Cours de Statistiques Inférentielles

CQLS: cqls@upmf-grenoble.fr

10 février 2017

Plan

- 1 Exemples de comparaisons de paramètres
- Problématiques avec 2 paramètres
- 3 Détermination de l'assertion d'intérêt H₁
- A Rédaction des exemples

Objectif et questions

Problématique associée à ce cours

On s'intéresse aux performances relatives de l'ensemble des petites et moyennes entreprises (PME) de deux pays fictifs notés P1 et P2 en 2004 et 2005 en analysant leurs chiffres d'affaires (exprimés dans une même unité). Ne pouvant pas interroger l'ensemble des PME, on ne pourra disposer que des chiffres d'affaires sur des échantillons de PME (les tailles d'échantillons seront précisées plus tard).

Question 1

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20 unités supérieur à celui du pays P_2 ?

$Question\ 2$

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20% supérieur à celui du pays P_2 ?

Questions (suite)

Question 3

En 2005, l'hétérogénéité (mesurée par la variance) des C.A. annuels des PME du pays P_1 est-elle différente de celle du pays P_2 ?

Question 4

En 2005, l'hétérogénéité des C.A. annuels des PME du pays P_1 est-elle de plus de 25% supérieure à celle du pays P_2 ?

Question 5

Le C.A. moyen des PME de P1 a-t-il augmenté de plus de 10 unités entre 2004 et 2005 ? Pour traiter cette question, on disposera des chiffres d'affaires des mêmes n PME en 2004 et 2005.

Plan

- 1 Exemples de comparaisons de paramètres
- Problématiques avec 2 paramètres
- 3 Détermination de l'assertion d'intérêt H₁
- A Rédaction des exemples

Nbre de paramètres pour décrire H_1 ?

2 paramètres

Paramètre :
$$\mu^{(1)} - \mu^{(2)} = \mu^D := \mathbb{E}\left(Y_i^D\right)$$
="moyenne de Différence" où $Y_i^D := Y_i^{(1)} - Y_i^{(2)}$ ="Différence de variables"

Données: $\mathbf{Y}^{\mathbf{D}} = (Y_1^D, \dots, Y_n^D)$ avec $n \ge 30$

Statistique de test sous H_0 :

$$\widehat{\delta_{\mu^{\bullet},\mu_0}}(\mathbf{Y}) := \frac{\widehat{\mu^{\bullet}}(\mathbf{Y}) - \mu_0}{\widehat{\sigma_{\widehat{\mu^{\bullet}}}}(\mathbf{Y})} \stackrel{approx.}{\leadsto} \mathcal{N}(0,1)$$

Paramètre :
$$\mu^{(1)} - \mu^{(2)} = \mu^D := \mathbb{E}(Y_i^D)$$
="moyenne de Différence"
où $Y_i^D := Y_i^{(1)} - Y_i^{(2)}$ ="Différence de variables" $\rightarrow \mathcal{N}(\mu^D, \sigma_D)$

Données : $\mathbf{Y}^{\mathbf{D}} = (Y_1^D, \cdots, Y_n^D)$

Statistique de test sous H_0 :

$$\widehat{\delta_{\mu^{\bullet},\mu_{0}}}(\mathbf{Y}) := \frac{\widehat{\mu^{\bullet}}(\mathbf{Y}) - \mu_{0}}{\widehat{\sigma_{\widehat{\mu^{\bullet}}}}(\mathbf{Y})} \rightsquigarrow \mathcal{S}t(n-1)$$

Asymptotique

Données : $\mathbf{Y} = (Y_1^{(1)}, \dots, Y_{n_1}^{(1)}, Y_1^{(2)}, \dots, Y_{n_2}^{(2)})$ avec $n^{(1)}, n^{(2)} > 30$ Statistique de test sous H_0 :

$$\begin{array}{c|c} d_{\mu} = \mu^{(1)} - \mu^{(2)} & \widehat{\delta_{d_{\mu},d_{0}}}(\mathbf{Y}) \coloneqq \frac{\widehat{d_{\mu}}(\mathbf{Y}) - d_{0}}{\widehat{\sigma_{\widehat{d_{\mu}}}}(\mathbf{Y})} \overset{approx.}{\leadsto} \mathcal{N}(0,1) \\ d_{\sigma^{2}} = \sigma_{(1)}^{2} - \sigma_{(2)}^{2} & \widehat{\delta_{d_{\sigma^{2}},d_{0}}}(\mathbf{Y}) \coloneqq \frac{\widehat{d_{\sigma^{2}}}(\mathbf{Y}) - d_{0}}{\widehat{\sigma_{\widehat{\sigma^{2}}}}(\mathbf{Y})} \overset{approx.}{\leadsto} \mathcal{N}(0,1) \\ r_{\mu} = \mu^{(1)}/\mu^{(2)} & \widehat{\delta_{r_{\mu},r_{0}}}(\mathbf{Y}) \coloneqq \frac{\widehat{r_{\mu}}(\mathbf{Y}) - r_{0}}{\widehat{\sigma_{\widehat{r_{\mu}}}}(\mathbf{Y})} \overset{approx.}{\leadsto} \mathcal{N}(0,1) \\ r_{\sigma^{2}} = \sigma_{(1)}^{2}/\sigma_{(2)}^{2} & \widehat{\delta_{r_{\sigma^{2}},r_{0}}}(\mathbf{Y}) \coloneqq \frac{\widehat{r_{\sigma^{2}}}(\mathbf{Y}) - r_{0}}{\widehat{\sigma_{\widehat{r_{\mu}}}}(\mathbf{Y})} \overset{approx.}{\leadsto} \mathcal{N}(0,1) \end{array}$$

Données :
$$\mathbf{Y} = (Y_1^{(1)}, \cdots, Y_{n_1}^{(1)}, Y_1^{(2)}, \cdots, Y_{n_2}^{(2)})$$
 avec $Y_{i_1}^{(1)} \leadsto \mathcal{N}(\mu^{(1)}, \sigma_{(1)})$ et $Y_{i_2}^{(2)} \leadsto \mathcal{N}(\mu^{(2)}, \sigma_{(2)})$ Statistique de test sous \mathbf{H}_0 :

$$\begin{array}{|c|c|} \hline d_{\mu} = \mu^{(1)} - \mu^{(2)} & \widehat{\delta_{d_{\mu},d_0}}(\mathbf{Y}) := \frac{\widehat{d_{\mu}}(\mathbf{Y}) - d_0}{\widehat{\sigma_{d_{\mu}}}(\mathbf{Y})} \rightsquigarrow \mathcal{S}t(n^{(1)} + n^{(2)} - 2) \\ \hline r_{\sigma^2} = \sigma_{(1)}^2 / \sigma_{(2)}^2 & \widehat{\delta_{r_{\sigma^2},r_0}}(\mathbf{Y}) := \frac{\widehat{r_{\sigma^2}}(\mathbf{Y})}{r_0} \rightsquigarrow \mathcal{F}(n^{(1)} - 1, n^{(2)} - 1) \\ \hline \end{array}$$

Plan

- 1 Exemples de comparaisons de paramètres
- Problématiques avec 2 paramètres
- 3 Détermination de l'assertion d'intérêt H_1
- A Rédaction des exemples

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20 unités supérieur à celui du pays P_2 ?

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20 unités supérieur à celui du pays P_2 ?

$$\mathbf{H_1}: \mu^{P1} > \mu^{P2} + 20 \Longleftrightarrow$$

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20 unités supérieur à celui du pays P_2 ?

$$\mathbf{H_1}: \mu^{P1} > \mu^{P2} + 20 \Longleftrightarrow \left\{ \begin{array}{l} d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{ou} \\ d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$$

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20 unités supérieur à celui du pays P_2 ?

Réponse :

$$\mathbf{H_1}: \mu^{P1} > \mu^{P2} + 20 \Longleftrightarrow \left\{ \begin{array}{l} d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{ou} \\ d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$$

Assertion d'intérêt pour Question 2

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20% à celui du pays P_2 ?

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20 unités supérieur à celui du pays P_2 ?

Réponse :

$$\mathbf{H_1}: \mu^{P1} > \mu^{P2} + 20 \Longleftrightarrow \left\{ \begin{array}{l} d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{ou} \\ d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$$

Assertion d'intérêt pour Question 2

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20% à celui du pays P_2 ?

Réponse : (Attention : différence de moyennes n'est pas possible!!)

$$H_1: \mu^{P1} > (1 + 20\%)\mu^{P2} \iff$$

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20 unités supérieur à celui du pays P_2 ?

Réponse :

$$\mathbf{H_1}: \mu^{P1} > \mu^{P2} + 20 \Longleftrightarrow \left\{ \begin{array}{l} d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{ou} \\ d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$$

Assertion d'intérêt pour Question 2

En 2005, le C.A. annuel moyen des PME du pays P_1 est-il de plus de 20% à celui du pays P_2 ?

Réponse : (Attention : différence de moyennes n'est pas possible!!)

$$\mathbf{H_1}: \mu^{P1} > (1 + 20\%)\mu^{P2} \iff \left\{ egin{array}{l} r_{\mu} := rac{\mu^{P1}}{\mu^{P2}} > 1.2 \\ \mathrm{ou} \\ r_{\mu} := rac{\mu^{P2}}{\mu^{P1}} < 1/1.2 \end{array} \right.$$

En 2005, l'hétérogénéité (mesurée par la variance) des C.A. annuels des PME du pays P_1 est-elle différente de celle du pays P_2 ?

En 2005, l'hétérogénéité (mesurée par la variance) des C.A. annuels des PME du pays P_1 est-elle différente de celle du pays P_2 ? **Réponse** :

$$\mathbf{H_1}: \sigma_{P1}^2 \neq \sigma_{P2}^2 \Longleftrightarrow$$

En 2005, l'hétérogénéité (mesurée par la variance) des C.A. annuels des PME du pays P_1 est-elle différente de celle du pays P_2 ?

Réponse :

Assertion d'intérêt pour Question 4

En 2005, l'hétérogénéité des C.A. annuels des PME du pays P_1 est-elle de plus de 25% supérieure à celle du pays P_2 ?

En 2005, l'hétérogénéité (mesurée par la variance) des C.A. annuels des PME du pays P_1 est-elle différente de celle du pays P_2 ?

Réponse :

Assertion d'intérêt pour Question 4

En 2005, l'hétérogénéité des C.A. annuels des PME du pays P_1 est-elle de plus de 25% supérieure à celle du pays P_2 ?

$$\mathbf{H_1}: \sigma_{P1}^2 > (1 + 25\%)\sigma_{P2}^2 \iff$$

En 2005, l'hétérogénéité (mesurée par la variance) des C.A. annuels des PME du pays P_1 est-elle différente de celle du pays P_2 ?

Réponse :

Assertion d'intérêt pour Question 4

En 2005, l'hétérogénéité des C.A. annuels des PME du pays P_1 est-elle de plus de 25% supérieure à celle du pays P_2 ?

$$\mathbf{H}_{1}: \sigma_{P1}^{2} > (1 + 25\%)\sigma_{P2}^{2} \iff \begin{cases} r_{\sigma^{2}} := \frac{\sigma_{P1}^{2}}{\sigma_{P2}^{2}} > 1.25 \\ \text{ou} \\ r_{\sigma^{2}} := \frac{\sigma_{P2}^{2}}{\sigma_{P1}^{2}} < 1/1.25 \end{cases}$$

Le C.A. moyen des PME de P1 a-t-il augmenté de plus de 10 unités entre 2004 et 2005 ? Pour traiter cette question, on disposera des chiffres d'affaires des mêmes n PME en 2004 et 2005.

Le C.A. moyen des PME de P1 a-t-il augmenté de plus de 10 unités entre 2004 et 2005? Pour traiter cette question, on disposera des chiffres d'affaires des mêmes n PME en 2004 et 2005.

- test basé sur deux paramètres mais seulement sur un seul échantillon car les mêmes n PME ont été interrogées.
- Construire la variable d'intérêt Différence de C.A. : $Y^D := Y^{04} - Y^{05}$ ou $Y^D := Y^{05} - Y^{04}$
- $\mu^D := \text{moy. de diff.} = \mathbb{E}(Y^D) (= \mu^{04} \mu^{05} \text{ ou } \mu^{05} \mu^{04}).$

Le C.A. moyen des PME de P1 a-t-il augmenté de plus de 10 unités entre 2004 et 2005 ? Pour traiter cette question, on disposera des chiffres d'affaires des mêmes n PME en 2004 et 2005.

- test basé sur deux paramètres mais seulement sur un seul échantillon car les mêmes n PME ont été interrogées.
- Construire la variable d'intérêt Différence de C.A. : $Y^D := Y^{04} Y^{05}$ ou $Y^D := Y^{05} Y^{04}$
- $\mu^D :=$ moy. de diff.= $\mathbb{E}(Y^D)(=\mu^{04}-\mu^{05})$ ou $\mu^{05}-\mu^{04}$. $\Longrightarrow (\mu^D =$ "Moyenne de Différence") $\neq (d_\mu =$ "Différence de Moyennes"!)

$$H_1: \mu^{05} > \mu^{04} + 10 \iff$$

Le C.A. moyen des PME de P1 a-t-il augmenté de plus de 10 unités entre 2004 et 2005? Pour traiter cette question, on disposera des chiffres d'affaires des mêmes n PME en 2004 et 2005.

- test basé sur deux paramètres mais seulement sur un seul échantillon car les mêmes n PME ont été interrogées.
- Construire la variable d'intérêt Différence de C.A. : $Y^D := Y^{04} - Y^{05}$ ou $Y^D := Y^{05} - Y^{04}$
- $\mu^D := \text{moy. de diff.} = \mathbb{E}(Y^D) (= \mu^{04} \mu^{05} \text{ ou } \mu^{05} \mu^{04}).$ $\implies (\mu^D = \text{``Moyenne de Différence''}) \neq (d_\mu = \text{``Différence de Moyennes''}!)$

$$\mathbf{H_1}: \mu^{05} > \mu^{04} + 10 \iff \left\{ egin{array}{l} \mu^D := \mu^{04} - \mu^{05} < -10 \ & \mathrm{ou} \ \mu^D := \mu^{05} - \mu^{04} > 10 \end{array} \right.$$

Relation générale entre le signe de deltaEst.HO et ploi(deltaEst.HO,...)

Lorsque $\mathcal{L}_0 \stackrel{R}{=} \text{loi}(...)$ est soit une $\mathcal{N}(0,1) \stackrel{R}{=} \text{norm}()$ soit une $\mathcal{S}t(...) \stackrel{R}{=} t(...)$, on a les équivalences suivantes :

• deltaEst.H0< 0 \iff ploi(deltaEst.H0,...) $\left\{ \begin{array}{c} < \\ > \end{array} \right\}$???

Relation générale entre le signe de deltaEst.HO et ploi(deltaEst.HO,...)

Lorsque $\mathcal{L}_0 \stackrel{R}{=} \text{loi}(...)$ est soit une $\mathcal{N}(0,1) \stackrel{R}{=} \text{norm}()$ soit une $\mathcal{S}t(...) \stackrel{R}{=} t(...)$, on a les équivalences suivantes :

• deltaEst.H0< 0 ← ploi(deltaEst.H0,...) < 50%

Relation générale entre le signe de deltaEst.HO et ploi(deltaEst.HO,...)

Lorsque $\mathcal{L}_0 \stackrel{\mathsf{R}}{=} \mathsf{loi}(...)$ est soit une $\mathcal{N}(0,1) \stackrel{\mathsf{R}}{=} \mathsf{norm}()$ soit une $\mathcal{S}t(...) \stackrel{\mathsf{R}}{=} \mathsf{t}(...)$, on a les équivalences suivantes :

- deltaEst.H0< 0 ←⇒ ploi(deltaEst.H0,...) < 50%</pre>
- deltaEst.H0> 0 \iff ploi(deltaEst.H0,...) $\left\{ \begin{array}{c} < \\ > \end{array} \right\}$???

Relation générale entre le signe de deltaEst.H0 et ploi(deltaEst.H0,...)

Lorsque $\mathcal{L}_0 \stackrel{\mathsf{R}}{=} \mathsf{loi}(...)$ est soit une $\mathcal{N}(0,1) \stackrel{\mathsf{R}}{=} \mathsf{norm}()$ soit une $\mathcal{S}t(...) \stackrel{\mathsf{R}}{=} \mathsf{t}(...)$, on a les équivalences suivantes :

- deltaEst.H0< 0 ← ploi(deltaEst.H0,...) < 50%
- deltaEst.H0> 0 ← ploi(deltaEst.H0,...) > 50%

Choix du paramètre d_{μ} pour affirmation d'intérêt $\mathbf{H}_1: \mu^{P1} > \mu^{P2} + 20$?

- Indications R:
 - > c(length(yP1),length(yP2),mean(yP1),mean(yP2))
 - [1] 20 20 97.8735 74.879
 - > pt(deltaEst.H0,length(yP1)+length(yP2)-2)
 - [1] 0.8629092 # p-valeur gauche

Choix du paramètre d_{μ} pour affirmation d'intérêt $\mathbf{H}_1: \mu^{P1} > \mu^{P2} + 20$?

- Indications R:
 - > c(length(yP1),length(yP2),mean(yP1),mean(yP2))
 - [1] 20 20 97.8735 74.879
 - > pt(deltaEst.H0,length(yP1)+length(yP2)-2)
 - [1] 0.8629092 # p-valeur gauche
- ullet Deux choix possibles pour le paramètre d_μ et l'affirmation d'intérêt $oldsymbol{\mathsf{H}}_1$:

	· · · · · · · · · · · · · · · · · · ·	F -
paramètre	$d_{\mu} := \mu^{P1} - \mu^{P2}$	$d_{\mu}:=\mu^{P2}\!-\!\mu^{P1}$
H ₁	$d_{\mu} := \mu^{P1} - \mu^{P2} > 20$	$d_{\mu} := \mu^{P2} - \mu^{P1} < -20$
deltaEst.H0	$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1},y^{P2}}\right)$	$\delta_{d_{\mu},-20}\left(\mathbf{y^{P2},y^{P1}} ight)$
deltaEst.H0	$\widehat{d_{\mu}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)$ -20	$\widehat{d_{\mu}}\left(\mathbf{y^{P2}},\mathbf{y^{P1}}\right)-\left(-20\right)$
du signe de	$=\widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - \widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - 20$	$=\widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - \widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - (-20)$

Choix du paramètre d_{μ} pour affirmation d'intérêt $H_1: \mu^{P1} > \mu^{P2} + 20$?

- Indications R ·
 - > c(length(yP1),length(yP2),mean(yP1),mean(yP2))
 - [1] 20 20 97.8735 74.879
 - > pt(deltaEst.H0,length(yP1)+length(yP2)-2)
 - [1] 0.8629092 # p-valeur gauche
- Deux choix possibles pour le paramètre d_{ij} et l'affirmation d'intérêt \mathbf{H}_1 :

		F =
paramètre	$d_{\mu} := \mu^{P1} - \mu^{P2}$	$d_{\mu}:=\mu^{P2}\!-\!\mu^{P1}$
H ₁	$d_{\mu} := \mu^{P1} - \mu^{P2} > 20$	$d_{\mu} := \mu^{P2} - \mu^{P1} < -20$
deltaEst.H0	$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1},y^{P2}}\right)$	$\widehat{\delta_{d_{\mu},-20}}\left(\mathbf{y^{P2}},\mathbf{y^{P1}} ight)$
deltaEst.H0	$\widehat{d_{\mu}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)$ -20	$\widehat{d_{\mu}}\left(\mathbf{y^{P2}},\mathbf{y^{P1}}\right)-\left(-20\right)$
du signe de	$=\widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - \widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - 20$	$=\widehat{\mu^{P2}}\left(y^{\mathsf{P2}}\right) - \widehat{\mu^{P1}}\left(y^{\mathsf{P1}}\right) - (-20)$

• deltaEst.H0 et $\widehat{d_{\mu}}$ ($\mathbf{y^{P1}}$, $\mathbf{y^{P2}}$) -20 $\left\{ \begin{array}{ll} \text{mêmes signes} & \Rightarrow & \mathbf{H_1}: d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{signes opposés} & \Rightarrow & \mathbf{H_1}: d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$

Choix du paramètre d_{μ} pour affirmation d'intérêt $\mathbf{H}_1: \mu^{P1} > \mu^{P2} + 20$?

- Indications R:
 - > c(length(yP1),length(yP2),mean(yP1),mean(yP2))
 - [1] 20 20 97.8735 74.879
 - > pt(deltaEst.H0,length(yP1)+length(yP2)-2)
 - [1] 0.8629092 # p-valeur gauche
- ullet Deux choix possibles pour le paramètre d_μ et l'affirmation d'intérêt $oldsymbol{\mathsf{H}}_1$:

	· · · · · · · · · · · · · · · · · · ·	μ -
paramètre	$d_{\mu} := \mu^{P1} - \mu^{P2}$	$d_{\mu}:=\mu^{P2}\!-\!\mu^{P1}$
H ₁	$d_{\mu} := \mu^{P1} - \mu^{P2} > 20$	$d_{\mu} := \mu^{P2} - \mu^{P1} < -20$
deltaEst.H0	$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1},y^{P2}}\right)$	$\widehat{\delta_{d_{\mu},-20}}\left(y^{P2,y^{P1}}\right)$
deltaEst.H0	$\widehat{d_{\mu}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)$ -20	$\widehat{d_{\mu}}\left(\mathbf{y^{P2}},\mathbf{y^{P1}}\right)-\left(-20\right)$
du signe de	$=\widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - \widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - 20$	$=\widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - \widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - (-20)$

$$\bullet \text{ deltaEst.H0 et } \widehat{d_{\mu}} \left(\mathbf{y^{P1}}, \mathbf{y^{P2}} \right) - 20 \left\{ \begin{array}{ll} \text{mêmes signes} & \Rightarrow & \mathbf{H_1} : d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{signes opposés} & \Rightarrow & \mathbf{H_1} : d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$$

Application Numérique : deltaEst.H0 > 0 puisque p-valeur> 50%

Choix du paramètre d_{μ} pour affirmation d'intérêt $\mathbf{H}_1: \mu^{P1} > \mu^{P2} + 20$?

- Indications R:
 - > c(length(yP1),length(yP2),mean(yP1),mean(yP2))
 - [1] 20 20 97.8735 74.879
 - > pt(deltaEst.H0,length(yP1)+length(yP2)-2)
 - [1] 0.8629092 # p-valeur gauche
- ullet Deux choix possibles pour le paramètre d_μ et l'affirmation d'intérêt $oldsymbol{\mathsf{H}}_1$:

		7-
paramètre	$d_{\mu} := \mu^{P1} - \mu^{P2}$	$d_{\mu}:=\mu^{P2}\!-\!\mu^{P1}$
H ₁	$d_{\mu} := \mu^{P1} - \mu^{P2} > 20$	$d_{\mu} := \mu^{P2} - \mu^{P1} < -20$
deltaEst.H0	$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1},y^{P2}}\right)$	$\widehat{\delta_{d_{\mu},-20}}\left(\mathbf{y^{P2}},\mathbf{y^{P1}} ight)$
deltaEst.H0	$\widehat{d_{\mu}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)$ -20	$\widehat{d_{\mu}}\left(\mathbf{y^{P2}},\mathbf{y^{P1}}\right)-\left(-20\right)$
du signe de	$=\widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - \widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - 20$	$=\widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - \widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - (-20)$

$$\bullet \text{ deltaEst.H0 et } \widehat{d_{\mu}} \left(\mathbf{y^{P1}}, \mathbf{y^{P2}} \right) - 20 \left\{ \begin{array}{ll} \text{mêmes signes} & \Rightarrow & \mathbf{H_1} : d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{signes opposés} & \Rightarrow & \mathbf{H_1} : d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$$

Application Numérique : deltaEst.H0 > 0 puisque *p*-valeur> 50% et $\widehat{\mu^{P1}}(\mathbf{y^{P1}}) - \widehat{\mu^{P2}}(\mathbf{y^{P2}}) - 20 \stackrel{\mathbb{R}}{=} \text{mean}(yP1) - \text{mean}(yP2) - 20 \simeq 2.9945 > 0$.

Choix du paramètre d_{μ} pour affirmation d'intérêt $\mathbf{H}_1: \mu^{P1} > \mu^{P2} + 20$?

- Indications R:
 - > c(length(yP1),length(yP2),mean(yP1),mean(yP2))
 - [1] 20 20 97.8735 74.879
 - > pt(deltaEst.H0,length(yP1)+length(yP2)-2)
 - [1] 0.8629092 # p-valeur gauche
- ullet Deux choix possibles pour le paramètre d_μ et l'affirmation d'intérêt $oldsymbol{\mathsf{H}}_1$:

•		F* =
paramètre	$d_{\mu} := \mu^{P1} - \mu^{P2}$	$d_{\mu}:=\mu^{P2}\!-\!\mu^{P1}$
H ₁	$d_{\mu} := \mu^{P1} - \mu^{P2} > 20$	$d_{\mu} := \mu^{P2} \! - \! \mu^{P1} \! < \! -20$
deltaEst.H0	$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1},y^{P2}}\right)$	$\widehat{\delta_{d_{\mu},-20}}\left(\mathbf{y^{P2},y^{P1}} ight)$
deltaEst.H0	$\widehat{d_{\mu}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)$ -20	$\widehat{d_{\mu}}\left(\mathbf{y^{P2}},\mathbf{y^{P1}}\right)-\left(-20\right)$
du signe de	$=\widehat{\mu^{P1}}\left(\mathbf{y^{P1}}\right) - \widehat{\mu^{P2}}\left(\mathbf{y^{P2}}\right) - 20$	$=\widehat{\mu^{P2}}\left(y^{\mathsf{P2}}\right) - \widehat{\mu^{P1}}\left(y^{\mathsf{P1}}\right) - (-20)$

 $\bullet \text{ deltaEst.H0 et } \widehat{d_{\mu}} \left(\mathbf{y^{P1}}, \mathbf{y^{P2}} \right) - 20 \left\{ \begin{array}{ll} \text{mêmes signes} & \Rightarrow & \mathbf{H_1} : d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \\ \text{signes opposés} & \Rightarrow & \mathbf{H_1} : d_{\mu} := \mu^{P2} - \mu^{P1} < -20 \end{array} \right.$

Application Numérique : deltaEst.H0 > 0 puisque p-valeur> 50% et

$$\widehat{\mu^{ extsf{P1}}}\left(\mathbf{y^{ extsf{P1}}}
ight) - \widehat{\mu^{ extsf{P2}}}\left(\mathbf{y^{ extsf{P2}}}
ight) - 20 \stackrel{ extsf{R}}{=} ext{mean(yP1)-mean(yP2)-20} \simeq 2.9945 > 0.$$

Mêmes signes
$$\Rightarrow$$
 $\mathbf{H_1}: d_{\mu} := \mu^{P1} - \mu^{P2} > 20$

Plan

- ① Exemples de comparaisons de paramètres
- Problématiques avec 2 paramètres
- 3 Détermination de l'assertion d'intérêt H₁
- 4 Rédaction des exemples

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : le chiffre d'affaires annuel moyen des PME du pays P1 est de plus de 20 unités supérieur à celui du pays P2

```
Indications R:
> c(length(yP1),length(yP2))
[1] 20 20
> mean(yP1)
[1] 97.8735
> mean(yP2)
[1] 74.879
> deltaEst.H0 # instruction R à fournir
[1] 1.109512
> qt(1-.05,38)
[1] 1.685954
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathbf{H_1} : d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \iff \delta_{d_{\mu}, 20} := \frac{d_{\mu} - 20}{\sigma_{\widehat{d_{\mu}}}} > 0$$

Hypothèses de test : $H_1: d_{\mu} > 20$

Préliminaire : puisque $(mean(yP1) - mean(yP2) - 20) \simeq 2.9945$ est du même signe (i.e. positif) que deltaEst.H0 , on a :

- paramètre d'intérêt : $d_{\mu} = \mu^{P1} \mu^{P2}$
- sa future estimation : $\widehat{d_{\mu}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \widehat{\mu^{P1}}\left(\mathbf{Y^{P1}}\right) \widehat{\mu^{P2}}\left(\mathbf{Y^{P2}}\right)$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test :

 $\mathbf{H}_1: d_{\mu} > 20$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right)$ dans la pire des situations?

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right)$ dans la pire des situations?

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$ Statistique de test sous H_0 :

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \rightsquigarrow \mathcal{S}t(20 + 20 - 2)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : deltaEst.H0≥1.109512

 $qt(1-.05,38) \simeq 1.685954$

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Statistique de test sous H₀:

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \rightsquigarrow \mathcal{S}t(20 + 20 - 2)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R: deltaEst. $H0 \simeq 1.109512$ $at(1-.05.38) \simeq 1.685954$

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Statistique de test sous H₀:

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \rightsquigarrow \mathcal{S}t(20 + 20 - 2)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)>\delta_{\mathit{lim},5\%}^{+}$

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R : deltaEst.H0 \simeq 1.109512 qt(1-.05,38) \simeq 1.685954

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Statistique de test sous H₀:

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \rightsquigarrow \mathcal{S}t(20 + 20 - 2)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)>\delta_{\mathit{lim},5\%}^{+}$

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Hypothèses de test : H_{ν} , $d_{\mu} = 20$ vs Statistique de test so s H_0 :

$$\delta_{d_{\mu},20}(\overset{\circ}{\mathsf{V}^{\mathsf{P1}}},\overset{\mathsf{P2}}{\mathsf{V}^{\mathsf{P2}}}) \stackrel{\stackrel{\circ}{=}}{=} \frac{d_{\mu}(\overset{\mathsf{VP1}}{\mathsf{V}^{\mathsf{P1}}},\overset{\mathsf{P2}}{\mathsf{V}^{\mathsf{P2}}})}{\circ_{d_{\mu}}(\overset{\circ}{\mathsf{V}^{\mathsf{P1}}},\overset{\circ}{\mathsf{V}^{\mathsf{P2}}})} \rightsquigarrow \overset{\circ}{\mathsf{V}} t(20^{\circ}+20^{\circ}-2)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\delta_{d_{\mu},20}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right) > \delta_{lim,5\%}^+$

Conclusion : puisqu'au vu des données,

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right) \stackrel{\mathsf{R}}{=} (\mathsf{mean}(\mathsf{yP1}) - \mathsf{mean}(\mathsf{yP2}) - 20) / \mathsf{seDMeanG}(\mathsf{yP1},\mathsf{yP2}) \simeq 1.11$$

 $> \delta_{lim.5\%}^{+} \stackrel{R}{=} qt(1 - .05, 38) \simeq 1.686$

on ne peut pas plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME du pays P1 est de plus de 20 unités supérieur à celui

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R: deltaEst.H0 \simeq 1.109512 qt(1-.05,38) \simeq 1.685954

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$ Statistique de test sous H_0 :

atistique de test sous $\widehat{\Pi}_0$:

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \rightsquigarrow \mathcal{S}t(20 + 20 - 2)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1},y^{P2}}\right) > \delta_{lim.5\%}^+$

Conclusion : puisqu'au vu des données,

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right) \stackrel{R}{=} (\mathsf{mean}(\mathsf{yP1}) - \mathsf{mean}(\mathsf{yP2}) - 20) / \mathsf{seDMeanG}(\mathsf{yP1},\mathsf{yP2}) \simeq 1.11$$

$$> \delta_{lim.5\%}^{+} \stackrel{R}{=} qt(1 - .05, 38) \simeq 1.686$$

on ne peut pas plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME du pays P1 est de plus de 20 unités supérieur à celui

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : le chiffre d'affaires annuel moyen des PME du pays P1 est de plus de 20 unités supérieur à celui du pays P2

```
Indications R :
> c(length(yP1),length(yP2))
[1] 40 40
> mean(yP1)
[1] 99.50575
> mean(yP2)
[1] 75.467
> pnorm(deltaEst.H0)
[1] 0.9825057
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathbf{H_1} : d_{\mu} := \mu^{P1} - \mu^{P2} > 20 \iff \delta_{d_{\mu}, 20} := \frac{d_{\mu} - 20}{\sigma_{\widehat{d_{\mu}}}} > 0$$

Hypothèses de test : $H_1: d_{\mu} > 20$

Préliminaire : puisque (mean(yP1) — mean(yP2) — 20) \simeq 4.03875 est du même signe (i.e. positif) que deltaEst.H0 (car p-valeur gauche supérieure à 50%), on a :

- paramètre d'intérêt : $d_{\mu} = \mu^{P1} \mu^{P2}$
- sa future estimation : $\widehat{d_{\mu}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)=\widehat{\mu^{P1}}\left(\mathbf{Y^{P1}}\right)-\widehat{\mu^{P2}}\left(\mathbf{Y^{P2}}\right)$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test :

 $\mathbf{H}_1: d_{\mu} > 20$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

 $\textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{d_{\mu},20}} \left(\textbf{Y}^{\textbf{P1}}, \textbf{Y}^{\textbf{P2}} \right) \text{ dans la pire des situations?}$

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right)$ dans la pire des situations?

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$ Statistique de test sous H_0 :

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.9825057}$

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Statistique de test sous H₀:

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.9825057}$

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$

Statistique de test sous H₀:

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R: pnorm(deltaEst.H0) \simeq 0.9825057

Hypothèses de test : H_0 : $d_\mu = 20$ vs H_1 : $d_\mu > 20$ Statistique de test sous H_0 :

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Hypothèses de test :
$$H_{\mu} = d_{\mu} =$$
Statistique de test sous H_0 :

$$\widehat{\delta_{d_{\mu},20}}(\mathbf{Y^{P1},Y^{P2}}) = \underbrace{\frac{\widehat{d_{\mu}}(\mathbf{Y^{P1},Y^{P2}})}{\widehat{\sigma_{\widehat{d_{\mu}}}}(\mathbf{Y^{P1},Y^{P2}})}}_{\mathcal{F}_{i}} \xrightarrow{\widehat{d_{\mu}}(\mathbf{Y^{P1},Y^{P2}})} \widehat{\mathcal{N}}(0,1)$$

Règle de Décision :

Accepter
$$H_1$$
 si p-valeur (droite) $< 5\%$

Conclusion : puisqu'au vu des données,

$$\begin{array}{l} \text{p-valeur} \stackrel{R}{=} 1 - \text{pnorm}((\text{mean}(\text{yP1}) - \text{mean}(\text{yP2}) - 20) / \text{seDMean}(\text{yP1}, \text{yP2})) \\ \simeq 1.75\% < 5\% \end{array}$$

on peut plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME du pays P1 est de plus de 20 unités supérieur à celui du pays P2.

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R: pnorm(deltaEst.H0) \simeq 0.9825057

Hypothèses de test : H_0 : $d_{\mu} = 20$ vs H_1 : $d_{\mu} > 20$

Statistique de test sous H_0 :

$$\widehat{\delta_{d_{\mu},20}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 20}{\widehat{\sigma_{\widehat{d_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Conclusion: puisqu'au vu des données,

$$\begin{array}{l} \text{p-valeur} \stackrel{R}{=} 1 - \text{pnorm}((\text{mean}(\text{yP1}) - \text{mean}(\text{yP2}) - 20) / \text{seDMean}(\text{yP1}, \text{yP2})) \\ \simeq 1.75\% < 5\% \end{array}$$

on peut plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME du pays P1 est de plus de 20 unités supérieur à celui du pays P2.

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : le C.A. annuel moyen des PME du pays P1 est de plus de 20% supérieur à celui du pays P2

```
Indications R:
> c(length(yP1),length(yP2))
[1] 40 40
> mean(yP1)
[1] 99.50575
> mean(yP2)
[1] 75.467
> deltaEst.H0 # instruction R à fournir
[1] 4.155933
> qnorm(1-.05)
[1] 1.644854
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathbf{H_1} : r_{\mu} := \frac{\mu^{P1}}{\mu^{P2}} > 1.2 \iff \delta_{r_{\mu}, 1.2} := \frac{r_{\mu} - 1.2}{\sigma_{\widehat{r_{\mu}}}} > 0$$

Hypothèses de test :

 $\mathbf{H}_1: r_{\mu} > 1.2$

Préliminaire : puisque (mean(yP1)/mean(yP2) - 1.2) \simeq 0.1185333 est du même signe (i.e. positif) que deltaEst.H0 , on a :

- paramètre d'intérêt : $r_{\mu} = \frac{\mu^{P1}}{\mu^{P2}}$
- sa future estimation : $\widehat{r_{\mu}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \widehat{\mu^{P1}}\left(\mathbf{Y^{P1}}\right)/\widehat{\mu^{P2}}\left(\mathbf{Y^{P2}}\right)$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test :

 $\mathbf{H}_1: r_{\mu} > 1.2$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : H_0 : $r_\mu = 1.2$ vs H_1 : $r_\mu > 1.2$

Hypothèses de test : H_0 : $r_\mu = 1.2$ vs H_1 : $r_\mu > 1.2$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)$ dans la pire des situations ?

Hypothèses de test : \mathbf{H}_0 : $r_{\mu} = 1.2$ vs \mathbf{H}_1 : $r_{\mu} > 1.2$ Statistique de test sous \mathbf{H}_0 : $\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{r_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 1.2}{\widehat{\sigma_{\widehat{c}_{\nu}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : deltaEst.H0≃4.155933

 $qnorm(1-.05) \simeq 1.644854$

Hypothèses de test : H_0 : $r_\mu = 1.2$ vs H_1 : $r_\mu > 1.2$

Statistique de test sous H₀:

$$\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\mu}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.2}{\widehat{\sigma_{\widehat{r_{\mu}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R: deltaEst.H0 \simeq 4.155933 gnorm(1-.05) \simeq 1.644854

Hypothèses de test : H_0 : $r_\mu = 1.2$ vs H_1 : $r_\mu > 1.2$

Statistique de test sous H₀:

$$\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\mu}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.2}{\widehat{\sigma_{\widehat{r_{\mu}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)>\delta_{\mathit{lim},5\%}^{+}$

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

 $\begin{array}{c} \textbf{Indic R}: \texttt{deltaEst.H0}{\simeq}4.155933 \\ \texttt{qnorm(1-.05)}{\simeq}\ 1.644854 \end{array}$

Hypothèses de test : H_0 : $r_\mu = 1.2$ vs H_1 : $r_\mu > 1.2$

Statistique de test sous H₀:

$$\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\mu}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.2}{\widehat{\sigma_{\widehat{r_{\mu}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right) > \delta_{\mathit{lim},5\%}^{+}$

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Hypothès es de test :
$$H_0: r_{\mu} = 1.2 \text{ vs}$$
 $H_1: r_{\mu} > 1.2 \text{ Statistique}$ de test ous $H_0: \frac{\hat{r}_{\mu}}{\hat{r}_{\mu}} = \frac{1.2 \text{ vs}}{\hat{r}_{\mu}} = \frac{1.2 \text{ vs}}{\hat{r}_{\mu}$

$$\widehat{\delta_{r_{\mu},1}}_{2} \stackrel{\circ}{(\mathsf{Y}^{\mathsf{P}1},\mathsf{Y}^{\mathsf{P}2})} = \frac{\widehat{r_{\mu}}}{\widehat{\sigma_{\widehat{i_{\mu}}}}} \stackrel{\mathsf{P}1}{(\mathsf{Y}^{\mathsf{P}1},\mathsf{Y}^{\mathsf{P}2})} \stackrel{\mathsf{approx}}{\longrightarrow} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\delta_{r_{\mu},1.2}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right) > \delta_{lim,5\%}^+$

Conclusion : puisqu'au vu des données,

$$\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right)\overset{\text{R}}{=}\frac{(\text{mean(yP1)/mean(yP2)-1.2)/seRMean(yP1,yP2)}\simeq4.156}{\delta_{lim.5\%}^{+}\overset{\text{R}}{=}\text{qnorm}(1-.05)}\simeq1.645$$

on peut plutôt penser (avec un risque de 5%) que le C.A. annuel moyen des PME du pays P1 est de plus de 20% supérieur à celui du pays P2.

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R : deltaEst.H0 \simeq 4.155933 qnorm(1-.05) \simeq 1.644854

Hypothèses de test : H_0 : $r_{\mu} = 1.2$ vs H_1 : $r_{\mu} > 1.2$

Statistique de test sous H₀:

$$\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{r_{\mu}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 1.2}{\widehat{\sigma_{\widehat{r_{\mu}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter
$$\mathbf{H_1}$$
 si $\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right) > \delta_{lim,5\%}^+$

Conclusion : puisqu'au vu des données,

$$\widehat{\delta_{r_{\mu},1.2}}\left(\mathbf{y^{P1}},\mathbf{y^{P2}}\right) \stackrel{R}{=} (\text{mean(yP1)/mean(yP2)-1.2)/seRMean(yP1,yP2)} \simeq 4.156$$

$$> \delta_{lm}^{+} \sum_{E \in \mathbb{R}}^{R} \text{qnorm}(1-.05) \simeq 1.645$$

on peut plutôt penser (avec un risque de 5%) que le C.A. annuel moyen des PME du pays P1 est de plus de 20% supérieur à celui du pays P2.

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : les hétérogénéités des chiffres d'affaires annuels des PME des deux pays diffèrent

```
Indications R:
> c(length(yP1),length(yP2))
[1] 20 20
> var(yP1)
[1] 101.4692
> var(yP2)
[1] 44.21577
> pf(deltaEst.H0,19,19)
[1] 0.9609953
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathbf{H_1}: r_{\sigma^2} := \frac{\sigma_{P1}^2}{\sigma_{P2}^2} \neq 1 \Longleftrightarrow \delta_{r_{\sigma^2}, 1} := \frac{r_{\sigma^2}}{1} \neq 1$$

Hypothèses de test :

 $\mathbf{H}_1: r_{\sigma^2} \neq 1$

Préliminaire :

• paramètre d'intérêt :
$$r_{\sigma^2} = \frac{\sigma_{P1}^2}{\sigma_{P2}^2}$$

• sa future estimation :
$$\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \widehat{\sigma_{P1}^2}\left(\mathbf{Y^{P1}}\right)/\widehat{\sigma_{P2}^2}\left(\mathbf{Y^{P2}}\right)$$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

$$\mathbf{H}_1: r_{\sigma^2} \neq 1$$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : $H_0: r_{\sigma^2} = 1$ vs $H_1: r_{\sigma^2} \neq 1$

 $\textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{r_{\sigma^2},1}} \left(\mathbf{Y^{P1},Y^{P2}} \right) \text{ dans la pire des situations?}$

Hypothèses de test : $H_0: r_{\sigma^2} = 1$ vs $H_1: r_{\sigma^2} \neq 1$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{r_{\sigma^2},1}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)$ dans la pire des situations?

Hypothèses de test : $H_0: r_{\sigma^2} = 1$ vs $H_1: r_{\sigma^2} \neq 1$ Statistique de test sous $H_0:$

$$\widehat{\delta_{r_{\sigma^2},1}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)}{1} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : pf(deltaEst.H0,19,19) \simeq 0.9609953

Hypothèses de test : H_0 : $r_{\sigma^2} = 1$ vs H_1 : $r_{\sigma^2} \neq 1$ Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)}{1} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R: pf(deltaEst.H0,19,19) \simeq 0.9609953

Hypothèses de test : $H_0: r_{\sigma^2} = 1$ vs $H_1: r_{\sigma^2} \neq 1$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)}{1} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (biltatérale) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R : pf(deltaEst.H0,19,19) \simeq 0.9609953

Hypothèses de test : $H_0: r_{\sigma^2} = 1$ vs $H_1: r_{\sigma^2} \neq 1$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)}{1} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Règle de Décision :

Accepter **H**₁ si p-valeur (biltatérale) < 5%

Question: Comment conclueriez-vous au vu des données vP1 et vP2

en R?

Règle de Décision :

Accepter H_1 si p-valeur (biltatérale) < 5%

Conclusion: puisqu'au vu des données,

p-valeur
$$\stackrel{R}{=}$$
 2 * (1 − pf((var(yP1)/var(yP2))/1, 19, 19))
 $\simeq 7.8\% \nleq 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que les hétérogénéités des chiffres d'affaires annuels des PME des deux pays diffèrent.

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R : pf(deltaEst.H0,19,19) \simeq 0.9609953

Hypothèses de test : H_0 : $r_{\sigma^2} = 1$ vs H_1 : $r_{\sigma^2} \neq 1$ Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)}{1} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (biltatérale) < 5%

Conclusion : puisqu'au vu des données,

p-valeur
$$\stackrel{R}{=}$$
 2 * (1 − pf((var(yP1)/var(yP2))/1, 19, 19)) $\simeq 7.8\% \not< 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que les hétérogénéités des chiffres d'affaires annuels des PME des deux pays diffèrent.

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : les hétérogénéités des chiffres d'affaires annuels des PME des deux pays diffèrent

```
Indications R :
> c(length(yP1),length(yP2))
[1] 40 40
> var(yP1)
[1] 94.55306
> var(yP2)
[1] 52.20786
> pnorm(deltaEst.H0)
[1] 0.9748944
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathbf{H_1}: d_{\sigma^2} := \sigma_{P1}^2 - \sigma_{P2}^2 \neq 0 \iff \delta_{d_{\sigma^2},0} := \frac{d_{\sigma^2} - 0}{\sigma_{\widehat{d_{\sigma^2}}}} \neq 0$$

Hypothèses de test : $H_1: d_{\sigma^2} \neq 0$

Préliminaire : puisque $(var(yP1) - var(yP2) - 0) \simeq 42.3452$ est du même signe (i.e. positif) que deltaEst.H0 (car p-valeur gauche supérieure à 50%), on a :

- paramètre d'intérêt : $d_{\sigma^2} = \sigma_{P1}^2 \sigma_{P2}^2$
- sa future estimation : $\widehat{d_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \widehat{\sigma_{P1}^2}\left(\mathbf{Y^{P1}}\right) \widehat{\sigma_{P2}^2}\left(\mathbf{Y^{P2}}\right)$

Question : Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce ?

Hypothèses de test :

 $\mathbf{H}_1:d_{\sigma^2}\neq 0$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : $\mathbf{H}_0: d_{\sigma^2} = 0$ vs $\mathbf{H}_1: d_{\sigma^2} \neq 0$

 $\textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{d_{\sigma^2},0}}\left(\textbf{Y}^{\textbf{P1}},\textbf{Y}^{\textbf{P2}}\right) \text{ dans la pire des situations?}$

Hypothèses de test : $\mathbf{H}_0: d_{\sigma^2} = 0$ vs $\mathbf{H}_1: d_{\sigma^2} \neq 0$

 $\textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{d_{\sigma^2},0}}\left(\textbf{Y}^{\textbf{P1}},\textbf{Y}^{\textbf{P2}}\right) \text{ dans la pire des situations?}$

Hypothèses de test : H_0 : $d_{\sigma^2} = 0$ vs H_1 : $d_{\sigma^2} \neq 0$ Statistique de test sous H_0 :

$$\widehat{\delta_{d_{\sigma^2},0}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 0}{\widehat{\sigma_{\widehat{d_{\sigma^2}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : pnorm(deltaEst.H0) \simeq 0.9748944

Hypothèses de test : $H_0: d_{\sigma^2} = 0$ vs $H_1: d_{\sigma^2} \neq 0$ **Statistique de test sous H_0:**

$$\widehat{\delta_{d_{\sigma^2},0}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 0}{\widehat{\sigma_{\widehat{d_{-2}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : pnorm(deltaEst.H0) \simeq 0.9748944

Hypothèses de test : $H_0: d_{\sigma^2} = 0$ vs $H_1: d_{\sigma^2} \neq 0$

Statistique de test sous H₀:

$$\widehat{\delta_{d_{\sigma^2},0}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 0}{\widehat{\sigma_{\widehat{d_{-2}}}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter **H**₁ si p-valeur (biltatérale) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2 en R?

Indic R: pnorm(deltaEst.H0) \simeq 0.9748944

Hypothèses de test : $H_0: d_{\sigma^2} = 0$ vs $H_1: d_{\sigma^2} \neq 0$ **Statistique de test sous H_0:**

$$\widehat{\delta_{d_{\sigma^2},0}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 0}{\widehat{\sigma_{\widehat{d}_2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (biltatérale) < 5%

Question: Comment conclueriez-vous au vu des données vP1 et vP2

en R?

en R?
Indic R: pnd rm(deltaEst.H0)
$$= 0.3748944$$

Hypothèses de test : $H_1: d_{\sigma^2} = 0$ vs $H_1: d_2 \neq 0$

Statistique de test sus H₀

Accepter H_1 si p-valeur (biltatérale) < 5%

Conclusion: puisqu'au vu des données,

p-valeur
$$\stackrel{R}{=}$$
 2 * (1 − pnorm((var(yP1) − var(yP2) − 0)/seDVar(yP1, yP2)))
 $\simeq 5.02\% \nleq 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que les hétérogénéités des chiffres d'affaires annuels des PME des deux pays diffèrent.

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R : pnorm(deltaEst.H0) \simeq 0.9748944

Hypothèses de test : $H_0: d_{\sigma^2} = 0$ vs $H_1: d_{\sigma^2} \neq 0$ **Statistique de test sous H_0:**

$$\widehat{\delta_{d_{\sigma^2},0}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{d_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right) - 0}{\widehat{\sigma_{\widehat{d}_2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (biltatérale) < 5%

Conclusion : puisqu'au vu des données,

p-valeur
$$\stackrel{R}{=} 2 * (1 - pnorm((var(yP1) - var(yP2) - 0)/seDVar(yP1, yP2)))$$

 $\simeq 5.02\% \nleq 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que les hétérogénéités des chiffres d'affaires annuels des PME des deux pays diffèrent.

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : l'hétérogénéité des C.A. annuels des PME de P1 est de plus de 25% supérieure à celle de P2

```
Indications R :
> c(length(yP1),length(yP2))
[1] 20 20
> var(yP1)
[1] 101.4692
> var(yP2)
[1] 44.21577
> pf(deltaEst.H0,19,19)
[1] 0.9026961
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathbf{H_1}: r_{\sigma^2} := \frac{\sigma_{P1}^2}{\sigma_{P2}^2} > 1.25 \iff \delta_{r_{\sigma^2}, 1.25} := \frac{r_{\sigma^2}}{1.25} > 1$$

Hypothèses de test :

 $\mathbf{H}_1: r_{\sigma^2} > 1.25$

Préliminaire :

• paramètre d'intérêt :
$$r_{\sigma^2} = \frac{\sigma_{P1}^2}{\sigma_{P2}^2}$$

• sa future estimation :
$$\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \widehat{\sigma_{P1}^2}\left(\mathbf{Y^{P1}}\right)/\widehat{\sigma_{P2}^2}\left(\mathbf{Y^{P2}}\right)$$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test :

 $\mathbf{H}_1: r_{\sigma^2} > 1.25$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : $H_0 : r_{\sigma^2} = 1.25 \text{ vs } H_1 : r_{\sigma^2} > 1.25$

 $\textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{r_{\sigma^2},1.25}} \left(\mathbf{Y^{P1},Y^{P2}} \right) \text{ dans la pire des situations?}$

Hypothèses de test : $H_0 : r_{\sigma^2} = 1.25 \text{ vs } H_1 : r_{\sigma^2} > 1.25$

 $\textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{r_{\sigma^2},1.25}} \left(\mathbf{Y^{P1},Y^{P2}} \right) \text{ dans la pire des situations?}$

Hypothèses de test : H_0 : $r_{\sigma^2} = 1.25$ vs H_1 : $r_{\sigma^2} > 1.25$ Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)}{1.25} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : $pf(deltaEst.H0,19,19) \simeq 0.9026961$

Hypothèses de test : \mathbf{H}_0 : $r_{\sigma^2} = 1.25$ vs \mathbf{H}_1 : $r_{\sigma^2} > 1.25$

Statistique de test sous H₀:

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)}{1.25} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : pf(deltaEst.H0,19,19) \simeq 0.9026961

Hypothèses de test : $H_0: r_{\sigma^2} = 1.25$ vs $H_1: r_{\sigma^2} > 1.25$

Statistique de test sous H₀:

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)}{1.25} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R: pf(deltaEst.H0,19,19) \simeq 0.9026961

Hypothèses de test : $H_0 : r_{\sigma^2} = 1.25 \text{ vs } H_1 : r_{\sigma^2} > 1.25$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1},Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1},Y^{P2}}\right)}{1.25} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R:
$$pf$$
 (delta f st H0, 19, 19) $\simeq 0.9026961$

Règle de Décision :

Accepter
$$H_1$$
 si p-valeur (droite) $< 5\%$

Conclusion : puisqu'au vu des données,

p-valeur
$$\stackrel{R}{=} 1 - pf((var(yP1)/var(yP2))/1.25, 19, 19)$$

 $\simeq 9.73\% \not< 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que l'hétérogénéité des C.A. annuels des PME de P1 est de plus de 25% supérieure à celle de P2.

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R : $pf(deltaEst.H0,19,19) \simeq 0.9026961$

Hypothèses de test : H_0 : $r_{\sigma^2} = 1.25$ vs H_1 : $r_{\sigma^2} > 1.25$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)}{1.25} \rightsquigarrow \mathcal{F}(20-1,20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Conclusion : puisqu'au vu des données,

$$\begin{array}{l} \text{p-valeur} \stackrel{R}{=} 1 - \text{pf}((\text{var}(\text{yP1})/\text{var}(\text{yP2}))/1.25, 19, 19) \\ \simeq 9.73\% \not< 5\% \end{array}$$

on ne peut pas plutôt penser (avec un risque de 5%) que l'hétérogénéité des C.A. annuels des PME de P1 est de plus de 25% supérieure à celle de P2.

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : l'hétérogénéité des C.A. annuels des PME de P1 est de plus de 25% supérieure à celle de P2

```
Indications R:
> c(length(yP1),length(yP2))
[1] 40 40
> var(yP1)
[1] 94.55306
> var(yP2)
[1] 52.20786
> pnorm(deltaEst.H0)
[1] 0.8334422
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathbf{H_1}: r_{\sigma^2} := \frac{\sigma_{P1}^2}{\sigma_{P2}^2} > 1.25 \iff \delta_{r_{\sigma^2}, 1.25} := \frac{r_{\sigma^2} - 1.25}{\sigma_{\widehat{r_{\sigma^2}}}} > 0$$

Hypothèses de test :

 $\mathbf{H}_1: r_{\sigma^2} > 1.25$

Préliminaire : puisque $(var(yP1)/var(yP2) - 1.25) \simeq 0.5610887$ est du même signe (i.e. positif) que deltaEst.H0 (car p-valeur gauche supérieure à 50%), on a :

- paramètre d'intérêt : $r_{\sigma^2} = \frac{\sigma_{P1}^2}{\sigma_{P2}^2}$
- sa future estimation : $\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \widehat{\sigma_{P1}^2}\left(\mathbf{Y^{P1}}\right)/\widehat{\sigma_{P2}^2}\left(\mathbf{Y^{P2}}\right)$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test :

 $\mathbf{H}_1: r_{\sigma^2} > 1.25$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : $H_0 : r_{\sigma^2} = 1.25 \text{ vs } H_1 : r_{\sigma^2} > 1.25$

 $\textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{r_{\sigma^2},1.25}} \left(\mathbf{Y^{P1},Y^{P2}} \right) \text{ dans la pire des situations?}$

Hypothèses de test : $H_0 : r_{\sigma^2} = 1.25 \text{ vs } H_1 : r_{\sigma^2} > 1.25$

 $\begin{array}{l} \textbf{Question}: \text{Quelle est l'information du mathématicien quant au comportement de } \widehat{\delta_{r_{\sigma^2},1.25}}\left(\textbf{Y}^{\textbf{P1}},\textbf{Y}^{\textbf{P2}}\right) \text{ dans la pire des situations?} \\ \end{array}$

Hypothèses de test : \mathbf{H}_0 : $r_{\sigma^2} = 1.25$ vs \mathbf{H}_1 : $r_{\sigma^2} > 1.25$ Statistique de test sous \mathbf{H}_0 : $\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.25}{\widehat{\sigma_{\widehat{r_{\sigma^2}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.8334422}$

Hypothèses de test : H_0 : $r_{\sigma^2} = 1.25$ vs H_1 : $r_{\sigma^2} > 1.25$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.25}{\widehat{\sigma_{\widehat{r_{\sigma^2}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.8334422}$

Hypothèses de test : H_0 : $r_{\sigma^2} = 1.25$ vs H_1 : $r_{\sigma^2} > 1.25$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.25}{\widehat{\sigma_{\widehat{r_{\sigma^2}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.8334422}$

Hypothèses de test : H_0 : $r_{\sigma^2} = 1.25$ vs H_1 : $r_{\sigma^2} > 1.25$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.25}{\widehat{\sigma_{\widehat{r_{\sigma^2}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Hypothèses de test : H
$$_{0}$$
: $r_{\sigma^{2}} = 1.25$ vs Statistique de test sous H $_{0}$: $r_{\sigma^{2}} = 1.25$ vs $r_{\sigma^{2}} > 1.25$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Conclusion : puisqu'au vu des données,

p-valeur
$$\stackrel{R}{=}$$
 1 − pnorm((var(yP1)/var(yP2) − 1.25)/seRVar(yP1, yP2))
 $\simeq 16.66\% \cancel{<} 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que l'hétérogénéité des C.A. annuels des PME de P1 est de plus de 25% supérieure à celle de P2

Question : Comment conclueriez-vous au vu des données yP1 et yP2

en R?

Indic R : pnorm(deltaEst.H0) \simeq 0.8334422

Hypothèses de test : \mathbf{H}_0 : $r_{\sigma^2} = 1.25$ vs \mathbf{H}_1 : $r_{\sigma^2} > 1.25$

Statistique de test sous H_0 :

$$\widehat{\delta_{r_{\sigma^2},1.25}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) = \frac{\widehat{r_{\sigma^2}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right) - 1.25}{\widehat{\sigma_{\widehat{r_{\sigma^2}}}}\left(\mathbf{Y^{P1}},\mathbf{Y^{P2}}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (droite) < 5%

Conclusion : puisqu'au vu des données,

p-valeur
$$\stackrel{\text{R}}{=} 1$$
 - pnorm((var(yP1)/var(yP2) - 1.25)/seRVar(yP1, yP2)) $\simeq 16.66\% \not< 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que l'hétérogénéité des C.A. annuels des PME de P1 est de plus de 25% supérieure à celle de P2

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : le chiffre d'affaires annuel moyen des PME a augmenté entre 2004 et 2005 de 10 unités

```
Indications R:
> length(y04-y05)
[1] 20
> mean(y04-y05)
[1] -14.0925
> pt(deltaEst.H0,19)
[1] 0.06435257
```

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathsf{H_1}:\mu^D<-10\Longleftrightarrow\delta_{\mu^D,-10}:=rac{\mu^D-(-10)}{\sigma_{\widehat{\mu^D}}}<0$$

Hypothèses de test :

$$\mathbf{H}_1: \mu^D < -10$$

Préliminaire : puisque (mean(y04 - y05) - (-10)) $\simeq -4.0925$ est du même signe (i.e. négatif que deltaEst.H0 (car p-valeur gauche inférieure à 50%), on a :

- variable d'intérêt : $Y^D = Y^{04} Y^{05}$
- paramètre d'intérêt : μ^D = "moyenne de Y^D " = $\mu^{04} \mu^{05}$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

$$\mathbf{H}_1: \mu^D < -10$$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : \mathbf{H}_0 : $\mu^D = -10$ vs \mathbf{H}_1 : $\mu^D < -10$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right)$ dans la pire des situations ?

Hypothèses de test : \mathbf{H}_0 : $\mu^D = -10$ vs \mathbf{H}_1 : $\mu^D < -10$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right)$ dans la pire des situations ?

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\widehat{\mathbf{H_0}}$:

$$\widehat{\delta_{\mu^{D},-10}}\left(\mathbf{Y}^{\mathbf{D}}\right) = \frac{\widehat{\mu^{D}}\left(\mathbf{Y}^{\mathbf{D}}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^{D}}}}\left(\mathbf{Y}^{\mathbf{D}}\right)} \rightsquigarrow \mathcal{S}t(20-1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R : $pt(deltaEst.H0,19) \simeq 0.06435257$

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\mathbf{H_0}$:

$$\widehat{\delta_{\mu^{D},-10}}\left(\mathbf{Y}^{\mathbf{D}}\right) = \frac{\widehat{\mu^{D}}\left(\mathbf{Y}^{\mathbf{D}}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^{D}}}}\left(\mathbf{Y}^{\mathbf{D}}\right)} \rightsquigarrow \mathcal{S}t(20-1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R: $pt(deltaEst.H0,19) \simeq 0.06435257$

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\mathbf{H_0}$:

$$\widehat{\delta_{\mu^{D},-10}}\left(\mathbf{Y}^{\mathbf{D}}\right) = \frac{\widehat{\mu^{D}}\left(\mathbf{Y}^{\mathbf{D}}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^{D}}}}\left(\mathbf{Y}^{\mathbf{D}}\right)} \rightsquigarrow \mathcal{S}t(20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (gauche) < 5%

Question : Comment conclueriez-vous au vu des données y04-y05

en R?

Indic R : $pt(deltaEst.H0,19) \simeq 0.06435257$

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\widehat{\mathbf{H_0}}$:

$$\widehat{\delta_{\mu^{D},-10}}\left(\mathbf{Y}^{\mathbf{D}}\right) = \frac{\widehat{\mu^{D}}\left(\mathbf{Y}^{\mathbf{D}}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^{D}}}}\left(\mathbf{Y}^{\mathbf{D}}\right)} \rightsquigarrow \mathcal{S}t(20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (gauche) < 5%

Question: Comment conclueriez-vous au vu des données v04-y05

en R?

en R?
Indic R: pt deltaEst.
$$0,19$$
 0.06435257

Hypothèses de test: H_{0} $\mu^{D} = -0$ vs H_{1} : $\mu^{D} < -10$
Statistique de test so H_{0} :
$$\delta_{\mu^{D},-10} (Y^{D}) \stackrel{?}{=} \frac{\mu^{D}}{(Y^{D})} \stackrel{?}{=} (-10) \stackrel{?}{=} St(20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (gauche) < 5%

Conclusion: puisqu'au vu des données,

p-valeur
$$\stackrel{R}{=}$$
 pt((mean(y04 - y05) - (-10))/seMean(y04 - y05), 19)
 $\simeq 6.44\% \nleq 5\%$

on ne peut pas plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME a augmenté entre 2004 et 2005 de 10 unités.

Question : Comment conclueriez-vous au vu des données y04-y05

en R?

Indic R: $pt(deltaEst.H0,19) \simeq 0.06435257$

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\widehat{\mathbf{H_0}}$:

$$\widehat{\delta_{\mu^{D},-10}}\left(\mathbf{Y}^{\mathbf{D}}\right) = \frac{\widehat{\mu^{D}}\left(\mathbf{Y}^{\mathbf{D}}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^{D}}}}\left(\mathbf{Y}^{\mathbf{D}}\right)} \rightsquigarrow \mathcal{S}t(20-1)$$

Règle de Décision :

Accepter H_1 si p-valeur (gauche) < 5%

Conclusion : puisqu'au vu des données,

p-valeur = pt((mean(y04 - y05) - (-10))/seMean(y04 - y05), 19)

$$\simeq 6.44\% \lesssim 5\%$$

on ne peut pas plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME a augmenté entre 2004 et 2005 de 10 unités.

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

Assertion d'intérêt : le chiffre d'affaires annuel moyen des PME a augmenté entre 2004 et 2005 de 10 unités

```
Indications R:
```

- > length(y04-y05)
- [1] 40
- > mean(y04-y05)
- [1] -14.46825
- > pnorm(deltaEst.H0)
- [1] 0.01285186

Question Comment s'écrit l'assertion d'intérêt H_1 en fonction des paramètres d'intérêt et d'écart?

$$\mathsf{H_1}:\mu^D<-10\Longleftrightarrow\delta_{\mu^D,-10}:=rac{\mu^D-(-10)}{\sigma_{\widehat{\mu^D}}}<0$$

Hypothèses de test :

$$\mathbf{H}_1: \mu^D < -10$$

Préliminaire : puisque $(mean(y04 - y05) - (-10)) \simeq -4.46825$ est du même signe (i.e. négatif que deltaEst.H0 (car p-valeur gauche inférieure à 50%), on a :

- variable d'intérêt : $Y^D = Y^{04} Y^{05}$
- paramètre d'intérêt : μ^D = "moyenne de Y^D " = $\mu^{04} \mu^{05}$

Question : Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce ?

$$\mathbf{H}_1: \mu^D < -10$$

Question: Quelle est la pire des situations, i.e. parmi toutes les situations quelle est celle qui engendre le plus grand risque d'erreur de première espèce?

Hypothèses de test : \mathbf{H}_0 : $\mu^D = -10$ vs \mathbf{H}_1 : $\mu^D < -10$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right)$ dans la pire des situations ?

Hypothèses de test : \mathbf{H}_0 : $\mu^D = -10$ vs \mathbf{H}_1 : $\mu^D < -10$

Question : Quelle est l'information du mathématicien quant au comportement de $\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right)$ dans la pire des situations ?

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\widehat{\mathbf{H_0}}$:

$$\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right) = \frac{\widehat{\mu^D}\left(\mathbf{Y^D}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^D}}}\left(\mathbf{Y^D}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.01285186}$

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\mathbf{H_0}$:

$$\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right) = \frac{\widehat{\mu^D}\left(\mathbf{Y^D}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^D}}}\left(\mathbf{Y^D}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Question : Comment s'écrit la règle de décision ne produisant pas

plus de 5% d'erreur de première espèce?

Indic R: pnorm(deltaEst.H0) \simeq 0.01285186

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\mathbf{H_0}$:

$$\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right) = \frac{\widehat{\mu^D}\left(\mathbf{Y^D}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^D}}}\left(\mathbf{Y^D}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (gauche) < 5%

Question : Comment conclueriez-vous au vu des données y04-y05

en R?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.01285186}$

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\mathbf{H_0}$:

$$\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right) = \frac{\widehat{\mu^D}\left(\mathbf{Y^D}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^D}}}\left(\mathbf{Y^D}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (gauche) < 5%

Question: Comment conclueriez-vous au vu des données y04-y05

en R?

Règle de Décision :

Accepter
$$H_1$$
 si p-valeur (gauche) $< 5\%$

Conclusion : puisqu'au vu des données,

$$\begin{array}{l} \text{p-valeur} \stackrel{R}{=} pnorm((mean(y04-y05)-(-10))/seMean(y04-y05)) \\ \simeq 1.29\% < 5\% \end{array}$$

on peut plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME a augmenté entre 2004 et 2005 de 10 unités.

Question : Comment conclueriez-vous au vu des données y04-y05

en R?

 $\textbf{Indic R}: \texttt{pnorm}(\texttt{deltaEst.H0}) \simeq \texttt{0.01285186}$

Hypothèses de test : $\mathbf{H_0}$: $\mu^D = -10$ vs $\mathbf{H_1}$: $\mu^D < -10$ Statistique de test sous $\widehat{\mathbf{H_0}}$:

$$\widehat{\delta_{\mu^D,-10}}\left(\mathbf{Y^D}\right) = \frac{\widehat{\mu^D}\left(\mathbf{Y^D}\right) - (-10)}{\widehat{\sigma_{\widehat{\mu^D}}}\left(\mathbf{Y^D}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de Décision :

Accepter H_1 si p-valeur (gauche) < 5%

Conclusion : puisqu'au vu des données,

$$\begin{array}{l} \text{p-valeur} \stackrel{\text{R}}{=} \text{pnorm}((\text{mean}(\text{y04}-\text{y05})-(-\text{10}))/\text{seMean}(\text{y04}-\text{y05})) \\ \simeq 1.29\% < 5\% \end{array}$$

on peut plutôt penser (avec un risque de 5%) que le chiffre d'affaires annuel moyen des PME a augmenté entre 2004 et 2005 de 10 unités.