

For Question,
Please Contact with WSCT
www.wsct-cert.com

TEST REPORT

FCC ID: 2AIZN-X609B

Product: Mobile Phone

Model No.: X609B

Additional Model No.: N/A

Trade Mark: Infinix

Report No.: FCC18080068A-RF

Issued Date: Oct. 29, 2018

Issued for:

INFINIX MOBILITY LIMITED

RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17

CANTON RD TST KLN HONG KONG

Issued By:

World Standardization Certification & Testing Group Co., Ltd.

Building A-B, Baoshi Science & Technology Park, Baoshi Road Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group Co.,Ltd. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

W5CT

世标检测认证股份 ting Group Co...ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

WSET

TABLE OF CONTENTS

	1	WSET W	5CT	WSET	WSET	WSET
\bigvee	1.	GENERAL INFORM			·/	3
$/ \setminus$	2.	GENERAL DESCRI				
V5Ε1	3.	FACILITIES AND A	CCREDITATIO	NS	7	6
		3.1. TEST FACILITY				
		3.2. ACCREDITATIONS				
		3.3. DESCRIPTION OF TEST O	7 4 4			/ 1/2/
/		3.4. EQUIPMENT MODIFICATION				8
Х	4.	SUMMARY OF TES		/ \		9
V5 []	5.	MEASUREMENT IN	ISTRUMENTS.	W57		10
	6.	EFFECTIVE (ISOTR	OPIC) RADIA	TED POWER		11
	7.	SPURIOUS EMISSI	ON (Conducte	d and Radiated)	19
	1	7.1. MEASUREMENT RESULT	(PRE-MEASUREMENT)			19
	8.	OCCUPIED BANDY	VIDTH& Emiss	ion Bandwidth		40
X	9.	BAND EDGE				55
	10.	FREQUENCY STAE	BILITY	Sure Contract		61
P/J		10.1. MEASUREMENT RESULT		V V mil liv		and the state of t
		10.11. WIEASUREMENT RESULT	(WORST)	X	X	02
		WESTER	5141	ZWSGI	WSET	WSEI
\times		\times	\times	\times		\times
VSC1		WSET	AW5ET	WSL	T N	SET
		\vee	\checkmark			\sim
	\mathcal{A}	W5ET* W	SET°	W5LT	WSET	WSET
\bigvee					/	\checkmark
V5C1		WSET	W5ET°	WSL	T N	15ET
		\/ \	/			
	certif	ication	SET	WSET	WSET	WSET
attion		ication & Page 1				
		131				

Report No.: FCC18080068A-RF

esting Group Co.,Ltd.

Page 2 of 64

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.

For Question,
Please Contact with WSCT
www.wsct-cert.com

1. GENERAL INFORMATION

	Product:	Mobile Phone
	Model No.:	X609B
	Additional Model:	N/A
	Applicant:	INFINIX MOBILITY LIMITED WSFT WSFT
	Address:	RMS 05-15, 13A/F SOUTH TOWER WORLD FINANCE CTR HARBOUR CITY 17 CANTON RD TST KLN HONG KONG
	Manufacturer:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
	Address:	1/F-4/F,7/F, BUILDING 3, TAIPINGYANG INDUSTRIAL ZONE, NO.2088, SHENYAN ROAD, YANTIAN DISTRICT, SHENZHEN CITY,
d		GUANGDONG PROVINCE, P.R.C
	Data of receipt:	Sep. 26, 2018
	Date of Test:	Sep. 26, 2018 to Oct. 26, 2018
	Applicable Standards:	FCC Rules Part 22H and 24E and 27.

The above equipment has been tested by World Standardization Certification & Testing Group Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Pu

Pu Shixi

Date: Oct, 29, 2018

Check By:

Din Shui quan

Qin Shuiquan)

(Wang Fengbing)

Date:

Oct. 29, 2018

Approved By:

Da

Date:

Oct. Il soil

世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT

2. GENERAL DESCRIPTION OF EUT

Equipment Type:	Mobile Phone
Hardware version:	V2.0
Software version:	X609B-H8025C-GO-180911V46
Frequency Bands:	□ GSM 850 □ PCS 1900 (U.S. Bands) UTRA Bands: □ UTRA Band 2 □ UTRA Band 5
Antenna Type:	Internal Antenna
Antenna gain:	PCS 1900: 0.92dBi GSM850: -6.8dBi UTRA Band 2: 0.92dBi UTRA Band 5: -6.8dBi
Battery information:	Li-Polymer Battery : BL-34BX Voltage: 3.8V Rated Capacity: 3400mAh/12.92Wh Typical Capacity: 3500mAh/13.30Wh Limited Charge Voltage: 4.35V
Adapter Information:	Adapter: CU-52JT Input: AC 100-240V 50/60Hz 200mA Output: DC 5V1.2A
Card(S):	Card 1: SIM Card Slot Card 2: SIM Card Slot
Max power:	See Table 2.1.2
Extreme Vol. Limits:	DC 3.5V to 4.35V (Normal: DC 3.8V)
Extreme Temp. Tolerance	-10°C to +65°C

WSET WSET WSET WSET WSET

WSET 世标检测认证股份
tanggration Certification & festing Group Co.,Ltd.

Table 2.1 The Basic Technical Specification for Working BAND(S).

For Question,
Please Contact with WSCT
www.wsct-cert.com

-	The basic reclinical opecinication for Working BAND(0).					
	OPERATION BAND(S)	Power Class	Mod.	Max Average (dBm)	Max Peak Power (dBm)	
7	GSM850 W5/	Class 4	GMSK	33.15	33.42	
	DCS1900	Class 1	GMSK	29.92	30.21	
	UTRA BAND 2	Class 3	QPSK	21.98	25.52	
	UTRA BAND 5	Class 3	QPSK	22.32	25.86	Z

X			X	\times	\times
WSET	W.5	ET .	WSET	WSET	WSET
WSUT	WELT	Meser	WSF	N//5	(T)
\times			WSET	\times	\times
WSET	\times	\times	\times		
WSET	$\langle \ \ \ \ \rangle$		X	\times	\times
WSET	\times	\times	\times		
WSET			\times	\times	\times
WSET	\times	\times	\times		
X			X		X

世标检测认证股份 tion & festing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

3. FACILITIES AND ACCREDITATIONS

3.1. Test Facility

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Registration Number: 366353

3.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA

NVLAP (The certificate registration number is NVLAP LAB CODE:600142-0)

VCCI (The certificate registration number is C-4790, R-3684, G-837)

Canada INDUSTRY CANADA

(The certificated registration number is 7700A-1)

China CNAS (The certificated registration number is L3732)

Copies of granted accreditation certificates are available for downloading from our web site,

http://www.wsct-cert.com

3.3. Description Of Test Channels And Test Modes

Test channels:

	GSM 850					
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)		
_	Low Range	0.2	128	824.2		
	Mid Range	0.2	190	836.6		
	High Range	0.2	251	848.8		

VE FT	1000	prop °	AVER PER S	DATE OF THE
		PCS 1	900	
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)
	Low Range	0.2	512	1850.2
/	Mid Range	0.2	661	1880
	High Range	0.2	810	1909.8

		AND 2		
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)
	Low Range	5	9262	1852.4
	Mid Range	5	9400	1880
	High Range	5	9538	1907.6
1	Military State of the State of			

URTA BAND 5						
Test Channel	BW(MHz)	UL Channel	Frequency(MHz)			
Low Range	5	4132	826.4			
Mid Range	5	4182	836.4			
High Range	5	4233	846.6			

Note 1: The worst condition was recorded in the test report if no other modes test data.

WSET WSET WSET WSET WSET

Certification & Paris Control of Certification & Paris Control of Certification & Paris Control of Certification & Paris Certificati

TESTING NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT

3.4. Equipment Modifications

3.4. Equipme	ent wodincations		X	Please Contact with WSCT
Not available for	or this EUT intended for grant.			www.wsct-cert.com
WSET	W5ET	WSET	WSET	WSET
	X			
		\ /		
WSET W	SET WSE	7°\\W5	CT W	5ET
W5ET	W5ET	W5ET	WSET"	W5CT
	\vee		/	
	\wedge			\wedge
W5ET W	SET WSE	7°\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ET W	SET N
	Y	X	X	
A TOTAL OF THE PARTY OF THE PAR				
WSET	WSET	WSET	WSET	AWSET
X	\times			
August Aug	Aug C			
WSET	SET WSE	7° W5	4 W	SET"
WSCT	WSET	W5CT ²	WSET	WSET
			/	
	X			
WSET W	SET° WSE	7° W5	[T] W	SET
WSET	WSET	W5ET*	WSET	WSET
	\vee	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\vee
Anna An	Anna			
W5ET W	SET WSE	7° W5	ET W	SET [®]
X	X	X		X
	NAC CONTRACTOR	WEET	W. C.	MEET
Certification &	WSET	WSET	WSET	WSET
100				
Of the state of th	\times			
Certification & Reguling of Parting of Parti	\times	$\langle \hspace{0.1cm} \rangle$		X

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

4. SUMMARY OF TEST REQUIREMENTS AND RESULTS

BAND 2(PCS 1900/ UTRA Band 2):

I	1D 2(PC3 1900/ U1	ra bana 2):			
	Test Item	FCC Rule No.	Requirements	Judgement	
	Effective (Isotropic) Radiated Power	§2.1046, §24.232(c)	EIRP ≤ 2W(33dBm)	Pass	
	Bandwidth	§2.1049 §24.238(a)	OBW: No limit. EBW: No limit.	Pass	
\ 	Band Edges	§2.1051, §24.238(a)	-13dBm	Pass	
	Spurious Emission at Antenna Terminals	§2.1051, §24.238(a)	-13dBm	Pass	
A	Field Strength of Spurious Radiation	§2.1053, §24.238(a)	-13dBm	Pass	
		\mathcal{L}	the fundamental		
		§2.1055,	emission	AWSL	1
	Frequency Stability	§24.235	stays within	Pass	
	X	X	the authorized	X	
			frequency		
7			block.		
A	Peak to average ratio	§24.232(d)	<13dB	Pass	

BAND 5(GSM850/ UTRA Band 5):

	Test Item	FCC Rule No.	Requirements	Judgement
	Effective (Isotropic) Radiated Power	§2.1046, §2.913(a)	EIRP ≤ 7W(38.5dBm)	Pass
	Occupied Bandwidth	§2.1049	OBW: No limit.	Pass
V A	Emission Bandwidth	22.917(b)	EBW: No limit.	75 Pass
	Band Edges Compliance	§2.1051, §22.917(a)(b)	KDB 971 168 D02 971168 D02 Misc OOBE License Digital Systems v01 &27.53(m) for detail the limit is upon different OBW	Pass
	Spurious Emission at Antenna Terminals	§2.1051, §22.917	-13dBm	Pass
	Field Strength of Spurious Radiation	§2.1053, §22.917	-13dBm	Pass
	Frequency Stability	§2.1055, §22.355	the fundamental emissions stay within the authorized bands of operation. (2.5ppm)	Pass

世标检测认证股份 Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

Certification

5. MEASUREMENT INSTRUMENTS

	WSCT	WSCT	W	5/7	WSET	N/	7
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
	EMI Test Receiver	R&S	ESCI	100005	08/19/2018	08/18/2019	
7	LISN	AFJ	LS16	16010222119	08/19/2018	08/18/2019	
	LISN(EUT)	Mestec	AN3016	04/10040	08/19/2018	08/18/2019	-
	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2018	08/18/2019	/
	Coaxial cable	Megalon	LMR400	5// N/A	08/12/2018	08/11/2019	
	GPIB cable	Megalon	GPIB	N/A	08/12/2018	08/11/2019	
	Spectrum Analyzer	R&S	FSU	100114	08/19/2018	08/18/2019	
L	Pre Amplifier	5.77° H.P.	HP8447E	2945A02715	10/13/2018	10/12/2019	
	Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2018	10/12/2019	
	Loop Antenna	R&S	HFH2-Z2	100296	10/13/2018	10/12/2019	
	Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2018	09/12/2018	
	9*6*6 Anechoic		\ <u> </u>	\	08/21/2018	08/20/2019	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	/	09/13/2018	09/12/2019	
74	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2018	08/22/2019	
	Power meter	Anritsu	ML2487A	6K00003613	08/23/2018	08/22/2019	
	Power meter	Anritsu	MA2491A	32263	08/23/2018	08/22/2019	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/24/2018	04/23/2019	//
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
L	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	t
	RF cable	Murata	MXHQ87WA3000	Χ -	08/21/2018	08/20/2019	
	Loop Antenna	EMCO	6502	00042960	08/22/2018	08/21/2019	/
	Wideband Radio Communication Tester	R&S	CMW 500	103974	08/19/2018	08/18/2019	2
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2018	08/18/2019	
1	H & T Chamber	Guangzhou gongwen	GDJS-500-40	0329 5 7	08/19/2018	08/18/2019	

世标检测认证股份 dization Certification & Festing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification &

For Question,
Please Contact with WSC

Member of the WSCT INC.

	SOTROPIC) RADIATE	D POWER	Please Contact with WSCT www.wsct-cert.com
RF Power Output Limits No specific RF power output requ	uirements in part 2.1046.	Wister	Wister
Methods of Measurement	the EUT was controlled via the Base	Station Simulator (CMU200)	WSET
Test Setup RF CABLE	Base Station Simulator	WSET	WSCI
WSET WSET	WSET	WSET	WSET
WSCT WSCT	WSET* WSE	WSET	W5E1
WSCT*	WSCT WSC	WSC	WSE
WSET WSET		WSET	
	WSET WSE	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \$	$\langle \hspace{0.1cm} \rangle$
WSET WSET		WSET	WSET
	\times	WSCI	$\langle \rangle$
Certification &			

世标检测认证股份 ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

Report No.: FCC18080068A-RF

For Question,
Please Contact with WSCT
www.wsct-cert.com

GSM850 BAND:

	COMOSO D	AIID.						WWW.Woot oort.	20111
	Mode		Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAP	Duty cycle Factor(dB)	Frame Power(dBm)	51
			824.2	33.23	33.08	0.15	-9	24.08	
	GSM850		836.6	33.26	33.06	0.20	-9	24.06	
/			848.8	33.42	33.15	0.27	-9	24.15	
			824.2	33.18	32.42	0.76	-9	23.42	
5	ET	1 Tx Slots	836.6	32.795	32.38	0.41	-9	23.38	
		Oloto	848.8	32.86	32.46	0.40	-9	23.46	
		0 T.	824.2	31.93	31.61	0.32	-6	25.61	V
		2 Tx Slots	836.6	31.86	31.65	0.21	-6	25.65	
		Siots	848.8	31.88	31.68	0.20	-6	25.68	
	G PRS850	0.7	824.2	30.89	30.66	0.23	-4.26	26.4	54
		3 Tx Slots	836.6	30.92	30.62	0.30	-4.26	26.36	
		Siols	848.8	30.87	30.76	0.11	-4.26	26.5	
		4.7.	824.2	29.97	29.88	0.09	-3	26.88	
		4 Tx Slots	836.6	29.93	29.8	0.13	-3	26.8	
5)		Giota	848.8	29.96	29.92	0.04	-3	26.92	
		-				A C			

Duty cycle Factor = 1 Tx Slots, 10*log(1/8) = -9.03dB, 2 Tx Slots, 10*log(2/8) = -6.02dB, 3Tx Slots, 10*log(3/8) = -4.26dB, 4 Tx Slots, 10*log(4/8) = -3.01dB

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

Certification

For Question,
Please Contact with WSCT
www.wsct-cert.com

PCS1900 BAND:

FC31300 BAND.		AND.						WWW.WSCI-CE
	Mod	e	Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAP	Duty cycle Factor(dB)	Frame Power(dBm)
			1850.2	30.21	29.92	0.29	-9	20.92
	GSM1900	200	1880	29.98	29.91	0.07	-9	20.91
	GSIVI1900		1909.8	30.04	29.97	0.07	-9	20.97
			1850.2	29.83	29.39	0.44	-9	20.39
7		1 Tx Slots	1880	29.68	29.43	0.25	-9	20.43
			1909.8	29.69	29.48	0.21	-9	20.48
	\sim		1850.2	28.96	28.59	0.37	-6	22.59
		2 Tx Slots	1880	28.71	28.67	0.04	-6	22.67
	GPRS1900		1909.8	28.72	28.69	0.03	-6	22.69
	GPK31900		1850.2	27.64	27.52	0.12	-4.26	23.26
		3 Tx Slots	1880	27.68	27.55	0.13	-4.26	23.29
		X	1909.8	27.66	27.58	0.08	-4.26	23.32
			1850.2	26.89	26.85	0.04	-3	23.85
		4 Tx Slots	1880	26.92	26.88	0.04	-3	23.88
			1909.8	27.02	26.95	0.07	-3	23.95
						•		

Duty cycle Factor = 1 Tx Slots, 10*log(1/8) = -9.03dB, 2 Tx Slots, 10*log(2/8) = -6.02dB, 3Tx Slots, 10*log(3/8) = -4.26dB, 4 Tx Slots, 10*log(4/8) = -3.01dB

WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

Certification

WSC1

For Question, Please Contact with WSCT www.wsct-cert.com

UMTS BANDS: BAND 2:

J 4 ;	10.00		THE PERSON NAMED IN		
Mod	е	Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAPR (dB)
		1852.4	25.52	21.95	3.57
Rel 99,12.2kl	hne PMC	1880	25.22	21.90	3.32
1101 99, 12.21	ops Kivic	1907.6	24.07	21.98	3.87
W5	77°	1852.4	24.58	21.62	2.96
	Subtest-1	1880	24.62	21.71	2.91
		1907.6	24.25	21.75	2.50
X		1852.4	24.37	21.45	2.92
	Subtest-2	1880	24.91	21.39	3.52
Pol F HCDDA	Rel 5,HSDPA		24.21	21.48	2.73
Kei 5, HSDFA			24.71	20.95	3.76
Subtest-3		1880	23.34	20.96	2.38
Subtest-4		1907.6	23.34	20.98	2.36
		1852.4	23.43	20.86	2.57
		1880	23.89	20.76	3.13
MAG	- T	1907.6	24.17	20.88	3.29
		1852.4	24.61	21.62	2.99
	Subtest-1	1880	24.74	21.68	3.06
		1907.6	25.43	21.79	3.64
		1852.4	25.00	21.55	3.45
	Subtest-2	1880	25.47	21.57	3.90
567	W	1907.6	24.34	21.65	2.69
		1852.4	24.45	21.46	2.99
Rel 6,HSUPA	Subtest-3	1880	23.55	21.48	2.07
		1907.6	25.00	21.59	3.41
		1852.4	24.15	20.92	3.23
AVVIC	Subtest-4	1880	24.50	21.80	2.70
		1907.6	23.35	20.94	2.41
		1852.4 1880	24.28	21.08	3.20
	Subtest-5		23.85	21.22	2.63
		1907.6	24.11	21.35	2.76

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

WSET WSET WSET

世标检测认证股份
esting Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
TEL:86-755-26996143/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification &

W5C7

For Question,
Please Contact with WSCT
www.wsct-cert.com

BAND 5:

N	ט ט:						www.wso
W	Mod	e	Frequency (MHz)	Peak Power(dBm)	Avg.Burst Power(dBm)	PAPR (dB)	
			826.4	25.73	22.23	3.50	
	Rel 99,12.2k	bps RMC	836.4	24.75	22.20	2.55	
			846.6	24.07	22.32	2.30	
			826.4	25.79	22.12	3.67	
	/100	Subtest-1	836.4	24.63	22.10	2.53	
			846.6	25.86	22.16	3.70	4/1
\			826.4	24.55	21.85	2.70	
		Subtest-2	836.4	24.35	21.82	2.53	
	Dale HCDDA		846.6	24.58	21.89	2.69	
	Rel 5,HSDPA		826.4	23.83	21.73	2.10	
41	SIT	Subtest-3	836.4	24.17	21.68	2.49	
A_A			846.6	24.26	21.87	2.39	-
			826.4	24.56	21.60	2.96	
		Subtest-4	836.4	24.58	21.52	3.06	
			846.6	25.05	21.71	3.34	
			826.4	24.48	21.89	2.59	
		Subtest-1	836.4	24.89	21.83	3.06	47
			846.6	24.66	21.95	2.71	
			826.4	24.34	22.01	2.33	
	X	Subtest-2	836.4	25.81	22.05	3.76	
/			846.6	24.89	21.98	2.91	
77	EFT	A	826.4	25.24	21.84	3.40	
AA	Rel 6,HSUPA	Subtest-3	836.4	25.05	21.77	3.28	-
			846.6	24.08	22.00	2.08	
		Y	826.4	24.22	21.68	2.54	
	/	Subtest-4	836.4	23.73	21.70	2.03	
			846.6	24.29	21.86	2.43	
	W	5/7	826.4	24.88	21.92	2.96	
		Subtest-5	836.4	24.15	21.98	2.17	
			846.6	24.78	22.10	2.68	

	W5CT	WSET	W5CT	WSET	W5ET
WSI					SET
	WSET	WSLT	WSET	WSET	WSEI
WSU		$\langle \hspace{0.1cm} \rangle$			SET

世标检测认证股份 ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China resting Group Co.,Ltd. TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification &

For Question,
Please Contact with WSCT
www.wsct-cert.com

Radiation power test

Test limit:

According to §22.913, The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. According to §24.232, Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50 (d), Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications. According to §27.50 (h), Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power. See section 4.

Test procedure:

- 1. The setup of EUT is according with per TIA/EIA Standard 603 D:2010 or KDB971168 D01 v02r02.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3.The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz,, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6.Power(EIRP)=PMea+PAg Pcl + Ga
- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

	WSET	WSET	WSET	WSET	WSE
WSCT	\times	WSE			W5ET
	WSET	WSET	WSET	WSET	WSE
WSET	X				W5ET
		W5CT*	WSET	W5ET*	\times
in C	entification & Registration				

Report No.: FCC18080068A-RF

Member of the WSCT INC.

Test Results:

Note: Record the condition when max power has been detector for radiated method. (Xwaxis)-cert.com

Radiated Power (ERP) for GSM 850

	Mode	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	ERP (Peak) (dBm)	Polarization
		824.2	-3.36	31.21	3.34	8.34	-2.15	30.70	H
7		836.6	-3.29	31.23	3.39	8.34	-2.15	30.74	WHIT
	GSM850	848.8	-3.42	31.25	3.43	8.29	-2.15	30.54	H
	GSIMO30	824.2	-15.14	31.21	3.34	8.34	-2.15	18.92	V
	X	836.6	-15.16	31.23	3.39	8.34	-2.15	18.87	V
L		848.8	-15.08	31.25	3.43	8.29	-2.15	18.88	V

Radiated Power (ERP) for GPRS 850

WSCT WSCT WSCT

	Mode	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	ERP (Peak) (dBm)	Polarization
I		824.2	-7.02	31.21	3.34	8.34	-2.15	27.04	H
		836.6	-6.76	31.23	3.39	8.34	-2.15	27.27	H
	GSM850	848.8	-6.75	31.25	3.43	8.29	-2.15	27.21	Н
	GSIMIOSO	824.2	-14.23	31.21	3.34	8.34	-2.15	19.83	V
		836.6	-14.15	31.23	3.39	8.34	-2.15	19.88	V
	WISET	848.8	-14.34	31.25	3.43	8.29	-2.15	19.62	V

Radiated Power (E.I.R.P) for PCS 1900

				adiatod i			1 00 100		
	Mode	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	E.I.R.P. (Peak) (dBm)	Polarization
		1850.2	-10.32	33.31	3.92	8.27	0	27.34	Н
	X	1880.0	-10.45	33.35	3.96	8.25	0	27.19	Н
6	SM 1900	1909.8	-10.19	33.38	4.01	8.21	0	27.39	Н
6.	3W 1900	1850.2	-16.34	33.31	3.92	8.27	0	21.32	V
	WYLI	1880	-16.35	33.35	3.96	8.25	0	21.29	V
		1909.8	-16.32	33.38	4.01	8.21	0	21.26	V

Radiated Power (E.I.R.P) for GPRS 1900

	Mode	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	E.I.R.P. (Peak) (dBm)	Polarization
		1850.2	-10.75	33.31	3.92	8.27	0	26.91	Н
		1880.0	-10.65	33.35	3.96	8.25	0	26.99	Н
	GSM 1900	1909.8	-10.82	33.38	4.01	8.21	0	26.76	Н
7	G3W 1900	1850.2	-17.68	33.31	3.92	8.27	0	19.98	V
		1880.0	-17.56	33.35	3.96	8.25	0	20.08	V
		1909.8	-17.63	33.38	4.01	8.21	0	19.95	V

Radiated Power (E.I.R.P) for UTRA Band 2

	Mode	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	PcI (dB)	Ga (dBi)	Correcti on (dB)	E.I.R.P. (Peak) (dBm)	Polarization
		1852.4	-15.68	33.31	3.92	8.27	0	21.98	H
		1880	-15.54	33.35	3.96	8.25	0	22.10	A
	UTRA	1907.6	-15.38	33.38	4.01	8.21	0	22.20	/H
3	Band 2	1852.4	-18.96	33.31	3.92	8.27	0	18.7 0	V
		1880	-18.65	33.35	3.96	8.25	0	18.99	
		1907.6	-18.76	33.38	4.01	8.21	0	18.82	V

Radiated Power (ERP) for UTRA Band 5

	Mode	Frequency (MHz)	P _{Mea} (dBm)	PAg (dB)	Pcl (dB)	Ga (dBi)	Correcti on (dB)	ERP (Peak) (dBm)	Polarization
		826.4	-11.96	31.21	3.34	8.34	-2.15	22.10	H
		836.4	-11.88	31.23	3.39	8.34	-2.15	22.15	Н
	UTRA	846.6	-11.84	31.25	3.43	8.29	-2.15	22.12	H
7	Band 5	826.4	-15.45	31.21	3.34	8.34	-2.15	18.61	WALLE
		836.4	-15.63	31.23	3.39	8.34	-2.15	18.40	V
		846.6	-15.78	31.25	3.43	8.29	-2.15	18.18	V

Note: EIRP=PMea + PAg - Pcl + Ga.

Each channel is scanned 10 times, and the peak value of each channel is recorded.

WSET	WSET	WSET	WSET	WSET	
\rightarrow		W.	\times	X	WSET
X		WSET	X	\times	
W51		W.	\times	X	WSET
X	\times	WSET		\times	
\rightarrow			X	X	X

7. SPURIOUS EMISSION (Conducted and Radiated)

7.1. Measurement Result (Pre-measurement)

WSET"

AWSLT

GSM850:

	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
	Low Range	0.2	128	824.2	Pass
	Middle Range	0.2	190	836.6	Pass
3	High Range	V 5 0.2	251/5/7	848.8	// Pass

PCS 1900:

Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
Low Range	0.2	5/7 512	1850.2	Pass
Middle Range	0.2	661	1880.0	Pass
High Range	0.2	810	1909.8	Pass

UTRA BANDS

RAND 2

DAND Z.				
Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
Low Range	5	9262	1852.4	Pass
Middle Range	5	9400	1880.0	Pass
High Range	5	9538	1907.6	Pass

BAND 5:

	And the second s				
h	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
	Low Range	5	4132	826.4	Pass
	Middle Range	5	4182	836.4	Pass
	High Range	5	4233	846.6	Pass

WSET WSET WSET WSET

WSET WSET WSET

YSET WSET

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

Report No.: FCC18080068A-RF

Certification

Test Plot(s) Conducted method

Test limit:

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.

Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least $X + 10\log(P)$ dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation $X + 10\log(P)$ being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., $10\log(P) - \{X + 10\log(P)\}$], resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.

Test procedure:

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

Conducted Emission Test-Up:

世标检测认证股份 & Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

certification

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 128 1GHz – 9GHz

800 MHz/

Aver

W5ET

Date: 4.0CT.2018 11:52:50

1 GHz

Conducted Emission Transmitting Mode CH 190 30MHz – 1GHz

NSIT

W5C

WSIT

WELT

WSC

WSC

W5LT |

Certification &

世标检测认证股份 Testing Group Co.,Ltd.

Date: 4.0CT.2018 11:54:18

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 190 1GHz – 9GHz

Date: 4.OCT.2018 11:54:43

Conducted Emission Transmitting Mode CH 251 30MHz – 1GHz

Date: 4.0CT.2018 11:56:04

世标检测认证股份 Testing Group Co.,Ltd. SET WSET

ET WSE

WSET WSET

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 251 1GHz – 9GHz

800 MHz/

Date: 4.OCT.2018 11:56:32

1 GHz

CONDUCTED EMISSION IN PCS1900 BAND Conducted Emission Transmitting Mode CH 512 30MHz – 1GHz

Date: 4.OCT.2018 11:59:37

世标检测认证股份 TEL:86-755-26996143/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: FCC18080068A-RF

Certification

Page 24 of 64

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 512 1GHz – 20GHz

1.9 GHz/

X

WSET"

Date: 4.OCT.2018 12:00:30

1 GHz

Conducted Emission Transmitting Mode CH 661 30MHz – 1GHz

_AW5C1

WSET

1W5C

WSIT

Date: 4.0CT.2018 12:01:09

WSET"

WSET"

MIEF

MIEL

WSC7 Group

Certification &

世标检测认证股份 Testing Group Co.,Ltd.

TESTING NVLAP LAB CODE 600142-0

For Question, Please Contact with WSCT www.wsct-cert.com

Conducted Emission Transmitting Mode CH 661 1GHz – 20GHz

Date: 4.OCT.2018 12:01:49

Date: 4.0CT.2018 12:02:41

Testing Group Co.,Ltd.

1 GHz

Conducted Emission Transmitting Mode CH 810 30MHz – 1GHz

Certification & 世标检测认证股份

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 810 1GHz – 20GHz

AWSET

Date: 4.OCT.2018 12:03:21

1 GHz

CONDUCTED EMISSION IN WCDMA Band II Conducted Emission Transmitting Mode CH 9262 30MHz – 1GHz

4W5ET

WSE.

WSIT

Date: 4.OCT.2018 12:09:05

WSLT

(SET

WEFT

MIET

WSET |

Certification &

世标检测认证股份 Testing Group Co.,Ltd.

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 9262 1GHz – 20GHz

1.9 GHz/

AWSET"

Date: 4.0CT.2018 12:09:55

1 GHz

Conducted Emission Transmitting Mode CH 9400 30MHz – 1GHz

WSL

WSET

W5E

Date: 4.OCT.2018 12:10:45

Testing Group Co.,Ltd.

WSET

WSCT

5*CT* W5*L*

W5C

Certification &

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 9400 1GHz – 20GHz

X

AWSET

Date: 4.OCT.2018 12:11:20

1 GHz

Conducted Emission Transmitting Mode CH 9538 30MHz – 1GHz

W5E

WSET

4W5E

Date: 4.0CT.2018 12:12:13

WSCT

4W5E7

WSC

世标检测认证股份 Wedication Certification & Testing Group Co.,Ltd.

Certification &

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

Conducted Emission Transmitting Mode CH 9538 1GHz – 20GHz

Date: 4.OCT.2018 12:12:47

1 GHz

CONDUCTED EMISSION IN WCDMA Band V Conducted Emission Transmitting Mode CH 4132 30MHz – 1GHz

Date: 4.OCT.2018 12:14:55

festing Group Co.,Ltd.

ADD Pullding A P Pageti Science & technology Pork

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certification

TESTING
NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

August 1

WELT

Date: 4.OCT.2018 12:19:54

1 GHz

Conducted Emission Transmitting Mode CH 4233 30MHz – 1GHz

harr

WEE CT

Date: 4.0CT.2018 12:20:56

AWSET"

WSET®

IWSET

MIEF

WEL

W5ET

Certification &

世标检测认证股份 Testing Group Co.,Ltd.

resting Group Co.,Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

Radiated method

Test limit:

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.

Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least X + 10log(P) dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation X + 10log(P) being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., $10log(P) - \{X + 10log(P)\}$], resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.

Test procedure:

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

Test setup:

artification

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

 \times \times \times

VSCT WSCT WS

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: FCC18080068A-RF

Member of the WSCT INC

0.8m

(B) Radiated Emission Test-Up Frequency Above 1GHz

EUT

For Question,
Please Contact with WSCT
www.wsct-cert.com

WSET

ET

Spectrum

Analyzer

Coaxial Cable

ZW5C1

Note:

1, Below 30MHz no Spurious found.

Ground Plane

Turntable

2, UE is poistioned at 3 axis at the pre-scan stage, and only the measurement of the worst case(bandwidth:20MHz /Full RB /QPSK) is reported in this part.

AWSET

Member of the WSCT INC

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET

正股份 ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/28996192 FAX:86-755-86376605 E-mail:Fendbing.Wang@wsct-cert.com

Report No.: FCC18080068A-RF

Certification

Page 35 of 64

For Question, Please Contact with WSCT

List of final test modes:

GSM850:

Mode	UL Channel	Frequency	Judgement
1	128	824.2	Pass
2	190	836.6	Pass
3	251	848.8	Pass

www.wsct-cert.com

PCS1900

Mode	UL Channel	Frequency	Judgement
1	128	824.2	Pass
2	190	836.6	Pass
3	251	848.8	Pass

Mode	UL Channel	Frequency	Judgement
1	512	1850.2	Pass
2	661	1880	Pass
3	810	1909.8	Pass

UTRA BANDS BAND 2:

	Mode	UL Channel	Frequency	Judgement
	1	9262	1852.4	Pass
١	2	9400	1880	Pass
	3	9538	1907.6	Pass

BAND 5:

Mode	UL Channel	Frequency	Judgement
1	4132	826.4	Pass
2	4182	836.4	Pass
3	4233	846.6	Pass

esting Group Co.,Ltd.

Certification &

W5C7

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

For Question, Please Contact with WSCT www.wsct-cert.com

Test record: Note:

- 1. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below:

 Power=P_{Mea+ARpl}
 - 2. ARpl =Antenna gain-Cable loss

GSM850:

Mode 1					
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
1648.4	-47.83	6.35	-54.18	-13	Horizontal
1648.4	-44.34	7.15	-51.49	-13	Vertical
2472.6	-48.05	6.35	-54.40	-13	Horizontal
2472.6	-44.45	6.84	-51.29	-13	Vertical

	Mode 2					
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
4	1673.2	-44.88	6.37	-51.25	-13	Horizontal
4	1673.2	-44.12	7.16	-51.28	-13	Vertical
	2509.8	-48.33	6.37	-54.70	-13	Horizontal
	2509.8	-46.41	6.85	-53.26	-13	Vertical

	Mode 3						
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity		
1697.6	-46.65	6.38	-53.03	-13	Horizontal		
1697.6	-46.70	7.17	-53.87	-13	Vertical		
2546.4	-45.69	6.38	-52.07	-13 W 5	Horizontal		
2546.4	-43.57	6.86	-50.43	-13	Vertical		

PCS1900:

	Mode 1							
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity			
3700.4	-41.36	7.12	-48.48	-13	Horizontal			
3700.4	-45.21	6.93	-52.14	-13	Vertical			
5550.6	-46.34	6.85	-53.19	-13	Horizontal			
5550.6	-40.19	6.46	-46.65	-13	Vertical			

	Mode 2					
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
3760	-41.36	7.14	-48.5	-13	Horizontal	
3760	-45.21	6.95	-52.16	-13	Vertical	
5640	-46.34	6.86	-53.2	-13	Horizontal	
5640	-40.19	6.48	-46.67	-13	Vertical	

世标检测认证股份 pdization Certification & Festing Group Co., Ltd.

For Question,

						Diago Contact w	
			Mode	e 3			t.com
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
4	3819.6	-45.22	7.15	-52.37	-13	Horizontal	VSL1
	3819.6	-41.64	6.96	-48.6	-13	Vertical	
	5729.4	-49.04	6.88	-55.92	-13	Horizontal	
	5729.4	-45.6	6.49	-52.09	-13	Vertical	

UTRA BANDS BAND 2:

	Mode 1					
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
3704.8	-61.19	7.23	-68.42	-13	Horizontal	
3704.8	-61.89	7.36	-69.25	-13	Vertical	
5557.2	-62.42	7.81	-70.23	-13	Horizontal	
5557.2	-60.56	7.46	-68.02	5 L/-13	Vertical	

	Mode 2						
П	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
W	5 6 3760	-61.92	7.24	/5/-69.16	-13 W 5	Horizontal	
	3760	-59.12	7.38	-66.50	-13	Vertical	
	5640	-58.72	7.83	-66.55	-13	Horizontal	
	5640	-60.92	7.47	-68.39	-13	Vertical	

		WE FT		EFT	
		Mode	e 3		
Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
3815.2	-56.17	7.25	-63.42	-13	Horizontal
3815.2	-57.61	7.40	-65.01	-13	Vertical
5722.8	-61.54	7.85	-69.39	-13	Horizontal
5722.8	-60.17	7.47	-67.64	-13	Vertical

BAND 5:

H	ND 3.					
			Mode	e 1		
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity
	1652.8	-61.31	7.23	-68.54	-13	Horizontal
	1652.8	-63.04	7.16	-70.20	-13	Vertical
	W 5 / 2479.2	-61.07	7.68	-68.75	-13 W 5	Horizontal
	2479.2	-60.85	6.93	-67.78	-13	Vertical

Mode 2							
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity		
1672.8	-57.95	7.24	-65.19	-13	Horizontal		
1672.8	-57.70	7.18	-64.88	-13	Vertical		
2509.2	-60.59	7.82	-68.41	-13	Horizontal		
2509.2	-57.00	6.96	-63.96	-13	Vertical		

WSCT

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

For Question,
Please Contact with WSCT
www.wsct-cert.com

/		Mode 3					
	Frequency(MHz)	Power(dBm)	ARpl (dB)	PMea(dBm)	Limit (dBm)	Polarity	
	1693.2	-63.77	7.24	-71.01	-13	Horizontal	
	1693.2	-58.41	7.21	-65.62	-13	Vertical	
	2539.8 // 5 /	-62.58	7.84	-70.42	5/7-13	Horizontal	
	2539.8	-56.84	7.05	-63.89	-13	Vertical	

WSET	WSET	WSET	WSET	WSET
WSET WS	$\langle \hspace{0.1cm} \rangle$			
	WSET	\times		\times
WSET WS	$\langle \hspace{0.1cm} \rangle$			
	WSET	\times		\times
WSET WS	$\langle \hspace{0.1cm} \rangle$			ET.
	WSET	\times	\times	\times
\geq	ET W5		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	TET .
	W5ET°	WSET	WSET	WSET
Certification & Po				

World Standard Station Certification & Testing Gro

Report No.: FCC18080068A-RF

世标检测认证股份 festing Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Page 39 of 64

8. OCCUPIED BANDWIDTH& Emission Bandwidth

Test limit:

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission, shall be measured when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user. [jì2.1049(h)]

Many of the individual rule parts specify a relative OBW in lieu of the 99% OBW. In such cases, the OBW is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least X dB below the transmitter power, where the value of X is typically specified as 26.

The relative OBW must be measured and reported when it is specified in the applicable rule part; otherwise, the 99% OBW shall be measured and reported. The test report shall specify which OBW is reported.

A spectrum/signal analyzer or other instrument providing a spectral display is recommended for these measurements and the video bandwidth shall be set to a value at least three times greater than the IF/resolution bandwidth to avoid any amplitude smoothing. Video filtering shall not be used during occupied bandwidth tests.

The OBW shall be measured for all operating conditions that will affect the bandwidth results (e.g. variable modulations, coding, or channel bandwidth settings). See section 4.

Test procedure:

Occupied bandwidth – relative measurement procedure

The reference value is the highest level of the spectral envelope of the modulated signal.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- b) The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to prevent the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.
- e) The dynamic range of the spectrum analyzer at the selected RBW shall be at least 10 dB below the target "-X dB down" requirement (i.e., if the requirement calls for measuring the –26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference value).
- f) Set the detection mode to peak, and the trace mode to max hold.
- g) Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- h) Determine the "-X dB down amplitude" as equal to (Reference Value X). Alternatively, this calculation can be performed by the analyzer by using the marker-delta function.
- i) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB

世标检测认证股份 esting Group Co...Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

down amplitude" determined in step g). If a marker is below this "-X dB down amplitude," For Question, value it shall be placed as close as possible to this value. The OBW is the positive www.wsct-cert.com frequency difference between the two markers.

j) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Occupied bandwidth – power bandwidth (99%) measurement procedure The following procedure shall be used for measuring (99 %) power bandwidth

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.
- d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.
- e) Set the detection mode to peak, and the trace mode to max hold...
- f) Use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99 % power bandwidth function, the trace data points are to be recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99 % power bandwidth is the difference between these two frequencies.
- h) The OBW shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Test setup:

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

For Question, Please Contact with WSCT www.wsct-cert.com

Measurement Result

|--|

Frequency	OBW(99%)	26dB BW
824.2	246.795KHz	312.500KHz
836.6	245.192KHz	318.910KHz
848.8	245.192KHz	317.308KHz

PCS1900:

	Frequency	OBW(99%)	26dB BW
	1850.2	245.192KHz	310.897KHz
	1880	245.192KHz	309.295KHz
2	1909.8 W5C	248.397KHz	317.308KHz

GPRS850:

Frequency	OBW(99%)	26dB BW
824.2	243.590KHz	317.308KHz
836.6 W5C	246.795KHz	317.308KHz
848.8	248.397KHz	315.705KHz

GPRS 1900:

Frequency	OBW(99%)	26dB BW
1850.2	245.192KHz	318.910KHz
1880	245.192KHz	310.910KHz
1909.8	245.192KHz	320.513KHz

世标检测认证股份 Festing Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question, Please Contact with WSCT www.wsct-cert.com

UTRA BANDS BAND 2:

Frequency	OBW(99%)	26dB BW
1852.4	4.151MHz	4.696MHz
1880	4.167MHz	4.712MHz
1907.6	4.183MHz	4.728MHz

BAND 5:

Frequency	OBW(99%)	26dB BW
826.4	4.151MHz	4.696MHz
836.4	4.151MHz	4.696MHz
846.6	4.167MHz	4.696MHz

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

Certification &

W5C7

TESTING NVLAP LAB CODE 600142-0

For Question, Please Contact with WSCT www.wsct-cert.com

Test Plot(s)

Certification &

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question,
Please Contact with WSCT
www.wsct-cert.com

Occupied Bandwidth (99% and -26dBc) GSM 850 BAND CH 190

Date: 4.OCT.2018 12:36:27

Occupied Bandwidth (99% and -26dBc) GSM 850 BAND CH 251

Date: 4.OCT.2018 12:38:23

Testing Group Co., Ltd.

 \times

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996145/26996145/26996102 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http:www.wsct-cert.com

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China World Standard Festing Group Co.,Ltd. TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com

Member of the WSCT INC

For Question,
Please Contact with WSCT
www.wsct-cert.com

Occupied Bandwidth (99% and -26dBc) PCS 1900 BAND CH 810

X

Date: 4.OCT.2018 12:48:35

Occupied Bandwidth (99% and -26dBc) GPRS 850 BAND CH 128

Date: 4.OCT.2018 15:31:38

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question,
Please Contact with WSCT
www.wsct-cert.com

Occupied Bandwidth (99% and -26dBc) GPRS 850 BAND CH 190

WSET"

Date: 4.OCT.2018 15:34:18

Occupied Bandwidth (99% and -26dBc) GPRS 850 BAND CH 251

house

WSET

4W5E

WSFT

Date: 4.OCT.2018 15:37:24

Testing Group Co.,Ltd.

WSCT

SET

WEL

る 世标校

Certification &

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com festing Group Co.,Ltd.

d. NVLAP LAB CODE 600142-0

For Question,
Please Contact with WSCT
www.wsct-cert.com

UTRA BANDS

Occupied Bandwidth (99% and -26dBc) WCDMA BAND II CH 9262

WSI

WSET"

Date: 4.OCT.2018 16:14:49

Occupied Bandwidth (99%and-26dBc) WCDMA BAND II CH 9400

W5E

WSIT

Date: 4.OCT.2018 16:17:46

WSET

WS/

W5E

WSET |

Certification &

世标检测认证股份 Testing Group Co.,Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

For Question,
Please Contact with WSCT
www.wsct-cert.com

Occupied Bandwidth (99%and-26dBc) WCDMA BAND V CH 4132

WSE

WSET

Date: 4.OCT.2018 16:27:07

Occupied Bandwidth (99%and-26dBc) WCDMA BAND V CH 4182

WSET.

4W5C

WSFT

Date: 4.OCT.2018 16:30:43

WSCT.

WSET

MIEF

MIET

WSCT |

Certification &

世标检测认证股份 Testing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing, Wang@wscl-cert.com Http://www.wscl-cert.com

9. BAND EDGE

Test Limit:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly load ed with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is op erated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified. See section 4.

Test procedure:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Test setup:

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question,
Please Contact with WSCT
www.wsct-cert.com

Measurement Result Test Plot(s)

Date: 26.OCT.2018 11:37:43

Center 824 MHz

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996145/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Span 1 MHz

esting Group Co.,Ltd.

WSCT 世标检测认证股份
World Standard Sation Certification of Testing Group Co., Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

TESTING NVLAP LAB CODE 600142-0

For Question, Please Contact with WSCT www.wsct-cert.com

High Band Edge PCS 1900 BAND CH 810

Date: 4.OCT.2018 16:57:21

Low Band Edge WCDMA BAND II CH 9263

Date: 26.OCT.2018 11:53:46

Certification &

festing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

TESTING NVLAP LAB CODE 600142-0

High Band Edge WCDMA BAND II CH 9537

For Question, Please Contact with WSCT www.wsct-cert.com

Date: 4.OCT.2018 17:04:41

Low Band Edge WCDMA BAND V CH 4132

Date: 4.OCT.2018 17:07:40

Certification &

世标检测认证股份 festing Group Co.,Ltd.

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

10. FREQUENCY STABILITY

Test limit:

The frequency stability of the transmitter shall be measured while varying the ambient temperatures and supply voltages over the ranges specified in §2.1055. The specific frequency stability limits are provided in the relevant rules section(s). see section 4.

Test procedure:

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

Test setup:

WSET	WSET	WSET	WSET	WSET
WS		SET WSE		WSET

WSCT WSCT WSCT WSCT

WSCT Certification & Certific

WSL

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

esting Group Co.,Ltd.

10.1. Measurement Result (Worst)

Frequency Error against Voltage for GSM 850 band (836.6MHz)

- 6			
	Voltage(V)	Frequency error(Hz)	Frequency error (ppm)
	3.45	22	0.026
	3.8	19	0.023
	4.35	18	0.022

Frequency Error against Temperature for GSM 850 band (836.6MHz)

	Trequency Error against remperature for com coo band (coo.com/12)		
3	Temperature(°C	NSET WSE	T WSET
)	Frequency error(Hz)	Frequency error(ppm)
	-10	22	0.026
	0	20	0.024
	105	W17_7	W5 0.020
	20	15	0.018
	30	21	0.025
	40	23	0.027
5	50	W5L7 19 W5L	0.023

Frequency Error against Voltage for PCS 1900 band (1880MHz)

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	25	0.013
3.85	23	0.012
4.4	21	0.011

Frequency Error against Temperature for PCS 1900 band (1880MHz)

rioquency = iron against remperature remove the constant (recommiz)		
Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-10	30	0.016
0	24	0.013
10-	W 5 25	2 W 5- 0.013
20	32	0.017
30	31	0.016
40	27	0.014
50	28 W5L	0.015

Frequency Error against Voltage for GPRS 850 band (836.6MHz)

Voltage(V)	Frequency error(Hz)	Frequency error (ppm)
3.5	31	0.037
3.85	28	0.033
4.4	29	0.035

+ | \$

世标检测认证股份 esting Group Co. Ltd. ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996143/26996144/26996145/26996192 FAX:86-755-86376605 E-mail:Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

Frequency Error against Temperature for GPRS 850 band (836.6MHz)

Temperature(°C	Frequency error(Hz) 54	Frequency error(ppm)
-10	21	0.025
0	20	0.024
10	17	0.020
20	24	0.029
30	26	0.031
40	31	0.037
50	28	0.033

Frequency Error against Voltage for GPRS 1900 band (1880MHz)

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	18	0.010
3.85	15	0.008
4.4	23	0.012

Frequency Error against Temperature for GPRS 1900 band (1880MHz)

_	Frequency Error against remperature for GFK3 1900 band (1660MHz)		
Æ	Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
	-10	28	0.015
	0	29	0.015
	10	25	0.013
	20	27	0.014
\	30	24	0.013
/	40	23	0.012
e e	50	25	0.013

UTRA BANDS

Frequency Error against Voltage for WCDMA BAND 2 (1880MHz)

	Voltage(V)	Frequency error(Hz)	Frequency error (ppm)
	3.5	26	0.014
	3.85	20	0.011
P	4.4	27	0.014

WSET°

AWSET"

WSET

W5E

世标检测认证股份

ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, Chir

Frequency Error against Temperature for WCDMA BAND 2 (1880MHz)

	Temperature(°C	Frequency error(Hz)	Frequency error(ppm)
	-10	20	0.011
	0	22	0.012
	10	21	0.011
	20	20	0.011
	30	19	0.010
1	40	24	0.013
-	50	28	0.015

Frequency Error against Voltage for WCDMA BAND 5 (836.4MHz)

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.5	30	WCF-0.036
3.85	31	0.037
4.4	32	0.038

Frequency Error against Temperature for WCDMA BAND 5 (836.4MHz)

The desired and the desired and the second and the		
Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-10	26	0.031
0	21	0.025
10	24.	0.029
20	31	0.037
30	27	0.032
40	30	0.036
577° 50	25 WSFT	0.030

WSET WSET WSET

---END OF REPORT---

WSET WSET WSET

WSCT WSCT WSCT WSCT

WSET WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China