Processamento de Sinais aplicado à Engenharia Mecânica

Flavius P. R. Martins, Prof. Dr. Flávio C. Trigo, Prof. Dr.

Bibliografia

- 1. Bendat, J. S., Persol, A.G., Random Data. New York: Wiley Interscience, 1971.
- 2. Braun, S., Mechanical Signature Analysis. London: Academic Press, 1986.
- 3. Brighan, E. O., The Fast Fourier Transform. New York: Prentice-Hall, 1974.
- 4. Jazwinski, A. H., Stochastic processes and filtering theory. New York: Academic Press, 1970.
- 5. Kil, D.H. Shinn, F.B., Pattern recognition and prediction with applications to signal characterization. New York: Woodbury, 1996.
- 6. Lynn, P.A, Fuerst, W., Introductory digital signal processing with computer applications. New York: Wiley, 1998.
- 7. Marple, S.L., Digital Spectral Analysis with applications. London: Prentice-Hall.
- 8. Newland, D.E., An introduction to random vibrations, spectral and wavelet analysis, 3a ed. New York: John Wiley, 1993.
- 9. Papoulis, A. Probability, Random Variables and Stochastic Processes, 3rd. Ed. New York: McGraw-Hill, 1991.
- 10. Porat, B. A., Course in digital processing. New York: John Willey, 1997.
- 11. Proakis, J.G., Manolakis, D.G, Digital Signal Processing: principles, algorithms and applications. New Jersey: Prentice Hall, 1996.
- 12. Steans, S. D., Signal processing algorithms in Matlab. Upper Sadle River, New Jersey, 1996.

Bibliografia

Periódicos com maior fator de impacto

- 1. IEEE Signal Processing Magazine.
- 2. Elsevier: Mechanical Systems and Signal Processing.
- 3. IEEE Transactions on Signal Processing.
- 4. Elsevier: Signal Processing.
- 5. IEEE Signal Processing Letters.

Ferramentas computacionais

- 1. Matlab
- 2. Scilab
- 3. Python

Avaliação

Listas de exercícios

- Solução analítica
- Solução computacional
- Problemas didáticos
- Problemas práticos

O que é um sinal?

Contexto da Teoria da Informação

Sequência de estados que codificam uma mensagem.

Contexto de Processamento de Sinais

Representações matemáticas de quantidades <u>físicas</u> variáveis no tempo ou no espaço e capturadas na saída de um <u>sistema de medida</u>.

Extensão do contexto

Incluem-se as representações das saídas de sistemas de simulação.

Cadeia de Medida típica

Cadeia de simulação típica

Síntese de modelo

Descrição de sinais

Sinais contínuos

<u>funções</u> de uma (f = f(t)) ou mais (f = f(x, y, z, t)) variáveis independentes.

Sinais discretos

seqüências da forma f = x[n] ou tabelas da forma f = f[n, m]

Variáveis independentes

Em geral, representam o tempo t ou as coordenadas x, y, z de um ponto do espaço.

Variável dependente

Relaciona-se diretamente com a medida de uma variável física.

Ruído, Sistema e Informação

Ruído

Sinal que não contém informação útil.

Sistemas

Processos que transformam sinais

Informação

Seqüência de símbolos de um <u>alfabeto</u> que sintetiza o conteúdo do sinal sem qualquer redundância. Antítese da incerteza.

Classificação dos sinais

Existem vários critérios para a classificação de sinais. Consideraremos apenas os seguintes:

- Continuidade
- Origem / natureza
- Ponto de vista estatístico

Classificação dos sinais: continuidade

Sinal de valor contínuo, contínuo no tempo: $x(t): \mathbb{R} \to \mathbb{R}$

Se $\Delta x \propto \Delta v$, $(v = variável\ física) \Rightarrow x(t)$ é **sinal anal**ó**gico**

Sinal de valor contínuo, discreto no tempo: $x[n]: \mathbb{Z} \dashrightarrow \mathbb{R}$

Classificação dos sinais: continuidade

Sinal de valor discreto, contínuo no tempo: $x[n]: \mathbb{R} \longrightarrow \mathbb{Z}$

Sinal de valor discreto, discreto no tempo: $x[n]: \mathbb{Z} \longrightarrow \mathbb{Z}$

Classificação dos sinais: origem/natureza

Sinais naturais ou de dispositivos físicos

- <u>Fonte geradora</u>: elementos da Natureza (terremotos, trovões, pulsares etc) ou dispositivos e sistemas criados pelo homem (motores, sistemas de potência etc).
- <u>Abordagem</u>: As técnicas de Processamento de Sinais em geral são capazes de caracterizar esses sinais.

Sinais inteligentes

- <u>Natureza</u>: Codificam informações lingüísticas, como: a) voz humana em ato de conversação; b) música; c) imagens de texto escrito; d) desenhos de engenharia.
- Abordagem: Para analisar esses sinais é necessário combinar técnicas de Processamento de Sinais e de Inteligência Artificial

Classificação dos sinais: origem/natureza

O sistema HearSay (Hayes-Roth, F., 1980)

<u>Propósito</u>: interpretar solicitações verbais de usuários de bibliotecas.

Técnicas de Processamento de Sinais:

Análise de Fourier, filtragem e segmentação.

<u>Técnicas de Inteligência Artificial</u>: Sistema especialista baseado em arquitetura blackboard, com fontes de conhecimento especializadas em fonética, gramática, sintaxe e semântica.

Classificação dos sinais: ponto de vista estatístico

Sinais determinísticos

São aqueles cuja evolução temporal ou espacial pode ser prevista de forma exata.

Ex. 1: sistema massa-mola:

$$x(t) = A\cos\left(\sqrt{\frac{k}{m}}t\right), t \ge 0$$

Ex. 2: sólido em movimento espontâneo

$$p(t) = \varepsilon \mu \sqrt{\frac{D(D-C)}{A(A-C)}} \operatorname{cn}\tau(t)$$

$$q(t) = \varepsilon' \mu \sqrt{\frac{D(D-C)}{B(B-C)}} \operatorname{sn}\tau(t)$$

$$r(t) = \varepsilon'' \mu \sqrt{\frac{D(A-D)}{C(A-C)}} \operatorname{dn}\tau(t)$$

Classificação dos sinais: ponto de vista estatístico

Sinais aleatórios

São emitidos por sistemas regidos por processos aleatórios (estocásticos). Ex.: veículo movendo-se sobre pista rugosa.

Classificação dos sinais: ponto de vista estatístico

Sinais Determinísticos

Nessa categoria, identificam-se os seguintes tipos de sinal:

- Periódicos
- Quase periódicos
- Transientes
- Caóticos

Sinais Aleatórios

Grosso modo, dividem-se em dois grupos:

- Estacionários
- Não-estacionários

Sinais Periódicos

São descritos por funções (seqüências), tais que:

- x(t) = x(t + mT)
- $\bullet \quad x[n] = x[n+M]$

Ex.: Pêndulo plano

$$\theta(t) = \theta_0 sn\left(\sqrt{\frac{g}{\ell}}t, \frac{v_0}{\sqrt{2\ell g}}\right)$$

Sinais quase periódicos

- Seja ω_1/ω_2 um número racional. Nesse caso o sinal $x(t) = A_1 \sin(\omega_1 t + \varphi_1) + A_2 \sin(\omega_2 t + \varphi_2)$ é periódico.
- Seja ω_1/ω_2 um número irracional ($2/\sqrt{2}$, por exemplo). Nesse caso, o sinal $x(t) = A_1 \sin(\omega_1 t + \varphi_1) + A_2 \sin(\omega_2 t + \varphi_2)$ nunca se repete de forma exata, mas se repete de forma aproximada (note que $\frac{2}{\sqrt{2}} \approx \frac{200}{141}$

Sinais transientes

Um exemplo típico dessa classe de sinais é a resposta impulsiva de um oscilador harmônico amortecido.

$$\ddot{m}x + c\dot{x} + kx = 0$$

Solução: $x(t) = Ae^{\zeta\omega_0 t}\sin\left(\sqrt{1 - \zeta^2}\omega_0 t + \varphi\right)$
onde $\omega_0 = \sqrt{\frac{k}{m}}$ $\zeta = \frac{c}{2\sqrt{mk}}$

Sinais caótico-determinísticos

São emitidos por sistemas dinâmicos descritos por equações diferenciais não-lineares associadas a espaços de estados com dimensão maior ou igual a 3 (Teorema de Poincaré-Bendixson) e a certas equações de diferenças particulares.

Exemplos dessa classe de sistemas:

- Pêndulo duplo
- Mapa logístico

Pêndulo duplo:

$$\begin{split} \ddot{\phi} &= -\frac{m_2}{m_1 + m_2}.\frac{l_2}{l_1}.\cos(\phi - \theta).\ddot{\theta} - \frac{m_2}{m_1 + m_2}.\frac{l_2}{l_1}.\sin(\phi - \theta).\dot{\theta}^2 - \frac{g}{l_1}.\sin\phi \\ \ddot{\theta} &= -\frac{l_1}{l_2}.\cos(\phi - \theta).\ddot{\phi} + \frac{l_1}{l_2}.\sin(\phi - \theta).\dot{\phi}^2 - \frac{g}{l_2}.\sin\theta \end{split}$$

Mapa Logístico

Modelo simplista de evolução demográfica descrito pela seguinte equação de diferenças:

$$x[n+1] = rx[n](1-x[n])$$

onde x[n] é a razão entre o número de habitantes atual e o máximo número de habitantes r é a taxa de crescimento, com valores no intervalo $\left[0,4\right]$

Sinais aleatórios

Sinais estacionários

Apresentam distribuição de probabilidade conjunta invariante no tempo

$$F_U(u_{t_1+\tau}, \cdots, u_{t_n+\tau}) = F_U(u_{t_1}, \cdots, u_{t_n})$$

Sinais aleatórios

Sinais não-estacionários

Apresentam distribuição de probabilidade conjunta variável no tempo

$$F_U(u_{t_1+\tau}, \cdots, u_{t_n+\tau}) \neq F_U(u_{t_1}, \cdots, u_{t_n})$$

Algumas aplicações

- Identificação de defeitos mecânicos a partir da análise de ruídos.
- Processamento de sinais de áudio.
- Análise de dados sismológicos.
- Previsão meteorológica.
- Análise de mercados.
- Identificação e interpretação de discurso.
- Reconhecimento de emoções.
- Sistemas de voz interativos.
- Análise de paisagem acústica.
- Detecção de vazamentos.
- Sistemas de radar e sonar.
- Interpretação de sinais biomédicos.
- Radio-astronomia.

1. Reflexão

$$f = x(t)$$

$$g = x(-t)$$

2. Translação

$$f = x(t)$$

$$g = x(t - t_0)$$

3. Escala: s>1

$$f = x(t)$$

$$g = x(2t)$$

4. Escala: s<1

$$f = x(t) h = x(t/2)$$

Paridade de Funções

Função par: x(-t) = x(t)

Paridade de Funções

Teorema: Todo sinal pode ser decomposto em uma soma de 2 sinais – um par, outro ímpar **Demonstração**

Seja f = x(t) um sinal arbitrário

Sejam
$$P(t) = \frac{1}{2}[x(t) + x(-t)]$$
 e $I(t) = \frac{1}{2}[x(t) - x(-t)]$ dois sinais criados a partir de $x(t)$

Notemos que P(t) é um sinal par, pois: $P(-t) = \frac{1}{2}[P(-t) + P(t)] = P(t)$

Notemos que I(t) é um sinal ímpar, pois: $I(-t) = \frac{1}{2}[x(-t) - x(t)] = -\frac{1}{2}[x(t) - x(-t)] = -I(t)$

Notemos, finalmente, que

$$P(t) + I(-t) = \frac{1}{2}[x(t) + x(-t)] + \frac{1}{2}[x(t) - x(-t)] = x(t) = f$$

Síntese e análise de vetores

Consideremos o triedro tri-retângulo x_1, x_2, x_3 e a base associada de versores $\vec{e}_1, \vec{e}_2, \vec{e}_3$

Os vetores \vec{u} , \vec{v} são representados como

Us vetores
$$u,v$$
 são representados con \vec{v}
$$\vec{u}=u_1\vec{e}_1+u_2\vec{e}_2+u_3\vec{e}_3=\sum_{i=1}^3u_i\vec{e}_i$$

$$\vec{v}=v_1\vec{e}_1+v_2\vec{e}_2+v_3\vec{e}_3=\sum_{i=1}^3v_i\vec{e}_i$$

Equações de **Síntese**

onde os coeficientes u_i , v_i são dados, respectivamente, por:

$$u_i = \vec{u} \cdot \vec{e}_i$$
$$v_i = \vec{v} \cdot \vec{e}_i$$

Equações de **Análise**

Assim, pode-se escrever:

$$\vec{u} = \sum_{i=1}^{3} (\vec{u} \cdot \vec{e}_i) \vec{e}_i$$

$$\vec{v} = \sum_{i=1}^{3} (\vec{v} \cdot \vec{e}_i) \vec{e}_i$$

$$\vec{v} = \sum_{i=1}^{3} (\vec{v} \cdot \vec{e}_i) \vec{e}_i$$

Síntese e análise de vetores

Seja $S=\{\vec{u}_1,\vec{u}_2,\cdots,\vec{u}_n\}$ um conjunto de vetores mutuamente **ortogonais** definidos no espaço \mathbb{R}^n

Então, para quaisquer pares \vec{u}_l , \vec{u}_m tomados em S , tem-se:

$$\vec{u}_l \cdot \vec{u}_m = \sum_{i=1}^n u_l^i u_m^i = 0, se \ l \neq m$$

$$\vec{u}_l \cdot \vec{u}_m = \sum_{i=1}^n u_l^i u_m^i > 0$$
, se $l=m$

Caso os vetores de S sejam unitários, tem-se $\vec{u}_l \cdot \vec{u}_m = \sum_{i=1}^n u_l^i u_m^i = 1$ se l=m

Nessas condições, os vetores de S definem uma base ortogonal (ou ortonormal, se $|\vec{u}_i|$ =1) em \mathbb{R}^n

Síntese e análise de vetores

Qualquer vetor $ec{v}$ de S pode ser descrito como uma combinação linear de $ec{u}_i$

$$\vec{v} = a_1 \vec{u}_1 + \dots + a_n \vec{u}_n = (\vec{v} \cdot \vec{u}_1) \vec{u}_1 + \dots + (\vec{v} \cdot \vec{u}_n) \vec{u}_n = \sum_{i=1}^n (\vec{v} \cdot \vec{u}_i) \vec{u}_i$$

Notemos que $a_i = \vec{v} \cdot \vec{u}_i$ mede o **grau de similaridade** entre os vetores \vec{v} e \vec{u}_i . Quanto mais alinhados são esses vetores, maior é o coeficiente a_i .

O vetor \vec{v} pode ser expresso como $\vec{v}=a_i\vec{u}_i+\vec{v}_e$, em que $a_i\vec{u}_i$ representa a aproximação de \vec{v} por \vec{u}_i e \vec{v}_e o erro dessa aproximação.

Naturalmente, a melhor aproximação é a que torna esse erro mínimo, o que ocorre quando $\vec{v} \perp \vec{u}_i$.

Síntese e análise de vetores

Imaginemos agora que $n \to \infty$. Nesse caso, S passa a ter infinitos vetores, cada qual com dimensão infinita, ou seja,

$$S_{\infty} = \{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_{\infty}\}$$
,

onde

$$\vec{u}_i = u_i^1 \vec{e}_1 + u_i^2 \vec{e}_2 + \dots + u_i^\infty \vec{e}_\infty$$

Portanto, o espaço em causa evoluiu do \mathbb{R}^n para o \mathbb{R}^∞ , ou seja, um espaço com infinitas dimensões, onde cada um dos infinitos eixos coordenados $x_1, x_2, \cdots, x_\infty$ representa a reta \mathbb{R} .

Caso os vetores \vec{u}_i de S_{∞} sejam vetores complexos, o espaço varrido por S é o \mathbb{C}^n , o qual se transforma no **espaço de Hilbert** (\mathbb{C}^{∞}) quando $n \to \infty$

Síntese e análise de vetores

Imaginemos agora que as coordenadas dos vetores \vec{u}_i de S_{∞} correspondam às infinitas ordenadas de **funções ortogonais** $f_i = f_i(t)$, ou seja, $\vec{u}_i = f_i = \left(f_i^1, f_i^2, \cdots, f_i^{\infty}\right)$

Nessa condições, não mais nos referiremos ao conjunto de vetores ortogonais $\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_\infty$, mas sim ao conjunto de funções ortogonais $f_1(t), f_2(t), \cdots, f_\infty(t)$. O conjunto S passará a ser representado como $S = \{f_1(t), f_2(t), \cdots, f_\infty(t)\}$, que é um conjunto infinitamente denso de funções ortogonais.

Funções ortogonais

Duas funções $f_m(t)$ e $f_n(t)$ são ditas **ortogonais** se o produto interno

$$f_m \cdot f_n = \int_{-\infty}^{\infty} f_m^*(t) f_n(t) = 0$$
, para $m \neq n$

Duas funções $f_m(t)$ e $f_n(t)$ são ditas **ortogonais** no intervalo a < t < b se o produto interno

$$f_m \cdot f_n = \int_a^b f_m^*(t) f_n(t) = 0$$
, para $m \neq n$

Exponenciais complexas e Funções trigonométricas

Seja z = x + iy um ponto do plano complexo.

As propriedades a seguir são elementares:

•
$$z^* = x - iy$$

•
$$|z| = (z \cdot z^*) = \sqrt{x^2 + y^2}$$

•
$$arg(z) = \tan^{-1}(y/x)$$

•
$$z + z^* = 2Re(z) = 2x$$

•
$$z - z^* = 2Im(z) = 2iy$$

•
$$e^{i\theta} = \cos\theta + i\sin\theta$$

•
$$\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

•
$$\sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta})$$

Exponenciais complexas e Funções trigonométricas

O sinal $x(t) = e^{i\omega_0 t}$

é periódico e seu período é $T_0 = \frac{2\pi}{\omega_0}$

<u>Demonstração</u>:

$$x(t+T_0) = e^{i\omega_0(t+T_0)} = e^{i\omega_0t} \cdot e^{i\omega_0T_0} = x(t) \cdot e^{i2\pi} = x(t)(\cos 2\pi + i\sin 2\pi) = x(t)$$

O sinal $x(t) = A\cos(\omega_0 t + \varphi)$ pode ser escrito na forma $x(t) = \frac{A}{2}e^{i\varphi}e^{i\omega_0 t} + \frac{A}{2}e^{-i\varphi}e^{-i\omega_0 t}$

<u>Demonstração</u>:

$$\frac{A}{2}e^{i\varphi}e^{i\omega_0t} + \frac{A}{2}e^{-i\varphi}e^{-i\omega_0t} = \frac{A}{2}e^{i(\omega_0t+\varphi)} + \frac{A}{2}e^{-i(\omega_0t+\varphi)} =$$

$$\frac{A}{2}\cos(\omega_0t + \varphi) + i\frac{A}{2}\sin(\omega_0 + \varphi)$$

$$+\frac{A}{2}\cos(\omega_0t + \varphi) - i\frac{A}{2}\sin(\omega_0 + \varphi) = A\cos(\omega_0t + \varphi)$$

Exponenciais complexas

As exponenciais complexas são ditas **harmonicamente relacionadas** quando suas frequências são múltiplos inteiros de uma frequência **fundamental** ω_0 , ou seja:

$$f_n(t) = e^{ik} \, _{0}^{t}$$
, $k = 0, \pm 1, \pm 2, \cdots$

A frequência $k\omega_0$ é chamada de **harmônico de ordem** k.

Freqüências **negativas** aparecem naturalmente nas exponenciais complexas. Estão associadas a rotações **horárias**, em oposição às freqüências positivas, que representam rotações antihorárias.

Exponenciais complexas harmonicamente relacionadas

Consideremos o conjunto de harmônicos

$$S = \{\cdots, e^{-i3\omega_0 t}, e^{-i2\omega_0 t}, e^{i\omega_0 t}, 1, e^{i\omega_0 t}, e^{i2\omega_0 t}, e^{i3} \quad _0^t, \cdots\}, \text{com } \omega_0 = \frac{2\pi}{T_0}$$

Os harmônicos desse conjunto são <u>ortogonais</u> no intervalo $\left[-\frac{T_0}{2}, \frac{T_0}{2}\right]$, ou seja:

$$\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{in\omega_0 t} \cdot \left(e^{im} \, _0^t\right)^* dt = \begin{cases} 0 & \text{se } n \neq m \\ 1 & \text{se } n = m \end{cases}$$

Demonstração:

Notemos, inicialmente, que

$$\left(e^{im\omega_0 t}\right)^* = \cos(m\omega_0 t) - i\sin(m\omega_0 t) = \cos(-m\omega_0 t) + i\sin(-m\omega_0 t) = e^{-im\omega_0 t}$$

Exponenciais complexas harmonicamente relacionadas

<u>Demonstração</u> (cont):

$$\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{in\omega_0 t} \cdot \left(e^{im\omega_0 t}\right)^* dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{in\omega_0 t} \cdot e^{-im\omega_0 t} dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{i(n-m)\omega_0 t} dt$$

Se n = m: $\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{i(n-m)\omega_0 t} dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} dt = 1$

Se $n \neq m$:

$$\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{i(n-m)\omega_0 t} dt = \frac{1}{T_0} \frac{e^{i(n-m)\omega_0 t}}{i(n-m)\omega_0} \Big|_{-\frac{T_0}{2}}^{\frac{T_0}{2}} = \frac{1}{T_0} \frac{1}{i(n-m)\omega_0} \Big[e^{i(n-m)\omega_0 T_0/2} - e^{-i(n-m)\omega_0 T_0/2} \Big]
\Rightarrow \frac{1}{2\pi (n-m)} \Big[e^{i(n-m)\pi} - e^{-i(n-m)\pi} \Big] =
\frac{1}{2\pi i(n-m)} \Big[\cos(n-m)\pi + i\sin(n-m)\pi - \cos(n-m)\pi + i\sin(n-m)\pi \Big] =
= \frac{1}{2\pi i(n-m)} 2i\sin(n-m)\pi = 0$$

Exponenciais complexas harmonicamente relacionadas

O conjunto S de exponenciais complexas harmonicamente relacionadas constitui-se em uma base de funções ortonormais (ortogonais, com módulo 1).

Essa base de funções pode ser utilizada para descrever funções periódicas.

Para tanto, é necessário, antes de mais nada, definir o conceito de **grau de similaridade entre funções**.

Objetivo: Aproximar um sinal x(t) por outro sinal $x_i(t)$, ambos definidos no mesmo intervalo $t_1 < t < t_2$.

Nessa aproximação, admite-se que:

$$x(t) = c_i x_i(t) + x_e(t) ,$$

onde c_i é uma constante a ser determinada e x_e é um terceiro sinal que representa o erro da aproximação.

Problema de otimização: Determinar a constante c_i de modo a que o erro quadrático $\langle x_e^2(t) \rangle$, dado por

$$\langle x_e^2(t) \rangle = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} x_e^2(t) dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} [x(t) - c_i x_i(t)]^2 dt$$

seja mínimo.

Solução do problema de otimização:

Impõe-se:
$$\frac{d}{dc_i}\langle x_e^2(t)\rangle=0$$
 , ou seja:

$$\frac{d}{dc_i} \left\{ \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \left[x^2(t) - 2c_i x(t) x_i(t) + c_i^2 x_i^2(t) \right] dt \right\} = 0$$

$$\Rightarrow -2 \int_{t_1}^{t_2} x(t) x_i(t) dt + 2 \int_{t_1}^{t_2} c_i x_i^2(t) dt = 0 \Rightarrow c_i = \frac{\int_{t_1}^{t_2} x(t) x_i(t) dt}{\int_{t_1}^{t_2} x_i^2(t) dt}$$

Funções ortogonais

Se x(t) e $x_i(t)$ forem ortogonais no intervalo $[t_1, t_2]$, o grau de similaridade entre elas é

$$c_i = \frac{\int_{t_1}^{t_2} x(t) x_i(t) dt}{\int_{t_1}^{t_2} x_i^2(t) dt} = 0$$

Funções idênticas

Se x(t) e $x_i(t)$ forem idênticas no intervalo $[t_1, t_2]$, o grau de similaridade entre elas é

$$c_i = \frac{\int_{t_1}^{t_2} x(t) x_i(t) dt}{\int_{t_1}^{t_2} x_i^2(t) dt} = 1$$

Exemplo de aplicação

Determinar o grau de similaridade entre o sinal dente de serra ilustrado no gráfico abaixo e a senoide de frequência $\omega_0=\frac{2\pi}{T_0}$.

Teorema: Uma função periódica $f_p(t)$ pode ser descrita em uma base de funções ortonormais constituída por exponenciais complexas harmonicamente relacionadas, na forma:

$$f_p(t) = \sum_{n=-\infty}^{\infty} F(n)e^{in} e^{in}$$

onde F(n) representa o grau de similaridade entre $f_p(t)\,$ e a exponencial complexa $e^{in_{-0}t}\,$.

Demonstração:

Multiplicaremos $f_p(t)$ por $e^{-im\omega_0 t}$ e depois a integraremos no intervalo $\left[-\frac{T_0}{2},\frac{T_0}{2}\right]$.

$$\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) e^{-im\omega_0 t} dt = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \left[\sum_{n=-\infty}^{\infty} F(n) e^{in} \, _0^t \right] e^{-im\omega_0 t} dt$$

A próxima passagem é **polêmica**. Faremos a troca de posições entre a integral e a somatória, sem examinar a **convergência** desta última:

$$\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) e^{-im\omega_0 t} dt = \sum_{n=-\infty}^{\infty} F(n) \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{i(n-m)\omega_0 t} dt$$

Sabemos que $\frac{1}{T_0}\int_{-T_0/2}^{T_0/2}e^{i(n-m)\omega_0t}dt\neq 0$ apenas para n=m , situação essa em que

$$\frac{1}{T_0}\int_{-T_0/2}^{T_0/2}e^{i(n-m)\omega_0t}dt=1$$
. Concluímos, assim, que

$$F_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) e^{-in\omega_0 t}$$

Deve-se notar que F_n representa o grau de similaridade entre $f_p(t)$ e $e^{in\omega_0 t}$.

Vê-se assim que, se $f_p(t)$ é **periódica** (condição <u>necessária</u>, mas não <u>suficiente</u>) com período fundamental T_0 , então $f_p(t)$ pode ser descrita por uma **série de Fourier**, ou seja:

$$f_p(t) = \sum_{n=-\infty}^{\infty} F_n(t) e^{in\omega_0 t}$$
 Equação de Síntese

onde os coeficientes F_n são dados por:

$$F_n=rac{1}{T_0}\int\limits_{-rac{T_0}{2}}^{rac{T_0}{2}}f_p(t)e^{-in\omega_0t}\,dt$$
 Equação de Análise

Observações importantes

- Qualquer sinal
 - · Periódico,
 - passível de ser gerado fisicamente,

pode ser descrito por uma série de Fourier.

- Os coeficientes F_n são chamados de **coeficientes de Fourier**.
- O coeficiente F_0 representa o valor médio do sinal.
- O par $f_p(t) \Leftrightarrow F_n$ é chamado de **par de Fourier**.

O diagrama abaixo ilustra os procedimentos de **síntese** e **análise**:

Exemplo de aplicação

Consideremos o sinal dado por
$$f_p(t) = \begin{cases} 0 & -2 < t < -1 \\ 1 & -1 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$$

Notemos que é uma função periódica de período fundamental $T_0=4$. Logo, tem-se:

$$\omega_0 = \frac{2\pi}{T_0} = \frac{\pi}{2} rad/s$$

Calculemos os coeficientes de Fourier:

$$F(n) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) e^{-in\omega_0 t} dt = \frac{1}{4} \int_{-1}^{1} 1 e^{-i\frac{\pi}{2}t} dt = \frac{1}{4} \frac{1}{-in\frac{\pi}{2}} e^{-in\frac{\pi}{2}t} \bigg|_{-1}^{1} =$$

$$=\frac{1}{4}\frac{e^{-in\frac{\pi}{2}}-e^{in\frac{\pi}{2}}}{-in\frac{\pi}{2}}=\frac{1}{4}\frac{e^{in\frac{\pi}{2}}-e^{-i\frac{\pi}{2}}}{in\frac{\pi}{2}}=\frac{1}{2}\frac{e^{in\frac{\pi}{2}}-e^{-in\frac{\pi}{2}}}{2i(n\frac{\pi}{2})}=\frac{1}{2}\frac{\sin(n\frac{\pi}{2})}{n\frac{\pi}{2}}=\frac{1}{2}\operatorname{sc}(n\frac{\pi}{2})=\frac{1}{2}\operatorname{sinc}(\frac{n}{2})$$

Observação importante: $sinc(x) = \frac{sin(\pi x)}{\pi x} = sc(\pi x)$

A função $sc(x) = sinc\left(\frac{x}{\pi}\right)$ é chamada de função **sinc** <u>não normalizada</u>. A normalização faz com que

$$\int_{-\infty}^{\infty} \operatorname{sinc}(x) dx = 1$$

Para $n=0,\pm 1,\pm 2,\pm 3,\pm 4,\pm 5$ os coeficientes de Fourier são, respectivamente:

$$\frac{1}{2}, \frac{1}{\pi}, 0, -\frac{1}{3\pi}, 0, \frac{1}{5\pi}$$

Logo, tem-se:

$$f_p(t) = \sum_{n = -\infty}^{\infty} F(n)e^{in\pi\frac{t}{2}}$$

$$= \frac{1}{\pi} \left(\dots + \frac{1}{5}e^{-i\frac{5\pi}{2}t} - \frac{1}{3}e^{-i\frac{3\pi}{2}t} + e^{-i\frac{\pi}{2}t} + \frac{\pi}{2} + e^{i\frac{\pi}{2}t} - \frac{1}{3}e^{i\frac{3\pi}{2}t} + \frac{1}{5}e^{i\frac{5\pi}{2}t} + \dots \right)$$

A série acima pode ser representada como:

$$f_p(t) = \frac{1}{2} + \frac{2}{\pi} \cos\left(\frac{\pi}{2}t\right) - \frac{2}{3\pi} \cos\left(\frac{3\pi}{2}t\right) + \frac{2}{5\pi} \cos\left(\frac{5\pi}{2}t\right) - \cdots$$

Tomando-se a função F(n) definida em $\mathbb Z$, mas fazendo n variar em $\mathbb R$, obtém-se o assim chamado **envelope dos coeficientes de Fourier**.

$$F(x) = \frac{1}{2} \frac{\sin\left(\frac{\pi}{2}x\right)}{\frac{\pi}{2}x}$$

No gráfico abaixo, as barras verticais correspondem ao espectro de freqüências do sinal e a linha tracejada ao envelope dos coeficientes de Fourier.

Coeficientes de Fourier

Em geral, os coeficientes de Fourier, F(n), são **números complexos**, que podem ser expressos em ambas as formas

- Cartesiana: F(n) = A(n) + iB(n), onde A(n) e B(n) são as partes **real** e **imaginária**, respectivamente.
- Polar: $F(n) = |F(n)|e^{i\theta(n)}$, onde $|F(n)| = \sqrt{[A(n)]^2 + [B(n)]^2}$ e $\theta(n) = \tan^{-1} \frac{B(n)}{A(n)}$ são a **magnitude** e a **fase**, respectivamente.

Os seguintes pontos devem ser salientados:

- F(n) é complexo: Nesse caso, devem-se calcular os espectros de magnitude e de fase
- F(n) real: Nesse caso, $\theta(n)=0$; logo, não é necessário obter o espectro de fase, mas se isso for feito, as seguintes regras devem ser obedecidas: a) Se $A(n)>0 \Rightarrow \theta(n)=0$; b) Se $A(n)<0 \Rightarrow \theta(n)=\pi$ ou $\theta(n)=-\pi$, mas a seleção de um desses valores deve ser feita de modo que o espectro de fases tenha característica ímpar.

Seja $f_p(t) \Leftrightarrow F(n)$ um par de Fourier. Valem, então, as seguintes propriedades:

- $[F(n)]^* = F(-n)$ se e somente se $f_p(t)$ é uma função real de t.
- Se $f_p(t)$ é real, então A(n) e |F(n)| são funções pares e B(n) e $\theta(n)$ são funções ímpares.
- Se $f_p(t)$ é real e possui uma componente par $f^P(t)$ e uma componente ímpar $f^I(t)$, então $f^P(t) \Leftrightarrow A(n)$ e $f^I(t) \Leftrightarrow iB(n)$.
- F(n) é real se e somente se $f_p(t)$ é par.
- F(n) é puramente imaginária, se e somente se $f_p(t)$ é ímpar.

Exercício de aplicação:

Considerando o sinal periódico $f_p(t)$ ilustrado no gráfico abaixo, faça previsões sobre A(n), B(n), |F(n)| e $\theta(n)$, utilizando as propriedades dos coeficientes de Fourier apresentadas anteriormente.

É imediato fazermos as seguintes previsões:

- $[F(n)]^* = F(-n)$, pois $f_p(t)$ é real.
- Como $f_p(t)$ é impar, $F(n) = A(n) + iB(n) = |F(n)|e^{i\theta t}$ é imaginária pura e impar.
- Como $f_p(t)$ é real, A(n) e |F(n)| são pares e B(n) e $\theta(n)$ são ímpares.

Calculando-se os coeficientes de Fourier, obtêm-se:

$$F(-2) = -\frac{i}{2\pi}$$
 $F(-1) = \frac{i}{\pi}$ $F(0) = 0$ $F(1) = -\frac{i}{\pi}$ $F(2) = \frac{i}{2\pi}$

As correspondentes fases, são:

$$\theta(-2) = -\frac{\pi}{2}$$
 $\theta(-1) = \frac{\pi}{2}$ $\theta(0) = 0$ $\theta(1) = -\frac{\pi}{2}$ $\theta(2) = \frac{\pi}{2}$

Nos gráficos abaixo são apresentados o plano imaginário e o plano de fases.

Tarefa Optativa: (Idealmente deve ser realizada após a 4º aula)

Considere o sinal periódico $f_p(t)$ ilustrado no gráfico abaixo.

Utilizando o Matlab ou alguma outra ferramenta de auxílio numérico, pede-se:

- Determinar os planos real e imaginário da série de Fourier de $f_p(t)$.
- Determinar os planos de magnitude e fase da série de Fourier de $f_p(t)$.
- Discutir as diferenças observadas em relação à solução analítica.

Sinais de Potência

Supondo-se que $f_p(t)$ corresponda ao sinal da tensão U(t) aplicada aos terminais de um resistor R, a potência desse sinal seria dada por:

$$P(t) = \frac{[U(t)]^2}{R} = \frac{\left|f_p(t)\right|^2}{R}$$

Admitindo-se que R = 1ohm teríamos: $P(t) = |f_p(t)|^2$

Se $f_p(t)$ tem período T_0 , a energia transportada por esse sinal durante um período completo

é dada por:
$$E = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |f_p(t)|^2 dt$$

Logo, a potência média desse sinal é $\bar{P}=\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \left|f_p(t)\right|^2 dt$

Observação Importante: Todo sinal periódico $f_p(t)$ gerado fisicamente tem potência média finita. Por esse motivo, nos referiremos a essa classe de sinais como *sinais de potência*.

Teorema:

Se $f_p(t)$ é um sinal de potência, vale a seguinte igualdade:

$$\bar{P} = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |f_p(t)|^2 dt = \sum_{n=-\infty}^{\infty} |F(n)|^2$$

<u>Demonstração</u>:

$$|f_p(t)|^2 = f_p(t) \cdot [f_p(t)]^*$$

$$\bar{P} = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) \cdot \left[f_p(t) \right]^* dt = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \left\{ \sum_{n=-\infty}^{\infty} F(n) e^{in\omega_0 t} \right\} \left\{ \left[\sum_{m=-\infty}^{\infty} F(m) e^{im} \, \sigma^t \right]^* \right\} dt$$

Demonstração (cont)

$$\overline{P} = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \left\{ \sum_{n=-\infty}^{\infty} F(n) e^{in\omega_0 t} \right\} \left\{ \sum_{m=-\infty}^{\infty} [F(m)]^* \left[e^{im\omega_0 t} \right]^* \right\} dt$$

$$\bar{P} = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} F(n) [F(m)]^* \left[\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{in\omega_0 t} \cdot e^{-im\omega_0 t} dt \right]$$

Sabemos que

$$\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{i(n-m)\omega_0 t} dt = \begin{cases} 1 & \text{se } n = m \\ 0 & \text{se } n \neq m \end{cases}$$

Esta passagem é **polêmica**: Requer análise de convergência

Demonstração (cont)

Sabemos que

$$\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{i(n-m)\omega_0 t} dt = \begin{cases} 1 & \text{se } n = m \\ 0 & \text{se } n \neq m \end{cases}$$

Logo, tem-se:

$$\bar{P} = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) \cdot \left[f_p(t) \right]^* dt = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} F(n) [F(m)]^* = \sum_{n = -\infty}^{\infty} |F(n)|^2$$

Ou seja, "a potência média de um sinal periódico representado no domínio do tempo é igual à potência média de seu espectro de freqüências".

Exemplo de aplicação

Considerando o sinal $f_p(t) = 4 + 2\cos 3t + 3\sin 4t$, pede-se:

- Calcular a potência média devida a cada termo de $f_p(t)$;
- Esboçar o espectro de potência de $f_p(t)$.

Resolução

Notemos que $f_p(t)$ é composto por um sinal DC de amplitude 4 e por dois harmônicos de ordens 3, $(\cos 3t)$, e 4, $(\sin 4t)$, com amplitudes 2 e 3, respectivamente.

Essas informações nos permitem determinar a freqüência fundamental desse sinal:

$$\begin{cases} \cos 3\omega_0 t = \cos 3t \Rightarrow \omega_0 = 1 rad/s \\ \sin 4\omega_0 t = \sin 4t \Rightarrow \omega_0 = 1 rad/s \end{cases}$$

Logo, o período fundamental é: $T_0 = \frac{2\pi}{\omega_0} = 2\pi$

Exemplo de aplicação (cont)

A potência média de $f_p(t)$ é:

$$\bar{P} = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |f_p(t)|^2 dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} [4 + 2\cos 3t + 3\sin 4t]^2 dt$$

$$\bar{P} = \frac{1}{2\pi} \int_{-\pi}^{\pi} 16 \, dt + \frac{1}{2\pi} \int_{-\pi}^{\pi} 4 \cos^2 3t \, dt + \frac{1}{2\pi} \int_{-\pi}^{\pi} 9 \sin^2 4t \, dt,$$

(Note que são nulas todas as demais integrais contendo os termos $\cos 3t$, $\sin 4t$, $\cos 3t$) Efetuando os cálculos, obtêm-se:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} 16 \, dt = 16 \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} 4 \cos^2 3t \, dt = \frac{2}{\pi} \int_{-\pi}^{\pi} \frac{1 + \cos 6t}{2} \, dt = 2 \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} 9 \sin^2 4t \, dt = \frac{9}{2}$$

Portanto, a potência média do sinal é $\bar{P}=22,5$, dos quais $\bar{P}_0=16, \bar{P}_3=2, \bar{P}_4=4,5$

Exemplo de aplicação (cont)

Notemos que

$$f_p(t) = 4 + 2\cos 3t + 3\sin 4t = 4 + 2\frac{e^{i3t} + e^{-i3t}}{2} + 3\frac{e^{i4t} - e^{-i4t}}{2i}$$

Assim, podemos expressar $f_p(t)$ como:

$$f_p(t) = -\frac{3}{2i}e^{-i4t} + 1e^{-i3t} + 4e^{i0t} + 1e^{i3t} + \frac{3}{2i}e^{i4t}$$

ou seja,

$$f_p(t) = \frac{3i}{2}e^{-i4t} + 1e^{-i3t} + 4e^{i0t} + 1e^{i3t} - \frac{3i}{2}e^{i4t}$$

Assim, inferimos que os coeficientes de Fourier, são:

$$F(-4) = \frac{3i}{2}$$
 $F(-3) = 1$ $F(0) = 4$ $F(3) = 1$ $F(4) = -\frac{3i}{2}$

Exemplo de aplicação (cont)

Logo, a potência média associada a esses coeficientes, é:

$$\bar{P} = \left| \frac{3i}{2} \right|^2 = \frac{9}{4} \quad \bar{P}(-3) = 1 \quad \bar{P}(0) = 16 \quad \bar{P}(3) = 1 \quad \bar{P}(4) = \frac{9}{4}$$

O espectro de potência do sinal $f_p(t)$ é esboçado na figura a seguir.

Introdução

As condições **necessárias e suficientes** para que a série de Fourier convirja corretamente para a respectiva função $f_p(t)$ constituem um problema em aberto.

O que se conhece são as condições suficientes para que a convergência ocorra.

Felizmente, essas condições abrangem todos os sinais fisicamente realizáveis.

Nos próximos tópicos examinaremos alguns aspectos essenciais do problema da convergência das séries de Fourier.

Convergência nas descontinuidades

Nesses casos, em que $f_p(t)$ apresenta descontinuidades, a série de Fourier converge para a média dos valores da função nos pontos de descontinuidade, ou seja, se $f_p(t')$ é descontínua em t', então:

$$\lim_{t \to t'} \sum_{n = -\infty}^{\infty} F(n) e^{in} \, _{0}^{t} = \frac{f_{p}(t^{-}) + f_{p}(t^{+})}{2}$$

A figura ao lado ilustra essa situação:

Taxa de convergência

Pode-se demonstrar que:

- 1. Se $f_p(t)$ é descontínua, os coeficientes de Fourier diminuem, em módulo, a uma taxa K/n, onde K é uma constante positiva.
- 2. Se $f_p(t)$ é contínua, mas $f'_p(t)$ é descontínua, a taxa de convergência dos coeficientes de Fourier é da ordem de K/n^2 .
- 3. Se $f_p(t)$ é contínua e tem m derivadas contínuas, a taxa de convergência dos coeficientes de Fourier é da ordem de K/n^{2+m} .

Observações importantes

- Se os coeficientes da série convergem à taxa K/n, os respectivos termos do espectro de potência convergem à taxa K/n^2 .
- O termo DC e os primeiros harmônicos sempre contêm a maior parte da potência do sinal, em decorrência do fato antes apresentado.

Condições suficientes para a convergência

É importante frisar novamente que as condições que serão aqui discutidas <u>não</u> são necessárias à convergência das séries de Fourier.

Em outras palavras: é possível que uma série de Fourier convirja mesmo <u>não</u> satisfazendo às condições suficientes.

A literatura apresenta grande número de propostas para abordar esse problema, mas os critérios de convergência mais freqüentemente utilizados na análise são dois:

- Critério de integrabilidade quadrática
- Critério de Dirichlet

Critério de integrabilidade quadrática

Seja

$$\phi(t) = \sum_{n=-\infty}^{\infty} F(n)e^{in\omega_0 t}$$

a série sintetizada que se espera que convirja para a função periódica $f_p(t)$. Sejam

$$F(n) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) e^{-in\omega_0 t} dt$$

os coeficientes de Fourier utilizados na síntese de $\phi(t)$.

Critério de integrabilidade quadrática (cont)

Se $f_p(t)$ é quadraticamente integrável, ou seja, se

$$\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \left| f_p(t) \right|^2 < \infty \quad \text{Isso significa que o sinal possui energia finita ao longo de um período, o que é característico de todo sinal fisicamente realizável$$

Então:

- Consegue-se calcular os coeficientes de Fourier F(n).
- O erro $e(t) = \phi(t) f_p(t)$ pode ser não nulo, mas sua energia é nula, ou seja:

$$\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |e(t)|^2 dt = 0$$

Obs: Existem sinais com potência infinita que possuem séries de Fourier convergentes. Note, portanto que a condição anterior é suficiente, mas não necessária.

Critério de Dirichlet

Uma função periódica $f_p(t)$ satisfaz às condições de Dirichlet se:

- $f_p(t)$ é limitada.
- Ao longo de qualquer período, $f_p(t)$ tem um número finito de descontinuidades e um número finito de máximos e mínimos locais.

Toda função que satisfaz às condições de Dirichlet é quadraticamente integrável.

Logo, essas funções constituem um subconjunto das funções quadraticamente integráveis.

É importante frisar que todo sinal periódico **fisicamente realizável** satisfaz às condições de Dirichlet.

Teorema de Fourier

Nota histórica

O teorema que será anunciado a seguir foi, na verdade, demonstrado por Dirichlet, mas é chamado de **Teorema de Fourier**, em homenagem ao grande matemático e engenheiro francês Jean Baptiste Joseph Fourier, que estabeleceu um marco na Análise Matemática, ao resolver o problema de Condução de Calor a partir da aplicação de séries trigonométricas convergentes.

Teorema

Se a função periódica $f_p(t)$ satisfaz às condições de Dirichlet, então existem coeficientes

$$F(n)$$
 tais que $F(n) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f_p(t) e^{-in\omega_0 t} dt$

e a série
$$\phi(t) = \sum_{n=-\infty}^{\infty} F(n)e^{in\omega_0 t}$$

converge para $f_p(t)$ em todo ponto em que $f_p(t)$ é contínua e converge para $\frac{1}{2}[f_p(t^+) + f_p(t^-)]$ onde $f_p(t)$ é descontínua.

EXERCÍCIO 1

Considere a função periódica $f_p(t)$ definida pelo gráfico da figura abaixo.

- (a) Determine a expressão da série de Fourier de f(t);
- (b) Calcule os termos dessa série até o 3º harmônico;
- (c) Calcule a potência média desses 3 harmônicos.