Alignment-free analyses of next-generation sequencing data

Andrew P Morgan

Fernando Pardo-Manuel de Villena lab Department of Genetics

BCB Research-in-Progress Seminar 9 October 2014

Acknowledgments

Algorithms

J Matthew Holt

Leonard McMillan

Applications

John Didion

Fernando Pardo-Manuel de Villena

Data

Sanger Center/Wellcome Trust

Jim Crowley

Funding

P50GM076468

F30MH103925

Goals of next-generation sequencing (NGS)

Discovery of molecular variation

- DNAseq
- RNAseq
- metagenomics

Quantification

- RNAseq
- CHIPseq
- other exotic *-seq
- metagenomics

Goals of next-generation sequencing (NGS)

Discovery of molecular variation

- DNAseq
- RNAseq
- metagenomics

Quantification

- RNAseq
- CHIPseq
- other exotic *-seq
- metagenomics

Goals of next-generation sequencing (NGS)

Discovery of molecular variation

- DNAseq
- RNAseq
- metagenomics

Quantification

- RNAseq
- CHIPseq
- other exotic *-seq
- metagenomics

THE LINEAR ARRANGEMENT OF SIX SEX-LINKED FACTORS IN DROSOPHILA, AS SHOWN BY THEIR MODE OF ASSOCIATION

A. H. STURTEVANT

From the Zoölogical Laboratory, Columbia University

Diagram 1

Insight: genomes of multiple individuals are collinear.

THE LINEAR ARRANGEMENT OF SIX SEX-LINKED FACTORS IN DROSOPHILA, AS SHOWN BY THEIR MODE OF ASSOCIATION

A. H. STURTEVANT

From the Zoölogical Laboratory, Columbia University

Diagram 1

Insight: genomes of multiple individuals are collinear.

THE LINEAR ARRANGEMENT OF SIX SEX-LINKED FACTORS IN DROSOPHILA, AS SHOWN BY THEIR MODE OF ASSOCIATION

A. H. STURTEVANT

From the Zoölogical Laboratory, Columbia University

Insight: genomes of multiple individuals are collinear.

 $\lim_{\text{data} \to \infty}$ (physical map) = whole-genome sequence

 $\lim_{\text{data} \to \infty}$ (physical map) = whole-genome sequence

Why use a reference?

Practical reasons

- Convenience
- Efficiency
- Compression/summary
- Generalizability

Biological reasons

- Strong prior
- High-quality annotation

Why use a reference?

Practical reasons

- Convenience
- Efficiency
- Compression/summary
- Generalizability

Biological reasons

- Strong prior
- High-quality annotation

Why use a reference?

Practical reasons

- Convenience
- Efficiency
- Compression/summary
- Generalizability

Biological reasons

- Strong prior
- High-quality annotation

- The reference is an artificial construct.
- The reference introduces biases which are asymmetric.
- The most consequential genomic variation is hardest to see against the reference.

- The reference is an artificial construct.
- The reference introduces biases which are asymmetric.
- The most consequential genomic variation is hardest to see against the reference.

- The reference is an artificial construct.
- The reference introduces biases which are asymmetric.
- The most consequential genomic variation is hardest to see against the reference.

- The reference is an artificial construct.
- The reference introduces biases which are asymmetric.
- The most consequential genomic variation is hardest to see against the reference.

The reads are the data.

- De novo assembly is hard
- Few tools available for exploring unaligned reads
- Raw datasets are (very) big and unindexed

- De novo assembly is hard
- Few tools available for exploring unaligned reads
- Raw datasets are (very) big and unindexed

- De novo assembly is hard
- Few tools available for exploring unaligned reads
- Raw datasets are (very) big and unindexed

- De novo assembly is hard
- Few tools available for exploring unaligned reads
- Raw datasets are (very) big and unindexed

Constructing the BWT for the string APPLE

sorted	BWT
APPLE\$*	*
E\$*APPL	L
LE\$*APP	P
PLE\$*AP	P
PPLE\$*A	A
*APPLE\$	\$
\$*APPLE	E
	APPLE\$* E\$*APPL LE\$*APP PLE\$*AP PPLE\$*A

Constructing the BWT for the string APPLE.

rotation	sorted	BWT
APPLE\$	APPLE\$	*
\$*APPLE	E\$*APPL	L
E\$*APPL	LE\$*APP	P
LE\$*APP	PLE\$*AP	P
PLE\$*AP	PPLE\$*A	A
PPLE\$*A	*APPLE\$	\$
APPLE\$*	\$*APPLE	E

Constructing the BWT for the string APPLE.

rotation	sorted	BWT
APPLE\$	APPLE\$	*
\$*APPLE	E\$*APPL	L
E\$*APPL	LE\$*APP	P
LE\$*APP	PLE\$*AP	P
PLE\$*AP	PPLE\$*A	A
PPLE\$*A	*APPLE\$	\$
APPLE\$*	\$*APPLE	E

Constructing the BWT for the string APPLE.

rotation	sorted	BWT
APPLE\$	APPLE\$	*
\$*APPLE	E\$*APPL	L
E\$*APPL	LE\$*APP	P
LE\$*APP	PLE\$*AP	P
PLE\$*AP	PPLE\$*A	A
PPLE\$*A	*APPLE\$	\$
APPLE\$*	\$*APPLE	E

Extending BWT to many strings, efficiently

BIOINFORMATICS

ORIGINAL PAPER

Sequence analysis

Advance Access publication August 28, 2014

Merging of multi-string BWTs with applications

James Holt* and Leonard McMillan

Department of Computer Science, 201 S. Columbia St. UNC-CH, Chapel Hill, NC 27599, USA Associate Editor: Michael Brudno

Extending BWT to many strings, efficiently

Theoretical properties of merged msBWT

Define

 $\ell = \text{length of longest common substring among strings}$

n =total number of strings

N = sum of length of all n strings

m = total number of msBWTs being merged

k =word size (for later)

Time and space requirements

- Construction takes $O(\ell N)$ time
- Final msBWT requires $O(N \log_2 m)$ space
- Searches take O(k) time

Theoretical properties of merged msBWT

Define

 $\ell = \text{length of longest common substring among strings}$

n =total number of strings

N = sum of length of all n strings

m = total number of msBWTs being merged

k =word size (for later)

Time and space requirements

- Construction takes $O(\ell N)$ time
- Final msBWT requires $O(N \log_2 m)$ space
- Searches take O(k) time

- Lossless compression (and rate improves with more data)
 can reconstitute fastq file¹ from a msBWT
- Easy to add data to an existing msBWT, without complete
- Search for arbitrary k-mer takes O(k) time no matter how many reads (!!)

- Lossless compression (and rate improves with more data)
 - ► can reconstitute fastq file¹ from a msBWT
- Easy to add data to an existing msBWT, without complete recomputation
- Search for arbitrary k-mer takes O(k) time no matter how many reads (!!)

- Lossless compression (and rate improves with more data)
 - can reconstitute fastq file¹ from a msBWT
- Easy to add data to an existing msBWT, without complete recomputation
- Search for arbitrary k-mer takes O(k) time no matter how many reads (!!)

¹Sort of — storage of quality scores not yet implemented. → ⟨♂ → ⟨ □

- Lossless compression (and rate improves with more data)
 - can reconstitute fastq file¹ from a msBWT
- Easy to add data to an existing msBWT, without complete recomputation
- Search for arbitrary k-mer takes O(k) time no matter how many reads (!!)

- Lossless compression (and rate improves with more data)
 - can reconstitute fastq file¹ from a msBWT
- Easy to add data to an existing msBWT, without complete recomputation
- Search for arbitrary k-mer takes O(k) time no matter how many reads (!!)

- Lossless compression (and rate improves with more data)
 - can reconstitute fastq file¹ from a msBWT
- Easy to add data to an existing msBWT, without complete recomputation
- Search for arbitrary k-mer takes O(k) time no matter how many reads (!!)

What can we do with it?

Basic operations:

- search for a k-mer and return strings (ie. reads) which contain it
- count occurrences of a k-mer

Example use cases:

- targeted *de novo* assembly
- finding structural variants
- analysis of mRNA splicing and editing
- profiling sequence composition
- informed design of molecular assays

What can we do with it?

Basic operations:

- search for a k-mer and return strings (ie. reads) which contain it
- count occurrences of a k-mer

Example use cases:

- targeted de novo assembly
- finding structural variants
- analysis of mRNA splicing and editing
- profiling sequence composition
- informed design of molecular assays

Modelling the sequencing process

Assume **reads** of length p are generated from **template** sequences at random, with per-base error rate ε .

ACAGTCAGAGCTAGCAGCTAGCTAACGGCCTA (diploid template)
ACAGTCAGAGCTTGCACAGCTAGCTAACGGCCTA

ACAGTCAGAGCTTGCACAGCTAGCTAACGGCCTA (reference)

We can search a msBWT for k-mers for $k \le p$. How to choose k?

Modelling the sequencing process

Assume **reads** of length p are generated from **template** sequences at random, with per-base error rate ε .

ACAGTCAGAGCTAGCAGCTAACGGCCTA (diploid template)
ACAGTCAGAGCTTGCACAGCTAGCTAACGGCCTA

ACAGTCAGAGCTTGCACAGCTAGCTAACGGCCTA (reference)

We can search a msBWT for k-mers for $k \le p$. How to choose k?

Choosing a useful k-mer size

Let w be distance between sequencing errors.

$$w \sim \mathsf{Expo}(\varepsilon)$$
 (1)

so $\mathbb{E}[w] = 1/\varepsilon$.

Let π be the pairwise sequence divergence between the templace and the reference, and s the distance between variants.

$$s \sim \mathsf{Expo}(\pi)$$
 (2)

so $\mathbb{E}[s] = 1/\pi$

Pick $k \leq \min(1/\varepsilon, 1/\pi)$.

Choosing a useful k-mer size

Let w be distance between sequencing errors.

$$w \sim \mathsf{Expo}(\varepsilon)$$
 (1)

so $\mathbb{E}[w] = 1/\varepsilon$.

Let π be the pairwise sequence divergence between the templace and the reference, and s the distance between variants.

$$s \sim \mathsf{Expo}(\pi)$$
 (2)

so $\mathbb{E}[s] = 1/\pi$.

Pick $k \leq \min(1/\varepsilon, 1/\pi)$.

Choosing a useful k-mer size

Let w be distance between sequencing errors.

$$w \sim \mathsf{Expo}(\varepsilon)$$
 (1)

so $\mathbb{E}[w] = 1/\varepsilon$.

Let π be the pairwise sequence divergence between the templace and the reference, and s the distance between variants.

$$s \sim \mathsf{Expo}(\pi)$$
 (2)

so $\mathbb{E}[s] = 1/\pi$.

Pick $k \leq \min(1/\varepsilon, 1/\pi)$.

Interpreting k-mer counts

Let c be the count of occurrences of some k-mer, and X be estimated sequencing depth.

Case 1: c > 0

$$\mathbb{E}[c|k] \leq \mathbb{E}[c|k-1] \leq \dots \mathbb{E}[c|1]$$

 \ldots and can choose k sufficiently large that $\mathbb{E}[c|k] \approx X$ for "nice" queries.

Case 2: c = 0

- this part of template not sequenced: $P(c=0) \approx e^{-X}$
- sequencing error(s): $P(c=0) \approx (1 e^{-p\varepsilon})^X$
- this part of template contains variant relative to reference

Interpreting k-mer counts

Let c be the count of occurrences of some k-mer, and X be estimated sequencing depth.

Case 1: c > 0Note that

$$\mathbb{E}[c|k] \leq \mathbb{E}[c|k-1] \leq \dots \mathbb{E}[c|1]$$

 \dots and can choose k sufficiently large that $\mathbb{E}[c|k] \approx X$ for "nice" queries.

Case 2: c = 0

- this part of template not sequenced: $P(c=0) \approx e^{-X}$
- sequencing error(s): $P(c=0) \approx (1-e^{-p\varepsilon})^X$
- this part of template contains variant relative to reference

Interpreting k-mer counts

Let c be the count of occurrences of some k-mer, and X be estimated sequencing depth.

Case 1: c > 0

Note that

$$\mathbb{E}[c|k] \leq \mathbb{E}[c|k-1] \leq \dots \mathbb{E}[c|1]$$

... and can choose k sufficiently large that $\mathbb{E}[c|k] \approx X$ for "nice" queries.

Case 2: c = 0

- this part of template not sequenced: $P(c=0) \approx e^{-X}$
- sequencing error(s): $P(c=0) \approx (1-e^{-p\varepsilon})^X$
- this part of template contains variant relative to reference

Example uses of the msBWT

- Assembling the mouse mitochondrial genome
- 2 A complex structural variant in mouse
- Profiling the gut microbiota

Interactive de novo assembly

[online demo]

"Confetti plots"

Untangling multiple copies

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Untangling multiple copies

Untangling multiple copies

Can assign k-mers to copies using mixture model. Define mixing proportions π_i ; then

$$\frac{\pi_A}{\pi_B} \approx \frac{d_A}{d_B}$$

Phylogeny with novel sequence

Phylogeny with novel sequence

Aside: age of repeat elements

Applications of msBWT for molecular biology

- design of PCR assays
- design of oligonucleotide probes (qPCR, microarray)
- direct query of structural variants
- . . .

Applications of msBWT for molecular biology

- design of PCR assays
- design of oligonucleotide probes (qPCR, microarray)
- direct query of structural variants
- . . .

Applications of msBWT for molecular biology

- design of PCR assays
- design of oligonucleotide probes (qPCR, microarray)
- direct query of structural variants
-

Applications of msBWT for molecular biology

- design of PCR assays
- design of oligonucleotide probes (qPCR, microarray)
- direct query of structural variants
- . . .

$$\mathbf{Y}_{n \times p} =$$

$$\frac{1}{n}\mathbf{Y}\mathbf{Y}^T = \mathbf{D} =$$

Multivariate ANOVA, given a matrix $\mathbf{X}_{n \times q} = [x_1 \dots x_q]$ of covariates:

$$\mathbf{D} \sim x_1 + \cdots + x_q$$

$$\frac{1}{n}\mathbf{YY}^T = \mathbf{D} =$$

Multivariate ANOVA, given a matrix $\mathbf{X}_{n \times q} = [x_1 \dots x_q]$ of covariates:

$$\mathbf{D} \sim x_1 + \cdots + x_q$$

Using naïve *k*-mer frequencies from msBWT

Time: ~ 2 hours

Morgan, Crowley et al. *PLoS One*, in process.

Using MTToolbox + qiime
+ UniFrac

Time: \sim 8 hours

Using naïve *k*-mer frequencies from msBWT

Time: \sim 2 hours

Morgan, Crowley et al. PLoS One, in process.

Using MTToolbox + qiime
+ UniFrac

Time: \sim 8 hours

Extension: microbial abundance estimation from k-mers

- Unsupervised structural variant detection
- Unsupervised de novo assembly, starting from arbitrary seed
- Joint analysis of RNAseq and DNAseq from same sample
 - splicing/isoform diversity
 - RNA editing
 - fusion transcripts
- Identification and quantification of transposable elements
- Contaminant detection
-

- Unsupervised structural variant detection
- Unsupervised de novo assembly, starting from arbitrary seed
- Joint analysis of RNAseq and DNAseq from same sample
 - splicing/isoform diversity
 - RNA editing
 - fusion transcripts
- Identification and quantification of transposable elements
- Contaminant detection
-

- Unsupervised structural variant detection
- Unsupervised de novo assembly, starting from arbitrary seed
- Joint analysis of RNAseq and DNAseq from same sample
 - splicing/isoform diversity
 - RNA editing
 - fusion transcripts
- Identification and quantification of transposable elements
- Contaminant detection
-

- Unsupervised structural variant detection
- Unsupervised de novo assembly, starting from arbitrary seed
- Joint analysis of RNAseq and DNAseq from same sample
 - splicing/isoform diversity
 - RNA editing
 - fusion transcripts
- Identification and quantification of transposable elements
- Contaminant detection
-

- Unsupervised structural variant detection
- Unsupervised de novo assembly, starting from arbitrary seed
- Joint analysis of RNAseq and DNAseq from same sample
 - splicing/isoform diversity
 - RNA editing
 - fusion transcripts
- Identification and quantification of transposable elements
- Contaminant detection
-

- Unsupervised structural variant detection
- Unsupervised de novo assembly, starting from arbitrary seed
- Joint analysis of RNAseq and DNAseq from same sample
 - splicing/isoform diversity
 - RNA editing
 - fusion transcripts
- Identification and quantification of transposable elements
- Contaminant detection
-

- Unsupervised structural variant detection
- Unsupervised de novo assembly, starting from arbitrary seed
- Joint analysis of RNAseq and DNAseq from same sample
 - splicing/isoform diversity
 - RNA editing
 - fusion transcripts
- Identification and quantification of transposable elements
- Contaminant detection
- . . .

Try it yourself

Interactive queries hosted on csbio cluster
www.csbio.unc.edu/CEGSseq/?run=msBWT

Download the msbwt Python package pypi.python.org/pypi/msbwt/0.2.4

See my (rudimentary) scripts github.com/andrewparkermorgan/snoop

Questions?