COMP3211/COMP9211 Week 9-2

MORE HARDWARE DESIGNS ON PARALLEL PROCESSING

https://tutorcs.com

Lecturer: Hui Annie Guo WeChat: cstutorcs

h.guo@unsw.edu.au

K17-501F

COMP3211/COMP9211 Week 9-2 **2**

Lecture overview

- Topics
 - Deep pipeline
 - · VLIW architecturenment Project Exam Help
 - Superscalar architecture

https://tutorcs.com

- Suggested reading
 - H&P Chapter 4.10. 4.11

Improving performance

- Performance can be improved by exploiting parallelism at different design levels
- Data level parallelism
 - · Widening the significant length of Elemathing
 - 8 bit \rightarrow 16 bit \rightarrow 32 bit \rightarrow 64 bit \rightarrow ...
 - Vector executionttps://tutorcs.com
- Single instruction on multiple data
 Instruction level parallelism
- - Thread level
 - System level

Deep pipeline

 The depth of the pipeline is often increased to achieve higher clock frequencies.

Deep pipeline (cont.)

- Limitations
 - Stage delay cannot be arbitrarily reduced
 - CPI may increase due to
 - pipeline flussignment Project Exam Help

CPU with parallel processing structure

 Multiple execution components that can perform simultaneously.

 The operation issue block is responsible for supplying instructions to each execution component.

CPU with parallel processing structure (cont.)

- The issue block can have different types of implementations
 - Software VLIW architecture
 - · Hardware Assignment Project Exam Help

https://tutorcs.com

Example-VLIW

$$\sum_{i=1}^{n} (a_i x^i + b_i)$$

Challenges in multiple issue machines

- More instructions executing in parallel
 - May create more data hazards
 - Forwarding in the pipelined datapath becomes hard
 - · Identifying parallen metrucions lisable desp
- More aggressive scheduling required

Example

- Convert the following sequence of instructions into parallel processing
 - Data dependency should be maintained Assignment Project Exam Help

Example (cont.)

 After register renaming, a single sequence of instructions can be transformed into two parallel sequences. Instructions from different sequences can be executed in parallel Project Exam Help

Dynamic scheduling

- During execution, the hardware issue component in the processor schedules instructions to different parallel execution units
- Basic idea: Assignment Project Exam Help
 - Tracking instruction dependencies to allow instruction execution as soon as the operands are available

 WeChat: cstutorcs
 - Renaming registers to avoid WAR and WAW hazards

Three steps in dynamic scheduling

- Issue
- Execute Assignment Project Exam Help
- Write result

https://tutorcs.com

Issue

- Get next instruction from instruction queue
- Issue the instruction and related available operands from the register file to a matching reservation station entry if it is available; otherwise stallthe/instruction
 - in order issue WeChat: cstutorcs

Execute

- Execute ready instructions in the reservation stations
- Monitor the common data bus (CDB) for the Assignment Project Exam Help operands of not-ready instructions
- If no ready in struction for an execution unit, the execution whit is idle courses

Write result

- Results from execution units are sent through CDB (common data bus) to destinations
 - Reservation station
 - · Memory load buffers Project Exam Help
 - Register file https://tutorcs.com
- The write operations to the destination should be controlled to avoid hazards

From instruction unit **Dynamic Scheduling** FP registers \ **Example** Instruction Queue Three steps: ·Issue Execute Assignment Project Exam Help Write Result Operand **Address Unit** buses Store buffers https://tutorcs.com Operand buses WeChat: cstutores 3 Reservation Data stations Address **Memory Unit** FP adder **FP Multiplier**

From instruction unit **Dynamic Scheduling** FP registers \ **Example** Instruction Queue Issue Assignment Project Exam Help Operand **Address Unit** buses Store buffers https://tutorcs.com Operand Load buffers buses **WeC**hat: |cstu|torcs 3 2 Reservation **_**Data stations Address **Memory Unit FP Multiplier** FP adder

From instruction unit **Dynamic Scheduling** FP registers \ **Example** Instruction Queue Issue Assignment Project Exam Help Operand **Address Unit** buses Store buffers https://tutorcs.com Operand buses WeChat:∣cstųtore 2 Reservation Data stations Address **Memory Unit FP Multiplier** FP adder

From instruction unit **Dynamic Scheduling** FP registers **Example** Instruction Queue Issue Assignment Project Exam Help Operand buses Store buffers https://tutores.com Operand buses WeChat: cstutorcs. 2 Reservation _Data stations Address **Memory Unit** FP adder **FP Multiplier**

Structure of reservation station

- A reservation station holds information for an issued instruction
 - Each entry in the reservation table contains a number of fields for an instruction to be executed
 - · Busy: the avalage its name at the roject Exam Help
 - Op: the type of operation to be performed
 - · Vj and Vk: to hold represent the very serior of t
 - Qj and Qk: to hold the location of the instruction generating the required operand
 - A: address for memory access: cstutorcs
 - Each entry has an index to identify an instruction issued.

index	busy	Ор	Vj	Vk	Qj	Qk	Α
-------	------	----	----	----	----	----	---

Example: 34+?

1000 yes add 34 null null 0011 null

State table for register file

Each register in the register file has a state:

```
Field F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 ... F31

Qi https://tutorcs.com
```

WeChat: cstutorcs

Example

```
        Register Status

        Field
        F0
        F1
        F2
        F3
        F4
        F5
        F6
        F7
        F8
        F9
        F10
        F11
        F31

        Qi
        add1
        load2
```

Dynamic scheduling example

- Given the superscalar datapath shown in the next slide, show how the station tables are updated for the following code sequence after the first load has completed and its result has just been sayed, namely
 - Complete the reservation stations and the register state table fointies is sules of rest instructions

```
L.D F6, 34(R2)
L.D F2, 45(R3)
MUL.D F0, F2, F4
SUB.D F8, F2, F6
DIV.D F10, F0, F6
ADD.D F6, F8, F2
```


00m 021m	70 Mil 0211			Status	<i>-</i>		20	
Instruction			issue	execute	write-resu	lt		
L.D	F6, 34(R2)	X	Х	Χ			
L.D	F2, 45(R3)	X	X				
MUL.D	F0, F2,	F4	X					
SUB.D	F8, F2,	F6	X					
DIV.D	F10, F0	, F6	X					
ADD.D	F6, F8,		. X	, D .	(T	TT 1		
		Ass	1gnm	ent Rese j	eato Exam	nslelp		
Name	Busy	Op	Vj	Vk	Qj	Qk	Α	
Load1	no		https	://tutorc	es.com			
Load2	yes	Loa					45+R3	
Add1	yes	SUI	³ WeC	Chat: Fest	utor <mark>lead2</mark> Add1			
Add2	yes	ADI			Add1	Load2		
Add3			_					
Mult1	yes	MU	L	F4	Load2			
Mult2	yes	DIV		F6	Mult1			
				Danie	ton Ctatus			

 Register Status

 Field
 F0
 F1
 F2
 F3
 F4
 F5
 F6
 F7
 F8
 F9
 F10
 F11
 F31

 Qi
 Mult1
 Load2
 Add2
 Add1
 Mult2

COMP3211/C	COMP9211			Week Status	9-2 		
Instruction			issue	execute	write-res	ult	
L.D	F6, 34(R2)	Х	Χ	X	,	
L.D	F2, 45(R3)	X	X	X		
MUL.D	F0, F2,	F4	X				
SUB.D	F8, F2,	F6	X				
DIV.D	F10, F0), F6	X				
ADD.D	F6, F8,	F2	. X			TT 1	
		Ass	signm	ent Rese j	eattoh stat	ions lelp	!
Name	Busy	Op	Vj	Vk	Qj	Qk	Α
Load1	no		https	s://tutorc	cs.com		
Load2	yes	Lo					45+F
1hhA		011	DITT	N1 . F0 .			

		- 1-		•	•	
Load1	no	https://tu	itorcs	.com		
Load2	yes	Load				45+R3
Add1	yes	SUB WeChat	• F &t111	Lead2		
Add2	yes	sub WeChat	. Cstu	Add1	Load2	
Add3						
Mult1	yes	MUL	F4	Load2		
Mult2	yes	DIV	F6	Mult1		

Register Status

Field	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F31
Qi	Mult1	l	Load	2			Add	2	Add	1	Mult	2	

				Status				
Inst	truction	issı	ue e	execute	write-resu	lt		
L.D	F6, 34(R2)	Χ	Х	Х			
L.D	F2, 45(R3)	Χ	X	X		In order	issue, out
MUL.D	F0, F2,	F4	X	X			of order	execution!
SUB.D	F8, F2,	F6	X	X	X			
DIV.D	F10, F0), F6	X					
ADD.D	F6, F8,		X	X	(T	TT 1		
		Assigi	nmer	it Reise jo	zatoh stano	onslel	.p	
Name	Busy	Op	Vj	Vk	Qj	Qk	A	
Load1	no	ht	tps:/	/tutorc	s.com			
Load2	no	Load	1				45+R3	
Add1	no	SUB 📈	/eCh	at: F6st	ito lead2			
Add2	yes	ADD ''		ac. Obt	Add1	(Load2	2)	
Add3		84111		- 4	(100)			
Mult1	yes	MUL		F4	(Load2))		
Mult2	yes	DIV		F6	Mult1			
				Regist	er Status			
Field	F0 F1	F2 F	3 F4	F5 F6	F7 F8	F9 F	10 F11	. F31
Qi	Mult1	Load2)	Ad	d2 Add	1) 1	/lult2	

What will happen for the following code?

			Status	
Inst	ruction	issue	write-result	
L.D	F6, 34(R2)	ment Pro	niect Exam F	Heln X
L.D	F2, 45(R3)	X	ject Exam F	TCI p
L.D	F0, 20(R1)htt	ps://tuto	rcs.com ^X	
BEQ	F0, F2, D1	X		
SUB.D	F8, F4, F6W	eChat: cs	stutoresx	X
DIV.D	F10, F0, F6	X		
ADD.D	F6, F8, F2	X		
D1:		X		

Dynamic execution with speculation

- Four steps
 - Issue
 - Execute
 - Write result Signment Project Exam Help
 - Commit https://tutorcs.com

- Key idea
 - To allow instructions to execute out of order
 - But force them to commit in correct execution order
 - Prevent any irrevocable actions

Reorder Buffer (ROB)

- Reorder Buffer contains four fields
 - Instruction type
 - Branch (has no destination result)
 - · Store (with memory address) ect Exam Help
 - ALU Op
 - Destination https://tutorcs.com
 - Register (for load and ALU operations)
 - Value WeChat: cstutorcs
 - Ready status
 - The instruction has completed execution and the value is ready
- Demonstration of the commit operation is given in the next slides

