Advanced Data Mining IAO2 Multilingual Chatbot (Deep Learning-based using Natural Language Processing)

By -

Sumeet Karani (16014022044), Raunak Kankariya (16014022042), Swapnil Ranadive (16014022067) & Ketaki Mahajan (16014022050)

CONTENT

SLIDE NUMBERS	SECTION
3 - 5	Literature Review
6 - 13	Knowledge Tree
14	Conclusion

LITERATURE REVIEW

Title	Year of Publication	Methodology	Results	Research Gap
Multilingual Healthcare Chatbot Using Machine Learning	2021	NLP-based multilingual healthcare chatbot using five ML algorithms for disease prediction with English, Hindi, and Gujarati language support.	Random Forest achieved 98.43% accuracy; system demonstrated effective multilingual capabilities with TF-IDF and Cosine Similarity for query responses.	Most existing healthcare chatbots limited to English; need identified for multilingual solutions addressing rural Indian healthcare challenges.
Development and testing of a multi-lingual Natural Language Processing-based deep learning system in 10 languages for COVID-19 pandemic crisis: A multi-center study	2023	Developed DR-COVID, a multi-lingual AI chatbot on Telegram using: Modified BERT + spaCy (weighted 0.8:0.2) for NLP Google Translate API for multilingual support	 English Accuracy: 83.8% overall, 92.2% top-3 Top Multilingual Accuracy: Portuguese (90%) Faster & more accurate than WHO & NHS bots 	 Existing bots: monolingual & triage-focused Lacked support for open-ended, multilingual Q&A
Generative AI Agents, Build a Multilingual Chat GPT-based Customer Service Chatbot	2024	Contrasts traditional chatbot models with a ChatGPT-integrated architecture.	The ChatGPT-based chatbot showed superior performance, multilingual capabilities & reduced development effort.	Improving contextual understanding, addressing bias in responses, enhancing multilingual capabilities.
Multilingual Chatbot For Indian Languages	2023	Dual approach using MuRIL BERT for fixed-response and context-based QA with SQuAD fine-tuning.	MuRIL BERT outperformed other models with 76% accuracy.	Poor Indian language representation in existing models.

LITERATURE REVIEW

Title	Year of Publication	Methodology	Results	Research Gap
BilinBot: A Bilingual Chatbot using Deep Learning	2023	 Data collected in Bangla & English Deep Learning with NLP: Tokenization, TF-IDF, Word2Vec, and BERT for feature extraction RNN architectures using LSTM and GRU 	 Outperformed state-of-the-art methods (better ROUGE scores) High prediction accuracy for bilingual input 	Insufficient resources for low-density (Bangla) language Limited contextual dialogue handling and real-world deployment
Investigating Deep Learning for Predicting Multi-linguistic Interactions with a Chatterbot	2020	 Experimental RNN design with extensive model tuning (iterations, layers, cell counts) Migration from TensorFlow 1 to TensorFlow 2 with Keras Use of Word2Vec embeddings to boost prediction accuracy 	TF2-based models reached nearly 99% accuracy with improved convergence over traditional TF1 designs	Tendency to reach local optima with complex datasets Extended training times and hardware limitations affecting scalability
An Analysis of an Intelligent Chatbot Using Natural Language Processing	2022	Explores the development and deployment of a chatbot using Natural Language Processing (NLP). The paper reviews cloud-based chatbot technology and design strategies.	Highlights chatbot applications in academic and commercial environments. Discusses advantages of AI and NLP integration for enhancing user interaction.	The paper lacks deep exploration of advanced NLP techniques like deep learning in chatbots. There is no discussion on multilingual capabilities and advanced Al models in chatbots.

LITERATURE REVIEW

Title	Year of Publication	Methodology	Results	Research Gap
Natural Language Processing in Chatbots: A Review	2020	Reviews NLP techniques in chatbot development, such as tokenization, part-of-speech tagging, and sentiment analysis.	Reviews applications of NLP across industries like customer service, information retrieval, and sentiment analysis. Discusses recent advances,	The paper addresses challenges in NLP integration but lacks in-depth solutions for multilingual support and context handling.
		Explores rule-based and machine learning approaches to NLP in chatbots.	including deep learning and neural language models.	Limited exploration of real-world applications using advanced neural networks like transformers.

P01: Multilingual Healthcare Chatbot Using Machine Learning

Proposed Chatbot Architecture

Input:

- Voice/Text
- Multilingual (English, Hindi, Gujarati)

Processing:

- Translate input to English using googletrans
- Classify as disease/query
- Disease → ML model
- Query → FAQ NLP pipeline

Output:

- Translate back to original language
- Output via voice (qTTS) or text

Results

- Random Forest: Highest Accuracy (98.43%)
- Multilingual & multimodal support successful
- Improved accessibility in rural and regional settings

TABLE II. ALGORITHM EVALUATION METRIC RESULTS

Classification Algorithm	Accuracy	Precision	F1-Score
Random Forest	0.9843	0.9774	0.9781
Decision Tree	0.9712	0.9693	0.9697
SVM	0.9622	0.9547	0.9582
MNB	0.9539	0.9440	0.9454
KNN	0.9788	0.9731	0.9749

P02: Towards Deep Learning-Powered Chatbot for Translation Learning

Multilingual Accuracy: Highest: Portuguese (90%)

-1	Language		Overall accuracy	Top 3 accuracy
	Thai	20	0.600	0.700
	Spanish	40	0.725	0.800
	Portuguese	20	0.900	0.900

- Lacks **contextual memory** (no multi-turn conversation)

P03: Generative Al Agents, Build a Multilingual Chat GPT-based Customer Service Chatbot

P04: Multilingual Chatbot For Indian Languages

P05: BilinBot: A Bilingual Chatbot using Deep Learning

P06: Investigating Deep Learning for Predicting Multi-linguistic Interactions with a Chatterbot

Implementation of **Multilingual Interaction Prediction Models**

- Built predictive models for multilingual chatbot interactions using sequence-to-sequence architecture.
- Used deep learning models including RNN with LSTM and GRU.
- Tools included TensorFlow 1 & 2, Keras, and Word2Vec embeddings.
- Focused on next-turn prediction in multilingual or code-switched conversations.

Dataset Challenges and Solutions in Multilingual Contexts

- Used complex English text ("Declaration of Independence") and short phrases (like pangrams) to train and compare.
- Normalized and tokenized datasets using sequence padding and one-hot encoding.
- Observed that complex datasets hit local optima and required extensive tuning for convergence.

Exploring deep learning architectures to predict and manage multilingual or code-switched conversations in chatbots, with a focus on adaptability and cross-linguistic comprehension.

Performance Analysis Across Deep Learning Architectures

- Compared TensorFlow 1 (basic LSTM) and TensorFlow 2 (multi-layer LSTM with embedding).
- Word2Vec embeddings improved contextual understanding.
- Accuracy improved from 46.2% (TF1) to 99% (TF2 with Word2Vec).
- More layers and enhanced embeddings resulted in better generalization but required longer training.

Handling Code-Switching and Language Identification

- Tackled the challenge of Bangla-English mixed-language inputs.
- Used Word2Vec to create language-agnostic word vectors.
- Found that basic language ID and contextual representation improved the chatbot's relevance in responses.

Application in the BeatAl Educational Chatterbot

- Developed as a multilingual educational game where users "predict" or challenge the Al.
- Built as a web and Android application.
- Supported multiple languages (English, Russian, Polish, German, Spanish, Turkish, etc.).
- Integrated Yandex APIs for translation and language detection.

Limitations and Future Work

- Current limitations include local optima in model training and high resource usage.
- Lack of broader real-world testing beyond the game interface.

Future scope includes:

- Integration of Part-of-Speech tagging.
- Multilingual text auto-completion.
- Expansion to iOS platform and optimization for mobile hardware.

Results

- The optimized **TensorFlow 2** model with Word2Vec achieved up to 99% accuracy, significantly outperforming the baseline TensorFlow 1 model (46.2%).
- Using 6-word input and multi-layer LSTMs provided the best performance in multilingual prediction tasks.

P07: An Analysis of an Intelligent Chatbot Using Natural Language Processing

P08: Natural Language Processing in Chatbots: A Review

Conclusion

We studied multilingual chatbots using deep learning by analyzing research papers and building knowledge trees. This helped us understand key models and techniques used to handle multiple languages in conversation systems.

Benefits:

- Improved chatbot design for diverse languages
- Applications in global customer service, virtual assistants, and multilingual interfaces
- Enables scalable, intelligent systems with broader user reach

