Key Strategies of Team_SB

Samsung SDS & Bielefield Univ.

< Static Problems >

Modification of "Binary Tournament Selection" of HGS

Recap: HGS

Figure 1: General structure of the hybrid genetic search

Hybrid Genetic Search for the CVRP: Open-Source Implementation and SWAP* Neighborhood **Thibaut Vidal**

Original "Binary Tournament Selection"

- How to select a parent for Genetic Algorithm (GA)?

Method:

- 1. Randomly choose 2
- 2. Of the two, choose the one with better fitness

Original "Binary Tournament Selection"

- How to select a parent for Genetic Algorithm (GA)?

Modification: 3-Way Tournament Selection

- 1. Randomly choose 3
- 2. Of the three, choose the one with best fitness

Best Fitness

Worst Fitness

Selection Probabilities:

Modification: 1-Way Tournament Selection

Best Fitness #1

#2

#3

#4

#5

Worst Fitness

Selection Probabilities:

20%

20%

20%

20%

20%

Our Scheme

- How to select a parent for Genetic Algorithm (GA)?

1. Initially, use 4-Way Tournament.

[More Exploitation]

← "High Rank" candidates are more likely to be chosen at the beginning

2. When HGS does not produce a new incumbent solution for many iterations,

reduce it to 3-Way, 2-Way, and then to 1-Way (before RESET).

[More Exploration]

← "Low Rank" candidates are chosen increasingly more frequently over time

< Dynamic Problems >

Modified HGS Cost Function
+
Lazy Dispatch

[v0.0] Use HGS to Generate Routes, and Dispatch Lazily.

[v0.0] Use HGS to Generate Routes, and Dispatch Lazily.

[v2.0] Modified HGS Cost

Minimize:

Total Distance over Sum of "Priorities"

Cost =
$$\frac{a + b + c + d}{1.0 + 0.5 + 1.0}$$

[v2.0] Modified HGS Cost

So what's the good formula for "priorities"?

- We don't know, and we are too lazy.
- We let the AI figure it out by itself.

Information of a node and the current epoch

- when it opens
- when it closes
- when it becomes "must-dispatch"
- how many epochs left

- ...

Probabilities for

{ Priority = 0.2 Priority = 0.4

... ...

Priority = 1.0

Select a priority, according to the probabilities.

Thank You For Listening!