实验4:几何变换&裁剪算法 Transformation & Clipping Algorithm

华东师范大学计算机科学与技术学院李晨 副研究员 cli@cs.ecnu.edu.cn

Contents

• 2D Transformation

• Polygon Clipping

Matrix Representation

• Represent 2D transformation with matrix

• Transformations combined by multiplication

$$ex'ù = ea \qquad bùed \qquad eùeh \qquad iùexù \\ ey'û = ec \qquad dûef \qquad gûej \qquad kûeyû \\ ey'û = ec \qquad dûef \qquad gûej \qquad kûeyû$$

• Matrices are efficient, convenient way to represent sequence of transformations!

Scaling

• Scaling a coordinate means multiplying each of its components by a scalar

• Uniform scaling means this scalar is the same for all components:

Scaling

• Non-uniform scaling: different scalars per component:

Scaling

• Scaling operation: $ex'\hat{u} = eax\hat{u}$ $ex'\hat{u} = eax\hat{u}$ $ex'\hat{u} = eax\hat{u}$ $ex'\hat{u} = eax\hat{u}$

• or, in matrix form:

$$\frac{\dot{\mathbf{e}} x'\dot{\mathbf{u}}}{\dot{\mathbf{e}} y'\dot{\mathbf{u}}} = \frac{\dot{\mathbf{e}} a}{\dot{\mathbf{e}} 0} \quad 0\dot{\mathbf{u}}\dot{\mathbf{e}} x\dot{\mathbf{u}} \\
\frac{\dot{\mathbf{e}} y'\dot{\mathbf{u}}}{\dot{\mathbf{e}} 0} = \frac{\dot{\mathbf{e}} a}{\dot{\mathbf{e}} 0} \quad b\dot{\mathbf{u}}\dot{\mathbf{e}} y\dot{\mathbf{u}} \\
\frac{\dot{\mathbf{e}} y'\dot{\mathbf{u}}}{\dot{\mathbf{e}} 0} = \frac{\dot{\mathbf{e}} a}{\dot{\mathbf{e}} 0} \quad b\dot{\mathbf{u}}\dot{\mathbf{e}} y\dot{\mathbf{u}}$$
scaling matrix

Rotation

$$x = r \cos(\phi)$$

$$y = r \sin(\phi)$$

$$x' = r \cos(\phi + \theta)$$

$$y' = r \sin(\phi + \theta)$$
Trig Identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

Rotation

• Easy to capture in matrix form:

- Even though sin() and cos() are nonlinear functions
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y

Shear

- Shear along *x*-axis
 - push points to right in proportion to height

Shear

- Shear along *x*-axis
 - push points to right in proportion to height

Reflection

• Reflect across *x*-axis

Reflection

• Reflect across x-axis

Translation

• Translate by (a,b)

Linear & Affine Transformations

- Linear transformations are combinations of
 - shear
 - scale
 - rotate
 - reflect
- Properties of linear transformations
 - satisfies T(sx+ty) = sT(x) + tT(y)
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel

Linear & Affine Transformations

- Affine transformations are combinations of
 - linear transformations
 - translations
- Properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel

Challenge

- Matrix multiplication
 - for everything except translation
 - how to do everything with multiplication?
 - then just do composition, no special cases
- Homogeneous coordinates trick
 - represent 2D coordinates (x,y) with 3D vector (x,y,1)

matrix multiplication

scaling matrix

matrix multiplication

rotation matrix

vector addition

Homogeneous Coordinates

• Our 2D transformation matrices are now 3x3:

Homogeneous Coordinates Geometrically

• point in 2D cartesian

Homogeneous Coordinates Geometrically

homogeneous

cartesian

$$\begin{array}{c} (x,y,w) \\ \stackrel{\hat{e}}{e} x \times w \mathring{u} \\ \stackrel{\hat{e}}{e} y \times w \mathring{u} \\ \stackrel{\hat{e}}{e} w & \mathring{u} \end{array}$$

$$(x, y, w) \xrightarrow{w} (\frac{x}{w}, \frac{y}{w})$$

- point in 2D cartesian + weight w = point P in 3D homogeneous coordinates
- multiples of (x, y, w)
 - form a line *L* in 3D
 - all homogeneous points on L
 represent same 2D cartesian point
 - example: (2,2,1) = (4,4,2) = (1,1,0.5)

Homogeneous Coordinates Geometrically

homogeneous

cartesian

$$(x, y, w) \xrightarrow{w} (\frac{x}{w}, \frac{y}{w})$$

- homogenize to convert homogeneous 3D point to cartesian 2D point:
 - divide by w to get (x/w, y/w, 1)
 - projects line to point onto *w*=1 plane
- when w=0, consider it as direction
 - points at infinity
 - these points cannot be homogenized
 - lies on *x*-*y* plane
- (0,0,0) is undefined

Visualizing 2D transformations

Original shape in 2D can be viewed as many copies, uniformly scaled by *w*

2D scale \leftrightarrow scale x and y preserve w

2D rotation \leftrightarrow rotate around w

2D translate ↔ shear in 2D-H

Transformations Summary

- Transformations can be interpreted as operations that move points in space
 - e.g., for modeling, animation
- Or as a change of coordinate system
 - e.g., screen and view transforms
- Construct complex transformations as compositions of basic transforms
- Homogeneous coordinate representation allows for expression of nonlinear transforms as matrix operations (linear transforms) in higherdimensional space
 - Matrix representation affords simple implementation and efficient composition

Next Topic: Clipping

- We've been assuming that all primitives (lines, triangles, polygons) lie entirely within the viewport
- In general, this assumption will not hold:

Why Clip?

- Bad idea to rasterize outside of framebuffer bounds
- Also, don't waste time scan converting pixels outside window

Line Clipping

- Trivially accept lines with both endpoints inside all edges of the viewport
- Trivially reject lines with both endpoints outside the same edge of the viewport
- Otherwise, reduce to trivial cases by splitting into two segments

- •Extend the edges of the clip rectangle to divide the plane of the clip rectangle into nine regions
- •Each region is assigned a 4-bit code (outcode) determined by where the region lies with respect to the clip edges
- •Each bit in the outcode is set to either 1 (true) or 0 (false), depending on the following conditions:
 - •Bit 1: above top edge $y>y_{max}$
 - •Bit 2: below bottom edge $y < y_{min}$
 - •Bit 3: right of right edge $x>x_{max}$
 - •Bit 4: left of left edge $x < x_{min}$

1001	1000	1010
0001	0000	0010
0101	0100	0110

- Say code1=outcode (P1), code2=outcode (P2)
- If code1 = code2 = 0 (code1|code2=0) then both ends inside so line inside trivial accept
- If (code1 | code2) = 0, then one inside one outside inconclusive compute intersection point and check outcode for the intersection point

- If code1 & code2 != 0 then both ends on the same side of the window
 trivial reject
- If code1 & code2 = 0 both ends are outside, but on the outside of different edges of the window inconclusive compute intersection point and check outcode for the intersection point

- If line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- Pick an edge that the line crosses
 - check against edges in same order each time

 Discard portion on wrong side of edge and assign outcode to new vertex

• Apply trivial accept/reject tests and repeat if necessary

Cohen-Sutherland Discussion

- Key concepts
 - use outcodes to quickly eliminate/include lines
 - best algorithm when trivial accepts/rejects are common
 - must compute viewport clipping of remaining lines
 - non-trivial clipping cost
 - redundant clipping of some lines
- Basic idea, more efficient algorithms exist
 - Liang-Barsky

Polygon Clipping

- Objective
- 2D: clip polygon against rectangular window
 - or general convex polygons
 - extensions for non-convex or general polygons
- 3D: clip polygon against parallelpiped
- •Not just clipping all boundary lines
 - may have to introduce new line segments

Why Is Clipping Hard?

- What happens to a triangle during clipping?
 - some possible outcomes:

- How many sides can result from a triangle?
 - seven

Why Is Clipping Hard?

• A really tough case:

concave polygon to multiple polygons

Sutherland-Hodgeman Clipping

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

Sutherland-Hodgeman Clipping

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

- Basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped

- Consider the polygon as a list of vertices
- Clip the polygon against each edge of the clip region in turn
- Rewrite the polygon one vertex at a time the rewritten polygon will be the clipped polygon
 - decide what to do based on 4 possibilities
 - is vertex inside or outside?
 - is previous vertex inside or outside?

Clipping Against One Edge

• p[i] inside: 2 cases

inside outside p[i-1]

output: p, p[i]

Clipping Against One Edge

• p[i] outside: 2 cases

output: p

inside outside p[i]

output: nothing

Clipping Against One Edge

```
clipPolygonToEdge( p[n], edge ) {
     for( i = 0; i < n; i + +) {
          if( p[i] inside edge ) {
            if( p[i-1] inside edge ) output p[i]; // p[-1] = p[n-1]
             else {
              p= intersect( p[i-1], p[i], edge ); output p, p[i];
                                          // p[i] is outside edge
           } else {
           if( p[i-1] inside edge ) {
             p= intersect(p[i-1], p[I], edge ); output p;
```


Sutherland-Hodgeman Example

Sutherland-Hodgeman Discussion

- Similar to Cohen Sutherland line clipping
 - inside/outside tests: outcodes
 - intersection of line segment with edge: window-edge coordinates
- Clipping against individual edges independent
 - great for hardware (pipelining)
 - all vertices required in memory at same time
 - not so good, but unavoidable
 - another reason for using triangles only in hardware rendering

Assignment

• 实验编号: 4

• 实验名称:几何变换与裁剪算法

• 实验内容

- 实现基本二维图形变换操作
 - 平移变换
 - 缩放变换
 - 旋转变换
- 实现Cohen-Sutherland裁剪算法

Extra Credit

- Could you clip a circle against a rectangle region?
 - How to trivially accept/reject a circle?
 - If the two regions overlap, you will need to solve the simultaneous line-curve equations to obtain the clipping intersection points.

Reference

- https://en.wikipedia.org/wiki/Transformation_matrix
- https://en.wikipedia.org/wiki/Clipping_(computer_graphics)
- https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm

