Lista de Exercícios de Autômatos Finitos Determinísticos e Autômato Finito Não-Determinísticos

(para brincar em casa, não precisa entregar)

- 1) Construa um AFD para as seguintes linguagens e dê sua descrição formal:
 - a) $\{ uavbxcy | u,v,x,y \in \{a,b,c\}^* \}$
 - b) $\{w \in \{a,b\}^* \mid w \text{ começa com a e tem tamanho par}\}$
 - c) $\{w \in \{a,b\}^* \mid w \text{ nunca tem mais de dois a's consecutivos}\}$
 - d) $\{w \in \{a,b\}^* \mid w \text{ tem um número ímpar de ab's}\}$
 - e) $\{w \in \{a,b\}^* \mid |w| \ge 2 \text{ e os a's (se houver) precedem os b's (se houver)}\}$
 - f) $\{w \in \{a,b,c,d\}^* \mid \text{ os a's (se houver) precedem os b's (se houver) e os c's (se houver)} \}$
 - g) $\{xba^n \mid x \in \{a,b\}^*, n \ge 0 \text{ e x tem um número par de a's}\}$
 - h) $\{xa^mba^n | x \in \{a,b\}^*, m+n \text{ \'e par e } x \text{ n\~ao termina em a}\}$
 - i) $\{ w \in \{a,b,c\}^* \mid w \text{ não tem abc como subpalavra} \}$
 - j) $\{a^nb^mc^p / n \ge 0, m \ge 0, p \ge 0\}$
 - k) $\{a^nb^{2m}ccb^p / n \ge 1, m \ge 0, p \ge 1\}$
 - 1) $\{a^{2n}b^{2m} / n > 0, m > 0\}$
- 2. Considere o alfabeto $\Sigma = \{0,1\}$. O conjunto de todas as palavras sobre o alfabeto é dado por Σ^* . A seguir, faça a representação da linguagem sobre o alfabeto conforme a descrição dada.
 - a) L1 é a linguagem mais simples que existe; não contém palavras:
 - b) L2 é a linguagem que contém uma única palavra: a palavra vazia
 - c) L3 é a linguagem que contém uma única palavra: 0.
 - d) L4 é a linguagem que contém duas palavras: λ e 0
 - e) L5 é a linguagem constituída de toda palavra de tamanho par cuja primeira metade só contém 0's e cuja segunda metade só contém 1's. Esta linguagem também é conhecida como duplo-bal.
- 3. Apresente a Linguagem e a descrição completa incluindo a tabela de transição para os diagramas de estados dos AFDs abaixo:

a)

b)

Autômatos Finitos NÃO-DETERMINÍSTICOS

- 1) Construa AFN's para as seguintes linguagens sobre {a,b,c}:
 - a) O conjunto de palavras com, no mínimo, 1 ocorrência de abc.
 - b) O conjunto de palavras com, no mínimo, 2 ocorrências de abc.
 - c) $\{w \in \{0,1\}^* \mid |w| \ge 4 \text{ e o penúltimo símbolo é } 1\}$
 - d) $\{w \in \{0,1\}^* \mid 00 \text{ não aparece nos últimos 4 símbolos de w}\}$
- 2) Dada as linguagens, apresente os AFDs. Caso não seja possível desenvolver AFD ou AFND justifique sua resposta:
 - a) $L = \Sigma^* \text{ para } \Sigma = \{a,b\}$
 - b) $L = a para \Sigma = \{a,b\}$
 - c) $L = aa para \Sigma = \{a,b\}$
 - d) $L = a^* para \Sigma = \{a,b\}$
 - e) $L = \{ \} \text{ para } \Sigma = \{a,b\}$
 - f) $L = \{a^nb^n \mid n > = 0 \} \text{ para } \Sigma = \{a,b\}$
 - g) Conjunto de todas as palavras que não contém aa sobre o alfabeto $\Sigma = \{a,b,c\}$
 - h) Conjunto de todas as palavras sobre Σ = {a,b,c} onde cada b é seguido de pelo menos um c
 - i) Conjunto de strings sobre $\Sigma = \{a,b\}$ onde o número de a é divisível por 3
 - j) Conjunto de strings sobre $\Sigma = \{0,1\}$ e w tem tamanho ímpar
 - k) $L = \{a^nb^{2m} \mid n>0 \text{ e m} >=0\}$
 - l) $L = \{zw \mid w \text{ pertence a } \{z,n\}^*\}$