Maths for Signals and Systems

Problem Sheet 3

Singular Value Decomposition (SVD)

Consider a matrix A of dimension $m \times n$ with m < n and rank r. Recall from the lectures that $r \le m$. The matrix AA^T is square, symmetric and of dimension $m \times m$. The matrix A^TA is square, symmetric and of dimension $n \times n$. The following properties hold:

- Both AA^T and A^TA have rank r (the same rank as the original matrix A).
- The m eigenvalues of A^TA are identical to the eigenvalues of AA^T and the rest n-m eigenvalues are 0.
- The so called **singular values** of A are the square roots of the non-zero eigenvalues of AA^T (or A^TA).
- Matrix A has a so called **Singular Value Decomposition (SVD)** of the form $A = U\Sigma V^T$ where U is of dimension $m \times m$, Σ is of dimension $m \times n$ and V is of dimension $n \times n$. Furthermore, U contains the eigenvectors of AA^T in its columns, V contains the eigenvectors of A^TA in its columns and $\Sigma_{ij} = \begin{cases} \sigma_i = \sqrt{\lambda_i} & i = j, i \leq r \\ 0 & \text{otherwise} \end{cases}$ with $\lambda_i, i = 1, ..., r$ the non-zero eigenvalues of AA^T (or A^TA).
- The above comments imply that $AA^T = U\Sigma^2U^T$ and $A^TA = V\Sigma^2V^T$.

The above analysis is straightforward in the case of m > n.

To understand better the structure of Σ , in the case of a 3×4 matrix of rank 2 we have

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ whereas in the case of a } 4 \times 3 \text{ matrix of rank 2 we have } \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Problems

- 1. Find the singular values of the matrix $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$.
- 2. Find the singular values of the matrix $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.

- 3. Find the SVD of the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.
- 4. Find the projection matrix onto the subspace of R^4 :

$$S = span \left\{ \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix} \right\}$$

 $S = span \begin{cases} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \end{cases}.$ Use this to compute the projection of vector $\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$ onto W.

- 5. Find the best fit line y = cx + d through the points (0,0), (1,1), (2,3).
- 6. Consider the following orthonormal vectors $u_1 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ and $u_2 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$. Let $x = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$. If S is the span of u_1 and u_2 , then:
 - a. Find the projection y of x onto S.
 - b. Verify that w = x y is orthogonal to S.

 - c. Show that $||x||^2 = ||y||^2 + ||w||^2$. d. Compute the distance from x to the subspace S
- 7. Consider the system of equations:

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Find the minimum norm solution