Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Determine if the set of polynomials $\{-3x^3 - 8x^2, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Standard S3.

$$\begin{bmatrix}
 & \text{Mark:} \\
 & 1 \\
 & 2 \\
 & 1
 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}
 \end{bmatrix}.$$
Find a basis for W .

Standard S4.

$$\begin{bmatrix}
\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}
\end{bmatrix}$$
Compute the dimension of W .

Standard A1. Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Standard A2.

Mark:

Determine if $D: M_{2,2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$ is a linear transformation or not.

 ${\bf Additional\ Notes/Marks}$

Name:	
J#:	Dr. Clontz
Date:	

Version 2

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.
$$\begin{bmatrix} 3 \\ -1 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -8 \\ 6 \\ 5 \end{bmatrix}$$
 is linearly dependent or linearly independent.

Standard S3.

$$\begin{bmatrix}
 & \text{Mark:} \\
 & \text{Mark:} \\
 & \text{Mark:}
\end{bmatrix}$$
Let $W = \text{span}\left(\left\{\begin{bmatrix}1\\1\\2\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find a basis for W .

Standard S4.
$$\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix} \end{bmatrix}$$
. Compute the dimension of W .

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Standard A2.

Mark:

Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is a linear transformation.

 ${\bf Additional\ Notes/Marks}$

Name:	
J#:	Dr. Clontz
Date:	

Version 3

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$
 is linearly dependent or linearly independent

Standard S3.
$$\begin{bmatrix} & & & & \\ & & & & \\ & & & \\ Let \ W = \mathrm{span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right). \text{ Find a basis of } W.$$

Standard S4.

Mark:

Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix}2 & 0\\ -2 & 0\end{bmatrix}, \begin{bmatrix}3 & 1\\ 3 & 6\end{bmatrix}, \begin{bmatrix}0 & 0\\ 1 & 1\end{bmatrix}, \begin{bmatrix}1 & 2\\ 0 & 1\end{bmatrix}\right\}\right)$. Compute the dimension of W.

Standard A1. Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Standard A2.	Mark:

Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.

Name:	
J#:	Dr. Clontz
Date:	

Version 4

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.
$$\begin{bmatrix} 3 \\ -1 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -8 \\ 6 \\ 5 \end{bmatrix}$$
 is linearly dependent or linearly independent.

Standard S3.

$$\begin{bmatrix}
 & \text{Mark:} \\
 & \text{Mark:} \\
 & \text{Mark:}
\end{bmatrix}$$
Let $W = \text{span}\left(\left\{\begin{bmatrix}1\\1\\2\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find a basis for W .

Standard S4.
$$\begin{bmatrix} & & & & \\ & &$$

Standard A1.

Mark:

Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and \mathbb{R}^2 .

Standard A2.	Mark:

Determine if the map $T: \mathcal{P}^4 \to \mathcal{P}^3$ given by T(f) = f' - f'' is a linear transformation or not.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.	Mark:				
Determine if the set of v	ectors $\left\{\right.$	$\begin{bmatrix} -3\\8\\0 \end{bmatrix},$	$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} $	is linearly dependent or linearly independent

	Mark:
Standard S3.	

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$. Find a basis for W

Standard S4.

Mark:

Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Standard A2.	Mark:

Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard S1.	

Determine if the set of polynomials $\{-3x^3 - 8x^2, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Standard S3. Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$. Find a basis for W.

Standard S4.

Mark:

Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Standard A2.	Mark:

Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.