

Es3:

Sia dato un disco rigido con le seguenti caratteristiche:

- capacità di 128GB;
- 2 piatti (4 facce);
- 65536 tracce per faccia e 2048 settori per traccia;
- velocità di rotazione di 4200 rpm;
- tempo medio di posizionamento della testina di 2,8 ms.

Sapendo che il tempo totale medio di trasferimento (in millisecondi, e senza contare l'attesa che il dispositivo ed uno dei suoi canali sia libero; sul libro riferito come tempo di accesso) che occorre per trasferire x byte (assumendo che i byte da trasferire siano memorizzati in settori contigui di una singola traccia) è di 11,728571 ms, si dica:

- a) quanti byte x sono stati trasferiti;
- b) quanti settori sono coinvolti nel trasferimento.

Esercizi su dischi magnetici

Soluzione a): Sappiamo che

$$T_S = 2.8 \text{ ms e } T_L = (1000/(4200/60)) / 2 \approx 7.142857 \text{ ms}$$

e che il tempo totale di trasferimento è dato da

$$T = T_S + T_L + T_t = 11,728571 \text{ ms}$$

dove il tempo di trasferimento (in millisecondi) è dato dalla formula

$$T_{t} = \frac{b}{rN} \times 1000$$

$$b #byte da trasferire N #byte per traccia r velocità rotazione (in rotazioni per sec.)$$

Bisogna risalire al valore di *b*.

Il numero di byte per faccia sarà dato dalla capacità totale del disco diviso il numero di facce

$$128GB / 4 = 2^{37} / 2^2 = 2^{35}$$

Il numero di byte per traccia N sarà dato dalla capacità totale di una faccia diviso il numero di tracce ($65536 = 2^{16}$)

$$N = 2^{35} / 2^{16} = 2^{19}$$

Quindi

$$b = T_t \times [(4200/60) \times 2^{19}] / 1000$$
= [11,728571 - 2,8 - 7,142857] \times [(4200/60) \times 2^{19}] / 1000
= 65536 (arrotondando alla potenza di 2 più vicina)
= 64KB

Soluzione b): il numero di settori coinvolti nel trasferimento può essere stabilito andando a calcolare la dimensione di un singolo settore:

dimensione settore (in byte) =
$$N/(numero\ settori\ per\ traccia)$$

= $2^{19}/2048 = 2^8$

Quindi il numero di settori trasferiti è dato da:

$$b/(dimensione\ settore) = 2^{16} / 2^8 = 2^8 = 256$$

Esercizi su dischi magnetici

Es4: La struttura dell'informazione memorizzata su un disco è organizzata in cilindri e settori. Si considerino i seguenti tre principali algoritmi di selezione della prossima ricerca di cilindro:

First-Come First-Served:

le richieste di posizionamento sono servite nell'ordine di arrivo, senza alcun riordinamento.

• Shortest Seek First:

la prossima richiesta da servire è la più vicina al cilindro corrente tra quelle in attesa.

• Elevator Algorithm:

la testina avanza o retrocede verso il cilindro più vicino senza mai cambiare direzione fin quando esistano richieste pendenti in quella direzione.

Esercizi su dischi magnetici (continua)

Sia data una sequenza di richieste di lettura/scrittura per i cilindri:

pervenute nell'ordine mostrato.

Assumendo:

- un costo temporale di 5 millisecondi per lo spostamento della testina dal cilindro su cui si trova ad uno dei cilindri adiacenti
- che la testina, in posizione iniziale, sia sul cilindro 15

si determini il costo complessivo di posizionamento al termine della sequenza data per i 3 algoritmi indicati, illustrando anche l'ordine di selezione corrispondente.

Soluzione: L'algoritmo FCFS effettuerà la seguente scansione, con l'associato costo di posizionamento:

$$15 \rightarrow_5 10 \rightarrow_{10} 20 \rightarrow_5 15 \rightarrow_{10} 5 \rightarrow_{35} 40 \rightarrow_{32} 8 \rightarrow_{27} 35$$

che comporta un onere complessivo di 124 spostamenti di cilindro, pari a 620 millisecondi.

L'algoritmo SSF selezionerà invece il seguente ordine di posizionamento, che è quello di maggior efficacia tra quelli compatibili con la logica dell'algoritmo:

$$15 \rightarrow_0 15 \rightarrow_5 10 \rightarrow_2 8 \rightarrow_3 5 \rightarrow_{15} 20 \rightarrow_{15} 35 \rightarrow_5 40$$
,

con un costo complessivo di 45 spostamenti di cilindro, pari a 225 millisecondi. La sequenza alternativa è:

$$15 \rightarrow_0 15 \rightarrow_5 20 \rightarrow_{10} 10 \rightarrow_2 8 \rightarrow_3 5 \rightarrow_{30} 35 \rightarrow_5 40$$

con un costo complessivo di 55 spostamenti di cilindro, pari a 275 millisecondi. L'algoritmo EA, invece, si comporterà in maniera diversa a seconda della direzione di movimento iniziale. Assumendo che essa sia verso l'alto, ossia verso i cilindri di posizione uguale o superiore a 15, otterremo la seguente sequenza:

$$15 \rightarrow_0 15 \rightarrow_5 20 \rightarrow_{15} 35 \rightarrow_5 40 \rightarrow_{30} 10 \rightarrow_2 8 \rightarrow_3 5$$

con un costo complessivo di 60 spostamenti di cilindro, pari a 300 millisecondi. A fronte di una direzione iniziale in senso discendente otterremo, invece, la medesima sequenza selezionata dall'algoritmo SSF con 45 spostamenti complessivi.

Es5:

Sia dato un disco rigido con le seguenti caratteristiche:

- capacità di 128GB;
- 4 piatti (8 facce);
- 65536 tracce per faccia e 1024 settori per traccia;
- velocità di rotazione di 7200 rpm;
- tempo medio di posizionamento della testina di 8,5 ms.

Si calcoli il tempo totale medio di trasferimento (in millisecondi, e senza contare l'attesa che il dispositivo ed uno dei suoi canali sia libero; sul libro riferito come tempo di accesso) che occorre per trasferire 64KB, assumendo che i byte da trasferire siano memorizzati:

- a) in settori contigui di una singola traccia;
- b) in settori contigui di un cilindro.

Esercizi su dischi magnetici

Soluzione a): Sappiamo che

$$T_S = 8.5 \text{ ms e } T_L = (1000/(7200/60)) / 2 \approx 4.166 \text{ ms}$$

e che il tempo totale di trasferimento è dato da

$$T = T_S + T_I + T_t$$

dove il tempo di trasferimento (in millisecondi) è dato dalla formula

$$T_{t} = \frac{b}{rN} \times 1000$$

$$b #byte da trasferire N #byte per traccia r velocità rotazione (in rotazioni per sec.)$$

Il numero di byte per faccia sarà dato dalla capacità totale del disco diviso il numero di facce

$$128GB / 8 = 2^{37} / 2^3 = 2^{34}$$

Il numero di byte per traccia N sarà dato dalla capacità totale di una faccia diviso il numero di tracce (65536 = 2^{16})

$$N = 2^{34} / 2^{16} = 2^{18}$$

Quindi

$$T_t = [1000 \times 64\text{KB}] / [(7200/60) \times 2^{18}]$$

= $[1000 \times 2^{16}] / [(7200/60) \times 2^{18}]$
= 2,0833 ms

Pertanto il tempo totale di accesso è

$$T = 8.5 + 4.166 + 2.0833 = 14.75 \text{ ms}$$

Soluzione b): come nel caso a), però essendo i settori memorizzati in un cilindro, si possono leggere simultaneamente i settori posti su tracce collocate nella medesima posizione di facce diverse. Pertanto il tempo di trasferimento dei 64KB deve essere diviso per 8 (numero facce):

$$T = 8.5 + 4.166 + 2.0833/8 = 12.927 \text{ ms}$$