Bioconductor Packages For Cached File Management

BiocFileCache, AnnotationHub, ExperimentHub

Bioconductor Packages For Cached File Management

BiocFileCache, AnnotationHub, ExperimentHub

https://docs.google.com/presentation/d/1dxAmnk_M-wOzoCD0Wod2XB94eavPJJ UNIulSiEH3cL8/edit?usp=sharing

BiocFileCache

Local File Management

Motivation:

It can be time consuming to download remote resource from the web. Let's design a way to check a local resource to see if it needs to be updated or not.

Motivation:

Let's also have a way to better organize local files

BiocFileCache()

- creates a cache object
- sqlite database backend
- add 'resources' (files) to the cache object to track

Cache Info:

- bfccache ()
- length ()
- show ()
- bfcinfo ()

Adding Resources:

- bfcadd()
- bfcnew()

Removing Resources:

- bfcremove ()
- bfcsync()

Investigating Resources:

- bfcquerycols ()
- bfcquery()
- bfccount ()
- bfcrid ()
- bfcpath()
- bfcrpath()
- •

Web Resources:

- bfcneedsupdate ()
- bfcdownload ()

Updating Resources:

- bfcupdate ()
- [[

MetaData:

- bfcmetalist ()
- bfcmeta ()
- bfcmeta () <-
- bfcmetaremove ()

Export/Import Cache:

- importbfc ()
- exportbfc ()
 - makeBiocFileCacheFromDataFrame()

Clean/Remove Cache:

- cleanbfc ()
- removebfc ()

> saveRDS(myObj, file=pathToSave)

```
> pathToSave = bfcnew(rname="My RDS File", ext=".rds")
 > pathToSave
                                                                                                                                                                                                                                                                                                                         BFC2
           "/home/lori/.cache/BiocFileCache/2feb30a96058 2feb30a96058.rds"
> bfcinfo()
# A tibble: 2 x 10
           rid
                                        rname create_time access_time rpath rtype fpath last_modified_t... etag
          <chr> <chr< <chr> <chr< <chr> <chr> <chr> <chr< <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr< <chr> <chr< <
                                                                                                                                                                                                                                                                                                                                                                                          <chr>
1 BFC1 Wiki 2018-07-12... 2018-07-12... /hom... web http... 2018-07-07 07:1... NA
2 BFC2 My RD... 2018-07-12... 2018-07-12... /hom... rela... 388d... NA
                                                                                                                                                                                                                                                                                                                                                                                           NA
# ... with 1 more variable: expires <chr>
```

> bfcneedsupdate()
BFC1
TRUE

Utilizes functions from httr to capture Expires, Last-modified time, and Etag

1. HEAD()

> library(httr)

2. cache_info()

```
> bfcquery(query="RDS")
# A tibble: 1 x 10
                               rname create_time access_time rpath rtype fpath last_modified_t... etag
           rid
          <chr> <
                                                                                                                                                                                                                                                                                                                                                                               NA NA
1 BFC2 My RD... 2018-07-12... 2018-07-12... /hom... rela... 388d...
# ... with 1 more variable: expires <dbl>
 > bfcrid(bfcquery(query="RDS"))
 [1] "BFC2"
 > bfcrpath(rids="BFC2")
                                                                                                                                                                                                                                                                                                                             BFC2
           "/home/lori/.cache/BiocFileCache/2feb30a96058_2feb30a96058.rds"
 > readRDS(bfcrpath(rids="BFC2"))
```

```
# data.frame or tibble
> meta = data.frame(rid="BFC2", info="pipeLine project X", numSamples=2000)
> bfc = BiocFileCache()
> bfcmeta(bfc, name="pipeLineXmeta") <- meta</pre>
> bfcmetalist()
[1] "pipeLineXmeta"
> library(dplyr)
> bfcinfo(bfc) %>% select(rid, rname, info, numSamples)
# A tibble: 2 x 4
                                  info numSamples
   rid
               rname
 <chr> <chr> <chr>
                                            <dbl>
                Wiki
  BFC1
                                  <NA>
                                               NA
  BFC2 My RData File pipeLine project X
                                             2000
```

```
> bfcquery(query="project X", field="info")
# A tibble: 1 x 12
  rid
        rname create_time access_time rpath rtype fpath last_modified_t... etag
  <chr> <dbl> <chr>
1 BFC2 My RD... 2018-07-12... 2018-07-12... /hom... rela... 388d...
                                                                         NA NA
# ... with 3 more variables: expires <dbl>, info <chr>, numSamples <dbl>
> bfcquerycols()
                          "rname"
 [1] "rid"
                                                "create time"
                          "rpath"
                                                "rtype"
 [4] "access_time"
 [7] "fpath"
                          "last_modified_time" "etag"
                          "info"
[10] "expires"
                                                "numSamples"
```

Implementations

- 1. Directly
- 2. Many package started using in the backend to manage package data

AnnotationHub/ExperimentHub

AnnotationHub

AnnotationHub is a package that allows us to query and download many different annotation objects, without having to explicitly install them.

AnnotationHub()

- creates a hub object
- sqlite database backend
- Files are stored remotely and downloaded as needed
 - Bioconductor AWS S3 Buckets
 - After downloaded, cached for quick access for future runs
 - Uses BiocFileCache to manage individual files

```
> hub = AnnotationHub()
snapshotDate(): 2019-07-10
AnnotationHub with 46429 records
# snapshotDate(): 2019-07-10
# $dataprovider: BroadInstitute, Ensembl, UCSC, ftp://ftp.ncbi.nlm.nih.gov/g...
# $species: Homo sapiens, Mus musculus, Drosophila melanogaster, Bos taurus,...
# $rdataclass: GRanges, BigWigFile, FaFile, TwoBitFile, Rle, ChainFile, OrgD...
# additional mcols(): taxonomyid, genome, description,
   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
    rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["AH2"]]'
```

Querying Annotation Hub

Finding the 'right' resource on AnnotationHub is like using Google - a well posed query is necessary to find what you are after. Useful queries are based on:

- Data provider
- Data class
- Species
- Data source
- ... other metadata column information ...

```
> length(unique(hub$species))
[1] 2296
> head(unique(hub$species))
[1] "Homo sapiens" "Vicugna pacos" "Dasypus novemcinctus"
[4] "Otolemur garnettii" "Papio hamadryas"
                                                "Papio anubis"
> length(unique(hub$rdataclass))
[1] 20
> unique(hub$rdataclass)
    "GRanges"
                        "data.frame"
                                            "Inparanoid8Db"
                                                               "TwoBitFile"
     "ChainFile"
                        "SQLiteConnection" "biopax"
                                                                "BigWigFile"
    "AAStringSet"
                        "MSnSet"
                                            "mzRpwiz"
                                                               "mzRident"
                        "TxDb"
                                            "Rle"
[13]
    "list"
                                                               "EnsDb"
[17] "VcfFile"
                        "igraph"
                                            "sqlite"
                                                               "OrgDb"
```

```
> gry <- query(hub, c("Homo sapien", "ensembl", "GRanges"))</pre>
> qry
AnnotationHub with 72 records
# snapshotDate(): 2019-07-10
# $dataprovider: Ensembl, UCSC
# $species: Homo sapiens
# $rdataclass: GRanges
# additional mcols(): taxonomyid, genome, description,
   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
    rdatapath. sourceurl. sourcetype
# retrieve records with, e.g., 'object[["AH5046"]]'
            title
  AH5046
           Fnsembl Genes
  AH5160
          | Ensembl Genes
  AH5311 | Fnsembl Genes
  AH5424 | Ensembl Genes
  AH5435 | Ensembl EST Genes
  AH68821 I
           Homo_sapiens.GRCh38.95.gtf
           Homo_sapiens.GRCh38.96.abinitio.gtf
  AH69458 I
  AH69459
           Homo_sapiens.GRCh38.96.chr.gtf
           Homo_sapiens.GRCh38.96.chr_patch_hapl_scaff.qtf
  AH69460
           Homo_sapiens.GRCh38.96.gtf
  AH69461
```

```
> hub["AH50377"]
AnnotationHub with 1 record
# snapshotDate(): 2019-07-10
# names(): AH50377
# $dataprovider: Ensembl
# $species: Homo sapiens
# $rdataclass: GRanges
# Srdatadateadded: 2016-01-25
# $title: Homo_sapiens.GRCh38.83.gtf
# $description: Gene Annotation for Homo sapiens
# $taxonomyid: 9606
# $genome: GRCh38
# $sourcetype: GTF
# $sourceurl: ftp://ftp.ensembl.org/pub/release-83/gtf/homo_sapiens/Homo_sap...
# $sourcesize: 45686084
# $tags: c("GTF", "ensembl", "Gene", "Transcript", "Annotation")
# retrieve record with 'object[["AH50377"]]'
```

```
> whatIwant = hub[["AH50377"]]
downloading 1 resources
retrieving 1 resource
  loading from cache
   'AH50377 : 57107'
> summary(whatIwant)
[1] "GRanges object with 2569150 ranges and 26 metadata columns"
# We talked about GRanges and TxDb; you could use as is or convert to a TxDb
object
> GRCh38TxDb <- makeTxDbFromGRanges(whatIwant)</pre>
[1] "GRanges object with 2569150 ranges and 26 metadata columns"
> class(GRCh38TxDb)
[1] "TxDb"
```

```
> getInfoOnIds(hub, "AH50377")
         ah id fetch id
                                             title rdataclass status
268089 AH50377 57107 Homo_sapiens.GRCh38.83.gtf GRanges Public
      biocversion rdatadateadded rdatadateremoved file size
268089
                      2016-01-25
                                            <NA> 21737279
              3.2
> subset(hub, species == "Homo sapiens" & genome=="GRCh38" & rdataclass=="VcfFile")
AnnotationHub with 4 records
# snapshotDate(): 2018-06-27
# $dataprovider: dbSNP
# $species: Homo sapiens
# Srdataclass: VcfFile
# additional mcols(): taxonomyid, genome, description,
   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
   rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["AH57960"]]'
           title
  AH57960 | clinvar_20160203.vcf.gz
  AH57961 | clinvar_20160203_papu.vcf.gz
  AH57962 | common_and_clinical_20160203.vcf.gz
  AH57963 | common_no_known_medical_impact_20160203.vcf.gz
```

Hub API

ExperimentHub

ExperimentHub()

- creates a hub object
- sqlite database backend
- Files are stored remotely and downloaded as needed
 - Bioconductor AWS S3 Buckets
 - After downloaded, cached for quick access for future runs

ExperimentHub data is associated with a Bioconductor package!

```
> eh = ExperimentHub()
snapshotDate(): 2019-07-10
> length(eh)
[1] 2377
ExperimentHub with 2377 records
# snapshotDate(): 2019-07-10
# $dataprovider: Eli and Edythe L. Broad Institute of Harvard and MIT, NA, D...
# $species: Homo Sapiens, Homo sapien, Homo sapiens, Mus musculus, Mus Muscu...
# $rdataclass: ExpressionSet, SummarizedExperiment, RaggedExperiment, DataFr...
# additional mcols(): taxonomyid, genome, description,
    coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
    rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["EH1"]]'
```

```
> names(mcols(eh))
 [1] "title"
                           "dataprovider"
                                                "species"
    "taxonomyid"
                           "genome"
                                                "description"
 [7] "coordinate_1_based" "maintainer"
                                                "rdatadateadded"
                                                "rdataclass"
[10] "preparerclass"
                          "tags"
[13] "rdatapath"
                           "sourceurl"
                                                "sourcetype"
> length(unique(eh$preparerclass))
[1] 44
> head(unique(eh$preparerclass), 15)
    "GSE62944"
                               "alpineData"
                                                         "CellMapperData"
    "HumanAffyData"
                               "curatedMetagenomicData" "SegSQC"
    "restfulSEData"
                               "curatedTCGAData"
                                                         "HarmonizedTCGAData"
[10] "HMP16SData"
                               "TENxBrainData"
                                                         "MetaGxOvarian"
[13] "CLLmethylation"
                               "tissueTreg"
                                                         "MetaGxBreast"
```

```
> query(eh, "TENxBrainData")
ExperimentHub with 4 records
# snapshotDate(): 2018-06-29
# $dataprovider: 10X Genomics
# $species: Mus musculus
# $rdataclass: character
# additional mcols(): taxonomyid, genome, description,
   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
    rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["EH1039"]]'
           title
  EH1039 | Brain scRNA-seq data, 'RLE-compressed'
  EH1040
        | Brain scRNA-seg data, 'rectangular'
  EH1041 | Brain scRNA-seq data, sample (column) annotation
  EH1042 | Brain scRNA-seg data, gene (row) annotation
```

```
> query(eh, c("Mus musculus", "rna-seg"))
ExperimentHub with 158 records
# snapshotDate(): 2019-07-10
# $dataprovider: Jonathan Griffiths, Sten Linnarsson, Michael Cole, Robinson...
# $species: Mus musculus
# $rdataclass: character, SingleCellExperiment, SummarizedBenchmark, Summari...
# additional mcols(): taxonomyid, genome, description,
    coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
  rdatapath, sourceurl, sourcetype
# retrieve records with, e.g., 'object[["EH1039"]]'
           title
  EH1039
          Brain scRNA-seg data, 'HDF5-based 10X Genomics' format
          Brain scRNA-seq data, 'dense matrix' format
  EH1040 |
          Brain scRNA-seg data, sample (column) annotation
  EH1041 |
  EH1042 |
          Brain scRNA-seq data, gene (row) annotation
  EH1074
          RNA-seg data from tissue Tregs (RPKM values)
  EH2691
          Macosko retina colData
  EH2694
          Nestorowa HSC counts
  EH2695 |
          Nestorowa HSC colData
  EH2696 |
          Shekhar retina counts
  EH2697 |
          Shekhar retina colData
```

```
> # query(eh, c("Mus musculus", "rna-seq"))
> package(query(eh, c("Mus musculus", "rna-seq")))
        EH1039
                           EH1040
                                              EH1041
                                                                  EH1042
"TENxBrainData" "TENxBrainData" "TENxBrainData" "TENxBrainData"
        EH1074
                           EH1075
                                              EH1433
                                                                  EH1508
  "tissueTreg" "tissueTreg" "allenpvc" "DuoClustering2018"
> unique(package(query(eh,c("Mus musculus", "rna-seq"))))
                      "tissueTreg" "allenpvc"
[1] "TENxBrainData"
[4] "DuoClustering2018" "benchmarkfdrData2019" "scRNAseq"
  "MouseGastrulationData"
```

> display(eh)

Loading required package: shiny

Listening on http://127.0.0.1:5192

What's the advantage? From a user perspective:

Public Accessible data!

Easy access to either more data or a second set of validation data

What's the advantage? From a developer perspective:

Keeps the Package Lightweight!

Only download data as needed

Make large files accessible as simple objects

Resource are documented through package documentation

Packages utilize the Hub to manage files ... User is none the wiser...

```
> library(curatedTCGAData)
## discovery
> curatedTCGAData(diseaseCode = "*", assays = "*", dry.run = TRUE)
> curatedTCGAData(diseaseCode = "COAD", assays = "RPPA*", dry.run = TRUE)
## access
> gbm <- curatedTCGAData("GBM", "RPPA*", FALSE)</pre>
## use
> experiments(gbm)[["GBM_RPPAArray-20160128"]]
```