Dispersionsrelation für ein einatomiges Gitter

$$v_g = \sqrt{\frac{C_{11}a^2}{M}}\cos(qa/2)$$

$$\frac{qa}{\pi} \ll 1: v_g \approx \sqrt{\frac{C_{11}a^2}{M}} (qa/2)$$

Abb. 5.5: Dispersionsrelation der Gitterschwingungen für ein Kristallgitter mit einatomiger Basis.

Schallgeschwindigkeit

Tabelle 4.4: Komponenten C_{11} , C_{12} und C_{44} des Elastizitätsmoduls sowie Dichte ρ von kubischen Kristallen bei Raumtemperatur.

Kristall	$C_{11} (10^{11} \text{ N/m}^2)$	$C_{12} (10^{11} \text{ N/m}^2)$	$C_{44} (10^{11} \text{ N/m}^2)$	ρ (g/cm ³)
W	5.233	2.045	1.607	19.371
Ta	2.609	1.574	0.818	16.696
Cu	1.684	1.214	0.754	9.018
Ag	1.240	0.937	0.461	10.635
Au	1.923	1.631	0.420	19.488
Al	1.068	0.607	0.282	2.733
Pb	0.495	0.423	0.149	11.599
Ni	2.508	1.500	1.235	8.968
Diamant	10.76	1.25	5.76	3.52

$$\frac{qa}{\pi} \ll 1: v_g \approx \sqrt{\frac{C_{11}a^2}{M}} (qa/2)$$

Zerstörungsfreie Prüfung Räder, Radsatzwellen, Schienen ...

db-systemtechnik.de

4.2 Kristallgitter mit zweiatomiger Basis

Abb. 5.7: Schematische Darstellung der Auslenkung der Netzebenen bei einer longitudinalen Gitterschwingung in einem Kristallgitter mit zweiatomiger Basis. Die gestrichelten Linien geben die Position der unausgelenkten Netzebenen an.

Abb. 5.8: Dispersions relation für ein Kristallgitter mit zweiatomiger Basis berechnet für $M_1 = 2M_2$.

Akustische und optische Gitterschwingungen

Abb. 5.9: Longitudinal und transversal akustische und optische Gitterschwingungen. Die gepunkteten Kreise geben die Ruheposition der Atome an.

Abb. 5.10: Phononen-Dispersionsrelationen von Al. Die durchgezogenen und gestrichelten Linien stellen mit unterschiedlichen Methoden berechnete Kurven, die Symbole experimentelle Daten dar. Der Wellenvektor q ist in Einheiten von $\frac{2\pi}{a}$, $\sqrt{2}\frac{2\pi}{a}$ und $\sqrt{3}\frac{2\pi}{a}$ in [100]-, [110]- und [111]-Richtung aufgetragen (nach M. A. Coulthard, J. Phys. C: Solid State Phys. 3, 820–834 (1970)).

Abb. 5.11: Phononen-Dispersionsrelationen von Si. Die Linien stellen berechnete Dispersionsrelationen, die Symbole experimentelle Daten dar. Der Wellenvektor q ist in Einheiten von $\frac{2\pi}{a}$, $\sqrt{2}\frac{2\pi}{a}$ und $\sqrt{3}\frac{2\pi}{a}$ in [100]-, [110]- und [111]-Richtung aufgetragen (Daten aus P. E. Van Camp *et al.*, Phys. Rev. **B 31**, 4089 (1985)).

- 3 akustische Zweige
- 3r' 3 optische Zweige.

Abb. 5.12: Endliche, eindimensionale Atomkette, bestehend aus N + 1 Atomen mit Abstand a und N Federn. Das 0. und N. Atom sind fixiert, so dass nur N - 1 Atome übrig bleiben, die schwingen können.

Zustandsdichte Phononen

Abb. 5.13: Mögliche Schwingungsmoden für eine Atomkette aus N + 1 = 4 Atomen. Das 0. und 3. Atom sind fixiert, so dass nur N - 1 = 2 Atome schwingen können.

$$Z(q) = \frac{\text{Anzahl der Zustände}}{\text{zugehöriges } q\text{-Raum-Volumen}} = \frac{N}{2\pi/a} = \frac{Na}{2\pi} = \frac{L}{2\pi}$$

Abb. 5.14: Zustände im eindimensionalen Impulsraum.

5 Spezifische Wärmekapazität

Figure 6 Allowed values in Fourier space of the phonon wavevector K for a square lattice of lattice constant a, with periodic boundary conditions applied over a square of side L=10a. The uniform mode is marked with a cross. There is one allowed value of K per area $(2\pi/10a)^2=(2\pi/L)^2$, so that within the circle of area πK^2 the smoothed number of allowed points is $\pi K^2(L/2\pi)^2$.

Abb. 6.6: Phononen-Zustandsdichte eines realen Festkörpers und die Debye-Näherung. Die Debye-Frequenz ω_D bzw. der Debye-Wellenvektor q_D ist so gewählt, dass die Flächen unter den Kurven gleich sind.

Abb. 6.7: Spezifische Wärme berechnet mit der Debye-Näherung (6.1.50).