实验 1: 基本逻辑部件设计

1.1 3输入多数表决器

1) 分析与设计

实际含义与投票多数服从少数,或者三局两胜类似,因此真值表如下:

Х	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

逻辑表达式如下:

$$F = X \cdot Y \cdot \overline{Z} + X \cdot \overline{Y} \cdot Z + \overline{X} \cdot Y \cdot Z + X \cdot Y \cdot Z$$

= $X \cdot Y + Y \cdot Z + Z \cdot X$

2)原理图

因此,根据上面逻辑表达式,可以得到电路设 计图

3) Logisim 电路图

需要 3 个输入引脚, 1 个输出引脚, 3 个 2 输入与门和 1 个三输入或门。根据设计图连接如下:

4) 单步测试

1

初始值设为000,两次时钟单步如下:

1

通过网上评测,第一关结束。

1.2 或门实现电路

1)设计原理

已知或非门设计图如下左图,非门设计如下右图:

因此,或门设计只需将二者串联即可,设计图如下:

2) Logisim 电路图

因此,需要3个PMOS和3个NMOS晶体管,2个输入引脚,1个输出引脚,1个电源和1接地,如下,注意三极管属性改成P或者N:

数据仿真测试如下:

• X 高电平, Y 低电平, 因此 Q2Q3 关闭, Q1Q4 导通, 如图:

• Q1Q4 导通,则二者之间低电平,如图深绿色

• Q5Q6 栅极低电平, Q6 通 Q5 断,输出高电平,浅绿色

已通过网上测试, 至此第二关结束

1.3 2选1多路选择器(1)

1)设计原理

由 S 决定选择 D0 还是 D1,因此逻辑表达式为 $F=D0\cdot \overset{-}{S}+D1\cdot S$,依次逻辑设计。

2) 原理图

因此,原理图如下:

3) Logisim 电路图

需要 1 个非门, 2 个 2 输入与门, 1 个 2 输入或门, 3 个输入端和 1 个输出端, 按照原理图连接, 如下:

4) 单步测试

通过网上评测,至此第三关结束。

1.4 2选1多路选择器(2)

1) 原理及设计图

由 $F = D0 \cdot \overline{S} + D1 \cdot S$, S为高电平 D1 通路, \overline{S} 为高电平则 D0 通路, 而

传输门下端高电平则通路,因此 S 连结一个非门后,设计图如下:

2) Logisim 电路图

需要一个电源,一个接地,2个传输门,一个 PMOS 和一个 NMOS,三个输入引脚个一个输出引脚。如下:

3) 单步测试

• S低电平,因此 P 通 N 断

• 由于上面 P 通 N 断,中间高电平

• 最后 D0 所对的传输门下端高电平,打通,选择 D0

通过网上评测, 第四关结束。

1.5 4选1多路选择器

1)设计原理

真值表如下:

S1	S0	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

输出端逻辑函数为:

$$F = \overline{S1} \cdot \overline{S0} \cdot D0 + \overline{S1} \cdot S0 \cdot D1 + S1 \cdot \overline{S0} \cdot D2 + S1 \cdot S0 \cdot D3$$

$$= \overline{S1} \cdot (\overline{S0} \cdot D0 + S0 \cdot D1) + S1 \cdot (\overline{S0} \cdot D2 + S0 \cdot D3)$$

$$= \overline{S1} \cdot Y0 + S1 \cdot Y1$$

因此,D0、D1、S0在一个二选一选择器上,D2、

D3、S0 在另一个二选一选择器上,二者输出值和 S1 在第三个二选一选择器上,

则原理图如下:

2) Logisim 电路图

在 2-1MUX 文件下封装上一关的电路图

再根据原理图,用3歌二选一多路选择器,6个输入端和1个输出端连接4 选1多路选择器如下:

通过网上评测, 实验一结束

1.6 思考题

1) 根据 Logisim 组合电路分析的功能,使用逻辑表达式设计方法选择与非门生成 4 选 1 多路选择器。

原理见 1.5 第一部分

功能见: 窗口→组合逻辑电路分析

输入真值表,选择仅使用与非门生成,如下:

2) 实现 4 位二进制数转换成格雷码的转换电路。

原理:对二进制 $B_{n-1}B_{n-2}...B_0$,格雷码 $G_{n-1}G_{n-2}...G_0$,转换规则如下:

$$G_{n-1} = B_{n-1}$$

$$0 \leq i \leq n-2 \quad G_i = B_{i+1} \oplus B_i$$

因此,对 n=4,设计转换电路 G3=B3,后面依次异或,如下:

3) 实现 4 位二进制数的奇偶校验位生成电路。

原理:

奇校验:如果数据单元中 1 的数量已经是奇数,则校验位设置为 0;否则,校验位设置为 1。

偶校验:如果数据单元中 1 的数量已经是偶数,则校验位设置为 0;否则,校验位设置为 1。

这样,我们可以对四位数进行异或操作,偶校验直接 $A\oplus B\oplus C\oplus D$,奇校验对异或结果取反即可。电路图如下:

