Division Problem

Last updated: April 22, 2011

Created by M	fr. Francis Hung Last updated: April 22, 201
Find all 'x' in the division on the right.	x x 7 x x
Relabel the 'x' as shown.	x x x x 7 x) x x 7 x x x x x x x
Let $a = (a_1 a_2 7 a_4 a_5)_x$	xxxxx
$b = (b_1 b_2 b_3 b_4 7 b_6)_{x}$	x x x x x 7 x
$c = (c_1 c_2 7 c_4 c_5 c_6 c_7 c_8 c_9 c_{10})_{\mathbf{x}}$	$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$
$d = (d_1 d_2 d_3 d_4 d_5 d_6)_{x}$	x 7 x x x x
$e = (e_1 e_2 e_3 e_4 e_5 7 e_7)_{x}$	x 7 x x x x
$f = (f_1 f_2 f_3 f_4 f_5 f_6 f_7)_{x}$	$\overline{\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$
$g = (g_1 7 g_3 g_4 g_5 g_6)_{x}$	x x x x 7 x x
$h=(h_17h_3h_4h_5h_6)_{x}$	<u> </u>
$i = (i_1 i_2 i_3 i_4 i_5 i_6 i_7)_{X}$	<u> </u>
$j = (j_1 j_2 j_3 j_4 7 j_6 j_7)_{x}$	$a_1 \ a_2 \ 7 \ a_4 \ a_5$
$k = (k_1 k_2 k_3 k_4 k_5 k_6)_{\mathbf{x}}$	$b_1 b_2 b_3 b_4 7 b_6$) $c_1 c_2 7 c_4 c_5 c_6 c_7 c_8 c_9 c_{10}$
$m = (m_1 m_2 m_3 m_4 m_5 m_6)_{x}$	$d_1 d_2 d_3 d_4 d_5 d_6$
	$e_1 e_2 e_3 e_4 e_5 7 e_7$
$b \times 7 = h$, a 6-digits number.	$f_1 f_2 f_3 f_4 f_5 f_6 f_7$
f and j are 7-digits numbers.	$g_1 7 g_3 g_4 g_5 g_6$
so a_2 , $a_4 = 8$ or 9	$h_1 7 h_3 h_4 h_5 h_6$
$b \times 8$ or $b \times 9 = 7$ -digits number	i_1 i_2 i_3 i_4 i_5 i_6 i_7
$b \times 7 \le 979999$ and $b \times 9 \ge 1000700$	$j_1 \ j_2 \ j_3 \ j_4 \ 7 \ j_6 \ j_7$
$111189 \le b \le 139999 \Rightarrow b_1 = 1$	$k_1 \ k_2 \ k_3 \ k_4 \ k_5 \ k_6$
$b_5 = 7 \Rightarrow 111270 \le b \le 139979 \dots (1)$	$\underline{m_1 m_2 m_3 m_4 m_5 m_6}$
$778890 \le 7b \le 979853$	$a_1 \ a_2 \ 7 \ a_4 \ a_5$
$h_1 = 7, 8 \text{ or } 9$	$1 b_2 b_3 b_4 7 b_6) c_1 c_2 7 c_4 c_5 c_6 c_7 c_8 c_9 c_{10}$
when $h_1 = 9$, i_1 has no solution, reject	$d_1 d_2 d_3 d_4 d_5 d_6$
when $h_1 = 8$, $g_1 = 9$, $i_1 = 1$ (2)	$e_1 e_2 e_3 e_4 e_5 7 e_7$
when $h_1 = 7$, $g_1 = 9$, $i_1 = 1$ or $2 \dots (3)$	f ₁ f ₂ f ₃ f ₄ f ₅ f ₆ f ₇
when $h_1 = 7$, $g_1 = 8$, $i_1 = 1$ (4)	$g_1 7 g_3 g_4 g_5 g_6$
$b \times a_4 = j$ and $a_4 = 8$ or 9	$h_1 7 h_3 h_4 h_5 h_6$
890160≤8 <i>b</i> ≤1119832, 1001430≤9 <i>b</i> ≤1259811	$1 i_2 i_3 i_4 i_5 i_6 i_7$
$\Rightarrow 1000700 \le j \le 1259799$	$\frac{1}{1} j_2 j_3 j_4 7 j_6 j_7$
$\Rightarrow j_1 = 1, j_2 = 0, 1 \text{ or } 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\Rightarrow i_1 = 1, i_2 = j_2 \text{ or } j_2 + 1$	$m_1 m_2 m_3 m_4 m_5 m_6$
$i_2 = 1, 2 \text{ or } 3 \dots (5)$	

Division Problem Mr. Francis Hung

If there is a borrow digit for $g_3 - h_3$, then $i_2 = 9$ $a_1 \ a_2 \ 7 \ a_4 \ a_5$ contradict to (5), so there is no borrow digit. $1 b_2 b_3 b_4 7 b_6 c_1 c_2 7 c_4 c_5 c_6 c_7 c_8 c_9 c_{10}$ $g_1 - h_1 = 1$ and $g_2 - h_2 = 7 - 7 = 0 = i_2$ $d_1 d_2 d_3 d_4 d_5 d_6$ $j_2 = 0$ $e_1 e_2 e_3 e_4 e_5 7 e_7$ If $a_4 = 9$, $1000700 \le 9b \le 1099799$ $f_1 f_2 f_3 f_4 f_5 f_6 f_7$ $111189 \le b \le 122200$ $g_1 7 g_3 g_4 g_5 g_6$ $b_5 = 7 \Rightarrow 111270 \le b \le 122179$ $h_1 7 h_3 h_4 h_5 h_6$ $778890 \le 7b \le 855253$ $1 \ 0 \ i_3 \ i_4 \ i_5 \ i_6 \ i_7$ $h_2 = 7 \Rightarrow 778890 \le 7b \le 779999$ $1 \ 0 \ j_3 \ j_4 \ 7 \ j_6 \ j_7$ $111270 \le b \le 111428$ k_1 k_2 k_3 k_4 k_5 k_6 $b_5 = 7 \Rightarrow 111270 \le b \le 111379$ $m_1 m_2 m_3 m_4 m_5 m_6$ $1001430 \le 9b \le 1002411$ $a_1 \ a_2 \ 7 \ 8 \ a_5$ $1 b_2 b_3 b_4 7 b_6$) $c_1 c_2 7 c_4 c_5 c_6 c_7 c_8 c_9 c_{10}$ $j_5 = 7 \Rightarrow 1001700 \le 9b \le 1001799$ $111300 \le b \le 111311$ $d_1 d_2 d_3 d_4 d_5 d_6$ $b_5 = 7 \Rightarrow$ no solution $e_1 e_2 e_3 e_4 e_5 7 e_7$ $\therefore a_4 \neq 9 \Rightarrow a_4 = 8$ $f_1 f_2 f_3 f_4 f_5 f_6 f_7$ By (1): $111270 \le b \le 139979$ $g_1 7 g_3 g_4 g_5 g_6$ $890160 \le 8b \le 1119832$ $h_1 7 h_3 h_4 h_5 h_6$ j = 8b, a 7-digits number $1 \ 0 \ i_3 \ i_4 \ i_5 \ i_6 \ i_7$ $\Rightarrow 1000700 \le 8b \le 1099799$ 1 0 j_3 j_4 7 j_6 j_7 $125088 \le b \le 137474$ k_1 k_2 k_3 k_4 k_5 k_6 $b_5 = 7 \Rightarrow 125170 \le b \le 137474$ $m_1 m_2 m_3 m_4 m_5 m_6$ $1001360 \le 8b$ $a_1 \ a_2 \ 7 \ 8 \ a_5$ $j_5 = 7 \implies 1001700 \le 8b$ $1 b_2 b_3 b_4 7 b_6$) $c_1 c_2 7 c_4 c_5 c_6 c_7 c_8 c_9 c_{10}$ $125213 \le b$ $d_1 d_2 d_3 d_4 d_5 d_6$ $b_5 = 7 \Rightarrow 125270 \le b$ $e_1 e_2 e_3 e_4 e_5 7 e_7$ $1002160 \le 8b$ $f_1 f_2 f_3 f_4 f_5 f_6 f_7$ $j_5 = 7 \Rightarrow 1002700 \le 8b$ 9 7 g_3 g_4 g_5 g_6 $125338 \le b$ 8 7 h_3 h_4 h_5 h_6 $b_5 = 7 \Rightarrow 125370 \le b$ $1 \ 0 \ i_3 \ i_4 \ i_5 \ i_6 \ i_7$ $1002960 \le 8b$ 1 0 j_3 j_4 7 j_6 j_7 $j_5 = 7 \implies 1003700 \le 8b$ k_1 k_2 k_3 k_4 k_5 k_6 $125463 \le b$ $m_1 m_2 m_3 m_4 m_5 m_6$ $b_5 = 7 \Rightarrow 125470 \le b \le 137474 \dots (6)$ $1003760 \le 8b \le 1099792$ $b \times 7 = h$ and $g_1 - h_1 = 1 \Rightarrow h_1 = 7$ or 8

 $878290 \le 7b \implies h_1 = 8, g_1 = 9$

Division Problem Mr. Francis Hung

Division Problem Mr. Francis Hung

when $b=125470$, $a_2=9$, $f=1129230$, contradict (14)	_					a_1	8	7	8	1
when $b=125471$, $a_2=8$, $f=1003768$, contradict (14)	1 2 5 4 7 <i>b</i> ₆	$c_1 c_2$	2 7	c_4	. C5	c_6	c_7	c_8	C 9	c_{10}
when $b=125471$, $a_2=9$, $f=1129239$, contradict (14)		$d_1 d$	$\frac{1}{2}d$	d_4	d_5	d_6				
so $h_4 \neq 2$, $\Rightarrow h_4 = 3$		$e_1 e_1$	e_3	e_4	. e ₅	7	e_7			
$g_4 = 9, f_6 = 8 \text{ or } 7 \dots (15)$		$f_1 f_2$	f_3	f_4	f_5	f_6	f_7			
By (11) and $h_4 = 3$, $878300 \le 7b \le 878318$			9	7	9	9	g_5	g_6		
$125472 \le b \le 125474$			8	7	8	3	h_5	h_6		
when $a_2 = 9$, $1129248 \le 9b \le 1129266$			1	0	1	6	i_5	i_6	i_7	
$1129248 \le f \le 1129266$			1	0	0	3	7	j_6	j_7	
contradict with (15)					1	2	5	4	7	k_6
so $a_2 = 8$					1	2	5	4	7	m_6
$1003776 \le 8b \le 1003792, f = 8b$						a_1	8	7	8	1
$f_6 = 8 \text{ or } 7 \Rightarrow 1003776 \le 8b \le 1003789$	$1\ 2\ 5\ 4\ 7\ b_6$	$c_1 c_1$	2 7	c_4	. C ₅	c_6	<i>c</i> ₇	c_8	<i>C</i> 9	c_{10}
$125472 \le b \le 125473$		$d_1 d$	$d_2 d_3$	d_4	d_5	d_6				
$f_1 = 1, f_2 = 0, f_3 = 0, f_4 = 3, f_5 = 7$		$\overline{e_1}$ $\overline{e_2}$	e_3	, e ₄	. e ₅	7	<i>e</i> ₇			
$878304 \le 7b \le 878311$		1 0	0	3	7	f_6	f_7			
$1003776 \le 8b \le 1003784$						9		g_6		
If $b_6 = 2$, then $k = m = 125472$						3				
j = 1003776 = f			_			6				
i = j + 12547 = 1016323						3				
h = 7b = 878304						2				$\overline{k_6}$
g = h + 101632 = 979936										m_6
$e = f + 97993 = 1101769$ contradict $e_6 = 7$										
Therefore $b_6 = k_6 = m_6 = 3$						5	8	7	8	1
j = 8b = 1003784 = f	125473	7 3	7	5	4	2	8	4	1	3
i = j + 12547 = 1016331		6 2	7	3	6	5				
h = 7b = 878311		1 1	0	1	7	7	8			
g = h + 101633 = 979944		1 0	0	3	7	8	4			
e = f + 97994 = 1101778			9	7	9	9	4	4		
$7 - d_3 = 0 \text{ or } 6 - d_3 = 0 \Rightarrow d_3 = 6 \text{ or } 7$			8	7	8	3	1	1		
By the method of exhaustion			1	0	1	6	3	3	1	
125473×3=376419, 125473×5=627365			1	0	0	3	7	8	4	
$a_1 = 3 \text{ or } 5$			_			2				3
When $a_1 = 3$, $d = 376419$					1	2	5	4	7	3
$c = (d+110177) \times 10000 + 8413 = 4865968413$										
contradict $c_3 = 7$										
So $a_1 = 5$, $d = 627365$,										
$c = (d + 110177) \times 10000 + 8413 = 7375428413$										
·										