21 janvier 2023 MP2I

Devoir Surveillé 5

Je vous rappelle les consignes :

- Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats. On accordera de l'importance à la présentation.
- La calculatrice est interdite.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Les deux problèmes sont indépendants et vous pouvez les traiter dans l'ordre que vous désirez. Il est conseillé de parcourir le sujet dans sa globalité avant de commencer.
- La durée de ce devoir est de 4 heures.

PROBLÈME Groupe des périodes

- Pour $f: \mathbb{R} \to \mathbb{R}$, on pose $G_f = \{T \in \mathbb{R} / \forall x \in \mathbb{R}, f(x+T) = f(x)\}$ l'ensemble des périodes de f.
- Une fonction $f: \mathbb{R} \to \mathbb{R}$ est périodique si il existe T > 0 tel que $\forall x \in \mathbb{R}, \ f(x+T) = f(x)$. On dit dans ce cas que f est T-périodique.
- Pour $\alpha \in \mathbb{R}$, on note $\alpha \mathbb{Z} = \{n\alpha, n \in \mathbb{Z}\}$ l'ensemble des multiples de α .
- On rappelle que $\pi \notin \mathbb{Q}$.

Partie I. Structure de G_f et exemples.

- 1) Généralités. Soit $f: \mathbb{R} \to \mathbb{R}$.
 - a) Montrer que G_f est un groupe pour la loi +.
 - b) Montrer que si $\alpha \in G_f$, alors $\alpha \mathbb{Z} \subset G_f$.
- 2) Exemples.
 - a) Déterminer en justifiant brièvement G_f dans les cas suivants :
 - i) f est une fonction constante sur \mathbb{R} .
 - ii) $f = \exp$.
 - b) On pose $f = \sin$.
 - i) Donner une condition nécessaire et suffisante pour avoir $\sin(x) = 1$. En déduire que si T est une période de sinus, alors $T \equiv 0$ [2 π].
 - ii) Montrer que $G_f = 2\pi \mathbb{Z}$.
 - c) On pose $f: \left\{ \begin{array}{ll} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 1 \text{ si } x \in \mathbb{Q} \\ x & \mapsto & 0 \text{ si } x \notin \mathbb{Q} \end{array} \right.$
 - i) Montrer que si $T \in \mathbb{Q}$, alors T est une période de f.
 - ii) Démontrer que $G_f = \mathbb{Q}$.
 - iii) Montrer que f n'est continue en aucun point de \mathbb{R} .
- 3) G_f est-il stable par produit? On fera une preuve ou on donnera un contre-exemple.

Partie II. Description de G_f quand f est continue non constante.

Dans toute cette partie, on fixe $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période T > 0, continue et non constante. Le but de cette partie est de montrer qu'il existe $\alpha > 0$ tel que $G_f = \alpha \mathbb{Z}$.

- 4) Borne inférieure de $G_f \cap \mathbb{R}_+^*$.
 - a) Montrer que que $G_f \cap \mathbb{R}_+^*$ admet une borne inférieure que l'on notera α et que $\alpha \geq 0$.
 - b) Montrer que $\forall x \in \mathbb{R}$, $f(x + \alpha) = f(x)$. On pourra utiliser la caractérisation séquentielle de la borne inférieure.
- 5) Minoration des périodes.
 - a) Montrer que f admet un minimum (que l'on notera m dans la suite) et un maximum (que l'on notera M dans la suite) sur [0,T] et que m < M.
 - b) Justifier que m < f(0) ou que f(0) < M.
 - c) On suppose dans la suite que f(0) < M. Redonner la définition avec des quantificateurs de « f est continue en 0 ». En déduire qu'il existe $\eta > 0$ tel que $\forall x \in [0, \eta], \ f(x) < M$.
 - d) En déduire si $0 < t \le \eta, f$ ne peut pas être t-périodique.

On montrerait le même résultat dans le cas où m < f(0). On ne demande pas de le démontrer.

6) En utilisant les questions 4 et 5, justifier que $\alpha \in G_f \cap \mathbb{R}_+^*$. En déduire que $\alpha = \min(G_f \cap \mathbb{R}_+^*)$.

On a donc ainsi défini la plus petite période strictement positive de f.

- 7) La conclusion.
 - a) Soit $t \in G_f$. Montrer qu'il existe $n \in \mathbb{Z}$ tel que $n\alpha \leq t < (n+1)\alpha$.
 - b) Vérifier que $t n\alpha \in G_f \cap \mathbb{R}_+$ et en déduire que $t = n\alpha$.
 - c) Montrer finalement que $G_f = \alpha \mathbb{Z}$.
- 8) Application. Soit f une fonction continue périodique admettant 1 et $\sqrt{2}$ comme période.
 - a) Démontrer que pour tout $n \in \mathbb{N}^*$, $(\sqrt{2} 1)^n$ est une période de f.
 - b) Déterminer $\lim_{n\to+\infty} (\sqrt{2}-1)^n$.
 - c) Que peut-on alors dire de $\alpha = \inf(G_f \cap \mathbb{R}_+^*)$? En déduire que f est constante.

PROBLÈME Les carrés de la suite de Lucas

La suite de Lucas $(L_n)_{n\in\mathbb{N}}$ est définie par :

$$L_0 = 2, L_1 = 1 \text{ et } \forall n \in \mathbb{N}, L_{n+2} = L_{n+1} + L_n.$$

Le but du problème est de déterminer les entiers $n \in \mathbb{N}$ tels que L_n soit un carré (autrement dit tels qu'il existe $x \in \mathbb{Z}$ tel que $L_n = x^2$). La partie II est indépendante des autres parties, la partie III utilisant uniquement la partie I et le résultat énoncé au début de la partie II.

On rappelle que pour $a, b \in \mathbb{Z}$, on note $a \wedge b$ le plus grand diviseur commun à a et b et que \mathbb{P} désigne l'ensemble des nombres premiers.

Partie I. Généralités et le cas n pair.

- 1) Montrer que $\forall n \in \mathbb{N}, L_n \in \mathbb{N}^*$.
- 2) Montrer que $\forall n \in \mathbb{N}, L_n \wedge L_{n+1} = 1.$
- 3) Périodicité de L_n [4].
 - a) Pour $n \in [0, 7]$, préciser les valeurs de L_n et vérifier que $L_6 \equiv L_0$ [4] et $L_7 \equiv L_1$ [4].
 - b) En déduire que $\forall n \in \mathbb{N}, \ L_{n+6} \equiv L_n$ [4]. Que peut-on alors dire de la suite $(L_n$ [4]) $_{n \in \mathbb{N}}$?
- 4) Expression explicite de L_n . On pose $\omega_1 = \frac{1 \sqrt{5}}{2}$ et $\omega_2 = \frac{1 + \sqrt{5}}{2}$.
 - a) Pour $n \in \mathbb{N}$, exprimer L_n en fonction $(\omega_1)^n$ et $(\omega_2)^n$.
 - b) En déduire que $\forall n \in \mathbb{N}, \ L_{2n} L_n^2 = 2(-1)^{n+1}$.
- 5) Le cas n pair.
 - a) Vérifier que $\forall x \ge 2$, $(x-1)^2 < x^2 2 < x^2 < x^2 + 2 < (x+1)^2$.
 - b) En déduire que L_{2n} ne peut pas être le carré d'un entier.

Partie II. Étude des carrés modulo n.

Le but de cette partie est de montrer que si $n \in \mathbb{N}^*$ est tel que $n \equiv 3$ [4], alors :

$$\forall x \in \mathbb{Z}, \ x^2 \not\equiv -1 \ [n] \ \text{et} \ x^2 \not\equiv -4 \ [n].$$

- 6) Soit $p \in \mathbb{P}$ un nombre premier. Citer le petit théorème de Fermat. En déduire que si $x \in \mathbb{Z}$ est tel que $p \wedge x = 1$, alors $x^{p-1} \equiv 1$ [p].
- 7) Soit $p \in \mathbb{P}$ un nombre premier tel que $p \equiv 3$ [4]. On suppose par l'absurde qu'il existe $x \in \mathbb{Z}$ tel que $x^2 \equiv -1$ [p].
 - a) Justifier que $p \wedge x = 1$ et que $\frac{p-1}{2} \in \mathbb{N}^*$.
 - b) En déduire une absurdité.
- 8) On fixe à présent $n \in \mathbb{N}^*$ tel que $n \equiv 3$ [4] et on considère la décomposition en produit de facteurs premiers de n que l'on écrit sous la forme $n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k}$ avec $p_1, \ldots, p_k \in \mathbb{P}$ des nombres premiers distincts et $\alpha_1, \ldots, \alpha_k \in \mathbb{N}^*$.
 - a) Justifier que tous les nombres premiers p_1, \ldots, p_k sont impairs, puis qu'ils sont tous congrus à 1 ou 3 modulo 4 et enfin qu'il en existe au moins un congru à 3 modulo 4, que l'on notera p dans la suite.
 - b) À l'aide de la question 7, justifier alors qu'il n'existe pas d'entier $x \in \mathbb{Z}$ tel que $x^2 \equiv -1$ [n].
 - c) Justifier que $2 \wedge n = 1$ et en déduire qu'il existe $u \in \mathbb{Z}$ tel que $2u \equiv 1$ [n].
 - d) Déduire des deux questions précédentes qu'il n'existe pas d'entier $x \in \mathbb{Z}$ tel que $x^2 \equiv -4 [n]$.

Partie III. Le cas n impair et la conclusion.

On note $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci définie par :

$$F_0 = 0, F_1 = 1 \text{ et } \forall n \in \mathbb{N}, F_{n+2} = F_{n+1} + F_n.$$

3

On montre (on ne demande pas de le faire) de la même manière que pour la suite de Lucas que :

- $\forall n \in \mathbb{N}, F_n \in \mathbb{N}$
- $\forall n \in \mathbb{N}, \ F_n = \frac{1}{\sqrt{5}} (\omega_2^n \omega_1^n).$

- 9) On fixe dans cette question $k \in \mathbb{N}$.
 - a) Vérifier à l'aide de la question 4.a que $\forall m \in \mathbb{N}, \ 2L_{2k+m} = 5F_mF_kL_k + L_mL_{2k}$.
 - b) En déduire à l'aide de la question 4.b que $\forall m \in \mathbb{N}, \ 2L_{2k+m} \equiv 2(-1)^{k+1}L_m[L_k]$.
 - c) Montrer alors que L_k divise $2L_{3k}$, puis que $\forall \alpha \in \mathbb{N}$, L_k divise $2^{\alpha}L_{3^{\alpha}k}$.
- 10) Soit $n \ge 5$ un entier impair. On effectue la division euclidienne de n par 4. Il existe donc $q \in \mathbb{N}^*$ et $r \in [0,3]$ tels que n=4q+r.
 - a) Justifier que $r \in \{1,3\}$ et que l'on peut écrire $4q = 2k3^{\alpha}$ où $\alpha \in \mathbb{N}$ et $k \in \mathbb{N}^*$ pair et non divisible par 3.
 - b) Vérifier alors que k est congru à 2 ou 4 modulo 6.
 - c) En déduire à l'aide de la question 3 que $L_k \equiv 3$ [4].
 - d) Vérifier alors que L_k est impair et en déduire que L_k divise $L_{3^{\alpha}k}$.
 - e) Montrer alors que $L_n \equiv -1$ [L_k] ou $L_n \equiv -4$ [L_k]. On utilisera la question 9.b en des valeurs bien choisies.
- 11) Montrer finalement le théorème de Cohn (1964) : les seuls entiers n tels que L_n soit le carré d'un entier sont n = 1 et n = 3.