

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE FÍSICA

MÉTODOS NUMÉRICOS PARA LA CIENCIA E INGENIERÍA

TAREA 10

"Modelamiento de espectros y líneas de absorción"

> Braulio Sánchez Ibáñez 16.880.977-8

> Profesor: Valentino González

Auxiliar: Felipe Pesce

Santiago, Chile

PREGUNTA 1

Se dispone de los datos correspondientes a una parte del espectro de una estrella, incluyendo una línea de absorción, como muestra el siguiente gráfico

Figura 1: espectro

Se desea modelar la zona continua del espectro con una línea recta de la forma y = mx + n y la línea de absorción mediante dos métodos:

1. Perfil gaussiano: se considera que la línea se puede modelar con una función gaussiana de la forma

$$f(x) = Ae^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2. Perfil de Lorentz: la línea se modela con la función

$$f(x) = \frac{A}{\pi} \frac{\sigma}{(x-\mu)^2 + \sigma^2}$$

El modelamiento se hará con el módulo curve_fit sobre la función

$$F(x) = mx + n - f(x)$$

Donde la función f es la gaussiana o el perfil de Lorentz, dependiendo del caso a analizar. Para que el ajuste de resultados sensatos, se debe dar a los parámetros valores iniciales cercanos a los esperados.

Para determinar μ se utiliza el módulo **numpy.argmin** para determinar la posición donde el flujo alcanza su valor mínimo. En este caso se utiliza como valor inicial $\mu_0 = 6562.3$. Los parámetros iniciales m y n se estiman simplemente con el cálculo de la ecuación de la recta que pasa por dos puntos representativos del continuo del flujo. En este caso se usa $m = 10^{-20}$ y $n = 10^{-18}$. En el caso de A, se estima la altura de la línea, dando A=0.001. Finalmente, los resultados de la modelación son muy sensibles al valor inicial de σ , por lo que se realizan varios ajustes con distintos valores para σ y se dejan los mejores.

La siguiente tabla representa los parámetros óptimos y el valor de χ^2 de los dos mejores ajustes para cada modelo:

Tabla 1: parámetros óptimos

		m	n	Α	mu	sigma	chi2
	1	$7.803 \cdot 10^{-21}$	$8.877 \cdot 10^{-17}$	$8.223 \cdot 10^{-17}$	6563.223	3.258	$2.195 \cdot 10^{-5}$
Perfil Gaussiano	2	$7.800 \cdot 10^{-21}$	$8.878 \cdot 10^{-17}$	$8.227 \cdot 10^{-17}$	6562.3	3.258	$2.815 \cdot 10^{-5}$
	1	$7.923 \cdot 10^{-21}$	$8.811 \cdot 10^{-17}$	$1.114 \cdot 10^{-16}$	6563.199	3.219	$2.114 \cdot 10^{-5}$
Perfil de Lorentz	2	$7.923 \cdot 10^{-21}$	$8.811 \cdot 10^{-17}$	$1.114 \cdot 10^{-16}$	6563.199	3.219	$2.114 \cdot 10^{-5}$

Los siguientes cuatro gráficos representan estas 4 situaciones. En el caso Gauss 1 se usó un valor inicial para sigma $\sigma_0=5$ y en Gauss 2, $\sigma_0=3.25$. Para el perfil de Lorentz se utilizó $\sigma_0=5$ en el primer caso y $\sigma_0=3.21$ en el segundo.

Figura 5: perfil de Lorentz

Los perfiles de Lorentz parecieran representar de mejor forma las líneas, al tener una transición más suave desde el continuo a la línea de absorción. Sin embargo, en ambos casos el valor de chi cuadrado son muy parecidos y del mismo orden.

El ajuste es muy sensible al valor inicial de la varianza sigma, por lo que se debe probar varios valores hasta obtener una convergencia adecuada.