

# AARHUS SCHOOL OF ENGINEERING

### SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

# Dokumentation

#### Gruppe 1

Lise Skytte Brodersen (201407432) Mads Fryland Jørgensen (201403827) Albert Jakob Fredshavn (201408425) Malene Cecilie Mikkelsen (201405722) Mohamed Hussein Mohamed (201370525) Sara-Sofie Staub Kirkeby (201406211) Martin Banasik (201408398) Cecilie Ammizbøll Aarøe (201208778)

Vejleder Studentervejleder Lars Mortensen Aarhus Universitet

# Kravspecifikation

Version Dato Ansvarlig Beskrivelse

## Indledning

#### Funktionelle krav

De funktionelle krav vil nedenstående beskrives ud fra Aktør-kontekstdiagram, aktørbeskrivelse, Use Cases samt Use Case diagram.

ør-kontekst diagram.<br/>png ør-kontekst diagram. pdf ør-kontekst diagram. jpg ør-kontekst diagram. jb<br/>ig2 ør-kontekst diagram. jb2 ør-kontekst diagram. PNG ør-kontekst diagram. PDF ør-kontekst diagram. JPG ør-kontekst diagram. JBIG2 ør-kontekst diagram. JB2 ør-kontekst diagram.

 $Figur\ 1:\ Akt \'{o}r\text{-}kontekst diagram$ 

ST2PRJ2 Gruppe 1 Kravspecifikation

# ${\bf Akt} \\ \emptyset \\ {\bf r}\text{-}\\ {\bf kontekst} \\ {\bf diagram}$

# Aktørbeskrivelse

| Aktørnavn   | Bruger                                                                 |
|-------------|------------------------------------------------------------------------|
| Type        | Primær                                                                 |
| Beskrivelse | Person med relevant baggrundsviden inden for blodtryksanalyse          |
| Aktørnavn   | Borger                                                                 |
| Type        | Sekundær                                                               |
| Beskrivelse | Borger er en kombination af Physionet og Analog Discovery. Borger      |
|             | repræsenterer data fra Physionet leveret til blodtryksmålingssystemet  |
|             | igennem Analog Discovery                                               |
| Aktørnavn   | Database                                                               |
| Type        | Sekundær                                                               |
| Beskrivelse | Database bruges i blodtryksmålingssystemet til at gemme data           |
| Atørnavn    | Physionet                                                              |
| Type        | Ekstern                                                                |
| Beskrivelse | Physionet er en ekstern database, som indeholder blodtrykssignalet fra |
|             | forskellige patienter                                                  |
| Aktørnavn   | Analog Discovery                                                       |
| Type        | Ekstern                                                                |
| Beskrivelse | Analog Discovery omdanner data fra Physionet til at analogt signal     |

 $Tabel\ 2:\ Akt \"{\varphi}rbeskrivelse$ 

# Use case-diagram

# Use Cases

## Use Case 1

| Navn             | Vis Måling                                                 |
|------------------|------------------------------------------------------------|
| Use case ID      | 1                                                          |
| Samtidige forløb | 1                                                          |
| Primær aktør     | Bruger                                                     |
| Sekundære aktør  |                                                            |
| Referencer       | UC2                                                        |
| Mål              | Bruger ønsker at vise blodtrykssignal uden digitalt filter |
| Initiering       | Startes af Bruger                                          |
| Forudsætninger   | Systemet er aktivt og tilgængeligt.                        |
| Resultat         | Blodtrykssignalet udskives                                 |

Funktionelle krav ASE

| Hovedforløb | 1.  | System spørger om der skal foretages en kalibrering [1.a Bruger ønsker at kalibrere] |  |
|-------------|-----|--------------------------------------------------------------------------------------|--|
|             | 2.  | Blodtryksignal udskrives                                                             |  |
| Undtagelser | 1.a | UC2 gennemføres hvorefter UC1 fortsætter ved punkt 2                                 |  |

Tabel 3: Fully dressed Use Case 1.

# Use Case 2

| Navn             |     | Kalibrér                                       |
|------------------|-----|------------------------------------------------|
| Use case ID      |     | 2                                              |
| Samtidige forløb |     | 1                                              |
| Primær aktør     |     | Bruger                                         |
| Sekundære aktør  |     |                                                |
| Reference        |     |                                                |
| Mål              |     | Bruger ønsker at kalibrere blodtrykssignal     |
| Initiering       |     | Startes af Bruger                              |
| Forudsætninger   |     | Systemet er aktivt og tilgængeligt. UC1 kører. |
| Resultat         |     | Blodtrykssignalet er kalibreret                |
| Hovedforløb      | 1.  | System spørger om valg af kalibrering          |
|                  | 2.  | Brugeren ønsker kalibrering                    |
|                  |     | [2.a Bruger ønsker ikke kalibrering]           |
|                  | 3.  | System kalibrerer og udskriver valg            |
| Undtagelser      | 2.a | System fortsætter i UC1                        |
|                  |     |                                                |

Tabel 4: Fully dressed Use Case 2.

# Use Case 3

| Navn        | Nulpunktsjustér blodtrykssignal |
|-------------|---------------------------------|
| Use case ID | 3                               |

ST2PRJ2 Gruppe 1 Kravspecifikation

Samtidige forløb 1

Primær aktør Bruger

Sekundære aktør Borger

Reference

Mål Bruger ønsker at nulpunktsjustere blodtrykssignal

Initiering Startes af Bruger

Forudsætninger Borger er tilsluttet systemet. Systemet er aktivt og tilgængeligt

Resultat Blodtrykssignalet er nulpunktsjusteret

Hovedforløb 1. Bruger starter nulpunktsjustering

2. System udskriver valg

 ${\bf Undtagelser}$ 

 $Tabel \ 5: Fully \ dressed \ Use \ Case \ 3.$ 

#### Use Case 4

| Navn        | Aktivér digitalt filter |
|-------------|-------------------------|
| Use case ID | 4                       |

CSC Case ID

Samtidige forløb 1

Primær aktør Bruger

Sekundære aktør Borger

Reference

Mål Bruger ønsker at filtere blodtrykssignalet igennem et digitalt filter

Initiering Startes af Bruger

Forudsætninger Systemet er aktivt og tilgængeligt. UC1 kører.

Resultat Digitalt filtreret blodtrykssignal udskrives

Hovedforløb 1. Bruger aktiverer filter

2. Systemet meddeler at filteret er aktivt

#### Undtagelser

Ikke-funktionelle krav ASE

Tabel 6: Fully dressed Use Case 4.

#### Use Case 5

| Navn                                                          |    | Gem måling                                             |  |
|---------------------------------------------------------------|----|--------------------------------------------------------|--|
| Use case ID                                                   |    | 5                                                      |  |
| Samtidige forløb                                              |    | *                                                      |  |
| Primær aktør Bruger                                           |    | Bruger                                                 |  |
| Sekundære aktør                                               |    | Database, Borger                                       |  |
| Reference                                                     |    |                                                        |  |
| Mål                                                           |    | Bruger ønsker at gemme data                            |  |
| Initiering Startes af Bruger                                  |    | Startes af Bruger                                      |  |
| Forudsætninger Systemet er aktivt og tilgængeligt. UC1 kører. |    | Systemet er aktivt og tilgængeligt. UC1 kører.         |  |
| Resultat                                                      |    | Data er gemt i en database                             |  |
| Hovedforløb                                                   | 1. | Bruger trykker på "Gem"-knap                           |  |
| 2.                                                            |    | System åbner nyt vindue til indtastning af oplysninger |  |
| 3.                                                            |    | Bruger indtaster oplysninger                           |  |
|                                                               | 4. | Bruger trykker på "Gem og afslut"-knap                 |  |
| Undtagelser                                                   |    |                                                        |  |

Tabel 7: Fully dressed Use Case 5.

# Ikke-funktionelle krav

#### (F)URPS+

MoSCoW er angivet i parentes med hhv. M, S, C eller W.

#### Usability

- (M) Brugeren skal kunne starte en default-måling maksimalt 20 sek. efter opstart af programmet
- (M) Login-vinduet skal indeholde en "login"-knap til at logge på og få vist EKG-vinduet
- (M) EKG-vinduet skal indeholde en "start"-knap til at igangsætte målingerne

ST2PRJ2 Gruppe 1 Kravspecifikation

- (M) EKG-vinduet skal indeholde en "log ud"-knap
- (M) EKG-vinduet skal indeholde en "gem"-knap
- (M) Information-vinduet skal indeholde en "gem"-knap

#### Reliability

• (M) Systemet skal have en effektiv MTBF (Mean Time Between Failure) på 20 minutter og en MTTR (Mean Time To Restore) på 1 minut.

$$Availability = \frac{MTBF}{MTBF + MTTR} = \frac{20}{20 + 1} = 0,952 = 95,2\% \tag{1}$$

#### Performance

- (M) Der skal vises en EKG-graf i EKG-vinduet, hvor spænding vises op af y-aksen (-1V til 1V) og tiden på x-aksen
- (M) Grafen skal være scrollbar på x-aksen, så brugeren selv ved brug af musen kan vælge det udsnit af grafen, der skal vises mere detaljeret
- (M) Skal tage en sample over et brugerbestemt interval, hvor frekvensen er tilpasset målingerne, således at grafen er analyserbar

#### Supportability

• (M) Softwaren er opbygget af trelagsmodellen

# Indholdsfortegnelse

| avspecifikation        |
|------------------------|
| Indledning             |
| Funktionelle krav      |
| Aktør-kontekstdiagram  |
| Aktørbeskrivelse       |
| Use case-diagram       |
| Use Cases              |
| Ikke-funktionelle krav |
| (F)URPS+               |