Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

3. What is the mean of the following dataset, after multiplying each sample in the dataset by 2?

1/1 point

$$\mathcal{D} = \Big\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} \Big\}$$

- \[
 \begin{align*}
 6 \\ 6 \\ 6 \\
 6
 \end{align*}
 \]
- O [18]
- $\bigcirc \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$
 - **⊘** Correct

Well done!

- ------
- $\bigcirc \begin{bmatrix} 6\\15\\24 \end{bmatrix}$
- \bigcirc $\begin{bmatrix}
 -2 \\
 -5 \\
 -8
 \end{bmatrix}$
- **⊘** Correct

Well done!

- $\mathcal{D} = \Big\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix} \Big\}$
- 4
 5
 6
- \bigcirc $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$
- $\bigcap \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$
 - Correct
 Well done!
- 5. Assuming that we know the mean \bar{x}_{n-1} of a dataset \mathcal{D}_{n-1} with n-1 data points. Now, suppose that we collect another data point, which we denote by x_* . Select the correct formula that computes the correct new mean \bar{x}_n of the full data set $\mathcal{D}_n = \mathcal{D}_{n-1} \cup \{x_*\}$, i.e., we add x_* to the dataset \mathcal{D} .

1/1 point

- $\bigcirc \bar{x}_n = \bar{x}_{n-1} + \frac{1}{n+1}(x_* \bar{x}_{n-1})$
- $\bar{x}_n = \bar{x}_{n-1} + \frac{1}{n}(x_* \bar{x}_{n-1})$
- $\bigcirc \bar{x}_n = \bar{x}_{n-1} + \frac{1}{n-1}(x_* \bar{x}_{n-1})$
- $\bigcirc \bar{x}_n = \bar{x}_{n-1} + \frac{1}{n+1}(\bar{x}_{n-1} x_*)$
- Correct
 Excellent!
- Assuming you are given an image as a two dimensional array of shape 28 x 28. Write a small piece of python
 code to reshape this image to a vector of length 784 (=28 x 28).

1/1 point

Hint: This can be a one-liner.

```
import numpy as np

def reshape(x):
    """return x_reshaped as a flattened vector of the multi-dimensional array
    x_reshaped = np.reshape(x, (-1,))
    return x_reshaped

Run

Reset
```

✓ Correct Good job!