ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА специалиста

ОПТИМИЗАЦИЯ ТРАНСПОРТНОГО ПОТОКА ПРИ ЗАДАННЫХ ПУНКТАХ ОТПРАВЛЕНИЯ И НАЗНАЧЕНИЯ ВСЕХ УЧАСТНИКОВ ДВИЖЕНИЯ

Выполнил студент 610 группы
Пехтерев Станислав Игоревич
1
подпись студента
Научин ій руукаралиталі :
Научный руководитель:
доктор физико-математических наук
Васенин Валерий Александрович
подпись научного руководителя

Москва 2022

Содержание

Введение			
1	Постановка задачи		5
	1.1	Общая постановка задачи	5
	1.2	Постановка задачи в терминах модели движения	5
2	Mo	дели движения	10
	2.1	Макроскопические модели	10
	2.2	Микроскопические модели	13
3	Par	вновесие транспортных потоков	15
	3.1	Некооперативное и кооперативное равновесие	15
	3.2	Поиск кооперативного равновесия	17
4	1 Результаты		
5	Зак	ключение	21
Лi	итература 2		

Введение

Данная дипломная работа посвящена одной из задач математического моделировнаия транспортных потоков. А именно нас интересует построение оптимальных путей при заданных пунктах начала и конца всех участников движения на ориентированном графе. Участники влияют друг на друга, и что хорошо для одного, может критически отразиться на движении другого. Такая модель взаимодействия хорошо описывается некооперативной игрой, в процессе которой они не могут формировать коалиции и координировать свои действия. Наша же задача — скооперировать всех участников движения с помощью некоторой качественной оценки всевозможных комбинаций путей. Выбор такой оценки достаточно широк и неоднозначен и зависит от преследуемых целей. Они могут быть заданы приоритетами участников движения. Например, целью может быть обеспечение свободного передвижения служб спасения или кортежа, а может быть уменьшение общего времени движения участников.

Говоря об актуальности задачи, достаточно сказать, что на данный момент существует множество научных журналов¹, в которых регулярно публикуются статьи на транспортную тематику. Также известное немецкое издательство *Springer* публикует труды ученых, представленных на конференции по математическому моделированию транспортных потоков "*Traffic and granular flow*", которая проводится с периодичностью в 2 года.

На сегодняшний день предложено множество математических моделей, позволяющих исследовать движения участников, однако они имеют свои недостатки. Так, например, в учебном пособии А. Е. Гасникова [2] изложены модели, описывающие плотный статический поток машин, передвигающихся из множества точек истока во множество точек сток. Такой подход является корректным, только если в каждый момент времени на участке некоторого пути можно задать постоянную плотность машин — количество машин на единицу длины. Также в учебном пособии отдельное место занимает применение теории гидродинамики к описанию движения транспортных потоков. Их представляют как потоки сжимаемой жидкости, описываемые законом сохранения количества автомобилей. В отличие от предыдущей модели, этот подход подразумевает возможность исследования нестатического потока, но не позволяет отслеживать движения участников на путях.

Наш подход заключается в задании некоторой модели взаимодействия участников, с помощью которой можно полностью промоделировать движение каждого из них. Такая математическая модель отличается индивидуализуацией участников движения — их количественные характеристики могут быть исследованы по отдельности. Заданная нами модель взаимодействия участников способна описать естественное движение автомобилей, что позволяет исследовать влияние добавления или расширения дорог на количество и длины пробок.

Общая постановка задачи, описанная в первой главе, не подразумевает никакого движения на путях, однако во второй главе будет показано, что такое движение всегда можно задать. В той же главе будут разработаны и исследованы некоторые модели движения участников, будет предложена классификация этих моделей. Среди них мы выделим класс, для

 $^{^{1}}$ Перечень научных журналов: Transportation Research: Part B, Physical Review E, Review of modern physics, Transportation Science.

которого доказана возможность сведения задачи оптимизации к задаче смешанного целочисленного линейного программирования. В третьей главе, руководствуясь принципами в теории транспортного равновесия, мы попробуем решить задачу построения оптимальных маршрутов путем поиска таких равновесий.

1 Постановка задачи

Для начала поставим общую задачу оптимизации транспортного потока.

1.1 Общая постановка задачи

Пусть задан ориентированный граф G=(V,E). Предположим, что имеется n участников с заданными точками отправления $A_i \in V$ и прибытия $B_i \in V$. Пусть множество P_i есть множество всех простых путей из A_i в B_i . Элемент декартового произведения $P=\prod_{i=1}^n P_i$ назовем комбинацией путей. Пусть известно, что при комбинации путей участников $\mathbf{p}=(p_1,\ldots,p_n)\in P$ i-ый участник затрачивает $T_i(\mathbf{p})\in \mathbb{R}_{\geq 0}$ времени на свой путь. Функции T_i назовем функциями временных затративает $T_i(\mathbf{p})\in \mathbb{R}_{\geq 0}$ времени на свой путь. Функции ем пути в ориентированном графе G назовем пятерку $F=(n,G,\{A_i\}_{i=1}^n,\{B_i\}_{i=1}^n,\{T_i\}_{i=1}^n)$. Некооперативное прокладывание пути предполагает, что каждый участник стремится сократить собственные временные затраты выбором пути p_i , несмотря на временные затраты других участников. Для того, чтобы скооперировать участников, введем некоторую функцию $\Phi(\mathbf{p})=\phi(T_1(\mathbf{p}),\ldots,T_n(\mathbf{p}))$, определенную на множестве всех возможных комбинаций путей P и отображающую его во множество действительных чисел. С помощью нее участники могут отслеживать, как влияет изменение их пути на общую картину движения. Такую функцию назовем ϕ ункцией стоимости.

Для заданных некооперативного прокладывания пути F и функции стоимости Φ необходимо найти комбинацию путей \mathbf{p}^* такую, что функция стоимости на ней минимальна, то есть

$$\Phi(\mathbf{p}^*) = \min_{\mathbf{p} \in P} \Phi(\mathbf{p}). \tag{1}$$

Комбинацию путей \mathbf{p}^* будем называть *оптимальной*, а стоимость $\Phi(\mathbf{p}^*)$ — *оптимальной стоимостью*.

Далее будем считать, что каждый участник имеет одинаковый приоритет в вопросе изменения своих временных затрат, то есть

$$\frac{\partial \phi}{\partial T_i} \equiv 1, \ i = 1, \dots, n,$$

или

$$\phi(T_1,\ldots,T_n)=\sum_{i=1}^n T_i.$$

Приведем ряд ограничений на функции $T_i(\mathbf{p})$, которые позволят задать движения всех участников во времени при комбинации путей \mathbf{p} .

1.2 Постановка задачи в терминах модели движения

Будем считать, что временные затраты участника на выбранном пути состоят из временных затрат на каждом ребре этого пути:

$$T_i(\mathbf{p}) = \sum_{e \in n_i} \overline{\tau}_{e,i}(\mathbf{p}),$$

где функции $\overline{\tau}_{e,i}(\mathbf{p})$ — временные затраты i-ого участника на ребре e при комбинации путей $\mathbf{p}.$

Для того, чтобы задать движение участника на пути, введем функции присутствия участника на ребре в момент времени t:

$$\theta_{e,i}(\mathbf{p},t) = \begin{cases} 1, & \text{если i-ый участник движется по ребру e в момент времени t,} \\ 0, & \text{иначе,} \end{cases}$$

где $\sum_{e \in E} \theta_{e,i}(\mathbf{p},t)$ принимает значение 1, пока i -ый участник не посетит свою точку назначения B_i . Пусть достижение конца пути p_i наступает в момент $T_i(\mathbf{p})$, после чего $\sum_{e \in E} \theta_{e,i}(\mathbf{p},t)$ принимает значение 0. Получаем, что

$$T_i(\mathbf{p}) = \sum_{e \in p_i} \int_{0}^{T_i(\mathbf{p}) + \Delta t} \theta_{e,i}(\mathbf{p}, t) dt, \ \forall \Delta t > 0.$$
 (2)

Будем считать, что движение каждого участника является непрерывным и однонаправленным в графе G. Другими словами, участник не может резко повляться и исчезать на несмежных ребрах, а также находиться на уже пройденных ребрах. Таким образом, функции $\theta_{e,i}(\mathbf{p},t)$ являются индикаторами некоторых временных отрезков $[t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p})]$, которые описывают однонаправленное движение:

$$\begin{cases}
t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p}) \in \mathbb{R}_{+}, & i = 1, \dots, n, \ e \in E, \\
t_{e,i}^{in}(\mathbf{p}) \leq t_{e,i}^{out}(\mathbf{p}), & i = 1, \dots, n, \ e \in p_{i}, \\
t_{e,i}^{in}(\mathbf{p}) = t_{e,i}^{out}(\mathbf{p}) = 0, & i = 1, \dots, n, \ e \notin p_{i}, \\
t_{e_{1},i}^{in}(\mathbf{p}) = t_{e_{2},i}^{out}(\mathbf{p}), & i = 1, \dots, n, \ e_{1}, e_{2} \in p_{i}, \exists A, B, C \in V : e_{1} = (A, B), e_{2} = (B, C) \\
t_{e,i}^{in}(\mathbf{p}) = 0, & i = 1, \dots, n, \ e = (A_{i}, X), X \in V.
\end{cases}$$
(3)

Заметим, что выбор таких отрезков пока неоднозначен. Далее считаем, что для каждого ребра e, участника i и комбинации путей \mathbf{p} каким-то образом выбраны некоторые величины $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p})$, удовлетворяющие ограничениям (3). Тогда функция временных затрат (2) i-ого участника примет вид

$$T_i(\mathbf{p}) = \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}). \tag{4}$$

Функция стоимости в этом случае равна

$$\Phi(\mathbf{p}) = \sum_{i=1}^{n} \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}).$$

$$(5)$$

Считаем, что временные затраты участника i на ребре e ограничены некоторыми положительными константами $\overline{\tau}_{e,i}^{min}, \overline{\tau}_{e,i}^{max}$:

$$0 < \overline{\tau}_{e,i}^{min} \le t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p}) \le \overline{\tau}_{e,i}^{max}, e \in p_i, i = 1, \dots, n.$$

$$(6)$$

Заметим, что задача оптимизации целевой функции (5) с ограничениями (3), (6) ставится в терминах задачи смешанного целочисленного линейного программирования с булевыми переменными $I_{e,i}$ и вещественными переменными $t_{e,i}^{in}, t_{e,i}^{out}$. Для участника i первые отвечают факту проезда по ребру e, вторые — моментам прохождения этого ребра. Однако в данных ограничениях решение уже есть — участник i передвигается по кратчайшему пути в графе G с весами $\overline{\tau}_{e,i}^{min}$. Тривиальность решения связана с тем, что в данной задаче оптимизации отсутствуют влияния участников друг на друга. Для того, чтобы учесть это влияние, для каждого участника i введем микроскопическую характеристику движения $v_i(\mathbf{p},t)$ — положительную, ограниченную функцию, описывающую скорость участника. Также будем считать, что для каждого ребра $e \in E$ определена его длина $l_e > 0$.

Тогда имеет место следующее ограничение

$$\int_{0}^{T_{i}(\mathbf{p})} \theta_{e,i}(\mathbf{p},t)v_{i}(\mathbf{p},t)dt = l_{e}, e \in p_{i}, i = 1,\dots, n,$$
(7)

или

$$\int_{\substack{t_{e,i}^{in}(\mathbf{p})\\t_{e,i}^{in}(\mathbf{p})}}^{t_{e,i}^{out}(\mathbf{p})} v_i(\mathbf{p},t)dt = l_e, e \in p_i, i = 1,\dots, n.$$
(8)

Будем говорить, что уравнения (8) задают движения участников, а функции $v_i(\mathbf{p},t)$ назовем моделью движения. Без ограничения общности считаем, что $\overline{\tau}_{e,i}^{min}$, $\overline{\tau}_{e,i}^{max}$ вычисляются в самом быстром и самом медленном вариантах передвижения по ребру e участником i, а именно

$$\overline{\tau}_{e,i}^{min} = \frac{l_e}{\max_{\mathbf{p} \in P, t \in \mathbb{R}} (v_i(\mathbf{p}, t))}, \ \overline{\tau}_{e,i}^{max} = \frac{l_e}{\min_{\mathbf{p} \in P, t \in \mathbb{R}} (v_i(\mathbf{p}, t))}.$$
 (9)

Заметим, что величины $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p}) \in \mathbb{R}_+$ произвольные вещественные величины, которые удовлетворяют ограничениям (3), (6), (8), (9).

Утверждение 1.1. Пусть задан ориентированный граф G с положительными длинами $\{l_e\}_{e\in E}$, модель движения $v_i(\mathbf{p},t)$, и для каждого ребра e, участника i и комбинации путей \mathbf{p} задано множество величин $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p}) \in \mathbb{R}_+$, для которых выполняются ограничения (3), (6), (8), (9). Тогда $t_{e,i}^{out}(\mathbf{p})$ и $t_{e,i}^{in}(\mathbf{p}), e \in p_i$ есть функции от комбинации путей $\mathbf{p} \in P$.

 \mathcal{A} оказательство. Зафиксируем некоторую комбинацию путей \mathbf{p} . Опишем алгоритм поиска значений $t_{e,i}^{out}(\mathbf{p})$ и $t_{e,i}^{in}(\mathbf{p})$ и покажем его корректность.

Algorithm 1 Моделирование движения участников

```
Input: количество участников n, ориентированный граф G, комбинация путей \mathbf{p} графа G Output: t_{e,i}^{out}(\mathbf{p}), t_{e,i}^{in}(\mathbf{p}), e \in p_i, i = 1, \dots, n Data: текущее время t, текущее ребро e_i и часть пройденного ребра x_i участника i
```

```
1: t = 0
 2: for i = 1, ..., n do
            e_i \leftarrow первое ребро пути p_i
 4:
           t_{e,i}^{in}(\mathbf{p}) \leftarrow 0
 5:
 6: end for
 7: while \exists i : i — не доехал do
            \tau^* \leftarrow \operatorname{argmin}\{\tau \in \mathbb{R} : \tau > t, \int\limits_t^\tau v_i(\mathbf{p}, t) dt = (1 - x_i) l_{e_i}, i— не доехал\}_{i=1}^n
            for i=1,\ldots,n and i- не доехал do
 9:
                 x_i \leftarrow x_i + \frac{1}{l_{e_i}} \int_{-\tau}^{\tau^*} v_i(\mathbf{p}, t) dt
10:
                 \mathbf{if} \ x_i = 1 \ \mathbf{and}^{'} e_i - не последнее ребро пути p_i \ \mathbf{then}
11:
12:
                        t_{e_i,i}^{out}(\mathbf{p}) \leftarrow \tau^*
13:
                        e_i \leftarrow следующее ребро за e_i в пути p_i
14:
                        t_{e,i}^{in}(\mathbf{p}) \leftarrow \tau^*
15:
16:
            end for
17:
            t \leftarrow \tau^*
18:
19: end while
```

Описанный алгоритм называется моделированием движения.

Корректность. Для доказательства корректности алгоритма достаточно доказать корректность шага 8 и достижимость шага 11. Это следует из того, что функция скорости ограничена снизу (см. ограничения (6), (9)). Алгоритм сойдется, поскольку пути p_i конечны.

Используя это утверждение, можем ввести следующее понятие:

He koone pamue ным передвижением по графу G с положительными длинами $\{l_e\}_{e\in E}$ в модели движения $v_i(\mathbf{p},t)$ назовем такое некооперативное прокладывание пути

$$F = \left(n, G, \{A_i\}_{i=1}^n, \{B_i\}_{i=1}^n, \left\{\sum_{e \in p_i} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p})\right\}_{i=1}^n\right)$$
, где функции $t_{e,i}^{in}(\mathbf{p}), t_{e,i}^{out}(\mathbf{p})$ получены путем моделирования движения с моделью движения $v_i(\mathbf{p}, t)$ и длинами ребер $\{l_e\}_{e \in E}$ графа G . Значит, постановка задачи в терминах модели движения следующая:

Пусть задано некооперативное передвижение по графу G с положительными длинами $\{l_e\}_{e\in E}$ в модели движения $v_i(\mathbf{p},t)$. Требуется найти комбинацию путей \mathbf{p} такую, что функция

$$\Phi(\mathbf{p}) = \sum_{i=1}^{n} \sum_{e \in E} t_{e,i}^{out}(\mathbf{p}) - t_{e,i}^{in}(\mathbf{p})$$
(10)

минимальна.

Оказывается, что для любого некооперативного прокладывания пути при любых положительных длинах $\{l_e\}_{e\in E}$ существует эквивалентное ему некооперативное передвижение в графе с этими длинами в некоторой модели движения $v_i(\mathbf{p},t)$. Другими словами, любое некооперативное прокладывание пути можно промоделировать.

2 Модели движения

Утверждение 2.1. Пусть заданы некоторое некооперативное прокладывание пути F и положительные длины ребер $\{l_e\}_{e\in E}$ графа G. Тогда можно задать модель движения $v_i(\boldsymbol{p},t)$ такую, что затраченное время на передвижение i-ым участником при комбинации путей \boldsymbol{p} совпадает c его временными затратами, то есть выполняется (4).

Доказательство. Рассмотрим модель движения с постоянными скоростями

$$v_i(\mathbf{p}, t) = \overline{v}_i(\mathbf{p}) = \frac{T_i(\mathbf{p})}{\sum\limits_{e \in p_i} l_e}.$$

Промоделировав движение с такими скоростями, получим (4).

Таким образом, можно сказать, что каждый выбор комбинации путей ${\bf p}$ можно промоделировать.

Очевидно, что решение задачи перебором не является практичным — оно сводится к перебору всех комбинаций путей $\mathbf{p} \in P$. Так, например, количество таких комбинаций в полном графе составляет $2^{n(|V|-1)}$, перебрать которые в условиях реальных данных вычислительно сложно. Однако в случае, когда условие (8) можно описать в терминах задачи удовлетворения ограничений, задача оптимизации (10) может быть описана в терминах смешанного целочисленного линейного программирования и, как следствие, может быть решена стандартным решателем. Оказывается, можно выделить целый класс таких моделей движения, для которых это возможно.

2.1 Макроскопические модели

Предположим, что скорость участника зависит от некоторой общей для участников величины. Например, от функции *загруженности ребра*

$$n_e(\mathbf{p}, t) = \sum_{i=1}^n \theta_{e,i}(\mathbf{p}, t),$$

значение которой в момент времени t соответствует количеству участников на ребре e при комбинации путей \mathbf{p} . Предположим, скорость участника зависит только от загруженности ребра, на котором он находится в момент времени t, то есть существует ограниченная функция $v:\{0,1,\ldots,n\}\to\mathbb{R}_{>0}$ такая, что

$$v_i(\mathbf{p},t) = \sum_{e \in E} \theta_{e,i}(\mathbf{p},t) v(n_e(\mathbf{p},t)), \ i = 1,\dots, n$$
(11)

Такую модель движения в дальнейшем будем называть макроскопической. Например, естественно рассмотреть модель $v(n_e(\mathbf{p},t)) = \frac{v_{max}}{n_e(\mathbf{p},t)}$. В общем случае такая модель задается последовательностью значений $\{v(k)\}_{k=1}^n$.

Лемма 2.1. Пусть даны вещественные переменные a, b целочисленного программирования, u известно, что существует константа M > 0: |a| < M, |b| < M. Тогда можно добавить новую целочисленную переменную $\mathbf{1}(\{a < b\}) \in \{0,1\}$ такую, что

$$\mathbf{1}(\{a < b\}) = \begin{cases} 1, \ a < b, \\ 0, \ a \ge b. \end{cases}$$

Доказательство. Добавим в нашу задачу два неравенства:

$$2M(\mathbf{1}(\{a < b\}) - 1) < b - a < 2M\mathbf{1}(\{a < b\})$$

Очевидная проверка показывает, что неравенство выполняется для любых a, b.

Утверждение 2.2. Пусть модель движения $v_i(\mathbf{p},t)$ макроскопическая. Тогда задача (10) есть задача смешанного целочисленного линейного программирования.

Доказательство. Докажем для случая n=2. Для случаев $n\geq 2$ доказательство аналогичное.

Пусть имеется задача смешанного целочисленного линейного программирования (3) с переменными $t_{e,i}^{in}, t_{e,i}^{out}, I_{e,i}, e \in E, i = 1, 2$. Преобразуем условие (8) к каноническому виду задачи удовлетворения ограничений. Для удобства обозначим обоих участников индексами $i, j \in \{1, 2\}$.

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v_{i}(\mathbf{p},t)dt = \int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t) \sum_{e^{1} \in E} \theta_{e^{1},i}(\mathbf{p},t)v(n_{e^{1}}(\mathbf{p},t))dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt = \int_{n_{e}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt + \int_{n_{e}(\mathbf{p},t)=2} \theta_{e,i}(\mathbf{p},t)v(n_{e}(\mathbf{p},t))dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(1)dt + \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(2)dt =$$

$$\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)v(1)dt - \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(1)dt + \int_{\theta_{e,i}(\mathbf{p},t)=1} \theta_{e,i}(\mathbf{p},t)v(2)dt =$$

$$v(1)\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)dt + (v(2)-v(1))\int_{0}^{\infty} \theta_{e,i}(\mathbf{p},t)\theta_{e,j}(\mathbf{p},t)dt =$$

Неизвестный интеграл — время совместного проезда участников на ребре e.

 $v(1)\overline{\tau}_{e,i}(\mathbf{p}) + (v(2) - v(1)) \int_{-\infty}^{\infty} \theta_{e,i}(\mathbf{p}, t)\theta_{e,j}(\mathbf{p}, t)dt = l_e, e \in p_i$

В переменных задачи смешанного целочисленного программирования получим:

$$v(1)(t_{e,i}^{out}-t_{e,i}^{in})+(v(2)-v(1))(t_{e,ij}^{out}-t_{e,ij}^{in})=l_eI_{e,i},$$

где новые переменные $t_{e,ij}^{in},\ t_{e,ij}^{out}$ отвечают началу и концу совместного проезда участников. Иначе говоря, $[t_{e,ij}^{in},t_{e,ij}^{out}]=[t_{e,i}^{in},t_{e,i}^{out}]\cap[t_{e,j}^{in},t_{e,j}^{out}]$. Просуммировав по всем ребрам $e\in E$, получим

$$v(1) \sum_{e \in E} (t_{e,i}^{out} - t_{e,i}^{in}) = \sum_{e \in E} l_e I_{e,i} - (v(2) - v(1)) \sum_{e \in E} (t_{e,ij}^{out} - t_{e,ij}^{in}).$$

Заметим, что левая часть представляет собой временные затраты участника i с коэффициентом v(1), поэтому задачу оптимизации можно переписать в виде

$$\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i} + \frac{v(1) - v(2)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} (t_{e,ij}^{out} - t_{e,ij}^{in}) \to \min.$$

Для завершения доказательства необходимо показать, что переменные $t_{e,ij}^{in}, t_{e,ij}^{out}$ описываются линейными ограничениями. Обозначим

$$\Delta t = t_{e,ij}^{out} - t_{e,ij}^{in}$$

$$\Delta t_1 = t_{e,i}^{out} - t_{e,i}^{in}$$

$$\Delta t_2 = t_{e,j}^{out} - t_{e,j}^{in}$$

$$\Delta t_3 = t_{e,i}^{out} - t_{e,j}^{in}$$

$$\Delta t_4 = t_{e,j}^{out} - t_{e,i}^{in}$$

Используя лемму 2.1 при $M = \max_{e \in E, k=i,j} \overline{\tau}_{e,k}^{max}$, добавим в задачу новые переменные $\mathbf{1}(\{\Delta t_k > \Delta t_l\})$, $k \neq l, k, l \in \{1, 2, 3, 4\}$. Рассмотрим величину $T_{max} = |E|M$. В случае $v(1) \geq v(2)$ добавим в нашу задачу следующие неравенства:

$$\Delta t \ge 0,$$

$$\Delta t \ge \Delta t_k - T_{max} \sum_{l \ne k} \mathbf{1}(\{\Delta t_k > \Delta t_l\}), \ k = 1, 2, 3, 4.$$

В случае v(1) < v(2) добавим те же ограничения с другим знаком неравенства. Тогда с учетом оптимизации переменная Δt есть длина отрезка $[t_{e,ij}^{in}, t_{e,ij}^{out}]$.

Следствие 2.1. Пусть модель движения $v_i({\pmb p},t) = \sum\limits_{e\in E} \theta_{e,i}({\pmb p},t) v(n_e({\pmb p},t))$ макроскопическая и последовательность $v(n)>0, \forall n\in {\mathbb Z}_+$ убывает. Предположим, что оптимальное время движения в модели с постоянной скоростью v(1) есть \widetilde{T} . Тогда

$$\widetilde{T} \le T \le \frac{v(1)}{v(n)}\widetilde{T}.$$

Доказательство. Докажем каждое неравенство по отдельности

1. В модели, где все участники едут с постоянными скоростями, движение происходит по кратчайшим путям. Тогда временные затраты есть $\widetilde{T}=\frac{1}{v(1)}\sum_{i=1}^n\sum_{e\in p_i}l_e$, где p_i - кратчайшие пути. На тех же путях задается худший случай макроскопической модели — все едут с минимальной скоростью, то есть $T=\frac{1}{v(n)}\sum_{i=1}^n\sum_{e\in p_i}l_e$. Тогда получим

$$T \le \frac{1}{v(n)} \sum_{i=1}^{n} \sum_{e \in p_i} l_e = \frac{v(1)}{v(n)} \widetilde{T}.$$

2. Производя аналогичные вычисления, что и в доказательстве 2.2, получаем, что функция оптимизации имеет вид

$$\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i} + \sum_{k=2}^{n} \frac{v(1) - v(k)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} \sum_{\substack{s_k \in 2^n \\ |s_k| = k}} \Delta t_{e,s_k} \to \min,$$

где переменные $\Delta t_{e,s_k}$ отвечают времени совместного движения участников s_k (и только их) по ребру e.

Тогда получим

$$T \ge \min\left(\frac{1}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} l_e I_{e,i}\right) + \min\left(\sum_{k=2}^{n} \frac{v(1) - v(k)}{v(1)} \sum_{i=1}^{n} \sum_{e \in E} \sum_{\substack{s_k \in 2^n \\ |s_k| = k}} \Delta t_{e,s_k}\right) \ge \widetilde{T}.$$

Таким образом, мы получили класс моделей движения, для которых задача оптимизации транспортного потока может быть поставлена в терминах смешанного целочисленного линейного программирования. Однако такой класс моделей движения плохо описывает реальное движение автомобилей. Так, например, модель не учитывает расстояние между участниками и их порядок на ребре.

2.2 Микроскопические модели

Микроскопическими называются модели движения, которые не являются макроскопическими, то есть не представимы в виде (11). В таких моделях явно исследуется движение каждого автомобиля. Выбор такой модели позволяет теоретически достичь более точного описания движения автомобилей по сравнению с макроскопической моделью, однако на практике этот подход требует больших вычислительных ресурсов.

В качестве примера рассмотрим движение по бесконечному ребру. Пусть $x_i(t) \in [0, +\infty)$ — координаты участника i. Предположим, что скорости участников ограничены некоторой общей величиной v_{max} . Пусть в момент времени t=0 выполняется $x_1(0) \le x_2(0) \le \cdots \le x_n(0)$.

Модель пропорциональной скорости

Рассмотрим модель, в которой скорость участника пропорциональна расстоянию до впереди идущего участника. Положим $d_i(t) = x_{i+1}(t) - x_i(t), \ i = 1, \dots, n-1$. Без ограничения

общности считаем, что $d_i(0) < D$, $i = 1, \ldots, n-1$, где D — расстояние, на котором происходит взаимодействие участников. Иначе рассмотрим подпоследовательности участников, для которых выполняется это условие.

Пусть модель движения есть

$$v_i(t) = \begin{cases} v_{max}, & i = n, \\ v_{max} \frac{d_i(t)}{D}, & i \neq n. \end{cases}$$
(12)

Для поиска функций $x_i(t)$ достаточно рассмотреть систему дифференциальных уравнений

$$\dot{d}_i(t) = v_{i+1}(t) - v_i(t).$$

Решением такой системы является

$$d_{n-k}(\tau) = \sum_{l=0}^{k-1} \left(\frac{d_{n-k+l}(0) - D}{l!} \tau^l e^{-\tau} \right) + D,$$

где $\tau = \frac{v_{max}}{D}t$. Модель обладает тем свойством, что порядок участников постоянен и участники не покидают зону взаимодействия D.

Данная модель хорошо описывает реальное движение участников, однако ее практическое применение вызывает сложности, поскольку решение уравнения, вычисляемое на шаге 2 моделирования движения (см. алгоритм 1), может быть найдено только приближенно.

Модель снижения скорости

Предположим, что существует некоторая величина c_n , которая отвечает за последовательное снижение скорости участников относительно их порядка:

$$v_{n-k} = v_{max} - c_n k, \quad k = 0, \dots, n-1.$$

Величину c_n выберем из соображений, что $v_0 = \frac{v_{max}}{n}$. Тогда $c_n = \frac{v_{max}}{n}$. Если смоделировать данное движение на графе, то функции скоростей будут кусочно–постоянными. Это связано с тем, что при смене ребра некоторым участником меняются порядок и величина $n_e(\mathbf{p},t)$. Поэтому модель снижения скорости не лучшим образом описывает реальное движение, однако проста в использовании.

Пока для микроскопических моделей нет очевидного подхода к решению. Однако для любой модели движения можно описать алгоритмы оптимизации, которые сходятся к «ло-кальному минимуму». Рассмотрим такие алгоритмы в следующем разделе.

3 Равновесие транспортных потоков

В работе А. С. Piugou [5] автор показывает, что в статическом транспортном потоке с линейными функциями затрат $\tau_e(y) = a_e y_e + b_e$ суммарные затраты в состояние равновесии могут составлять 4/3 от суммарных затрат системного оптимума. Оказывается, это соотношение представляет собой неулучшаемую оценку для таких функций затрат. Поскольку статический транспортный поток с линейными функциями затрат — частный случай макроскопической модели движения

$$v(n_e(\mathbf{p},t)) = \frac{v_{max}}{n_e(\mathbf{p},t)}$$

с бесконечным набором участников, то можно выдвинуть гипотезу, что данное соотношение выполняется и для нашего движения участников.

В этом разделе мы исследуем задачу поиска равновесия транспортных потоков как возможность поиска оптимального транспортного потока.

3.1 Некооперативное и кооперативное равновесие

Hекооперативной игрой в нормальной форме назовем тройку $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n),$ где $n \in \mathbb{N}$ — количество участников игры, S_i — множество стратегий участника $i \in 1, \ldots, n,$ H_i — функция выигрыша участника i, определенная на множестве ситуаций $S = \prod_{i=1}^n S_i$ и отображающая его во множество действительных чисел.

Равновесием Нэша некооперативной игры в нормальной форме $\Gamma = (n, \{S_i\}_{i=1}^n, \{H_i\}_{i=1}^n)$ назовем стратегию $\mathbf{s}^* = (s_1^*, \dots, s_n^*) \in S$ такую, что изменение своей стратегии с s_i^* на любую другую $s \in S_i$ невыгодно ни одному игроку i. В наших обозначениях равновесие Нэша принимает вид

$$H_i(\mathbf{s}^*) \ge H_i((s_1^*, \dots, s_{i-1}^*, s, s_{i+1}^*, \dots, s_n^*)), \ \forall s \in S_i, \ i = 1, \dots, n.$$

Заметим, что в общем случае ничего нельзя сказать о существовании и единственности равновесия некооперативной игры.

Введем понятия некооперативного и кооперативного равновесия, которые являются равновесиями Нэша в терминах некооперативного прокладывания пути, где выигрыш заключается в сэкономленном времени передвижения и стоимости соответственно.

Некооперативным равновесием некооперативного прокладывания пути F назовем комбинацию путей $\widehat{\mathbf{p}} \in P$, которая является равновесием Нэша некооперативной игры $\widehat{\Gamma} = (n, \{P_i\}_{i=1}^n, \{-T_i\}_{i=1}^n)$. Множество всех некооперативных равновесий обозначим \widehat{P} .

Кооперативным равновесием некооперативного прокладывания пути F и функции стоимости $\Phi(\mathbf{p})$ назовем комбинацию путей $\widetilde{\mathbf{p}} \in P$, которая является равновесием Нэша некооперативной игры $\widetilde{\Gamma} = (n, \{P_i\}_{i=1}^n, \{-\Phi\}_{i=1}^n)$. Множество всех кооперативных равновесий обозначим \widetilde{P} .

Заметим, что определения некооперативного прокладывания пути и некооперативной игры эквивалентны. Таким образом, любой пример игры, где равновесия Нэша не существует,

можно использовать как пример некооперативного передвижения по графу, где нет кооперативного равновесия. В работах [3]-[4] рассмотрен пример транспортного потока, для которого транспортное равновесие перестает быть оптимальным после добавления дополнительного ребра в граф. Оказывается, что такое поведение наблюдается и для нашей модели движения.

Пусть имеется n=4000 участников движения. Рассмотрим ориентированный граф G (см. рис. 1).

Рис. 1: Парадокс Браесса. Оптимальное некооперативное равновесие

Рис. 2: Парадокс Браеса. Неоптимальное некооперативное равновесие

Положим, что временые затраты по ребрам есть

$$\overline{\tau}_{AC,i}(\mathbf{p}) = \frac{n_{AC,i}(\mathbf{p})}{100}, \ \overline{\tau}_{CB,i}(\mathbf{p}) = 45,$$
$$\overline{\tau}_{AD,i}(\mathbf{p}) = 45, \ \overline{\tau}_{DB,i}(\mathbf{p}) = \frac{n_{DB,i}(\mathbf{p})}{100}.$$

Предположим, что все участники движения имеют точку отправления A и прибытия B. Предположим, что путь ACB и ADB выбирает $a \in \mathbb{Z}_+$ и $b \in \mathbb{Z}_+$ участников соотетственно. Тогда, некооперативное равновесие графа достигается в случае

$$\frac{a}{100} + 45 = \frac{b}{100} + 45,$$

то есть a=b и временные затраты каждого участника состовляют 65 едениц времени. Такое рапределения участников по путям к тому же является оптимальным, поскольку является решением задачи оптимизации

$$a\left(\frac{a}{100} + 45\right) + b\left(\frac{b}{100} + 45\right) \to \min_{\substack{a \ge 0, b \ge 0\\a+b=4000}}$$

Теперь, добавим в граф ребро CD (см. рис 2) так, что временные затраты на проезд по нему близки к 0:

$$\overline{\tau}_{CD,i}(\mathbf{p}) \approx 0.$$

В таком случае, никому из участников, передвигающимся через вершину C не выгодно ехать по ребру CB. С другой стороны, самый быстрый способ добраться до вершины D - передвигаться по пути ACD. Таким образом, некооперативное равновесие достигается, когда все участники передвигаются по новому пути ACDB. При этом они затрачивают

 $\frac{n}{100} + \frac{n}{100} = 80$ едениц времени. Поскольку стоимость комбинации путей увеличилась, то данное некооперативное равновесие перестало быть оптимальным.

Заметим, что для кооперативного равновесия верно обратное:

Утверждение 3.1. Множество кооперативных равновесий \widetilde{P} не пусто, причем оптимальная комбинация путей является таким равновесием, то есть $p^* \in \widetilde{P}$.

Доказательство. Поскольку для любого $\mathbf{p} \in P$

$$\Phi(\mathbf{p}^*) \leq \Phi(\mathbf{p}),$$

то неравенство верно и для комбинаций путей $\mathbf{p} = \left(p_1^*, \dots, p_{i-1}^*, p, p_{i+1}^*, \dots, p_n^*\right), \ p \in P_i, \ i = 1, \dots, n.$

В некотором смысле кооперативным равновесием можно назвать «локальным минимум» функции Φ .

3.2 Поиск кооперативного равновесия

Рассмотрим ряд алгоритмов, позволяющих получить некоторое кооперативное равновесие.

Общим свойством всех этих алгоритмов является предположение о том, что существует некоторый алгоритм $\alpha(\Phi_i)$, позволяющий решить задачу оптимизации некоторой функции стоимости $\Phi_i(\mathbf{p}) = \phi_i(T_1(\mathbf{p}), \dots, T_n(\mathbf{p}))$ посредством выбора пути p_i . В работе Л. Е. Разумовой [1] представлен один из таких алгоритмов построения оптимального пути p_i за полиномиальное относительно входных данных время при условии, что функция $\Phi_i(\mathbf{p})$ удовлетворяет неравенству

$$\Phi_i(p_1, \dots, p_{i-1}, p_e, p_{i+1}, \dots, p_n) \le \Phi_i(p_1, \dots, p_{i-1}, q_e, p_{i+1}, \dots, p_n), \tag{13}$$

где p,q — два пути к некоторой вершине $B\in V$, ребро e выходит из этой вершины и путь p «дешевле», чем q относительно стоимости Φ_i :

$$\Phi_i(p_1, \dots, p_{i-1}, p, p_{i+1}, \dots, p_n) \le \Phi_i(p_1, \dots, p_{i-1}, q, p_{i+1}, \dots, p_n). \tag{14}$$

Предположим, что имеются некоторые функции стоимости $\Phi_i(\mathbf{p})$, удовлетворяющие условиям (13), (14). Дополнительно предположим, что оптимизация стоимостей ϕ_i и ϕ по времени T_i совпадают:

$$\frac{\partial \phi_i}{\partial T_i} \equiv \frac{\partial \phi}{\partial T_i}, \ i = 1, \dots, n. \tag{15}$$

При условиях (13), (14), (15) возможно описать полиномиальный алгоритм $\beta(\{\Phi_i\}_{i=1}^n)$, позволяющий перейти к меньшей стоимости передвижения путем изменения некоторого пути p_i участника i. Для поиска кооперативного рановесия достаточно найти неподвижную точку алгоритма β .

$\overline{\mathbf{Algorithm}}$ 2 Поиск неподвижной точки алгоритма β

```
Input: Начальная комбинация путей \mathbf{p}_0 \in P, алгоритм \beta, количество итераций iter
```

Output: кооперативное равновесие $\widetilde{\mathbf{p}} \in \widetilde{P}$

 $\mathbf{Data:}\ \mathbf{p}_{cur}$ - текущая комбинация путей, \mathbf{p}_{new} - новая комбинация путей, i - номер итерации

```
1: \mathbf{p}_{cur} \leftarrow \mathbf{p}_0

2: i \leftarrow 0

3: while i < iter do

4: \mathbf{p}_{new} \leftarrow \beta(\mathbf{p}_{cur})

5: i \leftarrow i+1

6: if \mathbf{p}_{new} = \mathbf{p}_{cur} then

7: return \mathbf{p}_{cur}

8: end if

9: end while

10: return \mathbf{p}_{cur}
```

Данный алгоритм не дает гарантий, что сходимость произойдет за число итераций, не зависящее от количества комбинаций путей. Однако результатом каждой итерации алгоритма β является новая комбинация путей \mathbf{p} меньшей стоимости относительно Φ .

Опишем алгоритм, который с некоторыми допущениями на модель движения имеет полиномиальную сложность и находит оптимальную комбинацию путей \mathbf{p} . Также алгоритм не зависит от начальной комбинации путей $\mathbf{p}_0 \in P$. Предположим, имеется набор функций $\{\{\Phi_{i,k}\}_{i=1}^k\}_{k=1}^n$, для каждого k отображающие декартово прозведение $\prod_{i=1}^k P_i$ во множество действительных чисел \mathbb{R} . Считаем, что все функции удовлетворяют условиям (13), (14), (15).

```
Algorithm 3 Последовательное добавление участников в движение
```

```
Input: количество участников n, алгоритм \alpha, алгоритмы \{\beta_k\}_{k=1}^n
```

Output: кооперативное равновесие $\widetilde{\mathbf{p}} \in \widetilde{P}$

Data: $\mathbf{p}_k \in \prod_{i=1}^{\kappa} P_i$ - кооперативное отношение для первых k участников, \mathbf{p}_{new} - новая комбинация путей, k - номер итерации

```
1: k \leftarrow 0
2: while k <= n do
3: \mathbf{p}_{k+1} \leftarrow (\mathbf{p}_k, \alpha(\mathbf{p}_k))
4: Запустим алгоритм 2 на комбинации путей \mathbf{p}_{k+1}
5: k \leftarrow k+1
6: end while
```

При наложенном на модель движения условии, что добавление оптимального пути участникаэгоиста не меняет свойства оптимальности итоговой комбинации путей, можно сказать, что
алгоритм сходится к оптимальной комбинации путей. Для того, чтобы алгоритм сошелся за n применений алгоритма α , достаточно изменить условие оптимальности на условие коопе-

ративного равновесия.

4 Результаты

5 Заключение

Список литературы

- [1] Л. Е. Разумова, С. А. Афонин, "Построение оптимального маршрута при заданной модели движения других участников движения".
- [2] А. И. Гасников "Введение в математическое моделирование транспортных потоков" Издательство МЦНМО 2013. 427 с.
- [3] D. Braess, "Über ein Paradoxon aus der Verkehrsplanung". Unternehmensforschung 12, $258-268\ (1968)$
- [4] D. Braess, A. Nagurney, T. Wakolbinger, "On a Paradox of Traffic Planning." Transportation Science. 39. 446-450. 10.1287/trsc.1050.0127 (2005)
- [5] A. C. Piugou "The economics of welfare", London: MacMillan, 1932, 4-th edition. (Русский перевод: Пигу А.С. Экономическая теория благосостояния Т. 1–2, Сер. Экономическая мысль Запада, М.: Прогресс, 1985).