SFWR ENG 4E03

Kemal Ahmed Fall 2015

Instructor: Vincent Maccio

Note: material covered in Stats 3Y03 Summary will not be covered in this summary

Contents

Statistics	
Variance	2
Exponential	2
Uniform	2
Binomial	
Operations Analysis	2
Visitation Trick	2
Summation Equations	
DTMC	
Matrices	
СТМС	
Poisson Process	
Kendall notation	θ
Variations	6
M/M/C Provisioning	7
Jackson Networks	8
Traffic Equations	8
Questions	8

Statistics

Poisson parameter [λ]: rate

Service rate $[\mu]$:

Continuous Random Variable (CRV):

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Think chemistry, i.e. cancelling units

Variance

$$\operatorname{var}(X) = E[X^2] - (E[X])^2$$

• <u>Don't change probability</u>, but square X for calculation only

$$var(x) = E[(X - \mu)^{2}]$$

$$= \sigma^{2}$$

$$= \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

$$= \int x^{2} f(x) dx - \mu^{2}$$

Exponential

Mean [E[X]]: 1/λ

o a.k.a. Expected value

• Variance: 1/λ²

• Probability Distribution Function (PDF) $[P(X=x)]: \lambda e^{-\lambda x}/x!$

• Cumulative Distribution Function (CDF) [f(x)]: CDF = $\int PDF$, i.e. $1 - e^{-\lambda x}$

Memoryless

• not always for time

Uniform

• Variance: (b-a)²/12

• Mean: (a+b)/2

• **PDF**: 1/(b-a), $a \le x \le b$

• CDF: 1

• Uniform Distribution: no memoryless property

Binomial

• Mean [E[X]]: n × probability

• Variance: $n \times p \times (1 - p)$

• Probability Distribution Function (PDF) [P(X)]: $(n c x)p^x(1-p)^{n-x}$

• Cumulative Distribution Function (CDF) [f(x)]: $\sum_{i=0}^{\lfloor x \rfloor} \binom{n}{i} p_i (1-p)^{n-i}$

Operations Analysis

Device [i]: units that are in terms of *i* are specific to an individual device or node within a system **Total devices** [k]:

Service Time [S]: time per specific job $1/\mu$

Visitation [V]: given or projected visits/jobs (closed system); cannot be calculated; basically a probability [E(V)]: calculated visit/job ratio P(visit)·total visits in previous node

Demand [D]: total service time for all jobs

$$D_i = E[S_i] \cdot V_i$$

$$D = \sum_{i=0}^{k} D_i$$

Bottleneck [D_{max}]: device with largest demand, utilization

Time in system [T]: time the job is in the system

$$E[T] = \frac{N}{X}$$

$$E[T] \ge \max(D, ND_{\max} - E[Z])$$
If $E[Z] = 0$, $T = R$

Response Time [R]: time the job is *being processed* in the system

If
$$E[Z] = 0$$
, $R = T$

M/M/1:
$$E[R] = 1/(\mu - \lambda)$$

M/M/C: $E[R] = E[R_Q] + E[S]$

Users [M]:

Optimal users [M*]:

$$M* = \frac{D + E[Z]}{D_{\text{bottleneck}}}$$

Total Jobs [N]: N=M in a closed system

- Little's Law: $E[N] = \lambda E[T], \lambda = X$
- $E[N] = \lambda E[R], \lambda = X$
- Steady state probability
 - o M/M/1:
 - $E[N] = \lambda/(\mu \lambda) = \rho/(1-\rho)$, if you have overall system λ
 - $E[N] = \sum_{i=0}^{\infty} i\pi_i$ \leftarrow probability \times #jobs, if your λ or μ is different for each state
 - $\bigcirc \qquad \text{M/M/C: E[N]} = \Sigma \text{E[N_i]} = \Sigma \text{P} \lambda / (\mu_i \!\!-\!\! \text{P} \lambda) = \Sigma (\lambda_i / (\mu_i \!\!-\!\! \lambda_i))$

Think time [Z]: time it takes the user to put a request in and start, it's kinda like the frequency that users put in requests (seconds / request)

$$E[Z] = E[T] - E[R]$$

Throughput [X]: out-rate, max jobs / hour of full system

$$X \le \min\left(\frac{1}{D_{\max}}, \frac{N}{D + E[Z]}\right)$$

Note:
$$\frac{1}{D_{\max}}$$
 and $\frac{N}{D+E\big[Z\big]}$ converge at their lowest point, so equate them $X_i=E\big[V_i\big]X$

Utilization [ρ]: ratio that the time is busy

$$\rho_i = X_i E[S_i]$$

$$\rho_i = XD_i$$

$$\rho = \lambda/c_i\mu$$

Visitation Trick

If determining visitation at a node, establish a reference node from one of the incoming nodes, usually the user node, that has a returning percentage

 $V_{user} = 1 = 0.1 \cdot V_{CPU}$

Summation Equations

Geometric Series: $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$, where $0 \le r \le 1$ (because otherwise it would be unstable)

$$\sum_{i=0}^{\infty} r^{i+1} = \sum_{i=1}^{\infty} r^{i} = \frac{r}{1-r}$$

$$\sum_{i=1}^{\infty} r^i = \sum_{i=0}^{\infty} r^i - 1$$

Geometric Sequence: $S_n = \sum_{i=0}^n r^i = \frac{1-r^{n+1}}{1-r}$

$$S_n = \sum_{i=1}^n r^i = \frac{r(1-r^n)}{1-r}$$

Removing the annoying factors:

$$\sum_{i=0}^{\infty} i(i+1)\rho^{i}$$

Take out a value so the integral takes out the i and i+1

$$= \rho \sum_{i=0}^{\infty} i(i+1)\rho^{i-1}$$

$$= \rho \frac{d\rho}{di} \left(\sum_{i=0}^{\infty} (i+1)\rho^{i} \right)$$

$$= \rho \frac{d\rho^{2}}{d^{2}i} \left(\sum_{i=0}^{\infty} \rho^{i+1} \right)$$

$$= \rho \frac{d\rho^{2}}{d^{2}i} \left(\sum_{i=0}^{\infty} \rho^{i} \right)$$

$$= \rho \frac{d\rho^{2}}{d^{2}i} \left(\sum_{i=0}^{\infty} \rho^{i} - \rho^{0} \right)$$

$$= \rho \frac{d\rho^{2}}{d^{2}i} \left(\frac{1}{1-\rho} - 1 \right)$$

DTMC

Discrete Time Markov Chains (DTMC):

[n]: number of tasks in queue / system

$$\pi_n = \frac{\prod_{i=0}^n \lambda_i}{\prod_{i=0}^n \mu_i} \pi_0$$

^think of it like series / parallel, where you add multiple connections out in different directions (parallel) and multiply connections stacked onto each other (series)

OR jobs_{in} = jobs_{out}

Steady state: n->∞

For discrete: use the sum of the X's, so $E[X] = \Sigma(P(X=i) \cdot X_i)$ and $E[X^2] = \Sigma(P(X=i) \cdot X_i^2)$

Matrices

Rows: equations for nodes going out (add up to 1)

Columns: equations for nodes coming in

CTMC

Poisson Process

Counting Process: a way of determining the time between consecutive occurrences of an event **Poisson Process**: a *counting process*, whose time between arrivals uses Exponential Distribution

- $\lambda_{total} = \Sigma \lambda_i$
 - \circ you can also split up λ into multiple λ s

- Not only do you see each second as time independent, each stream of probabilities is independent
- $P(x;\lambda) = e^{-\lambda} \lambda^x / x!$
 - [x]: things will happen
 - \circ [λ]: rate; $\lambda = \alpha t$
- $[\alpha]$: expected number of events during unit interval
- [t]: time interval length
- $\bullet \quad P_X(t) = \frac{e^{-\alpha t} \cdot (\alpha t)^X}{X!}$

Kendall notation

Job Processing time [μ]: rate of jobs leaving system (jobs/sec) $\mu = 1$ / processing_time_per_job

M/M/1 Queue

[M]: time between arrivals is Markovian (Memoryless) \sim exp(λ)

[M]: job processing times are Markovian (Memoryless) $\sim \exp(\mu)$

[1]: single server

$$(\Sigma p_{out}) \times \pi_i = \Sigma p_j \pi_j$$
, j=0..n, j $\neq i$

 π_0 : percent of time that the queue is empty

Attributes:

- FIFO
- Infinite buffer

Variations

- M/M/2 Queue: same, except 2 servers
- M/M/C Queue: *C* servers
- M/E_k/C: Erlang k, i.e. series of exponential
- H()/M/C: hyperexpontial distribution
- PH/M/C: phase type, i.e. any combination of any number of exponentials with any rate
- M/G/C: General distribution
- G/G/1: has not been solved yet
- M/M/1/1: 1 server, 1 job

[c]: number of servers

Think: one queue goes to multiple servers

$$\xrightarrow{\lambda}] \xrightarrow{N} M_1$$

$$\pi_0 = 1 - \lambda/\mu$$

e.g.

When you have varying

$$\pi_n = (n+1) \left(\frac{\lambda}{\mu}\right)^n \pi_0$$

$$1 = \sum_{i=0}^{\infty} (i+1) \rho^i \pi_0$$

$$= \pi_0 \sum_{i=1}^{\infty} (i+1) \rho^i$$

$$= \pi_0 \frac{d}{d\rho} \left(\sum_{i=0}^{\infty} \rho^{i+1}\right)$$

$$= \pi_0 \frac{d}{d\rho} \left(\sum_{i=1}^{\infty} \rho^i\right)$$

$$= \pi_0 \frac{d}{d\rho} \left(\sum_{i=0}^{\infty} \rho^i\right)$$

M/M/C Provisioning

Useful if multiple jobs are sharing the same queue

$$\pi_{0} = \left[1 + \sum_{i=1}^{c} \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^{i} \left(\frac{1}{1 - \frac{\lambda}{c\mu}}\right)\right]^{-1}$$

$$\pi_{i} = \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n} \pi_{0}, & n < c \\ \frac{1}{c!c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n} \pi_{0}, n \ge c \end{cases}$$

Blocking Probability $[P_Q]$: probability that a process will be blocked when entering the system and be placed in the queue

Erlang-C Equation:
$$P_{Q} = \sum_{i=0}^{\infty} \pi_{i} = \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^{c} \left(\frac{1}{1-\rho}\right) \pi_{0}$$

Given λ and μ , what should c be so $P_Q < \rho$

Waiting time in queue [Ro]: response time of queue

$$\begin{split} E\Big[R_{\mathcal{Q}}\Big] &= \frac{1}{\lambda} P_{\mathcal{Q}}\Bigg(\frac{\rho}{1-\rho}\Bigg) \\ \text{M/M/1: } E\Big[R_{\mathcal{Q}}\Big] &= \frac{1}{\mu-\lambda} - \frac{1}{\mu} \end{split}$$

M/M/C:
$$E[R_Q] = \left(\frac{(\lambda/\mu)^c \mu}{(c-1)!(c\mu-\lambda)^2}\right)\pi_0$$

[Q]: transition matrix

$$q_{ii} = -\sum_{j=i} q_{ij}$$

$$q_{ij} = \lim_{\Delta t \to 0} \frac{P\left\{X_{t+\Delta t} = j \mid X_{t} = i\right\}}{\Delta t}$$

Replace i <--> j to get q_{ii} and q_{ii}.

Jackson Networks

$$P(N_1 = n_1) = \pi_{\bar{n}} = P_1^{n_1} (1 - \rho_1) \rho_2^{n_2} (1 - \rho_2) \cdots \rho_k^{n_k} (1 - \rho_k)$$

$$\pi_{\mathbf{n}^{\sim}}$$
 = P(state of system \mathbf{n}^{\sim}) = $\prod_{i=1}^{k}$ P(n jobs at node i) = $\prod_{i=1}^{k} \rho_{i}^{n_{i}} \left(1 - \rho_{i}\right)$

Traffic Equations

For each node, what is the number of jobs entering? $\lambda_x = R + \Sigma P_{i,entering} \cdot \lambda_{i,entering}$

response rate + probability of each job entering

Questions

- Assignment 5, Q2 states in ready queue??
- Assignment 6, Q3, M/M/C