INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4538 Dual retriggerable precision monostable multivibrator

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT4538

FEATURES

- · Separate reset inputs
- · Triggering from leading or trailing edge
- · Output capability: standard
- I_{CC} category: MSI
- · Power-on reset on-chip

GENERAL DESCRIPTION

The 74HC/HCT4538 are high-speed Si-gate CMOS devices and are pin compatible with "4538" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4538 are dual retriggerable-resettable monostable multivibrators. Each multivibrator has an active LOW trigger/retrigger input ($n\overline{A}_0$), an active HIGH

trigger/retrigger input (nA₁) , an overriding active LOW direct reset input (n \overline{R}_D), an output (nQ) and its complement (n \overline{Q}), and two pins (nC_{TC} and nRC_{TC}) for connecting the external timing components C_t and R_t. Typical pulse width variation over temperature range is \pm 0.2%.

The "4538" may be triggered by either the positive or the negative edges of the input pulse. The duration and accuracy of the output pulse are determined by the external timing components C_t and R_t . The output pulse width (T) is equal to $0.7 \times R_t \times C_t$. The linear design techniques guarantee precise control of the output pulse width.

A LOW level at $n\overline{R}_{D}$ terminates the output pulse immediately.

Schmitt-trigger action in the trigger inputs makes the circuit highly tolerant to slower rise and fall times.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIBOL	PARAIVIETER	CONDITIONS	нс	нст	CINIT
t _{PHL} / t _{PLH}	propagation delay $n\overline{A}_0$, nA_1 to nQ , $n\overline{Q}$	C _L = 15 pF; V _{CC} = 5 V	27	30	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per multivibrator	notes 1 and 2	136	138	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$\begin{split} P_D &= C_{PD} \times V_{CC}{}^2 \times f_i + \sum \left(C_L \times V_{CC}{}^2 \times f_o \right) + \\ &+ 0.48 \times C_{EXT} \times V_{CC}{}^2 \times f_o + D \times 0.8 \times V_{CC} \text{ where:} \end{split}$$

f_i = input frequency in MHz

 f_o = output frequency in MHz

$$\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

D = duty factor in %

C_{EXT} = timing capacitance in pF

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT4538

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 15	1C _{TC} , 2C _{TC}	external capacitor connections
2, 14	1RC _{TC} , 2RC _{TC}	external resistor/capacitor connections
3, 13	$1\overline{R}_D$, $2\overline{R}_D$	direct reset inputs (active LOW)
4, 12	1A ₁ , 2A ₁	trigger inputs (LOW-to-HIGH, edge-triggered)
5, 11	$1\overline{A}_0$, $2\overline{A}_0$	trigger inputs (HIGH-to-LOW, edge-triggered)
6, 10	1Q, 2Q	pulse outputs
7, 9	1\overline{Q}, 2\overline{Q}	complementary pulse outputs
8	GND	ground (0 V)
16	V _{CC}	positive supply voltage

74HC/HCT4538

components R_t and C_t.

FUNCTION TABLE

	INPUT	OU	TPUTS	
$n\overline{A}_0$	nA ₁	$n\overline{R}_D$	nQ	nQ
\	L	Н		1
Н	1	Н		
Х	Х	L	L	Н

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

↑ = LOW-to-HIGH transition

 \downarrow = HIGH-to-LOW transition

= one HIGH level output pulse = one LOW level output pulse

74HC/HCT4538

Dual retriggerable precision monostable multivibrator

74HC/HCT4538

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°		TES	T CONDITIONS					
CVMDOL	DADAMETED				74HC	;							
SYMBOL	PARAMETER		+25		−40 t	o +85	-40 to	o +125	UNIT	V _{CC}	OTHER		
		min.	typ.	max.	min.	max.	min.	max.		(,,			
t _{PLH}	propagation delay $n\overline{A}_0$, nA_1 to nQ		85 31 25	265 53 45		330 66 56		400 80 68	ns	2.0 4.5 6.0	Fig.8		
t _{PHL}	propagation delay nA ₀ , nA ₁ to nQ		83 30 24	265 53 45		330 66 56		400 80 68	ns	2.0 4.5 6.0	Fig.8		
t _{PHL}	propagation delay nR _D to nQ		80 29 23	265 53 45		330 66 56		400 80 68	ns	2.0 4.5 6.0	Fig.8		
t _{PLH}	propagation delay nR _D to nQ		83 30 24	265 53 45		340 68 58		400 80 68	ns	2.0 4.5 6.0	Fig.8		
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.8		
t _W	nA pulse width LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8		
t _W	nA ₁ pulse width HIGH	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8		
t _W	nR _D pulse width LOW	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8		
t _W	nQ, nQ pulse width HIGH or LOW	0.63	0.70	0.77	0.602	0.798	0.595	0.805	ms	5.0	$Fig.8; \\ R_t = 10 \text{ k}\Omega; \\ C_t = 0.1 \mu\text{F}$		
t _{rem}		35 7 6	6 2 2		45 9 8		55 11 9		ns	2.0 4.5 6.0	Fig.8		

Dual retriggerable precision monostable multivibrator

74HC/HCT4538

						TEST CONDITIONS					
SYMBOL	PARAMETER					UNIT					
STWIBUL	PARAMETER		+25		−40 t	o +85	–40 to	+125	UNII	V _{CC}	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{rt}	retrigger time nA ₀ , nA ₁		455+X 80+X 55+X		-				ns	2.0 4.5 6.0	Fig.8 $X = C_{EXT} / (4.5 \times V_{CC})$
R _{EXT}	external timing resistor	10 2	3317	1000 1000					kΩ	2.0 5.0	(
C _{EXT}	external timing capacitor	no limits								5.0	

NON-STANDARD DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL					T _{amb} (°C)		TE	EST CONDITIONS			
	PARAMETER				74HC	UNIT			OTHER			
	PARAMETER		+25		−40 t	o +85	-40 to	+125	UNII	V _{CC} (V)	V _I OTHER (V)	
		min.	typ	max.	min.	max.	min.	max.		(-,	(-,	
±l _l	input leakage current nRC _{EXT}			0.5		5.0		10.0	μА	6.0	2.0 or GND	V _{CC} or GND; note 1

Note

1. This measurement can only be carried out after a trigger pulse is applied.

Dual retriggerable precision monostable multivibrator

74HC/HCT4538

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

 I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$n\overline{\underline{A}}_0$, nA_1	0.50
$n\overline{R}_D$	0.65

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER				T _{amb} (°	C)				TE	EST CONDITIONS	
SYMBOL					74HC	Т			UNIT		Voc OTHER	
STIMBUL	PARAMETER		+25		−40 t	o +85	-40 to	+125	UNII	V _{CC}	OTHER	
		min.	typ.	max.	min.	max.	min.	max.		(' /		
t _{PLH}	propagation delay nA ₀ , nA ₁ to nQ		35	60		75		90	ns	4.5	Fig.8	
t _{PHL}	propagation delay $n\overline{A}_0$, nA_1 to $n\overline{Q}$		35	60		75		90	ns	4.5	Fig.8	
t _{PHL}	propagation delay nR _D to nQ		35	60		75		90	ns	4.5	Fig.8	
t _{PLH}	propagation delay nR _D to nQ		35	60		75		90	ns	4.5	Fig.8	
t _{THL} / t _{TLH}	output transition time		7	15		19		21	ns	4.5	Fig.8	
t _W	nA ₀ pulse width LOW	20	11		25		30		ns	4.5	Fig.8	
t _W	nA₁ pulse width HIGH	16	5		20		24		ns	4.5	Fig.8	
t _W	nR _D pulse width LOW	20	11		25		30		ns	4.5	Fig.8	
t _W	nQ, nQ pulse width HIGH or LOW	0.63	0.70	0.77	0.602	0.798	0.595	0.805	ms	5.0	Fig.8; R _t = 10 kΩ; C _t = 0.1 μF	
t _{rem}	removal time \overline{R}_D to $n\overline{A}_0$, $nA1$	7	2		9		11		ns	4.5	Fig.8	
t _{rt}	retrigger time nA ₀ , nA ₁	_	80+X		_		_		ns	4.5	Fig.8 $X = C_{EXT} / (4.5 \times V_{CC})$	
R _{EXT}	external timing resistor	2		1000					kΩ	5.0		
C _{EXT}	external timing capacitor		no limits									

Dual retriggerable precision monostable multivibrator

74HC/HCT4538

NON-STANDARD DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

		T _{amb} (°C)								1	TEST CONDITIONS		
SYMBOL	PARAMETER	74HCT	UNIT			OTHER							
	PARAMETER		+25		-40 t	to +85	-40 to	o +125	UNII	V _{CC}	(V)	OTHER	
		min.	typ	max.	min.	max.	min.	max.		(-)	(-,		
±lı	input leakage current nRC _{EXT}			0.5		5.0		10.0	μΑ	5.5	2.0 or GND	V _{CC} or GND; note 1	

Note

1. This measurement can only be carried out after a trigger pulse is applied.

AC WAVEFORMS

Fig.8 Waveforms showing the input $(nA_1, n\overline{A}_0, n\overline{R}_D)$ to output $(nQ, n\overline{Q})$ propagation delays, the output transition times, the input and output pulse widths, the removal time from direct reset $(n\overline{R}_D)$ to input $(nA_1, n\overline{A}_0)$, and the input retrigger time.

74HC/HCT4538

APPLICATION INFORMATION

Dual retriggerable precision monostable multivibrator

74HC/HCT4538

Power-down considerations

A large capacitor (C_X) may cause problems when powering-down the monostable due to the energy stored in this capacitor. When a system containing this device is powered-down or a rapid decrease of V_{CC} to zero occurs, the monostable may sustain damage, due to the capacitor discharging through the input protection diodes. To avoid this possibility, use a damping diode (D_X) preferably a germanium or Schottky type diode able to withstand large current surges and connect as shown in Fig.11.

Dual retriggerable precision monostable multivibrator

74HC/HCT4538

Dual retriggerable precision monostable multivibrator

74HC/HCT4538

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.