1026 AUTOMATON

deepest_valley 5.113

DESCRIPTION LINKS AUTOMATON

Origin Derived from valley.

Constraint deepest_valley(DEPTH, VARIABLES)

Arguments DEPTH : dvar

VARIABLES : collection(var-dvar)

Restriction required(VARIABLES, var)

> A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a valley if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} > V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k < V_{k+1}$. DEPTH is the minimum value of the valley variables. If no such variable exists DEPTH is equal to the default value MAXINT.

 $(2, \langle 5, 3, 4, 8, 8, 2, 7, 1 \rangle)$ $(7, \langle 1, 3, 4, 8, 8, 8, 7, 8 \rangle)$

> The first deepest_valley constraint holds since 2 is the deepest valley of the sequence $5\ 3\ 4\ 8\ 8\ 2\ 7\ 1$.

Figure 5.268: Illustration of the first example of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 5, 3, 4, 8, 8, 2, 7, 1 and its corresponding deepest valley of depth 2

```
Typical
                        |VARIABLES| > 2
                        range(VARIABLES.var) > 2
                        valley(VARIABLES.var) > 0
```

Purpose

Example

20040530 1027

Symmetry

Items of VARIABLES can be reversed.

Arg. properties

Functional dependency: DEPTH determined by VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for deepest_valley: domains 0..n

Solution density for deepest_valley

1028 AUTOMATON

Length (n)			3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	-	9	176	2900	50472	976227	21133632
	1	-	4	99	1712	29125	540576	11233250
	2	-	1	44	900	15680	283250	5665896
	3	-	-	11	380	7587	138544	2693425
	4	-	-	-	92	3000	61389	1195056
	5	-	-	-	-	697	22632	484020
	6	-	-	-	-	-	5036	166208
	7	-	-	-	-	-	-	35443
	1000000	9	50	295	1792	11088	69498	439791

Solution count for deepest_valley: domains 0..n

20040530 1029

Solution density for deepest_valley

Parameter value as fraction of length

Solution density for deepest_valley

Parameter value as fraction of length

See also

common keyword: highest_peak, valley (sequence).
implies: between_min_max.

1030 AUTOMATON

Keywords

characteristic of a constraint: maxint, automaton, automaton with counters, automaton with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

20040530 1031

Automaton

 $\mathtt{VAR}_i = \mathtt{VAR}_{i+1}$

Figure 5.269 depicts the automaton associated with the deepest_valley constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i :

$$\begin{array}{lll} \mathtt{VAR}_i &< \mathtt{VAR}_{i+1} \Leftrightarrow S_i = 0 \ \land \ \mathtt{VAR}_i &= \mathtt{VAR}_{i+1} \Leftrightarrow S_i = 1 \ \land \ \mathtt{VAR}_i \ > \mathtt{VAR}_{i+1} \Leftrightarrow S_i = 2. \end{array}$$

STATES SEMANTICS : stationary/increasing mode : decreasing mode Glue matrix where \overrightarrow{C} and \overleftarrow{C} resp. represent the counters values C at the end of a $\{C \leftarrow \mathsf{maxint}\}$ prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES; \overrightarrow{X} denotes the last variable of the prefix. $VAR_i = VAR_{i+1}$ $\min(\overrightarrow{C}, \overleftarrow{C})$ $\min(\overrightarrow{C}, \overleftarrow{C})$ $\mathtt{VAR}_i < \mathtt{VAR}_{i+1},$ $VAR_i > VAR_{i+1}$ $\{C \leftarrow \min(C, \mathtt{VAR}_i)\}$ $\min(\overrightarrow{C}, \overleftarrow{C})$ $\min(\overrightarrow{C}, \overrightarrow{X}, \overleftarrow{C})$ u

Figure 5.269: Automaton of the deepest_valley constraint and its glue matrix (state s means that we are in *increasing* or *stationary* mode, state u means that we are in *decreasing* mode, a new valley is detected each time we switch from decreasing to increasing mode and the counter C is updated accordingly); maxint is the largest integer that can be represented on a machine

Figure 5.270: Hypergraph of the reformulation corresponding to the automaton of the deepest_valley constraint (C_0 is set to maxint the largest integer that can be represented on a machine)