G. KARCH & M. KRUPSKI & SZ. CYGAN

W każdej nauce jest tyle prawdy, ile jest w niej matematki.

Immanuel Kant

Transformata Laplace'a

Zadanie 1. Niech $f(t) = t^a e^{-bt}$ dla pewnych dodatnich stałych a i b. Udowodnij, że funkcja f jest podwykładnicza z wykładnikiem $-b < \alpha < 0$.

Zadanie 2. Załóżmy, że f(t) ma wzrost podwykładniczy. Udowodnij, że $\lim_{s \to \infty} \mathcal{L}\{f\}(s) = 0$.

Zadanie 3. Stosując równość $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ oblicz $\mathcal{L}\{t^{-1/2}\}$.

Zadanie 4. Załóżmy, że $F(s)=\mathcal{L}\{f(t)\}$ oraz że granica $\lim_{t\to 0^+}\frac{f(t)}{t}$ istnieje. Udowodnij wzór

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(s) = \int_{s}^{\infty} F(u) \, du.$$

Zadanie 5. Oblicz transformaty Laplace'a funkcji:

a) t^n ,

d) $t^2 \cos at$,

g) $\frac{\sin t}{t}$

b) $t^n e^{at}$,

- e) $t^k e^{at} \cos bt$,
- h) $\frac{\cos at 1}{t}$,

c) $t \sin at$,

- f) $t^k e^{at} \sin bt$,
- i) $\frac{e^{at}-e^{bt}}{t}$.

Zadanie 6. Pokaż, że zachodzi wzór Borela:

$$\mathcal{L}\left\{\int_0^t f(t-v)g(v) \, dv\right\}(s) = \mathcal{L}\{f\}(s)\mathcal{L}\{g\}(s).$$

Z jego pomocą wyznacz transformatę odwrotną funkcji $\frac{1}{s^2(s^2+1)}$.

Zadanie 7. Stosując transformatę Laplace'a znajdź rozwiązania następujących zagadnień:

a) $y' - y = te^t$, y(0) = 0;

- c) $y'' + y = t \sin t$, y(0) = 1, y'(0) = 2;
- b) $y'' + y = \sin t$, y(0) = 1, y'(0) = 2;
- d) $y'' 5y' + 4y = e^{2t}$, y(0) = 1, y'(0) = -1.

Zadanie 8. Stosując transformatę Laplace'a znajdź rozwiązania następujących zagadnień:

a)
$$\begin{cases} x' = 12x + 5y, & x(0) = 0, \\ y' = -6x + y, & y(0) = 1; \end{cases}$$

b)
$$\begin{cases} x' = x - y - e^{-t}, & x(0) = 0, \\ y' = 2x + 3y + e^{-t}, & y(0) = 0. \end{cases}$$