TD Learning

Shusen Wang

Outline

- 1. Mathematically derive the TD target.
- 2. TD learning algorithms:
 - Sarsa algorithm for learning Q_{π} .
 - Q-learning algorithm for learning Q^* .
- 3. Multi-step TD target.

Discounted Return

Definition of discounted return:

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^4 \cdot R_{t+4} + \cdots$$

$$= \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+4} + \cdots)$$

Discounted Return

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^4 \cdot R_{t+4} + \cdots$$

$$= R_t + \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+4} + \cdots)$$

$$= U_{t+1}$$

Discounted Return

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^4 \cdot R_{t+4} + \cdots$$

$$= R_t + \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+4} + \cdots)$$

$$= U_{t+1}$$

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

- Assume R_t depends on (S_t, A_t, S_{t+1}) .
- $Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t | s_t, \mathbf{a_t}]$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

• Assume R_t depends on (S_t, A_t, S_{t+1}) .

It is taken w.r.t. $(S_{t+1}, A_{t+1}), (S_{t+2}, A_{t+2}), \cdots$

```
Identity: U_t = R_t + \gamma \cdot U_{t+1}.
```

• Assume R_t depends on (S_t, A_t, S_{t+1}) .

$$\begin{aligned} \bullet \ Q_{\pi}(s_t, a_t) &= \mathbb{E}[U_t | s_t, a_t] \\ &= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t] \\ &= \mathbb{E}[R_t | s_t, a_t] + \gamma \left(\mathbb{E}[U_{t+1} | s_t, a_t] \right) \\ &\mathbb{E}[U_{t+1} | s_t, a_t] &= \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t] \end{aligned}$$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

• Assume R_t depends on (S_t, A_t, S_{t+1}) .

$$\begin{aligned} \bullet \ Q_{\pi}(s_t, a_t) &= \mathbb{E}[U_t | s_t, a_t] \\ &= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t] \\ &= \mathbb{E}[R_t | s_t, a_t] + \gamma \left(\mathbb{E}[U_{t+1} | s_t, a_t] \right) \end{aligned}$$

$$\begin{split} \mathbb{E}[U_{t+1} | s_t, a_t] &= \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t] \end{aligned}$$

 Q_{π} eliminates all the future states and actions from time t+1.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

• Assume R_t depends on (S_t, A_t, S_{t+1}) .

$$\begin{aligned} \bullet \ Q_{\pi}(s_t, a_t) &= \mathbb{E}[U_t | s_t, a_t] \\ &= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t] \\ &= \mathbb{E}[R_t | s_t, a_t] + \gamma \left(\mathbb{E}[U_{t+1} | s_t, a_t] \right) \end{aligned}$$

$$\begin{split} \mathbb{E}[U_{t+1} | s_t, a_t] &= \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t] \\ &\downarrow \end{aligned}$$

The expectation is taken w.r.t. only S_{t+1} and A_{t+1} .

• Assume R_t depends on (S_t, A_t, S_{t+1}) .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | s_t, a_t]$$

 $= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t]$
 $= \mathbb{E}[R_t | s_t, a_t] + \gamma \left(\mathbb{E}[U_{t+1} | s_t, a_t]\right)$
 $= \mathbb{E}[R_t | s_t, a_t] + \gamma \cdot \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t].$

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t]$$
, for all π .

• Assume R_t depends on (S_t, A_t, S_{t+1}) .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | s_t, a_t]$$

 $= \mathbb{E}[R_t + \gamma \cdot U_{t+1} | s_t, a_t]$
 $= \mathbb{E}[R_t | s_t, a_t] + \gamma \cdot \mathbb{E}[U_{t+1} | s_t, a_t]$
 $= \mathbb{E}[R_t | s_t, a_t] + \gamma \cdot \mathbb{E}[Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t].$

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t]$$
, for all π .

- We do not know the expectation.
- Approximate it using Monte Carlo (MC).

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t]$$
, for all π .

 y_t is its MC approximation.

- Let (s_{t+1}, r_t) be an observation of (S_{t+1}, R_t) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.

Identity:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, A_{t+1}) | s_t, a_t]$$
, for all π .

 y_t is its MC approximation.

TD learning: Encourage $Q_{\pi}(s_t, a_t)$ to approach y_t .

Sarsa

Tabular Version

- We want to learn $Q_{\pi}(s, \mathbf{a})$.
- Suppose there are finite number of states and actions.
- Draw a table and learn the entries.

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
•					

Sarsa (tabular version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is a policy function.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
•					

Sarsa (tabular version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is a policy function.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.
- TD error: $\delta_t = Q_{\pi}(s_t, \mathbf{a_t}) y_t$.
- Update: $Q_{\pi}(s_t, a_t) \leftarrow Q_{\pi}(s_t, a_t) \alpha \cdot \delta_t$.

make
$$Q_{\pi}(s_t, a_t)$$
 closer to y_t

Value Network Version

• Approximate $Q_{\pi}(s, \mathbf{a})$ by a value network, $q(s, \mathbf{a}|\mathbf{w})$.

Value Network Version

- Approximate $Q_{\pi}(s, \mathbf{a})$ by a value network, $q(s, \mathbf{a}|\mathbf{w})$.
- Note that the $Q_{\pi}(s, \mathbf{a})$ and $q(s, \mathbf{a}|\mathbf{w})$ depends on π .
- q is used as the critic who evaluates the actor. (Actor-Critic Method.)
- We seek to learn the parameter, w.

Sarsa (Value Network Version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- Sample $a_{t+1} \sim \pi(\cdot | s_{t+1})$, where π is a policy function.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}|\mathbf{w})$.
- TD error: $\delta_t = q(s_t, \mathbf{a_t}|\mathbf{w}) y_t$.
- SGD: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial q(s_t, a_t | \mathbf{w})}{\partial \mathbf{w}}$.

Sarsa: Recap

- Goal: Learn the action-value function Q_{π} .
- Tabular version (directly learn Q_{π}).
 - There are finite state and actions.
 - Draw a table, and update the table using Sarsa.
- Value network version (function approximation).
 - Approximate Q_{π} by the value network $q(s, \boldsymbol{a}|\mathbf{w})$.
 - Update the parameter, w, using Sarsa.
 - Application: actor-critic method.

Q-Learning

Sarsa VS Q-Learning

- Sarsa is for training action-value function, $Q_{\pi}(s, a)$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.
- We used Sarsa for value network (critic).

Sarsa VS Q-Learning

- Sarsa is for training action-value function, $Q_{\pi}(s, a)$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.
- We used Sarsa for value network (critic).

- Q-learning is for training the optimal action-value function, $Q^*(s,a)$.
- TD target: $y_t = r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a)$.
- We used Q-learning for DQN.

• We have proved that for all π ,

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A_{t+1}}) | s_t, \mathbf{a_t}].$$

• If π is the optimal policy π^* , then

$$Q_{\pi^*}(s_t, \boldsymbol{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q_{\pi^*}(S_{t+1}, \boldsymbol{A_{t+1}}) | s_t, \boldsymbol{a_t}].$$

• We denote Q_{π^*} by Q^* .

Identity:
$$Q^*(s_t, \mathbf{a_t}) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, A_{t+1}) | s_t, \mathbf{a_t}].$$

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, A_{t+1}) | s_t, a_t].$$

• The action A_{t+1} is computed by

$$A_{t+1} = \operatorname*{argmax}_{a} Q^{*}(S_{t+1}, a).$$

• Thus $Q^*(S_{t+1}, A_{t+1}) = \max_{a} Q^*(S_{t+1}, a)$.

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}[R_t + \gamma \cdot Q^*(S_{t+1}, A_{t+1}) | s_t, a_t].$$

• The action A_{t+1} is computed by

$$A_{t+1} = \operatorname*{argmax}_{a} Q^{*}(S_{t+1}, a).$$

• Thus $Q^*(S_{t+1}, A_{t+1}) = \max_{a} Q^*(S_{t+1}, a)$.

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_a Q^*(S_{t+1}, a) \middle| s_t, a_t\right].$$

Identity:
$$Q^*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_a Q^*(S_{t+1}, a) \middle| s_t, a_t\right].$$

Identity
$$Q^*(s_t, a_t) = \mathbb{E}\left[R_t + \gamma \cdot \max_a Q^*(S_{t+1}, a) \middle| s_t, a_t\right].$$

$$\approx y_t$$

- Let (s_{t+1}, r_t) be an observation of (S_{t+1}, R_t) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$.

Q-Learning (tabular version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$.

Q-Learning (tabular version)

• Observe (s_t, a_t, r_t, s_{t+1}) .

• TD target:
$$y_t = r_t + \gamma \left(\max_{a} Q^*(s_{t+1}, a) \right)$$
.

	Action a_1	Action a_2	Action a_3	Action a_4	• • •
State s_1					
State s ₂					
State s ₃					
•					

Q-Learning (tabular version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q^*(s_{t+1}, a)$.
- TD error: $\delta_t = Q^*(s_t, a_t) y_t$.
- Update: $Q^*(s_t, a_t) \leftarrow Q^*(s_t, a_t) \alpha \cdot \delta_t$.

make $Q^*(s_t, a_t)$ closer to y_t

DQN Version

- Approximate $Q^*(s, \mathbf{a})$ by a value network, $Q(s, \mathbf{a}|\mathbf{w})$.
- The network is called deep Q network (DQN).

DQN Version

- Approximate $Q^*(s, \mathbf{a})$ by a value network, $Q(s, \mathbf{a}|\mathbf{w})$.
- The network is called deep Q network (DQN).
- It controls the agent by: $a_t = \max_a Q(s_t, a|\mathbf{w})$
- We seek to learn the parameter, w.

Q-Learning (DQN Version)

- Observe (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a \mid \mathbf{w}).$
- TD error: $\delta_t = Q(s_t, a_t \mid \mathbf{w}) y_t$.
- Update: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \delta_t \cdot \frac{\partial \ q(s_t, a_t | \mathbf{w})}{\partial \ \mathbf{w}}$.

Q-Learning: Recap

- Goal: Learn the optimal action-value function Q^* .
- Tabular version (directly learn Q^*).
 - There are finite state and actions.
 - Draw a table, and update the table using Q-learning.
- DQN version (function approximation).
 - Approximate Q^* by the value network $Q(s, a|\mathbf{w})$.
 - Update the parameter, w, using Q-learning.

Multi-Step Target

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

Replace
$$U_{t+1}$$
 by $R_{t+1} + \gamma \cdot U_{t+2}$

• It follows that $U_{t+1} = R_{t+1} + \gamma \cdot U_{t+2}$.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

Replace U_{t+1} by $R_{t+1} + \gamma \cdot U_{t+2}$

Identity: $U_t = R_t + \gamma \cdot (R_{t+1} + \gamma \cdot U_{t+2})$.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

Replace
$$U_{t+1}$$
 by $R_{t+1} + \gamma \cdot U_{t+2}$

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot U_{t+2}$$
.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot U_{t+2}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot U_{t+3}$$
.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot U_{t+2}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot U_{t+3}$$
.

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \cdot R_{t+i} + \gamma^m \cdot U_{t+m}$$
.

Multi-Step TD Targets

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \left(R_{t+i} \right) + \gamma^m \left(U_{t+m} \right)$$

• m-step TD target for learning Q_{π} (i.e., Sarsa):

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot (Q_{\pi}(s_{t+m}, a_{t+m})).$$

Multi-Step TD Targets

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \left(R_{t+i}\right) + \gamma^m \left(U_{t+m}\right)$$

• m-step TD target for learning Q_{π} (i.e., Sarsa):

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot Q_{\pi}(s_{t+m}, a_{t+m}).$$

• m-step TD target for learning Q^* (i.e., Q-learning):

$$y_t = \sum_{i=0}^{m-1} \gamma^i \left(r_{t+i} + \gamma^m \left(\max_a Q^*(s_{t+m}, a) \right) \right)$$

Comparison

• One-step TD target for learning Q^* (or DQN):

$$y_t = r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a).$$

• m-step TD target for learning Q^* (or DQN):

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot \max_{a} Q^*(s_{t+m}, a).$$

• If m is suitably tuned, m-step target works better than onestep target [1].

Reference:

1. Hossel et al. Rainbow: combining improvements in deep reinforcement learning. In AAAI, 2018.

Summary

Summary

- 1. Mathematically derived the TD target.
- 2. TD learning algorithms:
 - Sarsa algorithm for learning Q_{π} and value network (critic).
 - Q-learning algorithm for learning Q^* and DQN.
- 3. Multi-step TD target.

Improvements for TD Learning

- 1. Experience replay (ER) and its variants (e.g., prioritized ER.)
 - Reuse experience.
 - Eliminate correlation.
- 2. Target network and double DQN.
 - Address the overestimation issue of Q-learning.
- 3. Multi-step TD target.

Thank you!