

Chapter 1. Introduction

Feng Lin School of Computer Science Sichuan University

Chapter 1: Introduction

Our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

Overview:

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- * protocol layers, service models
- history

Chapter 1: roadmap

- 1.0 Review & recap
- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

Review & Recap

Model of communication

- ❖ An information source(信源), which produces a message.
- ❖ A transmitter(发送设备), which encodes the message into signals
- A channel(信道), to which signals are adapted for transmission
- ❖ A receiver(接收设备), which reconstructs the encoded message from a sequence of received signals and decodes it.
- ❖ An information destination(信宿), where the message arrives.

Fundamentals of Communication (cont.)

- Model of communication (cont.)
 - A message is a discrete unit of communication
 - A signal is a codified message, that is, the sequence of states in a communication channel that encodes a message

Data Transmission Mode

- ✓ Baseband (基带) Transmission * 0.1
- ✓ Passband (通带) Transmission
 - ✓ Broadband (宽带) Transmission

Signal Encoding

■ Type of signal:

Analog data to analog signal

- Amplitude modulation (AM)
- Angle modulation
 - Frequency modulation (FM)
 - Phase modulation (PM)

Analog data to digital signal

Pulse code modulation (PCM)

Digital data to digital signal

Encoding

Digital data to analog signal

- Amplitude-shift keying (ASK)
- Amplitude difference of carrier frequency
- Frequency-shift keying (FSK)
- Frequency difference near carrier frequency
- Phase-shift keying (PSK)
- Phase of carrier signal shifted

Figure 6.2 Modulation of Analog Signals for Digital Data

Summary for signal encoding

Channel Communication Mode

Simplex Communication

half-duplex communication

Channel Communication Mode (cont.)

□ Full-duplex communication

Parallel / Serial Transmission

Parallel mode

Multiple bits are sent in each clock pulse.

Serial mode

One bit is sent in each clock pulse.

Data Synchronization

- □ Asynchronous Transmission (异步传输)
 - Input and output based on bytes
 - Bits are divided into groups (usually eight bits, that is one byte) and transmitted independently.
 - The sender can send these bytes in any time, but the receiver can retrieve and translate the information by agreed-upon pattern. They do not need synchronous clock.

Data Synchronization (cont.)

- □ Synchronous Transmission (同步传输)
 - ❖ Transmission base on frames (帧)
 - The bit stream is combined into longer frames, which may contain many bytes, there is not a gap between bytes;
 - The receiver separates bit stream into the bytes, or characters, it needs to reconstruct the information.

Chapter 1: roadmap

- 1.0 Fundamentals of Communication
- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

What's the Internet: "nuts and bolts" view

server

wireless laptop

cellular handheld

millions of connected computing devices: hosts = end systems

running network apps

links

communication links

- fiber, copper, radio, satellite
- transmission rate = bandwidth
- * routers: forward packets (chunks of data)

"Fun" internet appliances

IP picture frame http://www.ceiva.com/

Internet refrigerator

Slingbox: watch, control cable TV remotely

Internet phones

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering
 Task Force

What's the Internet: a service view

- communication
 infrastructure enables
 distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

What's a protocol?

<u>human protocols:</u>

- * "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format,
order of msgs sent and
received among network
entities, and actions
taken on msg
transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocols?

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

A closer look at network structure:

- network edge: applications and hosts
- access networks, physical media: wired, wireless communication links
- * network core:
 - interconnected routers
 - network of networks

The network edge:

end systems (hosts):

- run application programs
- e.g. Web, email
- at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server

peer-peer model:

- minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent

Access networks and physical media

- Q: How to connect end systems to edge router?
- * residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Dial-up Modem

- uses existing telephony infrastructure
 - home directly-connected to central office
- up to 56Kbps direct access to router (often less)
- can't surf, phone at same time: not "always on"

<u>Digital Subscriber Line (DSL)</u>

- * uses existing telephone infrastructure
- up to 1 Mbps upstream (today typically < 256 kbps)</p>
- up to 8 Mbps downstream (today typically < 1 Mbps)</p>
- * dedicated physical line to telephone central office

Residential access: cable modems

- uses cable TV infrastructure, rather than telephone infrastructure
- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream, 2
 Mbps upstream
- network of cable, fiber attaches homes to ISP router
 - homes share access to router
 - unlike DSL, which has dedicated access

Residential access: cable modems

Cable Network Architecture: Overview

Typically 500 to 5,000 homes

Cable Network Architecture: Overview

Cable Network Architecture: Overview

Cable Network Architecture: Overview

Fiber to the Home

- optical links from central office to the home
- * two competing optical technologies:
 - Passive Optical network (PON)
 - Active Optical Network (PAN)
- much higher Internet rates; fiber also carries television and phone services

Ethernet Internet access

- * typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps Ethernet
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access
 network connects end system
 to router
 - via base station aka "access point"
- * wireless LANs:
 - 802.11b/g (WiFi): 11 or 54 Mbps
- wider-area wireless access
 - provided by telco operator
 - ~1Mbps over cellular system (EVDO, HSDPA)
 - next up (?): WiMAX (10's Mbps)
 over wide area

mobile hosts

Home networks

Typical home network components:

- * DSL or cable modem
- * router/firewall/NAT
- * Ethernet

Physical Media

- bit: propagates between transmitter/rcvr pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair

- Twisted pair cabling is a type of wiring in which two conductors are twisted together for the purposes of canceling out electromagnetic interference (EMI) from external sources.
 - Very common; used in LANs, telephone lines
 - Twists reduce radiated signal (interference)
 - * two types: Unshielded Twisted Pair (UTP) and Shielded Twisted Pair (STP)

conductor insulation pair sheath STP conductor insulation pair pair shield sheath

Categories of UTP

Category	Speed	Use
1	1 Mbps	Voice Only (Telephone Wire)
2	4 Mbps	LocalTalk & Telephone (Rarely used)
3	16 Mbps	10BaseT Ethernet
4	20 Mbps	Token Ring (Rarely used)
5	100 Mbps (2 pair)	100BaseT Ethernet
	1000 Mbps (4 pair)	Gigabit Ethernet
5e	1,000 Mbps	Gigabit Ethernet
6	10,000 Mbps	Gigabit Ethernet

Coaxial cable:

- □ two concentric copper conductors
- bidirectional
- two types: Baseband coaxial cable and Broadband coaxial cable
 - * Baseband coaxial cable (50Ω): digital transmission (BNC)
 - * Broadband coaxial cable (75 Ω): analog transmission, CATV (AUI)

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gpbs)
- low error rate: repeaters spaced far apart; immune to electromagnetic

Fiber optic cable (cont.)

Single-mode

- Core so narrow (10μm), light can't even bounce around
- Used with lasers for long distances, e.g., 100km

Multi-mode

- Other main type of fiber
- ❖ Light can bounce (50µm core)
- Used with LEDs for cheaper, shorter distance links

Fiber optic cable (cont.)

□ Comparison of the properties of wires and fiber:

Property	Wires	Fiber
Distance	Short (100s of m)	Long (tens of km)
Bandwidth	Moderate	Very High
Cost	Inexpensive	Less cheap
Convenience	Easy to use	Less easy
Security	Easy to tap	Hard to tap

Physical media: radio

- signal carried in electromagnetic spectrum
- * no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio link types:

- * terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 11Mbps, 54 Mbps
- wide-area (e.g., cellular)
 - 3G cellular: ~ 1 Mbps
- * satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Chapter 1: roadmap

- 1.0 Fundamentals of Communication
- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

The Network Core

- mesh of interconnected routers
- the fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

end-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources:no sharing
- circuit-like (guaranteed) performance
- * call setup required

Network Core: Circuit Switching

- network resources (e.g., bandwidth) divided into "pieces"
- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)

- dividing link bandwidth into "pieces"
 - frequency division
 - time division

Circuit Switching: FDM and TDM

Numerical example

- How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - all link speeds: 1.536 Mbps
 - each link uses TDM with 24 slots/sec
 - 500 msec to establish end-to-end circuit

Let's work it out!

Network Core: Packet Switching

each end-end data stream divided into packets

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

Bandwidth division into "pieces"

Dedicated allocation

Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - node receives complete packet before forwarding

Packet Switching: Statistical Multiplexing

- sequence of A & B packets has no fixed timing pattern
 - bandwidth shared on demand: statistical multiplexing.
- TDM: each host gets same slot in revolving TDM frame.

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) packet of L bits on to link at R bps
- * store and forward: entire packet must arrive at router before it can be transmitted on next link
- delay = 3L/R (assuming zero propagation delay)

Example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- transmission delay = 15 sec

more on delay shortly ...

Packet switching versus circuit switching

Packet switching allows more users to use network!

Example:

- 1 Mb/s link
- each user:
 - · 100 kb/s when "active"
 - active 10% of time

* circuit-switching:

10 users

* packet switching:

with 35 users, probability
> 10 active at same time
is less than .0004

Q: how did we get value 0.0004?

Q: what happens if > 35 users?

Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"

- great for bursty data
 - resource sharing
 - simpler, no call setup
- * excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

- roughly hierarchical
- at center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Verizon, Sprint, AT&T, Qwest, Level3), national & international coverage
 - large content distributors (Google, Akamai, Microsoft)
 - treat each other as equals (no charges)

Tier-1 ISP: e.g., Sprint

"tier-2" ISPs: smaller (often regional) ISPs

- *connect to one or more tier-1 (provider) ISPs
 - each tier-1 has many tier-2 customer nets
 - tier 2 pays tier 1 provider
- *tier-2 nets sometimes peer directly with each other (bypassing tier 1), or at IXP

- * "Tier-3" ISPs, local ISPs
- customer of tier 1 or tier 2 network
 - last hop ("access") network (closest to end systems)

a packet passes through many networks from source host to destination host

Chapter 1: roadmap

- 1.0 Fundamentals of Communication
- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

How do loss and delay occur?

packets queue in router buffers

- packet arrival rate to link exceeds output link capacity
- * packets queue, wait for turn

Four sources of packet delay

d_{proc}: nodal processing

- check bit errors
- determine output link
- typically < msec

dqueue: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Four sources of packet delay

d_{trans}: transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)

•
$$d_{trans} = L/R$$

$$d_{trans} \text{ and } d_{prop}$$

$$very \text{ different}$$

d_{prop}: propagation delay:

- d: length of physical link
- s: propagation speed in medium (~2×10⁸ m/sec)

$$d_{prop} = d/s$$

Caravan analogy

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr
- A: 62 minutes

Caravan analogy (more)

- cars now "propagate" at 1000 km/hr
- toll booth now takes 1 min to service a car
- ❖ Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?
 - A: Yes! After 7 min, 1st car arrives at second booth; three cars still at 1st booth.
 - 1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router! (see Ethernet applet at AWL Web site

Queueing delay (revisited)

- R: link bandwidth (bps)
- L: packet length (bits)
- a: average packet arrival rate

- ❖ La/R ~ 0: avg. queueing delay small
- La/R -> 1: avg. queueing delay large
- La/R > 1: more "work" arriving than can be serviced, average delay infinite!

La/R -> 1

"Real" Internet delays and routes

- What do "real" Internet delay & loss look like?
- * Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.

"Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
Three delay measurements from
                                           gaia.cs.umass.edu to cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 in1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
                                                                       trans-oceanic
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 4 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
                                                                       link
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                     means no response (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```


Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

- * throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput (more)

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- per-connection end-end throughput: min(R_c,R_s,R/10)
- ❖ in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Chapter 1: roadmap

- 1.0 Fundamentals of Communication
- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

Protocol "Layers"

Networks are complex, with many "pieces":

- * hosts
- * routers
- links of various media
- applications
- protocols
- hardware,software

<u>Question:</u>

Is there any hope of organizing structure of network?

Or at least our discussion of networks?

Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

* a series of steps

Layering of airline functionality

Layers: each layer implements a service

- via its own internal-layer actions
- * relying on services provided by layer below

Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- * transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application
transport
network
link
physical

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

application presentation session transport network link physical

PDU

- □ Each layer in protocol stack, except layer-1, has its PDU (protocol data unit)
- □ Data + header = PDU (Protocol Data Unit)

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 History

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

* 1972:

- ARPAnet public demonstration
- NCP (Network Control Protocol) first host-host protocol
- first e-mail program
- ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- * 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- ❖ 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IPaddress translation
- 1985: ftp protocol defined
- * 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- * early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2010:

- ~750 million hosts
- voice, video over IP
- P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
- more applications: YouTube, gaming, Twitter
- wireless, mobility

Introduction: Summary

Covered a "ton" of material!

- * Internet overview
- what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- * security
- history

You now have:

- context, overview, "feel" of networking
- more depth, detail to follow!