Mustaqil ishlash uchun variantlar:

1-variant

Takrorlash operatorining uchta koʻrinishining xar biridan foydalanib, F= 10! xisoblansin.

2-variant

Quyidagini xisoblash dasturini tuzing:

$$p = (1 - \frac{1}{2^{2}})(1 - \frac{1}{3^{2}})...(1 - \frac{1}{3^{2}})$$

3-variant

Quyidagini xisoblash dasturini tuzing:

$$y = cos(x) + cos(x^2) + cos(x^3) + ... + cos(x^{30});$$

4-variant

Quyidagini xisoblash dasturini tuzing:

$$y = 1! + 2! + 3! + ... + n!, n > 1.$$

5-variant

Berilgan 10 ta xaqiqiy sonlarning eng kattasi va eng kichigi orasidagi ayirmani topadigan dastur tuzilsin.

6-variant

Quyidagilarni xisoblash dasturini tuzing:

$$y = (2n-1)! = 1 * 3 * 5 * ... * (2n-1), n > 0;$$

7-variant

Xar xil natural sonlardan tashkil topgan ketma-ketlik eng kichik elementining tartib nomerini aniqlang.

8-variant

Quyidagini xisoblash dasturini tuzing:

$$y = \sin 1 + \sin 1.1 + \sin 1.2 + ... + \sin 2.$$

9-variant

Uch xilssiklik operatorlarni ishlatib, n=(a+b) ! ni hisoblash uchun dasturlar tuzilsin.

10-variant

 $S = \sum_{\kappa=1}^{7} \sum_{n=1}^{5} Cos^{2} \kappa n$ qiymatini topish uchun uch xil takrorlash operatorlari yordamida dastur tuzing.

11-variant

 $P = \sum_{k=1}^{5} \prod_{i=1}^{10} \sqrt{b+i}$ qiymatini topish uchun uch xil takrorlash operatorlari yordamida dastur tuzing.

12-variant

Quyidagi misollarga dastur tuzing:

$$z = \frac{a^8 + tg(ax + b)}{\log_2(ax^2 + b)}$$

$$p = \sin^4(ax + x^2) + e^{3x}$$
 bu yerda a=1.2, v=3.2, $x \in [1;4] \Delta x = 0.2$

13-variant

Quyidagi misollarga dastur tuzing:

$$z = \begin{cases} a^{3}x + \cos(x+1)^{2} & x > 2\\ e^{x+1} - \sin^{2}x & 1 \le x \le 2\\ \log_{3} x - 2^{\sin^{2}x} & x < 1 \end{cases}$$
 bu yerda $a=4$; $x \in [1;4] \Delta x = 0,2$

14-variant

Quyidagi misollarga dastur tuzing:

$$z = \begin{cases} ax^{tgx} + \log_4^5(x+1) & x > 2\\ a^{x+1} & 1 \le x \le 2\\ x\sin^7 x - 2|\cos x| & x < 1 \end{cases}$$
 bu yerda $a = 1.2$ $x \in [0;4] \Delta x = 0,2$

15-variant

2

Quyidagi misollarga dastur tuzing:

$$z = \begin{cases} a^{6} \sqrt[4]{x} \lg x & x > 2\\ 3^{ax^{3}+1} & 1 \le x \le 2\\ x^{4} - 2\sqrt[4]{x^{5}} & x < 1 \end{cases}$$
 bu yerda $a = 1.2$ $x \in [0;3] \Delta x = 0,1$

16-variant

Quyidagi misollarga dastur tuzing:

$$z = \begin{cases} \sqrt[3]{a} \cdot x + 1 & x > 2 \\ 5^{x+1} & 0 \le x \le 2 \\ (x+2)^x - 2 & x < 0 \end{cases}$$
 bu yerda $x \in [3;7] \Delta x = 0,3$

17-variant

Quyidagi misollarga dastur tuzing:

$$z = \begin{cases} \sqrt[3]{a} \cdot 8^x + 1 & x > 2 \\ e^{x+1} & 0 \le x \le 2 \\ \lg x + \sqrt{2} & x < 0 \end{cases}$$
 bu yerda $a = 2.2$ $x \in [4;8] \Delta x = 0,2$

18-variant

Quyidagi misollarga dastur tuzing:

$$z = \frac{e^8 + \cos^4(ax + b)}{\lg(ax^2 + b)}$$

$$p = \ln^4(ax + x^2) + e^{3x}$$
bu yerda a=1.2, b=3.2, $x \in [1;4] \Delta x = 0.2$

19-variant

.Quyidagi misollarga dastur tuzing:

$$z = \begin{cases} a\sqrt[5]{x} + arctg^{2}x & x > 4\\ \sqrt{x^{3} - 2} & x < 4 \end{cases}$$
 bu yerda $a = 1.2$ $x \in [2;6] \Delta x = 0,3$

20-variant

Quyidagi misollarga dastur tuzing:

$$z = \begin{cases} \lg(ax^{\sin x}) + tg^{2}x & x > 5\\ a^{x+1} & 1 \le x \le 5\\ x^{2} - 2\cos x^{4} & x < 1 \end{cases}$$

bu yerda
$$a = 1.2$$
 $x \in [1,3]$ $\Delta x = 0.1$