Faculty of Science and Technology (FST) Department of Mathematics Undergraduate Program

PART-A

Cou	rse Outline	
I.	Course No./ Course	MAT 2202
	Code	
II.	Course Title	Matrices, Vectors and Fourier Analysis
III.	Course Type	GED
	(General Education	
	/ Core Course /	
	Electives)	
IV.	Semester	Spring
V.	Academic Session	2022-2023
VI.	Course	Asst. Prof. Dr. Dilruba Yasmin and Asst. Prof. Roushanara Begum
	Teacher/Instructor	
VII.	Pre-requisite (If	MAT 1205 Integral Calculus & Ordinary Differential Equations,
	any)	MAT 2101 Complex Variables, Laplace, and Z-Transformation
VIII.	Credit Value:	3.0
IX.	Contact Hours:	3 hours of the theory per week
X.	Total Marks:	100
XI.	Rationale of the	This course focuses on linear algebra, vector differentiation,
	Course:	integration in rectangular, cylindrical and spherical coordinate system
		and Fourier series and Fourier transform. Linear algebra has many
		applications in engineering, physics, geometry, computer science,
		economics, and other areas. Understanding of vector calculus helps to
		solve many problems exist in aerodynamics, aeronautics, fluid flow,
		heat flow, electrostatics, quantum physics, laser technology, robotics
		etc. Vector integral calculus is very important to engineer and physicist
		to solve many problems related to solid mechanics, fluid flow, heat

	flow and others. Continuous Fourier analysis is used to solve differential equations (PDEs) related to boundary value problem and initial value problem in mechanics, heat flow, electrostatics, and other fields. Discrete Fourier transform (DFT) has practical applications in digital signal processing, image processing etc.
XII. Course Objectives:	 To understand matrix algebra, matrix inversion, row-echelon form. To know solution techniques of the system of linear equations and their applications (in network system, linear programming and cryptographically problem etc.). To know about eigenvalues, eigenvectors, and their application such as the solution of 1st order ordinary DEs. To know about Fourier series and Fourier transformation and Fourier integral. To understand about rectangular, cylindrical & spherical coordinate systems and conversion to each other. To know about vector calculus such as gradient, divergence, and curl in three coordinates systems also in general curvilinear coordinates system. To know about the line, surface and volume integrals and their applications (Gauss divergence and Stokes theorems in three coordinates systems).

XIII. Course Learning Outcomes (CLOs) and Mapping of CLOs with Program Learning Outcomes (PLOs)

CLOs	CLO Descriptions	PLO Assessed
CLO1	Know the fundamental concepts of linear algebra, co-ordinate systems, vector calculus and Fourier analysis.	PLO-a-2
CLO2	Solve the system of linear equations, ordinary differential equations by applying gained fundamental concepts related to linear algebra.	PLO-b-2
CLO3	Solve the real life problem such as networking problem, circuit problem and cryptography, optimization problem by applying gained fundamental concepts related to linear algebra.	PLO-b-2

PART-B

XIV. Course plan specifying content, CLOs, co-curricular activities (if any), teaching learning and assessment strategy mapped with CLOs.

Week	Торіс	Teaching-Learning Strategy	Assessment strategy	Correspondi ng CLOs
1	Matrix algebra, inverse of a matrix.	Lecture	Class	CLO1, CLO2
	Elementary row transformation, row echelon form, reduced row echelon	Brain Storming	Performance	
	form.	Problem Solving		
2	Solution of system of linear equations	Lecture	Class	CLO2
	by using Gaussian elimination method, matrix inverse method and	Brain Storming	Performance	
	determinant (Cramer's rule).	Problem Solving		
3	Applications of matrices (Networking	Lecture	Class	CLO3
	Problems, Circuit problems, Robotics	Brain Storming	Performance	
	& Cryptography) in real life.		Quiz-1	
		Problem Solving		
4	Linear programming problems	Lecture	Class	CLO3
	(Maximization/ Minimization or	Brain Storming	Performance	
	Optimization).	Problem Solving		
5	Fourier Analysis: Periodic functions	Lecture	Class	CLO1, CLO2
	and periodicity of a given function,	Brain Storming	Performance.	
	even and odd function, Fourier series in real form, odd and even	Problem Solving		
	extensions.			
6	Fourier series in complex form, Half	Lecture	Class	CLO1, CLO2
	range Fourier sine and cosine series.	Brain Storming	Performance	
		Problem Solving	Quiz-2	

7	Finite Fourier sine/cosine transform	Lecture	Class	CLO1, CLO2
	of a function, Fourier transform and	Brain Storming	Performance	
	Fourier Integral of a function,	Problem Solving	Quiz-3	
	Discrete Fourier Transform.		Quiz-3	
8		Mid Term Exam		
9	Eigenvalues & eigenvectors;	Lecture	Class	CLO1, CLO2
	applications of eigenvalues &	Brain Storming	Performance.	
	eigenvectors to solve the system of	Problem Solving		
	ordinary differential equations	1 Toolem Solving		
10	(ODEs).	T	CI	CI O2
10	Cayley-Hamilton theorem and it's	Lecture	Class Performance	CLO2
	applications, vector space. Coordinate systems (cartesian coordinate,	Brain Storming	Quiz-1	
	cylindrical coordinate, and spherical	Problem Solving	Quiz-1	
	coordinate).			
11	Gradient, directional derivative and	Lecture	Class	CLO1, CLO2
	Laplacian of scalar function.	Brain Storming	Performance.	
		_		
12	Divergence and curl of a vector	Problem Solving Lecture	Class	CLO2, CLO3
12	function, line integral, surface			CLO2, CLO3
	integral and volume integral in three	Brain Storming	Performance.	
	co-ordinate systems.	Problem Solving	Quiz-2	
13	Gauss's Divergence theorem in	Lecture	Class	CLO1, CLO3
	cartesian and cylindrical coordinates.	Brain Storming	Performance.	
14	Gauss's Divergence theorem in	Problem Solving Lecture	Class	CLO1, CLO3
14	spherical coordinates.			CLO1, CLO3
	splicited coordinates.	Brain Storming	Performance.	
		Problem Solving		
15	Stokes theorem in cartesian and	Lecture	Class	CLO1, CLO3
	cylindrical coordinate system.	Brain Storming	Performance.	
		Problem Solving		

16	Stokes Theorem in spherical	Lecture	Class	CLO1, CLO3
	coordinate system.	Brain Storming	Performance.	
		Problem Solving	Quiz-3	
17		Final Exam		

Part-C

XV. Assessments and Evaluation

1) Assessment strategy:

Class Attendance	Mid-term examination
Class Performance/Assignments	Final-term examination
Quizzes	

2) Marks distribution:

Midterm and Final term		
Quiz	40%	
Attendance	10%	
Class performance/Assignment	10%	
Mid/Final term Examination	40%	
Total	100%	
Final Grade/ Grand Total		
Mid term:	40%	
Final Term:	60%	

Letter	Grade Point	Numerical %
A+	4.00	90-100
A	3.75	85<90
B+	3.50	80<85
В	3.25	75<80
C+	3.00	70<75
С	2.75	65<70
D+	2.50	60<65
D	2.25	50<60
F	0.00	<50(Failed)

3) Make-up Procedures:

Students are allowed to apply for a makeup exam (quiz, terms) as per university policy.

PART-D

XVI. Learning materials

1) Recommended Readings:

- Elementary Linear Algebra: Applications Version H. Anton and C. Rorres, 11th edition, Wiley, 2013.
- Fundamentals of Applied Electromagnetics Fawwaz T. Ulaby and Umberto Ravaioli, 7th edition, Pearson, 1999.

2) Supplementary Readings:

- Linear Algebra and It's Application David C. Lay and Steven R Lay, 5th edition, Pearson, 1997.
- Advanced Engineering Mathematics E. Kreyszig, 10th edition, John Wiley and Sons, 2010.
- Lecture notes

Appendix

Mapping of PLOs to CS courses:

PLO-a: Engineering Knowledge

Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization.

Specialization.		
PLO Indicator ID	PLO Indicators Definition	
PLO-a-1	Apply information and concepts in natural science with the familiarity of issues.	
PLO-a-2	Apply information and concepts of mathematics with the familiarity of issues.	
PLO-a-3	Apply information and concepts in engineering fundamentals to solve complex	
	engineering problems with a range of conflicting requirements.	
PLO-a-4	Apply information and concepts in specialized engineering sciences with the in-	
	depth of analysis of a complex engineering problem.	

PLO-b: Problem Analysis

Identify, formulate, research literature and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PLO Indicator ID	PLO Indicators Definition
PLO-b-1	Identify first principles of natural sciences and engineering sciences in practical
	applications.
PLO-b-2	Formulate solutions, procedures, and methods using first principles of mathematics
	for engineering sciences.
PLO-b-3	Analyze solutions for complex engineering problem reaching substantiated
	conclusion.
PLO-b-4	Research literature of engineering science and analyze the validity and accuracy of
	existing solution for complex engineering problems.

PLO-c: Design/ development of solutions

Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

PLO Indicator ID	PLO Indicators Definition
PLO-c-1	Design solutions for a complex engineering problem considering public health and safety.
PLO-c-2	Develop system or components that meets specific needs considering health, safety and environment.

PLO-d: Investigation

Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

PLO Indicator ID	PLO Indicators Definition
PLO-d-1	Conduct investigations of complex problems using research-based knowledge
PLO-d-2	Use appropriate research methods including design of experiments, analysis and
	interpretation of data, and synthesis of information to provide valid conclusions.

PLO-e: Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.

PLO Indicator ID	PLO Indicators Definition
PLO-e-1	Select and apply appropriate techniques, tools and resources (e.g., prediction &
	modeling) to solve complex engineering problems considering their limitations.
PLO-e-2	Create appropriate techniques, tools or resources (e.g., prediction & modeling) to
	solve complex engineering problems considering their limitations.

PLO-f: The Engineer and Society

Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems.

solutions to complex engineering problems.	
PLO Indicator ID	PLO Indicators Definition
PLO-f-1	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues in relation to professional engineering practice and solution.
PLO-f-2	Assess the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems.

PLO-g: Environment and Sustainability

Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.

PLO Indicator ID	PLO Indicators Definition
PLO-g-1	Understand the sustainability and impact of professional engineering work in the
	solution of complex engineering problems in societal and environmental contexts.
PLO-g-2	Evaluate the sustainability and impact of professional engineering work in the
	solution of complex engineering problems in societal and environmental contexts.

PLO-h: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

PLO Indicator ID	PLO Indicators Definition
PLO-h-1	Apply ethical principles and commit to professional ethics and responsibilities
	and norms of engineering practice.

PLO-i: Individual and Teamwork

Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

and a firm and y determined in	
PLO Indicator ID	PLO Indicators Definition
PLO-i-1	Function effectively as an individual in diverse teams and in multi-disciplinary settings.
PLO-i-2	Function effectively as a member or leader in diverse teams and in multi-disciplinary settings.

PLO-j: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PLO Indicator ID	PLO Indicators Definition
PLO-j-1	Comprehend and write effective reports and design documentation for effective
	communication on complex engineering activities.
PLO-j-2	Make effective presentations to exchange clear instructions with engineering
	community and the society at large.

PLO-k: Project Management and Finance

Demonstrate knowledge and understanding of engineering management principles and economic decision making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PLO Indicator ID	PLO Indicators Definition
PLO-k-1	Apply engineering management principles and economic decision to manage
	project as a team member / team leader.
PLO-k-2	Apply engineering management principles and economic decision to manage
	project in multidisciplinary environments.

PLO-I: Lifelong learning

Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PLO Indicator ID	PLO Indicators Definition
PLO-1-1	Identify the need and prepare accordingly for independent learning in solving complex engineering problems and change of technologies.
PLO-1-2	Demonstrate the ability to engage in independent and life-long learning in the broadest context of technological change.