Einführung in MATLAB

Dr. J. Schulz Einheit 2

Aufgabe 1:

Starten Sie das Programm plot_poly. Der Graph welchen Polynoms wird dargestellt? Erklären Sie das Programm ausw_poly2.

Aufgabe 2:

Stellen Sie das Polynom

$$p(x) = x^5 - 4x^4 - 10x^3 + 40x^2 + 9x - 36$$

grafisch dar. Wo sind die Nullstellen?

Aufgabe 3:

Schreiben sie das Programm randwertaufgabe um in eine Funktion welche als Inputparameter den Parameter n erhält. Die Funktion soll prüfen ob der Parameter n in dem Bereich 20-200 liegt und falls nicht das programm abbrechen. Das Resultat der Berechnung soll als Vektor zurückgeben werden.

Hinweis: das Abbrechen des Programms kann mit return erreicht werden.

Aufgabe 4:

Schreiben Sie eine Funktion, die zu einem gegebenen Vektor dessen Durchschnitt berechnet und zurückgibt.

Aufgabe 5:

Schreiben Sie eine Funktion, die zu einem gegebenen Vektor $x = (x_1, \dots, x_n)$ die Vandermonde-Matrix

$$V := \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

berechnet und zurückgibt.

Hinweis: V=A.^B. mit

$$A := \begin{pmatrix} x_1 & x_1 & x_1 & \dots & x_1 \\ x_2 & x_2 & x_2 & \dots & x_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & x_n & x_n & \dots & x_n \end{pmatrix}, \quad B := \begin{pmatrix} 0 & 1 & 2 & \dots & n-1 \\ 0 & 1 & 2 & \dots & n-1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & 2 & \dots & n-1 \end{pmatrix}$$

Aufgabe 6:

Lösen Sie näherungsweise die Fixpunktgleichung

$$x_f = e^{(-x_f)}.$$

Aufgabe 7:

Berechnen Sie eine Nullstelle von

$$f(x) = \cos^2(x) - x.$$

Aufgabe 8:

Schreiben Sie eine Funktion, die für $n \in \mathbb{N}$ die Hilbert-Matrix $H = (h_{ij})_{i,j=1}^n$ mit $h_{ij} = \frac{1}{i+j-1}$ berechnet. Berechnen Sie H^{-1} für n = 4.

Aufgabe 9:

Berechnen Sie die Nullstellen von

$$x^2 - 2$$
, $x^2 - 2x + 1$, $x^2 - 4x + 10$.

Aufgabe 10:

Die Fibonacci-Folge ist definiert durch

$$f_1 := 1, \quad f_2 := 1, \quad f_{k+2} := f_{k+1} + f_k, \ k \in \mathbb{N}.$$

Schreiben Sie ein Programm, das

$$g_k := \frac{f_{k+1}}{f_k}, \quad k \in \mathbb{N}$$

berechnet. Stoppen Sie, falls $|g_k - g_{k+1}| \le TOL$. Geben Sie für $TOL = 10^{-3}$ und $TOL = 10^{-4}$ das entsprechende k und das entsprechende g_k an.

Hinweis: Benutzen Sie eine while-Schleife.

Aufgabe 11:

Seien y_1, y_2 zwei Punkte im \mathbb{R}^2 . Wir betrachten die Strecke mit Endpunkten y_1 und y_2 . Wir ersetzen diese Strecke durch 4 Strecken $\overline{y_1z_1}$, $\overline{z_1z_2}$, $\overline{z_2z_3}$, $\overline{z_3y_2}$ mit Endpunkten $z_1 = \frac{2}{3}y_1 + \frac{1}{3}y_2$, $z_3 = \frac{1}{3}y_1 + \frac{2}{3}y_2$ und

$$z_2 = \frac{\sqrt{3}}{6} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (y_1 - y_2) + \frac{1}{2}(y_1 + y_2).$$

Analog zum Beispiel des Sierpinski-Dreiecks soll jede neue Teilstrecke wiederum mittels der gleichen Prozedur durch 4 Strecken ersetzt werden. Schreiben Sie ein Programm, dass diese Prozedur k-mal wiederholt und das Ergebnis plottet.