Chapter 2

Homework 21935004 谭焱

Exercise 2.1. For $f \in \mathcal{C}[x_0, x_1]$ and $x \in (x_0, x_1)$, linear interpolation of f at x_0 and x_1 yield

$$f(x) - p_1(f;x) = \frac{f''(\xi(x))}{2}(x - x_0)(x - x_1). \tag{2.1}$$

Consider the case $f(x) = \frac{1}{x}$, $x_0 = 1$, $x_1 = 2$.

- Determine $\xi(x)$ explicitly.
- For $x \in [x_0, x_1]$, find $\max \xi(x)$, $\min \xi(x)$, and $f''(\xi(x))$.

Solution.

$$\begin{aligned} p_1(f;x) &= \frac{1}{2} \cdot \frac{x - x_0}{x_1 - x_0} + 1 \cdot \frac{x - x_1}{x_0 - x_1} = -\frac{1}{2}(x - 1) + 1 \\ f(x) - p_1(f;x) &= \frac{x^2 - 3x + 2}{2x} \\ \frac{1}{2\xi^3(x)} &= f''(\xi(x)) = \frac{2(f(x) - p_1(f;x))}{(x - 1)(x - 2)} = \frac{1}{x} \\ \xi(x) &= (\frac{x}{2})^{\frac{1}{3}}. \end{aligned}$$

So for $x \in [x_0, x_1] \max \xi(x) = 1$, $\min \xi(x) = \frac{1}{2^{1/3}}$ and $f''(\xi(x)) = \frac{1}{x}$

Exercise 2.2. Let \mathcal{P}_m^+ be the set of all polynomials of degree $\leq m$ that are non-negative on the real line,

$$\mathbb{P}_m^+ = \{ p : p \in \mathbb{P}_m, \forall x \in \mathbb{R}, p(x) \ge 0 \}. \tag{2.2}$$

Find $p \in \mathbb{P}_{2n}^+$ such that $p(x_i) = f_i$ for $i = 0, 1, \dots, n$ where $f_i \ge 0$ and x_i are distinct points on \mathbb{R} .

Solution. Define $l(x) = \prod_{j=0}^{n} (x - x_j)^2, l_i(x) = \prod_{j \neq i} (x - x_j)^2,$

$$p(x) = \sum_{i=0}^{n} f_i \frac{l(x)}{l_i(x_i)(x - x_j)^2}.$$

It follows that $p(x_i) = f_i$, $p(x) \ge 0$ and $\deg p(x) \le 2n$. Therefore, $p(x) \in \mathbb{P}_{2n}^+$ satisfy condition.

Exercise 2.3. Consider $f(x) = e^x$.

• Prove by induction that

$$\forall t \in \mathbb{R}, \qquad f[t, t+1, \dots, t+n] = \frac{(e-1)^n}{n!} e^t.$$

• From Corollary 3.17 we know

$$\xi \in (0, n) \text{ s.t. } f[0, 1, \dots, n] = \frac{1}{n!} f^{(n)}(\xi).$$

Determine ξ from the above two equations. Is ξ located to the left or to the right of the midpoint n/2?

Solution. When n = 0, The equation is trivial. Then set $\forall t \in \mathbb{R}, f[t, t+1, \dots, t+n-1] = \frac{(e-1)^{n-1}}{(n-1)!}e^t, \forall t \in \mathbb{R}, f[t+1, t+2, \dots, t+n] = \frac{(e-1)^{n-1}}{(n-1)!}e^{t+1}$.

$$f[t, t+1, \dots, t+n]$$

$$= (f[t+1, t+2, \dots, t+n] - f[t, t+1, \dots, t+n-1])/(t+n-t)$$

$$= \frac{(e-1)^{n-1}}{(n-1)!} e^t (e-1)/(n)$$

$$= \frac{(e-1)^n}{(n)!} e^t.$$

By induction, $\forall t \in \mathbb{R}, f[t, t+1, \dots, t+n] = \frac{(e-1)^n}{n!} e^t$. Thus,

$$e^{\xi} = f^{(n)}(\xi) = (n!)f[0, 1, \dots, n] = (e - 1)^n \iff$$

 $\xi = n \ln(e - 1) > 1/2.$

Exercise 2.4. Consider f(0) = 5, f(1) = 3, f(3) = 5, f(4) = 12.

- Use the Newton formula to obtain $p_3(f;x)$;
- The data suggest that f has a minimum in $x \in (1,3)$. Find an approximate value for the location x_{\min} of the minimum.

Thus $p_3(f;x) = 5 - 2(x-0) + (x-0)(x-1) + \frac{1}{4}(x-0)(x-1)(x-3)$. Differential $p_3(f;x)$ get $x_{\min} = \sqrt[2]{3}$, Therefore $f(\sqrt[2]{3}) = -\frac{3\sqrt[2]{3}}{2} + 5$.

Exercise 2.5. Condiser $f(x) = x^7$.

- Compute f[0, 1, 1, 1, 2, 2].
- We know that this divided differene is expressible in terms of the 5th derivative of f evaluated at some $\xi \in (0,2)$. Determine ξ .

Exercise 2.6. f is a function on [0,3] for which one knows that

$$f(0) = 1, f(1) = 2, f'(1) = -1, f(3) = f'(3) = 0.$$

- Estimate f(2) using Hermite interpolation.
- Estimate the maximum possible error of the above answer if one knows, in addition, that $f \in C^5[0,3]$ and $|f^{(5)}(x)| \leq M$ on [0,3]. Express the answer in terms of M.

Solution. By Hermite interpolation,

$$f(x) = 1\frac{(x-1)^2(x-3)^2}{(0-1)^2(0-3)^2} + 2\frac{(x-0)(x-3)^2}{(1-0)(1-3)^2} + (-1)\frac{(x-0)(x-1)(x-3)^2}{(1-0)(1-3)^2}$$

Then,
$$f(2) = 1/9 + 1 - 1/2 = \frac{11}{18} \cdot \mathbf{R}_5(f; x) = \frac{f^{(5)}(\xi)}{5!} x(x-1)^2 (x-3)^2 < \frac{3^5}{5!} M$$
.

Exercise 2.7. Define forward difference by

$$\Delta f(x) = f(x+h) - f(x),$$

$$\Delta^{k+1} f(x) = \Delta \Delta^k f(x) = \Delta^k f(x+h) - \Delta^k f(x)y$$

and backward difference by

$$\nabla f(x) = f(x+h) - f(x).$$

$$\nabla^{k+1} f(x) = \nabla \nabla^k f(x) = \nabla^k f(x) - \nabla^k f(x-h).$$

Prove

$$\Delta^{k} f(x) = k! h^{k} f[x_{0}, x_{1}, \dots, x_{k}],$$

$$\nabla^{k} f(x) = k! h^{k} f[x_{0}, x_{-1}, \dots, x_{-k}],$$

where $x_j = x + jh$.

Solution. By induction, When $k = 1, \Delta f(x) = f(x+h) - f(x) = hf[x_0, x_1]$. Assuming $\Delta^k f(x) = k!h^k f[x_0, x_1, \dots, x_k]$, $\Delta^{k+1} f(x)$ $= \Delta^k f(x_1) - \Delta^k f(x_0)$ $= k!h^k (f[x_1, x_2, \dots, x_{k+1}] - f[x_0, x_1, \dots, x_k])$ $= (k+1)!h^{k+1} f[x_0, x_1, \dots, x_{k+1}].$

In summary, $\Delta^k f(x) = k!h^k f[x_0, x_1, \dots, x_k]$. Similarly, $\nabla^k f(x) = k!h^k f[x_0, x_1, \dots, x_k]$.

Exercise 2.8. Assume f is differentiable at x_0 . Prove

$$\frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_n] = f[x_0, x_0, x_1, \dots, x_n].$$

What about the partial derivative with respect to one of the other variables?

Solution. By Definition, $\frac{\partial}{\partial x_0} f[x_0] = f[x_0, x_0]$. Assuming $\frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_{n-1}] = f[x_0, x_0, x_1, \dots, x_{n-1}]$,

$$\begin{split} & \frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_n] \\ & = \frac{\frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_{n-2}, x_n] - \frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_{n-2}, x_{n-1}]}{x_n - x_{n-1}} \\ & = \frac{f[x_0, x_0, x_1, \dots, x_{n-2}, x_n] - f[x_0, x_0, x_1, \dots, x_{n-2}, x_{n-1}]}{x_n - x_{n-1}} \\ & = f[x_0, x_0, x_1, \dots, x_n]. \end{split}$$

Therefore, $\forall n \in \mathbb{Z}^+ \frac{\partial}{\partial x_0} f[x_0, x_1, \dots, x_n] = f[x_0, x_0, x_1, \dots, x_n]$. And since divided difference is order-independent, $\forall n \in \mathbb{Z}^+ \frac{\partial}{\partial x_j} f[x_0, x_1, \dots, x_n] = f[x_0, x_1, \dots, x_j, x_j, \dots, x_n]$.