C335 Computer Structures

Computer Abstractions and Technology (Part #2)

Dr. Liqiang Zhang

Department of Computer and Information Sciences

Computer Abstractions and Technology

■ What is computer architecture?

■ What forces drive computer architecture?

Performance

Forces on Computer Architecture

Example: Technology => Dramatic Changes

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Gordon Moore Intel Cofounder

2X Transistors / Chip Every 2 years

Called "Moore's Law"

Indiana University South Bend

The Underlying Technologies

Year	Technology	Relative Perf/Unit Cost
1951	Vacuum Tube	1
1965	Transistor	35
1975	Integrated Circuit (IC)	900
1995	Very Large Scale IC (VLSI)	2,400,000
2013	Ultra VLSI	250,000,000,000

What if technology in the automobile industry advanced at the same rate?

What if...

"If the automobile had followed the same development cycle as the computer,

- Robert X. Cringely, InfoWorld magazine

Technology Scaling Road Map (ITRS)

Year	2004	2006	2008	2010	2012	2014	2016
Feature size (nm)	90	65	45	32	22	14	10
Intg. Capacity (BT)	2	4	6	16	32	?	?

But What Happened to Clock Rates and Why?

2005 IT Roadmap Semiconductors

--David Patterson, Keynote Address in USENIX'08, "The Parallel Resolution Has Started"

But What Happened to Clock Rates and Why?

Change in ITS Roadmap in 2 yrs

--David Patterson, Keynote Address in USENIX'08, "The Parallel Resolution Has Started"

But What Happened to Clock Rates and Why?

Clock rates hit a "power wall"

A Sea Change is at Hand!

- The power challenge has forced a change in the design of microprocessors
 - Since 2002 the rate of improvement in the response time of programs on desktop computers has slowed from a factor of 1.5 per year to less than a factor of 1.2 per year
- Since 2006 all desktop and server companies are shipping microprocessors with multiple processors – cores – per chip

Product	AMD Barcelona	Intel Nehalem	IBM Power 6	Sun Niagara 2
Cores per chip	4	4	2	8
Clock rate	2.5 GHz	~2.5 GHz?	4.7 GHz	1.4 GHz
Power	120 W	~100 W?	~100 W?	94 W

Plan of record is to double the number of cores per chip per generation

Example: Impact of Applications

Desktop Applications

- Emphasizes performance of integer and Floating Point (FP) data types
- Little regard for program (code) size and power consumption

Server Applications

- Database, file system, web applications, time-sharing
- FP performance is much less important than integer and character strings
- Little regard for program (code) size and power consumption*

Embedded Applications

- Digital Signal Processors (DSPs), media processors, control
- High value placed on program size and power consumption
 - Less memory, is cheaper and lower power
 - Reduce chip costs: FP instructions may be optional

Growth in Cell Phone Sales (Embedded)

embedded growth >> desktop growth

U.S. Cell Phone Subscriber Growth 1990-2015

The PostPC Era

embedded growth >> desktop growth

Reutera graphic/Christine Chan 20/06/12

■ Where else are embedded processors found?

Embedded Computers in You Car

Embedded Computers Everywhere

Anti-lock brakes Auto-focus cameras Automatic teller machines Autom atic toll system s Automatic transmission Avionic systems Battery chargers Cam corders Cell phones Cell-phone base stations Cordless phones Cruise control Curbside check-in systems Digital cameras Disk drives Electronic cardreaders Electronic instruments Electronic toys/gam es Factory control Fax machines Fingerprint identifiers Home security systems Life-support systems Medical testing systems

Modems MPEG decoders Network cards Network switches/routers On-board navigation Pagers Photocopiers Point-of-sale systems Portable video games Printers Satellite phones Scanners Sm art ovens/dishwashers Speech recognizers Stereo system s Teleconferencing systems Televisions Temperature controllers Theft tracking systems TV set-top box es VCR's, DVD players Video gam e consoles Video phones Washers and dryers

UAV/Drone camera/camcorder/delivery

Amazon Primary Air: http://www.amazon.com/b?node=8037720011