Deep Reinforcement Learning no Problema de Escalonamento de Jobs em Computação em Grids

Lucas Casagrande, Maurício Pillon

¹Programa de Pós-Graduação em Computação Aplicada (PPGCA) Universidade do Estado de Santa Catarina – UDESC – Joinville – SC – Brasil

lucas.casagrande@edu.udesc.br, mauricio.pillon@udesc.br

Resumo. Algoritmos de escalonamento desempenham um papel chave na otimização dos recursos de uma infraestrutura em grids. No presente trabalho, três métodos de Deep Reinforcement Learning são treinados e comparados com a heurística Easy Backfilling via simulação. É possível concluir que métodos de DRL são capazes de aprender políticas de escalonamento que se adaptam a carga de trabalho, atingindo uma redução significativa no slowdown.

1. Introdução

Através do compartilhamento de recursos entre organizações geograficamente distribuídas, computação em grids consegue prover uma massiva quantidade de poder computacional sob demanda. Neste contexto, políticas de escalonamento buscam otimizar o processo de mapeamento entre as demandas de cada usuário e os recursos disponíveis na grid de modo eficiente e justo. Este processo de otimização configura um problema da classe NP-Difícil sendo, de um modo geral, resolvido por métodos heurísticos [Poquet 2017].

Métodos heurísticos funcionam bem no espaço de solução em que foram projetados. Contudo, em um ambiente em grids, requisições chegam em rajadas, indicando que o sistema passa de períodos ociosos para períodos com sobrecarga de jobs na fila [Di et al. 2012]. Tal comportamento dinâmico impacta negativamente o desempenho do escalonador e adequar uma heurística geral que se adapte em tais condições é um processo complexo. Neste contexto, algoritmos de escalonamento adaptativos podem ser uma possível alternativa.

Métodos de *Reinforcement Learning* (RL) apresentam uma abordagem computacional, formulada como um *Markov Decision Process* (MDP), onde um agente consegue aprender uma política através da interação com um ambiente. Contudo, métodos comuns, como Q-learning e SARSA, possuem limitações e se tornam impraticáveis em problemas com muitas dimensões [Orhean et al. 2018]. Em contrapartida, métodos de *Deep Reinforcement Learning* (DRL) atacam este problema com a utilização de *Deep Learning* (DL) durante a aproximação das recompensas e estimação de uma política [Mnih et al. 2015].

Deste modo, o presente trabalho realiza uma análise do comportamento de três métodos de DRL (PPO, A2C e ACER) no problema de escalonamento de *jobs* em computação em *grids*. Os agentes são treinados em um ambiente simulado e comparados com a heurística *Easy Backfilling* (EASY), amplamente utilizada em ambientes em produção, através do simulador Batsim. Durante as próximas seções, são discutidos o modelo do sistema, contendo a formulação do problema e da plataforma, e os resultados obtidos com a experimentação. Na última seção encontram-se as considerações finais.

2. Modelo do Sistema

No decorrer desta seção, são apresentados os aspectos do modelo, levado em consideração durante a experimentação, assim como a formulação do problema para aplicação de métodos baseados em RL.

2.1. Plataforma

Uma plataforma em *grid* é composta por recursos computacionais organizados em locais. Cada local contém um ou mais *clusters* com um número arbitrário de máquinas. Cada máquina pode conter um ou mais processadores, cada qual com um número variável de núcleos. No presente trabalho, a comunicação entre os *clusters* e locais é desconsiderada e cada *job* pode requisitar um número arbitrário de núcleos, os quais daqui em diante serão chamados apenas de recursos.

Jobs chegam de modo online e são caracterizados de acordo com seu tempo de chegada, a quantidade de recursos requisitada e uma estimação do tempo de reserva dos recursos. Ambas as quantidade de recursos e de tempo de reserva são definidas pelo usuário e desconhecidas até o momento de sua submissão. Por simplicidade, consideramos que o tempo de execução dos jobs é conhecido e coincide com o tempo de reserva definido pelo usuário. Também é considerado que os recursos são homogêneos, com a mesma capacidade computacional, e preemptividade não é permitida. Portanto os recursos são liberados somente quando o job termina a sua execução.

2.2. Formulação do Problema

O problema é formulado como sendo um MDP de horizonte finito formado pela tupla $\{S,A,T,R\}$, onde S é o conjunto de estados, A determina o conjunto de ações, T determina a dinâmica de transição entre os estados, considerada como sendo desconhecida, e R é a função de recompensa que representa o custo da ação tomada:

Conjunto de Estados: representa o estado dos recursos da grid e da fila de *jobs* em espera. Cada estado é definido como uma imagem representando um diagrama de Gantt, onde: a altura representa unidades de tempo; e a largura representa a quantidade de recursos na grid e os requisitados por cada *job* na fila. *Jobs* que não podem ser totalmente representados no estado, devido a limitação de tamanho, são encapsulados em um contador que indica a quantidade total de *jobs* em espera.

Conjunto de Ações: representa a escolha de um job na fila para ocupar os recursos da grid. É definida pela quantidade de espaços de jobs que estão representados no estado. Em cada situação, o agente pode tanto escolher uma ação vazia \emptyset , que avança o tempo em uma unidade, ou selecionar um job para ser escalonado nos primeiros recursos disponíveis.

Função de Recompensa: O objetivo do agente é aprender uma política que maximize a sua recompensa esperada através da sucessiva tomada de decisões. Neste trabalho, é utilizado a minimização do *slowdown* como objetivo, sendo a função de recompensa formulada como a média negativa do *slowdown*. Está função pode ser interpretada como sendo uma penalização proporcional ao *slowdown*.

3. Experimentação

3.1. Configuração

Na realização dos experimentos, a plataforma utilizada no Batsim é formada por 10 recursos homogêneos. A carga de trabalho é composta por *jobs* paralelos, cujo seu perfil de execução é dividido igualitariamente entre os recursos requisitados. Para limitar o tamanho da imagem, somente os 10 primeiros *jobs* da fila são apresentados. Na medida que o escalonador consome estes *jobs*, os demais são retirados da fila de acordo com sua ordem de chegada.

A carga de trabalho é sintética e composta por 80% de jobs pequenos. Os tempos de execução dos jobs pequenos são gerados seguindo uma distribuição uniforme que varia entre [1,3] unidades de tempo enquanto demais jobs variam entre [10,15]. A quantidade de recursos de cada job é determinada seguindo uma distribuição uniforme dentro do intervalo definido em dois grupos, [1,2] e [5,10], que são escolhidos aleatoriamente. O intervalo de chegada entre os jobs é definido seguindo um processo de Bernoulli de modo que a carga nos recursos varie entre 10% e 190% referente a sua capacidade em um período de tempo fixo.

Todos os métodos de DRL utilizam a mesma configuração de parâmetros quando aplicável. Tanto a política como a função valor dos métodos são definidas como sendo uma Feedforward Neural Network (FNN) contendo uma camada oculta com 20 unidades e função de ativação ReLU. Os parâmetros entre as redes não são compartilhados e um coeficiente de entropia de 0.01 é utilizado para incentivar a exploração. A taxa de aprendizado (α) é mantida constante em 0.001 enquanto a quantidade de actors é definida em 12. Não é aplicado desconto (γ) nas recompensas e a mesma quantidade de interações no treinamento é utilizada em cada um dos métodos. A quantidade limite de interações varia entre [.5M, 9M] proporcionalmente ao tamanho da carga de trabalho utilizada.

3.2. Resultados Obtidos

Na Figura 1 é demonstrado o desempenho dos métodos de DRL avaliados em comparação ao EASY em todas as cargas de trabalho utilizadas. É possível perceber que os métodos de DRL conseguem aprender uma política de escalonamento que se comporta igual ou melhor na maioria dos cenários. Comparando o EASY com o PPO, houve uma redução de 71,51% no *slowdown*, levando em consideração uma carga de 190% nos recursos. Já em relação ao A2C, houve uma redução de 54,86% enquanto com o ACER foi obtido uma redução de 58,82% nesta mesma carga de trabalho.

Figura 1. Desempenho dos algoritmos sob diferentes cargas de trabalho

Figura 2. Curva de aprendizado dos métodos utilizados

Na Figura 2 é possível visualizar a curva de aprendizado dos métodos com uma carga de 100% nos recursos. No início da interação, os métodos possuem comportamento semelhante a uma política aleatória. Contudo, na medida com que a quantidade de interações aumenta, a política é otimizada até que o algoritmo converge. Com exceção do A2C, ambos os métodos PPO e ACER convergiram, respectivamente, entre 1 e 2 milhões de interações. Não obstante, o PPO foi capaz de ultrapassar o desempenho do EASY nas primeiras 250 mil interações com o ambiente.

4. Considerações Finais

No presente trabalho, três métodos de DRL são avaliados e comparados com a heurística EASY no problema de escalonamento de *jobs* em computação em *grids*. Através da interação com um ambiente, os métodos foram capazes de aprender uma política de escalonamento que atinge um melhor compromisso entre o momento de escalonar um *job* e o momento de forçar a sua espera na maioria dos cenários. Como trabalhos futuros, pretende-se explorar diferentes formulações de MDP para o problema em questão, abordando novas representações de estados e funções de recompensa.

Agradecimentos

O presente trabalho foi conduzido no laboratório LabP2D com apoio da FAPESC, UDESC e da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Referências

- Di, S., Kondo, D., and Cirne, W. (2012). Characterization and comparison of cloud versus grid workloads. In *2012 IEEE International Conference on Cluster Computing*, pages 230–238. IEEE.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. *Nature*, 518(7540):529.
- Orhean, A. I., Pop, F., and Raicu, I. (2018). New scheduling approach using reinforcement learning for heterogeneous distributed systems. *Journal of Parallel and Distributed Computing*, 117:292 302.
- Poquet, M. (2017). Simulation approach for resource management. Theses, Université Grenoble Alpes.