# Introduction to Discrete Choice Experiments

Anna Heath – Petros Pechlivanoglou

The Hospital for Sick Children

University of Toronto

Including joint work with DARTH workgroup

## Discrete Choice Experiments

- Discrete choice experiments are a stated preference method where subjects must choose between two or more options that are defined through a set of attributes.
- Each attribute can take values from a predefined set of *levels*.



#### Discrete Choice Experiments

- Data from a DCE gives information about preferences.
- These data can be used to estimate utilities and willingness-to-pay

No treatment
 Drug A
 Drug B

 Underlying Utility
 
$$U_{No Treatment}$$
 $U_{Drug A}$ 
 $U_{Drug B}$ 

 Revealed Ranking
 3
 1
 2

$$U_{\text{Drug A}} \ge U_{\text{Drug B}} \ge U_{\text{No Treatment}}$$

 Analysing the DCE data can estimate the utility conditional the given attributes.

#### Designing a Discrete Choice Experiment

Define research question

Determine attributes

Select attribute levels

DCE design is a complex process, requiring both qualitative and quantitative skills.

- Literature Reviews
- Expert Consultation
- Public Consultations
- Pilot Study(ies)
- Efficient Designs

Experimental design

#### **Citations**

- Weber, S. (2019). A Step-by-Step Procedure to Implement Discrete Choice Experiments in Qualtrics.
- Coast J, Horrocks S. (2007) Developing attributes and levels for discrete choice experiments using qualitative methods.
- Johnson FR, Lancsar E, Marshall D, Kilambi V, Muhlbacher A, Regier DA, et al. (2013)
   Constructing experimental designs for discrete choice experiments: report of the ISPOR conjoint analysis experimental design good research practices task force.

Data collection

Statistical analysis

#### Discrete Choice Experiments

- A DCE consists of asking I individuals to choose between J alternatives across S scenarios.
- A scenario is a single choice that the individual is required to make, where each of the J alternatives are defined in terms of a given set of attribute levels  $A_{i,j,s}$ , for  $i=1,\ldots,I,j=1,\ldots,J,s=1,\ldots,S$ .



#### **Estimating Utilities**

- The utility U for individual i, alternative j and scenario s is  $U_{i,j,s}$
- A DCE gives data  $y_{i,s}$ , the choice for individual i in scenario s.
- An individual will choose option j if it has the highest utility

$$P_{i,j,s} = Prob(U_{i,j,s} > U_{i,l,s}) = Prob(y_{i,s} = j)$$
for all  $l \neq j$ 

• As we observe choices, the scale of the utility is unidentifiable.

$$Prob(U_{i,j,s} > U_{i,l,s}) = Prob(aU_{i,j,s} + b > aU_{i,l,s} + b)$$

#### Multinomial Logistic Regression

• The impact of the attributes on the utility can be estimated:

$$U_{i,j,s} = \alpha_j + \beta A_{i,j,s} + \gamma_j X_i + \epsilon_{i,j,s}$$

where  $X_i$  are individual-specific covariates and  $\epsilon_{i,i,s}$  is an error term.

- If  $\epsilon_{i,j,s}$  is assumed to be i.i.d Gumbel distribution with shape parameter 1, then  $\alpha_i$ ,  $\beta$  and  $\gamma_i$  are estimated using *logistic regression*.
- Individual-specific slopes  $\beta_{i,j}$  can be specified.
- Other distributions for the error functions require different models, i.e., normally distributed errors require probit regression.

#### Interpreting the Results

- The  $\beta$  coefficients estimate the utility weights for each attribute
- The willingness to pay is the ratio of two coefficients:

For two attributes *price* and *wait time*,  $\frac{\beta_{wait}}{\beta_{price}}$  is the willingness to pay to be seen a minute sooner.

• The "true" utility is unidentifiable but external information can be used to anchor U to a given scale:

For EQ5D, the utility of state 11111 is set to 1 with another state estimated by Time Trade Off or Standard Gamble.

A DCE that include price or time naturally gives an external anchor.

#### Data: Wide Form

| ID | Choice | Attributes of A | Attributes of B |
|----|--------|-----------------|-----------------|
| 1  | Α      |                 |                 |
| 1  | В      |                 |                 |
| 1  | Α      |                 |                 |
| 2  | Α      |                 |                 |
|    |        |                 |                 |

### Data: Long Form

| ID | Choice | Alternative | Attributes |
|----|--------|-------------|------------|
| 1  | TRUE   | Α           |            |
| 1  | FALSE  | В           |            |
| 1  | FALSE  | Α           |            |
| 1  | TRUE   | В           |            |
| 1  | TRUE   | Α           |            |
| 1  | FALSE  | В           |            |
| 2  | TRUE   | Α           |            |
| 2  | FALSE  | В           |            |
| •  |        | 1           |            |

#### Discrete Choice Experiment in R

- There are several packages to analyse DCEs in R.
- We will use the mlogit package which requires long form data
- The apollo package is more flexible but has its own data storage method - <a href="http://www.apollochoicemodelling.com/">http://www.apollochoicemodelling.com/</a>
- The Rchoice package is another alternative.
- Packages for generalised linear models are also suitable, e.g., glm, glmmTMB.

#### Citations

- Emily Lancsar, Denzil G. Fiebig, Arne Risa Hole (2017) Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software, *PharmacoEconomics*, 35:697–716
- Ian Waudby-Smith, A. Simon Pickard, Feng Xie, Eleanor M.
   Pullenayegum (2020) Using Both Time Tradeoff and Discrete Choice Experiments in Valuing the EQ-5D: Impact of Model Misspecification on Value Sets, Medical Decision Making, 40(4):483-497