Calculation Description

2w342fsd

Concrete Anchorage Length Calculation

According to Eurocode 2 Section 8.4 Calculation Date: 10/13/2025, 9:39:09 AM

INPUT PARAMETERS

Basic Parameters

S _{Ed}	220 kN	Design tension force
φι	25 mm	Rebar diameter
n _l	3	Number of rebars
ϕ_{t}	12 mm	Transverse rebar dia.
n _{l,orth}	0	Orthogonal bars

Material Properties

f _{ck}	30 MPa	Concrete strength
γ c	1.8	Concrete safety factor
α_{cc}	0.85	Concrete coefficient
f _{yk}	500 MPa	Steel strength
γs	1.25	Steel safety factor
σ_{sEd}	Auto-calculated	Design stress

Cover & Spacing

С	40 mm	Cover (top/bottom)
c ₁	50 mm	Cover (sides)
c/c φ _l	200 mm	Rebar spacing

Configuration

Bond condition	Good
Loading type	Tension
Bar type	straight
Bar shape	Straight
Element type	Slab
К	0.05
α_4	1.0
p	0 MPa

$I_{bd} = 394.4 \text{ mm}$

Design Anchorage Length

CALCULATION RESULTS

Bond Strength (EC2 8.4.2)

f _{bd}	2.154 MPa	Design bond strength
f_{ctd}	0.957 MPa	Design tensile str.
f _{ctk,0.05}	2.03 MPa	Concrete tensile str.
η_2	1.000	Bar diameter factor
η_1	1.00	Bond condition factor

Basic Length (EC2 8.4.3)

σ_{sd}	400.00 MPa 149.39 MPa	Design yield strength Design stress
A _{s,I}	1472.62 mm ²	Total rebar area
I _{b,rqd}	433.43 mm	Basic anchorage length

Alpha Factors

α_{total}	0.9100	Product of all α
α_5	1.000	Transverse pressure
α_4	1.000	Welded reinf.
α ₃	1.000	Transverse reinf.
α ₂	0.910	Concrete cover
α ₁	1.000	Bar shape

Final Calculation

l _{bd}	394.4 mm	Design anch. length
I _{b,min}	250.00 mm	Minimum length
K	0.05	Transverse coeff.
а	175.00 mm	Clear spacing
c _d	40.00 mm	Minimum cover

Constraint Check: $\alpha_2 \times \alpha_3 \times \alpha_5 = 0.910 \checkmark \ge 0.7$

DETAILED CALCULATION STEPS

```
=== BASIC PARAMETERS ===
As 1 = n 1 × \pi × \phi 1<sup>2</sup> / 4 = 3 × \pi × 25<sup>2</sup> / 4 = 1472.62 mm<sup>2</sup>
\sigma sEd = SEd × 1000 / As 1 = 220 × 1000 / 1472.62 = 149.39 MPa
f yd = f yk / \gamma s = 500 / 1.25 = 400.00 MPa
\sigma sd = \sigma sEd = 149.39 MPa (using actual stress)
a = c/c \phi l - \phi l = 200 - 25 = 175.00 mm
cd = min(a/2, c1, c) = min(87.50, 50, 40) = 40.00 mm (straight bars)
=== 8.4.2 DESIGN BOND STRENGTH ===
\eta 1 = 1 (good bond conditions)
\eta 2 = 1.000 (\phi \le 32 \text{ mm})
f ctk, 0.05 = 2.03 MPa (from concrete grade)
f ctd = \alpha cc \times f ctk,0.05 / \gamma c = 0.85 \times 2.03 / 1.8 = 0.957 MPa
f bd = 2.25 \times \eta 1 × \eta 2 × f ctd = 2.25 \times 1 \times 1.000 \times 0.957 = 2.154 MPa
=== 8.4.3 BASIC REQUIRED ANCHORAGE LENGTH ===
f yd = f yk / \gamma s = 500 / 1.25 = 400.00 MPa
1 b, rqd = (\varphi 1 / 4) \times (\sigma sd / fbd) = (25 / 4) \times (149.39 / 2.154) = 433.43 mm
=== 8.4.4 DESIGN ANCHORAGE LENGTH ===
K = 0.05 (orthogonal reinforcement outside bars)
--- Alpha Factors ---
\alpha 1 = 1 (straight bars)
\alpha 2 = \max(0.7, \min(1.0, 1 - 0.15 \times (cd - \varphi 1) / \varphi 1))
= \max(0.7, \min(1.0, 1 - 0.15 \times (40.00 - 25) / 25))
= \max(0.7, \min(1.0, 0.9100))
= 0.910
\Sigma A st = n l,orth \times \pi \times \phi t<sup>2</sup> / 4 = 0 \times \pi \times 12<sup>2</sup> / 4 = 0.00 mm<sup>2</sup>
\Sigma A \text{ st,min} = 0.25 \times As 1 = 0.25 \times 1472.62 = 368.16 \text{ mm}^2
\lambda = (\Sigma A \text{ st} - \Sigma A \text{ st,min}) / As 1 = (0.00 - 368.16) / 1472.62 = -0.2500
\alpha 3 = max(0.7, min(1.0, 1 - K × \lambda)) = max(0.7, min(1.0, 1 - 0.05 × -0.2500)) =
1.000
\alpha 4 = 1 (user input)
\alpha 5 = max(0.7, min(1.0, 1 - 0.04 × p)) = max(0.7, min(1.0, 1 - 0.04 × 0)) =
1.000
Constraint: \alpha 2 × \alpha 3 × \alpha 5 = 0.910 × 1.000 × 1.000 = 0.910
Constraint check: 0.910 >= 0.7 ? OK
--- Minimum Anchorage Length ---
1 b, min = max(0.3 \times 1 b, rqd, 10 \times \phi 1, 100)
= \max(0.3 \times 433.43, 10 \times 25, 100)
= 250.00 \text{ mm} \text{ (tension)}
--- Final Design Anchorage Length ---
\alpha total = \alpha 1 × \alpha 2 × \alpha 3 × \alpha 4 × \alpha 5
= 1 \times 0.910 \times 1.000 \times 1 \times 1.000
= 0.9100
1 bd (calculated) = \alpha total \times 1 b,rqd = 0.9100 \times 433.43 = 394.42 mm
1 \text{ bd} = \max(1 \text{ bd (calculated)}, 1 \text{ b,min}) = \max(394.42, 250.00) = 394.42 \text{ mm}
```

Generated by Concrete Anchorage Length Calculator | Eurocode 2 Section 8.4