COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

Underdetermined linear equations

We now consider the regression problem y = Xw where $X \in \mathbb{R}^{n \times d}$ is "fat" (i.e., $d \gg n$). This is called an "underdetermined" problem.

- d is now postertially much greater than n.

 There are more dimensions than observations.
 - \triangleright w now has an infinite number of solutions satisfying y = Xw.

These sorts of high-dimensional problems often come up: Notype of apoblem when

In gene analysis there are 1000's of genes but only 100's of subjects! the number of unknowns in greater than

Images can have millions of pixels.

- ► Even polynomial regression can quickly lead to this scenario.

Manual A December

MINIMUM ℓ_2 REGRESSION

(not necessarily an algorithm wouthouse, but with introduce 2 different techniques very useful in machine reasing.)

ONE SOLUTION (LEAST NORM)

رمها One possible solution to the underdetermined problem is

LS solⁿ = $(xx^T)^{-1}X^Ty$ to see they teat's a solⁿ sirely multiply the left $w_{\text{ln}} = X^T(XX^T)^{-1}y \Rightarrow Xw_{\text{ln}} = XX^T(XX^T)^{-1}y = y$. Side by x.

We can construct another solution by adding to w_{ln} a vector $\delta \in \mathbb{R}^d$ that is in the *null space* \mathcal{N} of X:

$$\delta \in \mathcal{N}(X) \Rightarrow X\delta = 0 \text{ and } \delta \neq 0$$
The new solution we found is also a solution

and so $X(w_{\ln}+\delta)=Xw_{\ln}+X\delta=y+0$. To the problem . (there of deltas we

In fact, there are an infinite number of possible δ , because d > n. (an pick)

We can show that w_{ln} is the solution with smallest ℓ_2 norm. We will use the proof of this fact as an excuse to introduce two general concepts.

So our goal is to show that among all passible solutions, the least-square has the smallest 12 norm - why do we want to show this? Is the

TOOLS: ANALYSIS something that we have to brove.

We can use *analysis* to prove that w_{ln} satisfies the optimization problem defined $w_{\text{ln}} = \arg\min_{w} \|w\|^2$ subject to Xw = y. [vector has to satisfy our linear problem.]

defined
$$\lim_{w \to \infty} \|w\|$$
 subject to $Aw = y$.

(Think of mathematical analysis as the use of inequalities to prove things.) vew sol". _ least norm sol".

Proof: Let
$$w$$
 be another solution to $Xw = y$, and so $X(w - w_{\ln}) = 0$. Also, The vector constructed from the difference with $(w - w_{\ln})^T w_{\ln} = (w - w_{\ln})^T X^T (XX^T)^{-1} y$ any solution w and the least $w = (X(w - w_{\ln}))^T (XX^T)^{-1} y = 0$ norm solution.

As a result, $w - w_{\ln}$ is orthogonal to w_{\ln} . It follows that $w \neq w$ is orthogonal to w_{\ln} . It follows that $w \neq w$ is $w = (w - w_{\ln})^T w_{\ln} > ||w_{\ln}||^2 + ||w_{\ln}||^2 + 2(w - w_{\ln})^T w_{\ln} > ||w_{\ln}||^2$. That is in emparation by threating thus as I we clar $w = w$ then we satisfy that is in the null space? It as $w = w$ in the null space? It as $w = w$ in w is $w = w$ in w as $w = w$ in w and w is $w = w$.

* The previous ver	tor of in the null space of x that we discurred is now
equel to the a	tor of in the well space of x that we discurred is now liference between on wew solution, which can any new solution
the least norm s	
	I didn't understand, is Sa variable) why would we
	didn't uderstand, is sa variable? Why would we get the same vector in null space if we just randowly
	another solt from it.
	will the vector after justine alon cleways be in the
	ull space.
** Xtimes w.	is egrel to y, by the admition of our choice of y.
And X times	is equal to y, by the adjuition of our choice of y. Wis=y (proof on prev. slide)
	what does this mean?
*** The squered to	form of any sola that we choose is equal to the two terms. It's equal to me of our teast norms of a t squeed norm of the difference between our
	soltand any other solution we choose.
	hose 2 numbers is greater than the squared least norm sold. Therefore, proven that any sold that we doose has got to be greater than the
what we've !	proven that any soll that we dook has got to be greater than the
least norms	dution, and it's all hinged on the fact that any sol ? that we
chouse na	olution; and it is all hinged on the fact that any sol a that we 5 a dot product that fearlist in O. Junet does this conclusion

TOOLS: LAGRANGE MULTIPLIERS (How we can actually derive the least-norm sol =)

& using analysis.

Instead of starting from the solution, start from the problem, vector of

 $w_{\text{ln}} = \arg\min w^T w$ subject to Xw = y. create an objective function by adding Lagrange multipliers. ► Introduce Lagrange multipliers: $\mathcal{L}(w, \eta) = w^T w + \eta^T (Xw - y)$.

Goal: \blacktriangleright Minimize \mathcal{L} over w maximize over η . If $Xw \neq y$, we can get $\mathcal{L} = +\infty$.

The optimal conditions are By maximizing over
$$\mathcal{V}$$
 within y over \mathcal{V} we call give over \mathcal{V} within y over \mathcal{V} within y over \mathcal{V} with a condition ov

We have everything necessary to find the solution:

- 1. From first condition: $w = -X^T \eta/2$
 - 2. Plug into second condition: $\eta = -2(XX^T)^{-1}y$
 - 3. Plug this back into #1: $w_{ln} = X^T(XX^T)^{-1}y$ What about other KKT

| Low equations

* Oo, if the D homzero	victor w sotisfies the equality. , if doesn't satisfy " (constraint) not satisfy this equality, then we pick a vector of such that
** Or was	was sourced; transfer of
2) Whereas	if we fick is that does sortisfy this equality, then this term
must b	if we pick w, that does sortisfy this equality, then this term be equal to 0.

Sparse ℓ_1 regression

(very useful and often done.)

LS AND RR IN HIGH DIMENSIONS

restare hoise as for as medicting y is concerned

Usually not suited for high-dimensional data

- ► Modern problems: Many dimensions/features/predictors
- Only a few of these may be important or relevant for predicting y
- ▶ Therefore, we need some form of "feature selection"
- ► Least squares and ridge regression: one not useful in this reshect become
- Treat all dimensions equally without favoring subsets of dimensions

 The relevant dimensions are averaged with irrelevant ones

 Problems: Poor generalization to new data, interpretability of results

And so we're going to discuss a method now for doing linear regression where we also try to find subsets of the dimensions in x that are going to be useful for bredicting y.

REGRESSION WITH PENALTIES

We've referred to the term $||w||^2$ as a *penalty term* and used $f(x_i; w) = x_i^T w$.

how well does our model fit

Penalized fitting

the data

The general structure of the optimization problem is

total cost = goodness-of-fit term + penalty term on the model parameters

- Goodness-of-fit measures how well our model f approximates the data.
- ▶ Penalty term makes the solutions we don't want more "expensive".

What kind of solutions does the choice $||w||^2$ favor or discourage?

The squared norm penalty doesn't fire at **OUADRATIC PENALTIES** all values of we equally.

Start at a cortain point, then we want to see how much do we reduce the objective func. by subtracting some Dufron that. If we reduce us by aw, the total reduction in objective function depends on starting point

Intuitions

- Quadratic penalty: Reduction in cost depends on $|w_i|$.
- ▶ Suppose we reduce w_i by Δw . The effect on $\mathcal L$ depends on the starting point of w_i .
- Consequence: We should favor vectors w whose entries are of

similar size, preferably small. Uhy similar? so the squared penelty on the vector w isgoing to I'st prefer to reduce the dimensions of w

that have larger magnifuder, before trying to

that reduction in the magnitude of w reduces our penalty term by reduce the dimensions that have smaller magnifieder

Conclusion: L2 norm is not going to be son that can giv spars	esus	Because it going to try to make all of the values in the ve ver we equal in size. It's going to encourage solutions that have values that are equal in size. Because when a dimension of we be comes much largor in negarithe the squared penalty squares that magnitude and suddenly that dimension to be enaltized quite a bit. Inhereor if all the values are roughly equal in size than they all constribute about the same amount to the benefty the squared norm benefty.
The goal is	to find s	parse solutions The squared norm penalty on
w iy hot	going to a	give us that.

SPARSITY (What does it mean to find sparse solutions?)

*We want to make the entries of we that have non-zero values as small as possible.

while still predicting well why small for non-zero! what is the gain in that.

- Regression problem with n data points $x \in \mathbb{R}^d$, $d \gg n$.
- ► Goal: Select a small subset of the *d* dimensions and switch off the rest.

▶ This is sometimes referred to as "feature selection".

What does it mean to "switch off" a dimension? essentially we want to make varies in w=0

- If $w_k = 0$, the prediction is $f(x, w) = x^T w = w_1 x_1 + \dots + 0 \cdot x_k + \dots + w_d x_d,$ the lith dimension of x is not giving to contribute anything to our prediction of y if so the prediction does not depend on the kth dimension. We use the dot production associated as y = 0.
- Feature selection: Find a w that (1) predicts well, and (2) has only a function. small number of non-zero entries.

 A w for which most dimensions = 0 is called a sparse solution.

 Sparsity: trying to find dimensions of well our regression coefficient version that should be expect to and which one should not.

Penalty goal

Find a penalty term which encourages sparse solutions.

Quadratic penalty vs sparsity

- ightharpoonup Suppose w_k is large, all other w_i are very small but non-zero
- ▶ Sparsity: Penalty should keep w_k , and push other w_j to zero
- Quadratic penalty: Will favor entries w_j which all have similar size, and so it will push w_k towards small value.

Overall, a quadratic penalty favors many small, but non-zero values.

Solution

Sparsity can be achieved using *linear* penalty terms.

Be couse it g on a the y vory with zero writh t	m is not going to give us sparse sol so one to pendize large values more than small values. And so alw of a dimension in w becomes very close to 0, the pendiy is a. And so we oven't going to necessarily en courage that to go he squared norm pendiy. It turns not that we can a chieve this sparsity by using
au	near term instead.

LASSO

Sparse regression

LASSO: Least Absolute Shrinkage and Selection Operator

With the LASSO, we replace the ℓ_2 penalty with an ℓ_1 penalty:

$$w_{\text{lasso}} = \arg\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{1}$$

where

$$\|w\|_1 = \sum_{j=1}^d |w_j|$$
. If I sum of absolute values of its evanier

This is also called ℓ_1 -regularized regression.

Ridge regression think of as 12-rejularized regression

QUADRATIC PENALTIES certain amount, it doesn't matter whether we start from a smaller value or from a higher value.

Subtracting off the same amount is going to

Quadratic penalty

Linear penalty of the same amount.

Reducing a large value w_j achieves a larger cost reduction.

Cost reduction does not depend on the magnitude of w_j .

12 worm

才米术

This figure applies to d < n, but gives intuition for $d \gg n$.

- ► Red: Contours of $(w w_{LS})^T (X^T X) (w w_{LS})$ (see Lecture 3)
- ▶ Blue: (left) Contours of $||w||_1$, and (right) contours of $||w||_2^2$

* we can relate :	this term to the sum of squared errors term, and is cussed in lec 3. along this cure (ellipse) pays the same price acc. to the term
So every value	along this cure (ellipse) peys the same price acc to the
goodnen of git	ferm.
** Fromthis +	ype of intuitive blot, we're going to got sparse solutions. So if Shrink one sola acc. to a pendity (the diamond), with the
we continue to	Shink our sol acc to a pendty (the diamond), with the
(oustraint to	et the solution must jouou along the ellipse we're going
to eventuelle	et the solution must jouou along the ellipse we're going Pick a point that's zero along one of the axes.
Because we	're going to eventually pick a point that's zero along, why!
one of the ax	es. Because we've asing to hit one of the shows boilts in the
1:0.000	es. Because we've going to hit one of the show boilts in the dy
ou a mona o	serves consist and as a soft the experience of the server
*** Juherear	with the 2 pendly, we don't have any short parties, we
don't hit any tho	2 shorp points. And so we don't get a sparse so!
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	doubturdousted the significance of should
	signiff.
	Med W
	I can't Visuama in
	e rande being applicable
	in a general sunario.

OEFFICIENT PROFILES: RR VS LASSO

OP for RR is non-sparse. The only points at which the profibe crosses O is by caincidence. , Nomeaning toit) my would coefficient chempetrom + veto - ve with ambda war at o hun 1=0, we have kastsquere sol. So (Pfor both is equal. 11 &12 Conveye to same problem) 1 × O 05X20 (b) $||w||_1$ penalty مه ۲۶ مه 520

And so this is the's parsity that we got fromly. Ata artainvalue of A, For ex; we have 3 divensions that Becouse 00 times I, pundly is are non-zero and the remaining are all equal to , युजं भु क कि ० ग्रु.

# As we incre fouto zero	are lambels for 11 problem, what we see is that certain dimensions and then stay at zono.
It's quite diff	erent from the 12 problem where again, all dimensions are being as 2 7. They're all being shown too but they never hit zero.
Except by b	aving through coincidentally, or his or.
J f	1

 ℓ_p REGRESSION (we can gourd se this to all norms, Ip norms.)

 ℓ_p -norms (just a puralization on regursion coefficients.)

These norm-penalties can be extended to all norms:

$$||w||_p = \left(\sum_{i=1}^d |w_i|^p\right)^{\frac{1}{p}}$$
 for 0

 ℓ_p -regression

The ℓ_p -regularized linear regression problem is

$$w_{\ell_p} := \arg\min_{w} \|y - Xw\|_2^2 + \lambda \|w\|_p^p$$

We have seen:

- ℓ_1 -regression = LASSO(pz1)
- ℓ_2 -regression = ridge regression ($\rho = 2$)

Computing the solution for ℓ_p

My isn't b=2

A also conen

Solution of ℓ_p problem ℓ_2 aka ridge regression. Has a closed form solution

 $\ell_p \ (p \ge 1, p \ne 2)$ — By "convex optimization". We won't discuss convex analysis in detail in this class, but two facts are important

- There are no "local optimal solutions" (i.e., local minimum of \mathcal{L})
- ► The true solution can be found *exactly* using iterative algorithms

(not comen) (p < 1) — We can only find an approximate solution (i.e., the best in its "neighborhood") using iterative algorithms. Why? (any case where we can't only local ordinal p < 1 p > 1

Three techniques formulated as optimization problems

what if n <d?< th=""></d?<>				
Method	Good-o-	fit penalty	Solution method	nusher to
Least squ	y - Xw	\parallel_2^2 none	Analytic solution ex	xists if X^TX invertible
Ridge reg	/ 11/		Analytic solution ex	2
ر LASSO	y - Xw	$\ _{2}^{2} \ w \ _{1}$	Numerical optimiza	tion to find solution
Gwedidn't d	lisour on algority	a for this ab	Numerical optimiza	we confind the global