1 Probability Measures

Let Ω be a non-empty set. (Think of it as a sample space = set of all possible outcomes of an experiment involving randomness.) Ex: Flip a coin twice.

$$\Omega = \{HH, HT, TH, TT\}.$$

Let $A \subset \Omega$. Ex: A = an event, $\{HT, TH, TT\}$. With fair coin $P_r(A) = \frac{3}{4}$

To measure a 2D blob: usual length, area, volume ..

We want to assign probability to subsets of Ω

P: subsets of $\Omega \to [0,1].$

Definition: field

Let Ω be a non-empty set. Let \mathcal{F} a collection of subsets of Ω . \mathcal{F} is called a field (or algebra) if

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ ("closed under complements")
- 3. Given $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{F}$ ("closed under finite unions").

 $\it Remark.$ We can also use "closed under intersection" to define because of De Morgan's law.

$$\left(\bigcap_{i=1}^{n} A_i\right)^c = \bigcup_{i=1}^{n} A_i^c.$$

Definition: sigma-field

If (iii) is replaced by a *countable* union, e.g. $\bigcup_{n=1}^{\infty} A_n$, then \mathcal{F} is called a σ -field.

Remark. σ field is stronger than field.

Example (sigma-fields). TODO

 Ω .

- $\mathcal{F} = \{\emptyset, \Omega\}$
- \mathcal{F} = the power sets (all possible subsets of Ω). (Billingsley: "power class").
- Take any $A \subset \Omega$. Define $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$

A counterexample of a field that is not a σ -field. Let $\Omega = \mathbb{R}$, $\mathcal{F} =$ the empty set and all finite disjoint unions of things like (a,b] and/or (a,∞) for $-\infty < a < b < \infty$.

- (i) $\Omega = (-\infty, \infty) \in \mathcal{F}$.
- (ii) Complements: Ex: $(a, b]^c = (-\infty, a] \cup (b, \infty)$. More generally a set in \mathcal{F} has the form a bunch of disjointed (] or (∞) .

Case (1). A_1, A_2 have no overlaps. Then $A_1 \cup A_2$ is still a finite disjointed union.

Case 2: Some overlap, then $A_1 \cup A_2$ is still the same type of interval. However, it is not a σ -field. We want to find a countable collection of sets that isn't in here. Let $A_n = (0, 1 - \frac{1}{n}]$. Then $\bigcup_{n=1}^{\infty} A_n = (0, 1) \notin \mathcal{F}$.

Definition: generated sigma-field

Let \mathcal{A} be a collection of subsets of Ω . The σ -field generated by \mathcal{A} is the smallest σ -field containing all the sets in \mathcal{A} . We write it as $\sigma(\mathcal{A})$.

i.e. Any σ -field containing \mathcal{A} must contain $\sigma(\mathcal{A})$. Note:

- If \mathcal{F} is a σ -field, $\sigma(\mathcal{F}) = \mathcal{F}$.
- If \mathcal{F} is a σ -field and $\mathcal{A} \subset \mathcal{F}$, then $\mathcal{A} \subset \mathcal{F}$.
- $\sigma(A) = \bigcap \mathcal{F}$ the intersection over all σ -field that contain A.
- $\mathcal{A} \subset \mathcal{A}' \Rightarrow \sigma(\mathcal{A}) \subset \sigma(\mathcal{A}')$

Example:

- $A \subset \Omega, A = \{A\} \Rightarrow \sigma(A) = \sigma(A) = \{\emptyset, A, A^c, \Omega\}$
- Borel Sets in \mathbb{R} . Let $\Omega = \mathbb{R}$, $\mathcal{A} =$ all open finite intervals in \mathbb{R} . $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{A})$. Note: include all half open intervals. It also contains single points: $\{a\} = \bigcap_{n=1}^{\infty} (a, a + \frac{1}{n}]$. Cantor sets are not in here.

1.1 Unions and Intersections of sigma-fields

.

- The union of two σ -Fields is not a necessarily a σ -Field. Take $A, B \subset \Omega$, $A \neq B$, $\sigma(A) = \{\emptyset, A, A^c, \Omega\}$, $\sigma(B) = \emptyset$, B, B^c, Ω . So $\sigma(A) \cup \sigma(B)$
- The intersection (including uncountable intersection) of two σ -Fields is a σ -Field. Let $\mathcal{F}_1, \mathcal{F}_2$ be two σ -Fields. $\mathcal{F}_1 \cap \mathcal{F}_2$ (i) $\Omega \in \mathcal{F}_1 \cap \mathcal{F}_2$ since $\emptyset \in \mathcal{F}_1$ and $\emptyset \in \mathcal{F}_2$. (ii) Let $A \in \mathcal{F}_1 \cap \mathcal{F}_2$ $A \in \bigcap_{n=1}^{\infty} \mathcal{F}_n \Rightarrow A \in \mathcal{F}_n \forall n \Rightarrow A^c \in \mathcal{F}_n \forall n \Rightarrow A^c \in \bigcap_{n=1}^{\infty} \mathcal{F}_n$