RAZPOZNAVANJE VZORCEV

UVOD V LABORATORIJSKE VAJE

Asisent: doc. dr. Klemen Grm

Osnovne informacije o predmetu

- Nosilec: izr. prof. dr. Simon Dobrišek, <u>simon.dobrisek@fe.uni-lj.si</u>
- Asistent: as. dr. Klemen Grm, klemen.grm@fe.uni-lj.si
- Tedenske obveznosti: predavanja, vaje
- Govorilne ure: ponedeljek 14h-16h, po dogovoru

Izpitni red

Točkovanje		
Obveznost	Največ	Najmanj za napredovanje
Domači nalogi	2x5	0
Obvezne vaje	3x5	8
Izbirna vaja	15	7
Pisni izpit	30	15
Ustni izpit	30	15
Skupaj	100	

Zbrane točke	Ocena
0-19	ni frekvence
20-49	5
50-59	6
60-69	7
70-79	8
80-89	9
90-100	10

Pregled laboratorijskih vaj

- Vaja 1: Izpeljava značilk
- Vaja 2: Izbira značilk
- Vaja 3: Učenje in preizkušanje razvrščevalnikov

• Izbirni projekt: poglobljenja študija, implementacija in preizkus izbranega algoritma s področja razpoznavanje vzorcev

Uvod v razpoznavanje vzorcev

- Analiza podatkov
- Koncept razvrščanja
- Predstavitev podatkov z značilkami
- Eksperimentiranje s prostimi parametri

Analiza podatkov

- Format zapisa
- Pregled vzorcev
- Oznake razredov
- Statistika
 - Razredi
 - Vzorci
 - Značilke

Učenje razvrščevalnika

Razvrščevalnik:

Učenje razvrščevalnika

• Postopek učenja:

$$\theta = \arg\min_{\theta} f(x, \theta) \neq y$$

• V praksi: preko posrednih kriterijskih funkcij, npr.:

$$\theta = \arg\min_{\theta} \sum_{x,y \in U} \|f(x,\theta) - y\|_p^p$$

ullet Različni postopki učenja — odvisno od razvrščevalnika, f

Zgled – analitična rešitev

- Metoda najmanjših kvadratov,
- Število učnih vzorcev ... N
- Število značilk ... d
- Število razredov ... r

$$f(x;\theta) = X\theta = \hat{y},$$

$$r = 3; \ y = [2, 0, 1]^{\mathsf{T}}$$

$$\downarrow \\ y_{onehot} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$x \in \mathbb{R}^{N \times d}$$
; $\theta \in \mathbb{R}^{d \times r}$; $y \in \mathbb{R}^{N \times r}$

• Analitična rešitev za najboljši θ :

$$\mathcal{L}(\theta) = \frac{1}{2} \|y_{onehot} - f(x; \theta)\|_2^2$$

Zgled – analitična rešitev

- Metoda najmanjših kvadratov,
- Število učnih vzorcev ... N
- Število značilk ... d
- Število razredov ... r

$$f(x;\theta) = X\theta = \hat{y},$$

$$x \in \mathbb{R}^{N \times d}; \theta \in \mathbb{R}^{d \times r}; y \in \mathbb{R}^{N \times r}$$

• Analitična rešitev za najboljši θ :

$$\theta_{opt} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

$$y = [2, 0, 1]^{\mathsf{T}}$$

$$\downarrow$$

$$y_{onehot} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Zgled – iterativna rešitev

Deep Neural Network

- Globoka nevronska omrežja
- θ je množica vseh parametrov:
- $\theta = \left\{ w_1, w_2, \dots, w_{n_{param}} \right\}$

Figure 12.2 Deep network architecture with multiple layers.

Optimizacija preko gradientne metode:

$$\mathcal{L}(\theta) = -\sum_{x,y \in U} \sum_{C=1}^{r} \log \left(\frac{e^{x_C}}{\sum_{i=1}^{C} e^{x_i}} y_C \right)$$

Zgled – iterativna rešitev

Deep Neural Network

- Globoka nevronska omrežja
- θ je množica vseh parametrov:
- $\theta = \left\{ w_1, w_2, \dots, w_{n_{param}} \right\}$

Figure 12.2 Deep network architecture with multiple layers.

• Optimizacija preko gradientne metode:

$$\nabla \mathcal{L}(x;\theta) = \{ \frac{\partial \mathcal{L}(x;\theta)}{\partial w_1}, \dots, \frac{\partial \mathcal{L}(x;\theta)}{\partial w_{n_{param}}} \}$$

Zgled – iterativna rešitev

Deep Neural Network

- Globoka nevronska omrežja
- θ je množica vseh parametrov:
- $\theta = \left\{ w_1, w_2, \dots, w_{n_{param}} \right\}$

Figure 12.2 Deep network architecture with multiple layers.

Optimizacija preko gradientne metode:

$$\theta_{t+1} \leftarrow \theta_t - \eta \ \nabla \mathcal{L}(\theta)$$

Zgradba eksperimenta

Preizkus znanja

- Ovrednoti odvisnost natančnosti od števila učnih primerov
 - Z naključnim vzorčenjem in raztrosom
 - gl. matplotlib.pyplot.boxplot
- Preizkusi razvrščanje z metodo najmanjših kvadratov
 - gl. numpy.linalg.lstsq
 - Preizkus z izvornimi oz. z one-hot oznakami