

Outline:-

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Methodologies that were used in this project are:
- Web scrapping from space x website- It helped in collecting huge amount of unstructured data
- Exploratory data analysis- It helped in which to analysis which rocket launched successfully
- Machine learning- It helped us to predict the optimum classifiers which can be used in our project

Introduction:

 Our main objective is to compute whether or not will the first stage of SPACE X rocket will land safely as it is our competitor of company SPACE Y

Methodology

Data collection

 Data in this project has been primarily been extracted from the SPACE X api(http://api.spacex.com/v4//rockets/) and from wikipedia from using web scraping techniques using Beautiful soup

Data Wrangling

 Initially we perform some EDA(exploratory analysis) on the given dataset to make predictions on launch_sites and all columns

After that we will give landing outcome through exploratory

analysis

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	
4	1	2010- 06-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	
5	2	2012- 05-22	Falcon 9	525.0	LEO	CCSFS SLC 40	None None	1	False	False	False	
6	3	2013- 03-01	Falcon 9	677.0	221	CCSFS SLC 40	None None	1	False	False	False	
7	4	2013- 09-29	Falcon 9	500.0	PO	VAFB SLC 4E	False Ocean	1	False	False	False	
8	5	2013- 12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	False	False	
-	-	-	-	-	-			-				
89	86	2020- 09-03	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	2	True	True	True	5e
90	87	2020- 10-06	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	3	True	True	True	5e
91	88	2020- 10-18	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	6	True	True	True	5e
92	89	2020- 10-24	Falcon 9	15600.0	VLEO	CCSFS SLC 40	True ASDS	3	True	True	True	5el

EDA with Data Visualization

To find the relationship between various terms bar graphs, scatterplots were used to show the relationship

EDA with SQL

- We performed various steps with the help of SQL to clean out and manipulate the following data. Which may include-
- Unique names of the launch sites in the space mission
- Top 5 launch sites in which the name begins with 'CCA'
- Total number of successful and failure outcomes
- Rank of the landing outcomes and many more..

Relation between payload and orbit-

In this slide we discuss about how we created scatterplot between payloadmass of the booster with that of the orbit

Success Rate vs Orbit type-

- The biggest success rates happens to orbits-
- ES-I1
- GEO
- HEO followed by
- SSO and LFO

Relation between launch site and flight number

Relation between payload and flight number

Launch Site names-

- All launch site names are-
- CCFAS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

Launch sites name with CCA(5)

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	М
06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	
12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	
10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	
03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	

Total payload mass

- Total payload mass carried out by NASA booster is
- 111.268 kg
- Average payload mass by F9 v1.1
- 2.928 kg

Landing outcome

- First successful landing outcome was accomplished on
- 2015-12-22

Payload mass carried out by NASA(CRS)

SUM(PAYLOAD_MASS__KG_)

45596.0

Total number successful and failure outcomes

COUNT(MISSION_OUTCOME)

99

Launch sites with EDA

Launch sites are near water and far away from roads in order to avoid accidents

KSC LC-39A

This launch site is more suitable as it near to railroad and road and far from inhabited areas

DASHBOARD WITH PLOTLY DASH

We have created a dash dropdown so that we can analysis our problem in much more efficient way

Payload vs Launch Outcome

Launch success ratio KSC LC- 39A

PREDICTIVE ANALYSIS

Classification accuracy

 Here decision tree classifier is more viable because it has higher accuracy

Model	Accuracy	TestAccuracy	
LogReg	0.84642857142857	13	0.833333333333334
SVM	0.84821428571428	356	0.833333333333334
Tree	0.88928571428571	.45	0.666666666666666
KNN	0.84821428571428	358	0.833333333333334

Confusion matrix of Decision tree classifier

CONCLUSION

- The best launch site is KSC LC-39A
- Launches that have a payload mass of mor than 7000 kg are less risky to launch
- We can use decision tree classifier for calculation of landing