ECE750T-28: Computer-aided Reasoning for Software Engineering

Lecture 13: Decision Procedure for the Theory of Rationals

Vijay Ganesh (Original notes from Isil Dillig)

Theory of Rationals $T_{\mathbb{Q}}$

 \blacktriangleright Earlier, we looked at signature and axioms of $\mathit{T}_{\mathbb{Q}}$

Theory of Rationals $T_{\mathbb{O}}$

- lacktriangle Earlier, we looked at signature and axioms of $T_{\mathbb{Q}}$
- ► Signature

$$\Sigma_{\mathbb{Q}}: \{0, 1, +, -, =, \geq\}$$

Theory of Rationals $T_{\mathbb{Q}}$

- lacktriangle Earlier, we looked at signature and axioms of $T_{\mathbb Q}$
- Signature

$$\Sigma_{\mathbb{Q}}:\ \{0,\ 1,\ +,\ -,\ =,\ \geq\}$$

 Axioms interpret (i.e., give meanining) to all object, function, and relation constants

Theory of Rationals $T_{\mathbb{Q}}$

- lacktriangle Earlier, we looked at signature and axioms of $T_{\mathbb Q}$
- Signature

$$\Sigma_{\mathbb{Q}}: \{0, 1, +, -, =, \geq\}$$

- Axioms interpret (i.e., give meanining) to all object, function, and relation constants
- ${\blacktriangleright}$ Today: Talk about how to decide satisfiability of the quantifier-free fragment of $T_{\mathbb{Q}}$

 $ightharpoonup T_{\mathbb{O}}$ has too many axioms, so we won't discuss them

- $lacktriangledown T_{\mathbb Q}$ has too many axioms, so we won't discuss them
- ▶ Distinction between $T_{\mathbb{Z}}$ and $T_{\mathbb{Q}}$: Rational numbers do not satisfy the more restrictive $T_{\mathbb{Z}}$ axioms

- $ightharpoonup T_{\mathbb{O}}$ has too many axioms, so we won't discuss them
- \blacktriangleright Distinction between $T_{\mathbb{Z}}$ and $T_{\mathbb{Q}}$: Rational numbers do not satisfy the more restrictive $T_{\mathbb{Z}}$ axioms
- **Example:** $\exists x. (1+1)x = 1+1+1$ Is this formula valid in $T_{\mathbb{Q}}$?

- lacktriangledown $T_{\mathbb{Q}}$ has too many axioms, so we won't discuss them
- ▶ Distinction between $T_{\mathbb{Z}}$ and $T_{\mathbb{Q}}$: Rational numbers do not satisfy the more restrictive $T_{\mathbb{Z}}$ axioms
- **Example:** $\exists x. (1+1)x = 1+1+1$ Is this formula valid in $T_{\mathbb{Q}}$? Yes

- $lacktriangledown T_{\mathbb Q}$ has too many axioms, so we won't discuss them
- ▶ Distinction between $T_{\mathbb{Z}}$ and $T_{\mathbb{Q}}$: Rational numbers do not satisfy the more restrictive $T_{\mathbb{Z}}$ axioms
- **Example:** $\exists x. (1+1)x = 1+1+1$ Is this formula valid in $T_{\mathbb{Q}}$? Yes
- ▶ Is it valid in $T_{\mathbb{Z}}$?

- $lacktriangledown T_{\mathbb Q}$ has too many axioms, so we won't discuss them
- ▶ Distinction between $T_{\mathbb{Z}}$ and $T_{\mathbb{Q}}$: Rational numbers do not satisfy the more restrictive $T_{\mathbb{Z}}$ axioms
- **Example:** $\exists x. \ (1+1)x = 1+1+1$ Is this formula valid in $T_{\mathbb{Q}}$? Yes
- ▶ Is it valid in $T_{\mathbb{Z}}$? No

- $lacktriangledown T_{\mathbb Q}$ has too many axioms, so we won't discuss them
- ▶ Distinction between $T_{\mathbb{Z}}$ and $T_{\mathbb{Q}}$: Rational numbers do not satisfy the more restrictive $T_{\mathbb{Z}}$ axioms
- **Example:** $\exists x. (1+1)x = 1+1+1$ Is this formula valid in $T_{\mathbb{Q}}$? Yes
- ▶ Is it valid in $T_{\mathbb{Z}}$? No
- ▶ In general, every formula valid in $T_{\mathbb{Z}}$ is valid in $T_{\mathbb{Q}}$, but not vice versa

Decidability and Complexity Results for $\mathit{T}_{\mathbb{Q}}$

► Full theory of rationals is decidable

Decidability and Complexity Results for $T_{\mathbb{Q}}$

- ► Full theory of rationals is decidable
- ightharpoonup High-time complexity: $O(2^{2^{kn}})$ (k some positive integer)

Decidability and Complexity Results for $T_{\mathbb{Q}}$

- ► Full theory of rationals is decidable
- ▶ High-time complexity: $O(2^{2^{kn}})$ (k some positive integer)
- ► Conjunctive quantifier-free fragment efficiently decidable (polynomial time)

 \blacktriangleright We'll only consider quantifier free conjunctive $T_{\mathbb Q}$ formulas (i.e., no disjunctions)

- We'll only consider quantifier free conjunctive $T_{\mathbb{Q}}$ formulas (i.e., no disjunctions)
- ▶ Not a big restriction because if we have a decision procedure for conjunctive fragment, we can decide satisfiability of any quantifier-free formula (e.g., by converting to DNF)

- We'll only consider quantifier free conjunctive $T_{\mathbb{Q}}$ formulas (i.e., no disjunctions)
- Not a big restriction because if we have a decision procedure for conjunctive fragment, we can decide satisfiability of any quantifier-free formula (e.g., by converting to DNF)
- ▶ Most common technique for deciding satisfiability in $T_{\mathbb{Q}}$ is Simplex algorithm

- \blacktriangleright We'll only consider quantifier free conjunctive $T_{\mathbb Q}$ formulas (i.e., no disjunctions)
- Not a big restriction because if we have a decision procedure for conjunctive fragment, we can decide satisfiability of any quantifier-free formula (e.g., by converting to DNF)
- ▶ Most common technique for deciding satisfiability in $T_{\mathbb{Q}}$ is Simplex algorithm
- Simplex algorithm developed by Dantzig in 1949 for solving linear programming problems

- \blacktriangleright We'll only consider quantifier free conjunctive $T_{\mathbb Q}$ formulas (i.e., no disjunctions)
- Not a big restriction because if we have a decision procedure for conjunctive fragment, we can decide satisfiability of any quantifier-free formula (e.g., by converting to DNF)
- ▶ Most common technique for deciding satisfiability in $T_{\mathbb{Q}}$ is Simplex algorithm
- Simplex algorithm developed by Dantzig in 1949 for solving linear programming problems
- Since deciding satisfiability of qff conjunctive formulas is a special case of linear programming, we can use Simplex

The Plan

► Overview of linear programming

The Plan

- Overview of linear programming
- Satisfiability as linear programming

The Plan

- Overview of linear programming
- Satisfiability as linear programming
- ► Simplex algorithm

Linear Programming

▶ In a linear programming (LP) problem, we have an $m \times n$ matrix A, an m-dimensional vector \vec{b} , and n-dimensional vector \vec{c}

Linear Programming

- ▶ In a linear programming (LP) problem, we have an $m \times n$ matrix A, an m-dimensional vector \vec{b} , and n-dimensional vector \vec{c}
- \blacktriangleright Want to find a solution for \vec{x} maximizing objective function

$$\vec{c}^T \vec{x}$$

subject to linear inequality constraint

$$A\vec{x} \leq \vec{b}$$

Linear Programming

- ▶ In a linear programming (LP) problem, we have an $m \times n$ matrix A, an m-dimensional vector \vec{b} , and n-dimensional vector \vec{c}
- ▶ Want to find a solution for \vec{x} maximizing objective function

$$\vec{c}^T \vec{x}$$

subject to linear inequality constraint

$$A\vec{x} \leq \vec{b}$$

Very important problem; applications in airline scheduling, transportation, telecommunications, finance, production management, marketing, networking, compilers . . .

For $m \times n$ matrix A, the system $A\vec{x} \leq \vec{b}$ forms a convex polytope in n-dimensional space

- For $m \times n$ matrix A, the system $A\vec{x} \leq \vec{b}$ forms a convex polytope in n-dimensional space
- ▶ Polytope is generalization of polyhedron from 3-dim space to higher dimensional space

- For $m \times n$ matrix A, the system $A\vec{x} \leq \vec{b}$ forms a convex polytope in n-dimensional space
- ▶ Polytope is generalization of polyhedron from 3-dim space to higher dimensional space
- ▶ Convexity: For all pairs of points $\vec{v_1}, \vec{v_2}$ and for any $\lambda \in [0,1]$, the point $\lambda \vec{v_1} + (1-\lambda)\vec{v_2}$ also lies in polytope

- For $m \times n$ matrix A, the system $A\vec{x} \leq \vec{b}$ forms a convex polytope in n-dimensional space
- ▶ Polytope is generalization of polyhedron from 3-dim space to higher dimensional space
- ▶ Convexity: For all pairs of points $\vec{v_1}, \vec{v_2}$ and for any $\lambda \in [0,1]$, the point $\lambda \vec{v_1} + (1-\lambda)\vec{v_2}$ also lies in polytope

- For $m \times n$ matrix A, the system $A\vec{x} \leq \vec{b}$ forms a convex polytope in n-dimensional space
- ▶ Polytope is generalization of polyhedron from 3-dim space to higher dimensional space
- ▶ Convexity: For all pairs of points $\vec{v_1}, \vec{v_2}$ and for any $\lambda \in [0,1]$, the point $\lambda \vec{v_1} + (1-\lambda)\vec{v_2}$ also lies in polytope
- ▶ Goal of linear programming: Find a point that (i) lies inside the polytope, and (ii) maximizes the value of $\vec{c}^T\vec{x}$

▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{ccc} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{rcl} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

• Is (0,0) a feasible solution?

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{rcl} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

▶ Is (0,0) a feasible solution? No

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{ccc} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

- ▶ Is (0,0) a feasible solution? No
- ▶ What about (-2,1)?

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{ccc} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

- ▶ Is (0,0) a feasible solution? No
- ▶ What about (-2,1)? Yes

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{ccc} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

- ▶ Is (0,0) a feasible solution? No
- ▶ What about (-2,1)? Yes
- For a given solution for \vec{x} , the corresponding value of objective function $\vec{c}^T \vec{x}$ called objective value

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{rcl} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

- ▶ Is (0,0) a feasible solution? No
- ▶ What about (-2,1)? Yes
- For a given solution for \vec{x} , the corresponding value of objective function $\vec{c}^T \vec{x}$ called objective value
- ▶ What is objective value for (-2,1)?

- ▶ In LP, a value of \vec{x} that satisfies constraints $A\vec{x} \leq \vec{b}$ called feasible solution; otherwise, called infeasible solution
- **Example:** Maximize 2y x subject to:

$$\begin{array}{ccc} x+y & \leq & 3 \\ 2x-y & \leq & -5 \end{array}$$

- ▶ Is (0,0) a feasible solution? No
- ▶ What about (-2,1)? Yes
- For a given solution for \vec{x} , the corresponding value of objective function $\vec{c}^T \vec{x}$ called objective value
- ▶ What is objective value for (-2,1)? 4

Linear Programming Lingo, cont

 A feasible solution whose objective value is maximum over all feasible solutions called optimal solution

Linear Programming Lingo, cont

- A feasible solution whose objective value is maximum over all feasible solutions called optimal solution
- ▶ If a linear program has no feasible solutions, the linear program is infeasible

Linear Programming Lingo, cont

- A feasible solution whose objective value is maximum over all feasible solutions called optimal solution
- ▶ If a linear program has no feasible solutions, the linear program is infeasible
- ▶ If optimal solution is ∞ , then problem is called unbounded

▶ Feasible solution is a point within the polytope

- ▶ Feasible solution is a point within the polytope
- \blacktriangleright The linear programming problem is infeasible if the polytope defined by $A\vec{x} \leq \vec{b}$ is empty

- ► Feasible solution is a point within the polytope
- \blacktriangleright The linear programming problem is infeasible if the polytope defined by $A\vec{x} \leq \vec{b}$ is empty
- An LP problem is unbounded if the polytope is open in the direction of the objective function

- ► Feasible solution is a point within the polytope
- \blacktriangleright The linear programming problem is infeasible if the polytope defined by $A\vec{x} \leq \vec{b}$ is empty
- An LP problem is unbounded if the polytope is open in the direction of the objective function
- ▶ Question: If polytope is not closed, does this mean optimal solution is ∞ ?

- ► Feasible solution is a point within the polytope
- \blacktriangleright The linear programming problem is infeasible if the polytope defined by $A\vec{x} \leq \vec{b}$ is empty
- An LP problem is unbounded if the polytope is open in the direction of the objective function
- ▶ Question: If polytope is not closed, does this mean optimal solution is ∞ ?

- ► Feasible solution is a point within the polytope
- \blacktriangleright The linear programming problem is infeasible if the polytope defined by $A\vec{x} \leq \vec{b}$ is empty
- An LP problem is unbounded if the polytope is open in the direction of the objective function
- ► Question: If polytope is not closed, does this mean optimal solution is ∞? No!

- ► Feasible solution is a point within the polytope
- \blacktriangleright The linear programming problem is infeasible if the polytope defined by $A\vec{x} \leq \vec{b}$ is empty
- ► An LP problem is unbounded if the polytope is open in the direction of the objective function
- ightharpoonup Question: If polytope is not closed, does this mean optimal solution is ∞ ? No!
- lacktriangle Since the polytope defined by $A ec{x} \leq ec{b}$ is convex, the optimal solution for bounded LP problem must lie on exterior boundary of polytope

▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

$$\vec{a}^T \vec{x} \ge c \implies$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

$$\vec{a}^T \vec{x} \ge c \quad \Rightarrow \quad -\vec{a}^T \vec{x} \le -c$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

$$\vec{a}^T \vec{x} \ge c \quad \Rightarrow \quad -\vec{a}^T \vec{x} \le -c$$

$$\vec{a}^T \vec{x} < c \quad \Rightarrow$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

▶ First, rewrite it as equisat formula containing only ≤ and >

$$\vec{a}^T \vec{x} \ge c \quad \Rightarrow \quad -\vec{a}^T \vec{x} \le -c$$

$$\vec{a}^T \vec{x} < c \quad \Rightarrow \quad \vec{a}^T \vec{x} + y \le c \land y > 0$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert $T_{\mathbb{Q}}$ formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

$$\begin{array}{lll} \vec{a}^T \vec{x} \geq c & \Rightarrow & -\vec{a}^T \vec{x} \leq -c \\ \vec{a}^T \vec{x} < c & \Rightarrow & \vec{a}^T \vec{x} + y \leq c \wedge y > 0 \\ \vec{a}^T \vec{x} = c & \Rightarrow & \end{array}$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert T_Q formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

$$\begin{aligned} \vec{a}^T \vec{x} &\geq c &\Rightarrow & -\vec{a}^T \vec{x} \leq -c \\ \vec{a}^T \vec{x} &< c &\Rightarrow & \vec{a}^T \vec{x} + \underline{y} \leq c \land \underline{y} > \underline{0} \\ \vec{a}^T \vec{x} &= c &\Rightarrow & \vec{a}^T \vec{x} \leq c \land -\vec{a}^T \vec{x} \leq -c \end{aligned}$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert T_Q formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

$$\vec{a}^T \vec{x} \ge c \quad \Rightarrow \quad -\vec{a}^T \vec{x} \le -c$$

$$\vec{a}^T \vec{x} < c \quad \Rightarrow \quad \vec{a}^T \vec{x} + \mathbf{y} \le c \land \mathbf{y} > \mathbf{0}$$

$$\vec{a}^T \vec{x} = c \quad \Rightarrow \quad \vec{a}^T \vec{x} \le c \land -\vec{a}^T \vec{x} \le -c$$

$$\vec{a}^T \vec{x} \ne c \quad \Rightarrow$$

- ▶ How do we determine $T_{\mathbb{Q}}$ satisfiability using LP?
- ▶ First, convert T_Q formula to NNF.
- ▶ In this form, every atomic formula is of the form:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \bowtie c \quad (\bowtie \in \{=, \neq, \geq, <\})$$

$$\begin{split} \vec{a}^T \vec{x} &\geq c &\Rightarrow & -\vec{a}^T \vec{x} \leq -c \\ \vec{a}^T \vec{x} &< c &\Rightarrow & \vec{a}^T \vec{x} + \mathbf{y} \leq c \land \mathbf{y} > 0 \\ \vec{a}^T \vec{x} &= c &\Rightarrow & \vec{a}^T \vec{x} \leq c \land -\vec{a}^T \vec{x} \leq -c \\ \vec{a}^T \vec{x} &\neq c &\Rightarrow & (\vec{a}^T \vec{x} + \mathbf{y} \leq c \land \mathbf{y} > 0) \lor \\ (-\vec{a}^T \vec{x} + \mathbf{y} \leq -c \land \mathbf{y} > 0) \end{split}$$

Current formula in NNF and no negations

- Current formula in NNF and no negations
- ▶ Each atomic formula is one of three forms:

- Current formula in NNF and no negations
- ▶ Each atomic formula is one of three forms:
 - $1. \ a_{i1}x_1 + \ldots + a_{in}x_n \le b_i$

- Current formula in NNF and no negations
- ▶ Each atomic formula is one of three forms:
 - $1. \ a_{i1}x_1 + \ldots + a_{in}x_n \le b_i$
 - $2. \ \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + y \leq \beta_i$

- Current formula in NNF and no negations
- ▶ Each atomic formula is one of three forms:
 - $1. \ a_{i1}x_1 + \ldots + a_{in}x_n \le b_i$
 - $2. \ \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + y \leq \beta_i$
 - 3. y > 0

- Current formula in NNF and no negations
- ▶ Each atomic formula is one of three forms:
 - $1. \ a_{i1}x_1 + \ldots + a_{in}x_n \le b_i$
 - $2. \ \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + y \leq \beta_i$
 - 3. y > 0
- Next, convert to DNF: Formula is satisfiable iff any of the clauses satisfiable

- Current formula in NNF and no negations
- Each atomic formula is one of three forms:

$$1. \ a_{i1}x_1 + \ldots + a_{in}x_n \le b_i$$

$$2. \ \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + y \le \beta_i$$

3.
$$y > 0$$

- Next, convert to DNF: Formula is satisfiable iff any of the clauses satisfiable
- Thus, want to formulate each clause as a linear program

► Each clause is of the following form:

► How can we decide whether this constraint is satisfiable by formulating it as an LP problem?

Each clause is of the following form:

- ▶ How can we decide whether this constraint is satisfiable by formulating it as an LP problem?
- ▶ This constraint is satisfiable iff the optimal solution of the following LP problem is strictly positive:

```
Maximize y
Subject to: \bigwedge a_{i1}x_1 + \ldots + a_{in}x_n \leq b_i \wedge \bigwedge \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + y \leq \beta_i
```

Each clause is of the following form:

- ▶ How can we decide whether this constraint is satisfiable by formulating it as an LP problem?
- ▶ This constraint is satisfiable iff the optimal solution of the following LP problem is strictly positive:

```
Maximize y
Subject to: \bigwedge a_{i1}x_1 + \ldots + a_{in}x_n \leq b_i \wedge \bigwedge \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + y \leq \beta_i
```

► Why?

Deciding $T_{\mathbb{Q}}$ as Linear Program, cont

Each clause is of the following form:

- How can we decide whether this constraint is satisfiable by formulating it as an LP problem?
- This constraint is satisfiable iff the optimal solution of the following LP problem is strictly positive:

```
Maximize y Subject to: \bigwedge a_{i1}x_1 + \ldots + a_{in}x_n \leq b_i \wedge \bigwedge \alpha_{i1}x_1 + \ldots + \alpha_{in}x_n + y \leq \beta_i
```

▶ Why? If maximum value of y positive, we know y>0 can be satisfied. If maximum value is ≤ 0 , y>0 cannot be satisfied.

▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.

- ▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- ▶ Hence, we'll focus on how to solve LP problems

- ▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- ▶ Hence, we'll focus on how to solve LP problems
- ► Three popular methods for solving LP problems:

- ▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- ▶ Hence, we'll focus on how to solve LP problems
- ▶ Three popular methods for solving LP problems:
 - 1. Ellipsoid method (Khachian, 1979)

- ▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- ▶ Hence, we'll focus on how to solve LP problems
- ► Three popular methods for solving LP problems:
 - 1. Ellipsoid method (Khachian, 1979)
 - 2. Interior-point algorithm (Karmarkar, 1984)

- ▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- ▶ Hence, we'll focus on how to solve LP problems
- ► Three popular methods for solving LP problems:
 - 1. Ellipsoid method (Khachian, 1979)
 - 2. Interior-point algorithm (Karmarkar, 1984)
 - 3. Simplex algorithm (Dantzig, 1949)

- ▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- ▶ Hence, we'll focus on how to solve LP problems
- ▶ Three popular methods for solving LP problems:
 - 1. Ellipsoid method (Khachian, 1979)
 - 2. Interior-point algorithm (Karmarkar, 1984)
 - 3. Simplex algorithm (Dantzig, 1949)
- Among these, ellipsoid and interior-point method are polynomial-time, but Simplex is worst-case exponential

- ▶ Thus, we can formulate satisfiability of every qff conjunctive $T_{\mathbb{Q}}$ formula as a linear programming problem.
- ▶ Hence, we'll focus on how to solve LP problems
- ► Three popular methods for solving LP problems:
 - 1. Ellipsoid method (Khachian, 1979)
 - 2. Interior-point algorithm (Karmarkar, 1984)
 - 3. Simplex algorithm (Dantzig, 1949)
- Among these, ellipsoid and interior-point method are polynomial-time, but Simplex is worst-case exponential
- Despite this, Simplex remains most popular and performs better for most problems of interest

► To apply Simplex, we have to transform linear inequality system into standard form and then into slack form

- To apply Simplex, we have to transform linear inequality system into standard form and then into slack form
- ► Standard form:

- To apply Simplex, we have to transform linear inequality system into standard form and then into slack form
- ► Standard form:

- To apply Simplex, we have to transform linear inequality system into standard form and then into slack form
- ► Standard form:

$$\begin{array}{ll} \text{Maximize } \vec{c}^T \vec{x} \\ \text{Subject to:} & A \vec{x} \leq \vec{b} \\ \vec{x} \geq 0 \end{array}$$

 Good news: We can convert every LP problem into an equisatisfiable standard form representation

- To apply Simplex, we have to transform linear inequality system into standard form and then into slack form
- ► Standard form:

$$\begin{array}{ll} \text{Maximize } \vec{c}^T \vec{x} \\ \text{Subject to:} & A \vec{x} \leq \vec{b} \\ \vec{x} \geq 0 \end{array}$$

- Good news: We can convert every LP problem into an equisatisfiable standard form representation
- \blacktriangleright Equisat. means original problem has optimal objective value c iff problem in standard form has optimal objective value c

 Main idea: Any negative variable can be written as difference of two non-negative integers

- Main idea: Any negative variable can be written as difference of two non-negative integers
- ightharpoonup Suppose variable x_i does not have non-negativity constraint

- Main idea: Any negative variable can be written as difference of two non-negative integers
- ightharpoonup Suppose variable x_i does not have non-negativity constraint
- lacktriangleright For each such variable, introduce two new variables x_i' and x_i''

- ► Main idea: Any negative variable can be written as difference of two non-negative integers
- ightharpoonup Suppose variable x_i does not have non-negativity constraint
- ightharpoonup For each such variable, introduce two new variables x_i' and x_i''
- Add non-negativity constraints: $x_i' \geq 0$ and $x_i'' \geq 0$

- Main idea: Any negative variable can be written as difference of two non-negative integers
- ightharpoonup Suppose variable x_i does not have non-negativity constraint
- ightharpoonup For each such variable, introduce two new variables x_i' and x_i''
- Add non-negativity constraints: $x_i' \geq 0$ and $x_i'' \geq 0$
- **Express** x_i as $x_i' x_i''$ by substituting $x_i' x_i''$ for each occurrence of x_i

- Main idea: Any negative variable can be written as difference of two non-negative integers
- ightharpoonup Suppose variable x_i does not have non-negativity constraint
- ightharpoonup For each such variable, introduce two new variables x_i' and x_i''
- Add non-negativity constraints: $x_i' \geq 0$ and $x_i'' \geq 0$
- **Express** x_i as $x_i' x_i''$ by substituting $x_i' x_i''$ for each occurrence of x_i
- ▶ Observe: Although x_i' and x_i'' are non-negative, $x_i' x_i''$ can be negative

- Main idea: Any negative variable can be written as difference of two non-negative integers
- ightharpoonup Suppose variable x_i does not have non-negativity constraint
- ightharpoonup For each such variable, introduce two new variables x_i' and x_i''
- ▶ Add non-negativity constraints: $x_i' \ge 0$ and $x_i'' \ge 0$
- **Express** x_i as $x_i' x_i''$ by substituting $x_i' x_i''$ for each occurrence of x_i
- ▶ Observe: Although x_i' and x_i'' are non-negative, $x_i' x_i''$ can be negative
- Thus, transformation yields equisatisfiable linear program and is in standard form

Standard Form Example

Consider the following linear program:

$$\begin{array}{ll} \text{Maximize} & 2x_1-3x_2 & x_1+x_2 \leq 7 \\ \text{Subject to:} & -x_1-x_2 \leq -7 \\ & x_1-2x_2 \leq 4 \\ & x_1 \geq 0 \end{array}$$

Standard Form Example

Consider the following linear program:

$$\begin{array}{ll} \text{Maximize} & 2x_1-3x_2 \\ \text{Subject to:} & x_1+x_2 \leq 7 \\ & -x_1-x_2 \leq -7 \\ & x_1-2x_2 \leq 4 \\ & x_1 \geq 0 \end{array}$$

▶ Variable x_2 does not have non-negativity constraint; thus rewrite it as $x_2' - x_2''$

Standard Form Example

Consider the following linear program:

$$\begin{array}{ll} \text{Maximize} & 2x_1-3x_2 \\ \text{Subject to:} & x_1+x_2 \leq 7 \\ & -x_1-x_2 \leq -7 \\ & x_1-2x_2 \leq 4 \\ & x_1 \geq 0 \end{array}$$

- ▶ Variable x_2 does not have non-negativity constraint; thus rewrite it as $x_2' x_2''$
- ▶ Equisatisfiable system in standard form:

Maximize
$$2x_1 - 3x_2' + 3x_2''$$

Subject to:

$$\begin{array}{c} x_1 + x_2' - x_2'' \leq 7 \\ -x_1 - x_2' + x_2'' \leq -7 \\ x_1 - 2x_2' + 2x_2'' \leq 4 \\ x_1, x_2', x_2'' \geq 0 \end{array}$$

► To apply Simplex, we need inequalities to be in slack form

- ► To apply Simplex, we need inequalities to be in slack form
- In slack form, we only have equalities; the only inequality allowed is non-negativity constraints

- ► To apply Simplex, we need inequalities to be in slack form
- In slack form, we only have equalities; the only inequality allowed is non-negativity constraints
- ▶ For each inequality $A_i\vec{x} \leq b_i$, introduce a new slack variable s_i

- ► To apply Simplex, we need inequalities to be in slack form
- In slack form, we only have equalities; the only inequality allowed is non-negativity constraints
- ▶ For each inequality $A_i \vec{x} \leq b_i$, introduce a new slack variable s_i
- Slack variables measure the difference (i.e., "slack") between left-hand and right-hand side

- ► To apply Simplex, we need inequalities to be in slack form
- In slack form, we only have equalities; the only inequality allowed is non-negativity constraints
- ▶ For each inequality $A_i \vec{x} \leq b_i$, introduce a new slack variable s_i
- Slack variables measure the difference (i.e., "slack") between left-hand and right-hand side
- ▶ Rewrite inequality as equality $s_i = b_i A_i x$ and introduce non-negativity constraint $s_i \ge 0$

- ► To apply Simplex, we need inequalities to be in slack form
- In slack form, we only have equalities; the only inequality allowed is non-negativity constraints
- ▶ For each inequality $A_i \vec{x} \leq b_i$, introduce a new slack variable s_i
- Slack variables measure the difference (i.e., "slack") between left-hand and right-hand side
- Properties Rewrite inequality as equality $s_i = b_i A_i x$ and introduce non-negativity constraint $s_i \geq 0$
- ▶ New LP problem is equisatisfiable to the original one and in slack form

Consider LP problem from previous example:

$$\begin{array}{ll} \text{Maximize} & 2x_1 - 3x_2 + 3x_3 \\ \text{Subject to:} & x_1 + x_2 - x_3 \leq 7 \\ & -x_1 - x_2 + x_3 \leq -7 \\ & x_1 - 2x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

Consider LP problem from previous example:

$$\begin{array}{ll} \text{Maximize} & 2x_1 - 3x_2 + 3x_3 \\ \text{Subject to:} & x_1 + x_2 - x_3 \leq 7 \\ & -x_1 - x_2 + x_3 \leq -7 \\ & x_1 - 2x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

▶ In slack form:

Maximize
$$2x_1 - 3x_2 + 3x_3$$

Subject to:

Consider LP problem from previous example:

$$\begin{array}{ll} \text{Maximize} & 2x_1 - 3x_2 + 3x_3 \\ \text{Subject to:} & x_1 + x_2 - x_3 \leq 7 \\ & -x_1 - x_2 + x_3 \leq -7 \\ & x_1 - 2x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

▶ In slack form:

$$\begin{array}{ll} \text{Maximize} & 2x_1-3x_2+3x_3\\ \text{Subject to:} & x_4=7-x_1-x_2+x_3 \end{array}$$

Consider LP problem from previous example:

$$\begin{array}{ll} \text{Maximize} & 2x_1 - 3x_2 + 3x_3 \\ \text{Subject to:} & x_1 + x_2 - x_3 \leq 7 \\ & -x_1 - x_2 + x_3 \leq -7 \\ & x_1 - 2x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

In slack form:

$$\begin{array}{ll} \text{Maximize} & 2x_1 - 3x_2 + 3x_3 \\ \text{Subject to:} & x_4 = 7 - x_1 - x_2 + x_3 \\ & x_5 = -7 + x_1 + x_2 - x_3 \end{array}$$

Consider LP problem from previous example:

$$\begin{array}{ll} \text{Maximize} & 2x_1 - 3x_2 + 3x_3 \\ \text{Subject to:} & x_1 + x_2 - x_3 \leq 7 \\ & -x_1 - x_2 + x_3 \leq -7 \\ & x_1 - 2x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

In slack form:

$$\begin{array}{ll} \text{Maximize} & 2x_1-3x_2+3x_3\\ \text{Subject to:} & x_4=7-x_1-x_2+x_3\\ & x_5=-7+x_1+x_2-x_3\\ & x_6=4-x_1+2x_2-2x_3 \end{array}$$

Consider LP problem from previous example:

$$\begin{array}{ll} \text{Maximize} & 2x_1 - 3x_2 + 3x_3 \\ \text{Subject to:} & x_1 + x_2 - x_3 \leq 7 \\ & -x_1 - x_2 + x_3 \leq -7 \\ & x_1 - 2x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

In slack form:

$$\begin{array}{ll} \text{Maximize} & 2x_1-3x_2+3x_3\\ \text{Subject to:} & x_4=7-x_1-x_2+x_3\\ & x_5=-7+x_1+x_2-x_3\\ & x_6=4-x_1+2x_2-2x_3\\ & x_1,x_2,x_3,x_4,x_5,x_6\geq 0 \end{array}$$

 In slack form, there is exactly one variable on the left hand side of equalities

- In slack form, there is exactly one variable on the left hand side of equalities
- Variables appearing on the left-hand side called basic variables

- In slack form, there is exactly one variable on the left hand side of equalities
- Variables appearing on the left-hand side called basic variables
- Variables appearing on RHS called non-basic variables

- In slack form, there is exactly one variable on the left hand side of equalities
- Variables appearing on the left-hand side called basic variables
- ► Variables appearing on RHS called non-basic variables
- ▶ Invariant: Only non-basic variables can appear in the objective function

- In slack form, there is exactly one variable on the left hand side of equalities
- Variables appearing on the left-hand side called basic variables
- ► Variables appearing on RHS called non-basic variables
- ▶ Invariant: Only non-basic variables can appear in the objective function
- Initially, all basic variables are slack variables, but this will change as algorithm proceeds

 \triangleright We'll denote the set of basic variables by B and non-basic variables by N.

- \blacktriangleright We'll denote the set of basic variables by B and non-basic variables by N.
- ▶ Then we'll write the slack form as a set of equations of the following form:

$$z = v + \sum_{x_j \in N} c_j x_j$$
 (objective function)

- \triangleright We'll denote the set of basic variables by B and non-basic variables by N.
- ▶ Then we'll write the slack form as a set of equations of the following form:

$$z = v + \sum_{x_j \in N} c_j x_j$$
 (objective function)
 $x_i = b_i - \sum_{x_i \in N} a_{ij} x_j$ (for every $x_i \in B$)

- \blacktriangleright We'll denote the set of basic variables by B and non-basic variables by N.
- ▶ Then we'll write the slack form as a set of equations of the following form:

$$egin{array}{lcl} z & = & v + \sum\limits_{x_j \in N} c_j x_j & ext{(objective function)} \\ x_i & = & b_i - \sum\limits_{x_j \in N} a_{ij} x_j & ext{(for every } x_i \in B) \end{array}$$

 There are implicit non-negativity constraints on all variables, but we omit them

- \blacktriangleright We'll denote the set of basic variables by B and non-basic variables by N.
- ▶ Then we'll write the slack form as a set of equations of the following form:

$$egin{array}{lcl} z & = & v + \sum\limits_{x_j \in N} c_j x_j & ext{(objective function)} \\ & x_i & = & b_i - \sum\limits_{x_j \in N} a_{ij} x_j & ext{(for every } x_i \in B) \end{array}$$

- There are implicit non-negativity constraints on all variables, but we omit them
- ▶ Question: Given original matrix A is $m \times n$, what is |B|?

- \blacktriangleright We'll denote the set of basic variables by B and non-basic variables by N.
- ▶ Then we'll write the slack form as a set of equations of the following form:

$$egin{array}{lcl} z & = & v + \sum\limits_{x_j \in N} c_j x_j & ext{(objective function)} \\ & x_i & = & b_i - \sum\limits_{x_j \in N} a_{ij} x_j & ext{(for every } x_i \in B) \end{array}$$

- There are implicit non-negativity constraints on all variables, but we omit them
- ▶ Question: Given original matrix A is $m \times n$, what is |B|? m

▶ For each LP problem in slack form, there is a basic solution

- ► For each LP problem in slack form, there is a basic solution
- ▶ To obtain basic solution, set all non-basic variables to zero

- ► For each LP problem in slack form, there is a basic solution
- ▶ To obtain basic solution, set all non-basic variables to zero
- ► Compute values of basic variables on the left-hand side

- ▶ For each LP problem in slack form, there is a basic solution
- ▶ To obtain basic solution, set all non-basic variables to zero
- Compute values of basic variables on the left-hand side
- ▶ What is basic solution for this slack form?

$$\begin{array}{rcl} z & = & 3x_1 + x_2 + 2x_3 \\ x_4 & = & 30 - x_1 - x_2 - 3x_3 \\ x_5 & = & 24 - 2x_1 - 2x_2 - 5x_3 \\ x_6 & = & 36 - 4x_1 - x_2 - 2x_3 \end{array}$$

- ▶ For each LP problem in slack form, there is a basic solution
- ▶ To obtain basic solution, set all non-basic variables to zero
- Compute values of basic variables on the left-hand side
- ▶ What is basic solution for this slack form? (0,0,0,30,24,36)

$$\begin{array}{rcl} z & = & 3x_1 + x_2 + 2x_3 \\ x_4 & = & 30 - x_1 - x_2 - 3x_3 \\ x_5 & = & 24 - 2x_1 - 2x_2 - 5x_3 \\ x_6 & = & 36 - 4x_1 - x_2 - 2x_3 \end{array}$$

- ▶ For each LP problem in slack form, there is a basic solution
- ▶ To obtain basic solution, set all non-basic variables to zero
- Compute values of basic variables on the left-hand side
- ▶ What is basic solution for this slack form? (0,0,0,30,24,36)

$$\begin{array}{rcl} z & = & 3x_1 + x_2 + 2x_3 \\ x_4 & = & 30 - x_1 - x_2 - 3x_3 \\ x_5 & = & 24 - 2x_1 - 2x_2 - 5x_3 \\ x_6 & = & 36 - 4x_1 - x_2 - 2x_3 \end{array}$$

 Basic solution called feasible basic solution if it doesn't violate non-negativity constraints

Simplex algorithm has two phases:

- Simplex algorithm has two phases:
 - 1. Phase I: Compute a feasible basic solution, if one exists

- Simplex algorithm has two phases:
 - 1. Phase I: Compute a feasible basic solution, if one exists
 - 2. Phase II: Optimize value of objective function

- Simplex algorithm has two phases:
 - 1. Phase I: Compute a feasible basic solution, if one exists
 - 2. Phase II: Optimize value of objective function
- Understanding Phase I relies on understanding phase II

- Simplex algorithm has two phases:
 - 1. Phase I: Compute a feasible basic solution, if one exists
 - 2. Phase II: Optimize value of objective function
- Understanding Phase I relies on understanding phase II
- ▶ Thus, we'll talk about Phase II first

Starting with a feasible basic solution, each iteration rewrites one slack form into an equivalent slack form

- Starting with a feasible basic solution, each iteration rewrites one slack form into an equivalent slack form
- This rewriting is similar to Gaussian elimination: involves pivot operations on matrix

- Starting with a feasible basic solution, each iteration rewrites one slack form into an equivalent slack form
- This rewriting is similar to Gaussian elimination: involves pivot operations on matrix
- Geometrically, each iteration of Simplex "walks" from one vertex to an adjacent vertex until it reaches a local maximum

- Starting with a feasible basic solution, each iteration rewrites one slack form into an equivalent slack form
- This rewriting is similar to Gaussian elimination: involves pivot operations on matrix
- Geometrically, each iteration of Simplex "walks" from one vertex to an adjacent vertex until it reaches a local maximum
- By convexity, local optimum is global optimum; thus algorithm can safely stop when local maximum is reached

When rewriting one slack form to another, goal is to increase value of objective function associated with basic solution

- When rewriting one slack form to another, goal is to increase value of objective function associated with basic solution
- $lackbox{ Recall: Objective function is } z = v + \sum\limits_{x_j \in N} c_j x_j$

- ▶ When rewriting one slack form to another, goal is to increase value of objective function associated with basic solution
- $lackbox{ Recall: Objective function is } z = v + \sum\limits_{x_j \in N} c_j x_j$
- ▶ How can we increase value of z?

- ▶ When rewriting one slack form to another, goal is to increase value of objective function associated with basic solution
- lacktriangledown Recall: Objective function is $z=v+\sum\limits_{x_j\in N}c_jx_j$
- ▶ How can we increase value of z?
- ▶ If there is a term $c_j x_j$ with positive c_j , we can increase value of z by increasing x_j 's value, i.e., by making x_j a basic variable

- ▶ When rewriting one slack form to another, goal is to increase value of objective function associated with basic solution
- lacktriangledown Recall: Objective function is $z=v+\sum\limits_{x_j\in N}c_jx_j$
- ▶ How can we increase value of *z*?
- ▶ If there is a term $c_j x_j$ with positive c_j , we can increase value of z by increasing x_j 's value, i.e., by making x_j a basic variable
- ▶ What if there are no positive c_j 's?

- ▶ When rewriting one slack form to another, goal is to increase value of objective function associated with basic solution
- $lackbox{ Recall: Objective function is } z = v + \sum\limits_{x_j \in N} c_j x_j$
- ▶ How can we increase value of z?
- ▶ If there is a term $c_j x_j$ with positive c_j , we can increase value of z by increasing x_j 's value, i.e., by making x_j a basic variable
- ▶ What if there are no positive c_j 's?
- ▶ Then, we know we can't increase value of z, thus we are done!

ightharpoonup Suppose we can increase objective value, i.e., there exists a term c_jx_j with positive c_j

- ightharpoonup Suppose we can increase objective value, i.e., there exists a term c_jx_j with positive c_j
- ▶ We want to increase x_j 's value, but is there a limit on how much we can increase x_j ?

- ightharpoonup Suppose we can increase objective value, i.e., there exists a term c_jx_j with positive c_j
- We want to increase x_j's value, but is there a limit on how much we can increase x_j? In general, yes

- ightharpoonup Suppose we can increase objective value, i.e., there exists a term c_jx_j with positive c_j
- We want to increase x_j's value, but is there a limit on how much we can increase x_j? In general, yes
- ▶ Consider equality $x_i = b_i a_{ij}x_j \dots$

- ightharpoonup Suppose we can increase objective value, i.e., there exists a term c_jx_j with positive c_j
- We want to increase x_j's value, but is there a limit on how much we can increase x_j? In general, yes
- ▶ Consider equality $x_i = b_i a_{ij}x_j \dots$
- ▶ Observe: If a_{ij} is positive and we increase x_j beyond $\frac{b_i}{a_{ij}}$, x_i becomes negative and we violate constraints

- ightharpoonup Suppose we can increase objective value, i.e., there exists a term c_jx_j with positive c_j
- We want to increase x_j's value, but is there a limit on how much we can increase x_j? In general, yes
- ▶ Consider equality $x_i = b_i a_{ij}x_j \dots$
- ▶ Observe: If a_{ij} is positive and we increase x_j beyond $\frac{b_i}{a_{ij}}$, x_i becomes negative and we violate constraints
- ▶ Thus, the amount by which we can increase x_j is limited by the smallest $\frac{b_i}{a_{ij}}$ among all i's

- ightharpoonup Suppose we can increase objective value, i.e., there exists a term c_jx_j with positive c_j
- We want to increase x_j's value, but is there a limit on how much we can increase x_j? In general, yes
- ▶ Consider equality $x_i = b_i a_{ij}x_j \dots$
- ▶ Observe: If a_{ij} is positive and we increase x_j beyond $\frac{b_i}{a_{ij}}$, x_i becomes negative and we violate constraints
- ▶ Thus, the amount by which we can increase x_j is limited by the smallest $\frac{b_i}{a_{ij}}$ among all i's
- ▶ If there is no positive coefficient a_{ij} , we can increase x_j (and thus z) without limit \Rightarrow optimal solution $= \infty$

▶ Thus, given term $c_j x_j$ with positive c_j in objective function, we want to increase x_j as much as possible

- ▶ Thus, given term $c_j x_j$ with positive c_j in objective function, we want to increase x_j as much as possible
- ▶ To increase x_j as much as possible, we find equality that most severely restricts how much we can increase x_j

- ▶ Thus, given term $c_j x_j$ with positive c_j in objective function, we want to increase x_j as much as possible
- ▶ To increase x_j as much as possible, we find equality that most severely restricts how much we can increase x_i
- **Equality** that most severally restricts x_j has following characteristics:

- ▶ Thus, given term $c_j x_j$ with positive c_j in objective function, we want to increase x_j as much as possible
- ▶ To increase x_j as much as possible, we find equality that most severely restricts how much we can increase x_i
- **Equality** that most severally restricts x_i has following characteristics:
 - 1. x_j 's coefficient a_{ij} is positive (otherwise doesn't limit x_j)

- ▶ Thus, given term $c_j x_j$ with positive c_j in objective function, we want to increase x_j as much as possible
- ▶ To increase x_j as much as possible, we find equality that most severely restricts how much we can increase x_i
- **Equality** that most severally restricts x_j has following characteristics:
 - 1. x_j 's coefficient a_{ij} is positive (otherwise doesn't limit x_j)
 - 2. has smallest value of $\frac{b_i}{a_{ij}}$ (most severely restricting)

▶ Suppose equality with basic var. x_i is most restrictive for x_i

- ▶ Suppose equality with basic var. x_i is most restrictive for x_i
- ightharpoonup Swap roles of x_i and x_j by making x_j basic and x_i non-basic

- ightharpoonup Suppose equality with basic var. x_i is most restrictive for x_j
- ightharpoonup Swap roles of x_i and x_j by making x_j basic and x_i non-basic
- ▶ To do this, rewrite x_j in terms of x_i and plug this in to all other equations; this operation is called a pivot

- ightharpoonup Suppose equality with basic var. x_i is most restrictive for x_j
- ightharpoonup Swap roles of x_i and x_j by making x_j basic and x_i non-basic
- ▶ To do this, rewrite x_j in terms of x_i and plug this in to all other equations; this operation is called a pivot
- ▶ After performing this pivot operation, what is new value of x_j ?

- ightharpoonup Suppose equality with basic var. x_i is most restrictive for x_j
- ightharpoonup Swap roles of x_i and x_j by making x_j basic and x_i non-basic
- ▶ To do this, rewrite x_j in terms of x_i and plug this in to all other equations; this operation is called a pivot
- After performing this pivot operation, what is new value of x_j ? $\frac{b_i}{a_{ij}}$

- **Suppose** equality with basic var. x_i is most restrictive for x_j
- ightharpoonup Swap roles of x_i and x_j by making x_j basic and x_i non-basic
- ▶ To do this, rewrite x_j in terms of x_i and plug this in to all other equations; this operation is called a pivot
- After performing this pivot operation, what is new value of x_j ? $\frac{b_i}{a_{ij}}$
- Assuming b_i is non-zero, we have increased the value of x_j from 0 to $\frac{b_i}{a_{ij}}$

- **Suppose** equality with basic var. x_i is most restrictive for x_j
- ightharpoonup Swap roles of x_i and x_j by making x_j basic and x_i non-basic
- ▶ To do this, rewrite x_j in terms of x_i and plug this in to all other equations; this operation is called a pivot
- After performing this pivot operation, what is new value of x_j ? $\frac{b_i}{a_{ij}}$
- lacktriangle Assuming b_i is non-zero, we have increased the value of x_j from 0 to $rac{b_i}{a_{ij}}$
- ► Thus, after performing pivot we still have feasible solution but objective value is now greater

▶ Pivot operation exchanges a basic variable with a non-basic variable to increase objective value of basic solution

- Pivot operation exchanges a basic variable with a non-basic variable to increase objective value of basic solution
- ▶ Simplex repeats this pivot operation until one of two conditions hold:

- Pivot operation exchanges a basic variable with a non-basic variable to increase objective value of basic solution
- ▶ Simplex repeats this pivot operation until one of two conditions hold:
 - 1. All coefficients in objective function are negative ⇒ optimal solution found

- Pivot operation exchanges a basic variable with a non-basic variable to increase objective value of basic solution
- ▶ Simplex repeats this pivot operation until one of two conditions hold:
 - 1. All coefficients in objective function are negative \Rightarrow optimal solution found
 - 2. There exists a non-basic variable x_j with positive coefficient c_j in objective function, but all coefficients a_{ij} are negative \Rightarrow optimal solution $=\infty$

$$z = 3x_1 + x_2 + 2x_3
x_4 = 30 - x_1 - x_2 - 3x_3
x_5 = 24 - 2x_1 - 2x_2 - 5x_3
x_6 = 36 - 4x_1 - x_2 - 2x_3$$

How can we increase value of objective function?

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- How can we increase value of objective function?
- ▶ By increasing any of x_1, x_2, x_3 ; let's pick x_1

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- How can we increase value of objective function?
- ▶ By increasing any of x_1, x_2, x_3 ; let's pick x_1
- ▶ Which equality restricts *x*₁ the most?

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- How can we increase value of objective function?
- ▶ By increasing any of x_1, x_2, x_3 ; let's pick x_1
- Which equality restricts x_1 the most? x_6

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

- How can we increase value of objective function?
- ▶ By increasing any of x_1, x_2, x_3 ; let's pick x_1
- ▶ Which equality restricts x_1 the most? x_6
- ▶ Rewrite x_1 in terms of x_6 :

$$\begin{array}{rcl} z & = & 3x_1 + x_2 + 2x_3 \\ x_4 & = & 30 - x_1 - x_2 - 3x_3 \\ x_5 & = & 24 - 2x_1 - 2x_2 - 5x_3 \\ x_6 & = & 36 - 4x_1 - x_2 - 2x_3 \end{array}$$

- How can we increase value of objective function?
- ▶ By increasing any of x_1, x_2, x_3 ; let's pick x_1
- ▶ Which equality restricts x_1 the most? x_6
- ▶ Rewrite x_1 in terms of x_6 :

$$x_1 = 9 - \frac{1}{4}x_2 - \frac{1}{2}x_3 - \frac{1}{4}x_6$$

▶ Plug this in for x_1 in all other equations (i.e., pivot):

▶ How can we increase value of *z*?

- ▶ How can we increase value of *z*?
- ▶ Either by increasing x_2 or x_3 , but not x_6 ; let's pick x_3

- \blacktriangleright How can we increase value of z?
- ▶ Either by increasing x_2 or x_3 , but not x_6 ; let's pick x_3
- ▶ Which equality restricts *x*₃ the most?

- \blacktriangleright How can we increase value of z?
- ▶ Either by increasing x_2 or x_3 , but not x_6 ; let's pick x_3
- ▶ Which equality restricts x_3 the most? x_5

- ▶ How can we increase value of *z*?
- ▶ Either by increasing x_2 or x_3 , but not x_6 ; let's pick x_3
- ▶ Which equality restricts x_3 the most? x_5
- ▶ What is x_3 in terms of x_5, x_2, x_6 ?

- ▶ How can we increase value of *z*?
- ▶ Either by increasing x_2 or x_3 , but not x_6 ; let's pick x_3
- ▶ Which equality restricts x_3 the most? x_5
- ▶ What is x_3 in terms of x_5, x_2, x_6 ?

$$x_3 = \frac{3}{2} - \frac{3}{8}x_2 - \frac{1}{4}x_5 + \frac{1}{8}x_6$$

▶ New slack form after making x_3 basic, x_5 non-basic:

▶ New slack form after making x_3 basic, x_5 non-basic:

ightharpoonup Can we increase z?

▶ New slack form after making x_3 basic, x_5 non-basic:

▶ Can we increase z? Yes, increase x_2

▶ New slack form after making x_3 basic, x_5 non-basic:

- ightharpoonup Can we increase z? Yes, increase x_2
- ▶ Which equality restricts *x*₂ the most?

- ▶ Can we increase z? Yes, increase x_2
- ▶ Which equality restricts x₂ the most?
- x_4 does not restrict; x_2 restricts by 132, x_3 restricts by $4 \Rightarrow x_3$

- ▶ Can we increase z? Yes, increase x_2
- ▶ Which equality restricts x₂ the most?
- x_4 does not restrict; x_2 restricts by 132, x_3 restricts by $4 \Rightarrow x_3$
- ▶ Solve x_2 in terms of x_3 :

- ▶ Can we increase z? Yes, increase x_2
- ▶ Which equality restricts x₂ the most?
- x_4 does not restrict; x_2 restricts by 132, x_3 restricts by $4 \Rightarrow x_3$
- ▶ Solve *x*₂ in terms of *x*₃:

$$x_2 = 4 - \frac{8}{3}x_3 - \frac{2}{3}x_5 + \frac{1}{3}x_6$$

New slack form after making x_2 basic, x_3 non-basic:

► Can we increase objective value?

New slack form after making x_2 basic, x_3 non-basic:

► Can we increase objective value? No, Simplex terminates

- ► Can we increase objective value? No, Simplex terminates
- ▶ What is optimal objective value?

- ► Can we increase objective value? No, Simplex terminates
- ▶ What is optimal objective value? 28

- ► Can we increase objective value? No, Simplex terminates
- ▶ What is optimal objective value? 28
- What is optimal solution?

- ► Can we increase objective value? No, Simplex terminates
- ▶ What is optimal objective value? 28
- ▶ What is optimal solution? (8,4,0,18,0,0)

Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n + 1'th iteration.

- Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n + 1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$?

- Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n + 1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$? No

- Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n+1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$? No
- ▶ Consider objective function at n'th iteration: $z = v + \sum c_i x_i$

- ▶ Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n+1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$? No
- ▶ Consider objective function at n'th iteration: $z = v + \sum c_j x_j$
- ▶ What is objective value at *n*'th iteration?

- ▶ Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n+1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$? No
- ▶ Consider objective function at n'th iteration: $z = v + \sum c_j x_j$
- lacktriangle What is objective value at n'th iteration? ${m v}$

- ▶ Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n+1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$? No
- ▶ Consider objective function at n'th iteration: $z = v + \sum c_j x_j$
- lacktriangle What is objective value at n'th iteration? $oldsymbol{v}$
- ▶ Suppose Simplex makes x_j basic variable in next iteration.

- ▶ Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n+1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$? No
- ▶ Consider objective function at n'th iteration: $z = v + \sum c_j x_j$
- ▶ What is objective value at n'th iteration? v
- ▶ Suppose Simplex makes x_j basic variable in next iteration.
- ▶ At n'th iteration, value of x_j was 0 (since x_j non-basic)
- At n+1'th iteration, $x_j \geq 0$ because we don't violate non-negativity constraints

- ▶ Let c_n be the objective value at n'th iteration of Simplex, and let c_{n+1} be the objective value at n+1'th iteration.
- ▶ Is it possible that $c_{n+1} < c_n$? No
- ▶ Consider objective function at n'th iteration: $z = v + \sum c_j x_j$
- lacktriangle What is objective value at n'th iteration? $oldsymbol{v}$
- ▶ Suppose Simplex makes x_j basic variable in next iteration.
- ▶ At n'th iteration, value of x_j was 0 (since x_j non-basic)
- At n+1'th iteration, $x_j \geq 0$ because we don't violate non-negativity constraints
- ▶ Thus, Simplex never decreases value of the objective function!

▶ Objective value can't decrease; but can it stay the same?

▶ Objective value can't decrease; but can it stay the same? Yes

- ▶ Objective value can't decrease; but can it stay the same? Yes
- **Example:** Suppose we make x_2 the new basic variable, and most constraining equality is:

$$x_1 = x_2 + 2x_3 + x_4$$

- ▶ Objective value can't decrease; but can it stay the same? Yes
- **Example:** Suppose we make x_2 the new basic variable, and most constraining equality is:

$$x_1 = x_2 + 2x_3 + x_4$$

 $ightharpoonup x_2$'s old value was 0; what is its new value?

- ▶ Objective value can't decrease; but can it stay the same? Yes
- **Example:** Suppose we make x_2 the new basic variable, and most constraining equality is:

$$x_1 = x_2 + 2x_3 + x_4$$

 $ightharpoonup x_2$'s old value was 0; what is its new value? Also 0

- Objective value can't decrease; but can it stay the same? Yes
- **Example:** Suppose we make x_2 the new basic variable, and most constraining equality is:

$$x_1 = x_2 + 2x_3 + x_4$$

- $ightharpoonup x_2$'s old value was 0; what is its new value? Also 0
- ▶ Thus, the objective value does not decrease, but does not increase either!

- Objective value can't decrease; but can it stay the same? Yes
- **Example:** Suppose we make x_2 the new basic variable, and most constraining equality is:

$$x_1 = x_2 + 2x_3 + x_4$$

- $ightharpoonup x_2$'s old value was 0; what is its new value? Also 0
- ▶ Thus, the objective value does not decrease, but does not increase either!
- These kinds of problems where objective value can stay the same after pivoting are called degenerate problems

▶ If problem is not degenerate, Simplex guaranteed to terminate for any pivot selection strategy (b/c objective value increases)

- ▶ If problem is not degenerate, Simplex guaranteed to terminate for any pivot selection strategy (b/c objective value increases)
- ▶ Bad news: For degenerate problems, Simplex might not terminate

- ▶ If problem is not degenerate, Simplex guaranteed to terminate for any pivot selection strategy (b/c objective value increases)
- ▶ Bad news: For degenerate problems, Simplex might not terminate
- ► Good news: There are pivot selection strategies for which Simplex is always guaranteed to terminate, even for degenerate problems

- ▶ If problem is not degenerate, Simplex guaranteed to terminate for any pivot selection strategy (b/c objective value increases)
- ▶ Bad news: For degenerate problems, Simplex might not terminate
- Good news: There are pivot selection strategies for which Simplex is always guaranteed to terminate, even for degenerate problems
- One such strategy is Bland's rule: If there are multiple variables with positive coefficients in objective function, always choose the variable with smallest index

- ▶ If problem is not degenerate, Simplex guaranteed to terminate for any pivot selection strategy (b/c objective value increases)
- ▶ Bad news: For degenerate problems, Simplex might not terminate
- Good news: There are pivot selection strategies for which Simplex is always guaranteed to terminate, even for degenerate problems
- One such strategy is Bland's rule: If there are multiple variables with positive coefficients in objective function, always choose the variable with smallest index
- ▶ Example: If $z = 2x_1 + 5x_2 4x_3$, Bland's rule chooses x_1 as new basic variable since it has smallest index

Simplex Algorithm Phases

- Simplex algorithm has two phases:
 - 1. Phase I: Compute a feasible basic solution, if one exists

2. Phase II: Optimize value of objective function

Simplex Algorithm Phases

- Simplex algorithm has two phases:
 - 1. Phase I: Compute a feasible basic solution, if one exists
 - 2. Phase II: Optimize value of objective function
- So far, we talked about the second phase, assuming we already have a feasible basic solution

Simplex Algorithm Phases

- Simplex algorithm has two phases:
 - 1. Phase I: Compute a feasible basic solution, if one exists

- 2. Phase II: Optimize value of objective function
- So far, we talked about the second phase, assuming we already have a feasible basic solution
- However, the initial basic solution might not feasible even if the linear program is feasible

Example of Infeasible Initial Basic Solution

Consider the following linear program:

$$\begin{array}{rcl}
z & = & 2x_1 - x_2 \\
x_3 & = & 2 - 2x_1 + x_2 \\
x_4 & = & -4 - x_1 + 5x_2
\end{array}$$

Example of Infeasible Initial Basic Solution

Consider the following linear program:

$$\begin{array}{rcl}
z & = & 2x_1 - x_2 \\
x_3 & = & 2 - 2x_1 + x_2 \\
x_4 & = & -4 - x_1 + 5x_2
\end{array}$$

▶ What is the initial basic solution?

Consider the following linear program:

$$\begin{array}{rcl}
z & = & 2x_1 - x_2 \\
x_3 & = & 2 - 2x_1 + x_2 \\
x_4 & = & -4 - x_1 + 5x_2
\end{array}$$

▶ What is the initial basic solution? (0,0,2,-4)

Consider the following linear program:

$$\begin{array}{rcl}
z & = & 2x_1 - x_2 \\
x_3 & = & 2 - 2x_1 + x_2 \\
x_4 & = & -4 - x_1 + 5x_2
\end{array}$$

- ▶ What is the initial basic solution? (0,0,2,-4)
- ▶ Is this solution feasible?

Consider the following linear program:

$$z = 2x_1 - x_2
 x_3 = 2 - 2x_1 + x_2
 x_4 = -4 - x_1 + 5x_2$$

- ▶ What is the initial basic solution? (0,0,2,-4)
- ▶ Is this solution feasible? No, violates non-negativity constraints

Consider the following linear program:

$$\begin{array}{rcl}
 z & = & 2x_1 - x_2 \\
 x_3 & = & 2 - 2x_1 + x_2 \\
 x_4 & = & -4 - x_1 + 5x_2
 \end{array}$$

- ▶ What is the initial basic solution? (0,0,2,-4)
- ▶ Is this solution feasible? No, violates non-negativity constraints
- Goal of Phase I of Simplex is to determine if a feasible basic solution exists, and if so, what it is

▶ To find an initial basic solution, we construct an auxiliary linear program L_{aux}

- $lackbox{ to}$ To find an initial basic solution, we construct an auxiliary linear program L_{aux}
- ► This auxiliary linear program has the property that we can find a feasible basic solution for it after at most one pivot operation

- $lackbox{ to}$ To find an initial basic solution, we construct an auxiliary linear program L_{aux}
- ► This auxiliary linear program has the property that we can find a feasible basic solution for it after at most one pivot operation
- ightharpoonup Furthermore, original LP problem has a feasible solution if and only if the optimal objective value for L_{aux} is zero

- lacktriangle To find an initial basic solution, we construct an auxiliary linear program L_{aux}
- This auxiliary linear program has the property that we can find a feasible basic solution for it after at most one pivot operation
- Furthermore, original LP problem has a feasible solution if and only if the optimal objective value for L_{aux} is zero
- If optimal value of L_{aux} is 0, we can extract basic feasible solution of original problem from optimal solution to L_{aux}

Constructing the Auxiliary Linear Program

Consider the original LP problem:

$$\begin{array}{ll} \text{Maximize} & \sum\limits_{j=1}^n c_j x_j \\ \\ \text{Subject to:} & \\ & \sum\limits_{j=1}^n a_{ij} x_j \leq b_i \quad (i \in [1,m]) \\ & x_j \geq 0 \qquad (j \in [1,n]) \end{array}$$

Constructing the Auxiliary Linear Program

Consider the original LP problem:

Maximize
$$\sum_{j=1}^n c_j x_j$$
 Subject to:
$$\sum_{j=1}^n a_{ij} x_j \le b_i \quad (i \in [1,m])$$

$$x_j \ge 0 \qquad (j \in [1,n])$$

ightharpoonup This problem is feasible iff the following LP problem L_{aux} has optimal value 0:

Maximize
$$\begin{array}{l} -\mathbf{x}_0 \\ \text{Subject to:} \end{array}$$

$$\sum_{j=1}^n a_{ij}x_j - \mathbf{x}_0 \leq b_i \quad (i \in [1,m]) \\ x_j \geq 0 \qquad \qquad (j \in [0,n]) \end{array}$$

Maximize
$$\begin{array}{c} -\textbf{x}_0\\ \text{Subject to:} \end{array}$$

$$\sum_{j=1}^n a_{ij}\textbf{x}_j-\textbf{x}_0 \leq b_i \quad (i\in[1,m])\\ x_j\geq 0 \qquad \qquad (j\in[0,n])$$

Maximize
$$-x_0$$
 Subject to:
$$\sum_{j=1}^n a_{ij}x_j - x_0 \le b_i \quad (i \in [1,m])$$
 $x_j \ge 0 \qquad (j \in [0,n])$

 \Rightarrow Suppose x_0 has optimal value 0. Then clearly $a_{ij}x_j \leq b_i$ is satisfied for all inequalities

Maximize
$$-x_0$$
 Subject to:
$$\sum_{j=1}^n a_{ij}x_j - x_0 \le b_i \quad (i \in [1,m])$$
 $x_j \ge 0 \qquad (j \in [0,n])$

- \Rightarrow Suppose x_0 has optimal value 0. Then clearly $a_{ij}x_j \leq b_i$ is satisfied for all inequalities
- \Leftarrow (a) Suppose original problem has feasible solution $\vec{x^*}$. Then $\vec{x^*}$ combined with $x_0=0$ is feasible solution for L_{aux} .

Maximize
$$-x_0$$
 Subject to:
$$\sum_{j=1}^n a_{ij}x_j-x_0 \leq b_i \quad (i\in[1,m])$$

$$x_j\geq 0 \qquad \qquad (j\in[0,n])$$

- \Rightarrow Suppose x_0 has optimal value 0. Then clearly $a_{ij}x_j \leq b_i$ is satisfied for all inequalities
- $\Leftarrow(a)$ Suppose original problem has feasible solution $\vec{x^*}$. Then $\vec{x^*}$ combined with $x_0=0$ is feasible solution for L_{aux} .
- \Leftarrow (b) Due to the non-negativity constraint, $-x_0$ can be at most 0; thus, this solution is optimal for L_{aux} .

Finding Feasible Basic Solution for L_{aux}

▶ So far, we argued that original problem L has feasible solution iff L_{aux} has optimal value 0.

Finding Feasible Basic Solution for L_{aux}

- ▶ So far, we argued that original problem L has feasible solution iff L_{aux} has optimal value 0.
- ightharpoonup But we still need to figure out how to find feasible basic solution to L_{aux} .

Finding Feasible Basic Solution for L_{aux}

- ightharpoonup So far, we argued that original problem L has feasible solution iff L_{aux} has optimal value 0.
- ightharpoonup But we still need to figure out how to find feasible basic solution to L_{aux} .
- ightharpoonup Next: We'll see how we can find feasible basic solution for L_{aux} after one pivot operation.

$$z = -x_0$$

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

$$z = -x_0$$

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

▶ If all b_i 's are positive, basic solution already feasible

$$z = -x_0$$

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

- ▶ If all b_i 's are positive, basic solution already feasible
- ▶ If there is at least some negative b_i , find equality x_i with most negative b_i

$$z = -x_0$$

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

- ▶ If all b_i 's are positive, basic solution already feasible
- ▶ If there is at least some negative b_i , find equality x_i with most negative b_i
- Make x_0 new basic variable, and x_i non-basic

$$z = -x_0$$

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

- ▶ If all b_i 's are positive, basic solution already feasible
- lacktriangle If there is at least some negative b_i , find equality x_i with most negative b_i
- ▶ Make x_0 new basic variable, and x_i non-basic
- Claim: After this one pivot operation, all b_i's are non-negative; thus basic solution is feasible

▶ Suppose this equality has most negative b_i :

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

▶ Suppose this equality has most negative b_i :

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

▶ Rewrite to make x₀ basic:

$$x_0 = -b_i + x_i + \sum_{j=1}^n a_{ij} x_j$$

▶ Suppose this equality has most negative b_i :

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

▶ Rewrite to make *x*₀ basic:

$$x_0 = -b_i + x_i + \sum_{j=1}^n a_{ij} x_j$$

lacktriangle Now, $-b_i$ is positive and greater than all other $|b_j|$'s

▶ Suppose this equality has most negative b_i :

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

Rewrite to make x₀ basic:

$$x_0 = -b_i + x_i + \sum_{j=1}^n a_{ij} x_j$$

- ▶ Now, $-b_i$ is positive and greater than all other $|b_j|$'s
- ightharpoonup Thus, when we plug in equality for x_0 into other equations, their new constants will be positive

▶ Suppose this equality has most negative b_i :

$$x_i = b_i + x_0 - \sum_{j=1}^n a_{ij} x_j$$

Rewrite to make x₀ basic:

$$x_0 = -b_i + x_i + \sum_{j=1}^n a_{ij} x_j$$

- ▶ Now, $-b_i$ is positive and greater than all other $|b_j|$'s
- ▶ Thus, when we plug in equality for x_0 into other equations, their new constants will be positive
- ▶ Hence, we find a feasible basic solution after at most one pivot step

► Consider the following linear program from earlier:

$$\begin{array}{rcl}
z & = & 2x_1 - x_2 \\
x_3 & = & 2 - 2x_1 + x_2 \\
x_4 & = & -4 - x_1 + 5x_2
\end{array}$$

► Consider the following linear program from earlier:

$$\begin{array}{rcl}
z & = & 2x_1 - x_2 \\
x_3 & = & 2 - 2x_1 + x_2 \\
x_4 & = & -4 - x_1 + 5x_2
\end{array}$$

► Consider the following linear program from earlier:

$$\begin{array}{rcl}
 z & = & 2x_1 - x_2 \\
 x_3 & = & 2 - 2x_1 + x_2 \\
 x_4 & = & -4 - x_1 + 5x_2
 \end{array}$$

$$z = -x_0$$

► Consider the following linear program from earlier:

$$\begin{array}{rcl}
 z & = & 2x_1 - x_2 \\
 x_3 & = & 2 - 2x_1 + x_2 \\
 x_4 & = & -4 - x_1 + 5x_2
 \end{array}$$

$$\begin{array}{rcl}
z & = & -x_0 \\
x_3 & = & 2 + x_0 - 2x_1 + x_2
\end{array}$$

Consider the following linear program from earlier:

$$\begin{aligned}
 z &= 2x_1 - x_2 \\
 x_3 &= 2 - 2x_1 + x_2 \\
 x_4 &= -4 - x_1 + 5x_2
 \end{aligned}$$

▶ Construct L_{aux} :

$$z = -x_0$$

$$x_3 = 2 + x_0 - 2x_1 + x_2$$

$$x_4 = -4 + x_0 - x_1 + 5x_2$$

► Consider the following linear program from earlier:

$$\begin{aligned}
 z &= 2x_1 - x_2 \\
 x_3 &= 2 - 2x_1 + x_2 \\
 x_4 &= -4 - x_1 + 5x_2
 \end{aligned}$$

ightharpoonup Construct L_{aux} :

$$z = -x_0$$

$$x_3 = 2 + x_0 - 2x_1 + x_2$$

$$x_4 = -4 + x_0 - x_1 + 5x_2$$

Which equation has most negative constant?

Consider the following linear program from earlier:

$$\begin{aligned}
 z &= 2x_1 - x_2 \\
 x_3 &= 2 - 2x_1 + x_2 \\
 x_4 &= -4 - x_1 + 5x_2
 \end{aligned}$$

ightharpoonup Construct L_{aux} :

$$z = -x_0
x_3 = 2 + x_0 - 2x_1 + x_2
x_4 = -4 + x_0 - x_1 + 5x_2$$

Which equation has most negative constant? x4

Consider the following linear program from earlier:

$$\begin{array}{rcl}
 z & = & 2x_1 - x_2 \\
 x_3 & = & 2 - 2x_1 + x_2 \\
 x_4 & = & -4 - x_1 + 5x_2
 \end{array}$$

$$\begin{array}{rcl} z & = & -x_0 \\ x_3 & = & 2 + x_0 - 2x_1 + x_2 \\ x_4 & = & -4 + x_0 - x_1 + 5x_2 \end{array}$$

- Which equation has most negative constant? x₄
- ▶ Swap x_4 and x_0 :

Consider the following linear program from earlier:

$$z = 2x_1 - x_2
x_3 = 2 - 2x_1 + x_2
x_4 = -4 - x_1 + 5x_2$$

► Construct Laux:

$$z = -x_0
x_3 = 2 + x_0 - 2x_1 + x_2
x_4 = -4 + x_0 - x_1 + 5x_2$$

- Which equation has most negative constant? x4
- ightharpoonup Swap x_4 and x_0 :

$$x_0 = 4 + x_4 + x_1 - 5x_2$$

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

▶ After pivoting, we obtain the new slack form:

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

What is current objective value?

▶ After pivoting, we obtain the new slack form:

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

▶ What is current objective value? -4

$$z = -4 - x_4 - x_1 + 5x_2$$

$$x_3 = 6 - x_1 - 4x_2 + x_4$$

$$x_0 = 4 + x_4 + x_1 - 5x_2$$

- What is current objective value? -4
- ▶ How can we increase it?

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

- ▶ What is current objective value? -4
- ▶ How can we increase it? increase x_2

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

- ▶ What is current objective value? -4
- ▶ How can we increase it? increase x2
- ▶ Which equation constrains x_2 the most?

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

- ▶ What is current objective value? -4
- ► How can we increase it? increase x2
- ▶ Which equation constrains x_2 the most? x_0

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

- ▶ What is current objective value? -4
- ► How can we increase it? increase x2
- ▶ Which equation constrains x_2 the most? x_0
- ▶ Swap x_2 and x_0 :

$$\begin{array}{rcl} z & = & -4 - x_4 - x_1 + 5x_2 \\ x_3 & = & 6 - x_1 - 4x_2 + x_4 \\ x_0 & = & 4 + x_4 + x_1 - 5x_2 \end{array}$$

- ▶ What is current objective value? -4
- ► How can we increase it? increase x2
- ▶ Which equation constrains x_2 the most? x_0
- ▶ Swap x_2 and x_0 :

$$x_2 = \frac{4}{5} - \frac{1}{5}x_0 + x_4 + x_1$$

After pivoting, new slack form:

$$\begin{array}{rcl}
z & = & -x_0 \\
x_2 & = & \frac{4}{5} - \frac{x_0}{5} - \frac{x_1}{5} + \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}
\end{array}$$

After pivoting, new slack form:

$$\begin{array}{rcl}
z & = & -x_0 \\
x_2 & = & \frac{4}{5} - \frac{x_0}{5} - \frac{x_1}{5} + \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}
\end{array}$$

Objective function cannot be increased, so we are done!

After pivoting, new slack form:

$$\begin{aligned}
 z &= -x_0 \\
 x_2 &= \frac{4}{5} - \frac{x_0}{5} - \frac{x_1}{5} + \frac{x_4}{5} \\
 x_3 &= \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}
 \end{aligned}$$

- Objective function cannot be increased, so we are done!
- ▶ In original problem, objective function was $z = 2x_1 x_2$

After pivoting, new slack form:

$$\begin{array}{rcl}
z & = & -x_0 \\
x_2 & = & \frac{4}{5} - \frac{x_0}{5} - \frac{x_1}{5} + \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}
\end{array}$$

- Objective function cannot be increased, so we are done!
- ▶ In original problem, objective function was $z = 2x_1 x_2$
- ▶ Since x_2 is now a basic variable, substitute for x_2 with RHS:

$$z = \frac{-4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

After pivoting, new slack form:

$$\begin{array}{rcl}
z & = & -x_0 \\
x_2 & = & \frac{4}{5} - \frac{x_0}{5} - \frac{x_1}{5} + \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}
\end{array}$$

- Objective function cannot be increased, so we are done!
- ▶ In original problem, objective function was $z = 2x_1 x_2$
- ▶ Since x_2 is now a basic variable, substitute for x_2 with RHS:

$$z = \frac{-4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

Thus, Phase I returns the following slack form to Phase II:

$$\begin{array}{rcl} z & = & \frac{-4}{5} + \frac{9x_1}{5} - \frac{x_4}{5} \\ x_2 & = & \frac{4}{5} - \frac{x_1}{5} + \frac{x_4}{5} \\ x_3 & = & \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5} \end{array}$$

ightharpoonup To solve constraints in $T_{\mathbb{Q}}$ (linear inequalities over rationals), we use Simplex algorithm for LP

- ightharpoonup To solve constraints in $T_{\mathbb{Q}}$ (linear inequalities over rationals), we use Simplex algorithm for LP
- Simplex has two phases

- \blacktriangleright To solve constraints in $T_{\mathbb Q}$ (linear inequalities over rationals), we use Simplex algorithm for LP
- ► Simplex has two phases
- In first phase, we construct slack form such that it has a basic feasible solution

- \blacktriangleright To solve constraints in $T_{\mathbb Q}$ (linear inequalities over rationals), we use Simplex algorithm for LP
- Simplex has two phases
- In first phase, we construct slack form such that it has a basic feasible solution
- In second phase, we start with basic feasible solution and rewrite one slack form into equivalent one until objective value can't increase

- \blacktriangleright To solve constraints in $T_{\mathbb{Q}}$ (linear inequalities over rationals), we use Simplex algorithm for LP
- Simplex has two phases
- In first phase, we construct slack form such that it has a basic feasible solution
- In second phase, we start with basic feasible solution and rewrite one slack form into equivalent one until objective value can't increase
- Although Simplex is a worst-case exponential, it is more popular than polynomial-time algorithms for LP