State

实验报告

班级 电院 2353 实验名称

组 别实验指导教师

实验日期 成绩

姓名 马铭康

### RL C串并联谐振电路

#### 一. 实验且的

- · 学习测定 RLC 串、并联电路的通用谐振曲线的方法 , 了解 Q值 对通用 谐振曲线的影响
- ·通过ztRLC串联电路的ULlw)与Uclw)的沟洞量,了解电路的Q值意义
- · 了解电路参数对谐振曲线形状及谐振频率的影响

### 二. 实验厚理 及申路图

□ RLC串联谐振



当WL - W = D时,电路处于电压谐振。

谐振角频率: wo = FLC 谐振频率: fo = 5.77[

谐振星件下,电路的阻抗量阻性,电阻尺上的电压等于电源电压且

其端口电流与电压同相位,电路中的电流达到最大值即:

$$I_o = \frac{U_S}{R}$$

而如果w<wo,电路呈容性;如果w>wo,电路呈感性

$$U_L = IwL = \frac{uL U_S}{\sqrt{R^2 + (wL - \frac{1}{wC})^2}}, \quad dc = I \cdot wC - \frac{U_S}{wC/R^2 + (wL - \frac{1}{wC})^2}$$

谐振时 UL fo Uc 相等,相位差为180°

### 实验报告

姓名

实验名称

实验指导教师

实验日期 成绩

定义品质因数Q = 4 = 1

$$L = R \int_{1+Q^{2}(\frac{w}{w_{0}} - \frac{w_{0}}{w})^{2}}$$

绘制 通用谐振曲线可以得到各参量

#### O RL - C并联谐振电路

$$\frac{1}{L} = \frac{L}{RC} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

$$\frac{1}{R} = \frac{1 - j \frac{R}{WL}}{1 - j \left(\frac{1}{WRC} - \frac{WL}{R}\right)}$$

可知并联谐振频率低于串联谐振频率,而且在侧值尺之后的 fo. 不存在,即电路不气发生浴标。

有 
$$\frac{y}{y_0} = \frac{|z|}{z_0} = \frac{1}{\int |+Q^2(\eta - \frac{1}{\eta})^2}$$
 (忽略电缆线圈电阻)

# 上海交通大学

#### 实 报 告 验

班级

实验日期 成绩

姓名

实验名称

实验指导教师

三. 字验内容及图表



按蝈接线, 给定凡=600Ω, L=0.1H(A)阻 R=15.5Ω), C=0.01MF, Us=1V。保持输入

信号恒定的情况下, 改变输出频率 f, 测出相应

的UR、UL、UC ,记录实现1的fo

|         |      | 4.91 RL = 12.802 |      |      |      |      |      |      |      |  |  |  |
|---------|------|------------------|------|------|------|------|------|------|------|--|--|--|
| f/kHz   | 4.0  | 4.4              | 4.7  | 4.9  | f.   | 5.1  | 5.3  | 5.6  | 6.0  |  |  |  |
| UR. ImV | 288  | 461              | 670  | 754  | 754  | 689  | 562  | 410  | 293  |  |  |  |
| UL /mV  | 1    |                  |      |      | 9    |      |      |      | 1    |  |  |  |
| Uc/mV   | 2652 | 3798             | 5188 | 5812 | 5831 | 5397 | 4218 | 2980 | 1965 |  |  |  |

2. 改变上图 R值, 给定R2 = (ks2 , L = 0.1H, C = 0.01,MF, Us =1V o 在保持输入信号恒定的情况下,改变输出规率力,测力相应的从。

| $U_L \mid f = f_0$ | , , , | 1c / f= | fo 1 | 记录实验 | 21,63 | f <sub>o</sub> | RL  | = 12-85 | 2   |  |
|--------------------|-------|---------|------|------|-------|----------------|-----|---------|-----|--|
| f/kHz              | 4.0   | 4.4     | 4.7  | 4.9  | fo    | 5.1            | 5.3 | 5.6     | 6.0 |  |
| URZ/mV             | 585   | 759     | 863  | 888  | 888   | 869            | 818 | 716     | 590 |  |
| UL /m V            |       |         |      | 1    | 2851  |                |     |         |     |  |
| UclmV              |       |         | 1    |      | 2475  |                |     |         |     |  |

### 实验报告

班级 实验日期 别 姓名 实验名称 实验指导教师 成绩 3. R-230 按包接线, 取L=0.01H(A阻 RL=2.8Q), C=0.1MF 取样电阻 ro = 1000 , Us = 1v , 调节信号的经季, 当电路达到谐振状态,即取样电阻 10上的电压 Us 为最小,记录安测的方 5.00 f / kHz 4.5 4.1 4.8 5 to 5.2 5.4 5.7 6.1 38.1 92.2 Uro /mV 118 59.0 19.0 10.8 10.8 34.2 134 四.注意事场 · 每次及变信号发生器的频率后,需检测其输出电压。如输出电压>咸沙对 增长,应重新调整信号发生器的输出电压。这样才能保持信号发生器 的输出电压恒定不变 1 · 实验前用万用表次11电感线圈的内阻 , 备计算及使用

### 实验报告

班级 电院 2353

组别

实验日期

姓名马铭康

实验名称

实验指导教师

成绩

### RLC串并联谐振课后

| 1£ | 务 | _ |  |
|----|---|---|--|
|    |   |   |  |

| $I_{\circ} = \frac{u}{1}$ | Ri max | = 1.885 | 1 @ mA | fo=   | 4.91 k | H⊋   |      |      |      |  |
|---------------------------|--------|---------|--------|-------|--------|------|------|------|------|--|
| f/kHz                     | 4.0    | 4.4     |        |       |        |      | 5.3  | 5.6  | 6.0  |  |
| I/Į.                      | 0.38   | 0.61    | 0.89   | 1.00  | 1.00   | 0.91 | 0.75 | 0.54 | 0.39 |  |
| flf。                      | 0.81   | 0.90    | 0.96   | o. 99 | 1.00   | 1.04 | 1.08 | 1.14 | 1.22 |  |

### 曲线见附图

| £3     | . Io = | URS max | = 0. | 888 m A | fo = | 4.92 K F | l z  |      |      |
|--------|--------|---------|------|---------|------|----------|------|------|------|
| flkHz  | 4.0    | 4.4     | 4.7  | 4.9     | fo   | 5.1      | 5.3  | 5.6  | 6.0  |
| 1/1.   | 0.66   | 0.85    | 0.97 | 1.00    | 1.00 | 0.98     | 0.92 | 0.81 | 0.66 |
| f I fo | 0.81   | 0.89    | 0.96 | 0.99    | 1.00 | 1.04     | 1.68 | 1.14 | 1.22 |

### 曲线见时图

### 任务二:

| 有召      | $= \frac{\dot{U}_{S} - U}{\dot{U}_{S}}$ | iro ro |      | 代入得  | <b>2</b> 0 = | 9159. | 2652 | fo.  | = 5.00 KH |
|---------|-----------------------------------------|--------|------|------|--------------|-------|------|------|-----------|
| f/kHz   | 4.1                                     | 4.5    | 4.8  | 5    | fo           | 5.2   | 5.4  | 5.7  | 6.1       |
| 212.    | 0.08                                    | 0.17   | 0.56 | 1.00 | 1.00         | 0. 31 | 0.18 | 0.11 | 0.07      |
| $flf_o$ | 0.82                                    | 0.90   | 0.96 | 1.00 | [.00         | 1.04  | 1.68 | 1.14 | 1. 22     |

### 曲线见附图

# 上海交通大学

#### 实 验 报 告

姓名

班级 实验名称

组别 实验指导教师 实验日期 成绩

对于理论值

任务三:

串联有 Q= 1/€ 并联有 Q= √1/25 -1

スす于 task 1. 2.3 , 分別代入解得 3.12 Q1th = 2 7.66 Q2th = 2 Q3th = 50

131.49

对于实际值

 $abla 耳 
otin Q = \frac{\dot{U}_L}{\dot{V}_S}$ 

并耳差有 Q =

双于于task 1,2,3, 分别代入解得

Q1 ex = 5.94 Q2ex = 2.85 Q3ex = 31.61

### 思考题

- 1. 不相等,由于电感上存在电阻 , 导致谐振时 UL 略大于 Uc
- 2. Q越大,谐振曲线变化越明显,曲线越尖锐对频率的选择性越好; Q越小, 谐振曲线变化越平缓

3. 注明: 
$$Q = \frac{1}{R} \int_{-\frac{R}{2}}^{\frac{L}{2}} \frac{U}{R \int_{-\frac{R}{2}}^{\frac{R}{2}} \frac{U}{R}}$$

$$t = \frac{1}{\sqrt{1 + Q^2 (\frac{1}{26} - \frac{1}{46})^2}} = \frac{1}{\sqrt{1 + Q^2 (\eta - \frac{1}{\eta})^2}}$$

由起千代》1、12可得了。二十一中日日11:一门二十

展升得一小、72为 Q12-1-Q=0 69两根

由韦达定理 
$$\eta_2 - \eta_1 = \frac{1}{Q}$$
 ,  $Q = \frac{1}{\eta_2 - \eta_1}$ 

得证

