

М. Ф. Прохорова, Факторизация уравнения реакции-диффузии, волнового уравнения и других, $Tp.~\mathit{ИМM}~\mathit{УpO}~\mathit{PAH},~2013,~\mathit{том}~19,~\mathit{номер}~4,~203–213$

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 77.137.114.30

6 октября 2019 г., 16:09:31

Tom 19 № 4 2013

УДК 517.958, 515.168

ФАКТОРИЗАЦИЯ УРАВНЕНИЯ РЕАКЦИИ-ДИФФУЗИИ, ВОЛНОВОГО УРАВНЕНИЯ И ДРУГИХ 1

М. Ф. Прохорова

В статье исследуются уравнения вида $D_t u = \Delta u + \xi \nabla u$ для неизвестной функции u(t,x), $t \in \mathbb{R}$, $x \in X$, где $D_t u = a_0(u,t) + \sum_{k=1}^r a_k(t,u) \partial_t^k u$; Δ — оператор Лапласа — Бельтрами на римановом многообразии X; ξ — гладкое векторное поле на X. А именно исследуются морфизмы из этого уравнения в рамках определенной ранее автором категории \mathcal{PDE} дифференциальных уравнений в частных производных. Мы ограничиваемся морфизмами специального вида, так называемыми геометрическими морфизмами, задаваемыми отображениями X в другие гладкие многообразия (той же или меньшей размерности).

Показано, что отображение $f\colon X\to Y$ задает морфизм из уравнения $D_tu=\Delta u+\xi\nabla u$ тогда и только тогда, когда для некоторых векторного поля Ξ и метрики на Y равенство $(\Delta+\xi\nabla)f^*v=f^*(\Delta+\Xi\nabla)v$ выполняется для любой гладкой функции $v\colon Y\to\mathbb{R}$. При этом фактор-уравнением будет $D_tv=\Delta v+\Xi\nabla v$ для неизвестной функции $v(t,y),\ y\in Y$.

Также показано, что если отображение $f\colon X\to Y$ является локально тривиальным расслоением, то f задает морфизм из уравнения $D_t u=\Delta u$ тогда и только тогда, когда слои f параллельны и для любой кривой γ на Y коэффициент расширения слоя при переносе вдоль горизонтального поднятия γ на X зависит только от γ .

Ключевые слова: категория дифференциальных уравнений в частных производных; уравнение реакциидиффузии; уравнение теплопроводности; волновое уравнение.

M. F. Prokhorova. Factorization of the reaction-diffusion equation, the wave equation, and other equations.

We investigate equations of the form $D_t u = \Delta u + \xi \nabla u$ for an unknown function u(t, x), $t \in \mathbb{R}$, $x \in X$, where $D_t u = a_0(u, t) + \sum_{k=1}^r a_k(t, u) \partial_t^k u$, Δ is the Laplace–Beltrami operator on a Riemannian manifold X, and ξ is a smooth vector field on X. More exactly, we study morphisms from this equation within the category \mathcal{PDE} of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form—the so-called *geometric morphisms*, which are given by mappings of X to other smooth manifolds (of the same or smaller dimension).

It is shown that a mapping $f: X \to Y$ defines a morphism from the equation $D_t u = \Delta u + \xi \nabla u$ if and only if, for some vector field Ξ and a metric on Y, the equality $(\Delta + \xi \nabla) f^* v = f^* (\Delta + \Xi \nabla) v$ holds for any smooth function $v: Y \to \mathbb{R}$. In this case, the quotient equation is $D_t v = \Delta v + \Xi \nabla v$ for the unknown function v(t, y), $y \in Y$.

It is also shown that, if a mapping $f: X \to Y$ is a locally trivial fiber bundle, then f defines a morphism from the equation $D_t u = \Delta u$ if and only if fibers of f are parallel and, for any path γ on Y, the expansion factor of a fiber transferred along the horizontal lift γ on X depends on γ only.

 $Keywords: category\ of\ partial\ differential\ equations,\ reaction-diffusion\ equation,\ heat\ equation,\ wave\ equation.$

Введение

В статье [1] автором была определена категория \mathcal{PDE} дифференциальных уравнений в частных производных. В разд. 1 будет дано строгое определение этой категории; наивно говоря, ее объектами являются дифференциальные уравнения в частных производных, а морфизмами из уравнения E в уравнение E' — такие отображения из пространства N зависимых и независимых переменных E в пространство N' зависимых и независимых переменных E', что подмногообразие $\Gamma \subset N'$ является графиком решения E' тогда и только тогда, когда его прообраз $F^{-1}(\Gamma)$ является графиком решения E. Такое уравнение E' мы будем называть фактор-уравнением для E.

¹Работа выполнена при поддержке программы отделения математических наук РАН (проект 12-T-1-1003).

Частным случаем морфизма из E является факторизация по группе симметрий уравнения E. А именно если G — группа преобразований N, оставляющая инвариантным уравнение E, и фактор-отображение $N \to N/G$ является локально тривиальным расслоением, то это отображение задает морфизм из E в уравнение E/G, которое описывает решения E, инвариантные относительно G. Группы симметрий дифференциальных уравнений широко используются для построения частных решений, известных как инвариантные и частично инвариантные решения. Однако запас морфизмов в категории \mathcal{PDE} в общем случае существенно богаче запаса факторизаций по группам симметрий [1;2], что позволяет использовать эти морфизмы для нахождения либо качественного исследования новых классов решений дифференциальных уравнений в частных производных. Кроме того, при исследовании внутренней структуры конкретных подкатегорий \mathcal{PDE} возникает естественная классификация уравнений данной подкатегории (см., например, классификацию параболических уравнений второго порядка в [1]).

В данной статье исследуются морфизмы категории \mathcal{PDE} из уравнений вида

$$D_t u = \Delta u + L_{\xi} u, \tag{0.1}$$

а также более узкого класса уравнений вида

$$D_t u = \Delta u, \tag{0.2}$$

где D_t — дифференциальный оператор

$$D_t u = a_0(t, u) + \sum_{k=1}^r a_k(t, u) \partial_t^k u;$$

 $r \geq 0$ (при r = 0 мы полагаем $D_t u = a_0(t, u)$); $a_k(t, u)$ — непрерывные вещественнозначные функции такие, что для любой пары (t, u) по крайней мере один из коэффициентов $a_k(t, u)$ не обращается в ноль. Здесь Δ — оператор Лапласа — Бельтрами на римановом многообразии X: $\Delta u = \operatorname{div}(\nabla u)$, ξ — гладкое векторное поле на X, $L_{\xi}u$ — производная функции u вдоль ξ .

Частными случаями уравнения (0.1) являются уравнение реакции-диффузии $u_t = a(u)(\Delta u + L_{\xi}u) + b(u)$, нелинейное уравнение теплопроводности $u_t = a(u)\Delta u$, волновое уравнение $u_{tt} = a(u)\Delta u$, эллиптическое уравнение $\Delta u = b(u)$ и мн. др.

Вообще говоря, морфизмы из уравнения (0.1) задаются отображениями $F: N \to N'$ (где $N = \mathbb{R} \times X \times \mathbb{R}$, а N' — произвольное гладкое многообразие), удовлетворяющими дополнительным условиям (определению морфизма). Но в данной статье мы ограничимся рассмотрением более узкого класса отображений, а именно морфизмов вида

$$F = (id, f, id) : (t, x, u) \mapsto (t, f(x), u),$$
 (0.3)

задаваемых гладким отображением $f: X \to Y$, где Y — произвольное гладкое многообразие, а $N' = \mathbb{R} \times Y \times \mathbb{R}$. Для краткости морфизмы категории \mathcal{PDE} из уравнений (0.1) и (0.2), удовлетворяющие условию (0.3), мы будем в данной статье называть $\emph{геометрическими морфизмами}$. Заметим, что по определению морфизма в категории \mathcal{PDE} f должно быть сюръективной субмерсией.

Далее будет показано, в частности, что для каждого геометрического морфизма из уравнения (0.1) соответствующее фактор-уравнение (для неизвестной функции $v \colon \mathbb{R} \times Y \to \mathbb{R}$) имеет вид

$$D_t v = \Delta_Y v + L_{\Xi} v \tag{0.4}$$

с тем же самым оператором D_t , где Δ_Y — оператор Лапласа — Бельтрами на римановом многообразии Y, Ξ — гладкое векторное поле на Y. По определению морфизма в категории \mathcal{PDE} каждому решению v(t,y) уравнения (0.4) соответствует решение u(t,x) = v(t,f(x)) уравнения (0.1), и наоборот, если решение уравнения (0.1) может быть представлено в виде u(t,x) = v(t,f(x)) для некоторой функции v(t,y), то v(t,y) является решением уравнения (0.4).

Полученное в данной статье общее описание геометрических морфизмов из уравнения (0.1) позволяет проводить их дальнейшее, более детальное, исследование, что будет сделано в следующей статье.

В оправдание ограничения (0.3) можно сказать следующее. С одной стороны, этот класс морфизмов — достаточно большой, и для многих целей достаточно ограничиться его рассмотрением. В частности, на его примере можно хорошо увидеть взаимоотношения между морфизмами в \mathcal{PDE} и факторизациями исходного уравнения по группам симметрий. С другой стороны, в [3] показано, что для коэффициента a(u) достаточно общего вида любой морфизм из уравнения $u_t = a(u)(\Delta u + L_{\xi}u) + b(u)$ в рамках определенной там категории \mathcal{PE} параболических уравнений может быть приведен к виду (0.3) биективной заменой переменных в фактор-уравнении.

1. Категория \mathcal{PDE}

Данное здесь определение дифференциального уравнения является очень общим; в большинстве приложений возникают уравнения "классического" вида, когда E является замкнутым подмножеством (или даже подмногообразием) пространства $J^d(M;S)$ d-струй гладких отображений из M в S. Если $E \subset J^d(M;S)$ — такое классическое дифференциальное уравнение, то его расширенной версией называется замыкание E в $J^d_s(M \times S)$, $s = \dim S$ [4]. Здесь $J^d(M;S)$ отождествлено с открытым подмножеством в $J^d_s(M \times S)$, состоящим из d-струй графиков всевозможных гладких отображений из M в S. Очевидно, гладкое отображение $u: M \to S$ является решением классического уравнения E тогда и только тогда, когда его график является решением расширенной версии E. Однако расширенная версия E допускает также и многозначные решения, и решения с бесконечными производными (подробности см. в [4]). Далее, когда мы будем говорить о морфизмах из конкретного уравнения классического вида (например, уравнения (0.1) или (0.2)), это всегда будет подразумевать морфизмы из его расширенной версии, т.е. замыкания соответствующего множества $E \subset J^d(M;S)$ в $J^d_s(M \times S)$.

Теперь мы можем сформулировать определение категории \mathcal{PDE} , данное в [1].

Для произвольного отображения $F\colon N\to N'$ подмножество $L\subset N$ назовем F-проектиру-емым, если $L=F^{-1}(F(L)).$

Пусть N, N' — гладкие подмногообразия, $F \colon N \to N'$ — сюръективная субмерсия. Pac- слоением F-проектируемых струй $J^d_{s,F}(N)$ называется подмногообразие $J^d_s(N)$, состоящее из d-струй всевозможных F-проектируемых подмногообразий N коразмерности s, с индуцированной структурой расслоения над N.

Имеется естественный изоморфизм расслоений $J^d_{s,F}(N)$ и $F^*J^d_s(N')$, где $F^*J^d_s(N')=J^d_s(N')\times_{N'}N$ — пуллбэк $J^d_s(N')$ вдоль отображения F. Поэтому можно поднять F до отображения $F^d\colon J^d_{s,F}(N)\to J^d_s(N')$, являющегося изоморфизмом на слоях, следующим естественным образом (рис. 1). Пусть $\vartheta\in J^d_{s,F}(N)$.

1. Возьмем произвольное F-проектируемое многообразие $L \subset N$ такое, что его d-е продолжение L проходит через ϑ (иначе говоря, d-струя L в точке $\pi^d(\vartheta)$ есть ϑ).

$$J_{s,F}^{d}(N) \xrightarrow{F^{d}} J_{s}^{d}(N')$$

$$\downarrow^{\pi^{d}} \qquad \qquad \downarrow^{\pi'^{d}}$$

$$N \xrightarrow{F} N'$$

Рис. 1

Рис. 2. Допустимые отображения.

2. Сопоставим ϑ точку $\vartheta' \in J^d_s(N')$, где $\vartheta' - d$ -струя подмногообразия $L' = F(L) \subset N'$ в точке $F \circ \pi^d(\vartheta)$. (Для F-проектируемого гладкого подмногообразия $L \subset N$ его образ F(L) всегда является гладким подмногообразием N'.)

О п р е д е л е н и е 1 [1, определение 1]. Пусть $F: N \to N'$ — гладкая сюръективная субмерсия. Подмножество $E \subset J_s^d(N)$ допускает F, если $E \cap J_{s,F}^d(N)$ является F^d -проектируемым подмножеством $J_{s,F}^d(N)$ (рис. 2). Эквивалентно $E \cap J_{s,F}^d(N)$ является прообразом $(F^d)^{-1}(E')$ некоторого подмножества $E' \subset J_s^d(N')$; это подмножество E' называется F-проекцией E.

О п р е д е л е н и е 2 [1, определение 2]. Категорией дифференциальных уравнений в частных производных \mathcal{PDE} называется категория, объектами которой являются пары (N, E), где N — гладкое многообразие, E — подмножество $J_s^d(N)$ для некоторых натуральных $d, s \geq 1$; морфизмами из (N, E) в (N', E') являются сюръективные субмерсии $F: N \to N'$, допускаемые E, такие, что E' является F-проекцией E. Композиция морфизмов определяется как композиция соответствующих отображений.

Заметим, что определенная здесь категория \mathcal{PDE} принципиально отличается от категории нелинейных дифференциальных уравнений DE, определяемой в [5; 6], что следует иметь в виду во избежание путаницы. В упрощенном виде общее определение DE из [5; 6] может быть сформулировано следующим образом [7]: объектами DE являются бесконечномерные многообразия, снабженные вполне интегрируемым конечномерным распределением (в частности, бесконечно продолженные дифференциальные уравнения), а морфизмами — гладкие отображения, для которых образ распределения содержится в распределении на образе. Несколько упрощая, фактор-объектом в такой категории является уравнение в факторпространстве, описывающее образы (при проектировании в факторпространство) произвольных решений исходного уравнения; при этом подходе из каждого фактор-объекта мы получаем часть информации обо всех решениях исходного уравнения. В противоположность этому фактор-объект в категории \mathcal{PDE} — это такое уравнение, что прообразы всех его решений являются решениями исходного; при этом из каждого фактор-объекта мы получаем полную информацию о некотором классе решений исходного уравнения.

2. Геометрические морфизмы

Теорема 1. Пусть X — гладкое риманово многообразие, Y — гладкое многообразие, $f: X \to Y$ — сюръективная субмерсия, ξ — гладкое векторное поле на X, $a_k(t,u)$ — непрерывные функции такие, что для любой пары (t,u) по крайней мере один из коэффициентов $a_k(t,u)$ не обращается в ноль. Тогда следующие два условия эквивалентны:

- 1. Отображение (0.3) является морфизмом категории \mathcal{PDE} из уравнения (0.1).
- 2. Существуют такие векторное поле Ξ и риманова метрика на Y, что следующая диаграмма является коммутативной (puc. 3):

$$C^{\infty}(Y) \xrightarrow{v \mapsto \Delta v + L_{\Xi}v} C^{\infty}(Y)$$

$$\downarrow^{f^*} \qquad \downarrow^{f^*}$$

$$C^{\infty}(X) \xrightarrow{u \mapsto \Delta u + L_{\xi}u} C^{\infty}(X)$$

Рис. 3

При этом фактор-уравнение (для неизвестной функции $v\colon \mathbb{R}\times Y\to \mathbb{R}$) будет иметь вид (0.4)

$$D_t v = \Delta v + L_{\Xi} v$$

c тем же самым оператором D_t .

Здесь той же самой буквой $\Delta = \Delta_Y$ обозначен оператор Лапласа — Бельтрами на римановом многообразии Y.

З а м е ч а н и е. Если Y односвязно, то дифференциальная форма, двойственная векторному полю Ξ на римановом многообразии Y, точна, и фактор-уравнение (0.4) можно записать в виде

$$D_t v = \varphi^{-1} \operatorname{div}(\varphi \nabla v)$$

для некоторой гладкой функции $\varphi \colon Y \to \mathbb{R}_+$ (см. также следствие 2).

Для доказательства теоремы нам понадобится следующий общий факт. Пусть M, M', S — гладкие многообразия, $s=\dim S, N=M\times S, N'=M'\times S, \varphi\colon M\to M'$ — гладкая сюръективная субмерсия, $F=\varphi\times \mathrm{id}\colon N\to N'.$ Напомним, что пространство $J^d(M;S)$ d-струй отображений из M в S отождествляется с открытым подмножеством в $J^d_s(N)$, состоящим из d-струй графиков всевозможных гладких отображений из M в S. Обозначим $J^d_F(M;S)=J^d(M;S)\cap J^d_{s,F}(N)$ множество d-струй F-проектируемых графиков отображений из M в S.

Лемма 1. Пусть E — замкнутое подмножество $J^d(M;S)$, \overline{E} — замыкание E в $J^d_s(N)$. Тогда следующие два условия эквивалентны:

- 1. $E \cap J^d_F(M;S)$ является F^d -проектируемым подмножеством $J^d_F(M;S)$.
- $2.\ \overline{E}\cap J^d_{s,F}(N)$ является F^d -проектируемым подмножеством $J^d_{s,F}(N).$

Д о к а з а т е л ь с т в о. Для упрощения формул в пределах данного доказательства мы будем сокращенно записывать J вместо J_s^d и J^d , а также J_F вместо $J_{s,F}^d$ и J_F^d .

Заметим вначале, что $J_F(N)\cong F^*J(N'),\ J_F(M;\underline{S})\cong F^*\underline{J}(M';S)$ как расслоения над N.

Обозначим $E_F = E \cap J_F(M;S) = E \cap J_F(N)$, $\overline{E}_F = \overline{E} \cap J_F(N)$. Подмножество $J_F(N)$ замкнуто в J(N), поэтому \overline{E}_F совпадает с замыканием E_F в $J_F(N)$.

Обозначим через Z_y слой J(N') над точкой $y \in N'$, через U_y — слой J(M';S) над y. Если на левой диаграмме рис. 4 сделать замену базу посредством включения $\{y\} \hookrightarrow N'$, мы получим правую диаграмму рис. 4, где $N_y = F^{-1}(y)$, $\overline{E}_{F,y} = \overline{E}_F \cap (F^d)^{-1}(Z_y)$, $E_{F,y} = E_F \cap (F^d)^{-1}(U_y)$.

Рис. 4. Замена базы.

 Z_y замкнут в J(N'), так что его прообраз $(F^d)^{-1}(Z_y)$ замкнут в $(F^d)^{-1}(J(N')) = J_F(N)$ и $\overline{E}_{F,y}$ совпадает с замыканием $E_{F,y}$ в $(F^d)^{-1}(Z_y) \cong N_y \times Z_y$. Таким образом, достаточно доказать, что для любой точки $y \in N'$ следующие два условия эквивалентны:

- (1) $E_{F,y}$ имеет вид $N_y \times A$ для некоторого подмножества $A \subset U_y$;
- (2) замыкание $E_{F,y}$ в $N_y \times Z_y$ имеет вид $N_y \times B$ для некоторого подмножества $B \subset Z_y$.

Предположим, что $E_{F,y}=N_y\times A$; тогда, очевидно, $\overline{E}_{F,y}=N_y\times B$, где B — замыкание A в Z_y . Пусть, наоборот, $\overline{E}_{F,y}=N_y\times B$. Тогда $E_{F,y}=(N_y\times U_y)\cap \overline{E}_{F,y}=N_y\times (B\cap U_y)$, так как $E_{F,y}$ замкнуто в $N_y\times U_y$ (поскольку E замкнуто в J(M;S) по условию леммы). Таким образом, условия (1) и (2) эквивалентны, что завершает доказательство леммы.

Д о к а з а т е л ь с т в о т е о р е м ы 1. В нашей ситуации $M = \mathbb{R} \times X$, $M' = \mathbb{R} \times Y$, $\varphi = \operatorname{id} \times f$, $S = \mathbb{R}$, $d = \max(2, r)$, уравнение (0.1) задает замкнутое подмножество E в $J^d(M; \mathbb{R})$. По определению отображение (0.3) задает морфизм категории \mathcal{PDE} из "классического" уравнения E, если $\overline{E} \cap J^d_{s,F}(N)$ является F^d -проектируемым подмножеством $J^d_{s,F}(N)$. По лемме 1 это условие эквивалентно тому, что $E \cap J^d_F(M; S)$ является F^d -проектируемым подмножеством $J^d_F(M; S)$.

И м п л и к а ц и я $1 \Rightarrow 2$. Пусть ϑ — произвольная точка из $E \cap J_F^d(M;\mathbb{R})$, $\pi_d(\vartheta) = (t,x,u)$, f(x) = y. Возьмем функцию $\tilde{v} \colon M' \to \mathbb{R}$, d-струя которой в точке (t,y) совпадает с $F^d(\vartheta) \in J^d(M';\mathbb{R})$; тогда d-струя функции $\tilde{u} = \varphi^* \tilde{v}$ в точке (t,x) совпадает с ϑ . Так как ϑ лежит в E, то значение выражения

$$D_t \tilde{u} - \Delta \tilde{u} - L_{\varepsilon} \tilde{u} \tag{2.1}$$

в точке (t, x) обращается в ноль.

Пусть V — карта Y, содержащая точку $y, (y^i)$ — локальные координаты на V, отображение f в этих координатах записывается как $f(x) = (f^1(x), \dots, f^m(x))$ для $x \in f^{-1}(V)$, $m = \dim Y$. Выражая значение (2.1) в точке (t,x) через d-струю \tilde{v} в точке (t,y), получаем в координатной записи

$$a_0(t,u) + \sum_{k=1}^r a_k(t,u) \underbrace{t..t}_{k} - \sum_{i,j=1}^m g^{ij}(x) v_{ij} - \sum_{i=1}^m \zeta^i(x) v_i = 0,$$
 (2.2)

где

$$v_i = \partial_i \tilde{v}(t, y), \quad v_{ij} = \partial_i \partial_j \tilde{v}(t, y), \quad v_{\underbrace{t..t}_k} = \partial_t^k \tilde{v}(t, y)$$

обозначают компоненты d-струи функции \tilde{v} в точке $(t,y),\ \partial_i$ — частная производная по $y^i,$ а функции $g^{ij},\zeta^i\colon f^{-1}(V)\to\mathbb{R}$ определены формулами $g^{ij}=\left\langle \mathrm{d} f^i,\mathrm{d} f^j\right\rangle,\ \zeta^i=\Delta f^i+L_\xi f^i.$

При фиксированных t, x, u уравнение (2.2) задает подмножество Q(t, x, u) слоя $J^d(\mathbb{R} \times V; \mathbb{R})$ над (t, y, u). По определению F^d -проектируемость $E \cap J_F^d(\mathbb{R} \times f^{-1}(V); \mathbb{R})$ эквивалентна тому, что для всех $y \in V$, $t, u \in \mathbb{R}$ множество $Q(t, x, u) = E' \cap J^d(\mathbb{R} \times V; \mathbb{R})_{(t,y,u)}$ не зависит от выбора точки $x \in f^{-1}(y)$. Так как по условию теоремы хотя бы одно из значений $a_k(t, u)$ не обращается

в ноль, последнее условие эквивалентно f-проектируемости с $f^{-1}(V)$ на V функций g^{ij} и ζ^i для всех $i,j=1\ldots m$. Иначе говоря,

$$\begin{cases} \left\langle \mathrm{d}f^i, \mathrm{d}f^j \right\rangle_x = g^{ij}(f(x)), \\ \left(\Delta f^i + L_\xi f^i \right)_x = \zeta^i(f(x)), \end{cases}$$
 (2.3)

для некоторых функций g^{ij} , ζ^i на V (для удобства мы оставили прежние обозначения для этих новых функций). Форма g^{ij} положительно определена, так что она задает риманову метрику на V. Отсюда и из (2.3) для произвольной функции $w\colon V\to\mathbb{R}$ получаем

$$\Delta(f^*w) + L_{\xi}(f^*w) = f^* \left(\sum_{i,j=1}^m g^{ij} w_{ij} + \sum_{i=1}^m \zeta^i w_i \right) = f^* \left(\Delta w + L_{\Xi} w \right), \tag{2.4}$$

где оператор Лапласа — Бельтрами на V берется относительно римановой метрики $g=(g^{ij}),$ а векторное поле Ξ на V определяется формулой

$$\Xi^{i} = \zeta^{i} - \frac{1}{\sqrt{|g|}} \partial_{j} \left(\sqrt{|g|} g^{ij} \right), \quad |g| = |\det(g_{ij})|.$$

Выберем покрытие Y картами, диффеоморфными \mathbb{R}^m . При замене координат $\Xi^i(y)$ и $g^{ij}(y)$ ведут себя как сечения TY и симметричного квадрата TY соответственно, так что глобально при склейке карт они задают векторное поле Ξ и риманову метрику g на Y. В силу (2.4) для произвольной функции $w\colon Y\to\mathbb{R}$ тождество $\Delta(f^*w)+L_\xi(f^*w)=f^*\left(\Delta w+L_\Xi w\right)$ выполняется на каждой карте, так что оно выполняется и глобально на Y. Это доказывает импликацию $(1\Rightarrow 2)$ в условии теоремы 1.

Для доказательства импликации $(2\Rightarrow 1)$ достаточно повторить рассуждения в обратном направлении.

3. Факторизация с понижением размерности

Пусть X — гладкое риманово многообразие, Y — гладкое многообразие, $f\colon X\to Y$ — сюръективная субмерсия. Положим $n=\dim X,\ m=\dim Y,\ k=n-m$. Вообще говоря, $n\geq m$; мы будем рассматривать, начиная с этого места, случай, когда n>m. Тогда слои f (прообразы $f^{-1}(y),\ y\in Y$) являются гладкими подмногообразиями X размерности k>0 [8].

1-форму на X будем называть горизонтальной, если она имеет нулевое ограничение на любой слой. Эквивалентно 1-форма называется горизонтальной, если она лежит в подрасслоении f^*T^*Y расслоения T^*X . Аналогично s-форму на X назовем горизонтальной, если она лежит в подрасслоении $f^*\Lambda^sT^*Y$ расслоения Λ^sT^*X . Здесь Λ^sT^*X — расслоение дифференциальных s-форм над X.

Касательное расслоение TX расщепляется в прямую сумму $TX = T_vX + T_hX$, где вертикальное расслоение $T_vX = \{\eta \in TX \colon f_*\eta = 0\}$ состоит из векторов, касательных к слоям, а горизонтальное расслоение T_hX — из векторов, ортогональных слоям. Для произвольного векторного поля η на Y обозначим $f^h\eta$ его горизонтальное поднятие на X (т. е. векторное поле на X, ортогональное слоям f и проектирующееся в η).

Рассмотрим одномерное векторное расслоение $\det T_v X = \Lambda^k T_v X$. Оно является подрасслоением расслоения $\Lambda^k T X$, так что для сечения V расслоения $\det T_v X$ определена производная Ли $L_\zeta V$ в направлении произвольного векторного поля ζ на X. Риманова структура на X индуцирует риманову структуру (скалярное произведение в слоях) на расслоениях $\Lambda^i T X$, и в частности риманову структуру на $\det T_v X$.

Лемма 2. Существует и единственна горизонтальная 1-форма lpha на X такая, что

$$L_{\eta'}V = (\alpha, \eta')V \tag{3.1}$$

для произвольного векторного поля η на Y, его горизонтального поднятия $\eta' = f^h \eta$ и для (локального) сечения V расслоения $\det T_v X$ такого, что $\langle V, V \rangle = 1$.

Мы будем называть форму α коэффициентом расширения слоя при переносе в горизонтальном направлении.

Д о к а з а т е л ь с т в о. Локальная однопараметрическая группа диффеоморфизмов X, порождаемая векторным полем η' , переводит слои в слои. Поэтому при фиксированных сечениях η и V имеется однозначно определенная вещественнозначная функция $c\colon X\to\mathbb{R}$ такая, что $L_{\eta'}V=c(x)V$. Этот коэффициент пропорциональности c(x) не зависит от V, так как локально поле V определено однозначно с точностью до знака, а при смене знака у V обе стороны последнего равенства меняют знак. Таким образом, функция c(x) зависит как от параметра только от векторного поля η , $c=c(x;\eta)$, причем значение c в точке x зависит только от 1-струи η' в x, т.е. от 1-струи η в точке f(x).

Зафиксируем теперь точку $y \in Y$ и ограничим $c(x;\eta)$ на слой $Z = f^{-1}(y) \subset X$. Мы получим \mathbb{R} -линейное отображение $c_y \colon T_y Y \otimes_{\mathbb{R}} (O_y/\mathfrak{m}^2 O_y) \to C^\infty(Z)$, сопоставляющее 1-струе поля η в точке y вещественнозначную функцию на Z. Здесь O_y — локальное кольцо ростков гладких функций на Y в точке y, \mathfrak{m} — максимальный идеал кольца O_y , состоящий из ростков функций, обращающихся в ноль в y.

Если $\eta(y)=0$, то η' обращается в 0 на всем слое Z, поток вдоль η' оставляет этот слой неподвижным, так что $L_{\eta'}V\big|_x=0$, и $c(x;\eta)=0$ для всех $x\in Z$. Значит, ограничение c_y на $T_yY\otimes_{\mathbb{R}}(\mathfrak{m}O_y/\mathfrak{m}^2O_y)$ обращается в ноль. Это означает, что c_y пропускается через $T_yY\otimes_{\mathbb{R}}(O_y/\mathfrak{m}O_y)=T_yY\otimes_{\mathbb{R}}\mathbb{R}=T_yY$, так что $c_y=h(x)(\beta,\eta(y))$ для некоторой гладкой функции $h\colon Z\to\mathbb{R}$ и $\beta\in T_y^*Y$. Иначе это равенство можно записать как $c_y=(\alpha_y(x),\eta'(x))$, где $\alpha_y=h\cdot f^*\beta$ — однозначно определенная горизонтальная форма над Z, т. е. сечение расслоения $T_h^*X|_Z$. Принимая во внимание, что точка y выбрана произвольно, мы получаем, что существует и единственно сечение α расслоения T_h^*X такое, что $c(x,\eta)=(\alpha(x),\eta'(x))$; что и требовалось доказать.

Теорема 2. Для сюръективной субмерсии $f: X \to Y$ отображение (0.3) является морфизом из уравнения (0.1) тогда и только тогда, когда выполняются следующие условия (для векторного поля Ξ и метрики на Y, определенных как в теореме 1):

- (a) $\langle f^*\omega, f^*\omega' \rangle = f^* \langle \omega, \omega' \rangle$ для любых $\omega, \omega' \in T^*Y$;
- (б) $L_{\eta'}V = (-1)^k (\langle \xi, \eta' \rangle \langle \Xi, \eta \rangle) V$ для произвольного векторного поля η на Y, его горизонтального поднятия $\eta' = f^h \eta$ и для (локального) сечения V расслоения $\det T_v X$ такого, что $\langle V, V \rangle = 1$.

Д о к а з а т е л ь с т в о. Напомним, что евклидово скалярное произведение на конечномерном векторном пространстве U индуцирует скалярное произведение на внешних степенях $\Lambda^i U$, а также на U^* и $\Lambda^i U^*$, что, в свою очередь, определяет канонический изоморфизм между $\Lambda^i U$ и $\Lambda^i U^*$. Мы будем обозначать этот изоморфизм волной над буквой, обозначающей поливектор/поликовектор, так что для любых $u \in \Lambda^i U$, $v \in \Lambda^i U^*$ выполняется $v(u) = \langle \widetilde{u}, v \rangle = \langle u, \widetilde{v} \rangle$, $\widetilde{v} \in \Lambda^i U$, $\widetilde{u} \in \Lambda^i U^*$. Если на U есть еще и ориентация, то определен оператор Ходжа $*: \Lambda^i U \to \Lambda^{\dim U - i} U$, причем для всех $u, v \in \Lambda^i U$ выполняется $\langle u, v \rangle = *(u \wedge *v)$.

И м п л и к а ц и я $1 \Rightarrow 2$. Пусть $f: X \to Y$ задает морфизм из (0.1) в (0.4). По теореме 1 для любой функции $v: Y \to \mathbb{R}$ и $u = f^*v$ выполняется равенство

$$\Delta u + L_{\xi} u = f^* (\Delta v + L_{\Xi} v). \tag{3.2}$$

(a) Для $x\in X,\,y=f(x)$ и произвольной формы $\omega\in T^*Y$ рассмотрим функцию $q\colon Y\to\mathbb{R}$ такую, что $q|_y=0,\,\mathrm{d} q|_y=\omega|_y$, и положим $v=q^2/2.$ Тогда

$$\Delta v + L_{\Xi} v|_{y} = \left\langle \omega, \omega \right\rangle_{y}, \quad \left. \Delta f^{*}v + L_{\xi} f^{*}v|_{x} = \left\langle f^{*}\omega, f^{*}\omega \right\rangle_{x}.$$

Так как точка x выбрана произвольно, из (3.2) получаем

$$\forall \omega \in T^*Y \quad f^* \langle \omega, \omega \rangle \equiv \langle f^*\omega, f^*\omega \rangle. \tag{3.3}$$

Переходя от квадратичных форм к их поляризациям, получаем условие (a) теоремы.

З а м е ч а н и е. В общем случае для дифференциальных операторов D на X и D' на Y тождество $Df^*=f^*D'$ влечет тождество $\sigma'=f_*\sigma$ для главных символов σ , σ' операторов D, D' соответственно (здесь $f_*\sigma$ определяется формулой $(f_*\sigma)(\omega)=\sigma(f^*\omega)$ для $\omega\in T^*Y$). В нашей ситуации $\sigma'(\omega)=\|\omega\|^2$, $\sigma(\omega')=\|\omega'\|^2$, и мы получаем равенство (3.3).

 (δ) Рассмотрим вначале случай, когда оба многообразия X, Y ориентированы. Тогда оператор Лапласа — Бельтрами на функциях задается формулой $\Delta = *d*d$ [9].

Обозначим через $\rho = *1 \in \Lambda^n(T^*X)$, $\sigma = *1 \in \Lambda^m(T^*Y)$ формы объема на X, Y соответственно. Положим $\sigma' = f^*\sigma$, $\chi = *\sigma'$. В силу (3.3) $\langle \chi, \chi \rangle = \langle \sigma', \sigma' \rangle = 1$, ограничение χ на каждый слой $f^{-1}(y)$ является формой объема на слое, и $\sigma' \wedge \chi = \rho$.

Применим к обеим сторонам тождества (3.2) оператор Ходжа и распишем подробно левую и правую стороны полученного равенства, учитывая, что для любой дифференциальной формы ω на Y выполняется равенство $*(f^*\omega) = f^*(*\omega) \land \chi$:

$$*du = *(f^*dv) = f^*(*dv) \wedge \chi,$$

$$*(\Delta u + L_{\xi}u) = d * du + \tilde{\xi} \wedge *du = f^*(d * dv) \wedge \chi + (-1)^{m-1}f^*(*dv) \wedge d\chi + \tilde{\xi} \wedge f^*(*dv) \wedge \chi,$$

$$*f^*(\Delta v + L_{\Xi}v) = f^*(*\Delta v + *(L_{\Xi}v)) \wedge \chi = f^*(d * dv + \tilde{\Xi} \wedge *dv) \wedge \chi.$$

Приравнивая последние два выражения, находим, что форма

$$\omega = d\chi + \left(\tilde{\xi} - f^*\tilde{\Xi}\right) \wedge \chi$$

удовлетворяет условию

$$\forall v \in C^{\infty}(Y) \quad f^*(*dv) \wedge \omega = 0.$$

Так как значение в фиксированной точке $x \in X$ произвольной горизонтальной (m-1)-формы может быть записано как значение в той же точке формы $f^*(*dv)$ для подходящей функции $v \colon Y \to \mathbb{R}$, то внешнее произведение ω на любую горизонтальную (m-1)-форму на X равно нулю. Последнее условие можно также записать в следующем виде:

$$i_{\tilde{\mathbf{v}}}\omega = 0$$

для вертикального поливекторного поля $\tilde{\chi} \in \Lambda^k(T_vX)$, двойственного к χ .

Пусть теперь η — произвольное векторное поле на Y, η' — его поднятие до горизонтального векторного поля на X. В силу (3.1) единичный элемент объема слоя $V = \tilde{\chi}$ в точке $x \in X$ при сдвиге в направлении поля η' расширяется со скоростью (α, η') , т. е. $L_{\eta'}\tilde{\chi} = (\alpha, \eta')\tilde{\chi}$. Учитывая, что $(\chi, \tilde{\chi}) = 1$, получаем $(\alpha, \eta') = (\chi, L_{\eta'}\tilde{\chi}) = -(L_{\eta'}\chi, \tilde{\chi}) = -(\mathrm{d}(i_{\eta'}\chi) + i_{\eta'}\mathrm{d}\chi, \tilde{\chi})$. Но η' — горизонтальное векторное поле, а χ — вертикальная форма, так что $i_{\eta'}\chi = 0$. Таким образом,

$$(\alpha, \eta') = -i_{\tilde{\chi}} i_{\eta'} d\chi = (-1)^{k+1} i_{\eta'} i_{\tilde{\chi}} d\chi = (-1)^k i_{\eta'} \left(\tilde{\xi} - f^* \tilde{\Xi} \right) = (-1)^k \left(\left\langle \xi, \eta' \right\rangle - \left\langle \Xi, \eta \right\rangle \right),$$

что завершает доказательство п. (δ) в ориентируемом случае.

Вернемся теперь к общему случаю, когда X, Y не обязательно ориентируемы. Заметим, что как тождество (3.2), так и условие (δ) теоремы локальны и не зависят от локального выбора ориентации. Отсюда следует, что условие (δ) теоремы выполняется независимо от наличия ориентации на X, Y.

И м п л и к а ц и я $(2) \Rightarrow (1)$. Предположим, что выполняются условия (a), (b) теоремы. Повторяя выкладки первой части доказательства теоремы в обратном направлении, мы получаем (3.2). По теореме 1 отсюда следует, что f задает морфизм из уравнения (0.1) в уравнение (0.4).

В случае, когда $\xi = 0$, предыдущая теорема принимает следующий вид.

Теорема 3. Для сюръективной субмерсии $f: X \to Y$ отображение (0.3) является морфизом из уравнения (0.2) тогда и только тогда, когда выполняются следующие условия:

- (a) $\langle f^*\omega, f^*\omega' \rangle = f^* \langle \omega, \omega' \rangle$ для любых $\omega, \omega' \in T^*Y$;
- (δ) $\alpha = f^*\beta$ для некоторой 1-формы β на Y, m.e. коэффициент расширения слоя в направлении векторного поля η' не зависит от точки слоя.

В этом случае фактор-уравнение будет иметь вид (0.4), причем $\tilde{\Xi} = (-1)^{k+1}\beta$.

4. Локально тривиальные расслоения

Далее мы дополнительно ограничим класс рассматриваемых морфизмов следующим условием:

проекция $f\colon X\to Y$ является локально тривиальным расслоением.

Тогда каждый кусочно-гладкий путь $\gamma \colon [0,1] \to Y$ задает диффеоморфизм Φ_{γ} слоя над началом пути $\gamma(0)$ в слой над концом пути $\gamma(1)$: точке $x \in f^{-1}(\gamma(0))$ ставится в соответствие конец горизонтальной кривой, проектирующейся в γ и начинающейся в x. Будем называть этот диффеоморфизм $nepenocom\ cnon\ edonb\ \gamma$.

Пусть A, B — два замкнутых подмножества X. Будем говорить, что A и B параллельны, если d(x,B) не зависит от выбора точки $x \in A$ и d(y,A) не зависит от выбора точки $y \in B$. Здесь d(x,B) определяется как точная нижняя грань расстояний d(x,y) от x до $y \in B$. Если A, B параллельны, то хаусдорфово расстояние d(A,B) = d(x,B) = d(y,A) для любых $x \in A, y \in B$.

Теорема 4. Локально тривиальное расслоение $f: X \to Y$ задает морфизм из уравнения (0.2) тогда и только тогда, когда выполняются следующие условия:

- (a) любые два слоя расслоения f параллельны;
- (б) переносы вдоль кусочно-гладких путей на Y пропорционально изменяют объем на слое (т. е. коэффициент расширения зависит лишь от пути и не зависит от выбора точки слоя).

Д о к а з а т е л ь с т в о. Достаточно доказать, что для локально тривиального расслоения f условия (a), (δ) данной теоремы эквивалентны условиям (a), (δ) теоремы 3.

Предположим, что f удовлетворяет условиям (a), (b) теоремы 3. Зафиксируем произвольные $y_0, y_1 \in Y$ и обозначим $Z_i = f^{-1}(y_i)$. Пусть $\gamma \colon [0,1] \to Y$ — кусочно гладкая кривая в Y, соединяющая точки y_0 и y_1 . Ее можно поднять до кусочно гладкой горизонтальной кривой $\gamma' \colon [0,1] \to X$ с началом в произвольной точке $x_0 \in Z_0$ и концом в Z_1 . Из условия (a) теоремы 3 получаем

$$d(x_0, Z_1) \le l(\gamma') = \int_0^1 |\gamma_s'| ds = \int_0^1 |\gamma_s| ds = l(\gamma).$$

Переходя к точной нижней грани по всем таким кривым γ , получаем $d(x_0, Z_1) \leq d(y_0, y_1)$. С другой стороны, для любой точки $x_1 \in Z_1$ и кусочно гладкой кривой $\beta \colon [0, 1] \to X$, соединяющей x_0 с x_1 , выполняется

$$l(\beta) = \int_0^1 |\beta_s| \, \mathrm{d}s \ge \int_0^1 |f_*\beta_s| \, \mathrm{d}s = l(f\beta) \ge d(y_0, y_1).$$

Переходя к точной нижней грани по всем таким кривым β , получаем $d(x_0,x_1) \geq d(y_0,y_1)$. Таким образом, $d(x_0,Z_1)=d(y_0,y_1)$. Аналогично $d(x_1,Z_0)=d(y_1,y_0)$ для любой точки $x_1\in Z_1$. Это доказывает параллельность слоев $Z_0=f^{-1}(y_0)$ и $Z_1=f^{-1}(y_1)$ для любых $y_0,y_1\in Y$.

Интегрируя условие (δ) теоремы 3, получаем, что перенос $\Phi_{\gamma}\colon Z_0\to Z_1$ вдоль произвольной кусочно-гладкой кривой $\gamma\colon [0,1]\to Y,\ Z_i=f^{-1}(\gamma(i))$ изменяет все объемы в одно и то же количество раз:

$$volume(\Phi_{\gamma}U) = \exp\left((-1)^{k+1} \int_{\gamma} \tilde{\Xi}\right) volume(U)$$
(4.1)

для любого измеримого $U \subset Z_0$.

Обратная импликация (от условий данной теоремы к условиям (a), (b) теоремы 3) достаточно очевидна.

Следствие 1. Пусть локальное расслоение $f: X \to Y$ задает геометрический морфизм из уравнения (0.2) в уравнение (0.4). Группа голономий расслоения f (для связности на X, задаваемой плоскостями, ортогональными слоям) сохраняет объем на слое тогда и только тогда, когда форма $\tilde{\Xi}$ точна.

Д о к а з а т е л ь с т в о. Из тождества (4.1) следует, что группа голономий f сохраняет объем на слое тогда и только тогда, когда интеграл формы $\tilde{\Xi}$ по любой замкнутой кривой обращается в ноль. Последнее условие эквивалентно точности $\tilde{\Xi}$.

Следствие 2. Пусть локальное расслоение $f: X \to Y$ задает геометрический морфизм из уравнения (0.2). Если слой f имеет конечный объем (в частности, если слой компактен), то фактор-уравнение имеет вид $D_t v = \varphi^{-1} \operatorname{div}(\varphi \nabla v)$ для некоторой гладкой функции $\varphi: Y \to \mathbb{R}_+$.

Д о к а з а т е л ь с т в о. Если слой f имеет конечный объем, то переносы вдоль замкнутых путей на Y должны сохранять этот объем. По следствию 1 это означает, что $\tilde{\Xi} = \mathrm{d}\psi$ для некоторой гладкой функции $\psi \colon Y \to \mathbb{R}$. Положим $\varphi = \exp(\psi)$; тогда $\Delta v + L_{\Xi}v = \varphi^{-1}\left(\varphi\Delta v + (\mathrm{d}\varphi, \nabla v)\right) = \varphi^{-1}\operatorname{div}(\varphi\nabla v)$ и уравнение (0.4) принимает нужный вид.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Прохорова М.Ф.** Факторизация дифференциальных уравнений в частных производных: структура категории параболических уравнений [Препринт 10/2005]. СПб: ПОМИ, 2005. 24 с.
- 2. **Прохорова М.Ф.** Моделирование уравнения теплопроводности и задачи Стефана / ИММ УрО РАН. Деп. ВИНИТИ 11.02.00, № 347-В00. 66 с.
- 3. **Prokhorova M.F.** The structure of the category of parabolic equations. 2009. arXiv:math/0512094v5 [math.AP]. 33 p. URL: http://arxiv.org/pdf/math/0512094v5.pdf.
- 4. Олвер П. Приложения групп Ли к дифференциальным уравнениям. Л.: Мир, 1989. 637 с.
- 5. **Виноградов А.М.** Геометрия нелинейных дифференциальных уравнений // Итоги науки и техники. Сер. Проблемы геометрии. 1980. Vol. 11. С. 89–134.
- 6. Vinogradov A.M. Category of nonlinear differential equations // Global Analysis Studies and Applications I / eds. Yurii G. Borisovich, Yurii E. Gliklikh, A. M. Vershik. Berlin: Springer-Verlag, 1984. P. 77–102 (Lecture Notes in Math.; vol. 1108).
- 7. Симметрии и законы сохранения уравнений математической физики / А.В. Бочаров, А.М. Вербовецкий, А.М. Виноградов [и др.]. М.: Факториал, 1997. 464 с.
- 8. Хирш М. Дифференциальная топология. М.: Мир, 1979. 280 с.
- 9. Уорнер Ф. Основы теории гладких многообразий и групп Ли. М.: Мир, 1987. 302 с.

Прохорова Марина Файвушевна

Поступила 26.05.2013

канд. физ.-мат. наук

старший науч. сотрудник

Институт математики и механики им. Н. Н. Красовского УрО РАН

Уральский федеральный университет им. Б. Н. Ельцина

e-mail: pmf@imm.uran.ru