Generation of decay of SM particles into millicharged particles

C. Campagnari, B. Marsh (UCSB)

June 21, 2019

1 Introduction

In this document we discuss the MC generation of decays and the calculation of branching ratios for processes of the type $A \to \zeta^+ \zeta^- X$ where A is a SM particle, ζ is a millicharged particle and X are other SM particles. We start from $A \to e^+ e^- X$, calculate the branching ratio for the decay into ζ 's (if kinematically allowed) and then discussed the methods to generate the actual decays.

We do not consider $Z \to \zeta \zeta$ since we expect that the Drell Yan process should be dealt separately through an external MG model. This is because the coupling of the ζ to the Z are not given by a simple rescaling of the SM Zee vertex by Q^2 , where Q is the charge of the ζ in units of e.

The generation of the SM A particles is not discussed here.

2 Processes

The main processes for $A \to e^+e^-X$ at the LHC are:

- $\pi^0 \to e^+ e^- \gamma$ (BR=1.17%, Dalitz decay)
- $\eta \to e^+e^-\gamma$ (BR=0.7%, Dalitz decay)
- $\eta' \to e^+ e^- \gamma$ (BR=5e-4, Dalitz decay)
- $\omega \to \pi^0 e^+ e^-$ (BR=8e-4, Dalitz decay)

- $\eta' \to \omega e^+ e^-$ (BR=2e-4, Dalitz Decay)
- $\eta' \to \pi^+ \pi^- e^+ e^- \gamma$ (BR=2e-3, sort of Dalitz, skip for now)
- $V \to e^+e^- \ (V = \text{onia}, \phi, \rho, \omega)$

Note that if we are only interested on ζ masses above 100 MeV, Dalitz decays of π^0 and decays of η' into ω do not contribute. In all cases the BR for $A \to \zeta^+ \zeta^- X$ can be obtained by rescaling $A \to e^+ e^- X$ by a factor of Q^2 times an additional mass-dependent factor. In general this factor consists of a phase space piece $\sqrt{1 - (2m_{\zeta}/m_A)^2}$ plus an additional piece that arises from the matrix element.

3 Branching Ratios

3.1 Dalitz BR

The partial width for $A \to e^+e^-\gamma$ can be written as[1, 2]:

$$\frac{d\Gamma}{dq^2} = \frac{2\alpha}{3\pi q^2} \left(1 + \frac{2m_e^2}{q^2}\right) \sqrt{1 - \frac{4m_e^2}{q^2}} \left(1 - \frac{q^2}{m_A^2}\right)^3 |F(q^2)|^2 \Gamma(A \to \gamma\gamma)$$
(1)

where m_A is the mass of A, q^2 is the mass-squared of the e^+e^- pair, and $F(q^2)$ is a form factor. This form factor is such that F(0) = 1 and for pions is usually parametrized near $q^2 = 0$ as $F(q^2) = 1 + a \frac{q^2}{m_{\pi}^2}$ with $a \approx 0.03$. The form factor can also be estimated in the Vector Dominance Model (VDM) as

$$|F(q^2)|^2 = \frac{m_\rho^4 + m_\rho^2 \Gamma_\rho^2}{(m_\rho^2 - q^2)^2 + m_\rho^2 \Gamma_\rho^2}$$
 (2)

where m_{ρ} and Γ_{ρ} are the mass and width of the ρ meson. The VDM model assumes that the decay proceeds through $\pi^0 \to \gamma V^*, V^* \to e^+e^-$ and $V = \rho$ or ω ; equation 2 neglects the difference between ρ and ω .

In the case of $A \to e^+e^-X$, when X is not γ , the partial width can be written as

$$\frac{d\Gamma}{dq^2} = \frac{\alpha}{3\pi q^2} \left(1 + \frac{2m_e^2}{q^2}\right) \sqrt{1 - \frac{4m_e^2}{q^2}} \cdot \left[\left(1 + \frac{q^2}{m_A^2 - m_X^2}\right)^2 - \frac{4m_A^2 q^2}{(m_A^2 - m_X^2)^2} \right]^{3/2} |F_{AX}(q^2)|^2 \Gamma(A \to X\gamma) \tag{3}$$

where m_X is the mass of X, and the transition form factor F_{AX} can also be approximated as in equation 2.

For millicharged particles, Dalitz decays branching ratios can be obtained by integrating equation 1 or 3 from $q^2 = 4m_{\zeta}^2$ to the kinematical limit, substituting m_{ζ} for m_e , and rescaling by Q^2 . Some numerical results, for Q = 1 are given in Table 1. Note the sharp drop in branching ratios with mass, especially for the π^0 . The calculations with the electron and muon masses are in good agreeemnt with the PDG.

3.2 Vector meson branching ratios

At lowest order the SM decay rate for $V \to \ell\ell$ is given by the Van Royen-Weisskopf formula[3, 4]:

$$\Gamma(V \to \ell\ell) = 4\pi\alpha^2 \frac{f_V^2}{m_V} Q_q^2 (1 - 4x_\ell^2)^{1/2} (1 + 2x_\ell^2)$$
 (4)

where f_V is the vector decay constant, m_V is the vector mass, Q_q is the charge of the quark that makes up the meson, $x_\ell = m_\ell/m_V$, and m_ℓ is the lepton mass.

Thus the ratio of BR for $V \to \zeta\zeta$ to $V \to ee$ is given by

$$\frac{\Gamma(V \to \zeta\zeta)}{\Gamma(V \to ee)} = Q^2 \frac{(1 - 4x_{\zeta}^2)^{1/2} (1 + 2x_{\zeta}^2)}{(1 - 4x_{\ell}^2)^{1/2} (1 + 2x_{\ell}^2)}$$
(5)

where $x_{\zeta} = m_{\ell}/m_{V}$, and m_{ζ} is the mass of ζ .

As a sanity check, we use equation 5 and BR($\psi(2S) \to ee$)=7.93e-3 to predict BR($\psi(2S) \to \tau\tau$) = 3.1e-3, in agreement with the PDG value of (3.1 \pm 0.4)e-3.

$m_{\zeta} \; ({ m MeV})$	$\pi^0 \to \zeta \zeta \gamma$	$\eta \to \zeta \zeta \gamma$	$\eta' \to \zeta \zeta \gamma$	$\eta' \to \zeta \zeta \omega$	$\omega \to \zeta \zeta \pi^0$
$0.511 \ (=m_e)$	1.17 e-2	6.6 e-3	4.6 e-4	1.8 e-4	7.6 e-4
PDG for ee	(1.17 ± 0.04) e-2	(6.9 ± 0.4) e-4		(2.0 ± 0.4) e-4	(7.7 ± 0.6) e-4
10	2.8 e-3	2.9 e-3	2.5 e-4	5.7 e-5	3.7 e-4
30	3.5 e-4	1.6 e-3	1.8 e-4	1.7 e-5	2.3 e-4
50	1.2 e-5	1.0 e-3	1.4 e-4	4.3 e-6	1.6 e-4
60	2.7 e-7	8.2 e-4	1.3 e-4	1.7 e-6	1.4 e-4
90		4.3 e-4	1.0 e-4		9.2 e-5
$105.7 \ (=m_{\mu})$		3.0 e-4	9.2 e-5		7.4 e-5
PDG for $\mu\mu$		$(3.1 \pm 0.4) \text{ e-4}$	$(1.1 \pm 0.3) \text{ e-4}$		$(1.3 \pm 0.2) \text{ e-4}$
150		8.9 e-5	6.8 e-5		3.7 e-5
200		1.2 e-5	4.8 e-5		1.5 e-5
250		1.0 e-7	3.2 e-5		3.6 e-6
400			5.6 e-7		

Table 1: Branching ratios for different Dalitz decay modes as a function of m_{ζ} for Q=1 calculated based on equations 1, 2, and 3. When possible we compare with the values from the 2019 PDG.

4 Generation of the decays

We provide functions that take as input the lab frame 4-vector of either pseudoscalar (P) or vector (V) meson, and return the 4 vectors of the two ζ 's from the decay. We assume that the V's are unpolarized.

4.1 Generation of Dalitz decays

The implementation goes as follows (this should also work for the Dalitz decay of the ω as long as the ω is unpolarized):

- Rotate the 4-vector of P from the lab frame into frame S_1 such that P is traveling in the z-direction.
- \bullet Boost along z into frame S_2 where P is at rest.
- Pick a q^2 according to equation 1.
- Generate a decay $P \to X\gamma^*$ where γ^* is a particle of $m^2 = q^2$. The γ^* direction is random in ϕ and random in $\cos \theta$.

- Rotate the γ^* 4-vector into a frame S_3 such that the γ^* is traveling in the z-direction.
- Boost along z into frame S_4 where γ^* is at rest.
- Generate a decay $\gamma^* \to \zeta^+ \zeta^-$ such that the angle ϕ of the ζ^+ is random and $\cos \theta$ is picked according to [5]

$$\frac{dN}{d\cos\theta} = 1 + \cos^2\theta + \frac{4m_{\zeta}^2}{q^2}\sin^2\theta \tag{6}$$

- Set the 3-vector of the ζ^- to be back-to-back with the ζ^+ .
- Boost the 4-vectors of the ζ 's from S_4 to S_3 .
- Rotate the 4-vectors of the ζ 's from S_3 to S_2 .
- Boost the 4-vectors of the ζ 's from S_2 to S_1 .
- Rotate the 4-vectors of the ζ 's from S_1 to the lab frame.

4.2 Generation of vector decays

The procedure is the following:

- Rotate the 4-vector of V from the lab frame into frame S_1 such that V is traveling in the z-direction.
- Boost along z into frame S_2 where V is at rest.
- Generate a decay $V \to \zeta^+ \zeta^-$ such that both the angle ϕ and the $\cos \theta$ of the ζ^+ are random.
- Set the 3-vector of the ζ^- to be back-to-back with the ζ^+ .
- Boost the 4-vectors of the ζ 's from S_2 to S_1 .
- Rotate the 4-vectors of the ζ 's from S_1 to the lab frame.

5 Code

Code to calculate the branching ratios and to generate the decays can be found at https://github.com/bjmarsh/milliq_mcgen

References

- [1] L. G. Landsberg, Phys. Rep. 128, 301 (1985).
- [2] See for example http://cds.cern.ch/record/683210/files/soft-96-032.pdf.
- [3] Aloni, D., Efrati, A., Grossman, Y. et al. J. High Energ. Phys. (2017) 2017: 19.
- [4] R. Van Royen and V. F. Weisskopf, Nuovo Cim. A 50, 617 (1967) Erratum: [Nuovo Cim. A 51, 583 (1967)].
- [5] P. Adlarson et al., Phys. Rev. C 95, 025202 (2007).