Homework 2 COM S 311

Alec Meyer

September 9, 2020

Question 1

a. $2^{2n} \in O(2^n)$ Claim: $2^{2n} \notin O(2^n)$ $f(n) \le c \times g(n)$ $f(n) = 2^{2n}, g(n) = 2^n$ plug in f(n) and g(n) $2^{2n} \le c \times 2^n$ $\frac{2^{2n}}{2^n} \le c$ $2^n \le c$

Here we have a constant 'c' being greater than or equal to a function of n. This is not possible as 2^n will surpass the value of c. Therefore, since there is no constant value c to satisfy this claim we know that this statement is false.

$$\therefore 2^{2n} \notin O(2^n) \text{ b.}$$

Question 2

a.

Inner:

$$\sum_{k=1}^{j} c_1 = c_1 j$$

Middle:

$$\sum_{j=i}^{n} (c_2 + c_1 j)$$

$$\sum_{i=i}^{n} c_2 + \sum_{j=i}^{n} c_1 j$$

$$\sum_{i=i}^{n} c_1 j = c_1 \left(\frac{n(n+1)}{2} - \frac{i(i-1)}{2} \right)$$

$$\sum_{j=i}^{n} c_2 = c_2(n-i+1)$$

Outer:

$$\sum_{i=1}^{n-1} \left[c_2(n-i+1) + c_1\left(\frac{n(n+1)}{2} - \frac{i(i-1)}{2}\right) \right]$$

$$\sum_{i=1}^{n-1} \left[c_2 n - c_2 i + c_2 + \frac{c_1 n^2}{2} + \frac{c_1 n}{2} - \frac{c_1 i^2}{2} - \frac{c_1 i}{2} \right]$$

$$=c_2n^2-\frac{c_2n(n+1)}{2}-1+c_2+\frac{c_1n^3}{2}+\frac{c_1n^2}{2}-\frac{n^2(n+1)}{2}-1-\frac{n(n+1)}{2}-1$$

$$\in O(n^3)$$

Question 3

a.

$$\begin{array}{ll} \text{for(int } i = 0; \ i < A.\,\text{size; } i +\!\!+\!\!) \\ & \text{if(binarySearch(T-A[i]))} \\ & \text{TRUE} \end{array}$$

FALSE

FOR loop time:

$$\sum_{i=0}^{n} Binary Search$$

We know that Binary Search is O(logn)

We Binary Search n times, therefore the runtime of this algorithm is $\mathcal{O}(n log n)$