컴퓨터구조 Homework-3 (Fall 2012) - 정답

수강반 (), 학번 (), 이름 ()

(이것을 인쇄해서 답을 여기에 직접 써서 제출할 것.)

1. [표 1]은 block size=4 bytes인 direct-mapped data cache의 초기상태이다.

(1) Cache memory와 main memory 각각의 크기는? (2점)

[답] Cache memory: ($2^6 = 64$) Bytes

Main memory: ($2^{12} = 4096 = 4K$) Bytes

- (2) 각 data 부분에 memory 몇 번지의 내용이 들어있는지 M[050]~M[051]과 같이 [표 1]에 표시하되 주소는 16진수로 표기하라. Valid한 data가 없을 때는 빈 간 그대로 둔다. (4점)
- (3) [표 2]의 instructions를 순서대로 실행하는 경우에 대하여 [표 2]를 완성하라. (5점)
- (4) [표 3]에 cache의 최종 상태를 보이되, [표 1]과 달라진 부분만 표시하라. (3점)
- (5) Hit rate를 계산하라. (1점) [답] (50) %

[丑 2] Program

Instructions	Tag	Index	H/M
lw \$1,0x808(\$0)	100 000	0010	Н
lw \$2,0x80C(\$0)	100 000	0011	М
lw \$3,0x800(\$0)	100 000	0000	Н
lw \$4,0x814(\$0)	100 000	0101	М
lw \$5,0x668(\$0)	011 001	1010	Н
lw \$6,0x6A4(\$0)	011 010	1001	М
lw \$7,0x054(\$0)	000 001	0101	М
lw \$8,0x05c(\$0)	000 001	0111	Н
lw \$9,0x3E0(\$0)	001 111	1000	М
lw \$1,0x2FC(\$0)	001 011	1111	Н

[표 1] 초기 상태

V	Tag	Data
1	100000	$M[800] \sim M[803]$
1	100000	M[804] ~ M[807]
1	100000	M[808] ~ M[80B]
0	100000	
1	000001	M[050] ~ M[053]
1	000001	M[054] ~ M[057]
1	000000	M[018] ~ M[01B]
1	000001	M[05C] ~ M[05F]
0	011010	
1	011000	M[624] ~ M[627]
1	011001	M[668] ~ M[66B]
1	111111	M[FEC] ~ M[FEF]
1	111100	M[F30] ~ M[F33]
0	001100	
1	011001	M[678] ~ M[67B]
1	001011	M[2FC] ~ M[2FF]

[표 3] 최종 상태

V	Tag	Data
<u> </u>	rag	Data
1	100 000	M[80C] ~ M[80F]
		[]
1	001 111	M[3E0] ~ M[3E3]
1	011 010	M[6A4] ~ M[6A7]

2. [표 4]는 block size=32 bytes인 direct-mapped data cache의 초기상태이다.

0

2

3 4

5

6

7 8

9

10

11 12

13

14 15

(1) Cache memory와 main memory 각각의 크기는? (2점)

[답] Cache memory: ($2^9 = 512$) Bytes Main memory: ($2^{14} = 16K$) Bytes

(2) 각 data 부분에 memory 몇 번지의 내용이 들어있는지 M[0000]~M[0001]과 같이 [표 4]에 표시하되 주소는 16진수로 표기하라. Valid한 data가 없을 때는 빈 간 그대로 둔다. (4점)

(3) [표 5]의 instructions를 순서대로 실행하는 경우에 대하여 [표 5]를 완성하라. (5점)

(4) [표 6]에 cache의 최종 상태를 보이되, [표 4]와 달라진 부분만 표시하라. (3점)

(5) Hit rate를 계산하라. (1점) [답] (80)% [표 4] 초기 상태

V	Tag	Data
1	10110	M[2C00] ~ M[2C1F]
1	00000	M[0010] ~ M[003F]
1	01100	M[1840] ~ M[185F]
1	01111	M[1E60] ~ M[1E7F]
1	00000	M[0080] ~ M[009F]
1	00000	M[00A0] ~ M[00BF]
1	10110	M[2CC0] ~ M[2CDF]
0	01100	
1	01101	M[1B00] ~ M[1B1F]
1	11001	M[3320] ~ M[333F]
1	11001	M[3340] ~ M[335F]
1	11101	M[3B60] ~ M[3B7F]
1	11101	M[3B80] ~ M[3B9F]
0	01100	
1	10010	M[25C0] ~ M[25DF]
1	10010	M[25E0] ~ M[25FF]

[丑 5] Program

Instructions	Tag (in binary)	Index (in binary)	Hit or Miss
lb \$1, 0x1B08(\$0)	01101	1000	Н
1b \$2, 0x3330(\$0)	11001	1001	Н
1b \$3, 0x3334(\$0)	11001	1001	Н
lb \$4, 0x2108(\$0)	10000	1000	М
1b \$5, 0x2CD0(\$0)	10110	0110	Н
1b \$6, 0x3B60(\$0)	11101	1011	Н
1b \$7, 0x3B74(\$0)	11101	1011	Н
lb \$8, 0x1FF0(\$0)	01111	1111	М
lb \$9, 0x2110(\$0)	10000	1000	Н
lb \$1, 0x1FE8(\$0)	01111	1111	Н

[표 6] 최종 상태

	V	Tag	Data
0			
1			
2			
3			
4			
5			
6			
7			
8	1	10000	M[2100]~M[211F]
9			
10			
11			
12			
13			
14			
15	1	01111	M[1FE0]~M[1FFF]

3. [표 7]은 block size=8 bytes인 2-way set associative data cache의 초기상태이다. 이 컴퓨터의 replacement policy는 Tag 값이 작은 것을 replace하는 것이다.

[표 7] 초기 상태

V	Tag	Data	V	Tag	Data
1	000001	M[040] ~ M[047]	1	010000	M[400] ~ M[407]
1	000000	M[008] ~ M[00F]	1	000001	M[048] ~ M[04F]
0	111111		0	111111	
1	000111	M[1D8] ~ M[1DF]	1	111111	M[FD8] ~ M[FDF]
0	000000		1	000110	M[1A0] ~ M[1A7]
1	000001	M[068] ~ M[06F]	1	000110	M[1A8] ~ M[1AF]
1	000110	M[1B0] ~ M[1B7]	0	111111	
1	111000	M[E38] ~ M[E3F]	0	000000	

[丑 8] Program

(1) Cache memory와 main memory 각각 의 크기는? (2점)

- [답] Cache memory: ($2^7 = 128$) Bytes
 Main memory: ($2^{12} = 4K$) Bytes
- (2) 각 data 부분에 memory 몇 번지의 내용이 들어있는지 M[050] ~ M[051]과 같이 [표 7]에 표시하되 주 소는 16진수로 표기하라. Valid한 data가 없을 때는 빈 간 그대로 둔 다. (4점)
- (3) [표 8]의 instructions를 순서대로 실 행하는 경우에 대하여 [표 8]을 완성 하라. (5점)
- Tag Index Hit or **Instructions** (in binary) (in binary) Miss lw \$1, 0x000(\$0) 000 000 000 Μ 001 Н 1w \$2, 0x008(\$0) 000 000 lw \$3, 0x124(\$0) 000 100 100 Μ lw \$4, 0x1A0(\$0) 000 110 100 Н 000 110 1w \$5, 0x1B4(\$0)110 Η lw \$6, 0xff4(\$0) 111 111 110 М 000 001 101 Н lw \$7, 0x068(\$0) 1w \$8, 0xE38(\$0) 111 000 Η 111 lw \$9, 0xff0(\$0) 111 111 110 Н lw \$2, 0x400(\$0) 010 000 000 Н
- (4) [표 9]에 cache의 최종 상태를 보이되, [표 7]과 달라진 부분만 표시하라. (3점)
- (5) Hit rate를 계산하라. (1점)

[답] (70)%

[표 9] 최종 상태

	V	Tag	Data	V	Tag	Data
0	1	000000	M[000] ~ M[007]			
1						
2						
3						
4	1	000100	M[120] ~ M[127]			
5						
6				1	111111	M[FF0] ~ M[FF7]
7						