Postgres Conference

HangZhou, China

Postgres-XC/XL Scale-out Approach in PostgreSQL

July 25th, 2015 NTT DATA INTELLILINK Corporation Koichi Suzuki

About the Speaker

- Fellow at NTT DATA Intellilink Corporation
- Principal, Technology Professionals at NTT DATA Group

In Charge Of

- General Database Technology
- Database in huge data warehouse and its design
- PostgreSQL and its cluster technology

In The Past

- Character Set Standard (Extended Unix Code, Unicode, etc)
- Heisei-font development (Technical Committee)
- Oracle Porting
- Object-Relational Database

Motivation

- Growing Database Workload both in OLTP (OnLine Transaction Processing) and OLAP (OnLine Analytical Processing) applications.
- Shared-Nothing Approach
 - Performance with commodity hardware/software
- Extension to existing PostgreSQL
- Transparent API
 - Internal API could be different
 - Transparent libpq Interface
 - No significant restriction to transaction ACID properties and SQL language.

Scale-out approach

- Distribution/Replication of table rows among different database "nodes"
 - Parallelism
 - Local join operation
- SQL planning for row distribution/replication
- Consistent and synchronous transaction management among "nodes"
- Performance with commodity hardware/software

Read Scale-out in PostgreSQL Master/Slave

Backend Transaction Synchronization

DBT-1 (Rev)

Table Design in DBT-1 Benchmark

MPP Performance - DBT-3 (TPC-H)

By courtesy of Mason Sharp, Postgres-XL leader

Scale Out Approach (1): Table Distribution/Replication

Categorize tables into two groups:

Large and frequently-updated tables

- → Distribute rows among nodes (Distributed Tables)
 - → Based on a column value (distribution key)
 - → Hash, modulo or round-robin
- → Parallelism among transactions (OLTP) or in SQL processing (OLAP)

Smaller and stable tables

- → Replicate among nodes (Replicated Tables)
- → Join Pushdown

Avoid joins between Distributed Tables with join keys different from distribution key as possible.

Scale Out Table Design in DBT-1

Three distribution keys:

- Customer ID
- Shopping Cart ID
- Item ID

Some transactions involve joins across distributed tables with non-distribution join keys.

Node Configuration: Two-Tier Approach

Coordinator:

- Maintains global catalog information
- Build global SQL plan and SQL statements for datanodes
- Interact with datanode to execute local SQL statements and accumulate the result

Datanode

- Maintains actual data (local data)
- Run local SQL statement from Coordinator (In XL, datanode may ask other datanodes for their local data)

Coordinator and Datanode

Node Configuration: Yet Another Node: GTM

GTM: Global Transaction Manager

Synchronizes each node's transaction status

Why GTM? Two-Phase Commit Protocol doesn't work?

Two-Phase Commit Protocol Does:

 Maintain database consistency in transactions updating more than one node.

Two-Phase Commit Protocol Doesn't:

Maintain Atomic Visibility of Updates to other transactions (next slide)

Atomic Visibility and GTM

Final Configuration: GTM, Coordinator and Datanode

Configuration in Practice

Just like configuring many database servers to talk each other

- Many pitfalls
- Pgxc_ctl provides simpler way to configure the whole cluster
 - Provide only needed parameters
 - Pgxc_ctl will do the rest to issue needed commands and SQL statements.
- Visit

http://sourceforge.net/p/postgres-xc/xc-wiki/PGOpen2013_Postgres_Open_2013/

OLTP Workload Characteristics

Number of Transactions: Many

Number of Involved Table Rows: Small

Locality of Row Allocation: High

Update Frequency: High

OLAP Workload Characteristics

Number of Transactions: Small

Number of Involved Table Rows: Huge

Locality of Row Allocation: Low

Update Frequency: Low

Scaling Out OLAP Workload

Run Small Local SQLs for each Datanode in Parallel

Join Offloading: When row allocation is available

- Replicated Table and Partitioned Table
 - Can determine which datanode to go from WHERE clause

Join Offloading: When row allocation is available

- Replicated Table and Partitioned Table
 - When the coordinator cannot determine which datanode to go from WHERE clause

Aggregate Functions in PostgreSQL

Finalize Function

State Transition Function

Aggregate Functions in Postgres-XC/XL

Similar to Map Reduce!

Specific statements

- CREATE BARRIER
 - Synchronize all node's WAL for restoration.
- CREATE|ALTER|DROP NODE
 - Maintenance of cluster node
 - Caution! not automatically propagated. Issue to each coordinator.
- CREATE/DROP NODE GROUP
 - Alias for group of node
- EXECUTE DIRECT
 - Run SQL locally
 - Read operation only
 - If you are superuser, turn xc_maitenance_mode to on by set statement to allow write operations.
 - You must be responsible to any inconsistencies and side effects!

Specific catalogs

- pgxc_class
 - Definition of table distribution
- pgxc_node
 - Postgres-XC node information
- pgxc_group
 - Node group

Specific functions

- pgxc_version()
 - Show version
- pgxc_pool_check()
 - Check if connection pooler is consistent with pgxc_node catalog.
- pgxc_pool_reload
 - Reload cached connection data and synchronize pooler connection information with pgxc_node.
- pgxc_lock_for_backup
 - Only for adding new nodes.
 - Locks DDL execution to make catalog stable for backup and copy to new node.

Specific statements, catalogues, functions and parameters

http://postgres-x2.github.io/reference/1.2/html/sql-commands.html for details

Specific parameters (planner parameters not included)

- gtm_backup_barrier (bool)
 - Enable CREATE BARRIER statement.
- persistent_datanode_connections (bool)
 - If "true", session never releases connections.
- xc_maintenance_mode
 - Enable write operation in "EXECUTE DIRECT" statement.
 - Only allowed to root users.
- min_pool_size
 - Threashold for pooler to create new connection.
- max_pool_size
 - Max pooled connection size.
- pooler_port
 - Port number for the pooler (pgxc_ctl takes care of it)
- gtm_port
 - GTM port number (pgxc ctl takes care of it)

Specific parameters (cont.)

- max_datanodes
- max_coordinators
- pgxcnode_cancel_delay
 - Timeout to wait cancel operation in millisconds.
 - Mainly for automatic test.
- gtm_host
 - GTM host name/IP address. Pgxc_ctl takes care of this.
- pgxc_node_name
 - Node name of the self. Pgxc_ctl takes care of this.

Specific statements

- CREATE/DROP NODE GROUP
 - Alias for group of node
- Unified again?

XC and XL community

- Postgres-XC is the original community
 - Based upon PostgreSQL 9.3
 - Tested more for OLPT workload
 - Now community activity as Postgres-X2
 - Stabilization
 - Participated by many Chinese engineers
 - Next minor release are planned in this August
- Postgres-XL was became separate community for more product-oriented and better stability
 - Based upon PostgreSQL 9.2
 - Shares most of XC code base
 - Tested more for OLAP workload
 - Direct data capture between datanodes
 - Provide many fixes. Most of them apply to XL as well
 - Just finished merge with Postgres 9.5 alfa
- Unified again?

Product status

- Source code inherits all the PostgreSQL repository (at some point)
- Fundamental features are all available
 - Global transaction management
 - SQL statements
 - Utilities
- Further challenges
 - Subtransaction (needed for full function support)
 - Catching up PostgreSQL (needed?)

_

XC and XL community

- Both communities need much more resource to move forward
 - Developer
 - Tester
 - Real workload
- Now several Chinese farms are working together.
 - Much more active members are welcome!

XC and XL community

- Both communities need much more resource to move forward
 - Developer
 - Tester
 - Real workload
- Now several Chinese farms are working together.
 - Much more active members are welcome!

XC and XL community sites

Postgres-XC

https://github.com/postgres-x2

https://postgres-x2.github.io

https://groups.google.com/forum/#!forum/postgres-x2-dev

https://groups.google.com/forum/#!forum/postgres-x2-general

koichi.dbms@gmail.com galylee@gmail.com

Postgres-XL

http://www.postgres-xl.org/

Pgxc_ctl

- Postgres-XC contrib module
- Postgers-XC configuration and operation tool
 - A kind of Postres-XC shell
 - Builtin commands
 - Can invoke any bash commands
 - Does not expand \$(variable).
- Simple configuration
- Avoid many pitfalls in manual configuration and operation
- Bash-based configuration file
- You can write your favorite bash-script for your configuration

Pgxc_ctl builtin commands (major ones)

- prepare
 - Creates configuration file template
- deploy
 - Deploys postgres-xc binaries to necessary nodes
- Init [all]
 - Initialize postgres-xc cluster
 - Run initdb and initgtm at necessary nodes
 - Do additional configuration
 - Initialize node configuration
- Start/stop
 - Cluster and node start/stop
- Clean
 - Cleanup existing resource
- Monitor
 - See what node is running

Pgxc_ctl builtin commands (major ones)

- Createdb
 - Similar to created but select one coordinator to do it.
- Psql
 - Similar to psql but select one coordinator or specify coordinator name to connect to.
- Add
 - Add gtm_proxy, coordinator and datanode (master and slave)
- Remove
 - Remove gtm_proxy, coordinator and datanode (master and slave)

NTTData

Global IT Innovator