STM32F407VET6 Digital Synthesizer with screen

Update: 2020/12/29

Overview

Block diagram

Parameter list (Will be expanded)

Parameter	Description		
T_1_FREQ	First signal frequency		
T_1_SIN	Sine amplitude of the first signal		
T_1_SQU	Square amplitude of the first signal		
T_1_SAW	Saw amplitude of the first signal		
T_1_TRI	Triangle amplitude of the first signal		
F_CUTOFF	Cutoff frequency of Low-Pass filter		
F_Q	Q value of Low-Pass filter		

Design

Sampling specifications

	Freq domain	Time domain
Sound max freq	20kHz	50us
Sound min freq	20Hz	50ms
Sampling freq	40kHz	25us

Note

- Create a waveform by dividing into 1024 samples
- 12bit DAC → audio level 0 = 2048
- DAC Clock source 84MHz
 - ✓ Prescaler 100(840kHz, 1.19us), Period 21(21*1.19us=25us)

Sampling specifications

Sampling specifications

Structure of sampling array

- Reserve a buffer of size 100 + 1024
- Only 1024 parts are used in DAC
- Add 100 samples at the beginning to obtain stationary filter output
- Copy the end of the previous buffer to the beginning

Pre-sample (100) Required for input to filter.

Filter specifications

Note

- biquad filter
- Normalize as $a_0=1$

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}} \quad \omega_c = \frac{2\pi f_c}{f_s} \quad \alpha = \frac{\sin \omega_c}{Q}$$

$$\omega_c = \frac{2\pi f_c}{f_s} \quad \alpha = \frac{\sin \omega_c}{Q}$$

LPF

Time domain

$$b_0 = \frac{1 - \cos \omega_c}{2}$$

$$a_0 = 1 + \alpha$$

$$b_1 = 1 - \cos \omega_c$$

$$a_1 = 2\cos \omega_c$$

$$b_2 = \frac{1 - \cos \omega_c}{2}$$

$$a_2 = -(1 - \alpha)$$

Freq domain

$$|H(\omega)| = \frac{\omega_c^2}{\sqrt{(\omega_c^2 - \omega^2)^2 + (\frac{\omega_c}{Q}\omega)^2}} = \frac{\frac{\omega_c}{\omega}}{\sqrt{(\frac{\omega_c}{\omega})^2 + (\frac{\omega}{\omega_c})^2 + \frac{1}{Q^2} - 2}}$$

Communication

Controller connection specifications

SPI

SPI3 as slave

Data format

Unsigned 4 byte

uint8_t[0]	Lower byte		
uint8_t[1]	Higher byte	Parameter	
uint8_t[2]	Lower byte	- Value	
uint8_t[3]	Higher byte		

Implementation

Spectrum of DAC output at 100Hz(Sine)

