3.1 What general categories of functions are specified by computer instructions?

3.1 The hypothetical machine of Figure 3.4 also has two I/O instructions:

0011 = Load AC from I/O

0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular I/O device. Show the program execution (using the format of Figure 3.5) for the following program:

- 1. Load AC from device 5.
- 2. Add contents of memory location 940.
- 3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains a value of 2.

- **3.3** Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of two fields: the first byte contains the opcode and the remainder the immediate operand or an operand address.
 - **a.** What is the maximum directly addressable memory capacity (in bytes)?
 - **b.** Discuss the impact on the system speed if the microprocessor bus has:
 - 1. 32-bit local address bus and a 16-bit local data bus, or
 - 2. 16-bit local address bus and a 16-bit local data bus.
 - c. How many bits are needed for the program counter and the instruction register?

- **3.4** Consider a hypothetical microprocessor generating a 16-bit address (for example, assume that the program counter and the address registers are 16 bits wide) and having a 16-bit data bus.
 - **a.** What is the maximum memory address space that the processor can access directly if it is connected to a "16-bit memory"?
 - **b.** What is the maximum memory address space that the processor can access directly if it is connected to an "8-bit memory"?
- 3.13 A microprocessor has a memory write timing as shown in Figure 3.18. Its manufacturer specifies that the width of the Write signal can be determined by T-50, where T is the clock period in ns.
 - a. What width should we expect for the Write signal if bus clocking rate is 5 MHz?
 - **b.** The data sheet for the microprocessor specifies that the data remain valid for 20 ns after the falling edge of the Write signal. What is the total duration of valid data presentation to memory?
 - c. How many wait states should we insert if memory requires valid data presentation for at least 190 ns?
- **3.14** A microprocessor has an increment memory direct instruction, which adds 1 to the value in a memory location. The instruction has five stages: fetch opcode (four bus clock cycles), fetch operand address (three cycles), fetch operand (three cycles), add 1 to operand (three cycles), and store operand (three cycles).
 - **a.** By what amount (in percent) will the duration of the instruction increase if we have to insert two bus wait states in each memory read and memory write operation?
 - **b.** Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.
- 3.15 The Intel 8088 microprocessor has a read bus timing similar to that of Figure 3.18, but requires four processor clock cycles. The valid data is on the bus for an amount of time that extends into the fourth processor clock cycle. Assume a processor clock rate of 8 MHz.
 - **a.** What is the maximum data transfer rate?
 - **b.** Repeat, but assume the need to insert one wait state per byte transferred.