Сегментация транзакционных данных розничных клиентов банка

Козлинский Евгений

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем Научный руководитель профессор РАН, д.ф.-м.н. К. В. Воронцов

13.06.19

Постановка задачи

Дано

• $d = w_{d,1}, \dots, w_{d,N_d}$ - история транзакционных данных клиента

 $d \in D$ - клиент из набора D

 N_d - количество транзакций клиента d

Найти

- Тематическое векторное представление клиента
- Моменты изменения потребительского поведения

Критерии качества сегментации

 P_k и WindowDiff

Цель исследования

Проблема

- Отсутствие размеченных данных
- Отсутствие четких критериев изменения потребительского поведения

Цель работы

- Получить векторное представление истории транзакций для проведения сегментации
- Разработать метод оценивания качества сегментации истории транзакций клиента
- Проверить гипотезу о незначительном изменении качества сегментации при переходе к тематическому представлению истории клиента.

Постановка задачи тематического моделирования

Дано: W - словарь mcc-кодов транзакций D - коллекция историй транзакций пользователей d Матрица $F = \{n_{dw}\}_{W \times D}$ n_{dw} - сумма покупок клиента d по коду w T - множество тем потребительского поведения клиентов

Найти: Матрицы $\Phi = \{\phi_{wt}\}_{W \times T}, \ \Theta = \{\theta_{td}\}_{T \times D}$ $\phi_{wt} = p(w|t)$ - вероятность кода w в теме t $\theta_{td} = p(t|d)$ - вероятность темы t у клиента d

Гипотеза условной независимости: p(w|d,t) = p(w|t) Из неё и формулы Байеса: $p(w|d) = \sum_{t \in T} \phi_{wt} \theta_{td}$ Это задача матричного разложения: $F = \Phi \Theta$

Постановка задачи тематического моделирования

- У этой задачи \exists бесконечно много решений вида $\Phi\Theta=(\Phi S)(S^{-1}\Theta)=\Phi'\Theta',$ где S матрица ранга |T|
- Поэтому вводится регуляризация матриц Φ и Θ $PLSA: R(\Phi, \Theta) = 0$ $LDA: R(\Phi, \Theta) = \sum_{t,w} \beta_w \ln \phi_{wt} + \sum_{d,t} \alpha_t \ln \theta_{td}$ $ARTM: R(\Phi, \Theta) = \sum_{i=1}^{N} \tau_i R_i(\Phi, \Theta)$
- Задача оптимизации:

 $\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \to \max_{\Phi, \Theta}$ при условиях:

$$\sum_{w \in W} \phi_{wt} = 1; \quad \phi_{wt} \ge 0; \qquad \sum_{t \in T} \theta_{td} = 1; \quad \theta_{td} \ge 0$$

ullet p(t|w) - **тематика** mcc-кода

Описание алгоритма сегментации

Первый этап

- ullet Выделение множества тем T потребительского поведения клиентов
- Представление транзакционных данных клиента последовательностью тематических векторов

Второй этап

Сегментирование последовательности векторов с помощью алгоритма Topic Tiling, определение числа сегментов

Обзор предыдущих работ

- Ф.Никитин 2018 "Применение мультимодальных тематических моделей к анализу транзакционных данных":
- Е.Смирнов 2018 "Тематическая сегментация диалогов контактного центра":
- M.Riedl and C.Biemann 2012 "TopicTiling: A Text Segmentation Algorithm based on LDA"

Сегментация с помощью Topic Tiling

Вход: последовательность транзакций (профиль), представленных в векторном виде.

- Проходим по профилю двумя скользящими окнами $(i-h_1,h_1]$ и $(h_1,i+h_1]$, для каждого i вычисляя соs-близость между средним левого и правого окна.
- Сглаживаем график соs-близости от i окном h_2 .
- Для всех локальных минимумов на графике соs-близости считаем уверенность проведения сегмента в i: $depth_score(i) = \frac{1}{2}(hl(i) c_i + hr(i) c_i)$, где c_i значение косинусной близости в i, hl(i) ближайший к i локальный максимум слева, а hr(i) справа.
- $\mu = \hat{\mathbb{E}}_i(depth_score(i)), \ \sigma = \hat{\mathbb{D}}_i(depth_score(i)),$ если $depth_score(i) > \mu + \frac{\sigma}{2}$ проводим в i границу сегмента.

Сегментация с помощью Topic Tiling

- а) Векторное представление одного профиля (сверху)
 - б) Стадии работы Аналога Topic Tiling (снизу)

Оценка качества сегментации

Невязка между истинной и предсказанной сегментацией

$$Penalty(d) = \frac{1}{N_d - k} \sum_{i=1}^{N_d - k} [b_{s_{d,true}}(i) \neq b_{s_d}(i)]$$

 \mathbf{C} помощью P_k меры

$$b_{s_d}(i) = [w_{i,d} \in s_{q,d}][w_{(i+k),d} \in s_{q,d}],$$

где $s_{a,d}$ - сегмент сегментации s_d профиля d.

С помощью WindowDiff

$$\begin{cases} w_{d,i} \in s_{d,q} \\ w_{d,i+k} \in s_{d,t} \end{cases} \implies b_{s_d}(i) = t - q$$

где $s_{d,q}$ и $s_{d,t}$ - сегменты сегментации s_d профиля d с порядковыми номерами q и t соответственно.

Данные и модели векторных представлений

Данные: Транзакции ~ 25000 пользователей за 3 года в виде таблицы с полями:

- \bullet mcc_code mcc-код транзакции
- $amount_ru$ сумма транзакции в рублях
- cardnumber идентификатор карты пользователя
- \bullet $trans_time$ дата и время транзакции

Модели векторных представлений:

- PLSA PLSA на 30 темах
- LDA LDA на 30 темах
- **ARTM** ARTM на 30 темах, субъективно лучшие темы
- one-hot тематика транзакции задана вектором с единицей на месте идентификатора mcc-кода
- random тематика транзакции каждого mcc-кода задана случайным вектором
- lazy модель не проводит границы сегментов

Эксперимент №1

Точность проведения сегментов по сравнению с истинными на 500 искусственных профилях

Эксперимент №1

	P_k		WindowDiff	
Модель	mean	std	mean	std
lazy	0.566	0.103	0.566	0.103
one-hot	0.083	0.080	0.084	0.089
random	0.118	0.109	0.128	0.118
LDA	0.079	0.075	0.080	0.076
PLSA	0.083	0.080	0.084	0.081
ARTM	0.192	0.128	0.213	0.147

Точность проведения сегментов по сравнению с истинными на 500 искусственных профилях

Эксперимент №2

Результаты сравнения тематического сегментирования с one-hot на 2000 реальных профилях

Заключение

- Предложен способ представления истории пользователя с помощью тематик его транзакций для последующей сегментации
- Предложен метод оценивания качества модели сегментации транзакционных данных розничных клиентов
- Подтверждена гипотеза о незначительном изменении качества сегментации при переходе к векторным представлениям, для искусственных профилей