CS3243 Tutorial 8

Eric Han

Oct 25, 2022

Annoucements

- 1. Assignment 6 scores are now on Luminus.
- $2. \ Highly \ recommended \ to \ send \ in \ your \ teaching \ feedback \ I \ appreciate \ it \ greatly!$

Student Feedback on Teaching (SFT)

Feedback is optional but highly encouraged, access here: https://es.nus.edu.sg/blue/

- [Tutorial Feedback] Your feedback is important to me, and will be used to improve my teaching.
 - If I have helped your learning in any way, your positive feedback will be an encouragement to me.
 - If you find your learning can be enhanced by some action on my part, that feedback will be used to improve my teaching.
- [Module Feedback] Your feedback will be used to improve the module.
- Feedback is confidential to the university and anonymous to us.
- Avoid mixing the feedback; ie. project feedback to tutorial feedback.

Past student feedback had been used to improve teaching; ie. Telegram access to provide faster feedback. I would greatly appreciate your feedback, especially this is my first time teacing AI.

Previously from T07, Q3

Given the following logical statements, use truth-table enumeration to show that $KB \models \alpha$. In other words, write down all possible true/false assignments to the variables, the ones for which KB is true and the one for which α is true, and see whether one is a subset of the other.

a.
$$KB = (x_1 \lor x_2) \land (x_1 \implies x_3) \land \neg x_2, \quad \alpha = x_3 \lor x_2$$

b.
$$KB = (x_1 \lor x_3) \land (x_1 \implies \neg x_2), \quad \alpha = \neg x_2$$

Recap

What does $KB \models \alpha$ mean?

4

Previously from T07, Q3

Given the following logical statements, use truth-table enumeration to show that $KB \models \alpha$. In other words, write down all possible true/false assignments to the variables, the ones for which KB is true and the one for which α is true, and see whether one is a subset of the other.

a.
$$KB = (x_1 \lor x_2) \land (x_1 \implies x_3) \land \neg x_2, \quad \alpha = x_3 \lor x_2$$

b.
$$KB = (x_1 \lor x_3) \land (x_1 \implies \neg x_2), \quad \alpha = \neg x_2$$

Recap

What does $KB \models \alpha$ mean?

- When KB is true $\implies \alpha$ is true
- Use resolution algorithm

Answers

In order to show that $KB \models \alpha$ we need to show that whenever KB is true, so is α .

x_1	x_2	x_3	KB	α
True	True	True	False	True
True	True	False	False	True
True	False	True	True	True
True	False	False	False	False
False	True	True	False	True
False	True	False	False	True
False	False	True	False	True
False	False	False	False	False

Figure 1: T07 Q3a Answer - $KB \models \alpha$

x_1	x_2	x_3	KB	α
True	True	True	False	False
True	True	False	False	False
True	False	True	True	True
True	False	False	True	True
False	True	True	True	False
False	True	False	False	False
False	False	True	True	True
False	False	False	False	True

Figure 2: T07 Q3b Answer $KB \not\models \alpha$

Use resolution, without using truth tables (eg. part a)

- $KB = (x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (\neg x_2)$

Assignment Question; Also solve this as bonus!

Hint

We didn't specify the order so take the fastest and most direct path.

Please dont go in circles!

Given inference algorithm \mathcal{A} and knowledge base KB with variables x_1, \dots, x_n ; proof that it is sound, $KB \models_{\mathcal{A}} \alpha \implies KB \models \alpha$.

Let M(q) be the set of all truth assignments to variables for which logical formula q is true.

Recap

- What is a KB?
- What does entailment $KB \models \alpha$ mean?
- What is inference $KB \models_{\mathcal{A}} \alpha$?

Further understanding of M(.)

 $KB = (a \lor b) \land (\neg a \lor c)$, which resolves to $b \lor c$. Entailment does not mean equivalence!

Table 1: Showcase of $M(KB) \subseteq M(b \lor c)$

а	b	С	$b \lor c$	KB
1	1	1	1	1
1	1	0	1	0
1	0	1	1	1
1	0	0	0	0
0	1	1	1	1
0	1	0	1	1
0	0	1	1	0
0	0	0	0	0

Answer

Assume wlog, KB clauses are in CNF and $T \in \{1,0\}^n$ is any satisfying truth assignment for KB. A obtains α after a series of R resolution operations.

Induction case

Let KB^r to be the set of resolvents reached from KB after r steps. Let $p \lor x_i$ and $q \lor \neg x_i$ to be 2 clauses in KB^r . The resolution operation will yield $p \lor q$ which is appended to create KB^{r+1} .

Truth assignment T will satisfy both $(p \lor x_i) \land (q \lor \neg x_i)$:

- If x_i true, q must be true
- If x_i false, p must be true

Hence, $p \lor q$ must be true for any T; which means $M(KB) \subseteq M(p \lor q)$.

So, at R step, it will produce $M(KB) \subseteq M(\alpha)$ which completes the proof $KB \models \alpha$.

k-CNF formula is one where each clause contains at most k literals. Show that every k-CNF formula can be converted to a 3-CNF formula.

Recap

- What is the resolution algorithm?
- How can we run it 'in the other direction'?

Answer

All we need to do is to come up with an algorithm to convert k-CNF to 3-CNF.

Specifically, we need to convert a clause from k terms 3-CNF:

- 1. Input clause $C = (\ell_1 \vee \cdots \vee \ell_q)$
- 2. If q > 3, 2.1 Invent new variable v_i
 - 2.1 Invent new variable y_i
 - 2.2 Add $(y_i \lor \ell_1 \lor \ell_2)$ to 3-CNF clauses
 - 2.3 Add $C' = (\neg y_i \lor \ell_3 \lor \cdots \lor \ell_q)$ to k-CNF clauses
- 3. If q <= 3, add $(\ell_1 \lor \cdots \lor \ell_q)$ to 3-CNF clauses

Algorithm Terminates

For every a set of k-CNF, we pick a clause C:

- Maximally reduce the k-CNF clauses by 1.
- Minimally reduce the k-CNF clauses by 0.
 - Reduce the clause C from length of q to C' of length q-1.

It will reduce clause C eventually to a size of 3 and then reduce number of clauses by 1.

Algorithm Correctness, via induction

Assuming that $T \in \{1,0\}^n$ is any solution to C. In every step with C,

- If q > 3,
 - If $(\ell_1 \lor \ell_2)$ is true and $(\ell_3 \lor \cdots \lor \ell_q)$ is false $\implies y_i$ is true
 - If $(\ell_1 \lor \ell_2)$ is false and $(\ell_3 \lor \cdots \lor \ell_q)$ is true $\implies y_i$ is false
 - Otherwise it does not matter.
- If q <= 3, T also satisfies $(\ell_1 \vee \cdots \vee \ell_q)$.

At every step, we can find an assignment to y_i such that the solution is preserved.

Show that the resolution procedure for CNF formulas described in class yields a polynomial time algorithm for deciding whether a 2-CNF formula is satisfiable.

Recap

- What is resolution?
- How does it decide satisfiablity?

Answer

Each 2-CNF can be

- 1. Rewritten to an implication, ie. $a \lor \neg b \equiv b \implies a$
- 2. Resolved with
 - 2.1 Literal to another Literal
 - 2.2 2-CNF to another 2-CNF
 - 2.2.1 Transitivity, ie. $(a \lor \neg b \equiv b \implies a) \land (\neg c \lor b \equiv \neg c \implies b) \equiv \neg c \implies a$
 - 2.2.2 Useless clauses, ie. $b \lor \neg b$

Lemma 1.

If there exists a cycle that connects a node x with a node $\neg x$ then the CNF formula is not satisfiable.

Note in class, we consider a weaker version of the lemma 1 that reaches $\neg x$ from x without considering cycles then x is not a possible assignment; ie. x back to $\neg x$.

Key insight from Lemma 1 - each implication does not give a choice;

For example:

- 1. Lets consider both cases: $a \implies b$; $a \implies \neg b$
- 2. Contrapositive $\neg b \implies \neg a; b \implies \neg a$

Figure 3: Impossible assignment!

When a, we do not need to consider both b and $\neg b!$ This is the part where the combinatorial explosion is eliminated.

Algorithm Sketch

- 1. For example, $(a \lor \neg b) \land (c \lor d) \land (b \lor \neg c) \land (\neg a \lor d)$ yields
- 2. $[O(n^2)]$ $b \implies a; \neg c \implies d; c \implies b; a \implies d$ and
- 3. $[O(n^2)]$ the contrapositive $\neg a \implies \neg b; \neg d \implies c; \neg b \implies \neg c; \neg d \implies \neg a$

Figure 4: Implication Graph of the statement.

The implication graph is directional - to check that $\neg d$ is not a possible assignment, check that it can reach d in the graph; Choose 2n literals (+ve, -ve) to start from and each literal can take implications n^2 . There are no further choice for every implication.

Bonus - Further Understanding - P=NP?

- 2-SAT is in P
- 3-SAT is NP-Complete
 - Written as $a \implies b \lor c$, the possiblity of $b \lor c$ causes combinatorial explosion.

If you can prove that

- a P time algorithm to convert 3-SAT to 2-SAT.
- or no P time algorithm can exist.

Millennium Prize: https://www.claymath.org/millennium-problems/p-vs-np-problem