FSR Calibration Guide

Code Link: https://rice.app.box.com/folder/309621500583

Currently **voltageOutputV2** is the Arduino code, it is set up for the ble33 (3.3V setup)

SaveData.py is the python script to collect data

Documentation:

- FSR Spec Sheet: https://rice.app.box.com/file/1880907738716 -- FSR Datasheet
- Paper about calibration: https://rice.app.box.com/file/1880920811700 -- technique for conditioning

Voltage Divider Color Coding:

Red – 3 kOhm

Orange – 10 kOhm

Yellow - 30 kOhm

Green - 47 kOhm

Blue - 100 kOhm

Wiring:

- FSR to 5V (or 3.3V) and Analog Input (A6 currently)
- Voltage Divider to Analog Input (A6 currently) and ground

Figure 1: compression testing setup and resulting force voltage curves (syncing the force data from instron and the voltage data from the fsr – working on improving this)

Steps to Use:

- 1. Make sure the wiring is correct (correct voltage divider etc.)
- Attach to computer, flash Arduino code (if not already done)
 *** When downloading the code, download the entire code folder***
- Go to command prompt, navigate to python script location using cd
 Folder_Name and dir to see what is in the directory
- 4. Once you find SaveData.py, run the python using *py SaveData.py**** You may need to install python to your computer via the terminal***
- 5. Enter the com port (COM3) and press enter
- 6. It will ask what resistance and iteration, put the resistance and iteration value (this will create a filename)
- 7. Press enter to start collecting data
- 8. Press **space** to stop collecting data, it will prompt you with the same prompt as step 6
- 9. When you want to stop collecting data altogether, type 'exit' and press enter