Day-2 Practical Session, 26 May 2021

Part 2: BIGS-IWE strategy for Line Intercept Sampling (LIS)

Li-Chun Zhang^{1,2,3} and *Melike Oguz-Alper*²

¹*University of Southampton (L.Zhang@soton.ac.uk)*, ²*Statistics Norway*, ³*University of Oslo*

In this illustration, we will apply BIGS-IWE strategy to line-intercept sampling (LIS) which is a method of habitat sampling in a given area, where a habitat is sampled if a chosen line segment transects it. An example of LIS is given by Becker (1991). The sketch of the observed tracks can be obtained by compiling R-function **skthLISBecker**. Visualisation of the BIG constructed based on the observed line-intercept samples can be obtained by using R-function **skthLISBeckerBIG**.

Description of the population and sampling strategies

- Population BIG: $\mathcal{B}=(F,\Omega;H)$, where Ω consists of all wolverine tracks in the region of interest, Fcontains the corresponding projection segments, and H consist of edges between the tracks and the segments, i.e. $(i\kappa)\in H$ for $i\in F$ and $\kappa\in\Omega$
 - **NB**. \mathcal{B} cannot be consructed unless the whole area observed
- Observed BIG: $\mathcal{B}^*=(F^*,\Omega_s;H^*)$, where Ω_s contains the observed wolverine tracks, F^* contain the projection segments constructed based on the actual samples s and Ω_s , and H^* consists of the incident observational links from F^* to Ω_s
- eta_κ^* : ancestry set of $\kappa\in\Omega_s$ in \mathcal{B}^* and $lpha_i^*$: successors of $i\in F^*$ in \mathcal{B}^*
- Four systematic samples, A, B, C and D, each containing three positions drawn on the baseline. Equal distances of 12 miles between each position in a given draw
- Four wolverine tracks observed: $\Omega_s = \{\kappa_1, \kappa_2, \kappa_3, \kappa_4\}$
- The baseline divided into seven projection segments given the tracks: $F^* = \{i_1, i_2, i_3, i_4, i_5, i_6, i_7\}$
- ullet The probability that the ith segment selected under systematic sampling: $p_i=x_i/12$, where $\mathbf{x} = (5.25, 2.25, x_3, 2.4, x_5, 7.05, x_7)^{\top}$
- We have $s_1=s_2=\{i_1,i_5,i_6\}$, yielding $\Omega_s=\{\kappa_1,\kappa_2,\kappa_4\}$, and $s_3=s_4=\{i_4,i_6,i_7\}$, yielding $\Omega_s = \{\kappa_3, \kappa_4\}$

Formula sheet

- The parameter of interest: total number of wolverines in the region of interest
 - $heta = \sum_{\kappa \in \Omega} y_{\kappa}$, where y_{κ} number of wolverines in track κ
- Hansen-Hurwitz (HH) type estimators on the rth draw

$$\hat{ heta}_r = \sum_{i \in s_r} rac{z_i}{p_i}$$
, where $z_i = \sum_{\kappa \in lpha_i^*} w_{i\kappa} y_{\kappa}$
 $lacksquare$

Multiplicity estimator; equal weights

$$w_{i\kappa}\equivrac{1}{|eta_{\kappa}^{st}|}$$

■ HH-type estimator with unequal weights: probability and inverse degree-adjusted (PIDA) weights

$$w_{i\kappa}=rac{p_i}{|lpha_i^*|^{\gamma}}ig(\sum_{i\ineta_\kappa^*}rac{p_i}{|lpha_i^*|^{\gamma}}ig)^{-1}$$
 , $\gamma\geq 0$

NB. When $\gamma=0$, PIDA weights reduce to $w_{i\kappa}=p_i/p_{(\kappa)}$ where $p_{(\kappa)}=\sum_{i\in\beta_\kappa^*}p_i$

 HH-type estimators over all the draws $\hat{ heta} = rac{1}{4} \sum_{r=1}^4 \hat{ heta}_r$

 Variance estimator of the HH-type estimators over all the draws $\hat{ ext{V}}(\hat{ heta}) = rac{1}{4} rac{\sum_{r=1}^{4} (\hat{ heta}_r - \hat{ heta})^2}{r-1}$

graphs.

NB. R-package igraph has to be installed before running R-functions below that generates bipartite

1. Function parameters

Description of R-function **skthLISBeckerBIG**

- showplot: Use **TRUE** to get the skecth of BIG; default **FALSE**
- 2. Main steps of the function
- A bipartite graph constructed based on the observed wolverine tracks and the sample line segments transecting them. R-package igraph used to generate the graph
- 3. Main outputs of the function
- BIG plot shown if showplot = **TRUE** • The bipartite graph generated is returned as a graph object. It shall be called via \$G
- Description of R-function **zLISBecker**

effect of the choice if multiplicity= **TRUE**

1. Function parameters

• probi: a vector of the selection probabilities of the constructed projection segments

- graphstar: graph to be used: the output of **skthLISBeckerBIG** **coefgamma**: coefficient to be used in the HH-type estimator with PIDA weights; default value 0. No
- **multiplicity**: Use **TRUE** to get z_i values based on equal weights, i.e. $w_{i\kappa} = |\beta_{\kappa}^*|^{-1}$; default **FALSE**
- Edge set derived from the input graph, as well as the labels of the vertices in F^* and Ω_s $|lpha_i^*|$ and $|eta_\kappa^*|$ calculated based on the edge set

2. Main steps of the function

- z_i values calculated for all $i \in F^*$ for chosen values of γ 3. Main outputs of the function
 - z_i values returned
- Description of R-function **mainLISBecker**

• graphstar: graph to be used: the output of **skthLISBeckerBIG**

 \bullet coefgamma: coefficient to be used in the HH-type estimator with PIDA weights; default value 0. No

1. Function parameters

- effect of the choice if multiplicity= **TRUE** probi: a vector of the selection probabilities of the constructed projection segments
- **multiplicity**: Use **TRUE** to get z_i values based on equal weights, i.e. $w_{i\kappa} = |\beta_{\kappa}^*|^{-1}$; default **FALSE** • showcat: Use **FALSE** to avoid printing outputs from the cat function in R; default **TRUE**
- 2. Main steps of the function

- Edge set derived from the input graph
- $|\alpha_i^*|$ and $|\beta_\kappa^*|$ calculated based on the edge set • z_i values obtained by calling function **zLISBecker**
- For each draw under systematic sampling, estimates obtained by using the HH-type estimator.

Variance estimate can be called via \$varest for further analysis.

- The HH-type estimator over all draws applied by taking the average of the estimates. Variance of the
- estimator calculated

3. Main outputs of the function • An estimate for the total number of wolverine tracks in the given area and its estimated variance.