

Example 2 (Complementary events, reunion, intersection)

Consider A and B, two events from a sample space S.

Knowing that P(A) = 0.5, $P(\bar{A} \cap \bar{B}) = 0.1$ and $P(A \cap B) = P(B \cap \bar{A})$, calculate P(B).

Answer:

If
$$P(\bar{A} \cap \bar{B}) = 0.1$$
, then $P(A \cup B) = 1 - P(\bar{A} \cap \bar{B}) = 1 - 0.1 = 0.9$

For any two events A and B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

This means that $P(B) - P(A \cap B) = 0.4$

As
$$P(B) - P(A \cap B) = P(B \cap \overline{A})$$
, then $P(B \cap \overline{A}) = 0.4$

Hence, $P(A \cap B) = 0.4$ and P(B) = 0.8