1 1. Vektorräume und lineare Abbildungen

1.1 Definition 1.1

Sei K ein Körper (z.B. $K = \mathbb{R}$), V eine nichtleere Menge. Auf V seien zwei Verknüpfungen definiert, und zwar:

- eine innere Verknüpfung $+: V \times V \to V, (u, v) \mapsto u + v$, die als Addition bezeichnet wird
- eine äußere Verknüpfung $\cdot: K \times V \to V, (\alpha, v) \mapsto \alpha \cdot v$, die als Multiplikation mit Skalaren bezeichnet wird.

V mit diesen Verknüpfungen heißt **K-Vektorraum** (KVR), wenn folgende Axiome gelten:

- (V1) V ist bzgl. der Addition eine abelsche Gruppe, d.h. es gilt:
- (G1) (u+v) + w = u + (v+w) für alle $u, v, w \in V$
- (G2) Es existiert ein neutrales Element $0 \in V$ mit 0+v=v=v+0 für alle $v \in V$
- (G3) Zu jedem $v \in V$ existiert ein "negatives Element" $-v \in V$, sodass v+(-v)=0
- (G4) u + v = v + u für alle $u, v \in V$
- (V2) Die Multiplikation mit Skalaren ist verträglich mit der Addition in V und mit den Operationen in K, d.h. für alle $u, v \in V$ und $\alpha, \beta, 1 \in K$ gilt:
 - (a) $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$
 - (b) $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$
 - (c) $\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta) \cdot v$
 - (d) $1 \cdot v = v$

Die Elemente von V heißen **Vektoren**, die Elemente von K heißen **Skalare**, $0 \in V$ heißt **Nullvektor**. Vereinbarung: statt u + (-v) schreibt man u - v.

1.2 Satz 1.2

In einem KVR V gelten folgende Rechenregeln:

- (1) $0 \cdot u = 0$ für alle $u \in V$
- (2) $\alpha \cdot 0 = 0$ für alle $\alpha \in K$
- (3) $\alpha \cdot u = 0 \implies \alpha = 0 \text{ oder } u = 0$
- (4) $(-1) \cdot u = -u$ für alle $u \in V$

1.3 Definition 1.31 1. VEKTORRÄUME UND LINEARE ABBILDUNGEN

1.2.1 Beweis

- (1) $0 \cdot u \stackrel{\text{G2}}{=} (0+0) \stackrel{V2(a)}{=} 0 \cdot u + 0 \cdot u$ Addition des Negativen liefert: $0 = (-0 \cdot u + 0 \cdot u) + 0 \cdot u = 0 + 0 \cdot u = 0 \cdot u$
- (2) siehe Übungsaufgaben
- (3) siehe Übungsaufgaben

(4)
$$u + (-1) \cdot u \stackrel{V2(d)}{=} 1 \cdot u + (-1) \cdot u \stackrel{V2(a)}{=} (1 - 1) \cdot u = 0 \cdot u \stackrel{(1)}{=} 0 \implies (-1) \cdot u = -u$$

1.2.2 Beispiele

(1) Das Standardbeispiel eines KVRs ist der sogenannte Standardraum $K^n = \{x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} | x_i \in K$ für $i = 1, ..., n\}$ der geordneten n-Tupel von Skalaren $x_i \in K$. Die x_i heißen **Komponenten** des Vektors x.

1.2.3 Bemerkung

Geordnet bedeutet, dass die Reihenfolge der Komponenten wichtig ist:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \iff x_1 = y_1, ..., x_n = y_n$$

Addition im
$$K^n: \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

Multiplikation mit Skalaren im
$$K^n: \alpha \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \alpha \cdot x_1 \\ \vdots \\ \alpha \cdot x_n \end{pmatrix}$$

(2) Vektorraum der Matrizen

1.3 Definition 1.3

Sei K ein Körper (z.B. $K = \mathbb{R}$). Für $m, n \in \mathbb{N}$ seien m Zahlenreihen aus jeweils n Zahlen aus K gebildet und die m Zahlenreihen so untereinander geschrieben, dass die Zahlen in Form eines Rechtecks durch Klammern zu einem neuen Objekt

zusammengefasst werden. Das Schema $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ heißt dann eine

Matrix vom Typ (m,n). Die a_{ij} nennt man allgemein die Einträge der Matrix.

Schreibenweisen: $A \sim (m, n)$ $A = (a_{ij}) \sim (m, n)$ $A = (a_{ij})_{1 \le i \le m, 1 \le j \le n}$

Die Menge der Matrizen $A \sim (m,n)$ mit Einträgen aus K bezeichnet man mit

Die Wienge der Matrizen
$$A \sim (m,n)$$
 imt Eintragen aus K bezeichnet man imt $K^{(m,n)}: K^{(m,n)} = \{A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} | a_{ij} \in K \text{ für } 1 \leq i \leq m, 1 \leq j \leq n\}.$

 $K^{(m,n)}$ ist ein KVR, wenn man definiert:

Additions:
$$A = (a_{ij}) \sim (m, n), B = (b_{ij} \sim (m, n))$$

 $A + B = (a_{ij} + b_{ij}) \sim (m, n)$

Multiplikation mit Skalaren: $A = (a_{ij}) \sim (m, n), \alpha \in K$ $\alpha \cdot A = (\alpha \cdot a_{ij}) \sim (m, n)$

(3) Sei $M \neq \emptyset$ eine beliebige Menge, K ein Körper. Dann ist Abb(M, K) = $\{f: M \to K | f \ Abbildung\}$ ein KVR, wenn man definiert:

Addtion: $f, g: M \to K$

$$f + q : M \to K, (f + q)(x) = f(x) + q(x)$$

Multiplikation mit Skalaren: $f: M \to K, \alpha \in K$

$$\alpha \cdot f : M \to K, (\alpha \cdot f)(x) = \alpha \cdot f(x).$$

Definition 1.4

Sei V ein KVR. Eine Teilmenge $U \subseteq V$ heißt **Untervektorraum** (UVR) von V, wenn sie mit der von V induzierten Addition und Mulitplikation mit Skalaren einen KVR bildet.

1.5 Satz 1.5

Sei V ein KVR und $U \subseteq V.U$ ist genau dann ein UVR von V, wenn gilt:

(UV1) $U \neq \emptyset$

(UV2) $u, v \in U \implies u + v \in U$ (d.h. U ist abgeschlossen gegenüber der in V induzierten Addition)

(UV3) $u \in U, \alpha \in K \implies \alpha \cdot u \in U$ (d.h. U ist abgeschlossen gegenüber der in V induzierten Mulitplikation mit Skalaren)

1.5.1 Beweis

- " \Leftarrow ": Es gelten die (UVi). Zz: U ist UVR. Wegen (UV2) ist die Einschränkung der Addition $+: V \times V \to V$ auf $U \times U$ eine inere Verknüpfung $+: U \times U \to U$ auf U\$. Zz: U ist bzgl. + eine abelsche Gruppe:
- (G1) Assoziativgesetz gilt, weil es in V gilt.
- (G2) Nach (UV1) ist $U \neq \emptyset$, d.h. es existiert $u \in U \stackrel{UV3}{\Longrightarrow} 0 \cdot u = 0 \in U$
- (G3) $u \in U$ beliebig $\implies -u \stackrel{1.2}{=} (-1) \cdot u \stackrel{UV3}{\in} U$
- (G4) Kommutativgesetz gilt, weil es in V gilt

Wegen (UV3) ist die Einschränkung der Multiplikation mit Skalaren $\cdot: K \times V \to V$ auf $K \times V$ eine äußere Verknüpfung $\cdot: K \times U \to U$ auf U. Die Axiome (V2) gelten in U, weil sie in V gelten.

" \Longrightarrow ": Sei Uein UVR von V. Dann gilt (UV1), weil z.B. $0\in U$ gelten muss (nach G2).

(UV2), weil $+: U \times U \to U$ eine innere Verknüpfung auf U ist.

(UV3), weil $\cdot: K \times U \to U$ eine äußere Verknüpfung auf U ist.

1.6 Defintion 1.6

Seien V und W Vektorräume über demselben Körper K. Eine Abbildung $f:V\to W$ heißt lineare Abbildung (genauer K-lineare Abbildung), wenn sie mit der Vektorraumstruktur verträglich ist, d.h. wenn gilt:

(L1)
$$f(u+v) = f(u) + f(v)$$
 für alle $u, v \in V$

(L2)
$$f(\alpha \cdot v) = \alpha \cdot f(v)$$
 für alle $\alpha \in K, v \in V$

Kurz: (L) $f(\alpha \cdot u + \beta \cdot f(v))$ für alle $\alpha, \beta \in K$ und $u, v \in V$

1.6.1 Ergänzung

Seien V und W Vektorräume über K. Eine K-lineare Abbildung $f:V\to W$ heißt auch **Homomorphismus**. Speziell heißt eine K-lineare Abbildung $f:V\to W$ ein

- Isomorphismus, wenn f bijektiv
- Endomorphismus, wenn V = W
- Automorphismus, wenn f bijektiv und V = W

1.7 Definition 1.7

Wei folgt ist eine Multiplikation von Matrizen $A \in K^{(m,n)}$ mit Vektoren aus K^n definiert.

$$A \cdot x = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} \cdot x_1 + \cdots + a_{1n} \cdot x_n \\ \vdots \\ a_{m1} \cdot x_1 + \cdots + a_{mn} \cdot x_n \end{pmatrix} \in K^m$$

1.7.1 Beispiel

$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 & +(-1) \cdot 2 & +2 \cdot 3 \\ 2 \cdot 1 & +0 \cdot 2 & +1 \cdot 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

1.8 Lemma 1.8

Jede Matrix $A \in K^{m,n}$ definiert eine lineare Abbildung $A: K^n \to K^m$ durch $x \mapsto A \cdot x$.

1.8.1 Beweis

$$A \cdot (\alpha \cdot x + \beta \cdot y) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} \alpha \cdot x_1 + \beta \cdot y_1 \\ \vdots \\ \alpha \cdot x_n + \beta \cdot y_n \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} \cdot (\alpha \cdot x_1 + \beta \cdot y_1) + \cdots + a_{1n} \cdot (\alpha \cdot x_n + \beta \cdot y_n) \\ \vdots \\ a_{m1} \cdot (\alpha \cdot x_1 + \beta \cdot y_1) + \cdots + a_{mn} \cdot (\alpha \cdot x_n + \beta \cdot y_n) \end{pmatrix}$$

$$= \begin{pmatrix} \alpha \cdot (a_{11} \cdot x_1 + \cdots + a_{1n} \cdot x_n) \\ \vdots \\ \alpha \cdot (a_{m1} \cdot x_1 + \cdots + a_{mn} \cdot x_n) \end{pmatrix} + \begin{pmatrix} \beta \cdot (a_{11} \cdot y_1 + \cdots + a_{1n} \cdot y_n) \\ \vdots \\ \beta \cdot (a_{m1} \cdot y_1 + \cdots + a_{mn} \cdot y_n) \end{pmatrix}$$

$$= \alpha \cdot A \cdot x + \beta \cdot A \cdot y$$

1.9 Lemma 1.9

Seien V und W Vektorräume über K. Die menge $Hom(V,W) = \{f : V \to W | f \text{ ist } K\text{-linear}\}$ aller K-lineaeren Abbildungen von V nach W ist ein KVR.

1.10 Definition 1.10

Sei $f: V \to W$ eine Abbildung.

- (a) f heißt surjektiv $\iff \forall w \in W \exists v \in V \text{ mit } f(u) = w$
- (b) f heißt **injektiv** $\iff \forall v_1, v_2 \in V \text{ mit } f(v_1) = f(v_2) \text{ gilt } v_1 = v_2$
- (c) f heißt **bijektiv** \iff f ist surjektiv und injektiv

1.10.1 Graphische Darstellung

- f surjektiv: HIER FOLGT EIN DIAGRAMM
- f injektiv: HIER FOLGT EIN DIAGRAMM
- f bijektiv: HIER FOLGT EIN DIAGRAMM

1.11 Satz 1.11

Sei $f: V \to W$ eine K-lineare Abbildung. Dann gilt:

- (1) f(0) = 0 und $f(u v) = f(u) f(v) \ \forall \ u, v \in V$
- $(2) f(\alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n) = \alpha_1 \cdot f(v_1) + \dots + \alpha_n \cdot f(v_n) \forall \alpha_i \in K, v_i \in V$
- (3) $V' \subseteq V$ UVR und $W' \subseteq W$ UVR $\implies f(V') \subseteq W$ und $f^{-1}(W') \subseteq V$ sind Untervektorräume
- (4) $f: V \to W$ Isomorphismus $\implies f^{-1}: W \to V$ ist linear

1.11.1 Beweis

(1)
$$f(0) \stackrel{1.2}{=} f(0 \cdot 0) \stackrel{L}{=} 0 \cdot f(0) \stackrel{1.2}{=} 0$$

 $f(u-v) \stackrel{1.2}{=} f(u+(-v)) \stackrel{L}{=} f(u) + (-1) \cdot f(v) \stackrel{1.2}{=} f(u) - f(v)$

- (2) klar, da wiederholte Anwendung von L
- (3) $f(V') \subseteq W$ UVR ÜBUNGSAUFGABE $f^{-1}(W) = \{v \in V : f(v) \in W'\} \subseteq V$

$$\begin{array}{l} (\mathrm{UV1}) \ 0 \in W' \ \mathrm{und} \ f(0) = 0 \implies 0 \in f^{-1}(W') \implies f^{-1}(W') \neq \emptyset \\ (\mathrm{UV2}) \ u,v \in f^{-1}(W') \implies f(u),f(v) \in W' \implies f(u+v) = f(u)+f(v) \in W' \implies u+v \in f^{-1}(W') \\ (\mathrm{UV3}) \ u \in f^{-1}(W'), \alpha \in K \implies f(u) \in W \implies f(\alpha \cdot u) = \alpha \cdot f(u) \in W' \implies \alpha \cdot u \in f^{-1}W' \end{array}$$

(UV4) $f:V\to W$ ist Isomorphismus, also linear und bijektiv. Da f bijektiv, existiert die Abbildung $f^{-1}:W\to V$.

Zz:
$$f^{-1}: W \to V$$
 ist linear $\alpha, \beta \in K$ und $w, w' \in W \implies u = f^{-1}(w), u' = f^{-1}(w') \in V \implies \alpha \cdot u + \beta \cdot w'$ $\underset{bijektiv}{=} \alpha \cdot u + \beta \cdot u' = \alpha \cdot f^{-1}(w) + \beta \cdot f^{-1}(w')$

1.12 Folgerung

Ist $f:V\to W$ eine lineare Abbildung, so sind $f(V)\subseteq W$ und $f^{-1}(0)\subseteq V$ Untervektorräume.

1.13 Definition 1.12

Sei $f:V\to W$ eine lineare Abbildung. Dann heißt der Untervektorraum

- Imf := f(V) von W das **Bild von** f
- $Kerf := f^{-1}(0)$ von V der **Kern von** f

1.13.1 Bemerkung

Ist $A \in K^{m,n}$, so kann man A nach 1.8 als Abbildung $A : K^n \to K^m$ auffassen und schreibt dann Im(A) und Ker(A).

Statistische Notation:

$$Im(A) = R(A)$$
 ("range")
 $Ker(A) = N(A)$ ("nullspace")

1.13.2 Bemerkung

Sei $f: V \to W$ eine lineare Abbildung. Dann gilt:

- (1) $f: V \to W$ surjektiv $\iff Imf = W$
- (2) $f: V \to W$ injektiv $\iff Kerf = \{0\}$

1.14 Satz 1.13

Seien U,V und W Vektorräume über K. Seien $g:U\to V$ und $f:V\to W$ lineare Abbildungen. Dann ist die Kompostion $f\circ g:U\to W$ eine lineare Abbildung.

1.15 Beweis

$$(f \circ g)(\alpha \cdot u + \beta \cdot u') = f(g(\alpha \cdot u + \beta \cdot u')) \stackrel{L}{=} f(\alpha \cdot g(u) + \beta \cdot g(u')) \stackrel{L}{=} \alpha \cdot f(g(u)) + \beta \cdot f(g(u')) = \alpha \cdot (f \circ g)(u) + \beta \cdot (f \circ g)(u')$$