Laufzeit

- Zählen elementarer Schritte
 - Zuweisung
 - Arithmetik
 - einfache Funktionen
 - * sqrt, ln, swap
 - Vergleiche
 - indirekte Adressierung
 - *A[k+1]
- jedem Schritt wird konstante Zeit zugewiesen

Pseudocode		Zeit-Kosten	Anzahl
InsertionSort(A, n)		C	1
1: FOR i←1 TO n-1		c_{1}	n
2:	$h \leftarrow A[i]$	c_2	n-1
3:	j ← i-1	c ₃	n-1
4:	WHILE $j \ge 0$ AND $h < A[j]$ DO	c ₄	$\sum\nolimits_{i=1}^{n-1}t_{i}$
5:	$A[j+1] \leftarrow A[j]$	c ₅	$\sum_{i=1}^{n-1} (t_i - 1)$
6:	j ← j-1	c ₆	$\sum_{i=1}^{n-1} (t_i - 1)$
7:	$A[j+1] \leftarrow h$	c ₇	n-1

- Laufzeit T(n)
 - Summe aller Zeitkosten mal Anzahl

Summe aller Zeitkosten mal Anzahl

$$T(n) = c_0 + c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \sum_{j=1}^{n-1} t_j + (c_j + c_6) \sum_{j=1}^{n-1} (t_{j-1})$$

$$+ c_3 \cdot (n-1)$$

$$= c_0 - c_2 - c_3 - c_7 + (c_1 + c_2 + c_3 + c_7) \cdot n + c_4 \sum_{j=1}^{n-1} t_j + (c_5 + c_6) \sum_{j=1}^{n-1} (t_{j-1})$$

• Ordnung der Laufzeit interessant

Übersicht

- [[O-Notation]]
- $[\Theta$ -Notation]
- [[Best-Worst-Average Case]]
- [[Master Theorem]]
- [[Amortisierte Analyse]]