QUESTION:

 $\frac{https://www.chegg.com/homework-help/questions-and-answers/problem-2-10-points-consider-following-jobscheduling-problem-one-machine-set-n-jobs-1-2---q94999480$

Expert Answer Below:

ANSWER:

a)

Optimal sequence is determined using Johnson's rule as below

Select the job with the shortest processing time, if that is for Operation 1 (m/c 1), then schedule the job first, if that is for Operation 2 (m/c 2), then schedule the job last. Remove the jobs which are scheduled from further consideration Repeat the process until all jobs are scheduled

Flowtime

Flowtime

Select the job with the shortest processing time, if that is for Operation 1 (m/c 1), then schedule the job first, if that is for Operation 2 (m/c 2), then schedule the job last. Remove the jobs which are scheduled from further consideration. Repeat the process until all jobs are scheduled.

Step 1

			•••••	
Job	m/c1 m/c2		m/c 1	m/c 2
1	4	6	4	10
2	2	4	6	14
3	5	1	11	15
4	3	5	14	20
5	4	3	18	23

Step 2

			Flow	time		
2	Job	m/c 1	m/c 2	m/c1	m/c2	
	1	4	6	4	10	
	2	2	4	6	14	
	4	3	5	9	19	
	5	4	3	13	22	
	3	5	1	18	23	

Step 3

				Flowtime					
;	Job	m/c 1	m/c2	m/c1	m/c2				
	2	2	4	2	6				
	1	4	6	6	12				
	4	3	5	9	17				
	5	4	3	13	20				
	3	5	1	18	21				

Step 4

Job	m/c 1	m/c2						
2	2	4	2	6				
4	3	5	5	11				
1	4	6	9	17				
5	4	3	13	20				
3	5	1	18	21				

Step 5

Final Sch	edule	Flowtime			
Job	m/c 1	m/c 2	m/c 1	m/c2	
2	2	4	2	6	
4	3	5	5	11	
1	4	6	9	17	
5	4	3	13	20	
3	5	1	18	21	

Optimal schedule is:

Sequence Order Job

1 2

2 4 3 1 12/4/24, 10:36 PM

4 5 5 3

Makespan value = 21

Gantt Chart is following:

	m	/c 1	m/c 2		
Job	ln	Out	ln	Out	
2	0	2	2	6	
4	2	5	6	11	
1	5	9	11	17	
5	9	13	17	20	
3	13	18	20	21	

Gantt Chart																				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	1			2	2															

b) Gantt chart for no-wait schedule is following:

	m/	c 1	m/c 2			
Job	In	Out	ln	Out		
2	0	2	2	6		
4	3	6	6	11		
1	7	11	11	17		
5	13	17	17	20		
3	17	22	22	23		

c) The optimum no-wait schedule is obtained by rescheduling the tasks, except the first and the last, in ascending order of their processing time on m/c 2. Resulting Gantt chart is following:

	m/	c 1	m/c 2			
Job	In	Out	In	Out		
2	0	2	2	6		
5	2	2 6		9		
4	6	9	9	14		
1	10	14	14	20		
3	3 15		20	21		

d) The sufficient condition, under which the optimal schedule of 2-machine flow shop scheduling problem is always optimal to the no-wait problem, if their processing times on the second operation are in ascending order.