Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Basic Convolutional Neural Networks**

Logistics and Agenda

- Logistics
 - · Wide/Deep due soon!
 - Remember: Feel free to turn in late for partial credit.
- · Agenda
 - Wide/Deep Finish Demo and Town Hall
 - Basic CNN architectures and Demo

Class Overview, by topic

Last Time:

- Deep refers to increasingly smaller hidden layers
- Embed into sparse representations via ReLU

Wide and Deep

"Finish"

Demo

10. Keras Wide and Deep.ipynb

The awful dataset:

Toy Census Data Example

Other tutorials:

https://www.tensorflow.org/tutorials/wide and deep

Town Hall, Wide and Deep Networks

When p < 0.05

Convolutional Neural Networks

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Reminder: Convolution

$$\sum \left(\mathbf{I} \left[i \pm \frac{r}{2}, j \pm \frac{c}{2} \right] \odot \mathbf{k} \right) = \mathbf{O}[i, j] \text{ output image at pixel i,j}$$

input image at $r \times c$ range of pixels centered in i,j

kernel of size, $r \times c$ usually r=c

0	0	0	0	0	0	0	0	0
0	1	2	3	4	12	9	8	0
0	5	2	3	4	12	9	8	0
0	5	2	1	4	10	9	8	0
0	7	2	1	4	12	7	8	0
0	7	2	1	4	14	9	8	0
0	5	2	3	4	12	7	8	0
0	5	2	1	4	12	9	8	0
0	0	0	0	0	0	0	0	0

	ern ter,	•
1	2	1
2	4	2

3x3

20	21	36		 	
			•••	 	
				 	:

input image, I

output image, O

Reminder: Convolution

What we did before

What we did before

take normalized histogram at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \ldots, \mathbf{G}_{H}^{\Sigma}(u,v)\right]^{\top}$$

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0,v_0,R_1)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

Anatomy of a convolutional network

Blue Tensors: Outputs of Each Layer

Learned Params: Weights in Each Filter and Fully Connected Layer

CNN Overview

- First layer(s):
 - convolution
 - activation
 - pooling

- Each pooling layer can make the input image "smaller"
 - allows for "Information Distillation"
 - less dependence on exact pixels
- Final layers are densely connected
 - typically multi-layer perceptrons

CNN Overview: Self Test

- First layer(s):
 - convolution
 - nonlinearity
 - · pooling
 - Each pooling layer can make the input image "smaller"
 - allows for "Information Distilation"
 - ·less dependence on exact pixels
- Final layers are densely connected
 - typically multi-layer perceptrons
- Where are unstable gradients most problematic?
 - · (A) During Convolution Layer(s) updates
 - · (B) During Fully Connected Layer(s) updates
 - · (C) Both A and B
 - · (D) They are not a problem

CNN Filtering

- Why perform lots of filtering?
 - "recall" gabor filtering?

V1 Motion

V2 Stereo

V3 Color

V3a Texture segregation

V3b Segmentation, grouping

V4 Recognition

V7 Face recognition

MT Attention

MST Working memory/mental imagery

Convolution in a CNN

CNN Pooling

- Why perform pooling?
- Why max pooling?
 - reduce translation effects

CNNs: Putting it together

Structure of Each Tensor: Channels x Rows x Columns

Simple Example: From Fully Connected to CNN

If image is 9x9, and each fully connected layer is 20 hidden neurons wide, how many parameters are in this NN (ignore bias)?

$$(K^2 \times 20) + (20 \times 10) = 200 + 20 K^2$$

for
$$9x9 = 200 + 20x9^2 = 1,820$$
 parameters

Simple Example: From Fully Connected to CNN

Simple Example: From Fully Connected to CNN

CNN gradient

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Next Lecture

More CNN architectures and CNN history