Math models in neurobiology

Ben Bolker

2021-02-24 ©BMB (except textbook material/other images)

Models of neuron excitation

This material will follow Edelstein-Keshet (2005) (E-K) closely: I was able to get the PDF from here, let me know if you want it and don't have access to it. (Much more detail in Ermentrout and Terman (2010).)

Limit cycles

- non-point attractor of deterministic systems; repeated trajectory, periodic orbits
- "any simple oriented closed curve trajectory that does not contain singular points"

Properties

- stable or unstable
- hard to get limit cycles in epidemic systems
 - orbits via stochastic perturbation of weakly stable spirals
 - orbits via seasonl forcing, ditto
 - plenty of math models with limit cycles but usually weird (e.g. Wang and Ruan (2004))
- Lotka-Volterra predator-prey system has neutrally stable cycles
 - but Rosenzweig-MacArthur model = predator-prey + densitydependent prey limitation, nonlinearity in predation rate does have limit cycles: see E-K §8.7

Limit cycles (part 2)

- can occur in any phase space >1D
- easiest to analyze in 2D (Poincaré-Bendixson theorem)

Neurons

- dendrites, soma, axon
- balance of ionic dynamics: Na+, K+, Cl-
 - axon -50 mV below environment in resting state
 - maintained by active ion pumping, e.g.
 - * Na+: 30 vs 117 millimolar interior/exterior

- * K+: 90 vs 3 mmol
- * Cl-: 4 vs 120 mmol
- * A- ("other"): o vs 116 mmol

• sequence:

- voltage increases
- Na+ channels open, Na+ in (further ∠V)
- K+ channels open, K+ out (V ∖)
- Na+ channels close
- changes in V trigger firing at neighbouring site, wave propagates

• experiments:

- voltage clamp: apply/measure spatially homogeneous V dy-
- patch clamp: measure dynamics of individual pores
- electric circuit analog:
 - Voltage drop (≈ battery) + resistor + capacitor
 - Several **parallel** currents (Na+, K+, etc.)
 - * Ohm $(V = IR = I/g, g \equiv$ conductance)
 - * Faraday (V = q/C) where $q \equiv \text{charge}$)
 - * $I = \sum Vg_i = q/C$ (typo in E-K eq 4bb??)
 - * $dV/dt = (dq/dt)/C = I/C = V/C \sum g_i$

Skipping a few steps:

$$\frac{dv}{dt} = -\frac{1}{C} \Big(g_{\text{Na}}(v)(v - v_{\text{Na}}) + g_{\text{K}}(v)(v - v_{\text{K}}) + g_{\text{L}}(v - v_{\text{L}}) \Big)$$

(L= "everything else"; only g_{Na} and g_{K} are concentration-dependent)

- g_{Na} and g_{K} are **strongly** nonlinear functions of v
- $g_{Na} = \bar{g}_{Na} m^3 h; g_K = \bar{g}_K n^4$

[[1]]

$$\frac{dn}{dt} = \alpha_n(v)(1-n) - \beta_n(v)n$$

$$\frac{dm}{dt} = \alpha_m(v)(1-m) - \beta_m(v)m$$

$$\frac{dh}{dt} = \alpha_h(v)(1-h) - \beta_h(v)h$$

Help from here. (Didn't actually change much; found a typo. Change in sign convention: $V \rightarrow -(V + 65)$

```
parms0 <- c(g_bar_Na=120,g_bar_K=36,g_L=0.3, v_Na=-115, v_K=12, v_L=-10.5989,
           C=1, I=0)
alpha <- function(v,type) {</pre>
    switch(type,
           m=0.1*(v+25)/(exp((v+25)/10) -1),
           h=0.07*exp(v/20),
           n=0.01*(v+10)/(exp((v+10)/10) -1)
}
beta <- function(v,type) {</pre>
    switch(type,
           m=4*exp(v/18),
           h=1/\exp((v+30)/10 + 1),
           n=0.125*exp(v/80)
            )
}
HHgrad <- function(t,y,parms) {</pre>
    g <- with(as.list(c(y,parms)),</pre>
          c(v=-1/C*(-I + g_bar_Na*m^3*h*(v-v_Na) +
                    g_bar_K*n^4*(v-v_K) +
                    g_L*(v-v_L)),
           n=alpha(v,"n")*(1-n) - beta(v,"n")*n,
           m=alpha(v,"m")*(1-m) - beta(v,"m")*m,
           h=alpha(v, "h")*(1-h) - beta(v, "h")*h)
          )
    list(g)
}
y\theta < -c(v=0, n=0.3, m=0.05, h=0.6)
HHgrad(0,y0,parms0)
```

```
##
## -0.715470000 0.003238369 0.012385538 0.017010617
plot_hh <- function(h) {</pre>
    op <- par(mfrow=c(1,2),las=1,bty="l")</pre>
    plot(h[,1],h[,2], type="l",xlab="time",ylab="V")
    cvec <- c(1,2,4) ## colours</pre>
    matplot(h[,1],h[,3:5], type="l",lty=1,xlab="time",ylab="", col=cvec)
    legend("topright",legend=c("n","m","h"),lty=1,col=cvec)
}
library(deSolve)
res0 <- ode(y=y0,times=seq(0,60,by=0.05)), func=HHgrad, parms=parms0)
plot_hh(res0)
                                     8.0
                                                                       Figure 1: Hodgkin-Huxley (I=o)
                                     0.6
  -0.5
                                     0.4
 -1.0
                                     0.2
 -1.5
             20
                                                20
parms_f <- function(I,parms=parms0) {</pre>
    parms[["I"]] <- I
    return(parms)
res2 \leftarrow ode(y=y0,times=seq(0,100,by=0.05), func=HHqrad, parms=parms_f(-7))
plot_hh(res2)
  What about a bifurcation diagram?
get_maxmin <- function(I) {</pre>
    res <- ode(y=y0,times=c(0,seq(100,200,by=0.1)),
                func=HHgrad, parms=parms_f(I))
    res <- as.data.frame(res[-1,-1]) ## drop time and first row
    ans <- with(res,
                 c(v_min=min(v), v_max=max(v),
```


Figure 2: Hodgkin-Huxley (I=-7)

```
n_{\min}=\min(n), n_{\max}=\max(n),
                    m_min=min(m),m_max=max(m),
                    h_min=min(h),h_max=max(h)))
    return(ans)
}
Ivec <- seq(-1, -4, by=-0.05)
res <- t(sapply(Ivec,get_maxmin))</pre>
```

what do we now?

- project into lower dimensions
- simplification: separate into slow and fast components
- (find small values?)
- map changes in nullclines (how?)

library(phaseR)

```
## phaseR: Phase plane analysis of one- and two-dimensional autonomous ODE systems
##
## v.2.1: For an overview of the package's functionality enter: ?phaseR
##
## For news on the latest updates enter: news(package = "phaseR")
HHeq <- res0[nrow(res0),c("v","n","m","h")]</pre>
HHgrad2d <- function(t, y, parms) {</pre>
    full_y <- c(v=y[["v"]],m=y[["m"]],n=HHeq[["n"]],h=HHeq[["h"]])</pre>
    list(HHgrad(t,full_y,parms)[[1]][c("v","m")])
HHgrad2d(0,y0[c("v","m")], parms0)
```


Figure 3: Hodgkin-Huxley bifurcation

3.5 4.0

```
## [[1]]
## 0.21059895 0.01238554
phasePlaneAnalysis(HHgrad2d, xlim=c(-120,10),
                   parameters=parms,
                   state.names=c("v","m"),
                   ylim=c(0,1))
```

Analysis: Poincaré-Bendixson

- bounded trajectories that don't approach a singular point are closed & periodic or approach a closed & periodic orbit
 - bounded region *D* that contains a single repelling (unstable) point, all flow inward
 - bounded annulus *A* containing no equilibria
- Bendixson: if *D* is simply connected, $\partial F/\partial x + \partial G/\partial y$ is not identically zero and doesn't change sign, then no closed orbits exist

Cubic nullclines

$$\frac{du}{dt} = v - G(u)$$
$$\frac{dv}{dt} = -u$$

and
$$G(u) = -(G(-u))$$

• nullclines v = G(u), u = 0

Fitzhugh-Nagumo model

$$\frac{dx}{dt} = c\left(y + x - x^3/3 + z(t)\right) \approx \text{Voltage}$$

$$\frac{dy}{dt} = -\frac{x - +a + by}{c} \approx \text{recovery}$$

Hopf bifurcations

References

Edelstein-Keshet, Leah. 2005. "8. Limit Cycles, Oscillations, and Excitable Systems." In Mathematical Models in Biology, 311–80. Classics in Applied Mathematics. Society for Industrial; Applied Mathematics. https://doi.org/10.1137/1.9780898719147.ch8.

- Ermentrout, G. Bard, and David H. Terman. 2010. Mathematical Foundations of Neuroscience. Vol. 35. Interdisciplinary Applied Mathematics. New York, NY: Springer New York. https://doi.org/10. 1007/978-0-387-87708-2.
- Wang, Wendi, and Shigui Ruan. 2004. "Bifurcations in an Epidemic Model with Constant Removal Rate of the Infectives." Journal of Mathematical Analysis and Applications 291 (2): 775-93. https: //doi.org/10.1016/j.jmaa.2003.11.043.