

<110> Brzostowicz, Patricia C.
 Cheng, Qiong
 DiCosimo, Deana J.
 Koffas, Mattheos
 Miller, Edward S. Jr.
 Odom, J. Martin
 Picataggio, Steve
 Rouviere, Pierre E.

<120> CAROTENOID PRODUCTION FROM A SINGLE CARBON SOURCE

<130> CL1903 US NA

<150> 60/229,907 <151> 2000-09-01

<150> 60/229,858 <151> 2000-09-01

<160> 60

<170> Microsoft Office 97

<210> 1 <211> 1311

<212> DNA

<213> Methylomonas 16a

<400> 1 gatgtggtca catggcccta tcacttaacg gctgatattc gattttgtca ttggttttt 60 cttaacttta acttctacac gctcatgaac aaacctaaaa aagttgcaat actgacagca 120 ggcggcttgg cgccttgttt gaattccgca atcggtagtt tgatcgaacg ttataccgaa 180 240 atcgatccta gcatagaaat catttgctat cgcggcggtt ataaaggcct gttgctgggc 300 gattettate eagtaaegge egaagtgegt aaaaaggegg gtgttetgea aegttttgge 360 qqttctqtqa tcqqcaacaq ccqcqtcaaa ttqaccaatg tcaaagactg cqtgaaacgc ggtttggtca aagagggtga agatccgcaa aaagtcgcgg ctgatcaatt ggttaaggat 420 ggtgtcgata ttctgcacac catcggcggc gatgatacca atacggcagc agcggatttg 480 gcagcattcc tggccagaaa taattacgga ctgaccgtca ttggtttacc taaaaccgtc 540 qataacqacq tatttccgat caagcaatca ctaggtgctt ggactgccgc cgagcaaggc 600 gcgcgttatt tcatgaacgt ggtggccgaa aacaacgcca acccacgcat gctgatcgta 660 720 cacqaaqtqa tqqqccqtaa ctqcqqctqq ctqaccgctq caaccgcgca ggaatatcgc

aaattactgg	accgtgccga	gtggttgccg	gaattgggtt	tgactcgtga	atcttatgaa	780
gtgcacgcgg	tattcgttcc	ggaaatggcg	atcgacctgg	aagccgaagc	caagcgcctg	840
cgcgaagtga	tggacaaagt	cgattgcgtc	aacatcttcg	tttccgaagg	tgccggcgtc	900
gaagctatcg	tcgcggaaat	gcaggccaaa	ggccaggaag	tgccgcgcga	tgcgttcggc	960
cacatcaaac	tggatgcggt	caaccctggt	aaatggttcg	gcgagcaatt	cgcgcagatg	1020
ataggcgcgg	aaaaaaccct	ggtacaaaaa	tcgggatact	tegecegtge	ttctgcttcc	1080
aacgttgacg	acatgcgttt	gatcaaatcg	tgcgccgact	tggcggtcga	gtgcgcgttc	1140
cgccgcgagt	ctggcgtgat	cggtcacgac	gaagacaacg	gcaacgtgtt	gcgtgcgatc	1200
gagtttccgc	gcatcaaggg	cggcaaaccg	ttcaatatcg	acaccgactg	gttcaatagc	1260
atgttgagcg	aaatcggcca	gcctaaaggc	ggtaaagtcg	aagtcagcca	С	1311

<211> 437

<212> PRT

<213> Methylomonas 16a

<400> 2

Asp Val Val Thr Trp Pro Tyr His Leu Thr Ala Asp Ile Arg Phe Cys 1 5 10 15

His Trp Phe Phe Leu Asn Phe Asn Phe Tyr Thr Leu Met Asn Lys Pro 20 25 30

Lys Lys Val Ala Ile Leu Thr Ala Gly Gly Leu Ala Pro Cys Leu Asn 35 40 45

Ser Ala Ile Gly Ser Leu Ile Glu Arg Tyr Thr Glu Ile Asp Pro Ser 50 55 60

Ile Glu Ile Ile Cys Tyr Arg Gly Gly Tyr Lys Gly Leu Leu Gly 65 70 75 80

Asp Ser Tyr Pro Val Thr Ala Glu Val Arg Lys Lys Ala Gly Val Leu 85 90 95

Gln Arg Phe Gly Gly Ser Val Ile Gly Asn Ser Arg Val Lys Leu Thr 100 105 110

Asn Val Lys Asp Cys Val Lys Arg Gly Leu Val Lys Glu Gly Glu Asp 115 120 125

Pro Gln Lys Val Ala Ala Asp Gln Leu Val Lys Asp Gly Val Asp Ile 130 135 140

Leu His Thr Ile Gly Gly Asp Asp Thr Asn Thr Ala Ala Ala Asp Leu 145 150 155 160

Ala Ala Phe Leu Ala Arg Asn Asn Tyr Gly Leu Thr Val Ile Gly Leu 165 170 175

Pro Lys Thr Val Asp Asn Asp Val Phe Pro Ile Lys Gln Ser Leu Gly 180 185 190

Ala Trp Thr Ala Ala Glu Gln Gly Ala Arg Tyr Phe Met Asn Val Val 195 200 205

Ala Glu Asn Asn Ala Asn Pro Arg Met Leu Ile Val His Glu Val Met 210 215 220

Gly Arg Asn Cys Gly Trp Leu Thr Ala Ala Thr Ala Gln Glu Tyr Arg 225 230 235 240

Lys Leu Leu Asp Arg Ala Glu Trp Leu Pro Glu Leu Gly Leu Thr Arg $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Glu Ser Tyr Glu Val His Ala Val Phe Val Pro Glu Met Ala Ile Asp 260 265 270

Leu Glu Ala Glu Ala Lys Arg Leu Arg Glu Val Met Asp Lys Val Asp 275 280 285

Cys Val Asn Ile Phe Val Ser Glu Gly Ala Gly Val Glu Ala Ile Val 290 295 300

Ala Glu Met Gln Ala Lys Gly Gln Glu Val Pro Arg Asp Ala Phe Gly 305 310 315 320

His Ile Lys Leu Asp Ala Val Asn Pro Gly Lys Trp Phe Gly Glu Gln 325 330 335

Phe Ala Gln Met Ile Gly Ala Glu Lys Thr Leu Val Gln Lys Ser Gly 340 345 350

Tyr Phe Ala Arg Ala Ser Ala Ser Asn Val Asp Asp Met Arg Leu Ile 355 365

Lys Ser Cys Ala Asp Leu Ala Val Glu Cys Ala Phe Arg Arg Glu Ser 370 375 380

Gly Val Ile Gly His Asp Glu Asp Asn Gly Asn Val Leu Arg Ala Ile 385 390 395 400

Glu Phe Pro Arg Ile Lys Gly Gly Lys Pro Phe Asn Ile Asp Thr Asp 405 410 415

Trp Phe Asn Ser Met Leu Ser Glu Ile Gly Gln Pro Lys Gly Gly Lys 420 425 430

Val Glu Val Ser His 435

<210> 3 <211> 636 <212> DNA

<213> Methylomonas 16a

<400> 3 gaaaatacta tgtccgtcac catcaaagaa gtcatgacca cctcgcccgt tatgccggtc 60 atggtcatca atcatctgga acatgccgtc cctctggctc gcgcgctagt cgacggtggc 120 ttgaaagttt tggagatcac attgcgcacg ccggtggcac tggaatgtat ccgacgtatc 180 aaagccgaag taccggacgc catcgtcggc gcgggcacca tcatcaaccc tcataccttg 240 tatcaagcga ttgacgccgg tgcggaattc atcgtcagcc ccggcatcac cqaaaatcta 300 ctcaacgaag cgctagcatc cggcgtgcct atcctgcccg gcgtcatcac acccagcgag 360 gtcatgcgtt tattggaaaa aggcatcaat gcgatgaaat tctttccggc tgaagccgcc 420 ggcggcatac cgatgctgaa atcccttggc ggccccttgc cgcaagtcac cttctgtccg 480 accggcggcg tcaatcccaa aaacgcgccc gaatatctgg cattgaaaaa tgtcgcctgc 540 gtcggcggct cctggatggc gccggccgat ctggtagatg ccgaagactg ggcggaaatc 600 acgcggcggg cgagcgaggc cgcggcattg aaaaaa 636

<210> 4

<211> 212

<212> PRT

<213> Methylomonas 16a

<400> 4

Glu Asn Thr Met Ser Val Thr Ile Lys Glu Val Met Thr Thr Ser Pro 1 5 10 15 Val Met Pro Val Met Val Ile Asn His Leu Glu His Ala Val Pro Leu
20 25 30

Ala Arg Ala Leu Val Asp Gly Gly Leu Lys Val Leu Glu Ile Thr Leu $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Arg Thr Pro Val Ala Leu Glu Cys Ile Arg Arg Ile Lys Ala Glu Val 50 55 60

Pro Asp Ala Ile Val Gly Ala Gly Thr Ile Ile Asn Pro His Thr Leu 65 70 75 80

Tyr Gln Ala Ile Asp Ala Gly Ala Glu Phe Ile Val Ser Pro Gly Ile 85 90 95

Thr Glu Asn Leu Leu Asn Glu Ala Leu Ala Ser Gly Val Pro Ile Leu 100 105 110

Pro Gly Val Ile Thr Pro Ser Glu Val Met Arg Leu Leu Glu Lys Gly 115 120 125

Ile Asn Ala Met Lys Phe Phe Pro Ala Glu Ala Ala Gly Gly Ile Pro 130 135 140

Met Leu Lys Ser Leu Gly Gly Pro Leu Pro Gln Val Thr Phe Cys Pro 145 150 155 160

Thr Gly Gly Val Asn Pro Lys Asn Ala Pro Glu Tyr Leu Ala Leu Lys 165 170 175

Asn Val Ala Cys Val Gly Gly Ser Trp Met Ala Pro Ala Asp Leu Val 180 \$185

Asp Ala Glu Asp Trp Ala Glu Ile Thr Arg Arg Ala Ser Glu Ala Ala 195 200 205

Ala Leu Lys Lys 210

<210> 5

<211> 1860

<212> DNA

<213> Methylomonas 16a

<400> 5 atgaaactga ccaccgacta tcccttgctt aaaaacatcc acacgccggc ggacatacgc 60 gegetgteea aggaceaget ceageaactg getgaegagg tgegeggeta tetgaeceae 120 acggtcagca tttccggcgg ccattttgcg gccggcctcg gcaccgtgga actgaccgtg 180 gccttgcatt atgtgttcaa tacccccgtc gatcagttgg tctgggacgt gggccatcag 240 gcctatccgc acaagattct gaccggtcgc aaggagcgca tgccgaccat tcgcaccctg 300 ggcggggtgt cagcctttcc ggcgcgggac gagagcgaat acgatgcctt cggcgtcggc 360 cattccagca cctcgatcag cgcggcactg ggcatggcca ttgcgtcgca gctgcgcggc 420 gaagacaaga agatggtagc catcatcggc gacggttcca tcaccggcgg catggcctat 480 gaggcgatga atcatgccgg cgatgtgaat gccaacctgc tggtgatctt gaacgacaac 540 gatatgtcga tctcgccgcc ggtcggggcg atgaacaatt atctgaccaa ggtgttgtcg 600 agcaagtttt attcgtcggt gcgggaagag agcaagaaag ctctggccaa gatgccgtcg 660 gtgtgggaac tggcgcgcaa gaccgaggaa cacgtgaagg gcatgatcgt gcccggtacc 720 ttgttcgagg aattgggctt caattatttc ggcccgatcg acggccatga tgtcgagatg 780 ctggtgtcga ccctggaaaa tctgaaggat ttgaccgggc cggtattcct gcatgtggtg 840 accaagaagg gcaaaggcta tgcgccagcc gagaaagacc cgttggccta ccatggcgtg 900 eeggettteg ateegaeeaa ggattteetg eecaaggegg egeegtegee geateegaee 960 tataccgagg tgttcggccg ctggctgtgc gacatggcgg ctcaagacga gcgcttgctg 1020 ggcatcacgc cggcgatgcg cgaaggctct ggtttggtgg aattctcaca gaaatttccg 1080 aatcgctatt tcgatgtcgc catcgccgag cagcatgcgg tgaccttggc cgccggccag 1140 gcctgccagg gcgccaagcc ggtggtggcg atttattcca ccttcctgca acgcggttac 1200 gatcagttga tccacgacgt ggccttgcag aacttagata tgctctttgc actggatcgt 1260 geeggettgg teggeeegga tggaeegaee catgetggeg cetttgatta eagetaeatg 1320 cgctgtattc cgaacatgct gatcatggct ccagccgacg agaacgagtg caggcagatg 1380 ctgaccaccg gcttccaaca ccatggcccg gcttcggtgc gctatccgcg cggcaaaggg 1440 cccggggcgg caatcgatcc gacctgacc gcgctggaga tcggcaaggc cgaagtcaga 1500 caccacggca geogeatege cattetggee tggggcagea tggtcaegee tgeogtegaa 1560 gccggcaagc agctgggcgc gacggtggtg aacatgcgtt tcgtcaagcc gttcgatcaa 1620 gccttggtgc tggaattggc caggacgcac gatgtgttcg tcaccgtcga ggaaaacgtc 1680 atcgccggcg gcgctggcag tgcgatcaac accttcctgc aggcgcagaa ggtgctgatg 1740

ccggtctgca acatcggcct gcccgaccgc ttcgtcgagc aaggtagtcg cgaggaattg 1800 ctcagcctgg tcggcctcga cagcaagggc atcctcgcca ccatcgaaca gttttgcgct 1860

<210> 6

<211> 620

<212> PRT

<213> Methylomonas 16a

<400> 6

Met Lys Leu Thr Thr Asp Tyr Pro Leu Leu Lys Asn Ile His Thr Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Asp Ile Arg Ala Leu Ser Lys Asp Gln Leu Gln Gln Leu Ala Asp 20 25 30

Glu Val Arg Gly Tyr Leu Thr His Thr Val Ser Ile Ser Gly Gly His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Phe Ala Ala Gly Leu Gly Thr Val Glu Leu Thr Val Ala Leu His Tyr 50 60

Val Phe Asn Thr Pro Val Asp Gln Leu Val Trp Asp Val Gly His Gln 65 70 75 80

Ala Tyr Pro His Lys Ile Leu Thr Gly Arg Lys Glu Arg Met Pro Thr 85 90 95

Ile Arg Thr Leu Gly Gly Val Ser Ala Phe Pro Ala Arg Asp Glu Ser 100 105 110

Glu Tyr Asp Ala Phe Gly Val Gly His Ser Ser Thr Ser Ile Ser Ala 115 120 125

Ala Leu Gly Met Ala Ile Ala Ser Gln Leu Arg Gly Glu Asp Lys Lys 130 135 140

Met Val Ala Ile Ile Gly Asp Gly Ser Ile Thr Gly Gly Met Ala Tyr 145 150 155 160

Glu Ala Met Asn His Ala Gly Asp Val Asn Ala Asn Leu Leu Val Ile 165 170 175

Leu Asn Asp Asn Asp Met Ser Ile Ser Pro Pro Val Gly Ala Met Asn 180 185 190

Asn Tyr Leu Thr Lys Val Leu Ser Ser Lys Phe Tyr Ser Ser Val Arg 195 200 205

Glu Glu Ser Lys Lys Ala Leu Ala Lys Met Pro Ser Val Trp Glu Leu 210 215 220

Ala Arg Lys Thr Glu Glu His Val Lys Gly Met Ile Val Pro Gly Thr 225 230 235 240

Leu Phe Glu Glu Leu Gly Phe Asn Tyr Phe Gly Pro Ile Asp Gly His 245 250 255

Asp Val Glu Met Leu Val Ser Thr Leu Glu Asn Leu Lys Asp Leu Thr 260 265 270

Gly Pro Val Phe Leu His Val Val Thr Lys Lys Gly Lys Gly Tyr Ala 275 280 285

Pro Ala Glu Lys Asp Pro Leu Ala Tyr His Gly Val Pro Ala Phe Asp 290 295 300

Pro Thr Lys Asp Phe Leu Pro Lys Ala Ala Pro Ser Pro His Pro Thr 305 310 315 320

Tyr Thr Glu Val Phe Gly Arg Trp Leu Cys Asp Met Ala Ala Gln Asp 325 330 335

Glu Arg Leu Gly Ile Thr Pro Ala Met Arg Glu Gly Ser Gly Leu 340 345 350

Val Glu Phe Ser Gln Lys Phe Pro Asn Arg Tyr Phe Asp Val Ala Ile 355 360 365

Ala Glu Gln His Ala Val Thr Leu Ala Ala Gly Gln Ala Cys Gln Gly 370 375 380

Ala Lys Pro Val Val Ala Ile Tyr Ser Thr Phe Leu Gln Arg Gly Tyr 385 390 395 400

Asp Gln Leu Ile His Asp Val Ala Leu Gln Asn Leu Asp Met Leu Phe \$405\$ \$410\$ \$415

Ala Leu Asp Arg Ala Gly Leu Val Gly Pro Asp Gly Pro Thr His Ala 420 425 430

Gly	Ala	Phe 435	Asp	Tyr	Ser	Tyr	Met 440	Arg	Cys	Ile	Pro	Asn 445	Met	Leu	Ile		
Met	Ala 450	Pro	Ala	Asp	Glu	Asn 455	Glu	Cys	Arg	Gln	Met 460	Leu	Thr	Thr	Gly		
Phe 465	Gln	His	His	Gly	Pro 470	Ala	Ser	Val	Arg	Tyr 475	Pro	Arg	Gly	Lys	Gly 480		
Pro	Gly	Ala	Ala	Ile 485	Asp	Pro	Thr	Leu	Thr 490	Ala	Leu	Glu	Ile	Gly 495	Lys		
Ala	Glu	Val	Arg 500	His	His	Gly	Ser	Arg 505	Ile	Ala	Ile	Leu	Ala 510	Trp	Gly		
Ser	Met	Val 515	Thr	Pro	Ala	Val	Glu 520	Ala	Gly	Lys	Gln	Leu 525	Gly	Ala	Thr		
Val	Val 530	Asn	Met	Arg	Phe	Val 535	Lys	Pro	Phe	Asp	Gln 540	Ala	Leu	Val	Leu		
Glu 545	Leu	Ala	Arg	Thr	His 550	Asp	Val	Phe	Val	Thr 555	Val	Glu	Glu	Asn	Val 560		
Ile	Ala	Gly	Gly	Ala 565	Gly	Ser	Ala	Ile	Asn 570	Thr	Phe	Leu	Gln	Ala 575	Gln		
Lys	Val	Leu	Met 580	Pro	Val	Cys	Asn	Ile 585	Gly	Leu	Pro	Asp	Arg 590	Phe	Val		
Glu	Gln	Gly 595	Ser	Arg	Glu	Glu	Leu 600	Leu	Ser	Leu	Val	Gly 605	Leu	Asp	Ser		
Lys	Gly 610	Ile	Leu	Ala	Thr	Ile 615	Glu	Gln	Phe	Cys	Ala 620						
<210 <211 <212 <213	L> 1 2> [182 NA	/lomc	nas	16a												
<400 atga			ttgc	atat	t gg	igcgc	tacc	ggt:	tcga	ıtcg	gtgt	cago	ac c	gctgg	gatgtc		60
gtt	gccag	ıgc a	tccg	gata	ıa at	atca	agto	gtt:	gege	tga	ccgc	caac	gg c	caata	ıtcgac	1	20
gcat	tgta	ıtg a	acaa	tgcc	t gg	ccca	ccat	ccg	ıgagt	atg	cggt	ggtg	ıgt c	atgg	gaaagc	1	80

aaggtagcag	agttcaaaca	gcgcattgcc	gcttcgccgg	tagcggatat	caaggtcttg	240
tcgggtagcg	aggccttgca	acaggtggcc	acgctggaaa	acgtcgatac	ggtgatggcg	300
gctatcgtcg	gegeggeegg	attgttgccg	accttggccg	cggccaaggc	cggcaaaacc	360
gtgctgttgg	ccaacaagga	agccttggtg	atgtcgggac	aaatcttcat	gcaggccgtc	420
agcgattccg	gcgctgtgtt	gctgccgata	gacagcgagc	acaacgccat	ctttcagtgc	480
atgccggcgg	gttatacgcc	aggccataca	gccaaacagg	cgcgccgcat	tttattgacc	540
gcttccggtg	gcccatttcg	acggacgccg	atagaaacgt	tgtccagcgt	cacgccggat	600
caggccgttg	cccatcctaa	atgggacatg	gggcgcaaga	tttcggtcga	ttccgccacc	660
atgatgaaca	aaggtctcga	actgatcgaa	gcctgcttgt	tgttcaacat	ggagcccgac	720
cagattgaag	tcgtcattca	tccgcagagc	atcattcatt	cgatggtgga	ctatgtcgat	780
ggttcggttt	tggcgcagat	gggtaatccc	gacatgcgca	cgccgatagc	gcacgcgatg	840
gcctggccgg	aacgctttga	ctctggtgtg	gcgccgctgg	atattttcga	agtagggcac	900
atggatttcg	aaaaacccga	cttgaaacgg	tttccttgtc	tgagattggc	ttatgaagcc	960
atcaagtctg	gtggaattat	gccaacggta	ttgaacgcag	ccaatgaaat	tgctgtcgaa	1020
gcgtttttaa	atgaagaagt	caaattcact	gacatcgcgg	tcatcatcga	gcgcagcatg	1080
gcccagttta	aaccggacga	tgccggcagc	ctcgaattgg	ttttgcaggc	cgatcaagat	1140
gcgcgcgagg	tggctagaga	catcatcaag	accttggtag	ct		1182

<211> 394

<212> PRT

<213> Methylomonas 16a

<400> 8

Thr Leu Asp Val Val Ala Arg His Pro Asp Lys Tyr Gln Val Val Ala 20 25 30

Leu Thr Ala Asn Gly Asn Ile Asp Ala Leu Tyr Glu Gln Cys Leu Ala 35 40 45

His His Pro Glu Tyr Ala Val Val Met Glu Ser Lys Val Ala Glu 50 55 60

Phe Lys Gln Arg Ile Ala Ala Ser Pro Val Ala Asp Ile Lys Val Leu 65 70 75 80

Ser Gly Ser Glu Ala Leu Gln Gln Val Ala Thr Leu Glu Asn Val Asp 85 90 95

Thr Val Met Ala Ala Ile Val Gly Ala Ala Gly Leu Leu Pro Thr Leu 100 105 110

Ala Ala Lys Ala Gly Lys Thr Val Leu Leu Ala Asn Lys Glu Ala 115 120 125

Leu Val Met Ser Gly Gln Ile Phe Met Gln Ala Val Ser Asp Ser Gly 130 135 140

Ala Val Leu Leu Pro Ile Asp Ser Glu His Asn Ala Ile Phe Gln Cys 145 150 155 160

Met Pro Ala Gly Tyr Thr Pro Gly His Thr Ala Lys Gln Ala Arg Arg 165 170 175

Ile Leu Leu Thr Ala Ser Gly Gly Pro Phe Arg Arg Thr Pro Ile Glu
180 185 190

Thr Leu Ser Ser Val Thr Pro Asp Gln Ala Val Ala His Pro Lys Trp 195 200 205

Asp Met Gly Arg Lys Ile Ser Val Asp Ser Ala Thr Met Met Asn Lys 210 215 220

Gly Leu Glu Leu Ile Glu Ala Cys Leu Leu Phe Asn Met Glu Pro Asp 225 230 235 240

Gln Ile Glu Val Val Ile His Pro Gln Ser Ile Ile His Ser Met Val 245 250 255

Asp Tyr Val Asp Gly Ser Val Leu Ala Gln Met Gly Asn Pro Asp Met 260 265 270

Arg Thr Pro Ile Ala His Ala Met Ala Trp Pro Glu Arg Phe Asp Ser 275 280 285

Gly Val Ala Pro Leu Asp Ile Phe Glu Val Gly His Met Asp Phe Glu 290 295 300

Lys Pro Asp Leu Lys Arg Phe Pro Cys Leu Arg Leu Ala Tyr Glu Ala 305 310 315 320

Ile Lys Ser Gly Gly Ile Met Pro Thr Val Leu Asn Ala Ala Asn Glu 325 330 335

Ile Ala Val Glu Ala Phe Leu As
n Glu Glu Val Lys Phe Thr Asp Ile 340 \$345\$ 350

Ala Val Ile Ile Glu Arg Ser Met Ala Gln Phe Lys Pro Asp Asp Ala 355 360 365

Gly Ser Leu Glu Leu Val Leu Gln Ala Asp Gln Asp Ala Arg Glu Val 370 380

Ala Arg Asp Ile Ile Lys Thr Leu Val Ala 385

<210> 9 <211> 693

<212> DNA

<213> Methylomonas 16a

<400> atgaacccaa ccatccaatg ctgggccgtc gtgcccgcag ccggcgtcgg caaacgcatg 60 caageegate geeceaaaca atatttaceg ettgeeggta aaaeggteat egaacacaca 120 ctgactcgac tacttgagtc cgacgccttc caaaaagttg cggtggcgat ttccgtcgaa 180 gaccettatt ggeetgaact gteeatagee aaacaceeeg acateateae egegeetgge 240 ggcaaggaac gcgccgactc ggtgctgtct gcactgaagg ctttagaaga tataqccaqc 300 gaaaatgatt gggtgctggt acacgacgcc gcccgcccct gcttgacggg caqcqacatc 360 caccttcaaa tcgatacctt aaaaaatgac ccggtcggcg gcatcctggc cttgaqttcg 420 cacgacacat tgaaacacgt ggatggtgac acgatcaccg caaccataga caqaaaqcac 480 gtctggcgcg ccttgacgcc gcaaatgttc aaatacggca tgttgcgcqa cqcqttgcaa 540 cgaaccgaag gcaatccggc cgtcaccgac gaagccagtg cgctggaact tttgggccat 600 aaacccaaaa tcgtggaagg ccgcccggac aacatcaaaa tcacccgccc ggaagatttg 660 gccctggcac aattttatat ggagcaacaa gca 693

<210> 10

<211> 231

<212> PRT

<213> Methylomonas 16a

<400> 10

Met Asn Pro Thr Ile Gln Cys Trp Ala Val Val Pro Ala Ala Gly Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Lys Arg Met Gln Ala Asp Arg Pro Lys Gln Tyr Leu Pro Leu Ala 20 25 30

Gly Lys Thr Val Ile Glu His Thr Leu Thr Arg Leu Leu Glu Ser Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Phe Gln Lys Val Ala Val Ala Ile Ser Val Glu Asp Pro Tyr Trp 50 55 60

Pro Glu Leu Ser Ile Ala Lys His Pro Asp Ile Ile Thr Ala Pro Gly 65 70 75 80

Gly Lys Glu Arg Ala Asp Ser Val Leu Ser Ala Leu Lys Ala Leu Glu 85 90 95

Asp Ile Ala Ser Glu Asn Asp Trp Val Leu Val His Asp Ala Arg $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Pro Cys Leu Thr Gly Ser Asp Ile His Leu Gln Ile Asp Thr Leu Lys 115 120 125

Asn Asp Pro Val Gly Gly Ile Leu Ala Leu Ser Ser His Asp Thr Leu 130 135 140

Lys His Val Asp Gly Asp Thr Ile Thr Ala Thr Ile Asp Arg Lys His 145 150 155 160

Val Trp Arg Ala Leu Thr Pro Gln Met Phe Lys Tyr Gly Met Leu Arg 165 170 175

Asp Ala Leu Gln Arg Thr Glu Gly Asn Pro Ala Val Thr Asp Glu Ala 180 185 190

Ser Ala Leu Glu Leu Gly His Lys Pro Lys Ile Val Glu Gly Arg 195 200 205

Pro Asp Asn Ile Lys Ile Thr Arg Pro Glu Asp Leu Ala Leu Ala Gln 210 215 220

Phe Tyr Met Glu Gln Gln Ala 225 230

<210> <211> <212> <213>	11 855 DNA Meth	nylomonas 16	ба				
<400>	11						
atggatt	atg	cggctgggtg	gggcgaaaga	tggcctgctc	cggcaaaatt	gaacttaatg	60
ttgagga	tta	ccggtcgcag	gccagatggc	tatcatctgt	tgcaaacggt	gtttcaaatg	120
ctcgatc	ctat	gcgattggtt	gacgtttcat	ccggttgatg	atggccgcgt	gacgctgcga	180
aatccaa	tct	ccggcgttcc	agagcaggat	gacttgactg	ttcgggcggc	taatttgttg	240
aagtctc	ata	ccggctgtgt	gcgcggagtt	tgtatcgata	tcgagaaaaa	tctgcctatg	300
ggtggtg	gtt	tgggtggtgg	aagttccgat	gctgctacaa	ccttggtagt	tctaaatcgg	360
ctttggg	gct	tgggcttgtc	gaagcgtgag	ttgatggatt	tgggcttgag	gcttggtgcc	420
gatgtgc	ctg	tgtttgtgtt	tggttgttcg	gcctggggcg	aaggtgtgag	cgaggatttg	480
caggcaa	taa	cgttgccgga	acaatggttt	gtcatcatta	aaccggattg	ccatgtgaat	540
actggag	gaaa	ttttttctgc	agaaaatttg	acaaggaata	gtgcagtcgt	tacaatgagc	600
gactttc	ttg	caggggataa	tcggaatgat	tgttcggaag	tggtttgcaa	gttatatcga	660
ccggtga	aag	atgcaatcga	tgcgttgtta	tgctatgcgg	aagcgagatt	gacggggacc	720
ggtgcat	gtg	tgttcgctca	gttttgtaac	aaggaagatg	ctgagagtgc	gttagaagga	780
ttgaaag	ratc	ggtggctggt	gttcttggct	aaaggcttga	atcagtctgc	gctctacaag	840
aaattag	aac	aggga					855

<211> 285

<212> PRT

<213> Methylomonas 16a

<400> 12

Met Asp Tyr Ala Ala Gly Trp Gly Glu Arg Trp Pro Ala Pro Ala Lys $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Asn Leu Met Leu Arg Ile Thr Gly Arg Arg Pro Asp Gly Tyr His 20 25 30

Leu Leu Gln Thr Val Phe Gln Met Leu Asp Leu Cys Asp Trp Leu Thr 35 40 45

Phe His Pro Val Asp Asp Gly Arg Val Thr Leu Arg Asn Pro Ile Ser 50 55 60

Gly Val Pro Glu Gln Asp Asp Leu Thr Val Arg Ala Ala Asn Leu Leu 65 70 75 80

Lys Ser His Thr Gly Cys Val Arg Gly Val Cys Ile Asp Ile Glu Lys 85 90 95

Asn Leu Pro Met Gly Gly Gly Leu Gly Gly Gly Ser Ser Asp Ala Ala 100 105 110

Thr Thr Leu Val Val Leu Asn Arg Leu Trp Gly Leu Gly Leu Ser Lys
115 120 125

Arg Glu Leu Met Asp Leu Gly Leu Arg Leu Gly Ala Asp Val Pro Val 130 135 140

Phe Val Phe Gly Cys Ser Ala Trp Gly Glu Gly Val Ser Glu Asp Leu 145 150 155 160

Gln Ala Ile Thr Leu Pro Glu Gln Trp Phe Val Ile Ile Lys Pro Asp 165 170 175

Cys His Val Asn Thr Gly Glu Ile Phe Ser Ala Glu Asn Leu Thr Arg 180 185 190

Asn Ser Ala Val Val Thr Met Ser Asp Phe Leu Ala Gly Asp Asn Arg 195 200 205

Asn Asp Cys Ser Glu Val Val Cys Lys Leu Tyr Arg Pro Val Lys Asp 210 215 220

Ala Ile Asp Ala Leu Leu Cys Tyr Ala Glu Ala Arg Leu Thr Gly Thr 225 230 235 240

Gly Ala Cys Val Phe Ala Gln Phe Cys Asn Lys Glu Asp Ala Glu Ser 245 250 255

Ala Leu Glu Gly Leu Lys Asp Arg Trp Leu Val Phe Leu Ala Lys Gly 260 265 270

Leu Asn Gln Ser Ala Leu Tyr Lys Lys Leu Glu Gln Gly 275 280 285

<210> 13 <211> 471

<21 <21	_	DNA Meth	ylom	onas	16a											
<40 atg		13 gcg	tagg	catg	gg t	tacg	acgt	g ca	ccgt	ttca	acq	acgq	cqa	ccac	atcatt	: 60
													_		gacqtq	
															ggcaaa	
cat.	ttcc	cgg	acac	cgac	cc c	aatt	tcaa	a aa	cgcc	gaca	gca	gggt	gct	actg	cgccac	240
gtg.	tacg	gca	tcgt	caag	ga a	aaag	gcta	t aa	actg	gtca	acg	ccga	cgt	gacca	atcatc	: 300
gct	cagg	cgc	cgaa	gatg	ct g	ccac	acgt	g cc	cggc	atgc	gcg	ccaa	cat	tgcc	gccgat	360
ctg	gaaa	ccg	atgt	cgat	tt c	atta	atgt	a aa	agcc.	acga	cga	ccga	gaa	actg	ggcttt	420
gag	ggcc	gta	agga	aggc	at c	gccg.	tgca	g gc	tgtg	gtgt	tga	taga	acg	С		471
<210 <211 <212 <213	1> 2> 3> i		ylom	onas	16a											
<400		14														
Met 1	Ile	Arg	Val	Gly 5	Met	Gly	Tyr	Asp	Val 10	His	Arg	Phe	Asn	Asp 15	Gly	
Asp	His	Ile	Ile 20	Leu	Gly	Gly	Val	Lys 25	Ile	Pro	Tyr	Glu	Lys 30	Gly	Leu	
Glu	Ala	His 35	Ser	Asp	Gly	Asp	Val 40	Val	Leu	His	Ala	Leu 45	Ala	Asp	Ala	
Ile	Leu 50	Gly	Ala	Ala	Ala	Leu 55	Gly	Asp	Ile	Gly	Lys 60	His	Phe	Pro	Asp	
Thr 65	Asp	Pro	Asn	Phe	Lys 70	Gly	Ala	Asp	Ser	Arg 75	Val	Leu	Leu	Arg	His 80	
Val	Tyr	Gly	Ile	Val 85	Lys	Glu	Lys	Gly	Tyr 90	Lys	Leu	Val	Asn	Ala 95	Asp	
Val	Thr	Ile	Ile 100	Ala	Gln	Ala	Pro	Lys 105	Met	Leu	Pro	His	Val 110	Pro	Gly	
Met	Arg	Ala 115	Asn	Ile	Ala	Ala	Asp 120	Leu	Glu	Thr	Asp	Val 125	Asp	Phe	Ile	

Asn Val Lys Ala Thr Thr Glu Lys Leu Gly Phe Glu Gly Arg Lys 130 135

Glu Gly Ile Ala Val Gln Ala Val Val Leu Ile Glu Arg 145 150

<210> 15 <211> 1632

<212> DNA

<213> Methylomonas 16a

<400> 15

atgacaaaat	tcatctttat	caccggcggc	gtggtgtcat	ccttgggaaa	agggatagcc	60
gcctcctccc	tggcggcgat	tctggaagac	cgcggcctca	aagtcactat	cacaaaactc	120
gatecetaca	tcaacgtcga	ccccggcacc	atgagcccgt	ttcaacacgg	cgaggtgttc	180
gtgaccgaag	acggtgccga	aaccgatttg	gaccttggcc	attacgaacg	gtttttgaaa	240
accacgatga	ccaagaaaaa	caacttcacc	accggtcagg	tttacgagca	ggtattacgc	300
aacgagcgca	aaggtgatta	tcttggcgcg	accgtgcaag	tcattccaca	tatcaccgac	360
gaaatcaaac	gccgggtgta	tgaaagcgcc	gaagggaaag	atgtggcatt	gatcgaagtc	420
ggcggcacgg	tgggcgacat	cgaatcgtta	ccgtttctgg	aaaccatacg	ccagatgggc	480
gtggaactgg	gtcgtgaccg	cgccttgttc	attcatttga	cgctggtgcc	ttacatcaaa	540
teggeeggeg	aactgaaaac	caagcccacc	cagcattcgg	tcaaagaact	gcgcaccatc	600
gggattcagc	cggacatttt	gatctgtcgt	tcagaacaac	cgatcccggc	cagtgaacgc	660
cgcaagatcg	cgctatttac	caatgtcgcc	gaaaaggcgg	tgatttccgc	gatcgatgcc	720
gacaccattt	accgcattcc	gctattgctg	cgcgaacaag	gcctggacga	cctggtggtc	780
gatcagttgc	gcctggacgt	accagcggcg	gatttatcgg	cctgggaaaa	ggtcgtcgat	840
ggcctgactc	atccgaccga	cgaagtcagc	attgcgatcg	tcggtaaata	tgtcgaccac	900
accgatgcct	acaaatcgct	gaatgaagcc	ctgattcatg	ccggcattca	cacgcgccac	960
aaggtgcaaa	tcagctacat	cgactccgaa	accatagaag	ccgaaggcac	cgccaaattg	1020
aaaaacgtcg	atgcgatcct	ggtgccgggt	ggtttcggcg	aacgcggcgt	ggaaggcaag	1080
atttctaccg	tgcgttttgc	ccgcgagaac	aaaatcccgt	atttgggcat	ttgcttgggc	1140
atgcaatcgg	cggtaatcga	attcgcccgc	aacgtggttg	gcctggaagg	cgcgcacagc	1200
accgaattcc	tgccgaaatc	gccacaccct	gtgatcggct	tgatcaccga	atggatggac	1260
gaagccggcg	aactggtcac	acgcgacgaa	gattccgatc	tgggcggcac	gatgcgtctg	1320
ggcgcgcaaa	aatgccgcct	gaaggctgat	tccttggctt	ttcagttgta	tcaaaaagac	1380

gtcatcaccg	agcgtcaccg	ccaccgctac	gaattcaaca	atcaatattt	aaaacaactg	1440
gaagcggccg	gcatgaaatt	ttccggtaaa	tcgctggacg	gccgcctggt	ggagatcatc	1500
gagctacccg	aacacccctg	gttcctggcc	tgccagttcc	atcccgaatt	cacctcgacg	1560
ccgcgtaacg	gccacgccct	attttcgggc	ttcgtcgaag	cggccgccaa	acacaaaaca	1620
caaggcacag	ca					1632

<211> 544

<212> PRT

<213> Methylomonas 16a

<400> 16

Met Thr Lys Phe Ile Phe Ile Thr Gly Gly Val Val Ser Ser Leu Gly 1 5 10 15

Lys Gly Ile Ala Ala Ser Ser Leu Ala Ala Ile Leu Glu Asp Arg Gly 20 25 30

Leu Lys Val Thr Ile Thr Lys Leu Asp Pro Tyr Ile Asn Val Asp Pro 35 40 45

Gly Thr Met Ser Pro Phe Gln His Gly Glu Val Phe Val Thr Glu Asp 50 55 60

Gly Ala Glu Thr Asp Leu Asp Leu Gly His Tyr Glu Arg Phe Leu Lys 70 75 80

Thr Thr Met Thr Lys Lys Asn Asn Phe Thr Thr Gly Gln Val Tyr Glu 85 90 95

Gln Val Ile Pro His Ile Thr Asp Glu Ile Lys Arg Arg Val Tyr Glu 115 120 125

Ser Ala Glu Gly Lys Asp Val Ala Leu Ile Glu Val Gly Gly Thr Val 130 135 140

Gly Asp Ile Glu Ser Leu Pro Phe Leu Glu Thr Ile Arg Gln Met Gly 145 150 155 160

Val Glu Leu Gly Arg Asp Arg Ala Leu Phe Ile His Leu Thr Leu Val 165 170 175 Pro Tyr Ile Lys Ser Ala Gly Glu Leu Lys Thr Lys Pro Thr Gln His 180 185 190

Ser Val Lys Glu Leu Arg Thr Ile Gly Ile Gln Pro Asp Ile Leu Ile 195 200 205

Cys Arg Ser Glu Gln Pro Ile Pro Ala Ser Glu Arg Arg Lys Ile Ala 210 215 220

Leu Phe Thr Asn Val Ala Glu Lys Ala Val Ile Ser Ala Ile Asp Ala 225 230 235 240

Asp Thr Ile Tyr Arg Ile Pro Leu Leu Leu Arg Glu Gln Gly Leu Asp 245 250 255

Asp Leu Val Val Asp Gln Leu Arg Leu Asp Val Pro Ala Ala Asp Leu 260 265 270

Ser Ala Trp Glu Lys Val Val Asp Gly Leu Thr His Pro Thr Asp Glu 275 280 285

Val Ser Ile Ala Ile Val Gly Lys Tyr Val Asp His Thr Asp Ala Tyr 290 295 300

Lys Ser Leu Asn Glu Ala Leu Ile His Ala Gly Ile His Thr Arg His 305 310 315 320

Lys Val Gln Ile Ser Tyr Ile Asp Ser Glu Thr Ile Glu Ala Glu Gly 325 330 335

Thr Ala Lys Leu Lys Asn Val Asp Ala Ile Leu Val Pro Gly Gly Phe 340 345 350

Gly Glu Arg Gly Val Glu Gly Lys Ile Ser Thr Val Arg Phe Ala Arg 355 360 365

Glu Asn Lys Ile Pro Tyr Leu Gly Ile Cys Leu Gly Met Gln Ser Ala 370 375 380

Val Ile Glu Phe Ala Arg Asn Val Val Gly Leu Glu Gly Ala His Ser 385 390 395 400

Thr Glu Phe Leu Pro Lys Ser Pro His Pro Val Ile Gly Leu Ile Thr 405 410 415

Glu Trr) Met	Asp 420	Glu	Ala	Gly	Glu	Leu 425	Val	Thr	Arg	Asp	Glu 430	Asp	Ser	
Asp Let	1 Gly 435		Thr	Met	Arg	Leu 440	Gly	Ala	Gln	Lys	Cys 445	Arg	Leu	Lys	
Ala Asp 450		Leu	Ala	Phe	Gln 455	Leu	Tyr	Gln	Lys	Asp 460	Val	Ile	Thr	Glu	
Arg His	. Arg	His	Arg	Tyr 470	Glu	Phe	Asn	Asn	Gln 475	Tyr	Leu	Lys	Gln	Leu 480	
Glu Ala	ı Ala	Gly	Met 485	Lys	Phe	Ser	Gly	Lys 490	Ser	Leu	Asp	Gly	Arg 495	Leu	
Val Glu	ı Ile	Ile 500	Glu	Leu	Pro	Glu	His 505	Pro	Trp	Phe	Leu	Ala 510	Cys	Gln	
Phe His	Pro 515	Glu	Phe	Thr	Ser	Thr 520	Pro	Arg	Asn	Gly	His 525	Ala	Leu	Phe	
Ser Gly		Val	Glu	Ala	Ala 535	Ala	Lys	His	Lys	Thr 540	Gln	Gly	Thr	Ala	
<212>	17 954 DNA Methy	ylomo	onas	16a											
	17	-													
atgcaaa															60
attgtcg															120
cataacc															180
agcgatg															240
caacagg aaagtgc															300
cacgccg															360
ggcggca															420 480
aatgatc															540
gatgcgt															600
					-		_	_						_	

gcgacgcaaa	accgtcagga	tgcggtgcat	gatctggcca	agatttccga	cctgattctg	660
gttgtcggct	ctcccaatag	ttcgaattcc	aaccgtttgc	gtgaaatcgc	cgtgcaactc	720
ggtaaacccg	cttatttgat	cgatacttac	caggatttga	agcaagattg	gctggaggga	780
attgaagtag	tcggggttac	cgcgggcgct	tcggcgccgg	aagtgttggt	gcaggaagtg	840
atcgatcaac	tgaaggcatg	gggcggcgaa	accacttcgg	tcagagaaaa	cagcggcatc	900
gaggaaaagg	tagtcttttc	gattcccaag	gagttgaaaa	aacatatgca	agcg	954

<211> 318

<212> PRT

<213> Methylomonas 16a

<400> 18

Met Gln Ile Val Leu Ala Asn Pro Arg Gly Phe Cys Ala Gly Val Asp 1 5 10 15

Arg Ala Ile Glu Ile Val Asp Gln Ala Ile Glu Ala Phe Gly Ala Pro 20 25 30

Ile Tyr Val Arg His Glu Val Val His Asn Arg Thr Val Val Asp Gly 35 40 45

Leu Lys Gln Lys Gly Ala Val Phe Ile Glu Glu Leu Ser Asp Val Pro 50 55 60

Val Gly Ser Tyr Leu Ile Phe Ser Ala His Gly Val Ser Lys Glu Val 65 70 75 80

Gln Gln Glu Ala Glu Glu Arg Gln Leu Thr Val Phe Asp Ala Thr Cys 85 90 95

Pro Leu Val Thr Lys Val His Met Gln Val Ala Lys His Ala Lys Gln
100 105 110

Gly Arg Glu Val Ile Leu Ile Gly His Ala Gly His Pro Glu Val Glu
115 120 125

Gly Thr Met Gly Gln Tyr Glu Lys Cys Thr Glu Gly Gly Gly Ile Tyr 130 140

Leu Val Glu Thr Pro Glu Asp Val Arg Asn Leu Lys Val Asn Asn Pro 145 150 155 160

Asn	Asp	Leu	Ala	Tyr 165	Val	Thr	Gln	Thr	Thr 170	Leu	Ser	Met	Thr	Asp 175	Thr	
Lys	Val	Met	Val 180	Asp	Ala	Leu	Arg	Glu 185	Gln	Phe	Pro	Ser	Ile 190	Lys	Glu	
Gln	Lys	Lys 195	Asp	Asp	Ile	Cys	Tyr 200	Ala	Thr	Gln	Asn	Arg 205	Gln	Asp	Ala	
Val	His 210	Asp	Leu	Ala	Lys	Ile 215	Ser	Asp	Leu	Ile	Leu 220	Val	Val	Gly	Ser	
Pro 225	Asn	Ser	Ser	Asn	Ser 230	Asn	Arg	Leu	Arg	Glu 235	Ile	Ala	Val	Gln	Leu 240	
Gly	Lys	Pro	Ala	Tyr 245	Leu	Ile	Asp	Thr	Tyr 250	Gln	Asp	Leu	Lys	Gln 255	Asp	
Trp	Leu	Glu	Gly 260	Ile	Glu	Val	Val	Gly 265	Val	Thr	Ala	Gly	Ala 270	Ser	Ala	
Pro	Glu	Val 275	Leu	Val	Gln	Glu	Val 280	Ile	Asp	Gln	Leu	Lys 285	Ala	Trp	Gly	
Gly	Glu 290	Thr	Thr	Ser	Val	Arg 295	Glu	Asn	Ser	Gly	Ile 300	Glu	Glu	Lys	Val	
Val 305	Phe	Ser	Ile	Pro	Lys 310	Glu	Leu	Lys	Lys	His 315	Met	Gln	Ala			
<210 <211 <212 <213	.> 8 ?> [.9 91 NA Iethy	/lomc	onas	16a											
<400 atga		.9 .at t	gaaa	ıgcct	a cc	tgac:	cgtc	: tgc	caag	aac	gcgt	cgag	ica c	egege	tggac	60
gaac	gtct	gc c	etgac	gaaa	ıa ca	tact	gcca	ı caa	acct	tgc	atca	ıggcc	at <u>c</u>	gagat	attcc	120
gtat	tgaa	cg g	ıcggc	aaac	eg ca	cccg	làccc	: ttg	ttga	ctt	atgo	gacc	gg t	cagg	ctttg	180
ggct	tgcc	:gg a	aaac	gtgc	t gg	atgo	gccg	gct	tgcg	cgg	taga	attc	at c	catg	tgtat	240
tcgc	tgat	tc a	cgac	gato	t go	cggc	catg	gac	aacg	atg	atct	gcgc	eg c	ggca	aaccg	300
acct	gtca	.ca a	ggct	tacg	ga cg	aggo	cacc	gcc	attt	tgg	ccgg	cgac	gc a	ctgc	aggcg	360
ctgg	rcctt	tg a	agtt	ctgg	rc ca	.acga	cccc	ggc	atca	ccg	tcga	tgcc	cc g	gctc	gcctg	420

aaaatgatca	cggctttgac	ccgcgccagc	ggctctcaag	gcatggtggg	cggtcaagcc	480
atcgatctcg	gctccgtcgg	ccgcaaattg	acgctgccgg	aactcgaaaa	catgcatatc	540
cacaagactg	gcgccctgat	ccgcgccagc	gtcaatctgg	cggcattatc	caaacccgat	600
ctggatactt	gcgtcgccaa	gaaactggat	cactatgcca	aatgcatagg	cttgtcgttc	660
caggtcaaag	acgacattct	cgacatcgaa	gccgacaccg	cgacactcgg	caagactcag	720
ggcaaggaca	tcgataacga	caaaccgacc	taccctgcgc	tattgggcat	ggctggcgcc	780
aaacaaaaag	cccaggaatt	gcacgaacaa	gcagtcgaaa	gcttaacggg	atttggcagc	840
gaagccgacc	tgctgcgcga	actatcgctt	tacatcatcg	agcgcacgca	C	891

<211> 297

<212> PRT

<213> Methylomonas 16a

<400> 20

Met Ser Lys Leu Lys Ala Tyr Leu Thr Val Cys Gln Glu Arg Val Glu 1 5 10 15

Arg Ala Leu Asp Ala Arg Leu Pro Ala Glu Asn Ile Leu Pro Gln Thr 20 25 30

Leu His Gln Ala Met Arg Tyr Ser Val Leu Asn Gly Gly Lys Arg Thr 35 40 45

Arg Pro Leu Leu Thr Tyr Ala Thr Gly Gln Ala Leu Gly Leu Pro Glu 50 55 60

Asn Val Leu Asp Ala Pro Ala Cys Ala Val Glu Phe Ile His Val Tyr 65 70 75 80

Ser Leu Ile His Asp Asp Leu Pro Ala Met Asp Asn Asp Asp Leu Arg 85 90 95

Arg Gly Lys Pro Thr Cys His Lys Ala Tyr Asp Glu Ala Thr Ala Ile 100 105 110

Leu Ala Gly Asp Ala Leu Gln Ala Leu Ala Phe Glu Val Leu Ala Asn 115 120 125

Asp Pro Gly Ile Thr Val Asp Ala Pro Ala Arg Leu Lys Met Ile Thr 130 135 140

Ala Leu 145	Thr A	rg Ala	Ser 150	Gly	Ser	Gln	Gly	Met 155	Val	Gly	Gly	Gln	Ala 160	
Ile Asp	Leu G	Ly Ser 165	Val	Gly	Arg	Lys	Leu 170	Thr	Leu	Pro	Glu	Leu 175	Glu	
Asn Met	His II		Lys	Thr	Gly	Ala 185	Leu	Ile	Arg	Ala	Ser 190	Val	Asn	
Leu Ala	Ala Le	eu Ser	Lys	Pro	Asp 200	Leu	Asp	Thr	Cys	Val 205	Ala	Lys	Lys	
Leu Asp 210	His Ty	yr Ala	Lys	Cys 215	Ile	Gly	Leu	Ser	Phe 220	Gln	Val	Lys	Asp	
Asp Ile 225	Leu As	sp Ile	Glu 230	Ala	Asp	Thr	Ala	Thr 235	Leu	Gly	Lys	Thr	Gln 240	
Gly Lys	Asp I	Le Asp 245	Asn	Asp	Lys	Pro	Thr 250	Tyr	Pro	Ala	Leu	Leu 255	Gly	
Met Ala	Gly Al	_	Gln	Lys	Ala	Gln 265	Glu	Leu	His	Glu	Gln 270	Ala	Val	
Glu Ser	Leu Th 275	nr Gly	Phe	Gly	Ser 280	Glu	Ala	Asp	Leu	Leu 285	Arg	Glu	Leu	
Ser Leu 290	Tyr Il	le Ile	Glu	Arg 295	Thr	His								
<211> 1 <212> I	21 1533 DNA Methylo	omonas	16a											
<400> 2 atggccaa	21 aca cca	aacaca	at ca	atcat	cgto	c ggo	cgcgq	ggtc	ccg	gegga	act '	ttgcg	geegge	60
atgttgct	ga gco	cagcgc	gg ct	tcaa	aggta	a to	gattt	tcg	acaa	aacat	igc (agaaa	atcggc	120
ggccgcaa	acc gco	ccgatca	aa ca	atgaa	acgg	c ttt	cacct	tcg	atad	ccggt	ccc (gacat	tcttg	180
ttgatgaa	aag gco	gtgctg	ga co	gaaat	tgtt	c gaa	actgt	gcg	agc	gaagt	cag (cgago	gattat	240
ctggaatt	cc tgo	ccgcta	ag co	ccgat	tgtad	c cg	cctg	ctgt	acga	acga	ccg (cgaca	atcttc	300
gtctattc	ccg aco	cgcgaga	aa ca	atgc	gaga	c gaa	attgo	caac	gggt	catto	cga (cgaaq	ggcacg	360
gacggcta	acg aad	cagttca	at go	gaaca	aggaa	a cgo	caaa	eget	tcaa	acgc	gct (gtato	ccctgc	420

atcacccgcg	attattccag	cctgaaatcc	tttttgtcgc	tggacttgat	caaggccctg	480
ccgtggctgg	cttttccgaa	aagcgtgttc	aataatctcg	gccagtattt	caaccaggaa	540
aaaatgcgcc	tggccttttg	ctttcagtcc	aagtatctgg	gcatgtcgcc	gtgggaatgc	600
ccggcactgt	ttacgatgct	gccctatctg	gagcacgaat	acggcattta	tcacgtcaaa	660
ggcggcctga	accgcatcgc	ggcggcgatg	gcgcaagtga	tcgcggaaaa	cggcggcgaa	720
attcacttga	acagcgaaat	cgagtcgctg	atcatcgaaa	acggcgctgc	caagggcgtc	780
aaattacaac	atggcgcgga	gctgcgcggc	gacgaagtca	tcatcaacgc	ggattttgcc	840
cacgcgatga	cgcatctggt	caaaccgggc	gtcttgaaaa	aatacacccc	ggaaaacctg	900
aagcagcgcg	agtattcctg	ttcgaccttc	atgctgtatc	tgggtttgga	caagatttac	960
gatctgccgc	accataccat	cgtgtttgcc	aaggattaca	ccaccaatat	ccgcaacatt	1020
ttcgacaaca	aaaccctgac	ggacgatttt	tcgttttacg	tgcaaaacgc	cagcgccagc	1080
gacgacagcc	tagcgccagc	cggcaaatcg	gcgctgtacg	tgctggtgcc	gatgcccaac	1140
aacgacagcg	gcctggactg	gcaggcgcat	tgccaaaacg	tgcgcgaaca	ggtgttggac	1200
acgctgggcg	cgcgactggg	attgagcgac	atcagagccc	atatcgaatg	cgaaaaaatc	1260
atcacgccgc	aaacctggga	aacggacgaa	cacgtttaca	agggcgccac	tttcagtttg	1320
tegeacaagt	tcagccaaat	gctgtactgg	cggccgcaca	accgtttcga	ggaactggcc	1380
aattgctatc	tggtcggcgg	cggcacgcat	cccggtagcg	gtttgccgac	catctacgaa	1440
teggegegga	tttcggccaa	gctgatttcc	cagaaacatc	gggtgaggtt	caaggacata	1500
gcacacagcg	cctggctgaa	aaaagccaaa	gcc			1533

<210> 22

Met Ala Asn Thr Lys His Ile Ile Ile Val Gly Ala Gly Pro Gly Gly 1 5 10 15

Leu Cys Ala Gly Met Leu Leu Ser Gln Arg Gly Phe Lys Val Ser Ile 20 25 30

Phe Asp Lys His Ala Glu Ile Gly Gly Arg Asn Arg Pro Ile Asn Met 35 40 45

Asn Gly Phe Thr Phe Asp Thr Gly Pro Thr Phe Leu Leu Met Lys Gly 50 55 60

<211> 511

<212> PRT

<213> Methylomonas 16a

<400> 22

Val Leu Asp Glu Met Phe Glu Leu Cys Glu Arg Arg Ser Glu Asp Tyr 65 70 75 80

Leu Glu Phe Leu Pro Leu Ser Pro Met Tyr Arg Leu Leu Tyr Asp Asp 85 90 95

Arg Asp Ile Phe Val Tyr Ser Asp Arg Glu Asn Met Arg Ala Glu Leu 100 105 110

Gln Arg Val Phe Asp Glu Gly Thr Asp Gly Tyr Glu Gln Phe Met Glu 115 120 125

Gln Glu Arg Lys Arg Phe Asn Ala Leu Tyr Pro Cys Ile Thr Arg Asp 130 135 140

Tyr Ser Ser Leu Lys Ser Phe Leu Ser Leu Asp Leu Ile Lys Ala Leu 145 150 155 160

Pro Trp Leu Ala Phe Pro Lys Ser Val Phe Asn Asn Leu Gly Gln Tyr 165 170 175

Phe Asn Gln Glu Lys Met Arg Leu Ala Phe Cys Phe Gln Ser Lys Tyr 180 185 190

Leu Gly Met Ser Pro Trp Glu Cys Pro Ala Leu Phe Thr Met Leu Pro 195 200 205

Tyr Leu Glu His Glu Tyr Gly Ile Tyr His Val Lys Gly Gly Leu Asn 210 215 220

Arg Ile Ala Ala Ala Met Ala Gln Val Ile Ala Glu Asn Gly Gly Glu 225 230 235 240

Ile His Leu Asn Ser Glu Ile Glu Ser Leu Ile Ile Glu Asn Gly Ala 245 250 255

Ala Lys Gly Val Lys Leu Gl
n His Gly Ala Glu Leu Arg Gly Asp Glu 260 265 270

Val Ile Ile Asn Ala Asp Phe Ala His Ala Met Thr His Leu Val Lys 275 280 285

Pro Gly Val Leu Lys Lys Tyr Thr Pro Glu Asn Leu Lys Gln Arg Glu 290 295 300

Tyr Ser Cys Ser Thr Phe Met Leu Tyr Leu Gly Leu Asp Lys Ile Tyr 305 310 315 320

Asp Leu Pro His His Thr Ile Val Phe Ala Lys Asp Tyr Thr Thr Asn 325 330 335

Ile Arg Asn Ile Phe Asp Asn Lys Thr Leu Thr Asp Asp Phe Ser Phe 340 345 350

Tyr Val Gln Asn Ala Ser Ala Ser Asp Asp Ser Leu Ala Pro Ala Gly 355 360 365

Lys Ser Ala Leu Tyr Val Leu Val Pro Met Pro Asn Asn Asp Ser Gly 370 375 380

Leu Asp Trp Gln Ala His Cys Gln Asn Val Arg Glu Gln Val Leu Asp 385 390 395 400

Thr Leu Gly Ala Arg Leu Gly Leu Ser Asp Ile Arg Ala His Ile Glu \$405\$ \$410\$ \$415

Cys Glu Lys Ile Ile Thr Pro Gln Thr Trp Glu Thr Asp Glu His Val 420 425 430

Tyr Lys Gly Ala Thr Phe Ser Leu Ser His Lys Phe Ser Gln Met Leu 435 440 445

Tyr Trp Arg Pro His Asn Arg Phe Glu Glu Leu Ala Asn Cys Tyr Leu 450 455 460

Val Gly Gly Gly Thr His Pro Gly Ser Gly Leu Pro Thr Ile Tyr Glu 465 470 475 480

Ser Ala Arg Ile Ser Ala Lys Leu Ile Ser Gln Lys His Arg Val Arg 485 490 495

Phe Lys Asp Ile Ala His Ser Ala Trp Leu Lys Lys Ala Lys Ala 500 505 510

<210> 23

<211> 1491

<212> DNA

<213> Methylomonas 16a

<400> 23 atgaactcaa	atgacaacca	acgcgtgatc	gtgatcggcg	ccggcctcgg	cggcctgtcc	60
gccgctattt	cgctggccac	ggccggcttt	tccgtgcaac	tcatcgaaaa	aaacgacaag	120
gtcggcggca	agctcaacat	catgaccaaa	gacggcttta	ccttcgatct	ggggccgtcc	180
attttgacga	tgccgcacat	ctttgaggcc	ttgttcacag	gggccggcaa	aaacatggcc	240
gattacgtgc	aaatccagaa	agtcgaaccg	cactggcgca	atttcttcga	ggacggtagc	300
gtgatcgact	tgtgcgaaga	cgccgaaacc	cagcgccgcg	agctggataa	acttggcccc	360
ggcacttacg	cgcaattcca	gcgctttctg	gactattcga	aaaacctctg	cacggaaacc	420
gaagccggtt	acttcgccaa	gggcctggac	ggcttttggg	atttactcaa	gttttacggc	480
ccgctccgca	gcctgctgag	tttcgacgtc	ttccgcagca	tggaccaggg	cgtgcgccgc	540
tttatttccg	atcccaagtt	ggtcgaaatc	ctgaattact	tcatcaaata	cgtcggctcc	600
tcgccttacg	atgcgcccgc	cttgatgaac	ctgctgcctt	acattcaata	tcattacggc	660
ctgtggtacg	tgaaaggcgg	catgtatggc	atggcgcagg	ccatggaaaa	actggccgtg	720
gaattgggcg	tcgagattcg	tttagatgcc	gaggtgtcgg	aaatccaaaa	acaggacggc	780
agagcctgcg	ccgtaaagtt	ggcgaacggc	gacgtgctgc	cggccgacat	cgtggtgtcg	840
aacatggaag	tgattccggc	gatggaaaaa	ctgctgcgca	gcccggccag	cgaactgaaa	900
aaaatgcagc	gcttcgagcc	tagctgttcc	ggcctggtgc	tgcacttggg	cgtggacagg	960
ctgtatccgc	aactggcgca	ccacaatttc	ttttattccg	atcatccgcg	cgaacatttc	1020
gatgcggtat	tcaaaagcca	tcgcctgtcg	gacgatccga	ccatttatct	ggtcgcgccg	1080
tgcaagaccg	accccgccca	ggcgccggcc	ggctgcgaga	tcatcaaaat	cctgccccat	1140
atcccgcacc	tcgaccccga	caaactgctg	accgccgagg	attattcagc	cttgcgcgag	1200
cgggtgctgg	tcaaactcga	acgcatgggc	ctgacggatt	tacgccaaca	catcgtgacc	1260
gaagaatact	ggacgccgct	ggatattcag	gccaaatatt	attcaaacca	gggctcgatt	1320
tacggcgtgg	tcgccgaccg	cttcaaaaac	ctgggtttca	aggcacctca	acgcagcagc	1380
gaattatcca	atctgtattt	cgtcggcggc	agcgtcaatc	ccggcggcgg	catgccgatg	1440
gtgacgctgt	ccgggcaatt	ggtgagggac	aagattgtgg	cggatttgca	a	1491

<210> 24

<211> 497

<212> PRT

<213> Methylomonas 16a

<400> 24

Met Asn Ser Asn Asp Asn Gln Arg Val Ile Val Ile Gly Ala Gly Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Gly Leu Ser Ala Ala Ile Ser Leu Ala Thr Ala Gly Phe Ser Val $20 \\ 25 \\ 30$

Gln Leu Ile Glu Lys Asn Asp Lys Val Gly Gly Lys Leu Asn Ile Met $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Thr Lys Asp Gly Phe Thr Phe Asp Leu Gly Pro Ser Ile Leu Thr Met 50 55 60

Pro His Ile Phe Glu Ala Leu Phe Thr Gly Ala Gly Lys Asn Met Ala 65 70 75 80

Asp Tyr Val Gln Ile Gln Lys Val Glu Pro His Trp Arg Asn Phe Phe 85 90 95

Glu Asp Gly Ser Val Ile Asp Leu Cys Glu Asp Ala Glu Thr Gln Arg 100 105 110

Arg Glu Leu Asp Lys Leu Gly Pro Gly Thr Tyr Ala Gln Phe Gln Arg 115 120 125

Phe Leu Asp Tyr Ser Lys Asn Leu Cys Thr Glu Thr Glu Ala Gly Tyr 130 135 140

Phe Ala Lys Gly Leu Asp Gly Phe Trp Asp Leu Leu Lys Phe Tyr Gly 145 150 155 160

Pro Leu Arg Ser Leu Leu Ser Phe Asp Val Phe Arg Ser Met Asp Gln
165 170 175

Gly Val Arg Arg Phe Ile Ser Asp Pro Lys Leu Val Glu Ile Leu Asn 180 185 190

Tyr Phe Ile Lys Tyr Val Gly Ser Ser Pro Tyr Asp Ala Pro Ala Leu 195 200 205

Met Asn Leu Leu Pro Tyr Ile Gln Tyr His Tyr Gly Leu Trp Tyr Val 210 215 220

Lys Gly Gly Met Tyr Gly Met Ala Gln Ala Met Glu Lys Leu Ala Val 225 230 235 240 Glu Leu Gly Val Glu Ile Arg Leu Asp Ala Glu Val Ser Glu Ile Gln
245 250 255

Lys Gln Asp Gly Arg Ala Cys Ala Val Lys Leu Ala As
n Gly Asp Val 265 270

Leu Pro Ala Asp Ile Val Val Ser Asn Met Glu Val Ile Pro Ala Met 275 280 285

Glu Lys Leu Leu Arg Ser Pro Ala Ser Glu Leu Lys Lys Met Gln Arg 290 295 300

Phe Glu Pro Ser Cys Ser Gly Leu Val Leu His Leu Gly Val Asp Arg 305 310 315 320

Leu Tyr Pro Gln Leu Ala His His Asn Phe Phe Tyr Ser Asp His Pro 325 330 335

Arg Glu His Phe Asp Ala Val Phe Lys Ser His Arg Leu Ser Asp Asp 340 345 350

Pro Thr Ile Tyr Leu Val Ala Pro Cys Lys Thr Asp Pro Ala Gln Ala 355 360 365

Pro Ala Gly Cys Glu Ile Ile Lys Ile Leu Pro His Ile Pro His Leu 370 375 380

Asp Pro Asp Lys Leu Leu Thr Ala Glu Asp Tyr Ser Ala Leu Arg Glu 385 390 395 400

Arg Val Leu Val Lys Leu Glu Arg Met Gly Leu Thr Asp Leu Arg Gln 405 410 415

His Ile Val Thr Glu Glu Tyr Trp Thr Pro Leu Asp Ile Gln Ala Lys 420 425 430

Tyr Tyr Ser Asn Gln Gly Ser Ile Tyr Gly Val Val Ala Asp Arg Phe 435 440 445

Lys Asn Leu Gly Phe Lys Ala Pro Gln Arg Ser Ser Glu Leu Ser Asn 450 455 460

Leu Tyr Phe Val Gly Gly Ser Val Asn Pro Gly Gly Gly Met Pro Met 465 470 475 480

Val Thr Leu Ser Gly Gln Leu Val Arg Asp Lys Ile Val Ala Asp Leu 490

Gln

<210> <211> <212> <213>	25 912 DNA Pant	coea stewart	cii				
<400>	25						
ttgacgg	ftct	gcgcaaaaaa	acacgttcac	cttactggca	tttcggctga	gcagttgctg	60
gctgata	itcg	atagccgcct	tgatcagtta	ctgccggttc	agggtgagcg	ggattgtgtg	120
ggtgccg	ıcga	tgcgtgaagg	cacgctggca	ccgggcaaac	gtattcgtcc	gatgctgctg	180
ttattaa	cag	cgcgcgatct	tggctgtgcg	atcagtcacg	ggggattact	ggatttagcc	240
tgcgcgg	ıttg	aaatggtgca	tgctgcctcg	ctgattctgg	atgatatgcc	ctgcatggac	300
gatgcgc	aga	tgcgtcgggg	gcgtcccacc	attcacacgc	agtacggtga	acatgtggcg	360
attctgg	ıcgg	cggtcgcttt	actcagcaaa	gcgtttgggg	tgattgccga	ggctgaaggt	420
ctgacgc	cga	tagccaaaac	tcgcgcggtg	tcggagctgt	ccactgcgat	tggcatgcag	480
ggtctgg	rttc	agggccagtt	taaggacctc	tcggaaggcg	ataaaccccg	cagcgccgat	540
gccatac	tgc	taaccaatca	gtttaaaacc	agcacgctgt	tttgcgcgtc	aacgcaaatg	600
gcgtcca	ittg	cggccaacgc	gtcctgcgaa	gcgcgtgaga	acctgcatcg	tttctcgctc	660
gatctcg	gcc	aggcctttca	gttgcttgac	gatcttaccg	atggcatgac	cgataccggc	720
aaagaca	tca	atcaggatgc	aggtaaatca	acgctggtca	atttattagg	ctcaggcgcg	780
gtcgaag	aac	gcctgcgaca	gcatttgcgc	ctggccagtg	aacacctttc	cgcggcatgc	840
caaaacg	igcc	attccaccac	ccaacttttt	attcaggcct	ggtttgacaa	aaaactcgct	900
gccgtca	gtt	aa					912

Leu Thr Val Cys Ala Lys Lys His Val His Leu Thr Gly Ile Ser Ala 5 10

<210> 26

<211> 303 <212> PRT

<213> Pantoea stewartii

<400> 26

Glu Gln Leu Leu Ala Asp Ile Asp Ser Arg Leu Asp Gln Leu Leu Pro 20 25 30

Val Gln Gly Glu Arg Asp Cys Val Gly Ala Ala Met Arg Glu Gly Thr 35 40 45

Leu Ala Pro Gly Lys Arg Ile Arg Pro Met Leu Leu Leu Leu Thr Ala 50 55 60

Arg Asp Leu Gly Cys Ala Ile Ser His Gly Gly Leu Leu Asp Leu Ala 65 70 75 80

Cys Ala Val Glu Met Val His Ala Ala Ser Leu Ile Leu Asp Asp Met 85 90 95

Pro Cys Met Asp Asp Ala Gln Met Arg Arg Gly Arg Pro Thr Ile His
100 105 110

Thr Gln Tyr Gly Glu His Val Ala Ile Leu Ala Ala Val Ala Leu Leu 115 120 125

Ser Lys Ala Phe Gly Val Ile Ala Glu Ala Glu Gly Leu Thr Pro Ile 130 135 140

Ala Lys Thr Arg Ala Val Ser Glu Leu Ser Thr Ala Ile Gly Met Gln 145 150 155 160

Gly Leu Val Gln Gly Gln Phe Lys Asp Leu Ser Glu Gly Asp Lys Pro 165 170 175

Arg Ser Ala Asp Ala Ile Leu Leu Thr Asn Gln Phe Lys Thr Ser Thr 180 185 190

Leu Phe Cys Ala Ser Thr Gln Met Ala Ser Ile Ala Ala Asn Ala Ser 195 200 205

Cys Glu Ala Arg Glu Asn Leu His Arg Phe Ser Leu Asp Leu Gly Gln 210 215 220

Ala Phe Gln Leu Leu Asp Asp Leu Thr Asp Gly Met Thr Asp Thr Gly 225 230 235 240

Lys Asp Ile Asn Gln Asp Ala Gly Lys Ser Thr Leu Val Asn Leu Leu 245 250 255

Gly Ser Gly Ala Val Glu Glu Arg Leu Arg Gln His Leu Arg Leu Ala 260 265

Ser Glu His Leu Ser Ala Ala Cys Gln Asn Gly His Ser Thr Thr Gln 275 280

Leu Phe Ile Gln Ala Trp Phe Asp Lys Lys Leu Ala Ala Val Ser 295

<210> 27 <211> 1296 <212> DNA <213> Pantoea stewartii

<400> 27

atgagccatt	ttgcggtgat	cgcaccgccc	tttttcagcc	atgttcgcgc	tctgcaaaac	60
cttgctcagg	aattagtggc	ccgcggtcat	cgtgttacgt	tttttcagca	acatgactgc	120
aaagcgctgg	taacgggcag	cgatatcgga	ttccagaccg	tcggactgca	aacgcatcct	180
cccggttcct	tatcgcacct	gctgcacctg	gccgcgcacc	cactcggacc	ctcgatgtta	240
cgactgatca	atgaaatggc	acgtaccagc	gatatgcttt	gccgggaact	gcccgccgct	300
tttcatgcgt	tgcagataga	gggcgtgatc	gttgatcaaa	tggagccggc	aggtgcagta	360
gtcgcagaag	cgtcaggtct	gccgtttgtt	tcggtggcct	gcgcgctgcc	gctcaaccgc	420
gaaccgggtt	tgcctctggc	ggtgatgcct	ttcgagtacg	gcaccagcga	tgcggctcgg	480
gaacgctata	ccaccagcga	aaaaatttat	gactggctga	tgcgacgtca	cgatcgtgtg	540
atcgcgcatc	atgcatgcag	aatgggttta	gccccgcgtg	aaaaactgca	tcattgtttt	600
tctccactgg	cacaaatcag	ccagttgatc	cccgaactgg	attttccccg	caaagcgctg	660
ccagactgct	ttcatgcggt	tggaccgtta	cggcaacccc	aggggacgcc	ggggtcatca	720
acttcttatt	ttccgtcccc	ggacaaaccc	cgtatttttg	cctcgctggg	caccctgcag	780
ggacatcgtt	atggcctgtt	caggaccatc	gccaaagcct	gcgaagaggt	ggatgcgcag	840
ttactgttgg	cacactgtgg	cggcctctca	gccacgcagg	caggtgaact	ggcccggggc	900
ggggacattc	aggttgtgga	ttttgccgat	caatccgcag	cactttcaca	ggcacagttg	960
acaatcacac	atggtgggat	gaatacggta	ctggacgcta	ttgcttcccg	cacaccgcta	1020
ctggcgctgc	cgctggcatt	tgatcaacct	ggcgtggcat	cacgaattgt	ttatcatggc	1080
atcggcaagc	gtgcgtctcg	gtttactacc	agccatgcgc	tggcgcggca	gattcgatcg	1140
ctgctgacta	acaccgatta	cccgcagcgt	atgacaaaaa	ttcaggccgc	attgcgtctg	1200

gcaggcggca caccagccgc cgccgatatt gttgaacagg cgatgcggac ctgtcagcca															
gtactcagtg ggcaggatta tgcaaccgca ctatga															
<21:	<210> 28 <211> 431 <212> PRT <213> Pantoea stewartii														
<400> 28															
Met 1	Ser	His	Phe	Ala 5	Val	Ile	Ala	Pro	Pro 10	Phe	Phe	Ser	His	Val 15	Arg
Ala	Leu	Gln	Asn 20	Leu	Ala	Gln	Glu	Leu 25	Val	Ala	Arg	Gly	His 30	Arg	Val
Thr	Phe	Phe 35	Gln	Gln	His	Asp	Cys 40	Lys	Ala	Leu	Val	Thr 45	Gly	Ser	Asp
Ile	Gly 50	Phe	Gln	Thr	Val	Gly 55	Leu	Gln	Thr	His	Pro 60	Pro	Gly	Ser	Leu
Ser 65	His	Leu	Leu	His	Leu 70	Ala	Ala	His	Pro	Leu 75	Gly	Pro	Ser	Met	Leu 80
Arg	Leu	Ile	Asn	Glu 85	Met	Ala	Arg	Thr	Ser 90	Asp	Met	Leu	Cys	Arg 95	Glu
Leu	Pro	Ala	Ala 100	Phe	His	Ala	Leu	Gln 105	Ile	Glu	Gly	Val	Ile 110	Val	Asp
Gln	Met	Glu 115	Pro	Ala	Gly	Ala	Val 120	Val	Ala	Glu	Ala	Ser 125	Gly	Leu	Pro
Phe	Val 130	Ser	Val	Ala	Cys	Ala 135	Leu	Pro	Leu	Asn	Arg 140	Glu	Pro	Gly	Leu
Pro 145	Leu	Ala	Val	Met	Pro 150	Phe	Glu	Tyr	Gly	Thr 155	Ser	Asp	Ala	Ala	Arg 160
Glu	Arg	Tyr	Thr	Thr 165	Ser	Glu	Lys	Ile	Tyr 170	Asp	Trp	Leu	Met	Arg 175	Arg

His Asp Arg Val Ile Ala His His Ala Cys Arg Met Gly Leu Ala Pro 180 $$ 185 $$ 190 $$

Arg Glu Lys Leu His His Cys Phe Ser Pro Leu Ala Gln Ile Ser Gln
195 200 205

Leu Ile Pro Glu Leu Asp Phe Pro Arg Lys Ala Leu Pro Asp Cys Phe 210 215 220

His Ala Val Gly Pro Leu Arg Gln Pro Gln Gly Thr Pro Gly Ser Ser 225 230 235 240

Thr Ser Tyr Phe Pro Ser Pro Asp Lys Pro Arg Ile Phe Ala Ser Leu 245 250 255

Gly Thr Leu Gln Gly His Arg Tyr Gly Leu Phe Arg Thr Ile Ala Lys 260 265 270

Ala Cys Glu Glu Val Asp Ala Gln Leu Leu Leu Ala His Cys Gly Gly 275 280 285

Leu Ser Ala Thr Gln Ala Gly Glu Leu Ala Arg Gly Gly Asp Ile Gln 290 295 300

Val Val Asp Phe Ala Asp Gln Ser Ala Ala Leu Ser Gln Ala Gln Leu 305 310 315 320

Thr Ile Thr His Gly Gly Met Asn Thr Val Leu Asp Ala Ile Ala Ser 325 330 335

Arg Thr Pro Leu Leu Ala Leu Pro Leu Ala Phe Asp Gln Pro Gly Val 340 345 350

Ala Ser Arg Ile Val Tyr His Gly Ile Gly Lys Arg Ala Ser Arg Phe 355 360 365

Thr Thr Ser His Ala Leu Ala Arg Gln Ile Arg Ser Leu Leu Thr Asn 370 375 380

Thr Asp Tyr Pro Gln Arg Met Thr Lys Ile Gln Ala Ala Leu Arg Leu 385 390 395 400

Ala Gly Gly Thr Pro Ala Ala Ala Asp Ile Val Glu Gln Ala Met Arg 405 410 415

Thr Cys Gln Pro Val Leu Ser Gly Gln Asp Tyr Ala Thr Ala Leu 420 425 430

<210> 29 <211> 1149 <212> DNA <213> Pantoea stewartii	
<400> 29 atgcaaccgc actatgatct cattctggtc ggtgccggtc tggctaatgg ccttatcgcg	60
ctccggcttc agcaacagca tccggatatg cggatcttgc ttattgaggc gggtcctgag	120
gcgggaggga accatacctg gtcctttcac gaagaggatt taacgctgaa tcagcatcgc	180
tggatagege egettgtggt ceateactgg ecegactace aggttegttt ececeaacge	240
cgtcgccatg tgaacagtgg ctactactgc gtgacctccc ggcatttcgc cgggatactc	300
cggcaacagt ttggacaaca tttatggctg cataccgcgg tttcagccgt tcatgctgaa	360
toggtocagt tagoggatgg coggattatt catgocagta cagtgatoga oggacggggt	420
tacacgcctg attctgcact acgcgtagga ttccaggcat ttatcggtca ggagtggcaa	480
ctgagcgcgc cgcatggttt atcgtcaccg attatcatgg atgcgacggt cgatcagcaa	540
aatggctacc gctttgttta taccctgccg ctttccgcaa ccgcactgct gatcgaagac	600
acacactaca ttgacaaggc taatcttcag gccgaacggg cgcgtcagaa cattcgcgat	660
tatgctgcgc gacagggttg gccgttacag acgttgctgc gggaagaaca gggtgcattg	720
cccattacgt taacgggcga taatcgtcag ttttggcaac agcaaccgca agcctgtagc	780
ggattacgcg ccgggctgtt tcatccgaca accggctact ccctaccgct cgcggtggcg	840
ctggccgatc gtctcagcgc gctggatgtg tttacctctt cctctgttca ccagacgatt	900
gctcactttg cccagcaacg ttggcagcaa caggggtttt tccgcatgct gaatcgcatg	960
ttgtttttag ccggaccggc cgagtcacgc tggcgtgtga tgcagcgttt ctatggctta 10	020
cccgaggatt tgattgcccg cttttatgcg ggaaaactca ccgtgaccga tcggctacgc 10	080
attctgagcg gcaagccgcc cgttcccgtt ttcgcggcat tgcaggcaat tatgacgact 12	140
catcgttga 13	149
<210> 30	

<210> 30

<211> 382

<212> PRT

<213> Pantoea stewartii

<400> 30

Gly Leu Ile Ala Leu Arg Leu Gln Gln Gln His Pro Asp Met Arg Ile 20 25 30

Leu Leu Ile Glu Ala Gly Pro Glu Ala Gly Gly Asn His Thr Trp Ser 35 40 45

Phe His Glu Glu Asp Leu Thr Leu Asn Gln His Arg Trp Ile Ala Pro 50 55 60

Leu Val Val His His Trp Pro Asp Tyr Gln Val Arg Phe Pro Gln Arg 65 70 75 80

Arg Arg His Val Asn Ser Gly Tyr Tyr Cys Val Thr Ser Arg His Phe 85 90 95

Ala Gly Ile Leu Arg Gln Gln Phe Gly Gln His Leu Trp Leu His Thr 100 105 110

Ala Val Ser Ala Val His Ala Glu Ser Val Gln Leu Ala Asp Gly Arg 115 120 125

Ile Ile His Ala Ser Thr Val Ile Asp Gly Arg Gly Tyr Thr Pro Asp 130 135 140

Ser Ala Leu Arg Val Gly Phe Gln Ala Phe Ile Gly Gln Glu Trp Gln 145 150 155 160

Leu Ser Ala Pro His Gly Leu Ser Ser Pro Ile Ile Met Asp Ala Thr 165 170 175

Val Asp Gln Gln Asn Gly Tyr Arg Phe Val Tyr Thr Leu Pro Leu Ser 180 185 190

Ala Thr Ala Leu Leu Ile Glu Asp Thr His Tyr Ile Asp Lys Ala Asn 195 200 205

Leu Gln Ala Glu Arg Ala Arg Gln Asn Ile Arg Asp Tyr Ala Ala Arg 210 215 220

Gln Gly Trp Pro Leu Gln Thr Leu Leu Arg Glu Glu Gln Gly Ala Leu 225 230 235 240

Pro Ile Thr Leu Thr Gly Asp Asn Arg Gln Phe Trp Gln Gln Gln Pro
245 250 255

Gln Ala Cys Ser Gly Leu Arg Ala Gly Leu Phe His Pro Thr Thr Gly 260 265 270

Tyr	Ser	Leu 275	Pro	Leu	Ala	Val	Ala 280	Leu	Ala	Asp	Arg	Leu 285	Ser	Ala	Leu		
Asp	Val 290	Phe	Thr	Ser	Ser	Ser 295	Val	His	Gln	Thr	Ile 300	Ala	His	Phe	Ala		
Gln 305	Gln	Arg	Trp	Gln	Gln 310	Gln	Gly	Phe	Phe	Arg 315	Met	Leu	Asn	Arg	Met 320		
Leu	Phe	Leu	Ala	Gly 325	Pro	Ala	Glu	Ser	Arg 330	Trp	Arg	Val	Met	Gln 335	Arg		
Phe	Tyr	Gly	Leu 340	Pro	Glu	Asp	Leu	Ile 345	Ala	Arg	Phe	Tyr	Ala 350	Gly	Lys		
Leu	Thr	Val 355	Thr	Asp	Arg	Leu	Arg 360	Ile	Leu	Ser	Gly	Lys 365	Pro	Pro	Val		
Pro	Val 370	Phe	Ala	Ala	Leu	Gln 375	Ala	Ile	Met	Thr	Thr 380	His	Arg				
<210 <211 <212 <213	> 1 > [31 .479 NA Panto	oea s	stewa	ırtii	_											
<400 atga		31 :aa c	etacç	ıgtaa	ıt tg	gtgc	gggc	ttt	ggto	ıgcc	tggc	cacto	igc a	aatto	gttta	6	0
cagg	ccgc	ag g	gtatt	cctg	ıt tt	tgct	gctt	gag	gcago	gcg	acaa	gccg	ıgg t	ggac	gggct	12	0
tatg	ttta	ıtc a	ıggaç	gcago	ıg ct	ttac	tttt	gat	gcag	lacc	ctac	cgtt	at o	cacco	gatece	18	0
															agctg	24	0
															acgat	30	
															cgggt	360	
															tcggc	420	
,	J	_	•				9	,	- 255	9	- 500		\	, 5 - 40	-9009	±0,	J

540

600

660

720

caggcatggc gcagcgttta cagtaaagtt gccggctaca ttgaggatga gcatcttcgg

caggogtttt cttttcactc gctcttagtg ggggggaatc cgtttgcaac ctcgtccatt

tatacgctga ttcacgcgtt agaacgggaa tggggggtct ggtttccacg cggtggaacc

ggtgcgctgg tcaatggcat gatcaagctg tttcaggatc tgggcggcga agtcgtgctt

aacgcccggg	tcagtcatat	ggaaaccgtt	ggggacaaga	ttcaggccgt	gcagttggaa	780
gacggcagac	ggtttgaaac	ctgcgcggtg	gcgtcgaacg	ctgatgttgt	acatacctat	840
cgcgatctgc	tgtctcagca	tcccgcagcc	gctaagcagg	cgaaaaaact	gcaatccaag	900
cgtatgagta	actcactgtt	tgtactctat	tttggtctca	accatcatca	cgatcaactc	960
gcccatcata	ccgtctgttt	tgggccacgc	taccgtgaac	tgattcacga	aatttttaac	1020
catgatggtc	tggctgagga	tttttcgctt	tatttacacg	caccttgtgt	cacggatccg	1080
tcactggcac	cggaagggtg	cggcagctat	tatgtgctgg	cgcctgttcc	acacttaggc	1140
acggcgaacc	tcgactgggc	ggtagaagga	ccccgactgc	gcgatcgtat	ttttgactac	1200
cttgagcaac	attacatgcc	tggcttgcga	agccagttgg	tgacgcaccg	tatgtttacg	1260
ccgttcgatt	tccgcgacga	gctcaatgcc	tggcaaggtt	cggccttctc	ggttgaacct	1320
attctgaccc	agagcgcctg	gttccgacca	cataaccgcg	ataagcacat	tgataatctt	1380
tatctggttg	gcgcaggcac	ccatcctggc	gcgggcattc	ccggcgtaat	cggctcggcg	1440
aaggcgacgg	caggcttaat	gctggaggac	ctgatttga			1479

<210> 32

<211> 492

<212> PRT

<213> Pantoea stewartii

<400> 32

Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Glu Gln 20 25 30

Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Gln Glu Gln Gly Phe 35 40 45

Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu 50 55 60

Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Asp Tyr Val Glu Leu 65 70 75 80

Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val 85 90 95

Phe Asn Tyr Asp Asn Asp Gln Ala Gln Leu Glu Ala Gln Ile Gln Gln 100 105 110

Phe Asn Pro Arg Asp Val Ala Gly Tyr Arg Ala Phe Leu Asp Tyr Ser 115 120 125

Arg Ala Val Phe Asn Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 135 140

Leu Ser Phe Lys Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 145 150 155 160

Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Gly Tyr Ile Glu Asp 165 170 175

Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 190

Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205

Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 215 220

Asn Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Gly Glu Val Val Leu 225 230 235 240

Asn Ala Arg Val Ser His Met Glu Thr Val Gly Asp Lys Ile Gln Ala 245 250 255

Val Gln Leu Glu Asp Gly Arg Arg Phe Glu Thr Cys Ala Val Ala Ser 260 265 270

Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285

Ala Ala Lys Gln Ala Lys Lys Leu Gln Ser Lys Arg Met Ser Asn 290 295 300

Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His Asp Gln Leu 305 310 315 320

Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile His 325 330 335

Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu 340 345 350

His Ala Pro Cys Val Thr Asp Pro Ser Leu Ala Pro Glu Gly Cys Gly 360 Ser Tyr Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Asn Leu Asp Trp Ala Val Glu Gly Pro Arg Leu Arg Asp Arg Ile Phe Asp Tyr 385 390 395 Leu Glu Gln His Tyr Met Pro Gly Leu Arg Ser Gln Leu Val Thr His Arg Met Phe Thr Pro Phe Asp Phe Arg Asp Glu Leu Asn Ala Trp Gln 420 425 Gly Ser Ala Phe Ser Val Glu Pro Ile Leu Thr Gln Ser Ala Trp Phe 440 Arg Pro His Asn Arg Asp Lys His Ile Asp Asn Leu Tyr Leu Val Gly 450 455 Ala Gly Thr His Pro Gly Ala Gly Ile Pro Gly Val Ile Gly Ser Ala 465 470 475 Lys Ala Thr Ala Gly Leu Met Leu Glu Asp Leu Ile 485 <210> 33 <211> 891 <212> DNA <213> Pantoea stewartii atggcggttg gctcgaaaag ctttgcgact gcatcgacgc ttttcgacgc caaaacccgt 60 cgcagcgtgc tgatgcttta cgcatggtgc cgccactgcg acgacgtcat tgacgatcaa 120 acactgggct ttcatgccga ccagccctct tcgcagatgc ctgagcagcg cctgcagcag 180 cttgaaatga aaacgcgtca ggcctacgcc ggttcgcaaa tgcacgagcc cgcttttgcc 240 gegtttcagg aggtegegat ggegcatgat ategeteeg cetaegegtt egaccatetg 300

360

420

480

gaaggttttg ccatggatgt gcgcgaaacg cgctacctga cactggacga tacgctgcgt

tattgctatc acgtcgccgg tgttgtgggc ctgatgatgg cgcaaattat gggcgttcgc

gataacgcca cgctcgatcg cgcctgcgat ctcgggctgg ctttccagtt gaccaacatt

gcgcgtgata	ttgtcgacga	tgctcaggtg	ggccgctgtt	atctgcctga	aagctggctg	540
gaagaggaag	gactgacgaa	agcgaattat	gctgcgccag	aaaaccggca	ggccttaagc	600
cgtatcgccg	ggcgactggt	acgggaagcg	gaaccctatt	acgtatcatc	aatggccggt	660
ctggcacaat	tacccttacg	ctcggcctgg	gccatcgcga	cagcgaagca	ggtgtaccgt	720
aaaattggcg	tgaaagttga	acaggccggt	aagcaggcct	gggatcatcg	ccagtccacg	780
tccaccgccg	aaaaattaac	gcttttgctg	acggcatccg	gtcaggcagt	tacttcccgg	840
atgaagacgt	atccaccccg	tcctgctcat	ctctggcagc	gcccgatcta	g	891

<210> 34

<211> 296

<212> PRT

<213> Pantoea stewartii

<400> 34

Met Ala Val Gly Ser Lys Ser Phe Ala Thr Ala Ser Thr Leu Phe Asp 1 5 10 15

Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30

Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe His Ala Asp Gln 35 40 45

Pro Ser Ser Gln Met Pro Glu Gln Arg Leu Gln Gln Leu Glu Met Lys 50 55 60

Thr Arg Gln Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala 65 70 75 80

Ala Phe Gln Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala 85 90 95

Phe Asp His Leu Glu Gly Phe Ala Met Asp Val Arg Glu Thr Arg Tyr 100 105 110

Leu Thr Leu Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val 115 120 125

Val Gly Leu Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr 130 135 140

Leu Asp Arg Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile 145 150 155 160

Ala	Arg	Asp	Ile	Val 165	Asp	Asp	Ala	Gln	Val 170	Gly	Arg	Cys	Tyr	Leu 175	Pro		
Glu	Ser	Trp	Leu 180	Glu	Glu	Glu	Gly	Leu 185	Thr	Lys	Ala	Asn	Tyr 190	Ala	Ala		
Pro	Glu	Asn 195	Arg	Gln	Ala	Leu	Ser 200	Arg	Ile	Ala	Gly	Arg 205	Leu	Val	Arg		
Glu	Ala 210	Glu	Pro	Tyr	Tyr	Val 215	Ser	Ser	Met	Ala	Gly 220	Leu	Ala	Gln	Leu		
Pro 225	Leu	Arg	Ser	Ala	Trp 230	Ala	Ile	Ala	Thr	Ala 235	Lys	Gln	Val	Tyr	Arg 240		
Lys	Ile	Gly	Val	Lys 245	Val	Glu	Gln	Ala	Gly 250	Lys	Gln	Ala	Trp	Asp 255	His		
Ārg	Gln	Ser	Thr 260	Ser	Thr	Ala	Glu	Lys 265	Leu	Thr	Leu	Leu	Leu 270	Thr	Ala		
Ser	Gly	Gln 275	Ala	Val	Thr	Ser	Arg 280	Met	Lys	Thr	Tyr	Pro 285	Pro	Arg	Pro		
Ala	His 290	Leu	Trp	Gln	Arg	Pro 295	Ile										
<210 <211 <212 <213	L> 5 2> I	35 528 DNA Panto	oea s	stewa	arti:	i								•			
<400	, ,	35 gga 1	etta.	raato	מכ כנ	ctgat	tcata	7 ++i	tate:	acca	taat	teaa	rat (naan	gtggtt	1	60
															cacat		20
															gccatt	15	80
gtgt	cgat	ttg (cact	gattt	ta ct	tcg	gcagt	t aca	aggaa	atct	ggc	cgct	cca «	gtgga	attggt	2	40
gcag	ggcat	tga d	ccgct	ttato	gg ti	tact	tgtat	t tti	tatg	gtcc	acga	acgga	act (ggtad	caccag	31	00
cgct	ggco	cgt 1	taag	ctaca	at a	ccgc	gcaaa	a ggo	ctac	ctga	aac	ggtta	ata (catg	gcccac	3	60

cgtatgcatc atgctgtaag gggaaaagag ggctgcgtgt cctttggttt tctgtacgcg

cca	ccgt	:tat	ctaa	actt	ca g	gcga	cgct	g ag	agaa	aggc	atg	cggc	tag	atcg	ggcgct
gcc	agaç	atg	agca	ggac	gg g	gtgg	atac	g tc	ttca	tccg	gga	agta	a		
<21 <21 <21 <21	1> 2>	36 175 PRT Pant	oea	stew	arti	i									
<40	0>	36													
Met 1	Leu	. Trp	Ile	Trp 5	Asn	Ala	Leu	Ile	Val 10	Phe	Val	Thr	Val	Val 15	Gly
Met	Glu	Val	Val 20	Ala	Ala	Leu	Ala	His 25	Lys	Tyr	Ile	Met	His 30	Gly	Trp
Gly	Trp	Gly 35	Trp	His	Leu	Ser	His 40	His	Glu	Pro	Arg	Lys 45	Gly	Ala	Phe
Glu	Val 50	Asn	Asp	Leu	Tyr	Ala 55	Val	Val	Phe	Ala	Ile 60	Val	Ser	Ile	Ala
Leu 65	Ile	Tyr	Phe	Gly	Ser 70	Thr	Gly	Ile	Trp	Pro 75	Leu	Gln	Trp	Ile	Gly 80
Ala	Gly	Met	Thr	Ala 85	Tyr	Gly	Leu	Leu	Tyr 90	Phe	Met	Val	His	Asp 95	Gly
Leu	Val	His	Gln 100	Arg	Trp	Pro	Phe	Arg 105	Tyr	Ile	Pro	Arg	Lys 110	Gly	Tyr
Leu	Lys	Arg 115	Leu	Tyr	Met	Ala	His 120	Arg	Met	His	His	Ala 125	Val	Arg	Gly
Lys	Glu 130	Gly	Cys	Val	Ser	Phe 135	Gly	Phe	Leu	Tyr	Ala 140	Pro	Pro	Leu	Ser
Lys 145	Leu	Gln	Ala	Thr	Leu 150	Arg	Glu	Arg	His	Ala 155	Ala	Arg	Ser	Gly	Ala 160
Ala	Arg	Asp	Glu	Gln 165	Asp	Gly	Val	Asp	Thr 170	Ser	Ser	Ser	Gly	Lys 175	

<210> 37 <211> 1599 <212> DNA <213> Rhodococcus erythropolis AN12

<400> 37 gtgagcgcat	: ttctcgacgc	cgtcgtcgtc	ggttccggac	acaacgcgct	cgtttcggcc	60
gcgtatctcg	r cacgtgaggg	ttggtcggtc	gaggttctcg	agaaggacac	ggttctcggc	120
ggtgccgtct	cgaccgtcga	gcgatttccc	ggatacaagg	tggaccgggg	gtcgtctgcg	180
cacctcatga	. tccgacacag	tggcatcatc	gaggaactcg	gactcggcgc	gcacggcctt	240
cgctacatcg	actgtgaccc	gtgggcgttc	gctccgcccg	cccctggcac	cgacgggccg	300
ggcatcgtgt	ttcatcgcga	cctcgatgca	acctgccagt	ccatcgaacg	agcttgcggg	360
acaaaggacg	ccgacgcgta	ccggcggttc	gtcgcggtct	ggtcggagcg	cagccgacac	420
gtgatgaagg	cattttccac	accgcccacc	ggatcgaacc	tgatcggtgc	gttcggagga	480
ctggccacag	cgcgcggcaa	cagcgaactg	tcgcggcagt	tcctcgcgcc	gggcgacgca	540
ctgctggacg	agtatttcga	cagtgaggca	ctcaaggcag	cgttggcgtg	gttcggcgcc	600
cagtccgggc	ctccgatgtc	ggaaccggga	accgctccga	tggtcggctt	cgcggccctc	660
atgcacgtcc	tgccgcccgg	gcgagcagtc	ggagggagcg	gcgcactgag	tgctgcgttg	720
gcatcccgga	tggctgtcga	cggcgccacc	gtcgcgctcg	gtgacggcgt	gacgtcgatc	780
cgccggaact	cgaatcactg	gaccgtcaca	accgagagcg	gtcgagaagt	tcacgctcgc	840
aaggtaatcg	cgggttgcca	catcctcacg	acactcgatc	tcctgggcaa	cggaggcttc	900
gaccgaacca	cgctcgatca	ctggcggcgg	aagatcaggg	teggeeeegg	catcggcgct	960
gtattgcgac	tggcgacatc	tgcgctcccg	tcctaccgcg	gcgacgccac	gacacgggaa	1020
agtacctcgg	gattgcaatt	actcgtttcc	gategegeee	acttgcgcac	tgcacacggc	1080
gcagcactgg	caggggaact	gcctcctcgc	cctgcggttc	tcggaatgag	tttcagcgga	1140
atcgatccca	cgatcgcccc	ggccgggcgg	catcaggtga	cactgtggtc	gcagtggcag	1200
ccgtatcgtc	tcagcggaca	tcgcgattgg	gcgtcggtcg	ccgaggccga	ggccgaccgg	1260
atcgtcggcg	agatggaggc	ttttgcaccc	ggattcaccg	attccgtcct	cgaccgcttc	1320
attcaaactc	cccgcgacat	cgagtcggaa	ttggggatga	tcggcggaaa	tgtcatgcac	1380
gtcgagatgt	cactcgatca	gatgatgttg	tggcgaccgc	ttcccgaact	gtccggccat	1440
cgcgttccgg	gagcagacgg	gttgtatctg	accggagcct	cgacgcatcc	cggtggtggt	1500
gtgtccggag	ccagtggtcg	cagtgccgct	cgaatcgcac	tgtccgacag	ccgccggggt	1560
aaagcgagtc	agtggatgcg	tcgttcgagc	aggtcgtga			1599

<210> 38 <211> 532 <212> PRT

<213> Rhodococcus erythropolis AN12

<400> 38

Leu Val Ser Ala Ala Tyr Leu Ala Arg Glu Gly Trp Ser Val Glu Val 20 25 30

Leu Glu Lys Asp Thr Val Leu Gly Gly Ala Val Ser Thr Val Glu Arg 35 40 45

Phe Pro Gly Tyr Lys Val Asp Arg Gly Ser Ser Ala His Leu Met Ile 50 55 60

Arg His Ser Gly Ile Ile Glu Glu Leu Gly Leu Gly Ala His Gly Leu 65 70 75 80

Arg Tyr Ile Asp Cys Asp Pro Trp Ala Phe Ala Pro Pro Ala Pro Gly 85 90 95

Thr Asp Gly Pro Gly Ile Val Phe His Arg Asp Leu Asp Ala Thr Cys 100 105 110

Gln Ser Ile Glu Arg Ala Cys Gly Thr Lys Asp Ala Asp Ala Tyr Arg 115 120 125

Arg Phe Val Ala Val Trp Ser Glu Arg Ser Arg His Val Met Lys Ala 130 135 140

Phe Ser Thr Pro Pro Thr Gly Ser Asn Leu Ile Gly Ala Phe Gly Gly 145 150 155 160

Leu Ala Thr Ala Arg Gly Asn Ser Glu Leu Ser Arg Gln Phe Leu Ala 165 170 175

Pro Gly Asp Ala Leu Leu Asp Glu Tyr Phe Asp Ser Glu Ala Leu Lys 180 185 190

Ala Ala Leu Ala Trp Phe Gly Ala Gln Ser Gly Pro Pro Met Ser Glu 195 200 205

Pro Gly Thr Ala Pro Met Val Gly Phe Ala Ala Leu Met His Val Leu 210 220

Pro Pro Gly Arg Ala Val Gly Gly Ser Gly Ala Leu Ser Ala Ala Leu 225 230 230 235 235

Ala Ser Arg Met Ala Val Asp Gly Ala Thr Val Ala Leu Gly Asp Gly 245 250 255

Val Thr Ser Ile Arg Arg Asn Ser Asn His Trp Thr Val Thr Thr Glu 260 265 270

Ser Gly Arg Glu Val His Ala Arg Lys Val Ile Ala Gly Cys His Ile 275 280 285

Leu Thr Thr Leu Asp Leu Leu Gly Asn Gly Gly Phe Asp Arg Thr Thr 290 295 300

Leu Asp His Trp Arg Arg Lys Ile Arg Val Gly Pro Gly Ile Gly Ala 305 310 315 320

Val Leu Arg Leu Ala Thr Ser Ala Leu Pro Ser Tyr Arg Gly Asp Ala 325 330 335

Thr Thr Arg Glu Ser Thr Ser Gly Leu Gln Leu Leu Val Ser Asp Arg 340 345 350

Ala His Leu Arg Thr Ala His Gly Ala Ala Leu Ala Gly Glu Leu Pro 355 360 365

Pro Arg Pro Ala Val Leu Gly Met Ser Phe Ser Gly Ile Asp Pro Thr 370 375 380

Ile Ala Pro Ala Gly Arg His Gln Val Thr Leu Trp Ser Gln Trp Gln 385 390 395 400

Pro Tyr Arg Leu Ser Gly His Arg Asp Trp Ala Ser Val Ala Glu Ala 405 410 415

Glu Ala Asp Arg Ile Val Gly Glu Met Glu Ala Phe Ala Pro Gly Phe 420 425 430

Thr Asp Ser Val Leu Asp Arg Phe Ile Gln Thr Pro Arg Asp Ile Glu 435 440 445

Ser Glu Leu Gly Met Ile Gly Gly Asn Val Met His Val Glu Met Ser 450 460

Leu 2 465	Asp	Gln	Met	Met	Leu 470	Trp	Arg	Pro	Leu	Pro 475	Glu	Leu	Ser	Gly	His 480	
Arg V	Val	Pro	Gly	Ala 485	Asp	Gly	Leu	Tyr	Leu 490	Thr	Gly	Ala	Ser	Thr 495	His	
Pro (Gly	Gly	Gly 500	Val	Ser	Gly	Ala	Ser 505	Gly	Arg	Ser	Ala	Ala 510	Arg	Ile	
Ala I	Leu	Ser 515	Asp	Ser	Arg	Arg	Gly 520	Lys	Ala	Ser	Gln	Trp 525	Met	Arg	Arg	
Ser S	Ser 530	Arg	Ser													
<210><211><211><212><213>	> 3 > D	9 0 NA ethy	lomo	nas	16a											
<400> ccgag			.agcg	ggtt	t tt	.gcag	ggag	Г								30
<210><211><211><212><213>	2 D	5 NA	lomo	nas	16a											
<400> gggct			tccg	attg	t ta	cag										25
<210><211><211><212><213>	· 3	8 NA	icia	l Se	quen	ce										
<220> <223>		rime	r, d	eriv	ed f	rom	Rhod	ococ	cus	eryt	hrop	olis	AN1	2		
<400> agcag			gagg	aata	a ac	catg	agcg	cat	ttct	С						38
<210><211><212><212><213>	2 (Di	6 NA	icia	l Sed	quen	ce										
<220> <223>		cime	r, de	erive	ed fi	rom 1	Rhodo	ococ	cus e	erytl	hrope	olis	AN1	2		

<400> gacta	42 gtcac gacctgctcg aacgac	26
<210> <211> <212> <213>	25	
<220> <223>	primer	
<400> atgaco	43 ggtct gcgcaaaaaa acacg	25
<210> <211> <212> <213>	28	
<220> <223>	primer	
<400> gagaaa	44 ttat gttgtggatt tggaatgc	28
<210> <211> <212> <213>	19 DNA	
<220> <223>	primer	
	45 gatc ctggctcag	19
<210> <211> <212> <213>	46 16 DNA Artificial Sequence	
<220> <223>	primer	
<400> tacctt	46 gtta cgactt	16
<210> <211> <212> <213>	47 17 DNA Artificial Sequence	
<220> <223>	primer	

<223> primer

```
<220>
<221> misc_feature
<222>
       (11)..(11)
\langle 223 \rangle Y = C or T
<220>
<221>
       misc_feature
<222>
       (12)..(12)
<223> M = A or C
<400> 47
gtgccagcag ymgcggt
                                                                        17
<210>
       48
<211>
       21
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
       primer
<400> 48
atgagcgcat ttctcgacgc c
                                                                        21
<210>
       49
<211>
      20
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
      primer
<400> 49
tcacgacctg ctcgaacgac
                                                                        20
<210>
       50
<211>
       50
<212>
       DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 50
gagaattggc tgaaaaacca aataaataac aaaatttagc gagtaaatgg
                                                                        50
<210>
       51
<211>
       50
<212>
       DNA
<213> Artificial Sequence
<220>
```

<400> 51 ttcaattgac aggggggctc gttctgattt agagttgctg ccagcttttt	50
<210> 52 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 52 gggttgtcca gatgttggtg agcggtcctt ataactataa ctgtaacaat	50
<210> 53 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 53 ttaatggtct tgccatgaga tgtgctccga ttgttacagt tatagttata	50
<210> 54 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 54 cccctgtca attgaaagcc cgccatttac tcgctaaatt ttgttattta	50
<210> 55 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> primer	
<400> 55 aaggateege gtattegtae te	22
<210> 56 <211> 40 <212> DNA <213> Artificial Sequence	
<220> <223> primer	

<400>	56 ccga tctagaaata ggctcgagtt gtcgttcagg	40
ccygac	sega tetagaaata ggetegaget geegeteagg	10
<010×	5.7	
<210> <211>	57 30	
<211>		
<213>		
<220>		
	primer	
<400>	57	
	ccta ctcgagctga catcagtgct	30
<210>	58	
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	58	
gctcta	gatg caaccagaat cg	22
<210>	59	
<211>		
<212> <213>		
	Arcificial bequence	
<220> <223>	primer	
<400>	59	0.4
tggctc	gaga gtaaaacact caag	24
<210>	60	
<210>	60 19	
<212>		
	Artificial Sequence	
<220>		
<223>	primer	
<400>	60	
	gagt cacgcttgc	19