Espaços Vetoriais e Subespaços

Marcelo Dreux

Espaços Vetoriais

Um <u>espaço vetorial</u>, (V, +, .), consiste em:

- Um conjunto não vazio V
- Uma soma, tal que se $u, v \in V$ então $u + v \in V$
- Uma multiplicação por escalar real tal que se $\alpha \in \mathbb{R}$ e $u \in V$, então $\alpha u \in V$

Espaços Vetoriais

Satisfazendo para todo $u, v, w \in V$ e para todo $\alpha, \beta \in \mathbb{R}$:

Axiomas da soma:

- u + v = v + u (comutativa)
- (u + v) + w = u + (v + w)
- $\exists \ 0 \ \text{tal que } u + 0 = 0 + u = u \ \text{(elemento neutro da soma)}$
- \exists o inverso aditivo: dado u existe w tal que u + w = 0 (notação: -u)

Espaços vetoriais

Axiomas da multiplicação:

- $(\alpha\beta)u = \alpha(\beta u)$
- 1u = u (elemento neutro da multiplicação)
- $\alpha(u+v) = \alpha u + \alpha v$
- $(\alpha + \beta)u = \alpha u + \beta u$

Exemplos de espaços vetoriais:

•
$$(\mathbb{R}^n, +,.)$$

•
$$(M_{m \times n}(\mathbb{R}), +,..)$$

•
$$(\mathbb{C}^n, +,..)$$

Conjunto das funções contínuas

• Polinômios de grau máximo n: P_n

Subespaços Vetoriais

Seja (V, +, .) um espaço vetorial. Dizemos que $W \subset V$, não vazio, é um <u>subespaço vetorial</u> de V se W, com as mesmas operações de V, é ele mesmo um espaço vetorial. Ou seja, (W, +, .) é também um espaço vetorial.

 $W \subset V$ é um subespaço vetorial de V se:

- $W \neq \emptyset$;
- $\forall u, v \in W \in \lambda \in \mathbb{R} \Rightarrow u + \lambda v \in W$ (fechamento para soma e multiplicação)

Subespaços Vetoriais

Obs: Ao tentar mostrar que o subespaço é não vazio, é comum mostrar que o vetor nulo pertence a ele.

Exercício 1: Mostre que os conjuntos abaixo não são subespaços vetoriais:

a)
$$V = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\}$$

b)
$$V = \{A \in M_{2x2}(\mathbb{R}) \mid a_{ij} > = 0\}$$

c)
$$V = \{(x, y) \in \mathbb{R}^2 \mid y = x + 1\}$$

d)
$$V = \{(x, y, z) \in \mathbb{R}^3 | x \le y \le z\}$$

Sejam as matrizes $W = \{x \in M_{3x3}(\mathbb{R}) \mid a_{ij} = 0 \text{ se } i < j\} \subset M_{3x3}$. Mostre que W é um subespaço vetorial.

$$W = \{A \in M_{3x3} | A^T = A\}$$

$$H = \{A \in M_{3x3} | A^T = -A\}$$

Mostre que W e H são subespaços vetoriais de M_{3x3} .

Encontre o subespaço vetorial $H \cap W$ do exercício anterior.

Verifique se W é um subespaço vetorial. $W = \{p(x) = ax^2 + bx + c \mid a+b=0 \ e \ c=1\}$

Verifique se W é um subespaço vetorial. $W = \{p(x) = ax^2 + bx + c \mid a+b=0 \ e \ c=0\}$

Verifique se W é um subespaço vetorial. $W = \{p(x) = ax + b \mid p(1) = 0\}$ Obs: 1 é raiz do polinômio, ou seja $a + b = 0 \Rightarrow a = -b$

São subespaços do \mathbb{R}^2

No \mathbb{R}^2

- {(0,0)} dimensão 0
- Reta do \mathbb{R}^2 que passa na origem dimensão 1
- \mathbb{R}^2 dimensão 2

São subespaços do \mathbb{R}^3

No \mathbb{R}^3

- {(0,0,0)} dimensão 0
- Reta do \mathbb{R}^3 que passa na origem dimensão 1
- Plano do \mathbb{R}^3 que passa na origem dimensão 2
- \mathbb{R}^3 dimensão 3

Exemplos

Verificar se os polinômios da forma $a_0 + a_1x + a_2x^2 + a_3x^3$, com a_0 , a_1 e a_2 inteiros, são subespaços de P_3 .

Verificar se o conjunto de matrizes M_{nxn} simétricas é um subespaço de matrizes M_{nxn} .

Verificar se o conjunto de matrizes M_{nxn} invertíveis é um subespaço de matrizes M_{nxn} .