Principles of Abstract Interpretation MIT press

Ch. 38, Linear equality analysis

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides-38--linear-equality-analysis-PrAbsInt.pdf

Chapter 38

Ch. 38, Linear equality analysis

Relational versus cartesian properties I

- Cartesian analyzes cannot infer relations between variables so the analysis of x=0;
 y=0; while (x<10) {x=x+1; y=y+2;} cannot infer an upper bound for y.
- The linear equality analysis aims at discovering linear equality relations $\mathbf{A} \times \vec{x} = \vec{b}$ between values \vec{x} of the program variables. In the above example, 2x y = 0, so $x \le 10$ implies $y \le 20$.
- Linear equality analysis was introduced by Michael Karr [Karr, 1976].

Affine properties, Section 38.1

Affine properties I

- A property of program variables V is a set of environments in $\mathbb{P} = \wp(V \to \mathbb{F})$ (where \mathbb{F} is the set \mathbb{Q} of rationals (including integers and floats) or \mathbb{R} of reals).
- Let m = |V| be the cardinality of V i.e. the finite number of program variables.
- If $V = \{x_1, ..., x_m\}$, we let \vec{x} be the column vector of values $\rho(x_1)$, ..., $\rho(x_m)$ of these variables in environment $\rho \in V \to \mathbb{F}$.
- So, up to the isomorphism $\rho \mapsto \vec{x}$, a program property $P \in \mathbb{P}$ is a set of points \vec{x} in $P \in \mathbb{F}^m$ (and we write $\vec{x} \in P$ for $\rho \in P$ up to this isomorphism).
- The affine space abstract domain consists of those subsets of $\wp(\mathbb{F}^m)$ (i.e. $\mathbb{P} = \wp(\mathbb{V} \to \mathbb{F})$) which are affine subspaces of the affine space $\langle \mathbb{F}^m, \langle \mathbb{F}^m, \langle \mathbb{F}, +, -, \times, / \rangle, +, -, \times, / \rangle$, $\overrightarrow{+} \rangle$ of finite dimension m > 0:
 - $\overrightarrow{\mathbb{P}} \triangleq \{\overrightarrow{\mathbb{I}}\} \cup \{A + \overrightarrow{U} \mid A \in \mathbb{F}^m \wedge \overrightarrow{U} \text{ is a vector subspace of } \overrightarrow{\mathbb{F}^m}\}, \quad \overrightarrow{\mathbb{I}} = \emptyset.$

Affine properties II

- The infimum \Box encodes any system of linear equalities without a solution, and otherwise, we have two representations of the affine subspaces $P \in \overrightarrow{\mathbb{P}}$:
 - by a unique $n \times m + 1$ matrix $(A|\vec{b})$ in reduced row echelon form with no zero row encoding $\gamma_{\rightleftharpoons}(A|\vec{b}) = P$ (where the empty matrix with n = 0 encodes the supremum $(\mathbf{0}|\vec{0})$, and otherwise there are no zero rows so $n \le m$ by Theorem 37.9);
 - by a frame or system of generators $\langle \vec{x}_0, \mathbf{B} \rangle$ where $\mathbf{A}\vec{x}_0 = \vec{b}$, $\mathbf{B} = \langle \vec{v}_i, i \in [1, m] \rangle$ is a basis such that $\mathsf{Span}(\mathbf{B}) = \mathsf{Ker}(\mathbf{A})$ so that $\vec{x}_0 \neq \mathsf{Ker}(\mathbf{A}) = \gamma_{\pm}(\mathbf{A}|\vec{b}) = P$.
- The system of generators is computed from $(A|\vec{b})$ by finding a solution \vec{x}_0 using Exercise 37.7 and the basis of the kernel of A as determined by Lemma 37.12 and Exercise 37.13.
- The matrix $(A|\vec{b})$ is computed from the system of generators by transformation in reduced row echelon form and elimination of the zero row.

Affine properties III

• The implementation uses one of the two representations at a time and lazily switches to the other one if needed by the next operation to be performed.

Affine abstraction

Affine abstraction I

• Up to the isomorphism between $\wp(V \to \mathbb{F})$ and $\wp(\mathbb{F}^m)$, a property of the m variables is an element $P \in \wp(\mathbb{F}^m)$ is a variable property, its affine abstraction is

$$\begin{array}{ll} \alpha_{\mathbb{A}}(\varnothing) & \triangleq & \overrightarrow{\mathbb{I}} \\ \alpha_{\mathbb{A}}(P) & \triangleq & \bigcap \{A + \overrightarrow{U} \mid A \in \mathbb{F}^m \wedge \overrightarrow{U} \text{ is a vector subspace of } \overline{\mathbb{F}^m} \wedge P \subseteq A + \overrightarrow{U} \} \end{array}$$

i.e. the least affine subspace of \mathbb{F}^m that contains P.

- This is well-defined (Moore family).
- This is a definition by an upper closure condition so that by Exercise 11.87,

$$\langle \wp(\mathbb{F}^m), \subseteq \rangle \xrightarrow{\alpha_{\mathbb{A}}} \langle \{A + \overrightarrow{U} \mid A \in \mathbb{F}^m \wedge \overrightarrow{U} \text{ is a vector subspace of } \overrightarrow{\mathbb{F}^m} \}, \subseteq \rangle$$
 (38.2)

where α_{\triangle} is an upper closure operator.

Affine abstract domain

Affine abstract domain I

The affine abstract domain is

$$\overrightarrow{\mathbb{D}} \triangleq \langle \overrightarrow{\mathbb{P}}, \overrightarrow{\sqsubseteq}, \overrightarrow{\bot}, \overrightarrow{\square}, \operatorname{assign}[x, A], \operatorname{test}[B], \overrightarrow{\operatorname{test}}[B] \rangle.$$

- The supremum $\vec{T} = \mathbb{F}^m$ is represented by the null matrix $(\mathbf{0}|\vec{0})$ with zero row.
- Equality $P \stackrel{\cong}{=} P'$ is the equality $(A|\vec{b}) = (A'|\vec{b}')$ of the matrices in reduced row echelon form without zero row encoding P and P' since $P = \gamma_{\stackrel{\cong}{=}}(A|\vec{b})$, $P' = \gamma_{\stackrel{\cong}{=}}(A'|\vec{b}')$, and unicity of the reduced row echelon form without zero row.
- The meet $P \ \vec{\sqcap} \ P'$ of P and P' represented by $(A|\vec{b})$ and $(A'|\vec{b}')$ is the conjunction of the linear equalities that is $\begin{pmatrix} A & |\vec{b} \\ A' & |\vec{b}' \end{pmatrix}$ normalized in reduced row echelon form without zero row.

Affine abstract domain II

- The inclusion $P \sqsubseteq P'$ is $P \sqcap P' \stackrel{?}{=} P$ (or the system of generators of P satisfies the linear equalities of P').
- For the join $P \ \Box P'$ of P and P' represented by their systems of generators $\langle \overrightarrow{x_0}, \mathbf{B} \rangle$ and $\langle \overrightarrow{x_0}', \mathbf{B}' \rangle$ has system of generators $\langle \overrightarrow{x_0}, (\mathbf{B}, \mathbf{B}', \overrightarrow{x_0}' \overrightarrow{x_0}) \rangle$ (or $\langle \overrightarrow{x_0}, (\mathbf{B}, \mathbf{B}') \rangle$ when $\overrightarrow{x_0}' = \overrightarrow{x_0}$).

Operations of the affine abstract domain

Affine abstract assignment, Section 38.4 I

• An affine assignment x = A; has the form

$$\mathbf{x}_i = v_1 \mathbf{x}_1 + \dots + v_i \mathbf{x}_i + \dots + v_m \mathbf{x}_m + v_{m+1}$$

where $v_1, \ldots, v_i, \ldots, v_m \in \mathbb{F}$ are scalars and $x_1, \ldots, x_i, \ldots, x_m$ are program variables.

- The affine assignment is said to be *invertible* if and only if $v_i \neq 0$.
- Let $(A'|\vec{b}')$ be the affine abstraction of the reachable values of variables before the assignment (as defined by the forward reachability semantics of Chapter 19).
- Let x_i' and x_i denote the value of the x_i before and after the assignment.
- So we have $\mathbf{A}'\vec{x}' = \vec{b}'$ and we must compute $(\mathbf{A}|\vec{b}) \triangleq \widetilde{\operatorname{assign}}[x_i, \mathbf{A}](\mathbf{A}'|\vec{b}')$ such that $\mathbf{A}\vec{x} = \vec{b}$ after the affine assignment.
- We have $x_j = x_j'$ for $j \in [0, m] \setminus \{i\}$ since the values of all other variables but x_i are unchanged.

Invertible affine abstract assignment I

For invertible assignments $v_i \neq 0$, so we can express the old value x_i' of variable x_i before the assignment in terms of its new value x_i after the assignment. Therefore

$$x_i' = \frac{x_i}{v_i} - \frac{v_1}{v_i} x_1 - \dots - \frac{v_{i-1}}{v_i} x_{i-1} - \frac{v_{i+1}}{v_i} x_{i+1} \dots - \frac{v_m}{v_i} x_m - \frac{v_{m+1}}{v_i}.$$

Since $\forall j \in [0, m] \setminus \{i\}$. $x'_j = x_j$, the equality constraint before the assignment for each line ℓ of $A'\vec{x}' = \vec{b}'$ was of the form

$$a_{\ell}^{1}x_{1} + \ldots + a_{\ell}^{i}x_{i}' + \ldots + a_{\ell}^{m}x_{m} = a_{\ell}^{m+1}.$$

Replacing x_i' by its value in terms of the values of the variables after the assignment, we get

$$\begin{aligned} a_{\ell}^{1}x_{1} + \ldots + a_{\ell}^{i-1}x_{i-1} + a_{\ell}^{i}(\frac{x_{i}}{v_{i}} - \frac{v_{1}}{v_{i}}x_{1} - \ldots - \frac{v_{i-1}}{v_{i}}x_{i-1} - \frac{v_{i+1}}{v_{i}}x_{i+1} - \ldots - \frac{v_{m}}{v_{i}}x_{m} - \frac{v_{m+1}}{v_{i}}) \\ &+ a_{\ell}^{i+1}x_{i+1} + \ldots + a_{\ell}^{m}x_{m} = a_{\ell}^{m+1}. \end{aligned}$$

Invertible affine abstract assignment II

Grouping the coefficients per variable, we get the line ℓ of $A\vec{x} = \vec{b}$ after the affine assignment.

$$(a_{\ell}^{1} - \frac{a_{\ell}^{i}.v_{1}}{v_{i}})x_{1} + \dots + (a_{\ell}^{i-1} - \frac{a_{\ell}^{i}.v_{i-1}}{v_{i}})x_{i-1} + \frac{a_{\ell}^{i}}{v_{i}}x_{i} + (a_{\ell}^{i+1} - \frac{a_{\ell}^{i}.v_{i+1}}{v_{i}})x_{i+1} + \dots + (a_{\ell}^{m} - \frac{a_{\ell}^{i}.v_{m}}{v_{i}})x_{m} = a_{\ell}^{m+1} + \frac{a_{\ell}^{i}.v_{m+1}}{v_{i}}.$$

Non-invertible affine abstract assignment I

• If $v_i = 0$ in the assignment

$$x_i = v_1 x_1 + ... + 0.x_i + ... + v_m x_m + v_{m+1}$$

the assignment is non-invertible.

- There is no relationship between the old value x_i' of variable x_i in $(A'|\vec{b}')$ before the assignment and the new value x_i in $(A|\vec{b})$ after the assignment.
- It follows that $A\vec{x} = \vec{b}$ after the affine assignment is given by

$$\exists v \in \mathbb{F} .. \mathbf{A}' \vec{x} [i \leftarrow v] = \vec{b}' \wedge x_i = v_1 x_1 + ... + v_{i-1} x_{i-1} + v_{i+1} x_{i+1} + ... + v_m x_m + v_{m+1}.$$

• So we first eliminate variable x_i by Lemma 37.19 and then add the constraint $x_i = v_1 x_1 + ... + v_{i-1} x_{i-1} + v_{i+1} x_{i+1} + ... + v_m x_m + v_{m+1}$.

Abstraction of an expression into an affine expression, Section 38.4.3 I

- The program assignments x = A; in Section 4.1 are not necessarily in affine form.
- So we use the following affine abstraction of the arithmetic expression A in Section 3.4.
- The idea is that for non-linear expressions like x * y the static analysis may have determined that the value of x is a scalar c so we can use the linear form c.y.

Abstraction of an expression into an affine expression, Section 38.4.3 II

- If the abstraction returns T then the assignment is handled by Lemma 37.19 for eliminating the assigned variable.
- Otherwise the coefficients of the variables are summed up to get a linear assignment of Section 38.4.

Affine abstract test

- But for linear equality tests, $\overrightarrow{\operatorname{test}}[\![B]\!](P) = \overrightarrow{\operatorname{test}}[\![B]\!](P) = P$.
- If B can be put in linear form $\vec{a}\vec{x} = b$ i.e.

$$a_1x_1 + \dots + a_{i-1}x_{i-1} + a_{i+1}x_{i+1} + \dots + a_mx_m = b$$

by transformation of B as in Section 38.4.3, then the expression is conjuncted with P.

■ $t \stackrel{\longrightarrow}{\text{est}} \llbracket B \rrbracket (A \mid \vec{b}) = \begin{pmatrix} A \mid \vec{b} \\ \vec{a} \mid b \end{pmatrix}$ and put in reduced row echelon form.

Fixpoint computation

Fixpoint computation I

 The abstract domain has no infinite ascending chain so no widening/narrowing is needed.

Conclusion I

- Michael Karr [Karr, 1976] represents affine spaces as the solution set of linear equation systems $A\vec{x} = \vec{b}$ represented by the matrix $(A \mid \vec{b})$ (the number of affine relations between values of variables will be small hence the dimension of the affine space and the size of the system of generators will be large).
- Following what is traditionally done for polyhedral analysis [Cousot and Halbwachs, 1978], Markus Müller-Olm and Helmut Seidl [Müller-Olm and Seidl, 2004a] introduced the use of systems of generators [Müller-Olm and Seidl, 2004a,b].
- [Elder, Lim, Sharma, Andersen, and Reps, 2014] studies variations on matrix representations of affine domains.
- Integers can be analyzed using rationals with a concretization in the integers.
- A better solution is to generalize affine equalities to affine congruences [Granger, 1991].

Bibliography I

- Cousot, Patrick and Nicolas Halbwachs (1978). "Automatic Discovery of Linear Restraints Among Variables of a Program". In: *POPL*. ACM Press, pp. 84–96.
- Elder, Matt, Junghee Lim, Tushar Sharma, Tycho Andersen, and Thomas W. Reps (2014). "Abstract Domains of Affine Relations". *ACM Trans. Program. Lang. Syst.* 36.4, 11:1–11:73.
- Granger, Philippe (1991). "Static Analysis of Linear Congruence Equalities among Variables of a Program". In: *TAPSOFT*, *Vol.1*. Vol. 493. Lecture Notes in Computer Science. Springer, pp. 169–192.
- Karr, Michael (1976). "Affine Relationships Among Variables of a Program". *Acta Inf.* 6, pp. 133–151.
- Müller-Olm, Markus and Helmut Seidl (2004a). "A Note on Karr's Algorithm". In: *ICALP*. Vol. 3142. Lecture Notes in Computer Science. Springer, pp. 1016–1028.

Bibliography II

Müller-Olm, Markus and Helmut Seidl (2004b). "Precise interprocedural analysis through linear algebra". In: *POPL*. ACM, pp. 330–341.

Home work

Read Ch. 38 "Linear equality analysis" of

Principles of Abstract Interpretation
Patrick Cousot
MIT Press

The End, Thank you