

Chapter 25 – Structure of the atom

Objectives:

- To help students appreciate that all matter is made up of atoms
- To make students familiar with the particles inside atoms
- To help students understand the structure of the atom

Keywords:

Atom

Proton

Neutron

Subatomic

Electron

Planetary model

25.1 The atom

The atom

- Scientists have discovered that all materials are made of millions of tiny particles called atoms.
- An <u>atom</u> is the smallest particle of an element that still has the properties of that element.
- Each element has its own unique type of atom.

25.2 Particles inside atoms

Particles inside atoms

- A subatomic particle is a particle found inside an atom.
- There are three types of subatomic particle:

Name of particle	Where situated in atom	Relative mass	Relative charge
Proton	Nucleus	1 unit	+1
Neutron	Nucleus	1 unit	0
Electron	Outside the nucleus (electron cloud)	1 1,840 unit	-1

25.3 Atomic structure of the first 20 elements

The structure of an atom

- A Danish scientist, Niels Bohr, proposed that electrons move around the centre, or nucleus, of an atom, in fixed paths called orbits. These orbits are also called shells.
- The region in which the shells are located is called the electron cloud.

The planetary model

 Bohr's model is often called the planetary model. The electrons move around the nucleus like planets moving around the sun.

Important points about atoms

- 1. All atoms are neutral this means that there must be an equal number of protons (positively charged) and electrons (negatively charged).
- 2. The <u>atomic number</u> of an atom is the number of protons in the nucleus of that atom.
- Each element has its own atomic number.
- 4. The mass number of an atom = number of protons + number of neutrons.

Important points about atoms

This is the mass number. It is the sum of the number of protons and neutrons in the nucleus.

This is the **atomic number**. It tells you the
number of protons in the
nucleus.

Atomic structure of the first 10 elements

Element	Atomic number	Number of protons	Number of electrons	Mass number	Number of neutrons (= mass no. – atomic no.)
1 H	1	1	1	1	1 - 1 = 0
⁴ ₂ He	2	2	2	4	4 – 2 = 2
⁷ ₃ Li	3	3	3	7	7 – 3 = 4
⁹ ₄ Be	4	4	4	9	9 – 4 = 5
¹¹ ₅ B	5	5	5	11	11 – 5 = 6
¹² ₆ C	6	6	6	12	12 – 6 = 6
¹⁴ ₇ N	7	7	7	14	14 – 7 = 7
¹⁶ ₈ O	8	8	8	16	16 – 8 = 8
¹⁹ ₉ F	9	9	9	19	19 – 9 = 10
²⁰ Ne	10	10	10	20	20 – 10 = 10

Learning outcomes: *Now I am able to...*

- Describe the structure of the atom.
- State the location, relative charge and relative mass of each of the subatomic particles.
- Define atomic number and mass number.
- Write down the number of protons, neutrons and electrons in the atoms of the first 20 elements given their nuclear formulas.

Tick

Essential SCIENCE

