

Forecasting and Forensic Analytics

Session 4: Forecasting Walmart Sales
Dr. Wang Jiwei

Preface

Learning objectives

- **Theory:**
 - Furthur understand EDA and OLS
- Application:
 - Case: Walmart sales forecasting
- Methodology:
 - OLS regression

Case: Walmart Store Sales Forecasting

The question

How can we predict weekly departmental revenue for Walmart, leveraging our knowledge of Walmart, its business, and some limited historical information

- Click here for the Kaggle competition
- Predict weekly for 115,064 (Store, Department, Week) tuples
 - From 2012-11-02 to 2013-07-26: test dataset
- Using [incomplete] weekly revenue data from 2010-02-05 to 2012-11-01
 - By department (some weeks missing for some departments): training dataset

More specifically...

- Consider time dimensions
 - What matters:
 - Time of the year?
 - Holidays?
 - Do different stores or departments behave differently?
- Wrinkles:
 - Walmart won't give us weekly sales in the test data
 - But they'll tell us how well the algorithm performs when we submit the forecasts to Kaggle
 - We can't use past week sales for prediction because we won't have it for most of the prediction in the testing data...

Load data and packages


```
library(tidyverse) # we'll extensively use dplyr here
library(lubridate) # Great for simple date functions
library(broom) # Display regression results in a tidy way
weekly <- read.csv("../../Data/Session_4_WMT_train.csv")
weekly.test <- read.csv("../../Data/Session_4_WMT_test.csv")
weekly.features <- read.csv("../../Data/Session_4_WMT_features.csv")
weekly.stores <- read.csv("../../Data/Session_4_WMT_stores.csv")</pre>
```

- weekly is our training data
- weekly.test is our testing data -- no Weekly_Sales column
- weekly.features is general information about (week, store) pairs
 - Temperature, pricing, etc.
- weekly.stores is general information about each store

The data

- Revenue by week for each department of each of 45 stores
 - Department is just a number between 1 and 99
 - Date of that week
 - If the week is considered a holiday for sales purposes
 - Super Bowl (first Sunday in February), Labor Day (first Monday in September), Black Friday (fourth Friday of November), Christmas
- Store data:
 - Which store the data is for, 1 to 45
 - Store type (A, B, or C)
 - Store size
- Other data, by week and location:
 - Temperature, gas price, markdown, CPI, Unemployment, Holidays

The training data

##


```
Store Dept
                      Date Weekly Sales IsHoliday
##
## 1
         1
             1 2010-02-05
                               24924.50
                                            FALSE
## 2
             1 2010-02-12
                               46039.49
                                            TRUE
## 3
           1 2010-02-19
                               41595.55
                                           FALSE
## 4
           1 2010-02-26
                               19403.54
                                           FALSE
## 5
           1 2010-03-05
                               21827.90
                                           FALSE
## 6
             1 2010-03-12
                               21043.39
                                            FALSE
                                                       Weekly Sales
##
        Store
                        Dept
                                       Date
##
   Min.
          : 1.0
                  Min.
                          : 1.00
                                   Length: 421570
                                                      Min.
                                                             : -4989
   1st Ou.:11.0
                 1st Qu.:18.00
                                  Class :character
                                                      1st Ou.:
                                                                2080
   Median :22.0
                 Median :37.00
                                   Mode :character
                                                      Median :
                                                                7612
##
         :22.2
                          :44.26
                                                             : 15981
##
   Mean
                  Mean
                                                      Mean
    3rd Qu.:33.0
                 3rd Ou.:74.00
                                                      3rd Ou.: 20206
   Max.
           :45.0
                  Max.
                          :99.00
                                                      Max.
                                                             :693099
    IsHoliday
   Mode :logical
    FALSE: 391909
##
   TRUE :29661
##
##
```

Walmart's evaluation metric

- Walmart uses MAE (mean absolute error), but with a twist:
 - They care more about holidays, so any error on holidays has **5 times** the penalty
 - They call this WMAE, for *weighted* mean absolute error

$$WMAE = rac{1}{\sum w_i} \sum_{i=1}^n w_i \left| y_i - \hat{y}_i
ight|$$

- \bullet *n* is the number of test data points
- \hat{y}_i is your prediction
- y_i is the actual sales
- w_i is 5 on holidays and 1 otherwise

```
# Construct a function in R to calculate WMAE
wmae <- function(actual, predicted, holidays) {
  sum(abs(actual - predicted) * (holidays * 4 + 1)) /
    (length(actual) + 4 * sum(holidays))
}</pre>
```

Before we get started...

- The data isn't very clean:
 - Markdowns are given by 5 separate variables instead of 1
 - Date is text format instead of a date
 - CPI and unemployment data are missing in around a third of the training data
 - There are some (week, store, department) groups missing from our training data!
- Some features to add:
 - Year
 - Week
 - A unique ID for tracking: (store-department-week) tuples
 - The ID Walmart requests we use for submissions: "1 1 2012-11-02"
 - Average sales by (store, department)
 - Average sales by (week, store, department)

Data cleaning


```
preprocess data <- function(df) {</pre>
 # Merge the data together (Pulled data from outside of function -- "scoping")
 # https://bookdown.org/rdpeng/rprogdatascience/scoping-rules-of-r.html
 df <- inner join(df, weekly.stores)</pre>
 # last col 'isHoliday' is already in train data, join the first 11 col only.
 df <- inner join(df, weekly.features[ , 1:11])</pre>
 # I am not sure what exactly the five markdowns represent
 # All missing markdowns will be assigned to 0 and record the last non-missing
 df$markdown <- 0
 df[!is.na(df$MarkDown1), ]$markdown <- df[!is.na(df$MarkDown1), ]$MarkDown1</pre>
 df[!is.na(df$MarkDown2), ]$markdown <- df[!is.na(df$MarkDown2), ]$MarkDown2
 df[!is.na(df$MarkDown3), ]$markdown <- df[!is.na(df$MarkDown3), ]$MarkDown3</pre>
 df[!is.na(df$MarkDown4), ]$markdown <- df[!is.na(df$MarkDown4), ]$MarkDown4
 df[!is.na(df$MarkDown5), ]$markdown <- df[!is.na(df$MarkDown5), ]$MarkDown5</pre>
 # Fix dates and add useful time variables
 df$date <- as.Date(df$Date)</pre>
 df$week <- week(df$date)</pre>
 df$vear <- vear(df$date)</pre>
 df
```

```
df <- preprocess_data(weekly)
df[df$Weekly_Sales <- 0
df_test <- preprocess_data(weekly.test)</pre>
```

Merge data, fix markdown, build time data

What this looks like


```
df[91:94, ] %>%
  select(Store, date, markdown, MarkDown3, MarkDown4, MarkDown5) %>%
  html_df()
```

	Store	date	markdown	MarkDown3	MarkDown4	MarkDown5
91	1	2011-10-28	0.00	NA	NA	NA
92	1	2011-11-04	0.00	NA	NA	NA
93	1	2011-11-11	6551.42	215.07	2406.62	6551.42
94	1	2011-11-18	5988.57	51.98	427.39	5988.57

df[1:2,] %>% select(date, week, year) %>% html_df()

date	week	year
2010-02-05	6	2010
2010-02-12	7	2010

Cleaning: Missing CPI and Unemployment

Apply the (store, year)'s average CPI and average Unemployment to missing data

Cleaning: Adding IDs

- Build a unique ID
 - Since store, week and department are all 2 digits, make a 6 digit number with 2 digits for each
 - sswwdd
- Build Walmart's requested ID for submissions
 - ss_dd_YYYY-MM-DD

```
# Unique IDs in the data
df$id <- df$Store *10000 + df$week * 100 + df$Dept
df_test$id <- df_test$Store *10000 + df_test$week * 100 + df_test$Dept

# Unique ID and factor building
swd <- c(df$id, df_test$id) # Pool all IDs
swd <- unique(swd) # Only keep unique elements
swd <- data.frame(id = swd) # Make a data frame
swd$swd <- factor(swd$id) # Extract factors for using later

# Add unique factors to data -- ensures same factors for both data sets
df <- left_join(df, swd)
df_test <- left_join(df_test, swd)</pre>
```

```
df_test$Id <- paste0(df_test$Store, '_', df_test$Dept, "_", df_test$date)</pre>
```

What the IDs look like


```
html_df(df_test[c(20000, 40000, 60000),
c("Store", "week", "Dept", "id", "swd", "Id")])
```

Store	week	Dept	id	swd	Id
8	27	33	82733	82733	8_33_2013-07-05
15	46	91	154691	154691	15_91_2012-11-16
23	52	25	235225	235225	23_25_2012-12-28

Add in (store, department) average sales


```
# Calculate average sales by store-dept
df <- df %>%
  group by(Store, Dept) %>%
  mutate(store avg = mean(Weekly Sales, rm.na = T)) %>%
  ungroup()
# Select the first average sales data for each store-dept
 df sa <- df %>%
  group by(Store, Dept) %>%
   slice(1) %>% # Select rows by position
   select(Store, Dept, store avg) %>%
  ungroup()
# Distribute the store-dept average sales to the testing data
 df test <- left join(df test, df sa)</pre>
## Joining, by = c("Store", "Dept")
# 36 observations have messed up department codes -- ignore (set to 0)
df test[is.na(df test$store avg), ]$store avg <- 0</pre>
# Calculate multipliers based on store avg (and removing NaN and Inf)
 df$Weekly mult <- df$Weekly Sales / df$store avg</pre>
 df[!is.finite(df$Weekly mult), ]$Weekly mult <- NA</pre>
```

Add in (week, store, dept) average sales


```
# Calculate mean by week-store-dept and distribute to df_test

df <- df %>%
    group_by(Store, Dept, week) %>%
    mutate(naive_mean = mean(Weekly_Sales, rm.na = T)) %>%
    ungroup()

df_wm <- df %>%
    group_by(Store, Dept, week) %>%
    slice(1) %>%
    ungroup() %>%
    select(Store, Dept, week, naive_mean)

df_test <- df_test %>% arrange(Store, Dept, week)

df_test <- left_join(df_test, df_wm)</pre>
```

Joining, by = c("Store", "Dept", "week")

ISSUE: New (week, store, dept) groups

- This is in our testing data!
 - So we'll need to predict out groups we haven't observed at all

```
table(is.na(df_test$naive_mean))

##
## FALSE TRUE
## 113827 1237
```

- Fix: Fill with 1 or 2 lags where possible using ifelse() and lag()
- Fix: Fill with 1 or 2 leads where possible using ifelse() and lead()
- Fill with store_avg when the above fail
- Code is available in the code file -- a bunch of code like:

```
df_test <- df_test %>%
  arrange(Store, Dept, date) %>%
  group_by(Store, Dept) %>%
  mutate(naive_mean=ifelse(is.na(naive_mean), lag(naive_mean), naive_mean)) %>%
  ungroup()
```

Cleaning is done

- Data is in order
 - No missing values where data is needed
 - Needed values created

```
df %>%
  group_by(week, Store) %>%
  mutate(sales = mean(Weekly_Sales)) %>%
  slice(1) %>%
  ungroup() %>%
  ggplot(aes(y = sales, x = week, color = factor(Store))) +
  geom_line() + xlab("Week") + ylab("Sales for Store (dept average)") +
  theme(legend.position = "none") # remove the plot legend
```


How much time on data prep?

The Survey

Feature engineering techniques

There are many ways to prepare data. You may read the following articles for a summary of typical feature engineering techniques. We will apply more techniques in future topics.

Fundamental Techniques of Feature Engineering for Machine Learning

The Hitchhiker's Guide to Feature Extraction

Tackling the problem

First try

• Ideal: Use last week to predict next week!

No data for testing...

• First instinct: try to use a linear regression to solve this

We have this

What to put in the model?

First model


```
mod1 <- lm(Weekly mult ~ factor(IsHoliday) + factor(markdown > 0) +
                         markdown + Temperature +
                         Fuel Price + CPI + Unemployment,
           data = df
tidy(mod1)
## # A tibble: 8 x 5
                                           std.error statistic
                                 estimate
                                                                 p.value
##
    term
    <chr>>
                                                                   <dbl>
                                    <dbl>
                                                <dbl>
                                                         <dbl>
##
## 1 (Intercept)
                                          0.0100
                                                        125.
                              1.25
                                                               0.
## 2 factor(IsHoliday)TRUE
                              0.0597
                                          0.00337
                                                         17.7 2.00e- 70
## 3 factor(markdown > 0)TRUE 0.0486
                                          0.00240
                                                         20.3 3.42e- 91
## 4 markdown
                                                          2.94 3.32e- 3
                              0.000000697 0.000000237
                                                        -17.0 1.16e- 64
## 5 Temperature
                             -0.000832
                                         0.0000490
## 6 Fuel Price
                                                        -32.3 1.23e-228
                             -0.0721
                                         0.00223
## 7 CPI
                             -0.0000842
                                         0.0000241
                                                         -3.50 4.67e- 4
## 8 Unemployment
                             0.00406
                                          0.000494
                                                         8.22 1.97e- 16
glance(mod1)
## # A tibble: 1 x 11
    r.squared adj.r.squared sigma statistic p.value df logLik
                                                                    AIC
                                                                           BIC
##
        <dbl>
                      <dbl> <dbl>
                                      <dbl>
                                             <dbl> <int> <dbl> <dbl> <dbl> <dbl>
                    0.00554 0.549
                                       337.
                                                       8 -3.46e5 6.91e5 6.91e5
## 1
      0.00556
                                                  0
## # ... with 2 more variables: deviance <dbl>, df.residual <int>
```

Prep submission and in-sample WMAE


```
# Out of sample result
df test$Weekly mult <- predict(mod1, df test)</pre>
df test$Weekly Sales <- df test$Weekly mult * df test$store avg</pre>
# Required to submit a csv of Id and Weekly Sales
write.csv(df test[ , c("Id", "Weekly Sales")], "WMT linear.csv",
          row.names = FALSE)
# track
df test$WS linear <- df test$Weekly Sales</pre>
# Check in sample WMAE
df$WS linear <- predict(mod1, df) * df$store avg</pre>
w <- wmae(actual = df$Weekly Sales, predicted = df$WS linear,
          holidays = df$IsHoliday)
names(w) <- "Linear"</pre>
wmaes <- c(w)
wmaes
```

Linear ## 3040.644

Performance for linear model

	ost recen	t submission						
Name WMT_linear.csv			Submitted Wait time just now 1 seconds		Execution time 1 seconds		Score 4954.44928	
Comp								
		ition on the leaderboard ▼						
	your pos	Bill Szaroletta, P.E.				4949.29906	2	5
428						4949.29906 4961.02377	2	
428 429 430	+ 1	Bill Szaroletta, P.E.						5

Visualizing in-sample WMAE

Back to the drawing board...

Second model: Including week


```
## # A tibble: 60 x 5
##
     term
                     estimate std.error statistic
                                                   p.value
      <chr>>
                        <dbl>
                                                      <dbl>
##
                                  <dbl>
                                            <dbl>
   1 (Intercept)
                                            84.6 0.
                       1.01
                                0.0119
   2 factor(week)2
                     -0.0604
                               0.00982
                                            -6.16 7.48e- 10
    3 factor(week)3
                      -0.0668
                                0.00983
                                            -6.80 1.05e- 11
                                            -9.27 1.93e- 20
   4 factor(week)4
                      -0.0911
                                0.00983
   5 factor(week)5
                     0.0432
                                0.00981
                                            4.41 1.06e- 5
   6 factor(week)6
                      0.166
                               0.00953
                                            17.4 5.68e- 68
   7 factor(week)7
                      0.227
                               0.00910
                                            25.0 8.90e-138
   8 factor(week)8
                      0.101
                                0.00896
                                            11.3 1.09e- 29
   9 factor(week)9
                      0.0722
                                0.00897
                                            8.05 8.15e- 16
## 10 factor(week)10
                       0.0830
                                             9.23 2.63e- 20
                                0.00899
## # ... with 50 more rows
```

```
glance(mod2)
```

```
## # A tibble: 1 x 11
    r.squared adj.r.squared sigma statistic p.value df logLik
                                                                     AIC
                                                                            BIC
         <dbl>
                      <dbl> <dbl>
                                      <dbl>
                                              <dbl> <int>
                                                            <dbl> <dbl> <dbl>
##
                     0.0640 0.533
                                       490.
## 1
        0.0642
                                                  0
                                                       60 -3.33e5 6.66e5 6.66e5
## # ... with 2 more variables: deviance <dbl>, df.residual <int>
```

Prep submission and in-sample WMAE


```
# Out of sample result
df test$Weekly mult <- predict(mod2, df test)</pre>
df test$Weekly Sales <- df test$Weekly mult * df test$store avg</pre>
# Required to submit a csv of Id and Weekly Sales
write.csv(df test[ , c("Id", "Weekly Sales")], "WMT linear2.csv",
          row.names = FALSE)
# track
df test$WS linear2 <- df test$Weekly Sales</pre>
# Check in sample WMAE
df$WS linear2 <- predict(mod2, df) * df$store avg</pre>
w <- wmae(actual = df$Weekly Sales, predicted = df$WS linear2,
          holidays = df$IsHoliday)
names(w) <- "Linear 2"</pre>
wmaes <- c(wmaes, w)
wmaes
```

Linear Linear 2 ## 3040.644 3208.144

Performance for linear model 2

Name WMT_linear2.csv			Submitted Wait time 10 minutes ago 97 seconds		Execution time 1 seconds		Score 5540.29197	
Complet	e							
ump to yo	our posit	ion on the leaderboard	*					
465	3	Bullet Bill			9	5514.16117	25	5у
466	-	Jesus Fernandez-Be	s		*	5547.45068	12	5у
467	▼ 3	Carmine Genovese			9	5553.17509	8	5у
468	4	27685			4	5694.66116	5	Бу

Visualizing in-sample WMAE

Visualizing in-sample WMAE by Store

Visualizing in-sample WMAE by Dept

Back to the drawing board...

Third model: Including week x Store Recountancy x Dept

...

Third model: Including week x Store Store

■ Use package:lfe's felm() -- it's really more efficient!

```
library(lfe)
mod3 <- felm(Weekly mult ~ markdown + Temperature + Fuel Price + CPI +
              Unemployment | swd, data = df) # now you know why create swd
tidy(mod3)
## # A tibble: 5 x 5
##
    term
                  estimate
                           std.error statistic
                                                p.value
    <chr>
                     <dbl>
                                <dbl>
                                         <dbl>
                                                  <dbl>
## 1 markdown
             -0.00000122 0.000000203
                                        -6.03 1.60e- 9
## 2 Temperature 0.00130 0.000154 8.39 4.84e- 17
## 3 Fuel Price -0.0532 0.00242 -21.9 1.22e-106
            0.000190 0.000357 0.532 5.95e- 1
## 4 CPI
## 5 Unemployment -0.0291 0.00137
                                       -21.2 1.21e- 99
glance(mod3)
## # A tibble: 1 x 10
    r.squared adj.r.squared sigma statistic p.value df df.residual
                                                                  logLik
        <dbl>
                    <dbl> <dbl>
                                   <dbl> <dbl> <dbl>
                                                          <dbl>
                                                                 <dbl>
##
                    0.526 0.379
                                    3.89
                                                          259457 -87025.
## 1
        0.708
                                              0 259457
## # ... with 2 more variables: AIC <dbl>, BIC <dbl>
```

PROBLEM

- We need to be able to predict out of sample to make our submission
 - predict() does not support the felm() model directly
- The following code will enable *predict()* for *felm()*:

```
predict.felm <- function(object, newdata, use.fe = T, ...) {</pre>
 # compatible with tibbles
 newdata <- as.data.frame(newdata)</pre>
  co <- coef(object)</pre>
 y.pred <- t(as.matrix(unname(co))) %*% t(as.matrix(newdata[ , names(co)]))</pre>
 fe.vars <- names(object$fe)</pre>
  all.fe <- getfe(object)</pre>
  for (fe.var in fe.vars) {
    level <- all.fe[all.fe$fe == fe.var, ]</pre>
    frows <- match(newdata[[fe.var]], level$idx)</pre>
    myfe <- level$effect[frows]</pre>
    myfe[is.na(myfe)] = 0
    y.pred <- y.pred + myfe
  as.vector(y.pred)
```

Prep submission and in-sample WMAE


```
# Out of sample result
df test$Weekly mult <- predict(mod3, df test)</pre>
df test$Weekly Sales <- df test$Weekly mult * df test$store avg</pre>
# Required to submit a csv of Id and Weekly Sales
write.csv(df test[ , c("Id", "Weekly Sales")], "WMT FE.csv",
          row.names = FALSE)
# track
df test$WS FE <- df test$Weekly Sales</pre>
# Check in sample WMAE
df$WS FE <- predict(mod3, df) * df$store avg</pre>
w <- wmae(actual = df$Weekly Sales, predicted = df$WS FE,
           holidays = df$IsHoliday)
names(w) <- "FE"</pre>
wmaes <- c(wmaes, w)
wmaes
```

```
## Linear Linear 2 FE
## 3040.644 3208.144 1551.232
```

The general predict() function

- predict() is a generic function for predictions from the results of various model fitting functions.
- The function invokes particular methods which depend on the class of the first argument.
- For example, if the first argument is an object from the lm() model, predict() will call the predict.lm() function
- Typically model functions have been defined such as predict.lm() and predict.glm()
- But the predcit.felm() is not defined in the Base R, nor in the lfe package
- You may replace the predict() with predict.felm() and get same results.
- Refer the manual here

Performance for FE model

Name WMT_FE.csv			Submitted Wait time just now 1 seconds		Execution time 1 seconds		Score 3357.88481	
Comp	lete							
Jump to	your posi	tion on the leaderboar	d▼					
264	===	Sandeep				3349,90154	26	5)
265	a 13	Satya Prakash			9	3364.07150	23	5)
266	- 5	Prashant Kumar			-	3365.02867	8	5)
267	- 10	Gautam Gogoi				3370.85784	38	5 ₎

Visualizing in-sample WMAE

Problems with the data

Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13 Labor Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13 Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13 Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

- 1. The holidays are not always on the same week (the last indicates the week in the testing data)
 - The Super Bowl is in weeks 7, 7, 6 and 6
 - Labor day isn't in our *testing data* at all!
 - Black Friday is in weeks 48, 47, and 47
 - Christmas is in weeks 53, 52, and 52
 - Manually adjust the data for these differences
- 2. Yearly growth -- we aren't capturing it, since we have such a small time span
 - We can manually adjust the data for this
 - Code is in the code file -- a lot of package:dplyr

Performance overall

Name WMT_FE_shift.csv			Submitted Wait time just now 1 seconds		Execution time 1 seconds		Score 3249.12698	
Comple	ete							
lump to y	your posi	tion on the leaderboard 🕶						
240	a 9	RG50			9	3247.76071	13	5у
241	1 5	Will West				3248.16860	15	5у
242	~ 2	Ugly Duckling			9	3264.66376	19	5у
243	~ 2	Chiranjeev			9	3266.39 <mark>4</mark> 74	3	5у

Performance overall

Name WMT_naivemean.csv		Submitted Wait time just now 3 seconds			Execution time 1 seconds		core 5971	
Comp	olete							
ımp to	o your pos	ition on the leaderb	oard ▼					
219	<u> 11</u>	jong			4	3165.17441	20	4y
220	1 3	abhirup mallik			~	3168.04232	4	4у
221	<u>2</u>	KaggleBob			4	3170.86773	19	4y
222	^ 2	pythonomic			R	3172.02059	13	4y
aes_	_out							

Performance overall

lame VMT_ens.csv			Submitted Wait time just now 1 seconds			Execution time 1 seconds		Score 3176.04662	
Comp	lete								
mp to	your posit	tion on the leaderboa	rd ▼						
20	2	KaggleBob			4	3170.86773	19	7у	
21	2	pythonomic			9	3172.02059	13	7y	
22	▼ 12	Vyassa Baratham			4	3172.93938	21	7у	
23	8	Sriram Kovil				3191.36644	15	7у	
aes_	_out								

This was a real problem!

- Walmart provided this data back in 2014 as part of a recruiting exercise
 - Details here
 - Discussion of first place entry
 - Code for first place entry
 - Discussion of second place entry
- This is what the group project will be like
 - Each group tackling a data problem which is hosted on Kaggle.com
 - You will have training data but testing data will be withheld
 - You will need to submit to Kaggle for model evaluation

Project deliverables

- 1. Submission to Kaggle
 - For model evaluation purpose
- 2. Submission to me: A .rmd (and .html + .pdf) file including:
 - The integrated code chunks
 - Main points and findings
 - Exploratory analysis of the data used
 - Your model development, implementation, evaluation, and refinement
 - A conclusion on how well your group did and what you learned
 - No zipped file please
- 3. A group presentation in the last session
 - A presentation slides (.rmd or .pptx) shall also be submitted
 - All members to present
 - Groups 11 & 12 will not do presentation online, you are required to submit a presentation video

Ethics

Kaggle 1st place winner cheated, \$10,000 prize declared irrecoverable

Summary of Session 4

For next week

- Try to replicate the code
- Continue your Datacamp career track
- Start to explore your project data

Coding Competition

- Individual participation
- Use the same data as in this session
 - No additional data is allowed
 - You are allowed to engineer the features within the given dataset
- Use lm() and felm() models only and no other models allowed
 - No ensembling of models allowed
- Submit the following:
 - All code with clear explanatory notes in .rmd or .r format
 - The file for submission to Kaggle (use the same naming such as WMT_mine.csv)
 - Screen shot with your score on Kaggle
- The best THREE submissions will get personal gifts from me.
 - Must beat my best score
 - Models must be reasonable
 - I should be able to replicate your code on my computer using the same data
 - My decision is final
 - Submission deadline: 11:59pm, 28 Feb 2021
- All submissions will earn extra points for class participation