

TOKENIZING TEXT

R, stringr & tidr

CONTENT

- Filter or Sample Data
- Clean and Normalize Text
- Split Text into Tokens
- Remove Stop Words
- Enrich Tokens (Stemming, Lemmatization, Part-of-Speech Tagging)

BOOK RECOMMENDATION

Struhl, Steven M. (2015): Practical Text Analytics: Interpreting text and unstructured data for business intelligence. London, UK, Philadelphia, PA: Kogan Page (Marketing science series).

Tokenization

Five steps to impose a structure on text

Filter or sample data "@all: This is the best course ever!!" Clean and normalize text becomes "this is the best course ever" Split text into tokens ["this", "is", "the", "best", "course", "ever"] Remove stop words ["is", "best", "course", "ever"] ["be" : [verb], Enrich tokens (lemmatization, "best": [adj], 5. "course": [noun, obj], stemming, part-of-speech) "ever": [temporal]]

Source: Wickham, Hadley, and Garrett Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. First edition, O'Reilly, 2016. URL: https://r4ds.hadley.nz/diagrams/data-science/base.png

FILTER OR SAMPLE DATA

filter, slice_sample

DATA IS TOO LARGE?

WHAT OPTIONS DO WE HAVE?

With analyzing data on our laptop, we are limited in RAM and CPU. What if the data is just too big?

- Reduce the data by filtering out irrelevant records (filter)
- Reduce the data through sampling and proceeding with a smaller portion (slice_sample)
- Pay for more compute resources, e.g., using a Spark cluster on Databricks
- Logon to the high performance compute (HPC) cluster from the university

Created with Bing Image Creator 2023

Reduce the data set before further analysis with filter:

```
tweets_filtered <-
  tweets |>
  filter(year(created_at) == 2023) |>
  filter(lang == "de") |>
  select(id, created_at, screen_name, text, is_retweet)
```


When filtering is not possible, we can still use sampling with slice_sample from {dplyr}:

```
tweets |>
  slice_sample(n = 1000)

tweets |>
  slice_sample(prop = 0.1)
```


CLEAN AND NORMALIZE TEXT

ONLY WORDS

Text often contains irrelevant characters or character sequences that are of no value for analysis.

Cleaning text means to remove them from text. This can include:

- Punctuation
- Special characters, e.g., @%&#/
- Invisible characters, e.g, \n, \r, \t, or multiple spaces
- Specific character sequences, e.g., URLs, user mentions, hashtags

Normalization involves converting all characters to lowercase for better comparison.

"@all This is the best course ever! #bigdata #nlp 👌 "

"this is the best course ever"

Remove character sequences from tweets with str_remove_all, str_replace_all, and str_trim:

```
tweets clean <-
    tweets filtered |>
    mutate(text = str remove all(text, "@\\w+")) |>
    mutate(text = str remove all(text, "#\\w+")) |>
    mutate(text = str remove all(text, "https?://\\S+")) |>
    mutate(text = str remove all(text, "[[:punct:]]")) |>
    mutate(text = str replace all(text, "\\s{2,}", " ")) |>
    mutate(text = str trim(text))
```

With regular expressions, we can remove all kinds of characters:

```
emojis <- "[\U0001F600-\U0001F64F\U0001F300-\U0001F5FF+"

tweets |>
    mutate(text = str_remove_all(text, emojis))
```


NORMALIZE

Convert the text to lowercase with str_to_lower:

```
tweets |>
mutate(text = str_to_lower(text))
```


SPLIT TEXT INTO TOKENS

IMPOSING STRUCTURE

Tokenization is one way to impose structure on otherwise unstructured text data.

- The assumption is that text is made of words (or tokens) separated by a space
- By splitting text into words (or tokens), we create a column with:
 - Atomic values → one word per column
 - A discrete range of values → the vocabulary used in the text data
- Methods like filter, group_by, count and the like can be applied → Analysis is possible
- Beware of the limits!

"this is the best course ever"


```
"this"
"is"
"the"
"best"
"course"
"ever"
```

SPLIT TEXT

We can split text based on a separator and expand the result into rows with **separate_longer_delim**:

```
tweets_tokenized <-
  tweets_clean |>
  tidyr::separate_longer_delim(text, " ") |>
  rename(word = text)
```


REMOVE STOP WORDS

REMOVE STOP WORDS

Many words appear frequently in text but have very little meaning for analysis.

- Filter out words with little contribution to content, sentiment, meaning etc.
- Only then can we uncover the interesting words and their usage
- We can filter stop words based on a simple list and the anti_join function
 - List with English stop words (~670)
 - List with German stop words (~620)

REMOVE STOP WORDS

The anti_join is the opposite of a join and removes any rows with a match:

```
stop <- read_csv("data/stopwords_german.csv")

tweets_tokenized |>
  anti_join(stop, by = "word") |>
  count(word, sort = TRUE)
```


ENRICH TOKENS

Stemming, Lemmatization, Part-of-Speech

ENRICH TOKENS

STEMMING, LEMMATIZATION, POS

Now that we have a column with word, we can add more metadata, such as:

- What is the word's stem? (eats \rightarrow eat, sitting \rightarrow sit) (stemming)
- What is the base form of the word (is \rightarrow be, mice \rightarrow mouse, best \rightarrow good) (lemmatization)
- What type of word is it (noun, verb, adjective...) (part-of-speech tagging)
- What role does the word play in its context? (contextual dependencies)

We could do the first three with the same rule-based approach as for the stop words (the last won't work that way). We'll see that probabilistic models from machine learning are much better at this.

