Математические основы криптологии

Автор курса: Применко Эдуард Андреевич Составитель: Смирнов Дмитрий Константинович

Версия от 15:51, 15 мая 2022 г.

2 ОГЛАВЛЕНИЕ

Оглавление

1	Дом	машние задания	1
	1.1	Теоретико-числовые методы и алгоритмы	2
	1.2	Квадратичные вычеты, сравнения, символ Лежандра	5
	1.3	Рекуррентные последовательности	9
	1.4	Шифр гаммирования	11
	1.5	Теория групп	12

Часть 1

Домашние задания

1.1 Теоретико-числовые методы и алгоритмы

Задачи в этом разделе решаются со следующими параметрами:

Задача 1.1 Убедиться, что $g \in \mathbb{Z}_p^*$ – примитивный элемент \mathbb{Z}_p . **Решение.**

Так как p=23 – простое число, то $\phi(p)=p-1=22$. Разложим это число на простые множители: $\phi(p)=2\cdot 11$. Тогда достаточно проверить следующие 2 неравенства:

$$g^{\frac{\phi(p)}{2}} = (-8)^{11} = 15 \cdot 15^{10} = 15 \cdot 18^5 = 17 \cdot 2^2 = 22 \not\equiv 1 \pmod{p},$$
$$g^{\frac{\phi(p)}{11}} = (-8)^2 = 18 \not\equiv 1 \pmod{p},$$

Делаем вывод, что g действительно является примитивным элементом \mathbb{Z}_p .

Задача 1.2 Найти образующий элемент h группы $\mathbb{Z}_{p^2}^*$ Решение.

Образующий элемент группы $\mathbb{Z}_{p^n}^*, n \geq 2$ имеет вид:

$$h = g + t_0 p, \ t_0 \not\equiv g\nu \pmod{p}; \ \nu = (\frac{g^{\frac{p-1}{2}} + 1}{p}) \pmod{p} \cdot (-2) \pmod{p}$$

Таким образом,

$$\nu = \left(\frac{(-8)^{\frac{23-1}{2}} + 1}{23}\right) \pmod{23} \cdot (-2) \pmod{23} = (1 \cdot (-2)) \pmod{23} = 21$$

$$t_0 \not\equiv (-8) \cdot 21 \pmod{23} = 16 \pmod{23}$$

$$t_1 = 1 \Rightarrow h = (-8) + 1 * 23 = 15$$

Следовательно, h=15 — образующий элемент группы $\mathbb{Z}_{23^2}^*$

Задача 1.3 Подсчитать число образующих группы $\mathbb{Z}_{p^3}^*$ **Решение.**

Число образующих группы $\mathbb{Z}_{23^3}^*$ равно $\phi(23^3)=(23-1)23^{3-1}=11638.$

Задача 1.4 Найти элемент a группы $\mathbb{Z}_{p^2}^*$ порядка k **Решение.**

Так как \forall натурального k>1 и простого $p\geq 3$ группа $\mathbb{Z}_{p^k}^*$ является циклической, то $\mathbb{Z}_{23^2}^*$ – циклическая группа. Элемент порядка k в циклической группе порядка N имеет вид h^r , где $r=\frac{N}{k}$. Таким образом,

$$a = h^{\frac{\phi(p^2)}{k}} = 15^{\frac{22*23}{22}} = 15^{23} = 130$$

Задача 1.5 Решить сравнение $a^x \equiv b \pmod{p}$ **Решение.**

p	a	b
701	2	163

І. Алгоритм согласования

1. Убедимся в том, что a=2 – примитивный элемент группы \mathbb{Z}_{701} .

$$\phi(701) = 700 = 2^2 \cdot 5^2 \cdot 7$$

$$g^{\frac{\phi(p)}{2}} = 2^{350} = 700 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{5}} = 2^{140} = 210 \not\equiv 1 \pmod{p},$$

$$g^{\frac{\phi(p)}{7}} = 2^{100} = 19 \not\equiv 1 \pmod{p},$$

$$g^{\phi(p)} = 2^{700} = 1 \equiv 1 \pmod{p},$$

Таким образом, порядок элемента a равен ord(a) = 700.

- 2. Выбираем минимальное $m \colon m^2 \geq ord(a) \Rightarrow m = 27$.
- 3. Вычисляем $c = a^m = 2^{27} = 62$.
- 4. Составляем два множества:

i	1	2	3	4	5	6	7	·	8	9	10) 1	1	12	13	14
c^i	62	339	689	9 658	3 13	8 14	4 51	6	447	375		7 24	4 4	:07	699	577
	٠	40		40	4.0	2.0		1 0/	0	00	2.4	25	0.0	-	. 1	
$\parallel i$	15	16	17	18	19	20	21	22	$2 \mid 2$	$23 \mid$	24	25	26	27	´	
c^i	23	24	86	425	413	370	508	65	$52 \boxed{4}$	167	213	588	4	243	8	
			,	,												

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13
ba^j	163	326	652	603	505	309	618	535	369	37	74	148	296	592

j	14	15	16	17	18	19	20	21	22	23	24	25	26
ba^j	483	265	530	359	17	34	68	136	272	544	387	73	146

В таблицах совпадают элементы под номерами i=22 и j=2.

5. Таким образом, $x = mi - j = 27 \cdot 22 - 2 = 592$.

Ответ: x = 592.

II. Алгоритм Полига-Хеллмана

Порядок поля \mathbb{Z}_{701} равен $N=\phi(701)=700=2^2\cdot 5^2\cdot 7.$ Количество простых множителей в разложении этого числа t=3.

1. Вычисляем матрицу с элементами $(i,j)=a^{j\frac{N}{p_i}}, i=\overline{1,t},\ j=\overline{0,p_i-1}$:

p_i j	0	1	2	3	4	5	6
2	$2^{0\cdot\frac{700}{2}}$	$2^{1 \cdot \frac{700}{2}}$	-	-	-	-	-
5	$2^{0 \cdot \frac{700}{5}}$	$2^{1 \cdot \frac{700}{5}}$	_		_	-	-
7	$2^{0 \cdot \frac{700}{7}}$	$2^{1\cdot\frac{700}{7}}$	$2^{2 \cdot \frac{700}{7}}$	$2^{3 \cdot \frac{700}{7}}$	$2^{4 \cdot \frac{700}{7}}$	$2^{5 \cdot \frac{700}{7}}$	$2^{6 \cdot \frac{700}{7}}$

p_i	0	1	2	3	4	5	6
2	1	700		-	-	-	-
5	1	210	638	89	464	-	-
7	1	19	361	550	636	167	369

2. Далее находим $x_i = \log_a b \pmod{p_i^{k_i}} = \gamma_0 + \gamma_1 p_i + \ldots + \gamma_{k_i-1} p_i^{k_i-1}, \gamma_j \in \mathbb{Z}_p$. Последовательно находим γ_j из $M(p,\gamma_j) = b_j^{\frac{N}{p^{j+1}}}$, где $b_j = ba^{-\gamma_0 - \gamma_1 p - \ldots - \gamma_{j-1} p^{j-1}}$, а M – определённая выше матрица.

a)
$$x_1 = \log_2 163 \pmod{2^2}, \ p = 2, \ k = 2$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{2}} = 1 \Rightarrow \gamma_0 = 0, \ b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-0} = 163$$

$$M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 163^{\frac{700}{4}} = 1 \Rightarrow \gamma_1 = 0$$

$$\Rightarrow x_1 = \gamma_0 + \gamma_1 p = 0 + 0 \cdot 2 = 0$$

$$6) \ x_2 = \log_2 163 \pmod{5^2}, \ p = 5, \ k = 2$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{5}} = 638 \Rightarrow \gamma_0 = 2, \ b_1 = ba^{-\gamma_0} = 163 \cdot 2^{-2} = 216$$

$$M(p, \gamma_1) = b_1^{\frac{N}{p^2}} = 216^{\frac{700}{25}} = 89 \Rightarrow \gamma_1 = 3$$

$$\Rightarrow x_2 = \gamma_0 + \gamma_1 p = 2 + 3 \cdot 5 = 17$$

$$\text{B)} \ x_3 = \log_2 163 \pmod{7}, \ p = 7, \ k = 1$$

$$M(p, \gamma_0) = b^{\frac{N}{p}} = 163^{\frac{700}{7}} = 636 \Rightarrow \gamma_0 = 4$$

$$\Rightarrow x_3 = \gamma_0 = 4$$

3. На основе вычисленных выше значений $x_1, x_2, ..., x_t$ и китайской теоремы об остатках находим искомый логарифм:

$$x = \sum x_i \frac{N}{p_i^{k_i}} [(\frac{N}{p_i^{k_i}})^{-1} \pmod{p_i^{k_i}}] \pmod{N} = 0 \cdot \frac{700}{2^2} [(\frac{700}{2^2})^{-1} \pmod{2^2}] + 17 \cdot \frac{700}{5^2} [(\frac{700}{5^2})^{-1} \pmod{5^2}] + 4 \cdot \frac{700}{7} [(\frac{700}{7})^{-1} \pmod{7}] \pmod{700} = 12 = 12 \cdot [28^{-1} \pmod{25}] + 400 \cdot [100^{-1} \pmod{7}] \pmod{700} = 12 = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 4 \pmod{700} = 12 \cdot 17 + 400 \cdot 17 + 400$$

Ответ: x = 592.

1.2 Квадратичные вычеты, сравнения, символ Лежандра.

Докажем вспомогательные леммы.

Лемма 2.1 Если $p=2^m+1$ – простое и $\left(\frac{a}{p}\right)=-1$, то $\langle a\rangle=\mathbb{Z}_p^*$.

■ По определению первообразного корня достаточно доказать два утверждения: $a^{\phi(p)} = a^{2^m} \equiv 1 \pmod{p}$ и $a^{\frac{\phi(p)}{2}} = a^{2^{m-1}} \not\equiv 1 \pmod{p}$.

$$a^{2^{m-1}} = a^{\frac{p-1}{2}} = \left(\frac{a}{p}\right) = -1 \not\equiv 1 \pmod{p},$$

$$a^{2^m} = (a^{2^{m-1}})^2 = (-1)^2 = 1 \equiv 1 \pmod{p}.$$

Лемма 2.2 Если число $p = 2^m + 1$ – простое, m > 1, то $p \equiv 2 \pmod{3}$. \square По теореме о делении с остатком, число p представимо в виде:

$$p = 3k + t, 0 \le t < 3.$$

Рассмотрим данное равенство при различных t.

- а) $t=0 \Rightarrow p=3k$, то есть, p не является простым числом при k>1 (а значит, при m>1). Противоречие $\Rightarrow t\neq 0$.
- б) $t=1\Rightarrow 2^m=3k$ этого не может быть ни при каком целом k по лемме Евклида (по крайней мере один из сомножителей числа 2^m должен делиться на 3). Следовательно, $t\neq 1$.

Тогда t = 2 – единственный вариант, p = 3k + 2.

Лемма 2.3 Если $p=2^{2^n}+1,\, n>1,\, {\rm тo}\,\, p\equiv 2\pmod 5.$

- **Д**окажем по индукции.
 - 1) При n=2 утверждение верно: $2^{2^2}+1=17\equiv 2\pmod 5$.
 - 2) Пусть для n=m верно, докажем для n=m+1:

$$2^{2^{m+1}} + 1 = (2^{2^m} + 1 - 1)^2 + 1 = (2 - 1)^2 + 1 = 2 \equiv 2 \pmod{5}.$$

Лемма 2.4 Если $p = 2^{2^n} + 1$, n = 2k, то $p \equiv 3 \pmod{7}$.

- ✓ Докажем по индукции.
 - 1) При k=0 утверждение верно: $2^{2^0}+1=3\equiv 3\pmod 7$.
 - 2) Пусть для k=m верно, докажем для k=m+1:

$$2^{2^{2(m+1)}} + 1 = (2^{2^{2m}} + 1 - 1)^4 + 1 = (3-1)^4 + 1 = 17 \equiv 3 \pmod{7}$$

Лемма 2.5 Если $p = 2^{2^n} + 1$, n = 2k + 1, то $p \equiv 5 \pmod{7}$.

- **Д**окажем по индукции.
 - 1) При k = 0 утверждение верно: $2^{2^1} + 1 = 5 \equiv 5 \pmod{7}$.
 - 2) Пусть для k=m верно, докажем для k=m+1:

$$2^{2^{2(m+1)+1}} + 1 = (2^{2^{2m+1}} + 1 - 1)^4 + 1 = (5-1)^4 + 1 = 257 \equiv 5 \pmod{7}$$

Задача 2.1 Доказать, что сравнение $x^2+1\equiv 0\pmod p$ разрешимо тогда и только тогда, когда $p\equiv 1\pmod 4$.

Решение.

$$x^2+1\equiv 0\pmod p$$
 – разрешимо $\Leftrightarrow \left(\frac{-1}{p}\right)=1\Leftrightarrow (-1)^{\frac{p-1}{2}}=1\Leftrightarrow \frac{p-1}{2}=2k\Leftrightarrow p=4k+1\Leftrightarrow p\equiv 1\pmod 4$

Задача 2.2 Доказать, что сравнение $x^2 + 2 \equiv 0 \pmod{p}$ разрешимо тогда и только тогда, когда $p = 1, 3 \pmod{8}$.

Решение.

$$x^2 + 2 \equiv 0 \pmod{p} - \text{разрешимо} \Leftrightarrow \left(\frac{-2}{p}\right) = 1. \Leftrightarrow \left\{\left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right) \cdot \left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{2}} \cdot (-1)^{\frac{p^2-1}{8}}\right\} \Leftrightarrow \frac{p-1}{2} + \frac{p^2-1}{8} = 2k \Leftrightarrow p^2 + 4p - 16k - 5 = 0.$$

 $\hat{\Pi}$ редставим p, используя теорему о делении с остатком, в следующем виде: $p=8m+t,\ 0\leq t<8$. Решим полученную систему относительно t.

$$(8m+t)^{2} + 4(8m+t) - 16k - 5 = 0$$

$$t^{2} + (16k+4)t + 64k^{2} + 32k - 16m - 5 = 0$$

$$t_{1,2} = -8k - 2 \pm \sqrt{16m+9} \pmod{8} = -2 \pm 3 \pmod{8} \Rightarrow t = 1,3$$

Тогда $p^2 + 4p - 16k - 5 = 0 \Leftrightarrow p = 1, 3 \pmod{8}$.

Задача 2.3 Доказать, что сравнение $x^2 + 3 \equiv 0 \pmod{p}$ разрешимо тогда и только тогда, когда $p \equiv 1 \pmod{6}$.

Решение.

Пусть
$$p = 3k + t, t < 3.$$

$$x^2 + 3 \equiv 0 \pmod{p} \Leftrightarrow \left(\frac{-3}{p}\right) = 1.$$

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) = \left(-1\right)^{\frac{p-1}{2}} \left(-1\right)^{\frac{p-1}{2} \cdot \frac{3-1}{2}} \left(\frac{p}{3}\right) = (-1)^{3k+t-1} \left(\frac{t}{3}\right)$$

a)
$$t = 0 \Rightarrow (\frac{0}{3}) = 0, (-1)^{3k+t-1}(\frac{t}{3}) = 0 \neq 1$$

6)
$$t = 1 \Rightarrow (\frac{1}{3}) = 1, (-1)^{3k+t-1} (\frac{3}{2}) = (-1)^{3k} \cdot 1 = (-1)^{3k}$$

a)
$$t=0\Rightarrow \left(\frac{0}{3}\right)=0,\, (-1)^{3k+t-1}\left(\frac{t}{3}\right)=0\neq 1$$

б) $t=1\Rightarrow \left(\frac{1}{3}\right)=1,\, (-1)^{3k+t-1}\left(\frac{t}{3}\right)=(-1)^{3k}\cdot 1=(-1)^{3k}.$
в) $t=2\Rightarrow \left(\frac{2}{3}\right)=-1,\, (-1)^{3k+t-1}\left(\frac{t}{3}\right)=(-1)^{3k+1}\cdot (-1)=(-1)^{3k}$

$$(-1)^{3k} = 1 \Leftrightarrow k = 2m \Leftrightarrow p = 6m + 1 \Leftrightarrow p \equiv 1 \pmod{6}$$

Задача 2.4 Доказать, что если $p=2^n+1$ – простое, n>2, то $\left(\frac{3}{p}\right)=-1$ и $\langle 3 \rangle = \mathbb{Z}_p^*$.

Решение.

$$p = 3k + 2$$
 по лемме 2.2.

$$\left(\frac{3}{p}\right) = (-1)^{\frac{3-1}{2} \cdot \frac{2^n + 1 - 1}{2}} \left(\frac{p}{3}\right) = (-1)^{2^{n-1}} \left(\frac{2}{3}\right) = -1$$

Выполнены все условия леммы $2.1 \Rightarrow \langle 3 \rangle = \mathbb{Z}_p^*$

Задача 2.5 Доказать, что если $p=2^n+1$ – простое и $\left(\frac{a}{p}\right)=-1$, то $\langle a \rangle = \mathbb{Z}_p^*$.

Решение.

Доказано в качестве леммы 2.1.

Задача 2.6 Доказать, что если p = 4q + 1, p и q – простые, то $\langle 2 \rangle = \mathbb{Z}_p^*$. Решение.

По определению первообразного корня достаточно доказать три утвер-

- 1) $2^{\phi(p)} = 2^{4q} \equiv 1 \pmod{p}$,
- 2) $2^{\frac{\phi(p)}{2}} = 2^{2q} \not\equiv 1 \pmod{p}$,
- 3) $2^{\frac{\phi(p)}{q}} = 2^4 \not\equiv 1 \pmod{p}$.

Начнём с третьего. Представим 2^4 в следующем виде: $2^4 = pk + t$, $0 \le t < p$. Значит, нам нужно доказать, что $t \ne 1$. Предположим, что это не так, тогда $pk=2^4-1=15$. Обратим внимание на условие: если и p, и q – простые числа, то p не может быть ни 3, ни 5. Значит, в левой части равенства содержится простой множитель, которого нет в правой части. Мы получили противоречие, а значит, $t \neq 1 \Rightarrow 2^{\frac{\phi(p)}{q}} = 2^4 \not\equiv 1 \pmod{p}$.

Рассмотрим теперь второе утверждение. Заметим, что

$$\left(\frac{2}{4q+1}\right) = 2^{\frac{4q+1-1}{2}} = 2^{2q} \pmod{4q+1}.$$

Вычислим $\left(\frac{2}{4q+1}\right)=(-1)^{\frac{(4q+1)^2-1}{8}}=(-1)^{2q^2+q}=\left\{q$ – нечет $\right\}=-1$. Тем самым мы доказали второе утверждение.

Поскольку $2^{4q} = (2^{2q})^2 = (-1)^2 = 1 \pmod{4q+1}$, то первое утверждение становится следствием второго.

Задача 2.7 Доказать, что если $p=2^{2^n}+1$ – простое и $\left(\frac{a}{p}\right)=-1$, то $\langle a \rangle = \mathbb{Z}_p^*$.

Решение.

Приняв $m=2^n$ в лемме 2.1, получим справедливость данного утверждения.

Задача 2.8 Доказать, что если $p=2^{2^n}+1$ – простое, n>2, то $\langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle = \mathbb{Z}_p^*$.

Решение.

Покажем
$$\left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = \left(\frac{7}{p}\right) = -1.$$
 $2^{2^n} + 1 = 3k + 2$ по лемме 2.2.

$$\left(\frac{3}{p}\right) = (-1)^{\frac{3-1}{2} \cdot \frac{2^{2^n} + 1 - 1}{2}} \left(\frac{p}{3}\right) = (-1)^{2^{2^n - 1}} \left(\frac{3k + 2}{3}\right) = \left(\frac{2}{3}\right) = 2^{\frac{3-1}{2}} \pmod{3} = -1$$

$$2^{2^n} + 1 = 5k + 2$$
 по лемме 2.3.

$$\left(\frac{5}{p}\right) = (-1)^{\frac{5-1}{2} \cdot \frac{2^{2^n} + 1 - 1}{2}} \left(\frac{p}{5}\right) = (-1)^{2^{2^n}} \left(\frac{5k + 2}{5}\right) = \left(\frac{2}{5}\right) = 2^{\frac{5-1}{2}} \pmod{5} = -1$$

$$2^{2^n} + 1 = 7k + 3$$
, $n = 2t$ по лемме 2.4.

$$\left(\frac{7}{p}\right) = (-1)^{\frac{7-1}{2} \cdot \frac{2^{2^n} + 1 - 1}{2}} \left(\frac{p}{7}\right) = (-1)^{2^{2^n}} \left(\frac{7k + 3}{7}\right) = \left(\frac{3}{7}\right) = 3^{\frac{7-1}{2}} \pmod{7} = -1$$

$$2^{2^n} + 1 = 7k + 5, \ n = 2t + 1 \text{ по лемме } 2.5.$$

$$\left(\frac{7}{p}\right) = \left(\frac{5}{7}\right) = 5^{\frac{7-1}{2}} \pmod{7} = -1.$$

Осталось применить лемму 2.1, и исходное утверждение будет доказано.

1.3 Рекуррентные последовательности.

Задача 3.1 F = GF(5). Построить граф отображения и найти период РП, заданной характеритической функцией:

$$x_i = x_{i-1} + 2x_{i-2}x_{i-1} + 2.$$

Начальное заполнение: $12 = \gamma_1 + 5\gamma_2 \ (\gamma = (2, 2)).$

Решение.

В случае $\gamma=(2,2)$ последовательность оказывается полностью состоящей из двоек, поэтому период такой последовательности будет равен единице.

Задача 3.2 Над полем GF(2) построить ЛРП периода T и ранга n и указать начальное заполнение.

$$T = 84, n = 8.$$

Решение.

Разложим T на множители: $T = 84 = 4 \cdot 3 \cdot 7$.

 $\Pi P\Pi_1$ с периодом 4 соответствует минимальный многочлен

$$f_1(x) = x^3 + x^2 + x + 1, \ x_i = x_{i-1} + x_{i-2} + x_{i-3}.$$

 $\Pi P \Pi_2$ с периодом 3 соответствует минимальный многочлен

$$f_2(x) = x^2 + x + 1, \ x_i = x_{i-1} + x_{i-2}.$$

 $\Pi P \Pi_3$ с периодом 7 соответствует минимальный многочлен

$$f_3(x) = x^3 + x + 1, \ x_i = x_{i-2} + x_{i-3}$$

Искомый характеристический многочлен

$$f(x) = (x^3 + x^2 + x + 1)(x^2 + x + 1)(x^3 + x + 1) = x^8 + x^4 + x^3 + x^2 + x + 1.$$

Характеристическое уравнение будет иметь вид:

$$x_i = x_{i-4} + x_{i-5} + x_{i-6} + x_{i-7} + x_{i-8}.$$

Выберем начальные заполнения для $\Pi P\Pi_{1-3}$, отличные от нуля, и получим первые начальные отрезки $\Pi P\Pi$ длины n=8:

$$\widetilde{\alpha}_1 = 001 \Rightarrow \widetilde{\beta}_1 = 00110011$$

$$\widetilde{\alpha}_2 = 01 \Rightarrow \widetilde{\beta}_2 = 01101101$$

$$\widetilde{\alpha}_3 = 001 \Rightarrow \widetilde{\beta}_3 = 00101110$$

Искомое начальное заполнение:

$$\widetilde{\beta} = \widetilde{\beta}_1 \oplus \widetilde{\beta}_2 \oplus \widetilde{\beta}_3 = 01110000.$$

Other:
$$f(x) = x^8 + x^4 + x^3 + x^2 + x + 1$$
, $\widetilde{\beta} = 01110000$.

1.4 Шифр гаммирования

Задача 4.1 Зашифровать свою фамилию, используя шифр гаммирования с Π Р Π из задачи 3.2.

Решение.

Кодирование алфавита приведено в следующей таблице:

A	00000	И	01000	Р	10000	Ш	11000
Б	00001	Й	01001	С	10001	Щ	11001
В	00010	K	01010	Т	10010	Ъ	11010
Γ	00011	Л	01011	У	10011	Ы	11011
Д	00100	M	01100	Φ	10100	Ь	11100
E	00101	Н	01101	X	10101	Э	11101
Ж	00110	О	01110	Ц	10110	Ю	11110
3	00111	П	01111	Ч	10111	Я	11111

ЛРП задана многочленом $f(x)=x^8+x^4+x^3+x^2+x+1, \widetilde{k}=01110000,$ $M={\rm CMИPHOB}.$ Согласно кодовой таблице получим:

$$\widetilde{M} = 10001 \ 01100 \ 01000 \ 10000 \ 01101 \ 01110 \ 00010$$

Получаем гамму:

$$\widetilde{\Gamma} = 01110\ 00011\ 01100\ 10101\ 00010\ 01011\ 00011$$

Получим шифротекст:

$$\widetilde{T} = 11111\ 01111\ 00100\ 00101\ 01111\ 00101\ 00001$$

Представим его в буквенном виде.

Ответ: T = ЯПДЕПЕБ.

1.5 Теория групп

Задача 5.1 Определить структуру группы \mathbb{Z}_n^* , разложить её в прямое произведение циклических подгрупп и подсчитать число элементов различного порядка, n=84.

Решение.

$$|G| = \phi(84) = \phi(2^2) \cdot \phi(3) \cdot \phi(7) = (4-2)(3-1)(7-1) = 24 = 2^3 \cdot 3.$$
 Следовательно, $G \cong S_1(8) \times S_2(3)$.

1. Определим структуру примарной группы $S_1(8)$. Для этого нужно решить сравнение:

$$x^2 \equiv 1 \pmod{84}.$$

По КТО это равносильно следующей системе:

$$\begin{cases} x^2 \equiv 1 \pmod{3} \\ x^2 \equiv 1 \pmod{4} \\ x^2 \equiv 1 \pmod{7} \end{cases}$$

$$p=3=4\cdot 0+3\Rightarrow \left(\frac{1}{3}\right)=1$$
 – два решения: $x_1\equiv \pm 1^{0+1}\pmod 3$. $p=4=2^2,\ a=1\Rightarrow$ два решения: $x_2=\pm 1\pmod 4$. $p=7=4\cdot 1+3\Rightarrow \left(\frac{1}{7}\right)=1$ – два решения: $x_3\equiv \pm 1^{1+1}\pmod 7$. Общее решение системы по КТО будет равно:

$$X = x_1(4 \cdot 7)[(4 \cdot 7)^{-1} \pmod{3}] + x_2(3 \cdot 7)[(3 \cdot 7)^{-1} \pmod{4}] + x_3(3 \cdot 4)[(3 \cdot 4)^{-1} \pmod{7}] \pmod{84} = 28x_1 + 21x_2 + 36x_3 \pmod{84}$$

Таким образом, множество элементов второго порядка группы G это:

$$M_2 = \{13, 43, 55, 29, 41, 71, 83\}.$$

Обозначим за $A_i = \langle M_{2,i} \rangle$, где $M_{2,i}$ – i-тый элемент множества M_2 . Тогда $S_1(8) \cong A_i \times A_j \times A_k$, $i,j,k=\overline{1,7}$.

2. Определим структуру примарной группы $S_2(3)$. Для этого нужно решить сравнение:

$$x^3 \equiv 1 \pmod{84}.$$

По КТО это равносильно следующей системе:

$$\begin{cases} x^3 \equiv 1 \pmod{3} \\ x^3 \equiv 1 \pmod{4} \\ x^3 \equiv 1 \pmod{7} \end{cases}$$

Первые два сравнения, очевидно, имеют единственные решения $x_1 = 1$, $x_2 = 1$. Последнее сравнение имеет 3 решения: $x_3 = \{1, 2, 4\}$. Общее решение исходного сравнения будет равно:

$$X = 28x_1 + 21x_2 + 36x_3 \pmod{84} = 49 + 36x_3 \pmod{84}$$

Множество элементов третьего порядка группы G это:

$$M_3 = \{25, 37\}$$

Таким образом, $S_2(3) = \langle 25 \rangle = \langle 37 \rangle$.

Other:
$$G \cong A_i \times A_j \times A_k \times \langle 25 \rangle = A_i \times A_j \times A_k \times \langle 37 \rangle, i, j, k = \overline{1,7}$$
.

Задача 5.2 Доказать, что $y = x^3$ – подстановка над \mathbb{Z}_p , если $p \equiv 2 \pmod{3}$, то есть,

$$x_1^3 \equiv x_2^3 \pmod{p} \Rightarrow x_1 \equiv x_2 \pmod{p}$$
.

Решение.

Поле \mathbb{Z}_p имеет порядок $\phi(p)=p-1$. Из $x_1^3\equiv x_2^3\pmod p$ получим, что $(x_1x_2^{-1})^3\equiv 1\pmod p$. Тогда порядок $x_1x_2^{-1}$ является делителем 3. Существует два варианта:

- 1. $\operatorname{Ord}(x_1x_2^{-1})=1$. Это означает, что $x_1\equiv x_2\pmod p$. 2. $\operatorname{Ord}(x_1x_2^{-1})=3$. Так как p=3m+2, то $\phi(p)=3m+1$. То есть, порядок элемента не является делителем порядка группы, что противоречит теореме Лагранжа.

Следовательно, $x_1 \equiv x_2 \pmod{p}$. А значит, $y = x^3$ – подстановка над \mathbb{Z}_p .

Задача 5.3 Найти порядок и цикловое представление подстановки $y = x^3, p = 11.$

Решение.

Получим 5 циклов: (0), (1), (2, 8, 6, 7), (3, 5, 4, 9), (10). Порядок подстановки равен НОК длины циклов: HOK(1, 1, 4, 4, 1) = 4.

Ответ: Порядок подстановки (0)(1)(2, 8, 6, 7)(3, 5, 4, 9)(10) равен 4.

Задача 5.4 Найти порядок подстановки $y = 5x + 3 \pmod{12}$ Решение.

Получим 3 цикла: (0, 3, 6, 9), (1, 8, 7, 2), (4, 11, 10, 5). Порядок подстановки равен НОК длины циклов: HOK(4, 4, 4) = 4.

Ответ: Порядок подстановки равен 4.