Jakub Kreisinger Katedra zoologie, PřF UK

jakubkreisinger@seznam.cz

Pro specifické situace lze použít nástroje které už známe

- 1) logistická regrese: glm(y~x, family=binomial)
 - y: 1 přežil, 0 nepřežil
 - -problém se senzitivitou a falešně negativními výsledky (v určitém okamžiku jsou skoro všichni mrtví nebo všichni živý)

Pro specifické situace lze použít nástroje které už známe

- 2) Binomické glm: glm(y~x, family=binomial), y=cbind(úspěšné,neúspěšné)
 - viz Aebisher 1999,Bird Study
 - počet "úspěšných" vs. "neúspěšných" dní
 - intercept odpovídá pravděpodobnosti smrti za jednotku času
 - tiše předpokládá konstantní míru mortality v čase + další problémy
 - do jisté míry se dá obejít složitějšími typy modelů (viz Shaffer 2004, Auk).

Pro specifické situace lze použít nástroje které už známe

- 3) Gamma glm: glm(y~x, family=Gamma), y=délka života
 - nutné znát délku života všech sledovaných jedinců
 - předpokládá konstantní mortalitu nezávislou na věku

V nejčastěji používaných modelech přežívání počítáme s tzv. "hazard function", kterých je celá řada v závislosti na typu mortality

Typy mortality:

20

40

time

60

80

100

Příklady často používaných funkcí přežívání Při výběru funkce se soustředíme na to, jak dobře model s danou funkcí vysvětluje data v porovnání s alternativami (AIC, modelu deviance...)

Distribution	Hazard
Exponential	$constant = \frac{1}{}$
Weibull	$\alpha\lambda(\lambda t)^{\alpha-1}$ μ
Gompertz	be^{ct}
Makeham	$a + be^{ct}$
Extreme value	$\frac{1}{2}e^{(t-\eta)/\sigma}$
Rayleigh	a + bt

These plots show how hazard changes with age for the following distributions: from top left to bottom right: **exponential**, **Weibull**, **Gompertz**, **Makeham**, **extreme value** and **Rayleigh**.

Analýza v R

1) Cox proportional hazards model (R funkce: coxph)

- neparametický, minimum předpokladů ohledně funkce přeživání
- pouze testuje rozdíly v přežívání mezi skupinami
- není schopný predikcí (kolik pacientů bude na základě našich dat žít 2 roky po ukončení sběru dat)

2) Parametrické modely (R funkce: survreg)

- tzv. "accelerated failure-time models"
- nutno specifikovat konkrétní funkci přežívání
- možno použít odhad parametrů k extrapolacím a predikcím

Analýza v R

Některé jevy, které se obvykle vyskytují v divoké populaci lze pomocí těchto funkcí obtížně specifikovat (sezóní variabilita/cyklicita)
Navíc máme často dost vágní informace o tom jak dlouho daný jedinec žil a kdy zemřel (capture-mark-recapture data, kroužkovací data apod.)

Možno použít některý s přístupů popsaných zde:

http://warnercnr.colostate.edu/~gwhite/mark/mark.htm https://www.afsc.noaa.gov/publications/procrpt/pr2013-01.pdf

