# Confidential Whiteboard Contents

Group D

Fenno Boomgaarden Hauke Redemann Keno Rott

## Overview

- 1. Task Definition
- 2. Use Cases
- 3. Processing Chain
- 4. Conclusion
- 5. Outlook: Deep Learning

#### Task Definition

- Protect handwritten notes
- Secret pattern
  - Outer rectangle
  - Dashed rectangle inside
- Blur the insides of the pattern



#### Task Definition

- Protect handwritten notes
- Secret pattern
  - Outer rectangle
  - Dashed rectangle inside
- Blur the insides of the pattern



## Use Case 1

Lecture recording software



## Lecture recording software

- Fully automated systems
- Time-based
- Upload without review

⇒ Practical solution



# Das Passwort für die Unterlagen steht an der Tafel.

## Potential problems

- Access credentials
- Copyrighted material
- Solutions for exam exercises

⇒ Hide sensitive information without manually editing the video

## Use Case 2

Real-life video streaming





https://twitchtracker.com/statistics/games (2020-01-20)

Solving the task



- 1. Preprocessing
- 2. Contour Detection
- 3. Rectangle Recognition
- 4. Detection of dashed lines
- 5. Image Manipulation





- 1. Preprocessing
- 2. Contour Detection
- 3. Rectangle Recognition
- 4. Detection of dashed lines
- 5. Image Manipulation





- 1. Preprocessing
- 2. Contour Detection
- 3. Rectangle Recognition
- 4. Detection of dashed lines
- 5. Image Manipulation





- 1. Preprocessing
- 2. Contour Detection
- 3. Rectangle Recognition
- 4. Detection of dashed lines
- 5. Image Manipulation





- 1. Preprocessing
- 2. Contour Detection
- 3. Rectangle Recognition
- 4. Detection of dashed lines
- 5. Image Manipulation





#### Preprocessing

- Differentiate drawing and background
- Filter out light reflections
- Close small gaps



#### Preprocessing

- Differentiate drawing and background
- Filter out light reflections
- Close small gaps



#### Contour detection

- Find all contours in the image
- Pre-filtering is required



- OpenCV returns inner and outer contours
- Remove all outer contours

⇒ Minimize workload



- Inner contour
- Even depth in the hierarchy tree



- Outer contour
- Uneven depth in the hierarchy tree



- Contours can be classified
- Additionally: Remove contours with no children



## Rectangle Recognition

- Approximated contour has four vertices
- Convex shape

⇒ All rectangles are potential matches



#### Detection of dashed lines

- Create a sub-image for each rectangle
- Further processing on each sub-image



25

Preprocessing Contours Rectangles Dashed Lines Manipulation

#### Detection of dashed lines

- Create a sub-image for each rectangle
- Further processing on each sub-image



- Create slices from predefined margins
- Further processing on each slice



- Create slices from predefined margins
- Further processing on each slice



- Create slices from predefined margins
- Further processing on each slice



- Create slices from predefined margins
- Further processing on each slice



#### Dashed line detection

- White pixels projected to a 1D array
- Compare length of each segment to a predefined maximum



#### Dashed line detection

- White pixels projected to a 1D array
- Compare length of each segment to a predefined maximum



#### Dashed line detection

- White pixels projected to a 1D array
- Compare length of each segment to a predefined maximum



#### Class structure



Rectangles Dashed Lines Preprocessing Contours

## Image Manipulation

- Create mask from original contour
- Replace insides of the mask with pixelated image data



35

Preprocessing Contours Rectangles Dashed Lines Manipulation

# Conclusion

Statistics and examples



## Average execution times

| Preprocessing                  | 468 ms  |
|--------------------------------|---------|
| Contour Detection              | 6 ms    |
| Rectangle Detection            | 4 ms    |
| Create sub-images              | 63 ms   |
| Extract slices                 | 1 ms    |
| Detect dashed lines            | 1 ms    |
| Image Manipulation (blackened) | 4 ms    |
| Image Manipulation (blurred)   | 3000 ms |
| Image Manipulation (pixelated) | 37 ms   |

# Working examples



# Working examples



### Failing examples

- Long dashes (≥ threshold)
- Big holes in the outlines
- Too much distance between lines
- Curvy rectangles



#### Conclusion

- Great results on most images
- Robust solution
- Inflexible pattern detection
- Not (yet) real-time capable

# Outlook

**Deep Learning** 



#### Motivation

**Problem:** Algorithm too inflexible for poorly drawn patterns

⇒ Deep Learning could provide more general solutions

#### Motivation

Problem: Algorithm too inflexible for poorly drawn patterns

⇒ Deep Learning could provide more general solutions

Idea: Identify major error sources in our pipeline

- Rectangle detection?
- Detection of dashed lines
- ⇒ Replace corresponding steps with CNNs

#### Detection of dashed lines with CNN

- Construct a suitable
   CNN
- Train it on generated data



# Dashed Line Detection with CNN

Easy task: Classifier of dashed lines

But can we collect enough training data?

- Rectangle is already detected and transformed
- Very specific task
- ⇒ Data is easy to generate



# Thank you for your attention!



# Image Sources

https://www.flickr.com/photos/gpadjp/8121939408

https://twitch.tv/Van\_Hinten88

https://upload.wikimedia.org/wikipedia/commons/4/47/MultiLayerNeuralNetwork\_english.png

https://upload.wikimedia.org/wikipedia/commons/6/63/Typical\_cnn.png