MATH 370 ALGEBRA, SPRING 2024, MIDTERM 3

By \mathbb{Q}_p , we mean the field of *p*-adic numbers.

Problem 1 [10 points] Show that $\sqrt{3} \notin \mathbb{Q}_7$.

Problem 2 [10 points] Is the following statement true or false? If your answer is true, please provide a proof else provide a counterexample.

Let p be a prime. All triangles in \mathbb{Q}_p are equilateral.

Problem 3 [5+5 points] Show that $\mathbb{Z}[\omega]$ where ω is $e^{\frac{2\pi\iota}{3}}$ and $\mathbb{Z}[\sqrt{-2}]$ are Euclidean domains.

Problem 4 [3+3+4 points] Determine:

- the monic irreducible polynomials of degree 3 over \mathbb{F}_3 ,
- the monic irreducible polynomials of degree 2 over \mathbb{F}_5 ,
- the number of irreducible polynomials of degree 3 over the field \mathbb{F}_5 .

Problem 5 [4+3+3 points]

In each of the following cases, state yes if the extension $\mathbb{Q}(\alpha)$ is Galois over \mathbb{Q} and no otherwise. In each case, f(x) is the minimal polynomial of α . You do not have to justify your answer.

- $f(x) = x^n 2$, $\alpha = 2^{1/n}$, $n \in \mathbb{N}$
- $f(x) = x^2 + x + 1$, $\alpha = e^{\frac{2\pi i}{3}}$ $f(x) = x^2 5$, $\alpha = \sqrt{5}$

Date: Tuesday 4th June, 2024.