现代控制理论 课程 期末 试卷 A 考试形式 闭卷

考试用时 2 小时,本试卷共 3 页,另请加答题纸 张,草稿纸 2 张,

Tipe.	题号:		_0	=3	Щ	五。	六	+	No	九	总分。	合分人	e)
1	导分:	2	P	¢	٥	ė.	42	ş	ę,	ţ.	÷	4	4

-,	填空题	(每空1分,	共10分)	

- 1、标准 II 型反馈形式为
- 2、状态空间表达式是 数等
- 3、系统响应包含_____与零输入响应两部分
- 4、线性变换的变换矩阵特点是:
- 5、能观性性是指 对状态变量的表现能
- 7、李亚普诺夫第二方法是通过判定

来判定系统的稳定性。*

- 8、能控标准 I 型的对偶系统数学模型是
- 10. 受控对象采用状态反馈的综合方法,可以任意配置闭环极点的充分必要条件。
- 二、简答题(每题5分,共10分)。

	得分。	评分人₽		
ĺ	+2	ė.	ته	

1、简述 $\sum (A,B,C)$ 约当标准型变换步骤。

2、简述李亚普诺夫第二法判定系统稳定性的方法。→

三、已知系统结构图如图示。+

(1)写出系统状态变量为 x₁,x₂,x₃的→ 状态空间表达式; (5分)。 得分。 评分人。 。

(2) 写出能控标准型状态空间表达式。画出结构图。(10分)。

四、已知系统 $\dot{x}(t) = \begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t), x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$

试求系统在单位阶跃输入作用下的响应。(10分) ↔

得分。	评分人。	0
٠,	٥	o

六、已知系统动态方程为

$$\hat{x} = \begin{bmatrix}
-2 & 2 & 0 \\
0 & -2 & 0 \\
0 & -4 & 0
\end{bmatrix} x + \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} u$$

$$v = \begin{bmatrix}
0 & 1 & 1 \\
0 & 1
\end{bmatrix} x$$

得分。评分人。

(1) 判定状态变量的能控与能观。(7分)+

(2) 求传递函数^{Y(s)}/_{U(s)}。(8分)。

五、设某控制系统的模拟结构图如下,写出状态空间。 五、设某控制系统的模拟结构图如下,写出状态空间。

I		
得分₽	评分人。	C.
t)	e)	42

七、用李雅普诺夫第二法判断系统的稳定性。 系统输入为F,输出为位移Y。(15分)+

得分₽	评分人。	
ę	۵	

22/42/01/02/2/	- , 11
<u> </u>	F
ms.	7
k 🛊	Y
ф.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

八、已知系统的状态方程为 $\begin{cases} \dot{x_1} = x_1 + x_2 + u \\ \dot{x_2} = -2x_2 \\ y = 2x_1 + x_2 \end{cases}$

得分。	评分人₽	a
ē	Đ	ą.

- 1、设计全维状态观测器,要求极点配置在-3.4。(7分)+
- 2、如取状态反馈 $u=k\hat{x}+v$,其中 $k=[-2 \ -3]$,v 为参考输入, \hat{x} 为状态估计值,求由对象,状态观测器以及状态反馈组成的闭环系统的状态空间表达式,画出结构图。(8分)v

现代控制理论 课程 期末 试卷 B 考试形式 闭卷。

考试用时2小时,本试卷共3页,另请加答题纸___张,草稿纸2张+

题号:		_3	=0	Д.	五	六	to	16	九	总分。	合分人	+
得分:	42	ų.	ą.	÷,	٩	۵	۵	ş	٩	ø	ę	4

_	、填空题(每空1分,共10分	分) +	得分。	评分人。	1
1,	标准Ⅰ型反馈形式为	. 4	1471+	ガガス	1
	状态空间表达式包括	和输出方程。	a.	٥	47
3,	系统响应包含零状态响应与	两部分。]
4、	线性变换的不变性是指:			0 +1	
5,	能控性是指	_对状态变量的制线	约能力。→		
	任何供太子宫会处现的经财富	当本妹女妹 当可	リムなの式を	シムシピュロフ	Z

- 8、对偶系统的系统矩阵 A 为_____关系。+
- 10、受控对象采用反馈至输入矩阵 B 后端的综合方法,可以任意配置闭环极点的充分必要条件:
- 二、简答题(每题5分,共10分)~

得分。	评分人。	+
÷	ęJ.	+

1、写出变量梯度法判定稳定性的步骤。₽

2、写出约旦标准型变换步骤。₽

三、已知系统传递函数为。

$$Y(s)/U(s) = \frac{s+1}{s(s+2)(s+3)}$$

得分。	评分人。	+
ą3	4J	+

- 1、写出系统能控标准型状态空间表达式; 画出结构图。(8分) ↔
- 2、写出并联型状态空间表达式。(7分)。

四、已知线性定常系统的状态方程为。

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x, \quad \forall$$

得分。	评分人。	è
ø	Đ.	4

求初始状态 $x^{T}(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{T}$ 时,系统在 $u(t) = \sin t$ 作用下的输出y(t)。(15分)。

Ι

4)

+

*

ąJ.

.

五、设某控制系统的模拟结构图如下, 🗸

- 1、求传递函数。≠
- 2、试判断系统能控性、能观性。(10分)。

得分₽	评分人。	42
ė,	ē.	47

已知单位反馈系统的状态空间表达式为。

111	Ц.	ЛНЭ	F 1177	XW	214:	SICH JANJON THE INVESTMENT AND A	l
	2	1	0		1		Н
$\dot{x} =$	0	2	0	x+	2	$u; y = [1 \ 0 \ 1] x \circ +$	+
	0	0	-3		1		

得分。	评分人。	42
φ	ø.	4

- 1、 求系统的传递函数; (5分) ← 2、 判定系统稳定性并判定是否状态反馈可镇定。(5分) ←

له له

七、已知非线性系统 $\begin{cases} \dot{x_1} = -x_1 + x_2 \\ \dot{x_2} = -2\sin x_1 - a_1 x_2 \end{cases}$

试求系统的平衡点,并求系统大范围渐近稳定≠的 a₁的范围。(10分) +

得分。	评分人。
ė.	43

八、已知控制系统如图所示,图中 $k_a = k_p = 2$;

设计全维状态观测器; →
 极点配置为 λ₁ = λ₂ = -20; (10分) →

得分₽	评分人↩	٥
e)	P	0

2、利用状态反馈使系统 $\zeta=0.707$, $\omega_n=5rad/s$ 。 (10 分) $\omega_n=5rad/s$ 。

Τ