ANALOG AND DIGITAL ELECTRONICS

Unit Five (Logic Families)

Mr. Rahul S. Pol Asst. Prof

Department of Electronics and Telecommunication Vishwakarma Institute of Information Technology, Pune

Topics To be Covered

Lecture	Unit	Topics to be Covered	Syllabus from
No.	No.		Books
01	Five	Standard TTL chara. : Speed, Power Dissipation, fan in, Fan out, Current and voltage parameter, noise margin, Operating temp.	Digital
02		Operation of TTL NAND gate, TTL configuration: Active pull-up, Wired AND, totem pole, open collector	Electronics
03		CMOS : CMOS Inverter, CMOS chara. CMOS configuration: Wired Logic, open drain o/p	nics by R.P.
04		Interfacing : TTL to CMOS and CMOS to TTL Interfacing	R.P. Jain

Agenda.

After the completion of this session you will be able to know

- Standard TTL chara. : Speed, Power Dissipation, fan in, Fan out, Current and voltage parameter, noise margin, Operating temp.
- Operation of TTL NAND gate,
- TTL configuration: Active pull-up, Wired AND, totem pole, open collector

Agenda.

After the completion of this session you will be able to know

- CMOS: CMOS Inverter, CMOS chara.
- CMOS configuration: Wired Logic, open drain o/p
- Interfacing: TTL to CMOS and CMOS to TTL Interfacing

CMOS Reference books

- List of Reference books
- 1. Analog CMOS Design by Razavi, McGraw Hill Publication
- 2. CMOS: Circuit Design, Layout, and Simulation by Boise, Baker, Lee, Prentice Hall Publication
- 3. Analog VLSI: Signal and Information Processing by Ismail and Feiz, McGraw Hill Publication

A group of compatible ICs with the same logic levels & supply voltages for performing various logic functions are fabricated using a special circuit configuration which is referred to as a LOGIC FAMILY.

Bipolar Logic Family

Saturated bipolar logic family

- Resistor Transistor Logic
- Direct Coupled Transistor Logic
- Integrated Injection Logic
- Diode Transistor Logic
- → High Threshold Logic
- → Transistor Transistor Logic

Non-Saturated bipolar logic family

→ Schott key TTL

Emitter Coupled Logic

NOTE:

The transistors in the ICs are not driven to saturation

NOTE: The transistors in the ICs are driven to saturation

Unipolar Logic Family

- PMOS
- NMOS
- CMOS

NOTE:

Only MOSFETS are used widely in Unipolar Logic Families

Classification of Integration

IC CLASS	INDIVIDUAL BASIC GATES	NUMBER OF COMPONENTS	
SSI	<12	<100	
MSI	12 to 99	100 to 1000	
LSI	100 to 1000	1000 to 10000	
VLSI	>1000	>10000	

Parameters of Digital ICs

- Speed of operation
- Power dissipation
- Figure of merit
- Fanout
- Current and Voltage parameters
- Noise immunity
- Operating temperature range
- Power supply requirements
- Flexibility available

Speed of Operation

Speed of operation = $\frac{1}{2}$ ($t_{phl} + t_{plh}$)

Power Dissipation

Power dissipation = $V_{cc} X I_{cc}$

$$I_{cc} = \frac{1}{2} (I_{cc}(0) + I_{cc}(1))$$

Figure of Merit

• It is defined as the product of the propagation delay in ns and power dissipation in mW.

Fanout

• It is defined as the maximum number of similar gates that can be connected or driven by a gate.

• It is also called as "Loading Factor".

High Fanout is desirable.

Current and Voltage Parameters

$$ullet$$
 V_{ih} , V_{il} , V_{oh} , V_{ol}

$$\bullet$$
 I_{ih} , I_{il} , I_{oh} , I_{ol}

★The suffix i represents i/p, o represents o/p, I represents low level logic, h represents high level logic

Noise Immunity

 Circuit's ability to tolerate noise signals is known as Noise Immunity.

 Quantitative measure of noise immunity is called as Noise figure or Noise margin.

High Noise figure is desired.

Operating Temperature Range

Accepted temperature ranges are....

→ o°C to +70°C for consumer & industrial applications.

 \rightarrow -55°C to +125°C for military applications.

Logic Levels

- Voltage characteristics of TTL (Transistor-Transistor Logic) and CMOS ICs (Complimentary Metal Oxide Semiconductor Integrated Circuits)
 - Logical o (Low): Ground-.8V
 - o Logical 1 (High): 2-5.5V
 - Symbol:

TTL Configuration

- Transistor Transistor Logic (TTL)

 Basic 2 input NAND gate

 (Diagram, operation)
- Wired Logic
 (Diagram, operation)
- Open Collector
 (Diagram, operation)
- TTL with Totem Pole
 (Diagram, operation, limitation)

TTL Configuration cont.

- Three State Output TTL
 (Diagram, operation)
- Schottky TTL

(symbol, circuit configuration, operation, types)

TTL Example SN74LS00

Recommended operating conditions

$$5V \pm 0.5 V$$

$$V_{IH} = 2V$$

 $V_{IL} = 0.8V$

TTL Example SN74LS00

×Output Voltage (worst)

$$V_{\rm OH} = 2.7 \rm V$$

$$V_{\rm OL} = 0.5 \rm V$$

× Propagation delay

$$t_{pd} = 10-15 \text{ ns}$$

× Fan-out

20 TTL loads

TTL Basic NAND Gate

R1=4k Ω ,	R2=1.6k Ω ,	R3=4k Ω ,	R4=1k Ω ,
------------------	--------------------	------------------	------------------

X1	X2	Q1	Q2	Q3	Vout
L	L	sat	off	off	Н
L	Н	sat	off	off	Н
Н	L	sat	off	off	Н
Н	Н	iam	sat	sat	L

iam-inverted active mode

BC-forward biased

BE-reverse biased

Wired Logic

• It is possible to connect the outputs of some gates together to achieve the desired logic behaviour.

 This is called Wired Logic

Wired Logic Cont.

The outputs of the two NAND gates can be Wired together to achieve the desired logic.

The AND gate is implicit by the wired connection and is called the WIRED-AND connection

*Wired Logic increases the power dissipation.

Open Collector

- Hence open collector gates without R₃ are available and are called open collector TTL.
- A single collector resistor called passive pull up resistor must be connected externally.

Effect of Parasitic Capacitance

- Time constant for charging is R₃C when o/p changes L to H.
- Discharging time constant is R_{Q3on}C when o/p changes from H to L.

Solution: an active pullup circuit called totem pole

What is a totem pole?

In art and history....

Totem poles are carved and painted vertical logs, constructed by many northwest coast native american indian people. The poles display mythological images, animal spirits whose significance is their association with the lineage.

Totem pole in TTL ?

What is totem pole?

o addition of an active pull up circuit in the output of a gate is called totem pole.

Why totem pole?

 To increase the switching speed of the gate which is limited due to the parasitic capacitance at the output.

Totem pole

Requirement is:

R₃ (small)-for output transition L to H(small RC time const)

R₃(large) -for output transition H to L(low power dissipation)

R1=4k Ω , R2=1.6k Ω , R3=130 Ω , R4=1k Ω ,

Is Wired Totem pole Possible?

Pole- it does not permit wired logic.

 $\mathbf{Q}_{3,1}$ -off , $\mathbf{Q}_{4,2}$ -off $\mathbf{Q}_{3,2}$ -sat , $\mathbf{Q}_{4,1}$ -normal active mode

 $Q_{3,2}$ –goes from sat to active. $V_{out}>V_{olmax}$

Logic Levels Cont.

- Voltage characteristics of CMOS logic families.
- 4000 and 74Coo series.
 - o Logical o (Low): Ground-.5V
 - Logical 1 (High): 7-10V
 - Symbol:

- Advantages:
 - 1. Low power requirements
 - 2. Good noise immunity

Noise Levels

- Noise immunity (noise margin): Circuits insensitivity or resistance to undesired voltages or noise.
- Noise margin comparison: TTL vs. CMOS

Noise

- In a digital circuit, noise is unwanted voltages.
- In actual practice, the noise is greater because the voltage must be increased to the switching threshold.
- Switching actually occurs in the undefined region. Varies widely by manufacturer, temperature and quality of chip.

Bipolar Logic Families

7400 series (5400 "mil spec")

74 S - Schottky

74 LS - low power Schottky

74 AS - advanced Schottky

74 ALS - advanced low power Schottky

74 F - Fast TTL

Bipolar Logic Families

A Simplified TTL NAND Gate

CMOS Inverter

Working of the Inverter Circuit

Symbol and Truth table for Inverter Circuit

CMOS INVERTER Transfer Characterstics

CMOS INVERTER Transfer Characterstics

Continue....

The graph is divided in three regions as:

1) $V_{in} > V_{lt}$: NMOS _{saturated}, PMOS _{unsaturated} in which Input Voltage at transition will be $V_{in} = V_{GSN} = V_{TN}^+$

Finding V_{in} at transition point by equating two drain currents, $i_{DN} = i_{DP}$

$$\begin{split} K_{N}[V_{GSN} - V_{TN}]^{2} &= K_{P}[2(V_{SGP} + V_{TP})V_{SDP} - V_{SDP}^{2}] \\ V_{GSN} &= V_{I} \text{ , } V_{SGP} = V_{DD} - V_{I} \text{ , } V_{SDP} = V_{DD} - V_{O} \end{split}$$

2) $V_{in} = V_{lt}$: NMOS _{saturated}, PMOS _{saturated} in which

Finding V_{in} at transition point by equating two drain currents,

$$K_{N}[V_{GSN} - V_{TN}]^{2} = K_{P}[V_{GSP} - V_{TP}]^{2}$$

1) V_{in} < V_{lt}: NMOS_{unsaturated}, PMOS_{saturated} in which

$$K_{P}[V_{GSP} - V_{TP}]^{2} = K_{N}[2(V_{SGN} + V_{TN})V_{SDN} - V_{SDN}^{2}]$$

Inverter gain is less than unity in the range of $V_{IL} \ge V_I \le V_{IH}$ o/p change slowly w.r.t. i/p Inverter gain is grater than unity in the range of $V_{IL} \le V_I \ge V_{IH}$ o/p change rapidly w.r.t. i/p

Noise Margin

Continue....

 V_{IH} and V_{IL} determines the noise margin and are defined as the point at which

$$d_{VO}/d_{VI} = -1$$

Derivation for V_{IL} : when $V_I > V_{It}$ at the point V_{IL}

Equation 2 gives the relation between I/P and O/p. taking derivative of equation w.r.t. V_I

$$2K_{N}[V_{I} - V_{TN}] = K_{P}[-2(V_{DD} - V_{O}) - 2(V_{DD} - V_{I} + V_{TP})dV_{O}/dV_{I} - 2(V_{DD} - V_{O})(-dV_{O}/dV_{I})$$

$$V_0 = V_{OHU} = \frac{1}{2}(2V_I + V_{DD} - V_{TN} - V_{TP}) & V_{IL} = V_{TN} + \frac{3}{8}[V_{DD} + V_{TP} - V_{TN}]$$

$$NM_L = V_{IL} - V_{OLU}$$

Derivation for V_{IH} : when $V_{I} < V_{It}$ at the point V_{IH}

$$K_{N}[2(V_{I} - V_{TN}) dV_{O}/dV_{I} + 2V_{O} - 2V_{O} dV_{O}/dV_{I}] = 2K_{P}(V_{DD} - V_{I} + V_{TP}) - (1)$$

$$V_0 = V_{OLU} = \frac{1}{2}(2V_I - V_{DD} - V_{TN} - V_{TP})$$
 & $V_{IH} = V_{TN} + \frac{5}{8}[V_{DD} + V_{TP} - V_{TN}]$

$$NM_L = V_{OHU} - V_{IH}$$

CMOS INVERTER CONSTRUCTION

Cross section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate *n*-type region,known as an *n* well. Another arrangement is also possible in which an *n*-type body is used and the *n* device is formed in a *p* well.

CMOS NAND GATE

CMOS NOR GATE

Interfacing TTL and CMOS ICs

TTL & CMOS logic levels (voltages) are different. Output TTL currents can drive CMOS input. A pull up resister is used on TTL output that does not fit in the high range CMOS input.

Interfacing TTL and CMOS Ics Cont.

• CMOS ICs cannot drive standard TTL ICs without special interfacing.

Interfacing TTL and CMOS Ics Cont.

FACT series CMOS ICs can drive TTL, CMOS, NMOS & PMOS ICs directly.

