Problem 5

5
$$g(\alpha) = 2^{-\alpha}$$
 on $\begin{bmatrix} \frac{1}{3} & \frac{1}{3} \end{bmatrix}$

$$g'(x) = -2^{-x} lu 2$$

$$\max \left| g'(z) \right| = \lim_{z \to \infty} \left(2^{-\frac{1}{3}} \right)$$

$$s$$
 max $\left| g'(x) \right| < 1$.

Hence g(a) has a unique fixed point on the goternal [1/3,1]

Problem 6

$$g_1(x) = \frac{x^2 - 3}{2}$$
 $g_2(x) = \sqrt{2x + 3}$

$$g_2(x) = \sqrt{2x+3}$$

$$q_3(\alpha) = 3 \qquad (\alpha - \alpha)$$

(a) Fixed points of each
$$g_{\epsilon}(a)$$

$$x = \frac{x^2 - 3}{2}$$

$$2\alpha = \alpha^2 - 3$$

$$O = x^2 - 2x - 3$$

$$x = g_2(x)$$

$$x = \sqrt{2x+3}$$

$$\chi^2 = 2\alpha + 3$$

$$x^2 - 2x - 3 = 0$$

$$x = 3_{0} - 1$$

Fixed-Points

z=3,-1

 $z = g_3(x)$

 $\chi = \frac{3}{(\chi - 2)}$

 $\chi^2 - 2\chi = 3$

22-22-3=0

Let's calculate the roots of f(2)

$$\chi^2 - 2\chi - 3 = 0$$

$$[x=3,-1]$$
4 roots of $f(x)$

Yes! the fixed-points of 2= 90(2) are the roofs of fal= s

(b).
$$q_1(\alpha) = \frac{\alpha^2 - 3}{2}$$
 $q_2(\alpha) = \sqrt{2\alpha + 3}$ $q_3(\alpha) = \frac{3}{2}$

$$g_2(\alpha) = \sqrt{2\alpha + 3}$$

$$q_3(\alpha) = 3$$

Fixed-Point Thm

(1) If
$$\alpha \in [a,b]$$
 then $\alpha \leq g(\alpha) \leq b$. (Exsistence)

(2) max
$$|g'(x)| < 1$$
 (conditions 1 and 2 - o uniqueness) $x \in (a,b)$

Consider

$$9_1(1) = -1$$
 $9_1(4) = \frac{13}{2} = 6.5.$

How, let's consider $q_2(\alpha) = \sqrt{2\alpha+3}$

$$9,(1) = \sqrt{5} = 2.2361$$

$$9_2(\alpha)$$
 is a decreasing fun.

$$9_2(\alpha)$$
 is a decreasing fun.

$$9_2(\alpha)$$
 is a decreasing fun.

 $g_2'(\alpha) = \frac{1}{2\sqrt{2\alpha+3}} \times \frac{2}{\sqrt{2\alpha+3}}$

$$\Rightarrow g_2(\alpha) \in [1,4]. \quad condition 2. V$$

condition 1 V unique fixed point!

Finally,
$$g_3(a) = 3$$

$$(x-2)$$

$$g_3(i) = -3$$
 $g_3(4) = \frac{3}{2}$

Problem 3

$$f(x) = e^{x} - 3x = 0$$
 on [1.1,2] $x_0 = 1.5$

$$e^{\alpha} = 3\alpha$$

$$\alpha = \frac{\ln(3\alpha)}{g(\alpha)}$$

Our candidate for
$$g(x) = l_n(3x)$$

$$g(x) = lu(3x)$$
 is an increasing fun.

$$g(\alpha) \in [1.1, 2]$$
 condition 1.

$$g'(x) = \frac{1}{3x} = \frac{1}{x}$$

$$g'(\alpha)$$
 is a decreasing few and $\max[g'(\alpha)] = |g'(1.i)| < 1$

$$\alpha \in [1.1,2]$$

$$0.9090.$$

=> unique fixed point!

Fixed-point steration

$$z_{n+1} = g(z_n)$$

$$x_{n+1} = ln(3x_n)$$

Heration.	z_n	en
i	1.5040	
2	1.5668	0.0027
3	1. 5086	0.0018
4	1.5098	0.0019
5	1.5106	0.000
6	1.5111	
7	1.5114	