TU BRAUNSCHWEIG

Prof. Dr.-Ing. Marcus Magnor Institut für Computergraphik Felix Klose (klose@cg.cs.tu-bs.de)

17.04.2012

Bildbasierte Modellierung SS 2012 Übungsblatt 1

Abgabe: Präsentation der bearbeiteten Aufgaben in der Übung am 24.04.2012.

Für die Programmieraufgaben kann in Gruppen von max. 3 Leuten zusammengearbeitet werden. Dabei muss aber jeder einzelne in der Lage sein, alle Teile des Programms zu erklären. Die Materialien für die Programmieraufgaben sind jeweils erhältlich unter:

Ziel der ersten Übung ist das Vertrautwerden mit der OpenCV-Bibliothek. Diese stellt nicht nur die Grundlagen zum Arbeiten mit Bildern zur Verfügung, sondern auch viele weitere in der Bilderverarbeitung häufig verwendete Funktionen. Erhältlich ist sie als Open-Source-Projekt unter:

Dokumentation findet sich beispielsweise im Buch $Learning\ OpenCV$ von Gary Bradski und Adrian Kaehler oder unter:

http://http://docs.opencv.org/modules/refman.html

1.1 OpenCV starten (10 Punkte)

Erweitere die gegebene Programmgrundstruktur so, dass

- ein Bild geladen werden kann.
- die Höhe, Breite, Anzahl der Farbkanäle dieses Bildes ausgegeben wird.
- dieses Bild in einem cvNamedWindow angezeigt wird, bis eine Tastatureingabe erfolgt.
- die drei Farbkanäle des Bildes nebeneinander angezeigt werden.
- $\bullet\,$ das Bild zusammen mit einem roten 10×10 Rechteck um die Bildmitte angezeigt wird.

1.2 Bilder entzerren (10 Punkte)

Das Bild distorted.png, Abb 1, wurde mit einer Weitwinkelkamera aufgenommen und zeigt starke radiale Verzerrung. Aus der Vorlesung bekannt ist, dass die radiale Verzerrung oft durch

$$x = x_c + L(r)(x_d - x_c)$$
 $y = y_c + L(r)(y_d - y_c)$

ausgedrückt wird, wo (x,y) die idealen Koordinaten sind, (x_d,y_d) die verzerrten Koordinaten und L(r) eine Funktion, die nur von der Entfernung $r=\sqrt{(x-x_c)^2+(y-y_c)^2}$ zum Verzerrungszentrum (x_c,y_c) abhängt. Die Funktion L(r) kann durch ihre Taylorentwicklung $L(r)=1+\kappa_1r+\kappa_2r^2+\kappa_3r^3+\cdots$ beschrieben werden. Verschiedene Möglichkeiten, die Parameter zu bestimmen, sind denkbar und werden beispielsweise in $Multiple\ View\ Geometry\ von\ Hartley\ und\ Zisserman\ beschrieben,\ sollen hier aber nicht zur Anwendung kommen.$

Erweitere die gegebene Programmgrundstruktur so, dass

- $\bullet\,$ die Funktion L mit Taylorentwicklung 2. Ordnung approximiert wird, wobei das Verzerrungszentrum der Bildmitte entspricht.
- das entzerrte Bild in einer Datei gespeichert wird.

Was passiert, wenn die Größe der Parameter, ihr Vorzeichen etc. verändert wird? Ein Startwert kann z.B. $\kappa_1=0.001,\,\kappa_2=0.000005$ sein.

Abbildung 1: Bild mit starker radialer Verzerrung.