

**METHOD OF ELECTROLYTICALLY TINNING SHEET METAL****Publication number:** RU2103418**Publication date:** 1998-01-27**Inventor:** NOSOV S K; KUSHNAREV A V; KARPOV A A;  
CHERNJAKHOVSKAJA I A; CHERKASSKIJ R I;  
VINOGRADOV V P; PARAMONOV V A; GULJAEVA G  
S**Applicant:** RSKIJ METALL KOM; AKTSIONERNOE  
OBSHCHESTVO OTKRY**Classification:****- international:** C25D3/32; C25D3/30; (IPC1-7): C25D3/32**- european:****Application number:** RU19970101514 19970128**Priority number(s):** RU19970101514 19970128**Report a data error here****Abstract of RU2103418**

**FIELD:** metal coatings. **SUBSTANCE:** method includes treating metallic, in particular, steel sheet by passing current when immersed in electrolyte containing (in g/l): tin in the form of bivalent ions, 20-37; sulfamic acid (total), 100-140; proxamine-385, 0.5-2.5, and water, the balance. Temperature of electrolyte is maintained within the range 20 to 70 C at current density 20-70 A/dm. **EFFECT:** increased quality of sheet metal due to better evenness of coating and simultaneously reduced edge effect. 1 tabla

---

Data supplied from the esp@cenet database - Worldwide



(19) RU (11) 2 103 418 (13) C1

(51) МПК<sup>6</sup> C 25 D 3/32

РОССИЙСКОЕ АГЕНТСТВО  
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

**(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ**

(21), (22) Заявка: 97101514/02, 28.01.1997

(46) Дата публикации: 27.01.1998

(56) Ссылки: RU, патент, 1678094, кл. C 25 D 3/32, 1994.

(71) Заявитель:  
Акционерное общество открытого типа  
"Магнитогорский металлургический комбинат"

(72) Изобретатель: Носов С.К.,  
Кушинарев А.В., Карпов А.А., Черняховская  
И.А., Черкасский Р.И., Виноградов  
В.П., Парамонов В.А., Гуляева Г.С.

(73) Патентообладатель:  
Акционерное общество открытого типа  
"Магнитогорский металлургический комбинат"

**(54) СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ЛУЖЕНИЯ ЖЕСТИ**

**(57) Реферат:**

Изобретение относится к электролитическому нанесению покрытий, в частности к лужению, и может быть использовано при производстве белой жести. Предложен способ электролитического лужения жести, включающий обработку металлической, в частности стальной полосы, путем пропускания электрического тока при погружении ее в электролит, содержащий (в

г/л): олово в виде двухвалентных ионов 20 - 37, сульфаминовую кислоту (общую) 100 - 140, проксамин 385 0,5 - 2,5, вода остальное, при этом температуру электролита поддерживают в пределах 20 - 70°C при плотности тока 20 - 70 A/дм<sup>2</sup>. Техническим результатом изобретения является повышение качества жести за счет высокой равномерности покрытия с одновременным уменьшением краевого эффекта. 1 табл.

RU 2 103 418 C1

R U  
2 1 0 3 4 1 8 C 1



(19) RU (11) 2 103 418 (13) C1  
(51) Int. Cl. 6

C 25 D 3/32

RUSSIAN AGENCY  
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 97101514/02, 28.01.1997

(46) Date of publication: 27.01.1998

(71) Applicant:  
Aktsionernoje obshchestvo otkrytogo tipa  
"Magnitogorskij metallurgicheskij kombinat"

(72) Inventor: Nosov S.K.,  
Kushnarev A.V., Karpov A.A., Chernjakhovskaja  
I.A., Cherkasskij R.I., Vinogradov V.P., Paramonov  
V.A., Guljaeva G.S.

(73) Proprietor:  
Aktsionernoje obshchestvo otkrytogo tipa  
"Magnitogorskij metallurgicheskij kombinat"

(54) METHOD OF ELECTROLYTICALLY TINNING SHEET METAL

(57) Abstract:

FIELD: metal coatings. SUBSTANCE:  
method includes treating metallic, in particular, steel sheet by passing current when immersed in electrolyte containing (in g/l): tin in the form of bivalent ions, 20-37; sulfamic acid (total), 100-140;

proxamine-385, 0.5-2.5, and water, the balance. Temperature of electrolyte is maintained within the range 20 to 70 C at current density 20-70 A/dm. EFFECT: increased quality of sheet metal due to better evenness of coating and simultaneously reduced edge effect. 1 tbl

R U  
2 1 0 3 4 1 8  
C 1

R U  
2 1 0 3 4 1 8  
C 1

BEST AVAILABLE COPY

RU 2103418 C1

RU 2103418 C1

Изобретение относится к электролитическому нанесению покрытий, в частности лужению, и может быть использовано при производстве белой жести.

Известен способ электролитического лужения жести путем погружения ее в электролит (авт. св. 1478094, С 25 D 3/32) следующего состава, г/л:

Сернокислое олово - 45 - 65  
Сульфаминовая кислота - 60 - 110  
Сульфосалициловая кислота - 0,3 - 0,5  
Сульфат полиалкиленгликоля - 2 - 3.

Недостатки данного способа заключаются в том, что при использовании электролита указанного состава наблюдается неравномерность оловянного покрытия с наличием краевого эффекта (утолщение кромок полосы) и узкий интервал применяемых температур.

Известен также способ нанесения гальванического покрытия на металлическую полосу (Виткин А.И., Галин Д.П., Берлин Б.И. Основы теории и технологии производства белой жести. - М.: Металлургия, 1978, с. 101, 109, 267 - 274), путем погружения ее в электролит лужения следующего состава, г/л:

Сернокислое олово (по металлическому) - 25 - 40  
Фенолсульфоновая кислота - 50 - 70  
Дигидроксидифенилсульфон - 4 - 6  
Арескан - 0,1 - 1,0.

При осуществлении данного способа лужения жести наблюдается неравномерность покрытия за счет высокого краевого эффекта (утолщение кромок), относительно узкие интервалы применяемых плотности тока и температуры.

Наиболее близким к заявляемому объекту является способ электролитического лужения жести, включающий электрохимическую обработку металлической полосы при пропускании через нее электрического тока в электролите, содержащем г/л: сернокислое олово 45 - 65, сульфаминовую кислоту 60 - 110, сульфосалициловую кислоту 0,3 - 0,5 и 2 - 3 сульфата полиалкиленгликоля - сернокислую соль азотсодержащего блоксополимера окиси пропилена и окиси этилена, при  $t = 40^{\circ}\text{C}$  и плотности тока 15 - 60 A/dm<sup>2</sup> (RU, патент 1678094, С 25 D 3/32, 1994).

Недостатком данного способа является высокая неравномерность покрытия, наличие утолщенных кромок. Кроме того, при высоких температуре электролита и катодной плотности тока наблюдается появление дефекта "матовость".

Техническая задача, на решение которой направлено изобретение, - повышение качества жести и высокая равномерность покрытия с одновременным уменьшением краевого эффекта, который заключается в том, что на кромках полосы покрытие в процессе лужения получается более толстое и, кроме того, на кромках происходит образование оловянного порошка, который указывает на перерасход олова и появление дефекта "надав" на полосе.

Для решения этой задачи предлагается способ электролитического лужения жести, включающий нанесение на металлическую полосу покрытия из электролита, содержащего олово в виде двухвалентных ионов, сульфаминовую кислоту и

азотсодержащий блоксополимер окиси этилена и окиси пропилена, при пропускании через полосу электрического тока при плотности 20 - 70 A/dm<sup>2</sup> при следующем соотношении компонентов, г/л:

5 Олово в виде двухвалентных ионов - 20 -

37 Сульфаминовая кислота (общая) - 100 -

140 Проксамин 385 - 0,5 - 2,5

10 Вода - Остальное.  
причем нанесение покрытия осуществляют при 20 - 70 °C а в качестве азотсодержащего блоксополимера окиси этилена и окиси пропилена используя проксамин 385.

15 Качественное содержание ингредиентов электролита получено экспериментальным путем.

Сущность найденного технического решения заключается в следующем. При использовании электролита предложенного состава было обнаружено, что он обладает наилучшей по сравнению с известной рассеивающей способностью, которая приводит к равномерному покрытию по всей ширине полосы и отсутствию осаждения олова на кромках стальной полосы. При этом, заявленные интервалы температур электролита и плотности тока также влияют на равномерность покрытия и качество жести. Высокие адсорбционные свойства проксамина 385 (азотсодержащий блоксополимер окиси этилена и окиси пропилена, ТУ-6-36-00203335-95-94 от 01.06.95.) обеспечивают сохранение ингибиторов поверхности даже при температурах 60 - 80°C, что обеспечивает получение в перегретом электролите качественных оловянных покрытий.

35 Ограничение верхнего предела температуры 70°C связано не с действием добавки, а с появлением опасности разложения сульфаминовой кислоты.

40 В таблице приведены данные экспериментов по выбору оптимальных значений количественного состава электролита лужения и по выбору оптимальных значений температуры электролита и плотности тока на полосе.

45 Равномерность покрытия представлена в виде среднеквадратического отклонения  $S_{\text{кв}}$ , которая определяется по формуле:

$$S_{\text{кв}} = \sqrt{\frac{\sum_{i=1}^{n-1} (\delta_i - \bar{\delta}_{\text{ср}})^2}{n-1}},$$

где  $\delta_i$  - толщина покрытия в данной точке,  $\text{мкм}^2$ .

55  $\bar{\delta}_{\text{ср}}$  - среднеарифметическая толщина покрытия,  $\text{мкм}^2$ .  
п - количество определений по ширине полосы.

Примеры конкретного осуществления способа

60 Пример 1 (опыт 1)  
Сталь марки 08ПС  
состав электролита следующий, г/л:  
Олово в виде двухвалентных ионов - 20  
Сульфаминовая кислота (общая) - 100  
Проксамин 385 - 0,5  
Вода - Остальное

-3-

BEST AVAILABLE COPY

RU 2103418 C1

RU 2103418 C1

- Температура электролита 20°C.  
плотность тока 20 A/dm<sup>2</sup>.  
Стальную полосу для нанесения оловянного покрытия погружают в ванну с электролитом который готовят растворением в воде расчетного количества ингредиентов, приведенных выше.
- Оловянное покрытие наносили на жесть марки 08ПС. Оплавление покрытия осуществляли контактным способом путем пропускания электрического тока через металлическую полосу. Равномерность покрытия в опыте 1 на кромках полосы составила  $S_{\text{кр}} = 0,04$ , по ширине полосы -  $S_{\text{ш}} = 0,095$ . Это говорит о практическом отсутствии краевого эффекта. Дефект "матовость" отсутствует. Поверхность электролуженой жести блестящая.
- Пример 2 (опыт 2)  
Марка стали та же.  
Состав электролита следующий, г/л:  
Олово в виде двухвалентных ионов - 30  
Сульфаминовая кислота (общая) - 120  
Проксамин 385 - 1,5  
Вода - Остальное  
Температура электролита 50°C.  
плотность тока 50 A/dm<sup>2</sup>.
- Равномерность покрытия в опыте 2 на кромках составила  $S_{\text{кр}} = 0,045$ , по ширине полосы - 0,098. Это говорит о практическом отсутствии краевого эффекта.
- Дефект "матовость" отсутствует, поверхность электролуженой жести блестящая.
- Пример 3 (опыт 3)  
Марка стали та же.  
Состав электролита следующий, г/л:  
Олово в виде двухвалентных ионов - 37  
Сульфаминовая кислота (общая) - 140  
Проксамин 385 - 2,5  
Вода - Остальное  
Температура электролита 70°C.  
плотность тока 70 A/dm<sup>2</sup>.
- Равномерность покрытия в опыте 3 на кромках составила  $S_{\text{кр}} = 0,05$ , по ширине - 0,1.
- Это говорит о практическом отсутствии краевого эффекта.
- Дефект "матовость" отсутствует, поверхность электролуженой жести блестящая.
- Пример 4 (опыт 4)  
Марка стали та же.  
Состав электролита следующий, г/л:  
Олово в виде двухвалентных ионов - 15  
Сульфаминовая кислота (общая) - 80 -  
Проксамин 385  
0,3
- Вода - Остальное  
Температура электролита 10°C.  
плотность тока 15 A/dm<sup>2</sup>.
- Равномерность покрытия в опыте 4 на кромках составила  $S_{\text{кр}} = 0,2$ , по ширине полосы - 0,45.
- Это говорит о наличии краевого эффекта. Дефект "матовость" присутствует, поверхность электролуженой жести матовая.
- Пример 5 (опыт 5)  
Марка стали та же.  
Состав электролита следующий, г/л:  
Олово в виде двухвалентных ионов - 40  
Сульфаминовая кислота (общая) - 150  
Проксамин 385 - 3,0  
Вода - Остальное  
Температура электролита 80°C.  
плотность тока 75 A/dm<sup>2</sup>.
- Равномерность покрытия на кромках полосы составила 0,4, по ширине - полосы 0,7.
- Это говорит о наличии краевого эффекта. Дефект "матовость" присутствует, поверхность электролуженой жести матовая.
- Таким образом, по сравнению с прототипом предлагаемый способ позволяет вести процесс лужения жести с наименьшими затратами олова при одновременном улучшении качества и отсутствии краевого эффекта. Кроме того, следует отметить, что электролуженная жесть по предложенному способу обладает улучшенной коррозионной стойкостью и промышленное ее получение является экологически безопасным, так как в компонентах электролита отсутствуют фенолосоставляющие продукты, которые присутствуют в известных (описанных выше) электролитах.
- Формула изобретения:**
- Способ электролитического лужения жести, включающий нанесение на металлическую полосу покрытия из электролита, содержащего олово в виде двухвалентных ионов, сульфаминовую кислоту и азотсодержащий блоксополимер окиси этилена и окиси пропилена, при пропускании через полосу электрического тока, отличающийся тем, что нанесение покрытия осуществляют при температуре 20-70°C и плотности тока 20-70 A/dm<sup>2</sup> из электролита, содержащего в качестве азотсодержащего блоксополимера окиси этилена и окиси пропилена - Проксамин 385, при следующем соотношении компонентов, г/л:
- Олово в виде двухвалентных ионов 20-37  
Сульфаминовая кислота (общая) 100-140  
Проксамин 385 0,5-2,5C

55

60

BEST AVAILABLE COPY

Таблица

| Опы-<br>ты | Состав электролита, г/л                  |                                         |                       | Темпе-<br>ратура<br>электро-<br>лита<br>°C | Плот-<br>ность<br>тока,<br>А/дм <sup>2</sup> | S кв                                                  | Нали-<br>чие<br>де-<br>фекта<br>"мато-<br>вость" |
|------------|------------------------------------------|-----------------------------------------|-----------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------------------|--------------------------------------------------|
|            | олово в виде<br>двухвалент-<br>ных ионов | сульфа-<br>миновая<br>кислота<br>(общ.) | Прокса-<br>мин<br>385 |                                            |                                              | на<br>кромке                                          |                                                  |
|            |                                          |                                         |                       |                                            |                                              | по<br>ширине                                          |                                                  |
| 1          | 2                                        | 3                                       | 4                     | 5                                          | 6                                            | 7                                                     | 8                                                |
| 1.         | 20                                       | 100                                     | 0.5                   | 20                                         | 20                                           | <u>0.04</u><br><u>0.095</u>                           | Нет                                              |
| 2.         | 30                                       | 120                                     | 1.5                   | 50                                         | 50                                           | <u>0.045</u><br><u>0.098</u>                          | Нет                                              |
| 3.         | 37                                       | 140                                     | 2.5                   | 70                                         | 70                                           | <u>0.05</u><br><u>0.1</u>                             | Нет                                              |
| 4          | 15                                       | 80                                      | 0.3                   | 10                                         | 15                                           | <u>0.2</u><br><u>0.45</u>                             | Да                                               |
| 5          | 40                                       | 150                                     | 3.0                   | 80                                         | 75                                           | <u>0.25</u><br><u>0.5</u><br><u>0.4</u><br><u>0.7</u> | Да                                               |
| Прототип   |                                          |                                         |                       |                                            |                                              |                                                       |                                                  |

RU ?103418 C1

RU 2103418 C1

BEST AVAILABLE COPY