

## **Module 4**

## TOTAL POINTS 7

| 1.       | The slow (sometimes called "brute force") algorithm for finding the shortest common superstring of the strings in set S involves:                         | 1 point |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|          | Iteratively removing strings from S that don't belong in the superstring                                                                                  |         |
|          | Oconcatenating the strings in of S                                                                                                                        |         |
|          | Trying all orderings of the strings in S                                                                                                                  |         |
|          | Finding the longest common substring of the strings in S                                                                                                  |         |
| 2.       | Which of the following is <b>not</b> a true statement about the slow (brute force) shortest common superstring algorithm.                                 | 1 point |
|          | It might collapse repetitive portions of the genome                                                                                                       |         |
|          | The superstring returned might be longer than the shortest possible one                                                                                   |         |
|          | The amount of time it takes grows with the factorial of the number of input strings                                                                       |         |
| 3.       | Which of the following is <b>not</b> a true statement about the greedy shortest common superstring formulation of the assembly problem?                   | 1 point |
|          | It might collapse repetitive portions of the genome                                                                                                       |         |
|          | The amount of time it takes grows with the factorial of the number of input strings                                                                       |         |
|          | The superstring returned might be longer than the shortest possible one                                                                                   |         |
| 4.       | True or false: an Eulerian walk is a way of moving through a graph such that each node is visited exactly once                                            | 1 point |
|          | <ul><li>False</li></ul>                                                                                                                                   |         |
|          | ○ True                                                                                                                                                    |         |
|          |                                                                                                                                                           |         |
| 5.       | If the genome is repetitive and we try to use the De Bruijn Graph/Eulerian Path method for assembling it, we might find that:                             | 1 point |
|          | There is more than one Eulerian path                                                                                                                      |         |
|          | The De Bruijn graph breaks into pieces                                                                                                                    |         |
|          | The genome "spelled out" along the Eulerian path is not a superstring of the reads                                                                        |         |
| 6.       | In a De Bruijn assembly graph for given k, there is one edge per                                                                                          | 1 point |
|          | ● k-mer                                                                                                                                                   |         |
|          | ○ read                                                                                                                                                    |         |
|          | ○ k-1-mer                                                                                                                                                 |         |
|          | genome                                                                                                                                                    |         |
| 7.       | Which of the following does not help with the problem of assembling repetitive genomes:                                                                   | 1 point |
|          | ○ Longer reads                                                                                                                                            |         |
|          | Increasing minimum required overlap length for the overlap graph                                                                                          |         |
|          | O Paired-end reads                                                                                                                                        |         |
| <u> </u> | credit for this assignment. Repeated violations of the Coursera Honor Code may result in removal from this course or deactivation of my Coursera account. | 3 P P   |
|          | Learn more about Coursera's Honor Code                                                                                                                    |         |
|          | Save                                                                                                                                                      | Submit  |
|          |                                                                                                                                                           |         |