Algorithmes Classiques

1. Algorithmes sur les entiers et les puissances

1.1 Calcul de puissance

Algorithme naïf

```
In [1]: def puissance(a, n):
    res = 1
    for k in range(n):
        res = res * a
        return res

In [2]: puissance(2, 10)

Out[2]: 1024

In [3]: puissance(1 + 1/1000, 1000)

Out[3]: 2.7169239322355985
```

Exponentiation rapide en récursif

```
In [4]: def puissance_rr(a, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return puissance_rr(a * a, n // 2)
    else:
        return a * puissance_rr(a * a, n // 2)
```

```
In [5]: puissance_rr(2, 10)
Out[5]: 1024
In [6]: puissance_rr(1 + 1/1000, 1000)
Out[6]: 2.71692393223552
```

Exponentiation rapide en itératif

```
In [7]: def puissance_ri(a, n):
    b = a
    res = 1
    while n != 0:
        if n % 2 == 1:
            res = res * b
        b = b * b
        n = n // 2
    return res
```

```
return res

In [8]: puissance_ri(2, 10)

Out[8]: 1024

In [9]: puissance_ri(1 + 1/1000, 1000)

Out[9]: 2.7169239322355203
```

```
In [10]: %timeit puissance(1 + 1/1000, 1000)
%timeit puissance_rr(1 + 1/1000, 1000)
%timeit puissance_ri(1 + 1/1000, 1000)

43.2 \mu s \pm 545 ns per loop (mean \pm std. dev. of 7 runs, 10000 loops each)
2.07 \mu s \pm 17.1 ns per loop (mean \pm std. dev. of 7 runs, 100000 loops each)
1.48 \mu s \pm 44.2 ns per loop (mean \pm std. dev. of 7 runs, 1000000 loops each)
```

1.2 Evaluation d'un polynôme

```
Version naïve
In [11]: def eval_tres_naif(p, x):
              res = 0
              for k in range(len(p)):
                  res = res + p[k] * puissance(x, k)
              return res
In [12]: eval\_tres\_naif([1, 2], 3) == 1 + 2 * 3
Out[12]: True
In [13]: eval_tres_naif([1, 2, 3], 4) == 1 + 2 * 4 + 3 * (4**2)
Out[13]: True
In [14]: def eval_naif(p, x):
              res = 0
              value = 1
              for k in range(len(p)):
                   res = res + p[k] * value
                   value = value * x
              return res
In [15]: eval_naif([1, 2], 3) == 1 + 2 * 3
Out[15]: True
In [16]: eval_naif([1, 2, 3], 4) == 1 + 2 * 4 + 3 * (4**2)
Out[16]: True
          Algorithme de Horner
In [17]: def eval_horner(p, x):
              res = 0
              n = len(p) - 1
              for k in range(n + 1):
                  res = res * x + p[n - k]
              return res
In [18]: eval\_horner([1, 2], 3) == 1 + 2 * 3
Out[18]: True
In [19]: eval_horner([1, 2, 3], 4) == 1 + 2 * 4 + 3 * (4**2)
Out[19]: True
In [20]: n = 1000
          p = [1.0 \text{ for } k \text{ in } range(n + 1)]
          x = 0.9
          %timeit eval_tres_naif(p, x)
          %timeit eval_naif(p, x)
          %timeit eval_horner(p,x)
          20.7 ms \pm 212 \mus per loop (mean \pm std. dev. of 7 runs, 10 loops each)
          98.4 \mu s ± 293 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) 100 \mu s ± 455 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

1.3 Décomposition d'un entier en base b

```
In [21]: def decomposition_base(b, n):
    res = []
    while n != 0:
        res.append(n % b)
        n = n // b
    return res

In [22]: decomposition_base(10, 345)

Out[22]: [5, 4, 3]

In [23]: decomposition_base(2, 10)

Out[23]: [0, 1, 0, 1]
```

1.4 Calcul du pgcd

Calcul du pgcd en récursif

```
In [24]: def pgcd_r(a, b):
    if b == 0:
        return a
    else:
        return pgcd_r(b, a % b)
In [25]: pgcd_r(3, 7)
Out[25]: 1
In [26]: pgcd_r(15, 21)
Out[26]: 3
```

Calcul du pgcd en itératif

```
In [27]: def pgcd_i(a, b):
    while b != 0:
        a, b = b, a % b
    return a

In [28]: pgcd_i(3, 7)

Out[28]: 1

In [29]: pgcd_i(15, 21)

Out[29]: 3
```

2. Algorithmes sur les listes

2.1 Recherche du maximum et du minimum

```
In [30]: def maximum(t):
    res = t[0]
    for k in range(len(t)):
        if t[k] > res:
            res = t[k]
    return res
In [31]: maximum([2, 6, -1])
Out[31]: 6
```

Out[33]: -1

```
In [32]: def minimum(t):
    res = t[0]
    for k in range(len(t)):
        if t[k] < res:
        res = t[k]
    return res</pre>
In [33]: minimum([2, 6, -1])
```

2.2 Calcul de la moyenne

```
In [34]: def moyenne(t):
    n = len(t)
    res = 0
    for k in range(n):
        res = res + t[k]
    res = res / n
    return res
In [35]: moyenne([10, 12, 9])
Out[35]: 10.3333333333333334
```

2.3 Recherche dans une liste

Version rapide, simple et efficace. What else?

Version avec un seul return, mais un peu plus lente

```
In [39]: def recherche_v0(t, x):
    res = False
    for k in range(len(t)):
        if t[k] == x:
        res = True
    return res

In [40]: recherche_v0([2, 3, 7], 3)

Out[40]: True

In [41]: recherche_v0([2, 3, 7], -1)

Out[41]: False
```

Version avec un seul return, rapide, mais utilisant les subtilités du "and" paresseux

2.4 Recherche dichotomique dans une liste triée dans l'ordre croissant

Une version avec plusieurs return. Les autres versions sont très dangereuses.

```
In [45]: def recherche_dichotomique(t, x):
    g = 0
    d = len(t) - 1
    while g <= d:
        m = (g + d) // 2
        if x < t[m]:
            d = m - 1
        elif x > t[m]:
            g = m + 1
        else:
            return True
    return False

In [46]: recherche_dichotomique([2, 3, 7], 2)

Out[46]: True

In [47]: recherche_dichotomique([2, 3, 7], -1)
Out[47]: False
```