Чмурова Мария, Р3132, Вариант – 38 Домашняя работа №2 Кратчайший путь

Исходная матрица соединений R:

	e ₁	e ₂	е3	e 4	e ₅	e ₆	e 7	e ₈	e 9	e ₁₀	e ₁₁	e ₁₂	ri
e ₁	0	4	2	1	1	4							5
e ₂	4	0			2		4		4		3		5
e ₃	2		0	4		3	4	3	4	1	4		8
e ₄	1		4	0		1	1		4	4	3		7
e ₅	1	2			0	4	4	2	1	3			7
e ₆	4		3	1	4	0		1	4	1	5	2	9
e 7		4	4	1	4		0	4	1		4	4	8
e ₈			3		2	1	4	0			5	1	6
e 9		4	4	4	1	4	1		0				6
e ₁₀			1	4	3	1				0	4		5
e ₁₁		3	4	3		5	4	5		4	0	2	8
e ₁₂						2	4	1			2	0	4

Найти кратчайшие пути от начальной вершины е1 ко всем остальным вершинам:

1.
$$l(e_1) = 0^+; \ l(e_i) = \infty,$$
 для всех $i \neq 1, \ p = e_1$ Результаты итерации запишем в таблицу

	1
e_1	0+
e_2	8
e_3	8
e_4	8
e_5	8
e_6	8
e ₇	8
e_8	8
e ₉	8
e_{10}	8
e ₁₁	8
e_{12}	∞

2. $\Gamma p = \{e_2, e_3, e_4, e_5, e_6\}$ - все пометки временные, уточним их:

 $l(e_2) = min[\infty, 0*+4] = 4;$

 $l(e_3) = \min[\infty, 0*+2] = 2;$

 $l(e_4) = min[\infty, 0*+1] = 1;$

 $l(e_5) = min[\infty, 0*+1] = 1;$

 $l(e_6) = min[\infty, 0*+4] = 4;$

	1	2
e1	0*	
e2	∞	4
e3	∞	2
e4	∞	1*
e5	∞	1
e6	∞	4
e7	∞	∞
e8	∞	∞
e9	∞	∞
e10	∞	∞
e11	∞	∞
e12	∞	∞

- 3. Постоянную метку получает вершина e4. $p = e_4$
- 4. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_3, e_6, e_7, e_9, e_{10}, e_{11}\}$. Вершины с временными отметками: e_3 , e_6 , e_7 , e_9 , e_{10} , e_{11} уточняем их:
- $l(e_3) = min[2, 1^++4] = 2;$
- $l(e_6) = min[4, 1^++1] = 2;$
- $1(e_7) = \min[\infty, 1^++1] = 2;$
- $l(e_9) = min[\infty, 1^++4] = 5;$
- $l(e_{10}) = min[\infty, 1^++4] = 5;$
- $l(e_{11}) = \min[\infty, 1^+ + 3] = 4;$

1(011)	111111	~, I 1.	J ₁ – ¬,
	1	2	3
e1	0*		
e2	8	4	4
e3	8	2	2
e4	∞	1*	
e5	∞	1	1*
e6	∞	4	2
e7	8	∞	2
e8	8	∞	∞
e9	∞	∞	5
e10	∞	∞	5
e11	∞	∞	4
e12	8	∞	∞

- 5. Постоянную пометку получает вершина e5. p = e5
- 6. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_2, e_6, e_7, e_8, e_9, e_{10}\}$. Вершины с временными отметками: e_2 , e_6 , e_7 , e_8 , e_9 , e_{10} уточняем их:
- $l(e_2) = min[4, 1^++2] = 3;$
- $l(e_6) = min[2, 1^++4] = 2;$
- $l(e_7) = min[2, 1^++4] = 2;$

$$l(e_8) = min[\infty, 1^++2] = 3;$$

$$l(e_9) = min[5, 1^++1] = 2;$$

$$l(e_{10}) = min[5, 1^++3] = 4;$$

	1	2	3	4
e1	0*			
e2	∞	4	4	3
e3	∞	2	2	2*
e4	∞	1*		
e5	∞	1	1*	
e6	∞	4	2	2
e7	∞	∞	2	2
e8	∞	∞	∞	3
e9	∞	∞	5	2
e10	∞	∞	5	4
e11	∞	∞	4	4
e12	∞	∞	∞	∞

- 7. Постоянную пометку получает вершина e^3 . $p = e^3$
- 8. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_4, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$. Вершины с временными отметками: e_6 , e_7 , e_8 , e_9 , e_{10} , e_{11} уточняем их:

$$l(e_6) = min[2, 2^++3] = 2;$$

$$l(e_7) = min[2, 2^++4] = 2;$$

$$l(e_8) = min[3, 2^++3] = 3;$$

$$l(e_9) = min[2, 2^++4] = 2;$$

$$l(e_{10}) = min[4, 2^++1] = 3;$$

$$l(e_{11}) = min[4, 2^{+}+1] = 3;$$

	1	2	3	4	5
e1	0*				
e2	∞	4	4	3	3
e3	∞	2	2	2*	
e4	∞	1*			
e5	∞	1	1*		
e6	∞	4	2	2	2*
e7	∞	∞	2	2	2
e8	∞	∞	∞	3	3
e9	∞	∞	5	2	2
e10	∞	∞	5	4	3
e11	∞	∞	4	4	3
e12	∞	∞	∞	∞	∞

9. Постоянную пометку получает вершина еб. р = еб

10. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_3, e_4, e_5, e_8, e_9, e_{10}, e_{11}, e_{12}\}$. Вершины с временными отметками: e_8 , e_9 , e_{10} , e_{11} , e_{12} - уточняем их:

$$l(e_8) = min[3, 2^++1] = 3;$$

$$l(e_9) = min[2, 2^++4] = 2;$$

$$l(e_{10}) = min[3, 2^{+}+1] = 3;$$

$$l(e_{11}) = min[3, 2^{+}+5] = 3;$$

$$l(e_{12}) = min[\infty, 2^++2] = 4;$$

	1	2	3	4	5	6
e1	0*					
e2	∞	4	4	3	3	3
e3	∞	2	2	2*		
e4	∞	1*				
e5	∞	1	1*			
e6	∞	4	2	2	2*	
e7	∞	∞	2	2	2	2*
e8	∞	∞	∞	3	3	3
e9	∞	∞	5	2	2	2
e10	∞	∞	5	4	3	3
e11	∞	∞	4	4	3	3
e12	∞	∞	∞	∞	∞	4

11. Постоянную пометку получает вершина е7. р = е7

12. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_3, e_4, e_5, e_8, e_9, e_{11}, e_{12}\}$. Вершины с временными отметками: e_2 , e_8 , e_9 , e_{11} , e_{12} - уточняем их:

$$l(e_2) = min[3, 2^++4] = 3;$$

$$l(e_8) = min[3, 2^++4] = 3;$$

$$l(e_9) = min[2, 2^++1] = 2;$$

$$l(e_{11}) = min[3, 2^++4] = 3;$$

$$l(e_{12}) = min[4, 2^{+}+4] = 4;$$

	1	2	3	4	5	6	7
e1	0*						
e2	∞	4	4	3	3	3	3
e3	∞	2	2	2*			
e4	∞	1*					
e5	∞	1	1*				
e6	∞	4	2	2	2*		
e7	∞	∞	2	2	2	2*	
e8	∞	∞	8	3	3	3	3
e9	∞	∞	5	2	2	2	2*

e10	∞	∞	5	4	3	3	3
e11	∞	∞	4	4	3	3	3
e12	∞	∞	∞	∞	∞	4	4

- 13. Постоянную пометку получает вершина е9. р = е9
- 14. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_3, e_4, e_5, e_6, e_7\}$. Вершины с временными отметками: e_2 уточняем их: $l(e_2) = min[3, 2^+ + 4] = 3$;

	1	2	3	4	5	6	7	8
e1	0*							
e2	∞	4	4	3	3	3	3	3*
e3	∞	2	2	2*				
e4	∞	1*						
e5	∞	1	1*					
e6	∞	4	2	2	2*			
e7	∞	∞	2	2	2	2*		
e8	∞	∞	∞	3	3	3	3	3
e9	∞	∞	5	2	2	2	2*	
e10	∞	∞	5	4	3	3	3	3
e11	∞	∞	4	4	3	3	3	3
e12	∞	∞	∞	∞	∞	4	4	4

- 15. Постоянную пометку получает вершина e2. p = e2
- 16. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_1, e_5, e_7, e_9, e_1\}$. Вершины с временными отметками: e_{11} уточняем их: $l(e_{11}) = min[3, 3^+ + 3] = 3$;

	1	2	3	4	5	6	7	8	9
e1	0*								
e2	∞	4	4	3	3	3	3	3*	
e3	∞	2	2	2*					
e4	∞	1*							
e5	∞	1	1*						
e6	∞	4	2	2	2*				
e7	∞	∞	2	2	2	2*			
e8	∞	∞	∞	3	3	3	3	3	3*
e9	∞	∞	5	2	2	2	2*		
e10	∞	∞	5	4	3	3	3	3	3
e11	∞	∞	4	4	3	3	3	3	3
e12	∞	∞	∞	∞	∞	4	4	4	4

17. Постоянную пометку получает вершина е8. р = е8

18. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_3, e_5, e_6, e_7, e_{11}, e_{12}\}.$ Вершины с временными отметками: e_{11} , e_{12} - уточняем их:

$$l(e_{11}) = min[3, 3^{+}+5] = 3;$$

$$l(e_{12}) = min[4, 3^++1] = 4;$$

	1	2	3	4	5	6	7	8	9	10
e1	0*									
e2	∞	4	4	3	3	3	3	3*		
e3	∞	2	2	2*						
e4	∞	1*								
e5	∞	1	1*							
e6	∞	4	2	2	2*					
e7	∞	∞	2	2	2	2*				
e8	∞	∞	∞	3	3	3	3	3	3*	
e9	∞	∞	5	2	2	2	2*			
e10	∞	∞	5	4	3	3	3	3	3	3*
e11	∞	∞	4	4	3	3	3	3	3	3
e12	∞	∞	∞	∞	∞	4	4	4	4	4

19. Постоянную пометку получает вершина e10. p = e10

20. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_3, e_4, e_5, e_6, e_{11}\}.$ Вершины с временными отметками: e_{11} - уточняем их:

 $l(e_{11}) = min[3, 3^{+}+4] = 3;$

	1	2	3	4	5	6	7	8	9	10	11
e1	0*										
e2	∞	4	4	3	3	3	3	3*			
e3	∞	2	2	2*							
e4	8	1*									
e5	∞	1	1*								
e6	8	4	2	2	2*						
e7	∞	∞	2	2	2	2*					
e8	8	∞	∞	3	3	3	3	3	3*		
e9	∞	∞	5	2	2	2	2*				
e10	8	∞	5	4	3	3	3	3	3	3*	
e11	8	∞	4	4	3	3	3	3	3	3	3*
e12	8	∞	∞	8	8	4	4	4	4	4	4

21. Постоянную пометку получает вершина e11. p = e11

22. Не все вершины имеют постоянные пометки, $\Gamma p = \{e_2, e_3, e_4, e_6, e_7, e_8, e_{10}, e_{12}\}$. Вершины с временными отметками: e_{12} - уточняем их:

$$l(e_{11}) = min[4, 3^{+}+2] = 4;$$

	1	2	3	4	5	6	7	8	9	10	11	12
e1	0*											
e2	∞	4	4	3	3	3	3	3*				
e3	∞	2	2	2*								
e4	∞	1*										
e5	∞	1	1*									
e6	∞	4	2	2	2*							
e7	∞	∞	2	2	2	2*						
e8	∞	∞	∞	3	3	3	3	3	3*			
e9	∞	∞	5	2	2	2	2*					
e10	∞	∞	5	4	3	3	3	3	3	3*		
e11	∞	∞	4	4	3	3	3	3	3	3	3*	
e12	∞	∞	∞	∞	∞	4	4	4	4	4	4	4*

23. Постоянную пометку получает вершина е12

Все вершины получили постоянные пометки.

24. Результат:

e_1	0*
e_2	3*
e_3	2*
e ₄	1*
e ₅	1*
e_6	2*
e ₇	2*
e_8	3*
e ₉	2*
e ₁₀	3*
e ₁₁	3*
e ₁₂	4*