ROKEY BOOT CAMP

AI(Computer Vision)개론

9차시-

김균창 강사

학습 내용

- 1 데이터의 확인과 검증셋
- 2 모델 업데이트하기
- 3 그래프로 과적합 확인하기
- 4 학습의 자동 중단

점 데이터의 확인과 검증셋

• 먼저 데이터를 불러와 대략적인 구조를 살펴보자

```
import pandas as pd

# 깃허브에 준비된 데이터를 가져옵니다.
!git clone https://github.com/taehojo/data.git

# 와인 데이터를 불러옵니다.
df = pd.read_csv('./data/wine.csv', header=None)

# 데이터를 미리 보겠습니다.
df
```


☎ 데이터의 확인과 검증셋

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	7.4	0,70	0.00	1,9	0,076	11,0	34,0	0,99780	3,51	0,56	9,4	5	1
1	7.8	0,88	0,00	2,6	0,098	25,0	67.0	0,99680	3,20	0.68	9,8	5	1
2	7,8	0,76	0.04	2,3	0,092	15,0	54,0	0.99700	3,26	0.65	9,8	5	1
3	11,2	0,28	0,56	1.9	0.075	17.0	60,0	0,99800	3,16	0,58	9,8	6	1
4	7.4	0,70	0.00	1,9	0.076	11,0	34,0	0,99780	3,51	0,56	9.4	5	1
	200			***	(255)	***		***	***	***	***	***	
6492	6,2	0.21	0,29	1,6	0,039	24,0	92,0	0,99114	3,27	0,50	11,2	6	0
6493	6,6	0,32	0.36	8.0	0,047	57,0	168,0	0,99490	3,15	0.46	9,6	5	0
6494	6,5	0,24	0.19	1,2	0,041	30,0	111,0	0,99254	2,99	0,46	9,4	6	0
6495	5,5	0,29	0,30	1,1	0,022	20.0	110,0	0,98869	3,34	0,38	12,8	7	0
6496	6,0	0,21	0,38	0,8	0,020	22,0	98,0	0,98941	3,26	0,32	11,8	6	0

점 데이터의 확인과 검증셋

- 샘플이 전체 6,497개 있음
- 모두 속성이 12개 기록되어 있고 13번째 열에 클래스가 준비되어 있음
- 각 속성에 대한 정보는 다음과 같음

0	주석산 농도	7	밀도
1	아세트산 농도	8	рН
2	구연산 농도	9	황산칼륨 농도
3	잔류 당분 농도	10	알코올 도수
4	염화나트륨 농도	11	와인의 맛(0~10등급)
5	유리 아황산 농도	12	클래스(1: 레드 와인, 0: 화이트 와인
6	총 아황산 농도		

생 데이터의 확인과 검증셋

• 0~11번째 열에 해당하는 속성 12개를 X로, 13번째 열을 y로 정하겠음

```
X = df.iloc[:,0:12]
y = df.iloc[:,12]
```

생 데이터의 확인과 검증셋

- 이제 딥러닝을 실행할 차례
- 앞서 우리는 학습셋과 테스트셋을 나누는 방법에 대해 알아보았음
- 이 장에서는 여기에 검증셋을 더해 보자

▼ 그림 14-1 | 학습셋, 테스트셋, 검증셋

容 데이터의 확인과 검증셋

- 학습이 끝난 모델을 테스트해 보는 것이 테스트셋의 목적이라면, 최적의 학습 파라미터를 찾기 위해
 학습 과정에서 사용하는 것이 검증셋
- 검증셋을 설정하면 검증셋에 테스트한 결과를 추적하면서 최적의 모델을 만들 수 있음
- 검증셋은 model.fit() 함수 안에 validation_split이라는 옵션을 주면 만들어짐
- 그림 14-1과 같이 전체의 80%를 학습셋으로 만들고 이 중 25%를 검증셋으로 하면 학습셋:검증셋:테스트셋의 비율이 60:20:20이 됨

생 데이터의 확인과 검증셋

• 전체 코드를 실행하면 다음과 같음

실습 | 와인의 종류 예측하기: 데이터 확인과 실행


```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from sklearn.model_selection import train_test_split

# 깃허브에 준비된 데이터를 가져옵니다.
!git clone https://github.com/taehojo/data.git

# 와인 데이터를 불러옵니다.
df = pd.read_csv('./data/wine.csv', header=None)
```

생 데이터의 확인과 검증셋

```
# 와인의 속성을 X로, 와인의 분류를 y로 저장합니다.

X = df.iloc[:,0:12]

y = df.iloc[:,12]

# 학습셋과 테스트셋으로 나눕니다.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True)

# 모델 구조를 설정합니다.

model = Sequential()
```

생 데이터의 확인과 검증셋

```
model.add(Dense(30, input_dim=12, activation='relu'))
model.add(Dense(12, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
# 모델을 컴파일합니다.
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
# 모델을 실행합니다
history = model.fit(X_train, y_train, epochs=50, batch_size=500,
validation_split=0.25) # 0.8 x 0.25 = 0.2
```

☎ 데이터의 확인과 검증셋

```
# 테스트 결과를 출력합니다.

score = model.evaluate(X_test, y_test)

print('Test accuracy:', score[1])
```

생 데이터의 확인과 검증셋

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 30)	390
dense_1 (Dense)	(None, 12)	372
dense_2 (Dense)	(None, 8)	104
dense_3 (Dense)	(None, 1)	9

생 데이터의 확인과 검증셋

```
Trainable params: 875
Non-trainable params: 0
Epoch 1/50
racy: 0.7519 - val_loss: 2.2360 - val_accuracy: 0.7562
... (중략) ...
Epoch 50/50
cy: 0.9574 - val_loss: 0.1523 - val_accuracy: 0.9500
```

생 데이터의 확인과 검증셋

racy: 0.9415

Test accuracy: 0.9415384531021118

空 모델 업데이트하기

- 에포크(epochs)는 학습을 몇 번 반복할 것인지 정해 줌
- 에포크가 50이면 순전파와 역전파를 50번 실시한다는 뜻
- 학습을 많이 반복한다고 해서 모델 성능이 지속적으로 좋아지는 것은 아님
- 이를 적절히 정해 주는 것이 중요
- 만일 50번의 에포크 중 최적의 학습이 40번째에 이루어졌다면, 어떻게 해서 40번째 모델을 불러와 사용할수 있을까?
- 이번에는 에포크마다 모델의 정확도를 함께 기록하면서 저장하는 방법을 알아보자

모델 업데이트하기

- 먼저 모델이 어떤 식으로 저장될지 정함
- 다음 코드는 ./data/model/all/ 폴더에 모델을 지정
- 50번째 에포크의 검증셋 정확도가 0.9346이라면 50-0.9346.hdf5라는 이름으로 저장

```
modelpath = "./data/model/all/{epoch:02d}-{val_accuracy:.4f}.hdf5"
```

모델 업데이트하기

- 학습 중인 모델을 저장하는 함수는 케라스 API의 ModelCheckpoint()
- 모델이 저장될 곳을 정하고 진행되는 현황을 모니터할 수 있도록 verbose는 1(True)로 설정

```
from tensorflow.keras.callbacks import ModelCheckpoint

checkpointer = ModelCheckpoint(filepath=modelpath, verbose=1)
```

② 모델 업데이트하기

- 전체 코드를 실행해 보자
- 앞 절에서 배운 코드 중 model.compile()까지는 동일함
- 그 아래에 추가되는 코드는 다음과 같음

```
# 모델이 저장되는 조건을 설정합니다.

modelpath = "./data/model/{epoch:02d}-{val_accuracy:.4f}.hdf5"

checkpointer = ModelCheckpoint(filepath=modelpath, verbose=1)

# 모델을 실행합니다.

history = model.fit(X_train, y_train, epochs=50, batch_size=500, validation_split=0.25, verbose=0, callbacks=[checkpointer])

# 테스트 결과를 출력합니다.

score = model.evaluate(X_test, y_test)

print('Test accuracy:', score[1])
```

모델 업데이트하기

```
실행 결과
Epoch 00001: saving model to ./data/model/all\01-0.7646.hdf5
Epoch 00002: saving model to ./data/model/all\02-0.7646.hdf5
... (중략) ...
Epoch 00049: saving model to ./data/model/all\49-0.9408.hdf5
Epoch 00050: saving model to ./data/model/all\50-0.9408.hdf5
racy: 0.9392
Test accuracy: 0.939230740070343
```

모델 업데이트하기

- 파일명을 통해 에포크 수와 정확도를 알 수 있음
- 첫 번째 에포크에서 76.46%였던 정확도가 50번째에서 94.08%로 업데이트되는 것과 각 에포크별 모델이 지정된 폴더에 저장되는 것을 볼 수 있음
- 테스트하면 93.9%의 정확도를 보여 줌
- 실행 결과는 환경에 따라 미세하게 달라질 수 있음

- 역전파를 50번 반복하면서 학습을 진행
- 과연 이 반복 횟수는 적절했을까?
- 학습의 반복 횟수가 너무 적으면 데이터셋의 패턴을 충분히 파악하지 못함
- 학습을 너무 많이 반복하는 것도 좋지 않음
- 너무 과한 학습은 13.2절에서 이야기한 바 있는 과적합 현상을 불러오기 때문임
- 적절한 학습 횟수를 정하기 위해서는 검증셋과 테스트셋의 결과를 그래프로 보는 것이 가장 좋음
- 이를 확인하기 위해 학습을 길게 실행해 보고 결과를 알아보자

☼ 그래프로 과적합 확인하기

• 먼저 에포크 수를 2000으로 늘려 긴 학습을 해 보자

```
history = model.fit(X_train, y_train, epochs=2000, batch_size=500,
validation_split=0.25)
```

- 이 코드를 포함해 그동안 model.fit()을 실행할 때마다 결과를 항상 history에 저장해 왔음
- 이제 저장된 history를 어떻게 활용할 수 있는지 알아보자
- model.fit()은 학습을 진행하면서 매 에포크마다 결과를 출력
- 일반적으로 loss 값이 출력되고 model.compile()에서 metrics를 accuracy로 지정하면 accuracy 값이 함께 출력
- loss는 학습을 통해 구한 예측 값과 실제 값의 차이(=오차)를 의미하고 accuracy는 전체 샘플 중에서 정답을 맞춘 샘플이 몇 개인지의 비율(=정확도)을 의미
- 이번 예제처럼 검증셋을 지정하면 val_loss가 함께 출력
- 이때 metrics를 accuracy로 지정하면 accuracy와 함께 val_accuracy 값도 출력
- val_loss는 학습한 모델을 검증셋에 적용해 얻은 오차이고, val_accuracy는 검증셋으로 얻은 정확도

- 이 값이 저장된 history는 model.fit()의 결과를 가진 파이썬 객체로, history.params에는 model.fit()의 설정 값들이, history.epoch에는 에포크 정보가 들어 있게 됨
- 우리에게 필요한 loss, accuracy, val_loss, val_accuracy는 history.history에 들어 있음
- 이를 판다스 라이브러리로 불러와 내부를 살펴보자

```
hist_df = pd.DataFrame(history.history)
hist_df
```


	loss	accuracy	val_loss	val_accuracy
0	0,157924	0,944316	0,173545	0,931538
1	0.156247	0,943546	0,168429	0,933846
2	0,152906	0,942777	0,166696	0,933846
3	0.151120	0.945086	0.165191	0,932308
4	0,148956	0,945856	0,159559	0,936154

***	***	***	***	
1995	0,018356	0.994355	0,066240	0,985385
1996	0.017976	0,994355	0,064675	0,985385
1997	0,018248	0.994098	0,064908	0,985385
1998	0.018649	0,994611	0,065713	0,984615
1999	0,019730	0,993841	0,068250	0,984615

② 그래프로 과적합 확인하기

• 이 중 학습한 모델을 검증셋에 적용해 얻은 오차(val_loss)는 y_vloss에 저장하고 학습셋에서 얻은 오차(loss)는 y_loss에 저장해 보자

```
y_vloss = hist_df['val_loss']
y_loss = hist_df['loss']
```

- 이제 그래프로 표시해 보자
- 학습셋에서 얻은 오차는 빨간색으로, 검증셋에서 얻은 오차는 파란색으로 표시

```
x_len = np.arange(len(y_loss))
plt.plot(x_len, y_vloss, "o", c="red", markersize=2, label='Testset_loss')
plt.plot(x_len, y_loss, "o", c="blue", markersize=2, label='Trainset_loss')

plt.legend(loc='upper right')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
```

그래프로 과적합 확인하기

• 이를 하나의 코드로 정리해서 앞서 실행했던 주피터 노트북에 이어 실행해 보자

실습 | 와인의 종류 예측하기: 그래프 표현


```
# 그래프 확인을 위한 긴 학습(컴퓨터 환경에 따라 시간이 다소 걸릴 수 있습니다)
history = model.fit(X_train, y_train, epochs=2000, batch_size=500,
validation_split=0.25)

# history에 저장된 학습 결과를 확인해 보겠습니다.
hist_df = pd.DataFrame(history.history)
hist_df

# y_vloss에 테스트셋의 오차를 저장합니다.
y_vloss = hist_df['val_loss']
```

```
# y loss에 학습셋의 오차를 저장합니다.
y_loss = hist_df['loss']
# x 값을 지정하고 테스트셋의 오차를 빨간색으로, 학습셋의 오차를 파란색으로 표시합니다.
x_len = np.arange(len(y_loss))
plt.plot(x_len, y_vloss, "o", c="red", markersize=2, label='Testset_loss')
plt.plot(x_len, y_loss, "o", c="blue", markersize=2, label='Trainset_loss')
plt.legend(loc='upper right')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
```


3. 그래프로 과적합 확인하기

그래프로 과적합 확인하기

- 그래프의 형태는 실행에 따라 조금씩 다를 수 있지만 대략 그림 14-2와 같은 그래프가 나옴
- 우리가 눈여겨보아야 할 부분은 학습이 오래 진행될수록 검증셋의 오차(파란색)는 줄어들지만 테스트셋의
 오차(빨간색)는 다시 커진다는 것
- 이는 과도한 학습으로 과적합이 발생했기 때문임
- 이러한 사실을 통해 알 수 있는 것은 검증셋 오차가 커지기 직전까지 학습한 모델이 최적의 횟수로 학습한 모델이라는 것
- 이제 검증셋의 오차가 커지기 전에 학습을 자동으로 중단시키고, 그때의 모델을 저장하는 방법을 알아보자 *

- 텐서플로에 포함된 케라스 API는 EarlyStopping() 함수를 제공
- 학습이 진행되어도 테스트셋 오차가 줄어들지 않으면 학습을 자동으로 멈추게 하는 함수
- 이를 조금 전 배운 ModelCheckpoint() 함수와 함께 사용해 보면서 최적의 모델을 저장해 보자
- 먼저 다음과 같이 EarlyStopping() 함수를 불러옴

```
from tensorflow.keras.callbacks import EarlyStopping
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=20)
```

- monitor 옵션은 model.fit()의 실행 결과 중 어떤 것을 이용할지 정함
- 검증셋의 오차(val_loss)로 지정
- patience 옵션은 지정된 값이 몇 번 이상 향상되지 않으면 학습을 종료시킬지 정함
- monitor='val_loss', patience=20이라고 지정하면 검증셋의 오차가 20번 이상 낮아지지 않을 경우 학습을 종료하라는 의미

- 모델 저장에 관한 설정은 앞 절에서 사용한 내용을 그대로 따르겠음
- 다만 이번에는 최고의 모델 하나만 저장되게끔 해 보자
- 이를 위해 저장될 모델 이름에 에포크나 정확도 정보를 포함하지 않고, ModelCheckpoint()의 save_best_only 옵션을 True로 설정

```
modelpath = "./data/model/Ch14-4-bestmodel.hdf5"

checkpointer = ModelCheckpoint(filepath=modelpath, monitor='val_loss',
    verbose = 0, save_best_only=True)
```

- 모델을 실행
- 자동으로 최적의 에포크를 찾아 멈출 예정이므로 epochs는 넉넉하게 설정

```
history = model.fit(X_train, y_train, epochs=2000, batch_size=500,
validation_split=0.25, verbose=1, callbacks=[early_stopping_callback,
checkpointer])
```

☎ 학습의 자동 중단

• 앞서 만든 기본 코드에 다음과 같이 새로운 코드를 불러와 덧붙여 실행해 보자

```
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
# 학습이 언제 자동 중단될지 설정합니다.
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=20)
# 최적화 모델이 저장될 폴더와 모델 이름을 정합니다.
modelpath = "./data/model/Ch14-4-bestmodel.hdf5"
# 최적화 모델을 업데이트하고 저장합니다.
checkpointer = ModelCheckpoint(filepath=modelpath, monitor='val_loss',
verbose=0, save_best_only=True)
```

```
# 모델을 실행합니다.
history = model.fit(X_train, y_train, epochs=2000, batch_size=500, validation_split=0.25, verbose=1, callbacks=[early_stopping_callback, checkpointer])
```

```
Epoch 1/2000

8/8 [==========] - 0s 18ms/step - loss: 21.4771 - accuracy: 0.2494 - val_loss: 14.8183 - val_accuracy: 0.2462

... (중략) ...

Epoch 394/2000

8/8 [============================ ] - 0s 5ms/step - loss: 0.0500 - accuracy: 0.9828 - val_loss: 0.0651 - val_accuracy: 0.9846
```

- 에포크를 2,000번으로 설정했지만 394번에서 멈추었음
- 이때의 모델이 model 폴더에 Ch14-4-bestmodel.hdf 라는 이름으로 저장된 것을 확인

- 이제 지금까지 만든 모델을 테스트해 보자
- 따로 저장되어 학습 과정에 포함되지 않은 X_test와 y_test에 지금의 모델을 적용한 결과는 다음과 같음

```
score = model.evaluate(X_test, y_test)
print('Test accuracy:', score[1])
```

- 정확도가 98.84%
- 14.1절에서 실행했던 기본 소스가 94.15%의 정확도를 보였던 것과 비교하면 모델 성능이 대폭 향상된 것을 알 수 있음

수고하셨습니다!

