17 RELATIONEN

17.1 ÄQUIVALENZRELATIONEN

17.1.1 Definition

- die Eigenschaften reflexiv, symmetrisch und transitiv an Beispielrelationen klar machen
- evtl. auch Relationen vorführen, die nur zwei oder eine oder gar keine dieser Eigenschaften haben
- Darstellung von Relationen als gerichtete Graphen: Woran sieht man
 - Reflexivität?
 - Symmetrie?
 - Transitivität?
- Wie sieht der Graph einer Äquivalewnzrelation aus: "Klumpen", in denen jeder mit jedem verbunden ist, zwischen den Klumpen nichts (die Klumpen heißen später Äquivalenzklassen)

17.1.2 Äquivalenzrelationen von Nerode

- die Definition der Nerode-Äquivalenz verstand jedenfalls ich nicht auf Anhieb
- Manche brauchen vielleicht immer noch Anleitung, die Def überhaupt richtig zu lesen.
- vielleicht hilft es, auch das zu diskutieren:
 - man nehme ein L, das von einem endlichen Akzeptor erkannt wird
 - man nehme zwei Wörter w_1 , w_2 die *nicht* \equiv_L -äquivalent sind
 - Was kann man über $f^*(z_0, w_1)$ und $f^*(z_0, w_2)$ sagen? Sie müssen verschieden sein, denn sonst $f^*(z_0, w_1) = f^*(z_0, w_2)$ und dann auch für jedes Suffix w: $f^*(z_0, w_1w) = f^*(z_0, w_2w)$, also werden für jedes Suffix entweder beide Wörter w_1w und w_2w oder keines akzeptiert, und dann wären w_1 und w_2 ja äquivalent.

17.1.3 Äquivalenzklassen und Faktormengen

- Bitte klar machen: für $x \neq y$ kann [x] = [y] sein
- Beweisen: wenn $x \equiv y$, dann [x] = [y]
 - wenn $z \in [x]$, dann $x \equiv z$, also wegen Symm. auch $z \equiv x$
 - mit $x \equiv y$ und Transitivität folgt $z \equiv y$,
 - also $y \equiv z$, also $z \in [y]$
 - also $[x] \subseteq [y]$.
 - umgekehrt geht es genauso.
- Beweisen: Wenn ein z sowohl in [x] als auch in [y] ist, dann ist [x] = [y].
 - Wenn $z \in [x]$ und $z \in [y]$, dann $x \equiv z$ und $y \equiv z$,
 - also wegen Symmetrie $x \equiv z$ und $z \equiv y$,
 - also wegen Transitivität $x \equiv y$

- also (eben gesehen) [x] = [y]
- Äquivalenzklassen sind also entweder disjunkt oder gleich. "halbe Überlappungen" gibt es nicht
- Machen Sie sich bitte die Äquivalenzklassen von \equiv_L aus den Skriptbeispielen klar, so dass Sie sie erklären können.

17.2 KONGRUENZRELATIONEN

- 17.2.1 Verträglichkeit von Relationen mit Operationen
- 17.2.2 Wohldefiniertheit von Operationen mit Äquivalenzklassen
 - Wichtig: Verständnis dafür, dass so etwas wie

$$f'_x: A^*_{/\equiv_I} \to A^*_{/\equiv_I}: [w] \mapsto [wx]$$

nicht vollkommen automatisch eine vernünftige Definition ist, sondern nur, weil eben \equiv_L mit Konkatenation von rechts verträglich ist.

17.3 HALBORDNUNGEN

17.3.1 Grundlegende Definitionen

- Man erarbeite, dass die Relation \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \iff \exists u : vu = w$ eine Halbordnung ist:
 - Reflexivität: gilt wegen $w_1\varepsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_1$. Also ist $w_1u_1u_2 = w_2u_2 = w_1$. Also muss $|u_1u_2| = 0$ sein, also $u_1 = u_2 = \varepsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.
- Das folgenden ist *keine* Halbordnung auf A^* : $w_1 \sqsubseteq w_2 \iff |w_1| \le |w_2|$. Studenten überlegen lassen: Antisymmetrie ist verletzt. (Reflexivität und Transitivität sind erfüllt.)
- Vielleicht noch mal Rekapitulation des Begriffs "Potenzmenge"?
- die drei Eigenschaften von Halbordnungen für \subseteq auf 2^M durchgehen ...

17.3.2 "Extreme" Elemente

 Man male Hassediagramme von Halbordnungen, bei denen irgendwelche Teilmengen kleinste/größte/.... Elemente besitzen oder nicht besitzen.

17.3.3 Vollständige Halbordnungen

17.3.4 Stetige Abbildungen auf vollständigen Halbordnungen

- Aus dem Skript: Gegeben sei Terminalzeichenalphabet $T = \{a, b\}$ und als halbgeordnete Menge D die Potenzmenge $D = 2^{T^*}$ der Menge aller Wörter mit Inklusion als Halbordnungsrelation. Die Elemente der Halbordnung sind also Mengen von Wörtern, d.h. formale Sprachen. Kleinstes Element der Halbordnung ist die leere Menge \emptyset . Wie weiter vorne erwähnt, ist diese Halbordnung vollständig.
- Es sei $v \in T^*$ ein Wort und $f_v : D \to D$ die Abbildung $f_v(L) = \{v\}L$, die vor jedes Wort von L vorne v konkateniert.
- Behauptung: f_v ist stetig.
- Beweis: Es sei $L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots$ eine Kette und $L = \bigcup L_i$ ihr Supremum. $f_v(L_i) = \{vw \mid w \in L_i\}$, also $\bigcup_i f_v(L_i) = \{vw \mid \exists i \in \mathbb{N}_0 : w \in L_i\} = \{v\}\{w \mid \exists i \in \mathbb{N}_0 : w \in L_i\} = \{v\}\bigcup_i L_i = f(\bigcup_i L_i)$.
- analog für Konkatenation von rechts
- Das ist der wesentliche Teil von dem, was im Skript aus Bequemlichkeit weggelassen wurde bei der letzten Andeutung zu "Grammatiken als Gleichungssysteme".

17.4 ORDNUNGEN

- Man betrachte Beispiele für ⊑₁:
 - Warum ist aa \sqsubseteq_1 aabba?
 - Warum ist aa \sqsubseteq_1 bba?
 - Warum ist aaaaa ⊑₁ bba?
 - Warum ist aaaab \sqsubseteq_1 aab?
- Man betrachte Beispiele für <u>□</u>2:
 - Warum ist aa \sqsubseteq_2 aabba?
 - Warum ist aa \sqsubseteq_2 bba?
 - Warum ist bba \sqsubseteq_2 aaaaa? (vergleiche \sqsubseteq_1 !)
 - Warum ist aab \sqsubseteq_2 aaaab? (vergleiche \sqsubseteq_1 !)