

ASSIGNATION ET DÉTECTION DES PARTIES TRANSMEMBRANAIRES D'UNE PROTÉINE

AMMICHE Naïma 2023-2024

Introduction

Protéine transmembranaire

Structure: hydrophobe, hydrophile

Localisation : membrane plasmique

Rôle: signalisation cellulaire

Cible : développement pharmaceutique

ATOM	1	N	THR	Α	1	97.331	32.217	31.789	1.00155.76	N
ATOM	2	CA	THR	Α	1	97.157	30.852	31.202	1.00155.75	С
ATOM	3	C	THR	Α	1	95.718	30.350	31.429	1.00156.41	C
ATOM	4	0	THR	Α	1	95.503	29.155	31.654	1.00157.12	0
ATOM	5	CB	THR	Α	1	98.164	29.847	31.844	1.00154.78	С
ATOM	6	OG1	THR	Α	1	99.441	30.481	31.998	1.00152.38	0
ATOM	7	CG2	THR	Α	1	98.340	28.611	30.963	1.00151.91	С
ATOM	8	N	ALA	Α	2	94.743	31.263	31.367	1.00154.81	N
MOTA	9	CA	ALA	Α	2	93.322	30.934	31.571	1.00150.80	С
ATOM	10	C	ALA	Α	2	92.501	31.082	30.273	1.00148.26	C
MOTA	11	0	ALA	Α	2	92.767	31.971	29.463	1.00151.45	0
MOTA	12	CB	ALA	Α	2	92.734	31.821	32.685	1.00148.38	C
ATOM	13	N	ALA	Α	3	91.498	30.218	30.095	1.00142.85	N
ATOM	14	CA	ALA	Α	3	90.699	30.205	28.864	1.00134.32	C
ATOM	15	C	ALA	Α	3	89.423	31.055	28.813	1.00128.21	С
ATOM	16	0	ALA	Α	3	88.671	31.175	29.787	1.00124.04	0
ATOM	17	CB	ALA	Α	3	90.370	28.754	28.469	1.00130.07	C
MOTA	18	N	VAL	Α	4	89.198	31.636	27.636	1.00124.11	N
ATOM	19	CA	VAL	Α	4	88.044	32.478	27.359	1.00120.61	C
MOTA	20	C	VAL	Α	4	86.845	31.622	26.970	1.00120.00	С
ATOM	21	0	VAL	Α	4	86.993	30.470	26.557	1.00118.97	0
ATOM	22	CB	VAL	Α	4	88.323	33.442	26.199	1.00120.45	С
ATOM	23	CG1	VAL	Α	4	89.534	34.294	26.518	1.00122.80	С
MOTA	24	CG2	VAL	Α	4	88.529	32.652	24.905	1.00113.83	C
ATOM	25	N	GLY	Α	5	85.658	32.206	27.074	1.00117.41	N
ATOM	26	CA	GLY	Α	5	84.449	31.482	26.745	1.00111.24	С
MOTA	27	C	GLY	A	5	83.700	31.226	28.031	1.00108.47	С
ATOM	28	0	GIV	٨	_	92 911	21 000	28 083	1 00107 74	0

Fichier au format PDB

Acide aminé Thr

Le carbone alpha de coordonnées : (x, y, z) = (97.331, 32.217, 31.789)

ATOM	1	N	THR	Α	1	97.331	32.217	31.789	1.00155.76	N
ATOM	2	CA	THR		1	97.157	30.852	31.202	1.00155.75	С
ATOM	3	С	THR	Α	1	95.718	30.350	31.429	1.00156.41	С
ATOM	4	0	THR	Α	1	95.503	29.155	31.654	1.00157.12	0
ATOM	5	CB	THR	Α	1	98.164	29.847	31.844	1.00154.78	C
ATOM	6	OG1	THR	Α	1	99.441	30.481	31.998	1.00152.38	0
ATOM	7	CG2	THR	Α	1	98.340	28.611	30.963	1.00151.91	C
ATOM	8	N	ALA	Α	2	94.743	31.263	31.367	1.00154.81	N
ATOM	9	CA	ALA	Α	2	93.322	30.934	31.571	1.00150.80	C
ATOM	10	C	ALA	Α	2	92.501	31.082	30.273	1.00148.26	C
ATOM	11	0	ALA	Α	2	92.767	31.971	29.463	1.00151.45	0
ATOM	12	CB	ALA	Α	2	92.734	31.821	32.685	1.00148.38	C
ATOM	13	N	ALA	Α	3	91.498	30.218	30.095	1.00142.85	N
ATOM	14	CA	ALA	Α	3	90.699	30.205	28.864	1.00134.32	C
ATOM	15	C	ALA	Α	3	89.423	31.055	28.813	1.00128.21	C
ATOM	16	0	ALA	Α	3	88.671	31.175	29.787	1.00124.04	0
ATOM	17	CB	ALA	Α	3	90.370	28.754	28.469	1.00130.07	C
ATOM	18	N	VAL	Α	4	89.198	31.636	27.636	1.00124.11	N
ATOM	19	CA	VAL	Α	4	88.044	32.478	27.359	1.00120.61	C
ATOM	20	C	VAL	Α	4	86.845	31.622	26.970	1.00120.00	C
ATOM	21	0	VAL	Α	4	86.993	30.470	26.557	1.00118.97	0
ATOM	22	CB	VAL	Α	4	88.323	33.442	26.199	1.00120.45	C
ATOM	23	CG1	VAL	Α	4	89.534	34.294	26.518	1.00122.80	C
ATOM	24	CG2	VAL	Α	4	88.529	32.652	24.905	1.00113.83	C
ATOM	25	N	GLY	Α	5	85.658	32.206	27.074	1.00117.41	N
ATOM	26	CA	GLY	Α	5	84.449	31.482	26.745	1.00111.24	C
ATOM	27	C	GLY	Α	5	83.700	31.226	28.031	1.00108.47	C 5
ATOM	28	0	GLY	Α	5	83.811	31.998	28.983	1.00107.74	0

Comment assigner et détecter des parties transmembranaire d'une protéine à partir d'un fichier PDB ne contenant pas d'informations directes sur la position de la membrane ?

Matériels et méthodes

Objectif: Déterminer la position de la membrane plasmique et l'ajouter au fichier PDB

<u>Titre</u>: A) Représentation tridimensionnelle de la chaîne A de la structure crystal structure of archaerhodopsin-1 (1uaz) sur pymol avec les hélices (en rouge), brins bêta (en jaune) et boucle (en vert) B) avec la membrane plasmique représentée en points rouge et bleu sur Orientations of Proteins in Membranes (OPM) database.

Orientations of Proteins in Membranes (OPM) database

orientations of (OPM) database proteins in membranes

Orientations of Proteins in Membranes (OPM) database

orientations of (OPM) database proteins in membranes

pymol

Orientations of Proteins in Membranes (OPM) database

orientations of (OPM) database proteins in membranes

pymol

Bibliothèques

- biopython
- numpy
- pymol
- dssp

ATOM	1	N	THR	A	1	97.331	32.217	31.789	1.00155.76	N
ATOM	2	CA	THR	A	1	97.157	30.852	31.202	1.00155.75	c
ATOM	3	C	THR	A	1	95.718	30.350	31.429	1.00156.41	C
MOTA	4	0	THR	A	1	95.503	29.155	31.654	1.00157.12	0
ATOM	5	CB	THR	A	1	98.164	29.847	31.844	1.00154.78	C
ATOM	6	0G1	THR	A	1	99.441	30.481	31.998	1.00152.38	0
ATOM	7	CG2	THR	A	1	98.340	28.611	30.963	1.00151.91	C
ATOM	8	N	ALA	A	2	94.743	31.263	31.367	1.00154.81	N
ATOM	9	CA	ALA	A	2	93.322	30.934	31.571	1.00150.80	C
ATOM	10	C	ALA	A	2	92.501	31.082	30.273	1.00148.26	c
ATOM	11	0	ALA	A	2	92.767	31.971	29.463	1.00151.45	0
ATOM	12	CB	ALA	A	2	92.734	31.821	32.685	1.00148.38	C
MOTA	13	N	ALA	A	3	91.498	30.218	30.095	1.00142.85	N
ATOM	14	CA	ALA	A	3	90.699	30.205	28.864	1.00134.32	c
MOTA	15	C	ALA	A	3	89.423	31.055	28.813	1.00128.21	C
ATOM	16	0	ALA	A	3	88.671	31.175	29.787	1.00124.04	0
MOTA	17	CB	ALA	A	3	90.370	28.754	28.469	1.00130.07	C
ATOM	18	N	VAL	A	4	89.198	31.636	27.636	1.00124.11	N
ATOM	19	CA	VAL	Δ	4	RR. P44	32.478	27.359	1.88128.61	C

- · Informations résidus
- Coordonnées centre de masse

- Coordonnées du vecteur
- Equation cartésienne

Résultats

Comparaison des résultats

<u>Titre</u>: A) Représentation tridimensionnelle de la chaîne A de la structure structure crystal structure of archaerhodopsin-1 (en violet) avec la membrane plamsique (en blanc) B) Représentation attendu avec la protéine (en orange) et la membrane plasmique (en rouge et bleu) sur pymol.

Conclusion

Assignation et la détection de la membrane à partir d'un fichier PDB

Position de la membrane pas optimal

Assignation et la détection de la membrane à partir d'un fichier PDB

Position de la membrane pas optimal

<u>Amélioration possible:</u>

Epaisseur de la membrane

Equations cartésiennes

Assignation et la détection de la membrane à partir d'un fichier PDB

Position de la membrane pas optimal

<u>Amélioration possible:</u>

Epaisseur de la membrane

Equations cartésiennes

Déterminer les résidus de la protéine présent dans la membrane

Merci pour votre attention