

Handbuch

HIMax®

X-AI 32 51

Analoges Eingangsmodul

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® und FlexSILon® sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Alle aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden.

© Copyright 2019, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

Revisions-	3		Art der Änderung	
index		technisch	redaktionell	
4.00	Erstausgabe des Handbuchs zu SILworX V4			
5.00	Aktualisierte Ausgabe des Handbuchs zu SILworX V5 Geändert: Kapitel 3.5, Tabelle 14, Tabelle 15 und Tabelle 23	X	X	
8.00	Aktualisierte Ausgabe zu SILworX V8 Geändert: Kapitel 3.6 und 3.7	Х	Х	
11.00	Aktualisierte Ausgabe zu SILworX V11	Х	Х	

X-AI 32 51 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	5
1.3	Darstellungskonventionen	6
1.3.1 1.3.2	Sicherheitshinweise Gebrauchshinweise	6 7
2	Sicherheit	8
2.1	Bestimmungsgemäßer Einsatz	8
2.1.1 2.1.2	Umgebungsbedingungen ESD-Schutzmaßnahmen	8 8
2.2	Restrisiken	8
2.3	Sicherheitsvorkehrungen	8
3	Produktbeschreibung	9
3.1	Sicherheitsfunktion	9
3.1.1	Reaktion im Fehlerfall	9
3.2	Lieferumfang	9
3.3	Typenschild	10
3.4	Aufbau	11
3.4.1	Blockschaltbild	11
3.4.2 3.4.3	Anzeige Modul-Statusanzeige	12 14
3.4.3 3.4.4	Systembusanzeige	15
3.4.5	E/A-Anzeige	15
3.5	Produktdaten	16
3.6	Connector Boards	18
3.6.1	Mechanische Codierung von Connector Boards	18
3.6.2 3.6.3	Codierung Connector Boards X-CB 008 5x Connector Boards mit Schraubklemmen	19 20
3.6.4	Klemmenbelegung Connector Boards mit Schraubklemmen	21
3.6.5	Connector Boards mit Kabelstecker	23
3.6.6	Steckerbelegung Connector Boards mit Kabelstecker	24
3.6.7 3.6.8	Mono Connector Board Redundanz über zwei Basisträger Steckerbelegung X-CB 008 55	26 27
3.7	Systemkabel	28
3.7.1	Systemkabel X-CA 005	28
3.7.2	Systemkabel X-CA 009	29
3.7.3 3.7.4	Systemkabel X-CA 016 Codierung Kabelstecker	29 30
4	Inbetriebnahme	31
4.1	Montage	31
4.1.1	Beschaltung nicht benutzter Eingänge	31
4.2	Einbau und Ausbau des Moduls	32
4.2.1	Montage eines Connector Boards	32
4.2.2	Modul einbauen und ausbauen	34

HI 801 180 D Rev. 11.00 Seite 3 von 58

Inhaltsverzeichnis X-AI 32 51

4.3	Konfiguration des Moduls in SILworX	36
4.3.1 4.3.2	Register Modul Register E/A-Submodul Al32_51	37 38
4.3.3	Register E/A-Submodul Al32_51: Kanäle	39
4.3.4 4.3.5	Beschreibung Submodul-Status [DWORD] Beschreibung Diagnose-Status [DWORD]	41 41
4.4	Anschlussvarianten	42
4.4.1 4.4.2 4.4.3 4.4.4	Eingangsverschaltungen Anschluss von Transmittern über Field Termination Assembly Redundanter Anschluss über zwei Basisträger Verhalten bei HART-Kommunikation	42 45 46 47
5	Betrieb	48
5.1	Bedienung	48
5.2	Diagnose	48
6	Instandhaltung	49
6.1	Instandhaltungsmaßnahmen	49
7	Außerbetriebnahme	50
8	Transport	51
9	Entsorgung	52
	Anhang	53
	Glossar	53
	Abbildungsverzeichnis	54
	Tabellenverzeichnis	55
	Index	56

Seite 4 von 58 HI 801 180 D Rev. 11.00

X-Al 32 51 1 Einleitung

1 Einleitung

Das vorliegende Handbuch beschreibt die technischen Eigenschaften des Moduls und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration in SILworX.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMax.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

Zusätzlich sind die folgenden Dokumente zu beachten:

Dokument	Inhalt	Dokumenten-Nr.
HIMax Systemhandbuch	Hardware-Beschreibung HIMax System	HI 801 000 D
HIMax Sicherheitshandbuch	Sicherheitsfunktionen des HIMax Systems	HI 801 002 D
HIMax Wartungshandbuch	Beschreibung wichtiger Tätigkeiten zum Betrieb und Wartung	HI 801 170 D
Kommunikationshandbuch	Beschreibung der safe ethernet Kommunikation und der verfügbaren Protokolle	HI 801 100 D
Automation Security Handbuch	Beschreibung von Automation Security Aspekten bei HIMA Systemen	HI 801 372 D
SILworX Erste Schritte Handbuch	Einführung in SILworX	HI 801 102 D
SILworX Online-Hilfe (OLH)	SILworX Bedienung	

Tabelle 1: Zusätzlich geltende Handbücher

Die aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden. Für registrierte Kunden stehen die Produktdokumentationen im HIMA Extranet als Download zur Verfügung.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure, Programmierer und Personen, die zur Inbetriebnahme, zur Wartung und zum Betreiben von Automatisierungsanlagen berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsbezogenen Automatisierungssysteme.

HI 801 180 D Rev. 11.00 Seite 5 von 58

1 Einleitung X-AI 32 51

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können.

Kursiv Parameter und Systemvariablen, Referenzen.

Courier Wörtliche Benutzereingaben.

RUN Bezeichnungen von Betriebszuständen (Großbuchstaben). Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind.

Im elektronischen Dokument (PDF): Wird der Mauszeiger auf einen Hyperlink positioniert, verändert er seine Gestalt. Bei einem Klick springt

das Dokument zur betreffenden Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Um ein möglichst geringes Risiko zu gewährleisten, sind die Sicherheitshinweise unbedingt zu befolgen.

Die Sicherheitshinweise im Dokument sind wie folgt dargestellt.

- Signalwort: Warnung, Vorsicht, Hinweis.
- Art und Quelle des Risikos.
- Folgen bei Nichtbeachtung.
- Vermeidung des Risikos.

Die Bedeutung der Signalworte ist:

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod.
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung.
- Hinweis: Bei Missachtung droht Sachschaden.

SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung. Vermeidung des Risikos.

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens.

Seite 6 von 58 HI 801 180 D Rev. 11.00

X-Al 32 51 1 Einleitung

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form: TIPP An dieser Stelle steht der Text des Tipps.

HI 801 180 D Rev. 11.00 Seite 7 von 58

2 Sicherheit X-AI 32 51

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMax Komponenten sind zum Aufbau von sicherheitsbezogenen Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMax System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Die in diesem Handbuch genannten Umgebungsbedingungen sind beim Betrieb des HIMax Systems einzuhalten. Die Umgebungsbedingungen sind in den Produktdaten aufgelistet.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Komponenten durchführen.

HINWEIS

Schäden am HIMax System durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Komponente elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

2.2 Restrisiken

Von einem HIMA System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung.
- Fehlern im Anwenderprogramm.
- Fehlern in der Verdrahtung.

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

Seite 8 von 58 HI 801 180 D Rev. 11.00

3 Produktbeschreibung

Das Modul X-Al 32 51 ist ein analoges NonSIL-Eingangsmodul und für den Einsatz im programmierbaren elektronischen System (PES) HIMax bestimmt.

Das Modul dient zur Auswertung von bis zu 32 analogen Eingangssignalen.

Das Modul ist auf allen Steckplätzen im Basisträger einsetzbar, ausgenommen auf den Steckplätzen für die Systembusmodule, näheres im Systemhandbuch HI 801 000 D.

Das Modul kann zusammen mit sicherheitsbezogenen Modulen und anderen NonSIL-Modulen in einem Basisträger betrieben werden. Eine redundante Verschaltung von sicherheitsbezogenen und NonSIL-Modulen ist nicht erlaubt.

Das Modul ist rückwirkungsfrei. Dies beinhaltet speziell EMV, elektrische Sicherheit, Kommunikation zu X-SB und X-CPU, und das Anwenderprogramm.

Modul und Connector Board sind mechanisch codiert, siehe Kapitel 3.6.1. Die Codierung schließt den Einbau eines nicht passenden Moduls aus.

Die Normen, nach denen die Module und das HIMax System geprüft und zertifiziert sind, können dem HIMax Sicherheitshandbuch HI 801 002 D entnommen werden.

Die Zertifikate und die EU-Baumusterprüfbescheinigung befinden sich auf der HIMA Webseite.

3.1 Sicherheitsfunktion

Das Modul führt keine sicherheitsbezogenen Funktionen aus.

Das Modul wertet die analogen Eingangssignale aus und stellt diese dem Anwenderprogramm zur Verfügung.

Parameter und Status des Moduls dürfen nicht für Sicherheitsfunktionen verwendet werden.

3.1.1 Reaktion im Fehlerfall

Bei Fehlern liefern die zugewiesenen Eingangsvariablen den Initialwert an das Anwenderprogramm.

Damit im Fehlerfall die Eingangsvariablen den Wert 0 an das Anwenderprogramm liefern, müssen die Initialwerte auf 0 gesetzt werden. Wird anstelle des Prozesswertes der Rohwert ausgewertet, muss der Anwender die Überwachung und den Wert im Fehlerfall im Anwenderprogramm programmieren.

Das Modul aktiviert die LED Error auf der Frontplatte.

3.2 Lieferumfang

Das Modul benötigt zum Betrieb ein passendes Connector Board. Bei Verwendung eines Field Termination Assembly (FTA) wird ein Systemkabel benötigt, um das Connector Board mit dem FTA zu verbinden. Die Connector Boards, Systemkabel und FTAs gehören nicht zum Lieferumfang des Moduls.

Die Beschreibung der Connector Boards erfolgt in Kapitel 3.7, die der Systemkabel in Kapitel 3.8. Die FTAs sind in eigenen Handbüchern beschrieben.

HI 801 180 D Rev. 11.00 Seite 9 von 58

3.3 Typenschild

Das Typenschild enthält folgende wichtige Angaben:

- Produktname
- Prüfzeichen
- Barcode (2D-Code oder Strichcode)
- Teilenummer (Part-No.)
- Hardware-Revisionsindex (HW-Rev.)
- Betriebssystem-Revisionsindex (OS-Rev.)
- Versorgungsspannung (Power)
- Ex-Angaben (wenn zutreffend)
- Produktionsjahr (Prod-Year:)

Bild 1: Typenschild exemplarisch

Seite 10 von 58 HI 801 180 D Rev. 11.00

3.4 Aufbau

Das Modul ist mit 32 analogen Stromeingängen (0/4 ... 20 mA) ausgestattet. Jeder Kanal misst die Eingangssignale über eine interne Messeinrichtung.

Die 16 kurzschlussfesten Speisungen (S1+ bis S16+) versorgen je zwei Speiseausgänge, siehe Tabelle 8. Jedem analogen Eingang ist ein Speiseausgang zugeordnet.

Über die 32 analogen Eingänge können die Messwerte von Transmittern und Sicherheitstransmittern ausgewertet werden. Es können 2-Draht und 3-Draht Transmitter mit einem Versorgungsstrom von max. 30 mA an das Modul angeschlossen werden.

Das Prozessorsystem des E/A-Moduls steuert und überwacht die E/A-Ebene. Die Daten und Zustände des E/A-Moduls werden über den redundanten Systembus den Prozessormodulen übermittelt. Der Systembus ist aus Gründen der Verfügbarkeit redundant ausgeführt. Die Redundanz ist nur gewährleistet, wenn beide Systembusmodule in den Basisträger gesteckt und in SILworX konfiguriert wurden.

LEDs zeigen den Status der analogen Eingänge auf der Anzeige an, siehe Kapitel 3.4.2.

3.4.1 Blockschaltbild

Nachfolgendes Blockschaltbild zeigt die Struktur des Moduls:

Bild 2: Blockschaltbild

HI 801 180 D Rev. 11.00 Seite 11 von 58

3.4.2 Anzeige

Nachfolgende Abbildung zeigt die Frontansicht des Moduls mit den LEDs.

Bild 3: Anzeige

Seite 12 von 58 HI 801 180 D Rev. 11.00

Die LEDs zeigen den Betriebszustand des Moduls an. Dabei sind alle LEDs im Zusammenhang zu betrachten. Die LEDs des Moduls sind in folgende Kategorien unterteilt:

- Modul-Statusanzeige (Run, Error, Stop, Init)
- Systembusanzeige (A, B)
- E/A-Anzeige (Al 1 ... 32, Field)

Nach dem Zuschalten der Versorgungsspannung erfolgt immer ein LED-Test, bei dem alle LEDs für mindestens 2 s leuchten. Bei zweifarbigen LEDs erfolgt während des Tests einmalig ein Farbwechsel.

Definition der Blinkfrequenzen

In der folgenden Tabelle sind die Blinkfrequenzen definiert:

Definition	Blinkfrequenz
Blinken1	Lang (600 ms) an, lang (600 ms) aus.
Blinken2	Kurz (200 ms) an, kurz (200 ms) aus, kurz (200 ms) an, lang (600 ms) aus.
Blinken-x	Ethernet-Kommunikation: Aufblitzen im Takt der Datenübertragung.

Tabelle 2: Blinkfrequenzen der LEDs

Einige LEDs signalisieren Warnungen (Ein) und Fehler (Blinken1), siehe nachfolgende Tabellen. Die Anzeige von Fehlern hat Priorität gegenüber der Anzeige von Warnungen. Bei der Anzeige von Fehlern können Warnungen nicht angezeigt werden.

HI 801 180 D Rev. 11.00 Seite 13 von 58

3.4.3 Modul-Statusanzeige

Diese LEDs sind oben auf der Frontplatte angeordnet.

LED	Farbe	Status	Bedeutung
Run	Grün	Ein	Modul im Zustand RUN, Normalbetrieb.
		Blinken1	Modul im Zustand
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand RUN,
			weitere Status LEDs beachten.
Error	Rot	Ein	Systemwarnung, z. B.:
			Fehlende Lizenz für Zusatzfunktionen
			(Kommunikationsprotokolle), Testbetrieb.
		Blinken1	Temperaturwarnung Sustamfahlar, 7, B.:
		Dillikeni	Systemfehler, z. B.: Durch Selbsttest festgestellter interner Modulfehler
			 Durch Selbsttest festgestellter interner Modulfehler, z. B. Hardware-Fehler oder Fehler der
			Spannungsversorgung.
			Fehler beim Laden des Betriebssystems
		Aus	Kein Fehler festgestellt
Stop	Gelb	Ein	Modul im Zustand
			STOPP / GÜLTIGE KONFIGURATION
		Blinken1	Modul in einem der folgenden Zustände:
			 STOPP / FEHLERHAFTE KONFIGURATION
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand STOPP,
			weitere Status LEDs beachten.
Init	Gelb	Ein	Modul im Zustand INIT
		Blinken1	Modul in einem der folgenden Zustände:
			• LOCKED
		_	STOPP / BS WIRD GELADEN
		Aus	Modul in keinem der beschriebenen Zustände,
			weitere Status LEDs beachten.

Tabelle 3: Modul-Statusanzeige

Seite 14 von 58 HI 801 180 D Rev. 11.00

3.4.4 Systembusanzeige

Die LEDs für die Systembusanzeige sind mit Sys Bus gekennzeichnet.

LED	Farbe	Status	Bedeutung
А	Grün	Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 1.
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 1.
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 1 hergestellt.
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.
В	Grün	Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 2.
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 2.
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 2 hergestellt.
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.
A+B	Aus	Aus	Keine physikalische und keine logische Verbindung zu den Systembusmodulen in Steckplatz 1 und 2.

Tabelle 4: Systembusanzeige

3.4.5 E/A-Anzeige

Die LEDs der E/A-Anzeige sind mit *Channel* überschrieben.

LED	Farbe	Status	Bedeutung
Al 1 32	Gelb	Ein	Eingangsstrom ist > 4 mA oder größer als der in SILworX parametrierte Wert Schaltwert HIGH (dig).
		Blinken2	Kanalfehler (Feldfehler oder Hardwarefehler des Moduls). Eingangsstrom > 20 mA
		Aus	Eingangsstrom ist < 4 mA oder kleiner als der in SILworX parametrierte Wert Schaltwert LOW (dig).
Field	Rot	Blinken2	Feldfehler bei mindestens einem Kanal oder Speisung (Leitungsbruch, Leitungsschluss, Überstrom, etc.) abhängig von den parametrierten Stromschwellen.
		Aus	Feldseite fehlerfrei

Tabelle 5: E/A-Anzeige

HI 801 180 D Rev. 11.00 Seite 15 von 58

3.5 Produktdaten

Allgemein	
Versorgungsspannung	24 VDC, -15 +20 %, w _s ≤ 5 %,
	SELV, PELV
Stromaufnahme	200 mA bei 24 VDC (ohne Kanäle und
	Transmitterspeisungen)
	Max. 1,3 A (bei Kurzschluss der Transmitterspeisungen)
Zykluszeit des Moduls	2 ms
Schutzklasse	Schutzklasse III nach IEC/EN 61131-2
Umgebungstemperatur	0 +60 °C
Transport- und Lagertemperatur	-40 +70 °C
Feuchtigkeit	Max. 95 % relative Feuchte, nicht kondensierend
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 60664-1
Aufstellhöhe	< 2000 m
Schutzart	IP20
Abmessungen (H x B x T) in mm	310 x 29,2 x 230
Masse	Ca. 1,4 kg

Tabelle 6: Produktdaten

Bild 4: Ansichten

Seite 16 von 58 HI 801 180 D Rev. 11.00

Analoge Eingänge	
Anzahl der Eingänge (Kanalzahl)	32 mit gemeinsamen Bezugspotential Al-
Nennbereich	0/4 20 mA
Gebrauchsbereich	0 22,5 mA
Auflösung des A/D-Wandlers	16 Bit
Shunt für Strommessung	200 Ω
Max. zulässiger Strom über Shunt	50 mA
Spannungsfestigkeit des Eingangs	≤ 10 VDC
Störspannungsunterdrückung	> 60 dB (Gleichtakt 50/60 Hz)
Messtechnische Genauigkeit	
Messtechnische Genauigkeit bei 25 °C	±0,2 % vom Endwert
Messtechnische Genauigkeit über gesamten Temperaturbereich	±0,2 % vom Endwert
Einschwingzeit auf 99 % des Prozesswertes bei Eingangssignalwechsel	15 ms

Tabelle 7: Technische Daten der analogen Eingänge

Transmitterspeisung	Transmitterspeisung			
Anzahl Transmitterspeisungen		16		
Ausgangsspannung		26,5 VDC ±10 %		
Transmitterspeisung				
Ausgangsstrom Transmitt	erspeisung	Max. 60 mA		
Maximale anschließbare E	Bürde	≤ 750 Ω bei 22,5 mA		
(Transmitter + Leitung)				
Zuordnung der Speiseaus	gänge			
Bei Verwendung der Speis Speiseausgang verwende		iss der jeweils dem Eingang zugeordnete		
Speisung S1+	Al1+ Al2+			
Speisung S2+	Al3+ Al4+			
Speisung S3+	Al5+ Al6+			
Speisung S4+	Al7+ Al8+			
Speisung S5+	Al9+ Al10+			
Speisung S6+	Al11+ Al12	+		
Speisung S7+	Al13+ Al14	+		
Speisung S8+	Al15+ Al16	+		
Speisung S9+	Al17+ Al18	+		
Speisung S10+	Al19+ Al20-	+		
Speisung S11+	Al21+ Al22	+		
Speisung S12+	Al23+ Al24	+		
Speisung S13+	Al25+ Al26-	+		
Speisung S14+	Al27+ Al28-	+		
Speisung S15+	Al29+ Al30-	+		
Speisung S16+	Al31+ Al32-	+		

Tabelle 8: Technische Daten der Transmitterspeisung

HI 801 180 D Rev. 11.00 Seite 17 von 58

3.6 Connector Boards

Ein Connector Board verbindet das Modul mit der Feldebene. Modul und Connector Board bilden zusammen eine funktionale Einheit. Vor dem Einbau des Moduls Connector Board auf dem vorgesehenen Steckplatz montieren.

Zum Modul sind folgende Connector Boards verfügbar:

Connector Board	Beschreibung
X-CB 008 51	Mono Connector Board mit Schraubklemmen
X-CB 008 52	Redundantes Connector Board mit Schraubklemmen
X-CB 008 53	Mono Connector Board mit Kabelstecker
X-CB 008 54	Redundantes Connector Board mit Kabelstecker
X-CB 008 55	Mono Connector Board mit Kabelstecker, redundantes FTA

Tabelle 9: Verfügbare Connector Boards

3.6.1 Mechanische Codierung von Connector Boards

E/A-Module und Connector Boards sind ab Hardware-Revisionsindex (HW-Rev.) 00 mechanisch codiert. Durch die Codierung werden fehlerhafte Bestückungen ausgeschlossen und damit Rückwirkungen auf redundante Module und das Feld verhindert. Zusätzlich dazu hat eine fehlerhafte Bestückung keinen Einfluss auf das HIMax System, da nur in SILworX korrekt konfigurierte Module in RUN gehen.

E/A-Module und die zugehörigen Connector Boards sind mit einer mechanischen Codierung in Form von Keilen versehen. Die Codierkeile in der Federleiste des Connector Boards greifen in Aussparungen der Messerleiste des E/A-Modulsteckers ein, siehe Bild 5.

Codierte E/A-Module können nur auf die zugehörigen Connector Boards aufgesteckt werden.

Seite 18 von 58 HI 801 180 D Rev. 11.00

Bild 5: Beispiel einer Codierung

Codierte E/A-Module können auf uncodierte Connector Boards gesteckt werden. Uncodierte E/A-Module können nicht auf codierte Connector Boards gesteckt werden.

3.6.2 Codierung Connector Boards X-CB 008 5x

Folgende Tabelle zeigt die Position der Codierkeile am E/A-Modulstecker:

a7	a13	a20	a26	e7	e13	e20	e26
	X				X	X	

Tabelle 10: Position der Codierkeile

HI 801 180 D Rev. 11.00 Seite 19 von 58

3.6.3 Connector Boards mit Schraubklemmen

Connector Boards mit Schraubklemmen

Bild 6:

Seite 20 von 58 HI 801 180 D Rev. 11.00

3.6.4 Klemmenbelegung Connector Boards mit Schraubklemmen

Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	01a	S1+	1	02a	S1+
2	01b	Al1+	2	02b	Al2+
3	01c	Al1-	3	02c	Al2-
4	03a	S2+	4	04a	S2+
5	03b	Al3+	5	04b	Al4+
6	03c	Al3-	6	04c	Al4-
7	05a	S3+	7	06a	S3+
8	05b	Al5+	8	06b	Al6+
9	05c	AI5-	9	06c	Al6-
10	07a	S4+	10	08a	S4+
11	07b	AI7+	11	08b	Al8+
12	07c	AI7-	12	08c	Al8-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	09a	S5+	1	10a	S5+
2	09b	Al9+	2	10b	Al10+
3	09c	AI9-	3	10c	AI10-
4	11a	S6+	4	12a	S6+
5	11b	Al11+	5	12b	Al12+
6	11c	AI11-	6	12c	Al12-
7	13a	S7+	7	14a	S7+
8	13b	AI13+	8	14b	Al14+
9	13c	AI13-	9	14c	Al14-
10	15a	S8+	10	16a	S8+
11	15b	Al15+	11	16b	Al16+
12	15c	AI15-	12	16c	Al16-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	17a	S9+	1	18a	S9+
2	17b	Al17+	2	18b	Al18+
3	17c	AI17-	3	18c	Al18-
4	19a	S10+	4	20a	S10+
5	19b	AI19+	5	20b	Al20+
6	19c	AI19-	6	20c	Al20-
7	21a	S11+	7	22a	S11+
8	21b	Al21+	8	22b	Al22+
9	21c	Al21-	9	22c	Al22-
10	23a	S12+	10	24a	S12+
11	23b	Al23+	11	24b	Al24+
12	23c	Al23-	12	24c	Al24-

HI 801 180 D Rev. 11.00 Seite 21 von 58

Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	25a	S13+	1	26a	S13+
2	25b	Al25+	2	26b	Al26+
3	25c	Al25-	3	26c	Al26-
4	27a	S14+	4	28a	S14+
5	27b	Al27+	5	28b	Al28+
6	27c	Al27-	6	28c	Al28-
7	29a	S15+	7	30a	S15+
8	29b	Al29+	8	30b	Al30+
9	29c	Al29-	9	30c	Al30-
10	31a	S16+	10	32a	S16+
11	31b	Al31+	11	32b	Al32+
12	31c	Al31-	12	32c	Al32-

Tabelle 11: Klemmenbelegung Connector Boards mit Schraubklemmen

Der Anschluss der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten des Connector Boards aufgesteckt werden.

Die Klemmenstecker besitzen folgende Eigenschaften:

Anschluss Feldseite				
Klemmenstecker	8 Stück, 12-polig			
Leiterquerschnitt	0,2 1,5 mm ² (eindrähtig) 0,2 1,5 mm ² (feindrähtig) 0,2 1,5 mm ² (mit Aderendhülse)			
Abisolierlänge	6 mm			
Schraubendreher	Schlitz 0,4 x 2,5 mm			
Anzugsdrehmoment	0,2 0,25 Nm			

Tabelle 12: Eigenschaften der Klemmenstecker

Seite 22 von 58 HI 801 180 D Rev. 11.00

3.6.5 Connector Boards mit Kabelstecker

- E/A-Modulstecker
- Anschluss Feldseite (Kabelstecker Reihe 1)

- Anschluss Feldseite (Kabelstecker Reihe 32)
- 4 Codierung für Kabelstecker

Bild 7: Connector Boards mit Kabelstecker

HI 801 180 D Rev. 11.00 Seite 23 von 58

3.6.6 Steckerbelegung Connector Boards mit Kabelstecker

Zu diesen Connector Boards stellt HIMA vorgefertigte Systemkabel bereit, siehe Kapitel 3.7. Die Kabelstecker und Connector Boards sind codiert.

Steckerbelegung!

Die folgende Tabelle beschreibt die Steckerbelegung der Kabelstecker des Systemkabels.

Die Adernkennzeichnung ist gemäß IEC 60304 ausgeführt. Es werden die Farbkurzzeichen gemäß IEC 60757 verwendet.

Folgende Tabelle gilt für Systemkabel X-CA 005:

Daiba	Reihe C		b		а	
Reine	Signal	Farbe	Signal	Farbe	Signal	Farbe
1	S16+	PKBN 1)	Al32+	WHPK 1)		YEBU 1)
2	S16+	GYBN 1)	Al31+	WHGY 1)	Interne	GNBU 1)
3	S15+	YEBN 1)	Al30+	WHYE 1)	Verwend- ung ²⁾	YEPK 1)
4	S15+	BNGN 1)	Al29+	WHGN 1)	a.i.g	PKGN 1)
5	S14+	RDBU 1)	Al28+	GYPK 1)	AI-	
6	S14+	VT 1)	Al27+	BK 1)	AI-	
7	S13+	RD 1)	Al26+	BU 1)	AI-	
8	S13+	PK 1)	Al25+	GY 1)	AI-	
9	S12+	YE 1)	Al24+	GN 1)	AI-	
10	S12+	BN 1)	Al23+	WH 1)	AI-	
11	S11+	RDBK	Al22+	BUBK	AI-	
12	S11+	PKBK	Al21+	GYBK	AI-	
13	S10+	PKRD	Al20+	GYRD	AI-	
14	S10+	PKBU	AI19+	GYBU	AI-	
15	S9+	YEBK	Al18+	GNBK	AI-	
16	S9+	YERD	Al17+	GNRD	AI-	
17	S8+	YEBU	Al16+	GNBU	AI-	
18	S8+	YEPK	AI15+	PKGN	AI-	
19	S7+	YEGY	Al14+	GYGN	AI-	
20	S7+	BNBK	Al13+	WHBK	AI-	
21	S6+	BNRD	Al12+	WHRD	AI-	
22	S6+	BNBU	Al11+	WHBU	AI-	
23	S5+	PKBN	Al10+	WHPK	AI-	
24	S5+	GYBN	Al9+	WHGY	AI-	
25	S4+	YEBN	Al8+	WHYE	AI-	YEGY 1)
26	S4+	BNGN	AI7+	WHGN	AI-	GYGN 1)
27	S3+	RDBU	Al6+	GYPK	AI-	BNBK 1)
28	S3+	VT	Al5+	BK	AI-	WHBK 1)
29	S2+	RD	Al4+	BU	AI-	BNRD 1)
30	S2+	PK	Al3+	GY	AI-	WHRD 1)
31	S1+	YE	Al2+	GN	AI-	BNBU 1)
32	S1+	BN	Al1+	WH	AI-	WHBU 1)

¹⁾ Zusätzlicher orangefarbener Ring bei Farbwiederholung der Adernkennzeichnung.

Tabelle 13: Steckerbelegung der Kabelstecker des Systemkabels X-CA 005

Seite 24 von 58 HI 801 180 D Rev. 11.00

²⁾ Die Adern müssen einzeln isoliert werden! Eine weitere Verwendung ist verboten!

Folgende Tabelle gilt für Systemkabel X-CA 016:

Daiba	Reihe C			b		а	
Reine	Signal	Farbe	Signal	Farbe	Signal	Farbe	
1			Al32+	WHPK 1)			
2			Al31+	WHGY 1)			
3			Al30+	WHYE 1)			
4			Al29+	WHGN 1)			
5			Al28+	GYPK 1)	AI- (a5)	siehe Tabelle 15	
6			Al27+	BK 1)	Al27-	VT 1)	
7			Al26+	BU 1)	Al26-	RD 1)	
8			Al25+	GY 1)	Al25-	PK 1)	
9			Al24+	GN 1)	Al24-	YE 1)	
10			Al23+	WH 1)	Al23-	BN 1)	
11			Al22+	BUBK	Al22-	RDBK	
12			Al21+	GYBK	Al21-	PKBK	
13			Al20+	GYRD	Al20-	PKRD	
14			AI19+	GYBU	Al19-	PKBU	
15			Al18+	GNBK	Al18-	YEBK	
16			AI17+	GNRD	AI17-	YERD	
17			AI16+	GNBU	Al16-	YEBU	
18			AI15+	PKGN	Al15-	YEPK	
19			AI14+	GYGN	Al14-	YEGY	
20			Al13+	WHBK	Al13-	BNBK	
21			Al12+	WHRD	Al12-	BNRD	
22			Al11+	WHBU	Al11-	BNBU	
23			AI10+	WHPK	Al10-	PKBN	
24			AI9+	WHGY	AI9-	GYBN	
25			Al8+	WHYE	Al8-	YEBN	
26			AI7+	WHGN	AI7-	BNGN	
27			Al6+	GYPK	Al6-	RDBU	
28			AI5+	BK	AI5-	VT	
29			Al4+	BU	Al4-	RD	
30			Al3+	GY	AI3-	PK	
31			Al2+	GN	Al2-	YE	
32			Al1+	WH	Al1-	BN	
1) Zusä	itzlicher oran	gefarbener Rin	g bei Farbwied	erholung der Ad	ernkennzeich	nung.	

Tabelle 14: Steckerbelegung des Kabelsteckers des Systemkabels X-CA 016

Die Signale Al28- ... Al32- sind im Kabelstecker zusammengefasst, siehe Tabelle 15.

Reihe	Signal	Farbe			
a5 (AI-)	Al32-	PKBN 1)			
	Al31-	GYBN 1)			
	Al30-	YEBN 1)			
	Al29-	BNGN 1)			
Al28- RDBU 1)					
1) Zusätzlicher orangefarbener Ring bei Farbwiederholung der Adernkennzeichnung					

Tabelle 15: Al- belegt mit fünf Adern

HI 801 180 D Rev. 11.00 Seite 25 von 58

3.6.7 Mono Connector Board Redundanz über zwei Basisträger

Bild 8: Connector Board mit Kabelstecker Variante X-CB 008 55

Seite 26 von 58 HI 801 180 D Rev. 11.00

3 Anschluss Feldseite

(Kabelstecker Reihe 32)

4 Codierung für Kabelstecker

3.6.8 Steckerbelegung X-CB 008 55

Zu diesem Connector Board stellt HIMA vorgefertigte Systemkabel bereit, siehe Kapitel 3.7. Die Kabelstecker und das Connector Board sind codiert.

Steckerbelegung!

Die folgende Tabelle beschreibt die Steckerbelegung der Kabelstecker des Systemkabels.

Die Adernkennzeichnung ist gemäß IEC 60304 ausgeführt. Es werden die Farbkurzzeichen gemäß IEC 60757 verwendet.

Folgende Tabelle gilt für Systemkabel X-CA 009:

Reihe	е		d		С		b		а	
Keine	Signal	Farbe	Signal	Farbe	Signal	Farbe	Signal	Farbe	Signal	Farbe
1	S16+	RD 2)	AI_R32+	PKBN 1)	Al32+	WHPK 1)				YEGY ²⁾
2	S16+	BU ²⁾	AI_R31+	GYBN 1)	Al31+	WHGY 1)			Interne Verwend-	GYGN ²⁾
3	S15+	PK ²⁾	AI_R30+	YEBN 1)	Al30+	WHYE 1)			ung ³⁾	BNBK ²⁾
4	S15+	GY 2)	AI_R29+	BNGN 1)	Al29+	WHGN 1)			ung	WHBK 2)
5	S14+	YE 2)	AI_R28+	RDBU 1)	Al28+	GYPK 1)				
6	S14+	GN ²⁾	Al_R27+	VT 1)	Al27+	BK 1)				
7	S13+	BN ²⁾	AI_R26+	RD ¹⁾	Al26+	BU 1)				
8	S13+	WH ²⁾	AI_R25+	PK 1)	Al25+	GY 1)				
9	S12+	RDBK 1)	AI_R24+	YE 1)	Al24+	GN 1)				
10	S12+	BUBK 1)	AI_R23+	BN 1)	Al23+	WH 1)				
11	S11+	PKBK 1)	AI_R22+	RDBK	Al22+	BUBK				
12	S11+	GYBK 1)	AI_R21+	PKBK	Al21+	GYBK				
13	S10+	PKRD 1)	AI_R20+	PKRD	Al20+	GYRD				
14	S10+	GYRD 1)	AI_R19+	PKBU	Al19+	GYBU				
15	S9+	PKBU 1)	AI_R18+	YEBK	Al18+	GNBK				
16	S9+	GYBU 1)	AI_R17+	YERD	Al17+	GNRD				
17	S8+	YEBK 1)	AI_R16+	YEBU	Al16+	GNBU	S-	BNRD ²⁾		
18	S8+	GNBK 1)	AI_R15+	YEPK	Al15+	PKGN	S-	WHRD ²⁾		
19	S7+	YERD 1)	AI_R14+	YEGY	Al14+	GYGN	S-	BNBU ²⁾		
20	S7+	GNRD 1)	AI_R13+	BNBK	Al13+	WHBK	S-	WHBU 2)		
21	S6+	YEBU 1)	AI_R12+	BNRD	Al12+	WHRD	S-	PKBN ²⁾		
22	S6+	GNBU 1)	AI_R11+	BNBU	Al11+	WHBU	S-	WHPK 2)		
23	S5+	YEPK 1)	AI_R10+	PKBN	AI10+	WHPK	S-	GYBN ²⁾		
24	S5+	PKGN 1)	AI_R9+	GYBN	Al9+	WHGY	S-	WHGY ²⁾		
25	S4+	YEGY 1)	AI_R8+	YEBN	Al8+	WHYE	Al-	YEBN 2)		
26	S4+	GYGN 1)	AI_R7+	BNGN	Al7+	WHGN	Al-	WHYE 2)		
27	S3+	BNBK 1)	AI_R6+	RDBU	Al6+	GYPK	Al-	BNGN ²⁾		
28	S3+	WHBK 1)	Al_R5+	VT	Al5+	BK	Al-	WHGN ²⁾		
29	S2+	BNRD 1)	AI_R4+	RD	Al4+	BU	Al-	RDBU ²⁾		
30	S2+	WHRD	AI_R3+	PK	Al3+	GY	AI-	GYPK ²⁾		
31	S1+	BNBU 1)	Al_R2+	YE	Al2+	GN	AI-	VT ²⁾		
32	S1+	WHBU	AI_R1+	BN	Al1+	WH	AI-	BK ²⁾		

¹⁾ Zusätzlicher orangefarbener Ring bei erster Farbwiederholung der Adernkennzeichnung.

Tabelle 16: Steckerbelegung der Kabelstecker des Systemkabels X-CA 009

HI 801 180 D Rev. 11.00 Seite 27 von 58

²⁾ Zusätzlicher violetter Ring bei zweiter Farbwiederholung der Adernkennzeichnung.

³⁾ Die Adern müssen einzeln isoliert werden! Eine weitere Verwendung ist verboten!

3.7 Systemkabel

Die Systemkabel verbinden die Connector Boards mit den Field Termination Assemblies. Abhängig vom Typ des Connector Boards stehen mehrere Systemkabel-Typen zur Verfügung. Für die Anwendung mit aktiven Transmittern steht ein Systemkabel X-CA 016 mit reduzierter Anzahl von Adern und offenen Leitungsenden zur Verfügung.

1 Identische Kabelstecker

Bild 9: Systemkabel mit Kabelstecker beidseitig

3.7.1 Systemkabel X-CA 005

Das Systemkabel X-CA 005 verbindet die Connector Boards X-CB 008 53/54 mit dem Field Termination Assembly.

Allgemein	
Kabel	LIYCY-TP 38 x 2 x 0,25 mm ² (geschirmt)
Leiter	Feindrähtig
Mittlerer Außendurchmesser (d)	Ca. 16,8 mm,
	max. 20 mm für alle Systemkabel-Typen
Mindestbiegeradius	
fest verlegt	5 x d
frei beweglich	10 x d
Brennverhalten	Flammwidrig und selbstverlöschend nach IEC 60332-1-22-2
Länge	8 30 m
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 13.

Tabelle 17: Kabeldaten X-CA 005

Seite 28 von 58 HI 801 180 D Rev. 11.00

Das Systemkabel ist in folgenden Standardlängen lieferbar:

Systemkabel	Beschreibung	Länge	Gewicht
X-CA 005 01 8	Codierte Kabelstecker	8 m	4,25 kg
X-CA 005 01 15	beidseitig.	15 m	8 kg
X-CA 005 01 30		30 m	16 kg

Tabelle 18: Verfügbare Standard-Systemkabel X-CA 005

3.7.2 Systemkabel X-CA 009

Das Systemkabel X-CA 009 verbindet das Connector Board X-CB 008 55 mit dem Field Termination Assembly.

Allgemein	
Kabel	LIYCY-TP 58 x 2 x 0,14 mm ² (geschirmt)
Leiter	Feindrähtig
Mittlerer Außendurchmesser (d)	Ca. 18,3 mm,
	max. 20 mm für alle Systemkabel-Typen
Mindestbiegeradius	
fest verlegt	5 x d
frei beweglich	10 x d
Brennverhalten	Flammwidrig und selbstverlöschend nach IEC 60332-1-2, -2-2
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 16.

Tabelle 19: Kabeldaten X-CA 009

Das Systemkabel ist in folgenden Standardlängen lieferbar:

Systemkabel	Beschreibung	Länge	Gewicht
X-CA 009 01 8	Codierte Kabelstecker	8 m	4,25 kg
X-CA 009 01 15	beidseitig.	15 m	8 kg
X-CA 009 01 30		30 m	16 kg

Tabelle 20: Verfügbare Standard-Systemkabel X-CA 009

3.7.3 Systemkabel X-CA 016

Das Systemkabel X-CA 016 kann bei Anschluss aktiver Transmitter eingesetzt werden, wenn keine Transmitterspeisung benötigt wird. Das Systemkabel X-CA 016 ist mit einer reduzierten Anzahl von Adern und offenen Leitungsenden ausgeführt. Die offenen Leitungsenden müssen auf Klemmen aufgelegt werden.

Das Systemkabel ist in einer Standardausführung (X-CA 016 02) und einer halogenfreien, UL/CSA zertifizierten Ausführung (X-CA 016 04) in folgenden Standardlängen lieferbar:

Systemkabel	Beschreibung	Länge	Gewicht
X-CA 016 02 5	Einseitig codierter Kabelstecker mit offenen Leitungsenden.	5 m	2 kg
X-CA 016 02 8		8 m	3,25 kg
X-CA 016 02 15		15 m	6 kg
X-CA 016 02 30		30 m	12 kg
X-CA 016 04 5	Einseitig codierter Kabelstecker mit offenen Leitungsenden, halogenfrei.	5 m	1,75 kg
X-CA 016 04 8		8 m	2,75 kg
X-CA 016 04 15		15 m	5,25 kg
X-CA 016 04 30		30 m	10,5 kg

Tabelle 21: Verfügbare Standard-Systemkabel X-CA 016

HI 801 180 D Rev. 11.00 Seite 29 von 58

X-CA 016 02	
Kabel	LIYCY-TP 32 x 2 x 0,25 mm² (geschirmt)
Leiter	Feindrähtig
Mittlerer Außendurchmesser (d)	Ca. 17,0 mm, max. 20 mm für alle Systemkabel-Typen
Mindestbiegeradius	
fest verlegt	5 x d
frei beweglich	10 x d
Brennverhalten	Flammwidrig und selbstverlöschend nach IEC 60332-1-2, -2-2
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 14.

Tabelle 22: Kabeldaten X-CA 016 02

X-CA 016 04		
Kabel	LIYHCH-TP 32 x 2 x 0,25 mm² (geschirmt)	
Leiter	Feindrähtig	
Mittlerer Außendurchmesser (d)	Ca. 15,8 mm, max. 20 mm für alle Systemkabel-Typen	
Mindestbiegeradius		
fest verlegt	5 x d	
frei beweglich	10 x d	
Brennverhalten	Flammwidrig nach IEC 60332-1-2, -2-2	
	IEC 61034-1/-2 (Rauchdichte)	
	UL c/us 758/1581 CSA FT2	
	UL c/us 20549/10493	
Halogenfrei	Gemäß IEC 60754-1	
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 14.	

Tabelle 23: Kabeldaten X-CA 016 04

3.7.4 Codierung Kabelstecker

Die Kabelstecker sind mit drei Codierstiften ausgerüstet. Damit passen die Kabelstecker nur in Connector Boards und FTAs mit den entsprechenden Aussparungen, siehe Bild 7 und Bild 8.

Seite 30 von 58 HI 801 180 D Rev. 11.00

X-AI 32 51 4 Inbetriebnahme

4 Inbetriebnahme

Dieses Kapitel beschreibt die Installation und die Konfiguration des Moduls sowie dessen Anschlussvarianten. Für weitere Informationen siehe HIMax Systemhandbuch HI 801 000 D.

4.1 Montage

Bei der Montage sind folgende Punkte zu beachten:

- Betrieb nur mit zugehörigen Lüfterkomponenten, siehe Systemhandbuch HI 801 000 D.
- Betrieb nur mit zugehörigem Connector Board, siehe Kapitel 3.6.
- Das Modul einschließlich seiner Anschlussteile ist so zu errichten, dass die Anforderungen der EN 60529:1991 + A1:2000 mit der Schutzart IP20 oder besser erfüllt werden.

HINWEIS

Beschädigung durch falsche Beschaltung!

Nichtbeachtung kann zu Schäden an elektronischen Bauelementen führen. Die folgenden Punkte sind zu beachten.

- Feldseitige Stecker und Klemmen
 - Bei Anschluss der Stecker und Klemmen an die Feldseite auf geeignete Erdungsmaßnahmen achten.
 - Abgeschirmtes Kabel mit paarweise verdrillten Adernpaaren (twisted pair) verwenden.
 - Für jeden Messeingang ein verdrilltes Adernpaar des abgeschirmten Kabels verwenden.
 - Werden zum Anschluss geschirmte Kabel verwendet, so ist die Abschirmung auf beiden Seiten aufzulegen. Auf der Seite des Moduls die Abschirmung auf die Kabel-Schirmschiene auflegen (Schirmanschlussklemme SK 20 oder gleichwertig einsetzen).
 - HIMA empfiehlt, bei mehrdrahtigen Leitungen Leitungsenden mit Aderendhülsen zu versehen. Die Anschlussklemmen müssen zum Unterklemmen der verwendeten Leitungsquerschnitte geeignet sein.
- HIMA empfiehlt, die Transmitterspeisung des Moduls zu verwenden.
 Bei Fehlfunktionen einer externen Stromquelle kann der betroffene Messeingang des Moduls überlastet und beschädigt werden. Bei Einsatz einer externen Stromquelle ist nach einer nichttransienten Überlast an den Messeingängen der Null- und Endwert zu überprüfen.
- Eine redundante Verschaltung der Eingänge ist über die entsprechenden Connector Boards zu realisieren, siehe Kapitel 3.6 und 4.4.

4.1.1 Beschaltung nicht benutzter Eingänge

Nicht benutzte Eingänge dürfen offen bleiben und müssen nicht abgeschlossen werden. Zur Vermeidung von Kurzschlüssen ist es jedoch nicht zulässig, Leitungen mit auf der Feldseite offenen Enden an den Connector Boards anzuschließen.

HI 801 180 D Rev. 11.00 Seite 31 von 58

4 Inbetriebnahme X-AI 32 51

4.2 Einbau und Ausbau des Moduls

Dieses Kapitel beschreibt den Austausch eines vorhandenen oder das Einsetzen eines neuen Moduls.

Beim Ausbau des Moduls verbleibt das Connector Board im HIMax Basisträger. Dies vermeidet zusätzlichen Verdrahtungsaufwand an den Anschlussklemmen, da alle Feldanschlüsse über das Connector Board des Moduls angeschlossen werden.

4.2.1 Montage eines Connector Boards

Werkzeuge und Hilfsmittel:

- Schraubendreher Kreuz PH 1 oder Schlitz 0,8 x 4,0 mm.
- Passendes Connector Board.

Connector Board einbauen:

- 1. Connector Board mit der Nut nach oben in die Führungsschiene einsetzen (siehe hierzu nachfolgende Zeichnung). Die Nut am Stift der Führungsschiene einpassen.
- 2. Connector Board auf der Kabelschirmschiene auflegen.
- 3. Mit den unverlierbaren Schrauben am Basisträger festschrauben. Zuerst die unteren, dann die oberen Schrauben eindrehen.

Connector Board ausbauen:

- 1. Unverlierbare Schrauben vom Basisträger losschrauben.
- 2. Connector Board unten von der Kabelschirmschiene vorsichtig anheben.
- 3. Connector Board aus der Führungsschiene herausziehen.

Bild 10: Einsetzen des Mono Connector Boards, exemplarisch

Seite 32 von 58 HI 801 180 D Rev. 11.00

X-Al 32 51 4 Inbetriebnahme

Bild 11: Festschrauben des Mono Connector Boards, exemplarisch

Montageanleitung gilt ebenso für redundante Connector Boards. Je nach Typ des Connector Boards wird eine entsprechende Anzahl von Steckplätzen belegt. Die Anzahl der unverlierbaren Schrauben ist vom Typ des Connector Boards abhängig.

HI 801 180 D Rev. 11.00 Seite 33 von 58

4 Inbetriebnahme X-AI 32 51

4.2.2 Modul einbauen und ausbauen

Dieses Kapitel beschreibt den Einbau und Ausbau eines HIMax Moduls. Ein Modul kann eingebaut und ausgebaut werden, während das HIMax System in Betrieb ist.

HINWEIS

Beschädigung von Steckverbindern durch Verkanten! Nichtbeachtung kann zu Schäden an der Steuerung führen. Modul stets behutsam in den Basisträger einsetzen.

Werkzeuge und Hilfsmittel:

- Schraubendreher, Schlitz 0,8 x 4,0 mm.
- Schraubendreher, Schlitz 1,2 x 8,0 mm.

Module einbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position open stellen.
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben.
- Modul an Oberseite in Einhängeprofil einsetzen, siehe
- 3. Modul an Unterseite in Basisträger schwenken und mit leichtem Druck einrasten lassen, siehe 2.
- 4. Modul festschrauben, siehe 3.
- 5. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 6. Abdeckblech verriegeln.

Module ausbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position open stellen
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben
- 2. Schraube lösen, siehe 3.
- 3. Modul an Unterseite aus Basisträger schwenken und mit leichtem Druck nach oben aus Einhängeprofil herausdrücken, siehe 2 und 1.
- 4. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 5. Abdeckblech verriegeln.

Seite 34 von 58 HI 801 180 D Rev. 11.00

X-Al 32 51 4 Inbetriebnahme

- 1 Einsetzen/Herausschieben
- 2 Einschwenken/Ausschwenken

3 Befestigen/Lösen

Bild 12: Modul einbauen und ausbauen

Abdeckblech des Lüftereinschubs während des Betriebs des HIMax Systems nur kurz (< 10 min) öffnen, da dies die Zwangskonvektion beeinträchtigt.

HI 801 180 D Rev. 11.00 Seite 35 von 58

4 Inbetriebnahme X-AI 32 51

4.3 Konfiguration des Moduls in SILworX

Das Modul wird im Hardware-Editor des Programmierwerkzeugs SILworX konfiguriert.

Bei der Konfiguration folgende Punkte beachten:

- Zur Diagnose des Moduls und der Kanäle können die Systemparameter zusätzlich zum Messwert im Anwenderprogramm ausgewertet werden. Nähere Informationen zu den Systemparametern sind in den nachfolgenden Tabellen zu finden.
- Wenn der Wert 0 im gültigen Messbereich liegt, dann muss im Anwenderprogramm zusätzlich zum -> Rohwert [DINT] der Status -> Kanal OK [BOOL] ausgewertet werden. Die Verwendung dieses Status sowie weiterer Diagnosestatus (z. B. Leitungsschluss und Leitungsbruch) bietet zusätzliche Möglichkeiten, die externe Beschaltung zu diagnostizieren und Fehlerreaktionen im Anwenderprogramm zu konfigurieren.
- Bei der Skalierung des Eingangswerts -> Rohwert [DINT] muss der Anwender darauf achten, dass das Ergebnis der Skalierung innerhalb des Wertebereichs des Datentyps REAL liegt.
 Das Ergebnis der Skalierung muss in einer Variablen des Datentyps REAL darstellbar sein.
- Für die Überwachung auf Leitungsschluss und Leitungsbruch werden von dem Modul zwei Schwellen erfasst. Die Schaltschwellen sind über die Konfiguration des Moduls in SILworX parametrierbar. Die Schwellen sind standardmäßig auf die Werte für LB/LS nach NAMUR Empfehlung NE 43 eingestellt.
- Wird eine Redundanzgruppe angelegt, so erfolgt die Konfiguration der Redundanzgruppe in deren Registern. Die Register der Redundanzgruppe unterscheiden sich von denen der einzelnen Module, siehe nachfolgende Tabellen.

Zur Auswertung der Systemparameter im Anwenderprogramm müssen den Systemparametern globale Variable zugewiesen werden. Diesen Schritt im Hardware-Editor in der Detailansicht des Moduls durchführen.

Die nachfolgenden Tabellen enthalten die Systemparameter des Moduls in derselben Reihenfolge wie im Hardware-Editor.

TIPP

Zur Umwandlung der Hexadezimalwerte in Bitfolgen eignet sich z. B. der Taschenrechner von Windows® in der entsprechenden Ansicht.

Seite 36 von 58 HI 801 180 D Rev. 11.00

4.3.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter des Moduls:

Systemparameter	Datentyp	R/W	Beschreibung			
Name		W	Name des Moduls			
Reservemodul		W	Aktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird nicht als Fehler gewertet. Deaktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird als Fehler gewertet. Standardeinstellung: Deaktiviert Wird nur im Register der Redundanzgruppe angezeigt!			
Störaustastung		W	Störaustastung durch Prozessormodul zulassen (Aktiviert/Deaktiviert). Standardeinstellung: Aktiviert Das Prozessormodul verzögert die Fehlerreaktion auf eine transiente Störung bis zur Sicherheitszeit. Der letzte gültige Prozesswert bleibt für das Anwenderprogramm bestehen. Details zur Störaustastung siehe Systemhandbuch HI 801 000 D.			
Systemparameter	Datentyp	R/W	Beschreibung			
Die folgenden Status und Pa verwendet werden.	arameter könr	nen glob	alen Variablen zugewiesen und im Anwenderprogramm			
Modul OK	BOOL	R	TRUE: Mono-Betrieb: Kein Modulfehler. Redundanzbetrieb: Mindestens eines der redundanten Module hat keinen Modulfehler (ODER-Logik). FALSE: Modulfehler Kanalfehler eines Kanals (keine externen Fehler) Modul ist nicht gesteckt. Parameter Modul-Status beachten!			
Modul-Status	DWORD	R	Status des Moduls Codierung Beschreibung 0x00000001 Fehler des Moduls 1) 0x00000002 Temperaturschwelle 1 überschritten 0x00000004 Temperaturschwelle 2 überschritten 0x00000008 Temperaturwert fehlerhaft 0x00000010 Spannung L1+ fehlerhaft 0x00000020 Spannung L2+ fehlerhaft 0x00000040 Interne Spannungen fehlerhaft 0x8000000 Keine Verbindung zum Modul 1) 1) Diese Fehler haben Auswirkungen auf den Status Modul OK und müssen nicht extra im Anwenderprogramm ausgewertet werden.			
Zeitstempel [µs]	DWORD	R	Mikrosekunden-Anteil des Zeitstempels. Zeitpunkt der Messung der analogen Eingänge			
Zeitstempel [s]	DWORD	R	Sekunden-Anteil des Zeitstempels. Zeitpunkt der Messung der analogen Eingänge			

Tabelle 24: Register **Modul** im Hardware-Editor

HI 801 180 D Rev. 11.00 Seite 37 von 58

4.3.2 Register **E/A-Submodul Al32_51**

Das Register E/A-Submodul Al32_51 enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung	
Name		W	Name des Registers	
Speisung ein		W	Transmitterspeisungen des Moduls verwenden. Aktiviert: Transmitterspeisungen Kanal 1 32 sind aktiviert. Deaktiviert: Transmitterspeisungen Kanal 1 32 sind deaktiviert. Standardeinstellung: Aktiviert	
Messsignal-Überlauf anzeigen		W	Messsignal-Überlauf mit der LED <i>Field</i> anzeigen. Aktiviert: Messsignal-Überlauf anzeigen ist aktiviert. Deaktiviert: Messsignal-Überlauf anzeigen ist deaktiviert. Standardeinstellung: Aktiviert	
Systemparameter	Datentyp	R/W	Beschreibung	
Die folgenden Status und F verwendet werden.	arameter kön	nen glob	valen Variablen zugewiesen und im Anwenderprogramm	
Diagnose-Anfrage	DINT	W	Zur Anforderung eines Diagnosewerts muss über den Parameter <i>Diagnose-Anfrage</i> die entsprechende ID (Codierung siehe 4.3.5) an das Modul gesendet werden.	
Diagnose-Antwort	DINT	R	Sobald die <i>Diagnose-Antwort</i> die ID der <i>Diagnose-Anfrage</i> (Codierung siehe 4.3.5) zurückliefert, enthält de <i>Diagnose-Status</i> den angeforderten Diagnosewert.	
Diagnose-Status	DWORD	R	Angeforderter Diagnosewert gemäß Diagnose-Antwort. Im Anwenderprogramm können die IDs der Diagnose-Antrage und der Diagnose-Antwort ausgewertet werden. Erst wenn beide die gleiche ID enthalten, enthält der Diagnose-Status den angeforderten Diagnosewert.	
Hintergrundtest-Fehler	BOOL	R	TRUE: Hintergrundtest fehlerhaft FALSE: Hintergrundtest fehlerfrei	
Restart bei Fehler	BOOL	W	Jedes E/A-Modul, das aufgrund von Fehlern dauerhaft abgeschaltet ist, kann durch den Parameter Restart bei Fehler wieder in den Zustand RUN überführt werden. Dazu den Parameter Restart bei Fehler von FALSE auf TRUE stellen. Das E/A-Modul führt einen vollständigen Selbsttest durch und nimmt nur dann den Zustand RUN ein, wenn kein Fehler entdeckt wurde. Standardeinstellung: FALSE	
Submodul OK	BOOL	R	TRUE: Kein Submodulfehler, keine Kanalfehler. FALSE: Submodulfehler; Kanalfehler (auch externe Fehler) eines Kanals	
Submodul-Status	DWORD	R	Bitcodierter Status des Submoduls (Codierung siehe 4.3.4)	

Tabelle 25: Register **E/A-Submodul Al32_51** im Hardware-Editor

Seite 38 von 58 HI 801 180 D Rev. 11.00

4.3.3 Register E/A-Submodul Al32_51: Kanäle

Das Register **E/A-Submodul Al32_51: Kanäle** enthält die folgenden Systemparameter für jeden analogen Eingang.

Den Systemparametern mit -> können globale Variablen zugewiesen und im Anwenderprogramm verwendet werden. Die Werte ohne -> müssen direkt eingegeben werden.

Systemparameter	Datentyp	R/W	Beschreibung
Kanal-Nr.		R	Kanalnummer, fest vorgegeben
-> Prozesswert [REAL]	REAL	R	Prozesswert, der mit Hilfe der Stützstellen 4 mA und 20 mA ermittelt wird.
4 mA	REAL	W	Stützstelle zur Berechnung des Prozesswertes am unteren Skalenendwert (4 mA) des Kanals. Standardeinstellung: 4.0
20 mA	REAL	W	Stützstelle zur Berechnung des Prozesswertes am oberen Skalenendwert (20 mA) des Kanals. Standardeinstellung: 20.0
-> Rohwert [DINT]	DINT	R	Unbehandelter Messwert des Kanals: 0 200 000 (0 20 mA) Wird anstelle des Prozesswertes der Rohwert ausgewertet, muss der Anwender die Überwachung und den Wert im Fehlerfall im Anwenderprogramm programmieren.
-> Kanal OK [BOOL]	BOOL	R	TRUE: Fehlerfreier Kanal Der Eingangswert ist gültig. FALSE: Fehlerhafter Kanal. Der Eingangswert wird auf 0 gesetzt.
LB-Limit	DINT	W	Schwellwert in mA zur Erkennung eines Leitungsbruchs. Wenn der analoge Messwert unter <i>LB-Limit</i> fällt, erkennt das Modul einen Leitungsbruch und schaltet die LED <i>Channel</i> zu diesem Kanal aus. Standardeinstellung: 36 000 (3,6 mA)
-> LB [BOOL]	BOOL	R	TRUE: Es ist ein Leitungsbruch vorhanden. FALSE: Es ist kein Leitungsbruch vorhanden. Definiert durch <i>LB-Limit</i> .
LS-Limit	DINT	W	Schwellwert in mA zur Erkennung eines Leitungsschlusses. Wenn der analoge Messwert <i>LS-Limit</i> überschreitet, erkennt das Modul einen Leitungsschluss und setzt die LED <i>Channel</i> zu diesem Kanal auf Blinken2. Standardeinstellung: 213 000 (21,3 mA)
-> LS [BOOL]	BOOL	R	TRUE: Es ist ein Leitungsschluss vorhanden. FALSE: Es ist kein Leitungsschluss vorhanden. Definiert durch <i>LS-Limit</i> .
SW LOW	DINT	W	Obere Grenze des Low-Pegels Der SW LOW (Schaltwert LOW) bestimmt die Grenze, ab der das Modul LOW erkennt und die LED Channel ausschaltet. Restriktion: SW LOW ≤ SW HIGH Standardeinstellung: 39 500 (3,95 mA)
SW HIGH	DINT	W	Untere Grenze des High-Pegels Der SW HIGH (Schaltwert HIGH) bestimmt die Grenze, ab der das Modul HIGH erkennt und die LED Channel einschaltet. Restriktion: SW LOW ≤ SW HIGH Standardeinstellung: 40 500 (4,05 mA)

HI 801 180 D Rev. 11.00 Seite 39 von 58

Systemparameter	Datentyp	R/W	Beschreibung		
-> Kanalwert [BOOL]	BOOL	R	Boolscher Wert des Kanals gemäß der Grenzen SW LOW und SW HIGH		
EV [µs]	UDINT	W	Einschaltverzögerung Das Modul zeigt einen Pegelwechsel von LOW nach HIGH erst dann an, wenn der High-Pegel länger als die parametrierte Zeit <i>EV</i> ansteht. Achtung: Die maximale Reaktionszeit T _R (worst case) verlängert sich für diesen Kanal um die eingestellte Verzögerung, da ein Pegelwechsel eben erst nach Ablauf der Verzögerung als solcher erkannt wird. Wertebereich: 0 (2 ³² -1) Granularität: 1000 µs, z. B. 0, 1000, 2000, Standardeinstellung: 0		
AV [μs]	UDINT	W	Ausschaltverzögerung Das Modul zeigt einen Pegelwechsel von HIGH nach LOW erst dann an, wenn der Low-Pegel länger als die parametrierte Zeit AV ansteht. Achtung: Die maximale Reaktionszeit T _R (worst case) verlängert sich für diesen Kanal um die eingestellte Verzögerung, da ein Pegelwechsel eben erst nach Ablau der Verzögerung als solcher erkannt wird. Wertebereich: 0 (2 ³² -1) Granularität: 1000 µs, z. B. 0, 1000, 2000, Standardeinstellung: 0		
-> Zustand LL [BOOL]	BOOL	R	TRUE: Wert im Ereigniszustand LL FALSE: Wert außerhalb Ereigniszustand LL		
-> Zustand L [BOOL]	BOOL	R	TRUE: Wert im Ereigniszustand L FALSE: Wert außerhalb Ereigniszustand L		
-> Zustand N [BOOL]	BOOL	R	TRUE: Wert im Ereigniszustand N (Normal) FALSE: Wert außerhalb Ereigniszustand N (Normal)		
-> Zustand H [BOOL]	BOOL	R	TRUE: Wert im Ereigniszustand H FALSE: Wert außerhalb Ereigniszustand H		
-> Zustand HH [BOOL]	BOOL	R	TRUE: Wert im Ereigniszustand HH FALSE: Wert außerhalb Ereigniszustand HH		
redund.		R	TRUE: Redundanzgruppe angelegt FALSE: Modul in Mono-Betrieb Das Anlegen und Löschen einer Redundanzgruppe ist ausschließlich über das Kontextmenü möglich.		
Redundanz-Wert	BYTE	W	Einstellung, wie der Redundanzwert gebildet wird: Min Max Durchschnitt Standardeinstellung: Max Bei Fehler eines Moduls gilt die Standardeinstellung. Wird nur im Register der Redundanzgruppe angezeigt!		

Tabelle 26: Register E/A-Submodul Al32_51: Kanäle im Hardware-Editor

Seite 40 von 58 HI 801 180 D Rev. 11.00

4.3.4 Beschreibung Submodul-Status [DWORD]

Folgende Tabelle beschreibt die Codierung des Parameters Submodul-Status:

Codierung	Beschreibung
0x00000001	Fehler der Hardware-Einheit (Submodul)
0x00000004	Fehler bei der Initialisierung der Hardware
0x00000008	Fehler bei der Überprüfung der Koeffizienten

Tabelle 27: Codierung Submodul-Status [DWORD]

4.3.5 Beschreibung *Diagnose-Status* [DWORD]

Folgende Tabelle beschreibt die Codierung des Parameters *Diagnose-Status*:

ID	Beschreibung				
0	Diagnosewerte werden nacheinander angezeigt.				
100	Bitkodierter Temperaturstatus				
	0 = normal				
		nperaturschwelle 1 überschritten			
		nperaturschwelle 2 überschritten			
		nperaturmessung fehlerhaft			
101	Gemessene	Temperatur (10 000 Digit/ °C)			
200		Spannungsstatus			
	0 = normal				
		(24 V) ist fehlerhaft			
	Bit1 = 1 : L2+ (24 V) ist fehlerhaft				
201	Nicht verwendet!				
202					
203					
300	Komparator 24 V Unterspannung (BOOL)				
1001 1032	Kanalstatus der Kanäle 1 32				
	Codierung	Beschreibung			
	0x0001 Fehler der Hardware-Einheit (Submodul) aufgetreten				
	0x0002 Kanalfehler wegen internem Fehler				
	0x0400 LS-/ LB-Limit Werte über-/unterschritten oder				
	Kanal-/Modulfehler				
	0x2000 Unterlauf oder Überlauf des Messwertes				
	0x4000 Kanal nicht parametriert				

Tabelle 28: Codierung Diagnose-Status [DWORD]

HI 801 180 D Rev. 11.00 Seite 41 von 58

4.4 Anschlussvarianten

Dieses Kapitel beschreibt die sicherheitstechnisch richtige Beschaltung des Moduls. Die folgenden aufgeführten Anschlussvarianten sind zulässig.

4.4.1 Eingangsverschaltungen

Die Verschaltung der Eingänge erfolgt über Connector Boards. Für die redundante Verschaltung stehen spezielle Connector Boards zur Verfügung, siehe Kapitel 3.6.

Die Transmitterspeisungen sind über Dioden entkoppelt, so können bei Redundanz die Transmitterspeisungen zweier Module einen Transmitter versorgen.

Bei den Verschaltungen nach Bild 13 und Bild 14 können die Connector Boards X-CB 008 51 (mit Schraubklemmen) oder X-CB 008 53 (mit Kabelstecker) verwendet werden.

Bild 13: Einkanaliger Anschluss eines passiven 2-Draht-Transmitters

Bild 14: Einkanaliger Anschluss eines aktiven 2-Draht-Transmitters

Seite 42 von 58 HI 801 180 D Rev. 11.00

Bei der redundanten Verschaltung nach Bild 15 und Bild 16 stecken die Module nebeneinander im Basisträger auf einem gemeinsamen Connector Board. Es können die Connector Boards X-CB 008 52 (mit Schraubklemmen) oder X-CB 008 54 (mit Kabelstecker) verwendet werden.

Bild 15: Redundanter Anschluss eines passiven 2-Draht-Transmitters

HI 801 180 D Rev. 11.00 Seite 43 von 58

Bild 16: Redundanter Anschluss eines aktiven 2-Draht-Transmitters

Seite 44 von 58 HI 801 180 D Rev. 11.00

4.4.2 Anschluss von Transmittern über Field Termination Assembly

Der Anschluss von passiven und aktiven 2-Draht-Transmittern über das Field Termination Assembly X-FTA 002 01 erfolgt wie in Bild 17 dargestellt. Für weitere Informationen siehe X-FTA 002 01 Handbuch HI 801 116 D.

Bild 17: Anschluss über Field Termination Assembly

HI 801 180 D Rev. 11.00 Seite 45 von 58

4.4.3 Redundanter Anschluss über zwei Basisträger

Die Abbildung zeigt den Anschluss eines Transmitters, wenn die redundanten Module in unterschiedlichen Basisträgern oder nicht direkt nebeneinander im Rack stecken. Die Messshunts werden auf dem Field Termination Assembly platziert.

Bild 18: Redundanter Anschluss über zwei Basisträger

Seite 46 von 58 HI 801 180 D Rev. 11.00

4.4.4 Verhalten bei HART-Kommunikation

Zur HART-Kommunikation kann ein HART-Handheld parallel zum Transmitter angeschlossen werden. Die durch die HART-Kommunikation bedingten Stromschwankungen werden durch Filter im analogen Eingang ausgefiltert, so dass der Restfehler der analogen Messung 1 % beträgt.

 $\overset{\bullet}{1} \qquad \text{Erh\"{o}hter Restfehler bei HART-Kommunikation. Das HART-Terminal sofort nach der Diagnose } \\ \overset{\bullet}{1} \qquad \text{entfernen!}$

Bild 19: HART-Handheld parallel zu Transmitter und Eingangsmodul

HI 801 180 D Rev. 11.00 Seite 47 von 58

5 Betrieb X-Al 32 51

5 Betrieb

Das Modul wird in einem HIMax Basisträger betrieben und erfordert keine besondere Überwachung.

5.1 Bedienung

Die Bedienung an dem Modul selbst ist nicht vorgesehen.

Eine Bedienung z. B. Forcen der analogen Eingänge, erfolgt vom PADT aus. Einzelheiten hierzu in der Dokumentation von SILworX.

5.2 Diagnose

Der Zustand des Moduls wird über die LEDs auf der Frontseite des Moduls angezeigt, siehe Kapitel 3.4.2.

Die Diagnosehistorie des Moduls kann zusätzlich mit dem Programmierwerkzeug SILworX ausgelesen werden. In den Kapiteln 4.3.4 und 4.3.5 sind die wichtigsten Diagnosestatus beschrieben.

Wird ein Modul in einen Basisträger gesteckt, erzeugt es während der Initialisierung Diagnosemeldungen, die auf Fehlfunktionen wie falsche Spannungswerte hinweisen.

Diese Meldungen deuten nur dann auf einen Fehler des Moduls hin, wenn sie nach dem Übergang in den Systembetrieb auftreten.

Seite 48 von 58 HI 801 180 D Rev. 11.00

X-Al 32 51 6 Instandhaltung

6 Instandhaltung

Defekte Module sind gegen intakte Module des gleichen Typs oder eines zugelassenen Ersatztyps auszutauschen.

Zum Austauschen von Modulen sind die Bedingungen im Systemhandbuch HI 801 000 D zu beachten.

6.1 Instandhaltungsmaßnahmen

Im Zuge der Produktpflege entwickelt HIMA die Betriebssysteme von Modulen weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen, um aktuelle Betriebssystemversionen auf die Module zu laden.

 $\dot{1}$ Die Betriebssystemversionen von Modulen werden im SILworX Control Panel angezeigt. Die Typenschilder zeigen die Version des ausgelieferten Stands, siehe Kapitel 3.3.

Bevor Betriebssysteme auf Module geladen werden, müssen die Kompatibilitäten und Einschränkungen der Betriebssystemversionen auf das System geprüft werden. Dazu sind die jeweils gültigen Release-Notes zu beachten. Betriebssysteme werden mit SILworX auf Module geladen, die sich dazu im Zustand STOPP befinden müssen.

HI 801 180 D Rev. 11.00 Seite 49 von 58

7 Außerbetriebnahme X-Al 32 51

7 Außerbetriebnahme

Das Modul durch Ziehen aus dem Basisträger außer Betrieb nehmen. Einzelheiten dazu im Kapitel *Einbau und Ausbau des Moduls*.

Seite 50 von 58 HI 801 180 D Rev. 11.00

X-AI 32 51 8 Transport

8 Transport

Zum Schutz vor mechanischen Beschädigungen die Komponenten in Verpackungen transportieren.

Die Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

HI 801 180 D Rev. 11.00 Seite 51 von 58

9 Entsorgung X-Al 32 51

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

Seite 52 von 58 HI 801 180 D Rev. 11.00

X-AI 32 51 Anhang

Anhang

Glossar

Begriff	Beschreibung
Al	Analog Input: Analoger Eingang
AO	Analog Output: Analoger Ausgang
ARP	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen
	zu Hardware-Adressen
COM	Kommunikation (Modul)
CRC	Cyclic Redundancy Check: Prüfsumme
DI	Digital Input: Digitaler Eingang
DO	Digital Output: Digitaler Ausgang
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Normen
ESD	Electrostatic Discharge: Elektrostatische Entladung
FB	Feldbus
FBS	Funktionsbausteinsprache
HW	Hardware
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und
	Fehlermeldungen
IEC	Internationale Normen für die Elektrotechnik
LS/LB	Leitungsschluss/Leitungsbruch
MAC	Media Access Control: Hardware-Adresse eines Netzwerkanschlusses
PADT	Programming and Debugging Tool (nach IEC 61131-3): PC mit SILworX
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung
PES	Programmable Electronic System: Programmierbares Elektronisches System
R	Read: Auslesen einer Variablen
Rack-ID	Identifikation eines Basisträgers (Nummer)
rückwirkungsfrei	Eingänge sind für rückwirkungsfreien Betrieb ausgelegt und können in Schaltungen mit Sicherheitsfunktionen eingesetzt werden.
R/W	Read/Write: Spaltenüberschrift für Art von Systemvariable
SB	Systembus (-modul)
SELV	Safety Extra Low Voltage: Schutzkleinspannung
SFF	Safe Failure Fraction: Anteil der sicher beherrschbaren Fehler
SIL	Safety Integrity Level (nach IEC 61508)
SILworX	Programmierwerkzeug
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot: Adressierung eines Moduls
SW	Software
TMO	Timeout
W	Write: Variable wird mit Wert versorgt, z. B. vom Anwenderprogramm
WD	Watchdog: Funktionsüberwachung für Systeme. Signal für fehlerfreien Prozess
WDZ	Watchdog-Zeit
Ws	Scheitelwert der Gesamt-Wechselspannungskomponente

HI 801 180 D Rev. 11.00 Seite 53 von 58

Anhang X-Al 32 51

Abbildun	gsverzeichnis	
Bild 1:	Typenschild exemplarisch	10
Bild 2:	Blockschaltbild	11
Bild 3:	Anzeige	12
Bild 4:	Ansichten	16
Bild 5:	Beispiel einer Codierung	19
Bild 6:	Connector Boards mit Schraubklemmen	20
Bild 7:	Connector Boards mit Kabelstecker	23
Bild 8:	Connector Board mit Kabelstecker Variante X-CB 008 55	26
Bild 9:	Systemkabel mit Kabelstecker beidseitig	28
Bild 10:	Einsetzen des Mono Connector Boards, exemplarisch	32
Bild 11:	Festschrauben des Mono Connector Boards, exemplarisch	33
Bild 12:	Modul einbauen und ausbauen	35
Bild 13:	Einkanaliger Anschluss eines passiven 2-Draht-Transmitters	42
Bild 14:	Einkanaliger Anschluss eines aktiven 2-Draht-Transmitters	42
Bild 15:	Redundanter Anschluss eines passiven 2-Draht-Transmitters	43
Bild 16:	Redundanter Anschluss eines aktiven 2-Draht-Transmitters	44
Bild 17:	Anschluss über Field Termination Assembly	45
Bild 18:	Redundanter Anschluss über zwei Basisträger	46
Bild 19:	HART-Handheld parallel zu Transmitter und Eingangsmodul	47

Seite 54 von 58 HI 801 180 D Rev. 11.00

X-AI 32 51 Anhang

Tabellenv	verzeichnis	
Tabelle 1:	Zusätzlich geltende Handbücher	5
Tabelle 2:	Blinkfrequenzen der LEDs	13
Tabelle 3:	Modul-Statusanzeige	14
Tabelle 4:	Systembusanzeige	15
Tabelle 5:	E/A-Anzeige	15
Tabelle 6:	Produktdaten	16
Tabelle 7:	Technische Daten der analogen Eingänge	17
Tabelle 8:	Technische Daten der Transmitterspeisung	17
Tabelle 9:	Verfügbare Connector Boards	18
Tabelle 10:	Position der Codierkeile	19
Tabelle 11:	Klemmenbelegung Connector Boards mit Schraubklemmen	22
Tabelle 12:	Eigenschaften der Klemmenstecker	22
Tabelle 13:	Steckerbelegung der Kabelstecker des Systemkabels X-CA 005	24
Tabelle 14:	Steckerbelegung des Kabelsteckers des Systemkabels X-CA 016	25
Tabelle 15:	Al- belegt mit fünf Adern	25
Tabelle 16:	Steckerbelegung der Kabelstecker des Systemkabels X-CA 009	27
Tabelle 17:	Kabeldaten X-CA 005	28
Tabelle 18:	Verfügbare Standard-Systemkabel X-CA 005	29
Tabelle 19:	Kabeldaten X-CA 009	29
Tabelle 20:	Verfügbare Standard-Systemkabel X-CA 009	29
Tabelle 21:	Verfügbare Standard-Systemkabel X-CA 016	29
Tabelle 22:	Kabeldaten X-CA 016 02	30
Tabelle 23:	Kabeldaten X-CA 016 04	30
Tabelle 24:	Register Modul im Hardware-Editor	37
Tabelle 25:	Register E/A-Submodul Al32_51 im Hardware-Editor	38
Tabelle 26:	Register E/A-Submodul Al32_51: Kanäle im Hardware-Editor	40
Tabelle 27:	Codierung Submodul-Status [DWORD]	41
Tabelle 28:	Codierung Diagnose-Status [DWORD]	41

HI 801 180 D Rev. 11.00 Seite 55 von 58

Anhang X-Al 32 51

Index

Blockschaltbild	11	Leuchtdioden, LED	13
Connector Board	18	Modul-Statusanzeige	14
mit Kabelstecker	23		
mit Schraubklemmen	20	Technische Daten	
Diagnose	48	Eingänge	17
E/A-Anzeige	15	Modul	16
Systembusanzeige	15	Transmitterspeisung	17
HART-Kommunikation	17		

Seite 56 von 58 HI 801 180 D Rev. 11.00

HANDBUCH X-AI 32 51

HI 801 180 D

Für weitere Informationen kontaktieren Sie:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Telefon: +49 6202 709-0 +49 6202 709-107 Fax E-Mail: info@hima.com

Erfahren Sie online mehr über HIMax:

www.hima.com/de/produkte-services/himax/