Quantum Games

- D. Game Theory

 D. Game Theory

 D. Crush course GT (Prisoner's Dilumna

 DEWL-construction

 (Eisert Wilhens Lewenstein)
- (2) Non-bod games (CHSH, Parity/GHZ, Magic Square)
- 3 Q. video game

Q. Game Theory

Game = A situation between 2 or more players, each with their own strategy (set of moves) and their own payoff.

Normal form game: (N, S, U)

players

U = U, x U, x... xUN

S = S, x S, x... x SN

A, B, C, ...)

Best response: Given other player! fixed strategies, best resp = strategy that maximizes payoff.

(Dominant strategy)

Nash equilibrium: A set of strategies s.t. no player wants to change their strategy.

Prisoner's Dilemna

$$D = dominant$$

$$-D (D, D) = NE$$

EWL-contraction for Q. Prisoner's Dilemma.

$$\hat{J} | 00 \rangle = | 00 \rangle + i | 11 \rangle \left(\frac{1}{\sqrt{2}} \right)$$

$$\left(\hat{J} = e^{i \frac{\pi}{4} \hat{X} \otimes \hat{X}} \right)$$

$$- D \text{ Exercise: when }$$

$$|\psi_{f}\rangle = \hat{J}^{\dagger} \left(\hat{U}_{A} \otimes \hat{U}_{B} \right) \hat{J} |CC\rangle$$

$$\hat{U}(\phi, \theta) = \begin{pmatrix} e^{i\phi} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & e^{-i\phi} \cos \frac{\theta}{2} \end{pmatrix}$$

$$\hat{U}_{c} = \hat{I} : | oo \rangle$$

$$\hat{D}_{a} = i\hat{y} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$| \langle D_{a} | \psi_{p} \rangle |^{2}$$

$$| \langle D_{a} | \psi_{p}$$

$$\frac{\hat{J}(00)}{\hat{J}(00)} = |00\rangle + i|11\rangle$$

$$\frac{\hat{J}(00)}{\hat{J}(00)} = |11\rangle + i|00\rangle$$

$$(0,b|=1,0) \qquad (0,b) = ...$$

$$U_{B} = I \qquad U_{B} = i\hat{y} \qquad U_{B} = ...$$

$$C \qquad D \qquad Q$$

$$C \qquad (3,3) \qquad (0,7) \qquad (1,1)$$

$$D \qquad (5,0) \qquad (1,1) \qquad (0,5)$$

$$Q \qquad (1,1) \qquad (5,0) \qquad (3,3) \qquad ith)$$

$$= \int_{C} \left(i \log + i$$

Non-local games

A non-local game is a cooperative game between two or more players, each of which receives an input based on which they produce an output; they win if their output, satisfy a condition

CHSH: $a \oplus b = \times \wedge y$ $(x,y,a,b, \in \{0,1\})$ sum and z f AND

Parity: a & b & c = x y y v &

Parity:
$$a \oplus b \oplus c = x \vee y \vee t$$

Referce: $(0,0,0), (1,1,0), (1,0,1), (0,1,1)$
 $\times y^2$
 $a \oplus b \oplus c = 0$

April if $a \oplus b \oplus c = 1$

output if A gets x = 0 as input

GHZ:
$$\frac{1}{\sqrt{\Sigma}} (|000\rangle + |111\rangle)$$

if input = 0, measure in \hat{X} (apply $\hat{H}\hat{S}$)

=1, measure in \hat{Y} (apply $\hat{H}\hat{S}$)

 $\hat{H}|0\rangle = |0\rangle + |1\rangle$
 $|000\rangle \longrightarrow (|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle) = |000\rangle + |001\rangle + |010\rangle + |11\rangle$
 $|111\rangle \longrightarrow = (|0\rangle - |1\rangle) \otimes (|0\rangle - |1\rangle) - |11\rangle$
 $|111\rangle \longrightarrow = (|0\rangle - |1\rangle) \otimes (|0\rangle + |10\rangle + |10\rangle$

GHz in X -basis: $|000\rangle + (|10\rangle + |10\rangle + |01\rangle$