컴 퓨 터 공 학 실 험 । ।

MSI/LSI 연산회로

20181251강 민 석20181255김 기 철20211589정 서 영

CONTENTS

- 01. 4-bit Binary Parallel Adder / Subtractor
- 02. 4-bit Carry Look Ahead Adder
- 03. BCD Adder
- 04. ALU

MSI / LSI 연산 회로

■ MSI 회로

- MSI (Medium-Scale Integrated Circuit)
- · 100 ~ 1000개의 소자(Gate)가 집적된 회로

■ LSI 회로

- LSI (Large-Scale Integrated Circuit)
- · 1000개 이상의 소자(Gate)가 집적된 회로

- 4비트 2진수 2개를 입력 받아 덧셈을 진행하는 회로
 - · 4개의 FA(Full Adder)를 병렬로 연결
 - · 하위 비트 FA에서 생성된 Carry가 상위 비트 FA의 Input으로 입력되는 방식

Review) Full Adder

	Input	Out	put	
Α	В	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$\cdot C_{out} = AB + C_{in}(A \oplus B)$$

$$\cdot$$
 S = A \oplus B \oplus C_{in}

■ 부호가 있는(Signed) 4비트 2진수

Binary	Positive	Signed (two's complement)
0000	0	0
0001	1	+1
0010	2	+2
0011	3	+3
0100	4	+4
0101	5	+5
0110	6	+6
0111	7	+7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

예시) 1011 + 0010

- $\cdot A_3 A_2 A_1 A_0 = 1011$, $B_3 B_2 B_1 B_0 = 0010$ (십진수로는 각각 -5와 2)
- · 가장 하위 비트 FA에 입력되는 Carry 값은 0임

예시) 0111 + 0101 (Overflow 발생)

- $\cdot A_3 A_2 A_1 A_0 = 0111, B_3 B_2 B_1 B_0 = 0101 (십진수로는 각각 7과 5)$
- · 가장 하위 비트 FA에 입력되는 Carry 값은 0임

4-bit Binary Parallel Subtractor

- 4비트 2진수 2개를 입력 받아 뺄셈을 진행하는 회로
 - · 4개의 FS(Full Subtractor)를 병렬로 연결
 - · 하위 비트 FS에서 생성된 Borrow가 상위 비트 FS의 Input으로 입력되는 방식

4-bit Binary Parallel Subtractor

Review) Full Subtractor

	Input	Output		
Α	В	b _{in}	b _{out}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\cdot b_{out} = (A \oplus B)'b_{in} + A'B$$

$$\cdot$$
 D = A \oplus B \oplus b_{in}

4-bit Binary Parallel Subtractor

예시) 0110 - 0101

- $\cdot A_3 A_2 A_1 A_0 = 0110$, $B_3 B_2 B_1 B_0 = 0101$ (십진수로는 각각 6과 5)
- · 가장 하위 비트 FS에 입력되는 Borrow 값은 0임

- 4비트 2진수 2개를 입력 받아 덧셈 및 뺄셈을 진행하는 회로
 - · 4-bit Binary Parallel Adder에 4개의 XOR gate와 제어 신호 M 추가
 - · 제어 신호 M의 값이 0일 때는 덧셈, 1일 때는 뺄셈 수행

- XOR gate를 추가한 이유
 - · 이진수의 뺄셈 진행할 때에는 2의 보수법(2's complement) 사용
 - · XOR 연산의 특성

$$1 \oplus X = X'$$

$$0 \oplus X = X$$

예시) 1011 + 0011

 $\cdot A_3 A_2 A_1 A_0 = 1011$, $B_3 B_2 B_1 B_0 = 0011$ (십진수로는 각각 -5와 3)

예시) 1011 - 0011

 $\cdot A_3 A_2 A_1 A_0 = 1011$, $B_3 B_2 B_1 B_0 = 0011$ (십진수로는 각각 -5와 3)

4-bit Carry Look Ahead Adder

Gate Delay (지연시간)

논리 회로에 유효한 신호가 입력될 때부터 출력될 때까지 걸리는 시간

4-bit Binary Parallel Adder Gate Delay

4-bit Binary Parallel Adder Gate Delay

4-bit Binary Parallel Adder Gate Delay

Carry-generate function g_i = x_iy_i

Carry-propagate function $p_i = x_i \oplus y_i$

$$S_i = x_i \bigoplus y_i \bigoplus C_i$$
 $-> S_i = p_i \bigoplus C_i$
 $C_{i+1} = x_i y_i + (x_i \bigoplus y_i) C_i$ $-> C_{i+1} = g_i + p_i C_i$

$$C_{i+1} = g_i + p_i C_i$$

$$C_{i+1} = g_i + p_i C_i$$

$$c_{i+2} = g_{i+1} + p_{i+1}c_{i+1} = g_{i+1} + p_{i+1}g_i + p_{i+1}p_ic_i$$

$$c_{i+3} = g_{i+2} + p_{i+2} + c_{i+2} = g_{i+2} + p_{i+2} + g_{i+1} + p_{i+2} + g_{i+1} + g_{i+2} + g_{i+1} + g_{i+2} + g_{i$$

$$C_{i+4} = g_{i+3} + p_{i+3} + p_{i+3} + p_{i+3} + p_{i+3} + p_{i+3} + p_{i+2} + p_{i+3} + p_{i$$

BCD Code (Binary Coded Decimal Code)

Decimal	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

BCD Code (Binary Coded Decimal Code)

Decimal	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

BCD Code (Binary Coded Decimal Code)

10진수	BCD 코드
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

10진수	BCD 코드
10	0001 0000
11	0001 0001
12	0001 0010
13	0001 0011
14	0001 0100
15	0001 0101
16	0001 0110
17	0001 0111
18	0001 1000
19	0001 1001

10진수	BCD 코드
20	0010 0000
31	0011 0001
42	0100 0010
53	0101 0011
64	0110 0100
75	0111 0101
86	1000 0110
97	1001 0111
196	0001 1001 0110
237	0010 0011 0111

	В	INARY SUI	М		DECIMAL			BCD SUM		
K	S3	S2	S1	S0		С	Sum3	Sum2	Sum1	Sum0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	1
0	0	0	1	0	2	0	0	0	1	0
0	0	0	1	1	3	0	0	0	1	1
0	0	1	0	0	4	0	0	1	0	0
0	0	1	0	1	5	0	0	1	0	1
0	0	1	1	0	6	0	0	1	1	0
0	0	1	1	1	7	0	0	1	1	1
0	1	0	0	0	8	0	1	0	0	0
0	1	0	0	1	9	0	1	0	0	1
0	1	0	1	0	10	1	0	0	0	0
0	1	0	1	1	11	1	0	0	0	1
0	1	1	0	0	12	1	0	0	1	0
0	1	1	0	1	13	1	0	0	1	1
0	1	1	1	0	14	1	0	1	0	0
0	1	1	1	1	15	1	0	1	0	1
1	0	0	0	0	16	1	0	1	1	0
1	0	0	0	1	17	1	0	1	1	1
1	0	0	1	0	18	1	1	0	0	0
1	0	0	1	1	19	1	1	0	0	1

	В	INARY SUI	М		DECIMAL			BCD SUM		
K	S3	S2	S1	S0		С	Sum3	Sum2	Sum1	Sum0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	1
0	0	0	1	0	2	0	0	0	1	0
0	0	0	1	1	3	0	0	0	1	1
0	0	1	0	0	4	0	0	1	0	0
0	0	1	0	1	5	0	0	1	0	1
0	0	1	1	0	6	0	0	1	1	0
0	0	1	1	1	7	0	0	1	1	1
0	1	0	0	0	8	0	1	0	0	0
0	1	0	0	1	9	0	1	0	0	1
0	1	0	1	0	10	1	0	0	0	0
0	1	0	1	1	11	1	0	0	0	1
0	1	1	0	0	12	1	0	0	1	0
0	1	1	0	1	13	1	0	0	1	1
0	1	1	1	0	14	1	0	1	0	0
0	1	1	1	1	15	1	0	1	0	1
1	0	0	0	0	16	1	0	1	1	0
1	0	0	0	1	17	1	0	1	1	1
1	0	0	1	0	18	1	1	0	0	0
1	0	0	1	1	19	1	1	0	0	1

0	1	0	1	0	10
0	1	0	1	1	11

0	1	1	0	0	12
0	1	1	0	1	13
0	1	1	1	0	14
0	1	1	1	1	15

1	0	0	0	0	16
1	0	0	0	1	17
1	0	0	1	0	18
1	0	0	1	1	19

$$\rightarrow$$
 C = K + S₃S₂ + S₃S₁

ALU

ALU (Arithmetic Logic Unit)

ALU (Arithmetic Logic Unit)

참고 문헌

참고 문헌

- · 정차근. 디지털 논리회로 설계: 원리와 응용. YOUNG(2011)
- · 장태무. 컴퓨터 논리회로. 정익사(1997)
- · 임석구. 처음 만나는 디지털 논리회로. 한빛아카데미(2016)
- · Digital Design(Fifth Edition), M.Morris Mano, PEARSON(2011)
- · 서강대학교 컴퓨터공학실험II 10주차 강의자료
- ㆍ서강대학교 디지털회로개론 4주차 강의자료

기여도

· 20181251 강민석 : 33.3%

· 20181255 김기철 : 33.3%

· 20211589 정서영: 33.3%

THANK YOU

20181251강 민 석20181255김 기 철20211589정 서 영