Manufacturing Defect Analysis

Elijah Cruz

Growing Defect Concerns

- The company has seen an increase in demand for manufactured products.
- Surge in defects
- These issues, specifically related to the welding process, include lifted components, solder bridges, insufficient solder, missing components, excessive solder, and damaged components.
- Fixing defects after production is costly.
- Compliance with the IPC-A-610E standard for electronic components requires that the product defects are corrected prior to release.
- Goals: a 20% reduction in defects generated during the welding process and a 20% increase in the capacity of the electronic boards three double production lines; without increasing the defect percentage

Pareto Charts

Model 595481-00X-00

Model 595310-001-00

Entire Facility

Model 595310-001-00

Hypothesis Test

- A Hypothesis Test will be used
- With the objective of keeping correction/repair costs down the test will allow a review to determine if the problems are with a specific model or the entire facility.
- A one-way ANOVA test will be used
- The ANOVA test will be: There is no significant difference among the means of the three production lines (Ho: $\mu 1 = \mu 2 = \mu 3$) There is at least one difference between the three means with a = .05 (Ha: $\mu 1 \neq \mu 2 \neq \mu 3$)

In the ANOVA test we see that the F statistic (2, 12) is 5.285 and significance (P-Value) is .023. Showing that the P Value is less than the alpha value of .05.

There is a significant difference between the means of the three production lines.

Allowing the null hypothesis, that states there isn't a significant difference between the means of the three production lines (models), to be rejected.

Oneway

ANOVA									
Percentage	Sum of Squares	df	Mean Square	,	Sig.				
Between Groups	369.554	2	194,777	5.295	.027				
Within Groups	419.542	12	34.962						
Total	789.096	14							

Post hoc tests are conducted when the ANOVA test indicates a significant difference, allowing for a more detailed analysis of group differences.

Multiple Comparisons test highlights the relationships between the models.

Difference between Model 1 and Model 2, as well as between Model 1 and Model 3, since the p-values are less than the alpha level.

No significant difference between Model 2 and Model 3 because the p-value is greater than the alpha, so the null hypothesis is not rejected.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Percentage

Tukey HSD

(l) Group	(J) Group	Mean Difference ()- J)	Std. Error		95% Confidence Interval	
				Sig.	Lower Bound	Upper Bound
Model 1	Model 2	10.65400	3.73962	.036	.6772	20.6308
	Model 3	10.40000	3.73962	.041	4232	20.3768
Model 2	Model 1	-10.65400	3.73962	.036	-20.6308	6772
	Model 3	25400	3.73962	.997	-10.2308	9.7228
Model 3	Model 1	-10.40000	3.73962	.041	-20.3768	4232
	Model 2	.25400	3.73962	.997	-9.7228	10.2308

^{*.} The mean difference is significant at the 0.05 level.

Homogeneous Subsets test helps identify where significant differences exist between the groups.

It indicates that the mean for Model 1 is significantly higher than those for Model 2 and Model 3.

Model 2 and Model 3 appear in the same column

- ANOVA Results: Significant differences found in mean defect rates across production lines
- Post Hoc Analysis:
- Model 1 has a significantly higher defect rate than Models 2 and 3
- Models 2 and 3 show no significant difference from each other
- Action Plan:
- Prioritize improvements on Model 1
- Extend corrective measures to Models 2 & 3 after Model 1 enhancements
- Use of Pareto Charts (Slides 4–7):
- Identify key defect contributors on each line
- Target high-impact areas for process improvement
- Goals:
- 20% reduction in welding process defects
- 20% increase in production capacity across all double lines

RESOURCES

- Clinical Excellence Commission. (n.d.). Pareto Charts & 80-20 rule Clinical Excellence Commission.
 https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts
- Kenton, W. (2024, July 30). What is analysis of variance (ANOVA)? Investopedia. https://www.investopedia.com/terms/a/anova.asp
- Raeburn, A. (2025, January 19). Create an effective action plan in 6 steps [2025] Asana. *Asana*. https://asana.com/resources/action-plan
- Realyvásquez-Vargas, A., Arredondo-Soto, K. C., Carrillo-Gutiérrez, T., & Ravelo, G. (2018). Applying the Plan-Do-Check-Act (PDCA) cycle to reduce the defects in the manufacturing industry: a case study. MDPI. https://learn.snhu.edu/content/enforced/1860641-DAT-475-11796.202516-1/course-documents/DAT%20475%20Project%20Case%20Study.pdf?ou=1860641