The Brzostowski-Krasiński-Oleksik conjecture on the Łojasiewicz exponent for Newton nondegenerate hypersurface singularities

Baldur Sigurðsson

IX RGAS Yearly Meeting, 13-15 January 2025

Newton diagrams

- \mathscr{R} Given a series $f(z) = \sum_i a_i z^i \in \mathbb{C}\{z_1, \dots, z_n\}$
- \mathscr{R} Define the support supp $(f) = \{i \in \mathbb{Z}_{\geq 0} \mid a_i \neq 0\}$
- \mathscr{R} $\Gamma_+(f)$ is the convex closure of $\operatorname{supp}(f) + \mathbb{R}^n_{>0}$.
- $\Re \Gamma(f)$ is the union of compact faces of $\Gamma_+(f)$.

A general question of Arnold

- \Re Let $f \in \mathbb{C}\{z_1,\ldots,z_n\}$ be a holomorphic function
- ${\mathfrak R}$ Denote its Newton diagram by $\Gamma(f) \subset {\mathbb R}^n_{\geq 0}$.
- \Re Denote by A(f) be some numerical analytic invariant of f,
- \circledast Denote by $a(\Gamma)$ some numerical invariant of a Newton diagram $\Gamma \subset \mathbb{R}^n_{\geq 0}$.

Question

Given A is there an a such that

$$a(\Gamma(f)) = A(f)$$
 if f is nondegenerate

Similarly, given a, is there an A such that the above holds?

Examples

A(f)	a(Γ)	
Multiplicity	$\min_{i\in\Gamma(f)} i _1$	
Milnor nº μ	Newton nº $\nu(\Gamma_{-}(f))$	Kouchnirenko 1976
Monodromy zeta	[formula]	Varchenko 1976
Geometric genus p_g	$ \Gamma(f)\cap \mathbb{Z}^n_{>0} $	Merle and Teissier 1977
$Spectrum \cap (-1,0]$	Newton filtration	Saito 1988
Oscillatory index	remoteness*	Varchenko 1976

*some conditions

The Łojasiewicz exponent

Let $f:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ be a holomorphic function germ, defining and isolated singularity $(X,0)\subset(\mathbb{C}^n,0)$.

Theorem (Łojasiewicz)

There exists θ , c > 0 such that for z small:

$$|\nabla f(z)| \geq c|z|^{\theta}.$$

Definition

Denote by $\mathcal{L}_0(f)$ the infimum of such θ : the Łojasiewicz exponent.

Theorem (Teissier, Teissier / Lejeune-Jalambert)

This infimum is a minimum, realized by the maximal polar quotient. In particular, the $\mathcal{L}_0(f)$ is rational.

Polar invariants

- Let $g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ be a *generic* linear function, defining a hyperplane $H=\ker g$.
- * Define the polar curve as the germ of the analytic set

$$P = \{z \in \mathbb{C}^n \mid H \subset \ker df_z\} = P_1 \cup P_2 \cup \ldots \cup P_I$$

Theorem (Teissier)

Decompose the polar curve into irreducible components $P = P_1, \dots, P_I$. Then

$$\mathcal{L}_0(f) = \max_q \frac{(X, P_q)_0}{(H, P_q)_0} - 1.$$

The case n=1

If n = 1, then we can assume that $f(z) = z^e$ where e is the multiplicity. Thus,

$$|\nabla f| = |ez^{e-1}| \sim |z|^{e-1}, \qquad \mathcal{L}_0(f) = e - 1,$$

and so

$$\mathcal{L}_0(f) = \min_{i \in \Gamma(f)} |i|_1 - 1,$$

The case n = 2 (Lenarcik)

Theorem (Lenarcik 1998)

Let $f \in \mathbb{C}\{x,y\}$ be holomorphic and Newton nondegnerate. If $\Gamma(f)$ has nonexceptional segments, then

$$\mathcal{L}_0(f) = \max_{S} \max\{\alpha(S), \beta(S)\}$$

were S runs through nonexceptional segments.

One Brzostowski-Krasiński-Oleksik definition (n > 0)

Definition

If $F \subset \Gamma(f)$ is a *facet* of the Newton diagram of f, denote by $x_i(F)$ the coordinate of the intersection point of the hyperplane containing F and the z_i -coordinate axis, and let m(F) be the maximum.

$$x_1(F_1) = 5$$
 $x_1(F_2) = 5$
 $x_2(F_1) = 15/2$ $x_2(F_2) = 16$
 $x_3(F_1) = 15$ $x_3(F_2) = 16/9$
 $m(F_1) = \max\{5, 15/2, 15\} = 15$
 $m(F_2) \equiv \max\{5, 16/9, 16\} = 16$

 $f(x, y, z) = x^5 + y^7z + z^{15}$

Another Brzostowski-Krasiński-Oleksik definition (n > 0)

Definition

A facet $F \subset \Gamma(f)$ is exceptional if there exist $i \neq j$ such that

- * all vertices of F lie on the j-th coordinate hyperplane, except for one
- * and that one has distance 1 to the z_i -axis.

$$i = 2$$
 $|(0,7,1) - (0,7,0)| = 1$

 F_2 is exceptional

The Brzostowski-Krasiński-Oleksik conjecture

Conjecture (Brzostowski-Krasiński-Oleksik 2012)

Assume that $f \in \mathbb{C}\{z_1, \dots, z_n\}$ defines a Newton nondegenerate isolated singularity, and that $\Gamma(f)$ contains a nonexceptional facet. Then

$$\mathcal{L}_0(f) = \max_F m(F) - 1$$

where F runs through nonexceptional facets.

Theorem (Brzostowski-Krasiński-Oleksik 2020)

The conjecture is true for n = 3.

Theorem (S)

The conjecture is false for n = 4.

A counterexample

The function

$$f(x, y, z, w) = x^2 + y^2 + xz + yz + xw + 2yw + z^3 + w^3$$

is Newton nondegnerate, and *nondegenerate*, i.e. the Hessian matrix is invertible. Therefore,

$$\mathcal{L}_0(f) = 1$$

The Newton diagram has two facets, both nonexceptional

$$F_1: x^2, y^2, xz, yz, xw, yw, m(F_1) = 2$$

$$F_2: xz, yz, xw, yw, z^3, w^3, m(F_2) = 3$$

A new conjecture

Definition

A facet F of a Newton diagram is (exceptionally) decomposable if it can be triangulated by exceptional simplices.

Conjecture (S)

The conjecture by Brzostowski-Krasiński-Oleksik holds if we replace exceptional with exceptionally decomposable.

iMuchas gracias!