10/561092

034123-109.5725.txt SEQUENCE LIST 14-20 R30 17-07/770 16 DEC 2005

```
<110>
       THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
       DOWDY, Steven F
       WADIA, Jehangir S
<120>
       POLYPEPTIDE TRANSDUCTION AND FUSOGENIC PEPTIDES
<130> 034123-109
<140>
       PCT/US2004/20837
<141>
       2004-06-18
<150>
       60/480,065
       2003-06-20
<151>
<160>
       21
<170>
       PatentIn version 3.3
<210>
<211>
       86
<212>
       PRT
<213>
      Unknown
<220>
<223>
      transducing protein
<400>
Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
Gln Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Phe 20 25 30
His Cys Gln Val Cys Phe Ile Thr Lys Ala Leu Gly Ile Ser Tyr Gly 40 45
Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Gly Ser Gln Thr 50 60
His Gln Val Ser Leu Ser Lys Gln Pro Thr Ser Gln Ser Arg Gly Asp 65 70 75 80
Pro Thr Gly Pro Lys Glu
85
<210>
       20
<211>
<212>
       PRT
<213>
      Unknown
<220>
<223>
      HA2 analog
<400>
       2
                                         Page 1
```

```
Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Gly Gly Trp Thr Gly 10 15
Met Ile Asp Gly 20
<210>
       3
       20
<211>
<212>
       PRT
<213>
       Unknown
<220>
<223> HA2 analog
<400> 3
Gly Leu Phe Glu Ala Ile Ala Glu Phe Ile Glu Gly Gly Trp Glu Gly 1 5 10 15
Leu Ile Glu Gly
20
       4
5
<210>
<211>
<212>
       PRT
<213>
       Unknown
<220>
<223>
       linker moiety
<400>
Gly Gly Gly Ser
       5
6
<210>
<211>
<212>
       PRT
<213>
       Unknown
<220>
       linker moiety
<223>
<220>
<221>
<222>
       Xaa
       (6)..(6)
<223>
       Xaa = any number of repeats of amino acids 1-5
<400>
       5
Gly Gly Gly Ser Xaa
<210>
       12
<211>
```

```
034123-109.ST25.txt
<212> PRT
<213> Unknown
<220>
      linker moiety
<223>
<400> 6
Gly Lys Ser Ser Gly Ser Glu Ser Lys Ser
1 10
<210> 7
<211> 14
<212> PRT
<213> Unknown
<220>
      linker moiety
<223>
<400> 7
Gly Ser Thr Ser Gly Ser Gly Lys Ser Ser Glu Gly Lys Gly 10
<210>
       8
      18
PRT
<211>
<212>
<213>
      Unknown
<220>
<223>
      linker moiety
<400> 8
Gly Ser Thr Ser Gly Ser Gly Lys Ser Ser Glu Gly Ser Gly Ser Thr 1 10 15
Lys Gly
```

<210> 9

<211> 18 <212> PRT <213> Unknown

<220> <223> linker moiety

<400> 9

Gly Ser Thr Ser Gly Ser Gly Lys Pro Gly Ser Gly Glu Gly Ser Thr 10 15

Lys Gly

<210> 10

```
<211>
<212>
       14
       PRT
       Unknown
<220>
       linker moiety
<223>
<400>
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Ser Lys Glu Phe
       11
30
<210>
<211>
<212>
       PRT
<213>
       Unknown
<220>
       HA2 TAT peptide
<223>
<400> 11
Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly
1 10 15
Met Ile Asp Gly Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 20 25 30
<210>
<211>
       12
20
<212>
       PRT
<213>
       Unknown
<220>
      HA2 peptide
<223>
<400>
       12
Gly Leu Phe Gly Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly 10 15
Met Ile Asp Gly 20
<210>
       13
<211>
       418
<212>
       DNA
<213>
       Unknown
<220>
<223>
       CDNA
<400> 13
gcgtagagga tcgagatctc gatcccgcga aattaatacg actcactata ggggaattgt
                                                                             60
gagcggataa caattcccct ctagaaataa ttttgtttaa ctttaagaag gagatatacc
                                                                            120
                                                                            180
atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat
                                           Page 4
```

atgaggaaga agcggagaca gcgacgaaga ggctcggatc cgaattcgag ctccgtcgac	240
aagcttgcgg ccgcactcga gcaccaccac caccaccact gagatccggc tgctaacaaa	300
gcccgaaagg aagctgagtt ggctgctgcc accgctgagc aataactagc ataacccctt	360
ggggcctcta aacgggtctt gaggggtttt ttgctgaaag gaggaactat atccggat	418
<210> 14 <211> 418 <212> DNA <213> Unknown	
<220> <223> CDNA	
<400> 14	
cgcatctcct agctctagag ctagggcgct ttaattatgc tgagtgatat ccccttaaca	60
ctcgcctatt gttaagggga gatctttatt aaaacaaatt gaaattcttc ctctatatgg	120
tacccgtcgt cggtagtagt agtagtagtg tcgtcgccgg accacggcgc gccgtcggta	180
tactccttct tcgcctctgt cgctgcttct ccgagcctag gcttaagctc gaggcagctg	240
ttcgaacgcc ggcgtgagct cgtggtggtg gtggtggtga ctctaggccg acgattgttt	300
cgggctttcc ttcgactcaa ccgacgacgg tggcgactcg ttattgatcg tattggggaa	360
ccccggagat ttgcccagaa ctccccaaaa aacgactttc ctccttgata taggccta	418
<210> 15 <211> 53 <212> PRT <213> Unknown	
<220>	
<223> TAT peptide	
<400> 15	
Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15	
Arg Gly Ser His Met Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Ser 20 25 30	
Asp Pro Asn Ser Ser Val Asp Lys Leu Ala Ala Ala Leu Glu His 35 40 45	
His His His His 50	
<210> 16 <211> 360 <212> DNA	

```
<213>
       Unknown
<220>
<223>
       CDNA
<400>
gcgtagagga tcgagatctc gatcccgcga aattaatacg actcactata ggggaattgt
                                                                        60
gagcggataa caattcccct ctagaaataa ttttqtttaa ctttaagaaq qaqatatacc
                                                                       120
atgggcagga agaagcggag acagcgacga agaggccata tggctagcat gactggtgga
                                                                       180
cagcaaatgg gtcgggatcc gaattcgagc tccgtcgaca agcttgcggc cgcactcgag
                                                                       240
caccaccacc accaccactg agatecgget getaacaaag eeegaaagga agetgagttg
                                                                       300
gctgctgcca ccgctgagca ataactagca taaccccttg gggcctctaa acgggtcttg
                                                                       360
<210>
       17
<211>
       360
<212>
       DNA
       Unknown
<220>
<223>
       CDNA
cgcatctcct agctctagag ctagggcgct ttaattatqc tqaqtqatat ccccttaaca
                                                                        60
ctcgcctatt gttaagggga gatctttatt aaaacaaatt gaaattcttc ctctatatgg
                                                                       120
tacccgtcct tcttcgcctc tgtcgctgct tctccggtat accgatcgta ctgaccacct
                                                                       180
gtcgtttacc cagccctagg cttaagctcg aggcagctgt tcgaacgccg gcgtgaqctc
                                                                       240
gtggtggtgg tggtggtgac tctaggccga cgattgtttc gggctttcct tcgactcaac
                                                                       300
cgacgacggt ggcgactcgt tattgatcgt attggggaac cccggagatt tgcccagaac
                                                                       360
<210>
       18
<211>
       46
<212>
       PRT
<213>
       Unknown
<220>
<223>
       TAT peptide
<400>
Met Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly His Met Ala Ser
1 10 15
Met Thr Gly Gly Gln Met Gly Arg Asp Pro Asn Ser Ser Val
20 25 30
Asp Lys Leu Ala Ala Ala Leu Glu His His His His His His
```

Page 6

<210> <211> <212> <213>	19 1437 DNA Unknown		034123-109.	ST25.txt		
<220> <223>	CDNA					
<400> gcgccgg	19 otga tgccggccac	gatgcgtccg	gcgtagagga	tcgagatctc	gatcccgcga	60
aattaat	acg actcactata	ggggaattgt	gagcggataa	caattcccct	ctagaaataa	120
ttttgtt	taa ctttaagaag	gagatatacc	atgggcagga	agaagcggag	acagcgacga	180
agaggco	ata tggctagcat	gactggtgga	cagcaaatgg	gtcgggatcc	gaattccatg	240
tccaatt	tac tgaccgtaca	ccaaaatttg	cctgcattac	cggtcgatgc	aacgagtgat	300
gaggtto	gca agaacctgat	ggacatgttc	agggatcgcc	aggcgttttc	tgagcatacc	360
tggaaaa	atgc ttctgtccgt	ttgccggtcg	tgggcggcat	ggtgcaagtt	gaataaccgg	420
aaatggt	ttc ccgcagaacc	tgaagatgtt	cgcgattatc	ttctatatct	tcaggcgcgc	480
ggtctgg	cag taaaaactat	ccagcaacat	ttgggccagc	taaacatgct	tcatcgtcgg	540
tccgggc	tgc cacgaccaag	tgacagcaat	gctgtttcac	tggttatgcg	gcggatccga	600
aaagaaa	acg ttgatgccgg	tgaacgtgca	aaacaggctc	tagcgttcga	acgcactgat	660
ttcgacc	agg ttcgttcact	catggaaata	gcgatcgctg	ccaggatata	cgtaatctgg	720
catttct	ggg gattgcttat	aacaccctgt	tacgtatagc	cgaaattgcc	aggatcaggg	780
ttaaaga	tat ctcacgtact	gacggtggga	gaatgttaat	ccatattggc	agaacgaaaa	840
cgctggt	tag caccgcaggt	gtagagaagg	cacttagcct	gggggtaact	aaactggtcg	900
agcgato	gat ttccgtctct	ggtgtagctg	atgatccgaa	taactacctg	ttttgccggg	960
tcagaaa	aaaa tggtgttgcc	gcgccatctg	ccaccagcca	gctatcaact	cgcgccctgg	1020
aagggat	ttt tgaagcaact	catcgattga	tttacggcgc	taaggatgac	tctggtcaga	1080
gatacct	ggc ctggtctgga	cacagtgccc	gtgtcggagc	cgcgcgagat	atggcccgcg	1140
ctggagt	ttc aataccggag	atcatgcaag	ctggtggctg	gaccaatgta	aatattgtca	1200
tgaacta	tat ccgtaacctg	gatagtgaaa	caggggcaat	ggtgcgcctg	ctggaagatg	1260
gcgatgo	ggc cgcactcgag	caccaccacc	accaccactg	agatccggct	gctaacaaag	1320
cccgaaa	agga agctgagttg	gctgctgcca	ccgctgagca	ataactagca	taaccccttg	1380
gggccto	taa acgggtcttg	aggggtttt	tgctgaaagg	aggaactata	tccggat	1437

<210> 20 <211> 1438 <212> DNA <213> Unknown

220	034123-109.ST25.txt						
<220> <223> CDNA							
<400> 20 cgcggccact acggccggtg	ctacgcaggc	cgcatctcct	agctctagag	ctagggcgct	60		
ttaattatgc tgagtgatat	ccccttaaca	ctcgcctatt	gttaagggga	gatctttatt	120		
aaaacaaatt gaaattcttc	ctctatatgg	tacccgtcct	tcttcgcctc	tgtcgctgct	180		
tctccggtat accgatcgta	ctgaccacct	gtcgtttacc	cagccctagg	cttaaggtac	240		
aggttaaatg actggcatgt	ggttttaaac	ggacgtaatg	gccagctacg	ttgctcacta	300		
ctccaagcgt tcttggacta	cctgtacaag	tccctagcgg	tccgcaaaag	actcgtatgg	360		
accttttacg aagacaggca	aacggccagc	acccgccgta	ccacgttcaa	cttattggcc	420		
tttaccaaag ggcgtcttgg	acttctacaa	gcgctaatag	aagatataga	actccgcgcg	480		
ccagaccgtc atttttgata	ggtcgttgta	aacccggtcg	atttgtacga	agtagcagcc	540		
aggcccgacg gtgctggttc	actgtcgtta	cgacaaagtg	accaatacgc	cgcctaggct	600		
tttcttttgc aactacggcc	acttgcacgt	tttgtccgag	atcgcaagct	tgcgtgacta	660		
aagctggtcc aagcaagtga	gtacctttta	tcgctagcga	cggtcctata	tgcattagac	720		
cgtaaagacc cctaacgaat	attgtgggac	aatgcatatc	ggctttaacg	gtcctagtcc	780		
caatttctat agagtgcatg	actgccaccc	tcttacaatt	aggtataacc	gtcttgcttt	840		
tgcgaccaat cgtggcgtcc	acatctcttc	cgtgaatcgg	acccccattg	atttgaccag	900		
ctcgctacct aaaggcagag	accacatcga	ctactaggct	tattgatgga	caaaacggcc	960		
cagtcttttt taccacaacg	gcgcggtaga	cggtggtcgg	tcgatagttg	agcgcgggac	1020		
cttccctaaa aacttcgttg	agtagctaac	taaatgccgc	gattcctact	gagaccagtc	1080		
tctatggacc ggaccagacc	tgtgtcacgg	gcacagcctc	ggcgcgctct	ataccgggcg	1140		
cgacctcaaa gttatggcct	ctagtacgtt	cgaccaccga	cctggttaca	tttataacag	1200		
tacttgatat aggcattgga	cctatcactt	tgtccccgtt	accacgcgga	cgaccttcta	1260		
ccgctacgcc ggcgtgagct	cgtggtggtg	gtggtggtga	ctctaggccg	acgattgttt	1320		
cgggctttcc ttcgactcaa	ccgacgacgg	tggcgactcg	ttattgatcg	tattggggaa	1380		
ccccggagat ttgcccagaa	ctccccaaaa	aacgactttc	ctccttgata	taggccta	1438		
<210> 21 <211> 383 <212> PRT <213> Unknown							
<223> TAT peptide							

<400> 21

\$034123-109.ST25.txt\$ Met Gly Arg Lys Lys Arg Gln Arg Arg Gly His Met Ala Ser 1 5 10 15 Met Thr Gly Gly Gln Met Gly Arg Asp Pro Asn Ser Met Ser Asn 20 25 30Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala Thr 35 40 45 Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg Gln 50 55 60 Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg Ser 65 70 75 80 Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala Glu 85 90 95 Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly Leu 100 105 110 Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu His 115 120 125 Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser Leu 130 140 Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg Ala 145 150 155 160 Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg Ser 165 170 175 Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala Phe 180 185 190 Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala Arg 195 200 205 Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu Ile
210 215 220 His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu Lys 225 230 235 240 Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser Val 245 250 255

Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val Arg 260 265 270

Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr Arg 275 280 285

Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly Ala 290 295 300

Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser Ala 305 310 315 320

Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile Pro 325 330 335

Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met Asn 340 345 350

Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu Leu 355 360 365

Glu Asp Gly Asp Ala Ala Ala Leu Glu His His His His His 370 375 380