電磁學筆記

Classical Electrodynamics 3rd edition, John David Jackson

王兆國 William Wang

William Wang 941225@gmail.com

2024年6月5日

目錄

第一章	基本數	學	5
1.1	積分公	式	5
	1.1.1	Gamma 函數	5
	1.1.2	Beta 函數	7
	1.1.3	三角函數	8
	1.1.4	指數	8
1.2	伴隨勒	讓得多項式與球諧函數	8
	1.2.1	勒讓得多項式 Legendre polynomial	8
	1.2.2	伴隨勒讓得多項式 Associated Legendre polynomial	9
	1.2.3	球諧函數 spherical harmonic	10
	1.2.4	展開式	11
1.3	亥姆霍	兹方程式	11
	1.3.1	齊次亥姆霍茲方程式 Homogeneous Helmholtz equation	11
	1.3.2	非齊次亥姆霍茲方程式 Inhomogeneous Helmholtz equation	11
1.4	橢圓積	分	12
	1.4.1	第一類完全橢圓積分 complete elliptic integral of the first kind	12
	1.4.2	第二類完全橢圓積分 complete elliptic integral of the second kind	12
	1.4.3	導數與微分方程式	13
第二章			15
2.1	延遲勢	Retarded Potential	17
	2.1.1	電荷移動的電場	17
	2.1.2	電荷移動的磁場	19

第一章 基本數學

1.1 積分公式

本小節中 m 與 n 皆為正整數。

1.1.1 Gamma 函數

引進 $\Gamma(x)$ 函數

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} \, \mathrm{d}x$$

利用分部積分法可得

$$\int_0^\infty x^{n-1}e^{-x} dx = -x^{n-1}e^{-x}\Big|_0^\infty + (n-1)\int_0^\infty x^{n-2}e^{-x} dx$$
 (1.1)

觀察右式,可發現

$$\left(-x^{n-1}e^{-x}\right)\Big|_{0}^{\infty} = 0 \tag{1.2}$$

$$\int_0^\infty x^{n-2}e^{-x}\,\mathrm{d}x = \Gamma(n-1) \tag{1.3}$$

將(1.2)(1.3)代入(1.1),可得 $\Gamma(n)$ 的遞迴式

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

以此類推,可得 $\Gamma(n)$ 的表達式

$$\Gamma(n) = (n-1)\Gamma(n-1) = (n-1)(n-2)\Gamma(n-2) = (n-1)!$$

由此可得階乘的廣義定義

$$n! = \int_0^\infty x^n e^{-x} \, \mathrm{d}x$$

 \blacksquare $\left(\frac{1}{2}\right)!$

以下說明 $(\frac{1}{2})!$ 的值。

$$\left(\frac{1}{2}\right)! = \int_0^\infty x^{-\frac{1}{2}} e^{-x} \, \mathrm{d}x$$

利用變數代換

$$u = \sqrt{x}, \quad du = \frac{dx}{2\sqrt{x}}$$

積分式改為

$$\left(\frac{1}{2}\right)! = \frac{1}{2} \int_0^\infty e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$

因此 $(\frac{1}{2})!$ 為

Formula 1.1.1

$$\left(\frac{1}{2}\right)! = \frac{\sqrt{\pi}}{2}$$

此式在後面的內容會經常使用到。

Euler's reflection formula

$$\Gamma(z)\Gamma(1-z) = \int_0^\infty x^{z-1}e^{-x} dx \int_0^\infty y^{-z}e^{-y} dy$$

令 x/y = u, x + y = v,再計算 Jacobian

$$du dv = \left| \begin{bmatrix} \frac{1}{y} & \frac{x}{y^2} \\ 1 & 1 \end{bmatrix} \right| dx dy = \frac{(1+u)^2}{v} dx dy$$

代入可得

$$\Gamma(z)\Gamma(1-z) = \int_0^\infty e^{-v} \, \mathrm{d}v \int_0^\infty \frac{u^z}{1+u} \, \mathrm{d}u = \int_0^\infty \frac{u^z}{1+u} \, \mathrm{d}u \equiv I$$

使用以下積分路徑

可得

$$\left(e^{2\pi iz} - 1\right)I = 2\pi i e^{\pi iz}$$

$$I = \frac{\pi}{\sin \pi z}$$

代回可得

Formula 1.1.2 Euler's reflection formula

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

1.1.2 Beta 函數

先計算 $\Gamma(a)\Gamma(b)$

$$\Gamma(a)\Gamma(b) = \int_0^\infty x^{a-1}e^{-x} dx \int_0^\infty y^{b-1}e^{-y} dy$$

令 x = uv, y = u(1 - v), 再計算 Jacobian

$$dx dy = \begin{bmatrix} v & u \\ 1 - v & -u \end{bmatrix} du dv = u du dv$$

代回可得

$$\Gamma(a) \Gamma(b) = \int_0^\infty u^{a+b-1} e^{-u} du \int_0^1 v^{a-1} (1-v)^{b-1} dv$$

Definition 1.1.1

定義 Beta 函數 B(a,b) 為

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$
 (1.4)

與 Gamma 函數 $\Gamma(x)$ 的關係為

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

令(1.4)中的 $x = \sin^2 \theta$ 可得

$$B(a,b) = 2 \int_0^{\frac{\pi}{2}} \sin^{2a-1}\theta \cos^{2b-1}\theta d\theta$$

反過來表示 a,b

$$\int_0^{\frac{\pi}{2}} \sin^m \theta \cos^n \theta \, \mathrm{d}\theta = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$$

1.1.3 三角函數

Formula 1.1.3 三角函數積分公式

$$\int_0^{\frac{\pi}{2}} \sin^{2n+1}\theta \, d\theta = \int_0^{\frac{\pi}{2}} \cos^{2n+1}\theta \, d\theta = \frac{(2^n n!)^2}{(2n+1)!} = \frac{(2n)!!}{(2n+1)!!}$$

$$\int_0^{\frac{\pi}{2}} \sin^{2n}\theta \, d\theta = \int_0^{\frac{\pi}{2}} \cos^{2n}\theta \, d\theta = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2} = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$$

$$\int_0^{\frac{\pi}{2}} \sin^m\theta \cos^n\theta \, d\theta = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$$

1.1.4 指數

$$\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \dots (2n-1)}{2^{2n+1}} \sqrt{\frac{\pi}{a^{2n+1}}} = \frac{(2n)!}{2^{2n+1} n!} \sqrt{\frac{\pi}{a^{2n+1}}}$$
$$\int_0^\infty x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}}$$
$$\int f(x) e^{-x} dx = -e^{-x} \sum_{n=0}^\infty f^{(n)}(x)$$

$$\int_{-\infty}^{\infty} e^{i(k-k')x} \, \mathrm{d}x = 2\pi\delta \left(k - k'\right)$$

1.2 伴隨勒讓得多項式與球諧函數

1.2.1 勒讓得多項式 Legendre polynomial

■ 微分方程式

Definition 1.2.1 微分方程式

勒讓得多項式 $P_l(x)$ 符合

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(1-x^{2}\right)\frac{\mathrm{d}P_{l}\left(x\right)}{\mathrm{d}x}\right]+l\left(l+1\right)P_{l}\left(x\right)=0$$

等價於

$$(1 - x^{2}) \frac{d^{2} P_{l}(x)}{dx^{2}} - 2x \frac{d P_{l}(x)}{dx} + l(l+1) P_{l}(x) = 0$$

代入 $x = \cos \theta$ 可得

Corollary 1.2.1 微分方程式

勒讓得多項式 $P_l(\cos \theta)$ 符合

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P_l (\cos \theta)}{\mathrm{d}\theta} \right) + l (l+1) P_l (\cos \theta) = 0$$

■ 洛巨德公式 (Rodrigues formula)

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n$$

■ 級數關係

$$\frac{1}{\sqrt{1 - 2tx + t^2}} = \sum_{n=1}^{\infty} P_n(x) t^n$$

其中各項為

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\sqrt{1 - 2tx + t^2}} = \frac{x - t}{(1 - 2tx + t^2)^{3/2}}$$
$$(1 - 2tx + t^2) \sum_{n=1}^{\infty} n P_n(x) t^{n-1} = \sum_{n=1}^{\infty} x P_n(x) t^n - \sum_{n=1}^{\infty} P_n(x) t^{n+1}$$

■ 遞迴關係

$$(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x)$$

1.2.2 伴隨勒讓得多項式 Associated Legendre polynomial

■ 微分方程式

Definition 1.2.2 微分方程式

伴隨勒讓得多項式 $P_l^m(x)$ 符合

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\left(1 - x^2 \right) \frac{\mathrm{d}P_l^m(x)}{\mathrm{d}x} \right] + \left[l\left(l + 1 \right) - \frac{m^2}{1 - x^2} \right] P_l^m(x) = 0$$

等價於

$$(1 - x^{2}) \frac{d^{2} P_{l}^{m}(x)}{dx^{2}} - 2x \frac{d P_{l}^{m}(x)}{dx} + \left[l(l+1) - \frac{m^{2}}{1 - x^{2}}\right] P_{l}^{m}(x) = 0$$

代入 $x = \cos \theta$ 可得

Corollary 1.2.2 微分方程式

伴隨勒讓得多項式 $P_l^m(x)$ 符合

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P_l^m (\cos \theta)}{\mathrm{d}\theta} \right) + \left[l (l+1) - \frac{m^2}{\sin^2 \theta} \right] P_l^m (\cos \theta) = 0$$

■ 洛巨德公式

伴隨勒讓得多項式的洛巨德公式為

$$P_l^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x)$$

特殊範圍下的定義

$$P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x)$$

■ 遞迴關係

$$(1-x^2)\frac{dP_l^m}{dx} = -\sqrt{1-x^2}P_l^{m+1} - mxP_l^m$$

等價於

$$\frac{\mathrm{d}P_{l}^{m}\left(\cos\theta\right)}{\mathrm{d}\theta} = P_{l}^{m+1}\left(\cos\theta\right) + m\cot\theta P_{l}^{m}\left(\cos\theta\right)$$

■ 正交性

$$\int_{-1}^{1} P_k^m(x) P_l^m(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{kl}$$

■ 加法定理 (The addition theorem)

$$P_{l}(\cos \gamma) = P_{l}(\cos \theta) P_{l}(\cos \theta') + 2 \sum_{m=-l}^{l} \frac{(l-m)!}{(l+m)!} P_{l}^{m}(\theta', \phi') P_{l}^{m}(\theta, \phi) \cos \left[m(\phi - \phi')\right]$$

1.2.3 球諧函數 spherical harmonic

$$Y_l^m(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} e^{im\phi} P_l^m(\cos\theta)$$
$$Y_l^{m*}(\theta,\phi) = (-1)^m Y_l^{-m}(\theta,\phi)$$

正交性

$$\int_{S} Y_{l}^{m}(\theta, \phi) Y_{l'm'}^{*}(\theta, \phi) d\Omega = \delta_{ll'} \delta_{mm'}$$

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{l} Y_{l}^{m*} (\theta', \phi') Y_{l}^{m} (\theta, \phi) = \delta (\phi - \phi') \delta (\cos \theta - \cos \theta')$$

1.2.4 展開式

$$\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l}^{m*} (\theta', \phi') Y_{l}^{m} (\theta, \phi)$$

1.3 亥姆霍兹方程式

1.3.1 齊次亥姆霍茲方程式 Homogeneous Helmholtz equation

$$\nabla^2 A(\mathbf{r}) + k^2 A(\mathbf{r}) = 0$$

其解為

$$A\left(r,\theta,\phi\right) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[A_{lm} j_{l}\left(kr\right) + B_{lm} y_{l}\left(kr\right)\right] Y_{l}^{m}\left(\theta,\phi\right)$$

其中 $j_l(x), y_l(x)$ 為球型巴賽爾函數 (spherical Bessel function)、 $Y_l^m(\theta, \phi)$ 為球諧函數 (spherical harmonics)。

1.3.2 非齊次亥姆霍茲方程式 Inhomogeneous Helmholtz equation

$$\nabla^{2} A(\mathbf{r}) + k^{2} A(\mathbf{r}) = -f(\mathbf{r})$$

其解為

$$A\left(\boldsymbol{r}\right)=\int G\left(\boldsymbol{r},\boldsymbol{r}'\right)f\left(\boldsymbol{r}'\right)d^{3}\boldsymbol{r}'$$

其中函數 $G(\mathbf{r},\mathbf{r}')$ 稱為格林函數 (Green function)

$$G\left(\boldsymbol{r},\boldsymbol{r}'\right) = \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi\left|\boldsymbol{r}-\boldsymbol{r}'\right|}$$

1.4 橢圓積分

1.4.1 第一類完全橢圓積分 complete elliptic integral of the first kind

$$K(k) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - k^2 \sin^2 \theta}} d\theta$$

 \blacksquare K(1-k)

在電磁學電容電感的章節中常用到 K(1-k), 其中 $0 < k \ll 1$ 。

$$K(1-k) \approx \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1-(1-2k)\sin^2\theta}} d\theta = I_1 + I_2$$

個別計算可得

$$I_{1} = \lim_{\substack{\epsilon \to 0 \\ \epsilon \gg \sqrt{2k}}} \int_{0}^{\frac{\pi}{2} - \epsilon} \frac{1}{\sqrt{1 - (1 - 2k)\sin^{2}\theta}} d\theta = \int_{0}^{\frac{\pi}{2} - \epsilon} \frac{1}{\cos\theta} d\theta = \ln\left(\frac{2}{\epsilon}\right)$$
$$I_{2} = \lim_{\substack{\epsilon \to 0 \\ \epsilon \gg \sqrt{2k}}} \int_{\frac{\pi}{2} - \epsilon}^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - (1 - 2k)\sin^{2}\theta}} d\theta$$
$$= \lim_{\substack{\epsilon \to 0 \\ \epsilon \gg \sqrt{2k}}} \int_{-\epsilon}^{0} \frac{1}{\sqrt{\theta^{2} + 2k}} d\theta = \ln\left(\frac{\sqrt{\epsilon^{2} + 2k} + \epsilon}{\sqrt{2k}}\right)$$

相加可得

Formula 1.4.1 K(1-k)

$$K(1-k) \approx \frac{1}{2} \ln \left(\frac{8}{k}\right)$$

1.4.2 第二類完全橢圓積分 complete elliptic integral of the second kind

$$E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 \theta} \, \mathrm{d}\theta$$

由泰勒展開式

$$(1-x)^{\frac{1}{2}} = 1 - \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^n}{2n-1}$$

代回原式

$$E(k) = \int_0^{\frac{\pi}{2}} \left[1 - \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{k^{2n}}{2n-1} \sin^{2n} \theta \right] d\theta$$

將積分值 (見1.1.3) 代入可得

$$E(k) = \frac{\pi}{2} \left\{ 1 - \sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 \frac{k^{2n}}{2n-1} \right\}$$

1.4.3 導數與微分方程式

■ 第一類完全橢圓積分

$$\frac{\mathrm{d}K(k)}{\mathrm{d}k} = \int_0^{\frac{\pi}{2}} \frac{k \sin^2 \theta}{\left(1 - k^2 \sin^2 \theta\right)^{3/2}} \,\mathrm{d}\theta$$

Lemma 1.4.1 E(k)

E(k) 的另種形式為

$$E(k) = (1 - k^2) \int_0^{\frac{\pi}{2}} (1 - k^2 \sin^2 \theta)^{-3/2} d\theta$$

Proof. 令上式為 I。

由泰勒展開式

$$(1-x)^{-3/2} = \sum_{n=0}^{\infty} \frac{(2n+1)!!}{(2n)!!} x^n$$

將積分值 (見 section 1.1.3) 代入

$$\int_0^{\frac{\pi}{2}} \left(1 - k^2 \sin^2 \theta\right)^{-3/2} d\theta = \int_0^{\frac{\pi}{2}} \sum_{n=0}^{\infty} \frac{(2n+1)!!}{(2n)!!} k^{2n} \sin^{2n} \theta d\theta = \frac{\pi}{2} \sum_{n=0}^{\infty} \left[\frac{(2n+1)!!}{(2n)!!} \right]^2 \frac{k^{2n}}{2n+1}$$

代回可得

$$I = \frac{\pi}{2} \left\{ 1 - \sum_{n=1}^{\infty} \left\{ \left[\frac{(2n+1)!!}{(2n)!!} \right]^2 \frac{1}{2n+1} - \left[\frac{(2n-3)!!}{(2n-2)!!} \right]^2 \frac{1}{2n-3} \right\} k^{2n} \right\}$$

後項的大括號內整理得

$$\left[\frac{(2n-1)!!}{(2n)!!} \right]^{2} \left[2n+1 - \frac{(2n)^{2}}{2n-1} \right] = \left[\frac{(2n-1)!!}{(2n)!!} \right]^{2} \frac{1}{2n-1}$$

$$I = \frac{\pi}{2} \left\{ 1 - \sum_{n=0}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^{2} \frac{k^{2n}}{2n-1} \right\}$$

比對可得
$$I = E(k)$$
。

利用 Lemma 1.4.1,注意到

$$\frac{E(k)}{1 - k^2} - K(k) = \int_0^{\frac{\pi}{2}} \frac{k^2 \sin^2 \theta}{(1 - k^2 \sin^2 \theta)^{3/2}} d\theta$$

所以有

$$\frac{\mathrm{d}K\left(k\right)}{\mathrm{d}k} = \frac{E\left(k\right)}{k\left(1 - k^{2}\right)} - \frac{K\left(k\right)}{k}$$

微分方程式為

$$\frac{\mathrm{d}}{\mathrm{d}k}\left[k\left(1-k^{2}\right)\frac{\mathrm{d}K\left(k\right)}{\mathrm{d}k}\right]=kK\left(k\right)$$

■ 第二類完全橢圓積分

$$\frac{\mathrm{d}E\left(k\right)}{\mathrm{d}k} = -\int_{0}^{\frac{\pi}{2}} \frac{k\sin^{2}\theta}{\sqrt{1-k^{2}\sin^{2}\theta}} \,\mathrm{d}\theta$$

注意到

$$K(k) - E(k) = \int_0^{\frac{\pi}{2}} \frac{k^2 \sin^2 \theta}{\sqrt{1 - k^2 \sin^2 \theta}} d\theta$$

所以有

$$\frac{\mathrm{d}E\left(k\right)}{\mathrm{d}k} = \frac{E\left(k\right) - K\left(k\right)}{k}$$

微分方程式為

$$-\left(1-k^{2}\right)\frac{\mathrm{d}}{\mathrm{d}k}\left(k\frac{\mathrm{d}E\left(k\right)}{\mathrm{d}k}\right)=kE\left(k\right)$$

第二章

Problem 2.0.1 Problem 5.32

A circular loop of mean radius a is made of wire having a circular cross section of radius b, with b for this problem. a. The sketch shows the relevant dimensions and coordinates

(a) Using (5.37), the expression for the vector potential of a filamentary circular loop, and appropriate approximations for the elliptic integrals, show that the vector potential at the point P near the wire is approximately

$$A_{\phi} = \frac{\mu_0 I}{2\pi} \left(\ln \frac{8a}{\rho} - 2 \right)$$

where ρ is the transverse coordinate shown in the figure and corrections are of order $\rho \cos \phi/a$ and $(\rho/a)^2$.

(b) Since the vector potential of part a is, apart from a constant, just that outside a straight circular wire carrying a current I, determine the vector potential inside the wire $(\rho < b)$ in the same approximation by requiring continuity of A and its radial derivative at $\rho = b$, assuming that the current is uniform in density inside the wire:

$$A_{\phi} = \frac{\mu_0 I}{4\pi} \left(1 - \frac{\rho^2}{b^2} \right) + \frac{\mu_0 I}{2\pi} \left(\ln \frac{8a}{b} - 2 \right)$$

(c) Use (5.149) to find the magnetic energy, hence the self-inductance,

$$L = \mu_0 a \left(\ln \frac{8a}{b} - \frac{7}{4} \right)$$

Are the corrections of order b/a or $(b/a)^2$? What is the change in L if the current is assumed to flow only on the surface of the wire (as occurs at high frequencies when the skin depth is small compared to (b)?

$$A_{\phi}(r,\theta) = \frac{\mu_0 I a}{4\pi} \int_0^{2\pi} \frac{\cos \phi' \, d\phi'}{\sqrt{a^2 + r^2 - 2ar \sin \theta \cos \phi'}}$$

注意到

$$K(k) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - k^2 \cos^2 \theta}} d\theta = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - \frac{k^2}{2} - \frac{k^2}{2} \cos 2\theta}} d\theta = \frac{1}{2} \int_0^{\pi} \frac{1}{\sqrt{1 - \frac{k^2}{2} - \frac{k^2}{2} \cos \theta}} d\theta$$

$$E(k) = \frac{1}{2} \int_0^{\pi} \sqrt{1 - \frac{k^2}{2} - \frac{k^2}{2} \cos \theta} d\theta$$

相減可得

$$\left(1 - \frac{k^2}{2}\right) K(k) - E(k) = \frac{1}{4} \int_0^{2\pi} \frac{\frac{k^2}{2} \cos \theta}{\sqrt{1 - \frac{k^2}{2} - \frac{k^2}{2} \cos \theta}} d\theta$$
$$= \frac{k^2}{8\sqrt{1 - \frac{k^2}{2}}} \int_0^{2\pi} \frac{\cos \theta}{\sqrt{1 - \frac{k^2}{2 - k^2} \cos \theta}} d\theta$$

觀察原式可令

$$\frac{k^2}{2-k^2} = \frac{2ar\sin\theta}{a^2 + r^2}$$

解得

$$k^2 = \frac{4ar\sin\theta}{a^2 + r^2 + 2ar\sin\theta}$$

代入得

$$A_{\phi}(r,\theta) = \frac{\mu_0 I a}{4\pi} 4\sqrt{\frac{1 - \frac{k^2}{2}}{a^2 + r^2}} \frac{(2 - k^2) K(k) - 2E(k)}{k^2}$$

$$A_{\phi}(r,\theta) = \frac{\mu_0}{4\pi} \frac{4Ia}{\sqrt{a^2 + r^2 + 2ar\sin\theta}} \frac{(2 - k^2) K(k) - 2E(k)}{k^2}$$

在 ρ ≪ a 的條件下

$$k^{2} = \frac{4ar\sin\theta}{a^{2} + r^{2} + 2ar\sin\theta} = \frac{4a(a + \rho\cos\phi)}{(2a + \rho\cos\phi)^{2} + \rho^{2}\sin^{2}\phi} = \frac{4a(a + \rho\cos\phi)}{4a^{2} + 4a\rho\cos\phi + \rho^{2}} \approx 1 - \frac{\rho^{2}}{4a^{2}}$$

$$k \approx 1 - \frac{\rho^2}{8a^2}$$

代回可得

$$A_{\phi}(r,\theta) \approx \frac{\mu_0 I}{2\pi} \left[\ln \left(\frac{8a}{\rho} \right) - 2 \right]$$

2.1 延遲勢 Retarded Potential

2.1.1 電荷移動的電場

由 Jackson Eq.(6.55)

$$\boldsymbol{E}(\boldsymbol{r},t) = \frac{q}{4\pi\epsilon_0} \int \left\{ \frac{\hat{\boldsymbol{R}}}{R^2} \left[\rho(\boldsymbol{r}',t') \right]_{\text{ret}} + \frac{\hat{\boldsymbol{R}}}{cR} \left[\frac{\partial \rho(\boldsymbol{r}',t')}{\partial t'} \right]_{\text{ret}} - \frac{1}{c^2 R} \left[\frac{\partial \boldsymbol{J}(\boldsymbol{r}',t')}{\partial t'} \right]_{\text{ret}} \right\} d^3 \boldsymbol{r}' \quad (2.1)$$

代入 $\rho(\mathbf{r},t) = q\delta(\mathbf{r} - \mathbf{r}'(t_r))$ 。注意到

$$\int \delta\left(\boldsymbol{r} - \boldsymbol{r}'\left(t_r\right)\right) d^3 \boldsymbol{r} = \sum_{\boldsymbol{r} - \boldsymbol{r}'\left(t_r\right) = 0} \frac{1}{\left|\frac{\partial\left(\boldsymbol{r} - \boldsymbol{r}'\left(t_r\right)\right)}{\partial \boldsymbol{r}}\right|}$$

由 $t_r = t - \frac{|r - r'(t_r)|}{c}$ 。所以

$$\frac{\partial \left(\boldsymbol{r} - \boldsymbol{r}'\left(t_r\right)\right)}{\partial \boldsymbol{r}} = 1 - \frac{\boldsymbol{v} \cdot \hat{\boldsymbol{R}}}{c}$$

在(2.1)中 r' 為 dummy index,與 t,t' 無關。所以可寫為

$$\boldsymbol{E}\left(\boldsymbol{r},t\right) = \frac{q}{4\pi\epsilon_{0}} \int \left\{ \frac{\hat{\boldsymbol{R}}}{R^{2}} \left[\rho\left(\boldsymbol{r}',t'\right)\right]_{\text{ret}} + \frac{\partial}{\partial t'} \left[\frac{\hat{\boldsymbol{R}}}{cR} \rho\left(\boldsymbol{r}',t'\right) \right]_{\text{ret}} - \frac{\partial}{\partial t'} \left[\frac{\boldsymbol{J}\left(\boldsymbol{r}',t'\right)}{c^{2}R} \right]_{\text{ret}} \right\} d^{3}\boldsymbol{r}'$$

積分可得 Jackson Eq.(6.58)

$$\boldsymbol{E} = \frac{q}{4\pi\epsilon_0} \left\{ \left[\frac{\hat{\boldsymbol{R}}}{\kappa R^2} \right]_{\text{ret}} + \frac{\partial}{c\partial t} \left[\frac{\hat{\boldsymbol{R}}}{\kappa R} \right]_{\text{ret}} - \frac{\partial}{c^2 \partial t} \left[\frac{\boldsymbol{v}}{\kappa R} \right]_{\text{ret}} \right\}$$
(2.2)

其中 $\kappa = 1 - \boldsymbol{v} \cdot \hat{\boldsymbol{R}}/c$ 。

由 Jackson Eq.(6.60), Feynman 表達式為

$$\boldsymbol{E} = \frac{q}{4\pi\epsilon_0} \left\{ \left[\frac{\hat{\boldsymbol{R}}}{R^2} \right]_{\text{ret}} + \frac{[R]_{\text{ret}}}{c} \frac{\partial}{\partial t} \left[\frac{\hat{\boldsymbol{R}}}{R^2} \right]_{\text{ret}} + \frac{\partial^2}{c^2 \partial t^2} [\hat{\boldsymbol{R}}]_{\text{ret}} \right\}$$
(2.3)

由 Griffith Eq.(10.72)

$$\boldsymbol{E}(\boldsymbol{r},t) = \frac{q}{4\pi\epsilon_0} \frac{R}{(\hat{\boldsymbol{R}} \cdot \boldsymbol{u})^3} \left[\left(c^2 - v^2 \right) \boldsymbol{u} + \hat{\boldsymbol{R}} \times (\boldsymbol{u} \times \boldsymbol{a}) \right]$$
(2.4)

其中 $u = c\hat{R} - v$ 。以下將證明三式為等價的。

由上式可知必須求出 $\partial {m R}/\partial t$, $\partial {m R}/\partial t$ 。另外注意 ${m v}=\partial {m r'}/\partial t_r$, ${m a}=\partial {m v}/\partial t_r$,因此在計算物理量對時間微分 $\partial {m A}/\partial t$,我皆拆成

$$\frac{\partial \mathbf{A}}{\partial t} = \frac{\partial \mathbf{A}}{\partial t_r} \frac{\partial t_r}{\partial t}$$

再藉由算出 $\partial t/\partial t_r$ 減少計算。

以下我們分別計算上述所需的物理量:

(1) $\partial t/\partial t_r$

t 與 t_r 的關係,由 $R = c(t - t_r)$ 平方可得

$$r^{2} + r'^{2} - 2\mathbf{r} \cdot \mathbf{r}' = c^{2} (t - t_{r})^{2}$$

雨邊微分

$$2r'v - 2\mathbf{r} \cdot \mathbf{v} = 2c^{2} (t - t_{r}) \left(\frac{\partial t}{\partial t_{r}} - 1 \right)$$
$$\frac{\partial t}{\partial t_{r}} = 1 - \frac{\mathbf{v} \cdot \hat{\mathbf{R}}}{c} = \kappa$$

- (2) $\partial \mathbf{R}/\partial t_r = -\mathbf{v}$
- (3) $\partial R/\partial t_r = \partial |\mathbf{r} \mathbf{r}'(t_r)|/\partial t_r = -\hat{\mathbf{R}} \cdot \mathbf{v}$
- (4) $\partial \kappa / \partial t_r$

$$\frac{\partial \kappa}{\partial t_r} = -\frac{1}{c} \frac{\partial}{\partial t_r} \left(\frac{\boldsymbol{v} \cdot \boldsymbol{R}}{R} \right) = -\frac{1}{c} \left[\frac{\dot{\boldsymbol{v}} \cdot \boldsymbol{R} - v^2}{R} + \frac{(\boldsymbol{v} \cdot \boldsymbol{R})^2}{R^3} \right]$$

接下來處理(2.2)中各項

$$\frac{\partial}{\partial t_r} \left(\frac{\mathbf{R}}{\kappa R^2} \right) = -\frac{\mathbf{v}}{\kappa R^2} + \frac{2\mathbf{v} \cdot \hat{\mathbf{R}}}{\kappa R^3} \mathbf{R} + \frac{\mathbf{R}}{\kappa^2 R^2} \frac{1}{c} \left[\frac{\dot{\mathbf{v}} \cdot \mathbf{R} - v^2}{R} + \frac{(\mathbf{v} \cdot \mathbf{R})^2}{R^3} \right]$$
$$\frac{\partial}{\partial t_r} \left(\frac{\mathbf{v}}{\kappa R} \right) = \frac{\dot{\mathbf{v}}}{\kappa R} + \frac{\mathbf{v}}{\kappa R^2} \mathbf{v} \cdot \hat{\mathbf{R}} + \frac{\mathbf{v}}{\kappa^2 R} \frac{1}{c} \left[\frac{\dot{\mathbf{v}} \cdot \mathbf{R} - v^2}{R} + \frac{(\mathbf{v} \cdot \mathbf{R})^2}{R^3} \right]$$

代入得

$$\boldsymbol{E} = \frac{q}{4\pi\epsilon_0 R^2 \kappa^3} \left\{ \frac{\kappa^2 \boldsymbol{R}}{R} - \frac{\kappa}{c} \left(\boldsymbol{v} - \frac{2\boldsymbol{v} \cdot \hat{\boldsymbol{R}}}{R} \boldsymbol{R} \right) + \frac{c\boldsymbol{R} - \boldsymbol{v}R}{c^3} \left[\frac{\dot{\boldsymbol{v}} \cdot \boldsymbol{R} - v^2}{R} + \frac{(\boldsymbol{v} \cdot \boldsymbol{R})^2}{R^3} \right] - \frac{\kappa R}{c^2} \left(\dot{\boldsymbol{v}} + \frac{\boldsymbol{v} \cdot \hat{\boldsymbol{R}}}{R} \boldsymbol{v} \right) \right\}$$

注意到

$$\frac{c\mathbf{R} - \mathbf{v}R}{c^3} \frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{R} - \frac{\kappa R}{c^2} \dot{\mathbf{v}} = \mathbf{R} \times [(c\hat{\mathbf{R}} - \mathbf{v}) \times \dot{\mathbf{v}}]$$

大括弧中剩餘項為

$$\frac{-\kappa^2 + 2\kappa}{R} \mathbf{R} + \frac{c\hat{\mathbf{R}} - \mathbf{v}}{c^3} \left[-v^2 + \frac{(\mathbf{v} \cdot \mathbf{R})^2}{R^2} \right] - \left[\frac{\kappa}{c} + \frac{\kappa(\mathbf{v} \cdot \mathbf{R})}{c^2} \right] \mathbf{v}$$

$$= \frac{-\kappa^2 + 2\kappa}{R} \mathbf{R} + \frac{c\hat{\mathbf{R}} - \mathbf{v}}{c^3} \left[-v^2 + \frac{c^2(1-\kappa)^2}{R^2} \right] - \frac{\kappa}{c} (1+1-\kappa) \mathbf{v}$$

$$= \left(1 - \frac{v^2}{c^2} \right) \left(\frac{\mathbf{R}}{R} - \frac{\mathbf{v}}{c} \right)$$

整理可得(2.4)。

整理(2.3)大括弧內的項。

$$\frac{\partial^2 \hat{\boldsymbol{R}}}{\partial t^2} = \frac{\partial}{\partial t} \left[\frac{\partial t_r}{\partial t} \frac{\partial}{\partial t_r} \left(\frac{\boldsymbol{R}}{R} \right) \right] = -\frac{\partial}{\partial t} \left(\frac{\boldsymbol{v}}{\kappa R} \right) + \frac{\partial}{\partial t} \left(\frac{\boldsymbol{v} \cdot \hat{\boldsymbol{R}}}{\kappa R^2} \boldsymbol{R} \right)$$

其中

$$\frac{\partial}{\partial t} \left(\frac{\boldsymbol{v} \cdot \hat{\boldsymbol{R}}}{\kappa R^2} \boldsymbol{R} \right) = \frac{1}{c} \frac{\partial}{\partial t} \left[\left(\frac{1}{\kappa} - 1 \right) \frac{\boldsymbol{R}}{R^2} \right]$$

代入可得

$$\frac{\boldsymbol{R}}{R^3} + \frac{R}{c} \frac{\partial}{\partial t} \left(\frac{\boldsymbol{R}}{R^3} \right) + \frac{\partial}{c \partial t} \left(\frac{\hat{\boldsymbol{R}}}{\kappa R} \right) - \frac{\partial}{c^2 \partial t} \left(\frac{\boldsymbol{v}}{\kappa R} \right) - \frac{\partial}{\partial t} \left(\frac{1}{R} \frac{\boldsymbol{R}}{R^2} \right)$$

又其中三項和為

$$\frac{\mathbf{R}}{R^3} + \frac{R}{c} \frac{\partial}{\partial t} \left(\frac{\mathbf{R}}{R^3} \right) - \frac{1}{c} \frac{\partial}{\partial t} \left(\frac{\mathbf{R}}{R^2} \right) = \frac{\mathbf{R}}{R^3} - \frac{\mathbf{R}}{cR^3} \left(-\frac{\mathbf{v} \cdot \hat{\mathbf{R}}}{\kappa} \right) = \frac{\mathbf{R}}{R^3} \left(1 + \frac{\mathbf{v} \cdot \hat{\mathbf{R}}}{\kappa c} \right) = \frac{\mathbf{R}}{\kappa R^3}$$

代入比對得(2.3)。

2.1.2 電荷移動的磁場

由 Jackson Eq.(6.56)

$$\boldsymbol{B}(\boldsymbol{r},t) = \frac{\mu_0}{4\pi} \int \left\{ \left[\boldsymbol{J}(\boldsymbol{r}',t') \right]_{\text{ret}} \times \frac{\hat{\boldsymbol{R}}}{R^2} + \left[\frac{\partial \boldsymbol{J}(\boldsymbol{r}',t')}{\partial t'} \right]_{\text{ret}} \times \frac{\hat{\boldsymbol{R}}}{cR} \right\} d^3 \boldsymbol{r}'$$
(2.5)

同上節,積分可得 Jackson Eq.(6.59)

$$\boldsymbol{B} = \frac{\mu_0 q}{4\pi} \left\{ \left[\frac{\boldsymbol{v} \times \hat{\boldsymbol{R}}}{\kappa R^2} \right]_{\text{ret}} + \frac{\partial}{c\partial t} \left[\frac{\boldsymbol{v} \times \hat{\boldsymbol{R}}}{\kappa R} \right]_{\text{ret}} \right\}$$

其中

$$\frac{\partial}{\partial t} \left[\frac{\boldsymbol{v} \times \boldsymbol{R}}{\kappa} \frac{1}{R} \right] = \frac{1}{R} \frac{\partial}{\partial t} \left[\frac{\boldsymbol{v} \times \boldsymbol{R}}{\kappa} \right] + \frac{\boldsymbol{v} \times \boldsymbol{R}}{\kappa R^2} \frac{\boldsymbol{v} \cdot \hat{\boldsymbol{R}}}{\kappa}$$

代入可得 Jackson Eq.(6.61), Heaviside 表達式

$$\boldsymbol{B} = \frac{\mu_0 q}{4\pi} \left\{ \left[\frac{\boldsymbol{v} \times \hat{\boldsymbol{R}}}{\kappa^2 R^2} \right]_{\text{ret}} + \frac{1}{c[R]_{\text{ret}}} \frac{\partial}{\partial t} \left[\frac{\boldsymbol{v} \times \hat{\boldsymbol{R}}}{\kappa} \right]_{\text{ret}} \right\}$$