Probability Theory & Statistics

Innopolis University, BS-I,II
Spring Semester 2016-17
Lecturer: Nikolay Shilov

Part I

MEAN, AVERAGE, EXPECTATION, THE FIRST MOMENT

Definition

- Let $X:\Omega \to \mathbb{R}$ be a random variable and P_X be its probability distribution.
- Mean, average, expectation, the first moment of X is defined as

$$M(X) = E(X) = \sum_{x \in R} x^* P_X(x).$$

• Is this definition correct?

Examples

- Rolling the dice: since $P_X(x)=1/6$ for all x in {1, 2, 3, 4, 5, 6}, then M(X)=1*1/6+2*1/6+3*1/6+4*1/6+5*1/6+6*1/6=7/2.
- Lottery prize (ref. week 5): since

Prize	1000	100	1	0
Probability	0.0001	0.001	0.01	0.9889

$$M(X) = 1000*0.0001 + 100*0.001 + 1*0.01 + 0*0.9889 = 0.1 + 0.1 + 0.01 = 0.21.$$

Two exercises

- What is the average sum of pips
 - on an domino tile?
 - on pair of dices?

Linearity of the expectation

- Prove: if a∈R is a constant then
 - -M(a)=a;
 - -M(a*X)=a*M(X);
- Discuss: if X and Y have the same outcomes then M(X + Y) = M(X) + M(Y);
- Prove: if a,b ∈R are constants and X and Y have the same outcomes then

$$M(a*X + b*Y) = a*M(X) + b*M(Y).$$

Expectation of a function

- Let $X:\Omega \to R$ be a random variable and $g:R \to R$ be function (that is defined on the range of X at least).
- Prove: if Y=g(X) then M(Y)= $\sum_{x \in R} g(x) * P_X(x)$.

Independent Random Variables

- Random variables X,Y:Ω→R are said to be independent if (X=x) and (Y=y) are independent events for all x,y∈R.
- Prove: random variables X,Y:Ω→R are independent iff P(X=x ∩ Y=y) = P(X=x)*P(Y=y) for all x,y∈R.
- Question: what the probability space is used in the definition and property?

Expectation of Product of Two Independent Random Variables

- Prove: if random variables $X,Y:\Omega \rightarrow \mathbb{R}$ are independent then $M(X^*Y) = M(X)^*M(Y)$.
- Question: is equality M(X*Y) = M(X)*M(Y) valid for all random variables $X,Y:\Omega \rightarrow R$? (Either prove or provide a counterexample.)

Part II

SELECTED DISCRETE DISTRIBUTIONS

Discrete Uniform Distribution

• Discrete uniform distribution corresponds to a random variable X that get exactly n values $\{x_1, ..., x_n\}$ with a flat probability:

$$P_X(x_k)=1/n$$
 for all $k \in [1..n]$.

- Expectation $M(X) = (x_1 + ... + x_n)/n$ is the (arithmetic) mean of X values.
- Example: tossing a dice.

Bernoulli Trial and Distribution

- X = Bernoulli(p), where p∈[0, 1], gets just 2 conventional values 0 (fail) and 1 (success).
- Bernoulli distribution:
 - -P(Bernoulli(p)=1) = p and
 - -P(Bernoulli(p)=0) = 1-p.
- M(Bernoulli(p)) = 0*(1-p) + 1*p = p.

Bernoulli Trials and Binomial Distribution

- Bernoulli trials (or binomial experiment)
 consist of some fixed number n of
 independent Bernoulli trials, each with a
 probability of success p, and counts the
 number of successes.
- A corresponding random variable is denoted by B(n,p) or by binomial(n,p), and is said to have a binomial distribution:

$$P_{B(n,p)}(k) = P(B(n,p)=k) = C_n^k p^k (1-p)^{(n-k)}.$$

Mean for Binomial Distribution

- Let X=B(n,p).
- By expectation definition:

$$M(X) = \sum_{k \in [0..n]} k * C_n^k p^k (1-p)^{(n-k)}.$$

- By definition of B(n,p): $X = X_1 + ... + X_n$ where all $X_1,...X_n$ =Bernoulli(p).
- By expectation linearity: M(X) = n*p.
- Intuitively: number of success in n trials should be n*p.

Random Variable with Geometric Distribution

 The probability distribution of the number k in { 1, 2, 3, ...} of Bernoulli(p) trials needed to get the first success:

$$P(X=k) = (1-p)^{(k-1)*}p.$$

• Attention: for the first time the range of possible (i.e. not impossible) values is infinite; so the set of outcomes Ω must be infinite too.

Example: Beauty and the Beast

The Beast is a shy guy: he stays just 1 meter behind Belle ... but can't dare to call her.

http://kinoprofi.org/7041-krasavica-ichudovische-chudesnoe-rozhdestvo-1997.html

Example: Beauty and the Beast (cont.)

 So he makes the first step to her of p cm length and (maybe) some more steps so that each next step is q=(1-p/100cm) smaller then the previous one.

 After that the Beast calls Belle. What is probability that he calls after (exactly) k steps?

Example: Beauty and the Beast (cont.)

- Let X:[0, 1) \rightarrow R be the following staircase function: X(t)=k on interval [(1-q^(k-1)), (1-q^k)).
- Ω =[0,1) and X= Geom(p):

Build another example of X=Geom(p)

Find radiuses of rings such that areas of concentric rings X=Geom(p):

Mean for Geometric Distribution

• If X=Geom(p) then

$$M(X) = \sum_{k>0} k^* p^* (1-p)^{(k-1)} = 1/p$$

(refer the next part for a proof).

Part III

CONDITIONAL AND TOTAL EXPECTATION

Recall form Lecture for week 6

- Discrete random variable is any (total) real function on finite domain $X:\Omega \rightarrow R$.
- (Discrete) probability distribution is a table/function that assigns probability (

$$P_X(x) = P(X=x) = \frac{|X^-(x)|}{|\Omega|}$$

of the corresponding outcomes to each value x in the range of the variable X.

Recall form Lecture for week 6 (cont.)

- There are several ways how to affiliate a probability space with random variable X:Ω→R.
- One particular way:
 - $-\Omega' = \{ S \subseteq \Omega : S = X^{-}(x), x \in R \};$
 - $-\mathcal{F}=2^{\Omega'};$
 - $-P:\mathcal{F}\to[0,1]$ is the additive continuation on \mathcal{F} of a function defined as $P(X^{-}(x))=P_{X}(x)$ for every $x\in\mathbb{R}$.

Other way to Probability Space

- Adopt the set of outputs Ω as the sample space,
- use the standard event space \mathcal{F} = 2^{Ω} ;
- expand (in additive way) onto \mathcal{F} the standard probability function $P(\omega)=1/|\Omega|$ for $\omega \in \Omega$.

Conditional (Discrete) Random Variable (simple case)

- Assume $A \subseteq \Omega$ is an "event" in 2^{Ω} . Then conditional random variable $X \mid A$ is the restriction of the function X on the domain A.
- It defines conditional distribution

$$P_{X|A}(x) = P((X|A)=x) =$$

$$= |(X=x) \cap A|/|A| = |X^{-}(x) \cap A|/|A| =$$

$$= P((X=x)|A).$$

• Corollary: $P((X=x) \cap A) = P_{X|A}(x)*P(A)$

Conditional Expectation

 Conditional expectation – expectation of conditional random variable:

$$M(X|A) = \sum_{x \in R} x^* P_{X|A}(x) .$$

If H₁, ... H_n is a partition then

$$P(A) = \sum_{k \in [1..n]} P(A \mid H_k) * P(H_k)$$

and hence

$$P_{X}(x) = \sum_{k \in [1..n]} P_{X|Hk}(x) * P(H_{k}).$$

Total Expectation Formula

$$\begin{split} \mathsf{M}(\mathsf{X}) &= \Sigma_{\mathsf{x} \in \mathsf{R}} \mathsf{x}^* \mathsf{P}_{\mathsf{X}}(\mathsf{x}) = \\ &= \Sigma_{\mathsf{x} \in \mathsf{R}} \mathsf{x}^* (\Sigma_{\mathsf{k} \in [1..n]} \mathsf{P}_{\mathsf{X} \mid \mathsf{Hk}}(\mathsf{x})^* \mathsf{P}(\mathsf{H}_{\mathsf{k}})) = \\ &= \Sigma_{\mathsf{x} \in \mathsf{R}} \Sigma_{\mathsf{k} \in [1..n]} \, \mathsf{x}^* \mathsf{P}_{\mathsf{X} \mid \mathsf{Hk}}(\mathsf{x})^* \mathsf{P}(\mathsf{H}_{\mathsf{k}}) = \\ &= \Sigma_{\mathsf{k} \in [1..n]} \Sigma_{\mathsf{x} \in \mathsf{R}} \, \mathsf{x}^* \mathsf{P}_{\mathsf{X} \mid \mathsf{Hk}}(\mathsf{x})^* \mathsf{P}(\mathsf{H}_{\mathsf{k}}) = \\ &= \Sigma_{\mathsf{k} \in [1..n]} (\Sigma_{\mathsf{x} \in \mathsf{R}} \, \mathsf{x}^* \mathsf{P}_{\mathsf{X} \mid \mathsf{Hk}}(\mathsf{x}))^* \mathsf{P}(\mathsf{H}_{\mathsf{k}}) = \\ &= \Sigma_{\mathsf{k} \in [1..n]} \mathsf{M}(\mathsf{X} \mid \mathsf{H}_{\mathsf{k}})^* \mathsf{P}(\mathsf{H}_{\mathsf{k}}) \end{split}$$

Part IV

EXAMPLES OF CONDITIONAL AND TOTAL EXPECTATION

Back to Lottery (week 5)

Prize	1000	100	1	0
Probability	0.0001	0.001	0.01	0.9889

- If all tickets are sold out then M(X)= 1000*0.0001 + 100*0.001 + 1*0.01 + 0*0.9889 = 0.1 + 0.1 + 0.01 = 0.21.
- The minimal circulation consists of 10000 tickets including 1 with prize 1000, 10 - with prize 100 each, and 100 - with prize 1 each.

Back to Lottery (cont.)

- Event A: just 1000 tickets are sold out from the minimal circulation.
- M(X|A) = $\Sigma_{x \in R} x^* P_{X|A}(x) =$ = 1000 * 1/1000 * P(1000-ticket is sold) + ... + 100 * 1/1000 * P(1 of 100-tickets is sold) + ... + 100 * 10/1000 * P(10 of 100-tickets are sold) + ... + 1 * 1/1000 * P(1 of 1-tickets is sold) + ... + 1 * 100/1000 * P(10 of 100-tickets are sold) = = 1000/9001 + ... > 0.111 + ... > 0.1 + ... = 0.21.

Memoryless Property

- Memorylessness refers to the cases when the distribution of a waiting until a certain event does not depend on time.
- Only two kinds of distributions are memoryless: exponential and geometric distributions.

Memorylessness of Geometrical Distribution

- Let
 - -X = Geom(p) and
 - $-(X>m) = \{\omega \in \Omega : X(\omega)>m\}.$
- $P(X=(m+n) \mid X>m) = P(X=m+n)/P(X>m) = P(n)$

Mean for Geometric Distribution

- If X=Geom(p) then M(X) = $\Sigma_{k>0}$ k*p*(1-p)^(k-1).
- Using total expectation formula with

$$-H_1=(X=1), P(H_1)=p,$$

$$-H_2=(X>1)$$
, $P(H_2)=q=(1-p)$:

$$M(X) = M(X|H_1)*P(H_1) + M(X|H_2)*P(H_2).$$

Mean for Geometric Distribution (cont.)

Due to memorylessness:

$$P(X=(1+n) \mid X>1) = P(X=n)$$
 for all $n>0$;

- hence $M(X|H_2) = M(1 + X) = 1 + M(X)$;
- It implies that M(X) = 1*p + (1 + M(X))*q;
- hence M(X)=1/p.