Отчет о выполнении лабораторной работы 2.1.4 Определение теплоемкости твердых тел

Фокин Алексей, 922 группа

27 марта 2023 г.

Цель работы: измерение количества подведенного тепла и вызванного им нагрева твердого тела; определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тепла.

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

1 Теоретическая справка

В данной работе теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T},\tag{1}$$

где ΔQ – количество тепла, подведенного к телу, и ΔT – изменение температуры тела, произошедшее в результате подвода тепла.

Температура исследуемого тела надежно измеряется термометром сопротивления, а определение количества тепла, поглощенного телом, обычно вызывает затруднение. В реальных условиях не вся энергия $P\Delta t$, выделенная нагревателем, идет на нагревание исследуемого тела и калориметра, часть ее уходит из калориметра благодаря теплопроводности его стенок. Оставшееся в калориметре количество тепла ΔQ равно

$$\Delta Q = P\Delta t - \lambda (T - T_{\kappa}) \Delta t, \tag{2}$$

где P — мощность нагревателя, λ — коэффициент теплоотдачи стенок, T — температура тела, T_{κ} — комнатная температура, Δt — время, в течение которого идет нагревание.

Из уравнений (1) и (2) получаем

$$C = \frac{P - \lambda (T - T_{\kappa})}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчетной формулой. Она определяет теплоемкость тела вместе с калориметром. Теплоемкость калориметра измеряется отдельно и вычитается из результата.

С увеличением температуры исследуемого тела растет утечка энергии, связанная с теплопроводностью стенок калориметра. Из формулы (2) видноб что при постоянной мощности нагревателя по мере роста температуры количество теплаб передаваемое телу, уменьшается, и, следовательно, понижается скорость изменения его температуры.

Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов и проводить все измерения при температурах, мало отличающихся от комнатной. Однако при небольших перегревах возникает большая ошибка при

измерении $\Delta T = T - T_{\rm K}$, и точность определения теплоемкости не возрастает. Чтобы избежать этой трудности, в работе используется следующая методика измерений. Зависимость скорости нагревания тела $\Delta T/\Delta t$ от температуры измеряется в широком интервале изменения температур. По полученным данным строится график

$$\frac{\Delta T}{\Delta t} = f(T).$$

Этот график экстраполируется к температуре $T=T_{\rm K}$, и таким образом определяется скорость нагревания при комнатной температуре $(\Delta T/\Delta t)_{T_{\rm K}}$. Подставляя полученное выражение в формулу (3) и замечая, что при $T=T_{\rm K}$ член $\lambda(T-T_{\rm K})$ обращается в ноль, получаем

$$C = \frac{P}{(\Delta T/\Delta t)_{T_{\rm K}}} \tag{4}$$

Рис. 1: Схема устройства калориметра

Температура измеряется термометром сопротивления, который представляет собой медную проволоку, намотанную на теплопроводящий каркас внутренней стенки калориметра (рис. 1). Сопротивление проводника изменяется с температурой по закону

$$R_T = R_0(1 + \alpha \Delta T),\tag{5}$$

где R_T — сопротивление термеметра про $T^{\circ}C$, R_0 — его сопротивление при $0^{\circ}C$, α — температурный коэффициент сопротивления.

Дифференцируя (5) по времени, найдем

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt},\tag{6}$$

Выразим сопротивление R_0 через исмеренное значение R_{κ} – сопротивление термометра при комнатной температуре. Согласно (5), имеем

$$R_0 = \frac{R_{\kappa}}{1 + \alpha \Delta T_{\kappa}},\tag{7}$$

Подставляя (6) и (7) в (4), найдем

$$C = \frac{PR_{\kappa}\alpha}{(\frac{dR}{dt})_{T_{\kappa}}(1 + \alpha\Delta T_{\kappa})},$$
(8)

Входящий в формулу температурный коэффициент сопротивления меди равен $\alpha=4,28\cdot 10^{-3}$ град $^{-1},$ все остальные величины определяются экспериментально.

Экспериментальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполненым из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усеченных конусов и плотно прилегают друг к другу. В стенку калориметра вмонтированы электронагреватель и термометр сопротивления. Схема включения нагревателя изображения на рис.2. Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая в нагревателе. Величина сопротивления термометра измеряется мостом постоянного тока.

2 Ход работы

Зафиксируем параметры установки и образцов (напряжение и ток в термометре, мощность термометра, массы образцов):

$$U = 36 \text{ B}, I = 0, 3 \text{ A}, P = 10, 8 \text{ BT}$$

	Латунный образец	Алюминиевый образец
Масса, г	$875, 5 \pm 0, 1$	$294, 2 \pm 0, 1$

Также зафиксируем комнатную температуру T_{κ} и сопротивление термометра R_{κ} на момент начала снятия зависимости R(t):

	R_{κ} , Om	T_{κ} ,° C
Пустой калориметр	18,103	22,8
Латунный образец	18,208	26
Алюминиевый образец	18,071	24,4

Снимем зависимость R(t) для пустого калориметра и 2 исследуемых образцов, данные занесем в таблицу 1. Перед каждой серией измерений дожидаемся установления комнатной температуры.

Калориметр		Алюминий		Латунь	
R, Ом	t, c	R, Ом	t, c	R, Ом	t, c
18,103	0	18,071	0	18,208	0
18,153	43,56	18,121	42,45	18,258	44,97
18,203	87,22	18,171	99,09	18,308	89,1
18,253	131,22	18,221	156,19	18,358	133,2
18,303	177,59	18,271	218,49	18,408	173,33
18,353	225,53	18,321	282,29	18,458	243,74
18,403	273,86	18,371	347,98	18,508	315,07
18,453	325,84	18,421	415,6	18,558	388,62
18,503	378,21	18,471	485,61	18,608	466,33
18,553	432,54	18,521	555,88	18,658	544,4
18,603	488,09	18,571	629,67	18,708	$623,\!27$
18,653	544,95	18,621	702,31	18,758	704,52
18,703	603,07	18,671	780,15	18,808	786,16
18,753	663,26	18,721	858,52	18,858	872,43
18,803	724,52	18,771	937,77	18,908	959,39
		18,821	1020,88	18,958	1048,8
				19,008	1138,5

Таблица 1: Зависимость сопротивления от времени

Построим графики зависимости R(t) для полученных данных (Рис. 3).

Также по полученным данным строим графики зависимостей $\frac{dR}{dT} = f(R)$ (Рис.4) по приближенной формуле

$$\frac{dR}{dt}(R) \approx \frac{R(t_2) - R(t_1)}{t_2 - t_1},$$

где t_1 и t_2 — соседние измерения времени, а $R(t_2)$ и $R(t_1)$ — значения сопротивления, соответствующие им. Данные, выбивающиеся из тенденции, отбросим.

Экстраполируем полученные зависимости полиномом второй степени до значений $R=R_{\rm K}$ и вычислим значения $(\frac{dR}{dt})_{T=T_{\rm K}}$ с использованием полученной формулы.

Вычисляем теплоемкость по формуле (8), см. Табл.3.

(фр) Пубаслобокррилостроросмелермпуннивым еобвремобом разцом

Рис. 3: Зависимость сопротивления термометра от времени

(а́рс))
Пу́ааслоейкаринлоестрр
росмелермиунниым
еебврамобом
разцом

Рис. 4: Зависимость производной $\frac{dR}{dt}$ от сопротивления

	Уравнение экстраполяции	R_{κ} , Om	$(dR/dt)_{R_{\kappa}}, \mathrm{Om/c}$
Калориметр	$y = 0,0002x^2 - 0,0077x + 0,0774$	18,103	0,003550622
Латунь	$y = 0,0002x^2 - 0,0063x + 0,0626$	18,208	0,014195853
Алюминий	$y = 0,0004x^2 - 0,0136x + 0,1298$	18,071	0,014658816

Таблица 2: Экстраполяция

	Теплоемкость, Дж/К	Тепл. без калориметра, Дж/К	Удельная тепл., Дж/кг-К
Калориметр	214,7216784	-	-
Латунный образец	533,5127264	318,791048	364,3326263
Алюминиевый образец	515,9549977	301,2333193	1024,603127

Таблица 3: Результат вычислений теплоемкости

Все измерения в данной работе проводились мостом и секундомером, поэтому приборные погрешности очень малы; все возможные случайные погрешности несущественны, т.к. относительно измеряемых величин малы также малы. Наиболее существенно на точность исследуемых величин влияет погрешность экстраполяции. При данной выборке она порядка $\varepsilon=0,1$.

Окончательно,

$$\begin{split} c_{\text{латуни}} &= 360 \pm 30 \frac{\text{Дж}}{\text{кг} \cdot \text{K}} \\ c_{\text{алюминия}} &= 1000 \pm 100 \frac{\text{Дж}}{\text{кг} \cdot \text{K}} \end{split}$$

Молярные теплоемкости равны μ с, где с - удельная теплоемкость; $\mu_{\text{меди}} \approx 64 \frac{\Gamma}{\text{моль}}, \ \mu_{\text{цинка}} \approx 65 \frac{\Gamma}{\text{моль}}, \ \mu_{\text{алюминия}} \approx 27 \frac{\Gamma}{\text{моль}}.$

3 Выводы

- В ходе работы были измерены теплоемкости калориметра, образцов из латуни и алюминия. Были измерены удельные теплоемкости латуни и алюминия: $c_{\text{латуни}} = 360 \pm 30 \frac{\text{Дж}}{\text{кг·K}}, \; c_{\text{алюминия}} = 1000 \pm 100 \frac{\text{Дж}}{\text{кг·K}}, \; \text{в пределах погрешности близкие к табличным значениям:} <math>c_{\text{латуни}}^{\text{табл.}} = 380 \frac{\text{Дж}}{\text{кг·K}} \; \text{и} \; c_{\text{алюминия}}^{\text{табл.}} = 920 \frac{\text{Дж}}{\text{кг·K}}.$
- Основной вклад в точность результата внесла погрешность экстраполяции.
- Экспериментально проверена работоспособность предложенной методики измерения.