

Photogrammetry & Robotics Lab

Perception for Self-Driving Cars Vision-based Approaches

Jens Behley

Which information is needed?

Which information is needed?

Content of this lecture

- Overview of perception stack & tasks
- Dive into camera-based perception

Perception Suite

Radar

(Stereo) Camera

- Pro: cheap, high resolution, color
- Con: strongly affected by illumination, needs additional light at night

LiDAR Sensors

- Pro: Independent of illumination,
 Precise distance measurements
- Con: Expensive, mid resolution

Radar

- Pro: Position + velocity information,
 Matured technology
- Con: low resolution/sparse

Other Sensors

- Ultrasonic (near range)
- GPS
- Inertial Measurement Unit (IMU)
- Odometer

Complementing Modalities

- Many sensors are already build into cars (camera, RADAR, ultra-sound sensors, ...)
- Not a single sensor will enable self-driving, but combination of sensors
- But: Sensor fusion essential to integrate information from multiple sensors

Perception Suite

- Radar
- GPS+IMU

Perception Tasks

Classification

Semantic Segmentation

Detection

Panoptic Segmentation

Convolution Neural Network

- Since 2012 success in ImageNet Challenge, the basis for most imagebased perception tasks nowadays
- Here: high-level overview of CNNs

Why are CNNs successful now?

- Several reasons made progress possible:
 - 1. Availability of large-scale data (ImageNet, etc.)
 - 2. Availability of compute capabilities (GPUs)
 - 3. Availability of code (and frameworks)!

- Implementation for most paper available
- Many frameworks made it simple to build and train networks (Caffe, Theano, Torch, etc.)

Deep Learning Frameworks

- All operations must be implemented using GPU
- DL Frameworks available implementing the aforementioned operations (and many more)

Convolution Neural Network

۱۸/	۱۸/	۱۸/				
vv _{0,0}	VV 0,1	W _{0,2}		-77	-71	277
W _{1.0}	W	W ₄₋₂	=	, ,	, -	_,,
1,0	** 1,1	W _{1,2}		127	-95	87
W ₂₋₂	Wax	W _{2,2}	l			
vv 2,0	VV 2,1	VV 2,2				

$$\sum I(x + u, y + v)K(u, v)$$

- Convolution "slides" kernel/filter K over image I
- Trivia: Most DL frameworks use crosscorrelation instead

Convolution Neural Network

W

 $3 \times 3 \times 4$

 $H \times W \times 1$ (with zero padding)

- For multi-channel input convolutional kernel has also as many channels
- Produces still one activation map

Channel-first vs. Channel-last

- Organizing tensors in different ways possible
- Main conventions:
 - Channel-first (PyTorch): $C \times H \times W$
 - Channel-last (Tensorflow): $H \times W \times C$
- We stick now to the channel-first convention...

Convolutional Layer

Use multiple kernels to produce C_{out} maps

ConvLayer + Activation Function

- Activation function (such as ReLU) applied after each convolutional layer
- Usually only implicit in the graphical representation

Activation Function

- Non-linear Activation functions
- Popular: Rectified Linear Unit (ReLU)
 + variants, e.g., Leaky ReLU

Convolution Neural Network

- Stack of convolutional layers
- Pooling layer to increase receptive field of layers

Receptive field

- Location in deeper layers take inputs of window of earlier layers
- Deeper layers "see" more from earlier layers

Pooling Layer

- Pooling layers increase the receptive field & aggregates information
- Translation invariance to small shifts
- Common: max pooling, average pooling

Example: Max Pooling

14	5	4
9	12	7

2 × 2 max pooling, stride 2

Compute maximum in each region

Strided Convolution

- Common: Use strided convolution for downsampling to increase the receptive field
- Stride > 1 reduces size of feature map

Convolution Neural Network

- Output usually appropriately shaped tensor
- Example: C classes → C logit values for softmax

Fully connected (FC) layer

- Each value of the input is used to produce output value: y = Wx
- Common: flattening of $C \times H \times W$ tensor to vector $C \cdot H \cdot W$ before FC layer
- Also called linear layer

Learning

 Neural network is basically just a rather complex function:

$$f(\mathbf{x}_i; \theta) = L_3(L_2(L_1(\mathbf{x}_i; \mathbf{w}_1); \mathbf{w}_2); \mathbf{w}_3)$$

 Loss function is the objective we want to minimize; determines what network structure should learn

Common Loss Functions

• Loss $\ell(y_i, f(\mathbf{x}_i; \theta)) \in \mathbb{R}$ determines difference between prediction $f(\mathbf{x}_i; \theta)$ and target y_i

- Examples:
 - L2 loss for regression tasks

$$\ell(y_i, f(\mathbf{x}_i; \theta)) = (y_i - f(\mathbf{x}_i; \theta))^2$$

Cross entropy loss for classification

$$\ell(j, f(\mathbf{x})) = -\log \frac{\exp(f_j(\mathbf{x}))}{\sum_k \exp(f_k(\mathbf{x}))}$$
 Softmax
$$= -f_j(\mathbf{x}) + \log(\sum_k \exp(f_k(\mathbf{x}))$$

Learning via gradient descent

- Idea: Determine how to change parameters in a layer to reduce loss
- Parameter updates efficiently computed via back propagation

More details on CNNs

- We touched only parts needed to understand papers in the seminar
- Much more theory, building blocks, best practices
- For more details on CNNs, see the links in the description of the video.

Perception Tasks

Classification

Semantic Segmentation

Detection

Panoptic Segmentation

Object detection task

- Input: RGB Image
- Output:
 - bounding boxes defined by
 (x, y, w, h) or (c_x, c_y, w, h) or (x₁,y₁, x₂,y₂)
 - confidence scores in [0,1]

Modern Object Detectors

 Rely mainly on Convolution Neural Networks (CNN)

- Two main paradigms:
 - Anchor-based approaches
 - Anchor-free approaches

Anchor-based Approaches

Two-stage

Single-stage

- Two-stage approaches:
 - First stage: Generate proposals based on anchors
 - Second stage: Refine and classify proposals
- Single-stage approaches:
 - Refine & classify anchors in single pass

- Region Proposal Network produces proposals
- Region-wise classification network uses same features as input as RPN (shared features)

[Ren, 2015]

Region Proposal Network (RPN)

- Scores set of anchors with fixed initial sizes
- Produces objectness and anchor offsets (for each anchor)
- Keep N-top scored anchors as RoI for classification in second stage [Ren, 2015]

Faster R-CNN

- Region-wise classification network classifies and refined bounding boxes (regression)
- But, how to extract proposal-specific features?

[Ren, 2015] 40

Region-of-Interest(RoI) Pooling

 Adaptive max pooling brings extracted feature maps into appropriate size for RoI Network

[Girshick, 2015] 41

Faster R-CNN Summary

- Fast enough for near real-time operation (~10 Hz)

• RPN already provides object bounding boxes → second stage needed?

You Only Look Once (YOLO)

$$S = 4$$

Per anchor scores & offsets:

$$(O_1, \delta x_1, \delta y_1, \delta w_1, \delta h_1)$$

 $(O_2, \delta x_2, \delta y_2, \delta w_2, \delta h_2)$

Per cell class scores: (C_1, C_2, \ldots, C_K)

Output:
$$S \times S \times (B(1+4)+K)$$

- Predicts bounding boxes with single forward pass
- Each anchor gets objectness score O, bounding box offsets
- Objectness + class score determines outcome

43

YOLO Architecture

 YOLO uses a 24-layer convolutional network (DarkNet) with 2 fully connected layers, 2 anchors, 20 classes (Pascal VOC)

[Redmon, 2015] 44

YOLO Summary

- Each grid cell produces at most 1 bounding box
- Only single pass though CNN needed
 - → Blazingly fast (up to 144 Hz)
- But less proposals then Faster R-CNN
 - → less accurate, misses too close objects

Anchor-free Approaches

- Determine keypoints (e.g., corners, centers of bounding boxes)
- Post-processing uses keypoints to produce bounding boxes

Bounding boxes from corners

- Instead of scoring of anchors, CornerNet determines corners of bounding boxes
- Produce heatmaps of likelihood that at given pixel is upper-left or bottom-right corner

47

How to associate corners?

- To associate top-left and bottom-right corners, CornerNet determine embedding ("features")
- Similar embeddings correspond to the same object

Encoder Decoder Architecture

- We want to have pixel-wise features
- Encoder uses strided convolutions or max pooling to down-sample feature maps
- Decoder upsamples feature maps to original resolution using upsampling operations

Common Upsampling Methods

 Nearest neighbor upsampling just copies values from nearby pixels Common Upsampling Methods

Learnable weights for interpolation:
 Transpose Convolutions "inverts" convolution₅₁

CornerNet Summary

- Anchor-free approach
 - Corner locations (upper-left, bottomright) with embedding vectors
 - Similarity between learned embedding vectors determines bounding box
- Encoder-Decoder architecture produces pixel-wise outputs

Perception Tasks

Classification

Semantic Segmentation

Detection

Panoptic Segmentation

Semantic Segmentation

• Goal: Provide label $y_{i,j} \in \{1,\ldots,K\}$ for each pixel in the image.

Encoder-Decoder Architecture

 Combine up-sampling with convolutional layers to regain spatial resolution

- Skip connections help to retain fine-grained results
- Concatenate feature volumes from encoder and upsampled feature volumes from decoder
- Convolve to reduce number of channels

U-Net Summary

- Encoder-decoder architecture to produce pixel-wise logits for classification
- Skip connections to use highresolution information from encoder

Perception Tasks

Classification

Semantic Segmentation

Detection

Panoptic Segmentation

Panoptic Segmentation

- Panoptic Segmentation unifies semantic and instance segmentation
- Distinguish stuff (e.g., vegetation, road, ...) and thing classes (e.g., car, pedestrian, ...)

[Kirillov, 2019] 59

Top-down vs. Bottom-up Instance Segmentation

Top-down Approach

Bottom-up Approach

- Top-down: Instances are first determined and then foreground/background mask estimated
- Bottom-up: Determine per-pixel properties that are then used to cluster instances

Panoptic-DeepLab

- Bottom-up approach using separate branches for semantic and instance segmentation
- Use semantic labels to filter instances & majority vote on instances to assign instance labels

Panoptic-DeepLab: Instances

center

center

- For instance segmentation:
 - Instance center prediction (= center of mass)
 - For each instance pixel: estimate offset vector that points towards instance center
- At inference time: Use offsets to assign instance id of closest instance center.

62

Panoptic DeepLab Summary

- Shared encoder with different decoders for semantics and instances
- Center and center offsets for bottom-up clustering of instances
- Aggregation of semantic and instance mask to produce instances

Need for labeled data

NuScenes

Waymo Open Dataset

- Mostly supervised training
 need for accurately labeled data
- Several research datasets available
- Companies have dedicated teams to annotate data (non-public dataset)

Automotive Dataset (Detection)

Name	Year	#Categories	#Images	Data
KITTI	2012	8	15k	B,S
BDD100K	2017	10	100k	В
ApolloScape	2018	8-35	144k	В
KAIST	2018	3	9k	В
Argoverse	2019	15	22k	В
Lyft L5	2019	9	46k	В
A2D2	2019	14	12k	В
nuScenes	2019	23	40k	B,S
Waymo Open	2019	4	200k	В

Bounding Box (B), Segmentation Masks (S)

Segmentation Datasets

name	#categories	#images	task
 MS COCO (2014) 	80	118k	I,P
Cityscapes (2016)	30(19)	5k	S,I,P
Mapillary Vistas (2017)	66	25k	S,I
ADE20K (2017)	2,693(150)	25k	S,I

S = Semantic Seg., I = Instance Seg., P = Panoptic Seg.

Labeling data is expensive

- Labeling data is tedious and expensive
- Examples
 - Cityscapes: ~1.5 h per image → 7500 h/312 days for 5k images
 - Mapillary Vistas: ~1.5 h per image → 4.2 years for 25k images
 - MS COCO: 22k h (category labeling) + 10k h (instance spotting) + 26k h (instance segmentation*) → 6.6 years
- Not included: Validation of annotations!

Long Tail Problem

- Class distribution is a long-tailed distribution
- Few classes (e.g., car, pedestrian) are abundantly observable
- Most classes appear in the long tail, e.g., construction vehicles, emergency vehicles, etc.

Rare Events & Situations

- Rare events that should be properly handled
- At scale, rare events are not so rare anymore

Rare Events & Situations

Open-Set Perception

- Assume that not all relevant classes are known at training time
- Aim: Learn model to identify out-ofdistribution (ODD) or anomalies

OpenGAN

- Discriminator (D) distinguishes between known (closed) and unknown (open) examples
- Use generator (G) to generate additional openset examples (besides some outlier images)

Open Challenges in Perception

- Many open challenges towards level 5 autonomous driving
 - Detection of rare events & situations
 - Challenging weather conditions
 - Adversarial attacks on perception systems

• How to deal with such situations gracefully & effectively?

Summary

- Looked at Perception stack & tasks
- Discussed CNNs as backbone of image-based perception
- Common approaches for detection, semantic segmentation and panoptic segmentation
- Challenges in visual perception and open problems

Thank you for your attention

References

- [Cordts, 2016] Cordts et al. The Cityscapes Dataset for Semantic Urban Scene Understanding, CVPR, 2016.
- [Cheng, 2020] Cheng et al. Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-up Panoptic Segmentation, CVPR, 2020.
- [Geiger, 2012] Geiger et al. Are we ready for autonomous driving?, CVPR, 2012.
- [Girshick, 2014] Girshick et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR, 2014.
- [Kirillov, 2019] Kirillov et al. Panoptic Segmentation, CVPR, 2019.
- [Kong, 2021] Kong et al. Open-Set Recognition via Open Data Generation, ICCV, 2021.
- [Law, 2018] Law et al. CornerNet: Detecting Objects as Paired Keypoints, ECCV, 2018.
- [Lin, 2014] Lin et al. Microsoft COCO: Common Objects in Context, ECCV, 2014.
- [Krizhevsky, 2012] Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks, NeurIPS, 2012.
- [Redmon, 2016] Redmon et al. You Only Look Once: Unified, Real-Time Object Detection, CVPR, 2016.
- [Ren, 2015] Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NeurIPS, 2015.
- [Ronneberger, 2015] Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI, 2015.
- [Zou, 2019] Zou et al. Object Detection in 20 Years: A survey, Arxiv, 2019.