Assignment 5

April 7, 2017

- 1. Find the mass M of a metal plate R bounded by y=x and $y=x^2$, with density given by f(x,y)=1+xy kg/meter².
- 2. Evaluate $\int_R \sin(x^2 + y^2) dA$ where R is the disk of radius 2 centered at the origin.
- 3. Evaluate $\int_R (x^2 y^2) dA$, where R is the most quadratic region between the circles of radius 1 and radius 2.
- 4. Evaluate $\int int5x^2y y^3dA$, where D is a region bounded by $y = \sqrt{x}$ and $y = x^3$.
- 5. Evaluate the tripple integral in spherical coordinates $f(\rho, \theta, \phi) = \sin \phi$, over the region $0 \le \theta \le 2\pi$, $0 \le \phi \le \frac{\pi}{4}$, $1 \le \rho \le 2$.
- 6. Evaluate the tripple integral in cylindrical coordinates $f(x,y,z)=x^2+y^2+z^2$, W is the region $0 \le r \le 4$, $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$, $-1 \le z \le 1$.