Assignment for Matlab report

Instructor: Le Xuan Dai

Basic commands in Algebra

0.1 Complex numbers

- real(z): real part of z
- imag(z): imaginary part of z
- conj(z): conjugate of z
- abs(z), norm(z): modulus of z
- angle(z): argument of z

0.2 Matrix

- $A = [1 \ 2 \ 3; \ 2 \ 3 \ 4]$: a 2×3 matrix
- *A*B*: AxB
- $A^{\hat{}}$ n: A^n
- eye(n): the n- identity matrix
- zeros(n): the matrix 0
- ones(n): the n-square matrix with entries 1
- diag(v): the diagonal matrix, whose diagonal is the vector v.
- A(i,j): the entry of A in i-th row, j-th col.
- A(i,:): the i-th row
- A(i:k,:): the i-th to k-th rows

- A(:,j): the j-th column
- A(:,j:k): the j-th to k-th columns
- [m,n]=size(A): m: number of rows, m: number of col.
- numel(A): number of entries of A
- A = []: empty matrix
- A(i,:)=[]: delete the i-th row
- A(:,j)=[]: delete the j-th col.
- rref(A): reduce to the row echelon form of A
- rank(A): rank of A
- det(A): determinant of A
- A': transpose of A
- trace(A): the sum of all entries on the diagonal of A
- inv(A): A^{-1}
- $A \setminus b$: Solve the system Ax = b
- null(A): Find the basis of the nullspace Ax = 0
- null(A, r'): Find the basis of the nullspace Ax = 0 in rational numbers. Or you can use: $format\ rat$
- [P,D]=eig(A): Find the eigenvalues, eigenvectors of A
- null(A, 'r'): Find the eigenvalues, eigenvectors of A in rational numbers
- max(X): the maximum element of X

- min(X): the minimum element of X
- dot(u,v): the dot product of u and v
- $syms\ x$: declare the symbolic variable x
- $f=x^2+2*x+2$: a function f(x)
- solve(f): solve the equation f(x) = 0

0.3 An example program

```
Input: matrix A. Count the number of nonzero entries of A. A = input('Enter\ the\ matrix\ A\ ') [m,\ n] = size(A); N = 0; for i = 1:m for j = 1:n if A(i,j) \sim = 0 N = N+1; end end end end end
```

1 Exercises

4. $z^2 = \bar{z}$.

Find the argument, module of

1.
$$z = \frac{1 + i\sqrt{3}}{1 + i}$$
. 2. $z = (1 + i\sqrt{3})(1 - i)$. 3. $z = \frac{-1 + i\sqrt{3}}{1 - i}$.

Solve the equation in the set of complex numbers

6.
$$A = \begin{pmatrix} 2 & -1 & 4 & 5 \\ 2 & 1 & 3 & -1 \end{pmatrix}; B = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -1 & 3 & 0 & -1 \end{pmatrix}$$
. Find $C = A^T B$, trace of C , rank of C , det of C .

5. $z^2 = z - \bar{z}$.

7.
$$A = \begin{pmatrix} 0 & 2 & -4 \\ -1 & -4 & 5 \\ 3 & 1 & 7 \\ 0 & 5 & -10 \end{pmatrix}$$
. Prove that $rank(A) = rank(AA^T) = rank(A^TA)$.

8.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & -2 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 0 & 2 \\ -1 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & 2 & -1 \end{pmatrix}$$
. Find $2AC - (CB)^T$

9.
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & -1 & 4 \\ -1 & 1 & 0 & 2 \\ 2 & 2 & 3 & m \end{pmatrix}$$
. Find m such that A is invertible

10. Find the inverse of
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

11.
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
. Find $f(A)$, with $f(x) = x^2 - 2x - 3$

12.
$$A = \begin{pmatrix} 3 & -2 & 6 \\ 5 & 1 & 4 \\ 3 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 5 \\ 1 & -2 & m \end{pmatrix}$$
. Find m such that AB is invertible

13.
$$A = \begin{pmatrix} -1 & 3 & 2 \\ 2 & 1 & 0 \\ 4 & 3 & 1 \end{pmatrix}$$
. Find P_A .

14. Find
$$m$$
 such that $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & m \\ 3 & 2 & -1 \end{pmatrix}$. $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 5 & 7 & 5 \end{pmatrix}$ is invertible.

15.
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 5 & 3 & -1 \end{pmatrix}$$
. Find P_A .

16. Reduce the matrix
$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 6 & 9 \end{pmatrix}$$
 to the row echelon form

17. Solve the equation
$$\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$$
. $X = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$

18. Solve the equation
$$\begin{pmatrix} 0 & -8 & 3 \\ 1 & -5 & 9 \\ 2 & 3 & 8 \end{pmatrix} X = \begin{pmatrix} 23 & -30 \\ -2 & -26 \\ -16 & 7 \end{pmatrix}$$

19. Find the NUMBER of solutions of this system
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 &= 7 \\ 2x_1 + x_2 + 2x_3 + 3x_4 &= 6 \\ 3x_1 + 2x_2 + x_3 + 2x_4 &= 7 \\ 4x_1 + 3x_2 + 0x_3 + x_4 &= 8 \end{cases}$$

20. Find the NUMBER of solutions of this system
$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 &= 1 \\ x_1 + 3x_2 - 13x_3 + 22x_4 &= -1 \\ 3x_1 + 5x_2 + x_3 - 2x_4 &= 5 \\ 2x_1 + 3x_2 + 4x_3 - 7x_4 &= 4 \end{cases}$$

21. Find the NUMBER of solutions of this system
$$\begin{cases} x_1 & -2x_2 + 3x_3 & -4x_4 = 2 \\ 3x_1 & +3x_2 & -5x_3 & +x_4 = -3 \\ -2x_1 & +x_2 & +2x_3 & -3x_4 = 5 \\ 3x_1 & +3x_3 & -10x_4 = 8 \end{cases}$$

22. Find
$$m$$
 such that the following system has a unique solution
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1\\ 2x_1 + x_2 + 3x_3 - x_4 = 2\\ 3x_1 + 4x_2 + 2x_3 = 6\\ -2x_1 - x_2 + mx_4 = m - 1 \end{cases}$$

23. Solve
$$\begin{cases} x_1 + 3x_2 + 3x_3 + 2x_4 + 4x_5 &= 0 \\ x_1 + 4x_2 + 5x_3 + 3x_4 + 7x_5 &= 0 \\ 2x_1 + 5x_2 + 4x_3 + x_4 + 5x_5 &= 0 \\ x_1 + 5x_2 + 7x_3 + 6x_4 + 10x_5 &= 0 \end{cases}$$

- 24. Find the rank of the set $M = \{(1; 1; 1; 0), (1; 2; 1; 1)(2; 0; m; -1)\}$ associated with m.
- 25. Find the dimension and one basis of the span V = <(1; 2; 1; -1), (3; 1; 0; 5), (0; 5; 3; -8) >
- 26. Given V = <(1; 2; 1; 1), (2; -1; 1; 3), (5; 5; 4; m) >. Find m such that $\dim(V)$ is max. Find a basis of V.
- 27. Find the dimension and one basis of the nullspace

$$V = \{(x_1; x_2; x_3; x_4) \in R_4 : x_1 + x_2 - x_3 = 0 \land 2x_1 - x_3 - x_4 = 0\}$$

- 28. In R_3 given a basis $E = \{(1;1;1), (1;1;2), (1;2;1)\}$ and $[x]_E = (1;-3;2)^T$. Find x.
- 29. In R_3 and a basis $E = \{(1, 1, 1), (1, 1, 0), (1, 0, 1)\}$. Find the coordinates of x = (1, 2, -1) in E.
- 30. Find m such that $M = \{(1, 2, -1), (2, 1, 3), (-1, 2, m)\}$ is a spanning set for R_3 .
- 31. Find m such that $M = \{(1, -2, 1), (3, 1, -1), (m, 0, 1)\}$ is a basis of R_3 .
- 32. Find m such that $\{mx^2 + x + 1, 2x^2 + x + 1, x^2 + 2x + 2\}$ is a basis of $P_2[x]$.
- 33. In R^3 , given 2 bases $E = \{(1;0;1), (1;1;1), (1;1;0)\}$ and $E' = \{(1;1;2), (1;2;1), (1;1;1)\}$. Find the change of basis matrix from E to E'.
- 34. Find m such that x = (1, 0, m) is a linear combination of $M = \{(1, 1, 1), (2, 3, 1)\}.$
- 35. In R_4 , given 2 subspaces

$$F = \left\{ x \in R^4 \middle| \begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 3 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0 \right\}, G = <(2; -1; 0; m) > .$$

Find m such that $G \subset F$.

36. $In R_4$ given a subspace

$$V = \{(x_1; x_2; x_3; x_4) \in R_4 | x_1 - x_2 + x_3 = 0 \land x_2 + x_3 + x_4 = 0\}.$$

Find the dimension, one basis of V.

37. In R_4 , given 2 subspaces

$$V_1 = <(8, -6, 1, 0), (-7, 5, 0, 1) >, V_2 = <(1, 0, -8, 7), (0, 1, 6, -5) >.$$

Check if $V_1 \perp V_2$ or not?

38. In R_4 given 2 subspaces

$$V_1 = <(-2; 0; -6; 5), (1; 1; -1; 0) >, V_2 = <(2; -1; 1; 2), (-1; 3; 2; m) >.$$

Find m such that $V_1 \perp V_2$.

- 39. In R^3 with the standard inner product, given u = (1; 1; 2), v = (2; 1; -1). Find $\cos(u, v)$.
- 40. In \mathbb{R}^3 with the dot product, given u=(1;1;2),v=(2;1;-1). Find d(u,v) and find a vector w orthogonal to u,v.

In R^3 , given an inner product

$$(x,y) = 2x_1y_1 - 3x_1y_2 - 3x_2y_1 + 5x_2y_2 - x_2y_3 - x_3y_2 + 4x_3y_3$$

(For the questions from 41 to 43)

- 41. Find the distance between 2 vectors u = (1, 2, 1) and v = (-1, 1, 2).
- 42. Find $\cos(u, v)$, with u = (1, 2, 1) and v = (-1, 1, 2).
- 43. Given F = <1; 2; 1 >. Find a basis of F^{\perp} .
- 44. Find the dimension, one basis of Kerf: $f(x_1; x_2; x_3) = (2x_1 + x_2 3x_3; x_1 4x_2).$
- 45. Find the dimension, one basis of Imf: $f(x_1; x_2; x_3) = (x_1 + x_2; x_2 + x_3; x_1 x_3).$
- 46. Given $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ satisfying f(1;1;0) = (2;-1), f(1;1;1) = (1;2), f(1;0;1) = (-1;1). Find f(2;0;3).
- 47. Given $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ and the matrix representation of f in $E = \{(1; 1; 1), (1; 0; 1), (1; 1; 0)\}, F = \{(1; 1), (2; 1)\}$ is $A_{E,F} = \begin{pmatrix} 2 & 1 & -3 \\ 0 & 3 & 4 \end{pmatrix}$. Find f(1; 2; 3).
- 48. Given $f(x_1; x_2; x_3) = (x_1 + x_2; x_2 + x_3; x_3 + x_1)$. Find x such that f(x) = (1; 2; 3).
- 49. Given $A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$ and $u = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$, $v = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Which vectors are eigenvectors of A?.
- 50. Given $A = \begin{pmatrix} 3 & 4 \\ 6 & 5 \end{pmatrix}$, $\lambda_1 = -1$, $\lambda_2 = 3$. Which number is an eigenvalue of A?

6

- 51. Given $A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$. Find all eigenvalues and the associated eigenvectors of A.
- 52. Given $A = \begin{pmatrix} 0 & -8 & 6 \\ -1 & -8 & 7 \\ 1 & -14 & m \end{pmatrix}$. Find m such that A has an eigenvalue $\lambda = 2$. Find all eigenvalues and the associated A with m found.
- 53. Given $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 7 & 8 \end{pmatrix}$. Find the inverse of A using the elementary operations.
- 54. In R_3 , given $M = \{(1; 2; -1), (3; 2; -1), (0; 2; -1)\}$. Find m such that (3; 8; m) is a linear combination of M.
- 55. In R_3 , given V = <(1; 2; -1), (3; 2; -1), (0; 2; -1) >. Find m such that $(-3; 5; m) \in V$.
- 56. In R^4 , given $U = \langle (1,2,1,1); (2,1,0,-2) \rangle$ and $V = \langle (1,5,3,5); (3,0,-1,m) \rangle$. Find m such that $U \equiv V$.
- 57. In R^4 , V is the nullspace

$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 + 2x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + 2x_3 + mx_4 = 0 \end{cases}$$

Find m such that $\dim(V)$ is max. Find the dimension and a basis of V with m in the question a.

- 58. In R^4 , given $U = \langle (1, 2, 1, 0); (2, -1, 1, 1) \rangle$ $V = \langle (1, 1, -2, 1); (2, 0, 4, m) \rangle$. Find m such that $\dim(U + V)$ is min. Find the dimension, a basis of U + V.
- 59. In R^4 , given 2 nullspaces $U: \begin{bmatrix} 1 & 1 & 2 & 0 & 0 \\ -1 & 1 & -1 & 2 & 0 \end{bmatrix}, \qquad V: \begin{bmatrix} 1 & 2 & 2 & 2 & 0 \\ -1 & 0 & -1 & m & 0 \end{bmatrix}.$ Find m such that $\dim(U \cap V)$ is max. Find the dimension, a basis of $U \cap V$
- 60. In R_4 , given a nullspace

$$V = \{(x_1; x_2; x_3; x_4) \in R_4 | x_1 - x_2 + x_3 = 0 \land x_2 + x_3 + x_4 = 0\}.$$

Find a basis of V.

61. In R_4 , given a nullspace

$$V = \{(x_1; x_2; x_3; x_4) \in R_4 | x_1 + x_2 + x_3 = 0 \land -x_1 + x_2 + x_4 = 0\}.$$

find a basis of V^{\perp} .

62. In R_4 , given a span V = <(2; -1; 1; 0), (-2; 1; 0; 1) > and a vector x = (1; 1; 0; 1). Find $Pr_V(x)$.

63. In R_3 , given 2 subspaces

$$V_1 = \langle (1;2;1), (-1;0;1) \rangle, V_2 = \{(x_1;x_2;x_3) \in R_3 | x_1 - x_2 + mx_3 = 0\}$$

Find m such that $V_1 \equiv V_2$.

- 64. In R^3 with the standard basis, given $F = \langle (1;1;2), (2;1;-1) \rangle$ and a vector x = (1;2;3). Find the projection of x onto F.
- 65. In R^3 , given an inner product $(x, y) = x_1y_1 + 2x_2y_2 + 3x_3y_3 x_1y_3 x_3y_1$. Find the angle and the distance between u = (1, 1, 2) and v = (2, 1, -1).
- 66. In R^3 , given an inner product $(x, y) = x_1y_1 + 2x_2y_2 + 5x_3y_3 2x_1y_3 2x_3y_1$. Find the orthogonal complement of F = <(1, 2, 3)>.
- 67. Given a linear transformation $f: R^3 \longrightarrow R^2$ satisfying $f(1; 1; 0) = (2; -1), \quad f(1; 1; 1) = (1; 2), \quad f(1; 0; 1) = (-1; 1).$ Find $f(x_1; x_2; x_3)$.
- 68. Given a linear transformation $f: R^3 \longrightarrow R^2$, $f(x_1; x_2; x_3) = (x_1 + 2x_2 3x_3; 2x_1 + x_3)$. Find the matrix representation of f in $E = \{(1; 1; 1), (1; 0; 1), (1; 1; 0)\}$, $F = \{(1; 3), (2; 5)\}$.
- 69. Given a linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ satisfying $f(1;1;1) = (1;2;1), \quad f(1;1;2) = (2;1;-1), \quad f(1;2;1) = (5;4;-1)..$ Find the matrix of f in $E = \{(1;1;0), (0;1;1), (1;1;1)\}.$
- 70. Given a linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, and the matrix of f in $E = \{(1;1;1), (1;0;1), (1;1;0)\}, F = \{(1;1), (2;1)\}$ là $A_{E,F} = \begin{pmatrix} 2 & 1 & -3 \\ 0 & 3 & 4 \end{pmatrix}$. Find the matrix of f in the standard bases.
- 71. Given a linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ with the matrix in the basis $E = \{(1;2;1),(1;1;2),(1;1;1)\}$ is

$$A_E = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 3 \end{pmatrix}.$$

Find the matrix of f in the standard bases.

72. Given a linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ with the matrix in the basis $E = \{(1;2;1),(1;1;2),(1;1;1)\}$ is

$$A_E = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 3 \end{pmatrix}.$$

Find the matrix of f in $E' = \{(1, 2, 3), (2, 3, 5), (5, 8, 4)\}.$

73. Given a linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ with the matrix in the basis $E = \{(1;1;2),(1;1;1),(1;2;1)\}$ is

8

$$A_E = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}.$$

Find the dimension, a basis of Im f.

74. Given a linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ with the matrix in the basis $E = \{(1,0,1),(1,1,1),(1,1,0)\}$ is

$$A_E = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}.$$

Find the dimension, a basis of $\ker f$.

Write a program to find:

75. Input: matrix A. Count the number of even entries of A

76. Input: matrix A. Find the maximum elements in each row of A

77. Input: matrix A. Find the maximum positive entry in A.

78. Input: matrix A. Find the sum of all odd entries in A.

79. Input: matrix A. Find the product of all odd entries in A.

80. Input: matrix A. Check if A is square and symmetric.

81. Input: matrix A. Check if A is orthogonal.