	<pre>import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, fl_score, confusion_matrix, classification_report from sklearn.preprocessing import StandardScaler from autograd import grad import time</pre>
	 1. Implementing linear SVM from scratch for binary classification Background The SVM for binary classification defines a hyper-plane in a high dimensional space to separate the data points belonging to two classes.
	Denote by X the matrix with n observations and p features, w is a vector orthogonal to the hyperplane and b is the bias, defining the hyperplane relative to the origin in the high-dimensional space, the separation equation is: $w^Tx+b=0, w\in\mathbb{R}^p, x\in\mathbb{R}^p, b\in\mathbb{R}$ The support vectors are the data points with the minimum distance to the hyperplane. The distance between the support vector and the hyperplane is called the margin . To optimize a SVM, the objective is to maximize the margin:
	subject to: $\max_{w,b} M$ $\bullet \ \ y_i(w^Tx_i+b) \geq M, \forall i=1n$ $\bullet \ \ \ w\ =1$
	For $y_i \in \{-1,1\}$, $y_i(w^Tx_i+b)$ defines the absolute distance between the i th data point to the hyperplane. Equivalently, by changing the condition on the norm of w such that $\ w\ = \frac{1}{M}$, we can set the objective to be $\min_{w,b} \frac{1}{2} \ w\ ^2$
	subject to: $y_i(w^Tx_i+b) \ge 1, \forall i=1n$ However, the requirement of $y_i(w^Tx_i+b) \ge 1, \forall i=1n$ may not always be possible to satisfy since it does not allow any misclassifications. In the case where it can not be satisfied, we will fail to find a hyperplane to separate the data points. Therefore, to allow for misclassification, we relax the hard constraint and update the objective function as follows:
	$\min_{w,b} \frac{1}{2}\ w\ ^2 + C \sum_{i=1}^n \xi_i$ subject to: $\bullet \ \ \xi_i \geq 0$
	• $y_i(w^Tx_i+b) \geq 1-\xi_i, \forall i=1n$ where ξ_i represents the distance to the correct margin when the data point is misclassfied and C is the regularization parameter that controls the level of penality applied when data points are misclassfied. To optimize the objective function, we write the loss function as follows: $L(w,b) = \frac{1}{2}\ w\ ^2 + C\sum_{i=1}^n \max(0,1-y_i(w^Tx_i+b))$ We will use the gradient descent algorithm to minimize the loss function.
	Implementation To implement a binary linear SVM, we write a Python class which is initiated with 4 parameters: • C: the regularization parameter • alpha: learning rate for the gradient descent algorithm
	 max_its: number of iterations for updating the weights random_state: random seed for initializing w_0 If the fit function is called, the loss function of the model will be optimized or minimized using gradient descent. We record the optimal weights and bias that lead to the minimum loss (cost), for predictions. If the predict function is called, we will compute the model's predicted values for the input observations using the best fitted weights and bias. We use w^Tx + b = 0 as the separating criterion: if
	$w^Tx + b \ge 0$, predicted label is 1; else -1.
	<pre>self.alpha = alpha self.max_its = max_its self.random_state = random_state self.weight = None self.bias = None def fit(self, X, y): N = X.shape[1]</pre>
	<pre>X = X.T y = y.T def model(w, x): return w[:-1].T @ x + w[-1] def loss(w):</pre>
	<pre># loss function L = 0.5 * w[:-1].T * w[:-1] + self.C * np.sum(np.maximum(0, 1 - y * model(w, X))) return L[0] def gradient_descent(g, alpha, max_its, w): gradient = grad(g)</pre>
	<pre>weight_history = [w] # container for weight history cost_history = [g(w)] # container for corresponding cost history for i in range(max_its): # evaluate the gradient, store current weights and cost function value grad_eval = gradient(w) # take gradient descent step</pre>
	<pre>w = w - alpha * grad_eval # record weight and cost weight_history.append(w) cost_history.append(g(w)) return weight_history,cost_history if self.random_state != None:</pre>
	<pre>np*random*seed(123) # randomly intialize w w0 = np*random*normal(size=N+1) # perform gradient descent w_hist, c_hist = gradient_descent(g=loss, alpha=self*alpha, max_its=self*max_its, w=w0)</pre>
	<pre># w_best should have the smallest cost value ind = np.argmin(c_hist) w_best = w_hist[ind] self.weight = w_best[:-1] self.bias = w_best[-1]</pre> def predict(self, X):
	<pre>def predict(self, X): X = X.T preds = self.weight.T @ X + self.bias labels = [1 if pred >= 0 else -1 for pred in preds] pred_labels = np.array(labels) return pred_labels</pre>
:	Importing data We will use the breast cancer dataset from scikit-learn to train and test our binary classifier. The breast cancer dataset has two classes: benign (1) and malignant (0). data = load_breast_cancer() x, y = data.data, data.target
]:	<pre>print(X.shape, y.shape) (569, 30) (569,) pd.Series(y).value_counts() 1 357 0 212</pre>
	dtype: int64
:	pd.Series(y).value_counts() 1 357 -1 212 dtype: int64 Train and test split
]:	<pre>We keep 70% of the data as training set and 30% of the data as test set. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) (398, 30) (171, 30) (398,) (171,)</pre>
	<pre>We scale the data. ss = StandardScaler() X_train_ss = ss.fit_transform(X_train) X_test_ss = ss.transform(X_test) Linear SVM model fitting</pre>
]:	We create a binary linear SVM classifier object from the BinaryLinearSVM class and use it to fit the standardized training data X_train_ss and y_train. We set the regularization parameter to 1.0, gradient descent learning rate to 0.01, and number of iterations to 2000. binarySVM = BinaryLinearSVM(C=1, alpha=0.01, max_its=2000, random_state=123) binarySVM.fit(X_train_ss, y_train)
]:	Use the fitted binarySVM to make predictions for X_test_ss. y_pred = binarySVM.predict(X_test_ss) Model performance:
]:	<pre>print(f"F1 score: {f1_score(y_test, y_pred)}") accuracy score: 0.9590643274853801 F1 score: 0.9671361502347416 print(classification_report(y_test, y_pred))</pre>
	precision recall f1-score support -1 0.92 0.97 0.95 63 1 0.98 0.95 0.97 108 accuracy macro avg 0.95 0.96 0.96 171 weighted avg 0.96 0.96 0.96 171
	We obtained a good model performance using our implementation of linear SVM for binary classfication. Now we are going to build a multi-class classifier using the linear SVM. 2. Building a Multi-class Classfier using linear SVM We will use the One-vs-Rest approach. If the number of classes is n, then we will have n hyperplanes, each separating one class from the rest.
	Implementation To implement a multi-class linear SVM classfier, we write a Python class which is initiated with 4 parameters (same as the binary linear SVM class): • C: the regularization parameter
	 alpha: learning rate for the gradient descent algorithm max_its: number of iterations for updating the weights random_state: random seed for initializing w₀ If the fit function is called on a dataset with n classes, n binary linear SVMs will be fit. Each binary SVM predicts whether a data point belongs to one class (1) or not (-1). The n set of fitted weights (w) and the state of the product of of the produc
]:	biases (b) will be recorded for prediction use. If the predict function is called, we compute n one dimensional array of predicted values with: $w^Tx + b$. For each data point, it will be classified as the class that produces the largest value of $w^Tx + b$. Class MulticlassLinearSVM(): definit(self, C, alpha, max_its, random_state):
	<pre>self.C = C self.alpha = alpha self.max_its = max_its self.random_state = random_state self.weights = [] self.biases = [] self.binarySVMs = []</pre>
	<pre>def fit(self, X, y): # fit n_classes SVMs and record and fitted weights and biases self.classes = list(set(y)) for cls in self.classes: y_bin = np.array([1 if c==cls else -1 for c in y])</pre>
	<pre>binarySVM = BinaryLinearSVM(C=self.C, alpha=self.alpha, max_its=self.max_its, random_state=self.random_state) binarySVM.fit(X, y_bin) self.binarySVMs.append(binarySVM) self.weights.append(binarySVM.weight) self.biases.append(binarySVM.bias)</pre>
	<pre>def predict(self, X): n_classes = len(self.classes) preds_matrix = np.zeros((n_classes, X.shape[0])) # n_classes x n_observations X = X.T for i in range(n_classes):</pre>
	<pre># compute value of wx+b for each class for all the data points, store in preds_matrix preds = self.weights[i].T @ X + self.biases[i] preds_matrix[i, :] = preds # data point will be classified as the class that has the largest value of wx+b pred_labels = [self.classes[i] for i in np.argmax(preds_matrix, axis=0)]</pre>
	Importing data We will use the iris dataset from scikit-learn. The iris dataset has three classes for three types of irises.
	<pre>data = load_iris() X, y = data.data, data.target print(X.shape, y.shape) (150, 4) (150,) pd.Series(y).value_counts() 0 50</pre>
	1 50 2 50 dtype: int64 Train and test split We keep 70% of the data as training set and 30% of the data as test set.
	<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) (105, 4) (45, 4) (105,) (45,) We scale the data:</pre>
	ss = StandardScaler() X_train_ss = ss.fit_transform(X_train) X_test_ss = ss.transform(X_test) Multi-class SVM model fitting We create a multi-class linear SVM classifier object from the MulticlassLinearSVM class and use it to fit the standardized training data X_train_ss and y_train . We set the regularization parameters and y_train in the standardized training data X_train_ss and y_train_standardized traini
]:	to 1.0, gradient descent learning rate to 0.01, and number of iterations to 2000. multiclassSVM = MulticlassLinearSVM(C=1, alpha=0.01, max_its=2000, random_state=123) multiclassSVM.fit(X_train_ss, y_train) Use the fitted multiclassSVM to make predictions for X_test_ss.
	<pre>y_pred = multiclassSVM.predict(X_test_ss) Model performance: print(f"accuracy score: {accuracy_score(y_test, y_pred)}") print(f"F1 score: {f1_score(y_test, y_pred, average='weighted')}")</pre>
	accuracy score: 0.9777777777777777777777777777777777777
	1 1.00 0.92 0.96 13 2 1.00 1.00 1.00 13 accuracy 0.98 45 macro avg 0.98 0.97 0.98 45 weighted avg 0.98 0.98 0.98 0.98 45 As you can see, the performance of our fitted multiclassSVM is very good. It has a high precision and recall score for all three classes.
	3. Comparing the Multi-class SVM Classifier with Off-shelf SVM We will compare the performance of our MulticlassLinearSVM class with the off-the-shelf linear SVM classifier from scikit-learn on the iris dataset, in terms of training time and error metrics.
:	We import the svm from the sklearn package. The LinearSVC model also tries to minimizes the squared hinge loss, and it also use the One-vs-Rest approach to handle multi-class classification. The methodology is similar to our implementation. from sklearn import svm Compare training time
	<pre>Both will train for 2000 iterations t_start = time.time() off_shelf_svm = svm.LinearSVC(C=1.0, max_iter=2000) off_shelf_svm.fit(X_train_ss, y_train) t_end = time.time() print(f"Off-the-shelf_SVM_classifier_took {np.round(t_end - t_start, 2)} seconds to fit the training data")</pre>
	<pre>print(f"Off-the-shelf SVM classifier took {np.round(t_end - t_start, 2)} seconds to fit the training data") Off-the-shelf SVM classifier took 0.0 seconds to fit the training data t_start = time.time() multiclassSVM = MulticlassLinearSVM(C=1, alpha=0.1, max_its=2000, random_state=123) multiclassSVM.fit(X_train_ss, y_train) t_end = time.time() print(f"Multi-class linear SVM classifier took {np.round(t_end - t_start, 2)} seconds to fit the training data")</pre>
	Multi-class linear SVM classifier took 19.06 seconds to fit the training data Compare performance metrics y_pred_1 = off_shelf_svm.predict(X_test_ss)
]:	<pre>print("Off-the-shelf SVM classifier:\n")</pre>
]:	<pre>print(f"accuracy_score(y_test, y_pred_1)}") print(f"F1 score(y_test, y_pred_1, average='weighted')}") print(classification_report(y_test, y_pred_1)) Off-the-shelf SVM classifier: accuracy_score: 0.9555555555555555555555555555555555555</pre>
]:	<pre>print(f"accuracy score: {accuracy_score(y_test, y_pred_1)}") print(f"F1 score: {f1_score(y_test, y_pred_1, average='weighted')}") print(classification_report(y_test, y_pred_1)) Off-the-shelf SVM classifier: accuracy score: 0.9555555555555555555555555555555555555</pre>
]:	<pre>print(f"accuracy score: {accuracy_score(y_test, y_pred_1)}") print(f"F1 score: {f1_score(y_test, y_pred_1, average='weighted')}") print(classification_report(y_test, y_pred_1)) Off-the-shelf SVM classifier: accuracy score: 0.9555555555555555555555555555555555555</pre>
]:	<pre>print(f"accuracy score: {accuracy_score(y_test, y_pred_1)}") print(f"Fl score: {fl_score(y_test, y_pred_1, average='weighted')}") print(classification_report(y_test, y_pred_1)) Off-the-shelf SVM classifier: accuracy score: 0.955555555555556 Fl score: 0.9552910052910052</pre>