Sprawozdanie z laboratorium nr 4 z przedmiotu WMM

Zdjęcie nr 17

Podstawowe funkcje:

```
def save_to_file(name, image): # save a picture to a file
    cv2.imwrite("./"+name, image)
def plt_show_img(image, img_title): # print a picture
    plt.figure()
    plt.title(img_title)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # convert order of the channels from BGR to RGB
    plt.imshow(image, cmap="gray", vmin=0, vmax=255)
    plt.xticks([]), plt.yticks([])
    plt.show()
def calcPSNR(image1, image2): # calculate PSNR
    imax = 255.**2
    mse = ((image1.astype(np.float64)-image2)**2).sum()/image1.size
    return 10.0*np.log10(imax/mse)
def draw_histogram(image, img_title): #print the histogram of the provided picture
    histogram = cv2.calcHist([image], [0], None, [256], [0, 256])
    histogram = histogram.flatten()
    plt.figure()
    plt.title(img_title)
    plt.plot(histogram)
    plt.xlim([1, 256])
    plt.ylim([0, 7000])
    plt.show()
```

Zadanie 1.

```
def zad_1_gauss(image, title):
    for i in [3, 5, 7]: # do for masks 3x3, 5x5 and 7x7
        print(f'Maska: {i} x {i}')
        gauss_blur = cv2.GaussianBlur(image, (i, i), 0)
        print(calcPSNR(unchanged_img, gauss_blur))
        plt_show_img(gauss_blur, f'{title} gauss_blur {i} x {i}')
        #save_to_file(f'./zad1/{title} gauss_blur {i} x {i}.png', gauss_blur)

def zad_1_median(image, title):
    for i in [3, 5, 7]: # do for masks 3x3, 5x5 and 7x7
        print(f'Maska: {i} x {i}')
        median_blur = cv2.medianBlur(image, i)
        print(calcPSNR(unchanged_img, median_blur))
        plt_show_img(median_blur, f'median_blur {i} x {i}')
        #save_to_file(f'./zad1/{title} median_blur {i} x {i}.png', median_blur)
```

szum impulsowy 1; filtr gaussa; 3x3, 5x5, 7x7

szum impulsowy 2; filtr gaussa; 3x3, 5x5, 7x7

szum gaussa; filtr gaussa; 3x3, 5x5, 7x7

szum impulsowy 1; filtr medianowy; 3x3, 5x5, 7x7

szum impulsowy 2; filtr medianowy; 3x3, 5x5, 7x7

szum gaussa; filtr medianowy; 3x3, 5x5, 7x7

Tabele PSNR:

	Inoise1	Inoise2	Noise
Bez filtrów	21.68056170572821	21.093860593155725	25.250784097262773
Maska	Filtr Gaussa		
3x3	27.772661767634474	27.426163380406912	29.610787815126763
5x5	27.692769994880155	27.50832443296881	28.62662216292179
7x7	27.00304236874862	26.91694089466846	27.459674279242616
	Filtr medianowy		
3x3	30.557044948762545	30.544176686761947	28.43138255358292
5x5	27.03686444960132	27.037643270079734	26.597382231523405
7x7	25.821093422513822	25.826029516469386	25.664299802415126

Jaki wpływ na skuteczność filtracji i na zniekształcenie obrazu ma rozmiar maski filtru?

Z obserwacji wynika, że filtr Gaussa lepiej redukuje szumy Gaussa, a szum impulsowy jest skuteczniej usuwany przez filtr medianowy. Na jakość odszumiania silnie wpływa rozmiar maski - im większa maska tym lepsza redukcja szumów, jednak jakość obrazów również zostaje zredukowana - widać na nich niechciane rozmycie.

Czy ocena subiektywna uzyskanych obrazów wynikowych, jest zgodna z PSNR (lepsza jakość – większy PSNR)?

Patrząc na powyższą tabelę PSNR łatwo stwierdzić, że w każdym przypadku najlepiej sprawdza się maska 3x3. Po przyjrzeniu się zdjęciom okazuje się, że w większości wypadków schemat ten się pokrywa z subiektywnym odbiorem jakości obrazów – PSNR jest silnie skorelowany z jakością obrazów.

Zadanie 2

```
def zad_2(image):
    image_YCrCb = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
    image_YCrCb[:, :, 0] = cv2.equalizeHist(image_YCrCb[:, :, 0])
    image_end = cv2.cvtColor(image_YCrCb, cv2.COLOR_YCrCb2BGR)
    plt_show_img(image, "Before")
    plt_show_img(image_end, "After")
    draw_histogram(image, "Provided histogram")
    draw_histogram(image_end, "Modified histogram")
    #save_to_file("./zad2/norlmal.png", unchanged_img)
    #save_to_file("./zad2/new_hist.png", image_end)
```


Szymon Dyszewski

Numer albumu: 310625

Histogram został wyrównany szczegółnie widać to w jego prawej części, gdzie przed wyrównaniem nie było niemalże wcale punktów o luminacji > 180, a po wyrównaniu stanowią one nieco ponad 1/5 wszystkich punktów.

Powstały obraz jest znacznie bardziej prześwietlony, głębia kolorów i kontrast są nienaturalne i nieprzyjemne dla oka.

Zadanie 3

```
def zad_3(image):
    for x in [-10, -5, -2, -1, 0, 1, 2, 5]:
        gauss_image = cv2.GaussianBlur(image, (3,3), 0)
        laplacian_image = cv2.Laplacian(gauss_image, cv2.CV_64F)
        img = np.asarray(image, np.float64)
        img_out = cv2.addWeighted(img, 1, laplacian_image, x, 0)
        cv2.imwrite(f'./zad3/laplacian-{x}.png', img_out)
```

Jaki jest wpływ wagi składowej wysokoczęstotliwościowej na postać obrazu wynikowego?

Im niższa waga, tym bardziej uwidocznione są krawędzie obrazu - wyostrzonie.

Dodatnie wartości powodują efekt przeciwny – rozmycie.

Dla jakich wartości tej wagi uzyskuje się dobre, przyjemne dla oka wyniki?

Przy wartości wagi = -1 wyniki wydają się być najbardziej zadowalającymi dla oka. Przekraczanie tej wartości obraz zaczyna wyglądać nienaturalnie. Drzewa zaczynają być "wyrwane" z otaczających ich obiektów, a na wodzie pojawią się krawędzie.

W = -10

W = -5

W = -1

W = 0

W = 1

W = 2

W = 5

