Math2310 - Fall '22

Syllabus - Lecture 01

BY GENNADY URALTSEV

Review

First day of class:) Welcome!

Topics

1 What are vector spaces and vectors?

- What are vectors and vector spaces?
- algebraic representation of vectors in \mathbb{R}^2 and \mathbb{R}^3 : tuples of real numbers.
- visual representation of vectors in \mathbb{R}^2 and \mathbb{R}^3 : points and/or arrows.
- rmk Right-handedness/orientation of representation in \mathbb{R}^2 and \mathbb{R}^3 .
- rmk Do not use two arrows on coordinate axis!
- <u>defn</u> the meaning of the words: vector space, point, component, dimension, projection.
- <u>defn</u> scalars.
- the vectors $\vec{0}$ in all dimensions: <u>defn</u> the *origin*.

• notation

- Vectors are denoted with an arrow or with boldface: \vec{u} or u.
- Coordinate representation of vectors is given by row or column vectors:

$$\vec{u} = (1, 2, 3) \text{ or } \vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

• Components are represented by indexes: $\vec{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$:

exmpl if
$$\vec{u} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$
 then $u_1 = 3$, $u_2 = 4$, $u_3 = 5$.

2 Operations on vectors: addition, multiplication by scalars

- algebra of vectors:
 - o addition
 - o multiplication by scalars
 - \circ factoring out scalar multiples

- graphical visualization of algebra of vectors
 - addition corresponds to tail to end.
 - multiplication by scalars correspond to scaling/zooming
 - o addition corresponds also to translation
- coordinates and basis vectors:
 - o <u>defn</u> standard basis: the vectors \hat{e}_1 , \hat{e}_2 of \mathbb{R}^2 and the vectors \hat{e}_1 , \hat{e}_2 , \hat{e}_3 of \mathbb{R}^3
 - defn representing a vector in the standard basis (briefly mentioned in class, [Ste] pp 841)
 - the relation of the coordinates of the vectors with their standard basis representation
 - que What is a good notion for "a collection of basis vectors in \mathbb{R}^3 "? (not discussed in course yet)
- Notation for sets
 - o notation representing sets using curly braces: for example

$$A = \{(x, y, z) \in \mathbb{R}^3 : x > y\}$$

or equivalently

$$A = \left\{ \vec{u} \in \mathbb{R}^3 : u_1 > u_2 \right\}$$

o <u>notation</u> representing sets using equation form: for example

$$A = \left\{ (x, y, z) \in \mathbb{R}^2 : x^2 + y^2 = 1 \right\}$$

or equivalently

$$A = \{ \vec{u} \in \mathbb{R}^2 : u_1^2 + u_2^2 = 1 \}.$$

o <u>notation</u> representing sets using parametric form: for example

$$A = \left\{ (x,y,z) \in \mathbb{R}^3 : (x,y,z) = (1,0,0) + \lambda(1,2,3), \; \lambda \in \mathbb{R} \right\}$$

or the shorter version

$$A = \left\{ (1,0,0) + \lambda(1,2,3) \in \mathbb{R}^3, \ \lambda \in \mathbb{R} \right\}$$

or even shorter

$$A = \left\{ (1, 0, 0) + \lambda(1, 2, 3), \ \lambda \in \mathbb{R} \right\}$$

- Typical questions of analytic geometry (only questions, no answers given in class yet):
 - que given 3 points in \mathbb{R}^3 find a plane passing through them

- \circ que given 4 points in \mathbb{R}^3 determine if they line in the same plane
- que given 2 points in \mathbb{R}^2 or \mathbb{R}^3 find the line passing through them
- o que given 2 points in \mathbb{R}^2 or \mathbb{R}^3 determine if a third point lies on it
- que given 2 lines in \mathbb{R}^2 or \mathbb{R}^3 determine if they are parallel
- \circ que given 2 lines in \mathbb{R}^3 determine if they lie in the same plane
- que what is the angle between to lines through the origin in \mathbb{R}^2 ?
- que what is the angle between to lines through the origin in \mathbb{R}^3 ?

References

Textbook

Textbook references pages in

James Stewart, Saleem Watson, Daniel K. Clegg - Multivariable Calculus, Metric Edition - 9th edition - Cengage Learning

- [Ste] Ch 12.1 pp 829-836 (complete)
- [Ste] Ch 12.2 pp 837-847 (complete)

Videos

- Representing points in 3d | Multivariable calculus | Khan Academy
- The Vector Equation of Lines | Multivariable Calculus

Additional material

Videos

- Vectors | Chapter 1, Essence of linear algebra
- Linear combinations, span, and basis vectors | Chapter 2, Essence of linear algebra

Geogebra applets

- Adding Vectors GeoGebra
- Adding Vectors Geometrically GeoGebra
- 3D Vector visualization GeoGebra
- Vector Addition (3D) GeoGebra