Un insieme e l'insieme delle sue parti non hanno la stessa cardinalità

Alessio Serraino

March 6, 2016

Teorema: Sia A un insieme, e $\mathcal{P}(A)$ l'insieme delle parti di A. Allora A e $\overline{\mathcal{P}(A)}$ Non hanno la stessa cardinalità.

Dimostrazione:

Supponiamo per assurdo che A e $\mathcal{P}(a)$ abbiano la stessa cardinalità. Allora esiste una relazione biunivoca $f: A \to \mathcal{P}(A)$.

Sia $X = \{a \in A : a \notin f(a)\}$. Osserviamo che $X \in \mathcal{P}(A)$ in quanto i suoi elementi sono alcuni (eventualmente nessuno o tutti) gli elementi di A.

Poichè f è biunivoca $\exists x \in A: X = f(x)$.

Allora possiamo scrivere $x \in f(x) \iff x \in X$, poichè f(x) = X per il modo in cui abbiamo scelto x.

Ma è anche vero che, per la definizione di $X, x \in X \iff x \notin f(x)$, quindi concatenando le due espressioni si ha:

$$x \in f(x) \iff x \in X \iff x \notin f(x)$$

Che è evidentemente un assurdo, nato per aver supposto che A e $\mathcal{P}(a)$ abbiano la stessa cardinalità. Quindi A e $\mathcal{P}(a)$ non hanno la stessa cardinalità.

Note: È noto che l'insieme delle parti di A ha 2^n elementi, indicando con n il numero di elementi di A (ovvero la sua cardinalità). La cardinalità di $\mathcal{P}(a)$ è quindi 2^n . Si potrebbe pensare che se si prova che per ongi $n \in \mathbb{N}$ $2^n > n$ allora si è provato il teorema. Ed è facile mostrare che $\forall n \in \mathbb{N}$ $2^n > n$, infatti $2^n = (1+1)^n \geq 1+n > n$ (sfruttando la disugualianza di Bernoulli). Purtroppo però questo ragionamento è valido solo se A è un insieme finito. Nel caso in cui A sia un insieme infinito non si può dire che ha n elementi con $n \in \mathbb{N}$, quindi non sarebbe neanche possibile calcolare "quanto faccia" 2^n . Ad ogni modo la dimostrazione proposta non richiede che A abbia un numero finito o infinito di elementi, oppure ancora A potrebbe essere vuoto. La dimostrazione funziona in ongi caso, quindi non serve distinguerli ed applicare una dimostrazione diversa per ognuno.