AWS Data Science

Analyze Big Data with Hadoop

Create a Hadoop Cluster and run a Hive Script to process log data

Step1: Create S3 bucket and EC2 key pair

Step2: Launch Amazon EMR Cluster

Step3: Allow SSH access

Step4: Run hive script to Process Data

Hive_CloudFront.q

-- Summary: This sample shows you how to analyze CloudFront logs stored in S3 using Hive -- Create table using sample data in S3. Note: you can replace this S3 path with your own. CREATE EXTERNAL TABLE IF NOT EXISTS cloudfront logs (DateObject Date, LocalTime STRING, Location STRING, Bytes INT, RequestIP STRING, Method STRING, Host STRING, Uri STRING, Status INT, Referrer STRING, OS String, Browser String, **BrowserVersion String** ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES ("input.regex" = $"^{?!#}([^]+)\s+([]+)\s+([]$]+)\\s+([^]+)\\s+[^\(]+[\(]([^\;]+).*\%20([^\/]+)[\/](.*)\$") LOCATION '\${INPUT}/cloudfront/data';

-- Total requests per operating system for a given time frame INSERT OVERWRITE DIRECTORY '\${OUTPUT}/os_requests/' SELECT os, COUNT(*) count FROM cloudfront logs WHERE dateobject BETWEEN '2014-07-05' AND '2014-08-05' GROUP BY os;

Step5: Submit the Hive Script as a Step

Step6: view the output of Hive script

Step7: Cleanup Resources

