

Machine Learning CS60050

Linear Models - I

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 3: Linear Models I

Outline

- Input representation
- Linear Classification
- Linear Regression
- Nonlinear Transformation

A real data set

© MC Creator: Yaser Abu-Mostafa - LFD Lecture 3

Input representation

'raw' input $\mathbf{x}=(x_0,\!x_1,x_2,\cdots,x_{256})$

linear model: $(w_0,w_1,w_2,\cdots,w_{256})$

Features: Extract useful information, e.g.,

intensity and symmetry $\mathbf{x}=(x_0,x_1,x_2)$

linear model: (w_0, w_1, w_2)

Illustration of features

 $\mathbf{x} = (x_0, x_1, x_2)$ x_1 : intensity x_2 : symmetry

What PLA does

Evolution of E_{in} and E_{out}

Final perceptron boundary

The 'pocket' algorithm

PLA:

500

 $\overline{E_{\mathsf{in}}}$

750

1000

Pocket:

0

250

Classification boundary - PLA versus Pocket

PLA: Pocket:

Outline

- Input representation
- Linear Classification
- Linear Regression regression = real-valued output
- Nonlinear Transformation

Credit again

Classification: Credit approval (yes/no)

Regression: Credit line (dollar amount)

Input: $\mathbf{x} =$

age	23 years
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
	•••

Linear regression output: $h(\mathbf{x}) = \sum_{i=0}^d w_i \ x_i = \mathbf{w}^{\scriptscriptstyle\mathsf{T}} \mathbf{x}$

The data set

Credit officers decide on credit lines:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

 $y_n \in \mathbb{R}$ is the credit line for customer \mathbf{x}_n .

Linear regression tries to replicate that.

How to measure the error

How well does $h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$ approximate $f(\mathbf{x})$?

In linear regression, we use squared error $(h(\mathbf{x}) - f(\mathbf{x}))^2$

in-sample error:
$$E_{\mathsf{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} \left(h(\mathbf{x}_n) - y_n \right)^2$$

Illustration of linear regression

The expression for E_{in}

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - \mathbf{y}_{n})^{2}$$
$$= \frac{1}{N} ||\mathbf{X} \mathbf{w} - \mathbf{y}||^{2}$$

Minimizing E_{in}

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y}) = \mathbf{0}$$

$$X^{\mathsf{T}}X\mathbf{w} = X^{\mathsf{T}}\mathbf{y}$$

$$\mathbf{w} = \mathrm{X}^\dagger \mathbf{y}$$
 where $\mathrm{X}^\dagger = (\mathrm{X}^\intercal \mathrm{X})^{-1} \mathrm{X}^\intercal$

 X^{\dagger} is the 'pseudo-inverse' of X

The pseudo-inverse

$$\mathbf{X}^\dagger = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$$

The linear regression algorithm

Construct the matrix X and the vector ${f y}$ from the data set $({f x}_1,y_1),\cdots,({f x}_N,y_N)$ as follows

$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^\mathsf{T} & \\ -\mathbf{x}_2^\mathsf{T} & \\ \vdots & \\ -\mathbf{x}_N^\mathsf{T} & \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}.$$
 input data matrix

- 2. Compute the pseudo-inverse $X^\dagger = (X^\intercal X)^{-1} X^\intercal$.
- 3: Return $\mathbf{w} = X^\dagger \mathbf{y}$.

Linear regression for classification

Linear regression learns a real-valued function $y=f(\mathbf{x})\in\mathbb{R}$

Binary-valued functions are also real-valued! $\pm 1 \in \mathbb{R}$

Use linear regression to get \mathbf{w} where $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n \approx y_n = \pm 1$

In this case, $\operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$ is likely to agree with $y_n=\pm 1$

Good initial weights for classification

Linear regression boundary

Average Intensity

Outline

- Input representation
- Linear Classification
- Linear Regression
- Nonlinear Transformation

Linear is limited

Data:

Hypothesis:

Another example

Credit line is affected by 'years in residence'

but **not** in a linear way!

Nonlinear $[[x_i < 1]]$ and $[[x_i > 5]]$ are better.

Can we do that with linear models?

Linear in what?

Linear regression implements

$$\sum_{i=0}^{d} \mathbf{w_i} \ x_i$$

Linear classification implements

$$\operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w_i} \ x_i\right)$$

Algorithms work because of linearity in the weights

Transform the data nonlinearly

Thank You!

