Expansion of vortex clusters in a dissipative twodimensional superfluid

Oliver Stockdale

The University of Queensland, Australia*

@StockdaleOliver

APS March Meeting 18 March 2021

Acknowledgements

Matt Reeves

Kwan Goddard-Lee

Xiaoquan Yu

Guillaume Gauthier

Warwick Bowen

Tyler Neely

Matt Davis

Motivation: superfluid optomechanics at UQ

A disk of thin-film superfluid helium

Direct imaging not possible

Superfluid covers every surface

Observation: Superfluid is rotating and rotation is decreasing

Possible explanations

- positive vortex
- negative vortex

Superfluid vortices' circulation is quantised

$$\Gamma = \kappa \frac{h}{m}$$

Pinned cluster with annihilation

Y. P. Sachkou, et al., Science 366, 1480 (2019).

Modelling a chiral vortex cluster

Modelling the system: anomalous hydrodynamics

Large collections of vortices can be modelled as a fluid

$$\rho \equiv \sum_{i} \delta(\mathbf{r} - \mathbf{r}_{i}) \longrightarrow \rho \approx f(\mathbf{r})$$

(Where f is smooth)

'Vortex fluid' dynamics = Euler equation + anomalous stresses

Conservative density evolution:

$$(\partial_t + \mathbf{v} \cdot \nabla)\rho = 0$$

Modelling hydrodynamics of vortex fluid, NOT superfluid hydrodynamics

Wiegmann & Abanov, PRL **113**, 034501 (2014). Yu & Bradley, PRL **119**, 18501 (2017).

Real systems are dissipative — how do dissipative vortex fluids behave?

$$(\partial_t + \mathbf{v} \cdot \nabla)\rho = -\gamma \left[\Gamma \rho^2 + \frac{\Gamma}{8\pi} \nabla^2 \rho - \mathbf{v} \times \nabla \rho - \frac{\Gamma}{8\pi} \frac{|\nabla^2 \rho|}{\rho} \right]$$

 $\gamma=$ dissipation $\rho=$ vortex density ${f v}=$ vortex fluid velocity field $\Gamma=$ vortex circulation

Yu & Bradley, PRL 119, 18501 (2017).

ORS, et al., PRR 2, 033138 (2020).

6

$$\gamma=$$
 dissipation $\rho=$ vortex density ${f v}=$ vortex fluid velocity field $\Gamma=$ vortex circulation

$$(\partial_t + \mathbf{v} \cdot \nabla)\rho = -\gamma \left[\frac{\Gamma \rho^2}{8\pi} \nabla^2 \rho - \mathbf{v} \times \nabla \rho - \frac{\Gamma}{8\pi} \frac{|\nabla^2 \rho|}{\rho} \right]$$

Suppresses high density regions → flattens distribution

space

6

Yu & Bradley, PRL **119**, 18501 (2017). ORS, et al., PRR **2**, 033138 (2020).

$$\gamma = {
m dissipation} \quad
ho = {
m vortex\ density} \quad {
m v} = {
m vortex\ fluid\ velocity\ field} \quad \Gamma = {
m vortex\ circulation}$$

$$(\partial_t + \mathbf{v} \cdot \nabla)\rho = -\gamma \left[\Gamma \rho^2 + \frac{\Gamma}{8\pi} \nabla^2 \rho - \mathbf{v} \times \nabla \rho - \frac{\Gamma}{8\pi} \frac{|\nabla^2 \rho|}{\rho} \right]$$

Negative viscosity, i.e., steepens density gradients

space

6

Yu & Bradley, PRL **119**, 18501 (2017). ORS, et al., PRR **2**, 033138 (2020).

$$\gamma = {
m dissipation} \quad \rho = {
m vortex\ density} \quad {
m v} = {
m vortex\ fluid\ velocity\ field} \quad \Gamma = {
m vortex\ circulation}$$

$$(\partial_t + \mathbf{v} \cdot \nabla)\rho = -\gamma \left[\Gamma \rho^2 + \frac{\Gamma}{8\pi} \nabla^2 \rho - \mathbf{v} \times \nabla \rho - \frac{\Gamma}{8\pi} \nabla^2 \rho \right]$$

Let's (perhaps naively) assume:

Yu & Bradley, PRL 119, 18501 (2017). ORS, et al., PRR 2, 033138 (2020).

Rankine vortex is a solution to dissipative vortex fluid theory

Assume
$$\nabla \rho = 0$$

$$\rho(t) = \frac{1}{\rho_0^{-1} + \gamma \Gamma t}$$

$$(\partial_t + \mathbf{v} \cdot \nabla)\rho = -\gamma \left[\Gamma \rho^2 + \frac{\Gamma}{8\pi} \nabla^2 \rho - \mathbf{v} \times \nabla \rho - \frac{\Gamma}{8\pi} \frac{|\nabla^2 \rho|}{\rho} \right]$$

Rankine vortex is a solution to dissipative vortex fluid theory

Assume
$$\nabla \rho = 0$$

$$\rho(t) = \frac{1}{\rho_0^{-1} + \gamma \Gamma t}$$

Enter a universal scaling regime

$$\langle r \rangle \propto \sqrt{\rho_0^{-1} + \gamma \Gamma t}$$

Diffusive growth

$$H \propto -\log\left[\rho_0^{-1} + \gamma \Gamma t\right]$$

Logarithmic decay

2

Perturbation analysis (with all terms) in universal regime

$$\rho + \delta\rho \rightarrow \rho$$

Rankine vortex is a *stable attractor* for *every* initial condition

$$-\log\left[\rho_0^{-1} + \gamma \Gamma t\right]$$

Diffusive growth

Numerical modelling of vortex dynamics in excellent agreement

ume

Logarithmic decay

Why is this significant?

Classical fluids are viscous, and so they dissipate energy differently

Symmetric vortices in classical fluids expand to form a Lamb-Oseen vortex (Gaussian profile)

Rankine vortex is forbidden in classical fluids!

Experimental comparison

Experiment

We use a quasi-2D 87Rb Bose-Einstein condensate

Why?

- High degree of control and precision measurements
- Routine injection/imaging of vortices can be achieved

On average, the vortex cluster has N~11 vortices

We take ~40 samples for each hold time

10

= condensate

Stirring protocol: + = vortices

Experimental expansion

2D histogram of vortex positions

1D histogram of vortex positions

Experimental parameters

Conclusions

oliver.stockdale@kip.uni-heidelberg.de

Theory predicts universal expanding regime

$$\mathcal{D}_{t}^{v} \rho = -\gamma \left(\Gamma \rho^{2} + \frac{\Gamma}{8\pi} \nabla^{2} \rho - \mathbf{v} \times \nabla \rho \right)$$

$$\mathcal{D}_{t}^{v} = \partial_{t} + \left(\mathbf{v} - \frac{\gamma \Gamma}{8\pi} \nabla \rho \right) \cdot \nabla$$

Experimental evidence to support

13

Conclusions

oliver.stockdale@kip.uni-heidelberg.de

Edge waves

$$\mathcal{D}_t^v \rho = -\gamma \left(\Gamma \rho^2 + \mathcal{D}_t^v \right)$$

$$\mathcal{D}_t^v = \partial_t + \left(\nabla \rho^2 + \mathcal{D}_t^v \right)$$

Edge solitons in Rankine vortex

Bogatskiy & Wiegmann PRL **122**, 214505 (2019).

Further experiments

15

dence to

0 - 1 s

3 - 4 s