

Tópicos de Ciências Exatas

ÁREA DO CONHECIMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS

2024/2

Aula 17 Funções Trigonométricas

Notas de Aula – p. 37

Funções Trigonométricas

Fenômenos Ciências Exatas

Modelos Periódicos

Funções Circulares

Funções Trigonométricas

Básicas e Transformações

Circunferência Trigonométrica

Triângulo retângulo

Atividade 1) Alguns fenômenos físicos também possuem características cíclicas, como podemos ver na ilustração abaixo. Nesta situação temos uma roda, com um prego fixo na posição *P* (indicada na ilustração abaixo), iluminada por um foco de luz a sua esquerda. Imagine a roda girando no sentido anti-horário a uma velocidade constante, de modo que o tempo (em segundos) para realizar cada volta é o mesmo. A partir disso responda às questões abaixo.

- a) Qual será a projeção do prego na parede conforme a roda girar? Para auxiliar, você pode utilizar a figura acima para marcar as projeções. $P = R \cdot n$
- b) O raio da roda é igual a 20 cm. Sendo assim, o "tamanho ou medida" da projeção do prego na parede pode ser calculado. Encontre uma "fórmula" para determinar esse valor.

parede pode ser calculado. Encontre uma "fórmula" para determinar esse valor.
$$P = 20$$
. $pen \ll 1$ $pen \ll 2$ $pen \ll 3$ $pen \ll 4$ $pen \ll$

- d) O que acontecerá com as projeções do prego P enquanto a roda girar a partir da segunda volta, em relação à primeira?

Atividade 2) A partir da *Atividade 1*, construa o gráfico da função que está representada pela projeção do prego na parede em função do tempo. Para isso:

- a) Represente a roda, por uma circunferência de raio igual a 2 cm (uma vez que o raio da roda é 20 cm).
- b) Divida essa circunferência em 12 partes iguais, conforme o desenho da roda na Atividade 1.
- c) Desenhe uma linha vertical, representando a parede onde foi projetada a sombra do prego.
- d) Marque na linha desenhada para cada um dos 12 pontos da circunferência as respectivas projeções do ponto P com o passar do tempo.
 - Como a circunferência está dividida em 12 partes iguais, para marcar as projeções seguintes você pode utilizar os tempos t = 1, t = 2, ..., t = 11 e t = 12 segundos.

Complete a tabela abaixo com as medidas das projeções encontradas na parede. Utilize relações trigonométricas para calcular a medida das projeções:

				3			
t	0	1	2	3	4	5	6
p(t)	0	10	1013	30	10/3	40	Q
t		7	8	9	10	11	12
p(t)		- 10	- 10/3	- 20	-1013	- 10	0

Sabemos que para um valor qualquer de t, é possível fazer corresponder um único valor na circunferência e, portanto, um único valor da projeção desse ponto na parede. Amplie o gráfico da função acima até o tempo t = 24. Utilize a circunferência que você desenhou e a tabela seguinte para registrar as medições:

\overline{t}	13	14	15	16	17	18
p(t)	10	1013	20	1013	10	0
t	19	20	21	22	23	24
p(t)	- 10	-10/3	- 20	-1013	-10	0

$$p = 20.8em(1/3)$$

 $p = 10\sqrt{3} = 17.3$

g) Marque os pontos (t, p(t)), obtidos nos itens (e) e (f), sendo t o tempo e p(t) a medida da projeção referente ao respectivo tempo t na parede.

Atividades em grupos

- Discuta os resultados das Atividades 1 e 2, para completar as conclusões da Atividade 3.
- Em seguida, desenvolva as Atividades 4, 5, 6 e 7

- **Atividade 3)** Troque ideias com os colegas de grupo e complete as lacunas em cada item, observando o gráfico e as tabelas da atividade anterior:
- a) Observe, no gráfico anterior, que a curva tem a mesma "forma" de 12 em 12 segundos. Esse valor é chamado *período* da função representada.
- b) Chama-se amplitude desta função, a metade da distância entre o valor máximo e o valor mínimo.
 Assim, para a função que representamos no gráfico acima, a amplitude é 20
- c) Para todo $t \in \mathbb{R}$ é possível associar o valor de t à extremidade de algum arco da circunferência que desenhamos. Assim o **domínio** da função p(t) é \mathcal{R}
- d) Os valores obtidos para p(t), dados os valores de t, variam de $\frac{-20}{20}$ até $\frac{20}{20}$. Então, o conjunto **imagem** de p(t) é o intervalo $\frac{1}{20}$, $\frac{20}{20}$

Atividade 4) Imagine novamente a situação da atividade 1, porém para uma nova posição do prego Parede

conforme a ilustração abaixo.

Projeção do prego P na parede no instante t=0 (antes da roda começar a girar)

- Repita as atividades 02 e 03, considerando a nova posição inicial.
- Complete a tabela e, em seguida, construa o gráfico com os pontos (t, p(t)):

t	0	1	2	3	4	5	6
p(t)	20	103	10	0	_ 10	-10(3	- 20
t		7	8	9	10	11	12
p(t)		-10/3	- 10	0	10	10/3	20
t		13	14	15	16	17	18
p(t)		1013	10	O	- 10	- 1013	- 20
t		19	20	21	22	23	24
p(t)		-1013	- 10	O	10	1013	20

áximo e o valor
vras: quais são

Atividade 6) Construção do gráfico da função $y = \operatorname{sen} x$

Podemos relacionar cada ponto x da roda representada ao lado, a um ângulo da circunferência trigonométrica, se considerarmos o raio da roda unitário, ou seja, 1 unidade de medida. Com base nisso, complete a tabela com o ângulo (em radianos), o respectivo valor do seno deste ângulo e, em seguida, construa o gráfico da função $f(x) = \operatorname{sen} x$

Tabela 1:

Gráfico 1	:
	-

Tabela II	
x	f(x)
$x_0 = 0$	0
$x_1 = \pi/6$	1/2 = 0,5
$x_2 = \sqrt{1/3}$	13/2 = 0,
$x_3 = 11/2$	1
$x_4 = 5776$	J3/2
$x_5 = 2\Pi/3$	1/2
$x_6 = \Upsilon$	0
$x_7 = 717/6$	-1/2
$x_8 = 4 \text{TeV}$	- 13/2
$x_9 = 3 \sqrt{2}$	-1
$x_{10} = 511/3$	- \(\frac{13}{2} \)
$x_{11} = MII$	-1/2
$x_{12} = 2 \%$	0

Atividade 7) Construção do gráfico da função $y = \cos x$

Podemos relacionar cada ponto x da roda representada ao lado, a um ângulo da circunferência trigonométrica, se considerarmos o raio da roda unitário, ou seja, 1 unidade de medida. Com base nisso, complete a tabela com o ângulo (em radianos), o respectivo valor do cosseno deste ângulo e, em seguida, construa o gráfico da função $f(x) = \cos x$

Tabela 2:

x	f(x)
$x_0 = 0$	1
$x_1 = 17/6$	13/2
$x_2 = \Upsilon/3$	リタ
$x_3 = 11/2$	O
$x_4 = 2 \Pi / 3$	-1/2
$x_5 = 517/6$	-3/2
$x_6 = \bigvee$	- 1
$x_7 = 717/6$	- \(\frac{3}{2} \)
$x_8 = 417/3$	-1/2
$x_9 = 317/2$	0
$x_{10} = 5 \text{T/3}$	42
$x_{11} = M \ddot{\eta}_{6}$	J3/2J
$x_{12} = 2 tr$	1

Gráfico 2:

Funções Trigonométricas (Básicas)

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$f(x) = \sin x$$

$$D(f) =$$

$$Im(f) =$$

Amplitude: A =

Período: T =

Funções Trigonométricas (Básicas)

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$f(x) = \cos x$$

$$D(f) =$$

$$Im(f) =$$

Amplitude: A =

Período: T =

Tarefas da Aula 17

- Em duplas, desenvolva a <u>Atividade 08</u>, elaborando os gráficos solicitados numa janela gráfica adequada e respondendo às questões propostas para cada grupo de funções (da tabela). Organize um arquivo de texto com o desenvolvimento, salve em pdf e envie como tarefa da Aula 17 (link disponível no módulo da semana). Para essa atividade, forme as duplas no AVA: somente um estudante envia.
- Atividade 09: exercícios do livro Pré-Cálculo, p. 160 8.9 ao 8.19
- Atividade 10: elabore uma ficha resumo/mapa mental com as conclusões da Atividade 08, conforme orientações na questão (p. 43). Não é necessário entregar: mantenha essa ficha com você para desenvolver as próximas atividades em Trigonometria.

Tarefas da Aula 17

Atividade 8) Com auxílio do aplicativo DESMOS, construa os gráficos das funções indicadas no quadro que segue, conforme as orientações:

- As funções seno de cada grupo devem ser construídas na mesma janela gráfica. Da mesma forma, as funções cosseno de cada grupo, ficam na mesma janela gráfica.
- Utilize a legenda de forma adequada para identificar as funções.
- Todos os gráficos devem ser construídos com o mesmo intervalo do domínio, para fins de comparação. Cabe ao grupo definir esse intervalo de forma adequada!

	Gráficos de funções Seno	Gráficos de funções Cosseno
	$y = \sin x$	$y = \cos x$
Grupo I	$y = \sin x + 2$	$y = \cos x + 1$
	$y = \sin x - 2$	$y = \cos x - 3$
	$y = \sin x$	$y = \cos x$
Grupo II	$y = 2 \sin x$	$y = 3 \cos x$
	$y = \frac{1}{2}\sin x$	$y = \frac{1}{4}\cos x$
	$y = \sin x$	$y = \cos x$
Grupo III	$y = \sin\left(\frac{x}{2}\right)$	$y = \cos\left(\frac{x}{3}\right)$
	$y = \sin(2x)$	$y = \cos(3x)$
	$y = \sin x$	$y = \cos x$
Grupo IV	$y = \sin\left(x - \frac{\pi}{2}\right)$	$y = \cos\left(x - \frac{\pi}{3}\right)$
	$y = \sin\left(x + \frac{\pi}{2}\right)$	$y = \cos\left(x + \frac{\pi}{3}\right)$

GRUPO I:

- a) O que "aconteceu" com o gráfico de $y = \sin x + 2$ em relação ao gráfico de $y = \sin x$?
- b) O que aconteceu com o gráfico de $y = \sin x 2$ em relação ao gráfico de $y = \sin x$?
- c) Repita a análise para os gráficos de $y = \cos x + 1$ e $y = \cos x 3$. O que podemos concluir ao comparar esses gráficos com $y = \cos x$?
- d) A partir disso, como seriam os gráficos das funções $y = \sin x + 4$ e $y = \sin x 1$ em relação ao da função $y = \sin x$?. E como seriam os gráficos das funções $y = \cos x + 2$ e $y = \cos x 0.5$ em relação ao de $y = \cos x$?

De maneira geral, para uma função $y = \sin x \pm B$ e $y = \cos x \pm B$, teremos gráficos que apresentam deslocamento de _____ unidades, na direção do eixo _____.

• Acesse as demais atividades nas Notas de Aula.

Atividade 9) Resolva os exercícios propostos no Capítulo 8 (Trigonometria e Funções Trigonométricas), do livro Pré-Cálculo, p. 160: **8.9 ao 8.19**.

Atividade 10) Elabore uma ficha resumo com as conclusões da Atividade 08 para entregar no início da próxima aula. A ficha deve ser feita à mão e **numa folha tipo A4**. Não serão aceitas fichas xerocadas, digitadas ou em folhas de caderno. Utilize exemplos, gráficos e definições como achar conveniente. Seja criativo! Mantenha uma cópia do material elaborado com você, para que possa ser utilizado nas atividades de aula.

Organização das próximas aulas

- Aula 03/07: Correção + atividades avaliativas (em aula)
- Aula 10/07: Recuperações (a partir das 18h30, sala V-307)
- Sobre a AP2:
 - As respostas estão disponíveis no Fórum
 - Utilize o Fórum para discussão das dúvidas referentes à AP2

