A proof of Čertanov's Theorem by using countable elementary submodels

Tetsuya Ishiu

Department of Mathematics Miami University

Wednesday, May 12th, 2021

Space-filling curves

A famous theorem of G. Peano in 1890 says that there exists a continuous surjection from [0,1] onto $[0,1] \times [0,1]$.

It was a groundbreaking result, which challenged the notion of dimensions.

Such curves are called *space-filling curves*. The one used in Peano's proof is called the *Peano curve* while there are many other examples, including the *Hilbert curve*.

Space-filling curves

A famous theorem of G. Peano in 1890 says that there exists a continuous surjection from [0,1] onto $[0,1] \times [0,1]$. It was a groundbreaking result, which challenged the notion of dimensions.

Such curves are called *space-filling curves*. The one used in Peano's proof is called the *Peano curve* while there are many other examples, including the *Hilbert curve*.

Space-filling curves

A famous theorem of G. Peano in 1890 says that there exists a continuous surjection from [0,1] onto $[0,1] \times [0,1]$.

It was a groundbreaking result, which challenged the notion of dimensions.

Such curves are called *space-filling curves*. The one used in Peano's proof is called the *Peano curve* while there are many other examples, including the *Hilbert curve*.

D. Kurepa's theorem

It is natural to ask the following question.

Question

For which linearly order topological spaces (LOTS) L, is there exists a continuous surjection from L onto $L \times L$.

In 1952, D. Kurepa showed the following theorem

Theorem

For every nondegenerate connected compact Suslin line S, there is no continuous surjection from S onto $S \times S$.

D. Kurepa's theorem

It is natural to ask the following question.

Question

For which linearly order topological spaces (LOTS) L, is there exists a continuous surjection from L onto $L \times L$.

In 1952, D. Kurepa showed the following theorem.

Theorem

For every nondegenerate connected compact Suslin line S, there is no continuous surjection from S onto $S \times S$.

S. Mardešić and P. Papić's Theorem

In 1960, S. Mardešić and P. Papić proved the following result, strengthening Kurepa's result.

Theorem

If X and Y are nondegenerate connected compact Hausdorff spaces and $X \times Y$ is a continuous image of a connected compact LOTS, then both X and Y are metrizable.

Now, X and Y are not necessarily LOTS.

S. Mardešić and P. Papić's Theorem

In 1960, S. Mardešić and P. Papić proved the following result, strengthening Kurepa's result.

Theorem

If X and Y are nondegenerate connected compact Hausdorff spaces and $X \times Y$ is a continuous image of a connected compact LOTS, then both X and Y are metrizable.

Now, X and Y are not necessarily LOTS.

S. Mardešić and P. Papić's Theorem

In 1960, S. Mardešić and P. Papić proved the following result, strengthening Kurepa's result.

Theorem

If X and Y are nondegenerate connected compact Hausdorff spaces and $X \times Y$ is a continuous image of a connected compact LOTS, then both X and Y are metrizable.

Now, X and Y are not necessarily LOTS.

In 1964, L. B. Treybig proved the following result, which no longer assumes the connectedness.

Theorem

If X and Y are infinite compact Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Several proofs are given to this theorem. Since *X* and *Y* are compact and metrizable, both of them are separable.

In 1964, L. B. Treybig proved the following result, which no longer assumes the connectedness.

Theorem

If X and Y are infinite compact Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Several proofs are given to this theorem. Since *X* and *Y* are compact and metrizable, both of them are separable.

In 1964, L. B. Treybig proved the following result, which no longer assumes the connectedness.

Theorem

If X and Y are infinite compact Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Several proofs are given to this theorem.

Since X and Y are compact and metrizable, both of them are separable.

In 1964, L. B. Treybig proved the following result, which no longer assumes the connectedness.

Theorem

If X and Y are infinite compact Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Several proofs are given to this theorem.

Since X and Y are compact and metrizable, both of them are separable.

Čertanov's Theorem

It seems that the researchers focus on continuous images of *compact LOTS*, but in 1976, G. I. Čertanov proved the following theorem, which says that Treybig's theorem holds even when we replace 'compact LOTS' by 'countably compact GO-space'.

Theorem

If X and Y are infinite compact Hausdorff spaces and $X \times Y$ is a continuous image of a countably compact GO-space, then both X and Y are metrizable.

It seems that this result was hardly recognized and the paper was only cited once for another result.

Čertanov's Theorem

It seems that the researchers focus on continuous images of *compact LOTS*, but in 1976, G. I. Čertanov proved the following theorem, which says that Treybig's theorem holds even when we replace 'compact LOTS' by 'countably compact GO-space'.

Theorem

If X and Y are infinite compact Hausdorff spaces and $X \times Y$ is a continuous image of a countably compact GO-space, then both X and Y are metrizable.

It seems that this result was hardly recognized and the paper was only cited once for another result.

Čertanov's Theorem

It seems that the researchers focus on continuous images of *compact LOTS*, but in 1976, G. I. Čertanov proved the following theorem, which says that Treybig's theorem holds even when we replace 'compact LOTS' by 'countably compact GO-space'.

Theorem

If X and Y are infinite compact Hausdorff spaces and $X \times Y$ is a continuous image of a countably compact GO-space, then both X and Y are metrizable.

It seems that this result was hardly recognized and the paper was only cited once for another result.

The use of countable elementary submodels

I proved the following theorem a few years ago.

Theorem (Ishiu)

Let n be a non-zero natural number, $K_0, \ldots, K_{n-1}, L_0, \ldots, L_{n-1}$ be connected nowhere separable LOTS, and $f: \prod_{i < n} K_i \to \prod_{i < n} L_i$ a continuous injection. Then, f is coordinate-wise.

To solve this, I developed the way to analyze nonseparable LOTS by using countable elementary submodels.

The use of countable elementary submodels

I proved the following theorem a few years ago.

Theorem (Ishiu)

Let n be a non-zero natural number, $K_0, \ldots, K_{n-1}, L_0, \ldots, L_{n-1}$ be connected nowhere separable LOTS, and $f: \prod_{i < n} K_i \to \prod_{i < n} L_i$ a continuous injection. Then, f is coordinate-wise.

To solve this, I developed the way to analyze nonseparable LOTS by using countable elementary submodels.

The use of countable elementary submodels

I proved the following theorem a few years ago.

Theorem (Ishiu)

Let n be a non-zero natural number, $K_0, \ldots, K_{n-1}, L_0, \ldots, L_{n-1}$ be connected nowhere separable LOTS, and $f: \prod_{i < n} K_i \to \prod_{i < n} L_i$ a continuous injection. Then, f is coordinate-wise.

To solve this, I developed the way to analyze nonseparable LOTS by using countable elementary submodels.

Byproduct

I wondered if this technique can be used to prove other theorems and found that it can be used to give another proof of Čertanov's Theorem.

In fact, I first thought about a much weaker theorem. It was S. Todorcevic who told me about this line of research and I refined my argument to prove Čertanov's Theorem.

Byproduct

I wondered if this technique can be used to prove other theorems and found that it can be used to give another proof of Čertanov's Theorem.

In fact, I first thought about a much weaker theorem. It was S. Todorcevic who told me about this line of research and I refined my argument to prove Čertanov's Theorem.

η, ζ, I

We shall outline the proof. Let K be a countably compact GO-space and M a countable elementary submodel of $H(\theta)$ with $K \in M$ for some sufficiently large regular cardinal θ . We shall defined the following: for every $p \in K$.

$$\eta(K, M, p) = \sup \{ x \in \operatorname{cl}(K \cap M) \mid x \leq p \}$$

$$\zeta(K, M, p) = \inf \{ x \in \operatorname{cl}(K \cap M) \mid x \geq p \}$$

$$I(K, M, p) = [\eta(K, M, p), \zeta(K, M, p)]$$

When it is clear from the context, we omit K and M.

η, ζ, I

We shall outline the proof. Let K be a countably compact GO-space and M a countable elementary submodel of $H(\theta)$ with $K \in M$ for some sufficiently large regular cardinal θ . We shall defined the following: for every $p \in K$,

$$\eta(K, M, p) = \sup \{ x \in \operatorname{cl}(K \cap M) \mid x \leq p \}$$

$$\zeta(K, M, p) = \inf \{ x \in \operatorname{cl}(K \cap M) \mid x \geq p \}$$

$$I(K, M, p) = [\eta(K, M, p), \zeta(K, M, p)]$$

When it is clear from the context, we omit K and M.

η, ζ, I

We shall outline the proof. Let K be a countably compact GO-space and M a countable elementary submodel of $H(\theta)$ with $K \in M$ for some sufficiently large regular cardinal θ . We shall defined the following: for every $p \in K$,

$$\eta(K, M, p) = \sup \{ x \in \operatorname{cl}(K \cap M) \mid x \leq p \}$$

$$\zeta(K, M, p) = \inf \{ x \in \operatorname{cl}(K \cap M) \mid x \geq p \}$$

$$I(K, M, p) = [\eta(K, M, p), \zeta(K, M, p)]$$

When it is clear from the context, we omit K and M.

We shall use the following easy lemma.

Lemma

Let $p, q \in K$ with p < q. If $I(p) \neq I(q)$, then there exists $x \in K \cap M$ such that $p \leq x \leq q$.

Proof.

We shall use the following easy lemma.

Lemma

Let $p, q \in K$ with p < q. If $I(p) \neq I(q)$, then there exists $x \in K \cap M$ such that $p \leq x \leq q$.

Proof

We shall use the following easy lemma.

Lemma

Let $p, q \in K$ with p < q. If $I(p) \neq I(q)$, then there exists $x \in K \cap M$ such that $p \le x \le q$.

Proof.

We shall use the following easy lemma.

Lemma

Let $p, q \in K$ with p < q. If $I(p) \neq I(q)$, then there exists $x \in K \cap M$ such that $p \le x \le q$.

Proof.

$$g:L\to X$$

Let X be a nonseparable Hausdorff space and $g: K \to X$ a continuous function with $g \in M$.

Then, trivially

Lemma

If $g(p) \notin cl(X \cap M)$, then $p \notin cl(K \cap M)$.

$$g:L\to X$$

Let X be a nonseparable Hausdorff space and $g: K \to X$ a continuous function with $g \in M$. Then, trivially

Lemma

If $g(p) \notin cl(X \cap M)$, then $p \notin cl(K \cap M)$.

We can prove the following lemma.

Lemma

If $p \in K \setminus cl(K \cap M)$ and $g(p) \in M$, then either $g(p) = g(\eta(p))$ or $g(p) = g(\zeta(p))$.

In particular, $|(g^{\rightarrow}I(p)) \cap M| \leq 2$.

Idea of the proof.

We shall give a proof when neither $\eta(p)$ nor $\zeta(p)$ belongs to M. Note that for all $a,b\in K\cap M$ with $a<\eta(p)$ and $b>\zeta(p)$, by elementarity, there exists $x\in(a,b)\cap M$ such that g(x)=g(p). By the definition of $\eta(p)$ and $\zeta(p)$, either $a< x\leq \eta(p)$ or $\zeta(p)\leq x< b$. By making $a\to \eta(p)$ and $b\to \zeta(p)$, we get the conclusion.

We can prove the following lemma.

Lemma

If $p \in K \setminus cl(K \cap M)$ and $g(p) \in M$, then either $g(p) = g(\eta(p))$ or $g(p) = g(\zeta(p))$. In particular, $|(g^{\rightarrow}I(p)) \cap M| \le 2$.

Idea of the proof.

We shall give a proof when neither $\eta(p)$ nor $\zeta(p)$ belongs to M. Note that for all $a,b\in K\cap M$ with $a<\eta(p)$ and $b>\zeta(p)$, by elementarity, there exists $x\in (a,b)\cap M$ such that g(x)=g(p). By the definition of $\eta(p)$ and $\zeta(p)$, either $a< x\leq \eta(p)$ or $\zeta(p)\leq x< b$. By making $a\to \eta(p)$ and $b\to \zeta(p)$, we get the conclusion.

We can prove the following lemma.

Lemma

If $p \in K \setminus cl(K \cap M)$ and $g(p) \in M$, then either $g(p) = g(\eta(p))$ or $g(p) = g(\zeta(p))$. In particular, $|(g^{\rightarrow}I(p)) \cap M| \le 2$.

Idea of the proof.

We shall give a proof when neither $\eta(p)$ nor $\zeta(p)$ belongs to M. Note that for all $a,b \in K \cap M$ with $a < \eta(p)$ and $b > \zeta(p)$, by elementarity, there exists $x \in (a,b) \cap M$ such that g(x) = g(p). By the definition of $\eta(p)$ and $\zeta(p)$, either $a < x \le \eta(p)$ or $\zeta(p) \le x < b$. By making $a \to \eta(p)$ and $b \to \zeta(p)$, we get the conclusion.

We can prove the following lemma.

Lemma

If $p \in K \setminus cl(K \cap M)$ and $g(p) \in M$, then either $g(p) = g(\eta(p))$ or $g(p) = g(\zeta(p))$. In particular, $|(g^{\rightarrow}I(p)) \cap M| \le 2$.

Idea of the proof.

We shall give a proof when neither $\eta(p)$ nor $\zeta(p)$ belongs to M. Note that for all $a,b\in K\cap M$ with $a<\eta(p)$ and $b>\zeta(p)$, by elementarity, there exists $x\in (a,b)\cap M$ such that g(x)=g(p). By the definition of $\eta(p)$ and $\zeta(p)$, either $a< x\leq \eta(p)$ or $\zeta(p)\leq x< b$. By making $a\to \eta(p)$ and $b\to \zeta(p)$, we get the conclusion.

The proof of Čertanov's Theorem

Now, we shall give a proof of Čertanov's Theorem. First, we shall prove the following lemma, which is an easy corollary of Čertanov's Theorem.

Lemma

Let K be a countably compact GO-space, X and Y infinite compact Hausdorff spaces and $f: K \to X \times Y$ a continuous surjection. Then, both X and Y are separable.

Proof.

Let M be a countable elementary submodel of $H(\theta)$ that knows everything in this context for some sufficiently large regular cardinal θ . Suppose that X is not separable. Then, there exists $X_0 \in X \setminus cl(X \cap M)$.

The proof of Čertanov's Theorem

Now, we shall give a proof of Čertanov's Theorem. First, we shall prove the following lemma, which is an easy corollary of Čertanov's Theorem.

Lemma

Let K be a countably compact GO-space, X and Y infinite compact Hausdorff spaces and $f: K \to X \times Y$ a continuous surjection. Then, both X and Y are separable.

Proof.

Let M be a countable elementary submodel of $H(\theta)$ that knows everything in this context for some sufficiently large regular cardinal θ . Suppose that X is not separable. Then, there exists

The proof of Čertanov's Theorem

Now, we shall give a proof of Čertanov's Theorem. First, we shall prove the following lemma, which is an easy corollary of Čertanov's Theorem.

Lemma

Let K be a countably compact GO-space, X and Y infinite compact Hausdorff spaces and $f: K \to X \times Y$ a continuous surjection. Then, both X and Y are separable.

Proof.

Let M be a countable elementary submodel of $H(\theta)$ that knows everything in this context for some sufficiently large regular cardinal θ . Suppose that X is not separable. Then, there exists $x_0 \in X \setminus cl(X \cap M)$.

```
Let g_1, g_2 be the coordinate functions of f.
Since Y is infinite, so is Y \cap M. Thus, f \leftarrow (\{x_0\} \times (Y \cap M)) is an
infinite subset of K. So, there exists a strictly monotone
```

```
Let g_1, g_2 be the coordinate functions of f.
Since Y is infinite, so is Y \cap M. Thus, f \leftarrow (\{x_0\} \times (Y \cap M)) is an
infinite subset of K. So, there exists a strictly monotone
sequence \langle t_n | n < \omega \rangle in f^{\leftarrow}(\{x_0\} \times (Y \cap M)). Without loss of
```

```
Let g_1, g_2 be the coordinate functions of f.
Since Y is infinite, so is Y \cap M. Thus, f \leftarrow (\{x_0\} \times (Y \cap M)) is an
infinite subset of K. So, there exists a strictly monotone
sequence \langle t_n | n < \omega \rangle in f^{\leftarrow}(\{x_0\} \times (Y \cap M)). Without loss of
generality, we assume that it is increasing. For each n < \omega, let
```

Proof(Cont.)

```
Let g_1, g_2 be the coordinate functions of f.
Since Y is infinite, so is Y \cap M. Thus, f \leftarrow (\{x_0\} \times (Y \cap M)) is an infinite subset of K. So, there exists a strictly monotone sequence \langle t_n | n < \omega \rangle in f \leftarrow (\{x_0\} \times (Y \cap M)). Without loss of
```

 $y_n \in Y \cap M$ be so that $f(t_n) = \langle x_0, y_n \rangle$. For each $n < \omega$, since $x_0 \notin \operatorname{cl}(X \cap M)$, $t_n \in K \setminus \operatorname{cl}(K \cap M)$ and

generality, we assume that it is increasing. For each $n < \omega$, let

For every $n < \omega$, we have $y_{2n} < y_{2n+1} < y_{2n+2}$ and hence $g_2(t_{2n}) < g_2(t_{2n+1}) < g_2(t_{2n+2})$. Since $|(g_2^{\rightarrow} I(t_n)) \cap M| \le 2$, we have $I(t_{2n}) \ne I(t_{2n+2})$. So, for each $n < \omega$, there exists $u_n \in K \cap M$ such that $t_{2n} < u_n < t_{2n+2}$.

Proof(Cont.)

Let g_1, g_2 be the coordinate functions of f.

Since Y is infinite, so is $Y \cap M$. Thus, $f \leftarrow (\{x_0\} \times (Y \cap M))$ is an infinite subset of K. So, there exists a strictly monotone sequence $\langle t_n | n < \omega \rangle$ in $f \leftarrow (\{x_0\} \times (Y \cap M))$. Without loss of generality, we assume that it is increasing. For each $n < \omega$, let $y_n \in Y \cap M$ be so that $f(t_n) = \langle x_0, y_n \rangle$.

For each $n < \omega$, since $x_0 \notin cl(X \cap M)$, $t_n \in K \setminus cl(K \cap M)$ and $g_2(t_n) = y_n$.

For every $n < \omega$, we have $y_{2n} < y_{2n+1} < y_{2n+2}$ and hence $g_2(t_{2n}) < g_2(t_{2n+1}) < g_2(t_{2n+2})$. Since $|(g_2^{\rightarrow} I(t_n)) \cap M| \le 2$, we have $I(t_{2n}) \ne I(t_{2n+2})$. So, for each $n < \omega$, there exists $u_n \in K \cap M$ such that $t_{2n} < u_n < t_{2n+2}$.

```
Let g_1, g_2 be the coordinate functions of f.
Since Y is infinite, so is Y \cap M. Thus, f \leftarrow (\{x_0\} \times (Y \cap M)) is an
infinite subset of K. So, there exists a strictly monotone
sequence \langle t_n | n < \omega \rangle in f^{\leftarrow}(\{x_0\} \times (Y \cap M)). Without loss of
generality, we assume that it is increasing. For each n < \omega, let
y_n \in Y \cap M be so that f(t_n) = \langle x_0, y_n \rangle.
For each n < \omega, since x_0 \notin \operatorname{cl}(X \cap M), t_n \in K \setminus \operatorname{cl}(K \cap M) and
g_2(t_n)=y_n.
For every n < \omega, we have y_{2n} < y_{2n+1} < y_{2n+2} and hence
g_2(t_{2n}) < g_2(t_{2n+1}) < g_2(t_{2n+2}). Since |(g_2 \to I(t_n)) \cap M| \le 2, we
```

```
Let g_1, g_2 be the coordinate functions of f.
Since Y is infinite, so is Y \cap M. Thus, f \leftarrow (\{x_0\} \times (Y \cap M)) is an
infinite subset of K. So, there exists a strictly monotone
sequence \langle t_n | n < \omega \rangle in f^{\leftarrow}(\{x_0\} \times (Y \cap M)). Without loss of
generality, we assume that it is increasing. For each n < \omega, let
y_n \in Y \cap M be so that f(t_n) = \langle x_0, y_n \rangle.
For each n < \omega, since x_0 \notin \operatorname{cl}(X \cap M), t_n \in K \setminus \operatorname{cl}(K \cap M) and
g_2(t_n)=y_n.
For every n < \omega, we have y_{2n} < y_{2n+1} < y_{2n+2} and hence
g_2(t_{2n}) < g_2(t_{2n+1}) < g_2(t_{2n+2}). Since |(g_2 \to I(t_n)) \cap M| \le 2, we
have I(t_{2n}) \neq I(t_{2n+2}). So, for each n < \omega, there exists
```

```
Let g_1, g_2 be the coordinate functions of f.
Since Y is infinite, so is Y \cap M. Thus, f \leftarrow (\{x_0\} \times (Y \cap M)) is an
infinite subset of K. So, there exists a strictly monotone
sequence \langle t_n | n < \omega \rangle in f^{\leftarrow}(\{x_0\} \times (Y \cap M)). Without loss of
generality, we assume that it is increasing. For each n < \omega, let
y_n \in Y \cap M be so that f(t_n) = \langle x_0, y_n \rangle.
For each n < \omega, since x_0 \notin \operatorname{cl}(X \cap M), t_n \in K \setminus \operatorname{cl}(K \cap M) and
g_2(t_n)=y_n.
For every n < \omega, we have y_{2n} < y_{2n+1} < y_{2n+2} and hence
g_2(t_{2n}) < g_2(t_{2n+1}) < g_2(t_{2n+2}). Since |(g_2 \to I(t_n)) \cap M| \le 2, we
have I(t_{2n}) \neq I(t_{2n+2}). So, for each n < \omega, there exists
u_n \in K \cap M such that t_{2n} < u_n < t_{2n+2}.
```

```
Since K is countably compact, there exists the supremum t_{\omega} of \{t_{2n} \mid n < \omega\}. Since g_1(t_{2n}) = x_0, we have g_1(t_{\omega}) = x_0 \notin \operatorname{cl}(X \cap M) Meanwhile, notice that t_{\omega} is also the supremum of \{u_n \mid n < \omega\}. For each n < \omega, since u_n \in M, we have g_1(u_n) \in M. Thus, g_1(t_{\omega}) \in \operatorname{cl}(X \cap M). This is a contradiction.
```

Proof(Cont.)

```
Since K is countably compact, there exists the supremum t_{\omega} of \{t_{2n} \mid n < \omega\}. Since g_1(t_{2n}) = x_0, we have g_1(t_{\omega}) = x_0 \notin \operatorname{cl}(X \cap M) Meanwhile, notice that t_{\omega} is also the supremum of \{u_n \mid n < \omega\}. For each n < \omega, since u_n \in M, we have
```

This is a contradiction.

```
Since K is countably compact, there exists the supremum t_{\omega} of \{t_{2n} \mid n < \omega\}. Since g_1(t_{2n}) = x_0, we have g_1(t_{\omega}) = x_0 \notin \operatorname{cl}(X \cap M) Meanwhile, notice that t_{\omega} is also the supremum of \{u_n \mid n < \omega\}. For each n < \omega, since u_n \in M, we have g_1(u_n) \in M. Thus, g_1(t_{\omega}) \in \operatorname{cl}(X \cap M). This is a contradiction.
```

```
Since K is countably compact, there exists the supremum t_{\omega} of \{t_{2n} \mid n < \omega\}. Since g_1(t_{2n}) = x_0, we have g_1(t_{\omega}) = x_0 \notin \operatorname{cl}(X \cap M) Meanwhile, notice that t_{\omega} is also the supremum of \{u_n \mid n < \omega\}. For each n < \omega, since u_n \in M, we have g_1(u_n) \in M. Thus, g_1(t_{\omega}) \in \operatorname{cl}(X \cap M). This is a contradiction.
```

```
Since K is countably compact, there exists the supremum t_{\omega} of \{t_{2n} \mid n < \omega\}. Since g_1(t_{2n}) = x_0, we have g_1(t_{\omega}) = x_0 \notin \operatorname{cl}(X \cap M) Meanwhile, notice that t_{\omega} is also the supremum of \{u_n \mid n < \omega\}. For each n < \omega, since u_n \in M, we have g_1(u_n) \in M. Thus, g_1(t_{\omega}) \in \operatorname{cl}(X \cap M).
```

```
Since K is countably compact, there exists the supremum t_{\omega} of \{t_{2n} \mid n < \omega\}. Since g_1(t_{2n}) = x_0, we have g_1(t_{\omega}) = x_0 \notin \operatorname{cl}(X \cap M) Meanwhile, notice that t_{\omega} is also the supremum of \{u_n \mid n < \omega\}. For each n < \omega, since u_n \in M, we have g_1(u_n) \in M. Thus, g_1(t_{\omega}) \in \operatorname{cl}(X \cap M). This is a contradiction.
```

By using this lemma, we may use Treybig's Theorem to finish proving Čertanov's Theorem.

Proof of Čertanov's Theorem.

By the lemma, X and Y are separable. So, there exists a closed separable subspace K' of K such that $f^{\rightarrow}K' = X \times Y$. Notice that K' is a compact LOTS. By Treybig's Theorem, both X and Y are metrizable.

By using this lemma, we may use Treybig's Theorem to finish proving Čertanov's Theorem.

Proof of Čertanov's Theorem.

By the lemma, X and Y are separable. So, there exists a closed separable subspace K' of K such that $f^{\rightarrow}K' = X \times Y$. Notice that K' is a compact LOTS. By Treybig's Theorem, both X and Y are metrizable.

By using this lemma, we may use Treybig's Theorem to finish proving Čertanov's Theorem.

Proof of Čertanov's Theorem.

By the lemma, X and Y are separable. So, there exists a closed separable subspace K' of K such that $f^{\rightarrow}K' = X \times Y$. Notice that K' is a compact LOTS. By Treybig's Theorem, both

By using this lemma, we may use Treybig's Theorem to finish proving Čertanov's Theorem.

Proof of Čertanov's Theorem.

By the lemma, X and Y are separable. So, there exists a closed separable subspace K' of K such that $f^{\rightarrow}K' = X \times Y$. Notice that K' is a compact LOTS. By Treybig's Theorem, both X and Y are metrizable.

By using this lemma, we may use Treybig's Theorem to finish proving Čertanov's Theorem.

Proof of Čertanov's Theorem.

By the lemma, X and Y are separable. So, there exists a closed separable subspace K' of K such that $f^{\rightarrow}K' = X \times Y$. Notice that K' is a compact LOTS. By Treybig's Theorem, both X and Y are metrizable.

The Mardešić Conjecture

So, there is no new theorem. But let me explain one problem in which this argument may help.

G. Martínez-Cervantes and G.Plebanek showed the following theorem, which solved the Mardešić Conjecture proposed in 1970.

Theorem

Let d and s be positive integers. Let L_1, L_2, \ldots, L_d be compact LOTS and $K_1, K_2, \ldots, K_{d+s}$ infinite Hausdorff spaces. If there exists a continuous surjection from $L_1 \times L_2 \times \cdots \times L_d$ onto $K_1 \times K_2 \times \cdots K_{d+s}$, then there exist at least s+1-many metrizable factors K_i .

The Mardešić Conjecture

- So, there is no new theorem. But let me explain one problem in which this argument may help.
- G. Martínez-Cervantes and G.Plebanek showed the following theorem, which solved the Mardešić Conjecture proposed in 1970.

Theorem

Let d and s be positive integers. Let L_1, L_2, \ldots, L_d be compact LOTS and $K_1, K_2, \ldots, K_{d+s}$ infinite Hausdorff spaces. If there exists a continuous surjection from $L_1 \times L_2 \times \cdots \times L_d$ onto $K_1 \times K_2 \times \cdots K_{d+s}$, then there exist at least s+1-many metrizable factors K_j .

The Mardešić Conjecture

So, there is no new theorem. But let me explain one problem in which this argument may help.

G. Martínez-Cervantes and G.Plebanek showed the following theorem, which solved the Mardešić Conjecture proposed in 1970.

Theorem

Let d and s be positive integers. Let L_1, L_2, \ldots, L_d be compact LOTS and $K_1, K_2, \ldots, K_{d+s}$ infinite Hausdorff spaces. If there exists a continuous surjection from $L_1 \times L_2 \times \cdots \times L_d$ onto $K_1 \times K_2 \times \cdots K_{d+s}$, then there exist at least s+1-many metrizable factors K_j .

Countably compact version?

We may wonder if the Mardešić Conjecture holds for the product of countably compact GO-spaces. Namely

Question

Let d and s be positive integers. Let L_1, L_2, \ldots, L_d be countably compact GO-spaces and $K_1, K_2, \ldots, K_{d+s}$ infinite Hausdorff spaces. If there exists a continuous surjection from $L_1 \times L_2 \times \cdots \times L_d$ onto $K_1 \times K_2 \times \cdots K_{d+s}$, do there exist at least s+1-many metrizable factors K_j ?

By using similar arguments, I can see that under this assumption, such a continuous surjection exhibits a very strange behavior, which hopefully leads to a contradiction.

Countably compact version?

We may wonder if the Mardešić Conjecture holds for the product of countably compact GO-spaces. Namely

Question

Let d and s be positive integers. Let L_1, L_2, \ldots, L_d be countably compact GO-spaces and $K_1, K_2, \ldots, K_{d+s}$ infinite Hausdorff spaces. If there exists a continuous surjection from $L_1 \times L_2 \times \cdots \times L_d$ onto $K_1 \times K_2 \times \cdots K_{d+s}$, do there exist at least s+1-many metrizable factors K_j ?

By using similar arguments, I can see that under this assumption, such a continuous surjection exhibits a very strange behavior, which hopefully leads to a contradiction.

Countably compact version?

We may wonder if the Mardešić Conjecture holds for the product of countably compact GO-spaces. Namely

Question

Let d and s be positive integers. Let L_1, L_2, \ldots, L_d be countably compact GO-spaces and $K_1, K_2, \ldots, K_{d+s}$ infinite Hausdorff spaces. If there exists a continuous surjection from $L_1 \times L_2 \times \cdots \times L_d$ onto $K_1 \times K_2 \times \cdots K_{d+s}$, do there exist at least s+1-many metrizable factors K_j ?

By using similar arguments, I can see that under this assumption, such a continuous surjection exhibits a very strange behavior, which hopefully leads to a contradiction.

