of System, \gamma=-12.1 km.

Greatest Positive Velocity, N_s=\pm21.5

"Negative "N, l=\pm21.5
```

The phase from periastron of the normal places given in the table below was obtained from the above value of the time of periastron passage, and the preliminary residuals were computed from the above elements by the help of Astrand's tables,

NORMAL PLACES OF CURSÆ MINORIS.

No. of Group.	Phase.	Phase from Periastron.	Velocity.	Residual Preliminary	Residual Corrected.	Wt.	EphEqn.
1 2 3 4 5 6 7 8 9 10 11 12 13 14	7-907 8-586 10-084 14-128 16-056 17-392 20-106 21-132 27-021 31-267 35-361 1-761 5-276	2-157 2-836 4-334 8-378 10-366 11-642 14-356 15-382 21-271 25-517 29-611 32-041 35-483 39-008	+20·86 +17·70 +11·27 - 3·23 -14·80 -19·83 -31·58 -35·92 -42·39 -31·06 -13·80 + 1·59 +13·00 +20·90	$\begin{array}{c} -1.70 \\ -0.08 \\ +1.49 \\ -2.83 \\ -1.03 \\ -2.42 \\ -1.53 \\ -0.38 \\ +0.57 \\ -0.74 \\ +0.11 \\ -2.88 \\ +0.49 \end{array}$	$\begin{array}{c} -1 \cdot 79 \\ +0 \cdot 01 \\ +2 \cdot 24 \\ -0 \cdot 68 \\ +1 \cdot 17 \\ -0 \cdot 47 \\ -0 \cdot 56 \\ +0 \cdot 22 \\ +0 \cdot 13 \\ -0 \cdot 04 \\ +1 \cdot 74 \\ -1 \cdot 48 \\ +1 \cdot 25 \\ -0 \cdot 11 \\ \end{array}$	electric de la companya de la compan	+ · 03 - · 05 - · 08 - · 05 + · 13 + · 06 + · 04 + · 07 - · 00 + · 01 - · 05 - · 01

From these normal places and the preliminary elements given above, observation equations were computed by the method of Lehmann-Filhés.* When the eccentricity is very small, experience has shown that it is quite useless to carry through corrections for both ω and T. Moreover, the period was considered determined, and hence equations connecting the values of $\delta \gamma$, δK , δe and $\delta \omega$ with the residuals were computed.

^{*} A. N. 3242.

OBSERVATION EQUATIONS & URSÆ MINORIS.

δγ	δK	Kõe	$K\delta\omega$	V	Weight.	Sum.
1.00	+ · 979 + · 929 + · 777 + · 189 - · 116 - · 317 - · 656 - · 926 - · 615 - · 050 + · 338 + · 817 + 1 · 046	+ ·719 + ·533 + ·037 - ·973 - ·941 - ·718 + ·014 + ·303 + ·906 - ·098 - ·980 - ·853 + ·157 + ·986	- · 370 - · 477 - · 686 - · 990 - · 986 - · 930 - · 708 - · 591 + · 219 + · 746 + · 995 + · 958 + · 642 + · 083	$\begin{array}{c} -1.70 \\ -0.08 \\ +1.49 \\ -2.83 \\ -1.03 \\ -2.42 \\ -1.53 \\ -0.38 \\ +0.57 \\ -0.74 \\ +0.11 \\ -2.88 \\ +1.03 \\ +0.49 \end{array}$	Herekaniya-ko-kerekana ekanisa ekanisa	+ ·628 +1·905 +2·618 -3·604 -2·073 -3·385 -1·860 +1·769 +293 +1·075 -1·437 +3·646 +3·605

The above observation equations gave the following normals:—

where
$$x = \delta \gamma$$

 $y = \delta K$
 $z = K \delta \epsilon$
 $u = K \delta \epsilon$

Their solution gives the following values to the corrections:-

$$\delta \gamma = +.7022$$
 $\delta K = -.046$
 $\delta e = -.0387$
 $\delta \omega = -.0094 = -0^{\circ}.54$

Applying these corrections to the preliminary values above, we obtain the following elements for c Ursæ Minoris with their probable errors:—

Period,
$$U=39.482$$
 days
Eccentricity, $v=0.0113\pm0.103$
Half Amplitude, $K=31.954$ km. $\pm .330$ km.
Longitude of Apse. $\omega=359^\circ$, $46\pm0^\circ$, 55
Velocity of System, $\gamma=-11.398\pm224$ km.
Time of Periastron Passage, $T=J$. D. 2,418,005.75
Greatest Pos. Velocity $N_c=\pm20.918$
a Ngc. a $N_c=-42.990$

Projection of Semi-Axis Major a sin i=17,346,000 km. This solution has resulted in the reduction of $\Sigma p \sigma^3$ from 20.80 to 9.21 and from this we get the probable error of a normal place of unit weight as ± 0.64 km. per second.

3 GEORGE V., A. 1913

The residuals in the table of measures above were obtained by careful scaling from the final velocity curve. The probable error of a plate was computed from these residuals with the following values:—

Considering the quality of most of the plates and the fact that the best of the three-prism plates were made on the coarse-grained 'sigma' emulsion, and with a disspersion of 17.6 and 20.2 \mathring{A} per millimetre at H_{Υ} these values are as low as could reasonably be expected. Moreover, the three-prism and one-prism probable errors bear about the same relation to one another, as that obtained in the investigation upon the 'Probable Errors of Radial Velocity Determinations' described in last year's report.

Furthermore, an examination of the run of the residuals for the different dispersions gives no indication of any systematic difference in the velocity measures obtained from different spectrographs.

The velocity curve corresponding to the final elements with the positions of the normal places plotted as circles is shown in Fig. 1.

Solar Research.

As is evident from previous reports, the progress made in work with the coelostat telescope and solar spectrograph has not been as good as could be wished. This has been due to a variety of causes, to delay in the completion of the coelostat house and connecting tunnel, to the floor of the laboratory being torn up for the installation of pipes and pump for draining the meridian circle piers, and, after this, to the fact that only an inferior grating could be obtained for use in the spectrograph. The investigation into the properties of this grating is described by Dr. De Lury in Appendix D, and need not be entered into here. The curious focal properties it possesses are not of so much moment as the fact that it gives poor definition and cannot be satisfactorily used for the determination of the solar rotation. the principal problem for which it was planned to use the equipment. Fortunately, we were able to obtain from Prof. Michelson a large plane grating in April of last year, whose properties are also fully described in Appendix D. It will suffice to state that it gives excellent definition and is very bright in the second and third orders on one side, but has considerable astigmatism and gives considerable diffused light, so that the spectrum lines are partially blocked up, the contrast diminished, and the ease and accuracy of their measurement decreased.

When this grating arrived I felt that it was necessary to get the equipment into active and useful work as soon as possible, and, in order to hasten matters, determined to devote a considerable portion of my time to working with Dr. De Lury in the large amount of experimental investigation necessary for determining, first of all, the most advantageous conditions of use of the grating, and secondly, the solar rotation. I was enabled to spend considerable time at this work, because the radial velocity work had become fairly well systematized, the experimental stage had passed, and the observation and measurement had taken on more of a routine character than had been the case heretofore.

A short account of the various steps taken and experiments conducted during the year may be of interest. The new grating was received about the middle of April, and some visual tests of its focal properties were made by Dr. De Lury. Early in May the photographic testing of its properties began, and it was soon discovered that its astigmatism was due to the lines of the ruling being crooked, so that when about two-fifths of the length of the lines at one end are occulted, the astigmatism entirely disappears. Our diagnosis of the trouble was acknowledged correct by Prof. Michelson when I met him in August. He said the crookedness of the lines was due to the fact that the machine had been mostly used for ruling gratings with lines about 6 cm. long, and that portion of the slide became more worn than the rest. When a line 11 cm, long was ruled, as in this grating, the different conditions at different parts of the slide produced a bend in the line, which caused the diffracted spectrum to be displaced in a direction parallel to the lines, to the amount of about 1 mm. in a focal length of nearly 7000, or about 30 seconds of arc. The superposition of the spectra from these two parts of the ruling gave the astigmatic appearance at the edges of the spectra. The definition given by this grating is excellent, its chief defect seeming to be an excessive amount of diffused light which tends to block up the absorption lines and reduce the ease and accuracy of measurement. Experiments were then undertaken to determine whether diminishing the width of the ruling from either side would help matters, and it was found that successive improvement was noticed as more and more of the ruling at one side was occulted until after 5 cm. was cut off, when no appreciable improvement appeared. Consequently, one corner of the grating was used of an area about 6 by 8 cm. instead of the original area 11 by 13 cm. Nevertheless, owing to the brilliancy of the grating, the exposure times are still comparatively short, about 30 seconds in the third order at the limb of the sun in the region λ 4500. The position of the grating in its holder and on its rotating carriage was changed to bring the used portion centrally within the beam of light coming from the collimator.

Having obtained, after nearly two months' experimenting, the best conditions of use of the grating, our energies were turned towards obtaining spectra for the determination of the solar rotation. The region with centre at λ 4500, and extending on the 12-inch plates used upwards of 100 Å or each side, was selected primarily for observation. This region contains numerous well-defined lines, is well within the range of sensitiveness of the fine-grained Seed process plates proposed to be used with it, and is at a different place from any regions previously investigated.

My experience in stellar radial velocity investigations had shown the necessity of the greatest care being taken in observations of this nature to prevent spurious systematic displacements of the lines, which may arise from a large number of causes. In stellar spectroscopy we have found that relative displacements of stellar and comparison lines may arise from temperature changes, from flexure of the spectrograph, from faulty guiding resulting in the star image not being on the whole symmetrically situated with respect to the slit, from non-uniform illumination of the objectives and prisms by star or spark light, from imperfect focussing of the camera and probably from other causes as well. It was very important, therefore, in the case of the solar rotation where the Doppler displacements are relatively small, to ensure that no spurious displacements occurred. The first rotation plates made were consequently more in the nature of trial plates than for actual determinations, and were made only at the solar equator where the displacement is greatest and approximately known.

Numerous experimental rotation plates were made during June and July, and a number of these were measured. The general tendency of the measures gave a rather lower value of the velocity than had previously been accepted. It may be mentioned that one observer, Halm, claims to have found a variation in the rate

of rotation, obtaining rotational values lower than given by these plates. However, owing to the fact that our plates were experimental and taken under conditions inferior to those with which later plates were made, they are not put forward as giving any definite value of the rotation, but simply as examples of the method and to indicate the magnitude of the errors and variations to be expected. The detailed measures of some of them are given below.

It was soon found that the principal difficulty consisted in obtaining uniform illumination of the grating surface from the two opposite limbs. The light from opposite limbs is brought simultaneously to positions side by side on the slit by two pairs of reflecting prisms. This device was designed by myself, constructed by the J. A. Brashear Co., and has been described by Dc Lury in the report of 1908-9, Dr. De Lury inserted screws through the top of the prism holders to enable them to be adjusted for uniform illumination of the grating surface, but these were found insufficient for the exact adjustment necessary. Moreover, owing to the narrowness of the small windows in the guide plate (1908-9 report, p. 253) which admit light to the prisms and which are only slightly over a millimetre wide, the width of the image on the grating is further limited, rendering more precise adjustment necessary than would otherwise be the case. A further difficulty is experienced in the adjustment of the three prisms above the slit, two at the east and one at the west, to enable a strip of spectrum from the east limb to be placed centrally between two strips from the west limb. It was felt necessary to change the design in some way to admit of more positive and exact adjustment of these prisms, and to avoid the limiting of the illumination produced by the narrow windows above mentioned. This was postponed until after my return from the meeting of the Solar Union. although the general nature of the improvements had been thought out previously. They consisted essentially in mounting the prisms in small carriages adjustable in every direction, in obtaining new prisms to replace the three used over the slit, a single one at the west for the east limb and a wider notched one at the east for the west limb, in the substitution of an improved guide plate and in focussing the solar image on the slit instead of the guide plate which, taking account of the length of path traversed by the light, is optically about 14 cm. in front of the slit. In order to make the changes more readily understood the new arrangement on the front of the spectrograph will be described later.

Owing to the co-operative arrangement entered into at the Solar Union, details of which are fully described under the heading of 'Committee Work,' the region to be observed at Ottawa is from \$\Lambda\$500-\Lambda\$5700 and the general region near \$\lambda\$4250. Consequently, upon my return in September, further experimental work on the plates and developers most suitable for these parts of the spectrum had to be undertaken. The plates used at \$\lambda\$500 had been the regular Seed Process plates which have a fine grain and are clean-working. The contrast in the resulting spectra was not as great as it should be, and, although this was ascribed mostly to the diffused light given by the grating, it was thought that a change of developer or plate might help matters. No material improvement resulted from change of developer atthough several different contrast formulæ were tried. I learned, however, that the Seed Co. made a Contrast Process plate which, on trial, gave much more vigorous results than the other, and hence more suitable for the measurement of spectrum lines. This plate answers admirably for the violet region at \$\Lambda\$4250, but is, of course, not sensitive to the vellow green at \$\Lambda\$500.

I sensitized some of these Contrast Process plates by bathing in a solution of erythrosine. These, upon testing, were fairly suitable, although the sensitiveness began to diminish to the red side of \$5600, but, owing to the troublesome nature of the staining and drying process and to the poor keeping qualities of the bathed plates, it was felt that commercially orthochromatized plates with fine-grained emulsion would be more convenient and satisfactory. Unfortunately the Seed Dry

Plate Co. do not make Ortho Process plates. A trial of the Wellington and Cramer Orthochromatic Process emulsions, which were available, resulted in favour of the Cramer as giving more contrast and being somewhat finer in grain, but it is decidedly consert than the Seed Contrast, and consequently will not give quite as satisfactory plates for measurement in the λ 5500 region as the Seed Contrast. Process does in the λ 4250 region. However, its better keeping qualities and more uniform sensitiveness in the required region over the bathed plate more than outweighed the relative coarseness of grain, and it was chosen for use at λ 5500 region.

It was while these experiments were being carried on that a new grating, which had been most generously offered to us by Prof. Michelson, was received. A very exhaustive test of this grating in comparison with the one in use was carried out, and, without going into details, it was decided to keep the original grating because of its superior brightness and its finer ruling with correspondingly greater dispersion. By this time the improvements in the reflecting prism attachment and the new guide plate had been completed, and further test rotation plates were made from time to time, measures of some of which are also given below. The conditions during the winter months were, however, so inferior to those in warmer weather, especially in regard to the solar definition and the short time available for exposure during the day, that no attempt was made to get any definitive series of rotation plates. Considerable time was spent, however, in obtaining plates in the region around \$\lambda\$ 4250 having impressed upon them an arbitrary displacement of the spectral lines of the same order as the Doppler displacement, only produced by a special slit in such a way that it was bound to be the same for each line on a plate and for successive plates. The purpose was to determine personal errors in measurement for different lines. This investigation is, however, fully discussed by Dr. De Lury in Appendix D, and need not be further referred to here except to say that measurements were made by each of us of 12 spectra from which some interesting conclusions were drawn.

Although the work of the year has not resulted in any definitive values of the solar rotation, there has nevertheless been a great deal of preliminary experimental work done which has been necessary to learn the best conditions of use of the grating, the best plate and developer, the indispensable instrumental and other precautions required for accurate work, and many other details. The measurement of the plates secured has also enabled us to learn something concerning the most suitable optical system and magnification to be used and the personal and systematic errors to be expected. We are now ready to secure a definitive series of rotation plates which will be made as soon as the weather becomes more suitable.

Before giving the measures of the trial plates made during the year, it will be detailed to give a short description of the slit end of the spectrograph, which has been considerably altered during the year.

In designing the new apparatus it was deemed essential to avoid the limiting of the penel incident upon the prisms by the narrow openings in the old guide plate, which had cut off some of the marginal pencils. Indeed, as they were only slightly over a millimetre wide, as the optical path between them and the slit was between 13 and 14 cm. and the focal length of the collimator objective about 700 cm., 23 feet, it is evident that the width of the pencil transmitted through them on the collimator and grating, omitting diffractional spreading, will be $^{+1}_{12}\times700-5.2$ cm. The actual width of the used surface of the grating is 8 cm. The inclination of the grating reduces this somewhat, so that the projected width is in the neighbourhood of 7 cm. If the pencil from the mirror, which is 18 inches diameter and 80-foot focus, goes through unobstructed, the diameter of the beam on the grating will be $\frac{2}{3} \times 18 = 52$ inches, or 13 cm. This diameter would require a width of window in the guide plate approximately 2.5 mm. Such a size of opening would render the effective position of the point on the sun's image from which the light was taken,

consequently the latitude and distance from the limb, uncertain. It was consequently field preferable, which opinion was confirmed by learning the experience of other observers at the Solar Union meeting, to avoid limiting the pencil at the prisms but to focus the sun's image on a point as far behind the prisms as the distance of the optical path between its first incidence on the prisms and the slit—in other words, to bring the focus on the slit itself. Then the area on the sun's surface from which the light is taken is limited to the length and width of the slit and there is no diaphragming of the pencils; hence the disancer of the beam incident upon the collimator objective and grating is 13 cm., a factor of safety of nearly two. The distance from the limb at which the light is taken is determined by measuring the distance apart of two wires or strips placed in front of the outside prisms which cast shadows centrally on the circles of light thrown on the grating. This distance has to be increased slightly, by an amount readily calculated, owing to the distance of the wires optically in front of the slit and the consequent speading of their shadows at the slit.

A diagrammatic representation of the reflecting prism arrangement is shown in Fig. 2, where A and B are the prisms receiving light from the west and east limbs of the sun respectively, and C and D the prisms above the slit which reflect the light down through the slit in the manner shown. As stated before, the centre prisms were replaced by new ones last fall. Formerly the function of C was fulfilled by two prisms similar to D which were considerably more difficult to adjust, and a single prism with a notch cut in it, as shown, was substituted. The two pencils from the west limb passing through the slit are then bound to produce coincident circles of illumination on the collimator objective. The method of adjusting these prisms is clearly shown by the plan and elevations. Each prism is mounted in a small brass box and adjusted laterally in these boxes by the adjusting screws, E. E. at the one side. A spring at the opposite side keeps constant pressure against the adjusting screws, while a spring at the top keeps them seated on a piece of blotting paper at the bottom. The adjustment of the boxes is effected in the one plane by rocking on the knife edges, F, F, shown in the upper elevation, by means of the screws, H, H, and in the plane perpendicular to this by the adjusting screws, I, I, and opposing springs, S, S, shown in the lower elevation. The plates on which the adjustable holders of the outer prisms are fastened are movable in and out by rack and pinion to vary the distance from the limb at which the light is taken, and the plate on which the holders of the two centre prisms are fastened is also movable by rack and pinion to enable the centre strip, the one from the east limb, to be made wider or narrower, the width of the outer strips being changed by occulting plates sliding in grooves just below the prism. However, it was soon decided to make all three spectra of the same width, about 0.8 mm., separated by spaces about 0.5 mm. to ensure absolutely uniform conditions for measurement. This was effected by removing the occulting plates just mentioned and inserting a single plate with three slots 0.8 mm. wide cut in it, these slots being separated by spaces of 0.5 mm. This not only ensures absolute uniformity, but prevents any stray light reflected from the edges of the prisms from causing trouble. The arrangement has been found to answer admirably, not only in the uniformity of the spectra produced and in ease of adjustment, but also the placing of the narrow strip from one limb exactly midway between two strips of the same width from the other limb, ensures ease and accuracy of measurement, as the measured displacement has no dependence on the orientation of the wire.

This prism arrangement projects about 5 cm. in front of the front plate of the spectrograph, and is covered and protected from dust and injury by the guide plate shown in Fig. 3. This guide plate consists, in reality, of two plates. The first is a rectangular brass plate, A, A_i about 2 mm, thick, which is rigidly attached to four

Fig. 2.—Reflecting Prism Arrangement.

Fra. 3.—Guide Plate.

brass studs 5.5 cm. long, screwed into the front plate of the spectrograph by means of the screws, B, B. Dowel-pins in two of these stude ensure that if the plate is taken off it will return to exactly the same position. The second is a plate, C, C, of circular form attached to the base plate by three screws, D, D. The holes through the plate are considerably larger than the screws, allowing movement under the washers shown and final clamping when the adjustment is completed. A door in the centre admits of adjusting the centre prisms and changing the width of the slift without removing the whole plate. Light is admitted to the outer prisms through two openings, E, E, E, in small rectangular brass plates sliding in ways underneath the plate, C, C. The large opening, F, F, cut in C, C, being sufficiently long to allow the light to be taken at any distance from the limb up to nearly one-thrid the radius. The openings, E, E, are about 4×6 mm., sufficiently wide to avoid any danger of limiting the pencil, and yet small enough to prevent much dust getting into the prisms. A further protection is given by the yellow filters used in the λ 5000 region to absorb the violet of higher orders, which are placed in the brass receptacles, G, C.

For the purposes of adjustment, the centre line, H, H, and the dark circle 228 mm. diameter, the mean size of the solar image, near the periphery of the outer plate are ruled on the brass. The outer prisms and the openings, E. E. are adjusted until they are the desired distance from the limb and equidistant from this dark circle, from the centre of the plate and the slit. The actual positions at which the light enters these prisms is obtained by sliding a vertical wire or narrow tongue of brass, less than a millimetre wide, in front of E, E, and observing the shadow cast on the circle of illumination on the collimator and grating through an opening in the camera back behind the slot, I, which is placed there to allow the use of an eveniece. Then, by using a horizontal occulting strip, the centre line, H, H, is adjusted, by loosening the screws, D, D, to be directly over the centre of the points where light enters the prisms. Hence we are sure, if the sun's image is kept concentric with the circle, that light is being taken from two points, on a diameter of the sun, equidistant from the limb. For convenience in obtaining the east and west line, a plate of thin celluloid, K, K, on which is ruled a black line, L, L, is adjustably attached to the base plate, the line, L, L, being made accurately parallel to H, H.

It is evident, when these adjustments have been made, that the observed realing of the graduated circle on the end of the spectrograph, when the limb of the sun drifting across the guide plate remains tangent to $I_{\rm o}$, $I_{\rm o}$, corresponds to the position where the light entering the slit comes from a diameter of the sun due east and west. If the spectrograph be rotated by the amount given in the ephemeris as the position angle of the sun's axis, it is evident that the observed points on the solar dise are at right angles to the axis and along a diameter and, if the pole of the sun is in the limb, are on the solar equator. All that is now necessary to make a rotation plate for any latitude is to rotate the spectrograph through the required position angle and keep the sun guided centrally on the guide plate during the exposure.

MEASURES OF PLATES.

Of the numerous test plates made during the year, practically all at the solar equator, a number were selected for measuring, the selection being made on the basis of the most suitable intensity for measurement of a number from each series, and the measures of 20 of these are given below. As will have been gathered from what has been given previously, each exposure contains three narrow strips of spectrum each about 0.8 mm. wide separated by strips of clear glass about 0.5 mm. wide, the central strip of spectrum being from the east limb and the two outer strips from the west limb of the sun. As the sun is rotating so that the east limb approaches

and the west limb recedes from us with a velocity of about 2 km. per second at the equator, it is evident that the lines in the centre strip will be displaced towards the violet with respect to those on the outside strips. This displacement, with the dispersion used here, varies between 55 and 90 thousandths of a millimetre according to the region used and the order of the spectrum.

In making measures of these plates, all that requires to be measured is the magnitude of this displacement, a differential measurement only, and consequently as the lines in the strips are, or should be, exactly similar in appearance, one in which apparently there should not be much danger of personal or systematic errors. However, we had not gone very far before we began to suspect the presence of such errors and one attempt to investigate this problem is given by Dr. De Lary in Appendix D. But the last word has not yet been said on this question, and I have no doubt that it will recur later.

The measurements were all made on the special Toepfer measuring machine obtained some time ago for this work, which has not hitherto been described. The principle of its action is similar to that in the machine used for measuring star spectra, by the same maker, and already described in my report of 1905-6, page 62, the optical parts being exactly the same. The plate is placed on a carriage, moved by means of a micrometer screw of 0.5 mm. pitch and of a usable length of 300 mm. Thus the whole length of the plates made in the solar spectrograph can be measured without changing their position on the carriage. It consists essentially, as can be seen by the photograph (Fig. 4), of a massive cast-iron base having, at the front, ways on which the microscope carriage slides. The turning of a clamping lever allows this carriage to be pushed along these ways to any position, indicated by a millimetre scale. This movement not only permits the microscope to be at once brought to any desired position on the plate, without moving the main carriage, by means of the micrometer screw, which might be a rather slow process as there are over 600 turns in its length, but also allows the plate to be rapidly aligned on the carriage, as the ways on which the microscope slides are adjustable and can readily be made exactly parallel with the ways on which the carriage moves. The micrometer carriage itself, which is inclined at an angle of about 45°, rests on its lower edge on a pair of steel balls about a centimetre in diameter, which are maintained at a fixed distance apart in the ways. The latter consist of a V-shaped groove in the base and in the carriage which hence moves by rolling friction very easily and smoothly. At the centre of the upper edge of the carriage a small wheel is pivoted which rolls along a plane surface on the base. Hence the movement of the carriage is practically frictionless and it is easily kept up to its work by a comparatively small weight which maintains a small constant uniform thrust on the micrometer screw. A hardened small spherical surface on the end of the micrometer screw resting against a hardened steel plate takes up this thrust, and by this means all back lash is prevented and the screw and the carriage work exceptionally freely and smoothly, especially when the comparatively large mass of the latter is considered. On the main carriage are also secondary ways parallel to the main ways which permit the plate to be adjusted to any desired position by a small micrometer screw. This secondary carriage has also a movement of rotation to allow the alignment of the spectrum parallel to the motion of the carriage, this being effected by a thrust screw and spring. The spectrum plate rests on a piece of plate-glass in the carriage, being held there by spring clips and capable of transverse adjustment.

The micrometer head, movable by a handle for long runs or by a large or small knurled head for fine adjustment, is divided into 500 parts. As the serew is 0.5 mm. pitch, it reads directly to microns and by estimation to tenths of microns or 0.0001 mm. Two rows of numbering on the head facilitate the reading of the

divisions, while a second auxiliary head beside the principal one, geared at the proper rate enables single millimetres to be determined at the same time. Divisions of ten millimetres are given on a scale beside the carriage. An adjustable magnifying glass over the head enables the readings to be made without shifting the position of the eves to any extent.

The microscope is provided with objective and ocular giving any range of magnification between 2 and 100, and is focussed by rack and pninon. The reticle has two parallel wires which can be made to coincide or can be separated any desired distance and can be given any desired position angle. By rotating a knurled ring on the microscope head, a pair of shade glasses limit the field to any desired width perpendicular to the wires.

The instrument is a magnificent piece of workmanship and performs very satisfactorily. The only improvements that suggest themselves are a registering attachment and a means of more rapidly rotating the screw when long distances are to be moved over. The former has been applied to a later machine of the same design made for the Astrophysical Observatory at Potsdam and must add considerably to its usefulness. Although no tests of the accuracy of the screw have been made, yet if we may judge from the tests of similar screws by the same makers it is of very high accuracy. In the manner of measuring the small differential displacements in rotation work, any errors of even comparatively great amount would be compensated, and consequently no investigation of the screw has yet been undertaken.

The method of measuring these plates is practically the same as that followed with star spectra. After the plate is placed on the carriage and adjusted, a matter of a minute or so, the first line to be measured is brought under the wire. Four settings are made on the centre strip and two each on upper and lower strips. As the appearance of the lines is practically identical, there seems little chance for the personal error found when measuring both emission and absorption lines in star spectra. In order to avoid any possibility of this, however, after all the lines have been measured the plate is reversed on the carriage and remeasured. Even if there is no systematic difference between the measurements, one sees the lines differently and the measurement is for this reason, and for the added number of settings, more accurate.

The reduction of the measured displacements is quite simple. Although the spectra given by this form of spectrograph are not normal, the deviation from a linear relation of micrometer value and wave lengths is so small as to be inappreciable in the range of about 200 Å on a plate. Consequently the only thing necessary is to obtain at say half a dozen places on the plate the linear dispersion by dividing the distance between two lines by the difference in wave length. Obtaining in the well-known way the kilometre value of one millimetre at these regions and plotting them on cross-section paper with wave length. Obtaining in straight line. Consequently the velocity value of a millimetre displacement at all the lines measured can be at once tabulated and we get the constant multipliers of the displacements, giving the velocities.

In the region centre at λ 4500, 29 lines were measured and in the last 5 plates at λ 5600 from 16 to 18 lines. These lines were selected to include as many elements as possible and for their quality for measurement. The wave length, element, intensity and kilometre constant are given in the following table. The value of the velocity in kilometres per second for a displacement of one millimetre on the plate is

3 GEORGE V., A. 1913

in these tables divided by two, so that the double displacement due to the spectrum lines from the east limb being displaced to the violet and from the west limb an equal amount to the red is reduced to the velocities of one limb with respect to the centre.

After the table of wave lengths are given the measures of the 20 plates selected. At the head of this table are given the plate number and the date in eastern standard time. In the first column are the wave lengths of the different lines measured followed by, in parallel columns, the displacement in ten thousandths of millimetres and the velocity in kilometres. At the foot of the columns are given the mean velocities for the plates and the probable error of measurement of a single line obtained from the residuals in the well-known wav.

DATA OF LINES MEASURED

Wave Length.	Elt.	Int.	Vel. per mm. II Order.	Vel. per mm. IJI Order.	Wave Length.	Elt.	Int.	Vel. per mm.
4432-736 4435-521 4435-521 4435-521 4436-641 4451-552 4451-553 4451-553 4451-553 4451-553 4451-553 4512-500 4527-101 4531-553 4518-622 4531-553 4518-633 4546-533 4546-533 4546-533 4546-533 4546-533	Fe Fe Fe Fe Fe Ti? Ti Fe Fe? Ti Ti Ca? Fe Ti Ca? Ti Ca Ti Ca Ti Ca Ti	1211322544233112243228334	33.08 33.03 33.03 32.88 32.76 32.47 32.24 32.28 32.24 32.28 32.29 32.20 32.00 32.00 33.93 33.93 33.93 33.93 34.93 35.93 36.93 36.93 37	20-64 20-62 20-62 20-60 20-55 20-49 20-39 20-28 20-25 20-15 20-11 20-01 19-94 19-98 19-78 19-75 19-75 19-75	Length. 5506-085 5507-085 5507-085 5528-765 5528-641 5576-320 5578-946 5576-320 5578-946 5590-343 5578-320 5578-320 5578-320 5578-326 558-588 5635-715 5648-458 5655-715 5688-436	Mn Fe Fe Mg Fe Fe Fe Ni Ca Ca Fe Fe Fe Fe Na Na	17 4 8 2 2 4 1 4 3 3 1 3 3 2 2 2 4 5 5 6	mm. 25-888 25-881 25-742 25-630 25-742 25-630 25-3434 25-413 25-368 25-186 25-003 24-926 24-936 24-936 24-936 24-757
4571 · 275 4572 · 156 4578 · 732 4590 · 126 1602 · 183	Mg Ti Ca ? Fe	5 6 3 3	31.86 31.85 31.80 31.70 31.60	19-66 19-65 19-61 19-53 19-45				
4603 - 126	Fe	6	31.58	19-44				

MEASURES OF ROTATION PLATES.

	493a		493a 493b. 495		7a. 527a.		52	7b.				
Line.	June 9	1, 11.00	June 21	11.00	June 21	12.00	June 30	10.30	June 30	10.20		
Line.	ounc 2	1, 11100	o dire =	, 11 00	ounc 21	, 1= 00	ounc oc	, 10 00	ottile oc	, 10-00		
	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.			
4432.736	-0539	1.783	-0586	1.938	-0867	1.790	-0531	1.756	-0536	1.773		
4435-321	541	1.788	550	1.818	921	1.899	529	1.748	537	1.774		
4438 - 570	548	1.810	531	1.754	891	1.835	532	1-757	550	1.816		
4445-641	010		581	1.915	913	1.876	52S	1.741	541	1.783		
4454.552	541	1.779	-546	1.795	837	1.716	544	1.788	539	1.773		
4464-617		1.738	546	1.790	850	1.736	530	1.739		1.765		
		1.795	577			1.853	524		538	1.753		
4468 663				1.890	909			1.717	535			
4484 - 392		1.758	540	1.761	836	1.695	540	1.761	537	1.752		
4489-911		1.768	565	1.840	879	1.779	524	1.707	548	1.784		
4502-388	542	1.759	551	1.788	888	1.790	547	1.776	541	1.756		
4508 - 455	555	1.798	533	1.727	893	1.795	552	1.788	561	1.817		
4512-906	550	1.781	596	1.930	876	1.759	558	1.806	559	1.810		
4518-198		1.762	533	1.723	904	1.811	540	1.745	543	1.755		
4523 - 572	554	1.788	531	1.714	957	1.915	558	1.801	563	1.817		
4527 - 101	556	1.793	557	1.796	913	1.824	561	1.808	554	1.786		
4531 - 801	541	1.742	563	1.812	930	1.855	557	1.794	552	1.777		
4534-903		1.769	541	1.741	885	1.763	554	1.783	553	1.780		
4546 · 129	545	1.748	535	1.716	905	1.795	550	1.764	554	1.776		
4548 938	544	1.744	546	1.750	836	1.658	555	1.779	553	1.772		
4554 - 211	549	1.757	580	1.856	880	1.740	554	1.773	552	1.767		
4555-662	555	1.774	592	1.894	934	1.846	543	1.738	555	1.775		
4558-827	555	1.776	598	1.912	893	1.764	561					
4500 020		1.797		1.761				1.793	554	1.772		
4563 - 939	563		552		870	1.715	562	1.793	546	1.743		
4571 - 275	546	1.740	570	1.815	887	1.743	561	1.787	551	1.755		
4572-156	560	1.783	539	1.717	887	1.743	544	1.733	560	1.783		
4578 - 732	574	1.825	614	1.952	968	1.898	564	1.793	578	1.837		
4590 · 126	559	1.772	580	1.838	824	1.609	563	1.785	549	1.740		
4602 · 183	575	1.817	569	1.798	949	1.845	576	1.820	562	1.776		
4603 · 126	566	1.787	544	1.718	919	1.786	561	1.772	581	1.835		
Means		1.776		1.809		1.787		1.770		1.780		
Probable Error,												
Single Line.		± ·015		± •050		± ·018		± ·019		± ·014		

3 GEORGE V., A. 1913

MEASURES OF ROTATION PLATES-(Continued).

	528a. July 5, 10·35				531b. July 5, 2·50		550a. July 13, 10·30		553d. July 13, 11·20	
Line.										
	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.
1432 · 736	.0569	1.882	-0570	1.885	-0573	1.895	-0538	1.780	-0549	1-816
1435-321	559	1.848	572	1.890	574	1.897	541	1.788	556	1.837
1438 - 570	569	1.880	573	1.892	570	1.882	556	1.836	534	1.764
1445-641	562	1.852	559	1.843	567	1.869	542	1.786	535	1.763
1454 - 617	557	1.832	565	1.858	563	1.852	565	1.857	548	1.802
4464-617	571	1.873	575	1.886	577	1.892	535	1.755	529	1.735
4468-663	571	1.870	564	1.848	573	1.877	562	1.841	554	1.814
4484 - 392	578	1.882	570	1.858	566	1.846	548	1.787	561	1.829
H89-911	581	1.892	570	1.857	572	1.863	555	1.807	550	1.790
1502-388	580	1.882	576	1.869	575	1.866	556	1.805	551	1.788
4508 - 455	588	1.905	571	1.850	574	1.860	559	1.811	550 560	1.782
4512-908	570	1.846	569	1.843	584	1.891	540 558	1.803	558	1.804
4518 · 198	585	1.890 1.888	580 597	1.926	586 587	1·894 1·894	547	1.765	553	1.785
1527 - 101	585 571	1.841	584	1.883	584	1.879	558	1.800	550	1.777
4531 - 801	573	1.845	583	1.877	581	1.871	556	1.790	553	1.780
1534 - 903	580	1.866	592	1.905	584	1.879	548	1.764	557	1.792
4546 · 129	579	1.857	579	1.857	571	1.832	560	1.796	562	1.802
548-938	585	1.875	591	1.894	590	1.891	569	1.824	555	1.779
4554 - 211	576	1.843	582	1.862	591	1.891	572	1.830	565	1.808
4555 • 662	574	1.837	582	1.862	586	1.875	558	1.786	563	1.801
4558 - 827	589	1.883	579	1.851	576	1.841	555	1.775	554	1.772
4563 - 939	587	1.873	585	1.867	575	1.835	572	1.825	571	1.822
4571 · 275	586	1.867	585	1.864	575	1.832	557	1.775	560	1.784
4572·156		1.875	587	1.869	594	1.892	574	1.828	571	1.818
1578 - 732		1.838	586	1.863	591	1.879	559	1.778	555	1.765
4590 · 126		1.829	576	1-826	597	1.892	580	1.838 1.770	564 563	1.787
4602·183 4603·126		1.886	589 579	1.861	593 582	1.874	560 571	1.803	571	1.803
Means	-	1.866	013	1.868		1.872		1.798		1.798
			-							
Probable Error, Single Line.		± ·014		± ·015		± ·015		± ·019		± ·015

MEASURES OF ROTATION PLATES-(Continued).

						,			1	
	558a. July 14, 9-55		566a. July 16, 11·10		566	b.	570a.		577	d.
Line.					July 16, 11-12		July 18, 11-00		July 25, 9-55	
	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.
4422-785 4435-321 4448-370 4448-370 4448-470 4448-617 4469-613 4489-63 4489-618 459-61	.0551 555 548 548 551 554 557 557 557 556 560 560 560 560 560 560 560 560 560	1 · 822 1 · 854 1 · 810 1 · 806 1 · 811 1 · 817 1 · 837 1 · 814 1 · 782 1 · 818 1 · 800 1 · 793 1 · 806 1 · 800 1 · 793 1 · 816 1 · 805 1 · 821 1 · 815 1 · 805 1 · 825 1 · 835 1 · 835 1 · 835 1 · 836 1 · 83	.0556 557 543 562 568 553 564 568 553 564 565 561 575 564 577 572 573 576 577 572 573 574 575 576 577 576 577 577 577 577 577 577	1-839 1-840 1-823 1-807 1-786 1-843 1-801 1-798 1-841 1-855 1-866 1-866 1-866 1-866 1-866 1-868 1-811 1-827 1-821 1-825 1-825 1-825 1-828	.0573 555 553 556 556 556 553 560 572 572 574 571 571 572 572 577 570 572 577 570 574 574 574 574 574	1-893 1-834 1-859 1-836 1-829 1-814 1-857 1-858 1-811 1-795 1-846 1-846 1-835 1-796 1-846 1-835 1-846	-0551 546 550 563 554 557 566 562 553 568 577 561 562 571 563 563 573 564 577 563 570 570 570 570 570 570 570	1 · 822 1 · 805 1 · 816 1 · 855 1 · 839 1 · 801 1 · 814 1 · 814 1 · 814 1 · 824 1 · 792 1 · 839 1 · 806 1 · 806 1 · 806 1 · 806 1 · 806 1 · 806 1 · 807 1 · 815 1 · 815 1 · 815 1 · 815 1 · 816	.0550 563 563 553 553 553 558 557 571 564 564 568 571 572 580 568 571 572 573 568 574 575 575 575 575 575 575 575 575 577 575 576 577 577	1.841 1.884 1.818 1.838 1.836 1.837 1.828 1.832 1.832 1.839 1.821 1.839 1.821 1.850 1.849 1.899 1.899 1.809 1.809 1.815 1.815 1.815 1.815 1.815 1.816 1.816 1.816 1.816 1.817 1.818
Probable Error, Single Line		± ·009		± · 013		± · 015		± ·014		± · 014

MEASURES OF ROTATION PLATES .- Concluded.

	600	c.	601	d.	609	a.	610	a.	610	d.
Line.	Nov. 9, 3·20.		Nov. 9, 3-37.		Dec. 6, 2·00.		Dec. 6, 2·55.		Dec. 6, 3.00.	
	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.	Vel.	Disp.	Vel
5506-095 5507-000 5507-000 5525-705 5528-611 5544-157 5524-933 5529-933 5529-933 5529-933 5529-933 5529-933 5529-933 5529-933 5529-933 5529-933 5529-933 5529-933 5528-188 5500-343 5018-855 5038-177 5088-488 5055-715 5088-507 5082-744 5082-809					-0696 689 713 688 709 683 715 700 708 709 724 721 708 737 718	1·802 1·788 1·856 1·771 1·819 1·744 1·819 1·790 1·797 1·824 1·814 1·799 1·799 1·766 1·831 1·778	-0660 673 697 717 690 717 690 686 674 711 685 665 716 687 695 713 719 694	1·708 1·742 1·795 1·776 1·839 1·762 1·715 1·715 1·807 1·737 1·675 1·796 1·689 1·733 1·7782 1·782	. · 0684 672 707 707 706 707 695 680 689 689 680 721 722 736 727 747 714 717	1.77 1.73 1.85 1.81 1.86 1.76 1.73 1.73 1.81 1.81 1.85 1.86 1.76 1.77 1.77
Means		1.752		1.786		1.800		1.751		1.78
Probable Error, Single Line		± ·018		± · 020		± ·017		± ·029		± ·02

Having obtained the measured values of the velocity, three corrections require to be applied. In the first place, the observation must be made at a certain distance within the limb, and the first correction is to reduce this measured velocity to that at the limb. This is effected by multiplying the velocity by the ratio of the solar radius to the radius or distance from the centre of the observed point. In the second place, owing to the fact that the equator of the sun and the cellptic are inclined about 7°15′ to one another the direction of the measured velocity does not coincide with the actual velocity, and requires to be multiplied by the secant of the angle of inclination. This angle can be readily computed but is most conveniently obtained from tables prepared by Dunér*. These two corrections give the velocity relative to the earth or the synodic value of the rotation. Owing to the movement of the carth around the sun, the sidereal rate of the solar rotation is appreciably greater. Tables of this correction have also been computed by Dunérf and have been used here. The corrected values of the velocity are given in the following table with the probable error of the final mean velocity and of a single plate.

^{*} Dunér: "Über die Rotation der Sonne, zweite Abhandlungen", Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series 4, I, No. 6, 1906.

SUMMARY OF ROTATION VALUES.

Plate.	Measured Velocity.	Probable Error, Single Line.	Correction to Limb.	Correction for Inclination.	Sidereal Correction.	Total Velocity.
493a	1.776	± ·015	+ .040	+ .001	+ · 133	1.950
493b	1.809	-050	-041	-001	-133	1.984
497a	1.787	-018	-041	-001	-133	1 - 962
527a	1.770	-019	-044	-002	·133	1 - 949
527b	1.780	·014	.045	-002	-133	1.960
528a	1.866	-014	-050	-003	-133	2.052
531a	1.868	.015	.050	-003	·133	2.054
531b	1.872	-015	.050	-003	-133	2.058
550a	1.798	-019	·128	-005	·133	2.064
553d	1.793	-015	·127	-005	-133	2.058
558a	1.816	-009	-049	-005	-133	2.003
566a	1.828	-013	-047	-006	·133	2.014
566b	1.834	-015	-046	-006	-133	2.019
570a	1.816	-014	.050	-006	·133	2.005
577d	1.831	-014	-047	-008	· 133	2.019
600c	1.752	-018	-092	.003	· 140	1.987
601d	1.786	·020	·094	.003	·140	2.023
609a	1.800	-017	-105	-000	-141	2.046
610a	1.751	-029	-099	-000	·141	1.991
610d	1.787	-023	·102	-000	·141	2.030

Mean value of velocity=2.011±.0056km. Probable error, single plate=±.026km.

Only a few words need be said in discussion of these results. The mean value, 2.01 km., is about 2 per cent. lower than the accepted value. Owing, however, to the preliminary character of the observation, not much importance should be attached to such a difference which is, after all, comparatively small and which may possibly be instrumental or may even be due to personal habits of measurement. While at Mt. Wilson last summer, Miss Lasby, who has measured most of Adams' plates, and myself measured a number of these displacements on both the Mt. Wilson and Ottawa plates. My measures were consistently approximately 2 per cent. lower than hers, an amount sufficient to explain the discrepancy. Again, the instrumental conditions under which the majority of these plates were obtained were not entirely satisfactory, principally on account of inadequate means of adjusting the reflecting prisms and the limiting of the pencil by the narrow windows. The velocities of the different plates show moderately good agreement, the probable error of a single plate being ± .026 km., and of the mean of all the plates ± .0056 km. The probable error of measurement of a single line is on the average ± .018, while the probable error of a single plate determined from the internal error of measurement is little more than ± .003 km., about one-eighth of that obtained by comparing different plates. This ratio is rather greater than it should be, but even Adams' values show a ratio which, though not so great, is still of the same order. Our experience in radial velocity measurements shows us that instrumental errors causing relative displacements of the lines as a whole are always much greater than errors of measurement in spectra with moderately good lines, and some such effect even though without any known cause is to be expected in this work.

3 GEORGE V., A. 1913

Considering the relative dispersions in the two cases, the probable error of supermement of a single line is of about the same magnitude as those obtained by Adams, and corresponds to a linear error of less than half a micron, which is very good measuring for spectrum lines.

We may consider from these results that satisfactory values of the solar rotation can be obtained when the weather again becomes suitable, and we will hope in

the next report to be able to give some definite results.

COMMITTEE WORK.

I had the privilege of attending two important astronomical meetings last year as a representative of our Observatory.

Our representation at the meetings resulted in unmistakable evidences of the standing we have already attained among observatories and scientific institutions, and will undoubtedly result in further increasing our reputation abroad.

The first of these was the annual meeting of the Astronomical and Astrophysical Society of America, which was held at Harvard College Observator, Cambridge, August 17–19, and the second, the Triennial Conference of the International Union for Co-operation in Solar Research, which was held at the Market of the College of the Colleg

Wilson Solar Observatory, California, from August 31 to September 2.

At the first of these meetings, a very representative gathering of the leading astronomers of America, and also many noted astronomers of Europe, on their way to attend the Solar Conference, spent three days in the reading and discussion of papers on many phases of astronomical work. Several of the European astronomers presented papers on both astronomical and astrophysical problems, and their participation in the proceedings was much appreciated by the Society, to which several of them were elected to membership. A report containing abstracts of the papers read has been published in Science, and it is not necessary to repeat them here. It may be of interest to mention that my paper on 'The Probable Errors of Radial Velocity Determinations' was well received; and that I was chosen, in the absence of the author, Professor W. W. Campbell, to read what was undoubtedly the most important paper of the meeting, 'Some Preliminary Results deduced from Observed Radial Velocities of the Stars.' The substance of my own paper was given in detail in my report of last year, while Professor Campbell's discussed some very important results obtained from a study of the radial motion of the stars observed under his direction.

The reading of the papers was pleasantly varied on the afternoon of the 17th August by an excursion to the Blue Hill Meteorological Observatory, reached by electric car from Boston, where the meteorological apparatus, including the famous box kites, and the methods of observation, were examined by and explained to us. On the afternoon of the second day, an excursion to the observatory and astronomical department of Wellesley College was made, in which the majority of the members participated. Many original and ingenious methods in teaching astronomy were shown and explained to us, and we were also much interested in examining some of the novel apparatus in this finely-equipped students' observatory. The party were taken for a drive through the beautiful college grounds in automobiles, and before returning were served with tea. The social features of these functions added much not only to their pleasure but to the benefit derived from the meetings, in that they increased the good fellowship always so evident in astronomical gatherings, and thereby prepared the way for fruitful and useful discussions between the different members. On the afternoon of the third day, we were entertained at Harvard Astronomical Laboratory, where the students of Harvard College receive their astronomical training. After luncheon and inspection of the various original methods and apparatus employed in the teaching of astronomy here, the papers requiring lantern illustrations were then disposed of and the meeting was concluded.

Part of the work of this society is performed by means of committees appointed to deal with specific questions, the two already formed being on luminous meteors and on comets. The committee on comets presented a valuable report dealing with the preparations for and the results of the observations of Halley's comet, and, as a result of its labours, the comet was observed photographically at Hawaii by Mr. Ellerman and an important result was obtained from consecutive observations at Williams Bay, at Hawaii and at Beirut, Syria, on the acceleration of parts of the comet's tail, due to the repulsive force of the sun.

On the suggestion of Professor W. W. Campbell, a new committee to consider the question of co-operation in stellar radial velocity determinations was appointed and I have the honour to be one of its members. This committee consists of the following members: W. W. Campbell, Director Lick Observatory, California; E. B. Frost, Director Yerkes Observatory, Wisconsin; Frank Schlesinger, Director Allegheny Observatory, Pennsylvania; Karl Schwarzschild, Director Potsdam Observatory, Germany; H. F. Newall, Director University Observatory, Cambridge, England; and J. S. Plaskett, Dominion Observatory, Canada.

You will immediately recognize the five institutions named above as being the foremost in the world in astrophysical research, and that a representative of our observatory is included is, it seems to me, valuable evidence of the high standard of the work we are turning out and a tangible recognition of the standing obtained by the Dominion Observatory. This committee held a meeting on Mt. Wilson and discussed many of the questions involved. A report of the proceedings will be given below.

In accordance with the scheme carefully planned by Professor Hale to make the the solar conference as great a success as possible, the meeting of the Astronomical and Astrophysical Society was arranged for a date about two weeks previous to that of the Solar Union. This was done to enable many of the European astronomers to attend the earlier meeting, and then to travel across the continent with those members of the Astronomical Society who proposed to attend the Solar Union. This plan worked admirably, and a most congenial party of over thirty of the most eminent astronomers of the world travelled from Boston to Pasadena together in two special cars, starting from Boston on August 20, spending Sunday the 21st at Niagara Falls, and Monday, August 22, at Chicago. While in Chicago we were the guests of the University of Chicago, were driven to the grounds, had dinner at the University Club, and inspected the buildings and laboratories in the afternoon. I was particularly interested in the Ryerson Physical Laboratory and in the Michelson Ruling Engine, with which the grating whose tests are described in another place was ruled. Professor Michelson informed me that our diagnosis of the cause of the blurred edges of the spectra was correct and due to the lines of the ruling not being quite straight, and he promised to replace it by a better one.

The party was joined at Chicago by several American astronomers and travelled directly from there to Flagstaff on the Santa Fe railroad. The temperature on this part of the journey was excessively high, the thermometer being considerably over 90° in the ears. Nevertheless, the heat, although inducing the removal of all superfluous clothing, seemed to have little effect in quenching the astronomical enthusiasm of the party, and very interesting discussions on different phases of astrophysical research, especially stellar evolution, took place. Besides this, several committee meetings in preparation for the business of the Solar Tuion were held en route. The time of the whole journey passed most pleasantly and profitably, and the purposes of organizing the party in this way for promoting sociability, good feeling and astronomical discussion was very successfully carried out.

At Flagstaff the cars were placed on a siding to wait for a later train, and, by invitation of Director Lowell, the whole party visited the Lowell Observatory. The train arrived in Flagstaff about nine o'clock in the evening, and conveyances were waiting to drive us to the Observatory, where we were most hospitably received and shown the work of the Observatory. This was displayed by means of illuminated transparencies covering many branches of photographic astronomy, many of them being masterpieces of their kind. The photographic of the planets and of various regions of the sky were very fine, but, to my mind, the photographic astronomy, many of them were superb, so far as I know much the best of any obtained. Photographic spectra, some of them most interesting, were also in abundance, and many other interesting examples of the Observatory's work. After being entertained at a supper by Mr. and Mrs. Lowell, the party were driven back to their cars where they spent the night. Many of us walked to the Observatory in the morning and saw the apparatus. Since my last visit a 4-foot reflecting telescope has been mounted, but has not yet, I believe, been much used. I should imagine the mounting was not sufficiently good for the best photographic work.

It had been planned that the party should make a stay of a couple of days at the Grand Canyon of the Colorado. Leaving Flagstaff at 11 o'clock on Thursday morning, August 25, the canyon was reached about 6 p.m. Two very pleasant days were spent here, one large excursion party and numerous small ones were organized, and astronomical discussions were still the rule, although not so universally so as on the train for the first few days. Some further additions to the party were made at the canyon. The last stage of the journey was begun on the evening of the 27th, and Pasadena was reached on Sunday, August 28, about 2 p.m. At the headquarters in Pasadena, the Hotel Maryland, a comfortable and homelike place, many members of the Solar Observatory staff were on hand to receive and welcome the members.

On the morning of the 29th, the Observatory offices, laboratories and shops were open for inspection by the visitors, and much admiration was expressed at the fine equipment. I was much interested in many parts of the equipment. In the spectroscopic laboratory a powerful grating spectrograph of 30-foot focal length is mounted vertically in a pit in the centre of the laboratory, and the various means of producing the light sources are arranged around this as a centre. Electric are, spark and furnace, sunlight, luminous gases under pressure, powerful magnets for producing the Zeeman effect, indeed, practically everything that could be thought of is at hand and ready to be used at once without any delay in setting up and adjusting apparatus. A great deal of valuable work in connection with solar spectroscopy, such as the mapping of the effect of a magnetic field on the lines of the elements (Zeeman effect), the change in the character of a spectrum under different conditions of the light source, and different methods of producing the light source has been and is being done in this laboratory.

Much interest was evinced in the large grinding machine for grinding and polishing the 100-inch mirror. The imperfect disc for this mirror, which is being given by Mr. Hooker of Los Angeles, was in the shop, but at that time was not being worked on. Since then, however, as the prospects of obtaining a perfect disc were poor, grinding operations have been begun.

The star spectroscope, for use with the 60-inch reflector, had just been completed awas on view at the shop. It is arranged to use from 1 to 3 prisms, giving a large range of dispersion. Spectra made with a focal plane spectroscope of some interesting faint stars were on exhibition, and also some high dispersion spectra of the brighter stars made by means of the Cassegrain form of the reflector where the beam

of star light is reflected down through the polar axis to a stationary spectroscope of high dispersion.

The various measuring machines and the methods of testing optical surfaces came in for a good share of interest, while the workshop and instruments under construction also commanded attention. The Solar Observatory, so far as instrumental equipment and appliances go, easily holds the first place in the world.

On Tuesday morning, August 30, about 9 o'clock, a start was made for the summit of Mt. Wilson, which is at an elevation of nearly 6,000 feet. There are three methods of reaching the summit, on foot, on horse, mule or donkey back, and by carriage. There were only one or two enthusiasts who essayed the climb on foot, the trail having a length from the valley of about nine miles. A few went on the back of animals, but the majority seemed to prefer carriages. As I had previously made the trip on horseback I tried a carriage, but found it a change for the worse. The carriages go by what is called the new trail, a road built by the Observatory to enable the parts of the 60-inch reflector to be hauled to the summit. It is, however, a long and excessively dusty drive, it being well on towards evening before the peak was reached, and everyone being well coated with dust.

The party were accommodated at the Mt. Wilson hotel, sleeping in cottages and tents and getting their meals at the hotel proper. Considering the difficulty of getting supplies, the accommodation was good and the charges reasonable. A feature of the sessions was the afternoon tea at the Monastery, the bachelor quarters of the Observatory staff, a pleasant social function given by the lady members of the Observatory staff and much enjoyed by every one.

Much interest and admiration were felt by the delegates in the magnificent equipment for solar and stellar research on Mt. Wilson, and, before speaking about the sessions of the Union, it might be of advantage to briefly describe some of the most original and ingenious of the instruments used. I have, already, in my 1907 report to you (page 53) described the instrumental equipment of the Solar Observatory in 1906, and it will, therefore, suffice to speak of what has since been added, the two tower telescopes and the 60-inch reflector.

The 60-foot tower telescope is a radical departure from the horizontal coelostat telescope (the 'Snow' telescope) already described, in that the beam of light forming the solar image is vertical instead of horizontal. The coelostat and secondary mirrors are at the top of a steel tower 60 feet high, and the image is formed at a convenient distance above the surface of the ground by a 12-inch objective of 60 feet focus at the top of the tower. The spectrograph is consequently vertical, is of 30 feet focus and is placed in a pit 30 feet deep. There are evidently many advantages in this type of instrument over the 'Snow' telescope. The great height of the mirrors above the surface removes, or considerably reduces, the effect of the hot air rising from the earth and consequently improves the definition. vertical direction of the image-forming beam reduces the danger of disturbance of definition arising from stratification or convection of the air. The placing of the spectrograph below the surface ensures that the lens and grating, which are nearly 30 feet down, are at almost absolutely constant temperature, a very important desideratum in accurate work. Finally, the difficulty due to the heating of the mirrors and the consequent change of focus and astigmatism produced, has been much reduced by making the coelostat and secondary mirrors about three times as thick as usual. It was shown by Ritchey that this change of focus was due to the heating of the front surface by the sun causing an actual bending of the mirror so that the surface became convex instead of plane, that this change of form was nearly regular, and, if the incidence was normal, would result in a lengthening of

the focus without scriously affecting the definition. But, owing to the fact that the beam is rarely or newer incident normally on the plate mirrors, there results astigmatism and consequent disturbance of the definition. It was found that when the mirrors were made thick, as in this case (coclostat mirror I7 inches diameter, 12 inches thick), that the front surface became very slightly coneave instead of convex owing probably to the heating of the edge of the mirror contained in the cell, and that possibly better results would be obtained if they were not quite so thick. The definition is in all cases considerably better than given by the 'Snow' telescope, and it can be used for long exposures without difficulty due to astigmatism or change of focus. Professor Hale showed us the image formed by this telescope and the Zeeman effect produced by the magnetic field around sunspots on the day he was on the mountain.

The 150-foot tower telescope was under construction last September, though so far completed that the solar image, about 17 inches in diameter, could be observed. When I sawit, however, the definition was not very good, and I have learned since that some difficulty has been experienced in getting good images. This may be due mostly to the much more perfect atmospheric conditions requisite with such an enormous focal length, and possibly partly to optical imperfections in some of the reflecting surfaces or in the image-forming objective employed. The well below the tower has a depth of nearly 80 feet, allowing the use of spectrographs of 75 feet focus, and enabling all the researches so successfully undertaken at Mt. Wilson to be prosecuted much further with this much more powerful equipment, to say nothing of the possibilities of other original work rendered feasible by the very large image and extraordinary dispersion available. The design of the whole telescope has been well thought out, all contingencies have been provided for, and it is most complete and will be most convenient in operation.

Probably the 60-inch reflecting telescope was the instrument which created the greatest interest and admiration, and excited the greatest envy among the visiting astronomers. It is certainly a magnificent instrument, complete in all details and leaving practically nothing to be desired so far as its optical and mechanical performance and the convenience, completeness and mechanical perfection of the details and accessories are concerned. It will not be necessary to give any description of the instrument here as that has been already given by the designer, Prof. Ritchey, in the 'Contributions from the Solar Observatory', Nos. 36 and 47. It will suffice to say that the completeness and the optical and mechanical properties of the reflector surprised every astronomer present. I think I am not mistaken when I say that very few astronomers expected that it would be possible, owing principally to atmospheric and to temperature changes, to obtain the wonderful definition that this instrument is capable of giving. Its photographic definition is very clearly shown by the examples of photographs of nebulæ, star clusters, etc., made by it. The wonderful detail in the nebulæ, and the surprising smallness of the star images excited the admiration of all. Through the kindness of Professor Ritchey, during two evenings on Mt. Wilson, the reflector was arranged for visual observations in the Cassegrain form, and every astronomer present observed several objects through It gave beautiful definition and showed wonderful light gathering power. Clusters, nebulæ and the planet Saturn were all observed, and those who had had experience with the largest refractors were convinced that it surpassed the best of them in many respects. Professor Ritchey is justly proud of his masterpiece, and he undoubtedly deserves great credit for the optical perfection of the mirrors and the excellent qualities of the mechanical design. On one of the nights spent on Mount Wilson the low dispersion spectrograph used in getting spectra of faint stars was attached, the reflector being used in the Newtonian form, the slit of the spectrograph being placed in the prime focus. The star images given were beautifully

hard and crisp and the exposures required to get measurable spectra surprisingly short. A spectrum of a fifth magnitude star, requiring upwards of an hour with our refractor, can be photographed with the same linear dispersion in about five minutes, an efficiency that particularly excited my admiration and even envy when I thought how our work could be extended if we had such an instrument.

The sessions of the Solar Union began on Wednesday morning, August 31, at 9.30, and continued for three days, Wednesday, Thursday and Friday. On motion of Professor Schuster, chairman of the Executive Committee, Professors Pickering of Harvard, Campbell of Lick, and Frost of Yerkes Observatories were chosen as chairmen for the three days of the meeting.

The opening business was an address by Professor Hale, who welcomed heartily all the delegates to the conference, and who then gave a description of the work and instruments of the Solar Observatory and a discussion of some of the results achieved, with many suggestions for future efforts. This address was much appreciated, as, owing to a partial breakdown from overwork, it was the only meeting Professor Hale was able to attend. This was a source of great disappointment and regret to all the delegates, and must also have been very disappointing to Professor Hale with the summary of the description of the summary of the success of the meeting, and who was preduded from taking the prominent part in the meetings that he was so well fitted and entitled to do.

Professor Schuster read the report of the Executive Committee which referred to the loss to the Union by death of several members, it recommended the Union to urge the establishment of a solar observatory in Australia, and stated that the Royal Astronomical Society of Canada and the Bolgana Academy had been elected constituents of the Union. It may be as well to state that the Union is composed of representatives or delegates from Societies and Academies, and that the work of the Union is done by committees representing the different phases of its work, these committees reporting at the meeting where the questions touched upon are discussed generally. There are committees on the determination of standard wave lengths, the measurement of the solar radiation, the spectra of sun spots, eclipse work, spectroheliographic work, and on the determination of the solar rotation by the displacement of the spectral lines.

After Professor Hale's address, Professor Kayser, the chairman, presented the report of the committee on the determination of standard wave lengths, which indicates a marked step forward in this important problem. Although Rowland's tables of wave lengths were, at the time of their introduction, a very great advance in accuracy over those previously in use, more recent work has shown that they are not sufficiently accurate for present-day research. Not only is the absolute value of the standard he employed in error, every wave length being too great by about one part in 30,000, which is not a matter of much moment, but that also there are relative errors of the order of one part in 100,000 among the different lines, which is much more serious than errors in the absolute values. These errors, due to unknown defects in the gratings employed, were only discovered when new measurements were made by a different method, that of interference. The work of this committee has been the determination by interferometer methods of the wave lengths of 50 lines in the iron arc between \$\lambda\$ 4282 and \$\lambda\$ 6495, which are called the secondary standards. The primary absolute standard is the wave length of the red line of cadmium, determined by Michelson in 1892 by actually counting the number of waves of this red line in a known fractional part of the standard metre. He found that there were 1,553,163.5 waves in a metre or that the wave length was 6438.4722 A. The secondary standards have been determined by differential interference methods by three observers, Fabry and Buisson, at Marseilles; Eversheim, at Bonn; and Pfund, at Baltimore. The accordance of these measures is a good that the range is generally less than one part in a million and the mean of the three is probably correct within that margin of error. The means of the three observers were adopted as the secondary standards. The following recommendations of the committee on wave lengths were, after discussion, adopted:

- In the region of the spectrum in which three independent measurements by the interferometer method of the lines of the iron are are available, i. e., between A 4282 and A 6493, the arithmetical mean of the three measurements shall be adopted as definite international standards of second order, provided there is sufficient agreement between them.
- The committee be given authority to publish these standards as soon as possible.
- 3. For the part of the spectrum in the neighbourhood of λ 5800, where the number and character of the iron lines is not satisfactory, the committee proposes the use of barium lines as additional standards.
- 4. Laboratories or observatories possessing first-rate concave gratings are invited to determine by interpolation, as soon as possible, standards of the third order in the spectrum of the iron are within the above range (i. e., λ 4282 to λ 6495.)
- 5. The measurement of standards of the second order shall be extended to shorter and longer wave lengths, and the arithmetical mean of three independent determinations shall be adopted as secondary standards.
- Standards of the third order shall then be obtained in the manner indicated.
 - 7. The above system of standards shall be called the international system, the unit on which it is based being called the international unit (denoted I. A.) as defined by the conference of 1907.
 - 8. It is very desirable that in different laboratories, possessing concave gratings of the first quality, photographs of arc, spark, and solar spectra and new measurements according to the international system shall be taken as soon as possible.

It will be noted that in the determination of the tertiary standards and in the new measurements of arc, spark, and solar spectra, it is expressly stated that first quality concave gratings be used to make the photographs. In view of the fact that there are now many plane gratings in use in an autocollimation or Littrow form of spectrograph, of which our solar spectrograph is an example, it seemed desirable to get an expression of opinion from the committee as to the suitability of such instruments for this purpose, and I therefore proposed that the plane grating might be used in this work. Professor Kayser, the chairman of the committee, was strongly opposed to the idea for the reason that the spectra formed were not normal, even though, as I pointed out, the deviation from normality was small and could readily be allowed for. The matter was allowed to stand there until it was brought up at a later meeting, when my views were strongly supported by Messrs. Adams, St. John, Newall, and others, who gave examples of the accuracy attainable with the plane grating used in the way stated above, and it was finally agreed that the tertiary standards and new measurements of spectra might be obtained with the plane grating.

This is a work that might well be undertaken here by the use of the first-rate plane grating we now possess and the excellent Toepfer measuring machine which are both well adapted for the purpose. It would be necessary to obtain an additional assistant for the purpose of measuring the plates, as there would be so great a quantity required, entirely beyond our present capacity unless the other work were neglected.

The work of this committee is perhaps of the greatest present importance of any dealt with by the Solar Union, and I have therefore presented it in some detail.

In the evening, Director C. G. Abbot, of the Smithsonian Astrophysical Observatory, gave a popular lecture on the "Solar Constant of Radiation," outlining the history of the subject, naming the various values of the constant accepted at different times, and giving a brief account of his own work. Mr. Abbot presented a strong plea for the support of a project to equip and maintain another station in a suitable locality, where independent similar and simultaneous observations might be secured to substantiate the value of the constant and determine if there is any fluctuation.

On Thursday morning, the first business taken up was the report of the committee on the measurement of the solar radiation, which was presented by Professor Abbet. The gist of the report was that numerous independent and concordant observations made at Washington and Mount Wilson in recent years have shown the value of the solar constant to be about 2.0 calories per square centimetre per minute, and that fairly well warranted indications of variability to the extent of 5 or 10 per cent, were indicated. It was recommended that an additional station for continuous observation of the solar constant over a considerable period be equipped in a suitable location. A discussion took place on the relative merits of different types of pytheliometers and on the durability of measuring the radiation over different portions of the solar disc.

The report of the committee on the spectra of sunspots was next presented by Professor A. Fowler, the chairman. One of the most important statements in this report was that the spectra of sunspots are as constant in nature as the ordinary Fraunhofer spectrum. Father Cortie said he had examined them for twenty years and thinks them quite unchanged through periods of maximum and minimum spot activity. After some discussion the following resolutions were adopted:—

- That the reports of the committee and the co-operating observers be printed in the Transactions of the Union in full, or in abstract as circumstances may determine.
- That notwithstanding the photographic results, visual observations are desirable and the committee should be continued.
- That the committee be requested to prepare and circulate a revised scheme of observations.
- In view of the fact that several observers have prepared catalogues of great numbers of sunspot lines, it is desirable that these results be collated.
- 5. It is desirable that the new map of the sunspot spectrum do not exceed $60~\rm cm$ in length and be on a scale of 5 mm, to one Angstrom.

The report of the eclipse committee, in the absence of the chairman, Sir Norman Lockyer, was presented by the secretary, Comte A. de la Baume Pluvinel, and excited some little discussion over the method of recording angles of position around the sun's disc, which was finally decided in favour of from north toward east. The desirability of co-operation in observing the chromospheric spectrum was discussed, and Professor Campbell described a method of using a moving plate holder for recording the flash spectrum.

This closed the formal business for Thursday, but in the evening, Professor Kapteyn gave an extremely interesting lecture on 'Star Streaming of Stars of the Orion Type' which, in addition to being the record of a notable piece of work, was presented in a very pleasing and lucid manner and was much enjoyed by the large number present. He finds that two large groups of Orion type stars, containing nearly all of this type in the sky, are moving, when the solar motion is allowed for, in opposite directions at the same rate.

On Friday morning the report of the committee on the determination of the solar rotation by means of the displacement of spectral lines was presented by Mr. Adams. As this committee is one of which I am a member a full report will be given later.

In the absence of Professor Hale, the chairman, the report of the committee on spectrobeliographic work was presented by Professor Frost. It included separate reports from Father Cirera, of Tortosa, Spain, on the classification of faculte, from Professor Rieco, of Catania, Sicily, and Professors Fox and Slocum of the Yerkes Observatory, giving details of spectroheliograph plates obtained. The resolutions proposed by the committee and adopted by the Union are substantially as below:—

- That daily photographs of calcium flocculi be continued.
- That provision be made for the measurement of the photographs.
 That the Japanese Government be approached in regard to the establishment of a solar observatory in Japan.
- 4. That the observatories of Tacubaya, Mexico, and Madrid, Spain, be added to the list of co-operating observatories.
- That the committee recognises the advisability of the use of spectroheliographs of high dispersion.
- 6. That the fund raised in Italy as a memorial of Father Secchi be devoted to the construction of a tower telescope.

On Friday afternoon the question as to whether the field of the Solar Union should be extended to include the study of stellar spectra was discussed. It was pointed out by Professor Newall that the recent work of Campbell, Kapteyn, Russell, and others, tended to upset our notions of the manner of evolution of stellar systems and would render the problem of discussing stellar types somewhat unsettled, and he questioned the necessity of appointing a committee. Professor Schuster remarked that the same persons who are studying the sun are studying the stars, and that some have not joined the Solar Union because it is devoted only to the sun. It would soon be necessary to consider the question of stellar classification and there was no body so representative as this for doing so, while it would naturally devolve on the Union, sooner or later, to take up stellar questions with which solar research is so intimately connected. Professor Turner referred to the work of the Astrographic Chart which was also being extended, and he thought that the course of events would be such that the two international organizations would fill the field of astrometry and astrophysics. Other members spoke in favour of extending the scope of the Union, and the motion was carried unanimously. A full report of the deliberations of the committee on spectral classification, which was immediately appointed, and of which I have the honour to be a member, is given below.

After the decision to hold the next meeting at Bonn, in 1913, the appointing of committees, and the passing of resolutions of thanks, the 1910 sessions of the International Union for Co-operation in Solar Research was formally closed. There remained, however, the journey down the mountain which only occupied about four hours and was much more pleasant than the climb up, and the closing function, a banquet given by Professor and Mrs. Hale to the members and those accompanying them, about one hundred in all, at the Hotel Maryland, on Saturday evening. Owing to the indisposition of Professor Hale, to the disappointment of many there, there was no toast list. Professor Kayser proposed very pleasantly the health of Professor and Mrs. Hale, which was fittingly responded to by Professor Hale. The preparations had been made with the greatest care and the menu and service were excellent. It was a fitting close to a memorable meeting.

By Sunday evening nearly every delegate had left Pasadena, most of them going northward and visiting the Lick Observatory and the University of California before going east. I spent one night at the Lick Observatory and renewed acquaintance with the staff and the methods before starting homeward.

Aside from the direct advantages derived from my attendance as representative of our Observatory at these meetings, which will be referred to later, it is possible that such direct advantages are more than outweighed by the indirect benefits such as, the inspiration received, and the enthusiasm heightened by the association and discussion of questions of mutual interest with fellow astronomers. This is especially true in the present case owing to the notable character of the gathering, the most representative and world-wide meeting of astronomers ever held in America.

I propose to give a more full account of the three committees to which I had the Innour of being appointed, inasmuch as they have a more direct bearing on our work than the others above mentioned. The first of these connected with the Astronomical and Astrophysical Society of America was:

The Committee on Co-operation in the Determination of Stellar Radial Velocities.

As previously stated, this committee was organized at the request of Professor Combell, Director of the Lick Observatory, at the Boston meeting of the Society, and consists of the following members:—

W. W. Campbell, Director, Lick Observatory.

E. B. Frost,

, "Yerkes

Frank Schlesinger, "Allegheny "Karl Schwarzschild, "Potsdam "

H. F. Newall, "University Observatory, Cambridge.

J. S. Plaskett, Dominion Observatory.

The other five institutions represented in this committee are the foremost in the world in astrophysical research, and it is an honour for the Dominion Observatory to be associated with them.

This committee held a meeting on Mount Wilson on Thursday aftermoon, September 1, when the six above mentioned attended, and, by invitation, Professor B, Hartmann, of Göttingen, and V. M. Slipher, of Flagstaff. At this meeting, the question of the necessity and advisability of co-operation in determining the radial velocities of stars fainter than the fifth visual magnitude was discussed. It seemed to be the general opinion that it was impracticable for any observatory, with its present equipment, other than the Lick, with its large and efficient telescope and univalled climate, to take any effective part in obtaining high dispersion spectra of such faint stars, no matter how willing they would be to co-operate in such work. An informal discussion took place upon possible means of overcoming the normous

wastefulness of light in the modern stellar spectrograph, and two or three schemes were suggested for helping matters. Professor Newall proposed to use a crystal of some neodymium salt, or other absorbing material capable of producing lines, in place of the slit, where approximately ninc-tenths of the light is lost, so that the spectrograph would act similarly to an objective prism and yet have the good qualities as regards temperature correction and freedom from flexure of the modern spectrograph. Professor Campbell proposes to use a single-prism spectrograph for the fainter stars, but to avoid some of the absorption and reflection troubles and difficulties with flexure of the ordinary one-prism type, to make it of the Littrow form, using a half-prism silvered to return the light back along its original path. and tipping the prism slightly to bring the spectrum to one side of the slit. Other suggestions in regard to the use of objective prisms were made, but no definite plans proposed. I proposed to try a grating as the dispersion piece if one sufficiently bright in one order could be obtained. As in the prism train of the modern spectrograph, about 70 per cent. of the light is lost by absorption and reflection, it is evident that a grating throwing say 60 per cent. of the incident light into one order will effect a considerable saving. Unfortunately, although such a grating was ordered six months ago, it has not yet been obtained, but, when it is, should be well worth trying. It was tacitly agreed that as much as possible along the lines of improving the efficiency of the spectrograph should be done before the next meeting of the committee. It was also understood that any one of the members having the good fortune to secure a telescope of larger aperture, should co-operate with Professor Campbell in obtaining the spectra of the fainter stars. The radial velocities of practically all stars to 5.0 visual magnitude have already been obtained at the Lick Observatory and its southern branch at Santiago de Chile. The determination of the radial velocities of stars fainter than the fifth magnitude is one of the most pressing problems of modern astronomy, as upon the knowledge of such radial velocities depends the solution of many statistical studies of the constitution, motions, and dimensions of the sidereal universe.

The observatory that is able to take an active and efficient part in obtaining such radial velocities will deservedly take high rank in the scientific world. It seems to me to be an opportunity for enhancing our country's reputation that should not be missed, for a telescope, larger than any in use and one which will enable correspondingly fainter stars to be observed, can be obtained at a comparatively moderate outlay. Some approximate information in regard to this has been given previously. With our experience and record in obtaining accurate radial velocities with the smallest telescope in use in this work, there should be no difficulty in making, with the largest instrument, an unrivalled and exceedingly valuable series of observations; and also, for Canada's Observatory, a reputation second to none.

Since the meeting and in preparation for the coming meeting of the Astronomical and Astrophysical Society to be held in Ottawa next August, I, with the other members, have received a provisional report of the proceedings of the committee from Professor Campbell, with a request to criticise it and to supply any omissions. I give here a copy of his report and of my reply, which should be self explanatory.

Professor W. J. Hussey, Secretary,

The Astronomical and Astrophysical Society of America, Detroit Observatory,

Ann Arbor, Mich. Dear Sir,-In response to my letter of suggestion and recommendation, dated August 9, 1910, that the Society appoint a committee 'to study and report upon the subject of co-operation on the part of observatories engaged

in the measurement of stellar radial velocities,' your letter of August 22, 1910, informed me that my communication was presented to the Council and that 'the matter was discussed and then referred to a committee consisting of the following persons, with power to add to their number:—

W. W. Campbell.
E. B. Frost.
Frank Schlesinger.
J. S. Plaskett.
Karl Schwarzschild.
H. F. Newall.

The suggestion of the Council that this committee might well hold a meeting at the time of the Solar Union Conference was adopted, and the committee met at Mount Wilson on September 1, 1910. Present: Campbell, Frost, Schlesinger, Plaskett, Schwarzschild, Newall; and by invitation, Hartmann, of Göttingen, and Slipher, of Flagstaff.

The credentials of the committee seemed to be ambiguous as to whether the committee was empowered to present a report upon the main question, or whether its duties were limited to considering and reporting upon the wisdom of appointing a committee to deal with the main question; but we adopted the former of the two views, and we discussed the points which co-operation would pring up the first for decision.

My original letter had made prominent the desirability of co-operation in determining the radial velocities of stars fainter than 5.0 visual magnitude in the 'Revised Harvard Photometry'; co-operation on stars brighter than 5.0 not seeming essential, as the programme of the Lick Observatory, on Mount, Hamilton and at Santiago, Chile, embracing stars down to 5.0, were essentially complete, not including the investigation of spectroscopic binary systems, nor stars whose spectra contain lines too poor for satisfactory measurement under bind dispersion.

I expressed the hope that we should be able, within one or two years, to begin upon an extensive programme for the determination of radial velocities of stars between 5.0 and 6.0 visual magnitude, and that this work might be shared by several observatories. The response of nearly all those present (except myself) was to the effect that, however strongly they might desire to engage in the suggested co-operative plans, their instrumental resources were too weak to give promise of coping successfully with many stars fainter than 5.0 visual magnitude; and, further, that their fields of greatest present usefulness consisted in the study of specially interesting stars, such as the known spectroscopic binary systems, which are for the most part brighter than 5.0 visual magnitude. In effect, the committee decided that co-operation in the determination of radial velocities for stars fainter than 5.0 visual magnitude is at the present time not practicable, and I was requested to present a report embodying this decision.

At that time it was not known that the Carnegie Solar Observatory contemplated the making of stellar radial velocity determinations. A few months following the meeting of the committee, Professor Walter S. Adams, acting director of the Carnegie Solar Observatory, consulted with me concerning a practicable programme of radial velocity determinations for the Solar Observatory, and we have been considering the subject in correspondence. It is not improbable that the main radial velocity programmes of the Lick Observatory on Mount Hamilton and in Chile, and of the Solar Observatory turing the next few years will be upon a co-operative basis, to the extent that the Lick Observatory programme will include stars between \$5.0 and \$5.5 visual magnitude, and the Solar Observatory programme (for

3 GEORGE V., A. 1913

observation with the 60-inch reflector) will be composed of stars fainter than 5.5 visual magnitude. However, the decision of many questions relating hereto awaits the return of Professor Hale to active duty in the Solar Observatory.

No action was taken as to recommending that the committee be continued or discharged.

I personally regret that the number of observatories prepared to engage in cooperative programmes is so small, and hope that the not distant future may lead to a decision more favourable to co-operative plans. Those of us who have had occasion to base investigations concerning the sidereal system upon radial velocity results have constant regret that the number of available velocities is not greater. The number of stellar radial velocities now known, not counting uninvestigated spectroscopic binary systems nor stars whose spectral lines are too poor for satisfactory measurement, is in the neighbourhood of 1200. It is my hope and personal belief that within two decades we shall know the radial velocities of as many stars as are now contained in catalogues of stars whose proper motions are fairly determined.

Respectfully submitted for the committee,

W. W. Campbell,

Chairman.

Professor W. W. Campbell,

Chairman Committee on Co-operation in Radial Velocities.

Dear Sir,—In reference to the provisional report of the committee on coperation in radial velocity work, which you have been so good as to send me, I would say that it represents to the best of my recollection the general trend of the discussion at the meeting on Mount Wilson.

There seemed to be, however, at the meeting a feeling that, although the instrumental equipment at most observatories was not sufficiently powerful to successfully undertake the observation of stars fainter than 5.0 visual magnitude, it might be possible to overcome part of the enormous loss of light which takes place in the modern spectrograph, and to so increase the efficiency that, even with the present light gathering power, fainter stars might be successfully observed. It was agreed, I believe, that those who were unable to co-operate at present should endeavour, by investigation and experiment, to evolve a method by which some of the great loss of light might be obviated. There was some discussion in regard to the use of the objective prism with the absorbing screen devised by Professors Pickering and Wood, and I understand that Professor Newall is to experiment along that line. A further proposal was to experiment with gratings so ruled as to diffract the greater part of the light into one order. I may say that we have an order at Baltimore for such a grating with good prospects that the order will soon be filled. We have at present a 6" plane grating in which about 45% of the incident light is thrown into the 1st order on one side, an efficiency which is considerably greater than that given by the prism train of the modern three-prism spectrograph. You, I believe, propose to use the Littrow form of spectrograph with a silvered half-prism as dispersing piece.

I feel personally much regret that at present we are unable to co-operate in determining the radial velocities of stars fainter than 5.0 visual magnitude, and can assure you that if we had the necessary equipment we would be not only willing but anxious to engage in such a scheme. Furthermore, as soon as we are able to obtain

greater light gathering power we would be glad to devote the greater part of the time in such a cause, which is I think one of the most urgent in present day astronomy.

In regard to the last paragraph of the report I see no reason whatever why it should not be included and heartily concur in the hope therein expressed.

Yours very truly,

J. S. Plaskett.

Committee on the Determination of the Solar Rotation by the Displacements of the Spectral Lines.

A committee on this research was originally appointed at the Meudon meeting of the Solar Union, but, as no secretary was appointed nor scheme outlined, little has been done in the direction of co-operative work. Previous to the meeting at Mount Wilson, Mr. Adams, who has completed a splendid determination of the solar rotation, sent a letter, somewhat along the lines of the report below, to those whom he thought would be interested in the work. As a result of this letter, a meeting was held on the afternoon of Thursday, September 1, at which were present all the members who had undertaken or were likely to undertake work along this line. This meeting was most enthusiastic and business-like, and as every one was in earnest a definite working programme was soon outlined. Co-operation was carried in this scheme to an extent sufficient to prevent overlapping, to enable accurate comparisons of results, etc., to provide for elimination of systematic errors, without in any way hampering individuality of treatment or originality of methods. The basis of the agreement as will be seen in the report was the division of the spectrum into 7 regions, one for each member of the committee. These regions extend from λ 3800 to λ 6250. Each observer is to determine the rotation from the region of spectrum allotted to him about 200 A in length and in addition from a general or common region observed by all. This region was chosen between λ 4220 and λ 4280, the centre of the region used by Adams in his determination.

The latitudes to be observed are 0° , 15° , 30° , 45° , 60° and 75° , and, if possible, higher latitudes between 75° and the pole in the special regions, and 0° , 30° and 60° in the common region.

At the meeting of the Union on Friday morning, the provisional report was read, including the basis of agreement reached in the organization meeting, and was accepted with little discussion, but with congratulations on the business-like and complete nature of the report, and the following committee was formally appointed as the Rotation Committee of the International Solar Union. I give here the region of spectrum allotted to each.

3800 — 4000	Bélopolsky	Pulkova
4000 - 4140	Schlesinger	Allegheny
4300-4500	Newall	Cambridge
4500 - 4700	Adams	Mt. Wilson
5100 - 5300	Adams	Mt. Wilson
5500 - 5700		Ottawa
6250 - 6350	Dyson	Edinburgh

A copy of the report is herewith appended.

'The organization of the Committee on the Rotation of the Sun appointed at the Meudon meeting of the International Solar Union has never been completed by the appointment of a secretary, and little has been done in the direction of cooperative work. At a meeting of the committee yesterday, however, a temporary organization was effected and a full programme of work discussed.

'The principal objects of a study of the sun's rotation by means of the displacements of the spectrum lines may be referred to under five heads:—

- The accurate determination of the angular velocity of rotation at various latitudes, and the derivation of a formula representing with a high degree of precision the variation of velocity with latitude.
- A definite conclusion as to the existence of secular or periodic variations in the sun's rate of rotation.
- 3. The investigation of the rate of rotation as shown by the lines of different elements, and of the are and enhanced lines of the same element, with a view to determining whether either the absolute rate of rotation or the law of variation with latitude differs for different substances.
 - 4. The study of lines selected from different regions of the spectrum.
- The detection of possible systematic proper motions or drifts in the sun's reversing layer.
 - 'At the present time the evidence appears to be strong that the type of formula $\dot{\varepsilon} = a + b \cos^2 \phi$

connecting angular velocity $\hat{\epsilon}$ and latitude ϕ , first suggested by Faye as the result of his discussion of the observations of the motion of sun-spots, represents with a considerable degree of accuracy the results obtained from spectrographic observations. The series of observations by Dunér, Halm and Adams are all tolerably accordant in this respect. It is, however, by no means certain that a term in $\cos^2\phi$ may not exist. The effect of such a term would, of course, be most marked in the higher latitudes where observations are most difficult and the influence of errors in position angle is most serious. At 75° of latitude, for example, an error of 9° . 33 in angular velocity. It is clear that observations in the higher latitudes are greatly needed, and that for this purpose a large solar image is very desirable.

"The question of a variation in the sun's rate of rotation is still an open one, although the evidence at present is rather opposed to the existence of short period variations of any considerable amount. Systematic observations covering at least two sun-spot maxima and minima are required for the purpose of determining a possible relationship between the sun's activity and its rate of rotation

"The observations of Pérot' Schlesinger and Adams during the last two years are all in agreement in showing that the lines of different elements give different rotational velocities. The elements showing the greatest apparent differences of level in the sun's atmosphere appear to give the largest differences in rotational velocity. Among the high level elements are hydrogen and calcium, and among the low level elements eyanogen and lanthamum. The number of elements investigated should be considerably increased in future work, and in particular such should be included as are of low or very high atomic weight. The important result, apparently indicated by the Mount Wilson observations, that the law of change of velocity with latitude as well as the absolute velocity differs for different elements, requires much additional study. It now seems probable that the investigation of the behavior of special lines will soon form one of the most important branches of the subject of the sun's rotation.

'The change from visual to photographic methods of observation has led naturally to a change in the region of the spectrum employed from the longer to the shorter wave-lengths. Thus at the present time, Professor Plaskett is using the region from about λ 4430 to λ 4600, Dr. Schlesinger λ 4060 to λ 4140, and the Mount Wilson observers from λ 4100 to λ 4300. As compared with these, the visual observations of Dunér and Halm were made on two iron lines near λ 6300, while the interferometer results of M. Pérott were based on two lines of calcium at λ 5349 and λ 6122. It seems very desirable, in view of the possibility of a relationship between the values of the rotational velocity and the region of the spectrum observed, that a large range of spectrum be covered by the various series of observations.

'With the recent marked improvements in methods of sensitizing photographic plates to the less refrangible part of the spectrum, it will not be difficult to secure satisfactory photographs on fine-grained plates of any portion of the visible spectrum.

The fifth and last point under consideration in the general discussion is that
of proper motions in the sun's reversing layer. A striking case of this sort in the
vicinity of two sun-spots was observed by Adams at Mount Wilson in 1908, but,
except for this isolated case, practically nothing is known regarding their occurrence
in the solar atmosphere. Any knowledge as to their prevalence or direction of
motion will prove of the greatest importance in the theory of the general solar
circulation.

'In view of these considerations regarding the present condition of our knowledge of the rotation of the sun, the committee at its meeting undertook the organization of co-operative work, and to this end made the following recommendations to observers:—

 That the observers select, at least to a partial extent, different regions of the spectrum so that the total range of wave-length under observation may be as great as possible.

'By general consent of those present at the meeting of the committee, the following regions of the spectrum were selected by the various observers:—

3800 – 4000 Bélopolsky. 4000 – 4140 Schlesinger, 4300 – 4500 Newall. 4500 – 4700 Adams. 5100 – 5700 Plaskett. 6250 – 6350 Dyson.

- 2. That within these regions the selection of lines be made with a view to the indison of a considerable number of elements, particularly such as are of very high or very low atomic weight, as well as the enhanced and the arc lines of the same element.
 - That an agreement be made upon the latitudes to be observed.
- 'After considerable discussion the committee decided to recommend the following points of heliographic latitude:—

 That an especial attempt be made to secure observations in the highest latitudes, particularly between 75° and 90°.

'One or two of the observers present expressed their willingness to attempt determinations at latitudes $80\,^\circ$ and $85\,^\circ.$

5. That a short list of selected lines be employed by all of the observers in common, the results to serve as a check upon instrumental or personal errors, and that a list of the points of latitude to be observed accompany this list.

'The Committee selected for this purpose the portion of the spectrum between A4220 and A4280, and the three points of latitude 0°, 30° and 60°. The secretary was authorized to choose a list of lines and forward it to the various observers for approval.

6. That an attempt be made to secure at least one independent series of observations in each of the solar hemispheres with a view to determining a possible difference in the rate of rotation.

'Several observers expressed their willingness to undertake such observations of this character as the construction of their instruments would permit.

Since the meeting held yesterday is the first since its appointment, the committee does not desire at this time to offer a formal set of resolutions, but rather to secure authorization from the International Union for Co-operation in Solar Research to proceed along the lines indicated in this report until the next meeting in 1913. At that time it should be possible to offer a definitive series of conclusions for action by the International Union.

There is little to add to the above report, which practically tells the whole story of what has been arranged as regards co-operative work on the solar rotation. Since the meeting Professor Adams sent around a list of six iron lines for observing in the common region. At my suggestion the list was increased to ten and was slightly changed to include some of those observed by Adams to give either higher or lower values than the general reversing layer. The following are the ten lines selected with the element, intensity and whether it gives high or low velocity as observed by Adams. In addition to the ten I propose to measure five other lines which gave varying velocities according to Adams. The latter are given below the general list.

Lines to be measured in General Region.

Line.	Element.	Intensity.	Remarks.
4220-509 4225-619 4232-887 4241-285 4246-996 4257-815 4258-477 4266-081 4268-915 4276-836		3 3 2 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2	High Value. High Value.
	Addit	onal Lines.	
4196 · 699 4197 · 257 4216 · 136 4290 · 377 4291 · 630		2 2 2 2 2 2	Low Value. Low Value. Low Value. Low Value. High Value.

The result of the measurement of these lines should be of considerable interest on comparison with the values obtained by Adams.

Committee on Classification of Stellar Spectra.

The discussion resulting in the appointment of this committee has already been given in this report. Immediately after the close of the general meeting on Friday, this committee at the call of the chairman met and discussed the question informally. The gist of that discussion is given in a circular letter issued later by the sceretary, Dr. Schlesinger, which is given in full below. Beneath it is a copy of my reply to the questions raised therein. The members of the committee, which is very representative, including practically everyone working on stellar spectroscopy, are given in the sceretary's letter.

Allegheny Observatory, Nov. 7, 1910.

DEAR MR. PLASKETT.—At the Fourth Conference of the International Union for co-operation in Solar Research, the following gentlemen were appointed to serve as a "Committee on the Classification of Stellar Spectra":—Messrs. Adams, Campbell, Frost, Hale, Hanny, Hartmann, Kapteyn, Newall, Pickering (Chairman), Plaskett, Russell, Schleisinger (Secretary) and Schwarzschild.

This committee met on Mount Wilson on September 2, immediately after the adjournment of the conference itself. In accordance with power to add to their number, it was unanimously decided to ask Mr. Küstner to serve, and he was present at this meeting. Messrs. Hale and Campbell, who had already left the mountain, were the only absentees.

The chairman called upon each member in turn to express his views concerning the classification of stellar spectra and his opinion as to what the scope of the committee should be. A brief summary of this discussion follows:-Mr. Adams preferred the Draper Classification*, and thought that, if the members of the committee themselves would use this classification exclusively, until say the next meeting of the Solar Union, it would go far toward establishing uniformity. Mr. Küstner preferred the Draper Classification and was using it exclusively. Mr. Hartmann thought that the Draper Classification was the best that had been proposed, but hoped that an effort would be made to retain the Roman numerals of Secchi, that have now become classic, and that the subdivisions be made as in the Draper system by the addition of Arabic numerals; thus, II, 3. Mr. Schwarzschild expressed similar views, and thought that it might be advantageous to employ both Secchi's numerals and Pickering's letters; thus, IIG5. Mr. Russell suggested the advisability of substituting some method for measuring the type of spectrum for the estimations that are now employed, and asked whether this could not be applied to the Draper Classification. Mr. Plaskett preferred the Draper Classification, but said that as he believed uniformity to be the prime consideration he would gladly adopt whatever system could be agreed upon. Mr. Frost thought that the committee should make no recommendation at the present time but should first canvass the whole subject thoroughly; it appeared to him desirable to investigate the visual end of the spectrum in connection with the photographic before arriving at a definite conclusion. Mr. Schlesinger preferred the Draper Classification and had decided to use it exclusively; he called attention to the desirability of making further distinction among the numerous spectra that are now classified as A without any modifying number; he thought that any attempt to establish a temporary uniformity now might prove an obstacle to the universal adoption of some more

^{*} This classification is described in the Annals of Harvard College Observatory, Volume UI, page 68. The letters 0, B. A, F. G, K, M and N are used to designate the sequence of the spectra. Numerals from 1 to 9 after the letter denote intermediate spectra; thus, B3 would be assigned to a spectrum between B and A, but more nearly resembling the former.

definite system later. Mr. Newall asked whether a spectrum might not be intermediate between two letters in the Draper Classification that are not consecutive, as A5G. Mr. Pickering said in reply that such cases have not arisen in practice. Mr. Newall raised the question whether the committee should not consider the matter of stellar evolution. The members present seemed to be of the opinion that this was legitimately within the scope of the committee, but that its immediate business should be the establishment of a uniform system for classification. Messrs. Russell, Hartmann, Kapteyn and Sehlesinger urged that no evolutionary basis for a classification be adopted at the present time; astrophysicists are not agreed as to the proper sequence from this point of view; if our ideas upon this matter should be modified in the near future (as seems very possible), then it would be necessary to modify or to abandon altogether any system of classification based upon these ideas. For similar reasons Mr. Russell asked that the use of such terms as "early" and "iate," now so frequently used in describing spectra, be discontinued in favor of "white" and "ret."

The secretary was directed to secure by correspondence as full an expression opinion as possible, from the members of the committee and others, on the matters that had been discussed. The me cting adjourned.

In accordance with this request, the following questions have been framed*, and you are asked to reply to them at length. In addition it is hoped that you will give your view in full upon any other points that may occur to you as being important in this connection.

It will be noticed that, at the meeting reported above, there seemed

- to be a practically unanimous opinion that the Draper Classification is the most useful that has thus far been proposed. Do you concur in this opinion? If not, what system do you prefer?
- (2). In any case, what objections to the Draper Classification have come to your notice, and what modifications do you suggest?
- (3). Do you think it would be wise for this committee to recommend at this time or in the near future, any system of classification for universal adoption? If not, what additional observations or other work do you deem necessary before such recommendation should be made? Would you be willing to take part in this work?
- (4). Do you think it desirable to include in the classification some symbol that would indicate the width of the lines, as was done by Miss Maury in Annals of the Harvard College Observatory, Volume XXVIII?
 - (5). What other criteria for classification would you suggest?

Although it is not the intention of the committee to frame a formal report at once, it is desirable that your answers to some of these questions should be forthcoming very soon; this is particularly the ease with the third question. May I therefore request that your reply be sent, if possible, so as to reach me not later than the end of this calendar year? If you can secure an expression of opinion from any other qualified astronomer, it will be very welcome.

Very respectfully yours,

Frank Schlesinger, Secretary of the Committee.

*The general form that these questions should take was discussed at several informal meetings on the train coming east from the meeting at Psaadena. There were present at these meetings the Chairman and the Secretary of the Committee, Mr. Russell and (by invitation) Pather Cortic.

Ottawa, Ont., Jan. 26, 1911.

Dr. Frank Schlesinger, Secretary International Committee on

Secretary International Committee on Classification of Stellar Spectra.

Dear Sir.—In reply to the questions formulated in your letter of November 7th last, in regard to the Classification of Stellar Spectra, I have pleasure in presenting the following.

- The Draper Classification is the most useful scheme hitherto proposed, but it is possible that it might be improved upon in some respects.
- 2. The principal objection to the Draper Classification occurring to me is that the designations of the different types of spectra do not of themselves suggest anything in regard to the character of the spectra, and are in this respect arbitrary and unsatisfactory. It is of course true that familiarity with and use of the Draper system soon diminishes the weight of this objection, but for those using or referring to it occasionally a system of nomenclature which would at once suggest the type of spectrum designated would be a decided advantage, and I would suggest that the committee consider the possibility of such a modification. Would it be possible to combine the simplicity and the universally known features of Secchi's nomenclature with the more complete, systematic, and consecutive division of the spectral types in the Draper Classification? There is of course the objection that one would have a tendency to associate the order of the numerals therein used with the order of stellar development, and this, considering the present state of our knowledge of stellar evolution, would be inadvisable. A similar objection may be urged to the designation of the Draper subdivisions in that they are always used in one order; thus, always A4F never F6A, tacitly assuming that stars develop from the A to the F types and not, as may be possible, from F to A.
- 3. In my opinion, the question in all its bearings should be discussed as fully as possible by correspondence, so that at the next meeting of the Solar Union at Bonn in 1913, the committee may be prepared to recommend some scheme of spectral classification for universal adoption. It does not seem to me advisable to formulate any system before that date, as it can only be put into satisfactory shape after personal meetings and discussions among the members, and such meetings will not likely be possible until the next Solar Conference. On the other hand, the only thing that would justify a longer delay than that necessary for a full consideration of the question would be the chance of obtaining, in the near future, some more positive knowledge of the order and process of stellar evolution than we at present possess. The probability of a final solution of that problem is not in my opinion sufficiently great to justify a long postponement of the advantages that will undoubtedly accrue from the adoption of some uniform system of spectral classification.

It seems to me desirable before a definite classification is adopted that some work be done on the red end of stellar spectra up to and including $H_{\rm en}$. It is possible that very valuable criteria for the division and distinction of the various types may be obtained from the behaviour of some of the lines, such as the sedium "D", the helium "D" and the magnesium "b", between H_{π} and $H_{\bar{B}}$. It would be necessary to obtain, with a reasonably high dispersion, not less than 50 A per mm., photographs of the red end of the spectrum of representative stars of the different spectral subdivisions, before it could be determined whether any modifications of existing divisions would be required. Such work and any further work that might develop I would be willing to take part in

3 GEORGE V., A. 1913

- 4. It seems to me to be essential, or at least very desirable, in any complete system of classification to introduce some method of representing the width of the lines. It is undoubtedly true that there is frequently much greater difference in the appearance of two stars of the same type, one with wide and one with narrow lines, than between two stars, each with narrow lines, of types one or more subdivisions apart. It may not be necessary to introduce a separate symbol to represent the character of the lines. If we consider all spectra with sharp or moderately sharp lines as normal and represent them in the ordinary way, then spectra with diffuse lines might be differentiated from the normal by the use of the same distinguishing letters and figures, but in different type, e.g., sloping or italic.
 - 5. No other criterion necessary in a scheme of classification occurs to mc.

Yours very respectfully,

J. S. Plaskett.

It will be seen from this report of the proceedings of these two meetings, how cosmital it is that the Observatory should be personally represented at such important meetings as these. The appointment of its representative, myself, on three committees dealing with far reaching international astronomical questions is an evidence I take it of the standing our Observatory has already attained by its work. I take it as a personal compliment, as well as a recognition of our scientific standing, to be associated with such men as Hale, Pickering, Campbell, Frost, Adams and Schlesinger of America, Dyson (Astronomer Royal), and Newall of England, and Kaptern, Schwartzschild, Hartmann and others of Europe in the discussion of and co-operation in the three important and far-reaching problems above dealt with. I am satisfied that our work in the future will, at least, not lessen the estimation in which we are held, but will increase it. This will especially be the case if it were possible for us to take the great step forward of securing adequate telescopic power which has been already referred to.

It may be of interest to give a brief summary of the advantages accruing to the Observatory from my attendance as its representative at these two meetings. The indirect advantages have been already referred to previously, but there is the one direct advantage of the clear cut understanding arrived at in regard to the work on the solar rotation, which enables us to work most effectually along definitely laid down lines with no danger of duplication of work, and, at the same time, without in the least hampering originality of method or individuality of treatment. Furthermore, we are well assured by its inclusion in the work of the Solar Union of the great value and usefulness of the work when completed. Although it was not possible to arrange such a definite scheme of co-operation in stellar radial velocity investigation, the work of this committee is at least equally valuable and will undoubtedly also have most important results. So far as the question of spectral classification is concerned, the removal of the confusion at present existing in defining the spectral type of the stars is of great moment to the future progress of astronomy, and the representative committee at work on this question should be able to eventually formulate a permanent scheme.

To these direct advantages, to the advantage of the formal association of our Oscartage with the greatest observatories of the world effected by my attendance at these meetings, is to be added the indirect benefit derived by me and, through me I hope, to my work by the inspiration received, and the enthusiasm renewed and increased from the association with fellow astronomers and the informal discussion of questions of mutual interest.

I desire here to express my thanks to you for the privilege and honour of attending these meetings as the representative of the Observatory.

MICROMETRIC WORK AND CELESTIAL PHOTOGRAPHY.

This work has been energetically carried on as in former years by Mr. Motherwell, and the detailed measures and descriptions are given by him in Appendix E. The unusually poor observing weather of the past year has, as in the radial velocity work, reduced the number of measures and also very seriously hindered effective photographic work on Halley's comet. The weather during May and June, when the comet was brightest, was very poor as indicated in the table given above of the number of observing nights and spectra obtained. In addition to this, on many of the nights which were otherwise fine, successful photography of the comet was prevented by moonlight, and the photographic record of this much heralded visitor is disappointingly small. It is, of course, true that the attachment of the camera to the equatorial telescope frequently hinders its use in photographing, but that difficulty will likely soon be overcome by the provision of a separate mounting and building which should enable a much greater quantity of work of improved quality to be done.

Since the refiguring of the 8-inch doublet it has performed very satisfactorily, and the 12-inch focus 3.5 Geiss Tessar objective also gives good results. Its principal defect seems to lie in the diminution of the illumination towards the edges of the field, but this is inevitable in a lens of this type and is, of course, only especially noticeable when there is sky fog due to moonlight or to photographing, as is sometimes necessary in comet work, when the sun is not sufficiently far below the horizon.

MECHANICAL WORK.

The two mechanicians, Messrs. Mackey and Lucas, have been employed during the past year chiefly in repair work and in various attachments and alterations to the meridian circle and auxiliary apparatus. In addition some minor alterations have been made in the details of the stellar spectroscopes; and the new reflecting prism and guide plate attachments to the solar spectrograph, described above, have been constructed. Considerable work has also been done on adjustable slides to be used in the standardizing building and other miscellaneous work.

On account of the illness of Mr. Mackey during the last four or five months of the year, the work got behind to some extent, but it is hoped that on his return we may be able to catch up with the arrears, although of course, it is likely, where there are so many instruments, many of them complicated and delicate, in constant use that more work will be always coming in. In addition, when we consider that desirable improvements in existing instruments are bound to suggest themselves to the intelligent and enthusiastic worker, it is evident that the workshop will continue to be as indispensable in the future as it has been in the past, and that there is no immediate prospect of any lack of work. We may congratulate ourselves on having two such skilful mechanicians to look after this important work. Mr. Dunn also has proved himself capable and satisfactory in looking after the carpentry work required.

General.

Before closing this report there are one or two other matters that may with advantage be briefly referred to.

The attendance at the Saturday evening open-nights with the telescope has not be as great as in former years, which is probably partly due to the fact that the weather has not been as favourable. During the time when Halley's comet was at

J. S. Plaskett.

its brightest, however, there were record attendances of visitors who had to be convinced by ocular demonstration that a good naked eye comet is a much finer object by unaided vision than through any telescope. On every fine Saturday evening there is always a good attendance, although not the overcrowding that sometimes occurred previously. Our other method of stimulating interest in astronomy by means of the meetings of the Royal Astronomical Society has also fulfilled its purpose, although the attendance at some of the evening meetings has not been as large as we would like.

The afternoon meetings continue to prove very useful to the members of our own staff in disseminating knowledge of the various branches of the work and increasing interest and esprit de corps among the officers.

The papers contributed by this division to the Royal Astronomical Society during the period covered by this report are:-

1910.		
Apl. 21, 8 p.m.	Stellar Evolution and Theories of World Building	J. S. Plaskett.
May 3, 3 p.m.	Diffraction Grating of the Solar Spectroscope	R. E. DeLury.
Nov. 10, 3 p.m. 1911.	Irregularities in the Velocity Curves of some Stars with suggested explanations	W. E. Harper.
Jan. 12, 3 p.m.	Notes from two Recent Astronomical Gatherings	J. S. Plaskett.
Feb. 23, 8 p.m.	Some Recent Interesting Developments in Astronomy	J. S. Plaskett.

At the Harvard meeting of the Astronomical and Astrophysical Society of America, the following paper was read:-

> Probable Errors of Radial Velocity Determin-J. S. Plaskett. ations.....

At the meeting of the Royal Society, September, 1910, the following paper was read: Probable Errors of Radial Velocity Deter-

minations A list of papers written by members of this division and appearing in scientific publications during the year is given here.

- The Orbit of η Boötis. Jourl. R. A. S. C., IV, 191, by W. E. Harper.
- The Orbit of & Persei. Jourl. R. A. S. C., IV, 195, by J. B. Cannon.
- Halley's Comet. Notes and Photographs. Jourl. R A. S. C., IV, 224, by 3. R. M. Motherwell.
- Slit Width and Errors of Measurement in Radial Velocity Determinations. 4. Jourl. R. A. S. C., IV, 345, by J. S. Plaskett.
- The Astronomical and Astrophysical Society of America. Jourl. R. A. S. C., õ. IV, 373, by J. S. Plaskett.
- Double Star Measures. Jourl. R. A. S. C., IV, 447, by R. M. Motherwell.
- 7. Probable Errors of Radial Velocity Determinations, Astrophysical Jourl., XXXII, 230, by J. S. Plaskett.

- The Collimation of the Correcting Lens. Astrophysical Jourl., XXXII, 243, by J. S. Plaskett.
- 9. The Spectroscopic Binary ε Ursæ Minoris. Jourl. R. A. S. C., IV, 462. by J. S. Plaskett.
- Probable Errors of Radial Velocity Determinations. Trans. R. S. C., 1910, by J. S. Plaskett.
 - The Elements of 93 Leonis. Jourl. R. A. S. C., IV, 452, by J. B. Cannon.
 The Orbit of v Orionis. Jourl. R. A. S. C., V, 16, by W. E. Harper.
- Changes in Focus produced by Plane Gratings. Jourl. R. A. S. C., V, 26, by R. E. DeLury.
- A Device for Guiding the Image from a Coelostat Telescope. Jourl. R. A. S. C., V, 33, by R. E. DeLury.
- The Spectroscopic Binary 7 Camelopardalis. Jourl. R. A. S. C., V, 112, by W. E. Harper.

It will be noticed in the above list that No. 7 and 10 by myself have the same title, but the papers are not the same, the first one being more condensed and more in the nature of a summary of the work and results, while the second contains the full tabular material necessary in a complete treatment.

It is not right to close this report without expressing my gratitude for your unfailing interest in and encouragement of my work and for your readiness to meet any needs in the way of apparatus and material required or deemed useful in increasing its efficiency.

I have the honour to be. Sir.

Your obedient servant,

J. S. Plaskett.

APPENDIX A.

THE ORBIT OF PORIONIS. THE SPECTROSCOPIC BINARY
7 CAMELOPARDALIS. MEASURES OF PADROMEDAE AND
CASSIOPEIAE. MISCELLANEOUS MEASURES.

W. E. HARFER, M.A.

THE ORBIT OF V ORIONIS.

The spectroscopic binary ν Orionis ($\alpha = 6^{\circ}$ (02° , $\delta = +14^{\circ}$ 47°) photographic magnitude about 4.2) was discovered by Frost and Adams in 1903. The range in velocity of their three plates is approximately 70 km, which is in fact about the total range for the star. Their first observation was made at a fortunate time, it falling on the crest of the velocity curve which rises rapidly to a high positive value and falls again as rapidly. On this account this observation has been of material assistance in getting a more accurate value of the period than could be obtained from our own observations.

Work was commenced on the star here Nov. 11, 1907, and from that time to Dec. 30, 1910, one hundred and nineteen plates were secured. The first season's work gave the general form of the curve and during the three succeeding seasons efforts were made to obtain a full series of observations around periastron, where the curve, as previously mentioned, changes so rapidly. In this we have been only partially successful, as cloudy weather at each return to periastron prevented our obtaining all the observations desired. Nevertheless quite a number of reliable plates have been secured for this part of the curve, and the determination of the orbit has accordingly been proceeded with.

The spectrum is of type B2 and has numerous lines suitable for measurement. The hydrogen lines H_{gb} , H_{γ} , H_{δ} and H_{ϵ} appear in the range of spectrum measured but the latter was scarcely ever measured, owing to the close proximity of the H line of calcium and consequent overlapping. The helium series $\lambda\lambda$ 4713, 4471, 4888, 4143, 4121, 4026 and 4009 are all measurable and these, excepting the first and last, were among the most frequently used. The magnesium λ 4481 and the calcium K λ 3933 are not so intense as either the helium or hydrogen series and do not appear in many of the spectra.

In view of the fact that a number of binaries have recently been discovered in which the calcium lines *H* and *K* give different velocities to the other lines, it may be noted here, that this is not the case with *v* Orionis; the velocities of the *K* line agree with those of the other lines. Another good line is the carbon λ 4207. These were the lines most frequently measured but additional lines in a number of cases have been seen, and where these have been measured the resulting velocities were always in agreement with the lines most commonly used. Among these additional lines may be mentioned: $\lambda\lambda$ 4572, 4563, 4549, 4528, 4452, 4383, 4323, 4308, 4233, 4131 and 4128. There are also indications of the second series of hydrogen.

^{*}Astrophysical Journal, Vol. XVIII., p. 386.

On the first one hundred plates all the lines that were at all measurable were used. When the results were plotted with the provisional period of 131 ¹ days there were many little irregularities in the curve; its appearance was that of a wavy line. As no indications of a second spectrum had been detected, even though a fine-grained plate had been used at the time of maximum positive velocity, it was difficult to account for this. It was thought that a possible cause might exist in the selection of lines varying from one plate to another. To decide this point and incidentally see if the wave-lengths used needed any arbitrary correction, a table was constructed of the residuals for each line from the mean of the plate. The result is contained in the accompanying table. Besides the twelve lines here listed there were various others which did not occur frequently cough to make mention of. The lines are arranged in order of frequency of measurement, the total number of plates being 100.

LINES MEASURED IN P ORIONIS.

λ	Number of Times Measured.	Average Residual.	Corresponding Correction to Wave-length
4340 634	97	-1 39 km.	+ .020 t.m.
4388.100	94	-0.43 "	+ .007 "
4471.676	94	+1.51 "	022 "
4143 928	86	-0.03 "	.000 "
4026.352	75	+1.67 "	- ·022 "
4267 - 301	68	-2.45 "	+ .035 "
4121-016	63	-0.11 "	+·002 "
4481 - 400	62	+1.95 "	- · 029 "
4101 - 890	56	+0.99 "	-·014 "
4713 - 308	20	-1.48 "	
4861 - 527	19	+3.70 "	
3933 - 825	13	+1.40 "	

No corrections to wave-length are given for the last three as the observations were deemed too few in number and, furthermore, the ends of the spectrum may not always have been in focus thereby causing these residuals to be abnormal. The residuals in the above table are, in general, small relative to the probable error of a plate and while somewhat better accordance among the different lines on a plate would be secured by adopting an arbitrary set of wave-lengths based on the corrections, yet none of the residuals are so abnormal as to warrant such a procedure and accordingly the normal values have been retained. In subsequent measuring the first nine lines of the table were the only once used, and the other hundred plates were recomputed using these lines alone so that the results ought, at least from a consideration of wave-length, to be consideration of wave-length, to be consistent.

Plates from 1140 to 2257 were made with the single-prism spectrograph I L as first constructed, the dispersion at Hy being 30.2 tenth-metres per millimetre. The balance were made with the new single-prism instrument, designated I, whose dispersion is 33.4 tenth-metres per millimetre at the same region. Plates 3369, 3847, 3865 and 3890 were made on Seed 23 plates, the remainder on Seed 27 emulsion. The four Seed 29 plates were made at times of high positive velocity to see if any trace of the second spectrum could be detected. No indications of such were seen.

Two plates have been omitted in the discussion, one, 2098, which gives a residual of 25 km, where the curve is well defined in the flat part. This is probably

owing to some instrumental error. The other case is that of plate 1315 which was taken immediately following plate 1314 under almost identical conditions and yet gives a decidedly greater positive velocity. The plate is somewhat underexposed, but there would seem to be some additional cause for the great difference in velocity, and as these observations occur around perhastron this was one reason why a continuous series of plates at this phase was wished for. The intention is to make a few more plates next season at this critical place in the curve.

The observational data of the various plates is contained in the table following, the columns being self-explanatory. Then follows the measures of the plates in detail. The numbers of the plates are given in the top row and where these are followed by a capital, as is the case in some half-dozen instances, it means that that particular plate has been remeasured by another person. The abbreviations are:

W = C. R. Westland, P¹ = T. H. Parker, C = J. B. Cannon,

		REMARKS.			Heavy fog.						Cloudy 10"	Control off.						Unsteady			Unsteady.									Spectrum wide		Off 10"			
	1	9 7 19	sqO		Ξ.	4.5	42	40,	2		2,	_	_	=	H.	P-H	1	2,	2	2	=	= :	Ξ	=:	- :	Ξ	=	2	-	2	2	Ξ	2,0	- :	Ξ
		SEEING			Fair		2000	1 31	а		:			Hazy	Poor					Good		Fair		Only Fair	***************************************	Fair	u	Good	Fair	3		Fair	Good	Fair	
		SLIT						9100			·0013		3	3	4	-16	a a	3	4	ig.	3	8	a	9 :		a		0015		ы	ä	8		-001	
		Box.	End.					9 %			4.4	1	1	1	1	1	3	0.0	0.6 -	-11-1	1 8:1	9.8	1.8	1.8	-10.2	- 2.4	2.2	Ξ	0.5	- 4.6	- 2.1	9.0	0.4	4.7	8.0
	ATURE.	Ригам	Beg.					5 %			4.4	1	1	1	1	1	8	0.1	0.6 -	-11-1	8.7	8.1	7:1	7.8	-10.5	2.3	- 2-4	- 1:1	9.0	9-4-6	- 2.1	0.3	0.3	2.4	20
	TEMPERATURE	W(End.			1	1	7.8.7	- 1		6.5	- 15.5	0.91-	-17.0	-13.5	- 7.3	0.8 -	8.6	-16.0	-14.6	-22.5	-23.0	-19.5	0.07	-18.0	-14.0	-14.5	2.2	4.4	-15.0	-12.0	8.5	-10.8	0.9 -	2.0
	-	Room	Вед.		- 3.0	000	19.7	7.0	1 7.8		0.4	-13.2	-15.5	-16.0	-13.5	0.9 -	- 7.3	-10.5	9.51-	-13.3	-25.3	-25.2	-19.5	-19.5	-17.5	-14.0	-14.0	- 7.1	0.4 -	-13.5	-11.8	- 7.5	9.5	8.6	2.2
		ngle		Г	>	:	3	= =	:≥		×	>	š	*	2	3	×	×	3	H	×	>	>	>	ž	ž	ž	š	š	×	×	ž	1	š	>
		Hour Angle at	End	9 4				3.5																								4 21			4 15
	-	_	Dur	g	67	90	Q:	3.5	27.		07	30	30	38	22	33	200	38	98	22	30	7.7	23	98	52	24	27	18	8	99	8	96	32	54	40
	Affectation	Jo	G.M.T.				_	30	_				_		-	-			-			-										15			
	- 5		<u></u> 5		22	28	77	25	<u>×</u>	_	17	19	20	8	13	17	17	18	14	13	15	16	14	15	- 10	15	15	13	16	17	14	91	16	12	- 23
		DATE		907.	Nov. 11				3	1908	Jan. 3	, 13	3	. 14	, 16	20	3	. 22	24	27	. 29		Feb. 3		oc s	. 17	g g	20	. 21	22	n 24	Mar. 4			Apr. 15
		100		-	_		_			_	-	_	_	_			_	_	_			_		-			-		_		-	_			-
		PLATE			Seed 27	3	3	3 3	3		3	3	3	8	3	3	3	3	3	3	4	4	3	3	3	#	ı	ii.	ä	3	ä	3	3	d	3
		819	Cam		IT	d		3 3	3		3	3	3	3	3	3	3	3	3	3	3	3	а	u	u	а	×	ŭ	3	а	а	ä	ä	ä	3
		o No	Neg.		1140	1160	1184	1185	1198		1217	1223	1224	1229	1235	1250	1251	1261	1273	1282	1302	1303	1314	1315	13:20	1325	1396	1335	1337	1348	1352	1377	1385	1396	1485
C-Cannon		STAR			v Orionis.	3	=	:			3	3	3	7	3			7	78		=	3	3	3		12	3		8	39	3	a	3	3	

RECORD OF SPECTROGRAMS—(Continued).

		-		110,	2 212	de a		0.	4		4 L			L-21		10										
																		3	G	EO		E	V.,	Α.	19	13
REMARKS.	-				Windy.			Cloudy.				Off 15m	Off Sol			Changed relay		Off 10m		"Seeing" in fut-	ure rated from	0 to 5.				
1971980	10	2	===	E	=:	==	0	<u>.</u> .	90	יכ		C-E	Ļ	i d	1	Ξ,	=	υ:	=:	35	Ü	Ç	υī	=	-	ī.
Seenng		Fair	1	Very poor		Fair	4		Cood	3		Hazy	Good		Good	Fair	Hazy			Good	ıc	ıc.	0.7	÷ 1.5	in.	2
SLIT Width.		-0015	3 3	3	3 3	. 3	3		: 3	13		-0016	: :	3	·(M)2	:	э	3			=	= :	: :	=	77	3
Box.	End.		14.0		-1	- 1	1 2 - 4	1				-12.2	000	0.00	3.0	F-0 -				20.5				20.0		
TEMPERATURE.	Век.		14.0		- 1	2.0	- 1	6-2-				-12.2	1 5.5	2.6	62	0.5				8.5				20.00		
TEMPEI ROOM.	End.		0.0		1	9	1 2	-17.5	-10.8	9 11	2	-16.4	200	0.91	1 5.4	- 4.2				99						
	Beg.	8.6	10.5	9 10	9.5	.00.0	3	-17.5	- 10.5	200	0.01	-15-6	-17-6	16.6	- 4.0	- 4.0	- 0.5	0.5	5.6	0 10	=	Ė	-	-	10.7	13.
Hour Angle		55	4 32 W	18	45	228	88	15	# !	77	S	55	3	2 2 N	12	30	25	15	8	% 98 98 98 98 98	8	54	8	15	12	45
noiter		104	S.	213	9	33	2.5	22	45	# :	Š	7.5	3.5	200	23	43	50	25	95	93	9 9	#	9	22	3.4	38
Middle of Exposure.	G.M.T.	h m												12 52						22						
Дляк.		1908.	3			3 0	n= : s	" 10	# 16	# ;	17	Jan. 13	e 12	Feb. 3	Mar. 8		4 22			Apr. 28			282		Oct. 4	
PLATE.		Sond 27	3		4		: 3	3	з	8	3		3	: :	15	a	3	3	3	8 3	: 3	Ħ	ц	3 3	3	3
nera	Сап	1	3 3	2 3	3	3 3	: 11	ы	3	Ta .	3	19	3	3 3	-	4 %	3	3	39	и :	1 3	25	u	3 .	1 3	4
, o o	Neg.	1407	1503	1916	2009	2010	2019	2025	2034	2035	2061	2133	2147	2230	1077	2380	0410	2498	2446	2524	2781	0000	2831	2832	2554	2877
STAR.		Outonia	" "	: :	3		:	3	*		:	- 1		:	: 2	3	3	:	. #		2 4		8	3		: :

																											,,	200			284	Lord												,,,
SE	SS	10)N	A	LI	PA	PE	ER	N	0.	25	5a.																																
															Clouds after 10°c.																													
															afte																													
															spen										Off 15m				Windy.										Windy.					
															č										Û				Ň										Š					
0	٥:	<u>ی</u>	Ē.	ã.	H	ບ	ã	ã	ã	ã	.=	Œ	:=	Ξ	C	_	4		Ξ	ī.	_	<u>a</u>	. 2	, C	2	0	=	=	ž,	ĩ.	ű,	0	5	Ξ	2	Ħ	Ξ	ĩ.	Ξ	0	0	ī.,	3,0	5
-							_		_	_	_	_																																
	2					Q		ñ			-13						wite		9	9	Ĭ	7	ï	1	ï	1			_	_	ĩ		_	٥)		_			Ţ	•	4-5		2	2
	1		~	_		C)		r.									- 4			7		2	1	~					-4	77	Ξ	-4.	-3.		4.	-				-	-3-		4.	
			17		c i																																							
= :		5	ş	3	ş	3	3	3	3	-35	3	3	3	3	3	3	-38		75	3	3	3	3	18	-35	-	3	3	a	3	ä	a	3	3	s	8	ä	3	ä	ä	8 1			-
6.	20.	ś	9.6	9.6	2.4	4.0	9.0	3	8:0	0.5	3.6	9.	4	4.5	6.	9.	a	-	3.6	3.5	.2	a	8.3	1	ď.	0	0	2	0.	0	0.6	8.6	9.5	.3	2.5	.3	Ξ	0.0	30	.5	16.7	0.0	0.0	2.7
																			- 1	- 1	-1		- 1																					
6.7	9	2	10	5.6	5.7	0.6	15.6	z	15.7	15.8	4	8.0	9 0	6.4	4.5	9.9	75		85	3.5	0.2	3	6.5	-	-	2.5	6.0	4	4.2	4.0	9.0	19.0	19.8	14.5	15.2	10.4	10.3	0.0	19.2	17.3	16.7	20.5	0.00	16.5
9	71	7.		00	10	23	-	23	10	9	8.0	0	0	10	N.	10	6		10	10	0	57	1	100	0	9	ug	0	r.C	0	9	1-	9	10	0	10	I.	9	10	_	9.0	20	9	00
																			-16	ó	6	10	1	- oc	d	4	_	-	7	6	C)	12	Ė	òc	Ė	Ė	ė	Ė	15	16	9.9	ġ.	Ď.	egi-
0.7	-	77.0	Ξ	1.5	25.	0.5	2.2	7.7	0.5	15	7.5	8.0	1.0	1.0	3.8	0.0	0.5		5.0	8.0	2.0	0.6	00	000	×	4.0	5.0	10	0.9	2.2	8.5	30	2.7	0.0	ŝ	8.5	2.2	8.0	8.0	2.9	œ ;	7.0	0.0	× 00
	1	1	J	1		1						1			1		Ì	_	7	1	Ì	ì	Ī	-1	1	i	_		Ī	Ì	_	_	_	-	_	_	_	_	=	_	,	-	-	
>	= :	>	>	\geq	×	>	E	×	×	×	*	3	(E)	12	3	E	2				×	>	1	: >	3	1	3	2	>	×	×	>	×	>	>	×	>	>	×	>	M	国	2)	E
			9	25	8	9	45	25	9	8	2	22	35	9	10	25	20		8	05	500	20	5	32	10	05	3	28	25	15	8	45	8	33	8	8	18	8	83	52	15	8	2	55
_	0	0	0	_	ಌ	_	0	0	0	-	0	-	0	-	2	-	-		0	_	0	-	4	-	2	2	6	101	00	*	4	00	*	ಞ	C1	2	00	4	4	4		.7	- 1	0
3	22	36	20	48	20	40	21	23	88	25	4	7	7	43	9	222	53		22	37	40	28	5	9	7	9	45	2	25	48	99	40	#	8	\$	2	45	8	551	99	8	40	£:	46
			-	-	-	-			_	_	-	-		-	_	-	-																	_										
											42																														58			
77	8	77	22	21	22	21	18	19	19	8	18	16	22	16	21	16	16		15	14	16	17	16	12	16	14	22	7	14	15	15	14	7	13	12	12	13	13	13	13	81 8	77	53	57
5	92	1	23	3	000	6	21	3	2	12	23	3	92	16	30	_	3		0	2			10	-	3	-	_	8	9	3	55	20	3	_	23	00	3		23		-	9:	. ,	
																٠		910	_	_	_	3		. 00		2	-		_		C1	C4		Ľ.				_	C1	21	Sept. 1	-		.74
'			•	•	ž	•	•	•	•	•	3	4	•	۰	٩	ñ	•	_	Jar	٩	•	a	a	•	•	Fe	ž	•	٥	a.	a	a	3	dΨ	3	9	a	3		4	Se			
												23	27																					53	27									
	2 3		5	H	15	3	3	#	7	3	¥	beed	beed	*	75	7	75		3	3	3	8	8	18	35	я	2	3	15	35	25	ä	Ħ	Seed 23	eed	28	ä	3	3 :	s	8 3			
												92																						32	A.									
			5	ä	23	ä	ä	8	ä	3	ä	8	и	Ħ	Ħ	#	35		15	3	18	15	3	18	18	3	3	15	3	15	35	3	77			18	35	3				. :		5
888	200	308	12.6	876	686	942	848	949	957	826	2969	970	977	816	986	866	666		3094	660	3100	101	143	159	160	203	319	320	351	352	356	361	362	369	370	373	374	330	401	404	3653	0/9	1/9	889
			?1	27		٠١	. 2	2	. 2	2	61	6	63	2	2	2			ල්	නි	٣.		8		~	60	~	00	00	ෆ්	<u>ෆ්</u>	·	ෆ්	00:		ෆ්	٠٠	e6	00		.00	00	0:	n .
ĺ	ľ	•			•															•														•	•			•						

		REMARKS															
	J	GLVC	sqO		0	0	Ξ	=	Į.	Ξ	ī	Ξ	Ξ	H-pi	H-rd	=	Η
		SEEING.			7.0	20	00	00	4-2	4-5	4-5	3-4-5	3.4	4	2	2	10
		SLIT			-005	ä	ä	ti.	d	3	ä	3	ä	25	a	ä	3
	TURE.	PRISM BOX.	Beg. End.		17.8 17.9		2.4 - 2.4	2.4 - 2.4	9.6 - 5.6	0.3 0.2	8.1 - 9.0	4.7 - 4.9	7.8 - 7.8	1	0.4 - 1.0	8.2 - 8.3	8.3 - 8.5
	TEMPERATURE	Room. P	Beg. End. I			3.6 6.4	12.3 - 13.0 -	3.0 - 13.5 -	3.7 -17.0 -	3.0 - 15.0	0.0 - 30.8		16.0 -16.0 -	-17.8	9	27.5 - 26.0 -	3.0 -27.2 -
		ege 	Be				W -1:	Ï	1	1	1	1	1		1	1	Ϊ.
		Hour Angle	End.	р	99	17		65	20	8	40	88	20	35	33	07	20
	ι	ioite	Dur	- M	96	25	45	38	65	45	æ	- 86	555	20	96	46	45
	Middle	Jo	G.M.T.		21 05												
		DATE.		1910	Sept. 28	u u	Dec. 5	25	9 "	oc 3	6	a 12	91 "	3	21	. 30	u u
		PLATE.			Seed 27	3	3	3	4	ä	Seed 23	3	Seed 27	3	Seed 23	Seed 27	3
		613	Can		-	3	3	В	7	я	. 3	и	ä	ä	3	39	я
		No.	Neg.		3703	3704	3822	3823	3858	3837	3847	3865	3878	3879	3800	3908	3909
Common		STAR.			v Orionis.	3	8	3	3	3	3	3	3	3	¥	n	8

P-Plaskett.
II-Harper.
P!-Parker.

DETAILED MEASURES OF P ORIONIS.

	1140	w.	1140).	1140).	1160	W.	116	0	1160),	1184	W.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	-32-9 26-6 10-7	1 1 	-35·1 -25·5 - 9·5 -30·9 - 7·3 + 5·0	1 1 1 ¹ / ₂ 1 ² / ₂	-39·1 -22·7 -16·8 	1	- 1.9 + 1.2 + 0.6	1½ 1 1 	$ \begin{array}{r} 0.0 \\ -7.2 \\ +10.0 \\ +14.1 \\ +20.2 \\ +3.0 \\ -7.2 \end{array} $	1 1½ 1 3 4 1 2 1	-13·8 + 0·8 - 2·7 - 4·0 - 8·1		-20·7 +13·0 + 2·6	1
Weighted Mean Va Va Curv.	-20 +19 -	·43 ·19	-15 +19 -	·43 ·19	- 8 +19 -	·43 ·19	+ 1 +14 +	· 45 · 02	- 0 +14 +	·45 ·02	- 4 +14 +	·45 ·02	- 3 - 4 - 3	.26
Radial Vel	- 1	· 1	+ 4	.0	+10	.0	+15	.8	+13	-6	+ 9	.2	+ 5	5.2

DETAILED MEASURES OF V ORIONIS-(Continued).

	118	4.	1185	W.	118	5.	119	7.	119	s.	121	7.	122	3.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	-33·1 -19·7 + 9·9	1 1 1 2	+ 8·2 -20·5 - 9·5	1 1 	- 9·1 - 2·7 +12·9 - 1·6 - 1·5	1	+17·9 +13·7 +21·0	2 1 1	+ 8·0 +45·7 + 9·3	2 1 1 1 1	22 · 5 32 · 3 20 · 4 35 · 8 22 · 3	2 2 2 1	20.5	1 12 12
Weighted Mean V. V. V. Curv.	+ 9	·17 ·26 ·28	- 5 + 9 - - + 3	·17 ·29	- 4 + 9 - - + 4	·17 ·29 ·28	+16 - 3 - - - +12	·12 ·06 ·28	+18 - 3 - - +15	·12 ·12 ·28	+24 - 6 - - +18	·12 ·12 ·28	-	·25 ·20 ·28

3 GEORGE V., A. 1913

DETAILED MEASURES OF P ORIONIS-(Continued).

	122	1.	122	9.	123	ō.	125	0.	125	1.	126	1.	127	3.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	W
1481	+43.5 47.3 32.4 48.1 +39.2	1212	+47·2 32·4 57·8	1 1 2	34·4 32·6 32·9 54·8 48·2	2 1 1 1 1 1	53·0 43·1 26·8	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+60·8 45·5 57·2 45·0 49·7 26·8	1	61 · 8 63 · 7 38 · 3	3 11 12 12 12 12	44.8 55.8 61.2	2 1 2 1 1 1
Weighted Mean Vo Vo Curv. Radial "	+42 -11 -	·25 ·28 ·28	+40 -11 - - +28	·28 ·28	+35 -12 + - +22	·56 ·19 ·28	+52 -14 - - +37	·50 ·15 ·28	+51 -14 - - +36	·50 ·18 ·28	+53 -15 -	·43 ·26	+57 -16 + -	3·30 ·00 ·20

DETAILED MEASURES OF P ORIONIS-(Continued).

	128	2.	128	2.	130	2.	130	3.	1314		131	4.	1315	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt	Vel.	Wt.	Vel.	Wt
4481 4471 4388 4340 4267 4143 4101 4006	72.0 82.1 59.6 65.5 78.7 83.2 +75.9	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+66·0 78·1 60·9 79·1 56·0 73·9 +60·2	13) 483)4 +(21+) 4×1)(1	67 · 0 72 · 2 65 · 5 64 · 0	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	75·4 86·9 85·7 69·6 101·0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90·7 111·7 71·0 74·5	1 101-12	98-5 119-5 81-3 79-6	1 -5-12	+170·5 167·4 166·7 +153·0	12
Weighted Mean Va Vd Curv. Radial Velocity	+71 -17 + - +54	·51 ·09 ·28	+68 -17 + - +51	·51 ·09 ·28	+69 -18 - - +51	·30 ·09 ·28	+79 -18 - - +60	·30 ·12 ·28	+91 · -20 · - · · · · · · · · · · · · · · · · ·	30 04 28	+96 -20 - - +76	·30 ·04 ·28	+165 - 20 - - +145	-30 -12 -28

DETAILED MEASURES OF P ORIONIS-(Continued).

	1315		1315		1315		132	0.	132	5.	132	5P1	132	6.
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	+179·2 130·8	10	180·0 128·7		114·4 107·1 +137·6		+86·3 69·1 85·9 74·4 77·1 72·2 74·2 50·6 +81·7	2 2 2 1 1	+73·7 45·7 62·7 53·2 45·9 44·4 59·7 48·9 +64·1	1 1 2 2 1 1 1 1 1 1	+50·1 71·5 73·5 77·1 40·8 47·3 44·8 +68·8	1 1 1 1 1 1	+31.9 42.8 32.1 34.4 43.9 +53.6	1 1 1 1
Weighted Mean V o V d Curv. Radial Velocity	:	30 12 28		30 12 28	+130· - 20· - · - · +110·	30 12 28	+76 -22 - - +53	·16 ·22 ·28	+50 -24 - - +25	95 17 28	+59 -24 - - -	95 17 28	+40 -24 - - +15	·95 ·19 ·28

DETAILED MEASURES OF > ORIONIS-(Continued).

	132	6.	133	5.	1335	P1	133	7.	134	8.	135	2.	137	7.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	+55·3 33·2 26·6 +41·1	1 11 11 11 11 11 11 11 11 11 11 11 11 1	63·1 41·9 26·8 55·9 48·6 65·7 49·5	1 1 1 1 1 1 1 1 1 1 1 1	+52·7 64·9 47·6 27·1 60·3 46·1 49·7 +37·5	1 1 1 1 1	+52·5 59·0 59·9 52·9 74·9 49·7 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+30·5 64·3 65·7 70·2 58·0 76·1 44·9 55·8 +32·3	1 1 2 1 1 1	+62·6 60·2 44·2 61·2 47·4 40·8 59·7 56·7 +39·1	1½ 1½ 2 1¼ 1¼	+41·6 43·3 30·9 64·2 42·7 64·5 +50·5	1 1 2 1
Weighted Mean Vs Vd Curv. Radial Velocity	+39 -24 -	·95 ·19 ·28	+48 -25 - - +22	·74 ·04 ·28	+48 -25 - - +22	·74 ·04 ·28	+57 -26 - - +30	·01 ·25 ·28	+55 -26 - - +28	·28 ·29 ·28	+53 -26 - - +26	·82 ·15 ·28	+50 -28 - - - +20	·34 ·15 ·28

DETAILED MEASURES OF " ORIONIS-(Continued).

	138	5.	139	6.	148	5.	149	7.	150	3.	191	6P ¹	191	6.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	42.0 44.3 54.6 42.7 34.5 28.0 29.0	1½ 2 1½ 1 1 1	41.0 50.8 32.4 57.4 25.0 46.0 48.0	3 2 2 2 1 1 1 1 1	+52·9 34·4 +37·5	0)(#=(71=(-4	32·5 42·4 35·6 49·4 34·1	1 1½ 1½ 1½ 1½ 1½	+26.9	11/2	+14·6 + 9·1 - 1·2	1	-17·4 - 8·1 - 6·9 - 6·7 + 8·6 + 1·2	1
Weighted Mean V a V d Curv.	-28	·95 ·29	+44 -29 -	·43 ·11	+44 -26 -	-72 -28	+36 -26 -	·23 ·25	+25 -25 -	-28	- 5 +28 + -	·95 ·09	+	0·24 8·95 ·09 ·28

DETAILED MEASURES OF " ORIONIS-(Continued).

	194	3.	2009	Pι	200	9.	201	0.	201	9.	202	0.	2023	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	+50·2 45·2 +24·7	1	- 9.4 - 6.5 +15.9 + 0.4 +17.3 +24.8	1 1 2 1 1	+4.6 -11.0 -2.6 $+3.4$ $=0.0$ $+17.1$ $+8.0$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			+ 0·2 -15·7 - 0·5	1 2	33·8 10·7 - 0·4	100000000000000000000000000000000000000	-23·5 - 0·2 - 6·9 + 3·1 -12·6 -19·724·8 -16·3	1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1
Weighted Mean V a V d Curv.	+36 +26 +	·31 ·03	+ 0 + 7 -	·31 ·19	+0·· +7·· - ·	32 19	- 5 + 7 -	·32 ·22	- 2 + 6 -	·36 ·22	- 5 + 6 -	·36 ·26	-9· +5· + ·	89 14
Radial Velocity	+63	.0	+ 7	.4	+6.9	9	+ 2	0	+ 3	-6	+ 0	-3	-4-	0

DETAILED MEASURES OF P ORIONIS-(Continued).

	202	5.	203	4.	203-	iC.	203	5.	203	5.	206	1.	200	i1.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4340 4207 4143 4121 4101 4026	-16·8 + 2·1 = 0·0 - 0·8 -14·7	100 miles	- 1.6 + 9.5 + 5.7 +19.7 + 6.8 - 0.4 +12.9 + 7.8	1 1 2 1 2 1 2 1	+19.3	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 8.8	-(24-64-4)24	-24·3 - 0·8 - 9·3 - 9·0 + 3·7 + 2·5	00)++(000)++(0+40)	-17·9 - 4·0 +15·4 - 0·8 +15·4 -19·6 +21·6 +14·1	1 1 1 2 1 2 1	- 8·3 - 8·8 +20·4 +11·5 - 8·8 + 9·8	1
Weighted Mean V a V d Curv.	-8· +5· + ·	89 14	+9 +2 - :	71 18	+4 +2 - :	71 18	-4· +2· -	71 22	-6· +2· -	71 22	+0.	09 23	+4 + -	·09 ·23
Radial Velocity	-2-	4	+11-3	3	+6-	5	-1	9	-3-	s	+0.	5	+4	.0

DETAILED MEASURES OF P ORIONIS-(Continued).

	213	3.	214	7.	223	0.	225	7.	233	9.	238	0.	241	0.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4340 4267 4143 4121 4101 4026	25·4 23·6 24·1 22·3 19·4 26·4	1½ 2 1½ 1½ 1¼ 1	+17·1 + 7·7 +35·0	1 2 2 2	19.5 21.3 18.6 34.9 43.8 31.0 31.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+54·7 35·8 38·5 55·2 55·4 57·2 +36·3	2 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2	84·3 79·3 80·8 +68·4	1 2 1 2 1 ¹ / ₂ 1	60-0	1 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40·0 53·3 76·2 +77·7	112
Weighted Mean V _d V _d Curv.	+22 -11 -	·60 ·23	+19 -12 -	·54 ·25	+32 -20 -	64	+43 -21 -	·89 ·25	+81 -28 -	·81 ·30	+65 -29 -	-38 -31	+58 -28 -	-38 -31
Radial Velocity	+10)-3	+ 6	.2	+11	-8	+20	-7	+51	.7	+35	.9	+30	0.0

DETAILED MEASURES OF " ORIONIS—(Continued).

	242	8.	244	6.	252	4.	278	1.	280	8.	280	9.	283	1.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
1481 1471 1388 1389 1340 1267 11143 1121 1101 1001	67·1 55·8 41·3 67·9 45·8 70·6	112122	+37·4 32·3 60·7 50·4 66·7 52·4 61·6 68·3 +38·0	1 1 1 1 2 2 1 1 1 1 2 1	+33·1 54·7 39·3 31·8 35·9	2 1½ 2 1½ 1 1 1 1	13·3 7·3 6·9 5·6 26·2 -26·6	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-23-6 16-2 20-4 34-0 20-3 -14-9	1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19·0 23·5 21·3 11·8 44·5 14·2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Weighted Mean Va Vd Curv. Radial Velocity	+61 -29 - - +30	·49 ·30 ·28	+53 -29 - - +24	-05 -29 -28	+36 -23 - - +12	·40 ·30 ·28	-14 +28 + - +14	·28 ·17 ·28	-20 +29 + - + 9	-39 -15 -28	-22 +29 + - + 7	·39 ·10 ·28	+29)·23)·22 ·11 ·28

DETAILED MEASURES OF P ORIONIS-(Continued).

	283	2.	284	4.	287	6.	287	7.	289	8.	290	7.	290	8.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4340 4267 4143 4121 4101 4026	- 4.6 26.4 21.2 1.8 23.5	1	-31·8 28·1 26·9 24·2 10·9 11·4 38·0 -33·0	1 1 1 1 1 1 1 2 1 2 1	28.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24·1 22·3 23·2 21·7 20·3	1 1 1 1 1 1 1	- 8·4 3·9 0·2 7·3 0·0	1 1 1	$ \begin{array}{r} -27.0 \\ + 1.1 \\ -10.0 \\ + 3.5 \\ - 1.7 \end{array} $		- 6·4 6·1 1·2 6·9 0·4 7·1 3·6 -13·0	1 1 2 1 1 1
Weighted Mean Va Vd Curv.	-18 +29 +	·22 ·04	-23 +28 +	·74 ·19	-24 +28 +	·35	-28 +28 +	·35	- 6 +26 -	·35 ·12	-16 +26 +	17	- 5 +26 +	· 17 · 04
Radial Velocity	+10	-1	+ 5	-6	+ 3	.9	+ 0	-1	+19	-6	+ 9	-5	+20	-4

DETAILED MEASURES OF V ORIONIS-(Continued).

	2927]	292	8.	293	9.	294	2.	294	S.	294	9.	295	7.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	$-10 \cdot 0$ $-4 \cdot 1$ $-9 \cdot 0$ $-23 \cdot 8$ $-11 \cdot 4$ $+4 \cdot 9$ $-12 \cdot 2$	$ \begin{array}{c} 2 \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1 \\ 1\frac{1}{2} \\ 1 \end{array} $	+ 2·3 - 5·0 -14·9	1 1 1½ 1 1 1½ 1	+32·9 14·8 14·0 18·9 19·1 19·9 10·4 29·8 +28·0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+39·1 11·7 15·7 46·6 +37·7	and Care (Care) 4 modes	41·4 37·0 22·4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12.6 44.4 30.1	1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2	+26·5 49·7 36·4 66·6 42·8 60·6 52·9 46·3 +25·4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Weighted Mean Va Vd Curv. Radial Velocity.	- 7 +23 - - +16	·78 ·02 ·28	- 2 +23 - - +20	·78 ·09 ·28	+18 +20 - - +38	-38 -22 -28	+27 +20 - - +47	·04 ·11 ·28	+35 +18 + - +54	·91 ·10 ·28	+30 +18 + - +49	·91 ·02 ·28	+1	7·37 7·71 ·02 ·28

DETAILED MEASURES OF V ORIONIS-(Continued).

		1		-										
	295	8.	340	4	297	0.	297	7.	297	s.	298	6.	299	8.
λ -	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4388 4340 4267 4143 4121 4101 4026	31 · 2 35 · 1 49 · 7 49 · 4 50 · 3	12 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2	48.9 63.1 80.4 55.2 68.4 41.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66·3 68·4 60·8 54·7	1½ 1 1½ 1 1½ 1 1¼ 1	46.9 60.9 46.3 43.8 53.2	1 1 1 1	32·4 48·1 51·4 41·8 36·5	1 1 1½ 1 1 1	+52·4 37·0 20·2 +35·1	114442	14 · 2 26 · 7 23 · 1 16 · 6 10 · 2	1 1 1 1 1 1 2 1 2 1 2 2 2
Weighted Mean V.a V.a Curv.	+17	.71	+59 +14 +	·23 ·02	+58 +14 -	·23	+47 +12 +	·82	+43 +12 +	·82	+38 +10 -	97 18	+16 +16 +	·51 ·14
Radial Velocity	+60	0.3	+78	3-1	+72	2.5	+60	0.2	+55	-8	+48	3-8	+27	7.0

DETAILED MEASURES OF P ORIONIS-(Continued).

	299	9.	309	4.	309	9.	310	0.	310	1.	314	3. ·	315	9.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
4481 4471 4388 3340 4267 4143 4143 4141 4101 4026	19·6 16·9 3·0 39·0 29·3	1 2 1 2 4	11·8 17·2 5·5 +15·3	1 1 2	+26·0 17·2 24·0 +18·5	ocide with with	+14·6 13·5 27·9 +27·3	1 1 2	10·3 17·5 2·8 18·8	1 1 1 1 2 3 4	27·5 22·5 18·7 24·1 12·7 22·9	1 1 1 2 1	37·3 22·1 +49·8	1 24-12
Weighted Mean V o V d Curv.	+19 +10 +	·51 ·11	+11 - 9 +	·95	+21 -10 + -	·91 ·12	+22 -11 -	·43 ·04	+14 -11 -	·43 ·11	+21 -16 -	·97 ·28	-19	1·73 9·37 ·06 ·28
Radial Velocity	+30	.0	+ 1	.3	+10	.0	+10	-5	+ 2	-6	+ 4	-4	+13	2.0

DETAILED MEASURES OF P ORIONIS-(Continued).

								-			in.			
	316	0.	320	3.	331	9.	332	0.	2898		335	2.	335	6.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	33·9 23·7 + 4·4	114	39·8 40·6 42·8	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60·1 53·1 62·6	1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	+35·9 43·1 35·4 45·0 58·2 43·0 +53·9	1	53.0 49.9 55.0 52.7 66.9	1 1½ 1¼ 1¼ 1	60·1 44·9 62·5 62·9 45·2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		784-024-024
Weighted Mean V d Curv.	+25 -19 -	·37	+42 -26 -	·11 ·13	+54 -29 -	·09 ·12	+44 -26 -	·11	+57 -29 -	·41 ·22	+54 -29 -	·41 ·24	+67 -29	·50 ·24
Radial Velocity	+ 5	-8	+16	-4	+25	-4	+17	-7	+27	-6	+24	-5	+37	.7

DETAILED MEASURES OF P ORIONIS-(Continued).

	336	1.	3362		3369		3370).	337	3.	337	4.	339	0.
λ	Vel.	Wt.	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	90.6 97.3 116.1 125.4 +80.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	107·1 111·1 77·0 109·4 106·7 100·0 121·0	1 designate	101·3 99·8 113·8	1 3 4	82-9 90-5 114-7 100-1 88-7 99-6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98-8 99-2 100-7 109-7 63-8	1 1 1 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4	+98·4 89·1 104·0 96·5 91·9 82·6 103·0 92·0 +90·5	1 1 1 1 1 1 1	40·6 54·7	1 1 1 1
Weighted Mean Va Va Curv.	+ 95 - 29 -	·30 ·24	+105 - 29 -	30 28	+111 - 28 -	99 19	+ 96· - 28· - ·	88	+ 96 - 28 -	3·78 ·15	- 28 -	.78	+ 56 - 27 -	·23 ·28
Radial Velocity	+ 65	i·3	+ 75	8	+ 81	6	+ 66	7	+ 67	.0	+ 64	.9	+ 29)-1

DETAILED MEASURES OF V ORIONIS-(Continued).

	340	1.	340	4.	365	3.	367	0.	367	1.	368	8.	370	03.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	31 · 3 43 · 0 39 · 7 32 · 0 57 · 8	1 1 3 4	+46·6 +47·0	14 4 12	+ 3·8 - 1·1 -24·9 -16·6 - 6·6 -20·2		- 1·5 -18·5 -16·3 -14·6	ndfriedfriedfdedd	32·9 37·6 23·5 17·3	1	6·6 4·2 18·1 17·3	114374	-20·8 -17·9 -12·0 + 4·5	12712
Weighted Mean V _d Curv.	+41 -25 -	·17 ·28	+46 -24 -	·35 ·29	-10 +28 +	·99	-11 +29 +	·13 ·18	-21 +29 +	·13 ·12	-11 +29 +	·32 ·10	+29	2·34 9·23 ·12 ·28
Radial Velocity	+15	.3	+21	·8	+17	-9	+17	.2	+ 7	-6	+17	-2	+1	6.7

DETAILED MEASURES OF V ORIONIS—(Continued).

	370	4.	382	2.	382	3.	382	8.	383	7.	384	7.	3×6	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	-38·2 6·4 11·1 29·8 1·8 17·8	District district s	+ 4·5 31·7 23·6 17·8 34·8 31·9 +14·8	withing withings	+18·5 36·0 10·5 26·2 47·1 +19·9	Representational	+12·0 45·8 21·9 23·4 36·1 50·2 +10·2	Mente alteriteita	+44.5 47.9 33.6 38.4 42.1 32.6	1 1 1 2 3 4	+37·1 44·5 28·7 45·6 36·6 59·3 45·6 42·3 +46·8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+34·0 56·6 51·1 38·2 72·1 59·8 +47·1	1
Weighted Mean V _d Curv.	-22 +29 +	·23 ·06	+ 8	1·23 3·60 ·19 ·28	+25 + 8 -	-25	+27 + 8 - -	·05 ·23	+36 + 7 +	·14 ·07	+42 + 6	· 57	+:	9·75 5·00 ·26 ·28
Radial Velocity	+ 6	5-4	+35	2 - 4	+34	1.0	+35	.4	+43	3-3	+48	8-0	+5	4.2

DETAILED MEASURES OF V ORIONIS—(Concluded).

	387	8.	387	9.	389	0.	390	s.	390	9.				
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
4481	71.3 82.7 61.8 84.7 93.2 73.9 69.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+78·0 81·0 70·3 76·2 73·3 89·8 +87·2	1 1 1 1 1 2	+96·5 66·6 73·8 59·0 86·7 81·2 74·9 87·9 +57·5	1	+28·1 17·7 33·2 66·5 60·5 29·9 36·7 52·4 +23·5	re(sus) e so) e e(su e(su e(su e(su e(su	+ 9·3 38·5 36·1 46·3 32·0 31·9 29·8 +50·3	1 1 1 1 2				
Weighted Mean V _a V _d Curv.	. +74·43 +79·28 + 3·04 + 3·04 + ·06 - ·01 - ·28 - ·28		+73 - 0 - -	·09 ·08	+38 - 4 -	·30	+36 - 4 - -	·30 ·19						
Radial Velocity	+77	.5	+82	2.0	+72	.7	+33	.6	+31	-6				

The velocities of the 117 plates used in this discussion and other data regarding them is summed up in the following table of measures. The phases are reckoned from the periastron finally adopted, Julian Date 2,417,975.16 and the residuals are scaled to about ± 0.2 km. from the curve representing the final elements.

MEASURES OF F ORIONIS.

	and and	ASCRES OF FO			
Plate.	Julian Date.	Phase.	Vel.	Wt.	0-С.
1140 11101 11101 11101 11101 11101 11101 11107 1	2,417,801-53 903-75 903-75 903-75 904-75 904-75 904-75 904-75 904-75 904-75 905-76 905	\$-03 \$69.88 \$69.88 \$69.88 \$171.02 \$191.83 \$180.83 \$191.83 \$191.83 \$191.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$111.94 \$11.9	$\begin{array}{c} +5.0\\ +12.6\\ +12$	4 3 5 5 6 4 6 6 5 5 3 4 6 3 5 6 4 7 6 4 7 6 3 5 7 6 6 4 6 6 2 6 2 3 1 5 1 3 2 2 5 5 4 6 7 7 7	$\begin{array}{c} 4.44\\ +3.44\\ -3.44\\ -3.44\\ -3.45\\ -3.$

3 GEORGE V., A. 1913

MEASURES OF P ORIONIS-(Continued).

Plate.	Julian Date.	Phase.	Vel.	Wt.	O-C.
2781 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2,418,557-89 570-89 570-99 577-99 578-99 578-99 578-99 578-99 560-99 570-99 770	57-60 57-60 70-67 70-77 70-77 70-77 70-77 10	+14-0 +19-128 +19-138 +19-139	746876545688882778778767278523654388877883765879751324442	$\begin{array}{c} +5.32 \\ +0.1074 \\ +0.686 \\ -1.074 \\ +0.687 \\ -1.074 \\ -1.086 \\ -1.087 \\ -1.088 \\ -1.08$
3703 3704 3822 3823 3828 3837	943-91 943-91 2,419,011-87 011-90 012-89 014-71	49·93 117·89 117·92 118·91 120·73	+ 6 · 4 + 32 · 4 + 34 · 0 + 35 · 4 + 43 · 3	3 4 4 5 6	- 2·8 - 0·6 + 1·0 + 0·4 + 3·3

-0.8

-0.8

SESSIONAL PAPER No. 25a

as this can be relied on.

MEASURES OF P ORIONIS-(Concluded).

419.94 433 - 90

Plate.	Julian Date.	Phase.	Vel.	Wt.	0-C.
3847	2,419,015-82	121·84	+48·0	8	+ 5·0
3865	018-89	124·91	+54·2	1	+ 0·2
3878	022-69	128·71	+77·5	7	+ 5·8
3879	022-73	128·75	+82·0	5	+10·3
3890	027-75	2·51	+72·7	6	+ 1·4
3908	036-76	11·52	+33·6	5	- 1·4
3908	036-79	11·55	+31·6	6	- 3·4

For convenience of reference the early measures of Frost and Adams are appended:-

YERKES MEASURES OF P ORIONIS. Date Julian Date. Phase. Vel. Residual from Ottawa Curve. 1903. Jan. 22 Oct. 31 2,416,137.85 0.33+4.819-90

The first plate was stated to have such broad and fuzzy lines, owing to the dispersion of three prisms used, that the result was considered only a rough approximation. In a personal communication to the writer Professor Frost gives the velocities from the different lines used. These agree among themselves very closely and he suggests that the plate should be given considerable weight, and, no doubt, its result is close to the actual velocity. The period that suits all observations best is that given, viz.: 131.26 days, though possibly the first decimal place is as close

33-86

With this period the plates were grouped according to phase into fourteen normal The weight given to each group was approximately the sum of the weights of the individual plates comprising the group.

NORMAL PLACES

	Mean Phase.	Mean Vel.	Weight.	0-C.	Equation-Ephemeris.
1	2.77	+69·23 55·25	5· 3·	28	05
2	5.93 11.75	31.69	4.5	+ ·50 -3·22	+·10 +·12
3					
4	18.99	26.21	5.	+3-47	+ .05
5	41.55	11.18	7.	+ .56	— ·04
6	56.46	7 - 99	4.5	— ⋅65	-·04
7	71 - 13	7.59	4.5	-1.07	— ·06
8	84.52	8-38	5.	-1.83	05
9	99.65	15.46	4.5	+ .68	03
10	109-27	21.98	5.5	+ -82	- · 03
11	116.95	30.66	4.5	63	+.01
12	121.63	44.27	6.	+1.73	+.18
13	126.82	61-19	5.	-2.06	+ .40
14 .	130-10	+78.79	2.5	+3.19	+.17

3 GEORGE V., A. 1913

Preliminary elements were obtained by the graphical method of Dr. King,* as follows:—

$$P = 131.26 \text{ days.}$$

 $e = .575$
 $\omega = 0^{\circ}$
 $K = 33 \text{ km.}$
 $\gamma = +21.53 \text{ km.}$
 $T = J. D. 2417974.69.$

With these elements it was decided to make a least-squares solution. Using the differential from of Lehmann-Filhés, fourteen observation equations were formed connecting the residuals with the elements y, K, e, \(\text{or} \) and T. The period was considered determined as closely as could be. For sake of homogeneity the following substitutions were made:—

$$\begin{array}{lll} x &= \delta \gamma \\ y &= \delta K \\ z &= K.\delta e = 33 \delta e \\ u &= K.\delta \omega = 33 \delta \omega \\ v &= \frac{K}{(1-\alpha^2)^{\frac{5}{2}}, \mu, \delta T} &= [0.46003] \delta T \end{array}$$

OBSERVATION EQUATIONS FOR P ORIONIS.

	Weight.	x	у	z	14	v	- n
1 2 3 4 5 6 7 8 9 10 11 12 13	5 3 4 · 5 5 7 4 · 5 5 4 · 5 5 5 5 6 6 5 2 · 5	1 · O(X) a a a a a a a a a a a a a	$\begin{array}{c} +1 \cdot 362 \\ \div \cdot 972 \\ + \cdot 415 \\ + \cdot 046 \\ - \cdot 347 \\ - \cdot 415 \\ - \cdot 420 \\ - \cdot 374 \\ - \cdot 229 \\ - \cdot 022 \\ + \cdot 308 \\ + \cdot 670 \\ +1 \cdot 275 \\ +1 \cdot 564 \\ \end{array}$	- · 395 -1·804 -1·778 - · 823 + · 670 + · 981 + · 786 + · 188 - · 592 -1·563 -2·041 - · 829 + · 916	- ·617 - ·918 - ·987 - ·987 - ·988 - ·138 - ·138 + ·095 + ·314 + ·595 + ·802 + ·964 + ·995 + ·714 + ·148	+1·302 +1·384 + ·814 + ·411 + ·086 + ·026 - ·017 - ·065 - ·172 - ·346 - ·691 - ·1107 - ·1405 - ·365	$\begin{array}{c} -2\cdot 76=0 \\ -1\cdot 66 \\ +3\cdot 52 \\ -3\cdot 18 \\ -1\cdot 09 \\ -\cdot 17 \\ +\cdot 06 \\ +\cdot 79 \\ -1\cdot 49 \\ -1\cdot 19 \\ +1\cdot 04 \\ -\cdot 64 \\ +2\cdot 42 \\ -5\cdot 66 \end{array}$

These were transformed into the normal equations :-

^{*} Astrophysical Journal, Vol. XXVII, p. 125. † Astronomische Nachrichten 3242.

The following corrections resulted:-

```
\delta \gamma = + .57 \text{ km.}
\delta K = +1.09 \text{ km.}
\delta e = + .024
\delta \omega = +1^{\circ}.58
\delta T = + .47 \text{ d.}
```

giving as the corrected elements, with their probable errors:-

```
P = 131.26 \text{ days.}

e = 599 \pm .014

\omega = 1^{\circ}.58 \pm 2^{\circ}.12

V = + 22.10 \text{ km.} \pm .47 \text{ km.}

V = 34.09 \text{ km.} \pm .75 \text{ km.}

V = 10.12 \text{
```

The sum of the squares for the normal places was reduced from 298.5 to 205.9 about 31 per cent. The residuals given in the table of normal places are those from the final elements. The agreement between equation and ephemeris residuals was satisfactory, so that no further solution was necessary.

The probable error of a single observation obtained from columns 5 and 6 of the assures is ± 3 47 km. per sec. For this type of spectrum one would expect that this value should be somewhat lower, but remeasurement of many of the plates giving large residuals failed to make any sensible difference in the results. In a few cases as may be noted in the measures, plates made consecutively on the same night differ from each other by 10 to 12 km. per sec., so that the above value was not unexpected.

Quite recently Mr. Jordan*, of the Allegheny Observatory, in discussing the order of ϵ Andromedæ calls attention to the large gap between the short and long periods for the helium stars. The star under discussion here furnishes another illustration of the marked increase of eccentricity with period, the value of ϵ being .60 for an orbital period of 131 days.

The curve shown (Fig. 5) represents the corrected values of the elements.

THE SPECTROSCOPIC BINARY 7 CAMELOPARDALIS.

This star ($\alpha=4^{\rm h}$ 49°.3, $\delta=+53^{\rm o}$ 35′, photographic magnitude about 4.6) was announced as a spectroscopic binary by Campbell and Moore in 1907.† Work was commenced on the star here in December, 1908, and continued till March of the present year, when forty-four spectrograms in all had been secured.

The first eight plates were made with the single-prism instrument as first constructed, linear dispersion at H_{γ} being 30.2 tenth-metres per millimetre and

^{*} Publications of the Allegheny Observatory. Vol. II. No. 8.

[†] Astrophysical Journal, Vol. XXVI, p. 292.

the remaining number with the new instrument whose dispersion at the same region is 33.4 tenth-netres per millimetre. Somewhat over a year ago a solution was made from the thirty-nine plates then secured and elements agreeing very closely with the present ones were obtained. Some slight irregularities in the curve seemed to indicate the presence of a second spectrum and five fine-grained plates have since been made at the crests of the curve for the sole purpose of deciding this question.

On plate 3555, which is weak, the Mg, line λ 4481 might be suspected as a double, but none of the other plates show any evidence whatever of the presence of the second spectrum.

This star is of type A2, Harvard classification, and has lines well adapted for measurement. Among the most frequently used were $\lambda\lambda$ 3933, 4101, 4233, 4340, 4481 and 4549. Many other lines mostly metallic were present, and when measured gave velocities in good agreement with the principal lines.

The wave-lengths of the lines employed in determining the velocities are given in the accompanying table.

LINES USED IN 7 CAMELOPARDALIS.

Element.	Wave-Length.	Element.	Wave-Length.
Fe Fe Ti Mg Fe Ti-V-Zr H Fe	4554 · 018 4549 · 706 4534 · 139 4481 · 400 4404 · 927 4395 · 286 4340 · 634 4308 · 681	Ti Fe-Fe Pe He Si H Fe	4300-211 4271-760 4233-328 4143-928 4128-211 4101-890 4045-975 3933-825

The observational data of the plates is contained in the accompanying table which is taken from the regular observing book for spectrographic work, but somewhat abridged. This table is followed by the detailed measures of each plate showing the velocities deduced from each line.

SES

	REMARKS.										Off 10"									Haze,									
19.1	ser.	OF		==	:0	ы	-	= 5	2	1 2	Ĭ		0	1	ž.;	7.2	i, z	10	ā			11	_	=		= 5	11. 10.	-	
	Sering.			Fair	Good	8	7	3	и	Fine	Good	Fair	Good	Fair	101	0:	9 10	. 4	4-0	20	44	3-0	3-2	2-0		200	2 10	2	
SLIT	Width	NCHES.		90016	33	3	-	9100	7	¥	-005	3	3		5 1	. 1	: 13	и	77	u	3	3	3		3		3	ä	
	BOX.	End.		- 5.0	9.4	- 1.5	0	0 7	6.5	2.5	3.5	5.5	10.8	9	5.5	F 77	6.00	9	15.4	6.4	6.4	8.0	0.2 -		- 0	000	9 00	0.0	
ATURE RADE.	PRISM	Beg.		- 2.0	4.3	- 1.5									14.0							-1	- 1		i c	1	10.7	0.0	0
TEMPERATURE CENTIGRADE.	коом.	End.		8.8	8:0	2 - 10.5									10:1			+	-			5-16-5	- 1			0.01	1 14.5	14.0	
		Beg.		1 8.4 4.6	1	1	10	1 1	1	-10.5	- 4.	÷	20	ė	2:		14.5	ė	9	=	Ξ	-16.	Ĩ		0,	10.0	1 1	14.	0.1.4
	Hour Angle at	End.	ппп	0 50 E	5 X	52		450	2	4	35	9	55	3	4 65 E E E	3 \$	2 2	12	8	99	35	8	02	_	9	2 1 2 N	8 %	2 2	2
uoi	ırat	DO	i i	2.5	3	65	00	3 3	3 12	25	55	25	9	S	#:	G. 1	5.2	10	8	29	40	41	99	Ê	ì	3 5	3 12	5	
Middle	ol Exposure.	G.M.T.		22											16 24											26			
	DATE.		1908	Dec. 2	200		6061								ept. 30			98						33	1910	98n. 10	177	15	
	PLATE.			Seed 27 E		3		3	1	3	N		V				3	3	*	3	7	3	4	3	2	e a	8	39	
67	əw	Ca		1.1.	iz.	u	ı	ä	12	iz .	_	3	2 1	. :			13	я	ä	39	15	ы	4	3	-	3	3	25	
	o vo	Neg.		1997	2043	202	0006	9137	0000	2248	2338	2409	2507	2519	2835	0000	9879	2909	2950	2975	2002	3006	3075	3080	0000	2000	3111	3195	
	STAR.			7 Camelop.	3	3	3	а	3	4	3	a .			1 3	- 5	8	3	а	8	3	3		4	75	3	3	и	

	REMARKS.													Off 10m				
1971	əsq	0		2	ī,	Ξ	0	ī.	O	ď	īd	Ξ	Ы	Ξ	U		0	ъ
	SEEING.			3.1	3-0	3.4	4-5	wj.	3-4-5	4-2-0	4	÷	4	4-5	4		4-5	+
SLIT	IN	NCHES.		-005	3	3	3	3	4	3	3	ч	н	35	ij		35	3
	BOX.	End.			- 1	-1	2.7	- 1									0.5	60
EMPERATURE JENTIGRADE.	PRISM	Beg.			- 1	-1	3.0	- 1										3.6
TEMPEI	ROOM.	End.		- 1	- 1	-1	8:9	-1			- 1	-1					1	- 6.4
	ROG	Beg.		0.4	-12.4	-10.0	9.4 -	0.6 -	5.2	4.0	- 4.2	- 1.0	17.0	18.0	13.5			- 4.2
our Angle	at Fad	Tollie.	m.	10	98	88		8	40	55	9	47	8	8	52		4 20 W	
Ho			Д.	0	27	_	4	_	8	21	2	C.)	*	9	_		4	12
noita	anc	I	я	20	88	47	57	25	20	51	52	23	28	85	8		8	105
Middle	posure.	3.M.T.	m.	12 08	~	_			•		•						14 35	
Σ	Ex	5	_	-														
	DATE.		1910	Feb. 14		" 18	" 21	23	28	Mar. 2	6 ,,	m 18	Aug. 2	oc L	" 31	1161	Mar. 6	300
	PLATE.			Seed 27	3	8	3	33	35	77	4	39	3	Seed 23	=		3	3
619	mr;)		-	25	3	3	-	u	3	18	3	3	3	19		3	3
No.	Jo N	904		3185	3191	3195	3204	3207	3246	3254	3295	3339	3555	3561	3008		4058	4079
	STAR.			7 Camelop.	3	35	B	3	3	3	3	35	3	3	3		3	3

DETAILED MEASURES OF 7 CAMELOPARDALIS.

				201	3.	204	3.	205	2.	208).	213	7.	222	2.
	λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4340 4143 4128 4101 4071		+14·3 16·8 25·5	1½ 1¼ 	-29.8	1/2	28·7 28·1 25·2	1 1 1 1	0·7 15·8 9·0 22·8	1 1 1 2 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 6.1	i	+35·6 57·6 47·0	1
	thted ean V _o V _d Curv.	+ 3	$+18 \cdot 77$ $-13 \cdot 58$ $+3 \cdot 12$ $- \cdot 02$ $+ \cdot 08$ $+ \cdot 12$ $- \cdot 28$ $- \cdot 28$		+26 - 4 + -	·09 ·05	+ 8 - 5 +	·41 ·10	+37 -12 + -	20 12	+11 -15 +	·65 ·04	+	-50	
Radi	ial locity	+21	.7	-13	-8	+21	-8	+ 3	-3	+25	0	- 4	.1	+2	l·6

DETAILED MEASURES OF 7 CAMELOPARDALIS—(Continued).

	2222. (check) 2248.				233	8.	240	9.	250	7.	251	9.	283	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4549	+32·4 55·1 23·1	2	17·3 22·9	13	- 6·1 + 7·9 + 8·1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+11·4 +25·2 + 7·6	1	-30-6	11	+ 8.7	114	-43·9 36·7	2 1½
Weighted Mean V _d V _d Curv.	+39 -21 +	·50 ·08	-17 -22 -	·66	+ 1 -25 -	·72	+13 -24 -	·97	-30 -18 -	·15	+ 2 -17 -	·19 ·18	-41 +23 +	-92 -19
Radial Velocity.	+17	-4	-40	.1	-25	.0	-11	.9	-49	-1	-15	.5	-16	6-6

3 GEORGE V., A. 1913

DETAILED MEASURES OF 7 CAMELOPARDALIS-(Continued).

λ	2843		2856	3.	2872	2.	2909).	2950).	295 (che		297	5.
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4549. 4534. 4481. 4490. 4340. 4233. 4128. 4101. 4003. 4045. 3933.	37·1 21·3 45·6 25·5	1 1 2	32 · 3	11	-36·3 25·7 19·2 16·3 30·6 32·9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 9.9	1	22·3 2·3 22·7 -28·8	222	23·9 3·3 23·2 -25·5	21/2	42.0 33.5 22.3	1 1½ 1 1
Weighted Mean V _d V _d Curv.	+23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-28 +22 +	-56 -17	+ 9 +19 -	-58 -10	- 9 +11 -	· 69 · 13	-10 +11 -	69	-32 + 5 + 5	92	
Radial Velocity	- 5	0	-12	-6	- 6	- 1	+29	-1	+ 1	·s	+ 1	-3	-26	.4

DETAILED MEASURES OF 7 CAMELOPARDALIS—(Continued).

λ 2		2992.		3066.		3075.		3080.		3.	309	S.	3111.	
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	W.
563	-36-7	1			+32.4	1	-16-7	1	34.0	2			+45.0	
534 481 352										1 2	26-1	11	54-1	1
340 300 233	36-2	1	14.6	1	28.9	1,			45.9	3 4			40.5	1
101 045	26.5	1 1			18.9	1			36.8	1 2			31.7	
Veighted														
Mean	-35 + 3 +	.72	+1S - 8	S4		25	-17 - 9 +	67	+39 -13 +	-71	-25 -14	45		22
Curv.			_		Ξ.		=		I -		_			
Radial Velocity	-31	.0	+ 9	0	+13	.0	-27	- 5	+25	0	-39	S	+29	3

DETAILED MEASURES OF 7 CAMELOPARDALIS—(Continued).

	312	5.	313	8.	315	4.	315	7.	318	5.	319	1.	319	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4584	$-22 \cdot 7$ $-0 \cdot 2$ $+5 \cdot 3$ $+2 \cdot 2$ $-19 \cdot 1$ $+14 \cdot 6$ $+7 \cdot 1$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9-7	1½ 1½ 1½	31-0 40-9 15-9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 5·1 + 8·8 + 9·3 + 4·3	1 1 3 4	+30·7 59·4 45·1	1 12	- 2.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+55·3 40·0	11/4
Weighted Mean V _d V _d Curv. Radial Velocity	- 0 -15 - - -	65 15 28	+ 7· -16· - :	99 07 28	-22 -19 - - -	83 03 28	- 1 -20 - - -	66 01 28	+48 -23 + - +24	76 01 28	-15 -24 - - -	06 07 28	+48 -24 - - +24	36 -05 -28

DETAILED MEASURES OF 7 CAMELOPARDALIS—(Continued).

	320	4.	320	7.	324	6.	325	4.	329	5.	333	9.	355	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4563	+29.3	1773	$+1.6 \\ 23.6$	11	-17.6 23.6	1	+52.1	1	$+32.0 \\ 52.3$	1 1 2	51.3	212	-61-8	
4233 4227 4143			20.4	3 4	4.3	1/2			65.7	1	36-4 29-3			
4128 4101 3933	24.1	1			14 - 4	2	50.0	1			26-4	1		
Weighted Mean V _a V _d Curv.	+21 -24 -	81	+18 -25 -	11 05	-19 -25 -	45 15	+47 -25	56 10	+47 -25 -	72 19	+28 -25 -	37 11	-67 +19 +	99 19
Radial Velocity	- 4	0	- 7	3	-45	5	+21	3	+21	7	+ 2-	9	-48	0

DETAILED MEASURES OF 7 CAMELOPARDALIS—(Concluded).

	3561.		3608.		4058.		407	9.						
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4584 4572 4549 4534 4481 4233 4227 3933	+ 0·1 - 9·8 - 0·1 +10·0	11	- 3·3 + 6·7	1	52·7 54·6 52·1	1 1 1 2	-19·2 12·4 -17·5	1 1 1 1 2						
Weighted Mean, V _a V ₄ Curv.	- 0· +21· + ·:	45 21	+ 3· +25· +	00 10	+54·5 -25·5 	70 16	-17· -25· -	72 19						
Radial Velocity	+20-	5	+28	2	+28	l	-43.	1						

The following table contains a summary of the measures. The phases are reckoned from periastron passage J. D. 2,418,281,176 using the period 3.8846 days. The residuals in the last column are scaled from the curve representing the final elements.

MEASURES OF 7 CAMELOPARDALIS

		MEASURES OF	CAMELOFAN	DALIO		
Plate.	Julian Date.	Phase.	Vel.	Number of lines.	Weight.	0-C.
1997 2013 2043 2043 2043 2059 2137 2137 2222 2248 2338 2409 2507 2519 2835 2843 2856 2872 2909 2930 3056 3056 3050 3093	2,418,278-649 294-628 297-578 313-514 322-512 341-480 341-480 341-480 341-480 341-363 358-645 420-616 423-633 580-633 580-633 580-633 680-707 600-920 623-851 647-591	1.358 .530 1.388 1.381 1.281 1.281 1.281 2.035 3.209 2.585 2.555 3.479 2.611 333 601 2.477 648 1.207 2.816 1.024 1.978 2.975 1.305	+21.7 -13.8 +21.8 +21.8 +23.3 +25.0 -14.0 -40.1 -25.0 -11.9 -40.1 -15.5 -16.6 -16.1 +29.1 +29.1 +20.4	5 2 5 7 7 2 4 5 5 5 5 5 2 3 3 6 4 7 1 5 6 7 7 7 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7	4 1 5 6 2 5 4 5 5 2 2 5 4 6 1 7 7 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-2.9 -2.8 -0.7 -4.2 +4.2 +4.9 +0.5 +0.6 -1.3 +0.5 +0.6 -1.3 +1.3 +1.5 +0.6 -1.6 +7.8 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6 +0.6
3098	684 · 561	$3 \cdot 271$	-39.8	4	4	+2.3

MEASURES OF 7 CAMELOPARDALIS-(Concluded).

Plate.	Julian Date.	Phase.	Vel.	Number of lines.	Weight.	0-С.
3111 3125 3138 3157 3157 3185 3191 3195 3204 3207 3246 3254 3295 3339 3555 3561 3608 4079	2,418,686-769 687-795 691-619 700-586 703-512 717-506 721-546 721-546 721-546 731-677 738-677 738-677 738-677 738-677 738-677 738-677 738-677 738-677 738-677 738-677 738-677 738-677 749-687 749-687 749-687 749-687 749-687 749-687	1.595 2.621 2.560 3.758 2.829 1.255 3.332 1.410 636 2.500 3.702 1.780 1.087 2.194 3.564 1.732 1.516 1.780 3.820	+29·3 -16·9 -10·3 -43·1 -22·5 +24·4 -40·2 -4-40·2 -4-5-5 +21·3 -45·5 +21·3 +21·7 +2·9 -48·0 +20·5 +28·2 +28·2 +28·2 +28·3	78475554455646924243	77464634545348132153	$\begin{array}{c} +3\cdot 7 \\ -2\cdot 4 \\ +0\cdot 7 \\ -2\cdot 1 \\ +3\cdot 7 \\ +1\cdot 6 \\ +2\cdot 9 \\ -1\cdot 0 \\ +0\cdot 7 \\ +0\cdot 7 \\ -3\cdot 5 \\ -1\cdot 9 \\ +4\cdot 2 \\ -5\cdot 1 \\ -3\cdot 8 \\ -3\cdot 2 \\ +2\cdot 2 \\ +2\cdot 2 \\ +3\cdot 9 \end{array}$

Through the kindness of Professor Campbell the G. M. T. of the Lick plates were obtained and for completeness those observations are given here.

LICK OBSERVATIONS

Date.	Julian Date.	Phase.	Vel,	0-C.
1902. Nov. 4 1903. Dec. 6 1907. Feb. 7 27 Mar. 13 Apr. 22 Aug. 8	2,416,058·987 6,455·971 7,614·721 7,634·694 7,688·692 7,796·976	3.687 .557 1.696 2.246 .738 1.860 1.375	$-36 \cdot 5^{*}$ $-18 \cdot 5^{*}$ $+20 \cdot 5$ $-3 \cdot 2$ $-1 \cdot 8$ $+22 \cdot 5$ $+23 \cdot 0$	+6.0 -9.2 -4.4 -8.7 -2.6 $+1.5$ -2.0

There is some uncertainty as to the exact period. Our own observations gave the value 3.85 days, and when the Lick observations were used in conjunction with our own, a period of 3.8848 days was obtained. This satisfied all their observations well, except the second which had a residual of -15 km. As the agreement of the two approximate measures made on this plate seemed to make it trustworthy, it was thought best to equalize the residuals by changing the period to 3.8846 and this is the value here accepted.

The observations were now grouped into sixteen normal places, the weights assigned each group being in general one-tenth of the sum of the weights of the individual plates comprising the group.

^{*} Means of two approximate measures.

	Mean Phase	Mean Vel.	Wt.	о-с.		Mean Phase	Mean Vel.	Wt.	0-С.
1 2 3 4 5 6 7 8	·170 ·416 ·630 ·847 1·055 1·268 1·486 1·777	$\begin{array}{c} -29 \cdot 02 \\ -16 \cdot 13 \\ -5 \cdot 10 \\ +2 \cdot 40 \\ +15 \cdot 35 \\ +25 \cdot 03 \\ +26 \cdot 19 \\ +23 \cdot 43 \end{array}$	1·0 ·5 1·5 ·8 ·7 2·0 2·0 2·0	$\begin{array}{c} +1 \cdot 29 \\ +1 \cdot 29 \\ + \cdot 03 \\ -4 \cdot 31 \\ - \cdot 80 \\ +2 \cdot 22 \\ + \cdot 42 \\ + \cdot 17 \end{array}$	9 10 11 12 13 14 15 16	$2 \cdot 002$ $2 \cdot 194$ $2 \cdot 495$ $2 \cdot 581$ $2 \cdot 697$ $2 \cdot 931$ $3 \cdot 311$ $3 \cdot 717$	+15·66 + 2·90 - 8·78 -11·97 -18·94 -26·67 -41·25 -44·65	1·0 ·5 1·0 1·0 ·9 ·6 1·5 1·5	$\begin{array}{c}95 \\ -5.45 \\ -1.20 \\ +.42 \\15 \\ +3.90 \\ +1.61 \\ -2.59 \end{array}$

Preliminary values of the elements were obtained by Dr. King's graphical method, and then a least-squares solution was made. As the eccentricity was small the time of periastron passage was taken as fixed and a value of ω assumed, so that only the four elements γ , K, ϵ and ω entered into the solution.

For the sake of homogeneity, the following substitutions were made:-

$$x = \delta \gamma$$

 $y = \delta K$
 $z = K \cdot \delta e = 35 \cdot \delta e$
 $u = K \cdot \delta \omega = 35 \cdot \delta \omega$

observation equations for 7 camelopardalis.

	Weight.	x	y	s	и	-n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1.0 .5 1.5 .8 .7 2.0 2.0 1.0 .5 1.0 1.0 .9 .6 1.5	1 · 000	585 225 + .119 + .433 + .722 + .913 + .998 + .920 + .719 + .473 + .006 133 315 644 967 921	- 343 + 431 + 908 + 994 + 588 - 001 - 091 - 091 - 049 - 085 + 776 + 919 + 747 - 376 - 991	+ · 811 + · 975 + · 963 + · 891 + · 602 + · 407 - · 333 - · 695 - · 881 -1 · 000 - · 991 - · 765 - · 254 + · 389	- · 65 = 0 - · 94 + · · 06 + 4 · 25 + · · 72 - 2 · 27 - · 44 + · 31 + 4 · 45 - · · 22 - 1 · 88 - 1 · 30 - 5 · 07 - 1 · 80 + 3 · 21

whence the normal equations: -

The following corrections resulted:-

$$\delta \gamma = + .27 \text{ km.}$$
 $\delta K = + .15 \text{ "}$
 $\delta e = + .013$
 $\delta \omega = -1 \text{ "}31$

so that the final values with their probable errors are the following:-

$$\begin{array}{lll} P & = 3.8846 \; \mathrm{days} \\ e & = .013 \pm .020 \\ \omega & = 217^\circ.14 \pm 1^\circ.20 \\ K & = 35.15 \; \mathrm{km} . \pm .72 \; \mathrm{km}, \\ \gamma & = -8.98 \; \mathrm{km} . \pm .51 \; \mathrm{km}, \\ T & = J. \; D. \; 2418281.176 \\ A & = 34.79 \; \mathrm{km}, \\ B & = 35.51 \; \mathrm{km}, \\ a \; \mathrm{sin} \; i = 1.877.000 \; \mathrm{km}. \end{array}$$

The sum of the squares of the residuals for the normal places was reduced from 77.6 to 68.5 and satisfactory agreement was obtained between equation and ephemeris residuals, the greatest difference being 0.03 km. The probable error of a plate obtained from columns six and seven of the table of measures is ± 2.18 km. per sec.

The curve shown (Fig. 6) represents the final elements.

While the irregularity in the curve is still noticeable, the three normal places which show it most have weights below the average and the peculiar trend of the residuals might be treated as accidental. The writer, however, is rather inclined to believe that the second spectrum is present, and, though faint, has sufficient influence on the measures to account for the deviations shown.

ANDROMEDAE.

This star (a 22^h 57^m.3, δ 41°47′, photographic magnitude 3.4, type B3) was announced by Wright in 1902 as a spectroscopic binary from four plates, viz.:—

The measures were based on the excellent H_{γ} line, but mention was made of the composite nature of the spectrum.

Fifty plates of the star were secured here in 1906 and 1907, and it was then abandened until such time as an instrument more suitable for photographing its spectrum was available. The first sixteen plates were made with the Universal three-prism spectrograph and the measures depended solely on H₇, which was a good line. With the exception of two, numbers 999 and 1002, which were made with the three-prism instrument, III L, all the rest were secured with single-prism dispersion, the spectrograms showing H_B, H₇, H₇, and occasionally H_c as measurable lines. The K line of calcium was noted on a few of the latter plates, but, owing to its poor quality it could not be stated definitely whether the velocity given by it agreed with that of the hydrogen lines. The data of the plates and detailed measures of all but the first sixteen are anomeded.

3 GEORGE V., A. 1913

	REMARKS.																															
	19719	sqo			-	Z 2	I	Ξ	H	Ξ	Η	Ξ	I	Ξ	24		24	Ξ	24		д	H	ы	H	H	Η	Η	Ξ	2	2.1	<u>.</u> ;	4
	SEEING.			Good	3 :	a 3	3	77	3	3	Fair	Good					Good				Good	Hazy		Good	3	=	Fair				Very hazy	Cloudy
SLIT	WIDTH	INCHES.		.001		3 3	23	Ħ	я					3			.0015							.0014				Ÿ	3	3 1	= !	
	Box.	End.	rade.	27.9	83	9.5	17.6	15.2	7.8	8.6	10.1	- 3.7	0.2	- 2.1	4.7		6-2 -	-12.8	-17.8										21.4			
ATURE.	PRISM	Beg.	Centigrade.			24.9							ш				0.8 -	-12.8	-17.9	rade.									21.4			
TEMPERATURE.	. Ж.	End.	heit.	8-89	70.2	59.8	25.5	44.1	33.5	34.0	38.0	14.0	50.0	16.3	13.8		17.5	5.5	- 2.0	Centigrade.	17.6	18.8	21.0	18.6	12.5	18.0	22.5	25.0	17.6	19.5	19.3	15.8
T	Room.	Beg.	Fahrenheit.	69.4	71.6	35	54.7	46.0	34.0	35.4	40.4	16.0	505	17.3	14.0		19.6	6.3	- 1.0		18.3	19.0	21.6	18.6	13.5	19.0	23.0	22.0	17.2	19.4	20.0	16.0
	Hour Angle		8	0 43 W	10	0 +0 W	88	8	55	45	22	53	12	02	9		2 00 W	12	32		2	15	30		2	28	45	8	1 00 E	3		52
	noite		8	20	65	38	38	22	3	99	13	43	8	45	45		30	40	20		25	33	90	32	23	31	34	31	38	25	38	23
Middle	Exposure.	G.M.T.		19 10	•									-			13 20						-						18 55			
	DATE.		1000	Aug. 6	o0	12	Oct. 16	3	Nov. 1	30	" 19	Dec. 11				17	Jan. 11					3		27					, 20			
	PLATE.			Seed 27	3	3 3	3	3	¥	3	3	3	3	3	3		3	3	3		3	3	3	3	3	#	ä	u	3	u	ä	3
	619	Cam		n	3	3 3	3	3	3	3	3	3	26	3	is .		a	38	3		1	3	3	3	39	3	25	H	n	u	35	25
;	of No.	McB.		369	374	379	410	414	419	432	439	450	460	482	491		526	531	538		855	867	874	668	206	935	948	954	999	970	977	984
	STAR.			Andromedæ	33	3 3	18	3	8	з	3	3	a	a	æ		3	4	3		3	2	ы	3	20	23	a	ä	3	3	75	3

-Plaskett. -Harper.

g	pno	Š	,
	2		

HAHREHALFERTANANANAHH Poor Hazy Poor Good Good Fair Good Hazy Good E-1001100044000000004000000 *##*** 888888888888888888 0-0-10881-1080-8888888444 No.

3 GEORGE V., A. 1913

DETAILED MEASURES OF @ ANDROMEDÆ

λ	858	. }	867		874	ł.	899).	907		920	5.	93	5.
^	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
4861 · 527. 4340 · 634. 4102 · 000. 3970 · 177.	31.5	2 1½	-27·2 21·7 -35·9	2		2	37 - 4	2	-25·6 23·1 -30·8	2	-44-7	1		2
Weighted Mean V a V d Curv.	-32· +20· +	55 15	-26·1 +20·1 + ·	94 15	-33· +20· +	99 11	-37 · +21 · + ·	14 12	-25· +21· + · - ·	09 10	-44 +20 +	85 08	-29 +20 +	79 08
Radial Velocity.	-12-9)	- 5-	9	-12.	9	-17	0	- 4-1	7	-24	1	- 9	.0

DETAILED MEASURES OF O ANDROMEDÆ—(Continued).

														`
	94	8.	95:	Ł.	960).	96-	1.	970).	977	7.	98	4.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
4861·527 4340·634 4102·000	31.0	11	37.9	2	18.8	2	-61.7	1	-31.9	2	-10.0	11	34.0	2
Weighted Mean Va Va Curv.	-30· +20· +	20 12	-39· +19· +	98 15	-30· +19· + ·	73 08	-59· +19· + ·	33 12	-29· +18· + :	70 02	-12: +17: +	S1 05	-34 +16 +	98 05
Radial Velocity	-10-	4	-19	7	-20-	6	-40-	2	-10-	8	+ 5.	3	-17	3

DETAILED MEASURES OF O ANDROMEDÆ—(Continued).

	999.	100)2,	1008.	102	1.	103	5.	104	2.	104	4.
λ	Vel. V	Wt. Vel.	Wt. Ve	l. Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
4861 · 527	-32.4	1½ -31·6	2 36	3·0 1¼ 3·5 2 5·1 ¼	-38·8 40·1 -57·6	2 1 2 1 2	-17·6 21·5 -25·8	1 2 1	-28·0 -21·2	12	5.8	2½ 1
Weighted Mean V _a V _d Curv.	-38·20 +16·33 + ·03 - ·20	5 +15 3 +	·10 +	15.40	-42· +12·	73 05	-21 + 8 + 8	07 01	-22 + 5	97 20	-14 + 5	25 13
Radial Velocity	-22.1	-10	-9 –	24.9	-30	4	-13	8	-17	5	- 9	2

DETAILED MEASURES OF . ANDROMEDÆ-(Continued).

	105	2.	105	3.	106	ő.	106	6.	108	7.	108	8.	113	0.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4861·527 4340·634 4102·000	-13·6 -22·9	2½ 1	-26·0 -37·2	2½ 2½ 2	$-27 \cdot 4$ $-19 \cdot 5$ $+ 2 \cdot 9$	1 3 1 2	-22·9 8·2 -24·4	1212	-20·9 -13·0	1	- 3·9 1·4 -16·3	2 2 1	+13·9 12·5 + 1·7	1 2 11/2
Weighted Mean Va Vd Curv.		·72 ·05	-27 + 3	72	-18 + 3	10	-14 + 3	10	-15 - 0	85 05	- 5 - 0 -	85	+ 9 -13	92
Radial Velocity	-12	-8	-24	5	-16-	1	-11	7	-16	s	- 6	-6	- 5	2

3 GEORGE V., A. 1913

DETAILED MEASURES OF O ANDROMEDÆ—(Continued).

	113	1.	1133	i.	1134	١.	1151		1152	2.	117-	1.	117	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4861 · 527 · · · · · · · · · · · · · · · · · · ·	+ 8.3 ± 0.0	2 2	$+21.4 \\ -2.6$	2 1½	- 7.9	2 1½	+ 5·4 +21·6 - 6·7	1 1	$+12 \cdot 2$	1 1 2	$+14.3 \\ -9.1$	11/2	+18.2	1
Weighted Mean Va Va Curv.	- 1· -13· -	92 25	+13· -14· -	77 17	- 4· -14· - :	77 22	+ 8- -15-	90 13	+ 6· -15· -	90 19	+ 4 -19 -	90 28	+ 1 -19 -	·90 ·30
Radial Velocity	-15	4	- 2.	0	-19-	6	- 7-	9	- 9-	9	-15	6	-18	-7

DETAILED MEASURES OF . ANDROMED.E-(Concluded).

	1176.												
λ	Vel. Wt	Vel.	Wt.										
4861·527 4340·634 4102·000 3970·177	$+14 \cdot 2 1$ $-0 \cdot 2 1$												
V d	+ 4.98 -19.90 31 28												
Radial Velocity	-15.5												

MEASURES OF 0 ANDROMED &

Date.	Velocity.	Wt.	Date.	Velocity.	Wt.
1906. Aug. 6 8 15 8 27 9 23 Nov. 16 1907. 3 1907. Jan. 11 1907. Jan. 11 2 12 2 27 1919 2 27 192 2 3 2 3 2 3 3 3 4 18 5 20 5 20 6 20 6 20 7 20 8 20 9 20 19 20 19 20 19 20 19 20 19 20 2 30 2 30 2 30 3 30 3 30 3 30 4 30 5 30 5 30 6 30 6 30 7 30 8 30	- 1	0101010101000101010101010001 Tr. 5 555 5 5 5 5 5 5 5 5 5 5 5 5	1907. July 27 Aug. 1 8 10 12 8 10 12 8 12 14 18 18 20 0 1	-11 + 5 - 17 - 22 - 11 - 25 - 30 - 14 - 17 - 9 - 13 - 24 - 16 - 19 - 5 - 15 - 2 - 2 - 8 - 10 - 16 - 19 - 15	$\begin{array}{c} 4\\ 2\\ 5\\ 5\\ 2\\ 2\\ 3\\ 3\\ 3\\ 4\\ 2\\ 2\\ 0\\ 1\\ 5\\ 1\\ 4\\ 6\\ 7\\ 6\\ 1\\ 4\\ 4\\ 4\\ 4\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 4\\ 2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$

€ Cassiopelæ.

This star ($\alpha = 1^h$ 48".0, $\delta = +63^\circ 11'$, photographic magnitude 3.5, type B5), was placed on our observing programme as one of those stars having sharp H and K lines; the presence of which in spectra having for the most part diffuse lines is sometimes considered as indicating the presence of a second body in the system.

Four plates had been secured at Yerkes Observatory and measured by Frost and Adams* as follows:—

		Adams.	Frost.
1901.	Oct. 3	$-7 \cdot 1$	-2.6
	" 23	-5.8	-8.5
	" 25	-7.6	-5.0
1902.	Aug. 27	-4.3	-6.0

The mean of their plates, as well as of all their measures, was -5.9 km. per see. The results of our flats were considerably different from this mean value, and when further plates showed a greater range it was considered that this star was very probably a spectroscopic binary. As the dependable range seemed quite small it was decided to make several plates on each night the star was observed, the mean of the night being used. In this way thirty-nine plates on Seed 27 Emulsion were made without giving any further proof of the reality of the variation, other than that some of them seemed to show a few lines as complex. Fine-grained plates of the Seed 23 Emulsion were then used in the hope of recording the

^{*} Decennial Publications of University of Chicago, VIII., page 191.

spectrum of the second component if the star were really a spectroscopic binary. Sixten such plates were secured without much additional evidence, and as a last resource the three-prism spectrograph was employed. Only a few plates have so far been made, but they do not show any definite doubling of the lines. A few plates from time to time will be made with the three-prism canner; in the meantime one cannot say with certainty whether or not this star is a spectroscopic binary.

The observational data for the plates and the detailed measures are given.

After most of the plates had been measured, using every available line, a set of eight
lines was chosen for velocity determination. For the same quality of a line the
weight assigned the first season is somewhat higher than for the second.

These are the lines:-

Mg	4481 - 400	He	4143-928
He	4471 - 676	Н	4101.890
He	4388-100	He	4026 - 352
Н	4340 · 634	Ca	3933 - 825

ONAL	PAP	ER	No. 25	RE a	PO	RT	. 0	F	7	H	Е	C.	HI	E	F	A	S	TI	RO	N	0.	M	EΕ	2										1	93
		KEMARKS.						Oll 4m.																											
	u	SLAG	osqo		o:	c	Ξ	=:	= 0	0:	I 0	4.2	==	11	==	11	7		4:	=;	=;	II:	Z:	Ę	0	0	(ن	1, 3	1	i, c	0	0	0	0	C
		SEEING.			Cood	13	4	ıÇ i	٥.	0-1-	0 4	0	700		0 4		4-0		4-D				ç,	ψ.	4	4-5		4.	4.	4	2	2	2	4	7 7
	SLIT	WIDTH	INCHES.		005		3 :						: 13						: :			. :	. :		. :		5 :	s :		5 7	4	ă	s	ı	20
			End.			24.8				5.0	- 0	0.0	0.0		0.0	77			3.6		1.0	1	1 3		10.4	5 1		13.0	6.71	8.71	19.6	u	ä	55	70
Temperature	RADE.	Ризм Вох.	Beg.			24.8					7.0		Ĺ		o I				2.5	0.0		7	: :		×	\$ 1	=	13.1	13.0	12.9	19.7	19.6	3	22.3	11.11
Cawan	CENTIORADE.	W.	End.			19.0						0.1	0.0		0.01-				-13.5			1	0.6	1				21.7			11.2		11:1	13.5	77
I,		Коом.	Beg.		16.5	19.4	20.0	19.5	18.0	500	1 3.0	0.1	0.0	0 0 0	0.01-				-13.5		=	0.8	8.5	0.6	9.6	5.3	2.5	21.7	21.7	21.8	11.5	11.2	=	14.2	-
	Hour Angle	at End.			88	25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	15	27	2	9	500	25	22	44	65	9	52		1 35 W		8	02	83	9		2 30 W		0 15 W		45	15	0 31 W	49	35	
	.0	ioi),	Data	g	23 23	88	21	16	16	8	12	2	2	2	15	3	28		15	12	17	15	91	16	15	15	16	92	16	14	15	15	15	2	
	Middle	Exposure.	G.M.T.			19 22																						21 08							
		DATE. I		1909	July 6	 		Oct. 8				Dec. 1			63		3	1910	Jan. 10		3	Feb. 18	3			19 25		Aug. 19		3	. 26	3	3	31	
-		PLATE.			Seed 27		3	4	d	ŭ	d	s	a i	a a	á	s	a		ä	a	's	u	ď	s	a	u	ä	ä	3	3	3	3	3	3	
1		.819	Came		_	: 4	a	u	ä	3	ä	3	4	ď	3	3	25		u	ä	ä	ă	ä	3	a	ä	3	3	4	3	3	4	4	3	
	No.	Jo N	TACK.		2623	2644	2788	2868	2869	2937	2964	2991	3021	3022	3063	3064	3065		3090	3091	3092	3192	3193	3194	3943	3244	3245	3584	3585	3586	3591	3500	3503	2605	O'Char
Cannon		STAR.			ssiopeiæ		7	8			:	4	4	3	3	3	3		3	ä	77	3	8	3	4	3	4	3	3	3	4	*	3	25	

25a-13.

RECORD OF SPECTROGRAMS (Concluded).

	No					Mid	Middle		House Analy	1		CENTIC	TEMPERATURE, CENTIGRADE.		SLIT			
STAR.	Neg.	втэб	PLATE,	DATE.	.:	Expo	sure.	ation.	at End.	Amgre 1.	Room.	OM.	PRISM BOX.	Box.	Winth IN	SEEING.	erver.	REMARKS.
		Can				G.M.T	Ξ.	Dur			Beg.	End.	Beg.	End.	INCHES		sqO	
				1910		a	9	a	d d									
Cassionaim	2607	1-	Cood or	2	. 5	06	2	1.4			12.5			99.3	000		c	
aconoporac a	3620	4 3	nance m	Sont	51	200	070	2 2	38	23	14.2	14.0	19.8	19.8	33	4-5	יכ	
29	3621	77	3	3	2	08	23	10			14.0			3	3	4 3	0	
23	3622	239	я	3	25	06	40	N.			13.7		39	B	3	*	0	
#	3647	H	8	75	14	0	00	200			11.0		16.7	16.7	3	3	00	
35	3648	я	a	3	8	10	200	25			10.7			я	3	з	00	
#	3649	35	8	25		10	35	=			10.4		79	H	3	4	0	
#	3655	15	a	75	15	16	333	12	0 25	A	10.0			14.8	3	1/3	=	
39	3656	77	Seed 23	4	23	18	51	21			9.7		14.8	14.7	2	10	Ξ	
и	3657	ä	a	4	23	20	15	23	1 12		9.4			Ħ	n	2	H	
ä	3684	3	ä	76	21	19	20	50	1 10		5.4			16.4	3	4-5	0	
31	3685	3	a	79	ä	20	=======================================	20			4.8			3	я	ы	0	
3	3686	77	ä	3	ä	50	32	50			5.0			3	ŭ	27	0	
3	3699	3	3	#	28	20	51	20			0.6		17.7	17.7	ı	29	C	
19	3700	u	3	33	3	18	12	20			8.9			3	ä	23	2	
В	3701	28	3	19	25	13	35	52			80.00		ä	3	ä	77	0	
*	3717	3	3	Oct.	7	17	55	20			7.0			18.2	u	7.0	bī	
7	3718	25	3	3	77	18	16	21			5.5		18.2	3	u	IC.	Ы	
3	3719	3	3	19	a	18	41	24			3		ä	18.1	3	10	ī	
*	3735	z z	a	#	12	16	42	20			1.5		10.2	10.1	u	10	ы	
79	3736	25	75	3	38	17	03	20			1.3		10.1	3	3	rc.	pı	
*	3737	и	3	19	3	17	24	21			35		3	36	3	10	C	
7	3748	33	3	*	17	14	36	24		3	8.1	8.0	17.4	17.4		0-4	id.	
3	3749	8	18	3	3	18	19	8	1 40		8.0		ä	8	29	. 2	, E.	

H-Harper

DETAILED MEASURES OF « CASSIOPELÆ

	262	3.	262	3.	264	4.	269	3.	278	8.	286	88.	286	9.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481. 4471. 4388. 4340. 4143. 4101. 4026. 3933.	34·1 48·7 25·8 50·2 32·6 31·3	$\frac{1\frac{1}{2}}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$	28·5 45·0	$\begin{array}{c} 1 \\ 2 \\ 1 \\ 1^{\frac{1}{2}} \\ 1 \end{array}$	38·1 38·9 40·3	1 2 2 1	35·2 31·1 15·7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-35·6 24·7 54·5 -32·2	1½ 2	13 · 3 20 · 5 25 · 0 22 · 2	1	13·4 22·3 2·9	1
Weighted Mean Va Vd Curv.	-30 +15 +	37 10	-29 +15 +	37 10	-33· +15· + ·	99 10	-32 +19 +	05 06	-32 +17 +	46	-18 +12 +	·22 ·12	-13 +12 +	22
Radial Velocity	-15	8	-13-	9	-17	4	-14	0	-15	6	- 6	-3	- 1	.9

DETAILED MEASURES OF « CASSIOPELE—(Continued).

	293	7.	293	7.	296	4.	299	1.	302	1.	302	2.	306	3.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4340 4143 4101 4026 3933	+ 0·9 -19·6 -24·4	1½ 1 1	± 0·0	1½ 1	+19·5 + 2·1 +16·8 - 4·1 -19·9	11/4 1 1	+14·9 + 7·9 + 1·2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 7·7 9·6 5·2 - 8·8	14	+ 8·1 - 9·9 - 8·1 + 6·9 + 9·0	1	- 2·0 - 6·6	1
Weighted Mean Va Va Curv.	- 9 + 2 -	·31	- 7- + 2-	31 11	+ 1 - 1 + -	16 11	+ 5 - 5 + -	69 09	- 7 - 8 -	73 04	+ 1 - 8 -	-73 -05	+ 1 -14 -	·28 ·13
Radial Velocity	- 7	-2	- 5	3	- 0	·1	- 0	3	-16	.2	- 7	.2	-12	.9

DETAILED MEASURES OF & CASSIOPELE—(Continued).

	306	4.	306	5.	306	5.	309	0.	309	1.	309	2.	319	2.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
4481	+ 5·2 - 3·9 +17·1 +12·5 - 0·7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1·2 - 6·1 + 8·6 -10·8	1 1 1 1	+19.6	1 1 1 1	$+12.7 \\ +12.0 \\ +17.3 \\ +19.9$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 3·7 + 0·6 +18·8 +10·8 - 7·5 +25·9 + 9·1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+11·1 - 8·0 +29·7 + 8·9 - 3·7 +21·2 +15·8 - 8·3	144	+16·4 15·3 +16·2	1 1
Weighted Mean V a V d Curv.	. + 5- -14- - :	28 09	- 1 -14 - 1	28 10	+ 0 - 14 -	28	+ 8 -17 -	·00 ·05	+ 6 -17 -	00	+ 7 -17 -	·00 ·09	+15 -20 -	·24 ·11
Radial Velocity	-10	4	-16	4	-15	0	- 9	-2	-10	5	-10	-1	- 4	.8

DETAILED MEASURES OF & CASSIOPELE-(Continued).

	319	3.	319	4.	324	3.	324	1.	324	15.	358	4.	358	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4340 4143 4101 4026 3933	+19·7 18·5 +18·3	200	+11·6 +21·5	1	+25·6 27·4 15·0 +26·4	2	+11·6 -5·1 +12·6	1	22·1 18·0 +12·7	14	39·2 -36·5	1	-16·3 23·7	
Weighted Mean V _d V _d Curv.	.+18	24	+18 -20	24 12	+20· -19· -	56 15	+10· -19· -	56 15	+13 -19 -	-56 -15	-31 +19 -	82	-28 +19	82 03
Radial Velocity	- 1-	8	- 2	5	+ 0-	8	- 9.	8	- 6	-8	-12	0	- 9-	1

detailed measures of e cassiopele—(Continued).

	358	6.	359	1.	359	2.	359	3.	360	5.	360	16.	360	7.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	-27·1 25·3 31·3	1 1 1 1	-31·4 -39·4 -31·3	100 1000	33.0 53.6 34.6 -14.4	designie . meses	-34·6	14	-45·8 27·7 -14·9	3) 4 a 2 a 3 a 4	-30·7	1/2	-11.8	11/2
Weighted Mean V ₄ V ₆ Curv.	-27 +19 -	82 04	-34 · · · · · · · · · · · · · · · · · · ·	56 00	-33 +19 -	56 03	-38 +19 -	56 04	-29 +19 +	21 04	-27 +19 +	21 03	-18 +19 +	·21 ·01
Radial Velocity	- 7-	7	-15-	1	-13-	8	-19-	0	-10-	7	- 8-	4	± 0	0

DETAILED MEASURES OF ¢ CASSIOPELE—(Continued).

	362	0.	362	1.	362	2.	364	7.	364	8.	364	9.	365	5.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4471	20.4	1	-29.3 31.6	3)41/21/41/2	31·0 -31·3	1	16.5	10/24	-16·4 5·0 24·2 34·8 -40·3	and the section	31.7	1	-21·1 17·3 34·3 -41·9	
Weighted Mean Va Vd Curv. Radial Velocity	-19· +18· -	48 02 28	-27· +18· - :	48 03 28	-33· +18· - :	48 04 28	-27· +17· - ·	48 00 28	-24· +17· - ·	48 00 28	-29 +17· - :	48 02 28	-28 +17 - - -	31 02 28

DETAILED MEASURES OF & CASSIOPELE-(Continued).

	365	6.	365	7.	368	4.	368	5.	368	6.	369	9.	370	00.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4340 4143 4101 4026 3933		100-00-00-00		1		Indiana Canada	$-16.5 \\ -17.6$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20·8 25·7 -19·8	1 11 11 11 11 11 11 11 11 11 11 11 11 1	-32·6 29·3 -26·9		26·3 -11·5	1
Weighted Mean V d V d Curv.	-13· +17· -	31 04	-19 +17 -	31	-29 +16 -	22	-20 +16 -	22 04	-23 +16 -	22 07	-28 +14 -	74 03	-15 +14 -	74 03
Radial Velocity	+ 3-	2	- 2	6	-13	-2	- 4	6	- 8-	0	-14	6	- 1	2

DETAILED MEASURES OF « CASSIOPELE—(Continued).

	3701	١.	3717	7.	3718	š.	3719		373	5.	3736	3.	373	7.
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481 4471 4388 4340 4143 4101 4026 3933	-23·0 -20·2 -28·4	1000	30.0 32.8 -43.4	100 Amelica 100 A	-25·8 22·4 24·1 -30·5	midwigneria	25·3 27·0 -31·2	1 3 4 1 2	+ 3·2 -12·9 -21·3 -12·2	1 2 2 4	14.9	a hasoless basilensies.	-13·2 16·0 16·0 23·4 16·9 45·1 - 8·6	
Weighted Mean V.o V.d Curv.	-23 +14 -	74 04	-34· +12· -	51 01	-25: +12: 	51	-25·6 +12·3 - ·6 - ·5	51	- 9· +11· + ··	14 04	-14· +11· + · · ·	14	-20: +11: -	14 01
Radial Velocity	- 9-	2	-22	0	-13-	3	-12-8	3	+ 1-	7	- 3.	2	- 9-	3

DETAILED MEASURES OF « CASSIOPELE—(Concluded).

λ	374	is.	374	9.										
^	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4481	8.8 17.3 15.0 26.5	r-(m)(m)e-d-	- 6·1 -18·5	1 2										
Weighted Mean V a V d Curv.	-15 + 9 -	65	-11 + 9 -	65 04										
Radial Velocity	- 6	-3	- 1	7										

MEASURES OF (CASSIOPELE

	Date.	Velocity.	Line.	Date.	Velocity.	Line.
1909. 1910.	July 6	- 5. - 2. - 2. + 1. -10. - 7.	877747754664656677783321433435438	1910. Aug. 25	-19· -11· - 8· -0· - 1· -10· -15· -10· -7· -12· -11· +3· -3· -3· -18· -18· -18· -18· -18· -18· -19· -19· -19· -19· -19· -19· -19· -19	2322343554473575533344466762

MISCELLANEOUS.

The following measures of miscellaneous plates of the stars μ Orionis, ϵ Urax Majoris, Φ Urax Majoris and ϵ Virginis are published. The plates are not as good as would be obtained when once the right exposure had been determined, but the measures may serve a purpose to other observers engaged in determining their orbits. I believe Professor Frost of the Yerkes Observatory is working on μ Orionis at present.

Line.	11:	39.	11	59.
	Vel.	Wt.	Vel.	Wt.
4861-527 4549-766 4481-400 4395-286 4395-286 4340-634 4325-999 4315-178 4271-760 4290-640 4290-640 4233-328	+43·1 57·3 61·8 39·0 40·7 55·7 45·2 36·1 56·3 54·1 55·4 +53·8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+44·8 27·9 44·9 26·0 45·0 19·5 43·9 46·0 40·7 +25·4	2 1 ¹ / ₂ 2 1 ¹ / ₂ 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Weighted Mean V _a V _d Curv	+50 +18 -	· 65 · 12	+30 +10 + -	3.70
Radial Velocity	+68	-4	+50).3

Line.	4.5	66.	48	9.
Line.	Vel.	Wt.	Vel.	Wt.
554-018 558-827 559-642 552-855 515-508 501-448 481-400 4340-634 1223-328	-26·7 2·1 39·1 14·5 13·0 21·1	2 2 1 3 2 3 2 3	-25·7 17·4 25·2 13·9 20·1 -33·4	1 1 2 1 3 2
Weighted MeanVVVVVVV	-17 +17 +	25 15	-23· +16· +	68 15
Radial Velocity	- 0	4	- 7.	0

ψ URSÆ MAJORIS

Plate taken 1908, April 13, G. M. T. 17^h 22^m

Line.	Velocity.	Weight.
4549-766 4481-400 4225-939 4308-081 4271-700 4246-996 4033-756 4045-975	+ 7·3 5·6 9·9 29·3 15·4 16·5 13·4 + 5·8	2 2 2 1 1 2 1 1 1 2
		Mean +11·99 -22·50

 Weighted Mean.
 +11·99

 V_s
 -22·50

 V_d
 -18

 Curv
 -28

Radial Velocity. −11·0

 $\pi^{\$}$ VIRGINIS

Plate 3349 taken 1910, March 18, G. M. T. 20^h 50^m 3383 " " April 11 " 18 32

Line.	33	49.	338	3.
	Vel.	Wt.	Vel.	Wt.
4584-018. 4549-766. 4481-400. 4340-634. 4143-928.	-31·9 19·7 -22·3	el entitle	-24·5 + 0·8 - 9·5	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Weighted mean		7·64 ·35 ·26 ·28	- 7- -12 -	10 21
Radial Velocity	-2	8-5	-20	2

8 HERCULIS.

Thirty-seven plates of this star ($\alpha=17^{\circ}11^{\circ}, \delta=+24^{\circ}57^{\circ}$) were made in the years 1907, 1908 and 1909, and from measures of some of the early plates it was announced as a spectroscopic binary. The spectrum is of Λ type but the hydrogen lines are unusually broad, often a width corresponding to 500 or 600 km. per sec, and hence a great deal of uncertainty is unavoidable in the results. The measures made on twenty-five plates run all the way from -20 km. to -80 km. per sec. but a considerable portion of this range, though not all, may be ascribed to accidental error of setting on such diffuse lines. Consequently the star was dropped from our programme for the time being.

APPENDIX B.

THE ELEMENTS OF 93 LEONIS, MEASURES OF ι CYGNI, α OPHIUCHI, σ CASSIOPELÆ, AND 9 CAMELOPARDALIS.

J. B. Cannon, M.A.

The Elements of 93 Leonis.

The star 93 Leonis, $\langle \alpha=11^{\circ}$ 43°, $\delta=+20^{\circ}$ 46′) was announced to be a binary by Campbell and Wright in 1900s' from the measures of four plates taken by them in that year. It belongs to the group Fs of Miss Cannon's classification. It was under observation here at three different periods in the years 1908, 1909 and 1910. During that time seventy-two plates were taken, the instruments used

being the old and new single-prism spectrographs.

temp include and new single-plasm spectrod my many cases large differences result.

The lines are not at all well defined an invariance and the plate. The lines appointing are chiefly due to Iron, Hydrogen, Magnesium, Titanium and Carbon. Several lines of each element were measured, but in the determination of the elements the Titanium lines were discarded, as so great differences between the velocities from its various lines existed that no dependence could be placed on them. A list follows giving the wave-lengths of the lines used and the element to which each is due:—

Wave-Length.	Element.	Wave-Length.	Element.
4861-527	H Fe Mg. Fe Fe Fe Hg. Cr. H Fe	4260 · 640	C
4519-766		4250 · 616	Fe
4481-400		4227 · 010	Fe
4415-301		4216 · 351	Fe
4401-927		4101 · 880	H
4352-006		4071 · 901	Fe
4340-634		4063 · 756	Fe
4325-939		4045 · 975	Fe
4271-760		3033 · 825	Ca

The period of oscillation was determined by the aid of the results obtained by Chapbell and Wright from their measures of 1900 and found to be 71.70 days. This was taken as being close enough, their observations being some forty periods away from the date of the first plate obtained here.

At the maximum of the curve the determination was somewhat unsatisfactory, the weather unfortunately being very bad at each return of the star to that part of the curve so that only a few observations were obtained. Sometime later a few plates may be taken to verify the results accepted.

The record of the observations made and the detailed measures obtained will now be given followed by a summary giving the plate number, the Julian date, the phase, the accepted velocity, the weight and the residuals obtained from the two methods of measurement.

^{*} Astrophysical Journal, 12, 255, 1900.

00	
7	
2	
23	
9	
Q	
\approx	
-	
ರ	
Œ)	
\overline{a}	
SPE	
OF	
0	
_	
=	
н	
9	
\circ	
H	
REC	

	REMAR																															
13	(6 L A6	ops		H	д	Д,	I	II a	4,0	, 2	, II	2	Ö	ပ	۲	0	00	Ξ	C	Ξ	Ú	ä	ā	Ξ	ā	2	ď	C	ā,	Ξ	ä,	Ω
	SEEING.			Hazy & time	Fair		Fairly good	Good	Good	Poor	Good	Fair	12	Good	Good	Pair	77	15	3	Good	3	3	Poor		Very hazy	Fair	Fair	Good	Very Door	Good	b	Linear
	SLIT Width			.0013	¥		3	-0014	9100	5100	-0017	-0012	¥	a	u	9100	4.00	¥	79	-005	¥	79	¥	4	ä	3	ä	ч	3	¥	18	
ei.	PRISM BOX.	End.			- 1	+		200					- 1				1 4							9.6	00	8.0	6.4	9.01	6.9	0.6	7.9	AM 00
TEMPERATURE.	PRISM	Beg.						200							2.3	19.9	3.5	1 5.5	1.0	3.5	2.5	- 0.4	5.6	9.5	8.5	8.0	6.4	9.01	9.3	8.9	4.9	400
Теме	Room.	End.		5 - 6.5	8 -14.6	5 - 10.0	5-11-5	0 - 12.0	200	ZX.	20.0	5 21.6	$0 - 20 \cdot 0$	5 -15.5	8 - 90.0	17.5	5 - 12.0	5-19.0	4 - 5-4	0 - 8.0	6 - 1.4	3 - 4.5	5	0 2.0	5 - 1.5	0 3.0	2.7	2.5	8.5	0.3	9 2.0	44
		Beg.		1 5	-14	6	6	10.0	- 6	10.	21.	23.	-20	-14	10.	16.	133	-17.	1	9 1	0	1	89	9	i	4	20	000	4		6.9	00
	Hour Angle at Ead	rand.	3 10		22	2	33	A 12 12 12 12 12 12 12 12 12 12 12 12 12	3 8	45	8	30							40	40	20			07	20	90	9	40	25	40	1 15 W	2
				_	-		_	_		_	_		_	_	_	_	-									-					-	
	roiter		8	3	32	45	45	8 9	2 2	202	12	06	29	62	67	9	3.5	70	9	65	49	51	73	200	64	20	123	75	120	75	58	Chi
Middle	of Exposure,	J. 194. 1	h so					60								_	_	-													14 46	
																	-			-		_							_	_		
	DATE.		1908	Feb. 21	5G 3	Mar. 4	g :	100	May 18	June		20	Dec. 9	21	Jan Ja		Feb. 3			Mar. 8		. 15			Apr. 1		. 15	3	*		May 3	
	PLATE.			Seed 27	3		. :	: 15	и	ä	я	d	я	d	3	1	3	3	ď	4	-	3	d	3	8	ä	d	ä	ä	ä	đ	,,,
	втэп.	Cau		IL	8	8 1	8 3		3	3	3	31	ı	a	ä	75	35	ä	я	jesset	3	a	a	3	3	u	ä	u	ä	11	3	
	o o	- Page		1341	1356	1381	1388	1400	1534	1562	1599	1627	2022	2062	2100	9134	2231	2262	2300	2341	2355	2381	2437	2448	2409	2481	2501	2509	2521	2528	2536	05.40
	STAR.			33 Leonis	a		1 1	1 18	8	3	4	3	ä	4	4	3	3	3	3	3	3	3	3	3	3	3	я	77	a	3	ä	3

RECORD OF SPECTROGRAMS—(Concluded).

	REMARKS.																																			
.1	SGLAG	OP		Ы	0	၁	Ξ	Ξ	U	0	0	Ξ	ы		ī.,	24	Ξ	=	īd	O	ī.	d	ī.	Ξ;	= 0	٥;	1.0	0	Ы	۵.	Ы	Ы	0	d	ح)
	SEEING.			Fair	Good	Fair	Hazv	Good	Fair	Good	Hazv	34	5-3		5-3		5-3-4		22	4-5	5-4-2	3	5-5	.01	7.		Q.	**	+	23	2-0-2	22	-	3-4		,
	SLIT Width.			-(00)	3	3	u	4	.0018	-(005	3	3	.0017		-(8)5		4	4	4	3	3	3	3	3 1		: :	5 3	5	z	3	39	3	3	39	#	
	Box.	End.		28.5	26.7	27.1	50-0	24.4	25.9	24.3	26.0	26.3	5.0		4.6	4.8	1.5	3.8	9.4 -	9.4	9-01	2.8	1:2	00 i	9.7	8.4	16.5	9.2	8.9	12.0	16.0	14.8	13.6	14.4	12.1	107
ATURE.	PRISM BOX.	Beg.		28.3	26.7	27.2	30.0	24.8	26.0	24.4	26.1	26.3	5.6		2.8.	1		- 1	- 1					0.9												
TEMPERATURE.	Коом.	End.				23.2									8-91-	20.50	-10.5	-17.5	-14.1	2.0	0.3	0.1	- 5.4	1.0	1 4.0	9.6	ò	2.5	9.0 -	8.5	0.6	3.0	8.6	6.7	8	0.0
Г	Ro	Вед.		26.0	23.5	24.2	28.0	21.0	25.2	21.2	22.0	24.5	1.8		9.9	ż	- 10.0	15.3	-13.0	2.3	0.5	0.5	- 4.5	1.0	2.5	10.3	10.0	4.6	0.0	9.6	10.7	3.5	9.4	100	10.01	0.07
	Hour Angle	- Fue	6 4	01	200	55	32	45	40	8	30	07	3 10 E											27 E				45		9	29	355	45			
'u	oite:	Dm	g	20	ic.	155	9	69	9	533	8	9	20		89	47	22	141	09	25	63	65	52	73	£	95	90	9	65	96	130	7.5	65	9	80	8
Middle	Exposure.		1 -										22 35											16 26												
	DATE.			June	U	28			6	. 13	000	Ang. 2	Oct. 29	1910	Jan. 14	25	33	Feb. 18	. 23	a 25	Mar. 2	я 20	6	=:	2		Apr. 6		4 12	" 14	20	u 27	May 4	10	30	DT.
	PLATE.			W. & W	Spord 27		W. & W.	Seed 27	T T	я	77	15	3		=	2	я	а	ä	3	3	3	ı	3 1	5 7			4	3	3	18	25	75	8	3	
	erən	Car		П	3	39	23	3	3	79	3	35	ä		3	s	16	19	79	3	#	¥	3	3 3	: 3		2 3	3	77	39	33	75	ä	23	"	
;	. o .	Neg.		2582	2586	2595	2604	2633	2637	9645	2865	2700	2929		3116	3145	3162	3199	3211	3249	3257	3271	3297	3322	3342	3365	3376	3379	3387	3396	3398	3408	3420	3423	2420	0,100
	STAR.			93 Leonis	3	75	39	3	25	75	3	3	4			=	35	u	3	31	4	4	3	w 1	2 3	3 1	. 1	4	38	31	z	77	25	3	3	

I—Harper.

Clouded.

HPOPTOHE

4:09 19 9

16-3 15-5 138-0 17-8 121-6 121-4 18-4 181-4 18-1 18-8 220-1 19-8 26-2 26-0 25-5 26-0

7.0 125.0 175.0 175.0 175.0 175.0

7.0 7.0 14.3 14.3 17.5 17.5 22.0 22.0

888888888

3442 3450 3450 3450 3450 3470 3474 3474 3404

* * * * * * * * *

MEASURES OF 93 LEONIS
(Comparator Measures, Standard Sun Plate 3755).

	1341.		1356.		1381.		1388.		1398.		1498.		1498	.*
REGION.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	We
4 5			-19·48 -18·06						+12.58		+50·55 +46·63 +24·84		+53·88 +36·83	
7 8 9	-30.57 -24.72		-15.75 -22.66 -20.68 -17.89		-20.03 -19.37		-16·13 - 5·85		+ 6.52 + 3.69 + 6.56		$+41 \cdot 27 \\ +37 \cdot 94$		+30-41	
11 12 13	-36.45				-18·09 -18·90 -27·95		-14.88				+41.45			
Weighted Mean V _d V _d R. V. of Sun.	-29·4 + 7·9 - ·1 - ·4	6	-19·0 + 6·0 + ·0 - ·4	7 6	-21·8 + 2·0 - ·1 - ·4	8 6	-14·4 - ·3 - ·0 - ·4	7	+5·5 -3·8 - ·1 - ·4	3 6	+38·6 -17·8 + ·1 - ·4	0	+39·8 -17·8 + ·	81 10
Rad. Velocity	-22-1		-13-4		-20-4		-15.3		+1.0		+20.4		+21.3	7

MEASURES OF 93 LEONIS—(Continued). (Comparator Measures, Standard Sun Plate 3755).

	1534.		1562		1599.		1599.	•	1627.		2100.		2134.		2231	
REGION.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4	13·57 8·43 12·31 7·25 11·11 9·18		36·83 41·59 42·69 39·55 +41·58		45·14 47·42 39·10 41·11 34·31 40·61 33·91 +36·90		42·76 42·57 40·89 +34·04				-10.69 - 4.13 + 2.32 - 3.03		9·74 16·51 +14·23		-17.58 19.87 9.17 22.00 -18.37	8 7 7 7 7
Weighted Mean Vo Vd R.V.of Sur	+10·7 -26·2 - ·0 - ·4	18 19 18	+41·4 -27·8 - ·1 - ·4	0 .6 .8	+41·1 -27·9 - ·2 - ·4 +12·5	12 10 18	+40.6 -27.9 2 4 +12.0)2 0 8 	+37·0 -26·9 - ·2 - ·4 + 9·3	5 8	- 5.6 +25.4 6 4	18 15 18	+14·6 +23·4 + ·0 - ·4	7 19 8	-17· +15· + :	89 13 48

[·] Check Measurement.

SESSIONAL PAPER No. 25a

MEASURES OF 93 LEONIS—(Continued). (Comparator Measures, Standard Sky Plate 3172).

Region.	2341		2355		2381		2437		2448		2481		2501	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4	10·07 3·63 14·20 +11·74		22.57 21.40 22.99 16.88 17.33 9.69		+30 · 84 25 · 65 23 · 63 27 · 71 +29 · 29		+42-64 34-24 35-94 43-65 +53-10		+35·42 39·66 38·11 36·67		+18·11 32·73 18·15 31·08 20·35 +20·46		-9.44 $+5.81$ $+5.59$ $+6.71$ $+0.86$	
Weighted Mean Va Va R. V. of Sun	+ .24	l)	+17·59 - 1·72 - ·04 + ·26		+27.68 - 3.09 02 + .26		+40·67 - 9·81 + ·04 + ·26		+37·61 -10·74 - ·06 + ·26		+23·48 -14·19 - ·04 + ·26	1	+ 3·47 -20·28 - ·26 + ·26	3
Velocity	+ 9.7		+16.1		+24.8		$+31 \cdot 2$		$+27 \cdot 1$		+ 9.5		-16.8	

Measures of 93 leonis-(Continued).

(Comparator Measures, Standard Sky Plate 3172).

								_						_
Region.	2509.		2521		2528		253	3.	2548		2562		2582	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4	6.56 2.77 9.07 + 1.75		- 9.84 - 8.81 - 4.23 + 0.93		+11·81 +11·33 + 6·65 -11·41 - 7·27 - 4·52 + 4·16		+ 0·26 - 7·18 - 4·23 + 8·38 + 2·80		42·18 43·32 38·18 44·16 +45·77		41.80 46.22 51.80 50.09 53.31 +49.92		28·58 27·59 +28·52	
Weighted Mean Va Vd R.V. of Sun Radial Velocity	-19·90 - ·14 + ·26		- 6.06 -20.87 28 + .26		+ 1·70 -21·51 - ·14 + ·26		+ 0.03 -22.59 07 + .26		+44·17 -27·09 - ·13 + ·26		+48·70 -28·41 - ·21 + ·26		+27·99 -26·97 - ·27 + ·26 + 1·0	

3 GEORGE V., A. 1913

MEASURES OF 93 LEONIS—(Continued). (Comparator Measures, Standard Sky Plate 3172).

	2586	٠,	2595		2633		2637		2645	j.	2668	5.	2700).
REGION.	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	V
4	16.37 25.65 18.86 14.35 16.91 +16.83		8-81 11-74 10-71 12-30		+ 4.59 7.30 1.81 3.26 5.59 4.85 2.39		19·02 13·85 5·81 4·42 12·30 5·17		- 3.67 + 0.63 - 1.45 - 7.22 - 5.59 - 7.75 - 9.05		12 · 86 6 · 04 3 · 87 10 · 13 8 · 94 -14 · 00		+16-46 31-2 30-8 35-06 +19-0	1 .
Veighted Mean Va Vd R.V. of Sun Radial	+17·70 -27·3 - ·2 + ·2	0	+11·4 -26·4 - ·2 + ·2	4 3 6	+ 4·2 -24·8 - ·2 + ·2	4 8 6	- 9·9· -24·3 - ·2 + ·2	5	- 4·9 -23·2 - ·2 + ·2	6 8 6	- 8·2 -21·3 - ·2 + ·2	5 8 8	+29·9 -16·9 - ·2 + ·2 +13·0	12 19 16

MEASURES OF 93 LEONIS -(Continued). (Comparator Measures, Standard Sky Plate 3172).

	2929		3116	i.	314	0.	3162		3199).	3249).	325	7.
REGION.	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4	3·28 4·41 3·39 3·72 6·37 1·40		15·09 7·30 6·05 + 8·38		14 · 0 20 · 1 22 · 0 17 · 2 -13 · 6	1	40-41 39-03 42-11 35-85 40-02 34-68 -37-23		-30 · 85 42 · 11 36 · 67 42 · 26 42 · 22 -41 · 81		-10 · 23 7 · 55 11 · 49 14 · 55 11 · 74 13 · 78 16 · 12		-0.90 $+2.50$ $+1.15$ -3.23 -4.10 -2.50	7 0 2 6
Weighted Mean Va Vd R.V. of Sun Radial Velocity	+ 3.95 +21.73 + .30 + .26	5	+10·4 +22·3 - ·1 + ·2	3	-15-9 +19-4 0 + -2 + 3-8	19 14 16	-38·5 +17·2 + ·1 + ·2	0 1 6	-39·0 + 9·1 + ·0 + ·2	8 6 6	-12·7: + 4·3 + ·0 + ·2 - 8·1	4	- 1.6 + 3.3 6 + .2 + 1.9	36 33 26

MEASURES OF 93 LEONIS—(Continued).
(Comparator Measures, Standard Sky Plate 3172).

REGION.	3271		3297		3322		3342		3365		3379		3387	
	Vel.	Wt	Vei.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4	+ 1.57 - 0.63 - 2.42 = 0.00 - 1.12 - 0.54 + 1.87 - 4.80		+20·40 16·34 13·39 19·79 17·45 17·47 +16·72		+ 4·41 15·12 12·80 20·68 20·46 18·93 +22·22		34 · 24 32 · 06 35 · 15 38 · 01 29 · 83 24 · 96 24 · 02 24 · 56		+34·87 35·69 24·21 34·43 16·69 28·08 31·03		10·50 11·58		- 6·30 + 6·55 - 0·24 + 7·92 - 1·12 + 1·61 - 3·85	
Weighted Mean Va Vd R.V. of Sun	- 0.52 + 2.89 + .11 + .26		+17 ·63 - 0 · 12 0 · 00 + · 26		+16·63 - 1·08 + ·09 + ·26		+29·19 - 4·51 + ·06 + ·26)	+29·40 - 9·25 - ·09 + ·26	,	+10·26 -15·33 - ·05 + ·26	3	+ 0.95 -15.78 2 + .20	8
Radial Velocity	+ 2.7		+17.8		+15.9		+25.0		+20.3		- 4.8		-14.8	

MEASURES OF 93 LEONIS—(Continued).
(Comparator Measures, Standard Sky Plate 3172).

REGION.	3396		3398		3408	i.	3420	١.	3423		3438	-	3442	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
5	- 0·26 - 1·01 - 9·32 + 0·58 - 4·14 - 1·94 - 4·99 - 3·50 + 0·48		-11·58 3·87 11·87 7·27 5·60 6·45 -11·71		+ 1·71 +15·74 -10·04 -12·80 - 3·58 -10·45 - 2·68 -15·01 - 2·89 -10·22		2·36 0·25 0·24 5·24 1·12 0·86 8·01 5·50 6·93		+13·12 8·81 10·89 15·13 +16·43		19·51 18·15 16·30 21·47 22·40 19·97 15·82 +23·11		+15·74 16·37 21·17 25·03 21·80 23·15 +26·52	
Weighted Mean Va Va R. V. of Sun	- 3.03 -16.55 16 + 0.26	1	- 6.95 -18.79 21 + 0.26	1	- 5·00 -21·12 - ·21 + 0·26	i i	+ 3.83 -23.17 21 + 0.26		+12·8 -23·4 - ·0 + 0·2	0	+20·1 -24·6 - ·2 + 0·2	i5 10	+21·4 -24·8 - ·: + 0·9	86 21
Radial Velocity	-19-4		-25.7		-26.1		-19-3		-10.3	3	- 4.5		- 3-	1

MEASURES OF 93 LEONIS—(Continued).
(Comparator Measures, Standard Sky Plate 3172).

Region.	3441		3450).	3452		3459		3469		3475	2.	347-	1.
REGION.	Vel.	Wt	Vel.	Wt	Vel.	Wŧ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4	+31·49 28·33 22·63 23·28 19·57 +24·77		+36·76 38·48 39·58 29·96 +28·00		+41-69 37-75 38-99 41-92 45-77 43-16 44-54 38-81		51·82 45·32 58·08 55·52 43·04 +49·22		43 · 30 56 · 28 53 · 48 55 · 29 46 · 96 46 · 31 48 · 36 +40 · 04		45 · 66 54 · 13 42 · 96 44 · 00 55 · 00 48 · 46 45 · 97 45 · 54 41 · 60		+50·1: 54·77 42·38 41·3: 49·19 42·5- 35·67 44·8: 46·2: +49·70	
Weighted Mean Va Vd R. V. of Sun Radial Vel	+24·25 -25·05 - ·11 + 0·26 - 0·7	7	+34·8: -25·8: - ·2: + 0·2: + 9·0	7	+42.33 -25.26 -0.9 $+0.26$ $+17.2$	3	+50.99 -27.20 -30 $+0.20$ $+23.7$)	+47.60 -27.91 -13 $+0.20$ $+19.8$	3	+46·3 -27·9 - ·1 + 0·2 +18·4	9 4 6	+45·6 -27·9 - ·1 + 0·2 +17·8	9 2 6

Measures of 93 leonis—(Continued). (Micrometer Measures).

									Carrier State of the					
	1341		1341.	*	1356		1381		1388		1398		1498	3.
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt.	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4549 4481 4491 4404 4352 4340 4325 4315 4271 4260 4271 4200 4271 4200 4211 4201	-37 · 50 -35 · 33 -37 · 10 -17 · 16 -31 · 00 -22 · 14 -28 · 60 -22 · 69 -25 · 72 -23 · 02 -34 · 94	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1	-34·00 -52·86 -30·38 -42·35 -16·76 -34·42 -37·98 -31·90 -33·85 -25·23 -37·58	1 1 2 2 2 2 1 2 1 2 1 1	-28·05 -25·35 -11·57 -25·26 -21·03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-38·94 -15·62 - 7·26 - 5·22 -25·10	1 1 1 1	-25 63 -25 66 -7 78 -7 78 -21 30 -10 23 + 8 04 -16 11 -21 46 -14 15	1 2 1 2 2 2 1 1 2 2 1 1 1 2 1 1 1 1 1 1	-20·35 - 0·87 -13·68 +15·35 -14·56 + 3·25 - 2·78	2 2 11 12 2 1	+29·16 +33·72 +24·10 +37·00	2 1
	+ 7·96 - ·12 - ·28		-32·45 + 7·96 - ·15 - ·28	3	-21·18 + 6·00 + ·06 - ·28	3	-18·45 + 2·08 - ·16 - ·28	8	-17·25 - ·37 - ·05 - ·28	3	- 6 · 28 - 3 · 83 - · 16 - · 28 10 · 5	3	+28.98 -17.81 + :10 - :28 +15.6	1

* Check measurement.

MEASURES OF 93 LEONIS—(Continued), (Micrometer Measures),

λ	1534		1562		1599		1627		2022		2062		2100	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861 4549 4481 4481 4481 4481 4481 4481 4481 4882 4882	+ 0.60 +12.76 + 9.39 +11.89 +18.05 + 2.07 +11.03 - 4.49 + 7.58	2 3 2 2 2 1 1	+33·35 +58·19 +45·32 +41·45 +24·07 +35·58 +31·70 +23·87	2 2 2 1 1 1	+37·68 +40·63 +51·02 +48·44 +37·30 +32·99 +28·82	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+32·39 +58·35 +26·35 +47·39 +33·62 +59·23 +38·17 +46·99	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-59·28 -57·67 -30·56 -38·75 -63·47		-40·26 -18·38		-18·46 - 5·68 + 0·69 + 4·28 +15·88 +11·44 + 8·31 - 8·59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V d Curv.	09 - ·28		- ·16 - ·28		- ·20 - ·28		- ·25 - ·28		+ .02		- ·03 - ·28		- ·05 - ·28	
Radial Vel	-16.9		+ 8.3		+12-1		+13.8		-21.3		+ 2.3		+26.8	

Measures of 93 leonis—(Continued). (Micrometer Measures).

λ	2134		2231		2262		2300		2341		2355		2381	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861 4549 4481 4443	+ 3.01	1		14	-52-35	2	$-46 \cdot 13$	(ded (ded)	- 7.27	14	+13 · 26	1 2	$+38 \cdot 14$	1 2
4415			-16.92 -24.92 -14.29	4000	-49·01 -27·23	1 4			+ 6.88		+ 5.84		+30-80	1
4325 4315 4308 4271	- 7.65	1 2	-43.09	1					- 6·70 - 3·05	10110			+16-67	
4227			-16·52 -28·05 -33·25	1217	-10.69	1 6			- 3.62	1/2				
Mean	- 3·50 +23·47 + ·09 - ·28		$ \begin{array}{r} -25 \cdot 12 \\ +15 \cdot 89 \\ + \cdot 13 \\ - \cdot 28 \end{array} $		-32·92 +13·63 - ·11 - ·28		$ \begin{array}{rrr} -35.98 \\ + 7.11 \\09 \\28 \end{array} $		-0.17 + 0.24 - $.09$ - $.28$		+12·99 - 1·72 - ·04 - ·28		+23·70 - 3·09 - ·02 - ·28	
Radial Vel	+19.8		- 9.4		-19.7		-29-4		- 0.3	_	+11.3		+20.3	

3 GEORGE V., A. 1913

MEASURES OF 93 LEONIS—(Continued). (Micrometer Measures).

λ	2437.	2448.	2469.	2481.	2501.	2509.	2521.
	Vel. W	t Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. W
4549	+29·30 +28·54 +45·66 +23·85 +39·29	$\frac{1}{2} + 18 \cdot 98$ $\frac{1}{2} + 18 \cdot 18$ $\frac{1}{2} + 51 \cdot 43$ $\frac{1}{2} + 51 \cdot 43$ $\frac{1}{2} + 34 \cdot 07$ $\frac{1}{4} + 34 \cdot 07$	+52·19 +33·29 +48·87	$+15 \cdot 80$ 1 $+26 \cdot 80$ $\frac{1}{2}$ $+19 \cdot 07$ 1 $+16 \cdot 58$ $\frac{1}{2}$ $+16 \cdot 27$ $\frac{1}{2}$ $+28 \cdot 79$ $\frac{1}{2}$ $+10 \cdot 48$ 1 $+25 \cdot 44$ $\frac{1}{2}$	+18.73 $+13.23$ $+14.45$ -5.15 -5.15 -5.42 -5.42	- 3-97	+16·66 - 7·51
Weighted Mean Va Vd Curv. Radial Velocity	+38·33 - 9·81 + ·04 - ·28	+38·13 -10·74 - ·06 - ·28 +22·7	+41·24 -10·27 - ·28 - ·28	+19·66 -14·19 - ·04 - ·28 + 5·1	+ 7·01 -20·25 - ·23 - ·28	+ 2·35 -19·90 - ·14 - ·28	+12·40 -20·87 - ·23 - ·28 - 9·0

Measures of 93 leonis—(Continued). (Micrometer Measures).

λ	2528		2536		2548		2562		2582		2586		2593	5.
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4549	+10·95 + 8·67 + 9·34 -12·32 -19·50		+32·06 + 4·28 + 5·82 - 0·11	1 4	+43·15 +39·12 +26·56 +29·91		+62·14 +51·24 +44·02	1 1	+29·87 +39·51 +32·71 +11·08 +42·60	1 1 1 2	+44·90 +11·08 +31·40 +13·39 +17·28	1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+10·85 +16·85 +27·48 +31·47 +23·97 +16·33	1
Weighted Mean Va Va Curv. Radial Velocity	-21·5: - ·1: - ·28	1 4 8	+14·0 -22·5 - ·0 - ·2 - 8·9	9 7 8	+31·30 -27·00 - ·11 - ·29 + 3·8	9 3 8	+51·2· -28·4· - ·2: - ·2: +22·3	1	+23·8 -26·9 - ·2 - ·2 - ·2	7 7 8	+28·28 -27·28 - ·21 - ·28 + 0·4	3	+21·5 -26·4 - ·2 - ·2 - ·2	4 3 8

SESSIONAL PAPER No. 25a

Measures of 93 leonis—(Continued). (Micrometer Measures).

λ	2604		2633		2637		2645		2665		2700		2929	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wŧ
4861 4549 4481 4352 4340 4325 4271 4200 4227 4216 4143 4102 4063 4045	+30·60 +12·57 + 8·54 +24·14	m(24 m(46 m) 46 m) 46 m) 46 m) 46 m) 47 m)	- 8.78 +18.38 +11.43 - 5.93 + 3.61 -20.52	1 1 1 1 1 2 1 1 2	- 1·27 +20·67 +12·09	1 12	+28.07 + 9.03 +10.24 +13.62	1 1 1 2	+26·41 + 4·15 +29·08	San(Plan) (San(réan(Plan)(S	- 5·65 +37·08	1 12122	+ 6.94	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Weighted Mean V _a V _d Curv.	+19·84 -26·15 - ·28 - ·28	3	+ 3·48 -24·84 - ·28 - ·28	3	+ 0·43 -24·35 - ·27 - ·28		+14 · 66 -23 · 26 - · · 28 - · · 28	5	+11·0: -21·3i - ·2i - ·2i	5	+17·13 -16·93 - ·29 - ·29	2	+ 8.9 + 21.7 + .2 2	75 20
Radial Velocity	- 6.9		-22.0		-24.0		- 9.2		-10.9		- 0.4		+ 30.6	6

MEASURES OF 93 LEONIS—(Continued). (Micrometer Measures).

		_		_ `										
λ	3116		3145		3162		3196).	3211		3249).	3257	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861 4549													+ 4.13	
4481	+21.71	· · · ·			-49.11	- 4							+7.22	i
4340			$-27 \cdot 48$	3	-28.93 -34.35	1 2					-32.98	1	-7.78	1/2
4271	+ 0.11	1/2	$-25 \cdot 21$ $-44 \cdot 20$	121					-47.37	1 2				
4102	+0.09	1												
4063 4045 Weighted			-13.51	1/2					-99.99		-16.91	0000	- 1.12	
Mean	+ 4·29 +22·33		-26·33 +19·49		$-32 \cdot 15 \\ +17 \cdot 20$		-21.53 + 9.13		-35·43 + 6·8		-16·56 + 4·34		+ 0·26 + 3·36	
V d Curv.	- ·1·		- ·0		+ ·11 - ·28		+ 0		+ ·1		+ ·06 - ·28		- 03 - 28	
Radial	+26.3		- 7.2		-15-1		-12-6		-27.8		-12-4		+ 3.3	

3 GEORGE V., A. 1913

MEASURES OF 93 LEONIS—(Continued). (Micrometer Measures).

λ	3271.		3297		3222.		3342.		3365		3376.		3379	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861	+ 4.80 - 8.54 - 0.58 + 6.13 + 1.14 - 10.97 - 8.39 - 3.21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$+26 \cdot 11$ $-12 \cdot 23$ $+ 5 \cdot 08$ $+ 8 \cdot 16$ $+24 \cdot 85$ $+22 \cdot 05$ $+21 \cdot 88$ $+ 5 \cdot 96$ $+22 \cdot 42$	1	- 0·19 +25·42	1 12	+25·44 +23·95 +23·70 +12·04	1 1	+31·04 +25·03 +22·85 +18·04 +21·22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+25·14 +13·10 +10·94 +12·00	- Chris	+ 6·62 +14·10 + 0·23 + 6·06 +17·36 +16·99 +26·93	1 1440
V_d	+ 2·89 + ·11 - ·28	_	+15·43 - 0·12 -00 - ·28 +15·0	:	+16·29 - 1·08 + ·09 - ·28 +15·0		+17·59 - 4·51 + ·09 - ·28 +12·9	_	+24.95 - 9.27 09 28 +15.3		+16·39 -13·27 - ·07 - ·28 + 2·8		+10·24 -15·33 - ·02 - ·28 - 5·4	

Measures of 93 leonis—(Continued). (Micrometer Measures).

λ	3387		3396		3398		3408.		3420		3423		3438	3.
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	W
4549 4481 4415 4404 4352 4340 4325	-10·27 + 3·26 +10·36 + 2·66 +10·18 +18·24 + 7·22	1 4442	+17.85 +8.79 +25.58 +5.36 +11.56 -5.95 +0.77 +6.69 +12.57	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 1·09 + 4·19 - 7·62 - 9·02	1 1 1 2	- 3·02 -15·26 - 8·44 - 8·01 + 2·42 - 4·89 - 9·95		- 4·13 - 3·82 - 3·63 + 9·02 + 6·06 + 9·67	1 12 12	+4.93 -1.27 -2.18 $+0.93$ $+5.43$ $+0.57$ $+2.87$ -11.74 -4.85		+16·52 +22·50 + 3·61 + 4·05 + 4·92 + 9·98 - 2·69 + 8·11	
Weighted Mean V _a V _d	+ 7·88 -15·78 - ·21 - ·28		+ 8·40 -16·52 - ·14 - ·28		- 2·11 -18·79 - ·21 - ·28		- 6·09 -21·12 - ·21 - ·28		+ 4·72 -23·17 - ·21 - ·28		- 0·25 -23·40 - 03 - ·28		+ 7·36 -24·65 - ·20 - ·28	

Measures of 93 leonis—(Continued). (Micrometer Measures).

λ	3442		3447		3450).	3452		3459		3469		3472	2.
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wε	Vel.	Wt	Vel.	Wt
4861 4549 4520 481 4401 4401 4332 4340 4325 4327 4271 4220 4227 4210 402 403 403 404 405 407 407 408 408 409 409 409 409 409 409 409 409	+27 ·86 + 4 ·95 +29 ·49 +18 ·35 + 8 ·11 +31 ·94 +39 ·46	1 12 12 12	+26-84 +16-31 + 6-63 +16-04 +20-29 +22-71		+11·70 +10·82 +28·75 +44·35 +39·12 +29·39		+16·67 +42·01 +23·87 +24·25 +39·60 +34·37 +39·77	1 -014-021-021-021-021-021-021-021-021-021-021	+36·38 +61·73 +55·29 +62·43 +78·91 +61·44 +48·73	- with -	+51·92 +44·21 +48·60 +50·54 +42·72 +41·28 +52·00	0)40(40(40)4	+68 ·67 +45 ·66 +62 ·38 +53 ·31 +49 ·14 +57 ·24 +46 ·05 +43 ·73 +44 ·74	1
Weighted Mean Vs Vs Curv. Radial Velocity	-24·86 - ·21 - ·28	_	+19·41 -25·07 - ·11 - ·28 - 6·0		+27·91 -25·87 - ·21 - ·28 + 1·6		+31·42 -25·26 - 09 - ·28 + 5·8	_	+56·35 -27·20 - ·30 - ·28 +28·5	3	+46·00 -27·91 - ·13 - ·28 +17·7	3	+49 · 46 -27 · 99 - · 14 - · 28 +21 · 0)

MEASURES OF 93 LEONIS—(Concluded). (Micrometer Measures).

Mary Control of the C														
λ	3474		3479		3494									
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861 4549 4481 4415 4404 4352 4340 4271 4227 4102	+48·73 +59·05 +52·15 +43·00 +34·45 +51·24 +59·35 +45·84 +49·54	1 10	+10·64 +41·98 +51·10 +10·48 +35·20		+ 0·37 + 5·56 +28·28 - 7·90									
Weighted Mean V d V d Curv.	+50·17 -27·99 - ·12 - ·28		+33·67 -27·81 - ·27 - ·28		+ 6·72 -27·02 - ·27 - ·28									
Radial Velocity	+21.8		+ 5.3		-20.8									

SUMMARY OF OBSERVATIONS

Plate No.	Julian Date.	Phase.	Velocity.	Weight	Residual M.	Residual C
1041	2.417.993 - 84	36.29	-23.6	0	- 4-1	
1341			-23.6	6	- 4.1	+ 1.5
1356	996 - 73	39.18	-15.3	1	+ 4.6	+12.3
1381	8,005.82	48.27	-16.8	4	+ 3.0	+ 0.8
1388	010.77	53.22	-23-6 -15-3 -16-8 -15-2 -10-5 + 8-1 -16-9 + 8-3 +12-1 +14-0	3	- 0·7 -11·0	+ 2.0
1398	017 - 79	61.04	-10.5	3	-11.0	- 2.0
1498	049.57	20.32	+ S-1	5	+ 3·1 = 0·0	+13.0
1534	080 - 57	51.32	-16-9	6	± 0·0	± 0·0
1562	094 - 59	66 - 14	- 10-9 + 8-3 +12-1 +14-0 -21-3 + 2-3 +26-8 +19-8	4 3 5 3	- 4.0	- 0.7
1599	105.62	4.67	+12-1	3	-14.0	-14.0
1627	117-60	16.65	+14-0	5	+ 2.0	- 4.7
2022	285.98	41.63	-21.3	3		
2062	297.89	53 - 54	+ 2.3	6	+15.3	
2100	313.94	70.39	+26.8	6	+ 6.4	- 1.5
2134	320.83	4.78	+19.8	3		+11.6
2231	341.67	25.62	- 9.4	5	- 4.0	+ 1.2
2262	346-88	30.83	-19.7	2	- 6.3	
2300	360-82	44.77	-29.0	3	- 8·0	
2341	374.78	59.53	- 0.3	5 2 3 3	+ 2.0	+ 8.0
2355	378.74	63 - 49	+11.3	4	+ 6.0	+ 6.1
2381	381.72	66 - 47	+20.3	3	+ 6.5	+ 8.5
2437	395.66	7.91	+19·8 - 9·4 -19·7 -29·0 - 0·3 +11·3 +20·3 +23·3	3 3	- 0.8	+ 5.0
2448	397 - 70	9.95			+ 0.7	- 2.3
2469	398-85	11.10	+30·4 + 5·1 -13·8	1	+ 9.8	20
2481	405-67	17.92	+ 5.1	0 6	T 1.1	_ 2.2
2501	416.76	29.01	-13.6	1	- 4·1 + 1·6	- 2·2 - 3·8
2509	420.69	32.94	-18.0	2 2	- 3.0	+ 6.1
2521	423.74	35.99	- 0.0	2	- 3·0 +10·0	+ 3.8
2528	425*68	37.93	- 9·0 -23·0	3 4 2	- 0.8	+ 5.1
2536	430-61	42.86	- 8.9 + 3.8	9	+ 6.1	+ 3.6
2548	451-60	64-65	1 2.0		+ 6·1 - 5·2	+ 4.4
2562	467-60	8.15	T-33.3		- 1.5	- 5·9
2582	482.60	23.15	+ 3·8 +22·3 - 3·7 + 0·4	2 2 5 2 3 3	- 3.0	+ 0.5
2586	483-58	24-13	- 0.1		- 3.0	T 0.3
2586 2595	486-58	27-13	- 5·5	É	+ 2·5 + 2·0	- 7·9 - 6·5
2604	488-60	29-15	- 6.9	9	+ 4.5	
2633		37.13	- 0.9	2	+ 0.1	+ 3.8
2637	496 · 58 497 · 57	38.12	$-22 \cdot 0$ $-24 \cdot 0$	3	+ 0·1 - 1·8	+ 9.8
2645	501.57	42.12	- 9.2	0	+13.0	- 9·3 - 2·1
2665	508-57	49.12	-10.9	0	+ 8.5	- 9.6
2700		62.92	- 0.3	2	+ 5·5 - 5·0	+ 3.7
	521.57	7.09	- 0.3	322433442224	+ 5·5	- 0.5
2929 3116	610·05 686·97	12.42	+30·6 +26·3	4	+ 7.5	+11.0
			- 7·2	3	+ 1.3	
3145	697 - 87	23.32	- 1.2	+	- 6.0 - 4.4	+ 3·5 - 8·0
3162	703.77	29.23	-15·2 -12·6	4	- 4.4	
3199	721.76	46.21	-12.6	2	+ 8.5	— 6⋅3
3211	726-68	52-13	-27.8	2	-12·3 - 5·5	
3249	731 - 73	57.98	-12·4 + 3·3	5	- 5.5	- 5.3
3257	733 - 74	59 - 99	+ 3.3	3	+ 4.8	- 0.6
3271	734-68	60-93	+ 1·3 +15·0	4	- 1.2	- 1.8
3297	740-74	66-99	+15.0	4 3	+ 0.5	+ 0.5
3322	742-68	68-93	+15.0	3	- 2·8 -12·1	- 4.8
3342	749-67	3.42	+12.9	3	-12-1	- 0.5
3365	759-73	13.48	+15·3 + 2·8	6	- 1·8 + 2·5	+ 0.3
3376	768-70	22.45	+ 2.8	2 4	+ 2.5	
3379	773-66	27 - 41	- 5.4	1	+ 2.5	+ 4.5
3387	774-77	28.52	- 5·4 - 8·4 - 9·4 -21·4	3	+ 1.5	- 3.5
3396	776.72	30.47	- 9.4	4	+ 3.5	- 3.9
3398	782.74	36 - 49	$-21 \cdot 4$	3	+ 1.1	→ 1·7

SUMMARY OF OBSERVATIONS-(Concluded).

Plate No.	Julian Date.	Phase.	Velocity.	Weight	Residual M.	Residual C.
3408 3420 3423 3438 3438 3442 3447 3450 3459 3469 3472 3474 3470 3494	2,418,789-68 796-72 797-59 802-72 803-69 804-62 805-68 811-58 819-71 827-57 832-57 832-57 838-62 847-58	43·43 50·47 51·34 57·27 58·24 59·17 63·23 66·13 1·76 9·62 13·62 14·62 20·67 29·63	-27·7 -18·9 -24·0 -17·8 - 3·0 - 6·0 + 1·6 + 5·8 +28·5 +17·7 +21·0 +21·8 + 5·3 -20·8	55 5 4 5 5 5 2 2 4 4 4 5 5 5 2 2	- 5·5 - 0·8 - 7·0 -10·8 + 2·0 - 2·5 - 4·0 - 6·7 + 5·0 - 4·6 + 3·5 + 6·3 + 0·7 - 8·1	$\begin{array}{c} -0.5 \\ -1.5 \\ +5.9 \\ -0.2 \\ -1.4 \\ -1.4 \\ -1.2 \\ -0.8 \\ +2.5 \\ -1.9 \\ -5.2 \\ -1.5 \\ -0.2 \end{array}$

Notes 1. Phases are from J. D. 2,418,029,255.

Weights are reckoned on standard 10, 5 for character of plate and 5 for agreement in measurement of lines.

3. Residual M is that from Micrometer measurement.

" C " " Comparator "

The seventy-two observations were grouped into the following normal places:—

Normal Places

	Julian Date.	Phase.	Velocity.	Residual, O-C.	Weight.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2,418,317-48 515-92 515-92 338-54 672-90 649-39 480-61 456-85 543-96 556-70 804-94 267-14 265-12 554-60 601-07	37·28 43·02 48·93 52·02 57·74 60·11 64·81 69·10 4·35 9·61 13·88 18·88 23·27 23·20 30·00	$\begin{array}{c} -20 \cdot 2 \\ -20 \cdot 9 \\ -16 \cdot 1 \\ -17 \cdot 3 \\ -10 \cdot 0 \\ +1 \cdot 5 \\ +10 \cdot 1 \\ +22 \cdot 9 \\ +22 \cdot 0 \\ +22 \cdot 6 \\ +19 \cdot 1 \\ +8 \cdot 6 \\ -3 \cdot 0 \\ -7 \cdot 1 \\ -15 \cdot 0 \end{array}$	$\begin{array}{c} -0\cdot 12 \\ +1\cdot 25 \\ +3\cdot 18 \\ -1\cdot 55 \\ -4\cdot 12 \\ +2\cdot 26 \\ +0\cdot 23 \\ +4\cdot 46 \\ -3\cdot 13 \\ -0\cdot 01 \\ +2\cdot 36 \\ +2\cdot 05 \\ +0\cdot 94 \\ -2\cdot 55 \end{array}$	3 2 1·5 2 2 2·5 1 2 2 2·2 2 2·2 2 2 2 2 2 2 2 2 2 2 2 2

Dr. King's graphic method was then used in determining the preliminary elements.

These were:—

$$\gamma = -0.578 \text{ km}.$$
 $K = 24 \text{ km}.$
 $e = .1$

$$\omega = 330^{\circ}$$

$$T = 2,418,028.85$$

$$P = 71.7$$
 days.
and $\Sigma pvv = 147.1$

It was decided to apply the method of least-squares to reduce this value of \$\sum_{pv}\$ if possible. Observation equations were formed by means of the formula of Lehmann-Filhés.*

OBSERVATION EQUATIONS

-						
x	y	z	14	υ	C-O-N	Weight.
1.000 4. 4. 4. 4. 4. 4. 4. 4. 4.	- · 838 - · 913 - · 800 - · 656 - · 242 - · 024 + · 437 + · 811 +1· 086 + · 954 + · 689 + · 320 - · 057 - · 345 - · 526	+ ·962 + ·838 + ·096 - ·402 -1·010 - ·383 + ·523 + ·883 - ·023 - ·744 - ·990 - ·656 - ·121 + ·289	- · 332 + · 078 + · 513 + · 720 + · 995 + 1· 044 + · 987 + · 739 + · 006 - · 447 - · 748 - · 940 - · 852 - · 741	+ · 310 - · 023 - · 415 - · 630 - · 980 - 1· 075 - 1· 087 - · 830 - · 019 + · 548 + · 818 + · 871 + · 759 + · 651	$\begin{array}{c} -0.48 \\ -1.59 \\ -3.67 \\ +0.98 \\ +3.62 \\ -2.66 \\ -0.18 \\ -4.01 \\ +3.50 \\ -0.27 \\ -3.14 \\ -1.50 \\ +1.81 \end{array}$	3 2 1.5 2 2 2 2.5 1 2 2 2 2.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

in which

$$\begin{array}{lll} x &=& \delta \gamma \\ y &=& \delta K \\ z &=& K \delta e &=& 24 \ \delta e \\ u &=& K \delta \omega &=& 24 \ \delta \omega \\ v &=& \frac{K \mu}{(1-e^2)^3} \ \delta T &=& 2.135 \ \delta T \end{array}$$

15.601n

4.601 = 0

From the above observation equations there result the following normal equations:—

The solution of which gives

$$x = + .3791$$

 $y = - .3354$
 $z = - .4327$
 $u = + .4741$
 $v = + .8652$

Hence the corrections

$$\delta \gamma = + .379 \text{ km.}$$
 $\delta K = - .335 \text{ km.}$
 $\delta e = - .018$
 $\delta \omega = + 1''.146$
 $\delta T = + .405$

^{*} A.N. No. 3242.

These results gave satisfactory differences between the residuals from operation equations and the computed residuals, the highest difference being .06. \(\Subseteq \text{type} \) was reduced to 137.4.

The probable error of a normal place was found to be \pm 2.5 and that of an average plate—found by scaling residuals from the curve — to be \pm 3.4. Probable errors of the elements were also found and are given below together with the final values accepted.

$$\begin{array}{lll} \gamma &=& -, 20 \; \mathrm{km}, \, \pm , 31 \\ K &=& 23.665 \; \mathrm{km}, \, \pm , 48 \\ e &=& .082 \; \pm , 02 \\ \omega &=& 331^\circ.15 \; \pm 0^\circ.72 \\ T &=& 2.418.029.255 \; J.D. \; \pm 2.1 \; \mathrm{days} \\ P &=& 71.7 \; \mathrm{days}, \, \\ a \sin i &=& 23.250.000 \; \mathrm{km}. \end{array}$$

Thinking the probable error of a plate rather high for this type of star, it was decided to try measuring the plates with the spectro-comparator. All the plates, with the exception of ten which were too faint for this method, were re-measured. The standard plates used were Nos. 3172 and 3755, the former a sky plate taken with the new single-prism spectrograph and the latter a sun plate taken with the old.

The measures were grouped into fifteen normal places as before, each plate being placed in the same normal place as in the former work. These places are given below with the mean Julian Day, the phase from final T, the mean velocity, weight and residual from final curve.

NORMAL PLACES

	Julian Day.	Phase.	Velocity.	Weight.	Residual O-C.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2,418,317-48 (331-48) (331-48) (347-50) (257-68) (672-90) (640-52) (480-61) (450-85) (538-96) (558-42) (491-94) (490-96) (502-46) (502-17)	49·83 55·47 61·48 64·31 70·79 1·76 6·32 10·22 16·96 21·89 26·43 30·85 36·03 39·55 42·60	-22.7 -26.2 -22.9 -14.0 -3.5 +5.8 +17.2 +18.5 +25.0 +24.7 +18.9 -18.4	10 01 00 00 4 00 10 01 00 00 00 00 01 00 00	$\begin{array}{c} +2\cdot 09 \\ -0\cdot 11 \\ -2\cdot 38 \\ +1\cdot 75 \\ -2\cdot 32 \\ +1\cdot 111 \\ +2\cdot 57 \\ -2\cdot 82 \\ -1\cdot 66 \\ -0\cdot 15 \\ -0\cdot 30 \\ +2\cdot 77 \\ +0\cdot 22 \\ -0\cdot 28 \\ -3\cdot 65 \end{array}$

These normal places were plotted and the following preliminary elements were obtained graphically:—

$$\gamma = 0$$

 $K = 26$ km.
 $e = 0$
 $\omega = 270^{\circ}$
 $T = 2,418,088.405$ J.D.
 $P = 71.70$ days.

The value of Σpev was computed and found to be 207. One least-squares solution was applied to the above elements. As seen above the cecentricity is zero. T and ϕ have been given values for the purposes of the solution. The value of T was taken as fixed, for with e zero and ϕ 270 it would be impossible to obtain corrections to e, ϕ and T as two of the equations would be identical. Observation equations were formed and normal equations found from them, as follows:—

The solution of these equations gave the following corrections to the elements:—

$$\delta \gamma = + .17 \text{ km.}$$
 $\delta K = + .54 \text{ km.}$
 $\delta e = + .008$
 $\delta \dot{\omega} = + 0^{\circ}.81$

Hence the corrected values of the elements:-

$$\gamma = + .17 \text{ km}.$$
 $K = 26.54 \text{ km}.$
 $e = .008$
 $\omega = 270^{\circ}.81$
 $T = 2.418,088.405 J.D.$

P = 71.70 days. $a \sin i = 26,170,000 \text{ km.}$

These elements gave a new value of Σprv of 196. This is a very small reduction about 5%, — but the excellent agreement between the residuals, computed and observation equations, showed that further application of least-squares would be useless.

The probable error of a normal place and of an average plate were computed and found to be \pm 2.85 and \pm 3.4 respectively. There were three plates 1989, 1599 and 2134 which for some unknown reason gave abnormally high residuals, being - 14.0, + 11.6 and + 13.0 respectively. If these be omitted the probable error of an average plate becomes \pm 2.87.

The probable errors of the elements were also computed and are attached to the final values in the table below. The table gives the elements obtained in the two ways of measurement with their probable errors.

, Element.	Micrometer.	Comparator.			
Y. K		+.17 km ± ·42 26:54 km ± ·62 20:08 ± ·02 270°·81 ± 1°·26 2.418,085.405 J.D. 71·70 days. 26,170,000 km. ±3·4 ±2·9° ±1·4			

^{*} Omitting plates 1498, 1599 and 2134.

Fig. 8—Velocity Curve of 93 Leonis (Comparator Measurement).

Judging from the probable error of an average plate, there is little difference between the two methods of measurement. There is something to be said in favour of each. Underexposed plates may be measured by the micrometer, which would not permit of measurement by the comparator. On the other hand it is impossible to obtain good agreement in the velocities obtained from the various lines in a spectrum like that of this star, and on such a spectrum perhaps the best work can be done with the comparator, which enables the measurer to strike a mean all along the plate.

As regards the elements obtained, K is the only one, which shows a change worthy of note. The eccentricity is very small in both cases and the differences in ω need not be remarked upon.

L CYGNI.

Seven plates of this star were taken and measured. The spectrum shows the hydrogen lines, β , γ , δ and ϵ , and the calcium line K. The magnesium line λ 4481 appears occasionally but is barely discernible. The lines are all very broad and difficult to measure accurately, as is shown by the widely different velocities obtained from the various lines on the same plate. The star was dropped from the observing list here on account of the programme being so full at that time. The measures follow—

ė
75.12
12
-
5
7
3
ž
ž
ž
ã
ã
ã
200
200
200
200
ã
200
200
200
200
20 020
20 020
20 020
20 020
20 020
20 020
20 020
200

STAR.	No. of Neg.	Сатета.	Рьатв.	Вать.	Middle of Exposure G.M.T.	Duration.	Hour Angle at End.		Tempera Room. Beg. End.	Temperature, cook. Pres		Box.	Stat Width.	Secing.	Орастует.	Remarks.
Cygni	932	I I	Seed 27	1907 July 9	h m 17 52	п 45	h m 0 53	Ξ	20.5	19.7	25.0	24.9	-0014	Good	H	
	1718	а	я	" 15	20 22	22	3 55	×	14.5	13.5	21.9	21.9	.0015	Fair	Ξ	
	1804	ä	ä	Aug. 20	18 19	15	5 30	×	15.3	14.2	22.2	22.1	8	Fair	īď	
	1824	ä	3	57	18 22	22	4 35	 ×	14.2	13.5	22.6	22.7	я	Good	ы	
	1839	а	ı	" 27	16 52	22	3 12	*	16-3	15.0	22.8	22.8	¥	3	C	
	1845	ä	u	# 28	15 05	22	1 28	×	17.0	16.1	23.2	23.2	и	3	O	
	1886	ä	3	Sept. 14	14 34	52	2 05	×	6-91	15.5	21-6	21.5	3	Fair	Ь	

I—Harper.

MEASURES OF & CYGNI.

λ	932.		1718.		1804		1804.		1824		1824		1839	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861·527 4481·400 4340·634 4101·890 3933·825	- 6·79 -44·37 - 9·29	$1^{\frac{1}{2}}_{1}$	- 2·40 -19·70	$\frac{1}{2}$ 1	- 9·60 -34·46	1	+ 1.35	10110	-24·0 ₁ -31·2 ₄	1	-14·51 -52·16	1	- 8·87 + 7·55	1
Weighted Mean V _d V _d Curv.	-26·41 + 6·44 + ·03 - ·28		- 9·32 + 5·07 - ·16 - ·28		-17·89 - 2·56 - ·21 - ·28		-16·82 - 2·56 - ·21 - ·28		-18·20 - 3·41 - ·18 - ·28		-14·84 - 3·41 - ·18 - ·28		-11·45 - 4·03 - ·13 - ·28	
Radial Velocity	$-20 \cdot 2$		- 4.7		-20.9		-19.9		-23.1		-18.7		-15.9	

MEASURES OF CYGNI-(Concluded).

	λ	1845		1886.											
		Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
43 41	61 · 527	-22.36 + 1.90	1	11·48 1·21	1										
w	$\dot{\mathbf{V}}_d$	-16·57 - 4·24 - ·05 - ·28	5	09											
	adial Velocity	-21.1		-22.0											

SUMMARY OF MEASURES OF A CYGNI

Plate.	Date.	Vel.	Plate.	Date.	Vel.
932	July 9 1907	-20.2	1824	August 24 1907	-18-7
1718	" 15 "	- 4.7	1839	" 27 "	-15.9
1804	August 20 "	-20.9	1845	« 28	$-21 \cdot 1$
1804	" 20 "	-19.9	1886	September 14 "	$-22 \cdot 0$
1824	" 24 "	$-23 \cdot 1$			

а Орнгисні

This star was under observation during the summer of 1908, when twenty-four plates were taken. These were all measured and considerable range was found in the velocities obtained. The lines, however, are all broad and it is hard to get satisfactory agreement in the measurement of them. The lines appearing are the hydrogen lines β_1 , γ_1 , δ and ϵ , the magnesium line λ 4481, and the calcium K. It may be stated that the magnesium line was measured in many cases but does not appear in the measures following, for the reason that it differed to such a degree from the other lines. Whether this is a real difference or an error due to the character of the line it is hard to say. More plates will probably be taken and an attempt made to solve the system.

ŝ	4	4
ì	è	ä
'n	ė	
	۱	į
		2
	ú	ú
	1	
	S	2
		ė
	3	3
		i
		4
		۹
	٦	•
	•	5
	3	
8		
		3
		S

SESSIONA

		K	SPI	OR) [1	H.	E	C.	H.	LE	F	Α	S	TI	RO	W	01	W.	C.	(
L PAPER	REMARKS. N	25a		-																						
.194	pser	0		щ	d II	ŭ	a,	Д	ы	Ξ	Д	p-pi	H	Ξ	id	Д	Ξ	0	v	Ξ	Д	Д	Д	Д	ы	Д
	SEEING.			Good				*	Fair	Good	Fair		Good	*			3			Fair	Good	3	Fair			
	WIDTH.			9100	0017	0016	0015	·0014	.0015	9100	.0015	7	a	.0016	.0015	3	u	a	z	ä	ä	ä	3	¥	4	3
	Box.	End.		9.0												58.9							21.6		21.7	22
FEMPERATURE CENTIORADE.	PRISM BOX.	Beg.		8.0																						
CENT	Коом.	End.		0.0	19.0	14.4	19.0	19.5	19-6	20.5	18.7	18.5	14.5	23.0	19.6	21.6	17.0	19.0	18.5	21.5	18.0	17.8	17.8	17.0	19.0	18.2
	Ro	Beg.		1.0	0.61	14.5	19.2	19.8	19.7	21.0	18.8	18.7	14.5	23.0	20.0	21.6	17.0	19.4	18.3	22.0	18.8	18.0	18.2	17.8	19.5	19.0
Hour Angle	gt End.		рш	0 20 W										55	8		27	40	35			22	38	8		35
noi.	arat	α	в	16	28	12	10	10	10	14	13	55	17	Ξ	13	13	14	12	12	17	15	15	12	18	23	22
Middle	of Exposure.	G.M.T.		20 35																						
	DATE.		1908	Apr. 13	May 18	June 17	24	. 27	July 1	10	" 13	13	. 15	24		Aug., 5		e 27	. 58	31	Sept. 3	-	14	" 14	" F16	r." 16
	PLATE.			Seed 27	1 15	"	3	#	¥	27	27	ä	25	19	35	27	ä	77	39	×	33	3	8	3	a	а
.8.	19ms	c		I.L.	3	3	3	a	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
No.	of Neg.			1481	1540	1612	1632	1649	1654	1688	1701	1702	1715	1724	1752	1765	1819	1834	1843	1854	1862	1863	1884	1885	1890	1891
	STAR.			Ophiuchi.	. 3	ä	ä	ä	2	z	u	23	и	n	ä	ă	и	9	u	39	'd	n	3	3	я	я

3 GEORGE V., A. 1913

MEASURES OF a OPHIUCHI

	1481.	1542.	1542.	1549.	1612.	1612.	1632.
λ	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt
4861 · 527	$-21 \cdot 43$ $-29 \cdot 00$ $-26 \cdot 00$ 1 $+ 8 \cdot 76$	+ 0.87 1	-11.86 -11.53 $1\frac{1}{2}$ -6.03 1	+31·11 1 - 3·30 ½	+28.08 1	+32·57 2 +17·36 2	+43·01 1 +13·10 1
Weighted Mean Vo Vo Curv.	-17·79 +13·24 ·00 - ·28	+ 6·14 + 9·67 - ·09 - ·28	- 9·17 + 9·67 - ·09 - ·28	+18·51 + 8·16 - ·12 - ·28	- 2.17	+ 8·27 - 2·17 - ·21 - ·28	+23·07 - 4·92 - ·12 - ·28
Radial Vel	4.8	+15-4	+ 0.1	+16.3	+ 9.3	+ 5.6	+17.7

MEASURES OF a OPHIUCHI-(Continued).

	1649.		1654.		1688		1701		1702.		1715.		1724	١.
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	W
4861 · 527 4340 · 634	+6.77	1212	+21·04 +26·52 +23·78 +15·43	1 2	$+16.70 \\ +34.72$	1	+12.21	1	+ 3.96	1/211/21	+28·58 + 3·86 - 1·13 +30·56	1	+22·49 + 0·63 +52·42 +30·56	1
Weighted Mean Volume Volume Curv.	+19 - 5 -	98	+23 - 7 -	·63 ·15	+24 -11 -	· 00 · 14	+11 -12 -	·01 ·22	+ 5 -12 -	·01 ·22	+13 -12 -	72 28	+30 -11 -	5 - 58
Radial Vel	+13	-1	+15		+13	-4	- 0	-8	- 7	.3	- 0	-1	+1-	1.4

[MEASURES OF a OPHIUCHI-(Continued).

	1752		1765		1819		1819		1834		1843		1854	-
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861 · 527 · · · · · · · · · · · · · · · · · · ·	$^{+}_{+36\cdot30}$	1	$+35.45 \\ +50.84$	12	$+13 \cdot 36 \\ +53 \cdot 76$	1	+ 3.54	1	+14.95 +30.59 +19.01 +33.33	1	+54·70 +47·50 +26·90 +35·65	1	+79·08 +44·47 +31·07	1
Weighted Mean V _a V _d Curv.	+19 -17 -	·72 ·19	+34 -19 -	·11 ·18	+26 -22 -	·66 ·18	+ 8 -22 -	-66 -18	+25 -23 -	-05 -09	+41 -23 -	·18 ·12	+52 -23 -	.49
Radial Vel	+ 1	-4	+15	-4	+ 3	.5	-14	.7	+ 2	-3	+17	-7	+28	.5

MEASURES OF @ OPHIUCHI-(Concluded).

	1002		1000		1004		1000		1000		1000		1001	
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861 · 527 · · · · · · · · · · · · · · · · · · ·	+22.05	1214	+ 4·35 +50·73 +62·49 +42·69	1	+37·00 +11·17 +28·03 +32·13	1012	+26·70 +56·48 +65·71 +32·06	1	+62·74 +67·27	1	$+16 \cdot 18$ $+26 \cdot 90$	1	+61·66 +14·92 + 8·50 +13·78	141(2
Weighted Mean V a V a Curv.	-2	2·31 3·58 ·12 ·28	-22		-24	7 · 33 4 · 02 · 21 · 28	-2		-2	1 · 25 1 · 02 · 21 · 28	-2	3·18 1·80 ·15 ·28	-21	· 15 · 80 · 15 · 28
Radial Vel	+	8-3	+18	8-2	+ :	2.8	+23	3.0	+39	9.7	+ 1	9.9	+ 3	3-9

SUMMARY OF MEASURES OF a OPHIUCHI

Plate No.	Date.	Vel.	Plate No.	Date.	Vel.
1481 1542 1549 1612 1632 1649 1654 1688 1701 1702 1715 1724	April 13, 1998 May 18 " " 22 " " 17 " " " 17 " " " 18 " " " 17 " " " 17 " " " 18 " " " 18 " " " 18 " " " 18 " " " 18 " " " 18 " " " 18 " " " 18 " " " 18 " " " 18 " " " 24 " "	$\begin{array}{c} -4.8 \\ +15.4 \\ +0.1 \\ +16.3 \\ +9.3 \\ +5.6 \\ +17.7 \\ +13.1 \\ +15.9 \\ +13.4 \\ -0.8 \\ -7.3 \\ -0.1 \\ +14.4 \end{array}$	1752 1765 1819 1834 1843 1854 1862 1863 1884 1885 1890 1891	July 31, 1008 Aug. 5 " " " " " " " " " " " " " " " " " "	+ 1·4 +15·4 +3·5 -14·7 +2·3 +17·7 +28·5 +8·3 +18·2 +2·8 +23·0 +39·2 +0·9 +3·9

σ Cassiopeiae

This star was under observation here during the summer and fall of 1909. A number of plates were taken and measured. The spectrum is of the helium type—hydrogen, helium, the calcium K, and one or two faint iron lines showing. The lines are all broad and ill-defined and measures on them are liable to be greatly in error.

SESSIONAL	PAPER	No.	25a										
		REMARKS.											
	ver.	pset.	0		ы	C	н	O	ñ	ы		C	PIC
		SEEING.			Fair	3		5	5-3-4	4-0		3-4-5	
		SLIT WIDTH.			.002	я	ъ	а	a	d		u	
		Box.	End.		26.2	29.3	27.2	23.00	8.9	2.0		26.8	25.3
	TEMPERATURE CENTIGRADE.	PRISM BOX.	Beg.		26.2	29.0	27.4	23.21	6.9	5.5		27.0	25.5
RAMS	EMPERATUR Centigrade.	ĸ.	End.		17.5	21.0	22.0	13.1	2.0	0.0		17.5	19.5
TROG		Room.	Beg.		18.6	21.6	24.5	13.8	2.0	0.5		19.0	20.5
RECORD OF SPECTROGRAMS	Hour Angle	at End.		В	1 20 E	1 00 E	2 58 E	22 W	2 15 W	3 20 W		2 30 E	3 27 E
RECOF	'uoi	tern	α	8	09	20	96	09	23	-52		92	22
1	Middle	Exposure.	G.M.T.	E	19 35	19 00	13 40	15 45	16 47	10 00		18 32	17 37
		DATE.		1909	ıly 14	. 27	Sept. 14	Oct. 4	. 30	Dec. 2	0161	July 11	" 13
		PLATE.			Seed 27 July 14	3	www x	Seed 27 0	4	, D		" Jı	а
	as.	amer	c		-	'd	ų	¥	и	u		ä	ä
	No.				2660	2680	2784	2839	2905	3000		3521	3527
-Plaskett. -Harper. -Parker. -Cannon.		STAR.			ssiopeiæ	3	3	3				4	4

MEASURES OF σ CASSIOPEIAE.

λ	2660		2680		2784.		2839		2839		2902		2902	2.
	Vel.	Wt	Vel.	Wt	Vel.	Vt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	W
1861 - 527 1471 - 676 1404 - 927 1388 - 100 1340 - 634 1282 - 722 1143 - 928 121 - 016 1101 - 890 0026 - 352 1009 - 417 1933 - 825	- 60 · 90 - 75 · 34 - 26 · 08 - 30 · 12 - 39 · 63 - 25 · 63 - 53 · 34 - 40 · 36	1 1	-50·69 -45·87 -27·35 -65·20 -33·03 -19·68	1 1	$-54 \cdot 23$ + 2 \cdot 27 -15 \cdot 46	1	+ 5·81 - 6·46 - 15·07 - 5·76	in topics	+ 2.65 +10.96 -10.75	100	-48·60 -24·98 + 4·51 -17·41	1 2	-45.44 -31.31 + 1.50 -45.99 -29.75	
Weighted Mean V a V d Curv.	-38·30 +17·20 + ·16 - ·28)	-40·34 +18·78 + ·07 - ·28		-33·56 +17·08 + ·17 - ·28		- 3·15 + 8·34 - 00 - ·28)	- 4.45 + 8.34 -00 28		-28-59 + 0-23 08 28		-29·91 + 0·23 - ·06 - ·29	3

measures of σ cassiopeiae—(Concluded).

λ	3009		3521		3527									
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4471 · 676 4404 · 927 4340 · 634	-39·30 -19·47	Selfonia-Roofs	+6.85		+17·79 - 1·85 +15·11 +32·26	Markin Highlan								
Weighted Mean V _d V _d Curv.	-25·34 -13·11 - ·15 - ·28	2	-12·63 +18·78 + ·14 - ·28		-44 · 48 + 18 · 88 + · 18 - · 28	3								
Radial Velocity	-38-8		+ 6.0		-25.6									

^{*} Last line only.

SUMMARY OF MEASURES OF G CASSIOPEIAE

Plate No.	Date.	Vel.	Plate No.	Date.	Vel.
2660 2680 2784 2839	July 14, 1909. 27 " Sept. 14 " Oct. 4 " 4 "	$ \begin{array}{r} -21 \cdot 3 \\ -21 \cdot 8 \\ -16 \cdot 6 \\ + 4 \cdot 9 \\ + 3 \cdot 6 \end{array} $	2902 3009 3521 3527	Oct. 20, 1909	$ \begin{array}{r} -28 \cdot 7 \\ -30 \cdot 0 \\ -38 \cdot 8 \\ +6 \cdot 0 \\ -25 \cdot 6* \end{array} $

9 Camelopardalis.

Four plates of this star were taken and measured here in the autumn of 1909. The spectrum shows quite a large number of lines due to hydrogen, helium and calcium, and a few faint ones due to iron, together with the lines $\lambda\lambda$ 4096 and 4089. The interesting thing about the star is the fact that the calcium lines H and K show velocities different from the other lines. Observations were being taken of this star at the Yerkes Observatory, and our measures of it were sent to them and consequently it was dropped from our list.

^{*} One line-K.

RECORD OF SPECTROGRAMS

	Remarks.						
	SGLVE	10		C	Ö	ъ	Į.
	SEEING.				5		5
	SLIT WIDTH.			-005	×	¥	3
		End.		20.5	23.0	22.7	¥
TEMPERATURE.	PRISM BOX	Beg.		20.3	22.85	22.6	22.7
TEMPE	M.	End.		11.7	11.0	12.4	12.7
	Коом.	Beg.		11.5	12.0	14.1	12.4
	Hour Angle at End.		6	2 45 E	2 45 E	1 15 E	35 E
.0	oitern	a	E	42	22	46	38
Middle	of Exposure.	G.M.T.	8	18 44	17 43	18 52	19 36
	DATE.		1909	Sept. 20	Oct. 4	00	oc s
	PLATE.			Seed 27	ä	ä	ä
	mera.	C		н		3	¥
	No. Neg.			2805	2842	2874	2875
	STAR.			Camelop.	u	5	я

-Cannon.

MEASURES OF 9 CAMELOPARDALIS

	λ	280	5.	2842	2.	287	ł.	287	1.	287	5.	287	5.
		Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4471-676 4437-718 4388-100 4340-634 4143-928 4116-4 4101-890 4096-9 4099-1 4026-352 3970-177 3968-625		+23·6 +14·0 +12 -13 -21 +24 -24 -21 -28	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+16 +34 -19 +29 +48 - 5 +25 - 5	1 -621-641-64-64-68-62-1	-14 - 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+20 +19 -23 -21 -25	1 2	- 1 -18 +12 -24 +17	1	- 3	1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
*Weight	V d	-27·5 +21·2 + ·10 - ·2	8	-17·66 +19·93 + ·16 - ·28	5	-17·6 +19·3 + ·0 - ·2	5	-20·8 +19·3 + ·0 - ·2	5	-26·4 +19·3 + ·0 - ·2	5	-26·5 +19·3 + ·0 - ·2	5 4
Radial V	Velocity	- 6.4		+ 2.2		+ 1.5		- 1.7		- 7.3		- 7.4	

SUMMARY OF MEASURES OF 9 CAMELOPARDALIS

Plate.	Date.	Vel.	Plate.	Date.	Vel.
2805	September 20, 1909	- 6.4	2874	October 8, 1909	- 1.7
2842	October 4 "	+ 2.2	2875	" 8 "	- 7.3
2874	« 8 "	+ 1.5	ш	« 8 "	- 7.4

^{*} Last two lines only.

APPENDIX C.

THE ORBIT OF ω URSAE MAJORIS. MEASURES OF ζ AQUILAE AND ν CYGNI.

T. H. PARKER, M.A.

THE ORBIT OF W URSAE MAJORIS.

The star ω Ursae Majoris ($\alpha=10^{8}48^{\circ},\delta=+43^{\circ}43^{\prime}$, phot. mag. 4.8) was amounced as a spectroscopic binary by Vogel in 1903. It was included in a list of 528 stars whose spectra were investigated by Vogel and Wilsing at Potsdam. Vogel states that on one plate he found an indication of the doubling of the K line, and the Mg line λ 481 doubled on one or two others.

It was first observed here in Feb. 1908 and since then sixty-nine spectrograms have been obtained-fifteen with the old, and the remainder with the new singleprism spectrograph. This star is an A type, according to the Harvard classification, the principal lines measured being the $Mg \lambda 4481$, the hydrogen series and K. Only three of the plates obtained here show definite double lines. This is probably due to the faintness of the secondary component, whose mass as seen later is only about one-sixth that of the primary, as well as to insufficient dispersion in separating the two spectra. The length of exposure required for a star of this magnitude forbade the use of the three-prism instrument. On this account also Seed 27 plates were used for the majority of the spectrograms. Six were taken, however, on Seed 23, and the finer grain gave a much better spectrum. The average length of exposure required for these was 90 minutes. The blending of the lines of the two spectra made the measurement of the plates rather unsatisfactory. In one plate in which the lines were separated, those which showed doubling were the Mg line A 4481 and the two iron lines A 4325 and A 4308. In another, the lines A 4308 and λ 4101 (H_δ) were found to be doubled, with faint indications also of a secondary spectrum in iron lines \$\lambda 4549\$, \$\lambda 4325\$ and \$\lambda 4260\$. In the third plate, only \$\lambda 4308\$ was measurable. No trace of a doubling of the K line was found on any of our plates.

The lines measured were as follows:-

Elements.	Wave-Length.	No. of times measured.
I ₈	4861 - 527	12
e	4549-766	46
Ig I ₇	4481 · 400 4340 · 634	46 69 58
e	4325-939	5
e	4233 - 328	7
ä	4128-211	9
I8	4101.890	33
a (K)	3933 - 825	39

Astronomische Nachrichten, 163, p.145, 1903.

The hydrogen lines with the exception of H_{γ} are broad and diffuse. The Mg λ 4481 is the best line in the spectrum and was measured on every plate, as will be seen in the table above. Metallic lines other than Mg λ 4481, Fe λ 4549 and K do not occur frequently. As different lines on the same plate in many cases gave widely differing velocities, the determination of the period offered some difficulty. Several such plates were re-measured or 'ebecked' by other observers, and the resulting means taken. These measures were usually in fair agreement. From the consideration of the velocities of the Mg line alone, the period was found to be between fifteen and sixteen days. Several trials using the velocities of whole plates gaye 15.84 days as the most satisfactory period.

Following is the record of observations and detailed measures of the plates, and this followed by a summary of the measures containing the velocities and the phases and residuals from the final elements.

RECORD OF SPECTROGRAMS

																					3	G	EC	R	GE	v	., /	١. :	1913
		REMARKS.				Off 10 min.	Clouded over																	Clouded over					
	.19	Aləs	OF		Η	a, H	i a.	ρ, Ι	E 5	20	۲	0	-	0	0	I.	٥٥	00	24	Ы	0:	q ã		. 0	ñ	Ö	ī.	ā,	Z Z
		SEEING.			Fair	Good	Fair	Fair	Fair	Fair	Good	3			Very Hazy	Fair	Hazy	Good	3	4		Hase	fari	Fair	ĸ	Good		Hazy	Cloudy
	SLIT	Width	INCHES.		9100.	s 1s	8	35 7	1 35	.0015	¥	a	1		9100		1 16		.005	ä	3 3	а	и	я		.005	* :	3 3	8
		Box.	End.		0.7	6 ×	10.8	23.4	2.47	2.0	00	1.9		1 3.3	0.4-	5.3	0.0	000	3.1	5.4	2.6	0.00	0 00	10.8	6.4	9.01	9.3	6.79	23.2
	TEMPERATURE CENTIGRADE.	Prisk	Beg.			0 ×						- 1		ш															23.5
	TEMPE	Коом.	End.			9.5				- 1	11.8	-15.5			1	1		l I	- 1	- 1	1								17.6
			Beg.		- 5.0	- 10.5	6.5	8.61	0.61	- 2.0	-11.0	-15.5		-19.0	-12.0	-17.0	000	9.0	- 0.4	0.0	0.0	0.0	4	9.5	8.00	4.5	5.0	100	18.0
	Hour Angle	at End.		8 4		2 50 W																		3	35	15		88	5 20 W
		tern		ā	43	13 th	52	45	# O	223	20	19	00	229	75	38	25	5.5	42	35	8.5	3 %	3 9	32	200	43	43	G :	213
	Middle	Exposure.	G.M.T.	# 4		17 07																							16 32
		DATE.		1908	Feb. 21	Mar. 9 Apr. 15	a 17	May 18	nute o	Dec. 9	91 #	. 21	1909		Feb. 3			12	" 13	25	86		, w	* 12	19		98		18
		PLATE.			Seed 27	1 3	a	a a	*	. 3	A	и				. '	ы	u	u	a :	1 11	4	u	u	ч	u	* *	4 15	я
	.8.	19me	c		I.L		4	3 9	ä	¥	a	a	*		1 3		¥	-	a	36 3	8 16	a	a	ä	a	a	3 3	1 31	25
	No.	Neg.			1340	1489	1499	1537	1637	2021	2037	2063	00000	5003	2232	6077	2293	2354	2369	2411	2431	2466	2480	2494	2500	2508	2520	2535	2551
Caund		STAR.		Ursæ	Majoris.	. 4	a	2 2	3	3	3	¥	3	. 1		3	ä	ä	¥	* :	. 3	ä	¥	a	4	të.	= 1	3	*

P-Plaskel I-Harpel P'-Parkel

SESSIONAL	PAPER	No.	25a
-----------	-------	-----	-----

		On scale of 5.																											
24 2	i,	222		<u>ā</u> , a	ري.	ΞO	ā,	טכ	Œ	=	ā,	1, 5	ة	, ä.	Z,	4	10	ةِن	Ę	12	၁	21	Z;	I	3	1 2	PLC	20	,
Good	Poor	Fair. 5-3		4.	4-5	2.4	5	0.0	0 40	**	4-0		9.4		3-0.	2-3-4	2	4-2			4-2-4	3-4	4-5	49		4-9		1.0	
2 2 3				3 3	в	2 2	3 :	3 3	31	3	3	4 3	MON.	.002		4	: :	. :	4	3	н	Ħ	3 :	5		: 3		77	
27.0	21.2	225.1	-	0.6 -	1.6	8 5.	9.4-6	100	9.0	000	3.7	œ i	12.0	100	6.6	12.1	15.9	16.85	19.7	14.4	16.4	18.0	- 4.5	1.1		9.0	9.6	00.3	20.02
272	21.3	225.7	0.01	- 1	1	25.7	- 1																1	1		4.	10.01	200	0.00
		24.0 11.8		15.4	-10.0	-15.3	-14-1	5.3	00	1 2.0	6.4 -	0.5	10.3	1.0	1.0	9.6	10.7	15.1	99	10.0	7.4	11.9	-15.0	-19.0		1	+ 0		
20.9	17.2	25.1	5	-14.5	0.6	-14.5	-14.1	2.5	1	0.5	0.6 -	2.5	4.11	100	9.7	10.0	12.2	15.5	0.0	10.0	0.6	12.5	-14.5	-19.0		- 5.9		4.0	0.17
	30 W	30 W				36 36									30 W												200		
	9	900	4		_	_		•	.7	62	-			h	0	-	7	-	27 :	_	00	7	_			~	20	20 1	0
45	95	55 46	8	51	38	67	88	91	17	200	96	55	28	38	3 \$	96	22	47	3	3 2	38	8	65	81		91	65	28	3
22 33	05	17	9			80																					25		
14	16	222				99			61	252	10	16	92	25	14	15	16	15	15	= :	2 12	122	23	21			18		
" 31 June 2	, 15	0et. 8	ov. 15	1910 n. 14	3.55	eb. 18	3 23	28							3 22										1911	ar. 10	Apr. 10	27	07
				Ja		Fe			M					Ž.						,	Z.		23			M	V		
" * W	Extra	Seed 27		3.	8 3	3 3	а	3	8 3	1 3	a	3	4		3	18	16	3	4	= =		=	Seed 2	12		#	=		
3 3	4	3 3 1	•	a :	: :	4 4	3	и	3 5	. 4	u	¥	4 1		. 4	H	ä	ä	a ·	8 8	1 3	ä	ы	75		ä	a	u :	đ
2552	2571	2683	2959	3112	3144	3198	3200	3248	3282	3321	3353	3357	3364	3377	3301	3305	3397	3406	3407	3416	3477	3454	3866	3893	5	14094	4182	4231	4267
3 3	is .	3 3		a	2 2	3 1	1 12	я	3 1	2 12	ü	u	я	3 1		77	¥	и	¥	a i	1 '8	3	79	я		ä	ŭ	3	Ħ

MEASURES OF ₩ URSAE MAJORIS

λ	1340.	1340.*	1386.	1386.*	1489.	1489.*	1499.
	Vel. W	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel Wt	Vel. Wt
4549	-17·23 14 - 9·45 1 + 4·43 4 -13·19 1	-16-81 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-13.78 1	-19-94 13 -17-88 1	-15·45 1 -23·93 1	
Weighted Mean V _a V _d Curv.	- 7·76 - 2·79 - ·10 - ·28	-11·48 - 2·79 - ·10 - ·28	-12·28 -11·33 - ·03 - ·28	-12·89 -11·33 - ·03 - ·28	-19·44 -21·45 - ·15 - ·28	-23·84 -21·45 - ·15 - ·28	+17·26 -21·82 - ·01 - ·28
Radial Velocity	-10.9	-14-6	-23.9	-24.5	-41.3	-45.8	-4.8

MEASURES OF ω URSAE MAJORIS-(Continued).

_ = = _	1499		1537		1537	7.*	1579		1579	.*	1637		202	1.
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wŧ	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861	+14-85	1	+ 4.60	2	+ 7.13	12	-15.89 +10.13 +0.52 -19.38	2 1 2 1	-15·29 +14·15 - 6·68	1	+ 2.95 - 3.90	1 2 	-61·28	3 ½ 1 1
Weighted Mean Va Vd Curv	+14-83 -21-83 01 22	2	+ 4.66 -24.68 15 28		+ 7·11 -24·6 - ·11 - ·2	7	- 3·35 -23·18 - ·22 - ·28	3	- 0.68 -23.18 22 29	3	- 1.66 -20.18 21 28	8	-61·3 +23·2 - ·0 - ·2	9
Radial Velocity	- 7.2		-20.5		-17-9		-27.0		-24-4		-22.3		-38.3	

^{*} Check measurement.

MEASURES OF ₩ URSAE MAJORIS-(Continued).

	2037		2063.		2099.		2232.		2259.		2299.		2321	
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861	-23·82 -21·11 -26·76	1 1 ¹ / ₂ 1	-73·87 -42·77 -40·76 -57·20	2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	$-47 \cdot 27$ $-36 \cdot 61$ $-29 \cdot 30$ $-54 \cdot 09$	1 12 1	-19·34 -17·74 -16·48 -22·14	2 1	-18·44 -28·43	1	$-46 \cdot 31$ $-21 \cdot 30$ $-14 \cdot 33$ $-26 \cdot 60$	1 1 1 1 2	+ 5.91 + 8.89 +13.40	1 1 2
			-49·76 +20·72 - ·03 - ·28		-39·97 +21·61 - ·03 - ·28		-17·03 + 4·70 - ·03 - ·28		-25·20 + 2·58 - ·03 - ·28		-22·05 - 3·54 - ·03 - ·28		+ 8·39 - 7·30 - ·00 - ·20	7
Radial Velocity	- 2.74		-29.3		-18.7		-12.7		-22.9		-26.0		+ 0.7	

MEASURES OF ω URSAE MAJORIS—(Continued).

	2354.		2369.		2411.		2431		2447.		2466		2480	
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4549	-15.94 -28.69 -30.14	1 1 1	$-25 \cdot 43$ $-14 \cdot 89$ $-18 \cdot 20$	1½ 1½ 1	+ 0.93 + 2.54	1	+19·69 - 0·40	1	+ 1.08 $- 1.50$ $+ 1.64$	1	- 4·33 - 0·75	1	-12·19 - 5·55 - 7·70	1 1
V_d	-23·29 -10·95 ·00 - ·28		-18·78 -11·34 -00 - ·28		+ 1·72 -15·21 - ·07 - ·28		+10·00 -16·00 - ·10 - ·28		+ 0·42 -17·54 - 07 - ·28		- 3·14 -17·87 - ·19 - ·28		- 5·84 -19·74 - ·03 - ·28	
Radial Velocity	-34.5		-30.4		-13.8		- 6.4		-17.5		-21.5		-26.1	

3 GEORGE V., A. 1913

Measures of ω ursae majoris—(Continued).

	2494		2500		2508		2520		2525		2535		2549	
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4549	-12.56 -6.57	1	$^{+21\cdot76}_{+28\cdot00}$	1	+26.79 +9.49	1	- S-99 -10-17	1	-26.90 -21.98	1	$+17 \cdot 47 + 15 \cdot 15$	1	+23.71 +26.61	. 1
Weighted Mean V _d Curv	-20·72 - ·06		+24·88 -22·15 - ·18 - ·28		+16·96 -22·99 - ·15 - ·28		-10·36 -23·31 - ·18 - ·28		-24·4- -23·6- - ·16 - ·25	9	+16·7 -23·2 - ·0 - ·2	7 5	+23·1' -24·4 - ·1' - ·2'	1
Radial Velocity	-32-4		+ 2.3		- 6.4		-34.1		-48.5		- 6.9		- 1.7	

MEASURES OF ω URSAE MAJORIS—(Continued).

	2549	.•	2551		2552		2557		2571		2583		2878	
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4549	$+21 \cdot 28$	1	+23.71	1	-31·95 - 9·69 - 3·01	1	$-20 \cdot 10 \\ -15 \cdot 92$	1 2	-15.44	1 2	+18.42	2	-35.53	1
Weighted Mean Va Vd Curv. Radial Velocity	+23 -24 - -	41 19 28	+19·5 -24·5 - ·5 - ·5	26 23 28	-13-8 -23-8 	32 25 28	-15-2 -23-6 1 2	1 18 28	-19·1 -21·1 - :	50 25 28	+19·5	96 25 28	-39·1 +19· + - :	48 21 28

^{*} Check measurement.

MEASURES OF ω URSAE MAJORIS—(Continued).

	2959.	3112. 3112	2.* 3144.	3144.*	3161.	3198.
λ	Vel. Wt	Vel. Wt Vel.	Wt Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wi
4481 4340 4325 4233 4101	-40.83 2 -28.58 1 -25.92 4 -48.86 4	-14·41 1 -11·33 -13·15 1 -14·92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{-31\cdot 48}_{-48\cdot 21}$ 1	+ 8·83 1 + 5·24 1	-16-21 1
Weighted Mean Va Va Curv.	-37·78 +25·23 + ·15 - ·28	-13·72 -12· +13·22 +13· + ·04 + · - ·28 - ·	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-37·37 + 8·83 - ·03 - ·28	+ 6.85 + 6.32 + .12 28	-16·35 - 1·66 + ·10 - ·28
Radial Velocity	-12.7	- 0.7 + 0.	7 -27.8	-28.8	+13.0	-18-2

MEASURES OF ω URSAE MAJORIS—(Continued)

		Mi	EASURES	OF	ω URSA	E N	(AJORIS-	-(U	ontinue	a).				
	3205		3212		3248		3282		3321		3321	.*	3340	
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4549	-31·75 -34·01 -26·00	2 1	-34.07	1	-17·23 -17·59 -17·86	1	- 2·42 + 5·09 - ·28	1	- 5.73 - 8.90 -10.87	1 1 2 1 1	- 9·94 - 9·13	1	+ 7.08 +15.38 + 7.22	1
Weighted Mean V a V d Curv.	-31 - 2 + -	85 04	-37. - 3. + .	85 03	-20· - 5· + ·	97 96	+ 3·18 - 7·2 - ·18 - ·2	6	-15·50 -10·44 + ·10 - ·2	5	-14·5 -10·4 + ·1 - ·2	5	+ 9·2 -14·1 - ·1 - ·2	7
Radial Velocity	-34	2	-42	0	-26.	3	- 4.5		-26.2		-25.2		- 5.3	

^{*} Check measurement.

25a-16

3 George V., A. 1913 $\label{eq:measures} \mbox{ weasures of ω ursae majoris} - (Continued).$

λ	3353		3357		3364		3364	*	3375		3375	•	3377	
	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wτ	Vel.	Wt	Vel.	Wt	Vel.	11.
549	- 0-49	1 2	- 8-28 -13-75	1,12	-12·74 - 8·79	2 1½	-22-38 -11-85 -10-98	1 1	+27 · 39 +32 · 71 +12 · 07 +11 · 86	1½ 1½ 1	+22·06 +30·08	13	+ 4.83 +11.08	3 1
Weighted Mean V a V d Curv.	+ ·2 -12·3 - ·0 - ·2	9	-10·7 -14·8 - ·0 - ·2	8	-10-6 -16-5 0 2	4	-11·5 -16·5 - ·6 - ·2	4)6	+22 ·6 -19 ·1 - ·6 - ·5	6	+24·0 -19·1 - ·0 - ·2	6	+ 2 -19 -	70 08
Radial Velocity	-12.5		-25.9		-27.5		-28-4		+ 2.0	5	+ 4-6	5	-17-	5

MEASURES OF ω URSAE MAJORIS-(Continued).

λ	3377.*	3377.*	3388.	3388.*	3391.	3391.*	3395.
	Vel. Wi	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt
4861 4549 4481 4340 4233 4128 4101 3933	+ 0.76 + 0.93 1	- 2.42 1 - 2.08 1	-15·92 2 - 6·24 1	- 6·25 11 - 9·83 1	-20·74 ½ -19·71 ½ -12·92	-19·10 ½	- 4·50 1½ - 2·23 1 - 2·03 1 - 9·63 ½ - 7·89 ½
Weighted Mean V _d V _d Curv.	+ 0·15 -19·70 - ·08 - ·28	- 2·62 -19·70 - ·08 - ·28	-14·20 -20·75 - ·25 - ·28	- 7·14 -20·75 - ·25 - ·28	-17·80 -20·95 ·00 - ·28	-19·10 -20·95 ·00 - ·28	- 5·01 -21·12 - ·07 - ·28
Radial Velocity	-19.9	-22.7	-35-5	-28.3	-39.0	-40.3	-26.5

*Cheek measurement.

Measures of ω ursae majoris—(Continued).

	3395	.*	3397	. 3397.	٠	3406.		3407.	3407	.*	3416.	
λ	Vel.	Wt	Vel.	Wt Vel.	Wt	Vel.	Wt	Vel.	Wt Vel.	Wt	Vel.	Vτ
4549	-16·70 - 9·49	1	+32 · 56 +32 · 19 +31 · 98	1½ +26·90 2 +27·07 ½ · · · · · · · · · · · · · · · · · · ·	1	-12·72 - 4·50 - 2·55	1 2	-12.59 + 4.50 - 3.14 + 6.05	$1 - 19 \cdot 08$ $1 + 6 \cdot 57$ $\frac{1}{2} + 2 \cdot 49$	1	-15·29 -20·11 -14·52	1
Weighted Mean Va Va Curv.	-14·29 -21·13 - ·00 - ·29	2	+35 · 60 -22 · 32 - · 15 - · 28	2 -22-3	2 2	- 8·42 -21·33 - ·09 - ·28		- 7·55 -23·41 - ·12 - ·28	-23·4 - ·1	2	-16 · 95 -23 · 55 - · 07 - · 28	
Radial Velocity	-35.8		+12.9	+ 4.0		-30.1		-31-3	-31-6		-40.8	

MEASURES OF ω URSAE MAJORIS-(Continued).

	3422		3441		3454.									
λ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4549 4481 4381 4340 4325 4308 4271 4101 3933	+26 · 12 +32 · 45 +30 · 40 +13 · 64 +13 · 24 +11 · 63	1	- 7·25 - 8·08	1 1 1 2	+ 3·06 +26·38 +17·34 +16·03 + 1·08	1								
Weighted Mean V _s V _d Curv.	+25·2 -24·2 - ·0 - ·2	4 2 8	- 7·6 -24·6 - ·1 - ·2	8	+12·0 -24·6 - ·1 - ·2	3 9 8 —				-				
Radial Velocity	+ 0.7		-32.7		-13-0									

*Check measurement.

MEASURES OF ω URSAE MAJORIS-(Continued).

	3866		3866	. *	3893.2	2	3893	S	4094	P	4094	.S	4183	2.
λ -	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	W
4861·527 4549·766 4481·400 4340·634 4325·939 4308 4128·211 3933·825	-12.76		- 9·31 - 8·36	1	+58·86 +80·99 +117·98	10 10014	-54.91 -44.96 -51.03	1	+104-32		-20.77	s 1	-15.69	9
Weighted Mean V _a V _d Curv.	+22.	83 09	-15· +22· -	83 09	+93·9 +20·8 + ·0 - ·2	6	-54 +20 +	86 07	+104 - 20 - :	18 18	-16· -20· -	18 18	-10· -20· -	17 28
Radial Velocity.	+ 3-:	2	+ 7-	2	+114-6		-34	0	+ 83	7	-36	8	-31	1

MEASURES OF W URSAE MAJORIS-(Concluded).

	4231.		4267.										
λ	Vel.	Wt	Vel. Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4861 · 527 ·	+7.59 $+20.38$ $+8.09$ $+17.60$	1	- 4.92										
Weighted Mean Va Vd Curv.	+14-90 -22-40 25 25	6	- 8·50 -23·26 - ·30 - ·28										
Radial Velocity	- 8-1		-32.3										

*Check measurement. P—Primary. S—Secondary.

SUMMARY OF MEASURES

Plate.	Julian Date.	Phase from final T.	Velocity.	No. of Lines.	Weight.	0-C
Plate. 1340 1346 1346 1346 1446 1446 1456 1456 1456 1557 1577 1579 2057 2057 2057 2057 2057 2057 2057 2057	Julian Date. 2,417,966-802 8,000-713 600-903 900-903 900-903 900-903 900-903 900-903 900-903 900-903 900-903 900-903 900-704 900-704 900-704 900-704 900-705 900-705 900-706	final T. 2.702 2.702 3.702 3.702 3.702 3.702 3.702 10.909 10.300	-12-14 -43-14 -4		Weight. 5 6 4 2 2 3 2 2 2 4 6 6 5 7 7 2 4 4 4 3 3 5 4 6 6 2 2 3 6 2 2 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+ 5.1 + 0.9 + 128.3 + 128.3 + 134.2 + 134.2 + 134.2 + 15.0 + 15.4 + 15.0 + 15.4 + 15.0 + 16.0 + 16.0
3364 3375 3377 3388 3391 3395 3397 3406 3407 3416	799-680 768-639 770-666 774-817 775-611 776-646 782-665 787-625 789-627 790-594	8 · 259 1 · 378 3 · 409 7 · 556 8 · 350 9 · 385 15 · 405 4 · 524 6 · 526 7 · 493	-23·9 -27·9 +8·4 -20·0 -33·1 -39·8 -29·6 +9·9 -29·3 -31·5 -40·8	5 6 5 5 6 6 5 6 5	5 5 4 6 5 4 5 6 6 4 6	$\begin{array}{c} -4.2 \\ +4.9 \\ +11.2 \\ +2.9 \\ +0.2 \\ -7.0 \\ -0.9 \\ +2.5 \\ -0.2 \\ +2.0 \\ -7.1 \end{array}$

SUMMARY OF MEASURES-(Concluded).

Plate.	Julian Date.	Phase from final T.	Velocity.	No. of Lines.	Weight.	O-C.
3422 3441 3454 3866 3893 4064 4182 4231 4267	2,418,797-549 803-639 811-653 9,018-965 027-880 106-826 137-786 148-700- 153-771	14+448 4+698 12+712 14+104 7+179 6+925 6+205 1+279 6+350	$\begin{array}{c} +\ 2\cdot8^{*}\\ -145\cdot1\\ -\ 32\cdot7\\ -\ 13\cdot0\\ +\ 5\cdot2\\ +114\cdot6^{*}\\ -\ 34\cdot0\\ +\ 83\cdot7^{*}\\ -\ 36\cdot8\\ -\ 31\cdot1\\ -\ 8\cdot1\\ -\ 32\cdot3\\ \end{array}$	5 3 5 6 3 4 5 6 5	6 5 4 2 4 3 5 4 3	$\begin{array}{c} + \ 0.7 \\ - \ 2.9 \\ 0.0 \\ + \ 6.0 \\ - \ 0.2 \\ - \ 3.1 \\ + \ 2.0 \\ - \ 6.1 \\ + \ 0.9 \end{array}$

^{*} Double Spectrum.

The phases are computed from the final value of T, and the residuals are scaled from the corrected curve. The plates were grouped into seventeen normal places, according to phase, and each weighted as in table below.

NORMAL PLACES FIRST SOLUTION

No.	Julian Date.	Phase.	Velocity.	Weight.	Residuals O-C
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17	2,418,383,130 2,742,924 743,191 449,903 448,913 773,142,13 773,142,13 774,145 349,629 771,135 381,883 381,883 391,700 679,636 476,591 702,440	1.·210 1.·733 2.·793 4.·224 5.·567 6.·105 6.·105 7.·831 8.·623 10.·293 10.·847 12.·149 12.·600 14.·59 15.·040 14.·59 15.·040 14.·534 15.·349	+ 1·50 - 1·75 +11·44 - 2·87 -13·22 -21·02 -29·49 -34·45 -33·95 -30·70 -35·40 -27·95 -18·90 -16·90	1·0 2·0 1·0 2·0 2·5 1·0 1·5 2·0 2·0 2·0 2·0 1·5 2·0 2·0 1·5 2·0 2·0 1·5 2·0 2·0 1·5 2·0 2·0 1·5 2·0 1·5 2·0 1·5 2·0 1·5 2·0 2·0 1·5 2·0 1·5 2·0 1·5 2·0 1·5 2·0 1·5 2·0 1·5 2·0 1·5 2·0 1·5 1·5 1·5 1·5 1·5 1·5 1·5 1·5 1·5 1·5	+4·53 -4·49 +1·68 -3·90 +1·86 +1·74 +1·30 -2·19 +2·68 -0·45 -0·13 +1·52 -4·17 +0·68 +2·82 +4·75 +2·23

A velocity curve was drawn through the normal places by the graphical method of Dr. King, giving the following preliminary elements:-

$$P = 15.84 \text{ days.}$$

$$e = .30$$

$$\omega = 10^{\circ}$$
 $K = 22 \text{ km}$.

$$\gamma = -18.50 \text{ km}.$$

 $T = 2,417,991.168 \text{ J.D.}$

A least-squares solution with these elements gave the following corrections:-

$$\delta P = + .00008 \text{ days.}$$

 $\delta \gamma = + 0.17 \text{ km.}$
 $\delta K = - 2.03 \text{ km.}$
 $\delta \epsilon = - .060$
 $\delta \omega = +4^{\circ}.13$
 $\delta T = + 0.018 \text{ days.}$

The value of \$\frac{2}{ppv}\$ was reduced from 193 to 137. On substitution in the observation equations it was found that the computed and ephemeris residuals did not agree closely. A second solution was accordingly made. The velocities of six additional plates were included which had been obtained after the first solution was made. The number of normal places was reduced to ten and the period taken as fixed at 15.8401 days. The normal places for the second solution follow. In the last column will be found the residuals from the final curve.

No.	Julian Date.	Phase.	Velocity.	Weight.	Residual.
1	2,418,682-660 743-191	1·541 2·791	- 0.44 +11.45	3	-1.0
2 3	568-528	4-280	- 2.76	3	+3·9 -1·8
4 5	379 - 090 450 - 809	5 · 464 6 · 616	14 · 59 24 · 09	3 2	-0.8 -0.2
6 7	537 · 746 740 · 258	8 · 269 10 · 118	-30·62 -34·32	4 4·5	+0·4 -0·5
8 9	574 · 889 343 · 848	12·012 13·460	-32·45 -26·61	3	-0.6 +0.5
10	536-191	15.092	-17.25	. 3	+1.1

The solution of these gave as further corrections:

$$\begin{array}{lll} \delta \gamma & = & + & .51 \text{ km.} \\ \delta K & = & + & .39 \text{ km.} \\ \delta e & = & + & .024 \\ \delta \omega & = & -2 \, ^{\circ} .177 \end{array}$$

 $\delta T = -0.085 \text{ days.}$

The definitive elements of the orbit now were:-

$$P = 15.8401 \text{ days.}$$

 $e = .264$
 $\omega = 11^{\circ}.95$

$$K = 20.64 \text{ km}.$$

 $\gamma = -18.45$

$$\gamma = -18.45$$

 $T = 2,417,991.101 J.D.$

The value of \$\Sigma_{ppp}\$ was reduced from 43 to 33, and the agreement between the computed and ephemeris residuals was now satisfactory, the greatest difference being .08 km. The table below gives a summary of the values of the elements after each solution.

Element.	1	Preliminary Values.	First corrected Values.	Final Values.
P		15-84 days.	15-8401 days.	15-8401 days.
e		-30	-24	-264 ± -024
ω		10°	14°-13	$11^{\circ} \cdot 95 = 5^{\circ} \cdot 57$
K		22 km.	20·25 km.	$20 \cdot 64 = 0 \cdot 40$
γ		-18.50 km.	-18-96 km.	-18.45 ± 0.32
T		2,417,991 · 168 J.D.	2,417,991 · 186 J.D.	2,417,991 · 101 J.D. = · 208

3 GEORGE V., A. 1913

In the column of final values is also given the probable error for each element. The probable error of a normal place of unit weight was \pm 1.7 km., and that of a plate of average weight was computed from the residuals scaled from the final curve and found to be \pm 4.1 km.

Although there are only three measures of the secondary component, an approximation to the value of K was arrived at by substitution in the equation:—

$$\frac{dz}{dt} = \gamma + K (\cos u + e \cos \omega)$$

giving the velocity at any point in the orbit. The values of ϵ , ω and γ being known, that of u was determined in the usual way from the mean anomalies at the observed velocities. Successive trials of the values of K in the above equation gave 120 km as the most satisfactory. Hence a comparison of the masses of the system may be had from the relation:—

$$M_*: M_* = K_*: K_* = 120: 20.6 = 5.8: 1.$$

It is interesting to note that if further measures of the secondary component substantiate this value of K, this proportion of the masses is one of the highest yet obtained. It is probably due to the resulting faintness of the companion that more plates showing the double spectrum were not obtained.

ζ AQUILAE.

This star ($\alpha = 19^{\circ} 1^{\circ\circ}$, $\delta = +13^{\circ} 43'$; mag. 3.3) was first observed here in May, 1907. Five plates were taken in that year and in the following year seven more were obtained. It was one of those which were placed on the observing list to measure for variable velocity. The star is of A-type according to Harvard classification, and the lines measured are those of hydrogen H_{β} , H_{γ} , and H_{δ} . These are broader again than in the spectrum of v Cygni. No other lines were measurable on the plates obtained. A summary of the measures follows. There is a range of 60 km. in the resulting velocities, but as an equal range occurs in the measures of several of the individual plates not much confidence can be placed in them. In one of the plates (1821) there were indications of the lines being doubled, and these were measured and "checked." As will be seen from the summary, the measures of the stronger component in H_{γ} and H_{δ} agree fairly well while that of H_{β} differs widely. The agreement in the secondary is not good. It is probable that the star is a spectroscopic binary, and that the width and diffuseness of the lines is due to the blending of the two spectra. As the accuracy of the measures was a good deal in doubt, further work on this star for the present was discontinued.

		REMARKS.															
	ver.	pser	0		д	Д	Η	I	T		ы	Ξ	C	Н	Η	H	Ь
		SEEING.			Good	4	3		Fair		Good	*	Fair		Good	Fair	Bad
	ž	Width.			.000	.0012	.0013	.0014	.0012		9100.	.0015	.0015	.0015	а	а	я
		Box.	End.		18.75	23.0	25.4		20.9		30.0	21.6	23.4	22.2	23.0	27.7	21.3
	CENTIGRADE.	PRISM BOX.	Beg.		18.8	23.0	25.4	26.6	20.9		30.0	21.6	23.4	22.2	23.1	27.7	21.5
	TEMPI CENT	Коом.	End.		11.0	20.3	19.5	-	15.6		17.0	15.5	18.6	16.0	15.2	21.5	14.6
		Ro	Beg.		11.5	19.8	20.0	23.0	15.6		17.3	17.0	18.8	16.5	16.0	21.5	15.5
	Hour Angle	at End.		п п	30 W	00	15 W	1 20 W	3 45 W		3 00 W	3 03 W	4 00 W	3 26 W	2 16 W	3 05 W	3 55 W
	·uo	iteru	α	я	1.5	30	22	56	33		35	52	46	34	98	34	98
	Middle	Exposure.	G.M.T.	g .a	19 57	18 25	18 15	17 37	16 06		20 22	19 47	18 40	17 17	15 53	16 13	15 45
		DATE.		1907	May 31	June 14	. 20	July 16	Sept. 12	1908	June 26	July 8	Aug. 7	, 20	24	, 31	Sept. 14
		PLATE.			Seed 27	3	з	18	3		*	¥	и	я	я	ы	ä
	.81	эшв)		IL	3	4	3	4		в	я	я	а	а	я	3
	No.	of Neg.			805	852	864	947	1039		1644	1680	1778	1802	1821	1856	1887
T-Tribble.		STAR.			¿ Aquilæ	:	3	3	:		:	:	:	3	:	:	3

P—Plasket H—Harper P!—Parker C—Cannon

MEASURES OF \$ AQUILAE

	805.	852.	864.	947.	1039.	1644.	1680.
λ	Vel. W	t Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt
4861 · 527 · · · · · · · · · · · · · · · · · · ·	-29.55	-33.091	-41.341	-34.56 ½	-37.06 1	-24.53	-19·73
Weighted Mean V _d V _d Curv.	-44·27 +15·01 - ·03 - ·28	-44·02 +10·29 -00 - ·28	-49·21 + 8·08 -00 - ·28	-28·45 - 2·14 - ·09 - ·28	- 0·76 -21·00 - ·25 - ·28	-23·03 + 5·46 - ·17 - ·28	$ \begin{array}{rrr} -68 \cdot 61 \\ + 0 \cdot 72 \\ - \cdot 22 \\ - \cdot 28 \end{array} $
Radial Velocity	-29.6	-34.0	-41-4	-31.0	-22.3	-18.0	-68-4

MEASURES OF & AQUILAE-(Continued).

	1680	177	1778.		1802.		1821.		1856.		7.	
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
	-15.96 -41.50 -54.51	i			$-33 \cdot 22$ $-14 \cdot 61$ $+16 \cdot 23$		-31·19 + 3·86 +33·50	1 2	+22·92 -28·60 +24·21	1	+15·23 - 5·63 +33·50	1 2
Weighted Mean V _d V _d Curv.	-37 + 0	72	-38 -10 -	-87 -25	-10- -15- -	25 22	+ 2· -16· -	48 15	+13 -18 -	38	+14 -22 -	12 22
Radial Velocity	-37	1	-50	- 1	-26	5	-14	s	-16	3	- 8·	2

^{*} Check measurement.

MEASURES OF CAQUILAE-(Concluded).

λ	1821*.	P	1821*.	S	1821*	P	1821*	S				
	Vel.	Wt	Vel.	Wŧ	Vel.	Wt	Vel.	Wt	Vel.	Wt	Vel.	Wt
4340-634	+122.04	1 2	-197·19 - 30·69 + 31·33	1	+127.58	1	-34.56	1				
Weighted Mean H_{γ} and H_{δ} V_a V_d Curv.	+127 · 9 - 16 · 9 - 17	48 15	-10·02 -16·48 - ·16 - ·28	5	+133	18 15	- 4.7 - 16: - :	18 15				
Radial Velocity	+111-0	9	-26.9		+116-3	3	- 21.7	7				

v Cygni.

The star v Cymi ($\alpha = 20^\circ$ 53°, $\delta = +40^\circ$ 47′, phot, mag. 42), was placed on the observing list here in July, 1907. Only one plate was taken in that year. Six more were obtained in July, August, and September of the following year for the purpose of discovering whether the star was of variable velocity. The star is of A type, the lines measured $-H_B, H_B, H_B$, and M_B . A 4481. The lines measured and those of hydrogen in particular, are too broad and diffuse for accurate measurement. Appended are the data of the observations and a summary of the measures. As will be seen from the latter it is probable that v Cygni is of variable velocity though it is felt that the results cannot be greatly depended upon. On this account the star was dropped from our observing list for the present.

^{*} Check measurement.

P—Primary. S—Secondary.

RECORD OF SPECTROGRAMS

											3 GEOF
	REMARKS.										Smoky.
.1	9V 1 980	ОР		Ξ		=	Ē,	ã.	C	Ξ	2.
	SEEING			Good		Good	Good	Hazy	Good	Good	Fair
	SLIT Width.			.0014		-0015	-0015	*	2	а	я
	Box.	End.		25.0		25.6	22.6	19.5	23.2	27.6	21.5
TEMPERATURE CENTIGRADE.	PRISM BOX.	Beg.		25.2		25.3	22.7	19.4	23.2	27.5	21.6
Temperature Centigrade.	W.	End.		19.0		16.0	13.0	14.2	16.1	20.8	17.6
	Room.	Beg.		19.5		17.0	13.5	14.9	16.1	21.0	18.2
	Hour Angle at End.		8	25 W		3 00 W	4 00 W	4 10 W	55 W	2 30 W	35 W
1	roiter	Dπ	8	45		9	45	29	45	45	128
Middle	of Exposure.	G.M.T.	ž ,	18 52		19 58	19 22	19 17	16 02	17 22	14 17
	Дате.		1907	July 9	1908	July 31	Aug. 24	26	n 28	" 31	Sept. 16
	PLATE.			Seed 27		2	3	4	4	8	8
	втэш	Cal		I I		ų.	4	я	а	a	я
	No.	Neg.		934		1758	1825	1830	1846	1857	1892
-Cannon.	STAR.			Cygni		:	3	3	я:	:	:

H-Harper.

MEASURES OF ₹ CYGNI

	934.	1758.	1830.	1830.*	1825.	1846.	1857.	1892.
λ	Vel. ₹	Vel. ≢	Vel. ≱	Vel. ≢	Vel.	Vel. ≱	Vel. ≱	Vel.
4481 · 400 4340 · 634	-78·20 ½ 64·72 1 -35·06 ½	-37·27 i	48.91 ½ 19.52 ½	-10-47	-20.95 $\frac{1}{2}$ $+11.38$ $\frac{1}{2}$	-21.92	58.46 1	17.43 ½
Weighted Mean V a V d Curv.	+12·35 - ·03	-42·57 + 7·42 - ·19 - ·28	-32·09 + ·15 - ·19 - ·28	-10·47 + ·15 - ·19 - ·28	- 5·36 + ·72 - ·19 - ·28	-18·53 - ·39 - ·03 - ·28	-55·11 - 1·57 - ·12 - ·28	-23·06 - 5·78 - 00 - ·28
Radial Velocity	-46.6	-35.6	-32.4	-10.8	- 5.1	-19-2	-57.0	-29.1

^{*} Check measurement.

APPENDIX D.

SOLAR PHYSICS.

Ralph E. De Lury, M.A., Ph.D.

INVESTIGATIONS WITH THE TWENTY-THREE FOOT SOLAR SPECTROGRAPH.

1. Outline of the Work done with the Spectrograph.

A brief outline of the work done with the Solar Littrow Spectrograph during the year ending March 31, 1911, will first be given, followed by detailed discussions of several points occurring in connection with the work.

Owing to the poor qualities of the first grating (described in the Report of the Chief Astronomer for 1909, 251-256), a new grating was ordered. This grating, No. 55, was freshly ruled by the Michelson engine at Chicago University and it arrived here on April 15, 1910. Work with the Solar Spectrograph was immediately resumed, Mr. Plaskett joining me in it.

Visual measurements of the focal curves for the different orders from both sides of the grating were made to see if the irregularities which occurred in the case of the first grating were present. The focal curves were practically symmetrically arranged about the normal, little change in focus for a given wave-length being noticed in the different orders. Later photographic measures for certain wave-lengths showed discrepancies in the focal-lengths for different orders caused, possibly, by errors in the spacing of the lines, and the deviations from the visual measures are probably due to the fact that the photographic determinations were made using just that part of the grating which gave no astigmatism. The visual measurements are given below along with those of the first grating, and a discussion of the probable causes of the irregularities of the latter.

• Grating No. 55 possesses considerable astignatism, but I noticed that when the upper half was alone illuminated the astignatism disappeared. The greater part of this astignatism is due to the bottom 2 cm. of the ruled surface. By masking 4 cm. the astignatism is nearly eliminated, while cutting off 5 cm. removes it entirely. By masking 5 cm. off one side of the grating, the definition of the spectrum lines produced is greatly improved. The grating which has a ruled surface 11 cm. × 13 cm. with nearly 700 rulings to 1 mm., is thus masked down to an area 6 cm. × 8 cm. in one corner, to give a spectrum of the best definition and one free from astigmatism. Thus masked, the grating is so brilliant that it is possible to photograph spectra of the rotation effect in 30 seconds, which with the first grating required 10 or 12 minutes to obtain; the definition is also much better with the new instrument. As a result the efficiency of the spectrograph is indefinitely increased, and the purchase of the new grating is entirely justified.

During April, May and June the grating was thoroughly tested and numerous photographs were taken. The second and third orders from one side and the first order from the other side were found to be particularly bright. The tests were made chiefly about the region \(\text{\chi} \) 350 in the second and third orders—a suitable wave-length at dispersions sufficient for work on the Solar Rotation. These test photographs number from L420 to L475. From the middle of June to near the

end of July, spectra of the rotation effect at \(\) 4 550 in the second and third orders from one side of the grating were photographed (Plates L476 to L578). These plates were in the nature of trials, and were made in the face of certain difficulties which I had experienced when taking similar plates with the first grating. The chief of these was the adjustment of the prisms to give the best illumination of the grating. I had constructed a temporary adjustment consisting of adjusting screws working in the thin brass envelopes of the prisms which rested on thin strips of paper about which they could be tilted. This screed the purpose only fairly well, and I recommended the construction of a more perfect apparatus working on the same or on the ball and socket principle. The above series of plates impressed on us the necessity of attending carefully to this important point, as well as to having a more accurately adjusted and convenient guide-plate for the sum's invaze. A more detailed description of these rotation plates will be given below along with measurements of some of them.

During the few satisfactory days in the autumn, plates of the rotation were taken in the regions & 4250 and & 5600 in accordance with the recommendations of the Union for Co-operation in Solar Research. Improvements were made in the spectrograph along the lines mentioned above. A new guide-plate was made and better prism adjustments were fitted to the slit-attachment. Mr. Plaskett devised a notched prism to replace the two prisms formerly used above the slit to reflect beams from one limb on both sides of the beam from the other limb. This device simplified greatly the adjusting of the prisms. The scale for reading the angles of inclination of the grating was moved to the top of the spectrograph where they could be more conveniently read, the vernier-pointer being fastened to an arm serewed to the back of the grating-mounting. This arm is bent up behind the grating and continues out through the spectrograph in the axis of rotation of the grating. This necessitated a hole in the box just above the face of the grating. This hole admitted cold air currents to flow over the face of the grating and the definition of the spectrum was injured, as described below. To remedy this the holes were plugged with cotton waste and the end of the spectrograph was boxed in and fined with felt throughout. Truss rods were added to make the spectrograph more rigid. spectrograph as it now appears is represented in section in Figure 10, the lettering being the same as used in the description given in the Report of 1909, e.g., S, slit; L, lens; G, grating; C, photographic plate-holder; V, vernier-pointer; and E, the scale used with it to read the angles of inclination of the grating, etc.; the doubledoor, D', and the felt and truss rods recently added are also shown. During the course of the work another difficulty presented itself, namely, the atmospheric distortion and dispersion of the solar image during the winter months when the declination is low. Measurements of this effect made on one occasion are given below.

On December 13, 1910, arrived the Michelson grating No. 43, (7 cm. × 16 cm. surface ruled 650 lines to 1 mm.) made famous by its excellent performance in the fourth order in the work on the satellites of certain mercury lines, (Henry G. Gale and Harvey B. Lemon, Astrophysical Journal, 31, 78-87). This grating was tested and carefully compared with grating No. 55 from the point of view of its applicability to the rotation problem.

Grating No. 43 appeared by direct reflection from one side to have two areas, two-fifths and three-fifths of the grating respectively, of different character, one of these areas giving a red the other a blue reflection, pointing to some difference in the rulings. When viewed from the other side, however, the grating appeared to be be of uniform character, and the spectra taken from this side were brighter and sharper than those taken from the other side, the fourth order being narticularly brilliant. The second and third orders were not so bright or so sharp as those from one side of grating No. 55, and consequently the latter was chosen as the better grating for investigating the solar rotation, though undoubtedly grating 43 is an excellent astrument for examining spectrum detail such as the investigation of the merec y lines mentioned above. With some regret this grating was returned. Work with grating 55 on the sun's rotation and related problems was carried on through the rest of the winter.

During the year I endeavoured to determine three known or suspected sources of error in connection with the investigation of the solar rotation, namely. Sky Spectrum, Personal Errors in Measuring the Displacements of Spectral Lines, and Convection in the Sun's Atmosphere. These subjects are interesting and important in themselves, but in studying the sun's rotation they demand particular attention and should be worked out simultaneously with it. I devised methods for studying these subjects and they with other points will be discussed in detail in what follows.

2. Changes in Focus Produced by Plane Gratings.

Under the above heading I published a paper in the Journal of the Royal Astronomical Society of Canada, χ 26-32, discussing the changes in fogus of the first grating, the measurements of which are given in the Report for 1909. In that paper, grating (a) and grating (b) refer respectively to the first grating and No. 55 mentioned in the outline above. Subsequent photographic determinations of the foci for λ 4250 and λ 5600 in the second and third orders from the brighter side of grating 55 with all masked but the 6 cm. \times 8 cm. surface described in the outline above, showed differences greater than obtained visually from the whole grating, but the arrangement seems to be, as in the case of the visual measures, symmetrical about the normal, and is likely due to periodic errors in the spacing of the lines. What follows is quoted from the above paper:

"Two-plane gratings of speculum metal have been tested in the Littrow Spectrograph of the Observatory. One of these, grating (a), having a 10 cm. × 12 cm. ruled surface and about 500 rulings to 1 mm., exhibited peculiarities in its focal properties, produced poor spectra and lacked brilliancy to a decided degree; the definition of spectral lines produced by it was greatly improved by masking 2.5 cm. or more off each end of the rulings and 6 or 7 cm. off one side of the grating where it was seen by direct reflection to be of different character from the rest of the grating. It was finally returned to the makers and one of their latest products, grating (b), having a 11 cm. × 13 cm. ruled surface and about 700 rulings to 1 mm, was obtained. This grating showed nearly normal properties and proved to be much more brilliant than the first grating; and when 5 cm. off one end of the rulings and about the same off one side of the grating were masked, the definition of the spectral lines became excellent. The peculiar changes in focus found in the case of the first grating do not in themselves lessen its value, but they are probably intimately connected with its defects and may possibly serve to indicate their cause.

"The optical part of the spectrograph (see, Report of the Chief Astronomer for the year ending March 31, 1909, p. 251) consists of a slit, a 15 cm. (6 in.) lens placed at its focal length (nearly 7 m., or 23 ft.) from the slit, and a grating mounted about 18 cm. back of the lens in its mean position, with its rulings parallel to the slit. Light is directed through the slit so as to nearly fill the lens, which when placed its focal length from the slit, for the wave-lengths under consideration, throws a parallel beam on the grating. The grating diffracts the light back through the lens which focuses the spectrum at the slit. By tilting the grating forward

Fra. 10.—The Sohar Spectrograph.

N 131

Fig. 11.—Focal Curves from two Plane Gratings in the Solar Spectrograph.

slightly, the spectrum is focussed a little below the slit where it may be conveniently photographed or examined with the aid of an eye-piece. To avoid light reflected from the surfaces of the lens, it is necessary to mask a strip across the middle of the lens, or better, to tilt the lens slightly, as suggested by Mr. R. M. Stewart. The former method was employed in the measurements recorded below, but the latter arrangement has since been adopted: in either case the axis of the lens passed through a point midway, or a little below midway, between the slit and the place where the spectrum was focussed. However, since the distance between the slit and the point where the spectrum was focussed is only 10 cm., it may be assumed for the purposes of this note that the slit and spectrum are coincident on the principal axis of the lens.

"If the grating be placed normal to the beam of light it will act as a plane mirror and reflect back the light through the lens which will focus the light of different wave-lengths at various distances from the slit. By sliding the lens back and forth the different colored images of the slit may be focussed in turn at the slit, employing suitable filters to cut off the light of other colors. This has been done for the colors admitted through the red, green and blue filters of an Ives' tricolor outfit, and a 'Filtergelb' screen; and the distances of the lens from the slit, or the foci, for these colors have been recorded. If the grating be turned about a vertical axis to either the left or the right, the orders will appear in succession from violet to red. The distances of the lens from the slit necessary to focus the light of the different orders at the slit have been determined for the various angles of turning of the grating. All these observations are plotted in Figure 11 for both gratings, (a) and (b). The measurements were nearly all made visually, and individual observations may be in error from 2 to 6 mm. The measurements for grating (a) were made at a temperature of about $20^{\circ}-21^{\circ}$ C., while those of grating (b) were made at about 18°C. A few observations indicate that a decrease in temperature of 1°C. increases the focus of the lens nearly 1 mm.

varies progressively from order to order of grating (a), while it remains nearly constant in the different orders of grating (b). This will be more apparent if it is remembered that, $n.\lambda = 2.\frac{1}{s} \sin \theta$, for a Littrow spectroscope, n being the order, λ the wave-length in 10^{-10} metres, s the number of rulings to the mm. - 500 and 700 for gratings (a) and (b) respectively—and θ the angle of inclination of the grating from the normal, i.e., 90° minus the 'angle of grating' given in the Figure 1.

"A reference to Figure 11 shows that the focus for any color or wave-length

"The relation between change of focus and wave-length for the different orders of grating (a) is more clearly shown in Figure 12, where the wave-lengths and focus 'scale-readings' are the abscisses and ordinates respectively. The 'normal' focal curve is not known accurately since the average wave-length transmitted by the filters employed is not known very closely and the measurements of focus could not be made with great accuracy on account of the diffraction fringes; however, it is safe to assume that it lies nearly as represented in Figure 12, about midway between the focal curves of the two first orders. A close inspection of these curves shows that, within the limits of the errors of measurement, the change in focus is proportional to the wave-length and to the order, being negative when the grating is turned to the left, and positive and of the same magnitude when it is turned to the right. A fairly accurate value of the decrease or increase in focus for any wave-length in any order is found by taking half the difference between the foci for the wave-length in the right and left focal curves of that order. Such differences are given in the following table:

	I, RI, L.	II, RII, L.	III, RIII, L.	IV, RIV, L.
4500	0.6 cm. 0.7 0.9 1.0 1.1 1.2	1.7 cm. 1.7 1.4 1.4 1.7 2.1	2.7 cm. 2.7 3.1 3.5 3.7 3.9	3·8 cm. 4·4 4·9 5·0

"From this table a mean value of the change in focus from the normal of =n. 0.5 cm. for say λ 5750 may be derived; and for any wave-length, λ , the change in focus,

$$d = \pm n \cdot 0.5 \frac{\lambda}{5750}$$
. cm.

Hence, substituting the value for n. λ mentioned above, it follows that,

$$d = \pm \frac{10^{7}}{500} \cdot \frac{\sin \theta}{5750}$$
 cm.

Thus it appears that the change in focus is proportional to the sine of the angle of inclination of the grating, being negative when the grating is turned to one side and positive when it is turned to the other. This fact is of great importance in deciding on a theory to account for these changes.

"After I made the focal measurements for this grating, two theories to account for the changes in focus suggested themselves; one, to Mr. Plaskett, that the changes in focus were due to curvature of the ruled lines; the other, to me, that it is due to the curvature of the grooves caused by the ruling point pressing over the ridge between the last furrow made and the one being made, thus producing a concave and a convex side to each furrow. If the latter theory were correct, the second grating should show a somewhat similar behaviour to the first; it behaves quite normally, however, and the proportionality of the changes to the sine of the angle of inclination of grating (a) taken along with this fact makes it seem quite probable that the former theory is the correct one. If, then, it be assumed that the changes in focus are caused by curvature of the ruled lines, it is possible to calculate the amount of the curvature from the changes in focus, as follows:

"Let the normal focus of the lens for any wave-length be f cm., (i.e., the lens must be f cm. from the slit in order to focus the light of the particular wave-length at the slit). Let the focus be changed to f+d on account of the curvature of the ruled lines; the light emerging from the lens to the grating will be convergent or divergent as d is positive or negative. Now, in order that the spectrum may be focussed at the slit, the grating must return the light along the same path, i.e., it must act as a convex or a concave mirror depending on whether d is positive or negative respectively. Suppose the grating does this, then its radius of curvature, r, is given by the formula,

$$\frac{1}{f} = \frac{1}{f+d} - \frac{1}{r}$$
, or, $-\frac{1}{r} = \frac{d}{f}$

r being negative (i.e., as for a convex mirror) when d is positive, and positive (i.e., as for a concave mirror) when d is negative. It is desired to know the curvature

of the lines measured in the plane of the grating, i.e., corresponding to the value of d when $\theta=90^\circ$, a value, of course, impossible in practice. For this value of θ , $d=\pm\frac{10^\circ}{500}\cdot\frac{1}{3750}$ cm., or, \pm 3.5 cm., and the normal value of f for λ 5750, is about 695.5 cm. Consequently, r is found to be about 140,000 cm. This would mean, in a ruling 10 cm. long, a departure at the ends from the position of the centre of the ruling of about 0.00008 cm, or about half the distance between two successive lines of the grating. Such a condition would account for all the defects of the grating. Such a condition would account for all the defects of the lept one count for its exceptional dimners.

"It may here be mentioned that such measurements as recorded above may semines serve to point out—to those who have undertaken the extremely difficult task of ruling gratings—slight errors in the ruling mechanism which may be removed."

Plates of the Solar Rotation Effect, with some Measurements of the Rate of Rotation at the Solar Equator.

During the year, about 130 plates of the solar rotation effect, having from 4 to 6 exposures on each, were made by Mr. Plaskett and myself for the most part working together. These plates may be grouped in several series according to the region in which they were taken. In the summer of 1910 the plates were made in the region \(\lambda \) 4500 in the second and third orders from the brighter side of the grating (No. 55). All these plates were taken with 5 cm. masked off the bottom of the grating to remove astigmatism. In the second order, 17 plates, L476 - L487 and L491-L496, were made with the whole width of the grating, and 66 plates, L527-L535 and L538-L578, were made with 5 cm. masked off one side of the ruled surface to improve the definition of the spectrum lines. In the third order, the whole width of the grating was used in taking plates, L488-L510; various widths in taking plates, L511-L517; and the 8 cm. width remaining when the 5 cm, mentioned above was masked off to give the best definition, was used in making plates L518-L526, a total of 33 plates being made in the third order. All plates after L538 were made with the best 6 cm. × 8 cm. area of the grating so mounted that it was placed symmetrically opposite the centre of the lens. In making these photographs, great difficulty was experienced in keeping the prisms adjusted so as to properly reflect the beams of light to the grating. The three beams-two from the West and one from the East limb of the Sun-should each evenly illuminate the grating, for otherwise there would be displacements of the spectra in case the photographic plate was slightly out of focus. The prisms were adjusted so that the beams from each limb evenly filled the unmasked rectangle of the grating, but these were usually of uneven intensity and the exposures for the West and East limbs were, on the average, about 20 and 25 seconds respectively. On some of the plates the two strips from the West limb were found to be of uneven intensity which probably points to an uneven illumination of the grating. After taking some of the plates, the illumination was found to have changed as if due to a temperature effect. To remove these difficulties, stronger and more positive adjustments were made and the two prisms above the slit which were used to reflect the two beams from the West limb were replaced by a single prism, notched as suggested by Mr. Plaskett, to receive the prism which reflected the beam from the East limb. A more perfect and convenient guide-plate replaced the old one, and the scale for reading the angles of inclination of the grating was more conveniently placed, as mentioned in the outline given above. A series of plates, L600-L629, were then taken in the few available good hours in November and December. This series was made

about the λ 5600 region as recommended by the International Union for Copperation in Solar Research (see Mr. Plaskett's Report). A few more plates, L713–L717, were taken in this region in March 1911, making a total of 30 plates taken at λ 5600. For taking the photographs at this wave-length, the Seed Process plates, which were sufficiently sensitive at λ 4500, were sensitized with crythrosine and ammonia by Mr. Plaskett. The fresh Seed red "0" Process plates gave the best results when thus stained. The plates were taken at latitudes 0°, 15°, 30°, 45°, 60°, 75°, and 90° with some at 80° and 85° in the λ 5600 part of the spectrum. The settings at these angles were made by rotating the spectrograph (as described in the Report for 1909) after having first determined the "East and West" line which makes a known angle with the Sun's equator at any time. Rotating the spectrograph changes the position of the focussed spectrum on the photographic plate, and consequently a table of corrections had to be made so that a series of exposures at different latitudes could be made on the one plate without danger of having them overlap.

The winter proved to be a very unsatisfactory period for taking rotation spectra photographs. The definition of the solar image was usually poor, the coelostathouse is in shadow except in the afternoon when atmospheric distortion and dispersion of the solar image is apt to occur, and convection currents in the spectrograph occurred when the room was cooled suddenly by opening the doors to the coelestat-house, though this difficulty was finally overcome as described below.

During the course of the above work measurements of the equatorial displacements of selected lines were made in the exposures, L528a, L531a, L531b, L569d, and L570a at \(\lambda\) 4500, and L600c, L600d, L601d, L610e, and L616a at \(\lambda\) 5600. These measurements are given in the Tables below, along with a description of the plates and an explanation of the symbols used. From these Tables it will be seen that the values of the equatorial rate of rotation of the sun as determined from the different exposures in kilometres per second, are, -L528a, 2.038; L531a, 2.038; L531b, 2.148; L569d, 1.956; L570a, 1.901; L600c, 1.962; L600d, 1.936; L601d, 2.021; L610c, 1.993; L616a, 1.905. The mean of the first five exposures (at λ 4500) is 2.016, and the mean of the last five (at λ 5000) is 1.964; or the mean of the whole ten exposures is 1.990, a value which is about 4 per cent, lower than the ordinarily accepted value, (Adams found 2.074 for 1906-7, and 2.062 for 1908). This difference may point to a change in the rate of rotation of the sun's reversing layer (as Halm has suggested) possibly accompanying the sunspot cycle of changes, for 1906-7-8 follow the sun-spot maximum and 1910 approaches the minimum. However, it would not be safe to draw this conclusion from so few measures, particularly since they disagree so much among themselves and in such a manner as to suggest the presence of grave errors:-For example, L531a and L531b, taken from the same positions on the sun about 1 minute apart, show a difference of 0.110 km. per second. For these same exposures Mr. Plaskett's measurements give for the value of the equatorial rotation, 2.056 and 2.060 km. per second respectively, the difference in our determinations being therefore due to errors of measurement (this subject is discussed below). Furthermore, the deviations of the means for the various lines from the means of all lines in the two series at \$\lambda\$ 4500 and \$\lambda\$ 5600 are decidedly great in some cases. Though these results seem to agree with the general conclusions of Adams, I prefer to regard them as due to errors of measurement until many more measurements and the simultaneous investigation of these errors are made; and as will be seen from the results of such an investigation given below, it is not safe to draw any such conclusions from our measurements until the systematic errors of measurement are eliminated. The striking case of the Si line & 5690.646 may be noted. As will be seen from the tables for λ 5600, this line gives on the average a value about 0.36 km. per second

lower than the means for the other lines. This may be due to errors of measurement for the continuous spectrum grows suddenly weaker near this line; or it may be caused by the overlapping of an atmospheric line which is not displaced by the sun's rotation, the highest value for this line being on the dense exposure L616a which was taken two hours nearer noon than the other measured plates were, when consequently the atmospheric line would be weaker and its effect less. One is tempted to explain this great difference to the presence of Si some distance outside of the sun, but as I have pointed out such conclusions are not safe until further measurements are made. Besides errors of measurement the following errors may also be present, and all of these must be reckoned with before accurate values of the solar rotation are deducible and any slight changes which may occur in it may be detected:-Errors due to: Convection in the sun's atmosphere; Changes in the illumination of the grating brought about by temperature effects on the prisms or prism-mountings as suggested above; Alterations in the figures of the mirrors due to heating, with consequent changes in focus and definition of the solar image; Overlapping of the spectrum of the sky and possibly too of matter outside of the sun; etc.

As already stated, however, the above plates and the few measures made of representative exposures, have revealed to us the presence of irregularities, and to remove these and to find out their causes a very careful check must be made of all the numerous variables of which we know to affect the result sought.

In the following Record of Observations for the exposures taken at the equator whose measurements are given in the Tables below, the number of the plate is given followed by a letter denoting the exposure on the plate, then follow the date in 1910 and hour G.M.T., the duration of the exposure in seconds-and where the times are different for the two limbs they are given following the letters W and E denoting West and East respectively. The diameter of the sun measured in mm. is then given, followed by the distance apart in mm. of the two regions inside the limbs from which the light is reflected by the two outside prisms to the slit. The diameter of the sun was measured on the guide-plate except for L610e and L616a when it was measured at a distance back of the guide-plate equal to the path of light from the windows in the guide-plate through the prisms to the slit, the image being focussed at this point, and the distance apart of the two regions investigated is the distance between the two narrow strips of metal held in front of the windows so as to shut out the light from the slit, with, in the case of L610e and L616a, a slight correction necessary to project this distance on the focal plane. After D, is given the heliographical latitude of the centre of the sun's disc; and after v1 the correction in km, per second to be added to convert the synodical velocity to the sidereal. Then follow remarks concerning the definition.

At λ 4500.

L328.a.,July 5,3.38 G.M.T.; W. 20, E. 25,226.0.22.0, p_i , $p_$

$At \lambda 5600$

 In the following Tables, under "Line" are given the wave-lengths λ of the lines measured, followed by the chemical symbol of the element whose vapor produces the absorption line and the intensity of the line all as given in Rowland's Tables of Solar Wave-lengths; under d are given the measured displacements of the lines in ten-thousandths of 1 mm., determined by measuring the plate one way then turning it through 180° and measuring it sgain and taking the mean of the two measures, each measure being the difference between the mean of 4 settings on the line in the central strip and the mean of 2 settings on the line in each of the two outside strips: thus, d for each line depends on 16 settings; under v are given the velocities equivalent to half of d, the unit being kilometres per second. The mean value of v for each plate is given and below it the value V of the sun's rotation calculated from the following equation:—

$$V = v$$
. Distance between prisms. sec. $D + v^{1}$,

where v^1 , as mentioned above, is the correction to be added to get the sidereal rotation.

TABLES OF MEASUREMENTS OF SOLAR ROTATION PLATES

	L	528a.	L!	531a.	L	531b.	LS	70a.
Line.	d	Đ	d	υ	d	Đ	d	v
4432-736, Fe, 1 4432-736, Fe, 1 4435-321, Fe, 2 4435-321, Fe, 2 4435-321, Fe, 1 4435-411, Fe, 4 4439-411, Fe, 4 4435-411, Fe,	565 525 550 535 565 560 545 577 575 590 540 540 540 540 540 540 540 540 540 54	1.863 1.730 1.910 1.758 1.852 1.775 1.872 1.775 1.872 1.870 1.897 1.897 1.897 1.908 1.904 1.924 1.938 1.938 1.939 1.939 1.897	535 570 550 570 585 570 585 585 585 585 580 590 590 570 575 580 600 575 585 605 575 585 605 575 585 605 575 585 585 585 580 570 580 580 580 580 580 580 580 580 580 58	1.764 1.878 1.814 1.874 1.897 1.935	559 606 627 614 531 558 623 558 613 558 622 620 620 664 598 612 623 612 623 615 623 617 617 618 618 619 619 619 619 619 619 619 619 619 619	1-843 1-996 2-065 2-065 2-065 2-068 1-742 2-031 1-898 2-032 1-898 2-033 1-991 2-033 1-997 1-997 1-997 1-997 1-990 1-900	520 515 560 565 555 505 535 535 555 520 510 520 520 520 520 520 520 520 52	1-716 1-610 1-846 1-859 1-853 1-688 1-653 1-783 1-786 1-653 1-783 1-786 1-681 1-695 1-781 1-590 1-589 1-537 1-776 1-900 1-738 1-900 1-738 1-900 1-738 1-900 1-738 1-900 1-738
	T.		V					=1.901

L569d.

	Line.		d	v	Line.		d	ŧ
4368-071, 4371-442, 4374-084, 4378-084, 4378-084, 4388-087, 4388-087, 4388-5201, 4388-5201, 4388-1888-5201, 4398-188, 4399-935, 4401-709, 4411-722, 4411-784, 4425-488, 4430-785, 4431-784, 4431-785, 4431-784, 4431-785, 4431-784, 4431-785	Cc, Fe?, Fe?, Fe, Co, Fe, Ni, Fe, Fe, Fe, Fe, Fe, Fe, Fe, Fe, Fe, Fe	2333333333.	562 553 528 550 550 551 541 544 545 551 551 553 563 563 563 563 499 565 568 499 565 568 499 565 568 499 565 568 499 565 568 499 566 567 568 568 568 568 568 568 568 568 568 568	1.881 1.889 1.764 1.736 1.849 1.736 1.841 1.901 1.801 1.701 1.701 1.702 1.703 1.655 1.670 1.655 1.670 1.703	4512-906, Ti, 4514-358, Fc, Ci 4514-358, Fc, Ci 4538-348, Ti, 4538-349, Ti, 4548-329, Fc, Ci 4558-329, Fc, Ci 4568-329, Fc, C	3 4	573 560 578 618 6618 563 5646 563 574 6012 495 577 601 495 557 577 571 571 546 587 587 561 563 587 563 563 563 563 563 563 563 563 563 563	1 · 856 1 · 809 1 · 866 1 · 759 1 · 813 1 · 844 1 · 876 1 · 840 1 · 876 1 · 840 1 · 876 1 · 840 1 · 852 2 · 024 1 · 587 1 · 777 1 · 844 1 · 855 1 · 777 1 · 840 1 · 777 1 · 840 1 · 777 1 · 840 1 · 777 1 · 77

1.774 V=1.958

			L	600c.	L	600d.	L	601d.	L	610e.	L	616a.
	Line		d	v	d	υ	d	v	d	v	d	υ
5506-095, 5507-000, 5525-765, 5528-641, 5544-157, 5562-933, 5576-320, 5576-320, 5576-320, 5578-946, 5596-342, 5598-524, 5618-858, 5634-171, 5683-488, 5655-715, 5662-744, 5675-642, 5688-436, 5688-436,	Mn, Fe, Mg, Fe, Fe, Fe, Ca, Fe, Fe, Fe, Fe, Ti, Na, Na, Si,	1	677 675 684 658 7111 7111 675 661 715 669 647 653 685 667 708 518	1·753 1·747 1·762 1·695 1·810 1·807 1·712 1·673 1·712 1·673 1·792 1·744 1·612 1·653 1·753 (1·282)	664 661 558 670 671 693 680 605 639 747 712 712 738 695 582 738 696 561	1-719 1-711 1-438 1-723 1-763 1-763 1-763 1-533 1-617 1-871 1-775 1-775 1-775 1-733 1-444 1-831 1-723 (1-388)	734 665 697 719 707 688 698 656 783 656 778 687 658 658 658 657 559	1.900 1.720 1.811 1.852 1.774 1.774 1.778 1.662 1.964 1.929 1.694 1.815 1.633 1.704 1.625 (1.384)	671 679 621 730 745 680 672 671 694 708 686 670 654 739 669 490	1-737 1-757 1-600 1-879 1-911 1-736 1-710 1-707 1-764 1-796 1-728 1-681 1-882 1-632 1-632 1-720 (1-213)	536 607 660 662 645 620 616 642 712 685 727 616 658 634 647 660 734	(1-388 1-57 1-700 1-700 1-65- 1-58- 1-63- 1-83- 1-84- 1-64-

4. Errors in the Measurement of Spectral Line Displacements.

The presence of systematic errors of a personal nature in the measurements of the positions of spectrum lines has often been suspected, yet little attempt has been made to determine their character and magnitude. In the present report a method for investigating and eliminating these errors is described along with some measurements made in connection with the problem of the solar rotation, after first briefly mentioning some of the more important questions likely to be affected by such errors.

Systematic personal errors are suspected to occur in the measurements of the following investigations:

(a) The Determination of Ware-lengths. The greater part of this work involves repeated "settings," on the lines whose wave-lengths are sought and on other lines called "standards" whose wave-lengths are known. These "settings" consist in turnings of a micrometer-serve carrying the measuring microscope or the photograph of the spectrum, until the line or lines of the microscope are placed as closely as the measurer can see, over or symmetrically about the centres, entres of intensity or some other selected part of the spectrum lines and recording the corresponding scale-readings. It is obvious that if one observer uses the centre of the line for his settings and another uses the centres of intensity, systematic errors will occur since for some lines the two "centres" coincide while on others they do not. Again,

even if two persons strive to set on the same part of the line such things as unsymmetrical shading of the line, the nearness of other lines, etc., may affect them differently and result in different settings with consequent errors in the determination of the wave-length. Such errors are so small, when the spectrum is on a large scale, that for many purposes the measurements are sufficiently accurate. In the determination of standard wave-lengths, however, an effort should be made to eliminate even these errors. It is generally assumed that the mean of the measurements of several measurers is well within the limits of the accidental errors. This is not necessarily the case, however, for disturbing influences such as those mentioned above may operate on the measurements systematically in the same way for the different persons. There is apparently some evidence of this in the determination by interferometer methods of the "Secondary Standards of Wave-length, International System, in the Arc Spectrum of Iron," by Fabry and Buisson, Eversheim and Pfund, as the following quotation from H. Kayser's paper on "Standards of Third Order of Wave-lengths on the International System," would seem to show: "I have employed as standards the arithmetical means of the measurements of Fabry and Buisson, Eversheim and Pfund. The portions of spectrum measured were always between three or four successive standards, so that each line is referred to as many neighboring standard lines as possible. It turned out that measurements of the same sharp line on different plates yielded differences of not more than from 0.001 to 0.002 A, when the same standards were employed; but if different standards were employed, differences as great as about 0.006 occurred. that some of the standards still contain errors of from 0.004 to 0.005 A, and that measurements of the best plates in the second order give a greater degree of accuracy than that of the secondary standards." I cannot say that I am wholly convinced by the argument. It seems to me quite possible that Kayser's own settings on the secondary standards may contain systematic errors greater than the differences in the "measurements of the same sharp line on different plates." However, the fact remains that in the determinations of either the secondary or the tertiary standards, or both, there are systematic errors greater than the accidental errors of measurement.

- (b) The determination of Stellar Radial Velocities. In this work systematic errors of measurement are more likely to occur than in any other involving the measurement of spectra, because the spectra measured—the star spectrum with its usually diffuse absorption lines, and the comparison spectrum with its strong emission lines—are so different in character. Furthermore, since the lines of the star spectrum of the differ greatly in appearance and are in regions of the continuous spectrum of different intensity, systematic differences in velocity for the various lines are likely to be found, and since the star spectra are on a very small scale, these may represent variations of several kilometres per second. Such differences have been found, and though there are plausible physical explanations which one can give, such as convection, electrical or magnetic effects, pressure effects, the presence of other bodies or of a hazy envelope about the star having a different motion, etc., yet it would be advisable before employing such theories to eliminate the possibility of systematic errors of measurement.
- Of The comparison of various regions in the Sun with one another and with Standard Spectra. Much of this work depends on comparative measurements of spectra of different character, and, as pointed out above, is therefore liable to contain systematic error. Among the more important investigations in this field are some of those carried out at Mount Wisson Solar Observatory, on the displace-

Astrophysical Journal, 32, 215-216.

[†] Astrophysical Journal, 32, 217-225.

ments of the spectrum lines at the sun's limb, * and the motions of calcium vapor in the solar atmosphere† and over special regions in the sun.§ The accidental errors of measurement in this work are extremely low, a precision of 0.001 A being aimed at, and such being the case it would be well worth while to test for systematic errors which may well exceed this small quantity. Furthermore, in deciding whether the interesting results observed in these researches are due to pressure or to convection very accurate references to laboratory comparison spectra were necessary, and the spectra compared being widely different the decisions may have been affected by systematic error. Even so may be affected the results derived from the comparison of "enhanced" and "arc" lines in the same spectrum.

(d) The determination of the rate of the solar rotation. The method chiefly used at present in the investigation of the rate of the sun's rotation, is that employed by Adams** at the Mount Wilson Solar Observatory, namely, the measurement of the spectral line displacements in adjacent simultaneously taken photographs of the spectra from opposite ends of a diameter of the sun's disc. These measurements differ from those made in the investigations mentioned above, in that the relative positions are sought of the same spectral lines in two presumably similar spectra, and consequently it is not so easily imagined, as in the case where two different spectra are compared, how systematic errors of measurement may happen. Nevertheless, it was in connection with this very problem that I first suspected the presence of such errors. In 1909, I measured a few plates of the solar rotation effect which I made with the twenty-three foot Littrow spectrograph, using a plane grating which apparently on account of curvature of the lines † (as shown previously in this report) produced spectra of very poor definition. The spectrum lines were not sharp and the continuous spectrum was nebulous. measurements of from 30 to 80 lines on each of three plates, I noted that the greater proportion of the lines giving the largest values of the measured displacements were the broader and more fuzzy lines or those very close to other lines or to nebulous regions of the spectrum. A few scattered measurements on other plates seemed to confirm this observation. Measurements of one of these plates were published along with a description of the spectrograph§§ simply to illustrate the method, but even from these 80 measurements the tendency for the broader and more diffuse lines to give larger values for the displacement is noticeable. The mean velocity-equivalent of the measured displacements is 1.77 km. per second, and of the 9 lines which yield values greater than 1.90 km. per second, 4 are exceptionally broad or fuzzy lines, 1 is in a nebulous region and another is very close to another spectrum line, as follows: 4163.818, fuzzy, 1.95 km.; 4199.257, fuzzy, 2.13, and 1.95 km.; 4236.279, near 4236.112, 1.92, and 1.94 km.; 4246.966, broad and fuzzy, 1.94 km.; 4271.325, broad and fuzzy, 1.91 km.; (4271.934, broad and fuzzy neighboring line gives a value nearly as great, 1.87 km.); 4288.310, nebulous region, 1.98; the other three lines appear to be average lines. These measurements with the others mentioned above certainly warranted the suspicion that the broader and more nebulous lines gave larger values, and so much was I impressed by them that my suspicions extended to the measurements of Adams on the rotation (loc. cit.) values for the two very broad and shaded lines Hα and A 4227, which he found to give larger values for the rate of the sun's rotation than those obtained from the

Walter S. Adams, Astrophysical Journal, 31, 30–61.
 † Charles E. St. John, Ibid, 32, 36–82.
 § Charles E. St. John, Ibid, 34, 57–78.

Walter S. Adams. Some results of a study of the spectra of Sirius, Procyon and Arcturus

with high dispersion, Astrophysical Journal, 33, 64-71.

** Ibid, 26, 203; 29, 110; 27, 213.

^{††} De Lury, Journal Roy. Astron. Soc. Can., 5, 26-32.

^{§§} Report for 1909, p. 256.

narrower absorption lines. I felt the necessity of making measurements to test these suspicions, but thought it better to wait until a new grating giving sharper spectrum lines was obtained. Consequently, when work with the new grating was well under way and some measurements were made which still showed systematic tendencies, particularly some comparative measures by different persons, I proposed to make tests for systematic errors of measurements to be carried out in connection with the measurements of the plates of the solar rotation effect, in the hope that I could eliminate these errors if they actually existed, and also that I might throw light on my suspicions as to the reality of the results obtained by Adams regarding the systematically different displacements of various lines. I accordingly devised a method of attacking the problem, a description of which, together with some preliminary measures, constitutes the remainder of this section of the report,

The method consists essentially in introducing on the spectrum lines under investigation by mechanical means an arbitrary displacement-of known magnitude if desired-which is the same for all the lines, and which should yield, in the absence of systematic errors, the same measured values within the limits of the accidental errors, and for a large series of observations the same means for all the lines whether measured by the same or different observers; if the means of the measured values in such a series are not close to the same value, then systematic errors are present, and their magnitude and nature can be determined from the differences.

The arbitrary displacement may be introduced by taking the photograph of one spectrum first, then shifting the plate-holder and taking the photograph of the other spectrum. The plate-holder may be moved between stops or moved by means of a micrometer screw. The method is very satisfactory if one is not anxious

Fig. 13.—Double-Slit Apparatus.

to have the displacements on a series of plates identically the same. For several reasons, however, I desired the latter condition and accordingly devised a second method of obtaining the displacement. This method consists in the taking of spectra from two parallel slits whose widths and distances apart are adjustable and may be kept constant for a series of plates, the distance apart of the slits governing the displacement of the spectra. To reproduce the configuration of the "rotation spectra" taken here, I had the "double-slit" constructed in the form shown in Figure 13, which represents a bird's-eye view of the apparatus. F, is a brass frame with bevelled runs in which the slit-jaws, J, J, work. These jaws are also milled with bevelled runs in which the smaller jaws, J', J', slide. The slit-edges of all these jaws are parallel, and they are bevelled back leaving their sharp edges in the plane of their faces. The smaller jaws were set in the larger and their edges polished simultaneously to insure parallelism, the polishing being done on plate-glass with the finest emery. One of the μ is a fixed position, while the other may be slid back and forth in F by means of the micrometer, M, with the aid of a coiled spring as in ordinary spectrograph-slits, and the distance between the jaws may be read in ten-thousandths of an inch. The slit between the jaws, J', J',

may be adjusted to any desired distance to either side of the slit between the larger iaws. The widths of the two slits will be the same if they are adjusted so that they close simultaneously, since, when jaw, J, is moved by the micrometer it carries with it one of the smaller jaws. A mask is next placed over the slits to give the configuration C. The double-slit replaces the ordinary slit of the spectrograph, and the spectra taken are represented by S. A precisely similar mask is used in taking the rotation spectra, so that the widths of the strips of spectra and the distances apart are exactly the same. Both spectra are taken from the same distance inside the limb of the sun, so that the only difference between them lies in the fact that in the rotation spectra the displacement of the spectral lines is due to the rotation of the sun, while in the double-slit spectra the displacement is caused by the displacement of the slits and is therefore the same for all lines. Measurements of the latter should therefore reveal the exact nature of the errors of measurement of the former. In a somewhat similar manner the double-slit may be employed to investigate the errors of measurement in connection with the other problems mentioned above. If the double-slit is to be used very much it will be found advantageous to provide a micrometer attachment to the right-hand jaw, J', so that its distance from the slit made by the larger jaws may be readily adjusted. For use in the present investigation the displacement was fixed at about 0.07 mm. the value of the displacement at the equator on the rotation plates at \(\lambda \) 4250, the region chosen because it was that employed by Adams in his work on the Solar Rotation and is the common region selected by the International Union for Co-operation in Solar Research.

In making the measurements the large Toepfer measuring machine of the Observatory was used. This instrument has a thread 30 cm. (12 in.) long and of 0.5 mm, pitch and is capable of measuring over the whole range of the 12 in, plates taken in the solar spectrograph. The micrometer reads to microns and estimations to one-tenth of this value, i.e., to one ten-thousandth of a mm., (0.0001 mm.) may be made. The measures given in the following Tables are expressed in this unit. All measurements of the displacement of any line consist in taking the difference between the means of 4 settings on the line in the central strip of spectrum and the mean of 2 settings on the line in each of the two outside strips; when all the lines in question are measured, the plate is turned through 180° and the measurements repeated, the run of the micrometer screw being in the opposite direction: the mean d, of the means d' and d", from the two runs for each line is the measured displacement for that line, and it thus depends on 16 settings. Before giving the bulk of the measurements of the arbitrary displacement plates. I will present some results illustrating the differences in the measures of the same lines by different observers. In the Tables, r denotes the residual obtained by subtracting the mean value of d from the d in question.

TABLE I.

	Pti	ate, Lo.	10a, (F	totation	тпес	t).				
	4548	8-938	4558	8.827	456	1.939	457	1.275	Mea	ans
	d	r	d	r	d	r	d	r	d	r
Plaskett Harper Parker Cannon Motherwell De Lury	533 563 550 540 543 493 (520	- 4 +26 +13 + 3 + 6 -44 -17)	537 515 540 552 500 496 (490	+14 - 8 +17 +29 -23 -27 -33)	540 510 500 513 500 526 (481	+25 - 5 -15 - 2 -15 +11 -34)	545 510 520 502 522 507 (536	+21 +26 - 4 -22 - 2 -17 -12)	539 535 528 527 516 506 (507)	+14 +10 + 3 + 2 - 9 -19
Means	537		523		515		524		525	

Note.—The bracketed values are duplicate measures previously made and whose peculiar differences made it desirable to have measurements made by other observers. All but the bracketed values are derived from measures made in only one position of the plate.

TABLE II.

				LIUIJ, ARBITRARY	ARBIT	RARY	JIBPLAC	EMENT	ISPLACEMENT BY DOUBLE-SU	OBCE-2	CIT.							
	4220-	4220-509, Fe, 3	e, 3	4225-6	4225-619, Fe, 3	69	4232.	4232.887, Fe, 2	63	4241-2	4241-285, Fe-Zr, 2		4246-9	4246.996, Sc., 5.	., 5.	×	Means.	
	ď,	<i>q</i> ,,,	p	ď,	ď,,	er.	,'P	φ,,,	79	ď,	4,,	rg .	à,	d'',	g	ď,	9,,,	p
Plaskett Camon Camon Camon Parket Harper De Jury Stowart Means d' Means d' Means d' Means d'	27.12.1 26.648.676.678.688.688.688.688.688.688.688.68	704 701 716 720 731 682 687 687	704 704 682 676 676 676 678 678	720 679 668 706 706 706 656 656	25 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25 699 25 717 24 724 26 834 26	05 25 25 25 25 25 25 25 25 25 25 25 25 25	713 680 671 659 659 649 649	708 689 680 680 680 684 684 684 684	707 7115 7116 691 7114 7116 663 663	27178 682 682 683 683 683 683	704 689 706 680 706 680 680 680	689 687 663 663 673 705 673	\$ 65.00 F 5.00 F	88.955.0588 88.955.0588 88.955.0588	707 (701 692 675 683 683 673 673	706 697 697 681 681 675 698	707 7007 699 688 688 688 688 687 674

Norm.—The bracketed values, previously obtained, suggested the advisability of repeating the measurements and having other observers make them also. The bracketed values are not included in taking the means. The values obtained for the whole exposure L70ff at the previous measurement, were, Plaskett, 70f. 10c Larry, 68s.

TABLE III.

L641, Arbitrary Displacement by Moving the Plays-Holder.

			3 GEORGE
		11+1+11+1+1+1+1+1+1+1	808 820 813
14.	P	1018 1018 1018 1018 1001 1001 1001 1001	1026
L641d.	η,,,	1087 1108 948 948 1089 1089 11120 943 1008 948 1108 948 1108 974	1034
	ď,	999 1005 1005 1005 1005 1005 1005 1005 1	1018
	-	0.00	
16.	P	717 700 700 700 700 700 700 700 700 700	763
L641c.	d''	152 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	762
	ø,	658 889 142 742 742 742 744 744 744 744 744 744 7	764
	L	+++1+ + + + + + + + + + + + + + + + + +	
16.	ď	653 628 638 638 630 640 640 640 650 650 650 650 650 650 650 650 650 65	009
L641b.	g.,	665 664 664 664 668 664 664 667 667 667 667 668 667 667	615
	oʻ	641 624 627 627 627 627 627 627 627 627 627 627	982
	L	+11111+1++++1++1+++1+++1+++1+++1+++1+++1+++1+++1+++1+++1++++	
la.	P	882 882 883 883 883 883 883 883 883 883	861
L641a.	d'',	822 882 882 882 882 882 882 882 882 882	298
-	ď,	851 857 874 874 855 855 855 855 855 855 855 855 855 85	822
Remarks.		Week. Broad, strong. Broad, strong. Broad, fazzy. Fine. Fine. Strong. Fine.	Means d',
W. A.F.	WIGGE.	1286 1332 1332 1050 1140 1142 1140 1544 1683 1530 1530 1530 1530 1530 1530 1530 153	
, i	rune,	1, 500 (05, 44, 17) (1, 10) (1	

TABLE IV.

1099, ARBITRARY DISPLACEMENT BY DOUBLE-SLIT.

SESSION

AL PAPER	No. 25	a	01101111
		+++++++++++++++++++++++++++++++++++++++	*10.7
Means.	q	708 696 689 673 673 689 689 689 689 689 689	693
Me	4"	652 653 653 653 653 653 653 653 653 653 653	669
	à,	690 690 690 690 690 690 708 708	687
	q	708 682 692 693 693 693 693 693 693 693	707
L699f.	g',	680 674 7115 7115 7115 7115 680 680 680 680 7115	715
	à,	721 690 690 742 742 742 742 742 743 744 745 664 664 664 766 664 766 664 766 664 766 766	669
	P	691 673 673 673 674 675 676 676 677 678 678 678 678 678 678 678	694
Z699e.	g.,	719 780 670 692 683 722 722 722 670 670 696 696 697	706
	ď,	663 667 667 689 689 680 680 680 680 680 680 680 680 680 680	683
	g	718 695 639 675 675 676 683 704 704 704 711	969
P6697	<i>q</i> ,,	721 719 719 638 675 747 713 713 653 686 686 688 688	701
	ď,	512 642 642 642 643 644 644 644 644 644 644 644 644 644	691
	P	767 768 772 772 772 772 772 773 774 775 775 775 775 775 775 775 775 775	969
76697	d",	52 111 25 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	704
	ď,	736 727 727 727 728 725 690 690 690 690 690 690 690	689
	P	688 725 686 682 682 663 644 673 670 670 689 670	989
96697	'.'P	730 737 737 738 738 738 738 744 659 659 659 744 659 744	989
	ď,	646 738 673 660 660 671 660 671 670 670 670 670 670	989
-4	ъ	647 688 688 688 688 688 688 747 747 747 747 747 747 747 747 747 7	678
7669T	4,,	629 673 668 668 668 668 668 673 743 743 743 743 743 743 743 743 743 7	683
	ď	654 641 641 642 643 644 644 644 644 644 644 644 644 644	674
		00000000000000000000000000000000000000	18 d''
Line.		7.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	Means
13		4196-699, 4220-509, 4220-509, 4222-887, 4241-288, 4246-996, 4246-996, 4246-996, 4246-996, 4246-996, 4246-996, 4246-996, 4246-996, 4246-996, 4246-996, 4256-081, 4266-0	
		1,528,4,7,0,7,8,0,0,1,5,5,4,7,7	

TABLE V. L701, Arbitrary Displacement by Double-Slit.

		1 ++++++++++++++++++++++++++++++++++++	+15.4
90	q	2255 25 25 25 25 25 25 25 25 25 25 25 25	
Means	ø.,	88188818888888888888888888888888888888	269
	à,	113 14 14 14 14 14 14 14 14 14 14 14 14 14	069
	p	F8558888888888888888888888888888888888	686
£701f.	<i>q</i> ,,,	F 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	989 :
7	ď,	658 669 669 671 741 681 680 680 680 681 681 681 681 681 681 681 681 681 681	683
	p	650 650 650 650 650 650 650 650 650 650	069
Z701e.	ď,	724 725 726 726 726 726 726 727 727 727 727 727	689
	ď	675 674 674 676 676 676 676 676 676 677 677	69
	q	721 772 682 683 773 773 774 641 764 672 682 683 683 683	669
Z701d.	d'',	742 665 667 744 747 748 668 683 683 683 683 683 683 683 683 68	102
7	ď,	750 757 757 757 757 757 757 757 757 757	697
	p	640 616 616 727 727 727 727 728 728 728 728 728 728	70.5
L701c.	d",	616 610 610 613 737 744 744 744 745 745 745 745 745 745 74	702
7	ď,	663 622 707 707 728 689 698 724 723 723 724 727 727 727 727	702
	q	704 7256 7256 7256 651 651 651 651 730 737	669
27016.	d'',	736 7748 7748 7704 7705 7705 7703 7703 7703 7703 7703 7703	12
	ď,	673 654 654 650 650 661 665 665 665 665 665 665	687
	q	624 616 616 617 617 627 627 627 627 627 627 627 627 627 62	069
L701a.	d'',	906 740 740 745 765 765 765 765 765 765 765 765 765 76	687
	4'	245 55 55 55 55 55 55 55 55 55 55 55 55 5	883
	THE	1, 499-699, La. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Means d'

TABLE VI.

ERRORS OF SETTING. L699, Arbitrary Displacement by Double-Slit.

					с Меап	is.	. Arithmetic Means.					
	Line			2nd.	3rd.	4th.	1st.	2nd.	3rd.	4th.	Means	
1, 4196-699, 2, 4197-237, 3, 4216-136, 4, 4220-509, 5, 4225-619, 6, 4232-887, 7, 4241-285, 8, 4246-906, 9, 4257-815, 10, 4258-477, 11, 4266-681, 12, 4268-915, 13, 4276-836, 14, 4290-377, 15, 4291-630,	La, Cn, CN, Fe, Fe, Fe, Fe, Mn, Fe, Mn, Fe, Ti, Fe,	2	$\begin{array}{c} -7 \\ 0 \\ +7 \\ +9 \\ +20 \\ -15 \\ 0 \\ -14 \\ +10 \\ +13 \\ -14 \\ -3 \\ -4 \\ +3 \\ -2 \end{array}$	$\begin{array}{c} +13\\ +7\\ -1\\ +2\\ -12\\ +12\\ +7\\ +5\\ -4\\ -2\\ +1\\ -14\\ -7\\ -8\\ \end{array}$	$\begin{array}{c} -6 \\ 0 \\ +8 \\ -2 \\ -8 \\ -4 \\ +6 \\ -7 \\ -6 \\ -12 \\ +12 \\ +4 \\ -6 \\ -2 \\ +8 \end{array}$	$\begin{array}{c} -1 \\ -11 \\ -3 \\ -3 \\ 0 \\ +6 \\ 0 \\ +18 \\ 0 \\ +1 \\ +2 \\ +12 \\ +16 \\ -2 \\ +3 \end{array}$	18 28 40 24 25 21 25 25 34 21 21 21 14 14	26 25 23 16 20 17 12 17 19 13 16 22 13 18	12 25 30 22 28 20 18 21 13 12 19 11 16 14 18	18 20 31 23 20 14 21 19 24 15 14 21 20 13 10	18-6 24-5 31-0 21-3 23-3 18-0 18-8 20-5 15-3 17-5 18-8 15-8 14-8 14-0	
		Means	- 1	- 1	0	+ 2	23	18	18-6	19	19-6	

Norm.—The above numbers are the means—algebraic (with regard to sign) and arithmetic (without regard for sign)—of the lat, 2nd, 3rd and 4th settings on the lines in the central strips of the six exposures, L6994 to L6994, measured both ways; each mean for each line is therefore the mean of 12 settings made at different times.

TABLE VII.

								3 GEO	RGE V.,	A. 1913
	p.r.	=26.7	42.7	14.6	23.9	34.0	19.7	34-4	22.7	34.6
Means	h.	0	- 10	6 +	+	+ 17	22	2 +	- 16	0
	4	694	189	705	869	71	692	102	678	694
	S	717 + 31	- 83 - 83	715 + 29	700 + 14	733 + 47	665	650 - 36	687	7772
	(e)	669 +	675 - 15	714 + 24	687	+ 33	688	664 - 26	664 - 26	702 772 + 12 + 86
L701.	(p)	721 + 22	+ 73	682 - 17	654 - 45	723 + 24	719 + 20	751 + 52	704	641
17	3	640 - 62	616 - 86	.720 + 18	690 12	737 + 35	700	715 + 13	726 + 24	25.4
	(<i>q</i>)	704	701	686 - 13	726 + 27	+ 83 + 83	725 + 26	- 48	656 - 43	690 763 0 + 64
	(a)	624 - 66	616 - 74	909 +	+ 555 +	673	679 - 11	736 + 46	654 - 36	069
	S	+ 108 + 1	682 - 25	741 + 34	685	727 + 20	635	808 +101	754 + 47	677 736
.6697	(e)	691	707 + 13	121 72 +	9 9 1	679 - 15	678 - 16	727 + 33	709 + 15	677 -
	(P)	718 + 22	697 + 1	695	705	639 - 57	675 - 21	733	676 - 20	685
97	9	764 + 68	708 + 13	702 + 6	744 + 48	752 + 56	743	- 633	710	650
	(9)	688 + 2	798 +112	989	725 + 39	632	692	658	644	599 - 87
	(0)	647	634	70I + 23	632 - 46	735 + 57	682	688 + 10	639	
Remarks.		Diffused	Asymmetrical.d	2 +	Goodd	a	Fined	2 ±	Strong, broad.d	Diffuse d 693
.dtb.	I.A.	2020	1660	2052	1710	1990	1634	1409	2500	1640
		5	01	64	co	00	61	¢1	5	09
Line.		La,	CN,	CN,	Fc_{j}	Fe,	. Fe,	Fe-Zr,	, Sc,	Mn,
Lin		1, 4196·599, La,	2, 4197-257,	3, 4216-136,	4, 4220-509,	5, 4225-619,	6, 4232-887,	7, 4241-285, Fe-Zr,	8, 4246-996,	9, 4257-815, Mn,

SESSI	ONAL.	PAPER	No.	25a

SESSI	SESSIONAL PAPER No. 25a										
9.7	27.8	29.0	686 695 + 1 22.8	28.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		±26·1				
10	645 681	667 - 27	+	717 + 23	- 2		33-1 29-2 15-5 11-3 27-9 29-5 29-7 26-5 27-2 14-8 29-3 Mean p.r. = 26-1				
689	681	299	695	717	692	694	Mea				
+ 688	645 - 41	631	989	678	+ 38	989	29.3				
688	673 675 616 759 724 686 - 34 - 15 - 83 + 61 + 25 - 24	700 + 10	662	730	+ 692	069	14.8				
675	724 + 25	667	687	735	989 -	669	27.2				
70e + 4	759 + 61	649	85.4 82.8	417 4 12	701	702	26.5				
673	616	703	4 700 1 1	737	661	669	29.7				
703 + 13	675 - 15	659 - 31	747	743	717 + 27	669 069	29.5				
869	673	695	692	678 - 29	- 19	707	27.9				
989	676 - 18	673	4 x 8 x 8	691	902 +	694	11.3				
683	d 638 717 676 704 676 r - 40 + 31 - 20 + 8 - 18	694	+ 28	697 + 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	969	15.5				
705 + 6	676 - 20	649 - 47	634	708	- 29	969 989	29.2				
673	717	- 689 +	670 - 16	785 + 69	- 22		33.1				
692 + 14	638	88 8	715 + 37	744 + 66	747 + 69	678	31-6				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Faird	Good	Diffuse d 715 670 684 724 702 682 747 700 730 750 r 7 + 37 - 16 - 62 + 28 + 8 - 15 + 57 + 1 + 28	Broad	747 r + 69	Mean d	Probable residual single line = $p.r.$ 31.6				
1925	1710	1480	1590	2365	1900		sidual s				
61	61	61	67	-	23		able res				
8-477, Fe,	6-081, Mn,	8-915, Fe,	6-836, Zr,	0-377, 71,	1-630, Fe,		Probs				

Probable residual of the displacement for a single exposure = ± 8.0 .

									3 GEO	RGE V.,	A. 1913
		p.r.	47.6	00	2.5	5.0	- 00	9.9	80	6.4	6.7
	Means.		0	9 +	0	63	- 67	00	00	:00	.0
	-	g	200	90:	700	869	869	769	703	692	200
SKETT.		S	4 70 +	699	705	709	699	695	716 + 14	689	608 - 4
Measured by Plaskett.		(e)	12.4	681 699 - 16 - 3	703 705 + 6 + 3	106	683 699 - 14 - 3	705 695 + 8 - 7	889	10	698
	1.	(p)	693	989	989	- 696 - 2	969			685	9 -
	7.017	(c)	88 -	115	669	- 14	710 696 + 4 + 2	202	707	701	713
L701.		(g)	+ 117	4 +	202	694	708	707	711	699 701	711
ONV ((a)	693 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{684}{20} - \frac{696}{7} + \frac{715}{7} + \frac{707}{1} - \frac{703}{3} - \frac{689}{5}$	708 704 696 691 710 710 711 707 702 + 14 + 2 + 5 + 1 1 + 8	707	713
697 s:		S	902	700	702	704	704	P 2 1	710	700 707	70%
PLATE		(e)	+ 8 + 13 + 5 + 3	719	200	695	705	20	691	695	717
MENTS		(p)	704	705	969	888	989	+ 13	969	682	675
ISPLACE	76897	(c)	8 .	+ 12 +	689	202	700 686	695	704	693	603
ARY D		(9)	692	+ 22 +	710 +	869	9 -	- 17	708	675	675
Arbite		(a)	683	+ 14 + 14	.d 688	989	703	888	0 +		702
SUMMARY OF MEASUREMENTS OF ARBITRARY DISPLACEMENTS, PLATES L699 AND L701.	Remarks.		Diffused	Asymmetrical.d	a r	Goodd	, d	Fined	s	Strong, broad.d 689	Diffused 702 675 603 603 675 717 708 713 711 713 740 698 $r + 10 - 19 - 9 - 16 + 13 + 5 + 5 + 5 + 5 + 7 + 6 + 1$
ARY OF	· ų:	PIM	2020	1660	2022	1710	1990	1634	1409	2500	1640
SUMM			67	21	64	60	69	64	61	rů.	63
	Line.		1, 4196-599, La,	2, 4197·257, CN,	3, 4216-136, CN,	4, 4220-509, Fe,	5, 4225.619, Fe,	6, 4232.887, Fe,	7, 4241-285, Fe-Zr,	8, 4246-996, Sc,	9, 4257 ·815, Mn,
			-	63	60	41	5	9	1-	œ	07

SESSIONAL.	

SESSIC	NAL PA	PER No.					
5.1	7.3	5.1	5.00	.x	5.4		0.9=
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	+		an p.r.
669	102	702	700	200	701	702 700	Mea
701	- 13	710	+ 709	+ 764	700	702	5.6
- 12	687	0696	112	4 708 121	706 +	269	5.0
689	700 + 6	+ 696 + 2	4 262 +	- 1	- 10	706 706 694 697	7.4
716	721	+ 208 + 2	869 s	713	711	206	3.9
705	706	111	705	695	+ 3 + 3	706	8:9
715	- 10	112	717	703	+ 213	70k	4.2
703	712	+ 4	686	989	710	703	5.0
- 13	707	717	700	+ 708	+ 11	704	4.6
0	685	685	684	669 +	989	691	7.2
697	721 + 19	698 4	4 70×	705	692	702	6.4
+ 10 +	+ \$112	704 + 2 10	691	989	- 13 E	693	0.9
- 1	679 - 13	1 E	691	+ 7	8 + 200 +	692	9.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fair	Good	Diffused	Broad $\frac{d}{r+7} = 88 + 38 + 88 + 2 = 77 = 6 = 11 + 7 = 1 + 12 + 2 = 700 = 688 = 118 + 7 = 1 + 12 + 2 = 700 = 4.8$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean d 692 688 702 691 704 703 708	Probable residual single line = p_{x} , 9-1 6-0 6-4 7-2 4-6 5-0 4-2 6-8 3-9 7-4 5-0 5-6 Mean p_{x} = 6-0 4-3 6-9 1 4-5 5-9 5-6 p_{x}
1925	2 1710	2 1480	1590	1 2365	1900		sidual
			63	-	63		able re
77, Fe,	81, Ma,	15, Fe,	36, Zr,	77, Ti,	30, Fe, 2 1900 "		Prob

12, 4268-913

14, 4290-377 15, 4291-630

Probable residual of the displacement for a single exposure = ±4.1.

3 GEORGE V., A. 1913

The discussion of the results given above can best be made under the headings of the various classes of errors investigated:

Systematic differences in the measurements by different measurers.-A glance at Tables I. and II. reveals the fact there are systematic differences in the measurements made by different persons, and in the general trend the results indicate that those who have had considerable experience in the measuring of stellar radial velocity spectrograms get higher values than those who have had little experience in the measurement of spectra. The differences between the highest and lowest values of the mean displacements are, from Table I., 33, i.e., 0.0033 mm., and from Table II., the same value, 33, representing differences of 6.3 per cent. and 4.8 per cent. respectively. These differences are equivalent to differences of 0.13 and 0.10 km. per second in the determination of the equatorial rate of the sun's rotation from similar displacements. This is a striking difference, and the question arises: Which is more nearly the true value, the high measurement or the low one? and further, What is the true value?-for obviously it is not safe to take the mean value of all the measurements when such systematic errors occur. From the results of a large series of measurements, involving double measures on 12 different exposures (summarized in Tables VII. and VIII.) Mr. Plaskett's measurements are seen in the mean to be systematically greater than mine by 6 in a displacement of about 700. This difference is systematically in the same direction with the exception of the measurements for 2 out of the 12 exposures, and 3 out of the 15 lines, one line giving the same mean. This difference corresponds to 0.02 km. per second, a very small quantity, yet it is in the hundredths of a kilometre per second that nearly all of the interest in the determination of the solar rotation lies at the present time in view of the many interesting results obtained by Adams. It is consequently of considerable importance in such investigations to make allowance and correction for the systematic differences in the measurements of different persons.

Sustematic differences depending on the direction of measurement.—A very curious systematic difference in the measurement of the displacements presents itself when measures are made one way and the plate is reversed and measured in the other direction, the face of the plate being up in all measurements. This difference, which apparently is in the same sense for all observers, is exhibited in Table II. where measures of 6 lines on one exposure are given for 6 different measurers, and in Tables III., IV, and V., where my own measurements of 16 different exposures are recorded. It will be seen from Table II. that, with the exception of Mr. Plaskett's measurements which do not show the effect, the first measurement, d', is systematically smaller than d", the second measurement, for each line with one exception, and for each observer. In the mean, d''-d'=694-686=8, a difference corresponding to 0.023 km. per sec. In my larger series of measurements this peculiarity is even more strikingly shown. In the values for L641, Table III., we have, d''-d'=820-806=14, which corresponds in the region of the spectrum measured, to about 0.04 km. per sec. For L699, Table IV., the difference, d'-d'=699-687=12, corresponds to 0.034 km. per sec.; and for L701, Table V., the difference, d'-d'=697-690=7, corresponds to 0.02 km. per sec. I all cases for the measurements of d' the configuration of the lines as seen in the eye-piece of the measuring-machine, was it, while for the measurements d", it was the opposite, . Furthermore, the carriage was always advanced so that the spider-line of the eye-piece always passed over the central line first, and the 4 settings were made on the central line before passing to the two outside lines. It is not likely that the fact that the d" measures were made subsequently to the d' measurements has anything to do with this remarkable difference; nor are temperature differences in the micrometer screw caused by the presence of the measurer while securing the values of d' sufficient to account for the larger values

of d". Nor does the direction of turning the screw account for the difference. for in the measurements of L641 the screw was turned in the opposite direction from that used in the other measurements, the central strip being displaced to the red of the two outside strips in it and to the violet side of the spectrum in plates L699 and L701: to get the same configuration in the microscope for the d' measures it was therefore necessary to start the readings from the opposite ends of the scale for the two opposite displacements. The most plausible explanation of the difference, it seems to me, is a "right-handed and left-handed" effect. The fact that in d' the lines in the two outside strips appear to the right of the line in the central strip, and that in d'' the opposite is the case may produce effects on the eve resulting in this curious difference in the measures of the displacement; and since the right hand turns the screw in opposite ways there may be a muscular effect. I try to eliminate such a thing as "muscular memory" however, by taking a fresh grip on the turning wheel before each setting. Furthermore it must be understood that the field of the microscope is so big that when a setting is made on one of the three lines, the observer is apparently not conscious of the presence of the other lines; the above considerations would seem to indicate that the other lines exert some small influence over him nevertheless. In Adams' work on the rotation two strips of spectra were employed, so that the configuration of the lines would be the same in both positions of the plate, and consequently the measured displacements are liable to be too large or too small from such an effect as is here shown to be present. This effect is so large that it must be eliminated from the measurements

Systematic differences for different lines.—From Table VII. it will be seen that there is a tendency towards negative residuals in my measurements in the cases of lines 8, 11 and 12; and positive residuals for the lines 5 and 14. In Mr. Plaskett's results the tendency to negative residuals occurs in the cases of lines 6 and 8, and positive residuals for lines 2 and 7. Nearly all of these lines have some exceptional characteristic:—line 2, 4197.257, CN, is a weak line slightly diffuse and shaded asymmetrically; line 5, 4225.619, Fe, is a good strong line with slightly diffuse edges and it is near the strong, broad and nebulous line of Ca, 4227, which appears in the field of the microscope during the measurements of line 5; line 6, 4232.887, Fe, is a narrow strong line and a good one for measuring; line 7, 4241.285, Fe-Zr, is narrow and weak; line 8, 4246.996, Sc, is a strong and very broad line but it has sharp edges and is therefore a fairly good line to measure; 11, 4266.915, Mn, 2, is a weak line; line 12, 4268.915, Fe, is a narrow line with edges slightly diffuse; line 14, 4290.377, Ti, is a very broad line with its edges sharp and strong. As seen in the last paragraph it seems very probable that the configuration of the lines plays some part or has some slight effect on the measurements; such being the case it is reasonable to suppose that this effect will vary with lines of different character, and consequently the measured displacements may vary. I made measurements on three dense exposures of the Ca line 4227 to see if any exceptional effects were present such as those obtained for this line and for $H\alpha$ by Adams in his solar rotation work. The errors of setting were very large and nothing definite could be found from so few measures. Such measures should be made, and preferably under the same conditions as the rotation plates were measured by Adams and Miss Lasby. The present results show however that there is a danger of systematic errors being present for the various lines, and the differences obtained for individual lines in the rotation work should be very carefully examined by the person making the measurements, at the time they are made preferably, to see if they are due to such systematic errors of measurement.

It will be seen from Tables VII. and VIII., that the probable residuals for the different lines differ greatly, and that my p.r. is much greater than Mr. Plaskett's.

This is probably due to the fact that the latter observer has had a great deal of experience in the measurement of the broad diffuse lines of star spectra, and his eye is accustomed to smoothing out the irregularities in the lines due to the grain of the plate, and that I am still bothered by it and have more difficulty in setting on the centres of intensity of the lines. It is to be hoped that more experience will relieve me of much of this error. These errors are combined accidental and systematic, and probably when the systematic errors are removed the residuals will be greatly insensed.

Systematic errors in setting.—In Table VI. are given my errors of setting for the 4 settings on the lines in the central strips (measured both ways) of Plate, L699. The numbers are the means of the residuals, with regard to sign, obtained by subtracting the mean of the 4 settings on any one line from each of the settings on that particular line and taking the means for each line. Though each line has its own peculiar arrangement of the positive and negative residuals for each of the 4 settings—quite striking in some eases—yet there seems to be no general systematic arrangement of these signs. The means without regard to sign show the peculiar and not unexpected result that the first settings are usually farthest from the mean, while the residuals for the other three settings are of about the same magnitude. This peculiarity may be lessened to some extent by viewing the line as a whole more carefully before taking any settings. The mean error of setting is, #19.6, or about 0.002 mm, equivalent to nearly 0.056 km, per sec.

The above results were obtained in the measurement of the simplest class of spectroscopic work, namely, the relative positions of the same lines, and where therefore systematic errors are not so likely to occur as in investigations where the relative positions of different lines are determined; yet, nevertheless, the results show the presence of systematic errors. It may be taken for granted, then, that similar and larger errors occur in other spectroscopic measurements. And since the errors are sufficiently large that their removal is desirable, a general method for the elimination of such errors is necessary. An obvious method of eliminating some of these errors is to make the configuration the same for each measurement. This may be accomplished in the particular case examined above by masking all but each strip of spectrum in turn by means of a slotted sliding mask having a spring stop for each strip. However, in the general case where different lines are compared this would not remove the individual errors of each line, and would not remove any systematic errors of "memory" if they were present. The "double-sit" used above offers a more complete elimination of the difficulty as follows:

By means of the double-slit, introduce a displacement, D, on the spectra whose normal displacement, d, is desired to be found. By making D much larger than d, it may be assumed (and this point could easily be tested by means of the double-slit) that the systematic errors in measuring D+d are the same as for the measurement of D. Thus let the measured value of the displacement be D+d+e, then the measured displacement of D will be D+e, and the difference between the two measurements, (D+d+e) - (D+e), will give the true value, d, of the displacement sought. The method is precisely the same as the "method of differences" used in exact weighings. It would involve two parallel series of measurements, but the determination of D+e would probably not need to be made so frequently as the determination of D+d, e, after one became somewhat fixed in his habits of measurement. In the investigation of the solar rotation this method could be readily applied. The displacements, d, in our work here range from a little less than 0.1 mm. down to nearly zero, so that by introducing a displacement D=1 mm. in all the rotation spectra the total displacements would be so nearly constant that

very probably the systematic errors of measurement would be the same for all and one determination of D+e for spectra from 6 or 7 different latitudes on each plate would serve to eliminate the systematic error: in the mean. Absolute values, within the limits of the accidental errors, would thus be determined for d, and the results of the measures made by different observers and for different lines should agree very closely. I hope to test the method in the near future and eliminate the errors now present in our work.

Briefly the more important results of the present investigation are:

 A method is described for determining the presence and the nature of the errors in the measurements of spectral line displacements.

(2) There are systematic personal errors in the measurements of spectral line positions and displacements.

(3) The errors of measurement, both accidental and systematic, depend on the configuration measured, that is, on the grouping of the several lines in the field of the measuring microscope, and on the characters of these lines.

(4) The effect, on the measurements of different observers, of the configuration employed in the present investigation is in the same sense.

(5) The systematic errors discovered in the present case are sufficiently large to introduce grave errors into one's results and into their interpretation, and consequently one's measurements cannot be accepted as sufficiently accurate without the elimination of these errors. Systematic errors ranging from 0.13 km, per sec. to 0.02 km, per sec. were found in measurements such as made for the determination of the rate of the solar rotation, the value for which at the equator is a little over 2 km, per sec.!

(6) A method for the elimination of these systematic errors is described.

That the systematic errors which occurred in the measurements of the arbitrary displacements, actually occur in the measurements of rotation plates, is seen from the following comparative values of the equivalents (in kilometres per second) to the measured displacements on various plates:

Plates.	L528a	L531a	L531b	L570a
Plaskett	1.866	1.868	1.872	1.816
De Lury	1.851	1.851	1 959	1.716

The necessity for the removal of the errors in our work is thus emphasized. It hope to earry on further work on this question of systematic errors of measurement, and to investigate such influences as intensity of the photographic plate, the magnitude of the displacements, the character of the line with particular reference to the broad lines λ 4227, and Ha_i ; and especially to test the methods proposed above for the elimination of these errors.

I wish to thank the gentlemen who so kindly made the comparative measurements given here; and Mr. Lucas for constructing the double-slit to work so efficiently.

5. The Effect of Sky Spectrum on the Determination of the Rate of Rotation of the Sun; and a Note on the General Problem of Blended Spectra.

The spectrum taken from any point on the sun is made up of two spectra, one from the point in question and the other from the earth's atmosphere—the "sky spectrum" as it is called. The sky spectrum is produced from sunlight reflected from particles in the space surrounding the earth and in its atmosphere, and partly too by refraction in the latter. Since the sunlight thus redirected comes from the whole of the sun's surface facing the earth, the spectrum lines will be broad and diffuse because the wave-length of any particular line varies over the surface of the sun on account of the effects of rotation, convection and pressure; the centres of intensity of the lines, however, will coincide practically with the centres of intensity of the lines in the spectrum from the centre of the sun's disc. When a photograph of the solar rotation effect is taken the lines in the adjacent strips of spectra from opposite limbs are displaced, while the lines in the sky spectrum blended with it have the same wave-lengths in each of the strips. The measured displacements in these two spectra blended will consequently be less than the actual displacements caused by the sun's rotation. This source of error was noted by Halm and by Adams in their investigations on the solar rotation and observations were taken only on days that were comparatively free from haze in the atmosphere, it being assumed that on the more transparent days when the sky spectrum was much weaker than the sun spectrum, the effect due to the former was negligible. However, since the values measured here for the rate of the sun's rotation at the equator were a few per cent, lower than those obtained at Mount Wilson, it occurred to me thateven though errors of measurement might account for the greater part of this discrepancy—the difference might partially, at least, be accounted for by a difference in the intensities of the sky spectrum in Ottawa and Mount Wilson. I therefore proceeded as follows to estimate and eliminate any effect of the sky spectrum on the measurements.

In the first place an estimation of the relative intensities of the sky spectrum and the "rotation spectrum" was made by exposing for the two spectra in succession. The sky spectra were obtained after lowering the solar image from its usual position when rotation spectra are taken until the little windows in the guide-plate were each about 8 or 10 mm. from the edge of the image. The exposures lasted about 20 or 30 minutes, while the rotation spectra taken on the same plate were exposed for varying times from 5 seconds up to the usual exposure given (30 seconds to 1 minute), so that the intensity of the sky spectrum would be somewhere within the range of intensity of these exposures. In this way a rough estimation of the relative intensities was made possible. The same estimation can be made more quickly by observing or photographing the direct images of the slit reflected back by the grating placed normal to the axis of the spectrograph for the sky and limb of the sun in turn. The visual estimations can be made more readily by narrowing the slit when the limb is examined until the intensity of the reflected light is the same as when the sky light is used. Suitable filters should be used in the latter case to avoid any errors that may be caused by selective effects for the wave-length under consideration. This method was further simplified by masking the primary mirror of the coelostat telescope until the intensity of the reflected image of the slit was as weak as when the sky spectrum with the whole mirror was used. By having the two sources of light quickly alternated, and by estimating closely the two areas of the mirror employed a very accurate estimate of the relative intensities of the sun's limb and the sky can readily be made. Observations by this method agreed closely with the results from the comparisons of the intensities of the two spectra, and they have the advantage over the latter, that changes in the intensity of the sky are less likely to occur during the series of observations. Having determined the relative brightness of the sky with respect to the limbs where the rotation spectra are taken from, varying exposures on the sky are superimposed on the regular exposures of the latter. By measuring the displacements on these blended spectra it is possible to find the effect of sky spectrum on the ordinary rotation plates. The decreasing values of the velocity-equivalent of the displacement are plotted as ordinates with the values of the ratio of the intensities of sky spectrum to rotation spectrum as abscissae; the asymptote to this curve will be the true value of the velocity-equivalent of the displacement caused by the rotation, and the amount that this is lessened on account of the sky spectrum present on the regular rotation spectra is easily determined when the time of the latter exposure is known.

Though a number of plates were made only one has so far been measured, and it is sufficient to show that the effect of sky spectrum on the most transparent day

is very small. The results are shown in the Table and in Figure 14. Further measurements will be made to ascertain exactly the relation existing between the lessening of the displacements due to sky spectrum and the relative intensities of the two spectra for the varying displacements of the different latitudes, after the errors of measurement of the displacement are under eareful control.

Ratio of intensities of overlapping sky and rotation spectra.

Fig. 14.—The Effect of Sky Spectrum on the Measurements of the Solar Rotation.

THE EFFECT OF SKY SPECTRUM IN LESSENING THE MEASURED DISPLACEMENTS OF THE SPECTRUM LINES CAUSED BY ROTATION AT THE SOLAR EQUATOR.

Rotation E Sky Exposu Ratio, Sky	ire		ninute ninute		inute inute 1		ninute ninutes 2		inute inutes		inute inutes S
Line.		d	Đ	d	t	d	Đ	d	t	d	v
1, La, 2, 2, CN, 2, 3, CN, 2, 4, Mn, 32, 6, Fe, 3, 6, Fe, 2, 7, Fe-Zr, 2, 8, Se, 57, 9, Mn, 2, 11, Mn, 2, 211, Mn, 2, 212, Fe, 2, 13, Zr, 2, 44, Ti, 1, 15, Fe, 2,	4196-699 4197-257 4216-136 4220-509 4225-619 4232-887 4241-285 4246-996 4257-815 4268-915 4268-915 4276-836 4290-377 4291-630 Means	818 769 773 749 745 769 762 748 856 736 759 764 800 804	1·794 1·686 1·687 1·633 1·544 1·620 1·668 1·651 1·617 1·850 1·588 1·636 1·644 1·716 1·724 1·671	747 809 762 773 666 768 773 774 760 872 739 811 765 764 768	1-638 1-774 1-663 1-685 1-450 1-670 1-677 1-643 1-884 1-594 1-646 1-639 1-647	771 758 793 755 777 756 778 748 797 777 757 767 777 781	1·691 1·662 1·731 1·646 1·692 1·644 1·688 1·621 1·722 1·679 1·633 1·714 1·650 1·665 1·675	775 783 748 790 705 749 786 743 780 800 746 771 768 815 803	1-699 1-717 1-633 1-723 1-528 1-705 1-610 1-686 1-729 1-662 1-633 1-748 1-722	752 710 674 763 726 690 752 741 702 735 733 740 717 742 757	1.649 1.557 1.471 1.664 1.581 1.590 1.636 1.606 1.517 1.588 1.581 1.595 1.543 1.592 1.623

Norz.—The intensity of the limb of the sun was approximately 100 times as great as that of the sky when the exposures whose measurements are given in the 'Jalle were made. The mean values of a for the different values of the ratio, Sky: Rotation intensity are plotted in the accompanying Figure 14. It would appear that somewhere between the values, 0-04 and 0-05 of the ratio of the intensities of the two spectra the weaker begins to affect the measurements of the servinger spectrum. The measurements of the second column are a repetition of those of the first.

The method employed here, namely, the blending of known spectra in known ways and measuring the resultant lines, would yield results of considerable value in the solution of certain astrophysical problems in which the question of blended spectra is an important one. By suitably blending the spectra under consideration, or similar spectra, definite laws could be established connecting the positions, characters and intensities of spectra and of individual lines with the measured positions of the blended spectrum lines, which could be applied to the problem investigated. Such data are necessary in making a complete solution of the following important problems:

(1) The more minute investigation of the spectra of stars the peculiar results from the measurements of which have been explained by the blending of two or

more spectra known or suspected to be present.

(2) The determination of the rates of rotation of stars which has been suggested possible in the case of eclipsing variables* by studying spectra taken at various stages of the eclipse. Though there are many difficulties in the way of this problem tone of the first things to consider is the blending of spectra which in general would occur.

(3) The investigation of the question of the presence of an independently moving haze or envelope between the observer and the source of light-a problem which occurs in the investigation of the sun and of variable stars, and for solving

which, data concerning blended spectra are necessary.

It thus appears that the study of arbitrarily blended spectra would yield profitable and necessary results. In connection with the solar work I hope to make such arbitrary measurements by blending the spectra from the centre of the disc and limb at the equator to find any general laws connecting the amount of displacement, intensities of the two spectra and character of the spectral lines, with the measured positions of the lines.

6. Convection in the Atmosphere of the Sun.

The question of convection in the atmosphere of the sun or of a star is one of very great importance. In our present theories of their constitution convection currents play a vital part. They must operate ceaselessly in all stellar atmospheres to maintain radiation; and variations in the latter may be reasonably attributed to changes in the convection currents supplying it. So much impressed was I by this idea, that in a paper entitled "Convection and Stellar Variation," read before the Royal Astronomical Society of Canada, t in March 1909, and before the Royal Society of Canadas in May of the same year, I attempted to explain in this manner certain general conclusions from the photometric and spectrometric data of variable stars. A quotation from this paper will briefly present views discussed there:

"It is supposed that the star is a body condensing under the action of gravity and developing great quantities of heat which give rise to rapid radial convection currents bearing masses of hot gases from within and cooler and condensed materials back to the interior, and that, in the absence of disturbing agents, a "kinetic equilibrium" is established resulting in a steady and practically constant total emission of light by the star. Since the radiation from the star depends on the velocity and character of its convection currents, any change in these convections causes a change in the heat and light emitted. Consequently, to account for the variations in the light of some stars, it is assumed that there are changes in the convection currents of the stars caused by the changing action of disturbing agents.

J. Miller Barr, Jour. Roy. Astron. Soc. Can., 3, 50. George Forbes, M.N., LXXI, 578.
 Frank Schlesinger, Pub. Allegheny Obs., I., 134; M.N. LXXI., 719.
 Journ. Roy. Astron. Soc. Can., III., 344-355.
 Trans. Roy. Soc. Can., Series III., Vol. III., Sec. III., 227-236.

"The nature of these convection currents is revealed to some extent by the study of the sun's atmosphere. Short-exposure photographs of parts of the sun's surface taken on a large scale at intervals of less than a minute apart by S. Chevalier* show that the granulation of the photosphere is undergoing very rapid change, and we may attribute this to the rapid radial currents which exist throughout the entire atmosphere of the sun. The spots, faculae and prominences, which may be regarded as accentuated developments of the general currents, change continuously and frequently exhibit great velocities in their radial and transversal movements. The number and areas of these disturbed regions vary in a period of average length about 11.2 years, and in about the same period the regions in which the spots are most abundant change in latitude in the north and south hemispheres. It is not vet known whether the convection currents over the entire surface of the sun vary periodically, yet at least the enlarged convections or their results-if we may so term the spots, faculae and prominences—undergo periodic variations causing changes in the radiation from the regions affected. Now although these changes may not be great enough to modify seriously the total radiation of the sun, nevertheless in the case of variable stars we may assume that similar changes on a larger scale account for the light-variations." . . . The paper then goes on to discuss the possibility of "induced" actions resulting from disturbances in a stellar atmosphere, the different effects for different gases, and the shifts in spectral lines resulting from changes in convection-it being assumed that the ordinary heat convections are accompanied and supplemented by electrical convections and changes in the positions of electrical discharges or glows to account for the largest changes in wave-length; then in the light of this theory the different classes of variations of stars are discussed.

As will be seen from the context I regarded the question as to "whether the convex constraints or the entire surface of the sun vary periodically" as one of great importance, and I wish to emphasize here the necessity of investigating this subject of convection in the solar atmosphere, and to urge that it be added to our programme of work with the solar spectrograph.

While preparing the above-mentioned paper I made plans for commencing the investigation of general solar convection currents, but during the year 1909 the work with the spectrograph was confined to the problem of the solar rotation and numerous incidental tests, employing the old grating which yielded such poor results; this work was continued in 1910 with new and better gratings, so that it was not until December 1910 that I made the attempt to take plates of the convection effects. However I succeeded in taking only one plate, L626, which was underexposed, and as this work seemed to interfere with the work on the solar rotation it was abandoned until a more favorable opportunity presented itself. The method which I proposed to use consisted in taking side by side and simultaneously, spectra from various points on the sun's surface which lie in the plane containing the centre of the earth and the axis of the sun, and which therefore give no displacement of the spectrum lines due to the sun's rotation; measurements of the changes in wave-length in these plates would give data for calculating the magnitude of the convection velocities, though it might be involved with such considerations as blended spectra, pressure, etc. The region selected for L626 was at the D lines where it was thought the presence of the earth's atmospheric lines would be useful in eliminating instrumental errors and certain errors of measurement. The apparatus necessary is a reflecting prism arranged so as to reflect the light from any point inside the limb of the sun to another prism placed above the slit so as to direct this light through the slit to the grating; at the same time light

^{*} Astrophysical Journ., 27, 12-24, 1908.

from the centre of the sun's disc goes directly through the slit and the spectra from the two points are photographed side by side so that the relative wave-lengths may be determined. Half of the prism system employed in the solar rotation work would serve for this purpose with possibly a longer rack for the limb prism. It may be that the magnitudes of the velocities exhibited by the ordinary absorption lines may not be large enough for my purpose; in that case I would employ the high-level lines H and K which have in the meantime been investigated by Charles E. St. John.* The results he has found regarding the convectional movements of the vapors producing the various components of these lines are in striking accord with the theories presented in my paper on "Convection and Stellar Variation" quoted above. For example he finds that: "The calcium vapor producing the absorption line K_3 in the solar spectrum has a descending motion over the general surface of the sun of 1.14 km. per second in the mean," and "The calcium vapor to which the bright emission line K, is due has an ascending motion over the general surface of the sun of 1.97 km. per second in the mean." Now if on investigation such velocities be found to vary over the sun-spot period, the "convection theory" of the variability of stars would receive some confirmation; but even if these results do not turn out as I hope they will, yet they will be of sufficient importance to warrant the carrying out of the investigation, for the solution of other solar problems is not complete without recognition of the effects of convection.

I wish to suggest therefore that the programme of solar research be widened to include a thorough investigation of the general convections in the solar atmosphere and any periodic changes that may take place in them, and that the necessary conveniences be provided soon to take advantage of the present sun-spot minimum and the sudden rise to maximum which is likely to follow. It seems to me that the problem of the solar rotation—at present the main solar problem under investigation here—should be studied simultaneously with convection effects, pressure effects, sky spectrum and blended spectra, and the incidental errors of measurement, for results may be obtained from the former investigation which would be inexplicable without data of these other effects obtained simultaneously; and, as suggested in the last report, a more perfect photography of the sun should be made with the aid of the reflecting telescope.

7. The Effect of Air Currents in Spectrographs.

During the latter part of the autumn of 1910, a puzzling annoyance was encountered while working with the solar spectrograph; the image of the spectrum became disturbed from time to time: the disturbance resembled that which resulted from tapping the spectrograph gently or from kicking the cement piers on which it rested: the trouble was greater on bright frosty days when the sun spectrum was examined, than it was at any time during a couple of weeks of warmer, cloudy and rainy weather when the spectrum from a carbon are was examined: on several occasions marked disturbances were observed simultaneously with the sound of slamming doors or of heavy waggons rumbling on the road above the tunnel in which one end of the spectrograph is placed.

The definition of the spectrum was so much impaired by the disturbance that for a month no satisfactory spectra could be photographed. We had great difficulty in finding the cause of the trouble. The fact that Dr. Klotz recorded marked microseisms on two of the frosty bright days when the disturbance was exceptionally great, made us suppose that it might be due to some earth waves accompanying those recorded on the seismograph. The vibrations caused by the machinery in the machine-shop adjoining were also suspected, but stopping the

Astrophysical, Journal, 32, July, 1910.

Fig. 15.—Rotation Spectrum Photographed without and with Air-Currents in the Spectrograph.

machinery did not affect the disturbance. Truss-rods were placed on the spectrograph, but though they gave it necessary strengthening, they did not lessen the trouble. Finally one day when the cold currents blowing in under a door near the grating end of the spectrograph were exceptionally strong, it occurred to me that the disturbance might be due to cold air passing into the spectrograph and over the face of the grating, and sure enough this last guess proved to be right, Mr. Plaskett observing the effect on the next bright day when the sun spectrum was examined. By observing the face of the grating without the eye-piece used in examining the spectrum, waves were seen to be passing over it suggesting the appearance of a volcano.

The greatest effect was caused by the cold air from the room which was suddenly cooled by opening the doors leading to the coelostat-house to admit the light from the reflector; this cold air fell through a small hole which had been placed directly above the face of the grating when some additions were made to the spectrograph earlier in the autumn. In the most extreme cases the room was chilled to a temperature from 10° to 15° C. lower than that in the spectrograph, and the initial influx of air to the latter was so great as to utterly ruin the definition of the spectrum. This effect is illustrated in the accompanying Figure 15, which is taken from plate L621, II order, λ 5600, and reproduces a sharply defined rotation spectrum taken in the absence of air currents in the spectrograph—a condition secured by plugging the holes in the spectrograph with felt—and a poorly defined spectrum taken immediately afterwards while air currents were passing over the face of the grating. These currents were caused by leaving the doors open for five minutes and allowing the room to cool from 20° to 12° C. and then removing the plugs of felt from the holes in the spectrograph near the grating. This of course represents an extreme case, but it will serve all the better as a warning to those who are likely to meet with the same trouble in employing spectrographs of the closed-in type.

The disturbance was eliminated by lining the spectrograph with felt, and by putting a double box around the grating end of the spectrograph, lining it and plugging all holes with felt and cotton waste. Conditions were further improved by putting a pane of plate-glass in one of the doors leading out to the coelostathouse, thus making it possible to get light from the reflector to the spectrograph without cooling the room.

The above observations are recorded in the hope that others who are engaged in spectroscopic work may avoid the troubles we have experienced. In the use of stellar spectrographs, it seems to me, there is a danger of similar effects from air currents. The spectrograph is usually kept a few degrees warmer than the room in which it is used by an electrically controlled and heated thermostat, and the resulting convection currents may cause a slight effect; and further, cold air leaking in through the narrow slit may slightly impair the definition of the spectrum and greatly lessen its intensity on account of the changes in refraction which would cause some of the light passing through the slit to be deviated so that it would not fall on the collimating lens and prisms. The point could easily be tested and if the effects were present they could be removed by placing a thin piece of plateglass over the slit, or immediately under it.

8. Distortion and Dispersion of the Solar Image by the Earth's Atmosphere.

Some marked effects of distortion and dispersion of the sun's image, produced by the terrestrial atmosphere, have been noticed from time to time while working with the reflecting telescope and while taking the daily photograph of the sun with the equatorial telescope and solar camera. These effects are most pronounced during the winter months when the declination of the sun is least. On one occasion when the definition produced by the reflector was excellent, the following measurements of these effects were made. The angles refer to the readings on the graduated circular front of the solar spectrograph, corresponding to the direction of the diameter of the solar dise measured; the "diameter over all" includes the colored part due to the spectrum, and "diameter over white" is the diameter leaving out the red and blue edges of the image.

Angle 260°, "East and West line"	230·0 n 228·0
Angle 170°, "North and South line" Diameter over all Diameter over white	$^{226 \cdot 0}_{224 \cdot 8}$
Angle 300°, "No color line" Diameter	232.0
Angle 305°, Diameter over all Diameter over white	$231.0 \\ 230.8$
Angle 210°-215°, Direction of Spectrum	$\substack{224\cdot 0\\222\cdot 0}$
Hence, the length of the spectrum is	2.0
The greatest diameter of the monochromatic image is perpendicular to the direction of the spectrum, and equal to	232.0
The least diameter of the monochromatic image is along the direction of the spectrum, and equal to	223.0
Hence, the distortion effect is	9.0

The observations were made December 12, 1910, 3:35—3:50 p.m. The day was particularly calm and cold, and fairly stable layers at different temperatures may have existed in the atmosphere.

From the above measurements it will appear that when the sun is low it is not safe to make observations where a knowledge of the position of the points on the sun observed is essential; during the winter months observations should be made about the noon hour, when, unfortunately, the coelostat-house is inshadow. Furthermore the photographs of the sun taken in the winter time should be made as near noon as possible. Is it possible that small effects similar to those noted here, may have affected the investigations which have been made to detect any changes in the diameters of the sun? I understand that correction for atmospheric refraction has been made in the ordinary way, but may there not have been present frequent minute irregular distortion effects operating so as to increase the probable errors of the measurements greatly and thus discouraging attempts to detect the most minute changes? It appears that the question has been abandoned even though Poor's investigations—in spite of the large probable errors present—seemed to indicate periodic changes in the diameters of the sun.

9. Suggestions for Future Work and New Apparatus.

A brief outline will here be given of suggestions I wish to make relating to future was and new apparatus, the necessity for some of which has been discussed in the preceding part of this report. Nearly all of these suggestions while having a direct bearing on the problem of the solar rotation, relate to questions important in themselves.

- (a) Solar Rotation and Related Work.—In the foregoing Report I have shown the necessity of determining the slight effects on the measurements of the rate of the solar rotation caused by the following:—Errors of Measurement, Sky Spectrum, Convection and Pressure. I have pointed out methods of determining these effects. In this connection the "rotation plates" could be made more valuable by including a simultaneous exposure on the centre of the sun; this could be done with very little extra trouble. It might be advisable to alter the present unsymmetrical configuration of the spectra (which consists of two exposures from one limb and one from the other) and have two strips of spectrum from each limb, with a narrow strip from the centre in between each set. Two settings on the line in each strip-10 settings in all-would yield information regarding pressure and convection effects and would give more data for the determination of the rate of the solar rotation than is given by the 8 settings to a line in the three strips of spectrum now used. The labor and time of making the settings can be much lessened, and the accuracy in recording them can be put beyond question, by employing an automatic register of the settings. I have devised a simple photographic method (see below) of accomplishing this.
- (b) Periodic Changes in the Velocity of the General Convection Currents in the Solar Atmosphere—As mentioned in the preceding part of the Report, I have raised the question—in a paper entitled, "Convection and Stellar Variation" (doc. cit.)—as to periodical changes in the convection currents in the solar and stellar radiation. I regard the question as a very important one, and it seems to me that much light can be thrown on the general problem by a study of the solar convection currents. Apart from its own importance it may have an important bearing on the problem of the solar rotation. It is quite possible that a thorough knowledge of the convectional movements—their velocities and magnitudes—in the sun's atmosphere, may provide the key to unlock the mystery of the greater angular velocity of the lower latitudes. Indeed, it does not take a very great stretch of the imagination to conceive that the rotation of stars and the consequent throwing off of satellites, may have been developed by the growth of convection currents fed by the energy liberated during the condensation under the action of gravity of matter initially in a very tenuous condition.

I would therefore urge that time and equipment—very little extra apparatus is needed to start the work—be granted me for the investigation of the general solar convection. Very likely the motions of the ordinary absorbing gases are not rapid enough to cause a suitably large displacement for measurement, and particularly for detecting changes in velocity. Adams, in his comparisons of the centre and limb of the sun, finds a slight displacement which he attributes to pressure, but which in the absence of a very accurate laboratory comparison could be ascribed to convection. However, the more rapidly moving high-level vapors of Calcium and Hydrogen can be investigated from their emission and absorption lines, and their velocities are sufficiently large (as St. John has recently shown, for Calcium, loc. cit.) to make it possible to detect periodic changes of 1 per cent. or more. In such work it is essential—as I pointed out in the last Report—to photograph simultaneously, a gaseous absorption comparison spectrum produced by tubes of gas of known pressure.

(c) Proposed New Arrangement of Reflecting Prisms for the Solar Rotation Work.— By using the arrangement of the central reflecting prisms of the solar rotation apparatus shown in Figure 16, the resulting "rotation plates" will be considerably more valuable than the ones taken at present. By this arrangement two sets of rotation spectra are photographed simultaneously with the spectrum from the centre of the sun's disc; the width over all of the five strips and spaces between them could be, conveniently, about 5 mm. In measuring these spectra, two or three settings to a line in each strip would be sufficient. From the double set of rotation measures it would perhaps be possible to east out honestly, very discrepant individual measures occurring in only one of the sets and independent values for each limb could be determined; and comparisons with the spectrum from the centre of the solar disc could be made to determine the effects of pressure and convection. Likewise changes in the character of the lines between centre and limb would be recorded. Since the tips of the prisms are rather thin, difficulty might be experienced in grinding them out of a solid piece of glass; in that case they could be made from strips of glass of the required thickness cemented to a central block of glass, for convenience of adjustment.

Fig. 16.—A proposed arrangement of Reflecting Prisms for the Solar Rotation Apparatus.

(d) Photographic Method for Recording Micrometer Readings.—To lessen the labor involved in the measurements of the spectrum line displacements on the "rotation plates," and to increase the accuracy of these measurements I have devised a photographic method of recording the readings on the drum of the micrometer. I understand that the printing method which has been used for this purpose* would be very expensive if applied to the large Toepfer measuring machine; but I think the following apparatus could be constructed at much less expense. The apparatus would consist essentially of a small short focus camera provided with an automatic shutter, and a key (similar in action to a typewriter key) which when pressed after a setting had been made, would release the camera shutter, and which when released would shift the film or plate in the camera over a suitable distance for the next exposure. The camera would be set up so as to photograph the reading on the silvered micrometer drum which would be illuminated by artificial light of sufficient intensity to give a good exposure in say half of a second as regulated by the automatic shutter. Suitable masks would be employed so that only the necessary part of the scale on the drum would appear on the photographic plate or film. The readings would be photographed on such a small scale that a great number could be placed on a small plate or film, and enlarged prints would be made from the negative so that the readings could be readily determined

^{*} Zeit für Instrumentenkunde, p. 169-173, 1910.

without the aid of a magnifying glass. The readings for each spectrum line would be taken in a row and the plate or film advanced slightly for the next row of photographs. By using a small plate in a plate-holder which could be immersed in developer and fixer, the after treatment of the plate could be carried on during other measurements, thus saving much time. The mechanism for shifting the plate from reading to reading, and for advancing it from row to row could be arrianged like that of a typewriter for shifting the platen from letter to letter, and for advancing it from line to line. I have discussed these details with Mr. Mackey who thinks he could construct the apparatus without much difficulty and expense, so I would suggest that it be provided for use with the large Toepfer measuring engine.

(e) Apparatus for Removing Systematic Errors of Measurement.-In the preceding part of this report I have shown that there are systematic errors present in the measurements of the displacements of the spectrum lines in the rotation plates, and that these errors are due to the configuration of the lines visible in the eye-piece of the measuring machine. I suggested there methods of eliminating such errors. One of these methods is to make the configuration the same for the measurements of the spectrum line in each of the strips of spectrum. This can be done by placing a mask just above the photographic plate to be measured. the mask to have a slit just wide enough so that one strip of spectrum may be seen at a time, and the mask to be movable so that the three strips may be seen in turn. Any influence on the setting on any particular spectrum line, by what is visible in the eye-piece will be the same for each strip and consequently the systematic errors due to configuration will be eliminated in the displacement determined by subtracting the readings for one spectrum from the readings for the other. I would suggest that such an apparatus be fitted to the large Toepfer measuring machine. It could be conveniently attached to the sturdy arm supporting the microscope. A light frame holding the slotted slide which can be moved between spring stops bringing the slit above each of the three strips in turn by means of a turning handle on the left side of the eye-piece support, is all that is necessary. More stops than three should at the same time be provided for the measurement of exposures having more than three strips of spectrum, and the slotted slide should be so mounted that it could easily be moved out of place in order to see all the strips of spectrum for purposes of adjustment.

PHOTOGRAPHY OF THE SUN.

The photography of the sun with the enlarging camera of the equatorial telescope was continued during the year, photographs being taken on nearly every bright day. On a number of bright days when the sun shone for just a short time, the photograph was missed because I was working with the solar spectrograph. However, nothing of very great importance was missed, it is hoped, because the number and size of spots are fast declining to the minimum. Until nearly the end of January the photographs were taken; as they have been from the beginning, on the coarsely grained Cramer's Medium Isochromatic plates, which are so sensitive to the light admitted through the "Filtergelb K" screen employed. For two reasons the definition on the photographs is not what it should be: firstly, because minute crystals have appeared in the Canada balsam used to stick the Filtergelb plates together-probably due to the action of the sunlight; and secondly, because the grain of the plates is so coarse. Through the end of January and February the finergrained though somewhat slower Wellington Ortho Process plates were employed; while during March the plates employed were Cramer's Iso Process which proved to be of still finer grain and nearly as fast as the Cramer's Medium Isochromatic plates formerly used.

Regarding the treatment of the plates after being exposed, I would suggest that arrangements be made for developing them immediately after being taken, or perhaps two at a time, rather than having them accumulate month after month as at present.

I would again urge that a camera be installed for use with the reflecting telescope, for special photographs at least. For ordinary purposes the photographs taken as at present may serve; but no record of the white spots and granulation is made on these plates owing to the fact that the yellow filter employed cuts off the violet rays from the Calcium vapor to which the brightness of the white clouds in the sun's atmosphere is chiefly due. Such a record could be made on Process plates with the reflector, and these photographs taken at the time when rotation plates are made would serve perhaps to trace out the cause of certain irregularities anopearing in the latter, though a spectroheliograph would do this much better.

LABORATORY WORK.

Owing to the pressure of other work, little time was found for work in the laboratory outside of the work on testing developers for use with the various photographic plates employed in taking the rotation plates, the plating of the mirrors, and numerous little points occurring in connection with our solar work and that of other members of the staff.

In connection with the investigation of errors of measurement—discussed in the first part of this report—I made 6 plates, (X, - X,), of artificial spectrum lines of varying character and intensity. These artificial lines were made by exposing the photographic plate to a small source of light through the double-slit described above. In this way emission lines displaced similarly to the displacements of the absorption lines on the rotation plates were imitated. By making a positive from this plate the absorption lines were themselves represented. The doubleslit was placed close to the photographic plate in a frame in which the plate-holder could be slid from exposure to exposure. The source of light consisted of a ground glass bulb placed behind diaphragms having holes of different shapes. These holes were made in small slides which could be readily interchanged, and their shapes controlled the character of the imitation spectrum lines. A rectangular opening gave a fairly uniform line, a diamond shaped hole gave a shaded line, two holes side by side produced a close double or a blend, etc. By suitably arranging the openings any kind of spectrum line or blend could be very closely imitated, and either emission or absorption lines could be produced. By means of the double-slit adjustments the displacements of these lines and their sharpness could be controlled. It was my intention to obtain from these plates the effects by gradual changes of intensity, character and displacement on the systematic errors of measurement. However, I considered it advisable for the first work in the investigation of errors of measurement, to find the errors in the measurements of the spectrum lines actually employed by us for the determination of the solar rotation, and of those lines found by Adams to give systematic differences from the mean values. In connection with this latter investigation I have devised means of eliminating the errors, so for the present time I have abandoned the work with the artificial lines, though their measurement would probably reveal more readily than any other measures the general effects of the various factors just mentioned, for changes in the latter can be so easily regulated. It might also afford the easiest method of determining one's tendencies in the measurement of blended spectra, for the character, intensity and distances apart of the lines forming the blend can be controlled so perfectly.

In the last Report I emphasized the necessity of employing gaseous absorption spectra photographed simultaneously with the Solar spectra for the purpose of detecting minute changes in the latter. I plan to prepare tubes of various gases and to investigate their absorption spectra. The colored gases such as the halogens, peroxides of nitrogen, chromyl chloride, etc., are available; and possibly too, many of the more transparent gases may be used with the long-focus telescopes and spectrographs now in use. It is possible that a long tube can be filled with several gases to produce a bsorption lines at the various wave-lengths. Many of these gases should be investigated and the wave-lengths of the best comparison substance the vapour of a metal. The metal could be heated in a tube at low pressure and the sun-light passed through the Sun, the light from one end of the solar equator could be passed through the tube; with great dispersion the lines would be shifted so much that the fine lines of the solar and comparison spectra would not blend.

APPENDIX E.

DOUBLE STAR MEASURES, OCCULTATIONS, AND HALLEY'S COMET.

R. M. Motherwell, M.A.

Double Star Measures.

The measurement of double stars has been carried on as in former years, but the presence of Halley's Comet interfered considerably with the work. The quick motion attachment for position-angle has been found very satisfactory. Acting on suggestions from Prof. Doolittle and Prof. Fox, I am giving the usual designation to each star in addition to its general catalogue number.

70	ΟΣ 2.		319	A. G. 6	
1910-690 1910-791	224·1 224·3	17·32 17·56	1910·796 ·802	11·0 11·0	59·56 59·28
1910 - 741	224-2	17 - 44	·816	11.4	59-15
			1910-505	11.1	98.99
117	Σ 21 rej.		578	Σ 89 rej.	
1910-796 1910-802 1910-816	51·0 51·0 51·6	7·75 7·48 7·61	1910·745 ·796 1911·045	159·3 160·0 159·5	15·64 15·60 15·74
1910-805	51.2	7.61	1910-862	159-6	15-66
134	H 1015		684	Kr 11	
1910·791 ·796 ·802	143·7 145·3 142·9	6·34 6·66 6·31	1911 - 045	240.5	2.35
1910.796	144.0	6.44	1002	Σ 183	
269	Espin		1910·791 ·796	164·2 163·9	5·65 5·66
1910·701 ·745	114·7 113·6	5·91 5·69	1910-794	164-1	5.66
1910-723	114.2	5.80	1186	Tucker	
Identified as No	o. 246 by Burnhai	m in A. N. 4426	1910-802	238 · 1	2.76

1216	A. G. 36		2119	A. G. 79	
1910-791 -816 -930 1911-046	224 · 4 222 · 5 227 · 4 223 · 3	3·55 3·25 3·33 3·23	1910·791 ·802 ·904	109·8 110·1 110·5	25·28 24·83 24·76
1910-896	224 · 4	3.34	1910-832	110-1	24.96
1223	A. G. 37		2232	Σ 556 rej.	
1910·701 ·745	290·9 291·3	5·02 4·79	1910-936 1911-046	288·1 286·2	3·93 4·62
1910-723	291-3	4.91	1910-991	287-2	4.28
1239	A. G. 38		2536	Σ 643	
1910·701 •791 •802	261·2 260·5 260·3	34·02 33·77 34·02	1910-791	300.3	2.74
1910-765	260-7	33.94	2634	Σ 678	
1622	A. G. 64		1910·791 ·802 ·904	99·2 98·0 99·2	3·26 3·02 3·33
1910-791 -802 1911-046	245·0 244·1 244·5	8·70 8·68 8·52	1910-832	98-8	3.20
1910-880	244-5	8-63	2648	Σ 682 rej.	,
1655	β 1294		1910-937 1911-046	98·5 99·4	19·01 18·57
1910·791 ·802	228·9 228·1	6·49 6·32	1910-992	99-0	18.79
1910-797	228.5	6-41	2697	H 364	
1750	A. G. 68	-	1910-937	141-4	9.87
1910-791	248-7	17.22	3334	A. G. 110	
2043	Σ 72		1910·791 ·802 ·904	327·3 327·9 327·5	10·72 10·55 10·51
1910-936	322-4	3.84	1910-832	327 - 6	10-59

3348	A. G. 111		6415	ΟΣ 261	
1911 · 051 · 084	163·4 164·8	6·67 6·76	1910-306	343.7	1.89
1911-067	164 · 1	6.72	6599	Σ 1777	
3399	A. G. 115		1910 - 254	229-6	3.64
1911 - 051	351.0	3.81	6753	H 3343	
3946	Σ 1058		1910-489	213 · 4	63.36
1910-937	281-4	22.11	7065	ΟΣ 289	
4530	H 781		1910·306 ·489	115·5 114·4	4·56 4·62
1911-051	139-6	5.65	1910-398	115.0	4.59
5019	Σ 1330 rej.		7429-5	A. G. 199	
1910-279	302.0	24.99	1910-254	253.4	9.57
5125	A 224		7480	S 676: ρ Corona	•
1910-279	146-1	3.56	1910-383	76.9	84.55
5337	Σ 1412 rej.		7604	Σ 2038 rej.	
1911-090	294.5	29-83	1910-306	212-31	16-69
6030	Σ 1601		7918	Но 558	
1910-284	309-5	2.63	1910-572	208.9	7.71
6386	β 930		7927	Σ 2141 rej.	
1910-284	118-7		1910-383	125.7	33-33

7930	Σ 2144 rej.		9181	H 5509	
1910-681	180.9	24.56	1910 · 638 · 706	104·8 103·1	6·78 7·10
5003	Σ 2161		1910-672	104-0	6-94
· 1910 · 567 · 572	313.6 313.0	3·88 3·67	9183	A. G. 228	
1910-570	313-3	3.78	1910-651 -660 -668	102·5 102·3 102·4	36·13 36·45 36·53
3431	HV 93		1910 - 660	102.4	36.37
1910-681 -706 -777	136·0 136·1 135·9	53·82 53·72 53·87	B.D	. 63°, 1501 and 1	502
1910-721	136.0	53.80	1910-668	156.4	78-66
§432	H 856		B.D.	63°, 1505 and 15	06.
1910·681 •706	62·4 62·3	Clouds 24·50	1910-638 -660	103·8 103·3	24·54 24·01
1910-694	62-4	24.50	-668 1910-655	103·4 103·5	24.44
8481	H 5494				
1910-706	70-2	39.43	9905	H 1477	
			1910-627	270.8	19-37
8504	Σ 2310		0.050	70 1 OF	
1910·706 •777	237 · 5 236 · 0	5·25 5·18	9970 1910-534	Espin 87 298 · 5	8.71
1910-742	236·8	5.22	·627 ·638	298·5 298·1 297·6	8.92 8.83
9107	Schi, 20		1910-600	298-1	8.82
1910-638 -660	229·9 229·8	59·54 59·47	9986	H 907	
	229 • 9	54.51	1910-580	132-5	5.79

10005	Σ 2649		10925	Σ 2790	
1910·627 ·638	151·5 151·4 151·4	23-28 23-07 23-56	1910·660 ·690	43·0 45·2	4·37 4·38
-668 1910-644	151 · 4	23.30	1910-675	44.1	4.38
1010 011	101 1		10934	Holmes	
10064	Ho 588				12-91
1910-627	297.5	49.75	1910-627 -660 -668	246·1 244·0 245·4	12·91 12·51 12·51
-638 -668	297 · 4 297 · 4	49·79 49·60	1910-652	245-2	12.64
1910-644	297-4	49.71	10943	S 788	
			10040		
10066 H	455. A and I		1910 · 627 · 668 · 796	87·7 89·2 88·3	44·18 44·31 44·91
1910-690	256-8	32.18	1910-697	88-4	41-47
	A and E.		11021	Espin 100.	
	۰	,	1910-627	159-7	3.72
1910-690	75-8	36-38	·701 ·739	159·5 159·1	4·06 3·89
10075	Hu 585		1910-689	159 · 4	3.89
1910-572	48.8	4.31	11037	H 3033	
·690 ·701	49·8 51·5	4.51 4.73			24.77
-739	50.3	4.65	1910·796 ·930	244·0 243·5	23.88
1910-676	50-1	4.55	1910-863	243.8	24.33
10898	β 1140		11048	A. G. 272	
20000	0	, ,	1910-690	184-9	3.93
1910-627	270.0	3.93	.701	185.8	3.92
			1910-696	185-4	3.93
10917	H 281		11487	H 1722	
1910-580	334.7	13.39	1010 75	0	17 00
·701 ·706	334·3 336·6	13.63 13.72	1910·701 ·739	47·0 46·5	17·36 17·14
1910-662	335-2	13-58	1910-720	46.8	17-25

1499	β 697		12222	H 3176	
1910-668	94-1	*	1910·791 ·796	164·0 164·1	26·07 26·14
-690	93.7	18-95	· 816	164.4	26.35
1910-679	93-9	18-95	1910-801	164-2	26-19
1546	A. G. 280				
1010		, ,	12230	Σ 2991 rej.	
1910.745	179-6	11.18			"
			1910-668	359-2	32.82
1601	A. G. 281				
1910-745	22.1	2.56	12345	β 854	
·796 ·930	20.0	2·69 2·56	4010 F01	0	"
			1910·791 ·796	87·5 87·7	2.51
1910-824	20.7	2.60	-816	89.2	2.57
			1910-801	88-1	2.54
2193	H 3174				
			10850	Kr. 67	
1910-796 -930	18·4 19·7	5.84 5.68	12753		
1910-863	19-1	5.76	1910-815	160-7	3.14

OCCULTATIONS OF STARS BY THE MOON.

Date.	Star.	Phenomenon.	Limb.	G. M. Time of Observation.
1910 August 29. September 29. December 10.	40 Geminorum 46 Leonis 54 B Ceti	Disappearance Reappearance Disappearance Reappearance Disappearance	Bright Dark Bright Dark Dark	h m s 19 34 13·2 20 24 48·4 21 21 49·6 22 17 56·3 12 42 01·7
January 16	7 Leonis	Disappearance	Bright	16 17 12-5

HALLEY'S COMET.

A search for this famous comet was begun here in July, 1909, the 8-in. photographic doublet being used. During the latter part of July, August and September, exposures were made whenever the telescope was available and the weather clear. The plates were on too small a scale, however, and the discovery was made photographically by Prof. Wolfe of Heidelburg, on Sept. 11, 1909. The comet was first seen here on November 9 with the 15-inch equatorial, the estimated magnitude being about 13. The following observing notes do not furnish a very complete history of the comet owing to the unusually cloudy weather:

1909, Nov. 23—Estimated magnitude 12.5; centre rather star-like.

Nov. 30—Estimated magnitude 12.5; much the same as on Nov. 23.

Dec. 11—Estimated magnitude 12.

Dcc. 16—Same as on Dec. 11—Diameter 15".

1910, Jan. 4-Exposed two hours with 2 plates; no sign of a tail on the negative but side of comet towards the sun was more sharply defined than the opposite side.

Feb. 10—Exposed 1^h 40^m: tail of ½° showing on negative. Comet quite easily seen in field glasses of power 8.

Feb. 24—Much the same as on Feb. 10.

April 12-First morning observation-Very decided nucleus 6" or 7" in diameter-Not visible to naked eye.

April 14—Comet seemed brighter than on April 12, but sky was hazy.

April 21—Observed comet through haze.

April 27—Saw comet with naked eye, 1° of tail being clearly visible—about 3° visible in field glass.

April 30—Magnitude 3.0—Nucleus very star-like—3° of tail visible to eye. May 3—Magnitude about 3.0—About 8° of tail visible to eve.

May 5-About same brightness-10° of tail visible to eye and quite uniform.

May 9—20° of tail visible to eye.

May 14—Tail over 35° long.

May 15-Tail visible at 13^b 30^m (E.S.T.) and head visible at 15^b 30^m (E.S.T.). Tail about 50° long.

May 16-Tail seemed to extend up to the Milky Way.

May 18 and 19 were unfortunately cloudy.

May 21—Comet visible in western sky—Tail about 15°

May 22-Nucleus brighter than on 21st.

May 26—Tail about 40°—Very sharp nucleus.

May 27-Tail about 50°.

May 28-Had best view of comet-Tail about the same as last night.

June 3-Tail about 15°-Nucleus much smaller.

June 4—Tail about 12°—Magnitude about 7.5.

June 8-Tail about 6°-Nucleus not nearly so sharp as on June 4.

June 9—Tail about 6°.

June 10-Comet very faint owing to haze.

June 28-Magnitude about 8.5.

TABLE OF EXPOSURES

Plate.	Date.	Exp	OSURE.	Camera*.
Time	riate. Date.		Duration.	Camera
1 2 3 4 4 4 5 6 6 6 7 6 8 8 9 8 10 11 12 13 14 15	1910 May 3 May 5 May 6 May 9 May 9 May 27 May 27 May 28 May 28 June 3 June 4 June 8 June 8 June 9 June 9 June 9 June 9 June 9	20 00 19 48 20 2 15 23 15 23 14 10 14 30 14 30 14 32 14 38 14 38 14 38 14 35 14 35	0 37 0 36 0 20 0 44 1 00 1 32 1 32 1 28 1 17 1 16 1 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^{*} O refers to the 8-inch Brashear Doublet which gives a field of about 11 $^{\circ}$ on an 8 x 10 plate.

G COC Z IGCOD

POSITION OBSERVATIONS OF HALLEY'S COMET.

G.M.T. 1909.	No. of Comparisons	Δα	Δδ	α	ô	log p. Δ		Star
	Com			(apparent)	(apparent)	а	δ	- St
h. m. s.		m. s.	, ,,	h. m. s.	0 / //			
Nov. 30 15 56 24	8-8	-1 3.04	-2 4.9	4 29 21.85	15 55 35.0	0.187n	0.638	ī
Dec. 11 13 2 4	8-8	-0 53.12	+3 15.9	3 43 2.31	14 45 27.7	$0 \cdot 567n$	0.676	2
Dec. 16 20 8 18	8-8	-0 1.95	+4 49.7	3 19 29 16	14 00 3.5	0.803	0.766	4
1910								
Feb. 24 12 29 18	8-8	-0 47.98	-11 30.1	0 37 34-88	7 53 12 5	0.785	0.777	5.

^{*} N refers to a Zeiss lens which gives a field of about 40° on an 8×10 plate. This lens has a speed of f3-5.

a See Plates.

MEAN PLACES FOR 1909-10 OF COMPARISON STARS.

Star.	α			Reduction to Apparent.	ð			Reduction to Apparent.	Authority.	
1	h. 4	m. 30	s. 21·50	s. +3·39		, 57	29.4	+10·5	A. G. 1231.	
2	3	43	51.56	+3.87	14	41	58.7	+13-1	A. G. 1108.	
3	3	20	21.10		13	46	1.9		A. G. 1004.	
4	3	19	$27 \cdot 85$	+3.26	13	54	59.5	+14-3	B. D. 13°.542. Micrometer comparison with (3).	
5	0	38	$24 \cdot 35$	-1.85	8	4	50.1	- 7.5	A. G. 232.	

No. 4. No. 5
Fig. 17.—Photographs of Halley's Comet.

F16. 18.—Photographs of Halley's Comet.

No. 10.

Fig. 19.—Photographs of Halley

APPENDIX 3.

REPORT OF THE CHIEF ASTRONOMER, 1911.

MERIDIAN WORK AND TIME SERVICE

BY

R. M. STEWART, M.A.

Introduction

Page

307

CONTENTS.

The Meridian Circle					
	Azimuth Marks	308			
	The Observing Room	309			
	Thermometers and Barometers	309			
	Instrumental Changes	309			
	Observations	310			
	Collimation and Level.	310			
	Pivot Errors.	314			
	Bisection Error	315			
	Reduction of Observations.	315			
	Ledgers of Mean R. A., 1910-0	319			
	Mean Right Ascensions.	320			
	Systematic Corrections	321			
Field Work					
	Longitude of Winnipeg	322			
	Personal Equation	323			
Tir	ne Service	325			
Appendix A—					
	Personal Errors of Bisection.	326			

TABLES

Observations for Personal Equation.	330
Observed Values of Collimation and Level	331
Reduction of Transits Observed with the Meridian Circle	336
Ledgers of Mean Right Ascension, 1910-0	439
Mean Right Ascensions of Stars Observed in 1910	501

APPENDIX 3.

MERIDIAN WORK AND TIME SERVICE, BY R. M. STEWART, M.A.

Ottawa, Canada, April 1st, 1911.

Dr. W. F. King, C.M.G.,

Chief Astronomer, Dept. of Interior.

Ottawa.

Sir,—I have the honour to report as follows on the work carried out under my charge during the fiscal year ending March 31, 1911.

Regular observations with the meridian circle for the measurement of right ascensions were begun in March, 1910. A description of observing list, methods of observation and reduction, and the results of the observations obtained up to the close of the calendar year 1910 will be found below. The observers were Mr. D. B. Nugert and myself.

During the course of the year several alterations to the instrument, which were necessary for the successful prosecution of senith distance work, were carried out; it was found possible to begin preliminary work in this co-ordinate in January, 1911. Several pieces of work still remain to be done before the instrument will be in first-class working order; progress on these has been extremely slow; apparently the workshop is so overcrowded that it is barely possible to keep abreast of the urgently needed requirements of the moment, no time being left for the overhauling and improvement of instruments.

As it is more convenient to treat the observations of a whole calendar year techter, the discussion of the meridian circle observations terminates with the calendar year, 1910.

Observations were made to determine the latitude and longitude of nine stations, the most important of these being Winnipeg, whose longitude was determined from Ottawa with considerable care. The field observations were made by Messrs. McDiarmid and Jaques. Several series of personal equation observations were made, which are discussed in detail below.

The time-service has been maintained as in the past without important change; most of the work in connection with the up-town service has been done, as in previous years, by Mr. D. Robertson. A statement of the number of clocks in operation will be found below.

THE MERIDIAN CIRCLE.

The piers for the two azimuth marks have been erected, and those parts of the apparatus not yet obtained have been ordered. Several alterations required in the meridian circle to fit if for zenith distance work have been completed, and regular work both in right ascension and zenith distance has been begun, the former

in March, 1910, the latter in January, 1911. The observing list in right ascension consisted of stars from Newcomb's Fundamental Catalogue north of 10° declination together with a number of selected stars between 70° and 80°; the star-list of the Berlin Jahrbuch was taken as fundamental. Besides systematic differences, there are occasional large discrepancies between the positions of individual stars as given in the two catalogues; an extreme case of this is given by the star—Herculis, where the difference amounts to .18 sec; in this case Newcomb's position is undoubtedly wrong, the proper motion having been apparently taken with the wrong sign. It was desired to investigate these differences, as well as to establish a somewhat more extended star-list for use in longitude work. These observations, comprising 5018 transits, with their reduction to mean place, are given below. There were in addition observations on a number of other nights, which for various reasons have been rejected.

With the beginning of zenith distance work in January a more extensive observing list was undertaken. For a number of years a great need has been felt for an extended list of declinations for latitude work, depending on observations of recent date, and it is hoped that these observations may to a certain extent fill that requirement. The observing list comprises those stars which have been used in latitude determinations by this observatory within recent years; the list will be enlarged from time to time as required, by the addition of stars being actually used in the field work.

This report, however, so far as a detailed discussion of the observations is concerned, deals only with the calendar year 1910.

Azimuth Marks.—The piers for the azimuth marks were built during the summer of 1910. Like the other piers, they are constructed of concrete, and in general form are similar to the south collimator pier. The northern part of each pier is penetrated by a pit to allow access to the underground lens which serves as the fixed mark; this part terminates about two and a half feet below the top of the pier proper. Through the centre of the latter is a vertical shaft about eight inches in diameter, extending down to the level of the bottom of the pit, into which it opens by a small arch; at the bottom of the arch the underground lens will be fastened to the footings of the pier.

Provision has been made for the thorough drainage of both piers; each is surrounded by proken stone to about the level of the ground, and the footings are surrounded by a tile drain. In the case of the north pier this is led to a pit dug in the gravelly soil a short distance away, there being sufficient slope to the ground in the immediate vicinity to ensure natural drainage from this point. The drainage of the south pier is effected by means of a cistern built immediately underneath that part of the pier which contains the pit for access to the underground mark; this cistern is connected by a pipe to the same power-pump which is used in connection with the cistern underneath the transit house.

In the absence of provision for the immediate erection of the permanent stone buildings to shelter the piers, temporary wooden shelters were erected, which, though rather unsightly structures, serve the present purpose fairly well. Electric wires have been provided to each shelter to furnish illumination for the marks; this is controlled from the meridian circle room.

Upon the completion of the piers the focal lengths required for the underground lenses were measured and the lenses were ordered. The two six-inch collimating lenses for the azimuth marks, and the two three-inch lenses to serve as underground reference marks for these, were received during the course of the vear. Mountings for all six lenses, as well as for the azimuth marks, were ordered.

Each of the long-focus collimating lenses is to be mounted on a slide capable of motion by a micrometer serve in the plane of the prime vertical; on the same slide will be a mark consisting of a platinum wire parallel to the meridian, and also another mark consisting of two parallel platinum wires to be viewed by an eye-piece. The point midway between these marks, which approximately coincides with the centre of the collimating lens, will be in the primary focus of the underground lens serving as reference mark; by the use of a mercury basin underneath the latter, the same point in the collimating lens can be at any time set vertically over the optical centre of the underground lens. A similar arrangement holds in the case of the azimuth marks.

On account of the small angle of dip of the lines of sight to the azimuth marks (one or two degrees), it will be impossible to use the ordinary horizontal collimators, which would interfere with the long-focus lenses. It is hoped that eventually the azimuth marks themselves may be used as collimators, the angle between them being checked up from time to time by reversal of the telescope. Provision has, however, been made for mounting the north collimator directly opposing the south azimuth mark, the two to be used in the same way as the ordinary collimators if desired. Mountings for this purpose have been ordered.

The Observing Room.—Considerable difficulty has been experienced with the temperature of the observing room. The walls of the building are of stone, and the roof of concrete; inside these is a sheeting of galvanized iron, an air-space of a few inches being left next the walls, and of about a foot beneath the roof; a number of louvres are provided to allow circulation of air in this space. Owing to the absorption of heat by the walls and roof during the day, it was found that the temperature within the room did not follow the outside temperature at all satisfactorily. even with the roof shutters open. The effect of this on observations of right ascension would probably be limited mainly to increased unsteadiness of star-images. but in declination observations it would probably introduce serious anomalies of refraction. Two sixteen-inch ventilating fans have been placed in the walls of the room, in the hope that enough outside air might thus be circulated to at least partially remove the difficulty; though these were of some assistance they did not entirely remove the temperature difference. It is proposed to remove the sheet iron covering inside the louvres and replace it by doors which can be left open or closed as desired; this will at least allow a freer circulation of air, which should alleviate the difficulty.

Thermometers and Barometers.—A thermograph has been mounted in a louvred shelter a short distance to the southwest of the transit annex; from the records of this instrument are obtained the temperatures for use in the computations of refraction. To determine its error several comparisons are made, during the course of an evening's observations, with a mercury thermometer mounted beside it. Incidentally it was found that considerable differences of temperature existed between the position of this shelter and that of the one used for the platinum resistance thermometer of the Callendar Recorder, which is situated north of the transitiannex. These differences were frequently irregular during the day, as was to be expected under varying conditions of wind and sunshine; during the night, however, they were more regular, the fall of temperature of the northern one being apparently retarded by radiation from the adjacent pinery.

Barometric heights are read from the standard barometer (by Casella) in the Time Room; in case of irregular variations interpolations are made with the assistance of the records of an adjacent barograph.

Instrumental Changes.—As mentioned in my last report, the original mountings of the microscopes were not sufficiently rigid. The microscopes were mounted,

not on a continuous ring, but on separate arms extending radially from the standards; slight distortions of these arms, presumably induced by temperature changes, were sufficient to render the nadir decidedly unstable. In order to stiffen them as much as possible, two cast-iron rings were made and carefully fitted to the inner ends of the microscope carriers, thus connecting together each set of four microscopes. Unfortunately the construction of the standards rendered it impossible to make these rings in the form of complete circles, the greatest length attainable being 270°; this no doubt causes the stiffness of the mounting to be very much less than it otherwise would have been. However, the addition of the rings has very materially increased the stability of the microscopes; for ordinary differential work the arrangement will probably be quite satisfactory.

A new mercury basin of amalgamated copper was made to replace the old one, which was not amalgamated; a considerable improvement in the average steadiness of the reflected images has resulted, though at times, especially in winter evenings with rapidly falling temperature, the definition is not very good.

An eye-piece with a reversing prism attachment (power 200) was obtained in June, and has since been regularly used for measurement of collimation and for observations of several stars each night. Eye-pieces of higher power were also obtained for the circle microscopes.

Observations.—Regular observations with the meridian circle were begun in March, 1910; throughout the remainder of the year 1910 it was used as a transit instrument. The observing list comprised most of the stars in Newcomb's Fundamental Catalogue north of 10° declination; a selected list of stars between 70° and 80° declination was also added, in order to provide a greater number of azimuth stars for use in longitude work. In the past the star-places of the Berlin Jahrbuch have been used for longitude work almost exclusively; besides systematic differences, there are occasional fairly large discrepancies between star-places as given in the two catalogues mentioned; it was desired both to investigate these, and to render the remainder of the Newcomb stars, some of whose positions are quite poorly determined, available for use in longitude work.

The Berlin Jahrbuch stars between 10° and 45° declination (as far north as the zenith) were taken as clock-stars; the azimuth stars included all those north of 80° declination whose places were given in any one of the four principal ephemerides, the Berlin Jahrbuch places being given the preference. Observations for level and collimation were made as a rule both before and after the evening's star-observations. After the arrival of the reversing eye-piece it was used for all observations both of stars and collimation; for the latter, half the pointings were made with apparent motion of the wires towards the micrometer head for increasing readings, and half in the opposite direction; in the case of stars, the great mass of the observations were made with the apparent direction of motion normal; each night, however, several stars were observed with the apparent direction of motion reversed; the stars so observed were as far as possible grouped in pairs, each star of a pair having approximately the same declination; usually one star of a pair was observed with eye-piece normal, the other with eye-piece reversed; on the following night the first star was observed with eye-piece reversed, the second with eye-piece normal. In this way sufficient data were accumulated for a fairly rigorous determination of bisection-error for each observer. In the case of the azimuth stars the procedure was somewhat different; one half the observation of each star was made with eyepiece normal, the other half with eye-piece reversed; in this case the error of bisection is entirely eliminated from the complete observation.

Collimation and Level.—The south collimator contained one horizontal and two vertical wires, the vertical wires being separated by about 9"; in the north

collimator there were two pairs of wires at right angles, one pair being separated by about 14", the other pair by about 17"; during a part of the year one of these pairs was set vertical and used for collimation readings, during the remainder the other pair was used. A complete reading for collimation was taken by setting the south collimator on the north ten times, the micrometer bead being left at the mean of the ten pointings; the telescope micrometer was then set eight or ten times on each of the collimators. Pointings of the solvent collimator on the north were made by setting the two vertical wires of the former symmetrically between those of the latter; pointings of the telescope on either collimator were made separately on each collimator wire, by placing the right ascension wires of the telescope (distance about 4") symmetrically on each side of the collimator wire. The same eye-piece was used for all pointings, giving with the meridian circle a power of about 200, and with the collimator about 130. Beginning with June 23 a reversing prism was attached to the eye-piece, and an equal number of pointings was made in each case with the appraent direction of motion normal and reversed.

The effect of a constant error of setting (to right or left) of the kind eliminated by the reversing prism would appear in the pointings of the telescope on either the north or the south collimator, but would be eliminated from the mean; in the setting of one collimator on the other, however, the error would persist, and would enter the final value of collimation, unless a reversing prism were used. To find what this error (which we may call bisection-error) amounted to, the separate pointings were examined and grouped so as to show the effect, in the case of both the observers engaged. It was found that in setting the telescope on the collimator wires, S* set on the average .03" too far to the left, N\dagger .02" in the same direction. All the collimator wires not being quite equal in apparent diameter, the pointings on each wire were grouped separately; it appeared that for the largest wires, whose images more nearly filled the space between the telescope wires, the bisection error was slightly smaller; the evidence was, however, not very conclusive on this point. In the case of pointings of one collimator upon the other, it was found that S was influenced decidedly by the distance between the wires set upon; when the wires 17" apart were used in the north collimator he set .13" to the right; with the wires 14" apart the error was .03" in the same direction. The observations made by N with the reversing prism were upon the more widely spaced wires only; his error of setting was .09" to the left. In observations taken after June 23 these errors are all eliminated; in those made prior to that date, without the reversing prism, they were presumably present; no correction has, however, been introduced to allow for them; their effect on differential observations would be practically negligible.

For measurements of instrumental level a mercury trough was used, in conjunction with a Bohnenberger ey-piece of the usual form; by means of slightly oblique illumination the reflected images of the wires were made to appear bright in a dark field; settings were made by obliterating the bright reflected images of the micrometer wires by the wires themselves; to eliminate any errors arising from the obliquity of the illumination the wires were successively illuminated from each side, an equal number of pointings being taken in each case. On account of the fact that the phenomenon watched for is not a coincidence of wires, but simply the position of minimum brightness, there appears to be no room in this observation for a personal effect such as might conceivably enter in the ordinary nadir observation.

Readings of collimation and level were taken in general both before and after an evening's observations, and occasionally at other times. The observed micrometer readings for collimation line and for vertical line are given in Table II., as well

^{*} R. M. Stewart. * † D. B. Nugent.

as the adopted values of collimation and level error, in seconds of time, for those nights on which star-observations were also obtained. In deriving the latter it is to be noted that the micrometer head is on the side next the clamp, and that the micrometer readings increase as the wires move towards the head; the adopted value of one revolution of the micrometer screw was 3.216 see. Hence if C be the micrometer reading for the collimation line, L for the vertical line, and M for the mean of the contacts on the micrometer head, we have for Clamp East $c = (C-M) \times 3.216$, $b = (L-C) \times 3.216$. The following were the adopted values of M throughout the year; the contact strip was broken about 9° on March 28, and was replaced by a new one; it was re-adjusted on May 13:—

March 11-March 28, 9h	9 · 5880
March 28, 9h-May 13	9.6000
May 14-Dec. 31	9 - 6600

It was noticed that the differences between observed values of collimation line before and after an evening's observations were apparently somewhat systematic, the later micrometer reading being quite usually the larger. To investigate this point, the observations for the whole year were grouped in several different ways, the results for the two clamps being treated separately.

Below is a list of the changes arranged chronologically, each period being the interval between successive reversals of the telescope; ΔC is the change in observed micrometer reading for line of collimation during the evening, the positive sign indicating that the later reading was the greater:—

Date.	Clamp.	Average ΔC .	No of nights.
March 17—April 2 April 3—21. April 3—21. April 2 April 22—May 15 May 16—21. May 16—21. May 16—21. May 16—21. May 16—25. May	W E W E W E W E W E	r .0034 .0003 .0055 .0032 .0042 .0042 .0065 .0066 .0023 .0006 .0023 .0004 .0040 .0005 .0050	5 9 13 4 8 3 4 9 7 14 13 9 5
Mean	W E	-0042 -0006	55 48

From the above table there would appear to be no doubt that on the average there was a small systematic change in collimation during the evening. This is probably not unusual, but there is no apparent reason or explanation for the fact that the change is so much greater in the position Clamp W. than in Clamp E.; that this is not accidental is shown by the fact that the value given for "average ΔC " is in every case less for Clamp E. than either of the adjoining values for Clamp W.

The observations were next grouped as below to investigate the effect of change of temperature during the evening, which seemed the most plausible cause of a change in collimation; \(\Delta \) denotes the drop in temperature in the observing room between the two readings:—

	CLAMP WEST		CLAMP EAST								
Average Δt	Average ΔC	No. of nights.	Average Δt	Average ΔC	No. of nights.						
6-9°C	r ·0037	4	6-3°C	r ·0012	4						
5.3	-0053	5	5.3	0010	5						
4-4	-0055	10	4.5	-0013	12						
3.5	-0038	17	3.6	-0013	13						
2.5	-0037	8	2.6	0008	5						
1.1	-0048	5	0.9	-0014	8						

It is fairly evident that change of temperature has no effect on the collimation line; a comparison of the values of ΔC for Clamp W. and Clamp E. offers strong confirmatory evidence that the difference between the effects in the two positions of the instrument is real; in every case the value for Clamp E. is decidedly less than the corresponding one for Clamp W.

Grouping the observations again according to the time elapsed between the successive readings we have the following, ΔT denoting the time interval:—

		CLAMP WES	r.	CLAMP EAST.									
Ave	erage ΔT	Average ΔC .	No. of nights.	Average ΔT	Average ΔC	No. of nights.							
	h. m. 5 18	r -0049	10	h. m. 5 12	r -0013	5							
	4 38	-0065	6	4 40	-0020	10							
	4 10	-0037	13	4 13	-0006	5							
	3 39	-0031	11	3 38	-0010	10							
	3 13	-0037	9	3 04	- ·0017	8							
	2 32	-0049	6	2 32	-0003	10							

There is thus no dependence of change of collimation on the time elapsed between readings; or rather, the maximum change takes place within less than 2½ hours after the instrument has been in use; and again the difference between Clamp W. and Clamp E. shows up in every case.

3 GEORGE V., A. 1913

For the sake of completeness, still another grouping was made, dependent on the average temperature during the interval between collimation readings; the result was practically identical with those given above, no effect on the average value of ΔC being visible.

The same process was repeated with respect to the changes in measured level error; the chronological tabulation is given below, Δb denoting the change in level error; i.e., $\Delta b = \Delta (C - L)$ for Clamp E., and $= \Delta (L - C)$ for Clamp C.

Date.	Clamp.	Average Δb .	No. of nights.
darch 17—April 2	IV.	r 0031	5
April 3—21	W EW EW EW EW EW EW	0033	9
April 22—May 15	W	- ⋅0036	13
day 16-21	E	— ·0010	, 8 8 3
Iay 26-June 9	W.	-·0002	, 8
une 10—15. une 18—25.	E	-0004 -0007	
une 18—25 une 28—July 19	F	-0020	4 9 7
uly 26—August 12	W	-0000	7
kug. 18—Sept. 15	Ë	-0016	14
ept. 16-Oct. 11	W'	·0015	13
Oct. 12-Nov. 9	E	-0004	9
Nov. 27—Dec. 21	W	0013	4
			-
Mean	W	0009	54
"	E	-0002	48
Mean	both Clamps	0003	102

There is, as was to be expected, a seasonal effect in evidence here, the western pivot showing a tendency to sink throughout the evening during the months of March, April, May and December, and to rise in the same period throughout the intervening months; the average for the year is practically negligible, nor is there any evident difference in the behaviour of the instrument in Clamp W. and Clamp E.

The last two facts mentioned afford independent evidence of the strongest kind as to the reality of the systematic change in collimation in Clamp W., and the practical absence of such a change in Clamp E. For since the average value of Δb (= Δ $C \sim D$) is practically zero in both positions of the instrument, it follows that if the observed values of Δb had been tabulated they would have exhibited the same peculiarities as ΔC ; that is, measurements of the two entirely independent quantities, collimation in and vertical line, show the same systematic peculiarities; which proves that the change considered is a collimation effect. It is difficult to understand, however, why the effect should be different in the two positions of the instrument; upon this point further light must be awaited. In the meantime, it is not of very great moment so long as only differential observations are considered.

Pivot Errors.—As no rigorous determination had been made of pivot errors, it assumed that only relative ellipticity of pivots was present. The value adopted for this was that obtained previously in the series of observations for measuring the flexure of the axis.* According to the notation used then, the horizontal component

^{*} Report of the Chief Astronomer, 1910, p 406.

of pivot error introduced by ellipticity may be represented by an expression of the form α sin 2 $(\theta-\lambda)$, where θ and $\theta-\lambda$ represent respectively, for Clamp East, the southern zenith distance of the telescope and of the major axis of the (relative) ellipse, a positive value denoting an increase in the instrumental azimuth; the vertical component of pivot error arising from this cause is negligible. Resolving this quantity along the collimation line of the telescope, and expressing it as a correction to the observed collimation, we have for Clamp East:

$$\Delta c = \alpha \sin 2 (\theta - X) \sin \theta$$

$$= \frac{1}{2} \alpha [\cos (\theta - 2 X) - \cos (3 \theta - 2 X)];$$

or putting $\theta = 45^{\circ} 24' - \delta$, and adopting the values $\alpha = .36'' = .024$ sec., $\chi = 96^{\circ} 30'$, $\Delta c = .012$ [cos $(\delta + 147^{\circ} 36') - \cos(3 \delta + 56^{\circ} 48')$].

Similarly, for Clamp West,

$$\Delta c = -.012 \left[\cos \left(\delta + 121^{\circ} 36'\right) - \cos \left(3 \delta + 30^{\circ} 48'\right)\right].$$

These values were tabulated and used for correcting all the observations.

Bisection Error.—As stated above, observations of several stars were usually made on each night with the apparent direction of motion reversed by means of a reversing prism. During the summer a preliminary computation of bisection error was made from such observations as were then available, in order to form a basis for proceeding with the regular computations. It was found that the observer N had no appreciable error of bisection, but that S consistently set the micrometer wires too far to the left by about .023 sec. equatorial interval. This value was therefore adopted for his observations, while those of N were left uncorrected.

From a thorough discussion of all the material available at the end of the year, made by Mr. Nugent, it was found that for stars up to 80° declination the error of bisection for S was .026 sec. equatorial interval, while for azimuth stars above 80° it was apparently less. No effect could be found depending on the declination or the magnitude of the stars observed. The bisection error of N again came out practically zero. An account of this investigation is given by Mr. Nugent in Appendix A to this report.

It is to be noted that the correction required for an error of this kind is a constant correction to the observed collimation, changing sign at the zenith. The sign of the correction is of course to be changed for such observations as were made with the apparent direction of motion reversed, and it is not to be applied at all to observations which were made half normal and half reversed.

Reduction of Observations.—In the tables headed "Reduction of Transits Observed" are given the quantities necessary for the computation of each separate observation of right ascension. The first column contains the date, the second a number for reference in the notes, the third the name of the star observed, the Berlin Jahrbuch numbers being used for stars contained in that catalogue. In the fourth column L C. denotes that the star was observed at lower culmination; or denotes that the apparent direction of motion was reversed by the use of the reversing eye-picee; n n denotes that the apparent direction of motion for the first and last quarters of the transit was normal, for the middle half reversed; n denotes the converse of this. The fifth column contains the initial denoting the observer, the sixth the mean of the clock-times of the different contacts recorded by the registering micrometer on the chronograph.

Of the quantities in the seventh column, the upper, unbracketed one is the measured value of collimation, taken from Table II.; the quantity immediately

underneath this, enclosed in brackets, is the value of the polar deviation of the instrument, as derived from the observations. To the values of collimation given, the following corrections were applied in the computation:

- diurnal aberration, −.015 sec.
- (2) the correction for one-half the width of the contact strip on the registering micrometer; the adopted values for this are as follows:—

March 17-March 26	·014 sec.
April 2—May 12	.013 "
Man 15 Dec 21	.01v 6

The total correction for this effect is always positive; hence the correction to be applied to the collimation is positive for stars at upper culmination and negative for those observed below the pole.

(3) ellipticity of pivots; this correction was derived from the formulae given above.

(4) personal error of bisection; for observations by N no correction was applied; for unmarked observations by S a correction of + 023 sec. was applied in the case of stars observed facing south, and of - 023 sec. for stars observed facing north; in all observations except a few mentioned in the notes, this division line corresponds to the zenith; for those observations by S which are marked r the same correction was applied with the opposite sign; for observations marked n r or r n no correction was applied.

The values of n, the polar deviation of the instrument, were computed as follows:—The correction for collimation, including the above supplementary corrections, having been first applied to each observed time of transit, we have for each star an equation of the form

$$\Delta T + m + n \tan \delta = \alpha - T$$
,

where the letters involved have their usual significance, 5 being measured through the pole in the case of stars observed at lower culmination. The mean of these equations was taken, for each night, for all stars between 30° and 60° declination whose places are given in the Berlin Jahrbuch; by combining this mean equation with each of those derived from observations of azimuth stars on the same night, as many values of n were obtained as there were azimuth stars observed on that night; the mean of these values of n was adopted for the night. As the clock rate was always small, no correction was applied for this in the computations of n.

The eighth column of the tables contains the seconds of the time of transit, corrected for both collimation and polar deviation; the ninth contains the seconds of tabular apparent right ascension for the date, of all Berlin Jahrbuch stars up to 60° declination, and of all asimuth stars. The tenth column is the difference between the eighth and ninth, exhibiting the value, derived from the observation, for the quantity $\Delta T + m$; it is entered only for clock stars and azimuth stars, the former comprising all Berlin Jahrbuch stars culminating south of the zenith.

In deducing the value of "adopted Δ T+m" given in the eleventh column two corrections were employed, one for clock-rate, the other depending on the declination of the separate stars from which the apparent values of this quantity are deduced in the preceding column. From a preliminary examination of the observations, it was suspected that there was a systematic effect depending on the declination of the stars observed; a thorough investigation of this point was therefore made for the range of declination covered by the clock stars, viz., 10* to 15°.

The observed values of $\Delta\,T+m$, as given in the tenth column, were grouped for each night into zones covering 5° of declination, and the mean taken for each case in the mean of the three zones, 30° to 35°, 35° to 40°, 40° to 45°, was taken as a standard of comparison for each night, since stars were observed in each of these zones on almost every night. The differences between this standard and the means for the different zones were then taken, and tabulated with appropriate weights. This was done separately for each of the observers engaged, and for each position of the instrument. The weighted means of the differences are given below, in the sense of a correction to reduce $\Delta\,T+m$ for each zone to the mean of the three cones taken as standard:—

	Clar	mp W.	Clar	np E.
	S	N	S	N
10°—15° 15°—20° 20°—25° 25°—30° 30°—35° 35°—40° 40°—45°	-015 -022 -005 -007 -005 -009 012	· 020 · 007 · 014 · 014 · 001 · 006 - · 008	·016 ·036 ·018 ·021 ·007 ·003 - ·007	·024 ·018 ·025 ·012 ·001 ·015 - ·015

From a careful examination of this table, no systematic effect dependent on the clamp or on the observer appeared to exist; weighted means were therefore taken for each zone as a whole, giving the following system of corrections, each with its appropriate weight:—

Zone.	Correction.	Weight.
10°-15° 15°-20° 20°-25° 25°-30° 30°-35° 35°-40° 40°-45°	·019 ·017 ·016 ·013 ·003 ·008 —·011	97 121 81 129 274 333 365

These corrections appear to fall naturally into the three groups 0° to 30°, 30° to 40°, 40° to 45°, the separate groups having the following corrections:—

Zone.	Correction.
10°-30°	·016
30°-40°	·006
40°-45°	—·011

Having obtained these differences, it is evidently immaterial which zone is taken as standard; if we adopt the zone 10° to 30°, the above differences become, neglecting the third place of decimals:

Zone.	Correction.
10°-30°	-00 sec.
30°-40°	01 "
40°-45°	03 "

These were adopted as the definitive corrections to the quantity $\Delta T + m$. It may be remarked here, that if the clock stars observed had each night been uniformly distributed in declination, no effect would result from the application of such corrections except the addition of a constant to the observed right ascensions; since this was not the case, it is necessary to apply the above corrections in order that the right ascensions observed on different nights may be referred to the same zone of fundamental stars, as nearly as may be; this zone is in the present instance 10^{8} to 30^{9} . In view of the sudden change indicated in the correction between the zones 30^{9} to 40^{9} and 40^{9} to 45^{9} , a careful examination was made to decide whether or not it occurred exactly at 40^{9} ; this was found to be the case, as nearly as could be determined. The cause of these differences might conceivably lie either in errors in the tabular places of the stars, or in some systematic instrumental effect such as flexure. In the absence of strong evidence to the contrary the presumption would of course be strongly in favor of the latter hypothesis; though in that event it is difficult to understand why the results in the two positions of the instrument should agree as closely as they do.

After the application of the above systematic corrections to the separate observed values of $\Delta T + m$, the mean of the latter was taken for each night's observations, thus giving a value for $\Delta T + m$ for the mean epoch of the observations. For the computation of clock-rates, the bove near values were diminished in each case by the quantity m, as defined and the values very diminished in each case of the continuation o

TOHE	W.S.	, ,	De.	шв	 CC	26	23.1	CI	A.	X1.	ь.	u	a,	15	٠,					
Mar	. 17	—A	pr.	14													. 2	Ze	ero	
Apr	. 21	-A	ug.	8.,															·0882+·0004 (T-June 1	(7)
Aug	. 11	-S	ep.	2															·2614+·0087 (T-Aug. 2	23)
Sep	7	-S	ep.	10.	 														·300	
Sep	. 13	-S	eD.	26.	 												d	-	-164	
Sen	27	-S	en.	30.															Zero	
Oct	. 3																		·120	
Oct	. 7	-1	ov	9.															·370+·0027 (T-Oct. 2	23)
No	7. 20	⊢-N	ov.	27													ŀ	-	.052	
Dec		—Γ	lec.	12															·720	
Dec																			.180	

The adopted values of Δ T + m, including the effect of clock-rate, are given in the eleventh column. Where a clock-rate other than zero was adopted, both the value of Δ T + m for the mean epoch of the observations, and the adopted hourly rate, are given in the notes

^{* \}varphi = 45° 23' 38"

The twelfth and last column of the tables, which is formed by the addition of the eighth and eleventh columns, gives the deduced apparent right ascension for the date, of all except the azimuth stars.

Ledgers of Mean R.A. 1910.0—In the tables with this heading the observations on each star, reduced to mean place for the beginning of the fictitious year, are arranged chronologically, the date, clamp and observer being noted for each The reductions to mean place were effected in the following way. For all stars whose apparent places are given in the Berlin Jahrbuch, the Star-List of the American Ephemeris, or the Nautical Almanac, the difference between the tabular apparent place for the date and the tabular mean place (taken to the nearest second decimal place) was applied; since in these ephemerides the mean right ascensions are given to three decimal places, and the third place used in the computations for apparent right ascension, though in the latter only two decimal places are retained, there remains a further correction necessary in the third decimal place, depending on the third decimal place of the tabular mean right ascension; this has been applied as the correction Δ_1 to the mean of the observed positions. The same applies to stars bracketed in the Berlin Jahrbuch, which do not occur in the other ephemerides, since for these stars the apparent places were computed in conformity with the usage of that catalogue. In the case of a few additional stars, contained in the Connaissance des Temps, but not in the other ephemerides, the reduction to mean place was computed by taking the difference between the tabular mean and apparent places, which in that catalogue are both given to the second decimal place only; in this case the correction Δ , is not applied. For all other stars the reduction to mean place (exclusive of proper motion) was computed to the nearest second decimal place for ten day intervals, all short-period terms being omitted, and interpolated for the dates required.

A thorough preliminary examination of the results was made for systematic effects depending on bisection error, on personal error of other kinds, and on the position of the instrument. For the effect of bisection error, means were taken separately of the n and r observations for each observer in each clamp, and the quantities (r-n) oes δ tabulated, the sign being changed for stars observed north of the zenith at upper culmination. The resulting values of bisection error were .001 sec. for N and .003 sec. for S, the indicated error of setting being to the left in both cases. If we allow for the correction of .023 sec. applied to the observations of S in the computation, this result agrees with that deduced in Appendix A, as should be the case. As the results for separate stars showed considerable variation, it was not considered that these quantities were much, if any, in excess of their probable error: no correction was therefore applied to the right ascensions for this effect.

To investigate for other personal effects, means were taken separately for the observations of N and S in each clamp, and the results grouped in zones of declination 5° in width; the differences in the various zones, in the sense N-S, with their respective weights, are as follows.

10°-15°	weight	107
15°-20°	" Gigar	142
20°-25°	44	87
25°-30°	4	168
30°-35° 001 "		161
35°-40°		272
40°-45°	ec.	239
45°-50°	66	130
50°-55°	46	71
55°-60°	66	133
60°-65° .080 "	66	100
65°-70°	66	2
	и	0
70°-75°	4	170
75°-80°		94
80°	er.	6

These results were further weighted according to the cosine of the mean declination of each zone, and combined to deduce a formula for expressing the difference. Several simple formulae were tried, the one which appeared best to satisfy all the observations was N-S = .0032 see 5; this was accordingly adopted. It is conceivable, however, that a constant correction for all declinations might better have been used; the value derived from the weighted mean of the south stars is only .0044 see; that from the north stars .0066 see, from all stars .0048 see. It is difficult to understand how any such difference could arise in the case of stars of the same declination as the clock-stars; as shown by the above table, however, it appears to be persistent for all declinations; a correction was therefore anniled.

Means were next taken separately of the observations in Clamp West and Clamp East, and the results grouped as before for zones of declination 5° in width; the mean differences, in the sense W-E, are as follows:

10°-15°	weight	115
15°-20°	4	135
20°-25°008 "	44	91
25°-30°	44	169
30°-35°	44	171
35°-40°	4	263
40°-45°	16	231
45·-50°	44	130
50°-55°	46	68
55°-60° .021 "	ш	143
60°-65° 050 "	44	1
65°-70°	ш	4
70°-75° .020 "	66	163
75°-80°	44	93
80°	4	8

The formula adopted to represent these differences was .0104 tan δ -.0048, which gives a fairly satisfactory representation over the whole range of declination.

As the standard of reference for both the systematic corrections considered above, the mean of an equal number of observations by each observer in each position of the instrument was taken; the corrections to be applied to the right ascensions are therefore as follows:—

```
Clamp West, \Delta \alpha = -.0052 \tan \delta +.0024

Clamp East, \Delta \alpha = -.0052 \tan \delta -.0024

Observations by N, \Delta \alpha = -.0016 \sec \delta

Observations by S, \Delta \alpha = .0016 \sec \delta
```

These are incorporated in the correction Δ_i in the tables; it is always small, seldom amounting to more than a very few units in the third place of decimals; its only effect is to refer all observations, as nearly as may be, to the same standard.

Mean Right Ascensions.—In the tables headed "Mean Right Ascensions of Stars Observed in 1910" the final results are collected. The first three columns require no explanation; the fourth contains the approximate declination, merely for convenience of reference. In the fifth column is given the mean right ascension as taken from the ledgers; in the case of stars marked with an asterisk no proper motion was applied in the reduction to mean place was obtained from one or other of the ephemerides based on Newcomb's Fundamental Catalogue; the proper motions are therefore in this case Newcomb's; all other stars were reduced with the proper motions of Auwers. The sixth column gives the fraction of the year corresponding to the mean epoch of the observations, the seventh the number of observations.

In the next four columns are given, in the case of those stars on which at least ten observations were obtained, the differences between the observed high tascensions and those given in the Berlin Jahrbuch, Boss's "List of 1059 Standard Stars," the Greenviek Dine Year Catalogue for 1900, and Newcomb's Fundamental Catalogue, respectively; the differences are, however, not given for those stars to which no proper motion was applied in the reduction to mean place.

Systematic Corrections.—The differences mentioned above were grouped according to declination, the zones being 5° in width except in the case of 45° to 51½ and 51½ to 60°; as the latitude of Greenwich is approximately 51½°, this was chosen as one of the division points. There were no stars between 60° and 70° on which as many as ten observations were obtained. The means for the different zones are given below, followed in each case by the weight in brackets:—

Zone.	O. – B.J.	OB.	OG.	ON.
10°-15° 15°-20° 20°-25° 20°-25° 30°-35° 30°-35° 30°-35° 30°-35° 35°-40° 40°-15° 51§°-60° 75°-80°	-003 (11) -002 (10) -001 (7) -002 (12) -015 (10) -010 (16) -028 (18) -027 (12) -040 (20) -035 (6) -046 (2)	-003(11) -004(10) -003(8) -008(13) 011(10) 005(15) 012(12) 012(12) 032(19) 046(6) 096(3)	-013(6) -008(7) -001(7) -001(7) -007(10) -011(8) -002(9) -012(6) -020(4) -065(7) -089(4) -135(1)	007(11) -002(11) -004(8) 004(12) 014(15) 023(18) 057(11) 065(14) 005(5) 141(3)

Grouping several of the zones together, we get the following more condensed arrangement, which does not appear to sacrifice accuracy:—

Zone	O. – B.J.	O. – B.	OG.	0N.
10°-30°	-000 (40)	-005(42)	-002(30)	- ·002 (42)
30°-40°	-012 (26)	-007(25)	004(17)	- ·019 (33)
40°-51½°	-028 (30)	-013(29)	015(10)	- ·053 (29)
51½°-60°	-040 (20)	-032(19)	065(7)	- ·065 (14)
70°-80°	-038 (8)	-062(9)	098(5)	- ·056 (8)

The following points in this comparison are of special interest:

- (1) The large change in O.-G. at the zenith of Greenwich; this may undoubtedly be set down as a senith error in the Greenwich observations, due probably to bisection error or some allied effect. The same change is shown in the other catalogues to a less extent; as the Greenwich observations entered largely into the material from which they were compiled, a part of the Greenwich error (assuming that it also existed in previous Greenwich catalogues) may have persisted in them.
- (2) The marked change at 40° in O.—B.J. and O.—N., together with its comparative absence in O.—B. and O.—G. The evidence is here divided, but on account of the fairly close agreement of the Ottawa observations in Clamp West and Clamp East it might perhaps be a fair inference that the error is in BJ_J and N.

- (3) The almost complete absence of any change in the differences at 45°, the approximate latitude of Ottawa; this may be taken as evidence of a satisfactory absence of any appreciable zenith error in the Ottawa observations; it may be remarked that the omission of the correction for bisection error in the observations of S would have caused a change in the differences of over, 01 see, at 45°.
- (4) From the evidence of all four catalogues, it appears that the Ottawa right accessions for stars of over 30° declination are too small; the corrections applicable to reduce them to the Berlin Jahrbuch system may be taken as the following:

$$\begin{array}{cccc} 10^{\circ} & -30^{\circ} & .000 \; \mathrm{sec.} \\ 30^{\circ} & -40^{\circ} & .012 \; \text{``} \\ 40^{\circ} & -51\frac{1}{2}^{\circ} & .028 \; \text{``} \\ 51\frac{1}{2}^{\circ} -80^{\circ} & .039 \; \text{``} \end{array}$$

A computation was also made, for stars below 40° declination, of differences of magnitude equation in the sense O.-B.J. and O.-B.j; the above systematic corrections were first applied; the differences were not reduced to equatorial interval; the results were as follows:—

$$O. - B.J. = -.005 (m - 4)$$

 $O. - B. = .000 (m - 4)$

As magnitude equation is supposed to have been eliminated from Boss, this may be taken as showing that the Ottawa observations are practically free from this effect. According to this, the magnitude equation of the Berlin Jahrbuch would be - .005 (m-4) sec. for stars near the equator.

FIELD WORK

During the summer of 1910 the longitudes of Winnipeg, Windsor and Sault Ste Marie were determined from Ottawa, the observer at the two former stations being Mr. McDiarmid, at the last Mr. Jaques. In addition, the longitudes of six stations in the west were determined from Winnipeg, Mr. Jaques occupying the base station and Mr. McDiarmid the outside stations. The latitudes of all the above stations were also determined.

Longitude of Winnipeg.—Especial care was used in the determination of this station, which will be largely used as a primary base station for western Canada. For the telegraphic exchanges one of the transcontinental copper wires of the Canadian Pacific Telegraph Co. was used; the low resistance and self-inductance of this wire made it possible to dispense completely with repeaters, there being a direct wire from the Observatory to the observing hut at Winnipeg. This materially increased the accuracy of the exchanges; the time of transmission of signals was only 0.05 see, and was remarkably constant throughout the series of exchanges. A series of observations for personal equation was made before Mr. McDiarmid's departure for Winnipeg in May; after the longitude observations were concluded he returned to Ottawa, and a further determination of personal equation was made in June.

For the Ottawa observations the meridian circle was used, the two observers S and N participating in the work. The stars used for forming clock-corrections were those of the Berlin Jahrbuch between 30° and 60° of declination, an equal number being usually observed north and south of the zenith; the work was planned in this way in order to eliminate bisection error, as at that time the reversing prism eye-piece had not been received. The computation was the same as that described in the discussion of right ascension observations above, up to the point of formation of "adopted $\Delta T + m$ ". In the formation of this quantity all Berlin of the grantity all Berlin or the sum of t

Jahrbuch stars from 30° to 60° of declination were used; on this account it was possible to use two nights $\langle April | 26$ and June 23) which were not included in the right ascension computation on account of lack of clock-stars. For south stars the same corrections were applied to "appeare $\Delta T + m'$ as in the right ascension computation; for north stars the corrections adopted were -0.4 sec. for S and -0.2 sec, for N; these were obtained in the same way as the former ones, but the computation included only the period actually covered by the observations involved, Mar. 17 to June 29. As the same corrections were applied to both longitude and personal equation observations, any error in the actual corrections applied would be eliminated from the longitude results.

Personal Equation.—Observations for personal equation were made, as stated above, both before and after the determination of the longitude of Winnipeg. In these observations the two field observers, Mr. McDiarmid and Mr. Jaques (designated hereafter by M and J), as well as the two meridian circle observers N and S took part; in some instances all four observers worked simultaneously, while sometimes only two or three were engaged. Further observations were made in the autumn by M, N and S, J being incapacitated by illness.

The observations of M were made on the eastern transit pier, those of J on the western one, these being respectively, 0.25 sec. and, 0.14 sec. east of the meridian circle. All the observations for personal equation are collected in Table I, the above corrections for longitude, as well as corrections for clock rate between the epochs of observations on the same night, having been first applied to the observations of M and J.

Now take the mean of observations by each meridian circle observer in each clamp as standard, putting the personal difference of clock-correction in the sense S-N equal to 2X, and the instrumental difference in the sense W-E equal to 2C; also let M_1 and M_2 represent the personal equations of M in the spring and autumn respectively.

Then if a standard observation be denoted by A, those of the various observers will be

Hence from the figures in Table I. we obtain the series of observation equations:

$$A_1 + C + X = 4.847$$

 $A_1 - M_1 = 4.823$
 $A_2 + C - X = 4.951$
 $A_1 - M_1 = 4.934$

Combining the nights on which the same groups of observers were engaged, these observation equations become:

$$\begin{array}{lll} B_1 + C + X &= 3.991 \\ B_1 - M_1 &= 3.958 \\ B_2 + C - X &= 2.303 \\ B_2 - M_1 &= 2.251 \end{array} \right\} Weight \ 2$$

This combination evidently has no effect on the values deduced for C, X, M_D , M_A and J (the values of A_D A_D , etc., we are not particularly concerned with); it has the advantage of reducing number of the normal equations, the reduction in this case being from 41 to 19.

Forming the normal equations, and solving for the quantities required, we obtain:

$$C = .057 \text{ sec.}$$

 $X = .006 \text{ }''$
 $M_1 = - .013 \text{ }''$
 $M_2 = - .062 \text{ }''$
 $J = .021 \text{ }''$

The corrections applicable to clock-corrections obtained by the various observers are therefore;

For the Winnipeg longitude the value M_i was adopted as the personal equation of Mr. McDiarmid; for other stations it was computed from the formula $M_i = .010$ (T – June 1), T being expressed in months.

The most striking point in the above result is the large difference of clockcorrection (114 sec.) obtained on reversal of the instrument. Since the right assensions obtained Clamp East and Clamp West agree fairly closely, this difference must apparently be due to an error in the adopted level, which would affect clock-corrections but not right ascensions; it could not arise from pivot errors, since these are undoubtedly small.*

It is possible to compute what the observed error in clock-correction due to an error in adopted level should amount to, without knowing the error in level, by comparing the differences in observed azimuth on reversal of the instrument. These, as well as the observed differences of level, are tabulated below under the headings \(\Delta \) and \(\Delta \) respectively, the differences being taken in the sense Clamp E. \(-\text{Clamp W}. \) The intervals between the observations are given in each case; arbitrary weights depending on these intervals have been applied:

Date.	Δa	Δb	Interval.	Weight.
	sec.	sec.	days	
Apr. 2—3	.072	-174	1	1
	.055	-148	1	1
May 15—16	·129	-118	1	1,
« 21—26	.036	·130	5	- 3
June 9-10	·113	-144	1	1.
" 15—18	-050	·146	3	3
" 25—28	.038	· 169	3	1/2
July 19-26	·109	-143	7	1
Aug. 12-19	.074	- 164	7	1 4
Sep. 15—16	·106	·164	1	1
Oct. 11-12	· 103	- 199	1	- 1
Nov. 9-20	− · 058	-101	11	1
Weighted means	-083	· 155		

^{*} Report of Chief Astronomer, 1910, p. 407.

This establishes the fact that there is a systematic change in observed azimuth on reversal. Now assume a correction ∂b to the observed level error in Clamp East, and $-\partial b$ in Clamp West. Then since $a = b \tan \varphi - n$ see φ , the letters employed having their usual significance, and since n is measured independently of the observed level, we have

$$\partial a_{\varepsilon} = \partial b \tan \varphi$$

 $\partial a_{\varphi} = -\partial b \tan \varphi$

From these we obtain

$$\Delta a = \partial a_* - \partial a_* = -2 \partial b \tan \varphi.$$

Hence, using the above observed mean value of Δa , we have

$$\partial b = -.041 \text{ sec.}$$

Similarly, from the formula $m = b \sec \varphi - n \tan \varphi$ we have for Clamp East

$$\partial m = \partial b \sec \varphi$$

or $\partial (\Delta T) = -\partial b \sec \varphi = .058 \sec$.

The close agreement of this result with that derived above (.057 sec) from the actual personal equation observations is remarkable; it is evident, therefore, that the observed difference in clock-correction might be fully accounted for by a systematic error in the adopted levels. If this is the case it must apparently be caused by some flexure effect which follows different laws when the telescope is pointed above and below the horizon.

Time Service.

The time service has been continued practically unchanged since my last report. Time signals are automatically sent out daily (Sundays excepted) to the Great North Western Telegraph Co., and the time ball on Parliament Hill is dropped daily by the signal clock. Mean and sidereal time are also given by telephone at any time to those requiring them; frequently the clockbeats are transmitted over the telephone line; the number of requests for time has become very large.

The usual amount of routine work has been done in connection with the maintenance of the time service and in testing of chronometers, watches, aneroid barometers, etc. The clock system in the Government Buildings has been in operacion as usual; only two clocks have been added, a seconds dial and a minute dial in the residence of the Director. The total number of clocks in operation is now as follows:—

Minute Dials	283
Seconds Dials	6
Tower Clocks	2
Program Clock	1
Secondary Master-Clocks	8
Primary Clocks	4
Total	304

Time signals were exchanged with the Meteorological Observatory in Toronto on one occasion. The Toronto signals as received here were apparently about 1. sec. slow, and the Ottawa signals as received at Toronto were apparently about 2. sec. slow. Hence the Toronto clock was probably about .05 sec. faster than ours.

I have the honour to be, sir,

Your obedient servant.

R. M. STEWART.

APPENDIX A.

PERSONAL ERRORS OF BISECTION IN MERIDIAN CIRCLE WORK.

D. B. NUGENT, M. A.

In determining the time of transit of a star over the same meridian, it has been found that the times obtained by two observers differ by a small but constant quantity. One observer, perhaps, acquires the habit of setting his wires always to the left of the star-image regardless of the direction of apparent motion of the star, while the other sets always to the right. In the former case the observer would observe the transits of stars north of the zenith at upper culmination too late and those south of the zenith too soon, and in the case of the latter it would be the reverse. This error of setting always to the left, or to the right, of the true setting is the personal error of bisection.

The object of this paper is to determine the magnitude of these errors in the case of the two observers-R. M. Stewart and D. B. Nugent-who are engaged in transit observations with the Meridian Circle at the Dominion Observatory. In order to do this, certain stars, varying from 10° to 80° in declination, were selected from our observing list and grouped in pairs according to their right ascension and their declination. In most cases the stars of a pair did not differ by more than 10" in right ascension, and in no case did the difference exceed 30°, while the difference in declination was always less than 5°. By using a reversing eye-piece, which consists of a glass prism mounted in front of an ordinary eye-piece, the position of the star-image can be turned through 180° by rotating the prism through 90°, and thus the apparent motion of a star across the field of the telescope reversed. If the star, the eye-piece being normal, crossed the meridian from west to east, then on turning the prism through 90° it would appear to cross from east to west. Each night the pairs were observed, one star was taken reversed, the same star being reversed on alternate nights. By comparing the observations on two successive nights the difference between a reversed and a normal observation was obtained.

The apparent right ascension of each star was determined for every night it was observed by using the following equation:

 $\alpha = \Delta T + T + c \sec \delta + m + n \tan \delta$ where $\alpha =$ the apparent right ascension,

 ΔT = the clock correction,

T = the clock time of transit of star;

c sec $\delta,\ m$ and n tan δ are corrections depending on the collimation, level and azimuth of the instrument.

The clock correction $\overline{\Delta}T$ used was that given by 3 or 4 stars whose declinations were not more than 10 degrees greater or less than the pairs to be compared and whose right ascensions were not greater nor less by more than an hour. The m and n were determined from all the stars observed on that night. The difference $\Delta \alpha$ between the value of α thus obtained and α_{α} , that given by the catalogues, is a measure of the error. The value of $\Delta \alpha$ was found for a reversed and a normal observation and the difference (r-n) was twice the error of bisection. For the sake of comparison these values were all expressed in equatorial interval.

An example of the computation follows:-

Stars.	Date.	ΔT	ΔT	Obs.	T	а	ao	Δα
823		8 14·07	8		8	8	8	8
831 852	Sept. 28, 1910	14.09	14 · 10					
833 835) 823				r n	2·52 47·61	16·49 61·58	16·54 61·58	- · 05 · 00
831		14·12 14·06	14.08					
852 833 835	Sept. 30	14-07		73	2.57	16.54	16·52 61·55	-02
835)		r-n 07	cos δ ⋅841	7	47·62 (r-n) cos δ — ·059	61·59 ½(r-n) cos δ — ·029	61.55	-04
835		-04	-841		-034	-025		

The value of $(r-n)\cos\delta$ was found for each star, the sign being changed for atras north of the zenith, and was weighted according to the number of observations on each and the most probable value obtained from them.

My personal error obtained from $118 \ (r-n)$ observations on 48 stars is .0018 sec., weight 118, and that of R. M. Stewart who had $188 \ (r-n)$ observations on 70 stars is .0260 sec., weight 138. In my case the value is so small, and quite within the range of accidental errors, that my error of bisection may be taken as zero. In Mr. Stewart's case, however, we see that he has an error of bisection and that he sets his wires behind the star when the transit is north of the zenith and in advance of the star when the transit is to the south.

The results were examined to see if the error in any way depended on the dedefinition of the star. To do this the stars were arranged in groups for every 5 degrees of declination and weighted according to the number of observations in each.

The following tables will show these values:

D. B. Nu	GENT.		R. M. Str	EWART.	
Declination. 10° to 15° 15° 20 20° 25 20° 25 30° 35 35 35 36 40 50° 45 50° 45 50° 75°	Error. -006008 -003 -002008 -010 -011003 -002 -001	12 7 13 4 20 21 12 6 9	Declination. 10° to 15° 15 " 20 20 " 25 5 30 30 " 35 38 " 40 40 " 40 40 55 6 55 6 55 50 " 55 55 55 " 60 77 " 75 75 " 80	Error. -016 -027 -035 -021 -043 -022 -025 -031 -030 -010 -028 -027	8 5 9 6 10 30 14 11 5 8 24 8
	·0016	118		-0262	138

In neither case do we see any systematic change depending on the difference in declination. The difference between the error of any group and the mean error is so small that I think we may take it to be within the limits of accidental errors.

The stars were next grouped according to their magnitudes, the difference between the smallest and the greatest of any group being 0.5 of a magnitude. No relation between the error and the magnitude of the star was established.

D. B. N	UGENT.		R. M. S	STEWART.	
Magnitude.	Error.	Weight.	Magnitude.	Error.	Weight
2 to 2·5. 3 " 3·5. 3·5 " 4. 4 " 4·5. 4·5 " 5. 5 " 5·5. 6 " 6·5. 6 - 6·5. 7·2.	s. 005 016 -006 -011 -014 005 014 012 014 007	9 5 18 15 20 16 16 14 1 4	12 to 2.53 a 3.53.5 4 4 4 4 4.545 5 5 5 5.5.5 6 6 6 4 6.57.2.	8. ·019 ·021 ·015 ·028 ·030 ·023 ·026 ·029 ·028 ·009	1 11 8 13 17 20 27 23 17 1

For stars over 80° declination, whose motion is slow compared with one at the equator, the method of observation was changed, a reversed and a normal observation being obtained of the same transit instead of taking the whole transit normally one night and reversed the next as was the case with those we have considered.

In following the star across the field of the instrument twenty settings are recorded, which are arranged in four groups of five settings, two groups being placed symmetrically on each side of the line of collimation. With this arrangement the first and the last group may be observed with the eye-piece normal and the second and the third with it reversed, or vice-versa, thus giving the time of transit obtained with the star moving in opposite directions. The difference between a normal and a reversed observation, changing the sign for stars at lower culimination, was taken as twice the error of bisection and for comparison these were reduced to the equatorial interval.

My error, determined from 100 observations on 16 stars, is .0025 sec., which may be considered as zero; and that of Mr. Stewart, determined from 146 observations on 19 stars, .0162 sec., a value slightly smaller than in the case of stars from 10° to 80° declination.

As in the former case the results were examined to see if there were any changes depending on the declination or the magnitude. The error was also determined separately for the stars observed at upper culmination and for those observed at lower. The changes were so small in all four cases for both observers that they were probably due to accidental errors. The following table will show these values for the two observers:—

D. B. NUGENT.

R. M. Stewart.

Declination.	Error.	Weight.	Declination.	Error.	Weight.
80° to 85°	8. ·0013 ·0041	59 41	80° to 85° 85 " 90	s. ·0178 ·0146	71 75
Magnitudes.			Magnitudes.		
4 to 4.5	-0018 -0007 -0034 -0042 -0062	24 38 13 13 12	2 to 2·5. 4 " 4·5. 4·5 " 5. 5 " 5·5. 5.5 " 6. 6 " 6·5. 7 " 7·5.	·0074 ·0163 ·0154 ·0211 ·0153 ·0110 ·0143 ·0147	8 16 20 40 29 11 9
Stars at Upper Culmination	-0020	62	Stars at Upper Culmination	-0177	67
Stars at Lower Culmination	.0032	38	Stars at Lower Culmination	-0148	79

The results obtained from the whole investigation may be summarized as follows:—

- (a) That D. B. Nugent has no personal error of bisection.
- (b) That R. M. Stewart has an error, always setting the wires to the left of the star image.
- (c) That in neither case does the error depend upon the magnitude of the star observed or whether it is observed at upper or at lower culmination.
- (d) That for R. M. Stewart there is a small difference between the value obtained from stars under 80° and that from stars over 80° in declination, but there does not appear to have been any systematic change in either group depending on the declination.

TABLE I.

OBSERVATIONS FOR PERSONAL EQUATION.
(Corrected for clock-rate and difference of longitude).

Date.	Sidereal Time.	Clamp (Mer.Circle)	Clock-correction.			
	Time.	(Mer.Circle)	s	N	M	J
1910	h. m.		8.,	8.	8.	8.
Mar. 17		W	4.847		4.823	
" 18 " 26		W	4-474	4-951	4 · 934 4 · 439	
Apr. 2		W	3.882		3.820	3.778
3		E	3.797		3.904	3.119
	12 50	E		-14-803	$-14 \cdot 697$	-14.732
10		E	-14-823		-14.712	
" 12	10 20	E		-16·705 -16·571	-16.719	-16·706 -16·606
" 13		E	- 4.649	-10.011	- 4.592	- 4.673
	10 20	E	-20.905		-20.884	-20.932
" 21		E		- 1.613	— 1.576	- 1.618
" 22 " 25		W	- 1.217	- 1.511	- 1.495	- 1.534
" 26		W	- 1.217	- 1.085		- 1·298 - 1·160
" 27		w	- 1.029	- 1.000	- 1.056	- 1.074
	10 15	W		− ·898	941	979
" 30		W	834		900	952
May 3		W	320	664	488	- ·677 - ·424
4 6		W	020	345	433	- 1424
	12 50	W	286		436	442
une 13		E	2.497	2.487	2.539	2.545
" 15		E	2.679	2.687	2.791	2.785
" 18 " 19		M.	3·078 3·170	3·057 3·110	3·051 3·107	
	16 10	W.	3.269	3.110	3.232	
" 25	16 10	W	3.374		3.337	
⁴ 28		E	3.528		3.660	
" 29		E	3 - 673	18-965	3.785	
Oct. 19 " 20		E	19-404	18-965	19·132 19·524	
	23 25	E	19.754		19.859	
" 26	21 35	E		21.880	21.968	
Nov. 2	23 50	E		24.790	24.872	
" 9	23 20	E		27 - 605	27.752	

TABLE II.
OBSERVED VALUES OF COLLIMATION AND LEVEL.

Date.	Clamp.	Observer.	Time.	Collima- tion Line.	Time.	Vertical Line.	Temp. (Cent.)	Adopted Coll.	Adopted Level.
1910			h. m.	r	h. m.	r	۰	8.	8.
Mar. 11	W	S	9 25	9 · 5932 9 · 6080	11 05	9·6106 9·5426			
" 16 " 17	W	S	8 30	9-6043	8 00	9-6438		054	-109
* 18	II.	S	10 25 6 55	9 · 6055 9 · 5944	11 05 7 20	9 · 6336 9 · 6255		018	- 103
10	W	Ñ	11 05	9 - 5926	11 25	9.6256			
a 19	II.	NNNS	23 15 9 40	9·5950 9·5900	22 45 9 55	9 · 6304 9 · 6276	-0.2		
« 20	M.	s	2 20	9.5954	1 50	9.6273	2.8		
« 22	W	S N	8 00 4 00	9·5930 9·5950	8 20 4 20	9-6242 9-6267	2.8		
	W	CS	23 30	9 - 6003		9-6304			
" 23 " 24	II.	CS CS	23 30 23 20	9 · 6069 9 · 6094	23 40	9 · 6356 9 · 6310	4.7 9.5		
" 25	W	S	4 15	9 - 6087	4 30	9 - 6279	9.2		
« 26	W	CS S	23 30 9 20	9 · 6026 9 · 6095	9 35	9-6314 9-6303	6.8	081	-069
	W	S	11 50	9 - 6167	12.25	9-6388	3.8		
" 27 " 28	W	S	1 45 2 20	9.6080 9.6004	2 00 2 55	9 · 6358 9 · 6482	6·9 13·0		
	W	CS	7 25	9.6107	7 15	9.6359	13 - 2		
	W	CS N	13 30 23 15	9-6166 9-6118	13 45 23 30	9 · 6386 9 · 6389	8·1 10·8		
" 29	W	CS	23 05	9.6174	23 30	9.6382	10.5		
Apr. 1	W	N	6 35 8 05	9 · 6204 9 · 6267	6 50 8 20	9-6332 9-6410	10.2	091	-038
4 0	W	S	12 30	9.6313	12 00	9 - 6406	5.8		
" 3	E	s	6 20 8 35	9 · 6222 9 · 6212	6 55 8 15	9 · 6501 9 · 5565	10·2 9·6	-075	-212
" 4	E	S	11 25	9 · 6264 9 · 6247	11 10 2 45	9.5593	6·0 9·8		
« 5	E	N	2 25 3 05	9.6185	3 20	9·5556 9·5479	15.4		
	E	CS CS N S	9 00	9-6209 9-6248	11 45	9 · 5481 9 · 5568	15·3 14·7		
α 6	E	N	2 50	9.6204	3 20	9.5604	14.4		
" 8	E	S	10 20 2 45	9 · 6297 9 · 6340	11 40 3 00	9·5615 9·5372	11·0 6·0		
0	E	N N N	10 10	9.6394	10 20	9.5380	5.8	-108	-306
	E	CS	13 25 23 45	9 · 6289 9 · 6274	13 35 24 00	9 · 5403 9 · 5407	5-6		
« 10	E	S	7 05	9.6310	7 25	9 - 5400	6.7	-098	-286
α 11	E	S	10 35 3 50	9.6312 9.6316	10 50	9 · 5443 9 · 5355	4·0 7·7		
	E	N	7 00	9.6276	7 10	9 - 5391	5-9	-092	·280
⁴ 12	E	N	10 30	9 · 6308 9 · 6355	10 45	9 · 5452 9 · 5430	2.8	-113	-306
	E	N	12 30	9-6362	12 40	9.5385	2.5		
13	E	S	7 55 10 15	9 · 6311 9 · 6257	8 15 10 30	9·5362 9·5402	6.7	-089	- 290
" 14	E	S	7 15	9-6250	7 30	9.5459	9.3	.082	-253
" 19	E	S	10 15	9 · 6275 9 · 6233	10 30	9 · 5493 9 · 5442	8·5 13·2		
" 20		Ñ	3 40	9-6308	4 00	9.5467	12.6		

3 GEORGE V., A. 1913

TABLE II.
OBSERVED VALUES OF COLLIMATION AND LEVEL—(Continued).

D	ate.	Clamp.	Observer.	Time.	Collima-	Time.	Vertical Line.	Temp. (Cent.)	Adopted Coll.	Adopted
		5	O _b		tion lane.		Lauc.	(Cent.)	Con.	Level.
			_							
1	910			h. m.	r	h. m.	r	۰	8.	8.
Apr.	21	E	N	6 45	9-6292	7 00	9.5481	12.5	-097	-257
		E	N N	9 45 23 15	9·6322 9·6300	10 00 23 40	9·5534 9·5562	11·3 12·8		
44	22	W	N	1 10	9.6447	1 30	9.6779	14.0		
		W	N	6 35	9-6385	6 50	9.6781	15·4 12·6	- ·129	-109
н	25	W	NINGGERANGSKING	9 45	9-6426 9-6409	7 55	9-6709 9-6688	15.1	141	-077
		W	S	9 50	9.6477	10 15	9-6677	13.9		
	26	W	N	6 35 8 30	9 · 6486 9 · 6482	6 50 8 50	9-6623 9-6813	15.8	162	-102
	27	W	S	12 00	9 - 6536	12 25	9-6839	3.3		- 102
66	28	W	N	6 35	9.6427	6 50	9.6834	8.3	-·141	·134
66	30	W	N	9 30 7 00	9 · 6462 9 · 6496	9 45	9·6885 9·6832	6·3 10·5	162	•105
	30	W	S	9 55	9.6521	10 10	9.6841	9.4		
May	3. ,	W	N	6 45	9.6402	7 20	9.6813	9.0	-·139	·123
44	5	W	S	10 15 8 10	9·6472 9·6486	10 30 8 25	9.6828 9.6810	7·6 11·3	167	· 105
		W	š	11 50	9.6562	12 05	9.6893	7.9		
44	6	W W	N	9 20	9 · 6465 9 · 6544	9 35 12 15	9·6779 9·6821	12.4	− ·160	-095
ш	7	· W	S	7 40	9-6344	7 55	9.6722	16.4	174	-063
		W	S	12 25	9 - 6597	12 40	9.6763	11.8		
ш	10	W	N S S	6 45 10 45	9.6480 9.6540	7 00	9-6776 9-6800	14·0 11·2	- ·162	-089
44	11	W	S	7 10	9-6582	6 55	9.6851	12-1	— ·196	-082
		W	S	12 30	9-6647	12 45	9-6890	8.4	176	.085
	12	W	N	7 10 11 00	9 · 6551 9 · 6556	7 25	9-6811 9-6825	11·2 5·2	110	.089
64	14	W	NNNSSNNSS	9 40	9-6708	9 55	9-6824	9.3		
44	15	W	S	7 10 12 30	9 · 6583 9 · 6620	7 30 12 45	9-6806 9-6799	13·4 8·7	-000	∙065
44	16	E	N	7 15	9.6514	7 30	9.5961	15.6	-016	·183
		E	N	11 30	9.6584	11 45	9 - 6000	11.8		
4	17	E	S	7 55 10 20	9.6600 9.6582	8 15 11 10	9 · 6019 9 · 6054	17·8 16·0	003	-178
66	18	E	N	6 45	9-6568	7 00	9.5998	11.7		
ee	19	E	N S S	8 25	9-6588	8 40	9.5987	13.3	-004	199
66	21	E	N	13 10 7 45	9.6634 9.6512	13 30	9 · 5995 9 · 5909	8·8 15·3	-015	• 193
		E	N S	11 15	9.6593	11 30	9.5997	13.4		
u	26	E	S	9 20 7 45	9 · 6594 9 · 6625	9 30 8 00	9 · 5976 9 · 6805	16·7 15·7	014	-063
	26	W	N	12 45	9-6662	13 15	9.6872	10.5		
44	27	W	S	8 35	9 - 6608	8 55	9 - 6807	15.0	— ·011	∙065
66	28	W	S	13 35 7 45	9-6658	13 50 8 00	9 · 6862 9 · 6797	11·4 19·4	-·002	-060
		W	N	11 50	9.6616	12 05	9.6792	15.6		
	30	W	N N N	7 15	9-6574	7 30	9 - 6796	15.4		
June	2	W	S	8 30 7 20	9 · 6632 9 · 6644	8 45 7 30	9-6816 9-6888	15·2 13·4	025	·084
		W	S	11 50	9.6712	12 05	9 - 6989	7.8		
66	4	W	S	7 50 12 50	9 • 6633	8 10 13 10	9-6851 9-6869	13·5 9·1	— ·017	-067
66	7	W	S	11 40	9.6647	11 50	9-6800	12.5	— ·021	-048
		W	S	15 15	9.6685	15 30	9-6832	9.5		

TABLE II.
OBSERVED VALUES OF COLLIMATION AND LEVEL—(Continued).

Date.	Clamp.	Observer.	Time.	Collima- tion Line.	Time.	Vertical Line.	Temp. (Cent.)	Adopted Coll.	Adopted Level.
1910			h. m.	r	h. m.	r	0	8.	s.
June 8	w	N	7.00	9-6612	7 15	9-6805	16-2	-·012	-054
	W	N	11 15	9-6664	11 30	9 - 6808	12.5		
# 9	W	S	7 40	9-6647	7 50	9-6727	17.6	- ·021	-027
	W	9	12 00 22 35	9 · 6683 9 · 6604	12 15	9.6772	13.2		
	E	S	23 50	9.6637					
" 10	E	N	8 30	9.6626	8 45	9-6077	18-4	-003	·171
" 13	E	N	7 00	9 · 6594 9 · 6588	11 20 7 20	9 · 6077 9 · 6061	15·6 22·2	-002	•172
10	E	N N	12 10	9-6625	12 25	9-6082	18-5	-002	-112
" 14	E	S	7 25	9-6669	7 45	9-6156	24-2		
" 15	E	S	7 15	9.6657	7 35	9.6146	23.9	·028	·168
" 17	E	N	12 05 3 00	9-6715	12 15 3 15	9·6179 9·6125	19.0		
	W	N	3 50	9.6673	4 05	9.6715			
" 18	W	N N	7 15	9.6638	7 30	9 - 6699	23.8	− ·020	-022
" 19	W	N	11 15 7 10	9 · 6688 9 · 6659	11 30 7 25	9·6765 9·6738	20.4	023	.022
19	W	S	11 25	9-6687	11 40	9.6747	21.3		.022
" 23	W	S	6 55	9.6667	7 15	9.6698	23.9		
" 24	W	S	12 25 8 00	9-6691	12 40 8 20	9·6744 9·6719	17.8		
" 24 " 25	W	S	7 40	9.6638	7 55	9.6644	23·3 25·3	020	-004
	W	SSSS	12 15	9.6687	12 35	9.6704	19.9		
" 28	E	S	7 25	9.6702	7 40	9.6185	23.8	-038	-173
" 29	E	S	11 55 7 45	9·6734 9·6707	12 15 7 55	9-6177 9-6191	17·6 24·2	•035	-166
20	E	SSS	11 55	9.6713	12 10	9.6199	20.6	-000	-100
July 4	E	S	8 30	9.6721	8 45	9.6193	22.8	.042	·180
« 5	E	S	12 05 7 20	9·6743 9·6707	12 25 7 35	9-6153 9-6255	19·0 25·2	-032	.153
	E	S	11 50	9.6694	12 05	9.6193	19.1	1002	.103
" 6	E	N N	7 30	9.6731	7 45	9.6327	26.0	-038	·126
# 11	E	N	10 30 7 15	9·6708 9·6709	10 45 7 45	9.6329	23·0 25·4	-037	1074
" 11	E	N N	10 35	9.6721	10 50	9-6170 9-6178	22.2	.057	·174
" 13	E	N	7 00	9.6703	7 15	9.6142	25.2	-034	-173
	E	N	10 50	9-6707	11 05	9-6194	21.2		
" 16	E	S	8 30 13 05	9-6739 9-6753	8 50 13 25	9·6247 9·6188	23·3 16·4	-047	·170
" 19	E	S	7 55	9-6721	8 10	9.6244	23.2	-040	-158
″ 00	E	S	12 30	9-6725	12 50	9.6220	17.8		
" 20	E	N	2 10 3 40	9-6730 9-6715	2 25	9·6193 9·6752	23.4		
« 25	W	N	8 40	9.6726	8 55	9.6765	23.2		
⁴ 26	W	N S	7 55	9.6719	8 10	9 - 6790	23.9	046	-015
" 28	W	S	12 25 9 30	9.6769	12 45 9 45	9.6792	19.6		
	W	N	12 30	9.6754	9 45 12 45	9 · 6788 9 · 6800	23·0 15·0	060	•002
" 30	W	N	9 45	9-6747	10 00	9.6775	21.2	034	.024
Aug. 2	W	N	12 45	9.6662	13 00	9 - 6786	15.4		
Aug. 2	W	S	9 00 7 40	9 · 6723 9 · 6734	9 15 7 55	9.6720	22.2	040	-·001
" 7	W	S	7 50	9.6724	8 05	9.6705	21.5	040	001
	W	S	11 45	9.6726	12 00	9-6741	18.3		
" 8	W	N	8 15 11 40	9-6718- 9-6748	8 30 11 55	9·6709 9·6726	21·5 18·6	- · 043	− ·005
	+4	14	11 40	9.0748	11 00	9.0720	19.0		

TABLE 11.

OBSERVED VALUES OF COLLIMATION AND LEVEL (Continued).

Date.	Clamp.	Observer.	Time.	Collima- tion Line.	Time.	Vertical Line.	Temp. (Cent.)	Adopted Coll.	Adopted Level.
1910			h. m.	r	h. m.	r	0	s.	8.
Aug. 9	W	S	7 45 7 25	9·6714 9·6704	7 55 7 10	9·6674 9·6808	23·4 22·7	041	-032
" 12	W	S	12 20 7 05	9·6750 9·6705	12 35 7 20	9.6848 9.6804	18·2 24·3	042	-031
" 18	W	NNSS	11 15 11 35	9·6756 9·6744	11 30 11 50	9·6852 9·6180	19·0 18·6		
" 19	E	S	14 20 7 00	9·6731 9·6703	14 40 7 15	9·6162 9·6097	15·0 20·3	-035	-195
" 20	Ē	N	9 50 8 00	9·6713 9·6733	10 05 7 45	9·6105 9·6103	16·1 20·9	-046	·210
	E	S	12 00 7 15	9·6754 9·6771	12 20 7 30	9.6080	16·2 19·2	-047	-244
" 26	E	N	10 15	9.6723	10 30	9·5982 9·5994	14.0		
29	E	N	7 00 10 45	9·6753 9·6718	7 25 11 00	9·6019 9·6038	20·0 15·3	-011	-227
" 31	E	N	9 15 12 05	9 · 6723 9 · 6744	9 30 12 20	9·6106 9·6097	20·3 15·8	- 043	-203
Sept. 1	E	S	7 05 12 25	9·6775 9·6776	7 15 12 10	9·6072 9·6071	18·8 14·6	-056	·226
« 2	E	ZZSSZZZZZZSSZZ	7 30 11 30	9·6731 9·6726	7 45 11 45	9-6045 9-6047	18·4 13·2	-041	·219
" 7	E	S	11 45 16 55	9·6751 9·6782	11 30 16 35	9·6075 9·6049	16·9 12·0	-053	·226
" 8	E	CS S	7 00 12 10	9·6779 9·6761	12 25	9·6060 9·6014	19·0 17·8	-055	-236
" 9	Ē	N	7 30 11 00	9·6764 9·6753	7 15 11 15	9·5988 9·5974	16·5 11·4	-051	·250
" 10	E	S	8 10 12 50	9·6750 9·6797	8 00 13 10	9·5976 9·5901	16·0 12·1	-056	·269
" 13	E	SS	7 05	9-6776	6 50	9 - 5968	15.0	.059	-265
" 14	E	N	11 50 7 40	9·6792 9·6710	12 10 7 20	9·5949 9·5922	9·0 15·4	-035	256
« 15	E	S S	11 15 7 35	9-6706 9-6738	11 30 7 25	9·5900 9·5918	11·3 16·2	-048	-269
<i>"</i> 16	E W	S N	12 15 7 30	9·6761 9·6721	12 30 7 15	9·5909 9·7030	11·4 18·0	038	·105
" 17	W	N S S	11 15 7 20	9·6717 9·6739	11 30 7 10	9·7059 9·7004	14·2 18·6	048	-088
" 19	W	S N	10 40 7 30	9·6757 9·6707	10 55 7 15	9·7039 9·7101	15·6 13·4	040	-124
4 21	W	NNNNSS	10 45 7 00	9-6739 9-6699	11 00	9·7116 9·7059	10·8 14·0	048	-102
# 22	W	N	12 25 7 10	9 · 6802 9 · 6745	12 45 7 00	9.7077	8.0	— ·053	•119
4 26	W	S	10 40 6 45	9·6782 9·6708	11 10 7 00	9·7183 9·7030	9·2 14·8	043	-097
4 27	W	N S S N	10 15 8 35	9·6762 9·6705	10 30 8 20	9·7042 9·6997	11·8 14·4	043	-105
" 28	W	S	13 45 7 30	9 · 6764 9 · 6698	14 05 7 00	9·7125 9·7050	10·4 13·5	042	-111
4 29	W	NS	10 45 6·45	9·6761 9·6722	11 00 6 35	9·7097 9·7028	11·4 15·3	044	-114
	W	SN	11 50	9-6752	12 05 6 20	9·7056	10.7	034	·118
4 30	W	N	6 40 10 30	9·6720 9·6691	10 45	9.7092	14.3		-119

TABLE II.

OBSERVED VALUES OF COLLIMATION AND LEVEL (Concluded).

Date.	Clamp.	Observer.	Time.	Collima- tion Line.	Time.	Vertical Line.	Temp. (Cent.)	Adopted Coll.	Adopted Level.
1910 Oct. 2	W	s	h. m. 8 25	r 9-6738	h. m. 8 10	r 9.7204	11.4	s.	s.
Oct. 2	W	N N	7 30 10 50	9-6736 9-6742	11 00	9·7115 9·7147	13·2 11·4	-·045	· 126
" 7	W	N N	6 40 10 45	9-6715 9-6768	6 55 11 00	9·7381 9·7439	13·3 9·4	046	·215
" 10	W	N	6 30	9-6718 9-6783	6 45 10 55	9·7291 9·7330	11.9 9.7	048	·180
-« 11	W	NNSS	6 25	9-6729 9-6776	6 10 10 50	9·7200 9·7270	14·6 11·2	049	· 155
" 12	E	N N	6 45	9 · 6807 9 · 6817	7 00 10 05	9·5721 9·5700	8.8	-068	-354
a 17	E	N N	6 35	9·6731 9·6723	6 50	9·5815 9·5799	13·7 11·2	-041	•296
" 18	E	S	6 35	9·6747 9·6752	6 55 12 10	9·5862 9·5789	13.0	-048	-297
" 19	E	N	6 30 9 30	9·6729 9·6695	6 15 9 45	9·5805 9·5800	15·6 14·5	-036	-292
⁴ 20	E	8	7 00	9.6784 9.6761	6 45 12 15	9.5818	10.3	-055	-305
" 21	E	SSS	11 50 7 30	9 6799	7 15	9·5833 9·5758	8.2	.062	-334
" 26	E	N	11 55 7 00 9 30	9 · 6785 9 · 6747 9 · 6592	12 15 7 30 9 50	9·5747 9·5742 9·5683	4·7 6·0 3·2	.022	-308
Nov 2	E	N	7 00 10 40	9 · 6556 9 · 6756	7 20 10 55	9·5661 9·5913	6.6 2.3	-018	-279
" 3	E	N S N N	8 55 7 50	9 - 6781	8 35	9.5844	3.2	040	
" 4 " 8	E	N	9 55 7 00	9·6742 9·6762	7 30 10 15 6 30	9 · 5838 9 · 5849	3.8	-049	. 292
" 9	E	S	12 00 6 30	9·6753 9·6792	12 25	9 · 5846 9 · 5869	- 2.7	-055	294
	E	N N	10 05	9.6719 9.6734	6 05 10 20	9 · 5843 9 · 5839	- 1.0	-041	. 285
" 17 20	W	8	5 40	9·6724 9·6717	7 30 5 25	9·5793 9·7288	- 1·3 - 1·0	038	· 184
- 21	W	SSS	6 15 9 50	9·6707 9·6745	6 35 10 10	9·7183 9·7196	- 1.4	041	-149
Dec. 3 # 5	W	N	4 35 6 10	9·6776 9·6829	6 30	9.7524	- 3·8 - 6·2	073	-222
« 6	W	N S	10 20 4 35	9·6828 9·6776	10 40 9 50	9·7516 9·7032	-10·0 - 7·5		
" 8	W	S	5 00 10 20	9·6299 9·6443	4 30 10 45	9 · 6837 9 · 7050	- 6·0 -10·3	-074	⋅184
" 9	W	N N	6 55 10 05	9 · 6476 9 · 6588	6 40 10 35	9·7093 9·7205	$-11.0 \\ -15.2$.022	-198
" 10	W	S	5 05 11 05	9 · 6467 9 · 6748	4 30 11 20	9·7278 9·7487	$-11.8 \\ -14.2$	- ·043 - ·048	•249
" 12	W	N N	7 00 10 15	9 · 6644 9 · 6682	6 45 10 30	9·7632 9·7681	-10.6 -11.0	020	-319
" 16 " 21	W	N N	6 45 7 15	9 · 6698 9 · 6617	7 00 7 00	9·7686 9·7812	-11·6 - 9·0	022	-378
« 25	W	N	10 30 4 20	9·6721 9·6665	10 50 3 40	9·7874 9·7799	-13·0 - 8·8		
" 30	W	S	8 50 5 10	9·6735 9·6646	7 45	9.7678	-12·2 -10.0		
							7		

TABLE III.

3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE

	0				Time of	COLL.	ransit	of	ent	m m	App. R.A. from
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	$_{\Delta T \ + \ m}^{\Lambda \mathrm{dopted}}$	Obser- vation
1910	_			П	h. m. s.	8.	8	8.	8.	8.	h. m. s.
Mar. 17	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	B.J. 320. B.J. 323. 76 Draconis. B.J. 335. B.J. 339. B.J. 341. B.A.C. 3097. B.J. 349. B.J. 349. B.J. 349. B.J. 360. B.J. 360. B.J. 360. B.J. 360. B.J. 374. B.J. 374.	L.C.	S	8 27 00·12 32 34·10 48 59·99 52 59·36 54 44·33 57 25·52 9 00 44·72 07 51·59 13 11·13 17 19·49 24 20·51 26 47·28 43 29.7 52 07·07 10 11 37·05 20 14·97 24 49·67	· · 054 (· 456)	00-44 34-58 56-96 59-76 44-70 25-90 45-04 51-98 11-44 12-39 23-19 47-73 39-51 33-60 07-43 37-44 18-16 50-22	05-02 39-14 01-73 04-35 49-25 30-47 56-57 15-99 17-98 28-10 52-32 44-02 38-18 12-02 41-98 22-87 54-74	4·58 4·77 4·55 4·55 5·59 4·91 4·51 4·59 4·54 4·71	4-54	8 27 04-98 32 39-12 53 04-30 54 49-24 57 30-44 9 00 49-58 07 56-52 13 15-98 26 52-27 28 44-05 44 38-14 52 11-97 10 11 41-98
Mar, 18	20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	B.J. 374 B.J. 383 B.J. 386 30 H. Camel.	L.C. L.C.	N	49 00·32 51 33·56 54 44·06 57 25·33 9 00 44·61 07 51·55 13 11·06 24 20·12 26 47·13 44 32·77	018 (-477)	22·85 38·24 14·79 36·91 00·38 34·58 57·05 30·95 44·50 25·80 44·97 51·98 11·38 23·36 47·73 33·44 07·33 37·31 55·21 18·33	42 · 86 22 · 61 41 · 57 05 · 00 39 · 12 01 · 83 35 · 75 49 · 24 30 · 46 38 · 17 56 · 56 56 · 56 58 · 52 · 33 38 · 17 49 · 24 30 · 40 10 · 83 11 · 93 12 · 93 14 · 93 15 · 94 16 · 94 17 · 94 18 · 94 18 · 94 18 · 94 19 · 94 19 · 94 19 · 94 10 · 94	4-62 7-82 4-66 4-62 4-78 4-80 4-74 5-4-58 4-59 3-4-67 4-63 4-63 4-63 4-63 4-63 4-63 4-63 4-63	4-61	29 24-65 56 27-39 7 41 42-85 8 16 41-52 27 04-99 32 39-19 54 49-11 9 00 49-58 07 56-59 13 16-00 10 11 41-92 16 59-234 44 38-10 52 12-00 10 11 41-92 22 42-37
Mar. 2	40 41 42 6 43 44 45 46 47 48	B.J. 383 B.J. 386 30 H. Camel. B.J. 394 B.J. 398		S a a a a	29 19 3	5 3 6081 7 (-421 2 7	37 · 78 37 · 78 35 · 63 18 · 56 50 · 43	7 59·70 22·30 2 54·60 2 24·60	1 4·13 8 4·11 6 3·86	4-14	24 54·65 29 24·68 10 11 41·92 16 59·81 24 54·56 29 24·54 33 40·80
		Cl	n Wast			Adont	ad alas	ale moto	aoro.		

Clamp West.

Adopted clock-rate zero.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

COLL.

		9				Time of	COLD.	rans	A. of n Stars	ent m	per	App. R. A.
D	ATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Trans Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1	910					h. m. s.	8.	s.	8.	8.	8.	h. m. s.
Ms	ar. 26	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	B.J. 407 B.J. 412 47 Urs. Maj B.J. 420 B.J. 420 B.J. 423 39 H. Cephei B.J. 441 I. Can. Ven B.J. 441 B.J. 447 I. Can. Ven B.J. 467 B.J. 467 B.J. 467 B.J. 467 B.J. 47 32 H. Camel. 43 H. Cephei.	L.C.		10 40 48:77 48 13:94 54 22:98 56 22:72 11 04 33:53 13 34:38 27 21:09 41 15:62 49 03:84 12 10 13:80 11 34:44 15 01:57 21 22:33 25 43:58 29 25:51 48 34:77 55 54:66	081 (-421)		27-44 38-27 39-83 38-67 18-04 20-15 08-49 38-91 16-57 26-76	4·16 4·22 4·08 3·25 4·18 4·45 4·17 4·24 4·23		10 40 53-10 48 18-30 54 27-41 56 27-31 11 04 38-19 11 39-87 13 38-73 41 20-07 49 08-38 12 10 18-34 11 38-87 21 26-73 25 48-22 29 29-95
Ap	т. 2	19 20 21 22 23 24 25 26 27 28 29 30	B.A.C. 7504 1 H. Draconis, B.J. 358 B.J. 358 B.J. 360 B.J. 360 B.J. 374 B.J. 374 B.J. 374 B.J. 374 B.J. 420 B.J. 425 39 H. Cephei B.J. 441 Groom, 1830 B.J. 441 B.J. 447 B.J. 470 B.J. 470 B.J. 478	L.C.	S	9 17 23 45 24 20 78 26 48 10 28 40 07 44 33 81 52 08 05 10 11 38 12 29 20 51 33 37 10 11 04 34 38 11 35 96 41 16 21 47 45 27 21 92 62 77 50 03 04	-·091 (·415)	17.67 22.92 48.44 40.29 34.30 08.33 38.41 18.16 20.95 37.29 34.64 36.27 35.14 15.92 16.51 45.86 44.70	22.08 26.65 52.04 43.83 37.88 11.86 41.84 21.66 24.53 38.23 39.80 19.07 20.14 48.17 30.09	4·41 3·73 3·54 3·53 3·43 3·50	3.50	9 26 51-94 28 43-79 44 37-80 52 11-83 10 11 41-91 29 24-45 33 40-79 11 04 38-14 11 39-77 13 38-64 41 20-01 47 49-36 12 25 48-20 29 30-05 50 00-96
Ap	or. 3	41 42 43 44 45	B.J. 368 B.J. 374 B.J. 383 B.A.C. 3495 30 H. Camel B.J. 390 B.J. 394 B.J. 394 B.J. 398 37 Leo. Min. B.J. 407 B.J. 412		8 4 4 4 4 4	9 44 33·35 52 07·68 10 11 37·62 16 46·34 20 13·83 22 38·13 24 50·03 29 19·97 33 36·73 40 49·04 48 14·24	·075 (·488)	20.83 37.15 49.44	11 · 84 41 · 82 55 · 81 21 · 59 42 · 27 54 · 54 24 · 51	3.61 3.81 3.48 3.65		9 44 37·87 52 11·84 10 11 41·81 22 42·22 24 54·46 29 24·43 33 40·75 40 53·04 48 18·30

From March 26 Clamp West: from April 3 Clamp East. 5,29. Observed facing north.

Adopted clock-rate zero.

3 GEORGE V., A. 1913

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	9.				Time of	Coll.	ransit	Stars	rent . m	ted - m	App. R.A. from
DATE	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	s.	8.	s.	8.	8.	h. m. s.
Apr 3	2 3	47 Ursæ Maj B.J. 416 B.J. 420 B.J. 424 39 H. Cephei		Saaaa	10 54 23·12 56 22·89 11 04 34·01 11 35·47 27 25·32	·075 (·488)	34·57 36·13	$27 \cdot 37 \\ 38 \cdot 22$	3.65		10 54 27-27 56 27-33 11 04 38-17 11 39-73
Apr. 8	7 8 9 10 11 12 13 14 15 16 17 18 19 20		L.C.	N a a a a a a a a a a a a a a a a a a a	12 11 15·16 15 11·01 21 41·12 26 02·03 29 44·30 48 51·17 52 05·28 56 16·70 13 11 45·3 13 46·66 16 33·14 20 34·8 26 20·53 33 43·84 44 16·06 14 13 13·94	(-512)	30 · 19 41 · 68 03 · 08 44 · 90 56 · 83 05 · 83 08 · 92 45 · 90 47 · 25 33 · 72 35 · 70 52 · 43 44 · 35 16 · 82	15·39 26·81 48·17 30·10 42·15 50·94 54·37 20·83 37·74 01·96	-14·80 -14·87 -14·80 -14·68 -14·89 -14·55 -14·88		12 11 01·27 21 26·80 25 48·20 29 30·02 51 50·95 13 11 31·02 13 32·37 16 18·84 20 20·82 33 29·47 44 01·94 14 12 59·75
Apr. 10	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	B.A.C. 7504 1 H. Draconis. B.J. 358. B.J. 360. B.J. 358. B.J. 368. B.J. 374. B.J. 368. B.J. 374. B.J. 383. B.A.C. 3495 30 H. Camel. B.J. 394. B.J. 407. B.J. 412. B.J. 412. B.J. 412. B.J. 412. B.J. 412. B.J. 412. B.J. 420. B.J. 424 39 H. Cephei.		N	9 17 49·17 24 36·70 27 06·02 28 58·11 44 51·60 51 01 156·01 17 03·53 20 31·14 22 56·58 25 08·44 42 33·51·16 44 32·57 56·41·27 11 04·52·40 11 53·95 27 46·37		40 · 66 06 · 80 58 · 65 52 · 62 26 · 66 56 · 65 57 · 12 09 · 35 39 · 28 55 · 62 07 · 91 33 · 07 42 · 19 53 · 02 54 · 67	25·76 51·87 43·72 37·68 11·74 41·73 54·80 20·84 42·20 54·41 24·39 53·01 18·22 27·28 38·17 39·73	-14-56 -14-90 -14-93 -14-92 -14-92 -14-92 -14-92 -14-85 -14-85		9 26 51 88 28 43 73 44 37 70 52 11 74 10 11 41 73 22 42 20 24 54 43 29 24 36 33 40 70 40 52 99 48 18 15 56 27 27 11 04 38 10 11 39 75
Apr. 11	42 43 44 45 46	1 H. Draconis. B.J. 358. B.J. 360. B.J. 368. B.J. 374. B.J. 383. B.A.C. 3495.		N	9 24 38·29 27 07·85 29 00·00 44 53·36 52 27·96 10 11 57·89 17 04·41		08 · 69 00 · 52 54 · 46 28 · 56 58 · 52	51 · 85 43 · 70 37 · 65 11 · 72 41 · 71	-16·94 -16·82 -16·84 -16·81 -16·50		9 26 51 85 28 43 68 44 37 62 52 11 72 10 11 41 68

Clamp East.

Adopted clock-rate zero.
3,38. Observed facing north.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

D.	TE	nce	Овјест	Notes	rer.	Time of Observed	Coll.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
		Reference No.			Observer	Transit.	(Polar Dev.)	Sec. o	R. Know	App	Ad A7	vation.
	10					h. m. s.	8.	s.	s.	8.	s.	h. m. s.
Apı	. 11	3 4 5 6 7 8 9	30 H. Camel B.J. 390. B.J. 394. B.J. 398. B.J. 407. B.J. 412. 47 Urs. Maj. B.J. 416. B.J. 420. B.J. 424. B.J. 425. 39 H. Cephei.		N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 20 32-51 22 58-45 25 10-26 29 40-23 41 09-43 48 34-54 56 43-11 11 04 54-34 11 55-86 13 54-93 27 47-79	(-545)	58 · 97 11 · 24 41 · 25 09 · 86 35 · 03 44 · 08 44 · 10 55 · 02 56 · 65 55 · 40	42 · 18 54 · 39 24 · 37 53 · 00 18 · 21 27 · 26 38 · 15 39 · 71 38 · 61	-16·86 -16·82 -16·87 -16·87 -16·67		10 22 42·13 24 54·40 29 24·41 40 53·02 48 18·19 54 27·24 56 27·26 11 04 38·18 11 39·81 13 38·56
Apı	. 12	14 15 16 17 18 19 20 21 22 23 24	Groom. 1830. B.J. 447. B.J. 456. Bradley 1672. B.J. 467. B.J. 467. B.J. 467. B.J. 485. 43 H. Cephei. 14 Can. Ven. 19 Can. Ven. 19 Can. Ven. 23 Can. Ven. 23 Can. Ven. 24 Can. Ven. 25 Can. Ven. 25 Can. Ven.	L.C.	N a a a a a a a a a a a a a a a a a a a	11 48 05·59 49 24·17 12 11 16·90·04 21 42·89 26 03·75 29 46·15 34 44·39 48 52·62 52 07·09 36 13·27 11 47·18 13 48·43 16 34·98 20 36·54 26 25·20 33 45·77	(-541)	25·11 17·77 29·28 43·47 04·86 46·79 45·02 58·59 07·66 10·89 50·47 13·85 47·81 59·66 37·51 53·67	08-43 01-26 14-25 26-80 38-15 30-10 42-04 550-95 54-68 57-15 32-39 20-85 38-23	-15·03 -16·69 -16·55 -16·71 -16·21 -16·70 -16·66		11 47 49-46 408-41 12 11 01-07 21 26-77 25-48-16 29-30-09 34-28-32 51-50-96 13-01-33-77 06-57-15 11-31-32-35-16-18-90 20-20-81 33-29-62
Apr	r. 13	33 34 35 36 37 38 39 40 41	B.J. 383 B.A.C. 3495 30 H. Camel B.J. 390 B.J. 394 B.J. 398 37 Leo. Min. B.J. 407 B.J. 412 47 Urs. Maj. B.J. 416 B.J. 420		8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 11 45·82 16 52·30 20 20·25 22 46·41 24 58·16 29 28·07 33 44·97 40 57·25 48 22·45 54 31·34 56 31·02 11 04 42·27	(-567)	58-96 25-28 46-98 59-13 29-07 45-46 57-72 22-97 31-98 32-00	3 54 · 25 3 20 · 43 3 42 · 16 3 54 · 35 7 24 · 33 5 2 52 · 97 7 18 · 18	- 4.82 - 4.71 - 4.85 - 4.82 - 4.75 - 4.79		10 11 41 69 22 42 17 24 54 32 29 24 26 33 40 65 40 52 91 48 18 16 54 27 17 56 27 19 11 04 38 12
Ap	r. 14	45 46	B.A.C. 7504 1 H. Draconis B.J. 358 B.J. 360		Suuu	9 17 57·29 24 41·95 27 12·07 29 04·16	(+572)	12.8	3 25 · 26 3 51 · 78	-20·65 -20·92 -21·07		9 26 51·77 28 43·60
			Clamr	East.			Adopt	ted cl	ock-ra	te zero.		

Clamp East.

Adopted clock-rate zero.

43. Observed facing north.

3 GEORGE V., A. 1913

TABLE III.
REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	0				Time of	COLL.	ransit	of Stars	ent m	ed m	App. R.A.
Date.	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	s.	s.	8.	s.	8.	h. m. s.
Apr. 14	1 2 3 4 5 6 7 8 9 10 11 12 13	B.J. 368 B.J. 374 B.J. 383 B.A.C. 3495 B.J. 398 37 Leo. Min. B.J. 407 B.J. 416 B.J. 416 B.J. 420 B.J. 424 B.J. 425 39 H. Cephei		8 4 4 4 4 4 4 4 4	9 44 57-57 52 32-07 10 12 02-15 17 08-79 29 44-39 34 01-30 41 13-58 48 38-77 56 47-31 11 04 58-56 12 00-05 13 59-21 27 54-00		02·83 15·43 45·39 01·79 14·04 39·28 48·28 59·21 00·82 59·71	41 · 66 54 · 09 24 · 31 52 · 96 18 · 17 27 · 20 38 · 12 39 · 67 38 · 59	-21 · 04 -21 · 17 -21 · 34 -21 · 08 -21 · 11 -21 · 09 -21 · 12 -21 · 45		9 44 37·52 52 11·59 10 11 41·71 29 24·27 33 40·67 40 52·92 48 18·16 56 27·16 11 04 38·09 11 39·70 13 38·59
Apr. 21	21 22 23 24 25 26 27	B.A.C. 7504. 1 H. Draconis. B.J. 358. B.J. 368. B.J. 368. B.J. 374. B.J. 368. B.J. 374. B.J. 339. B.A.C. 3495. B.J. 390. B.J. 393. J. Camel. B.J. 394. B.J. 394. B.J. 394. B.J. 394. B.J. 412. T. Ursac Maj. B.J. 412. B.J. 420. B.J. 425.	L.C.	N	9 17 39-52 24 22-01 26 52-49 28 44-79 44 38-08 52 12-72 10 11 42-72 16 48-03 20 16-70 22 43-31 24 54-87 29 24-87 33 41-86 48 19-43 54 28-33 56 27-89 11 04 39-16 13 39-82	-097 (·515)	26-11 53-30 45-30 39-14 13-30 43-33 54-46 21-57 43-82 25-85 42-30 28-91 28-85 39-80	24·45 51·61 43·53 37·36 11·55 52·98 19·49 42·05 54·17 24·15 18·09	- 1·80 - 1·66 - 1·77 - 1·75 - 1·78 - 1·48 - 2·08 - 1·77 - 1·81	-1.79	9 26 51-51 28 43-51 44 37-35 52 11-51 10 11 41-54 22 42-03 24 54-03 29 24-06 35 40-51 48 18-11 54 27-12 56 27-06 11 04 38-01 13 38-48
Apr. 22	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	1 H. Draconis. B.J. 358. B.J. 358. B.J. 360. B.J. 374. B.J. 383. B.A. C. 3495. 30 H. Camel. B.J. 394. B.J. 399. 37 Leo. Min. B.J. 407. B.J. 417. B.J. 418. B.J. 418. B.J. 418. B.J. 418. B.J. 418. B.J. 420. B.J. 424.		N	9 24 23 95 26 52 95 28 45 95 52 13 08 10 11 43 13 20 18 67 22 43 66 24 55 48 29 25 40 33 42 22 40 54 54 48 19 75 56 28 41 11 04 39 57 11 41 03		53·31 45·27 13·30 43·37 54·60 21·36 43·84 55·92 25·86 42·36 54·60 19·90 28·97 28·85 39·84	51 · 58 43 · 51 11 · 53 41 · 53 52 · 78 19 · 34 42 · 04 54 · 15 24 · 12 52 · 87 18 · 08 27 · 04 38 · 02	- 1·89 - 1·76 - 1·77 - 1·84 - 1·82 - 1·80 - 1·80 - 1·80 - 1·82		9 26 51 49 28 43 45 52 11 48 10 11 41 55 22 42 02 24 54 10 29 24 04 33 40 54 40 52 84 48 18 08 54 27 15 56 27 03 11 04 38 02 11 39 54

From April 14 Clamp East; from April 22 Clamp West. $1-13. \quad \text{Adopted clock-rate zero.} \\ 32-48. \quad \text{Adopted } \Delta T+m=-1\cdot 789+\cdot 0028 \quad \text{($T-10h. 20m.)} \\ 32-48. \quad \text{Adopted } \Delta T+m=-1\cdot 821+\cdot 0028 \quad \text{($T-10h. 20m.)} \\ 10. \quad \text{Observed facing north.} \\ 1-13. \quad \text{Adopted } \Delta T+m=-1\cdot 821+\cdot 0028 \quad \text{($T-10h. 20m.)} \\ 1-13. \quad \text{Adopted clock-rate zero.} \\ 1-13. \quad \text{Adopted c$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Darr	ace.	Овјест	Notes	er	Time of Observed	Coll.	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
DATE	Referen No.	Obstact	110163	Observer	Transit	(Polar Dev.)	See, of Corre	R. /	Appr	Ado AT	vation
1910					h. m. s.	s.	s.	s.	s.		h. m. s.
Apr. 22	1 2	B.J. 425 39 H. Cephei	L.C.	N "	11 13 40·20 27 31·24	-·129 (·448)	$40 \cdot 35 \\ 25 \cdot 72$	38 · 52 22 · 96	$^{-1.83}_{-2.76}$	-1.82	11 13 38-53
Apr. 25	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	30 H. Camel. B.J. 390. B.J. 394. B.J. 394. B.J. 398. B.J. 398. B.J. 397. 37 Leo. Min. B.J. 407. B.J. 407. B.J. 412. 47 Urs. Maj. B.J. 412. B.J. 420. B.J. 424. B.J. 425. B.J. 424. B.J. 425. B.J. 441. B.J. 441. B.J. 443. B.J. 444. B.J. 443. B.J. 444. B.J. 444. B.J. 445. B.J. 444. B.J. 445. B.J. 447. B.J. 458. B.J. 447. B.J. 458.		S	10 20 18-38 22 43-31 24 55-72 29 25-21 33 41-9 40 54-22 48 19-39 54 28-36 56 28-13 11 04 39-22 11 40-85 13 39-90 27 30-34 41 21-22 47 50-6 49 09-46 12 11 40-12 15 04-29	(-397)	43.46 55.57 25.52 42.01 19.52 28.55 28.44 39.39 41.06 40.02 25.52 21.41 509.73 40.31	41-99 54-07 24-04 52-84 18-04 26-97 37-97 39-51 38-48 23-86 19-94 08-26 38-86	-1·48 -1·48 -1·42 -1·54		10 22 41.97 24 51.08 29 24.03 33 40.52 40 52.83 48 18.03 56 26.95 11 04 37.00 11 39.57 13 38.53 41 19.92 47 49.32 49 08.24 12 11 38.82
Apr. 27	22 23 24 25 26 27 28 29 30 4 31 3 32 34 35 36 37 38 2 39 39	B.J. 441 Groom. 1830. Groom. 1830. B.J. 447 Can. Ven. B.J. 458 B.J. 458 B.J. 467 B.J. 467 B.J. 467 B.J. 467 B.J. 470 B.J. 485 31. 491 B.J. 49	L.C.	8	11 41 21·02 47 50·51·49 09·55·51·2 10 19·26 11 39·94 15 03·64 21 27·88 25 49·04 29 31·10 34 29·36 48 39·89 51 52·11 13 01 34·93 05 58·27 11 32·25·13 13 34.93 14 20·36 48 20·40 20 21·80 20 20 21·80 20 21·80 20 21·80 20 21·80 20 21·80 20 21·80 20 20 21·80 20 20 20 20 20 20 20 20 20 20 20 20 20 2	(-417)	50 · 66 09 · 51 19 · 51 40 · 11 11 · 47 28 · 04 49 · 37 31 · 29 29 · 54 42 · 15 52 · 26 57 · 59 35 · 06 58 · 43 32 · 43 32 · 43 32 · 43 32 · 64 20 · 62 20 · 7	08-23 38-84 09-54 26-74 48-01 30-04 41-13 50-94 56-17 57-16 32-41 20-85		-1·30 -1·29	11 41 19-91 47 49-36 49 08-21 12 10 18-22 11 38-82 21 26-75 25 48-08 29 30-00 34 28-25 51-50-97 13 01 33-77 05 57-14 11 31-14 13 32-35 16 18-93 20 20-78
Apr. 28	42 1 43 1 44 1 45 1 46 1	B.J. 352 I.H.Draconis B.J. 358 B.J. 360 B.J. 368 B.J. 374 B.J. 383		N	9 15 36·07 24 22·35 26 52·32 28 44·39 44 37·81 52 12·37 10 11 42·36	(·472)	24 · 69 : 52 · 69 : 44 · 56 · 38 · 33 : 12 · 60	23 · 47 51 · 43 43 · 41 37 · 15 11 · 43	-1·24 -1·22 -1·15 -1·17 -1·18		9 15 35-05 26 51-51 28 43-38 44 37-15 52 11-42 10 11 41-42

Clamp West. 1, 2. Adopted $\Delta T + m = -1.821 + 0.028$ ($T = 10^8 - 20^9$), a 2-0. Adopted $\Delta T + m = -1.821 + 0.028$ (T = 1.00 + 0.028 (T = 1.0

3 GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	ece	Object	Notes	er	Time of Observed	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Referenc No.	OBJECT		Observer	Transit	(Polar Dev.)	Sec. of Corre	R. Knowr	App	Ado AT	vation
1910					h. m. s.	8.	8.	8-	8.	8.	h. m. s.
Apr. 28	2 3 4 5 6 7 8 9 10 11 12 13	B.A.C. 3495. 30 H. Camel. B.J. 390. B.J. 394. B.J. 394. B.J. 398. 37 Leo. Min. B.J. 407. B.J. 412. 47 Urs. Maj. B.J. 416. B.J. 420. B.J. 424. B.J. 425. 39 H.Cephei.		N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 16 48 98 20 17 03 22 42 85 24 54 65 29 24 53 33 41 48 40 53 89 48 19 03 54 28 00 56 27 63 11 04 38 81 11 40 41 13 39 41 27 32 58	(-472)	19·81 43·03 55·10 25·01 41·61 54·01 19·19 28·22 28·09 39·08 40·75 39·55	18-40 41-95 54-00 23-97 52-80 18-00 26-91 37-93 39-46 38-45	$\begin{array}{c} -1 \cdot 17 \\ -1 \cdot 41 \\ -1 \cdot 08 \\ \\ \\ -1 \cdot 21 \\ -1 \cdot 19 \\ \\ \\ -1 \cdot 15 \\ \\ \\ -1 \cdot 10 \\ -2 \cdot 03 \end{array}$		10 22 41-85 24 53-92 29 23-83 33 40-43 40 52-83 48 18-01 54 27-04 56 26-91 11 04 37-90 11 39-57 13 38-87
Apr. 30	16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 46	B.J. 379. B.J. 384. B.J. 384. B.J. 386. B.J. 386. B.J. 387. B.J. 387. B.J. 389. B.J. 389. B.J. 389. B.J. 389. B.J. 389. B.J. 389. B.J. 489. B.J. 489. B.J. 482. B.J. 483. B.J. 483. B.J. 483. B.J. 484. B.J. 487. B.J. 4	L.C.	Na a a a a a a a a a a a a a a a a a a	10 02 27.44 11 43.00 23 20 16-52 22 42-90 21 54-77 33 41-44 48 18-99 48 18-99 50 46-57 56 27.56 56 27.56 11 04 33-72 12 47 21 13-30 13 43-90 14 30-22 30 49-55 30 49-55 44 30 22-89 30 49-55 44 30 22-89		43 · 00 · 47 19 · 30 43 · 19 43 · 19 43 · 19 43 · 19 44 · 16 45 · 16 46 · 16 40 · 18 40 · 18 40 · 18 41 · 17 42 · 10 43 · 18 44 · 18 45 · 18 46 · 18 47 · 18 48 · 18 49 · 18 40 · 18 41 · 18 42 · 18 43 · 18 44 · 18 44 · 18 44 · 18 45 · 18 46 · 18 47 · 18 48 · 18 48 · 18 49 · 18 40 · 18	41 · 92 · 92 · 92 · 92 · 93 · 93 · 93 · 93	-1·17 -1·17 -1·16 -1·16 -1·17 -1·16 -1·15 -1·17 -1·14 -1·15 -1·16 -1·16 -1·16 -1·16 -1·16 -1·16 -1·16 -1·17	-1·1t	10 02 28:29 11 44:92 12 41:39 22 41:35:98 33 40:43 34:46:33 34:46:33 35:46:33 36:46:33 36:46:33 37:48:36 38:38 38:48 38:48 38:

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

-	-			_							
	36			_	Time of	COLL.	ransit	of Stars	rent - m	ted - m	App. R.A.
DATE	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	See, of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
May 3	2 3 4 5 6 7 8 9 10 11 12 13 14	54 Leonis. 47 Urs. Maj. B.J. 416. B.J. 420. B.J. 422. B.J. 424. B.J. 422. B.J. 424. Solution 1830. 6 Leonis. 1 Can. Ven. B.J. 458. Bradley 1672. B.J. 461. 15 Comae. B.J. 470. 23 Comae. 9 Can. Ven.	L.C.	N	10 50 46.32 54 27.68 56 27.32 11 04 38.52 09 21.28 11 40.04 13 39.20 27 33.59 47 50.08 51 04.95 12 10 18.60 11 39.43 14 55.72 21 27.42 22 29.47 29 30.68 30 24.31 34 28.98		27.95 27.85 38.84 21.34 40.43 39.37 27.02 50.31 04.96 19.07 39.69 08.15 27.66 29.59 30.95 24.39	26·79 37·84 20·37 39·37 38·39 26·13 38·79 07·32 26·69 29·99	-1·00 - ·97 - ·98 - ·89 - ·83 - ·97 - ·96		10 50 45·43 54 26·97 56 26·87 11 04 37·86 09 20·36 11 39·45 13 38·39 47 49·33 51 03·98 12 10 18·09 11 38·71 21 26·68 22 28·61 29 29·97 30 23·41 34 28·26
May 5	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	B.J. 441. 1 Comparison of Com	L.C.	2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11 44 29-93 47 49-67 47 49-67 47 49-67 41 43 51-14 55-14 13 31-19 14 55-14 13 51-14 55-14 51-14	(-538)	$\begin{array}{c} 4991\\ 0465\\ 1865\\ 3947\\ 2061\\ 2736\\ 6072\\ 2369\\ 24403\\ 3067\\ 7366\\ 22897\\ 7516\\ 3361\\ 1960\\ 3361\\ 1960\\ 214272\\ 212247\\ 427223\\ 3361\\ 11960\\ 012774\\ 430463\\ 012772\\ 426220\\ 012722\\ 4262\\ 02$	38-77 06-51 26-67 13-32 29-97 06-88 50-89 57-27 57-13 41-98 32-38 20-79 44-42 00-56 02-04	- 70 - 21 - 69 - 71 - 70 - 74 - 48 - 68 - 74 - 73 - 65		11 44 29 20 20 47 49 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18

 $\begin{array}{ll} \text{Clamp West.} & 1-18. \text{ Adopted } \Delta T + m = - \cdot 982 + \cdot 0029 \text{ (T} - 11^\text{h} \text{ } 45^\text{m}). \\ 19-49 & \text{Adopted } \Delta T + m = - \cdot 738 + \cdot 0030 \text{ (T} - 13^\text{h} \text{ } 05^\text{m}). \end{array}$

3 GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	9				Time of	Coll.	ransit	of	rent m	ted - m	App. R.A. from
DATE	Reference No.	Object	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	s.	s.	8.	s.	8.	h. m. s.
May 5	2 3 4 5	B.J. 522 B.J. 526 B.J. 527 f Boōtis 204 B. Boōtis. B.J. 534		8 4 4 4 4	$\begin{array}{c} 14\ 06\ 19\cdot 91 \\ 11\ 35\cdot 59 \\ 13\ 00\cdot 32 \\ 22\ 18\cdot 35 \\ 26\ 06\cdot 45 \\ 27\ 59\cdot 42 \end{array}$	-·167 (·538)	00.61 18.40 06.74	34·83 59·97	73 81	73	14 06 19·29 11 34·91 12 59·88 22 17·67 26 06·01 27 58·85
May 6	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	32* H. Camel. B.J. 485 43 H. Cephei. 14 Cam. Ven. 14 Cam. Ven. 15 Can. Ven. B.J. 492. 19 Can. Ven. B.J. 494. B.J. 497. a. Urs. Min. B.J. 502. 25 Can. Ven. B.J. 509. B.J. 513. B.J. 526. B.J. 526. B.J. 526. B.J. 526. B.J. 526. B.J. 527. σ Bootis. B.J. 364 σ Bootis. B.J. 530	L.C.	N a a a a a a a a a a a a a a a a a a a	$\begin{array}{c} 12\ 48\ 37\cdot 50\\ 51\ 51\cdot 45\\ 56\ 02\cdot 19\\ 56\ 02\cdot 19\\ 13\ 01\ 34\cdot 25\\ 05\ 57\cdot 65\\ 07\ 42\cdot 50\\ 11\ 31\cdot 65\\ 20\ 21\cdot 92\\ 20\$		$\begin{array}{c} 51\cdot 63\\ 57\cdot 91\\ 34\cdot 41\\ 57\cdot 84\\ 42\cdot 58\\ 31\cdot 78\\ 33\cdot 02\\ 21\cdot 51\\ 44\cdot 86\\ 49\cdot 24\\ 30\cdot 29\\ 01\cdot 62\\ 02\cdot 63\\ 26\cdot 15\\ 35\cdot 58\\ 00\cdot 69\\ 18\cdot 41\\ 06\cdot 76\\ 59\cdot 49\\ 48\cdot 13\\ \end{array}$	50·89 57·45 57·14 41·98 32·38 20·78 44·93 48·56 02·04 25·43 34·84 59·97	- · 46 - · 70 - · 60 - · 64 - · 68 - · 70 - · 72		12 51 50-93 13 01 33-71 05 57-14 07 41-88 11 31-08 13 32-32 20 20-18 30 48-54 33 29-59 43 00-56 44 01-93 50 25-45 14 11 34-88 12 59-96 22 17-71 26 06-06 27 58-79 30 47-43 35 31-40
May 7	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	B.J. 422 B.J. 424 B.J. 425 B.J. 425 B.J. 432 B.J. 441 Groom, 1830 B.J. 441 Corom, 1830 B.J. 458 Bradley 1672 12 Comae B.J. 461 B.J. 461 B.J. 470 9 Can, Ven. 31 Comae B.J. 453 B.J. 483 B.J. 483 B.J. 483 B.J. 483 B.J. 483		S	11 09 21 03 11 39 72 13 38 91 25 40 97 41 20 14 42 9 97 47 49 76 49 08 35 51 04 67 12 10 18 31 11 39 17 14 54 10 18 00 92 21 27 11 25 14 03 29 30 38 34 28 77 47 20 99 50 06 99 51 51 36	(-526)	$\begin{array}{c} 40 \cdot 04 \\ 39 \cdot 08 \\ 41 \cdot 26 \\ 20 \cdot 44 \\ 29 \cdot 96 \\ 49 \cdot 99 \\ 08 \cdot 74 \\ 01 \cdot 63 \\ 05 \cdot 02 \\ 01 \cdot 02 \\ 27 \cdot 34 \\ 14 \cdot 07 \\ 30 \cdot 63 \\ 29 \cdot 03 \\ 21 \cdot 10 \\ 07 \cdot 41 \end{array}$	39-30 38-34 40-55 19-77 29-20 08-05 38-74 05-50 13-31 26-65 13-31	69 -48 69 76 70	75	511 09 20-32 11 39-28 13 38-32 25 40-50 41 19-68 44 29-20 47 49-23 49 07-98 51 12 10 17-94 11 38-68 18 00-27 21 26-59 25 13-32 29 29-90 34 28-28 47 20-35 50 06-66 51 50-84

Clamp West. 1-6. Adopted $\Delta T + m = -.738 + .0030$ (T-13 h 05 m). 7-28. Adopted $\Delta T + m = -.750 + .0030$ (T-13 h 45 m). 29-48. Adopted $\Delta T + m = -.753 + .0030$ (T-12 h 50 m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Da	TE	ence o.	Object	Notes	rver	Time of Observed Transit	COLL.	c. of Transit Corrected	. A. of wn Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
		Reference No.			Observer	Transit	(Polar Dev.)	Sec. of Corr	R. A. Known S	Αp	₹₫	vation
19 Maj		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	43 H. Cephei. 14 Can. Ven B.J. 491. B.J. 492. B.J. 494. 22 Can. Ven B.J. 497. a. Urs. Min B.J. 502. 25 Can. Ven B.J. 507. B.J. 509. B.J. 509. B.J. 513. B.J. 513. B.J. 513. B.J. 513.	L.C.		h. m. s. 12 56 02-86 13 01 34-23 05 57-62 07 42-59 11 31-53 13 32-87 16 19-40 26 03-53 30 49-05 33 30-12 43 01-35 44 02-40 50 26-21 50 26-21 14 04 22-52		34 · 42 57 · 85 42 · 70 31 · 79 33 · 13 19 · 65 21 · 45 45 · 82 49 · 26 30 · 32 01 · 37 02 · 71 02 · 74 08 · 04 22 · 83	57 · 12 41 · 98 32 · 37 20 · 77 45 · 53 48 · 56 00 · 56 02 · 03 25 · 43 07 · 29	- ·81 - ·81 - ·75	8. - · 75	13 01 33-67 05 57-10 07 41-95 11 31-04 13 32-38 16 18-90 20 20-70 30 48-51 33 29-57 43 00-62 44 01-96 50 25-49 57 07-29 14 04 22-08
Мау	y 10	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	B.J. 522 B.J. 526 B.J. 526 B.J. 527 J Bootis B.J. 534 37 Leo, Min. B.J. 407 B.J. 407 B.J. 407 B.J. 412 54 Leonis 47 Urs. Maj. B.J. 412 B.J. 422 B.J. 422 B.J. 425 B.J. 425 B.J. 425 B.J. 441 B.J. 425 B.J. 441 B.J. 425 B.J. 441 B.J. 441 B.J. 445 B.J. 441 B.J. 441 B.J. 445 B.J. 445 B.J. 441 B.J. 445 B.J. 445 B.J. 441 B.J. 445 B.J. 441 B.J. 445 B.J. 441 B.J. 445 B.J. 441 B.J. 445 B.J. 441 B.J. 445 B.J. 445 B.J	L.C.	. Na	06 19-96 11 35-62 22 18-30 0-43 22 18-50 0-50 26 00-50 26 00-50 27 50-44 10 33 40-83 38 82-80 40 53-19 48 18-28 50 45-94 54 27-29 50 45-94 54 27-29 50 20-90 11 39-59 13 38-93 27 36-34 41 20-01 44 29-85 47 49-62 15 10 18-18 11 39-07 14 54-23 15 10 18-18 11 39-07 14 54-23 15 10 18-18 11 39-07 14 54-23 15 10 18-18 11 39-07 14 54-23 15 10 18-18 11 39-07	$(\cdot 490)$	35-66 00-69 18-54 18-57 32-85 53-29 18-42 46-00 27-50 27-22 38-34 20-92 39-92 39-92 49-80 04-61 18-57 39-28	34 · 85 59 · 97 58 · 82 32 · 21 52 · 64 17 · 84 26 · 61 37 · 73 20 · 30 28 · 53 19 · 73 29 · 18 38 · 71	76 81 77 64 65 58 61 62 76 2.12 64		06 19-30 11 34-91 12 59-94 22 17-79- 26 06-02 27 55-84 27 55-84 10 33 40-30 38 32-20 48 17-77 50 46-35 54 62-67 11 04 37-60 96 20-27 11 39-27 11 38-41 41 19-66 44 29-17 47 49-15 51 03-97 12 10 17-93 11 38-64
		42 43 44 45 46 47 48 49	B.J. 461 15 Comae B.J. 470 23 Comae 9 Can. Ven. 32 H. Camel. B.J. 485 43 H. Cephei.	L.C.	4 4 4	21 27 · 06 22 29 · 17 29 30 · 36 · 30 24 · 02 34 28 · 65 48 36 · 78 51 51 · 25 56 01 · 86		27 · 25 29 · 26 30 · 58 24 · 06 28 · 86 39 · 95 51 · 43 57 · 56	26 · 63 29 · 93 39 · 79 50 · 86 58 · 33	- ·62 - ·65 - ·16 - ·57 ·77		21 26-61 22 28-62 29 29-94 30 23-42 34 28-22 51 50-79

Clamp West, 1—22. Adopted $\Delta T + m = -.753 + .0030 \text{ (T} - 12^{\text{h}} 50^{\text{m}})$. 23-49. Adopted $\Delta T + m = -.644 + .0030 \text{ (T} - 12^{\text{h}} 10^{\text{m}})$.

TABLE III. 3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Object	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 May 10	1	14 Can. Ven		N	h. m. s. 13 01 34 · 19	s. 162	8. 34·35	8.	8.	s. · 64	h. m. s. 13 01 33·71
	2 3 4 5 6 7 8 9	B.J. 491. B.J. 492. 19 Can. Ven. B.J. 494. 23 Can. Ven. B.J. 497. a Urs. Min. 25 Can. Ven. B.J. 507. B.J. 509.	L.C.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	05 57 54 07 42 56 11 31 56 13 32 73 16 19 32 20 20 98 26 02 89 33 30 06 43 01 27 44 02 34	(.490)	57·73 42·64 31·77 32·94 19·52 21·40 47·46 30·23 01·27	57·11 41·97 32·36 20·75	- · 62 - · 67 - · 58 - · 10		05 57-69 07 42-00 11 31-13 13 32-30 16 18-88 20 20-76 33 29-59 43 00-63 44 02-03
May 11	13	B.J. 432		S	11 25 40·76 27 36·19	-·196 (·561)	29.42	28.88	56 54	64	11 25 40-41
	15 16	B.J. 441		4	41 19·99 44 29·80 47 49·54		29.78 49.76	29 · 17	61		41 19·65 44 29·14 47 49·12
	18	o Leonis 1 Can. Ven		4	49 08·13 51 04·55 12 10 18·21		$04 \cdot 54$	07 - 97			49 07·89 51 03·90 12 10 17·96
	20 21	B.J. 458 Bradley 1672		4	11 39·04 14 52·14		39·30 03·47	38·70 03·18	-·60 -·29		11 38-66
	23	B.J. 461		a a	21 27·03 22 29·13 25 13·87		29·25 13·91	13.28	65 63		21 26·62 22 28·61 25 13·27
	26	B.J. 470 23 Comae 9 Can. Ven		a a	29 30·25 30 23·90 34 28·56		30·52 23·96	29.92	60		29 29 88 30 23 32 34 28 18
	28 29	31 Comae B.J. 485		a a	47 20 · 86 51 51 · 31		20.97 51.54	50.85	69		47 20 · 33 51 50 · 90
	31	43 H. Cephei 14 Can. Ven 15 Can. Ven		ec ec	56 03·89 13 01 34·13 05 35·75		34-33		23		13 01 33·69 05 35·34
	33 34	B.J. 491 B.J. 492		a	05 57·48 07 42·47		57·71 42·58	57·10 41·96	-·61 -·62		05 57·07 07 41·94
	36 37	19 Can. Ven B.J. 494 23 Can. Ven		a a	11 31 · 49 13 32 · 68 16 19 · 31		32·93 19·56	32.35	58		11 31·11 13 32·29 16 18·92
	38 39 40	B.J. 497 a Urs. Min B.J. 502	L.C.	a a	20 20 89 26 06 79 30 48 97		48.43	20.73 48.23 48.54	-·20 -·64		20 20 67
	41 42	25 Can. Ven B.J. 507		a	33 29·99 43 01·16		30·19 01·17	00 - 57	60		33 29·55 43 00·53
	44 45	B.J. 509		4	44 02·20 50 26·09 57 07·79		26.11	02·01 25·44 07·30	— · 67		44 01·86 50 25·47 57 07·26
	46 47 48	9 H. Boötis B.J. 522 B.J. 526		4	14 04 22 · 25 06 19 · 85 11 35 · 52		19.93	19·30 34·86	- ·63	63	14 04 21 · 92 06 19 · 30 11 34 · 91
	49	f Boötis		44	22 18-33			34.80	08		22 17.72

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Object	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transi Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	8.	8.	s.	8.	8-	h. m. s.
May 11	2 3 4 5 6 7 8 9 10 11 12 13 14	204 B.Boōtis B.J. 534 or Boōtis B.J. 540 B.J. 543 34 Boōtis e Boōtis e Boōtis e Boōtis e Boōtis f Boōtis c Boōtis Groom. 2283 or Cor. Bor. B.J. 568 B.J. 572 B.J. 572 B.J. 573 ø² Boōtis		S = = = = = = = = = = = = = = = = = = =	14 26 06.37 27 59.29 30 47.93 35 31.74 36 53.24 39 30.29 41 05.64 45 37.01 47 16.34 15 03 23.13 06 25.25 19 31.4 21 07.78 24 09.34 27 44.1 28 36.06		59 · 43 48 · 06 32 · 05 53 · 21 30 · 39 05 · 74 37 · 23 16 · 36 23 · 20 33 · 71 31 · 62 07 · 99 09 · 46 44 · 40	58-83 31-42 52-54 33-71 07-33 08-82 43-79	60 63 67 00 66 64 61		14 26 06 02 27 58 80 30 47 43 35 31 42 36 52 58 39 29 76 41 05 11 45 36 60 47 15 73 15 03 22 57 19 30 99 21 07 36 24 08 83 27 43 77 28 35 69
May 12	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	47 Urs. Maj. BJ. 440. BJ. 440. BJ. 4420. BJ. 4220. BJ. 4221. BJ. 4242. BJ. 4242. BJ. 4242. BJ. 4242. BJ. 441. BJ. 441. BJ. 441. BJ. 441. BJ. 441. Cromn. 1830. BJ. 447. BJ. 447. BJ. 447. BJ. 450. BJ. 45	L.C.	N	10 84 27 - 27 10 10 84 27 - 27 10 85 26 68 11 10 43 8- 03 8 11 30 - 42 41 30		$\begin{array}{c} 27 \cdot 21 \\ 38 \cdot 34 \\ 39 \cdot 80 \\ 39 \cdot 80 \\ 30 \cdot 320 \cdot 32 \\ 39 \cdot 80 \\ 30 \cdot 320 \\ 320 \cdot 32 \\ 49 \cdot 78 \\ 80 \cdot 62 \\ 59 \cdot 81 \\ 80 \cdot 82 \\ 49 \cdot 78 \\ 80 \cdot 62 \\ 59 \cdot 81 \\ 80 \cdot 82 \\ 49 \cdot 78 \\ 80 \cdot 92 \\ 49 \cdot 92 \\ 92 \cdot 92 \\ 9$	26-56 20-28 29-29 16-60 29-29-16 29-29-16 29-29-16 29-29-16 29-29-29-16 29-29-29-29-29-29-29-29-29-29-29-29-29-2	- 65 - 63 - 65 - 65 - 65 - 65 - 65 - 65	-·65	10 54 26.86 11 04 37.68 11 04 37.68 11 04 37.68 11 09 20.25 11 39.14 13 38.23 141 19.67 14 19.67 14 19.67 14 19.67 15 19.67 16 19.67 17 18.67 18 19.25 18 19

 $\begin{array}{ll} \text{Clamp West.} & 1-16. & \text{Adopted } \Delta T + m = -\cdot 637 + \cdot 0031 \text{ (T} - 13^\text{ h} \text{ } 25^\text{m}). \\ 17-49. & \text{Adopted } \Delta T + m = -\cdot 651 + \cdot 0031 \text{ (T} - 12^\text{ h} \text{ } 30^\text{m}). \end{array}$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
							-				
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
May 12		25 Can. Ven		N	13 33 29 99	176	30.19			— · 65	13 33 29-54
	2	B.J. 507		4	43 01·14 44 02·23	(.557)			57		43 00·49 44 01·96
	4	B.J. 513		44	50 26 07		26.08	25-44	64		50 25-43
	5	B.J. 517		44	57 07.85		07.95	07 - 30	65		57 07-30
May 15	6	B.J. 441	,	s	11 41 19-29	-000	10.85	19.64		28	11 41 19-57
	7	B.J. 411	,	44	44 29-25	(.523)	29.43	29.13	30		44 29 15
		Groom. 1830		a u	47 48-90		49.34				47 49 06
	9	B.J. 447 o Leonis		a	49 07 · 40 51 03 · 91		08-09	07.89			49 07·81 51 03·82
	11	1 Can. Ven		а	12 10 17 - 43		18-11				12 10 17 83
	12	B.J. 458		a	11 38-39		38 - 88	38 65	23		11 38-60
	13	Bradley 1672 12 Comae		4	14 45·33 18 00·16		01 - 82	01.29	53		18 00-17
	15	B.J. 461		æ	21 26.37		26.83	26.57	- ·26		21 26.55
	16	15 Comae		u	22 28 48		28.80				22 28-52
,	17 18	B.J. 466 B.J. 470		a	25 13·26 29 29·64		20.14	20 97	- ·24 - ·27		25 13·21 29 29·86
	19	9 Can. Ven		66	34 27 - 92		28-41	29.01			34 28-13
	20	31 Comae		4	47 20 - 44		20.75				47 20-47
		B.J. 483 B.J. 485		44	50 06 · 17 51 50 · 65		51.10	06.73	29		50 06-64 51 50-82
	23	43 H. Cephei	L.C.	44	56 06.30		59.08	59.32	-24		
	24	14 Can. Ven		u u	13 01 33.57		33.98				13 01 33.70
	25	15 Can. Ven B. J. 491		44	05 35·13 05 56·94		35-58		32		05 35·30 05 57·11
	27	B.J. 492		4	07 41 86		42-17	41.94	23		07 41-89
		19 Can. Ven		a	11 30.88		31.37				11 31 09
	29	B.J. 494 23 Can. Ven		-	13 32·12 16 18·67			32.32	28		13 32-32 16 18-87
	31	B.J. 497		ш	20 20-14		20.86	20.68			20 20 58
	32	a Ursae Min	L.C.	ш	26 17 - 70		51.77	50.56	-1.21		
		B.J. 502		a	30 48·36 33 29·39		20.81	48.52	27		30 48 · 51 33 29 · 53
		B.J 507		a	43 00-63		00.84	00.56	28		43 00.56
	36	B.J. 509		a	44 01 - 56		02 - 15	01.98			44 01-87
		B.J. 513		a	50 25·54 57 07·19		25.76	25-44	32		50 25·48 57 07·22
		9 H. Boötis		æ	14 04 21 73		22.27	01.29	21	27	14 04 22 00
	40	B.J. 522		ш	06 19-28		19.56	$19 \cdot 30$	— ·26		06 19-29
		B.J. 526			11 35-00		35.22	34.87	— ·35		11 34·95 12 59·85
	43	B.J. 527 f Boötis		44	12 59-60 22 17-77		17.99	99.99			22 17.72
	44	204 B. Boötis		66	26 05-77		06-28				26 06 01
	45	B.J. 534		- 44	27 58-72		59 - 00	58-84	$- \cdot 22$		27 58·79 30 47·45
	47	σ Boötis B. J. 540		44	30 47·39 35 31·11		31.66	31.42	24		35 31-39
	48	B. J. 543		44	36 52-68		52 8	$52 \cdot 56$	— ·29		36 52-58
	49	34 Boötis		44	39 29-69		29.99				39 29.72

 $\begin{array}{ll} {\rm Clamp\ West.} & 1-5.\ \ {\rm Adopted}\ \Delta T + m = -\cdot 652 + \cdot 0031\ ({\rm T} - 12^{\rm h}\ 30^{\rm m}). \\ 6-49.\ \ \ {\rm Adopted}\ \Delta T + m = -\cdot 276 + \cdot 0031\ ({\rm T} - 13^{\rm h}\ 40^{\rm m}). \end{array}$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE SECTION OF SECTIO	Known Stars Apparent $\Delta T + m$ Adopted $\Delta T + m$	Obser- vation
	×	vacion
1910 h. m. s. s. s.	8. 8. 8.	h. m. s.
2 295 B.Bootis	.88	14 41 05-12 45 36-63 47 15-63 45 15-63

From May 15 Clamp West; from May 16 Clamp East. 1–18. Adopted $\Delta T + m = -\cdot 276 + \cdot 0031 \text{ (T} - 13^{\text{h}} \cdot 40^{\text{m}})$. 19-49. Adopted $\Delta T + m = -\cdot 253 + \cdot 0031 \text{ (T} - 13^{\text{h}} \cdot 10^{\text{m}})$.

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 May 16	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	B.J. 513 B.J. 517 B.J. 527 B.J. 522 B.J. 526 B.J. 526 B.J. 527 J. Bootis B.J. 534 \$\sigma\$ bootis B.J. 534 \$\sigma\$ bootis B.J. 543 \$\sigma\$ bootis \$\sigma\$ cootis B.J. 543 \$\sigma\$ bootis \$\sigma\$ bootis \$		N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	h. m. s. 13 50 25-53 57 07-30 14 04 21-70 06 19-32 11 34-95 12 59-59 22 17-81 26 05-73 27 -58-68 30 47-44 35 31-13 36 52-69 39 29-70 41 05-10 45 36-52 47 15-76 49 11-44		8. 25-72 07-59 22-23 19-58 35-15 00-15 18-01 06-22 59-01 47-76 31-66 52-83 29-98 36-95 15-95	07·29 19·30 34·87 59·95 58·84 31·42 52·57	28 28		h. m. s. 13 50 25 47 57 07 34 14 04 21 34 16 19 33 11 34 90 12 59 90 22 17 76 26 05 97 27 58 76 30 47 51 35 31 41 35 31 41 36 52 58 39 29 47 41 05 14 45 36 70 47 15 70 49 12 10
May 17	18 19 20 21 22 23 24 25 26 27 28 29 30	B.J. 456 B.J. 461 B.J. 467 B.J. 467 B.J. 470. 9 Can. Ven. 32 H. Camel. B.J. 485 43 H. Cephei. 43 H. Cephei. B.J. 484 L. Cephei. B.J. 494 23 Can. Ven. B.J. 494 a. Urs. Min. 81 Urs. Maj. 497 a. Urs. Min. B.J. 509 B.J. 527 B.J. 531 g. B.J. 537 B.J. 531 g. B.J. 535 or Bottis. B.J. 535 or Bottis.	L.C.		12 11 00 - 05 21 26 - 18 25 47 - 02 29 29 - 48 34 27 - 82 48 34 451 50 - 53 56 06 - 27 13 01 33 - 42 16 18 - 51 20 20 - 12 26 15 - 17 30 41 - 65 33 29 - 29 44 01 - 55 14 12 59 - 61 22 09 - 94 25 31 - 89 28 28 - 88 30 47 - 28		00-78 26-62 47-79 29-96 28-29 39-12 50-96 59-92 33-81 32-47 18-97 20-79 52-29 42-33 29-69 02-10 00-10 10-54 32-45	00-70 26-54 47-63 29-84 38-84 50-79 59-67 32-30 20-65 51-64 01-96 59-95 10-45	08122817251765		12 11 00-63 21 26-47 25 47-64 29 29-81 34 28-14 51 50-81 13 01 33-66 13 32-32 16 18-82 20 20-64 30 42-18 33 29-54 44 01-95 14 12 59-95
May 19	40 41 42 43 44 45 46 47	31 Comae B.J. 483 B.J. 485 43 H. Cephei 14 Can. Ven 15 Can. Ven B.J. 491 B.J. 492 19 Can. Ven B.J. 494		S	12 47 19 89 50 05 73 51 50 26 56 06 50 13 01 33 12 05 34 73 05 56 44 07 41 47 11 30 42 13 31 67	·004 (·522)	20·20 06·48 50·72 59·71 33·53 35·19 56·90 41·78	06-66 50-78 00-10 57-04 41-91	-06 -39 -14 -13		12 47 20 29 50 06 57 51 50 81 13 01 33 62 05 35 25 05 56 99 07 41 87 11 31 01 13 32 25

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See, of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation.
1910 ay 19	4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 8 19 20 1 22 2 23 22 24 25 26 27 7 28 9 30 1 31 2 33 34 35 6 36 7 38 9 40 1 42 43 44 44 45 6 47 48 49	23 Can, Ven. B. J. 497. B. J. 497. B. J. 497. B. J. 502. B. J. 502. B. J. 509. B. J. 519. B. J. 519. B. J. 519. B. J. 519. B. J. 527. J. 526. B. J. 527. B. J. 527. J. 526. B. J. 527. B. J. 528. B. J. 528. B. J. 529. B.	L.C.	20 to 10 to	L. m. 8 13 16 18 18 18 18 18 18 18		$\begin{array}{c} 48.48.\\ 29.42\\ 20.47\\ 2$	20-63 24 48 50 00 56 60 19 57 52 92 48 50 00 56 60 19 57 52 92 48 50 19 30 30 30 30 30 30 30 30 30 30 30 30 30	.09 .07 .13 .10 .01 .12 .21 .21 .21 .11 .11 .10 .10 .10 .10 .10 .10 .10 .1	-10	h. m. 43 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 13 16 18 81 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18

Clamp East.

Adopted $\Delta T + m = .099 + .0032 \text{ (T} - 14^{\text{h}} 45^{\text{m}}\text{)}.$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	8.	8.	8.	9.	8.	h. m. s.
		T) Y 000		0							
May 19	1 2	B.J. 626 B.J. 627		S	16 39 49-89 43 36-88	·004 (·522)		50-54 37-96	19		16 39 50·46 43 37·75
May 21	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 5 26 27 28 9 30 31 32 33 34 5 36 37 38 39	1 Can. Ven. BJ. 489. Bradley 1672. BJ. 480. Bradley 1672. BJ. 480. BJ. 580.	L.C.	N a a a a a a a a a a a a a a a a a a a	12 10 16-59 14 41-52 14 41-52 14 41-52 14 41-52 12 25-72 14 41-52 12 25-72 12 25-73 13 02 25-44 14 02 05-75 15 06-57 16 06-57 16 06-57 17 06-57 17 06-57 18		38: 22624 56: 93566 95 96: 96: 96: 96: 96: 96: 96: 96: 96: 96:	4 47 54 29 -79 4 29 -79 4 38 -28 -8 4 19 -8 4 19 -9 -9 4 19 -9 5 19 -9	31 1-12 1-12 1-12 1-12 1-12 1-12 1-12 1-	-26	12 10 17 73 11 13 85 72 12 12 12 12 12 12 12 12 12 12 12 12 12
May 26	47	B.J. 483 B.J. 485 43 H. Cephei.		N u	12 50 05·07 51 49·56 56 05·82	(-414	49.87		-83		1 12 50 06-49 51 50-68

From May 19 Clamp East ; from May 26 Clamp West. 1,2. Adopted $\Delta T + m = -089 + 0032 \; (T - 14^b + 45^m),$ 3–45. Adopted $\Delta T + m = -254 + -0032 \; (T - 13^b - 25^m),$ 46–48. Adopted $\Delta T + m = -815 + \cdot 0033 \; (T - 14^b - 45^m),$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	s.	s.	8.	8.	8.	h. m. s.
May 26	1	14 Can. Ven		N	13 01 32 44	014				-81	13 01 33 - 54
	2 3	15 Can. Ven		"	05 34 03	(.414)	34-35	56-96	-84		05 35·16 05 56·93
		B.J. 491 B.J. 494		44	05 55·80 13 31·04		31.38		-84		13 32 - 19
		23 Can. Ven		а	16 17 - 63		17.97				16 18.78
		B.J. 507		64 44	42 59 58		59.71	00.53	-82		43 00 - 52
		B.J. 509 B.J. 513		4	44 00 · 54 50 24 · 41		$01.01 \\ 24.55$	01.87	-87		44 01·82 50 25·36
		B.J. 517		44	57 06-27		C6.48		-79		57 07 29
	10	9 H. Boötis		66	14 04 20 - 73		21.12				14 04 21 93
	11	B.J. 522		44	06 18-27		18.46		-83		06 19 27
	13	B.J. 526 B.J. 527		46	11 33·82 12 58·57		33·97 58·99		-89		11 34·78 12 59·80
	14	204 B. Boötis.		44	26 04-80		05.16				26 05.97
	15	B.J. 534		er er	27 57 - 74		57.98	58.83	-85		27 58-79
		B.J. 535		46	28 28-09		28.40		-78		28 29 21
		σ Boötis B.J. 540		44	30 46·45 35 30·12		46.68 30.51		-88		30 47 · 49 35 31 · 32
		B.J. 543		41	36 51.70		51.80				36 52-61
	20	31 Boötis		ee	39 28 - 75		$28 \cdot 95$				39 29 - 76
	21 22	€ Boötis		а	41 04 03					-82	41 05·05 45 36·63
		295 B. Boötis ξ Boötis		66	45 35.50 47 14.82		35.81			-82	47 15.79
	24	B.J. 549		ш	49 10.66		11.35	12.18			49 12-17
		B.J. 555		66	58 34.18		$34 \cdot 52$				58 35-34
	26 27	B.J. 583		66	15 42 02.72 44 42.06		$02 \cdot 84$ $42 \cdot 20$		·83		15 42 03 · 66 44 43 · 02
	28	χ Herculis		64	49 34.75		35-11				49 35 93
	29	B.J. 591		44	52 18.54		18-66	19-41	-75		52 19 48
	30	B.J. 593		46 46	53 52 49		52.69		-76		53 53 51
	31	B.J. 595 r Herculis		44	55 40.41 57 12.37		40.98				55 41·80 57 13·33
		B.J. 598		44	16 00 13.45		14-11	14.99			16 00 14.93
	34	B.J. 614		4	22 28.40			29.84			22 29 80
	35	B.J. 621		"	31 13.03		13.39				31 14 21
	36	B.J. 626 B.J. 627		α	39 49.42 43 36.47		37.09	28.02	-87		39 50·56 43 37·91
	38	53 Herculis		α	49 34.08		34.33				49 35 15
	39	€ Urs. Min		66	55 15.12			19-19			
May 27	40	σ Boötis		s	14 30 46 - 39	-·011	46-65			-83	14 30 47 48
, -,	41	B.J. 540		44	35 30 - 11	(-422)	30.55	31.38	-83		35 31 - 38
	42	B.J. 543		44 44	36 51-65			$52 \cdot 59$			36 52 62
	43	34 Boötis ← Boötis		44	39 28 67 41 04 06		28-91				39 29·74 41 05·13
		295 B. Boötis		44	45 35-46		35.81				45 36 64
	46	ξ Boötis		ee	47 14.71		14.88				47 15.71
	47	B.J. 549		а	49 10 64		11.30	$12 \cdot 17$			49 12-13
	48 49	B.J. 551		a	51 58·92 58 34·14		59.06	59.90			51 59·89 58 35·35
	49	D.J. 000			08 34-14		34.02	. 50 - 39	-8/		90 99-35

Clamp West. 1-39. Adopted $\Delta T + m = \cdot 815 + \cdot 0033$ (T-14 h 45m). 40-49. Adopted $\Delta T + m = \cdot 836 + \cdot 0033$ (T-15 h 55m).

TABLE III.
REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	Coll. (Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910				Т	h. m. s.	s.	8.	s.	8.	8.	h. m. s.
May 27	2 3 4 4 5 6 6 7 8 9 10 111 12 13 14 15 16 17 18 19 20 21 12 22 22 23 24 25 26 27 28 29 9 30 31 32 33 34 35 6 37 38 39 40 41 42 43 44	Bodis C Bodi	L.C.	(7) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15 00 50 -48 4		29.79 29.79	31.19 54.34 07.39 08.91 43.86 19.88 19.42 37.74 59.58 19.42 59.48 19.42 59.48 14.99 19.42 43.34 14.19 19.88 13.90 66 11.91 18.18 13.90 66 19.18 13.90 66 23.26 26.23 26 26.23	- 87 - 81 - 87 - 88 - 78 - 84 - 97 - 91 - 80 - 85 - 76 - 76 	-84	15 00 51-71 03 22-60 11 54-31 19 31-01 21 07-35 22 58-39 24 08-93 27 43-82 28 35-64 29 19-83 30 54-47 34 37-73 36 01-27

Clamp West.

Adopted $\Delta T + m = \cdot 836 + \cdot 0033 \ (T - 15 \, ^b \ 55^m).$ 26. Observed facing north.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

			Time of	COLL.	ransit	of	ent	m m	App. R.A. from
DATE B. OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910			h. m. s.	8.	8.	s.	8.	8.	h. m. s.
May 28 1 Bradley 1072 2 B.1, 461 3 15 Comme. 4 15 M.4 4 15 M.4	L.C.	20 00 00 00 00 00 00 00 00 00 00 00 00 0	12 14 38-30 4 21 225-76-76 22 21 225-76-76 22 21 225-76-76 22 21 225-76-76 22 21 225-76-76 22 21 225-76-76 22 21 21 21 21 21 21 21 21 21 21 21 21 21 2	002 (-432)	$\begin{array}{c} 25.49 \\ \pm 0.51 \\ \pm 0.51$	47 36 29 69 37 19 50 68 62 37 19 50 68 62 37 56 94 41 85 32 20 04 21 48 43 00 53 48 55 9 87 10 37 58 82 29 17 31 38 52 59	.91 .92 .93 .94 .95 .96 .96 .97 .97 .97 .97 .97 .97 .97 .97 .97 .97		12 21 26 39 22 37 49 23 47 49 30 23 25 53 30 23 25 53 30 23 25 53 30 33 25 53 30 33 25 53 30 35 51 30 74 18 53 31 32 44 31 00 55 74 31 01 32 44 34 00 55 74 35 10 55 75 36 75 75 37 75 75 38 75 75 75 38 75 75 75 39 75 75 30 75 75

Clamp West.

Adopted $\Delta T + m = .904 + .0033 \text{ (T} - 14^{h} 10^{m}).$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	s.	s.	8.	8.	8.	h. m. s.
May 28	2 3 4 5 6 7 8 9	B.J. 580. § Cor. Bor. 4 Serpentis. B.J. 581 B.J. 583 B.J. 584 X Herculis. B.J. 593 B.J. 593 B.J. 595 r Herculis.			15 34 36·42 36 00·05 37 32·95 38 58·42 42 02·59 44 41·93 49 34·69 52 18·34 53 52·38 55 40·37 57 12·31		00·37 33·12 58·65 02·72 42·08 35·09 18·48 52·61 40·99 12·46	59 · 59 03 · 69 43 · 00 19 · 43 53 · 47 41 · 87	-94 -97 -92 -95 -86		15 34 37·70 36 01·28 37 34·03 38 59·56 42 03·63 48 42·99 49 36·00 52 19·39 53 53·52 55 41·90 57 13·37
June 3	14 15 16 17 18 19 20 21 22 23 34 25 26 36 37 38 38 40 41 42 43 44 45	322 H. Camel. B.J. 485. 43 H. Cephel. 11 Can. Ven. 43 H. Cephel. 11 Can. Ven. 12 Can. Ven. B.J. 491. B.J. 491. B.J. 491. B.J. 492. B.J. 492. B.J. 492. B.J. 492. B.J. 493. B.J. 492. B.J. 493. B.J. 593. B.J.	L.C.		12 48 31-01 51 48-55 56 07-04 18 10 18 18-75 56 07-04 18 10 18 17-05 18 11 12 0-02 18 11 12 0-02 18 11 12 0-02 18 18 18 18 18 18 18 18 18 18 18 18 18		$\begin{array}{c} 49:22:00\\ 10:97\\ 20:10\\$	50.60 03.87 56.87 41.80 32.13 20.36 04.99 48.37 00.1.76 25.38 07.22 34.83 59.81 10.29 58.80 11.20 18.50 19.90 10.30	1.40 1.40 1.41 1.42 1.44 1.40 1.49 1.42 1.43 1.41 1.40 1.41 1.41 1.41	1-41	12 51 50 62 13 01 33 50 50 62 13 01 33 50 50 65 87 70 41 75 82 50 60 55 87 70 41 75 80 50 50 50 50 50 50 50 50 50 50 50 50 50

Clamp West. 1–11. Adopted $\Delta T + m = \cdot 904 + \cdot 0033 \text{ (T} - 14^{\text{h}} \cdot 10^{\text{m}})$. 12-49. Adopted $\Delta T + m = 1 \cdot 408 + \cdot 0034 \text{ (T} - 14^{\text{h}} \cdot 25^{\text{m}})$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	Reference No.	Object	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Trans Corrected	R. A. of Known Star	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	8.	s.	s.	8.	s.	h. m. s.
June 3	19 20 21 22	B.J. 563 v Cor. Bor. B.J. 568. B.J. 572. B.J. 573. v Bootis B.J. 575. v Bootis B.J. 576. B.J. 576. B.J. 576. B.J. 578. B.J. 580. v Cor. Bor. v Serpentis B.J. 581. B.J. 583. B.J. 583. B.J. 584. v Herculis B.J. 596. v Herculis B.J. 598. v Herculis B.J. 598. v Herculis B.J. 598. v Herculis B.J. 598. v Herculis B.J. 598. v Herculis B.J. 598. v Cor. Bor. v Cor. Bor.			15 11 52 61 19 23 34 22 55 31 22 55 31 24 67 22 77 24 66 29 18 25 35 34 35 85 34 35 85 34 35 85 34 35 85 37 32 42 38 42 42 44 37 85 37 11 84 49 37 85 40 4	(-456)	52-92 29-61 06-03 56-99 07-48 42-46 34-32 18-44 53-07 59-85 32-59 52-59 34-50 02-31 41-59 34-50 12-00 12-00 13-46 901-99 41-37	54-34 07-39 58-47 08-92 43-86 19-89 54-43 37-75 59-60 03-72 43-03 19-46 53-49 41-86	1-36 1-44 1-40 1-45 1-36 1-48 1-40 1-41 1-44 1-45 1-37		15 11 54 33 19 31 02 21 07 44 22 26 8-49 27 08-89 27 08-89 27 08-87 28 35 73 29 10-85 30 51-48 36 01-26 38 59-61 42 03-72 44 43-00 49 35-91 52 19-42 53 35-33 55 41-81 16 00 14-87 00 42-78
June 4	26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46 47 48	23 Can Ven. BJ. 487. a Urs. Min. BJ. 592. BJ. 592. 25 Can Ven. BJ. 509. BJ. 509. BJ. 507. BJ. 509. BJ. 513. BJ. 513. BJ. 513. BJ. 513. BJ. 513. BJ. 522. BJ. 522. BJ. 523. BJ. 534. BJ. 534. BJ. 534. BJ. 534. BJ. 540. BJ. 543. 34 Boôtis. 255 B. Boôtis. 25 B. Boôtis. 25 B. B. 53.			13 16 16-71 20 18-19 20 18-19 20 18-19 20 21-20 20 22-20	(-480)	18 · 82 02 · 08 46 · 92 27 · 93 59 · 07 00 · 22 23 · 94 05 · 77 20 · 32 17 · 75 33 · 47 58 · 32 08 · 76 04 · 49 57 · 37 45 · 98 29 · 83 03 · 66 35 · 06 14 · 24 10 · 61	20-34 05-99 48-36 00-49 01-75 25-38 07-21 19-25 34-83 59-80 10-28 58-80 11-38 52-58	3.91 1.44 1.42 1.44 1.44 1.50 1.36		13-16 18-58 20 20-52 20 38-37 33 29-38 43 20-52 44 01-67 55 20 30-57 77-22 10-11 40 421-77 22 10-21 22 10-21 23 35-82 35 36-35-36 46 31-30 39 29-78 47 36-50 49 13-50 49 13-50 49 13-50 49 13-50 49 13-50 49 13-50 49 13-50

Clamp West. 1-24. Adopted $\Delta T + m = 1 \cdot 408 + \cdot 0034 \text{ (T} - 14^{h} \cdot 25^{m})$. 25-49. Adopted $\Delta T + m = 1 \cdot 454 + \cdot 0035 \text{ (T} - 15^{h} \cdot 20^{m})$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	ference No.	Овјест	Notes	Observer	Time of Observed Transit	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	Re			ő		Dev.)					
1910 June 4	6 7 8 9 9 10 11 12 13 14 14 15 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 35 36 37 38 39	B.J. 557. G. Hootis 228. B.J. 568. B.J. 572. B.J. 572. B.J. 572. B.J. 572. B.J. 573. B.J. 573. B.J. 574. B	L.C.	20 a a a a a a a a a a a a a a a a a a a	h. m. s.		$\begin{array}{c} 21\cdot 24\cdot 25\cdot 29\cdot 99\cdot 26\cdot 98\cdot 26\cdot 98\cdot 26\cdot 98\cdot 26\cdot 98\cdot 26\cdot 98\cdot 26\cdot 99\cdot 26\cdot 99\cdot 57\cdot 99\cdot 57\cdot 99\cdot 57\cdot 99\cdot 57\cdot 99\cdot 57\cdot 99\cdot 49\cdot 29\cdot 34\cdot 29\cdot 34\cdot 29\cdot 33\cdot 29\cdot 29\cdot 33\cdot 29\cdot 29\cdot 33\cdot 29\cdot 29\cdot 33\cdot 29\cdot 29\cdot 33\cdot 33\cdot 29\cdot 29\cdot 33\cdot 33\cdot 29\cdot 29\cdot 33\cdot 33\cdot 29\cdot 29\cdot 33\cdot 29\cdot 29\cdot 29\cdot 33\cdot 29\cdot 29\cdot 29\cdot 29\cdot 29\cdot 29\cdot 29\cdot 29\cdot 29\cdot 29$	29.38 54.34 07.39 58.46 07.39 58.46 43.86 54.44 37.74 59.61 19.46 53.50 14.98 43.96 43.96 43.96 14.98 14.98 14.98	2-40 1-35 1-60 1-43 1-49 1-47 1-48 1-48 1-50 1-57 1-49 1-57 1-43 1-53 1-56 1-45 1-45 1-42 1-45	1-46	b. m. s. 15 00 37-14 15 00 37-14 15 00 37-14 19 30-95 19
June 7	44 45 46 47 48	B.J. 643 w Herculis ρ Herculis β Herculis B.J. 653 B.J. 663 B.J. 667 87 Herculis z Herculis 168 H ³ Herc.		S	17 11 54-62 17 17-36 20 34-53 28 24-06 36 55-53 42 56-00 45 10-03 47 42-09 49 08-91		17 · 66 34 · 89 24 · 58 55 · 95 56 · 25 10 · 26 42 · 55	26-37 57-63 57-97	1.77	1.71	17 11 56 68 17 19 37 20 36 60 28 26 29 36 57 66 42 57 96 45 11 97 47 44 26 49 11 01

D

Jun

Jun

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	ence D.	Овјест	Notes	rver	Time of Observed Transit	COLL.	See, of Transit Corrected	R. A. of lown Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	Reference No.			Observer	Tausit	(Polar Dev.)	See. Col	R. A. Known	d. △	A 4	vacion
910					h. m. s.	8.	S.	S.	s.	8.	h. m. s.
ne 7	1	B.J. 671		S	17 51 58 55	021	59.17	00.95		1.71	17 52 00-88
		B.J. 672		4	53 09.84	$(\cdot 457)$	10.20	11.91	1.71		53 11.91
	3	B.J. 676		6	54 31-03 18 12 50-67		31.54				54 33 25
		446 B. Herc		4	18 23-31		51.09 23.52				18 12 52·80 18 25·23
	6	B. J. 690		46	19 51 - 59		51.78				19 53 49
	7	μ Lyrae		44	21 15-69		16·08				21 17 - 79
	8 9	B.J. 694		4	22 35·91 33 53·26		36.58				22 38·29 33 55·35
		B.J. 699 51 H. Cephei	L.C.	4	58 27 - 17		18.08		1·70 2·21	1.72	33 55.35
	11	B.J. 716	25.01	44	19 01 16 14		16.27	17.99	1.72		19 01 17 99
		B.J. 719		44	04 05 03		$05 \cdot 37$	$07 \cdot 11$	1.74		04 07 - 09
		λ Urs. Min 159 B. Lyrae		-	11 23 55 15 57 19		48.26	51.25	2.99		15 59-31
		b Aquilae		44	20 40-42		40.54				20 42 - 26
	16	21 B. Vulp		4	21 41.86		42.08				21 43 80
		4 Cygni		ec ec	22 54 - 16		$54 \cdot 50$				22 56-22
	18	a Vulp B.J. 733		66	24 57 · 22 27 25 · 89						24 59·16 27 28·12
		«Sagittae		ш	33 12.55		12.69	20-10			
	21	14 Cygni		ш	36 30-18		30.61				36 32-33
ne 8		43 H. Cephei.	L.C.	N	12 56 08 34	012				1.81	10.01.00.11
		14 Can. Ven 15 Can. Ven		4	13 01 31·30 05 32·91	$(\cdot 459)$	31.63				13 01 33 44
	25	B.J. 491		4	05 54 61		$33 \cdot 27 \\ 54 \cdot 97$	56.81	1.84		05 35·08 05 56·78
	26	B.J. 492		44	07 39-71		39.95	41.75	1.80		07 41.76
	27	19 Can. Ven		4	11 28 - 58		$28 \cdot 97$				11 30.78
	28 29	B.J. 494		4	13 29-83 16 16-41		30.21	32.06	1.85		13 32·02 16 18·60
	30	B.J. 497		a	20 17 - 79		18.44	20-26			20 20 25
	31	a Urs. Min	L.C.	а	26 28-97		07.90	10.07	2.17		
	32	B.J. 502		ш	30 46-22		46.56		1.76		30 48-37
		25 Can. Ven B.J. 507		4	33 27 · 23 42 58 · 48		27.56 58.63	00.46	1.83		33 29·37 43 00·44
	35	B.J. 509		4	43 59 38		59.90				44 01 71
	36	B.J. 513		a a	50 23.38		23.54	$25 \cdot 35$	1.81		50 25.35
	37	B.J. 517		e e	57 05·10 14 04 19·60		05.33				57 07 · 14 14 04 21 · 84
	39	B.J. 522		4	06 17 - 16		20·03 17·37		1.85		06 19-18
	40	B.J. 526		Œ	11 32-87		33.04		1.77		11 34-85
		B.J. 527		u u	12 57 - 45		$57 \cdot 91$				12 59.72
		B.J. 531 204 B. Boötis		a a	22 07·82 26 03·78		08·39 04·19	10.23			22 10·20 26 06·00
		B.J. 534		a	27 56.71		56.98		1.79		27 58-79
	45	B.J. 535		4	28 26 - 96		27.32	29-10	1.78		28 29 - 13
	46	σ Boötis		4	30 45 28		45.54				30 47 - 35
	47 48	B.J. 540		4	35 29·11 36 50·63		29·55 50·74	31-30	1.75		35 31 · 36 36 52 · 55
		34 Boötis		a	39 27 - 74		27.96				39 29-77
							-				

Clamp West. 1 – 21. Adopted $\Delta T + m = 1 \cdot 713 + \cdot 0035$ (T – $18^{\,\mathrm{h}}$ 10^{m}). 22 - 49. Adopted $\Delta T + m = 1 \cdot 811 + \cdot 0035$ (T – $14^{\,\mathrm{h}}$ 30^{m}).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	renee o.	Object	Notes	rver	Time of Observed Transit	COLL.	See, of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	Reference No.			Observer		(Polar Dev.)	See.	Kno	A ₁	40	
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
June 8	2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Bodis.		N	14 41 03-06 45 44 61 44 13 42 44 61 44 14 15 15 7-98 65 83 3-67 15 00 33-64 61 15 15 15 15 15 15 15 15 15 15 15 15 15		34 · 81 13 · 98 35 · 20 · 76 20 · 55 54 · 55 54 · 55 55 · 57 32 · 22 59 · 51 32 · 96 33 · 96 34 · 16 34 · 16 34 · 16 34 · 16 34 · 16 34 · 16 34 · 16 36 · 17 37 · 18 37 · 18 38 · 18 39 · 18 31 · 18	12:00 59:91 35:34 37:08 27:88 54:33 07:38 54:33 55:44 43:85 54:42 59:61 10:37:74 43:05 51:49 61:	1.83 1.89 1.85 1.82 1.79 1.75 1.86 1.80	1-82	14 41 05-10 45 36-52 47 15-79 49 12-02 51 59-91 58 35-27 15 00 37-68 03 7-68 04 05 7-68 05 7-68 06 7-68 06 7-68 06 7-68 07 07 08 7-78
June 9	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	B.J. 527 B.J. 531 g Boötis B.J. 534 σ Boötis	L.C.	S & & & & & & & & & & & & & & & & & & &	13 16 16-25 20 17-65 26 30-57 30 46-03 33 27-00 42 58-36 43 59-12 50 23-25 57 04-98 14 04 19-38 06 17-04 11 32-77 112 57-37 122 07-67 25 29-66 27 56-51 30 45-16 35 28-86	(-462	08-66 46-40 27-44 58-53 59-60 23-44 05-2-19-83 17-23 32-98 57-80 08-21 56-80 45-44	3 20-23 5 20-23 5 11-01 0 48-31 2 2 2 2 2 3 4 07-18 3 3 3 4 07-18 5 25-35 4 07-18 5 34-81 5 34-81 7 19-22 7 19-22 7 19-23 8 31-29 8 31-29	2-36 1-91 1-94 1-96 1-99 1-86		13 16 18-60 20 20-19 30 48-34 33 29-36 43 00-46 44 01-54 50 25-39 57 07-18 14 04 21-77 06 19-21 11 34-99 12 59-74 22 10-14 25 32-11 27 58-74 30 47-37 35 31-26

Clamp West. 1-31. Adopted $\Delta T + m = 1.811 + .0035$ (T-14^b 30^m). 32-49. Adopted $\Delta T + m = 1.942 + .0035$ (T-14^b 40^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

COLL.

Dat	Reference	No.	Object	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Tra Correcte	R. A. ol Known St	Apparen $\Delta T + m$	Adoptec $\Delta T + m$	from Obser- vation
1910)					h. m. s.	s.	8.	8.	8.	8.	h. m. s.
June	9	2 3 4 5 6 7 8 9 10 111 213 114 115 116 117 118 119 120 221 222 23 24 225 227 228 230 33 33 33 33 33 33 34	B.J. 543. 34 Bootis. 34 Bootis. 34 Bootis. 38 J. 565. 38 J. 567. 3			1. m. b. 36 30-45 38 27 51 14 36 50-45 38 27 51 14 36 50-45 38 27 51 14 51 30 50 45 15 15 15 15 15 15 15 15 15 15 15 15 15	-·021 (·462)	$\begin{array}{c} 50 \cdot 59 \\ 27 \cdot 76 \\ 34 \cdot 69 \\ 34 \cdot 69 \\ 34 \cdot 69 \\ 34 \cdot 69 \\ 33 \cdot 38 \cdot 69 \\ 20 \cdot 62 \\ 24 \cdot 47 \\ 20 \cdot 62 \\ 24 \cdot 47 \\ 33 \cdot 38 \cdot 52 \cdot 38 \\ 29 \cdot 08 \\ 56 \cdot 33 \cdot 36 \cdot 64 \\ 33 \cdot 76 \\ 6 \cdot 33 \\ 32 \cdot 00 \\ 6 \cdot 93 \\ 32 \cdot 00 \\ 6 \cdot 93 \\ 32 \cdot 00 \\ 11 \cdot 80 \\ 11 \cdot 47 \\ 11 \cdot 51 \cdot 52 \\ 39 \cdot 89 \\ 11 \cdot 47 \\ 11 \cdot 47 \\ 12 \cdot 17 \\ 13 \cdot 18 \\ 11 \cdot 47 \\ 14 \cdot 11 \\ 14 \cdot 11 \\ 14 \cdot 11 \\ 14 \cdot 11 \\ 15 \cdot 51 \cdot 52 \\ 25 \cdot 61 \\ 39 \cdot 89 \\ 11 \cdot 47 \\ 42 \cdot 17 \\ 43 \cdot 17 \\ 43 \cdot 17 \\ 44 \cdot 17$	52 - 58 59 - 91 35 - 34 27 - 54 - 33 07 - 38 58 - 41 37 - 74 37 - 74 38 - 53 - 51 53 - 51 19 - 48 53 - 51 14 - 96 54 - 69 54 - 69 54 - 69 54 - 69 54 - 69 55 - 61 56 - 61 57 - 61 58	1-99 1-96 1-96 1-96 1-95 1-95 1-97 1-94 1-92 1-97 1-94 1-94	1.95	14 36 52-53 39 29-70 41 05-06 45 36-63 47 15-71 49 12-00 51 59-89 58 35-32 15 00 51-67 03 22-56 11 54-32 19 31-02 21 07-37 22 58-33 24 08-87 27 43-82 28 35-70 30 54-44
June	10	37 38 39 40 41 42 43 44 45 46 47	B.J. 608. B.J. 527.		N a a a a a a a a a	17 02·00 14 12 57·08 22 15·36 26 03·26 27 56·33 28 26·54 30 44·95 35 28·63 36 50·36 39 27·31 41 02·74 45 34·04 47 13·39 49 08·97	(-486)	57-60 15-58 03-71 56-62 26-94 45-23 29-12 50-47 27-56 02-99 34-43 13-56	59·73 58·76 29·09 31·28 52·57	2·14 2·15 2·16	2.14	17 04·38 14 12 59·74 22 17·67 26 05·85 27 58·76 28 29·08 30 47·87 35 31·26 36 52·61 39 29·70 41 06·13 45 36·57 47 15·70 49 11·94

From June 9 Clamp West; from June 10 Clamp East. 1—36. Adopted $\Delta T + m = 1 \cdot 942 + \cdot 0035 \text{ (T} - 14^{\text{h}} 40^{\text{m}}).$ 37—49. Adopted $\Delta T + m = 2 \cdot 146 + \cdot 0036 \text{ (T} - 15^{\text{h}} 10^{\text{m}}).$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	Coll.	Sec. of Transit Corrected R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	s.	8. 3.	s.	8.	h. m. s.
June 10	2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 22 23 24 4 25 6 27	B.J. 551 B.J. 555 B.J. 557 C Bodis B.J. 563 B.J. 563 B.J. 563 B.J. 563 B.J. 563 B.J. 573 B.J. 573 B.J. 573 B.J. 573 B.J. 575 B.J. 573 C Cor. Bor. 85eppents B.J. 578 B.J. 578		N 44 44 44 44 44 44 44 44 44 44 44 44 44	14 51 57 62 32 79 15 00 34 68 32 79 15 00 34 68 32 79 15 00 34 68 32 79 16 50 34 68 32 79 16 50 34 68 32 79 16 50 34 68 32 79 16 50 34 68 32 74 15 32 74 15 32 74 15 32 74 15 32 75 74 15 32 75 74 15 32 75 75 75 75 75 75 75 75 75 75 75 75 75	-003 (-486)	31-86 57-44 59-61 01-50 03-74 40-88 43-05 33-76 17-31 19-48 51-38 53-51 39-58 41-83 11-32 12-69 14-95	2·11 2·19 2·13 2·17 2·24 2·17 2·17 2·18		14 51 59 88 15 03 57 68 06 22 58 07 03 10 57 68 22 10 73 34 22 10 73 34 24 08 89 25 35 80 27 34 40 37 34 40 37 34 40 37 34 40 37 34 40 37 34 40 37 34 40 38 35 41 38 36 41 38 38 41 38 36 41
June 13	30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	B J. 497. a Urs. Min B J. 502. B J. 507. B J. 507. B J. 509. B J. 513 B J. 513 B J. 513 B J. 525. B J. 525. B J. 525. B J. 525. B J. 528. B J. 534. B J. 534. B J. 535. B J. 534. B J. 534. B J. 534. B J. 534. B J. 535. c Bootis. B J. 534. B J. 535. c Bootis. B J. 535. c Bootis. B J. 534. B J. 535. c Bootis. B J. 535. c Bootis. B J. 536. B J. 53	L.C.	Xaaaaa SXa SXSXa SXaa a S	13 20 17-22 26 31-96 30 45-67 42 57-94 43 58-77 50 22-91 57 04-18-92 06 16-8 11 32-35 12 58-00 22 07-29 25 29-21 27 56-17 28 26-41 30 44-81 35 28-42 36 50-22 39 27-14 41 02-48 41 33-89	·002 (·503) (·464)*	$\begin{array}{c} 17.95\ 20\cdot 14\\ 69\cdot 75\ 14\cdot 42\\ 46\cdot 06\ 48\cdot 25\\ 58\cdot 10\ 40\cdot 40\\ 23\cdot 08\cdot 25\cdot 32\\ 01\cdot 60\cdot 23\cdot 08\cdot 25\cdot 32\\ 01\cdot 89\cdot 07\cdot 19\cdot 19\\ 16\cdot 92\ 19\cdot 19\\ 32\cdot 53\cdot 34\cdot 78\\ 58\cdot 55\cdot 60\cdot 82\\ 29\cdot 74\\ 20\cdot 74\\ 20\cdot 74\\ 20\cdot 81\cdot 29\cdot 231\cdot 24\\ 50\cdot 34\cdot 52\cdot 56\\ 37\cdot 40\\ 20\cdot 28\cdot 7\\ 34\cdot 29\\ 31\cdot 24\\ 34\cdot 29\\ 31\cdot 24\\ 34\cdot 29\\ 34\cdot $	2·32 2·22	2·25 2·28*	13 20 20-20 30 48-31 43 00-35 44 01-61 50 25-33 57 07-11 14 04 21-69 06 19-17 11 34-78 13 00-83 22 10-19 25 32-02 27 58-72 28 29-06 30 47-39 35 31-17 36 52-59 39 29-65 41 05-52 45 36-57

Clamp East.

Clamp Last. For polar deviation and adopted $\Delta T+m$ the unmarked values are for observations by N, those marked 'for observations by S. 1–28. Adopted $\Delta T+m=2\cdot1.46+0.036$ (T-15 $^{\rm h}$ 10 $^{\rm m}$). 29–49. Adopted $\Delta T+m$ for observations by N=2·233+0036 (T-15 $^{\rm h}$ 10 $^{\rm m}$); for observations by S=2·238+0.036 (T-15 $^{\rm h}$ 40 $^{\rm m}$).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

COLL.

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See. of Trans Corrected	R. A. of Known Star	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	8.	s.	Б.	8.	8.	h. m. s.
June 13	7 8 9 10 11 12 13 144 15 16 17 18 19 20 22 22 22 22 25 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42	E Bootis B.J. 549 B.J. 551 B.J. 552 B.J. 553 B.J. 555 B.J. 557 B.J. 557 B.J. 557 B.J. 557 B.J. 557 B.J. 571 B.J. 571 B.J. 571 B.J. 572 B.J. 573 B.J. 573 B.J. 573 B.J. 573 B.J. 574 B.J. 575 575 B.J. 575 B.J. 575 B.J. 575 575 575 B.J. 575	L.C.	N S N u u u S N	14 47 18-28 55 51 57 49 92 55 51 57 49 92 55 51 57 49 92 55 51 57 49 92 55 51 57 49 92 55 51 57 49 92 55 51 57 49 92 55 51 57 49 92 55 51 51 60 41 51 51 51 51 51 51 51 51 51 51 51 51 51	·002 (·503) (·464)*	$\begin{array}{c} 13\cdot 46\\ 09\cdot 71\\ 133\cdot 055\\ 7\cdot 61\\ 33\cdot 055\\ 7\cdot 61\\ 33\cdot 055\\ 7\cdot 61\\ 33\cdot 43\\ 33\cdot 43\\ 31\cdot 33\\ 33\cdot 43\\ 31\cdot 33\\ 33\cdot 43\\ 31\cdot 33\cdot 43\cdot 43\\ 31\cdot 33\cdot 43\cdot 43\\ 31\cdot 33\cdot 43\cdot 43\cdot 43\cdot 43\\ 31\cdot 23\cdot 44\cdot 43\cdot 43\cdot 43\\ 42\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\\ 42\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\\ 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\\ 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot 43\cdot$	11 - 90 59 - 90 35 - 31 26 - 34 37 - 06 58 - 34 43 - 82 19 - 88 54 - 43 37 - 72 19 - 88 54 - 43 37 - 72 19 - 49 53 - 51 14 - 91 14 - 91 14 - 91 14 - 27 50 - 72 50 - 72 50 - 81 50	2.29 2.25 2.23 2.91 2.28 2.28 2.28 2.22 2.31 2.32 2.22 2.31 2.32 2.22 2.32 2.3	2·25* 2·28* 2·26 2·28*	14 47 15-76 51 89-83 15 90-83 15 90-83 15 90-83 15 90-83 15 90-83 15 90-83 15 90-83 15 90-83 16 90-83 16 90-83 16 90-83 16 90-83 16 90-83 17 90-83 18 90-83
June 15	45 46 47 48	« Urs. Min « Urs. Min B.J. 502 B.J. 507 B.J. 509 B.J. 513 B.J. 526	L.C.	Saaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	55 12·72 13 26 33·25 30 45·39 42 57·74 43 58·56 50 22·64 14 11 32·11	·028 (·431)	12·14 45·79 57·98 59·08 22·84	18-85 48-23 48-23 00-42 01-56 25-31 34-77	2·55 4·08 2·44 2·49 2·47 2·45	2.48	13 30 48-27 43 00-41 44 01-56 50 25-33 14 11 34-81

Clamp East.

Champ pasts.

1-43. For polar deviation and adopted $\Delta T + m$ the unmarked values are for observations by N, those marked $^+$ for observations by S.

1-43. Adopted $\Delta T + m$ for observations by N=2-253+-0036 (T-15^h 10^m); for observations by S=2-252+0036 (T-15^h 459).

44-49. Adopted $\Delta T + m = 2.400 + 0.036$ (T-15^h 10^m).

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	e.				Time of	Coll.	ransit	Stars	ent	ted	App. R.A. from
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	8.	8.	8.	8-	h. m. s.
June 15	7 8 9 10 111 12 13 144 155 166 177 18 19 20 21 223 24 225 266 27 28 30 31	B.J. 531 B.J. 535 B.J. 540 B.J. 557 B.J. 558 B.J. 540 B.J. 558 B.J. 540 B.J. 558 B.J			14 22 07-08 12 25 15 11 12 25 15 11 12 12 12 15 15 11 12 15 12 15 15 11 12 15 15 11 12 15 15 11 12 15 15 15 15 15 15 15 15 15 15 15 15 15	-028 (-431)	$\begin{array}{c} 26\cdot 52\cdot 65\cdot 83\cdot 80\cdot 80\cdot 80\cdot 80\cdot 80\cdot 80\cdot 80\cdot 80\cdot 80\cdot 80$	58-73 58-73 51-86 51	2·52 2·57 2·46 2·50 2·50 2·56 2·50 2·52 2·48	2-50	14 22 10-14 27 58-72 28 29-10-19 27 58-72 28 29-10 19 29-
June 18	41 42 43 44 45	a Urs. Min 25 Can. Ven B.J. 507 B.J. 509 B.J. 513 B.J. 517 9 H. Boötis B.J. 522 B.J. 526 B.J. 528	L.C.	Nu u u u s Nu s	13 26 32·04 33 26·26 42 57·55 43 58·36 50 22·41 57 04·17 14 04 18·50 06 16·24 11 31·87 12 57·57	-·020 (·373) (·350)*	26.52 57.66	00.40 01.51 25.29 07.11 19.15 34.75	3·81 2·74 2·76 2·76 2·76 2·76	2·73 2·74 2·77*	13 33 29·25 43 00·39 44 01·50 50 25·27 57 07·09 14 04 21·62 06 19·15 11 34·73 13 00·71

From June 15 Clamp East; from June 18 Clamp West, 1–29. Adopted $\Delta T_{\rm c} = 2.0404-0.038$ (T -15^{3} Ire), 40–49. Grant of $\Delta T_{\rm c} = 2.0404-0.038$ (T -15^{3} Ire), 40–49. For polar deviation and adopted $\Delta T_{\rm c}^{2} = m$ the unmarked values are for observations by N, 40–49. Adopted $\Delta T_{\rm c}^{2} = m$ for observations by N =2.7740+.0037 (T -15^{3} Ire); for observations by S=2.772+.0037 (T -15^{3} 45°).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	60				Time of	Coll.	ransit	of	m m	m m	App. R.A.
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit.	(Polar Dev.)	Sec. of Transit Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	from Obser- vation
1910					h. m. s.	8.	s.	s.	s.	8.	h. m. s.
June 18	2 3 4 4 5 6 7 8 9 9 10 11 1 2 13 1 14 15 16 17 18 19 19 20 21 22 23 24 25 26 27 2 29 30 1 32 2 33 33 34 45 35 6 37 38 39 40 41 42 43 4 44 5 46 47 48 49	B.J. 531 g Boats g Boats g Boats g Boats g Boats g B.J. 550 g B.J. 5	L.C.	Z0Z 2 0Z 2 2 2 0Z 2 2 0Z 0Z 2 0 2 Z 2 2 0Z 0Z 2 2 2 2	14 22 06-08 77 32 40 41 14 72 62 63 63 63 63 63 63 63 63 63 63 63 63 63	(·373) (·350)*	$\begin{array}{c} 29\cdot 22\cdot 83\cdot 55\cdot 9775\cdot 64\cdot 55\cdot 9775\cdot 9$	58 71 29 01 31 18 52 54 11 80 75 88 87 37 03 37 03 37 03 37 03 37 03 37 03 37 03 37 03 37 03 37 03 37 03 19 86 54 42 37 69 60 03 74 43 05 54 42 37 69 60 04 37 14 27 50 73 50	2.70 2.74 2.80 2.80 2.77 2.76 3.53 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.7	2.77*	14 22 10-09 27 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 29 29 28 28 28 29 2

Clamp West.

Change in deviation and adopted $\Delta T + m$ the unmarked values are for observations by N, those marked *for observations by S.

Adopted $\Delta T + m$ for observations by N=2.740+.0037 (T-15*10*); for observations by S=2.772 +0.037 (T-15*40*).

3 GEORGE V., A. 1/13

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	90	0	V	i.	Time of	Coll.	Fransit	of Stars	rent F m	oted + m	App. R.A.
DATE	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	from Obser- vation
1910					h. m. s.	s.	s.	6.	8.	8.	h. m. s.
June 18	1 2	53 Herculis • Urs. Min		N _u	16 49 32·32 55 13·13	$020 \\ (.373)$	32·53 15·80	18-66	2.86	2·75 —	16 49 35 28
June 19	4 5 6 7 8 9 10 111 12 13 114 15 16 17 18 9 20 1 22 23 24 25 5 6 27 28 9 30 1 3 3 2 3 3 3 4 5 6 3 7 8 3 9 40 1 42 3 44 45 6 47 48	a Urs. Min. BJ. 502. 28 Can. Ven. BJ. 507. BJ. 509. BJ. 507. BJ. 509. BJ. 507. BJ. 509. BJ. 517. BJ. 509. BJ. 522. BJ. 523. BJ. 523. BJ. 524. BJ. 524. BJ. 525. BJ. 525. BJ. 525. BJ. 525. BJ. 525. BJ. 526. BJ. 526. BJ. 526. BJ. 527. BJ. 5		Sa None a son a none a n	13 26 33 st 1 32 60 33 st 1 32 60 35 st 50 45 60 31 32 60 35 st 50 45 60 31 42 57 32 52 52 52 52 52 52 52 52 52 52 52 52 52		57.51 (58.60) (22.43 : 04.23 (18.85 16.28 : 31.88 : 57.95 (19.25 : 26.14 : 44.52 (28.30 : 34.55 : 26.26 : 79.26 : 26.79 (19.25 : 26.79 : 26.79 (19.25 : 26.79 : 26.79 : 26.79 (19.25 : 26.79 : 26.79 : 26.79 (19.25 : 26.79 : 26.79 : 26.79 (19.25 : 26.79 : 26.79 : 26.79 : 26.79 (19.25 : 26.79 : 26	18-18 10-39	2.84 2.84 2.84 2.87 2.87 2.87 2.87 2.83 2.83 2.83 2.83 2.83 2.84 2.83 2.83 2.83 2.84 2.83 2.84 2.85 2.81 2.81 2.81 2.81 2.81 2.81 2.81 2.81	2.80*	13 30 48-18 33 20-19 33 20-19 34 20-19 34 20-19 44 014-17 44 012-164 45 12-1

Clamp West.

Clamp West.

1, 2. Adopted $\Delta T + m = 2.740 + .037$ (T -15^{5} 10^{6}).

3-49. For polar deviation and adopted $\Delta T + m$ the unmarked values are for observations by S, those marked 'for observations by N. 3-49. Adopted $\Delta T + m$ for observations by N -2.840 + .0037 (T -15^{5} 10^{6}); for observations by N -2.840 + .0037 (T -15^{5} 10^{6}); for observations by N -2.840 + .0037 (T -15^{5} 10^{6});

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	OBJECT	Notes	Observer	Time of Observed Transit	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Ref			Ops		(Polar Dev.)	Sec	Kn	٩.		vation
1910	,	D. I. 500		s	h. m. s.	8.	8.	8.	s.	s. 2.85	h. m. s.
June 19	2	B.J. 598		2	16 00 11 · 44 03 59 · 65	(.362)	59.77			2-85	16 00 14·81 04 02·62
	4	τ Cor. Bor Groom. 750	L.C.	N	05 39-69 07 47-18	(.374)*	$43 \cdot 05$	$46 \cdot 10$	3.05	2.80*	05 42-81
	5 6	σ ² Cor. Bor B.J. 608		S	11 17 · 39 17 01 · 22		01.53	$04 \cdot 37$			11 20 · 49 17 04 · 38
	7 8	ξ Cor. Bor 23 Herculis		N	18 34 · 29 19 28 · 21		28-43				18 37 37 19 31 23
	10	B.J. 613		S	21 14·60 22 26·45			29.81	2.82		21 17·55 22 29·74
		g Herculis B.J. 621		N	25 40·12 31 11·17		11.48	14 . 27	2.79		25 43·30 31 14·28
	14	42 Herculis		S	36 17·51 37.52·56		52.79				36 20·71 37 55·64
		B.J. 626		N	39 47 · 59 43 34 · 78			38-06			39 50·73 43 38·12
	17 18	B.J. 629 53 Herculis		S	47 57 · 86 49 32 · 18		$32 \cdot 41$	00-84			48 00·82 49 35·26
		€ Urs. Min			55 13-24		15.64		2.95		
June 25	21	B.J. 531 5 Urs. Min		S	14 22 06 · 53 27 41 · 83	-·020 (·417)	43.39			2.96	14 22 09·97 27 46·35
	22 23	σ Boötis B.D. 80-448		4	30 44 · 04 36 05 · 98		$44.29 \\ 08.19$				30 47·25 36 11·15
		295 B. Boötis B.J. 550		44	45 33·13 50 57·00						45 36-43 51 01-35 55 14-82
	26 27	Groom. 2283	rn	44	55 09·95 15 06 08·65			$21 \cdot 56$			55 14·82 15 11 54·29
	28	B.J. 563 11 Urs. Min		"	11 51·04 17 09·23		51.33 10.43	54-23	2.90		15 11 54 · 29 17 13 · 39
	30	B.J. 569 B.J. 571		ii	20 51 · 44 22 54 · 46		52 · 64 55 · 09	58-11			20 55-60 22 58-05
	32	B.J. 573		u	27 40·43 28 32·27		40.74 32.65	43.73	2.99		27 43·70 28 35·61
	34 35	B.J. 576 θ Urs. Min		ш	29 16·58 34 04·49				2.97		29 19-81 34 09-22
	36 37	B.J. 590 χ Herculis		u	47 15.67 49 32.56		$17 \cdot 50$				47 20 · 46 49 35 · 85
	38	B.J. 595 B.J. 598		44	55 38·22 16 00 11·02		38.75	41.66		2.97	
	40 41	Groom. 750 B.J. 606	L.C.,rn	64	07 49-21 13 22-93		44·57 24·49	$47 \cdot 29$	2.72		
	42	Groom. 2337 B.J. 612		4	16 01 · 78 20 07 · 71		$03 \cdot 09$				13 27·46 16 06·06
	44 45	B.J. 614 g Herculis	r	4	22 26·20 25 39·93		26-82	29.74			20 12·42 22 29·79
	46 47	Groom. 2372		44	30 44 46		$46 \cdot 49$				25 43·28 30 49·46
	48	B.D. 72·734 B.J. 623			32 50-68 34 31-04		51.93 32.81				32 54·90 34 35·78
	49	B.J. 626			39 47-42		47.77	50.72	2.95		39 50.74

Clamp West.

Comp. 19.
 For polar deviation and adopted ΔT+m the unmarked values are for observations by S. those marked *for observations by N.
 1-19.
 Adopted ΔT+m for observations by S=2-843+-0037 (T-15^h 10^m); for observations by N=2*788+0037 (T-15^h 40^m).
 20-49.
 Adopted ΔT+m=2*-060+0039 (T-16^h 10^m).

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	nce	Овјест	Notes	rer	Time of Observed	Coll.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.			Observer	Transit	(Polar Dev.)	Sec. o	R. Knov	Αρ	PA DA	vatior
1910					h. m. s.	8.	8.	8.		8.	h. m. s.
fune 25	2 3 4 5 6 7 8 9 10 11 12	B.D. 79·511. Groom 2391. e Urs. Min. Groom 2411. Groom 2427. B.J. 643. e Herculis. e Herculis. e Herculis. for Her	rn r L.C.,rn	S	16 43 59 97 47 06 75 55 12 33 58 03 91 17 04 30 05 11 53 48 14 32 86 17 16 32 20 33 51 24 20 03 26 27 34 28 22 97 30 23 25 32 50 65 36 54 27	-·020 (·417)	15·35 05·20 31·53 53·74 33·19 16·60 33·84 20·44 29·60 23·45 23·78 46·18	56·83 23·46 26·42 26·85 49·05	2.79	2.97	16 44 05 20 47 11 48 58 08-11 17 04 34-51 11 56-7 14 36 11 17 19-5 20 36-8 24 23-4 26 32-5 28 26-4 30 26-7
June 28	16 17 18 19 20 21 22 23 24 25 26 27 28	g Bootis in 5 Urs. Min. 5 Urs.	r L.C.,nr r		14 25 27-90 27 40-71 30 43-61 43 40 4		28-54 42-80 44-01 33-12 07-60 33-12 05-57-94 11-31 31-32 50-96 55-12 40-39 16-53 17-20 16-53 11-37 11-31 11-37 11-31 11-	35. 15. 50. 54. 21. 58. 05. 44. 61. 14. 69. 47. 81. 29. 71. 17. 93.	3 · 27 3 · 23 3 · 25 3 · 27 3 · 27 3 · 27 3 · 27		14 25 31 7 27 46 0 30 47 2 36 10 8 45 36 3 49 11 5 5 10 11 55 14 5 58 35 1 15 11 54 2 25 57 3 22 57 9 27 43 6 20 19 7 34 09 0 47 20 3 48 35 8 55 41 5 56 41 5 56 41 5 56 41 5 56 42 2 29 19 7 34 09 0 47 20 3 48 35 8 56 41 5 56 42 2 20 49 2 36 2 37 36 2 37

From June 25 Clamp West; from June 28 Clamp East. 1—15. Adopted $\Delta T + m = 2 \cdot 966 + \cdot 0039 \text{ (T} - 16^{\text{h}} \cdot 10^{\text{m}})$. 16-49. Adopted $\Delta T + m = 3 \cdot 253 + \cdot 0039 \text{ (T} - 16^{\text{h}} \cdot 05^{\text{m}})$.

Jur

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

					Time of	Coll.	ransi	Stars	ent	ted	App. R.A.
DATE.	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	from Obser- vation
1910					h. m. s.	S.	8.	8.	8.	8.	h. m. s.
me 28	5 6 7 8	e Herculis w Herculis ρ Herculis β L. 650 Groom. 2456 B.J. 653 B.J. 655 B.J. 663		S	17 14 32·39 17 15·86 20 33·00 24 19·48 26 26·19 28 22·57 30 22·73 36 53·81	·038 (·510)	16-27 33-47 20-08 29-19 23-26 23-49 -54-44	23·46 26·42 26·84 57·74			17 14 36-07 17 19-53 20 36-73 24 23-34 26 32-45 28 26-52 30 26-75 36 57-70
29	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 29 30 31 32 33 34	B.J. 549 B.J. 550 B.J. 550 B.J. 550 B.J. 550 B.J. 551 B.J. 555 B.J. 555 B.J. 557 B.J. 558 B.J. 568 B.J. 569 B.J. 571 B.J. 570 B.J. 571 B.J. 570 B.J. 575 B.J. 576 B.J. 576 B.J. 576 B.J. 576 B.J. 576 B.J. 576 B.J. 578 B.J.	rn r L.C. r r		14 19 07 -21 55 08 -29 55 08 -29 56 08 -29 57 08 -29 58 31 -23 16 06 08 -07 11 50 -42 17 07 -98 20 25 26 08 -20 20 25 26 08 08 20 25 26 08 08 20 25 26 08 08 20 25 26 08 08 20 25 26 08 08 08 20 25 26 08 08 08 20 25 26 08 08 08 08 08 20 25 26 08 08 08 08 08 08 08 08 08 08 08 08 08	·035 (·546)	57.79 11.00 31.78 16.57 50.86 60.68 60.68 60.68 627.55 51.97 54.61 61.45 60.34 32.21 16.45 60.34 32.21 17.01 17.01 32.42 60.32 44.67 32.42 60.32 43.68 45.75 51.40 61.75 75 31.85 51.43 61.75 75 31.85 61.43 63	35·14 20·08 54·20 58·02 43·70 19·79 41·60 14·67 48·00 29·70	3-36 3-34 3-33 3-40	3.35	14 40 11.51 55 14.34 55 14.34 55 14.34 55 14.34 55 14.34 56 17 13.20 11 19 20 89 12 27 13.65 12 27 13.65 13 12 27 13.65 14 13.85 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 15 14.18 16 14.18 17 14.18 18 18 18 18 18 18 18 18 18 18 18 18 18 1
	43 44 45 46 47 48	B.J. 643 ε Herculis w Herculis ρ Herculis B.J. 650 Groom. 2456 B.J. 653	r	4 4 4	11 53-04 14 32-29 17 15-73 20 32-91 24 19-33 26 25-82 28 22-24		32.78 16.15 33.40 20.03 29.01	23 - 46	3.36		11 56-82 11 56-82 14 36-13 17 19-50 20 36-75 24 23-38 26 32-36 28 26-33

Clamp East. 1—8. Adopted $\Delta T + m = 3 \cdot 253 + \cdot 0039 \text{ (T} - 16^{\text{h}} \ 05^{\text{m}})$. Adopted $\Delta T + m = 3 \cdot 343 + \cdot 0039 \text{ (T} - 16^{\text{h}} \ 05^{\text{m}})$.

3 GEORGE V., A. 1913

TABLE III.

PEDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

					Time of	COLL.	ransit	of Stars	rent - m	ted - m	App. R.
Date	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. Known	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	s.	8.	s.	8.	8.	h. m. s
ine 29	2	B.J. 655 Groom. 944 B.J. 663	L.C.,rn	S	17 30 22·55 32 52·28 36 53·78	·035 (·546)	46.04	$49 \cdot 45$	3.41	3.35	17 30 26 36 57
ıly 4		χ Herculis B.J. 591 B.J. 593		S	15 49 31 · 48 52 15 · 56 53 49 · 44	·042 (·576)	32·11 15·79	19·45 53.43	3 · 66 3 · 62	3.62	15 49 35- 52 19- 53 53-
	7 8	B.J. 595 r Herculis B.J. 598		"	55 37·01 57 09·49 16 00 09·86		37.87	41.50			55 41 57 13 16 00 14
	10 11	κ Herculis Groom. 750 σ ² Cor. Bor	L.C.,nr	a	03 58-67 07 52-27 11 16-27		58 - 92		3.82		04 02-
	13 14	B.J. 608 ξ Cor. Bor		"	16 59 88 18 33 23 19 26 95		00·52 33·66	04.23			17 04 18 37 19 31
	16 17	23 Herculis B.J. 613 B.J. 614		44	21 13·65 22 25·01		13.85 25.89	17.51 29.61	3.66		21 17 22 29
	18 19 20	g Herculis B.J. 621 ß Herculis		44	25 38 98 31 09 88 37 51 48		$10.51 \\ 51.92$	14 - 17	3.66		25 43 31 14 37 55
	23	B.J. 626 B.J. 627 B.J. 629		44	39 46 · 44 43 33 · 32 47 56 · 98		57 . 20	$37.89 \\ 00.85$			39 50 43 37 48 00
	25 26	53 Herculis « Urs. Min d Herculis	nr	4 4	49 31-15 55 09-37 58 14-88		13.81 15.35	17-38		3.63	49 35 58 18
	27 28	B.J. 635 B.J. 640 B.J. 643		66	17 01 10 · 43 10 30 · 76 11 52 · 67		10.62 30.97 53.19	$34.53 \\ 56.81$	3·55 3·56 3·62		17 01 T4 10 34 11 56
	30 31 32	w Herculis		es es	13 58 · 01 17 15 · 45 20 32 · 57		15·90 33·10				14 02- 17 19- 20 36-
	33 34	B.J. 650 λ Herculis B.J. 653		u	24 19·09 27 04·06 28 21·94		19.78	23 - 43			24 23 27 08 28 26
	36	Groom. 944 B.J. 663 B.J. 667	L.C.,nr	u	32 53 · 52 36 53 · 40 42 54 · 16		46.85 54.03	50·18 57·72	3.33		36 57 42 58
	39 40	87 Herculis z Herculis 168 H. Herc		a a	45 08 · 25 47 40 · 06 49 06 · 90		$08 \cdot 60$ $40 \cdot 75$				45 12- 47 44- 49 11-
	42 43	89 Herculis B.J. 672		41	51 45·36 53 07·92 54 28·96		45.71	12-12	3.67		51 49 53 12- 54 33-
		B.J. 676		44	18 01 21 83		32.08	35.78	3.70		vi 33
ly 5	47	B.J. 551		S	14 51 55·91 58 30·83	·032 (·597)	$56 \cdot 12 \\ 31 \cdot 42$	35.05	3 · 65 3 · 63		14 51 59 58 35
	48	B.J. 557		ш	15 00 32.88		$33 \cdot 25$	36.90	3.65	3.66	15 00 36.

Clamp East.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	e e			H	Time of	Coll.	Fransit	Stars	rent + m	oted + m	App. R.A.
ATE	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	from Obser- vation
910					h. m. s.	s.	s.	s.	8-	8.	h. m. s.
y 5	1	Groom, 2283	rn	S	15 05 58-93	-032	13 - 57	17.06	3.49	3.66	
-	2	B.J. 563		44	11 49 99	(·597)		54.13	3.67		15 11 54-12
	3 4	η Cor. Bor B.J. 568		44	19 26.77 21 02.95		27·19 03·49		3.67		19 30·85 21 07·15
	ő	B.J. 571		44	22 53 - 10			57.87			22 57 - 78
	6	B.J. 572		#	24 04-69		05.09		3.67		24 08.75
	7 8	B.J. 573		44	27 39 41 28 31 17		39.95		3.66		27 43 · 61 28 35 · 44
	9	B.J. 578		44	30 50-31		50 - 67	$54 \cdot 31$	3-64		30 54.33
	10	B.J. 580		a a	34 33 - 24			$37 \cdot 52$	3.69		34 37 49
	11	¿ Cor. Bor Serpentis		16	35 56·93 37 30·03						36 01·12 37 33·96
	13	B.J. 581		ш	38 55-49			59.50	3.65		38 59-51
	14	B.J. 583		66	41 59 81		00.03	03.68	3 - 65		42 03 69
	15 16	B.J. 584 x Herculis		4	44 39 · 08 49 31 · 47		39 - 29	42.98	3.69		44 42-95 49 35-76
	17	B.J. 591		44	52 15-57		15.79	19.44	3.65		52 19-45
	18	B.J. 593		66	53 49 43			53 - 43			53 53-45
	19	B.J. 595 r Herculis		4	55 36·89 57 09·48			41.48			55 41 · 42 57 13 · 40
	21	B.J. 598		a	16 00 09.78		10.78	14.54			16 00 14-44
	22	K Herculis		di di	03 58 - 61		58.84				04 02-50
	23	Groom. 750 σ² Cor Bor	L.C.,rn	44	07 52·30 11 16·24			49 - 43	4.17		11 20.38
	25	B.J. 608		46	16 59-88		00.53	04.21			17 04-19
	26	ξ Cor. Bor		44	18 33 - 16		33.59				18 37 - 25
	27 28	23 Herculis B.J. 613		46	19 26-94 21 13-64		27.39	17.50	3-66		19 31 · 05 21 17 · 50
	29	B.J. 614		46	22 24 93		25.82	29 - 59	3.00		22 29 48
	30	g Herculis		a	25 38 89		39.51				25 43 17
	31	B.J. 621 42 Herculis		a	31 09·82 36 16·03			14-16			31 14·11 36 20·40
	33	ζ Herculis		66	37 51 - 41						37 55-51
	34	B.J. 626		66	39 46 45		$47 \cdot 01$	50.67	3.66		39 50 67
	35	B.J. 627		66	43 33·20 47 56·98			37 · 87 00 · 85			43 37·80 48 00·85
	37	53 Herculis		a	49 31 - 10			00.90			49 35-20
	38	€ Urs. Min	rn	44	55 09 - 00		13.52	17.27	3.75		
	39	d Herculis B.J. 635		44	58 14-85 17 01 10-29		15.32	14-17	3.69		58 18·98 17 01 14·14
	41	B.J. 636		44	04 48-38			52.70			04 52 63
	42	B.J. 640		44	10 30-67		30.88	34-53	3.65		10 34 - 54
	43	B.J. 643		a a	11 52 - 59 13 57 - 91			56-80			11 56.78
	44	w Herculis		44	17 15 37 91						14 02·03 17 19·50
	46	P Herculis		46	20 32 - 52		33.05				20 36.71
	48	B.J. 650		41	24 18 96 27 04 02						24 23 - 31
	48	λ Herculis B.J. 653		44	28 21 · 80		22.60	26-38			27 08 · 03 28 26 · 26
		B.J. 656		44	30 43 - 53		43.66	47.35	3.69	3.67	30 47 - 33
		-									

Clamp East. 1-50. Adopted ΔT+m=3·661+·0040 (T-16^h 30^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	9				Time of	COLL.	ransit	of Stars	ent	ted	App. R.A.
Date	Reference No.	OBJECT	Notes	Observe	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	s.	s.	s.	s.	h. m. s.
July 5	1 2 3 4 5 6 7 8 9 10	Groom, 944 B.J. 663 B.J. 667 S7 Herculis 2 Herculis 2 Herculis 89 Herculis B.J. 672 B.J. 674 5 Urs. Min B.J. 681	r	S	17 32 53·64 36 53·34 42 54·12 45 08·21 47 39·97 49 06·86 51 45·30 53 07·90 54 14·00 18 01 21·07 03 59·90	·032 (·597)	53.98 54.50 08.51 40.66 07.44	12·12 18·11 35·59	3-66 3-69 3-71 4-08	3.67	17 36 57-65 42 58-17 45 12-18 47 44-33 49 11-11 51 49-32 53 12-10 54 18-07
July 6	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	B.J. 555. B.J. 557. Groom. 2283. B.J. 568. B.J. 568. B.J. 568. B.J. 568. B.J. 568. B.J. 568. B.J. 573. B.J. 573. B.J. 573. B.J. 574. B.J. 575. B.J. 575. B.J. 575. B.J. 575. B.J. 575. B.J. 575. B.J. 580. B.J. 581. B.J	r		14 58 30 - 57 55 55 55 55 55 55 55 55 55 55 55 55		33 · 200 12 · 95 · 61 · 61 · 61 · 63 · 63 · 64 · 64 · 63 · 64 · 64 · 64	16 - 53 54 · 12 707 · 15 57 · 84 43 · 60 54 · 30 37 · 51 59 · 49 19 · 43 53 · 42 · 98 19 · 43 53 · 42 · 98 19 · 43 53 · 42 · 98 14 · 51 49 · 70 04 · 20 17 · 50 14 · 51 17 · 50 14 · 51 17 · 50 18 · 51 19 · 51 19 · 51 10 · 51 11 · 51 11 · 51 12 · 52 13 · 53 14 · 51 15 · 51 16 · 51 17 · 50 17 · 50 18 · 51 18 · 51 18 · 51 19 · 51 19 · 51 19 · 51 19 · 51 10 · 51	3-69 3-58 3-74 3-70 3-67 3-72 3-69 3-76 3-72 3-75 3-78 4-22		14 8 35 06 15 00 36 21 15 00 36 21 11 54 12 12 12 12 12 12 12 12 12 12 12 12 12

Clamp East. 1—11. Adopted $\Delta T + m = 3 \cdot 661 + \cdot 0040 \text{ (T} - 16^{\text{h}} 30^{\text{m}})$. 12—49. Adopted $\Delta T + m = 3 \cdot 725 + \cdot 0040 \text{ (T} - 16^{\text{h}} 00^{\text{m}})$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	9				Time of	COLL.	Fransit	of Stars	rent	ted	App. R.A. from
DATE	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	s.	s.	8.	s.	s.	h. m. s.
July 6	2	53 Herculis e Urs. Min d Herculis B.J. 635 B.J. 636		N u u u	16 49 30 98 55 08 39 58 14 79 17 01 10 24 04 48 31	·038 (·623)		17·16 14·17	4·02 3·76 3·78	3.73	16 49 35·15 58 18·99 17 01 14·14 04 52·64
July 1	7 8 9 9 101 112 113 114 115 16 17 8 119 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34 35 36 37 38 38 40 41 42 43 44 45 46 47	11 Urs. Min. "Cor. Bot." 18 J. 571. B.J. 573. B.J. 583. Groom. 720. B.J. 683. Groom. 273. F. Herculis. B.J. 623. B.J. 623. B.J. 623. S. Herculis. B.J. 623. S. Herculis. B.J. 624. B.J. 625. B.J. 626. B.J.	r L.C.		15 17 06-07 19 25 25 24 19 25 25 25 40 19 25 25 25 40 19 25 25 25 40 19 25 25 25 40 19 25 25 25 40 19 25 25 25 40 19 25 25 25 40 19 25 25 25 25 25 25 25 25 25 25 25 25 25	(-568)	$\begin{array}{c} 26.61 \\ 39.29 \\ 30.82 \\ 39.29 \\ 30.82 \\ 39.29 \\ 30.82 \\$	57·70 43·52 59·45 03·64 42·94 42·94 41·36 50·83 41·36 50·83 41·36 50·83 41·46 50·62 29·47 41·46 34·52 56·77 23·38	4-28 4-23 4-31 4-79 4-27 4-19 4-27 4-25 4-28	4.26	15 17 12-76 19 30-86 22 57-67 19 30-86 23 57-67 24 57-67 25 35-42 25 35-45 25 35-45 25 35-45 25 35-45 26 31-45 26 31-45 27 313-45 27 313-45 28 31-45 28 31-45 29 31-45 29 31-45 29 31-45 29 31-45 29 31-45 29 31-45 29 31-45 20 31-45 30 31-4

Clamp East. 1—5. Adopted $\Delta T + m = 3 \cdot 725 + \cdot 0040 \text{ (T} - 16^{\text{h}} \cdot 00^{\text{m}})$. Adopted $\Delta T + m = 4 \cdot 256 + \cdot 0041 \text{ (T} - 16^{\text{h}} \cdot 20^{\text{m}})$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	OBJECT	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910	-			_	h. m. s.	8.	8.	s.	8.	s.	h. m. s.
July 13	5 6 7 8 9 10 111 12 13 14 15 5 16 17 18 19 20 1 22 22 23 24 25 5 27 28 9 30 3 31 32 33 34 35 36 37 38 9 40 14 14 14 14 14 14 14 14 14 14 14 14 14	B.J. 563 11 Urs. Min. v Cor. Bor. B.J. 509 B.J. 501 B.J. 502 B.J. 503 B.J. 504 B.J. 504 B.J. 504 B.J. 504 B.J. 504 B.J. 504 B.J. 505 B.J. 504 B.J. 504 B.J. 505 B.J. 504 B.J. 505 B.J. 506 B.J. 507 B.J. 508 B.J. 5	r L.C.,nr r r r r	N a a a a a a a a a a a a a a a a a a a	15 11 49-10 19 25-85 25 25 25 25 25 25 25 25 25 25 25 25 25	-034 (-043)	08-075-08-08-08-08-08-08-08-08-08-08-08-08-08-	57-64 43-49 19-64 54-23 59-42-92 42-92 19-39-53-35 41-31 14-34 51-27 29-43 16-45 14-15 56-76	4 · 52 · 4 · 44 · 47 · 4 · 47 · 4 · 47 · 4 · 4		15 11 54-07 17 125-61 19 30-76 19 30-76 19 30-76 19 30-76 19 30-76 20 21 21 31 46 22 21 31 46 31 40 41 47 19-50 31 40 41 47 19-50 31 40 41 47 19-50 31 40 40 40 40 40 40 40 40 40 40 40 40 40

Clamp East.

1-50. Adopted ΔT+m=4·492+·0041 (T-16h 30m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	e				Time of	COLL.	ransit	of Stars	ent.	ped	App. R.A. from
DATE	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	s.	s.	s.	8.	h. m. s.
July 13	2 3 4 5	B.J. 663 B.D. 72-800 B.J. 670 87 Herculis z Herculis 168 H. Herc 89 Herculis B.J. 672 å Urs. Min.	nr	N a a a a a a a a	17 36 52-49 38 48-22 43 29-54 45 07-43 47 39-02 49 06-05 51 44-53 53 07-02 18 01 17-96		50·36 31·63 07·78 39·81 06·64 44·89 07·56	12-10	4-54		17 36 57·72 38 54·86 43 36·13 45 12·28 47 44·31 49 11·14 51 49·39 53 12·06
July 16	11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 44 44 45 46 46 46 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	23 Herculis. Ctvrs. Min. d Herculis. BJ, 635. BJ, 635. BJ, 635. BJ, 635. BJ, 636. BJ, 637. Herculis. BJ, 637. BJ, 638. Herculis. Herculis. BJ, 637. SH, 638. BJ, 708. BJ, 708. BJ, 708. BJ, 707. BJ, 708. BJ, 708. BJ, 708. BJ, 708. BJ, 709. BJ,	L.C.,nr r nr		16 49 29 - 98 55 50 - 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\begin{array}{c} 09 \cdot 54 \\ 47 \cdot 92 \cdot 11 \\ 132 \cdot 04 \\ 133 \cdot 04 \\ 132 \cdot 04 \\ 133 \cdot 04 \\ 134 \cdot 04 \\ 1$	16 · 11 14 · 14 · 14 · 152 · 61 52 · 61 56 · 74 23 · 32 26 · 26 · 26 47 · 35 57 · 64 12 · 09 33 · 63 63 · 96 53 · 83 83 · 84 47 · 35 · 17 58 · 18 · 19 · 19 53 · 60 49 · 39 47 · 57 57 · 57 58 · 67 59 · 67 50 · 67	4-61 4-65 4-65 4-66 4-65 4-66 4-66 4-68 4-68 4-68 4-68 4-69 4-69 4-69 4-69 4-69 4-69 4-69 4-69	4.64	16 49 35-10 17 01 44-11 17 01 45-10 18 18 19 18 18 19 18 18 19 18

Clamp East. 1—9. Adopted $\Delta T + m = 4 \cdot 492 + \cdot 0041 (T - 16^{h} \cdot 30^{m})$. 10-49. Adopted $\Delta T + m = 4 \cdot 639 + \cdot 0042 \ (T - 18^{h} \cdot 15^{m})$.

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	63				Time of	COLL.	ransit	of Stars	ent m	m m	App. R.A.
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
July 16	2 3 4 5 6 7 8 9	B.J. 726. 159 B. Lyrae. b Aquilae. 21 B. Vulp. 4 Cygni. α Vulp. B.J. 732. 8 Cygni. «Sagittae. B.J. 738. β Sagittae.	r	S	$\begin{array}{c} 19\ 14\ 58\cdot 22\\ 15\ 54\cdot 47\\ 20\ 38\cdot 00\\ 21\ 39\cdot 36\\ 22\ 51\cdot 55\\ 24\ 54\cdot 77\\ 27\ 02\cdot 56\\ 28\ 22\cdot 59\\ 33\ 10\cdot 13\\ 33\ 58\cdot 55\\ 36\ 57\cdot 59\\ \end{array}$	·047 (·650)	55·12 38·21 39·74 52·11 55·10 02·98 23·12 10·39 59·36	07-61	4-63		19 15 03·78 15 59·76 20 42·85 21 44·38 22 56·75 24 59·74 27 07·62 28 27·76 33 15·03 34 04·00 37 02·50
July 19	13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 29 30 31 32 33 33 34 43 56 36 37 38 40 40 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44	B.J. 614. Hendis Groom, 2372. B.J. 623. B.J. 624. B.J. 624. B.J. 624. B.J. 624. B.J. 625. B.J. 625. B.J. 625. B.J. 625. B.J. 625. B.J. 626. B.J. 626. B.J. 626. B.J. 626. B.J. 627. B.J. 627. B.J. 628. B.J.	r r r L.C.,rn		16 22 23 14 25 25 14 25 25 14 26 20 21 24 26 20 21 24 26 20 21 25 26 26 26 26 26 26 26 26 26 26 26 26 26	-040 (-607)	$\begin{array}{c} 37.79\\ 42.38\\ 48.62\\ 45.28\\ 48.62\\ 45.28\\ 45.28\\ 45.28\\ 45.28\\ 45.29\\ 49.29\\ 49.29\\ 49.20\\ 49$	56 - 53 15 - 69 56 - 72 23 - 29 26 - 22 26 - 61 52 - 88 57 - 62 32 - 87 52 - 98	5.19	5.25	16 22 29 26 20 27 47 42 42 42 42 42 42 42 42 42 42 42 42 42

Clamp East. 1—11. Adopted $\Delta T + m = 4 \cdot 639 + \cdot 0042$ (T—18^h 15^m). 12—49. Adopted $\Delta T + m = 5 \cdot 246 + \cdot 0042$ (T—18^h 10^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Coll. =

DATE S	No. roatao	Notes	ver	Time of Observed	COLL.	Sec. of Transi Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
Reference No.			Observer	Transit	(Polar Dev.)	Sec. o	Rnow	Apj	Ad A7	vation
1910				h. m. s.	s.	s.	s.	s.	s.	h. m. s.
11 12 13	50 Draconis. B.D. 79-604. 51 H. Cephei. B.J. 719. B.D. 70-1073. B.D. 49-3059. B.J. 738. 14 Cygni B.J. 740. B.J. 742. B.J. 747. B.J. 750. B.D. 69-1084.	L.C.,rn		18 49 13 · 63 51 57 · 05 58 29 · 42 19 04 01 · 79 31 40 · 20 33 27 · 57 33 58 · 02 36 27 · 01 40 58 · 21 42 06 · 10 48 25 · 36 53 14 · 54 58 51 · 68		00-48 17-29 02-31 41-98 28-32 58-77 27-66 58-76 06-74 27-07 15-35 53-39	22·61 07·59 04·07 04·04 12·03			18 49 21 · 24 52 05 · 73 19 04 07 · 56 31 47 · 23 33 33 · 57 34 04 · 02 36 32 91 41 04 · 01 42 11 · 99 48 32 · 32 53 20 · 60 58 58 · 64
20 21 22 23 24 25 26 27 27 29 29 29 30 31 33 33 34 35 36 37 38 38 44 41 42 42 43	55 Herealis. 4 Urs. Min. 4 Herealis. 51 Herealis. 51 Herealis. 51 Herealis. 52 Herealis. 53 Herealis. 53 Herealis. 54 Herealis. 54 Herealis. 55 Herealis. 55 Herealis. 56 Herealis. 57 Herealis. 58 Herealis.	nr r L.C.,nr r		16 43 30 - 52 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 15 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	(-582)	54 666 88 83 12 78 26 84 85 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87	00.74 14.78 14.08 52.48 34.45 56.63 23.17 26.09 54.38 55.58 56.58 12.01 33.20 31.12 55.62 38.31 55.62 49.39	6-08 5-95 6-06 6-07 6-09 6-02 6-02 6-03 6-04 6-04 6-05 6-04		16 + 43 - 37 - 34 49 - 53 - 102 -

From July 19 Clamp East; from July 26 Clamp West. 1—13. Adopted $\Delta T + m = 5 \cdot 246 + \cdot 0042$ (T-18 h 10 m). 14—49. Adopted $\Delta T + m = 6 \cdot 044 + \cdot 0043$ (T-18 h 35 m).

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Dате	Reference No.	Object	Notes	Observer	Time of Observed Transit	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 July 26	_	B.J. 705 B.J. 707 B.J. 711 B.J. 713 51 H. Cephei B.J. 719	L.C.,nr	0 2 4 4 4 4 4	h. m. s. 18 46 41·13 49 48·19 52 31·44 55 30·40 58 28·87 19 04 01·11	8. - ·046 (·582)	s.	s. 47·56 55·07 38·04 36·75 24·33	s. 6-07 6-00 6-00 6-07	s. 6·04 6·05	h. m. s. 18 46 47·53 49 55·10 52 38·02 55 36·80 19 04 07·56
	7 8 9 10 11 12	19 Lyrae B.J. 728 B.J. 728 B.J. 728 139 B. Lyrae A Aquitae 21 B. Vulp A Cygni a Vulp B.J. 752 15 Vulp B.J. 752 20 Vulp 16 Cygni 20 Vulp 176 B. Cygni 176 B. Cygni 176 B. Cygni 40 Cygni 41 Cygni 41 Cygni	r	44 44 44 44 44 44 44 44 44 44 44 44 44	08 14-69 13 31-52 14 57-12 15 53-24 20 36-57-12 21 38-21 22 50-38 24 53-46 51 54-57 51 41-25 20 06 00-78 08 10-11 10 24-01 10 25-19 16 55-53 24 09-97 25 38-88		15-02 31-63 57-79 53-71 36-86 38-42 50-78 53-72 54-68 41-44 19-77 01-19 10-38 24-54 55-60 10-35	37-69 03-85 47-44 58-19 02-11	6-00		08 21-07 13 37-08 15 03-84 15 59-76 20 42-91 21 44-47 22 55-48 24 59-77 52 00-73 54 47-49 57 75-82 20 06 07-24 08 16-43 10 30-59 12 58-21 17 01-71 19 02-05 24 16-40 25 45-25
July 28	27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49	40 Draconis. B.J. 684 B.J. 684 B.J. 694 B.J. 699 B.J. 699 B.J. 699 B.J. 705 B.J. 705 B.J. 707 B.J. 711 B.J. 711 B.J. 711 B.J. 712 B.J. 726 B.J. 726 B.J. 726 B.J. 726 B.J. 726 B.J. 736 B.J. 738	L.C.	N 11 12 12 12 12 12 12 12 12 12 12 12 12	18 06 42 88 12 46 29 18 19 16 29 23 31 44 32 23 31 44 13 33 49 11 43 33 49 11 43 45 45 46 47 47 49 44 47 40 47 40 47 40 47 40 47 40 47 40 47 40 47 47 40 47 47 47 47 47 47 47 47 47 47 47 47 47	(-580)	46.75 19-36 47-70 32-27 49-50 58-73 38-67 48-84 31-89 30-58 18-80 01-38 38-51 57-67 38-35 50-72 57-50 57-57 57-68 21-73 26-88	52-91 53-81 38-28 55-61 47-55 55-04 38-03 36-75 24-77 07-58 44-26 03-84	6·16 6·11 6·18 6·18 6·14 6·17 5·97 6·20 5·75	6-13	18 06 52.04 12 22.57 18 25.48 19 25.48 19 25.48 19 25.48 19 25.58 43 04.96 45 44.90 49 54.97 52 28.07 15 08.98 21 56.85 24 59.85 24 59.85

 $\begin{array}{ll} \text{Clamp West.} & 1-25. & \text{Adopted } \Delta T + m = 6 \cdot 044 + \cdot 0043 \text{ } (T-18^\text{h} \ 35^\text{m}). \\ 26-50. & \text{Adopted } \Delta T + m = 6 \cdot 128 + \cdot 0044 \text{ } (T-19^\text{h} \ 15^\text{m}). \end{array}$

TABLE III.

COLL. = 02

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Dat	Reference	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See, of Trans Corrected	R. A. of Known Star	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910	0				h. m. s.	s.	s.	8.	S.	s.	h. m. s.
July	2 3	ζ Sagittae φ Aquilae		N a a a a a a a	$\begin{array}{c} 19\ 40\ 57\cdot 51\\ 42\ 05\cdot 33\\ 44\ 54\cdot 93\\ 51\ 54\cdot 46\\ 53\ 13\cdot 80\\ 54\ 41\cdot 22\\ 57\ 19\cdot 44\\ 20\ 08\ 20\cdot 89\\ 12\ 51\cdot 89\\ \end{array}$	-·060 (·580)	57.88 05.83 55.08 54.54 14.46 41.37 19.68 54.61 52.11	04 · 07 12 · 04 20 · 64 47 · 46 00 · 86 58 · 20	6·19 6·21 6·09 6·25 6·09	6.13	19 41 04·01 42 11·96 45 01·21 52 00·67 53 20·59 54 47·50 57 25·81 20 12 58·24
July	16 16 17 18 19 19 20 21 1 22 22 26 27 28 29 29 30 31 32 24 33 33 34 40 44 44 44 44 44 44 44 44 44 44 44 44	111 Herculis 204 B. Drac B.J. 707	L.C.,nr	44 44 44 44 44 44 44 44 44 44 44 44 44	18 41 42 57 42 44 14 14 14 14 14 14 14 14 14 14 14 14	- 034 (-601)	$\begin{array}{c} 43.075.45.88.48.15.75.38.88.48.15.75.38.88.48.15.75.38.29.45.39.45.27.19.42.27.19.42.27.19.44.49.44.48.29.29.29.29.29.29.29.29.29.29.29.29.29.$	49 · 38 · 55 · 01 · 55 · 01 · 38 · 02 · 25 · 30 · 07 · 66 ·	6-31 6-45 6-36 6-36 6-36 6-36 6-37 6-39 6-37 6-40 6-37 6-41 6-40 6-39	6-37	18 41 49-44 44 44-82 43 04-94 44 44-82 45 05-52 57 07-74 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 04 07-62 19 07-
	C	lamp West.	-	-	Adopted	\T_m=	6,128	1.004	4 (T_1	0 b 15m)	

Clamp West. 1— 9. Adopted $\Delta T + m = 6 \cdot 12S + \cdot 0044$ (T-19^b 15^m). 10—49. Adopted $\Delta T + m = 6 \cdot 371 + \cdot 0044$ (T-19^b 45^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	ee	Овјест	Notes	er	Time of Observed	Coll.	Sec. of Transit Corrected	A. of Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.	OBJECT	NOILS	Observer	Transit	(Polar Dev.)	Sec. of Corre	R. A. Known 8	Appa ΔT	Ado ΔT	vation
1910					h. m. s.	8.	8.	8.	. в.	8.	h. m. s.
July 30	1 2 3	B.J. 784		N «	20 43 49·56 49 05·57 51 37·60	(.601)	49·97 09·83 40·97	$16 \cdot 27$	6·39 6·44 6·59	6.38	20 43 56-35
Aug. 2	6 7 8 9 10 11 12	B.J. 684 446 B. Herc B.J. 690 \$\mu\$ Lyrae B.J. 699 B.J. 703 111 Herculis 204 B. Drac B.J. 705 B.J. 705 B.J. 707	r	8	18 12 45-71 18 18-62 19 47-02 21 10-93 33 48-55 41 42-56 42 58-10 44 37-39 46 40-54 49 47-48	-·040 (·639)	11 · 44 48 · 99 42 · 80 58 · 31 38 · 13 40 · 95	53·79 55·57 49·37	6·57 6·56 6·58 6·57	6.57	18 12 52-85 18 25-46 19 53-80 21 18-01 21 18-01 41 49-37 43 04-88 44 44-70 46 47-52 49 55-01
	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	B.J. 707 B.J. 707 B.J. 719 S.J. 723 S.J	г		49 47 48 52 30 79 52 30 79 52 30 79 54 31 44 19 04 00 47 10 57 73 20 36 17 52 24 53 60 32 25 21 37 51 22 49 53 60 33 56 83 36 55 87 40 56 98 42 04 78 43 17 90 44 54 45 51 54 40 55 71 8 91		31 · 38 19 · 59 00 · 93 33 · 54 36 · 25 37 · 79 50 · 21 53 · 23 22 · 06 21 · 18 08 · 55 57 · 56 05 · 40 18 · 11 54 · 62 54 · 16	37-99 26-27 07-56 40-39 28-61 04-03 12-02 24-67	6-61 6-68 6-63 6-85 6-85 6-60 6-62 6-56	6-58	
Aug. 7	35 36 37 38 39 40 41 42 43 44 45 46 47 48	B. J. 650. Groom. 2456. B.J. 653. B.J. 655. Groom. 944. B.J. 663. B.D. 72-800. B.J. 670. s Herculis. 168 H. Herc. B.J. 675. B.D. 78-616. y² Draconis. § Urs. Min.	L.C.,rn		17 24 15·11 26 18·54 28 17·57 30 18·16 32 57·15 36 49·54 38 44·39 43 25·95 47 36·19 49 03·19 53 22·36 55 08·28 56 38·45 18 01 09·97	(-621)	21 · 86 18 · 58 18 · 95 50 · 50 50 · 11 46 · 34 27 · 71 36 · 80 03 · 70 24 · 84 11 · 06 40 · 18	25-83 26-18 57-38 57-31	6-88		17 24 22-93 26 29-00 28 25-72 30 26-09 36 57-25 38 53-48 43 34-85 47 43-94 49 10-84 53 31-98 55 18-19 56 47-33

Clamp West. 1—3. Adopted $\Delta T + m = 6 \cdot 371 + \cdot 0041$ (T=19^h 45^m). 4—34. Adopted $\Delta T + m = 6 \cdot 576 + \cdot 0041$ (T=19^h 05^m). 35—48. Adopted $\Delta T + m = 7 \cdot 144 + \cdot 0045$ (T=19^h 15^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	30			5	Time of	COLL.	Transit	of Stars	rent - m	ted - m	App. R.A.
DATE	Reference No.	OBJECT	Notes	Observe	Observed Transit	(Polar Dev.)	See. of Tran Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	from Obser- vation
1910					h. m. s.	8.	8.	Б.	8.	s.	h. m. s.
Aug. 7	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	40 Draconis B.J. 694. B.J. 695. B.J. 709. Bradley 2882. Groom. 2719. B.D. 709 694. B.D. 709 694. B.D	L.C.,rn rn		18 06 40-62 22 34-92 34-	~·040 (·621)	300 (49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40	27.99 07.53 36.11 04.00 04.04 12.00	7·15 7·47 7·21 6·26	7-15	18 06 51-01 12 52-75 22 43-88 33 44 14-63 48 04-98 49 20-40 52 04-45 52 04-
Aug. S	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	87 Hereulis. 2 Herculis. 2 Herculis. 168 H. Here. 89 Herculis. 89 Herculis. 89 D. 78 616. 4º Draconis. 5 Urs. Min. 40 Draconis. B.J. 684. 446 B. Herc. B.J. 690. B.J. 694. B.J. 700. B.J. 703. B.J. 703. Bradley 2382. B.J. 705. Groom. 2719.	nr	N a a a a a a a a a a a a a a a	17 45 04·53 47 36·18 49 03·18 51 41·65 55 08·26 06 40·18 11 2 45·03 18 17·98 19 46·30 21 10·18 22 29·80 34 00·13 41 41·90 46·39·89 47 55·70	(.619)	36·82 03·65 41·91 11·12 40·21 19·66 43·50 45·54 18·22 46·52 10·64 30·75 02·79 42·10 07·36 40·26	27-14 52-77 53-75 49-34 47-48	7.23		17 45 11-99 47 44-02 49 10-85 51 49-11 55 18-32 56 47-41 18 06 50 70 12 52-74 18 25-42 19 53-72 21 17-8 34 00-99 41 49-30 46 47-46 48 04-94

it. 1—31. Adopted $\Delta T + m = 7 \cdot 144 + \cdot 0045 \text{ (T} - 19^{\text{h}} 15^{\text{m}})$. 32—49. Adopted $\Delta T + m = 7 \cdot 206 + \cdot 0045 \text{ (T} - 19^{\text{h}} 05^{\text{m}})$. Clamp West.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See, of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	8.	s.	s.	в.	6.	h. m. s.
Aug. 8	1	50 Draconis		N	18 49 11-09						18 49 20 55
Aug. 11	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	B.D. 79-604 B.J. 714 S.J. 714 S.J. 719 S.J. 719 A.Urs. Min B.J. 726 B.J. 726 B.J. 726 B.J. 726 B.J. 726 B.J. 726 B.J. 734 B.D. 76-734 B.J. 734 B.D. 76-734 B.J. 738 B.D. 79-1073 B.J. 738 B.D. 49-3059 B.J. 742 B.J. 741 B.J. 742 B.J. 740 B.J. 752 B.J. 752 B.J. 752 B.J. 752 B.J. 750 B.J. 750 B.J. 750	L.C.,nr		51 54-21 52 24-33 58 31-74 19 03 50-87 10 52-74 14 55-75 17 11-64 21 36-91 22 49-12 24 40-55 23 35-66 33 25-66 33 25-66 36 25-22 39 53-06 42 04-26 42 40-16 51 153-56 54 40-16 57 18-22 18 33 59-22 18 33 59-22		26-04 20-37 00-28 27-28 27-28 13-59 37-16 49-53 49-53 39-62 26-36 26-81 25-73 53-61 13-33 40-22 18-53	28: 30 07: 52 35: 38 03: 73 03: 99 5 3 12: 00 5 5 20: 58 9 47: 48	7-93 7-24 8-16 9-7-17 5-7-19		52 04-73 55 33-25 19 04 07-49 15 03-73 17 20-80 21 44-37 22 56-74 24 50-15 27 13-81 28 27-77 31 46-83 33 33-63 34 03-04 40 00-49 42 12-04 48 32-29 52 00-82 53 20-56 54 47-50 57 25-74 18 34 00-64
Aug. II	26 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48	Bradley 2882. BJ. 705. Groom, 2719. 50 Draconis. 51 H. Cephei. BJ. 719. \text{X U.S. Min.} BJ. 729. \text{Y U.S. Min.} BJ. 734. BJ. 735. BJ. 736. BJ. 736. BJ. 736. BJ. 742. BJ. 765. BJ. 765. Groom 1119. BJ. 765. BJ. 765.	L.C.,nr	64 64 64 64 64 64 64 64 64 64 64 64 64 6		2 (·646) 52 22 7 6 6 6 6 6 6 6 6 7 7 3 9 9 9 6 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	06.8 39.6 56.9 12.5 20.9 59.7 26.3 12.9 49.0 6.0 39.2 25.2 56.2 25.2 56.2 59.3 59.3 59.3 59.3 59.3 59.3 59.3 59.3	1 7 47 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	\$ 8.28 9 7.77 3 6.80	7.74	44 14 54 46 47-40 48 04 72 49 20-32 19 04 07-45 17 20-65 22 56-75 24 50-01 27 13-80 31 46-96 33 33-61 34 03-98 36 32-95 41 04-00

 $\begin{array}{ll} \text{Clamp West.} & 1-24. \ \ \text{Adopted} \ \Delta T + m = 7 \cdot 206 + \cdot 0045 \ \ (\text{T} - 19^{\,\text{h}} \ 05^{\text{m}}). \\ 25 - 49. \ \ \ \text{Adopted} \ \ \Delta T + m = 7 \cdot 737 + \cdot 0065 \ \ \ (\text{T} - 20^{\,\text{h}} \ 00^{\text{m}}). \end{array}$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	a			Time of	COLL.	ransit	of Stars	Apparent $\Delta T + m$	ted + m	App. R.A. from
DATE	Reference No.	Object Notes	Observer	Observed Transit	(Polar Dev.)	See, of Transit Corrected	R. A. Known S	Appa ΔT	Adopted $\Delta T + m$	Obser- vation
1910 Aug. 11	2 3 4 5 6 7 8 9 10 11 12 13	ω Cygni Groom, 3241. BJ, 770 76 Dracenis nr 220 H: Drac BJ, 788 BJ, 789 BJ, 793 Groom, 3400. BJ, 798 BJ, 799 σ Cygni Bradley 2786.	S 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	h. m. s. 20 27 10·24 30 18·14 32 36·19 49 03·47 51 35·98 55 42·63 21 01 33·35 02 45·98 05 45·24 09 24·3 11 05·93 13 46·79 16 35·91	(-646)	19-99 38-35 08-01 39-45 43-59 44-94 33-94 46-47 25-73 06-42 47-29	15-91 47-32 51-33 41-74 54-21 33-44 14-15	7.90 7.87 7.74	s. 7·74	h. m. s. 20 27 18-63 30 27-73 32 46-09 53 51-33 55 52-68 21 01 41-68 02 54-21 09 33-47 11 14-16 13 55-03 16 46-16
	15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 44 14 24 34 44 54 64 74 84 45 66 75 28 28 28 28 28 28 28 28 28 28 28 28 28	Groom, 2411. B.J. 635, 636, 636, 636, 636, 636, 636, 636,		16 57 55 50 17 01 03 43 43 14 14 15 15 15 15 15 10 14 14 15 15 15 16 14 15 16 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	(-630)	57.80 66.05 78.77 80 67.87 81.87 82.	13-90 34-27 56-36 22-82 25-70 26-03 58-62 57-21 25-90 55-45 49-31 47-43	7-85 7-86 7-87 7-92 8-04 7-85 7-87	7-84	16 58 65-64 17 00 18 89 17 00 18 18 17 10 18 18 17 10 18 18 17 10 18 18 17 10 18 18 17 10 18 18 17 10 18 18 17 10 18 18 17 10 18

Clamp West. 1—14. Adopted $\Delta T + m = 7 \cdot 737 + \cdot 0005 \ (\mathrm{T} - 20^{\,\mathrm{h}} \ 00^{\mathrm{m}}).$ 15—49. Adopted $\Delta T + m = 7 \cdot 848 + \cdot 0069 \ (\mathrm{T} - 18^{\,\mathrm{h}} \ 30^{\mathrm{m}}).$

TABLE III.

Date	Reference No.	OBJECT	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R. A. from Obser- vation
1910					h. m. s.	s.	8.	8.	8.	8.	h. m. s.
Aug. 12	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	B.D. 79-604 B.J. 714 51 H. Cephei. B.J. 719 Vers. Min. B.J. 729 B.J. 729 B.J. 729 A cyullar. B.J. 729 C. 4 Cygni B.D. 76-73 B.D. 76-73 B.D. 76-73 B.D. 76-73 B.D. 76-73 B.J. 740 B.J. 7	L.C.,nr	N & & & & & & & & & & & & & & & & & & &	18 51 53-03 55 23-25 55 23-22 56 82 23-56 19 03 59-14 54-59 17 10-74 12 36-28 21 36-28 22 48-47 24 39-58 33 24-90 33 24-90 34 53-56 42 03-68 35 25-56 42 03-68 55 35 11-68 55 37 55 55 57 57 57 57 57 57 57 57 57 57 57 57 57 5	042 (-630)	24.9892-20-25-59-60-60-60-60-60-60-60-60-60-60-60-60-60-	29·51 07·48 32·28 03·65 03·93 04·01 3.11·96 3.11·96	7-88 10-23	7.86	18 52 04-24 15 03-35 31 17 04-07-45 16 03-35 31 17 20-57 20 42-9 21 44-39 22 56-7 33 33-45 33 33-45 33 33-45 42 11-39 44 01-35 45 01-11 45 01-11 45 01-11 46 75 35 35 47 47 55 55 58-45
Aug. 19	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	B.J. 643. e Herculis b Herculis p Herculis p Herculis p Herculis p Herculis B.J. 650. Groom. 2456 B.J. 653. B.J. 653. B.J. 653. B.J. 663. B.D. 72-800 B.J. 670. S7 Herculis E Herculis E Herculis B.D. 72-800 B.J. 670. S7 Herculis E Herculi	r L.C.,nr	N a a a a a a a a a a a	17 11 46.45 14 25.76 17 09.31 20 26.43 24 12.63 26 14.42 28 15.37 30 20.85 32 59.13 36 47.07 38 41.58 43 22.62 45 02.32 47 33.59 49 00.84 51 39.42 53 18.56 55 04.24 56 351 18 01 02.02		26-3- 09-80 27-01 13-47- 18-60 16-30 21-90 51-14 47-86 24-88 02-66 34-4- 01-47- 39-86 21-90 21-90 37-37-37-38	7 22-65 0 25-50 0 25-50 0 3 25-50 0 68 5 57-05 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9-21		17 11 56-21 14 35-35 17 18-99 20 36-20 24 22-66 26 27-79 28 25-25 30 31-11 36 57-04 38 33-07 43 31-07 45 11-88 47 43-63 49 10-66 51 48-99 53 30-88 55 16-92 56 46-56

From Aug 12 Clamp West; from Aug. 19 Clamp East. 1—29. Adopted $\Delta T + m = 7 \cdot 848 + \cdot 0069 \text{ (T} - 18^{\text{h}} 30^{\text{m}}).$ 30—49. Adopted $\Delta T + m = 9 \cdot 204 + \cdot 0004 \text{ (T} - 19^{\text{h}} 00^{\text{m}}).$

from

SESSIONAL PAPER No. 25a

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Referen No.	OBJECT	NOTES	Observe	Transit	(Polar Dev.)	Sec. of Cor	R. Know	ΔT	Ad	vation
1910					h. m. s.	s.	s.	8.	8.	8.	h. m. s.
Aug. 19		B.J. 681		N	18 03 54 03	-035		$03 \cdot 66$	9.21	9.20	18 04 03 65
	2	40 Draconis		ш	06 36 - 51	(.694)	40.61				06 49 81
	3 4	B.J. 684		66	12 42·61 18 15·77		43.29	52 - 57	9.28		12 52·49 18 25·31
	5	446 B. Herc B.J. 690		ш	19 44-11		44.43	53.62	9-19		19 53-63
	6	μ Lyrae		44	21 07.92		08.54	00.02	0.10		21 17,74
	7	B.J. 695		es.	22 31.81		$34 \cdot 14$				22 43 - 34
		B.J. 699		66	33 45 55				9.19		22 43 · 34 33 55 · 35
		111 Herculis		4	42 55·30 44 03·08		55 - 56				43 04.76
	11	Bradley 2382 B.J. 705		66	46 37.66		28.17	47.25	9.18		44 14·36 46 47·37
		Groom. 2719		44	47 52 - 52		55.04	41.90	9.10		· 48 04 · 24
	13	50 Draconis		44	49 07.65						49 19-61
	14	B.J. 711		ш	52 27.83		28.56	37.77	9.21		52 37.76
	15	B.J. 713		46	55 27 - 00						55 36-69
	16 17	51 H. Cephei		66	58 35.97 19 03 57.60		22.18	32.35	10·17 9·24		10 04 07 00
		B.J. 719		44	13 28 22		28.30	37.64	9.24	0.91	19 04 07·36 13 37·60
		B.J. 726		44	14 53 - 29		54.28	03.52	0.20		15 03-49
	20	B.J. 729		46	17 08 - 52		10.02				17 20·13 20 42·86 52 00·76
	21	b Aquilae		46	20 33 47		33.65				20 42.86
	22	φ Aquilae		44	51 51-38						
		B.J. 750		ar ar	53 10·24 54 37·91		11.20	20.45	9-27		53 20 - 41
		15 Vulp		46	57 16-15		16.55	41.40	9.21		54 47·39 57 25·76
	26	B.D. 69-1084		44	58 46 82		48.83				58 58 04
	27	69 Draconis		a	20 02 00-29		$03 \cdot 24$				20 02 12 45
		B.J. 760		ee	12 48.71		49.07	58.22	9.15	9.22	12 58-29
		176 B. Cygni		a	16 51 87		52.48	00.00			17 01 - 70
		B.J. 765		a	18 52·31 24 06·56		07.16	02.09	9.15		19 02·16 24 16·38
		41 Cygni		66	25 35 63		36.07				25 45 29
	33	Groom. 3241		44	30 16-21		18-48				30 27 - 70
	34	B.J. 770		44	32 34.02		36-66				32 45.88
	35	B.J. 774		4	35 20 27				9.27		35 29.71
	36	B.J. 777		44	38 14 · 12 42 26 · 60				9.23		38 24·09 42 36·34
		B.J. 784		44	43 46 60			56-39			43 56 38
	39	76 Draconis		44	49 00.81			15.43			40 00 08
	40	220 H1. Drac		а	51 33.34		37 - 52	47.01	9.49		
Aug. 2		B.J. 690		s	18 19 43-90	-046		53-61		9.38	18 19 53-63
	42	μ Lyrae		4	21 07 69	(.700)					21 17.74
	43	B.J. 694		66	22 27·05 33 45·33				0.20		22 37-64
	45	B.J. 699 B.J. 703		66	41 39-51			55·32 49·23			33 55·31 41 49·22
	46	111 Herculis		. 44	42 55-05		55.35	10.20	9.09		43 04.73
	47	204 B. Drac		66	44 34 00		34-96				44 44.34
	48	B.J. 705		44	46 37 - 31		37 - 86	47.34	9.48		46 47.24
	49	B.J. 707		44	49 43.79		45.00	2.54 - 51			49 54 - 40

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	Coll. (Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Aug. 20	1 2 3 4 5 6 6 7 7 8 9 10 111 12 13 14 15 16 6 17 18 19 20 21 22 23 32 24 5 26 27 28 9 30 31 32 33 34 35 6 36 37 38 9 40 41 44 44 44 44 44 44 44 44 44 44 44 44	B.J. 711. B.J. 713. B.J. 713. B.J. 718. B.J. 719. B.J. 719. B.J. 725. B.J. 725. B.J. 725. B.J. 725. B.J. 725. B.J. 726. B.J. 727. B.J. 726. B.J. 726. B.J. 726. B.J. 726. B.J. 726. B.J. 726. B.J. 727. B.J. 726. B.J. 727. B.J. 728. B.J. 737. B.J. 778. B.J. 778. B.J. 778. B.J. 730.	r r nr nr or	20 00 00 00 00 00 00 00 00 00 00 00 00 0	h. m. s.	s 046 (-700)	27 17 22 22 48 22 24 24 24 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24	07-56 03-93 11:87 24-62 02-08 57-09 22-00 29-75 24-09 15-35 46-96 15-35 46-96 15-35 46-96 15-35 46-96 15-35 14-54 22-56 15-35 14-54 15-35 14-54 15-35 14-54 15-35 14-54 15-35 14-54 15-35 16-35	9·38 9·41 9·37 9·38 9·44 9·32 9·39 9·39	s. 9·39 9·40	h. m. 8 32 37 - 74 18 52 35 - 56 55 36 - 56 56 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 04 07 - 89 19 19 19 19 19 19 19 19 19 19 19 19 19
Aug. 26		72 Cygni	nr	N	18 00 57·80 03 52·19	·047 (·679)	09-89	20.71	10·82 10·93	10.95	18 04 03 - 57

Clamp East. 1—47. Adopted $\Delta T + m = 9 \cdot 394 + \cdot 0102 \text{ (T} - 19^{\text{h}} \text{ } 45^{\text{m}}\text{)}.$ 48, 49. Adopted $\Delta T + m = 10 \cdot 965 + \cdot 0120 \text{ (T} - 19^{\text{h}} \text{ } 00^{\text{m}}\text{)}.$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	Coll.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	Refe			Obs		(Polar Dev.)	Sec.	K.	4.4	4.4	
1910					h. m. s.	s.	S.	s.	s.	s.	h. m. s.
Aug. 26	2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	48 Draconia BJ, 484 BJ, 484 BJ, 480 BJ, 480 BJ, 480 BJ, 480 BJ, 480 BJ, 788 BJ, 788 BJ, 788 BJ, 788 BJ, 788 BJ, 718 BJ, 711 BJ, 711 BJ, 711 BJ, 711 BJ, 711 BJ, 712 BJ, 725 BJ, 728 BJ, 728 BJ	L.C.,nr	N 44 44 44 44 44 44 44 44 44 44 44 44 44	18 0f 33 -92 12 12 40 -93 14 19 19 19 19 19 19 19 19 19 19 19 19 19	-047 (-679)	$\begin{array}{c} 37\cdot 99\\ 41\cdot 56\\ 66\cdot 67\\ 24\cdot 2\cdot 58\\ 80\cdot 67\\ 67\cdot 24\cdot 2\cdot 58\\ 38\cdot 21\\ 41\cdot 25\\ 56\cdot 32\\ 26\cdot 58\\ 22\cdot 26\cdot 58\\ 22\cdot 26\cdot 58\\ 22\cdot 26\cdot 53\\ 33\cdot 33\\ 33\cdot 33\\ 45\cdot 59\\ 26\cdot 51\cdot 52\cdot 26\cdot 63\\ 22\cdot 26\cdot 52\cdot 68\cdot 22\cdot 26\cdot 26\\ 22\cdot 26\cdot 52\cdot 68\cdot 22\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\\ 22\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot 26\cdot$	52-42 53-52 37-47 55-21 49-15 47-25 54-32 37-63 36-46 33-07 07-29 37-58 03-36 03-36 03-86 03-86 03-86	10·86 10·94 10·96 10·94 11·05 10·95 10·95	10-95	18 06 48-94 12 525-52 18 525-30 19 535-64 21 17 634 22 17 634 43 49-17 44 49-17 44 47-13 44 47-13 45 47-13 46 47-13 47 19-17 48 47-13 48 47-13 49 17 49 18 4
	33 34 35	B.J. 743 ξ Sagittae φ Aquilae B.J. 750 B.J. 752 15 Vulp		66 66 66 68	43 13 · 29 44 49 · 81 51 49 · 56 53 08 · 32 54 36 · 12 57 14 · 34 ·		50.09 49.74 09.28 36.41	20·32 47·40	10.99		43 24·53 45 01·06 52 00·72 53 20·26 54 47·39 57 25·73
Aug. 29.	39 40 41 42 43 44 45	ψ ² Draconis. δ Urs. Min. B.J. 681. 40 Draconis. B.J. 684. 446 B. Herc. B.J. 690. μ Lyrac. B.J. 693. B.J. 695. B.J. 699. B.J. 703.	r	X	17 56 31 84 18 00 54 83 03 51 21 06 32 27 12 39 77 18 12 98 19 41 34 21 05 07 21 50 49 22 28 14 33 42 67 41 36 95		07 44 51 ·65 36 ·51 40 ·49 13 ·34 41 ·67 05 ·71 52 ·71 30 ·55 43 ·30	19-41 03-50 52-36 53-48	11.99 11.85 11.87 11.81		17 56 46·00 18 04 03·49 06 48·35 12 52·33 18 25·18 19 53·51 21 17·55 22 04·55 22 42·39 33 55·14 41 49·11

 $\begin{array}{ll} \text{Clamp East.} & 1-37. \ \ \text{Adopted} \ \Delta T + m = 10 \cdot 965 + \cdot 0120 \ (\text{T} - 19^{\,\text{h}} \ 00^{\text{m}}). \\ 38 - 49. \ \ \ \text{Adopted} \ \Delta T + m = 11 \cdot 856 + \cdot 0131 \ (\text{T} - 19^{\,\text{h}} \ 30^{\text{m}}). \end{array}$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	ee	Овјест	Notes	ii e	Time of Observed	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
DAIL	Reference No.	OBJECT	NOTES	Observer	Transit	(Polar Dev.)	Sec. of Corre	R. /	Appr	Ado	vation
1910					h. m. s.	s.	s.	8.	s.	8.	h. m. s.
Aug. 29	1	111 Herculis		N	18 42 52 - 54	-044	52.81			11.85	18 43 04 66
	2 3	Bradley 2382 B.J. 705		41	43 59 53 46 34 76	(.711)	01 - 68	47 90	11.91		44 13·53 46 47·14
	4	Groom. 2719		44	47 49 09		51.70				48 03 - 55
	5	50 Draconis		44	49 04 31		07-18	07 57	11.90		49 19·03 52 37·52
	6 7	B.J. 711		u	52 24·92 55 24·06		24 - 57	36-42	11.85		55 36 42
	8	51 H. Cephei	L.C.,nr	66	58 38-17		23.84	36.47	12.63		22121122123
	10	B.J. 719		66	19 03 54·79 10 18·74				11·87 12·03		19 04 07-22
	11	B.J. 726		GC.	14 50 - 30		51.33	$03 \cdot 29$			15 03-18
	12	B.J. 729 b Aquilae		44	17 05 · 21 20 30 · 78		20.07				17 19·54 20 42·82
		21 B. Vulp		а	21 32.02						21 44-27
	15	4 Cygni		a	22 44.12						22 56·55 24 48·78
	16	B.D. 76·734 B.J. 734		44	24 33·83 26 56·15		00.15			11.86	27 12-01
	18	8 Cygni		66	28 15 20		15.74				28 27-60
	19	B.D. 70·1073. B.D. 49·3059.		u	31 31·96 33 20·34		21.26				31 45-98 33 33-12
	21	B.J. 738		a	33 50.86		51.78	03-64			34 03 - 64
	22 23	14 Cygni		66	36 20·06 39 48·16		20.78				36 32·64 40 00·41
	24	10 Vulp B.J. 740		66	40 51 42		52 - 02	03-82	11.80		41 03.88
		B.J. 742		66	41 59-04				11.91		42 11·68 43 24·53
	26 27	B.J. 743		66	43 12·40 44 48·86				11-89		45 01.00
	28	B.J. 747		66	48 17 - 46		19.54				48 31 - 40
	29 30	φ Aquilae B.J. 750		66	51 48-68 53 07-38		48.80	20.26			52 00·72 53 20·24
	31	B.J. 752		44	54 35 28		35.57	47.38	11.81		54 47-43
	32	15 Vulp B.D. 69·1084.		66	57 13·43 58 43·85		13.85				57 25·71 58 57·79
		Groom. 1119.		. 46	20 08 46.71		10.03	20.71	10.68		
	35	176 B. Cygni.		66	16 49-07				11 00	11.87	20 17 01 - 58 19 01 - 98
		B.J. 765		66	18 49·45 24 03·79				11.88		24 16.28
	38	41 Cygni		- 66	25 32.92		33-38	3			25 45 25
	39 40	ω¹ Cygni		64	27 05·69 28 45·00		45 18	57-06	11.88		27 18·44 28 57·05
	41	Groom. 3241		ш	30 12-91		15.26				30 27 - 13
	42	B.J. 770		a	32 30·79 34 29·83		33 - 52				32 45·39 34 46·30
	44	B.J. 777		а	38 11.37		12.15	524.01	11.86		38 24-02
	45 46	B.J. 780		44	42 23-91 43 43-96				11.93 11.80		42 36·32 43 56·41
		B.J. 784 76 Draconis	nr	а	48 57-35		02.80	14.70	11.90		
	48	220 H . Drac		а	51 29 98		34.31				51 46-18
		B.J. 788 Bradley 2748		44	53 38-63 55 37-12			51.28	11.98		53 51 · 17 55 51 · 91
	30	Diagney 2140.			00 01 12		20.01				

Clamp East.

1-50. Adopted ΔT+m=11·856+·0131 (T-19h 30m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	9				Time of	COLL.	ransit	Stars	ent	ted	App. R.A. from
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	s.	s.	s.	s.	s.	h. m. s.
1910 Alug. 31	4 5 6 6 7 8 9 10 111 12 13 144 15 166 17 18 19 20 1 22 22 24 25 26 29 29 30 31 32 33 33 34 35 6 37 38 39	B.J. 757 B.J. 750 B.J. 775 B.J	nr L.C.,nr		h. m. s. s. 212 44-35 20 10 36-35 30 12 44-35 30 10 36-35 30 30 36-35 30 36 36 36 36 36 36 36 36 36 36 36 36 36	-043	$\begin{array}{c} 37.45.92.94\\ 49.9.90.32.93\\ 32.9.83.245.53.245.245.245.245.245.245.245.245.245.245$	49 · 93 · 58 · 14 · 101 · 97 ·	12 42 12 47 12 47 12 47 12 47 12 47 12 48 12 49 12 46 12 49 12 42 12 42 12 42 12 42 12 42	12-41	20 10 49 86 17 01 69 86 17 01 69 86 17 01 69 86 22 41 62 22 23 45 22 24 45 24 25 57 60 24 25 45 25 26 76 24 26 27 76 27 27 76 27 28 27 76 27 28 27 76 27 28 27 76 27 28 27 76 27 28 27 76 27 28 27 76 27 29 20 20 37 29 20 37 30 37
	43	B.J. 835 B.J. 836		41	05 48·76 07 32·80		49.27	01.69 46.46	12.42		06 01·71 07 46·44
		1 H. Lacertae B.A.C. 3495	I.C. pr	41	09 50·18 16 31·51		50.82		12-66		10 03 - 26
			L.C.,nr								
Sept. 1	48	B.J. 693		S	18 21 49·34 33 51·54	·056 (·723)	51.56			12.81	18 22 04·37 34 07·72
		Bradley 2382		66	43 58 30	(120)	00-46			12.82	44 13 28

Clamp East. 1—46. Adopted $\Delta T + m = 12 \cdot 427 + \cdot 0138 \text{ } (T - 21^{\text{h}} \cdot 10^{\text{m}}).$ Adopted $\Delta T + m = 12 \cdot 836 + \cdot 0142 \text{ } (T - 20^{\text{h}} \cdot 10^{\text{m}}).$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	nce	Овјест	Notes	er	Time of Observed	COLL.	See. of Transit Corrected	A. of a Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.			Observer	Transit	(Polar Dev.)	Sec. of Corr	R. A. Known S	App	Ade	vation
1910					h. m. s.	8.	8.	8.	s.	8.	h. m. s.
Sept. 1	1 2	B.J. 705		S	18 46 33 - 72	-056			12.84	12.82	18 46 47 12
	3	Groom. 2719 50 Draconis		44	47 47·72 49 02·96	(.723)					48 03 · 15 49 18 · 65
	4 5	B.D. 79-604 B.J. 714		44	51 44·92 55 16·92						52 01-91
	6	51 H. Cephei.	L.C.,rn	ш	58 39 - 59		24.79	37.97	13.18		55 31-96
	7 8	B.J. 719		44	19 03 53·75 10 12·39				12.81 13.03		19 04 07 20
	9	B.J. 726	111	a	14 49-31		50.34	$03 \cdot 21$			15 03-16
	10	B.J. 729 4 Cygni		a	17 04·02 22 43·04						17 19-33 22 56-49
	12	B.D. 76-734		44	24 32-53		35.62			12.83	24 48-45
	13 14	B.J. 734 8 Cygni		66	26 54·90 28 14·10						27 11·74 28 27·52
	15	B.D. 70 · 1073		66	31 30.71		32.87				31 45-70
	16 17	B.D. 49-3059 B.J. 738	r	44	33 19·27 33 49·77						33 33·09 34 03·52
	18	14 Cygni B.J. 740		as as	36 19·04 40 50·27		19.75		12.84		36 32 · 58 41 03 · 76
	20	B.J. 742		66	41 57 98				12.84		42 11-65
	21 22	B.J. 759		44	20 11 42-99 16 47-97		46.35			12.84	20 11 59·19 17 01·51
	23	B.J. 765	г	44	18 48 - 47		49 - 13	01.95	12.82		19 01 - 97
	24 25	40 Cygni 41 Cygni		4	24 02·74 25 31·82						24 16 · 26 25 45 · 18
	26	ω¹ Cygni		66	27 04.70		$05 \cdot 58$				27 18-42
	27 28	Groom. 3241 B.J. 770		44	30 11·85 32 29·65						30 27·03 32 45·22
	29	74 Draconis		66	34 28-50		$33 \cdot 24$				34 46 08
	30	B.J. 777		44	38 10·30 42 22·98				12·83 12·85		38 23-98 42 36-34
	32	B.J. 784		66	43 42.78		43.41	$56 \cdot 31$	12.90	10.05	43 56 25
	33	76 Draeonis 220 H ¹ . Drac		44	48 55·80 51 28·62				12·94 13·12	12.85	
		B.J. 788		44	53 37 · 67 55 36 · 07		38 - 40	$51 \cdot 25$	12.85		53 51 · 25 55 51 · 83
	37	Bradley 2748 B.J. 792		44	21 01 27 - 95		28.76	41.66	12.90		21 01 41.61
	38 39	f ² Cygni Groom. 3409		66	03 18-60 05 39-19						03 32·29 05 54·24
	40	B.J. 795		4	07 06-28		09.73				07 22.58
	41	B.J. 798 B.J. 799		es es	09 19-07 11 00-61		20.38	33.27	12.85		09 33·23 11 14·13
	43	σ Cygni		66	13 41 - 46		42.16				13 55.01
	44	Bradley 2796 69 Cygni		u	16 29·51 21 55·06		32.66				16 45·51 22 08·54
	46	1 H. Draconis	L.C.,rn	a a	24 09 08		$04 \cdot 09$	17.37	13.28		
	47	B.J. 807 B.J. 809		ш	25 56 · 27 27 18 · 19		57.07	09.98			26 09·92 27 33·13
	49	ρ Cygni		4	30 24 32		25.17			12.86	30 38-03
	50	B.J. 811		"	33 09-11		09-83	22.74	12.91		33 22-69

Clamp East. 1-50. Adopted $\Delta T + m = 12.836 + .0142 \text{ (T} - 20^b 10^m)$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

					Time of	COLL.	ransit	of	ent m	m m	App. R.A. from
DATE	Reference No.	Овјест	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	s.	s.	8.	8.	h. m. s.
Sept. 1	5	B.J. 813	r	8 4 4 4 4 4	21 35 58 54 40 24 59 41 46 49 43 16 69 49 53 52 51 32 06 56 47 69	·056 (·723)	26.77 48.94 17.58 54.64 34.57	30.44			21 36 12·57 40 39·63 42 01·80 43 30·44 50 07·50 51 47·43 57 03·44
Sept. 2	10 11 12 13 14	B.J. 703	L.C.,nr	N	18 41 35·63 42 51·17 43 57·92 46 33·47 47 47·49 49 02·63 51 44·47 55 16·57 58 39·67 19 03 53·39	·041 (·758)	51·46 00·20 34·02 50·26 05·67 48·89 18·90 24·44	47·12	13·10 13·10 14·00 13·17	13.08	18 41 49 03 43 04 54 44 13 28 46 47 10 48 03 34 49 18 75 52 01 97 55 31 98 19 04 07 08
	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	A Urs. Min. B.J. 726. b Aquilae. 21 B. Vulp. 4 Cygni. a Vulp. B.J. 732. S Cygni. B.D. 49-3059. B.J. 738. 14 Cygni. 10 Vulp. B.J. 740. B.J. 742. B.J. 742. B.J. 743.			10 08·02 14 49·04 20 29·44 21 30·69 22 42·76 24 46·04 26 53·91 28 13·82 33 19·01 33 49·47 36 18·75 40 50·01 41 57·69 43 11·21		53 · 60 50 · 13 29 · 64 31 · 09 43 · 37 46 · 44 54 · 36 14 · 39 50 · 44 19 · 51 47 · 26 50 · 65 58 · 51 11 · 50	08-56 03-18 07-40 03-55 03-76 11-65 24-51	13·04 13·11 13·14 13·01	13-09	15 03 22 20 42 73 21 44 18 22 56 46 24 59 53 27 07 45 28 27 48 33 33 07 34 03 53 36 32 60 40 00 35 41 03 74 42 11 60 43 24 59
	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Sagittae.			44 47.62 51 47.41 53 06.04 54 33.97 57 12.08 20 05 53.35 08 02.78 10 35.92 12 44.65 16 47.64 18 48.17 24 02.56 25 31.53 27 04.34 28 43.82 30 55.01 33 08.66		47 · 60 07 · 09 34 · 28 12 · 52 53 · 97 03 · 20 36 · 79 45 · 04 48 · 31 48 · 87 03 · 22 32 · 02 50 · 27 44 · 00 55 · 28	20 · 17 47 · 34 49 · 90 58 · 12 01 · 94	13-06 13-08 13-07 13-04 13-06		57 25-62 20 06 07-07 08 16-30 10 49-89 12 58-14 17 01-41 19 01-97 24 16-32 25 45-12 27 18-37 28 57-10

Clamp East. 1—7. Adopted $\Delta T + m = 12 \cdot 836 + \cdot 0142$ (T=20^h 10^m). 8—49. Adopted $\Delta T + m = 13 \cdot 098 + \cdot 0145$ (T=20^h 00^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	COLL. (Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
Sept. 2	7 8 9 10 11 12 13 14 15 16 17	29 Vulp. B.J. 774 B.J. 777 B.J. 778 B.J. 778 B.J. 780 B.J. 781 B.J. 780 B.J. 784 F. O Draconis. 220 H. Drac. B.J. 782 F. Cygni B.J. 793 B.J. 793 B.J. 793 B.J. 793 B.J. 804 69 Cygni 1 H. Draconis	L.C.,nr	N a a a a a a a a a a a a a a a a a a a	20 34 18 95 35 16 40 38 09 97 39 04 32 42 22 59 43 42 56 48 55 31 51 28 29 53 37 35 56 34 04 21 01 27 69 02 40 42 11 00 30 13 41 23 17 44 24 24 09 46 25 55 97	·041 (·758)	10·79 04·56 23·15 43·17 01·09 32·88 38·06 34·93 28·47 41·08 00·94 44·62 55·35 04·33	29·70 23·96 17·67 36·34 56·30 14·27 51·24 41·65 54·16 14·12 57·74	13-18	13-11	20 34 32·39 35 29·76 38 23·90 39 17·67 42 36·26 43 56·28 51 45·99 53 51·17 56 48·04 21 01 41·58
Sept. 7	21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48	B.J. 891. « Andromedae « Andromedae » Andromedae B.J. 888. B.J. 889. » Pegasi " Pe	L.C.,nr	60 60 60 60 60 60 60 60 60 60 60 60 60 6	23 33 29-71 35 44-87 36 44-87 41 20-83 47 41-39 49 33-45 50 25 56-60 33 33-45 33 34-54 33 34-54 32 52-24 43 25-72 43 25-74 43 25-74 43 25-74 43 25-74 45 12-65 66 23-65 10 00 07-07 10 00 07-07 115 55-28 22 02-48 48 12-65 23 03-44 48 12-65 25 03-64 48 12-65 25 03-64 48 12-65 25 03-64 48 12-65 25 03-64 48 12-65 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64 25 03-64	-053 (-691)	30 · 46 · 64 · 64 · 64 · 64 · 64 · 64 · 6	45·68 56·89 55·76 00·45 50·21 24·49 136·30 20·86 43·76 33·32 28·74 43·76 33·32 37·27 03·37 42·15	15·22 15·19 14·68 15·21 15·20 15·20	15-17	23 33 45-62 36 00-80 41 36-54 42 55-81 53 12-65 53 26-65 53 26-65 54 26-65 55

Clamp East. 1—18. Adopted $\Delta T + m = 13 \cdot 098 + \cdot 0145$ (T-20^h 00^m). 19—49. Adopted $\Delta T + m = 15 \cdot 179 + \cdot 0125$ (T-1^h 15^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE.	ence .	Овјест	Notes	ver	Time of Observed	COLL.	See, of Transi Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.			Observer	Transit	(Polar Dev.)	See.	Kno	Α	< <	vation
1910 Sept. 7	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	B.J. 74 B.J. 75 B.J. 77 B.J. 77 B.J. 77 \$\frac{1}{2}\$ Arietis B.J. 89 B.J. 93 39 Arietis B.J. 90 \$\sigma \text{Arietis}\$ (Arietis) B.J. 103 \$\sigma \text{Arietis}\$ (Arietis) B.J. 103 \$\sigma \text{Arietis}\$ (Arietis) B.J. 104 B.J. 112 Groom. 2283 \$\sigma \text{Arietis}\$ (Arietis) \$\sigma \text{Arietis}\$ (Arietis) \$\sigma \text{Arietis}\$ (Arietis)	L.C.,nr	S	h. m. s. 2 01 52:45: 03 57:58 07 23:23 11 44:15 19 46:16 25 41:30 33 28:72 37 49:19 42 19:19 43 53:70 46 17:78 47 38:47 53 50:19 58 02:46 59 10:57 3 02 20.38 05 44:15 09 29:95 15 48:00		58·16 24·12 44·71 46·35 41·59 29·08 50·03 54·77 18·03 39·43 50·53 03·44 11·22 21·23 27·77	13·32 39·33 59·84 14·26 05·20 09·99 54·62 18·68 26·44 36·35	8. 15·18 15·16 15·13 15·13 15·18	15-20	h. m. s. 2 02 08-20 04 13-35 07 39-31 11 59-90 20 01-54 25 56-78 33 44-25 34 65-23 42 34-83 41 09-97 46 33-23 47 54-63 58 18-64 59 26-42 3 02 36-43 09 45-49 16 03-54
Sept. 8	21 22 23 24 25 26 27 28 30 31 31 32 33 33 34 35 36 37 38 39 40 41 42 44 44 44 44 44 44 44 44	a Vulp. BJ. 752. 8 Cygni. BJ. 750. 176 B. Cygni. BJ. 750. 176 B. Cygni. BJ. 750. Cygni. Cygni. Cygni. Cygni. BJ. 755. BJ. 754. BJ. 777. BJ. 777. BJ. 777. BJ. 777. BJ. 777. BJ. 778. BJ. 788. BJ. 789. BJ. 789. BJ. 780. BJ	r r rn rn		19 24 43-62 25 11-42 42 25 11-42 42 26 16 445-55 11-42 42 26 16 445-55 18 45-74 24 00-18 25 29-21 27 20 00 30 30 30 52 23 34 16-45 35 13-96 33 36-21 35 13-96 33 36-21 36 35 13-96 31 15-38 30 31-38 31 10 58-30 11 13-31 10 38-10 11 13-31 10 34-10 34 30 21-70	·055 (·702)	51-91 (2-00) (42-57) (46-03) (46-44) (47-45) (46-47) (47-45) (07-31 58-05 01-86 57-00 21-91 29-66 23-88 36-28 56-24 45-67 51-17 41-59 33-15 14-08 47-70 17-91	15·40 15·48 15·42 15·43 15·44 15·42 15·45 15·42 15·43 15·42 15·43 15·42 15·43	15-42	19 24 50 44 22 27 07 32 27 17 12 27 07 32 27 11 12 07 12 07 12 07 19 01 17 01 45 11 10 10 45 11 10 10 15 11 10 10 15 11 10 10 15 11 10 10 15 11 10 10 15 11 10 10 15 11 10 10 10 10 10 10 10 10 10 10 10 10

Clamp East, 1—19. Adopted $\Delta T + \text{m} = 15 \cdot 179 + \cdot 0125$ (T = 1 b 15^m). 20—49. Adopted $\Delta T + \text{m} = 15 \cdot 421 + \cdot 0125$ (T = 20 40^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	COLL.	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	Rel			9		Dev.)	Z	- 14			
				-	h es s		-			-	1
1910		D. T. 011		s	h. m. s. 21 33 06 58	8.	8.	8. 22·71	8.	8.	h. m. s.
Sept. 8	1 2	B.J. 811 B.J. 813		44	35 55.83	·055 (·702)		12.53	15-43	15-43	21 33 22 - 71 36 12 - 40
	3	B.J. 816		4	40 20 60	(/	21.02	36.44	15.42		40 36-45
	5	B.J. 821 14 Pegasi		44	43 14·08 45 38·11		28.60	30.40			43 30-37 45 54-03
	6	B.J. 823		44	48 44 - 52		44.90	00.31	15.41	15.44	49 00.34
	7 8	Bradley 2868 13 Cephei		44	49 50·93 51 37·52		52.02				50 07-46
	9	B.J. 826		44	56 28-98		29.22	44-67	15.45		51 54-07 56 44-66
Sept. 9	10	50 Draconis		N	18 48 59-46	-051				15 09	
эере. 9	11	B.J. 712		44	55 13 - 44	(.737)	15.75			10.03	18 49 18-29 55 31-58
		51 H. Cephei	L.C.,nr	44	58 40·11 19 03 50·57		25.12	41 - 49	16.37		*********
	14	B.J. 719		44	09 58-53				15.84 16.84		19 04 07 02
	15	B.J. 726		44	14 46-14		47.22	02.98			15 03 05
	16 17	B.J. 729 b Aquilae		44	17 00·49 20 26·61		26.81				20 42.61
		21 B. Vulp		44	21 27 89		28-29				21 44-12
		4 Cygni		44	22 39·94 24 28·80		32.03				22 56-38
	21	B.J. 734		44	26 50-97		55 · 14				15 03·05 17 18·92 20 42·64 21 44·12 22 56·38 24 47·86 27 10·97 28 27·38 31 45·32 33 32·99 34 03·41 40 00·27 41 03·24 41 03·42 42 11·53
	22 23	8 Cygni		44	28 10·98 31 27·22		29.48			15.84	28 27 - 38
	24	B.D. 49-3059		66	33 16-18		17.15				33 32.99
		B.J. 738		u	33 46-60 36 15-82		16.58	03-38			36 33.49
	27	10 Vulp		66	39 44.02		44.43				40 00 27
	28 29	B.J. 740 B.J. 742		a	40 47·11 41 54·87		55.60	03 - 64	15.82		41 03·58 42 11·53
	30	B.J. 743		46	43 08 28						43 24 41
	31	§ Sagittae B.J. 747		66	44 44·71 48 12·74						45 00 85
	33	B.J. 750		ш	52 03 20		$04 \cdot 24$	20.01			48 30·75 52 20·08
		B.J. 752		66	54 31·09 57 09·31		31-40	47.26	15-86		54 47 - 24
	36	15 Vulp B.D. 69·1084		66	58 39 - 30		41.47				57 25-59 58 57-31
	37	69 Draconis	T.C.	а	20 01 52 04		55.23				20 02 11.07
		Groom. 1119 176 B. Cygni	L.C.,nr	66	08 51·95 16 44·86		45.53	90.89	17-33	15.85	17 01-38
	40	B.J. 765		a	18 45-34		46.03	01.84	15.81		19 01 - 88
	41	41 Cygni ω ¹ Cygni		44	25 28·73 27 01·51						25 45·07 27 18·28
	43	Groom. 3241		44	30 08 - 41		10.86				30 26-71
		B.J. 770		и	32 26·05 34 24·82		28.90				32 44·75 34 45·47
	46	B.J. 777		41	38 07 - 11		07.93	23.86	15.93		38 23 - 78
	47 48	B.J. 778 B.J. 780		41	39 01 · 56 42 19 · 86		01.80 20.42	17 63	15·83 15·85		39 17 · 65 42 36 · 27
		B.J. 784		44	43 39.74		40.35		15.88		43 56 20

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	ference No.	Овјест	Notes	Observer	Time of Observed Transit	Coll.	See, of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	≥ ≥			9		Dev.)	ž.	X			
1910				8	h. m. s.	s.	s.	s.	s.	s.	h. m. s.
	1 2 3 3 4 5 5 6 7 8 9 9 10 11 12 3 13 14 15 16 17 18 19 20 21 22 22 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33	76 Draconis. 220 Hr. Drac. 220 Hr. Drac. 220 Hr. Drac. 230 Hr. Drac. 230 Hr. Drac. 230 Hr. Drac. 240 Hr. Drac. 250 Hr. Drac. 260	L.C.,nrr	N	h. m. s. s. 50 18 51 24 - 19 35 25 24 - 19 35 25 24 - 19 35 25 24 - 19 35 25 25 25 25 25 25 25 25 25 25 25 25 25	·051 (·737)	$\begin{array}{c} 57.622\\ 29.44\\ 52.94\\ 52.93\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 52.83\\ 53.84\\ 52.53\\ 53.84\\ 52.53\\ 53.84\\ 53.83\\ 5$	13-62 51-16 54-10 08-51 14-06 57-71 17-99 09-91 12-51 30-39 01-82 23-84 09-23 45-49 41-56 54-09	16-00 15-92 15-81 15-85 15-85 15-86 15-76 15-88 16-04	15-86 15-86 16-01 16-02	h. m. s. 20 51 45-29 53 51-29 53 51-29 53 51-29 53 51-29 54 52 51 54 52 51 54 52 51 55 51-20 55 51-20 55 51-20 55 51-20 55 51-20 55 51-20 55 51-20 55 51-20 55 51-20 55 51-20 55 51-10 55 51-10 55 51-10 55 51-10 55 51-10 55 51-10 55 51-10 55 51-10 57 22-20 57

Clamp East. 1—22. Adopted $\Delta T + m = 15 \cdot 846 + \cdot 0125$ (T $-20^{\circ} \cdot 20^{\circ}$). 23 - 49. Adopted $\Delta T + m = 16 \cdot 033 + \cdot 0125$ (T $-21^{\circ} \cdot 40^{\circ}$).

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Date	ace	Овјест	Notes	.er	Time of Observed	Coll.	Sec. of Transit Corrected	A. of n Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.			Observer	Transit	(Polar Dev.)	Sec. of Corr	R. A. Known S	App	Adc	vation
1910					h. m. s.	s.	8.	8.	8.	81	h. m. s.
Sept. 10	2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 22 24 25 26 29 30 1 32 33 34	00 Cygni. 1 H. Dracouis B.J. 875. 1 H. Dracouis B.J. 817. B.J. 813. B.J. 814. B.J. 815. B.J.	r L.C.,nr r L.C.,nr	20 mm	21 21 51-81 1 24 07-10 1 25 53-90 1 24 07-10 1 25 53-90 1 25 53-90 1 25 53-90 1 25 53-90 1 25 53 54 54 1 21-07 1 25 55 54 54 1 21-07 1 25 55 54 54 1 21-07 1 25 55 54 1 25 55 54 1 25 55 54 1 25 55 54 1 25 55 54 1 25 55 54 1 25 55 54 1 25 55 54 1 25 55 54 1 25 55 55 54 1 25 55 55 54 1 25 55 55 54 1 25 55 55 54 1 25 55 55 54 1 25 55 55 54 1 25 55 55 55 54 1 25 55 55 55 54 1 25 55 55 55 55 55 55 55 55 55 55 55 55	·056 (-745)	53 825 13 82 14 14 34 14 15 15 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	18 · 09 · 09 · 09 · 02 · 69 · 12 · 50 · 66 · 98 · 49 · 17 · 59 · 66 · 68	16-14 16-06 16-05 16-07 16-12	16.04	51 47-48 57 03-43 22 05 16-64 06 01-66 08 08-15 10 03-25 11 18-65 23 44-50 26 06-92 27 37-43 29 10-22 30 45-85 33 36-53 35 21-37
Sept. 13	37 38 39 40 41 42 43 44 45 46 47 48	b Aquilae 21 B. Vulp 4 Cygni B.D. 76-734 B.D. 76-734 B.D. 70-1073 B.D. 49-3059 B.J. 738 14 Cygni 10 Vulp B.J. 740 743 743 4 Cygni		8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	19 20 26.74 21 27.93 22 39.96 24 28.55 26 50.69 31 27.40 33 16.27 33 46.76 36 15.8 39 44.10 40 47.26 43 08.4 44 44.81 51 44.59	·059 (·752)	40·62 31·78 54·86 29·66 17·22 47·71 16·70 44·55 47·94 08·72 45·15	03·27 03·56 24·37	15-62 15-65		19 20 42-64 21 44-03 22 56-28 24 47-44 27 10-52 31 45-23 33 32-88 34 03-37 36 32-36 40 00-21 41 03-60 43 24-38 45 00-81 52 00-48

Clamp East. 1—35. Adopted $\Delta T + m = 16 \cdot 033 + \cdot 0125$ (T-21 h 40 m). 36—49. Adopted $\Delta T + m = 15 \cdot 647 - \cdot 0068$ (T-21 h 10 m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	Object	Notes	Observer	Time of Observed Transit	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	Refe			Obs		Dev.)	Sec.	Kn	Α.		
1910 Sept. 13	1 2 3 4 4 5 6 6 7 8 8 9 10 111 12 13 14 15 16 17 18 19 20 21 22 22 24 22 5 26 29 9 30 31 23 23 33 34 35 36 37 38	B.J. 752 15 Vulp. 16 Vulp. 16 D. 69-1084. 60 Draconis 8 Cygni. 16 Vulp. 9 Avuliae. B.J. 750 16 Cygni. B.J. 750 16 Cygni. B.J. 750 17 Cygni. B.J. 750 18 J. 775 B.J. 775 B.J. 775 B.J. 778 B.J. 778 B.J. 778 B.J. 778 B.J. 778 B.J. 778 B.J. 780 Cygni. B.J. 790 11 Draconis. B.J. 580 B.J. 580 27 Cygni. B.J. 790 11 Draconis. B.J. S07 27 Cygni. B.J. 780 78 Draconis. B.J. S1 78 Draconis. B.J. S21	r rn rn L.C.,rn		h. m. s 19 54 31-21 58 39-72 00 15 1-85 58 39-72 00 1-95 59 30 10 1-95 50 30 10 1-95 50 30 10 1-95 50 30 10 1-95 50 30 10 10 10 10 10 10 10 10 10 10 10 10 10	8. ·059 (·752)	s. 31.555 09.844 1.444 555 09.845 151.29 151	8. 47 · 20 01 · 77 56 · 95 17 · 58 36 · 22 13 · 13 · 13 · 13 · 45 · 21 14 · 02 57 · 69 18 · 42 · 09 · 86 30 · 35	s. 15-65 15-65 15-62 15-62 15-62 15-62 15-62 15-65 15-70 15-78	s. 15·66 15·65	b. m. s. 19 54 47-21 57 22-58 57 57-10 20 02 10-69 60 69-91 60 68-82 10 01-78 21 10-18 22 11-18 23 24-28 24 12-18 25
	40 41 42 43 44 45 46 47 48	14 Pegasi B.J. 823 Bradley 2868. 13 Ce; hei B.J. 826. 16 Cephei B.J. 831 B.J. 833 28 Pegasi B.J. 837 1 H.Lacertae. Bradley 2942.	r	65 64 64 65 64 65 66 66 66 66 66 66 66 66 66 66 66 66	45 37·83 48 44·16 49 50·68 51 37·24 56 28·73 57 43·10 22 02 35·50 05 00·45 06 01·24 07 50·01 09 46·84 11 00·40		38.36 44.61 51.86 38.48 28.98 45.62 35.94 00.98 01.61 52.41 47.57	00 · 29 44 · 66 51 · 58 16 · 64	15.68		45 54·00 49 00·25 50 07·50 51 54·07 56 44·62 58 01·26 22 02 51·58 05 16·62 06 17·25 08 08·05 10 03·21 11 18·59

Clamp East.

^{1-50.} Adopted ΔT+m=15·647-·0068 (T-21 h 10m),

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	9				Time of	Coll.	ransit	R.A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A.
DATE	Reference No.	Object ·	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R.A Known	Apps ΔT	Adoj AT	Obser- vation
1910					h. m. s.	8.	8.	s.		8.	h. m. s.
Sept. 13	1 2 3 4 5 6 7 8 9 10	B.A.C. 3495 30 H. Camel B.D. 70·1240 28 Cephei B.J. 848 29 Cephei B.J. 851 Groom. 3857 B.J. 855 B.J. 855	L.C.,rn	S	22 16 29-93 19 58-39 23 26-53 25 47-43 27 20-22 28 50-42 33 18-27 35 02-64 36 45-02 38 33-14	·059 (·752)	$52 \cdot 19$ $28 \cdot 74$ $51 \cdot 21$ $21 \cdot 77$ $54 \cdot 44$ $20 \cdot 87$ $05 \cdot 55$ $45 \cdot 24$	07·90 37·40 00·87	15·84 15·71 		22 23 44-30 26 06-85 27 37-41 29 10-08 33 36-51 35 21-19 37 00-88 38 49-31
Sept. 14	12	b Aquilae. 2 18 Vulp. 2 18 Vulp. 4 Cygni. 4 Cygni. 8 Vulp. 8 U. 2 18 U. 2 18 Vulp. 8 U. 2 18 U	L.C.,nr.	N	19 20 25-32 21 22 24 24 21 22 24 24 24 24 24 24 24 24 24 24 24 24	·085 (·785)	$\begin{array}{c} 28.48\\ 40.711\\ 43.855\\ 51.73\\ 29.61\\ 46.755\\ 11.744\\ 29.61\\ 46.755\\ 48.001\\ 44.655\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 48.65\\ 48.001\\ 4$	07-21. 03-24 03-54 19-87 47-19 36-44 01-76 56-94 21-85 29-60 23-77 36-20 56-16 31-30 51-09	15-48 15-50 15-55 18-61 15-53 15-51 15-53 15-56 15-58 15-54 15-54 15-55 15-56 15-58	15-54	19 20 42-66 22 55-26 22 55-26 23 57-26 25 77-26 26 77-26 27 77-26

Clamp East. 1—10. Adopted $\Delta T + m = 15 \cdot 647 - \cdot 0068 \ (T-21^b \ 10^m),$ 11—49. Adopted $\Delta T + m = 15 \cdot 542 - \cdot 0068 \ (T-20^b \ 45^m),$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE.—Continued

COLL # 2

					mı .	COLL.	ansi	of	a t	₽ #	App. R.A.
DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See, of Transi Corrected	R. A. of Known Star	Apparent $\Delta T + m$	Adopted $\Delta T + m$	from Obser- vation
1910					h. m. s.	8.	s.	8.	8.	8.	h. m. s.
Sept. 14	2 3 4 5 6 7 8 9	B.J. 792. B.J. 793. Groom. 3409. B.J. 795. B.J. 798. σ Cygni. B.J. 804. 69 Cygni. 1 H. Draconis.	L.C.,pr	N & & & & & & & & & & & & & & & & & & &	21 01 25·10 02 37·90 05 36·01 07 02·76 09 16·00 13 38·68 17 41·82 21 52·29 24 07·92	·035 (·785)	38 · 53 38 · 26 06 · 28 17 · 33 39 · 33 42 · 11 52 · 88	54 · 04 33 · 01 57 · 68	15·64 15·51 15·57		21 01 41-40 02 54-07 05 53-80 07 21-82 09 32-87 13 54-87 17 57-65 22 08-42
	10 11 12 13 14 15 16	B.J. 807 ρ Cygni. B.J. 811 B.J. 813 B.J. 817 78 Draconis B.J. 821 14 Pegasi B.J. 823 Bradley 2868	r		25 53·45 30 21·54 33 06·40 35 55·56 40 21·41 41 43·52 43 13·90 45 38·03 48 44·36		54-27 22-34 07-07 56-77 23-62 45-87 14-81 38-49 44-75	09-85 22-65 12-43 30-34 00-28	15·58 15·53	15.53	26 09-81 30 37-88 33 22-61 36 12-31 40 39-16 42 01-41 43 30-35 45 54-03 49-00-28 50 07-39
	20 21 22 23 24 25 26 27 28 29	13 Cephei B.J. 826. 16 Cephei B.J. 831. B.J. 833. B.J. 835. B.J. 837. 1 H. Lacertae. Bradley 2942. B.A.C. 3495. 30 H. Camel.	r L.C.,nr	44 44 44 44 44 44 44 44 44 44 44 44 44	51 37 30 56 28 94 57 43 14 22 02 35 64 05 00 57 05 45 60 07 50 19 09 46 98 11 00 44 16 29 85 19 58 55		38 · 47 29 · 14 45 · 61 36 · 02 01 · 09 46 · 12 52 · 54 47 · 63 02 · 92 22 · 09	44 · 66 51 · 57 16 · 64 01 · 67	15·52 15·55 15·55 15·55 15·61 15·61 15·31		51 54·00 56 44·67 58 01·14 22 02 51·55 05 16·62 06 01·65 08 08·07 10 03·16 11 18·45
Sept. 15	32 33 34 35 36	10 Vulp B.J. 740 B.J. 742 B.J. 743 β Sagittae φ Aquilae	r	N	$\begin{array}{c} 19 \ 39 \ 44 \cdot 34 \\ 40 \ 47 \cdot 50 \\ 41 \ 55 \cdot 18 \\ 43 \ 08 \cdot 71 \\ 44 \ 45 \cdot 21 \\ 51 \ 44 \cdot 96 \end{array}$.048 (·746)	48 · 17 56 · 04 09 · 03 45 · 48 45 · 18	03 · 53 11 · 37 24 · 34	15-33 15-31		19 40 00-13 41 03-52 42 11-39 43 24-38 45 00-83 52 00-53
	38 39 40 41 42 43 44 45 46 47 48	B.J. 750 B.J. 752 B.J. 752 B.D. 69 1084 69 Draconis b ² Cygni 20 Vulp p Aquilae B.J. 759 B.J. 765 40 Cygni 41 Cygni	r	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	53 03 50 54 31 54 57 09 68 58 39 50 20 01 52 07 05 50 87 08 00 35 09 53 16 11 39 37 12 42 15 18 45 72 24 00 11 25 29 15		04·51 31·87 10·15 41·62 55·19 51·52 00·80 42·57 46·39 00·74	19·85 47·17 57·96 01·74	15·30 15·39 15·35		53 19·85 54 47·21 57 25·49 58 56·96 20 02 10·53 06 06·86 08 16·14 10 08·77 11 58·14 12 57·91 19 01·73 24 16·08 25 45·01
	Cl	amn East	1	_3(Adopted	Λ <i>T</i>	-15.54	200	ise (Tr	20h 45m	

Clamp East. 1—30. Adopted $\Delta T + m = 15 \cdot 542 - \cdot 0068$ (T $-20^{\rm h}$ 45^m). 31-49. Adopted $\Delta T + m = 15 \cdot 335 - \cdot 0068$ (T $-21^{\rm h}$ 20^m).

TABLE III.

3 GEORGE V., A. 19

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	COLL. (Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Sept. 15	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 25 26 26 27 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	□ Cygni □ BJ. 788. ↑ Delphini □ Delphini □ Delphini □ Delphini □ Delphini □ Delphini □ Tolani □ Tolani	nr nr L.C.,nr r		h. m. s. s. 20 27 01. 3 22. 44 1.39 5 23 22. 45 5 32 22 4.5 5 32 23 4.5 5 32 23 5 32 5 32 5 32 5 32 5 32 5 32		52:82292414:202022292414:202022292414:202022292414:202022292404:20202229292402229292402229292402229292402229292402229292402222292924022222222	56-93 29-59 17-56 09-10 17-56 09-10 112-86 332-99 35-10 45-03 312-99 314-00 45-93 18-66 22-65 112-42 30-30 18-66 37-88 35-56 37-88 35-56 57-58 58-58 5	8. 15-33 15-33 15-36 15-43 15-37 15-37 15-38 15-48 15-37 15-38 15-48 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38 15-38	15-30	h. m. s. 20 27 18-14 20 25 55-94 31 08-15 10 32 44-58 32 49-66 49 32 55 51-94 32 55 51-94 32 55 51-94 32 55 51-94 32 55 51-94 32 55 51-94 32 55 51-94 32 55 51-94 32 55 51-94 32 51-94

Da 191 Sept

Sept

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CURCLE—Continued

TE	Reference No.	OBJECT	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
10					h. m. s.	s.	s.	s.	s.	s.	h. m. s.
t. 15	2 3 4 5	52 Pegasi	r	S	22 54 28·61 57 33·15 59 11·28 23 03 26·33 04 47·91 08 43·14	·048 (·746)	28.83 33.86 11.75 27.22 50.75	49·18 27·04	15·32 15·29	15.32	22 54 44·15 57 49·18 59 27·07 23 03 42·54 05 06·07 08 59·64
t. 16	8 9 10 111 12 13 144 15 16 17 17 18 19 20 1 22 22 23 24 25 26 29 27 28 29 30 31 32 33 33 34 35 6 37 7 38 9 40 142 43 44 45 46 47	N. W. Min. B.J. 726. 5. Aquilae. 21. B. Vulp. 4. Cygni. B.J. 728. 8. Cygni. B.J. 728. 8. Cygni. B.J. 728. 8. Cygni. B.J. 728. 8. Sagittae. B.J. 749. B.J. 740. B.	r r r	4	19 09 56-96 10 20 27-21 11 46-90 20 27-21 21 28-36 20 20 27-22 21 28-36 20 20 20 20 21 11-64 23 11-62 23 11-62 23 11-62 23 11-62 23 11-62 23 11-62 23 11-62 23 11-62 23 11-62 24 11-62 24 11-62 25 11-62	. (-704)	47-57-28-80 41-03-88-94 44-10-12-51-12-08 17-61-12-08 44-97-98-98-98-98-98-98-98-98-98-98-98-98-98-	02-76 27-69 03-19 03-111-35 24-33 19-82 47-16 49-63 57-95 01-72 21-83 29-58 23-73 51-06 41-47	15·12 15·22 15·15 15·08	15-16	

From Sept. 15 Clamp East; from Sept. 16 Clamp West. 1—6. Adopted $\Delta T + m = 15 \cdot 335 - \cdot 0068 \text{ } (T - 21^{\text{h}} \cdot 20^{\text{m}}). 7 - 49.$ Adopted $\Delta T + m = 15 \cdot 158 - \cdot 0068 \text{ } (T - 20^{\text{h}} \cdot 55^{\text{m}}).$

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A, from Obser- vation
1910					h. m. s.	8.	s.	8.	8.	s.	h. m. s.
Sept. 16	2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	B.J. 797 B.J. 799 F. Cygni, B.J. 804 69 Cygni 1 H. Draconis 72 Cygni B.J. 813 B.J. 813 B.J. 814 B.J. 816 B.J. 821 B.J. 821 B.J. 823 B.J. 823 B.J. 823 B.J. 823 B.J. 823 B.J. 836	r L.C.,nr	42 42 43 44 44 44 45 44 45 44 45 44 45 44 45 44 45 45	21 08 52-95 10 58-32 11 58-32 11 339-24 11 42-31 31 59-44 24 07-91 33 06-92 35 56-25 35 56-25 36 29-35 22 02 36-18 00 47-49 16-29-66 19 58-95 19 58		58 · 82 39 · 77 42 · 53 53 · 41 03 · 45 52 · 99 07 · 47 57 · 28 21 · 32 15 · 11 38 · 84 45 · 15 52 · 22 38 · 84 45 · 15 52 · 22 38 · 84 45 · 15 52 · 29 46 · 56 31 · 27 48 · 66 31 · 27 48 · 66 32 · 66 32 · 66 33 · 67 34 · 66 34 · 67 48 · 66 32 · 66 33 · 67 34 · 67 48 · 66 32 · 66 33 · 67 48 · 66 34 · 66 35 · 67 48 · 66 36 · 67 48 · 66 37 · 67 48 · 66 38 · 67 48 · 66 38 · 67 48 · 66 39 · 67 48 · 66 48	13-99 57-67 18-78 22-64 12-40 36-40 30-32 00-27 44-65 51-57 16-63 01-66 46-34 37-98	15·14 15·33.	15.15	21 09 08-48 11 13-58 13 74-93 17 57-69 22 08-56 31 08-14 33 22-62 36 12-43 36 12-44 36 47 40 36-47 41 30-26 45 53-9 49 00-30 56 44-64 22 02 51-62 06 01-71 07 46-42 07 46-62 07 46-62
Sept. 17	25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47	B.D. 76-734. B.J. 734. 8 Cygni. B.J. 794. 8 Cygni. B.D. 70-1073. B.D. 49-3059. B.J. 785. β Sagittae. 10 Vulp. B.J. 740. B.J. 742. B.J. 743. ξ Sagittae. ξ Sagittae. β Aquilae. β Aquilae. β L. 752. 15 Vulp. B.J. 752. 15 Vulp. B.J. 759. B.J. 765. 40 Cygni.			19 24 29-44 25 11-36 31 25 11-36 31 25 45 33 47-122 33 47-122 33 47-122 33 47-122 33 47-122 34 45-21 35 45-21 36 45-21 36 45-21 36 45-21 37 45-21 38 45-21 39 45-21 30 45-21 3	(.723)	55·10 12·12 29·89 17·61 47·97 48·36 56·12 09·16 45·61 45·34 04·68 31·98 10·31 41·77 55·38 51·69 00·96 42·90 46·50 00·97	03 · 16 03 · 49 11 · 32 24 · 32 19 · 79 47 · 15	15·13 15·20 15·16 15·17	15-15	19 24 47-32 7 10-32 7 10-32 13 45-62 13 45-62 13 45-62 14 40 32 24 77 14 03-32 14 10 3-32 14 10 3-32 14 10 3-32 14 10 3-32 15 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 16 10 3-32 17 25-64 19 10 1-71 20 16-12 25 44-98

Clamp West. 1—23. Adopted $\Delta T + m = 15 \cdot 158 - \cdot 0068$ (T—20^h 55^m). 24-48. Adopted $\Delta T + m = 15 \cdot 149 - \cdot 0068$ (T—20^h 40^m).

App. R.A. from Obser-

SESSIONAL PAPER No. 25a

TABLE III.

COLL.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Time of Observed

DAIL	Referen	Charles	110120	Observ	Transit	(Polar Dev.)	Sec. of Corn	В. Л Клоwт	$^{\mathrm{App}_{2}}_{\Delta T}$	Ado AT	vation
1910					h. m. s.	S.	s.	s.	8.	s.	h. m. s.
Sept. 17	10 11 12 13 14 15 16 17 18 19 20 21 22	ω Cygni B J. 708 r Delphini B J. 770. 29 Vulp B J. 770. 29 Vulp B J. 774. B J. 774. B J. 774. B J. 778. B J. 782. E Cygni B J. 792. Groom; 3499 B J. 795. B J. 795. B J. 799. Croom; 3499 B J. 799. Cygni B J. 791. B J. 791.	rn rn	SS 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 27 02 28 28 41 63 03 52 79 22 28 68 93 33 52 79 32 28 68 93 35 14 22 23 68 93 35 14 22 25 24 45 51 25 65 32 10 12 55 65 32 10 12 10 12 55 65 32 10 12 10 12 55 65 32 10 12 10 12 55 65 32 10 12 10 12 55 65 32 10 12 10 12 55 65 32 10 12 10 12 55 65 32 10 12 10 12 55 65 32 10 12 10	(-723)	41.76 52.97 29.30 16.99 14.40 02.37 53.94 57.50 29.65 35.90 32.78 26.24 16.97 38.56 06.72 53.29 55.85 55.99 653.35 59.96 53.35	29·57 17·54 09·05 12·61 144·85 51·05 41·45 08·44 13·97 22·63 12·38	15·17 15·17 15·17 15·11 15·20 15·15	15-14	20 27 18-15 28 56-91 31 08-12 32 44-45 34 32-14 35 29-55 39 17-52 43 09-09 53 51-05 56 47-93 21 01 41-39 03 32-12 05 53-71 07 21-87 09 08-44 11 14-00 14 15-11 22 08-49
Sept. 19	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	a Vulp B.J. 732 B.J. 732 B.J. 738 B.J. 748 B.J. 740 B.J. 740 B.J. 740 B.J. 742 B.J. 742 B.J. 743 F Sagittae F Sagittae F Constitution of the constitutio	r L.C.,rn	N	19 24 44 38 26 52 15 24 28 12 13 33 17 24 34 33 34 77 13 36 17 01 38 37 37 37 37 37 37 37 37 37 37 37 37 37	(-678)	52.48 12.55 18.00 48.47 17.58 45.55 48.83 56.59 09.72 46.11 45.95 05.13	03 · 10 03 · 44 11 · 27 24 · 28	14-64 14-61 14-68 14-56	14-60	19 24 59-27 27 07-09 28 27-16 33 32-61 33 433-68 36 32-18 40 32-18 40 32-18 41 07-49 43 50-71 55 53 19-73 55 44 20 170-12 20 170-12 20 170-12 21 16-04 21 16-04 21 16-04 21 17-9 21 18-08 21 18-

Clamp West. 1—24. Adopted $\Delta T + m = 15 \cdot 149 - \cdot 0068 \ (T - 20^{\,\mathrm{h}} \ 40^{\mathrm{m}}), 25 - 49.$ Adopted $\Delta T + m = 14 \cdot 597 - \cdot 0068 \ (T - 20^{\,\mathrm{h}} \ 45^{\mathrm{m}}).$

3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

TABLE III.

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	COLL. (Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Sept. 19	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	B.J. 774 B.J. 777 B.J. 777 B.J. 777 B.J. 780 B.J. 790 B.J	r rn L.C.,nr		h. m. s. 20 35 16-76 93 18-76	(-678)	09 · 03 · 03 · 02 · 95 · 04 · 04 · 05 · 04 · 04 · 05 · 04 · 04	17.52 36.13 36.13 36.13 36.13 41.42 37 51.01 41.42 53.98 32.89 13.94 19.10 09.78 22.60 09.78 30.28 00.25 44.64 51.55 51.66 61 01.64 46.29	14.64 14.57 14.62		h. m, s. 20 35 22-52 33 522-52 34 35 523-52 54 44 45 56 47 72 56 57 57 57 57 57 57 57 57 57 57 57 57 57
Sept. 21	47 48	B.J. 768. Ç Delphini. B.J. 771. 29 Vulp. B.J. 774. B.J. 778. B.J. 778. B.J. 780. B.J. 784. 76 Draconis. 76 Draconis. 76 Cygni. Groom, 3409. B.J. 798.	r r nr	N	20 28 42 42 30 53 62 33 07 35 34 17 57 35 15 04 38 08 71 39 03 05 42 21 33 43 41 30 48 53 07 51 26 68 53 36 19 56 32 94 21 05 37 38 09 17 48	(-666)	53.76 07.49 17.78 15.20 09.32 03.19 21.73 41.74 57.70 30.36 36.70 33.60	21·76 229·51 23·63 17·49 36·10 156·05 12·14	14·27 14·31 14·31 14·30 14·37 14·31	14-33	20 28 56 86 31 08 10 33 21 83 34 32 12 35 29 54 38 23 66 39 17 53 42 36 07 43 56 68 51 44 69 53 51 63 56 47 93 21 05 53 55 09 32 87

Clamp West. 1—34. Adopted $\Delta T + m = 14 \cdot 597 - \cdot 0068 \ (\mathrm{T} - 20^{\,\mathrm{k}} \ 45^{\mathrm{m}}).$ 35—49. Adopted $\Delta T + m = 14 \cdot 327 - \cdot 0068 \ (\mathrm{T} - 21^{\,\mathrm{k}} \ 55^{\mathrm{m}}).$

DA

191

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

ATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See, of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App.R.A. from I Obser- vation
10					h. m. s.	8.	s.	8.	s.	s.	h. m. s.
t. 21	1 2	B.J. 799 σ Cygni		N	21 10 59·11 13 40·02		59·57 40·51	13-91	14.34	14-33	21 11 13·90 13 54·84
	3	Bradley 2796		41	16 27 - 48		30.13				16 44-46
	5	B.J. 804 69 Cygni	r	ш	17 43·08 21 53·66		54.10	57.62	14.35		17 57 · 60 22 08 · 43
	6	1 H. Draconis.	L.C.,nr	а	24 08 86		04.73	19.31	14.58		26 09·74 27 32·58 30 37·88 33 22·62
	7 8	B.J. 807		a	25 54·75 27 16·52						26 09.74
		B.J. 809 ρ Cygni		44	30 22-94		23.55				30 37.88
	10	B.J. 811		44	33 07 - 79		$08 \cdot 29$	22.57	14.28		33 22 62
	11	B.J. 813		es .	35 56 99		57 - 94	$12 \cdot 30$			36 12 - 27
		B.J. 817 78 Draconis		4	40 22 · 87 41 45 · 17		47.00				40 39·01 42 01·42
		B.J. 821		Œ	43 15.24		15.94	30.25			43 30 27
		14 Pegasi		66	45 39 29		39-63		14.32		45 53.96
		B.J. 823 Bradley 2868		α	48 45 · 64 49 52 · 09		53.00	00.24	14.32		49 00·25 50 07·33
	18	13 Cephei		α	51 38-68		39.59				51 53-92
	19	B.J. 826		а	56 30 17		30.29	44.63	14.34		56 44.62
	20	B.J. 831 B.J. 833		a	22 02 36·93 05 01·81		37.20	51 - 54	14·34 14·41		22 02 51·53 05 16·52
		B.J. 835		44	05 46-87		47.25	01.63	14.38		06 01.58
	23	1 H. Lacertae		ec ec	09 48-31		48.81				10 03 14
	24	Bradley 2942 B.A.C. 3495	T.C.	a	11 01 · 83 16 30 · 69		03.87	90 54	14.35	14.20	11 18-20
	26	30 H. Camel	L.Cnr	a	19 59 66		54.76	08 - 63	13.87	14.92	
	27	B.D. 70.1240	- /	а	23 27 - 98		29.73				22 23 44 05
	28 29	B.J. 847		4	25 36·74 27 22·22						25 52·05 27 37·26 29 09·62
		29 Cephei		ш	28 52-21		55:30	31.90			27 37 · 26 29 09 · 62 33 36 · 07
	31	B.J. 851		44	33 19 67		21.75				33 36-07
		B.J. 852		44	35 00-75				14.44		35 15-55
		B.J. 855		64	36 46-49 38 34-65		24.99	49.22	14·29 14·33		37 00·90 38 49·31
	35	B.J. 858		44	39 52 05				14.38		40 06-90
		B.J. 859		66	41 59 - 56		59.81	$14 \cdot 12$	14.31		42 14-13
		B.J. 862 52 Pegasi		66	45 27·33 54 29·71		27 - 59	41.93	14.34		45 41 · 91 54 44 · 13
-		B.J. 869		66	57 34 20		34.74	49-17	14.43		57 40 00
	40	B.J. 870		66	59 12-38		12.69	$27 \cdot 05$	14.36		59 27·01 23 00 19·11 03 42·53
		B.J. 871 5 Andromedae		"	23 00 04 · 65 03 27 · 52				14.32		23 00 19-11
		B.J. 874		α	03 27 - 52 04 49 - 20						05 05 96
	44	B.J. 875		ш	08 44.31		$45 \cdot 24$	$59 \cdot 66$			05 05 86 08 59 56 11 28 69 14 12 37 16 13 38
		Bradley 3085		a	11 12-21		14.37				11 28 - 69
	46	Groom. 4033 B.J. 880		a	13 55·73 15 58·81		59.06	13.35	14-29		14 12·37 16 13·38
	48	B.J. 881		а	20 41.11		41.35	55 - 67	14.32		20 55 67
	49	39 H. Cephei	nr	а	27 35 56				13.70		20 00 01
	-										

Clamp West.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE State Part Part											-
Sept. 22	Date	Reference No.	Овјест	Notes	Observer	Observed	(Polar	Sec. of Transit Corrected R. A. of	Apparent $\Delta T + m$	Adopted $\Delta T + m$	from Obser-
49 B.J. 833 " 05 01·99 02·44 16·59 14·15 05 16·55 50 B.J. 835 r " 05 47·21 47·61 01·62 14·01 06 01·72		2 3 4 4 5 6 6 7 8 9 9 10 11 12 13 14 15 6 17 18 9 9 20 1 22 2 23 24 25 6 27 28 9 30 3 3 3 3 3 3 3 6 4 1 4 2 4 3 4 4 4 5 6 4 7 8 4 9	10 Vulp. BJ, 740. 18 BJ, 750. 18 BJ, 810. 18 BJ, 811. 18 BJ, 813. 18 BJ, 813. 18 BJ, 823. 18 BJ, 823	r r r r r r L.C.,nr	44 44 44 44 44 44 44 44 44 44 44 44 44	19 36 47 - 25 39 44 54 54 44 64 64 64 64 64 64 64 64 64 64 64 64	− ·053	18-04 19-2	S 14-10 10 14-14 14-15 14-15 14-16 1	14-12	19 37 02:16 14 03:40 15 03:40 16 03:40 17 03:40 18 03:40

D

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

ATE	99	Овјест	Notes	. Time of		COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
AIE	Reference No.	OBJECT	110165	Observer	Transit	(Polar Dev.)	Sec. of Corre	R. /	Appr	Ado	vation
910					h. m. s.	*s.	s.	s.	s.	8.	h. m. s.
ot. 22	2 3 4 5 6 7	B.J. 836	L.C.,nr	8 4 4 4 4 4 4 4 4	22 07 31·09 09 48·49 16 32·02 20 00·20 25 42·52 27 22·44 54 29·92 57 34·42	(.751)	49.08 24.67 54.64 42.97 23.22 30.06	38 - 63 08 - 70 37 - 34		14-10	22 07 46-26 10 03-19 25 57-07 27 37-32 54 44-16 57 49-17
		B.J. 869 B.J. 871		ш	23 00 04 82						23 00 19-11
ot. 26	11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34	b Aquilae. 21 B. Vulp. 4 Cygni. 4 Cygni. 5 Cygni. 6 Lip. 762 8 Cygni. 783 8 D. 70-1073 8 D. 70-1074 8 D. 70-1074 8 D. 70-1074 8 D. 70-1074 8 D. 742 8 D. 742 8 D. 742 8 D. 744 8 D. 750 15 Vulp. 8 D. 69-1084 8 D. 750 15 Vulp. 8 D. 69-1084 8 D. 750 10 Vulp. 8 D. 69-1084 8 D. 750 10 Vulp. 8 D. 69-1084 9 O'grain 20 Vulp. 30 Cygni 30 Cygni 8 D. 750 10 Vulp. 9 Vygni 9 Vygni 10 V	r		19 20 28-79 91 21 29-99 92 21 22-99 92 21 22-99 93 21 22-99 21 22-99 21 22-99 21 22-99 21 22-99 21 22-99 21 22-99 21 22-99 21 22-99 21 22-99 21 22-99	(-697)	30 · 28 42 · 48 45 · 64 45 · 64 45 · 64 47 · 14 48 · 56 46 · 48 49 · 76 57 · 57 10 · 66 · 53 11 · 72 42 · 87 53 · 11 02 · 44 16 · 37 44 · 56 45 · 56 46 · 48 47 · 14 16 · 37 46 · 48 47 · 14 48 · 56 49 · 76 57 · 57 10 · 66 · 53 11 · 72 42 · 87 53 · 11 02 · 44 14 · 56 43 · 56 44 · 56 45 · 56 46 · 48 47 · 14 46 · 48 47 · 14 47 · 14 48 · 56 49 · 76 40 · 18 40	06-98 02-90 03-29 11-10 24-16	13-51 13-53 13-53 13-50		19 20 42-42 21 43-79 22 55-64 32 55-64 32 55-64 32 55-64 33 44-33 33 32-48 34 02-85 37 02-07 39 59-99 42 12-64 42 29-88 52 00-36 53 19-54 57 25-23 58 56-38 20 02-97-70 68 12-98-70 17-98-71 18-98-71 18-
	36 37 38 39 40 41 42 43 44 45 46 47 48	176 B. Cygni B.J. 765 40 Cygni 41 Cygni 42 Cygni 43 Cygni B.J. 768 Groom. 3241 B.J. 770 29 Vulp B.J. 777 B.J. 778 B.J. 778 B.J. 778 B.J. 778 B.J. 784 R.J. 784 B.J. 784 R.J. 785 B.J. 784 R.J. 784 R.J. 778 R.J. 778 R.J. 788	r	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	16 47 45 18 47 45 24 01 83 25 30 99 27 03 57 28 43 13 30 10 12 32 27 74 34 18 25 35 15 29 38 09 39 39 03 75 42 22 07 43 42 09 48 52 82		47-99 02-33 31-35 04-31 43-23 12-20 30-17 18-49 15-96 10-04 03-90 22-50 42-56	01-52 56-79 29-45 23-53 17-43 36-02 55-97	13·58 13·49 13·49 13·53 13·53 13·51 13·71	13-50	17 01-10 19 01-49 24 15-83 25 44-85 27 17-81 28 56-73 30 25-70 32 43-67 34 31-99 35 29-46 38 23-54 39 17-40 42 36-06
		Cl W		1 0	Adopted	AT 1	14.116		ee /T	01 h 90m	

Clamp West. 1—9. Adopted $\Delta T + m = 14 \cdot 112 - \cdot 0068 \text{ (T} - 21^{\text{h}} \cdot 20^{\text{m}})$, 10—49. Adopted $\Delta T + m = 13 \cdot 502 - \cdot 0068 \text{ (T} - 20^{\text{h}} \cdot 45^{\text{m}})$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	0				Time of	COLL.	ransit	of Stars	ent . m	ted	App. R.A.
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
Sept. 20	2 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 29 30 31	B.J. 788. B.J. 792. B.J. 792. B.J. 792. B.J. 792. B.J. 793. B.J. 793. B.J. 793. B.J. 795. B.J. 813. B.J. 814. B.J. 815. B.J. 8	r r L.C.,nr	N	20 33 36-S5 55 34-34 21 01 27-15 55 34-34 32 1 01 27-15 55 34-34 36 317-68 66 57-25 57-55	(-697)	$\begin{array}{c} 37\cdot 020\\ 27\cdot 76\\ 40\cdot 33\\ 38\cdot 37\\ 39\cdot 800\\ 41\cdot 23\\ 39\cdot 800\\ 41\cdot 23\\ 429\cdot 600\\ 41\cdot 23\\ 41\cdot 23\\ 41\cdot 23\\ 41\cdot 43\\ 41\cdot $	41 · 29 · 53 · 87 · 68 · 32 · 13 · 84 · 42 · 93 · 19 · 93 · 90 · 67 · 22 · 51 · 12 · 20 · 30 · 17 · 00 · 20 · 44 · 60 · 61 · 60 · 60 · 60 · 60 · 60 · 60	13·49 13·53 13·54 13·54 13·52 13·91 13·86 13·49 13·54 13·54 13·54 13·52 13·51 13·49	13-49	20 53 50-90 55 50-52 21 01 41-26 55 50-52 21 01 41-26 22 51-83 23 31-87 25 53-30 25 72 25 72 25 72 25 72 25 72 25 72 25 72 25 72 25 72 25 72 25 72 26 72 27 72 27 72 28
Sept. 27	35 36 37 38 39 40 41 42 43 44 45 46 47 48	B.J. 817 78 Draconis. 78 Draconis. J. 821 Bradley 2868. 79 Draconis. Bradley 2897. 16 Cephei. B.J. 833 B.J. 835 B.J. 835 B.J. 837 1 H. Lacertas Bradley 2942. B.A.C. 3495 30 H. Camel. B.D. 70-1240. 28 Cephei	r r L.C.,rn L.C.,rn		21 40 23-27 41 45-57 43 15-92 49 52-77 51 31-05 56 46-66 57 45-16 22 05 02-66 07 51-85 09 49-06 11 02-42 16 33-22 20 01-22 23 28-56 25 49-16	(.708)	16-64 53-70 33-22 49-13 47-20 03-0- 48-0- 53-85 49-65 04-53 26-25 55-96 30-3	1 30 · 16 3 16 · 55 1 01 · 59 7 2 3 3 9 · 36 2 39 · 36 2 00 · 23	13·51 13·55 13·14 13·24		21 40 38·78 42 01·06 43 30·13 50 07·19 51 46·72 58 00·69 22 05 16·53 06 01·53 08 07·36 11 11 18·02 23 43·81 26 06·06

Clamp West. 1—33. Adopted $\Delta T + m = 13\cdot 502 - \cdot 0068$ (T—20 $^{\rm h}$ 45 $^{\rm m}$). 34—49. Adopted clock-rate zero.

TABLE III.

COLL. issp _ si

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	nce	Овјест	Notes	'er	Time of Observed		Tra	A. of n St.	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from
	Reference No.			Observer	Transit	(Polar Dev.)	See, of Tra	R. A. Known S	App	Adc A7	Obser- vation
1910	П				h. m. s.	8.	s.	s.	8.	s.	h. m. s.
Sept. 27	1	B.J. 848		S	22 27 23 - 04		23.79	37.30		13.49	22 27 37 28
	2	29 Cephei		44	28 52·75 30 29·04	(.708)	55.94				29 09·43 30 45·11
	3 4	226 B. Cephei B.J. 851		α	33 20.32		22.48				33 35-97
		Groom. 3857		er	35 04.78		07.21				35 20.70
	6	B.J. 858	r	α	39 52-87		$53 \cdot 41$	06-93	13.52		40 06-90
	7	B.J. 869		u	57 34-96				13.58		57 49·07 23 03 42·52
	8 9	5 Andromedae B.J. 874		ш	23 03 28 · 31 04 49 · 93						05 05 85
	10	B.J. 875		66	08 45 19		46.16	59-64			08 59 - 65
	11	Bradley 3085	,	"	11 12.96		$15 \cdot 20$				11 28 - 69
		Groom. 4033		66	13 56 37		58-95	00.05	10.70		14 12 44
		39 H. Cephei Bradley 3217		66	27 35·24 0 04 09·95		13.40	00.35	12.79		0 04 26 89
	15	B.J. 4		ш	05 27 . 00		27.63	41.09			05 41 · 12
	16	B.J. 8		66	10 55 - 35		58-07				11 11 56
	17	σ Andromedae		44	13 26 02		26.52				13 40·01 16 25·38
	18 19	ρ Andromedae Bradley 34		66	16 11·41 24 56·36						25 12-58
		B.J. 17		ii	31 45.74		46-60	00.11			32 00 09
	21	B.J. 20		66	34 19.55		19.96	$33 \cdot 40$	13.44		34 33 45
		B.J. 21			35 12.38						35 26.82
		B.J. 24 23 Cass		"	39 30 · 44 41 33 · 49						39 46 · 29 41 49 · 31
	25	η Cass		66	43 27 99		28 - 98				43 42-47
	26	» Andromedae		ee	44 39 - 51		40.10				44 53 - 59
	27	322 H. Camel	L.C.,rn	66	48 12 - 16				13.62		
	28	B.J. 33	ero.	a	51 34·02 56 08·14				13·45 13·65		51 48-04
		Bradley 109		4	1 01 18-98				10.00		1 01 36-02
		B.J. 41		ec	04 17 - 46		20.90				04 34-39
	32	Bradley 137		4	08 20 - 53						08 37.55
		Bradley 155 Bradley 166		44	12 37 · 59 16 · 38 · 64						12 53·94 16 55·29
		B.J. 48		44	19 43 96		45.06	58-64			19 58 55
	36	a Urs. Min	rn	44	27 02.23		35.75	48.48	12.73		
	37	B.J. 52		66	32 16.53						32 30 72
	38	42 Cass B.J. 57		-	35 45·16 37 49·61		46.96	00 00			36 00·45 38 03·85
		2 Persei	r	44	46 14-35						46 28 68
Sept. 28	41	69 Draconis		N	20 01 53 42		56.37			13.47	20 02 09 84
	42	b² Cygni		- 44	05 52·63 08 02·17	(.752)	03 51				06 06 · 62 08 15 · 98
		20 Vulp 30 Cygni		44	10 15-62						10 29-84
	45	B.J. 757		а	10 35-13		35.88	49.34			10 49.35
	46	B.J. 759		44	11 40 - 29						11 57-02
	47	176 B. Cygni		44	16 47 · 08 18 47 · 32				13.58		17 01·11 19 01·37
		B.J. 765 40 Cygni	r	44	24 01.81				19.98		24 15-82
		CJ 8					30	1	1		

Clamp West.

Adopted clock-rate zero.

TABLE III. 3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date.	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Sept. 22	1 2 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 33 33 34 35 36 36 37 38 39 40 41 42 43 44	41 Cygni	r L.C.,nr r - r r L.C.,ra	N a a a a a a a a a a a a a a a a a a a	h. m. s. 20 25 30 -88 22 27 33 -88 30 -88 31 48 48 48 48 48 48 48 48 48 48 48 48 48	(.752)	43.263.133.79.04.92.45.76.93.55.97.03.35.124.78.94.16.90.05.763.45.70.33.53.97.04.12.35.97.03.35.124.78.94.16.90.05.763.45.70.33.55.19.00.05.16.24.78.94.16.90.05.763.45.70.33.55.19.00.05.763.35.92.19.00.05.90.00.05.763.35.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.05.90.00.00.00.00.00.00.00.00.00.00.00.00.	56 · 76 29 · 42 23 · 48 23 · 48 35 · 99 50 · 85 51 · 85 32 · 64 13 · 81 142 · 21 20 · 14 13 · 81 142 · 21 20 · 14 42 · 24 13 · 81 142 · 21 20 · 14 40 · 18 51 · 50 51 · 50 39 · 54 09 · 37 52 · 10 37 · 28	13-43 13-97 13-65 13-44 13-51 13-45 13-46 13-54 13-48	s. 13·47	h. m. s. 20 25 44-85 22 25 44-85 22 25 44-85 22 25 44-85 22 25 44-85 22 25 44-85 22 25 44-85 22 25 25 25 25 25 25 25 25 25 25 25 25

Clamp West. Adopted clock-rate zero.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	nce .	Овјест	Notes	ver	Time of Observed	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.			Observer	Transit	(Polar Dev.)	Sec. c	Kno	Å.	¥.4	vation
1910					h. m. s.	8.	s.	8.	s.	s.	h. m. s.
Sept. 28	2 3 4 5 6 7 8	B.J. 852 B.J. 855 B.J. 857 B.J. 858 B.J. 859 B.J. 862 52 Pegasi B.J. 869 B.J. 870	r r	N	22 35 01 58 36 47 23 38 35 39 39 52 83 42 00 39 45 28 13 54 30 50 57 35 02 59 13 29	(.752)	47 · 35 35 · 78 53 · 44 00 · 68 28 · 44 30 · 63 35 · 65	00·85 49·29 06·92 14·10 41·91 49·15	13·50 13·51 13·48 13·42 13·47 13·50 13·39	13.47	22 35 15-60 37 00-82 38 49-25 40 06-91 42 14-15 45 41-91 54 44-10 57 49-12 59 27-11
Sept. 29	11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 32 33 33 33 33 34 44 44 44 44 44 44 44 44		r r nr nr r L.C.,nr		19 51 44-68		$\begin{array}{c} 05 \cdot 94 \\ 111 \cdot 766 \\ 25 \cdot 307 \\ 25 \cdot 207 \\ 25 \cdot$	19 43 46 95 101 46 101 46 23 46 35 97 10 95 43 55 91 10 95 43 55 91 11 3 79 20 38 20 62 22 46	13·49 13·45 13·45 13·47 13·47 13·51 13·51 13·53 13·53 13·53		19 52 00 32 53 54 54 55 55 56 52 52 53 56 56 56 56 56 56 56 56 56 56 56 56 56

TABLE III. REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	Coll. (Polar Dev.)	Sec. of Transit Corrected	R.A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Sept. 29	11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 35	B.J. 817. 78 Draconis. B.J. 821. 14 Pegasi. B.J. 821. 14 Pegasi. B.J. 822. 15 Pegasi. B.J. 823. 16 Cephel. B.J. 827. 16 Cephel. B.J. 831. S.P. 923. S.	r L.C.,nr L.C.,nr r		b. m. 23-12 140 23-13 140 23-13 145-69 445 13-59 445 13-	8. - 044 (*743)	47:30:46:46:46:46:46:46:46:46:46:46:46:46:46:	30-12 00-17 51-49 16-53 39-70 09-50 37-27 49-14 27-03 19-10 59-62 13-36 58-68 90-06 12-01	13 · 54 13 · 50 13 · 48 13 · 50 13 · 54 13 · 51 13 · 54 13 · 51 13 · 54 13 · 51 13 · 54		h. m. s. 21 40 38.0 20 40 30 30 30 30 30 30 30 30 30 30 30 30 30
Sept. 30	40 41 42 43 44	λ Urs. Min b Aquilae. 21 B.Vulp. 4 Cygni α Vulp. B.J. 733 8 Cygni B.D. 49·3059 B.J. 738 14 Cygni 10 Vulp	r	N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	19 09 33-29 20 28-75 21 29-94 22 41-95 24 45-26 27 12-85 28 13-01 33 18-11 33 48-54 36 17-84 39 46-14	-·034 (·740)	28 · 89 30 · 26 42 · 46 45 · 58 13 · 73 13 · 48 18 · 94 49 · 37 18 · 48	27·25 02·78	14-66		19 20 42-34 21 43-71 22 55-91 24 59-03 27 27-18 28 26-93 33 32-39 34 02-82 36 31-93 39 59-92

Clamp West. Adopted clock-rate zero.

DAT

Sept

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

TE.	Reference No.	Овјест	Notes	Observer '	Time of Observed Transit	(Polar Dev.)	See, of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
110 t. 30	1 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 8 19 20 1 22 23 22 4 5 5 27 8 29 30 3 3 12 23 3 3 4 5 3 6 7 3 8 3 3 4 0 14 2 4 3 4 4 4 5 6 4 7 8 4 9	B.J. 740. B.J. 742. B.J. 742. B.J. 742. B.J. 742. B.J. 743. B.J. 743. Groun, 1191. B.J. 773. B.J. 772. B.J. 772. B.J. 772. B.J. 772. B.J. 772. B.J. 773. B.J. 773. B.J. 774. B.J. 771. B.J. 771. B.J. 771. B.J. 777. B.J. 770. B.J. 771. B.J. 777. B.J. 770. B.J. 780.	r L.C. r		h. m. s. 19 10 10 10 10 10 10 10 10 10 10 10 10 10	(-740)	57:50:50:50:50:50:50:50:50:50:50:50:50:50:	10-99 24-09 24-09 24-09 24-09 24-09 24-09 24-09 24-09 25-00 24-09 25-00	8. 13.43 13.49 13.45 13.46 14.51 13.46 14.51 13.46 13.56 13.56 13.57 13.47 13.47 13.47 13.47 13.47 13.47 13.47 13.47 13.47 13.47		h. m. 42 942 10-95 443 20-95 445 20-95 4

TABLE III.

3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	90	Овјест	Notes	i.	Time of Observed	COLL.	Transit	r. of Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A.
DATE	Reference No.	OBJECT	NOIES	Observer	Transit	(Polar Dev.)	Sec. of Tran Corrected	R. A. Known	Appa	Ado \[\Delta T. \]	Obser- vation
1910 Sept. 30	2 3 4 5	1 H.Lacertae. B.A.C. 3495. B.J. 844 B.J. 847 B.J. 848 B.J. 852 B.J. 855 B.J. 857 B.J. 858 B.J. 859 B.J. 859 B.J. 862	L.C.	N u u u u u u	h. m. s. 22 09 49 01 16 33 71 19 49 13 25 37 46 27 22 96 35 01 59 36 47 31 38 35 37 39 52 86 42 00 36 45 28 09	(.740)	26·26 50·02 38·59 23·78 02·14 47·42 35·76 53·47 00·66	39.88 03.44 52.06 37.25 15.61 00.84 49.28 06.90 14.09	8. 13-62 13-47 13-42 13-52 13-43 13-43 13-50	s. 13-45	h. m. s. 22 10 03·03 20 03·47 25 52·04 27 37·23 35 15·59 37 00·87 38 49·21 40 06 92 42 14·11 45 41·85
Oct. 3		B.J. 780. B.J. 804. I. H. Draconis. B.J. 831. B.J. 833. B.J. 833. B.J. 835. B.J. 836. I. H. Lacertae. B.A. C. 3495. 301. H. Lamel. B.A. C. 3495. 303. H. Lamel. B.J. 848. B.J. 857. B.J. 858. B.J. 858. B.J. 859. B.J. 862. B.J. 862. B.J. 870. B.J. 8	L.C. r L.C. L.C.	N a a a a a a a a a a a a a a a a a a a	20 42 21-67 21 17 43-47 22 02 37-33 65 47-27 07 31-18 09 48-63 20 02-32 35 35-00 27 22-58 35 01-23 38-35-04 42 00-08 44-77 57 12-38 38-35-04 27 32-38 38-35-04 38-35-	(.764)	43.71 06.91 37.763 47.72 32.32 49.21 26.75 38.24 23.42 01.74 53.23 00.38 28.07 35.43 45.83 59.57 46.33	57-49 20-90 51-45 16-48 01-52 46-03 40-97 52-01 37-21 15-58 49-26 06-87 41-88 949-12 27-02 59-58 713-35 713	13-59 13-39 13-82 13-64 13-69 13-81 13-73 13-75 13-75 13-78 13-77 13-25		20 42 35 89 21 17 57 46 22 02 51 48 06 01 48 07 46 08 10 02 97 25 52 00 27 37 18 35 15 55 38 49 20 42 14 14 45 41 83 57 49 15 59 27 03 16 13 37 18 59 25 56 60 31 19
Oct. 7	36 37 38 39 40 41 42 43 44 45 46 47 48	Groom. 1119. 176 B.Cygni. B.J. 765. 40 Cygni. 41 Cygni. 41 Cygni. 42 Cygni B.J. 768. 5 Delphini. B.J. 771. 29 Vulp. B.J. 774. B.J. 774. B.J. 777. B.J. 778.	г	. N	20 09 23-64 16 45-84 18 46-22 24 00-65 25 29-81 27 02-33 28 42-04 30 53-22 33 06-94 34 17-16 35 14-55 38 08-06 39 02-66	(-713)	46 · 37 46 · 76 01 · 13 30 · 18 03 · 16 42 · 17 53 · 38 07 · 06 17 · 3 14 · 7 08 · 7	7 56 - 63 9 21 - 54 1 29 - 29 1 23 - 27	13-55 14-51 14-46 14-45 14-55 14-53 14-43	14-49	20 17 00-85 19 01-24 24 15-62 25 44-67 27 17-59 28 56-66 31 07-87 33 21-58 34 31-83 35 29-23 38 23-23 39 17-32

Clamp West. 1–11. Adopted clock-rate zero. 12–35. Adopted $\Delta T + m = 13 \cdot 758 + \cdot 0050 \ (T-22^b \cdot 00^a)$. 36—48. Adopted $\Delta T + m = 14 \cdot 505 + \cdot 0136 \ (T-21^b \cdot 50^a)$.

DA

191 Oct.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

.TE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
10					h. m. s.	6.	s.	s.	8.	s.	h. m. s.
10 . 7	1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	B.J. 780. B.J. 781. B.J. 783. 76 Draconis. 220 H Drac. B.J. 783. B.J. 813. B.J. 814. B.J. 814. B.J. 814. B.J. 815. B.J. 815. B.J. 816. B.J. 816. B.J. 817. B.J. 817. B.J. 818. B	nr r L.C.,rn	N a a a a a a a a a a a a a a a a a a a		s. 046 (*713)	s. 21-30 41-23 28-02 28-	s. 35.825.55.75.09.80 50.66 53.67 50.66 53.67 32.34 34.11.91 36.11.92.9.96 00.08 44.50 37.16.14.84 5.94 41.00 4.48 45.94 41.00 4.48 49.22 51.40 60.88 49.22 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.92 51.40 60.88 64.90 66.88 64.90 66.90 66.88 64.90 66.90 66.88 64.90 66.90 66.88 64.90 66.90 66.88 64.90 66.90	14-52 14-52 14-52 14-57 14-47 14-60 14-52 14-53 14-53 14-54 14-54 14-62 14-45 14-45 14-47 14-62 14-55 14-48	14-50	20 42 35-79 43 55-72 13 42-51 35 39-68 56 47-42 21 01 40-95 02 35-61 03 31-63 03 22-32 11 13-61 13 54-52 22 08-17 26 09-43 30 37-42 33 22-31 36 11-87 40 36-14 43 29-94 45 55-78 49 00-04
	41 42 43 44 45 46 47 48 49	B.J. 862 52 Pegasi B.J. 869 B.J. 870 B.J. 871 5 Andromedas B.J. 875 B.J. 881 B.J. 885	r r	44 44 44 44 44 44 44 44 44 44 44 44 44	45 27-04 54 29-52 57 33-98 59 12-22 23 00 04-42 03 27-11 08 44-02 20 40-94 24 24-08		27 · 32 29 · 63 34 · 57 12 · 55 04 · 58 27 · 86 45 · 03 41 · 21	2 41 · 86 3 49 · 09 5 27 · 00 8 19 · 08 5 59 · 55 5 5 · 67	14·54 14·52 14·45 14·50	14-53	45 41·84 54 44·15 57 49·09 59 27·07 23 00 19·10 03 42·38 08 59·55 20 55·74 24 38·74
		39 H. Cephei.	rn	tt	27 33 - 15				13.69		

Clamp West.

1-50. Adopted $\Delta T + m = 14.505 + .0136 \text{ (T} - 21^{\text{h}} 50^{\text{m}}\text{)}.$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	Coll. (Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Oct. 10	1 2 3 3 4 4 5 6 6 7 8 9 9 10 11 12 13 13 14 15 16 17 18 19 9 20 1 22 23 24 4 2 5 6 27 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Groom, 1119, 176 Bc Cygni, 1176 Bc Cygni, 1176 Bc Cygni, 141 Cygni	r r L.C.,nr	N a a a a a a a a a a a a a a a a a a a	20. 00. 25. 11. 15. 16. 14. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	Dev.) s048 (-705)	8. 53:333 45:48:49:91 00:24:59:92 02:19:30 77:13:88 77:80:00 78:31:38 77:80:00 78:32	8. 07-36 01-20 29-24 23-20 35-76 09-29 50-60 40-99 53-61 32-23 13-60 40-99 33-32 40-99 50-60 40-99 50-60 40-99 50-60 40-99 50-60	8. 14·03 15·29 15·35 15·34 15·34 15·34 15·34 15·34 15·34 15·34 15·37 15·37 15·37 15·37	6. 15·29 15·30	h. m. 8. 20 17 00 78 21 15 54 32 14 54 35 18 31 31 31 31 31 31 31 31 31 31 31 31 31
	47 48 49	B.J. 833 B.J. 835 B.J. 836 1 H.Lacertae. Bradley 2942.	r	4 4	05 00 · 69 05 45 · 69 07 29 · 48 09 47 · 07 10 59 · 86		46.05 30.5 47.6	01.42	15·30 15·33		05 16·41 06 01·41 07 45·83 10 02·92 11 17·35

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

COLL.

	0				Time of	COLL.	ransi	A. of a Star	rent + m	ted + m	App. R.A. from
DATE	Reference No.	Object	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transi Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	s.	s.	8.	6.	h. m. s.
Oct. 10	1	B.A.C. 3495	L.Crn	N	22 16 33-11	048	26.20	41.46	15.26	15.32	Es E -
	2 3	30 H.Camel B. D. 70-1240	L.C.,rn	44	20 00·48 23 26·32	(·705)			15.56	5.33	22 23 43 51
		B.J. 847		44	25 35 45		36.50	51.87			25 51.83
	5	B.J. 848		65 65	27 20·92 28 49·92		21.68	37 - 10			27 37·01 29 08·52
	7	226 B.Cephei.		ш	30 26-42		29.06				30 44-39
	8 9	B.J. 851 B.J. 852		44	33 17·87 34 59·65		20.08	15.51	15.35		33 35·41 35 15·49
	10	B.J. 855	r	а	36 45 39		45.49	00.78	$15 \cdot 29$		37 00.82
	11	B.J. 857		а	38 33·53 39 50·86			$49 \cdot 20$ $06 \cdot 80$	15.31 15.38		38 49·22 40 06·75
	13	B.J. 859	г	44	41 58 - 43		58.69	14.02	15.33		42 14-02
	14	B.J. 862 52 Pegasi		44	45 26 · 21 54 28 · 67		26.49	41.84	15.35		45 41·82 54 44·11
	. 16	B.J. 869		44	57 33 - 14		33.71	49.05	$15 \cdot 34$		57 49-04
	17	B.J. 870		а	59 11·36 23 04 47·42			26.98	15.29	15.34	23 00 27·02 05 05·25
	19	B.J. 875		α	08 43 - 10		44.09	59-50		10 01	08 59 43
	20	Groom. 4033 B.J. 880		66	13 54 · 16 15 57 · 78		58-04	13.32	15.28		14 11·95 16 13·38
	22	B.J. 881		ш	20 40.08		$.40 \cdot 34$	55.65	15.31		20 55.68
	23	39 H. Cepbei	rn	ec	27 31 - 74		43 - 92	58-76	14.84		
Oct. 11		20 Vulp		S	20 07 59 76		00.09			$15\!\cdot\!58$	20 08 15 67
	25	ρ Aquilae B.J. 759		41	09 52·59 11 37·09	(.723)	52·78 40·07				10 08 · 36 11 55 · 65
	27	176 B. Cygni		44	16 44-65		45.21				17 00-79
		40 Cygni		er	23 59·47 25 28·56						24 15·55 25 44·55
	30	ω¹ Cygni		a	27 01 20		01.92				27 17 - 51
	31	B.J. 768 č Delphini		a	28 40·86 30 52·05		52 - 18	56-57	15.58		28 56 58 31 07 77
	33	B.J. 770		- 64	32 24 - 50		26.91				32 42·50 34 41·33
		-74 Draconis B.J. 777		4	34 21 49 38 06 90		07 - 59	23 - 17	15.58		38 23 18
	36	B.J. 778		46	39 01 - 42		01.60	$17 \cdot 20$	15.60		39 17 - 19
	37	B.J. 780		a	42 19 · 66 43 39 · 62			35·74 55·67	15·62 15·60		42 35·71 43 55·66
	39	76 Draconis	rn	ec cc	48 48-32		53 - 35	$09 \cdot 12$	15.77		
		220 H ¹ . Drac. B.J. 788		ш	51 22·49 53 34·40		34 - 99	50.58	15·60 15·59		53 50 - 58
	42	Bradley 2748.		es es	55 31 - 10		33 - 68				55 49·27 21 01 40·97
	43	B.J. 792		64	21 01 24·72 03 15·27		15 9	40.97	15.59	15.60	03 31 - 55
	45	Groom. 3409.		66	05 34 - 93		36.85	5			03 31·55 05 52·45 07 19·75
	46	B.J. 795 B.J. 798		44	07 01 · 09 09 15 · 43		16.5	32.20			07 19·75 09 32·14 11 13·59
		B.J. 799		44	10 57 - 45		57 - 99	13.58	15.59		11 13 - 59
			1								

Clamp West. 1—23. Adopted $\Delta T + m = 15 \cdot 318 + \cdot 0140$ (T—21 b 50 w). 24—48. Adopted $\Delta T + m = 15 \cdot 598 + \cdot 0141$ (T—21 b 15 w).

3 GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	nce	Овјест	Notes	er	Time of Observed	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.			Observer	Transit	(Polar Dev.)	Sec. of	R. Know	Ap TA	Ad 27	vation
1910 Oct. 11	7 8 9 10 11 12 13 14 15 16 17	Bradley 2796. 69 Cygni 1 H.Draconis. B.J. 807. B.J. 811. B.J. 817. 78 Draconis. B.J. 817. 14 Pegasi B.J. 823. 79 Draconis. B.J. 823. 16 Cephei B.J. 831. B.J. 832. 28 Pegasi B.J. 833.	r L.C.,rn r	S 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	h. m. s. 21 16 24 54 21 52 05 24 10 78 25 53 13 33 06 06 40 20 57 41 42 55 43 13 50 45 37 71 48 44 04 51 28 25 60 28 71 20 23 54 00 06 01 20 07 49 37 10 59 37	(-723)	06-27 53-78 06-64 22-47 44-71 14-23 38-10 144-37 30-42 28-87 44-44 44-51 00-70 01-46 51-39	22-03 09-37 22-26 29-87 00-02 44-46 51-36 16-38	s. 15·76 15·62 15·65 15·59 15·65 15·68	15.61	h. m. s. 21 16 42-93 22 08-10 26 09-38 33 22-24 40 38-07 42 00-31 43 29-83 45 53-71 48 59-98 51 46-03 56 44-48 36 00-65 22 02 51-32 06 17-07 08 07-00 11 17-02
Oct. 12	20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Bradley 2942. & Cygni 41 Cygni 41 Cygni 42 Cygni 43 Cygni 54 Cygni 54 Cygni 54 Cygni 54 Cygni 55 Cygni 56 Cygni 57 Cygni 58 J. 786 58 J. 787 58 Cygni 58 J. 787 58 Cygni 58 J. 813 58 J. 814 58 J. 815 58 J. 8	nr nr L.C.,nr	X	20 23 58.2 58.00 66.10 27 20 25 28.2 58.00 66.10 27 20 25 28.2 50 26 27 20 25 28.2 50 26 27 20 25 28.2 50 26 26 27 20 26 27 20 26 26 26 27 20 26 26 26 26 26 26 26 26 26 26 26 26 26	(.792)	59-444-59-59-59-59-59-59-59-59-59-59-59-59-59-	29 · 21 23 · 14 17 · 19 35 · 72 08 · 94 40 · 95 53 · 57 32 · 16 13 · 56 37 · 53 22 · 20 22 · 24 11 · 76	16-06 16-09 16-06 16-01 15-94 16-35 16-09 15-99 16-06 16-24	16.04	20 24 15 47 25 44 57 25 44 57 27 17 -8 30 24 -8 13 24 25 53 25 9 18 25 26 26 26 26 26 26 26 26 26 26 26 26 26

From Oct. 11 Clamp West; from Oct. 12 Clamp East. 1—18. Adopted $\Delta T + m = 15 \cdot 598 + \cdot 0141 \ (T - 21^h \ 15^m)$. 19—49. Adopted $\Delta T + m = 16 \cdot 046 + \cdot 0142 \ (T - 21^h \ 40^m)$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

Date	nce .	Овјест	Notes	ver	Time of Obscrved	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
	Reference No.			Observer	Transit	(Polar Dev.)	Sec. o	R. Know	Apj A77	Ad 27	vation
1910 Oct. 12	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	13 Cephei Bradley 2897. 16 Cephei B.J. 831 B.J. 833 B.J. 835 B.J. 835 B.J. 835 B.J. 835 B.J. 835 B.J. 836 B.J. 836 B.J. 848 B.J. 848 B.J. 848 B.J. 848 B.J. 848 B.J. 848 B.J. 851 B.J. 852 B.J. 852 B.J. 858 B.J. 858	r L.C.,nr L.C.,nr	N	h. m. s. 21 51 35 99 56 42 49 56 42 49 56 42 49 57 41 15 22 02 34 82 05 45 82 10 54 82 10 54 82 10 54 84 82 10 54 84 82 84 82 83 16 49 46 44 51 39 49 94 41 57 55	s. ·068 (·792)	45 59 43 91 35 26 00 30 45 45 50 83 46 78 01 30 25 43 55 19 27 52 48 68 20 99 52 43 19 33 59 34 44 71 50 70	51 · 35 16 · 37 01 · 41 41 · 88 41 · 14 37 · 07 15 · 49 00 · 76 06 · 78	8. 16·09 16·07 15·96 16·45 15·95 16·08 16·05 16·08	16-06	h. m. s. 21 51 53 35 57 01 64 57 01 64 57 59 96 22 02 51 31 65 16 35 66 01 50 86 06 88 11 17 35 22 43 58 26 04 74 27 37 05 29 08 49 33 35 39 37 00 77 40 67 64 42 14 02
t. 17	22 23 24 25 26 27 28 29 30 31 32 33 34 41 42 43 44 45 46 47 48	29 Vulp BJ, 774 BJ, 777 BJ, 777 BJ, 777 BJ, 778 BJ, 780 BJ, 787 BJ, 787 BJ, 877 BJ, 878 BJ, 811 BJ, 81 BJ, 811 BJ, 81	r nr nr r nr L.C.,nr		29 34 13-49 38 10+26 38 10+26 38 15+07 42 17-18 43 37-00 48 44-31 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 13-81 55 14-81 56 13-81 56 14-81 56 14-81 57 11-82	·041 (·770)	11:27 05:09 59:31 17:75 37:62 50:18 23:27 32:52 30:78 29:35 22:89 35:62 13:43 34:10 01:14 13:95 56:72 17:90 04:78 51:34 649:76 04:78 13:46 49:76 04:78 13:48 49:76 04:78 13:48 49:76 04:78 13:48 49:76 04:78 13:48 49:76 04:78 13:48 49:76 04:78 13:48 49:76 04:78 13:48 49:76 04:78 13:48 14:48 15:48 16:48 1	29-13 23-01 17-11 35-62 55-54 68-13 50-44 40-83 53-47 31-98 13-46 35-65 22-97 09-23 22-14 11-61	17.75	17-89	14 14-01

Clamp East. 1—20. Adopted $\Delta T + m = 16 \cdot 046 + \cdot 0142 \text{ (T} - 21^{\text{b}} 40^{\text{m}})$. Adopted $\Delta T + m = 17 \cdot 908 + \cdot 0147 \text{ (T} - 22^{\text{b}} 10^{\text{m}})$.

TABLE III.

3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	9				Time of	Coll.	ransit	of	rent - m	ted - m	App. R.A. from
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	8.	8-	8.	8.	h. m. s.
Oct. 17	1 2 3 4 5 6	14 Pegasi B.J. 823 79 Draconis Bradley 2897 16 Cephei B.J. 831		Nuuuu	21 45 35·25 48 41·56 51 24·96 56 40·61 57 39·05 22 02 32·99	·041 (·770)	27.65 43.53 41.65 33.39	59 - 94	17.96		21 45 53·64 48 59·88 51 45·55 57 01·43 57 59·55 22 02 51·30
	7 8 9 10 11 12 13	B.J. 833 B.J. 835 B.J. 837 1 H.Lacertae B.A.C. 3495 30 H.Camel B.D. 70-1240	L.C.,nr L.C.,nr	44 44 44 44 44	04 57·79 05 42·89 07 46·30 09 44·19 16 33·47 20 00·28 23 23·04		43 · 43 48 · 78 44 · 88 25 · 28 54 · 09	01·34 42·93 11·92	17.97 17.91 17.65 17.83		05 16·24 06 01·34 08 06·69 10 02·79
	14 15 16 17 18 19 20 21	B.J. 847 B.J. 848 29 Cephei 226 B.Cephei B.J. 851 B.J. 852 B.J. 855	r	44 44 44 44 44 44 44 44 44 44 44 44 44	25 32·51 27 18·06 28 46·17 30 22·98 33 14·48 34 56·83 36 42·66 38 30·73		33 · 82 19 · 04 50 · 07 26 · 15 17 · 15 57 · 51 42 · 83	51·70 36·98 15·43 00·73	17·92 17·90 17·91		25 51.73 27 36.95 29 07.98 30 44.06 33 35.06 35 15.42 37 00.74 38 49.13
	21 22 23 24 25 26 27 28 29 30 31 32 33	B.J. 858 B.J. 858 B.J. 859 B.J. 862 52 Pegasi B.J. 869 B.J. 870 B.J. 874 B.J. 875 Bradley 3085 Bradley 3085 Groom 4033	r	64 64 64 64 64 64 64 64 64 64 64 64 64 6	39 48-01 41 55-73 45 23-46 54 25-95 57 30-19 59 08-53 23 03 23-42 04 44-20 08 40-10 11 07-40 11 51-92 13 50-83		48 · 75 56 · 10 23 · 86 26 · 14 30 · 94 08 · 98 24 · 37 47 · 19 41 · 35 10 · 16 54 · 19	06-72 13-97 41-78 48-98 26-93	17-91 17-97 17-87 17-92 18-04 17-95		
	33 34 35 36 37 38 39 40 41 42 43 44	Groom. 4033 B.J. 880 B.J. 881 B.J. 885. 39 H. Cephei. Bradley 3140. B.J. 890. ψ Andromedae B.J. 898. B.J. 899. ψ Pegasi.	nr	41 42 43 44 44 44 44 44 44 44 44 44 44 44 44	13 50-83 15 54-96 20 37-32 24 20-52 27 24-85 30 47-29 32 53-08 35 00-92 41 17-94 47 38-86 49 36-49 52 54-43		55-33 37-68 20-73 39-22 49-66 53-94 03-88 18-80 39-16 37-76	13·29 55·61 38·65 57·27 11·92 55·64 55·81		17.93	16 12 95
Oct. 18	46 47 48	σ Cygni Bradley 2796. B.J. 804 69 Cygni 1 H.Draconis.		S = = = =	21 13 35·31 16 20·72 17 38·74 21 49·06 24 10·20	·048 (·772)	49.71	57-27	18·19 18·20		21 13 54-27 16 42-28 17 57-31 22 07-94

Clamp East.

1—44. Adopted $\Delta T + m = 17 \cdot 908 + \cdot 0147 \text{ (T} - 22 \text{ h } 10^{\text{m}})$. 45-49. Adopted $\Delta T + m = 18 \cdot 258 + \cdot 0149 \text{ (T} - 23 \text{ h } 05^{\text{m}})$.

TABLE III, '

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Oct. 18	4 5 6 7 8 9 9 10 11 12 13 11 14 15 16 17 18 19 20 1 22 22 24 25 6 27 7 28 9 30 31 32 33 34 35 6 37 38 9 40 41 42 43 44 44 5 46 47	Groom, 3511. group, 3511. gr	L.C.,nr r r r r		h. m. 8 21 30 18-16 18 23 10 18-16 18 23 10 18-16 18 23 10 18-16 18 23 10 18-16 18 23 10 18-16 18 23 10 18-16 18 23 10 18-16 18 24 18-16 18 24 18-16 18 25 18-16 18 26 18 26 1		$\begin{array}{c} 19.05\\ 53.27\\ 27.30\\ 38.88\\ 53.27\\ 27.30\\ 26.18\\ 26.18\\ 27.30\\ 26.18\\ 27.30\\ 26.18\\ 27.30\\ 26.18\\ 27.30\\ 26.18\\ 27.30\\ 26.18\\ 27.30\\ 26.18\\ 26.18\\ 27.30\\ 26.18\\ 26.18\\ 26.18\\ 26.18\\ 27.30\\ 26.18\\ 26$	22: 12: 11: 58 29: 71 59: 92 44: 38 51: 27 16: 28 43: 10 12: 05 36: 96 41: 77 48: 96 41: 77 48: 96 19: 01 13: 28 14: 28 14: 28 15: 28 16: 28 1	18-24 18-26 18-26 18-29 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25 18-25	18-25	h. m. 23 130 37 28 23 23 27 29 33 22 12 37 29 33 22 12 33 21 12 32 34 11 15 12 24 25 25 26 52 27 25 12 25 25 25 25 25 25 25 25 25 25 25 25 25

TABLE III.

3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910	_			-	h. m. s.	8.	s.	s.	s.	s.	h. m. s.
Oct. 18	4 5 6 7 8 9 10 11 12 13 14 15	ψ Pegasi . Bradley 2217 . B.J. 7. B.J. 8. σ Andromedae ρ Andromedae Bradley 34 . B.J. 17 . B.J. 21 . B.J. 22 . B.J. 24 . B.J. 23 Cass γ Andromedae 23 Cass . γ Andromedae B.J. 33 . γ Andromedae B.J. 33 . γ Andromedae 324 H.Camel . B.J. 33 . γ Bradley 34 H.Cephei . γ Andromedae . γ Andromeda	r L.C.,nr	8 a a a a a a a a a a a a a a a a a a a	23 52 54·08 0 04 03·98 08 20·05 10 49·78 13 21·11 16 06·33 24 50·71 35 07·27 39 24·98 44 34·61 48 08·92 51 29·11 52 41·72 56 01·98	·048 (·772)	54·52 08·12 20·32 53·06 21·71 07·02 54·01 41·83 08·47 27·84 31·08 35·37 01·74 29·81 42·22	38-65 	18-33 18-09 18-34 18-46	18-28	23 53 12-79 0 04 26-39 08 38-59 11 11-33 13 39-98 16 25-30 25 12-29 32 00-11 35 26-75 39 46-12 44 53-65 51 48-09 53 00-50
Oct. 19	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 33 34 43 44 45 46 47 48	B.J. 768. Delphini. Delphini. Delphini. Delphini. Delphini. Delphini. B.J. 774. B.J. 774. B.J. 778. B.J. 778. B.J. 778. B.J. 778. B.J. 789. B.J. 788. B.J. 807. R. Cygni. B.J. 807. R. Cygni. B.J. 807. R. Cygni. B.J. 807. R. Cygni. B.J. 817. R. S.	r nr nr nr		20 28 37 - 67 30 48 - 85 31 12 - 64 31 12 -	.036 (.751)	49 · 09 · 02 · 81 · 03 · 11 · 04 · 05 · 05 · 05 · 05 · 05 · 05 · 05	21·34 29·09 17·08 35·58 50·7·82 50·40 40·79 53·43 31·90 57·25 23·27 09·18 22·10 11·55 29·69	18-54 18-64 18-65 18-65 18-65 18-85 18-85 18-71 18-58	18-61	20 28 56 44 53 57 64 64 53 67 64 64 53 65 64 64 64 53 65 64 64 64 64 64 64 64 64 64 64 64 64 64

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	92			H	Time of	Coll.	Transit	of Stars	rent - m	ted - m	App. R.A.
DATE	Reference No.	ORJECT	Notes	Observer	Observed Transit	(Polar Dev.)	See, of Tran Corrected	R. A. Known 8	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	s.	8.	s.	8.	s.	h. m. s.
Oct. 19	11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	B.J. 823 Bradley 2850. 13 Cephei Bradley 2850. 13 Cephei Bradley 2857. 16 Cephei Bradley 2857. 16 Cephei B.J. 831 B.J. 831 B.J. 835 B.J. 835 B.J. 836 B.J. 837 H.Lacertae. B.J. 836 B.J. 837 B.J. 836 B.J. 837 B.J. 837 B.J. 837 B.J. 838 B.J. 839 B.J. 848 B.J. 848 B.J. 848 B.J. 848 B.J. 848 B.J. 859 B.J. 850 B	r L.C.,nr L.C.,nr	N a a a a a a a a a a a a a a a a a a a	21 48 49-55 49 469-52 49 469-52 49 469-52 49 469-52 49 479-52 49 4		$\begin{array}{c} 47.99\\ 34.58\\ 24.99\\ 40.89\\ 32.58\\ 24.50\\ 63.24\\ 50.63\\ 24.50\\ 63.24\\ 24.50\\ 63.24\\ 25.31\\ 64.20\\ 34.99\\ 23.14\\ 25.30\\ 23.14\\ 23.02\\ 30.00\\ 60.65\\ 24.00\\ 60$	51-26 16-27 01-31 43-28 12-18 51-65 36-94 15-40 00-71 15-40 00-68 13-95 41-76 48-95 26-91 78-91	18-68 18-61		21 48 59-87 50 66-61 51 53-20 57 50-91 51 52 20 57 50-91 51 52 20 51 50-91 51 52 52 51 51 57 51 51 51 51 51 51 51 51 51 51 51 51 51
Oct. 20	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	69 Cygni 1 H.Draconis. 1 H.Draconis. 67 Cygni B.J. Stl. 172 Cygni B.J. Stl. 18.J. Stl. 18.J. Stl. 19 Pegasi 19 Pegasi 19 Pegasi 19 Pegasi 19 Pegasi 19 Cephei 16 Cephei 16 Cephei 16 Cephei 16 Cephei 18.J. Stl. 19.J. Stl.	r	SS = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	21 21 48·16 24 09·72 27 06·83 30 47·81 33 02·29 40 16·24 41 38·13 45 34·00 48 40·32 51 23·73 56 39·29 57 37·68 22 02 31·75 04 56·57 05 41·69 09 42·94		11.40 48.53 08.05 52.44 18.56 40.73 34.53 40.78 47.51 26.39 42.18 40.41 32.19 57.46 42.22 47.37	22·08 11·52 59·89 51·24 16·25 01·29	19-01 19-03 19-11 19-05 19-09 19-07	19-04	21 22 07-85 27 30-43 31 07-56 33 22-08 36 11-47 40 37-56 45 33-56 45 53-56 45 53-56 51 45-43 57 01-22 22 02 51-23 05 16-20 06 01-26 08 06-41 10 02-72

Clamp East.

1—30. Adopted $\Delta T + m = 18 \cdot 620 + \cdot 0150 \text{ (T} - 21^{\text{h}} 45^{\text{m}})$. 31—49. Adopted $\Delta T + m = 19 \cdot 055 + \cdot 0151 \text{ (T} - 23^{\text{h}} 10^{\text{m}})$.

GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	oser- ition
B Dev.) Z Z	
1910 h. m. s. s. s. s. s. h. m	. 6.
	16.85
3 30 H.Camel L.C.,rn " 19 59-50 53-18 12-32 19-14	
4 52 Pegasi " 54 24·75 24·97 19·05 54	44.02
6 B.J. 871 " 59 59 69 59 97 18 99 19 02 23 00	7 48-90
	3 42·26 5 05·00
9 BJ 875 " 08 39.03 40.96 50.35 06	5 59-31
	28-02
12 B.J. 880	3 13 - 29
15 D.J. 551 20 50-15 50-50 55-59 19-05 20	55.62
15 '39 H. Cephei. rn " 27 23 85 38 52 56 80 18 28	
17 D 1 000 4 99 21 02 20 27 11 00 20	07-65 3 11-83
18 Groom. 4119 " 34 59.85 02.79 33	21.85
15 y Andromedae 41 10.50 17.74 4.	36.80
21 Groom. 4163 " 50 08-38 11-15 19.07 50	30.22
	3 12·83 4 26·29
24 B.J. 4 " 05 21·18 22·02·41·08 00	5 41 - 09
26 B.J. 8 " 10 48-97 52-28	38-65 1 11-35
27 \(\sigma \text{Andromedae} \) " 13 20.30 20.96	3 40.03
29 Bradlev 34 " 24 49-99 53-32 23	5 25·41 5 12·39-
30 B.J. 17 " 31 39 99 41 09 00 09 19 08 33	2 00.17
32 B.J. 21 " 35 06 41 07 62 26 83 34	1 33·51 5 26·70
33 B.J. 24 # 39 24-32 27-21 39	46.29
35 η Cassiopeiaer " 43 22·22 23·57 44	2 19·91 3 42·65
36 » Andromedae " 44 33 · 83 34 · 60	48-17
38 h Piscium " 52 40.95 41.46 55	3 00-54
39 43 H. Cephei rn " 56 00·70 11·77 31·44 19·67	
Oct. 21 40 13 Cephei S 21 51 32-52 -062 33-77 19-40 21 5	
41 Bradley 2897r " 56 38-58 (-793) 41-75 55	7 01 - 15
43 B.J. \$31	2 51-21
	5 16·21 5 16·96
46 B.J. 837 " 07 44·58 47·12 08	8 06-53
47 1 H.Lacertae " 09 42 57 43 34 10 48 Bradley 2942 " 10 54 70 57 39 11	02.75
49 B.A.C. 3495 L.C.,nr " 16 32·73 24·06 43·65 19·59	

Clamp East.

1—39. Adopted $\Delta T + m = 19 \cdot 055 + \cdot 0151 \text{ (T} - 23 \text{ h } 10 \text{m})$. Adopted $\Delta T + m = 19 \cdot 426 + \cdot 0152 \text{ (T} - 23 \text{ h } 25 \text{m})$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

	1				Time of	Coll.	Sec. of Transit Corrected	of Stars	nt m	pa	App. R.A. from
DATE	ence.	Object	Notes	rver	Observed Transit		e. of Tran Corrected	wn S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
	Reference No.			Observer	Tanoit	(Polar Dev.)	Sec. C	R. A. Known 8	₽	Ϋ́Δ	vacion
1910				Ť	h. m. s.	s.	s.	s.	s.	s.	h. m. s.
Oct. 2	1 1	30 H.Camel	L.C.,nr	S	22 19 59 63	+062	53.08	12.47	19.39	19-41	
	2	B.D. 70·1240		er.	23 21.35	(.793)	$23 \cdot 67$				22 23 43.08
	3 4	38 Pegasi B.J. 848		"	25 36·81 27 16·40		37 - 42	20 00			25 56·83 27 36·82
	5	226 B. Cephei		а	30 21 22		24.48	30.30			30 43 - 89
	6	Groom. 3857		ш	34 57 - 06		00.13				35 19 54
	7	B.J. 855		#	36 41.08		41.25	00.69	19-44		37 00 66
	8 9	B.J. 858 B.J. 859		a	39 46·45 41 54·14				19.44	19-42	40 06-62 42 13-94
		B.J. 862		44	45 21.87		22.32	41.74	19.42	19.45	45 41.74
	11	52 Pegasi		a a	54 24-32		$24 \cdot 56$				54 43.98
	12	B.J. 869		44	57 28-65		29.48	48.92	19.44		57 48-90
	13	B.J. 870 5 Andromedae		44	59 06-97 23 03 21-82		22.70	20.89	19.41		59 26·90 23 03 42·21
	15	B.J. 874	г	44	04 42 - 30		45.54				05 04.96
		B.J. 875		44	08 38 50		39.78	59 - 33			08 59 20
	17	Bradley 3085 Groom, 4033		a	11 05·60 13 48·99		08-44				11 27·86 14 11·46
	19	B.J. 880		ш	15 53 45		53.83	13.26	19-43		16 13 - 25
	20	B.J. 881		ш	20 35-74						20.55,58
	21	B.J. 885		u	24 18.94		19.19	38.62	19 - 43	19-43	24 38 62
	22 23	1 H. Cass 15Andromedae		#	25 34·05 29 55·41		35.40				25 54·83 30 15·62
	24	B.J. 890		а	32 51 - 52		52.40	11.88			33 11-83
	25	* Andromedae		ii	35 40 - 51		$41 \cdot 40$				33 11·83 36 00·83
			r	44	41 16-39		17.34				41 36-77
	27 28	Groom, 4154 Groom, 4163		4	47 42 · 07 50 07 · 87		10.74				48 04-60 50 30-17
	29	ψ Pegasi		44	52 52 94		53.39				53 12-82
	30	Bradley 3217		44	0 04 02 49		$06 \cdot 82$			19 - 44	0 04 26 26
	31	B.J. 4		44	05 20 74		21.61	41.07			05 41.05
	32	B.J. 7 B.J. 8		64	08 18·92 10 48·45		51.88	35-64	19.43		08 38 65
		σ Androme da	r	ш	13 19 99						11 11·32 13 40·06 16 25·34 25 12·37
	35	P Andromedae		66 66	16 05 18		05 - 90				16 25.34
		Bradley 34		er er	24 49 48		52.93	00 10			25 12·37 32 00·08
	37 38	B.J. 17 B.J. 19		a	31 39·50 33 30·57		31.11	50.56	19-45		32 00·08 33 50·55
	39	B.J. 21		16	35 06 07		07-41	26.82			35 26.85
	40	B.J. 25		ш	39 24 89		25.83	45.33			39 45.27
		23 Cass		66	. 41 26.91 43 21.83		29.86			19.45	41 49·31 43 42·60
		» Andromedae		ec	44 33 44		34.24				44 53 69
	44	322 H. Camel .	L.C.,nr	a	48 07 83		00.32	19.98	19.66		11 30 00
	45	B.J. 33		a	51 27.98		28.71	$48 \cdot 16$	19.45		51 48-16
		h Piscium 43 H. Cephei		a	52 40·55 56 00·26		41.08	21.42	19.71		53 00.53
	+1	to 11. Cepnel	ш		30 00-20		11.12	01.40	19.11		
Oct. 2		B.J. 768		N	20 28 34 66	.022			21.49	$21 \cdot 47$	20 28 56 31
	49	₹ Delphini		ec	30 45.87	(-818)	46.10				31 07.57
	1										

Clamp East.

1—47. Adopted $\Delta T + m = 19 \cdot 426 + \cdot 0152 \text{ (T} - 23^{\text{h}} \cdot 25^{\text{m}})$, 48-49. Adopted $\Delta T + m = 21 \cdot 488 + \cdot 0158 \text{ (T} - 21^{\text{h}} \cdot 35^{\text{m}})$.

TABLE III. 3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	92	0	Notes	Ŀ	Time of Observed	COLL.	Fransit	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
Date	Reference No.	OBJECT	NOTES	Observer	Transit	(Polar Dev.)	Sec. of Transi Corrected	R. A Known	Appa ΔT	Adoj AT	vation
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
Oct. 26	2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26	29 Vulp 19 Vulp 19 J. 774 19 J. 777 19 J. 775 19 J. 775 19 J. 785 10 J	r L.C. r L.C.,nr L.C.,nr		20 34 (9)-50 38 00-46 35 07-30 38 00-46 35 07-30 38 15-30 44 13 13-15 44 13 13-15 44 13 13-15 45 13-15 45 13-15 45 13-15 45 13-17 45 12-20	-022 (-818)	01.323553.95554555555555555555555555555555555	28-98 22-78 22-78 16-97 35-44 55-24 557-14 24-48 09-01 29-52 44-48 16-16-16-16-16-16-16-16-16-16-16-16-16-1	21-43 21-46 21-44 21-49 21-55 21-53 21-60 21-52 21-64	21.49	20 34 31-60 38 22-70
Nov. 2	36 37 38 39 40 41 42 43 44 45 46 47 48	B.J. 836 1 H.Lacertae. Bradley 2942. B.A.C. 3495. 30 H.Camel. B.J. 847. B.J. 848. 29 Cephei. 226 B.Cephei. B.J. 852. B.J. 852. B.J. 852. B.J. 855. B.J. 855. B.J. 857. B.J. 858.	L.C.,nr L.C.,nr	N	22 07 19-64 09 37-52 10 49-13 11 66 29-45 19 56-60 23 15-96 25 25-67 27 11-12 8 38-84 30 15-70 33 07-34 34 50-18 36 36-07 38 24-14 39 41-31		38·18 51·84 21·52 50·00 18·15 26·94 12·26 42·63 18·77 09·93 50·83 36·22 24·60	46·43 14·57 51·25 36·64 15·17 00·56 48·92	24·91 24·57 24·34 24·34 24·34 24·32 24·44	24-39	22 07 45-28 10 02-56 11 16-22 23 42-53 25 51-32 27 36-65 29 07-02 30 43-16 33 34-32 35 15-22 37 00-61 38 48-99 40 06-41

Clamp East.

1—34. Adopted $\Delta T + m = 21 \cdot 488 + \cdot 0158 \ (T - 21^b \cdot 35^m)$. 35—49. Adopted $\Delta T + m = 24 \cdot 408 + \cdot 0165 \ (T - 23^b \cdot 50^m)$.

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE—Continued

DATE	OBJECT	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910			_	h. m. s.	B.	8.	8.	8.	8.	h. m. s.
Nov. 2	1 B.J. 859		N	22 41 49 09	-018	49-44	13.78	24.34	24.39	22 42 13 83
	2 B.J. 862. 3 B.J. 869. 4 B.J. 870. 5 B.J. 871. 6 5 Andromedae 7 B.J. 874. 8 B.J. 875. 9 Bradley 3085. 10 Groom. 4033. 11 B.J. 880. 12 B.J. 881. 13 B.J. 885.	r		45 16·81 57 23·62 59 01·97 59 54·31 23 03 16·73 04 36·85 08 33·41 11 00·10 13 43·51 15 48·37 20 30·69 24 13·96	(.769)	24·34 02·39	41-60 48-75 26-75 18-87 59-08	24·41 24·36	24-40	45 41-57 57 48-73 59 26-78 23 00 18-91 03 42-04 05 04-15 08 59-02 11 27-18 14 10-79 16 13-12 20 55-43 24 28-54
	14 39 H.Cephei 15 Bradley 3140 16 B.J. 890 17 * Andromedae 18 \$\psi\$ Andromedae 19 Groom, 4163 20 Groom, 4163 21 \$\psi\$ Pegasi 22 B.J. 1 23 B.J. 2 24 B.J. 4	nr	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	27 15-36 30 40-35 32 46-43 35 35-48 41 11-40 47 36-75 50 02-62 52 47-94 0 03 21-70 03 59-26 05 15-66		29.33 42.64 47.25 36.25 12.22 39.69 05.33 48.31 22.14 00.56	53-51 11-73 46-55 25-07 40-98	24-41	24-41	20 03 42-04 05 04-15 08 55-02 11 27-18 14 10-79 16 13-12 20 55-43 24 38-54 33 11-65 36 00-65 48 04-10 50 29-74 53 12-72 50 03 46-5 04 24-97 05 40-88 08 38-56 11 10-80
	25 B.J. 7 26 B.J. 8 27 Bradley 1672. 28 Bradley 34. 29 B.J. 18. 30 B.J. 19. 31 B.J. 20. 32 B.J. 21. 33 B.J. 24. 34 23 Cass. 5 7 Cass.	L.C.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	08 13.94 10 43.15 14 05.63 24 44.16 31 42.01 33 25.63 34 08.59 35 01.11 39 18.76 41 21.87 43 16.87		14 · 15 46 · 39 42 · 33 47 · 42 42 · 54 26 · 07 09 · 06 02 · 30 21 · 58 24 · 66	38-60 06-79 07-00 50-54 33-49 26-75	24 · 45 24 · 46 24 · 46 24 · 47 24 · 43	24-42	08 38-56 11 10-80 25 11-84 32 06-96 33 50-49 34 33-48 35 26-72 39 46-00 41 49-08
	36 μ Andromedae 37 32 ² H. Camel. 38 B.J. 33 39 h Piscium. 40 43 H. Cephei. 1 72 Piscium. 42 μ Cass. 13 B.J. 42 44 B.J. 43 15 Bradley 151	L.C.,nr	a a a a a a a	44 28-59 48 03-43 51 23-04 52 35-67 55 54-99 59 58-35 1 01 54-57 04 19-29 06 20-00 09 20-81		29·28 56·56 23·67 36·11 05·53 58·56 55·69 19·86 20·46 23·12	20·78 48·16 30·60 44·32 44·94	24 · 22 24 · 49 25 · 07 24 · 46 24 · 48	24-43	11 10·80 25 11·84 32 06·96 33 50·49 34 33·49 34 33·49 34 33·49 39 46·00 41 49·08 43 42·53 44 53·70 51 48·09 53 00·54 1 00 22·99 02 20·12 04 44·29 09 47·55
	46 5 Andromedae 47 B.J. 874 48 B.J. 875 49 Bradley 3086		N a a	23 03 15·95 04 36·07 08 32·64 11 44·04	·049 (·686)	38.79			25.12	23 (3 41 - 93

Clamp East.

^{1-45.} Adopted $\Delta T + m = 24 \cdot 408 + \cdot 0165 \text{ (T} - 23 \cdot 50^{\text{m}}\text{)}.$ 46-49. Adopted $\Delta T + m = 25 \cdot 129 + \cdot 0168 \text{ (T} - 23 \cdot 40^{\text{m}}\text{)}.$

TABLE III.

3 GEORGE V., A. 1913

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	rence o.	Овјест	Notes	rver	Time of Observed Transit	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	Reference No.			Observer		(Polar Dev.)	See.	Kno	Ϋ́	40	7.001
1910					h. m. s.	S.	s.	S.	s.	s.	h. m. s.
Nov. 4	2 3 4 5 6 7 8 9 10 11 12 13 14 15	ο Cephei B.J. 880 B.J. 881 B.J. 885 B.J. 885 B.J. 891 B.J. 891 B.J. 890 B.J. 893 Φ. Andromedae B.J. 899 Φ. Pegasi B.J. 899 Φ. Pegasi B.J. 1 B.J. 7 σ. Andromedae ρ. Andromedae	r nr r	N	23 14 30 65 15 47 65 20 30 00 24 13 19 27 14 75 30 39 53 32 45 69 33 19 57 35 13 25 41 10 67 43 11 84 47 31 58 49 29 14 5 47 24 0 03 20 96 08 13 28 13 14 21 15 59 50	·049 (·686)	48.00 30.34 13.38 27.78 41.68 20.27 16.45 11.46 13.60 31.86 30.29 47.62 21.40 13.51 14.78	13 · 13 · 55 · 47 · 38 · 52 · 53 · 03 · 11 · 71 · 45 · 50 · · · · · · · · · · · · · · · · ·	25·13 25·13 25·14 25·25 25·23 25·23 25·23 25·08	25.14	23 14 57.56 16 13.12 20 55.46 24 38.50 31 106.81 33 11.61 33 45.40 35 41.58 41 36.59 49 55.42 50 03 46.54 08 38.65 0 34.65 13 39.92 16 25.24
Nov. 8	20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 40 41 42 43 44 45 46 47 48	B.J. S3. B.J. S55. B.J. S55. B.J. S55. B.J. S55. B.J. S56. B.J. S69. B.J. S6	r r r pr r		22 33 04-35 35 00-33 36 33-38 33-38 33-38 31-34 39 38-72 41 46-33 38-72 41 46-33 38-72 41 46-33 41 46-33 41 46-33 41 46-33 41 46-33 41 46-33 41 46-33 41 46-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41 41-37 42-34 41-37 41-		01 · 91 33 · 59 21 · 94 46 · 81 03 · 08 16 · 91 21 · 68 51 · 94 36 · 98 31 · 95 00 · 05 30 · 58 46 · 19 28 · 53 11 · 61 51 · 94 44 · 71 53 · 93 11 · 64 44 · 71 53 · 93 11 · 68 45 · 81 45 · 81 45 · 81 46 · 81 47 · 81 48 · 81 49 · 81 49 · 81 40 · 8	00 · 49 48 · 84 06 · 35 13 · 71 48 · 65 18 · 81 58 · 94 13 · 09 55 · 43 38 · 49 51 · 78 11 · 65 56 · 91 55 · 48 38 · 57	26-90 26-90 26-91 26-90 26-97 26-87 26-90 26-90 26-93 26-93	26·89 26·90	22 33 33.85 35 28.79 37 00.47 38 48.82 40 06.32 40 06.32 42 13.06 44 24.90 53 25 25 25 25 20 01 18.83 00 18.83 10 25 24 35.50 33 11.20 43 35.65 33 12.71 0 43 35.65 08 38.54 11 10.63 13 35.65 08 38.54 11 10.63 13 35.65 08 38.54 11 10.63 13 35.65 08 38.54 11 10.63 13 35.65 08 38.54 11 10.63 13 35.65 12 27 27 25.75

Clamp East

1—18. Adopted $\Delta T + m = 25 \cdot 129 + \cdot 0168$ (T = 23 h 40=). 19—49. Adopted $\Delta T + m = 26 \cdot 909 + \cdot 0172$ (T = 0 h 20m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	0			Time of	COLL.	ransit	of Stars	ent - m	ted - m	App. R.A. from
DATE	Reference No.	OBJECT NOTES	Observer	Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910				h. m. s.	8.	s.	s.	8.	8.	h. m. s.
Nov. 8	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 22 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	7 Cass. r BJ. 29. r 52º H. Camel L. C., n BJ. 32. r 7 Piscium 43 H. Cephei. nr 72º Piscium 72º Piscium 72º Piscium BJ. 41. y Fiscium BJ. 41. y Fiscium BJ. 41. a Fradley 137. r Bradley 137. r Bradley 137. r Bradley 166. § 8 Andromedae BJ. 57. nr 4 Andromedae BJ. 57. r	44 44 44 44 44 44 44 44 44 44 44 44 44	55 51.70 59 55.80 101 52 18 04 03:17 06 12:38 08 06:15 12 23:65 15 24-75 16 37-52 19 09:23 26 43-75 31 06:02 34 51:26 37 36:34 46 00:99		23 58 56 77 51 93 52 64 28 52 65 67 68 68 68 68 68 68 68 68 68 68 68 68 68	50 - 53 26 - 69 21 - 34 30 - 00 51 - 05 04 - 30 42 - 96	27·06 27·32 27·64	26.93	0 32 00 03 33 50 46 53 43 42 46 43 43 42 44 43 42 44 55 50 00 45 55 00 45 60 32 65 60 32 65 6
	33	Bradley 282	и	04 38-77		41.46	08-92	20.91		2 02 08·95 05 08·40
Nov. 9	35 36 37 38 39 40 41 42 43 44 45 46	14 Pegasi B.J. 823 r Bradley 286S. r 13 Cephei r 16 Cephei r B.J. 833 r B.J. 833 r B.J. 835 r B.J. 837 r 1 H.Lacertae. r 1 H.Camel L.C., r 30 H.Camel L.C., r 1 D. D. 70 1240	N a a a a a a a a a a a a a a a a a a a	21 45 25-61 48 31-96 50 37-63 51 24-08 56 29-49 57 28-33 22 04 48-15 07 35-46 09 34-449 16 29-53 19 55-62 23 12-36 25 22-43		32 · 40 38 · 92 25 · 38 32 · 59 31 · 10 48 · 73 33 · 70 38 · 09 35 · 22 20 · 79 49 · 01	15-92 00-96 48-19	27·18 27·19 27·26	27 · 16	21 45 53-28 48 59-55 51 06-07 51 52-53: 56 59-74 57 58-22 22 05 15-89 06 00-86 08 05-25 10 02-38
	48	B.J. 847	u	27 08·24 30·11·88		09 - 28	36.47			23 41 · 93; 25 · 50 · 98, 27 36 · 44 30 42 · 42

Clamp East.

1—33. Adopted ΔT+m=26·909+·0172 (T-0^h 20^m), 34—49. Adopted ΔT+m=27·177+·0173 (T-23^h 20^m).

3 GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	COLL.	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
	refe)psc		(Polar Dev.)	6.0	Kno	4.7	4.4	
1010	_		-		1			-			
1910	,	D I ors		N	h. m. s. 22 33 03 85	8.	8.	S.	8.	8.	h. m. s.
Nov. 9	1 2 3 4	B.J. 851 B.J. 852 B.J. 855 B.J. 857	r	44	34 47·18 36 33·12 38 21·17	·041 (·822)	33-30			21.16	22 33 33 85 35 15 06 37 00 46 38 48 85
	5	B.J. 858 B.J. 859		44	39 38·32 41 46·18			06.33 13.69		27 · 17	40 06-27 42 13-74
	7	B.J. 862	1	ш	45 13 - 93		14-35	41.51			45 41.52
	8 9	52 Pegasi B.J. 869		4	54 16·46 57 20·55			48-63	27-28		54 43·83 57 48·52
	10	B.J. 870		44	58 58 99		59-47	26.67	$27 \cdot 20$		59 26 - 64
	11 12	B.J. 871 5 Andromedae		н	59 51 · 43 23 03 13 · 68		14.69		27 - 11		23 00 18·85 03 41·86
		B.J. 874 B.J. 875		44	04 33 · 44 08 30 · 29		36-62	58.00			05 03·79 08 58·79
	15	Bradley 3085		"	10 56.80		59.74			1	11 26-91
	16	Bradley 3086 Groom. 4033		u	11 41 · 61 13 40 · 16					27 - 18	12 11·20 14 10·49
	18	B.J. 880		a a	15 45.51		45.90	13.07	27 - 17	21-10	16 13 - 08
		B.J. 881 B.J. 885		a	20 27·82 24 11·09			38 - 48	27·21 27·17		20 55·39 24 38·49
	21	39 H.Cephei		ш	27 09 - 61		24 - 93	51.42	26-49		
	22	15 Androm B.J. 890		44	29 47 · 47 32 43 · 51			11.63			30 15·39 33 11·61
	24 25	B.J. 891 « Andromedae		u	33 17 · 47 35 32 · 52				27 · 14		33 45 · 47 36 00 · 55
	26		r	a	41 08 - 54		09.46				41 36-64
	27	B.J. 895 Groom. 4154		ш	43 09·37 47 33·43		36.65				43 38-61 48 03-83
	29	Groom. 4163		a	49 59 36		02.34			27 - 19	50 29-53
	30			ш	52 45·10 0 03 18·76		45.53		27.24		53 12·72 0 03 46·45
	32	B.J. 2		a	03 56.34		57 - 77	24.94			04 24-96
	33	B.J. 4 B.J. 7		æ	05 12·81: 08 11·12		13.72	38.56	27 - 19		05 40·91 08 38·56
	35	B.J. 8		66	10 39 - 94		43.50				11 10-69
	36	σ Andromedae	r	66	13 12·14 15 57·38		12·80 58·07				13 39 · 99 16 25 · 26
	38	Bradley 34		64	24 40-91		44 - 49				25 11.69
	39	B.J. 16 B.J. 17		66	27 26·92 31 31·60		28 · 59 32 · 78	00-04			27 55·79 31 59·98
	41	B.J. 19		at at	33 22 - 82		23.32	50.51	27·19 27·20		33 50 - 52
	42	B.J. 20		66	34 05·73 34 58·22			26.68			34 33·46 35 26·72
	44	B.J. 24		u	39 15·46 41 18·77						39 45.76
		23 Cass B.J. 27		44	42 09.14		$09 \cdot 55$	36-67	27 - 12		41 49 · 03 42 36 · 75
	47	η Cass ν Andromedae		44	43 13·95 44 25·70		15·31 26·47				43 42·51 44 53·67
	49	32º H.Camel	L.C.,rn	а	48 02-11		54-53	21.46	26.93		
	50	B.J. 33		es.	51 20.22		20.92	48-13	27.21		51 48-12

Clamp East. 1-50. Adopted ΔT+m=27·177+·0173 (T-23^h 20^m).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

		11011 01 1101									
Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Nov. 9	1	h Piscium		N	h. m. s. 0 52 32·87	s. ·041	8. 33·36		8.	s. 27·20	h. m. s. 0 53 00·56
Nov. 20	3 4 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 22 5 26 29 30 31 32 33 34 35 36	33 H Cephei. 33 P Ggaai B J, 848. 22 C Cephei. 220 R LC Cephei. 220 R LC Sephei. 220 R LC Sephei. 220 R LC Sephei. 230 R LC Sephei. 230 R LC Sephei. 231 R LC Sephei. 232 R LC Sephei. 233 R LC Sephei. 243 R LC Sephei. 254 P Ggaai 255 R LC Sephei. 265 R LC Sephei. 267 R LC	r r r		55 51-08 27 36-32 30 40-07 36-32 30 40-07 36-32 30 40-07 36-32 30 40-07 36-32 30 40-07 36-32 30 10-07 36-32 30 10-07 36-32 30 10-	(-822) 038 (-709)	57-42-3 37-28-3 60-04-1 42-67-3 41-13-1 18-52-4 49-76-6 67-19-73-1 19-73-1 10-83-1 14-03-3 14-03-3 14-03-3 14-03-3 14-03-3 14-03-3 14-03-3 14-03-3 12-55-6 13-69-3	36-19 00-35 48-65 48-67 13-54 48-43 18-67 58-63 12-95 38-36 47-84 11-45	-1·17 -1·11 -1·07 -1·09 -1·06 -1·10 -1·13 -1·09	-1-11	0 04 24·21 08 38·48 13 39·81
Nov. 27	37 38 39 40 41 42 43 44 45 46 47 48	B.A.C. 3495. 30 H.Camel. Groom. 4033 B.J. 880 B.J. 882 B.J. 885. 15 Andromedae B.J. 890	L.C.,nr	S = = = = = = = = = = = = = = = = = = =	22 17 01-05 20 26-08 23 14 08-52 16 14-06 20 52-03 24 39-69 25 54-56 30 16-14 33 12-22 41 37-05 43 37-97 48 01-91	(-684)	20.97 10.85 14.34 53.18	19.55 12.86	-1·42 -1·48	-1·49 -1·50	23 14 09 36 16 12 85 20 51 69 24 38 35 25 54 06 30 15 20 33 11 35 41 36 24 43 37 98 48 02 79

From Nov. 9 Clamp East; from Nov. 20 Clamp West. $\begin{array}{lll} 1-2. & \text{Adopted } \Delta T+m=27\cdot177+0178 & (T-23^{\circ}20^{\circ}).\\ 3-36. & \text{Adopted } \Delta T+m=-1\cdot104-0022 & (T-23^{\circ}25^{\circ}).\\ 37-48. & \text{Adopted } \Delta T+m=-1\cdot490-0022 & (T-0^{\circ}15^{\circ}). \end{array}$

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	9				Time of	Coll.	ransit	of Stars	ent.	ted	App. R.A. from
DATE	Reference No.	OBJECT	Notes	Observer	Observed Transit	(Polar Dev.)	See, of Transit Corrected	R. A. c Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	8.	8.	8.	8.	h. m. s.
Nov. 27	1 2 3 4 4 5 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 29 30 31 32 2 3 3 3 4 3 5 5 6	Groom, 4163, V. Pegasi,	L.C.,nr		23 50 27-69 53 13-72 0 0 12 1-97 0 0 12 1-97 0 0 12 1-97 0 0 12 1-97 0 13 13 13 13 13 13 13 13 13 14 69 22 55 45 45 23 15 25 25 25 25 25 25 24 12 12 12 12 12 12 12 12 12 12 12 12 12	(-684)	25: 309 33 31 35: 22 20 44: 41: 27 22 20 70 70 32 44: 42: 42: 42: 42: 42: 42: 42: 42: 42	40·65 38·42 59·78 33·34 45·04 22·86 26·92 33·87 42·22 6 04·23	-1·51 -1·47 -1·39 -1·07 -1·46		23 50 28.54 53 12.52 0 04 23.60 0 68 26.62 16 26.62 16 26.62 16 26.66 16 26.66 16 25.66 16 25.66 17 27 27 25.73 18 24.22 18 24.25 18 24.25 18 25.26 25.26 26
Dec. 5	37 38 39 40 41 42 43 44 45 46 47	B.J. 7 Bradley 1672. Bradley 34. B.J. 16. B.J. 18. B.J. 19. B.J. 20. B.J. 24. 23 Cass. 7 Cass. 9 Andromeda	L.C.	N « « « « « « « « « « « « « « « « « « «	0 08 39·07 14 45·07 25 08·52 27 54·81 32 07·15 33 50·89 34 33·66 39 43·25 41 46·35 44 41·93 44 53·65	073 (·751)	39·21 24·19 11·40 56·11 07·56 51·23 34·00 45·74 48·81	1 38-35 9 23-92 0 1 6 06-74 3 50-29 3 33-26	-0.86 -0.27 -0.82 -0.94 -0.77	-0.89	25 10·51 27 55·22 32 06·67 33 50·34 34 33·14
	48	32 ² H.Camel. B.J. 33	L.C.,n	u u	48 32·19 51 48·37		26.03	225.22	-0.80 -0.94		51 47-99

Clamp West.

1—36. Adopted $\Delta T + m = -1.496 - .0022$ (T $-0.5 15^{m}$). 37—49. Adopted $\Delta T + m = -0.855 + .0300$ (T $-0.5 15^{m}$).

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Date	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910	_				h. m. s.	s.	S.	8.	s.	8.	h. m. s.
Dec. 5	1	h Piscium		N	0 53 00.90	073	01.24			-0.88	0 53 00-36
	2	43 H.Cephei		44	56 16.72	(.751)			-0.83		
	3 4	72 Piscium μ Cass		4	1 00 23·58 02 19·90						1 00 22·85 02 19·96
	5	B.J. 42		44	04 44 - 55		45.00	$44 \cdot 15$	-0.85		04 44 13
	6	B.J. 43		er H	06 45-30		45-66	44.82	-0.84		06 44.79
	7 8	Bradley 137 Bradley 151		4	08 33 · 71 09 45 · 84		47 - 86				08 36 · 55 09 46 · 99
	9	B.J. 45		41	14 34 36		34-67	33.82	-0.85		14 33 80
	10	l Piscium E Andromedae		44	16 12·00 17 05·33		05.09			-0.86	16 11 · 48 17 05 · 12
	12	B.J. 48		44	19 58-38		59-54	58.63	-0.86		19 58-68
	13	ω Andromedae		a	22 19-35		20.00				22 19 14
	14	α Urs. Min ν Andromedae		4	27 02-77 31 34-03		34 - 59	37.33	0.22		31 33-73
	16	B.J. 55		44	35 43 - 33		44.98			-0.85	35 44 - 13
	17	B.J. 57 2 Persei		er er	38 04 · 27 46 29 · 15						38 04·21 46 29·10
	18	B.J. 64		ш	48 00-41		00.76	59.96	-0·80		47 59-91
	20	B.J. 66		a	49 43-58		43.80	42.95	-0.85.		49 42 95
	21	48 Cass B.J. 70		a	54 37 · 07 55 48 · 03		39.00			-0.84	54 38 · 15 55 49 · 29
	23	B.J. 73		ш	58 25 83		26.42	25.57	-0.85	-0.04	58 25-58
	24	B.J. 75		44	2 04 14.75				-0.85		2 04 14 35
	25 26	15 Arietis B.J. 77		a	05 41·93 07 40·83		41.64	40.55			05 41·29 07 40·80
	27	B.J. 79		a	12 01.37		01.79	00.93	-0.86		12 00.95
	28	B.J. 81		66	13 10·76 21 42·62		10.96	10-16	-0.80	0.02	13 10·12 21 43·40
	30	B.J. 87		66	29 32 50		34 - 67				29 33 84
	31	B.J. 89		44	33 46 - 06		46.30	$45 \cdot 46$	-0.84		33 45 - 47
	32	B.J. 92 B.J. 93		44	37 08 · 96 38 07 · 03		07.70	08.80		-0.82	37 09·79 38 06·97
	34	39 Arietis		44	42 36.74		37 - 08				42 36 26
	35	B.J. 100		44	44 44.96		45.27	44-42	-0.85		44 44-45
	36 37	σ Arietis B.J. 103		66	46 35·32 47 56·55		57.49	56-14			46 34 · 64 47 56 · 60
	38	B.J. 108		66	58 20.71		21.60	20.68		-0.81	58 20.79
	39	B.J. 109		66	59 28 45		28.96	28-09	-0.87		59 28 - 15
Dec. 8	40	B.J. 902		S	23 54 42 - 34	.074	42.55	43 - 63	1.08	1.12	23 54 43-67
	41	B.J. 13		66	0 25 28 11	(.782)	28-29	29.28	0.99	1.14	0 25 29 43
	42	B.J. 17		66	31 57 - 27		58-42	59 - 56			31 59-56
	43	B.J. 24	L.C. nr	a	39 40 · 23 48 32 · 43			25.78		1.15	39 44 - 43
	45	43 H.Cephei	nr	α	56 11.50		23.37	24.55	1.18		
	46 47	Bradley 155 Bradley 166		a	1 12 47-83 15 48-83		51.55			1.16	1 12 52·71 15 54·07
	48	E Andromedae		α	17 03 03						17 05.11
		B.J. 48		α	19 55.95		57.42	58-57			19 58 58
					_						

Clamp West.

1—39. Adopted $\Delta T + m = -0.855 + .0300 \text{ (T} - 1^{\text{h}} 35^{\text{m}})$. 40—49. Adopted $\Delta T + m = 1.165 + .0300 \text{ (T} - 1^{\text{h}} 25^{\text{m}})$.

3 GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

Dien	ee ee	Object	Notes	10	Time of Observed	COLL.	Transit	L of Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser-
DATE	Referen No.	OBJECT	NOILS	Observer	Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. Known S	Appa	Ado	vation
1910				s	h. m. s. 1 22 16·89	s. ·074	8. 17.81	s.	8.	8.	h. m. s.
Dec. 8	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	ω Andromedae α Urs. Min π Piscium. 42 Cass B.J. 57 2 Persei. B.J. 64 B.J. 65 Bradley 246. Groom. 422 B.J. 74 15 Arietis. B.J. 76 B.J. 79 B.J. 81 E. Arietis. B.J. 93 B.J. 99 σ Arietis. B.J. 99 σ Arietis.	r		26 50-37 32 20-96 35 56-93 38 01-97 46 26-65 47 58-22 49 41-36 53 49-88 55 12-43 05 39-64 07 26-00 11 59-13 13 08-56 20 01-14 25 56-37 29 29-50 38 04-65 42 34-55 44 09-41 46 33-08	(.782)	33·48 21·24 59·28 03·00 27·76 58·78 41·77 53·70 15·28 07·79 40·03 27·92 59·78 08·95 01·40 05·63 35·10 10·65 33·40	34·76 04·12 59·94 42·94 08·93 00·91 10·15	1-16 1-17 1-14 1-13 1-20	1·16 1·17 1·18 1·19 1·20	47 59-96 49 42-95 53 54-88 55 16-46 2 02 08-97 05 41-22 07 29-11 12 00-97 13 10-14 20 02-59 25 57-93 29 33-38 42 36-30 44 11-85 46 34-61
Dec. 9	24 25 26 27 28 29 30 31 32 33 34 40 41 42 44 44 45 46 47 48	B.J. 108 B.J. 109 B.J. 117 B.J. 171 B.J. 171 B.J. 171 B.J. 25 B.J. 27 B.J. 27 B.J. 25 B.J. 27 B.J. 28 B.J. 38	L.C.,nr	# N N N N N N N N N N N N N N N N N N N	47 54-15 59 26-12 0 27 51-65 31 56-62 33 47-90 35 22-91 33 42-90 42 14-26 44 430-72 44 430-72 51 56-60 64 23-90 64 23-90 64 23-90 64 23-90 64 23-90 64 23-90 64 23-90 64 23-90 65 24-11 66 60-21 67 55-31 68 48-76 69 48-76 33 540-67	·022 (·829)	26 · 88 53 · 30 57 · 79 48 · 40 24 · 20 43 · 14 16 · 95 40 · 14 51 · 47 23 · 47 17 · 19 58 · 49 21 · 79 18 · 00 33 · 62 42 · 90 33 · 62 44 · 67 31 · 95 09 · 70 03 · 31 56 · 80 17 · 28 31 · 62 42 · 90 44 · 67 44 · 68 46 · 68 47 · 68 48 · 68 49 · 68 49 · 68 40	28·09 59·54 50·25 26·13 44·85 225·97 24·30 44·78 33·79 58·55 33·91	2.51		42 18-76 43 41-95 44 53-28 51 19-00 52 00-30 1 02 19-82 04 32-54 06 44-72 08 35-44 09 46-49 14 33-77 16 11-52 17 05-13

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

DATE	Reference No.	OBJECT	Notes	Observer	Time of Observed Transit	(Polar Dev.)	Sec. of Transit Corrected R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910 Dec. 9	1 2 3 4 5 6 7 8 9 10 11 12 13 14	B.J. 57 2 Persei. B.J. 63 B.J. 66 48 Cass. B.J. 70 B.J. 73 B.J. 75 B.J. 75 B.J. 77 B.J. 77 B.J. 79 B.J. 79 B.J. 81 Cass. 27 Arietis.	rr	X a a a a a a a a a a a a a a a a a a a	h. m. s. 1 38 01-23 46 26-00 47 55-09 49 40-73 54 33-55 55 44-33 2 02 06-70 04 11-81 05 38-99 07 37-61 11 58-49 13 07-94 21 39-14 25 55-75	8. ·022 (·829)	12·42 14·32 39·32 38·66 40·51 59·08 00·91 08·27 10·15 41·18 56·05	1-85 1-82 1-82 1-90 1-83 1-88	1.84	h. m. s. 1 38 04-09 46 28-88 47 58-64 49 42-92 54 37-78 55 48-83 58 25-56 2 02 08-95 04 14-27 07 40-51 12 00-93 13 10-12 21 43-04 25 57-91
Dec. 10	16 17 18 19 20 21 22 23 24 25	B.J. 87 B.J. 89 B.J. 92 B.J. 93 39 Arietis B.J. 103 B.J. 103 B.J. 108 B.J. 108 B.J. 109 B.J. 109			29 28-83 33 43-22 37 05-86 38 04-04 42 33-90 44 08-75 46 32-52 47 53-54 58 17-63 59 25-64	-043	31·56	1-86	1·87 1·88 2·60	29 33 -42 33 45 45 37 09 80 38 06 89 42 36 27 44 11 -8 46 34 65 47 56 53 58 20 65 59 28 22 23 43 37 38
Dec. 10	27 28 29 30 31 32 33 34 35 36 37	Groom. 4163 ψ Pegasi B.J. 1 B.J. 8 σ Andromedae ϕ Andromedae Bradley 34 B.J. 17 B.J. 20 B.J. 25	r		50 22·04 53 09·29 0 03 43·02 05 36·94 11 02·51 13 36·24 16 21·61 25 03·76 31 55·76 34 30·01 39 41·37	(·843) 048	25·25 09·77 43·57·46·17 37·84·40·42 06·16 36·95 22·29 07·43 56·94·59·52 30·60/33·20 42·20·44·83	2·60 2·60	2.61	50 27.85 53 12.37 0 03 46.18 05 40.45 11 08.77 13 39.56 16 24.90 25 10.05 31 59.56 34 33.22 39 44.82
	43 44 45 46 47 48 49	B.D. 71·37. » Andromedae 32º H.Camel. » Piscium. 43 H.Cephei. Bradley 109. » Piscium. Bradley 137. » Andromedae « Urs. Min. » Piscium. † Andromedae B.J. 57.	L.C.,rn rn r	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	42 13·44 44 49·96 48 31·01 52 57·24 56 09·99 1 01 26·96 06 36·51 08 28·25 22 15·54 26 51·16 32 19·59 35 15·51 38 00·49	(.843)	15.87 50.65 23.75 26.16 57.68 21.03 24.06 31.22 36.81 32.72 16.35 31.26 33.11 19.76 16.20 01.47.04.09	2·41 3·03 1·85	2·64 2·64	42 18-50 44 53-28 53 00-31 1 01 33-86 06 39-45 08 35-36 22 19-00 32 22-41 35 18-85 38 04-12

Clamp West.

1—25. Adopted $\Delta T + m = 1.838 + .0300 \text{ (T-1}^h 45^m)$, 26-50. Adopted $\Delta T + m = 2.650 + .0300 \text{ (T-1}^h 30^m)$.

3 GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	٥				Time of	Coll.	ransit	of Stars	ent m	m m	App. R.A. from
DATE	Reference No.	Object	Notes	Observer	Observed Transit	(Polar Dev.)	Sec. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910					h. m. s.	8.	8.	8.	s.	8.	h. m. s.
Dec. 10	2 3	2 Persei		8 4	1 46 25·44 47 56·81 54 32·72 56 04·82	· 048 (· 843)	34.92	59 · 93	2.67	2.66	1 46 29·02 47 59·92 54 37·58 56 10·84
	5 6 7 8	Bradley 282 B.J. 76 B.J. 79 B.J. 81		41 41 41 41	2 05 02·62 07 24·62 11 57·70 13 07·15		07-44	00·90 10·14	2.70	2.67	2 05 07·95 07 29·04 12 00·91 13 10·11
	11	ξ Arietis 27 Arietis B.J. 87 Bradley 344 B.J. 92	r	u u	19 59·78 25 54·97 29 28·26 34 47·16 37 05·06		59-92 55-17 30-72 52-32 06-93			2.68	20 02·59 25 57·85 29 33·40 34 55·00 37 09·61
	15 16 17	B.J. 94 39 Arietis B.J. 99 σ Arietis		"	38 10·32 42 33·08 44 07·95 46 31·65		09·06 31·86	13·42 11·81	2.68	2.69	46 34 55
	19 20 21	B.J. 103	rn	66 66 66 66	47 52·77 54 07·79 57 44·91 59 24·77		11.86 50.10 25.42	28-09	2.67		47 56·45 54 14·55 57 52·79 59 28·11
	23 24 25	Bradley 417 Groom. 2283 7 Arietis B.J. 120	L.C.,rn		3 02 11·46 05 39·17 16 02·14 17 54·37		20.85 02.45 55.26	24·38 57·88	3.53	2.70	3 02 16·90 16 05·15 17 57·96
		Bradley 459			21 00-62					2.71	21 05 67
Dec. 12	28 29	B.J. 27		Nuuuu	0 42 31 · 91 43 36 · 62 44 48 · 49 48 28 · 96	-·020 (·767)	37·79 49·13		4.41	4-17	0 42 36-41 43 41-96 44 53-30
	32 33	h Piseium 43 H.Cephei Bradley 109	rn	u	51 42·99 52 55·75 56 08·75 1 01 25·58		56·15 19·15	23.62		4.18	51 47·74 53 00·33
	35 36 37	B.J. 42 χ Piscium Bradley 137 Bradley 151		41	04 39·38 06 35·06 08 27·43 09 39·91		39.90	44.07			01 44·08 06 39·51 08 35·70 09 46·33
	39 40 41	B.J. 45 Bradley 166 B.J. 46		a a a	14 29 · 17 15 45 · 90 19 31 · 32		29.54 49.57 33.16	33.76		4.19	14 33·73 15 53·76 19 37·35
		ω Andromedae α Urs. Min ν Andromedae τ Andromedae	r	a a	22 14·00 26 46·89 31 28·75 35 13·99		24 · 68 29 · 40 14 · 61		6.95	4.20	
	47 48	B.J. 57	r	a a	37 58·96 46 23·71 47 52·78 49 38·47		$24 \cdot 62$ $54 \cdot 27$	04-06	4-17		38 04·06 46 28·82 47 58·47 49 42·94
-											

Clamp West.

1–26. Adopted $\Delta T + m = 2 \cdot 650 + \cdot 0300 \text{ (T-1}^h 30^m)$, 27-49. Adopted $\Delta T + m = 4 \cdot 204 + \cdot 0300 \text{ (T-1}^h 50^m)$,

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Continued

	0				Time of	COLL.	ransit	of	ent m	poc m	App. R.A. from
DATE	Reference No.	OBJECT	Notes	Observer		(Polar Dev.)	Sec. of Transit Corrected	R. A. Known S	Apparent $\Delta T + m$	Adopted $\Delta T + m$	Obser- vation
1910 Dec. 12	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Arietis. Bradley 246. BJ. 75 BJ. 77 BJ. 75 BJ. 77 BJ. 75 BJ. 77 BJ. 81 BJ. 79 BJ. 81 BJ. 79 BJ. 81 BJ. 79 BJ. 81 BJ. 87 BJ. 92 BJ. 92 BJ. 93 BJ. 100 BJ. 105 BJ. 107 BJ. 105 B	rr	X	h. m. s. 1 52 53-14 52 53-14 53 46-92 55 42-20 55 42-20 55 82 2-0 06-60 65 33-79 57 58 20-60 65 33-79 57 58 20-60 58 33-79 57 58 58 59 20-21 53-50 59 20-22 53-50 59 20-22 53-50 59 59 20-25 58 15-45 59 20-25 58 15-45 59 20-50 58 30-50 53-50 50 53-50 50 53-50 50 53-50 50 53-50 50 53-50 50 53-50 50 53-50 50 53-50 50 53-	(.767)	50·35 44·53 21·27·04·72 10·12 37·05 36·35 56·67 05·96 38·87 53·74 29·09 41·27 05·26 40·20 30·32 52·18 10·20 16·44	25 · 52 · 08 · 91 · 14 · 30 · 40 · 48 · 00 · 89 · 10 · 14 ·	4·25 4·19 4·18 4·23 4·21 4·21 4·24 4·25 5·65	s. 4·21 4·22 4·23	h. m. s. 1 52 57-67 53 54-56 53 54-56 53 54-56 53 58-74 53 58-74 53 58-74 53 58-74 53 20-68 53 20-68 54 12-26 67 40-56 12 00-88 13 10-13 23 53-68 23 53-68 33 43-59 34 53-68 34 53-68 35 43-59 36 34-55 37 09-49 48 34-55 46 34-55 46 34-55 46 34-55 36 38-78 46 34-55 37 09-49 38 06-77 42 36-29 38 06-88 39 38-89 30 22-36
Dec. 21	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	a Urs. Min. ya. Adromedae B.J. 52 ya. Andromedae B.J. 57 2 Persei B.J. 64 B.J. 66 A Arietis B.J. 70 B.J. 73 B.J. 73 B.J. 75 B.J. 75 B.J. 75 B.J. 75 B.J. 75 B.J. 75 B.J. 76 B.J. 79 B.J. 71 B.J. 76 B.J. 79 B.J. 84 B.J. 87 B.J. 84 B.	r r	N	1 26 47-08 31 31-38 33 104-41 35 10-51 35 10-51 44 129-25 49 149 14-08 55 26-18 55 26-18 56 26-18 57 28-18 58 26-18 58 2	(-773)	35.03 32.28 20.14 30.16 01.32 44.31 59.00 49.79 26.86 10.22 15.56 42.54 30.16 02.24 111.44 59.30 34.36 46.82 11.77	30-76 03-92 59-84 42-85 25-43 08-85 14-23 00-83 10-09 45-41	-1·46 -1·43 -1·37 -1·33 -1·41 -1·35	-1·39 -1·38	33 33 44 33 30 89 35 18 75 38 35 18 75 38 47 59 94 49 42 93 52 57 62 02 68 84 41 58 25 48 04 14 15 58 25 48 04 14 15 58 25 48 12 10 0 86 20 02 56 20 02 55 33 45 44 35 13 10 06 20 02 56 21 42 86 25 57 92 33 45 44 38 13 38 13 38 38 13 38 42 36 27

26-50. Adopted $\Delta T + m = -1.376 + .0075$ (T-2h 50m).

3 GEORGE V., A. 1913

TABLE III.

REDUCTION OF TRANSITS OBSERVED WITH THE MERIDIAN CIRCLE-Concluded

DATE	Reference No.	Овјест	Notes	Observer	Time of Observed Transit	(Polar Dev.)	See. of Transit Corrected	R. A. of Known Stars	Apparent $\Delta T + m$	Adopted $\Delta T + m$	App. R.A. from Obser- vation
1910					h. m. s.	8.	s.	8.	8.	s.	h. m. s.
Dec. 21	1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	B.J. 100 "A Arietis B.J. 105 B.J. 105 B.J. 105 B.J. 108 B.J. 109 B.J. 111 Groom 2283 B.J. 122 B.J. 124 "S Tauri B.J. 129 11 Tauri B.J. 132 B.J. 132 B.J. 134 B.J. 134 B.J. 134 B.J. 135 B.J. 134 B.J. 135 B.J. 144 B.J. 145 B.J. 145 B.J. 148 B.J. 150		N	2 44 45.42 46 35-6.84 54 11-16 58 21-01 58 21-01 59 28.86 3 02 23-04 05 45-38 21 51-49 24 18.32 25 33-79 34 25-57 36 35-65 48 32-99 49 32-90 49 32-90 53 12-53 53 12-	(-773)	35·91 57·82 15·13 22·01 29·46 23·69 28·07 52·78 19·14 27·06 28·64 45·37 36·70 12·98 33·46 34·15 54·18 12·76	56-34 20-59 28-06 22-34 26-82 51-45 17-78 35-15 44-18 35-40 11-63 32-23 52-86 11-41	-1·40 -1·35 -1·25	-1-37	2 44 44-42 46 34-53 47 56-44 54 13-75 58 20-64 59 28-09 3 02 22-32 21 51-41 24 17-77 34 25-69 35 27-27 36 35-09 39 35-33 42 11-61 48 32-09 49 32-78 51 52-81 53 11-53 51 51-51 51 51-51

Clamp West.

1-22. Adopted $\Delta T + m = -1.376 + .0075 \text{ (T} - 2^h 50^m)$,

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0

Date Grant Box 1910.0	Date G Hean R.A. 1910-0	Date Date Mean R.A. 1910-0
B. J. 296 Dec. 33° 38′	B. J. 339 Dec. 42° 08′	B. J. 349 Dec. 37° 11′
Mar. 18 W N 7 41 42·37 Δ ₁ -003 Δ ₂ -003	Mar. 17 W S 8 54 48·14 18 W N 48·02	Mar. 17 W S 9 13 14-87 18 W N 14-90
Mean R.A. 7 41 42-364	Mean 48·080 $Δ_1$ ·004 $Δ_2$ -002	Mean 14·885 $Δ_1$ ·000 $Δ_2$ 002
B. J. 314 Dec. 43° 29'	Mean R.A. 8 54 48-082	Mean R.A. 9 13 14-883
Mar. 18 W N 8 16 40.66 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	B. J. 341 Dec. 47° 31′	Dec. 34° 46′ Apr. 28 W N 9 15 34·61 Δ1 ·004
Mean R.A. 8 16 40-653	Mar. 17 W S 8 57 29-17 18 W N 29-15	Δ_2 003 Mean R.A. 9 15 34-611
B. J. 320 Dec. 38° 20'	Mean 29·160 Δ ₁ 004	B. J. 358 Dec. 52° 05′
Mar. 17 W S 8 27 04-13 04-16	Δ_2 003	Mar. 17 W S 9 26 50·64 18 W N 50·72 Apr. 2 W S 50·59 10 E S 50·70
$\begin{array}{cccc} {\rm Mean} & 04\cdot 145 \\ \Delta_1 & -\cdot 005 \\ \Delta_2 & -\cdot 002 \\ {\rm Mean \ R.A.} & 8 \ 27 \ 04\cdot 138 \end{array}$	B. A. C. 3097 Dec. 38° 49'	Apr. 2 W 8 50·59 10 E 8 50·70 11 E N 50·69 14 E 8 50·68 21 E N 50·59 22 W N 50·59 28 W N 50·77
B. J. 323 Dec. 53° 02′	Mar. 17 W S 9 00 48-51 18 W N 9 48-52	Mean 50·664 $Δ_1$ -·004 $Δ_2$ -·001
Mar. 17 W S 8 32 37-85 18 W N 37-94	Mean 48·515 $Δ_1$ ·000 $Δ_2$ ·-002	Mean R.A. 9 26 50-659
Mean 37-895	Mean R.A. 9 00 48-513	B. J. 360 Dec. 36° 48′
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B. J. 346 Dec. 43° 35′	Mar. 17 W S 9 28 42-88 Apr. 2 W S 42-81 10 E S 42-86 11 E N 42-83 14 E S 42-80 21 E N 42-83 22 W N 42-79
B. J. 335 Dec. 48° 24'	Mar. 17 W S 9 07 55-30 18 W N 55-38	21 E N 42·83 22 W N 42·79 28 W N 42·82
Mar. 17 W S 8 53 03·04 Δ_1 003 Δ_2 001 Mean R.A. 8 53 03·036	Mean 55·340 $Δ_1$ -·004 $Δ_2$ -·003 Mean R.A. 9 07 55·333	Δ_2 ·000
Mean II.A. 8 35 05.050	Blean 11.71. 9 07 007000	1 20 42 024

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date E Nean R.A. 1910-0	Date Date Mean R.A. 1910-0	Date Date Mean R.A. 1910.0			
B. J. 368 Dec. 59° 28′	B.J. 383 Dec. 43° 22′	B. J. 390 Dec. 37° 10′			
Mar. 17 W S 9 H 35-94 18 W N S 35-90 10 E S S 33-99 10 E S 33-99 11 E N 33-93 121 E N 33-93 221 E N 33-93 228 W N 35-98	18 W N 40.39 26 W S 40.45 Apr. 2 W S 40.51 10 E S 40.41 11 E N 40.41 13 E S 40.45 14 E S 40.49 21 E N 40.43	Apr. 3 E S 40-95 110 E S 41-00 11 E N 40-95 13 E S 41-01 21 E N 40-98 22 W N 40-98 25 W S 40-98 28 W N 40-98 30 W S 41-01			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 W N 40.46 28 W N 40.44 Mean 40.445 Δ_1 002 Δ_2 -000	Mean 40-973			
B. J. 374 Dec. 41°29'	Mean R.A. 10 11 40-443	B. J. 394 Dec. 56° 27′			
Mar. 17 W S 9 52 10-58 Apr. 2 W N 10-61 Apr. 2 W S 10-63 10 E S 10-63 11 E N 10-63 14 E S 10-65 21 E N 10-63 22 W N 10-68	$\begin{array}{c} \text{B. J. 384} \\ \text{Dec. } 23 \circ 52' \\ \\ \text{Apr. 30 W S 10 11 41 \cdot 24} \\ \begin{array}{c} \Delta_1 \\ \Delta_2 \\ \end{array} \begin{array}{c} -0.01 \\ -0.01 \\ \end{array} \\ \\ \text{Mean R.A.} 10 \ 11 \ 41 \cdot 241 \end{array}$	Mar. 17 W S 10 24 52-52 18 W N S 52-41 20 W S 52-41 19 10 E S 52-42 11 E S 52-52 11 E S 52-52 11 E S 52-52 12 2 W N S 52-45 25 W N S 52-45 25 W N S 52-45 25 W N S 52-42 30 W S 52-42 30 W S 52-42 30 W S 52-42 30 W S 52-42			
$\begin{array}{cccc} & \text{Mean} & 10 \cdot 602 \\ & \Delta_1 & - \cdot 001 \\ & \Delta_2 & \cdot 000 \\ \\ & \text{Mean R.A.} & 9 \cdot 52 \cdot 10 \cdot 601 \\ \end{array}$	B. J. 386 Dec. 41° 57′	Mean 52·460 $Δ_1$ -·003 $Δ_2$ ··000 Mean R.A. 10 24 52·457			
B. J. 379 Dec. 17° 12'	Mar. 18 W N 10 16 58-31 58-36 Apr. 30 W S 58-33				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & \text{Mean} & 58\cdot333 \\ & \Delta_1 & \cdot 003 \\ & \Delta_2 & -\cdot 001 \\ \\ & \text{Mean R.A.} & 10 \ 16 \ 58\cdot335 \\ \end{array}$	Mar. 17 W S 10 29 22-30 18 W N 22-32 26 W 8 22-27 Apr. 2 W S 22-28			

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date O Mean R.A.	Date Da	Open R.A. 1910-0			
B. J. 398 (continued)	B. J. 407 Dec. 31° 09′	Ursae Majoris Dec. 40° 55′			
Apr. 3 E 8 h m 8 10 29 22-28 10 E 8 N 22-43 11 E N 22-43 11 E N 22-23 12 E N N 22-22 W N 22-28 25 W N 22-28 28 W N 22-22 22	Mar. 26 W 8 10 49 51:82 Mar. 26 Apr. 3 E 8 10 49 51:82 Mar. 27 Mar. 28 Mar. 29	h m s 8 10 54 25-83 E S 25-74 E N 25-74 E N 25-78 W N 25-88 W N 25-88 W N 25-88 W N 25-89 W N 25-99 W N 25-99			
$\begin{array}{cccc} {\rm Mean} & 22 \cdot 301 \\ \Delta_1 & \cdot 003 \\ \Delta_2 & \cdot 000 \\ {\rm Mean~R.A.} & 10~29~22 \cdot 304 \\ \end{array}$	May 10 W N 51·83 10 12 Mean 51·815 $Δ_1$ ·004 $Δ_2$ ·000 Mean R.A. 10 40 51·819 Mean	W N 25.79 W N 25.84 Mean 25.788 Δ_1 001 R.A. 10 54 25.787			
37 Leonis Minoris Dec. 32° 27′	B. J. 412	B. J. 416			
Mar. 26 W S 10 33 39-52 Apr. 2 W S 30-66 S 30-	Mar. 26 W S 10 48 16-91 Mar. 17 Apr. 3 E S 16-96 Mar. 17 10 E S 16-96 Mar. 17 10 E S 10 48 16-91 Mar. 17 10 10 E S 16-92 Mar. 18 11 11 E N 16-95 Mar. 17 10 16-95 Mar. 18 10 10 10 10 10 10 10 10 10 10 10 10 10	Dec. 56° 52′ W S 10 56 24.00 W S 24.05 E S 25.04 E S 25.07 E N 25.08 W N 25.08 W N 25.07 W N 25.08 W N 25.06 W N 35.06 W N 35.06 W N 35.06			
Mean 39·528 $Δ_1$ · ·000 $Δ_2$ · ·000 Mean R.A. 10 33 39·528	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W S 25.00 W N 25.16 W N 25.04 W N 25.07			
B. J. 405 Dec. 23° 40'	Mean R.A. 10 48 16-921 54 Leonis Dec. 25° 14' Mean	Mean 25·052 $Δ_1$ -·003 $Δ_2$ -·001 R.A. 10 56 25·048			
Apr. 30 W S 10 38 31·50 May 10 W N 31·50	Apr. 30 W S 10 50 44 56 May 3 W N 44 56 10 W N 44 56	B. J. 420 Dec. 44° 59′			
$\begin{array}{cccc} \text{Mean} & 31 \cdot 500 \\ \Delta_1 & -001 \\ \Delta_2 & \cdot 000 \\ \\ \text{Mean R.A.} & 10 \ 38 \ 31 \cdot 499 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W S 11 04 36·42 W S 36·41 E S 36·45 E S 36·43			

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

B. J. 420 (continued) Apr. I1 E N h m 98.53 13 E S 104.97 14 E S 30.497 12 E N 30.487 22 W N 30.55 22 W N 30.56 23 W N 30.57 30.47 May 3 W N 30.52 10 W N 30.52 10 W N 30.52	$\begin{array}{c} \text{B. J. 424} \\ \text{(continued)} \\ \hline & \text{h m} & \text{s} \\ \text{Mean 11 11 37.849} \\ \Delta_1 & -003 \\ \Delta_2 &001 \\ \end{array}$ Mean R.A. 11 11 37.851	B. J. 441 Dec. 48° 17' Mar. 26 W S 11 41 18-07 Apr. 2 W S 18-02 25 W S 18-13 27 W S 18-14 30 W S 18-12
Apr. 11 E N 11 04 36-53	Mean 11 11 37·849 $Δ_1$ ·003 $Δ_2$ 001	Mar. 26 W S 11 41 18-07 Apr. 2 W S 18-02
May 5 W N 50.52		25 W S 18·13 27 W S 18·14 30 W S 18·12 May 7 W S 18·06 10 W N 18·08 11 W S 18.09 12 W N 18·13
10 W X 36-46 12 W X 36-49	B. J. 425 Dec. 33° 35′	15 W S 18-06 16 E N 18-09
	Mar. 26 W S 11 13 37 31 Apr. 2 W S 37 23 11 E N 37 20 14 E S 37 25 21 E N 37 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B. J. 422 Dec. 21°01' Apr. 30 W S 11 09 19-42 May 3 W N 19-43	7 W S 37-231	B.J. 444 Dec. 15° 05′
7 W S 19-43 10 W N 19-41 12 W N 19-41	12 W N 37·21 Mean 37·244	Apr. 30 W S 11 44 28 20 May 5 W S 28-19 7 W S 28-21 10 W N 28-20 11 W N 28-18 12 W N 28-21 15 W S 28-23 16 F N 28-21
Δ ₁ 005 Δ ₂ -000 Mean R.A. 11 09 19 ·415	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 W S 28·23 16 E N 28·21
B. J. 424 Dec. 49°58'		
Mar. 26 W S 11 11 37-87	B. J. 432 Dec. 43° 40′	Mean R.A. 11 44 28-201
	Apr. 30 W S 11 25 39-08 May 7 W S 39-12 11 W S 39-09	Groombridge 1830 Dec. 38° 22'
3 E 8 37-77- 10 E 8 37-85- 11 E N 37-93 14 E 8 37-86 22 W N 37-81 25 W 8 37-89- 28 W N 37-91 30 W 8 37-81 May 3 W N 37-91 10 W N 37-81 10 W N 37-81	Mean 39·097 Δ_1 ·003 Δ_2 ·001 Mean R.A. 11 25 39·099	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

LEDGERS OF MEAN RIGHT ASCENSION. 1910-0-Continued.

Date Gumbol Mean R.A. 1910-0	Date du do Mean R.A. 1910 · 0	Date D Seq 1910-0			
Groombridge 1830 (continued)	1 Canum Venaticorum Dec. 53° 56′	12 Comae Dec. 26° 21'			
May 10 W N 11 47 47 08 12 W S 47 66 12 W S 47 66 16 E N 47 7 06 16 E N 47 7 06 16 E N 47 7 07 16 16 E N 47 7 7 04 16 16 E N 47 7 7 04 16 16 E N 47 7 7 07 16 16 16 16 16 16 16 16 16 16 16 16 16	Mar. 26 W 8 12 10 15-96 Apr. 27 W 8 16-01 May 3 W N 16-01 7 W 8 15-18 7 W 8 15-81 10 W N 15-98 10 E N 15-88	7 W S 58-97 12 W N 59-03 15 W S 58-93 16 E N 58-93 Mean 58-978 \[\triangle \triangl			
	Mean 15·920 Δ ₂ 003	B.J. 461 Dec. 39° 31′			
B.J. 447 Dec. 51'12' Mar 26 W 8 11 49 06.00 Apr. 12 E N 8 06.00 27 W 8 06.00 May 7 W 8 06.00 12 W N 66.13 15 W 8 06.03 16 E N 06.16 Mean 06.073	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mar. 26 W S 12 21 25.04 Apr. 8 E N 25.04 27 W S 25.04 May 8 W S 25.06 May 8 W S 25.06 10 W N 25.06 11 W N 25.06 11 W N 25.06 11 W S 25.06 11 W S 25.06 11 W S 25.06 12 E N 25.06			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean R.A. 12 10 58-537 B.J. 458 Dec. 41° 10'	Mean 25·043 Δ ₁ 004 Δ ₂ 001 Mean R.A. 12 21 25·028			
σ Leonis Dec. 16° 09′	Mar. 26 W 8 12 11 37-12 Apr. 25 W 8 37-12	15 Comae Dec. 28° 46'			
May 3 W N 11 51 02-90 5 W S 02-85 7 W S 02-86 10 W N 02-94 11 W S 02-88 12 W N 02-89 15 W S 02-84 16 E N 02-84	7 W S 37-10 10 W N 37-09 11 W S 37-12 12 W N 37-04 15 W S 37-11 16 E N 37-08 21 E N 37-10	May 3 W N 12 22 27-22 5 W S 27-28 10 W N 27-28 11 W S 27-28 12 W N 27-82 15 W S 27-82 16 E N 27-28 21 E N 27-27-28 28 W N 27-29			
$\begin{array}{ccc} {\rm Mean} & 02\!\cdot\!875 \\ \Delta_2 & \cdot\!001 \\ \\ {\rm Mean~R.A.} & 11~51~02\!\cdot\!876 \\ \end{array}$	$\begin{array}{cccc} {\rm Mean} & 37 \cdot 102 \\ \Delta_1 & \cdot 002 \\ \Delta_2 & - \cdot 001 \\ {\rm Mean~R.A.} & 12 \ 11 \ 37 \cdot 103 \\ \end{array}$	Mean 27·272 Δ ₂ 001 Mean R.A. 12 22 27·271			

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date E Mean R.A. 1910.0	Date Clamb Mean R.A. 1910-0	Date O Mean R.A.			
B.J. 466 Dec. 21° 24′	B. J. 470 (continued)	31 Comae Dec. 28° 02′			
May 5 W 8 12 25 12-96 7 W 8 12-96 11 W 8 12-04 12 W N 12-13 15 W 8 12-01 16 E N 11-99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Apr. 30 W S 12 47 18-95 May 5 W S 19-03 7 W S 18-91 11 W S 18-91 15 W S 19-08 19 E S 18-92			
Mean $12 \cdot 042$ $Δ_1 \cdot 002$ $Δ_2 \cdot 001$	Mean R.A. 12 29 28-250	Δ_2 $\cdot 002$			
Mean R.A. 12 25 12 045	23 Comae Dec. 23° 07'	Mean R.A. 12 47 18-967			
B.J. 467 Dec. 58° 54′	May 3 W N 12 30 22-09 5 W S 22-03 10 W N 22-14 11 W S 22-05	B. J. 483 Dec. 56° 27′			
Mar. 26 W S 12 25 45-45 Apr. 2 W S 45-39 12 E N 45-39 May 17 E S 45-36 28 W N 45-36	12 W N 22-06 16 E N 22-05 21 E N 22-10 28 W N 22-11	Apr. 2 W S 12 50 04·32 May 5 W S 04·24 7 W S 04·19 15 W S 04·30 19 E S 04·30 21 E N 04·36 26 W N 04·37			
Mean 45·388		Mean 04-297 Δ ₁ -002 Δ ₂ 001			
$\Delta_1 = -0.04$ $\Delta_2 = -0.00$ Mean R. A. 12 25 45 384	9 Canum Venaticorum Dec. 41° 22′	Mean R.A. 12 50 04-298			
B.J. 470 Dec. 41° 51'	Apr. 12 E N 12 34 26-49 D 27 W S 26-47 D 28-41°51′ May 3 W N 26-65				
Mar. 26 W S 12 29 28-19 Apr. 2 W S 12 29 28-19 Apr. 2 W S 12 29 28-19 B E N 28-21 B E N 28-21 B E N 28-22 B W S 28-25 T W S 28	5 W S 26.51 7 W S 26.58	12 E N 49-20 27 W S 49-22 30 W S 49-22 May 5 W S 49-19 6 W N 49-23 7 W S 49-15			

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date	Clamp Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910-0	
	B. J. 48 (continu			B. Dec.	J. 49 38°	1 59'	19 Ca	19 Canum Venaticorum Dec. 41° 20′			
		h m s 12 51 49·18 49·17 49·25 49·205 -000 -001 12 51 49·204	Apr. 12 27 May 5 6 7 10 11 12 15 16 19 21 26	EWWWWWEEEW	ZZZZZZZZZZZZZZZZZ	h m s 13 05 55.37 55.35 55.31 55.37 55.35 55.35 55.36 55.32 55.32 55.32 55.32	Apr. 8 12 27 30 May 5 6 7 10 11 12 15 16 19	E W W W W W W W W E E	NZNANZANZANANZA	h m s 13 11 29-17 29-24 29-26 29-27 29-27 29-27 29-23 29-20 29-30 29-29 29-30 29-29 29-30 29-29 29-30 29-29	
Apr. 12 27	E N W S	13 01 32·07 32·06	June 3 8	W W W	N S N	55·37 55·37 55·34	June 3 8	W W	NNSN	29·23 29·25 29·24 29·26	
May 5 6 7 10 11 12 15 16 17	W S S W S S W N S W N S W N S W N S E E S S E E S N N N S W N S W N S W N S W N S W N S W N S W N S W S W	32·00 32·04 32·03 32·00 32·05 32·04 31·99 32·08 32·06 32·06	Mean	Me- Δ Δ:		55·351 003 001 3 05 55·347	Mear	_	J. 49	29·252 001 3 11 29·251	
19 21 26 28 June 3 8	E S E N W N W N W S W N	32·03 32·03 32·02 32·01 32·07 32·07		B. Dec.	J. 49 . 28°		Apr. 8 12 27 30	E E W	N N	13 13 30·54 30·50 30·48 30·49	
Mean	Mean Δ_2 R.A.	32·039 ·000 13 01 32·039	Apr. 30 May 5 6 7	M. M.	SZSS	13 07 40 · 46 40 · 48 40 · 38 40 · 45	May 5 6 7 10	WWW	SNSN	30·53 30·48 30·55 30·48	
15 Ca May 11 15 19 21 26 28 June 3	num Ver Dec. 39° W S W S E S E N W N W N	13 05 33-61 33-60 33-61 33-59 33-57 33-56 33-55	10 11 12 15 16 19 21 28 June 3 8	W W W E E W W	ZeZzzzzzzzz	40·51 40·46 40·52 40·43 40·51 40·44 40·46 40·46 40·49	11 12 15 16 17 19 21 26 28 June 3 8	W W E E E W W	Zazzzazazazzzaz	30 - 48 30 - 66 30 - 54 30 - 56 30 - 50 30 - 51 30 - 51 30 - 51 30 - 50 30 - 50	
8	Mean Δ_2	33·55 33·64 33·591 001 13 05 33·590	Mea	Me Δ Δ n R.A	2	40·464 001 :000 13 07 40·463	Mea	Δ	12	30·513 005 001 13 13 30·507	

LEDGERS OF MEAN RIGHT ASCENSION, $1910 \cdot 0 - Continued.$

Date Clamb	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910·0
	Venaticorum 40° 37′		B. (con	J. 49 tinuc		25 Ca		Vens	aticorum 45'
Apr. 8 E 12 E 27 W 30 W May 5 W 7 W 10 W	h m s N 13 16 17-01 N 17-05 S 17-06 S 17-07 S 17-01 S 17-06 N 17-05	Mean	ے ا	an 1	h m s 3 20 18·201 ·003 002 3 20 18·202	Apr. 8 12 30 May 5 6 7	E W W W	ZZSZZZZ	h m s 13 33 27·78 27·90 27·85 27·74 27·81 27·79 27·81
11 W 12 W 15 W 16 E 17 E 21 E 221 E 26 W June 3 W 4 W 8 W 9 W	N 13 16 17-01 17-05 8 17-06 8 17-06 8 17-06 8 17-07 18 8 17-07 18 8 17-07 18 17-07 18 17-08 18-0	May 5 17	Ursa Dec. W E	55° S S	ajoris 49' 13 30 39 69 39 70 - 39 695 003	11 12 15 16 17 19 21 28 June 3 4 8 9	WEEEEWWW	Zeezezezezezezez	27-78 27-77 27-78 27-80 27-79 27-79 27-75 27-75 27-78 27-81
Me		Меаг	R.A	. 1	3 30 39-698	18 19	M.	S	27·82 27·77
Δ ₂ Mean R.A)2 39'		Me 2	4	27·797 ·000 ·000		
	J. 497 55° 24′	Apr. 30 May 6	W.	S	13 30 46·77 46·74	Mea	n R.	k. 1	3 33 27-797
Apr. 8 E	N 13 20 18-23 N 18-20	7 11 12	E W W	Zazzaz	46·71 46·76 46·75 46·75 46·80			B.J.	507 7° 54′
30 W 6 W 7 W 10 W 11 W 12 W 15 W 16 E 17 E 19 E	8 18-17 8 18-28 8 18-18-18-17 8 18-15-17 8 18-16-17 8 18-18-18-18-18-18-18-18-18-18-18-18-18-1	June 3 4 8 9 13 15 19	EEWWEE	Zezzezzezzez	46-84 46-79 46-74 46-76 46-77 46-81 46-79 46-82 46-80 46-77	Apr. 30 May 5 6 7 10 11 12 15 16	E E	ZSSZZZZZZZZZZZZZZZZ	13 42 59·15 59·09 59·12 59·18 59·18 59·08 59·04 59·12 59·13 59·13
June 3 W 4 W 8 W 9 W 13 E	N 18-17 N 18-17 S 18-15 S 18-15 N 18-23 S 18-20 N 18-30	Man	3	ean h	46·775 ·003 ·000 13 30 46·778	June 3	11.	ZZSSZZS	59·11 59·09 59·14 59·15 59·10 59·12

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Description Date Description Descript	Date Bulletin Barret Bulletin	Date O Mean R.A. 1910-0
B. J. 507 (continued)	B.J. 513 (continued)	9 H. Boötis (continued)
June 13 E N 13 42 59-04 15 E S 59-11 18 W S 59-08 Mean 59-113	May 12 W N 13 50 239 61 61 6 E N 24-00 19 E S 24-00 19 E N 24-00 21 E N 23-91 June 3 W N 23-91 4 W N 23-91 4 W N 23-91 15 E N 23-91 15	19 E S 19-99
Dec. 49° 46′ Apr. 8 E N 13 43 59·74	Mean 23-982	Mean 19·921 Δ_2 −·001 Mean R.A. 14 04 19·920
May 5 W 8 59·68 6 W N 59·65 7 W 8 59·69	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B.J. 522 Dec. 25° 31'
Apr. 8 E N 13 43 39-74 30 WS 59-76 10 W N 59-96 10 W N 59-97 11 W S 59-77 11 W S 59-77 11 W S 59-76 16 E N 59-76 17 E S 59-52 26 W N 59-16 30 W N 59-71 31 E S 59-52 26 W N 59-16 30 W S 59-70 31 E S N 59-72 31 E S N 59-73	B.J., 517 Dec. 27° 49' May 7 W S 13 57 05-66 12 W N O5-62 12 W N O5-62 13 W S O5-99 19 E S O5-69 21 E N O5-60 21 E N O5-60 31 W S O5-60 3 W S O5-60 3 W S O5-60 3 W S O5-66 4 W S O5-66 5 O5-	May 5 W S 14 06 17-60 11 W S 17-70 11 W S 17-70 15 W S 17-60 16 W S 17-60 19 E N 17-60 21 E N 17-60 22 E N 17-60 23 W N 17-65 3 W S 17-65 9 W S 17-65 10 W S 17-66 11 W N 17-69 12 W N 17-69 13 W N 17-69 14 W N 17-69 15 W N 17-69
Δ ₁ 003 Δ ₂ 001 Mean R.A. 13 43 59·700	$\begin{array}{cccc} {\rm Mean} & 05{\cdot}640^{\circ} \\ \Delta_1 & \cdot 004 \\ \Delta_2 & \cdot 000 \\ {\rm Mean~R.A.} & 13~57~05{\cdot}644 \end{array}$	Δ_4 · 004 Δ_2 · 000 Mean R.A. 14 06 17 · 683
B.J. 513 Dec. 18° 51'	9 H. Boōtis Dec. 44° 17′	B.J. 526 Dec. 19° 39′
May 5 W S 13 50 24·00 6 W N 23·99 7 W S 24·03 11 W S 24·00	May 5 W S 14 04 19·92 7 W S 20·00 11 W S 19·84 15 W S 19·94	May 5 W S 14 11 33·44 6 W N 33·40 7 W S 33·42 11 W S 33·41

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Gundan R.A. 1910.0	Date E Mean R.A. 1910-0	Date 5 Mean R.A. 1910.0
B.J. 526 (continued)	B.J. 528 Dec. 51 ° 47′	g Boötis Dee. 50° 15′
May 15 W S 1411 33-48 106 E N S 1411 33-38 107 E S N S 1411 33-38 108 E S N S 1411 33-38 109 W S S 141 33-38 109 W S S 141 100 W S S 133-40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	May 17 E S 14 25 29-95 June 9 W S 29-95 13 E S 29-93 15 W S 29-98 19 W N 30-05 28 E S 29-98
4 W S 33·45 8 W X 33·40 9 W S 33·44 13 E X 33·36		Mean $29 \cdot 970$ $\Delta_2 \cdot 002$
13 E X 33·36 15 E S 33·40 18 W X 33·34 19 W S 33·34	B.J. 531 Dec. 52° 16′	Mean R.A. 14 25 29-972
	May 17 E S 14 22 07.95 28 W N 07.88	
Mean 33-398. Δ ₁ 003 Δ ₂ -001 Mean R.A. 14 11 33-396	28 W N 07-88 June 28 W S 07-95 4 W S 07-95 8 W N 07-97 9 W S 07-92 13 E N 08-05 15 E S 08-03 18 W N 05-94 19 W S 07-99 25 W S 08-06	May 5 W 8 14 26 03:98 6 W N 04:03 7 W 8 03:98 11 W 8 03:97 15 W 8 03:97 16 E N 03:93 19 E S 03:99 21 E N 03:99 21 E N 03:99 26 W N 03:96 36:96
Dec. 46° 30′ Apr. S E N 14 12 57-77 May 5 W S 57-70 6 W N 57-81	$\begin{array}{cccc} & \text{Mean} & 07 \cdot 979 \\ & \Delta_1 & -003 \\ & \Delta_2 &001 \\ & \text{Mean R.A.} & 14 \cdot 22 \cdot 07 \cdot 981 \end{array}$	28 W N 03-96 June 3 W S 03-97 4 W S 03-97 8 W N 04-08 10 E N 03-95
Apr. 8 E N 84 12 57-77 May 5 W N 8 557-81 7 W 8 557-84 16 E N 57-74 17 E S 57-74 17 E S 57-74 19 E S 57-77 19	f Boötis Dec. 19° 38′	Mean 03·982 Δ ₂ - ·001
19 E S 57-71 21 E N 57-83 26 W N 57-70	May 5 W S 14 22 16-13 6 W N 16-17	
June 3 W S 57-77 4 W S 57-76 8 W N 57-77	7 W S 16-24 11 W S 16-16 15 W S 16-15 16 E N 16-19	Dec. 76° 06′
8 W N 57·75 9 W S 57·78 10 E N 57·80	6 W N 16-17 7 W S 16-24 11 W S 16-16 15 W S 16-16 16 E N 16-19 19 E S 16-18 21 E N 16-20 June 10 E N 16-15	June 25 W S 14 27 42-26
$Mean$ 57·756 $Δ_1$ ·003 $Δ_2$ ·-001	Mean 16·174 $Δ_1$ ·002 $Δ_2$ ·000	Mean 42·215 $Δ_1$ ·000 $Δ_2$ ·007
Mean R.A. 14 12 57 - 758		Mean R.A. 14 27 42-222

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Clamp	Observer	Mean R.A. 1910-0	Date	8	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910-0
	J. 53 . 30°			D		oöti: 30° (J. 540 tinue	
May 5 W 6 W 7 W 11 W 15 W 16 E 19 E	SNSSSNS	h m s 14 27 57·13 57·07 57·11 57·06 57·04 57·01 57·07	May 1 1 1: 1: 1: 1: 1: 2:	1 5	WEEEE	N S	h m 8 14 30 45·71 45·69 45·70 45·76 45·70 45·70 45·72	Mea	Δ Δ	an 1	m s 4 35 29·263 002 001 4 35 29·260
21 E 26 W 28 W June 3 W 4 W 8 W 9 W	Zezzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	57 · 11 57 · 05 57 · 08 57 · 05 57 · 11 57 · 11 57 · 06		6 7 8 3 4	W W W W	and	45.74 45.73 45.72 45.72 45.72 45.65 45.68	June 2	Dec.	. 80° 80°	
10 E 13 E 15 E 18 W 19 W	N S N S	57·09 57·07 57·08 57·09 57·09	1: 1: 1: 1: 2: 2:	3 8 9 5	E W W E	Naskas	45·69 45·73 45·69 45·69 45·68 45·72	28	Me A	an	05·55 05·550 ·009
4.2	ean 11 12	57-078 -002 -000 14-27-57-080	Mean 45·707 Δ ₁ .004 Δ ₂ .000 Mean R.A. 14·30·45·711				707 004 000 B.J. 543			3	
	s.J. 5			I		I. 540 44°		May 1 1 1 1 2 2 2	5 W 6 E 9 E	SSNSNN	14 36 51·07 51·05 51·04 51·04 51·07 51·05
May 17 E 26 W 28 W June 8 W 10 E 13 E 15 E 18 W 19 W	N N N N N S	14 28 27-24 27-30 27-25 27-30 27-26 27-27 27-24 27-35 27-25		6 11 15 16 19 21 26 27 28 3	WWEEEWWWW	Zeszszszszszszzszz	14 35 29 28 29 28 29 25 29 27 29 17 29 30 29 21 29 28 29 27 29 29 29 25	June 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 W	SZSZZSSZSZSZSZS	51.06 51.07 51.08 51.08 51.00 50.98 51.07 51.06 51.04 51.03 51.03
	Δ_1 Δ_2 .A.	27 · 273 - · 003 - · 001 14 28 27 · 269		8 9 10 13 15 18	WWEEEWW	NSNNSNS	29·34 29·25 29·26 29·26 29·21 29·32 29·32	M		ean Δ_1 Δ_2 A.	51·045 ·000 ·000 14 36 51·045

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Clamp	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910-0
34 Bo Dec. 26			295 I Dec.			B.J. 549 Dec. 59° 40′			
May 11 W 8 15 W 8 15 W 15 W 15 W 15 W 15 W		May 11 15 16 19 21 22 27 28 June 3 4 8 9 10 13 18 19 25 28	WEEEWWWWEEWWWE	anzazzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	h m s 14 45 34 66 34 75 34 77 34 73 34 73 34 74 34 74 34 74 34 74 34 74 34 75 34 76 34 76 34 76 34 77	May 16 21 26 27 28 June 3 4 8 9 10 13 15 18 19 28 29	E W W W W E E E W W E E	RESERVED SERVED S	h m s 14 49 09-09 09-18 09-23 09-20 09-24 09-26 09-26 09-26 09-27 09-23 09-23 09-23 09-23
Mean Δ ₂ Mean R.A.	28·048 ·000 14 39 28·048	Mean	Me Δ R.A	2	34·694 ·000 4 45 34·694	Mean	Me Δ Δ R.A	1 2	09·229 001 001 4 49 09·227
é Boo Dec. 27	e Boötis Dec. 27° 27′			ξ Boötis Dec. 19° 28′			B. Dec.	J. 55 . 74°	0 31'
15 W 8 16 E 19 E 8 21 E 26 W 27 W 8 28 W 2 June 3 W 8 8	5 14 41 03·42 6 03·43 N 03·43 S 03·43 N 03·45 N 03·33 S 03·41 O3·43 S 03·41	May 11 15 16 19 21 26 27 28 June 3	W W E E W W W	SSNSNNSNS	14 47 14 14 14 03 14 10 14 10 14 19 14 16 14 08 14 12 14 13	June 25 28 29 Mean	W E Δ Δ R.A	1 2	14 50 57·35 57·37 57·37 57·363 -·003 -011 4 50 57·371
S W 2 9 W S 10 E 2 13 E 2 15 E 8 18 W 2 19 W S	N 03-41 S 03-37 N 03-45 N 03-45 S 03-38 N 03-38 N 03-38	4 8 9 10 13 15 18 19	W W E E W W	ZSZZSZSZZZZSZSZ	14.06 14.17 14.09 14.09 14.11 14.09 14.08 14.12	May 15 19 27 28	B. Dec. W E W	J. 55 14°	1 49' 14 51 58-28 58-32 58-31 58-30
$egin{array}{c} \operatorname{Mean} & \Delta_1 \ & \Delta_2 \ & & & & & & & \\ & \operatorname{Mean} & \operatorname{R.A.} & & & & & & \\ \end{array}$	03·412 ·003 ·000 14 41 03·415	Mean	Me Δ: R.A		14·109 ·000 4 47 14·109	June 3 8 9 10 13	W W W E W	ZZZZZZZ	58-30 58-33 58-32 58-30 58-29 58-28

LEDGERS OF MEANTRIGHT ASCENSION, 1910-0-Continued.

Date Date Mean R.A. 1910 · 0	Date Date Mean R.A. 1910.0	Date Date Mean R.A. 1910 · 0		
B.J. 551 (continued)	B.J. 557 Dec. 27° 18′	B.J. 563 Dec. 33,° 39'		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	May 15 W 8 15 00 35-34 19 E 8 28 W N 35-34 34 4 W 8 35-34 10 10 E 1 N 35-34 15 E 1 E 1 N 35-35 13 E 1 E 1 N N 35-35 13 E 1 N N N N 35-32 19 W N N N N N N N N N N N N N N N N N N	May 15 W S 15 II 52-43 28 W N N 55-43 June 4 W S 52-25 9 W N N 52-25 10 E S 52-45 10 E S 52-45 10 E S 15 E S 52-45 10 E S 52-45 10 E S 15 E S 52-45 10 W S 52-25 10 W S 52-25		
Groombridge 2184 Dec. 78° 32' June 25 W S 14 55 09-59	Mean 35·355 Δ1 · · · · · · · · · · · · · · · · · · ·	6 E N 52-44		
28 E S 09·58 29 E S 09·44	Mean R.A. 15 00 35-356	13 E N 52.50 Mean 52.461		
Mean 09·537 $Δ_2$ ·016 Mean R.A. 14 55 09·553	i Boötis Dec. 48° 00'	Δ_1 .000 Δ_2 .000 Mean' R.A. 15 11 52 461		
B.J. 555 Dec. 40° 45′	May 27 W S 15 00 49.42 June 9 W S 49.46	11 Ursae Minoris		
May 15 W S 14 58 33-33 19 E S 33-32 26 W N 33-30	Δ ₂ - ·001 Mean R.A. 15 00 49·439	June 25 W S 15 17 09-60		
27 W S 33-31 28 W N 33-29 June 3 W S 33-31 4 W S 33-35 8 W N 33-28	c Boötis Dec. 25° 13′	28 E S 09·65 29 E S 09·41 July 11 E N 09·83 13 E N 09·72		
19 E S 33-32 20 W N S 33-30 June 3 W N S 33-31 4 W S 33-35 8 W S 33-35 10 E S 33-35 10 E S 33-35 10 W S 33-	May 11 W S 15 03 20-89 15 W S 20-85 19 E S 20-88 27 W S 20-86 June 3 W S 20-86 4 W S 20-95 8 W N 20-83 9 W S 20-82	$\begin{array}{ccc} {\rm Mean} & 09\cdot 642 \\ \Delta_2 & \cdot 009 \\ \\ {\rm Mean~R.A.} & 15~17~09\cdot 651 \\ \end{array}$		
July 5 E S 33·37 6 E N 33·38	8 W N 20.83 9 W S 20.82 10 E N 20.84	η Coronae Borealis Dec. 30° 37'		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & \text{Mean} & 20.862 \\ & \Delta_1 & .003 \\ & \Delta_2 & .001 \\ \\ & \text{Mean R.A.} & 15 \ 03 \ 20.866 \\ \end{array}$	May 11 W S 15 19 29-22 15 W S 29-17 27 W S 29-16 28 W N 29-11		

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Bar Date Date Date Date Date Date Date Date	Date G Mean R.A. 1910.0	Date Date Mean R.A. 1910.0
η Coronae Borealis (continued)	B.J. 568 (continued)	B.J. 572 (continued)
June 3 W 8 15 19 29-16 4 W 8 8 15 19 29-16 19 19 19 19 19 19 19 19 19 19 19 19 19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	June 4 W S 15 24 07:11 9 W S 15 24 07:11 10 E N 07:06 13 E N 07:06 18 W N 07:06 18 W N 07:06 July 5 E S 07:06 6 E N 07:14
11 E N 29-28 13 E N 29-18	Mean R.A. 15 21 05-399	Mean 07·082 $Δ_1$ ·003 $Δ_2$ ·001
Mean 29·168 $Δ_1$ ·000 $Δ_2$ ·000	B.J. 571 Dec. 59° 17′	Δ ₂ ·001 Mean R.A. 15 24 07·086
Mean R.A. 15 19 29-168	May 27 W S 15 22 55-42 28 W N 55-41 June 3 W S 55-49	
B.J. 569 Dec. 72° 09'	4 W S 55-56 8 W N 55-47	Dec. 41° 08′
June 25 W S 15 20 51-78 28 E S 51-68 29 E S 51-66 July 13 E N 51-88	10 E N 55-30 13 E S 55-30 18 W S 55-88 19 W N 55-66 25 W S 55-50 28 E S 55-47 July 5 E S 55-47	May 11 W S 15 27 41·76 15 W S 41·77 27 W S 41·74
Mean 51·750 $Δ_1$ ·001 $Δ_2$ ·010	July 5 E S 55·47 6 E N 55·50 11 E N 55·53 13 E N 55·54	8 W N 41.70 9 W S 41.75
Mean R.A. 15 20 51 761	Mean 55·504 Δ ₁ 00/2	15 E S 41·70 18 W N 41·79 19 W S 41·73 25 W S 41·75r
B.J. 568 Dec. 37° 42′	Δ ₂ · ·000 Mean R.A. 15 22 55·502	25 W S 41·75r 28 E S 41·71 29 E S 41·76 July 5 E S 41·78r
May 11 W S 15 21 05 44 15 W S 05 39 27 W S 05 37	B.J. 572 Dec. 29° 25′	6 E N 41.78 11 E N 41.80r 13 E N 41.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	May 11 W 8 15 24 07-10 15 W 8 07-06 27 W 8 07-01 June 3 W 8 07-06	$\begin{array}{cccc} {\rm Mean} & {\rm 41\cdot759} \\ {\scriptstyle \Delta_1} & -\cdot003 \\ {\scriptstyle \Delta_2} & \cdot000 \\ \\ {\rm Mean~R.A.} & {\rm 15~27~41\cdot756} \end{array}$

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910-0
p² Boötis Dec. 41° 12′							7. 578 27° 01'		B.J. 580 (continued)		
May 11 15 27 28 June 3 4 8 9 10 13 15 18 19 25 July 5	W W W W W E E E W W W E E	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	h m s 1.5 28 33-67 33-60 33-55 33-64 33-69 33-62 33-63 33-63 33-60 33-62 33-63 33-62 33-63 33-62 33-63 33-63	May 15 19 27 28 June 3 4 8 9 10 13 15 18 19 July 5 6 13	W W W W W W E E E W E E	ZZSSZZSZZSZZSSZ	h m s 15 30 52-69 52-67 52-67 52-67 52-58 52-65 52-65 52-65 52-65 52-65 52-64 52-64 52-64 52-64	June	4 W 8 W 9 W 0 E 33 E 38 W 9 W 55 E 66 E	S S N S N S N S N	h m s 15 34 35 59 35 64 35 65 35 69 35 68 35 63 35 63 35 62 35 56 35 62 35 56 35 62 35 62 35 62 000 000
Δ ₁						52·644 -·001 ·000 5 30 52·643			_	5 34 35·628	
Mean R.A. 15 28 33-638						e Mi	noris 39'	Dec. 36° 56′			
May 27	Dec.	s	40' 15 29 17·96 18·04	June 25 28 29 July 11 13	W E E E	s s s N N	15 34 03·88 03·88 03·98 03·96 04·09		9 E	SZSSZSSZ	15 35 59·28 59·23 59·29 59·30 59·27 59·30 59·33 59·33
June 3 10 13 18 19 25 28 29	W E W W E E E	Zazazzazz	17.97 18.05 17.96 18.01 18.01 18.00 17.99 18.01	Mear	R.A	Δ ₂ Δ. 1	03·958 ·014 15 34 03·972	1 1 1 1 1 July	0 E 3 E 5 E 8 W 9 W 5 E 6 E	ZZSZZZZZZZZZZ	59·32 59·29 59·25 59·35 59·35 59·24 59·22 59·35
July 13 E N 18-06 BJ, 580 Dec. 40* 39' Mean 18-005 A1 0-000 BBJ 580 Dec. 40* 39' May 15 W S 15 34 35-60 BBJ 580 Dec. 40* 39' May 15 W S 15 34 35-60 BBJ 580 Dec. 40* 39' May 15 W S 15 34 35-60 BBJ 580 Dec. 40* 39'							-	ean \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)	59·286 ·005 ·000 15 35 59·281		

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date	Date G 1910-0 1910-0	Date G La Mean R.A. 1910 • 0		
« Serpentis Dec. 19° 58′	B.J. 583 Dec. 15° 42′	B.J. 590 Dec. 78° 04′		
May 15 W S 15 37 32 27 19 E S 32 28 27 W S 32 22 28 W N 32 31 June 3 W S 32 26 4 W S 32 31	May 19 E 8 15 42 02-01 26 W N 01-99 27 W 8 01-93 28 W N 01-94 June 3 W S 02-00 4 W S 01-98 8 W N 02-07	June 25 W S 15 47 14-82 28 E S 14-98 29 E S 14-98 July 11 E N 14-91 13 E N 15-28		
19 E 8 32-28	9 W S 02-01 10 E N 01-91 13 E N 01-97 15 E S 01-99 18 W N 02-00 19 W S 01-99	$\begin{array}{ccc} {\rm Mean} & 14\cdot980 \\ \Delta_1 & \cdot 000 \\ \Delta_2 & \cdot 015 \\ {\rm MeanR.A.} & 15 \ 47 \ 14\cdot995 \\ \end{array}$		
July 5 E S 32-28 6 E N 32-28 11 E N 32-25 13 E N 32-25	July 5 E S 02·01 6 E N 01·97 11 E N 02·01r 13 E N 01·98	χ Hereulis Dec. 42° 42′		
Mean 32·272 Δ ₂ ·000 Mean R.A. 15 37 32·272	$\begin{array}{cccc} & \text{Mean} & 01 \cdot 986 \\ \Delta_1 & \cdot 002 \\ \Delta_2 & \cdot 000 \\ & \text{Mean R.A.} & 15 \ 42 \ 01 \cdot 988 \end{array}$	May 19 E S 15 49 33·78 26 W N 33·76 27 W S 33·83 28 W N 33·83 June 3 W S 33·73 4 W S 33·72 8 W N 33·80		
B.J. 581 Dec. 26° 35′	B.J. 584 Dec. 18° 25•	9 W S 33.78 10 E N 33.78 13 E S 33.78 18 W S 33.76 19 W N 33.74		
May 19 E S 15 38 57-75 28 W S 57-66 28 W S 57-80 3 W S 57-80 3 W S 57-80 4 W S 57-77 10 E S 57-77 11 E E N 57-77 12 W S 57-77 13 E S S 57-79 14 W S 57-77 15 E S 57-79 16 E N S 57-79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 W N S 33-76 27 W S 33-76 28 W S 33-83 June 3 W S 33-83 4 W S 33-80 0 W S 33-76 10 E S 33-76 11 W S 33-76 12 W S 33-76 13 W S 33-76 14 W S 33-76 15 W S 33-76 15 W S 33-76 16 W S 33-76 17 W S 33-76 18 E S 33-76 19 W S 33-76 10 W S 33-76 11 E S 33-76 11 E S 33-76 11 E S 33-76 11 E S 33-76		
13 E N 57-74 15 E S 57-78 18 W N 57-75 19 W S 57-79 July 4 E S 57-89 6 E N 57-79 11 E N 57-79 13 E N 57-69	13 E N 41·26 15 E S 41·22 18 W N 41·26 19 W S 41·29 July 5 E S 41·26 6 E N 41·23 11 E N 41·26 13 E N 41·21	$\begin{array}{cccc} & \text{Mean} & 33.765 \\ \Delta_1 & \cdot 000 \\ \Delta_2 & \cdot 000 \\ & \text{Mean R.A.} & 15.49.33 \cdot 765 \\ \end{array}$		
Mean 57:764	Mean 41·268	B.J. 591 Dec. 15° 57'		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta_1 =002$ $\Delta_2 = .000$ Mean R.A. 15 44 41·266	May 19 E S 15 52 17·63 26 W N 17·78 27 W S 17·70 28 W N 17·67		

4 W S 17-60 26 W N 39-14 20 W N 17-73 27 W S 39-14 39-14 20 W N 17-73 27 W S 39-13	12.01 12.05 11.96 12.09 11.99 11.96 12.12 12.00 11.95 12.03 11.94 12.00 11.99 11.98 11.98
June 3 W S 15 52 17-67	11.95 12.01 11.96 12.00 11.99 11.99 11.95 12.12 12.00 11.95 12.00 11.95 12.00 11.95 12.00 11.95
Mean R.A. 15 52 17·704	11.99
$\Delta_1 = -0.05$ $\Delta_2 = -0.01$ $\Delta_2 = -0.01$ $\Delta_2 = -0.01$	11.94 11.89 11.986 .003 .001
Dec. 27° 08′ Mean R.A. 16 00 1	1.990
May 19 E S 15 53 51-63 26 W N 51-71 27 Dec. 17° 17'	
	$\begin{array}{c} 00.74\\ 00.77\\ 00.74\\ 00.74\\ 00.74\\ 00.77\\ 00.73\\ 00.73\\ 00.78\\ 00.68\\ 00.81\\ 00.78\\ 00.75\\ 00.75\\ \end{array}$
	00·749 ·002 ·000
Mean R.A. 15 53 51·64S Mean R.A. 15 57 11·639 Mean R.A. 16 04 0	

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Date Mean R.A. 1910 · 0	Date Bar R.A. 1910.0	Date G Mcan R.A. 1910 · 0			
τ Coronae Borealis Dec. 36° 43'	B.J. 606 Dec. 76° 06'	B.J. 609 Dec. 19° 22'			
May 19 E S 16 05 40 82 June 3 W S 40-76 8 W S 40-76 13 E N 40-75 15 E S 40-75 15 E S 40-77 19 W S 40-77 July 6 E N 40-82 July 13 E N 40-82	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Mean 40·781 Δ ₂ ·000	20 Ursae Minoris Dec. 75° 26′	ξ Coronae Borealis Dec. 31° 06′			
B.J. 601 Dec. 45° 10'	July 13 E N 16 14 47·14 A2 ·012 Mean R.A. 16 14 47·152	June 13 E N 16 18 35-42 15 E S 35-43 18 W N 35-42 19 W S 35-41 July 4 E S 35-38 6 E N 35-31 11 E N 35-37 13 E N 35-37			
May 27 W S 16 05 56-11 June 9 W S 56-07	Groombridge 2337 Dec. 73° 37'	5 E S 35·35 6 E N 35·31 11 E N 35·37 13 E N 35·37			
Mean $56 \cdot 090$ $\Delta_1 = -002$ $\Delta_2 = -001$ Mean R.A. 16 05 $56 \cdot 087$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
σ ² Coronae Borealis Dec. 34° 05′	Mean 01·513 $Δ_2$ ·011 Mean R.A. 16 16 01·524	Mean R.A. 16 18 35-387			
May 19 E S 16 11 18-55 June 4 W S 18-42	B.J. 608 Dec. 46° 32'	23 Herculis Dec. 32° 33′			
9 W S 18-56 13 E N 18-54 15 E S - 18-59 18 W N - 18-47 19 W S 18-47 July 4 E S 18-46 6 E N 18-49 11 E N 18-53 13 E N 18-50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	June 4 W S 29·11 13 E S 29·10 18 W S 29·19 19 W N 29·25			
$\begin{array}{ccccc} & \text{Mean} & 18\cdot503 \\ \Delta_1 & & -\cdot002 \\ \Delta_2 & & \cdot001 \\ & \text{Mean R.A.} & 16\cdot11\cdot18\cdot502 \\ \end{array}$	$\begin{array}{cccc} {\rm Mean} & 02{\cdot}066 \\ {\Delta_1} & \cdot 000 \\ {\Delta_2} & \cdot 001 \\ {\rm Mean~R.A.} & 16~17~02{\cdot}067 \\ \end{array}$	$\begin{array}{cccc} {\rm Mean} & 29\cdot 146 \\ \Delta_2 & \cdot 001 \\ \\ {\rm Mean~R.A.} & 16~19~29\cdot 147 \\ \end{array}$			

Date Gumbo Mean R.A. 1910-0	Date G Mean R.A. 1910 · 0	Date O Nean R.A.			
B.J. 612 Dec. 75° 58'	g Herculis Dec. 42° 05′	B.J. 621 Dec. 42° 37′			
June 25 W S 16 20 07 -35 r July 11 E N 07 -38 13 E N 07 -20 r	June 4 W S 41-09 13 E N 41-07 15 E S 41-12 18 W N 41-11 19 W S 41-13	May 19 E S 16 31 12-06 26 W N 12-10 27 W S 12-00 June 13 E S 12-01 18 W S 12-01 19 W N 12-08 July 4 E S 12-03			
Mean 07·315 $Δ_1$ -·003 $Δ_2$ ·009 Mean R.A. 16·20 07·321	25 W S 41·14 28 E S 41·16r 29 E S 41·10 July 4 E S 41·14	July 4 E S 12.03 5 E S 12.02 6 E N 12.01			
B.J. 613 Dec. 14° 14′	5 E S 41·11 6 E N 41·07 11 E N 41·11 13 E N 41·16 19 E S 41·13	Mean 12·036 Δ ₁ ·003 Δ ₂ ·001 Mean R.A. 16 31 12·040			
May 19 E S 16 21 15 69 June 4 W S 15 63 13 E N 15 64	$\begin{array}{ccc} \text{Mean} & 41 \cdot 112 \\ \Delta_2 & \cdot 002 \end{array}$				
15 E S 15-71 19 W S 15-73 July 4 E S 15-66	Mean R.A. 16 25 41 · 114	B.D. 72·734 Dec. 72° 48′			
	B.J. 618 Dec. 21° 41′	June 25 W S 16 32 50·56 28 E S 50·50 29 E S 50·53			
Mean 15·684 $Δ_1$ -·005 $Δ_2$ ··000 Mean R.A. 16·21 15·679	July 6 E N 16 26 21 · 01	July 11 E N 50-67 13 E N 50-58 19 E S 50-61			
B.J. 614	$\begin{array}{ccc} \Delta_1 & & \cdot 003 \\ \Delta_2 & & - \cdot 002 \end{array}$	Mean 50·575 Δ ₃ ·011			
Dec. 55° 25′ May 26 W N 16 22 27·13	Mean R.A. 16 26 21 011	Mean R.A. 16 32 50-586			
June 15 E S 27·04 19 W S 27·10 25 W S 27·22r 28 E S 27·09 29 E S 27·13r	Groombridge 2372 Dec. 79° 09′	B.J. 623 Dec. 77° 38′			
June 15 E S 27-04 199 W S 27-127 25 W S 27-227 28 E S 27-227 29 E S 27-137 July 4 E S 27-06 6 E N 27-166 11 E N 27-166 13 E N 27-166 19 E S 27-17	June 25 W S 16 30 43 ·03 28 E S 42 ·96r 29 E S 42 ·90 July 11 E N 43 ·14 13 E N 42 ·92 19 E S 43 ·07r	June 25 W S 16 34 30-06 July 11 E N 30-04 13 E N 29-97 19 E S 29-97			
Mean 27·116 $Δ_1$ -·001 $Δ_2$ ··003	Mean 43·003 Δ ₄ ·019	Mean $30 \cdot 010$ $Δ_1$ $- \cdot 004$ $Δ_2$ $\cdot 010$			
Mean R.A. 16 22 27·∏8	Mean R.A. 16 30 43-022	Mean R.A. 16 34 30 016			

1.EDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Date O Mean R.A.	Date Date Mcan R.A. 1910-0	Date G Mean R.A. 1910-0		
42 Herculis Dec. 49° 06'	B.J. 626 (continued)	Groombridge 2391 (continued)		
May 27 W S 16 36 18-19 June 18 W S 18-19 July 5 E S 18-19 19 W N 18-32 July 5 E S 18-15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Mean 18·213 Δ ₂ 001 Mean R.A. 16 36 18·212	B.D. 79-511 Dec. 79° 05'	B. J. 629 Dec. 15° 07'		
Therealis Dec. 31° 46′ May 10 E S 16 37 53-65 June 13 E N 53-63 15 E N 53-60 July 4 E S 53-60 July 4 E S 53-60 5 E N 53-55	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	May 27 W S 16 47 58-93 June 13 E N 59-11 15 E S 59-05		
19 W S 53-66 July 4 E S 53-60 5 E S 53-57 6 E N 53-58 11 E N 53-59	B.J. 627 Dec. 56° 57′	Mean 58-977 $Δ_1$ 003 $Δ_2$ 001 Mean R.A. 16 47 58-975		
$\begin{tabular}{c cccc} Mean & 53.612 \\ Δ_1 & 001 \\ Δ_2 & 001 \\ Mean R.A. & 16 37 53.612 \\ \end{tabular}$	May 19 E 8 16 43 35-10 26 W N 35-19 27 W S 35-23 June 13 E S 35-28 19 W N S 35-37 July 4 E S 35-28 35-28 35-28 35-28 35-28 35-28 35-28 35-28	53 Herculis Dec. 31° 51'		
B.J. 626 Dec. 39° 06'	19 W N 35:37 July 4 E 8 35:29 5 E 8 35:24 6 E N 35:19 26 W S 35:25	May 26 W N 16 49 33-31 27 W S 33-27 June 13 E N 33-18 15 E S 33-24 18 W N 33-27		
May 19 E 8 16 39 48-53 27 W 8 48-62 June 13 E N 48-62 June 13 E N 48-64 13 W N 8 48-64 13 W N 8 48-64 25 W 8 48-63 22 E 8 48-63 22 E 8 48-65 July 4 E 8 48-65 July 4 E 8 48-62 11 E N 148-62 11 E N 148-62	$\begin{array}{cccc} \text{Mean} & 35 \cdot 244 \\ \Delta_1 & \cdot 003 \\ \Delta_2 & \cdot 001 \\ \text{Mean R.A.} & 16 \ 43 \ 35 \cdot 248 \\ \end{array}$	19 W S 33·25 29 E S 33·18 July 4 E S 33·21 6 E N 33·16 11 E N 33·24 13 E N 33·24		
25 W S 48-63 28 E S 48-60 29 E S 48-56 July 4 E S 48-56	Groombridge 2391 Dec. 77° 40′	16 E S 33·19 19 E S 33·24 26 W S 33·21		
5 E S 48.61 6 E N 48.62 11 E N 48.60 13 E N 48.60 19 E S 48.60	June 25 W S 16 47 05-69 29 E S 05-63 July 11 E N 05-77 19 E S 05-67			

Date of land Mean R.A. 1910.0	Date
Groombridge 2411 Dec. 73° 16'	B.D. 75·612 Dec. 75° 21' B.J. 640 Dec. 14° 30'
June 25 W S 16 58 03-68 28 E S 03-26 29 E S 03-43 July 11 E N 03-45 13 E N 03-38 19 E S 03-47 Aug. 12 W N 03-67	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mean 03·477 Δ ₂ · ·007 Mean R.A. 16 58 03·484	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
d Herculis Dec. 33° 42'	Groombridge 2427 B.J. 643 Dec. 75° 25' Dec. 36° 55'
May 27 W 8 16 58 16 88 June 4 W 8 16 98 July 4 E 8 16 95 6 E N 16 97 16 E 8 16 98 26 W 8 16 97	June 25 W 8 17 04 29-45 June 4 W 8 14-73 3 June 4
Mean 16·954 Δ ₁ · ·002 Δ ₂ · ·002 Mean R.A. 16·58 16·958	
B.J. 635 Dec. 12° 52' May 27 W S 17 01 12 · 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
June 4 W S 12-25 July 4 E S 12-32 5 E S 12-32 6 E N 12-21 11 E N 12-23 13 E N 12-19 16 E S 12-27 26 W S 12-22 Aug. 12 W N 12-23	May 27 W S I 7 04 50-51 June 4 W S 5 50-50 July 5 E S 50-90 16 E N 50-51 26 W S 50-53 July 4 E S 60-03 5 5 5 5 5 50-53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

3 GEORGE V., A. 1913

Date Date Mcan R.A. 1910.0	Date Control Mean R.A. 1910.0	Date O Mean R.A.		
e Herculis Dec. 37° 23'	ρ Herculis. (continued)	Groombridge 2456 (continued)		
May 27 W 8 17 14 34-00 June 25 W 8 17 14 34-00 June 25 E 8 33-04 July 11 E N 34-04 19 E 8 33-04 19 E 8 33-04 19 E N 34-04 19 E N 34-04 19 E N 34-02	June 28 E 8 17 20 34 -60 29 E 8 33 -62 31 -6	July 11 E N 17 26 25.41 13 E N 17 26 25.51 19 E 8 22.57 19 E 8 25.41 Aug. 7 W S 25.64 19 E N 25.69 Mean 25.487 Δ1 Mean A. 17 26 25.497		
Mean 34·006 Δ ₂ · 001 Mean R.A. 17 14 34·007	Mean 34·638	λ Herculis		
Mean R.A. 17 14 54-007	Δ ₂ ·001 Mean R.A. 17 20 34·639	Dec. 26° 11′		
w Herculis Dec. 32° 35' May 27 W S 17 17 17 44	B.J. 650 Dec. 48° 20′	May 27 W S 17 27 06-03 July 4 E S 06-02 5 E S 06-02 16 E S 06-02 26 W S 06-01		
June 4 W 8 17-44 25 W 8 17-54 25 E 8 17-51 28 E 8 17-51 3 L 8 17-45 3 L 8 17-47 16 L 8 8 17-47 16 L 8 8 17-43 17-47 18 L 8 17-47 19 L 8 17 19 L	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} {\rm Mean} & 06 \cdot 028 \\ \Delta_1 & \cdot 004 \\ \Delta_2 & \cdot 002 \\ {\rm Mean~R.A.} & 17 \cdot 27 \cdot 06 \cdot 034 \\ \end{array}$		
13 E N 17-47 16 E S 17-43 19 E S 17-45 26 W S 17-45 Aug. 12 W N 17-47 19 E N 17-44	June 25 W S 21-03 28 E 8 20-98 29 E 8 21-00 July 4 E 8 21-00 11 E N 20-97 11 E N 20-97 13 E N 21-02 16 E 8 21-00 19 E 8 21-00 26 W S 21-00 Aug. 7 W S 21-07 12 W N 21-07	B.J. 653 Dec. 52° 22' May 27 W S 17 28 23 83 June 7 W S 23 84		
Mean 17·451 Δ ₁ ·004 Δ ₂ ·001	12 W N 21.08 19 E N 21.09	25 W S 23.92 28 E S 24.02 29 E S 23.83 July 4 E S 23.90		
Mean R.A. 17 17 17 448	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 E S 23-80 16 E S 23-85 19 E S 23-88 26 W S 23-84		
ρ Herculis Dec. 37° 14′	Groombridge 2456 Dec. 80° 13'	Aug. 7 W S 23-81 12 W N 23-87 19 E N 23-94		
May 27 W S 17 20 34-63 June 4 W S 34-68 7 W S 34-58 25 W S 34-69	June 25 W S 17 26 25-41 28 E S 25-41 29 E S 25-37	$\begin{array}{cccc} \text{Mean} & 23.872 \\ \Delta_1 &002 \\ \Delta_2 & .002 \\ \text{Mean R.A.} & 17.28.23.872 \\ \end{array}$		

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date of Down Mean R.A. 1910.0	Date Date Mean R.A. 1910-0	Date Date Mean R.A.		
B.J. 655 Dec. 55° 15′	B.J. 663 (continued)	B.J. 670 Dec. 72° 12′		
June 25 W S 17 30 24 11 28 E S 24 12 29 E S 24 10 July 19 E S 24 11 Aug. 7 W S 24 12 12 W N 24 17	5 E S 55.36 13 E N 55.48 16 E S 55.46 19 E S 55.39 26 W S 55.41	Aug. 7 W S 32-19 12 W N 32-23 19 E N 32-17		
Mean 24·107 $Δ_1$ -·005 $Δ_2$ ·002		Mean $32 \cdot 208$ Δ_1 $\cdot 004$ Δ_2 $\cdot 002$ Mean R.A. 17 43 $32 \cdot 214$		
Mean R.A. 17 30 24-104	$\begin{array}{ccc} \lambda lean & 55 \cdot 400 \\ \Delta_1 & - \cdot 004 \\ \Delta_2 & \cdot 002 \end{array}$	87 Herculis		
B.J. 657 Dec. 55° 14′	Mean R.A. 17 36 55-398	Dec. 25° 39'		
Aug. 19 E N 17 30 29-500	B.D. 72-800 Dec. 72° 30′	June 7 W S 17 45 10·14 July 4 E S 10·19 5 E S 10·14 13 E N 10·24 16 E S 10·16		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 W N 50-99	13 E N 10-24 16 E S 10-16 26 W S 10-15r Aug. 8 W N 10-15 19 E N 10-17		
B.J. 656 Dec. 12° 37′	Mean 50.984 Mean R.A. 17 45 10			
July 5 E S 17 30 45-351 16 E S 45-40 26 W S 45-39	Δ ₂ · · · 002 Mean R.A. 17 38 50 · 986	z Herculis Dec. 48° 25′		
Mean 45·380 $Δ_1$ -·004 $Δ_2$ ··002	B.J. 667 Dec. 27° 46′	June 7 W S 17 47 42-01 July 4 E S 42-02 5 E S 41-97 13 E N 41-99		
Mean R.A. 17 30 45-378 B.J. 663 Dec. 46° 03'	June 7 W S 17 42 56-11 July 4 E S 56-14 5 E S 56-13 16 E S 56-11 26 W S 56-14	16 E S 41.99 19 E S 41.99 26 W S 42.01		
May 27 W S 17 36 55 30 June 7 W S 55 46 25 W S 55 38 28 E S 55 39 29 E S 55 41	-	Mean 42·002 Δ ₁ ·001 Mean R.A. 17 47 42·003		

3 GEORGE V., A. 1913

Date O Mean R.A. 1910.0	Date Gun 1910-0 Mean R.A. 1910-0	Date G D Mean R.A. 1910.0		
168 H ¹ . Herculis Dec. 40° 00′	B.J. 672 Dec. 37° 16′	B.D. 78-616 Dec. 78° 19'		
h m s s 17 49 08 84 July 4 E 8 17 49 08 84 July 5 E 8 08 91 13 E X 08 97 14 E 8 08 97 15 E 8 08 97 16 E 8 08 96 19 E 8 08 96 19 E 8 08 96 26 W 8 08 89 Aug. 7 W 8 08 94 8 W N 08 96 96 10 E X 08 90 80 10 E	June 7 W S 17 53 09-93 July 4 E S 09-93 5 E S 09-93 16 E S 09-96 26 W S 09-98	July 19 E S 17 55 14-44 Aug. 7 W S 14-64 S W N 14-85 12 W N 14-74 19 E N 14-53		
Aug. 7 W S 08-94 8 W N 08-96 12 W X 09-00 19 E N 08-98	$\begin{array}{ccc} {\rm Mean} & 09 \cdot 953 \\ \Delta_1 & \cdot 001 \\ \Delta_2 & \cdot 002 \\ {\rm Mean \ R.A.} & 17 \cdot 53 \cdot 09 \cdot 956 \end{array}$	Mean 14.640 Δ_2 006 Mean R.A. 17 55 14.634		
Mean 08·952 Δ ₂ ·001 Mean R.A. 17 49 08·953	B.J. 675 Dec. 76° 59' July 19 E S 17 53 28-49	ψ² Draconis Dec. 72° 01′		
89 Herculis Dec. 26° 04'	Aug. 7 W S 28-69 12 W N 28-52 19 E N 28-63	July 19 E S 17 56 44-61 Aug. 7 W S 44-58 8 W N 44-71 19 E N 44-55 29 E N 44-65		
July 4 E 8 17 51 47 29 5 E 8 47 27 13 E N 47 34 16 E 8 47 33 26 W 8 47 31 Aug. 8 W N 47 23 12 W N 47 28 19 E N 47 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean 44-620		
Aug. 8 W N 47-23 12 W N 47-28 19 E N 47-27	B.J. 674 Dec. 29° 15′ July 5 E S 17 54 16 000	Δ ₂ ·002 Mean R.A. 17 56 44·622		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
B.J. 671 Dec. 56° 53′	B.J. 676 Dec. 51° 30′ June 7 W S 17 54 30·92			
June 7 W S 17 51 58-270	26. W S 30·87 Mean 30·897 Δ1 -·003 Δ2 ·002	$\begin{array}{ccc} \text{Mean} & 01\text{-}888 \\ \Delta_1 & \cdot 001 \\ \Delta_2 & \cdot 000 \\ \end{array}$		
Mean R.A. 17 51 58-270	Mean R.A. 17 54 30-896	Mean R.A. 18 04 01-889		

Date Supplied Supplie	Date Date Mean R.A. 1910 · 0	Date O Nean R.A.		
40 Draconis Dec. 79° 59'	446 B. Herculis (continued)	B.J. 693 Dec. 71° 17′		
July 19 E S 18 06 46-72 28 W N 47-00 46-71 12 W N 46-71 12 W N 46-85 19 E N 47-05 26 E N 47-05 29 E N 46-84 46-84 46-84 47-05 26 E N 47-05 46-85 46-84	Mean 18 18 23 475 Δ ₂ 18 18 23 475 .000 Mean R.A. 18 18 23 475	July 19 E S 18 22 03 06 Aug. 29 E N 02 93 Sept. E S 02 95		
	B.J. 690 Dec. 21° 44′	Mean $02 \cdot 980$ $Δ_1$ $- \cdot 001$ $Δ_2$ $\cdot 015$ Mean R.A. 18 22 $02 \cdot 994$		
Mean 46·891 Δ ₂ -·004 Mean R.A. 18 06 46·887	June 7 W S 18 19 51 · 75 July 16 E S 51 · 74	37044 4044 10 22 02 001		
B.J. 684	26 W S 51.75 28 W N 51.76 Aug. 2 W S 51.76r	B.J. 694 Dec. 58° 45'		
Dec. 42° 08′ June 7 W 8 18 12 50·80 July 16 E 8 50·85 19 E 8 50·85 26 W 8 50·85	8 W N 51·72 12 W N 51·73 19 E N 51·76 20 E S 51·77 26 E N 51·76 29 E N 51·78	June 7 W S 18 22 35.74 July 16 E S 35.65 26 W S 35.80 28 W N 35.90 Aug. 8 W N 35.71 20 E S 35.76		
July 16 E 8 50-78 199 E 8 50-85 26 W 8 50-78 Aug. 2 W 8 50-78 8 W N 50-76 12 W N 50-76 12 W N 50-79 19 E N 50-71 26 E N 50-89	$\begin{array}{cccc} \text{Mean} & 51.754 \\ \Delta_1 & .003 \\ \Delta_2 & .000 \\ \\ \text{Mean R.A.} & 18 \ 19 \ 51.757 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Mean 50·787 $Δ_1$ 004 $Δ_2$ -000	μ Lyrae Dec. 39° 27'	Mean R.A. 18 22 35·752		
Mean R.A. 18 12 50-783	June 7 W S 18 21 15-87	B.J. 695 Dec. 72° 42′		
446 B.Herculis Dec. 23° 14' June 7 W S 18 18 23-49 July 16 E S 23-46 28 W S 23-49 28 W N 23-43	July 16 E S 15-84 26 W S 15-84 Aug. 2 W S 15-94 B W N 15-93 19 E N 15-91 20 E S 15-94 20 E N 15-94 29 E N 15-92	Aug. 7 W S 18 22 40·81 12 W N 40·82 19 E N 40·96 29 E N 40·68		
July 16 E S 23-46 28 W S 23-49 28 W N 23-43 Aug. 2 W S 23-44 12 W N 23-44 12 W N 23-62 19 E N 23-62 26 E N 23-55 29 E N 23-47	Mean 15·896 Δ ₂ · 000 Mean R.A. 18 21 15·896	$\begin{array}{cccc} & \text{Mean} & 40.818 \\ & \Delta_1 &004 \\ & \Delta_2 &003 \\ \\ & \text{Mean R.A.} & 18 & 22 & 40.811 \\ \end{array}$		

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910·0
) 42'		111 I Dec.	Hercu 18°	lis 05′	B.J. 705 Dec. 33° 15′					
June 7 July 16 26 28 Aug. 2 19 20 26 29	Mean Δ_1 Δ_2		h m s 18 33 53-47 53-42r 53-45 53-47 53-45r 53-47 53-45r 53-46 53-46 53-45r 5004 0000	July 16 26 28 30 Aug. 2 12 19 20 26 29 Sept. 2	W W W E E E E E		h m s 18 43 02-77 02-79 02-75 02-84 02-76 02-79 02-77 02-81 02-75	July 16 19 26 28 Aug. 2 8 11 12 19 20 26 29 Sept. 1 2	E E W W W E E E E E E E	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	h m s 18 46 45 42 45 40 45 39 45 37 45 42 45 43 45 48 45 48 45 48 45 32 45 38 45 38 45 40 45 40
Mean R.A. 18 33 53 460 Mean R.A. 18 43 02 78						8 43 02 787		Me		45·397 ·000	
B.J. 700 Dec. 77° 29'					Brac Dec	lley 2 . 70°	382 42'	Δ ₂ ·000 Mean R.A. 18 46 45·397			
July 19 Aug. 7 8 11 Sept. 1	E W W W E	s S N S S	18 34 06·02 06·05 06·28 06·17 06·13 06·130 ·004 ·000	July 19 Aug. 7 8 11 12 19 29 Sept. 1	E W W W E E E	SENENNINEN	18 44 11 · 64 11 · 67 11 · 64 11 · 76 11 · 76 11 · 97 11 · 63 11 · 70	July 19 Aug. 7	Dec W W	. 73°	18 48 01·57 01·66 01·66
Mear	B.J Dec.	. 70	8 34 06-134	Mea	Me	42	11·719 ·001 8 44 11·720	11 12 19 29 Sept. 1	W E E E	SZSZZZZZ	01 · 62 01 · 48 01 · 61 01 · 60 01 · 43 01 · 69
July 16 26 30	E W	S	18 41 47 · 27 47 · 28 47 · 35	2	04 B Dec	. Dra . 52°	conis 53'			ean	01·591 ·001
Aug. 2 8 12	W	NSNN	47 · 29 47 · 25 47 · 32	July 16 26	E	s	18 44 42·33 42·38	Mea	n R.,	Α.	18 48 01 - 592
20 26 29 Sept. 2	E E E	NNSNNN	47 · 28 47 · 31 47 · 29 47 · 27	28 W N 42·42 30 W N 42·47 Aug. 2 W S 42·39					Dec	Drac . 75°	20′
Mea	Mea Δι Δι n R.A		47 · 291 · 002 · 000 8 41 47 · 293	Mea	4	ean A. 1	42·387 ·000 .8 44 42·387	July 19 Aug. 7 8 11 19	W	SSNSN	18 49 16·89 16·90 17·10 17·06 16·86

LEDGERS OF MEAN RIGHT ASCENSION. 1910-0—Continued.

Date S Mean R.A. 1910.0	Date B Mean R.A. 1910.0	Date S Mean R.A. 1910.0
50 Draconis (continued)	B.J. 711 Dec. 43° 50′	B.J. 716 Dec. 13° 44′
Aug. 29 E N 18 49 17 02 Sept. 1 E S 16 89 2 E N 17 07 9 E N 17 07	July 16 E S 18 52 35·76 26 W S 28 W N 35·79 30 W N 35·72	June 7 W S 19 01 16 400
Mean 16-999 $Δ_1$ 002 $Δ_2$ -005	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δ ₂ ·003 Mean R.A. 19 01 16·405
Mean R.A. 18 49 17 002	Mean 35·762 Δ ₁ ·002	B.J. 719 Dec. 35° 58′
B.J. 707 Dec. 59° 17'	Δ ₂ ·000 Mean R.A. 18 52 35·764	June 7 W S 19 04 05 38 July 16 E S 05 38 19 E S 05 37 26 W S 05 38
July 16 E S 18 49 52·36	B.J. 714 Dec. 71° 11′	25 W N 05-38 28 W N 05-33 30 W N 05-42 Aug. 2 W S 05-35 7 W S 05-33
26 W S 52.48 28 W N 52.38 30 W N 52.49 Aug. 2 W S 52.51 20 E S 52.34 26 E N 52.31	Aug. 8 W N 18 55 30 22 12 W N 29 99 Sept. 1 E S 30 19 2 E N 30 27 9 E N 30 31	July 16 E S 66-38 19 E S 66-37 22 W N N 66-38 30 W N N 66-38 30 W N N 66-37 11 W N S 66-37 11 W N S 66-37 11 W N S 66-37 11 E S 66-37 20 E N 66-36 20 E N 66-36 Sept. 1 E E N 66-36 Sept. 1 E E N 66-36
Mean 52·410 $Δ_1$ ·000 $Δ_2$ ·000	Mean $30 \cdot 196$ $Δ_1$ $-\cdot 001$ $Δ_2$ $\cdot 000$	29 E N 05·38 Sept. 1 E S 05·41 2 E N 05·31 9 E N 05·39
Mean R.A. 18 49 52-410	Mean R.A. 18 55 30-195	Mean 05·372 $Δ_1$ ·003 $Δ_2$ ·000
B.D. 79-604	Dec. 32° 34′	Mean R.A. 19 04 05-375
Dec. 79° 50′ July 19 E S 18 51 59-91	July 16 E S 18 55 34-62 26 W S 34-65 28 W N 34-56 30 W N 34-61	19 Lyrae Dec. 31° 08′
Aug. 7 W S 59.89 8 W N 60.25 12 W N 60.14 Sept. 1 E S 59.93 2 E N 60.12	26 W S 34-65 28 W N 34-56 30 W N 34-61 Aug. 19 E N 34-61 26 E N 34-61 29 E N 34-61	July 16 E S 19 08 18-82 26 W S 18-91 Aug. 20 E S 18-91r 26 E N 18-84
Mean 60·040 Δ2 ·000	Mean 34·624 $Δ_1$ -·003 $Δ_2$ ··000	Mean 18·870 Δ ₂ ·001
Mean R.A. 18 52 00-040	Mean R.A. 18 55 34 621	Mean R.A. 19 08 18-871

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

LEDGERS OF A	-	I H I			
Date But Mean R.A. 1910-0	Date \$\frac{\text{d}}{\text{U}} \rightarrow \frac{\text{d}}{\text{D}} \rightarrow \frac{\text{d}}{\text{D}} \rightarrow \frac{\text{Mean R.A.}}{1910 \cdot 0}.	Date Date Mean R.A. 1910.0			
B.J. 725 Dec. 11° 26′	B.J. 729 Dec. 73° 11′	21 B.Vulpeculae (continued)			
July 16 E 8 19 13 35-51 26 W S 19 13 35-51 35-51 Aug. 19 E N 35-68 20 E S 35-50 26 E N 35-42 48 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aug. 2 W S 19 21 42-21 22 W N 19 21 42-21 21 W N 42-22 21 E S N 42-23 21 E S N 42-23 21 E S N 42-23 21 E S N 42-31 13 E S N 42-30 14 E N 42-32 14 E			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean 17·390 $Δ_1$ 002 $Δ_2$ 001 Mean R.A. 19 17 17·391	14 E N 42·31r 16 W N 42·29r 26 W N 42·29 30 W N 42·29r			
B.J. 726 Dec. 53° 12'	Mean R.A. 19 17 17 591	Mean 42-282			
	<i>b</i> Aquilae Dec. 11° 45′	Δ_2 $-\cdot 001$			
26 W S 01-39 28 W N 01-36	June 7 W S 19 20 40 71	Mean R.A. 19 21 42-281			
July 16 E S 19 15 01 29 28 W N 01-36 28 W N 01-36 28 W N 01-36 29 E N 01-37 29 E S 19 E N 01-37 29 E N 01-29 29 E N 01-29 29 E N 01-29 29 E N 01-44 9 E N 01-44	July 16 E S 40·69 26 W S 40·70 30 W N 40·67 Aug. 2 W S 40·61 12 W N 40·71	4 Cygni Dec. 36° 08′			
29 E N 01-29 Sept. 1 E S 01-35 2 E N 01-44 9 E N 01-47 16 W N 01-38	19 E N 40-69 26 E N 40-73 29 E N 40-75 Sept. 2 E N 40-70 9 E N 40-70 13 E S 40-76	June 7 W S 19 22 54·59 July 16 E S 54·57 26 W S 54·62 28 W N 54·64 30 W N 54·66			
Mean 01·360 $Δ_1$ ·004 $Δ_2$ ·000	14 E N 40·79 16 W N 40·67 26 W N 40·74 30 W N 40·73	July 16 E 8 54-57 26 W N S 54-62 28 W N S 54-64 30 W N S 54-64 31 W N S 54-65 31 W N S 54-65 31 W N S 54-65 32 W N S 54-65 34 W N S 54-65 35 W N S 54-65 36 E N S 54-65 36 E N S 54-66 36 E N S 54-66 37 E S 54-66 38 E N S 54-66 38 E N S 54-66 31 E S 54-66 31 E N S 54-66 32 W N S 54-62 34 W N S 54-62			
Mean R.A. 19 15 01 364	Mean , 40·709	20 E S 54·61 26 E N 54·60 29 E N 54·63			
159 B.Lyrae Dec. 40° 12'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sept. 1 E S 54-62 2 E N 54-61 9 E N 54-66 13 E S 54-64			
June 7 W S 19 15 57 60 July 16 E S 57 53 Aug. 20 E S 57 60	21 B.Vulpeculae Dec. 24° 45'	14 E N 54-64 16 W N 54-62 26 W N 54-62 30 W N 54-64			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	June 7 W S 19 21 42-25 July 16 E S 42-26 26 W S 42-31 28 W N 42-31 30 W N 42-28	Mean 54-619 Δ ₂ -000 Mean R.A. 19 22 54-619			

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0—Continued.

Date S Mean R.A.	Date G Mean R.A. 1910-0	Date Unit of the Date of the D			
B.D. 76·734 Dec. 76° 23′	B.J. 732 (continued)	8 Cygni Dec. 34° 16′			
Aug. 7 W S 19 24 46-35 S W N 46-27 11 W S 46-37 12 W N 46-26 29 E N 46-25 29 E N 46-24 13 E S 46-18 17 W S 46-44 46-45 4	Sept. 2 E N 19 27 05.54 S E S 05.50 14 E N 05.56 19 W N 05.46 26 W N 05.49	28 W N 25.66 30 W N 25.64			
Mean 46·270 Δ2001	Δ ₂ 001 Mean R.A. 19 27 05-516	Sept. 1 E S 25.62 2 E N 25.59 8 E S 25.62 9 E N 25.61 14 E N 25.62			
Mean R.A. 19 24 46·269 α Vulpeculae Dec. 24° 29′	B.J. 734 Dec. 79° 25′	16 W N 25·62 17 W S 25·67 19 W N 25·59 26 W N 25·60 30 W N 25·60			
June 7 W S 1924 57-63 July 16 E S 57-63 26 W S 57-64 28 W N 57-64 Aug. 2 W S 57-64 Aug. 2 W S 57-66 Sept. 2 E N 57-64 Sept. 2 E N 57-68 14 E N 57-68 16 W N 57-68 19 W N 57-63 20 W N 57-63	12 W N 09·26 29 E N 09·11 Sept. 1 E S 09·16	$\begin{array}{ccc} {\rm Mean} & 25{\cdot}606 \\ {\rm \Delta_2} & -001 \\ \\ {\rm Mean~R.A.} & 19~28~25{\cdot}605 \\ \end{array}$			
Sept. 2 E N 57.62 8 E S 57.61 14 E N 57.68 16 W N 57.58 19 W N 57.63 26 W N 57.63	Mean 09·249 Δ_1 ·003 Δ_2 ·002	B.D. 70·1073 Dec. 70° 48′			
Mean 57-627	Mean R.A. 19 27 09-250	July 19 E S 19 31 43.65 Aug. 7 W S 43.75 S W N 43.67			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B.J. 733 Dec. 51° 32′	11 W S 43-91 12 W N 43-62 29 E N 43-70 Sept. 1 E S 43-58 9 E N 43-65			
B.J. 732 Dec. 27° 46′	June 7 W S 19 27 26-26 Aug. 2 W S 26-27 Sept. 16 W N 26-23 30 W N 26-17	Aug. 7 W 8 43-75 8 W N 43-67 11 W 8 43-67 12 W N 43-62 29 E N 43-62 Sept. 1 E 8 43-86 9 E N 43-68 14 E N 43-79 17 W 8 43-79 26 W N 43-74			
July 16 E S 19 27 05-56 28 W N 05-55 30 W N 05-55 Aug. 20 E S 05-51 26 E N 05-50	$\begin{array}{cccc} \text{Mean} & 26 \cdot 233 \\ \Delta_1 & - \cdot 005 \\ \Delta_2 & - \cdot 004 \\ \end{array}$ Mean R.A. 19 27 26 \cdot 224	Mean 43·735 Δ ₂ · 000 Mean R.A. 19 31 43·735			

Date 10 10 Mean R.A. 1910 · 0	Date Date Mean R.A. 1910-0	Mean R.A. 1910-0
« Sagittae Dec. 16° 16′	B.J. 738 \$\beta\$ Sagi (continued) Dec. 17	ittae 7° 16'
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h m s 19 37 00-39 N 00-38 S 00-46 S 00-42 N 00-43 S 00-38 N 00-43 N 00-44
B.D. 49-3059 Dec. 50° 02'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00·416 -·004 ·001
July 19 E S 19 33 31 · 17 28 W N 31 · 25 30 W N 31 · 19 Aug. 8 W N 31 · 26	Mean 01.683 Mean R.A. $\Delta_1 = -005$ $\Delta_2 = -001$	19 37 00-413
11 W S. 31·34 12 W N 31·20 26 E N 31·19 29 E N 31·15 Sept. 1 E S 31·19r	Mean R.A. 19 34 01 · 677 . 10 Vulp Dec. 24	
2 E N 31-19 9 E N 31-28 13 E S 31-29 14 E N 31-31 16 W N 31-27 17 W S 31-29	14 Cygni Dec. 42° 37'	N 19 39 58-33 N 58-39 S 58-37 N 58-31
00 11 11 01 201	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N 58·32 S 58·37 N 58·40 N 58·39 N 58·38
Mean 31·239 Δ ₂ 001 Mean R.A. 19 33 31·238	28 W N 30-70 29 E 8 30-72 Sept. 2 9 E 11 W N 30-73 Sept. 2 9 E 11 W N 30-73 Sept. 2 9 E 11 W N 30-73 Sept. 2 12 W N 30-70 15 E 12 E N 30-67 15 E 15	X 55:39 55:31 55:31 55:31 55:31 55:31 55:31 55:31 55:31 55:39 55:39 55:39 55:39 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:34 55:35 55:36 55:37 55:36 55:36 55:37 55:36 55:37 55:36 55:36 55:37 55:36 55:36 55:36 55:37 55:36 55:36 55:36 55:37 55:36 55:36 55:36 55:37 55:36 55:36 55:36 55:36 55:37 55:36
B.J. 738 Dec. 50° 01′	30 W N 30.68 - 30 W	N 58-43 S 58-36 N 58-40 N 58-41
July 16 E S 19 34 01-62 19 E S 01-63 28 W N 01-61 30 W N 01-74 Aug. 2 W S 01-73 7 W S 01-73	Mean 30-691 Mean $Δ_2$ 001 $Δ_2$	58·375 001
8 W N 01.71	Mean R.A. 19 36 30 690 Mean R.A.	19 39 58-374

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0—Continued.

Date w Mean R.A. 1910.0	Date Grand Mean R.A. 1910.0	Date Guran R.A. 1910-0		
B.J. 740 Dec. 37° 08′	B.J. 742 (continued)	ζ Sagittae (continued)		
July 19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sept. 2 E N 19 44 55-97 9 E N 25-96 15 E S 58-92 14 E N 55-96 15 E S 58-97 19 W N 25-96 19 W N 25-96 20 W N 58-96 30 W N 58-96 1		
9 E N 01-77 13 E S 01-87 14 E N 01-88 15 E S 01-82 16 W N 01-88 17 W S 01-86	B.J. 743 Dec. 18° 19' July 30 W N 19 43 22-47	$\begin{array}{ccccc} {\rm Mean} & 58\cdot 948 \\ & \Delta_2 & -\cdot 001 \\ \\ {\rm Mean~R.A.} & 19~44~58\cdot 947 \\ \end{array}$		
19 W N 01·82 22 W S 01·85 26 W N 01·81 30 W N 01·85		B.J. 747 Dec. 70° 02′		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aug. 2 W 8 22-50 12 W 8 8 22-50 20 E 8 8 22-61 20 E 8 N 22-62 20 E 8 N 22-63 30 W N N 22-52 30 W N N 22-63	July 19 E S 19 48 28-86 Aug. 7 W S 28-83 12 W N 29-91 12 W N 28-90 Sept. 9 E N 29-00 Sept. 9 E N 28-84 26 W N 28-84		
B.J. 742 Dec. 41° 55′	26 W N 22·49 30 W N 22·48	26 W N 29·01 Mean 28·934		
July 19 E 8 19 42 09-70 r 28 W N 09-66 30 W N 09-77 Aug. 2 W S 09-70 7 W S 09-72	$\begin{array}{cccc} {\rm Mean} & 22 \cdot 491 \\ \Delta_1 & \cdot 000 \\ \Delta_2 & \cdot 000 \\ {\rm Mean \ R.A.} & 19 \ 43 \ 22 \cdot 491 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
7 W S 09·72 8 W N 09·78 11 W S 09·73 12 W N 09·67 20 E S 09·69	ζ Sagittae Dec. 18° 55′	¢ Aquilae Dec. 11° 11′		
July 19 E S 1942 09-70; 28 W N 00-694 Aug 2 W S 00-75; 18 W N 00-75; 11 W N 00-75; 12 W N 00-75; 12 W N 00-75; 13 W N 00-75; 14 W N 00-75; 15 W N 00-75; 16 W N 00-76; 17 W 00-60; 17 W N 00-60; 17 W N 00-60;	July 28 W N 19 44 59-02 30 W N 58-94 Aug. 2 W S 59-01r 12 W N 58-92 20 E S 58-96 26 E N 58-92 29 E N 58-92	July 26 W S 19 51 58-52 28 W N 58-45 30 W N 58-51 Aug. 2 W S 58-50 12 W N 58-57 12 W N 58-57 19 E N 58-54		

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910-0		
	φ Aquilae (continued)					J. 75:		1	5 Vu (con	lpec			
Aug. 20 26 29 Sept. 2 13	Aug. 20 E S 19 51 58-55 26 E N 58-54 29 E N 58-56 Sept. 2 E N 58-58 13 E S 58-48					July 26 W S 19 54 45-32 28 W N 45-31 30 W N 45-27 Aug. 2 W S 45-25 8 W N 45-29				Mean 19 57 23 ·624 Δ ₂ -001 Mean R.A. 19 57 23 ·623			
14 15 16 17	E W W	NNNSNSNSNSNS	58-55 58-56 58-50 58-54	1: 1: 2: 2: 2:	E	XXXX	45.33 45.21 45.26 45.32		B.D. Dec.	69·1	084 07'		
19 22 26 29 30	W W W W W	an	58-63 58-55 58-55 58-56 58-51 58-537 -000 9 51 58-537	Sept. 11 1 1 1 1 1 1 2 2 2 3	E E E W W W W W W W	Neszananananananan	45·31 45·25 45·28 45·27 45·31 45·35 45·25 45·27 45·29 45·27 45·26	July 19 Aug. 7 11 12 19 29 Sept. 9 10 13 14	EWWWEEEEEEE	Zazzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	19 58 55-20 55-32 55-41 55-37 55-17 55-31 55-35 55-30 55-36 55-36		
	B Dec	J. 75				ean M	45·283 005 -000	17 26 29	W	SNS	55·39 55·39 55·31		
July 19 28	E	S	19 53 18·17 18·15	Ме	n R.	_	19 54 45-278		Me	2	55·311 ·002		
Aug. 8	WW	NNN	18-18 18-18 18-14		15 Vulpeculae Dec. 27° 30′				n R.A	١. 1	9 58 55-313		
19 26 29	E	ZZZZ	18-16 18-14 18-18 18-22	July 2	s W	S N	19 57 23·65 23·62			Эгасс . 76°			
Sept. 2 9 14 15 16 17 19 22 26 29 30	E E W W W W W	NN	18-22 18-16 18-20 18-24 18-24 18-21 18-21 18-21 18-21	Sept. 1	2 W W E E E E E E E E E E E E E E E E E	NNSNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	23-62 23-61 23-53 23-60 23-63 23-64 23-59 23-65 23-62 23-63 23-64 23-64	28	E E W W	SYNSSYSSYN	20 02 08-84 08-90 08-88 08-90 08-81 08-94 08-81 08-97 08-92 09-23		
Mea	4	75	18·192 ·000 002 19 53 18·190	1 2 2 2 2	9 W 2 W 6 W	NSNSN	23·66 23·69 23·57 23·65 23·64		4	an A. :	08-920 -004 20 02 08-924		

Date Gum SA Mean R.A. 1910.0	Date Grant Mean R.A. 1910-0	Date Garage Mean R.A.		
b ² Cygni Dec. 36° 34'	30 Cygni Dec. 46° 33′	B.J. 760 Dec. 24° 24′		
July 26 W S 20 06 05 05 05 04 Aug. 7 W S 20 06 05 05 01 Sept. 2 E N 60 499 13 E S 60 60 41 W N 60 60 42 W N 60 60 12 8 W N 60 60 12 8 W N 60 60 52 9 W S 60 60 52	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Mean 05·028 Δ ₂ ·000 Mean R.A. 20 06 05·028	B.J. 757 Dec. 46° 28′	Mean 56-008 Δ_1 005 Δ_2 001 Mean R.A. 20 12 56-002		
20 Vulpeculae Dec. 26° 13′ July 26 W S 20 08 14·25	Aug. 31 E N 20 10 47·79 Sept. 2 E N 47·85 16 W N 47·90 28 W N 47·87	176 B.Cygni Dec. 39° 07'		
July 26 W S 20 08 14-25 Sept. 2 E N 14-21 14-22 13 E S 14-17 15 E S 14-18 14-23 17 W S 14-23 26 W N 14-22 28 W N 14-28 29 W S 14-28 Oct. 11 W S 14-21 14-21	Mean 47·853 Δ ₁ -004 Δ ₂ -002 Mean R.A. 20 10 47·847	July 25 W S 20 16 59-48 Aug. 77 W S 59-51 Aug. 77 W S 59-54 Aug. 77 W S 59-46 Oct. 77 W S 59-46		
Mean 14·228 Δ ₂ · ·000 Mean R.A. 20 08 14·228	B.J. 759 Dec. 77° 26' Aug. 7 W S 20 11 56-08 Sept. 1 E S 56-18	2 E N 59-34 8 E S 59-46 9 E N 59-41 10 E S 59-46 14 E N 59-50 16 W N 59-49		
ρ Aquilae Dec. 14° 55′ Sept. 13 E S 20 10 06·78 15 E S 06·75	Sept. 1 E S 56-18 100 E S 56-27 13 E S 56-20 15 E S 56-30 15 E S 56-31 26 W N 55-87 28 W N 55-87 29 W S 56-32 Oct. 11 W S 56-28	19 W N 59·49 26 W N 59·45 28 W N 59·51 29 W S 59·47 30 W N 59·45 Oet. 7 W N 59·45 10 W N 59·45		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean 56·205 $Δ_1$ 004 $Δ_2$ -000	Mean 59·460 Δ ₂ -·001		
Mean R.A. 20 10 06-758	Mean R.A. 20 11 56-201	Mean R.A. 20 16 59-459		

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Mean R.A. 1910-0
mi ied)
h m s 20 25 43·10 43·07 43·06 43·10
* 43.065003000 20 25 43.062
mi ' 39'
20 27 16·23 16·28 16·25
16·25 16·25 16·28 16·24
16·25 16·28 16·26 16·25 16·22 16·26 16·32
16·31 16·24 16·26 16·18 16·31 16·24
16·30 16·27 16·25 16·30 16·40
16·267 ·000 20 27 16·267

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

	Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910-0
ı		8 00'		ζDec.	e!phi	ni 22'		B. Dec.	J. 77 14°	1 17'		
	July 30 Aug. 20 29 31 Sept. 2 8 13 14 15 16 17 19 21 22 26 28 29 30 Oct. 7	WEEEEEEEWWWWWWWWW	NASZNASZNASZNASZNASZNASZNA	h m s 20 28 54-80 54-81 54-75 54-85 54-78 54-82 54-81 54-81 54-81 54-81 54-81 54-81 54-81 54-81 54-81 54-81	July 30 Aug. 20 31 Sept. 2 8 14 15 16 16 17 19 21 22 30 Oet. 7 11 19 26	W E E E E W W W W W E E	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	h m s 20 31 06-00 06-03 06-03 06-04 06-05 06-04 06-05 06-04 06-03 06-03 06-03 06-03 06-03 06-03 06-03 06-03 06-08	July 30 Aug. 20 Sept. 2 8 14 16 19 21 22 30 Oct. 7 19	W E E E W W W W E		h m s 20 33 19-68 19-71r 19-77 19-70 19-73 19-66 19-72r 19-79 19-73r 19-71r 19-76 19-79r
I	11 19 26	E E	SNN	54·81 54·80 54·78		Me 		06·055 001	Mear	R.A	. 2	0 33 19-729
		Me:		54·802 ·000	Mear	R.A	. 2	20 31 06 054	29 Vulpeculae Dec. 20° 53'			
ı	Mean	R.A		·000 0 28 54·802		B. Dec.	J. 77 74°	0 39'	July 30	W	N	20 34 30 10
	Groombridge 3241 Dec. 72 * 14' Aug. 7			Aug. 7 11 19 29 31 Sept. 1 9 10 13 15 17 26 28 29 Oct. 10 11 12	W W E E E E E E E W W W W W W E E	SSXXXSXSXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	20 32 42 44 42 34 42 36 42 28 42 65 42 27 42 23 42 34 42 43 42 43 42 43 42 26 42 26 42 26 42 26 42 29 42 44 42 29 42 46 42 29 42 46	Aug. 20 Sept. 2 8 13 14 16 17 19 21 22 26 28 30	E E E W W W W W W W E E E	NANAZANASANASANANA	30-10 30-20 30-68 30-14 30-13 30-13 30-17 30-13 30-13 30-17 30-11 30-14 30-14 30-17 30-18	
		Iean Δ_1 Δ_2 R.A		24·332 -·004 ·001 0 30 24·329	Mear	Me Δ A R.A	1 2	42·350 ·001 ·001 20 32 42·352	Mear	Me:	2	30·126 001 0 34 30·125

Date D Mean R.A. 1910.0	Date Date Mean R.A. 1910-0	Date O Mean R.A. 1910.0
74 Draconis Dec. 80° 47′	B.J. 777 Dec. 44° 57′	B.J. 778 (continued)
Aug. 29 E N 203412-03 31 E N 203412-03 Sept. 1 E S 42-07r 10 E S 41-89 Oct. 11 W S 42-01 Mean 42-024 Ar 40-07r Mean 42-024 Ar 40-07r	2 E N 21.74 8 E S 21.77 9 E N 21.72 10 E S 21.77 14 E N 21.78	Sept. 26 W N 20 30 15.40 29 W N 20 15.43 15.43 29 W N 15.43 15.43 15.43 15.43 15.46 15.46 15.46 15.42 12.2 15.49 15.42 12.2 12.2 12.2 12.2 13.42 13.42 12.2 13.42 <td< td=""></td<>
Mean R.A. 20 34 42 038	19 W N 21-76 21 W N 21-83 22 W S 21-77 26 W N 21-81 28 W N 21-82 29 W S 21-82	$\begin{array}{cccc} \text{Mean} & 15\text{-}438 \\ \Delta_1 & \cdot 004 \\ \Delta_2 & -\cdot 001 \\ \text{Mean R.A.} & 20 \ 39 \ 15\text{-}441 \end{array}$
B.J. 774 Dec. 15° 36′	30 W N 21-69 Oct. 7 W N 21-76 10 W N 21-76 11 W S 21-81	B.J. 780 Dec. 33° 38′
July 30 W N 20 35 27-44	12 E N 21-74 17 E N 21-77 19 E N 21-76 20 E N 21-81 Mean 21-73 Δ1 .004 Δ2004 Mean R.A. 20 38 21-776	July 30 W X 204234-08 Aug. 10 E X 34-08 Aug. 10 E X 34-10 20 E X 34-10 20 E X 34-10 21 E X 34-10 21 E X 34-10 22 E X 34-10 23 E X 34-10 24 E X 34-10 25 E X 34-10 26 E X 34-10 27 E X 34-10 28 E X 34-10 29 E X 34-10 20 E X 34-10
Aug. 19 E N 27-42 20 E S 27-14 Sept. 2 E S S 27-15 16 E S S 27-16 16 W N N 27-16 26 W N N 27-16 27-16 28 W N N 27-16 29 W N N 27-16 20 U N N 27-16 20 U N N 27-16 21 E S S W N N 27-16 22 W N N 27-16 23 W N N 27-16 24 U N N N 27-16 25 W N N N 27-16 26 W N N N 27-16 27-16 28 W N N N 27-16 29 U N N N 27-16 20 U N N N N N 27-16 20 U N N N N N N N N N N N N N N N N N N	B.J. 778 Dec. 14° 45′	16 W N 34-09r 19 W N 34-14 21 W N 34-13 22 W S 34-13 26 W N 34-14 28 W N 34-08r 29 W S 34-14r 30 W N 34-108
10 W N 27-42 12 E N 27-44 17 E N 27-49 19 E N 27-53 26 E N 27-51	July 30 W X 20 39 15-46 Aug. 30 E S 15-44 Sept. 2 E X 16-43 13 E S 16-43 14 E N 16-43 15 E S 16-39 15 E S 16-41 16 W N 15-41 17 W S 15-41 19 U W X 16-47 22 W N 16-47	Oet. 3 W N 3+10 7 W N 34+10 10 W N 34+08 11 W S 34+13 12 E N 34+18 17 E N 34+18r 19 E N 34+18r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 E S 15-41 16 W N 15-41 17 W S 15-41 19 W N 15-46 21 W N 15-47 22 W S 15-42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Gamborgo Mean R.A. 1910 · 0	Date Date Mean R.A. 1910.0	Date Guest Spanner of
B.J. 782 Dec. 57° 15′	220 H ¹ . Draconis Dec. 80° 13′	B.J. 788 (continued)
Sept. 10 E S 20 43 06 99 15 E S 07 09 17 W S 07 16	Aug. 29 E N 2051 41-84 Sept. 2 E N 41-95 9 E N 41-80 14 E N 41-70 16 W N 42-35	Oct. 11 W S 20 53 49-04 17 E N 49-01 19 E N 48-90 26 E N 48-92
$\begin{array}{cccc} \text{Mean} & 07 \cdot 080 \\ \Delta_1 & - \cdot 003 \\ \Delta_2 & \cdot 005 \\ \\ \text{Mean R.A.} & 20 \ 43 \ 07 \cdot 082 \\ \end{array}$	19 W N 41-88, 21 W N 42-35 28 W N 42-15 30 W N 41-88 Oct. 7 W N 42-00nr 10 W N 41-76r	Mean 49·010 Δ ₁ 003 Δ ₂ -000 Mean R.A. 20 53 49·007
B.J. 784	12 E N 41-99nr 17 E N 41-93nr 19 E N 41-85nr 26 E N 41-96nr	
Dec. 36° 10′		Aug. 11 W S 20 55 48-71 29 E N 48-46
July 30 W N 2043 54-13 Aug. 19 E N 54-13 Aug. 19 E N 54-13 Aug. 19 E N 54-03 Aug. 10	Mean R.A. 20 51 41·952 B.J. 788 Dec. 40° 49′	29 E N 48-46 31 E N 48-64 Sept. 1 E S 48-52 10 E S 8-8-67 12 E S 8-8-67 26 W N 48-70 26 W N 48-70 26 W N 48-70 Ct. 10 W N 48-80 Oct. 10 W N 48-80 12 E N 48-84 17 E N 48-84 17 E N 48-84 17 E N 48-84 18 E N 48-84 18 E N 48-84 19 E N 48-84 10 E N 48-84
13 E S 54-17 14 E N 54-13r 16 W N 54-17 19 W N 54-13r 21 W N 54-17 22 W S 54-14r 26 W N 54-28	Aug. 11 W S 20 53 49 04 20 E S 49 03 29 E N 48 93 31 E N 48 97 Sept. 1 E S 49 04 2 E N 48 97	Oct. 10 W N 48-50 11 W S 48-63 12 E N 48-46 17 E N 48-53 19 E N 48-49 26 E N 48-68
29 W S 54-13 30 W N 54-13r Oct. 7 W N 54-13r 11 W S 54-13r 12 E N 54-23r 17 E N 54-21	S E S 49-03 9 E N 48-97 10 E S 49-01 13 E S 49-07 14 E N 48-93 15 E S 49-01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
19 E N 54-12r 26 E N 54-06	16 W N 49-01 17 W 8 49-04 19 W N 48-99 21 W N 49-09 22 W 8 49-02	f¹ Cygni Dec. 47° 10′
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 W N 49·05 28 W N 48·99 29 W S 49·03 30 W N 49·02 Oct. 7 W N 49·06 10 W N 49·01	Aug. 20 E S 20 56 45-86 Sept. 2 E N 45-80 S E S 45-84 14 E N 45-83 16 W N 45-86

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910-0
	ni ed)		B. Dec.	J. 79 38°	3 18'	Gr	ooml Dec.		e 3409 04'		
Sept. 17 19 21 22 28 30 Oct. 7 10 17 19 26	h m s 20 56 45-91 45-79 45-89 45-88 45-83 45-83 45-84 45-83 45-92 45-90 45-91 0 56 45-872	Aug. 11 20 31 Sept. 2 10 14 16 16 19 26 28 30 Oct. 7 10 12 17	W E E E E W W W W E E E	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	h m s 21 02 51-72 51-75 51-75 51-75 51-76 51-79 51-73 51-73 51-73 51-76 51-70 51-70 51-70 51-75	Aug. 11 31 Sept. 1 9 10 13 14 155 17 21 266 28 29 Oct. 10 11 17	W E E E E E W W W W W E E	SNSNSSNNNNSNSNN	h m s 21 05 51-35 51-32 51-38 51-34 51-34 51-34 51-37 51-37 51-37 51-37 51-37 51-32 51-32 51-32 51-32		
	B.J. 792 Dec. 43° 34′				Me. Δ		51·731 005 001		Me Δ		51·349 ·000
Aug. 11 20	WE	S	21 01 39·35 39·37	Mean	R.A	. 2	1 02 51.725	Mear	R.A	. 2	1 05 51-349
Sept. 1 2 8 10	EEEE	NSNSS	39-38 39-36 39-34 39-41 39-32		f^2 Dec.	Cygr 47°	i 17'		B. Dec.	J. 79 77°	
13 14 16 17 19 22 26 28 29 30 Oct. 7 10 11 12 17 19	E W W W W W W W E E E	SNSNSSSNNSNSNNSNNSNNN	39 · 41 39 · 31 39 · 37 39 · 35 39 · 38 39 · 38 39 · 39 39 · 37 39 · 37 39 · 30 39 · 35 39 · 31 39 · 36 39 · 36 39 · 36	Aug. 31 Sept. 1 8 9 13 17 22 26 6 28 29 30 Oct. 7 10 11 17	E E E E W W W W W W W E E	ZZZZZZZZZZZZZZZZZZZZZ	21 03 30-07 30-01 30-02 30-06 30-06 30-06 29-99 29-98 30-03 29-96 30-02 29-96 30-02 29-94 29-95	Sept. 1 10 13 14 15 17 26 28 Oct. 10 11 12 17 19	E E E W W W W E E	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	21 07 18-81 18-93 18-95 18-81 19-96 19-03 18-99 18-78 18-98 19-02 18-85 18-81
	Mes Δ ₁ Δ ₂		39·358 ·000 ·000	$\begin{array}{c cccc} & & & & & & \\ & & & & & & \\ & & & & & $				18-921 -001 -003			
Mean	R.A	. 2	1 01 39 358	Mean	R.A	. 2	21 03 30-009	Mear	R.A	. 2	1 07 18-925

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Clark Mean R.A. 1910-0	Date S Mean R.A.	Date G Nean R.A. 1910-0
B.J. 797 Dec. 29° 51′	B.J. 799 (continued)	v Cygni Dec. 34° 31′
Aug. 20 E S 21 09 06-32 Sept. 9 E N 06-32 16 W N 66-34 17 W S 06-31 22 W S 06-28 26 W N 06-27	Sept. 2 E N 21 11 11-50	Aug. 20 E S 21 14 12-96 Sept. 8 E S 12 19 12-95 19 W N 13-92 30 W N N 12-95 10 E N 12-95 17 E N 12-95 19 E N 12-95 26 E N 12-95 26 E N 12-95 26 E N 12-95
$\begin{tabular}{lll} Mean & 06.313 \\ Δ_1 & .000 \\ Δ_2 & .000 \end{tabular}$ $\begin{tabular}{lll} Mean R.A. & 21 09 06.313 \end{tabular}$	17 W S 11-89 19 W N 11-88 21 W N 11-85 22 W S 11-86 26 W N 11-84 28 W N 11-90 29 W S 11-88 30 W N 11-87	
B.J. 798 Dec. 59° 37′	Oct. 7 W N 11-87 Oct. 7 W N 11-82 10 W N 11-83r 11 W S 11-87 12 E N 11-84	Δ_2 ·000
Aug. 11 W S 21 09 30 82 31 E N 30 74 Sept. 1 E S 30 75 8 E S 30 77	19 E N 11-85 19 E N 11-85 Mean 11-858	Bradley 2796 Dec. 76° 38'
Aug. 11 W S 21 09 30-82 31 E N 30-77 Sept. B E N 30-77 10 E S 30-77 11 E N 30-55 12 E N 30-77 13 E N 30-55 14 E N 30-55 15 E N 30-70 16 W N N 30-72 17 E N 30-73 18 E N 30-73 19 E N 30-73 10 W N 30-73 11 W N 30-73 11 E N 30-73 11 E N 30-73 11 E N 30-73 11 E N 30-73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Aug. 11 W S 21 16 41.94 Sept. 1 E S 41.77 21 W X 41.86 29 W S 41.95 Oct. 10 W N 41.86 18 E S 41.82 19 E X 41.76
Oct. 7 W N 30·78 10 W N 30·77 10 W N 30·67 11 W S 30·73	σ Cygni Dec. 39° 01' Aug. 11 W S 21 13 52·74	11 W S 41·86 18 E S 41·82 19 E N 41·76
12 E N 30.76 17 E N 30.65 19 E N 30.68	Sept. 1 E N 52.78 Sept. 1 E S 52.75 2 E N 52.77 9 F N 52.77	Mean 41·848 Δ ₂ · 000 Mean R.A. 21 16 41·848
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 E S 52-75 13 E S 52-80 14 E N 52-73 16 W N 52-81 21 W N 52-79 22 W S 52-81	B.J. 804 Dec. 19° 25′
B.J. 799 Dec. 37° 40′	21 W N 52-79 22 W S 52-81 26 W N 52-76 28 W N 52-66 Oet. 7 W N 52-74 18 E S 52-71	Sept. 2 E N 21 17 55·43 9 E N 55·43 13 E S 55·38 14 E N 55·40
Aug. 11 W S 21 11 11:87 20 E S 11:85 31 E N 11:87 Sept. 1 E S 11:87	$\begin{array}{cccc} {\rm Mean} & 52\cdot761 \\ \Delta_1 & -\cdot002 \\ \Delta_2 & \cdot000 \\ {\rm Mean~R.A.} & 21~13~52\cdot759 \\ \end{array}$	Sept. 2 E N 21 17 55-43 9 E N 55-48 13 E S 55-38 14 E N 55-40 16 W N 55-41 19 W N 55-44 21 W N 55-44 22 W S 55-40 30 W N 55-43

3 GEORGE V., A. 1913

Date E Mean R.A. 1910.0	Date Gamb	Mean R.A. 1910-0	Date Clamp	Mean R.A. 1910-0
B.J. 804 (continued)		J. 807 46° 09′		bridge 3511 c. 80° 08′
Oct. 3 W N 21 17 55-40 18 E S 55-47 19 E N 55-45 26 E N 55-40	Aug. 20 E Sept. 1 E 2 E 9 E	h m s S 21 26 07·61 S 07·58 N 07·62 N 07·60	Sept. 29 W Oct. 18 E 20 E	S 21 27 30·24 S 30·12 30·27
Mean 55·422 Δ ₁ ·004 Δ ₂ -·001	10 E 13 E 14 E 19 W 21 W 22 W	S 07·59 S 07·67 N 07·60 N 07·68 N 07·63		ean 30·210 42 · 018 A. 21 27 30·228
Mean R.A. 21 17 55-425	22 W 26 W 28 W 29 W 30 W	S 07.62 N 07.70 N 07.63 S 07.59	Dec	Cygni . 45° 12′
69 Cygni Dec. 36° 17′	Oct. 7 W 10 W 11 W 17 E 19 E 26 E	8 07.58 07.50 07.5	Aug. 31 E Sept. 1 E 8 E 9 E 14 E 21 W 22 W	N 21 30 35·59 S 35·69 N 35·58 N 35·65 N 35·64 S 35·64 S 35·64 N 35·57 S 35·67 N 35·67
Aug. 20 E S 21 22 06 27 31 E N 06 27 Sept. 1 E S 06 25 2 E N 06 19 8 E S 06 28	Me 	000	29 W 30 W Oet. 7 W 18 E 26 E	S 35-66 N 35-64 N 35-57 S 35-67 N 35-63
9 E N 06·21 10 E S 06·25 13 E S 06·27 14 E N 06·23 15 E S 06·25	Mean R.A	. 21 26 07-630		ean 35.643 \(\lambda_2\) .000 A. 21 30 35.643
16 W N 06·39 17 W S 06·33 19 W N 06·24r 21 W N 06·33r	Dec	J. 809 . 70° 10′	72 Dec	Cygni :.38° 08'
22 W S 06.337 28 W N 06.24 29 W S 06.27 20 W N 06.30 Oct. 7 W N 06.30 11 W N 06.30 12 E N 06.36 13 E N 06.36 14 E N 06.36 15 E N 06.26 20 E S 06.23	Aug. 31 E Sept. 1 E 9 E 10 E 15 E 21 W	N 21 27 30·15 S 30·09 N 30·12 S 30·17 S 30·16 N 30·16 N 30·21 N 30·21 N 30·21	Aug. 20 E Sept. 10 E 13 E 16 W 17 W 26 W Oct. 10 W 12 E 17 E	S 21 31 05-89 S 05-92 N 05-93 S 05-95 N 05-95 N 05-87 N 05-87 N 05-87 N 05-94 N 05-94 N 05-89
26 E N 06·25 Mean 06·275 Δ ₂ ·000	Me	an 30·161 	19 E 20 E	$ \begin{array}{c cccc} N & 05.90 \\ S & 05.89 \end{array} $ ean $05.906 \\ \Delta_2 & .000 $
Mean R.A. 21 22 06-275	Mean R.	A. 21 27 30·163	Mean R.	A. 21 31 05·906

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Sept. 1	LEDGERS OF .	MEAN RIGHT ASCENSION, 1	.510-0—Communea.
Dec. 40	Date O Mean R.A. 1910.0	Date O Mean R.A. 1910-0	Date Graph Mean R.A. 1910-0
Sept. 1	B.J. 811 Dec. 40° 01'		B.J. 817 (continued)
Mean		Oct. 7 W N 21 36 10-03 10 W N 10-10 12 E N 10-02 17 E N 10-02 18 E S 10-00 19 E N 10-03 20 E S 10-03	Oct. 10 W N 21 40 36-41r 11 W S 36-36 12 E N 36-28 17 E N 36-29 18 E S 36-29 19 E N 36-23
Mean	19 W N 20-45 21 W N 20-48 22 W S 20-43 26 W N 20-42 28 W N 20-42 28 W N 20-44 29 W S 20-41 30 W N 20-44	Δ_1 $\cdot 004$ Δ_2 $\cdot 000$	$\begin{array}{ccc} \Delta_1 & \cdot 004 \\ \Delta_2 & \cdot 004 \end{array}$
Mean	Oct. 7 W N 20-40 10 W N 20-39 11 W S 20-41 12 E N 20-38	B.J. 816 Dec. 25° 14′	78 Draconis Dec. 71° 54′
Mean R.A. 21 33 20-412	17 E N 20-36 18 E S 20-43 19 E N 20-41 20 E S 20-43 26 E N 20-42	Sept. 8 E S 21 40 34 · 14 16 W N 34 · 20r 17 W S 34 · 11r 19 W N 34 · 10 22 W S 34 · 15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} \Delta_1 & -\cdot 004 \\ \Delta_2 & \cdot 000 \end{array}$	28 W N 34-09r 30 W N 34-13r Oct 7 W N 34-08 26 E N 34-11r	15 E S 58-62 21 W N 58-74 26 W N 58-60r 27 W S 58-63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B.J. 813 Dec. 57° 05′	$\Delta_1 = -002$ $\Delta_2 = 000$	0et. 10 W N 58-46r 11 W S 58-60r 12 E N 58-53r 17 E N 58-53r 18 E S 58-57r 19 E N 58-53r 20 E S 58-57r
10 E S N 09-95 Aug. 31 E N 21 40 38-34 Mean R.A. 21 41 58-582	Aug. 31 E N 21 36 09 90 Sept. 1 E S 10 03 8 E S 09 94 9 E N 09 84	B.J. 817 Dec. 70° 54′	Mean 58-578
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 E S 10-05 14 E N 09-95 15 E S 10-07	Aug. 31 E N 21 40 36 34 Sept. 1 E S 36 43	Mean R.A. 21 41 58-582
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 W S 10·10 19 W N 09·98 21 W N 10·04	9 E N 36·15 10 E S 36·49r 13 E S 36·27r 14 E N 36·29	B.J. 821 Dec. 48° 54′
	22 W S 10-06 26 W N 10-02 28 W N 10-04 29 W S 09-97 30 W N 10-04	15 E S 36.38 r 21 W N 36.39 r 26 W N 36.49 27 W S 36.39 r 29 W S 36.31	Sept. 1 E S 28-03 8 E S 28-00

	Date	Clamp	Observer	Mean R.A. 1910·0	Date	Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910-0
		B.	J. 82 tinu			14 l (con	Pega tinue			Brad (con	lley 2	
	Sept. 10 13 14 15 16 19 21 22 26 27 28 29 30	EEEEWWWWWWWWW	SZZZZZZZZZZZZZZZZZZZZZZ	h m s 21 43 28-02 28-07 28-04 28-03 27-97 28-12 28-05 28-06 28-00 27-99 27-96 28-03	Oct. 19 20 26 Nov. 9	В.,	. 2 I. 82	h m s 21 45 51·72 51·70 51·65 51·76 51·719 001 21 45 51·718	Sept. 13 14 15 16 19 21 22 26 27 28 29 30 Oct. 7	EEWWWWWWWWWWWWWWW	SZSZZZSZSZSZSZZZZSZS	h m s 21 50 05 07 05 07 05 01 04 97 05 04 05 02 05 02 04 99 04 98 04 98 04 91 05 03 05 02
	Oct. 7 10 11 12 17 18 19 26	W W E E E E	NNSNNSNN	28·01 27·99 27·99 28·03 28·03 27·96 28·00 28·00	Aug. 31 Sept. 8 13 14 15 16	E E E E W	NSSNSNNNSNNSNNSNNSNNS	21 48 57 93 58 01r 57 94 57 98 57 98 58 01 57 97 r	10 12 18 19 20 Nov. 9	W E E E E	N an	05·05 04·96 04·92 04·97 04·92 05·06r
		Me Δ		28·015 002 -000	19 21 22 26	II.	Nan	57-99 57-99 r 57-93	Mear	A R.A		· 000 1 50 04·993
	Mean	R.A	. 2	1 43 28-013	28 29 30 Oct. 7	M. M.	NSNN	58.00 57.97 58.00 57.94		79 D Dec.	racc 73°	
		Dec.	Pega 29°	si 45'	10 11 12 17	WEE	ZZZZZ	58·02 57·94 57·89 57·92	Aug. 31 Sept. 1 10 27	E E W	NSSS	21 51 44·19 43·98 44·19 44·07
	Aug. 31 Sept. 8 9 13 14	E E E E	NSNSN	21 45 51·78 51·71 51·65 51·71 51·74	18 19 20 Nov. 9	E E E	SNSN	57-96 57-94 57-90 57-95	Oet. 11 17 18 20	W E E	SSZSS	44·13 44·02 44·05 44·07
	15 16 19 21 22 26	E W W W	ZZZZZZZZZZZZZZZZZZ	51·70 51·72 51·72 51·73 51·73 51·77	Mear	Me Δ Δ R.A		57-962 005 001 21 48 57-956	Mear	Me Δ Δ R.A	1 2	44.081 .000 .011 21 51 44.092
	28 29 30 Oct. 7	W	ZZZZ	51·76 51·70 51·75 51·72		Brad Dec.	ley :	2868 47'		13 Dec	Cepl	nei 11'
1	10 11 12 17 18	W W E E E	NSNNS	51·74 51·71 51·65 51·73 51·70	Aug. 31 Sept. 1 8 10	E E E	Nsss	21 50 04·96 04·95 04·97 05·05	Sept. 8 13 14 15	E E E	s s N s	21 51 51·56 51·62 51·56r 51·53

Date Clamb Mean R.A. 1910-0	Date Odward Mean R.A. 1910-0	Date O Mean R.A. 1910-0
13 Cephei (continued)	Bradley 2897 Dec. 74° 34'	B.J. 831 Dec. 24° 54′
Sept. 16 W N 2 15 15 1-57	Aug. 31 E N 21 55 59-88 Sept. 1 E 8 59-95 72 W 8 S 59-95 72 W 8 S 59-95 72 W 8 S 59-95 72 E N 59-95 72 E N 59-95 72 E N 59-95 72 E N 59-95 72 E S 59-75 72 E S 59	Aug. 31 E N 22 00 49-32 Sept. 13 E S N 49-19 Sept. 14 E S N 49-19 Sept. 14 E S N 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & \text{Mean} & 59.788 \\ & \Delta_2 & \cdot 006 \\ \\ & \text{Mean R.A.} & 21.56.59.794 \\ \end{array}$	11 W S 49-17 12 E N 49-17 17 E N 49-22 18 E S 49-23 19 E N 49-15 20 E S 49-20 21 E S 49-20 26 E N 49-23
B.J. 826 Dec. 12° 41'	16 Cephei Dec. 72° 45′	Mean 49-203 Δ_1 -003 Δ_2 001
Sept. 8 E S 21 56 42·24 13 E S 42·21 14 E N 42·26 15 E S 42·19 16 W N 42·24	Sept. 13 E S 21 57 58 06 14 E N 57 96 15 E S 58 03r 26 W N 58 06 27 W S 57 98 28 W N 58 12 29 W S 57 90	Mean R.A. 22 02 49-205 B.J. 833 Dec. 32° 44′
13 E S 42-21 14 E N 42-23 15 E S 42-19 16 W N X 42-23 21 W N X 42-23 22 W S 42-22 26 W N 42-24 20 W N 42-24 30 W N 42-23 11 W S 42-23 11 B E S 42-29	Sept. 13 E 8 2157 55-06 14 E 7 57-96 15 E 8 W 8 55-06 27 W 8 55-06 28 W N 55-12 29 W N 55-12 11 W 8 8 55-06 12 E 8 55-06 19 E 8 55-06 19 E 8 57-957 Nov. 9 E 8 57-958 Nov. 9 E 8 57-958	Aug. 31 E N 22 05 14-23 Sept. 10 E 8 14-25r 13 E S 14-25r 15 E N 14-25r 15 E N 14-25r 16 W N 14-20r 22 W N 14-27 22 W N 14-27 22 W S 14-25 25 W N 14-28 27 W N 14-28 28 W S 14-25 29 W N 14-28 29 W N 14-28 20 W N 14-28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & & & & & & & & & & & \\ & & & & & & & $	21 W N 14-22r 22 W S 14-26 26 W N 14-28 27 W S 14-28r 28 W N 14-28r 29 W S 14-29 30 W N 14-29

3 GEORGE V., A. 1913

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Gardon Mean R.A.	Date S Mean R.A. 1910.0	Date Date Mean R.A. 1910-0
B.J. 833 (continued)	28 Pegasi Dec. 20° 32′	B.J. 837 (continued)
Oct. 3 W N 2205 14-25 10 W N 124-25 11 W S 14-23 12 E N 14-23 12 E N 14-23 13 E S 14-23 14 E S 14-23 15 E S 14-25 19 E N 14-25 20 E S 14-25 20 E S 14-25 Nov. 60 E N 14-25 Nov. 60 E N 14-25	Sept. 13 E S 22 06 14-85 15 E S 14-85 29 W S 14-85 Oct. 11 W S 14-90 18 E S 14-90 18 E S 14-88 21 E S 14-88	Oet. 18 E S 22 08 04-71 19 E N 04-71 20 E S 04-70 Nov. 9 E N 04-74
18 E S 14-25 19 E N 14-25 20 E S 14-25 21 E S 14-25 Nov. 9 E N 14-25 Nov. 9 E N 14-27	$\begin{array}{cccc} {\rm Mean} & {\rm 14\cdot882} \\ {\rm \Delta_2} & {\rm \cdot002} \\ \\ {\rm Mean~R.A.} & {\rm 22~06~14\cdot884} \\ \end{array}$	$\begin{array}{cccc} & \text{Mean} & 04.783 \\ \Delta_1 &005 \\ \Delta_2 & .007 \\ \end{array}$ Mean R.A. 22 08 04.785
Mean 14·263 $Δ_1$ 003 $Δ_2$ 001 Mean R.A. 22 05 14·259	B.J. 836 Dec. 57° 45′	1 H.Lacertae Dec. 39° 16'
B.J. 835 Dec. 32° 44′	Aug. 31 E N 20 7 43.78 Sept. 16 W N 20 7 43.78 Sept. 16 W N 43.81 22 W S 43.81 22 W N 43.79 30 W N 43.79 30 W N 43.75 10 W N 43.75 10 W N 43.76 26 E N 43.78 Nov. 2 E N 43.88	Aug. 31 E N 22 10 00-87 Sept. 10 E S 00-84 14 E N 00-72 11 E N 00-72 10 W N 00-52 19 W N 00-52 22 W N 00-82 22 W N 00-82 23 W N 00-82 24 W N 00-82 25 W N 00-84 26 W N 00-84 27 W S 00-84 28 W N 00-84 28 W N 00-84 28 W N 00-84 28 W N 00-84 29 W N 00-84 21 E N 00-76 21 E N 00-76 20 E S 00-78 21 E S 00-84 22 E N 00-84
19 W N 59·35 21 W N 59·28 22 W S 59·43 26 W N 59·33 27 W S 59·27 28 W N 59·32 30 W N 59·32	Mean 43·821 $Δ_1$ 003 $Δ_2$ 005 Mean R.A. 22 07 43·813	26 W N 00-58 27 W S 00-84 28 W N 00-98 29 W S 00-54 30 W N 00-78 7 W N 00-78 10 W N 00-82 11 E N 00-76
Oct. 3 W N 59-29 7 W N 59-37 10 W N 59-37 12 E N 59-42 17 E N 59-33 19 E N 59-35	Dec. 71° 54′	17 E N 00-79 18 E S 00-81 19 E N 00-79 20 E S 00-78 21 E S 00-82
20 E S 59·30 26 E N 59·34 Nov. 9 E N 59·23	Sept. 10 E S 22 08 04 · 86	21 E S 00.82 26 E N 00.81 Nov. 2 E N 00.85 9 E N 00.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 E S O4-83 14 E N O4-88 145 E S O4-79 27 W S O4-67 28 W N O4-87 29 W S O4-74 Oct. 11 W S O4-83 12 E N O4-81	Mean 00·816 . Δ2 · 000 Mean R.A. 22 10 00·816

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Date Mean R.A. 1910.0	Date Date Mean R.A.	Date S Mean R.A.
Bradley 2942 Dec. 72° 52'	B.D. 70·1240 (continued)	28 Cephei Dec. 78° 20′
Sept. 10 E B M m s Sept. 10 E S 22 11 15-22 14 E N 15-22 14 E N 15-10-22 25 W N 15-13-12 27 W S 15-10 29 W N 15-33 27 W S 15-00 Oct. 10 W N 15-33 11 E S 15-00 Oct. 10 W N 15-33 18 E S 15-02 19 E N 15-02 10 E N 15-	17 E N 41.05 18 E S 41.04 19 E N 40.95 21 E S 41.10 Nov. 2 E N 41.16	Sept. 10 E S 22 26 02-42r 13 E S 02-24 15 E S 02-35 27 W S 02-23r 02-15 Oct. 12 E N 01-87
0et. 10 W N 15-03 11 W S 14-95 12 E N 15-13 18 E S 15-02	Mean 41 · 065	Mean 02·243 Δ ₂ ·013 Mean R.A. 22 26 02·256
19 E N 15-03 20 E S 15-07 21 E S 16-08 Nov. 2 E N 15-24	Δ2 ·004 Mean R.A. 22 23 41 ·069	B.J. 848 Dec. 49° 49′
Mean 15·099 Δ ₂ ·004	B.J. 847 Dec. 57° 57′	Sept. 10 E S 22 27 34-89 13 E S 34-89 15 E S 34-81 21 W N 34-79
Mean R.A. 22 11 15·103	Sept. 21 W N 22 25 49.47 28 W N 49.53 30 W N 49.59 Oct. 3 W N 49.69 7 W N 49.59	21 W N 34-79 22 W S 34-86 27 W S 34-86 28 W N 34-88 29 W S 34-80 30 W N 34-86
B.J. 844 Dec. 51° 47′ Sept. 30 W N 22 20 01·140	10 W N 49.57 17 E N 49.63 19 E N 49.53 26 E N 49.61 Nov. 2 E N 49.68	13 E S 34.89 15 E S 34.81 22 W N S 34.767 27 W S 34.768 28 W N S 34.83 29 W N S 34.83 Oct. 3 W N S 34.83 Oct. 3 W N S 34.79 12 E N 34.83 17 E N 34.83 17 E N 34.83 Nov. 2 E N 34.83 Nov. 2 E N 34.83 Nov. 2 E N 34.83 Nov. 2 E N 34.83 Nov. 3 E N 34.83
Δ ₁ · · · · · · · · · · · · · · · · · · ·	Mean 49·573 Δ ₁ .003 Δ ₂ 004 Mean R.A. 22 25 49·572	21 E S 34-80 26 E N 34-86 Nov. 2 E N 34-85 9 E N 34-85 20 W S 34-87
B.D. 70·1240 Dec. 70° 19'	38 Pegasi Dec. 32° 07′	$\begin{array}{cccc} {\rm Mean} & 34.839 \\ \Delta_1 &002 \\ \Delta_2 & .000 \\ {\rm Mean~R.A.} & 22~27~34.837 \\ \end{array}$
	Sept. 22 W S 22 25 54·70 Oct. 18 E S 54·69 21 E S 54·74 Nov. 20 W S 54·70	29 Cephei Dec. 78° 22'
Sept. 10	Mean 54·708 Δ ₂ ·002 Mean R.A. 22 25 54·710	Sept. 10 E S 22 29 05-67 13 E S 05-62r 15 E S 05-53r 21 W N 05-45

LEDGERS OF MEAN RIGHT ASCENSION, $1910 \cdot 0 - Continued.$

Date O Da	Date Clamp	Observer	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910-0
29 Cephei (continued)		J. 85:		Gr	oomb (con		ge 3857 ed)
Sept. 27 W S 22 29 05 - 52 28 W N - 52 29 W S - 65 - 477 Oct. 10 W N 05 - 417 E N 05 - 38 18 E S 05 - 45 Nov. 2 E N 05 - 80 Nov	Oct. 10 W 12 E 17 E 18 E 19 E Nov. 2 E 8 E	NNNSXNS	h m s 22 33 32-63 32-70 32-60 32-72 32-43 32-76	Mear	Δ	an 2	2 35 17·274
18 E S 05·45 19 E N 05·34 Nov. 2 E N 05·80 20 W S 05·51	9 E 20 W		32·67 32·73 32·65		B. Dec.	J. 85 . 63°	
Mean 05·516 Δ ₂ ·003	Δ		32·705 005 -004	Nov. 8	Е	S	22 35 27 · 100
Mean R.A. 22 29 05-519	Mean R.	J. 85	2 33 32.704		Δ		005 -012
226 B.Cephei Dec. 75° 46′	Dec	. 38°	35' 22 35 13·13	Mear	R.A	L. 2	22 35 27 - 107
Sept. 10 E S 22 30 41 - 85 27 W S 41 - 60 27 W S 41 - 60 41 -	Sept. 21 W 28 W 30 W Oct. 3 W 7 W 10 W 12 E 17 E	XXXXXXX	22 33 13·13 13·22 13·23 13·22 13·23 13·24		B. Dec.	J. 85	
19 E N 41-67 21 E S 41-67 Nov. 2 E N 41-78 9 E N 41-58 20 W S 41-63	19 E 26 E Nov. 2 E 9 E	XXXXXX	13 · 16 13 · 27 13 · 30 13 · 26	15 21 28 30	W. E. E.	XXXSS	22 36 58·39 58·33 58·41 58·35r 58·41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mea Δ ₁ Δ ₂ Mean R		13·220 ·003 -·002 22 35 13·221	Oct. 7 10 12 17 18 19 21	W E E E E	SZZZSZZZZZZZZ	58-42 58-42r 58-39 58-39r 58-38 58-35r 58-35r 58-41r
B.J. 851 Dec. 73° 11′		. 74°	54'	Nov. 2 8 9 20	E	NXSXS	58·43 58·36 58·36 58·45
Sept. 10 E S 22 33 32-86 13 E S 32-88 15 E S 32-78 21 W N 32-61 27 W S 32-61 28 W N 32-87 29 W S 32-71	15 E 27 W 29 W	SSS	22 35 17·46 17·33 17·26 17·22 17·28 17·12 17·23 17·21		4	ean \lambda_1 \lambda_2	58·391 004 001 22 36 58·386

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

LEDGERS OF N	IEAN RIGHT	ASCENSION,	1010 0 01	7855785	****	
Date S O Mean R.A. 1910-0	Date Clamb	Mean R.A. 1910-0	Date	Clamp	Observer	Mean R.A. 1910 · 0
B.J. 857 Dec. 29° 45′		J. 859 23° 06′		B. Dec.	J. 86 65°	
Sept. 13 E S 22 38 46.88 15 E S 46.88 21 W N 46.89 28 W N 46.89	21 W	S 22 42 11 69 N 11 69 N 11 73 N 11 70	Nov. 8 20	E	s s	h m s 22 46 28·34 28·35
Oct. 3 W N 46-83 7 W N 46-84 10 W N 46-92	Oct. 3 W 7 W 10 W 12 E	N 11.75 N 11.68 N 11.68r N 11.69		$ ext{fean} \\ ext{Δ_1} \\ ext{Δ_2} \end{aligned}$		28·345 005 -004
17 E N 46-90 18 E S 46-90 19 E N 46-89 Nov. 2 E N 46-97 8 E S 46-98	18 E 19 E 21 E	N 11.73r S 11.65r N 11.69 S 11.70r N 11.73		R.A.	. 2	2 46 28-344
	Nov. 2 E 8 E 9 E 20 W	S 11.66 N 11.73 S 11.67		52 I Dec.		
Mean 46·891 $Δ_1$ -·003 $Δ_2$ ·000 Mean R.A. 22 38 46·888	Mean Δ ₁ Δ ₂	11-698 -001 001	Sept. 15 21 22 28	E W W	SNSX	22 54 41 · 64 41 · 61 r 41 · 64 41 · 59
B.J. 858	Mean R.A		Oct. 7 10 17	W W E	Zezezzzzzzzzzzzzzz	41.63 41.67r 41.65 41.64
Dec. 41° 21′ Sept. 10 E S 22 40 04·58r		J. 862 24° 08'	18 19 20 21 Nov. 8	E E E	SZSSS	41.58r 41.65r 41.63 41.60 41.58r
15 E S 04·46 21 W N 04·45 27 W S 04·48r			9 20	E	N S	41 · 64 41 · 60
28 W N 04-501 30 W N 04-53 Oct. 3 W N 04-63 7 W N 04-38	21 W 28 W	S 22 45 39 46r N 39 46 N 39 48 N 39 43r N 39 43		Mea Δa		41·623 ·000
10 W N 04-461 12 E N 04-49 17 E N 04-461	7 W	N 39-46 N 39-46 N 39-48	Mean	R.A	. 2	2 54 41 623
Sept. 10 E 8 22.40 04.58: 8 15 E 8 04.46: 8 15 E 8 16 E 8	18 E 19 E 21 E Nov. 2 E	S 39-46 N 39-521 S 39-48 N 39-451		B.c Dec.	J. 86 41°	
9 E N 04-451 20 W S 04-48	9 E	N 39·49	Sept. 10	E	s	22 57 46 63
Mean 04·482 $Δ_1$ -·002 $Δ_2$ -·001	Mean Δ_1 Δ_2	39·466 002 001	15 21 22 27 28 29	W W	SZZZZZZ	46 · 65 r 46 · 54 r 46 · 65 46 · 56
Mean R.A. 22 40 04-479	Mean R.A	. 22 45 39 463	28 29	W	S	46·62 46·60r

Date G G Mean R.A. 1910 · 0	Date O Mean R.A. 1910.0	Date G Mean R.A. 1910.0
B.J. 869 (continued)	B.J. 871 (continued)	B.J. 874 (continued)
Oct. 3 W N 22 57 46 68 7 W N 46 65 10 W N 46 64 17 E N 46 65 18 E S 46 661 20 E S 46 661 20 E S 46 661 20 E S 46 66 18 00 V 2 E N 46 67 18 00 V 2 E N 46 68 18 00 V 2 E N 46 67 18 00 V 2	Mean 16·611	Oct. 18 E S 23 05 01-81 20 E S 01-92 21 E S 01-93 Nov. 2 E N 01-93 8 E S 01-86 9 E N 01-867 20 W S 01-867
8 E S 46·57 9 E N 46·54 20 W S 46·59r	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean 01·866 $Δ_1$ -·005 $Δ_2$ ·007
$\begin{array}{cccc} & \text{Mean} & 46 \cdot 608 \\ & \Delta_1 & \cdot 003 \\ & \Delta_2 & \cdot 000 \\ \\ & \text{Mean R.A.} & 22 \ 57 \ 46 \cdot 611 \\ \end{array}$	5 Andromedae Dec. 48° 48'	B.J. 875 Dec. 56° 40'
B.J. 870 Dec. 27° 36' Sept. 15 E 8 22 50 24-60 24 W N 24-65 Oct. 3 W N 24-65 Oct. 3 W N 24-58 Oct. 17 E N 24-54 17 E N 24-54 19 E N 24-54 Nov. 2 E N 24-60 Mean 24-586	Sept.10 E S 23 63 64-01	Sept. 10 E S 23 08 56-07 21 W N 56-58 27 W S 56-60 28 W S 56-60 29 W S 56-60 10 W N N 56-66 11 E S 86-64 11 E S 86-64 12 E S 56-65 20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B.J. 874 Dec. 74° 54′	$\begin{array}{cccc} \text{Mean} & 56\cdot612 \\ \Delta_1 & -\cdot003 \\ \Delta_2 & \cdot002 \\ \text{Mean R.A.} & 23 \ 08 \ 56\cdot611 \\ \end{array}$
B.J. 871 Dec. 14° 43′	Sept. 10 E S 23 05 02-13r 15 E S 01-94 21 W N 01-82	Bradley 3085 Dec. 73° 44′
Sept. 21 W N 23 00 16·60 22 W S 16·60 29 W S 16·60 Oct. 7 W N 16·62	27 W S 01.92 29 W S 01.83r	Sept. 10 E S 23 11 24·93 21 W N 24·75 27 W S 24·83

Date G Mean R.A. 1910 · 0	Date Gundan R.A. 1910.0	Date S Mean R.A. 1910.0
Bradley 3085 (continued)	o Cephei Dec. 67° 37′	B.J. 881 Dec. 22° 55′
Sept. 29	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sept. 21 W N 23 20 33 .14r Oct. 3 W N 33 22 33 .14r Or. 3 W N 33 .13r 17 W N 33 .21 10 E N 33 .14r 18 E S 33 .17 20 E S 33 .17 Nov. 2 E N 33 .33 .34 Nov. 2 E N 33 .33 .34 4 E N 33 .34 .33 .34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B.J. 880 Dec. 23° 15′	4 E N 53·13r 8 E S 53·13 9 E N 53·11
Bradley 3086 Dec. 70° 24′ Oct. 17 E N 23 12 00 08 Nov. 4 E N 08 89 9 E N 09 10	Sept. 21 W N 23 16 10-87 Oct. 3 W N 10-80 Oct. 3 W N 10-80 Oct. 18 E N 10-80 18 E 8 10-87 20 E 8 10-87 Nov. 2 E N 10-81 4 E S 10-87 9 E N 10-85 9 E N 10-85 20 W S 10-85	Mean 53·141 Δ ₁ 001 Δ ₂ -000 Mean R.A. 23 20 53·140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 E N 10-83 8 E S 10-837 9 E N 10-857 20 W S 10-847 27 W S 10-83	B.J. 885 Dec. 12° 16′
Groombridge 4033 Dec. 74° 48' Sept. 10 E S 23 14 08 44 21 W N 08 -23 27 W S 08 -39	$\begin{array}{cccc} {\rm Mean} & 10.836 \\ \Delta_1 & \cdots 002 \\ \Delta_2 & \cdots 000 \\ \\ {\rm Mean~R.A.} & 23~16~10.834 \\ \end{array}$	Sept. 29 W S 23 24 36-12 Oct. 7 W N 36-18 17 E N 36-13 18 E S 36-13 20 E S 36-10 21 E S 36-10
27 W S 08.397	B.J. 882 Dec. 61° 47' Nov. 20 W S 23 20 50·18 27 W S 50·07	Oct. 7 W N 36-18 17 E N 36-13 18 E S 36-13 20 E S 36-10 Nov. 2 E N 36-10 8 E N 36-10 9 E N 36-13 20 W S 36-13 20 W S 36-13 20 W S 36-18
27 W S 08-26 27 W S 08-38 Mean 08-289 \(\Delta_2\) \(\cdot 004\)	Mean $50 \cdot 125$ $\Delta_1 = -004$ $\Delta_2 = -004$	$\begin{array}{ccc} \text{Mean} & 36.132 \\ \Delta_1 &005 \\ \Delta_2 & .000 \\ \end{array}$
Mean R.A. 23 14 08-293	Mean R.A. 23 20 50-117	Mean R.A. 23 24 36-127

Date S Mean R.A. 1910.0	Date 15 Mean R.A. 1910 · 0	Date Grant R.A. 1910-0
1 H.Cassiopeiae Dec. 58° 03'	B.J. 890 Dec. 45° 58′	B.J. 893 Dec. 77° 08′
Sept. 10 E 8 23 25 52 36 Oct. 21 E 8 52 16 Nov. 27 W 8 52 29	Sept. 29 W S 23 33 09 · 27 Oct. 3 W N 09 · 24 17 E N 09 · 25 18 E S 09 · 26	Nov. 4 E N h m s 23 35 38-270
Mean 52·270 Δ ₂ ·005	17 E N 09·25 18 E S 09·26 20 E S 09·24 21 E S 09·25 Nov. 2 E N 09·22 4 E N 09·20 8 E S 09·26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Mean R.A. 23 25 52-275	9 E N 09·28 20 W S 09·30r 27 W S 09·33	* Andromedac Dec. 43° 50'
15 Andromedae Dec. 39° 44'	$\begin{array}{cccc} & \text{Mean} & 09 \cdot 258 \\ & \Delta_1 & \cdot 004 \\ & \Delta_2 & \cdot 001 \\ \\ & \text{Mean R.A.} & 23 \ 33 \ 09 \cdot 263 \end{array}$	Sept. 7 E S 23 35 58·22 Oct. 21 E S 58·26 Nov. 2 E N 58·22 9 E N 58·22 20 W S 58·26
Oct. 21 E S 23 30 13·12 Nov. 9 E N 13·11 27 W S 13·19	B.J. 891 Dec. 42° 46′	$\begin{array}{ccc} Mcan & 58\cdot236 \\ \Delta_1 & -\cdot005 \\ \Delta_2 & \cdot002 \\ \end{array}$
Mean $13 \cdot 140$ Δ_2 $\cdot 001$	Sept. 7 E S 23 33 43-06 Nov. 4 E N 43-02 9 E N 43-16	
Mean R.A. 23 30 13-141	Mean 43·080 $Δ_1$ -·002 $Δ_2$ ·001	ψ Andromedae Dec. 45° 55′
Bradley 3140 Dec. 71° 09' Oct. 17 E N 23 31 04·18 20 E S 04·33 Nov. 2 E N 04·18	Mean R.A. 23 33 43-079 Groombridge 4119 Dec. 74° 48′ Sept. 29 W S 23 35 18-03 Oct. 17 E N 17-02 18 E S 17-02	9 E N 34-25r
4 E N 04-03 Mean 04-180	18 E S 17.97 20 E S 18.08 Nov. 8 E S 17.94	27 W S 34·14r Mean 34·151 Δi ·004
Δ ₂ ·011 Mean R.A. 23 31 04·191	Δ ₂ ·014 Mean R.A. 23 35 18·002	Δ_2 · · · · · · · · · · · · · · · · · · ·

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Date Mean R.A.	Date Date Mean R.A. 1910-0	Date Clamb O Mean R.A. 1910-0
B.J. 895 Dec. 67° 18′	B.J. 899 Dec. 57° 00′	B.J. 1 Dec. 28° 36′
Nov. 4 E N 23 43 35-87r 8 E S 35-94 9 E N 35-91 20 W S 35-96	Sept. 7 E S 23 49 52-82 Oct. 17 E N 52-75 Nov. 4 E N 52-74 8 E S 52-80	4 E N 43-96 9 E N 43-91
$\begin{array}{c cccc} \text{Dec. $\bar{10}$} & \text{W} & \text{S} & & 35.95 \\ & & \text{Mean} & & 35.937 \\ & & \Delta_1 & &005 \\ & & \Delta_2 & & .001 \\ \end{array}$	$\begin{array}{cccc} {\rm Mean} & 52 \cdot 778 \\ \Delta_1 & \cdot 002 \\ \Delta_2 & \cdot 006 \\ {\rm Mean~R.A.} & 23~49~52 \cdot 786 \\ \end{array}$	Mean 43·950 $Δ_1$ -·002 $Δ_2$ -·001 Mean R.A. 0 03 43·947
Mean R.A. 23 43 35-933	Groombridge 4163 Dec. 73° 55′	Mean R.A. 0 03 43-947
B.J. 898 Dec. 18° 37' Sept. 7 E S 23 47 54-42 Oct. 17 E N 54-50 Nov. 4 E N 54-50 8 E S 54-42	Oct. 18 E S 23 50 26 29 20 E S 26 25 21 E S 26 25 Nov. 2 E N 26 34 20 W S 26 35 27 W S 26 35 Dec. 10 W S 26 49	Bradley 3217 Dec. 79° 13' Sept. 27 W S 0 04 20-91 Oct. 18 E S 20-81 20 E S 20-80 21 E S 20-81 Nov. 8 E S 20-78 Nov. 8 E S 20-65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & \text{Mean} & 26 \cdot 315 \\ & \Delta_1 & - \cdot 005 \\ & \Delta_2 & \cdot \cdot 007 \\ \\ & \text{Mean R.A.} & 23 \ 50 \ 26 \cdot 317 \\ \end{array}$	20 W S 20·65 27 W S 20·84 Mean 20·800 Δ ₂ ·013
Groombridge 4154	ψ Pegasi Dec. 24° 38′	Mean R.A. 0 04 20·813
Dec. 75° 03' Oct. 18 E S 23 48 00-59 20 E S 00-67 21 E S 00-54 Nov. 2 E N 00-53	Sept. 7 E S 23 53 10-20 Oct. 17 E N 10-15 18 E S 10-18 20 E S 10-23 Nov. 2 E N 10-23 8 E S 10-23 90 W S 10-22 27 W S 10-22 Pec. 10 W S 10-22	B.J. 2 Dec. 55° 39' Nov. 2 E N 0 04 21-98 9 E N 22-10
Mean 00·603 Δ ₂ ·010	Mean 10·213 Δ ₂ ·001	Mean 22.040 Δ_1 004 Δ_2 003
Mean R.A. 23 48 00-613	Mean R.A. 23 53 10-214	Mean R.A. 0 04 22-047

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ 0 \end{bmatrix}$ Mean R.A. 1910.0	Date Supplied Supplie	Date O Mean R.A. 1910.0
B.J. 4 Dec. 45° 34′	B.J. 8 (continued)	Bradley 34 Dec. 76° 31'
Sept. 27 W S 0 0 05 38 31 Oct. 20 E S 0 05 38 32 21 E S 38 29 Nov. 2 E N 38 26 9 E N 38 38 29 27 W S 38 25 Dec. 10 W S 38 38 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sept.27 W S 0 25 07-02 Oct. 18 E S 07-02 20 E S 07-16 21 E S 07-17 Nov. 2 E N 06-99 9 E N 07-112 27 W S 07-22
Mean 38·269 $Δ_1$ ·002 $Δ_2$ · 001	σ Andromedae Dec. 36° 17′	Dec. 5 W N 07-49 10 W S 07-40
Mean R.A. 0 05 38-272	Sept. 27 W S 0 13 37 · 31 Oct. 18 E S 37 · 24r 20 E S 37 · 29	Mean $07 \cdot 193$ $Δ_2$ 007 Mean R.A. 0 25 $07 \cdot 200$
B.J. 7 Dec. 14° 41′	20 E S 37-29 21 E S 37-32r Nov. 4 E N 37-25 8 E S 37-23 9 E N 37-37r 20 W S 37-29r 27 W S 37-38r	B.J. 16 Dec. 62° 26′
Oct. 18 E S 0 08 35 91 20 E S 35 98 21 E S 35 98 Nov. 2 E N 35 93 4 E N 36 603	20 W S 37-29r 27 W S 37-34r Dec. 10 W S 37-34r Mean 37-294	Nov. 8 E S 0 27 52 45 9 E N 52 51 1 27 W S 52 58 Dec. 5 W N 52 58 9 W N 52 58
Oct. 18 E S 0 08 35-91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean 52-518 Δ ₁ -004 Δ ₂ 002 Mean R.A. 0 27 52-520
Mean 35·962 $Δ_1$ ·003 $Δ_2$ ·000	ρ Andromedae Dec. 37° 28′	B.J. 17 Dec. 53° 24'
Mean R.A. 0 08 35-965	Sept. 27 W S 0 16 22-65r Oct. 18 E S 22-52 20 E S 22-64r 21 E S 22-57	
Dec. 76° 27' Sept. 27 W S 0 11 06-39 Oct. 18 E S 06-38 20 E S 06-45 21 E S 06-45	Oct. 18 E 8 22:52 20 E 8 22:64r 21 E 8 22:54r Nov. 4 E N 22:54r 8 E 8 22:59r 9 E N 22:60r 20 W 8 22:60r Dec. 10 W 8 22:60r	Oct. 18 E S 56:93 20 E S 57:00 21 E S 56:92 Nov. 8 E S 56:96 9 E N 56:97 Dec. 8 W S 57:02 10 W S 57:07 10 W S 57:06
Oct. 18 E S 66-38 20 E S 06-45 21 E S 06-45 Nov. 2 E N 66-36 9 E N 66-45 9 E N 66-45 Dec. 10 W S 06-70	Mean $22 \cdot 590$ $Δ_2$ 002 Mean R.A. 0 16 $22 \cdot 592$	$\begin{array}{cccc} {\rm Mean} & 56 \cdot 993 \\ \Delta_1 & -001 \\ \Delta_2 & 002 \\ {\rm Mean \ R.A.} & 0 \ 31 \ 56 \cdot 994 \\ \end{array}$

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date Clamb Mean R.A. 1910 · 0	Date Date Mean R.A. 1910 · 0	Date S Mean R.A. 1910.0
B.J. 18 Dec. 33° 13′	B.J. 21 Dec. 56° 03′	23 Cassiopeiae Dcc. 74° 21′
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sept. 7 E 8 0 35 23 48 27 W 8 23 62 32 48 Oct. 18 E 8 23 62 20 E 8 23 45 21 E 8 23 57 Nov. 2 E N 23 57 Nov. 2 E N 23 51 9 E N 23 58 Dec. 9 W N 23 41	Sept. 27 W S 0 41 44.32 Oct. 18 E S 44.27 Nov. 2 E N 44.26 Nov. 2 E N 44.26 9 E N 44.39 Dec. 5 W N 44.46
Mean R.A. 0 32 04·174 B.J. 19 Dcc. 28° 49'	$\begin{array}{cccc} & \text{Mean} & 23 \cdot 507 \\ \Delta_1 & -\cdot 002 \\ \Delta_2 & \cdot 003 \\ & \text{Mean R.A.} & 0 \ 35 \ 23 \cdot 508 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sept. 7 E 8 0 33 47-76 Oct. 21 E 8 47-78 Nov. 2 E N 47-74 9 E N 47-84 9 W N 47-84 9 W N 47-74	B.J. 24 Dec. 74 * 30' Sept. 27 W S 0 39 41-31 Oct. 18 E S 41-06 20 E S 41-25 Nov. 2 E N 41-20 S E S 41-07 Dec. 5 W N 41-46 Dec. 5 W S 41-46	B.D. 71-37 Dec. 72° 11' Oct. 20 E 8 0 42 15-24 Nov. 27 W 8 15-53
Mean $47 \cdot 773$ $Δ_1$ $- \cdot 004$ $Δ_2$ $- 000$	S E S 41.07r 9 E N 41.16r Dec. 5 W N 41.46 8 W S 41.21	Dec. 9 W N 15-64 10 W S 15-43
Mean R.A. 0 33 47-769	Mean 41·215 $Δ_1$ -·002 $Δ_2$ ··006 Mean R.A. 0 39 41·219	Δ ₂ -004 Mean R.A. 0 42 15·456
B.J. 20 Dec. 30° 22′	B.J. 25	B.J. 27
Sept. 27 W S 0 34 30·76 Oct. 20 E S 30·71 Nov. 2 E N 30·70 9 E N 30·70 Dec. 5 W N 30·59 10 W S 30·68	Dec. 47° 48′ Sept. 7 E S 0 39 42·18 Oct. 21 E S 42·19 Nov. 27 W S 42·20 Dec. 9 W N 42·35 10 W S 42·24	Dec. 23° 47′
Mean 30.697 Δ_1 003 Δ_2 000	Mean 42·232 $Δ_1$ · 004 $Δ_2$ · 001	Mean $33 \cdot 920$ $Δ_1 \cdot 000$ $Δ_2 - \cdot 001$
Mean R.A. 0 34 30·694	Mean R.A. 0 39 42-237	Mean R.A. 0 42 33-919

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date USA Mean R.A. 1910-0	Date Superior Da	Date Supposed Mean R.A. 1910-0
η Cassiopeiae Dec. 57° 20'	B.J. 32 Dec. 60° 14′	72 Piscium Dec. 14° 28′
Sept. 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mean 39·095 Δ ₁ ·003	B.J. 33 Dec. 38° 01′	Δ ₂ · 000 Mean R.A. 1 00 20·149
Δ2 ·000 Mean R.A. 0 43 39·098	Sept. 7 E S 0 51 45·16 27 W S 45·23 Oct. 18 E S 45·13 20 E S 45·20 21 E S 45·20	Bradley 109 Dec. 79° 32'
Dec. 40° 35′ Sept. 7 E S 0 44 50.66	27 W 8 45-23 Oct. 18 E 8 45-13 20 E 8 45-19 Nov. 2 E N 45-19 9 E N 45-19 Dec. 5 W N 45-09 12 W N 45-09	Sept. 27 W S 1 01 29·10 Dec. 10 W S 29·14 12 W N 29·35
Oct. 18 E S 50·69 20 E S 50·72 21 E S 50·73	Mean 45·172 $Δ_1$ ·004 $Δ_2$ ·001	Mean 29·197 Δ2023
Dec. 5 W N 50-66 9 W N 50-66	Mean R.A. 0 51 45-177	Mean R.A. 1 01 29-174
10 W S 50-68 12 W N 50-73 Mean 50-705	Dec. 28° 30′	μ Cassiopeiae Dec. 54° 29'
Δ ₁ · ·000 Δ ₂ · ·000 Mean R.A. 0 ‡4 50·705	Sept. 7 E 8 0 52 57 65 Oct. 18 E 8 57 68 20 E 8 57 68 21 E 8 57 68 Nov. 2 E N 57 68 9 E N 57 71 27 W 8 57 67 Dec. 5 W N 57 67 10 W 8 57 67 12 W N 57 67 12 W N 57 67 12 W N 57 67 13 W N 57 67 14 W N 57 67 15 W N 57 67 16 W N 57 67 17 W N 57 67 18 W N 57 67 19 W N 57 67	Sept. 7 E S 1 02 16-53 Nov. 2 E N 16-30 8 E S 16-49
B.J. 29 Dec. 63° 45′	9 E N 57·71 27 W S 57·66 Dec. 5 W N 57·65 9 W N 57·65 10 W S 57·67	Dec. 5 W N 16-53 9 W N 16-547
Nov. 8 E S 0 45 15 230 t	10 W S 12 W N 57.67 Mean 57.674	Mean 16·485 $Δ_1$ ·004 $Δ_2$ ·000
Δ ₂ ·012 Mean R.A. 0 45 15·238	Δ ₂ ·000 Mean R.A. 0 52 57·674	Mean R.A. 1 02 16-489

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0--Continued.

Date of Mean R.A. 1910.0	Date Da	Date Date Date Date Date Date Date Date
B.J. 41 Dec. 79° 12′	B.J. 43 Dec. 29° 37′	Bradley 155 Dec. 77° 06'
Sept. 27 W S 1 04 27 58 Nov. 8 E S 27 44 27 447 Dec. 9 W N 27 447 27 464	Nov. 2 E N 1 06 41 95 Dec. 5 W N 41 97 9 W N 41 94	Sept. 27 W S h m s Nov. 8 E S 1 12 47-93 27 W S 47-91 Dec. 8 W S 47-91 47-87
Mean 27·533 Δ ₁ -003 Δ ₂ -008 Mean R.A. 1 04 27·528	$\begin{array}{cccc} & Mean & 41\cdot953 \\ \Delta_1 & -\cdot001 \\ \Delta_2 & -\cdot002 \\ \\ Mean R.A. & 1 06 41\cdot950 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B.J. 42 Dec. 35° 09'	Bradley 137 Dec. 79° 26′	B.J. 45 Dec. 26° 47'
Sept. 7 E S 1 04 41-33 Nov. 2 E N 41-29 Dec. 5 W N 41-30 12 W N 41-33	Sept. 27 W 8 1 08 30-60 Nov. 8 E 8 30-54r Dec. 5 W N 31-08 9 W N 30-30 10 W 8 30-31 12 W N 30-82	Sept. 7 E S 1 14 30 98 Nov. 27 W S 30.93 Dec. 5 W N 30.95 9 W N 30.95 12 W N 30.94
$\begin{array}{ccccc} & \text{Mean} & 41 \cdot 313 \\ & \Delta_1 & - \cdot 002 \\ & \Delta_2 & - \cdot 001 \\ \\ & \text{Mean R.A.} & 1 \ 04 \ 41 \cdot 310 \\ \end{array}$	$\begin{array}{ccc} {\rm Mean} & 30.608 \\ {\rm \Delta_2} & -016 \\ \\ {\rm Mean~R.A.} & 1.08~30.592 \\ \end{array}$	$\begin{array}{cccc} & \text{Mean} & 30\cdot950 \\ & \Delta_1 & -001 \\ & \Delta_2 & -000 \\ \\ & \text{Mean R.A.} & 1 \ 14 \ 30\cdot949 \\ \end{array}$
* Piscium Dec. 20° 33′	Bradley 151 Dec. 71° 16'	Bradley 166 Dec. 78° 15'
Sept. 7 E S 1 06 36-82 Nov. 8 E S 36-78 27 W S 36-78 Dec. 10 W S 36-73 12 W N 36-81	Nov. 2 E N 1 09 42-68 27 W S 42-80 Dec. 5 W N 42-94 9 W N 42-61 12 W N 42-59	Sept. 27 W S 1 15 48-82 Nov. 8 E S 48-74 Dec. 8 W S 48-82 12 W N 48-81
Mean 36·784 Δ ₂ ·001 Mean R.A. 1 06 36·785	Mean 42.724 $Δ_2$ -011 Mean R.A. 1 09 42.713	Mean $Δ_2$ 48·798 $Δ_2$ - 008 Mean R.A. 1 15 48·790

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date O Mean R.A.	Date Open N.A. 1910.0	Date Culture O Mean R.A. 1910.0
l Piscium Dec. 28° 16′	B.J. 48 (continued)	# Piscium Dec. 11° 41'
Sept. 7 E S 1 16 08·55 Nov. 27 W S 08·57 Dec. 5 W N 08·61 9 W N 08·68	Mean 1 19 55·084 Δ ₁ 003 Δ ₂ 004	Dec. 8 W S 1 32 19-54 10 W S 19-55
Mean 08-603	Mean R.A. 1 19 55-077	Mean 19·545 $Δ_1$ -·004 $Δ_2$ ·003
Δ ₂ ·000 Mean R.A. 1 16 08 ·603	ω Andromedae Dec. 44° 57′	Mean R.A. 1 32 19-544
E Andromedae Dec. 45° 03'	Sept. 7 E S 1 22 15-91 Nov. 27 W S 15-89 Dec. 5 W N 16-02	B.J. 52 Dec. 48° 10′
Nov. 8 E S 1 17 02 · 09	8 W S 15-89 9 W N 16-04 10 W S 15-95 12 W N 15-91	Sept. 27 W S 1 32 27-66 Dec. 21 W N 27-80
Dec. 5 W N 02-06 8 W S 02-09 9 W N 02-12	Mean 15·944 Δz002	Mean 27·730 $Δ_1$ ·004 $Δ_2$ -·003
Mean 02·090 Δ ₂ -·001	Mean R.A. 1 22 15·942	Mean R.A. 1 32 27 · 731
Mean R.A. 1 17 02 089	B.J. 51 Dec. 72° 35'	7 Andromedae Dec. 40° 07'
B.J. 46 Dec. 67° 40′	Dec. 9 W N 1 31 18-140	Nov. 8 E S 1 35 15-68 27 W S 15-75r Dec. 10 W S 15-73
Nov. 8 E S 1 19 33-59 27 W S 33-62 Dec. 12 W N 33-60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 W N 15-71r 21 W N 15-76
Mean 33·603 Δ1 ·002	v Andromedae Dec. 40° 57′	Mean 15·726 $Δ_2$ -·001 Mean R.A. 1 35 15·725
Δ ₂ 002 Mean R.A. 1 19 33-603	Nov. 8 E S 1 31 30-49	B.J. 55 Dec. 67° 35'
B.J. 48 Dec. 59° 46′	27 W S 30.58 Dec. 5 W N 30.60 12 W N 30.54 21 W N 30.70r	Dec. 5 W N 1 35 39 80 9 W N 1 35 39 80
Sept. 7 E S 1 19 54-97 27 W S 55-01 Dec. 5 W N 55-15 8 W S 55-11 9 W N 55-18	Mean 30·582 Δ ₁ ·001 Δ ₂ 002 Mean R.A. 1 31 30·581	$\begin{array}{cccc} & \text{Mean} & 39.790 \\ \Delta_1 & 0000 \\ \Delta_2 & -014 \\ \text{Mean R.A.} & 1 35 39.776 \\ \end{array}$

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

Date G Hean R.A. 1910-0	Date Date Mean R.A. 1910 · 0	Date O Mean R.A. 1910.0
42 Cassiopeiae Dec. 70° 10'	B.J. 63 Dec. 63° 14′	λ Arietis Dec. 23° 09′
Sept. 27 W S h m s Dec. 8 W S 1 35 55 88 55 94	Nov. 27 W S 1 47 54 41 Dec. 9 W N 54 53 12 W N 54 43	Nov. 8 E S 1 52 54 58r Dec. 12 W N 54 62 21 W N 54 63
Mean 55-910 Δ ₂ 007 Mean R.A. 1 35 55-903		Mean $54 \cdot 610$ Δ_2 $-\cdot 001$ Mean R.A. 1 52 54 · 609
B.J. 57 Dec. 50° 14′	B.J. 64 Dec. 29° 08′	Bradley 246 Dec. 77° 29'
Sept. 7 E S 1 38 00-66	Dec. 5 W N 1 47 56·79 8 W S 56·86 10 W S 56·83 21 W N 56·94	
8 W 8 00.78 9 W N 00.727 10 W 8 00.767 12 W N 00.73 21 W N 00.77r	$\begin{array}{ccccc} & \text{Mean} & 56.855 \\ & \Delta_1 &004 \\ & \Delta_2 & .000 \\ & \text{Mean R.A.} & 1 \ 47 \ 56.851 \end{array}$	Mean 48·210 Δ ₂ 021 Mean R.A. 1 53 48·189
· Mean 00·725 Δ ₁ · 001 Δ ₂ - 002	γ Arietis Dec. 18° 51'	48 Cassiopeiae Dec. 70° 28′
Mean R.A. 1 38 00·724 2 Persei Dec. 50° 21'	Nov. 8 E 8 1 48 35-310 Δ ₂ -001 Mean R.A. 1 48 35-311	Nov. 8 E 8 1 54 32-54 Dec. 5 W N 33-03 9 W N 32-78 10 W 8 32-62
Sept. 7 E S 1 46 25-46 27 W S 25-53r	B.J. 66 Dec. 20° 22′	Mean 32·743 Δ₂006
27 W S 25-537 Nov. 8 E S 25-5347 27 W S 25-66 Dec. 5 W N S 25-67 9 W N 25-40 10 W S 25-540 12 W N 25-388 21 W N 25-37	Sept. 7 E S 1 49 39 92 Nov. 8 E S 39 91 Dec. 5 W N 39 90 8 W S 39 91 9 W N 39 89	
Mean 25·462 Δ ₁ -·002 Mean R.A. 1 46 25·460	$\begin{array}{cccc} & Mean & 39 \cdot 920 \\ & \Delta_1 & \cdot 004 \\ & \Delta_2 & \cdot 000 \\ \\ Mean R.A. & 1 \ 49 \ 39 \cdot 924 \\ \end{array}$	Δ ₂ 009 Mean R.A. 1 55 10-901

3 GEORGE V., A. 1913 LEDGERS OF MEAN RIGHT ASCENSION, 1910-0—Continued.

Dec. 5 W N 43-91 Nov. 8 E S 05-81 S W S 38-1	Date Date Mean R.A. 1910-0	$ \text{Date} \left \begin{array}{c} \frac{d}{du} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 1910 \cdot 0 \\ \end{array} \right \text{Date} \left \begin{array}{c} \frac{d}{du} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1900} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\ 0 \\ \end{array} \right \left \begin{array}{c} \frac{1}{1910 \cdot 0} \\$	Date Date Mean R.A.
Nov. 8 E S 1 5 43-58			15 Arietis Dec. 19° 05′
According to the content of the co	Nov. 8 E S 1 55 43·58 Dec. 5 W N 43·91 9 W N 43·58 12 W N 43·60	Nov. 8 E S 1 55 43-55 Sept. 7 E S 2 02 05-75 Sept. 7 E S 2 02 05-75 Nov. 8 E S 05-81 Sept. 9 W N 43-55 Dec. 8 W S 05-81 Sept. 9 W N 43-60 9 W N 05-81 Sept.	Dec. 5 W N 2 05 38·16 8 W S 9 W N 38·10 38·10 38·05r 12 W N 38·16
47 Cassiopeiae Dec. 76 ° 51 ′ Dec. 10 W S 1 56 04-460 B.J. 75 Dec. 34 ° 34 ′ Δ ₄	$\begin{array}{ccc} \Delta_1 & & \cdot 004 \\ \Delta_2 & & -\cdot 011 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Δ_2$ ·000 Mean R.A. 2 05 38·116
Mean R.A. 1 56 04-447 Sept. 7 E S 2 04 11-04 21 W N 24-3 Dec. 5 W N 11-02 9 W N 10-967 12 W N 11-04	Dec. 76° 51′	47 Cassiopeiae Dec. 76° 51'	
		Mean R.A. 1 56 04 447 Sept. 7 E S 2 04 11 04	10 W S 24·32 21 W N 24·34
Δ ₁ (00	Groombridge 424 Dec. 80° 52′	Groombridge 424 9 W N 10-96	Mean 24·337 Δι 001
Nov. 8 E S 15815-590r		Mean 11·00- Δ ₁ ·001	Mean R.A. 2 07 24 330
Mean R.A. 1 58 15-630 Mean R.A. 2 04 11-003 B.J. 77 B.J. 73 Dec. 50° 39'		Mean I.A. 2 of 11 occ	B.J. 77
Sept. 7 E S 1 58 22·14 Dec. 5 W N 36·9 Dec. 5 W N 36·9		Bradley 282 Dec. 73 ° 36'	Dec. 5 W N 36.98 9 W N 36.73 12 W N 36.81
Mean 22·156 Mean 02·080 Δ_1 00 Δ_2 000 Δ_3 000 Δ_4	$\begin{array}{ccc} \Delta_1 & \cdot 002 \\ \Delta_2 & - \cdot 002 \end{array}$	$\begin{array}{c cccc} \Delta_1 & \cdot 002 & \Delta_2 & \cdot 006 \\ \Delta_2 & -\cdot 002 & & & \end{array}$	Δ_1 -002 Δ_2 -004

REPORT OF THE CHIEF ASTRONOMER

SESSIONAL PAPER No. 25a

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0-Continued.

LEDGERS OF A		910-0-Continued.
Date Span Mcan R.A. 1910.0	Date G Mcan R.A. 1910-0	Date dm O Mean R.A. 1910-0
B.J. 79 Dec. 33° 26′	Cassiopeiae Dcc. 67° 00′	B.J. 89 Dec. 21° 34′
Sept. 7 E S 2 11 57-62 Dec. 5 W N 57-58 8 W S 57-62 9 W N 57-55 10 W S 57-57 12 W N 57-55 21 W N 57-55	Dec. 5 W N 2 21 38-19 9 W N 37-91r 12 W N 38-00 21 W N 38-00	Sept. 7 E S 2 33 42-18 Dec. 5 W N 42-17- 9 W N 42-16 12 W N 42-21 21 W N 42-9
21 W N 57-59 Mean 57-587 Δ1 .004	Mean 38·028 $Δ_1$ · · · 003 $Δ_2$ · · · 014 Mean R.A. 2 21 38·017	Mean 42·182 $Δ_1$ -·004 $Δ_2$ -·001
Δ_2 001 Mean R.A. 2 11 57 590	Mean R.A. 2 21 55-017	Mean R.A. 2 33 42-177
B.J. S1	27 Arietis Dec. 17° 18′	Bradley 344
Dec. 19° 29′	Sept. 7 E S 2 25 54:67 Dec. 8 W S 54:71 9 W N 54:70	Dec. 81° 04'
Dec. 5 W N 2 13 06-95 8 W S 06-98 9 W N 06-96 10 W S 06-96 12 W N 06-96 21 W N 06-96	Sept. 7 E S 2 25 54-67 Dec. 8 W S 54-71 10 W S 54-64r 12 W N 54-75 21 W N 54-75	Dec. 10 W S 234 44-530rn
	Mean 54.703 Δ_z .001	Δ ₂ 021 Mean R.A. 2 34 44·509
Mean 06·965 $Δ_1$ -·001 $Δ_2$ ·000	Mean R.A. 2 25 54-704	-
Mean R.A. 2 13 06-964	B.J. 87 • Dec. 72° 26′	B.J. 92 Dec. 67° 27'
€ Arietis Dec. 10° 12′	Dec. 5 W N 2 29 27 49 8 W S 27 10 9 W N 27 16	Dec. 5 W N 2 37 04-22 9 W N 04-30 10 W S 04-12 12 W N 04-04r 21 W N 04-04r
Sept. 7 E S 2 19 59-43 Dec. 8 W S 59-47 10 W S 59-47 21 W N 59-49	Dec. 5 W N 2 29 27-49 8 W S 27-10 9 W N 27-16 10 W S 27-17 12 W N 27-13 21 W N 27-09	10 W N 04-04r 21 W N 04-08
Mean 59·465 Δ ₂ ·002	Mean 27·190 $Δ_1$ ·000 $Δ_2$ ·016	Mean 04·152 $Δ_1$ -·002 $Δ_2$ -·012
Mean R.A. 2 19 59-467	Mean R.A. 2 29 27 174	Mean R.A. 2 37 04·138
25a-32		

$\label{eq:condition} {\tt 3~GEORGE~V.,~A.~1913}$ LEDGERS OF MEAN RIGHT ASCENSION, 1910-0—Continued.

Date Date Mean R.A. 1910-0	Date Camp O Mean R.A. 1910.0	Date du los do Mean R.A. 1910-0
B.J. 93 Dec. 48° 51′	B.J. 99 Dec. 55° 31′	B.J. 103 Dec. 52° 24′
Sept. 7 E 8 2 38 02.78 Dec. 5 W N 02.78 8 W S 02.79 9 W N 02.86 12 W N 02.86	Sept. 7 E S 2 44 07-35 Dec. 8 W S 07-44 9 W N 07-44 10 W S 07-31	Sept. 7 E S 2 47 52 14 Dec. 5 W N 522 29 8 W S 52 17 9 W N 522 24 10 W S 52 13 21 W N 52 23
Mean 02-820	Mean 07·375 $Δ_1$ ·004 $Δ_2$ -·001	21 W N 52·23 Mean 52·194
Δ ₂ 003	Mean R.A. 2 44 07 · 378	$\begin{array}{ccc} \Delta_1 & \cdot 003 \\ \Delta_2 & - \cdot 003 \end{array}$
Mean R.A. 2 38 02-813		Mean R.A. 2 47 52·194
B.J. 94 Dec. 27° 19'	B.J. 100 Dec. 26° 53′	« Arietis (mean) Dec. 20° 59′
Dec. 10 W S 2 38 10-00	Dec. 5 W N 2 44 40-99	Sept. 7 E S 2 54 03-710
Dec. 10 W S 10-00 21 W N 2 38 10-00 10-02	12 W N 40.98 21 W N 41.01	$\begin{array}{ccc} \Delta_1 & \cdot 000 \\ \Delta_2 & \cdot 002 \end{array}$
Mean 10·010 Δ ₁ ·000	Mean 40·993 Δι002	Mean R.A. 2 54 03-712
Δ2 ·000	Δ ₂ 002 Mean R.A. 2 44 40-989	B.J. 105 Dec. 79° 04′
Mean R.A. 2 38 10 · 010		Dec. 10 W S 2 54 04-84 12 W N 04-81
39 Arietis Dec. 28° 52'	σ Arietis Dec. 14° 43'	12 W N 04-81 21 W N 04-54
Dec. 28 52		Mean 04·730 Δ ₁ -·001
Sept. 7 E S 2 42 32·70 Dec. 5 W N 32·78 8 W S 32·82	Sept. 7 E S 2 46 31 20 Dec. 5 W N 31 34 4 8 W S 31 31 31 9 W N 31 35 31 25	Δ ₂ 028 Mean R.A. 2 54 04-701
Sept. 7 E 8 2 42 32 70 Dec. 5 W N 32 78 8 W S 32 82 9 W N 32 80 10 W S 32 74 12 W N 32 82 21 W N 32 84	9 W N 31·35 10 W S 31·25 12 W N 31·26 21 W N 31·26	Bradley 396 Dec. 81° 07'
Mean 32·786	Mean 31·281 Δ ₁ ·003	Dec. 10 W S 2 57 41 · 140ru
Δ ₂ ·000 Mean R.A. 2 42 32·786	Δ ₂ ·001 Mean R.A. 2 46 31 ·285	Δ ₂ 021 Mean R.A. 2 57 41·119

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0—Continued.

Date Date Mean R.A. 1910 · 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
B.J. 108 Dec. 53° 09'	B.J. 111 B.J. 120 Dec. 40° 37' Dec. 49° 32'
Sept. 7 E S 2 58 16-17 Dec. 5 W N 16-32 9 W N 16-19 12 W N 16-24 21 W N 16-24	Dec. 12 W N 3 02 18-46 18-45 Dec. 10 W S 3 17 53-530
12 W N 16-24 21 W N 16-26	Mean 18·455 $Δ_1$ -·002 $Δ_2$ -·004 $Δ_2$ -·004 $Δ_2$ -·004 Mean R $Λ_2$ 3.17 53·596
Mean 16·236 $Δ_1$ -·003 $Δ_2$ -·005	Δ ₂ 004 Mean R.A. 3 17 53·526 Mean R.A. 3 02 18·455
Mean R.A. 2 58 16-228	B.J. 112 Bradley 459 Dec. 49° 16' Dec. 71° 33'
B.J. 109 Dec. 38° 30'	Sept. 7 E S 3 02 33.980 Dec. 10 W S 3 20 58-460
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sept. 7 E S 2 59 24:24 Dec. 5 W N 24:32 8 W S 24:26 9 W N 24:39 10 W S 24:28 12 W N 24:29	ß Arietis B.J. 122 Dec. 20° 43′ Dec. 59° 38′
Mean 24-291	Sept. 7 E S 3 09 43.540 Dec. 21 W N 3 21 46-240
Δ_1 .000 Δ_2 001 Mean R.A. 2 59 24.290	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Mean II.A. 2 35 24-250	Mean R.A. 3 09 43-539 Mean R.A. 3 21 46-232
Bradley 417 Dec. 74° 03′	7Arietis Dec. 20° 49′ Dec. 47° 41′
Dec. 10 W S 3 02 09-360	Sept. 7 E S 3 16 01-61 Dec. 10 W S 3 16 01-64 Dec. 21 W N 3 24 13-390
Δ2010	$\begin{array}{ccccc} Mean & 01 \cdot 625 \\ \Delta_1 & -\cdot 005 \\ \Delta_2 & \cdot 002 & \Delta_1 & -\cdot 005 \\ \end{array}$
Mean R.A. 3 02 09-350	Mean R.A. 3 16 01-622 Mean R.A. 3 24 13-389

3 GEORGE V., A. 1913

LEDGERS OF MEAN RIGHT ASCENSION, 1910-0—Concluded.

Date dim S Q Mean R.A. 1910-0	Date Superscript Date S	Date Open Art of Date O
s Tauri Dec. 11° 02′	B.J. 132 Dec. 32° 00′	B.J. 145 Dec. 60° 51′
Dec. 21 W N 3 25 29 160	Dec. 21 W N 3 38 40·100	Dec. 21 W N 3 49 27 110
Δ ₂ -·001 - Mean R.A. 3 25 29·159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B.J. 129 Dec. 62° 56′	B.J. 136 Dec. 23° 50′	B.J. 147 Dec. 39° 45′
Dec 21 W N 3 34 19-960	Dec. 21 W N 3 39 31-630	Dec. 21 W N 3 51 48-570
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 Tauri Dec. 25° 02'	B.J. 139 Dec. 23° 50'	B.J. 148 Dec. 35° 32′
Dec. 21 W N 3 35 23 560	Dec. 21 W N 3 42 07 890	Dec. 21 W N 3 53 07-300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B.J. 131 Dec. 47° 30′	B.J. 144 Dec. 31° 37′	B.J. 150 Dec. 12° 14′
Dec. 21 W N 3 36 30-620	Dec. 21 W N 3 48 28-150	Dec. 21 W N 3 55 41-610
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} \Delta_1 & -\cdot 001 \\ \Delta_2 & -\cdot 001 \\ \end{array}$ Mean R.A. 3 55 41·608

SESSIONAL PAPER No. 25a,

MEAN RIGHT ASCENSIONS OF STARS OBSERVED IN 1910

	Nores	Comes 7m; elose binary.				Comes 7.6m, 5" s. pr.; binary, C. D. T.
1910	0. – N.	11 024	065	- 100		055
VED IN	06.	9	065	039		
OBSER	0B.	- 013		030		- 195
STARS	0B.J. 0B.	800		025		
NS OF	No. of anoitevasedO	41.21.0	20003	9 7 7 3	00 tO t~ 4 to	1221
SINSIO	Mean date +0161	23323	222283	85.28.88	£8888	88888
MEAN KIGHT ASCENSIONS OF STAKS OBSERVED IN 1910	Mean R.A. 1910-0	h m 8 0 03 43.947 04 20.813* 04 22.047 05 38.272† 08 35.965	0 11 06-480 13 37-295† 16 22-592* 25 07-200* 27 52-520	0 31 56-994 32 04-174 33 47-769† 34 35 23-508	0 39 41-219 39 42-237 41 44-328* 42 15-456* 42 33-919	0 +3 39.098† 44 50.705† 45 15.238 51 16.040 51 45.177
MEAN	Dec.	28 36 79 13 58 39 14 41	76 27 36 17 37 28 76 31 62 26	28 28 28 28 28 28 28 28 28 28 28 28 28 2	74 30 74 21 72 11 23 47	57 20 40 35 63 45 60 14 38 01
	Mag.	100000	04-004	0.4400 0.0000	5.5 7.7 6.0 6.0	8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	STAR	B.J. 1 Bradley 3217. B.J. 2 B.J. 4	B.J. 8. • Andromedae. • Andromedae. Bradley 34. B.J. 16.	B.J. 17 B.J. 18 B.J. 20 B.J. 21	B.J. 24 B.J. 25 23 Cassiopeiae B.D. 71-37	7 Cassiopeiue
	No.	-018940	98 4 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12211	112 113 20	22222

MEAN RIGHT ASCENSIONS OF STARS OBSERVED IN 1910 (continued)

Notes					
0,-G. 0,-N.					
0BJ. 0B. 0.					
No. oV. or	21.20.004	40000	410444	00 to to to	000000
Mean date +0191	82088	88 89 88 89 16 E	88 88 98 98 98	9.55. 9.4. 9.2.	¥8.89.89.89
Mean R.A. 1910-0	8 20-149† 29-174* 16-489† 27-528	41.310 36.785* 41.950† 30.592* 42.713*	7.880* 0.949 8.790* 8.603*	33-603 55-077 15-942* 18-120 30-581†	19-544† 27-731 15-725* 39-776 55-903*
Mear 19	1000 0000 0000 0000 0000 0000 0000	48888 48484	1 12 47.880* 14 30.949 15 48.790* 16 08.603* 17 02.089*	1 19 3 19 5 22 1 31 3 31 3	1 32 32 3 35 3 35 3
Dec. Mear	828282	25 33 06 39 29 37 06 39 20 37 06 39 37 06 39 37 11 16 09 42	77 06 112 47 14 39 17 06 15 40 15 45 08 17 00 17 00 17 00 17 00 10	67 40 119 3 59 46 119 5 72 44 57 22 11 40 57 31 31	11 41 1 32 1 48 10 32 2 40 07 35 1 67 35 35 3 70 10 35 5
	12828 - 12828	2-1 35 09 1 04 4-7 20 33 06 4-3 29 37 06 6-5 79 26 08 6-1 71 16 09	84 51 80 80	46 1 19 57 22 31 57 31	41 1 32 10 32 07 35 35 35 10 35 35 35 35 35 35 35 35 35 35 35 35 35
Dec.	28 30 0 52 14 28 10 79 32 01 54 29 02 79 12 04	35 09 1 04 20 33 06 29 37 06 79 26 08 71 16 09	77 96 26 47 78 15 28 16 45 03	67 40 119 58 46 119 44 57 22 72 35 31	11 41 1 32 48 10 32 40 07 35 67 35 35 70 10 35

Double, 9"; south star.	Comes 8m, 5".	Comes 6m, 10".		Triple, 7m, 2", 8m, 8".		
012034						
007						
200-						
00 841	F= 50 51 44 H	21129	100110004	1-0449	55-155	011-4011-
88.84.8	864484	86.4.88.88	98.69.69.89	95.58	28228	82888
1 38 00-724 46 25-460* 47 54-449 47 56-851 48 35-311*	1 49 39.924 52 54.609* 53 48.189* 54 32.737* 55 10.901*	1 55 43.653 56 04.447* 58 15.630* 1 58 22.156 2 02 05.804	2 04 11-003 05 02-086* 05 38-116* 07 24-330 07 36-802†	2 11 57-590† 13 06-964† 19 59-467* 21 38-017† 25 54-704*	2 29 27 · 174 33 42 · 177 34 44 · 509* 37 04 · 138 38 02 · 813	2 38 10-010 42 32-786* 44 07-378† 44 40-989 46 31-285†
50 14 63 14 29 08 18 51	28222	76 51 76 51 80 52 41 54 23 02	34 34 73 36 19 05 66 06 39 39	33 26 19 29 10 12 67 00 17 18	72 26 21 34 81 04 67 27 48 51	27 19 28 52 26 33 26 53 14 43
4.000.4	7.00 7.00 7.10 7.10 7.10	0.4.0 0.4.0 0.1.0	0.40.00	40040	4.00.004	44660
B.J. 57 2 Persei B.J. 63 B.J. 64 7 Arietis	B.J. 66. A Arietis Bradley 246. 48 Cassiopeiae Groombridge 422.	B.J. 70. 47 Cassiopeiae Groombridge 424. B.J. 73.	B.J. 75. Bradley 282. 15 Arietis B.J. 76.	B.J. 79. B.J. 81. £ Arietis Cassiopeiae. 27 Arietis.	B.J. 87 B.J. 89. Bradley 344 B.J. 92. B.J. 93.	B.J. 94 39 Arietis B.J. 99 B.J. 100 ~ Arietis.
55 55 55 55	828828	1922243	98 98 70 98 70	72 74 74 75	51258	22222

3 GEORGE V., A. 1913

Nores	Double, 5.2m, 5.6m, 1.2 Comes 9m, 5".		Comes 9m, 3".	Comes 8.5m, 1".	Comes 8m, 2" n.f. Comes 8m, 9" n.f.
0N.					
0. – G.					
0B.J. 0B.					
0B.J					
lo.oX anoitavisadO	P00-10	P=2==	8		
Mean date +0191	28848	22,888	<u> </u>	99,56	
Mean R.A. 1910-0	h m s 2 47 52·194 54 03·712† 54 04·701 57 41·119* 58 16·228	2 59 24-290 3 02 09:350* 02 18:455 02 33:987 09 43:539†	3 16 01 622† 17 53 526 20 58 452* 21 46 232 24 13 389	3 25 29·159* 34 19·948 35 23·558† 36 30·616 38 40·100	3 39 31 ·627† 42 07 ·891 48 28 ·143 49 27 ·100 51 48 ·561
Dec.	20 22 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	38 30 74 03 40 37 20 48	20 47 47 48 48 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	25 25 25 25 25 25 25 25 25 25 25 25 25 2	23 50 23 50 39 51 39 45
Mag.	44008 00800	8.1.5.4.0 8.1.5.1.0	51-044 50-04-8	5.5 6.7 8.0 9.6	4.60
STAR	B.J. 103 e Arietis (mean) B.J. 105 Bradley 386 B.J. 108	B.J. 109 Bradley 417 B.J. 111 B.J. 112 § Arietis.	7 Arietis B.J. 120 Bradicy 459 B.J. 122 B.J. 124	s Tauri. B.J. 129. 11 Tauri. B.J. 131.	B.J. 136 B.J. 139 B.J. 144 B.J. 145 B.J. 147
No.	888888	92 94 95	88888	102 102 104 105 105	100 100 100 110

		Comes 6.7m, 3".		C.D.T.	Comes 6.3m, 6.4" s.f.	
			- 083	- 083	005	056 066 013
			- 018		050	- 056
			011	015 033 057	900	037 041 .030 .000
			- 0028	027 040 059	015	029 032 018
	01-010101	0101-00	90-21-	22222	22222	155 155 13
964444	22222	22822	ម្មមន្ទមន	88888	<u> </u>	88888
3 53 07-292 3 55 41-608 7 41 42-364 8 16 40-653 27 04-138	8 32 37-887 53 03-036 54 48-02 8 57 29-153 9 00 48-513†	9 07 55-333 13 14-883 15 34-611 26 50-659 28 42-824	9 44 35-954 9 52 10-601† 10 02 25-734 11 40-443 11 41-241	10 16 58-335 22 40-971 24 52-457 29 22-304 33 39-528†	10 38 31-499† 40 51-819 48 16-921† 50 44-554† 54 25-787*	10 56 25 048 11 04 36 472 09 19 415 11 37 851 13 37 246
38 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	38 42 24 38 42 38 44 33 8	43 35 37 11 34 46 52 05 36 48	59 28 17 12 43 22 23 52	41 57 37 10 56 27 57 33 32 27	23 33 40 40 25 45 52 45 53 45 54 45 55 45 56 45 57 45 57 57 45 57 57 45 57 57 57 57 57 57 57 57 57 57 57 57 57	56 52 21 01 21 01 33 35
0.5.0.4.0	6.00.004	5.5.5.4 5.0.5.4 6.0.5.4	000000 001444	04474 000000	0.000 + 0 0.000 ± ±	20.53 6.23 6.41 4.44
B.J. 148 B.J. 150 B.J. 296 B.J. 314 B.J. 320	B.J. 323 B.J. 335 B.J. 339 B.J. 341 B.A.C. 3097	B.J. 346 B.J. 349 B.J. 352 B.J. 358 B.J. 360	B.J. 368 B.J. 374 B.J. 375 B.J. 383 B.J. 384	B.J. 386 B.J. 390 B.J. 394 B.J. 398 37 Leonis Minoris.	B.J. 405 B.J. 407 B.J. 412 54 Leonis 47 Ursae Majoris	B.J. 416 B.J. 420 B.J. 424 B.J. 424 B.J. 425
HEE HEE	116 117 118 119 120	222222	252 253 250 250 250 250 250 250 250 250 250 250	133 133 133 135 135	136 137 139 140	454 444 444 444 444 444 444 444 444 444

MEAN RIGHT ASCENSIONS OF STARS OBSERVED IN 1910 (continued)

Notes		Comes Sm, 11-6" s.pr. Comes 9m, 7".	Comes 10m, 2".	Comes 5m, 19·8" s.pr.	Comes 10m, 1.4".
0N.	- 096		- 001	800	- 037
0. – G.	- 023			.048	- 045
0,-B.	- 051		- 012	.00	2000 –
0B.J.	990 -	- 029	028	.014	- 020
lo.oV. snoiseviens	23×30	81223	56 9 8 8 8	87928	88 114 17
91gb dg9M +016I	*****	8 4 5 4 8	25.53 25.53	******	28. 28. 28. 28. 28. 28. 28.
Mean R.A. 1910-0	h m 8 41 125 39 099 41 18 089 44 28 201 47 47 704† 49 06 074	11 51 02.876* 12 10 15.917* 10 58.537 11 37.103† 17 58.978‡	12 21 25-038 22 27-271* 25 12-045 25 45-384 29 28-250	12 30 22 078† 34 26 536* 47 18 967† 50 04 298 12 51 49 204	13 01 32-039* 05 33-590* 05 55-347 07 40-463 11 29-251*
Dec.	. 43 40 48 17 15 05 38 22 54 12	16 09 57 32 54 110 26 21	39 31 28 46 21 24 41 51	28 41 52 56 57 56 57 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58	36 17 39 01 28 59 41 20
Mag.	1.8.1.0.0	000004 00400	6.0.0 6.0.0 6.0.0 7.0.0 8.0.0	9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50	5.5 6.5 6.1 5.7
Star	B.J. 432 B.J. 441 Groombridge 1830 B.J. 447	o Leonis. 1 Can. Venaticorum B.J. 456 B.J. 458 12 Comae.	B.J. 461 15 Comae B.J. 466 B.J. 477	23 Comae 9 Can. Venaticorum 31 Comae B.J. 483 B.J. 485	14 Can. Venaticorum 15 Can. Venaticorum B.J. 491 B.J. 492 19 Can. Venaticorum
No.	146 147 148 149 150	151 152 153 154 154	156 157 159 159 160	161 162 163 164	166 167 168 169 170

Comes 4m, 14".	C. D. T. 8m, 1"; binary.				C.D.T. Close equal double. Comes 5·1m, 2·8" n.pr. Comes 7m, 3"; binary.	
070	002 004 008 034	063	- 045	022 033 070	-005	057
860	.006 021 037 .015	900-		010 -	.012	-010
- 011	1 - 004 - 010 - 005	.010 -020 -020	200-	002	-012	.000
028	- 057 - 020 - 020	011 039 035	022	- 012	-015	- 012
19 21 2 17	23 12 13 15	16 18 18 18 16	11 9 14 2	20 20 20 20 20	717	16 13 14 17
88.558.6	84844	664884	444.684	44444	33333	44444
13 13 30.507† 16 17.060* 20 18.202 30 39.698* 30 46.778	13 33 27.797† 42 59.113 43 59.700 50 23.979 13 57 05.644	14 04 19-920* 06 17-683 11 33-396 12 57-758 12 58-750	14 22 07-981 22 16-176† 25 29-972* 26 03-981* 27 42-222†	14 27 57-080 28 27-289 30 45-711† 35 29-260† 36 05-559*	14 36 51-045 39 28-048* 41 03-415† 45 34-694* 47 14:109*	14 49 09-227 50 57-371 51 58-296 55 09-553* 14 58 33-335
41 08 40 37 55 24 37 39	36 45 17 54 49 46 18 51 27 49	25 31 19 39 46 30 51 47	52 16 19 38 50 15 76 06	30 45 30 08 44 48 80 03	26 55 27 27 27 27 38 11 19 28	59 40 74 31 14 49 78 32 40 45
4.7.2.7.4 6.7.2.4.0	6.388.55	5.4 4.9 1 4.0 4.6	0.47.74	5.53	0.44.04 0.04.48	36603
B.J. 494 23 Can. Venaticorum B.J. 497 81 Ursae Majoris. B.J. 502	25 Can. Venaticorum B.J. 507 B.J. 509 B.J. 517	9 H.Boötis B.J. 522 B.J. 526 B.J. 527 B.J. 528	B.J. 531 f Boötis g Boötis 204 B.Boötis 5 Ursae Minoris	B.J. 534 B.J. 535 r. Bobtis B.J. 540 B.D. 80.448	B.J. 543 34 Boötis c Boötis 226 B.Boötis È Boötis	B.J. 559 B.J. 551 Groombridge 2184.
171 172 173 174 175	176 177 179 180	282223	187 188 189 190	192 192 193 194 195	196 197 199 200	202222

3 GEORGE V., A. 1913

Notes	Comes 6m, 6°.	C.D.T. Close equal binary		Comes 6m, 6.2" n.pr. Comes 7m; close binary.	C.D.T.
0. – N.	-010	- 002 - 158 - 020	040	054	001 015 015
0B.J. 0,-B. 0G. 0N.	.015	028 077 015	010	- 043	110
0. – B.	-019	- 045	002	- 013	016 006 014
0B.J.	.015	011 056 007	- 021	034 026 014	025
No. ol. snoitevisedO	22 2 25 25	16 4 17 13	5 11138	14 117 117 116	17 20 18 18
Mean date +0161	44448	48444	33343	44555	36844
Mean R.A. 1910-0	h m s 15 00 35-356 00 49-439* 03 20-866† 11 52-461 17 09-651*	15 19 29-168† 20 51-761 21 05-399 22 55-502 24 07-086	15 27 41 - 756 28 33 - 638 * 29 18 - 000 30 52 - 643 34 03 - 972 *	15 34 35-628 35 59-281† 37 32-272* 38 57-759 42 01-988	15 44 41-266 47 14-995 49 33-765† 52 17-704† 53 51-648
Dec.	27 18 48 00 25 13 72 09	30 37 72 09 37 42 59 17 29 25	41 08 31 40 27 01 77 39	40 39 36 56 19 58 15 42 15 42	18 25 78 04 42 42 15 57 27 08
Mag.	4.4.5 5.2.0 5.1.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	40450 80451	00488 64884	0.44.3 0.4.3 0.4.3 0.4
STAR	B.J. 557 # Boötis # B.J. 563 II Ursae Minoris.	7 Cor. Borealis B.J. 569 B.J. 568 B.J. 571 B.J. 572	B.J. 573 P. Boottis B.J. 576 B.J. 578 \$\theta\$ Ursae Minoris.	B.J. 580 f Cor. Borealis (Serpentis B.J. 581 B.J. 583	B.J. 584 B.J. 590 x Heroulis B.J. 591 B.J. 593
No.	206 207 208 209 210	211 212 213 214 215	216 217 218 219 220	221 222 224 224	226 227 230 230 230

	Comes 6.7m, 4.6" s.pr.			Comes 6m, 1"; binary.		
-137	-034			-023	- 138	
	-034			- 011	.001 .002 .004	
005				011	055	900 -
- 012			051		013	- 001
88821	2121212	82084	122 128	0.044401	90 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15 10 4
944.944. 944.944.	446884	.47 .49 .46 .51	.46 .49 .51	.45 .52 .46 .47	.51 .51 .51 .47	.49 .52 .49 .51
15 55 39-183 15 57 11-639* 16 00 11-990 04 00-751† 05 40-781*	16 05 56-087† 11 18-502† 13 22-447 14 47-152* 16 01-524*	16 17 02-067 17 56-951 18 35-387* 19 29-147* 20 07-321†	16 21 15-679† 22 27-118 25 41-114* 26 21-011 30 43-022*	16 31 12.040 32 50.586* 34 30.016 36 18.212* 37 53.612†	16 39 48-598 42 58-821* 43 35-248 47 05-704* 47 58-975	16 49 33 230* 58 03 484* 16 58 16 958† 17 01 12 242 03 13 338*
55 00 18 04 17 17 86 43	45 10 34 05 76 06 73 37	23 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3	14 14 55 25 42 05 21 41 79 09	42 37 72 48 77 38 77 38 81 46	39 06 77 57 15 05 15 05	33 51 73 16 72 22 75 21
0.0000	4.0.0.0 0.8.8.4.6	5.50	400000 F-8468	6.4 6.5 3.0	8.04.00 8.40.00	6.9 6.9 6.9
B.J. 595 r Herculis B.J. 598 r Herculis r Cor. Borealis.	B.J. 601 \$\sigma^2\$ Cor. Borealis B.J. 606. 20 Ursae Minoris Groombridge 2337.	B.J. 608. B.J. 609. E.Cor. Borealis. 23 Herculis B.J. 612.	B.J. 613 B.J. 614 g Hereulis. B.J. 618 Groombridge 2372.	B.J. 621. B.D. 72-734. B.J. 623. 42 Herculis. § Herculis.	B.J. 626 B.D. 79-511 B.J. 627 Groombridge 2391. B.J. 629	53 Hereulis Groombridge 2411 d Herculis B.J. 635 B.D. 75-612.
222222	252222 242222 242222 242222 24222 24222 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 242	25222	242 243 250 250	251 252 253 254 254	255 255 255 250 250 250	262 263 264 264 265

MEAN RIGHT ASCENSIONS OF STARS OBSERVED IN 1910 (continued)

Notes	Comes 6m, 4·6° s.f.	Comes 5m, 4".			
O. – N.	9000	- 018	- 041	074	
0. – G.	600	018	0.20	007	
	910. –	024	-048	110-	
0B.J. 0B.	- 016	- 021	046	800	
No. of sanions	99729	0 4 5 4 6 0 4 5 7 4 6	3 1 6 3 3 5	14 2 3	228 - 9
Mean date 1910+	84222	22.22.23.23	3222	23 25 25 25 25	33.53.54.6
Mean R.A. 1910-0	h m s 17 04 29-443* 04 50-506 10 32-608 11 54-703 14 00-012*	17 14 34.007* 20 34.639* 24 21.032 26 25.497*	17 27 06-034† 28 23-872 30 24-104 30 29-500 30 45-378	17 36 55-398 38 50-986* 42 56-127 43 32-214 45 10-163*	17 47 42.003* 49 08.953* 51 47.286† 51 58.270 53 09.956
Dec.	. 75 25 40 38 14 30 36 55 33 12	22 23 23 24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	26 11 52 22 55 15 55 15 12 37	25 27 20 22 22 22 25 39 25 39 39	28 94 95 95 95 95 95 95 95 95 95 95 95 95 95
Mag.	6.4	4.04.00 8.44.08	454445 577.581	80.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
STAR	Groombridge 2427 B.J. 636 B.J. 640 B.J. 643 a Herculis	e Hereulis w Hereulis p Hereulis B.J. 650 Groombridge 2456	λ Hereulis. B.J. 653 B.J. 655 B.J. 657 B.J. 656	B.J. 663 B.D. 72-800 B.J. 667 B.J. 670 87 Hereulis	a Herenlis. 168 IP. Herenlis. 89 Herenlis. B.J. 672
No.	266 268 269 270	271 272 273 273 274 275	276 279 279 280	288228	2846 287 2889 290

		Comes 7m, 0.4". Comes 8m, 3".				
	- 010	- 015	-034	- 019	056	- 051
	022	-011	600	- 050		-113
	900	018	.012	023	028007	680 -
	- 003	- 000	100	- 053	- 028	040
4-6000	98 201 110 12 8 6	987-40	10 11 11 7	9 6 6 9 9 9 9	181855	40548
95.55	.59 .59 .59	55.55	2000	29282	88848	9982
17 53 28-583 54 15-998† 54 30-896 55 14-634* 17 56 44-622*	18 04 01-889 06 46-887* 12 50-783† 18 23-475* 19 51-757	18 21 15-896* 22 02-994 22 35-752 22 40-811 33 53-460	18 34 06-134 41 47-293 43 02-787* 44 11-720* 44 42-387*	18 46 45-397 48 01-592* 49 17-002† 49 52-410 52 00-040*	18 52 35-764 55 30-195 18 55 34-621 19 01 16-405 04 05-375†	19 08 18-871* 13 35-484 15 01-364 15 57-567* 17 17-391
76 59 29 15 51 30 78 19 72 01	28 45 29 59 23 14 41 44	39 27 71 17 58 45 72 42 38 42	77 29 20 28 18 05 70 42 52 53	33 15 73 59 75 20 59 17 79 50	43 50 71 11 32 34 13 44 35 58	31 08 11 26 53 12 40 12 73 11
55.33.71	00 00 00 00 00 00 00 00 00 00 00 00 00	5.4 3.6 1	6.44.0 1.44.0 8.0	600040 64400	400000	6.6 6.6 4.5 4.5
B.J. 675 B.J. 674 B.J. 676 B.D. 78-616	B.J. 681	д Lyrae В.J. 693 В.J. 694 В.J. 695 В.J. 699	B.J. 700 B.J. 703 111 Herculis Bradley 2382 204 B. Draconis	B.J. 705. Groombridge 2719. 50 Draconis. B.J. 707. B.D. 79-604	B.J. 711 B.J. 714 B.J. 713 B.J. 716 B.J. 719	19 Lyrae B J. 725 B J. 726 159 B.Lyrae B J. 729
292 292 292 292 292 292 292 292 292 292	298 298 300 300	302 302 304 305 305	306 307 308 308 310	312 313 313 314 315	316 317 318 319 320	322 323 324 325 325

MEAN RIGHT ASCENSIONS OF STARS OBSERVED IN 1910 (continued)

				o obom	O 111 111 111
Notes	C.D.T.			Comes 8m, 1·6" n.pr. Comes 9m, 9".	Comes 7.6m, 3.1"n. Comes 8m, 3".
0. - N.	042	-052	024	- 052	.00
0. – G.	400	.005		014	
0B.J. 0B.	- 019	-050	.021	- 0028 - 018	0015
0B.J.		-024	-005	- 030	-010
No. of Observations	21 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	00 4 8 2	48 12 15 9	22 12 18 18	82588
Mean date +0161	<u> </u>	ន់ន់ន់ន់	. 15.55.55.55	65.65.65	26.56.86
Mean R.A. 1910-0	h m s 19 20 40.708† 21 42.281* 22 54.619* 24 46.269* 24 57.623†	19 27 05-516 27 09-250 27 26-224 28 25-605* 31 43-735*	19 33 12.937* 33 31.238* 34 01.677 36 30.690* 37 00.413‡	19 39 58 374* 41 01 833† 42 09 706 43 22 491 44 58 947*	19 48 28 933 51 58 537* 53 18 190 54 45 278 57 23 623*
Dee.	24 11 45 76 23 24 29 24 29	27 46 79 25 34 16 70 48	16 16 50 02 50 01 42 37 17 16	25 33 48 55 83 18 19 55 83 18 19 55 83	20 11 11 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15
Mag.	6.0 0.0 4 6.4 4 61 0	6.00 4.0 0.4.0 0.5.0	7.094.34 7.0344	000000	8.40 9.60 9.60 9.60
STAR	b Aquilae 21 B. Vulpeculae 4 Cygni B.D. 76-734 a Vulpeculae	B.J. 732 B.J. 734 B.J. 733 8 Cygni B.D. 70-1073	e Sagittae B.D. 49:3059 B.J. 738 14 Cygni \$ Sagittae	10 Vulpeculae. B.J. 740 B.J. 742 B.J. 743 § Sagittae	B.J. 747 \$\phi Aquilae B.J. 750 B.J. 752 15 Vulpeculae
No.	822 822 822 822 822 822 822 822 823 822 823 823 823 823 823 823 823 823 823 823 823 823 823	23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	336 337 340 340	342 343 345 345 345	346 347 348 350

	Comes 8m, 7.5" s.f.		Binary 4m, 5m, 0.5".		Comes 7m, 0.7".	
	690	014	.143	1.030	034	-048
		.017	-114	- 011		- 087
	- 094	012 023	1.064	026 014 042		028
	900	007	680 - 1	1.028	900-	052
401103 01103	4 4 10 22 23	888888	13 17 12 19	728827	25 27 17	16 17 16 17
2 88555	89.17.26	88851	91.51.5	655555	527.	55555
19 58 55-313* 20 02 08-924* 06 05-028* 08 14-228* 10 06-758*	20 10 28.291* 10 47.847 11 56.201 12 56.002 16 59.459*	20 18 59-865 24 14-168* 25 43-062† 27 16-267* 28 54-802	20 30 24-329† 31 06-054* 32 42-352 33 19-729 34 30-125*	20 34 42-038* 35 27-470 38 21-776 39 15-441† 42 34-117	20 43 07.082 43 54.134 51 41.952† 53 49.007 55 48.609*	20 56 45.872* 21 01 39.358† 02 51.725 03 30.009* 05 51.349*
70 07 76 14 36 34 26 13 14 55	24 28 39 07	38 03 38 03 48 39 04 11 00	72 14 14 22 14 39 14 17 20 53	80 47 15 36 44 57 14 45 33 38	57 15 36 10 80 13 40 49 75 35	47 10 43 34 38 18 47 17 71 04
46666	944400	80.458 90.458	48850	80-49	4476.00	4 6 70 4 0 8 0 4 0 0
B.D. 69-1084. 69 Draconis. 57 Cygni. 20 Vulpeculae. p Aquilae.	30 Cygni B.J. 757 B.J. 759 B.J. 760 176 B.Cygni	B.J. 765 40 Cygni 41 Cygni a-Cygni B.J. 708	Groombridge 3241 7 Delphini B.J. 770 29 Vulpeculse	74 Draconis B.J. 774 B.J. 777 B.J. 778 B.J. 780	B.J. 782 B.J. 784 220 Ht. Draconis B.J. 788 Bradley 2748	ft Cygni B.J. 793 B.J. 793 f. Cygni Groombridge 3409
55 55 55 55 55 55 55 55 55 55 55 55 55	356 357 358 369 360	361 362 363 364 365	366 367 368 369 370	372 373 374 375	376 378 379 380	382 383 384 385 385

MEAN RIGHT ASCENSIONS OF STARS OBSERVED IN 1910 (continued)

Notes	Comes 7m, 1". Comes 7m, 0.8" pr.; binary.			Triple; 7m, 12"; 7m, 20". Close double, 0-1".	
0. – N.	247 017 059	021	003	038	028
0. – G.	135 007 065		050 06		-000016
0. – B.	111	00.5	039	- 062	- 010 - 000 - 000 - 005
OB.J. OB.	086	000	036	059 057 015	019
No. of snoiteviers	208223	10288	25 22 23 30	25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2332×3
Mean date 1910+	46855	46466	57.7.5	ा । । । । । । । । । । । । । । । । । । ।	552475
Mean R.A. 1910-0	h m s 21 07 18-925 09 06-313 09 30-744 11 11-861† 13 52-759†	21 14 12.960* 16 41.848* 17 55.425 22 96.275* 26 07.630†	21 27 30 163 27 30 228 * 30 35 643 * 31 05 906 *	21 36 10-015 40 34-121 40 36-357† 41 58-582* 43 28-013	21 45 51-718* 48 57-956 50 04-993* 51 44-092† 51 51-550*
Dec.	29 51 29 51 37 40 39 01	34 31 76 38 19 25 46 09	28 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	25 14 25 14 25 25 25 25 25 25 25 25 25 25 25 25 25	22222 22222 22124
Mag.	0 0 0 0 0 4 0 - 0 0 0 0	4.04.07 0.155.4 0.155.4	5.1 5.0 5.1	04464 	6.00 6.00 6.00 6.00 1.00 1.00
STAR	B.J. 795 B.J. 797 B.J. 798 B.J. 799 F.Cygni	v Cygni Bradley 2706. B.J. 804 69 Cygni B.J. 807	B.J. sop Groombridge 3511 p. Cygni 72 Cygni B.J. 811	B.J. 813 B.J. 816 B.J. 817 78 Draconis B.J. 821	14 Pegasi B.J. 823 Bradley 2868 79 Draconis 13 Cephei
No.	387 388 389 390	392 394 394 395 394	396 395 400 400	\$\$\$\$\$\$	408 409 410 410

					Comes Sm, 1".	Comes 7m, 1" n.f.
013	026		- 107	- 061	- 034	- 025 -007 -012 073
011	- 002	021	SO :11	.018 015	010	- 022
- 011	- 013 - 020 - 013	021	083 087	011	- 016 - 018 - 010	- 0007 - 0007 - 007
	001 000	041	1.021	- 032 - 010 - 009	029 017 015	042 .015 .011 057
22222	26 111 6 20 26 111 6 20	91 121 4	21 T T T T T T T T T T T T T T T T T T T	8 17 17 15 15 15 15 15 15 15 15 15 15 15 15 15	12 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120113
575	775 776 776 776	5555 S	577.55	85.38.55	855.585	82.885.5
21 56 42-247† 56 59-794* 21 57 57-997* 22 02 49-205† 05 14-259	22 05 59-333 06 14-884* 07 43-813 08 04-785 10 00-816*	22 11 15-103* 20 01-135 23 41-069* 25 49-572 25 54-710*	22 26 02-256* 27 34-837 29 05-519* 30 41-667† 33 32-704	22 35 13-221 35 17-274* 35 27-107 36 58-386 38 46-888	22 40 04-479 42 11-698 45 39-463† 46 28-344 54 41-623*	22 57 46-611 22 59 24-580 23 00 16-611 03 39-892* 05 01-868
22222 22222 22524	32 25 25 27 27 25 25 25 25 25 25 25 25 25 25 25 25 25	72 52 51 47 70 19 57 57 32 07	78 20 49 49 78 22 75 46 73 11	38 35 74 54 63 07 10 22 45 22	12 23 25 22 06 52 45 08 11 15	27 36 14 43 14 43 74 54 74 54
845000	4.0 5.4 5.4 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	6.34.74.75 1.17.77	6.1 5.7 5.7 5.2	4.0.0.0.0	4.0.000	00 01 01 00 4 10 4 4 00 10
B.J. 826 Bradley 2897 16 Cephei B.J. 831 B.J. 833	B.J. 835 28 Pegasi B.J. 836 B.J. 837 1 H. Lacertae.	Bradley 2942 B.J. 844 B.D. 70-1240 B.J. 847 38 Pegasi	28 Cephei B.J. 848. 29 Cephei 226 B.Cephei B.J. 851	B.J. 852. Groombridge 3857 B.J. 853. B.J. 855. B.J. 857.	B.J. 858 B.J. 859 B.J. 802 B.J. 803 52 Pegasi	B.J. 869 B.J. 870 B.J. 871 5 Andromedae B.J. 874
412 413 414 415 415	416 417 418 419 420	224 224 224 235 245 255	426 427 429 429 430	432 432 434 435 435	438 438 440 440	445 442 445 445 445

MEAN RIGHT ASCENSIONS OF STARS OBSERVED IN 1910 (concluded)

				3 GEORG	GE V., A. 191
Notes	Comes Sm, 3" s.pr.	Multiple; 10m, 1".			
0N.	- 139	.000 .013	071	290 -	
0. – G.		.002	071	290	
0B.	066051	- 012	- 041 016		
0B.J. 0B.	990.	- 004	- 041		
No. of servations	82852	405558	62 4 5 <u>1</u> 60 rd	121194	7-4851
Mean date +0191	55.58	<u> </u>	*******	8 8 8 8 6 7 ·	25.58
Mean R.A. 1910-0	h m s 23 08 56-611 11 24-826* 12 09-030* 14 08-293* 14 55-263‡	23 16 10-834 20 50-117 20 53-140† 24 36-127 25 52-275*	23 30 13·141* 31 04·191* 33 09·263† 33 43·079 35 18·002*	23 35 38-281 35 58-233 43 35-933 47 54-458	23 48 00.613* 49 52.786† 50 26.317 53 10.214*
Dec.	56 40 73 44 74 48 67 37	23 15 22 55 15 15 16 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18	39 42 42 48 48 48 48 48	77 08 43 50 45 55 67 18 18 37	25 55 03 24 35 55 24 38
Mag.	200004 200000	45444 5547-0	6.5 6.5 6.2 6.2 6.2	94999 96494	0404
STAR	B.J. 875 Bradley 3085 Bradley 3086 Groombridge 4033 o Cephei	B.J. 880 B.J. 881 B.J. 881 B.J. 885 1 H.Cassiopoiae	15 Andromedae Bradley 3140 B.J. 890 B.J. 891 Groombridge 4119	B.J. 893 * Andromedae * Andromedae B.J. 895 B.J. 898	Groombridge 4154 B.J. 899. Groombridge 4163
No.	5444 644 644 644 644 644 644 644 644 644	451 452 453 454 455	455 459 60 60 60 60 60 60 60 60 60 60 60 60 60	462 462 463 464 405	467 468 469

APPENDIX 4.

REPORT OF THE CHIEF ASTRONOMER, 1911.

TABULAR STATEMENT OF LONGITUDE AND LATITUDE OBSERVATIONS

BY

J. MACARA.

DIFFERENCE OF LONGITUDE:

Page

CONTENTS

		Erwood, Sask.—Winnipeg.	522
		Maedowall, Sask.—Winnipeg.	523
		Lloydminster, Alta.—Winnipeg	524
		Stonyplain, Alta.—Winnipeg	525
		Winnipeg, Man.—Dominion Observatory, Ottawa	526
		North Portal, Sask.—Winnipeg	527
		Mortlach, Sask.—Winnipeg	528
		Walsh, Alta.—Winnipeg	529
		Pincher, Alta.—Winnipeg.	530
		Coutts, Alta.—Winnipeg	531
		Emerson, Man.—Winnipeg	532
		Windsor, Ont.—Dominion Observatory, Ottawa	533
		Sault Ste. Marie, Ont.—Dominion Observatory, Ottawa	534
I	lon	gitude of Stations, Table of	535
I	Lat	itude of Stations, Table of	535
I	Des	eription of Stations	540
		MAP.	
	la	p showing the positions of Astronomical Stations established	548

APPENDIX 4.

TABULAR STATEMENT OF LONGITUDE AND LATITUDE OBSERVATIONS.

Ottawa, Canada,

1st April, 1911.

W. F. King, LL.D., C.M.G.,

Chief Astronomer,

Department of the Interior,

Ottawa.

SIR,-

Thave the honour to transmit herewith a tabular statement of the differences of longitude and the latitude results of stations observed in 1910; and, of four other stations, Erwood and Macdowall in Saskatchewan and Lloydminster and Stonylain in Alberta, observed in 1909 by exchange of signals with the transit house, on Fort Osborne barracks ground, at Winnipeg. The longitude of the latter station was determined early in the summer of 1910, by telegraphic exchange of time with the Dominion Observatory.

This report also contains a statement, arranged in alphabetical order, giving the longitude and the latitude of the various astronomical stations established up to the present time. The small differences between the longitudes given berein and those previously published are due to the adjustment of the longitude triangles comprising Seattle, Vancouver, Boundary, Field, Winnipeg, Ottawa, Montreal and Harvard.

The accompanying map shows the positions of the stations.

I have the honour to be, sir,

Your obedient servant,

J. MACARA.

DIFFERENCE OF LONGITUDE BETWEEN ERWOOD, SASK., AND WINNIPEG, MAN.

	DIFFERENCE OF CHRONOGRAPH	Энконовкарн	CLOCK CORRECTION	RRECTION	П	DIFFERENCE OF LONGITUDE	LONGITUDE		Time of
DATE	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	Mean	۵	Trans- mission.
1909 Aug. 21	m 8 19 41.680	m s 19 41-554	8 43.127	-14.735	m s 20 10.072	m 8 20 09-946	m s 20 10.009	B 073	.0K3
22	42.532	42.395	-40.359	12.856	10.035	868 - 60	00.965	026	-064
24	44.314	44.178	-35.501	-09.831	09.984	00.848	916-60	.020	890-
. 25	44.162	44.033	-34.074	-08.305	09-931	208-805	298-60	690-	-065
. 26	44.608	44-457	-32.145	962-90-	09-922	908-800	09-882	-054	920-
. 27	44-919	44-779	-30.503	-05-375	10.047	206-60	226-60	041	.070
28	46-264	46-139	-27-559	-03.912	116-60	982-60	09-849	-087	.063
	48.180	48-037	-24.073	-02-173	10.080	09-937	10.008	072	-071

Observers (West, F. A. McDiarmid. East, W. C. Jaques.

Mean difference of longitude 20
Longitude of Winnipeg 6 28
Longitude of Erwood 6 48

00-936 35-262 45-198

DIFFERENCE OF LONGITUDE BETWEEN MACDOWALL, SASK., AND WINNIPEG, MAN.

	Trans-	27.599019 .049	27-613 033 -030	27-497 -083 -037	27.606026 .040	27.579 .001 .040	27.570 .010 .042	27.594014 -041	h m 8 35 27.580
Longirupa	MEAN.	т 35 27.	27.	27.	27.	27.	27.	27.	
DIFFERENCE OF LONGITUDE	Eastern Signals.	m s 35 27.550	27.583	27.460	27.566	27.539	27 - 528	27.553	Mean difference of longitude
I	Western Signals.	m s 35 27-647	27-614	27.533	27-647	27.618	27.611	27-635	Mean difference of longitud
RRECTION	Eastern Station.	+04.387	+07.368	+07-394	+10.879	+10.952	+12.373	+12.423	
CLOCK CORRECTION	Western Station.	m s +1 31.739	39-315	39.581	47.026	47.169	49.905	20.002	
	= 30		7	7	7	7	7	7	
NOGRAPH	Eastern Signals.	54.902	59-530	29-647	03.713	03.756	02.000	05-135	mid.
CHRO	- Y.	38 B	36	36	37	37	37	37	Diar
DIFFERENCE OF CHRONOGRAPH	Western Signals.	54-909	169-69	59.720	03.794	03.835	05-143	05-217	F. A. Me
DIFFE	= 32	38	36	36	37	37	37	37	West,
	DATE	1909	44	4	6	6	7	7	Obaserses (West, F. A. McDiarmid.
	_	Sept.	Ħ	ä	ı	3	з	3	3

DIFFERENCE OF LONGITUDE BETWEEN LLOXDMINSTER, ALTA., AND WINNIPEG, MAN.

Time of	Trans- mission.	860.	.091	.094	680-	-004
	۵	B 042	053	+-056	025	+.064
Longitude	MEAN.	m 8 51 26-395	26-406	26-297	26-378	26.289
DIFFERENCE OF LONGITUDE	Eastern Signals.	m s 51 26-297	26.315	26-203	26.289	26-195
1	Western Signals.	m 8 51 26.492	26.498	26-390	26.468	26.382
RRECTION	Eastern Station.	06·401	11.906	18.401	25.909	32.108
CLOCK CORRECTION	Western Station.	m 8 1 22.404	1 35-978	1 47-157	2 01.733	2 17-719
Сивоиодильн	Eastern Signals.	m s 52 42-300	52 50.387	52 54.959	53 02-113	53 11-807
DIFFERENCE OF CHRONOGRAPH	Western Signals.	m s 52 42-495	52 50-570	52 55-146	53 02-292	53 11-994
	DATE	1909 Sept. 9	13	16	* 20	23

Observers {West, F. A. McDiarmid. East, W. C. Jaques.

 Mean difference of longitude
 h m ss
 ss

 Longitude of Winnipeg.
 6 28 35-262

 Longitude of Lloydminster
 7 20 01-615

DIFFERENCE OF LONGITUDE BETWEEN STONYPLAIN, ALTA., AND WINNIPEG, MAN.

SESSI	ONAL I	PAPER N	io. 25u						
	Time of	Trans- mission.	.095	.103	980-	660	.113	.097	26.573 35.262 01.835
AN.		a	054	-032	030	910	-027	-043	1 PP 36 1 PP 3
PEG, M	ODE	AN.	26-627	26.541	26.603	26.589	26.546	26-530	
H.	GIT	MEAN.	h m 1 07	20	20	20	02	0.7	
VIN	Los		ㅁㅁ	-	-	-	-	-	
AND A	DIFFERENCE OF LONGITUDE	Eastern Signals.	s 26.532	26.438 1 07	26.517	26.490 1 07	26-433 1 07	26.433	gitude.
A.,	ERE	East	0.0 0.0	07	07	20	07	07	lon
TI)IFF		4-	-	-	-	-	-	inn ton;
AIN, A	I	Western Signals.	26.721 1 07	26.643 1 07	26.690	26.688 1 07	26.658 1 07	26.626 1 07	Mean difference of longitude Longitude of Winnipeg Longitude of Stonyplain
YPI		Wes	07 2	07	07	1 07	07	07	ngit ngit
NO			4-	-	-	-	н	-	LEK
DIFFERENCE OF LONGITUDE BETWEEN STONYPLAIN, ALTA., AND WINNIPEG, MAN.	CLOCK CORRECTION	Eastern Station.	s 40·708	42.441	46.677	51.166	53.239	55.024	
IDE BE	COCK COF	Western Station.	59-565	05-990	06.549	14.627	19-569	23.154	
ITL	Ö	We	8-	63	C3	01	C.J	62	
F LONG	DIFFERENCE OF CHRONOGRAPH	Eastern Signals.	8 44.389	45-987	45.389	48.951	51.763	53.563	ġ.
O E	BRONG	Eas	88	90	90	98	90	8	iarmi ies.
SNC	Ç		4-1	- 27	- 63	6	00	9	leD Jaqu
FFERI	ENCEO	Western Signals.	8 h m 44.578 1 08	46.192	45.562	49-149	51.988	53-756	F.A. M
DI	FFE	Wes	88	80	80	80	80	8	est,
	D		4-						(Ea
		DATE	1909 Sept. 27	28	30	23		4	Observers {West, F.A. McDiarmid.
			Sept.	я	я	Oet.	я	ы	

+ ·028

Mean difference of longitude.
Longitude of Dominion Observatory
Correction to Winnipeg longitude due to solving
of longitude new Transpired of Manupog.
Longitude of Winnipeg

DIFFERENCE OF LONGITUDE BETWEEN WINNIPEG, MAN., AND DOMINION OBSERVATORY, OTTAWA.

	Trans- mission.	8 -053	-064	.065	-077	-075	.062	.057	.065	-058	.073	690	990-	.077	780.	
	4	mg*s	-61	-	m0/4	100	-	-079	-	-475	-401	60%	-	-	1	1
TUDE	MEAN.	8 43.158	43-068	43-256	43.278	43.232	43.281	43-316	43.284	43.243	43-185	43.204	43.287	43-196	43-368	
IDNO.	Z	1 25 m	25	25	22	25	25	25	22	52	25	25	22	25	25	
DIFFERENCE OF LONGITUDE	Eastern Signals.	8 43.105	43.004	43-191	43.201	43.156	43.221	43.259	43.219	43.184	43.112	43-135	43.221	43.119	43.281	
PFBR	Fas	E 25	25	25	25	22	25	22	22	25	25	22	22	22	22	
ā	Western Signals.	8 43.212 1	43-132	43.321	43-355 1	43.307 1	43.342	43.374	43.349 1	43.301	43.258 1	43.274 1	43.353 1	43-273	43-456 1	
	We	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	
RECTION	Eastern Station.	8 + .007	+ -115	+ -165	+ .301	+ .493	+ -545	+1.014	+1.128	+1.310	+1.876	+1.960	+2.045	+2.176	+2.324	
CLOCK CORRECTION	Western Station.	8 -22.790	-20.011	-18.237	-16.039	-10.274	-08.261	-01.218	900.00-	+ 3.175	+17-649	+18.940	+20.344	+20.850	+20.363	
VOGRAPH	Eastern Signals.	8 20.308	22.878	24-789	26.861	32-389	34-415	41.027	42.085	45-049	58.885	60-115	61.520	61-793	61.320	
Снио	S:E	1 25 m	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	
DIFFERENCE OF CHRONOGRAPH	Western	8 20.415	23.006	24.919	27.015	32.540	34.536	41.142	42.215	45.166	59.031	60.254	61-652	61-947	61-495	
DIFFE	We	1. 25 1. 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	1 25	
	DATE	14	161	171	18	20	21	25	26	29	5	6	7	81	91	
		May	25	77	16	26	3	я	3	ä	June	3	3	3	¥	

Observers West, F. A. McDiarmid.

Observers East, D. B. Nugent
R. M. Stewart

DIFFERENCE OF LONGITUDE BETWEEN NORTH PORTAL, SASK., AND WINNIPEG, MAN.

Time of	Trans- mission.	.031	.050	.023	.022	-035	-032	36-404
	a	81119	060	.003	920.	160	130	4 9
TUDE	MEAN	36.285	36.314	36.401	36.428	36.564	36.534	Mean difference of longitude
LONGI	4	m 21	21	52	21	21	21	
DIFFERENCE OF LONGITUDE	Eastern Signals.	36-254	36-264	36.378	36-306	36-529	36-502	ongitude.
HFFER	Sig	21 21	21	21	21	21	21	e of Ic
Δ .	Western Signals.	8 36-315	36-364	36.425	36-350	36-600	36-567	Mean difference of longitude
	N. Sign	21 21	22	21	21	21	12	Mean
RRECTION	Eastern Station.	-41.764	+ 1.403	+ 1.894	+ 3.301	+ 6.058	+ 6.237	
CLOCK CORRECTION	Western Station.	+59.895	699-09+	+62.069	+62.060	+63-791	+64.187	
NOGRAPH	Eastern Signals.	s17.913	35.530	36.553	35-065	34.262	34.452	nid.
CHRO	Sig	133	22	62	55	67	31	Diarn pues.
DIFFERENCE OF CHRONOGRAPH	Western Signals.	8 17.974	35-630	36-600	35-109	34-333	31.517	West, F. A. McDiarmid. [East, W. C. Jaques.
DIFFE	N. Sig	238	55	62	55	27	27	West, East,
	Date	July 12		14	16	61	20	Observers {}
	ш	uly		3		-	4	ō

DIFFERENCE OF LONGITUDE BETWEEN MORTLACH, SASK., AND WINNIFEG, MAN.

				C C C C	DIFFERENCE OF CHRONOGRAPH	-							ž.		TO THE POST OF THE	NO.			Timoof
	Date		Western Signals.	F.ci	2100	Eastern Signals.		Western Station.	Eastern Station.		Wes	Western Signals.		Eastern Signals.	ern als.		MEAN.	a	Trans- mission.
	1910	40	m 36 13.	13.731	40	36 13°s	3-672	+39.645	+6.687	40	88 B	8 h 40.773 0	1	88	8 40.714	h 0 35	8 40.744	9900	9000
	24	0	36	12.518 0	6	36 12.	12-458	+38.652	+7.003 0 35	0		40.868 0 35	0	35	40.809 0	35	5 40.839	029	
	25	0	36 11.	11.137	ő O	36 11	11-085	+37.640	+7.337	0	0 35	40.834 0 35	0	35	40.782 0	88	90-808	.000	970-
26		0	36 09.	877-60		36 09	09-692	+36.929	+7.952	0	35	40-801	0	35	40.718 0	35	40.760	.050	-042
88		0_	36 08	08-865	0 36		08.785	+36.731	+8.727	0	35	40-861 0		- 58	40.781	0 35	40.821	011	.040
53		0	36	09-138 0 36	98	3 09-055	055	+37.351	+9.140 0 35 40.927 0 35	0	35	40.927	0	35 4	40.844 0 35	83	40.882	075	-041

E288E 4092 Mean difference of longitude

Longitude of Winnipeg

Longitude of Mortlach

8 40-810 35-262 16-072

MAN DESIGNATION OF A PARTY WAS NOT A TON A AND MANAGED MAN

Time of	mission.	.072	.067	• 0093	-071	.053	-062	.061	090-
	a.	s 022	083	087	.041	010	.051	-000	090
TUDE	MEAN.	34.312	34.373	34.327	34.249	34.300	34.239	34.283	34.240
NGI	M	8 IS	51	21	21	51	21	51	51
Lo		40	0	0	0	0	0	0	0
DIFFERENCE OF LONGITUDE	Eastern Signals.	34.240	34.316	34.264	34.178	34.247	34.177	34.222	34.200 0
FER	Sig	8 E	51	51	51	51	51	51	51
DIE		40	0	0	0	0	0	0	0
	Western Signals.	34.385	34-430 0 51	34.391	34.319	34.353	34.290 0	34.345	34.281
	W Sig	815	51	51	51	51	51	51	51
		40	0	0	0	0	0	0	0
RRECTION	Eastern Station.	+ 9.391	+10.019 0	+ 9.894 0	+10.177	+10.242	+10.295 0	+10-621 0	+11.257
CLOCK CORRECTION	Western Station.	+37.894	+36.761	+35.676	+35.060	+34.293	+32.212	+31.209	+28.935
DIFFERENCE OF CHRONOGRAPH	Eastern Signals.	8 02.743	01.058	950.00	59.061	58.298	56-164	54.810	51.878
HRO	E S	E 22	52	52	51	51	51	51	51
Dr C		40	0	0	0	0	0	0	0
RENCE	Western Signals.	888-20	01.172	00.173	59.202	58-404	56.207	54-933	51.959
DIFFE	We	E23	52	52	51	51	51	51	51
		40			_ 0	-0	- 0	- 0	0
	DATE	1910		4	50	9	7	×	6
25a—34		Aug.	а	я	а	я	я	a	я

34.290 35.262 09.552 82828 409h

Mean difference of longitude Longitude of Winnipeg Longitude of Walsh

Observers West, F. A. McDiarmid.

DIFFERENCE OF LONGITUDE BETWEEN PINCHER, ALTA., AND WINNIPEG, MAN.

Time of	Trans- mission.	.093	• 098	-088	·004
	4	× .043	002	029	620.
CONGITUDE	МЕАК	h m s 1 07 11-977	12.112	12.019	111-911
DIFFERENCE OF LONGITUDE	Eastern Signals.	h m s h l	12.014	11.951	11.847
	Western Signals.	h m s h 1 1 07 12.071 1	12:211	12-147	12.035
RRECTION	Eastern Station.	8 h m +14.078 1 07	+17-375	+19-212	+21.092
CLOCK CORRECTION	Western Station.	-41·857	-44-945	-45.029	-45.620
DIFFERENCE OF CHRONOGRAPH	Eastern Signals.	h m s 1 06 15-949	09-694	07-710	05-135
DIFFERENCE OF	Western Signals.	h m s h m 1 66 16-136 1 06	09-891	906-20	05-323
	Вате	1910 Aug. 13	16	17	я 18

Observers (East, F. A. McDiarmid.

Mean difference of longitude
Longitude of Winnipeg
Longitude of Fincher

07 12-020 28 35-262 35 47-282

DIFFERENCE OF LONGITUDE BETWEEN COUTTS, ALTA., AND WINNIPEG, MAN.

Time of	Trans- mission.	.107	109	-114	901.		9110
	4	- · 037	044	090	015	·064	026
TUDE	MEAN.	8 15·168	15-175	15.071	15.146	15.067	15-157
NGD	N	25 B	59	53	55	59	59
. Lo		40	0	0	0	0	0
DIFFERENCE OF LONGITUDE	Eastern Signals.	m s 59 15-061	15.066 0	15-184 0 59 14-957 0	15.038 0	14-956	15.041
FER	SE	E 55	59	59	59	59	59
Dir		40	0	0	0	0	0
	Western Signals.	m s h 59 15-275 0	15.284 0 59	15-184	15.253	15-177	15.274
	We	n 52	59	59	59	59	59
		40	0	0	0	0	0
RRECTION	Eastern	8 +19.254	+17.899 0 59	+17-443 0 59	+17.875 0 59 15.253 0 59	+19.256 0 59 15.177 0 59 14.956 0 59	+20-692 0 59 15-274 0 59 15-041 0 59 15-157
CLOCK CORRECTION	Western	-40·252	-41.058	-38-631	-39.700	-37 -143	-35-476
DIFFERENCE OF CHRONOGRAPH	Eastern Signals.	8 15-555	16.110	18.883	0 58 17-678 0 58 17-463	58 18-778 0 58 18-557	0 58 19-106 0 58 18-873
HRO	Ea	8.8	200	200	33	200	30
C		40_	_ =	0	_ 0	0	0
RENCE O	Western Signals.	m s h 58 15-769 0	16-327 0 58	19-110 0 58	17-678	18.778	19-106
IFFE	We	8.8	88	0 28	98	98	30
Д		40_	0	0	0	0	۰.
	DATE	1910	8	00	9	11	12
		Sept.	*	3	3	is .	18

Observers (East, F. A. McDiarmid.

s 15-131 35-262 50-393

Mean difference of longitude
Longitude of Winnipeg
Longitude of Coutts

DIFFERENCE OF LONGITUDE BETWEEN EMERSON, MAN., AND WINNIPEG, MAN.

		DIFFERENCE OF	DIFFERENCE OF CHRONOGRAPH		CLOCK CORRECTION	T	DIFFERENCE OF LONGITUDE	Longitude		Time (
DATE	EG.	Western Signals.	Eastern Signals.	Western Station.	Eastern Station.	Western Signals.	Eastern Signals.	MEAN.	a	Trans- mission.
1910 Sept. 17		h m s 0 00 41.923	h m s 0 00 42.005	-54·865	+1.874	h m s 0 00 14.816	h m s 0 00 14:734	h m s 0 00 14-775	018	.041
19.	19	41.857	41.944	-54.290	+2.422	14-855	14.768	14.811	054	.043
20	20	42-344	42.440	-54.621	+2.442	14.719	14.623	14.671	980-	•048
83	23	34.934	35-028	-44.921	+4.841	14.826	14.732	14.779	025	.047
. 26.	26	27.065	27.158	-34.660	+7.199	14.794	14.701	14-748	600	710.

Observers (West. F. A. McDiarmid. East, W. C. Jaques.

 Mean difference of longitude
 h
 m
 757

 Longitude of Winnipeg
 6
 28
 35
 202

 Longitude of Enerson
 6
 28
 50-019

DIFFERENCE OF LONGITUDE BETWEEN WINDSOR, ONT., AND DOMINION OBSERVATORY, OTTAWA.

Time of	Trans- mission.	8 110	.062	.045	.039	.053	-044
	a	8 003	.031	-005	053	085	-119
UDE	MEAN.	19.502	19-468	19.501	19.552	19.584	19-387
NGIT	, W	83	53	53	59	29	83
3		40	0	0	0	0	0
DIFFERENCE OF LONGITUDE	Eastern Signals.	s 19.458	19.416	19.456	19.513 0	19.531	19-343 0
FER	Sign	138	53	23	53	29	8
Dir		40	0	0	0	0	0
	Western Signals.	19.545	19.520 0	19.547 0 29	19.591 0	19-638 0	19.430 0
	We Sig	23 13	53	29	29	53	8
		40		0	0	0	
RRECTION	Eastern Station.	+13.984	+14.089 0 29	+14.192 0 29	+14.299 0 29	+14.446 0 29	+14.883 0
CLOCK CORRECTION	Western Station.	+41·502	+43.099	+42.815	+42.705	+44.153	+47.707
DIFFERENCE OF CHRONOGRAPH	Eastern Signals.	8 46.976	48.426	48.079	47.919	49.238	52-167
RON	Sign	88	29	59	53	53	29
CE		.40	0	0	0	0	0
RENCE OF	Western Signals.	8 47 · 063	48.530 0	48.170 0	47-997	49-345 0	52-254
IFFE	We	29 E	53	53	53	59	53
ď	1	40	۰.	0	0	_0	0
	DATE	1910 Sept. 30	1	2	00	4	7
		apt.	Oct.	и	a	3	3

Observers (West, F. A. McDiarmid. East, D. B. Nugent.

8 19-499 51-983 11-482

DIFFERENCE OF LONGITUDE BETWEEN SAULT STE. MARIE, ONT., AND DOMINION OBSERVATORY, OTTAWA.

Time of	Trans- mission.	s 070-	-072	-074	.063	-220
	d	8 091	-049	.010	6000	.025
LONGITUDE	Mean	h m s 0 34 26-906	26-766	26.805	26.806	26.790
DIFFERENCE OF LONGITUDE	Eastern Signals.	h m s 0 34 26.830	26-695	26.731	26.743	26.713
	Western Signals.	h m s 0 34 26.981	26-837	26-879	26.869	26.866
RRECTION	Eastern Station.	+14.740 0	+14.887	+15.461	+15-749	+16.022
Слоск Совнестиом	Western Station.	-00.950	+01-074	+03.588	+05.793	+07.045
CHRONOGRAPB	Eastern Signals.	h m s 0 34 11-140	12.882	14.858	16-787	17.736
DIPPERENCE OF CHRONOGRAPH	Western Signals.	h m s 0 34 11.291	13.024	15.006	16-913	17-889
	DATE	1910 Oet. 6	" T	8	10	11

West, W. C. Jaques.

Observers East, R. M. Stewart.
Longfude of 3D

D. B. Nugent.

 Mean difference of longitude
 0
 34
 26-815

 Longitude of Dominion Observatory
 5
 02
 51-983

 Longitude of Sault Ste. Marie
 5
 37
 18-798

ASTRONOMICAL POSITIONS OF STATIONS.

Observed, 1885 to 1910.

Place.	Year.	Difference of Longitude.	Base.	Longitude.	Longitude. Latitude.
Baneroft	1909	h m s 0 08 34 317	Dom. Obs	h m s 5 11 26-300	77 51 34-50 45 03 34-52
Barry Bay		0 07 50-534			77 40 37-76 45 29 17-11
Bathurst	1909	0 40 14 848	ω	4 22 37-135	65 39 17-03 47 37 12-95
Beeton	1904	0 16 17 - 528	Ottawa	5 19 07 - 550	79 46 53 25 44 04 47 70
Black Lake	1908	0 17 27-431	Dom. Obs	4 45 24 - 552	71 21 08 28 46 02 44 59
Boiestown	1908	0 37 10-990	"	4 25 40-993	66 25 14 90 46 27 18 52
Boundary (Yukon)	1906	i 1i 31-626	Vaneouver	9 24 00 - 030	141 00 00 45 64 40 51 42
Boundary (Waneta)	1908	0 18 49 - 289	Seattle	7 50 30-985	117 37 44 78 49 00 00 55
Calgary	1886	0 25 03 659	Kamloops	7 36 15-132	114 03 46 98 51 02 39 21
Campbellton	1908	0 36 10-364	Dom. Obs	4 26 41-619	66 40 24 28 48 00 31 33
Canoe Lake	1900	0 12 04 914	Ottawa	5 14 54-936	78 43 44 04 45 34 41 55
Chalk River	1900	0 06 58-506	4	5 09 48-528	77 27 07 92 46 00 52 32
Chapleau	1907	0 30 45-695	Dom. Obs	5 33 37 - 678	83 24 25 17 47 50 31 21
Charlottetown	1909	0 50 22-407	4	4 12 29-576	63 07 23 64 46 13 58 48
Cobourg	1904				
Cochrane	1909	0 21 14-949	Dom. Obs	5 24 06-932	81 01 43-98 49 03 41-88
Coutts	1910	0 59 15 131	Winnipeg	7 27 50-393	111 57 35-90 49 00 09-01
Covey Hill	1903				45 01 13.35
Dawson	1907	0 06 16-131	Boundary	9 17 43 - 899	139 25 58 49 64 03 23 15
Digby	1909	0 39 50-801	Dom. Obs	4 23 01 182	65 45 17 73 44 37 13 58
Dom. Observatory	1905	0 00 01-961	Ottawa (Cliff St.)	5 02 51-983	75 42 59-75
Edmonton	1888	1 05 27-965	Winnipeg(new Obs	7 34 01 754	113 30 26-31 53 31 58-81
Edinundston	1908	0 29 33-867	Dom. Obs	4 33 18-116	68 19 31 - 74 47 22 06 - 65
Emerson	1910	0 00 14-757	Winnipeg	6 28 50-019	97 12 30 29 49 00 04 34
Erwood	1909	0 20 09-936	"	6 48 45 198	102 11 17-97 52 51 37-69

3 GEORGE V., A. 1913

ASTRONOMICAL POSITIONS OF STATIONS-Continued.

Place.	Year.	Difference of Longitude.	Base.	Longitude.	Longitude.	Latitude.
Father Point	1905	h m s 0 28 58 508	Dom. Obs	h m s 4 33 53 475	68 28 22-12	o / # 48 31 05-14
Field			Kamloops			
Fort Frances	1908	1 10 44-496	Dom. Obs	6 13 36 479	93 24 07-18	48 36 48-59
Foster	1908	0 12 52 932	٠	4 49 59 051	72 29 45 - 76	45 17 14 - 63
Fredericton	1908	0 36 18-419	44	4 26 33-564	66 38 23 46	45 57 41-30
Gateway	1908	0.28 39.199	Seattle	7 40 41 075	115 10 16-13	48 59 58-45
Guelph	1904	0 18 10 - 545	Ottawa	5 21 00-567	80 15 08-50	43 32 43 70
Haliburton	1909	0 11 10-911	Dom. Obs	5 14 02 894	78 30 43 41	45 02 43-78
Halifax	1908	0 48 27 - 314	4	4 14 24 669	63 36 10 - 03	44 40 07-52
Harriston	1904	0 20 39-252	Ottawa	5 23 29 274	80 52 19-11	43 54 52-40
Jackfish	1908	0 45 01 - 528	Dom. Obs	5 47 53-511	86 58 22-66	48 47 44-84
Kalmar	1887	0 08 40 476	Winnipeg (old Obs)	6 19 51 154	94 57 47-31	49 46 21 96
Kamloops	1886	1 32 47 - 157	Winnipeg (old Obs)	8 01 18.791	120 19 41-87	50 40 39-02
Kingston	1905	0 03 00.881	Dom. Obs	5 05 52-864	76 28 12-96	44 13 46-58
Labelle	1907	0 03 57.575	Dom. Obs	4 58 54-408	74 43 36-12	46 17 02-27
Lake Edward	1907	0 13 45 875	۵	4 49 06 108	72 16 31-62	47 39 34-25
Lindsay	1905	0 12 04 647	ш	5 14 56-630	78 44 09 45	44 21 30-50
Liskeard	1906	0 15 53 - 001	"	5 18 44.984	79 41 14-76	47 30 33-58
Lloydminster	1909	0 51 26-353	Winnipeg	7 20 01-615	110 00 24-23	53 17 08-49
Macdowall	1909	0 35 27-580	Winnipeg	7 04 02 842	106 00 42-63	53 01 01-26
Madoc	1905	0 07 01.794	Dom. Obs	5 09 53.777	77 28 26-66	44 30 15-70
Maniwaki	1906	0 01 02-581	"	5 03 54 - 564	75 58 38-46	46 22 28 40
Matheson	1908	0 18 59-665	α	5 21 51-648	80 27 54 - 72	48 32 07-23
Mattawa	1907	0 11 57-405	66	5 14 49 388	78 42 20-82	46 18 40-55

ASTRONOMICAL POSITIONS OF STATIONS-Continued.

PLACE	Year.	Difference of Longitude.	Base.	Longitude.	Longitude. Latitud	le.
Megentic	1908	h m s 0 19 19 926	Dom. Obs	h m s 4 43 32 · 057	70 53 00-85 45 34 32	-80
Michipicoten	1907					-16
Midway	1901	0 17 19-354	Vancouver	7 55 09-050	118 47 15 75 49 00 40	-50
Moneton	1908	0 43 42 254	Dom. Obs	4 19 09-729	64 47 25 93 46 05 02	-21
Mortlach	1910	0 35 40.810	Winnipeg	7 04 16 072	106 04 01 08 50 27 10	-91
Mulgrave	1909	0 57 18-658	Dom. Obs	4 05 33-325	61 23 19-87 45 36 18	-84
Newcastle	1908	0 40 33-947	Dom. Obs	4 22 18-036	65 34 30 - 54 47 00 11	-37
Nipigon	1908	0 50 11 098	«	5 53 03-081	88 15 46-22 49 00 43	-75
North Bay	1905	0 14 58-878	«	5 17 50·S61	79 27 42-91 46 18 22	-21
North Lake	1908	0 59 00 106	4	6 01 52 089	90 28 01-33 48 08 28	-77
North Portal	1910	0 21 36 404	Winnipeg	6 50 11-666	102 32 54 99 48 59 59	-37
Onion Lake	1888	0 51 26-833	Winnipeg(new Obs)	7 20 00 - 710	110 00 10-65 53 43 07	-73
Orillia	1904	0 14 49 962	Ottawa	5 17 39 984	79 24 59-76 44 36 28	-50
Ottawa	1896	0 08 31-388	Montreal	5 02 50 022	75 42 30-33 45 25 21	.78
Owen Sound	1900	0 20 56-724	Ottawa	5 23 46.746	S0 56 41·19 44 33 56	-42
Pembroke	1907	0 05 34 875	Dom. Obs	5 08 26-858	77 06 42 87 45 49 42	-15
Percé	1908	0 45 59-383	4	4 16 52-600	64 13 09 00 48 30 52	.05
Pickerel	1909	0 19 15 405	«	5 22 07-388	80 31 50-82 45 58 24	.05
Pincher	1910	1 07 12-020	Winnipeg	7 35 47-282	113 56 49 23 49 31 22	-60
Port Arthur	1887	0 31 40 192	Winnipeg (old Obs)	5 56 51-507	89 12 52 61 48 26 01	-66
Port Moody	1885	0 10 05 108	Kamloops	S 11 26-659	122 51 39 89 49 16 29	-55
Portneuf	1903	0 15 15 653	Ottawa	4 47 34 369	71 53 35 53 46 42 33	-44
Port Stanley	1896	0 22 00-865	4	5 24 50-887	81 12 43 - 30 42 39 52	-73
Rainy River	1908	1 15 23 - 871	Dom. Obs	6 18 15 854	94 33 57-81 48 43 22	80
Rayside	1900	0 21 32-512	Ottawa	5 24 22 534	81 05 38 01 46 32 47	•45
Renfrew	1905	0 03 51-729	Dom. Obs	5 06 43.712	76 40 55-68 45 28 30	·08

3 GEORGE V., A. 1913 ASTRONOMICAL POSITIONS OF STATIONS—Continued.

PLACE	Year.	Difference of Longitude.	Base.	Longitude.	Longitude.	Latitude.
		Longitude.				
Revelstoke	1886	h m s 0 08 28-970	Kamloops (1886).	h m s 7 52 49-847	118 12 27-70	51 00 11-25
Rivière-à-Pierre	1907	0 14 08 284	Dom. Obs	4 48 43 699	72 10 55-48	46 59 16 90
Rivière-du-Loup	1908	0 24 45 836	и	4 38 06 147	69 31 32 - 20	47 49 23 48
Rivière Ouelle	1906	0 22 46 239	64	4 40 05.744	70 01 26 16	47 29 04-86
Roberval	1907	0 13 57 - 797	4	4 48 54 186	72 13 32 - 79	48 31 03-68
Rose Point	1900	0 17 19-911	Ottawa	5 20 09-933	80 02 28-99	45 19 00-73
Sault Ste. Marie	1910	0.34.26.815	Dom. Obs	5 37 18-798	84 19 41-97	46 30 31-37
Scotia Junction		0 14 18-831			79 17 42-21	45 30 46 75
Selkirk			Dawson		137 22 39 08	
Sharbot Lake			Dom. Obs		76 41 28 80	
		0 44 00-423			64 42 53 40	
Shippigan		0 10 24-308			73 06-55-12	
Sorel		1 19 41 - 368			95 38 20-26	
Sprague	1908	1 19 41 - 308		0 22 00.001	90 08 20120	49 02 00 10
Ste. Anne-de- Bellevue	1905	0 07 03 75	"	4 55 48-231	73 57 03 - 46	45 24 28 13
St. Catharines	1905	0 14 05-013	"	5 16 56-995	79 14 14 92	43 09 41.72
St. Hyacinthe	1908	0 11 07-658		4 51 44-325	72 56 04 87	45 37 15-28
St. Jerome	1908	0 06 52-184	"	4 55 59.799	73 59 56-98	45 46 33 29
St. John	1908	0 38 35-988		4 24 15 998	66 03 59 97	45 16 35 04
Stonyplain	1909	1 07 26 573	Winnipeg	7 36 01-835	114 00 27-53	53 31 47 - 27
Sutton	1905	0 14 35 633	Dom. Obs	5 17 27-616	79 21 54-24	44 18 12-49
Sydney	1909	1 02 04 43		4 00 47 - 552	60 11 53-28	46 08 27 - 86
			'			
Tadoussac	1905	0 24 00 533	Dom. Obs	4 38 51-451	69 42 51 - 76	48 08 27 - 19
Tantalus	1907	0 12 35-313	Dawson	9 05 08 586	136 17 08 - 79	62 05 28 - 56
Three Rivers	1902	0 12 41 407	Ottawa	4 50 08 615	72 32 09-22	46 20 37 09
Timagami	1905	0 16 17 - 318	Dom. Obs	5 19 09-301	79 47 19-51	47 03 47 91
Trenton	1905	0 07 26 720		5 10 18-703	77 34 40 - 54	44 05 52-53
Truro	1908	0 49 46 95		4 13 05-028	63 16 15 42	45 21 47-32

ASTRONOMICAL POSITIONS OF STATIONS-Concluded.

PLACE	Year.	Difference of Longitude.	Base.	Longitude.	Longitude. Latitude.
Vancouver	1905	h m s 0 03 08 130	Seattle	h m s 8 12 28-404	123 07 06 06 49 17 46 07
Victoria	1885	0 04 06-994	· "	8 13 26-444	123 21 36 66 48 25 31 38
Walsh	1910	0 51 34 290	Winnipeg	7 20 09 552	110 02 23-28 49 57 06-79
Wapella	1887	0 19 21 505	Winnipeg(old Obs)	6 47 53 097	101 58 16-46 50 15 45-79
Whitby	1905	0 12 53-864	Dom. Obs	5 15 45-847	78 56 27 - 70 43 52 43 - 34
Whitehorse	1907	0 17 32-318	Dawson	9 00 11 - 581	135 02 53 71 60 43 17 17
White Pass	1907	0 17 10.389	"	9 00 33-510	135 08 22-65 59 37 28-66
White River	1902	0 38 17 - 627	Ottawa	5 41 07-649	85 16 54 73 48 35 11 53
Wilno	1900	0 07 24-676		5 10 14 698	77 33 40-47 45 30 54-46
Windsor	1910	0 29 19-499	Dom. Obs	5 32 11-482	83 02 52-23 42 18 58-31
Winnipeg	1910	1 25 43 279		6 28 35 262	97 08 48-93 49 53 10-98
Woodstock (Ont.).	1903	0 20 14 - 841	Ottawa	5 23 04 863	80 46 12-94 43 08 07-62
Woodstock (N.B.).	1908	0 32 32 979	Dom. Obs	4 30 19 004	67 34 45 06 46 08 33 28
Yarmouth	1909	0 38 23 205	Dom. Obs	4 24 28.778	66 07 11-67 43 50 14-75

LOCAL POSITIONS OF ASTRONOMICAL STATIONS.

- Bancroft.—The pier is 99.8 feet west and 220.8 feet north of the centre point of the crossing of Station street and the Central Ontario railway.
- Barry Bay.—The pier is about 200 feet south of the Grand Trunk railway station-house and is 106.9 feet south and 1.1 feet east of the northeast corner of the Balmoral hotel.
- Bathurst.—The pier is 54.1 feet west and 79.2 feet north of the southeast corner of King and Water streets, town of Bathurst.
- Beelon.—The astronomical station is 100 feet west of the west side of Patterson street and 78 feet north of the north side of Main street. Patterson street is a road allowance between lots 10 and 11. Main street is a road allowance between concessions 7 and 8 in the township of Tecumseth.
- Black Lake.—The pier is 111.1 feet east and 190.8 feet north of the northwest corner of Whitney avenue and the private way of the American Asbestos Company.
- Boiestown.—The pier is 41.63 feet east and 90.87 feet north from the northeast corner of T. Lynch & Co.'s supply store.
- Boundary (Yukon).—The astronomical station is on the south bank of the Yukon river and is 352 feet east of the "Ogilvie Line" and about 20 feet south from the shore of the Yukon river.
- Boundary (Waneta).—The pier is 24.5 feet due east of monument No. 181 on the international boundary line.
- Calgary.—The astronomical station is 1 chain 56 links south of the centre line of the main line of the Canadian Pacific railway, and 2 chains 49 links north of the northeast corner of town lot No. 11 in block 69. The meridian through the observatory passes 37½ links east of said northeast corner of lot 11.
- Campbellton.—The pier is 18.27 feet east and 12.41 feet south of the southeast corner of the post office building.
- Canoe Lake.—The astronomical station is 371 feet due south of the centre line of the Ottawa and Parry Sound railway, 526 feet due west from the division line between lots Nos. 20 and 21 in the 14th concession in the township of Peck.
- Challe River.—The astronomical station is on a slight knoll on the sandy expanse south of the Canadian Pacific railway track and distant 1883.7 feet on a course south 56° 15′ east from the original post on the north side of the road allowance between concessions S and 9 and between lots 1 and 2 in the township of Buchanan; it is also distant 457.6 feet due south from the centre line of the main line of the Canadian Pacific railway. It may be mentioned that the old or first Canadian Pacific railway station was considerably east (several miles) of the present one.
- Chapleau.—The pier is 174.7 feet west and 432.3 feet south of the railway crossing sign-board of the Canadian Pacific railway. This crossing is about 300 feet west of the Canadian Pacific railway station-house.
- Charlottetown.—The pier is situated off Water street 94.13 feet south and 19.73 feet west of the northwest corner of the stone verandah of Richard Grant's house.

- LOCAL POSITIONS OF ASTRONOMICAL STATIONS—Continued.
- Cobourg.—The astronomical station is situated 63 feet north of University avenue, 243 feet eat of the east side of College street produced northerly, and 81 feet 6 inches due south of the centre of the dome of Faraday Hall.
- Cochrane.—The pier is 24.8 feet west and 173.6 feet north of the southeast corner of Second street and Third avenue, town of Cochrane.
- Coutts.—The pier is 5803.8 feet south and 3514.9 feet east of triangulation station "Tenant," of the International Boundary Survey.
- Covey Hill.—The astronomical station is situated on township lot 34 in range 1 of the township of Havelock; owned by Mr. John Waddell. The station is marked by an iron bolt in the solid rock, two feet below the surface, over which a carin of stones was erected. The azimuth to monument 684 on the international boundary is 135° 07′, and the distance 7716.4 feet. It is on the highest part of Covey Hill.
- Dawson.—The pier is 168.3 feet east and 7.1 feet north of the southeast corner of the Administration Building.
- Digby.—The pier is 7.03 feet south and 183.44 feet east of the stone foundation of the northeast corner of the entrance to the schoolroom of the Baptist church.
- Dominion Observatory.—The meridian to which the longitudes are referred is that of the meridian circle in the transit annex.
- Edmonton.—Here it was intended to occupy the Dominion Lands Survey latitude station (King) of 1877, but that being impracticable on account of exeavation made there, the situation was established (observatory building) 70.2 feet southeast thereof, the azimuth being 120°.07. The 14th base line (Aldous, 1879) intersects the meridian of astronomical station (King, 1877) a 298.45 chains west of the northeast corner of township 52, range 24, west of the Fourth meridian (old system).
- Edmundston.—The pier is 148.30 feet east and 12.04 feet north of the northeast corner of the Temiseouata railway station.
- Emerson.—The pier is 113.5 feet south and 43.5 feet east of the southeasterly corner of Morris and Second streets in the town of Emerson; also 411.3 feet due north of the international boundary line. The azimuth station is about one and one-half miles due south of the observatory; it is situated midway between Mr. Moise Prantaeu's granary and implement house.
- Erwood.—The pier is 729.5 feet north and 3035.1 feet west of iron post at northerly corner between sections 1 and 2, township 45, range 2, west of the 2nd meridian.
- Father Point.—The astronomical station is on the property of J. McWilliams, immediately adjoining the lighthouse reserve. The centre of the pier is 125 feet 7 inches due south of the centre of the revolving light surmounting the lighthouse.
- Field.—The astronomical station is situated on the north side of the Canadian Pacific railway track near and west of the Canadian Pacific railway hotel then building. It is distant 68 feet 8 inches from Canadian Pacific railway traverse station No. 93 in the year 1886.

3 GEORGE V., A. 1913

LOCAL POSITIONS OF ASTRONOMICAL STATIONS—Continued.

- Fort Frances.—The pier is 9.7 feet north and 189.2 feet east of the northcast corner of Fourth street and Cornwall avenue.
- Foster.—The pier is 181.5 feet north and 480.3 feet west of the middle point of the crossing of the Bolton road and the Canadian Pacific railway main line (Foster crossing). The pier is about 80 feet north of the Canadian Pacific railway station-house.
- Fredericton.—The pier is on the river front 52.15 feet north and 67.0 feet west of the northwest corner of Lamont's furniture warehouse at the corner of Regent and Campbell streets.
- Gateway.—The pier is on the international boundary line 189.4 feet due east of boundary monument No. 244, and is 541.3 feet west of United States survey post No. 25104 on boundary line.
- Guelph.—The astronomical station is 150 feet west of Norfolk street and 85 feet north of Paisley street, Nelson crescent.
- Haliburton.—The pier is 22.0 feet north and 32.9 feet west of the southwest corner of lot 3, block L, north side of Queen street, village of Haliburton.
- Halifax.—The pier is 127.26 feet east and 90.38 feet north of the southeast corner of Creighton & Co.'s grocery store. It is also 63.23 feet east and 54.04 feet south of the gas pipe marking the boundary of the LC.R. yard. Direction of said pipe from pier being 54° 15′ from the meridian measured from the north through the west.
- Harriston.—The astronomical station is 108 feet south of Queen street, and 148 feet east of Union street.
- Jackfish.—The pier is 228.5 feet north and 82.9 feet west of the southwest corner of the Canadian Pacific railway station-house.
- Kalmar.—The position of astronomical station is on the sloping hillside west of the railway station, since rebuilt, and on the north side of the Canadian Pacific railway due north SS feet 54 inches from the centre line thereof.
- Kamloops.—The astronomical station is on the intersection of the middle lines of Victoria avenue and Fifth street of the new townsite.
- Kingston.—The observatory is situated on the Royal Military College grounds on Point Frederick, about 200 feet from Cataraqui bay. It is used in connection with the work of the college.
- Labelle.—The pier is 1685 feet east and 82 feet south of the middle point of crossing of the Canadian Pacific railway and Berthiaume road. This crossing is about 470 feet east of the Canadian Pacific railway station-house.
- Lake Edward.—The pier is 332.4 feet east and 40.6 feet north of the northeast corner of the Quebec and Lake St. John railway station-house.

- LOCAL POSITIONS OF ASTRONOMICAL STATIONS—Continued.
- Lindsay.—The astronomical station is on the right-of-way of the Canadian Pacific railway, 10.7 feet west and 172.8 feet north of the northwest corner of the Canadian Pacific railway station-house.
- Liskeard.—The observatory pier is 25.5 feet south and 836.6 feet west of an iron post which is 145 feet 5. 5° 29′ W. of the southwest corner of the Timiskaming and Northern Ontario railway station-house.
- Lloydminster.—The pier is 378.0 feet west and 2455.1 feet north of the northeast corner of section 36, township 49, range 1, west of the 4th meridian.
- Macdowall.—The pier is 2365.9 feet south and 1986.8 feet west of the northeast corner of section 13, township 46, range 1, west of the 3rd meridian.
- Madoc. The pier is 113 feet west and 123 feet north of the northwest corner of Durham and St. Lawrence streets.
- Maniwaki.—The observatory pier is 112.8 feet south and 69.8 feet west of the south-west corner of the Canadian Pacific railway station-house.
- Matheson.—The pier is on the right-of-way of the Timiskaming and Northern Ontario railway, and is 15.5, feet south and 178.0 feet east of the northeast corner of Fifth avenue and Railway street.
- Mattawa.—The pier is 419.6 feet west and 56.2 feet south of the southwest corner of the Canadian Pacific railway station-house.
- Megantic.—The pier is 172.5 feet east and 72.6 feet north of the southwest corner of Maple avenue and McCauley street.
- Michipicoten.—The pier is 45 feet north and 104 feet west of the northwest corner of the Algoma Inn.
- Midway.—The astronomical station is situated about 100 feet south of the Canadian Pacific railway station (dwelling and ticket office) and 607½ feet in azimuth 2576 37 'from the point on the east side of Adams street, 15¾ feet south of the south side of Eleventh street.
- Moncton.—Reference point is the northwest corner of the Intercolonial railway blacksmith shop N. 52° 16′ E. from meridian through centre of pier. Distance 4.378 chains.
- Mortlach.—The pier is 1144.7 feet south and 3583.2 feet west of the northeast corner of section 22, township 17, range 1, west of the 3rd meridian.
- Mulgravc.—The pier is situated 40.51 feet north and 60.59 feet west of the north-west corner of Mr. Kawaga's house.
- Newcastle.—The pier is 14.16 feet east and 90.66 feet south of the intersection of Station and Gene streets.
- Nipigon.—The pier is 47.8 feet west and 82.4 feet north of the northwest corner of the Canadian Pacific railway station-house.
- North Bay.—The astronomical station is situated on the property of the Canadian Pacific railway. The pier is 283.5 feet south and 109.5 feet west of the northwest corner of Main and Sherbrooke streets.

3 GEORGE V., A. 1913

LOCAL POSITIONS OF ASTRONOMICAL STATIONS-Continued.

- North Lake.—The pier is 272.5 feet east and 15.5 feet south of "frog" lying between the Port Arthur and Duluth railway main line and the southwest leg of the "Y".
- North Portal.—The pier is 33.6 feet east and 0.7 feet north of the boundary monument situated on the international boundary line between the villages of Portal, N.D., and North Portal, Sask. The azimuth pier is due north of the observatory pier a distance of about one-half mile.
- Onion Lake.—The astronomical station is situated 4 chains in azimuth 95°.81 from the point on survey line of Fourth meridian, 19,683 chains north of the southeast corner of township 55, and 3 feet south of the government telegraph line (the wire running over the observatory).
- Orillia.—The astronomical station is 174½ feet south of Mississaga street, and 87½ feet east of Peter street.
- Ottawa.—The observatory is at the northerly end of lot No. 7 on the north side of Cliff street, and at the edge of the perpendicular cliff overlooking the Ottawa river.
- Owen Sound.—The astronomical station is distant southwesterly 215.96 feet on the course making an angle of 57° 33′ with the westerly side of Poulett street from the intersection of that side of Poulett street with the southerly side of Baker street.
- Pembroke.—The pier is 98.2 feet north and 167.5 feet east of the intersection of the easterly limit of John street with the southerly limit of Wellington street.
- Percé.—The pier is 84.63 feet west and 72.28 feet south of the southwest corner of Abraham Lenfesty's house.
- Pickerel.—The pier is on a rocky knoll south of the Canadian Pacific railway main line and nearly opposite the station. The centre of the pier is 90.8 feet south and 60.1 feet east of the southeast corner of the Canadian Pacific railway station-house
- Pincher.—The pier is 555.0 feet south and 14.0 feet west of the northeast corner of section 34, township 6, range 30, west of the 4th meridian.
- Port Arthur.—The pier is 77.6 feet north and 48.2 feet east of the northwest corner of Arthur street and South Water street.
- Port Moody.—The astronomical station is 80 feet south of the centre line of the Canadian Pacific railway, 28 feet 10 inches southwest from a lot-stake marked L.18, and 25 feet 6 inches west from the centre of the plank road leading across the railway to the Elgin hotel.
- Portneuf.—The astronomical station is 21,667.11 feet in azimuth 298° 40′ 54″.3 or N. 61° 19′ 05″.7 W. from monument No. 31 of the St. Lawrence River Survey.
- Port Stanley.—The position of the astronomical station is on the property known formerly as a "Ship-yard" lying along the east side of Kettle creek, and to the west side of lots 1, 2 and 3 fronting on the west side of Main street.

LOCAL POSITIONS OF ASTRONOMICAL STATIONS—Continued.

- Rainy River.—The pier is 111.2 feet north and 51.3 feet west of the southwest corner of Third street and Atwood avenue.
- Rayside.—The astronomical station is situated on the farm of John Carrière, on lot 3, concession 1, township of Rayside, and distant 605.8 feet west from the division line between lots 2 and 3, and 441.4 feet north of the centre line of the Canadian Pacific railway.
- Renfrew.—The astronomical station is situated north of the Canadian Pacific railway station, about 210 feet north of the main line. The pier is 75 feet north and 77.7 feet east of the southwest corner of Joe and Janet streets.
- Revelstoke.—The astronomical station is 134 feet 10 inches to the north of the centre line of the Canadian Pacific railway, and 128 feet 8 inches on a course north 37° 29′ east from Canadian Pacific railway traverse station No. 1064 of the year 1886.
- Rivière-à-Pierre.—The pier is 120.2 feet west and 39.3 feet north of the northwest corner of the Quebec and Lake St. John railway station-house.
- Rivière-du-Loup.—The pier is 511.5 feet from the southeast corner of the I. C. R. machine shop. Angle from the north through the west 41° 54′.
- Rivière Ouelle.—The observatory pier is 18.7 feet south and 180.3 feet east of the first mooring post on the east side of the wharf. It is also about 70 feet from the Intercolonial railway crossing at the end of the wharf.
- Roberval.—The pier is 138.2 feet north and 47.1 feet west of the middle point of crossing of the Quebec and Lake St. John railway and the Roberval road.
- Rose Point.—The point of observation is on the north side of the railway track in the southeast corner of the garden of the Rose Point hotel, and 50 feet east of the road leading to the village of Parry Harbour. It is distant 196 feet at right angles to the township lot line running N. 20° 51′ 40″ W. (Beatty) at the point distant along the lot line 693 feet from the centre line of the Ottawa and Parry Sound railway.
- Sault Ste. Marie.—The pier is 51.78 feet south of the southwest corner of Queen street and Bell avenue.
- Scotia Junction.—The pier is about one-half mile east of the Grand Trunk railway station-house and is 249.4 feet north and 7.5 feet east of the sign-post at the Grand Trunk railway crossing.
- Selkirk.—The pier is 32 feet east and 22.5 feet south of the northeast corner of the Government Telegraph office.
- Sharbot Lake.—The astronomical station is on a hill north of the Canadian Pacific railway station. The pier is 385 fect north and 73.5 feet west of the west corner of the Canadian Pacific railway station-house.
- Shippigan.—The pier is 309.3 feet south and 2643.1 feet west of the southwest corner of the shore end of the curb lying on the west side of Shippigan wharf. It is also 793.1 feet south and 1041.4 feet west of the main spire of the Roman Catabolic church.

3 GEORGE V., A. 1913

LOCAL POSITIONS OF ASTRONOMICAL STATIONS-Continued.

- Sorcl:—The pier is 194.9 feet west and 34.2 feet north of the southeast corner of Ray and Victoria streets.
- Sprague.—The pier is 670.7 feet west and 1.4 feet north of the southwest corner of the Canadian Northern railway station-house.
- Ste. Anne-de-Bellewe.—The astronomical station is about 300 feet south of the Canadian Pacific railway station. The pier is 1552.22 feet N. 12° 12′ 15″ E. from main triangulation station 5 on end of guard pier at the lower entrance of the new lock.
- St. Catharines.—The astronomical station is situated on the property of the St. Catharines Gas Company at the corner of Phelps and Mill streets. The pier is 191.5 feet north and 94 feet east of the northeast corner of Phelps and Mill streets.
- St. Hyacinthe.—The pier is 85 feet east and 546 feet north of the middle point of the crossing of Broadway road and the Canadian Pacific railway main line, and is about 400 feet from the station-house.
- St. Jerome.—The pier is 412.0 feet east and 102.4 feet south of the southeast corner of St. Antoine and St. Anne streets. It is on the Canadian Pacific railway right-of-way about 400 feet south of the station-house.
- St. John.—The pier is 82 feet north and 174 feet west of the northeast corner of Lombard and Southwork streets. Reference point is southeast corner of L.C.R. grain clevator. Reference angle 188°.44 right from meridian at centre of pier to reference point. Distance 196.8 feet.
- Stonyplain.—The pier is 4102.6 feet south and 1197.8 feet west of iron post at the northeast corner of section 36, township 52, range 1, west of the 5th meridian.
- Sutton.—The astronomical station is situated on the right-of-way of the Grand Trunk railway. The pier is 65.7 feets south and 111.2 feet west of the southwest corner of the Grand Trunk railway station-house.
- Sydney.—The pier is on the esplanade 49.24 feet south and 89.66 feet west of the northwest corner of the Sydney hotel.
- Tadoussac.—The astronomical station is on the premises of the Richelieu and Ontario Navigation Company, to the rear of their hotel. The meridian through the centre of the pier passes one foot west of the flag-pole over the tower of the main or office entrance to the hotel, and the flag-pole is 211 feet south of the pier.
- Tantalus.—The pier is 150.8 feet north and 32 feet west of the northwest corner of the Northwest Mounted Police barracks.
- Three Rivers.—Astronomical station at Station No. IX. of the St. Lawrence River Hydrographic Survey.
- Timagami.—The astronomical station is situated on the right-of-way of the Timis-kaming and Northern Ontario railway. The pier is 316 feet south and 219.6 feet west of the southwest corner of the Timiskaming and Northern Ontario railway station-house.

LOCAL POSITIONS OF ASTRONOMICAL STATIONS—Concluded.

- Trenton.—The astronomical station is on the right-of-way of the Central Ontario railway. The pier is 173 feet south and 83 feet east of the southeast corner of the Central Ontario railway station-house.
- Truro.—The pier is 49.49 feet east and 64.13 feet south of gas pipe marking the boundary of the L.C.R. yard at head of Miller street and at the hinge end of Mr. Fraser's driveway gate.
- Vancouver.—A permanent observatory was built on Broekton Point close to and southeast of the lighthouse.
- Victoria.—The astronomical station is situated 7 feet 5 inches east of Broad street and 17 feet 6 inches south of View street, being in the northwest corner of the garden of the Driard hotel.
 - P.S.—Subsequently the hotel was extended to Broad street.
- Walsh.—The pier is 1128.9 feet south and 2896.5 feet west of the wooden post marking the northeast corner of the southeast quarter of section 35, township 11, range 1, west of the 4th meridian.
- Wapella.—The position of the astronomical station is on a knoll south of the Canadian Pacific railway and 5 chains 85 links southwesterly from the southwest corner of the railway station. It is definitely fixed by triangulation from the second meridian of the Dominion Lands survey.
- Whitby.—The pier is 198 feet north and 159.3 feet east of the northeast eorner of Broek and Colborne streets.
- Whitehorse.—The pier is just behind the Government Telegraph office, and is 336.1 feet north and 379.7 feet west of the middle point of crossing of Main street and the White Pass and Yukon railway.
- White Pass.—The pier is 111.1 feet north and 45.9 feet west of the bronze monument on the Canada-Alaska boundary line at summit of White Pass.
- White River.—The astronomical station is on the sandy ridge south of the railway station, and distant 98½ feet due east of the centre line of the main track of the Canadian Pacific railway, from the point distant 183 feet north along the track from the "east switch," where the White River railway division begins.
- Wilno.—The astronomical station is 766 feet due north of the centre line of the Ottawa and Parry Sound railway and 653 feet on a course N. 73° 38′ W. from the intersection of the lines separating the 4th and 5th concessions of the townships of Sherwood and Hagarty.
- Windsor.—The pier is 33.3 feet east and 246.8 feet south of the southwest eorner of Sandwich street west and Caron avenue in the city of Windsor.
- Winnipeg.—The pier is on the Fort Osborne barraeks ground near the southwest corner of the drill hall.
- Woodstock, Ont.—The astronomical station is situated within the city limits of Woodstock, on land owned by the corporation on the north side of Admiral street, 21 feet west of the produced westerly limit of Givins street. It is marked by a concrete pier.
- Woodstock, N.B.—The pier is 432.5 feet east and 100 feet south of the northeast corner of George and Main streets.
- Yarmouth.—The pier is on Mr. Jaeob Bingie's vaeant lot, corner of Water and Townsen and streets, 258,96 feet west and 64.78 feet north of the stone post at the southwest corner of Mr. James Lovett's property corner of Main and Townsend streets.

APPENDIX 5.

REPORT OF THE CHIEF ASTRONOMER, 1911.

STATEMENT OF WORK PERFORMED IN THE PHOTOGRAPHIC DIVISION.

BY

J. D. WALLIS.

STATEMENT OF WORK DONE IN THE PHOTOGRAPHIC DIVISION. APPENDIX 5.

RGE	v.		SES	SIONAL PAPI	ER No. 25a
	Total	1445	3603	5048	
	9" x 36"		2	22	ALLIS, Photographer.
	40" x 60"		21	27	J. D. WALLIS, Photon
	30" x 40"		51	51	
	24" x 36"		22	83	
	20" x 24"		5	55	
	16" x 20"	51	217	85	
	11" x 14"	13	089	250	
	8*x10" 5*x14" 11"x14" 10"x20" 20"x24" 21"x36" 30"x40" x40" x00" 0"x30" Total	45	193	238	
	s" x 10"	470	498	88	
	5 × 7 °	152	1586	1738	
	41," x 63," 5" x 7"	661		평	•
	Y	gatives	ints	Total	

