Homework set 10

Due by 15:00 on Monday, October 30, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io.

Problem 1 (Banach–Steinhaus). Let V and W be Banach spaces and (T_n) a sequence in B(V,W) such that for every $x\in V$ there is a $y\in W$ such that $\|T_n(x)-y\|\to 0$. Show that there exists a bounded $T\in B(V,W)$ such that $\|T_n(x)-T(x)\|\to 0$ and that $\sup \|T_n\|<\infty$.

Problem 2. Consider the space C([a,b]) of continuous functions on the interval [a,b] equipped with the sup norm. Show that weak convergence implies pointwise convergence; that is, $f_n \xrightarrow{w} f$ implies $f_n(x) \to f(x)$ for all $x \in [a,b]$.

Problem 3. Let V be a normed space. Show that $x_n \xrightarrow{w} x$ and $||x_n|| \to ||x||$ imply that $x_n \to x$.

Problem 4. Let V be a Banach space and W a normed space. Let (T_n) be a sequence in B(V, W). Show that if (T_n) is strongly operator convergent with limit T, then $T \in B(V, W)$.

Problem 5. Let V and W be Banach spaces. Show that a sequence (T_n) in B(X,Y) is strongly operator convergent if and only if the sequence $(||T_n||)$ is bounded and the sequence $(T_n(x))$ is Cauchy for every $x \in M$, where $\operatorname{span} M$ is dense in X.