

Image Classification and Segmentation

Sarah Binta Alam Shoilee

Faculty of Engineering Science Department of Computer Science Master in Artificial Intelligence

June 13, 2019

Outline

Introduction

AutoEncoder

Classifier

Segmentation

Data Set

Two classes

Chair

654 Training images 663 Validation Images

AutoEncoder: Linear PCA

- Consider $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^m$ with m < n (dimensionality reduction)
- Encoder: z = G(x)
- Decoder: $x_{new} = F(z)$

Reconstruction Error

$$(min)E = \frac{1}{N} * \sum_{i=0}^{N} (x_i - x_{newi})^2$$
 (1)

Principal component analysis: dimensionality reduction

- Decreasing the dimensionality of the given input space by mapping vectors $x \in R^n$ to $z \in R^m$ with m < n.
- A point x is mapped to z in the lower dimensional space by $z_i = u_i^T * x$
- where u_j are the eigenvectors corresponding to the m largest eigenvalues and $z = [z_1, z_2, ... z_m]^T$

Principal component analysis: dimensionality reduction

- Given data $x_i^N i = 1$ with $x_i \in \mathbb{R}^n$ (assumed zero mean)
- Find projected variables wT xi with maximal variance

$$(max)E\{(w^Tx)^2\} = w^TE\{xx^T\}w = w^TCw$$
 (2)

where C is the covariance matrix

$$C \simeq \frac{1}{N} \sum_{i=1}^{N} x_i x_i^T \tag{3}$$

Encoder: Hyper Parameters

- 1. Approach 01:
 - 3 Blocks
 - one convolution layer and one Pooling layer;
 - # of Kernels: 16, 8, 8
- 2. Approach 02:
 - 2 Blocks
 - one convolution layer with batch normalization and one Pooling layer;
 - # of Kernels: 32, 32
- 3. Approach 03(Inspired from VGG-16):
 - 5 Blocks
 - more than one convolution layer with batch normalization and one Pooling layer;
 - # of Kernels: 64, 32, 16, 8, 8

The Architecture

- · Loss Function: Mean Squared Error
- Optimizer: Adadelta
- Training: Epochs: 200
- Training Batch: 64
- Validation accuracy: 60.94%

Auto-encoder: Performance

Figure: Performance measure of auto-encoder model

Classifier

- · Loss Function: Catagorical Cross-entropy
- Optimizer: Adam
- Epoch: 100 Batch size: 64

Performance

Figure: Performance measure of classifier using the trained weight of auto-encoder(acc 48.27%)

Figure: Performance measure of classifier from independent training (acc

Segmentation: Data Set

Segmentation

Performance

Figure: Original image and predicted segmentation

Figure: Validation dataset corresponding to it's mask Computer Vision

Performance

Figure: Performance plot of Segmentation model

С	TP	FP	FN	loU
0	393661	52851	1992056	1.61
1	8114	237973	77779	0.025
2	176579	1840326	61315	0.085

Table: Performance Matrix

Segmentation

Questions.....