物理实验报告

陈建烨 12411913 2025.3.4 P4123

一. 实验名称: 时间测量中随机误差的分布规律

二. 实验目的

- 1.了解随机误差的离散性和分布规律。
- 2.了解误差分析的基本方法。
- 3.了解测量不确定度的计算方法。

三.实验原理

1.重复测量电子节拍器的周期 T_0 ,测量结果为 T_1,T_2,\cdots,T_n ,其中n为测量次数。如果测量次数足够多,那么测量结果 T_i 的分布就会趋近于正态分布。

$$p(T)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(T-ar{T})^2}{2\sigma^2}}$$

其中 $ar{T}=rac{1}{n}\Sigma T_i$, $\sigma=\sqrt{rac{\Sigma(T_i-ar{T})^2}{n-1}}$ 由正太分布的统计规律得

$$P(|T-ar{T}|<\sigma)pprox 68.3\% \ P(|T-ar{T}|<2\sigma)pprox 95.4\% \ P(|T-ar{T}|<3\sigma)pprox 99.7\%$$

2.计算周期量的A类不确定度可以使用{U_A= $\frac{\sigma*t_p}{\sqrt{n}}$ },其中 σ 为测量结果的标准差,n为测量次数, t_p 为置信系数。计算周期量的B类不确定度可以使用 $U_B=\frac{\sqrt{\Delta_{\text{ld}}^2+\Delta_{\text{lk}}^2}}{C}*k_p$,其中C、 k_p 为置信系数。所以U= $\sqrt{U_A^2+U_B^2}$ 。

3.节拍器周期 T_0 的测量值为 $T_0=ar{T}\pm U$, P=0.95。

四.实验仪器

1.电子节拍器 2.秒表

五.实验内容

- 1.用秒表测量电子节拍器周期 T_i ,测量次数为N=200。
- 2.计算周期量的平均值 \overline{T} 和标准差 σ 。
- 3.根据测量结果的离散程度和极差 $R=max(T_i)-min(T_i)$,设置合理步长 ΔT ,个数为M。
- 4统计每个区间的频数 N_i ,计算频率 $f_i=rac{N_i}{N}$ 和概率密度 $p_i=rac{f_i}{\Delta T}$,绘制概率分布直方图p-T。
- 5.计算正太分布函数p(T),并绘制正太分布曲线。
- 6.在p-T图中绘制p(T)正太分布的散点图,检验测量结果是否符合正太分布。
- 7.分别统计在 $|ar{T}-\sigma|$ 、 $|ar{T}-2\sigma|$ 、 $|ar{T}-3\sigma|$ 范围内的概率,与理论值比较
- 8.计算周期量的A类不确定度 U_A 和B类不确定度 U_B ,计算周期量的总不确定度U,得出结论

六.实验数据

见时间统计分布规律实验数据记录表

七.数据处理

基本统计量

$$ar{T}=rac{1}{n}\Sigma T_i=3.09s$$
 , $\sigma=\sqrt{rac{\Sigma(T_i-ar{T})^2}{n-1}}=0.135s$, $R=max(T_i)-min(T_i)=0.72s$

概率密度直方图与正态分布曲线的对比

将数据分为M=12个区间,步长 $\Delta T=0.06$,区间范围为[2.88,3.54],数据处理见下表

区间	频数	频率	概率密度	正态分布
[2.76, 2.82]	3	0.01	0.25	0.24
(2.82, 2.88]	2	0.01	0.17	0.58
(2.88, 2.94]	14	0.07	1.17	1.17
(2.94, 3.00]	16	0.08	1.33	1.94
(3.00, 3.06]	19	0.10	1.58	2.64
(3.06, 3.12]	16	0.08	1.33	2.95
(3.12, 3.18]	21	0.10	1.75	2.71
(3.18, 3.24]	18	0.09	1.50	2.04
(3.24, 3.30]	22	0.11	1.83	1.26

区间	频数	频率	概率密度	正态分布
(3.30, 3.36]	5	0.03	0.42	0.64
(3.36, 3.42]	2	0.01	0.17	0.27
(3.42, 3.48]	3	0.01	0.25	0.09

概率密度直方图与正态分布曲线的对比

结果基本符合正态分布

检验1 σ ,2 σ ,3 σ 范围内的概率

范围	频数	实验值	理论值
$(ar{T}-\sigma,ar{T}+\sigma)$	133	66.5%	\$68.3%
$(\bar{T}-2\sigma,\bar{T}+2\sigma)$	191	95.5%	\$95.4%
$(\bar{T}-3\sigma,\bar{T}+3\sigma)$	200	100%	\$99.7%

计算不确定度

$$egin{aligned} U_A &= rac{\sigma*t_p}{\sqrt{n}} = rac{0.135*1.96s}{\sqrt{200}} = 0.019s \ U_B &= rac{\sqrt{\Delta_{ ext{th}}^2 + \Delta_{ ext{tx}}^2}}{C} * k_p = rac{\sqrt{0.01^2 + 0.2^2}}{1} * 1.96 = 0.39s \ U &= \sqrt{U_A^2 + U_B^2} = \sqrt{0.019^2 + 0.39^2} = 0.39s \end{aligned}$$

计算周期量的测量值

$$T_0=\bar{T}\pm U=3.09\pm 0.39s$$

八.误差分析

- 1.测量时反应时间的误差
- 2.实验人员的心态变化导致的误差
- 3.秒表仪器和电子节拍器的误差

九.实验结论

重复使用秒表测量电子节拍器的周期T,并使用统计学方法可以求得较准确的周期T。实验中随机误差大致符合正态分布,且在 $|ar{T}-\sigma|$ 、 $|ar{T}-2\sigma|$ 、 $|ar{T}-3\sigma|$ 范围内的概率与理论值相符。200次重复测量后,周期量的测量值为 $T_0=ar{T}\pm U=3.09\pm0.39s(p=0.95)$

十.思考题

- 1.仪器精度不足,实验员员操作不当导致误差较大,实验环境导致实验员分心导致反应变慢
- 2.随机误差基本服从以0为均值的正态分布,随机分布误差的概率密度趋近一个确定值,随机误差对精确测量结果的影响变小