Novel Developments in Ontology-Based Data Access and Integration: Part 3. Extensions

Diego Calvanese, Guohui Xiao

KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy

17th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2018)

Trento, Italy, 20 November 2018

Outline

1 Temporal Data

Temporal OBDA Framework Ontology Layer Mapping Layer Query Answering for Temporal OBDA

2 Ontology-based Integration of Multiple Data Sources

Issues with Multiple Data Sources Canonical IRIs Mapping Rewriting Experimentation with *Ontop*

3 Conclusions

(1/30)

Outline

1 Temporal Data

Temporal OBDA Framework Ontology Layer Mapping Layer Query Answering for Temporal OBDA

- Ontology-based Integration of Multiple Data Sources
- 3 Conclusions

(1/30)

Siemens Energy Services

- Monitor gas and steam turbines.
- Collect data from 50 remote diagnostic centers around the world.
- Centers linked to a common central DB.
- Turbines are highly complex, with 5 000–50 000 sensors each.

Objective: retrospective diagnostics

i.e., detect abnormal or potentially dangerous events.

Events

- Involve a number of sensor measurements.
- Have a certain temporal duration.
- Occur in a certain temporal sequence.

Example request

Find the gas turbines deployed in the train with ID T001, and the time periods of their accomplished purgings.

To capture such a complex scenario . . .

... we need to enrich OBDA with temporal features.

Approaches proposed in the literature:

1. Use standard ontologies and extend queries with temporal operators

[Gutiérrez-Basulto and Klarman 2012; Baader, Borgwardt, and Lippmann 2013; Klarman and Meyer 2014; Özçep and Möller 2014; Kharlamov et al. 2016]

However:

- Query language gets significantly more complicated.
- Effort is shifted from design time to query time.

2. Extend both query and ontology with linear temporal logic (LTL) operators

[Artale, Kontchakov, Wolter, et al. 2013; Artale, Kontchakov, Kovtunova, et al. 2015] However:

• LTL is not suited to deal with metric temporal information.

We present here a different approach to temporal OBDA

- At the ontology level, we have both static and temporal predicates:
 - Static predicates to represent ordinary facts.

```
E.g., Burner(b01), isMonitoredBy(b01, mf01)
```

Temporal predicates to represent temporal facts with a validity interval
 E.g., HighRotorSpeed(rs01)@[2017-06-06 12:22:50, 2017-06-06 12:23:40)

We consider both open and closed intervals:

$$A(d)@(t_1,t_2), \quad A(d)@[t_1,t_2), \quad A(d)@(t_1,t_2), \quad A(d)@[t_1,t_2]$$

- The ontology is expressed in OWL 2 QL → First-order rewritability.
- We enrich it with static and temporal rules.
- We extend the mapping mechanisms so as to retrieve also temporal information from the data, i.e., both static and temporal facts.

(3/30)

Temporal Data

Formal framework for temporal OBDA

A traditional OBDA specification is a triple $\mathcal{P} = \langle \mathcal{O}, \mathcal{M}, \mathcal{S} \rangle$

- O is an ontology.
- M is a set of mapping assertions between ontology and data sources.
- S is a database schema.

Temporal OBDA builds on traditional OBDA.

A temporal OBDA specification is a tuple $\mathcal{P}_t = \langle \Sigma_s, \Sigma_t, \mathcal{O}, \mathcal{R}_s, \mathcal{R}_t, \mathcal{M}_s, \mathcal{M}_t, \mathcal{S} \rangle$

- Σ_s is a static vocabulary.
- O is an ontology.
- R_s is a set of static rules.
- M_s is a set of static mapping assertions.
- S is a database schema.

- Σ_t is a temporal vocabulary.
- \mathcal{R}_t is a set of temporal rules.
- \mathcal{M}_t is a set of temporal mapping assertions.

Static ontology – Example

We use an **ontology** to model the **static knowledge** about

- machines and their deployment profiles
- component hierarchies

- sensor configurations
- functional profiles

We still use **OWL 2 QL** as the static ontology language.

TemperatureSensor

□ Sensor

Devices consist of parts, and these are monitored by many different kinds of sensors (temperature, pressure, vibration etc.).

```
 \begin{array}{c} \mathsf{GasTurbine} \sqsubseteq \mathsf{Turbine} \\ \mathsf{SteamTurbine} \sqsubseteq \mathsf{Turbine} \\ \mathsf{PowerTurbine} \sqsubseteq \mathsf{TurbinePart} \\ \mathsf{Burner} \sqsubseteq \mathsf{TurbinePart} \\ \mathsf{RotationSpeedSensor} \sqsubseteq \mathsf{Sensor} \\ \end{array}
```

```
\exists isDeployedIn \sqsubseteq Turbine

\exists isDeployedIn^- \sqsubseteq Train

\exists isPartOf \equiv TurbinePart

\exists isPartOf^- \sqsubseteq Turbine

\exists isMonitoredBy \sqsubseteq TurbinePart

\exists isMonitoredBy^- \sqsubseteq Sensor
```

Static rules

However, OWL 2 QL is not able to capture all the static knowledge required, e.g., in the Siemens use case.

We complement this ontology with nonrecursive Datalog static rules.

Example: turbine parts monitored by different co-located sensors (e.g., temperature, rotation speed)

```
 \begin{aligned} \mathsf{ColocSensors}(tb,ts,rs) \; \leftarrow \; & \mathsf{Turbine}(tb), \; \mathsf{isPartOf}(pt,tb), \\ & \mathsf{isMonitoredBy}(pt,ts), \; \mathsf{TemperatureSensor}(ts), \\ & \mathsf{isMonitoredBy}(pt,rs), \; \mathsf{RotationSpeedSensor}(rs). \end{aligned}
```


Temporal rules

Siemens is interested in detecting abnormal situations, and monitoring running tasks.

"Purging is Over" is a complex event of a turbine

We model this situation with metric temporal rules:

$$\begin{array}{lll} \mathsf{PurginglsOver}(tb) \; \leftarrow \; & \boxminus_{[0s,10s]} \mathsf{MainFlameOn}(ts) \land \\ & & \diamondsuit_{(0,10m]} \left(\boxminus_{(0,30s]} \mathsf{HighRotorSpeed}(rs) \land \\ & & & \diamondsuit_{(0,2m]} \boxminus_{(0,1m]} \mathsf{LowRotorSpeed}(rs) \right) \land \\ & & \mathsf{ColocTempRotSensors}(tb,ts,rs). \\ \\ \mathsf{HighRotorSpeed}(tb) \; \leftarrow \; \mathsf{rotorSpeed}(tb,v) \land v > 1260. \\ \\ \mathsf{LowRotorSpeed}(tb) \; \leftarrow \; \mathsf{rotorSpeed}(tb,v) \land v < 1000. \end{array}$$

We use DatalogMTL

DatalogMTL is a Horn fragment of Metric Temporal Logic (MTL).

A **DatalogMTL** program is a finite set of rules of the form

$$A^+ \leftarrow A_1 \wedge \cdots \wedge A_k$$

or
$$\perp \leftarrow A_1 \wedge \cdots \wedge A_k$$
,

where

• each A_i is either $\tau \neq \tau'$, or defined by the grammar

$$A ::= P(\tau_1, \dots, \tau_m) \mid \bigoplus_{\rho} A \mid \bigoplus_{\rho} A \mid \bigoplus_{\rho} A \mid \bigoplus_{\rho} A$$

where ρ denotes a (left/right open or closed) interval with non-negative endpoints,

• A^+ does not contain \bigoplus_a or \bigoplus_a

(since this would lead to undecidability).

(8/30)

Query evaluation in DatalogMTL

Theorem ([Brandt et al. 2017])

Answering DatalogMTL queries is EXPSPACE-complete in combined complexity.

We consider the nonrecursive fragment *Datalog_{nr}MTL* of *DatalogMTL*:

- sufficient expressive power for many real-world situations
- computationally well-behaved

Answering *Datalog_{nr}MTL* queries:

- Is PSPACE-complete in combined complexity.
- Is in AC⁰ in data complexity.
- The problem can be reduced to SQL query evaluation.

Hence, Datalog_{nr}MTL is well suited as a temporal rule language for OBDA.

Data sources: schema and data

Data sources often contain temporal information in the form of time-stamps.

Example data schema ${\mathcal S}$ for the Siemens data

It includes time-stamped sensor measurements and deployment details:

```
tb_measurement(<u>timestamp</u>, <u>sensor_id</u>, value),
tb_sensors(<u>sensor_id</u>, sensor_type, mnted_part, mnted_tb),
tb_components(<u>turbine_id</u>, component_id, component_type).
```

A corresponding data instance \mathcal{D}_0 :

tb_measurement				
timestamp	$timestamp$ $sensor_id$			
2017-06-06 12:20:00	rs01	570		
2017-06-06 12:22:50	rs01	1278		
2017-06-06 12:23:40	rs01	1310		
2017-06-06 12:32:30	mf01	2.3		
2017-06-06 12:32:50	mf01	1.8		
2017-06-06 12:33:40	mf01	0.9		

tb_sensors			
sensor_id	$sensor_type$	$mnted_part$	$mnted_tb$
rs01	0	pt01	tb01
mf01	1	b01	tb01

tb_components			
$turbine_id$	component_id	component_type	
tb01	pt01	0	
tb01 b01		1	

(10/30)

Static mapping assertions in \mathcal{M}_s

Static mapping assertions: $\Phi(\vec{x}) \leadsto \Psi(\vec{x})$

- $\Phi(\vec{x})$ is a query over the source schema \mathcal{S}
- $\Psi(\vec{x})$ is an atom with predicate in Σ_s

Example

```
SELECT sensor_id AS X FROM tb_sensors

WHERE sensor_type = 1 

SELECT component_id AS X FROM tb_components

WHERE component_type = 1 

Burner(X)

SELECT mnted_part AS X, sensor_id AS Y FROM tb_sensors 
isMonitoredBy(X,Y)
```

These mappings retrieve from the database ordinary facts.

```
Burner(b01), TemperatureSensor(mf01), isMonitoredBy(pt01, rs01), isMonitoredBy(b01, mf01).
```

Temporal mapping assertions in \mathcal{M}_t

```
Temporal mapping assertions: \Phi(\vec{x}, \text{begin}, \text{end}) \rightsquigarrow \overline{\Psi(\vec{x})}@\langle t_{\text{begin}}, t_{\text{end}} \rangle
```

- begin and end are variables returning a date/time.
- ' \langle ' is either ' \langle ' or '[', and similarly for ' \rangle '.
- $\Psi(\vec{x})$ is an atom with predicate in Σ_t .
- t_{begin} is either $ext{begin}$ or a date-time constant, and similarly for t_{end} .

Example

These mappings retrieve from the database temporal facts.

HighRotorSpeed(rs01)@[2017-06-06 12:22:50, 2017-06-06 12:23:40)

Concrete syntax for temporal OBDA specifications

Temporal OBDA specification $\mathcal{P}_t = \langle \Sigma_s, \Sigma_t, \mathcal{O}, \mathcal{R}_s, \mathcal{R}_t, \mathcal{M}_s, \mathcal{M}_t, \mathcal{S} \rangle$

- Σ_s is a static vocabulary,
- O is an ontology,
- \mathcal{R}_s is a set of static rules,
- \mathcal{M}_s is a set of static mapping assertions,
- S is a database schema.

- Σ_t is a temporal vocabulary,
- \mathcal{R}_t is a set of temporal rules,
- \mathcal{M}_t is a set of temporal mapping assertions,

Component	defines	in terms of	Adopted language
	predicates in	predicates in	
O	Σ_s	Σ_s	OWL 2 QL
\mathcal{R}_s	Σ_s	Σ_s	non-recursive Datalog
\mathcal{R}_t	Σ_t	$\Sigma_s \cup \Sigma_t$	$Datalog_{nr}MTL$
\mathcal{M}_s	Σ_s	$\mathcal S$	R2RML / Ontop
\mathcal{M}_t	Σ_t	$\mathcal S$	R2RML / Ontop

System workflow for temporal OBDA in Ontop

We are currently working on the implementation:

- already available in *Ontop*: 1_a , 1_b , 7, 8
- new components are being implemented:
 2a. 2b
- components need to be extended:
 - 3, 4, 5, 6.

(14/30)

Outline

- 1 Temporal Data
- 2 Ontology-based Integration of Multiple Data Sources Issues with Multiple Data Sources Canonical IRIs Mapping Rewriting Experimentation with Ontop
- 3 Conclusions

(15/30)

Issues when integrating multiple data sources

- Heterogeneity of data sources and data models
 - → Handled through a federation layer, such as Teeid, Denodo, or Exareme.
- Semantic heterogeneity
 - \sim Can in part be handled through the mapping layer. Might require meta-modeling capabilities in the ontology [Lenzerini, Lepore, and Poggi 2016],
- Heterogeneity in the representation of real-world entities, hence there is need for object/entity matching.
 - \rightarrow This is what I want to discuss now.

Problems when integrating multiple data sources

The information about one real-world entity can be distributed over several data sources.

Entity resolution

Understand which records actually represent the same real world entity.

We assume that this information is available and/or known to the integration system designer.

Need for Integrated querying

Answer queries that require to integrate data items representing the same entity, but coming from different data sources.

OBDI - Example

Consider two databases nat and corp with one table each (keys in red):

nat.wellbore		
name	opPurpose	
2-1 BLANE		WILDCAT
3-1		WILDCAT
3-10	OSELVAR	APPRAISAL
4-2	EKOFISK	WILDCAT

corp.drillingops		
name	driStDt	reason
NO-2-1	20-03-1989	WILDCAT
NO-3-1	06-07-1968	WILDCAT
NO-3-A	22-07-2011	PRODUCTION
NO-4-2	18-09-1969	

Mapping assertions make use of different IRI-templates

```
SELECT name, wbField, opPurpose FROM nat.wellbore
```

```
→ inField(iri("NatWB/",name), wbField), purpose(iri("NatWB/",name), opPurpose)
```

```
SELECT name, driStDt, reason FROM corp.drillingops
```

```
~~ drillingStarted(iri("CorpWB/",name), driStDt), purpose(iri("CorpWB/",name), reason)
```

Some fact obtained in the virtual data layer by the DBs and mapping

```
inField(NatWB/2-1, BLANE), purpose(NatWB/2-1, WILDCAT), ...
drillingStarted(CorpWB/NO-2-1, 20-03-1989), purpose(CorpWB/NO-2-1, WILDCAT), ...
```

Integrated querying – Example

nat.wellbore			
name	wbField opPurpose		
2-1 BLANE WILDCAT			
3-1 WILDCAT		WILDCAT	
3-10	OSELVAR	APPRAISAL	
4-2	EKOFISK	WILDCAT	

corp.drillingops		
$egin{array}{c c} \emph{name} & driStDt & reason \end{array}$		
NO-2-1	20-03-1989	WILDCAT
NO-3-1	06-07-1968	WILDCAT
NO-3-A	22-07-2011	PRODUCTION
NO-4-2	18-09-1969	

Some fact obtained in the virtual data layer by the DBs and mapping

```
inField(NatWB/2-1, BLANE), purpose(NatWB/2-1, WILDCAT), drillingStarted(CorpWB/NO-2-1, 20-03-1989), purpose(CorpWB/NO-2-1, WILDCAT), ...
```

Intuitively, 2-1 in nat.wellbore and NO-2-1 in corp.drillingops represent the same wellbore.

Hence the SPARQL query

```
SELECT ?w ?f ?d WHERE { ?w inField ?f . ?w drillingStarted ?d } should return some answers, e.g., the triple (NatWB/2-1, BLANE, 20-3-1989).
```

Integrated querying in OBDI

Can be achieved by merging the data.

Physically merge the data (as done in ETL).

- Requires full control over the data sources.
- Requires to move the data → issues with freshness, privacy, legal aspects.
- → Not possible in many real world scenarios!

Virtually merge the data using the standard sameAs construct of the OWL language, and mappings [Calvanese et al. 2015, ISWC].

- sameAs is the standard way of dealing with identity resolution in OWL.
- Semantics of sameAs may cause an exponential number of query results:
 - detrimental for performance
 - redundancy makes guery answers difficult to understand
- → Not feasible or desirable in practice!

Approach based on canonical IRIs

Canonical IRIs

- Each entity may have several IRIs, but only a single canonical representation.
- This breaks the symmetry between the different representations, and avoids the exponential blowup.

We want to achieve that the virtual data layer $\mathcal{M}(\mathcal{D})$ contains **canonical IRI assertions**, which relate IRIs to their canonical representation using the binary predicate canIriOf.

Example canonical IRI assertions

```
canIriOf (WB/2, NatWB/2-1)
```

canIriOf (WB/2, CorpWB/NO-2-1)

We need to ensure that each IRI has at most one canonical IRI.

Formally: canIriOf is inverse functional in $\mathcal{M}(\mathcal{D})$:

```
\{ \operatorname{canIriOf}(c_1, o), \operatorname{canIriOf}(c_2, o) \} \subseteq \mathcal{M}(\mathcal{D}) \text{ implies } c_1 = c_2.
```

Query answering under canonical IRIs

To deal with canonical IRIs efficiently, we would like to resort to query rewriting:

- One can formalize the semantics of canIriOf and relate it to that of sameAs (technically, one
 defines a suitable SPARQL entailment regime [Xiao et al. 2018, ESWC].
- However, the canonical IRI entailment regime is non-monotonic, hence the rewritten query needs to contain some form of negation.
- A rewriting can indeed be constructed by using NOT EXISTS.
- However, the resulting query would contain a NOT EXISTS clause for each variable in the original query, and would be rather inefficient.

Handling canonical IRI statements in OBDI

- We propose a practical approach for canonical IRI semantics in OBDI.
- We assume that the mapping $\mathcal M$ includes assertions $\mathcal M^{can}$ that populate canIriOf.
- The mapping \mathcal{M}^{can} may be fed from master tables, typical of many corporate scenarios.
- However, we do not rely on master tables, and may use arbitrary SQL queries to ordinary tables.

Example master table and mapping

central.masterTable		
id	natName	corpName
2	2-1	NO-2-1
3	3-1	NO-3-1
4	4-2	NO-4-2
5		NO-3-A
6	3-10	

Mapping rewriting to deal with canonical IRIs

- We propose a practical method based on compiling the consequences of canonical IRI semantics into mappings
 → Mapping rewriting
- Inspired by the mapping saturation algorithm in classical OBDA.
- We need to ensure inverse functionality of canIriOf.

Assumption on the mappings

For each IRI template **iri**, at most one mapping assertion in \mathcal{M}^{can} of the form:

$$sql(\vec{a}, \vec{b}) \rightsquigarrow canIriOf(iri_c(\vec{a}), iri(\vec{b}))$$

Note:

- This assumption suffices: if \mathcal{M}^{can} satisfies it, then for every database \mathcal{D} , canIriOf is inverse functional in the extracted (virtual) data layer $\mathcal{M}^{can}(\mathcal{D})$.
- Is stronger than inverse functionality of canIriOf.
- But is reasonable in practice.

(23/30)

Mapping rewriting algorithm

To rewrite the mapping, we replace individuals and IRI-templates in the mapping by their canonical representation.

Let $\mathcal{M}=\mathcal{M}^{orig}\cup\mathcal{M}^{can}$ be a set of mapping assertions.

Canonical-iri rewriting $\mathit{cm}(\mathcal{M}^{\mathit{orig}},\mathcal{M}^{\mathit{can}})$ of \mathcal{M}

Is obtained by processing each mapping assertion $ma \in \mathcal{M}^{orig}$ as follows:

- For each IRI template $\mathbf{iri}(\vec{a})$ in ma, if \mathcal{M}^{can} contains a mapping assertion $\mathbf{sql}(\vec{b}_0, \vec{b}_1) \leadsto \mathbf{canIriOf}(\mathbf{iri}_c(\vec{b}_0), \mathbf{iri}(\vec{b}_1))$ then replace $\mathbf{iri}(\vec{a})$ in the target of ma by $\mathbf{iri}_c(\vec{b}_0)$, and join the source guery of ma with $\mathbf{sql}(\vec{b}_0, \vec{b}_1), \vec{a} = \vec{b}_1$.

Mapping rewriting – Example

Mapping \mathcal{M}^{orig}

Mapping \mathcal{M}^{can}

Canonical-iri rewriting $cm(\mathcal{M}^{orig}, \mathcal{M}^{can})$ of $\mathcal{M}^{orig} \cup \mathcal{M}^{can}$

Correctness of mapping rewriting

- Let \mathcal{M}^{orig} be a traditional mapping.
- Let \mathcal{M}^{can} be a mapping for canIriOf.

The mapping rewriting algorithm cm preserves the semantics of $\mathcal{M}^{orig} \cup \mathcal{M}^{can}$, i.e., for every database \mathcal{D} :

 $cm(\mathcal{M}^{orig}, \mathcal{M}^{can})(\mathcal{D})$ is the set of facts of $\mathcal{M}^{orig}(\mathcal{D})$, but where each individual is replaced by its canonical representative according to $\mathcal{M}^{can}(\mathcal{D})$.

It follows that queries can be answered with respect to the rewritten mapping $cm(\mathcal{M}^o, \mathcal{M}^{can})$, using standard OBDA query answering.

Results for Ontop over Statoil query catalog

We have implemented the approach in *Ontop*, and applied it to the Statoil use case:

- 7 data sources: DDR, Compass, Slegge, Recall, CoreDB, GeoChemDB, and OpenWorks
- We have exploited existing master tables.
- The mappings for canonical IRIs are simple mappings into these tables.
- Query catalog with 76 challenging SPARQL queries constructed from information needs by geologists and geoscientists.

Results:

	sameAs	canonical IRI
Total queries	76	76
Timeouts	31	11
Successful	45	65
Success %	59%	85%
Min exec. time	12s	0.50s
Mean exec. time	11m	4.3m
Median exec. time	11m	0.77m

uni<u>bz</u>

(limit = 100K tuples, timeout = 20 minutes)

Results over benchmark data – Execution times of most expensive queries

2 datasets:

3 datasets:

Standard owl:sameAs

Standard owl:sameAs

Canonical IRI

Canonical IRI

Outline

- 1 Temporal Data
- Ontology-based Integration of Multiple Data Sources
- 3 Conclusions

Conclusions

 OBDA/I is by now a mature technology to address the data wrangling and data preparation problems.

- However, it has been well-investigated and applied in real-world scenarios mostly for the case of relational data sources.
- Also in that setting, performance and scalability w.r.t. larger datasets (volume), larger and more complex ontologies (variety, veracity), and multiple heterogeneous data sources (variety, volume) is a challenge.
- Only recently OBDA has been investigated for alternative types of data, such as temporal data, noSQL and tree structured data, streaming data (velocity), linked open data, and geo-spatial data.

Performance and scalability are even more critical for these more complex domains.

(29/30)

Further research directions

Theoretical investigations:

- Dealing with data provenance and explanation.
- Dealing with data inconsistency and incompleteness Data quality!
- Ontology-based update.
- More expressive queries, supporting analytical tasks.
- Coping with evolution of data in the presence of ontological constraints.

From a practical point of view, supporting technologies need to be developed to make the OBDA/I technology easier to adopt:

- Improving the support for multiple, heterogeneous data sources.
- Techniques for (semi-)automatic extraction/learning of ontology axioms and mapping assertions.
- Techniques and tools for efficient management of mappings and ontology axioms, to support design, maintenance, and evolution.
- User-friendly ontology querying modalities (graphical query languages, natural language querying).

erences References

References I

- [1] Victor Gutiérrez-Basulto and Szymon Klarman. "Towards a Unifying Approach to Representing and Querying Temporal Data in Description Logics". In: *Proc. of the 6th Int. Conf. on Web Reasoning and Rule Systems (RR)*. Vol. 7497. Lecture Notes in Computer Science. Springer, 2012, pp. 90–105. DOI: 10.1007/978-3-642-33203-6_8.
- [2] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. "Temporalizing Ontology-based Data Access". In: *Proc. of the 24th Int. Conf. on Automated Deduction (CADE)*. Vol. 7898. Lecture Notes in Computer Science. Springer, 2013, pp. 330–344. DOI: 10.1007/978-3-642-38574-2_23.
- [3] Szymon Klarman and Thomas Meyer. "Querying Temporal Databases via OWL 2 QL". In: Proc. of the 8th Int. Conf. on Web Reasoning and Rule Systems (RR). Vol. 8741. Lecture Notes in Computer Science. Springer, 2014, pp. 92–107. DOI: 10.1007/978-3-319-11113-1_7.
- [4] Özgür Lütfü Özçep and Ralf Möller. "Ontology Based Data Access on Temporal and Streaming Data". In: Reasoning Web: Reasoning on the Web in the Big Data Era 10th Int. Summer School Tutorial Lectures (RW). Vol. 8714. Lecture Notes in Computer Science. Springer, 2014, pp. 279–312.

References II

- [5] Evgeny Kharlamov et al. "Ontology-Based Integration of Streaming and Static Relational Data with Optique". In: *Proc. of the 37th ACM Int. Conf. on Management of Data (SIGMOD)*. 2016, pp. 2109–2112. DOI: 10.1145/2882903.2899385.
- [6] Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. "Temporal Description Logic for Ontology-Based Data Access". In: *Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI)*. AAAI Press, 2013, pp. 711–717.
- [7] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev. "First-order Rewritability of Temporal Ontology-mediated Queries". In: *Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI)*. AAAI Press, 2015, pp. 2706–2712.
- [8] Sebastian Brandt, Elem Güzel Kalayci, Roman Kontchakov, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev. "Ontology-Based Data Access with a Horn Fragment of Metric Temporal Logic". In: Proc. of the 31st AAAI Conf. on Artificial Intelligence (AAAI). AAAI Press, 2017, pp. 1070–1076.

References III

- [9] Maurizio Lenzerini, Lorenzo Lepore, and Antonella Poggi. "A Higher-Order Semantics for Metaquerying in OWL 2 QL". In: *Proc. of the 15th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR)*. AAAI Press, 2016, pp. 577–580.
- [10] Diego Calvanese, Martin Giese, Dag Hovland, and Martin Rezk. "Ontology-based Integration of Cross-linked Datasets". In: Proc. of the 14th Int. Semantic Web Conf. (ISWC). Vol. 9366. Lecture Notes in Computer Science. Springer, 2015, pp. 199–216. DOI: 10.1007/978-3-319-25007-6_12.
- [11] Guohui Xiao, Dag Hovland, Dimitris Bilidas, Martin Rezk, Martin Giese, and Diego C. "Efficient Ontology-Based Data Integration with Canonical IRIs". In: *Proc. of the 15th Extended Semantic Web Conf. (ESWC)*. Vol. 10843. Lecture Notes in Computer Science. Springer, 2018, pp. 697–713.

