Máquina de Turing

Características del proceso de cálculo de una persona

- Se concentra en una porción restringida del papel
- Trabaja con un número finito de símbolos
- Puede cambiar la sección de papel en que se concentra (de acuerdo al símbolo que observa y a sus estado mental)
- Pasa por un número finito de estados mentales distinguibles
- Se asume que siempre contará con el papel suficiente para sus cálculos (se asume infinito)

Máquina de Turing

cinta de papel infinita

En cada instante, la máquina se encuentra en algún estado q_i , perteneciente al conjunto finito Q de todos los estados posibles

$$Q = \{q_0, q_1, q_2, \dots q_n\}$$

Exhibición de la Colección de Instrumentos Científicos Históricos de Harvard.

Sin embargo la Máquina de Turing no es una máquina real, sino una máquina abstracta (es un concepto matemático)

Configuración inicial

- La máquina siempre comienza en el estado inicial q_0
- Si existe una cadena de símbolos de entrada, la máquina comienza apuntando al primer símbolo de esta cadena.
- Si no existe una cadena de entrada escrita en la cinta, sólo hay símbolos "B" en cada celda de la misma.
- La cadena de entrada estará limitada por infinitos B a izquierda y derecha. Además no hay ningún símbolo B en medio de la cadena

Comportamiento de la máquina de Turing

- El comportamiento de la máquina está definido por una función de transición (programa)
- Dependiendo del símbolo en la celda actual y del estado corriente, la máquina efectúa en un único paso de computación las siguientes acciones
 - 1. Cambia de estado (o vuelve a elegir el actual)
 - 2. Escribe un símbolo en la celda actual, reemplazando lo que allí había (puede escribir el mismo símbolo que estaba)
 - 3. Mueve el cabezal a la izquierda o la derecha, exactamente una celda

Ejemplos

Estando en el estado q1, leyendo el símbolo c en la celda corriente, lo reemplaza con el símbolo a y mueve la cabeza a la derecha

Comportamiento de la máquina de Turing

RECAPITULANDO

- El programa de la MT no es un programa secuencial sino que es una función matemática de transición.
- La máquina trabaja haciendo "pattern matching", es decir busca en su programa cuál es la línea (transición) que debe aplicar según su estado actual y símbolo leído.
- Si no existe ninguna transición definida para el estado actual y símbolo leído la máquina se detiene.

Comportamiento de la máquina de Turing

Para pensar

¿Que ocurriría si más de una línea hiciese "pattern matching" en el mismo momento?

- ¿Cómo se imagina que actuaría la MT?
- ¿El programa de la MT seguiría siendo una función matemática?
- El modelo de MT no determinísticas (MTND) que veremos más adelante busca precisamente el efecto anterior. Además se define de tal forma que el programa sigue siendo una función matemática

Actividades-Resolver con MT

Supongamos cadenas formadas sólo por símbolos a y b.

- 1. Una MT que borra el primer símbolo de la cadena sólo si es un símbolo a
- 2. Una MT que borra el primer símbolo de la cadena
- 3. Una MT que borra todos los símbolos de la cadena
- 4. Una MT que borra los símbolos de la cadena en las posiciones pares
- 5. Una MT que hace zig-zag sobre la cadena de entrada recorriéndola hacia la derecha y luego hacia la izquierda indefinidamente.

Actividades-Resolver con MT

- 6. Escribir símbolos "1" a la derecha indefinidamente
- 7. Escribir símbolos "0" a la izquierda indefinidamente
- 8. Escribir la palabra "casa"
- Escribir indefinidamente "casa-casa-casa-casa" hacia la izquierda
- 10. Escribir "1" hacia la derecha y "0" hacia la izquierda en zigzag indefinidamente, es decir: va a derecha para escribir un 1 al final, y cambia el sentido hacia la izquierda para escribir un 0, y cambia el sentido hacia la derecha, así indefinidamente

Ejercicios

Ej. 1. Construir una máquina de Turing que agregue un bit de paridad a una secuencia binaria de entrada, para que la cantidad de "1" sea par. ($\Sigma = \{0,1\}$ y $\Gamma = \{0,1,B\}$)

Alfabetos (Conjuntos finitos de símbolos)

- Σ alfabeto de la entrada: símbolos con los que se forma la cadena de entrada
- Γ alfabeto de la cinta: símbolos que la máquina de Turing puede escribir en la cinta y por lo tanto también leer. Necesariamente Σ está incluido en Γ y B (celda en blanco) siempre pertenece a Γ

Solución Ej. 1

Ejercicios

Ej. 2. ¿Qué hacen las siguientes máquinas de Turing?

Respuesta

Las tres MT hacen lo mismo, borrar el contenido de la cinta, pero lo hacen de manera distinta

Ejercicios

- Ej. 3. Sumar 1 al número unario escrito en la cinta. En unario, el número n se representa como una cadena de n símbolos 1, el cero es una cadena vacía. (Σ={1} y Γ ={1,B})
- Ej. 4. Construir una máquina de Turing que haga un corrimiento a derecha de la cadena binaria en la cinta, marcando con un símbolo especial "#" la celda que correspondía al primer símbolo desplazado. (Σ={0,1} y Γ ={0,1,B,#})

Definición. Una Máquina de Turing de Cómputo se puede definir con una quíntupla

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0 \rangle$$

tal que:

Q es un conjunto finito de estados de M

 Σ es el alfabeto de la entrada

 Γ es el alfabeto de la cinta. $\Sigma \subset \Gamma$ y B $\in (\Gamma - \Sigma)$

 q_0 es el estado inicial de M ($q_0 \in Q$)

 δ es la función de transición de M.

Se define δ : Q x $\Gamma \rightarrow$ Q x Γ x {D, I},

D e I representan el movimiento del cabezal a derecha e izquierda respectivamente.

EL "resultado" del cómputo es lo que queda en la cinta

Definición. Una Máquina de Turing de Cómputo se puede definir con una quíntupla

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0 \rangle$$

El cómputo terminará cuando la máquina alcance una situación de indefinición, es decir que δ no esté definida para el símbolo y estado corrientes.

Modelo alternativo: MT con estado de detención q_d

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_d \rangle$$

Q es un conjunto finito de estados de M

Σ es el alfabeto de la entrada

 Γ es el alfabeto de la cinta. $\Sigma \subset \Gamma$ y B \in ($\Gamma - \Sigma$)

 q_0 es el estado inicial de M ($q_0 \in Q$)

q_d es el estado de detención de M (q_d ∉ Q)

 δ es la función de transición de M.

Se define δ : Q x $\Gamma \rightarrow$ Q \cup {q_d} x Γ x {D, I}

Necesariamente la máquina dejará de computar cuando llegue a q_d porque no puede aplicar δ (q_d no es *parte del dominio*)

Modelo alternativo: MT con estado de detención q_d

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_d \rangle$$

Para este caso (máquina de Turing de cómputo con estado de detención) se exige que la función δ esté completamente definida en todo su dominio Q x Γ

Ejemplo

 $M = \{q_0, q_1\}, \{0,1\}, \{0,1,B\}, \delta, q_0, q_d > 0$

Grafo de δ

Ejemplo

$$M = \{q_0, q_1\}, \{0,1\}, \{0,1,B\}, \delta, q_0, q_d > 0$$

Notación funcional de δ

$$δ$$
: Q x $Γ$ → Q∪{q_d} x $Γ$ x {D, I}

$$\delta(q_0,0) = (q_0,0,D)$$

$$\delta(q_0, 1) = (q_1, 1, D)$$

$$\delta(q_0,B) = (q_d,0,D)$$

$$\delta(q_1,0) = (q_1,0,D)$$

$$\delta(q_1, 1) = (q_0, 1, D)$$

$$\delta(q_1,B) = (q_d,1,D)$$

Denotaremos $s_1 s_2 \dots q_s_i \dots s_n$ a la configuración o descripción instantánea de la MT M que indica:

El contenido de la cinta es

$$...BBBs_1s_2...s_i...s_nBBB$$
 ...

- El estado actual de M es q
- El cabezal se encuentra barriendo el símbolo s_i

Denotaremos $s_1 s_2 \dots q_s_i \dots s_n$ a la configuración o descripción instantánea de la MT M que indica:

El contenido de la cinta es

$$...BBBs_1s_2...s_i...s_nBBB$$
 ...

- El estado actual de M es q
- El cabezal se encuentra barriendo el símbolo s_i

Denotaremos $s_1 s_2 \dots q_{s_i} \dots s_n$ a la configuración o descripción instantánea de la MT M que indica:

El contenido de la cinta es

$$...BBBs_1s_2...s_i...s_nBBB$$
 ...

- El estado actual de M es q
- El cabezal se encuentra barriendo el símbolo s_i

Denotaremos $s_1 s_2 \dots q_s_i \dots s_n$ a la configuración o descripción instantánea de la MT M que indica:

El contenido de la cinta es

...
$$BBBs_1s_2...s_i...s_nBBB$$
 ...

- El estado actual de M es q
- El cabezal se encuentra barriendo el símbolo si

Denotaremos $s_1 s_2 \dots q_s_i \dots s_n$ a la configuración o descripción instantánea de la MT M que indica:

El contenido de la cinta es

$$...BBBs_1s_2...s_i...s_nBBB$$
 ...

- El estado actual de M es q
- El cabezal se encuentra barriendo el símbolo s_i

Movimiento o Paso de una MT

Movimiento de Cómputo/Computación:

- La expresión C₁ | M C₂ indica que la máquina de Turing M pasa en un solo movimiento o paso, de la configuración C₁ a la configuración C₂.
- La expresión C₁ +* C₂ indica que la máquina de Turing M pasa en cero o más pasos de C₁ a C₂.
- Traza: Secuencia de movimientos

Traza, Ejemplo

Para la MT M del grafo, con la entrada 100101

 $q_0 100101 \mid_M 1q_1 00101 \mid_M 10q_1 0101 \mid_M 100q_1 101 \mid_M$ $1001q_0 01 \mid_M 10010q_0 1 \mid_M 100101q_1 B \mid_M 1001011q_d B$