ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.4.5 **Петля гистерезиса (динамический метод).**

Цель работы:

Изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование:

Автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

Экспериментальная установка:

Рис. 1: Схема установки для исследования намагничивания образцов

Теоретическая часть

Действующее значение переменного тока в обмотке N_0 измеряется амперметром A (мультивольтметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm H}$ на вход интегрирующей RC-цепочки подаётся напряжение $U_{\rm H}(U_{\rm BX})$, пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_{\rm C}(U_{\rm Bbix})$, пропорциональное величине B, и подаётся на вход Y осциллографа.

Замкнутая кривая, аозникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, вопервых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых — каким значениям B и H соответствуют эти напряжения (или токи).

Исследуемый сигнал подаётся на вход X; длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_X в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0} = 2x \cdot K_X. \tag{1}$$

Напряжение, подаваемое на ось Y, измеряется аналогично.

Калибровку осей осциллографа (K_X и K_Y) можно использовать для построения кривой гистерезиса в координатах B и H, зная величину сопротивления R_0 с которого снимается сигнал, можно определить чувствительность канала по току $K_{XI} = K_X/R_0$ [A/дел]; затем, используя формулу, определить цену деления шкалы в A/м. Таким же образом определяется цена деления оси Y:

$$m_x = \frac{2R_0\sqrt{2}I_{\Theta\Phi}}{2x} \frac{\mathrm{B}}{\mathrm{дел}}.$$
 (2)

$$m_y = \frac{2\sqrt{2}KU_{\Theta\Phi}}{2y} \frac{B}{\text{дел}} \tag{3}$$

$$RC = \frac{U_{\text{BX}}}{\Omega U_{\text{BMX}}} \tag{4}$$

Обработка результатов экспериментов

1) Рассчитаем чувствительность канала X по формуле (2) и сравним с величиной K_x , использованной при калибровке:

$$I_{\Theta\Phi} = 1.92 \text{ A}; 2x = 9.6 \text{ дел} \Rightarrow m_x = \frac{2R_0\sqrt{2}I_{\Theta\Phi}}{2x} = 1.025 \frac{\text{B}}{\text{дел}}, K_X = 1 \text{ B}$$
 (5)

2) Рассчитаем чувствительность канала Y по формуле (3) и сравним с величиной K_y , указанной на Θ 0:

$$U_{\Theta\Phi} = 130.1 \text{ мB}; 2y = 7.8 \text{ дел} \Rightarrow m_y = \frac{2\sqrt{2}KU_{\Theta\Phi}}{2y} = 49.6 \frac{\text{мB}}{\text{дел}}, K_Y = 50 \text{ мB}$$
 (6)

3) Сравним экспериментальное значение τ с расчетом через $R_{\rm u}$ и $C_{\rm u}$, указанными на установке.

$$\tau = RC \tag{7}$$

$$U_{\rm BX} = 7.2 \pm 0.1 \; \text{B}; \; U_{\rm BMX} = 0.057 \pm 0.005 \; \text{B} \Rightarrow \tau = 0.402 \pm 0.004 \text{c}$$
 (8)

$$R_{\rm H} = 20 \cdot 10^3 \text{ Om}; \quad C_{\rm H} = 20 \cdot 10^{-6} \Rightarrow \tau = 0.4c$$
 (9)

 $R = 20 \cdot 10^3 \; \; {
m Om}, \quad \frac{1}{\Omega C} = 159 \; \; {
m c} \Rightarrow$ легко убедимся, что с достаточной точностью выполяется

$$R \gg \frac{1}{\Omega C} \tag{10}$$

Пермаллой (Fe - Ni)

$$N_0=20$$
 в.; $N_{\rm H}=300$ в.; $S=0.76~{
m cm}^2;~2\pi R=13.3~{
m cm}$ $K_X=1~B;~K_Y=50~{
m mB};~I_{\Theta\Phi}=1.52~{
m A}$ $2x(c)=9.2~{
m дел};~2y(s)=7.4~{
m дел}$

4) Рассчитаем напряженность H поля в тороиде по формуле :

$$H = \frac{IN_0}{2\pi R} \tag{11}$$

Принимая $I = \sqrt{2}I_{9\phi}, I_{9\phi} = 1.74$ А получим:

$$H = 23.23 \pm 1.3 \frac{A}{M} \tag{12}$$

$$\delta H = H \cdot \delta I \frac{A}{M} \tag{13}$$

I, A	х, дел	у, дел
1.52	4.6	3.7
1.31	4.0	3.2
1.20	3.6	2.9
1.09	3.0	2.0
0.77	2.6	1.5
0.48	2.0	1.2
0.34	1.4	1.1

Рис. 2: Петля гистерезиса для пермаллоя

5) Рассчитаем $B, B_S, \mu_{\text{дифф}}$ и H_c :

$$B = \frac{R_{\rm H}C_{\rm H}U_{\rm BMX}}{SN_{\rm H}} = 1.877 \pm 0.153 \,\,{\rm T\pi}; \,\, B_s = 1.4 \pm 0.1 \,\,{\rm T\pi}$$
 (14)

$$\delta B = B \cdot \delta U_{\text{вых}} \tag{15}$$

$$H_c = 0.9 \pm 0.1 \; \frac{A}{_{\rm M}} \tag{16}$$

$$\mu_{\text{дифф}} = 49.0 \pm 0.1$$
(17)

$$\delta\mu_{\text{дифф}} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta y}{y}\right)^2} \tag{18}$$

Кремнистое железо (Fe - Si)

$$N_0=25$$
 в.; $N_{
m M}=250$ в.; $S=2.00~{
m cm}^2;~2\pi R=11.0~{
m cm}$

$$K_X = 1 B; K_Y = 50 \text{ MB}; I_{\Theta\Phi} = 1.52A$$

$$2x(c) = 8.4$$
 дел; $2y(s) = 6.8$ дел

6) Рассчитаем H по формуле (11), принимая $I_{\rm s \varphi}=1.92$ A, $I=\sqrt{2}I_{\rm s \varphi}$

$$H = 62 \pm 3 \frac{A}{M}$$
 (19)

$$\delta H = H \cdot \delta I \, \frac{A}{M} \tag{20}$$

I, A	x, дел	у, дел
1.384	4.2	3.4
1.384	3.6	3.3
0.986	2.8	2.9
0.878	2.5	2.7
0.799	2.3	2.5
0.561	1.6	2.0
0.460	1.4	1.8
0.345	1.0	1.4

Рис. 3: Петля гистерезиса для кремнистого железа

7) Отсюда рассчитаем $B,\,B_S,\,\mu_{\rm дифф}$ и H_C :

$$B = \frac{R_{\rm H}C_{\rm H}U_{\rm BMX}}{SN_{\rm H}} = 0.40 \pm 0.03 \text{ Тл}; \ B_s = 1.1 \pm 0.1 \text{ Тл}$$
 (21)

$$\delta B = B \cdot \delta U_{\text{BMX}} \tag{22}$$

$$H_C = 4.3 \pm 0.1 \frac{A}{M}$$
 (23)

$$\mu_{\text{дифф}} = 200.0 \pm 0.1$$
(24)

$$\delta\mu_{\text{дифф}} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta y}{y}\right)^2} \tag{25}$$

Феррит

$$N_0 = 42$$
 в.; $N_{
m M} = 400$ в.; $S = 3.00~{
m cm}^2;~2\pi R = 25.0~{
m cm}$

$$K_X = 1 \ B; \ K_Y = 50 \ \text{mB}; \ I_{\Theta\Phi} = 1.2 A$$

$$2x(c) = 8.4$$
 дел; $2y(s) = 8.8$ дел

8) Рассчитаем H по формуле (11), принимая $I_{\ni \varphi}=1.2$ A, $I=\sqrt{2}I_{\ni \varphi}$:

$$H = \frac{IN_0}{2\pi R} = 22.1 \pm 1.2 \frac{A}{M} \tag{26}$$

$$\delta H = H \cdot \delta I \frac{A}{M} \tag{27}$$

I, A	x, дел	y, дел
1.20	4.2	4.4
1.12	3.6	4.3
1.00	3.3	3.7
0.85	3.0	3.3
0.66	2.5	2.7
0.48	2.3	2.4
0.38	1.9	1.9
0.36	1.4	1.4
0.25	1.0	1.3

Рис. 4: Петля гистерезиса для феррита

9) Отсюда рассчитаем $B,\,B_S,\,\mu_{\mbox{\scriptsize дифф}}$ и H_C :

$$B = \frac{R_{\rm H}C_{\rm H}U_{\rm BЫX}}{SN_{\rm H}} = 0.27 \pm 0.01 \text{ Тл}; \ B_s = 1.3 \pm 0.1 \text{ Тл}$$
 (28)

$$\delta B = B \cdot \delta U_{\text{BMX}} \tag{29}$$

$$H_c = 4.5 \pm 0.1 \, \frac{A}{M} \tag{30}$$

$$\mu_{\text{дифф}} = 295.0 \pm 0.1$$
(31)

$$\delta\mu_{\text{дифф}} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta y}{y}\right)^2}$$
 (32)

Вывод

Петля гистерезиса является качественной характеристикой ферромагнетика, по ней с достаточной точностью можно вычислить $B,\,H,\,H_c,\,\mu_{\rm дифф}.$ Основной вклад в погрешность измерений вносят показания, снимаемые с осцилографа