"Anticipez les besoins en consommation de bâtiments"

Projet n°4

Léa ZADIKIAN

Parcours Data Scientist 26 Décembre 2022

Objectif ville neutre en 2050 pour Seattle

- → Objectif de la ville de Seattle : ville neutre en émissions de carbone en 2050.
- → Elle s'intéresse à la consommation et aux émissions de ses bâtiments non destinées à l'habitation
- → Elle dispose de relevés effectués en 2016, MAIS relevés coûteux!

→ <u>Mission</u>: prédire les émissions de CO₂ et la consommation totale d'énergie de bâtiments non destinés à l'habitation pour lesquels elles n'ont pas encore été mesurées.

Anticipez les besoins en consommation de bâtiments

- . Présentation du jeu de données
- II. Approche de modélisation et présentation des résultats

I. Présentation du jeu de données

Environnement technique

- Notebook Jupyter 6.4.8
- Python 3.9.12
- Librairies utilisées :
 - pandas
 - o numpy
 - o missingno
 - o matplotlib et seaborn
 - sklearn

Jeu de données de la ville de Seattle

- 3.376 lignes. Chaque ligne est un bâtiment.
- 46 colonnes :
 - → Localisation du bâtiment : adresse, quartier, coordonnées...
 - → Année de construction
 - → Caractéristiques du bâtiments : nb d'étages, surface, nombre de bâtiments etc...
 - → Les différents usages du bâtiments et la surface associée (bureau, supermarché, hôpital, hôtel, restaurant, parking etc...)
 - **→** Consommation d'énergie
 - → Emission de CO₂

Targets

Objectif du projet : modélisation et prédiction

Features

Nettoyage du jeu de données

Étap	es de nettoyage :	Variables concernées	Nb de bâtiments	
1.	Sélection des bâtiments non destinés à l'habitation	'BuildingType'	1.668	
2.	Recherche de doublons ⇒ aucun doublon		1.668	
3.	Suppression des bâtiments avec valeurs aberrantes	'Outliers', 'ComplianceStatus'	1.548	
4.	Suppression des bâtiments avec valeur d'émission de CO ₂ négative	'TotalGHGEmissions'	1.547	

Analyse exploratoire

• Distribution des quelques variables principales

Analyse des corrélations

- Etude du data leakage ⇒ Suppression des variables corrélées avec les targets mais susceptibles de ne pas être disponibles dans le futur (risque de bonne performance du modèle d'entraînement, mais mauvaise en production):
 - > SteamUse
 - NaturalGas

- 0 4

- 0.0

- Electricity...
- Variables corrélées avec la consommation :
 - La surface (0.8)
 - Le nb de bâtiments (0.7)
- Consommation et émission : 0.9
- ENERGY STAR Score : ne semble pas avoir de corrélation avec les autres variables.

II. Approche de la modélisation et présentation des résultats

Approche de modélisation

→ Itérations entre le feature engineering et l'entraînement des modèles

1. Feature engineering à partir de features "simples"

- 'BuildingType',
- 'PrimaryPropertyType',
- 'Neighborhood',
- 'YearBuilt',
- 'NumberofBuildings',
- 'Number of Floors',
- 'PropertyGFATotal',
- 'PropertyGFAParking',

2. Prise en compte plus précise des différents usages d'un bâtiment et de la surface associée

- 'LargestPropertyUseType'
- 'LargestPropertyUseTypeGFA'
- 'SecondLargestPropertyUseType'
- 'SecondLargestPropertyUseTypGFA'
- 'ThirdLargestPropertyUseType'
- 'ThirdLargestPropertyUseTypeGFA'

3. Intérêt de ENERGY STAR Score

- 'ENERGYSTARScore'
- Sur un sous ensemble du jeu de données sans valeurs manquantes

1^{ère} itération - Feature engineering

- → Transformation logarithmique (np.log2) des variables numériques :
 - Distributions initiales étalées à droite (skewness>0), type loi de puissance
 - Après transformation, les données sont plus normalement distribuées.

- → Categorical binning (pd.cut) de la variable 'YearBuilt' (années de construction) :
 - Transformation de la variable continue en variable discrète en la catégorisant (par décennie)
 - Réduit le risque de surapprentissage et améliore la robustesse du modèle

1^{ère} itération - Feature engineering

- → Encodage des variables catégorielles avec OneHotEncoder()
 - Permet d'intégrer les variables catégorielles à la modélisation.
 - Transforme une variable catégorielle en un tableau comportant une colonne binaire par modalité de la variable.
 - Appliqué sur : 'BuildingType', 'PrimaryPropertyType', 'Neighborhood', 'YearBuiltLabel'

	Variable catégorielle 'Neighborhood' Données d'origine, 10 dernières lignes.							
Out[88]:		Neighborhood						
	1537	NORTH						
	1538	BALLARD						
	1539	BALLARD						
	1540	EAST						
	1541	CENTRAL						
	1542	DELRIDGE						
	1543	DOWNTOWN						
	1544	MAGNOLIA / QUEEN ANNE						
	1545	GREATER DUWAMISH						
	1546	GREATER DUWAMISH						

	Variable catégorielle 'Neighborhood' Données transformées avec OneHotEncoder, 10 dernières													
[85]:		0	1	2	3	4	5	6	7	8	9	10	11	12
	1537	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
	1538	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1539	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1540	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1541	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1542	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1543	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1544	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
	1545	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1546	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Variable "**Neighborhood**' comportant 13 modalités

Création d'un tableau de 13 colonnes binaires

Étapes de modélisation

- → 2 Targets:
 - SiteEnergyUse (KBtu) (consommation d'énergie)
 - TotalGHGEmissions (émissions de CO2)

- Modèles utilisés :
 - Dummy Regressor (baseline)
 - Elastic Net (linéaire)
 - Random Forest (non linéaire)

- Métriques utilisées :
 - **RMSE**: Root mean squared error
 - R²: coefficient de détermination

Approche naïve avec DummyRegressor

- → Modèle utilisant une stratégie de prédiction très simple : prédiction par une constante ou par la moyenne, la médiane du jeu d'entraînement.
- → Les résultats servent de "baseline" pour comparer avec des "vraies" régressions

→ Prédiction de la consommation d'énergie :

- stratégie de prédiction du Dummy Regressor = moyenne
- RMSE = 1,98
- R²= 0 (le modèle est équivalent à prédire par la moyenne)

Modèle de régression linéaire avec ElasticNet

- → L'ElasticNet permet de combiner la régression Ridge et le Lasso
- → **Objectif**: Minimiser cette fonction de coût comportant 2 coefficients de régularisation :

```
1 / (2 * n_samples) * ||y - Xw||_2^2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * <math>||w||_2^2
```

→ Grille de recherche des 2 hyperparamètres par validation croisée avec GridSearchCV :

■ alpha:10⁻⁴,10⁻³...10,10²

■ /1_ratio: 0.1,0.2,0.3,...0.9

Prédiction de la	Modèle			
CONSOMMATION (1ère itération)	Elastic Net (Linéaire)			
Meilleurs hyperparamètres	 α = 0.01 L₁_ratio = 0.9 			
RMSE	1.50			
R ²	0.50			
Temps d'exécution	0.013 s			

Modèle non linéaire avec Random Forest

- → Random forest: méthode ensembliste qui se base sur l'assemblage d'arbres de décisions (tree bagging+ feature sampling)
 - → Grille de recherche des hyperparamètres par validation croisée avec GridSearchCV :

n_estimators: 10, 50, 100, 300,500

min_samples_leaf :1,3,5,10

Prédiction de la	Modèle			
CONSOMMATION (1ère itération)	Random Forest (Non linéaire)			
Meilleurs hyperparamètres	min_samples_leaf = 5n_estimators = 100			
RMSE	1.48			
R ²	0.53			
Temps d'exécution	0.46 s			

2^{ème} itération -Feature engineering

- → On complexifie le modèle en prenant en compte de façon plus précise les différents usages d'un même bâtiment et la surface associée.
- → On s'appuie sur un encodage binaire avec OneHotEncoder().
- → On ne garde que les catégories les plus fréquentes.
- → On remplace les 1 par le % d'utilisation par rapport à la surface totale.

Features concernées:

- 'LargestPropertyUseType',
- 'LargestPropertyUseTypeGFA',
- 'SecondLargestPropertyUseType',
- 'SecondLargestPropertyUseTypeGFA'
- 'ThirdLargestPropertyUseType',
- 'ThirdLargestPropertyUseTypeGFA'

2^{ème} itération - Résultats pour la CONSOMMATION

→ Résultats issus du 2ème feature engineering pour la CONSOMMATION

Prédiction de la	Modèle					
CONSOMMATION (2ème itération)	Elastic Net (Linéaire)	Random Forest (Non linéaire)				
Meilleurs hyperparamètres	• $\alpha = 0.01$ • L_{1} ratio = 0.9	min_samples_leaf = 1n_estimators = 100				
RMSE	1.02	1.12				
R ²	0.58	0.64				
Temps d'exécution	0.015 s	0.57s				

⇒ Le 2^{ème} feature engineering a amélioré les performances de chaque modèle.

2^{ème} itération - Feature importance CONSOMMATION

Prédiction des émissions

	Modèle							
Prédiction les EMISSIONS	Elastic (Linéa		Random Forest (Non linéaire)					
	1 ^{ère} itération	2 ^{ème} itération	1 ^{ère} itération	2 ^{ème} itération				
Meilleurs hyperparamètres	 α = 0.01 L₁_ratio = 0.9 	• $\alpha = 0.01$ • L_{1} ratio = 0.9	min_samples_leaf = 3n_estimators = 500	min_samples_leaf = 3n_estimators = 500				
RMSE	1.49	1.44	1.48	1.37				
R ²	0.51	0.57	0.49	0.59				
Temps d'exécution	0.013 s	0.014 s	0.48 s	0.60 s				

2^{ème} itération - Feature importance ÉMISSIONS

3ème itération : Intérêt de ENERGY STAR Score

- → ENERGY STAR Score : score allant de 1 à 100 de la performance énergétique d'un bâtiment, prenant en compte ses caractéristiques physiques, son utilisation et le comportement de ses occupants.
 - Score fastidieux à calculer avec l'approche utilisée
 - On cherche donc à évaluer son intérêt pour la prédiction d' émissions ⇒ intégration dans la modélisation
 - L'ENERGY STAR Score présente des valeurs manquantes ⇒ on travaille sur un sous-ensemble sans valeur manquante du jeu de données de 996 bâtiments
- → Entraînement du modèle Random Forest :
 - R2: 0.61 amélioration légère
 - → compromis à faire entre performance du modèle et complexité à calculer le score

Conclusion

Ce projet a été une opportunité de :

- → Appréhender l'approche de modélisation itérative courante en Data Science : feature engineering / modèle d'apprentissage.
- → Mettre en œuvre différentes techniques de feature engineering.
- → Mettre en œuvre des **algorithmes de régression linéaire et non linéaire**, à l'aide de **grille de recherche et validation croisée**.
- → Évaluer les performances de l'algorithme.

Merci pour votre attention! Des questions?