MULTI-OMIC INTEGRATION VIA SIMILARITY NETWORK FUSION TO DETECT MOLECULAR SUBTYPES OF AGEING

Paper Summary

Zhengwei Song

Outline

Five-modal Data:

- RNA Sequencing
- DNA methylation
- Histone acetylation
- Proteomics
- Metabolomics

Similarity network fusion (SNF)

Internal Validity: APN, ADM - less, better

External Validity: Association with neuropathology

Top contributor: NMI

Three-modal Data:

- Histone acetylation
- DNA methylation
- RNA Sequencing

Subtype membership

Association with

- Longitudinal cognitive
- decline
- Molecular features

SNF by R SNFtool package

- Data: 111 (all five) overlapping samples across five data modalities
- Parameters:
 - \circ K = 40, α = 0.5, T = 50
 - O K: # of neighbors used to construct the similarity matrices
 - \circ a: hyper-parameter used in the scaling of edge weights
 - O T: # of iterations
- Method:
 - Spectral clustering by rotation cost and eigen-gap method
- Result

SNF by R SNFtool package

- Result
 - Optimal 2 clusters by both cost and eigen-gap method

Validity by R clValid package

Result

- O External Validity: $p_{raw} = 0.03$, but $p_{bf} > 0.05$
- However, internal stable (APN = 8.7%, ADM = 0.02)

Top Contributors

Top modality contributors to the fused network

NMI	Fused Network	RNASeq	DNA- Methylation	Histone Acetylation	Proteomic	Metabolomi c
Fused Network	1	0.15	0.18	0.38	0.04	0.05

• 513 non-missing overlapping samples across three modalities

SNF: Secondary by R SNFtool package

- Data: 513 overlapping samples
- Result
 - 3 clusters by Eigen-gap (B)
 - 5 clusters by rotation cost (D)
 - Strong overlap b/w two solutions (A, C)

$$(\chi 2: p = 2.2*10_{-16})$$

i.e. subtype 4, 5 are largely represented by subtype 3

A Association between 5-Subtype and 3-Subtype Solutions from Three-Modality Integration

	3-Subtype Solution					
5-Subtype Solution	Subtype 1	Subtype 2	Subtype 3			
Subtype 1	62	0	31			
Subtype 2	0	62	0			
Subtype 3	31	0	94			
Subtype 4	4	32	144			
Cubbano E	-	0	100			

D 3-Subtype result

SNF: Secondary by R SNFtool package

- Compare two solutions by Internal Stability (APN, ADM)
 - O Both measures were better for 3-subtype solution
 - Though those for 5-subtype were also well

External Validity

- 5-subtype was preferred by external validity, while 3-subtype was preferred by internal v
 - Subtype membership significantly associated with global cognition, rate of cognitive decline under 5-subtype while not observed under 3-subtype
- Therefore, 5-subtype solution would be further probed i.e. three-modal data divided by 5 subtypes

Association with longitudinal cognitive decline

- SNF Consistence across sample size
 - Substantial overlap (chi-sq p=8.1*10-9) (A)
- Result:
 - Subtype 5 had the worst global cognitive performance at last visit and the fastest rate of cognitive decline, while subtype 4 had the best and slowest ones (B)
 - The diff is significant by pairwise tests against all other subtypes(C)

• Method:

Top features from each data by One-way ANOVA

Data Modalities	Feature Name	Genomic Region/Gene
RNASeq	ENSG00000145882	PCYOX1L
	ENSG00000254561	NECTIN1
DNA-methylation	cg26878318	chr5:10,308,785
	cg21512370	RB1, LPAR6
H3K9 Histone	peak7234	ZNF219, TMEM253
Acetylation	peak12821	LSM14A

Acetylation

- O Subtype 1 had the lowest level while subtype 2 had the highest level
- O Both subtype 4 & 5 had intermediate acetylation

DNA methylation

- CpG sites showed differential methylation at sites annotated to RB1, LPAR6,
 and RP11-83B20.10, as well as intergenic regions on chromosome 5 and 7
- Though no consistent pattern related to the cognition-associated subtype 5 was observed

RNA sequencing

The top subtype-associated RNA sequencing features revealed lower levels of PCYOX1L and NECTIN1, as well as higher levels of SLC5A3, PPP4R2, and PPP1CC in subtype 5 specifically compared to all other subtypes

Comparison with single modality subtypes

- Integrated subtypes had unique associations with cognitive performance and decline
 - None of the unimodal subtypes showed more significant associations than three-modal, five-cluster subtypes on global cognitive performance

Sensitivity analysis

- Substantial variability in external validity was observed across different selections of sample size, data modalities and cluster number
 - e.g. Amyloid, Cognitive outcomes

Conclusion & Discussion

- Association of multi-omic subtypes with cognition
 - o subtypes were significantly associated with individuals' rates of cognitive decline and levels of beta-amyloid neuropathology
- Sensitivity analysis of integrated subtypes
 - o combining all five modalities revealed two subtypes that did not show significant external validity in terms of neuropathology and cognition
- Association of RNAseq subtypes with neuropathology
 - o significant associations were found between RNAseq subtypes and neurofibrillary tangles and amyloid-beta
- Importance of histone acetylation
 - o histone acetylation (H3K9ac) provided the most information to the fused subtypes
- Identification of molecular features
 - o the genes that differentiated the cognition-associated subtype 5 from other

COLUMBIA NEUROLOGY

Unused slides / Appendix

Data processing

- Uniform multi-omic feature post-processing
 - For each omic modality (top 20 components from PCA), test associations in pair between

Age of death, Sex, PMI, Study cohort

- Residual cognition
 - Last available global cognitive measurement ~ 13 pathological indicators
- Missing data for SNF
 - Random Forest

Internal Validity by R c/Valid package

- Methods:
 - Resampling: 80% participants, 300 random draws
 - \circ CV
- Indicators
 - o APN, ADM
 - χ2 statistic: Compare independence b/w subtyping solutions

Top molecular features

- Methods:
 - One-way ANOVA b/w subtypes for each omic modality
- Indicators
 - o P-value from F-test

Association of subtypes with neuropathology, cognition and residual cognition

• Data:

- Subtype: dummy variables
- Latency: time diff (in years) b/w the last study visit and age of death

Models:

- A: Neuropathologies ~ subtype + age of death + sex + education + PMI + study +
 APOΕε4
- B: Cognitive measurements ~ subtype + latency + age of death + sex + education
 + PMI + study + APOΕε4

Indicators

Bonferroni adjusted p-value from omnibus F-tests

External Validity

- Sensitivity analyses across data modalities, sample sizes and cluster numbers
- Parameters:
 - o d: 31 data modalities (combining any of five datasets)
 - on (sample sizes): 111 (all five) to 1092 (RNA seq) participants from 31 data modalities
 - o c: 2 to 5 clusters
 - o j: cognitive outcome
 - o m: # of data modalities being fused
- Models:
 - \circ A: $-\log(p_j) \sim m$
 - \circ B: $-\log(p_j) \sim n$
 - \circ C: $-\log(p_i) \sim c$

SNF

- Unimodal: 2 cluster solution from SNF from 111 overlapping samples
- Subtypes:
 - o RNA seq: 3
 - O DNA methylation: 2
 - o histone acetylation: 2
 - o proteomics: 2
 - o metabolomics: 3
- Models:

