Notes - 11 Mar

State i is recurrent:  $P(X_n = i \text{ some } n \ge 1 | X_0 = i) = 1$ . i is transient:  $P(X_n = i \text{ some } n \ge 1 | X_0 = i) < 1$ .  $f_{ij}(n) = P(X_1 \ne j, X_2 \ne j, \dots, X_n \ne j, X_n = j | X_0 = i)$ .  $f_{ij} = \sum_{n=1}^{\infty} f_{ij}(n)$ . j is recurrent  $\iff f_{jj} = 1$ . Theorem - j is recurrent if  $\sum_n P_{jj}^n = \infty$ . j is transient if  $\sum_n P_{jj}^n < \infty$ .

 $T_j = \min\{n \geq 1 : X_n = j\}$ . time of first visit to  $j(X_0 = i).\mathring{P}(T_i = \infty | X_0 = i) > 0 \iff i$  is transient.  $\mu_i = E(T_i | X_0 = i) = \{\Sigma_{n=1}^{\infty} f_{ii}(n) \text{ for i recurrent, } \infty \text{ for i transient. Recurrent state is null if } \mu_i = \infty.$  Recurrent state is positive if  $\mu_i < \infty$ .

Theorem - Recurrent state is null iff  $P_{ii}^n \to 0$  as  $n \to \infty$ . etc, more review...

New stuff:

Example 3.2.8 -  $S = \{0, 1, 2, 3, 4, 5\}.$ 

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1/4 & 3/4 & 0 & 0 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 & 0 \\ 1/4 & 0 & 1/4 & 1/4 & 0 & 1/4 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \end{pmatrix}$$

.  $\{0,1\},\{4,5\}$  irreducible and closed. Therefore contain positive recurrent states. 2, 3 are transient:  $2 \to 3 \to 5$ . But return to 2 or 3 from 5 is impossible.  $T = \{2,3\}, C_1 = \{0,1\}, C_2 = \{4,5\}$ . All states have period 1 since  $P_{ii} > 0$  for all i (all entries on diagonal > 0). 0, 1, 4, 5 are ergodic. We can compute  $f_0(1) = P_{00} = 1/2, f_{00}(n) = P_{01}(P_{11})^{n-2}P_{10} = 1/2(3/4)^{n-2}1/4, n \ge 2.\mu_0 = \Sigma_n f_{00}(n) * n = 3$ .

Example 3.2.9 - Success Runs -  $S=\{0,1,\dots\}$ .  $P=(q0\ p0\ 0\dots \&\ q1\ 0\ p1\ 0\dots \&\ q2\ 0\ 0\ p2\ 0\dots \&\ \dots)$ .  $q_{ii}p_i\geq 0, q_i+p_i=1$  for all i. This is a success run chain. Intuition: assume  $p_i=p$  for all i. We attempt independent Bernoulli trials with probability p of success. We count the number of successful trials in a row. If we had n successes in a row, we can extend the run to n+1 if we have success on the next trial or we start over with a run of 0 if we fail in the next trial. This gives the row  $(q(0th)\ 0\dots p((n+1)st)\ 0\dots)$ . We assume  $0< p_i<1$  for all i so the chain is irreducible. This means state i is recurrent iff state 0 is recurrent. We have  $f_{00}(1)=q_0$ , and for  $n\geq 2$ ,  $f_{00}(n)=P(X_1=1,X_2=2,\dots,X_{n-1}=n-1,X_n=0|X_0=0)=P_0P_1P_2\dots P_{n-2}*q_{n-1}$ . Set  $U_n=\prod_{i=0}^n P_i, n\geq 0$  since  $q_{n-1}=1-P_{n-1}, f_{00}(n)=U_{n-2}-U_{n-1}=\prod_{i=0}^{n-2} P_i(1-P_{n-1})$ . So  $\sum_{n=1}^{N+1} f_{00}(n)=q_0+(U_0-U_1)+\dots+(U_{N-1}-U_N)=q_0+U_0-U_N=1-U_N$ . 0 is recurrent iff  $U_N=\prod_{i=0}^N P_i\to 0$  as  $N\to\infty$ . L'Hopital's rule implies that if  $0< P_i<1$  for all  $i,U_N=\prod_{i=0}^N P_i\to 0$   $\Longrightarrow \sum_{i=0}^\infty (1-P_i)=\infty$ .  $\prod_{i=0}^\infty P_i>0$   $\Longleftrightarrow \sum_{i=0}^\infty (1-P_i)<\infty$ . 0 is recurrent iff  $\sum_{i=0}^\infty (1-P_i)=\infty$ , or the  $P_i$ 's cannot be too close to 1. If  $P_i=1-(1/2)^i$ , not recurrent.  $P_i$  constant then recurrent. (Chapter IV, section §3 in text.)

 $\S$  3.3 - Stationary distributions and the limit theorem

We consider behavior as  $n \to \infty$ . Does the distribution of  $X_n$  converge to something?

Example 3.3.1 - ON/OFF system - ex 2.2.3 - P = (1 - p, p & q, 1 - q).  $P^n$  as before.  $0 [as before]. We choose the initial state <math>X_0$  according to the probabilities  $P(X_0 = 0) = \nu_0, P(X_0 = 1) = \nu_1 = 1 - \nu_0$ .

Definition 3.3.1 - An initial distribution is a probability distribution for the initial state of a Markov chain. The probability distribution of  $X_1$ , conditioned on  $X_0$  is  $P(X_1 = j|X_0) = P_{0j}\nu_0 + P_{ij}\nu_1, j = 0, 1$ . Matrix notation  $(P(X_1 = 0|X_0)P(X_1 = 1|X_0)) = \nu p$ . Suppose we take  $\nu_0 = \frac{q}{q+p}, \nu_1 = \frac{p}{q+p}$ . If we compute,  $P(X_1 = 0) = (1-p)\frac{q}{q+p} + q\frac{p}{q+p} = \frac{q}{p+q} = \nu_0$  and  $P(X_1 = 1) = \nu_1$ . In matrix notation  $\nu = \nu p$ . That particular initial distribution does not change over time.

Definition 3.3.2 - Let S = state space, The vector  $\Pi$  is a stationary distribution if  $\Pi = (\Pi_i)_{i \in S}$  satisfies (1)  $\Pi_i \geq 0$  all i,  $\Sigma_{i \in S} \Pi_i = 1$ , (2)  $\Pi = \Pi P(\Pi_j = \Sigma_{i \in S} \Pi_i P_{ij} \text{ all } j \in S)$ . P = probability transition matrix. These are also called invariant distributions and equilibrium distributions.

Theorem 3.3.1 - If  $\Pi$  is a stationary distribution, (3.3.1)  $\Pi P^n = \Pi$  for all  $n \geq 0$ . If  $X_0$  has distribution  $\Pi$ , then so does  $X_n$  for  $n \geq 0$ . Proof: exercise.

Aside: long time behavior of ODE's  $\dot{y} = f(y)$ . Stead-state/equilibrium solutions  $f(y_s) = 0 \Rightarrow y_s$  constant,  $\dot{y}_s = f(y_s) = 0$ .

We assume the chain is irreducible and explore the existence of stationary distributions.

Example 3.3.2 - Consider ex 3.3.1 (ON/OFF),  $\Pi = \Pi P = (\Pi_0 \Pi_1)(1-p, p \& q, 1-q) = (\Pi_0 \Pi_1) \Rightarrow \Pi_1 = p/q\Pi_0$  (1st equation),  $\Pi_1 = p/q\Pi_0$  (2nd equation),  $\Pi_0 + \Pi_1 = 1 \Rightarrow \Pi = (\frac{q}{p+q}, \frac{p}{p+q})$ .