DISTRIBUTED GRAPH REALIZATIONS

A Project Report Submitted in Partial Fulfilment of the Requirements $\qquad \qquad \text{for the Degree of}$

BACHELOR OF TECHNOLOGY

in

Mathematics and Computing

by

Tejasvee Panwar

(Roll No. 170123053)

Aayush Bansal

(Roll No. 170123001)

to the

DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI - 781039, INDIA

November 2020

CERTIFICATE

This is to certify that the work contained in this report entitled "Distributed Graph Realizations" submitted by Tejasvee Panwar (Roll No: 170123053) and Aayush Bansal (Roll No: 170123001) to Department of Mathematics, Indian Institute of Technology Guwahati towards the requirement of the course MA499 Project has been carried out by them under my supervision.

Guwahati - 781 039

November 2020

(Dr. Partha Sarathi Mandal)

Project Supervisor

ABSTRACT

The main aim of the project

Contents

Li	st of	Figures	s		vi
1	Intr	oductio	on		1
	1.1	Graph	Realizations		1
	1.2	Distrib	uted Computing		2
		1.2.1	Applications in Peer-to-Peer Networks	 •	2
2	Cha	apter-2	Name		3
	2.1	Section	-1 Name		3
	2.2	Section	-2 Name		3
		2.2.1	Subsection name	 •	4
3	Cha	apter-2	Name		5
	3.1	Section	-1 Name		5
	3.2	Section	-2 Name		5
		3.2.1	Subsection name	 •	6
4	Cha	apter-2	Name		7
	4.1	Section-	-1 Name		7

	4.2	Section	n-2 Name .		 									7
		4.2.1	Subsection	name	 			•			•	•		8
5	Cha	pter-2	Name											9
	5.1	Section	n-1 Name .		 									9
	5.2	Section	n-2 Name .		 									9
		5.2.1	Subsection	name	 								•	10
Bi	bliog	graphy												11

List of Figures

1.1 The correlation coefficient as a function of ρ	
---	--

Introduction

Introductory lines...

1.1 Graph Realizations

Some text here ...

Definition 1.1.1. Some definition....

T heorem 1.1.2. Some theorem......

Proof. Proof is as follows....

Corollary 1.1.3. A corollary to the theorem is....

Remark 1.1.4. Some remark......

You may have to type many equations inside the text. The equation can be typed as below.

$$f(x) = \frac{x^2 - 5x + 2}{e^x - 2} = \frac{y^5 - 3}{e^x - 2}$$
 (1.1)

This can be referred as (1.1) and so on....

You may have to type a set of equations. For this you may proceed as given below.

$$f(x) = e^{1+2(x-a)} + \dots$$

= $\log(x+a) + \sin(x+y) + \dots$ (1.2)

You may have to cite the articles. You may do so as [4] and so on..... Note that you have already created the 'bib.bib' file and included the entry with the above name. Only then you can cite it as above.

1.2 Distributed Computing

Definition 1.2.1. Some definition....

Remark 1.2.2. Some remark......

1.2.1 Applications in Peer-to-Peer Networks

T heorem 1.2.3. Some theorem......

Proof. Proof is as follows....

[The figure will be displayed here.]

Figure 1.1: The correlation coefficient as a function of ρ

Chapter-2 Name

Introductory lines...

2.1 Section-1 Name

Definition 2.1.1. Some definition....

Remark 2.1.2. Some remark......

T heorem 2.1.3. Some theorem......

Proof. Proof is as follows....

2.2 Section-2 Name

Definition 2.2.1. Some definition....

Remark 2.2.2. Some remark......

T heorem 2.2.3. Some theorem......

Proof. Proof is as follows.... \Box

Chapter-2 Name

Introductory lines...

3.1 Section-1 Name

Definition 3.1.1. Some definition....

Remark 3.1.2. Some remark......

T heorem 3.1.3. Some theorem......

Proof. Proof is as follows....

3.2 Section-2 Name

Definition 3.2.1. Some definition....

Remark 3.2.2. Some remark......

T heorem 3.2.3. Some theorem......

Proof. Proof is as follows....

Chapter-2 Name

Introductory lines...

4.1 Section-1 Name

Definition 4.1.1. Some definition....

Remark 4.1.2. Some remark......

T heorem 4.1.3. Some theorem......

Proof. Proof is as follows....

4.2 Section-2 Name

Definition 4.2.1. Some definition....

Remark 4.2.2. Some remark......

T heorem 4.2.3. Some theorem......

Proof. Proof is as follows....

Chapter-2 Name

Introductory lines...

5.1 Section-1 Name

Definition 5.1.1. Some definition....

Remark 5.1.2. Some remark......

T heorem 5.1.3. Some theorem......

Proof. Proof is as follows....

5.2 Section-2 Name

Definition 5.2.1. Some definition....

Remark 5.2.2. Some remark......

T heorem 5.2.3. Some theorem......

Proof. Proof is as follows....

Bibliography

- [1] K. Andrews and B. Rajiv. On some applications of eigenvalues of toeplitz matrices. *Journal of Mathematical Analysis and Applications*, 56(2):237–239, 2007.
- [2] C. C. Chang. Algebraic analysis of many valued logics. *Transactions of American Mathematical Society*, 88:467–490, 1958.
- [3] Brunella Gerla. Automata over MV-algebras. In *ISMVL '04: Proceedings* of the 34th International Symposium on Multiple-Valued Logic, pages 49–54, Washington, DC, USA, 2004. IEEE Computer Society.
- [4] G.H. Golub and C.F. Van Loan. *Matrix Computations*. Second Edition. The John Kopkins University Press, 1989.