Notes LLM

1. In-context learning Summary of in-context learning (ICL)

Generative AI project lifecycle

Model architectures and pre-training objectives

LLM Evaluation - Metrics

- Used for text summarization
- Compares a summary to one or more reference summaries
- Used for text translation
- Compares to human-generated translations

LLM Evaluation - Metrics - Terminology

LLM Evaluation - Metrics - ROUGE-1

Reference (human):

It is cold outside.

Generated output:

It is very cold outside.

ROUGE-1 =
$$\frac{\text{unigram matches}}{\text{unigrams in reference}} = \frac{4}{4} = 1.0$$

ROUGE-1 =
$$\frac{\text{unigram matches}}{\text{unigrams in output}} = \frac{4}{5} = 0.8$$

ROUGE-1 = 2
$$\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$
 = 2 $\frac{0.8}{1.8}$ = 0.89

LLM Evaluation - Metrics - ROUGE-2

LLM Evaluation - Metrics - ROUGE-L

LLM Evaluation - Metrics - OUGE clipping

LLM Evaluation - Metrics - BLEU

BLEU metric = Avg(precision across range of n-gram sizes)

Reference (human):

I am very happy to say that I am drinking a warm cup of tea.

Generated output:

I am very happy that I am drinking a cup of tea. - BLEU 0.495

I am very happy that I am drinking a warm cup of tea. - BLEU 0.730

I am very happy to say that I am drinking a warm tea. - BLEU 0.798

I am very happy to say that I am drinking a warm cup of tea. - BLEU 1.000

REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

Labéliser plusieurs outputs d'un même prompts par plusieurs personnes

Prepare labeled data for training

- Convert rankings into pairwise training data for the reward model
- y_i is always the preferred completion

Prompt Dataset "A dog is..." Instruct LLM "...a furry animal." Reward Model O.24 Reward -0.24 Reward -0.24 Reward -0.24

KL divergence

Constitutional LLM is an LLM wich can evaluate it one output and improve it. Making it safe, more secure, helpful, harmness

We allow the model to evaluation it's response, if it's not align with our needs, then we tell to the model to generate something that is not like it's output.

Constitutional Al

After that, we can collecte several examples of the second answer to make a dataset to fine-tune the model

Constitutional AI

REINFORCEMEMENT LEARNING FROM AI (RLFAI)

MODEL OPTIMISATION (size reduction)

Distillation

Train a smaller student model from a larger teacher model

Post-Training Quantization (PTQ) Reduce precision of model weights 0.0 MIN MAX FP32 ~3e⁻³⁸ ~3e³⁸ 32-bit floating point LLM 8-bit quantized LLM FP16 | BFLOAT16 | INT8 0 16-bit floating point | 8-bit integer

Pruning

Remove model weights with values close or equal to zero

- Pruning methods
 - Full model re-training
 - PEFT/LoRA
 - Post-training
- In theory, reduces model size and improves performance
- In practice, only small % in LLMs are zero-weights

7-21

Cheat Sheet - Time and effort in the lifecycle

	Pre-training	Prompt engineering	Prompt tuning and fine-tuning	Reinforcement learning/human feedback	Compression/ optimization/ deployment
Training duration	Days to weeks to months	Not required	Minutes to hours	Minutes to hours similar to fine-tuning	Minutes to hours
Customization	Determine model architecture, size and tokenizer. Choose vocabulary size and # of tokens for input/context Large amount of domain training data	No model weights Only prompt customization	Tune for specific tasks Add domain-specific data Update LLM model or adapter weights	Need separate reward model to align with human goals (helpful, honest, harmless) Update LLM model or adapter weights	Reduce model size through model pruning, weight quantization, distillation Smaller size, faster inference
Objective	Next-token prediction	Increase task performance	Increase task performance	Increase alignment with human preferences	Increase inference performance
Expertise	High	Low	Medium	Medium-High	Medium

Summary: how to train your ChatGPT

every ~year

Stage 1: Pretraining

- 1. Download ~10TB of text.
- 2. Get a cluster of ~6,000 GPUs.
- 3. Compress the text into a neural network, pay ~\$2M, wait ~12 days.
- 4. Obtain base model.

Stage 2: Finetuning

- 1. Write labeling instructions
- 2. Hire people (or use scale.ai!), collect 100K high quality ideal Q&A responses, and/or comparisons.
- 3. Finetune base model on this data, wait ~1 day.
- 4. Obtain assistant model.
- 5. Run a lot of evaluations.
- 6. Deploy.
- 7. Monitor, collect misbehaviors, go to step 1.

every ~week