MTH 100 : Lecture 39

Let
$$A = \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$$
 3x2

Then
$$A^TA = \begin{bmatrix} -3 & 6 & 6 \\ 1 & -2 & -2 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$$

$$=\begin{bmatrix} 81 & -27 \\ -27 & 9 \end{bmatrix} = B (say)$$

$$= \begin{cases} symmetric \\ 2x2 \text{ matrix} \end{cases}$$

Characteristic Polynomial of B

$$= \det \begin{bmatrix} B - \lambda I \end{bmatrix} = \begin{bmatrix} g_1 - \lambda & -27 \\ -27 & 9 - \lambda \end{bmatrix}$$

$$= (31-\lambda)(9-\lambda)-(-27)(-27)$$

$$= 729 - 9\lambda - 81\lambda + \lambda^2 - 729$$

$$= \lambda^2 - 90 \lambda = \lambda (\lambda - 90)$$

Eigen values in descending order are $\lambda_1 = 90$, $\lambda_2 = 0$

For
$$\lambda_1 = 90$$
 $B - \lambda_1 I = \begin{bmatrix} 81 - 90 & -27 \\ -27 & 9 - 90 \end{bmatrix} = \begin{bmatrix} -9 & -27 \\ -27 & -81 \end{bmatrix}$
 $\begin{bmatrix} R_2 \rightarrow R_2 - 3R_1 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} R_2 \rightarrow R_2 - 3R_1 \\ 0 & 0 \end{bmatrix}$

So, the system of equation becomes:

 $\begin{bmatrix} x_1 + 3x_2 = 0 \\ x_2 = x_2 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

Taking $x_2 = -1$ and mormalising we get an eigenvector $y_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{3}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} \end{bmatrix}$

For
$$\lambda_2 = 0$$

$$B - \lambda_2 I = \begin{bmatrix} 81 & -27 \\ -27 & 9 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -27 & 9 \\ 81 & -27 \end{bmatrix}$$

$$\downarrow R_2 \rightarrow R_2 + 3R_1$$

$$RREF = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 \rightarrow -\frac{1}{27}R_1} \begin{bmatrix} -27 & 9 \\ 0 & 0 \end{bmatrix}$$
matrix

So, the system of equations becomes
$$x_1 - \frac{1}{3}x_2 = 0$$
 $\begin{cases} x_1 \\ x_2 \end{cases} = x_2 \begin{bmatrix} \frac{1}{3} \\ 1 \end{bmatrix}$

Taking
$$x_2 = 3$$
 and normalising we get an eigenvector $v_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

$$= \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{bmatrix}$$

Note that
$$\langle v_1, v_2 \rangle = 0$$
 (They are eigenvectors of distinct values.)

So, $V = \begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{bmatrix}_{2\times 2}$

Note that
$$T_1 = \sqrt{90} = 3\sqrt{10}$$

$$T_2 = 0$$

Now we will to compute U:

$$Av_{1} = \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{10}} \\ -\frac{1}{\sqrt{10}} \\ \frac{20}{\sqrt{10}} \end{bmatrix}$$

$$\mathcal{U}_{1} = \frac{A \mathcal{V}_{1}}{|\mathcal{V}_{1}|} = \frac{1}{3 \sqrt{10}} \begin{bmatrix} -\frac{10}{\sqrt{10}} \\ \frac{20}{\sqrt{10}} \\ \frac{20}{\sqrt{10}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$
Note that $||\mathcal{V}_{1}|| = 1$

Now $Av_2 = 0. V_2 = 0$ So, we need to extend u_1 to an orthonormal basis of \mathbb{R}^3 by solving the system $\langle u_1, \chi \rangle = u_1. \chi = 0$ Let $\chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$ be such that $\left[-\frac{1}{3} \ \frac{2}{3} \ \frac{2}{3} \right] . \chi = 0$ $\Rightarrow \left[-\frac{1}{3} \ \frac{2}{3} \ \frac{2}{3} \right] \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = 0$

 $\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} x_3 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ Taking $x_2 = 1$, $x_3 = 0$ we get $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ Now $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ Taking $x_2 = 0$, $x_3 = 1$ we get $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ $= 2x^2 + 0 + 0 = 4 \neq 0$

Thus any two solution may not be orthogonal to each other.

If necessary we will have to use Gram-Schmidt orthonormalisation process.

In this Broblem, we will find the arthonormal vectors by inspection.

Taking
$$x_2 = \frac{2}{3}$$
 and $x_3 = -\frac{1}{3}$, we get $u_2 = \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{bmatrix}$
Note that $||u_2|| = 1$

Taking
$$x_2 = -\frac{1}{3}$$
 and $x_3 = \frac{2}{3}$, we get $u_3 = \begin{bmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$
Note that $||u_3|| = 1$

$$50, \quad V = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{3}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & 0 & 0 \\ 0 & 0 & \frac{3}{3} \times 2 \end{bmatrix}$$

With this U, V and
$$\Sigma$$
 we have
$$A = U \Sigma V^{T} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{3}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 3\sqrt{10} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{bmatrix}$$
Check: $A = U \Sigma V^{T}$ or equivalently $AV = U \Sigma$:

Now, $AV = \begin{bmatrix} -3 & 1 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0 \\ -\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \end{bmatrix} \xrightarrow{3\times 2}$

$$= \begin{bmatrix} -\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \end{bmatrix} \xrightarrow{3\times 2}$$

$$= \begin{bmatrix} -\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 3\sqrt{2} & \frac{3}{2} & \frac{3}{2} \end{bmatrix} \xrightarrow{3\times 3}$$

$$= \begin{bmatrix} -\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 3\sqrt{2} & \frac{3}{2} & \frac{3}{2} \end{bmatrix}$$

$$= \begin{bmatrix} -\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 3\sqrt{2} & \frac{3}{2} & \frac{3}{2} \end{bmatrix}$$

$$= \begin{bmatrix} -\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 3\sqrt{2} & \frac{3}{2} & \frac{3}{2} \end{bmatrix}$$

$$= \begin{bmatrix} -\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 2\sqrt{10} & 0 \\ 3\sqrt{2} & \frac{3}{2} & \frac{3}{2} \end{bmatrix}$$

So,
$$AV = U \Sigma$$

Proof of Singular Value Decomposition (SVD)

Theorem:

Suppose that { v1, v2, ..., vn} is an orthonormal basis for Rn consisting of eigenvectors of ATA with corresponding eigenvalues avranged so that $\lambda_1 \gamma_1 \lambda_2 \gamma_1 \cdots \gamma_r \lambda_n \gamma_r 0$. Let $\nabla_i = \sqrt{\lambda_i}$ for i=1,2,...,nSuppose that A has r nonzero singular values So that 57 7 57 ... 7 50 and 50 = 50 = 0 Then { Av1, Av2, ..., Avr} is an orthogonal basis for colA, (Thus rank = r) by a previous proposition. Normalize each Avi to obtain an orthonormal basis { u, ..., un? for colA by putting $u_i = \frac{Av_i}{\|Av_i\|} = \frac{1}{\sigma_i} Av_i$

ie. $Au_i = \sigma_i u_i$ (for i=1,2,...,r)(1)

If r<m, extend {u1,-..ur} to an orthonormal basis of IRM (Here eve may use Gram-Schmidt Process)

Now let $U = [u_1 \ u_2 \dots u_n]$ and $V = [v_1 \ v_2 \dots v_n]$ U and V are orthogonal matrices by construction.

Now $AV = A \left[v_1 \ v_2 \ ... \ v_n\right] = \left[Av_1 \ Av_2 \ ... \ Av_n\right]$ $= \left[\nabla_1 u_1 \quad \nabla_2 u_2 \quad \cdots \quad \nabla_p u_p \quad 0 \quad \cdots \quad 0 \right]$ | By (1) |

Now let Σ be the mxn matrix Containing an $P \times P$ diagonal matrix D with the P non-zero Singular values of A, $\Gamma_1 > \Gamma_2 > \cdots > \Gamma_p > 0$ and we make D into an $M \times P$ matrix Σ (same size as A) by filling out with zeros

Then
$$U\Sigma = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_1 u_1 & \sigma_2 u_2 & \dots & \sigma_r u_r & 0 & \dots & 0 \end{bmatrix} = AV$$

$$\Rightarrow AV = UZ$$

Since V is orthogonal, $A = UZV^T$

QED