Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits

Bibek Pokharel
University of Southern California

Suppress memory errors on open-access cloud based quantum computers (using Dynamical Decoupling)

Outline

- Qubits!
- Dynamical decoupling (DD)?
- Experimental Setup IBM and Rigetti
- What did we find?

Dynamical decoupling:

- removes initial condition dependence of fidelity,
- improves fidelity of single qubit states, and
- 3. slows decay of entanglement. <- ask me about this later!

Qubits

- Bits 0 and 1
- Qubits superposition of 0 and 1

a $\underline{\mathbf{0}}$ + b $\underline{\mathbf{1}}$ where a & b are complex numbers and $|\mathbf{a}|^2$ and $|\mathbf{b}|^2$ are probabilities

- Example:
 - $\frac{1}{2}$ **0** + $\frac{3}{2}$ **1** ==> $\frac{1}{4}$ probability of 0 and $\frac{3}{4}$ probability of 1
 - $\frac{1}{\sqrt{2}}$ **0** + $\frac{i}{\sqrt{2}}$ **1** ==> ½ probability of 0 and ½ probability of 1

Qubits on a sphere

- Bits 0 and 1
- Qubits superposition of 0 and $1 \frac{1}{2} \mathbf{0} + \frac{3}{2} \mathbf{1}$

USC Viterbi
School of Engineerin

Quantum circuits

- Bits 0 and 1
- Qubits superposition of 0 and $1 \frac{1}{2}\mathbf{0} + \frac{3}{2}\mathbf{1}$

• Qubits are wires, boxes are gates / operations / transformations

USC Viterbi School of Engineering

Gates as transformations

- Qubits are vectors, gates are matrices
- For single qubits, think of gates are rotations and reflections of the sphere
- Rotation i.e. choose an axis and an angle to rotate by

USC Viterbi School of Engineering

Noise as unknown rotation

- For single qubits, think of gates are rotations and reflections of the sphere
- Rotation i.e. choose an axis and an angle to rotate by
- Noise rotates in a direction with some speed (both unknown)

Single axis rotation

Assume noise only on the XZ plane

XYXY Sequence

- Noise can be more general
- Apply X, Y alternatingly

 i.e. two axis rotations of the sphere
- There are more sophisticated DD sequences but XYXY is the sequence we used.

Dynamical Decoupling

- DD : applying a sequence of pulses (rotations) with the goal of suppressing errors.
- Pulse intervals do not need to be uniform
- Pulses are not restricted to X and Y.
- DD = open-loop, passive; QEC = closed-loop, active, feedback-based

Why use DD?

There is work on using quantum error correction (QEC) on cloud-based QCs.

Previous QEC experiments have not conclusively shown improvement in fidelity over no error correction, while applying standard initialization, gates, and readout operations.

- [13] S. J. Devitt, Phys. Rev. A **94**, 032329 (2016).
- [14] J. R. Wootton and D. Loss, Phys. Rev. A **97**, 052313 (2018).
- [15] C. Vuillot, Quantum Inf. Comput. 18, 0949 (2018).
- [16] J. Roffe, D. Headley, N. Chancellor, D. Horsman, and V. Kendon, Quantum Sci. Technol. 3, 035010 (2018).
- [17] I. K. Sohn, S. Tarucha, and B.-S. Choi, Phys. Rev. A 95, 012306 (2017).
- [18] D. Willsch, M. Nocon, F. Jin, H. De Raedt, and K. Michielsen, arXiv:1805.05227.
- [19] R. Harper and S. Flammia, arXiv:1806.02359.

DD is

- simpler,
- capable of suppressing general decoherence (in principle), and
- compatible with Quantum error correction [Ng, Lidar, Preskill, Phys. Rev. A (2011)].

Why DD might not work?

- DD evolution must deal with preparation and measurement errors, free evolution errors AND gate errors.
- Pulses are not perfect:
 - Pulses (X, Y gates) are not instantaneous
 - Rotation angle (θ) errors
 - Axis errors

Hardware

Not shown here: IBMQX4, IBM_16_MELBOURNE, Rigetti 8Q-Agave

Experimental Setup

Free evolution must account for finite pulse duration

Experimental Setup 1

Does the fidelity depend on initial condition (with evolution time fixed)?

Initial state dependence

- DD removes initial state dependence.
- DD reduces fidelity for states close to the ground states, but improves fidelity on average.

B. Pokharel, N. Anand, B. Fortman, D. Lidar, PRL 121, 220502 (2018)

Experimental Setup 2

We report fidelity averaged over 36 initial conditions and all qubits as a function of time.

Measures of improvement

$$f(T) = e^{-T/\tau_s} \cos(\omega T) + e^{-T/\tau_l}$$

$$F(T) = \left[\frac{F(T_{\text{max}}) - F(0)}{f(T_{\text{max}}) - f(0)} \right] f(T) + \left[F(0) - \frac{F(T_{\text{max}}) - F(0)}{f(T_{\text{max}}) - f(0)} \right]$$

F(T) = average fidelity (16 qubits, 36 ic) τ_s = short decay time, τ_l = long decay time ω = oscillation frequency

Free vs DD

Decay time increases \times 6: 2.6 $\mu s \rightarrow 15.9 \ \mu s$ Oscillatiions removed

Decay time increases \times 2: 6.1 μ s \rightarrow 13.4 μ s Fidelity saturates at a higher value under DD

Conclusion

We have shown that Dynamical Decoupling

- removes variation due to initial conditions
- 2. increases fidelity decay time by X 6 (IBMQX5), X 2 (ACORN)

We plan to implement

- DD in the context of quantum algorithms or alongside QEC
- similar error suppression on other quantum computing platforms such as trapped ions
- higher order and more robust DD sequences

Acknowledgements

- IBM Quantum Experience and Rigetti teams for their constant support and cloud access to their hardware
- Oracle Corp. for partially funding this work.

PHYSICAL REVIEW LETTERS 121, 220502 (2018)

Demonstration of Fidelity Improvement Using Dynamical Decoupling with Superconducting Qubits

Bibek Pokharel,^{1,*} Namit Anand,² Benjamin Fortman,³ and Daniel A. Lidar^{1,2,3,4}

