

物理学中的非线性计算

- ✓ 非线性方程求根 --铁磁相变平均场模型求解
- ✓ 打靶法求解无限深势阱(或一维弦振动)的本征问题
- ✓基于最速下降法的局部优化

求函数 $f(x) = x^2 - 8 = 0$ 的正根

- 1搜索法
- 2二分法
- 3 Newton-Raphson

搜索法: $f(x) = x^2 - 8 = 0$

f(x) $x^{i} x^{i+\Delta x}$ x^{0}

一般步骤:

- 1. 设定搜索初始值 $x = x^i$, 步长 Δx , 精度要求 ε , 并计算函数值 $f(x^i)$;
- **2.** 更新x: $x^{i+1} = x^i + \Delta x$, 计算 $f(x^{i+1})$ 的数值,若 $f(x^{i+1}) < \varepsilon$,停止搜索;
- **3.** 判断 $f(x^i) f(x^{i+1}) > 0$ 是否成立,如成立,则接受 $x = x^{i+1}$ 为新的搜索值;
- **4.** 否则 $x = x^i$, 并减小步长,即 $\Delta x = \Delta x/2$,并返回步骤**2**。

"逐步试探"+"步长减半"

二分法:
$$f(x) = x^2 - 8 = 0$$

一般步骤:

- 1. 设定初始区间边界[a,b],满足即f(a)f(b)<0,并设定精度要求ε;
- **2.** 计算新区间边界 $x^i = (a+b)/2$,并计算 $f(x^i)$ 的数值;
- 3. 判断 $f(x^i) < \varepsilon$ 是否成立;如果成立,则 x^i 为满足精度要求的根,停止计算;
- **4.** 判断 $f(x^i) f(a) < 0$ 是否成立,如成立,则 $b = x^i$,否则 $a = x^i$,并返回步骤**2**。

牛顿-拉普逊法:
$$f(x) = x^2 - 8 = 0$$

一般步骤:

- **1.** 设定初始值 $x = x^i$,精度要求 ε ;
- 2. 计算 $f(x^i)$ 和 $f'(x^i)$ 的数值, 判断若 $f(x^i) < \varepsilon$ 是否成立,若成立停止迭代;
- **3.** $\mathbb{R} d^{i+1} = x^i f(x^i)/f'(x^i)$ $\mathcal{L} d^{i+1}$, $x^i = x^{i+1}$;
- 4. 重复步骤2,3直到找到满足精度的根。

非线性方程求根: 铁磁相变平均场模型

spin-up and spin-down的几率为:

$$P_{u} = \frac{e^{\mu B/k_{B}T}}{e^{\mu B/k_{B}T} + e^{-\mu B/k_{B}T}} \qquad P_{d} = \frac{e^{-\mu B/k_{B}T}}{e^{\mu B/k_{B}T} + e^{-\mu B/k_{B}T}}$$

$$P_i = \frac{e^{-E_i/k_BT}}{\sum_i e^{-E_i/k_BT}}$$

忽略外磁场,则分子磁场可有下式给出:

$$M(T) = \mu \times (N_u - N_d) = N \cdot \mu \cdot \frac{e^{\mu B/k_B T} - e^{-\mu B/k_B T}}{e^{\mu B/k_B T} + e^{-\mu B/k_B T}} = N \cdot \mu \cdot \tanh(\frac{\lambda \mu M(T)}{k_B T})$$

$$\frac{M(T)}{N \cdot \mu} = \tanh\left(\frac{\lambda \mu M(T)}{k_B T}\right) \qquad m(T) = \frac{M(T)}{N \mu}; t = \frac{T}{T_C}; T_C = \frac{N \mu^2 \lambda}{k_B}$$

方程约化为:
$$m(t) = \tanh\left(\frac{m(t)}{t}\right)$$
 即: $m(t) - \tanh\left(\frac{m(t)}{t}\right) = 0$

以上方程为超越方程, 需数值求解!

非线性方程求根: 打靶法求解本征值问题

物理问题:一维薛定谔方程的定态解

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x) = E\psi \xrightarrow{k^2 = \frac{2m}{\hbar^2}[E - V(x)]} \frac{d^2\psi}{dx^2} + k^2\psi = 0$$

特点: 1 只对一些特定的 k_n 值才能找到满足边界条件的解 ψ_n

本征值: k_n

本征函数: ψ_n

2 方程是线性的和齐次的

解析解: $k_n = n\pi$ $\psi_n \propto \sin(n\pi x)$

无限深势阱

$$V(x) = \begin{cases} \infty; & x \le 0 \text{ or } x \ge 1.0\\ 0; & 0 < x < 1.0 \end{cases}$$

非线性方程求根: 打靶法求解本征值问题

物理问题:一维薛定谔方程的定态解

$$\begin{cases} \frac{d^2\psi}{dx^2} + k^2\psi = 0 & (0 < x < 1.0) \\ \psi(x = 0) = \psi(x = 1.0) = 0 \end{cases} \begin{cases} \frac{d\phi}{dx} = -k^2\psi \\ \frac{d\psi}{dx} = \phi \end{cases}$$

打靶法求解步骤:

- 1. 先猜一个试验本征值 k_i
- 2. 从*x*=0开始求微分方程,初始条件为:

$$\psi(x=0)=0$$
, $\psi'(x=0)=\varphi(x=0)=\varepsilon$

- 3. 求出x=1时的 ψ 值,判断是否满足条件 ψ (x=1) = 0
- 4. 若满足, 得本征值与本征函数, 否则重复1, 2, 3步

常用优化方法:

- ✓ 最速下降法, 共轭梯度法
- ✔ 模拟退火
- ✓遗传算法
- **√**

$$U(x, y) = x^2 + 10y^2 + 4xy$$

什么方向下降速度最快? $-\nabla U(x,y)$

$$\Delta(x_n, y_n) = G(x_n, y_n)$$

- 1. 设定精度要求 ϵ ,初始搜索位置和搜索步长h;
- 2. 计算负梯度方向,以步长h更新位置(x',y')并计算能量U(x',y');
- 3. 如果U(x',y') > U(x,y)成立,则试探新位置舍弃,并令h=h/2; 反之将当前位置设置为试探新位置,即(x,y) = (x',y');
- 4. 判断 $h<\epsilon$ 是否成立,若成立,结束计算;否则返回步骤2。

共轭梯度法:

最速下降方法的缺点:

- ✔ 狭窄通道的激烈振荡行为
- ✔ 历史信息的缺失

改进方法: 共轭梯度方法

- ✓ 整合梯度知识
- ✔ 借助历史信息

共轭梯度法:

$$\Delta(x_n, y_n) = G(x_n, y_n) + \lambda_n \Delta(x_{n-1}, y_{n-1})$$

搜索方向: 当前梯度和上一步搜索方向及梯度的整合!

Fletcher-Reeves法:

$$\lambda_n = \frac{|G(x_n, y_n)|^2}{|G(x_{n-1}, y_{n-1})|^2}$$

第一步无历史信息,用最陡下降法!

