士力	丰	
===	<u>'=1='</u>	9

真空中

真空の誘電率 $\varepsilon_0 = 8.854 \times 10^{-12} \, [\mathrm{Fm}^{-1}]$ クーロンの法則 $F=rac{1}{4\piarepsilon_0}rac{m{r}_0-m{r}_1}{m{|m{r}_0-m{r}_1|}^3}Q_0Q_1$ ガウスの法則 $\operatorname{div} oldsymbol{E} = rac{
ho}{arepsilon}$ $\oint_{S} oldsymbol{E} \cdot \mathrm{d} oldsymbol{S} = rac{Q}{arepsilon}$

電界保存 $\operatorname{curl} \mathbf{E} = 0 (\mathbf{B} = \operatorname{const})$ 電界 **E**[NC⁻¹, Vm⁻¹] 電荷密度 $\rho = \lim_{\delta v \to 0} \frac{\delta Q}{\delta v} \left[\mathrm{Cm}^{-3} \right]$ 電荷 $Q = \int_{v} \rho \mathrm{d}v \left[\mathrm{C} \right]$ 電位 $V = -\int_{\infty}^{p} \boldsymbol{E} \cdot d\boldsymbol{S} V \quad \boldsymbol{E} = -\operatorname{grad} V$ ポアソン方程式 $\nabla^2 V = -\frac{\rho}{2}$ 静電容量 C = Q/V [F, CV $^{-1}$]

静磁界

真空中

真空の透磁率 $\mu_0 = 4\pi/10^7 \, [\mathrm{Hm}^{-1}]$ 磁極のクーロンの法則 $oldsymbol{F}=rac{1}{4\pi\mu_0}rac{oldsymbol{r}_0-oldsymbol{r}_1}{oldsymbol{r}_0-oldsymbol{r}_1ig|^3}q_{m0}q_{m1}$ 磁極の定義より $\operatorname{div} oldsymbol{H} = rac{
ho_m}{\mu_0} \quad \oint_S oldsymbol{H} \cdot \mathrm{d} oldsymbol{S} = rac{q_m}{\mu_0}$ 磁束保存 $\operatorname{div} \boldsymbol{B} = 0 \text{(Maxwell4)} \quad \oint \boldsymbol{B} \cdot d\boldsymbol{S} = 0$

真電流がないなら $\operatorname{curl} \boldsymbol{H} = 0(\boldsymbol{J} = 0, \boldsymbol{D} = \operatorname{const})$ 磁界の強さ H $[\mathrm{Am}^{-1}]$

磁束密度 \boldsymbol{B} [T, Wbm⁻²]

ビオ・サバールの法則 $\delta oldsymbol{B} = rac{\mu_0}{4\pi} rac{I \mathrm{d} oldsymbol{s} imes oldsymbol{r}}{r^3}$ アンペールの法則 $\oint_C oldsymbol{B} \cdot \mathrm{d}oldsymbol{s} = \mu_0 I$ $\mathrm{curl}\,oldsymbol{B} = \mu_0 oldsymbol{J}$ ローレンツカ $F = q(E + v \times B)$

誘電体

分極の強さ $P = \rho_0 \delta r \, [\mathrm{Cm}^{-2}]$ 分極電荷の体積密度 $\rho_P = -\operatorname{div} \boldsymbol{P} \left[\operatorname{Cm}^{-3} \right]$ 分極電荷 $Q_P = \int \rho_P dv = -\oint_{\mathcal{C}} \mathbf{P} \cdot d\mathbf{S} [C, FV]$

電束密度 $\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P} [\mathrm{Cm}^{-2}]$ ガウスの法則 $\operatorname{div} \mathbf{D} = \rho(\operatorname{Maxwell3})$ $\oint_{\mathbf{C}} \mathbf{D} \cdot \mathrm{d} \mathbf{S} = Q$

等方性誘電体 $P = \chi E = \chi_S \varepsilon_0 E$ 分極率 χ [C²N⁻¹m⁻²] 比分極率 χ_s [-] $D = \varepsilon E = \varepsilon_0 \varepsilon_s E$ 誘電体の誘電率 $\varepsilon [\mathrm{Fm}^{-1}]$ 比誘電率 $\varepsilon_s [-]$

電界のエネルギー密度 $\frac{1}{2} m{E} \cdot m{D}$

磁性体

磁気モーメントの強さ $m = I\Delta S \, [\overline{\mathrm{Am}^2}]$ 磁化の強さ $M = \Delta m/\Delta v [\mathrm{Am}^{-1}]$ 磁極の強さの体積密度 $ho_m = -\operatorname{div}(\mu_0 \boldsymbol{M}) \, [\mathrm{Wbm}^{-3}]$ 磁極の強さ $q_m = \int_v \rho_m \mathrm{d}v \, [\mathrm{Wb}, \mathrm{Tm}^2]$ 磁界の強さ $oldsymbol{H} = rac{oldsymbol{B}}{\mu_0} - oldsymbol{M} \, [\mathrm{Am}^{-1}]$ 磁気分極 $\boldsymbol{J_m} = \mu_0 \boldsymbol{M} [T]$ $\boldsymbol{B} = \mu_0 \boldsymbol{H} + \boldsymbol{J_m}$ アンペールの法則 $\oint_C m{H} \cdot \mathrm{d} s = I_f$ $\mathrm{curl}\, m{H} = m{J_f}$ 等方性磁性体 $M = \chi H$ 磁化率 $\chi[-]$ $\boldsymbol{B} = \mu \boldsymbol{H} = \mu_s \mu_0 \boldsymbol{H}$

磁性体の透磁率 $\mu \, [\mathrm{Hm}^{-1}]$ 比透磁率 $\mu_s \, [-]$ 磁界のエネルギー密度 $\frac{1}{2}$ $m{H} \cdot m{B}$

定常電流界

電界は保存的 (KVL) $\operatorname{curl} \boldsymbol{E} = 0$ 電流 $I = \frac{\mathrm{d}Q}{\mathrm{d}t} = \int_{S} \boldsymbol{J} \cdot \mathrm{d}\boldsymbol{S} \left[\mathbf{A}, \mathbf{C} \mathbf{s}^{-1} \right]$ 電流連続 $\operatorname{div} \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0 \to \operatorname{div} \boldsymbol{J} = 0 (\operatorname{KCL})$ オームの法則 V = RI $J = \sigma E = \frac{E}{\sigma}$ 抵抗 $R = \frac{\rho l}{S} = \frac{l}{\sigma S} [\Omega, VA^{-1}]$ 導電率 $\sigma \left[\Omega^{-1} \mathbf{m}^{-1}\right]$ 抵抗率 $\rho \left[\Omega \mathbf{m}\right]$ 起電力 (ファラデーの電磁誘導の法則) $e=\oint_C m{E}\cdot\mathrm{d}m{s}=-rac{\partial\Phi}{\partial t}\left[\mathrm{V}
ight]$

磁気回路

真電流 J がないなら $\operatorname{curl} \boldsymbol{H} = 0$ 磁束 $\Phi = \int_{\mathcal{C}} \boldsymbol{B} \cdot d\boldsymbol{S} [Wb, Tm^2]$ 磁束保存 $\operatorname{div} \boldsymbol{B} = 0$ $NI = R_m \Phi$ $\boldsymbol{B} = \mu \boldsymbol{H} = \frac{\boldsymbol{H}}{\cdot \cdot \cdot}$ 磁気抵抗 $R_m = \frac{l}{uS} [A/Wb]$ 透磁率 $\mu \, [\mathrm{Hm}^{-1}]$ 磁気抵抗率 $\nu \, [\mathrm{H}^{-1}\mathrm{m}]$ 起磁力 $NI = \oint_C \boldsymbol{H} \cdot d\boldsymbol{s} [A]$

マックスウェル方程式

ファラデーの電磁誘導の法則 $\operatorname{curl} oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial oldsymbol{\mu}}$ ガウスの法則 $\operatorname{div} \mathbf{D} = \rho$ 一様なら $oldsymbol{D}=arepsilon oldsymbol{E},\, oldsymbol{B}=\mu oldsymbol{H}$

アンペール+変位電流 $\operatorname{curl} \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$ 磁束保存 $\operatorname{div} \boldsymbol{B} = 0$ 一様なら $J = \sigma E$