LECTURE NO. 1

1.6 Integrals Involving Exponential and Logarithmic Functions

Wright State University

Integration Formulas

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
, $\int \frac{1}{x} = \ln|x| + C$

- $\int e^x dx = e^x + C$, $\int a^x dx = \frac{a^x}{\ln a} + C$
- $\int \sin x dx = -\cos x + C$, $\int \cos x dx = \sin x + C$
- $\int \sec^2 x dx = \tan x + C$, $\int \csc^2 x dx = -\cot x + C$
- $\int \sec x \tan x dx = \sec x + C$, $\int \csc x \cot x dx = -\csc x + C$
- $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$, $\int \frac{1}{x^2+1} dx = \tan^{-1} x + C$

Two Integration Techniques

• Use these formulas to integrate "term by term".

•
$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$$

•
$$\int k \cdot f(x) dx = k \cdot \int f(x) dx$$

• The second technique we learned is "Substitution".

$$\int e^{2x} dx$$

Substitution
$$u=2x$$
 $\frac{du}{dx}=2$ solve for dx : $dx=\frac{du}{2}$

$$\int e^{u} \frac{du}{2} = \frac{1}{2} \int e^{u} du = \frac{1}{2} e^{u} + C = \frac{1}{2} e^{2x} + C$$
In general, $\int e^{kx} dx = \frac{e^{kx}}{k} + C$

$$(k is a constant.)$$

$$\int e^{5x} dx = \frac{e^{5x}}{5} + C \qquad \int e^{\frac{x}{2}} dx = \frac{e^{\frac{x}{2}}}{\frac{1}{2}} + C = 2e^{\frac{x}{2}} + C$$

《□▶《□▶《□▶《□▶ ■ 夕久で

$$\int x^2 e^{2x^3} dx$$

$$\sqrt{1 = 2x^3}$$

$$\frac{du}{dx} = 6x^2$$

Substitution
$$u=2x^3$$
 $\frac{du}{dx}=6x^2$ Solve for dx : $dx=\frac{du}{6x^2}$

$$dx = \frac{du}{6x^2}$$

$$\int x^{2} e^{u} \frac{du}{6x^{2}}$$

$$\int x^{2} e^{u} \frac{du}{6x^{2}} = \int e^{u} \frac{du}{6} = \frac{1}{6} \int e^{u} du$$

1 Take antiderwater

$$=\frac{1}{6}e^{u}+c$$

=
$$\frac{1}{6}e^{2x^3} + C$$
 TWAL ANSWER.

$$\int_1^2 \frac{e^{\frac{1}{x}}}{x^2} dx$$

Substitution
$$u = \frac{1}{x}$$
 $\frac{du}{dx} = -x^{-2} = -\frac{1}{x^2}$ some for dx : $dx = -x^2 du$

$$(dx = \frac{du}{-\frac{1}{x^2}} = -x^2 du)$$

$$x: 1 \rightarrow 2$$

$$u = \frac{1}{x}: 1 \rightarrow \frac{1}{2}$$

$$= -\int_{1}^{\frac{1}{2}} e^{u} du = -e^{u} \Big|_{1}^{\frac{1}{2}} = -e^{\frac{1}{2}} - (-e^{1})$$

$$= -e^{u} = -e^{\frac{1}{x}} \Big|_{1}^{2} = -e^{\frac{1}{2}} - (-e)$$
Final ANSWER

$$\int \frac{2}{3x-1} dx$$

$$\frac{2}{3\chi-1} = 2\left(\frac{3\chi-1}{1}\right)^{-1}$$

$$\frac{2}{3x-1} = 2(3x-1)^{-1}$$
 $u = 3x-1$ $\frac{du}{dx} = 3$ $dx = \frac{du}{3}$

$$\int \frac{2}{u} \frac{du}{3} = \frac{2}{3} \int \frac{1}{u} du = \frac{2}{3} \ln |u| + C$$

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos x} dx$$