LISTA 09: FIS670 - Métodos Computacionais da Física. (Prof. Leandro Rizzi)

Considere o método de Dinâmica Molecular para um sistema com N partículas que interagem via um potencial $U_{ij} = U(r_{ij})$, onde r_{ij} é a distância entre duas partículas i e j. Vimos que, dadas as condições iniciais, podemos obter as trajetórias $\vec{r_i}$ e as velocidades $\vec{v_i}$ utilizando o algoritmo de velocity Verlet (vide Lista 08 para detalhes).

Condições de contorno: assumindo que as partículas estejam em uma caixa de simulação de "volume" $V = L^d$ com d sendo a dimensão espacial e L o lado da caixa, podemos definir condições de contorno periódicas fazendo [1]

$$x_i \to x_i - L$$
 se $x_i > L/2$
 $x_i \to x_i + L$ se $x_i < -L/2$,

sendo que essas condições também devem ser avaliadas para as outras componentes, e.g. y_i e z_i se d=3. Nesse caso também é necessário avaliar as componentes do vetor $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j = \Delta x_{ij}\hat{i} + \Delta y_{ij}\hat{j} + \Delta z_{ij}\hat{k}$ para obter a distância r_{ij} correta através do método da imagem mínima [1], isto é,

$$\Delta x_{ij} \to \Delta x_{ij} - L$$
 se $\Delta x_{ij} > L/2$
 $\Delta x_{ij} \to \Delta x_{ij} + L$ se $\Delta x_{ij} < -L/2$.

Evidentemente tais condições devem ser avaliadas para as outras componentes, e.g. $\Delta y_{ij} = y_i - y_j$ e $\Delta z_{ij} = z_i - z_j$. No caso de condições de contorno fechadas consideramos que a partícula será refletida pelas paredes da caixa, assim

Aqui devem ser avaliadas todas as componentes dos vetores velocidade \vec{v}_i e posição \vec{r}_i , mas não dos vetores \vec{r}_{ij} .

Temperatura constante: vimos que a "temperatura instantânea" T(t) pode ser associada à energia cinética K do sistema através da relação $T=2K/(dNk_B)$. Um método para manter a temperatura constante pode ser definido considerando $dK/dt=\sum_{i=1}^N m_i \vec{v}_i \cdot \vec{a}_i=0$, condição que define um ensemble NVT-isocinético e pode ser obtida pelo algoritmo velocity Verlet modificando a aceleração para

$$\vec{a}_i(t) = \frac{\vec{F}_i(t)}{m_i} - \lambda \vec{v}_i(t) \quad , \tag{1}$$

onde m_i é a massa da i-ésima partícula e $\vec{F}_i(t) = \sum_{j \neq i} \vec{F}_{ij}$ a força que atua sobre ela; o segundo termo na equação acima corresponde à uma força que pode servir para manter a energia cinética fixa e, portanto, a temperatura constante. Nesse caso o coeficiente de fricção λ é determinado através da relação

$$\lambda = \frac{1}{2K} \sum_{i=1}^{N} \vec{v}_i \cdot \vec{F}_i \quad . \tag{2}$$

A desvantagem desse método é que a temperatura do sistema é definida pelas condições iniciais, $\vec{r_i}(0)$ e $\vec{v_i}(0)$.

Uma alternativa mais rigorosa de realizar simulações no ensemble NVT é utilizando o termostato de Nosé-Hoover [1,2,3], onde a temperatura de equilíbrio do sistema $T_{\rm eq}$ pode ser estipulada no início da simulação. Um algoritmo adaptado para utilizar esse termostato, denominado **Nosé-Hoover-Verlet**, é definido pelos seguintes passos de atualização [3]:

$$\zeta(t_{n+1/2}) = \zeta(t_n) + \frac{\Delta t}{2Q} \left[\sum_{i=1}^{N} \frac{m_i \vec{v}_i^2(t_n)}{2} - \frac{(dN+1)}{2} k_B T_{\text{eq}} \right] , \qquad (3)$$

$$\vec{v}_i(t_{n+1/2}) = \vec{v}_i(t_n) + \frac{\Delta t}{2} \left[\frac{\vec{F}_i(t_n)}{m_i} - \zeta(t_n) \vec{v}_i(t_n) \right] ,$$
 (4)

$$\vec{r}_i(t_{n+1}) = \vec{r}_i(t_n) + \vec{v}_i(t_{n+1/2})\Delta t$$
 (5)

$$\zeta(t_{n+1}) = \zeta(t_{n+1/2}) + \frac{\Delta t}{2Q} \left[\sum_{i=1}^{N} \frac{m_i \vec{v}_i^2(t_{n+1/2})}{2} - \frac{(dN+1)}{2} k_B T_{\text{eq}} \right] , \qquad (6)$$

$$\vec{F}_i(t_{n+1}) \leftarrow \text{atualizadas a partir dos } \vec{r}_i(t_{n+1}) ,$$
 (7)

$$\vec{v}_i(t_{n+1}) = \left[\vec{v}_i(t_{n+1/2}) + \frac{\Delta t}{2} \frac{\vec{F}_i(t_{n+1})}{m_i} \right] / \left[1 + \frac{\Delta t}{2} \zeta(t_{n+1}) \right] , \qquad (8)$$

onde $\zeta(0) = 0.0$, $t_{n+1} = t_n + \Delta t$, e o parâmetro Q é escolhido de acordo com o tipo de acoplamento entre o sistema e o reservatório térmico e determina a relaxação do sistema para a temperatura de equilíbrio $T_{\rm eq}$.

Exercício 1. Considere um sistema com N=200 partículas (com massas $m_p=10^{-26}\,\mathrm{kg}$ iguais) dentro de uma caixa de simulação bidimensional (d=2) de lado $L=28\sigma$ que interagem através de um potencial,

$$u(r) = \left\{ \begin{array}{cc} 4\varepsilon \left[(\sigma/r)^{12} - (\sigma/r)^6 + 1/4 \right], & r < r_c \\ 0 & , & r \geq r_c \end{array} \right. , \label{eq:u_relation}$$

onde ε e σ definem, respectivamente, as unidades de energia e de comprimento; e $r_c=2^{1/6}\sigma$ é o raio de corte.

- a) Calcule a força $F(r) = -\nabla u(r)$ e grafique o potencial adimensional $u(r)/\varepsilon$ e a aceleração $a(r) = F(r)/m_p$, dada em Å/ps⁻², no intervalo $r \in [0.95\sigma, 1.5\sigma]$ para $\varepsilon = 10^{-20}$ J e $\sigma = 1$ Å.
- **b)** Obtenha as componentes da força $\vec{F}_{kj} = F(r_{kj})\hat{r}_{kj}$ que uma partícula j exerce sobre a k-ésima partícula em função das coordenadas das suas posições x_k , y_k , x_j e y_j (lembre-se que o versor¹ é definido como $\hat{r}_{kj} = \vec{r}_{kj}/|\vec{r}_{kj}|$).
- c) Plote a configuração inicial do sistema definida no arquivo config.dat onde as quatro colunas representam, respectivamente, $x_i, y_i, v_{x,i}$ e $v_{y,i}$, com as posições dadas em Å e as velocidades em Å/ps. Obtenha e grafique o histograma não normalizado H(v) das velocidades iniciais $v = |\vec{v}|$ considerando subintervalos $\Delta v = 1$ Å/ps.
- d) Considerando condições de contorno fechadas, implemente um programa utilizando o algoritmo velocity Verlet para obter as trajetórias das partículas no ensemble NVE considerando $\Delta t = 0.001$ ps com o tempo máximo $t_{\rm max} = 10^3$ ps. Forneça gráficos da evolução temporal das energias mecânica $E^* = E/\varepsilon$, potencial $U^* = U/\varepsilon$, cinética $K^* = K/\varepsilon$, do momento linear total adimensional $P^* = (\Delta t/\sigma m_p)|\sum_i m_i \vec{v}_i|$, da temperatura reduzida $T^* = k_B T/\varepsilon$ e da pressão reduzida $p^* = p \, \sigma^d/\varepsilon$, onde a "pressão instantânea" pode ser definida como [1]

$$p = \frac{Nk_BT}{V} + \frac{1}{3V} \sum_{i}^{N-1} \sum_{j=i+1}^{N} \vec{r}_{ij} \cdot \vec{F}_{ij} \quad . \tag{9}$$

Obtenha os histogramas H(v) utilizando as velocidades das partículas observadas após um período de termalização $t_{\rm term} < t < t_{\rm max}$, isto é, quando as grandezas observadas estiverem flutuando ao redor de um valor.

- e) Refaça o item (d) com condições de contorno periódicas. Discuta diferenças observadas nas grandezas medidas.
- f) Refaça o item (e) mas com o ensemble NVT-isocinético. Discuta diferenças observadas nas grandezas medidas.
- g) Refaça o item (e) no ensemble NVT mas agora utilizando o algoritmo de Nosé-Hoover-Verlet com $T_{\rm eq}^* = k_B \langle T_{\rm eq} \rangle / \varepsilon$ obtida no item (e). Teste vários valores de Q, *i.e.* diferentes ordens de grandeza em relação à Δt , discutindo a diferença entre o comportamento do sistema para cada um deles. Comente a diferença entre os resultados obtidos no item (f).
- h) Utilize o programa do item (g) para obter as propriedades médias do sistema (i.e. energias, temperatura e pressão) para diferentes valores de temperatura $T_{\rm eq}$ e volume, e.g. $(T_{\rm eq}^*=0.95\tilde{T},L=28\sigma),~(T_{\rm eq}^*=1.05\tilde{T},L=28\sigma),~(T_{\rm eq}^*=1.05\tilde{T},L=32\sigma),~(T_{\rm eq}^*=0.95\tilde{T},L=32\sigma),~(T_{\rm eq}^*=0.95\tilde{T},L=32\sigma),~(T_{\rm$

Referências:

- [1] Allen & Tildesley, Computer Simulation of Liquids (Claredon Press, Oxford, 1991).
- [2] F. J. Vesely. Computational Physics: An Introduction (2nd ed., Springer, 2001).
- [3] http://www2.ph.ed.ac.uk/~dmarendu/MVP/MVP03.pdf
- [4] C. Scherer. Métodos Computacionais da Física (2nd ed.,2010).

¹Note que aqui adotamos a notação da ref. [1], onde $\vec{r}_{kj} = \vec{r}_k - \vec{r}_j$, de maneira consistente como definido nas condições de contorno.