Jig-Shape Optimization of Quiet Supersonic Technology X-plane

Prepared For:

Fall 2017 Aerospace Flutter and Dynamics Council (AFDC) Meeting Sedona, AZ

Prepared By:

Chan-gi Pak, Ph.D.

Structural Dynamics Group, Aerostructures Branch (Code RS)

NASA Armstrong Flight Research Center

Overview

☐ Theoretical background (slides 4-10)

□ Computational validation (slides 12-26)

☐ Conclusions (slide 27)

Structural Dynamics Group Chan-gi Pak-2

Theoretical background

Introduction

- ☐ Supersonic Commercial Transport Aircraft Design
 - Safety
 - ➤ Light weight airframe can cause strength, buckling, aeroelastic, and aeroservoelastic issues.
 - Sonic boom
 - Supersonic flight of "commercial transport" aircraft allowed only over the ocean.
 - > Perceived Loudness in decibels
 - ✓ NASA's N+2 goal: 75 PLdB
 - ✓ Concorde: 104 PLdB
 - ✓ High Speed Civil Transport (HSCT): 99 PLdB
 - Fuel efficiency
 - ➤ Light weight airframe
 - ➤ Reduced drag
- ☐ Developing Quiet Supersonic Technology (QueSST) X-plane
 - Low Boom Flight Demonstrator (LBFD)
 - ❖ Lockheed Martin Skunk Works is the prime contractor for preliminary design.
 - Loudness: 74 PLdB
- ☐ Major Issue
 - Out-mold-line configuration of an aircraft is design for the desired aerodynamic performance. Assume rigid structure.
 - Flexibility of the structure changes the aerodynamic performance.
 - ❖ It has been reported that one degree of the tip twist of a LBFD wing and stabilator under the cruise flight condition can increase the sonic boom level by 0.2 PLdB and 1.3 PLdB, respectively.

HSCT

Jig-Shape Optimization Problem Statement

- ☐ Assume unconstrained Optimization
- ☐ Optimization Problem Statement
 - Find design variables: $\{X\} = [X_{1}, X_{2}, ..., X_{ndv}]^{T}$ which

minimize
$$\left\{ F(X) = \sum_{j=1}^{nsurf3} \Delta T_j^2 \right\}$$

- T_t = target trim shape at surface GRIDs
 - Sonic boom level is computed based on target trim shape.
- T_d= trim shape based on design jig shape
 - \rightarrow $\{jig\}_d \xrightarrow{trim\ analysis} \{T\}_d$
 - $\geqslant \qquad \{jig\}_d \equiv \{jig\}_b + \{\Delta jig\}$
 - \checkmark {jig}_d = design jig-shape
 - ✓ $\{jig\}_b$ = baseline jig-shape
 - ✓ $\{\Delta jig\}$ = jig-shape changes
 - $\triangleright \qquad \{\Delta jig\} = [\mathbf{\Phi}]\{X\}$
 - \checkmark X_i = i-th design variable
 - \checkmark $[\Phi] = [\{\phi\}_1 \{\phi\}_2 ... \{\phi\}_{ndv}]$
 - $\{\phi\}_i = \text{i-th basis function}$
 - Eigen vector based on jig shape
 - Eigen vector based on Jig shape

 Eigen vectors are normalized as Max deflection = 1 inch.

Update Jig-Shape Module: using shape_change.exe

Modal Analysis Module: using MSC/NASTRAN solution 103

Trim Analysis Module: using ZAERO & change_trim.exe

Objective Function Module: using MSC/NASTRAN solution 101, shape.exe, & differ.exe

Compute Starting Design Variables: Using Least Squares Surface Fitting Technique

- - \Leftrightarrow $\{T\}_t$ = target trim shape at surface GRIDs
 - T_b = trim shape based on the baseline jig-shape
 - $\triangleright \{jig\}_b \xrightarrow{trim\ analysis} \{T\}_b$
- □ Fitting $\{\Delta T\}_t$ surface using perturbed shapes $\{\Delta T\}_i$, i = 1, 2, ..., ndv
 - Perturb baseline jig-shape using basis functions [Φ]
 - \triangleright {jig}_d \equiv {jig}_b + [$\mathbf{\Phi}$]{X}
 - \triangleright Where, $\{\phi\}_i$ = i-th basis function
 - $\triangleright \{jig\}_b + \{\phi\}_i \xrightarrow{trim\ analysis} \{T\}_i$
 - \triangleright $\{\Delta T\}_i \equiv \{T\}_i \{T\}_b$ (i-th perturbed shape)
 - Define a matrix: $[\boldsymbol{\Psi}] = [\{\Delta T\}_1 \{\Delta T\}_2 ... \{\Delta T\}_{ndv}]$
- $\Box \quad [\Psi]\{X\} = \{\Delta T\}_t$

 - $([\boldsymbol{\Psi}]^T [\boldsymbol{\Psi}])^{-1} [\boldsymbol{\Psi}]^T [\boldsymbol{\Psi}] \{ X \} = ([\boldsymbol{\Psi}]^T [\boldsymbol{\Psi}])^{-1} [\boldsymbol{\Psi}]^T \{ \Delta T \}_t$
- \Box Starting design variables: $\{X\} = ([\boldsymbol{\Psi}]^T[\boldsymbol{\Psi}])^{-1}[\boldsymbol{\Psi}]^T\{\Delta T\}_t$

Computational validation

Structural Finite Element Model and Aerodynamic Model

Summary of Natural Frequencies (Baseline Configuration)

Mode	Frequency (Hz)					
	Baseline	Optimum	% difference	Notes		
7	5.634			First fuselage bending		
9	9.045			First wing bending + forward fuselage vertical bending + stabilator rotation		
11	11.97			Forward fuselage vertical bending + first wing bending + stabilator rotation (Asymmetric)		
15	14.76			Stabilator rotation		
17	19.23			Wing tip bending + T-tail rotation + flap bending (Asymmetric)		
19	20.08			T-tail rotation (Asymmetric)		
20	20.54			Wing tip bending + T-tail rotation + aileron rotation + flap bending + forward fuselage vertical bending (Asymmetric)		
22	21.75			Aileron rotation + flap rotation + T-tail bending + outboard wing bending torsion		
23	22.16			Flap rotation + aileron rotation + wing tip bending + T-tail bending (Asymmetric)		
25	22.70			Flap rotation + aileron rotation + T-tail bending (Asymmetric)		
37	30.79			Canard bending		
48	42.96			T-tail bending (Asymmetric)		

Structural Dynamics Group Chan-gi Pak-13

Mode 7: 5.634 Hz

Mode 9: 9.045 Hz

first fuselage vertical bending

Symmetric first wing bending + forward fuselage vertical bending + horizontal tail rotation (in-phase: forward fuselage & wing)(out-phase: wing and horizontal tail)

Mode 11: 11.97 Hz

Mode 15: 14.76 Hz

horizontal tail rotation (out-phase: forward fuselage & wing)(in-phase: wing and horizontal tail)

MSC Software

MSC A Software

Mode 17: 19.23 Hz

Mode 19: 20.08 Hz

symmetric wing tip bending+Ttail rotation + flap

mac S, Soliners

Mode 20: 20.54 Hz

Mode 22: 21.75 Hz

symmetric wing tip bending + ttail rotation flap & airleron rotation + forward fuselage bending + nose landing gear vertical bending (out-phase wing tip & forward fuselage) (out phase wing tip & ttail)

symmetric airleron + flaperon (in-phase)+ttail(pitch +yaw)

Mode 23: 22.16 Hz

Mode 25: 22.70 Hz

symmetric Flaperon+airleron (out-phase) +ttail(pitch+yaw) +forward fulage and airleron(in-phase)

symmetric flaperon+airleron (out-phase)+ttail(pitch+yaw) + forward fulage and airleron(out-phase)

Chan-gi Pak-18

Trim Shape Difference (Baseline Configuration)

- ☐ Weight:
 - **Cruise = 18499.99 lbf**
- ☐ Forward CG location
 - \star x=836.09 inch, **y=-0.1897 inch**, z=100.68 inch
- ☐ Mach: 1.42
- ☐ Altitude: 55000 ft
- ☐ Aileron deflection angle: 0.5 deg
- ☐ T-tail deflection angle: 6.47 deg
- - $\{T\}_t$ = target trim shape at surface GRIDs
 - $T_o = \text{trim shape based on optimum jig shape}$
 - $\checkmark \{jig\}_o \equiv \{jig\}_b + [\mathbf{\Phi}]\{X\}_o$
 - $\checkmark \{jig\}_o \xrightarrow[trim\ analysis]{} \{T\}_o$

Optimization #1: $\{\Delta T\}_{to} = \{T\}_{t} - \{T\}_{o}$

Mode 37: 30.79 Hz

Mode 48: 42.96 Hz

Structural Dynamics Group

Optimization #2: $\{\Delta T\}_{to} = \{T\}_t - \{T\}_o$

46**38**1**005** 22

Optimization #3: $\{\Delta T\}_{to} = \{T\}_t - \{T\}_o$

Optimization Results

DECUAD ID	Baseline	Optimization #1		Optimization #2		Optimization #3		Comments
DESVAR ID		Start	Optimum	Start	Optimum	Start	Optimum	Comments
1	0.0	0.4370	0.4366	0.4366	0.4370	0.4338	0.4336	Mode 7
2	0.0	-1.125	-1.126	-1.126	-1.152	-1.152	-1.153	Mode 9
3	0.0	0.2469	0.2467	0.2467	0.2356	0.2354	0.2353	Mode 11
4	0.0	0.4035	0.4031	0.4031	0.3962	0.3961	0.3959	Mode 15
5	0.0	.02350	.02364	.02364	.01778	.01920	.01919	Mode 17
6	0.0	0.6273	0.6272	0.6272	0.6228	0.6221	0.6220	Mode 19
7	0.0	.04194	.04203	.04203	.04228	.04123	.04120	Mode 20
8	0.0	02655	02643	02643	02570	0265	0265	Mode 22
9	0.0	.000856	.000992	.000992	000747	000167	000292	Mode 23
10	0.0	0.1141	0.1142	0.1142	0.1161	0.1165	0.1165	Mode 25
11	0.0			-0.1470	-0.1477	-0.1475	-0.1476	Mode 37
12	0.0			0.2570	0.2575	0.2567	0.2567	Mode 48
13	0.0					0.08358	0.08350	Residual
Maximum Error	1.174"	0.240"	0.241"	0.092"	0.085"	0.0064"	0.0088"	
Objective Function	1075.8	17.48	17.34	6.148	5.807	0.09566	0.08819	

Structural Dynamics Group

Optimum Aircraft Configuration

Summary of Natural Frequencies before and after optimization

Mode	Frequency (Hz)					
	Baseline	Optimum	% difference	Notes		
7	5.634	5.633	-0.02	First fuselage bending		
9	9.045	9.034	-0.12	First wing bending + forward fuselage vertical bending + stabilator rotation		
11	11.97	11.97	0.00	Forward fuselage vertical bending + first wing bending + stabilator rotation (Asymmetric)		
15	14.76	14.76	0.00	Stabilator rotation		
17	19.23	19.23	0.00	Wing tip bending + T-tail rotation + flap bending (Asymmetric)		
19	20.08	20.08	0.00	T-tail rotation (Asymmetric)		
20	20.54	20.55	0.05	Wing tip bending + T-tail rotation + aileron rotation + flap bending + forward fuselage vertical bending (Asymmetric)		
22	21.75	21.76	0.05	Aileron rotation + flap rotation + T-tail bending + outboard wing bending torsion		
23	22.16	22.17	0.05	Flap rotation + aileron rotation + wing tip bending + T-tail bending (Asymmetric)		
25	22.70	22.70	0.00	Flap rotation + aileron rotation + T-tail bending (Asymmetric)		
37	30.79	30.76	-0.10	Canard bending		
48	42.96	42.97	0.02	T-tail bending (Asymmetric)		

Structural Dynamics Group Chan-gi Pak-26

Conclusion

- ☐ In this study, the jig-shape optimization is performed using the two step approach.
 - The first step is computing the starting design variables using the least squares surface fitting technique.
 - **❖** The next step is the fine tune of the jig-shape using the **numerical optimization procedure**.
 - Assume unconstrained optimization
 - ➤ The maximum frequency change due to the jig-shape optimization is less than 0.12%.
 - > The minor changes in mass moment of inertia are observed. (mostly less than 0.07%; maximum 0.73%)

- ☐ Thirteen basis function are used in this jig-shape optimization study.
 - ❖ Total of **twelve symmetric mode shapes** of the cruise weight configuration. (Asymmetric shapes exist)
 - **A residual shape** is also selected as a basis function.

 \Box The maximum trim shape error of 1.174" at the starting configuration becomes 0.0088" at the end of the third optimization run.

Structural Dynamics Group Chan-gi Pak-27

Questions?inch 0.0090

