

Sexual Plant Reproduction

Editorial Board

Volume 2
1989

H.F. Linskens *Managing Editor*

c/o Springer-Verlag, Tiergartenstrasse 17,
D-6900 Heidelberg 1, Federal Republic of Germany

□ *Pollen as a tool of plantbreeders; recognition and
rejection reaction during incompatibility and incongruity;
physiology of algal gametes*

P.D. Ascher Department of Horticultural Science and
Landscape Architecture, University of Minnesota, 305
Alderman Hall, 1970 Folwell Ave., St. Paul, MN 55108, USA

□ *Mechanisms of incongruity and incompatibility*

J.A. Callow Department of Plant Biology, The University
of Birmingham, P.O. Box 363, Birmingham B15 2TT, UK

□ *Sexuality of fungi*

A.E. Clarke Plant Cell Biology Research Centre, School
of Botany, University of Melbourne, Parkville, Victoria 3052,
Australia

□ *Molecular biology of self-incompatibility; proteoglycans
in sexual tissues; overcoming breeding barriers;
gametocides*

M. Cresti Dipartimento di Biologia Ambientale, Sezione
Botanica, Università di Siena, Via P.A. Mattioli, 4, I-53100
Siena, Italy

□ *Ultrastructure of pollen development; pollen tube
growth and pollen-stigma interactions*

H.G. Dickinson Department of Botany, Plant Science
Laboratories, University of Reading, Whiteknights, P.O. Box
221, Reading RG6 2AS, UK

□ *Gene expression during meiosis and macro/micro-
sporogenesis; male sterility; biochemistry and physiology of
anther dehiscence and incompatibility systems*

C. Dumas Reconnaissance Cellulaire et Amélioration des
Plantes, Université Cl. Bernard-Lyon I, I.C.B.M.C./
UM 380 024, Bât. 741, 5ème étage, 43 Boulevard du
11 Novembre 1918, F-69622 Villeurbanne Cedex, France

□ *Pollen physiology; recognition and interaction of
gametes*

H. van den Ende Plantenfysiologisch Laboratorium,
Universiteit van Amsterdam, Kruislaan 318, NL-1098 SM
Amsterdam, The Netherlands

□ *Recognition and interaction of gametes; mechanisms of
gamete attraction, especially in algae and fungi*

G.W. Gooday Department of Genetics and Micro-
biology, University of Aberdeen, Aberdeen AB9 1AS, UK

□ *Sexuality of microorganisms*

J. Heslop-Harrison Welsh Plant Breeding Station,
University College of Wales, Plas Gogerddan, near
Aberystwyth SY23 3EB, UK

□ *Male and female gametophyte development;
morphology, physiology and molecular mechanisms of
pollen-style interaction*

W.A. Jensen College of Biological Sciences, The Ohio
State University, 484 West 12th Avenue, Columbus, OH
43210-1292, USA

□ *Ultrastructure of embryo sacs, pollen, pollen tubes,
gametes; fertilization in flowering plants; gametocides*

R.B. Knox Plant Cell Biology Research Centre, School of
Botany, University of Melbourne, Parkville, Victoria 3052,
Australia

□ *Pollen gene expression; cell biology of fertilization and
gamete interaction in seed plants*

J.P. M ascarenhas Department of Biological Sciences,
State University of New York at Albany, Albany, NY 12222,
USA

□ *Biochemistry and molecular biology of male gameto-
phyte development*

H. Miki-Hirosige Biological Laboratory, Kanagawa Dental
College, Inaokacho 82, Yokosuka, 238 Japan

□ *Submicroscopical morphology of sexual structures*

D.L. Mulcahy Department of Botany, University of
Massachusetts, Amherst, MA 01003, USA

□ *Biotechnological use of pollen; pollen selection; pollen
competition; pollen tropisms*

J.B. Nasrallah Section of Plant Biology, Division of
Biological Sciences, Cornell University, Plant Science
Building, Ithaca, NY 14853-5908, USA

□ *Biochemical events of fertilization and incompatibility*

R.C. Starr Department of Botany, University of Texas,
Austin, TX 78712, USA

□ *Sexuality and gamete physiology of fungi and algae*

J. Tupy Department of Genetics, Institute of Experimental
Botany, Czechoslovak Academy of Sciences, Vltavská 17,
150 00 Prague 5, Czechoslovakia

□ *Physiology and biochemistry of male gametophyte;
gene expression during pollen development and pollen
tube growth; biotechnological use of pollen*

D.H. Wallace Department of Plant Breeding and
Biometry, New York State College of Agriculture and Life
Sciences, Cornell University, 252 Emerson Hall, Ithaca, NY
14853-1902, USA

□ *Fertilization processes and plant breeding*

R. Wiermann Botanisches Institut der Westfälischen
Wilhelms-Universität, Schlossgarten 3, D-4400 Münster,
Federal Republic of Germany

□ *Physiological and biochemical aspects of pollen
differentiation and ripening*

Springer
International

Sexual Plant Reproduction

Founded in 1988.

Copyright

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher; and that the manuscript will not be published elsewhere in any language without the consent of the copyright holders.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Special regulations for photocopies in the USA: Photocopies may be made for personal or in-house use beyond the limitations stipulated under Section 107 or 108 of U.S. Copyright Law, provided a fee is paid. This fee is US \$ 0.20 per page, or a minimum of US \$ 1.00 if an article contains fewer than five pages. All fees should be paid to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, USA, stating the ISSN 0934-0882, the volume, and the first and last page numbers of each article copied. The copyright owner's consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.

Printers

Universitätsdruckerei H. Stürtz AG, D-8700 Würzburg

© Springer-Verlag Berlin Heidelberg 1989
Springer-Verlag GmbH & Co. KG, D-1000 Berlin 33

Printed in Germany

Contents

Anderson NO, Liedl BE, Ascher PD, Desborough SL: Distinguishing between self-incompatibility and other reproductive barriers in plants using male (MCC) and female (FCC) coefficient of crossability 116
Ascher PD → Anderson NO
Ashton ME → Mizelle MB

Bashe DM → Hamilton DA
Bednarska E: The effect of exogenous Ca^{2+} ions on pollen grain germination and pollen tube growth. Investigations with $^{45}\text{Ca}^{2+}$ together with Verapamil, La^{3+} , and ruthenium red 53
Boyle TH → Samaha RR

Cambi VN, Hermann PM: Critical studies on the sexuality of southern Argentinian Ericaceae 142
Chen BY, Heneen WK: Evidence for spontaneous diploid androgenesis in *Brassica napus* L. 15
Chen F, Ciampolini F, Tiezzi A, Cresti M: The ultrastructure of polymorphic pollen grains of *Canna indica* L. 193
Ciampolini F → Chen F
Crabbendam K → Klis FM
Cresti M → Chen F
Cresti M → Shivanna KR

DeMason DA → Southworth D
Desborough SL → Anderson NO
Dickinson HG → Liu XC
Dumas C → Dupuis I
Dupuis I, Dumas C: In vitro pollination as a model for studying fertilization in maize (*Zea mays* L.) 265

Egmond P van → Klis FM
Elgersma A, Stephenson AG, Nijs APM den: Effects of genotype and temperature on pollen tube growth in perennial ryegrass (*Lolium perenne* L.) 225
Ende H van den → Klis FM

Ferranti V → Negri V
Frascaroli E → Sari Gorla M
Fritz NK, Hanneman RE Jr: Interspecific incompatibility due to stylar barriers in tuber-bearing and closely related non-tuber-bearing *Solanums* 184

Gradziel TM, Robinson RW: Breakdown of self-incompatibility during pistil development in *Lycopersicon peruvianum* by modified bud pollination 38
Gradziel TM, Robinson RW: *Solanum lycopersicoides* gene introgression to tomato, *Lycopersicon esculentum*, through the systematic avoidance and suppression of breeding barriers 43
Gunning BES → Taylor P

Hamilton DA, Bashe DM, Stinson JR, Mascarenhas JP: Characterization of a pollen-specific genomic clone from maize 208
Hanneman RE Jr → Fritz NK
Heberle-Bors E: Isolated pollen culture in tobacco: plant reproductive development in a nutshell 1
Heneen WK → Chen BY
Hermann PM → Cambi VN
Heslop-Harrison J, Heslop-Harrison Y: Actomyosin and movement in the angiosperm pollen tube: an interpretation of some recent results 199
Heslop-Harrison J, Heslop-Harrison Y: Cytochalasin effects on structure and movement in the pollen tube of *Iris* 27
Heslop-Harrison Y → Heslop-Harrison J

Jackson JF: Borate control of protein secretion from *Petunia* pollen exhibits critical temperature discontinuities 11
Jensen WA → Mizelle MB
Jensen WA → Yan H

Kardolus JP → Wagner VT
Kaul V → Taylor P
Kenrick J → Staff IA
Kenrick J → Taylor P
Klis FM, Crabbendam K, Egmond P van, Ende H van den: Ultrastructure and properties of the sexual agglutinins of the biflagellate green alga *Chlamydomonas moewusii* 213
Knox RB → O'Neill PM
Knox RB → Staff IA
Knox RB → Taylor P

Ladyman JAR → Mogensen HL
Landi P → Sari Gorla M
Li Y → Taylor P
Liedl BE → Anderson NO
Liu XC, Dickinson HG: Cellular energy levels and their effect on male cell abortion in cytoplasmically male sterile lines of *Petunia hybrida* 167

Mascarenhas JP → Hamilton DA
Mizelle MB, Sethi R, Ashton ME, Jensen WA: Development of the pollen grain and tapetum of wheat (*Triticum aestivum*) in untreated plants and plants treated with chemical hybridizing agent RH0007 231
Mogensen HL, Ladyman JAR: A structural study on the mode of action of CHA™ Chemical Hybridizing Agent in wheat 173
Mulcahy DL → Samaha RR

Nakanishi T, Sawano M: Changes in pollen tube behaviour induced by carbon dioxide and their role in overcoming self-incompatibility in *Brassica* 109
Negri V, Romano B, Ferranti F: Male sterility in bird'sfoot trefoil (*Lotus corniculatus* L.) 150
Nijs APM den → Elgersma A

Olmstead RG: The origin and function of self-incompatibility in flowering plants 127
O'Neill PM, Singh MB, Knox RB: Biosynthesis of S-associated proteins following self- and cross-pollinations in *Brassica campestris* L. var. 'T. 15' 103
Ottaviano E → Sari Gorla M

Paolillo DJ Jr → Singh A
Platt-Aloia KA → Southworth D

Rajora OP: Pollen competition among *Populus deltoides* Marsh., *P. nigra* L. and *P. maximowiczii* Henry in fertilizing *P. deltoides* ovules and siring its seed crop 90
Robinson RW → Gradziel TM
Romano B → Negri V

Said C: Some characteristics of pollen wall cytochemistry and ultrastructure in Japanese larch (*Larix leptolepis* Gord.) 77
Samaha RR, Boyle TH, Mulcahy DL: Self-incompatibility of *Zinnia angustifolia* HBK (Compositae). I. Application of visible light and fluorescence microscopy for assessment of self-incompatibility 18
Sari Gorla M, Ottaviano E, Frascaroli E, Landi P: Herbicide-tolerant corn by pollen selection 65
Sawano M → Nakanishi T
Schel JHN: Plant cell biology 150 years after Matthias Schleiden. A retrospective 59
Sethi R → Mizelle MB
Shivanna KR, Cresti M: Effects of high humidity and temperature stress on pollen membrane integrity and pollen vigour in *Nicotiana tabacum* 137
Singh A, Paolillo DJ Jr: Towards an in vitro bioassay for the self-incompatibility response in *Brassica oleracea* 277
Singh MB → O'Neill PM
Southworth D, Platt-Aloia KA, DeMason DA, Thomson WW: Freeze-fracture of the generative cell of *Phoenix dactylifera* (Arecaceae) 270
Staff IA, Taylor P, Kenrick J, Knox RB: Ultrastructural analysis of plastids in angiosperm pollen tubes 70
Stephenson AG → Elgersma A
Stinson JR → Hamilton DA

Taylor P, Kenrick J, Li Y, Kaul V, Gunning BES, Knox RB: The male germ unit of

Rhododendron: quantitative cytology, three-dimensional reconstruction, isolation and detection using fluorescent probes 254
 Taylor P → Staff IA
 Theunis CH, Van Went JL: Isolation of sperm cells from mature pollen grains of *Spinacia oleracea* L. 97
 Thomson WW → Southworth D

Tiezzi A → Chen F

Van Aelst AC, Van Went JL: Effects of anoxia on pollen tube growth and tube wall formation of *Impatiens glandulifera* 85
 Van Went JL → Theunis CH
 Van Went JL → Van Aelst AC
 Van Went JL → Wagner VT

Wagner VT, Kardolus JP, Van Went JL: Isolation of the lily embryo sac 219

Yan H, Yang H-Y, Jensen WA: An electron microscope study on in vitro parthenogenesis in sunflower 154
 Yang H-Y → Yan H

Indexed in *Current Contents*

Subject index

abortion ovules 147
 actin 254–263
 – immunofluorescence 262
 – microfilaments 27, 75
 – system 37
 – pollen tube 199–206
 activated egg 155, 157
actomyosin, pollen tube 199–206
 adhesiveness, flagellar 214
 ADP-ATP translocator 170, 171
 agglutinins, monosaccharide composition 216
 – purification 214
 – sexual 213–217
 – ultrastructure 214, 215
 alloplasmic stocks 15
 alteration of generations 1
 amoeboid movement 27
 anchoring domain, agglutinin 213
 anoxia 85
 anther culture 1
 – development 168–171
 – /filament length 146
 anther-derived substances 167
 anthesis 270
 apomixis 15
 autophagic vacuoles 165

borate control 11
 boric acid 11
Brassica 103, 109
 – *napus* 15
 breeding barriers 44
 – systems 127–135
 bubble tube 178–181
 bud pollination 38, 43
 burst pollen grains 181

$^{45}\text{Ca}^{2+}$ uptake 53
 calcium channel blockers 53
 – channels 57
 – concentration, pollen germination 277–280
 – gradient 53

callase 7
 callose accumulation 109
 – deposition 35
 – fluorescence 18
 – formation 190
 – plug deposition 85
 – reaction 229
 – stage 236
 carbon dioxide effect on protein synthesis 103, 106
 – – treatment 109
 cell adhesion 213–217
 – wall formation 85
 cell-cell recognition 213–217
 central callose 234
 chemical hybridizing agent 231–252
 chiasma formation failures 50
Chlamydomonas 213
Clinia 27
 coefficient of crossability 118
 cross eluates, stigma 279
 cross-incompatibility 43
 cross-pollen performance 228
 cross-pollinations 109
 crossability relationships 95
 – interspecific 184
 cutinase 222
 cyclotic flux 27
 cytoplasm 62
 cytochalasin 27
 cytoplasmic inheritance 75
 – male sterility 167–171
 – streaming 27
 – in pollen tube 199, 200
 cytoskeleton 258
 – pollen tubes 200–203

Datura 5
 deleterious recessive genes 134
 desiccation pollen 139, 140
 destructive effect of La^{3+} 57
 determination of paternity 92
 developmental stages, embryo sac 221
 – stress 167

dictyosome vesicles 85
Dictyostelium discoideum 8
 dimorphic pollen 193–198
 dimorphism, sperm cells 75, 262, 263
 dioecy 142–148
 diploid androgenesis 15
Diplotaxis 109
 discrimination self/cross 280
 DNA synthesis in anther 169
 dot-blot analysis agglutinins 214, 216

ear age 266
 ejected tube contents 88
 ektxine 77
 embryo sac development, stages 222
 – – isolation 219–223
 endexine 77
 enforced inbreeding 39
 enhancer effect 211
 enzymatic isolation embryo sacs 213–219, 222, 223
 erucic acid content 15
 evolution self-incompatibility 130–132
 excised anthers 1
 exine 77
 – coating 197
 – stretching 251
 – wall deposition 241, 244
 – – – pattern 238, 250
 exocytosis 85
 expression of self-incompatibility 109
 extraction agglutinins 214

F-actin, pollen tubes 200
 FDA staining of sperm cells 100
 fertilization, timing 265–269
 fitness heterozygotes 129
 flagellar surface 213
 floral polymorphism 127, 129
 flower colour 15
 – types 143, 144
 fluorescence emitted from callose 18
 fluorochromatic reaction 137–141, 219
 freeze fracture, pollen 270–280

