Shortest Distance (S.D) (21, 41, Z1)
पूर्ण लारेन पूर्व Plane (म) (11, m, n) (11, m, n) (11, m, n) (11, m, n) (12, m, n)
Perchendicular distance সের (ম (এফ্রাংমা) ছায়া, ভ্রাস্থ ছায়াকে Shortest Distance কলে। / Perchendicular, Line সের চাল্ডাection ই Shortest Distance:
S.D = 1(x2-x1) + m(y2-y1) + n(=2-21) प्रिंग नार्नित Direction of cosine यापि स्माना नार्यन प्रमान perpendicular यमः
$SD_{-1}(i)$ $U_1+mm_1+nn_1=0$ $SD_{-1}(ii)$ $U_1+mm_2+nn_2=0$ $U_1+mm_2+nn_2=0$
ming-moni nilo-noli moli-milo the two lines are,
$\frac{x - x_{4}}{J_{4}} = \frac{y - y_{1}}{m_{1}} = \frac{z - z_{1}}{m_{1}} $
$\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2} (ii)$

Find the shortest distance between the lines,
$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
Siven that, $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-6}{1}$

$$\frac{x+3}{3} = \frac{y+3}{2} = \frac{z-6}{4}$$
(ii)

(i)
$$\Rightarrow$$
 $(x_1,y_1, z_1) = (3,8,3)$ (ii) \Rightarrow $(x_2,y_2,z_2) = (3,7,6)$
 $(x_1,m_1,n_1) = (3,-1,1)$ ($(x_2,y_2,z_2) = (3,7,6)$
 $(x_2,y_2,z_2) = (3,7,6)$
 $(x_2,y_2,z_2) = (3,7,6)$
 $(x_2,y_2,z_2) = (3,7,6)$
 $(x_2,y_2,z_2) = (3,7,6)$

det, U, m, n be the d. c. of S.D. line . Since S.D. line is perpendicular to (i) and (ii) then, its

$$3l-m+n=0$$

$$31-m+n=0$$

$$31+2m+4n=0$$
By cross-multiplication,

$$\frac{1}{-4-2} = \frac{-m}{32+3} = \frac{n}{6-3}$$

$$\Rightarrow -1 \qquad m \qquad n$$

$$\Rightarrow \frac{1}{-6} = \frac{m}{-15} = \frac{n}{3} = \frac{\sqrt{12+m^2+n^2}}{\sqrt{(-6)^2+(-15)^2+3^2}}$$

$$\Rightarrow 1$$

$$= \frac{1}{-6} = \frac{m}{-15} = \frac{n}{3} = \frac{1}{3\sqrt{30}}$$

$$\frac{1}{12} = \frac{m}{-5} = \frac{n}{1} = \frac{1}{\sqrt{30}}$$

work greeted annotable testinate out brid $\frac{130}{1-5} \% = \frac{130}{-5} \% = \frac{130}{7} \% = \frac{130}{7} \% = \frac{130}{1-5} \%$ S.D = 1 (x2-x1) + m(y2-y2) + 7 (Z2-121) nin $=\frac{-2}{\sqrt{30}}(-3-3)+\frac{-5}{\sqrt{30}}(-7-8)+\frac{1}{\sqrt{30}}(6-3)$ $\frac{4) \cdot 2x + 3}{-2} = \frac{9 - 6}{3} = \frac{27.6}{3} = \frac{3 - 6}{3} = \frac{37.6}{3} = \frac{3}{1}$ $\begin{bmatrix} 2 + 3/2 \\ -4 \end{bmatrix}$ $\begin{bmatrix} 2 - 3 \\ 3/2 \end{bmatrix}$