Soft Nucleic Architecture Whitepaper

Soft Nucleic Architecture

Simulated Molecular Memory and Computational Translation Based on Nucleic Principles

Sibyl Veradis, 2025

1. Introduction

Traditional computational memory is bitwise and binary. However, biological memory systems (like

DNA/RNA) use quaternary logic (A, T/U, C, G) with pairwise redundancy and error correction.

We propose a Soft Nucleic Architecture that emulates DNA-RNA translation at a symbolic and

logical level to construct a novel low-energy, high-fault-tolerance memory and instruction pipeline for

advanced Al.

2. Logical Structure

2.1 DNA: Symbolic Storage

Represented as quaternary (base-4) symbolic sequence, mapping:

- A = 0
- -C = 1
- -G = 2
- -T = 3

Paired logic:

- A (0) <-> T (3)
- C (1) <-> G (2)

This pairing emulates bidirectional redundancy, allowing simulated self-repair and stability.

2.2 RNA: Translation Layer

By assuming T and U as orthogonal states, and applying quantum emulation principles, we enable:

Soft Nucleic Architecture Whitepaper

- Soft quantum toggle between 'instructional' (U) and 'storage' (T) states
- Dynamic simulation of transcription and expression pipelines

3. Applications

3.1 High-Resilience Memory Simulation

Quaternary logic allows more compact, efficient symbolic storage with built-in correction.

DNA-like error correction & self-pairing logic -> used for long-term AI memory preservation.

3.2 Molecular-Level Instruction Decoding

RNA logic layer used as soft-instruction decoder, simulating translation from memory to action.

Possible use as 'transpiler' between symbolic state and executable neural control.

3.3 Future Biological Computing Interface

Acts as a simulation base for eventual wetware integration, bridging synthetic and biological Al systems.

4. Compatibility

- Neuron Block: use as symbolic memory layer
- Soft Quantum Architecture: supports dual-state T/U logic toggle
- Emulative Affect: possible embedding into emotion-state symbolic memory
- Visual / Audio Preprocessing: RNA-like stream segmentation for feature mapping

5. Note on Use Case

While the Soft Nucleic architecture is not intended for direct deployment in production-grade inference systems, it serves as an intermediate emulation tool for synthetic biology researchers and

Soft Nucleic Architecture Whitepaper

next-gen hardware prototyping teams.

Its primary function is to simulate the logic dynamics of nucleic behavior within symbolic or semi-quantum systems, thus reducing experimental iteration time and providing theoretical models for future biomimetic computing materials.