$$f(n)
eq rac{1}{n} \quad n\in N \quad f(n) = 1, rac{1}{2}, rac{1}{3}, \cdots, rac{1}{n}, 1 \cdots \quad \lim_{n o\infty}rac{1}{n} = 0_{f o}$$

$$f(x)
ightharpoonup rac{1}{x} \quad x > 0 \quad \lim_{x o +\infty} rac{1}{x} = 0$$
 ,

义

仿 仿数列极 出函数在无 处极 定义

/Define/

给出 $\lim_{x\to+\infty} f(x) = A$ 的定义:

设 f(x) 在 $[a, +\infty)$ 上有定义 $(a \, \ \ \ \ \ \ \)$, A 是一个确定的常数,

著 $\ orall arepsilon > 0$, $\exists X > 0$,当 x > X 的一切实数,都有 $\ |f(x) - A| < arepsilon$,

 $oldsymbol{k} f(x)$ 当 x 趋于正无穷大时的极限为 A ,记作 $\lim_{x o +\infty} f(x) = A$ 或 $f(x) o A(x o +\infty)$ 。

给出 $\lim_{x\to-\infty}f(x)=A$ 的定义:

f(x) 在 $(-\infty,a]$ 上有定义 (a 常),A 是一个确定的常数,

abla orall arepsilon > 0 , $\exists X > 0$, 当 x < -X 的一切实数,都有 |f(x) - A| < arepsilon ,

 $rac{d}{dx} f(x)$ 当 x 趋于负无穷大时的极限为 A ,记作 $\lim_{x o -\infty} f(x) = A$ 或 $f(x) o A(x o -\infty)$ 。

定义:设 f(x) 在 $(-\infty,a] \cup [b,+\infty)$ (a < b, 常),A 是一个确定的常数,

告 $\; orall arepsilon > 0 \;,\; \exists X > 0 \;,\; \exists \; |x| > X \;$ 时 $\; (x < -X \;$ 或 $\; x > X \;) ,\;$ 都有 $\; |f(x) - A| < arepsilon \;,\;$

 $\mathop{\,\mathrm{i}\! t}
olimits f(x)$ 当 x 趋于无穷大时极限为 A ,记作 $\lim_{x o\infty}f(x)=A$ 或 $f(x) o A(x o\infty)$

 $\lim_{x o\infty}f(x)=A$ 充 条件是 $\lim_{x o+\infty}f(x)=A$ $\lim_{x o-\infty}f(x)=A$ 。

proof/

必要性无需证明。

充分性:

au $\lim_{x o +\infty}f(x)=A$,orall arepsilon>0 , $\exists X_1>0$, 当 $x>X_1$ 时,都有 |f(x)-A|<arepsilon 。

又 $\lim_{x o -\infty}f(x)=A$, $\exists X_2>0$, 当 $x<-X_2$ 时,都有 |f(x)-A|<arepsilon 。

取 $\max\{X_1,X_2\}=X$,当 |x|>X 时,都有 |f(x)-A|<arepsilon ,知 $\lim_{x o\infty}$

取
$$X=(rac{1}{arepsilon})$$
 $\therefore \lim_{x o\infty}rac{1}{x^k}=0$

接下来 出函数某 极 定义

/Define/

$$\lim_{x \to x_0} x^n = \lim_{x \to x_0} \underbrace{x \cdot x \cdot \cdot \cdot x}_n$$
 $= \lim_{x \to x_0} x \cdot \lim_{x \to x_0} x \cdot \cdot \cdot \lim_{x \to x_0} x$
 $= \underbrace{x_0 \cdot x_0 \cdot \cdot \cdot x_0}_n = x_0^n$

结束

$$\mathsf{x}$$
 ep e $P_n(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ $mx + a_n$ a_0, a_1, \cdots, a_n 均为常数 $\lim_{x \to x_0} P_n(x)$ 。

/solution/

$$\lim_{x \to x_0} P_n(x) = \lim_{x \to x_0} a_0 x^n + \lim_{x \to x_0} a_1 x^{n-1} + \dots + \lim_{x \to x_0} a_{n-1} x + \lim_{x \to x_0} a_n$$

$$= a_0 x_0^n + a_1 x_0^{n-1} + \dots + a_{n-1} x_0 + a_n$$

$$= P_n(x_0)$$

结束

х ер е
$$Q_m(x) = b_0 x^m + b_1 x^{m-1} + \dots + b_m$$
ти д $Q_m(x_0) \neq 0$ $\lim_{x \to \infty} \frac{P_n(x)}{Q_m(x)}$ о

/solution/

$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} = \begin{cases} 0, & n < m \\ \frac{a_0}{b_0}, & n = m \\ \infty, & n > m \end{cases}$$

结束

x ep
$$e \lim_{x \to 1} \frac{\sqrt[n]{x-1}}{\sqrt[n]{x-1}}$$
 , $/$

/solution/

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1} = \lim_{x \to 1} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)}{(\sqrt[3]{x} - 1)(\sqrt{x} + 1)(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)}$$

$$= \lim_{x \to 1} \frac{(x - 1)(\sqrt[3]{x^2} + \sqrt[3]{x} + 1)}{(x - 1)(\sqrt{x} + 1)}$$

$$= \frac{3}{2}$$

例
$$f(x) = egin{cases} x+\sqrt{1+x^2}, & x<1 \ x^2+2, & x\geq 1 \end{cases}$$
 $f(x)$ 在 $x=1$ 处极 是否存在。

/solution/

$$\lim_{x o 1^-} f(x) = \lim_{x o 1^-} (x+\sqrt{1+x^2}) = 1+\sqrt{2} \ \lim_{x o 1^+} f(x) = \lim_{x o 1^+} (x^2+2) = 3$$

由 $1+\sqrt{2}\neq 3$,知 $\lim_{x\to 1}f(x)$ 不存在

定
$$\lim_{x o x_0}f(x)=A\geq 0$$
 则 $\lim_{x o x_0}\sqrt[n]{f(x)}=\sqrt[n]{A}$ 。

PS:
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})_{\circ}$$

・无穷大 及性质

定义
$$f(x)$$
 在 $\mathring{U}(x_0,\delta_0)$ 内 $f(x)
eq 0$ 。 $\lim_{x o x_0} rac{1}{f(x)} = 0$

$$f(x)$$
 当 $x o x_0$ 时是无 大 作 $\lim_{x o x_0} f(x) = \infty$ 。

⇔
$$\lim_{x \to x_0} \frac{1}{f(x)} = 0$$
 $\forall \varepsilon > 0$ $\exists \delta > 0$ $\delta \leq \delta_0$ 当 $0 < |x - x_0| < \delta$ 时 有 $\left| \frac{1}{f(x)} - 0 \right| < \varepsilon$

$$\Leftrightarrow rac{1}{|f(x)|} < arepsilon \Leftrightarrow |f(x)| > rac{1}{arepsilon} riangleq M_{ullet}$$

定义:设
$$f(x)$$
 在 $\mathring{U}(x_0,\delta_0)$ 内有定义, $orall M>0$, $\exists \delta>0$ ($\delta\leq\delta_0$),

当
$$0<|x-x_0|<\delta$$
 时,都有 $|f(x)|>M$,称 $f(x)$ 当 $x o x_0$ 时是无穷大量,

记作:
$$\lim_{x \to x_0} f(x) = \infty$$
。

x ep
$$= \lim_{x o 0^+} / rac{1}{x^k} = \infty \ / \ k > 0$$
 常 。

$$\forall M>0, \ \ \text{若要} \ \ \frac{1}{x^k}>M \ \ \text{成立}, \ \ (\text{in } x>0^+, \ \ \text{即} \ x>0\Rightarrow x^k<\frac{1}{M}) \ \Leftrightarrow 0< x<(\frac{1}{M})^{\frac{1}{k}},$$
 取 $\delta=(\frac{1}{M})^{\frac{1}{k}}, \ \ \text{in } 0< x<\delta$ 时,都有 $\frac{1}{x^k}>M$, $\therefore \lim_{x\to 0^+}\frac{1}{x^k}=\infty$ 。

取
$$\delta = (\frac{1}{M})^{\frac{1}{k}}$$
,当 $0 < x < \delta$ 时,都有 $\frac{1}{x^k} > M$, $\lim_{x \to 0^+} \frac{1}{x^k} = \infty$

理
$$\lim_{x o x_0}f(x)=\infty$$
 则 $\lim_{x o x_0}rac{1}{f(x)}=0$ $\lim_{x o x_0}f(x)=0$ 引 $\delta_0>0$ $x\in \mathring{U}(x_0,\delta_0)$ 时 $f(x)
eq 0$ 则 $\lim_{x o x_0}rac{1}{f(x)}=\infty$ 。

$$x ep$$
 $e\lim_{x\to 0} 0 = 0$ 但/ $\frac{1}{0}$ 有意义。 m

хер е 明
$$\lim_{x \to \infty} rac{P_n(x)}{Q_m(x)} = \infty$$
 $n > m$ a_0 瞬 0 $b_0
eq 0$ 。

$$\lim_{x o\infty}rac{Q_m(x)}{P_n(x)}=0$$
 $(m< n)$, $\lim_{x o\infty}rac{P_n(x)}{Q_m(x)}=\infty$,

x ep
$$\lim_{x \to 0} \frac{1}{x} l = \infty_{\circ}$$
 / m

定义:设 f(x) 在 $\mathring{U}(x_0,\delta_0)$ 内有定义, $\forall M>0$, $\exists \delta>0$ $(\delta\leq\delta_0)$,当 $0<|x-x_0|<\delta$ 时,都有 f(x)>M,记作 $\lim_{x o x_0}f(x)=+\infty$ (f(x)<-M 记作 $\lim_{x o x_0}f(x)=-\infty$)。

$$\times ep \qquad e \qquad \lim_{x \to 0} \frac{1}{1 - \cos x} d \qquad \qquad n$$

/solution/

由
$$\lim_{x\to 0} (1-\cos x) = 0$$
,知 $\lim_{x\to 0} \frac{1}{1-\cos x} = \infty$,

或:解原式
$$=\infty$$
。但是不能写成 $\lim_{x\to 0} \frac{1}{1-\cos x} = \frac{1}{0} = \infty$ (\times)。

无 大 性

两个无 大之和不一定是无 大。

例
$$\lim_{n \to \infty} n = +\infty$$
 $\lim_{n \to \infty} (-n) = -\infty$ 但是 $\lim_{n \to \infty} [n + (-n)] = 0$ 。

• 性质1 有 个无 大之 仍是无 大。

设
$$\lim_{x o x_0}f_1(x)=\infty$$
, $\lim_{x o x_0}f_2(x)=\infty$, \cdots , $\lim_{x o x_0}f_k(x)=\infty$ 。

性
$$\lim_{x o x_0}f(x)$$
 不存在 $\lim_{x o x_0}g(x)=C$ 常 $eq 0$ 则 $\lim_{x o x_0}(x)g(x)$ 不存在。

/proof

假设
$$\lim_{x o x_0} f(x)g(x) = b$$
 (常),

$$\Rightarrow \lim x \to x0f(x)$$

$$= \lim x \to x0f(x)g(x) \cdot \frac{1}{1} = -\frac{1}{1}$$

$$=\lim x \to x0 f(x) g(x) \cdot \frac{1}{g(x)} = \frac{b}{C}$$

xep e lim /l / 型。 m