装订线

山东建筑大学试卷											
课程名称: 概率论与数理统计 C (A)卷 考试形式: 闭卷											
年级: 2016级 专业: 全校开设本课程专						果程专	<u>业</u> 层次: <u>本科</u>				
题号	_		三						总分		
分数											
一、填空题(每题 3 分,共 24 分) 1、两个随机事件 A 和 B ,设概率 $P(A)=0.6$, $P(B)=0.8$, $P(B \bar{A})=0.8$,则 $P(\bar{B} A)=0.8$.											
2、设随机变量 Y 服从 $(1, 6)$ 上的均匀分布, 求一元二次方程 $x^2 + Yx + 1 = 0$ 无 实根的概率是											
3、设随机变量 Y 的分布函数 $F(y) = A + B \arctan \frac{y}{5}$, $-\infty < y < \infty$, 则参数的 乘积 $AB =$											
# $KAB = $ 4、已知总体 X 服从二项分布 $B(10,0.2)$,设 X_1,X_2,X_3 是总体 X 的简单随机样本,则数学期望 $E(2X_1X_2X_3+5X_3) = $											
5、设随机变量 X 、 Y 独立且均服从正态分布 $N(\mu, \sigma^2)$, 则随机变量 $2X-3Y+1$ 服从的分布是											
6、设两个随机变量 Y 、 Z 的相关系数为 0.5 ,数学期望 $EY = 0$, $EZ = 0$,方差											
$D(Y) = D(Z) = 2$. $\bigcup E[(Y - Z)^2] = $											
7、设随机变量 X 和 Y 数学期望分别是 -2 和 2 ,方差分别是 1 和 4 ,而协方差是 -1 ,则 $P(X+Y \ge 6) \le$											
8、设总	8、设总体 X 服从正态分布 $N(\mu,36)$, 随机抽取 9 个样本,则总体均值 μ 的										
90%的]置信区	间的▷	区间长周	度是		•	(己知	标准正	E态分布函	氢数	
$\Phi(1.645) = 0.95, \Phi(1.285) = 0.9, \Phi(1.96) = 0.975$											

二、单项选择题(每题3分,共21分)

- 1、设两随机事件 A 、 B 独立,且 0 < P(A) < 1, 0 < P(B) < 1.则下列描述错 误的是(
- (A) $P(A|B) = P(A|\overline{B})$;
- (B) $\overline{A}, \overline{B}$ 相互独立;
- (C) $P(A) > 0 \Rightarrow P(B|A) = P(B)$; (D) P(B+A) = P(B) + P(A).
- 2、某品牌充电宝使用寿命在1000小时以上的概率是0.8,求三个充电宝在使 用 1000 小时后, 最多只有一个坏了的概率是(
- (A) $C_3^1 \times 0.2^2 \times 0.8 + 0.2^3$; (B) $C_3^1 \times 0.2 \times 0.8^2 + 0.8^3$;
- (C) $C_2^1 \times 0.2^2 \times 0.2 + 0.8^3$; (D) $C_2^1 \times 0.8^2 \times 0.8 + 0.2^3$.
- 3、对于任意两个随机变量 X 和 Y, 若 E(XY) = E(X)E(Y), 则 (
- (A) X与 Y独立; (B) $D(X-Y) \neq DX + DY$;
- (C) X 与 Y 线性无关; (D) 相关系数 R(X,Y) = -1
- 4、设随机变量 X 和 Y 都服从标准正态分布,则(
- (A) $\frac{X}{Y}$ 服从 t 分布; (B) X^2, Y^2 都服从 χ^2 分布;
- (C) $X^2 + Y^2$ 服从 χ^2 分布; (D) $\frac{X^2}{V^2}$ 服从 F 分布
- 5、设 X_1, X_2, \dots, X_n 是总体X的一个简单随机样本,其样本均值是 \bar{X} ,又 $DX = \sigma^2$, $EX = \mu$, 则下列关于参数估计的说法**错误**的是(
- (A) X_2 不是总体均值 μ 的无偏估计; (B) \bar{X} 是总体均值 μ 的无偏估计量;
- (C) 样本方差是总体方差的无偏估计; (D) 样本方差是 σ^2 的一致估计量 6、设二维随机变量(X,Y)服从二维正态分布 f(x,y),且 X 与 Y 不相关, $f_{v}(x)$, $f_{v}(y)$ 分别表示 X、 Y 的概率密度, $f_{y|x}(y|x)$ 表示 X=x 的条件 下Y的概率密度.则下列描述正确的是().

 - (A) $f_{Y}(y)$ 不是正态分布; (B) $f(x,y) \neq f_{X}(x)f_{Y}(y)$;

 - (C) X + Y 服从正态分布; (D) $f_{Y|X}(y|x) = f_{X}(x)$.
- 7、设总体 X 服从正态分布 $N(\mu, \sigma^2)$, σ 未知, 在均值 $\mu \ge \mu_0$ 的假设检验中 使用的统计量及分布是(

$$(A)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n); \quad (B)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim N(0,1); \quad (C)\frac{\overline{X}-\mu}{S} \sim t(n-1); \quad (D)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1).$$

- 三、计算应用题(共 55 分)
- **1、**(6分)某产品生产企业收到来自三个销售地区的各 10 份、15 份、25 份调查表,其中了解该产品的调查表分别有 3 份、7 份、5 份. 随机地取一个地区的调查表,从中先后抽出两份.
- (1) 求先抽到的一份是了解该产品调查表的概率.
- (2) 若先抽到的一份是不了解该产品的调查表,则它来至哪个地区的可能性大?

2、 (9 分) 设随机变量 X 的概率密度为 $f(x) = Ae^{-|x-1|}$, $-\infty < x < \infty$. 求: (1) 参数 A; (2) X 的分布函数; (3) X 落在区间 (0,1) 内的概率;

- **3、**(12分)已知随机变量 X 的分布律 $P(X = i) = \frac{1}{3}, i = 1, 2, 3$,而Y = 1, 2, 3,而Y = 1, 2, 3,有X = 1, 3, 3,有X =
- (1) 二维随机变量(Z_1,Z_2)的概率分布律; (2) Z_1,Z_2 的边缘分布律; (3) Z_1 的数学期望和方差; (4) Z_1,Z_2 相互独立吗?

装订线

中他

装订线

4、(8分)设随机变量X服从正态分布 $N(0,\sigma^2)$,其概率密度

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}, \quad -\infty < x < +\infty$$

求: (1) 求随机变量函数 Y = |X| 的概率密度; (2) 数学期望 E(|X|);

6、(8分)设随机变量 X 服从正态分布 $N(0,\sigma^2)$, 求:

(1) 参数 σ 的矩估计; (2)参数 σ 的最大似然估计.

5、(12分)设二维随机变量(X,Y)服从单位圆上的均匀分布, 求:(1)边缘密度函数 $f_{vv}(x)$ 和条件密度函数 $f_{vv}(y|x)$:(2)

求: (1) 边缘密度函数 $f_X(x)$ 和条件密度函数 $f_{Y|X}(y|x)$; (2) 数学期望 $E(XY^2)$ 、E(X); (3) (X,Y)落在区域 R:|x| < y < 1内的概率.