

Overview

- The job salary prediction system essentially aims to predict the salary of any UK job ad based on its contents.
- It also aims to compare how addition of text(job description) into the models increases the prediction power.
- I also want to find out it is likely that there are meaningful relationships between the salaries of jobs in a similar geographical area.
- I am using **Text Analytics** to perform preprocessing of the job description, and **Regression** to quantify the salary range.

Dataset Overview

- I got this dataset from the Adzuna Job board dataset which was extracted on Kaggle for the competition.
- Adzuna is a new, innovative search engine for job, property and car ads based in the UK, but expanding rapidly internationally.
- The training dataset is of 60,000 rows and testing dataset of 20,000 rows.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 59998 entries, 0 to 59997 Data columns (total 11 columns): Non-Null Count Column Dtype Title 59997 non-null object FullDescription 59998 non-null object LocationRaw 59998 non-null object LocationNormalized 59998 non-null object ContractType 16071 non-null object ContractTime 44191 non-null object Company 52108 non-null object Category 59998 non-null object 59998 non-null SalaryRaw object SalaryNormalized 59998 non-null int64 SourceName 59998 non-null object dtypes: int64(1), object(10) memory usage: 5.0+ MB

Research Questions

- What is the salary of a particular profession based on a location in the UK?
- What is the median salary distribution across regions in the UK?
- What are the top 10 parts of speech in the job descriptions? How frequently do they appear?
- Which parts of speech have the highest frequency?
- How do these numbers change if you exclude stopwords?

My Project Approach

1. EXPLORATORY DATA ANALYSIS FOR **REGRESSION**

2. EXPLORATORY DATA ANALYSIS FOR CLASSIFICATION

Exploratory Data Analysis for Regression

I. Salary Distribution

- · Left-skewed
- Jobs are on the lower end of the job salary spectrum.
- Ranges majorly concentrated in the median range of £50,000 or less

I. Salary Analysis

- Performed Random
 Sampling of 2,500 rows if the representation is the same
- Turns out that indeed it is!

```
# Randomly selecting 2500 rows to train the classifier
import random
random.seed(1)
indices = list(data.index.values)
random_2500 = random.sample(indices,2500)

# Subsetting the train data based on the random indices
sample = data.loc[random_2500].reset_index()

plt.figure(figsize=(12,5), dpi=130)
plt.hist(sample['SalaryNormalized'], bins='auto')
plt.xlabel('Salaries')
plt.ylabel('Number of postings')
plt.title('Histogram of Salaries')

Text(0.5, 1.0, 'Histogram of Salaries')
```


2. *Title*

- The top 5 Titles in the dataset were:
- a) Business Development Manager
- b) Project Manager
- c) Management Accountant
- d) Sales Executive
- e) Cleaner

data["Title"].value_counts()[:50]

business development manager	230
project manager	189
management accountant	175
sales executive	144
cleaner	139
mechanical design engineer	120
assistant manager	119
administrator	118
account manager	117
recruitment consultant	110
finance manager	109
credit controller	109
accounts assistant	102
financial controller	92
sales manager	89

3. Median Salary Distribution across Locations in the UK

4. Contract Type and Job Categories

Feature Engineering

- I dropped "id" and "NUM_RAND"
- Then, I checked for categorical and numerical variable
- Later, I converted categorical (string values) into numerical values.
- To fill missing values, I added label_is_missing as a Boolean value
- I converted categories into numbers and added +1 to it

Modeling

	RF Regressor	SVM Regressor	Lasso Regularization	DT Regression
MSE	7048.91	17608.69	16078.42	9707.56
R-Score	0.8373	-0.01478	0.1539	0.6915
Adjusted R-Score	0.8371	-0.0164	0.1525	0.6910

Tree Importance

- Used Testing set and performed the same data manipulation operations
- Trained and tested the model

Exploratory Data Analysis for Classification

Steps:

- Step 1: Preprocessing Tokenization, lemmatization, Stopword removal, POS
- Step 2: Perform ML Analysis with and without the job description

Exploratory Data Analysis (for job descriptions)

While looking at the data, some of the values are masked as *** and they turn out to be of no value for us in the analysis. In addition to that, there are a few data cleaning steps that I have performed as follows:

- Remove website links from the data
- Remove punctuations
- Removing numbers

```
# To obtain the full width of a cell in a dataframe
pd.set_option('display.max_colwidth', -1)
desc = data.loc[1,'FullDescription']

# Creating a list of words from all the job descriptions in train_dfl data
all_desc = []
for i in range(0,data.shape[0]):
    desc = data.loc[i,'FullDescription']
    desc1 = desc.lower()
    # Removing numbers, *** and www links from the data
    desc2 = re.sub('[0-9]+\S+|\s\d+\s|\w+[0-9]+|\w+[\*]+.*|\s[\*]+\s|\www\.[^\\s]+','',desc1)
    # Removing punctuation
    for p in punctuation:
        desc2 = desc2.replace(p,'')
    all_desc.append(desc2)
```

```
# Creating word tokens for all the descriptions
final_list = []
for desc in all_desc:
    word_list = word_tokenize(desc)
    final_list.extend(word_list)
```

POS Identification before and after Stopword Removal

```
# 3. Tagging parts of speech
pos tagged = nltk.pos tag(final list)
# 4. Identifying the most common parts of speech
tag fd = nltk.FreqDist(tag for (word, tag) in pos tagged)
tag fd.most common()[:10]
[('NN', 3328920),
 ('JJ', 1501159),
 ('IN', 1377394),
 ('DT', 1093017),
 ('NNS', 1082790),
 ('VB', 702013),
 ('CC', 656927),
 ('VBG', 488373),
 ('TO', 432236),
 ('VBP', 329925)]
```

```
# Excluding stopwords from the analysis
list wo stopwords = []
for w in final list:
    if w not in stop words:
        list wo stopwords.append(w)
# 3. Tagging parts of speech
pos tagged wo sw = nltk.pos tag(list wo stopwords)
# 4. Identifying the most common parts of speech
tag fd wo sw = nltk.FreqDist(tag for (word, tag) in pos tagged wo sw)
tag fd wo sw.most common()[:10]
[('NN', 3226148),
 ('JJ', 1553326),
 ('NNS', 1069511),
 ('VBG', 550203),
 ('VBP', 368583),
 ('RB', 284362),
 ('VBD', 169385),
 ('VBN', 163728),
 ('VB', 163504),
 ('IN', 125710)]
```

Frequency of POS (WordCloud)

	words	freq
24	experience	92336
42	role	68976
115	team	66979
77	client	63068
110	work	62569
403	business	59998
5	service	53074
164	skill	51527
202	working	47984
492	manager	46180

Model without job description:

Target variable will be the SalaryNormalized column

- I created labels for the SalaryNormalized column on the basis of its percentile: if greater than 0.75 it is 1 else 0.
- Creating a proxy variable for location Since creating dummy variable will bloat the dataset, we will create a proxy variable for the location by taking the cities with high cost of living under one group(1) and the others in a separate group(0).

Creating dummy variables for all the columns except job description.

Model without text variables:

Machine Learning Classifier used: Bernoulli Naïve Bayes Classifier

Accuracy: 76.27%

Model with job description:

- I ran only Multinomial NB Classifier by performing these steps:
 - Without removing stopwords from the data
 - After removing stopwords from the data
 - After lemmatizing the data
- This will help us understand the effect of each step on the accuracy of the result
- Performance Metric to use: Accuracy

Without removing stopwords from the data	Confusion matrix: [[10898 2552] [1172 3378]] Accuracy using MultinomialNB: 0.793111111111111
After removing stopwords from the data	Confusion matrix: [[10878 2572] [1124 3426]] Accuracy using MultinomialNB: 0.794666666666666
After lemmatizing the data	Confusion matrix: [[10899 2551] [1170 3380]] Accuracy using MultinomialNB: 0.79327777777777

Future Scope

- Tensorflow aka Deep Learning or Stacking Ensembles.
- Usage of Unigrams, bi-grams and N-gram models
- We can use SVM algorithm to predict the salary based on the text data.
- Sentiment Analysis Results can also be incorporated as a feature.

