# Semi-Visible Jet Classification with Boosted Decision Tree

Accelerated Algorithms for Data-Driven Discovery



Hebu Patil

# **BACKGROUND**

Particle colliders record large amounts of data on jets produced from proton-proton collisions. Some jets are described by the Standard Model, but some jets contain Dark Matter that cannot be described.



**Goal:** Achieve higher ratio of signal to background by discriminating Semi-Visible Jets from Standard Model jets using the Boosted Decision Tree.

### **Model Overview**

- All features are high-level features of jets produced in simulation
- Around 2:1 ratio of signal to background jets
- Unweighted features, weighting will be implemented in the future
- Similar data to that used for the SVJ project conducted by Ki Park at Columbia University

## **DATASET**

**Signal:** 2294295 jets

Background: 1000000 jets

### Features (19):

| jet_pt   | deta_12    | mjj_12       |
|----------|------------|--------------|
| jet1_phi | deltaY_12  | mT_jj        |
| jet2_pt  | hT         | dR_12        |
| jet2_phi | rT         | sphericity_T |
| dphi_min | aplanarity | met_met      |
| dphi_max | sphericity |              |

pt\_balance\_12



### HYPERPARAMETER OPTIMIZATION

Optuna used to optimize hyperparameters by setting ranges to test different values of hyperparameters

10 Trials

met\_phi

9 Hyperparameters



### **RESULTS**

Base Model (without Optuna): 82.34%

Tuned Model: **84.62**%



- Previous model used TMVA, new uses XGBoost
- XGBoost outperforms LGBM and Sci-kit Learn in preliminary tests
- Optuna used for hyperparameter tuning