1 Кольца и поля

Определение 1.1 (Кольцо). Кольцо - алгебра сигнатуры

$$(+^{(2)},0^{(0)},^{-(1)},\cdot^{(2)})$$

обладающее свойствами:

1.
$$(a+b) + c = a + (b+c)$$

$$a + 0 = a$$

3.
$$a + (-a) = 0$$

4.
$$a + b = b + a$$

5.
$$a(b+c) = ab + ac$$

Определение 1.2 (Ассоциативное кольцо). Кольцо с ассоциативностью умножения (ab)c = a(bc)

Определение 1.3 (Кольцо с единицей). Кольцо, в котором существует элемент 1, такой что $a \cdot 1 = 1 \cdot a = a$

Определение 1.4 (Коммутативное кольцо). Кольцо с коммутативностью умножения ab=ba

Определение 1.5 (Кольцо с делением). Если для любого элемента кольца $a \, (a \neq 0)$) существует b : ab = 1, то такое кольцо называется кольцом с делением

Определение 1.6 (Тело). Тело - ассоциативное, коммутативное кольцо с делением

Определение 1.7 (Поле). Поле - ассоциативное, коммутативное кольцо с делением и единицей

Пример 1.1 (Примеры колец).

Теорема 1.1. Для любых элементов кольца a, b справедливы следующие утверждения:

1.
$$a0 = 0a = 0$$

2.
$$(-a)b = a(-b) = -(ab)$$

Доказательство.

Следствие 1.1. В кольце с 1 ноль необратим.

Определение 1.8 (Делитель нуля). Пусть $a \cdot b = 0$ $a, b \neq 0$, тогда a - левый делитель нуля, b - правый делитель нуля.

Пример 1.2 (Пример делителей нуля).

Теорема 1.2. Делители нуля необратимы

Определение 1.9 (Идемпотент кольца). Такие элементы кольца, для которых выполняется $a=a^2$

Теорема 1.3. Идемпотенты - делители нуля

Определение 1.10 (Целостное кольцо). Ассоциативное, коммутативное кольцо с единицей без делителей нуля

Теорема 1.4. Конечное целое кольцо ?????

 \square оказательство.

Теорема 1.5. *Каждое целостное кольцо может быть достроено до поля*

Определение 1.11 (Гомоморфизм колец). $h:R\to S$ - гомоморфизм, определённый так: $a\equiv b\Leftrightarrow h(a)=h(b)$

Определение 1.12 (Ядро кольца). $h:R\to S$ - гомоморфизм, тогда ядро кольца $\operatorname{Ker} h=\{a\in R:h(a)=0\}$

Теорема 1.6. Ядро кольца - подкольцо

Определение 1.13 (Идеал). R - кольцо, $\mathcal{I} \subseteq R$ - идеал (левый, правый, двусторонний), если

- 1. \mathcal{I} подкольцо
- 2. для любого $x \in R$ $x\mathcal{I} \subseteq \mathcal{I}$ (левый идеал), $\mathcal{I}x \subseteq \mathcal{I}$ (правый идеал)

Пример 1.3 (Пример идеалов).

Теорема 1.7. R - ассоциативное кольцо с единицей или R - тело или R тогда и только тогда когда в R Нет других идеалов, кроме $\{0\}$ и R

Определение 1.14 (Булевое кольцо).

Теорема 1.8. Пусть I - двухсторонний идеал в R, тогда отношение $\equiv: x \equiv y \Leftrightarrow x - y \in I$ является конгруэнтностью

 \square оказательство.

Следствие 1.3. $I = \operatorname{Ker} h$, $\partial e h : R \to R /_{\equiv}$

Определение 1.15 (Простой идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - простой идеал, если $ab \in I \Leftrightarrow a \in I$ или $b \in I$

Определение 1.16 (Максимальный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - максимальный идеал, если для любого идеала $J:I\subseteq J,I\neq J$ выполняется J=R

Определение 1.17 (Главный идеал). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда I - главный идеал, если для некоторого $a \in R$ I = aR

Пример 1.4 (??????).

Лемма 1.1. Eсли I и J - uдеалы, то I+J тоже uдеал

 \square оказательство.

Теорема 1.9. Пусть R - ассоциативное, коммутативное кольцо c единицей, I - идеал, тогда

- 1. I простой идеал $\Leftrightarrow R/I$ целостное
- 2. I максимальный идеал $\Leftrightarrow R/I$ поле

Определение 1.18 (Евклидово кольцо). R - ассоциативное, коммутативное кольцо с единицей, R - евклидово, если для каждого элемента a этого кольца существует его норма ||a||.

Определение 1.19 (Евклидова норма). Это некоторая функция элемента кольца, такая что

- 1. $||a|| \in \omega$
- 2. если $a,b\neq 0,$ то $\|ab\|\geq \max(\|a\|,\|b\|)$