Homework 4

MATH 543 — Linear Algebra

Name: Ali Zafari Spring 2023

4 Polynomials -

Exercise 5

Let $T: \mathcal{P}_m(\mathbb{F}) \to \mathbb{F}^{m+1}$ be defined as $T(p) = (p(z_1), \dots, p(z_{m+1}))$. T is trivially linear. Since $\dim \mathcal{P}_m(\mathbb{F}) = \dim \mathbb{F}^{m+1}$, there is an isomorphism between the two spaces.

So, there is an invertible T that:

- by surjectivity of T, $\forall (w_1, \dots, w_{m+1}) \in \mathbb{F}^{m+1}$ there exists a $p \in \mathcal{P}_m(\mathbb{F})$.
- \bullet and p is unique due to *injectivity* of T.

Exercise 6

 \Longrightarrow

 $p \in \mathcal{P}(\mathbb{C})$ has m distinct zeros.

p can be factorized: $p = c(z - \lambda_1) \dots (z - \lambda_m)$ s.t. $c, \lambda_1, \dots, \lambda_m \in \mathbb{C}$ (λ_i 's are distinct). p can be written as $p(z) = (z - \lambda_i)q(z)$ s.t. $q(\lambda_i) \neq 0$. Differentiating results in $p'(z) = q(z) + (z - \lambda_i)q'(z)$. Therefore for $\underline{\text{no } i}, p'(\lambda_i) = 0$.

 \Longrightarrow

p and p' have no zeros in common.

By definition p has m roots. Let p have a root at $z = \lambda_i$ so $p(z) = (z - \lambda_i)q_i(z)$, where $q_i(z)$ could be zero at $z = \lambda_i$. Then $p'(z) = q_i(z) + (z - \lambda_i)q'_i(z)$. If we have $q_i(\lambda_i) = 0$, then p and p' share the root λ_i , a contradiction. Therefore p has m distinct roots.

5.A Invariant Subpspaces —

Exercise 1

- (a) Let $u \in U$, so $u \in \text{null } T$ and $Tu = 0 \in U$ (U is a subspace). U in invariant under T.
- (b) Let $u \in U$, then $Tu \in \text{range } T$ so $Tu \in U$. U in invariant under T.

Exercise 3

Let $v \in \text{range } S$, so exists $u \in V$ s.t. Su = v. Then $Tv = T(Su) = TSu = STu = S(Tu) \in \text{range } S$. Therefore range S is invariant under T.

Exercise 7

$$T(x,y) = \lambda(x,y)$$
$$(-3y,x) = (\lambda x, \lambda y)$$

Then $-3y = \lambda x$ and $x = \lambda y$. So $\lambda^2 = -3$, and there is no $\lambda \in \mathbb{R}$ satisfying the equation. T has no eigenvalues and thus no eigenvectors.

Exercise 9

$$T(z_1, z_2, z_3) = \lambda(z_1, z_2, z_3)$$
$$(2z_2, 0, 5z_3) = (\lambda z_1, \lambda z_2, \lambda z_3)$$

then we have $2z_2 = \lambda z_1$, $0 = \lambda z_2$ and $5z_3 = \lambda z_3$. $\lambda = 5$ and $\lambda = 0$ are eigenvalues with eigenvectors (0,0,y) $\forall y \in \mathbb{F}, y \neq 0$ and (x,0,0) $\forall x \in \mathbb{F}, x \neq 0$, respectively.

Exercise 10

(a)

$$T(x_1, x_2, x_3, \dots, x_n) = \lambda(x_1, x_2, x_3, \dots, x_n)$$

$$(x_1, 2x_2, 3x_3, \dots, nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, \dots, \lambda x_n)$$

Eigenvalue	Eigenvector	
1	$(x,0,0,\ldots,0)$	$\forall x \in \mathbb{F}, x \neq 0$
2	$(0,x,0,\ldots,0)$	$\forall x \in \mathbb{F}, x \neq 0$
3	$(0,0,x,\ldots,0)$	$\forall x \in \mathbb{F}, x \neq 0$
n	$(0,0,0,\ldots,x)$	$\forall x \in \mathbb{F}, x \neq 0$

(b) All invariant subspaces:

Invariant Subspaces Under
$$T$$

$$\{(x,0,0,\ldots,0)|x\in\mathbb{F},x\neq0\}$$

$$\{(0,x,0,\ldots,0)|x\in\mathbb{F},x\neq0\}$$

$$\{(0,0,x,\ldots,0)|x\in\mathbb{F},x\neq0\}$$

$$\ldots$$

$$\{(0,0,0,\ldots,x)|x\in\mathbb{F},x\neq0\}$$

Exercise 11

Let $p \in \mathcal{P}(\mathbb{R})$ of degree m. Then Tp will be of degree at most m-1. So

$$a_1 + 2a_2z \cdots + ma_mz^{m-1} = \lambda(a_0 + a_1z + \cdots + a_mz^m)$$

is satisfied only when eigenvalue $\lambda=0$ and eigenvector $p=a \quad \forall a \in \mathbb{F}, a \neq 0$ (constant polynomial).

Exercise 21

- (a) If $Tv = \lambda v$, since T is invertible, $\frac{1}{\lambda}v = T^{-1}v$. Thus $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} . Proof of the other way is the same.
- (b) As showed in part (a), every eigenvector of T is also an eigenvector for T^{-1} , and vice-versa.

Exercise 22

Aside:

Remark 1. If λ is an eigenvalue for T, λ^2 is an eigenvalue for T^2 . Remark 2. If λ is an eigenvalue for T^2 , either $+\sqrt{\lambda}$ or $-\sqrt{\lambda}$ is an eigenvalue for T. (proof. $T^2v = \lambda v \to (T - \sqrt{\lambda}I)(T + \sqrt{\lambda}I)v = 0$)

$$Tv = 3w$$
$$T^{2}v = 3Tw$$
$$T^{2}v = 9v$$

9 is an eigenvalue for T^2 , therefore either -3 or 3 is an eigenvalue for T.

Exercise 25

Let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{F}$ be eigenvalues corresponding to u, v and u + v, respectively.

$$T(u+v) = \lambda_3(u+v)$$

$$Tu + Tv = \lambda_3 u + \lambda_3 v$$

$$\lambda_1 u + \lambda_2 v = \lambda_3 u + \lambda_3 v$$

$$(\lambda_1 - \lambda_3)u + (\lambda_2 - \lambda_3)v = 0$$

u and v are linearly independent, thus $\lambda_1 = \lambda_2 = \lambda_3$.

Exercise 29

Let T has n distinct eigenvalues, with corresponding eigenvectors v_1, \ldots, v_n . Trivially $v_1, \ldots, v_n \in \text{range } T$ for nonzero eigenvalues. Thus if only one of the eigenvalues be zero, there will be n-1 linearly independent eigenvectors.

Thus $n-1 \leq \dim \operatorname{range} T = k$, meaning that $n \leq k+1$.

Exercise 30

Let $u, v, W \in V$ be eigenvectors corresponding to $-4, 5, \sqrt{7}$, respectively. Thus exists $a_1, a_2, a_3 \in R$ s.t. $x = a_1u + a_2v + a_3w$.

$$T(a_1u + a_2v + a_3w) - 9(a_1u + a_2v + a_3w) = (-4, 5, \sqrt{7})$$
$$-13a_1u - 4a_2v + (\sqrt{7} - 9)a_3w = (-4, 5, \sqrt{7})$$

since u, v, w are linearly independent in \mathbb{R}^3 , a_1, a_2, a_3 are uniquely determined, thus x exists.

Exercise 33

Let $v + \operatorname{range} T \in V / \operatorname{range} T$, we have

$$T/\operatorname{range} T(v + \operatorname{range} T) = \underbrace{Tv + \operatorname{range} T}_{\in \operatorname{range} T}$$

thus $T/\operatorname{range} T(v+\operatorname{range} T)=0$ and since $v+\operatorname{range} T\in V/\operatorname{range} T$ is arbitrary chosen, $T/\operatorname{range} T=0$.

Exercise 34

 \Longrightarrow

 $\operatorname{null} T \cap \operatorname{range} T = \{0\}.$ Let $v + \operatorname{null} T$ be an arbitrary element in $\operatorname{null}(T/\operatorname{null} T)$.

$$T/\operatorname{null} T(v + \operatorname{null} T) = Tv + \operatorname{null} T = 0 + \operatorname{null} T$$

thus $Tv \in \text{null } T$, and $Tv \in \text{null } T \cap \text{range } T = \{0\}$, thus Tv = 0. Therefore $v \in \text{null } T$. So, null (T/null T) = null T meaning that T/null T is injective.

 \Leftarrow

 $T/\operatorname{null} T$ is injective. Let $u \in \operatorname{null} T \cap \operatorname{range} T$ be an arbitrary element s.t. u = Tv for a $v \in V$. Then

$$(T/\operatorname{null} T)(v+\operatorname{null} T)=Tv+\operatorname{null} T=\underbrace{u}_{\in\operatorname{null} T}+\operatorname{null} T=\operatorname{null} T$$

injectivity results in v + null T = null T, so $v \in \text{null } T$. Thus y = Tv = 0.