Name:

Worksheet 17 Orthogonality & Inner Products

MATH 2250, Fall 2018

1. Find a unit vector in the direction of the given vectors

(a)
$$\mathbf{x} = \begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}$$

(b)
$$\mathbf{w} = \begin{bmatrix} \frac{8}{3} \\ 2 \end{bmatrix}$$

2. Determine which set of vectors are orthogonal.

(a)
$$\mathbf{u} = \begin{bmatrix} 12\\3\\-5 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2\\-3\\3 \end{bmatrix}$

(b)
$$\mathbf{z} = \begin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix}$

3. Verify that $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$. (Hint: Use the definition of the inner product that involves the transpose)

4. Verify that $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$. Use the same hint as in problem 3.