GEL-19962 1997 Examen Partiel

Mercredi le 22 octobre 1997; Durée: 13h30 à 15h20 Aucune documentation permise; aucune calculatrice permise

Problème 1 (10 points sur 40)

Université Laval

Professeur: Leslie Rusch

Trouvez la transformée de Fourier de la fonction $f(t) = |\sin t| \cdot \text{Rect}\left(\frac{t}{2\pi}\right)$.

Problème 2 (16 points sur 40)

(12 pts) Trouvez la transformée de la fonction périodique donné dans le

graphique.

(2 pts) Quelle est la puissance moyenne totale?

(2 pts) Quelle est la puissance moyenne dans la bande de fréquence $-7 < \omega < 7$?

Université Laval Professeur: Leslie Rusch

GEL-19962 1997 Examen Partiel

Problème 3 (14 points sur 40)

(12 pts) Trouvez la transformée de

$$f(t) = \frac{t^2}{a^2 + t^2}$$

(2 pts) Quelle est l'aire sous la courbe de la transformée?

GEL-19962 1997 Examen Partiel

Université Laval

Professeur: Leslie Rusch

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
$\operatorname{Rect}(t/ au)^{1}$	$ au$ Sa $(\omega au/2)$
δ(<i>t</i>)	1
1	2πδ(ω)
U(<i>t</i>)	$\frac{1}{j\omega} + \pi\delta(\omega)$
Sgn(<i>t</i>)	$\frac{2}{j\omega}$
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \mathcal{S}(\omega - n\omega_0)$
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

GEL-19962 1997 Examen Partiel

Université Laval

Professeur: Leslie Rusch