CS 663, Fall 2023

Assignment 4

Jahanvi Rajput 23D0378 Badri Vishal Kasuba 22M2119 Abhishek Kumar Singh 22M2104

Question 3:

Consider a set of N vectors $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ each in \mathbb{R}^d , with average vector \bar{x} . We have seen in class that the direction e such that $\sum_{i=1}^N \|x_i - \bar{x} - (e \cdot (x_i - \bar{x}))e\|^2$ is minimized, is obtained by maximizing e^tCe , where C is the covariance matrix of the vectors in \mathcal{X} . This vector e is the eigenvector of matrix C with the highest eigenvalue. Prove that the direction f perpendicular to e for which f^tCf is maximized, is the eigenvector of C with the second highest eigenvalue. For simplicity, assume that all non-zero eigenvalues of C are distinct and that $\operatorname{rank}(C) > 2$. Extend the derivation to handle the case of a unit vector g which is perpendicular to both e and f which maximizes g^t Cg.

Solution:

Here, we have optimization problem which is given below:

maximize
$$f^T C f$$

subject to $f^T f = 1$ (1)
 $f^T e = 0$

Here, f is perpendicular to e implies $f^T e$ is equal to zero as. Now applying method of Lagrange multipliers to solve this optimization problem.

$$\nabla_f \left(f^T C f - \lambda_1 (f^T f - 1) - \lambda_2 (f^T e) \right) = 0 \tag{2}$$

where λ_1 and λ_2 are Lagrange multipliers for the first and second constraints, respectively. Applying term by term gradient with respect to f.

$$\nabla_f(f^T f) = 2Cf$$
$$\nabla_f(f^T f - 1) = 2f$$
$$\nabla_f(f^T e) = e$$

Substituting these values in equation (2):

$$2Cf - 2\lambda_1 f - \lambda_2 e = 0 \tag{3}$$

$$\Rightarrow Cf = \lambda_1 f + \frac{\lambda_2}{2}e$$

Applying the transpose to both sides and multiplying e to the right:

$$f^T C^T e = \lambda_1 f^T e + \frac{\lambda_2}{2} e^T e$$

Noting that C is symmetric and e is an eigenvector (unit magnitude) of C with the highest eigenvalue:

$$C^T = C$$
, $e^T e = 1$, $Ce = \Lambda e$

where Λ is the highest eigenvalue, and using the constraints, we get:

$$f^{T}\Lambda e = \lambda_{1}(0) + \frac{\lambda_{2}}{2}e^{T}e$$

$$f^{T}\Lambda e = 0 + \frac{\lambda_{2}}{2}$$

$$f^{T}\Lambda e = \frac{\lambda_{2}}{2}$$

$$\Lambda f^{T}e = \frac{\lambda_{2}}{2}$$

$$\frac{\lambda_{2}}{2} = \Lambda(0)$$

$$\lambda_{2} = 2\Lambda(0)$$

$$\lambda_{2} = 0$$

Substituting the value of λ_2 in equation (3):

$$Cf = \lambda_1 f$$

which implies that f is an eigenvector of C.

Now, $f^T C f = \lambda_1$, hence we want to maximize λ_1 . λ_1 is not Λ (the highest eigenvalue) because the space of eigenvectors for which $C\nu = \Lambda\nu$ has a single dimension. This is because all non-zero eigenvalues of C are assumed to be different ($\Lambda \neq 0$ because rank(C) > 2), so Λ has algebraic multiplicity = 1, and the geometric multiplicity (dimension of that eigenspace) can never be

greater than the algebraic multiplicity, which implies the dimension of the eigenspace of Λ is 1. This implies that there are no two orthogonal vectors in this space. So if $Cf = \Lambda f$, then e and f wouldn't be orthogonal. Hence, λ_1 has to be the second highest eigenvalue.

To extend the derivation to handle the case of a unit vector g that is perpendicular to both e and f and maximizes $g^T C g$, you can follow a similar approach with the additional constraint. The optimization problem will became:

maximize
$$g^T C g$$

subject to $g^T g = 1$
 $g^T e = 0$
 $g^T f = 0$ (4)

Using Lagrange multipliers to find the maximum of g^TCg subject to the constraints. The Lagrangian can be defined as:

$$\mathcal{L}(g, \lambda_1, \lambda_2, \lambda_3) = g^T C g - \lambda_1 (g^T g - 1) - \lambda_2 (g^T e) - \lambda_3 (g^T f)$$

Here, λ_1 , λ_2 , and λ_3 are Lagrange multipliers.

To find the extremum, set the gradient of the Lagrangian with respect to g equal to zero:

$$\nabla_g \mathcal{L} = 2Cg - 2\lambda_1 g - \lambda_2 e - \lambda_3 f = 0$$

Solving for g, we get:

$$Cg = \lambda_1 g + \frac{\lambda_2}{2} e + \frac{\lambda_3}{2} f$$

Now, let's find the eigenvalue of C corresponding to the vector g. Taking the transpose and multiply both sides of the eigenvalue equation by g:

$$g^{T}(C)g = \lambda_{1}g^{T}g + \frac{\lambda_{2}}{2}e^{T}g + \frac{\lambda_{3}}{2}f^{T}g$$

$$g^{T}(C)g = \lambda_{1}g^{T}g + \frac{\lambda_{2}}{2}(g^{T}e)^{T} + \frac{\lambda_{3}}{2}(g^{T}f)^{T}$$

$$g^{T}(C)g = \lambda_{1}(1) + \frac{\lambda_{2}}{2}(0) + \frac{\lambda_{3}}{2}(0)$$

$$g^{T}Cg = \lambda_{1}$$

$$Cg = \lambda g$$

Here, λ is the eigenvalue corresponding to g. Since we assumed that all non-zero eigenvalues of C are distinct and the rank(C) > 2, the second highest eigenvalue of C corresponds to g.

So, the direction g that is perpendicular to both e and f and maximizes g^TCg is the eigenvector of C with the second highest eigenvalue.