Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

This manuscript was compiled on June 18, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

 \square Proof.

2 Inequalities related to weighted averages

- Analogous to the γ -orderliness, the γ -trimming inequality for
- 4 a right-skewed distribution is defined as $\forall 0 \leq \epsilon_1 \leq \epsilon_2 \leq$
- $_{5}$ $\frac{1}{1+\gamma}$, $TM_{\epsilon_{1},\gamma} \geq TM_{\epsilon_{2},\gamma}$. γ -orderliness is a sufficient condition
- for the γ -trimming inequality, as proven in the SI Text. The
- next theorem shows a relation between the ϵ, γ -quantile average
- 8 and the ϵ, γ -trimmed mean under the γ -trimming inequality,
- suggesting the γ -orderliness is not a necessary condition for
- the γ -trimming inequality.
- Data Availability. Data for Figure ?? are given in SI Dataset
- 12 S1. All codes have been deposited in GitHub.
- 13 **ACKNOWLEDGMENTS.** I sincerely acknowledge the insightful
- comments from the editor which considerably elevated the lucidity
- 15 and merit of this paper.