

CLAIMS

1. A method of multiplexing channels,
comprising:

5 a coding step of coding input data for
each input channel;

 a step of multiplexing said data which is
coded;

10 a step of performing an interleaving
process on said data which is multiplexed; and

15 a step of outputting said data on which
said interleaving process is performed to a physical
channel.

2. The method as claimed in claim 1, said
interleaving process comprising the steps of:

15 writing data into an interleaver;
randomizing columns of said interleaver;
and

 reading data from said interleaver.

20 3. The method as claimed in claim 2,
wherein the number of columns of said interleaver is
an integral multiple of the number of slots of an
output data frame.

25 4. The method as claimed in claim 2 ~~or 3~~,
wherein the number of columns of said interleaver is
16 or 32.

25 5. The method as claimed in claim 2 ~~or 3~~,
wherein the number of columns of said interleaver is
15 or 30.

30 6. The method as claimed in ^{claim 2} ~~one of claims~~
~~2-3~~, wherein a pattern used for said randomizing is
an interleave pattern suitable for a transmission
line interleaver.

35 7. The method as claimed in ^{claim 1} ~~one of claims~~
~~4-6~~, further comprising, after said coding step:
 a step of performing another interleaving
process; and

 a step of segmenting data on which said

another interleaving process is performed.

8. A data multiplexer for multiplexing channels, comprising:

coding means for coding input data for
5 each input channel;

multiplexing means for multiplexing said data which is coded;

10 an interleaver for performing an interleaving process on said data which is multiplexed; and

output means for outputting said data on which said interleaving process is performed to a physical channel.

9. The data multiplexer as claimed in
15 claim 8, said interleaving process comprising the steps of:

writing data into said interleaver;
randomizing columns of said interleaver;

and

20 reading data from said interleaver.

10. The data multiplexer as claimed in claim 9, wherein the number of columns of said interleaver is an integral multiple of the number of slots of an output data frame.

25 11. The data multiplexer as claimed in
a claim 9 or 10, wherein the number of columns of said interleaver is 16 or 32.

a 12. The data multiplexer as claimed in
claim 9 or 10, wherein the number of columns of said
30 interleaver is 15 or 30.

a ^{claim 9} 13. The data multiplexer as claimed in ~~one~~
~~of claims 9-13~~, wherein a pattern used for said randomizing is an interleave pattern suitable for a transmission line interleaver.

35 a 14. The data multiplexer as claimed in ^{Claim 8}
~~one~~
~~of claims 8-13~~, further comprising:

another interleaver for performing another

interleaving process after said coding; and
segmenting means for segmenting data on
which said another interleaving process is performed.

15. A data transmitting method which is
5 used in combination with a data signal receive
method comprising the steps of regenerating
reference phase in each timing of modulated data
signals on the basis of each pilot signal which
indicates reference phase of modulation and
10 demodulating said data signals, said data
transmitting method comprising the steps of: sending
said data signals burstly; configuring slots by
placing said data signals between pilot signals; and
sending said slots.

15 said data transmitting method further comprising:

an interleaving step of performing an interleaving process on said data signals;

20 a step of dividing data signals to be sent
in a slot interval into a plurality of data blocks;
and

a step of distributing said data blocks in
said slot,

25 said interleaving step including a step of
performing said interleaving process by using an
interleaver in which the number of columns of said
interleaver is twice as many as the number of slots
in a frame of said data signals.

16. A data transmitting method which is
30 used in combination with a data signal receive
method comprising the steps of regenerating
reference phase in each timing of modulated data
signals on the basis of each pilot signal which
indicates reference phase of modulation and
35 demodulating said data signals, said data
transmitting method comprising the steps of: sending
said data signals burstly; configuring slots by

placing said data signals between pilot signals; and sending said slots,

said data transmitting method further comprising:

5 a coding step of coding data signals for each channel;

a step of multiplexing data signals for each channel;

10 an interleaving step of performing an interleaving process on said data signals which are multiplexed;

a step of dividing data signals to be sent in a slot interval into a plurality of data blocks; and

15 a step of distributing said data blocks in said slot.

said interleaving step comprising:

20 a step of writing data into an interleaver in which the number of columns of said interleaver is twice as many as the number of slots in a frame of said data signals;

a step of randomizing columns of said interleaver; and

25 a step of reading data from said interleaver.

17. The data transmitting method as claimed in claim 16, wherein said number of slots in a frame is 15 or 16.

18. The data transmitting method as 30 *a* claimed in claim 16 ~~or 17~~, further comprising the step of permuting columns of said interleaver partially after said randomizing.

19. The data transmitting method as *a* claimed in claim 16 ~~or 17~~, wherein said step of 35 randomizing columns is performed by using an interleaving pattern, which is suitable for transmission line interleaving, for performing

randomization of columns and for performing partial permutations of columns.

20. A data transmitter which is used in combination with a data signal receive apparatus

5 which regenerates reference phase in each timing of modulated data signals on the basis of each pilot signal which indicates reference phase of modulation and demodulates said data signals, wherein said data transmitter sends said data signals burstly;

10 configures slots by placing said data signals between pilot signals; and sends said slots, said data transmitter comprising:

interleaving means for performing an interleaving process on said data signals;

15 means for dividing data signals to be sent in a slot interval into a plurality of data blocks; and

means for distributing said data blocks in said slot,

20 said interleaving means including an interleaver in which the number of columns of said interleaver is twice as many as the number of slots in a frame of said data signals.

21. A data transmitter which is used in combination with a data signal receive apparatus

25 which regenerates reference phase in each timing of modulated data signals on the basis of each pilot signal which indicates reference phase of modulation and demodulates said data signals, wherein said data transmitter sends said data signals burstly;

30 configures slots by placing said data signals between pilot signals; and sends said slots, said data transmitter comprising:

coding means for coding data signals for each channel;

35 means for multiplexing data signals for each channel;

interleaving means for performing an interleaving process on said data signals which are multiplexed;

means for dividing data signals to be sent
5 in a slot interval into a plurality of data blocks;
and

means for distributing said data blocks in
said slot,

wherein said interleaving means:

10 writes data into an interleaver in which
the number of columns of said interleaver is twice
as many as the number of slots in a frame of said
data signals;

randomizes columns of said interleaver;

15 and

reads data from said interleaver.

22. The data transmitter as claimed in
claim 21, wherein said number of slots in a frame is
15 or 16.

20 23. The data transmitter as claimed in
a claim 21 ~~or 22~~, wherein columns of said interleaver
are permuted partially after said columns are
randomized.

24. The data transmitter as claimed in
25a claim 21 ~~or 22~~, wherein, when said columns are
randomized, an interleaving pattern, which is
suitable for transmission line interleaving, for
performing randomization of columns and for
performing partial permutations of columns is used.

30

35