Automātu teorijas 2. mājasdarbs

Krišjānis Petručeņa kp22084

1. uzdevums

Stāvokļu kopa $Q = \{s_0, s_1, s_2\}$. Ie
ejas alfabēts $X = \{0, 1\}$. Steka alfabēts $S = \{z, \$\}$.

Sākuma stāvoklis $q_0=s_0$. Steka beigu simbols \$. Akceptējošo stāvokļu kopa $Q_A=\{s_0\}.$

Stāv. q	Ieeja x	Simb. no	Mērķis	Virkne uz
s_0	ε	\$	s_1	<i>z</i> \$
s_1	0	z	s_1	zzz
s_1	ε	z	s_2	ε
s_2	1	z	s_2	arepsilon
s_2	0	z	s_0	ε
s_2	1	z	s_1	zz

Valodas vārdi ar garumu ≤ 4 : " ε " "00" "000" "0000" "0010" "010" "0100" "0110".

Rezultāts iegūts ar šo kodo: https://github.com/KrisjanisP/lu-automata-md2/blob/main/codes/1.cpp

2. uzdevums (a)

Jāuzbūvē akceptors, kurš akceptē vārdus, kuros apakšvirknes "010" ir mazāk nekā "000".

Stāvokļu kopa $Q=\{s_0,s_1,s_2,s_3,s_4,s_5,s_6,s_7\}$. Ie
ejas alfabēts $X=\{0,1\}$. Steka alfabēts $S=\{a,b,\$\}$. Sākuma stāvoklis $q_0=s_0$. Steka beigu simbols \$. Akceptējošo stāvokļu kopa $Q_A=\{s_7\}$. Idejiski stekā jebkurā brīdī atrodas a un \$ vai \$ un \$ vai \$. Ja stekā ir a, tas nozīmē, ka "000" ir vairākumā. Ja stekā ir b, tas nozīmē, ka "010" un "000" ir vienādi daudz. Diagramma:

Pārejas funkcijas tabula:

Stāv. q	Ieeja x	Simb. no	Mērķis	Virkne uz
s_0	0	\$	s_1	\$
s_0	1	\$	s_2	\$
s_1	0	\$	s_3	\$
s_1	1	\$	s_4	\$
s_2	0	\$	s_5	\$
s_2	1	\$	s_6	\$
s_3	0	\$	s_3	a\$
s_3	0	a	s_3	aa
s_3	0	b	s_3	ε
s_3	1	\$	s_4	\$
s_3	1	a	s_4	a
s_3	1	b	s_4	b
s_4	0	\$	s_5	<i>b</i> \$
s_4	0	a	s_5	ε
s_4	0	b	s_5	bb
s_4	1	\$	s_6	\$
s_4	1	a	s_6	a
s_4	1	b	s_6	b
s_5	0	\$	s_3	\$
s_5	0	a	s_3	a
s_5	0	b	s_3	b
s_5	1	\$	s_4	\$
s_5	1	a	s_4	a
s_5	1	b	s_4	b
s_6	0	\$	s_5	\$
s_6	0	a	s_5	a
s_6	0	b	s_5	b
s_6	1	\$	s_6	\$
s_6	1	a	s_6	a
s_6	1	b	s_6	b
s_3	ε	a	s_7	ε

2. uzdevums (b)

Pumpēšanas lemma: ja A ir regulāra valoda, tad eksistē vesels skaitlis p (pumpēšanas garums), ka, ja $s \in A$ un $|s| \ge p$, tad s = xyz tā, ka izpildās:

$$\forall i \ge 0 (xy^i z \in A) \land (|y| > 0) \land (|xy| \le p)$$

Valodu, kurā apakšvirknes "000" ir vairāk nekā "010" apzīmēsim ar A.

Apskatīsim $s="00(0)^{p+1}110(10)^p$ ", kur $s\in A$. Vardā s apakšvirkne "000" parādās tieši vienu reizi vairāk nekā "010".

Pēc nosacījuma $|xy| \leq p$ skaidrs, ka y var saturēt tikai nulles.

Kad i=0 jeb s=xz, xz nevar saturēt vairāk nekā p+2 nulles prefiksā, jo |y|>0, līdz ar to iegūta pretruna, jo apakšvirknes "000" ir ne vairāk kā p (tik ir arī apakšvirkņu "010").

3. uzdevums (a)

Stāv. q	Ieeja x	Mērķis	Varbūtība
s_0	a	s_1	1
s_0	b	s_0	$\frac{1}{7}$
s_0	b	s_1	$\frac{6}{7}$
s_1	a	s_0	1
s_1	b	s_0	$\frac{1}{7}$
s_1	b	s_1	$\frac{6}{7}$

 $Q=\{s_0,s_1\}$ - stāvokļu kopa. $X=\{a,b\}$ - ie
ejas alfabēts. $q_0=s_0$ - sākumstāvoklis. $Q_A=\{s_0\}$ - akceptējošo stāvokļu kopa.
 $\lambda=0.5$ - akceptēšanas slieksnis.

Valodas vārdi garumā ≤ 4 : " ε ", "aa", "ba", "aba", "aaaa", "aaba", "aba", "baba", "baba",

Rezultāts iegūts ar šo kodo: https://github.com/KrisjanisP/lu-automata-md2/blob/main/codes/3.py

3. uzdevums (b)

4. uzdevums

Jāuzbūvē varbūtiskais akceptors, kurš akceptē tādus un tikai tādus vārdus, kuros a burtu skaits ir 3, b burtu skaits ir 14.

Risinājums:

 $Q=\{s_0,s_1,s_2,s_3,s_4,s_5,s_6,s_7,s_8,s_9\}$ - stāvokļu kopa. $X=\{a,b\}$ - ie
ejas alfabēts. $q_0=s_0$ - sākumstāvoklis. $Q_A=\{s_4,s_5,s_9\}$ - akceptējošo stāvokļu kopa.

 $\lambda = 0.5 + 0.31479 = 0.81479$ - akceptēšanas slieksnis.

Diagramma:

Apskatot s_5 un s_4 summu pie dažādiem b
 skaitiem, pīķis tiek sasniegts pie 14.

Vērtība (s_5+s_4) pie b=1 ir 0.25, pie b=13 ir 0.31448, pie b=14 ir 0.31479, pie b=15 ir 0.31472.

Pārejas funkcijas tabula:

Stāv. q	Ieeja x	Mērķis	Varbūtība
---------	---------	--------	-----------