Monday 01/27/2025: Boolean Algebra

CSCI 246: Discrete Structures

Textbook reference: Sec. 7, Scheinerman

New way to get quizzes back!

Each student may line up either before class (2:00-2:10) or after class (3:00-3:10) to collect graded quizzes from the previous class from Fatima.

This will hopefully free up Fatima's time during class to assist with group exercises.

Today's Agenda

- Reading quiz (5 mins)
- Mini-lecture (≈ 15 mins)
 - Review Friday quizzes.
 - Go over Sec. 6 group problems
- Group exercises (≈ 25 mins)

Reading Quiz

Reading Quiz (Sec. 7 - Boolean Algebra)

Use a truth table to prove that the expressions $x \implies y$ and $(\neg x) \lor y$ are logically equivalent.

Notation reminder

- ullet \Longrightarrow means implies
- ¬ means not
- V means or

Mini-lecture

Poll

Is the following statement true or false?

$$-5|5 = -1$$

Poll

Is the following statement true or false?

$$-5|5 = -1$$

Alert!

In mathematical reasoning, you always need to **refer back to the definitions**.

Poll

Is the following statement true or false?

$$-5|5 = -1$$

Alert!

In mathematical reasoning, you always need to **refer back to the definitions**.

Reminder of Definition 3.2 (**Divisible**)

Let a and b be integers. We say that a is divisible by b provided there is an integer c such that bc = a. The notation for this is b|a.

Poll

Is the following statement true or false?

$$-5|5 = -1$$

Alert!

In mathematical reasoning, you always need to **refer back to the definitions**.

Reminder of Definition 3.2 (Divisible)

Let a and b be integers. We say that a is *divisible* by b provided there is an integer c such that bc = a. The notation for this is b|a.

Solution to poll: The statement is incorrect! Why?

Poll

Is the following statement true or false?

$$-5|5 = -1$$

Alert!

In mathematical reasoning, you always need to **refer back to the definitions**.

Reminder of Definition 3.2 (**Divisible**)

Let a and b be integers. We say that a is divisible by b provided there is an integer c such that bc = a. The notation for this is b|a.

Solution to poll: The statement is **incorrect!** Why? -5|5 is a **proposition**, so it can't equal -1. We would instead write just -5|5, or perhaps -5|5 = TRUE. How do we justify the proposition?

Poll

Is the following statement true or false?

$$-5|5 = -1$$

Alert!

In mathematical reasoning, you always need to **refer back to the definitions**.

Reminder of Definition 3.2 (Divisible)

Let a and b be integers. We say that a is divisible by b provided there is an integer c such that bc = a. The notation for this is b|a.

Solution to poll: The statement is **incorrect!** Why? -5|5 is a **proposition**, so it can't equal -1. We would instead write just -5|5, or perhaps -5|5 = TRUE. How do we justify the proposition? We have -5|5 because if a=5 and b=-5, there exists an integer (namely c=-1) such that bc=a.

Feedback on Sec. 6 reading

Reading Quiz (Sec. 6 - Counterexamples)

Disprove the following conjecture: Let a and b be integers. If a|b and b|a, then a=b. You can disprove the conjecture by providing a counterexample. Make sure to show that your counterexample satisfies the hypothesis (the "if" statement).

Common errors

- 1. Not justifying the counterexample. Many people correctly gave a counterexample, e.g. a = 5, b = -5, but did not justify why -5|5.
- 2. Incorrect use of notation. Many people wrote -5|5=-1. (However, I didn't take off points for this error.)

Reading Quiz Scores

Figure 1: Reading Quiz (Sec. 6)

Tips for Reading Math Textbooks

Work through examples.

- Don't just skim (or worse, skip!) the examples. Instead, devote more of your focus to the examples. Working through them and verbalizing the main ideas behind them is a great way to test to make sure you're understanding what you're reading.
- Read with a pencil and paper in your hand and when you get to an example, work it out! Try not to look at the solution until you are done.
- When checking your work, make sure you understand each step and why.
- Practice the examples BEFORE you attempt homework problems and then try to do your homework without referring back to the example

My solution to reading Quiz (Sec 6 - Counterexamples)

Disprove the following conjecture: Let a and b be integers. If a|b and b|a, then a=b.

Annotation	Main Text					
Structure	Let $a = 5$, $b = -5$.					
	First, we show that the hypothesis holds [i.e., that					
	(5 -5) and $(-5 5)$].					
Unravel defn.	a b means there is an integer x such that $ax = b$.					
	Likewise $b a$ means there is an integer y such that					
	by = a.					
The "Glue"	Substituting for a and b, we need to show that there					
	re integers x and y such that $5x = -5$ and $-5y = -5$					
	5. We see these equations hold by taking $x=-1$ and					
	y = -1.					
Structure	Hence $5 -5$ and $-5 5$, so the hypothesis is met.					
Structure	Now we show that the conclusion fails [i.e. that					
	$-5 \neq 5$.]					
The "Glue"	This is immediately clear.					

Remark. I scored out of 2 points, and gave 1.5 points for a correct counterexample, and 0.5 points for any argument that the hypothesis holds.

An interesting question

Reading Quiz (Sec. 6 - Counterexamples)

Disprove the following conjecture: Let a and b be integers. If a|b and b|a, then a=b.

Poll

Is a = 1, b = 0 a valid counterexample?

An interesting question

Reading Quiz (Sec. 6 - Counterexamples)

Disprove the following conjecture: Let a and b be integers. If a|b and b|a, then a=b.

Poll

Is a = 1, b = 0 a valid counterexample?

Reminder of Definition 3.2 (**Divisible**)

Let a and b be integers. We say that a is divisible by b provided there is an integer c such that bc = a. The notation for this is b|a.

An interesting question

Reading Quiz (Sec. 6 - Counterexamples)

Disprove the following conjecture: Let a and b be integers. If a|b and b|a, then a=b.

Poll

Is a = 1, b = 0 a valid counterexample?

Reminder of Definition 3.2 (Divisible)

Let a and b be integers. We say that a is divisible by b provided there is an integer c such that bc = a. The notation for this is b|a.

Solution to poll: We have a|b=1|0, since there is an integer c such that ac=b (that is, $1 \cdot c=0$). However, we do not have b|a=0|1, since there is no integer d such that bd=a (that is, there is no integer d such that $0 \cdot d=1$). That is, the hypothesis doesn't hold, so the statement doesn't apply.

Problems Quiz Scores

Most common error: Most students with 3/4 correctly wrote the truth table columns for $A \Longrightarrow B, B \Longrightarrow A$ and $A \Longleftrightarrow B$, but but didn't argue why/how $A \Longleftrightarrow B$ is identical to $(A \Longrightarrow B)$ and $(B \Longrightarrow A)$.

Solution: The question was exactly a group exercise from Sec. 4 (Theorems). See slides from that section for solution.

Sec. 7 (Boolean algebra) group work!

Students are randomly assigned into groups of 3 on the next slide.

Each group gets $\frac{1}{2}$ of a white board.

If the $\frac{1}{2}$ white board is inconvenient, feel free to write on a window!

- Group 1: justice.mosso,owen.obrien,nicholas.harrington1
- Group 2: joseph.triem,connor.yetter,anthony.mann
- Group 3: peter.buckley1,evan.barth,jeremiah.mackey
- Group 4: devon.maurer,carsten.brooks,jacob.ketola
- Group 5: kaden.price,michael.oswald,blake.leone
- ${\sf Group~6:~emmeri.grooms,griffin.short,carver.wambold}$
- Group 7: caitlin.hermanson,connor.mizner,connor.graville
- Group 8: jack.fry,samuel.mosier,tyler.broesel
- Group 9: ethan.johnson18,lucas.jones6,conner.reed1
- Group 10: micaylyn.parker,peyton.trigg,jacob.shepherd1
- Group 11: samuel.hemmen,cameron.wittrock,nolan.scott1
- Group 12: yebin.wallace,alexander.knutson,colter.huber
- Group 13: pendleton.johnston,reid.pickert,jada.zorn
- Group 14: luke.donaldson1,joseph.mergenthaler,jonas.zeiler
- Group 15: ryan.barrett2,william.elder1,samuel.rollins
- Group 16: jacob.ruiz1,aaron.loomis,lynsey.read
- Group 17: zeke.baumann,delaney.rubb,james.brubaker
- Group 18: erik.moore3,derek.price4,sarah.periolat
- Group 19: alexander.goetz,tristan.nogacki,jett.girard
- Group 20: mason.barnocky,jakob.kominsky,luka.derry
- Group 21: julia.larsen,bridger.voss,evan.schoening
- Group 22: john.fotheringham,adam.wyszynski,matthew.nagel, timothy.true

Group exercises

1. DeMorgan's laws are:

$$\neg(x \land y) = (\neg x) \lor (\neg y)$$
 and $\neg(x \lor y) = (\neg x) \land (\neg y)$

Prove the first of these (using truth tables). Then use DeMorgan's law to show how to disprove an if-and-only-if statement.

- 2. A **tautology** is a Boolean expression that evaluates to TRUE for all possible values of its variables. For example, the expression $x \lor \neg x$ evaluates to TRUE both when x = TRUE and x = FALSE. Use truth tables to show the following are tautologies:
 - (a) $(x \lor y) \lor (x \lor \neg y)$
 - (b) $x \implies x$
 - (c) FALSE $\implies x$
 - (d) $(x \Longrightarrow y) \land (y \Longrightarrow z) \Longrightarrow (x \Longrightarrow z)$
- 3. A contradiction is a Boolean expression that evaluates to FALSE for all possible values of its variables. For example, the expression x ∧ ¬x is a contradiction. Use truth tables to show that the following are contradictions:
 - (a) $(x \lor y) \land (x \lor \neg y) \land \neg x$
 - (b) $x \wedge (x \implies y) \wedge (\neg y)$.
- 4. Reprove the items in #2 and #3 using the properties in Theorem 7.2 and the fact from Prop 7.3 that $x \implies y$ is equivalent to $(\neg x) \lor y$.

Solution to group exercise #1a

Problem. DeMorgan's laws are:

$$\neg(X \land Y) = (\neg X) \lor (\neg Y) \quad \text{and} \quad \neg(X \lor Y) = (\neg X) \land (\neg Y)$$

Prove the first of these (using truth tables).

Solution.

Χ	Υ	$X \wedge Y$	$\neg(X \land Y)$	$\neg X$	$\neg Y$	$(\neg X) \lor (\neg Y)$
Т	Т	Т	F	F		F
Т	F	F	Т	F	Т	Т
F	Т	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

The 4th and 7th columns have the same truth values. Hence, $\neg(X \land Y) = (\neg X) \lor (\neg Y)$.

Solution to group exercise #1b

Problem. Use DeMorgan's law to show how to disprove an if-and-only-if statement.

Solution. In Group Exercise #2 from the Theorems day, we showed that

$$A \iff B = (A \implies B) \land (B \implies A). \tag{1}$$

That is, A-if-and-only-if B is identical to if-A-then-B and if-B-then-A.

To disprove an if-and-only-if statement, we need to establish $\neg(A \iff B)$. Now note that:

$$\neg (A \iff B) = \neg \left((A \implies B) \land (B \implies A) \right) \quad \text{(by substituting Eq. (1))}.$$

$$= \neg (A \implies B) \lor \neg (B \implies A) \quad \text{(by DeMorgan's law)}$$

So we can disprove and if-and-only-if statement *either* by showing that $A \Longrightarrow B$ fails *or* by showing that $B \Longrightarrow A$ fails.

Solution to group exercise #2a

Problem. Use truth tables to show the following is a tautology:

$$(X \vee Y) \vee (X \vee \neg Y)$$

Solution.

Χ	Υ	$\neg Y$	$X \vee Y$	$X \vee (\neg Y)$	$(X \vee Y) \vee (X \vee \neg Y)$
Т	Т	F	Т	Т	Т
Τ	F	Т	Т	Т	Т
F	Т	F	Т	F	Т
F	F	Т	F	Т	Т

The last column shows that $(X \vee Y) \vee (X \vee \neg Y)$ is always true, and hence a tautology.

Solution to group exercise #2b

Problem. Use truth tables to show the following is a tautology:

$$X \Longrightarrow X$$
.

Solution. Recall the truth table for implication.

Χ	Υ	$X \Longrightarrow Y$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Here we have Y=X. So only the first and last row of the truth table ever occur. So $X \implies X$ is always true. Thus, $X \implies X$ is a tautology.

Solution to group exercise #2 c

Problem. Use truth tables to show the following is a tautology:

$$FALSE \implies X$$

Solution. The truth table for implication is

$$\begin{array}{cccc} W & X & W \Longrightarrow X \\ \hline T & T & T \\ \hline T & F & F \\ F & T & T \\ F & F & T \end{array}$$

But here, we know W is FALSE. That is, only the last two rows of the truth table ever occur. So FALSE $\implies X$ is always true. Hence, FALSE $\implies X$ is a tautology.

Solution to group exercise #2 d

Problem. Use truth tables to show the following is a tautology:

$$(X \implies Y) \land (Y \implies Z) \implies (X \implies Z)$$

Proposition	Nickname	Values							
×				F					
Υ		Т	F	Т	F	Т	F	Т	F
Z				Т				F	
$X \Longrightarrow Y$	А	Т	F	Т	Т	Т	F	Т	Т
$Y \Longrightarrow Z$ B				Т		F	Т	F	Т
$(X \Longrightarrow Y) \land (Y \Longrightarrow Z)$	$C \triangleq A \wedge B$	Т	F	Т	Т	F	F	F	Т
$X \implies Z$	D			Т		F	F	Т	Т
$(X \implies Y) \land (Y \implies Z) \implies (X \implies Z)$	$C \Longrightarrow D$	Т					Т		

Solution to group exercise #3a

Problem. Use truth tables to show the following is a contradiction:

$$(X \lor Y) \land (X \lor \neg Y) \land \neg X$$

Proposition	Nickname	Truth Values			
X		Т	T F	F	F
Υ		Т	F	Т	F
$X \vee Y$	А	Т	Т	Т	F
$\neg Y$		F	T T	F	Т
$X \vee (\neg Y)$	В	Т	Т	F	Т
$\neg X$	С	F	F	Т	Т
$(X \lor Y) \land (X \lor \neg Y) \land \neg X$	$A \wedge B \wedge C$	F	F	F	F

Solution to group exercise #3b

Problem. Use truth tables to show the following is a contradiction:

$$X \wedge (X \implies Y) \wedge (\neg Y)$$

Proposition	Nickname	т	es		
X	А	Т	Т	F	F
Υ		Т	F	Т	F
$X \Longrightarrow Y$	B C	Т	F	Т	Т
$\neg Y$	С	F	Т	F	Т
$X \wedge (X \implies Y) \wedge (\neg Y)$	$A \wedge B \wedge C$	F	F	F	F

Solution to group exercise #4

The solutions to group exercise #4 refer to the properties from the textbook below.

Theorem 7.2

- $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$. (Commutative properties)
- $(x \land y) \land z = x \land (y \land z)$ and $(x \lor y) \lor z = x \lor (y \lor z)$. (Associative properties)
- $x \land \text{TRUE} = x \text{ and } x \lor \text{FALSE} = x$. (Identity elements)
- $\neg(\neg x) = x$.
- $x \wedge x = x$ and $x \vee x = x$.
- $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$. (Distributive properties)
- $x \wedge (\neg x) = \text{FALSE and } x \vee (\neg x) = \text{TRUE}.$
- $\neg(x \land y) = (\neg x) \lor (\neg y)$ and $\neg(x \lor y) = (\neg x) \land (\neg y)$. (DeMorgan's Laws)

Figure 2: Boolean Algebra Properties

Solution to group exercise #4 - Redo of 2a

Problem. Show the following is a tautology:

$$(X \vee Y) \vee (X \vee \neg Y)$$

$$(X \lor Y) \lor (X \lor \neg Y) = (X \lor X) \lor (Y \lor \neg Y)$$
 (commutative, associative props.)
$$= X \lor \texttt{True} \qquad \qquad (\texttt{unnamed props } \#5,7)$$

$$= \texttt{True} \qquad \qquad (\texttt{unnamed prop } \#7)$$

Solution to group exercise #4 - Redo of #2b

Problem. Show the following is a tautology:

$$X \implies X$$
.

$$X \implies X = (\neg X \lor X)$$
 (Prop 7.3)
= True (unnamed prop #7)

Solution to group exercise #4 - Redo of #2 c

Problem. Show the following is a tautology:

$$FALSE \implies X$$

Solution to group exercise #4 - Redo of #2 d

Problem. Show the following is a tautology:

$$(X \Longrightarrow Y) \land (Y \Longrightarrow Z) \Longrightarrow (X \Longrightarrow Z)$$

$$\underbrace{(X \Longrightarrow Y) \land (Y \Longrightarrow Z)}_{\triangleq A} \Longrightarrow \underbrace{(X \Longrightarrow Z)}_{\triangleq B}$$

$$= \neg A \lor B \qquad (Prop 7.3)$$

$$= \Big(\neg [X \Longrightarrow Y] \lor [\neg (Y \Longrightarrow Z)] \Big) \lor (X \Longrightarrow Z) \qquad (DeMorgan's Law)$$

$$= (X \lor \neg Y) \lor (Y \lor \neg Z) \lor (\neg X \lor Z) \qquad (Prop 7.3, DeMorgan's Law)$$

$$= (X \lor \neg X) \lor (Y \lor \neg Y) \lor (Z \lor \neg Z) \qquad (Associative, commutative props.)$$

$$= TRUE \lor TRUE \lor TRUE \qquad Unnamed Prop #7$$

$$= TRUE$$

Solution to group exercise #4 - Redo of #3a

Problem. Show the following is a contradiction:

$$(X \vee Y) \wedge (X \vee \neg Y) \wedge \neg X$$

Solution.

$$\begin{array}{l} (X \vee Y) \wedge (X \vee \neg Y) \wedge \neg X \\ = (X \wedge X \wedge \neg X) \vee (X \wedge \neg Y \wedge \neg X) \vee (Y \wedge X \wedge \neg X) \vee (Y \wedge \neg Y \wedge \neg X) & \text{Distributive prop.} \\ = \text{FALSE} \vee \text{FALSE} \vee \text{FALSE} \vee \text{FALSE} & \text{Unnamed prop.} \ \# \ 7 \end{array}$$

=FALSE

Remark

A tricky part of applying the properties is using the distributive law correctly. For intuition, recall how multiplication distributes over addition [e.g. $4(3+5) = 4 \cdot 3 + 4 \cdot 5$].

Solution to group exercise #4 - Redo of #3b

Problem. Show the following is a contradiction:

$$X \wedge (X \implies Y) \wedge (\neg Y)$$

$$\begin{array}{lll} X \wedge (X \implies Y) \wedge (\neg Y) \\ = X \wedge (\neg X \vee Y) \wedge (\neg Y) & \text{Prop 7.3} \\ = (X \wedge \neg X \wedge \neg Y) \vee (X \wedge Y \wedge \neg Y) & \text{Distributive prop.} \\ = & \text{FALSE} \vee & \text{FALSE} & \text{Unnamed prop. } \# 7 \\ = & \text{FALSE} \end{array}$$