Data Mining in Action

Лекция 4 Метрики и их оптимизация

Гущин Александр

Какие метрики бывают

- 1) Регрессия
 - a) Mae, Mape
 - b) Rmse, Rmsle
- 2) Классификация:
 - a) Precision, Recall
 - b) F-score
 - c) AUC (ROC)
 - d) Logloss
- 3) Кластеризация

(обсудили на прошлом занятии)

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

Лучшее константное предсказание - медиана

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

Лучшее константное предсказание - медиана

Данные:

X	Y
-1	0
-1	1
-1	1

Mean Absolute Error

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y_i}|$$

Лучшее константное предсказание - медиана

Данные:

X	Y
-1	0
-1	1
-1	1

Минимизация ошибки:

Input interpretation:

minimize	function	$\frac{1}{3} (0-x + 1-x + 1-x)$
	domain	$0 \le x \le 1$

12

Global minimum:

$$\min\left\{\frac{1}{3}(|0-x|+|1-x|+|1-x|)\,\Big|\,0\le x\le 1\right\}=\frac{1}{3}\text{ at }x=1$$

Plot:

Root Mean Squared Error

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Лучшее константное предсказание - среднее

Root Mean Squared Error

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Лучшее константное предсказание - среднее

Данные:

X	Υ
-1	0
-1	1
-1	1

Минимизация ошибки:

Input interpretation:

	function	$\frac{1}{(0-x)^2}$ $\frac{1}{(1-x)^2}$ $\frac{1}{(1-x)^2}$
minimize	Tuffetion	$\frac{1}{3} \left((0-x)^2 + (1-x)^2 + (1-x)^2 \right)$
	domain	$0 \le x \le 1$

Global minimum:

$$\min\left\{\frac{1}{3}\left((0-x)^2+(1-x)^2+(1-x)^2\right)\,\Big|\,\,0\le x\le 1\right\}=\frac{2}{9}\ \ \text{at}\ \ x=\frac{2}{3}$$

Plot:

Root Mean Squared Logarithmic Error

Лучшее константное предсказание - среднее от log(1 + y)

$$\epsilon = \sqrt{rac{1}{n}\sum_{i=1}^n (\log(p_i+1) - \log(a_i+1))^2}$$

Accuracy

```
Accuracy = np.mean(ytrue == ypred)
```

Лучшее константное решение - самый часто встречающийся класс

Accuracy

```
Accuracy = np.mean(ytrue == ypred)
```

Лучшее константное решение - самый часто встречающийся класс

Пример с несбалансированными классами:

```
y=\{0,1\}; np.mean(y) == 0.99
```

Accuracy =
$$np.mean(ytrue == 1) = 0.99$$

Precision and recall

False Positive - ошибка I рода (ложное срабатывание)

False Negative - ошибка II рода (объект пропущен)

Precision and recall

$$ext{Precision} = rac{tp}{tp + fp}$$
 $ext{Recall} = rac{tp}{tp + fn}$

F-score

F1 =
$$2 * \frac{\text{precision} * \text{recall}}{\text{precision} + \text{recall}}$$

F-score

```
F1 = 2 * \frac{precision * recall}{precision + recall}
```

```
y \text{ true} = [[1, 2],
          [3, 4, 5],
           [6],
            [7]]
y \text{ pred} = [[1, 2, 3, 9],
           [3, 4],
           [6, 12],
            [1]]
mean_f1(y_true, y_pred)
# 0.53333333
```

F-score

$$F_{\beta} = (1 + \beta^2) * \frac{\text{precision* recall}}{(\beta^2 * \text{precision}) + \text{recall}}$$

при 0
beta<1 предпочтение отдаётся точности при beta >1 больший вес приобретает полнота

Доля правильно отранжированных пар:

```
ypred_i > ypred_j IF ytrue_i > ytrue_j
```

То же самое:

```
ypred_i > ypred_j IF ytrue_i == 1 and ytrue_j == 0
```

Доля правильно отранжированных пар:

ypred_i > ypred_j если ytrue_i > ytrue_j

Или площадь под кривой:

Logloss

$$ext{LogLoss} = -rac{1}{n}\sum_{i=1}^n \left[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)
ight]$$

Прогноз - действительное число от 0 до 1

Лучшее константное предсказание - среднее, то есть частота класса 1

Logloss

$$ext{LogLoss} = -rac{1}{n}\sum_{i=1}^n \left[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)
ight]$$

Прогноз - действительное число от 0 до 1

Лучшее константное предсказание - среднее, то есть частота класса 1

Выгодней сделать много незначительно отличающихся от истины предсказаний, чем мало, отличающихся значительно

По X: abs(ytrue - ypred)
По У: LogLoss

Оптимизация метрик

Алгоритмы оптимизируют "свою" метрику

Задача регрессии, sklearn.tree.DecisionTree

Решаем задачу с метрикой MAE, но DecisionTree оптимизирует MSE.

Что нужно сделать, чтобы оптимизировалось МАЕ?

Алгоритмы оптимизируют "свою" метрику

Задача регрессии, sklearn.tree.DecisionTree

Решаем задачу с метрикой MAE, но DecisionTree оптимизирует MSE.

Что нужно сделать, чтобы оптимизировалось МАЕ?

Ответ: Изменить критерий разбиения выборки в вершинах дерева.

Как смешивать?

1. Средние: арифметическое, геометрическое, гармоническое...

Взвешивайте модели

2. Смешивание ранков

Как смешивать?

1. Метрики, чувствительные к значению:

```
RMSE, Logloss, etc y = y1 * w1 + y2 * (1 - w1) # взвешенное среднее y = np.sqrt(y1 * y2) # геометрическое средние
```

2. Метрики, чувствительные к порядку:

```
AUC (ROC)
y = y1 ** 2 + 0.3 * y2 ** 0.5 # всё, что угодно
```

Probability calibration (Axa)

Разные распределения у в трейне и тесте

 $y_{train.mean()} = 0.007$

y_test_public.mean() = 0.035

#публичный тест в соревнованиях

y test private.mean() = ?

#приватный тест в соревнованиях

Как сделать оценку y.mean() с 1 сабмита?

Без сабмитов?

xgboost: scale_pos_weights

Ссылки

Задачи на ROC AUC:

https://alexanderdyakonov.wordpress.com/2015/10/09/задачки-про-auc-roc/

Understanding ROC curves:

http://www.navan.name/roc/