

Description

The VSM60N02 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 20V, I_D = 60A$ $R_{DS(ON)} < 6m\Omega @ V_{GS} = 4.5V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Load switching
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM60N02-T2	VSM60N02	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	Vgs	±12	V	
Drain Current-Continuous	I _D	60	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	42	А	
Pulsed Drain Current	I _{DM}	210	А	
Maximum Power Dissipation	P _D	60	W	
Derating factor		0.48	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	200	mJ	
Operating Junction and Storage Temperature Range	T_{J},T_{STG}	-55 To 150	°C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	2.1	°C/W	l
---	------------------	-----	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	0.5	0.75	1.0	V
Dunin Course On State Besietenes	R _{DS(ON)}	V _{GS} =4.5V, I _D =20 A	-	4.8	6	mΩ
Drain-Source On-State Resistance		V _{GS} =2.5V, I _D =15A		6.2	9	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =20A	15	-	-	S
Dynamic Characteristics (Note4)			•	•		•
Input Capacitance	C _{lss}	\/ -40\/\/ -0\/	-	2000	-	PF
Output Capacitance	Coss	$V_{DS}=10V,V_{GS}=0V,$	-	500	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	200	-	PF
Switching Characteristics (Note 4)			•	•		•
Turn-on Delay Time	t _{d(on)}	V_{DD} =10V, I_{D} =2A, R_{L} =1 Ω V_{GS} =4.5V, R_{G} =3 Ω	-	6.4	-	nS
Turn-on Rise Time	t _r		-	17.2	-	nS
Turn-Off Delay Time	t _{d(off)}		-	29.6	-	nS
Turn-Off Fall Time	t _f		-	16.8	-	nS
Total Gate Charge	Qg	1/ 40//1 004	-	27		nC
Gate-Source Charge	Q_{gs}	V _{DS} =10V,I _D =20A,	-	6.5		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	6.4		nC
Drain-Source Diode Characteristics	<u> </u>		•	•		•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	60	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	25	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	24	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}$ C,V_{DD}=10V,V_G=10V,L=0.5mH,Rg=25 Ω ,

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

(M) uoistadissid 30 20 10 25 50 75 100 125 150 T_J-Junction Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance