

Automates et Langages Examen 1ère session

décembre 2017

Documents autorisés

Répondre impérativement sur la copie pour les exercices 1 & 2 et sur le formulaire pour les exercices 3, 4 & 5.

Ces deux parties sont susceptibles d'être corrigées par des correcteurs différents.

Préambule : définitions et notations

- Pour tout langage L sur un alphabet Σ , et toute lettre l (appartenant ou non à Σ), on définit sur l'alphabet $\Sigma \cup \{l\}$ le langage $L \downarrow l = \{u_1 l u_2 \mid u_1 u_2 \in L, u_1 \in \Sigma^*, u_2 \in \Sigma^*\}$. Les mots de $L \downarrow l$ sont donc obtenus à partir des mots de L en insérant un l.
- Pour tout ensemble fini de symboles Q, on appelle \bar{Q} l'ensemble des symboles obtenus en surmontant ceux de Q d'une barre : $\bar{Q} = \{\bar{q} \mid q \in Q\}$.

Automates intervenant par la suite:

Exercice 1:

Q 1.

- 1. Écrire le système d'équations de langages L_q associé à l'automate A_1 .
- 2. Exprimer L_0 en fonction de L_1 . (justifier)
- 3. Donner une expression rationnelle pour L_1 (sans inconnues : utilisant uniquement a et b) (justifier)
- 4. Montrer que $\mathcal{L}(A_1) = b^*a(b+ab^*a)^*$

Q 2.

- 1. L'automate A_1 est-il déterministe? complet? accessible? co-accessible?
- 2. Construire un automate A_4 déterministe complet minimal équivalent à A_1 (la réponse finale ne suffit pas, il faut la justifier)
- 3. En une ligne, indiquez la caractéristique des mots de $\mathcal{L}(A_1)$

Exercice 2:

Q1.

- 1. Indiquer, par longueurs croissantes, l'ensemble des mots de $(ab)^* \downarrow c$ de longueur inférieure ou égale à 5.
- 2. Proposez, sans preuve, une expression rationnelle pour $(ab)^* \downarrow c$.
- 3. Proposez un automate déterministe à 2 états pour $(ab)^*$. En déduire un automate déterministe à 4 états pour $(ab)^* \downarrow c$.
- 4. Proposez, en partant des automates A_2 et A_3 , un automate déterministe à 4 états pour $\mathcal{L}(A_3) \downarrow c$ et un automate déterministe à 6 états pour $\mathcal{L}(A_2) \downarrow c$.
- **Q 2.** Soit $A = (\Sigma, Q, q_{ini}, \mathcal{F}, \delta)$, un automate déterministe, et l une lettre $(l \notin \Sigma)$.
 - 1. Complétez la définition d'un automate déterministe $A' = (\Sigma \cup \{l\}, Q \cup \bar{Q}, q'_{ini}, \mathcal{F}', \delta')$ de façon à ce qu'il reconnaisse le langage $\mathcal{L}(A) \downarrow l$ (soyez rigoureux et précis dans la définition de A')
 - 2. Si L est un langage sur un alphabet Σ , et $l \notin \Sigma$ une lettre, justifier en 3 lignes **maximum** l'affirmation : L est rationnel $\implies L \downarrow l$ est rationnel

Exercice 3:

- **Q 1**. En vous inspirant de la construction faite à l'exercice précédent pour $\mathcal{L}(A_3) \downarrow c$, construire un automate **non** déterministe à 4 états pour le langage $\mathcal{L}(A_3) \downarrow b$
- Q 2 . Construire un automate déterministe complet minimal équivalent.

Exercice 4:

Soit la grammaire
$$G_0 = (\{a, b, c\}, \{S, U\}, S, \mathcal{R})$$
 où $\mathcal{R} = \begin{vmatrix} S & \to & \text{aSb} \mid \text{Uc} \mid \text{cU} \\ U & \to & \text{aUb} \mid \varepsilon \end{vmatrix}$

 $\mathbf{Q} \ \mathbf{1}$. Montrer que G_0 est ambigüe.

Q 2. Soit la grammaire
$$G = (\{a,b,c\},\{S,T,U\},S,\mathcal{R})$$
 où $\mathcal{R} = \begin{vmatrix} S & \to & \text{aSb} \mid \text{Tc} & \mid \text{cU} \\ T & \to & \text{aUb} \\ U & \to & \text{aUb} \mid \varepsilon \end{vmatrix}$

- 1. Donnez la liste des mots de $\mathcal{L}(G)$ de longueur inférieure ou égale à 4 . Pour chacun vous indiquerez une dérivation permettant de l'obtenir.
- 2. Donnez la liste des mots de $\mathcal{L}(G)$ de longueur 5 (les dérivations ne sont pas demandées)
- 3. Indiquez un arbre de dérivation pour un mot (que vous choisirez) de longueur 5 et dont l'avantdernière lettre est un c (scoop : il y en a au moins un!).
- **Q** 3 . On s'intéresse maintenant au langage étendu $\hat{\mathcal{L}}(G)$
 - 1. Quel est l'ensemble des mots de $\hat{\mathcal{L}}(G)$ qui comportent un S? Vous donnerez une caractérisation du style $\{b^ia^kc^iS\mid 0\leq i, 0\leq k\}$ (bien sûr cette réponse est fausse, ce n'est qu'un exemple de forme de réponse attendue). Il n'est pas demandé de preuve.
 - 2. Idem pour les mots de $\hat{\mathcal{L}}(G)$ qui comportent un T
 - 3. Idem pour les mots de $\hat{\mathcal{L}}(G)$ qui comportent un U
 - 4. Idem pour les mots de $\mathcal{L}(G)$

Q4.

- 1. Donnez une expression de $\mathcal{L}(G)$ en fonction de $L = \{a^n b^n \mid 0 \le n\}$.
- 2. Prouvez votre réponse (en utilisant vos réponses à la question 3)

Exercice 5:

Pour la grammaire G définie dans l'exercice précédent.

- **Q 1**. Quelles sont les variables ε -productives?
- Q 2. Écrire l'ensemble « Premier » de chaque partie droite de règle et de chaque variable.
- Q 3. Écrire l'ensemble « Suivant » de chaque variable. Le marqueur de fin de mot sera noté #
- \mathbf{Q} 4. La grammaire G est-elle $\mathrm{LL}(1)$? Si oui, indiquez sa table d'analyse.