C 07 K 1/10 A 61 K 37/02 // C07K 3/20,1/04,

1/06,1/08

(5) Int. Cl. 5:

PATENTAMT

(21) Aktenz ich n:

P 38 41 763.4

22) Anm ld tag: Offenlegungstag: 12. 12. 88 13: 6.90

71) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

72) Erfinder:

Boehm, Hans-Joachim, Dr., 6700 Ludwigshafen, DE; Daum, Lothar, Dr., 6701 Otterstadt, DE; Haupt, Andreas, Dr., 6700 Ludwigshafen, DE; Schmied, Bernhard, Dr., 6710 Frankenthal, DE; Walker, Nigel, Dr., 6915 Dossenheim, DE; Zechel, Johann-Christian, Dr., 6900 Heidelberg, DE

(S) Neue TNF-Peptide

Es werden Peptide der Formel X-Pro-A-B-Y, worin A, B, X und Y die in der Beschreibung angegebenen Bedeutungen besitzen, sowie deren Herstellung beschrieben. Die neuen Peptide eignen sich zur Bekämpfung von

Beschreibung

Die Erfindung betrifft neue, vom Tumor Nekrose Faktor (TNF) abgeleitete Peptide, deren Herstellung und

deren Verwendung als Arzneimittel.

Von Carswell et al. (Proc. Natl. Acad. Sci. USA 72, 3666, 1975) wurde berichtet, daß das Serum von Endotoxinbehandelten Tieren, die zuvor mit dem Mycobacterien-Stamm Calmette-Guerin (BCG) infiziert worden waren, eine hämorrhagischen Nekrose bei verschiedenen Tumoren in der Maus bewirkte. Diese Aktivität wurde dem Tumor Nekrose Faktor zugeschrieben. TNF zeigt auch eine zytostatische oder zytotoxische Wirkung gegenüber einer Vielzahl von transformierten Zellinien in vitro, während normale menschliche und tierische Zellinien davon nicht betroffen werden (Lymphokine Reports Vol. 2, pp 235—275, Academic Press, New York, 1981). Kürzlich wurde die biochemische Charakterisierung und das Gen für menschlichen TNF beschrieben (Nature 312, 724, 1984; J. Biol. Chem. 260, 2345, 1985; Nucl. Acids Res. 13, 6361, 1985).

. Aus diesen Daten läßt sich folgende Proteinstruktur für das reife humane TNF ableiten:

ValArgSerSerArgThrProSerAspLysProValAlaHisValValAlaAsnPro
GinAlaGluGlyGlnLeuGlnTrpLeuAsnArgArgAlaAsnAlaLeuLeuAlaAsnGly
ValGluLeuArgAspAsnGlnLeuValValProSerGluGlyLeuTyrLeuIleTyrSer
GinValLeuPheLysGlyGlnGlyCysProSerThrHisValLeuLeuThrHisThrlle
SerArgIleAlaValSerTyrGlnThrLysValAsnLeuLeuSerAlaIleLysSerPro
CysGlnArgGluThrProGluGlyAlaGluAlaLysProTrpTyrGluProIleTyrLeu
GlyGlyValPheGlnLeuGluLysGlyAspArgLeuSerAlaGluIleAsnArgProAsp
TyrLeuAspPheAlaGluSerGlyGlnValTyrPheGlyIlelleAlaLeu

Weiterhin wurde das TNF-Gen von Rind, Kaninchen und Maus beschrieben (Cold Spring Harbor Symp.

Quant. Biol. 51, 597, 1986).

Neben seinen zytotoxischen Eigenschaften ist TNF einer der Hauptbeteiligten an entzündlichen Reaktionen (Pharmac. Res. 5, 129, 1988). Im Tiermodell konnte die Beteiligung von TNF beim septischen Schock (Science 229, 869, 1985) und der Graft versus Host Disease (J. Exp. Med. 166, 1280, 1987) gezeigt werden.

Es wurde nun gefunden, daß Peptide mit wesentlich geringerem Molekulargewicht günstige Eigenschaften

30 besitzen.

Gegenstand der Erfindung sind Peptide der Formel I,

$$X-Pro-A-B-Y$$
 (I)

5 worin

A Ser, Ala oder Thr ist,

B Glu, Asp oder Ser bedeutet,

X für eine Gruppe G-, G-NH-CHM-CO-, G-NH-CHM-CO-W-, G-R-NH-CHM-CO-

oder G-R-NH-CHM-CO-W- und

Y für eine Gruppe Z-, -NH-CHQ-CO-Z, -V-NH-CHQ-CO-Z, -NH-CHQ-CO-U-Z oder -V-NH-CHQ-CO-U-Z steht, wobei in X und Y

G ein Wasserstoffatom oder eine Aminoschutzgruppe bedeutet,

Z für eine OH- oder NH2-Gruppe oder eine Carboxylschutzgruppe steht oder

G und Z zusammen auch eine kovalente Bindung oder die Gruppe —CO—(CH₂)₈—NH— bedeuten, wobei a eine Zahl von 1 bis 12 ist,

R, U, V und W Peptidketten aus 1-4 natürlich vorkommenden a-Aminosäuren darstellen und

M und Q Wasserstoffatome oder eine der Gruppen

 $-CH(CH_3)_2$, $-CH(CH_3)-C_2H_5$, $-C_6H_5$, $-CH(OH)-CH_3$,

$$-CH_2 - N \qquad oder \qquad -(CH_2) - T$$

$$N \qquad H$$

(mit b in der Bedeutung einer Zahl von 1 bis 6 und T in der Bedeutung einer OH-, CH₃O-, CH₃S-, (CH₃)₂CH-, C₆H₅-, p-HO-C₆H₄-, HS-, H₂N-, HO-CO-, H₂N-CO-, H₂N-C(=NH)-NH-Gruppe) oder

M und Q zusammen eine $-(CH_2)_c - S - S - (CH_2)_d$, $-(CH_2)_e - CO - NH - (CH_2)_f$ oder $-(CH_2)_e - NH - CO - (CH_2)_f$. Brücke (mit c und d in der Bedeutung einer Zahl von 1 bis 4, e und f einer Zahl von 1 bis 6 und g einer Zahl von 1 bis 12) bedeuten, sowie deren Salze mit physiologisch verträglichen Säuren.

Die Peptide der Formel I sind aus L-Aminosäuren aufgebaut, sie können aber 1 bis 2 D-Aminosäuren enthalten. Die Seitenketten der trifunktionellen Aminosäuren können Schutzgruppen tragen oder ungeschützt

vorliegen.

55

Als physiologisch verträgliche Säuren sind insbesondere zu nennen: Salzsäure, Zitronensäure, Weinsäure, Milchsäure, Phosphorsäure, Methansulfonsäure, Essigsäure, Ameisensäure, Maleinsäure, Fumarsäure, Äpfelsäu-

re, Bernsteinsäure, Malonsäure, Schwefelsäure, L-Glutaminsäure, L-Asparaginsäure, Brenztraubensäure, Schleimsäure, Benzoesäure, Glucuronsäure, Oxalsäure, Ascorbinsäure, Acetylglycin.

Die neuen Peptide können insbesondere offenkettig (G = H, Aminoschutzgruppe; Z = OH, NH_2 , Carboxylschutzgruppe, M und Q nicht miteinander verbunden), Disulfid-verbrückt (G = H, Aminoschutzgruppe; Z = OH, Z = OH,

Die neuen Verbindungen lassen sich nach in der Peptidchemie bekannten Methoden herstellen.

So kann man die Peptide sequentiell aus Aminosäuren oder durch Fragmentverknüpfung geeigneter kleiner Peptide aufbauen. Beim sequentiellen Aufbau wird die Peptidkette beginnend am C-Terminus stufenweise um jeweils eine Aminosäure verlängert. Bei der Fragmentkupplung können Fragmente unterschiedlicher Länge miteinander verknüpft werden, wobei die Fragmente wiederum durch sequentiellen Aufbau aus Aminosäuren oder ihrerseits durch Fragmentkupplung gewonnen werden können. Die cyclischen Peptide werden nach Synthese der offenkettigen Peptide durch eine in hoher Verdünnung durchgeführte Cyclisierungsreaktion erhalten.

Sowohl beim sequentiellen Aufbau, als auch bei der Fragmentkupplung müssen die Bausteine durch Bildung

einer Amidbindung verknüpft werden. Hierzu eignen sich enzymatische und chemische Methoden.

Chemische Methoden zur Amidbindungsbildung sind ausführlich behandelt bei Müller, Methoden der Organischen Chemie Vol XV/2, pp 1–364. Thieme Verlag, Stuttgart, 1974; Stewart, Young, Solid Phase Peptide Synthesis, pp 31–34, 71–82, Pierce Chemical Company, Rockford, 1984; Bodanszky, Klausner, Ondetti, Peptide Synthesis, pp 85–128, John Wiley & Sons, New-York, 1976, und anderen Standardwerken der Peptidchemie. Besonders bevorzugt sind die Azidmethode, die symmetrische und gemischte Anhydridmethode, in situ erzeugte oder präformierte Aktivester und die Amidbindungsbildung mit Hilfe von Kupplungsreagenzien (Aktivatoren), insbesondere Dicyclohexylcarbodiimid (DCC), Diisopropylcarbodiimid (DIC), 1-Ethoxycarbonyl-2-ethoxy-1,2-dihydrochinolin (EEDQ), 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimidhydrochlorid (EDCI), n-Propanphosphonsäureanhydrid (PPA), N,N-Bis(2-oxo-3-oxazolidinyl)amidophosphorsäurechlorid (BOP-CI), Diphenyl-phosphorylazid (DPPA), Castro's Reagenz (BOP), O-Benzotriazolyl-N,N,N',N'-tetramethyluronium-Salze (HBTU), 2,5-Diphenyl-2,3-dihydro-3-oxo-4-hydroxythiophendioxid (Steglichs Reagenz; HOTDO) und 1,1'-Carbonyl-diimidazol (CDI). Die Kupplungsreagenzien können allein oder in Kombination mit Additiven wie N,N'-Dimethyl-4-aminopyridin (DMAP), N-Hydroxybenzotriazol (HOBt), N-Hydroxybenzotriazin (HOOBt), N-Hydroxysuccinimid (HOSu) oder 2-Hydroxypyridin eingesetzt werden.

Während bei der enzymatischen Peptidsynthese normalerweise auf Schutzgruppen verzichtet werden kann, ist für die chemische Synthese ein reversibler Schutz der an der Bildung der Amidbindung nicht beteiligten reaktiven funktionellen Gruppen der beiden Reaktionspartner erforderlich. Bei den chemischen Peptidsynthesen werden drei literaturbekannte Schutzgruppentechniken bevorzugt: Die Benzyloxycarbonyl(Z)-, die t-Butyloxycarbonyl(Boc)- und die 9-Fluorenylmethyloxycarbonyl(Fmoc)-Schutzgruppentechnik. Bezeichnet ist jeweils die Schutzgruppe der α -Aminofunktion des kettenverlängernden Bausteines. Die Seitenkettenschutzgruppen der trifunktionellen Aminosäuren werden so gewählt, daß sie nicht notwendigerweise zusammen mit der α -Aminoschutzgruppe abgespalten werden. Eine ausführliche Übersicht über Aminosäureschutzgruppen gibt

Müller, Methoden der Organischen Chemie Vol XV/1, pp 20-906, Thieme Verlag, Stuttgart, 1974.

Die Bausteine, die dem Aufbau der Peptidkette dienen, können in Lösung, in Suspension oder nach einem ähnlichen Verfahren, wie es von Merrifield in J. Amer. Chem. Soc. 85, 2149, 1963 beschrieben ist, zur Reaktion gebracht werden. Besonders bevorzugt sind Verfahren, bei denen Peptide sequentiell oder durch Fragment-kupplung unter Verwendung der Z-, Boc- oder Fmoc-Schutzgruppentechnik aufgebaut werden, wobei die Reaktionspartner in Lösung zur Reaktion gebracht werden, sowie Verfahren, bei denen, ähnlich der genannten Merrifield-Technik, ein Reaktionspartner an einen unlöslichen polymeren Träger (im folgenden auch Harz genannt) gebunden zur Reaktion gebracht wird. Dabei wird das Peptid typischerweise unter Verwendung der Boc- oder Fmoc-Schutzgruppentechnik sequentiell am polymeren Träger aufgebaut, wobei die wachsende Peptidkette am C-Terminus kovalent mit den unlöslichen Harzteilchen verbunden ist (vgl. Abb. 1 und 2). Diese Arbeitsweise erlaubt es, Reagentien und Nebenprodukte durch Filtration zu entfernen, die Umkristallisation von Zwischenprodukten wird somit überflüssig.

Die geschützten Aminosauren können an beliebige geeignete Polymerisate gebunden werden, die lediglich in den verwendeten Lösungsmitteln unlöslich sein und eine beständige physikalische Form, die leichte Filtration ermöglicht, aufweisen müssen. Das Polymerisat muß eine funktionelle Gruppe enthalten, an die die erste geschützte Aminosäure durch eine kovalente Bindung fest gebunden werden kann. Für diesen Zweck eignen sich die verschiedensten Polymerisate, z.B. Cellulose, Polyvinylalkohol, Polymethacrylat, sulfoniertes Polystyrol, chlormethyliertes Copolymerisat von Styrol und Divinylbenzol (Merrifield-Harz), 4-Methylbenzhydrylamin-Harz (MBHA-Harz), Phenylacetamidomethyl-Harz (Pam-Harz), p-Benzyloxybenzylalkohol-Harz, Benzhydrylamin-Harz (BHA-Harz), 4-(Hydroxymethyl)-benzoyloxymethyl-Harz, Harz nach Breipohl et al. (Tetrahedron Lett. 28, 565, 1987; Fa. BACHEM), HYCRAM-Harz (Fa. ORPEGEN) oder SASRIN-Harz (Fa. BACHEM).

Für die Peptidsynthese in Lösung eignen sich alle Lösungsmittel, die sich unter den Reaktionsbedingungen als inert erweisen, insbesondere Wasser, N,N'-Dimethylformamid (DMF), Dimethylsulfoxid (DMSO), Acetonitril, Dichlormethan (DCM), 1,4-Dioxan, Tetrahydrofuran (THF), N-Methyl-2-pyrrolidon (NMP) sowie Gemische der genannten Lösungsmittel. Die Peptidsynthese am polymeren Träger kann in allen inerten organischen Lösungsmitteln, in denen in verwendeten Aminosäurederivate löslich sind, durchgeführt werden; bevorzugt sind jedoch Lösungsmittel, die zusätzlich harzquellende Eigenschaften besitzen, wie DMF, DCM, NMP, Acetonitril und DMSO, sowie Gemische dieser Lösungsmittel.

Nach erfolgreicher Synthese wird das Peptid vom polymeren Träger abgespalten. Die Bedingungen, unter

denen sich die verschiedenen Harztypen abspalten lassen, sind literaturbekannt. Am häufigsten finden saure und Palladium-katalysierte Spaltreaktionen Anwendung, insbesondere die Spaltung in flüssigem wasserfreiem Fluorwasserstoff, in wasserfreier Trifluormethansulfonsäure, in verdünnter oder konzentrierter Trifluoressigsäure oder die Palladium-katalysierte Spaltung in THF oder THF-DCM-Gemischen in Anwesenheit einer schwachen Base wie z. B. Morpholin. Je nach Wahl der Schutzgruppen können diese unter den Spaltbedingungen erhalten bleiben oder ebenfalls abgespalten werden. Auch eine teilweise Entschützung des Peptids kann sinnvoll sein, wenn bestimmte Derivatisierungsreaktionen oder eine Cyclisierung durchgeführt werden sollen.

Die neuen Peptide zeigen zum Teil gute zytotoxische Eigenschaften. Ein anderer Teil der Peptide besitzt eine hohe Affinität für den zellulären TNF-Rezeptor, ohne jedoch eine zytotoxische Aktivität zu besitzen. Sie stellen also TNF-Antagonisten dar. Sie binden in Konkurrenz zu natürlichem TNF an den zellulären TNF-Rezeptor und unterdrücken so die TNF-Wirkung. Die neuen Peptide erweisen sich als wertvolle Arzneimittel, die zur Behandlung von neoplastischen Erkrankungen und Autoimmunerkrankungen sowie zur Bekämpfung und Prophylaxe von Infektionen, Entzündungen und Abstoßungsreaktionen bei Transplantationen eingesetzt werden können. Durch einfache Experimente kann geklärt werden, welche Wirkungsweise die einzelnen Peptide besitzen. Mit einer TNF-sensitiven Zelle wird die Zytotoxität des Peptids durch Inkubation der Zellinie in Gegenwart des Peptids bestimmt. In einem zweiten Versuchsansatz inkubiert man die Zellinie mit dem entsprechenden Peptid in Gegenwart einer letal wirkenden TNF-Menge. Dadurch kann die TNF-antagonisierende Wirkung nachgewiesen werden. Außerdem wird durch ein in-vitro-Bindungsexperiment die Affinität des Peptids zum zellulären TNF-Rezeptor bestimmt.

Die biologische Charakterisierung der neuen Peptide auf ihre agonistische oder antagonistische Wirkung

erfolgte in folgenden Testsystemen:

25

50

55

I. Zytotoxizitätstest auf TNF-sensitiven Indikatorzellen,

II. Kompetition-Zytotoxizitätstest auf TNF-sensitiven Indikatorzellen,

III. Kompetition-Rezeptorbindungstest auf TNF-Rezeptor exprimierenden Indikatorzellen.

I. Zytotoxizitätstest

Die agonistische Bewertung der neuen Peptide basiert auf deren zytotoxischer Wirkung auf TNF-sensitiven Zellen (z. B. L929, MCF-7, A204, U937). Der Test mit L929 und MCF-7 wurde wie folgt durchgeführt:

1. 100 µl Kulturmedium mit 3 bis 5 × 10³ frisch trypsinierten, sich im exponentiellen Wachstum befindenden L929-Zellen (Maus) bzw. MCF-7-Zellen (Mensch) wurden in die Vertiefungen einer 96-Loch-Flachboden-Kulturplatte pipettiert. Die Platte wurde über Nacht bei 37°C im Brutschrank inkubiert. Die mit Wasserdampf gesättigte Luft im Brutschrank enthielt 5 Vol.-% CO₂.

Das L929-Kulturmedium enthielt 500 ml MEM Earle 1 × (Boehringer, Mannheim), 50 ml hitzeinaktiviertes (30 min, 56°C) foetales Kälberserum (FCS), 50 ml L-Glutamin (200 mM), 5 ml 100 × nichtessentielle Aminosäuren, 3 ml 1M Hepes-Puffer pH 7,2 und 50 ml Gentamycin (50 mg/ml).

Das MCF-7-Kulturmedium enthielt 500 ml MEM Dulbecco 1 x (Boehringer, Mannheim), 100 ml hitzeinak-

tiviertes (30 min, 56°C) FCS, 5 ml L-Glutamin und 5 ml 100 x nichtessentielle Aminosäuren.

2. Am folgenden Tag wurden 100 µl der zu prüfenden Peptid-Lösung zu den Zellkulturen gegeben und

2. Am folgenden Tag wurden 100 µl der zu prüfenden Peptid-Lösung zu den Zellkulturen gegeben und seriell 2fach titriert. Zusätzlich wurden einige Zellkontrollen (d. h. nicht mit Peptid-Verdünnung behandelte Zellkulturen) und einige rhu-TNF-Kontrollen (d. h. mit rekombinatem humanen TNF behandelte Zellkulturen) mit angelegt. Die Kulturplatte wurde 48 h bei 37°C in einer Atmosphäre aus wasserdampf-gesättigter Luft mit 5 Vol.% CO₂ inkubiert.

3. Der Prozentsatz überlebender Zellen in den mit Peptid-Verdünnung behandelten Kulturen wurde mittels der Kristallviolettfärbung bestimmt. Dazu wurden die Flüssigkeiten aus den Vertiefungen durch Abschlagen der Testplatte entfernt. In jede Vertiefung wurden 50 ul Kristallviolettlösungen pipettiert.

Die Kristallviolettlösung hatte solgende Zusammensetzung:

3,75 g Kristallviolett 1,75 g NaCl 161,5 ml Ethanol 43,2 ml 37% Formaldehyd ad 500 ml Wasser

Die Kristallviolettlösung blieb 20 min in den Vertiefungen und wurde dann ebenfalls abgeschlagen. Anschließend wurden die Platten jeweils 5mal durch Eintauchen in Wasser gewaschen, um den nicht zellgebundenen Farbstoff zu entfernen. Der zellgebundene Farbstoff wurde durch Zugabe von 100 µl Reagenzlösung (50% Ethanol, 0,1% Eisessig, 49,9% Wasser) in jede Vertiefung aus den Zellen extrahiert.

4. Durch Schütteln der Platten für 5 min erhielt man in jeder Vertiefung eine gleichmäßig gefärbte Lösung. Zur Bestimmung der überlebenden Zellen wurde die Extinktion der Färbelösung in den einzelnen Vertiefungen bei 540 nm gemessen.

5. Danach wurde, bezogen auf die Zellkontrolle, der 50% Zytotoxizitätswert definiert und der Kehrwert der Probenverdünnung, die zu 50% Zytotoxizität führt, als zytotoxische Aktivität der untersuchten Probe ermittelt.

II. Kompetition-Zytotoxizitätstest

Die antagonistische Bewertung der Peptide basiert auf deren Eigenschaft, die zytotoxische Wirkung von rhu-TNF auf TNF-sensitiven Zellen (z. B. L929, MCF-7, A204, U937) zu kompetitieren. Der Kompetition-Zytotoxizitätstest mit L929 und MCF-7-Zellen wurde wie folgt durchgeführt:

1. 100 µl Kulturmedium mit 3 bis 5 × 10³ frisch trypsinierten, sich im exponentiellem Wachstum befindenden L929-Zellen (Maus) bzw. MCF-7-Zellen (Mensch) wurden in die Vertiefungen einer 96-Loch-Flachboden-Kulturplatte pipettiert. Die Platte wurde über Nacht bei 37°C im Brutschrank inkubiert. Die mit Wasserdampf gesättigte Luft im Brutschrank enthielt 5 Vol.-% CO₂.

Das L929-Kulturmedium enthielt 500 ml MEM Earle 1 × (Boehringer, Mannheim), 50 ml für 30 min bei 56°C hitzeinaktiviertes FCS, 5 ml L-Glutamin (200 mM), 5 ml 100 × nichtessentielle Aminosäuren, 3 ml 1M Hepes-Puffer pH 7,2 und 500 µl Gentamycin (50 mg/ml).

Das MCF-7-Kulturmedium enthielt 500 ml MEM Dulbecco 1 × (Boehringer, Mannheim), 100 ml hitzeinaktiviertes (30 min, 56°C) FCS, 5 ml L-Glutamin (200 mM) und 5 ml 100 × nichtessentielle Aminosäuren.

2. Am nächsten Tag wurden 100 µl der zu prüfenden Peptid-Lösung zu den Zellkulturen zugegeben und seriell 2fach titriert. Zu diesen Zellkulturen wurden dann 100 µl einer rhu-TNF-Verdünnung in Kulturmedium, die in der Endkonzentration in der Zellkultur eine 80—100% zytotoxische Wirkung hat, zugegeben. Zudem wurden einige Zellkontrollen (d. h. nicht mit Peptid-Lösung und nicht mit rhu-TNF-Lösung behandelte Zellkulturen) und einige rhu-TNF-Kontrollen (= nur mit rhu-TNF-Lösung behandelte Zellkulturen) mit angelegt. Die Kulturplatte wurde dann 48 h bei 37°C in einer Atmosphäre aus wasserdampf-gesättigter Luft mit 5 Vol.% CO₂ inkubiert.

3. Der Prozentsatz überlebender Zellen in den mit Substanzlösung behandelten Kulturen wurde mittels der Kristallviolettfärbung bestimmt. Dazu wurden die Flüssigkeiten aus den Vertiefungen durch Abschlagen der Testplatte entfernt. In jede Vertiefung wurden 50 µl Kristallviolettlösungen pipettiert.

Die Kristallviolettlösung hatte die in II.3 angegebene Zusammensetzung.

Die Kristallviolettlösung blieb 20 min in den Vertiefungen und wurde dann ebenfalls abgeschlagen. Anschließend wurden die Platten jeweils 5mal durch Eintauchen in Wasser gewaschen, um den nicht zellgebundenen Farbstoff zu entfernen. Der zellgebundene Farbstoff wurde durch Zugabe von 100 µl Reagenzlösung (50% Ethanol, 0,1% Eisessig, 49,9% Wasser) in jede Vertiefung aus den Zellen extrahiert.

4. Durch Schütteln der Platten für 5 min erhielt man in jeder Vertiefung eine gleichmäßig gefärbte Lösung. Zur Bestimmung der überlebenden Zellen wurde die Extinktion der Färbelösung in den einzelnen Vertiefungen bei 540 nm gemessen.

5. Danach wurde, bezogen auf die Zellkontrolle und die rhu-TNF-Kontrolle der 50% Kompetitionswert definiert und die Probenkonzentration, die bei der vorgelegten rhu-TNF-Konzentration zu 50% Kompetition der rhu-TNF-Zytotoxität führt, als antagonistische Aktivität der untersuchten Probe ermittelt.

III. Kompetition-Rezeptorbindungstest

Sowohl die agonistische als auch die antagonistische Wirkung von Peptiden setzt voraus, daß letztere an den TNF-Rezeptor binden. Das bedeutet, daß Peptide mit agonistischer bzw. antagonistischer Wirkung und rhu-TNF um die Bindung am TNF-Rezeptor auf TNF-sensitiven Indikatorzellen (z. B. U937) konkurrieren. Der Kompetition-Rezeptorbindungstest wurde wie folgt durchgeführt:

1. 100 µl Medium mit verschiedenen Konzentrationen des zu prüfenden Peptids sowie des rhu-TNF (= Kontrolle) wurden in die Reaktionsgefäße pipettiert. Das Medium enthielt 500 ml PBS (Boehringer, Mannheim), 10 ml hitzeinaktiviertes (30 min, 56°C) FCS und 100 mg Natriumazid.

2. Anschließend wurden 100 μl Medium mit 1 ng ¹²⁵Jod-markiertem rhu-TNF (Lactoperoxidase-Methode nach Bolton) in die Reaktionsgefäße gegeben und gemischt. Zur Bestimmung der unspezifischen Bindung (NSB) wurde in den Reaktionsgefäßen das ¹²⁵Jod-markierte rhu-TNF (1 ng ¹²⁵J-rhu-TNF in 100 μl Medium) mit dem 200fachen Überschuß an nicht radioaktiv markiertem rhu-TNF (200 ng rhu-TNF in 100 μl Medium) gemischt

3. Dann wurden 100 µl Medium mit 2 x 10⁶ U937-Zellen (Mensch) in die Reaktionsgefäße pipettiert und gemischt. Die Reaktionsgefäße (Testvolumen 300 µl) wurden 90 min bei 0° C inkubiert. Nach 45 min wurden die Reaktionsansätze nochmals durchmischt.

4. Nach der Inkubationszeit wurden die Zellen 5 min bei 1800 rpm und 4°C zentrifugiert, 3mal mit Medium gewaschen, quantitativ in Zählröhrchen überführt und die zellgebundene Radioaktivität in einem Clini Gamma Counter 1272 (LKB Wallac) bestimmt.

5. Nach Korrektur der Meßwerte um die unspezifische Bindung wurde, bezogen auf die Gesamtbindung, der 50% Kompetitionswert definiert und die Probenkonzentration, die bei der vorgelegten ¹²⁵J-rhu-TNF-Konzentration zu 50% Kompetition der ¹²⁵J-rhu-TNF-Bindung führt, als kompetitive Aktivität der untersuchten Probe ermittelt.

Die folgenden Beispiele sollen die Erfindung näher erläutern. Die proteogenen Aminosäuren sind in den Beispielen mit dem bekannten Dreibuchstaben-Code abgekürzt. Darüber hinaus bedeuten: Aad = α -Aminoadipinsäure, Ac = Essigsäure, Ade = 10-Aminodekansäure, Ahp = 7-Aminoheptansäure, Ahx = 6-Aminohexansäure, Ano = 9-Aminononansäure, Aoc = 8-Aminooktansäure, Ape = 5-Aminopentansäure, Bal = β -Alanin, Hcy = Homocystein, Hly = Homolysin, Orn = Ornithin.

A. Allgemeine Arbeitsvorschriften

I. Die Synthese der Peptide gemäß Anspruch 1 erfolgte mit Hilfe der Standardmethoden der Festphasenpeptidsynthese an einem vollautomatischen Peptidsynthesizer Modell 430A der Firma APPLIED BIOSYSTEMS. Das Gerät benutzt für die Boc- und Fmoc-Schutzgruppentechnik unterschiedliche Synthesezyklen

a) Synthesezyklus für die Boc-Schutzgruppentechnik

		a) 5)	
10		30% Trifluoressigsäure in DCM	1 × 3 min
		50% Triffuggessigsaure in DCM	1 × 17 min
	2.	50% Trifluoressigsäure in DCM DCM-Waschschritt	5 × 1 min
			1 × 1 min
		5% Diisopropylethylamin in DCM	1 × 1 min
15	5.		5 × 1 min
		NMP-Waschschritt	3 × 1 111111
	7.	Zugabe der voraktivierten geschützten Aminosäure	
		(Aktivierung durch 1 Äquivalent DCC und 1 Äquivalent HOBt in NMP/DCM);	1 × 30 min
		Peptidkupplung (1. Teil)	. 1 × 30 mm
20		Zugabe von DMSO zur Reaktionsmischung bis zu einem Volumenanteil von 20% DMSO	
	9.	Peptidkupplung (2. Teil)	1 × 16 min
		Zugabe von 3,8 Äquivalenten Diisopropylethylamin zur Reaktionsmischung	1 × 7 min
		Peptidkupplung (3. Teil)	
		DCM-Waschschritt	3× 1 min
25	13.	bei unvollständigem Umsatz Wiederholung der Kupplung (zurück zu 5.)	
		10% Essigsäureanhydrid, 5% Diisopropylethylamin in DCM	1 × 2 min
		10% Essigsäureanhydrid in DCM	1 × 4 min
		DCM-Waschschritt	4× 1 min
	. 17.	zurück zu 1.	
30			
, .		b) Synthesezyklus für die Fmoc-Schutzgruppentechnik	. * • *
		AVA CD W/a and and also	1 × 1 min
		NMP-Waschschritt	- 1 × 4 min
- 35		20% Piperidin in NMP	1 × 16 min
		20% Piperidin in NMP	5 × 1 min
		NMP-Waschschritt	J
	٥.	Zugabe der voraktivierten geschützten Aminosäure	
		(Aktivierung durch 1 Äquivalent DCC und 1 Äquivalent HOBt in NMP/DCM);	1 × 61 min
40		Peptidkupplung	
	6.	NMP-Waschschritt	3× 1 min
	7.	bei unvollständigem Umsatz Wiederholung der Kupplung (zurück zu 5.)	
		10% Essigsäureanhydrid in NMP	1 × 8 min
	9.	NMP-Waschschritt	3× 1 min

II. Aufarbeitung der nach Ia erhaltenen Peptidharze

zurück zu 2.

Das nach la erhaltene Peptidharz wurde im Vakuum getrocknet und in ein Reaktionsgefäß einer Tesson-HF-Apparatur (Fa. PENINSULA) transferiert. Nach Zugabe eines Scavengers, vorzugsweise Anisol (1 ml/g Harz), sowie im Falle von tryptophanhaltigen Peptiden eines Thiols zur Entsernung der indolischen Formylgruppe, vorzugsweise Ethandithiol (0,5 ml/g Harz) wurde unter Kühlung mit slüssigem N₂ Fluorwasserstoff einkondensiert (10 ml/g Harz). Man ließ die Mischung sich auf 0°C erwärmen und rührte 45 min bei dieser Temperatur. Anschließend wurde der Fluorwasserstoff im Vakuum abgezogen und der Rückstand mit Essigester gewaschen, um restlichen Scavenger zu entsernen. Das Peptid wurde mit 30%iger Essigsäure extrahiert, filtriert und das Filtrat lyophilisiert.

Zur Herstellung von Peptidhydraziden wurde das Peptidharz (Pam- oder Merrifieldharz) in DMF suspendiert (15 ml/g Harz) und nach Versetzen mit Hydrazinhydrat (20 Äquivalente) 2 Tage bei Raumtemperatur gerührt. Zur Aufarbeitung wurde das Harz abfiltriert und das Filtrat zur Trockene eingedampft. Der Rückstand wurde aus DMF/Et₂O oder MeOH/ET₂O kristallisiert.

III. Aufarbeitung der nach Ib erhaltenen Peptidharze

Das gemäß Ib erhaltene Peptidharz wurde im Vakuum getrocknet und anschließend in Abhängigkeit von der Aminosäurezusammensetzung einer der folgenden Spaltungsprozeduren unterworfen (Wade, Tregear, Howard Florey Fmoc-Workshop Manual, Melbourne 1985).

Das Pep Arg(Mtr	tid enthält) Met	Тгр	Spaltbedir TFA	ngungen Scavenger		Reaktionsze
nein	nein	nein	95%	5% H ₂ O		1,5 h
ia	nein	nein	95%	5% Thioanisol	• • • • • • • • • • • • • • • • • • • •	≥ 3 h
nein	ia	nein	95%	5% Ethylmethylsulfid	•	1,5 h
nein	nein	ja	95%	5% Ethandithiol/Aniso		1,5 h
nein	ja	ja	95%	5% Ethandithiol/Aniso		1,5 h
	•		Vicinity (methylsulfid(1:3:		
ja	ja	ja	93%	7% Ethandithiol/Aniso		`≥ 3 h
,	•			Ethylmethylsulfid ((1 : 3 : 3)	, *
angege	bene Zeit gerü	hrt, danach n wurden w	wurde das I eitgehend ei	geeigneten TFA-Mischung Harz abfiltriert und mit TF ngeengt und das Peptid du rschlag abfiltriert, in 30%	FA sowie DCM (rch Zugabe von f	gewaschen. Das Filtra Diethylether ausgefäll
		117	Peinigung	und Charakterisierung der	Peptide	

B. Spezielle Arbeitsvorschriften

VYDAC C-18, 5 μ, 300 Å; mobile Phase = CH₃CN/H₂O-Gradient, gepuffert mit 0,1% TFA, 40°C) bestimmt. Zur Charakterisierung wurden Aminosäureanalyse und Fast-Atom-Bombardement-Massenspektroskopie herange-

Beispiel 1

 $Ac-Val-Val-Pro-Ser-Glu-Gly-NH_2\\$

0,81 g Boc-Gly-MBHA-Harz (Substitution ~0,62 mmol/g), entsprechend einer Ansatzgröße von -0.5 mmol, wurden gemäß Ala mit je 2 mmol

Boc-Glu(OChx)-OH Boc-Ser(Bzl)-OH

Boc-Pro-OH

Boc-Val-OH Boc-Val-OH

Nach beendeter Synthese wurde der N-Terminus acetyliert (Ausführung der Schritte 1-6 und 14-16 gemäß Ala). Das Peptidharz wurde im Vakuum getrocknet; die Ausbeute betrug 1,14 g.

0,57 g des so erhaltenen Harzes wurden einer HF-Spaltung gemäß AII unterworfen. Das Rohprodukt (124 mg) wurde durch Gelfiltration (SEPHADEX G-10) und Mitteldruckchromatographie (vgl. AIV; 50-75% A; 0,25% min⁻¹) gereinigt. Es wurden 99 mg Reinprodukt erhalten.

Beispiel 2

0,5 g Harz nach Breipohl (Fa. BACHEM) (Substitution ~0,5 mmol/g), entsprechend einer Ansatzgröße von 0,25 mmol, wurden gemäß Alb mit je 1 mmol

Fmoc-Tyr(tBu)-OH

Fmoc-Leu-OH

Fmoc-Gly-OH

Fmoc-Glu(OtBu)-OH

Fmoc-Ser(tBu)-OH

Fmoc-Pro-OH

Fmoc-Val-OH

Fmoc-Val-OH

Fmoc-Leu-OH

umgesetzt.

Nach beendeter Synthese wurde der N-Terminus entschützt und acetyliert (Ausführung der Schritte 2-4 und 8-9 gemäß AIb). Das Peptidharz wurde im Vakuum getrocknet; die Ausbeute betrug 0,71 g.

Das nach der TFA-Spaltung gemäß AIII erhaltene Rohpeptid (184 mg) wurde durch Gelfiltration (SEPHA-DEX G-10) und Mitteldruckchromatographie (vgl. AIV; 60-75%; 0,25% min⁻¹) gereinigt. Es wurden 127 mg Reinprodukt erhalten.

Analog Beispiel 1 und 2 lassen sich herstellen:

3. H-Val-Pro-Ser-Glu-Gly-OH

4. Ac-Val-Pro-Ser-Glu-Gly-OH

5. H-Val-Pro-Ser-Glu-Gly-NH2

6: Ac-Val-Pro-Ser-Glu-Gly-NH2

7. H-Val-Val-Pro-Ser-Glu-Gly-OH

8. Ac-Val-Val-Pro-Ser-Glu-Gly-OH

9. H-Val-Val-Pro-Ser-Glu-Gly-NH2

10. Ac-Val-Val-Pro-Thr-Ser-Gly-NH2

11. H-Val-Pro-Ser-Glu-Gly-Leu-OH

12. Ac-Val-Pro-Ser-Glu-Gly-Leu-OH 13. H-Val-Pro-Ser-Glu-Gly-Leu-NH2

14. Ac-Val-Pro-Ser-Glu-Gly-Leu-NH2

15. H-Leu-Val-Val-Pro-Ser-Glu-Gly-OH

16. Ac-Leu-Val-Val-Pro-Ser-Glu-Gly-OH

17. H-Leu-Val-Val-Pro-Ser-Glu-Gly-NH2

18. Ac-Leu-Val-Val-Pro-Ser-Glu-Gly-NH2

19. H-Leu-Val-Val-Pro-Ser-Glu-Gly-Leu-OH

20. Ac-Leu-Val-Val-Pro-Ser-Glu-Gly-Leu-NH2

21. H-Leu-Val-Val-Pro-Ser-Glu-Gly-Leu-Tyr-OH 22. Ac-Leu-Val-Val-Pro-Ala-Asp-Gly-Leu-Tyr-NH2

23. H-Asn-Gln-Leu-Val-Val-Pro-Ser-Glu-Gly-Leu-Tyr-OH

24. Ac-Asn-Gln-Leu-Val-Val-Pro-Ser-Glu-Gly-Leu-Tyr-NH₂

25. Ac-Thr-Pro-Ser-Glu-Gly-NH₂

26. H-Val-Val-Pro-Ser-Ser-Gly-OH

27. Ac-Leu-Val-Val-Pro-Thr-Glu-Gly-NH2

Beispiel 28

Ac-Cys-Pro-Ser-Glu-Gly-Leu-Cys-NH2

0,98 g Boc-Cys(pMB)-MBHA-Harz (Substitution ~0,51 mmol/g), entsprechend einer Ansatzgröße von 0,5 mmol wurden gemäß Ala mit je 2 mmol

Boc-Leu-OH

35

Boc-Gly-OH

Boc-Glu(OChx)-OH

Boc-Ser(Bzl)-OH

Boc-Pro-OH

Boc-Cys(pMB)-OH

Nach beendeter Synthese wurde der N-Terminus acetyliert (Ausführung der Schritte 1-6 und 14-16 gemäß

Ala). Das erhaltene Peptidharz wurde im Vakuum getrocknet; die Ausbeute betrug 1,33 g.

Das Harz wurde einer HF-Spaltung gemäß AII unterworfen und das lyophilisierte Rohprodukt in 210,1% iger Essigsäure aufgenommen und der pH anschließend mit wäßrigem Ammoniak auf 8,4 eingestellt. Unter Argonatmosphäre wurde langsam 0,01 n K₃[Fe(CN)₆]-Lösung zugetropft, bis die gelblich-grüne Färbung länger als 15 min bestehen blieb. Es wurde noch 1 h nachgerührt, dann mit Eisessig auf pH 4,5 angesäuert und mit 15 ml einer wäßrigen Suspension eines Anionenaustauschers (BIORAD 3×4A, Chloridform) versetzt. Nach 30 min wurde das Ionenaustauscherharz abfiltriert, das Filtrat am Rotationsverdampfer auf 100 ml eingeengt und anschließend lyophilisiert.

Alle benutzten Lösungsmittel wurden vorher mit Stickstoff gesättigt, um eventuelle Oxidation der freien

Cysteinreste zu verhindern.

Das Rohprodukt wurde durch Gelchromatographie (SEPHADEX G-15) und Mitteldruckchromatographie (vgl. AIV; 50-70% A; 0,25% min-1) gereinigt. Es wurden 87 mg Reinprodukt erhalten.

Analog Beispiel 28 lassen sich herstellen:

.

. .

•

. .

Beispiel 67

Ac - Glu - Pro - Ser - Glu - Gly - Leu - Lys - NH

1 g Harz nach Breipohl et al. (Fa. BACHEM), entsprechend einer Ansatzgröße von 0,5 mmol wurde gemäß AIB mit je 2 mmol

Fmoc - Lys(Boc) - OH Fmoc - Leu - OH Fmoc - Gly - OH

Fmoc-Glu(OBzl)-OH Fmoc-Ser(tBu)-OH

Fmoc-Pro-OH

Fmoc-Glu(OtBu)-OH

umgesetzt. Nach beendeter Synthese wurde der N-Terminus entschützt und acetyliert (Ausführung der Schritte 2-4 und 8-9 gemäß AIb). Das Peptidharz wurde im Vakuum getrocknet; Ausbeute 1,38 g.

Das nach der TFA-Spaltung gemäß AllI erhaltene Rohprodukt (288 mg) wurde in 500 ml entgastem DMF gelöst. Nach Zugabe von 210 mg NaHCO₃ und 0,12 ml Diphenylphosphorylazid wurde 3 Tage bei Raumtemperatur gerührt. Dann wurde zur Trockene eingedampft, und das Rohpeptid durch Gelchromatographie (SEPHA-DEX LH 20) gereinigt. Das isolierte Monomere (93 mg) wurde in 10 ml MeOH gelöst und nach Zugabe von 20 mg Pd/C (10%) 8 h bei Normaldruck hydriert. Das nach Abfiltrieren des Katalysators und Eindampfen erhaltene Produkt wurde durch Mitteldruckchromatographie (vgl. AIV; 55-75% A; 0,25 min⁻¹) gereinigt. Es wurden 68 mg Reinprodukt erhalten.

Analog Beispiel 67 lassen sich herstellen:

55

Beispiel 90

1,19 g Fmoc-Glu(OBzl)-p-Alkoxybenzylalkohol-Harz (Substitution ~0,42 mmol/g), entsprechend einer

Ansatzgröße von 0,5 mmol, wurde gemäß Alb mit je 2 mmol

Fmoc-Ser(tBu)-OH Fmoc-Pro-OH

Fmoc-Val-OH Fmoc-Ahx-OH

Fmoc-Gly-OH

umgesetzt. Nach beendeter Synthese wurde das Peptidharz N-terminal entschützt (Ausführung der Schritte 2-4 gemäß Alb) und anschließend im Vakuum getrocknet. Die Ausbeute betrug 1,25 g.

Das nach TFA-Spaltung gemäß AllI erhaltene Rohpeptid wurde in 500 ml entgastem DMF gelöst. Nach Zugabe von 210 mg NaHCO₃ und 0,12 ml Diphenylphosphorylazid wurde 3 Tage bei Raumtemperatur gerührt. Dann wurde zur Trockene eingedampft und das Rohpeptid durch Gelchromatographie (SEPHADEX LH 20) gereinigt. Das isolierte Monomere (86 mg) wurde in 10 ml MeOH gelöst und nach Zugabe von 20 mg Pd/C (10%) 8 h bei Normaldruck hydriert. Das nach Abfiltrieren des Katalysators und Eindampfen erhaltene Produkt wurde durch Mitteldruckchromatographie (vgl. AIV; 55-75% A; 0,25% min⁻¹) gereinigt. Es wurden 52 mg Reinprodukt erhalten.

20

45

Analog Beispiel 90 lassen sich herstellen:

Patentansprüche

1. Gegenstand der Erfindung sind Peptide der Formel 1,

$$X-Pro-A-B-Y$$
 (I)

worin -

10

30

35

40

A Ser, Ala oder Thr ist,

B Glu, Asp oder Ser bedeutet, X für eine Gruppe G-, G-NH-CHM-CO-, G-NH-CHM-CO-W-, G-R-NH-CHM-CO-oder G-R-NH-CHM-CO-W-und

Y für eine Gruppe Z-, -NH-CHQ-CO-Z, -V-NH-CHQ-CO-Z, -NH-CHQ-CO-U-Z oder -V-NH-CHQ-CO-U-Z steht,

wobei in X und Y

G ein Wasserstoffatom oder eine Aminoschutzgruppe bedeutet,

Z für eine OH- oder NH2-Gruppe oder eine Carboxylschutzgruppe steht oder

G und Z zusammen auch eine kovalente Bindung oder die Gruppe -CO-(CH₂)_a-NH- bedeuten, wobei a eine Zahl von 1 bis 12 ist,

R, U, V und W Peptidketten aus 1-4 natürlich vorkommenden a-Aminosäuren darstellen und M und Q Wasserstoffatome oder eine der Gruppen $-CH(CH_3)_2$, $-CH(CH_3)-C_2H_5$, $-C_6H_5$, $-CH(OH)-CH_3$,

$$-CH_2 \xrightarrow{N} oder -(CH_2)_h -T$$

(mit b in der Bedeutung einer Zahl von 1 bis 6 und T in der Bedeutung einer OH-, CH3O-, CH3S-, (CH3)2CH-, C₆H₅-, p-H₀-C₆H₄-, H₅-, H₂N-, H₀-C₀-, H₂N-C₀-, H₂N-C₀-, H₂N-C₀-NH-Gruppe) oder M und Q zusammen eine $-(CH_2)_c$ -S-S- $-(CH_2)_c$ -, $-(CH_2)_c$ -C₀-NH- $-(CH_2)_f$ - oder $-(CH_2)_c$ -NH-C₀- $-(CH_2)_f$ -Brücke (mit c und d in der Bedeutung einer Zahl von 1 bis 4, e und f einer Zahl von 1 bis 6 und g einer Zahl von 1 bis 12) bedeuten,

sowie deren Salze mit physiologisch verträglichen Säuren. 2. Peptide gemäß Anspruch 1, worin G ein Wasserstoffatom oder eine Aminoschutzgruppe und Z eine Hydroxy- oder Aminogruppe oder eine Carboxylschutzgruppe darstellen und M und Q nicht miteinander verbunden sind.

3. Peptide gemäß Anspruch 1, worin G ein Wasserstoffatom oder eine Aminoschutzgruppe und Z eine Hydroxy- oder Aminogruppe oder eine Carboxylschutzgruppe darstellen und M und Q zusammen eine $-(CH_2)_c - S - S - (CH_2)_d$ Brücke bedeuten.

4. Peptide gemäß Anspruch 1, worin G ein Wasserstoffatom oder eine Aminoschutzgruppe und Z eine Hydroxy- oder Aminogruppe oder eine Carboxylschutzgruppe darstellen und M und Q zusammen eine Gruppe $-(CH_2)_e - NH - CO - (CH_2)_f$ oder $-(CH_2)_e - NH - CO - (CH_2)_g - NH - CO - (CH_2)_f$ bedeuten. 5. Peptide gemäß Anspruch 1, worin G + Z zusammen eine kovalente Bindung oder - CO-(CH₂)_a-NH-

6. Peptide gemäß Anspruch 1 bis 5 zur Verwendung bei der Bekämpfung von Krankheiten.

7. Verwendung der Peptide gemäß Ansprüchen 1 bis 5 zur Bekämpfung von neoplastischen Erkrankungen und Autoimmunerkrankungen sowie zur Bekämpfung und Prophylaxe von Infektionen, Entzündungen und Abstoßungsreaktionen bei Transplantationen.

8. Verfahren zur Herstellung der Peptide gemäß Anspruch 1 bis 5, dadurch gekennzeichnet, daß man diese nach in der Peptidchemie bekannten Methoden herstellt.

Hierzu 2 Seite(n) Zeichnungen

50

Nummer: Int. Cl.5: Offenlegungstag:

C 07 K 7/64 13. Juni 1990- ---

Abb. 1: Die Boc-Schutzgruppentechnik am polymeren Träger

Boc = t-Butyloxycarbonyl-Schutzgruppe

= Seitenketten-Schutzgruppe

= Aminosäure-Seitenkette

-13. Juni 1990---

Abb. 2: Die Fmoc-Schutzgruppentechnik am polymeren Träger

Fmoc = 9-Fluorenylmethyloxycarbonyl-Schutzgruppe

SG = Seitenketten-Schutzgruppe

5 R = Aminosäure-Seitenkette