PHILOSOPHICAL WRITING IN EARLY NEW ZEALAND NEWSPAPERS

Joshua Black February 5, 2021

OVERVIEW

1. Problem:

 to gain insight into philosophical writing in early New Zealand newspapers

2. Method:

- · corpus construction via self-labelling and supervised learning,
- · corpus analysis with, e.g., co-occurrence networks.

3. Results

4. Upshot:

- · a method applicable for many humanities research questions,
- · but with shortcomings to be aware of.

PROBLEM

BACKGROUND

· Organisation:

- · UC Arts Digital Lab
- · ...part of the digital humanities department.
- Digital humanities: use of computational (and data science) techniques to achieve insight into cultural products and practices.
- · Myself:
 - · research background in traditional humanities research (in philosophy),
 - · with newly developed data science skills.

HUMANITIES PROBLEM

- · Histories of philosophy in New Zealand don't have much to say before the mid-twentieth century:
 - · 'many of those who had longstanding chairs published next to nothing' (Davies and Helgeby 2014, 24).
- · An explanation: excessive on focus academic publications.
 - · ...and on academic philosophy.
- · Newspapers as an alternative source:
 - · 'the fundamental infrastructure for intellectual life ...
 - · ...newspapers were ascendant in New Zealand because imported books were expensive and a sustainable local periodical literature was slow to emerge' (Ballantyne 2012, 57–78).
 - · Promising: a venue both for the academics and the wider public?
- · An example of the kind of thing we're after:

The following is a brief abstract of the Debate held at the Town Hall East Oxford, on Thursday, 9th.

(Continued from last week.)

6. A simple form of metaphysical argument may be briefly put as follows:—All existence are of two kinds necessary and contingent. By a necessary existence is meant one which never began to be, and can never cease to be. By a contingent existence is meant one which commenced to be and will cease to be. My exist-

DATA SCIENCE METHODS

- · Data source: the National Library Papers Past Newspaper Open Data Pilot.
 - A dataset containing the output of OCR for newspaper data in English up to 1900.
 - · Made available in 2020 to encourage digital experimentation.
 - · 'Big' by human standards: 1,471,384 pages of content. (315GB compressed)
 - · Ethics:
 - · all out of copyright, no living people discussed, but ...
 - · some offensive material present.
 - https://natlib.govt.nz/about-us/open-data/ papers-past-metadata/ papers-past-newspaper-open-data-pilot/
- · Data science methods needed to:
 - · Find the relevant material (it's a small portion of the data set!)
 - · Derive insight from it once found (it's still a lot of text!)
 - · We will engage in 'distant reading' (Moretti 2013)

THE PROJECT

1. Corpus construction

- · Aim: find the relevant material in the dataset.
- · Method: labelling articles and training Naive Bayes classifiers following a 'bootstrapping' pattern.

2. Corpus analysis

- · Aim: use the corpus to learn something about philosophical writing in NZ newspapers.
- Method: many text analysis methods, including concordancing, collocations, co-occurrence networks, and topic modelling.
- · This presentation will focus on co-occurrence networks.

METHOD

CORPUS CONSTRUCTION FLOW DIAGRAM

Preprocessing (XML \rightarrow Pandas)

- Data format for each issue:
 - · a METS file with structural information and an ALTO file for each page.
- · Throw away:
 - · Spatial information (e.g. location of each word on page)
 - · Items tagged as advertisements.
- · Method:
 - 1. iterate through title-year tarballs,
 - for each issue, collect list of articles and corresponding text blocks from METS file,
 - 3. iterate through ALTO files, collecting text blocks for each article
 - gather all in Pandas dataframe with each row corresponding to an individual article.
- · Result:
 - · 7,592,619 distinct articles and their plain text,
 - · ...stored as eight pickled dataframes (around 8GB total).

CORPUS CONSTRUCTION FLOW DIAGRAM

CORPUS EXPLORATION

- · First stage: look at REGEX matched for 'philoso*'
- · Lots of methods used to pick out desired and non-desired articles:
 - · inspecting random articles, keyword searches, word clounds, concordancing, collocations, co-occurrence networks ...
 - · ...more on co-occurrence networks later.
- · If the corpus contains lots of material that we are not interested in, it is not 'satisfactory'. If so, we move to the next stage.

CORPUS CONSTRUCTION FLOW DIAGRAM

LABELLING

- · Label articles in order to train a classifier to find what we are after.
- · Two key labels for the project:
 - · Philosophy: is the majority of the article 'philosophical discourse'?
 - A broad definition: does it develop or discuss ideas 'ultimate reality' or 'ultimate value'.
 - e.g.: is there life after death, are there multiple sources of knowledge, what is the best way to organise society and why?
 - · Some reliance on my own experience in studying 19th century philosophy.
 - · Philosophy type:
 - · Is it about ethics, the relationship between religious belief and modern thought, metaphysics and epistemology, or other?
 - The relationship between religious belief and, e.g., evolution is a very prominent topic at this time.
 - · Also attempted, but not used: 'Readable', 'Writing Type', 'NZ author'
- NB: it is important to ensure that we label a wide range of non-philosophy.

CORPUS CONSTRUCTION FLOW DIAGRAM

TRAINING AND APPLYING CLASSIFIER

- · Train a classifier to distinguish 'philosophy' articles from 'non-philosophy'.
- · Classifiers tried: Naive Bayes and Support Vector Machines
- · Naive Bayes is simple and fast to train, while performing remarkably effectively.
- · Training and testing data divided, and training data resampled, as appropriate given the state of the labelled collection.
- · Classification algorithms mplemented using Scikit-learn Pipelines.
 - 1. Text to bag of words (params: size of feature space)
 - 2. TF-IDF transformation
 - 3. The Naive Bayes classifier (params: prior on representativeness of labelled set.)
- · Grid CV search used to select parameters for the classifier.
- · ...with accuracy, recall, and precision tried as measures.
- Trained classifier applied to complete dataset, treating the 'philosophy' articles as a new candidate corpus.

CORPUS CONSTRUCTION FLOW DIAGRAM

'BOOTSTRAPPING'

- · The phrase: 'pull yourself up by the bootstraps',
- · In this case:
 - 1. starting with nothing, we add articles to our labelled collection,
 - 2. having collected a good number (~200-300), with much higher representation of philosophy than the general dataset,
 - 3. we train and apply a classifier,
 - 4. we use the articles classifier as philosophy as a source of new articles to label.
- NB: after the first classifier has been applied, the new non-philosophy articles added to the labelled collection will have been classifier as philosophy by the previous classifier.
 - · ...this means that subsequently trained classifiers can be more selective.
 - · ...we need a picky classifier.
 - Stop when satisfied that the corpus does not contain too much 'non-philosophy'

AIM 2: CORPUS ANALYSIS

- · Corpus analysis \sim the corpus exploration step.
- One method used: co-occurrence networks:
 - 1. create bag or words or TF-IDF representation of documents;
 - 2. compute a document-term matrix (num terms x num documents) for either the BOW or TF-IDF representation;
 - 3. compute a term-term matrix (num terms x num terms), representing co-occurrences in documents of each pair of terms; and
 - 4. given a search term, pass these matrices to a statistical function to return the most closely related words.
 - · Statistics implemented: log Dice and mutual information.
- · Networks displayed using Dash cytoscapes:
 - see project dashboard:nz-newspaper-philosophy.herokuapp.com
- · NB: term-term matrices can get very large. Various methods to control the size of the dictionary were employed.

RESULTS

CORPUS CONSTRUCTION (SIZE REDUCTION)

Classifiers become more selective:

Corpus	Article Count
Processed dataset	7592619
(Step 0) 'philoso*' Corpus	29647
(Step 1) Naive Bayes 1	239649
(Step 2) Naive Bayes 2	31131

Table: Article counts for processed dataset and general philosophy corpora.

WORD CLOUD: SAMPLE OF PROCESSED DATASET

WORD CLOUD: STEP 0

WORD CLOUD: STEP 1

WORD CLOUD: STEP 2

LABELLING

	Step 1		Step 2	
Label	Value	Count	Value	Count
Readable	True	247	True	918
	False	26	False	41
Philosophy	True	101	True	299
	False	147	False	620
Philosophy Type	Religion-Science	58	Religion-Science	140
	Ethics-Politics	25	Ethics-Politics	94
	Epistemology-Metaphysics	3	Epistemology-Metaphysics	13
	Other	15	Other	52
Writing Type	Public Event	40	Public Event	97
	Letter to the Editor	23	Letter to the Editor	69
	First-order Writing	36	First-order Writing	111
	Review	2	Other	22
NZ	True	77	True	178
	False	12	False	41

Table: Label counts at Step 1 and Step 2.

CLASSIFIER PERFORMANCE (STEP 2)

		Predicted	
		False	True
Actual	False	181	14
	True	15	62

Table: Confusion Matrix for Second Naive Bayes Classifier

· Accuracy: 0.89

· Precision: 0.81

· Recall: 0.80

CORPUS PERFORMANCE

- · Metrics are not bad, but not great either.
- · Inspection of the false positives and negatives reveals:
 - · prevalence of 'composite articles' in the false negatives, where only one or two bits are philosophical; and
 - · prevalence of 'edge cases' and mistaken labelling in the false positives.
- · Conclusion: the performance of the classifiers is being limited by the quality of the labels.

CORPUS ANALYSIS

- · Many methods were used at this stage (see project report)
- · The following two slides contain:
 - 1. an example of a telling co-occurrence network, and
 - 2. a choropleth revealing prominence of religion and science discourse in different regions.

POSITIVES

- 1. Single investigator, self-labelled corpus production using METS/ALTO digitised newspaper files is feasible.
 - Generalisability: METS/ALTO is the standard for newspaper digitisation, so the same methods could be applied in other countries.
- 2. The corpus produced at the corpus construction stage shows potential for research into early New Zealand philosophy.

SHORTCOMINGS

1. Problem 1:

- Many articles at the time were made up of lots of distinct bits (especially editorials).
- Since the classifier loses many of these articles, the resulting corpus is not fully representative of philosophical discourse in early NZ newspapers.
- · Possible solution: label text blocks rather than articles.

2. Problem 2:

- · Labelling criteria were insufficiently clear.
- · Better labelling might improve classifier performance.
- · Possible alternative: start with easier distinctions (e.g. is the article a report of a public lecture?), then move to subject matter distinctions.

OVERVIEW

1. Problem:

· to gain insight into philosophical writing in early New Zealand newspapers

2. Method:

- · corpus construction via self-labelling and supervised learning,
- · corpus analysis with, e.g., co-occurrence networks.

3. Results:

- · An interesting collection of articles for digital humanities research,
- · with indications that labelling could be improved,
- · and ability to reveal features of philosophical discourse about relationship between religious belief and then-new scientific ideas.

4. Upshot:

- · a method applicable for many humanities research questions,
- · but with shortcomings to be aware of.

LINKS

- Dashboard: nz-newspaper-philosophy.herokuapp.com
- GitHub (full project):github.com/JoshuaDavidBlack/NPOD_Philosophy
- · GitHub (dashboard): github.com/JoshuaDavidBlack/NPOD_ Philosophy_Heroku