Differentially Private Aggregation of Distributed Time-series with Transformation and Encryption

Part 3 — Differentially Private Aggregation

presenter: Le Chen

Nanyang Technological University

lechen0213@gmail.com

October 20, 2013

Outline

Introduction

Introduction

Basic Ideas

The Proposed Protocol

Conclusion & Discussion

Reference

Cynthia Dwork.

Differential Privacy.

Invited talk at ICALP, Venice, Italy, July 10-14, 2006. Automata, Languages and Programming, Lecture Notes in Computer Science Volume 4052, 2006, pp 1-12.

Wikipedia.

<http:

//en.wikipedia.org/wiki/Differential_privacy>

Elaine Shi, T-H. Hubert Chan, Eleanor Rieffel, Richard Chow and Dawn Song.

Privacy-Preserving Aggregation of Time-Series Data. In Network and Distributed System Security Symposium (NDSS), 2011.

Reference

T-H. Hubert Chan, Elaine Shi, and Dawn Song *Privacy-Preserving Stream Aggregation with Fault Tolerance*. 16th International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2, 2012. Financial Cryptography and Data Security, Lecture Notes in Computer Science Volume 7397, 2012, pp 200-214.

Vibhor Rastogi, Suman Nath

Differentially Private Aggregation of Distributed Time-series with Transformation and Encryption

Differentially Private Aggregation of Distributed Time-series with Transformation and Encryption.

ACM SIGMOD 2010, New York, NY. Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pages 735-746.

Motivation of Aggregation

Figure 1: System Model (Users with data I_1, \ldots, I_U Aggregator issues recurring query $\mathbf{Q} = \mathbf{Q}_1, \ldots, \mathbf{Q}_n$ No trusted server has $I = I_1 \cup I_2 \ldots \cup I_U$ to evaluate $\mathbf{Q}(I)$)

System Model

- $I = I_1 \cup I_2 \cdots \cup I_{II}$
- ▶ *nbrs(I)*: the data obtained from adding/removing one user's data from 1.
- $Q = \{Q_1, Q_2, \cdots Q_n\}$
- $Q(I) = \{Q_1(I), Q_2(I), \cdots Q_n(I)\}$

Differential Privacy

▶ For all I, and $I' \in nbrs(I)$

$$Pr[A(I)] = x \le e^{\epsilon} Pr[A(I') = x]$$

• Sensitivity: $\Delta(Q) = \max |Q(I) - Q(I')|$

Differentially Private Aggregation of Distributed Time-series with Transformation and Encryption

▶ Laplace noise: $LAP(\lambda)$

Laplace Perturbation Algorithm

Basic Ideas

- Laplace Perturbation Algorithm (LPA): $LPA(Q, \lambda)$ is ϵ -differentially private for $\lambda = \Delta(Q)/\epsilon$
- Error: $error(LPA) = \Delta(Q)/\epsilon$

Distributed LPA

- Let x_u be the value of user u, the aggregate-sum query $Q(I) = \sum_{u=1}^{U} x_u$.
- ▶ Perturb: each user u adds a share of noise, n_u , to his private value x_u .
- ▶ To keep the estimation error small, the noise shares are chosen such that $\sum_{u=1}^{U} n_u$ is sufficient for differential privacy, but n_u alone is not sufficient: thus the value $x_u + n_u$ can not directly be sent to the aggregator.

Basic Distributed Protocol

Figure 2: Basic Distributed Protocol (homomorphic property exploited to aggregate users' encryption & threshold property to combine users' decryption shares)

Distributed Differential Privacy

Challenges

- ► The noise shares have to be generated in a way so that their sum is sufficient for differential privacy.
- ➤ The aggregator can be malicious: the aggregator can cheat and request the decryption of wrong values, for instance, the encrypted private value of a single user, in which case the users will be inadvertently decrypting the private value of that user.

Basics: Encryption Scheme

Paillier Encryption

▶ Parameters: private key λ , public key N, g, g^{λ} .

- Encryption: $c = g^t r^N$
- ▶ Decryption: let L(u) = (u-1)/N, $Dec(c) = \frac{L(c^{\lambda} \mod N^2)}{L(g^{\lambda} \mod N^2)}$.

Basics: Encryption Scheme

- ▶ Distributed decryption: Suppose the private key λ is shared by U users as $\lambda = \sum_{u} \lambda_{u}$ where λ_{u} is the private key for user u.
- Each user u computes his decryption share $c_u = c^{\lambda_u}$.
- ▶ The decryption shares are combined as $c' = \prod_{u=1}^{U} c_u$.
- Finally the decryption $t = \frac{L(c' \mod N^2)}{L(g^{\lambda} \mod N^2)}$ is computed.

Protocol for Computing Exact Sum

- ▶ Encrypt-Sum (x_u, r_u) : each user u encrypts his private value, x_u , added to a randomly generated r_u . Note that r_u is known only to user u.
- ▶ The aggregator obtains all the encryptions and multiples them to compute c. Due to the homomorphic properties of the encryption, the obtained c is an encryption of $\sum_{u=1}^{U} (x_u + r_u) = Q + \sum_{u=1}^{U} r_u.$
- ▶ Modified distributed decryption: Decrypt-Sum (c, r_u) .

Protocol for Computing Exact Sum

$Decrypt-Sum(c, r_u)$

- ightharpoonup The aggregator sends c to each user u for decryption.
- User u computes decryption share $c'_u = c^{\lambda_u} g^{-r_u \lambda}$.
- The aggregator collects c_u' from each user, combines them to get $c' = \prod_{u=1}^U c_u'$, and computes the final decryption $Q = \frac{L(c' \mod N^2)}{L(g^{\lambda} \mod N^2)}$.
- ► Except for $\sum_{u=1}^{U} x_u$, no other linear combinations can be computed.

Protocol for Computing Noisy Sum

- lacktriangle Remember that LPA requires us to compute $ilde{Q}=Q+Lap(\lambda)$
- Let $Y_i \sim N(0,\lambda)$ for $i \in \{1,2,3,4\}$ be four Gaussian random variables. Then $Z = Y_1^2 + Y_2^2 Y_3^2 Y_4^2$ is a $Lap(2\lambda^2)$ random variable.

Encrypt Noisy Sum

noisy sum.jpg

0.00

The Proposed Protocol

Algorithm 5.4 Encrypt-Noisy-Sum (x_u, r_u)

- 1: User u chooses five random numbers $r_u^1, r_u^2, \ldots, r_u^5$ from \mathbb{Z}_m and computes $r_u = r_u^1 + r_u^2 r_u^3 r_u^4 + r_u^5$.
- 2: User u generates four $N(0,\sqrt{2\lambda}/U)$ random variables y_u^1,\ldots,y_u^4 .
- 3: Let c_u^j =Encrypt-Sum-Squared (y_u^j, r_u^j) for $j \in \{1, 2, 3, 4\}$.
- 4: Let $c^5 = \text{Encrypt-Sum}(x_u, r_u^5)$
- 5: Aggregator computes $c = \frac{c^1 c^2 c^5}{c^3 c^4}$.

Encrypt Sum Squared

sum squared.jpg

Algorithm 5.3 Encrypt-Sum-Squared (y_u, r_u) Protocol

- 1: User u computes $c_u = Enc(y_u + a_u + b_u)$ and sends it to the aggregator.
- 2: The aggregator computes $c = \prod_{u=1}^{U} c_u$ and sends it to each user u.
- 3: Each user u generates a random $r_u \in \mathbb{Z}_m$, computes $c_u = c^{y_u a_u + b_u} Enc(r_u)$.
- 4: The aggregator collects c_u from each user and computes $c' = (\prod_{u=1}^{U} c_u) Enc(a^2)$

where $a = \sum_{u} a_{u}$, $Enc(a^{2})$ is computed and made public(How?), and $\sum_{u} b_{u} = 0$.

Theorem

THEOREM 5.2 (PRIVACY). Let c = Encrypt-Noisy-Sum (x_u, r_u) and $\tilde{Q} = decrypt$ -sum (c, r_u) . If there are at least U/2 honest users, then $\tilde{Q} = Q + Lap(\lambda) + Extra$ -Noise, where $Lap(\lambda)$ is the noise generated by honest users and the Extra-Noise is that generated by malicious users. Thus for $\lambda = \Delta(Q)/\epsilon$, ϵ -differential privacy is guaranteed independent of what the malicious users and aggregator choose to do.

THEOREM 5.3 (UTILITY). Let c = Encrypt-Noisy-Sum (x_u, r_u) and $\tilde{Q} = decrypt$ -sum (c, r_u) . If there are no malicious users, then $\tilde{Q} = Q + Lap(2\lambda)$. Finally, in presence of l malicious users that are all liars and no breakers, \tilde{Q} can deviate from $Q + Lap(2\lambda)$ by at most $l \times \Delta(Q)$.

Conclusion & Discussion

- ▶ We introduced an aggregation protocol supports distributed differential privacy and distributed decryption.
- ▶ The distributed algorithms need interaction.

- In the decryption of exact sum Decrypt-Sum, can we change r_u to $r_u n_u$ such that a noise is left in the sum?
- ▶ In the extension part, the paper indicates that it can support 'fault tolerant' with threshold decryption. However, will it cause privacy problems?