

Neural Networks

Fully connected layers

neurons

Neural Networks

Fully connected layers

• neurons compute $\max\{0, \sum_{j} w_{j} a_{i,j}\}$

Examples

- drop out
- drop connect
- stochastic binarization
- stochastic gradient descent
- fixed pseudo-random matrices for direct feedback alignment
- · ...

Observations

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others
 - much more energy efficient than a GPU

Observations

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others
 - much more energy efficient than a GPU
- artificial neural networks
 - rigid layer structure
 - expensive to scale in depth
 - partially trained fully connected

Observations

- the brain
 - about 10¹¹ nerve cells with to up to 10⁴ connections to others
 - much more energy efficient than a GPU
- artificial neural networks
 - rigid layer structure
 - expensive to scale in depth
 - partially trained fully connected
- goal: explore algorithms linear in time and space

Guaranteeing coverage of neural units

- so far: dropout neuron if threshold $t > \xi$
 - ξ by linear feedback register generator (for example)

Guaranteeing coverage of neural units

- so far: dropout neuron if threshold $t > \xi$
 - ξ by linear feedback register generator (for example)
- now: assign neuron to partition $p = |\xi \cdot P|$ out of P
 - less random number generator calls
 - all neurons guaranteed to be considered

Guaranteeing coverage of neural units

- so far: dropout neuron if threshold $t > \xi$
 - ξ by linear feedback register generator (for example)
- now: assign neuron to partition $p = \lfloor \xi \cdot P \rfloor$ out of P
 - less random number generator calls
 - all neurons guaranteed to be considered

LeNet on MNIST	Average of $t = 1/2$ to $1/9$ dropout	Average of $P = 2$ to 9 partitions
Mean accuracy	0.6062	0.6057
StdDev accuracy	0.0106	0.009

Training accuracy with LeNet on MNIST

Training accuracy with LeNet on MNIST

Stochastic evaluation of scalar product

discrete density approximation of the weights

Stochastic evaluation of scalar product

discrete density approximation of the weights

Stochastic evaluation of scalar product

discrete density approximation of the weights

- remember to flip sign accordingly

Stochastic evaluation of scalar product

discrete density approximation of the weights

- remember to flip sign accordingly
- transform jittered equidistant samples using cumulative distribution function of absolute value of weights

Stochastic evaluation of scalar product

• partition of unit interval by sums $P_k := \sum_{j=1}^k |w_j|$ of normalized absolute weights

$$0 = P_0 < P_1 < \cdots < P_m = 1$$

Stochastic evaluation of scalar product

• partition of unit interval by sums $P_k := \sum_{j=1}^k |w_j|$ of normalized absolute weights

$$0 = P_0 < P_1 < \cdots < P_m = 1$$

- using a uniform random variable $\xi \in [0,1)$ we find

select neuron
$$i \Leftrightarrow P_{i-1} \le \xi < P_i$$
 satisfying $Prob(\{P_{i-1} \le \xi < P_i\}) = |w_i|$

Stochastic evaluation of scalar product

• partition of unit interval by sums $P_k := \sum_{i=1}^k |w_i|$ of normalized absolute weights

$$0 = P_0 < P_1 < \cdots < P_m = 1$$

- using a uniform random variable $\xi \in [0,1)$ we find

select neuron
$$i \Leftrightarrow P_{i-1} \le \xi < P_i$$
 satisfying $Prob(\{P_{i-1} \le \xi < P_i\}) = |w_i|$

- transform jittered equidistant samples using cumulative distribution function of absolute value of weights

Stochastic evaluation of scalar product

• partition of unit interval by sums $P_k := \sum_{j=1}^k |w_j|$ of normalized absolute weights

$$0 = P_0 < P_1 < \cdots < P_m = 1$$

- using a uniform random variable $\xi \in [0,1)$ we find

select neuron
$$i \Leftrightarrow P_{i-1} \le \xi < P_i$$
 satisfying Prob $(\{P_{i-1} \le \xi < P_i\}) = |w_i|$

- transform jittered equidistant samples using cumulative distribution function of absolute value of weights
- in fact derivation of quantization to weights in $\{-1,0,+1\}$
 - integer weights if a neuron referenced more than once
 - explains why ternary and binary did not work in some articles
 - relation to drop connect and drop out, too

Test accuracy for two layer ReLU feedforward network on MNIST

able to achieve 97% of accuracy of model by sampling most important 12% of weights!

Application to convolutional layers

- sample from distribution of filter (for example, 128x5x5 = 3200)
 - less redundant than fully connected layers
- LeNet Architecture on CIFAR-10, best accuracy is 0.6912
- able to get 88% of accuracy of full model at 50% sampled

Test accuracy for LeNet on CIFAR-10

Number n of neural units

for L fully connected layers

$$n = \sum_{l=1}^{L} n_l$$

where n_l is the number of neurons in layer l

Number *n* of neural units

for L fully connected layers

$$n = \sum_{I=1}^{L} n_I$$

where n_l is the number of neurons in layer l

number of weights

$$n_{w} = \sum_{l=1}^{L} n_{l-1} \cdot n_{l}$$

Number n of neural units

for L fully connected layers

$$n = \sum_{l=1}^{L} n_l$$

where n_l is the number of neurons in layer l

number of weights

$$n_{w} = \sum_{l=1}^{L} n_{l-1} \cdot n_{l}$$

- choose number of weights per neuron such that n proportional to n_w
 - for example, constant number n_w of weights per neuron

Results

Test accuracy for AlexNet on CIFAR-10

Test accuracy for AlexNet on ILSVRC12

Sampling paths through networks

- complexity bounded by number of paths times depth
- strong indication of relation to Markov chains
- importance sampling by weights

Sampling paths through networks

sparse from scratch

Sampling paths through networks

sparse from scratch

Sampling paths through networks

sparse from scratch

Sampling paths through networks

sparse from scratch

Sampling paths through networks

sparse from scratch

Sampling paths through networks

sparse from scratch

Test accuracy for 4 layer feedforward network (784/300/300/10)

Summary

- dropout partitions reduce variance
 - using much less random numbers

Summary

- dropout partitions reduce variance
 - using much less random numbers
- simulating discrete densities explains {-1,0,1} and integer weights
 - compression and quantization without retraining

Summary

- dropout partitions reduce variance
 - using much less random numbers
- simulating discrete densities explains {-1,0,1} and integer weights
 - compression and quantization without retraining
- neural networks with linear complexity for both inference and training
 - sparse from scratch
 - sampling paths through neural networks instead of drop connect and drop out