Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение

высшего образования

Национальный исследовательский университет ИТМО

Факультет Систем Управления и Робототехники

Лабораторная работа №3 по курсу «Прикладная теория информации»

«Формирование ПЗК на основе действий с модулярными многочленами»

Выполнили: Московский К.А.

Алексеева Ю.В.

Группа: R34362.

Проверил: Краснов А.Ю.

1 Цель работы

- 1) Выбрать образующий модулярный многочлен (далее "ММ") для ПЗК с параметрами, полученными в работе 2
- 2) Построить и смоделировать кодирующее устройство на основе умножения на выбранный образующий ММ
- 3) Построить и смоделировать кодирующее устройство на основе умножения на выбранный образующий MM
- 4) Построить и смоделировать декодирующее устройство, продемонстрировать эффективность его работы

2 Условие

- Параметры ПЗК: (17,7)
- Кратность ошибок : s = 3
- \bullet Число проверочных разрядов : m=10

3 Ход работы

3.1 Выбор образующего модулярного многочлена

Образующий ММ: $g(x) = x^{10} + x^9 + x^6 + x^5 + x^4 + x + 1 = (11001110011)$ ММ исходного ПНЗК степени k-1: $a(x) = x^6 + x + 1 = (1000011)$

3.2 Построение и моделирование кодирующего устройства на основе умножения на выбранный образующий MM

$$y(x) = g(x) * a(x) = (x^{10} + x^9 + x^6 + x^5 + x^4 + x + 1)(x^6 + x + 1) =$$

$$= x^{16} + x^{15} + x^{12} + x^{10} + x^9 + x^6 + x^4 + x^2 + 1 =$$

$$= (11001011001010101)$$

Формируется за k+m=17 тактов.

Процесс кодирования исходного ПНЗК с ММ $a(x) = x^6 + x + 1$ методом умножения на образующий ММ проиллюстрирован в таблице 2. Структурная схема соответствующего кодирующего устройства, реализованная в среде $Matlab\,Simulink$ представлена на рисунке 1.

Таблица 1: Процесс кодирования методом умножения на образующий ММ

номер такта	множимое			произведение								
		п1	п2	пЗ	п4	п5	п6	п7	п8	п9	п10	
0	-	0	0	0	0	0	0	0	0	0	0	-
1	1	1	1	0	0	1	1	1	0	0	1	1
2	0	0	1	1	0	0	1	0	1	0	1	1
3	0	0	0	1	1	0	0	1	0	1	1	0
4	0	0	0	0	1	1	0	1	1	0	0	0
5	0	0	0	0	0	1	1	0	1	1	0	1
6	1	1	1	0	0	1	0	1	0	1	0	0
7	1	1	0	1	0	1	0	0	1	0	0	1
8	0	0	1	0	1	0	1	0	0	1	0	1
9	0	0	0	1	0	1	0	1	0	0	1	0
10	0	0	0	0	1	0	1	1	1	0	0	0
11	0	0	0	0	0	1	0	1	1	1	0	1
12	0	0	0	0	0	0	1	0	1	1	1	0
13	0	0	0	0	0	0	0	1	0	1	1	1
14	0	0	0	0	0	0	0	0	1	0	1	0
15	0	0	0	0	0	0	0	0	0	1	0	1
16	0	0	0	0	0	0	0	0	0	0	1	0
17	0	0	0	0	0	0	0	0	0	0	0	1

Рис. 1: Модель кодирующего устройства на основе умножения на ММ

Рис. 2: Результат моделирования кодирующего устройства на основе умножения

3.3 Построение и моделирование кодирующего устройства на основе деления на выбранный образующий MM

$$a(x) = x^6 + x + 1$$

 $a(x) \cdot x^{10} = x^{16} + x^{11} + x^{10}$

$$r(x) = rest \frac{a(x) \cdot x^{10}}{g(x)} = rest \frac{x^{16} + x^{11} + x^{10}}{x^{10} + x^9 + x^6 + x^5 + x^4 + x + 1} =$$

$$= x^7 + x^4 + x^3 + x^2 + 1 = (10011101)$$

$$y(x) = a(x) \cdot x^{10} + r(x) = x^{16} + x^{11} + x^{10} + x^7 + x^4 + x^3 + x^2 + 1 = (100001100|10011101)$$

Функционирование устройства деления на образующий ММ многочлена $a(x)\cdot x^{10}$, где $a(x)=x^6+x+1$ проиллюстрировано таблицей 2. Структурная схема соответствующего КУ, реализованная в среде $Matlab\,Simulink$, представлена на рисунке 3

Таблица 2: Процесс кодирования методом деления

Номер такта	Делимое		Деление									
		п1	п2	пЗ	п4	п5	п6	п7	п8	п9	п10	
0	-	0	0	0	0	0	0	0	0	0	0	_
1	1	1	1	0	0	1	1	1	0	0	1	1
2	0	1	0	1	0	1	0	1	1	0	0	0
3	0	1	0	0	1	1	0	1	1	1	0	0
4	0	1	0	0	0	0	0	0	1	1	1	0
5	0	0	1	0	0	0	0	0	0	1	1	0
6	1	1	1	1	0	1	1	0	0	0	0	1
7	1	1	0	1	1	1	0	1	0	0	1	1
8	0	0	1	0	1	1	1	0	1	0	0	0
9	0	0	0	1	0	1	1	1	0	1	0	0
10	0	0	0	0	1	0	1	0	1	0	1	1
11	0	0	0	0	0	1	0	1	0	1	0	0
12	0	0	0	0	0	0	1	0	1	0	1	0
13	0	0	0	0	0	0	0	1	0	1	0	1
14	0	0	0	0	0	0	0	0	1	0	1	1
15	0	0	0	0	0	0	0	0	0	1	0	1
16	0	0	0	0	0	0	0	0	0	0	1	0
17	0	0	0	0	0	0	0	0	0	0	0	1

Рис. 3: Схема моделирования кодирующего устройства на основе деления

3.4 Построение и моделирование декодирующего устройства

Рис. 4: Результат моделирования кодирующего устройства на основе деления

$\overline{\mathrm{E}}_{1}$		0	0	-			-	0	0	0	0	0	0	0	0	0	
E_2	\vdash	0	\vdash	0	0	0	\vdash	0	0	0	0	0	0	0	0	\vdash	0
\mathbb{E}_3	0		0	0	0		0	0	0	0	0	0	0	0		0	0
Ξ_4	\vdash	0	0	0	\vdash	0	0	0	0	0	0	0	0	\vdash	0	0	0
$\overline{\mathrm{E}}_{5}$	\vdash	0	0	0	\vdash	\vdash	\vdash	0	0	0	0	0	\vdash	0	0	0	0
E_{6}	\vdash	0	0	0	0	0	-	0	0	0	0		0	0	0	0	0
E_7	\vdash	0	0	\leftarrow	\vdash	0	\vdash	0	0	0	\vdash	0	0	0	0	0	0
$\overline{\mathrm{E}_8}$	0	0	\vdash	\leftarrow	0	-	0	0	0	\vdash	0	0	0	0	0	0	0
\mathbb{E}_9	0	\vdash	\vdash	0	\vdash	0	0	0	\vdash	0	0	0	0	0	0	0	0
E_{10}	0	-	0	0	\leftarrow	-	$\overline{}$	\leftarrow	0	0	0	0	0	0	0	0	0
ММ синдрома	$x_6 + x_5 + x_4 + x_3 + x + 1$	$x_9 + x_8 + x_2$	$x_8 + x_7 + x$	$x_7 + x_6 + 1$	$x_9 + x_8 + x_6 + x_4 + x_3 + 1$	$x_9 + x_7 + x_4 + x_2 + 1$	$x_9 + x_6 + x_5 + x_4 + x + 1$	X ₉	X8	X ₇	X ₆	X5	X4	X ₃	X2	X1	x ₀
ММ ошибки	X_{16}	X ₁₅	X ₁₄	X ₁₃	X ₁₂	X ₁₁	X10	X ₉	X8	X7	$^{\mathrm{X}_{6}}$	X5	X4	X3	X ₂	X ₁	X ₀
№ Takta	17	16	15	14	13	12	11	10	6	∞		9	ರ	4	3	2	

Рис. 5: Схема ДКУ

Рис. 6: Результат моделирования ДКУ

4 Вывод

В ходе выполнения работы было построено и смоделировано кодирующее устройство на основе умножения и деления на выбранный образующий ММ. Также мы собрали декодирующее устройство и продемонстрировали, что оно безошибочно работает.