EXAMEN DE MATEMÁTICA DISCRETA II

Ejercicio 1.

- **A.** Si a y b son enteros y $d = \operatorname{mcd}(a, b)$ entonces $\exists x, y \in \mathbb{Z}$ tales que ax + by = d.
- **B.** Sea d = mcd(a, b)
 - (⇒) Si $\exists x, y \in \mathbb{Z}$ tales que ax + by = c, como d|ay d|b entonces d|axy d|by y por lo tanto d|ax + by; entonces d|c.
 - (\Leftarrow) Como d|c, escribimos c = kd con $k \in \mathbb{Z}$. Por Bezout tenemos que existen $x_0, y_0 \in \mathbb{Z}$ tales que $a x_0 + b y_0 = d$. Multiplicando por k tenemos $a x_0 k + b y_0 k = dk$ y por lo tanto $a(x_0k) + b(y_0k) = c$; es decir $x = x_0k$ e $y = y_0k$ es solución entera de la ecuación.
- C. Realizamos el algoritmo de Euclides extendido para a=35 y b=15 obteniendo 35(1)-15(2)=5. Multiplicando la ecuación por 16 obtenemos: 35(16)-15(32)=80 y todas las soluciones son de la forma x=16+3t, y=32+7t para algún $t\in Z$.

Ahora $x \geq 5 \Leftrightarrow 16 + 3t \geq 5 \Leftrightarrow 3t \geq -11 \Leftrightarrow t \geq -3$ (pues $t \in \mathbb{Z}$). También $y \leq 16 \Leftrightarrow 32 + 7t \leq 16 \Leftrightarrow 7t \leq -16 \Leftrightarrow t \leq -3$ (pues $t \in \mathbb{Z}$). Por lo tanto t = -3 y x = 16 - 9 = 7 e y = 32 - 21 = 11.

Ejercicio 2.

- **A.** Claramente $*: K \times K \to K$.
 - Asociativa: Sean k = (g, h), k' = (g', h') y $k'' = (g'', h'') \in K$; (k * k') * k'' = ((g, h) * (g', h')) * (g'', h'') = (gg', hh') * (g'', h'') = ((gg')g'', (hh')h'') (y por asociativa en G y H) = (g(g'g''), h(h'h'')) = (g, h) * (g'g'', h'h'') = k * (k' * k'').
 - Neutro: Sea $e_K = (e_G, e_H)$, (donde e_G y e_H son lso neutros de G H respectivamente); entonces $e_K * (g, h) = (e_G, e_H) * (g, h) = (e_G g, e_H h) = (g, h) = (ge_G, he_H) = (g, h) * (e_G, e_H) = (g, h) * e_K$, para todo $(g, h) \in K$. Entonces e_K es el neutro de K.
 - Inversos: $k = (g, h) \in K$, por ser G y H grupos, $\exists g^{-1} \in G$, $h^{-1} \in H$. Sea $k^{-1} = (g^{-1}, h^{-1})$, entonces $k * k^{-1} = (g, h) * (g^{-1}, h^{-1}) = (gg^{-1}, hh^{-1}) = (e_G, e_H) = e_K = (e_G, e_H) = (g^{-1}g, h^{-1}h) = (g^{-1}, h^{-1}) * (g, h) = k^{-1} * k$.
- **B.** Veamos primero que es Subgrupo:
 - $e_K = (e_G, e_H) \in N.$
 - Si $(g, e_H) \in N \Rightarrow (g, e_H)^{-1} = (g^{-1}, e_H) \in N$.
 - Si $(g, e_H), (g', e_H) \in N$ entonces $(g, e_H)(g', e_H) = (gg', e_H e_H) = (gg', e_H) \in N$.

Veamos ahora que es normal: hay que ver que $kNk^{-1} \subset N$. Sea $n = (g, e_H) \in N$ y $k = (g', h) \in K$; entonces $knk^{-1} = (g', h)(g, e_H)((g')^{-1}, h^{-1}) = (g'gg'^{-1}, he_Hh^{-1}) = (g'gg'^{-1}, e_H) \in N$.

- C. Sea $\psi: G \to N$ dado por $\psi(g) = (g, e_N)$; entonces ψ es morfismo de grupos: $\psi(gg') = (gg', e_H) = (g, e_H)(g', e_H) = \psi(g)\psi(g')$ y claramente ψ es biyectiva (su inversa es $\psi^{-1}: N \to G$ dada por $\psi^{-1}(g, e_H) = g$ para todo $(g, e_H) \in N$). Entonces ψ es un isomorfismo.
- **D.** Sea $\varphi \colon K \to H$, dada por $\varphi(g,h) = h$. Tenemos que φ es morfismo de grupos: $\varphi((g,h)(g',h')) = \varphi(gg',hh') = hh' = \varphi(g,h)\varphi(g',h')$. Además $\operatorname{Im}\varphi = H$ (pues para todo $h \in H$, $h = \varphi(g,h)$ para cualquier $g \in G$). Y $\ker \varphi = \{(g,h) \in K : \varphi(g,h) = e_H\} = \{(g,h) \in K : h = e_H\} = N$. Por el primer teorema de isomorfismos tenemos que $K/N \simeq H$.

Ejercicio 3.

A. $x = a \, 13 + b \, 101 \, \text{con}$

```
a \ 13 \equiv 91 \mod 101 \Leftrightarrow a \equiv 7 \mod 101
b \ 101 \equiv 10 \mod 13 \Leftrightarrow b \ 10 \equiv 10 \mod 13 \Leftrightarrow b \equiv 1 \mod 13.
```

Entonces $x \equiv 7(13) + 101 \mod 101(13) \equiv 91 + 101 \mod 1313$. Entonces x = 192.

- **B.** Como $\operatorname{mcd}(\varphi(n), e) = 1$, existe $d \in \mathbb{Z}$ tal que $e d \equiv 1 \mod \varphi(n)$. La función de desencriptado es $D : \mathbb{Z}_n \to \mathbb{Z}_n$ dada por $D(y) = y^d \mod n$. Para mostrar que desencripta hay que ver que para todo $x \in \mathbb{Z}_n$, D(E(x)) = x; es decir $(x^e)^d \equiv x \mod n$ (ver teórico; por ejemplo en las notas de criptografía en la pág. del curso).
- C. Hay que calcular $E(10) = 10^{271} \mod 1313$. Usamos que $1313 = 13 \times 101$: Si $E(10) \equiv 10^{271} \mod 1313 \Rightarrow E(10) \equiv 10^{271} \mod 101$. Y como $\varphi(101) = 100$, por el teorema de Fermat tenemos que $10^{100} \equiv 1 \mod 101$ por lo tanto $10^{271} = 10^{71} \mod 101$. Ahora $10^2 = 100 \equiv (-1) \mod 101$ y por lo tanto $10^{71} = (10^2)^{35} 10 \equiv (-1)^{35} 10 \mod 101 \equiv -10 \mod 101 \equiv 91 \mod 101$. Es decir $E(10) \equiv 91 \mod 101$.

Por otro lado, como $\varphi(13) = 12$, tenemos que $E(10) \equiv 10^{271} \mod 13 \equiv \left(10^{12}\right)^{22} 10^7 \equiv 10^7 \mod 13$ (nuevamente por Fermat). Y $10^7 \equiv (-3)^7 \mod 13 \equiv (-27)^2(-3) \mod 13 \equiv (-1)^2(-3) \equiv -3 \mod 13 \equiv 10 \mod 13$. Por lo tanto $E(10) \equiv 10 \mod 13$.

Por la parte A. concluímos que E(10) = 192.

Ejercicio 4.

A. (i) Sea d = mcd(m, n) y m = dm'. Entonces $g^m = (g^d)^{m'} \in \langle g^d \rangle$ y por lo tanto $\langle g^m \rangle \subset \langle g^d \rangle$.

Por Bezout tenemos que existe $x, y \in \mathbb{Z}$ tales que d = mx + ny. Entonces $g^d = g^{mx+ny} = g^{mx}g^{ny} = (g^m)^x(g^n)^y = (g^m)^x e = (g^m)^x \in \langle g^m \rangle$. Entonces $\langle g^d \rangle \subset \langle g^m \rangle$.

- (ii) Si d|n, llamamos $n' = n/d \in Z$. Entonces $(g^d)^{n'} = g^{dn'} = g^n = e$ y si $(g^d)^k = e \Rightarrow g^{dk} = e \Rightarrow n|dk \Rightarrow dn'|dk \Rightarrow n'|k$. Entonces si n' > 0 tenemos que $o(g^d) = n'$ y si n' < 0 tenemos que $o(g^d) = -n'$.
- (iii) Los subgrupos de un grupo cíclico son cíclicos; sean $m_1, m_2 \in \mathbb{N}$ tales que $H = \langle g^{m_1} \rangle$ y $K = \langle g^{m_2} \rangle$. Sean $d_1 = \operatorname{mcd}(m_1, n)$ y $d_2 = \operatorname{mcd}(m_2, n)$. Por la parte (i) tenemos que $H = \langle g^{d_1} \rangle$ y $K = \langle g^{d_2} \rangle$. Por la parte (ii) tenemos que $|H| = o(g^{d_1}) = n/d_1$ y $|K| = o(g^{d_2}) = n/d_2$. Y como |H| = |K|, tenemos que $n/d_1 = n/d_2$; es decir $d_1 = d_2$. Entonces $H = \langle g^{d_1} \rangle = \langle g^{d_2} \rangle = K$.

B. (i) •
$$k = 3$$
: $5^{2^{3-3}} = 5^{2^0} = 5^1 = 5 \equiv 1 + 2^2 \mod 2^3$.

■ Si la congruencia vale para k, tenemos que $5^{2^{k-3}} \equiv 1 + 2^{k-1} \mod 2^k$. Entonces $5^{2^{k-3}} = 1 + 2^{k-1} + m2^k$ para algún $m \in \mathbb{Z}$. Entonces

Por lo tanto $5^{2^{k+1-3}} \equiv 1 + 2^{k+1-1} \mod 2^{k+1}$ y la congruencia vale para k+1.

(ii)
$$(1+2^{k-1})^2 = 1+2^{2(k-1)}+22^{k-1} = 1+2^k2^{k-2}+2^k \equiv 1 \mod 2^k$$
 y $1+2^{k-1} \not\equiv 1 \mod 2^k$. Entonces $o(1+2^{k-1})=2$.

Usando la parte anterior tenemos que

$$5^{2^{k-3}} \equiv 1 + 2^{k-1} \mod 2^k \Rightarrow \left(5^{2^{k-3}}\right)^2 \equiv \left(1 + 2^{k-1}\right)^2 \mod 2^k \equiv 1 \mod 2^k$$
. Entonces $5^{2^{k-2}} \equiv 1 \mod 2^k$. Por otro lado como $\varphi(2^k) = 2^{k-1}$ sabemos que $o(5)|2^{k-1}$ y tenemos que $5^{2^{k-3}} \neq e$ y $5^{2^{k-2}} = e$, entonces $o(5) = 2^{k-2}$.

C. Sean los subgrupos de $U(2^k)$ dados por $H = \langle 1 + 2^{k-1} \rangle$ y $K = \langle -1 \rangle$. Entonces $|H| = o(1 + 2^{k-1}) = 2$ y |K| = 2. Además $K \neq H$ pues $1 + 2^{k-1} \not\equiv -1 \mod 2^k$. Si $U(2^k)$ fuera cíclico, no podría tener dos subgrupos distintos de orden 2 (por la parte A(iii)).