浙江工业大学高等数学(上)期中考试试卷 A12

匹

姓名: ____

五

学号:

班级: ____

Ξ

一、试解下列各题(每小题4分): 1. 当 $x \to \infty$ 时, $y = \frac{x^2 - 1}{x^2 + 3} \to 1$,则 $X = ____$ 时,使当|x| > X时,有|y - 1| < 0.01。 2. $\forall y = \frac{x^2 + 1}{\sqrt{x}}$, $\forall y' = \underline{}$ 3. 设 y = y(x) 由方程 $x \sin y + ye^x = 0$ 所确定,则 y'(0) =______。 5. 质点沿曲线 y = f(x)运动,曲线在点M(x, y)处的切线斜率为 $\frac{1}{2}$,在点M处质点的 横坐标以 5 (单位/秒)的速率增加,则在点M 处质点的纵坐标的变化速率是_____ 二、试解下列各题(每小题4分): 1. 设 $y = \left| \frac{x^2 - 1}{x - 1} \right|$, 则极限 $\lim_{x \to 1^+} y$ 及 $\lim_{x \to 1^-} y$ () A) 存在且相等: C) 都不存在: 2. 设 f(x) 在 x = 0 处连续,且当 $x \to 0$ 时 f(x) + 2 与 $x + \sin x$ 为等价无穷小,则(A) f'(0)不存在; B) f'(0)=1; D) f'(0) = 2; C) f'(0) = 0; 3. 设 $f'(x_0)$ 存在,则 $\lim_{h\to 0} \frac{f(x_0) - f(x_0 - h)}{h} = ($) A) $f'(x_0)$; B) $-f'(-x_0)$; C) $f'(-x_0)$; D) $-f'(x_0)$; 4. 过点M(2,0)所引曲线 $y=3-x^2$ 的切线中有一条的方程是(A) y = -4(x-2); B) 2x + y = 4; C) y = 2x - 4; D) y = -(x-2): 5. 设 f(x) 在含有 x_0 的区间 (a,b) 连续, $f(x_0) = 0$ 且 $\lim_{x \to x_0} \frac{f(x)}{(x-x_0)^{2/3}} = k < 0$,则必有 () B) $f(x_0)$ 是 f(x) 的极大值; A) $f(x_0)$ 是 f(x) 的极小值; C) f(x) 在 $x = x_0$ 的邻域内单调增加; D) f(x) 在 $x = x_0$ 的邻域内单调减少;

三、试解下列各题 (每小题 6 分):

2. 求极限
$$\lim_{x\to 0} \frac{e^{\sin x} - e^x}{x^3}$$

3. 已知
$$f(x) = \frac{ax^3 + bx^2 + cx + d}{x^2 + x - 2}$$
, 求常数 a,b,c,d 使 $\lim_{x \to \infty} f(x) = 1$, $\lim_{x \to 1} f(x) = 0$.

四、(8分) 设函数
$$f(x) = \begin{cases} \cos \omega x & x < 0 \\ 2x^2 + 1 & x \ge 0 \end{cases}$$
, 讨论 $f(x)$ 在 $x = 0$ 处的二阶可导性。

五、试解下列各题 (每小题 6 分):

1. 设
$$y = f(1-\cos x)$$
, $f''(x)$ 存在,求: $\frac{d^2y}{dx^2}$

3. 证明不等式:
$$\sqrt{1+x} > 1 + \frac{x}{2} - \frac{x^2}{8}$$
 $(x > 0)$

六、(10 分) 在第一象限部分内的椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 上求一点,使在该点的切线与两坐标轴 所围的面积最小。

七、 $(6 \, \text{分})$ 下列陈述中,哪些是对的,哪些是错的? 如果是对的,说明理由; 如果是错的,试给出一个反例。

- (1) 如果 $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} g(x)$ 不存在,那么 $\lim_{x \to x_0} [f(x) + g(x)]$ 不存在;
- (2) 如果 $\lim_{x \to x_0} f(x)$ 和 $\lim_{x \to x_0} g(x)$ 都不存在,那么 $\lim_{x \to x_0} [f(x) + g(x)]$ 不存在;
- (3) 如果 $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} g(x)$ 不存在,那么 $\lim_{x \to x_0} f(x)g(x)$ 不存在。