Basic Concepts

Data Structures

Ching-Fang Hsu

Department of Computer Science and Information Engineering

National Cheng Kung University

Overview: System Life Cycle

- Tools and techniques necessary to design and implement large-scale computer systems
 - Data abstraction
 - ► Algorithm specification
 - ► Performance analysis and measurement
 - ▶ Recursive programming
- The system life cycle -- the development process of programs; five highly interrelated phases

Overview: System Life Cycle (contd.)

▶ Requirements

▶ Describing the information that we are given (input) and the results that we must produce (output)

Analysis

- ▶ Breaking the problem down into manageable pieces
- ► Bottom-up & top-down

Design

- The creation of abstract data types
- ► The specification of algorithms and a consideration of algorithm design strategies
- ► Coding details are ignored!

Overview: System Life Cycle (contd.)

- Refinement and coding
 - Choosing representations for our data objects and writing algorithms for each operation on them
- Verification
 - Correctness proofs
 - ► The same techniques used in mathematics; timeconsuming
 - Testing
 - Good test data should verify that every piece of code runs correctly.
 - Error removal
 - ► The ease with which we can remove errors depends on the design and coding decisions made earlier.

Algorithm Specification

- ▶ Definition: An algorithm is a finite set of instructions that, if followed, accomplishes a particular task and must satisfy the following criteria:
 - ► Input
 - Output
 - Definiteness
 - ▶ Finiteness
 - ▶ Effectiveness

Algorithm Specification (contd.)

- cf. a program
 - A program does not have to satisfy finiteness condition.
- ► How to describe an algorithm?
 - In a natural language
 - No violation of definiteness is allowed.
 - By flowcharts
 - ▶ Working well only if the algorithm is small and simple

Algorithm Specification (contd.)

- Example: Selection Sort (p. 9)
 - Description statements; not an algorithm

From those integers that are currently unsorted, find the smallest and place it next in the sorted list.

Selection sort algorithm (p. 9, Program 1.2)

```
for (i=0; i<n; i++) {
   Examine list[i] to list[n-1] and
   suppose that the smallest integer is
   at list [min];
   Interchange list[i] and list[min];
}</pre>
```


Algorithm Specification (contd.)

- Example: Binary search (p. 10)
 - ► Given a sorted array *list* with $n \ge 1$ distinct integers, figure out if an integer *searchnum* is in *list*.
 - Binary search algorithm (p. 12, Program 1.5)

```
while (there are more integers to check)
{
    middle = (left + right) / 2;
    if (searchnum < list[middle])
        right = middle - 1;
    else if (searchnum == list[middle])
        return middle;
        else left = middle + 1;
}</pre>
```


Recursive Algorithms

- ▶ Direct recursion
 - Functions call themselves.
- ▶ Indirect recursion
 - ► Functions may call other functions that invoke the calling function again.
- Any function that we can write using assignment, if-else, and while statements can be written recursively.
 - Easier to understand

Recursive Algorithms (contd.)

- When should we express an algorithm recursively?
 - ▶ The problem itself is defined recursively.
 - Example: factorials, Fibonacci numbers, and binomial coefficients
- Example: Binary search
 - ▶ Recursive version (p. 15, Program 1.8)

```
int binarysearch (int list[], int searchnum, int left,
                       int right)
 int middle ;
 if (left <= right) {</pre>
                                             recursive call
    middle = (left + right)/2;
    switch(COMPARE(list[middle], searchnum)
       case -1 : return
       binarysearch (list, searchnum, middle+1, right)
       case 0 : return middle;
       case 1 : return
      binarysearch (list, searchnum, left, middle-1);
return -1;
```

Data Abstraction

- ▶ Definition: A data type is a collection of objects and a set of operations that act on those objects.
 - Example: int and arithmetic operations
- All programming languages provide at least a minimal set of predefined data types, plus the ability to construct user-defined types.
- Knowing the representation of the objects of a data type can be useful and dangerous.

Data Abstraction (contd.)

- ▶ Definition: An abstract data type (ADT) is a data type whose specification of the objects and the operations on the objects is separated from the representation of the objects and the implementation of the operations.
- Specification vs. Implementation (of the operations of an ADT)
 - ► The former consists of the names of every function, the type of its arguments, and the type of its result.

Data Abstraction (contd.)

- Categories of functions of a data type
 - ▶ Creator/constructor
 - **▶** Transformers
 - ▶ Observers/reporters
 - Example: p. 20, ADT 1.1

```
ADT NaturalNumber is
objects: an ordered subrange of the integers starting at zero and ending at
the maximum integer (INT_MAX) on the computer
functions:
 for all x, y \in NaturalNumber ; TRUE, FALSE \in Boolean
 and where +, -, < and == are the usual integer operations
   NaturalNumber Zero() ::=
   Boolean IsZero(x) ::= if(x) return FALSE
                                    else return TRUE
   Boolean Equal(x, y) := if (x == y) return TRUE
                                    else return FALSE
   NaturalNumber Successor(x) ::= if (x == INT MAX) return x
                                    else return x + 1
   NaturalNumber Add(x, y) ::= if (x + y \le INT\_MAX) return x + y
                                    else return INT MAX
   NaturalNumber Subtract(x, y) ::= if (x < y) return 0
                                    else return x - y
end NaturalNumber
```

Performance Analysis

- Criteria of performance evaluation can be divided into two distinct fields.
 - ► Performance analysis -- Obtaining estimates of time and space that are machine-independent
 - Performance measurement -- Obtaining machinedependent times

Performance Analysis -- Space Complexity

- ▶ Definition: The *space complexity* is the amount of memory that it needs to run to completion.
- Equal to the sum of the following components
 - ► Fixed space requirements
 - ▶ Do not depend on the number and size of the program's inputs and outputs
 - ▶ Including the instruction space, space for simple variables, fixed-size structured variables, and constants

Performance Analysis -- Space Complexity (contd.)

- Variable space requirements
 - ► The space needed by structured variables whose size depends on the particular instance, *I*, of the problem and the additional space required when a function uses recursion
 - \triangleright $S_P(I)$: The variable space requirement of a program P working on an instance I
 - ▶ Usually a function of some characteristics of the instance *I*
 - The number, size, and values of the inputs and outputs associated with I
- \triangleright The total space requirement S(P)
 - $S(P) = c + S_P(I)$, where c is a constant representing the fixed space requirements

Performance Analysis -- Time Complexity

- ► The time, *T*(*P*), taken by a program *P* is the sum of its *compile time* and its *run*/*execution time*.
 - ▶ Compile time
 - ► Similar to the fixed space component
 - ▶ Does not depend on the instance characteristics
 - ightharpoonup Execution time T_P
 - ▶ Machine-independent estimate
 - ► Counting the number of operations performed in *P*
 - ▶ A problem: How is *P* divided into distinct steps?

Performance Analysis -- Time Complexity (contd.)

- Definition: A program step is a syntactically meaningful program segment whose execution time is independent of the instance characteristics.
 - ► The amount of computing represented by one program step may be different from that represented by another step.
- ▶ How to determine the number of steps?
 - Creating a global variable (p.26~29, Program 1.13~1.18)
 - ► A tabular method (p.30~31)

Program 1.13

```
float sum(float list[], int n)
                                  /* for assignment */
  float tempsum = 0;
  int i;
  for (i = 0; i < n; i++) {
                                       /* for assignment */
       tempsum += list[i];
   return tempsum;
```

Program 1.14 (Simplified version of Program 1.13)

```
float sum(float list[] , int n)
{
    float tempsum = 0;
    int i;
    for (i = 0; i <n; i++)
        count += 2;
    count += 3;
    return 0;
}</pre>
```

Program 1.15

```
float rsum(float list[] , int n)
   if (n) {
     return rsum(list, n-1) + list[n-1];
   return list[0];
```

Program 1.17

```
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
                   int c[][MAX SIZE], int row, int cols)
  int i, j;
  for (i = 0; i < rows; i++){
     for (j = 0; j < cols; j++) {
       c[i][j] = a[i][j] + b[i][j];
```

Program 1.18 (Simplified version of Program 1.17)

```
void add (int a[][MAX_SIZE], int b[][MAX_SIZE],
  int c[][MAX SIZE], int rows, int cols)
  int i, j;
  for (i = 0; i < rows; i++)
     for (j = 0; i < cols; j++)
```

Performance Analysis -- Time Complexity (contd.)

- ► The best case step count
 - ► The minimum number of steps that can be executed for the given parameters
- ► The worst case step count
 - ► The maximum number of steps that can be executed for the given parameters
- ► The average step count
 - ► The average number of steps executed on instances with the given parameters

Performance Analysis -Asymptotic Notation $(0, \Omega, \Theta)$

- Because of the inexactness of what a step stands for, the exact step count isn't very useful for comparative purposes.
- ▶ Definition: f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all n, $n \ge n_0$.
 - p.35, Example 1.15
 - ▶ O(1) \Rightarrow constant computing time, O(n) \Rightarrow linear, O(n²) \Rightarrow quadratic, O(2ⁿ) \Rightarrow exponential

Performance Analysis -Asymptotic Notation (O) (contd.)

▶
$$3n+2 = O(n), 3n+2 \neq O(1)$$

▶ $3n+3 = O(n), 3n+3 = O(n^2)$
▶ $100n+6 = O(1)$
▶ $10n^2+4n+1$
▶ $1000n^2+1$
▶ $n \geq 3$
▶ $6*2^n+n^2 = O(2^n)$

Performance Analysis -Asymptotic Notation (O) (contd.)

$\log n$	n	$n\log n$	n^2	n^3	2^n
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65,536
5	32	160	1024	32,768	4,294,967,296

Performance Analysis -Asymptotic Notation (O) (contd.)

Performance Analysis -Asymptotic Notation $(0, \Omega, \Theta)$ (contd.)

- ▶ f(n) = O(g(n)) only states that g(n) is an upper bound on the value of f(n) for all n, $n \ge n_0$ instead of implying how good this bound is.
 - So, $n = O(n^2)$, $n = O(n^{2.5})$, $n = O(n^3)$, $n = O(2^n)$, etc.
 - ► To be informative, g(n) should be as small a function of n as one can come up with for which f(n) = O(g(n)).
- ► Theorem 1.2: If $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n) = O(n^m)$.
 - proof> p. 36

Performance Analysis -Asymptotic Notation $(0, \Omega, \Theta)$ (contd.)

- ▶ Definition: $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all n, $n \ge n_0$.
 - ► To be informative, g(n) should be as large a function of n as possible for which the statement $f(n) = \Omega(g(n))$ is true.
- ► Theorem 1.3: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$.

Performance Analysis -Asymptotic Notation $(0, \Omega, \Theta)$ (contd.)

- ▶ Definition: $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 , c_2 , and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all n, $n \ge n_0$.
- ► Theorem 1.4: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Theta(n^m)$.
- Example: p. 38, Figure 1.5
 - ► Since the number of lines is a constant, we may simply take the maximum of the line complexities as the asymptotic complexity of the function.

Figure 1.5

Statement	Asymptotic Complexity		
<pre>void add(int a[][MAX_SIZE])</pre>	0		
	0		
<pre>int i, j;</pre>	0		
for (i=0; i <rows; i++)<="" td=""><td colspan="3">Θ (rows)</td></rows;>	Θ (rows)		
for (j=0; j <cols; j++)<="" td=""><td>Θ (rows \cdot cols)</td></cols;>	Θ (rows \cdot cols)		
c[i][j] = a[i][j] + b[i][j];	Θ (rows \cdot cols)		
}	0		
Total	Θ (rows \cdot cols)		