## ▼ 사물 이미지 분류 경진대회 Baseline1

이번 대회는 주어진 이미지의 종류를 분류하는 대회입니다.

단순 이미지 분류 문제이지만 이미지 처리를 처음 시작하시는 분들은 아마도 막막하실 겁니다.

따라서 간단한 CNN 모델로 자동차, 말, 새 등 10가지 카테고리의 중 이미지들을 올바른 라벨로 분류하는 코드를 제공해드립니다.

베이스라인을 통해 이미지 처리 기초에 입문해보세요!

## Convolutional Neural Network(CNN)

코드로 들어가기 전 먼저 간단하게 CNN 모델을 이해하기 위한 기본 개념들을 둘러보겠습니다.

#### **Neural Network**

인공지능에서 기본 개념으로 사용되는 인공신경망 뉴런은 생물학적 뉴런을 수학적으로 모델링한 것입니다.

인공신경망 뉴런은 여러 입력값을 받아 일정 수준을 넘어서게 되면 활성화되고 출력값을 내보냅니다.



### <u>이미지 출처</u>

### Sigmoid

여기서 사용되는 함수가 바로 "Sigmoid"입니다.

sigmoid 함수는 활성화 함수(Activation function)로 많이 사용되며 보통 0.5 미만은 0, 이상은 1을 출력하게 됩니다.

sigmoid(x) = 1 / 1 + exp(-x)

그래프는 다음과 같습니다.



#### 이미지 출처

그러나 이런 sigmoid 함수에는 단점이 있습니다.

그래프를 보시면 양 극단 값의 기울기(미분값)이 0에 가까워져 학습이 되지 않는 문제가 발생합니다. 이를 Gradient Vanishing 문제라고 하는데 이러한 문제를 해결하기 위해 다양한 활성화 함수들이 고안되었습니다.

#### ReLU

ReLU 함수는 그렇게 고안된 활성화 함수 중 하나로, Gradient Vanishing 문제를 해결 가능합니다.

relu(x) = 0 if x < 0 else max(0,x)

위 식과 같이 ReLU 함수는 입력값을 0과 비교해 둘 중 큰 값을 출력합니다.

따라서 계산이 빠르고 양 극단값이 포화되지 않는다는 장점이 있습니다.

그러나 여전히 음수인 경우에는 0을 출력하여 학습이 이루어지지 않는다는 단점이 존재합니다.

# Graph of ReLU function



## Perceptron

퍼셉트론이란 신경망의 기원이 되는 개념으로, Frank Rosenblatt이 1957년 고안한 알고리즘입니다.

이는 여러 신호를 입력받아 0(흐르지 않는다) 또는 1(흐른다)이라는 출력값을 앞으로 전달합니다.



### 이미지 출처

각 입력 신호 X는 각 가중치 w와 곱해집니다. 가중치가 클수록 그 신호가 중요하다는 뜻입니다. 그러나 퍼셉트론은 단순한 선형 분류기로, AND나 OR과 같은 분류는 가능하나 XOR 분류는 불가능합니다.

## MLP(Multi-Layer Perceptron)

직선형 영역만 표시할 수 있는 단층 퍼셉트론의 한계를 극복하기 위해 고안된 것이 다층 퍼셉트론 입니다.



#### 이미지 출처

XOR 문제의 경우 각 영역을 직선으로 분리가 불가능한데, 비선형 영역까지 표현 가능한 다층 퍼셉 트론으로 XOR 게이트까지 구현할 수 있습니다.

더 자세한 내용이 궁금하다면 <u>여기</u>를 참고하세요!

## ▼ 환경 설정 및 데이터 로드

이제 분석할 데이터를 작업장으로 가져오겠습니다.

 $\text{import} \cdot \text{os}$ 

import warnings

warnings filterwarnings (action='ignore')

```
os.environ["CUDA VISIBLE DEVICES"]="0"·# GPU 할당
```

```
#create training dataset
from glob import glob
import numpy as np
import PIL
from PIL import Image
path = './data/train/'
training_images = []
training labels = []
for filename in glob(path +"*"):
    for img in glob(filename + "/*.jpg"):
        an_img = PIL.Image.open(img) #read img
        img_array = np.array(an_img) #img to array
        training_images.append(img_array) #append array to training_images
        label = filename.split('/')[3] #get label
        training_labels.append(label) #append label
training_images = np.array(training_images)
training_labels = np.array(training_labels)
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
training_labels= le.fit_transform(training_labels)
training_labels = training_labels.reshape(-1,1)
print(training images.shape)
print(training_labels.shape)
    (50000, 32, 32, 3)
    (50000, 1)
#create test dataset
path = './data/test/'
test images = []
test_idx = []
flist = sorted(glob(path + '*.ipg'))
```

```
for filename in flist:
    an img = PIL.Image.open(filename) #read img
    img_array = np.array(an_img) #img to array
    test_images.append(img_array) #append array to training_images
    label = filename.split('/')[3] #get id
    test_idx.append(label) #append id
test_images = np.array(test_images)
print(test_images.shape)
print(test_idx[0:5])
    (10000, 32, 32, 3)
    ['0000.jpg', '0001.jpg', '0002.jpg', '0003.jpg', '0004.jpg']
불러온 데이터셋을 살펴보겠습니다.
  import matplotlib.pyplot as plt
 %matplotlib inline
 for i in range (10):
 \cdotsplt.subplot(2, 5, i + 1)
 ····plt.imshow(training_images[i])
 ····print(training_labels[i], end=",")
 plt.show()
    [2],[2],[2],[2],[2],[2],[2],[2],[2],
     20
```

이미지를 살펴보면 10가지 종류의 이미지들이 존재하며 0부터 9까지 10개의 라벨이 달려있습니다.

CIFAR-10 이미지 데이터셋을 분류하기 위해 CNN의 기본 개념을 이해하고 데이터셋에 적용해보도록 하겠습니다.

우리의 목표는 CNN 모델을 통해 10가지 종류의 이미지들을 각 레이블에 맞게 분류하는 것입니다.

### ▼ 데이터셋 준비

```
데이터셋을 X와 y로 분리하고, train 이미지 데이터셋을 학습용과 검증용으로 나누어줍니다.

from sklearn.model_selection import train_test_split

X_train, X_valid, y_train, y_valid = train_test_split(training_images, train

X_test = test_images

print('X_train 크기:',X_train.shape)
print('X_valid 크기:',X_valid.shape)
print('X_test 크기:',X_test.shape)

X_train 크기: (40000, 32, 32, 3)
X_valid 크기: (10000, 32, 32, 3)
X_test 크기: (10000, 32, 32, 3)
```

이미지의 RGB 채널은 각각 0~255까지의 값을 갖고 있기 때문에 255로 나누어 0에서 1 사이 값을 갖도록 normalization을 해줍니다.

```
X_train = X_train / 255.0
X_valid = X_valid / 255.0
X_test = X_test / 255.0
```

### ▼ CNN 모델 설계

필요한 layer들을 추가하며 CNN 모델을 설계합니다. 자세한 내용은 뒤에 이어서 설명하겠습니다.

```
import·tensorflow·as·tf

model·=·tf.keras.models.Sequential([
····tf.keras.layers.Conv2D(16,·(3,3),·activation='relu',·padding='SAME',inpolione')
····tf.keras.layers.MaxPooling2D(2,·2,·padding='SAME'),·#pooling·layer
····tf.keras.layers.Dropout(0.23),·#·무작위로·퍼셉트론·비활성화(23%)
····tf.keras.layers.Conv2D(32,·(3,3),·activation='relu',·padding='SAME'),
····tf.keras.layers.Dropout(0.23),
····tf.keras.layers.Dropout(0.23),
····tf.keras.layers.Conv2D(32,·(3,3),·activation='relu',·padding='SAME'),
····tf.keras.layers.MaxPooling2D(2,·2,·padding='SAME'),
····tf.keras.layers.MaxPooling2D(2,·2,·padding='SAME'),
····tf.keras.layers.Dropout(0.23).
```

```
····tf.keras.layers.Flatten(),·#·N차원·배열·->·1차원·배열
····tf.keras.layers.Dense(1024,·activation·=·'relu'),·#fully·connected·laye
····tf.keras.layers.Dropout(0.5),
····tf.keras.layers.Dense(10,·activation·=·'softmax')·#·ouput·layer
])
```

이제 위 모델에서 사용한 각 Layer들에 대해 살펴보겠습니다.

### Convoultion Layer

Convolution Layer에서는 이미지의 특징(feature map)을 추출해내는 역할을 합니다.

입력 데이터가 주어지면 필터를 이용해 특징을 추출한 다음 아웃풋을 내보냅니다.

이 필터는 커널(Kernel) 혹은 가중치의 배열이라고도 부르며 이 값을 조정하는 것이 곧 학습을 의미합니다.

첫번째 Convolution Layer에서는 3x3 크기의 커널을 사용했습니다. 이는 곧 학습해야 할 가중치가 9개라는 뜻입니다.

#### Stride

커널을 이동시키는 거리입니다. 특별한 언급이 없다면 1로 가정합니다.

Convolution을 하게되면 입력 데이터의 크기가 자연스럽게 줄어들게 되는데, 주변에 값이 0인 셀들을 추가(Padding)해서 입력 데이터의 크기를 유지시키기도 합니다.

#### 참고

#### Padding

zero padding은 이미지 주위에 0을 둘러서 이미지 데이터의 축소를 방지해주는 역할을 합니다. 필터로 인해 특징이 추출되면 자연스럽게 크기가 작아지는데, 이미지 벡터들 가장자리에 0을 채워 Convolution Layer를 통과할 때 크기를 동일하게 유지시켜줄 수 있습니다.



### Pooling Layer - Max Pooling

Pooling Layer는 데이터의 공간적 크기를 축소하는데 사용합니다.

보통 이 레이어에서 이미지의 크기를 조절하며, CNN에서는 주로 Max-Pooling 방식을 사용합니다.

Conv layer 는 이미지의 특정 영역의 특징을 잡아내는 역할이라면, Pooling 은 이미지의 크기를 줄이는 동시에 이미지의 전체의 특징 또한 보존합니다.

따라서 Pooling 은 모델로 하여금 이미지 전체를 볼 수 있게 도와줍니다.

Max Pooling에서는 선택된 영역에서 가장 큰 값을 뽑아 대표값으로 설정하는 방식입니다.

이를 통해 학습 시간을 단축하고 오버피팅 문제를 완화할 수 있습니다.



#### Dropout

Drop Out 방식은 뉴럴 네트워크의 유닛(뉴런)들을 랜덤으로 비활성화 하여 과적합(Overfittng)을 방지하기 위한 기법입니다.

### **Fully Connected Layer**

Flatten Layer

N차원 배열을 1차원으로 변환합니다.

• Dense Layer

1차원 배열을 뉴럴넷에 입력해 줍니다.

이때, Dense Layer 는 오로지 퍼셉트론이로 이루어진 layer 입니다.

Softmax

Softmax는 활성화 함수의 일종이며 마지막 layer 에서 class 별 확률를 출력하기 위해 사용됩니다.

model.compile(optimizer='adam', · loss· = · 'sparse\_categorical\_crossentropy', · me

• Loss Functinon (손실 함수)

이때 Loss Function 은 실재 값과 모델이 예측한 값의 거리를 출력하는 함수 입니다.

쉽게 말해 Loss Function 은 모델의 예측이 얼마나 틀렸는지를 알려주는 함수 입니다.

이 때 "모델의 예측이 얼마나 틀렸는지" 를 어떻게 정의하느냐에 따라 어떤 Loss Function 을 사용할 지가 정해집니다.

이번 베이스라인에서는 최적화 함수로는 Adam 함수를 사용했고, 손실함수로는 'sparse\_categorical\_crossentropy', 그리고 평가지표로는 정확도를 사용했습니다.

모델을 완성했으면 summary() 함수를 통해 모델의 세부 내용를 요약 출력해봅니다.

### model.summary()

Model: "sequential\_1"

| Layer (type)                       | Output Shape       | Param # |
|------------------------------------|--------------------|---------|
| conv2d_3 (Conv2D)                  | (None, 32, 32, 16) | 448     |
| max_pooling2d_3 (MaxPooling<br>2D) | (None, 16, 16, 16) | 0       |
| dropout_4 (Dropout)                | (None, 16, 16, 16) | 0       |
| conv2d_4 (Conv2D)                  | (None, 16, 16, 32) | 4640    |
| max_pooling2d_4 (MaxPooling<br>2D) | (None, 8, 8, 32)   | 0       |

| <pre>dropout_5 (Dropout)</pre>             | (None, 8, 8, 32) | 0      |
|--------------------------------------------|------------------|--------|
| conv2d_5 (Conv2D)                          | (None, 8, 8, 32) | 9248   |
| <pre>max_pooling2d_5 (MaxPooling 2D)</pre> | (None, 4, 4, 32) | 0      |
| dropout_6 (Dropout)                        | (None, 4, 4, 32) | 0      |
| flatten_1 (Flatten)                        | (None, 512)      | 0      |
| dense_2 (Dense)                            | (None, 1024)     | 525312 |
| dropout_7 (Dropout)                        | (None, 1024)     | 0      |
| dense_3 (Dense)                            | (None, 10)       | 10250  |
|                                            |                  |        |

\_\_\_\_\_

Total params: 549,898 Trainable params: 549,898 Non-trainable params: 0

▼ 학습

#### batch size

batch size란 cpu 또는 gpu 연산 시, 하드웨어로 로드되는 데이터의 개수 입니다.

본인의 컴퓨팅 환경에 따라 batch size 를 조절하는 것이 좋습니다.

gpu 를 사용하는 경우 본인의 gpu 메모리 용량을 고려하여 batch size 를 설정해 주어야 합니다.

batch size 는 모델 학습 과정에 영향을 끼치기도 합니다.

따라서 하드웨어 상황을 고려하면서도 학습 과정 또한 고려하여 batch size 를 설정해 주어야 합니다.

### epoch

딥러닝에서 epoch는 전체 트레이닝 셋이 신경망을 통과한 횟수입니다.

1-epoch는 전체 트레이닝 셋이 하나의 신경망에 적용되어 순전파와 역전파를 통해 신경망을 한 번통과했다는 뜻입니다.

epoch 은 많을 수록 학습이 잘되는 것이 아닙니다.

epoch 이 너무 적을 경우 학습이 덜 이루어지는 경우가 있고, epoch 이 너무 많을 경우 과적합이 되는 경우가 있습니다.

따라서 적절한 epoch 을 설정해 주어야 합니다.

이때 validation loss 와 accuracy 은 epoch 을 언제 중단 할지 모니터링 하는 용도로 사용되기도 합니다.

자, 이제 CNN 모델 설계를 완료했으니 다음과 같이 배치 사이즈와 에폭을 설정하여 모델을 학습시키겠습니다.

```
model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10, I
```

```
Epoch 1/10
                                    ====] - 3s 9ms/step - loss: 1.2662 - accuracy: 0.5489 - va
313/313 [=
Epoch 2/10
                                   =====] - 3s 9ms/step - loss: 1.2187 - accuracy: 0.5651 - va
313/313 [==
Epoch 3/10
                             =======] - 3s 9ms/step - loss: 1.1658 - accuracy: 0.5861 - va
313/313 [==
Epoch 4/10
                                 =====] - 3s 9ms/step - loss: 1.1289 - accuracy: 0.5957 - va
313/313 [==
Epoch 5/10
                                  =====] - 3s 10ms/step - loss: 1.1024 - accuracy: 0.6058 - v
313/313 [==
Epoch 6/10
                                    ====] - 3s 10ms/step - loss: 1.0684 - accuracy: 0.6210 - v
313/313 [==
Epoch 7/10
                                      ==] - 3s 10ms/step - loss: 1.0499 - accuracy: 0.6266 - v
313/313 [=
Epoch 8/10
313/313 [==
                                      ==] - 3s 10ms/step - loss: 1.0191 - accuracy: 0.6392 - v
Epoch 9/10
                                 ======1 - 3s 10ms/step - loss: 0.9936 - accuracy: 0.6473 - v
313/313 [==
Epoch 10/10
313/313 [==
                                    ====] - 3s 10ms/step - loss: 0.9803 - accuracy: 0.6523 - v
<keras.callbacks.History at 0x7f57a87c24f0>
```

## ▼ 추론

```
pred_proba = model.predict(X_test)

pred_class = []

for i in pred_proba:
    pred = np.argmax(i)
    pred_class.append(pred)

pred_class = le.inverse_transform(pred_class)
pred_class[0:5]
    array(['horse', 'bird', 'airplane', 'horse', 'airplane'], dtype='<U10')</pre>
```

## ▼ Dacon 대회 제출

import pandas as pd

sample\_submission.head()

|   | id       | target   |
|---|----------|----------|
| 0 | 0000.jpg | horse    |
| 1 | 0001.jpg | bird     |
| 2 | 0002.jpg | airplane |
| 3 | 0003.jpg | horse    |
| 4 | 0004.jpg | airplane |

이렇게 생성된 submission.csv 파일을 데이콘 대회 페이지에 업로드 & 제출하여 결과를 확인하세요.

축하합니다! 자연어 처리를 완료하셨습니다! 이미지 처리의 첫걸음을 떼신 것을 축하드립니다. 앞으로도 데이콘과 함께 즐겁게 데이터 분석 능력을 키워가시면 좋겠습니다. 감사합니다.

Colab 유료 제품 - 여기에서 계약 취소