TD 2: Espaces topologiques

Définitions.

Un espace topologique (X, \mathcal{T}) est dit **séparé** si pour tous $x \neq y \in X$, il existe $U, V \in \mathcal{T}$ tels que $x \in U, y \in V, U \cap V = \emptyset$.

Un espace topologique (X, \mathcal{T}) est dit **métrisable** s'il existe une distance d sur X tel que la topologie de l'espace métrique (X, d) est \mathcal{T} .

Exercice 1 : Échauffement

- 1. Dites si chacune des affirmations suivantes est vraie ou fausse (ou ...) :
 - (a) La topologie sur \mathbb{N} induite par la distance d(x,y) = |x-y| est la topologie discrète.
 - (b) La topologie sur $\{1/n, n \in \mathbb{N}^*\}$ induite d(x, y) = |x y| est la topologie discrète.
 - (c) La topologie sur $A = \{0\} \cup \{1/n, n \in \mathbb{N}^*\}$ induite par d(x, y) = |x y| est la topologie discrète.
 - (d) Soit X un ensemble muni de la topologie grossière. Si $A \subset X$ et $A \neq X$, alors $\mathring{A} = \emptyset$.
 - (e) Soit X un ensemble muni de la topologie discrète. Si $A\subset X$ et $A\neq X,$ alors $\overline{A}=X.$
 - (f) $\mathring{\mathbb{N}} = \mathbb{N}$.
- 2. Dites si les affirmations suivantes sont vraies ou fausses. Si elles sont fausses, proposez une modification qui permet de la rendre vraie. On considère dans tout l'exercice (X, \mathcal{T}) et (Y, \mathcal{R}) deux espaces topologiques et $f: X \to Y$ une application quelconque.
 - (a) On suppose que \mathcal{T} est la topologie discrète. Alors f est continue.
 - (b) On suppose que \mathcal{T} est la topologie grossière. Alors f est continue.
 - (c) On suppose que \mathcal{T} est la topologie discrète. Alors, toute suite est convergente.
 - (d) On suppose que \mathcal{T} est la topologie grossière. Alors, toute suite est convergente.
 - (e) On suppose que f est séquentiellement continue. Alors f est continue.
 - (f) On suppose que X et Y sont des espaces vectoriels et que les topologies \mathcal{T} et \mathcal{R} proviennent de normes $||\cdot||_X$ et $||\cdot||_Y$. Alors f est continue si et seulement il existe C > 0 tel que si pour tout $x \in X$, $||f(x)||_Y \le C||x||_X$.

Exercice 2: Axiomes de fermeture de Kuratowski

1. Soit (X, \mathcal{T}) un espace topologique. Rappeler pour quoi l'adhérence vérifie les propriétés suivantes :

$$\overline{\overline{A}} = \overline{A}, A \subset \overline{A}, \overline{\emptyset} = \emptyset, \overline{A \cup B} = \overline{A} \cup \overline{B}.$$

2. Réciproquement, on se donne une application $A \in \mathcal{P}(X) \mapsto \widetilde{A} \in \mathcal{P}(X)$ vérifiant les quatre propriétés ci-dessus. Montrer qu'il existe une topologie \mathcal{T} sur X telle que pour tout $A \subset X$, $\widetilde{A} = \overline{A}$. Que dire quant à l'unicité d'une telle topologie?

Exercice 3 : Topologies cofinie et codénombrable

Corentin Gentil 1 ENS Paris, DMA

Soit X un ensemble infini. On note C_0 l'ensemble des parties de X de complémentaire fini et C la réunion $C_0 \cup \{\emptyset\}$.

- 1. a) Montrer que \mathcal{C} est une topologie sur X. X est-il séparé?
 - b) Quels sont les comportements asymptotiques possibles pour une suite $(x_n) \in X^{\mathbb{N}}$ en termes de convergence?
 - c) Soit Y un espace métrique et $f: X \to Y$ continue. Montrer que f est constante.
- 2. On considère maintenant X un ensemble non-dénombrable, et on le munit de la topologie co-dénombrable : les fermés différents de X sont les parties au plus dénombrables.
 - a) Montrer que c'est une topologie sur X. X est-il séparé?
 - b) Quels sont les comportements asymptotiques possibles pour une suite $(x_n) \in X^{\mathbb{N}}$ en termes de convergence?
 - c) Soit Y un espace métrique et $f: X \to Y$. Que dire de f?
 - d) Soit $x \in X$. Existe-t-il une base dénombrable de voisinages de x?
 - e) Que se passe-t-il si X est dénombrable?

Exercice 4 : Topologie de Fort

Soient X un ensemble infini et $x \in X$. On définit \mathcal{T} comme étant l'ensemble des parties A de X telles que ou bien A^c est fini (type 1), ou bien A^c est infini et $x \in A^c$ (type 2).

- 1. Montrer que \mathcal{T} est une topologie sur X.
- 2. Montrer que cette topologie est séparée.
- 3. On suppose que X est dénombrable. On considère $A = \{0\} \cup \{\frac{1}{n}; n \in \mathbb{N}^*\} \subset \mathbb{R}$ muni de la topologie induite. Montrer que A et X sont homéomorphes. En déduire que X est métrisable.
- 4. On suppose X non dénombrable. Montrer que \mathcal{T} n'est pas métrisable.

Exercice 5 : Droite réelle étendue

On munit $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ de la topologie dont une base d'ouverts est donnée par les intervalles $[-\infty, a[,]b, +\infty]$ ou]a, b[avec $a, b \in \mathbb{R}$.

- 1. Vérifier que c'est bien une base de topologie.
- 2. Décrire une base dénombrable de voisinages de $-\infty, +\infty, x \in \mathbb{R}$.
- 3. On définit $f: x \in \overline{\mathbb{R}} \mapsto \left\{ \begin{array}{l} \arctan(x) \text{ si } x \in \mathbb{R} \\ \pm \pi/2 \text{ si } x = \pm \infty \end{array} \right.$
 - a) Montrer que f est un homéomorphisme de $\overline{\mathbb{R}}$ sur $[-\pi/2,\pi/2]$ muni de la topologie usuelle.
 - b) En déduire que cette topologie est métrisable.
 - c) $\overline{\mathbb{R}}$ muni de cette topologie est-il séparable?

Exercice 6: A propos des distances

- 1. On dit qu'une application $j : \mathbb{R}_+ \to \mathbb{R}_+$ est une jauge si j(0) = 0, j(x) > 0 si x > 0, j est croissante et j est sous-additive $(j(x+y) \le j(x) + j(y))$.
 - a) Vérifier que j(x) = x/(1+x) et $j(x) = \min(1,x)$ sont des jauges.
 - b) Soit (X, d) un espace métrique et j une jauge. Montrer que $j \circ d$ est une distance.
- 2. Soit X un ensemble et d_1, d_2 deux métriques sur X. On dit que d_1 et d_2 sont **topologiquement équivalentes** si elles engendrent les mêmes topologies. On dit qu'elles sont **uniformément équivalentes** si pour tout $\varepsilon > 0$, il existe δ tel que pour tout $x, y \in X$, $d_1(x,y) \le \delta \implies d_2(x,y) \le \varepsilon$ et pour tout $\varepsilon > 0$, il existe δ tel que pour tout $x, y \in X$, $d_2(x,y) \le \delta \implies d_1(x,y) \le \varepsilon$.
 - a) Montrer que deux distance uniformément équivalentes sont topologiquement équivalentes.
 - b) Montrer que $d_1(x,y) = |x-y|$ et $d_2(x,y) = |\arctan(x) \arctan(y)|$ sont topologiquement équivalentes, mais pas uniformément équivalentes, sur \mathbb{R} .
 - c) Montrer que si (X, d) est un espace métrique, d et d/(1 + d) sont uniformément équivalentes.
- 3. On note d la distance SNCF sur $\mathbb C$ définie par $d(z,w)=\left\{\begin{array}{l} |z-w| \text{ si } w \text{ et } z \text{ sont colinéaires} \\ |z|+|w| \text{ sinon} \end{array}\right.$ Est-elle topologiquement équivalente à la topologie usuelle? Si non, comparer les topologies.
- 4. On note \mathbb{S}^2 la sphère unité de \mathbb{R}^3 et on définit une distance par $d_l(x,y) = 2 \arcsin \frac{||x-y||}{2}$
 - a) Montrer que c'est une distance et l'interpréter (sur un dessin!).
 - b) Est-elle topologiquement équivalente (resp. uniformément équivalente) à la distance usuelle induite sur la sphère?

Exercice 7 : Topologie de l'ordre

Soit (E, \leq) un ensemble ordonné i .e. \leq vérifie pour tous $x, y, z \in E$,

- réflexive $x \leq x$
- antisymétrique : $x \le y$ et $y \le x \implies x = y$;
- transitive : $x \le y$ et $y \le z \implies x \le z$;

On appelle intervalles ouverts les ensembles ayant l'une des formes suivantes $(x, y \in E)$:

$$\{t \in E, x < t < y\}, \{t \in E, x < t\}, \{t \in E, t < x\}, E$$

On rappelle que l'ordre est dit **total** si pour tout $x, y \in E$, soit $x \leq y$, soit $y \leq x$.

On définit une topologie sur E, appelée topologie de l'ordre par : soit $U \subset E$, U est ouvert si et seulement si pour tout $x \in U$, il existe un nombre finie d'intervalles ouverts I_1, \ldots, I_J tels que $x \in I_1 \cap \cdots \cap I_J$ et $I_1 \cap \cdots \cap I_J \subset U$.

1. Vérifier que cela définit une topologie et que quand l'ordre est total, il suffit de prende J=1. Vérifier aussi que les intervalles ouverts sont des ouverts pour la topologie de l'ordre.

Corentin Gentil 3 ENS Paris, DMA

- 2. Montrer que la toplogie de l'ordre sur (\mathbb{R}, \leq) est la topologie usuelle.
- 3. Montrer que la topologie de l'ordre sur $(\mathbb{N}^*, ||)$ (divisibilité) est la topologie discrète.
- 4. On suppose que l'ordre est total. Montrer que la topologie est séparée.
- 5. On considère $\mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$ muni de l'ordre induit par \leq sur \mathbb{R} et tel que pour tout $x \in \mathbb{R}$, $x \leq +\infty$ et $-\infty \leq x$. Montrer que \mathbb{R} muni de la topologie de l'ordre est homéomorphe à [-1, 1] muni de la topologie usuelle.

Exercice 8: Partiel 2016

Pour tout $n \in \mathbb{N}^*$, on note L_n le segment de \mathbb{R}^2 reliant (0,0) à (1,1/n) et L_{∞} le segment de \mathbb{R}^2 reliant (0,0) à (1,0). Soit L la réunion des L_n pour $n \in \mathbb{N}^* \cup \{\infty\}$. On munit chaque L_n de la topologie de sous-espace de \mathbb{R}^2 . Soit \mathcal{T} l'ensemble des parties O de L telles que pour tout $n \in \mathbb{N}^* \cup \{\infty\}$, $O \cap L_n$ est un ouvert de L_n .

- 1. Montrer que \mathcal{T} est une topologie sur L. Comparer \mathcal{T} avec la topologie de sous-espace de \mathbb{R}^2 .
- 2. (L, \mathcal{T}) est-il séparé?
- 3. Montrer que (L, \mathcal{T}) n'est pas métrisable. Indication : on raisonne par l'absurde ; étant donnée une distance d de L engendrant \mathcal{T} , construire une suite (x_n) telle que $x_n \in L_n \{(0,0)\}$ pour tout $n \in \mathbb{N}^*$, (x_n) tend vers (0,0) dans (L,d) mais pas dans (L,\mathcal{T}) .

Exercice 9 : Topologie définie par une famille de semi-normes

Faire le DM 1. Si vous voulez qu'il soit corrigé, à rendre la semaine du 7 Octobre.

Corentin Gentil 4 ENS Paris, DMA