Fly away Peter, come back Paul: the gains and losses of avian Non-coding RNAs

Paul P. Gardner *1,2 , Jana Hertel 5 , Sarah W. Burge 3 , Maria Ninova 4 , Stephanie Kehr 5 , Mario Fasold 5 , Tammy E. Steeves 1 , Sam Griffiths-Jones 4 and Peter Stadler *5

Email: Paul P. Gardner*- paul.gardner@canterbury.ac.nz; Jana Hertel*- jana@bioinf.uni-leipzig.de; sb30@sanger.ac.uk; Maria.Ninova@postgrad.manchester.ac.uk; steffi@bierdepot.bioinf.uni-leipzig.de; mario@bierdepot.bioinf.uni-leipzig.de; tammy.steeves@canterbury.ac.nz; sam.griffiths-jones@manchester.ac.uk; Peter Stadler*- studla@bioinf.uni-leipzig.de;

Abstract

Here we present the results of a large-scale bioinformatic annotation of non-coding RNAs in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. Although we show extensive conservation of classical ncRNAs (e.g., tRNAs and rRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds, we also demonstrate apparent "losses" in several RNA families. These include the divergence of some classical ncRNAs and the loss of several snoRNAs and microRNAs. In contrast, we show a significant number of lncRNAs are surprisingly well conserved between birds and mammals including several intriguing cases where the reported mammalian lncRNA function is not conserved in birds. These combined results illustrate the utility of applying homology based methods for annotating vertebrate genomes and illustrate many complex evolutionary patterns within the avian ncRNA cohort.

¹ School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
² Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
³ European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK.
⁴ Faculty of Life Sciences, University of Manchester, United Kingdom.
⁵ Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany

^{*}To whom correspondence should be addressed

Introduction

Non-coding RNAs (ncRNAs) are an important class of genes. However, they pose serious research challenges, particularly for the field of genomics. They lack the strong statistical signals associated with protein coding genes, e.g. open reading frames, G+C content and codon-usage biases [1]. Non-coding RNAs are classified into hierarchical groupings by the Rfam database. The basic units are "families" which are groups of homologous, alignable sequences; "clans" which are groups of un-alignable (or functionally distinct), homologous families; and "classes" which are groups of clans and families with related biological functions e.g. spliceosomal RNAs, miRNAs and snoRNAs [2-6]. The major RNA families include the classical, highly conserved RNAs, sometimes called "molecular fossils", such as the transfer RNAs, ribosomal RNAs, RNA components of RNase P and the signal recognition particle [7]. Other classes appear to have have evolved more recently, e.g. the small nucleolar RNAs (snoRNAs), microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) [8]. The publication of avian genomes provides exciting opportunities to to explore ncRNA conservation in unprecedented detail. Despite promising techniques such as RNA-seq [9], homology based methods namely covariance models (CMs) are state of the art for ncRNA analyses [10–12]. The CM based approach for annotating ncRNAs in genomes requires reliable alignments and consensus secondary structures of representative sequences of RNA families. These are used to train probabilistic models for each family. These models can be used to generate sequences with similar properties, score the likelihood that a sequence is was generated by the same evolutionary processes as the training sequences and to build alignments based upon sequence and structural information [10-12]. The tRNAscan-SE software package uses CMs to accurately predict transfer RNAs [13, 14]. The Rfam database contains thousands of curated alignments and consensus structures for diverse classes of ncRNAs [2-6]. Independent benchmarks of bioinformatic annotation tools have shown that the CM approaches dramatically out-perform alternative methods [15]. The CM based approach works well for almost all classes of ncRNA, but the long non-coding RNAs (lncRNAs) are a particular challenge [16]. Recent technological advances have led to dramatic speed and memory-usage enhancements for CM analyses [12, 17–19]. However, CMs cannot model the exon-intron structures of spliced lncRNAs, nor can they deal simply with the repeats that many lncRNAs host. Consequently in the latest release of Rfam the lncRNA families that were added were composed of local conserved and structured elements within lncRNAs, analogous to the "domains" housed within protein sequences [6]. The functions determined to date for lncRNAs range from regulating chromatin status to chromosomal inactivation [20,21]. Yet functional characterisation of these genes is a lengthy and expensive

process [16].

Results

In the following we explore the conservation patterns of the major classes of ncRNA in further detail. The collection of ncRNA sequences is generally biased towards model organisms [8, 22]. We focus our analysis on the unusual results within the avian lineages. These are either unexpectedly well-conserved RNAs or unexpectedly poorly-conserved RNAs. The former are RNAs we would not have expected to be conserved between the birds and the organisms these genes were initially identified in; Usually, this hypothesis is based upon the function of the RNA which is not conserved in avian species. The latter are apparent losses of RNA genes that were expected to be conserved; Usually, this hypothesis is based upon the conservation of these RNAs in other vertebrate species. We have three models of "loss" that we use to explain the data: Firstly, these could be genuine cases of an ancestral gene-loss along the avian lineage. Secondly, this could be a case of "divergence" where a RNA gene has undergone significant sequence and structural alterations, so much so, that our homology search tools can no longer detect a relationship between vertebrate exemplars and the avian varieties. Thirdly, we consider the possibility that the available genome assemblies have independently failed to capture these genes.

Unusually, well conserved RNAs

The bulk of the "unusually well conserved RNAs" belong to the long non-coding RNA (lncRNA) group. The lncRNAs are a diverse group of RNAs that have been implicated in a multitude of functional processes [16, 20, 21]. These RNAs have largely been characterised in mammalian species, particularly human and mouse. Consequently, generally do not expect these to be conserved outside of mammalia. Notable examples include Xist [23] and H19 [24].

In general Rfam cannot include the entire length of any large, spliced RNAs. This is a limitation of the covariance-models used for the homology-searches Rfam runs [12]. Consequently, only short, well-conserved regions with evolutionarily conserved secondary structures are included in Rfam. By analogy to protein-domains, we refer to these as RNA-domains [6].

When analysing the RNA-domain annotations it is striking that many of the lncRNAs with multiple RNA-domains are consistently preserved in the birds. The annotations of these domains lie in the same genomic region, in the same order as in the mammalian homologs. Thus supporting a high degree of evolutionary conservation for the entire lncRNA. In particular the HOXA11-AS1, PCA3, RMST, Six3os1,

SOX2OT and ST7-OT3 lncRNAs have multiple, well conserved RNA-domains (See Figure 1).

The HOX cluster lncRNAs, HOTAIRM1, HOTTIP and HOXA11-AS1, are remarkably well conserved. In the human genome the corresponding RNA-domains are located at chr7:27135743-27245922 (hg19) and are modelled by 15 RNA-domains in total, the lncRNAs are ordered HOTAIRM1 (5 RNA-domains) \rightarrow HOXA11-AS1 (6 RNA-domains) \rightarrow HOTTIP (4 RNA-domains). In the alligator and turtle genomes five and six of the HOX RNA-domains are conserved, each supporting an ancestral gene order of HOTAIRM1 \rightarrow HOXA11-AS1 \rightarrow HOTTIP. In the birds, where two or more of the HOX cluster lncRNA RNA-domains were predicted on the same scaffold, this gene order was preserved.

Many of the lncRNAs have been associated with cancer, sparking a minor review industry [25,26]. Three examples of these that are also conserved in the birds are described below.

The RMST (Rhabdomyosarcoma 2 associated transcript) RNA-domains 6, 7, 8, and 9 are conserved across the birds. In each bird the gene order was also consistent with the human ordering. In the alligator and turtle an additional RNA-domain was predicted in each, these were RNA-domains 2 and 4 respectively, again the ordering of the domains was consistent with human. This suggests that the RMST lncRNA is highly conserved. However, little is known about the function of this RNA. It was originally identified in a screen for differentially expressed genes in two Rhabdomyosarcoma tumor types [27].

In addition, the lncRNA DLEU2, is well conserved conserved across the vertebrates, it is a host gene for two miRNA genes, miR-15 and miR-16, both of which are also well conserved across the vertebrates (See Supplemental Figure 2). DLEU2 is thought to be a tumor-suppressor gene as it is frequently deleted in malignant tumours [28, 29].

The NBR2 lncRNA and BRCA1 gene share a bidirectional promotor [30]. Both are expressed in a broad ranch of tissues. Extensive research on BRCA1 has shown that it is involved in DNA repair [31]. The function of NBR2 remains unknown, yet its conservation across the vertebrates certainly implies a function (See Figure 1).

more detail on the prostate lncRNAs?

Of the other classes of RNAs, none showed an unexpected degree of conservation or expansion within the avian lineage. The only exception being the snoRNA SNORD93 which we show has 92 copies in the tinamou genome, whereas it only has 1-2 copies in all the other vertebrate genomes.

RNA Losses, divergence or missing data?

Much of the number of apparent losses and reduction in genomic sequence has been extensively discussed elsewhere [32]. Unsurprisingly, this reduction is reflected in the copy-number of RNA genes. Some of the most dramatic examples are the transfer RNAs and pseudogenes which average ≈ 900 and ≈ 580 copies in the human, turtle and alligator genomes, the average copies numbers of these drop to ≈ 280 and ≈ 100 copies in the avian genomes.

The absence of several well-conserved ncRNA families from many or even most bird genomes is unlikely to represent true gene losses. This concerns in particular the telomerase RNA, the RNA components of RNase P and MRP, the minor spliceosomal snRNAs U4atac and U11, the selenocystein tRNA (tRNA-Sec) as well as the vault RNAs. In order to get an idea to what extent the absence of these RNAs from the infernal-based annotation is caused by sequence divergence beyond the thresholds of the Rfam CMs and/or missing or incomplete data, we complemented our analysis by dedicated searches for a few of these RNA groups.

The simplest case are the selenocystein tRNAs. Here, tRNAscan is tuned for specificity and thus misses several occurrances that are easily found by blastn with $E \leq 10^{-30}$. In some cases the sequences appear degraded at the ends, which may be explained e.g. by low sequence quality at the very ends of contigs or scaffolds. A blastn search also readily retrieves additional RNAse P and RNAse MRP RNAs, capturing only the best conserved regions. In many cases these additional candidates are incomplete or contain undetermined sequence, explaining why they are missed by the CMs. Overall, we identify tRNA-Sec in most and RNAse P and MRP RNAs in the majority of the genomes. An additional candidate could also be retrieved for telomerase RNA. Telomerase is well known to exhibit very poor sequence conservation and rapid variations in size that make it notoriously hard to identify by homology search [33]. The poor return thus does not come as a surprise. Since blastn searches remained unsuccessfull we constructed a sauropsid-specific CM for the vault RNA. In addition to the hits identified by the Rfam model we obtained three additional homologs. Vault RNAs, with a size of about 100 nt, exhibit conserved sequence patterns only at their ends, with essentially unconstrained sequence in the central part. Their identification is also a well-know difficult problem for homology search [34].

Our ability to find additional homologs for several RNA families that fill gaps in the abundance matrices (Supplemental Figure 5) strongly suggests that that conspicuous absences, in particular of LUCA and LECA RNAs, are caused by incomplete data in the current assemblies and sequence divergence rather than true losses.

Y RNA clusters

Vertrebrate Y RNAs typically form a cluster comprising four well-defined paralog groups Y1, Y3, Y4, and Y5. In line with *Mosig:07a* we find that the Y5 paralog family is absent from all bird genomes, while it is still present in both alligator and turtle, see Supplemental Figure 4. Within bird, we find an the conserved Y4-Y3-Y1 cluster. Apparently, broken-up clusters are in most cases consistent with breaks in the available sequence assemblies. In several genomes we observe one or a few additional Y RNA homologs unlinked to the canonical Y RNA cluster. These sequences can be identified unambiguously as derived members of one of the three ancestral paralog groups, they almost always fit less well to the consensus (as measured by the CM bit score of paralog group specific covariance models) than the paralog linked to cluster, and there is no indication that any of these additional copies is evolutionarily conserved over longer time scales. We therefore suggest that most or all of these interspersed copies are in fact pseudogenes.

MicroRNA Clusters

Nearly all microRNAs that are broadly conserved in fish, amphibians and mammals are also conserved in the birds. Nevertheless, there are obvious instances of microRNAs lost in all birds. For example, mammalian and ambhibian genomes contain three loci of clustered microRNAs from the mir-17 and mir-92 families [35]. One of these clusters (cluster II, with families mir-106b, mir-93 and mir-25) was not found in turtles, crocodiles and birds, see Supplemental Figure 6.

The microRNA family let-7 is the most abundant microRNA family with 14 paralogs in human. These genes also localize in 7 genomic clusters, together with mir-100 and mir-125 miRNA families (see previous study on the evolution of the let-7 miRNA cluster in [36]). In Sauropsids we observed that cluster A - that is strongly conserved in vertebrates has been completely lost in the avian lineage. Another obious lost in birds is cluster F, containing two let-7 microRNA paralogs. Cluster H, on the other hand has been retained in all oviparous animals and completely lost later, after the split of Theria. See Supplemental Figure 7 for details.

Conclusions Methods

Bird genomes were searched using the cmsearch program from INFERNAL 1.1 and the covariance models from the Rfam database v11.0 [5,6]. All matches above the curated GA threshold were included. Subsequently, all hits with an E-value greater than 0.0005 were discarded, so only matches which passed

the model-specific GA threshold and had an E-value smaller than 0.0005 were retained.

In order to obtain good annotations of tRNA genes we also ran the specialist tRNA-scan version 1.3.1 annotation tool. This method also uses covariance models to identify tRNAs. However it also uses some heuristics to increase the search-speed, annotates the Isoacceptor Type of each prediction and uses sequence analysis to infer if predictions are likely to be functional or tRNA-derived pseudogenes [13,14]. Rfam matches and the tRNA-scan results for families belonging to the same clan were then "competed" so that only the best match was retained for any genomic region [5]. To further increase the specificity of our annotations we filtered out families that were indentified in four or fewer of the 51 vertebrate species we have analysed in this work. These filtered families largely corresponded to bacterial contamination within the genomic sequences.

999 microRNA sequence families, previously annotated in at least one vertebrate, were retrieved from miRBase (v19). Individual sequences or multiple sequence alignments were used to build covariance models with INFERNAL (v1.1rc3), and these models were searched against the 48 bird genomes, and the genomes of the american alligator and the green turtle as outgroups. Hits with e-value ¡10 realigned with the query sequences and the resultant multiple sequence alignments manually inspected and edited using RALEE. An additional snoRNA homology search was performed with snoStrip [37]. As initial queries we used deutorostomian snoRNA families from human [38], platypus [39], and chicken [40].

SnoRNA annotations overlapping miRNAs annotations where manually inspected and?....

Acknowledgements

Erich Jarvis, Guojie Zhang and Tom Gilbert. Magnus Alm Rosenblad.

References

- 1. Rivas E, Eddy SR: Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. *Bioinformatics* 2000, **16**(7):583–605.
- Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Rfam: an RNA family database. Nucleic Acids Res 2003, 31:439–41.
- 3. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Rfam: annotating non-coding RNAs in complete genomes. *Nucleic Acids Res* 2005, **33**(Database issue):D121–4.
- 4. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A: **Rfam: updates to the RNA families database.** *Nucleic Acids Res* 2009, **37**(Database issue):D136–40.
- 5. Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A: **Rfam: Wikipedia, clans and the "decimal" release.** *Nucleic Acids Res* 2011, **39**(Database issue):D141–5.

- 6. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A: **Rfam** 11.0: 10 years of RNA families. *Nucleic Acids Res* 2013, 41(Database issue):D226–32.
- 7. Jeffares DC, Poole AM, Penny D: Relics from the RNA world. J Mol Evol 1998, 46:18–36.
- 8. Hoeppner MP, Gardner PP, Poole AM: Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput Biol 2012, 8(11):e1002752.
- 9. Croucher NJ, Thomson NR: Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 2010, 13(5):619–24.
- 10. Sakakibara Y, Brown M, Hughey R, Mian IS, Sjölander K, Underwood RC, Haussler D: **Stochastic** context-free grammars for tRNA modeling. *Nucleic Acids Res* 1994, **22**(23):5112–20.
- 11. Eddy SR, Durbin R: **RNA** sequence analysis using covariance models. *Nucleic Acids Res* 1994, **22**(11):2079–88.
- 12. Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments. *Bioinformatics* 2009, 25(10):1335–7.
- 13. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-64.
- 14. Chan PP, Lowe TM: **GtRNAdb:** a database of transfer **RNA** genes detected in genomic sequence. *Nucleic Acids Res* 2009, **37**(Database issue):D93–7.
- 15. Freyhult EK, Bollback JP, Gardner PP: Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA. Genome Res 2007, 17:117–125.
- 16. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. *Nature* 2009, 458(7235):223–7.
- 17. Eddy SR: A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. *BMC Bioinformatics* 2002, **3**:18.
- 18. Nawrocki EP, Eddy SR: Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007, 3(3):e56.
- 19. Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011, 7(10):e1002195.
- Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007, 129(7):1311–23.
- 21. Chow JC, Yen Z, Ziesche SM, Brown CJ: Silencing of the mammalian X chromosome. Annu Rev Genomics Hum Genet 2005, 6:69–92.
- 22. Gardner PP, Bateman A, Poole AM: SnoPatrol: how many snoRNA genes are there? J Biol 2010, 9:4.
- 23. Duret L, Chureau C, Samain S, Weissenbach J, Avner P: The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. *Science* 2006, **312**(5780):1653–5.
- 24. Smits G, Mungall AJ, Griffiths-Jones S, Smith P, Beury D, Matthews L, Rogers J, Pask AJ, Shaw G, VandeBerg JL, McCarrey JR, SAVOIR Consortium C, Renfree MB, Reik W, Dunham I: Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. *Nat Genet* 2008, 40(8):971–6.
- Prensner JR, Chinnaiyan AM: The emergence of lncRNAs in cancer biology. Cancer Discov 2011, 1(5):391–407.
- 26. Spizzo R, Almeida MI, Colombatti A, Calin GA: Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 2012, 31(43):4577-87.
- 27. Chan AS, Thorner PS, Squire JA, Zielenska M: Identification of a novel gene NCRMS on chromosome 12q21 with differential expression between rhabdomyosarcoma subtypes. Oncogene 2002, 21(19):3029–37.
- 28. Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D, Corcoran MM: **DLEU2**, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res 2009, 315(17):2941–52.

- 29. Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, Dalla-Favera R: **The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia.** Cancer Cell 2010, **17**:28–40.
- 30. Xu CF, Brown MA, Nicolai H, Chambers JA, Griffiths BL, Solomon E: Isolation and characterisation of the NBR2 gene which lies head to head with the human BRCA1 gene. Hum Mol Genet 1997, 6(7):1057–62.
- 31. Moynahan ME, Chiu JW, Koller BH, Jasin M: Brca1 controls homology-directed DNA repair. Mol Cell 1999, 4(4):511–8.
- 32. Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV: Origin of avian genome size and structure in non-avian dinosaurs. *Nature* 2007, **446**(7132):180–4.
- 33. Xie M, Mosig A, Qi X, Li Y, Stadler PF, Chen JJL: Size Variation and Structural Conservation of Vertebrate Telomerase RNA. J. Biol. Chem. 2008, 283:2049–2059.
- 34. Stadler PF, Chen JJL, Hackermüller J, Hoffmann S, Horn F, Khaitovich P, Kretzschmar AK, Mosig A, Prohaska SJ, Qi X, Schutt K, Ullmann K: **Evolution of Vault RNAs**. Mol. Biol. Evol. 2009, **26**:1975–1991.
- 35. Tanzer A, Stadler P: Molecular evolution of a microRNA cluster. J Mol Biol. 2004, 339(2):327–35.
- 36. Hertel J, Bartschat S, Wintsche A, C O, The Students of the Bioinformatics Computer Lab 2011, Stadler PF: Evolution of the let-7 microRNA Family. "RNA Biol" 2012. in press.
- 37. Bartschat S, Kehr S, Tafer H, Stadler PF, Hertel J: snoStrip: A snoRNA annotation pipeline preprint.
- 38. Lestrade L, Weber MJ: snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 2006, 34(Database issue):D158-62.
- 39. Schmitz J, Zemann A, Churakov G, Kuhl H, Grützner F, Reinhardt R, Brosius J: Retroposed SNOfall–a mammalian-wide comparison of platypus snoRNAs. Genome Res 2008, 18(6):1005–10.
- 40. Shao P, Yang JH, Zhou H, Guan DG, Qu LH: Genome-wide analysis of chicken snoRNAs provides unique implications for the evolution of vertebrate snoRNAs. *BMC Genomics* 2009, **10**:86.

Figure 1: Heatmaps showing the prescence/abscence and approximate copy number of \mathbf{lncRNA} families.