Jan 19th

TA: Ben Schachter

Outline: 1) Mersenne primes

2) Perfect numbers

3) Induction

Mersenne primes

Def. A prime number is number pe N such that the only divisors of pore 1 and P. convention: 1 is not prime.

Mersenne primes Def: A Mersenne prime is a prime number of the form 2"-1.

n 1 2 8 4 5 6 7 8 9 10 11 ... 2-1 1 3 7 15 31 63 127 255 511 623 264 ...

 2^{-1} 1 3 + 13 31 63 12+ 253 511 1023 604+ ...

So if 2^n-1 is prime, n is prime.

composite composite

Prop: Every Mersene prime is of the form 2p-1 where p is prime.

Proof: (Contropositive) Sps n is a composite number. Then n=ab, a, $b \ge 2$.

Then $2^n - 1 = (2^a)^b - 1$ $= (2^a - 1)(2^a)^{b-1} + (2^a)^{b-2} + (2^a)^{b-3} + \dots + (2^a)^2 + 2^a + 1$ B

since a,b ≥2, A.B ≥2 as well.

So . 2 -1 = AB is composite.

Def: A number n is called perfect if it is equal to sum of its proper divisors.

Ex: 6 is perfect: divisors are 1.2.3,6

proper divisors are 1.2.3

1+2+3=6

numbers

Ex: 28=1+2+4+7+14 Ex: 10 = 142+5

Prop: If $n=2^{p-1}(2^p-1)$ where 2^p-1 is a Mersenne prime, then n is perfect.

Proof: We want to show $n=\sum d$ Since 2^{p-1} is prime, we write $g=2^p-1$, $n=2^{p-1}g$. The divisors of n are $\lfloor 1,2,2^2,\cdots,2^{p-1},2^p-1 \rfloor$.

The sum of A is 1+2+2+...+2+1=2-1=2+1=2

 $g+2g+\cdots+2^{p-2}g=g(\frac{2^{p-1}-1}{2-1})=2^{p-1}g-g$

Then the sum of all proper divisors is 3+2°-19-9=1

.. n is perfect.

induction

Prop: For all $n \in \mathbb{N}$, 1+2+3+...+ $n = \frac{n(n+1)}{2}$ Proof: ____

Prop. $\sqrt{2}$ is irrational Pf: want to show $\sqrt{2} \neq \frac{P}{3}$ where $3 \cdot P \in \mathbb{Z}$ 3-P coprime

 $\Rightarrow 2 = \frac{8^2}{p^2} \Rightarrow 2p^2 = 8^2$

: q is even so q=2k for some k. But $2p^2=2k^3=4k^2 \implies p^2=2k^2$

: p is even

But we know p.g one relatively prime, so cannot both be even Hence, VI is not radional