RV1126 RV1109 IO IO Domain Configuration Developer Guide

ID: RK-SM-YF-903

Release Version: V1.2.2

Release Date: 2021-08-19

Security Level: □Top-Secret □Secret □Internal ■Public

DISCLAIMER

THIS DOCUMENT IS PROVIDED "AS IS". ROCKCHIP ELECTRONICS CO., LTD. ("ROCKCHIP") DOES NOT PROVIDE ANY WARRANTY OF ANY KIND, EXPRESSED, IMPLIED OR OTHERWISE, WITH RESPECT TO THE ACCURACY, RELIABILITY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY REPRESENTATION, INFORMATION AND CONTENT IN THIS DOCUMENT. THIS DOCUMENT IS FOR REFERENCE ONLY. THIS DOCUMENT MAY BE UPDATED OR CHANGED WITHOUT ANY NOTICE AT ANY TIME DUE TO THE UPGRADES OF THE PRODUCT OR ANY OTHER REASONS.

Trademark Statement

"Rockchip", "瑞芯微", "瑞芯" shall be Rockchip's registered trademarks and owned by Rockchip. All the other trademarks or registered trademarks mentioned in this document shall be owned by their respective owners.

All rights reserved. ©2021. Rockchip Electronics Co., Ltd.

Beyond the scope of fair use, neither any entity nor individual shall extract, copy, or distribute this document in any form in whole or in part without the written approval of Rockchip.

Rockchip Electronics Co., Ltd.

No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian, PRC

Website: www.rock-chips.com

Customer service Tel: +86-4007-700-590

Customer service Fax: +86-591-83951833

Customer service e-Mail: fae@rock-chips.com

Preface

Overview

This document mainly introduce the ways to configure IO power domain of RV1126, RV1109 SDK platform, aiming to help developers to configure IO power domain correctly.

The IO level of the controller's power domain must be matched with the IO level of the connected peripheral chip, and the voltage configuration of the software must be consistent with the voltage of the hardware.

There are 9 independent IO power domains in RV1126/RV1109, they are PMUIO[0:1] and VCCIO[1:7]. The software voltage configuration of PMUIO[0:1] and VCCIO[2:7] must be consistent with the voltage of the hardware:

- When the hardware IO level is connected to 1.8V, the software voltage configuration should also be configured to 1.8V accordingly;
- When the hardware IO level is connected to 3.3V, the software voltage configuration should also be configured to 3.3V accordingly

The hardware power supply of VCCIO1 power domain must be consistent with the up and down status of FLASH_VOL_SEL pin:

- When FLASH VOL SEL is low, VCCIO1 voltage must be connected to 3.3V;
- When FLASH VOL SEL is high, VCCIO1 voltage must be connected to 1.8V;

Otherwise:

- If the software configuration is 1.8V, but the hardware power supply is 3.3V, it will cause the low withstand voltage circuit working in overvoltage state, and the chipset will be damaged after long time working.
- If the software configuration is 3.3V, but the hardware power supply is 1.8V, the circuit will work abnormally;

Product Version

Chipset	Kernel Version		
RV1126/RV1109	Kernel 4.19		

Intended Audience

- Technical support engineers
- Software development engineers
- Hardware development engineers

Revision History

Version	Author	Date	Change Description
V1.0.0	CWW	2021-04-21	Initial version
V1.0.1	CWW	2021-05-12	Update the title of the fourth and fifth steps
V1.1.0	CWW	2021-05-19	Rename the name of the document
V1.2.0	CWW	2021-06-02	Update overview, third and fifth steps
V1.2.1	CWW	2021-06-19	Update reference configuration and overview
V1.2.2	Ruby	2021-08-19	Update intended audience

Contents

RV1126 RV1109 IO IO Domain Configuration Developer Guide

- 1. Step 1: Obtain the Hardware Schematic Diagram and Check the Design of the Hardware Power Supply
- 2. Step 2: Find the Corresponding Kernel dts Configuration File
- 3. Step 3: Modify the Power Domain Configuration Node pmu_io_domains of the Kernel dts
- 4. Step 4: Check the Power Domain Configuration of the Current Firmware from the SDK
- 5. Step 5: Confirm whether the Register Value Is Correct after Flashing the Firmware
 - 5.1 Check from registers directly
 - 5.2 Check from boot log

1. Step 1: Obtain the Hardware Schematic Diagram and Check the Design of the Hardware Power Supply

It will take RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630 EVB board as an example to introduce in this document.

Hardware schematic diagram is: RV1126_RV1109_EVB_DDR3P216SD6_V13_20200630.pdf

Power solution: checking from the hardware schematic,

RV1126 RV1109 EVB DDR3P216SD6 V13 20200630 EVB board is with a PMU (RK809-2).

2. Step 2: Find the Corresponding Kernel dts Configuration File

From the first step, it can be seen that the hardware power supply design of the EVB board is with a PMU, and the corresponding kernel dts configuration file is located in:

kernel/arch/arm/boot/dts/rv1126-evb-ddr3-v13.dts (The solution discussed in this document).

If the hardware power supply design without a PMU (that is a discrete power supply solution), the corresponding kernel dts configuration file is stored in:

kernel/arch/arm/boot/dts/rv1126-38x38-v10-emmc.dts

3. Step 3: Modify the Power Domain Configuration Node pmu_io_domains of the Kernel dts

```
&pmu_io_domains {
    status = "okay";

    pmuio0-supply = <&vcc1v8_pmu>;
    pmuio1-supply = <&vcc3v3_sys>;
    vccio2-supply = <&vcci_sd>;
    vccio3-supply = <&vcc_1v8>;
    vccio4-supply = <&vcc_1v8>;
    vccio5-supply = <&vcc_3v3>;
    vccio6-supply = <&vcc_1v8>;
    vccio7-supply = <&vcc_1v8>;
    vccio7-supply = <&vcc_1v8>;
    vccio7-supply = <&vcc_1v8>;
};
```

Take **pmuio0-supply** as an example, firstly, check the hardware schematic diagram to confirm the configuration of the pmuio0 power domain (pmuio0_vdd) as shown in the figure.

From the schematic diagram, PMUIO0_VDDd is connected to VCC1V8_PMU, and then go to find VCC1V8_PMU.

PMIC RK809 LDO

Find **VCC1V8_PMU** is connected to PMIC RK809 LDO2, continue to find the voltage configuration corresponding to LDO2, as shown in the figure below:

RV1126_RV1109 Power-on Sequence

Power Name	PMIC Channel	Time Slot (step 2ms)	Default voltage	Supply Limit	Default ON/OFF	Sleep ON/OFF	Peak Current	Sleep Current
VCC BUCK5	RK809-2 BUCK5	Slot: 1	2.2V	2.5A	ON	ON		
VCCOV8_PMU	RK809-2 LD03	Slot: 2	0.8V	0.1A	ON	ON		
VCC 0V8	RK809-2 LD01	Slot: 2	0.8V	0.4A	ON	OFF		
VDD_LOGIC	Ext (SY8089AAC)	Slot: 2	0.8V	2.5A	ON	OFF		
VDD ARM	RK809-2 BUCK2	Slot: 2	0.8V	2.5A	ON	OFF		
VCC1V8_PMU	RK809-2 LDO2	Slot: 3	1.8V	0.4A	ON	ON		
VCC_1V8	RK809-2 LDO4	Slot: 3	1.8V	0.4A	ON	OFF		
VDD_NPU	RK809-2 BUCK1	Slot: 2	0.8V	2.0A	ON	OFF		
VDD_VEPU	RK809-2 BUCK1	Slot: 2	0.8V	2.0A	ON	OFF		
VCC DDR	RK809-2 BUCK3	Slot: 3	1.5V	1.5A	ON	ON		
VCC3V3 SYS	RK809-2 BUCK4	Slot: 4	3.3V	1.5A	ON	ON		
VCC_3V3	RK809-2 SWOUT2	Slot: 4	3.3V	1.5A	ON	OFF		
VCCIO_SD	RK809-2 LD08	Slot: 4	3.3V	0.4A	ON	OFF		
VCC3V3_SD	RK809-2 LD09	Slot: 4	3.3V	0.4A	ON	OFF		
VCC1V8_DOVDD	RK809-2 LD05		1.8V	0.4A	OFF	OFF		
VCC_DVDD	RK809-2 LD06		1.2V	0.4A	OFF	OFF		
VCC_AVDD	RK809-2 LD07		2.8V	0.4A	OFF	OFF		
VCC5V0_HOST	RK809-2 SWOUT1		5V	2.1A	OFF	OFF		
RESET	RK809-2 sent out Reset signal for CPU(timing:10)							

NOTE:VCC_DVDD and VCC_AVDD according to camera sensor voltage

So, we can see that the configured power domain of **pmuio0-supply** is vcc1v8_pmu (that is VCC1V8_PMU in the schematic diagram, that is, 1.8V).

[Note]

- The software does not configure vccio1_vdd, and the hardware is configured according to the actual storage interface IO power domain level.
- For other power domains (pmuio1 and vccio[2:7]), please refer to the configuration steps of pmuio1 above.

4. Step 4: Check the Power Domain Configuration of the Current Firmware from the SDK

Command: ./build.sh info

5. Step 5: Confirm whether the Register Value Is Correct after Flashing the Firmware

There are 2 ways: check from the register directly and check from the boot log

5.1 Check from registers directly

Take RV1126/RV1109 chipset as an example, and obtain the PUMGRF_IO_VSEL register (base address: 0xFE020140) according to the manual. The description is as follows:

PMUGRF IO VSEL Address: Operational Base + offset (0x0140)

Bit		Reset Value	Description					
31:16	wo	0×0000	write_enable Write enable for lower 16bits, each bit is individual. 1'b0: Write access disable 1'b1: Write access enable					
15:10	RO	0x00	reserved					
9	RW	0×0	pmuio1_vsel PMUIO1 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
8	RW	0×0	pmuio0_vsel PMUIO0 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
7	RW	0×0	vccio7_vsel VCCIO7 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
6	RW	0×0	vccio6_vsel VCCIO6 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
5	RW	0×0	vccio5_vsel VCCIO5 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
4	RW	0×0	vccio4_vsel VCCIO4 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
3	RW	0×0	vccio3_vsel VCCIO3 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
2	RW	0×0	vccio2_vsel VCCIO2 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					
1	RW	0×0	vccio1_vsel VCCIO1 voltage selection. 1'b0: 3.3V 1'b1: 1.8V					

io -4 -r 0xFE020140 fe020140: 000001d8

5.2 Check from boot log

```
dmesg |grep io-domains|grep supplied
rockchip-iodomain fe020000.syscon:io-domains: vccio2(3300000 uV) supplied by
vccio sd
rockchip-iodomain fe020000.syscon:io-domains: vccio3(1800000 uV) supplied by
vcc 1v8
rockchip-iodomain fe020000.syscon:io-domains: vccio4(1800000 uV) supplied by
rockchip-iodomain fe020000.syscon:io-domains: vccio5(3300000 uV) supplied by
vcc 3v3
rockchip-iodomain fe020000.syscon:io-domains: vccio6(1800000 uV) supplied by
vcc 1v8
rockchip-iodomain fe020000.syscon:io-domains: vccio7(1800000 uV) supplied by
vcc 1v8
rockchip-iodomain fe020000.syscon:io-domains: pmuio0(1800000 uV) supplied by
vcc1v8_pmu
rockchip-iodomain fe020000.syscon:io-domains: pmuio1(3300000 uV) supplied by
vcc3v3 sys
```

If you have opened debugfs, you can also check from the corresponding node as follows:

```
ls /sys/kernel/debug/iodomain
pmuio0 pmuio1 vccio2 vccio3 vccio4 vccio5 vccio6 vccio7

cat /sys/kernel/debug/iodomain/pmuio1/voltage
3300000
```