Untitled01

Datathon 2023 – Genética – Grupo 01

Identificação do problema

Onde funciona bem?

Control Case

O.5

O.4

O.3

O.2

O.1

O.0

PRS

Nosso dado

O que precisamos fazer

Questões de Estudo & Hipóteses

Incorporar features das variantes genéticas para melhorar o modelo

Hipótese 1 FILTRAGEM

Filtrar variantes que possuem "impacto duvidoso" (provável não *casual variant*) melhore o modelo.

Hipótese 2 NOVOS PESOS

Utilizar outras formas de gerar os pesos (que não apenas o beta do GWAS) pode melhorar o modelo

Hipótese 3

FILTRAGEM + NOVOS PESOS

Combinar a H1 e H2 pode melhorar o modelo

Metodologia Proposta

- Filtragem de variantes com base em características das variantes
- Adição de novos pesos de acordo com características das variantes

Critérios de Filtragem

- Variante presente em região gênica
- Variante presente com frequência semelhante em população AFR e EUR

Criar novos pesos

- CADD
- Número de tecidos com expressão diferencialmente expressos

Metodologia Proposta

Metodologia comum

Efeitos

VCF

Pesos genético (z-score)

Pesos clínicos

Regressão logística (só genético) Regressão logística (genético + clínico) (teste treino 0.66/0.33)

ROC (AUC)

Resultados & Discussões / Filtragem

SCORE GENÉTICO

Resultados & Discussões / Filtragem

SNP1		X	
SNP2		X	Efaites/
SNP3	VCF (genótipos)	X	Efeitos/ Pesos (Beta GWAS)
SNP4		X	
SNP5		X	

NOVO SCORE GENÉTICO

Resultados & Discussões / Filtragem

Distancia

Genético

Genético + Clínico

0.8

False Positive Rate

SNP1		X	
SNP2		X	Efaita o /
SNP3	VCF (genótipos)	X	Efeitos/ Pesos (Beta GWAS)
SNP4		Χ	
SNP5		X	

SCORE GENÉTICO

SNP1		X	
SNP2		X	
SNP3	VCF (genótipos)	X	CADD score
SNP4		X	
SNP5		Χ	

NOVO SCORE GENÉTICO

CADD score PHRED

Como foi utilizado Score como está

Pontuação que prevê a deleteriosidade de uma variante integrando anotações como conservação e informações funcionais do genoma. Como as pontuações brutas têm um significado relativo, as pontuações são normalizadas e ordenadas, expressando a classificação em termos de ordem de magnitude. Maiores pontuações CADD indicam variantes possivelmente mais deletérias.

Expressão Gênica Diferencial

Como foi utilizado Se está low ou high, score +1

Artery_Aorta, Artery_Coronary, Artery_Tibial,

Bladder, Heart_Atrial_Appendage,

Heart_Left_Ventricle, Kidney_Cortex e

Whole_Blood: indica se os gene está diferencialmente
expressos em cada um desses tecidos.

Distancia

Genético

False Positive Rate

False Positive Rate

OND4			
SNP1		Х	
SNP2		Х	
SNP3	VCF (genótipos)	Х	CADD score
SNP4		Х	
SNP5		Х	

SNP1		Х	
		.,	
SNP2		Х	
SNP3	VCF (genótipos)	Х	Tissue DEG
SNP4		Х	
SNP5		Х	

SCORE GENÉTICO (BETA GWAS)

NOVO SCORE GENÉTICO

NOVO SCORE GENÉTICO

REG. LOGÍSTICA

Resultados & Discussões / Filtragem + Novos Pesos

Resultados & Discussões / Filtragem + Novos Pesos

Aplicabilidade & Impacto

Nosso melhor modelo foi o que incorporou novos pesos baseados no impacto funcional da variante (CADD PHRED) e na expressão gênica diferencial em tecidos relevantes para o fenótipo (hipertensão);

O AUC original do modelo utilizando apenas preditores genéticos foi de 0.535 para 0.588, ainda inferior ao da população original (0.645);

A abordagem de filtragem também melhorou o poder de predição, porém de maneira inferior à utilização de novos pesos. A combinação dessas abordagem não melhorou o AUROC.

Desafios & Próximos passos

- Podemos confiar em um acréscimo de 0.0X no AUC? É uma melhora real?
- Coortes da população alvo maior;
- Metodologia mais automatizada/sofisticada para seleção de features;