Modèles de calcul (HAI402I) Université de Montpellier TD 4

Exercice 1 Reconnaissance

Quel est le langage reconnu par chacun des automates suivants?

Exercice 2 Langages Rationnels

Étant donné l'alphabet $\Sigma = \{a, b\}$. Pour chacun des langages \mathcal{L} suivant donner, si possible, une expression rationnelle E telle que $\mathcal{L} = \mathcal{L}(E)$, un AFD A tel que $\mathcal{L} = \mathcal{R}(A)$, et un AFND A' (plus petit) tel que $\mathcal{L} = \mathcal{R}(A')$.

- 1. \mathcal{L} est le langage des mots se décomposant en blocs de a de longueur paire et en blocs de b de longueur au moins 3.
- 2. \mathcal{L} est le langage des mots ayant aab en facteur.
- 3. \mathcal{L} est le langage des mots n'ayant pas aab en facteur.
- 4. \mathcal{L} est le langage des mots ayant un facteur v tel que $|v|_a = |v|_b = 2$.
- 5. \mathcal{L} est le langage des mots équilibrés, c'est à dire les mots v tels que $|v|_a = |v|_b$.

Exercice 3 Produits cartésiens

Soient deux automates sur le même alphabet Σ , notés A et B, d'ensembles d'états Q_A et Q_B , d'état initiaux q_A^0 et q_B^0 , d'état finaux F_A et F_B , de fonctions de transitions δ_A et δ_B .

Construisons l'automate C sur le même alphabet dont l'ensemble des états est $Q_A \times Q_B$, l'état inital (q_A^0, q_B^0) , vérifiant $\delta_C((x, x'), \alpha) = (y, y')$ pour $\alpha \in \Sigma$ si et seulement si $\delta_A(x, \alpha) = y$ et $\delta_B(x', \alpha) = y'$. De plus, $(x, y) \in F_C$ si et seulement si $x \in F_A$ et $y \in F_B$.

Que vaut $\mathcal{R}(C)$ en fonction de $\mathcal{R}(A)$ et $\mathcal{R}(B)$? Prouvez soigneusement votre réponse.

Exercice 4 Ensembles Rationnels vs Récursifs Primitifs

Étant donné l'alphabet $\Sigma = \{0, 1\}$, les mots de Σ^* n'ont pas de bijection complètement triviale vers \mathbb{N} . On ne peut pas mettre à la fois les mots 010 et 10 en bijection avec l'entier 2. Pour représenter un mot w de Σ^* on utilisera donc deux entiers, sa longeur |w| et l'entier qu'il represente en binaire entier(w). Inversement, on notera bin(x,b) le mot binaire à b bits tel que x = entier(bin(x,b)). Notons que le nombre de bits doit vérifier $b \geq \lceil \log_2(x+1) \rceil$.

1. Quels sont les entiers entier(110), entier(001) et entier(100) ? Et quels sont les mots bin(5,3), bin(5,6) et bin(0,2) ?

On peut maintenant définir les langages récursifs primitifs. Un langage $\mathcal{L} \subseteq \Sigma^*$ est récursif primitif si il existe un programme de Rosza \mathcal{L} tel que $\mathcal{L}(x,b) = \left\{ \begin{array}{ll} 1 & \mathrm{si} \; bin(x,b) \in \mathcal{L} \\ 0 & \mathrm{sinon} \end{array} \right.$ Le but de cet exercice est de démontrer que tout langage rationnel est également récursif

primitif. Pour ce faire on va montrer que pour toute expression rationnelle E on peut fournir un programme, noté E, calculant le prédicat suivant $E(x,b) = \begin{cases} 1 & \text{si } bin(x,b) \in \mathcal{L}(E) \\ 0 & \text{sinon} \end{cases}.$

- 2. Pour toute constante $c \in \mathbb{N}$, on note = c le jeton de Rosza tel que $= c(x) = \begin{cases} 1 & \text{si } x = c \\ 0 & \text{sinon} \end{cases}$. Étant donné une expression rationnelle E qui est un ensemble fini de mots $E \subsetneq \{0,1\}^*$, décrire le programme E, c'est à dire le prédicat tel que $E(x,b) = \begin{cases} 1 & \text{si } bin(x,b) \in E \\ 0 & \text{sinon} \end{cases}$.
- 3. Étant donnée une expression rationnelle de la forme $E = E_1 + E_2$, écrire le programme E en se basant sur E_1 et E_2 .
- 4. Écrire un programme, noté \mathbf{Su} , qui pour un triplet b', x, b calcul l'entier codé sur les b' derniers bits de bin(x, b).
- 5. Écrire un programme, noté \mathbf{Pr} , qui pour un triplet b', x, b calcul l'entier codé sur les b-b' premiers bits de bin(x,b).
- 6. Étant donnée une expression rationnelle de la forme $E = E_1.E_2$, écrire le programme E en se basant sur E_1 et E_2 .
- 7. Étant donnée une expression rationnelle de la forme $E=E_1^*$, écrire le programme E en se basant sur E_1^* .
- 8. Que peut-on en déduire?
- 9. Montrer que le langage des mots équilibrés est récursif primitif. Qu'en déduit-on?