数学科学学院 2019 级实变函数期末考试

2021年6月24日

1. $(15 \, \%)$ 如果直线上的集合 A 的任意两点间距离大于 1,证明 A 是至多可数集.

2. (15 分) 设 $\{E_n\}_1^{\infty}$ 是 **R** 中的一列集合. 如果

$$\sum_{n=1}^{\infty} m^*(E_n) < \infty,$$

则有

$$m(\overline{\lim_{n\to\infty}} E_n) = 0.$$

3. (15 分) 如果 $A,B,C\subseteq \mathbf{R}$ 满足 $m^*(A\bigtriangleup B)=m^*(B\bigtriangleup C)=0$,则有 $m^*(A\bigtriangleup C)=0$.

这里,记号 $A \triangle C$ 表示 A 与 B 的对称差.

4. (15 分) 设函数列 f_n 在可测集 E 上依测度收敛于 f. 证明: {| f_n |} 在 E 上依测度收敛于 | f |.

5. (15 分)设 f 是 [a, b] 上的可测函数. 求证: f' 是 [a, b] 上的可测函数.

6. (15 分) 设 $m(E) < \infty$, f 是 E 上的可积函数, $\{E_n\}$ 是一列单调递增的可测集且

$$m(\lim_{n\to\infty} E_n) = E.$$

证明:

$$\lim_{n\to\infty}\int_{E_n}fdm=\int_{E}fdm.$$

7. $(10\ eta)$ 设 f 是 $[0,\ 1]$ 上的可测函数而且严格取值大于零, $\{E_n\}_1^\infty$ 是 $[0,\ 1]$ 中的一列可测集. 如果

$$\underline{\lim_{n \to \infty}} \int_E f dm = 0,$$

则有

$$m(\underline{\lim}_{n\to\infty} E_n) = 0.$$