ACISP 2022

Hybrid Dual and Meet-LWE Attack

BI Lei^{1,2}, LU Xianhui^{1,2,3}, LUO Junjie⁴, WANG Kunpeng^{1,2}

- 1. Institute of Information Engineering, CAS
- 2. School of Cyber Security, University of Chinese Academy of Sciences
- 3. State Key Laboratory of Cryptology
- 4. Beijing Jiaotong University

Outline

Background

Recall hybrid dual attack and Meet-LWE attack

• Hybrid dual and Meet-LWE attack

Concrete security estimation of FHE

Conclusion

Background

• LWE (Learning with errors) problem [Regevo5]

Given (A, b)

- Search-version: find s
- Decision-version: LWE or Uniform dist.?

Background

• LWE solving algorithms

Recall Hybrid Dual Attack

$$\begin{bmatrix} A_1 & A_2 & \frac{s_1}{s_2} + e & = & b \end{bmatrix} \mod q \qquad (w, v) \leftarrow \Lambda^{\perp}(A_2) = \{(w, v) | wA_2 = v \mod q\}$$

$$\begin{bmatrix} w & A_1 & s_1 & + & v & s_2 & + & w & e & = & w & b & mod q \end{bmatrix}$$

$$\hat{a} \qquad \hat{e} \qquad \hat{b} \qquad mod q$$

Guess
$$s_1$$
 — hypothesis test on \hat{b} — \hat{a} , $s_1 > mod q$ — \sum modular Gaussian \Leftrightarrow Correct uniform

Recall Meet-LWE Attack

• Meet-LWE attack on sparse ternary LWE [May21]

•
$$L_2 = \left\{ s^{\prime\prime} \in \mathcal{T}^n\left(\frac{w}{2}\right) \middle| \pi_k(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{s}^{\prime\prime}) = \boldsymbol{t} \right\}$$

Recall Meet-LWE Attack

• Meet-LWE attack on sparse ternary LWE [May21]

- compute $k = \lfloor \log_q R \rfloor$ and fix a $t \stackrel{\$}{\leftarrow} \mathbb{Z}_q^k$
- For each $\pi_k(e) \in \mathcal{T}^k$ do
 - construct $L_1 = \left\{ \left(s' \in \mathcal{T}^n \left(\frac{w}{2} \right), h(As' + e) \right) \middle| \pi_k(As' + e) = t \right\}$
 - construct $L_2 = \left\{ \left(s'' \in \mathcal{T}^n \left(\frac{w}{2} \right), h(b As'') \right) \middle| \pi_k(b As'') = t \right\}$
- For all matched (s',\cdot) and (s'',\cdot) in the 2nd component do
 - if $s = s' + s'' \in \mathcal{T}^n(w)$ and $As b \in \mathcal{T}^k$ then
 - return s

Use Meet-LWE attack to accelerate guessing s₁

· Dual attack makes a trade-off between the dim of secret and the norm of error

Technical problems

- 1. secret: hamming weight fixed → unknown
- 2. error: ternary \rightarrow large

Problem 1 --- unknown hamming weight of the secret

• Problem 2 --- large error

$$\hat{e} = v s_2 + w e \sim \mathcal{G}_{\rho} \gg e$$

• Enumerate $\{-E, \dots, E\}$ instead of $\{-1,0,1\}$

• Problem 2 --- large error

Define a new hash function

$$h(\mathbf{x_i}) = \begin{cases} 0, \mathbf{x_i} \in \left[-\frac{q}{2}, -E \right) \\ 1, \mathbf{x_i} \in \left[0, \frac{q}{2} - E \right) \\ 0, 1, \mathbf{x_i} = \left[-E, 0 \right) \cup \left[\frac{q}{2} - E, \frac{q}{2} \right) \end{cases}$$

 $\#(\text{addresses for each element}) = 2^{\frac{2E+1}{q} \cdot M}$

Concrete Security Estimation of FHE

• Improvements up to 16 bits

200										103	120	131
160			Ours							117	146	161
120			HYBRID1							136	182	202
100			Hybrid2				102	124	133	147	199	230
80							119	146	162	162	225	276
60				90	106	111	134	179	207			
50				101	126	133	146	202	241			
40	76	83	86	115	153	166	163	234	287			
30	95	110	115	138	193	217						
20	128	161	175									
15	153	205	230									
log q w	64	128	192	64	128	192	64	128	192	64	128	192
log n		10		11			12			13		

200										191	206	200
160			Ours							169	174	182
120										157	182	202
100							118	127	133	155	199	230
80							119	146	162	165	225	276
60				90	108	120	134	179	207			
50				101	129	140	146	202	241			
40	76	93	103	115	154	177	163	234	287			
30	96	121	130	138	198	235						
20	132	186	220									
15	167	216	291									
109 9 W	64	128	192	64	128	192	64	128	192	64	128	192
log n		10			11			12			13	
200										105	124	131
160			HYBRID1							121	150	164
120										143	188	210
100							105	124	139	157	214	245
80							121	150	162	176	248	291
60				92	106	111	143	189	211			
50				105	126	133	157	215	246			
40	84	83	86	122	153	166	176	250	293			
30	95	110	115	145	193	217						
20	128	161	175									
15	153	205	230									
) 2 2	64	128	192	64	128	192	64	128	192	64	128	192
log n		10			11		12			13		
200										103	120	131
160			HYBRID2							117	146	161
120										136	182	206
100							102	126	137	147	205	241
80							119	154	171	162	240	286
00				96	117	127	138	193	226			
60						157	153	221	266			
				111	140	157						
60	86	103	200	111 129	175	200	175	261	324			
60 50	86 113	103 146	200 165	-	_	_	175	261	324			
60 50 40	-	_	_	129	175	200	175	261	324			
60 50 40 30 20	113	146	165	129	175	200	175	261	324			
60 50 40 30 20	113 161	146 244	165 285	129	175	200	175	128	192	64	128	192

- HYBRID1 [BLLWZ22] Hybrid dual attack on LWE with arbitrary secrets. Cybersecurity 2022.
- HYBRID2 [CHHS19] A hybrid of dual and meet-in-the-middle attack on sparse and ternary secret LWE. IEEE Access 2019.

Conclusion

- Summary
 - Use Meet-LWE to accelerate guessing in hybrid dual attack
 - Improve the estimation of the concrete security of FHE up to 16 bits

- Future work
 - Remove enumerating \hat{e}
 - Replace the hash function

