Galaksija

Začetna masna funkcija

Je funkcija, ki nam pove, kolikšen del zvezd nastane iz neke porazdelitve mase zvezd (Salpeterjev zakon):

$$\frac{dN}{dM} = cM^{-\alpha} = \rho(M)$$

kjer je N št zvezd, M, njihova masa, α nek faktor (2.35), c pa konstanta normalizacije.

Reševanje takih nalog: Večinsko integriramo, da dobimo vrednosti, ki jih želimo, konstanto c pa dobimo kot

$$M_{skupna} = N \cdot M = c \int_{spodnja}^{zgornja} \rho(M) M dM$$

Trki med zvezdami

Za trke med zvezdami potrebujemo nekaj ocen in sicer Povprečna gostota zvezd na volumsko enoto:

$$\overline{n} = \frac{N}{V}$$

Povprečna razdalja med zvezdami:

$$\overline{d} = \overline{n}^{-\frac{1}{3}}$$

Sipalni presek:

$$\sigma = \pi r^2$$

kjer je r razdalja, da trčita. Povprečna pot:

$$l = \frac{1}{\overline{n}\sigma}$$

Čas med trkoma:

$$\tau = \frac{l}{v}$$

Reševanje takih nalog: Zapišemo energije $W_k=W_g$ in si izpišemo željene zveze. Ne pozabi, da je:

$$p = nkT \quad \frac{3}{2}kT = \frac{1}{2}m < v^2 >$$

Relativne hitrosti gibanja v galaksiji

Relativno hitrost gibanja glede na nas lahko zapišemo kot:

$$v_r(l) = r_0 \sin(l) \left(\frac{v}{r} - \frac{v_0}{r_0}\right)$$

Kjer so v_0, r_0 podatki o hitrosti gibanja Sonca okoli središča in razdalji do središča. l pa je galaktična koordinata. In sinusni izrek:

$$\frac{d}{\sin(\theta)} = \frac{r_0}{\sin(l+\theta)}$$

Reševanje takih nalog: Nariši si skico, da boš videl, kateri je kateri kot in nato zapiši sinusne izreke ter smeri hitrosti.

Radialna odvisnost gostote temne snovi

Če pogledamo Newtonove zakone vidimo, da je hitrost gibanja zvezd v galaksiji enaka:

$$v(r) = \sqrt{\frac{Gm(r)}{r}}$$

Kjer je m(r) porazdelitev mase črne snovi. Vemo pa tudi, da je:

$$\frac{dm}{dr} = 4\pi r^2 \rho(r)$$

Oortove konstate

Nam povejo hitrosti gibanj zvezd, ki so v okolici Sonca $(r \ll R_{\odot})$.

$$v_r = Ar\sin(2l)$$
 $v_t = Ar\cos(2l) + Br$

Kjer je A=14.8 km/s/kpc in B=-12.4 km/s/kpc. Velja pa tudi, da je:

$$\cos(\alpha) = \frac{r_{\odot}}{r}\sin(l)$$

Splošne enačbe za hitrosti pa se glasijo:

$$v_r = r_{\odot} \sin(l)(\omega - \omega_{\odot})$$

in

$$v_t = r_{\odot}\cos(l)(\omega - \omega_{\odot}) - \omega r$$

Gravitacijsko lečenje in Einsteinov radij

V ravnini leče:

Einsteinov radij je definiran kot:

$$\theta_E^2 = \frac{4GM}{c^2} \frac{D_{LS}}{D_{OL}D_{OS}}$$

kjer so D razdalje med Opazovalcem, Sliko in Lečo. Ko ni v ravnini leče:

V primeru, ko nismo v ravnini leče, je:

$$\theta_{1,2} = \frac{1}{2} [\beta \pm (\beta^2 + 4\theta_E^2)^{\frac{1}{2}}]$$

Povečava slike: Definirana je kot:

$$a_{\pm} = \frac{\theta \pm}{2\beta} \left(1 \pm \frac{\beta}{(\beta^2 + 4\theta_E^2)^{\frac{1}{2}}} \right)$$

In še skupna povečava je:

$$a_{tot} = a_{+} - a_{-} = \frac{\mu^{2} + 2}{\mu(\mu^{2} + 4)^{\frac{1}{2}}}$$

Kjer je $\mu = \frac{\beta}{\theta_E}$. Drugi izraz je uporaben v primeru, da se leča premika s časom, torej da se Einsteinov radij spreminja s časom, razdalja od nas do zvezde pa ostaja konst. Takrat dobimo, da je:

$$\mu\left(\tau = \frac{vt}{d}\right) = \mu(0)\sqrt{\frac{1-\tau}{1+\tau}}$$

Primer:

Izmerili smo kot med zgornjo in spodnjo sliko, ki je v resnici kar

$$\theta = \theta_{+} - \theta_{-}$$

Iz tega lahko izvemo, koliko je β in iz β lahko dobimo, koliko sta θ_+, θ_- . Iz česar nato sledi, da je:

$$\beta^2 = \theta^2 - 4\theta_E^2$$

Ocenitev verjetnosti gravitacijskega lečenja: Verjetnost, da pride do lečenja zvezde lahko zapišemo kot:

$$N = n\sigma d$$

kjer je

$$n = \frac{M_{polje}}{M_{posamezno}} \frac{1}{V}$$

št. zvezd na volumsko enoto.

$$\sigma = \pi (\theta_E D_{OL})^2$$

sipalni presek, d pa razdalja.

Povprečna površinska svetlost eliptičnih galaksij

Je definirana kot:

$$\langle I \rangle = \frac{L(r \langle r_e)}{\pi R_e^2}$$

Da pa bi izvedeli, kolikšen je izsev eliptične galaksije na določenem radiju pa velja:

$$L(r < r_e) = \int_0^{\infty *} I(r) 2\pi r dr$$

 $(*\infty$ je zgolj zato, ker ne moremo določiti meje galaksije) Kjer je I(r) porazdelitev površinske svetlosti po radiju, definirana kot:

$$I(r) = I_e 10^{-b\left(\left(\frac{r}{r_e}\right)^{\frac{1}{4}} - 1\right)} = I_e e^{-\alpha\left(\left(\frac{r}{r_e}\right)^{\frac{1}{4}} - 1\right)}$$

Kjer sta b=3.3307 in $\alpha=7.66$. Zgolj neka normalizacijska faktorja, značilna za posamične galaksije.

V primeru, da je galaksija spiralna, je namesto na $\frac{1}{4}$ tam 1.

Za površinske svetlosti velja naslednja zveza z magnitudami na ločne sekudne (μ):

$$\mu_1 - \mu_2 = -2.5 \log \frac{I_1}{I_2} = -2.5 \log \frac{\frac{J_1}{A_1}}{\frac{J_2}{A_2}}$$

Kjer sta A_1 in A_2 površini galaksij.

Fiber Jakson relacija za disperzijo in izsev galaksije

Če vemo, kolikšna je disperzija galaksije σ , poznamo tudi relacijo, da je

$$L \propto \sigma^4$$

Disperzija pa nam pomaga tudi pri računanju mase, saj je:

$$W_{kin} = \frac{1}{2} M_* 3\sigma^2$$

Če uporabimo virialni teorem:

$$2W_k = W_g$$

dobimo zvezo, da je:

$$M_{galaxy} = \frac{3\sigma^2 R}{G}$$

Kjer je R velikost galaksije. Z upoštevanjem fundamentalne ravnine:

Relacija se v tem primeru spremeni v:

$$L = \alpha \sigma^{\frac{8}{3}} < I_e >^{-\frac{3}{5}}$$

Iz česar sledi, za primerjavo dveh galaksij 1 in 2, da je:

$$\frac{L_1}{L_2} = \frac{\sigma_1}{\sigma_2}^{\frac{8}{3}} \left(\frac{L_1}{L_2} \left(\frac{R_e 2}{Re_1} \right)^2 \right)^{-\frac{3}{5}}$$

Gaussov teorem

Gaussov teorem pravi, da je:

$$\frac{M_{galaxy}}{L_{galaxy}} = konst$$

Tully fisher relacija

Nam pove zvezo med vrtenjem galaksije in sevanjem v spektru.

$$v_{max} = \frac{\Delta \lambda}{\lambda_0} c$$

Kjer je $2\Delta\lambda$ razmik zaradi med enim in drugim vrhom, λ_0 pa valovna dolžina, ki bi jo morala sevati galaksija, v_{max} pa je razdalja od središča grafa do robov.

V primeru, da je galaksija nagnjena:

$$v_{max,dejanska}\sin(\phi) = v_{max,odcitana}$$

Kjer je $v_{max,odcitana}$ tista, ki jo razberemo iz grafa, ϕ je pa nagib galaksije, ki ga lahko dobimo kot $\cos(\phi) = \frac{b}{a}$ torej mala z večjo polosjo galaksije.

Tully Fisher relacija pa je:

$$\frac{L}{3 \cdot 10^{10} L_{\odot}} = \left(\frac{v_{max}}{200 \frac{km}{s}}\right)^4$$

Za maso galaksije s pomočjo disperzije lahko uporabimo virialni teorem:

$$M = \frac{v^2 r}{G}$$

Kjer je v središčna hitrost in r velikost galaksije.

Hubblov zakon in rdeči premik

Hublov zakon nam poda relacijo o oddaljenosti predmeta in njegove hitrosti premikanja:

$$H_0 = \frac{v}{d}$$

kjer je $H_0 = 70 \frac{km}{s} \cdot \frac{1}{Mpc}$ Rdeči premik pa definiramo kot:

$$z = \frac{v}{c} = \frac{\lambda_{obs} - \lambda_{lab}}{\lambda_{lab}}$$

Kvazarji

Imamo kvazar, ki seva s frekvenvo ν nek fluks F_{ν} . Poznamo zanj relacijo, da je:

$$F_{\nu} = \beta \nu^{-\alpha}$$

kjer je α konstanta spektralnega indeksa. Če vemo vrednost pri določeni frekvenci, lahko def pri katerikoli frekvenci:

$$\frac{F_{\nu 1}}{F_{\nu 2}} = \left(\frac{\nu_1}{\nu_2}\right)^{-0.8}$$

$$L = 4\pi d^2 \int_{\nu_{min}}^{\nu_{max}} F_{\nu} d\nu$$

Če ima kvazar ovale okoli sebe, lahko izračunamo velikost mag polja ovalov.

$$\frac{1}{2}E = w_b V$$

kjer je E energija ovalov, faktor $\frac{1}{2}$ zaradi levega in desnega ovala, gostota megnetne energije je $w_b = \frac{B^2}{2\mu_0}$, V pa je volumen ovalov.

Če želimo izračunati faktor α , je to v resnici naš naklon iz grafov.

Eddingtonov izsev

Eddingtonov izsev nam pove, da je izsev diska enak:

$$L_{disk} = f_{edd}L_{edd}$$

Kjer je f_{edd} nek faktor. Velja pa tudi, da je:

$$L_{edd} = \eta c^2 \dot{m} = \frac{4\pi Gc}{\kappa} M$$

In da je temperatura diska enaka:

$$T_{disk} = \left(\frac{3\dot{m}c^6}{8\pi\sigma G^2 M^2}\right)^{\frac{1}{4}}$$

Če preko zveze, da je:

$$\eta c^2 \dot{M} = \frac{4\pi Gc}{\kappa} M f_{edd}$$

izrazimo \dot{m} in ga vstavimo v zgornjo relacijo za disk, dobimo:

$$T_{disk} = \left(\frac{3f_{edd}c^5}{2\sigma GM\kappa\eta}\right)^{\frac{1}{4}}$$

Aktivna galaktična jedra

Če nas zanima masa aktivnih galaktičnih jeder, jo lahko dobimo na 2 načina:

1. Iz Eddingtonove limite:

$$M_S = \frac{L\kappa}{4\pi Gc}$$

2. Iz Schwardschildovega radija:

$$M_Z = \frac{Rc^2}{2G}$$

Kjer Radij lahko dobimo iz periode utripanja kot

$$\Delta t = \gamma \frac{l_2 - l_1}{c}$$

kjer je $\cos(\phi) = \frac{l_1 + R}{l_2}$, ϕ je kotna velikost predmeta.

V primeru, da je v velik, velja:

$$1+z=\sqrt{\frac{1-\beta}{1+\beta}}$$

In

$$\beta = \frac{(z+1)^2 - 1}{(z+1)^2 + 1}$$

In Hubblov zakon, da je

$$\beta = \frac{H_0 d}{c}$$

kjer je d oddaljenost predmeta do nas.

Nadsvetlobno superluminalno gibanje

Dejanska hitrost gibanja vozlov v curku Aktivnega Galaktičnega jedra je opisana z enačbo:

$$\beta = \frac{\beta_{nav}}{\sin(\theta) + \beta_{nav}\cos(\theta)}$$

Kjer je β_{nav} tista, ki jo vidimo, oz izmerimo. θ je kot med curkom in izvorom. Hitrost bo maksimalna, ko bo:

$$\frac{d\beta_{nav}}{d\theta} = 0$$

Če je gibanje žarkov

Gravitacijsko lečenje kvazarja zaradi galaktičnega jedra

Kvazarju se zače spreminjati perioda svetlobe, ki pride do nas zaradi gravitacijskega lečenja. A pri tej periodi se zgodi še nek popravek lečenja bližnje mase:

$$\delta t_A = \frac{4GM}{c^3} \ln \left(\frac{4|z_1|z_2}{b} \right) = \frac{4GM}{c^3} \ln \left(\frac{2\sqrt{z_{A1}z_{A2}}}{b} \right)$$

kjer je z_1 oddaljenost prve slike od mase, z_2 oddaljenost druge slike od mase b pa razdalja nas do objekta. Tako je splošen izraz enak:

$$\Delta t = \frac{4GM}{c^3} \left(\ln \left(\frac{2\sqrt{z_{A1}z_{A2}}}{b} \right) - \ln \left(\frac{2\sqrt{z_{B1}z_{B2}}}{b} \right) \right)$$

(Na vajah smo dodali, da sta si $z_{A1} \approx z_{B1}$ in $z_{A2} \approx z_{B2}$), da smo dobili spodnjo zvezo:

$$\Delta t = \delta t_A - \delta t_B = \frac{4GM}{c^3} \ln(\frac{\Theta_B}{\Theta_A})$$

kjer sta Θ_B in Θ_A velikost slike.

Rochejeva limita plimske motnje

Je limita najmanjše razdalje med zvezdo in črno luknjo, da ne pride do plimske motnje.

$$r_R = 2.4 \left(\frac{\rho_{BH}}{\rho_*}\right)^{\frac{1}{3}} R_S$$

Kjer je R_S Schwarzschildov radij, ρ_{BH} gostota črne luknje ρ_* pa gostota zvezde. Če želimo iz tega vedeti maso črne luknje, velja:

$$M_{BH} = \left(\frac{2.4^3 3c^2}{32\pi\rho_* G^3}\right)^{\frac{1}{2}}$$

Grupe galaksij

Za merjenje razdalje od ene do druge strani grupe, lahko, če je grupa sferna, uporabimo modul razdalje in logiko, da je:

$$m_{zadi} - m_{spredi} = -5\log\left(\frac{d_z}{d_s}\right)$$

kjer je $d_Z = d + R$ in $d_s = d - R$, kjer je R oddaljenost središča grupe.

Masa grupe

Lahko jo izpeljemo iz virialnega teorema, da velja:

$$M = \frac{5\sigma^2 R}{G}$$

kjer je σ disperzija hitrosti.

Halo plina in njegova masa v galaksiji

Za maso haloja plina znotraj radija r velja enačba, da je:

$$M(< r) = -\frac{kT(r)r}{G\bar{\mu}m_p} \left(\frac{d\ln\rho}{d\ln r} + \frac{d\ln T}{d\ln r} \right)$$

ali

$$M(< r) = -\frac{kT(r)r}{G\bar{\mu}m_p} \left(\frac{r}{\rho} \frac{d\rho}{dr} + \frac{r}{T} \frac{dT}{dr} \right)$$

kjer sta $\rho(r),T(r)$ funkciji radija. V primeru ko imamo vodik je izkoristek našega sistema $\bar{\mu}=1$. Maso same galaksije pa izračunamo preko:

$$M(r) = \int \rho(r)dV$$

Širjenje vesolja

Če računamo za dogodke v starem vesolju nas zanimajo rdeči premiki. Če detektiramo spektralne črte, velja:

$$\frac{\Delta\lambda}{\lambda_{LAB}} = z$$

in velja še, da je

$$\frac{d\lambda}{\lambda} = \frac{dv}{c}$$

in da se Hubblova konstata spreminja kot:

$$v = Hr$$
 $dv = \frac{\dot{a}}{a}dr$

kjer je a, spreminjajoči radij vesolja. Tako velja:

$$\frac{d\lambda}{\lambda} = \frac{da}{a}$$

Splošno torej:

$$1 + z = \frac{\lambda_{OBS}}{\lambda_{LAB}} = \frac{a_{danes}}{a_{preteklost}}$$

kjer je a velikost vesolja.

Ker se tudi v tem primeru predmeti širijo blizu svetlobne hitrosti, je:

$$1 + z = \sqrt{\frac{1 - \beta}{1 + \beta}}$$

In

$$\beta = \frac{(z+1)^2 - 1}{(z+1)^2 + 1}$$

In Hubblov zakon, da je

$$\beta = \frac{H_0 d}{c}$$

kjer je d oddaljenost predmeta do nas.

Kozmološki model

Enačba kozmoškega modela se glasi:

$$(\frac{\dot{a}}{a})^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2} + \frac{\Lambda c^2}{3}$$

kjer je k parameter ukrivljenosti, Λ pa kozmološka konstanta. Imamo še eno enačbo in sicer:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\rho c^3 + 3p) + \frac{\Lambda c^2}{3}$$

kjer je p enačba stanja. Poznamo pa tudi enačbo:

$$\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0$$

kjer je $p(\rho)$ ponovno enačba stanja.

Spreminjanje hubblove konstante

$$H = H_0 \left(\frac{\Omega_m}{a^3} + \frac{\Omega_{rad}}{\dot{a}^4} + \frac{\Omega_k}{a^2} + \Omega_\Lambda \dot{a}^{3(\omega+1)}\right)^{\frac{1}{2}}$$

Dunja je mela na predavanjih, ko je k=0 in $\Delta>0$

$$\frac{H^2}{H_0^2} = \frac{8\pi G}{3H_0^2}\rho + \frac{\Delta c^2}{3H_0^2}$$

Iz česar sledi, da je:

$$\frac{H^2}{H_0^2} = \frac{\rho}{\rho_{c,0}} + \Delta_{\Delta}$$

kjer sta $\rho_{c,0}=\frac{3H_0^2}{8\pi G}$ in $\Delta\Delta=\frac{\Delta c^2}{3H_0^2}$ kar je parameter gostote za kozmološko konstanto.