Тема: Итерационные методы решения СЛАУ

 1^0 . Запись СЛАУ в эквивалентном виде с помощью оператора перехода. Метод простой итерации (МПИ). 2^0 . Достаточное условие сходимости МПИ. Критерий сходимости МПИ. Количество операций. 3^0 . Учет ошибок округления в методе простой итерации. 4^0 . Метод Якоби: оператор перехода, достаточное условие сходимости, критерий сходимости. 5^0 . Метод Зейделя: оператор перехода, рекуррентная схема вычислений, достаточное условие сходимости. 6^0 . Метод верхней релаксации: оператор перехода, итерационный параметр. 7^0 . Определение квадратичного функционала, функционала энергии. Вариационная задача минимизации квадратичного функционала и задача решения СЛАУ: теорема о минимуме квадратичного функционала.

 5^0 . Вернемся к записи системы $A\overrightarrow{u}=\overrightarrow{f}$, в виде равенства

$$L\overrightarrow{u}+D\overrightarrow{u}+U\overrightarrow{u}=\overrightarrow{f}. \hspace{1cm} (I')$$

Здесь L — нижняя треугольная матрица с нулями на главной диагонали, U — верхняя треугольная матрица с нулями на главной диагонали, а D — диагональная матрица,

$$D = \text{diag}\{a_{11}, a_{22}, a_{33}, \dots, a_{nn}\}.$$

При этом справедливо разложение

$$A = L + D + U.$$
 (\sum)

Расставим в левой части системы (I') нижние индексы у вектора \overrightarrow{u} по-другому, чем в методе Якоби. Точнее, рассмотрим последовательность равенств вида

$$L\overrightarrow{u}_{k+1} + D\overrightarrow{u}_{k+1} + U\overrightarrow{u}_k = \overrightarrow{f},$$
 (Z)

где $k=0,1,2,\ldots$ Задавая начальный вектор \overrightarrow{u}_0 , получаем итерационный процесс (\mathbf{Z}) для отыскания последовательных приближений.

Если на главной диагонали матрицы A все элементы не нулевые, то нижняя треугольная матрица (L+D) невырождена.

В этом случае итерационный процесс (\mathbf{Z}) записывается в явной (нормальной) форме

следующим образом:

$$\overrightarrow{u}_{k+1} = -(L+D)^{-1}U\overrightarrow{u}_k + (L+D)^{-1}\overrightarrow{f}, \quad (Z+)$$

где $k=0,1,2,\ldots$ Полагая здесь

$$B = -(L+D)^{-1}U$$
 $\forall F = (L+D)^{-1}\overrightarrow{f},$

приходим к записи итерационных соотношений в такой же общей форме, как и в методе простой итерации:

$$\overrightarrow{u}_{k+1} = B\overrightarrow{u}_k + \overrightarrow{F}.$$

В таком виде, то есть с матрицей перехода, задаваемой равенством

$$B = -(L+D)^{-1}U,$$

процесс называется итерационным методом Зейделя.

Отыскание вектора \overrightarrow{u}_{k+1} в методе Зейделя удобно упростить, организовав вычисления

по следующей рекуррентной схеме:

$$\overrightarrow{u}_{k+1} = -D^{-1}L\overrightarrow{u}_{k+1} - D^{-1}U\overrightarrow{u}_k + D^{-1}\overrightarrow{F},$$

где $k=0,1,2,\ldots$ Для вычисления компоненты u_j^{k+1} вектора \overrightarrow{u}_{k+1} при этом используется формула, в которой присутствуют значения компонент предыдущего вектора \overrightarrow{u}_k , а также компонент $\overrightarrow{u}_l^{k+1}$ с номерами $l=1,2,3,\ldots,j-1$.

Теорема (достаточное условие сходимости метода Зейделя). Если матрица A системы вещественна, симметрична и положительно определена, то последовательные приближения по методу Зейделя сходятся к точному решению системы $A\overrightarrow{u} = \overrightarrow{f}$.

Замечание. Если невырожденная матрица А вещественна, но при этом не симметрична и не положительно определена, то вместо си-

стемы $A\overrightarrow{u}=\overrightarrow{f}$ можно рассмотреть эквива-лентную ей:

$$(A^TA)\overrightarrow{u} = A^T\overrightarrow{f}.$$

При этом матрица A^TA вещественна, сим-метрична и положительно определена.

Этот прием называется симметризацией СЛАУ. Следует, однако, иметь в виду, что

$$\mu(A^TA) = \mu^2(A),$$

где $\mu(\cdot)$ — число обусловленности матрицы. Таким образом, при $\mu(A)>1$ обусловленность симметризованной системы гораздо хуже, чем исходной.

 6^0 . Систему $A\overrightarrow{u}=\overrightarrow{f}$, где $A\equiv L+D+U$, умно-жим на скаляр au и запишем в виде

$$(au L + D)\overrightarrow{u} + (au - 1)D\overrightarrow{u} + au U\overrightarrow{u} = au \overrightarrow{f}.$$

Расставив здесь индексы у вектора \overrightarrow{u} , получаем следующий итерационный процесс:

$$egin{align} (au L + D) \overrightarrow{u}_{k+1} + (au - 1) D \overrightarrow{u}_{k} + \ & + au U \overrightarrow{u}_{k} = au \overrightarrow{f}, \quad k = 0, 1, 2, \dots \ (SR) \end{cases}$$

Этот же процесс, записанный в явной (или нормальной) форме, имеет вид

$$\overrightarrow{u}_{k+1} = -(D+\tau L)^{-1}[(\tau-1)D+\tau U]\overrightarrow{u}_k +$$

$$+\tau (D+\tau L)^{-1}\overrightarrow{f}, (SR+)$$

где $k=0,1,2,\ldots$ При au=1 процесс (SR+) превращается в метод Зейделя.

Выбирая разные значения au, можно существенно ускорить сходимость итераций. Таким образом, возникает задача отыскания оптимального значения au (итерационного параметра), которая не решена. Известно, однако, что оптимальный параметр $au_{
m opt}$ находится в интервале $1 < \tau < 2$.

При τ из (1,2) итерационный метод (SR+) называется методом верхней релаксации (Succesive Over Relaxation, SOR).

Если же $0 < \tau < 1$, то (SR+) — это метод последовательной нижней релаксации.

С решением СЛАУ разными методами тесно связано общее понятие квадратичного функционала и задача его минимизации.

 7^{0} . Пусть вектор $\overrightarrow{u}=(u_{1},u_{2},\ldots,u_{n})$ принадлежит евклидову пространству \mathbb{R}^{n} .

Определение. K вадратичным функционалом от переменной \overrightarrow{u} называется функция вида

$$\Phi(\overrightarrow{u}) = (A\overrightarrow{u}, \overrightarrow{u}) - 2(\overrightarrow{f}, \overrightarrow{u}) + c.$$

Здесь A — это квадратная матрица размера $n \times n$, символ (*,*) обозначает скалярное произведение в \mathbb{R}^n , \overrightarrow{f} — это вектор из \mathbb{R}^n и c — это постоянная.

Таким образом, областью определения квадратичного функционала $\Phi(\overrightarrow{u})$ служит все пространство \mathbb{R}^n , а область его значений содержится в \mathbb{R} .

Для заданного квадратичного функционала $\Phi(\overrightarrow{u})$ всегда справедливо равенство

$$\Phi(\overrightarrow{u}) = \left(rac{A+A^*}{2}\overrightarrow{u},\overrightarrow{u}
ight) - 2(\overrightarrow{f},\overrightarrow{u}) + c.$$

Здесь матрица $\frac{1}{2}(A+A^*)$ симметрична.

По этой причине в общем представлении квадратичного функционала $\Phi(\overrightarrow{u})$ почти всегда предполагается, что матрица A — симметричная, то есть что $A = A^* = A^T$.

Пусть кроме того матрица A положительно определена, то есть

 $(A\overrightarrow{u},\overrightarrow{u})>0$ для любого $\overrightarrow{u}
eq 0.$

В этом случае $\Phi(\overrightarrow{u})$ называется также функционалом энергии. С функционалом энергии связана следующая постановка вариационной задачи.

Задача. Найти вектор \overrightarrow{v} из \mathbb{R}^n , доставляющий минимум функционалу $\Phi(\overrightarrow{u})$ на этом пространстве, то есть такой, что

$$\Phi(\overrightarrow{v}) = \min_{\overrightarrow{u} \in \mathbb{R}^n} \Phi(\overrightarrow{u}).$$
 (VP)

Если вектор \overrightarrow{v} является решением этой минимизационной проблемы, то используется следующее обозначение:

$$\overrightarrow{v} = rg \min_{\overrightarrow{u} \in \mathbb{R}^n} \Phi(\overrightarrow{u}).$$

Решение этой вариационной задачи взаимосвязано с решением СЛАУ $A\overrightarrow{u}=\overrightarrow{f}$ с теми же самыми матрицей A и вектором \overrightarrow{f} , что и в формуле, определяющей квадратичный функционал $\Phi(\overrightarrow{u})$. **Теорема** (о минимуме квадратичного функционала). Пусть матрица A вещественна, симметрична и положительно определена. Тогда существует единственный вектор \overrightarrow{v} в \mathbb{R}^n , доставляющий минимум квадратичному функционалу

$$\Phi(\overrightarrow{u}) = (A\overrightarrow{u}, \overrightarrow{u}) - 2(\overrightarrow{f}, \overrightarrow{u}) + c.$$

Этот вектор \overrightarrow{v} является решением СЛАУ $A\overrightarrow{u}=\overrightarrow{f}$.

Доказательство. Пусть вектор \overrightarrow{v} — это решение системы $A\overrightarrow{u}=\overrightarrow{f}$. Такое решение существует и единственно в силу условия положительной определенности мптрицы A: в этом случае $\det A \neq 0$.

Возьмем любой вектор \overrightarrow{w} из \mathbb{R}^n и найдем значение функционала

$$\Phi(\overrightarrow{v}+\overrightarrow{w})=ig(A(\overrightarrow{v}+\overrightarrow{w}),\overrightarrow{v}+\overrightarrow{w}ig)-2ig(\overrightarrow{f},\overrightarrow{v}+\overrightarrow{w}ig)+c.$$

Раскрывая скобки, получаем

$$egin{align} \Phi(\overrightarrow{v}+\overrightarrow{w}) &= \ &= (A\overrightarrow{v},\overrightarrow{v}) + (A\overrightarrow{v},\overrightarrow{w}) + (A\overrightarrow{w},\overrightarrow{v}) + (A\overrightarrow{w},\overrightarrow{w}) - \ &- 2(\overrightarrow{f},\overrightarrow{v}) - 2(\overrightarrow{f},\overrightarrow{w}) + c. \ \end{pmatrix}$$

Заметим, что

$$(A\overrightarrow{w},\overrightarrow{v})=(\overrightarrow{w},A^*\overrightarrow{v})=(\overrightarrow{w},A\overrightarrow{v})=(A\overrightarrow{v},\overrightarrow{w})=(\overrightarrow{f},\overrightarrow{w}).$$

Учитывая это, имеем далее

$$egin{align} \Phi(\overrightarrow{v}+\overrightarrow{w}) &= ig[(A\overrightarrow{v},\overrightarrow{v})-2(\overrightarrow{f},\overrightarrow{v})+cig]+\ &+2(A\overrightarrow{v},\overrightarrow{w})-2(\overrightarrow{f},\overrightarrow{w})+(A\overrightarrow{w},\overrightarrow{w}). \end{gathered}$$

Выражение в квадратных скобках в правой части — это значение $\Phi(\overrightarrow{v})$.

Следовательно, полученное равенство запи-

сывается в виде

$$\Phi(\overrightarrow{v}+\overrightarrow{w}) = \Phi(\overrightarrow{v}) + 2(\underbrace{A\overrightarrow{v}-\overrightarrow{f}}_{=0},\overrightarrow{w}) + (A\overrightarrow{w},\overrightarrow{w}) = 0 = \Phi(\overrightarrow{v}) + (A\overrightarrow{w},\overrightarrow{w}).$$

Но по условию матрица \mathbf{A} положительно определена и поэтому

$$(A\overrightarrow{w},\overrightarrow{w})>0$$
 для любого вектора $\overrightarrow{w}
eq 0.$

Таким образом, имеем неравенство

$$\Phi(\overrightarrow{v}+\overrightarrow{w})>\Phi(\overrightarrow{v})$$
 для любого вектора $\overrightarrow{w}
eq 0.$

Это и означает, что функционал $\Phi(\overrightarrow{u})$ достигает на векторе \overrightarrow{v} минимально возможного значения:

$$\Phi(\overrightarrow{v}) = \min_{\overrightarrow{u} \in \mathbb{R}^n} \Phi(\overrightarrow{u}).$$

Таким образом, существование элемента, доставляющего в \mathbb{R}^n минимум квадратичному функционалу $\Phi(\overrightarrow{u})$ доказано.

В процессе доказательства предыдущей теоремы было также установлено, что в качестве минимизирующего значения функционала энергии вектора \overrightarrow{v} годится решение ассоциированной с этим функционалом системы линейных алгебраических уравнений

$$A\overrightarrow{v}=\overrightarrow{f}.$$

Тема: Минимизация квадратичного функционала

 1^0 . Единственность минимизирующего квадратичный функционал вектора. 2^0 . Минимизация квадратичного функционала методом наискорейшего спуска. 3^0 . Метод минимальных невязок.

 1^0 . Рассмотрим квадратичный функционал, то есть функцию многих переменных вида

$$\Phi(\overrightarrow{u}) = (A\overrightarrow{u}, \overrightarrow{u}) - 2(\overrightarrow{f}, \overrightarrow{u}) + c,$$

где A — невырожденная и положительно определенная $n \times n$ матрица, \overrightarrow{f} — заданный вектор из \mathbb{R}^n , c — постоянная, а \overrightarrow{u} — переменный вектор из \mathbb{R}^n .

Функция $\Phi(\overrightarrow{u})$ достигает своего минимального на \mathbb{R}^n значения на некотором векторе

 \overrightarrow{v} из \mathbb{R}^n :

$$\overrightarrow{v} = \arg\min_{\overrightarrow{u} \in \mathbb{R}^n} \Phi(\overrightarrow{u}).$$
 (min)

В качестве вектора \overrightarrow{v} , как уже доказано, может выступать решение системы линейных уравнений

$$A\overrightarrow{v}=\overrightarrow{f}.$$

Теорема (единственности). Вектор \overrightarrow{v} со свойством (min) единствен в \mathbb{R}^n .

 \mathcal{Q} оказательство. Пусть есть вектор $\overrightarrow{v_1}$ из \mathbb{R}^n , $\overrightarrow{v_1}
eq \overrightarrow{v}$, с тем же свойством (\min) , то есть такой, что

$$\Phi(\overrightarrow{v_1}) = \min_{\overrightarrow{u} \in \mathbb{R}^n} \Phi(\overrightarrow{u}).$$

Тогда производная функции $\Phi(\overrightarrow{u})$ по любой из переменных u_j , $j=1,\dots,n$, в точке $\overrightarrow{u_0}=\overrightarrow{v_1}$ должна равняться нулю, то есть

$$\left(\frac{\partial\Phi}{\partial u_1}, \frac{\partial\Phi}{\partial u_2}, \frac{\partial\Phi}{\partial u_3}, \dots, \frac{\partial\Phi}{\partial u_n}\right) = \overrightarrow{0}.$$
 (SP)

Вектор в левой части этого равенства называется градиентом функции Φ и обозначается как $\nabla \Phi$ или $\operatorname{grad} \Phi$:

$$abla\Phi\equiv\Big(rac{\partial\Phi}{\partial u_1},rac{\partial\Phi}{\partial u_2},rac{\partial\Phi}{\partial u_3},\ldots,rac{\partial\Phi}{\partial u_n}\Big).$$

Дифференциальный оператор **∇** называется "'набла"'-оператором или оператором Гамильтона. Вычислив частные производные от квадратичного функционала

$$\Phi(\overrightarrow{u}) = (A\overrightarrow{u}, \overrightarrow{u}) - 2(\overrightarrow{f}, \overrightarrow{u}) + c,$$

подставим результат в (SP). Тогда придем к соотношению

$$abla\Phi=2A\overrightarrow{v}_1-2\overrightarrow{f}=\overrightarrow{0}.$$

Таким образом, рассматриваемый вектор \overrightarrow{v}_1 со свойством минимальности обязан быть

решением системы

$$A\overrightarrow{v}_1 = \overrightarrow{f}.$$

Но решение этой системы в силу невырожденности матрицы A единственно. Следовательно, с необходимостью должно выполняться равенство $\overrightarrow{v}_1 = \overrightarrow{v}$. Таким образом, установлено, что задача решения СЛАУ эквивалентна вариационной задаче минимизации квадратичного функционала.

Отметим, что системы линейных уравнений с симметричными вещественными и положительно определенными матрицами возникают, например, при решении краевых задач для эллиптических уравнений.

 2^0 . Минимум квадратичного функционала $\Phi(\overrightarrow{u})$ ищут с помощью итерационного процесса. В частности, этот минимум можно найти по

следующей итерационной схеме:

$$\overrightarrow{u}_{k+1} = \overrightarrow{u}_k - \alpha_k \nabla \Phi(\overrightarrow{u}_k), \qquad (III)$$

где $k=0,1,2,\cdots$. Параметр α_k здесь — это число, определяемое из условия минимума по α функции

$$\Phi \left[\overrightarrow{u}_{k} - \alpha \nabla \Phi(\overrightarrow{u}_{k})\right].$$

В этом случае соответствующий итерационный метод (III) называется методом наискорейшего спуска.

Учитывая, что $\nabla \Phi(\overrightarrow{u}) = 2(A\overrightarrow{u} - \overrightarrow{f})$, получаем следующие равенства

$$\overrightarrow{u}_{k+1} = \overrightarrow{u}_k - \tau_k (A \overrightarrow{u}_k - \overrightarrow{f}),$$

где $au_{k}=2lpha_{k}$.

Таким образом, снова имеем процесс вида

$$\overrightarrow{u}_{k+1} = B\overrightarrow{u}_k + \overrightarrow{F_k},$$

где
$$B=(E- au_{m k}A)$$
 и $\overrightarrow{F_{m k}}= au_{m k}\overrightarrow{f}$.

Параметр au_k здесь определяется соотношением

$$au_k = rac{(\overrightarrow{r}_k, \overrightarrow{r}_k)}{(A\overrightarrow{r}_k, \overrightarrow{r}_k)},$$
 где $\overrightarrow{r}_k = A\overrightarrow{u}_k - \overrightarrow{f}.$

 3^{0} . В итерационной схеме

$$\overrightarrow{u}_{k+1} = \overrightarrow{u}_k - \tau_k (A \overrightarrow{u}_k - \overrightarrow{f}) \tag{*}$$

параметр au_k можно выбирать на каждом шаге таким образом, чтобы минимизировалась евклидова норма соответствующего шагу вектора невязки

$$\overrightarrow{r}_{k+1} = A\overrightarrow{u}_{k+1} - \overrightarrow{f}.$$

Покажем, что этим условиям удовлетворяют числа

$$au_k = rac{(A\overrightarrow{r}_k, \overrightarrow{r}_k)}{(A\overrightarrow{r}_k, A\overrightarrow{r}_k)}, \quad k = 0, 1, 2, \ldots.$$

Запишем итерационный процесс в эквивалентном виде через векторы невязки. Для этого умножим равенство (*) слева на матрицу A, а затем вычтем из обеих частей получающегося равенства вектор \overrightarrow{f} . В итоге получим равенство

$$\overrightarrow{r}_{k+1} = \overrightarrow{r}_k - \tau_k A \overrightarrow{r}_k.$$

Имеем далее

$$(\overrightarrow{r}_{k+1},\overrightarrow{r}_{k+1})=(\overrightarrow{r}_k-\tau_kA\overrightarrow{r}_k,\overrightarrow{r}_k-\tau_kA\overrightarrow{r}_k)=$$

$$=(\overrightarrow{r}_k,\overrightarrow{r}_k)-2 au_k(A\overrightarrow{r}_k,\overrightarrow{r}_k)+ au_k^2(A\overrightarrow{r}_k,A\overrightarrow{r}_k).$$

Вычисляя производную квадратичной функции в предыдущем равенстве по переменной au_k и приравнивая результат к нулю, заключаем, что минимум этой функции достигается

при au_k , удовлетворяющем условию

$$-2(A\overrightarrow{r}_{k},\overrightarrow{r}_{k})+2\tau_{k}(A\overrightarrow{r}_{k},A\overrightarrow{r}_{k})=0.$$

Следовательно, нужное значение параметра au_{k} задается равенством

$$au_k = rac{(A\overrightarrow{r_k},\overrightarrow{r_k})}{(A\overrightarrow{r_k},A\overrightarrow{r_k})}.$$

При таких значениях au_k итерационный процесс (*) называется методом минимальных невязок.

Тема : Методы поиска безусловного экстремума функции

 1^0 . Постановка задачи, локальный и глобальный минимумы. Целевая функция. Условный минимум. 2^0 . Связь задачи минимизации функций с задачей решения системы нелинейных алгебраических уравнений. 3^0 . Минимизация функций одной переменной: метод перебора. 4^0 . Минимизация функций одной переменной: метод исключения отрезков, метод дихотомии. 5^0 . Минимизация функций одной переменной: метод золотого сечения.

1⁰. Среди всевозможных задач вычислительной математики особо выделяются задачи на поиск локальных и глобальных минимумов функций многих переменных.

Пусть на множестве $\mathbb U$ элементов линейного нормированного пространства $\mathbb X$ определена скалярная функция

$$\Phi \colon u \in \mathbb{U} o \Phi(u) \in \mathbb{R}$$
.

Пусть также в множестве $\mathbb U$ выделен некоторый вектор u^* .

Определение. Если существует число $\varepsilon > 0$ такое, что для любого вектора $u \in \mathbb{U}$ с условием $\|u - u^*\| < \varepsilon$ выполняется неравенство

$$\Phi(u) \ge \Phi(u^*),$$

то говорят, что функция $\Phi(\cdot)$ имеет в точке u^* локальный минимум.

Определение. Если для любого вектора u из \mathbb{U} выполняется неравенство

$$\Phi(u) \ge \Phi(u^*), \quad \forall u \in \mathbb{U},$$

то говорят, что функция $\Phi(\cdot)$ имеет в u^* глобальный минимум на \mathbb{U} :

$$\Phi(u^*) = \inf_{oldsymbol{u} \in \mathbb{U}} \Phi(oldsymbol{u}).$$

Функцию $\Phi(u)$, для которой требуется найти

точки минимума или максимума, называют целевой функцией.

Если $\mathbb{U}=\mathbb{R}^n$, $n\geq 2$, то задача поиска локальных и глобальных минимумов состоит в указании всех возможных экстремумов функции многих переменных.

Если область определения $\mathbb{U} \subset \mathbb{X}$ состоит из функций, то есть если \mathbb{X} — это функциональ-

ное пространство, то для $\Phi(\cdot)$ используется термин "функционал".

Задачи минимизации функционалов относятся к сфере оптимального управления и динамического программирования.

Часто к задаче на поиск минимума функции многих переменных добавляются ограничения на искомую точку u^* , а также на

варьируемые функции u из \mathbb{U} . Дополнительные условия при этом формулируются в виде неравенств на координаты переменных задачи, например, следующим образом:

$$u_k^{(0)} \le u_k \le u_k^{(1)}, \quad k = 1, 2, 3, \dots, K,$$

или же в виде

$$F_i^{(0)} \le \Phi_i(u) \le F_i^{(1)}, \quad i = 1, 2, 3, \dots, I.$$

Здесь параметры $u_k^{(0)}$, $u_k^{(1)}$ — это заданные числа, $F_i^{(0)}$, $F_i^{(1)}$ — это также числа, а $\Phi_1(u)$, $\Phi_2(u)$, $\Phi_3(u)$, ..., $\Phi_I(u)$ — это заданные функции своих аргументов.

В этом случае говорят о поиске целевого минимума, или условного экстремума.

Если все функции $\Phi_i(u)$ из дополнительных ограничений линейны, то задачу поиска услов-

ного минимума относят к линейному программированию. Если же хотя бы одна из функций $\Phi_i(u)$ нелинейна, то это задача нелинейного программирования.

Обе эти задачи, а также задачу динамического программирования в теории оптимального управления, относят к математическому программированию. Отметим, что рассматриваются также аналогичные задачи на поиск максимума функции.

При этом полезно помнить, что если $\Phi(u)$ достигает в какой-то точке u^* своего максимального значения, то в этой же точке противоположная функция $(-\Phi(u))$ достигает минимального значения.

 2^0 . Задача минимизации значений функции тесно связана с задачей вычисления корней системы нелинейных алгебраических уравнений (СНАУ).

Пусть на подмножестве \mathbb{U} линейного пространства \mathbb{L}^n , $\dim \mathbb{L}^n = n$, решается система

нелинейных уравнений

$$egin{cases} f_1(u_1,u_2,u_3,\ldots,u_n) = 0, \ f_2(u_1,u_2,u_3,\ldots,u_n) = 0, \ f_3(u_1,u_2,u_3,\ldots,u_n) = 0, \ \ldots & f_n(u_1,u_2,u_3,\ldots,u_n) = 0. \end{cases}$$

Введем целевую функцию $\Phi(u)$, положив

$$\Phi(u_1, u_2, \dots, u_n) = \sum_{k=1}^n f_k^2(u_1, u_2, \dots, u_n).$$

Из определения следует, что

$$\Phi(u) \geq 0$$
 для любого $u \in \mathbb{U},$

причем равенство нулю здесь достигается в том и только том случае, когда u совпадает с каким-либо корнем u^* рассматриваемой системы (SE) алгебраических уравнений.

Если требуется найти минимум целевой функции $\Phi(u)$, у которой в области $\mathbb U$ имеются первые непрерывные производные, то этот минимум следует искать среди стационарных точек функции $\Phi(u)$.

Определение. Стационарная точка функции $\Phi(u)$ — это любая такая точка, в которой все частные производные функции $\Phi(u)$ обращаются в нуль.

Таким образом, стационарная точка u^* функции $\Phi(\cdot)$ — это некоторое решение следующей системы нелинейных алгебраических уравнений (СНАУ):

$$egin{cases} rac{\partial \Phi}{\partial u_1}(u_1,u_2,\ldots,u_n) = 0, \ rac{\partial \Phi}{\partial u_2}(u_1,u_2,\ldots,u_n) = 0, \ rac{\partial \Phi}{\partial u_n}(u_1,u_2,\ldots,u_n) = 0. \end{cases}$$

Не каждая стационарная точка функции является ее точкой минимума или максимума.

Пусть функция $\Phi(u)$ дважды непрерывно дифференцируема в области \mathbb{U} . Достаточное условие того, что стационарная точка доставляет минимум этой целевой функции дает следующая теорема.

Теорема. Функция $\Phi(u)$ достигает минимума в стационарной точке $u = u^*$, если в этой точке положительно определена следующая матрица Гессе из вторых производных:

$$G(u) \equiv \begin{pmatrix} \frac{\partial^2 \Phi}{\partial u_1^2} & \frac{\partial^2 \Phi}{\partial u_1 \partial u_2} & \frac{\partial^2 \Phi}{\partial u_1 \partial u_3} & \cdots & \frac{\partial^2 \Phi}{\partial u_1 \partial u_n} \\ \frac{\partial^2 \Phi}{\partial u_2 \partial u_1} & \frac{\partial^2 \Phi}{\partial u_2^2} & \frac{\partial^2 \Phi}{\partial u_2 \partial u_3} & \cdots & \frac{\partial^2 \Phi}{\partial u_2 \partial u_n} \\ \frac{\partial^2 \Phi}{\partial u_3 \partial u_1} & \frac{\partial^2 \Phi}{\partial u_3 \partial u_2} & \frac{\partial^2 \Phi}{\partial u_3^2} & \cdots & \frac{\partial^2 \Phi}{\partial u_3 \partial u_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \Phi}{\partial u_n \partial u_1} & \frac{\partial^2 \Phi}{\partial u_n \partial u_2} & \frac{\partial^2 \Phi}{\partial u_n \partial u_3} & \cdots & \frac{\partial^2 \Phi}{\partial u_n^2} \end{pmatrix}.$$

Отметим, что методы отыскания минимума целевой функции часто оказываются более эффективными, чем другие методы численного решения СНАУ.

 3^0 . Рассмотрим некоторые методы минимизации функции одной переменной.

Самый простой из них — метод перебора. Пусть на отрезке [a,b] числовой оси непре-

рывная функция $\Phi(u)$ унимодальна, то есть имеет единственную точку минимума u^* :

$$\Phi(u^*) = \min_{oldsymbol{u} \in [a,b]} \Phi(oldsymbol{u}).$$

Возьмем натуральное n и разобьем отрезок [a,b] на равные части с концами в точках

$$u_{m{i}}=a+irac{b-a}{n}, \hspace{0.5cm} i=0,1,2,\ldots,n.$$

Затем вычислим в узлах u_i значения $\Phi(\cdot)$, то есть найдем числа

$$\Phi(u_i) \equiv \Phi_i, \quad i = 0, 1, 2, \dots, n.$$

Среди всех Φ_i найдем то число Φ_i^* , для которого имеет место равенство

$$\Phi_i^* = \min \{\Phi_0, \Phi_1, \Phi_2, \dots, \Phi_n\}.$$

В качестве приближения к искомому минимуму возьмем теперь точку u_i^* , то есть по-

лагаем

$$u^* pprox u_i^*$$
 Π $\Phi(u^*) pprox \Phi_i^*$.

Для достаточно больших значений n погрешность $|u^*-u_i^*|$ не превосходит $\frac{b-a}{n}$. Иными словами, метод имеет первый порядок точности.

Метод перебора допускает естественное расширение на многомерный случай, когда надо

найти точку минимума функции в многомерном кубе

$$\mathbb{U} = \{(u_1, u_2, \dots, u_m) \mid a \leq u_i \leq b, \quad i = 1, 2, \dots, m\}.$$

Однако в случае поиска минимума функции многих переменных метод перебора неэкономичен.

Оценим, например, время нахождения этим методом минимума функции $\Phi(u)$ десяти переменных при условии, что для вычисления

значения $\Phi(\cdot)$ в точке требуется выполнить тысячу арифметических операций. Каждое ребро куба

$$\mathbb{U} = \{(u_1, \dots, u_{10}) \mid 0 \le u_i \le 1, \ i = 1, 2, \dots, 10\}.$$

разобьем на 10 равных частей. В соответствии с этим разбиением найдем $\approx 10^{10}$ узловых точек, лежащих в кубе и на его границе.

Пусть компьютер совершает в секунду 10^6 операций. Тогда для нахождения $\min_{u\in\mathbb{U}}\Phi(u)$ методом перебора потребуется около 10^7 секунд (то есть примерно 4 месяца).

Метод перебора становится эффективнее, если сначала найти минимум с грубым шагом, то есть при небольшом n, а уже после этого искать минимум с гораздо меньшим шагом, то есть при большом значении n, но

на существенно меньшем отрезке $[u_i,u_{i+1}],$ где, как предполагается, находится искомый минимум.