WHAT IS CLAIMED IS:

1	1. An apparatus comprising:				
2	walls enclosing a process chamber;				
3	a wafer susceptor positioned within the chamber;				
4	a first exhaust conduit in fluid communication with the chamber; and				
5	a processing gas source in fluid communication with the chamber through a				
6	gas distribution showerhead, the gas distribution showerhead comprising;				
7	a first channel in fluid communication with the processing gas source				
8	and with apertures distributed over a lower surface of the showerhead; and				
9	a second channel separate from the first channel and in fluid				
10	communication with a second exhaust conduit and with exhaust apertures				
11	distributed over the lower surface of the showerhead.				
1	2. The apparatus of claim 1 wherein the apertures define a first area and				
2	the exhaust apertures define a second area.				
1	3. The apparatus of claim 2 wherein a ratio of the first area to the second				
2	area is substantially constant as a function of radial distance from the center of the gas				
3	distribution showerhead.				
1	4. The apparatus of claim 2 wherein a ratio of the first area to the second				
2	area varies as a function of radial distance from the center of the gas distribution showerhead.				
1	5. The apparatus of claim 4 wherein the ratio of the first area to the				
2	second area varies linearly as a function of radial distance from the center of the gas				
3	distribution showerhead.				
1	6. The apparatus of claim 4 wherein the ratio of the first area to the				
2	second area varies nonlinearly as a function of radial distance from the center of the gas				
3	distribution showerhead.				
1	7. The apparatus of claim 4 wherein the ratio of the first area to the				
2	second area increases as a function of radial distance from the center of the gas distribution				
3	showerhead.				

1		8.	The apparatus of claim 4 wherein the ratio of the first area to the		
2	second area de		as a function of radial distance from the center of the gas distribution		
3	showerhead.	Cicases	as a function of factor distance from the center of the gas distribution		
3	snowernead.				
1		9.	The apparatus of claim 1 wherein the first exhaust conduit and the		
2	second exhaus	t condu	it are in fluid communication with a common foreline.		
1		10.	The apparatus of claim 9 wherein the plurality of second channels are		
2	in fluid communication with the foreline through a first valve and the second exhaust conduit				
3	is in fluid com	munica	tion with the foreline through a second valve.		
1	•	11.	The apparatus of claim 1 wherein the first exhaust conduit and the		
2	second exhaus		it are in communication with a common vacuum pump.		
2	Second exhaus	t condu	it are in communication with a common vacuum pump.		
1		12.	The apparatus of claim 1 wherein the first exhaust conduit and the		
2	second exhaus	t condu	it are in communication with separate vacuum pumps.		
1		13.	A method of processing a semiconductor workpiece, the method		
2	comprising:				
3		flowing	g a process gas to a semiconductor workpiece through a first plurality of		
4	orifices positioned in a gas distribution faceplate; and				
5		removi	ng gas from over the semiconductor workpiece through a chamber		
6	exhaust port and a second plurality of orifices positioned in the gas distribution faceplate.				
	_				
1		14.	The method of claim 13 further comprising removing the gas through		
2	only the chamb	ber exh	aust port prior to flowing the process gas.		
1		15.	The method of claim 13 further comprising removing the gas through		
1	41 1 1				
2	the chamber ex	xnaust p	port and the second plurality of orifices prior to flowing the process gas.		
1		16.	The method of claim 13 further comprising initially removing gas		
2	through only the	he chan	aber exhaust port.		
	5 ,		•		
1		17.	The method of claim 13 further comprising initially removing gas		
2	through only t	he seco	nd plurality of orifices.		

1	18. The method of claim 13 wherein the processing chamber is evacuated				
2	to a pressure below 20 Torr.				
1 2	19. The method of claim 18 further comprising generating a plasma in the processing chamber prior to flowing the process gas.				
1	20. The method of claim 13 further comprising adjusting a rate of remova				
2	of gas through the chamber exhaust port during processing.				
1	21. The method of claim 13 further comprising adjusting a rate of remova				
2	of gas through the second plurality of orifices is adjusted during processing.				
1	22. A method of processing a semiconductor wafer in a chamber				
2	comprising:				
3	inserting a semiconductor wafer into the chamber;				
4	evacuating the chamber through a first exhaust port;				
5	introducing at least one process gas through a first set of orifices located on a				
6	surface of a showerhead;				
7	removing gas through the first exhaust port; and				
8	removing gas through a plurality of orifices positioned on the surface of the				
9	showerhead.				
1	23. The method of claim 22 wherein a larger volume of gas is removed				
2	through the first exhaust port than is removed through the plurality of orifices.				
1	24. The method of claim 22 wherein the chamber is evacuated to a				
2	pressure below 20 Torr.				
1	25. The method of claim 24 wherein a plasma is generated in the chambe				
2	prior to the step of introducing the at least one process gas.				
1	26. The method of claim 22 wherein removal of the gas through the first				
2	exhaust port and through the plurality of orifices occurs substantially simultaneously.				
1	27. A method of controlling uniformity of a property of a film deposited				
2	on a semiconductor wafer, the method comprising:				
2	nocitioning a wafer in a processing chamber				

4	introducing gases to the wafer through a first plurality of orifices po	sitioned on				
5	a faceplate;					
6	removing the gases through a second plurality of orifices positioned	i on the				
7	faceplate; and					
8	simultaneously removing the gases across a radial exhaust path.					
1	28. The method of claim 27 further comprising evacuating the c	hamber				
2	across the radial exhaust path only, prior to flowing the gases.					
1	29. The method of claim 27 further comprising evacuating the c	hamber				
2	across the radial exhaust path and the second plurality of orifices prior to flowing the gases.					
1	30. The method of claim 27 further comprising initially removing	ng the				
2	gases through only the radial exhaust path.					
1	31. The method of claim 27 further comprising initially removing	ng the				
2	gases through only the second plurality of orifices.					
1	32. The method of claim 27 wherein the chamber is evacuated to	оа				
2	pressure below about 20 Torr.					
1	33. The method of claim 32 further comprising generating a pla	sma in the				
2	chamber.	•				
1	34. The method of claim 27 wherein a rate of removing gas acre	oss the				
2	radial exhaust path is adjusted during processing.					
1	35. The method of claim 27 wherein a rate of removing gas thro	ough the				
2	second plurality of orifices is adjusted during processing.					