Control de Calidad de Radiación Solar

Energía Solar Fotovoltaica

Oscar Perpiñán Lamigueiro

Universidad Politécnica de Madrid

- 1 Estadística
- ② Gráficos
- 3 Control de Calidad de Medidas
- 4 Control de Calidad de Modelos

Variable aleatoria y proceso estocástico

- ▶ Una variable aleatoria es una función que asigna un único numero real a cada resultado de un espacio muestral en un experimento.
- Un proceso estocástico es una variable aleatoria que evoluciona a lo largo del tiempo (p.ej. la radiación).

Función de densidad de probabilidad

La función de densidad de probabilidad, f(X), de una variable aleatoria **asigna probabilidad** a un suceso:

$$P(a < X < b) = \int_{a}^{b} f(x)dx$$
$$P(X < b) = \int_{-\infty}^{b} f(x)dx$$
$$P(X > a) = \int_{a}^{\infty} f(x)dx$$

Media, varianza y desviación estándar

▶ La **media** de una variable aleatoria es el **centro de masas** de su función densidad de probabilidad:

$$\mu_X = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

La varianza de una variable aleatoria es la media del cuadrado de las desviaciones respecto a la media:

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f(x) dx$$

lacksquare La **desviación estándar** es la raiz cuadrada de la varianza: $\sigma_X = \sqrt{\sigma_X^2}$

Combinación lineal de variables aleatorias

► La **media de la suma** de varias variables aleatorias **independientes** es la suma de las medias:

$$\mu_{X_1+...+X_n} = \mu_{X_1} + ... + \mu_{X_n}$$

La varianza de la suma o resta de varias variables aleatorias independientes es la suma de las varianzas:

$$\sigma_{X_1 \pm ... \pm X_n}^2 = \sigma_{X_1}^2 + ... + \sigma_{X_n}^2$$

Media y varianza de la media muestral

- ▶ Una muestra de una población es un conjunto de variables aleatorias independientes $(X_1...X_n)$.
- ➤ Si se toma una muestra de una población, la media de la muestra es otra variable aleatoria (que es una suma de variables aleatorias)

$$\overline{X} = \frac{1}{i = n} \sum_{n} X_{i}$$

Media y varianza de la media muestral

Sea una población cuya media es μ y su varianza es σ^2 :

La media de la media muestral es la media poblacional:

$$\mu_{\overline{X}} = \frac{1}{i = n} \sum_{n} \mu_{X_i} = \mu$$

La varianza de la media muestral es la varianza poblacional dividido por el número de muestras.

$$\sigma_{\overline{X}}^2 = \sigma_{\frac{1}{n}X_1}^2 + \dots + \sigma_{\frac{1}{n}X_n}^2 = \frac{\sigma^2}{N}$$

Por tanto, una forma de **reducir la incertidumbre** es realizar la **medida en repetidas ocasiones**.

Mediana y cuartiles

- ▶ La mediana divide el conjunto de valores de la variable en dos mitades iguales (divide el area encerrada por la función densidad de probabilidad en dos partes iguales).
- Los **cuartiles** dividen este area en **cuatro** partes iguales.
- ▶ El area encerrada entre cada par de cuartiles es igual al 25% del total.
- ► La mediana es el segundo cuartil.
- La distancia intercuartil (definida entre los cuartiles 1 y 3) es una medida de la dispersión de la variable.

- Estadística
- 2 Gráficos
- 3 Control de Calidad de Medidas
- 4 Control de Calidad de Modelos

Función de Densidad de Probabilidad

Histograma

Gráficos boxplot

Variabilidad Mensual de la Productividad diaria

Gráficos de dispersión

Estimación de Productividad Diaria

Matrices de gráficos de dispersión

- Estadística
- ② Gráficos
- 3 Control de Calidad de Medidas
- 4 Control de Calidad de Modelos

Introducción

Las medidas recogidas por estaciones meteorológicas se deben filtrar para eliminar datos erroneos.

- Límites Físicos
- ► Tests de persistencia
- ► Tests de rampas (irradiancia)
- ► Tests de envolvente (medida de varias componentes)
- Coherencia espacial
- Coherencia estadística

Límites físicos

Irradiación Diaria

La radiación global en el plano horizontal debe ser inferior a la extraterrestre $(K_{td} \le 1)$

$$G_d(0) \leq B_{od}(0)$$

► El índice de claridad debe ser superior a 0.03

$$K_{td} = \frac{G_d(0)}{B_{od}(0)} \ge 0.03$$

La radiación global en el plano horizontal debe ser inferior a la de un modelo de cielo claro

Límites físicos

Irradiancia (intradiaria)

▶ El índice de claridad debe ser inferior a 1 cuando la altura solar es suficiente:

$$k_t < 1 \text{ si } \gamma_s > 2^\circ$$

Límites inferiores para cielos cubiertos (baja transparencia atmosférica)

$$k_t \ge 10^{-4} \cdot (\gamma_s - 10^\circ) \text{ si } \gamma_s > 10^\circ$$

$$G \geq 0 \text{ si } \gamma_s \leq 10^{\circ}$$

Tests de variabilidad

Test de persistencia

$$\frac{1}{8}\overline{k_t} \le \sigma_{k_t} \le 0.35$$

La media y la desviación estándar se calculan con todas las muestras de un día completo.

Test de rampas

$$|k_t(t) - k_t(t-1)| < 0.75$$
 si $\gamma_s(t) > 2^\circ$

Límites a las variaciones de la irradiancia entre instantes sucesivos.

Tests de envolvente

Sólo para estaciones con medida simultánea de global y directa/difusa.

Coherencia espacial

- Las medidas de una estación se pueden comparar con las recogidas por estaciones cercanas.
- Esta comprobación debe realizarse con **datos agregados** (diarios) (la variabilidad espacial intradiaria puede ser alta)
- Esta comprobación debe realizarse con estaciones que tienen clima y geografía similar.

Coherencia espacial

Pasos

- Estimamos la irradiación en el lugar, x_0 , con la interpolación espacial de las estaciones cercanas, x_i .
 - Los pesos w_i son una función inversa de la distancia (IDW).

$$\widehat{G}_d(x_0) = \frac{\sum_{i=1}^{N} w_i G_d(x_i)}{\sum_{i=1}^{N} w_i}$$

▶ Comparamos la irradiación estimada, $\widehat{G}_d(x_0)$, con la medida en la estación, $G_d(x_0)$.

$$\left|\widehat{G}_d(x_0) - G_d(x_0)\right|$$

La diferencia absoluta debe estar por debajo de un límite (p.ej. 50%)

Coherencia estadística

Una medida puede ser etiquetada como *outlier* si es poco probable que pertenezca a la misma distribución que el conjunto.

Método de Chauvenet

Una medida es un *outlier* si la probabilidad de obtener su desviación respecto de la media es inferior al inverso de 2 veces el número de elementos en el conjunto.

Método de Chauvenet

- **1** Sean $G_d(x_i)$ las medidas de radiación diaria del conjunto formado por N estaciones.
- 2 Se calcula la media, \overline{G}_d , la desviación estándar, σ_{G_d} .
- 3 Se calcula la distancia estadística de cada estación al conjunto:

$$d_i = \frac{G_d(x_i) - \overline{G}_d}{\sigma_{G_d}}$$

- 4 En una distribución gaussiana se calcula la distancia estadística equivalente a la probabilidad límite, 1/2N, teniendo en cuenta las dos colas.
 - Por ejemplo, para un conjunto de 10 estaciones cada cola es 1/40 = 0.025, el límite es $|d_{max}| = 1.96$.
- **6** Aquellas observaciones que superan la distancia son marcadas como outliers.

Método de Chauvenet

$$d_i = rac{G_d(x_i) - \overline{G}_d}{\sigma_{G_d}}$$
 $|d_i| > |d_{max}|$

- Estadística
- ② Gráficos
- 3 Control de Calidad de Medidas
- 4 Control de Calidad de Modelos

Desviación entre modelo y observación

▶ Sea *O* el conjunto de observaciones (medidas) de una variable aleatoria.

$$\mathbf{O} = \{o_1 \dots o_n\}$$

➤ Sea *M* el conjunto de resultados de un modelo que aproxima el comportamiento de la variable medida.

$$\mathbf{M}=\{m_1\ldots m_n\}$$

La desviación entre modelo y observación es:

$$\mathbf{D} = \mathbf{M} - \mathbf{O} = \{ (m_1 - o_1) \dots (m_n - o_n) \} = \{ d_1 \dots d_n \}$$

Exactitud (bias) y Precisión (variance)

Fig. 1 Graphical illustration of bias and variance.

Estimadores frecuentes: MBD y RMSD

Mean Bias Difference (MBD), diferencia media (indica si el modelo sobreestima o subestima):

$$MBE = \overline{\mathbf{D}} = \overline{\mathbf{M}} - \overline{\mathbf{O}} = \frac{1}{n} \sum_{i=1}^{n} (m_i - o_i)$$

▶ Root Mean Square Difference (RMSD), diferencia cuadrático media:

$$RMSD = \left(\frac{1}{n}\sum_{i=1}^{n}d_i^2\right)^{1/2} = \left(\frac{1}{n}\sum_{i=1}^{n}(m_i - o_i)^2\right)^{1/2}$$

Estimadores frecuentes: MBE y RMSD

El RMSD agrega información del promedio y la varianza de la diferencia:

$$RMSD^2 = \overline{\mathbf{D}}^2 + \sigma_{\mathbf{D}}^2$$

donde la varianza de la diferencia (unbiased RMSD) se calcula:

$$\sigma_{\mathbf{D}}^2 = \frac{1}{n} \sum_{i=1}^n (d_i - \overline{\mathbf{D}})^2$$

Otros estimadores: MAD

► Mean Absolute Deviation (MAD):

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |d_i| = \frac{1}{n} \sum_{i=1}^{n} |m_i - o_i|$$

► El RMSD no es robusto (un error puntual puede distorsionar el estimador) y depende del número de muestras:

$$MAD \le RMSD \le n^{1/2}MAD$$

Otros estimadores: t y d

- t de Student (valores pequeños indican buen comportamiento del modelo)
 - Permite añadir intervalos de confianza a las diferencias entre modelo y observación

$$t = \left(\frac{(n-1)MBD^2}{RMSD^2 - MBD^2}\right)^{1/2}$$

- $ightharpoonup d_1$: Índice de concordancia de Willmott.
 - Limitado entre 0 (ausencia de concordancia) y 1 (concordancia total).
 - ▶ Robusto frente a *outliers*.

$$d_1 = 1 - \frac{\sum_{i=1}^{n} |m_i - o_i|}{\sum_{i=1}^{n} \left(|m_i - \overline{\mathbf{O}}| + |o_i - \overline{\mathbf{O}}| \right)}$$

Correlación

El coeficiente de correlación entre dos conjuntos de datos es una medida numérica de la relación **lineal** entre los dos conjuntos (si la relación no es lineal, este coeficiente no sirve):

$$r = \frac{1}{n-1} \cdot \sum_{i=1}^{n} \left(\frac{o_i - \overline{\mathbf{O}}}{\sigma_{\mathbf{O}}} \right) \cdot \left(\frac{m_i - \overline{\mathbf{M}}}{\sigma_{\mathbf{M}}} \right)$$

Diagramas de Taylor

Desarrollando $\sigma_{\mathbf{D}}^2$ y teniendo en cuenta la definición de r:

$$\sigma_{\mathbf{D}}^2 = \sigma_{\mathbf{O}}^2 + \sigma_{\mathbf{M}}^2 - 2 \cdot \sigma_{\mathbf{O}} \cdot \sigma_{\mathbf{M}} \cdot r$$

Esta relación es semejante a la ley de los cosenos (c, a, b son lados de un triángulo y ϕ es el ángulo opuesto al lado c):

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cos \phi$$

Diagramas de Taylor

$$\sigma_{\mathbf{D}}^2 = \sigma_{\mathbf{O}}^2 + \sigma_{\mathbf{M}}^2 - 2 \cdot \sigma_{\mathbf{O}} \cdot \sigma_{\mathbf{M}} \cdot r$$

- $ightharpoonup \sigma_{\mathbf{D}}^2$: Distancia al origen
- $ightharpoonup \sigma_{\mathbf{O}}^2$: Eje horizontal
- $ightharpoonup \sigma_{\mathbf{M}}^2$: Eje vertical
- r: acimut

Target Diagram

Emplea la relación entre *RMSD*, $\sigma_{\mathbf{D}}^2$, y $\overline{\mathbf{D}}$, normalizadas con $\sigma_{\mathbf{O}}$:

$$RMSD' = RMSD/\sigma_{\mathbf{O}}$$

$$\sigma_{\mathbf{D}}' = \sigma_{\mathbf{D}}/\sigma_{\mathbf{O}}$$

$$\overline{\mathbf{D}}' = \overline{\mathbf{D}}/\sigma_{\mathbf{O}}$$

$$RMSD'^2 = \sigma_{\mathbf{D}}'^2 + \overline{\mathbf{D}}'^2$$

$$sign_{\sigma} = sign(\sigma_{\mathbf{M}} - \sigma_{\mathbf{O}})$$

 Incorporan el signo de la diferencia entre desviaciones estándar de modelo y observación.

Target Diagram

- $ightharpoonup \sigma'_{\mathbf{D}}$ (con signo): Eje horizontal
- ightharpoonup: Eje vertical
- ► *RMSD*′²: Distancia al origen

