15Fall CSC 505 HW1

Suggested solution

1. (6 points) Goal: Practice analysis of algorithms. Consider the algorithm represented by the following program fragment.

```
1
   MYSTERY(int x, int n)
2
3
   int sum=0;
   if x>10 then {
5
        for (int i=1; i <= n^2; i++) {
6
            sum=sum*i;
7
        }
8
    } else {
9
        for (int i=1; i<=n; i++) {
10
            sum=sum+i;
11
        }
12 }
13 return x + sum;
14 }
```

- a) (2 points) As a function of x and n, what value does MYSTERY(x,n) return?
- b) (2 points) Use only ARITHMETIC operations as basic operations, and assume that the size of the input is measured by n. Compute the worst-case running time of MYSTERY.
- c) (2 points) Assume that x remains constant while n goes to infinity. Derive a tight, big-Oh expression (dependent on the value of x) for the running time of MYSTERY. Justify your solution.

```
a. Mystery(x,n) = x, if x > 10 and x+n(n+1)/2, if x <=10.
```

- b. Considering the Arithmetic operations + and *, the worst-case running time of Mystery(x,n) based on an input size of n is $O(n^2)$, because for x > 10, the algorithm will loop n^2 times, performing one + operation (line 5) and two * operations (lines 5 and 6; the first * is when n is squared [n*n]) each time. At the end of the algorithm, it performs one last + operation (line 13). This puts the running time for x > 10 as $3n^2 + 1$, which is in the class of $O(n^2)$.
- c. As above, the running time for x > 10 is $3n^2 + 1$. This means that the tight-big-oh expression for x > 10 is $O(n^2)$. For $x \le 10$, the worst case running time must perform two + operations n times (lines 9 and 10), followed by one more +

operation at the end (line 13). Thus, the running time for $x \le 10$ is 2n + 1, putting the tight-big-oh expression for $x \le 10$ at O(n). This means that the overall tight-big-oh expression for Mystery, dependent on x, is $O(n^2)$ for x > 10, and O(n) for n <= 10.

- **2.** (8 points) Purpose: Learn about bubblesort, practice running time analysis, learn how loop invariants are used to prove the correctness of an algorithm. Tip: re-read Section 2.1 in our textbook. Solve problem 2-2 [a-d] on page 40 of the textbook.
- a) The A could be any permutation of A'[1], A'[2],...,A'[n], , and the elements in A a nd A' are the same.
- b) **Loop invariant**: Before the loop starts with j = a, elements from A[a+1] to A[le ngth] are no less than A[j]. Namely, A[j] is the least element from A[j] to A[length]. **Initialization**:

Before the first loop starts with j = A.length, since there is no elements from A[a+1] to A[length], so they are no less than A[j].

Maintenance:

We compare A[j] with A[j-1], if A[j] is less than A[j-1], we swap the value of A[j] and A[j-1], so now, A[j-1] \leq A[j], since A[j+1] to A[length] are no less than A[j-1], the refore, A[j] to A[length] are no less than A[j-1], namely, A[j-1] is the least element f rom A[j-1] to A[length], j = j-1 for the next iteration, then loop invariant is preserve d.

Termination:

It terminates when j = i, according to the loop invariant, elements from A[i+1] to A [length] are no less than A[i], Namely, A[i] is the least element from A[i] to A[length]. Therefore, we find the least element from A[i] to A[length].

c) Loop invariant:

Before the jth loop starts, A[1] to A[j-1] are in sorted order and they all no bigger t han any element from A[j] to A[length].

Initialization:

Before the first loop, since there is no elements before A[1], we can say elements before A[i] are in sorted order. Also, we can say they all no bigger than any elem ent from A[1] to A[length].

Maintenance:

Before the *i*th loop, A[1] to A[i-1] are in sorted order and they all no bigger than a ny element from A[i] to A[length]. According to the termination condition of invariant proved in part(b), the inner "for" loop will make A[i] the least element from A[i] to A[length]. Therefore, A[1] to A[i] are in sorted order and they all no bigger than an y element from A[i+1] to A[length]. So loop invariant is preserved.

Termination:

It terminates when i = length, according to the loop invariant, before this loop start s, A[1] to A[length-1] are in sorted order and they all no bigger than any element f

rom A[length] to A[length]. Therefore, A[1] to A[length] are in sorted order.

d). $O(n^2)$, regardless of the input, the number of execution in bubble sort is the sa me. For the *i*th outer "for" loop, the inner loop will execute length-i times, so the to tal execution time:

$$\sum_{i=1}^{length-1} length - i = \sum_{i=1}^{n-1} n - i = \frac{[(n-1)+1](n-1)}{2} = \frac{n(n-1)}{2} \in O(n^2)$$

Therefore, it has the same time complexity as insertion sort for the worst case.

3. Purpose: practice working with asymptotic notation. Please solve(12 points) 3-2 on page 61, (8 points) 3-4 [a-c] on page 62. For full marks justify your solutions.

	page of, (o points) 3-					[•• •] 01.	page 62.1 of full marks justify your solutions.
	A	В	O	0	Ω	ω	Θ	Explanation
a.	lg ^k n	n^{ε}	Y	Y	N	N	N	Apply L'Hospital's Rule: $\lg^{k} n = (\log_{2} n)^{k} = \left(\frac{\ln n}{\ln 2}\right)^{k}$ $\lim_{n \to \infty} \frac{\lg^{k} n}{n^{\varepsilon}} = \left(\frac{1}{\ln 2}\right)^{k} \lim_{n \to \infty} \frac{(\ln n)^{k}}{n^{\varepsilon}} = \left(\frac{1}{\ln 2}\right)^{k} \lim_{n \to \infty} \frac{k(\ln n)^{k-1}}{\varepsilon n^{\varepsilon}} = \left(\frac{1}{\ln 2}\right)^{k} \lim_{n \to \infty} \frac{k!}{\varepsilon^{k} n^{\varepsilon}} = \frac{k!}{(\ln 2)^{k} \varepsilon^{k}} \lim_{n \to \infty} \frac{1}{n^{\varepsilon}}$ $= 0$
b.	n^k	c ⁿ	Y	Y	N	N	N	Apply L'Hospital's Rule: $\lim_{n \to \infty} \frac{n^k}{c^n} = \lim_{n \to \infty} \frac{kn^{k-1}}{c^n(\ln c)} = \lim_{n \to \infty} \frac{k!}{c^n(\ln c)^k} = \frac{k!}{(\ln c)^k} \lim_{n \to \infty} \frac{1}{c^n} = 0$
c.	\sqrt{n}	n ^{sin n}	N	N	N	N	N	The value of $\sin n$ fluctuates between -1 and 1 and is therefore not comparable.
d.	2 ⁿ	$2^{\frac{n}{2}}$	N	N	Y	Y	N	Apply L'Hospital's Rule: $\lim_{n \to \infty} \frac{2^n}{2^{\frac{n}{2}}} = \lim_{n \to \infty} 2^{\frac{n}{2}} = \infty$
e.	$n^{\lg c}$	$c^{\lg n}$	Y	N	Y	N	Y	$n^{\lg c} = c^{\lg n}$
f.	lg(n!)	$\lg(n^n)$	Y	N	Y	N		$\begin{split} \lg(n!) &= \sum_{i=1}^n \lg n \\ \lg(n^n) &= n \lg n \\ \text{Because } \sum_{i=1}^n \lg n \leq n \lg n, \ \lg(n!) \text{ is Big-Oh of } \lg(n^n). \\ \text{Because } \sum_{i=1}^n \lg i \geq \sum_{i=i=\frac{n}{2}+1}^n \lg i \geq \sum_{i=i=\frac{n}{2}+1}^n \lg \left(\frac{n}{2}\right) = \left(\frac{n}{2}-1\right) \lg \left(\frac{n}{2}\right), \\ \lg(n!) \text{ is Big-Omega of } \lg(n^n). \end{split}$

3-4

[a] False.

We can disprove by counterexample. For example, assume that f(n) = n, $g(n) = n^2$,

then
$$f(n) = O(g(n))$$
, but $g(n) \neq O(f(n))$.

[b] False.

We can disprove by counterexample. For example, assume f(n)=n, $g(n)=n^2$, then $f(n)+g(n)=n+n^2=\Theta(n^2), \text{ but } \min(f(n),g(n))=\Theta(n). \text{ They are not equal.}$ [c] True.

f(n)=O(g(n)) , there exists some constant c>0 and $n_0>0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Since $f(n) \ge 1$ and $\lg(g(n)) \ge 1$,

$$\lg(f(n)) \le \lg(c \cdot g(n)) = \left(\frac{\lg c}{\lg(g(n))} + 1\right) \cdot \lg(g(n)) \le \left(\lg c + 1\right) \cdot \lg(g(n)).$$

We can always find a $c' = \lg c + 1 > 0$, so that $\lg(f(n)) = O(\lg(g(n)))$.

- **4.** Purpose: Practice working with asymptotic notation. Rank the following functions by order of growth.
- a) (5 points) Find an arrangement f1, f2, ..., fn of the functions satisfying f1 = Ω (f2), f2= Ω (f3), ..., fn-1 = Ω (fn). (Here, lg := logarithm base 2)
- b) (2 point) The order is NOT unique. Which functions can be exchanged, i.e. $f_k \in \Theta(f_{k+1})$

$$n^2$$
, $\log(n!)$, n^{-2} , $e^{2\ln(n)}$, $\ln(n^2)$, 1000, $\operatorname{sqrt}(n)$, $3^{\lg(n)}$

- (a) n^2 , $e^{2\ln(n)}$, $3^{\lg n}$, $\log(n!)$, $\operatorname{sqrt}(n)$, $\ln(n^2)$, 1000, n^{-2}
- (b) n^2 and $e^{2\ln(n)}$ is not unique because $e^{2\ln(n)} = e^{\ln(n^2)} = n^2$
- **5.** (2 points) Purpose: Practice working with asymptotic notation. Assume that a and b are integers, and a,b>0. Show $e^{an} \in \omega((bn)^t)$.

$$\lim_{n\to\infty}\frac{e^{an}}{(bn)^t}=\lim_{n\to\infty}\frac{ae^{an}}{bt(bn)^{t-1}}=\cdots=\lim_{n\to\infty}\frac{a^te^{an}}{b^t\times t!}=\infty$$

6. (8 points) Purpose: Practice algorithm design and algorithm analysis. Give pseudoc ode for a $\Theta(\lg n)$ algorithm which computes a^n , given a and n. Justify the asymptotic running time of your algorithm. Do not assu me that n is a power of 2.

```
Algorithm Fast_Power(a,n)
```

```
1: result = 1
2:
    if n == 0 then
3:
        return result
   product = a
5: k = |\lg n| + 1
6:
    for i = 1 to k do
7:
        if n is even then
8:
             n = n/2
9:
        else
10:
             n = (n-1)/2
             result = result * product
11:
12:
        product = product * product
13: return result
```

This algorithm calculates a^n in $\lfloor \lg n \rfloor + 1$ iterations of the for loop. Since the number of operations in each loop is bound by a constant, the algorithm has $\Theta(\lg n)$ worse-case running time.

The algorithm calculates $a^{(a_02^0)}, a^{(a_02^0+a_12^1)}, ..., a^{(a_02^0+...+a_k2^k)}$ and store these values in the variable result. For example, for $n = 5 = 1*2^2 + 0*2^1 + 1*2^0$, the algorithm successively computes:

$$result=1, n=5, product=a$$

for-loop:

Initialization:

$$i=1$$
, $result=a$, $n=2$, $product=a^2$

$$i = 2$$
, result = a , $n = 1$, product = a^4

i=3, $result=a^5$, n=0, $product=a^8$

return result a^5