OPEN A PROJECT

The dataset used for this project has been taken from:

https://www.kaggle.com/harlfoxem/housesalesprediction

1. Open SAS EG: NEW PROJECT

2. if you want to save it and have access to it, then save it in a certain place on your computer.

ASSIGN A LIBRARY

3. Assign a library (a place where to retrieve your datafiles from or where to save them): two options.

A) FILE \rightarrow NEW \rightarrow PROGRAM

B) ICON → PROGRAM

WRITE THE FOLLOWING CODE:

- **libname** is used to assign a library
- bsta478 is a library name, you can assign any name you wish; it has to be max 8 characters long, should include digits and character symbols only
- set a path in quotation marks where the data files are located, i.e. "C:\datafiles\"
- put a semicolon at the end of the statement;
- run the program

IMPORT A FILE TO START WORKING

4. Import a file:

FILE → IMPORT DATA → LOCATE THE FILE ON YOUR COMPUTER → OPEN

If you want to save a file in your library so that you could access it later, then you have to save it in the assigned library.

Note: If you don't assign a library into which to save the file, it will get deleted when you close your session and you will have to start from scratch.

BROWSE \rightarrow SERVERS \rightarrow LOCAL \rightarrow BSTA478 (YOUR LIBRARY) \rightarrow OPEN \rightarrow SAVE \rightarrow NEXT \rightarrow TICK RENAME COLUMNS TO COMPLY WITH SAS NAMING CONVENTIONS \rightarrow NEXT \rightarrow NEXT \rightarrow FINISH

You have imported the file, and you can start analyzing your data now 😊

HOW TO CHECK WHAT YOU HAVE DONE SO FAR

Double-click on the **PROCESS FLOW**. You will see a diagram of all your work.

You can access your files here (the lower panel of the screen on the left).

DATA EXPLORATION

1. QUICK STATS

For a quick exploration of your data, go to the left bottom corner, double-click on servers, then local, libraries and your assigned library: BSTA478, for example. Right-click on the dataset you want to explore and left-click on Explore.

SERVERS → LOCAL → LIBRARIES → BSTA478 → RIGHT-CLICK ON THE DATASET → EXPLORE → QUICK STATS (the right side of the screen) → Click to run all statistics

You will see descriptive statistics for each of the variables you chose. You can also enlarge graphs by hovering over them, you'll see a magnifying glass icon, click on the graph you want to enlarge.

If you have too many variables, you can select only some columns:

SELECTED COLUMNS → DOUBLE-CLICK ON THE VARIABLES YOU WANT TO EXPLORE →

ADD TO PENDING UPDATES → APPLY UPDATES → QUICK STATS → Click to run all statistics (if needed)

You can also explore the dataset in 2 ways:

1) Describe \rightarrow The statistics option you want

OR

2) Tasks → Describe → The statistics option you want

2. UNIVARIATE ANALYSIS

1. HISTOGRAM

OR

How to create the histogram:

Data \rightarrow Choose the variable and place it into the Analysis variables (you can simply drag and drop the variable of interest and move it from the left pane to the right one)

You can change the appearance of the plot:

Plots → Appearance → Histogram Plot → Background color (choose it by yourself)

You can also place an inset with important stats next to the histogram.

Plots → Inset → Include inset → Select the stats data you want to be included into the inset

You can also change the title of the histogram by clicking:

Titles → Analysis Titles → Remove a check from the "Use default text" → Place the text of your choice in the title window → RUN

Are you not happy with the result? Click on Modify Task and adjust the settings.

2. FREQUENCY TABLES (for categorical variables)

Describe → One-Way Frequencies → Data → Drag and drop the variable of interest

Statistics → (modify if you like) Frequency table options Include

In this example we will keep the options at default, but you are free to change them including the stats you want to.

Plots → Vertical

You can also change the title like done in the Histogram example.

Once you have selected all the options, click on RUN.

One-Way Frequencies Results The FREQ Procedure									
bedrooms	Frequency	Percent	Cumulative Frequency	Cumulative Percent					
0	13	0.06	13	0.06					
1	199	0.92	212	0.98					
2	2760	12.77	2972	13.75					
3	9824	45.45	12796	59.21					
4	6882	31.84	19678	91.05					
5	1601	7.41	21279	98.45					
6	272	1.26	21551	99.71					
7	38	0.18	21589	99.89					
8	13	0.06	21602	99.95					
9	6	0.03	21608	99.98					
10	3	0.01	21611	99.99					
11	1	0.00	21612	100.00					
33	1	0.00	21613	100.00					

3. BIVARIATE ANALYSIS

For categorical variables, you can construct a two-way frequency table.

Describe → **Table Analysis**

Data → Drag and drop the variables into the Table variables

Tables → Drag and drop variables into the table.

Note! The variable you drag first will end up in the column of the table.

Cell statistics → Choose the stats you want to see in the table

You can also run a Chi-square test and others in the Table Statistics section. In addition, you can change the title of the table. Once you are done, click on **RUN**.

						The F	REQ P	roced	ıre						
					Table	of wa	terfror	nt by b	edroom	S					
		bedrooms													
		0	1	2	3	4	5	6	7	8	9	10	11	33	Tota
waterfront															
0	Frequency	13	194	2729	9760	6842	1582	268	38	13	6	3	1	1	21450
	Percent	0.06	0.90	12.63	45.16	31.66	7.32	1.24	0.18	0.06	0.03	0.01	0.00	0.00	99.2
	Row Pct	0.06	0.90	12.72	45.50	31.90	7.38	1.25	0.18	0.06	0.03	0.01	0.00	0.00	
	Col Pct	100.00	97.49	98.88	99.35	99.42	98.81	98.53	100.00	100.00	100.00	100.00	100.00	100.00	
1	Frequency	0	5	31	64	40	19	4	0	0	0	0	0	0	163
	Percent	0.00	0.02	0.14	0.30	0.19	0.09	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.7
	Row Pct	0.00	3.07	19.02	39.26	24.54	11.66	2.45	0.00	0.00	0.00	0.00	0.00	0.00	
	Col Pct	0.00	2.51	1.12	0.65	0.58	1.19	1.47	0.00	0.00	0.00	0.00	0.00	0.00	
Total	Frequency	13	199	2760	9824	6882	1601	272	38	13	6	3	1	1	21613
	Percent	0.06	0.92	12.77	45.45	31.84	7.41	1.26	0.18	0.06	0.03	0.01	0.00	0.00	100.00

MULTIPLE REGRESSION

ANALYZE → REGRESSION → LINEAR REGRESSION

Data → Dependent variable (can be only 1; must be numerical) → Explanatory variables (whichever ones you want to assign)

If you have categorical variables that have not been turned into dummy variables, then you have to use HP Linear Regression (Analyze \rightarrow Regression \rightarrow HP Linear Regression).

BSTA 478: SAS EG - TUTORIAL WEEK 1

Dziuba Dariia, Winter 2020

In the **MODEL** section you can choose a variable selection process: Full regression, forward, backward, stepwise etc.

Linear Regression for Local:BSTA478.KC_HOUSE

Linear Regression for Local:BSTA478.KC_HOUSE

In the **PLOTS** you can also choose diagnostic residual plots, i.e. residual distribution, their normality etc. Don't use this option if you have too many datapoints, i.e. over 5000.

Once you are done, click RUN.

Full regression model results

EXPORT DATA

EXPORT \rightarrow EXPORT (FILENAME) \rightarrow CHOOSE A LOCATION \rightarrow CHOOSE A FILE FORMAT (FILES OF TYPE) \rightarrow SAVE

BSTA 478: SAS EG - TUTORIAL WEEK 1

Dziuba Dariia, Winter 2020

LOGISTIC REGRESSION

The dataset used for this project has been taken from:

https://www.kaggle.com/nsrose7224/crowdedness-at-the-campus-gym/downloads/crowdedness-at-the-campus-gym.zip/2

ANALYZE → REGRESSION → LOGISTIC REGRESSION

DATA \rightarrow SET A BINARY VARIABLE AS YOUR DEPENDENT VARIABLE (CROWDED IN THIS CASE) \rightarrow ASSIGN QUANTITATIVE AND CLASSIFICATION VARIABLES

RESPONSE → FIT MODEL TO LEVEL → 1

EFFECTS → **SET THE VARIABLES TO MAIN EFFECTS**

SELECTION → MODEL SELECTION METHOD

You can also continue adjusting other settings. After you have finished click on RUN.

Questions:

Multiple linear regression

- 1. Import the data file called kc_house.xlsx
- 2. Explore the data and give answers to the following questions:
 - a. What distribution do the house prices have? Does the price variable need any transformation?
 - b. What is the maximum number of bedrooms?
 - c. What is the minimum size of a lot?
 - d. Build a frequency table for bedrooms, bathrooms, waterfront.
 - e. Build a two-way table of waterfront by condition and waterfront by grade.
 - f. How many variables and how many observations does the dataset have?
 - g. Are there any variables that have missing observations? What should you do with the missing values?
 - h. Which variables do you think should be excluded from the analysis since they will not contribute much to the explanation of the price of a house?
 - i. Which variables do you need to predict a size of a lot?
 - j. Should you include ZIP code into your model?
- 3. A) Build a multiple linear regression predicting the price of a house:
 - a. Full model
 - b. Forward selection
 - c. Backward selection
 - d. Stepwise
 - B) Compare the models. Which one is the best out of the four? Why?

Logistic regression

- 1. Import the datafile called gym_data.xlsx
- 2. Explore the data and answer the questions:
 - a. What distribution does the number of visitors have?
 - b. What is the minimum and maximum number of gym visitors?
 - c. How many variables and how many observations does the dataset have?
 - d. Are there any variables that have missing observations? What should you do with missing values?
 - e. Which variables do you think should be excluded from the analysis since they will not contribute much to the explanation of the number of visitors to the gym?
 - f. Are there any redundant variables?
- 3. A) Run a logistic regression for event = 1:
 - a. Full
 - b. Stepwise
 - c. Forward
 - d. Backward
 - B) Analyze the odds likelihood ratio as well as the ROC curve. Which model is the best?