7. Чисельне диференціювання

7.1. Побудова формул чисельного диференціювання

Задача чисельного диференціювання виникає у випадку коли необхідно обчислити похідну функції, значення якої задані таблицею. Нехай задано

$$f_i=f(x), \quad i=\overline{0,n}, \quad x_i\in [a,b].$$

Проінтерполюємо ці значення. Тоді

$$f(x) = L_n(x) + r_n(x), \tag{2}$$

де залишковий член у формі Ньютона має вигляд:

$$r_n(x) = f(x; x_0, \dots, x_n) \omega_n(x), \tag{3}$$

де

$$\omega_n(x) = \prod_{i=0}^n (x - x_i). \tag{4}$$

Звідси

$$f^{(k)}(x) = L_n^{(k)}(x) + r_n^{(k)}(x). (5)$$

За наближене значення похідної в точці x беремо $f^{(k)}(x)pprox L_n^{(k)}(x)$, $x\in [a,b].$

Оцінимо похибку наближення — $r^{(k)}(x)$. За формулою Лейбніца:

$$r_n^{(k)}(x) = \sum_{j=0}^k C_k^j f^{(j)}(x; x_0, \dots, x_n) \omega_n^{(k-j)}(x).$$
 (6)

З властивості розділених різниць маємо для $f(x) \in C^{n+k+1}[a,b]$:

$$f^{(j)}(x; x_0, \dots, x_n) = j! \cdot f(\underbrace{x, \dots, x}_{j+1}; x_0, \dots, x_n) = \frac{j!}{(n+j+1)!} \cdot f^{(n+j+1)}(\xi_j), \tag{7}$$

де всі $x_j \in [a,b].$

Остаточно вираз для похибки наближення похідної має вигляд:

$$r_n^{(k)}(x) = \sum_{j=0}^k rac{k!}{(k-j)!(n+j+1)!} \cdot f^{(n+j+1)})(\xi_j)\omega_n^{(k-j)}(x).$$
 (8)

Оцінка похибки матиме вигляд:

$$\left| f^{(k)}(x) - L_n^{(k)}(x) \right| \le M \sum_{j=0}^k \frac{k!}{(k-j)!(n+j+1)!} \cdot \left| \omega_n^{(k-j)}(x) \right|, \tag{9}$$

де
$$M=\max_{0\leq j\leq k}\max_{x\in[a,b]}ig|f^{(n+j+1)}(x)ig|.$$

Нагадаємо, що процес інтерполювання розбіжний. Крім того, якщо k>n, то $L_n^{(k)}(x)\equiv 0$. Тому не можна брати великими значення n та k. Як правило k=1,2, іноді k=3,4. Відповідно, n=k, або n=k+1, або n=k+2.

Подивимося як залежить порядок збіжності процесу чисельного диференціювання від кроку. Нехай $x_i=x_0+ih$, h>0 — крок. Тоді за умови $x_n-x_0=O(h)$:

$$\omega_n(x) = (x - x_0) \cdot \dots \cdot (x - x_n) = O(h^{n+1}),$$
 (10)

де $x \in [x_0, x_n]$.

Перша похідна від $\omega_n(x)$ має порядок на одиницю менше, тобто

$$\omega_n'(x) = O(h^n). \tag{11}$$

Далі

$$r_n^{(k)}(x) = O(h^{n+1-k}), (12)$$

тому

$$f^{(k)}(x) - L_n^{(k)} = O(h^{n+1-k}). (13)$$

При умові $n \geq k$ останній вираз збігається до нуля, тобто

$$f^{(k)}(x) - L_n^{(k)}(x) \xrightarrow[h \to 0]{} 0. \tag{14}$$

Далі

$$r_n^{(k)}(x) = \underbrace{f(x; x_0, \dots, x_n)\omega_n^{(k)(x)}}_{O(h^{n+1-k})} + \underbrace{\sum_{j=1}^k C_k^j f^{(j)}(x; x_0, \dots, x_n)\omega_n^{(k-j)}(x)}_{O(h^{n+2-k})}.$$
(15)

Якщо

$$\omega_n^{(k)}\left(\overline{x}\right) = 0,\tag{16}$$

то

$$r_n^{(k)}\left(\overline{x}\right) = O(h^{n+2-k}). \tag{17}$$

Точки $x=\overline{x}$ називаються *точками підвищеної точності формул чисельного диференціювання*.

Приклад 1: Виведемо формули чисельного диференціювання для k=1, n=1.

Виберемо точки x_0 , $x_1=x_0+h\mathrm{i}$ інтерполяційний багаточлен має вигляд:

$$L_1(x) = f_0 + (x - x_0) \cdot \frac{f_1 - f_0}{h}.$$
 (18)

Для похідної отримаємо вираз:

$$f'(x)pprox L_1'(x)=rac{f_1-f_0}{h},\quad x\in [x_0,x_1].$$
 (19)

Розписавши за формулою Тейлора, отримаємо вираз для похибки:

$$r_1'(x) = rac{f^{(3)}(\xi_1)}{3!} \cdot (x - x_0)(x - x_1) + rac{f^{(2)}(\xi_0)}{2!} \cdot (2x - x_1 - x_0) = O(h).$$
 (20)

Якщо $2\overline{x}-x_1-x_0=0$, то $r_1'\left(\overline{x}\right)=O(h^2)$. Тобто $\overline{x}=\frac{x_1+x_0}{2}$ — точка підвищеної точності. Більш точно (див. приклад 3):

$$\left|r_1'\left(\overline{x}\right)\right| \le \frac{h^2 M_3}{24},\tag{21}$$

де $M_3=\max_{x\in[a,b]}ig|f^{(3)}(x)ig|.$

Приклад 2: Аналогічно виведемо формули чисельного диференціювання для k=1, n=2.

Виберемо точки x_0 , $x_1=x_0+h$, $x_2=x_0+2h$. Інтерполяційний поліном має вигляд:

$$L_2(x) = f_0 + (x - x_0) \cdot \frac{f_1 - f_0}{h} + (x - x_0)(x - x_1) \cdot \frac{f_2 - 2f_1 + f_0}{2h^2}.$$
 (22)

Тоді замінимо $f'(x)pprox L_2; (x)=rac{f_1-f_0}{h}+(2x-x_0-x_1)\cdotrac{f_2-2f_1+f_0}{2h^2}$, $x\in[x_0,x_2]$.

Якщо сюди підставити $x=x_0$, то отримаємо $f'(x_0)pprox rac{-f_2+4f_1-3f_0}{2h}$. Для точки $x=x_1$ маємо $f'(x_1)pprox rac{f_2-f_0}{2h}=f_{x,1}^0$. Для точки $x=x_2$ маємо $f'(x_2)pprox rac{f_0-4f_1+3f_2}{2h}$, $x\in [x_0,x_2]$. Для похибки маємо оцінку $r_2'(x)=O(h^2)$.

Позначимо

- ullet для $x\in [x_i,x_{i+1}]$, $f_{x,i}=rac{f_{i+1}-f_i}{b}pprox f'(x)$, (різницева похідна вперед);
- ullet для $x\in [x_{i-1},x_i]-f_{\overline{x},i}=rac{f_i-f_{i-1}}{h}pprox f'(x)$, (різницева похідна назад);
- ullet для $x \in [x_{i-1}, x_{i+1}] f^0_{x,i} pprox f'(x)$ (центральна різницева похідна).

Замість $f'(x_i)$ можна взяти будь-яке із значень: $f_{x,i}$, $f_{\overline{x},i}$ або $f^0_{x,i}$.

Задача 21: Знайти точки підвищеної точності формул чисельного диференціювання для k=1, n=2 і оцінити похибку в цих точках.

Приклад 3: При n=1, k=1 оцінимо точність формул чисельного диференціювання за формулою Тейлора.

1. Нехай $f(x) \in C^2([a,b])$. Тоді

$$f'(x_0) - rac{f(x_0+h) - f(x_0)}{h} = f'(x_0) - rac{1}{h} igg(f_0 + h f_0' + rac{h^2}{2} f''(\xi) - f_0 igg) = -rac{h}{2} \cdot f''(\xi), \quad (23)$$

$$\left| f'(x_0) - \frac{f_1 - f_0}{h} \right| \le \frac{M_2 h}{2},$$
 (24)

де $M_2=\max_{[x_0,x_1]}|f''(\xi)|.$

2. Нехай $f(x) \in C^3([a,b])$. Тоді, розписавши розклад по формулі Тейлора до третьої похідної, маємо оцінку:

$$f'(\overline{x}) - \frac{f(x_0 + h) - f(x_0)}{h} =$$

$$= f'(\overline{x}) - \frac{1}{h} \left(f'(\overline{x}) + \frac{h}{2} \cdot f'(\overline{x}) + \frac{h^2}{8} \cdot f''(\overline{x}) + \frac{h^3}{48} \cdot f'''(\xi) \right) -$$

$$-f(\overline{x}) + \frac{f}{2} \cdot f'(\overline{x}) - \frac{h^2}{8} \cdot f''(\overline{x}) + \frac{h^3}{48} \cdot f'''(\eta) \right) = -\frac{h^2}{24} \cdot f'''(\zeta).$$
(25)

$$\left| f'\left(\overline{x}\right) - \frac{f_1 - f_0}{h} \right| \le \frac{h^2 M_3}{24},\tag{26}$$

де $\overline{x}=rac{x_1+x_0}{2}.$

Задача 22: Показати, що якщо $f(x) \in C^3([a,b])$, то $\left|f'(x_1) - rac{f_2 - f_0}{2h}
ight| \leq rac{M_3 h^2}{6}$

Приклад 4: При n=2, k=2 маємо:

$$L_{2}(x) = f_{i-1} + \frac{f_{i} - f_{i-1}}{h} \cdot (x - x_{i-1}) + \frac{f_{i+1} - 2f_{i} + f_{i-1}}{h^{2}} \cdot (x - x_{i-1}) \cdot (x - x_{i})$$

$$(27)$$

$$L_2''(x) = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2}. (28)$$

Для $f(x) \in C^4([a,b])$ оцінимо точність формул чисельного диференціювання за формулою Тейлора:

$$f''(x_{1}) - \frac{f_{2} - 2f_{1} + f_{0}}{h^{2}} =$$

$$= f''(x_{1}) - \frac{f(x_{1} + h) - 2f(x_{1}) + f(x_{1} - h)}{h^{2}} =$$

$$= f''(x_{1}) - \frac{1}{h^{2}} \left(f_{1} + hf_{1}'' + \frac{h^{2}}{2} \cdot f_{1}'' + \frac{h^{3}}{6} \cdot f_{1}''' + \frac{h^{4}}{24} \cdot f^{(4)}(\xi_{1}) - 2f_{1} + f_{1} - hf_{1}'' + \frac{h^{2}}{2} \cdot f_{1}'' - \frac{h^{3}}{6} \cdot f_{1}''' + \frac{h^{4}}{24 \cdot f^{(4)}}(\xi_{2}) \right) = \frac{h^{2}}{12} \cdot f^{(4)}(\xi),$$

$$(29)$$

де $\xi_1, \xi_2, \xi \in [x_0, x_2].$

Отже,

$$\left|f_1'' - \frac{f_2 - 2f_1 + f_0}{h^2}\right| \le \frac{M_4 h^2}{12}.$$
 (30)

Задача 23: Побудувати формулу чисельного диференціювання k=2, n=2 у випадку нерівновіддалених вузлів: x_0 , $x_1=x_0+h_1$, $x_2=x_1+h_2$. Оцінити точність формули. Знайти точки підвищеної точності оцінити похибку.

Крім інтерполяційних формул для чисельного диференціювання можна застосовувати сплайни. Нехай $f_i=f(x_i)$. Побудуємо інтерполяційний сплайн першого степеня $s_1(x)$, для якого має місце оцінка $\left|f^{(k)}(x)-s_1^{(k)}(x)\right|=O(h^{2-k})$, k=0,1. Звідси при k=1 маємо $f'(x)-s_1'(x)=O(h)$.

Для кубічного інтерполяційного сплайну $s_3(x)$ маємо для першої та другої похідних:

$$\left| f^{(k)}(x) - s_3^{(k)}(x) \right| - O(h^{4-k}), \quad k = 1, 2.$$
 (31)

7.2. Про обчислювальну похибку чисельного диференціювання

Нехай значення функції обчисленні з деякою похибкою. Постає питання про вплив цих похибок на значення похідних обчислених за формулами чисельного диференціювання.

Перед цим зробимо зауваження про вплив збурення функції на значення звичайних похідних.

Нехай $f(x) \in C^1([a,b])$ і її збурення має вигляд:

$$ilde{f}(x) = f(x) + rac{\sin(\omega x)}{n}.$$
 (32)

При $n o\infty$ маємо $\left\|f(x)- ilde{f}\left(x
ight)
ight\|_{C([a,b])}=rac{1}{n} o 0$, звідси $ilde{f}\left(x
ight) \xrightarrow[n o\infty]{} f(x)$. Таким чином це малі збурення. Маємо $ilde{f}'(x)=f'(x)+rac{\omega}{n}\cdot\cos(\omega x)$. Нехай $\omega=n^2$, тоді

$$\left|f(x) - \tilde{f}\left(x\right)\right|_{C([a,b])} = \frac{\left|\omega\right|}{n} = n \xrightarrow[n \to \infty]{} \infty.$$
 (33)

Цей приклад ілюструє нестійкість оператора диференціювання. Є сподівання, що ця нестійкість має місце і для чисельного диференціювання.

Нехай $ilde{f}_i=f_i+\delta_i$, $f_i=f(x_i)$, $i=\overline{0,n}$, $|\delta_i|\leq \delta$. Розглянемо вплив похибок δ_i на конкретних формулах чисельного диференціювання.

Приклад 1: Оцінімо вплив збурень на похибку обчислення першої похідної n=1, k=1.

$$f_i' = \frac{\tilde{f}_i - \tilde{f}_{i-1}}{h} = f_i' - \frac{f_i - f_{i-1}}{h} - \frac{\delta_i - \delta_{i-1}}{h},\tag{34}$$

$$\left| f_i' - \frac{\tilde{f}_i - \tilde{f}_{i-1}}{h} \right| \le \left| f_i' - \frac{f_i - f_{i-1}}{h} \right| + \left| \frac{\delta_i - \delta_{i-1}}{h} \right| \le \frac{M_2 h}{2} + \frac{2\delta}{h} \xrightarrow[h \to 0]{} \infty$$
 (35)

Таким чином, як і для аналітичного диференціювання, маємо некоректність: при малих збуреннях $|\delta_i| le \delta_i$ можуть бути як завгодно великі похибки, якщо $\frac{\delta}{h} o \infty$ при h o 0.

Мінімізуємо вплив цих збурень. Позначимо

$$\varphi(h) = \frac{M_2 h}{2} + \frac{2\delta}{h}.\tag{36}$$

Тоді мінімум цієї функції досягається для таких h:

$$\varphi'(h) = \frac{M_2}{2} - \frac{2\delta}{h^2} = 0, (37)$$

звідки $h_0=2\sqrt{rac{\delta}{M_2}}$. При такому значенні h оцінка похибки (35) така:

$$arphi(h_0) = 2\sqrt{M_2\delta} = O\left(\sqrt{\delta}\right) \mathop{\longrightarrow}\limits_{\delta o 0} 0.$$
 (38)

Приклад 2: Подивимося на вплив збурень на похибку обчислення першої похідної при використанні центральної різницевої похідної.

$$\left| f_i' - \frac{\tilde{f}_{i+1} - \tilde{f}_{i-1}}{2h} \right| \le \left| f_i' - \frac{f_{i+1} - f_{i-1}}{2h} \right| + \left| \frac{\delta_{i+1} - \delta_{i-1}}{2h} \right| \le \frac{M_3 h^2}{6} + \frac{\delta}{h} = \varphi(h). \tag{39}$$

3 рівняння $arphi'(h)=rac{M_3h}{3}-rac{\delta}{h^2}=0$ маємо: $h_0^3=rac{3\delta}{M_3}$, $h_0=\sqrt[3]{rac{3\delta}{M_3}}$. Отже,

$$\varphi(h_0) = \frac{M_3}{6} \sqrt[3]{\frac{9\delta^2}{M_3^2}} + \frac{\delta}{\sqrt[3]{\frac{3\delta}{M_3}}} = \frac{1}{2} \sqrt[3]{\frac{M_3\delta^2}{3}} + \sqrt[3]{\frac{M_3\delta^2}{3}} = \frac{3}{2} \sqrt[3]{\frac{M_3\delta^2}{3}} = O\left(\sqrt[3]{\delta^2}\right). \tag{40}$$

Таким чином швидкість збіжності при $\delta \to 0$ похибки формули чисельного диференціювання центральною похідною вища ніж для формули з прикладу 1 (похідна вперед або назад).

Задача 24: Дослідити похибку чисельного диференціювання для n=2, k=2, вибрати оптимальний крок h_0 , дати оцінку $arphi(h_0)$.