



Computer Systems and Telematics — Distributed, Embedded Systems

### Bachelor Thesis

### Design und Implementierung einer Analysesoftware im Kontext eines Referenzsystems zur Indoorlokalisierung

Benjamin Aschenbrenner
Matr. 4292264

Betreuer: Prof. Dr-Ing. Jochen Schiller

Betreuender Assistent: Dipl.Inf. Heiko Will

| ٠ | ٠ | ٠ |  |
|---|---|---|--|
| 1 | 1 | 1 |  |
| п | п | н |  |
| - | - | - |  |
|   |   |   |  |
|   |   |   |  |

| Ich versichere, dass ich die vorliegende Arbeit selbständ angegebenen Quellen und Hilfsmittel benutzt habe. Alle aus veröffentlichten Schriften entnommen wurden, sind ichnungen oder Abbildungen sind von mir selbst erste Quellennachweisen versehen. Diese Arbeit ist in gleicher Prüfungsbehörde eingereicht worden. | Stellen, die wörtlich oder sinngemäß<br>d als solche gekennzeichnet. Die Ze-<br>llt worden oder mit entsprechenden |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Berlin, den 30. November 2011                                                                                                                                                                                                                                                                                            | (Deniemin Asskenbuernen)                                                                                           |
|                                                                                                                                                                                                                                                                                                                          | (Benjamin Aschenbrenner)                                                                                           |

### Zusammenfassung

### Zusammenfassung

Diese Arbeit steht im Kontext zum Aufbaus eines Referenzsystems, welches in der Lage ist sich mobil indoor zu bewegen und dabei möglichst genau zu lokalisieren. Der Zweck dieses Referenzsystems ist es, Lokalisierungen als Referenz zur Verfügung zu stellen, um die Genauigkeit von Lokalisierungen mobiler Sensorknoten, die in einem Wireless Sensor Networks Wireless Sensor Network (WSN) organisiert sind, zu ermitteln. Das Referenzsystem ist durch einen Roboter realisiert, welcher autonom vorgegebene Wegpunkte in einer Karte abfährt. Bei einer solchen Fahrt zeichnet der Roboter sowie an ihm befestigte Sensorknoten einen Pfad durch regelmäßige Lokalisierung auf. In dieser Arbeit geht es um die Implementierung eines Analysewerkzeugs namens Pathcompare, welches ermöglicht, die Pfaddaten zusammenzuführen, für den Tester aufzuwerten und zu visualisieren. Neben mittleren Abstand (Median) zum gewählten Referenzpfad werden Parameter wie Pfadlänge, Anzahl der Pfadpunkte, Stichprobenvarianz und eine Liste der größten Abweichungen angezeigt. Alle Daten können als Comma Separated Values (CSV) exportiert werden. Pathcompare ist in das Robot Operating System integriert und so entwickelt dass es über Plug-ins erweitert und angepasst werden kann.

#### **Abstract**

This thesis is associated with the development of a referece system that has the ability to localize itself. The reason for the development of such a system is to provide localization data. This data is used as reference data for localization data of mobile sensor nodes organized in a Wireless Sensor Network WSN inorder to evaluate the precision of their localization measurements. Such a reference system was build in the form of a mobile robot that is able to autonomously navigate to given waypoints. While moving, the robot and sensor nodes mounted on it, generate path data by continously localizing. This work is about the creation of an analysing tool named Pathcompare that is used to merge the path data of different sources and visualize them for a tester. The software shows the median distance of a path to the given reference path, the overall pathlength, total number of points per path and also a list of the greates distances to the reference path. All results can be exported as CSV. Pathcompare is integrated into the Robot Operating System and can be extended via a Plug-in mechanism.

## Inhaltsverzeichnis

| Abbilat | ngsverzeichnis   | Х  |
|---------|------------------|----|
| Tabelle | nverzeichnis     | хi |
| Quellco | deverzeichnis xi | ii |
| Glossar | ×                | v  |
| Akrony  | ne xv            | ii |
| 0.1     | Motivation       | 1  |
| 0.2     | Aufgabenstellung | 2  |
| 0.3     | Implementierung  | 3  |
| 0.4     | Anwendung        | 3  |

# Abbildungsverzeichnis

## Tabellenverzeichnis

# Quellcodeverzeichnis

### Glossar

Robot Operating System Ein Framework welches zahlreiche Pakete bzgl. Nachrichtenaustausch zwischen verteilten Programmen, Hardwareabstraktion und Robotik bietet. v

# Akronyme

 ${f CSV}$  Comma Separated Values. v

IMU Inertial Measurement Unit. 2

 $\textbf{MEMS} \ \ \mathrm{Microelectromechanical \ systems.} \ \ 2$ 

WSN Wireless Sensor Network. v

0.1 Motivation 1

#### 0.1 Motivation

Systeme zur Positionsbestimmung werden für zahlreiche Zwecke genutzt und deren Bedeutung wächst parallel zur Verbreitung immer neuer sogenannter location based services und deren wachsender Nutzung. Für Anwendungen im Freien haben sich Satelliten gestützte Systeme, welche hohe Genauigkeit bieten, etabliert. Als bekanntes Beispiel sei hier das NAVSTAR-GPS genannt, welches sich auch im zivil nutzen lässt. Allerdings ergeben sich viele Anwendungsumgebungen, in denen derartige Systeme gar nicht, bzw. nur ungenau funktionieren oder bewusst z.B. aus Kostengründen gemieden werden. Dies sind typischerweise Umgebungen in denen die Satellitensignale zu stark gedämpft werden oder vor allem durch Reflexionen bedingte Laufzeitverschiebungen, sich negativ auf die Genauigkeit auswirken, wie z.B.:

- innerhalb von Gebäuden ("indoor")
- im Untergrund (Tunnel, Höhlen u.ä.)
- im Bereich dicht bebauter urbaner Gebiete (Mehrwegeausbreitung)

Um in solchen Umgebungen dennoch Lokalisierung zu ermöglichen wurden und werden viele theoretische Konzepte und konkrete Systeme entwickelt. Einen Überblick hierzu bietet Quelle anbringen (mobile entity localization and tracking in GPS less environments -Buch) Quelle anbringen (mobile entity localization and tracking in GPS less environments - Buch) Auch in der Arbeitsgruppe Computer Systems & Telematics, an der FU-Berlin, wurde dem Problem der indoor Lokalisierung mit der Entwicklung eines Wireless Sensor Network (WSN) basiertem Systems im Rahmen des Forschungsprojektes Feuer Where, begegnet. Dieses Projekt entstand u.a. in Kooperation mit der Berliner Feuerwehr, ist das wichtig zu wissen an dieser Stelle? Ziel bei der Entwicklung war ein flexibles indoor Lokalisierungssystem zu schaffen, welches mit low-cost Komponenten bzw. ohne Spezialhardware konstruiert wurde. Im Kern ist das System in der Lage die Entfernung zwischen involvierten Sensorknoten zu bestimmen und dadurch Rückschlüsse auf deren Position zu ermöglichen. In dem WSN unterscheidet man zwei Arten von Knoten, mobile Knoten und Anker Knoten. Diese unterscheiden sich nur dadurch, dass die Position eines Anker Knotens bekannt ist. Bei einer hinreichenden Zahl von Anker Knoten im WSN kann dann per Trilateration bzw. Multilateration die Position eines mobilen Knotens ermittelt werden, add figure principle of trilateration? Die Entfernungsmessung zwischen zwei Knoten geschieht hierbei durch Laufzeitmessungen von per Funk gesendeten Round Trip Time (RTT) Paketen, wodurch eine teure sowie aufwendige Zeit-Synchronisierung zwischen den Knoten entfällt, da bei der Messung der RTT nur ein Knoten die Zeit berechnet. Diese Laufzeitmessungen sind jedoch durch in der Hardware auftretenden Jitter und in non-line of sight (NLOS) Umgebungen auftretende Mehrwegeausbreitung fehlerbehaftet. Die genaue Funktionsweise und Untersuchung der Auftretenden Fehler ist beschrieben in. hier würde ich natürlich gerne Heiko's paper reffen. Frage: Ist das schon erlaubt? Um diesen Fehler zu untersuchen, ist es sehr nützlich, ein möglichst genaues aber ebenso flexibles Testsystem Referenzsystem? zur Verfügung zu haben, welches mögliche Anpassungen, Konfigurationen und Einsatzszenarien des indoor Lokalisierungssystems, in Hinblick auf dessen Genauigkeit, evaluierbar macht. Der Implementierung und Analyse eines solchen Referenzsystems widmet sich diese Arbeit.

2 Akronyme

### 0.2 Aufgabenstellung

Im folgenden wird der grundelegende Aufbau des Referenzsystems beschrieben und wie sich Pathcompare in dessen Topologie einfügt. Auf der Ebene der Hardware steht der mobile Roboter. Dieser hat das Ziel sich genau zu lokalisieren um Referenzwerte für die montierten, mobilen Sensorknoten zu liefern. Da er sich während der Testfahren natürlich indoor bewegt, kann er für seine Lokalisierung keine satelliten-gestützten Lokalisierungssysteme wie GPS verwenden, aus den in ?? genannten Gründen. Zwei weitere Ansätze, um die Bewegung des Roboters nachzuvollziehen und somit Positionsdaten zu gewinnen sind:

- Inertial Navigation
- Odometrie

Bei der intertial Navigation wird mithilfe von Beschleunigungs- und Gyromessungen auf die ausgeführte Bewegung geschlossen. Diese Messungen lassen sich druch Microelectromechanical systems (MEMS), die in einer Inertial Measurement Unit (IMU) zusammengefasst werden durchführen. MEMS werden in großen Stückzahlen produziert und sind kostengünstig. Typischerweise sind aber die Messungen, auch bei Stillstand, durch Jitter belastet. Dieser kann zwar durch geeignete Filter geglättet werden, lässt sich allerdings nicht ganz ausschließen. Auf längere Strecken entsteht durch die Aufsummierung der Fehler ein Drift, fort von der tatsächlichen Position.

Bei der Odometrie, werden die Antriebsdaten ausgewertet, um auf die Bewegung des Roboters zu schließen. Geht man davon aus, dass der Untergrund, auf dem der Roboter fährt, für dessen Räder geeignet ist und die Räder nicht wegen beispielsweise mangelnder Bodenhaftung stark durchdrehen. So kann sie auf kurzen Strecken sehr genaue Abschätzungen liefern. Allerdings ist auch eine Odometriemessung stets mit einem Fehler behaftet. Dieser Fehler summiert sich über die Zeit auf und die geschätzte Position weicht immer weiter von der tatsächlichen ab. Man hat also auf längeren Strecken ebenfalls mit einem Drift zu rechnen.

Beide Methoden haben gemeinsam, dass sie unabhängig von Informationen aus der Umgebung des Roboters arbeiten. Somit können sie allerdings den beschriebenen Drift in der Lokalisierung niemals korrigieren, da sie nicht die Positions auf Plausibilität mit der Umgebung abgleichen. Für das Referenzsystem ist Drift aber nicht akzeptabel. Aus diesem Grund erfasst der Roboter Abstände zu Hindernissen seiner Umgebung mithilfe einer Microsoft Kinect. Die Kinect erstellt mithilfe eines, im infrarot Bereich, gestrahltem optisches Muster ein Tiefenbild. Die Reichweite liegt bei maximal 10 Meter Entfernung mit einem Blickwinkel von ca 59°. Test haben gezeigt, dass die Genauigkeit der Tiefehmessung mit zunehmender Entfernung abnimmt, aber im Nahbereich überraschend Präzise ist. Außerdem verfügt der Roboter über eine Karte der Testumgebung. Während einer Testfahrt werden für eine Lokalisierung letzendlich folgende entscheidende Schritte ausgeführt:

- Abschätzung der derzeitigen Pose durch Odometrie
- Abgleich mit Karte und Korrektur der Pose

Zum Abtasten der Umgebung hätte alternativ auch ein Laserscanner gewählt werden können, dies wäre aber entgegen der Ziele des Referenzsystems mit zu hohen Anschaffungskosten verbunden gewesen. Im Sinne günstiger Kosten wurde letzendlich ein sogenannter Turtle-Bot gebaut. Dies ist ein von Willow Garage spezifizierter low-cost Roboter. Im Kern besteht

dieser aus einem Roomba Staubsaugerroboter von iRobot, einer Microsoft Kinect und ein Tragegerüst. Das Tragegerüst dient als Abstellfläche für einen Laptop und bietet im Anwendungsfall des Referenzsystems Platz zum Montieren der Sensorknoten.

- 0.3 Implementierung
- 0.4 Anwendung