MATH 110 WORKSHEET, JUNE 25TH

JAMES MCIVOR

Complex	NUMBERS
CONTRACTOR	-NUMBERS

Let $z_1 = -i$, $z_2 = -1 + 2i$, and $z_3 = -\sqrt{2} - \sqrt{2}i$.

(1) Draw z_1, z_2, z_3 in the complex plane.

(2) Compute $z_2 + z_3$, $z_1 z_2$, and $z_2 z_3$.

(3) Find $|z_3|$, z_1^{-1} , and z_2^{-1} .

(4) Write z_1 , z_2 , and z_3 in polar form. Use this to compute z_2z_3 and check you get the same thing as above.

(5) (bonus) What is \sqrt{i} ?

VECTOR SPACES

- (1) Which of the following are vector spaces over \mathbb{R} ? If they aren't, which axioms don't hold?
 - (a) The set of all real polynomials which have no odd powers of x in them [example: $x^4 + 3x^2 + 2$ is OK, but $x^4 + 3x^2 + 5x + 2$ is not].
 - (b) The set of all vectors in \mathbb{R}^3 whose entries add up to 3.
 - (c) The set of all vectors in \mathbb{R}^3 whose entries add up to zero.
- (2) We've seen that \mathbb{R}^2 is a real vector space. But we can try to make \mathbb{R}^2 into a *complex* vector space as follows: we already know how to add two vectors the usual way for vectors in \mathbb{R}^2 . To try to define scalar multiplication, we pick any complex number a + bi, and any vector $\begin{pmatrix} x \\ y \end{pmatrix}$, and set

$$(a+bi)\left(\begin{array}{c} x\\y\end{array}\right) = \left(\begin{array}{c} ax-by\\ay+bx\end{array}\right)$$

Do you think that with these definitions of addition and scalar multiplication, we satisfy all the axioms of a vector space over \mathbb{C} ?

(3) How many vectors are in the vector space \mathbb{F}_5^2 ? How about \mathbb{F}_3^3 ?