Linear System Theory Solution to Homework 5

1. Let $\mathbf{x}(t) = [x_1(t), x_2(t)]^T$. The state equation can be expressed as

$$\dot{x}_1(t) = -2x_1(t) + \sin tx_2(t)$$

 $\dot{x}_2(t) = -x_2(t)$

Thus $x_2(t) = x_{02}e^{-t}$ and suppose that $x_1(t) = c_1e^{-2t} + c_2e^{-t}\sin t + c_3e^{-t}\cos t$, where c_1, c_2, c_3 are coefficients to be determined. Then

$$\dot{x}_1(t) = -2c_1e^{-2t} - c_2e^{-t}\sin t + c_2e^{-t}\cos t - c_3e^{-t}\cos t - c_3e^{-t}\sin t
= -2(c_1e^{-2t} + c_2e^{-t}\sin t + c_3e^{-t}\cos t) + (c_2 - c_3)e^{-t}\sin t + (c_2 + c_3)e^{-t}\cos t
= -2x_1(t) + x_{02}e^{-t}\sin t$$

Therefore $c_2 + c_3 = 0$, and $c_2 - c_3 = x_{02} \Rightarrow c_2 = -c_3 = \frac{x_{02}}{2}$. In addition, $x_1(0) = x_{01} = c_1 + c_3 \Rightarrow c_1 = x_{01} + \frac{x_{02}}{2}$.

(a) Let $\mathbf{X}_0 = \mathbf{I}$,. Then the fundamental matrix is

$$\mathbf{X}(t) = \begin{bmatrix} e^{-2t} & \frac{1}{2} \left(e^{-2t} + e^{-t} \sin t - e^{-t} \cos t \right) \\ 0 & e^{-t} \end{bmatrix}$$

and the state transition matrix is $\Phi(t,0) = \mathbf{X}(t)\mathbf{X}_0^{-1} = \mathbf{X}(t)$.

- (b) As $t \to \infty$, $\Phi(t,0) \to 0$. Hence the system is stable.
- (c) Note that $\mathbf{A}(t)$ is periodic with period 2π , and $\mathbf{\Phi}(2\pi,0) = \begin{bmatrix} e^{-4\pi} & \frac{1}{2}(e^{-4\pi} e^{-2\pi}) \\ 0 & e^{-2\pi} \end{bmatrix}$. The minimal polynomial of $\mathbf{\Phi}(2\pi,0)$ is $\psi(s) = (s e^{-4\pi})(s e^{-2\pi})$. Thus $\mathbf{B} = \frac{1}{2\pi}\log\mathbf{\Phi}(2\pi,0) = \frac{1}{2\pi}(\alpha_0\mathbf{I} + \alpha_1\mathbf{\Phi}(2\pi,0))$, and

$$\alpha_0 + \alpha_1 e^{-4\pi} = \log(e^{-4\pi}) = -4\pi$$

 $\alpha_0 + \alpha_1 e^{-2\pi} = \log(e^{-2\pi}) = -2\pi$

Then
$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} = \frac{2\pi}{e^{-2\pi} - e^{-4\pi}} \begin{bmatrix} -2e^{-2\pi} + e^{-4\pi} \\ 1 \end{bmatrix}$$
, and $\mathbf{B} = \begin{bmatrix} -2 & -\frac{1}{2} \\ 0 & -1 \end{bmatrix}$. The eigenvalues of \mathbf{B} are -2 and -1 .

Alternatively, we can find the eigenvalues of **B** from $\Phi(2\pi,0)$. Since the eigenvalues of $\Phi(2\pi,0)$ are $e^{-4\pi}$ and $e^{-2\pi}$, the eigenvalues of **B** are $\frac{1}{2\pi}\log e^{-4\pi}=-2$ and $\frac{1}{2\pi}\log e^{-2\pi}=-1$.

2. The state equation is

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -g(x_1(t))x_2(t) - x_1(t)$$

- (a) The equilibrium point satisfies $x_2 = 0$ and $-g(x_1)x_2 x_1 = -x_1 = 0$. Hence (0,0) is the only equilibrium point of this system.
- (b) Linearize the system around (0,0) and we have

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -g(0) \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

The two eigenvalues of the linearized system are

$$\lambda_{1,2} = -\frac{g(0)}{2} \pm \sqrt{\frac{g^2(0)}{4} - 1}$$

Notice that if $\frac{g^2(0)}{4} - 1 \ge 0$, then $\lambda_{1,2} < 0$ because $\sqrt{\frac{g^2(0)}{4} - 1} < \frac{g(0)}{2}$. On the other hand, if $\frac{g^2(0)}{4} - 1 < 0$, then $\text{Re}(\lambda_{1,2}) = -\frac{g(0)}{2} < 0$. Since all eigenvalues of the linearized system have negative real parts, (0,0) is a stable equilibrium point of the original nonlinear system.

3. (a) Let $\mathbf{X}(t)$ be any fundamental matrix. By definition, $\mathbf{\Phi}(t,s) = \mathbf{X}(t)\mathbf{X}^{-1}(s)$. Then

$$\begin{array}{lcl} \frac{\partial \boldsymbol{\Phi}(t,s)}{\partial s} & = & \mathbf{X}(t) \frac{d}{ds} \big(\mathbf{X}^{-1}(s) \big) = -\mathbf{X}(t) \mathbf{X}^{-1}(s) \frac{d}{ds} \big(\mathbf{X}(s) \big) \mathbf{X}^{-1}(s) \\ & = & -\boldsymbol{\Phi}(t,s) \mathbf{A}(s) \mathbf{X}(s) \mathbf{X}^{-1}(s) = -\boldsymbol{\Phi}(t,s) \mathbf{A}(s) \end{array}$$

Remark 1 Since $X(s)X(s)^{-1} = I$, we have

$$\frac{d}{ds}(\mathbf{X}(s)\mathbf{X}^{-1}(s)) = \frac{d}{ds}(\mathbf{X}(s))\mathbf{X}^{-1}(s) + \mathbf{X}(s)\frac{d}{ds}(\mathbf{X}^{-1}(s)) = \mathbf{0}$$

Therefore,

$$\frac{d}{ds}(\mathbf{X}^{-1}(s)) = -\mathbf{X}^{-1}(s)\frac{d}{ds}(\mathbf{X}(s))\mathbf{X}^{-1}(s)$$

(b) First, $\mathbf{z}(t_0) = \mathbf{\Phi}^T(t_0, t_0)\mathbf{z}_0 = \mathbf{z}_0$. In addition,

$$\dot{\mathbf{z}}(t) = \frac{\partial \mathbf{\Phi}^T(t_0, t)}{\partial t} \mathbf{z}_0 = -\mathbf{A}^T(t) \mathbf{\Phi}^T(t_0, t) \mathbf{z}_0 = -\mathbf{A}^T(t) \mathbf{z}(t)$$

Hence $\mathbf{z}(t) = \mathbf{\Phi}^T(t_0, t)\mathbf{z}_0$ is the solution to $\dot{\mathbf{z}}(t) = -\mathbf{A}^T(t)\mathbf{z}(t)$, $\mathbf{z}(t_0) = \mathbf{z}_0$.

4. (a) Define $V(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x}$. Then

$$\dot{V} = \dot{\mathbf{x}}^T \mathbf{P} \mathbf{x} + \mathbf{x}^T \mathbf{P} \dot{\mathbf{x}} = \mathbf{x}^T (\mathbf{A}_{\sigma(t)}^T \mathbf{P} + \mathbf{P} \mathbf{A}_{\sigma(t)}) \mathbf{x} < -\mathbf{x}^T \mathbf{Q} \mathbf{x}$$

Since $V(\mathbf{x}) = \mathbf{x}^T \mathbf{P} \mathbf{x} \le \lambda_{max}(\mathbf{P}) \|\mathbf{x}\|^2$ and $\dot{V}(\mathbf{x}) < -\mathbf{x}^T \mathbf{Q} \mathbf{x} \le -\lambda_{min}(\mathbf{Q}) \|\mathbf{x}\|^2$, we have

$$\frac{\dot{V}}{V} < \frac{-\mathbf{x}^T \mathbf{Q} \mathbf{x}}{\mathbf{x}^T \mathbf{P} \mathbf{x}} \le \frac{-\lambda_{min}(\mathbf{Q})}{\lambda_{max}(\mathbf{P})} = -2\beta$$

where $\beta = \frac{1}{2} \frac{\lambda_{min}(\mathbf{Q})}{\lambda_{max}(\mathbf{P})} > 0$. Integrate both sides over [0, t], and we have

$$\log V(\mathbf{x}(t)) - \log V(\mathbf{x}(0)) \le -2\beta t \Rightarrow V(\mathbf{x}(t)) \le V(\mathbf{x}(0))e^{-2\beta t}, \quad t \ge 0$$

This implies

$$\lambda_{min}(\mathbf{P}) \|\mathbf{x}(t)\|^2 \le \lambda_{max}(\mathbf{P}) \|\mathbf{x}(0)\|^2 e^{-2\beta t}, \quad t \ge 0$$

Hence

$$\|\mathbf{x}(t)\| \le \sqrt{\frac{\lambda_{max}(\mathbf{P})}{\lambda_{min}(\mathbf{P})}} \|\mathbf{x}(0)\| e^{-\beta t} \to 0, \text{ as } t \to \infty.$$

Hence the system is stable.

(b) Since \mathbf{A}_1 and \mathbf{A}_2 are Hurwitz, i.e. all eigenvalues have negative real parts, \mathbf{P}_1 and \mathbf{P} in steps i and ii are symmetric positive definite. Note that $\mathbf{A}_1\mathbf{A}_2 = \mathbf{A}_2\mathbf{A}_1$ implies $e^{\mathbf{A}_1}e^{\mathbf{A}_2} = e^{\mathbf{A}_1+\mathbf{A}_2} = e^{\mathbf{A}_2}e^{\mathbf{A}_1}$. In addition,

$$\mathbf{P} = \int_0^\infty e^{\mathbf{A}_2^T t} \mathbf{P}_1 e^{\mathbf{A}_2 t} dt = \int_0^\infty e^{\mathbf{A}_2^T t} \left(\int_0^\infty e^{\mathbf{A}_1^T \tau} e^{\mathbf{A}_1 \tau} d\tau \right) e^{\mathbf{A}_2 t} dt$$
$$= \int_0^\infty e^{\mathbf{A}_1^T \tau} \left(\int_0^\infty e^{\mathbf{A}_2^T t} e^{\mathbf{A}_2 t} dt \right) e^{\mathbf{A}_1 \tau} d\tau$$

Clearly $\mathbf{Q}_1 = \int_0^\infty e^{\mathbf{A}_2^T t} e^{\mathbf{A}_2 t} dt$ is positive definite. This implies that \mathbf{P} is the solution to

$$\mathbf{A}_1^T \mathbf{P} + \mathbf{P} \mathbf{A}_1 = -\mathbf{Q}_1$$

From step ii, **P** is also the solution to $\mathbf{A}_2^T \mathbf{P} + \mathbf{P} \mathbf{A}_2 = -\mathbf{P}_1$. Given α defined in step iii, we have $\mathbf{Q} = \alpha \mathbf{I} < \mathbf{P}_1$ and $\mathbf{Q} = \alpha \mathbf{I} < \mathbf{Q}_1$. Therefore

$$\mathbf{A}_i^T \mathbf{P} + \mathbf{P} \mathbf{A}_i < -\mathbf{Q}, \quad i = 1, 2$$