Exercice 1 Montrez le lemme de l'étoile (ou lemme de pompage)

Exercice 2 Montrez que les langages reconnus par une expression régulière le sont par un automate fini déterministe et complet.

Exercice 3 Montrez que les langages reconnus par un automate fini déterministe et complet le sont par une expression régulière.

Exercice 4 Le langage $\{a^p, p \text{ premier}\}$ est-il régulier ?

Exercice 5 Le langage $\{w \in \Sigma^*, |w|_a \leq |w|_b\}$ est-il régulier ?

Exercice 6 Montrez que si L est un langage régulier alors $Min(L) = \{w \in L \mid \nexists v \in L, v \text{ préfixe propre de } w\}$ est un langage régulier.

Exercice 7 Montrez que si L est un langage régulier alors $Max(L) = \{w \in L \mid \forall u \in \Sigma^*, wu \in L \Rightarrow u = \varepsilon\}$ est un langage régulier.

Exerice 8 Montrez que si L est un langage régulier alors $\sqrt{L} = \{u \in \Sigma^* \mid uu \in L\}$ est régulier.

Exerice 9 Montrez que si L est un langage régulier alors $\frac{1}{2}(L) = \{u \in \Sigma^* \mid \exists v, uv \in L \text{ et } |u| = |v|\}$ est régulier.