

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 08: Busca em Grafos(Profundidade)

Professor Pablo Soares

2020.1

Sumário

- 1. Estruturas utilizadas para armazenar um grafo(última aula)
 - a. Matriz de Adjacência;
 - b. Matriz de Incidência;
 - c. Lista de Adjacência.
- 2. Busca em Grafos
 - a. Objetivos;
 - b. Aplicações;
 - c. Algoritmos de Busca.
 - i. Profundidade;
 - ii. Largura.

Objetivos de uma Busca

- 1. Explorar todos os vértices e arestas do grafo;
- 2. Identificar características do grafo;
 - a. ciclo, conexo, grau de cada vértice etc;
- 3. Determinar quais vértices podem ser alcançados a partir de um vértice inicial;

Aplicações

- 1. Resolução de problemas enumerativos;
 - a. Xadrez, Damas etc.
- 2. Melhor organização de grupos;
 - a. Seleção Brasileira.
- 3. Função "localizar arquivos" no sistemas operacional
- 4. Dentre outras;

Busca em Grafos

- 1. Algoritmos Clássicos
 - a. Busca em Profundidade;
 - b. Busca em Largura;
- 2. Com adaptações:
 - a. Árvore Geradora Mínima (AGM);
 - b. Caminho Mínimo;
 - c. Componentes Fortemente Conectados;
 - d. Ordenação Topológica;
 - e. Identificação de Ciclo.

- 1. Busca em Profundidade (*depth-first search DFS*)
 - a. Caminhar no grafo
 - b. Explorar todos os vértices e arestas
 - c. Núcleo
 - i. buscar, sempre que possível, mais fundo no grafo

d. Processo acaba quando visitar todos os vértices

1. Explorar um labirinto

- 1. Explorar um labirinto
 - a. Barbante
 - b. Giz→ marcação

- Explorar um labirinto
 - a. Barbante → avançar e voltar
 - b. Giz→ marcação

- 1. Como eu passo esses ingredientes para um computador?
 - a. Barbante \rightarrow pilha (push e backtrack)
 - b. $Giz \rightarrow vetor de cores$

- 1. Vetor de cores
 - a. <u>Vértice Branco</u>: Ainda não visitado....

b. <u>Vértice Cinza</u>: Visitado, mas seus adjacentes ainda não foram visitados;

c. <u>Vértice Preto</u>: Visitado, e todos seus adjacentes já foram visitados.

Legenda para descoberta e finalização

- / Vértice desconhecido
- a d/ Vértice encontrado
- C d/f Vértice encontrado, com fecho positivo totalmente visitado
- *vetor d*: marca o instante que o vértice a foi descoberto;
- *vetor f*: marca o instante que o fecho transitivo do vértice c foi totalmente visitado
 - ou seja, o vértice não possui mais vizinhos alcançáveis

Pseudocódigo Busca em Profundidade(Livro do Cormen)

```
DFS(G)
                                                 DFS VISIT(u)
1. para cada vértice u ← V[G]
                                                 1. cor[u] \leftarrow CINZA
        cor[u] ← BRANCO
                                                 2. mark \leftarrow mark + 1
    fimpara
                                                 3. d[u] \leftarrow mark
4. mark \leftarrow 0
                                                 4. para cada vértice v \in L.adj(u)
    para cada vértice u ← V[G]
                                                         se cor[v] = BRANCO
6.
        se cor[u] = BRANCO
                                                             DFS_VISIT(v)
            DFS VISIT(u)
                                                         fimse
        fimse
                                                      fimpara
    fimpara
                                                      cor[u] ← PRETO
Fim.
                                                 10. mark \leftarrow mark + 1
                                                 11. f[u] \leftarrow mark
                                                 Fim.
```


Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]
Dado um grafo G, temos a lista de todos os vértices...

```
DFS(G)
    para cada vértice u ← V[G]
       cor[u] ← BRANCO
    fimpara
   mark \leftarrow 0
   para cada vértice u ← V[G]
        se cor[u] = BRANCO
           DFS VISIT(u)
       fimse
    fimpara
Fim.
```


Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

DFS(G)

 $u \leftarrow a$

16

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

 $u \leftarrow b$

DFS(G)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

DFS(G)

```
    para cada vértice u ← V[G]
    cor[u] ← BRANCO
    fimpara
    mark ← 0
    para cada vértice u ← V[G]
    se cor[u] = BRANCO
    DFS_VISIT(u)
    fimse
    fimpara
```

 $u \leftarrow d$

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

 $u \leftarrow e$

DFS(G)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

u ← f

DFS(G)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

DFS(G)

- para cada vértice u ← V[G]
 cor[u] ← BRANCO
 fimpara
 mark ← 0
- 5. **para cada** vértice u ← V[G] 6. **se** cor[u] = BRANCO
- 7. DFS_VISIT(u)
- 8. fimse9. fimpara

Fim.

$$u \leftarrow g$$

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

DFS(G)

- para cada vértice u ← V[G]
- 2. $cor[u] \leftarrow BRANCO$
- 3. **fimpara**
- 4. $mark \leftarrow 0$
- 5. **para cada** vértice u ← V[G]
- 6. $\mathbf{se} \ cor[u] = BRANCO$
- 7. $DFS_VISIT(u)$
- 8. **fimse**
- 9. **fimpara** Fim.

$$u \leftarrow h$$

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 0

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

DFS(G)

para cada vértice u ← V[G]
cor[u] ← BRANCO
fimpara
mark ← 0
para cada vértice u ← V[G]
se cor[u] = BRANCO
DFS_VISIT(u)
fimse
fimpara

mark: 0

u **←c**

A cor do vértice **c** é BRANCA?

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]


```
DFS(G)

1. para cada vértice u \leftarrow V[G]

2. cor[u] \leftarrow BRANCO

3. fimpara

4. mark \leftarrow 0

5. para cada vértice u \leftarrow V[G]

6. se cor[u] = BRANCO

7. DFS_VISIT(u)

8. fimse
```

mark: 0 u ← **c**

Fim.

fimpara

Chamada da Função DFS VISIT(c)

DFS(G) para cada vértice u ← V[G] cor[u] ← BRANCO fimpara $mark \leftarrow 0$ para cada vértice u ← V[G] se cor[u] = BRANCO DFS_VISIT(u) fimse fimpara

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 0

Início DFS_VISIT(c)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 0

 $u \leftarrow c$

- 1. $cor[u] \leftarrow CINZA$
- 2. $mark \leftarrow mark + 1$
- 3. $d[u] \leftarrow mark$
 - . **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
- 6. DFS VISIT(v)
- . fimse
- 8. **fimpara**
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. f[u] ← mark Fim.

Colore c de cinza

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 0

 $u \leftarrow c$

- 1. $cor[u] \leftarrow CINZA$
- 2. $mark \leftarrow mark + 1$
- 3. $d[u] \leftarrow mark$
 - ^l. **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
- 6. DFS VISIT(v)
- 7. fimse
- 8. **fimpara**
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. f[u] ← mark Fim.

28

Marca o tempo de chegada de c

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 1

u **← c**

DFS VISIT(u)

- $cor[u] \leftarrow CINZA$
- mark ← mark + 1
- 3. $d[u] \leftarrow mark$
 - para cada vértice v ∈ L.adj(u)
- se cor[v] = BRANCO5.
- DFS VISIT(v)
- fimse
- fimpara
- cor[u] ← PRETO
- 10. $mark \leftarrow mark + 1$
- 11. $f[u] \leftarrow mark$ Fim.

Duas opções: **d** ou **g** vai depender da representação utilizada

mark: 1

 $u \leftarrow c$

- 1. $cor[u] \leftarrow CINZA$
- 2. mark ← mark + 1
- 3. $d[u] \leftarrow mark$
- 4. **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
- $0. \qquad DFS VISIT(v)$
- 7. fimse
- 8. **fimpara**
- 9. *cor[u]* ← *PRETO*
- 10. mark ← mark + 1
- 11. $f[u] \leftarrow mark$ Fim.

Escolheu **g** Chamada da Função DFS_VISIT(**g**)

DFS_VISIT(u)

1. $cor[u] \leftarrow CINZA$ 2. $mark \leftarrow mark + 1$ 3. $d[u] \leftarrow mark$ 4. $para\ cada\ v\'ertice\ v \in L.adj(u)$

 \mathbf{se} cor[v] = \mathbf{BRANCO} \mathbf{Se} \mathbf{DFS} _ $\mathbf{VISIT}(\mathbf{v})$

7. **fimse** 8. **fimpara**

9. $cor[u] \leftarrow PRETO$ 10. $mark \leftarrow mark + 1$

11. $f[u] \leftarrow mark$ Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 1

u **←c**

v **←g**

31

colore g de cinza

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 1

u **←g**

- 1. $cor[u] \leftarrow CINZA$
- 2. $mark \leftarrow mark + 1$
- 3. $d[u] \leftarrow mark$
 - ^l. **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
- 6. DFS VISIT(v)
- 7. fimse
- 8. **fimpara**
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. f[u] ← mark Fim.

Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 2

 $u \leftarrow g$

- $cor[u] \leftarrow CINZA$
- mark ← mark + 1
- 3. $d[u] \leftarrow mark$
 - para cada vértice v ∈ L.adj(u)
- se cor[v] = BRANCO5.
- DFS VISIT(v)
- fimse
- fimpara
- cor[u] ← PRETO
- 10. $mark \leftarrow mark + 1$
- 11. $f[u] \leftarrow mark$

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 2

- 1. $cor[u] \leftarrow CINZA$
- . mark ← mark + 1
- 3. $d[u] \leftarrow mark$
 - ^l. **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
- 6. DFS VISIT(v)
- . fimse
- 8. **fimpara**
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. f[u] ← mark Fim.

Duas opções: **f** ou **h** vai depender da representação utilizada

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 2

- 1. $cor[u] \leftarrow CINZA$
- 2. $mark \leftarrow mark + 1$
- 3. $d[u] \leftarrow mark$
 - [‡]. **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
- $0. \qquad DFS VISIT(v)$
- 7. fimse
- 3. fimpara
- 9. $cor[u] \leftarrow PRETO$
- 10. mark ← mark + 1
- 11. $f[u] \leftarrow mark$ Fim.

Escolheu f Chamada da Função DFS VISIT(f)

DFS VISIT(u)

- $cor[u] \leftarrow CINZA$
- mark ← mark + 1
- 3. $d[u] \leftarrow mark$
 - para cada vértice v ∈ L.adj(u)
 - se cor[v] = BRANCO DFS_VISIT(v)
 - fimse
- fimpara
- cor[u] ← PRETO 10. $mark \leftarrow mark + 1$
- 11. $f[u] \leftarrow mark$ Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 2

u ←g

v **←f**

colore f de cinza

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 3

u **←**f

1. cor[u] ← CINZA

c. mark ← mark + 1

 $3. \quad d[u] \leftarrow mark$

. **para cada** vértice v ∈ L.adj(u)

5. $\mathbf{se} \ cor[v] = BRANCO$

 $DFS_VISIT(v)$

. fimse

3. **fimpara**

9. $cor[u] \leftarrow PRETO$

10. $mark \leftarrow mark + 1$

11. $f[u] \leftarrow mark$ Fim.

A cor do vértice **g** é BRANCA?

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 3

 $u \leftarrow f$

- 1. $cor[u] \leftarrow CINZA$
- 2. $mark \leftarrow mark + 1$
- 3. $d[u] \leftarrow mark$
 - . **para cada** vértice v ∈ L.adj(u)
- 5. **se** cor[v] = BRANCO6. DFS VISIT(v)
- 7. fimse
- 8. **fimpara**
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. f[u] ← mark Fim.

colore **f** de preto, ou seja, não tenho mais vizinhos na cor BRANCA

7. **fimse**8. **fimpara**9. cor[u] ← PRETO
10. mark ← mark + 1
11. f[u] ← mark
Fim.

DFS VISIT(u)

5.

1. $cor[u] \leftarrow CINZA$ 2. $mark \leftarrow mark + 1$

3. $d[u] \leftarrow mark$

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 3

u **←f**

para cada vértice v ∈ L.adj(u)

se cor[v] = BRANCO

DFS VISIT(v)

Após operação de *mark* Backtracking

- 10. $mark \leftarrow mark + 1$
- 11. $f[u] \leftarrow mark$ Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 4

u **←f**

Escolheu h
Chamada da Função DFS_VISIT(h)

11. $f[u] \leftarrow mark$

Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 4

u **←g**

mark: 4

u ←h

- 1. $cor[u] \leftarrow CINZA$
 - . mark ← mark + 1
- 3. $d[u] \leftarrow mark$
 - . **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
- 6. DFS VISIT(v)
- . fimse
- 8. **fimpara**
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. f[u] ← mark Fim.

DFS VISIT(u)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 5

u ←h

Após operação de *mark* Backtracking

Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 6

 $u \leftarrow h$

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 6

u **←g**

DFS VISIT(u)

 $cor[u] \leftarrow CINZA$

2. $mark \leftarrow mark + 1$

Após operação de *mark* Backtracking

Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 7

u **←g**

Escolheu d Chamada da Função DFS_VISIT(d)

mark: 7

 $u \leftarrow c$

- 1. $cor[u] \leftarrow CINZA$
- 2. $mark \leftarrow mark + 1$
- 3. $d[u] \leftarrow mark$
 - f. **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
 - DFS VISIT(v)
 - . fimse
 - 3. **fimpara**
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. f[u] ← mark Fim.

- 1. $cor[u] \leftarrow CINZA$
 - . $mark \leftarrow mark + 1$
- 3. $d[u] \leftarrow mark$
 - . **para cada** vértice v ∈ L.adj(u)
- 5. $\mathbf{se} \ cor[v] = BRANCO$
 - DFS VISIT(v)
 - . fimse
 - fimpara
- 9. $cor[u] \leftarrow PRETO$
- 10. $mark \leftarrow mark + 1$
- 11. $f[u] \leftarrow mark$ Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark:8

u **←d**

colore **d** de preto; Após operação de *mark* Backtracking

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 9

 $u \leftarrow d$

colore **c** de preto; Após operação de *mark* Backtracking

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 10

 $u \leftarrow c$

A cor do vértice **a** é BRANCA? Chamada da Função DFS_VISIT(**a**)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 10

 $u \leftarrow a$

colore **a** de CINZA Chamada da Função DFS_VISIT(**b**)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 11

u **←a**

v **←b**

colore **b** de CINZA Chamada da Função DFS_VISIT(**e**)

11. $f[u] \leftarrow mark$

Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 12

v **←e**

colore e de CINZA

 $cor[u] \leftarrow CINZA$ $mark \leftarrow mark + 1$ 3. $d[u] \leftarrow mark$ para cada vértice v ∈ L.adj(u) se cor[v] = BRANCO 5. DFS VISIT(v) fimse fimpara cor[u] ← PRETO 10. $mark \leftarrow mark + 1$ 11. $f[u] \leftarrow mark$ Fim.

DFS VISIT(u)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 13

 $u \leftarrow e$

colore e de PRETO
Backtracking

11. $f[u] \leftarrow mark$

Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 14

 $u \leftarrow e$

colore b de PRETO
Backtracking

a
b
11/
12/15
1/10
8/9

 $cor[u] \leftarrow CINZA$ mark ← mark + 1 3. $d[u] \leftarrow mark$ para cada vértice v ∈ L.adj(u) se cor[v] = BRANCO 5. DFS VISIT(v) fimse fimpara cor[u] ← PRETO 10. $mark \leftarrow mark + 1$ 11. $f[u] \leftarrow mark$ Fim.

DFS VISIT(u)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 15

u **←b**

colore a de PRETO Backtracking

DFS VISIT(u) $cor[u] \leftarrow CINZA$ mark ← mark + 1 3. $d[u] \leftarrow mark$ para cada vértice v ∈ L.adj(u) 5. se cor[v] = BRANCO DFS VISIT(v) fimse fimpara cor[u] ← PRETO 10. $mark \leftarrow mark + 1$

11. f[u] ← mark Fim.

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 16

u **←a**


```
DFS(G)
    para cada vértice u ← V[G]
        cor[u] ← BRANCO
    fimpara
    mark \leftarrow 0
   para cada vértice u ← V[G]
        se cor[u] = BRANCO
           DFS VISIT(u)
       fimse
    fimpara
Fim.
```

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 16

u ← b


```
DFS(G)
    para cada vértice u ← V[G]
        cor[u] ← BRANCO
    fimpara
    mark \leftarrow 0
   para cada vértice u ← V[G]
        se cor[u] = BRANCO
           DFS VISIT(u)
       fimse
    fimpara
Fim.
```

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h]

mark: 16 $u \leftarrow d$

DFS(G)

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h] mark: 16 $u \leftarrow f$


```
DFS(G)
    para cada vértice u ← V[G]
        cor[u] ← BRANCO
    fimpara
    mark \leftarrow 0
   para cada vértice u ← V[G]
        se cor[u] = BRANCO
           DFS VISIT(u)
       fimse
    fimpara
Fim.
```

Lista de Vértices V[G]: [c, a, b, d, e, f, g, h] mark: 16 $u \leftarrow g$

DFS(G)

Busca em Profundidade - Exemplo

Executar o algoritmo de busca em profundidade e ao final exibir o tempo de **chegada[d]** e **final[f]**

OBS: Use ordem alfabética para qualquer tipo de tomada de decisão

Busca em Profundidade - Exemplo

Executar o algoritmo de busca em profundidade e ao final exibir o tempo de **chegada[d]** e **final[f]**

								Н
d:	1	2	12	13	3	4	5	8

f: 16 11 15 14 10 7 6 9	f:	16	11	15	14	10	7	6	9
---	----	----	----	----	----	----	---	---	---

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 08: Busca em Grafos(Profundidade)

Professor Pablo Soares

2020.1