Einführung in Matlab - Einheit 2 Numerische Lineare Algebra, Programmieren

Jochen Schulz

Georg-August Universität Göttingen

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Vektornorm

Die *p*-Norm eines Vektors $x = (x_1, \ldots, x_n)$

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

(definiert für $p \ge 1$).

- in MATLAB: norm(x,p) (Default: p=2)
- $p = \infty$ entspricht der Maximum-Norm

$$||x||_{\infty}=\max_{i=1,\dots n}|x_i|.$$

Matrixnorm

Seien $A \in \mathbb{C}^{n \times m}$ und $p \ge 1$. Die *Matrixnorm* ist definiert durch

$$||A||_p = \sup_{\mathbf{x} \in \mathbb{C}^m \setminus \{0\}} \frac{||A\mathbf{x}||_p}{||\mathbf{x}||_p}.$$

- In MATLAB: norm(A,p) (Default p=2).
- $p = \infty$ kann charakterisiert werden durch

$$||A||_{\infty} = \max_{1 \le j \le m} \sum_{i=1}^{n} |a_{ij}|,$$
 Zeilensummennorm.

Kondition

Kondition einer quadratischen Matrix A:

$$cond_p(A) := ||A||_p ||A^{-1}||_p.$$

- In MATLAB: cond(A,p) (Default p = 2)
- Es gilt $\operatorname{cond}_{p}(A) \geq 1$.
- Die Kondition mißt die Empfindlichkeit der Lösung x von Ax = b gegenüber Störungen von A und b.
- Ist $\operatorname{cond}_p(A) >> 1$, so ist die Matrix beinahe singulär. Die Matrix ist schlecht konditioniert.

Beispiele

• Vektornormen für x = (1/100)(1, 2, ..., 100)

```
>> x = (1:100)/100; [norm(x,1) norm(x,2) norm(x,inf)]
ans = 50.5000 5.8168 1.0000
```

• Matrixnorm für die Hilbert-Matrix $H = (\frac{1}{i+j-1})_{ij}$

```
>> H = hilb(10); [norm(H,1) norm(H,2) norm(H,inf)]
ans = 2.9290 1.7519 2.9290
```

Kondition der Hilbert-Matrix

```
>> H = hilb(10); [cond(H,1) cond(H,2) cond(H,inf)]
ans =
1.0e+13 *
3.5354 1.6025 3.5354
```

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Lineare Gleichungssysteme

Seien $A \in \mathbb{C}^{n \times n}$ und $b \in \mathbb{C}^n$. Das lineare Gleichungssystem

$$Ax = b$$

wird in MATLAB gelöst durch x=A b.

```
>> x = ones(5,1); H = hilb(5); b = H*x; y = (H\b)'
y =
1.0000 1.0000 1.0000 1.0000
```

Warnung: Benutze nie x=inv(A)*b, da das Berechnen von A^{-1} sehr aufwendig sein kann.

LU-Zerlegung

Was bedeutet A\b?

MATLAB berechnet die LU-Zerlegung von A (Gaussverfahren):

- obere Dreiecksmatrix U
- untere Dreiecksmatrix L mit Einsen auf der Diagonalen

so dass PA = LU gilt (P Permutationsmatrix).

Dann wird das LGS durch Rückwärts- und Vorwärtseinsetzen gelöst (Lz = Pb, Ux = z)

```
>> [L,U,P]=lu(hilb(5)); norm(P*hilb(5)-L*U)
ans = 2.7756e-17
```

Inverse, Determinante

• Berechnung der Inversen

```
>> X=inv(A)
X =
3 -3 1
-3 5 -2
1 -2 1
```

• Berechnung der Determinante

```
>> det(A)
ans = 1
```

Pseudoinverse

(Moore-Penrose) Pseudoinverse

Sei A singulär, Bestimme X so dass

$$AXA = A, XAX = X, (XA)^* = XA, (AX)^* = AX$$

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Zwei-Punkt-Randwert-Aufgabe

Suche eine Funktion

$$u:[0,1] \rightarrow \mathbb{R},$$

so dass

$$-u''(x) = e^{x}, x \in (0,1)$$

$$u(0) = u(1) = 0$$

Problem: Es kann i.A. keine geschlossene Lösungsdarstellung angegeben werden.

Ausweg: Approximation der Lösung.

Finite Differenzen Verfahren

Diskretisierung: $0 = x_0 < \cdots < x_n = 1$ mit $x_i = \frac{i}{n}$ Differenzenquotient:

$$u''(x_i) \sim \frac{u(x_{i-1}) - 2u(x_i) + u(x_{i+1})}{h^2}, \quad h := \frac{1}{n}$$

Einsetzen in $-u''(x) = e^x$ ergibt

$$-u(x_{i-1}) + 2u(x_i) - u(x_{i+1}) = h^2 e^{x_i}, \quad i = 1, \dots, n-1$$

Randbedingungen $\Rightarrow u(x_0) = u(x_n) = 0.$

 \Rightarrow Lineares Gleichungssystem für $u(x_1), \dots, u(x_{n-1})$.

Diskretes Problem

Setze
$$z = (z_1, \dots, z_{n-1})^t = (u(x_1), \dots, u(x_{n-1}))^t$$
. Löse das Gleichungssystem $Az = F$ mit

$$A := \begin{pmatrix} 2 & -1 & & & 0 \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ 0 & & & -1 & 2 \end{pmatrix}, F := h^2 \begin{pmatrix} e^{\frac{1}{n}} \\ \vdots \\ e^{\frac{n-1}{n}} \end{pmatrix}.$$

Lösung für n = 21

ullet Zerlegung des Intervalls [0,1]

```
x = 0:(1/21):1
```

• Eleminieren der Randpunkte

```
x_i = x(2:21)
```

• Erzeugen der Matrix A (Übungsaufgabe)

Lösung für n = 21

Berechnen der rechten Seite:

```
F = (1/21)^2*transpose(exp(x_i));
```

Lösen des linearen Gls.

$$z_i = A \setminus F;$$

• Zufügen der Werte am Rand

```
>> z = [0; z_i;0];
```

Lösung für n = 21

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Eigenwerte

Eigenwert

Sei $A \in \mathbb{C}^{n \times n}$. $\lambda \in \mathbb{C}$ ist Eigenwert von A, falls ein Vektor $x \in \mathbb{C}^n$ ungleich 0 existiert, so dass $Ax = \lambda x$ gilt. x heißt Eigenvektor.

- x=eig(A)
 berechnet die Eigenwerte von A und schreibt sie in den Vektor x.
- [V,D]=eig(A)
 D ist eine Diagonalmatrix mit den Eigenwerten auf der Diagonalen.
 Die Spalten von V bilden die zugehörigen Eigenvektoren.

Weitere Zerlegungen

- QR-Zerlegung: [Q,R]=qr(A)
 m × n- Matrix A eine Zerlegung A = QR erzeugt, (Q eine unitäre m × m-Matrix, R eine obere m × n Dreiecksmatrix).
- Singulärwertzerlegung: [U,S,V]=svd(A) $A = U\Sigma V^*$. ($\Sigma \subset \mathbb{C}^{m \times n}$ eine Diagonalmatrix $U \subset \mathbb{C}^{m \times m}$, $V \subset \mathbb{C}^{n \times n}$ unitäre Matrizen).
- Cholesky-Zerlegung: R=chol(A)
 A = R*R zu einer hermiteschen, positiv definiten Matrix A (R ist eine obere Dreiecksmatrix mit reellen, positiven Diagonalelementen).

Bemerkungen

- LGS können auch mit Hilfe iterativer Verfahren gelöst werden, z.B. gmres, pcg, bicgstab.
- $A \in \mathbb{C}^{n \times m}$, $n \neq m$ bei A\b:
 - n > m (überbestimmter Fall): Least-Square Lösung, d.h. der Ausdruck norm(A*x-b) wird minimiert.
 - n < m (unterbestimmter Fall): Grundlösung.

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Gültigkeitsbereich von Variablen

- Variablen in Skript-Files benutzen den globalen Workspace, d.h. bereits vorhandene Variablen können direkt benutzt oder überschrieben werden. Sie sind gültig bis sie explizit gelöscht werden.
- Variablen in Function-Files sind nur innerhalb der Funktion definiert und werden bei Verlassen der Funktion gelöscht. Variablen des globalen Workspace können nicht benutzt werden.

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

for - Schleife

Bemerkungen:

- Der Ausdruck ist normalerweise von der Form i:s:j.
- Die Befehle werden eingerückt.
- auch weitere Schleifen-Konstrukte wie while und switch sind verfügbar.

Schleifen - Beispiele

• Berechne $\sum_{i=1}^{1000} \frac{1}{i}$

```
>> sum=0; for j=1:1000, sum=sum+1/j; end, sum sum = 7.4855
```

Berechnen dreier Werte

```
>> for x=[pi/6 pi/4 pi/3], sin(x), end
ans = 0.5000
ans = 0.7071
ans = 0.8660
```

Matrix als Ausdruck

```
>> for x=eye(3), x', end
ans = 1 0 0
ans = 0 1 0
ans = 0 0 1
```

Fixpunkt

Suche ein $x_f \in \mathbb{R}$ so dass

Fixpunkt-Iteration

Fixpunkt-Iteration

$$x_{k+1} = \cos(x_k)$$

bei geeignetem Startwert x_0 .

(Funktioniert wenn die Abbildung kontrahierend ist)

Fixpunkt-Iteration - Implementation

```
% Plot 1
x = linspace(0, 1.5, 50);
y = cos(x);
plot(x,x,x,y,'LineWidth',3),
axis([-0.1 1.5 -0.1 1.1]);
hold on:
pause; % stoppt bis eine Taste gedrückt wird
z(1) = 0.1; \% Anfangswert
it_max = 10; % Iterationsschritte
for i = 1:it max
    z(i+1) = cos(z(i));
    plot([z(i) z(i)], [z(i) z(i+1)], 'r--', 'LineWidth',1);
    pause;
    plot([z(i) z(i+1)], [z(i+1) z(i+1)], 'r--', 'LineWidth'
        ,1);
    hold on;
    pause; % stoppt bis eine Taste gedrückt wird
end;
```

Einige Grafikbefehle

- Durch figure wird ein Grafik-Fenster gestartet.
- Mittels hold on werden alle Grafiken in einem Fenster übereinander gezeichnet.
- Im Standardmodus wird bei jedem Grafikbefehl die bestehende Grafik gelöscht und durch die neue Grafik ersetzt.
- Mittels hold off wird zurück in den Standardmodus gewechselt.

Vandermonde-Matrix I

Berechne zu einem gegebenen Vektor $x = (x_1, \dots, x_n)$ die Vandermonde-Matrix

$$V := \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}.$$

Vandermonde-Matrix II

```
function V = vandermonde2(x)
% vandermonde2 berechnet die Vandermonde Matrix zu einem
               Vektor x
              INPUT:
             x Zeilenvektor
              OUTPUT:
              V Vandermonde-Matrix
   Gerd Rapin 8.11.2003
n = length(x);
V = zeros(n,n);
for i = 1:n
    for j = 1:n
       V(i,j) = x(i)^{(j-1)};
   end
end
```

Berechnung von e

Approximation der Exponentialfunktion durch eine Taylor-Reihe

$$P_n(x) = \sum_{j=0}^n \frac{x^j}{j!}$$

```
x = -10:0.01:10; \% die x-Werte
expx = exp(x); % die wahre Exponentialfunktion
for n=0:1:25
    % so viele Nullen wie x Elemente hat
    sum=zeros(size(x));
    for j=0:n
        % das berechnet die Partialsumme
        sum=sum+x.^j/factorial(j);
    end
    % plottet relativen Fehler
    plot(x,(sum-expx)./expx);
    % wir plotten alles uebereinander
    hold on
end
```

Berechnung von e - Figure

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Quadratische Gleichung

$$\begin{cases} \text{ Suche } x \in \mathbb{R}, \text{ so dass} \\ x^2 + px + q = 0 \end{cases}$$

Fallunterscheidung für $d:=\frac{p^2}{4}-q$:

Fall a) : d > 0 2 Lösungen: $x = -\frac{p}{2} \pm \sqrt{d}$

Fall b) : d = 0 1 Lösung: $x = -\frac{p}{2}$

Fall c): d < 0 keine Lösung

Implementierung

```
function [anz_loesungen, loesungen] = quad_gl(p,q)
 quad gl berechnet die Loesungen der quadratischen
         Gleichung x^2 + px + q = 0
           INPUT: Skalare
           OUTPUT: anz loesungen Anzahl der Loesungen
                   loesungen Vektor der Loesungen
  Gerd Rapin 8.11.2003
d=p^2/4-q; % Diskriminante
```

Implementierung II

```
% 2 Loesungen
if d>0
    anz_loesungen=2;
    loesungen=[-p/2-sqrt(d) -p/2+sqrt(d)];
end
% 1 Loesung
if d==0
    anz_loesungen=1;
    loesungen=[-p/2];
end
% 0 Loesungen
if d<0
    anz_loesungen=0;
    loesungen=[];
end
```

Logische Operationen

- Es gibt in MATLAB logische Variablen. Der Datentyp ist logical.
- Variablen dieses Typs sind entweder TRUE (1) oder FALSE (0).
- \bullet Numerische Werte ungleich 0 werden als TRUE gewertet.

Vergleichs-Operatoren

$$\Rightarrow$$
 a=[1 1 1], b=[0 1 2]

Operation	Bedeutung	Ergebnis
a == b	gleich	0 1 0
a ~= b	ungleich	1 0 1
a < b	kleiner	0 0 1
a > b	größer	1 0 0
a <= b	kleiner oder gleich	0 1 1
a >= b	größer oder gleich	1 1 0

Bem: 1 = wahre Aussage, 0 = falsche Aussage

Bem: Komponentenweise Vergleiche sind auch für Matrizen gleicher Größe möglich!

Logische Operatoren

&	logisches und	~	logisches nicht
	logisches oder	xor	exklusives oder

Beispiele:

```
>> x=[-1 1 1]; y=[1 2 -3];
```

```
>> (x>0) & (y>0)
ans =
0 1 0
```

```
>> ~( (x>0) & (y>0))
ans =
1 0 1
```

```
>> (x>0) | (y>0)
ans =
1 1 1
```

```
>> xor(x>0,y>0)
ans =
1 0 1
```

Bedingung

Einfache Bedingung

```
if <Ausdruck>
     <Befehle>
end
```

Bed. mit Alternative

```
if <Ausdruck>
     <Befehle>
else
     <Befehle>
end
```

Die Befehle zwischen **if** und **end** werden ausgeführt, wenn der *Ausdruck* wahr (TRUE) ist. Andernfalls werden (soweit vorhanden) die Befehle zwischen **else** und **end** ausgeführt.

Ausdruck ist wahr, wenn alle Einträge von Ausdruck ungleich 0 sind.

While-Schleifen

Die Befehle werden wiederholt, so lange die Bedingung *Ausdruck* wahr ist. *Ausdruck* ist wahr, wenn alle Einträge von *Ausdruck* ungleich 0 sind.

```
Beispiel: Berechne \sum_{i=1}^{1000} \frac{1}{i}.
```

```
n = 1000; sum = 0; i = 1;
while (i <= n)
   sum = sum+(1/i);
   i = i+1;
end
sum</pre>
```

Größter gemeins. Teiler (ggT)

Berechnung des ggT von natürlichen Zahlen a und b mit Hilfe des euklidischen Algorithmus

Idee: Es gilt
$$ggT(a, b) = ggT(a, b - a)$$
 für $a < b$.

Algorithmus:

Wiederhole, bis a = b

- Ist a > b, so a = a b.
- Ist a < b, so b = b a

Implementierung

```
function a = ggt(a,b)
 ggt berechnet den groessten gemeinsamen Teiler (ggT)
         zweier natuerlichen Zahlen a und b
            INPUT: natuerliche Zahlen a
                                        h
            OUTPUT: ggT
  Gerd Rapin 11.11.2003
while (a ~= b)
  if (a > b)
   a = a-b;
  else
    b = b-a;
  end
end
```

break

• Der Befehl break verläßt die while oder for-Schleife.

```
x=1;
while 1
    xmin=x;
    x=x/2;
    if x==0
        break
    end
end
xmin
```

```
xmin = 4.9407e - 324
```

continue

• Durch continue springt man sofort in die nächste Iteration der Schleife, ohne die restlichen Befehle zu durchlaufen.

```
for i=1:10
   if i<5
      continue
   end
   x(i)=i;
end
x</pre>
```

```
x = 0 \quad 0 \quad 0 \quad 0 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10
```

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Rekursive Funktionen

Rekursive Funktionen sind Funktionen, die sich selbst aufrufen. Bei jedem Aufruf wird ein neuer lokaler Workspace erzeugt.

Beispiel: Fakultät: n! = fak(n)

$$n! = n(n-1)! = n \operatorname{fak}(n-1)$$
$$= n(n-1) \operatorname{fak}(n-2)$$
$$= \cdots = n(n-1) \cdots 1$$

Fakultät - rekursiv

```
function res = fak(n)
% fakultaet berechnet zu einer gegebenen natuerlichen
   Zahl n
              die Fakultaet n!:=1*2*...*n (rekursiv)
               INPUT: natuerliche Zahl n
               OUTPUT: Fakultaet fak
 Jochen Schulz 3.9.2010
if (n == 1)
   res = 1;
else
   res = n*fak(n-1);
end
```

Fakultät - direkt

```
function fak = fak_it(n)
% fakultaet berechnet zu einer gegebenen natuerlichen
   Zahl n
              die Fakultaet n!:=1*2*...*n
               INPUT: natuerliche Zahl n
               OUTPUT: Fakultaet fak
  Gerd Rapin 10.11.
fak = 1;
for i = 1:n
  fak = fak*i;
end;
```

Fakultät - Zeitvergleich

```
% fak vergleich.m
% iterativ
tic
for i = 1:100
  fak_it(20);
end
time1 = toc;
fprintf('\nZeitverbrauch direktes Verfahren: %f',time1);
% rekursiv
tic
for i = 1:100
  fak(20);
end
time2 = toc;
fprintf('\nZeitverbrauch rekursives Verfahren: %f\n',
   time2);
```

rekursive Implementierung GGT

```
function [a,b] = ggt_rekursiv(a,b)
% ggt rekursiv berechnet den groessten
% gemeinsamen Teiler (ggT)
if a \sim = b
  if a>b
   a = a-b;
  else
    b = b-a;
  end:
  [a,b] = ggt_rekursiv(a,b);
end;
```

Sierpinski Dreieck

- Wir beginnen mit einem Dreieck mit Eckpunkten P_a , P_b und P_c .
- Wir entfernen daraus das Dreieck, das durch die Mittelpunkte der Kanten entsteht.
- Die verbliebenden drei Dreiecke werden der gleichen Prozedur unterzogen.
- Diesen Prozess können wir rekursiv wiederholen.
- Das Ergebnis ist das Sierpinski Dreieck.

Sierpinski Dreieck

Implementierung

```
sierpinski plot.m
level=7;
ecke1=[0;0];
ecke2=[1;0];
ecke3 = [0.5; sqrt(3)/2];
figure; axis equal;
hold on;
sierpinski (ecke1, ecke2, ecke3, level);
hold off;
title(['Sierpinski Dreieck, Level =' ...
        num2str(level)], 'FontSize',16);
```

Implementierung

```
function sierpinski(ecke1,ecke2,ecke3,level)
% Teilt das Dreieck auf in 3 Dreiecke (level>0)
% Plotten des Dreiecks (level=0)
if level == 0
    fill([ecke1(1),ecke2(1),ecke3(1)],...
     [ecke1(2), ecke2(2), ecke3(2)], 'r');
else
    ecke12 = (ecke1 + ecke2)/2;
    ecke13 = (ecke1 + ecke3)/2;
    ecke23 = (ecke2 + ecke3)/2;
    sierpinski (ecke1, ecke12, ecke13, level-1);
    sierpinski (ecke12, ecke2, ecke23, level-1);
    sierpinski (ecke13, ecke23, ecke3, level-1);
end:
```

Zeichnen von Polygonen

Ein Polygon sei durch die Eckpunkte $(x_i, y_i)_{i=1}^n$ gegeben. Dann kann er in MATLAB durch den Befehl

dargestellt werden. char gibt die Farbe des Polygons an, z.B. rot wäre 'r'.

Aufbau

- Numerische Lineare Algebra
 - Normen
 - Lösen linearer Gleichungssyteme
 - Anwendung: Zwei-Punkt-Randwert-Aufgabe
 - Bestimmung von Eigenwerten
- 2 Programmieren
 - Schleifen
 - Bedingungen
 - Rekursionen
 - Allgemeines

Warnung

Wiederholte Anwendung von Script-Files kann zu Fehlern führen!

Programm

Aufruf

```
>>> plotte_sin
Plot der Sinus Funktion auf [0,10]
Plot an wievielen Punkten?20
>>> plotte_sin
Plot der Sinus Funktion auf [0,10]
Plot an wievielen Punkten?10
??? Error using =>> plot
Vectors must be the same lengths.

Error in =>> plotte_sin.m
On line 9 =>> plot(x,y);
```

globale Variablen

Mittels des Befehls global können Variablen des globalen Workspace auch für Funktionen manipulierbar gemacht werden.

Funktion

```
function f=myfun(x)
% myfun.m
% f(x)=x^alpha sin(1/x)

global alpha
f=x.^alpha.*sin(1./x);
```

Plotten

```
% plot_myfun
global alpha
alpha_w=[0.4 0. 6 1 1.5
    2];
for i = 1:length(alpha_w)
    alpha = alpha_w(i);
    fplot(@myfun,[0.1,1])
    hold on;
end
hold off;
```

Guter Stil in MATLAB

- Alle Programme sollten zu Beginn einen Kommentar enthalten, in dem beschrieben wird, was das Programm macht. Insbesondere sollten die Eingabe- und Ausgabevariablen genau beschrieben werden.
- Vor und nach logischen Operatoren und = sollte ein Leerzeichen gesetzt werden.
- Man sollte pro Zeile nur einen Befehl verwenden.
- Befehle in Strukturen, wie if, for oder while, sollten eingerückt werden.

Guter Stil in MATLAB

- Die Namen der Variablen sollten, soweit möglich, selbsterklärend sein.
- Verfasst man umfangreiche Programme, so sollten M-Funktionen, die eine logische Einheit bilden in einem separaten Unterverzeichnis gespeichert sein. Die Verzeichnisse können durch addpath eingebunden werden.
- Potenzielle Fehler sollten, soweit möglich, aufgefangen werden.
 Speziell sollten die Eingabeparameter der Funktionen geprüft werden.