Basic Mathematics, Fall 2020

Karen Keryan, ASDS, YSU

October 27, 2020

Definition of the derivative

Assume f is defined in some neighbourhood of $x_0 \in \mathbb{R}$.

Definition

We will say that f is differentiable at x_0 , or f has a derivative at x_0 , if the following limit

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists and is finite. We will denote

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

and refer the number $f'(x_0)$ as the derivative of f at x_0 .

Example

Find the derivative of x^3 using the definition of the derivative.

The list of elementary derivatives

- $0 \quad c' = 0;$
- $(x^{\alpha})' = \alpha x^{\alpha 1};$
- $(e^x)' = e^x$, and in general $(a^x)' = a^x \ln a$;
- $\bullet \quad (\ln x)' = \frac{1}{x},$
- $(\sin x)' = \cos x;$
- $(\cos x)' = -\sin x;$

Differentiation Rules

If the functions f and g are differentiable, then

Sum Rule: (f(x) + g(x))' = f'(x) + g'(x)

Product Rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)

Quotient Rule: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$

Chain Rule: $(g(f(x))' = (g \circ f)'(x) = g'(f(x))f'(x)$

Compute the derivative of the functions $f(x) = e^{x^2}$, $g(x) = x \ln(5x)$, 2f(x) + 3g(x) and $\frac{f(x)}{g(x)}$.

Example

Let X be a continuous random variable with probability density f_X , distribution F_X and let $Y=X^2$. Find the distribution F_Y in terms of F_X and the probability density function f_Y in terms of f_X (for $y \ge 0$).

Taylor Series

Definition

The Taylor polynomial of degree n of $f: \mathbb{R} \to \mathbb{R}$ at x_0 is defined as

$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

where $f^{(k)}(x_0)$ is the kth derivative of f at x_0 (which we assume exists) and $\frac{f^{(k)}(x_0)}{k!}$ are the coefficients of the polynomial.

Definition

For a smooth function $f \in C^{\infty}, f : \mathbb{R} \to \mathbb{R}$ the **Taylor series** of f at x_0 is defined as

$$T_{\infty}(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Remark

In general, a Taylor polynomial of degree n is an approximation of a function, which does not need to be a polynomial. The Taylor polynomial is similar to f in a neighborhood around x_0 .

Example

Find the Taylor polynomial $T_5(x)$ of $f(x) = x^3$ at point $x_0 = 2$. Verify that $T_5(x) = f(x)$.

Remark

Taylor polynomial of degree n is an exact representation of a polynomial f of degree $k \leq n$.

Find the Taylor series of the function $f(x) = e^x$ at $x_0 = 0$.

Taylor's theorem

If $|f^{(n+1)}(x)| \leq M$ for $x \in (x_0 - h, x_0 + h)$, then

$$f(x) = T_n(x) + r_n(x)$$
, where $|r_n(x)| \le \frac{M}{n!} |x - x_0|^{n+1}$,

for $x \in (x_0 - h, x_0 + h)$.

To approximate the derivative $f'(x_0)$ one can use

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

which usually yields a better approximation than

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$
.

The list of elementary integrals

Proposition

- $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \text{ if } \alpha \neq -1;$
- $\int \frac{\mathrm{d}x}{x} = \ln|x| + C;$
- $\int \sin x dx = -\cos x + C;$
- $\int \frac{\mathrm{d}x}{1+x^2} = \arctan x + C;$

Example

Compute E[X] if X has a density function given by

$$f(x) = \begin{cases} \frac{3}{x^2}, & x > 3\\ 0, & x \le 3 \end{cases}.$$

For some constant c, the random variable X has the probability density function $f(x) = \begin{cases} cx^5, & 0 < x < 3 \\ 0, & otherwise \end{cases}$. Find the constant c, E[X] and Var(X).

Integration by parts

Integration by parts for indefinite integrals

If f and g both have antiderivatives on (a, b), then

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx,$$

or

$$\int f(x)dg(x) = f(x)g(x) - \int g(x)df(x).$$

Example

Evaluate $\int x \sin x dx$.

Integration by parts for definite integrals

If f and g both are continuously differentiable on [a,b], then

$$\int_a^b f(x)g'(x)\mathrm{d}x = f(x)g(x)\Big|_a^b - \int_a^b f'(x)g(x)\mathrm{d}x.$$

Example

Evaluate $\int_0^1 x^2 e^x dx$.

Example

Let X be an exponential random variable with parameter λ . Calculate E[X] and Var(X).

Recall that r.v. X is said to be **exponential** r.v. if its probability density function is given, for some $\lambda > 0$, by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$

a) Prove that the gamma function $\Gamma(\alpha)$, defined as

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha - 1} e^{-y} dy$$

satisfies the relation

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1).$$

b) Let X be a gamma r.v. with parameters α and λ . Calculate E[X] and Var(X).

Recall that a r.v. is said to have a gamma distribution with parameters (α, λ) , if its density function is given by

$$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$