

Designed by: Thuat NGUYEN-KHANH

Lecturer at The Faculty of Computer Networks & Communications - UIT - VNU-HCM

Email: thuatnk@uit.edu.vn

Chapter 4: IoT Wireless Technologies

- Zigbee Overview
- Physical Layer
- MAC Layer
- Network Layer
- Application Layer
- Security Service Provider
- ZigBee Address Assignment

IoT Layered Architecture

Source: ZTE

ZigBee Overview

"low cost, low power, low data rate wireless networking"

ZigBee Alliance

- "The Software"
- Network, Security & Application
 Layers

IEEE 802.15.4

- "The Hardware"
- Physical & Medium Access Control Layers

ZigBee Physical Layer

- Physical Layer:
 - Frequency band:
 - 868 868.8 MHz (Europe) channel 0: 20kb/s
 - 902 928 MHz (USA, Canada, Australia) channel 1-11: 40kb/s
 - 2.4 2.4835 GHz (Other Country) channel 12-27: 250kb/s

ZigBee MAC (1/3)

- Medium Access Control (MAC) Layer:
 - Beacon Mode
 - Contention Access Period (CAP)
 - Contention Access Period (CAP)/
 Contention Free Period (CFP)
 - Non Beacon Mode

Source: IEEE 802.15.4 for Wireless Sensor Networks: A Technical Overview

ZigBee MAC (2/3)

- Medium Access Control (MAC) Layer:
 - Beacon Mode
 - Contention Access Period (CAP)

Source: IEEE 802-15-4 for Wireless Sensor Networks: A Technical Overview

Contention Access Period/Contention Free Period: (CAP/CFP)

Source: IEEE 802.15.4 for Wireless Sensor Networks: A Technical Overview

ZigBee MAC (3/3)

- Medium Access Control (MAC) Layer:
 - Non Beacon Mode
 - Unslotted CSMA/CA
 - ACK frame

ZigBee Network Layer (1/3)

Network Layer:

- Network Layer Data Entity (NLDE)
- Network LayerManagement Entity(NLME)

ZigBee Network Layer (2/3)

- Network Layer:
 - Network Layer DataEntity (NLDE):
 - Generation of the Network level PDU
 - Topology-specific routing
 - Security

ZigBee Network Layer (3/3)

Network Layer:

Network Layer Management Entity

(NLME):

- Configuring a new device
- Starting a network
- Joining, rejoining and leaving a network
- Addressing
- Neighbor discovery
- Route discovery
- Reception control
- Routing

ZigBee Application Layer (1/8)

- Application Layer:
 - Application Support Sub-Layer (APS)
 - Application Framework
 - Zigbee Device Object (ZDO)

Laver

Layer interface

function

ZigBee Application Layer (2/8)

- Application Layer:
 - Application Support Sub-Layer (APS)
 - APS Data Entity (APSDE)
 - APS Management Entity (ASPME)

ZigBee Application Layer (3/8)

- Application Layer:
 - Application Support Sub-Layer (APS)
 - APS Data Entity (ASPDE)
 - Generation of the Application level PDU
 - Binding
 - Group address filtering
 - Reliable transport
 - Duplicate transport
 - Fragmentation

ZigBee Application Layer (4/8)

- Application Layer:
 - Application Support Sub-Layer (APS)
 - APS Management Entity (APSME)
 - Binding management
 - AIB management
 - Security
 - Group management

ZigBee Application Layer (5/8)

- Application Layer:
 - Application Framework:
 - Environment for hosting manufacturer defined application objects on Zigbee devices
 - Up to 240 Application Object can be defined (End Point 1-240)
 - EP 0: data interface to ZDO
 - EP 251-254: reserved
 - EP 255: broadcast data to all Application Object
 - Application Profile: agreements for messages, message formats and processing actions between any Application Object on the same Device

ZigBee Application Layer (6/8)

- Application Layer:
 - Application Framework:
 - Example:

ZigBee Application Layer (7/8)

- Application Layer:
 - Zigbee Device Object(ZDO)

ZigBee Application Layer (8/8)

- Application Layer:
 - Zigbee Device Object (ZDO)
 - Be Implemented by all Node in network
 - Provides an interface between the Application Objects, the Device Profile and the APS
 - Four key inter-device communication functions:
 - Device and Service Discovery
 - End Device Bind and Unbind
 - Binding Table Management
 - Network Management

ZigBee Security Service Provider

- MAC security
- NWK security
- APL security
- Three Key Types:
 - Master Key
 - Link Key
 - Network Key
- Two Security Modes
 - Standard
 - High

- Each node gets a unique 16-bit address
- Two Schemes: Distributed and Stochastic
 - Distributed Scheme: Good for tree structure
 - Each child is allocated a sub-range of addresses.
 - Need to limit maximum depth L, Maximum number of children per parent C, and Maximum number of routers R
 - Address of the n^{th} child is parent + 1 + (n-1)*S(d)

$$S(d) = \begin{cases} 1 + C(L - d) & \text{if } R = 1\\ \frac{CR^{L - d - 1} - 1 - C + R}{R - 1} & \text{if } R > 1 \end{cases}$$

- Each node gets a unique 16-bit address
- Two Schemes: Distributed and Stochastic
 - Stochastic Scheme:
 - Parent draws as 16 bit random number between 1 and 2^{16} -1 and assigns it to a new child
 - Parent then advertises the number child to the network
 - If another node has that address an address conflict message is returned and the parent draws another number and repeats

• Distributed Scheme Example

Max depth L=2, Routers R=4, Children C=3

$$S(d) = \begin{cases} 1 + C(L - d) & \text{if } R = 1\\ \frac{CR^{L - d - 1} - 1 - C + R}{R - 1} & \text{if } R > 1 \end{cases}$$

• Distributed Scheme Example

Max depth L=2, Routers R=4, Children C=3

$$S(0) = \frac{CR^{L-d-1} - 1 - C + R}{R - 1} = \frac{3 \times 4^{2-0-1} - 1 - 3 + 4}{4 - 1} = 4$$

• Distributed Scheme Example

Max depth L=2, Routers R=4, Children C=3

$$S(1) = \frac{CR^{L-d-1} - 1 - C + R}{R - 1} = \frac{3 \times 4^{2-1-1} - 1 - 3 + 4}{4 - 1} = 1$$

• Distributed Scheme Example

$$d = 0$$

$$S(0) = 4$$

$$d = 1$$

$$S(1) = 1$$

$$d = 2$$

Address of the n^{th} child is parent + 1 + (n-1)*S(d)

Address of R1:
$$10 + 1 + (1-1)*4 = 11$$

• Distributed Scheme Example

$$d = 0$$

$$S(0) = 4$$

$$d = 1$$

$$S(1) = 1$$

$$d = 2$$

Address of the n^{th} child is parent + 1 + (n-1)*S(d)

Address of R1:
$$10 + 1 + (1-1)*4 = 11$$

Address of R2:
$$10 + 1 + (2-1)*4 = 15$$

• Distributed Scheme Example

$$d = 0$$

$$S(0) = 4$$

$$d = 1$$

$$S(1) = 1$$

$$d = 2$$

Address of the n^{th} child is parent + 1 + (n-1)*S(d)

Address of R1: 10 + 1 + (1-1)*4 = 11

Address of R2: 10 + 1 + (2-1)*4 = 15

Address of R3: 10 + 1 + (3-1)*4 = 19

• Distributed Scheme Example

$$d = 0$$

$$S(0) = 4$$

$$d = 1$$

$$S(1) = 1$$

$$d = 2$$

Address of the n^{th} child is parent + 1 + (n-1)*S(d)

Address of R1: 10 + 1 + (1-1)*4 = 11

Address of R2: 10 + 1 + (2-1)*4 = 15

Address of R3: 10 + 1 + (3-1)*4 = 19

Address of R4: 10 + 1 + (4-1)*4 = 23

• Distributed Scheme Example

Address of the n^{th} child is parent + 1 + (n-1)*S(d)

Address of R1:
$$10 + 1 + (1-1)*4 = 11$$
 Address of R1's child: ??

Address of R2:
$$10 + 1 + (2-1)*4 = 15$$

Address of R3:
$$10 + 1 + (3-1)*4 = 19$$

Address of R4:
$$10 + 1 + (4-1)*4 = 23$$

Distributed Scheme Example

Address of the n^{th} child is parent + 1 + (n-1)*S(d)

Address of R1:
$$10 + 1 + (1-1)*4 = 11$$
 Address of R1's child: 12 and 13 Address of R2: $10 + 1 + (2-1)*4 = 15$ Address of R3: $10 + 1 + (3-1)*4 = 19$ Address of R4: $10 + 1 + (4-1)*4 = 23$

• Distributed Scheme Example

Address of the n^{th} child is parent + 1 + (n-1)*S(d)

Address of R1:
$$10 + 1 + (1-1)*4 = 11$$
 Address of R1's child: 12 and 13
Address of R2: $10 + 1 + (2-1)*4 = 15$ Address of R2's child: ??
Address of R3: $10 + 1 + (3-1)*4 = 19$ Address of R3's child: ??
Address of R4: $10 + 1 + (4-1)*4 = 23$ Address of R4's child: ??

d = 0

d = 1

d = 2

S(0) = 4

S(1) = 1

• Distributed Scheme Example

Address of R1:
$$10 + 1 + (1-1)*4 = 11$$
 Address of R1's child: 12 and 13 Address of R2: $10 + 1 + (2-1)*4 = 15$ Address of R2's child: 16 and 17 Address of R3: $10 + 1 + (3-1)*4 = 19$ Address of R3's child: 20 and 21 Address of R4: $10 + 1 + (4-1)*4 = 23$ Address of R4's child: 24 and 25

Exercise 1

Assuming that IEEE 802.15.4 network is being planned with a maximum of 5 children per node to a depth of 2 levels and maximum 4 routers. Compute sub-ranges to be assigned to each router and the addresses assigned to each node in the network assuming the coordinator has an address of 20.

Exercise 2

The same to Exercise 1, but Max depth L=2, Routers R=3, Children C=3, Coodinator Address is 42

Summary

- Introduce to Zigbee
- The 2 lower layers is IEEE 802.15.4
- The 2 upper layers are defined by Zigbee Alliance
- ZigBee Security Service Provider
- Two Type of Zigbee Address Assignment
- Zigbee Address Assignment example

