CHARACTERISTIC CLASSES IN DEGREE ONE

We know now: $H^*(MCG(Sg)) \cong Ring of char classes for <math>\mathbb{Z}g$ -bundles Thm. $H^*(MCG(Sg); \mathbb{Z}) = 0$ g > 1.

Pf. We'll do 9 ? 3. Ingredients:

- 1. MCC(Sg) is gen. by Dehn twists about nonseparating curves
- 2. Any two such Dehn twists are conjugate in MCG(Sg)
- 3. There is a relation among such twists of the form TxTyTz = TaTbTcTd

It follows that $H_1(MCG(S_g); \mathbb{Z}) \cong \mathbb{R} MCG(S_g)^{ab}$ is trivial. hence $H'(MCG(S_g); \mathbb{Z}) = 0$.

Ingredient 2. Follows from: f Taf-1 = Tf(a) and classification of surfaces.

Ingredient 3. Follows from: Lantern relation

TxTyTz=TT Tai

(prove by checking action on and using $Mod(D^2)=1$)

and the embedding:

50,4

GENERATING MCG (Ingredient 1).

Two (sub)ingredients: ① The complex of curves C(Sg) is connected $g \gg 2$.

vertices: isotopy classes of simple closed curves edges: disjoint representatives

② The Birman exact sequence $\chi(s) < 0$. $1 \to \pi(S,p) \to MCG(S,p) \to MCG(S) \to 1$.

Outline of proof. 1) -> complex of nonsep. curves N(Sg) is connected.

⇒ given any two isotopy classes of nonsep s.c.c. in Sg ∃ TTCi ci nonsep taking one to other.*

MCG(Sy-c) is. Sq-1

But MCG (Sg-c) = MCG (\$3,2)

(applied twice) \Rightarrow MCG($\S_{9,2}$) is gen by nonsep twists if MCG(\S_{9-1}) is.

Done by induction. Base case is $MCG(S_1) \cong SL_2Z$ gen by (31), (-19).

* Use the relation TbTa(b) = a For i(a,b) = 1.

Connectivity of C(Sg)

Take two vertices of C(Sg), represent them by s.cc. in Sq. Choose smooth fins fo, f. s.t. a is a level set of fo, b of fi. Connect to to f, by a path for Com (Sg, R).

Cerf Lemma. Any path Ft € Coo(Sg, R) can be approx. by gt € Coo(Sg, R) so each gt is in one of following classes:

1 Morse functions with at most 2 coincident critical values < crit. values passing each other

@ functions with distinct crit vals and exact one degen. crit pt of the form x3 ± y2+c = crit vals merging/splitting

Claim. Each 9t has a level set 1ep. a vertex of C(Sg).

Newby curves are isotopic >> {t: V ∈ C(Sg) is rep by a level set of ge} is open in R

Also, level sets of the same 9t are disjoint. Result follows from compactness of [0,1].

Remains to prove claim. Take nod of crit set:

g > 2 used!

If two circles bound disks, madify the function to get rid of this crit pt.

Look at another crit pt.

Or: Given $f: Sg \to \mathbb{R}$ another crit pt.

conn.comp. of by crushing level sets. this is where easy Euler char. TK(1)=g. except in case @ above where rk(1)=g-1. Any nontrivial cocycle (= pt) in If corresponds to a nontrivial level set in Sq. (this shows N(Sq) connected!)