

FIG. 1



FIG. 3



FIG. 4

4/6



FIG. 5

MEASURE ABSORPTION FREQUENCIES OF
ONE OR MORE MOLECULES OF A GAS FLOW

SELECT AN ABSORPTION FREQUENCY AT WHICH
TO ACTIVATE A GAS PRECURSOR IN THE GAS FLOW

TRIGGER A LASER OF A LASER ARRAY WHERE
THE TRIGGERED LASER HAS A FREQUENCY CORRESPONDING
TO THE SELECTED ABSORPTION FREQUENCY

640

EXPOSE THE GAS FLOW TO A LASER BEAM FROM THE
TRIGGERED LASER TO DEPOSIT A MATERIAL ON A SUBSTRATE

FIG. 6





FIG. 7

TITLE: LASER ASSISTED MATERIAL DEPOSITION INVENTORS NAME: Ross S. Dando et al.

DOCKET NO.: 303.865US1



FIG. 8



FIG. 9