Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea științele naturii

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

БСБ	1ECTOLT (50 de punco	-)
1.	$\log_3 6 = \log_3 3 + \log_3 2$	2p
	$1 + \log_3 2 = 1 + a$	3 p
2.	$A(0,1) \in G_f \iff f(0) = 1$	2p
	f(0) = m - 3	2p
	m = 4	1p
3.	$\log_2 \frac{x+1}{x+3} = -1 \Leftrightarrow \frac{x+1}{x+3} = 2^{-1}$	3 p
		1p
	x=1	F
	Verificarea condițiilor de existență	1p
4.	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}}$	
	nr.cazuri posibile	1p
	Numerele divizibile cu 7 sunt $7,14,21,28 \Rightarrow 4$ cazuri favorabile	2p
	Mulțimea are 30 de elemente \Rightarrow 30 de cazuri posibile	1p
	$p=\frac{2}{1.5}$	
	^{p-} 15	1p
5.	O este mijlocul segmentului $(AB) \Leftrightarrow x_B = 2x_O - x_A \Leftrightarrow x_B = -4$	3p
	$y_B = 2y_O - y_A \Leftrightarrow y_B = 1$	2p
6.	$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos A$	3 p
	$\cos A = \frac{1}{-}$	2n
	5	2p

SUBIECTUL al II-lea (30 de puncte)		
1.a)	$\det A = \begin{vmatrix} 1 & 1 & 1 \\ 2 & a & 3 \\ 4 & a^2 & 9 \end{vmatrix} =$	2p
	$=-a^2+5a-6$	3 p
b)	A este inversabilă \Leftrightarrow det $A \neq 0$	2p
	$-a^2 + 5a - 6 = 0 \Rightarrow a_1 = 2, a_2 = 3$	2 p
	$a \in \mathbb{R} \setminus \{2,3\}$	1p
c)	$\begin{cases} 2x + y + 3z = 1\\ 4x + y + 9z = 1 \end{cases}$	2p
	x = 0, y = 1, z = 0	3 p
2.a)	$f(\hat{1}) = m + n$	2p

	$m+n=m \Leftrightarrow n=\hat{0}$	3 p
b)	$f = X^5 + \hat{4}X$	1p
	$f(\hat{0}) = f(\hat{1}) = f(\hat{2}) = f(\hat{3}) = f(\hat{4}) = \hat{0}$	3 p
	Rădăcinile polinomului f sunt $\hat{0}$, $\hat{1}$, $\hat{2}$, $\hat{3}$ și $\hat{4}$	1p
c)	$f(\hat{1}) = m + n, f(\hat{2}) = \hat{2}(m+n)$	1p
	$f(\hat{1}) = f(\hat{2}) \Rightarrow m + n = \hat{0}$	2 p
	$f(\hat{3}) = \hat{3}(m+n) = \hat{0}, \ f(\hat{4}) = \hat{4}(m+n) = \hat{0} \Rightarrow f(\hat{3}) = f(\hat{4})$	2 p

SUBIECTUL al III-lea (30 de puno)
1.a)	$f'(x) = \frac{(2x-1)(x+1) - (x^2 - x - 1)}{(x+1)^2} =$ $= \frac{x^2 + 2x}{(x+1)^2}$	3 p
		2p
b)	$\lim_{x \to +\infty} \frac{f(x) \cdot \ln x}{x^2 - x - 1} = \lim_{x \to +\infty} \frac{\ln x}{x + 1} =$	2p
	$= \lim_{x \to +\infty} \frac{1}{x} = 0$	3р
c)	$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - x - 1}{x^2 + x} = 1$	2p
	$n = \lim_{x \to +\infty} \left(f(x) - mx \right) = \lim_{x \to +\infty} \frac{-2x - 1}{x + 1} = -2$	2 p
	$y = x - 2$ este ecuația asimptotei oblice spre $+\infty$	1p
2.a)	$g(x) = e^x$	2p
	$\int g(x)dx = e^x + C$	3 p
b)	$\int g(x)dx = e^x + C$ $\int_1^2 \sqrt{x+1} \cdot f(x)dx = \int_1^2 (x+1) \cdot e^x dx = 1$	1p
	$=(x+1)e^{x}\Big _{1}^{2}-\int_{1}^{2}e^{x}dx=$	3 p
	$=2e^2-e$	1p
c)	$= 2e^2 - e$ $h(x) = \sqrt{x+1}$	1p
	$A = \int_{2}^{3} h(x) dx = \int_{2}^{3} \sqrt{x+1} dx = \frac{2}{3} (x+1) \sqrt{x+1} \Big _{2}^{3} =$	3 p
	$=\frac{2}{3}\left(8-3\sqrt{3}\right)$	1p