

Sicardi, Julián Nicolás - Legajo 60347

Quintairos, Juan Ignacio - Legajo 59715

Zavalía Pángaro, Salustiano J. - Legajo 60312

Introducción

Aprendizaje no supervisado

- Variable respuesta no es información disponible.
- Tres tipos de problemas:
 - Agrupamiento: red de Kohonen.
 - Reducción de dimensionalidad: regla de Oja.
 - Asociación: red de Hopfield discreta.

Red de Kohonen

- Salida es grilla o mapa de k x k neuronas.
- Agrupación de valores de entrada parecidos en la misma neurona.
- Aprendizaje competitivo: neurona con pesos más parecidos a valor de entrada gana.
- Actualización de pesos en base a ganadora y vecindario.
- Objetivo: agrupación de países de Europa en base a atributos.

Regla de Oja

- Perceptrón simple lineal (única capa de salida).
- Pesos convergen a autovector asociado al autovalor dominante o mayor de matriz de correlaciones.
- Con esos pesos puedo obtener la primer componente principal.
- Objetivo: clasificar países de Europa en base a la primer componente principal.

Red de Hopfield discretas

- Neuronas con todas las conexiones entre sí, pero no consigo mismas.
- Almacenó patrones binarios (-1 o 1) y buscó asociar patrón a variante con ruido.
- Objetivo: asociar patrones de letras de 5x5 píxeles con versiones con ruido. 4 patrones almacenados.

Implementación

Configuración inicial

• Archivo config.json.

```
"method" : "hopfield",
"hopfield_props": {
    "patterns": ["K", "N", "S", "V"],
   "noise_prob": 0.6
"kohonen props":{
   "dataset_path" : "resources/europe.csv",
    "eta" : 0.1,
   "k" : 4,
   "r": 4,
    "epochs": 3500
"oja props":{
    "dataset path" : "resources/europe.csv",
    "eta": 0.0001,
    "epochs": 5000
```

Red de Kohonen

- Actualización radio: Tomamos 5 puntos equidistantes en el intervalo [r0; 1].
- Actualización eta: 101 puntos en el intervalo [eta0; eta0/100].
- Inicializamos los pesos de las neuronas con los valores de entradas tomadas de manera aleatoria.

Red de Hopfield

- Se almacenan 4 patrones (parámetro en config.json).
- La red es llamada con versiones alteradas de los 4 patrones con la probabilidad de ruido especificada.
- Cálculo de la energía en cada paso.
- Se analiza si el patrón que converge es correcto y su "accuracy" (píxeles correctos vs patrón deseado).

Objetivo y Gráficos

Observables: ObservableHQ

Red de Kohonen

Objetivos

- Evaluar el agrupamiento generado por la red.
- Comparación k=4 y k=5.
- Análisis de 1 variable por vez en el mapa.
- Análisis matriz U.

Agrupamiento

Con: eta = 0.5, k = 4, r = 4, 1001 épocas.

0 -	Greece	Croatia - Portugal	Bulgaria - Estonia - Latvia	Ukraine
1-		Czech Republic - Slovakia - Slovenia	Hungary - Lithuania	Poland
2-	Austria - Netherlands	Belgium - Denmark		Finland - Germany - Norway - United Kingdom
3 –	Luxembourg - Switzerland	Iceland - Ireland	Spain	Italy - Sweden
	I 0		I 2	1 3

Matriz U

Diferencias entre pesos calculadas con norma 1.

Mapa con 1 variable

Agrupamiento

Con: eta = 0.5, k = 5, r = 4 1001 épocas.

Matriz U

0-	1.559	4.502	9.533	6.287	3.803
1-	1.950	2.272	5.291	2.881	2.743
2 –	2.908	2.608	3.104	2.292	2.336
3 –	2.509	2.850	2.475	2.831	2.287
4-	3.151	3.211	1.678	2.729	3.586
	0	1	1 2	I 3	I 4

- Diferencias entre pesos calculadas con norma 1.
- La celda con mayor diferencia es en la que se ubicó a Ucrania.

Mapa con 1 variable

Regla de Oja

Objetivo

- Obtener la primera componente principal usando un perceptrón que implemente la Regla de Oja.
- Compararlo con los valores obtenidos mediante la librería Sci-Kit Learn para corroborar su correctitud.
- Interpretar los resultados de las cargas de la primera componente principal.

Resultados: Pesos

Resultados: Componente principal

Resultados: Componente principal

Country	Component
Luxembourg	-3.478
Switzerland	-3.283
Norway	-2.107
Netherlands	-1.841
Ireland	-1.809
Iceland	-1.582
Austria	-1.081
Denmark	-0.955
Sweden	-0.884
Italy	-0.853
Belgium	-0.681
Germany	-0.592
United Kingdom	-0.341
Finland	-0.21
Czech Republic	-0.168
Spain	-0.163
Slovenia	0.066
Portugal	0.526
Slovakia	0.783
Greece	0.998
Croatia	1.268
Hungary	1.397
Poland	1.472
Lithuania	1.53
Latvia	2.306
Estonia	2.487
Bulgaria	2.609
Ukraine	4.585

Resultados: Energía por época

Análisis de resultados

- La componente principal es más negativa cuanto más "rico" sea el país:
 - Mayor PBI
 - Mayor expectativa de vida
 - Mayor crecimiento poblacional
 - Menor inflación
 - Menor desempleo
 - Menor inversión militar
 - Menor área
- El error respecto al resultado de la librería es muy bajo, dando una aproximación muy buena.

Red de Hopfield

Objetivo

- Evaluar la importancia de elegir un conjunto de patrones lo más "ortogonales" posibles.
- Análisis de energía por iteración.
- Análisis de la importancia del ruido.
- Análisis de patrones espúreos.

Elección de patrones

- get_patterns.py.
- Tomamos patrones más "ortogonales" y menos "ortogonales".
- Ruido = 0.2.
- Conjunto "K" "N" "S" "V".
- Conjunto "D" "G" "O" "Q".

```
Patterns: ('D', 'G', 'O', 'Q'), Avg_dot: 18.66666666666668
Patterns: ('A', 'K', 'S', 'Y'), Avg dot: 1.66666666666666667
                                           Patterns: ('B', 'K', 'N', 'V'), Avg dot: 1.66666666666666667
                                           Patterns: ('E', 'K', 'N', 'V'), Avg dot: 1.6666666666666667
                                           Patterns: ('C', 'D', 'O', 'Q'), Avg dot: 18.0
Patterns: ('K', 'M', 'S', 'V'), Avg dot: 1.6666666666666667
                                           Patterns: ('C', 'E', 'G', 'O'), Avg dot: 18.0
Patterns: ('K', 'N', 'S', 'Y'), Avg_dot: 1.6666666666666667
                                           Patterns: ('B', 'E', 'G', 'S'), Avg dot: 17.66666666666668
Patterns: ('K', 'N', 'V', 'Y'), Avg dot: 1.6666666666666667
                                           Patterns: ('B', 'G', 'O', 'Q'), Avg dot: 17.66666666666668
                                           Patterns: ('C', 'D', 'G', 'O'), Avg dot: 17.66666666666668
Patterns: ('K', 'S', 'U', 'Y'), Avg dot: 1.66666666666666667
                                           Patterns: ('A', 'J', 'L', 'R'), Avg dot: 2.0
                                           Patterns: ('A', 'J', 'L', 'Y'), Avg dot: 2.0
                                           Patterns: ('A', 'J', 'R', 'U'), Avg dot: 2.0
```

Análisis de energia: Conjunto 1

Análisis de energia: Conjunto 2

Análisis de resultados

Conjunto 1, patrón K

```
Pattern, State, Accuracy
K, True, 1.0
N, True, 1.0
S, True, 1.0
V, True, 1.0
```


Conjunto 2, patrón Q

```
Pattern,State,Accuracy
D,False,0.92
G,False,0.88
O,True,1.0
Q,False,0.92
```


Análisis de ruido

Conjunto 1 con ruido = 0.4, patrón K

```
Pattern, State, Accuracy
K, False, 0.24
N, False, 0.72
S, False, 0.52
V, False, 0.48
```


Conjunto 1 con ruido = 0.6, patrón K

```
Pattern,State,Accuracy
K,False,0.52
N,False,0.0
S,False,0.0
V,False,0.52
```


Análisis de energía: Ruido = 0.4

Patrones espúreos

- Red converge a algo que no es ninguno de los patrones almacenados.
- Vistos en análisis de ruido.

Conclusiones

Conclusiones

- La red de Kohonen forma grupos con entradas que tienen características similares. Sin embargo hay que elegir con cuidado el k y no hay forma de determinar cuál es bueno a priori.
- La red de Hopfield puede almacenar correctamente patrones pero a mayor ruido o menor ortogonalidad de los mismos le es difícil identificarlos.
- La regla de Oja nos permite utilizar redes neuronales para obtener la 1er componente principal y reducir la dimensionalidad de los datos, y el resultado se condice con lo visto en el ej. obligatorio 2.

¡Muchas Gracias!