AM3-W1, 08.10.25

Topologia

Def.

X – zbiór. Rodzinę zbiorów $\mathcal{T} \subset 2^X$ nazywamy topologią \Leftrightarrow

- a) $\emptyset, X \in \mathcal{T}$
- b) $\forall_{\alpha \in A} \ U_{\alpha} \in \mathcal{T} \Rightarrow \bigcup \{U_{\alpha} : \alpha \in A\} \in \mathcal{T}$
- c) $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$

Zbiory należące do \mathcal{T} nazywamy otwartymi.

 $A^c \in \mathcal{T} \Rightarrow A$ jest domknięty.

Przykład

 $\mathcal{T} = 2^X \leftarrow \text{topologia dyskretna}$

 $\mathcal{T} = \{\emptyset, X\} \leftarrow \text{topologia antydyskretna}$

Przestrzeń metryczna

Def.

Przestrzenią metryczną nazywamy parę (X,d), gdzie X to zbiór, a $d: X \times X \to [0,\infty)$ to funkcja, zwana metryką, spełniająca następujące warunki:

- (1) d(x,y) = d(y,x),
- $(2) \ d(x,y) = 0 \iff x = y,$
- (3) $d(x,y) \le d(x,z) + d(z,y)$.

Niech (X, d) będzie przestrzenią metryczną.

 $A \subset X$ jest otwarty, gdy

$$\forall_{x_0 \in A} \exists_{r>0} B(x_0, r) \subset A.$$

ad.b.

$$x_0 \in \bigcup_{\alpha \in A} U_\alpha \Leftrightarrow \exists_{\alpha_0 \in A} \ x_0 \in U_{\alpha_0} \Rightarrow \exists_{r>0} \ B(x_0, r) \subset U_{\alpha_0} \subset \bigcup_{\alpha \in A} U_\alpha.$$

ad.c

$$x_0 \in U \cap \widehat{U} \Rightarrow \exists_{r,\widehat{r}>0} \ B(x_0,r) \subset U, \ B(x_0,\widehat{r}) \subset \widehat{U} \Rightarrow B(x_0,\min\{r,\widehat{r}\}) \subset U \cap \widehat{U}.$$

 $(\mathcal{T}_d$ nazywamy topologią zadaną przez metrykę d, jeśli zachodzi: $U \in \mathcal{T}_d \iff \forall_{x \in U} \exists_{\varepsilon > 0} B(x, \varepsilon) \subset U)$

Wnętrze i dokmnięcie zbioru

Def.

Wnętrzem zbioru A nazwiemy sumę wszystkich zbiorów otwartych zawartych w A:

$$int(A) = \bigcup \{U \in \mathcal{T} : U \subset A\}$$

Def.

Domknięciem A nazywamy przecięcie wszystkich zbiorów domkniętych zawierających A:

$$\overline{A} = \bigcap \{F : F^c \in \mathcal{T}, F \supset A\}$$

Stwierdzenie o wnętrzu i domknięciu

- a) int $A \subset A \subset \overline{A}$
- b) int $A \in \mathcal{T}, (\overline{A})^c \in \mathcal{T}$
- c) int $A \supset \{x \in A : \exists_{x \in U \in \mathcal{T}} \ U \subset A\}$
- d) $\overline{A} = (\operatorname{int} A^c)^c$

ad. a

$$x \in \operatorname{int} A \Rightarrow \exists_{U \in \mathcal{T}} x \in U \subset A$$

$$\overline{A} = \bigcap \{F : F^c \in \mathcal{T}, F \supset A\} \Rightarrow A \subset \overline{A} \Rightarrow \operatorname{int} A \subset A \subset \overline{A}.$$

ad. b

ad. c

$$x \in \operatorname{int} A \Leftrightarrow x \in \bigcup \{U \in \mathcal{T} : U \subset A\} \Rightarrow \exists_{U \in \mathcal{T}} x \in U \subset A.$$

$$\exists_{U \subset A, U \in \mathcal{T}} x \in U \Rightarrow x \in \bigcup \{U \in \mathcal{T} : x \in U \subset A\} = \operatorname{int} A.$$

ad. d

Rachunek z ad.b. pokazuje $\overline{A} = (\operatorname{int} A^c)^c$.

Wniosek

$$x \in \overline{A}^c \iff \exists_{U \in \mathcal{T}} \ x \in U \subset A^c \quad \text{(wynika z d) i c) stw., bo } \exists_{U \in \mathcal{T}} \ x \in U \subset A^c \iff x \in \operatorname{int} A^c \text{)}$$

Brzeg

Def.

Brzegiem zbioru A nazywamy zbiór $\partial A = \overline{A} \setminus \operatorname{int} A$

Wniosek

$$x \in \partial A \iff \forall_{x \in U \in \mathcal{T}} \ U \cap A \neq \emptyset, U \cap A^c \neq \emptyset$$

Dowód

$$x\in\partial A\Leftrightarrow x\in\overline{A},\ ale\ x\notin\operatorname{int} A.$$
Gdyby $\exists_{x\in U\in\mathcal{T}}\ U\cap A=\varnothing\Rightarrow U\subset A\Rightarrow x\in\operatorname{int} A\Rightarrow x\in\overline{A}^c$ sprzeczność $U\cap A^c=\varnothing\Rightarrow U\subset A\Rightarrow x\in\operatorname{int} A$ sprzeczność \square

Twierdzenie o trichotomii

Tw.

Dla każdego zbioru Aprzestrzeń Xrozpada się na sumę trzech rozłącznych zbiorów:

$$X = \operatorname{int}(A) \sqcup \operatorname{int}(A^c) \sqcup \partial A.$$

Przykład

$$\operatorname{int} \mathbb{Q} = \emptyset, \operatorname{int} \mathbb{Q}^c = \emptyset, \operatorname{int} \partial \mathbb{Q} = \mathbb{R}$$

Zbiór gęsty

Def.

$$A$$
jest gęsty w $X\iff \overline{A}=X$

Zbiór graniczny

Def.

Zbiorem granicznym nazywamy $Lim(x_n)_{n=1}^{\infty} := \{x_0 \in X : \forall_{x_0 \in U \in \mathcal{T}} \#\{n \in \mathbb{N} : x_n \notin U\} < \infty\}.$

Przeliczalna baza otoczeń

Def.

Mówimy, że x_0 ma przeliczalną bazę otoczeń $\iff \exists_{\{V_n\}_{n=1}^{\infty} \subset \mathcal{T}} \ \forall_n \ x_0 \in x_n \ \land \ \forall_{x \in U \in \mathcal{T}} \ \exists_n \ V_n \subset U$

Def.

Mówimy, że przestrzeń topologiczna (X, \mathcal{T}) ma przeliczalną bazę otoczeń (pierwszy warunek przeliczalności) \iff każdy punkt $x \in X$ ma przeliczalną bazę otoczeń.

Uwaga

Przestrzenie metryczne mają przeliczalne bazy otoczeń.

Przykłady

1.
$$\mathcal{T} = 2^X$$

$$x_k \in \Lambda(x_n) \iff \exists_{n_0 \in \mathbb{N}} \ \forall_{n \ge n_0} \ x_n = x_0$$
2. $\mathcal{T} = \{\emptyset, X\}$

$$\Lambda(x_n) = X$$

Topologia Hausdorffa

Def.

Parę (X, \mathcal{T}) nazywamy topologią Hausdorffa, jeżeli spełniony jest warunek

$$\forall_{x_1, x_2 \in X, x_1 \neq x_2} \exists_{U_1 \ni x_1, U_2 \ni x_2, U_1, U_2 \in \mathcal{T}} U_1 \cap U_2 = \emptyset.$$

Uwaga

Kada przestrzeń metryczna jest przestrzenią Hausdorffa.

$$d_0 = d(x, \hat{x}) > 0$$

 $U = B(x, \frac{d_0}{3}), \ \hat{U} = B(\hat{x}, \frac{d_0}{3}).$

Fakt

Jeśli (X, \mathcal{T}) jest prz. Hausdorffa, to dla dowolnego ciągu $(x_n)_{n=1}^{\infty} \#Lim(x_n) \leq 1$.

Dowód

Przypuśćmy, że $x, \hat{x} \in Lim(x_n), x \neq \hat{x}$. Wybieramy U, \hat{U} .

$$\{n\in\mathbb{N}:x_n\in U\}\wedge\{n\in\mathbb{N}:x_n\in\hat{U}\}=\varnothing\Rightarrow\{n\in\mathbb{N}:x_n\notin U\}\cup\{n\in\mathbb{N}:x_n\in\hat{U}\}=\mathbb{N}.$$

Wobec tego jeden z tych zbiorów jest nieskończony, przez co odpowiedni punkt nie należy do $Lim(x_n)$. \square

AM3-W2, 08.10.25 (niesformatowane z wykładem) (bez uzupełnionych dowodów)

Definicja (domknięcia ciągowego).

Domknięciem ciągowym A nazywamy zbiór

$$scl(A) := \{x_0 \in X : \exists_{(x_n) \in A} \ x_0 \in \Lambda((x_n)_{n=1}^{\infty})\}.$$

Twierdzenie (o domknięciu i domknięciu ciągowym).

Zachodzi zawieranie $scl(A) \subset \overline{A}$, a jeżeli topologia jest metryzowalna, to $scl(A) = \overline{A}$.

Uwaga.

Bez założenia metryzowalności równość nie jest prawdziwa.

Wniosek

Kryterium domkniętości zbioru w przestrzeni metrycznej: A = scl(A)

Definicja (funkcji ciągłej).

Funkcję $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ nazywamy **ciągłą**, jeżeli przeciwobraz dowolnego zbioru otwartego jest otwarty, tzn.

$$\forall_{U \in \mathcal{T}_Y} f^{-1}(U) \in \mathcal{T}_X.$$

Definicja (funkcji ciągłej w sensie Heinego).

Funkcję $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ nazywamy ciągłą w sensie Heinego, jeżeli

$$\forall_{(x_n)\in X} \ x_0 \in \Lambda((x_n)_{n=1}^{\infty}) \implies f(x_0) \in \Lambda((f(x_n))_{n=1}^{\infty}),$$

gdzie w przestrzeniach Hausdorffa zbiór graniczny zamieniany jest na granicę.

Twierdzenie (o równoważnych warunkach ciągłości).

Jeśli f jest ciągła, to zachodzi warunek Heinego ciągłości. Jeśli topologia jest metryzowalna, to implikacja zachodzi też w drugą stronę.

Definicja (bazy topologii).

Bazą topologii \mathcal{T} nazywamy taką rodzinę $\mathcal{B} \subset \mathcal{T}$, że dowolny zbiór $U \in \mathcal{T}$ ma postać

$$U = \bigcup \{ V \in \mathcal{B}' : \mathcal{B}' \subset \mathcal{B} \}.$$

Stwierdzenie (o bazie topologii \mathcal{T}_d).

Kule otwarte stanowią bazę w \mathcal{T}_d .

Definicja (podbazy topologii).

Rodzinę \mathcal{P} nazwiemy **podbazą** topologii \mathcal{T} , jeżeli zbiór \mathcal{B} taki, że

$$\mathcal{B} = \left\{ \bigcap \{ V \in \mathcal{P}' : \mathcal{P}' \subset \mathcal{P}, \#\mathcal{P}' < \infty \} \right\}$$

jest bazą w \mathcal{T} .

Uwaga.

Zbiór \mathcal{B} zawiera całą przestrzeń X jako przecięcie pustej rodziny dla $\mathcal{P}'=\emptyset$. Przestrzeń ta jest również zamknięta ze względu na przecięcie dwóch zbiorów z \mathcal{B} . Wynika stąd, że każda rodzina $\mathcal{P}\subset 2^X$ określa pewną topologię na X.

Sposoby zadawania topologii

Przez bazę:

$$\mathcal{B} \subset 2^X$$
. Definiujemy $\mathcal{T}(\mathcal{B}) := \{ \bigcup \{ V \in \mathcal{B}_0 : \mathcal{B}_0 \subset \mathcal{B} \} \}$

Przykłady

W przestrzeni metrycznej
$$\mathcal{T}(\{B(x,r):x\in X,r>0\})=\mathcal{T}.$$
 $\mathcal{B}=\{[a,b]:a< b,a,b\in\mathbb{R}\}.$ $(0,1)=\bigcup\{[\frac{1}{n},1-\frac{1}{n}]:n\in\mathbb{N}\}.$ Topologia nie spełnia c), bo $[a,b]\cap[b,c]=\{b\}.$

Fakt

$$\mathcal{T}(\mathcal{B})$$
 jest topologią \iff

a)
$$\bigcup_{U \in \mathcal{B}} U = X$$
.

a)
$$\bigcup_{U \in \mathcal{B}} U = X$$
.
b) $\forall_{U,V \in \mathcal{B}} U \cap V \in \mathcal{T}(\mathcal{B})$

Definicja (iloczynu kartezjańskiego).

Iloczyn kartezjański definiujemy jako

$$\prod_{\alpha \in A} X_{\alpha} := \{ \varphi : A \to \bigcup_{\alpha \in A} X_{\alpha} : \forall_{\alpha \in A} \ \varphi(\alpha) \in X_{\alpha} \}.$$

Pewnik wyboru

$$\forall_{\alpha \in A} \ X_{\alpha} \neq \emptyset \implies \prod_{\alpha \in A} \{X_{\alpha} : \alpha \in A\} \neq \emptyset$$

$$\exists_{\varphi} \ \varphi : A \to \bigcup_{\alpha \in A} X_{\alpha}, \ \forall_{\alpha \in A} \ \varphi(\alpha) \in X_{\alpha} \ (\mathbf{selektor})$$

AM3-W3, 15.10.25 (bez uzupełnionych dowodów)

$$(X_{\alpha}, \mathfrak{T}_{\alpha}), X = \prod \{X_{\alpha} : \alpha \in A\}$$

Definicja cylindra otwartego

Cylindrem (otwartym) w X nazywamy zbiór:
$$C_{\alpha}(U_{\alpha}) = \{ \varphi \in X : \varphi_{\alpha} \in U_{\alpha} \}, U_{\alpha} \in \mathfrak{T}_{\alpha}$$

Definicja Topologii Tichonowa (produktowej)

Topologia Tichonowa na
$$X$$
 jest zadana przez podbazę $\mathcal{P}_X = \{C_{\alpha}(U_{\alpha}) : \alpha \in A, U_{\alpha} \in \mathfrak{T}_{\alpha}\}\$ $\mathcal{B}_X = \mathcal{B}(\mathcal{P}_X) = \{\bigcap_{j=1}^n C_{\alpha_j}(U_{\alpha_j}) : n=0,1,2,\ldots,\alpha_i \in A, U_{\alpha_i} \in \mathfrak{T}_{\alpha_i}\}\$ Dla produktu skończenie wielu przestrzeni $X_1,\ldots,X_n,$ $\mathcal{B}_X = \{\prod_{j=1}^n U_j : \forall_j \ U_j \in \mathfrak{T}_j\}$

Stwierdzenie o zbieżności w topologii Tichonowa

Jeśli dany jest ciąg
$$(\varphi_n)_{n=0}^{\infty}$$
 w X , to $\varphi_0 \in \text{Lim}(\varphi_n)_{n=1}^{\infty} \iff \forall_{\alpha \in A} \ \varphi_0(\alpha) \in \text{Lim}(\varphi_k(\alpha))_{k=1}^{\infty}$ $(X_1,d_1),\ldots,(X_n,d_n)$ - prz. metryczne , gdzie $X=\prod_{i=1}^n X_i,\ \mathfrak{T}$ - top. Tichonowa

Definicja metryki produktowej

$$d_{\pi}((x_i)_{i=1}^{\hat{n}}, (\hat{x}_i)_{i=1}^{\hat{n}}) = \max\{d_i(x_i, \hat{x}_i) : i = 1, \dots, \hat{n}\}\$$

Tw. o równości topologii dla skończonego produktu

$$\mathfrak{T}_X = \mathfrak{T}_{d_{\pi}}, x_0 = (x_1, \dots, x_{\hat{n}})$$

Definicja pokrycia i podpokrycia

$$(X,\mathfrak{T}), Z \subset X$$
. Podrodzina zbiorów otwartych $\{U_{\alpha}\}_{\alpha \in A}$ w X nazywa się **pokryciem (otwartym)** zbioru $Z \iff Z \subset \bigcup \{U_{\alpha} : \alpha \in A\}$. Powiemu, że $\{U_{\alpha}\}_{\alpha \in \hat{A}}$ jest **podpokryciem** $\{U_{\alpha}\}_{\alpha \in A} \iff \hat{A} \subset A$ i jest pokryciem

Definicja zbioru zwartego

Zbiór $K \subset X$ nazywamy **zwartym** \iff dla każdego pokrycia otwartego K istnieje jego podpokrycie skończone.

Twierdzenie o zbiorach zwartych i domkniętych

$$K \subset X$$
, (X, \mathfrak{T})

- a) Jeśli X jest zwarta, a K domkniety, to K jest zwarty
- b) Jeśli X jest Hausdorffa i K jest zwarty, to K jest domknięty

AM3-W4, 15.10.25 (bez uzupełnionych dowodów)

Twierdzenie Tichonowa

Jeśli
$$\forall_{\alpha \in A} (X_{\alpha}, \mathfrak{T}_{\alpha})$$
 jest zwarta, to $\prod \{X_i : i \in A\}$ jest zwarty.

Twierdzenie o funkcjach ciągłych na zbiorach zwartych

 $f:X\to Y$ ciągła, $K\subset X$ jest zwarty.

Wówczas:

a) f(K) jest zwarty w Y.

b) Jeśli $Y = \mathbb{R}$, to f przyjmuje swoje kresy na K:

 $\exists_{x_{\min} \in K} \ f(x_{\min}) = \inf\{f(x) : x \in K\}$

 $\exists_{x_{\max} \in K} \ f(x_{\max}) = \sup\{f(x) : x \in K\}$

c) Jeśli
 (X,d_X) oraz (Y,d_Y) są prz. met. , to
 fjest jednostajnie ciągła na $K\colon$

 $\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x,y\in K} d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \varepsilon.$

 $(X,d), Z \subset X$, ustalmy $\varepsilon > 0$.

Definicja sieci

Zbiór skończony
$$\{x_1,\ldots,x_p\}\subset X$$
 jest siecią o prześwicie ε dla $Z\iff\bigcup_{j=1}^p B(x_j,\varepsilon)\supset Z.$

Definicja zbioru całkowicie ograniczonego

Zbiór
$$Z \subset X$$
 nazywamy całkowicie ograniczonym $\iff \forall_{\varepsilon>0}$ istnieje sieć o prześwicie ε .

Uwaga

Jeśli istnieje sieć o prześwicie ε , to istnieje sieć o prześwicie 2ε taka, że $\forall_i \ x_i \in Z$.

Definicja ciągu zdystansowanego

Ciąg
$$(x_n)$$
 nazywamy **zdystansowanym o pewne** $\varepsilon > 0 \iff \forall_{n,\hat{n}} \ n \neq \hat{n} \ d(x_n, x_{\hat{n}}) \geq \varepsilon.$ **zdystansowany** $\iff \exists_{\varepsilon > 0} \ \text{zdystansowany o } \varepsilon.$

Twierdzenie o kryterium całkowitej ograniczoności

Zbiór jest całkowicie ograniczony \iff nie istnieje w nim ciąg zdystansowany.

AM3-W5, 16.10.25 (bez uzupełnionych dowodów)

Definicja punktu skupienia ciągu

$$(X,\mathfrak{T}), (x_n), x_n \in X.$$
 Powiemu, że $x_0 \in X$ jest **punktem skupienia ciągu** $(x_n) \iff x_0 \in \mathrm{Acc}(x_n)_{n=1}^{\infty} = \{x \in X : \forall_{x \in U \in \mathfrak{T}} \#\{n \in \mathbb{N} : x_n \in U\} = \infty\}$ Uwaga: $\mathrm{Lim}(x_n) \subset \mathrm{Acc}(x_n)$

Twierdzenie (o warunkach zwartości w przestrzeni metrycznej)

 $(X, d), K \subset X$. NWSR:

- a) K jest zwarty
- b) Każdy ciąg (x_n) o wyrazach z K ma punkt skupienia należący do K.
- c) Każdy ciąg (x_n) o wyrazach z K ma podciąg zbieżny do granicy w K.
- d) K jest całkowicie ograniczony i zupełny jako przestrzeń użytkowa

Twierdzenie o całkowitej ograniczoności w przestrzeniach \mathbb{R}^m

Jeśli $K \subset \mathbb{R}^m$ jest ograniczony, to jest całkowicie ograniczony.

Twierdzenie Heinego-Borela

Zbiór
$$K \subset \mathbb{R}^m$$
 jest zwarty \iff ograniczony i domknięty

Definicja cegły w \mathbb{R}^n

$$C = \prod_{i=1}^n [c_i, \hat{c}_i], c_i \leq \hat{c}_i$$

Definicja objętości

Objętością cegły nazywamy liczbę:
$$Vol(C) = \prod_{i=1}^{n} (\hat{c}_i - c_i)$$

Lemat (szkolny)

Zachodzi równość

$$(a_{1,1} + \dots + a_{1,p_1})(a_{2,1} + \dots + a_{2,p_2}) \dots (a_{m,1} + \dots + a_{m,p_m}) = \prod_{j=1}^m \sum_{k=1}^{p_j} a_{j,k} = \sum_{\varphi \in \prod_{j=1}^m \{1,\dots,p_j\}} \prod_{j=1}^m a_{j,\varphi(j)}$$
 (rozdzielność mnożenia względem dodawania).

AM3-W6, 22.10.25

AM3-W7, 22.10.25

AM3-W8, 23.10.25

AM3-W9, 29.10.25

AM3-W10, 29.10.25

AM3-W11, 30.10.25

v
•