

7

Lens Control Apparatus

BACKGROUND OF THE INVENTION

Field of the Invention

5 The present invention relates to a lens control apparatus for controlling a lens moving parallel to an optical axis in an inner focus type lens system.

Related Art of the Invention

Related Background Art

10 Fig. 1 is a view showing the structure of an inner
focus type lens system. An inner focus type lens
system 1 includes a first fixed lens 2, a magnification
lens 3, an iris 4, a second fixed lens 5, and a focus
compensation lens 6, all of which are sequentially
15 arranged from the left object side to the right side
along the optical axis. The magnification lens 3 is
moved parallel to the optical axis to perform
magnification. The focus compensation lens 6 has a
20 focus control function upon parallel movement along the
optical axis and a so-called compensation function of
correcting movement of a focal plane upon
magnification. An optical object image obtained by the
lens system 1 is focused on an image pickup surface 7a
25 of an image pickup element 7 and is photoelectrically
converted into a video signal.

In the lens system 1 having the arrangement described above, if the focal length remains the same, the position of the focus compensation lens 6 for

卷之六

1 focusing an object image on the image pickup surface 7a
of the image pickup element 7 varies depending on
object distances because the focus compensation lens 6
has both the compensation function and the focus
5 control function.

When the object distance is changed at the
respective focal lengths, and the positions of the
focus compensation lens 6 for focusing object images on
the image pickup surface 7a are continuously plotted,
10 the result is obtained, as shown in Fig. 2. Under
magnification, a locus (Fig. 2) corresponding to an
object distance is selected. When the focus
compensation lens 6 is moved in accordance with the
selected locus, zooming free from blurring can be
15 performed.

In a front-element focus type lens system, a
compensation lens independently of a magnification lens
is arranged, and the magnification lens is coupled to
the compensation lens through a mechanical cam ring.
20 For example, when a manual zoom knob is attached to
this cam ring to manually change the focal length, the
cam ring can follow the quick movement of the knob, and
the magnification lens and the compensation lens are
moved along the cam groove of the cam ring. If the
25 focus lens is set in a focused condition, blurring will
not occur.

1 In control of an inner focus type lens system
2 having the above characteristic feature, a plurality of
3 pieces of lens locus information shown in Fig. 2 are
4 stored in a lens control microcomputer in any form. A
5 proper lens locus is selected in accordance with the
6 positions of the magnification lens 3 and the focus
7 compensation lens 6. Zooming is thus generally
8 performed in accordance with the selected locus.

9 The position of the focus compensation lens 6 with
10 respect to the position of the magnification lens 3 is
11 read out from a storage element to control the lenses 3
12 and 6. Read access of the positions of the lenses 3
13 and 6 must be performed with high precision. In
14 particular, as can be apparent from Fig. 2, when the
15 magnification lens 3 is moved at a constant speed or a
16 speed close thereto, the inclination of the locus of
17 the focus compensation lens 6 is instantaneously
18 changed in accordance with a change in focal length.
19 This indicates that the speed and orientation of the
20 movement of the focus compensation lens 6 are
21 instantaneously changed. In other words, the actuator
22 for the focus compensation lens 6 must have a
23 high-precision speed response of 1 Hz to several
24 hundreds of Hz.

25 As a focus compensation lens drive actuator in an
26 inner focus type lens system which satisfies the above
27 requirement, a stepping motor is generally used. This

RECORDED - 100% - 100% -

1 stepping motor rotates in perfect synchronism with a
stepping pulse output from the lens control
microcomputer. High speed response precision and stop
precision, and positional precision can be obtained
5 because a stepping angle per pulse is predetermined.

The stepping pulses for the stepping motor can be
used for an increment type position encoder because a
rotation angle corresponding to a stepping pulse count
is predetermined. Any special position encoder need
10 not be used.

As described above, when a magnification operation
is to be performed using a stepping motor while
maintaining a focused condition, the locus information
in Fig. 2 must be stored in the lens control
15 microcomputer or the like in any form (i.e., a locus
itself or a function using a lens position as a
variable), and proper locus information is read out in
correspondence with a given position or moving speed of
the magnification lens. The focus compensation lens
20 must be moved on the basis of the readout locus
information.

Fig. 3 is a view for explaining a locus tracking
method proposed prior to the present invention.
Referring to Fig. 3, the focus compensation lens
25 position is plotted along the ordinate, and the
magnification lens position is plotted along the
abscissa. Positions $z_0, z_1, z_2, \dots, z_{11}$ represent

1 magnification lens positions, and loci $a_0, a_1, a_2, \dots, a_{11}$,
2 and loci $b_0, b_1, b_2, \dots, b_{11}$ represent typical lens
3 loci stored in the lens control microcomputer. Loci $p_0,$
4 p_1, p_2, \dots, p_{11} represent lens loci calculated on the
5 basis of the above two different loci stored in the
lens control microcomputer. The calculation equation
of this lens locus will be described below:

$$p_{(n+1)} = |p_{(n)} - a_{(n)}| / |b_{(n)} - a_{(n)}| \times |b_{(n+1)} - a_{(n+1)}| + a_{(n+1)} \quad \dots(1)$$

10 According to equation (1), when the focus
compensation lens is located on the locus p_0 in Fig. 3,
the locus p_0 calculates a ratio which interpolates a
line segment b_0-a_0 , and a point which interpolates a
line segment b_1-a_1 is defined as p_1 in accordance with
15 the resultant ratio.

In this case, however, when the magnification lens
position is not located on a zoom boundary (i.e., any
of the positions z_0, z_1, \dots, z_{11} in Fig. 3), i.e., when
the magnification lens position and the focus
20 compensation lens positions are given as z_x and p_x ,
respectively, the locus tracking position is not
updated. For example, when the focus compensation lens
position is changed from p_x to Q_x in Fig. 3 in
accordance with AF (auto-focus) information changing in
25 correspondence with a change in object distance in
zooming in the AF mode, the locus tracking position is
not immediately updated to cause blurring. When the

TOP SECRET - 5273500

1 moving speed of the magnification lens increases as in
high-speed zooming, a period for causing the
magnification lens position to update a zoom zone on a
zoom boundary (i.e., a time required to move the
5 magnification lens from $z_{(n)}$ to $z_{(n+1)}$) is shorter than the
period of local tracking position calculation of the
microcomputer. For this reason, the locus tracking
position cannot be updated on all the zoom boundaries.
As a result, blurring frequently occurs.

10 In the above case, when the magnification lens
position is not located on the zoom boundary (i.e., any
of the positions $z_0, z_1, z_2, \dots, z_{11}$ in Fig. 3), i.e.,
when the magnification lens position and the focus
compensation lens position are z_x and p_x , respectively,
15 locus data is not available in the lens control
microcomputer. In this case, positions a_x and b_x in
Fig. 3 must be calculated, and $p_{(n+1)}$ must be obtained by
substituting $a_{(n)} = a_x$ and $b_{(n)} = b_x$, and $p_{(n)} = p_x$ into
conventional equation (1). Processing thus becomes
20 complicated, and calculation errors may be accumulated.
As a result, trouble occurs in zooming in the focused
condition.

SUMMARY OF THE INVENTION

25 The present invention has been made in
consideration of the above situation, and has as its
first object to provide a lens control apparatus
capable of achieving zooming free from blurring in a

026230-3773660

1 focused condition against a change in zoom speed as in
high-speed zooming or the like and a change in object
distance.

It is the second object of the present invention
5 to provide a lens control apparatus capable of
performing interpolation type locus tracking zooming
and enabling zooming free from blurring in a small
processing volume within a short period of processing
time.

10 In order to achieve the first object according to
the first embodiment of the present invention, there is
dislosed a lens control apparatus including lens
position detecting means for detecting a position of a magnification lens and a position of a focus
15 compensation lens, lens moving means for moving the magnification and focus compensation lenses to be parallel to an optical axis, and recording means for recording a focused position of the focus compensation lens with respect to a discrete position of the
20 magnification lens in accordance with an object distance, comprising estimating means for estimating a lens moving target position by a calculation using the position of the magnification lens, the position of the focus compensation lens, discretely stored lens
25 position information when the magnification lens is not located at the discrete position of the magnification lens.

YOSHIDA SHIZUO

1 In order to achieve the second object according to
the second embodiment of the present invention, there
is disclosed a lens control apparatus including lens
position detecting means for detecting a position of a
5 magnification lens and a position of a focus
compensation lens, lens moving means for moving the
magnification and focus compensation lenses to be
parallel to an optical axis, and recording means for
recording a focused position of the focus compensation
10 lens with respect to a discrete position of the
magnification lens in accordance with an object
distance, comprising control means for inhibiting to
stop the magnification lens at a position except for
the discrete position of the magnification lens.

15 In the lens control apparatus of the first
embodiment, when the magnification lens is not located
at the discrete position of the magnification lens, the
estimating means calculates and estimates the lens
moving target position in accordance with the position
20 of the magnification lens, the position of the focus
compensation lens, and the discretely stored lens
position information.

Even at a magnification lens position whose lens
locus information is not stored in the lens control
25 microcomputer, zooming free from blurring in a focused
condition can be performed in high-speed zooming and
upon a change in object distance in the zoom mode in

422657-8773600

1 accordance with the interpolation calculation of the
magnification lens position.

2 In the lens control apparatus of the second
embodiment, the control means controls not to stop the
5 magnification lens at a position except for discrete
magnification lens position.

3 Interpolation type locus tracking zooming can be
4 performed by simple processing. At the same time, if
the zoom area is divided into a certain number of
10 zones, processing is almost the same as in a
complicated interpolation calculation. Zooming free
from blurring in a small processing volume within a
short period of time can be performed without degrading
15 performance.

16 It is the third object of the present invention to
17 save the processing volume and the processing time in
18 zooming in an AF OFF condition (i.e., a condition in
19 which blurring in zooming cannot be corrected by AF)
20 and to perform zooming while maintaining an accurately
focused condition.

21 In order to achieve the third object according to
22 the third embodiment of the present invention, there is
23 disclosed a lens control apparatus including a first
24 lens for performing a magnification operation, a second
25 lens for correcting movement of a focal plane during
movement of the first lens, lens moving means for
independently moving the first and second lenses to be

1 parallel to an optical axis, and focused position
2 storage means for prestorage a focused position of the
3 second lens with respect to a discrete position of the
4 first lens in accordance with a discrete object
5 distance, comprising object distance specifying means
6 for specifying an object distance on the basis of the
7 current positions of the first and second lenses and
8 information stored in the focused position storage
9 means when manual focus control is performed while a
10 position of the first lens is fixed, and focused
11 position calculating means for calculating a focused
12 position of the second lens with respect to a moving
13 position of the first lens on the basis of the object
14 distance specified by the object distance specifying
15 means and the information stored in the focused
16 position storage means when the first lens is moved by
17 the lens moving means to perform a magnification
18 operation.

19 The first lens serves as a lens for performing the
20 magnification operation, and the second lens serves as
21 a lens for correcting movement of the focal plane
22 during movement of the first lens. The lens moving
23 means independently moves the first and second lenses
24 to be parallel to the optical axis. The focused
25 position storage means prestorage the focused position
of the second lens with respect to the discrete

SEARCHED
INDEXED
FILED

1 position of the first lens in accordance with the
discrete object distance of the first lens.

5 The object distance specifying means specifies the
object distance on the basis of the current positions
of the first and second lenses and the information
stored in the focused position storage means when the
focus control is manually performed while the first
lens position is fixed.

10 When the first lens is moved by the lens moving
means to perform the magnification operation, the
focused position calculating means calculates the
focused position of the second lens with respect to the
moving position of the first lens on the basis of the
object distance specified by the object distance
specifying means and the information stored in the
15 focused position storage means.

It is the fourth object of the present invention
to increase the resolution of the magnification lens
position as in high-speed zooming without increasing
20 the number of focusing lens locus data, to
appropriately update the moving speed of a focus
compensation lens, and to perform zooming having good
focusing lens locus tracking characteristics.

25 In order to achieve the fourth object according to
still another preferred embodiment, there is disclosed
a lens control apparatus including a first lens for
performing a magnification operation, a second lens for

1 correcting movement of a focal plane during movement of
the first lens, lens moving means for independently
moving the first and second lenses to be parallel to an
optical axis, focused position storage means for
5 restoring a focused position of the second lens with
respect to a discrete position of the first lens in
accordance with a discrete object distance, and focused
position calculating means for calculating a focused
position of the second lens with respect to a moving
10 position of the first lens on the basis of current
positions of the first and second lenses and
information stored in the focused position storage
means, comprising moving speed calculating means for
calculating a moving speed of the second lens in
15 accordance with a difference between the current
position of the second lens and the focused position
calculated by the focused position calculating means
every time the first lens passes by the discrete
position of the first lens which is stored in the
20 focused position storage means during movement of the
first lens.

It is the fifth object of the present invention to
provide a lens control apparatus capable of always
maintaining a focused condition by smoothly controlling
25 a magnification lens moving speed by a simple
arrangement and simple control, and capable of
performing quick, natural speed reduction while always

1 maintaining the focused condition without causing an
unnatural movement of a focus compensation lens in a
range falling outside a step-out limitation of a
stepping motor and without causing an uncomfortable
5 frame upon repetition of zoom acceleration/speed
reduction.

In order to achieve the fifth object according to
still another embodiment of the present invention,
there is disclosed a lens control apparatus including a
10 first lens for performing a magnification operation, a
second lens for correcting movement of a focal plane
during movement of the first lens, a stepping motor for
moving the first lens to be parallel to an optical
axis, lens moving means for moving the second lens to
15 be parallel to the optical axis, focused position
storage means for restoring a focused position of the
second lens with respect to a discrete position of the
first lens in accordance with a discrete object
distance, and focused position calculating means for
20 calculating a focused position of the second lens with
respect to a moving position of the first lens on the
basis of current positions of the first and second
lenses and information stored in the focused position
storage means, comprising control means for controlling
25 the stepping motor to change a moving speed of the
first lens when a moving speed of the second lens

1 exceeds a predetermined value during movement of the
first lens.

It is the sixth object of the present invention to perform zooming while maintaining focusing precision
5 always exceeding a predetermined precision level without being influenced by a zooming mode and an atmosphere when zooming is to be performed using a video signal of an object while maintaining a focused condition.

10 In order to achieve the sixth object according to still another preferred embodiment of the present invention, there is provided a lens control apparatus in a camera having a first lens for performing a magnification operation, a second lens for correcting
15 movement of a focal plane during movement of the first lens, lens moving means for independently moving the first and second lenses to be parallel to an optical axis, and extracting means for extracting a high frequency component from a video signal of a
20 photographed object, comprising first moving condition switching means for switching a moving condition of the second lens during movement of the first lens so that a high frequency component amount of the video signal changes.
25 The above and other objects, features, and advantages of the present invention will be apparent

1 from the following detailed description in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

5 Fig. 1 is a view showing an inner focus type lens
system;

Fig. 2 is a graph showing a relationship between a
magnification lens position and a focus compensation
lens position to maintain a focused condition for each
object distance;

10 Fig. 3 is a graph for explaining a focusing lens
locus tracking method;

Fig. 4 is a block diagram of a video camera having
a lens control apparatus according to the first
embodiment of the present invention;

15 Fig. 5 is a graph for explaining an interpolation
method in a direction of the magnification lens
position in the lens control apparatus in Fig. 4;

Fig. 6 is a flow chart showing a sequence of a
magnification operation in the lens control apparatus
20 in Fig. 4;

Fig. 7 is a flow chart showing a sequence of the
magnification operation in the lens control apparatus
in Fig. 4;

Fig. 8 is a flow chart showing a sequence in step
25 103 in Fig. 6;

Fig. 9 is a flow chart showing a sequence of a
magnification operation in a lens control apparatus

1 according to the second embodiment of the present
invention;

Fig. 10 is a flow chart showing a sequence in step
302 in Fig. 9;

5 Fig. 11 is a flow chart showing a sequence in step
304 in Fig. 9;

Fig. 12 is a view showing a storage table in a
lens control microcomputer;

10 Fig. 13 is a block diagram showing a schematic
arrangement of a video camera having a lens control
apparatus according to the third embodiment of the
present invention;

Fig. 14 is a view showing data contents of a
focusing lens locus table;

15 Fig. 15 is a flow chart showing lens control in
zooming in an AF OFF mode;

Fig. 16 is a flow chart showing the continuation
of Fig. 15;

20 Fig. 17 is a flow chart showing a lens control
operation according to the fourth embodiment of the
present invention;

Fig. 18 is a flow chart showing the continuation
of Fig. 17;

25 Fig. 19 is a flow chart showing the continuation
of Fig. 18;

Fig. 20 is a graph showing a method of determining
a zoom zone;

PROCESSED BY COMPUTER

1 Fig. 21 is a block diagram showing a schematic
arrangement of a video camera having a lens control
apparatus according to the fifth embodiment of the
present invention;

5 Fig. 22 is a flow chart showing a lens control
operation of the fifth embodiment;

Fig. 23 is a flow chart showing the continuation
of Fig. 22;

10 Figs. 24A and 24B are graphs showing control
relationships between the magnification lens position
and the focus speed and between the magnification lens
position and the zoom speed in the flow charts of
Figs. 22 and 23, respectively;

15 Figs. 25A and 25B are tables showing updated speed
reduction conditions of the zoom speed;

Fig. 26A, 26B, and 26C are graphs for explaining
the principle of the sixth embodiment according to the
present invention;

20 Fig. 27 is a flow chart showing a lens control
operation according to the sixth embodiment of the
present invention;

Fig. 28 is a flow chart showing the continuation
of Fig. 27;

25 Fig. 29 is a flow chart showing a lens control
operation according to the seventh embodiment of the
present invention;

TOP SECRET//COMINT

1 Fig. 30 is a flow chart showing the continuation
of Fig. 29;

5 Figs. 31A and 31B are a graph and a table,
respectively, for explaining a method of calculating a
correction speed;

5 Figs. 32A and 32B are tables for explaining a
modification of the seventh embodiment of the present
invention;

10 Fig. 33 is a flow chart showing a lens control
operation according to the eighth embodiment of the
present invention;

Fig. 34 is a flow chart showing the continuation
of Fig. 33; and

15 Fig. 35 is a graph showing the processing contents
of Fig. 33 in detail.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[First Embodiment]

Fig. 4 is a block diagram of a video camera having
a lens control apparatus according to the first
embodiment of the present invention.

20 Referring to Fig. 4, an inner focus type lens
system 10 comprises a first fixed lens (front-element
lens) 11, a magnification lens 12, an iris 13, a second
fixed lens 14, and a focus compensation lens 15, all of
25 which are sequentially arranged from the left object
side to the right side, as in the conventional
arrangement. The magnification lens 12 is moved

1 parallel to the optical axis to perform a magnification
2 operation. The focus compensation lens 15 has a
3 compensation function and a focusing function.

4 An optical object image from the lens system 10 is
5 focused on an image pickup surface 16a of an image
6 pickup element (C.C.D.) 16 and is photoelectrically
7 converted into a video signal. This video signal is
8 amplified by a first amplifier (or an impedance
9 converter) 17. The amplitude of the output from the
10 first amplifier 17 is maintained constant by an AGC
11 (Automatic Gain Controller) 18. Only a high frequency
12 component which changes in a focus condition is
13 extracted by a filter 19. This high frequency
14 component signal is processed to obtain a high
15 frequency component intensity, a blurring width
16 detection intensity, and the like to cause a signal
17 processing circuit 20 to perform AF (Auto-Focus)
18 control. The processed information is then fetched by
19 a lens control microcomputer 21.

20 The magnification lens 12 and the focus
21 compensation lens 15 are driven by driving means 22 and
22, respectively. The driving means 22 comprises a
23 stepping motor 22a and a driver 22b, and the driving
24 means 23 comprises a stepping motor 23a and a driver
25 23b (the stepping motor 22a for the magnification lens
12 and the stepping motor 23a for the focus
compensation lens 15 will be referred to as zoom and

1 focus motors, respectively). Racks 22d and 23d meshed
with output shafts 22c and 23c directly coupled to the
zoom and focus motors 22a and 23a are fixed to the
magnification lens 12 and the focus compensation lens
5 15, respectively.

Drive energies are output from the drivers 22b and 23b to the zoom and focus motors 22a and 23a in accordance with drive instruction signals (i.e., direction signals S1 and S2 and speed signals S3 and S4) output from the lens control microcomputer 21 to rotate the output shafts 22c and 23c. The magnification and focus compensation lenses 12 and 15 are moved together with the racks 22d and 23d to be parallel to the optical axis (directions indicated by arrows A and B).

The positions of the magnification lens 12 and the focus compensation lens 15 are detected by lens position detecting means 24 and 25, respectively. The lens position detecting means 24 comprises a combination of a photosensor 24a and a light-shielding plate 24b, and the lens position detecting means 25 comprises a combination of a photosensor 25a and a light-shielding plate 25b, as shown in Fig. 4. Each of the photosensors 24a and 25a comprises a light-emitting portion and a light-receiving portion. The light-shielding plates 24b and 25b are fixed to the

1 magnification lens 12 and the focus compensation lens
15, respectively.

When the magnification and focus compensation lenses 12 and 15 are moved parallel to the optical axis, the light-shielding plates 24b and 25b are moved together with the lenses 12 and 15. When the light-shielding plates 24b and 25b shield the optical paths between light-emitting portions 24c and 25c and light-receiving portions 24d and 25d, output signals from the light-receiving portions 24d and 25d go to low level. Otherwise, the output signals from the light-receiving portions 24d and 25d are set at high level.

Positions of changes in output signals from the light-receiving portions 24d and 25d are defined as reference positions to determine whether the lenses 12 and 15 are set at the reference positions. Position detection signals from the lens position detecting means 24 and 25, i.e., the output signals from the light-receiving portions 24d and 25d of the photosensors 24a and 25a are fetched by the lens control microcomputer 21. The lens positions can be known in accordance with the lens reference positions, the lens moving directions, and the like.

The iris 13 is driven by a driver 26 serving as a driving means so as to maintain an optimal exposure amount. That is, the level of an output signal from

PROJECT 34733600

1 the AGC 18 is detected, and a control signal for
adjusting the condition of the iris 13 so as to
maintain this level is output from an iris control
circuit 27 to a second amplifier 28. The control
5 signal is amplified by the amplifier 28, and the
amplified signal is supplied to the driver 26, so that
the driver 26 drives the iris 13.

The condition of the iris 13 is detected by an
encoder 29, and a detection signal from the encoder 29
10 is amplified by an amplifier 30. The amplified signal
is converted by a signal conversion circuit 31 into a
signal which can be read by the lens control
microcomputer 21. The converted signal is fetched by
the lens control microcomputer 21.

15 The lens control microcomputer 21 is connected to
a wide switch 32 for moving the magnification lens 12
in a wide direction, a tele switch 33 for moving the
magnification lens 12 in a tele direction, an infinity
switch 34 for moving the focus compensation lens 15 in
20 an infinity direction, and a shortest range switch 35
for moving the focus compensation lens 15 in a shortest
range direction.

A power source 37 is connected to the connection
lines between the switches 32 to 35 and the lens
25 control microcomputer 21 through pull-up resistors 36.

As described above, for example, when an
interpolation type lens locus tracking system is

RECORDED - 32755603

1 employed, detection precision of the magnification lens
position and the focus compensation lens position
apparently influences directly lens locus tracking
precision. In particular, use of the stepping motor
5 22a as the actuator for the magnification lens 12 will
be described in this embodiment.

Fig. 5 is a graph for explaining an interpolation
method in the direction of the magnification lens
position in this embodiment. The graph in Fig. 3 is
10 partially extracted, and the magnification lens
position is defined as an arbitrary position.

Referring to Fig. 5, the focus compensation lens
position is plotted along the ordinate, and the
magnification lens position is plotted along the
15 abscissa. Lens locus positions (focus compensation
lens positions with respect to the magnification lens
positions) stored in the microcomputer 21 in Fig. 4 are
defined as $z_0, \dots, z_k, z_{k+1}, \dots, z_n$ for the magnification
lens positions, and $a_0, \dots, a_k, a_{k+1}, a_n, b_0, \dots, b_k,$
20 $b_{k+1}, \dots, b_n, c_0, \dots, c_k, c_{k+1}, \dots, c_n$ are defined as the
corresponding focus compensation lens positions in
accordance with object distances.

Assume that the magnification lens position is
given as z_x which is not on the zoom boundary, and that
25 the focus compensation lens position is given as p_x . In
this case, the target position of lens locus tracking
is given as p_k or p_{k+1} in Fig. 5 in accordance with the

1 magnification lens moving direction. The positions P_k
and P_{k+1} are obtained by the following equations:

$$P_k = (P_x - a_x)x(b_k - a_k)/(b_x - a_x) + a_k \quad \dots (2)$$

$$P_{k+1} = (P_x - a_x)x(b_{k+1} - a_{k+1})/(b_x - a_x) + a_{k+1} \quad \dots (3)$$

5 In this case, a_x and b_x are obtained by equations

(4) and (5) below:

$$a_x = (z_x - z_k)x(a_{k+1} - a_k)/(z_{k+1} - z_k) + a_k \quad \dots (4)$$

$$b_x = (z_x - z_k)x(b_{k+1} - b_k)/(z_{k+1} - z_k) + b_k \quad \dots (5)$$

10 According to equations (2) to (5),

① a typical locus is interpolated in accordance with an interpolation ratio obtained from the current magnification lens position and two zoom boundary positions on both the sides of the current

15 magnification lens position to obtain a_x and b_x , and

② the target positions of lens locus tracking are defined as P_k and P_{k+1} in accordance with equation (1) on the basis of the magnification lens moving direction.

20 Figs. 6 and 7 are flow charts showing a sequence of a magnification operation performed by the microcomputer 21 in the lens control apparatus of this embodiment.

25 Referring to Fig. 6, in step 101, conditions of the wide switch 32 and the tele switch 33 in Fig. 4 are read. In this embodiment, the wide, tele, infinity, and shortest range switches 32 to 35 are active low. When each switch is depressed, the motor is controlled

1 to be rotated in a direction of a low-level voltage.
That is, the switching voltages of the wide and tele
switches 32 and 33 in the stop conditions are both high
or both low.

5 The flow advances to step 102 to determine the
conditions of the wide and tele switches 32 and 33
which are read are stop conditions. If YES in step
102, the flow advances to step 104 to stop both the
zoom and focus motors 22a and 23a. Otherwise, the flow
10 advances to step 103 to set zoom boundary positions z_k
and z_{k+1} on both the sides of the current magnification
lens position z_x . For example, if the zoom boundary
positions are stored in the table in the microcomputer
21 in Fig. 4 (for descriptive convenience, $|z_{k+1} - z_k| =$
15 constant = d), a processing flow in step 103 is shown
in Fig. 8.

Referring to Fig. 8, in step 201, an area number m
of a zoom area divided into zoom zones is reset to
zero, and the current magnification lens position is
20 set to A. The mth data from the head of the boundary
table of the storing zoom area is stored in B in step
202. It is determined in step 203 whether A is equal
to B (A = B). If YES in step 203, the flow advances to
step 204 to set a "boundary flag" to "1" which
25 represents that the current magnification lens position
is on a zoom boundary. The flow then advances to step
105 in Fig. 6. However, if NO in step 203, it is

1 determined in step 205 whether A is smaller than B. If
NO in step 205, $m = m+1$ is set in step 206, and the
flow returns to step 202. The operations described
above are then repeated.

5 However, if it is determined that A is smaller
than B, it is determined in step 207 that the current
magnification lens position is not on the zoom
boundary, and the "boundary flag" is reset to "0". " z_x
= A", " $z_{k+1} = B$ ", and " $z_k = B - \alpha$ " (where α represents
10 the width of one zoom zone when the zoom area is
divided into equal zoom zones, i.e., a difference
(absolute value) between the adjacent data in the zoom
storage table) are performed in step 208, and step 105
in Fig. 5 is then executed.

15 Referring back to Fig. 6, it is determined in step
105 on the basis of the condition of the "boundary
flag" in steps 204 and 207 of Fig. 8 whether the
magnification lens 12 in Fig. 4 is located on the zoom
boundary. If YES in step 105, the representation data
20 of lens local tracking which is stored in the
microcomputer 21 in Fig. 4 is called in step 106.
However, if NO in step 105, the lens local tracking
data is called in step 107.

25 In steps 106 and 107, data are called. In step
106, different data are called to calculate equation
(1) in accordance with zoom directions. That is, in
step 106, data " a_k ", " a_{k+1} ", " b_k ", and " b_{k+1} " for "tele -

1 wide" and " a_{k-1} ", " a_k ", " b_{k-1} ", and " b_k " for "wide - tele"
are called when the current magnification lens position
is given as " $z_x = z_k$ " and the focus compensation lens
position is given as " $P_x = P_k$ ($a_k \leq P_k < b_k$). In step
5 107, data " a_k ", " a_{k+1} ", " b_k ", and " b_{k+1} " required for
calculating equations (4) and (5) are called.

When the magnification lens 12 is located on the
zoom boundary, an interpolation calculation using the
data called in step 106 is performed in step 108.

10 Substitutions of " $k \rightarrow n$ " and " $k+1 \rightarrow n+1$ " into equation
(1) yield an interpolation calculation result. The
lens locus tracking data stored in the microcomputer 21
in Fig. 4 are obtained as representation data so as to
set the same magnification lens position data having
15 different object distances to be different from each
other, thus satisfying condition " $b_{(n)} - a_{(n)} \neq 0$ ". The
target positions of lens locus tracking in zooming are
determined in step 108, and these positions are defined
as " $A = P_{(n+1)}$ " and " $B = P_{(n)}$ " in step 109. The flow
20 advances to step 115 in Fig. 7.

When the magnification lens 12 is not located on
the zoom boundary, " a_x " and " b_x " are calculated in step
110 by equations (4) and (5) using the data called in
step 107. In step 111, " P_k " and " P_{k+1} " are determined by
25 equations (2) and (3). The flow then advances to step
112 in Fig. 7 to determine whether the moving direction
of the magnification lens 12 is the tele direction. If

1 YES in step 112, "A = P_{k+1} " and "B = P_k " are set in step
113. Otherwise, "A = P_k " and "B = P_{k+1} " are set in step
114. The tracking target position A and the current
focus compensation lens position B projected on the
5 zoom boundary are determined. The flow then advances
to step 115.

It is determined in step 115 whether a difference
between the focus compensation lens position B on the
zoom boundary and the tracking target position A is
10 zero. If YES in step 115, the focus compensation lens
15 need not be moved. In step 116, the zoom motor 22a
is driven, and the focus motor 23a is stopped. The
flow then returns to step 101 in Fig. 6. However, if
NO in step 115, it is determined in step 117 in Fig. 7
15 whether the difference is a positive value. If YES in
step 117, the drive direction of the focus compensation
lens 15 is set to the shortest range direction.
Otherwise, the drive direction of the focus
compensation lens 15 is set to the infinity direction
20 in step 118. The flow then advances to step 120. In
step 120, the moving speed of the focus compensation
lens 15 is calculated using the difference. This
moving speed is calculated as a pps value in the
following equation:

$$1 \quad \text{(Focus Compensation Lens Moving Speed) (pps)} = \\ |A - B| / (\text{One Zoom Zone Passing Time}) \quad \dots (6)$$

After the focus compensation moving speed is calculated as described above, the zoom motor 22a and the focus motor 23a are driven in step 121. The flow returns to step 101 in Fig. 6, and the above operations are repeated.

A method of driving the zoom motor 22a and the focus motor 23a will be described below.

10 The drivers 22b and 23b for driving the zoom motor
22a and the focus motor 23a are controlled by the
direction signals S1 and S2 and the speed signals S3
and S4. The phases of the four outputs from the
drivers 22b and 23b are selected as follows. The
15 direction signals S1 and S2 are high/low signals. The
zoom motor 22a and the focus motor 23a are rotated in
the normal direction when the directions S1 and S2 are
set at high level. The motors 22a and 23a are rotated
in the reverse direction when the direction signals S1
20 and S2 are set at low level. The speed signals S3 and
S4 are clock signals. The drivers 22b and 23b drive
and rotate the zoom motor 22a and the focus motor 23a
to change output voltages and phases at the leading
edges of the input signals. The speeds of the zoom
25 motor 22a and the focus motor 23a are determined in
accordance with the clock signal frequencies of the
input signals.

2000-01-02

1 When the clock signals do not change, the output
voltage and phases of the signals output from the
drivers 22b and 23b do not change. The zoom motor 22a
and the focus motor 23a are not driven. To stop the
5 zoom motor 22a and the focus motor 23a, the input clock
signals of the speed signals S3 and S4 are disabled.
At this time, the pieces of information of the
direction signals S1 and S2 do not influence driving of
the zoom motor 22a and the focus motor 23a. The speeds
10 of the zoom motor 22a and the focus motor 23a are set
as predetermined values in the zoom mode and as a clock
signal obtained from the microcomputer 21 by PWW
conversion of the pps value calculated by equation (6)
in step 120 in Fig. 7 in the focus mode.

15 [Second Embodiment]

The second embodiment of the present invention
will be described with reference to Figs. 9 to 12.

The block diagram of a video camera having a lens
control apparatus in this embodiment is substantially
20 the same as that of the first embodiment in Fig. 4.
The arrangement will be described with reference to
Fig. 4.

Fig. 9 is a flow chart showing the processing
sequence of a magnification operation performed by a
25 microcomputer 21 in the lens control apparatus of this
embodiment. In step 301, the conditions of wide and
tele switches 32 and 33 are read. In this embodiment,

1 as in the first embodiment, the wide and tele switches
32 and 33, an infinity switch 34, and a shortest range
switch 35 are active low. When each of these switches
32 to 35 is depressed, a motor is rotated in a
5 direction of a low-level voltage. When both the wide
and tele switches 32 and 33 or both the infinity and
shortest range switches 34 and 35 are depressed, or
when neither the wide nor tele switches 32 or neither
the infinity and shortest range switches 34 nor 35 are
10 depressed, logic calculations are performed to stop a
zoom motor 22a and a focus motor 23a.

After the conditions of the switches 32 and 33 are
read in step 301, it is determined in step 302 whether
the magnification lens position is on a zoom area
15 boundary. The zoom area boundaries are positions z_0 ,
 z_1, \dots, z_{11} in Fig 3. A position corresponding to z_x
indicates a state in which the magnification lens
position is not on any boundary. The processing flow
in step 302 is shown in Fig. 10.

20 In step 401 in Fig. 10, the current magnification
lens position is set to A, and a zoom area is set to
zero. In step 402, the start address of the zoom area
table is set in x. The zoom area table is a table of
values (1-byte data) of $z_0, z_1, z_2, \dots, z_{(n)}$ in Fig. 3.
25 The contents of this table are addressed to call the x
contents to obtain B in step 403. It is determined in
step 404 whether "A = B (= z_0)". If YES in step 404,

1 the magnification lens position is on the boundary, and
the flow advances to step 303 in Fig. 9.

If NO in step 404, it is determined in step 405
whether "A > B (= z_0)". If YES in step 405, "x ← x+1"
5 is calculated in step 406, and the zoom area is
incremented in step 407. The flow returns to step 403
to set "B = z_1 ", and A is compared with B in step 404.
Steps 403 to 407 are repeated until YES in step 404 or
NO in step 405.

10 If NO in step 405, the flow returns to step 301 in
Fig. 9 while the current conditions of a magnification
lens 12 and a focus compensation lens 15 are kept
maintained (if they are stopped, they are kept stopped;
if they are driven, they are driven at the current
15 speed in the current direction).

Referring back to Fig. 9, if the magnification
lens position is not on the zoom area boundary in step
302, the flow returns to step 301. Otherwise, it is
determined in step 303 whether the conditions of the
20 wide and tele switches 32 and 33 which are read in step
301 are stop conditions. If YES in step 303, the zoom
motor 22a and the focus motor 23a are stopped in step
310, and the flow returns to step 301. If the switches
32 and 33 are not set in the stop condition, lens locus
25 position data stored in the microcomputer 21 is called
in step 304. Step 304 has a processing flow in
Fig. 11. The zoom motor 22a cannot be stopped unless

PROCESSED COPY

1 the magnification lens position is on the zoom area
boundary.

In step 501 in Fig. 11, the focus compensation lens position is set to A, and the flow advances to
5 step 502. The address of a cam locus a of an object distance ∞ corresponding to this zoom area is stored as x, and the flow advances to step 503.

The storage table is shown in Fig. 12. This table represents cam locus data whose object distance
10 sequentially decreases in the column direction and whose zoom area sequentially increases in the row direction. A number m indicates the number of cam loci. Adjacent cam data within the same zoom area have different object distances.

15 Referring back to Fig. 11, the contents of x stored in step 502 are stored in $d_{(n)}$, and the contents of "x+1" are stored in $\beta_{(n)}$ in step 504. It is determined in step 505 whether the drive direction of the zoom motor 22a is the tele direction. If YES in
20 step 505, the contents of "x-m" and "x+1-m" are stored in " $\alpha_{(n+1)}$ " and " $\beta_{(n+1)}$ ", respectively, and the flow advances to step 510. If the drive direction of the zoom motor 22a is determined in step 505 to be the wide direction, the contents of "x+m" and "x+1+m" are stored
25 in " $\alpha_{(n+1)}$ " and " $\beta_{(n+1)}$ " in steps 508 and 509, respectively, and the flow advances to step 510. If " $\alpha_{(n)} = a_1$ " in the table in Fig. 12, then " $\beta_{(n)} = b_1$ ". If

1 the drive direction is the tele direction, then " $\alpha_{(n+1)} = a_0$ " and " $\beta_{(n+1)} = b_0$ " are stored. If the drive direction is the wide direction, then " $\alpha_{(n+1)} = a_2$ " and " $\beta_{(n+1)} = b_2$ " are stored.

5 In step 510, it is determined using the " $\alpha_{(n)}$ " and " $\beta_{(n)}$ " values whether " $a_{(n)} \leq A < \beta_{(n)}$ " is satisfied. If YES in step 510, the flow advances to step 305 in Fig. 9. If NO in step 510, the retrieval address is updated as " $x - x+1$ " in step 511, and the flow returns 10 to step 503 to continue processing.

Referring back to Fig. 9, in step 305, an interpolation calculation in equation (1) is performed using the " $\alpha_{(n)}$ ", " $\beta_{(n)}$ ", " $\alpha_{(n+1)}$ ", " $\beta_{(n+1)}$ ", and "A (= Focus Motor Position)". In this case, equation (1) is 15 rewritten using different variables as follows:

$$P = \frac{[A - \alpha_{(n)}] \times [\beta_{(n+1)} - \alpha_{(n+1)}]}{\beta_{(n)} - \alpha_{(n)}} + \alpha_{(n)} \quad \dots (7)$$

where " $A \geq \alpha_{(n)} \beta_{(n+1)} > \alpha_{(n+1)}$ " and " $\beta_{(n)} > \alpha_{(n)}$ " from the table in Fig. 12.

20 In step 306, the moving speed and direction of the focus compensation lens 15 for cam locus tracking are determined.

The moving direction of the focus compensation lens 15 is determined as the shortest range direction 25 for " $P - A > 0$ ", the infinity direction for " $P - A < 0$ ", and the stop position for " $P = A$ " in accordance

1 with the next moving target position P obtained in step
305 and the current focus compensation lens position A.

A focus compensation lens moving speed pps is
obtained by equation (8) as follows:

5
$$pps = \frac{|P - A|}{\text{One Zoom Area Passing Time}} \quad \dots (8)$$

It is determined in step 307 whether "P - A = 0" is established, i.e., whether the focus compensation lens 15 is kept stopped. If YES in step 307, the focus 10 motor 23a is stopped, and the zoom motor 22a is driven in step 309. The flow then returns to step 301.

If NO in step 307, both the zoom motor 22a and the focus motor 23a are driven in step 308, and the flow returns to step 301 to continue the above processing.

15 A method of driving the zoom motor 22a and the focus motor 23a in this embodiment is the same as in the first embodiment, and a detailed description thereof will be omitted.

In the lens control apparatus of this embodiment 20 of the present invention, as has been described above, the interpolation calculation in the direction of a magnification lens position is performed even at a magnification lens position whose data is not stored, thereby forming lens locus tracking data. The same 25 lens control can be performed as in control having stored locus data obtained by equally dividing the magnification lens moving area by one pulse lens moving

1 amount. Therefore, the same zooming can be performed
as in zooming having a large volume of storage data,
and the storage capacity of the microcomputer can be
saved.

5 Although lens locus tracking can be updated only
at a magnification lens position whose data is stored,
the lens locus tracking can be sequentially updated in
the lens control apparatus of the first embodiment of
the present invention. Therefore, zooming which has
10 good tracking characteristics for a change in zoom
speed as in high-speed zooming or a change in object
distance and is free from blurring in the focused
condition can be performed.

According to the above embodiment, in a zooming
15 scheme for performing locus tracking while
interpolation is being performed using stored cam
information, the stop of the magnification lens is
allowed only at a magnification lens position whose
data is stored. For this reason, lens locus tracking
20 can be performed by only an interpolation calculation
of the focus compensation lens position. A complicated
interpolation calculation of the magnification lens
positions need not be performed. Therefore, blurring
caused by calculation errors can be prevented in the
25 zoom mode, and at the same time, the storage capacity
of the microcomputer can be saved.

1 [Third Embodiment]

The third embodiment of the present invention will be described below. This embodiment aims at preventing blurring in the zoom mode. In particular, this 5 embodiment realizes control in consideration of zooming in an AF OFF condition or manual focus control. The circuit arrangement of this embodiment is the same as that shown in the block diagram of Fig. 13.

The background and outline of this embodiment will 10 be described below.

In equation (1) described above, for example, in Fig. 3, when a focus compensation lens 6 is located at a position p_0 , a ratio of interpolating a line segment " $b_0 - a_0$ " using the position p_0 , and a point for 15 interpolating a line segment " $b_1 - a_1$ " is defined as p_1 in accordance with this interpolation ratio. The moving speed of the focus compensation lens 6 to maintain the focused condition is obtained from a difference between the points p_1 and p_0 and a time 20 required for a magnification lens 3 to move from a position z_0 to a position z_1 .

When the magnification lens 3 is moved from the tele direction to the wide direction, this direction is a direction to converge divergent focusing lens loci, 25 as is apparent from Fig. 2. However, from the wide direction to the tele direction, it is unknown for the focus compensation lens 6 located at a convergent

1 position to follow a specific focusing lens locus.
Therefore, focusing cannot be maintained in the same
locus tracking scheme described above.

5 A focusing lens locus for minimizing near- and
obtained in an automatic focus control operation (AF)
of a contrast scheme (hill climbing scheme) is
selected, and zooming is performed such that the focus
compensation lens 6 is moved along with the selected
10 focusing lens locus.

15 According to this scheme, however, a focusing lens
locus cannot be selected in the AF function OF
condition. When zooming is performed in the AF
function OFF condition, focusing is maintained as
follows.

20 More specifically, in the AF function OFF
condition, every time zooming is performed from the
tele direction to the wide direction so as to maintain
focusing, positions $p_0, p_1, p_2, \dots, p_{11}, \dots$ (focusing
lens loci) of the focus compensation lens 6 are
calculated at positions $z_0, z_1, z_2, \dots, z_{11}$ of the
magnification lens 3 in Fig. 3 and are sequentially
stored in a memory of a microcomputer. In zooming from
the wide direction to the tele direction, the focus
25 compensation lens 6 reversely traces the loci in
zooming from the tele direction to the wide direction.

1 In the example shown in Figs. 1 to 3, the focused
positions $p_0, p_1, p_2, \dots, p_{11}, \dots$ of the focus
compensation lens 6 at the positions $z_0, z_1, z_2, \dots,$
 z_{11}, \dots of the magnification lens 3 must be calculated
5 and stored in a table separate from the focusing lens
locus table. A large number of focused positions of
the focus compensation lens 6 must be calculated and
stored, so that the storage capacity of the lens
control microcomputer undesirably increases, and the
10 processing time is also prolonged. In addition,
processing is complicated.

Every time zooming is performed when the direction
changes from the tele direction to the wide direction,
repeated zooming from the tele direction to the wide
15 direction and from the wide direction to the tele
direction in the AF OFF condition causes storage of
focusing lens loci having object distances different
from the initially stored object distances due to
errors in focusing lens locus tracking operations.
20 Therefore, the blurring range is gradually widened.

In the conventional storage scheme, even if the
stored focused positions are connected to each other,
the resultant locus does not coincide with a focusing
lens locus in optical design, and blurring occurs in
25 zooming.

This embodiment has been made in consideration of
the above circumstances and aims at saving the

1 processing capacity and time in an AF OFF condition,
and performing zooming while maintaining an accurately
focused condition.

As an arrangement, a lens control apparatus
5 including a first lens for performing a magnification
operation, a second lens for correcting movement of a
focal plane during movement of the first lens, lens
moving means for independently moving the first and
second lenses to be parallel to an optical axis, and
10 focused position storage means for prestoring a focused
position of the second lens with respect to a discrete
position of the first lens in accordance with a
discrete object distance, comprises object distance
specifying means for specifying an object distance on
15 the basis of the current positions of the first and
second lenses and information stored in the focused
position storage means when manual focus control is
performed while a position of the first lens is fixed,
and focused position calculating means for calculating
20 a focused position of the second lens with respect to a
moving position of the first lens on the basis of the
object distance specified by the object distance
specifying means and the information stored in the
focused position storage means when the first lens is
25 moved by the lens moving means to perform a
magnification operation.

1 The first lens serves as a lens for performing the
magnification operation, and the second lens serves as
a lens for correcting movement of the focal plane
during movement of the first lens. The lens moving
5 means independently moves the first and second lenses
to be parallel to the optical axis. The focused
position storage means prestores the focused position
of the second lens with respect to the discrete
position of the first lens in accordance with the
10 discrete object distance of the first lens.

The object distance specifying means specifies the
object distance on the basis of the current positions
of the first and second lenses and the information
stored in the focused position storage means when the
15 focus control is manually performed while the first
lens position is fixed.

When the first lens is moved by the lens moving
means to perform the magnification operation, the
focused position calculating means calculates the
20 focused position of the second lens with respect to the
moving position of the first lens on the basis of the
object distance specified by the object distance
specifying means and the information stored in the
focused position storage means.

25 The system circuit arrangement itself is
substantially the same as that in the block diagram of
Fig. 4 except that an AF mode switch 38 for setting an

1 AF mode is arranged and connected to a lens control
microcomputer 21, and a detailed description thereof
will be omitted.

5 This embodiment can be achieved by the processing
programs in the lens control microcomputer 21.

The detailed operation of this embodiment will be
described below.

A focusing lens locus table T (Fig. 14) having
focus lens locus contents in Fig. 2 is preset in the
10 lens control microcomputer 21. The focusing lens locus
table T in Fig. 14 is a table in which focused
positions of the focus compensation lens 15 which
correspond to discrete positions of the magnification
lens 12 are stored for each object distance. In this
15 table, n ($0, 1, \dots, k, \dots, m$) in the column direction
(horizontal direction in Fig. 14) represents a discrete
object distance, and z ($0, 1, \dots, k, \dots, \ell$) in the row
direction (vertical direction in Fig. 14) represents a
discrete position of the magnification lens 12. A
20 focused position of the focus compensation lens 15
which corresponds to the discrete position of the
magnification lens 12 and the object distance is stored
at an intersection position of the column and row. The
object distance decreases toward the right direction,
25 "0" represents the infinity, and "m" represents the
shortest range as 1 cm. Lower magnification lens
positions represent larger zoom areas, "0" represents a

1 tele end, and "1" represents a wide end. A focused
position A_{0k} of the focus compensation lens 15, for
example, represents the focused position of the focus
compensation lens 15 for the object distance of "0" and
5 the position of the magnification lens 12 of "k".

When zooming is performed in the AF mode, the lens
control microcomputer 21 performs zooming while
selecting a focusing lens locus in the focusing lens
locus table T using near- and far-focus pieces of
10 information or while calculating a focusing lens
position on the basis of the above focusing lens locus.
In contrast to this, in zooming in the AF OFF mode,
when a manual focusing operation is performed prior to
zooming, the lens control microcomputer 21 specifies
15 the object distance, calculates an interpolation ratio
of equation (1) which corresponds to this object
distance, calculates the focused position of the focus
compensation lens 15 in accordance with equation (1)
using this interpolation ratio during zooming, and
20 causes the focus compensation lens 15 to trace the
locus.

Lens control for zooming in the AF OFF mode will
be described with reference to flow charts in Figs. 15
and 16. The flows in Figs. 15 and 16 are subroutines
25 in which AF mode processing is executed in accordance
with the contrast scheme (hill climbing scheme) for
performing automatic focus control in accordance with

YOSHIOKA SHIZUOKA

1 focus voltage (clearness of a video signal) prior to
2 execution of these flows. The flows in Figs. 15 and 16
3 are based on an assumption that the magnification lens
4 is stopped at only a discrete position stored in the
5 focusing lens locus table T in Fig. 14.

6 The lens control microcomputer 21 detects the
7 ON/OFF conditions of a wide switch 32 and a tele switch
8 33 to determine whether the current condition is under
9 zooming (step 601). If NO in step 601, one of the wide
10 and tele switches 32 and 33 is turned on. However, if
11 YES in step 601, the flow advances to step 615. If
12 neither the wide switch 32 nor the tele switch 33 are
13 ON, and zooming is not being performed, the ON/OFF
14 condition of an AF switch 38 is detected to determine
15 whether the AF mode is set (step 602). If the AF
16 switch 38 is ON so that the AF mode is set, the
17 subroutine returns to the main flow. In this manner,
18 when the AF mode is set, focusing control is performed
19 in an AF processing routine (not shown). However, if
20 the AF switch 38 is OFF and the AF mode is not set,
21 this indicates that a manual focusing mode is currently
22 set. The lens control microcomputer 21 determines
23 whether this manual focusing mode is switched from the
24 AF mode or the manual focusing mode is kept set (step
25 603). If the lens control microcomputer 21 determines
26 that the manual focusing mode is kept set, the ON/OFF
27 conditions of an infinity switch 34 and a shortest

RECORDED - 6/27/2000

1 range switch 35 are detected to determine whether a
2 power focus condition is set (step 604). If one of the
3 infinity switch 34 and the shortest range switch 35 is
4 ON and the power focus condition is set, this indicates
5 that manual focusing control is being performed. In
6 this case, the flow advances to step 605. However,
7 when neither the infinity switch 34 nor the shortest
8 range switch 35 are ON, and the power focus condition
9 is not set, manual focus control is performed, and the
10 subroutine returns to the main flow to perform
operations from step 605.

If the manual focusing mode is determined in step
603 to be switched from the AF mode, this indicates
that automatic focusing control has already been
15 performed in the AF mode before switching to the manual
focusing mode. In this case, the flow skips step 604
and advances to step 605.

In steps 605 to 614, the object distance and the
interpolation ratio in equation (1) are specified.
20 That is, in step 605, an initial value of "0" is set in
an object distance variable n. $A_{(n,k)}$ and $A_{(n+1,k)}$, i.e.,
the focus compensation lens corresponding to the
distance n and the current magnification lens position
k, and the object distance n+1 and the current
25 magnification lens position k, are read out from the
focusing lens locus table T (step 606).

1 The lens control microcomputer 21 determines
2 whether the value of a current focus compensation lens
3 position f is equal to or larger than the value of $A_{(n,k)}$
4 (step 607). As shown in Fig. 2, at a predetermined
5 magnification lens position, the value of the focus
6 compensation lens position f increases when the object
7 distance comes close to the shortest range. Step 607
8 indicates that the microcomputer 21 determines whether
9 the current focus compensation lens position f is
10 located on the shortest range side as compared with the
11 object distance n . If YES in step 607, the lens
12 control microcomputer 21 determines whether the value
13 of the current focus compensation lens position f is
14 smaller than that corresponding to $A_{(n+1,k)}$, i.e., whether
15 the current focus compensation lens position f is
16 located on the infinity side as compared with the
17 object distance $n+1$ (step 608). If YES in step 608,
18 the current focus compensation lens position f is
19 located between the magnification lens positions as the
20 object distances n and $n+1$. In this case, $f - A_{(n,k)}$ is
21 calculated, and the calculation result is stored as a
22 constant α (step 609). $A_{(n+1,k)} - A_{(n,k)}$ is then
23 calculated, and the calculation result is stored as a
24 constant β (step 609). The contents of the current
25 variable n are updated and stored as a constant γ (step
26 610), and the subroutine returns to the main flow.

1 If NO in step 607, the current focus compensation
lens position f is located on the infinity side as
compared with the object distance. In this case, "0"
is stored as the constant α (step 612), and the flow
5 advances to step 610.

If NO in step 608, the lens control microcomputer
231 determines whether the contents of the object
distance variable n is equal to or more than m as the
shortest range object distance (step 613). If NO in
10 step 613, the contents of the variable n are
incremented by one (step 614), and the flow returns to
step 606 to check specific object distances between
which the current focus compensation lens position f is
located.

15 If the contents of the object distance variable n
exceed m , this indicates that the current focus
compensation lens position f is located at the shortest
range object distance. In this case, as in the case
wherein the current focus compensation lens position is
20 located at the infinity object distance, "0" is stored
as the constant α (step 612), and the flow advances to
step 610. These constants α , β , and γ are used as
locus tracking parameters to be described later.

As described above, prior to zooming, the object
25 distance corresponding to the focusing lens locus along
which the focus compensation lens 15 traces is
specified.

PROCESSED: 07/30/95

1 If the lens control microcomputer 21 determines in
step 601 that the current condition is under zooming,
the flow advances to step 615. The lens control
microcomputer 21 determines in step 615 whether the
5 current magnification lens position $z = k$ is a discrete
position (boundary position) stored in the focusing
lens locus table T. In this flow, as described above,
the magnification lens 12 is stopped only at each
boundary position, and the magnification lens 12 is
10 located on the boundary position at the start of
zooming. The flow advances to step 616 to determine
whether the AF mode is set. If YES in step 616, the
flow advances to step 622.

15 If NO in step 616, the lens control microcomputer
21 determines whether the tele switch 33 is ON and the
current condition is under zooming from the wide
direction to the tele direction (step 617). If YES in
step 617, the focus compensation lens position $A_{(y,k+1)}$
corresponding to the object distance y and the
20 magnification lens position $k+1$ is read out from the
focusing lens locus table T and is defined as a
constant a. At the same time, the focus compensation
lens position $A_{(y+1,k+1)}$, corresponding to the object
distance $y+1$ and the magnification lens position $k+1$ is
25 read out from the focusing lens locus table T and is
defined as a constant b (step 618). That is, focus
compensation lens position data each shifted by one

1 position from the current magnification lens position k
2 toward the tele direction are read out from the
3 focusing lens locus table T in accordance with the
4 focusing lens locus data of the object distance γ and
5 the focusing lens locus data shifted by one position
from the object distance γ toward the shortest range to
store the constants a and b. In contrast to this,
under zooming from the tele direction to the wide
direction, the focus compensation lens position $A_{(\gamma, k-1)}$
10 corresponding to the object distance γ and the
magnification lens position k-1 is read out from the
focusing lens locus table T and is stored as a constant
a, and the focus compensation lens position $A_{(\gamma-1, k-1)}$
corresponding to the object distance $\gamma-1$ and the
15 magnification lens position k-1 is read out from the
focusing lens locus table T and is stored as a constant
b (step 619). That is, the focus compensation lens
position data shifted by one position from the current
magnification lens position k toward the wide direction
20 are read out from the focusing lens locus table T using
the focusing lens locus data of the object distance γ
and the focusing lens locus data shifted from that of
the current object distance γ by one position toward
the wide direction, and the readout data are stored as
25 the constants a and b.

A focused position (i.e., a position traced for
focusing) γ of the focus compensation lens 15 which

1 corresponds to the magnification lens position $z = k +$
1 or $z = k - 1$ is obtained by equation (9)
corresponding to equation (1) (step 620):

$$y = (b - a)\alpha/\beta + a \quad \dots(9)$$

5 the selected focusing lens locus is solely determined
because the constants α and β are determined prior to
the start of zooming.

A speed (called a focus speed) V_f for moving the
focus compensation lens 15 in locus tracking upon
10 movement of the magnification lens 12 during zooming is
calculated (step 621). This focus speed V_f is
calculated in accordance with a difference value ($y -$
 f : moving distance) between the target focus
compensation lens position y and the current focus
15 compensation lens position f , and a time required for
the magnification lens 12 to move between the
magnification lens positions $z = k$ and $z = k + 1$ or
between the magnification lens positions $z = k$ and $z =$
 $k - 1$.

20 A focus motor 23a is driven (step 622), and a zoom
motor 22a is driven (step 623). The flow then returns
to the main flow.

When the lens control microcomputer 21 determines
in step 615 that the magnification lens position is not
25 a discrete position (boundary position) stored in the
focusing lens locus table T, the flow skips steps 616
to 621 and advances to step 622. That is, the focus

1 motor speed V_f is updated only when the magnification
lens 12 is located on a boundary position. The focus
compensation lens 15 is moved at the focus motor speed
 V_f at positions except for the boundary positions.

5 A method of driving the focus motor 23a and the
zoom motor 22a in steps 622 and 623 will be described
below.

Drivers 22b and 23b for driving the zoom motor 22a
and the focus motor 23a are controlled by H/L direction
10 signals S1 and S2 output from the lens control
microcomputer 21 and speed signals S3 and S4 serving as
rotation frequency signals having clock waveforms. The
H (high) or L (low) level of the direction signal S1
input to the zoom motor 22a is determined in accordance
15 with an ON or OFF state of each of a wide switch 32 and
a tele switch 33. The H or L level of the direction
signal S2 input to the focus motor 23a is determined by
a positive or negative direction of the focus motor
speed V_f .

20 The drivers 22b and 23b set the forward or reverse
cycle of four motor excitation phases in accordance
with the direction signals S1 and S2 and change applied
voltages (or currents) of the four motor excitation
phases in accordance with the speed signals S3 and S4,
25 thereby controlling the direction and frequency of
motor rotation.

TELEVISION SYSTEM

1 The constants α , β , γ , a , and b , and the variable
n are stored in a work area or registers in the memory
of the lens control microcomputer 21, and a special
storage area (memory) need not be prepared for the
5 constants and the variable.

 In the flow charts described above, the
magnification lens 12 is stopped at only each boundary
position. However, an operation for causing the
magnification lens 12 to stop at an arbitrary position
10 in addition to the boundary positions will be described
below.

 In this case, in step 606 of Fig. 15, a focus
compensation lens position is interpolated in
accordance with the interpolation method shown in
15 Fig. 5.

 Referring to Fig. 5, the focus lens compensation
lens position is plotted along the ordinate, and the
magnification lens position is plotted along the
abscissa. Lens locus positions (focus compensation
20 lens positions with respect to the magnification lens
positions) stored in the focusing lens locus table T
are defined as $z_0, \dots, z_k, z_{k+1}, \dots, z_n$ for the
magnification lens positions, and $a_0, \dots, a_k, a_{k+1}, a_n$,
25 $b_0, \dots, b_k, b_{k+1}, \dots, b_n, c_0, \dots, c_k, c_{k+1}, \dots, c_n$ are
defined as the corresponding focus compensation lens
positions in accordance with object distances.

1 Assume that the magnification lens position is
located at the position z_x which is not stored in the
focusing lens locus table T, and that the focus
compensation lens position is P_x . The focus
5 compensation lens positions a_x and b_x on the two focus
lens loci corresponding to the magnification lens
position z_x are obtained by the following equations:

$$a_x = (Z_x - Z_k) \times (a_{k+1} - a_k) / (Z_{k+1} - Z_k) + a_k$$

$$b_k = (z_x - z_k) \times (b_{k+1} - b_k) / (z_{k+1} - z_k) + b_k$$

10 . . . (10)

An interpolation ratio is obtained from a nonstored magnification lens position and two stored magnification lens positions (e.g., $z = k$ and $z = k + 1$) on both the sides of the nonstored magnification lens position. A difference value between the two stored focus compensation lens positions on both the sides of the nonstored magnification lens position is interpolated to obtain two focus compensation lens positions a_x and b_x on the focus lens loci corresponding to the nonstored magnification lens position.

Processing from step 607 in Fig. 15 will be performed.

As described above, in the lens control apparatus of this embodiment, the storage capacity and the processing time can be reduced in zooming in the AF OFF condition, and zooming can be performed while maintaining an accurately focused condition.

1 Unlike in the conventional case, focus
compensation lens positions corresponding to a large
number of magnification lens positions need not be
newly stored, and the memory capacity can be reduced.
5 The specific locus tracking parameters can be
repeatedly used without being updated until a power
focus operation. Even if zooming is repeated, blurring
will not occur. The locus tracking parameters are
specified prior to zooming, and this specifying
10 processing can be performed separately from locus
tracking control. Therefore, the control program
capacity and the processing time can be advantageously
reduced.

[Fourth Embodiment]

15 The fourth embodiment of the present invention
will be described below.

In the inner focus type lens described above,
zooming and focusing are performed while correcting the
focal plane position with a focus compensation lens.

20 For this reason, the focus compensation lens position
(focusing lens locus) information corresponding to each
lens position is stored in the microcomputer in
advance.

The following method is also proposed. A current
25 object distance is specified prior to zooming, and the
interpolation ratio $\alpha/\beta = |P_{(n)} - a_{(n)}| / |b_{(n)} - a_{(n)}|$ of
equation (1) is stored in advance. During zooming, the

1 interpolation ratio α/β is fixed, and a focusing lens
locus tracking target is obtained from equation (1).

In the prior art in Figs. 1 to 3, the moving speed
of the focus compensation lens 6 during movement of the
5 magnification lens 3 is calculated and updated when the
magnification lens 3 is located at a position (to be
referred to as a boundary position) stored in the
focusing lens locus table. However, when the zooming
time is short as in high-speed zooming, a probability
10 of causing the magnification lens 3 to set at a
boundary position at the time of calculation of the
moving speed of the focus compensation lens 6 becomes
low. As a result, the moving speed of the focus
compensation lens 6 cannot be appropriately updated,
15 and the focused condition cannot be maintained.

In high-speed zooming, in order to appropriately
perform updating of the moving speed of the focus
compensation lens 6 and to always maintain the focused
condition, the resolutions of typical focusing lens
20 locus data stored in the focusing lens locus table in
the magnification lens direction must be increased.
That is, the number of data must be increased.

This embodiment has been made in consideration of
these circumstances and has its object to appropriately
25 update the moving speed of the focus compensation lens
and perform zooming having good focusing lens locus
tracking characteristics.

1 In order to achieve the above object, there is
provided a lens control apparatus including a first
lens for performing a magnification operation, a second
lens for correcting movement of a focal plane during
5 movement of the first lens, lens moving means for
independently moving the first and second lenses to be
parallel to an optical axis, focused position storage
means for prestoring a focused position of the second
lens with respect to a discrete position of the first
10 lens in accordance with a discrete object distance, and
focused position calculating means for calculating a
focused position of the second lens with respect to a
moving position of the first lens on the basis of
current positions of the first and second lenses and
15 information stored in the focused position storage
means, comprising moving speed calculating means for
calculating a moving speed of the second lens in
accordance with a difference between the current
position of the second lens and the focused position
20 calculated by the focused position calculating means
every time the first lens passes by the discrete
position of the first lens which is stored in the
focused position storage means during movement of the
first lens.

25 The first lens serves as a lens for performing a
magnification operation, and the second lens serves as
a lens for correcting movement of the focal plane

TOP SECRET - 327500

1 during movement of the first lens. The lens moving
means independently moves the first and second lenses
parallel to the optical axis. The focused position
storage means restores the focused positions of the
5 second lens with respect to the discrete positions of
the first lens in accordance with the discrete object
positions.

The object distance specifying means specifies the
object distance on the basis of the current positions
10 of the first and second lenses and the information
stored in the focused position storage means when
manual focus control is performed while the first lens
position is being fixed.

The focused position calculating means calculates
15 the focused position of the second lens with respect to
the moving position of the first lens on the basis of
the object distance specified by the object distance
specifying means and the information stored in the
focused position storage means when the lens moving
means moves the first lens to perform the magnification
20 operation.

The moving speed calculating means calculates the
moving speed of the second lens in accordance with the
current position of the second lens and the focused
25 position calculated by the focused position calculating
means every time the first lens passes by the discrete
position of the first lens which is stored in the

1 focused position storage means, during movement of the
first lens.

The arrangement and operation of this embodiment
will be described below. The circuit arrangement of
5 this embodiment is the same as that in Fig. 13, and a
detailed description thereof will be omitted. A
processing program in a lens control microcomputer in
this embodiment is different from that the embodiment
shown in Fig. 14, and detailed processing operations
10 will be described below.

When zooming is performed in the AF mode using the
focusing lens locus table T shown in Fig. 14, the lens
control microcomputer 21 performs zooming while
selecting a focusing lens locus in the focusing lens
15 locus table T using near- and far-focus pieces of
information or while calculating a focusing lens
position on the basis of the above focusing lens locus.
In contrast to this, in zooming in the AF OFF mode,
when a manual focusing operation is performed prior to
20 zooming, the lens control microcomputer 21 specifies
the object distance, calculates an interpolation ratio
of equation (1) which corresponds to this object
distance, calculates the focused position of the focus
compensation lens 15 in accordance with equation (1)
25 using this interpolation ratio during zooming, and
causes the focus compensation lens 15 to trace the
locus.

1 In zooming performed regardless of the AF or AF
OFF mode, when the lens control microcomputer 21 causes
the focus compensation lens 15 to trace the focusing
lens locus and the magnification lens position is not
5 located at a boundary position stored in the focusing
lens locus table T, information interpolation in the
direction of the magnification lens position (this
position is also processed as a boundary position) to
specify the locus tracking. At the same time, the lens
10 control microcomputer 21 calculates and updates the
speed of the focus compensation lens 15 every time a
magnification lens 12 passes by a boundary position
during zooming.

15 The lens control operations will be described with
reference to flow charts in Figs. 17, 18, and 19. The
flows in Figs. 17 to 19 are flows executed when zooming
is performed in the AF OFF mode. The flows in Figs. 17
to 19 are subroutines. Prior to execution of these
flows, AF mode processing using the contrast scheme
20 (hill climbing scheme) for performing automatic focus
control in accordance with a focal voltage (clearness
of a video signal), arithmetic processing for
determining a specific zoom zone (to be described with
reference to Fig. 20) of the magnification lens 12, and
25 the like are performed.

 The lens control microcomputer 21 checks specific
boundaries which are stored in the focusing lens locus

1 table T and between which the current magnification
lens position z_x (Fig. 14) is interposed. That is, the
lens control microcomputer 21 checks the boundary
positions of both the sides of the current
5 magnification lens position (step 701). In this case,
if the current magnification lens position z_x is the
same as the boundary position stored in the focusing
lens locus table T (i.e., the magnification lens
position z_x is located above the boundary $z = k$), the
10 boundaries on both the sides of the current
magnification lens position z_x are given as $z = k - 1$
and $k + 1$.

The ON/OFF conditions of a wide switch 32 and a
tele switch 33 are detected to determine whether the
15 current condition is under zooming (step 702). When
one of the wide and tele switches 32 and 33 is turned
on, and the current condition is under zooming, the
flow advances to step 720 to be described later.
However, if neither the wide switch 32 nor the tele
20 switch 33 are turned on, and the current condition is
not under zooming, the ON/OFF condition of an AF switch
38 is detected to determine whether the AF mode is set
(step 703). If the AF switch 38 is ON so that the AF
mode is set, the subroutine returns to the main flow.
25 However, when the AF mode is set, focusing control is
performed in an AF processing routine (not shown).
However, if the AF switch 38 is OFF and the AF mode is

PROCESSED BY TEC9600

1 not set, this indicates that a manual focusing mode is
2 currently set. The lens control microcomputer 21
3 determines whether this manual focusing mode is
4 switched from the AF mode or the manual focusing mode
5 is kept set (step 704). If the lens control
6 microcomputer 21 determines that the manual focusing
7 mode is kept set, the ON/OFF conditions of an infinity
8 switch 34 and a shortest range switch 35 are detected
9 to determine whether a power focus condition is set
10 (step 705). If one of the infinity switch 34 and the
11 shortest range switch 35 is ON and the power focus
12 condition is set, this indicates that manual focusing
13 control is being performed. In this case, the flow
14 advances to step 706. However, when neither the
15 infinity switch 34 nor the shortest range switch 35 are
16 ON, and the power focus condition is not set, manual
17 focus control is performed, and the subroutine returns
18 to the main flow to perform operations from step 706.

19 If the manual focusing mode is determined in step
20 704 to be switched from the AF mode, this indicates
21 that automatic focusing control has already been
22 performed in the AF mode before switching to the manual
23 focusing mode. In this case, the flow skips step 705
24 and advances to step 706.

25 In steps 706 to 719, the object distance and the
26 interpolation ratio in equation (1) are specified.
27 That is, in step 706, an initial value of "0" is set in

1 an object distance variable n . It is determined
whether the current magnification lens position z_x is
not located at a boundary position, the flow advances
to steps 708 and 709. In steps 708 and 709, processing
5 for obtaining focusing lens locus points is performed
in accordance with the interpolation in the direction
of the magnification lens position, as shown in Fig. 5,
when the current magnification lens position z_x is not
stored in the focusing lens locus table T.

10 Referring to Fig. 5, the focus lens compensation
lens position is plotted along the ordinate, and the
magnification lens position is plotted along the
abscissa. Lens locus positions (focus compensation
lens positions with respect to the magnification lens
15 positions) stored in the focusing lens locus table T
are defined as $z_0, \dots, z_k, z_{k+1}, \dots, z_n$ for the
magnification lens positions, and $a_0, \dots, a_k, a_{k+1}, a_n$,
 $b_0, \dots, b_k, b_{k+1}, \dots, b_n, c_0, \dots, c_k, c_{k+1}, \dots, c_n$ are
defined as the correspond focus compensation lens
20 positions in accordance with object distances.

Assume that the magnification lens position is located at the position Z_x which is not stored in the focusing lens locus table T , and that the focus compensation lens position is P_x . The focus compensation lens positions a_x and b_x on the two focus lens loci corresponding to the magnification lens

1 position z_x are obtained by equations (10) described
above:

$$a_x = (z_x - z_k) \times (a_{k+1} - a_k) / (z_{k+1} - z_k) + a_k$$

$$b_x = (z_x - z_k) \times (b_{k+1} - b_k) / (z_{k+1} - z_k) + b_k$$

5

... (10)

An interpolation ratio is obtained from a nonstored magnification lens position and two stored magnification lens positions (e.g., $z = k$ and $z = k + 1$ in Fig. 5) on both the sides of the nonstored

10 magnification lens position. A difference value between the two stored focus compensation lens positions on both the sides of the nonstored magnification lens position is interpolated to obtain two focus compensation lens positions a_x and b_x on the
15 focus lens loci corresponding to the nonstored magnification lens position.

In step 708, focusing lens locus data $A_{(n,k)}$, $A_{(n,k+1)}$,
20 $A_{(n+1,k)}$, and $A_{(n+1,k+1)}$ corresponding to the two object distances n and $n+1$ on both the sides of the magnification lens position z_x , which are required to perform calculations according to equations (10) are read out. In step 709, a_x and b_x are calculated in accordance with equation (2) using $a_k = A_{(n,k)}$, $a_{k+1} = A_{(n,k+1)}$, $b_k = A_{(n+1,k)}$, and $b_{k+1} = A_{(n+1,k+1)}$.
25 If it is determined in step 707 that the current magnification lens position z_x is on the boundary, $A_{(n,k)}$ and $A_{(n+1,k)}$, i.e., the focus compensation lens positions

1 corresponding to the distance n and the current
magnification lens position k , and the object distance
 $n+1$ and the current magnification lens position k , are
read out from the focusing lens locus table T (step
5 710). $A_{(n,k)}$ is stored as the constant a_x , and $A_{(n+1,k)}$ is
stored as the constant b_x .

After step 709 or 711, the flow advances to step
712 to determine whether the value of the current focus
compensation lens p_x is equal to or larger than the
10 constant a_x . As shown in Fig. 2, at the predetermined
magnification lens position, the value of the focus
compensation lens p_x increases when the object distance
comes close to the shortest range. This indicates that
step 712 determines whether the current focus
15 compensation lens position p_x is located on the shortest
range side as compared with the object distance n . It
is determined in step 712 that the current focus
compensation lens position p_x is located on the shortest
side as compared with the object distance n , it is
20 determined whether the value of the current focus
compensation lens position p_x is smaller than $A_{(n+1,k)}$,
i.e., whether the current focus compensation lens
position p_x is located on the infinity side as compared
with the object distance $n+1$ (step 713). As a result,
25 when it is determined that the current focus
compensation lens position f is located on the infinity
side as compared with the object distance $n+1$, this

PRINTED 8/27/3360

1 indicates that the current focus compensation lens p_x is located between magnification lens positions of the object distances n and $n+1$. In this case, $(p_x - a_x)$ is calculated, and the calculation result is stored as a constant α (step 714). The contents of the current variable n are stored as a constant γ (step 716), and the subroutine returns to the main flow.

It is determined in step 712 that the current focus compensation lens position p_x is located on the infinity side as compared with the object distance n , the current focus compensation lens position p_x is located at the infinity object distance. In this case, "0" is stored as the constant α (step 717), and the flow advances to step 715.

15 When it is determined in step 713 whether the current focus compensation lens position p_x is located on the shortest range side as compared with the object distance $n+1$, the contents of the object distance variable n are determined whether to be m (the shortest 20 range in the focusing lens locus table T) or more (step 718). If NO in step 718, the contents of the variable n are incremented by one (step 719). The flow returns to step 707 to repeat the same operations as described above.

25 To the contrary, if the contents of the object
distance variable n are m or more, this indicates that
the current focus compensation lens position p , is

1 located at the shortest range object distance. In this
case, as in the case wherein the current focus
compensation lens position p_x is located at the infinity
object distance, "0" is set as the constant α (step
5 717), and the flow advances to step 715. These
constants α , β , and γ are utilized as locus tracking
parameters.

As described above, prior to zooming, the object
distance corresponding to the focusing lens locus
10 traced by the focus compensation lens 15 is specified.

When it is determined in step 702 that the current
condition is under zooming, the flow advances to step
720, as described above. It is determined in step 720
whether the AF mode is set. If YES in step 720, the
15 flow advances to step 731 to be described later.
However, if NO in step 720, it is determined that the
current magnification lens position $z = k$ is on a
discrete position (boundary) recorded in the focusing
lens locus table T (step 721). If NO in step 721, it
20 is determined whether the tele switch 33 is ON and
zooming is being performed from the wide direction to
the tele direction (step 722). If YES in step 722, of
all the boundary position data on both the sides of the
current magnification lens position z_x , tele-side data
25 are read out from the focusing lens locus table T.
 $A_{(\gamma, k+1)}$ is stored as a constant a , $A_{(\gamma+1, k+1)}$ is stored as a
constant b , and $z_x - z_{k+1}$ as a constant c (step 723).

1 However, it is determined that zooming is being
2 performed from the tele side to the wide side, of all
3 the boundary position data on both the sides of the
4 current magnification lens position z_x , wide-side data
5 are read out from the focusing lens locus table T.
6 $A_{(y,k)}$ is stored as a constant a , $A_{(y+1,k)}$ is stored as a
7 constant b , and $z_x - z_k$ is stored as a constant c (step
8 724).

9 If it is determined in step 721 that the current
10 magnification lens position $z = k$ is on a boundary, it
11 is determined whether zooming is being performed from
12 the wide direction to the tele direction (step 725).
13 If YES in step 725, the flow advances to step 723. If
14 NO in step 725, the flow advances to step 726. In step
15 726, wide-side boundary data shifted from the current
16 magnification lens position $z_x = z_k$ by one position
17 toward the wide side is read out from the focusing lens
18 locus table T. $A_{(y,k-1)}$ is stored as a constant a , $A_{(y+1,k-1)}$
19 is stored as a constant b , and $z_x - z_k - 1$ is stored as
20 a constant c .

21 When the operation in any one of steps 723, 724,
22 and 726 is completed, the flow advances to step 727 to
23 calculate a focused position (i.e., a position to be
24 traced for focusing) of the focus compensation lens 15
25 which corresponds to the magnification lens position z
= $k+1$ or $z = k-1$ in accordance with equation (9)
described above:

1 $y = (b - a)\alpha/\beta + a$

since the constants α and β are determined prior to zooming, as described above, the focusing lens locus to be traced is solely determined.

5 It is determined whether the magnification lens 12 enters from a previous zone st to a next zoom zone st0 through a boundary during movement (step 728). This zoom zone is determined by a zoom zone calculation processing routine (Fig. 20) different from those in
10 Figs. 17 to 19.

Fig. 20 is a graph obtained by extracting and imaging two focusing lens locus data for object distances $n = 0$ and $n = k$ from the focusing lens locus table T in Fig. 14. The zoom zone st0 represents a
15 zone (including values on the boundary) interposed by the stored boundaries (magnification lens positions). The definitions of the zoom zone st0 are different depending on different zoom directions.

That is, when the magnification lens 12 is located
20 on a boundary, the value of the zoom zone st0 is equal to that of the magnification lens position z.

Assume that the magnification lens 12 is not located on any boundary. In this case, as shown in Fig. 20, if the zooming direction is directed from the
25 wide direction to the tele direction, the value of the zoom zone st0 is determined as a tele-side boundary value of the boundary values on both the sides of the

1 current magnification lens position. However, if the
zooming direction is directed from the tele direction
to the wide direction, the value of the zoom zone st0
is determined as a wide-side boundary value on both the
5 sides of the current magnification lens position.

It is determined in step 728 using the determined
value of the zoom zone st0 whether the value of the
current zoom zone st0 is equal to the value of the zoom
zone (reference zoom zone) st obtained upon previous
10 processing through the flow from step 720. If YES in
step 728, and it is determined that the current zone is
not changed to the next zoom zone, the flow advances to
step 731. However, if NO in step 728, and the current
zoom zone is changed to the next zoom zone, a speed vf
15 (to be referred to as a focus speed) for moving the
focus compensation lens 15 upon movement of the
magnification lens 12 during zooming is calculated
(step 729). This focus speed vf is calculated in
accordance with a difference ($y - p_x$) between the target
20 focus compensation lens position y and the current
magnification lens position p_x and a time
($[\text{Magnification Lens Position Difference } c]/[\text{Constant Zoom Speed } v_z]$) required for the magnification lens to
move between the current magnification lens position
25 and the target magnification lens position. That is,
the focus speed vf is obtained by the following
equation:

TELEVISION SYSTEM

$$1 \quad \mathbf{v}\mathbf{f} = \{(\mathbf{y} - \mathbf{p}_s) \times \mathbf{v}\mathbf{z}\} / c \quad \dots (11)$$

The value of the current zoom zone st0 is stored as the reference zoom zone st (step 730).

5 In the processing of steps 728 to 730, every time
the magnification lens position is shifted into a new
zoom zone (every time the value of the position exceeds
a boundary value), the focus speed vf is calculated and
updated. When the magnification lens is located within
the same zoom zone, the focus speed vf is not updated.
0 As described above, every time the magnification lens
position is shifted to a new zoom zone, the focus speed
vf is calculated and updated. Even if high-speed
zooming is performed, the focus speed vf can be
appropriately updated to maintain the focused
5 condition.

Since the focus speed vf is not updated within the same zoom zone, the influence of calculation errors in equation (11) can be minimized. Since the decimal part is neglected, calculation accuracy may be degraded.

20 When the magnification lens position difference c is very small, the focus speed vf may be excessively high. When a focusing operation (compensation operation) is performed at this high focus speed vf , the locus is deviated from the accurate locus to cause blurring. In
25 this embodiment, however, the focus speed vf is not updated within the same zoom zone, the magnification

1 lens position difference c can be set considerably
2 large, thus solving the above problem.

3 The tracking focus speed vf is always determined
4 on the basis of the current focus lens position under
5 the above lens control. For this reason, even if a
6 small error occurs in the tracking target position due
7 to speed calculation accuracy and tracking operation
8 accuracy, the error will not be accumulated in the next
9 speed calculation. Therefore, zooming almost free from
10 blurring can be performed.

11 A focus motor 23a is driven (step 731), a zoom
12 motor 22a is driven (step 732), and the subroutine
13 returns to the main flow.

14 A method of driving the focus motor 23a and the
15 zoom motor 22a in steps 731 and 732 will be described
below.

16 Drivers 22b and 23b for driving the zoom motor 22a
17 and the focus motor 23a are controlled by H/L direction
18 signals S1 and S2 output from the lens control
19 microcomputer 21 and speed signals S3 and S4 serving as
20 rotation frequency signals having clock waveforms. The
21 H (high) or L (low) level of the direction signal S1
22 input to the zoom motor 22a is determined in accordance
23 with an ON or OFF state of each of a wide switch 32 and
24 a tele switch 33. The H or L level of the direction
25 signal S2 input to the focus motor 23a is determined by

1 a positive or negative direction of the focus motor speed V_f .

The drivers 22b and 23b set the forward or reverse cycle of four motor excitation phases in accordance with the direction signals S1 and S2 and change applied voltages (or currents) of the four motor excitation phases in accordance with the speed signals S3 and S4, thereby controlling the direction and frequency of motor rotation.

According to the lens control apparatus of this embodiment, as has been described above in detail, every time the magnification lens position is shifted to a new zoom zone (every time the magnification lens passes by a boundary position), the moving speed of the focus compensation lens is calculated. Even in high-speed zooming, the moving speed of the focus compensation lens can be appropriately updated without increasing the number of focusing lens locus data, thereby performing zooming having good focusing lens tracking characteristics.

[Fifth Embodiment]

In the conventional inner focus lens control prior to the present invention, as shown in Fig. 3, the magnification lens position and the focus compensation lens position are detected, and the pieces of detection information are compared with the pieces of prestored

1 focusing lens locus information to calculate the focus
compensation lens speed or the next moving position.

When the moving speed of the magnification lens 3
is high as in high-speed zooming, the moving speed of
5 the focus compensation lens 6 for maintaining the
focused condition may be increased near a tele end and
may often exceed the step-out limitation speed of a
focus compensation lens moving motor. In this case,
the focused condition cannot be maintained, and an
10 image becomes largely blurred.

A scheme for decreasing the moving speed of the
magnification lens 3 near the tele end so as to prevent
the moving speed of the focus compensation lens 6 from
exceeding the step-out limitation speed is realized.
15 According to this scheme, a DC motor is generally used
as a magnification lens moving actuator.

In speed reduction control of the moving speed of
the magnification lens 3 by means of the DC motor, the
DC motor must be servo-controlled. For this purpose,
20 the size of the control circuit becomes bulky, and
control becomes complicated.

In speed reduction control of the moving speed of
the magnification lens 3, assume that speed reduction
is interrupted when the moving speed of the focus
25 compensation lens 6 is lower than the step-out
limitation speed, and that speed reduction is performed
again because the moving speed of the focus

1 compensation lens 6 exceeds the step-out limitation
speed. In this case, acceleration and speed reduction
for the zoom speed are repeated to make the user feel
discomfort.

5 Since speed reduction itself makes the user feel
discomfort, it is preferable to minimize the speed
reduction time. It is also preferable to smoothly
perform speed reduction while maintaining the focused
condition.

10 This embodiment has been made in consideration of
the above circumstances, and has as its object to
smoothly control a magnification lens moving speed with
a simple arrangement and simple control, thereby always
maintaining a focused condition.

15 In order to achieve the above object, there is
disclosed a lens control apparatus including a first
lens for performing a magnification operation, a second
lens for correcting movement of a focal plane during
movement of the first lens, a stepping motor for moving
20 the first lens to be parallel to an optical axis, lens
moving means for moving the second lens to be parallel
to the optical axis, focused position storage means for
prestoring a focused position of the second lens with
respect to a discrete position of the first lens in
25 accordance with a discrete object distance, and focused
position calculating means for calculating a focused
position of the second lens with respect to a moving

FOCUS CONTROL

1 position of the first lens on the basis of current
2 positions of the first and second lenses and
3 information stored in the focused position storage
4 means, comprising control means for controlling the
5 stepping motor to change a moving speed of the first
6 lens when a moving speed of the second lens exceeds a
7 predetermined value during movement of the first lens.

8 That is, the first lens serves as a lens for
9 performing a magnification operation, and the second
10 lens serves as a lens for correcting movement of the
11 focal plane during movement of the first lens. The
12 stepping motor and the lens moving means independently
13 move the first and second lenses parallel to the
14 optical axis.

15 The focused position storage means prestores the
16 focused positions of the second lens with respect to
17 the discrete positions of the fist lens in accordance
18 with the discrete object positions.

19 The focused position calculating means calculates
20 the focused position of the second lens with respect to
21 the moving position of the first lens on the basis of
22 the current positions of the first and second positions
23 and the information stored in the focused position
24 storage means.

25 The control means controls the stepping motor to
26 change the moving speed of the first lens when the

FOBEG07373600

1 moving speed of the second lens exceeds a predetermined
value during movement of the first lens.

The detailed arrangement and operation of this embodiment will be described below. The circuit
5 arrangement is substantially the same as those in Figs. 4 and 13, except that wide and tele switches 32 and 33 are connected to a lens control microcomputer 21 through a voltage control circuit 36. Processing programs in the lens control microcomputer 21 are
10 different from those in the embodiments of Figs. 4 and 13. The processing operations of this embodiment will be described below.

When the wide or tele switch 32 or 33 is depressed, the voltage control circuit 36 changes a
15 voltage to the lens control microcomputer 21 in accordance with a depression force of the depressed switch. The lens control microcomputer 21 determines a specific zoom speed level of the variable speed zooming for moving a magnification lens 12 in accordance with
20 the voltage from the voltage control circuit 36. For example, when the voltage is lower than 2 V, the magnification lens 12 is moved in low speed zooming. When the voltage is equal to or higher than 2 V and
25 lower than 4 V, the magnification lens 12 is moved in middle speed zooming. When the voltage is equal to or higher than 4 V and less than 5 V, the magnification lens 12 is moved in high speed zooming.

400200732733000

1 A focusing lens locus table T of focusing lens
locus information, as shown in Fig. 14 is preset in the
lens control microcomputer 21. On the basis of this
table, each lens control operation is performed as
5 described above.

1 In zooming control, the lens control microcomputer
21 causes a focus compensation lens 15 to follow
movement of the magnification lens 12 in accordance
with the focusing lens locus, thereby performing
10 zooming while maintaining a focused condition. In this
case, when the moving speed of the focus compensation
lens 15 is a predetermined value or more, the lens
control microcomputer 21 decreases the moving speed of
the magnification lens 12.

15 The lens control operations will be described with
reference to flow charts in Figs. 22 and 23. The flows
in Figs. 22 and 23 are flows executed when zooming is
performed in the AF OFF mode. The flows in Figs. 22
and 23 are subroutines. Prior to execution of these
20 flows, AF mode processing using the contrast scheme
(hill climbing scheme) for performing automatic focus
control in accordance with a focal voltage (clearness
of a video signal) is performed.

25 The lens control microcomputer 21 detects the
ON/OFF conditions of the wide and tele switches 32 and
33 to determine whether the current condition is under
zooming (step 801). If neither the wide switch 32 nor

TOP SECRET//DTIC 2000

1 the tele switch 33 are turned on, and the current
condition is not under zooming, a speed reduction flag
is reset (step 802), and a focus motor 23a is driven
(step 821).

5 To the contrary, if one of the wide and tele
switches 32 and 33 is ON and the current condition is
under zooming, the lens control microcomputer 21
determines whether a current magnification lens
position z_k is located on a magnification lens position
10 (this position is called a boundary position) stored in
the focusing lens locus table T (step 803). If YES in
step 803, the lens control computer 21 determines
whether the tele switch 33 is ON and zooming is being
performed from the wide direction to the tele direction
15 (step 804). If YES in step 804, an absolute value of a
difference (positional difference) between the current
magnification lens position z_k and a boundary position
 z_{k+1} shifted therefrom by one position toward the tele
side is stored as a variable Δz (step 805). However,
20 if NO in step 804, an absolute value of a difference
(positional difference) between the current
magnification lens position z_k and a boundary position
 z_{k-1} shifted therefrom by one position toward the wide
direction is stored as a variable Δz (step 806).

25 When processing in step 805 or 806 is completed,
the flow advances to step 807 to calculate a focused
position (i.e., a position to be traced for focusing)

1 of the focus compensation lens 15 which corresponds to
the target magnification lens position z_{k+1} or z_{k-1} of the
magnification lens 12 is calculated in accordance with
equation (1). In step 808, the lens control

5 microcomputer 21 determines on the basis of the speed
reduction flag whether the speed reduction flag
represents a speed-reduced condition. If the speed
reduction flag is reset and the zoom speed is not set
in the speed-reduced condition, the speed reduction

10 flag is reset (step 809). The lens control
microcomputer 21 determines the voltage level of the
voltage supplied from the voltage control circuit 36,
which voltage level corresponds to the depression force
of the wide or tele switch 32 or 33, thereby

15 determining that the photographer or user designates a
low speed, a middle speed, or a high speed as a
standard zoom sped (step 810). As a result, when the
voltage level represents low speed zooming, a low speed
value α is stored as a zoom speed V_z (step 811). When

20 the voltage level represents middle speed zooming, a
middle speed value β is stored as the zoom speed V_z
(step 812). When the voltage level represents high
speed zooming, a high speed value γ is stored as the
zoom speed V_z (step 813).

25 When the zoom speed V_z is determined as described
above, a speed (focus speed) V_f for moving the focus
compensation lens 15 upon movement of the magnification

TELECO "SILENT" 3600

1 lens 12 during zooming is calculated (step 814). This
focus speed V_f is given by the following equation if
the current position of the focus compensation lens 15
is defined as f :

$$5 \quad \nabla f = \{ (y - f) \times \nabla z \} / \Delta z \quad \dots (12)$$

The lens microcomputer 21 determines whether the calculated focus speed V_f is equal to or higher than a maximum speed V_{fmax} determined in consideration of the step-out limitation speed (step 815). If the focus speed V_f is lower than the maximum focus speed V_{fmax} , the flow advances to step 819. However, the focus speed V_f is equal to or higher than the maximum focus speed V_{fmax} , the speed reduction flag is set (step 816). The maximum focus speed V_{fmax} is stored as the focus speed V_f (step 817). A zoom speed (i.e., a speed reduction speed in this case) V_z is calculated (step 818) in accordance with the following equation obtained by rewriting equation (12):

$$V_z = (\Delta z \times V_f) / (y - f) \quad \dots (13)$$

20 A zoom motor 22a is driven to move the magnification lens 12 at the zoom speed V_z (step 819), and the focus motor 23a is driven to move the focus compensation lens 15 at the focus speed V_f (step 820). The flow returns to the main flow. In this case, as
25 can be apparent from the above description, when the focus speed V_f calculated in step 814 is determined to be equal to or higher than the maximum focus speed

1 Vfmax in step 815, the magnification lens 12 is driven
at the reduced speed calculated in step 818. When the
focus speed Vf is determined to be lower than the
maximum focus speed Vfmax, the magnification lens 12 is
5 driven at one of the standard speeds stored in steps
811, 812, and 813. If the calculated focus speed Vf is
equal to or higher than the maximum focus speed Vfmax,
the focus compensation lens 15 is driven at the maximum
focus speed Vfmax in the processing of step 817.

10 However, the focus speed Vf is determined to be lower
than the maximum focus speed Vfmax, the focus
compensation lens 15 is moved at the calculated focus
speed Vf.

A method of driving the focus motor 23a and the
15 zoom motor 22a in steps 819 and 820 will be described
below.

Drivers 22b and 23b for driving the zoom motor 22a
and the focus motor 23a are controlled by H/L direction
signals S1 and S2 output from the lens control
20 microcomputer 21 and speed signals S3 and S4 serving as
rotation frequency signals having clock waveforms. The
H (high) or L (low) level of the direction signal S1
input to the zoom motor 22a is determined in accordance
with an ON or OFF state of each of a wide switch 32 and
25 a tele switch 33. The H or L level of the direction
signal S2 input to the focus motor 23a is determined by

1 a positive or negative direction of the focus motor
speed Vf.

The drivers 22b and 23b set the forward or reverse
cycle of four motor excitation phases in accordance
5 with the direction signals S1 and S2 and change applied
voltages (or currents) of the four motor excitation
phases in accordance with the speed signals S3 and S4,
thereby controlling the direction and frequency of
motor rotation, i.e., the moving directions and speeds
10 of the magnification lens 12 and the focus compensation
lens 15.

The actuators (the zoom motor 22a and the focus
motor 23a) for moving the magnification lens 12 and the
focus compensation lens 15 do not comprise DC motors,
15 but stepping motors. Servo control as in speed
reduction control of the magnification lens 12 need not
be performed. The circuit size of the driver 22b (the
same also applies to the driver 23b) can be reduced,
the program capacity of the lens control microcomputer
20 21 can be reduced, and control can be simplified.

When the lens control microcomputer 21 determines
in step 808 that the speed reduction flag represents a
speed-reduced condition, the microcomputer 21
determines whether zooming is being performed from the
25 wide direction to the tele direction (step 821). If
YES in step 821, the flow advances to step 816.
Otherwise, the flow advances to step 809. This

1 indicates that speed reduction continues once the
speed-reduced condition is set during zooming. This
aims at limiting speed reduction near the tele end and
inhibits alternate switching between the reduced speed
5 and the standard zoom speed.

By the above lens control, the zoom speed V_z and
the focus speed V_f change, as shown in Figs. 24A and
24B.

In Fig. 24A, the magnification lens position is
10 plotted along the abscissa, and the focus speed V_f is
plotted along the ordinate. In Fig. 24B, the
magnification lens position is plotted along the
abscissa, and the zoom speed V_z is plotted along the
ordinate.

15 That is, as can be estimated from the focusing
lens locus (Fig. 2) for each object distance, a change
in the focus speed V_f with respect to the zoom speed V_z
varies depending on object distances. However, when
the zoom speed V_z is the middle speed β , as shown in
20 Fig. 24B, the focus speed V_f changes with respect to a
given object distance, as shown in Fig. 24A.

A position P is a zoom speed reduction start
position. That is, the focus speed V_f exceeds the
maximum speed $V_{f\max}$ determined in consideration of the
25 step-out limitation speed of the focus motor 23a on the
tele side from the zoom speed reduction start position
 P , and the focused condition cannot be maintained. On

1 the tele side from the zoom speed reduction start
position P, as shown in Fig. 24A, the focus speed Vf is
set as the maximum speed Vfmax, and the zoom speed Vz
is reduced, as shown in Fig. 24B. As can be apparent
5 from the above description, this reduced speed can be
calculated to maintain the focused condition in
consideration of the inclination of the focusing lens
locus and moderately changes. Therefore, the zoom
speed can be smoothly reduced. When the focus speed Vf
10 exceeds the maximum speed Vfmax, the focus speed Vf is
not set to be lower than the maximum speed Vfmax, but
is set as the maximum speed Vfmax, thereby shortening
the speed reduction time of the zoom speed Vz.

[Applied Modification]

15 In this embodiment, since the maximum speed Vfmax
of the focus speed Vf is fixed to a predetermined
value, the zoom speed reduction start position P in
Figs. 24A and 24B varies depending on the object
distances n and the selected standard zoom speed Vz
20 (low speed, middle speed, and high speed). For this
reason, a ratio of a normal zooming interval at a
constant speed to a zooming interval in a speed-reduced
condition, i.e., a ratio of a zooming time at a normal
speed to a zooming time in a speed-reduced condition
25 changes depending on the object distance or the
selected standard zoom speed Vz (low speed, middle

1 speed, or high speed), thereby making the photographer
feel discomfort.

As shown in Fig. 25A, the maximum speed V_{fmax} is
changed by the object distance n . Alternatively, as
5 shown in Fig. 25B, the maximum speed V_{fmax} is changed
in accordance with the magnitude (α , β , or γ) of the
standard zoom speed V_z .

It is also possible to uniform a zooming feeling
(rate of change in field angle) which makes the
10 photographer feel a higher speed near the tele end when
zooming is performed at a constant zoom speed.

As described above in detail, this embodiment
makes it possible to smoothly control the magnification
lens moving speed by a simple arrangement and simple
15 control, thereby always maintaining the focused
condition.

More specifically, since the stepping motor is
used as the magnification lens moving actuator, the
focused condition of the focus compensation lens can be
20 maintained to reduce the moving speed of the
magnification lens in accordance with a simple control
method. A reduction in moving speed of the
magnification lens is performed in accordance with the
rate of change in speed corresponding to the
25 inclination of the focusing lens locus, thereby
performing smooth zooming while maintaining the focused
condition.

TOP SECRET//SI//TS//FO

1 The speed reduction condition of the moving speed
of the magnification lens is set in each mode. For
example, the moving speed reduction time of the
magnification lens can be maximized without falling
5 outside the step-out limitation of the focus
compensation lens actuator. The change in speed of the
image magnification, which abruptly increases near the
tele end, can be uniformed.

[Sixth Embodiment]

10 The sixth embodiment of the present invention will
be described below. As described above with reference
to Figs. 1 to 3, the inner focus type lens control is
control for driving a focus compensation lens on the
basis of stored focusing lens locus information during
15 zooming. The focus compensation lens position is
calculated using Fig. 3 and equation (1).

According to equation (1), when the focus
compensation lens is located on the locus p_0 in Fig. 3,
the locus p_0 calculates a ratio which interpolates a
20 line segment b_0-a_0 , and a point which interpolates a
line segment b_1-a_1 is defined as p_1 in accordance with
the resultant ratio. The moving speed of the focus
compensation lens 6 to maintain the focused condition
is obtained from the positional difference between the
25 points p_1 and p_0 and the time required for the
magnification lens 3 to move from z_0 to z_1 .

TOP SECRET//DTIC

1 When the magnification lens 3 is moved from the
tele direction to the wide direction, this direction is
a direction to converge divergent focusing lens loci,
as is apparent from Fig. 2. However, from the wide
5 direction to the tele direction, it is unknown for a
focus compensation lens 6 located at a convergent
position to follow a specific focusing lens locus.
Therefore, the focused condition cannot be maintained
in the same locus tracking scheme described above.

10 A focusing lens locus for minimizing near- and
far-focus pieces of information (blurring information)
obtained in an automatic focus control operation (AF)
of a contrast scheme (hill climbing scheme) is
selected, and zooming is performed such that the focus
15 compensation lens 6 is moved along with the selected
focusing lens locus, as previously described.

20 In a video camera having a two-dimensional image
pickup element (CCD), an optical image of an object
input from a photographic lens (inner focus type lens
system) is photoelectrically converted by the
two-dimensional image pickup element. The clearness of
the frame is detected in accordance with the
photoelectrically converted video signal. The position
of the focus compensation lens 6 is controlled to
25 obtain a focused condition so as to maximize the
clearness.

1 The intensity of a high frequency component of the
2 video signal which is extracted by a bandpass filter or
3 the blurring width detection intensity of the video
4 signal which is extracted by a differentiator is
5 generally used as an evaluation reference for the
6 clearness of the frame. The clearness value of the
7 frame is small in a blurred condition upon photography
8 of a normal object. When the object is gradually
9 focused, the clearness value increases. When the
10 object is set in a perfectly focused condition, the
11 clearness value becomes maximum. The position of the
12 focus compensation lens 6 is controlled to be quickly
13 moved in a direction to increase the moving speed when
14 the clearness value of the frame is small. When the
15 clearness value of the frame gradually increases, the
16 moving speed of the focus compensation lens 6 is
17 gradually reduced. When the clearness value of the
18 frame reaches the peak of the clearness locus, i.e.,
19 when the focused condition is obtained, the focus
20 compensation lens 6 is stopped. This AF scheme is
21 generally called a hill climbing scheme.

When zooming is to be performed under this AF
control, the focusing lens locus to be traced during
zooming is limited such that the blurring information
25 (the moving direction and speed of the focus
compensation lens 6) obtained by the AF control
coincides with the moving speed (to be referred to as a

1 focus speed hereinafter) of the focus compensation lens
6 moved along the focusing lens locus.

In the conventional AF control, the moving
direction and speed of the focus compensation lens 6
5 are determined on the basis of a previous video signal
(clearness signal) within a predetermined period of
time. If the zooming speed is very high and the
magnification lens 3 is moved from the wide end to the
tele end within a very short period of time, the
10 response to the instantaneously changing video signal
is poor. It is difficult to specify the focusing lens
locus to be selected, and blurring greatly occurs.
Blurring in AF control is determined using a video
signal which reflects two parameters, i.e., movement of
15 the magnification lens 3 and the movement of the focus
compensation lens 6. For this reason, erroneous
determination may be caused when the moving direction
and speed of only the focus compensation lens 6 are
determined. As a result, blurring may greatly occur.
20 This embodiment has been made in consideration of
these circumstances, and has as its object to perform
zooming while maintaining the focused condition with
predetermined precision or more independently of a
zooming mode and a zooming atmosphere when the video
25 signal of the object is utilized to perform zooming
while maintaining the focused condition.

1 In order to achieve the above object, there is
provided a camera having a first lens for performing a
magnification operation, a second lens for correcting
movement of a focal plane during movement of the first
5 lens, lens moving means for independently moving the
first and second lenses to be parallel to an optical
axis, and extracting means for extracting a high
frequency component from a video signal of a
photographed object, comprising first moving condition
10 switching means for switching a moving condition of the
second lens during movement of the first lens so that a
high frequency component amount of the video signal
changes.

15 The first lens serves as a lens for performing a
magnification operation, and the second lens serves as
a lens for correcting movement of a focal plane during
movement of the first lens. The lens moving means
independently moves the first and second lenses to be
parallel to the optical axis.

20 The extracting means extracts the high frequency
component from the video signal of the photographed
object.

25 The first moving condition switching means
switches the moving condition of the second lens to
change the high frequency component amount of the video
signal during movement of the first lens.

1 The arrangement and operation of this embodiment
will be described below. The circuit arrangement is
substantially the same as that in Fig. 13, and a
detailed description thereof will be omitted.

5 A focusing lens locus table T (Fig. 14) having the
focusing lens loci shown in Fig. 2 is preset in a lens
control microcomputer 21. The lens control
microcomputer 21 performs zooming while a clearness
signal obtained in AF control is utilized to select a
10 proper focusing lens locus from the focusing lens locus
table T. At this time, even if a zooming time is
short, zooming is performed to minimize blurring. The
principle of minimizing blurring within a short zooming
time will be described with reference to Figs. 26A,
15 26B, and 26C.

In Figs. 26A, 26B, and 26C, the magnification lens position is plotted along the abscissa. The high frequency component (clearness signal) level of a video signal is plotted along the ordinate in Fig. 26A. The 20 focus compensation lens positions are plotted along the ordinates in Figs. 26B and 26C.

Referring to Figs. 26A, 26B, and 26C, a focusing lens locus in zooming of a given object (object distance) is defined as D4. In this case, a focus speed on the wide side with respect to a magnification lens position P is defined as a positive speed (the focus compensation lens 15 is moved in the shortest

卷之三

1 range direction), and a focus speed of the focus
compensation lens 6 moving in the infinity direction on
the tele side with respect to the magnification lens
position P is defined as a negative speed.

5 When the focus compensation lens 15 is moved in a focused condition so as to faithfully trace the focusing lens locus, the magnitude of the clearness signal becomes maximum and is almost constant, as indicated by D1 in Fig. 26A.

As shown in Fig. 26B, in zooming, a focus speed is defined as V_p , a speed higher than the focus speed V_p in the positive direction is represented by +, and a speed lower than the focus speed V_p in the positive direction is represented by -. Zooming is performed by increasing or decreasing (i.e., a higher or lower speed) a focus speed V_f with respect to the ideal focus speed V_p faithfully tracing the focusing lens locus. The resultant locus is given as a zig-zag locus, indicated by D5. The clearness signal level changes to have upper and lower peaks, indicated by D2 in Fig. 26A. This clearness signal D2 becomes maximum at each intersection Q between a focusing lens locus D4 and the locus D5. The clearness signal D2 becomes minimum at each point R where the + (higher speed) and - (lower speed) of the locus D5 are switched.

Fig. 26A. When the minimum value D3 is set, and the +

卷之三

1 and - of the locus D5 are switched so that the
magnitude of the clearness signal D2 becomes equal to
the minimum value D3, the moving direction of the focus
compensation lens 6 upon switching can be set in a
5 direction to come close to the focusing lens locus D4.

Every time an image is blurred by a difference
between the maximum and minimum values D1 and D3 of the
clearness signal level, the moving direction and speed
of the focus compensation lens 15 are controlled to
10 reduce blurring, thereby performing zooming whose
blurring amount is reduced.

According to the above technique, in zooming from
the wide direction to the tele direction so as to cause
focusing lens loci D6, D7, and D8 to diverge from the
15 converged condition, as shown in Fig. 26C, even if the
focus speed V_p is unknown, a switching operation as
indicated by D9 is repeated at the focus speed V_f which
becomes higher (+) or lower (-) than the tracking speed
obtained on the basis of the target position $p_{(a+1)}$
20 obtained in equation (1). In this case, a focusing
lens locus can be selected so as to prevent the
clearness signal level from reducing below the minimum
value D3, i.e., so as to prevent blurring having a
predetermined value or more. The magnitude of the
25 blurring amount can be reduced as small as negligible
in zooming by appropriately setting the clearness
signal level to the minimum value D3.

1 In zooming from the wide direction to the tele
direction, the previous clearness signal within a
predetermined period of time need not be used, and the
current clearness signal level is monitored and
5 determined. When a predetermined amount of blurring is
caused, the direction in which the focus compensation
lens 15 is moved to reduce blurring can be recognized.
Therefore, zooming almost free from blurring can be
performed independently of zooming times.

10 Lens control operations for the above zooming will
be described with reference to flow charts in Figs. 27
and 28. The flows in Figs. 27 and 28 are subroutines.
Prior to execution of these flows, processing for
fetching a video signal high frequency component
15 (clearness signal level), AF mode processing, manual
mode processing, and the like are performed.

The lens control microcomputer 21 sets initial
values of the zoom speed V_z and correction speeds V_+
and V_- in the + and - directions of Figs. 26A to 26C,
20 i.e., speeds for moving the focus compensation lens 15
at speeds higher (+) and lower (-) than the focusing
lens locus tracking speed V . The lens control
microcomputer 21 sets "1" in an inversion flag
representing whether switching between the higher speed
25 (+) and the lower speed (-) is performed (step 901).
The inversion flag of "0" represents that inversion

TOP SECRET//COMINT

1 should be performed, and the inversion flag of "1" represents that inversion need not be performed.

2 The lens control microcomputer 21 detects the
3 ON/OFF conditions of a wide switch 32 and a tele switch
4 33 to determine whether the current condition is under
5 zooming (step 902). If both the wide and tele switches
6 32 and 33 are OFF, and the current condition is under
7 zooming, a value obtained by subtracting an arbitrary
8 constant α from a current value of "signal 0" of the
9 clearness signal level stored in a routine of fetching
10 a clearness signal processed once within one vertical
11 sync period is defined as a minimum value (threshold
12 value) TH1 corresponding to D3 in Figs. 26A to 26C
13 (step 903). The flow then advances to step 915 to
14 drive a focus motor 23a (in this case, the focus speed
15 VF is determined by another subroutine), and the
subroutine returns to the main flow. That is, the
threshold value TH1 is determined prior to the start of
zooming.

16 When one of the wide and tele switches 32 and 33
17 is ON, and the current condition is under zooming, the
18 lens control microcomputer 21 detects the ON switch to
19 determine whether zooming is being performed from the
20 wide direction to the tele direction (step 904). If
21 the tele switch 33 is ON and zooming is being performed
22 from the wide direction to the tele direction, the lens
23 control microcomputer 21 determines whether the current

242000-32733650

1 clearness signal level "signal 0" is less than the
threshold value TH1, i.e., whether the focus
compensation lens 15 reaches the direction (speed)
switching point R in Fig. 26B (step 905). If the
5 current clearness signal level "signal 0" is less than
the threshold value TH1, and the focus compensation
lens 15 has reached the speed switching point R,
switching between the + and - directions (higher and
lower speeds) must be performed. The lens control
10 microcomputer 21 sets "0" in the inversion flag (step
907), and the flow advances to step 908. However, when
the current clearness signal level "signal 0" is equal
to or more than the threshold value TH1, and the focus
compensation lens 15 do not reach the speed switching
15 point R, switching between the higher and lower speeds
need not be performed. The flow skips step 907 and
advances to step 908 so as to maintain the condition of
the preset inversion flag of "1".

The lens control microcomputer 21 determines in
20 step 904 that zooming is being performed from the tele
direction to the wide direction, the correction speeds
V+ and V- are set to "0" so as to prevent correction of
the focusing lens locus tracking speed V (step 906),
and the flow advances to step 907.

25 In step 908, the focusing lens locus tracking
speed V of the focus compensation lens 15 is calculated
on the basis of the current positions of the

1 magnification lens 12 and the focus compensation lens
15, and the locus data in the focusing lens locus table
T. By determining whether "0" is set in the inversion
flag, the lens control microcomputer 21 determines
5 whether switching between the higher and lower speeds
is performed (step 909). If "0" is set in the
inversion flag and switching between the higher and
lower speeds must be performed, the lens control
microcomputer 21 determines whether "1" is set in the
10 correction flag so that it determines whether focusing
lens locus tracking is being performed at the high
speed (step 910).

When "1" is set in the correction flag and
focusing lens locus tracking is being performed at the
15 higher speed, the higher speed is switched to the lower
speed in step 908. More specifically, in step 908, if
the calculated focusing lens locus tracking speed V is
"+", and the focus compensation lens 15 is to be moved
in the shortest range direction, (Focus Speed VF) =
20 (Focusing Lens Locus Tracking Speed V) - (Correction
Speed V-). However, if the focusing lens locus
tracking speed V is "-", and the focus compensation
lens 15 is to be moved in the infinity direction,
(Focus Speed VF) = (Focusing Lens Locus Tracking Speed
25 V) + (Correction Speed V-), and "0" is set in the
correction (step 911).

1 If "0" is set in the correction flag, and the
focusing lens locus tracking is being performed at the
lower speed, the lower speed is switched to the higher
speed in step 908. More specifically, if the focusing
5 lens locus tracking speed V is "+", and the focus
compensation lens 15 is to be moved in the shortest
range direction, (Focusing Speed VF) = (Focusing Lens
Locus Tracking Speed V) + (Correction Speed V+).
However, if the focusing lens locus tracking speed V is
10 "-", and the focus compensation lens 15 is to be moved
in the infinity direction, (Focus Speed VF) = (Focusing
Lens Locus Tracking Speed V) - (Correction Speed V+),
and "1" is set in the correction flag (step 913).

15 If it is determined in step 909 that "1" is set in
the inversion flag, and switching between the higher
speed and the lower speed need not be performed, it is
determined whether "1" is set in the correction flag to
determine whether focusing lens locus tracking is being
performed at the higher speed (step 912).

20 If "1" is set in the correction flag, and the
focusing lens locus tracking is being performed at the
higher speed, the flow advances to step 913 to maintain
this higher speed. However, if "0" is set in the
correction flag, and the focusing lens locus tracking
25 is being performed at the lower speed, the flow
advances to step 911 to maintain this lower speed.

1 After processing in step 911 or 913 is performed,
a zoom motor 22a is driven so that the magnification
lens 12 is moved at the zoom speed V_z (step 914). A
focus motor 23a is driven so that the focus
5 compensation lens 15 is moved at the focus speed V_F
(step 915). The subroutine then returns to the main
flow.

As described above, during zooming from the wide
direction to the tele direction, the focus compensation
10 lens 15 is moved while the speed is switched to speeds
higher and lower than the focusing lens locus tracking
speed V (i.e., a zig-zag locus). The level of the
video signal high frequency component (clearness
signal) is increased or decreased. Every time the
15 clearness signal level is less than the threshold value
 TH_1 , switching between the higher and lower speeds is
performed.

By this processing, the factor of a change in
clearness signal is limited to the movement of the
20 focus compensation lens 15. Without using the previous
clearness signal within the predetermined period of
time, a positional relationship between the focused
position and the focus compensation lens position
during moving speed switching can be known.

25 Zooming in which the clearness signal level is not
less than the threshold value, i.e., zooming free from

1 blurring whose amount exceeds the threshold value, can
be performed regardless of zooming times.

5 A method of driving the focus motor 23a and the
zoom motor 22a in steps 931 and 932 will be described
below.

10 Drivers 22b and 23b for driving the zoom motor 22a
and the focus motor 23a are controlled by H/L direction
signals S1 and S2 output from the lens control
microcomputer 21 and speed signals S3 and S4 serving as
15 rotation frequency signals having clock waveforms. The
H (high) or L (low) level of the direction signal S1
input to the zoom motor 22a is determined in accordance
with an ON or OFF state of each of a wide switch 32 and
a tele switch 33. The H or L level of the direction
15 signal S2 input to the focus motor 23a is determined by
a positive or negative direction of the focus motor
speed Vf.

20 The drivers 22b and 23b set the forward or reverse
cycle of four motor excitation phases in accordance
with the direction signals S1 and S2 and change applied
voltages (or currents) of the four motor excitation
phases in accordance with the speed signals S3 and S4,
thereby controlling the direction and frequency of
motor rotation.

25 [Seventh Embodiment]

The seventh embodiment of the present invention
will be described with reference to Figs. 29 to 31B.

1 In the sixth embodiment, a change in clearness
2 signal level may not be symmetrical about the axis of a
3 polarity change point, depending on the balance of the
4 higher (+) and lower (-) speeds. In this case, for
5 example, the focusing lens locus can be easily selected
6 near the shortest range, but the focusing lens locus
7 cannot be easily selected on the infinity side. It is
8 therefore difficult to perform zooming while the
9 focused condition is maintained at a specific object
10 distance. If the period of increasing or decreasing
11 the clearness signal level is predetermined, for
12 example, focus compensation lens position greatly
13 changes during switching between the higher and lower
14 speeds near the tele end where the inclination of the
15 focusing lens locus is large. Precision of focusing
16 lens locus selection is degraded, and a focusing lens
17 locus to be traced cannot often be specified. When
18 zooming of a high-luminance object is to be performed
19 or zooming is being performed in a small-iris condition
20 or a large depth of field, a change in increase or
21 decrease of the clearness signal level becomes small.
22 The period between the higher speed and the lower speed
23 is prolonged. In high-speed zooming or the like, the
24 tracking operation of a focus compensation lens 15 on
25 the basis of the focusing lens locus may become
impossible.

RECORDED "347733650

1 This problem is solved in the seventh embodiment.
1 Correction speeds V_+ and V_- for moving a focus
1 compensation lens 15 at speeds higher (+) and lower (-)
1 than a focusing lens locus tracking speed V are
5 appropriately determined in accordance with given
1 conditions.

1 The lens control operations of the seventh
1 embodiment which include the above processing will be
1 described below. The hardware arrangement of the
10 seventh embodiment is substantially the same as that of
10 the sixth embodiment, and a detailed description
10 thereof will be omitted (this will also applies to the
10 eighth embodiment).

15 Figs. 29 and 30 are flow charts showing the lens
15 control operations of the seventh embodiment.

1 A lens control microcomputer 21 sets an initial
1 value β in a zoom speed V_Z and sets "1" in an inversion
1 flag representing whether switching between the higher
1 speed (+) and the lower speed (-) is performed (step
20 1001). The inversion flag of "0" represents that
20 inversion should be performed, and the inversion flag
20 of "1" represents that inversion need not be performed.

25 The focusing lens locus tracking speed V of the
25 focus compensation lens 15 is calculated on the basis
25 of the current positions of a magnification lens 12 and
25 the focus compensation lens 15, and the locus data in
25 the focusing lens locus table T (step 1002). The

RECORDED - 02/27/2000

1 correction speeds V_+ and V_- for moving the focus
compensation lens 15 at speeds higher (+) and lower (-)
than the tracking speed V are calculated (step 1003).

The description of the flow charts will be

5 temporarily interrupted, and a method of calculating
the correction speeds V_+ and V_- will be described with
reference to Figs. 31A and 31B.

In Fig. 31A, the magnification lens position is plotted along the abscissa, the focus compensation lens position is plotted along the ordinate, and D10 represents a focusing lens locus.

Referring to Fig. 31A, a focus speed for changing the magnification lens position by x and changing the focus compensation lens by y upon movement of the magnification lens is the focusing lens locus tracking speed V calculated in step 1002. Focus speeds for changing the focus compensation lens position by n or m upon movement of the magnification lens are the correction speeds V_+ and V_- to be calculated in step 1003.

The values n and m are determined such that a speed $(V+V+)$ obtained by adding the correction speed V_+ to the focusing lens locus tracking speed V and a speed $(V-V-)$ obtained by subtracting the correction speed V_- from the focusing lens locus tracking speed V have direction vectors equally spaced apart by an angle γ with respect to the direction vector of the focusing

1 lens locus tracking speed V . In this case, the
conventional problem in which the focusing lens locus
on the shortest range can be easily selected but the
focusing lens locus on the infinity cannot be easily
5 selected can be solved. Zooming can be performed while
the focused condition is maintained at all object
distances.

The values n and m are obtained by equations (14)
to (17). That is, the following equations are
10 established in Fig. 31A:

$$\tan(\theta) = y/x$$

$$\tan(\theta - \gamma) = (y - m)/x$$

$$\tan(\theta + \gamma) = (y + n)/x \quad \dots(14)$$

The following equation is also established:

$$15 \quad \tan(\theta \pm \gamma) = (\tan\theta \pm \tan\gamma)/(1 \pm \tan\theta\tan\gamma) \quad \dots(15)$$

Equations (14) and (15) derive the following
equations to obtain m and n :

$$m = (x^2 + y^2)/(x/k + y) \quad \text{for } k = \tan\gamma \quad \dots(16)$$

$$n = (x^2 + y^2)/(x/k - y) \quad \text{for } k = \tan\gamma \quad \dots(17)$$

20 As shown in Fig. 31B, the magnitude of γ changes 0.8
times in the middle area and twice in the tele area by
the focus length in accordance with the inclination of
the focusing lens locus when the value on the wide side
is defined as a reference value of "1".

25 The period of increasing or decreasing the
clearness signal changing in accordance with the moving
condition of the focus compensation lens 15 can be

1 maintained constant with respect to a predetermined
change in focus compensation lens position. Therefore,
a possibility of missing the focusing lens locus during
tracking in zooming can be greatly reduced.

5 The relationship between the γ value and the k (k
 $= t \gamma$) value is stored in the form of a table in a
memory in the lens control microcomputer 21 and is read
out as needed, thereby calculating the values in
accordance with equations (16) and (17).

10 When the magnification lens position changes by x
per unit time, $x = (\text{Zoom Speed } V_z)$ and $y = (\text{Focusing}$
 $\text{Lens Locus Tracking Speed } V)$. In actual calculations
of equations (16) and (17), the zoom speed V_z and the
focusing lens locus tracking speed V are given as x and
15 y to calculate the values n and m , respectively. Since
 $n = (\text{Correction Speed } V+)$ and $m = (\text{Correction Speed}$
 $V-)$, the calculated values n and m are defined as
correction values $V+$ and $V-$, respectively.

When the correction speeds $V+$ and $V-$ are obtained,
20 as described above, the lens control microcomputer 21
detects the ON/OFF conditions of a wide switch 32 and a
tele switch 33 to determine whether the current
condition is under zooming (step 1004). If both the
wide and tele switches 32 and 33 are OFF, and the
25 current condition is under zooming, a value obtained by
subtracting an arbitrary constant α from a current
value of "signal 0" of the clearness signal level

PRINTED 02/23/2020

1 stored in a routine of fetching a clearness signal
2 processed once within one vertical sync period is
3 defined as a minimum value (threshold value) TH1 (step
4 1016). The flow then advances to step 1015 to drive a
5 focus motor 23a (in this case, the focus speed VF is
determined by another subroutine), and the subroutine
returns to the main flow. That is, the threshold value
TH1 is determined prior to the start of zooming.

When one of the wide and tele switches 32 and 33 is ON, and the current condition is under zooming, the lens control microcomputer 21 determines the ON switch to determine whether zooming is being performed from the wide direction to the tele direction (step 1005). If the tele switch 33 is ON and zooming is being performed from the wide direction to the tele direction, the lens control microcomputer 21 determines whether the current clearness signal level "signal 0" is less than the threshold value TH1, i.e., whether the focus compensation lens 15 reaches the direction (speed) switching point R in Fig. 26B (step 1006). If the current clearness signal level "signal 0" is less than the threshold value TH1, and the focus compensation lens 15 has reached the speed switching point R, switching between the + and - directions (higher and lower speeds) must be performed. The lens control microcomputer 21 sets "0" in the inversion flag (step 1007), and the flow advances to step 1009.

the first time in the history of the world, the *whole* of the human race, in all its parts, has been brought together, and is now in a condition to act as one man.

1 However, when the current clearness signal level
"signal 0" is equal to or more than the threshold value
TH1, and the focus compensation lens 15 does not reach
the speed switching point R, switching between the
5 higher and lower speeds need not be performed. The
flow skips step 1007 and advances to step 1009 so as to
maintain the condition of the preset inversion flag of
"1".

10 The lens control microcomputer 21 determines in
step 1005 that zooming is being performed from the tele
direction to the wide direction, the correction speeds
V+ and V- are set to "0" so as to prevent correction of
the focusing lens locus tracking speed V (step 1008),
and the flow advances to step 1009.

15 In step 1009, by determining whether "0" is set in
the inversion flag, the lens control microcomputer 21
determines whether switching between the higher and
lower speeds is performed. If "0" is set in the
inversion flag and switching between the higher and
20 lower speeds must be performed, the lens control
microcomputer 21 determines whether "1" is set in the
correction flag so that it determines whether focusing
lens locus tracking is being performed at the high
speed (step 1010). When "1" is set in the correction
25 flag and focusing lens locus tracking is being
performed at the higher speed, the higher speed is
switched to the lower speed in step 1002. More

TOP SECRET//COMINT

1 specifically, in step 1002, if the calculated focusing
lens locus tracking speed V is "+", and the focus
compensation lens 15 is to be moved in the shortest
range direction, (Focus Speed VF) = (Focusing Lens
5 Locus Tracking Speed V) - (Correction Speed V-).
However, if the focusing lens locus tracking speed V is
"-", and the focus compensation lens 15 is to be moved
in the infinity direction, (Focus Speed VF) = (Focusing
Lens Locus Tracking Speed V) + (Correction Speed V-),
10 and "0" is set in the correction (step 1011).

If "0" is set in the correction flag, and the
focusing lens locus tracking is being performed at the
lower speed, the lower speed is switched to the higher
speed in step 1002. More specifically, if the focusing
15 lens locus tracking speed V is "+", and the focus
compensation lens 15 is to be moved in the shortest
range direction, (Focus Speed VF) = (Focusing Lens
Locus Tracking Speed V) + (Correction Speed V+).
However, if the focusing lens locus tracking speed V is
20 "-", and the focus compensation lens 15 is to be moved
in the infinity direction, (Focus Speed VF) = (Focusing
Lens Locus Tracking Speed V) - (Correction Speed V+),
and "1" is set in the correction flag (step 1013).

If it is determined in step 1009 that "1" is set
25 in the inversion flag, and switching between the higher
speed and the lower speed need not be performed, it is
determined whether "1" is set in the correction flag to

1 determine whether focusing lens locus tracking is being
performed at the higher speed (step 1012).

If "1" is set in the correction flag, and the
focusing lens locus tracking is being performed at the
5 higher speed, the flow advances to step 1013 to
maintain this higher speed. However, if "0" is set in
the correction flag, and the focusing lens locus
tracking is being performed at the lower speed, the
flow advances to step 1011 to maintain this lower
10 speed.

After processing in step 1011 or 1013 is
performed, a zoom motor 22a is driven so that the
magnification lens 12 is moved at the zoom speed Vz
(step 1014). A focus motor 23a is driven so that the
15 focus compensation lens 15 is moved at the focus speed
VF (step 1015). The subroutine then returns to the
main flow.

[Applied Modification of Seventh Embodiment]

The γ value shown in Fig. 31A may be changed in
20 accordance with the depth of field (iris condition) or
the object (object luminance). That is, in step 1003
in Fig. 29, in calculation of the correction values V+
and V-, the k values in equations (15) and (16) are
changed in accordance with the magnitude of the γ value
25 determined in Figs. 32A and 32B.

Fig. 32A shows the γ values corresponding to the
depths of field (iris conditions). If the iris value

1 is zero, the magnitude of the γ value is set to a
reference value of "1". The magnitudes of the γ values
for iris values except for the iris value of "0" are
represented as magnifications with respect to the
5 reference value. For example, the magnitude of the γ
value for the iris value of "3" is twice the reference
value of "1".

Fig. 32B shows γ values corresponding to objects
(object luminance). The γ magnitude for the normal
10 object luminance is defined as a reference value of
"1", and a γ magnitude for a high-luminance object is
twice the normal object luminance.

Even if high-speed zooming is performed in a small
iris condition (i.e., a condition wherein the depth of
15 field is large), or high-speed zooming of
high-luminance object is performed, proper focusing
lens locus tracking can be performed.

[Eighth Embodiment]

The eighth embodiment of the present invention
20 will be described with reference to Figs. 33 to 35.

In the sixth embodiment, the threshold value TH1
of the clearness signal serving as the determination
reference for switching between the higher speed and
the lower speed is fixed. In an object whose clearness
25 signal level changes (e.g., when a low-contrast object
is selected from a large number of objects present and
spread within a frame, and zooming is performed in the

TOP SECRET//SI//FOUO

1 focused condition, the clearness signal level is
gradually reduced near the tele end), the clearness
signal level is often lower than the clearness signal
level corresponding to the focused condition. In this
5 case, a focusing lens locus to be traced is lost, and
zooming is performed up to the tele end while an image
is greatly blurred. This problem also occurs when
zooming is performed while the principal object is
changed from an object having a high clearness signal
10 level to an object having a low clearness signal level.

In the eighth embodiment, a threshold value TH1 of
the clearness signal level which serves as the
determination reference for switching between the
higher and lower speeds is peak-held and changed in
15 accordance with a change in clearness signal during
zooming. This processing is performed on the basis of
flow charts in Figs. 33 and 34.

The above processing on the basis of the flow
charts in Figs. 33 and 34 will be described. These
20 flow charts are very difficult to understand. For this
reason, after the respective steps are briefly
described, the flow charts will be described in detail.
Steps 1113 to 1121 in Figs. 33 and 34 are the same as
steps 907 to 915 in Figs. 27 and 28 of the sixth
25 embodiment, and a detailed description thereof will be
omitted.

1 A lens control microcomputer 21 sets initial
values of the zoom speed Vz and correction speeds V+
and V- in the + and - directions of Figs. 26A to 26C,
i.e., speeds for moving the focus compensation lens 15
5 at speeds higher (+) and lower (-) than the focusing
lens locus tracking speed V. The lens control
microcomputer 21 sets "1" in an inversion flag
representing whether switching between the higher speed
(+) and the lower speed (-) is performed (step 1101).
10 The inversion flag of "0" represents that inversion
should be performed, and the inversion flag of "1"
represents that inversion need not be performed.

15 The lens control microcomputer 21 detects the
ON/OFF conditions of a wide switch 32 and a tele switch
33 to determine whether the current condition is under
zooming (step 1102). If both the wide and tele
switches 32 and 33 are OFF, and the current condition
is under zooming, the flow advances to step 1121 to
drive a focus motor 23a (in this case, the focus speed
20 VF is determined by another subroutine). The
subroutine then returns to the main flow.

25 If the wide or tele switch 32 or 33 is ON, and the
current condition is under zooming, the lens control
microcomputer 21 determines which of the switches is ON
and determines whether zooming is being performed from
wide direction to the tele direction (step 1103). If
the wide switch 32 is determined to be ON and zooming

1 is determined to be from the tele direction to the wide
direction, the correction speeds V+ and V- are set to
"0" so as not to correct the focusing lens locus
tracking speed V (step 1104). The flow then advances
5 to step 1113.

If the lens control microcomputer 21 determines
that the tele switch 33 is ON and zooming is performed
from the wide direction to the tele direction, the
microcomputer 21 determines in a routine for fetching a
10 clearness signal processed once within one vertical
sync period whether a current value "signal 0" of the
clearness signal levels stored within a plurality of
vertical sync periods is a value "signal 1" of the
immediately preceding vertical sync period, i.e.,
15 whether the current value has a better focused
condition than the previous value (step 1105). If YES
in step 1105, a value obtained by subtracting an
arbitrary constant α from the current value "signal 0"
of the clearness signal level is set as a threshold
20 value TH1 (step 1106). The flow then advances to step
1107. If the current value "signal 0" is smaller than
the value "signal 1" of the immediately preceding
vertical sync period, and the current value has a
better focused condition than the previous value, the
25 threshold value TH1 is not set. The flow advances to
step 1107. By processing in steps 1105 and 1106, peak

1 holding of the threshold value TH1 corresponding to a
change in clearness signal level is performed.

The lens control microcomputer 21 determines whether the count value of a TH1 counter is "0" (step 5 1107). The TH1 counter is a down counter and is used to consider the delay of a video signal for lens movement and the like. This down counter is utilized to properly recognize whether the intensity (clearness signal level) of the video signal high frequency 10 component is high or low. It is determined in step 1107 that the count value of the TH1 counter is not "0", i.e., when it is determined that a predetermined period of time has not yet elapsed, the count value of the TH1 counter is decremented (step 1108), and the 15 flow advances to step 1114.

If the count value of the TH1 counter is determined to be "0", i.e., it is determined that the predetermined period of time has elapsed, the lens control microcomputer 21 determines whether the current 20 value "signal 0" of the clearness signal level is less than the threshold value TH1 (step 1109). If the current value "signal 0" of the clearness signal level is equal to or larger than the threshold value TH1, the microcomputer 21 determines whether the threshold value 25 TH1 is "0" (step 1110). If the threshold value TH1 is "0", the threshold value TH1 is set as "0" (step 1111). A predetermined value β is set in the TH1 counter (step

TOP SECRET CLEARED 04/23/90

1 1112), and the inversion flag is set to "0" (step
1113). However, if the threshold value TH1 is not "0",
the flow advances to step 1114. A description of the
subsequent steps will be omitted, as described above.

5 In processing from step 1105 to step 1113, the
threshold value TH1 serving as the determination
reference for switching between the higher and lower
speeds changes, as shown in Fig. 35.

In Fig. 35, the zoom lens position (corresponding
10 to the time axis) is plotted along the abscissa, and
the clearness signal level "signal 0" is plotted along
the ordinate. Unlike in Fig. 26A, the clearness signal
level "signal 0" changes in Fig. 35. The threshold
value TH1 increases while maintaining a level lower
15 than the clearness signal level "signal 0" by α and is
peak-held at a maximum value. Positions P1 to P3 are
obtained when the moving speed of the focus
compensation lens 15 is changed from the higher speed
to the lower speed (or from the lower speed to the
20 higher speed) so as to increase or decrease the
clearness signal level. A position P4 is a second peak
position of the clearness signal level "signal 0".
Positions P5 to P7 are obtained when a count time of
the count value β of the TH1 counter has elapsed upon
25 speed switching.

Processing in steps 1105 to 1113 in Fig. 36 will
be described using the case in Fig. 35.

1 Assume that the focus compensation lens 15 is
2 moved at the focus speed VF determined in step 1119,
3 and that the clearness signal level "signal 0" is high.
4 At this time, the threshold value TH1 increases while
5 maintaining the level lower than the clearness signal
level "signal 0" by α and is peak-held at a maximum
value.

When the focus compensation lens position is
deviated from the focusing lens locus, the clearness
10 signal level "signal 0" is decreased. Thereafter, when
the clearness signal level "signal 0" becomes smaller
than the threshold value TH1, YES is obtained in step
1109. The flow advances to operations from step 1111.
The moving speed of the focus compensation lens 15 is
15 switched from the higher speed to the lower speed. At
this time, the threshold value TH1 becomes "0". The
threshold value TH1 is kept "0" until the clearness
signal level "signal 0" is increased again. During the
period in which the focus compensation lens 15 is moved
20 from the position P3 to the position P5, speed
switching is inhibited to maintain the lower focus
speed determined at the position P3.

When the clearness signal level "signal 0" is
increased, the threshold value TH1 is peak-held in
25 processing of step 1106. The moving speed is switched
from the lower speed to the higher speed at the

1 position P2, and step 1109 is determined at the
position P3.

At the position P3, the clearness signal level "signal 0" is being reduced. That is, when the clearness signal level "signal 0" is decreased from the position P4 due to a change in object or object distance, the moving direction of the focus compensation lens 15 upon speed switching (after the position P3) may be set in a direction away from the focusing direction. In this case, the clearness signal level "signal 0" is continuously decreased.

In this case, a focusing lens locus to be traced may be lost, and zooming is performed up to the tele end while an image is greatly blurred. Speed switching is performed again, and the focus compensation lens must be moved again in the true focusing direction.

This processing is performed as follows. That is,
when the clearness signal level "signal 0" is
decreased, the threshold value TH1 is kept maintained
20 to be "0". YES is obtained in step 1110. The flow
advances to processing from step 1111. Switching from
the higher speed to the lower speed is performed again
(the position P3).

According to the lens control apparatus of this embodiment, as has been described above, when zooming is to be performed while the focused condition is kept maintained using the object video signal, zooming can

1 be performed while maintaining focusing precision having a predetermined level or more regardless of the length of zooming time, the length of the object distance, and the object luminance.

5

10

15

20

25

42000-32733650