Supplementary Information: Population-scale negative density dependence in per capita population growth rates: understanding the controls on abundance of a common tropical palm.

Marco D. Visser\*1,2, Helene C. Muller-Landau†2, Joe Wright‡2, Eelke Jongejans§1, Hans de Kroon¶1, Pieter A. Zuidema  $^{\parallel 3}$ , Annieke Borst \*\*1, Gemma Rutten ††4, and Patrick A. Jansen  $^{\ddagger 3}$ 

<sup>1</sup>Department of Experimental Plant Ecology, Nijmegen University <sup>2</sup>Smithsonian Tropical Research Institute, Republic of Panama <sup>3</sup>Department of Environmental Sciences, Wageningen University <sup>4</sup>Institute of Plant Sciences, University of Bern

July 6, 2016

<sup>\*</sup>m.visser@science.ru.nl

 $<sup>^{\</sup>dagger} mullerh@si.edu$ 

 $<sup>^{\</sup>ddagger}WRIGHTJ@si.edu$ 

<sup>§</sup>e.jongejans@science.ru.nl

 $<sup>\</sup>P_{h.dekroon@science.ru.nl}$ 

 $<sup>\|</sup>_{\rm email@web.edu}$ 

<sup>\*\*</sup>email@web.edu

 $<sup>^{\</sup>dagger\dagger} email@web.edu$ 

 $<sup>^{\</sup>ddagger\ddagger}$ email@web.edu

## S1 TABLES

| Vital rate / stage  | 2008 | 2010 | 2012 |
|---------------------|------|------|------|
| Seeds               | 2197 |      |      |
| Recruits            |      | 389  | 214  |
| Seedling growth     |      | 353  | 374  |
| Seedling survival   |      | 517  | 502  |
| Seedling to rosette |      | 6    | 3    |
| Rosette growth      |      | 292  | 295  |
| Rosette survival    |      | 324  | 321  |
| Rosette to stem     |      | 0    | 7    |
| Stem growth         |      |      | 364  |
| Stem survival       |      |      | 407  |
| Reproduction        | 407  |      | 403  |

Table S1. table caption in main text

| Model                               | Formulation                                     | Priors                                                                                                                         | Description                                                                                                                                                                              |
|-------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: Logistic model                   | $logit(Y(x)) = \beta_0 + \beta_1 x$             | $\begin{cases} \beta_0 \sim Unif(-1000, 1000) \\ \beta_1 \sim Unif(-1000, 1000) \end{cases}$                                   | Parameters $\beta_0$ indicates the point on $x$ when $Y(x) = 0.5$ , and $\beta_1$ is the rate of increase with size $(x)$ .                                                              |
| 2: density dependant Logistic model | $logit(Y(x)) = \beta_0 + \beta_1 x + \beta_2 d$ | $\begin{cases} \beta_0 \sim Unif(-1000, 1000) \\ \beta_1 \sim Unif(-1000, 1000) \\ \beta_2 \sim Unif(-1000, 1000) \end{cases}$ | Parameters $\beta_0$ indicates the point on $x$ when $Y(x) = 0.5$ , and $\beta_1$ is the rate of increase with size $(x)$ while $\beta_2$ is the rate of change over adult density $d$ . |

Table S2. Equations for all logistic models, including prior distributions, used for dichotomous variables. Details are given in the text.

| Model          | Formulation                                                                                                                                 | Priors                                                                                   | Description                                                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1: Exponential | $f(x) = \beta_0 e^{-\beta_0 x}$                                                                                                             | $\begin{cases} \beta_0 \sim Unif(0, 100) \end{cases}$                                    | Parameters $\beta_0$ is the rate parameter, which indicates the frequency of x at zero and central tendency as mean= $1/\beta_0$ (x). |
| 2: Weibull     | $f(x) = \begin{cases} \frac{\beta_0}{\beta_1} \left( \frac{x}{\beta_1} \right) e^{-(x/\beta_1)^{\beta_0}}; x \ge 0 \\ 0; x < 0 \end{cases}$ | $\begin{cases} \beta_0 \sim Unif(0, 1000) \\ \beta_1 \sim Unif(0, 1000) \end{cases}$     | Here $\beta_0$ is the scale parameter, while $\beta_1$ is shape parameter of the distribution.                                        |
| 3: Log-normal  | $f(x) = \frac{1}{x/\sqrt{2\pi\beta_1^2}} e^{-\frac{(\ln x - \beta_0)^2}{2\beta_1^2}}$                                                       | $\begin{cases} \beta_0 \sim Unif(-1000, 1000) \\ \beta_1 \sim Unif(0, 1000) \end{cases}$ | $\beta_0$ indicates the natural log of the mean and $\beta_1$ is standard deviation.                                                  |

Table S3. Equations for all probability density functions, used to estimate univariate distributions. Details are given in the text.

| Model                                                                | Formulation                                                                        | Priors                                                                                           | Description                                                                                                                                                                            |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: Null + constant variance                                          | $Y(x) \sim N(\beta_0, \sigma = \beta_2)$                                           | $\begin{cases} \beta_0 \sim Unif(-1000, 1000) \\ \sigma \sim Unif(0, 1000) \end{cases}$          | Null model, growth is independent of size, and normally distributed where variation is described by $\sigma^2$ .                                                                       |
| 2 A: Size dependent linear + constant variance                       | $Y(x) \sim N(\beta_0 + \beta_1 x, \sigma = \beta_2)$                               | $\begin{cases} \beta_{0,1} \sim Unif(-1000, 1000) \\ \sigma \sim Unif(0, 1000) \end{cases}$      | Linear model with constant variance. Individual variation is described by $\sigma^2$ .                                                                                                 |
| 3 A: Size dependent linear + Heteroscedasticity                      | $Y(x) \sim N(\beta_0 + \beta_1 x, \sigma = \beta_2 + \beta_3 x)$                   | $\begin{cases} \beta_{0,1,2} \sim Unif(-1000, 1000) \\ \beta_3 \sim Unif(0, 1000) \end{cases}$   | Linear model, individual variation may increase with size as defined by $\beta_2 + \beta_3 x$ , where $\beta_3$ is always positive.                                                    |
| 4 A: Size dependent linear + Log-linear Heteroscedasticity           | $Y(x) \sim N(\beta_0 + \beta_1 x, \sigma = \beta_2 + \beta_3 log(x))$              | $\begin{cases} \beta_{0,1,2,4} \sim Unif(-1000, 1000) \\ \beta_3 \sim Unif(0, 1000) \end{cases}$ | Linear model, individual variation may increase with size as defined by $\beta_2 + \beta_3 log(x)$ , where $\beta_3$ is always positive.                                               |
| 2 B: Size & density<br>dependent linear +<br>constant variance       | $Y(x) \sim N(\beta_0 + \beta_1 x + \beta_4 d, \sigma = \beta_2)$                   | $\begin{cases} \beta_{0,1,2} \sim Unif(-1000, 1000) \\ \sigma \sim Unif(0, 1000) \end{cases}$    | Linear model where Y dependent on size (x) and density (d). Individual variation is described by $\sigma^2$ .                                                                          |
| 3 B: Size & density<br>dependent linear +<br>Heteroscedasticity      | $Y(x) \sim N(\beta_0 + \beta_1 x + \beta_4 d, \sigma = \beta_2 + \beta_3 x)$       | $\begin{cases} \beta_{0,1,2,4} \sim Unif(-1000, 1000) \\ \beta_3 \sim Unif(0, 1000) \end{cases}$ | Linear model where Y dependent on size (x) and density (d). Individual variation may increase with size as defined by $\beta_2 + \beta_3 x$ , where $\beta_3$ is always positive.      |
| 4 B: Size & density dependent linear + Log-linear Heteroscedasticity | $Y(x) \sim N(\beta_0 + \beta_1 x + \beta_4 d, \sigma = \beta_2 + \beta_3 \log(x))$ | $\begin{cases} \beta_{0,1,2,4} \sim Unif(-1000, 1000) \\ \beta_3 \sim Unif(0, 1000) \end{cases}$ | Linear model where Y dependent on size (x) and density (d). Individual variation may increase with size as defined by $\beta_2 + \beta_3 log(x)$ , where $\beta_3$ is always positive. |

Table S4. Equations for all linear models, including prior distributions, used for continuous dependent variables. Details are given in the text.

| Vital.rate                                 | Posterior.model.probabilty | Form                                                                                                                                       |
|--------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Density independent Seedling establishment | 0.0613                     | $E(a) = logit^{-1}(\beta_0)$                                                                                                               |
| Density dependent Seedling establishment   | 0.9387                     | $E(\bar{a}) = logit^{-1}(\beta_0 + \beta_4 a)$                                                                                             |
| Density independent Initial size           | 0.4954                     | $L(x_s) \sim \frac{1}{x_s/\sqrt{2\pi\beta_1^2}} e^{-\frac{(\ln x_s - (\beta_0))^2}{2\beta_1^2}}$                                           |
| Density dependent Initial size             | 0.5046                     | $L(x_s) \sim \frac{1}{x_s/\sqrt{2\pi\beta_1^2}} e^{-\frac{(\ln x_s - (\beta_0 + \beta_4 a))^2}{2\beta_1^2}}$                               |
| Density independent Seedling growth        | 0.0847                     | $G_s(x_s, a) = \beta_0 + \beta_1 x_s \&$                                                                                                   |
| Density dependent Seedling growth          | 0.9153                     | $egin{aligned} V_s(x_s) &= eta_2 + eta_3 x_s \ G_s(x_s,a) &= eta_0 + eta_1 x_s + eta_4 a \ \& V_s(x_s) &= eta_2 + eta_3 x_s \end{aligned}$ |
| Density independent Seedling survival      | 0.9113                     | $S_s(x_s,a) = logit^{-1}(eta_0 + eta_1 x_s)$                                                                                               |
| Density dependent Seedling survival        | 0.0887                     | $S_s(x_s, a) = logit^{-1}(\beta_0 + \beta_1 x_s + \beta_4 a)$                                                                              |
| Density independent Rosette growth         | 0.3416                     | $G_r(x_r, a) = \beta_0 + \beta_1 x_r \&$ $V_r(x_r) = \beta_2 + \beta_3 ln(x_r)$                                                            |
| Density dependent Rosette growth           | 0.6584                     | $G_r(x_r) = \beta_2 + \beta_3 ln(x_r)$<br>$G_r(x_r, a) = \beta_0 + \beta_1 x_r + \beta_4 a \&$<br>$V_r(x_r) = \beta_2 + \beta_3 ln(x_r)$   |
| Density independent Rosette survival       | 0.8040                     | $S_r(x_r, a) = logit^{-1}(\beta_0 + \beta_1 x_r)$                                                                                          |
| Density dependent Rosette survival         | 0.1960                     | $S_r(x_r, a) = logit^{-1}(\beta_0 + \beta_1 x_r + \beta_4 a)$                                                                              |
| Density independent Adult growth           | 0.5788                     | $G_h(x_h, a) = \beta_0 + \beta_1 x_h \&$                                                                                                   |
| Density dependent Adult growth             | 0.4212                     | $\sigma=eta_2 \ G_h(x_h,a)=eta_0+eta_1x_h+eta_4a\ \& \ \sigma=eta_2$                                                                       |
| Density independent Adult survival         | 0.2351                     | $S_h(x_h, a) = logit^{-1}(\beta_0 + \beta_1 x_h)$                                                                                          |
| Density dependent Adult survival           | 0.7649                     | $S_h(x_h, a) = logit^{-1}(\beta_0 + \beta_1 x_h + \beta_4 a)$                                                                              |
| Density independent Reproduction           | 0.2824                     | $S_h(x_h, a) = logit^{-1}(\beta_0 + \beta_1 x_h)$                                                                                          |
| Density dependent Reproduction             | 0.7176                     | $S_h(x_h, a) = logit^{-1}(\beta_0 + \beta_1 x_h + \beta_4 a)$                                                                              |

Table S5. table caption in main text

|   | Vital rate              | $\beta_0$ (intercept/rate) | $\beta_1 \text{ (size/sd)}$ | Formula                                               |
|---|-------------------------|----------------------------|-----------------------------|-------------------------------------------------------|
| 1 | Seedling to rosette     | 10.90                      | -0.09                       | $T_{s\to r}(x_s) = logit^{-1}(\beta_0 + \beta_4 x_s)$ |
| 2 | Rosette to stemmed palm | 9.21                       | -0.01                       | $T_{r\to h}(x_r) = logit^{-1}(\beta_0 + \beta_4 x_r)$ |
| 3 | Initial size            | 7.43                       | 0.00                        | $B(x_h) = \beta_0 e^{-\beta_0 x_h}$                   |

Table S6. table caption in main text

|                                    | Inv. growth (2.5%) | Inv. growth (97.5%) | Stabilization $\theta$ (2.5%) | Stabilization $\theta$ (97.5%) | Eq. density (2.5%) | Eq. density (97.5%) |
|------------------------------------|--------------------|---------------------|-------------------------------|--------------------------------|--------------------|---------------------|
| Seedling to rosette (mid-point)    | 1.0442             | 1.0580              | -0.0289                       | -0.0103                        | 0.3779             | 0.9424              |
| Rosette to stem (midpoint)         | 1.0417             | 1.0598              | -0.0289                       | -0.0116                        | 0.3567             | 0.8573              |
| Size-dependent seedling to rosette | 1.0473             | 1.0492              | -0.0200                       | -0.0198                        | 0.4657             | 0.5424              |
| Size-dependent rosette to stem     | 1.0481             | 1.0484              | -0.0202                       | -0.0197                        | 0.4719             | 0.5117              |

Table S7. table caption in main text

## S2 Figures



Figure S1. Figure legend in the maintext (allows for easy editing)



Figure S2. Figure legend in the maintext (allows for easy editing)



Figure S3. Figure caption in the maintext (allows for easy editing)



Figure S4. Figure legend in the maintext (allows for easy editing)