Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko

Spektrometer

Poročilo pri fizikalnem praktikumu IV

Kristofer Čepon Povšič

Asistentka: Jelena Vesić

Uvod

Spektroskop je priprava za merjenje spektrov, to je porazdelitev svetlobnega toka po frekvenci ali valovni dolžini. Pri vaji bom uporabljal klasični optični spektroskop na prizmo. Delovanje temelji na principu, da se svetloba v prizmi iz stekla razcepi na raznobarvne komponente. Kot detektor bom uporabljal človeško oko, ki je najbolj občutljivo za rumenozeleno svetlobo pri valovni dolžini 555nm. Proti vijolični in rdeči barvi, ki sta meji vidnega spektra, občutljivost pada. Poznamo dve vrsti spektrov - zvezne (žarnice) in črtaste (plini). Če pa je dovolj velika ločljivost, pa je vsak spekter zvezen.

Naloga

- 1. Umerite kotno skalo spektroskopa s spektralnimi črtami Hg in H_2
- 2. Izmerite valovne dolžine spektralnih črt v spektru varčne žarnice. Primerjajte spekter s tistim, izmerjenim v Hg pod točko 1
- 3. Izmerite centralno valovno dolžino in ocenite spektralno širino rdeče, rumene, zelene in modre svetleče diode (LED)
- 4. Opazujte zvezni spekter volframove žarnice in oceni valovno dolžino najsvetlejšega (rumenega) dela in zapišite intervale, ki jih pokrivajo posamezne barve
- 5. Opazuje absorpcijski spekter NO_2 tako, da cevko s plinom presevate z belo svetlobo.
- 6. Izmerite valovne dolžine črt v spektru He in Ne.

Potrebščine

- optični spektroskop: prizma iz kremastega stekla
- \bullet nosilec za spektralne cevi (ampule) z visokona
petnostnim izvorom, ampule s plini Hg, He, Ne in $\rm H_2$
- $\bullet\,$ varčna žarnica, LED diode, volframova žarnica, cevka z NO_2

Navodilo

Z živim srebrom in vodikom izmerim kote in preko barv umerim spektroskop. Dobljene podatke preko enačbe

$$\phi(\lambda) = A\lambda + B\sqrt{\lambda} + C \tag{1}$$

Če enačbo 1 preoblikujemo valovno dolžino izraženo v odvisnosti od kota:

$$\lambda(\phi) = \left(\frac{-B + \sqrt{B^2 + 4A(C - \phi)}}{2A}\right)^2 \tag{2}$$

Pomerimo tudi varčno žarnico, različne LED diode in spektra helij in neonov.

Obdelava podatkov

Kalibracija

Izmerjeni in izračunani podatki za Hg:

barva	ϕ [°]	$\lambda[nm]$
2 rumeni	45.2	578
zelena	45.4	546
modrovijolična	47.1	436

Izmerjeni in izračunani podatki za H₂:

barva	ϕ [°]	$\lambda[nm]$
rdeča	44.5	656
svetlomodra	46.0	486
modrovijolična	47.2	434

Izračunamo parametre:

$$A = 94 \pm 8$$

$$B = 6 \cdot 10^{7} \pm 1 \cdot 10^{7}$$

$$C = -11 \cdot 10^{4} \pm 2 \cdot 10^{4}$$

Regresiven graf pa izgleda:

Slika 1: Izmerjeni koti in izračunane valovne dolžine za živo srebro in vodik.

Varčna žarnica

barva	ϕ [°]	$\lambda[nm]$
vijolična	47.3	425.8
modra 1	46.4	472.9
modra 2	45.8	512.2
zelena 1	45.5	535.7
zelena 2	45.2	563.3

Slika 2: Spekter varčne žarnice

LED diode

barva	$\phi_{min}[^{\circ}]$	$\phi_{max}[^{\circ}]$	$\lambda_{min}[nm]$	$\lambda_{max}[nm]$
modra	47.1	46.0	435.4	498.1
rumena	45.4	45.1	544.4	573.8
rdeča	45.0	44.7	585.2	627.3
zelena	45.6	45.0	527.5	585.2

Slika 3: Spekter LED diode

Volfram žarnica

Slika 4: Spekter volfram žarnice z valovno dolžine največje jakosti - ocenjene s prostim očesom.

Absorpcijski spekter NO_2

ϕ [°]	$\lambda[nm]$
45.1	573.8
45.3	553.6
45.5	535.7
45.8	512.2
46.1	491.5
46.3	478.9
46.5	467.0
46.7	455.9
46.7	455.9

Slika 5: Absorpcijski spekter NO_2

He in Ne

Izmerjene vrednosti helija:

ϕ [$^{\circ}$]	$\lambda[nm]$
44.5	670.3
44.6	646.1
45.1	573.8
45.9	505.0
46.0	498.1
46.4	472.9
46.8	450.6
47.0	440.3

Slika 6: Spekter helija.

Izmerjene vrednosti neona:

ϕ [°]	$\lambda[nm]$
45.0	585.2
45.2	563.3
45.4	544.4
45.8	512.2
46.7	455.9

Slika 7: Spekter neona