Вопрос по выбору по оптике за 4ый семестр Илья Михеев

2021г.

1 Геометрическая оптика. Принцип Ферма. Законы преломления и отражения. Полное внутреннее отражение.

Область применения

- 1. $\lambda \to 0$, $\frac{\lambda}{D} << 1$
- 2. $|\lambda^2 \frac{\partial^2 a}{\partial x^2} << |\lambda \frac{\partial a}{\partial x}| << a$

Законы геометрической оптики

- 1. Закон прямолинейного распространения света
- 2. Закон отражения
- 3. Закон преломления
- 4. Принцип независимости световых лучей
- 5. Принцип обратимости солнечных лучей

Принцип Ферма

- 1. Луч света распространяется в пространстве между двумя точками по тому пути, вдоль которого время его прохождения меньше, чем вдоль любого другого пути, соединяещего эти точки.
- 2. Свет распространяется между двумя точками по той траектории, оптическая длина которой минимальна.

$$S = \int n(\vec{r})dl$$

$$E = E_0(r) \exp[i(\Phi(r) - \omega t)]$$

$$k = grad\Phi$$

$$J = \int_{M_0}^{M} k(r)dr = \Phi(M) - \Phi(M_0)$$

Для траектории L_0 , совпадающей с траекторией луча, векторы \vec{k} и $d\vec{r}$ параллельны, то есть

$$J = \int_{M_0}^{M} k ds = k_0 L_0(M_0, M)$$

где L_0 — оптическая длина участка M_0M траектории луча. Если взять какую-либо иную кривую, соединяющую точки M_0 и M, то вдоль неё векторы \vec{k} и $d\vec{r}$ не параллельны, так что $kds \geq \vec{k}d\vec{r}$. Поэтому вдоль этой кривой окажется

$$k_0 L = k_0 \int_{M_0}^{M} n ds = \int_{M_0}^{M} k ds \ge \int_{M_0}^{M} \vec{k} d\vec{r} = k_0 L_0(M_0, M)$$

Откуда следует равенство $L \geq L_0$.

Закон преломления и отражения

Закон Снелла преломления света

$$\frac{\sin\alpha}{\sin\gamma} = \frac{n_2}{n_1}$$

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$
$$\alpha_{\text{Kp.}} = \frac{n_2}{n_1}$$

2 Центрированные оптические системы. Тонкая линза. Фокусы и главные плоскости оптической системы. Оптические инструменты: лупа, телескоп и микроскоп.

Центрированной оптической системой

называют совокупность преломляющих и отражающих сред, отделённых друг от друга симметричными поверхностями, центры кривизны которых находятся на одной прямой. Эту прямую называют главной оптической осью системы.

Тонкая линза

Линза — прозрачное тело, изготовленное из оптически однородного материала, ограниченное двумя полированными выпуклыми или вогнутыми поверхностями.

Точки O и O' пересечения поверхностей линзы с главной оптической осью называются вершинами линзы. Расстоянием d между вершинами называется толщина линзы. Линза считается тонкой, если $d << R_1, d << R_2$. Формула тонкой линзы:

$$\frac{1}{F} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})$$

2.1 Фокусы и главные плоскости оптической системы.

Если оптическая система превращает параллельный пучок света в сходящийся, то точка, в которой пересекаются лучи после прохождения системы называется фокусом. Две сопряжённые плоскости, отображающиеся с линейным увеличением $\beta=\pm 1$, называются главными .

2.2 Лупа

 $\rm Лупа$ — это оптическая система, состоящая из одной или нескольких линз и предназначенная для наблюдения мелких предметов, расположенных на конечном расстоянии.

Если с расстояния l_0 смотреть на изображение, то $\Gamma = \frac{l_0}{F}$, где F — фокусное расстояние лупы. (Выведешь сам)

2.3 Телескоп

Телескоп — система, включающая в себя объектив и окуляр. Причём передний фокус окуляра совмещён с задним фокусом объектива. При таком расположении элементов параллельный пучок, попадающий в объектив преобразуется в параллельный пучок на выходе из окуляра.

$$\Gamma = \frac{F_{\text{o6}}}{F_{\text{oK}}}$$

Фокусное расстояние окуляра как правило мало по сравнению с фокусным расстоянием объектива, что обеспечивает большое увеличение

2.4 Микроскоп

Предмет (у) помещается на малом расстоянии перед передним фокусом объектива, который даёт действительное перевёрнутое изображение (у'). Это изображение затем рассматривается с помощью окуляра, действующего так же, как лупа.

Увеличение окуляра связано с тем, что конечное изображение (у") видно под большим углом, чем при непосредственном наблюдении глазом.

3 Основы фотометрии. Яркость источника, освещённость изображения. Теорема о сохранении яркости оптической системой.

3.1 Основы фотометрии

3.1.1 Поток энергии

Обозначим Φ_{Θ} поток энергии (энергию в единицу времени)

$$\Phi_{\mathfrak{F}} = \int\limits_{0}^{\infty} \varphi(\lambda) d\lambda$$

где $\varphi(\lambda)$ — спектральная плотность энергии (рассчитана на единичный интервал длины волн)

3.1.2 Видность

Шаманская функция $V(\lambda)$ с гауссовским графиком вокруг $\lambda=555$ нм

3.1.3 Световой поток

Для характеристики интенсивности света с учётом его способности вызывать зрительные ощущения вводится величина Φ — световой поток. Для интервала $d\lambda$ имеем

$$d\Phi = V(\lambda)d\Phi_{\Theta}$$

Полный световой поток может быть представлен в виде

$$\Phi = \int_{0}^{\infty}$$

3.1.4 Сила света

Световой поток, излучаемый в единичный телесный угол, называется силой света:

$$J = d\Phi/d\Omega$$

Полный световой поток — $\Phi = 4\pi J$.

3.1.5 Интенсивность света

$$I = d\Phi/dS_{\perp}$$

3.2 Яркость источника

Это понятие характеризует поверхности и неприменимо к точечным источникам

$$B = \frac{d\Phi}{dS_{\perp}d\Omega} = \frac{dJ}{dS_{\perp}} = \frac{dJ}{dS\cos\theta}$$

3.3 Освещённость изображения

$$E = \frac{d\Phi}{dS}$$

Пусть источник света точечный, тогда величина

$$d\Phi = Jd\Omega = J\frac{dS_{\perp}}{r^2}$$

есть поток, падающий на площадку $dS_{\perp} = dS \cos \theta$, где θ — угол падения излучения на поверхность. В результате оказывается, что

$$E = \frac{d\Phi}{dS} = \frac{J}{r^2}\cos\theta$$

3.4 Теорема о сохрании яркости оптической системой

Пусть оптическая система создаёт некоторое изображение светящегося предмета.

Найдём сначала яркость изображения, рассматривая последнее, как светящийся объект. Пусть исходный предмет есть квадрат со стороной y, а его изображение представляет из себя квадрат со стороной y'. Пусть яркость предмета равна B. Тогда световой поток, создаваемый предметом, равен

$$d\Phi = B(\theta)d\Omega dS\cos\theta = 2\pi B(\theta)dS\sin\theta\cos\theta d\theta \approx 2\pi B(\theta)dS\theta d\theta$$

Для изображения также

$$d\Phi' = B'(\theta')d\Omega'dS'\cos\theta' = 2\pi B'(\theta')dS'\sin\theta'\cos\theta'd\theta' \approx 2\pi B'(\theta')dS'\theta'd\theta'$$

Считая, что потери энергии малы: $d\Phi = d\Phi'$ и из теоремы Лагранжа-Гельмгольца $ny\theta = n'y'\theta'$. Тогда

$$B'(\theta') = \left(\frac{n'}{n}\right)^2 B(\theta)$$

Откуда при равенстве показателей преломления по обе стороны от оптич. системы получаем сохранение яркости Q.E.D.

4 Волновое уравнение. Монохроматические волны. Уравнение Гельмгольца. Комплексная амплитуда. Волновой вектор, фазовая скорость. Плоские и сферические волны.

4.1 Волновое уравнение

Сначала запишем уравнения максвелла и материальные уравнения:

$$\begin{split} \operatorname{rot} E &= -\frac{1}{c} \frac{\partial B}{\partial t}, \qquad \operatorname{div} D = 0 \\ \operatorname{rot} H &= -\frac{1}{c} \frac{\partial D}{\partial t}, \qquad \operatorname{div} B = 0 \\ D &= \varepsilon E \qquad H = \mu B \end{split}$$

Откуда получаем, что

$$\nabla^2 E = \frac{\varepsilon \mu}{c} \frac{\partial^2 E}{\partial t^2}$$

что является волновым уравнением.

4.2 Монохроматические волны

Монохроматическая волна — строго гармоническая (синусоидальная) волна с постоянными во времени частотой, амплитудой и начальной фазой. Её уравнение:

$$\nabla^2 \Psi = \frac{\varepsilon \mu}{c} \frac{\partial^2 \Psi}{\partial t^2}$$

Частное решение уравнения:

$$\Psi = ue^{-i\omega t} \qquad \Psi = ue^{i\omega t}$$

где ω — частота волны.

4.3 Уравнение Гельмгольца.

Если поле меняется по периодическому закону, то волновое переходит в уравнение Гельмгольца:

$$(\Delta + k^2)E = 0$$

4.4 Комплексная амплитуда

В трехмере уравнение плоской волны будет иметь вид

$$E(r,t) = E_1 \exp[i(kr - \omega t + \varphi_0)]$$

где $E_0 = E_1 \exp(i\varphi_0)$ будет являться комплексной амплитудой.

4.5 Волновой вектор

Вектор k называется волновым, $k=2\pi/\lambda$. Он направлен вдоль распространения волны.

4.6 Фазовая скорость

Точки с фиксированной фазой движутся со скоростью

$$v = \omega/k = c/n$$

4.7 Плоские и сферические волны

Плоские и сферические волны являются решениями уравнения максвелла. Уравнение плоской волны было выше, сферическая — то же самое, но поделить на r.

- 5 Электромагнитные волны на границе раздела двух диэлектриков. Зависимость коэффициентов отражения от угла падения (качественно). Явление Брюстера.
- 5.1 Электромагнитные волны на границе раздела двух диэлектриков.

На границе мы можем выделить 2 коэффициента: отражения и пропускания r и t. Ну и там дальше душная френелевская хуйня.

5.2 Зависимость коэффициентов отражения от угла падения (качественно). Явление Брюстера.

На рисунке показана зависимость коэффициента отражения $R(\theta)$ для s-поляризованного (R_{\perp}) и p-поляризованного (R_{\parallel}) излучения.

В случае p-поляризованной волны существует такой угол $\theta=\theta_{\rm B}$, называемый углом Брюстера, что волна падающая под этим углом на поверхность не отражается обратно. Полагая в формулах Френеля $r_{\parallel}(\theta)=0$, этот угол будет

$$tg \theta_{\rm B} = n_2/n_1$$

При падении под углом брюстера отражённая волна становится полностью s-поляризованной.

6 Дисперсия волн. Волновой пакет, групповая скорость. Формула Рэлея.

6.1 Дисперсия волн

Зависимость фазовой скорости ($U_{\Phi} = \omega/k$) от длины волны называется дисперсией.

6.2 Волновой пакет, групповая скорость

пишем, что $u_i = a \sin(k_1 x - \omega_1 t)$ складываем синусы, радуемся. получаем, что

$$u = 2a\cos\left[\frac{\Delta k}{2}\left(x - \frac{d\omega}{dk}t\right)\right]\sin(kx - \omega t)$$

для двух волн, оттуда получаем, что биения движутся со скоростью $v_{\rm rp} = d\omega/dk$.

Волновым пакетом называется набор волн для k в диапазоне $\Delta k/2$ влево и вправо.

6.3 Формула Рэлея

$$v_{\rm rp} = v_{\rm \Phi} - \lambda \frac{dv_{\rm \Phi}}{d\lambda}$$
$$v_{\rm rp} = \frac{c}{n} \left(1 + \frac{\lambda}{n} \frac{dn}{d\lambda} \right)$$

- 7 Классическая теория дисперсии света. Аномальная дисперсия. Поглощение света. Дисперсия в плазме и металлах
- 7.1 Классическая теория дисперсии света.