Important Concepts in CS 215

Anish Kulkarni

IIT Bombay

September 2024

Understand the difference

Sample Points

VS

Probability Distribution

Sample Points

Let x_1, x_2, \dots, x_N be a sample set.

$$\text{Mean } \mu = \bar{x} = \frac{1}{N} \sum_{i=1}^{n} x_i$$

Variance
$$\sigma^2 = s^2 = \frac{1}{N-1} \sum_{i=1}^{n} (x_i - \bar{x})$$

Chebyshev's Inequality

$$\frac{\#\{i: |x_i - \bar{x}| > ks\}}{N} < \frac{1}{k^2}$$

If y_1, y_2, \dots, y_n is another sample set then

Correlation Coeffecient
$$r = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{(N-1)\sigma_x\sigma_y}$$

Anish Kulkarni (IITB) CS 215 TSC 2024 3/9

Probability Distribution

We consider a sample space Ω . An **Event** A is any subset of Ω . Let $\mathcal{P}(\Omega)$ denote the set of all subsets of Ω .

A probability function $\mathbb{P}:\mathcal{P}(\Omega)\to[0,1]$ satisfies the following axioms:

- **②** If A_1, A_2, \cdots , form a countable collection of disjoint subsets of Ω then

$$\mathbb{P}(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Anish Kulkarni (IITB) CS 215 TSC 2024 4

¹If the sample space is not finite, but a continuous range, we need to restrict event to special kinds of subsets called measurable sets

Random Variable and CDF

A random variable X is simply a function from Ω to \mathbb{R} . Using this we can extend the definition of \mathbb{P} to subsets U of \mathbb{R} as follows

$$\mathbb{P}(U) = \mathbb{P}(X^{-1}(U))$$

In particular if U is a singleton $\{x\}$ we denote $\mathbb{P}(U)$ by $\mathbb{P}(X=x)$

Let X be a random variable, we define its $\mathbf{CDF}^2 \ F : \mathbb{R} \to \mathbb{R}$ by

$$F(c) = \mathbb{P}([-\infty, c]) = \mathbb{P}(X \le c)$$

In case the CDF turns out to be a differentiable function, we define the **PDF**³ by

$$f_X(x) = F'(x)$$

4□ ► 4□ ► 4 □ ► 4 □ ► 900

Anish Kulkarni (IITB)

²Cumulative Distribution Function

³Probability Density Function

Expectation of a Random Variable

Let X be a random variables and $g: \mathbb{R} \to \mathbb{R}$ be any function

• Case 1: X is discrete, that is takes finitely many values u_1, u_2, \cdots, u_n .

$$\mathbb{E}(g(X)) = \sum_{u=0}^{n} g(u_i) P(X = u_i)$$

• Case 2: X is continuous (for now assume this means it has a pdf). Then

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Linearity of Expectation

$$\mathbb{E}[\sum_{i=1}^{n}(a_{i}g_{i}(X_{i})+b_{i})]=\sum_{i=1}^{n}(a_{i}\mathbb{E}[g_{i}(X_{i})]+b_{i})$$

Variance

$$\operatorname{\sf Var}(X) = \sigma^2 = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Random Variable Examples

Name	Formula	Mean	Variance
Bernoulli	xp + (1-x)(1-p)	р	p(1-p)
Binomial	$\binom{n}{k} p^k (1-p)^n$	np	np(1-p)
Geometric	$(1-p)^{n-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative Binomial	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$	<u>r</u> p	$\frac{r(1-p)}{p^2}$
Poisson	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ
$Uniform(\alpha,\beta)$	$\frac{1}{\beta - \alpha}$	$\frac{\alpha+\beta}{2}$	$\frac{(\alpha-\beta)^2}{12}$
$Normal(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Exponential	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Beta	$\frac{1}{B(a,b)} x^{a-1} y^{b-1}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$

Table: Random Variables

Entropy and MGF

Continuous

$$Ent(X) = -\int_{-\infty}^{+\infty} f_X(x) \log(f_X(x)) dx$$

Discrete

$$Ent(X) = -\sum_{i=1}^{n} P(X = x_i) \log(P(X = x_i))$$

Moment Generating Function:

$$\mathsf{MGF}(X) = \phi(t) = \mathbb{E}[e^{Xt}]$$

Anish Kulkarni (IITB)

Estimators

Given a sample set $D=x_1,x_2,\cdots,x_n$ sampled from a distribution X, which is a known distribution, we want to estimate the parameter.

Maximum Likelihood Estimator

$$MLE(D) = \hat{\theta} = rg \max_{\theta} \mathbb{P}(D|\theta) = rg \max_{\theta} \prod_{i=1}^{n} \mathbb{P}(x_i|\theta)$$

The estimator is called unbiased if $\mathbb{E}(\hat{\theta}) = \theta$. Where θ is the true parameter from which D was sampled.

It is called consistent if $\hat{ heta} o heta$ as $extstyle N o \infty$

If we have a prior on θ then we can use Bayesian Estimator:

$$\hat{\theta} = rg\max_{ heta} \mathbb{P}(heta|D) = rg\max_{ heta} \mathbb{P}(heta) imes \mathbb{P}(D| heta)$$

4□ > 4□ > 4 = > 4 = > = 90