Name:

Tutorial time:

Problem you want feedback on:

Please complete all problems below.

1. Let
$$A = \begin{bmatrix} 1 & 5 & -3 \\ 2 & 3 & 4 \\ -2 & -7 & 3 \end{bmatrix}$$

(a) Compute $\det A$ using cofactor (Laplace) expansion along the row or column of your choice.

(b) Compute $\det A$ by first using row operations to reduce A to triangular form. (Keep in mind that some row operations effect the value of $\det A$.)

(c) Use Cramer's rule to find the value of x in the solution to the following system of equations:

- 2. Let A be a 3×3 matrix such that det A = 4. Compute the determinant of the following matrices:
 - (a) B = EA, where E is the elementary matrix $E = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (b) The matrix C obtained by switching rows 2 and 3 of A.
 - (c) The matrix 2A.
- 3. With the help of your classmates, come up with as many answers as possible to fill in the blank below:

An $n \times n$ matrix A is invertible if and only if ______.

- 4. In each case, either prove the statement, or give an example showing that it is false:
 - (a) $\det(A+B) = \det A + \det B$.
 - (b) If $\det A = 0$, then A has two equal rows.
 - (c) For any 2×2 matrix A, $det(A^T) = det A$.
 - (d) $\det(-A) = -\det A$
 - (e) If $\det A \neq 0$ and AB = AC, then B = C.
- 5. What can be said about $\det A$ if:
 - (a) $A^2 = A$
 - (b) $A^2 = I$
 - (c) PA = P, where P is invertible.