Pulsar Star Prediction

MGS 8040, Data Mining

Brian, Sheu

Tsao-Chin, Yu

Tsung-Wei, Chen

Ya-Han, Chang

30 April 2019

Introduction

This report develops a model trying to predict the likelihood of one observation being Pulsar star. The dataset was collected during the High Time Resolution Universe Survey and describes characteristics of a sample of pulsar star candidates. We build a regression model to identify potential pulsar star in the universe. Each candidate could be potentially identified as a real pulsar without additional information. However, according to the publisher, in practice, "almost all detections are caused by radio frequency interference (RFI) and noise, making legitimate signals hard to find" and rendering outcomes of True Negative classification. Therefore, this report targets at assisting in accurately predicting real pulsar stars using analytical constructed model. Besides, this would be able to help facilitate rapid analysis significantly by automatically labeling pulsar candidates.

Data

The dataset was obtained from Kaggle. (https://www.kaggle.com/) It is a community to hold data science competitions, where publishers provide their data in an accessible format. The particular dataset we use is designed for "Predicting a Pulsar Star" project last updated on 2018-05-09. (https://www.kaggle.com/pavanraj159/predicting-a-pulsar-star) It describes a sample of pulsar candidates collected during the High Time Resolution Universe Survey. (see [2] for sources). Pulsars are a rare type of Neutron star that produce radio emission detectable on Earth.

Overall, this dataset contains 16,259 spurious examples caused by RFI/noise (negative examples), and 1,639 real pulsar examples(positive examples). The observations would be 17,898 in total.

There are 9 variables within, including eight continuous variables and one categorial variable. The first four continuous variable are simple statistics drawn from integrated pulse profile. This describe a longitude-resolved version of the signal that has been averaged in both time and frequency, which is used to detect a real pulsar star. (see [1] for more its reference)

The remaining four continuous variables were obtained from the DM-SNR curve. (DM represents the "dispersion measure" and increases with distance and electron density between Earth and pulsar; SNR stands for the signal-to-noise ratio, increasing with integration time. Both are good indicators to distinguish pulsar from other kinds of stars.) The dependent variable here we use is the categorial variable "target_class," denoting whether the observation is predicted as a pulsar star, with (1) for pulsar star, and (0) for not a star. There are no missing values observed in this dataset.

(Further information please refer to appendix A and B for data dictionary and frequency table.)

Methodology

The process undertaken follows the traditional steps for logistic regression analysis.

1. Import and Examine the Data

The raw data was imported into R and Excel in the CSV format to ensure that each column was labeled with the appropriate variable names. Firstly, we understood the definition of each variable and identify their data types. (Appendix A. Data Dictionary)

A univariate analysis was then performed to find any missing, negative and unusual values. As a result, there are no missing values in all of the variables in this dataset, and no obvious outliers are found by looking at the box plot we drawn in R. We also constructed covariance matrix to examine overall data structure between variables. After that, we decided to include all eight variables in our initial version of model to start predicting the possibility of one being pulsar star.

2. Define dummies

After familiarizing ourselves with the data we did a 70/30 split of the data into a training and validation dataset. From there we created our crosstabs (frequency of each variable against the "target_class" variable), determined the bins, in which we decided to contain about 5% of the observations of each variable, and used those cutoffs to create a new format in SAS.

Figure 1. Format Creation Example

VALUE Mean of the DM_SNR_curve

0.213210702 - 0.994983278= "0.213210702 TO 0.994983278"

0.995819398 - 1.29264214= "0.995819398 TO 1.29264214"

1.293478261 - 1.530936455 = "1.293478261 TO 1.530936455"

1.531772575 - 1.740802676= "1.531772575 TO 1.740802676"

1.741638796 - 1.913879599= "1.741638796 TO 1.913879599"

However, instead of calculating the good-to-bad ratio, we computed bad-to-good ratio to make numbers bigger. Therefore, the trend would be more obvious and easier to identify when making breakpoints decisions. Finally, the neutral (baseline) groups and dummy breakpoints are picked by hand for each variable.

Figure 2. Dummy Creation Example

andard_deviation_of_the_integ	targ	jet_clas	S		
	0	1	Total	Ratio G/B	Ratio B/G
24.79161196 TO 34.78722907	218	405	623	1.857798	0.538272
34.79057654 TO 37.45911753	471	152	623	0.322718	3.098684 D1
37.45973017 TO 39.42365236	515	108	623	0.209709	4.768519
39.42615724 TO 41.07531594	550	72	622	0.130909	7.638889
41.07598758 TO 42.35697945	578	45	623	0.077855	12.84444
42.35793985 TO 43.48870352	584	39	623	0.066781	14.97436
43.49005083TO 44.42877189	588	35	623	0.059524	16.8 Neutral
44.4317309 TO 45.32689427	584	39	623	0.066781	14.97436
45.3275938 TO 46.13574821	597	25	622	0.041876	23.88
46.13667427TO 46.95866427	605	18	623	0.029752	33.61111
46.96049495 TO 47.78708922	591	32	623	0.054146	18.46875 D2
47.78743152 TO 48.5422431	606	17	623	0.028053	35.64706
48.54230597 TO 49.37093474	603	20	623	0.033167	30.15
49.37232427 TO 50.14624547	605	17	622	0.028099	35.58824
50.14686378 TO 51.04274918	613	10	623	0.016313	61.3
51.04310791 TO 51.91867925	609	14	623	0.022989	43.5
51.92064774 TO 52.93790584	610	13	623	0.021311	46.92308
52.93858781 TO 54.39266449	617	6	623	0.009724	102.8333 D3
54.39281317 TO 56.42645068	613	9	622	0.014682	68.11111
143.2578125 TO 98.77891067	596	27	623	0.045302	22.07407 Neutral
Total	11353	1103	12456	0.097155	

3. Build regression model

Once the dummy variables were created, the regression model was ready to be built. All the dummies for all variables are run together. We started with including all of the independent variables, eight in total. And by looking at the regression results, some of the p-values are so high that we decided to eliminate 3 variables in our model after a few times of iterations. Once the final model was determined, we continued to evaluate the parameter estimators. This step was to ensure that the estimators matched the behavior and logical sense that we had initially expected. All coefficients of the final model were seen to be meaningful and making sense in our case.

Besides, we also combined a few dummy variables with parameter estimates similar to neighboring ones to simplify the model. The regression output is displayed in Appendix C.

4. Score the model

To score all observations, we used scores formatted in a range of 0 to 1000. The scoring program is run for the training dataset in SAS. And the output was saved in a new file called "scrtrain." After that, we conducted initial version of KS test and drew diagrams first, to ensure our results were reasonable.

Once the initial KS test had validated the model's acceptable performance, these steps (creating dummies, applying model and scoring) were repeated for the validation data.

5. Complete Kolmogorov–Smirnov Test (KS Test)

The initial version of KS test table produced in step 4 was then completed in this step. By looking at the result of KS test, we found that the optimal cutoff score would be 100. And the validation data's KS test is completed afterwards, with the same results of a 100 optimal cutoff score.

The final KS test results are shown in the "Results" section.

6. Create the scorecard

Once the model was finalized the scorecard was created to make interpretation easier. Also, the trends are checked so that the estimators are ensured to be logical and making sense. (The sense of this particular profession is according to research paper in the "Reference" section)

The final scorecard is shown in the "Results" section.

Results

1. KS Test Result – Training Data

The following is the KS Test for training dataset. We found that the optimal cutoff would be 100, by choosing the score with largest different value of 70.05% between good and bad. By adopting this score, 6.5% of the good candidates as well as 76.6% of the bad candidates would be included. We also observed that 0.58% of total candidates are predicted to be a pulsar star by the model.

2. KS Test Result - Validation Data

The KS Test shown below is for validation dataset. We found that the optimal point here is also the cutoff score 100, based on the largest KS difference value of 69.66%. By adopting this score, 7.4% of the good candidates as well as 77.1% of the bad candidates would be included. Also, we observed that 0.7% of total candidates are predicted to be a pulsar star by the model.

Table of bgsco	re by ta	arget_	class											
bgscore	targ	et_cla	SS						Cumul	ative		Cumulative	Percent	
	0	1	Total			0	1 Good	Bad	Good	Bad		Good	Bad	Difference
-0.15088491	5	0	5	-0.150885	-0.150885	5	0	0	5	0	5	0	0.001019	-0.001019
-0.15000589	10	0	10	-0.150006	-0.150006	10	0	0	10	0	15	0	0.003057	-0.003057
-0.00756512	9	0	9	-0.007565	-0.007565	9	0	0	9	6	1409	0.011194	0.287199	-0.276005
-0.00639739	1	0	1	-0.006397	-0.006397	1	0	0	1	6	1410	0.011194	0.287403	-0.276209
•••														
0					0	891	3	3	891	9	2301	0.016791	0.469018	-0.452226
50						1029	10	10	1029	19	3330	0.035448	0.678761	-0.643313
100						454	21	21	454	40	3784	0.074627	0.7713	-0.696674
150						470	152	152	470	192	4254	0.358209	0.867102	-0.508893
200						266	3	3	266	195	4520	0.363806	0.921321	-0.557515
250						88	1	1	88	196	4608	0.365672	0.939258	-0.573586
300						298	340	340	298	536	4906	1	1	0

3. Scorecard

Below is the explained results (estimators) of our final regression. The only variable that is positively impacting the possibility of being a pulsar star is "Profile Standard Deviation." Others, including "Profile Mean," "Profile Excess Kurtosis," "Profile Skewness" and "DMSN Standard Deviation," are affecting the result in a negative manner.

However, within those of negative impact, Profile Mean, Profile Excess Kurtosis and DMSN Standard Deviation are increasingly negative while Profile Skewness is decreasingly negative. This should be noticed when interpreting the result.

Figure 3. Scorecard

Variable	Range	Points
Intercept		174
Profile Mean	< 117	0
	117 to 127	-70
	> 127	-94
Profile Standard Deviation	<41	172

	41 to 45	0
	45 to 50	0.8
	>50	4.8
Profile Excess Kurtosis	<0.06	0
	0.06 to 0.07	-32
	0.07 to 0.30	-71
	>0.30	0
Profile Skewness	<0.18	-46
	0.18 to 0.20	-55
	>0.20	0
DMSN Standard Deviation	<13.69	-112
	13.69 to 14.38	0
	14.38 to 16.56	-114

4. Discussion of improvement

There are multiple techniques to identify pulsar star; however, we barely have the chance to have a confident model that only uses a few factors of a more complicated phenomenon in the universe.

Our client will be able to identify the real pulsars that are of significant scientific interest as probes of space-time, the inter-stellar medium, and states of matter. Our model can also be used to automatically label pulsar candidates to facilitate rapid analysis.

However, we would like to mention that we have run an additional regression (see appendix D for additional regression output) to build another version of model without using dummies. The output of the additional regression appears to be more perfect than our original one, which separates variables into dummies. And it does not require us to drop variables by looking at the p-values. (The KS test result for regression without dummies is also shown in Appendix D.)

This can be taken into consideration that the model may actually be able to run without using dummies in this case.

Implementation

Conclusion

In conclusion, we recommend clients to score each pulsar star data with scored built from our model.

As mention earlier, we have dropped some of the insufficient variables due to the large p-value. As result, we identified 5 variables from 8 original variables.

- 1) Mean of the integrated profile
- 2) Standard deviation of the integ
- 3) Excess kurtosis of the integrat
- 4) Skewness_of_the_integrated_prof
- 5) _Standard_deviation_of_the_DM_SN

Score Cutoff

According to our model, the best cutoff is score point 100, with a KS difference of -69.67%. Hence, the score points of over 100 should be classified as a pulsar star.

Cost

Since we do not know the cost, so the best way to use the strategies is Global Classification Rate:

Global Classification Rate =
$$\frac{(True\ Positive + True\ Negative)}{Total\ Oberservation}$$

But we still recommend the clients know the cost of misclassification for a non-pulsar star, since the error is tremendous.

^{*} See appendix A for variable descriptions

Monitoring Reports

The performance of the model has to be monitored to ensure it remains effective. Each pulsar produces a slightly different emission pattern, which varies slightly with each rotation. Thus, a potential signal detection known as a 'candidate', is averaged over many rotations of the pulsar, as determined by the length of an observation. In the absence of additional information, each candidate could potentially describe a real pulsar. However, in practice almost all detections are caused by radio frequency interference (RFI) and noise, making legitimate signals hard to find.

Therefore, it is important to be able to separate the non-pulsars from the pulsars. We can do so by examining the differences between the Expected Score Distribution, as predicted by our model, and the Actual Score Distribution, as observed in the future. Given that stars usually survive much longer than the human time frame, their characteristics probably will not change by much within the foreseeable future. Therefore, adjustment to the algorithm for the existing variables will not be necessary.

However, scientific advancement may allow us to collect more sophisticated evidences that describe a real pulsar. Therefore, addition of new variables will be the primary modification to our model. Based on the afore-mentioned assumptions, we recommend a not-so-often evaluation of the existing model. A significant number of misclassifications of non-pulsars or real pulsars should also trigger the use of this report.

Figure 4. Monitoring Report - Actual vs. Expected Score Distribution (Partial)

Score Range	Expected Score Distribution	Actual Score Distribution	Difference
>0	1.36%		
>50	3.54%		
>100	6.53%		
>150	33.36%		
>200	34.18%		
>250	34.27%		
>300	100.00%		

Once the expected versus observed differences are calculated for each score range, then it should be determined if they are statistically significant. The minimum required difference at a 95% confidence level has to be determined. If all of the differences are below this number, then the fluctuations are among what is expected and are insignificant.

Project Flow Diagram

Figure 5. Process flow Diagram

Figure 6. Process Flow Chart

	Step	Description	Input Files	Out Files
1	Start.sas	Assign SAS library	N/A	N/A
2	Work.PS	Input pulsar_ star dataset	pulsar_star.csv	work.Ps
3	summary	Check dataset	work.ps	N/A
4	split.sas	Spilt dataset into training(30%)	work.ps	train.sas
	•	and validation(70%)	· ·	valid.sas
5	Frequency	Create frequency table for each	train.sas	FrequencyTable.xlsx
	, ,	variable		, ,
6	Format.sas	Create format library for variables	N/A	N/A
		(5% separation)	,	•
7	Crosstab.sas	create crosstab using format	train.sas	FrequencyTable2.xlsx
		against variable: target_class		, ,
8	Dummytrain.sas	Create dummy in training dataset	Train.sas	Train2.sas
9	Dummyvalid.sas	Apply same dummy from train	valid.sas	Valid2.sas
	•	dataset		
10	Regtrain.sas	Run regression on all dummy	train2.sas	regression1.xlsx
		variables for training dataset		
11	Re-run regression	Drop any variables until accepting	train2.sas	regression2.xlsx
	_	the model		
12	Scrtrain1.sas	Create frequency table for	train2.sas	scrtrain1.html
		original scores of each variable		
		using result 10 (step 10) on		
		training dataset		
13	Scrvalid1.sas	Create frequency table for	valid2.sas	scrtrain1.html
		original scores of each variable		
		using result 10 (step 10) on valid		
		dataset		
14	Scrtrain2.sas	Create frequency table for final	train2.sas	scrtrain1.html
		scores of each variable using		
		result11 (step11) on training		
		dataset		
15	Scrvalid2.sas	Create frequency table for final	valid2.sas	scrtrain1.html
		scores of each variable using		
		result11 (step11) on valid dataset		
16	Format.sas	create format library for bgscore	N/A	N/A
17	Scorecrosstab.sas	Create crosstab for each score set	N/A	scrtrain1.html
		against target_class using		scrvalid1.html
		bgscrore (comparison of scores		scrtrain2.html
		crosstab before and after		scrtvalid2.html
1.5		dropping variables)		
18	KStest.xlsx	Conduct KS test using the result	scrtrain1.html	KStest.xlsx
		from step 17 in excel	scrvalid1.html	
			scrtrain2.html	
			scrvalid2.html	

Appendix A.

Data Dictionary

Alphabetic List of Variables and Attributes						
Variable	Туре	Description				
_Excess_kurtosis_of_the_DM_SNR_c	Num	Excess kurtosis of the DM SNR curve				
_Excess_kurtosis_of_the_integrat	Num	Excess kurtosis of candidate's profile				
Mean_of_the_DM_SNR_curve	Num	Mean of the DM-SNR curve				
Mean_of_the_integrated_profile	Num	Mean of candidate's profile				
_Skewness_of_the_DM_SNR_curve	Num	Skewness of the DM-SNR curve				
Skewness_of_the_integrated_prof	Num	Skewness of candidate's profile				
_Standard_deviation_of_the_DM_SN	Num	Standard deviation of the DM-SNR curve				
_Standard_deviation_of_the_integ	Num	Standard deviation of candidate's profile				
		Class of pulsar star: 1 for pulsar star,0 for				
target_class	Categorial	not a star				

Note:

For the DM_SNR curve, DM represents the "dispersion measure" and increases with distance and electron density between Earth and pulsar; SNR stands for the signal-to-noise ratio, increasing with integration time. Both are good indicators to distinguish pulsar from other kinds of stars. (see [3] for sources)

Appendix B.

Frequency Table Example

The FREQ Procedure									
_Mean_of_the_integrated_profile	Frequency	Percent	Cumulative Frequency	Cumulative Percent					
5.8125	1	0.01	1	0.01					
6.1875	1	0.01	2	0.02					
6.265625	1	0.01	3	0.02					
6.5	1	0.01	4	0.03					
6.9375	1	0.01	5	0.04					
6.984375	1	0.01	6	0.05					
7.0625	1	0.01	7	0.06					
7.4609375	1	0.01	8	0.06					
7.6328125	1	0.01	9	0.07					
7.796875	1	0.01	10	0.08					
7.921875	1	0.01	11	0.09					
8.1015625	1	0.01	12	0.10					
8.109375	1	0.01	13	0.10					
8.15625	1	0.01	14	0.11					
8.1953125	1	0.01	15	0.12					
8.2265625	1	0.01	16	0.13					
8.2421875	1	0.01	17	0.14					
8.25	1	0.01	18	0.14					
8.2734375	1	0.01	19	0.15					
8.3515625	1	0.01	20	0.16					
8.75	1	0.01	21	0.17					
8.84375	1	0.01	22	0.18					
8.875	1	0.01	23	0.18					
9.046875	1	0.01	24	0.19					
9.234375	1	0.01	25	0.20					
9.3359375	1	0.01	26	0.21					
9.6796875	1	0.01	27	0.22					
9.7421875	1	0.01	28	0.22					

Appendix C.

1. First Regression Output from SAS

Model: bgscore

Dependent Variable: target_class Number of Observations: 12456

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	18 12437 12455	310.89957 694.42791 1005.32747	17.27220 0.05584	309.34	<.0001
Root Depen Coeff	dent Mean	0.23630 0.08855 266.84487	R-Square Adj R-Sq	0.3093 0.3083	

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.06713	0.00674	9.96	< .0001
Meanoftheintegratedprofile1	1	-0.06546	0.00599	-10.92	< .0001
Meanof the integrated profile 2	1	-0.09486	0.00569	-16.67	< .0001
Standarddeviationoftheinteg1	1	0.15601	0.00673	23.20	< .0001
Standarddeviationoftheinteg2	1	0.00637	0.00609	1.05	0.2953
Standarddeviationoftheinteg3	1	0.00641	0.00712	0.90	0.3678
Excesskurtosisoftheintegrat1	1	-0.04121	0.03021	-1.36	0.1726
Excesskurtosisoftheintegrat2	1	-0.05906	0.00494	-11.96	< .0001
Skewnessoftheintegratedprof1	1	-0.04925	0.00616	-7.99	< .0001
Skewnessoftheintegratedprof2	1	-0.05252	0.02394	-2.19	0.0283
MeanoftheDMSNRcurve1	1	0.00352	0.01075	0.33	0.7431
MeanoftheDMSNRcurve2	1	0.02373	0.01213	1.96	0.0504
Standard deviationoftheDMSN1	1	-0.00497	0.00660	-0.75	0.4515
Standard deviationoftheDMSN2	1	-0.00519	0.00715	-0.73	0.4684
ExcesskurtosisoftheDMSNRc1	1	0.20326	0.01406	14.46	< .0001
ExcesskurtosisoftheDMSNRc2	1	-0.00187	0.00958	-0.20	0.8449
ExcesskurtosisoftheDMSNRc3	1	0.00012766	0.00960	0.01	0.9894
SkewnessoftheDMSNRcurve1	1	-0.00176	0.01323	-0.13	0.8943
SkewnessoftheDMSNRcurve2	1	-0.00942	0.00759	-1.24	0.2145

2. Last Regression output from SAS

Model: bgscore

Dependent Variable: target_class Number of Observations: 12456

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Mode l Error Corrected	Total	11 12444 12455	213.39229 791.93518 1005.32747	19.39930 0.06364	304.83	<.0001
	Root M Depende Coeff	ent Mean	0.25227 0.08855 284.88390	R-Square Adj R-Sq	0.2123 0.2116	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
I-4		0.17417	0.00565	30.85	
Intercept					< .0001
Meanoftheintegratedprofile1	1	-0.07040	0.00639	-11.01	< .0001
Meanoftheintegratedprofile2	1	-0.09394	0.00607	-15.47	< .0001
Standarddeviationoftheinteg1	1	0.17285	0.00717	24.12	< .0001
Standarddeviationoftheinteg2	1	0.00087902	0.00650	0.14	0.8924
Standarddeviationoftheinteg3	1	0.00478	0.00760	0.63	0.5294
Excesskurtosisoftheintegrat1	1	-0.03159	0.03225	-0.98	0.3273
Excesskurtosisoftheintegrat2	1	-0.07132	0.00526	-13.56	< .0001
Skewnessoftheintegratedprof1	1	-0.04577	0.00658	-6.96	< .0001
Skewnessoftheintegratedprof2	1	-0.05531	0.02555	-2.16	0.0304
Standard deviationoftheDMSN1	1	-0.11221	0.00580	-19.36	< .0001
Standard deviation of the DMSN2	1	-0.11403	0.00649	-17.58	< .0001

Appendix D.

1. Additional Regression Output from SAS (without using dummies)

Mode:: pgscore Dependent Variable: target_class

Number of Observations Read 12456 Number of Observations Used 12456

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	8 12447 12455	684.95443 320.37304 1005.32747	85.61930 0.02574	3326.45	<.0001
Root MSE Dependent Mean Coeff Var		0.16043 0.08855 181.17519	R-Square Adj R-Sq	0.6813 0.6811	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > [t]
Intercept	1	-0.35620	0.02455	-14.51	< .0001
Mean of the integrated profile	1	0.00325	0.00015126	21.50	< .0001
Standard deviation of the integ	1	-0.00198	0.00028117	-7.03	< .0001
Excess kurtosis of the integrat	1	0.41263	0.00739	55.80	< .0001
Skewness of the integrated prof	1	-0.02830	0.00093980	-30.12	< .0001
Mean of the DM SNR curve	1	-0.00096003	0.00009273	-10.35	< .0001
Standard deviation of the DM SN	1	0.00302	0.00020588	14.65	< .0001
Excess kurtosis of the DM SNR c	1	-0.00798	0.00196	-4.07	< .0001
Skewness of the DM SNR curve	1	0.00028158	0.00005992	4.70	< .0001

2. Additional Regression (without using dummies) – KS Test Result

Reference

- [1] R. J. Lyon, 'Why Are Pulsars Hard To Find?', PhD Thesis, University of Manchester, 2016.
- [2] R. J. Lyon, 'PulsarFeatureLab', 2015
- [3] http://www.jb.man.ac.uk/distance/frontiers/pulsars/section4.html