O'REILLY[®]

Analyzing AlgorithmsA Brief Introduction

Algorithm Formalities

- Definition of an algorithm
 - An algorithm describes the computational steps to compute an exact answer for a single problem instance on a sequential deterministic computer
- How to compare two different algorithms that solve the same problem?

Algorithm Formalities

- Focus on behavior inherent in the algorithm
 - Abstract away from a specific implementation...
 - And programming language used…
 - And computing platform on which code executes (i.e., RAM, CPU clock speed)
- In long run, these differences do not matter

Asymptotic Analysis

- Characterize time complexity
 - Time for algorithm to complete
 - Calculate time as function t(n) relating the number of steps to problem instance size, n
- Characterize space complexity
 - Amount of computer storage required
 - Determine required space s(n) in similar fashion

Algorithm Cost Model

- From algorithm description one can determine total number of steps based on n
 - Sequential, deterministic computing platform
- Assume a constant cost to every operation
 - Enables using t(n) to estimate execution time

Small Algorithm Example SUM NUMBERS

sum = sum + d

This algorithm uses **n** addition operations regardless of how data is stored SUM n NUMBERS

> **Time complexity:** *t(n)* is directly proportional to *n*

- Evaluate t(n) as problem size n doubles
 - The true measure for understanding performance
 - Goal to determine **order of growth** or O(f(n))
 - A formal treatment of O(f(n)) can be found in textbooks

- Execution times of SUM reveal correlation between n and t(n)
 - Sum exhibits linear behavior
 - SUM is O(n)

- Execution times of SUM reveal correlation between n and t(n)
 - For sufficiently large values of n, t(n) is at most c*n where c is some fixed constant
 - In theory, don't need to determine c
 - Here what matters is f(n) = n

Performance Computation

Add 2^n random digits for n = 1 to 16

```
scores = {}
trial = 1
while trial <= 16:
    numbers = [random.randint(1,9) for i in range(2**trial)]
    now = time()
    sum = 0
    for d in numbers:
        sum = sum + d
    done = time()
    scores[trial] = (done-now)
    trial += 1
```

Review code to see expectation of O(n) behavior

Consider Alternate Problem

Sort 2^n random digits for n = 1 to 16

```
scores = {}
trial = 1
while trial <= 16:
    numbers = [random.randint(1,9) for i in range(2**trial)]
    now = time.clock()
    numbers.sort()
    done = time.clock()

scores[trial] = (done-now)
    trial += 1</pre>
```

Unclear what performance expectation you should have, since code uses built-in Python *sort()* function

Compare Three Execution Times

SORT N RANDOM NUMBERS $(1 - 2^n)$ SORT N RANDOM DIGITS (1 - 9)SUM N RANDOM DIGITS (1 - 9)

Behavior of SORT N RANDOM NUMBERS looks different. Its performance seems to accelerate, but at what rate?

Asymptotic Growth Defined By Family

		Linear		Quadratic			Exponential
n	log(n)	n	n log(n)	n²	n³	n ⁴	2 ⁿ
2	1	2	2	4	8	16	4
4	2	4	8	16	64	256	16
8	3	8	24	64	512	4096	256
16	4	16	64	256	4096	65536	65536
32	5	32	160	1024	32768	1048576	4.29E+09
64	6	64	384	4096	262144	16777216	1.84E+19
128	7	128	896	16384	2097152	2.68E+08	3.4E+38
256	8	256	2048	65536	16777216	4.29E+09	1.16E+77
512	9	512	4608	262144	1.34E+08	6.87E+10	1.3E+154
1024	10	1024	10240	1048576	1.07E+09	1.1E+12	∞
2048	11	2048	22528	4194304	8.59E+09	1.76E+13	∞
4096	12	4096	49152	16777216	6.87E+10	2.81E+14	∞
8192	13	8192	106496	67108864	5.5E+11	4.5E+15	∞
16384	14	16384	229376	2.68E+08	4.4E+12	7.21E+16	∞
32768	15	32768	491520	1.07E+09	3.52E+13	1.15E+18	∞

Performance Families

O(1)

O(log n)

O(n)

 $O(n \log(n))$

 $O(n^2)$

 $O(2^n)$

- Classify algorithm by "closest" performance family
 - Informally, select f(n) that is best match
 - For example, SUM <u>could</u> be described as O(2ⁿ) since its behavior doesn't exceed this growth
 - However, you <u>should always</u> choose family that comes closest

Problem Instances

- Best Case
 - Those problem instances that require the least work
- Worst Case
 - Those problem instances that require the most work

Problem Instances

- Average Case
 - Vast majority of remaining instances describe how the algorithm will perform "on average"
- Example: Sorting n numbers
 - Best Case: numbers are already sorted
 - Worst Case: numbers are in reverse order
 - Average Case: numbers are "randomly" distributed

Performance

SORT n RANDOM NUMBERS classified as O(n log(n))

- Best-case of O(n) when numbers already sorted
- Sorting *n* random digits is still classified O(*n* log (*n*))
 - It has a smaller constant c than performance of sorting n random numbers

Analysis Using Decomposition

Does X have a duplicate

```
def hasDuplicates(X):
  for i in range(len(X)-1):
    for j in range(i+1,len(X)):
        if X[i] == X[j]:
        return True
  return False
```

Nested **for** loop defines $O(n^2)$ structure. **if** statement executes

$$\frac{n*(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

times, resulting in $O(n^2)$ because constant is $\frac{1}{2}$. Ignore remaining as it is overpowered by the n^2 term

Analysis Using Composition

Does X have duplicate or None

```
def hasDuplicateOrNone(X):
  for i in range(len(X)):
    if X[i] == None:
      return True

  for i in range(len(X)-1):
    for j in range(i+1,len(X)):
      if X[i] == X[j]:
      return True
  return False
```

Two sequential code blocks may exhibit different O() behavior

- O() behavior of their composition is the more powerful function
- First **for** loop exhibits O(n) behavior
- Second block exhibits $O(n^2)$

Performance is classified as $O(n^2)$ not $O(n^2+n)$

Summary O(f(n)) is shorthand

- O(1) reflects fixed performance independent of problem size n
- O(log n) is extremely efficient
 - As problem size doubles, you only need a fixed number of extra steps

Summary O(f(n)) is shorthand

- ullet O(n) is best polynomial efficiency
 - Performance directly correlates to size of problem instance
- $O(n^2)$ and higher reflect a sobering reality
 - As problem size doubles, algorithm must work four times as hard
- $O(2^n)$ is exponential time and reflects brute force

Summary O(f(n)) is shorthand

- O(n log (n)) is the "sweet spot" for algorithms
 - Many naïve algorithms are $O(n^2)$
 - Using the right data structure and elegant design, these can be converted into more efficient O(n log(n))