Práctica 5.1 Arquitecturas de sistemas comunicación

jueves, 15 de diciembre de 2022 14:21

1. Haz un esquema resumen en canva, cuaderno o cualquier otro editor, con el nombre de las capas del modelo OSI y sus características usando tus propias palabras. ¿Cómo se llaman los datos utilizados en cada capa (PDU)?

¿Qué capas del modelo OSI realizan funciones de detección y recuperación de errores? ¿Y qué capas se encargan de la comunicación fiable o no de datos?

Pág. 18 / 13

La capa de enlace es la encargada de la detección y corrección de errores.

La capa de **transporte** es la encargada de la comunicación fiable o no de datos.

3. Busca el nombre de las capas del modelo TCP/IP y lístalas. ¿Por qué es necesario usar dicho modelo y qué implica respecto al modelo OSI?

Pág. 37 / 36

Las capas del modelo TCP/IP se dividen en cinco, cuatro de software y un nivel hardware:

- 1. Aplicación
- 2. Transporte
- 3. Internet
- 4. Acceso al Medio

A diferencia del modelo de referencia OSI, el modelo TCP/IP no tiene una división tan clara y estricta de sus capas. Es más, sus protocolos pueden llegar a actuar en más de una. Es un modelo más adecuado a la realidad práctica de Internet y no tan teórico como el modelo OSI.

4. ¿Qué es CSMA/CA y CSMA/CD y cuál es su función? ¿en qué capa actúa?

Pág. 20 / 21

- CSMA/CD se utiliza en redes Ethernet para evitar colisiones en canales compartidos y opera en la subcapa MAC de la capa de enlace.
- CSMA/CA se usa en redes inalámbricas (por ejemplo, Wi-Fi 802.11) para evitar colisiones mediante un mecanismo de espera antes de transmitir, también actuando en la subcapa MAC.
- 5. Resume las principales diferencias entre el modelo OSI y el modelo TCP/IP?

Aspecto	Diferencia OSI	Diferencia TCP/IP	Página
Número de capas	Tiene 7 capas: Física, Enlace, Red, Transporte, Sesión, Presentación, Aplicación. Tiene 4 capas: Acceso al medio, Internet, Transporte, Aplicación.		OSI: 10-34, TCP/IP: 36
Enfoque teórico vs práctico	Modelo teórico para entender los procesos de comunicación y diseño de redes.	Modelo práctico, diseñado para su uso real y base de Internet.	OSI: 10, TCP/IP: 36
Separación de	Separación estricta de funciones por capa, lo que facilita la	Algunas funciones abarcan varias capas, como Aplicación,	OSI: 10, TCP/IP: 36

funciones	independencia entre ellas.	Presentación y Sesión combinadas.	
Flexibilidad	Más rígido en términos de implementación debido a su enfoque teórico.	Más flexible y adaptable a necesidades prácticas de las redes modernas.	OSI: 10, TCP/IP: 36
Dependencia entre capas	Las capas son independientes, lo que permite actualizarlas sin afectar a las demás.	Las capas están más interrelacionadas, con funciones que se solapan entre ellas.	OSI: 10, TCP/IP: 36
Popularidad y uso	No se implementa directamente, pero es una referencia importante para entender arquitecturas.	Se implementa ampliamente en Internet y redes modernas.	OSI: 10, TCP/IP: 36

6. ¿Cuándo un dato se denomina datagrama o segmento y por qué? ¿En qué capa actúa?

Pág. 26

Segmento: Si el protocolo es **TCP** (Transport Control Protocol), que garantiza una transmisión confiable y controlada.

Datagrama: Si el protocolo es **UDP** (User Datagram Protocol), que ofrece un transporte más simple pero no confiable.

Actúa en la capa de Transporte.

7. Completa la siguiente tabla asignando cada definición, elemento o protocolo adecuado a su capa del modelo correspondiente:

TCPFTPOndas de radioHTTPUDPDirecciones IPSoftwareEthernetDatagramasPar trenzadoTCPPaquetesDirección MAC

Capa física	Capa de enlace	Capa de red	Capa de transporte	Capa de sesión o aplicación
Ondas de Radio	Ethernet	Direcciones IP	TCP	FTP
Par Trenzado	Dirección	Paquetes	UDP	HTTP
	MAC		Datagramas	Software

8. Clasifica las opciones en base a su descripción si es TCP o UDP:

Confiable Sin control de flujo Poco confiable Reensambla los mensajes en el host de destino Sin conexión

Vuelve a enviar lo que no se recibió Orientado a conexión

No reensambla los mensajes entrantes

ТСР	UDP
Confiable	Sin control de flujo
Reensambla los mensajes en el host de destino	Poco confiable Sin conexión
Vuelve a enviar lo que no se recibió Orientado a conexión	No reensambla los mensajes entrantes

9. Contesta las siguientes preguntas relacionadas con los puertos:

Respuestas de la Pág. 43.

a. ¿Para qué sirven los **números** de puerto y en qué capa se utilizan?

Los números de puerto sirven para clasificar las diversas categorías de puertos según su valor:

- Puertos bien conocidos (0-1023): Reservados para el sistema operativo y servicios estándar definidos por la IANA.
- Puertos registrados (1024-49151): Usados por aplicaciones no estándar instaladas por el usuario.
- Puertos privados (49152-65535): Utilizados para conexiones dinámicas iniciadas por el cliente.

Se utilizan en la capa de transporte del modelo OSI o del modelo TCP/IP.

b. ¿Cuál es el número menor de puerto que un sistema host puede asignar de forma dinámica?

El número menor de puerto que un sistema host puede asignar de forma dinámica es 49152.

c. ¿Cuáles son los puertos reservados del sistema?

Los valores de puertos inferiores a 1024 son puertos reservados al SO y normalmente estandarizados por la IANA (servicios estándar)

 Completa los <u>números de puerto</u> de los siguientes **protocolos** en la tabla indicando si funcionan mediante *TCP* o *UDP* así como su función:

Pág. 44 - 45

Nombre	Función	TCP/UDP	Nº puerto
HTTP	Páginas web sin encriptar	TCP	89
HTTPS	Páginas web encriptadas	TCP	443
FTP	Transferencia de archivos	TCP	21
DNS	Nombres de Dominio	TCP/UDP	53
Active Directory	Servicios de directorio	TCP	389 / 3268
SMTP	Envío de correos electrónicos	TCP	25
SMTPS	Envío de correos encriptados	TCP	465
Mysql	Gestión de bases de datos	TCP	3306
Time	Sincronización de tiempo	TCP/UDP	123
DHCP	Configuración automática de red	TCP/UDP	67 / 68
IRC	Chat en tiempo real	TCP	194
NFS	Sistema de archivos en red	TCP/UDP	2049
SMB	Compartición de archivos	TCP	445
Telnet	Terminal remoto sin encriptar	TCP	23
SSH	Terminal remoto encriptado	TCP	22
LDAP	Acceso a servicios de directorio	TCP	389

11. ¿Qué es un **socket** y cuál es su función?

Pág. 46

Un **socket** es la unión de una dirección IP y un puerto, utilizada para establecer conexiones en redes

Función: Identifica de forma única una aplicación o servicio en un dispositivo.

Por ejemplo, 172.217.7.238:80 significa que la dirección IP 172.217.7.238 usa el puerto **80** (HTTP) para servir o acceder a una página web.

Permite gestionar múltiples conexiones sin duplicados en el mismo momento.