#### **Section I: Mesh:**

#### # Meshing lines

line x loc=0 spac =0.5

line  $x \log = 2 \operatorname{spac} = 0.5$ 

line x loc =4 spac =0.5

line x loc =6 spac =0.5

line x loc =8 spac =0.5

line x loc = 10 spac = 0.5

#### # Meshing lines

line y loc = 0 spac = 0.5

line y loc = 2 spac = 0.5

line y loc = 3 spac = 0.5

line y loc = 4 spac = 0.5

line y loc = 5 spac = 1

# **Section II: Choose substrate:**

#### # Initialization

init orientation=100 c.boron=10e15 space.mul=2 structure outfile=mos1ex00\_0.str



# **Section III: Oxide layer:**

#### # Oxide layer

deposit oxide thickness=0.04 structure outfile=mos1ex01\_0.str



# Section IV: LPCVD Silicon Nitride:

#nitride layer

deposit nitride thickness =0.05 structure outfile=mos1ex02\_0.str

#photoresist layer

deposit photoresist thickness=1 structure outfile=mos1ex01\_3.str

#etch layer in photoresist

etch photoresist start x=4 y = 0.09

etch continue x=6 y = 0.09

etch continue x=6 y = -1.09

etch done x=4 y = -1.09

structure outfile=mos1ex01\_4.str



#### # etch nitride

etch nitride start x=4 y=-0.04 etch continue x=6 y = -0.09 etch continue x=6 y = -0.04 etch done x=4 y = -0.09 structure outfile=mos1ex01\_5.str



#### #etch oxide

etch oxide start x=4 y=0 etch continue x=6 y = 0 etch continue x=6 y = -0.04 etch done x=4 y = -0.04 structure outfile=mos1ex01\_6.str



# **Section V: Shallow trench isolation formation (STI):**

#form trench

etch silicon start x=4 y=0

etch continue x=6 y=0

etch continue x=6 y = 0.4

etch done x=4 y =0.4

structure outfile=mos1ex01\_7.str



# #oxide deposit

# deposit oxide thickness=1.2 structure outfile=mos1ex01\_8.str



#oxide polishing

etch oxide start x=0 y=-1.09

etch continue x=10 y =-1.09 etch continue x=10 y = -2.6 etch done x=4 y = -2.6 structure outfile=mos1ex01\_9.str



# **Section VI: N well Formation:**

#apply photoresist for n-well formation

deposit photoresist thickness=1 structure outfile=mos1ex01\_10.str



#etch part

etch photoresist right p1.x=5 structure outfile=mos1ex01\_11.str



#### #etch nitride

etch nitride right p1.x=6 structure outfile=mos1ex01\_12.str

#### #anneling

anneal

#### #n-well formation

IMPLANT phosph DOSE=1E16 ENERGY=350e3
ADAPT.PAR DIFF.LEN=0.1 SILICON I.BORON
DIFFUSE TEMP=1000 TIME=240 NITROGEN
structure outfile=mos1ex01\_13.str
diffus time=50 temp=1000 t.rate=4.000 dryo2 press=0.10 hcl=3
diffus time=220 temp=1200 nitro press=1
diffus time=90 temp=1200 t.rate=-4.444 nitro press=1
structure outfile=mos1ex01\_14.str



# Section VII: Threshold (turning on) voltage:

#vth adjustment nmos

implant boron energy =10 dose =5.0e12 pearson

# structure outfile=mos1ex01\_20.str



#### #etch

etch photoresist right p1.x=5 structure outfile=mos1ex01\_21.str #etch left oxide etch oxide left p1.x=4 structure outfile=mos1ex01\_22.str

#### #etch right oxide

etch oxide right p1.x=6 structure outfile=mos1ex01\_23.str



# **Section VII: Gate oxide forming:**

# The growing of high-quality oxide in dry oxygen deposit oxide thickness =5.7e-3 diffus time = 10 temp = 900 dryO2 press=1.00 structure outfile=mos1ex01\_24.str # Poly deposition depo poly thick=350e-3 divi=10

# structure outfile=mos1ex01\_25.str



# # Gate patterning

etch poly left p1.x=1.2

structure outfile=mos1ex01\_27.str

#### #etch2

etch poly right p1.x=8.8

structure outfile=mos1ex01\_28.str



#### #etch 3

etch poly start x=2.2 y=0.2 etch continue x=7.8 y = 0.2 etch continue x=7.8 y = -2.4 etch done x=2.2 y = -2.4 structure outfile=mos1ex01\_29.str



# Poly reoxidation

diffuse time=3 temp=900 weto2 press=1.0

# structure outfile=mos1ex01\_30.str



# Section VIII: LDD formation (lightly doped drain) extensions:

**#LDD** formation

#deposit photoresist

deposit photoresist thickness=1

structure outfile=mos1ex01\_33.str



#etch
etch photoresist left p1.x=5
structure outfile=mos1ex01\_34.str



#implant phosphor

implant phospho energy =75 dose =5.0e14 pearson structure outfile=mos1ex01\_35.str





#### #etch

etch photoresist right p1.x=5 structure outfile=mos1ex01\_36.str

#apply left resist

deposit photoresist thickness=1 structure outfile=mos1ex01\_37.str #etch

etch photoresist right p1.x=5 structure outfile=mos1ex01\_38.str



# #implant boron

# implant boron energy =10 dose =5.0e14 pearson structure outfile=mos1ex01\_39.str



#etch photoresist

etch photoresist left p1.x=5

#### structure outfile=mos1ex01\_40.str



# **Section IX: Side wall Spacers:**

# Gate oxide spacer deposition depo oxide thick=0.120 divisions=10 structure outfile=mos1ex01\_41.str



# # Gate spacer formation

etch oxide dry thick=0.120 structure outfile=mos1ex01\_42.str



# **Section X:Source and drain formation:**

#source and drain

#apply photoresist

deposit photoresist thickness =1 structure outfile=mos1ex01\_43.str #etch

etch photoresist left p1.x=5 structure outfile=mos1ex01\_44.str



# #arsenic doping

implant arsenic energy = 75 dose = 4.0e15 pearson

#### structure outfile=mos1ex01\_45.str



#etch photoresist

etch photoresist right p1.x=5

# structure outfile=mos1ex01\_46.str



# #apply photoresist

deposit photoresist thickness =1 structure outfile=mos1ex01\_47.str

#etch photoresist

etch photoresist right p1.x=5 structure outfile=mos1ex01\_48.str



#### #dope

implant boron energy =10 dose = 3.0e15 pearson structure outfile=mos1ex01\_49.str #etch

etch photoresist left p1.x=5 structure outfile=mos1ex01\_50.str

# Section XI: Silicide layer:

# pattern S/D ohmic contact etch oxide left p1.x=0.2 deposit Ni thick=0.03 divi=10 structure outfile=mos1ex01\_52.str



#### #etch

etch Ni start x=3 y = -1 etch continue x=6.2 y = -1 etch continue x=6.2 y = 0.1 etch done x=4 y =0.1 structure outfile=mos1ex01\_53.str



# **Section XII: First metal level formation:**

# pattern S/D contact metal

etch oxide left p1.x=0.2

deposit Ni thick=1 divi=10

structure outfile=mos1ex01\_54.str

etch Ni left p1.x=0.45

etch Ni right p1.x=9.55

structure outfile=mos1ex01\_55.str

#### #etch

etch Ni start x=1.2 y = -1.4

etch continue x=2.2 y = -1.4

etch continue x=2.2 y = 0.2

etch done x=1.2 y = 0.2

structure outfile=mos1ex01\_56.str

#### #etch

etch Ni start x=7.8 y = -1.4

etch continue x=8.8 y = -1.4

etch continue x=8.8 y = 0.2

etch done x=7.8 y = 0.2

structure outfile=mos1ex01\_57.str



#### #etch

etch Ni start x=3.1 y = -1.4 etch continue x=6.9 y = -1.4 etch continue x=6.9 y = 0.2 etch done x=3.1 y =0.2 structure outfile=mos1ex01\_58.str



#etch

etch Ni start x=0 y = -1.4 etch continue x=10 y = -1.4 etch continue x=10 y = -0.7 etch done x=0 y =-0.7 structure outfile=mos1ex01\_59.str



#### **Section XII: References:**

Barzdenas, V., Grazulevicius, G., & Vasjanov, A. (2019). TCAD tools in Undergraduate Studies: A laboratory work for learning deep submicron CMOS processes. *The International Journal of Electrical Engineering & Education*, *57*(2), 133–163. https://doi.org/10.1177/0020720919846811