B.Tech. IEE 2nd Year 2nd Semester Examination - 2018

SUBJECT: Process Control - I

Time: Three hours

Full Marks 100

Answer any FOUR questions

Qn.	· śpię		Marks
1.	a)	State the Skogestad's "Half Rule" for approximating higher-order transfer function models with lower-order models. Give an example of this rule to have a SOPDT model from a fourth-order dead-time model.	2+3
	b)	Provide a comparative study about the merits and demerits of feedback control and feedforward control systems.	5
	c)	Derive the dynamic model of a stirred-tank heating process with constant holdup.	6
	d)	How set-point filtering and set-point weighting are implemented in PID controllers to improve servo responses?	-4
	e)	Derive the velocity form of digital PID controller and point out its advantages.	5
2.	a)	What is the function of a final control element in a close-loop system? What is the role of an actuator in a final control element? Mention various methods of operation of pneumatic actuators.	1+2+2
	b)	Why spring actuator often requires a positioner? Providing a neat sketch of such a positioner describe its operation.	1+4
	(c)	What are meant by <i>air-to-close</i> and <i>air-to-open</i> valves. What is meant by control valve sizing? State the procedure for selection of control valve size.	4+2+4
	d)	What are meant by cavitation and flashing? How the operation of control valves suffers due to deadband.	3+2
3.	a)	Describe the Direct Synthesis (DS) method to derive PID controllers. Point out some limitations of this method.	8+2
	b)	How PID parameters are tuned by Ziegler-Nichols continuous cycling method? What are the major disadvantages of this technique?	5+3
	(c)	Describe the relay auto-tuning method for on-line PID tuning. Mention its important advantages compared to the continuous cycling method.	5+2
4		Write short notes on (any five):	5×5
		 a) On-off control b) Controller tuning by step test method c) Ratio control d) Control valve characteristics 	
		e) Process modeling through process reaction curve f) Internal model control	

6.

- a) What are meant by proportional band, reset time, derivative time? Briefly state how these parameters influence the performances of closed-loop systems. What is integral windup and how this problem is resolved?
- 6+3+3
- b) A liquid-level control system is shown below. The liquid level is measured and the level transmitter (LT) output is sent to a feedback controller (LC) that controls liquid level by adjusting volumetric flow rate q_2 . A second inlet flow rate q_1 is the disturbance variable. (Here, (i) the liquid density ρ and the cross-sectional area of the tank A are constant, (ii) the flow-head relation is linear, $q_3 = h/R$, and (iii) the level transmitter, I/P transducer, and control valve have negligible dynamics.)

Draw the block diagram of the level control system. For a unit step change in disturbance find the expression of steady-state error or offset under proportional control. Show that for the same disturbance there will be no offset under PI control.

3+5+5

a) Define sensitivity function (S) and complementary sensitivity function (T) of a close-loop feedback control system. Feedback control makes process performance less sensitive to changes in the process – Justify this statement by robustness analysis in terms of sensitivity functions S and T.

2+6

b) Illustrate the cascade control system of an exothermic chemical reactor.

7

c) The block diagram of a feedforward-feedback control system is given below:

Design the ideal feedforward controller G_f considering the controlled variable remains exactly at the set-point despite arbitrary changes in the disturbance variable D. Justify that G_f has no effect on the stability of the feedback control system. Find the G_f when $G_t = K_t$, $G_v = K_v$, $G_d = K_d/(\tau_d s + 1)$, and $G_p = K_p e^{-\theta s}/(\tau_{pl} s + 1)$. State whether the derived controller is physically realizable or not.

4+2+2+2