Group Theory

Aratrik Pal

September 9, 2021

Contents

Contents					
1	Sets and Mappings	1			
	1.1 Sets	1			

1 Sets and Mappings

§1.1 Sets

Definition 1.1.1 (set). A set is collection of elements.

Definition 1.1.2 (belongs to). If x belongs to $S \Rightarrow x \in S$.

Definition 1.1.3 (does not belong to). If x does not belong to $S x \Rightarrow x \notin S$.

Definition 1.1.4 (equal sets). For sets A and B, $A = B \Leftrightarrow x \in A \Leftrightarrow x \in B$.

Definition 1.1.5 (null set). Set with no elements: null/void set \emptyset .

Definition 1.1.6 (subset). If $a \in A \Rightarrow a \in B$, $A \subset B$ or $A \subseteq B$.

Definition 1.1.7 (superset). If $A \subset B$, $B \supset A$ or $B \supseteq A$.

Definition 1.1.8 (universal set). Set *U* that contains all sets in a given context.

Definition 1.1.9 (union). Union of A and B:

$$A \cup B = \{x \in U | x \in A \text{ or } x \in B\}$$

Definition 1.1.10 (intersection). Intersection of A and B:

$$A \cap B = \{x \in U | x \in A \text{ and } x \in B\}$$

Definition 1.1.11 (difference). Difference of A and B:

$$A - B = \{x \in U | x \in A \text{ and } x \notin B\}$$

Definition 1.1.12 (complement). If $B \in A$, complement of B: A - B

Definition 1.1.13 (disjoint). Disjoint: $A \cap B = \emptyset$

Theorem 1.1.14 (commutative, associative, distributive)

- (i) $A \cup A = A = A \cap A$
- (ii) $A \cup B = B \cup A$; $A \cap B = B \cap A$
- (iii) $(A \cup B) \cup C = A \cup (B \cup C),$ $(A \cap B) \cap C = A \cap (B \cap C)$
- (iv) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (v) $A \cup (A \cap B) = A = A \cap (A \cup B)$

Theorem 1.1.15 (DeMorgan's rules)

(i)
$$X - (X - A) = X \cap A$$

(i)
$$X - (X - A) = X \cap A$$

(ii) $X - (A \cup B) = (X - A) \cap (X - B)$

(iii)
$$X - (A \cap B) = (X - A) \cup (X - B)$$

Definition 1.1.16 (union of all sets in a set). $\bigcup_{x \in S} X = \{x | x \in X \text{ for some } X \text{ in } S\}$ **Definition 1.1.17** (intersection of all sets in a set). $\bigcap_{x \in S} X = \{x | x \in X \text{ for every } X \text{ in } S\}$ **Definition 1.1.18** (power set). $\mathcal{P}(X) = S|S \subset X$ (including \emptyset)