How to learn Applied Mathematics through modern Fortran

Juan A. Hernández Ramos Javier Escoto López

Department of Applied Mathematics School of Aeronautical and Space Engineering Technical University of Madrid (UPM) Portrait: Find your inspiration. "Under the stars on a summer night" (August 2017). Photography by Juan Ignacio Ruíz–Gopegui. Cover design by Belén Moreno Santamaría.

All rights are reserved. No part of this publication may be reproduced, stored or transmitted without the permission of authors.

2019 First edition 2021 Second edition. Revision and complements 2022 Third edition. Revision and complements

© Juan A. Hernández Ramos, Javier Escoto López.

ISBN 979-8604287071

1	$\mathbf{U}\mathbf{S}$	er Manuai	Т			
1	Syst	tems of equations	3			
	1.1	Overview	3			
	1.2	LU solution example	4			
	1.3	Newton solution example	5			
	1.4	Implicit and explicit equations	6			
	1.5	Power method example	8			
	1.6	Condition number example	10			
	1.7	Singular value decomposition example	11			
2	Lag	range interpolation	13			
	2.1	Overview	13			
	2.2	Interpolated value	14			
	2.3	Interpolant and its derivatives	15			
	2.4	Integral of a function	16			
	2.5	Lagrange polynomials	17			
	2.6	Ill–posed interpolants	18			
	2.7	Lebesgue function and error function	20			
	2.8	Chebyshev polynomials	23			
	2.9	Chebyshev expansion and Lagrange interpolant	24			
3	Fini	ite Differences	27			
	3.1	Overview	27			
	3.2	Derivatives of a 1D function	28			
	3.3	Derivatives of a 2D function	31			
	3.4	Truncation and Round-off errors of derivatives	33			
4	Cauchy Problem 37					
	4.1	Overview	37			
	4.2	First order ODE	38			
	4.3	Linear spring	40			
	4.4	Lorenz Attractor	42			
	4.5	Stability regions	44			
	4.6	Richardson extrapolation to calculate error	45			
	4.7	Convergence rate with time step	46			

	4.8	Advanced high order numerical methods 47
	4.9	Van der Pol oscillator
	4.10	Henon-Heiles system
	4.11	Constant time step and adaptive time step
	4.12	Convergence rate of Runge–Kutta wrappers
	4.13	Arenstorf orbit. Embedded Runge–Kutta
	4.14	Gragg-Bulirsch-Stoer Method
	4.15	Adams-Bashforth-Moulton Methods
	4.16	Computational effort of Runge–Kutta schemes
5	Bou	ndary Value Problems 59
•	5.1	Overview
	5.2	Legendre equation
	5.3	Beam deflection
	5.4	Poisson equation
	5.5	Deflection of an elastic linear plate
	5.6	Deflection of an elastic non linear plate
c	T:4:	
6	6.1	al Boundary Value Problems71Overview
	6.2	Heat equation 1D
	6.2	Heat equation 2D
	6.4	Advection Diffusion equation 1D
	6.5	Advection-Diffusion equation 2D
	6.6	Wave equation 1D
	6.7	Wave equation 2D
_		•
7		ed Boundary and Initial Value Problems 87
	7.1	Overview
	7.2	Non Linear Plate Vibration
II	D	eveloper guidelines 93
1	Syst	ems of equations 95
	1.1	Overview
	1.2	Linear systems and LU factorization
	1.3	Condition number
	1.4	Non linear systems of equations
	1.5	Eigenvalues and eigenvectors
	1.6	Power method and deflation method
	1.7	Inverse power method
	1.8	Singular Value Decomposition (SVD)
	1.9	Implementation with the Numerical HUB
2	Lag	range Interpolation 123
	2.1	Overview
	2.2	Lagrange interpolation

		2.2.1 Lagrange polynomials
		2.2.3 Two variables functions $\dots \dots \dots$
3	Fini	te Differences 137
	3.1	Finite differences
		3.1.1 Algorithm implementation
4	Cau	chy Problem 145
	4.1	Overview
	4.2	Algorithms or temporal schemes
	4.3	Implicit temporal schemes
	4.4	Richardson's extrapolation to determine error
	4.5	Convergence rate of temporal schemes
	4.6	Embedded Runge-Kutta methods
	4.7	Gragg-Bulirsch-Stoer method
	4.8	Linear multistep methods
		4.8.1 Linear multistep methods as a Taylor expansion 165
		4.8.2 Multivalue formulation of Adams methods 165
5	Bou	indary Value Problems 173
	5.1	Overview
	5.2	Algorithm to solve Boundary Value Problems
	5.3	From classical to modern approaches
	5.4	Overloading the Boundary Value Problem
	5.5	Linear and nonlinear BVP in 1D
	5.6	Non Linear Boundary Value Problems in 1D
	5.7	Linear Boundary Value Problems in 1D
6		ial Boundary Value Problems 185
	6.1	Overview
	6.2	Algorithm to solve IBVPs
	6.3	From classical to modern approaches
	6.4	Overloading the IBVP
	6.5	Initial Boundary Value Problem in 1D
7		ted Boundary and Initial Value Problems 193
	7.1	Overview
	7.2	Algorithm to solve a coupled IBVP-BVP
	7.3	Implementation: the upper abstraction layer
	7.4	BVP_and_IBVP_discretization
	7.5	Step 1. Boundary values of the IBVP
	7.6	Step 2. Solution of the BVP
	7.7	Step 3. Spatial discretization of the IBVP
	7.8	Step 4. Temporal evolution of the IBVP

Π	Application Program Interface	211
1	Systems of equations 1.1 Overview	214
2	Interpolation 2.1 Overview	222 227
3	Collocation methods 3.1 Overview	
4	Cauchy Problem 4.1 Overview	238 241 242
5	Boundary Value Problems 5.1 Overview	
6	Initial Boundary Value Problem 6.1 Overview	254 256 258
7	Mixed Boundary and Initial Value Problems 7.1 Overview	
8	Utilities 8.1 Overview	269 269
В	bliography	277

Preface

During the process of learning mathematics, it is crucial to understand the theoretical basis associated with each concept. However, this necessary condition is not sufficient for a deep understanding of most mathematical problems. It is required to work the concepts with concrete examples and exercises in which numerical calculations are enlightening. For example, it is quite hard to get an intuitive vision of complex mathematical problems without working with their solutions. The solution of a mathematical problem involves designing an algorithm that is then implemented in a programming language. A natural question that can arise in this line of thought is: How closely could the programming language be of the mathematical language? It is not easy to provide an answer to this question. One main purpose of this book is to write programming codes with such a level of abstraction that the Fortran code resembles the mathematical language. To do that, profound knowledge of the Fortran language as well as the mathematical language is required.

Fortran is a strongly-typed language in which each data have a precise type, kind, and rank, and each subroutine or function states its communication requirements in terms of these types. Usually, when formulating a mathematical problem, a rigorous definition of the involved variables is stated. This is in consonance with a strongly-typed language. Besides, mathematical models are generally expressed in terms of functions and operators. Fortran language suits very elegantly with the functional paradigm. Even being possible to use the Fortran language to write object-oriented programming, the authors do not recommend this kind of programming with the Fortran language. The functional paradigm is much better suited. As in any other high-level programming language, the use of first-class functions allows easily the implementation of mathematical restrictions and functional operators. Fortran is a vector-based programming language dealing elegantly with mathematical operations between vectors and matrices of any finite vectorial space. All of the previously stated characteristics, along with the capabilities of a computer such as the graphical representation of data and the speed of computation, make the programming language a great help to understand many mathematical concepts. When treating with differential equations, which are very common in physical problems, the use of programming is mandatory when there is no analytical solution. The effect of the different terms that are involved in an equation can be observed by changing the value of their coefficients and plotting the solution. Other phenomena, such as the dispersion and diffusion of waves when dealing with linear hyperbolic partial differential equations are much easier to be observed using plotting tools. From this list of examples, we can deduce that the use of programming languages serves as a great reinforcement in the development of intuition for mathematical problems.

The use of the functional paradigm of the Fortran language together with the construction of high-level abstractions are discussed in this book. Several mathematical problems of recurrent appearance in engineering are presented. Along with each type of problem, an algorithm for its resolution and its implementation in Fortran language are included. Moreover, an extended library of numerical methods accompanies this book. This library has two different abstraction layers: (i) the application layer in which subroutines are used as black boxes and (ii) the implementation layer that allows building different abstractions based on simpler concepts or functions.

The book is structured in three different parts: user manual, developer guidelines and Application Programming Interface (API). Part I, corresponding to the user manual, contains examples of mathematical problems of different natures and their resolution by means of the provided software. The second part describes each one of the problems and the algorithm that solves them. Besides, the deeper layer of the software is presented in order to help in the understanding of the functioning of the code. The final part, the Application Programming Interface, enlists for each type of mathematical problem the available subroutines and functions that compound the corresponding modules. The subprograms are defined by their interface in terms of their inputs and outputs. Every part is divided into chapters, one for each type of a mathematical problem.

Chapter 1 treats common topics from elementary operations with vectors and matrices from linear algebra and equations expressed in terms of elementary functions. The resolution of linear systems by LU decomposition, finding zeros of a nonlinear function by means of the Newton-Raphson method, eigenvalues, and eigenvectors by means of power method and SVD decomposition. These two latter methods are also applied to the computation of the condition number of a matrix, which gives information about its sensitivity.

Chapter 2 deals with the interpolation problem, focusing on polynomial interpolation by means of Lagrange polynomials. The Lagrange polynomials, their integrals, and derivatives are computed. The presented interpolation methods are used by the module that computes numerical derivatives of a function.

In Chapter 3, the computation of high order derivatives by means of Finite differences is carried out. This process is key to solving partial differential equations problems as boundary value problems or evolution problems in spatial domains. The computation of the derivatives is used to discretize the spatial domain by means of Lagrange interpolation. High order finite difference methods permit to transform the differential operator defined on a continuum domain to a differential

operator that is evaluated in a finite discrete set of points.

During Chapter 4 the initial value problem for ordinary differential equations, or also called Cauchy problem, is presented. This problem is of great applications in engineering problems. Starting by most problems of classical mechanics, such as orbital movements, or the attitude control of a satellite which are typical space applications. In other words, any problem that can be modeled as a first-order ordinary differential equation whose solution evolves from a certain initial value. This is achieved by means of temporal schemes that approximate the derivative of the differential equation.

In Chapter 5, the Boundary Value Problem is presented. This problem consists of determining a scalar or a vector field defined over a certain spatial domain governed by a differential equation with boundary conditions. Its applicability goes from structural static problems to thermal distributions or any physical problem that can be modeled as a partial differential equation with boundary conditions.

During Chapter 6, the Initial Value Boundary Problem is treated. This problem consists of an evolution problem for a vector field over a spatial domain, satisfying at each instant certain boundary conditions. Many classical problems such as the heat equation or the waves equation are governed by this kind of mathematical model. The method of resolution uses finite differences to discretize the spatial domain and transform the problem into a Cauchy problem, which is solved by the methods stated in Chapter 4.

Finally, in Chapter 7, mixed problems that include an initial value boundary problem coupled with a boundary value problem are presented. Complex physics such as the vibration of non-linear plates can be modeled using these types of problems.

We hope this book helps the student to understand profound concepts related to numerical mathematical problems and what is more important, from the point of view of authors, demystifying the chasm between programming and mathematics by making programming as beautiful and formal as the mathematical formulation of a problem.

> Juan A. Hernández Javier Escoto Madrid, Septiembre 2019

Introduction

The following book is intended to serve as a guide for graduate students of engineering and scientific disciplines. Particularly, it has been developed thinking on the students of the Technical Superior School of Aeronautics and Space Engineering (ETSIAE) from Polytechnic University of Madrid (UPM). The topics presented cover many of the mathematical problems that appear on the different subjects of aerospace engineering problems. Far from being a classical textbook, with proofs and extended theoretical descriptions, the book is focused on the application and computation of the different problems. For this, for each type of mathematical problem, an implementation in Fortran language is presented. A complete library with different modules for each topic accompanies this book. The goal is to understand the different methods by directly by plotting numerical results and by changing parameters to evaluate the effect. Later, the student is advised to modify or to create his own code by studying the developer part of this book.

A complete set of libraries and the software code which is explained is this book can be downloaded from the repository:

https://github.com/jahrWork/NumericalHUB.

This repository is in continuous development by the authors. Once the compressed file is downloaded, Fortran sources files comprising different libraries as well as a Microsoft Visual Studio solution called NumericalHUB.sln can be extracted. If the reader is not familiar with the Microsoft Integrated Development Environment (IDE), it is highly recommended to read the book Programming with Visual Studio: Fortran & Python & C++ & WEB projects. Amazon Kindle Direct Publishing 2019. This book describes in detail how to manage big software projects by means of the Microsoft Visual Studio environment. Once the Microsoft Visual Studio is installed, the software solution NumericalHUB.sln allows running the book examples very easily.

The software solution Numerical HUB.sln comprises a set of extended examples of different simulations problems. Once the software solution Numerical HUB.sln is loaded and run, the following simple menu appears on the Command Prompt:

```
write(*,*) "Welcome to NumericalHUB"

write(*,*) " select an option "
write(*,*) " 0. Exit/quit "
write(*,*) " 1. Systems of equations "
write(*,*) " 2. Lagrange interpolation "
write(*,*) " 3. Finite difference "
write(*,*) " 4. ODE Cauchy problems "
write(*,*) " 5. Boundary value problems "
write(*,*) " 5. Boundary value problems "
write(*,*) " 6. Initial-boundary value problems "
write(*,*) " 7. Mixed problems: IBVP+BVP "
write(*,*) " 8. High order ODE schemes "
write(*,*) " 9. Spectral methods and Navier Stokes examples"
```

Listing 1: main_NumericalHUB.f90

Each option is related to the different chapters of the book explained before. As was mentioned, the book is divided into three parts: Part I User, Part II Developer and Part III Application Program Interface (API) which share the same contents. From the user point of view, it is advised to focus on part I where easy examples are implemented and numerical results are explained. From the developer's point of view, part II explains in detail how different layers or levels of abstraction are implemented. This philosophy will allow the advanced user to implement his own codes. Part III of this book is intended to give a detailed API to use this software code by novel users or advanced users to create new codes for specific purposes.

Part I User Manual

Systems of equations

1.1 Overview

In this section, solutions of linear problems are obtained as well as the determination of zeroes of implicit functions. The first problem is the solution of a linear system of algebraic equations. LU factorization method (subroutine LU_Solution) and Gauss elimination method are proposed to obtain the solution. The natural step is to deal with solutions of a non linear system of equations. These systems are solved by the Newton method in the subroutine Newton_Solution. The eigenvalues problem of a given matrix is considered in the subroutine Test_Power_Method computed by means of the power method. To alert of round-off errors when solving linear systems of equations, the condition number of the Vandermonde matrix is computed in the subroutine Vandermonde_condition_number. Finally, a singular value decomposition (SVD) is carried out by Test_SVD as an example of matrix factorization. All these subroutines are called from the subroutine Systems_of_Equations_examples which can be executed typing the first option of the main menu of the NumericalHUB.sln environment.

```
call LU_Solution
call Newton_Solution
call Implicit_explicit_equations
call Test_Power_Method
call Test_eigenvalues_PM
call Vandermonde_condition_number
call Test_Linear_regression
end subroutine
```

Listing 1.1: API_Example_Systems_of_Equations.f90

1.2 LU solution example

Let us consider the following system of linear equations:

$$A x = b$$

where $A \in \mathcal{M}_{4\times 4}$ and $b \in \mathbb{R}^4$ are:

$$A = \begin{pmatrix} 4 & 3 & 6 & 9 \\ 2 & 5 & 4 & 2 \\ 1 & 3 & 2 & 7 \\ 2 & 4 & 3 & 8 \end{pmatrix}, \qquad b = \begin{pmatrix} 3 \\ 1 \\ 5 \\ 2 \end{pmatrix}. \tag{1.2.1}$$

A common method to compute the solution to this problem is the LU factorization method. This method consists on the factorization of the matrix A into two simpler matrices L and U:

$$A = L U$$
.

where L is a lower triangular matrix and U is an upper triangular matrix. This decomposition permits to calculate the solution x taking advantage of the factorization. Once the A matrix is factorized (subroutine LU_factorization), the solution by means of a backward substitution can be obtained for any independent term b (subroutine Solve_LU). The implementation of this problem is done as follows:

```
subroutine LU Solution
    real :: A(4,4), b(4), x(4)
    integer :: i
    A(1,:) = [4, 3, 6, 9]
    A(2,:) = [2, 5, 4, 2]
    A(3,:) = [1, 3, 2, 7]
    A(4,:) = [2, 4, 3, 8]
    b = [3, 1, 5, 2]
    write (*,*) 'Linear system of equations
    write (*,*) 'Matrix of the system A= '
do i=1, 4; write(*,'(100f8.3)') A(i, :); end do
    write (*,'(A20, 100f8.3)') 'Independent term b= ', b
    write(*,*)
    call LU_factorization( A )
    x = Solve_LU(A, b)
    write (*,'(A20, 100f8.3)') 'The solution is = ', x
    write(*,*) "press enter " ; read(*,*)
end subroutine
```

Listing 1.2: API_Example_Systems_of_Equations.f90

Once the program is executed, the solution x results:

$$x = \begin{pmatrix} -7.811 \\ -0.962 \\ 4.943 \\ 0.830 \end{pmatrix}. \tag{1.2.2}$$

1.3 Newton solution example

Another common problem is to obtain the solution of a system of non linear equations. Iterative methods based on approximate solutions are always required. The rate of convergence and radius of convergence from an initial condition determine the election of the iterative method. The highest rate of convergence to the final solution is obtained with the Newton-Raphson method. However, the initial condition to iterate must be close to the solution to achieve convergence. Generally, this method is used when the initial approximation of the solution can be estimated approximately. To illustrate the use of this method, an example of a function $F: \mathbb{R}^3 \to \mathbb{R}^3$ is defined as follows:

$$F_1 = x^2 - y^3 - 2,$$

 $F_2 = 3 \ x \ y - z,$
 $F_3 = z^2 - x.$

The implementation of the previous problem requires the definition of a vector function F as:

```
function F(xv)
    real, intent(in) :: xv(:)
    real:: F(size(xv))

real :: x, y, z

x = xv(1); y = xv(2); z = xv(3)

F(1) = x**2 - y**3 - 2
F(2) = 3 * x * y - z
F(3) = z**2 - x

end function
```

Listing 1.3: API_Example_Systems_of_Equations.f90

The subroutine Newton gives the solution by means of an iterative method from the initial approximation x0. The solution is given in the same variable x0.

```
subroutine Newton_Solution

real :: x0(3) = [1., 1., 1. ]

call Newton( F, x0 )

write(*,*) 'Zeros of F(x) by Newton method '
 write(*,*) 'F(1) = x**2 - y**3 - 2'
 write(*,*) 'F(2) = 3 * x * y - z'
 write(*,*) 'F(3) = z**2 - x'
 write(*,*) 'F(30, 100f8.3)') 'Zeroes of F(x) are x = ', x0
 write(*,*) "press enter "
 read(*,*)

end subroutine
```

Listing 1.4: API_Example_Systems_of_Equations.f90

Once the program is executed, the computed solution results:

$$(x,y,z) = (1.4219, 0.2795, 1.1924)$$

1.4 Implicit and explicit equations

Sometimes, the equations that governs a problem comprises explicit and implicit equations. For example, the following system of equations:

$$F_1 = x^2 - y^3 - 2,$$

 $F_2 = 3xy - z,$
 $F_3 = z^2 - x.$

can be expressed by maintaining two equations as implicit equations and one as an explicit equation:

$$x = z^{2},$$

 $F_{1} = x^{2} - y^{3} - 2,$
 $F_{2} = 3xy - z.$

To solve this kind of problems, the subroutine Newtonc has been implemented. This subroutine takes into account that some equations are zero for all values of

the unknown x. In this case, the function F(x) should provide explicit relationships for the components of x. An example of this kind of problem together with an initial approximation for the solution is shown in the following code:

```
subroutine Implicit_explicit_equations
   real :: x(3)
   write(*,*) 'Zeros of F(x) by Newton method '
   write(*,*) 'F(1) = x**2 - y**3 - 2'
   write(*,*) 'F(2) = 3 * x * y - z'
   write(*,*) 'F(3) = z**2 - x'
      call Newtonc( F = F1, x0 = x )
      write(*,'(A35, 100f8.3)') 'Three implicit equations, x = ', x
      call Newtonc( F = F2, x0 = x )
      write(*, '(A35, 100f8.3)') 'Two implicit + one explicit, x = ', x
      write(*,*) "press enter "; read(*,*)
contains
function F1(xv) result(F)
   real, target :: xv(:)
   real :: F(size(xv))
   real, pointer :: x, y, z
   x => xv(1); y => xv(2); z => xv(3)
   F(1) = x**2 - y**3 - 2
   F(2) = 3 * x * y - z
   F(3) = z**2 - x
end function
function F2(xv) result(F)
   real, target :: xv(:)
   real :: F(size(xv))
   real, pointer :: x, y, z
   x => xv(1); y => xv(2); z => xv(3)
    x = z**2
   F(1) = 0 ! forall xv
    F(2) = x**2 - y**3 - 2
    F(3) = 3 * x * y - z
end function
end subroutine
```

Listing 1.5: API_Example_Systems_of_Equations.f90

1.5 Power method example

The determination of eigenvalues of square matrix are very valuable and also very challenging. If the matrix is symmetric, all eigenvalues are real and the determination of the eigenvalue with the largest module can be obtained easily by the power method. The power method is an iterative method that allows to determine the

Let us consider the symmetric matrix:

$$A = \begin{pmatrix} 7 & 4 & 1 \\ 4 & 4 & 4 \\ 1 & 4 & 7 \end{pmatrix}.$$

The determination of the largest eigenvalue is implemented in the following code by means of the power method:

```
subroutine Test_Power_Method

integer, parameter :: N = 3
    real :: A(N, N), lambda, U(N)=1

A(1,:) = [ 7, 4, 1 ]
    A(2,:) = [ 4, 4, 4 ]
    A(3,:) = [ 1, 4, 7 ]

write (*,*) 'Power method '
    call power_method(A, lambda, U)

write(*,'(A10, f8.3, A10, 3f8.5)') "lambda= ", lambda, "U= ", U
    write(*,*) "press enter "; read(*,*)

end subroutine
```

Listing 1.6: API_Example_Systems_of_Equations.f90

Once the program is executed, the largest eigenvalue yields:

$$\lambda = 12.00$$

and the associated eigenvector:

$$U = \begin{pmatrix} 0.5773 \\ 0.5773 \\ 0.5773 \end{pmatrix}.$$

Once the largest eigenvalue is obtained, it can be removed from the matrix A as well as its associated subspace. The new matrix A is obtained with the following expression

$$A_{ij} \to A_{ij} - \lambda_k \ U_i^k \ U_j^k$$
.

Following this procedure, the next largest eigenvalue is obtained. This is done in the subroutine eigenvalues_PM.

An example of this procedure is shown in the following code where the eigenvalues of the same matrix A are calculated. The subroutine eigenvalues_PM calls the subroutine power_method and removes the calculated eigenvalues.

```
subroutine Test_eigenvalues_PM
integer, parameter :: N = 3
real :: A(N, N), lambda(N), U(N, N)
integer :: i

A(1,:) = [ 7, 4, 1 ]
A(2,:) = [ 4, 4, 4 ]
A(3,:) = [ 1, 4, 7 ]

call Eigenvalues_PM(A, lambda, U)

do i=1, N
    write(*,'(A8, f8.3, A15, 3f8.3)') &
        "lambda = ", lambda(i), "eigenvector = ", U(:,i)
end do
end subroutine
```

Listing 1.7: API_Example_Systems_of_Equations.f90

Once the program is executed, the eigenvalues yield:

$$\lambda_1 = 12.00, \qquad \lambda_2 = 6.00, \qquad \lambda_3 = 1.33 \cdot 10^{-15},$$

and the associated eigenvectors:

$$U_1 = \begin{pmatrix} 0.5773 \\ 0.5773 \\ 0.5773 \end{pmatrix}, \qquad U_2 = \begin{pmatrix} -0.7071 \\ -8.5758 \cdot 10^{-13} \\ 0.7071 \end{pmatrix}, \qquad U_3 = \begin{pmatrix} 0.5773 \\ 0.5773 \\ 0.5773 \end{pmatrix}.$$

Notice that as λ_3 is null, the third eigenvector U_3 is the same as the first eigenvector U_1 .

1.6 Condition number example

When solving a linear system of equations,

$$A \ x = b$$

it is important to bound the error of the computed solution δx when considering a small error δb of the independent term b. Since the independent term b and the matrix A are entered in the computer as approximate values due to the round–off errors, the propagated error of the solution must be known. The condition number $\kappa(A)$ of a matrix A is defined as:

$$\kappa(A) = ||A|| ||A^{-1}||,$$

where ||A|| stands for the induced norm of matrix A. The condition number allows to bound the error of the computed solution of a system of linear equations by the following expression:

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}.$$

The condition number of 6×6 Vandermonde matrix A is calculated in the following code:

```
subroutine Vandermonde_condition_number

integer, parameter :: N = 10
real :: A(N, N), kappa
integer :: i, j

do i=1, N; do j=1, N;
    A(i,j) = (i/real(N))**(j-1)
end do; end do

kappa = Condition_number(A)

write(*,*) 'Condition number of Vandermonde matrix '
write(*,*(A40, e10.3)') " Condition number (power method) = ", kappa
write(*,*) "press enter "; read(*,*)
end subroutine
```

Listing 1.8: API_Example_Systems_of_Equations.f90

Once this code is executed, the result given for the condition number is:

$$\kappa(A) = 0.55E + 08,$$

which indicates that the Vandermonde matrix is *ill-conditioned*. When solving a linear system of equations where the system matrix A is the Vandermonde matrix, a small error in the independent term b will be amplified by the condition number giving rise to large errors in the solution x.

1.7 Singular value decomposition example

Let us consider the following matrix $A \in \mathcal{M}_{4\times 5}$:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{pmatrix}. \tag{1.7.1}$$

The singular value decomposition (SVD) or factorization is applicable to any square or non-square matrix. SVD allows to write matrix A as

$$A = U \Sigma V^T$$
.

where U and V are squared unitary matrices constructed with eigenvalues of A^T A and and Σ is a diagonal matrix containing the square root of those eigenvalues. SVD factorization has many applications such as thew rank of matrix A, the solution of ill-posed systems of equations and compression of images.

The SVD factorization is carried out by the subroutine SVD). The implementation of this decomposition can be found in the subroutine Test_SVD:

```
subroutine Test_SVD
integer, parameter :: M = 4, N = 5
real :: A(M, N), B(M,N), sigma(N), U(M, M), V(N, N), S(M,N)
real :: sigma_min = 1e-5
integer :: i
A(1,:) = [1, 0, 0, 0, 2]
A(2,:) = [0, 0, 3, 0, 0]
A(3,:) = [0, 0, 0, 0, 0]
A(4,:) = [0, 2, 0, 0, 0]
write(*,*) "----Test SVD decomposition----(press enter) "; read(*,*)
call SVD(A, sigma, U, V, sigma_min)
call print_matrix(" matrix A =", A)
call print_eigenvectors(" check U eigenvectors =", U )
call print_eigenvectors(" check V eigenvectors =", V )
do i=1, N-1
    B = B + sigma(i) * Tensor_product(U(:,i), V(:,i))
call print_matrix(" approximated matrix A =", B)
S = 0; do i=1, M; S(i,i) = sigma(i); end do
call print_SVD(" SVD A = U S VT = ", U, S, V )
end subroutine
```

Listing 1.9: API_Example_Systems_of_Equations.f90

The factorization of matrix A is finally obtained:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 2.24 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0.45 & 0 & 0 & 0 & 0.89 \\ 0 & 1 & 0 & 0 & 0 \\ 0.43 & 0 & 0 & 0.88 & -0.22 \\ -0.78 & 0 & 0 & -0.48 & -0.39 \end{pmatrix}.$$

In this example, the rank of matrix A is r=3 which means that matrix A can be expressed by:

$$A = \sigma_1 \ U_1 \otimes V_1 + \sigma_2 \ U_2 \otimes V_2 + \sigma_3 \ U_3 \otimes V_3, \tag{1.7.2}$$

where σ_1, σ_2 and σ_3 are the singular values which are diagonal components of the matrix Σ and \otimes stands for the tensor product calculated by the function Tensor_product used in the above snippet.

This Reduced Singular Value Decomposition given by equation (1.7.2) allows to reconstruct matrix A from its relevant information. Since singular values σ_i are given in matrix Σ from greatest to least, an approximation of matrix A can be obtained by truncating (1.7.2) for those $\sigma_i < \sigma_{min}$.

Lagrange interpolation

2.1 Overview

In this chapter, Lagrange and Chebyshev polynomial interpolations are discussed for equispaced and non uniform grids or nodal points. Given a set of nodal points x_i , their images through a given function f(x) allow to build a polynomial interpolant. Examples are shown to alert of numerical problems associated to equispaced grid points. The subroutine Lagrange_Interpolation_examples includes different examples to show the origin of these ill conditioning problems. To cure this problem, Chebyshev points are used to build interpolants.

```
call Interpolated_value_example
call Interpolated_value_example
call Interpolant_example
call Integral_example

call Lagrange_polynomial_example
call Ill_posed_interpolation_example

call Lebesgue_and_PI_functions

call Chebyshev_polynomials
call Interpolant_versus_Chebyshev
call Interpolation_examples2D
end subroutine
```

Listing 2.1: API_Example_Lagrange_interpolation.f90

All functions and subroutines used in this chapter are gathered in a Fortran module called: Interpolation. To make use of these functions the statement: use Interpolation should be included at the beginning of the program.

2.2 Interpolated value

In this first example, a set of six points is given:

$$x = [0, 0.1, 0.2, 0.5, 0.6, 0.7],$$

and the corresponding images of some unknown function f(x):

$$f = [0.3, 0.5, 0.8, 0.2, 0.3, 0.6].$$

The idea is to interpolate or the predict with this information the value of f(x) for $x_p = 0.15$. This is done in the following snippet of code:

```
subroutine Interpolated_value_example
   integer, parameter :: N = 6
   real :: x(N) = [0.0, 0.1, 0.2, 0.5, 0.6, 0.7]
   real :: f(N) = [ 0.3, 0.5, 0.8, 0.2, 0.3, 0.6 ]
   real :: xp = 0.15
   real :: yp(N-1)
   integer : i
   do i=2, N-1
     yp(i) = Interpolated_value( x , f , xp, i )
     write (*,'(A10, i4, A40, f10.3)') 'Order = ', i, 'The interpolated
          value at xp is = ', yp(i)
   end do
   write (*,'(A20, 10f8.3)') 'xp = ', xp
   write (*,'(A20, 10f8.3)') 'nodes x_j = ', x
   write (*, '(A20, 10f8.3)') 'function f_j = = ', f
   write(*,*) "press enter "
   read(*,*)
end subroutine
```

Listing 2.2: API_Example_Lagrange_interpolation.f90

The first argument of the Interpolated_value function is the set of nodal points, the second argument is the set of images and the third argument is the order of the interpolant. The polynomials interpolation is built by piecewise interpolants of the desired order. Note that this third argument is optional. When it is not present, the function assumes that the interpolation order is two.

2.3 Interpolant and its derivatives

In this example an interpolant is evaluated for a complete set of points. Given a set of nodal or interpolation points:

$$x = \{x_i | i = 0, ..., N\},$$
 $f = \{f_i | i = 0, ..., N\}.$

The interpolant and its derivatives are evaluated in the following set of equispaced points:

$$\{x_{pi} = a + (b-a)i/M, \quad i = 0, \dots, M\}.$$

Note that in the following example that the number of nodal points is N=3 and the number of points where this interpolant and its derivatives are evaluated is M=400.

Listing 2.3: API_Example_Lagrange_interpolation.f90

The third argument of the function Interpolant is the order of the polynomial. It should be less or equal to N. The fourth argument is the set of points where the interpolant is evaluated. The function returns a matrix $\mathbf{I}_{-}\mathbb{N}$ containing the interpolation values and their derivatives in x_p . The first index holds for the order of the derivative and second index holds for the point x_{pi} . On figure 2.1, the interpolant and its first derivative are plotted.

Figure 2.1: Lagrange interpolation with 4 nodal points. (a) Interpolant function. (b) First derivative of the interpolant.

2.4 Integral of a function

In this section, definite integrals are considered. Let's give the following example:

$$I_0 = \int_0^1 \sin(\pi x) dx.$$

To carry out the integral, an interpolant is built and later by integrating this interpolant the required value is obtained. The interpolant can be a piecewise polynomial interpolation of order q < N or it can be a unique interpolant of order q = N. The function Integral has three arguments: the nodal points x, the images of the function f and the order of the interpolant q. In the following example, N = 6 equispaced nodal points are considered and integral is carried out with an interpolant of order q = 4. The result is compared with the exact value to know the error of this numerical integration.

```
subroutine Integral_example
integer, parameter :: N=6
real :: x(0:N), f(0:N), a = 0, b = 1, I0
integer :: i
    x = [ (a + (b-a)*i/N, i=0, N) ]
    f = sin ( PI * x )

    I0 = Integral( x, f, 4 )
    write(*, *) "The integral [0,1] of sin( PI x ) is: ", I0
    write(*, *) "Error = ", ( 1 -cos(PI) )/PI - I0
end subroutine
```

Listing 2.4: API_Example_Lagrange_interpolation.f90

2.5 Lagrange polynomials

A polynomial interpolation $I_N(x)$ of degree N can be expressed in terms of the Lagrange polynomials $\ell_i(x)$ in the following way:

$$I_N(x) = \sum_{j=0}^{N} f_j \ \ell_j(x),$$

where f_j stands for the image of some function f(x) in N+1 nodal points x_j and $\ell_j(x)$ is a Lagrange polynomial of degree N that is zero in all nodes except in x_j that is one. Besides, the sensitivity to round-off error is measured by the Lebesgue function and its derivatives defined by:

$$\lambda_N(x) = \sum_{j=0}^N |\ell_j(x)|, \qquad \lambda_N^{(k)}(x) = \sum_{j=0}^N |\ell_j^{(k)}(x)|.$$

In the following subroutine Lagrange_polynomial_example, the Lagrange polynomials and the Lebesgue function together with their derivatives are calculated for a equispaced grid of N=4 nodal points. The first index of the resulting matrix Lg stands for the order of the derivative (k=-1 integral, k=0 function and k>0 derivative order). The second index identifies the Lagrange polynomial from $j=0,\ldots,N$ and the third index stands for the point where the Lagrange polynomials or their derivatives are particularized. The same applies for the matrix Lebesgue_N. First index for the order of the derivative and second index for the point where the Lebesgue function or their derivatives are particularized.

```
subroutine Lagrange_polynomial_example
integer, parameter :: N=4, M=400
real :: x(0:N), xp(0:M), a=-1, b=1
real :: Lg(-1:N, 0:N, 0:M)
                             ! Lagrange polynomials
                              ! -1:N (integral, lagrange, derivatives)
                              ! 0:N (L_0(x), L_1(x), ... L_N(x)
                               0:M ( points where L_j(x) is evaluated )
real :: Lebesgue_N(-1:N, 0:M)
character(len=2) :: legends(0:N) = [ "10", "11", "12", "13", "14" ]
  = [ (a + (b-a)*i/N, i=0, N) ]
xp = [ (a + (b-a)*i/M, i=0, M) ]
do i=0, M; Lg(:, :, i) = Lagrange_polynomials( x, xp(i) ); end do
Lebesgue_N = Lebesgue_functions( x, xp )
call plot_parametrics(xp, transpose(Lg(0, 0:N, :)), legends,"x","y", &
                      "Lagrange polynomials with 5 points")
end subroutine
```

Listing 2.5: API_Example_Lagrange_interpolation.f90

On figure 2.2 the Lagrange polynomials and the Lebesgue function are shown. It is observed in figure 2.2a that ℓ_j values 1 at $x=x_j$ and 0 at $x=x_i$ with $j\neq i$. In figure 2.2b, the Lebesgue function together with its derivatives are presented.

Figure 2.2: Lagrange polynomials $\ell_j(x)$ with N=4 and Lebesgue function $\lambda(x)$ and its derivatives. (a) Lagrange polynomials $\ell_j(x)$ for j=0,1,2,3,4. (b) Lebesgue function and its derivatives $\lambda^{(k)}(x)$ for k=0,1,2,3.

2.6 Ill-posed interpolants

When considering equispaced grid points, the Lagrange interpolation becomes ill-posed which means that a small perturbation like machine round-off error yields big errors in the interpolation result. In this section an interpolation example for the inoffensive $f(x) = \sin(\pi x)$ is analyzed to show the interpolant can have noticeable errors at boundaries.

The error is defined as the difference between the function and the polynomial interpolation

$$f(x) - I_N(x) = R_N(x) + R_L(x),$$

where $R_N(x)$ is the truncation error and $R_L(x)$ is the round-off error. Since the round-off error is present in the computer when any value is calculated, a polynomial interpolation $I_N(x)$ of degree N can be expressed in terms of the Lagrange polynomials $\ell_j(x)$ in the following way:

$$I_N(x) = \sum_{j=0}^{N} (f_j + \epsilon_j) \ \ell_j(x),$$

where ϵ_j can be considered as the round-off error of the image $f(x_j)$. Note that when working in double precision this ϵ_j is of order $\epsilon = 10^{-15}$. Hence, the error

of the interpolant has two components. The first one $R_N(x)$ associated to the truncation degree of the polynomial and the second one $r_L(x)$ associated to round-off errors. This error can be expressed by the following equation:

$$R_L(x) = \sum_{j=0}^{N} \epsilon_j \ \ell_j(x).$$

Although the exact values of the round–off errors ϵ_j are not not known, all values ϵ_j can be bounded by ϵ . It allows to bound the round–off error by the following expression:

$$|R_L(x)| \le \epsilon \sum_{j=0}^N |\ell_j(x)|$$

which introduces naturally the Lebesgue function $\lambda_N(x)$. If the Lebesgue function reaches values of order 10^{15} , the round-off error becomes order unity.

In the following code, an interpolant for $f(x) = \sin(\pi x)$ with N = 64 nodal points is calculated together with the Lebesgue function. In figure 2.3a, the interpolant shows a considerable error at boundaries. It can be easily explained by means of figure 2.3b where the Lebesgue function is plotted. The Lebesgue function takes values of order 10^{15} close to the boundaries making the round-off error of order unity at the boundaries.

```
subroutine Ill_posed_interpolation_example
integer, parameter :: N=64, M=300
real :: x(0:N), f(0:N)
real :: I_N(0:N, 0:M)
real :: Lebesgue_N(-1:N, 0:M)
real :: xp(0:M)
real :: a=-1, b=1
integer :: i
x = [ (a + (b-a)*i/N, i=0, N) ]
xp = [ (a + (b-a)*i/M, i=0, M) ]
f = sin (PI * x)
I_N = Interpolant(x, f, N, xp)
Lebesgue_N = Lebesgue_functions( x, xp )
write(*, *) ""
write(*, *) "maxval Lebesgue =", maxval( Lebesgue_N(0,:) )
call plot_parametrics(xp, transpose(I_N(0:0, :)), ["I"], "x", "y", &
             "Interpolant of sin(PIx) with errors at boundaries" )
end subroutine
```

Listing 2.6: API_Example_Lagrange_interpolation.f90

Figure 2.3: Interpolation for an equispaced grid with N=64. (a) Ill posed interpolation $I_N(x)$, (b) Lebesgue function $\lambda_N(x)$.

2.7 Lebesgue function and error function

As it was mentioned in the preceding section, the interpolation error has two main contributions: the round-off error and the truncation error. In this section, a comparison of these two contributions is presented. It can be shown that the truncation error has the following expression:

$$R_N(x) = \pi_{N+1}(x) \frac{f^{(N+1)}(\xi)}{(N+1)!},$$

where π_{N+1} is a polynomial of degree N+1 and $f^{(N+1)}(\xi)$ represents the N+1-th derivative of the function f(x) evaluate at some specific point $x=\xi$. The π_{N+1} polynomial vanishes in all nodal points and it is called the π error function.

In this section, the Lebesgue function $\lambda_N(x)$ and the error function $\pi_{N+1}(x)$ together with their derivatives are plotted to show the origin of the interpolation error.

In the following code, the π error function as well as the Lebesgue function $\lambda_N(x)$ are calculated for N=10 interpolation points. A grid of M=700 points is used to plot the results. In figure 2.4, the π error function is compared with the Lebesgue function $\lambda_N(x)$. Both the π error function and for the Lebesgue function show maximum values near the boundaries making clear that error will become more important near the boundaries. It is also observed that the Lebesgue values are greater than the π error function. However, it does not mean that the round-off error is greater than the truncation error because the truncation error depends on the regularity of f(x) and the round-off error depends on the finite precision ϵ .

```
subroutine Lebesgue_and_PI_functions
integer, parameter :: N=10, M=700
real :: x(0:N), xp(0:M)
real :: Lebesgue_N(-1:N, 0:M), PI_N(0:N, 0:M)
real :: a=-1, b=1
integer :: i, k
  x = [ (a + (b-a)*i/N, i=0, N) ]
  xp = [ (a + (b-a)*i/M, i=0, M) ]
  Lebesgue_N = Lebesgue_functions( x, xp )
  PI_N = PI_error_polynomial( x, xp )
  call plot_parametrics(xp, transpose(Lebesgue_N(0:2, :)),
                         ["1", "dldx", "d2ldx2"], "x", "y",
        "Lebesgue function with first and second derivative"
  call plot_parametrics(xp, transpose(PI_N(0:2, :)),
                         ["pi", "dpidx", "d2pidx2"], "x", "y", &
         "PI function with first and second derivative"
end subroutine
```

Listing 2.7: API_Example_Lagrange_interpolation.f90

What is also true is that the maximum value of the Lebesgue function grows with N and the maximum value of the π error function goes to zero with $N \to \infty$. Hence, with N great enough, the round-off error exceeds the truncation error.

Figure 2.4: Error function $\pi_{N+1}(x)$ and Lebesgue function $\lambda_N(x)$ for N=10. (a) Function $\pi_{N+1}(x)$. (b) Lebesgue function $\lambda_N(x)$

In figures 2.5 and 2.6, first and second derivatives of the π error function and the

Figure 2.5: First derivative of the error function $\pi'_{N+1}(x)$ and Lebesgue function $\lambda'_N(x)$ for N=10. (a) Function $\pi'_{N+1}(x)$. (b) Lebesgue function $\lambda'_N(x)$

Lebesgue function are shown and compared. It is observed that the first and second derivative of the Lebesgue function grow exponentially making more relevant the round–off error for the first and the second derivative of the interpolant. However, the derivatives of the π error function decreases with the order of the derivative.

Figure 2.6: Second derivative of the error function $\pi''_{N+1}(x)$ and Lebesgue function $\lambda''_N(x)$ for N=10. (a) Function $\pi''_{N+1}(x)$. (b) Lebesgue function $\lambda''_N(x)$

2.8 Chebyshev polynomials

Chebyshev polynomials have an important role in the polynomial interpolation theory. It will be shown in the next section that when some specific interpolation points are used, the polynomial interpolation results very close to a Chebyshev expansion. It makes important to revise the Chebyshev polynomials and their behavior. The approximation of f(x) by means of Chebyshev polynomials is given by:

$$f(x) = \sum_{k=0}^{\infty} \hat{c}_k T_k(x),$$

where $T_k(x)$ are the Chebyshev polynomials and \hat{c}_k are the projections of f(x) in the Chebyshev basis. The are some special orthogonal basis very noticeable like Chebyshev polynomials. The first kind $T_k(x)$ and the second kind $U_k(x)$ of Chebyshev polynomials are defined by:

$$T_k(x) = \cos(k\theta), \qquad U_k(x) = \frac{\sin(k\theta)}{\sin \theta},$$

with $\cos \theta = x$.

In the following code, Chebyshev polynomials of order k of first kind and second kind are calculated for different values of x.

```
subroutine Chebyshev_polynomials
   integer, parameter :: N = 100, M = 5
   real :: x(0:N), theta(0:N), Tk(0:N, 0:M), Uk(0:N,0:M)
   real :: x0=-1, xf= 1
   integer :: i, k
   character(len=2) :: 1TK(0:M) = ["T0","T1","T2","T3","T4","T5"]
   character(len=2) :: lUk(0:M) = ["U0","U1","U2","U3","U4","U5"]
   x = [ (x0 + (xf-x0)*i/N, i=0, N) ]
   do k=1, M
          theta = acos(x)
          Tk(:, k) = \cos (k * theta)
          Uk(:, k) = sin (k * theta) / sin (theta)
   end do
   call plot_parametrics(x, Tk(:, 0:M), lTk, "x","y", "Chebyshev
        polynomials")
   call plot_parametrics(x, Uk(:, 0:M), lUk, "x","y", &
                          "Second class Chebyshev polynomials" )
end subroutine
```

Listing 2.8: API_Example_Lagrange_interpolation.f90

Figure 2.7: First kind and second kind Chebyshev polynomials. (a) First kind Chebyshev polynomials $T_k(x)$. (b) Second kind Chebyshev polynomials $U_k(x)$.

2.9 Chebyshev expansion and Lagrange interpolant

As it was shown in previous sections, when the interpolation points are equispaced, the error grows at boundaries no matter the regularity of the interpolated function f(x). Hence, high order polynomial interpolation is prohibited with equispaced grid points. To cure this problem, concentration of grid points near the boundaries are usually proposed. One of the most important distribution of points that cure this bad behavior near the boundaries is the Chebyshev extrema

$$x_i = \cos\left(\frac{\pi i}{N}\right), \quad i = 0, \dots, N.$$

In this section, a comparison between a Chebyshev expansion and a Lagrange interpolant is shown when the selected nodal points are the Chebyshev extrema. In the following code, a Chebyshev expansion P_N of $f(x) = \sin(\pi x)$ is calculated with 7 terms (N=6). The coefficients \hat{c}_k of the expansion are calculated by means of :

$$\hat{c}_k = \frac{1}{\gamma} \int_{-1}^{+1} \frac{f(x)T_k(x)}{\sqrt{1-x^2}} dx.$$

In the same code a polynomial interpolation I_N based on the Chebyshev extrema is calculated. Errors for the expansion and for the interpolation are also obtained.

```
subroutine Interpolant_versus_Chebyshev
   integer, parameter :: N = 6  ! # of Chebyshev terms or poly order
   integer, parameter :: M = 500! # of points to plot
   real :: x(0:N), f(0:N)
   real :: I_N(0:N, 0:M)
                                 ! Interpolant
   real :: P N(0:M)
                                 ! Truncated series
   real :: xp(0:M), theta(0:M)
                                 ! domain to plot
   real :: Error(0:M, 2)
                                 ! Error :interpolant and truncated
   real :: Integrand(0:M)
   character(len=8) :: legends(2) = ["Error_I", "Error_P"]
   integer :: i, k
   real :: c_k, a=-1, b=1, gamma
!** equispaced points to plot
   xp = [ (a + (b-a)*i/M, i=0, M) ]
   theta = acos(xp)
!** Chebyshev truncated series
   do k=0, N
       Integrand = sin( PI * xp) * cos ( k * theta )
       if (k==0 .or. k==N) then;
                                    gamma = PI;
                           else:
                                    gamma = PI / 2;
       c_k = Integral( theta , Integrand ) / gamma
       P_N = P_N - c_k * cos(k * theta)
   x = [(\cos(PI*i/N), i=N, 0, -1)]
   f = sin(PI * x)
!** Interpolant based on Chebyshev extrema
   I_N = Interpolant(x, f, N, xp)
   Error(:, 1) = sin(PI * xp) - I_N(0, :)
   Error(:, 2) = sin(PI * xp) - P_N
   call plot_parametrics(xp, Error(:, 1:2), legends, "x","y", &
    " Chebyshev Error: Interpolant versus Truncated series (N=6)")
end subroutine
```

Listing 2.9: API_Example_Lagrange_interpolation.f90

In figure 2.8a, the truncated Chebyshev expansion P_N is plotted together with the polynomial interpolation I_N with no appreciable difference between them. This can be verified in figure 2.8b where the error for these two approximations are shown. It can be demonstrated that when choosing some specific nodal or grid points and if the function to be approximated is regular enough, the difference between the truncated Chebyshev expansion and the polynomial interpolation becomes very small. This difference is called aliasing error.

Figure 2.8: Chebyshev discrete expansion and truncated series for N=6. (a) Chebyshev expansion. (b) Chebyshev expansion error.

Finite Differences

3.1 Overview

From the numerical point of view, derivatives of some function f(x) are always obtained by building an interpolant, deriving the interpolant analytically and later particularizing it at some point. When piecewise polynomial interpolation is considered, finite difference formulas are built to calculate derivatives.

In this chapter, several examples of derivatives are gathered in the subroutine Finite_difference_examples. The first example is run in the subroutine Derivative_function_x which calculates the derivatives of a function $f: \mathbb{R} \to \mathbb{R}$. The subroutine Derivative_function_xy performs the same for a function $f: \mathbb{R}^2 \to \mathbb{R}$. Finally, the influence of the truncation and round off errors with the spatial step between nodes are highlighted in the subroutine Derivative_error.

```
subroutine Finite_difference_examples

call Derivative_function_x
call Derivative_function_xy
call Derivative_error

end subroutine
```

Listing 3.1: API_Example_Finite_Differences.f90

All functions and subroutines used in this chapter are gathered in a Fortran module called: Finite_differences. To make use of these functions the statement: use Finite_differences should be included at the beginning of the program.

3.2 Derivatives of a 1D function

As it was mentioned in the previous section, to calculate derivatives a polynomial interpolant should be built

$$I_N(x) = \sum_{j=0}^N f_j \ \ell_j(x).$$

To calculate the k-th derivative, the interpolant is derived analytically,

$$\frac{d^{(k)}I_N}{dx^k}(x) = \sum_{j=0}^{N} f_j \frac{d^{(k)}\ell_j}{dx^k}(x).$$

Finally, these derivatives are particularized at the nodal points,

$$\frac{d^{(k)}I_N}{dx^k}(x_i) = \sum_{i=0}^{N} f_j \, \frac{d^{(k)}\ell_j}{dx^k}(x_i).$$

In the following subroutine ${\tt Derivative_function_x}$, the first and the second derivative of

$$u(x) = \sin(\pi x)$$

are calculated particularized at N+1 grid points x_i . First, a nonuniform grid $x_i \in [-1,+1]$ is created by the subroutine $\texttt{Grid_initialization}$. It builds internally a piecewise polynomial interpolant of order or degree 4, calculates the derivatives k=1,2,3 of the Lagrange polynomials and particularizes their derivatives at x_i . The numbers or weights $\ell_j^{(k)}(x_i)$ are stored internally in a data structure to be used later by the subroutine Derivative. This subroutine multiplies the weights $\ell_j^{(k)}(x_i)$ by the function values $u(x_j)$ to yield the required derivative in the desired nodal point. The values $I_N^{(k)}(x_i)$ are stored in a matrix uxk of two indexes. The first index standing for the grid point x_i and the second one for the order of the derivative k.

In this case, a polynomial interpolation or degree 4 is used. It means that the polynomial valid around x_i is built with 5 surrounding points. If x_i is an interior

grid point, not close to the boundaries, these points are $\{x_{i-2}, x_{i-1}, x_i, x_{i+1}, x_{i+2}\}$ and the first and second derivatives give rise to:

$$\frac{du}{dx}(x_i) = \sum_{j=i-2}^{j=i+2} u(x_j) \ \ell_j^{(1)}(x_i), \qquad \frac{d^2u}{dx^2}(x_i) = \sum_{j=i-2}^{j=i+2} u(x_j) \ \ell_j^{(2)}(x_i).$$

The first argument of the subroutine **Derivative** is the direction "x" of the derivative, the second argument is the order of the derivative, the third one is the vector of images of u(x) at the nodal points and the fourth argument is the derivative evaluated at the nodal points x_i .

Additionally, the error of the first and second derivatives are calculated by subtracting the approximated value from the exact value of the derivative

$$E_1 = \left[\frac{\mathrm{d}I}{\mathrm{d}x}(x_i) - \pi \, \cos(\,\pi x_i\,) \right], \qquad E_2 = \left[\frac{\mathrm{d}^2I}{\mathrm{d}x^2}(x_i) + \pi^2 \, \sin(\,\pi x_i\,) \right].$$

```
subroutine Derivative_function_x
    integer, parameter :: Nx = 20, Order = 4
   real :: x(0:Nx)
   real :: x0 = -1, xf = 1
    integer :: i
   real :: pi = 4 * atan(1.)
   real :: u(0:Nx), uxk(0:Nx, 2), ErrorUxk(0:Nx, 2)
    x = [(x0 + (xf-x0)*i/Nx, i=0, Nx)]
    call Grid_Initialization( "nonuniform", "x", x, Order )
    u = sin(pi * x)
    call Derivative( 'x' , 1 , u , uxk(:,1) )
    call Derivative('x', 2, u, uxk(:,2))
    ErrorUxk(:,1) = uxk(:,1) - pi* cos(pi * x)
    ErrorUxk(:,2) = uxk(:,2) + pi**2 * u
    write (*, *) 'Finite differences formulas: 4th order '
    write (*, *) 'First and second derivative of sin pi x '
    call plot_parametrics(x, Uxk, ["ux", "uxx"], "x", "y")
end subroutine
```

Listing 3.2: API_Example_Finite_Differences.f90

In figure 3.1, the first and second derivatives of $u(x) = \sin(\pi x)$ are plotted together with their numerical error.

Figure 3.1: First and second derivatives of $u(x)=\sin(\pi x)$ by means of finite difference formulas and their associated error. The piecewise polynomial interpolation of degree 4 and 21 nodal points. (a) First numerical derivative $\mathrm{d}u/\mathrm{d}x$. (b) Error on the calculation of $\mathrm{d}u/\mathrm{d}x$. (c) Second numerical derivative $\mathrm{d}^2u/\mathrm{d}x^2$. (d) Error on the calculation of $\mathrm{d}^2u/\mathrm{d}x^2$.

3.3 Derivatives of a 2D function

In this section, a two dimensional space is considered and partial derivatives are calculated. It is considered the function:

```
u(x, y) = \sin(\pi x)\sin(\pi y).
```

The code implemented in subroutine Derivative_function_xy is similar to the preceding code of a 1D problem. Internally, the module Finite_differences interpolates in two orthogonal directions. This is done by calling twice the subroutine Grid_Initiallization. In this case, a piecewise polynomial interpolation of degree 6 is considered in both directions and 21 nodal points are used.

```
subroutine Derivative_function_xy
   integer, parameter :: Nx = 20, Ny = 20, Order = 6
   real :: x(0:Nx), y(0:Ny)
   real :: x0 = -1, xf = 1, y0 = -1, yf = 1
   integer :: i, j
   real :: pi = 4 * atan(1.0)
   real :: u(0:Nx,0:Ny), uxx(0:Nx,0:Ny), uy(0:Nx,0:Ny), uxy(0:Nx,0:Ny)
   real :: Erroruxx(0:Nx,0:Ny), Erroruxy(0:Nx,0:Ny)
   x = [(x0 + (xf-x0)*i/Nx, i=0, Nx)]
   y = [ (y0 + (yf-y0)*j/Ny, j=0, Ny) ]
   call Grid_Initialization( "nonuniform", "x", x, Order )
   call Grid_Initialization( "nonuniform", "y", y, Order )
   u = Tensor_product( sin(pi*x), sin(pi*y) )
   call Derivative( ["x", "y"], 1, 2, u, uxx )
   call Derivative(["x", "y"], 2, 1, u, uy )
   call Derivative( ["x", "y"], 1, 1, uy, uxy )
   Erroruxx = uxx + pi**2 * u
   Erroruxy = uxy - pi**2 * Tensor_product( COS(pi*x), COS(pi*y) )
   write (*, *) '2D Finite differences formulas: 6th order '
   write (*, *) 'Second partial derivative with respect x'
   write (*, *) 'of u(x,y) = \sin pi x \sin pi y
   call plot_contour(x, y, uxx, "x", "y" )
end subroutine
```

Listing 3.3: API_Example_Finite_Differences.f90

The computed partial derivatives calculated by means of finite difference formulas together with their associated error are represented in figure 3.2

Figure 3.2: Numerical derivatives $\partial^2 u/\partial x^2$, $\partial^2 u/\partial x\partial y$ of $u(x,y)=\sin(\pi x)\sin(\pi y)$ and associated error for 21×21 nodal points and order q=6. (a) Numerical derivative $\partial^2 u/\partial x^2$. (b) Error on the calculation of $\partial^2 u/\partial x^2$. (c) Numerical derivative $\partial^2 u/\partial x\partial y$. (d) Error on the calculation of $\partial^2 u/\partial x\partial y$.

3.4 Truncation and Round-off errors of derivatives

In order to analyze the effect of the truncation and round-off error produced in the approximation of a derivative by finite differences, the following example is considered. As it was shown in the Lagrange interpolation chapter, two contributions or errors are always present when interpolating some function: truncation error and round-off error. While the truncation error is reduced when decreasing the step size Δx between grid points, the round-off error is increased when reducing Δx . This is due to the growth of the Lebesgue function when reducing Δx .

In the following code, the second derivative for $f(x) = \cos(\pi x)$ is calculated with piecewise polynomial interpolation of degree q = 2, 4, 6, 8. The calculated value is compared with the exact value at some point x_p and the resulting is determined by:

$$E(x_p) = \frac{d^2I}{dx^2}(x_p) - \pi^2 \cos(\pi x_p).$$

Since the grid spacing initialized in Grid_initialization is uniform, the step size $\Delta x = 2/N$. There are two loops in the code, the first one takes into account different degree q for the piecewise polynomial and the second one varies the number of grid points N and, consequently, the step size Δx . To measure the effect of the machine precision or errors associated to measurements, the function is perturbed by means of the subroutine randon_number with a module of order $\epsilon = 10^{-12}$ giving rise to the following perturbed values:

$$f(x) = \cos(\pi x) + \varepsilon(x).$$

The resulting error $E(x_p)$ is evaluated at the boundary $x_p = -1$ for each step size Δx .

In figure 3.3 and figure 3.4, the error E versus the step size Δx is plotted in logarithmic scale. As it is expected, when the step size Δx is reduced, the error decreases. However, when derivatives are calculated with smaller step sizes Δx , the round-off error becomes the same order of magnitude than the truncation error and the global error stops decreasing. When reducing, even more, the step size, the round-off error becomes dominant and the global error increases a lot. This behavior is observed in figure 3.3 and figure 3.4, which display the error at x=-1 and x=0 respectively. As the order of interpolation grows, the minimum value of Δx grows too indicating that the round-off error starts being relevant for larger step sizes.

```
subroutine Derivative_error
integer :: q
                                ! interpolant order 2, 4, 6, 8
integer :: Nq = 8
                                ! max interpolant order
integer :: N
                                ! # of nodes (piecewise pol. interpol.)
integer :: k = 2
                                ! derivative order
                                ! where error is evaluated p=0, 1,...N
integer :: p = 0
real :: log_Error(M,4), log_dx(M) ! Error versus Dx for q=2, 4, 6, 8
real :: epsilon = 1d-12
                                ! order of the random perturbation
real :: PI = 4 * atan(1d0), logN
integer :: j, 1=0
real, allocatable :: x(:), f(:), dfdx(:) ! function to be interpolated
real, allocatable :: dIdx(:)
                                         ! derivative of the interpolant
do q=2, Nq, 2
 1 = 1 + 1
 do j=1, M
  logN = 1 + 3.*(j-1)/(M-1)
  N = 2*int(10**logN)
  allocate(x(0:N), f(0:N), dfdx(0:N), dIdx(0:N))
  x(0) = -1; x(N) = 1
  call Grid_Initialization( "uniform", "x", x, q )
  call random number(f)
  f = cos (PI * x) + epsilon * f
  dfdx = -PI**2 * COS (PI * x)
  call Derivative( "x", k, f, dIdx )
  \log_{d}x(j) = \log(x(1) - x(0))
  \log_{\text{Error}(j, 1)} = \log(\text{abs}(\text{dIdx}(p) - \text{dfdx}(p)))
  deallocate( x, f, dIdx, dfdx )
 end do
end do
call scrmod("reverse")
write(*,*) "Second derivative error versus spatial step for q=2,4,6,8 "
write(*,*) " Test function: f(x) = cos pi x
call plot_parametrics( log_dx, log_Error, ["E2", "E4", "E6", "E8"], &
                      "log_dx","log_Error")
end subroutine
```

Listing 3.4: API_Example_Finite_Differences.f90

Figure 3.3: Numerical error of a second order derivative versus the step size Δx at x=-1. (a) Piecewise polynomials of degree q=2. (b) q=4. (c) q=6. (d) q=8.

Figure 3.4: Numerical error of a second order derivative versus the step size Δx at x=0. (a) Piecewise polynomials of degree q=2. (b) q=4. (c) q=6. (d) q=8.

Cauchy Problem

4.1 Overview

In this chapter, some examples of the following Cauchy problem:

$$\frac{\mathrm{d} oldsymbol{U}}{\mathrm{d} t} = oldsymbol{f} \; (oldsymbol{U}, \;\; oldsymbol{t}(0) = oldsymbol{U}^0, \;\; oldsymbol{f}: \mathbb{R}^N imes \mathbb{R} o \mathbb{R}^N$$

are presented.

It is started with a scalar first-order ordinary differential equation (N=1) implemented in the <code>First_order_ODE</code>. The second example is devoted to the oscillations of a mass attached to a spring. The movement is governed by a second-order scalar equation implemented in <code>Linear_Spring</code>. The third example simulates the famous Lorenz attractor.

To alert of possible issues associated with numerical simulations, some other examples are shown. Absolute stability regions for a second and fourth-order Runge-Kutta method are obtained in Stability_regions_RK2_RK4. The absolute stability regions allow determining the stability of numerical simulations. In the subroutine Error_solution, the error associated to a numerical computation is discussed and finally, the convergence rate of the numerical solution to the exact solution is analyzed in the subroutine Convergence_rate_RK2_RK4.

All functions and subroutines used in this chapter are gathered in a Fortran module called: Cauchy_problem. To make use of these functions the statement: use Cauchy_problem should be included at the beginning of the program.

```
subroutine Cauchy_problem_examples

call First_order_ODE
call Linear_Spring
call Lorenz_Attractor
call Stability_regions_RK2_RK4
call Error_solution
call Convergence_rate_RK2_RK4
call Variable_step_with_Predictor_Corrector
end subroutine
```

Listing 4.1: API_Example_Cauchy_Problem.f90

4.2 First order ODE

The following scalar first order ordinary differential equation is considered:

$$\frac{du}{dt} = -2u(t),$$

with the initial condition u(0) = 1. This Cauchy problem could describe the velocity along time of a punctual mass submitted to viscous damping. This problem has the following analytical solution:

$$u(t) = e^{-2t}.$$

The implementation of the problem requires the definition of the differential operator f(U, t) as a function.

```
function F1( U, t ) result(F)
    real :: U(:), t
    real :: F(size(U))

    F(1) = -2*U(1)
end function
```

Listing 4.2: API_Example_Cauchy_Problem.f90

This function is used by the subroutine Cauchy_ProblemS to compute the numerical solution. Additionally, the time domain and the initial condition are required.

Listing 4.3: API_Example_Cauchy_Problem.f90

Figure 4.1: Numerical solution and error on the computation of the first order Cauchy problem. (a) Numerical solution of the first order Cauchy problem. (b) Error of the solution along time.

The numerical solution obtained using this code can be seen in figure 4.1. In it can be seen that the qualitative behavior of the solution u(t) is the same as the described by the analytical solution. However, quantitative behavior is not exactly equal as it is an approximated solution. In figure 4.1(b) it can be seen that the solution tends to zero slower than the analytical one.

4.3 Linear spring

The second example is a second-order differential equation. It could represent the oscillations a punctual mass suspended by a linear spring whose stiffness increases along time. The problem is integrated in a temporal domain: $\Omega \subset \mathbb{R} : \{t \in [0, 4]\}$. The displacement u(t) of the mass is governed by the equation:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + a t u(t) = 0.$$

First of all, the problem must be formulated as a first order differential equation. This is done by means of the transformation:

$$u(t) = U_1(t), \qquad \frac{\mathrm{d}u}{\mathrm{d}t} = U_2(t),$$

which leads to the system:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ -a & t & 0 \end{bmatrix} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}.$$

It is necessary to give an initial condition of position U_1 and velocity U_2 . In this example, the movement starts with the mass with zero velocity and with the elongated spring.

$$\begin{pmatrix} U_1(0) \\ U_2(0) \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}.$$

The implementation of the problem requires the definition of the differential operator f(U, t) as a vector function:

```
function F_spring( U, t ) result(F)
    real :: U(:), t
    real :: F(size(U))
    real, parameter :: a = 3.0

    F(1) = U(2)
    F(2) = -a * t * U(1)

end function
```

Listing 4.4: API_Example_Cauchy_Problem.f90

4.3. LINEAR SPRING 41

This function is used as an input argument for the subroutine Cauchy_ProblemS. In this example, the optional argument Scheme is used to select the Crank_Nicolson numerical scheme to integrate the problem. The solution U has two indexes. The first stands for the different time steps along the integration and the second one stands for the two variables of the system: position and velocity.

Listing 4.5: API_Example_Cauchy_Problem.f90

Figure 4.2: Numerical solution of the Linear spring movement. (a) Position along time. (b) Velocity along time.

The numerical solution of the problem is shown in figure 4.2. It can be seen how the initial condition for both U_1 and U_2 are satisfied and the oscillatory behavior of the solution.

4.4 Lorenz Attractor

Another interesting example is the differential equation system from which the strange Lorenz attractor was discovered. The Lorenz equations are a simplification of the Navier-Stokes fluid equations used to describe the weather behavior along time. The behavior of the solution is chaotic for certain values of the parameters involved in the equation. The equations are written:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a & (y-z) \\ x & (b-z) - y \\ x & y-c & z \end{pmatrix},$$

along with the initial conditions:

$$\begin{pmatrix} x(0) \\ y(0) \\ z(0) \end{pmatrix} = \begin{pmatrix} 12 \\ 15 \\ 30 \end{pmatrix}.$$

The implementation of the problem requires the definition of the differential operator f(U, t) as a vector function:

```
function F_L(U, t) result(F)
    real :: U(:),t
    real :: F(size(U))

    real :: x, y , z

    x = U(1); y = U(2); z = U(3)

    F(1) = a * ( y - x )
    F(2) = x * ( b - z ) - y
    F(3) = x * y - c * z

end function
```

Listing 4.6: API_Example_Cauchy_Problem.f90

The previous function will be used as an input argument for the subroutine that solves the Cauchy Problem. In this case, a fourth order Runge–Kutta scheme is used to integrate the problem.

```
subroutine Lorenz_Attractor
  integer, parameter :: N = 10000
  real :: Time(0:N), U(0:N,3)
  real :: a=10., b=28., c=2.666666666
  real :: t0 =0, tf=25
  integer :: i

Time = [ (t0 + (tf -t0 ) * i / (1d0 * N), i=0, N ) ]

U(0,:) = [12, 15, 30]

call Cauchy_ProblemS( Time_Domain=Time, Differential_operator=F_L, & Solution = U, Scheme = Runge_Kutta4 )

write (*, *) 'Solution of the Lorenz attractor '
  call plot_parametrics(U(:,1),U(:,2:2), ["Lorenz attractor"],"x","y")

contains
```

Listing 4.7: API_Example_Cauchy_Problem.f90

The chaotic behaviour appears for the values a=10, b=28 and c=8/3. When solved for these values, the phase planes of (x(t),y(t)) and (x(t),z(t)) show the famous shape of the Lorenz attractor. Both phase planes can be observed on figure 4.3.

Figure 4.3: Solution of the Lorenz equations. (a) Phase plane (x, y) of the Lorenz attractor. (b) Phase plane (x, z) of the Lorenz attractor.

4.5 Stability regions

One of the capabilities of the library is to compute the region of absolute stability of a given temporal scheme. In the following example, the stability regions of second-order and fourth-order Runge-Kutta methods are determined.

Listing 4.8: API_Example_Cauchy_Problem.f90

Figure 4.4: Absolute stability regions. (a) Stability region of second order Runge-Kutta. (b) Stability region of fourth order Runge-Kutta.

4.6 Richardson extrapolation to calculate error

The library also computes the error of the obtained solution of a Cauchy problem using the Richardson extrapolation. The subroutine Error_Cauchy_Problem uses internally two different step sizes Δt and $\Delta t/2$, respectively, and estimates the error as:

$$E = \frac{\|\mathbf{u_1}^n - \mathbf{u_2}^n\|}{1 - 1/2^q},$$

where E is the estimated error, u_1^n is the solution at the final time calculated with the given time step, u_2^n is the solution at the final time calculated with $\Delta t/2$ and q is the order of the temporal scheme used for calculating both solutions.

This example estimates the error of a Van der Pol oscillator using a second-order Runge-Kutta.

Listing 4.9: API_Example_Cauchy_Problem.f90

Figure 4.5: Integration of the Van der Pol oscillator. (a) Van der Pol solution, (b) Error of the solution.

In figure 4.5 the solution together with its error is plotted. Since the error varies significantly along time, the variable time step is required to maintain error under tolerance.

4.7 Convergence rate with time step

A temporal scheme is said to be of order q when its global error with $\Delta t \to 0$ goes to zero as $O(\Delta t^q)$. It means that high order numerical methods allow bigger time steps to reach a precise error tolerance. The subroutine Temporal_convergence_rate determines the error of the numerical solution as a function of the number of time steps N. This subroutine internally integrates a sequence of refined Δt_i and, by means of the Richardson extrapolation, determines the error.

In the following example, the error or convergence rate of a second and fourthorder Runge-Kutta for the Van der Pol oscillator are obtained.

Listing 4.10: API_Example_Cauchy_Problem.f90

Figure 4.6: Convergence rate of a second and fourth order Runge–Kutta schemes with time step. (a) Van der Pol solution. (b) Error versus time steps.

In the figure 4.6a the Van der Pol solution is shown. In figure 4.6b the errors versus the number of time steps N are plotted in logarithmic scale. It can be observed that the fourth-order Runge-Kutta has an approximate slope of 4, whereas the slope of the second-order Runge-Kutta scheme is close to two.

4.8 Advanced high order numerical methods

When high precision requirements are necessary, high order temporal schemes must be used. This is the case of orbits or satellite missions. These simulations require very small errors during their temporal integration. High order numerical methods require greater time steps than low order schemes to accomplish the same error than low order methods. Consequently, high order methods have lower computational effort than low order methods. The following subroutine shows the performance of some advanced high order methods when simulating orbit problems:

```
subroutine Advanced_Cauchy_problem_examples
 integer :: option
 option = 1
 do while (option>0)
    write(*,*) "Advanced methods, select an option: "
    write(*,*) " 0. Exit/quit
    write(*,*) " 1. Van del Pol system "
    write(*,*) " 2. Henon Heiles system "
    write(*,*) " 3. Variable time step versus constant time step "
    write(*,*) " 4. Convergence rate of Runge Kutta wrappers
    write(*,*) " 5. Arenstorf orbit (Embedded Runke-Kutta) "
    write(*,*) " 6. Arenstorf orbit (GBS methods, Wrapper ODEX)"
    write(*,*) " 7. Arenstorf orbit (ABM methods, Wrapper ODE113)"
    write(*,*) " 8. Computational effort Runge-Kutta methods"
    write(*,*) " 9. Orbits and numerical methods (Master MUSE)
    read(*,*) option
    select case(option)
      case(1)
             call Van_der_Pol_oscillator
      case(2)
             call Henon_Heiles_system
      case(3)
             call Variable_step_simulation
      case(4)
             call Convergence_rate_Runge_Kutta_wrappers
      case(5)
             call Runge_Kutta_wrappers_versus_original_codes
      case(6)
             call GBS_and_wrapper_ODEX
             call Arenstorf_with_GBS
      case(7)
             call ABM_and_wrapper_ODE113
      case(8)
             call Temporal_effort_with_tolerance_eRK
             call Orbits_and_Numerical_Methods
      case default
    end select
 end do
end subroutine
```

Listing 4.11: API_Example_Cauchy_Problem.f90

4.9 Van der Pol oscillator

The van der Pol oscillator is a non-conservative stable oscillator which is applied to physical and biological sciences. Its second order differential equation is:

$$\ddot{x} - \mu \ (1 - x^2)\dot{x} + x = 0.$$

This equation can be expressed as the following first order system:

$$\dot{x} = v,$$

$$\dot{v} = -x + \mu (1 - x^2) v.$$

To implement this problem, the the differential operator f(U, t) is created.

Listing 4.12: API_Example_Cauchy_Problem.f90

Again, the function is used as an input argument for the subroutine that computes the solution of the Cauchy Problem. In this case, advanced temporal methods for Cauchy problems are used, particularly embedded Runge-Kutta formulas. The methods used are "RK87" and "Fehlberg87" and require the use of an error tolerance, which is set as $\epsilon=10^{-8}$. Both of them are selected by the subroutine set_solver.

Each method is given a different initial condition in order to illustrate the long time behavior of the solution. The asymptotic behavior of the solution tends to a limit cycle, that is, given sufficient time the solution becomes periodic. This can be observed from figure 4.7(a) where the solution is obtained with the embedded Runge Kutta scheme "RK87" and from figure 4.7(b) integrated with the "Fehlberg87" scheme. Although both solutions tend to the same cycle, a difference in their phases can be observed in figure 4.7(b).

```
subroutine Van_der_Pol_oscillator
   real :: t0 = 0, tf = 30
   integer, parameter :: N = 350, Nv = 2
   real :: Time (0:N), U(0:N, Nv, 2)
   integer :: i
   Time = [(t0 + (tf -t0) * i / (1d0 * N), i=0, N)]
   U(0,:,1) = [3, 4]
   call set_solver("eRK", "RK87")
   call set_tolerance(1d-8)
   call Cauchy_ProblemS( Time, VanDerPol_equation, U(:,:,1) )
   U(0,:,2) = [0, 1]
   call set_solver("eRK", "Fehlberg87")
   call set_tolerance(1d-8)
   call Cauchy_ProblemS( Time, VanDerPol_equation, U(:,:,2) )
   write (*, *) "VanDerPol oscillator with RK87 and Fehlberg87"
   write(*,*) "press enter "; read(*,*)
   call plot_parametrics(time,U(:,1, 1:2),["RK87","Fehlberg87"],"t","x")
end subroutine
```

Listing 4.13: API_Example_Cauchy_Problem.f90

Figure 4.7: Solution of the Van der Pol oscillator. (a) Trajectory on the phase plane (x, \dot{x}) . (b) Evolution along time of x.

4.10 Henon-Heiles system

The non-linear motion of a star around a galactic center, with the motion restricted to a plane, can be modeled through Henon-Heiles system:

$$\begin{aligned}
\dot{x} &= p_x \\
\dot{y} &= p_y \\
\dot{p}_x &= -x - 2\lambda xy \\
\dot{p}_y &= -y - \lambda \left(x^2 - y^2\right).
\end{aligned}$$

As usual, the differential operator is implemented as a function Henon_equation that is used as an input argument by the subroutine Cauchy_ProblemS. The GBS temporal scheme is selected by the calling set_solver and its tolerance is set by set_tolerance.

Listing 4.14: API_Example_Cauchy_Problem.f90

```
subroutine Henon_Heiles_system
  integer, parameter :: N = 1000, Nv = 4 , M = 1 !Time steps
  real, parameter :: dt = 0.1
  real :: t0 = 0, tf = dt * N
  real :: Time (0:N), U(0:N, Nv), H(0:N)
  integer :: i

Time = [ (t0 + (tf -t0 ) * i / (1d0 * N), i=0, N ) ]

U(0,:) = [0., 0., 0.6,0.]
  call set_solver("GBS")
  call set_tolerance(1d-2)
  call Cauchy_ProblemS( Time, Henon_equation, U )

write (*, *) 'Henon Heiles system '
  write(*,*) "press enter " ; read(*,*)
  call plot_parametrics(U(:,1),U(:,2:2), ["Henon Heiles"],"x","y")

end subroutine
```

Listing 4.15: API_Example_Cauchy_Problem.f90

Once the code is compiled and executed, the trajectories in the phase plane are shown in figure 4.8.

Figure 4.8: Heinon-Heiles system solution. (a) Trajectory of the star (x, y). (b) Projection (x, \dot{x}) of the solution in the phase plane. (c) Projection (y, \dot{y}) of the solution in the phase plane. (d) Projection (\dot{x}, \dot{y}) of the solution in the phase plane.

This simple Hamiltonian system can exhibit chaotic behavior for certain values of the initial conditions which represent different values of energy. For example, the initial conditions

$$(x(0), y(0), p_x(0), p_y(0)) = (0.5, 0.5, 0, 0),$$

give rise to chaotic behavior.

4.11 Constant time step and adaptive time step

Generally, time-dependent problems evolve with different growth rates during its time-span. This behavior motivates to use of variable time steps to march faster when small gradients are encountered and march slower reducing the time step when high gradients appear. To adapt automatically the time step, methods must estimate the error to reduce or to increase the time step to reach a specified tolerance.

In the following code, the Van der Pol problem is solved with a variable time step in an embedded Heun-Euler method. Since the imposed tolerance is set to 10^{10} , the embedded Heun-Euler method will not modify the time step because that tolerance is always reached.

The other simulation is carried out with a tolerance of 10^{-6} . In this case, the embedded Heun-Euler will adapt the time step to reach this specific tolerance.

```
call set_solver(family_name="eRK", scheme_name="HeunEuler21")
call set_tolerance(1e10)
call Cauchy_ProblemS( Time, VanDerPol_equation, U(:,:,1) )

call set_solver(family_name="eRK", scheme_name="HeunEuler21")
call set_tolerance(1e-6)
call Cauchy_ProblemS(Time, VanDerPol_equation, U(:,:,2) )
```

Listing 4.16: API_Example_Cauchy_Problem.f90

Figure 4.9: Comparison between constant and variable time step calculated by means of local estimation error. Integration of the Van der Pol oscillator with an embedded second order Runge–kutta HeunEuler21. (a) x position along time. (b) Phase diagram of the solutions.

4.12 Convergence rate of Runge–Kutta wrappers

A wrapper function is a subroutine whose main purpose is to call a second subroutine with little or no additional computation. Generally, wrapper functions are used to make writing computer programs easier to use by abstracting away the details of an old underlying implementation. In this way, old validated codes written in Fortran 77 can be used with a modern interface encapsulating the implementation details and making friendly interfaces.

In the following code, the classical DOPRI5 and DOP853 embedded Runge Kutta methods are used by means of a module that wraps the old codes.

Listing 4.17: API_Example_Cauchy_Problem.f90

Figure 4.10: Convergence rate of Runge–Kutta wrappers based on DOPRI5 and DOP853 with number of steps. (a) Van der Pol solution. (b) Error versus time steps.

In figure 4.10b, the steeper slope of DOP853 in comparison with the slope of DOPRI5 shows its superiority in terms of its temporal error.

4.13 Arenstorf orbit. Embedded Runge–Kutta

The Arenstorf orbit is a stable periodic orbit between the Earth and the Moon which was used as the basis for the Apollo missions. They are closed trajectories of the restricted three-body problem, where two bodies of masses μ and $1-\mu$ are moving in a circular rotation, and the third body of negligible mass is moving in the same plane. The equations that govern the movement of the third body in axis rotating about the center of gravity of the Earth and the Moon are:

$$\dot{x} = v_x,$$

$$\dot{y} = v_y,$$

$$\dot{v}_x = x + 2v_y - \frac{(1-\mu)(x+\mu)}{\sqrt{\left((x+\mu)^2 + y^2\right)^3}} - \frac{\mu(x-(1-\mu))}{\sqrt{\left((x-(1-\mu))^2 + y^2\right)^3}}$$

$$\dot{v}_y = y - 2v_x - \frac{(1-\mu)y}{\sqrt{\left((x+\mu)^2 + y^2\right)^3}} - \frac{\mu y}{\sqrt{\left((x-(1-\mu))^2 + y^2\right)^3}}$$

Listing 4.18: API_Example_Cauchy_Problem.f90

The following code integrates the Arenstorf orbit by means of the classical wrapped DOPRI54 and a new implementation written in modern Fortran. Different tolerances are selected to show the influence on the calculated orbit.

```
U(0,:,j) = [0.994, 0., 0., -2.0015851063790825]
    end do
    Time = [(t0 + (tf -t0) * i / real(N), i=0, N)]
    call set_solver(family_name="weRK", scheme_name="WDOPRI5")
    do j=1, Np
      call set_tolerance(tolerances(j))
      call Cauchy_ProblemS( Time, Arenstorf_equations, U(:, :, j) )
    end do
    call plot_parametrics( U(:, 1, :), U(:, 2, :), names,
                            "$x$", "$y$", "(a)", path(1) )
    call set_solver(family_name="eRK", scheme_name="DOPRI54")
    do j=1, Np
      call set_tolerance(tolerances(j))
      call Cauchy_ProblemS( Time, Arenstorf_equations, U(:, :, j) )
    end do
    call plot_parametrics( U(:, 1, :), U(:, 2, :) , names,
                            "$x$", "$y$", "(b)", path(2) )
end subroutine
```

Listing 4.19: API_Example_Cauchy_Problem.f90

Figure 4.11: Integration of the Arenstorf orbit by means of embedded Runge–Kutta methods with a specific tolerance ϵ . (a) Wrapper of the embedded Runge–Kutta WDOPRI5. (b) New implementation of the embedded Runge–Kutta DOPRI54.

As expected, the wrapped code and the new implementation show similar results. When the tolerance error is decreased, the calculated orbit approaches to a closed trajectory.

4.14 Gragg-Bulirsch-Stoer Method

The Gragg-Bulirsch-Stoer Method is also a common high order method for solving ordinary equations. This method combines the Richardson extrapolation and the modified midpoint method. For this example, the new implementation of the GBS algorithm and the old wrapped <code>ODEX</code> have been used to simulate the Arenstorf orbit.

```
call set_solver(family_name="wGBS")
    do j=1, Np
       call set_tolerance(tolerances(j))
       call Cauchy_ProblemS( Time, Arenstorf_equations, U(:, :, j) )
    end do
    call plot_parametrics( U(:, 1, :), U(:, 2, :), names,
                                                                       &
                            "$x$", "$y$", "(a)", path(1) )
    call set_solver(family_name="GBS")
    do j=1, Np
       call set_tolerance(tolerances(j))
       call Cauchy_ProblemS( Time, Arenstorf_equations, U(:, :, j) )
    call plot_parametrics( U(:, 1, :), U(:, 2, :), names,
                                                                       &
                            "$x$", "$y$", "(b)", path(2) )
end subroutine
```

Listing 4.20: API_Example_Cauchy_Problem.f90

Figure 4.12 show that GBS method is much less sensitive to the set tolerance and reach a trajectory closer to the solution than the eRK methods analyzed in the previous section.

Figure 4.12: Integration of the Arenstorf orbit by means of the Gragg-Bulirsch-Stoer Method with a specific tolerance ϵ . (a) Wrapper of GMS method ODEX. (b) New implementation of the GBS method.

4.15 Adams-Bashforth-Moulton Methods

Adams—Bashforth—Moulton schemes are multi-step methods that require only two evaluations of the function of the Cauchy problem per time step. The local error estimation is based on a predictor-corrector scheme. The predictor is implemented as an Adams—Bashforth method and the corrector is an Adams—Moulton method. In the following code, the classical <code>ODE113</code> (wrapped by <code>wABM</code>) is used in comparison with the new implementation <code>ABM</code>.

Listing 4.21: API_Example_Cauchy_Problem.f90

Figure 4.13: Integration of the Arenstorf orbit by means of the Adams-Bashforth-Moulton Methods with a specific tolerance ϵ . (a) Wrapper of ABM method ODE113. (b) New implementation of the ABM methods as a multi-value method.

4.16 Computational effort of Runge–Kutta schemes

When high order precision is required, it is important to select the best temporal scheme. The best scheme is the one that reaches the lowest error tolerance with the smallest CPU time. In the following code, a new subroutine called Temporal_effort_with_tolerance is used to measure the computational effort. Once the temporal scheme is selected, this subroutine runs the Cauchy problem with different error tolerance based on the input argument log_mu. It measures internally the number of evaluations of the function of the Cauchy problem for every simulation. In this way, the number of evaluations of the function of the Cauchy problem can be represented versus the error for different time schemes.

Listing 4.22: API_Example_Cauchy_Problem.f90

Figure 4.14: Computational effort of embedded Runge–Kutta. Number of time steps M as a function of the specified tolerance ϵ for the different member of the embedded Runge–Kutta family. (a) Embedded Runge–Kutta of second and third order. (b) Embedded Runge–Kutta from fourth to seventh order.

Boundary Value Problems

5.1 Overview

Let $\Omega \subset \mathbb{R}^p$ be an open and connected set and $\partial\Omega$ its boundary set. The spatial domain D is defined as its closure, $D \equiv \{\Omega \cup \partial\Omega\}$. Each point of the spatial domain is written $\boldsymbol{x} \in D$. A Boundary Value Problem for a vectorial function $\boldsymbol{u} : D \to \mathbb{R}^N$ of N variables is defined as:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{u}(\boldsymbol{x})) = 0,$$
 $\forall \boldsymbol{x} \in \Omega,$
 $\boldsymbol{h}(\boldsymbol{x}, \boldsymbol{u}(\boldsymbol{x}))|_{\partial\Omega} = 0,$ $\forall \boldsymbol{x} \in \partial\Omega,$

where \mathcal{L} is the spatial differential operator and h is the boundary conditions operator that must satisfy the solution at the boundary $\partial\Omega$. In the subroutine BVP_examples, examples of boundary value problems are presented. The first and second examples are 1D boundary value problems. The first one (Legendre_1D) associated to one unknown function and the second one (Elastic_beam_1D) associated to a system of differential equations. Then, 2D BVP are considered: scalar, vector, linear and nonlinear problems.

```
subroutine BVP_examples
    call Legendre_1D
    call Elastic_beam_1D

call Poisson_2D
    call Elastic_Plate_2D
    call Elastic_Nonlinear_Plate_2D
end subroutine
```

Listing 5.1: API_example_Boundary_Value_Problem.f90

To use all functions of this module, the statement: use Boundary_value_problems should be included at the beginning of the program.

5.2 Legendre equation

Legendre polynomials are a system of complete and orthogonal polynomials with numerous applications. Legendre polynomials can be defined as the solutions of the Legendre's differential equation on a domain $\Omega \subset \mathbb{R} : \{x \in [-1,1]\}$:

$$(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0,$$

where n stands for the degree of the Legendre polynomial. For n = 6, the boundary conditions are: y(-1) = -1, y(1) = 1 and the exact solution is:

$$y(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5).$$

This problem is solved by means of piecewise polynomial interpolation of degree q or finite differences of order q. The implementation of the problem requires the definition of the differential operator $\mathcal{L}(x, u(x))$:

```
function Legendre(x, y, yx, yxx) result(L)
    real, intent(in) :: x, y(:), yx(:), yxx(:)
    real :: L(size(y))

    integer :: n = 6

    L = (1 - x**2) * yxx - 2 * x * yx + n * (n + 1) * y
end function
```

Listing 5.2: API_example_Boundary_Value_Problem.f90

And the boundary conditions h(x, u(x)) are implemented as a function:

Listing 5.3: API_example_Boundary_Value_Problem.f90

These two functions are input arguments of the subroutine Boundary_Value_Problem:

Listing 5.4: API_example_Boundary_Value_Problem.f90

In this example, the piecewise polynomial interpolation is of degree q=6 and the problem is discretized with N=40 grid nodes.

```
integer, parameter :: N = 40, q = 6, Nv = 1
```

Listing 5.5: API_example_Boundary_Value_Problem.f90

Since the degree of the piecewise polynomial interpolation coincides with the degree of the solution or the Legendre polynomial, no error is expected to obtain. It can be observed in figure 5.1b that error is of the order of the round–off value. The solution or the Legendre polynomial is shown in 5.1a.

Figure 5.1: Solution of the Legendre equation with N=40 grid points. (a) Legrendre polynomial of degree n=6. (b) Error of the solution.

5.3 Beam deflection

If beams are straight and slender and only if small deflections are considered, the equations governing the beam deflection w(x) can be approximated as:

$$\frac{d^2w}{dx^2} = M(x), \qquad \frac{d^2M}{dx^2} = q(x),$$

where M(x) is the internal bending moment in the beam and q(x) is a distributed load. This equations are completed with four boundary conditions to yield the deflection w(x) and the moment M(x). In this section fixed supports at both ends are considered:

$$w(-1) = 0$$
, $\frac{dw}{dx}(-1) = 0$, $w(+1) = 0$, $\frac{dw}{dx}(+1) = 0$.

The problem is implemented with the definition of the differential operator $\mathcal{L}(x, u)$ and the boundary conditions function h(x, u).

Listing 5.6: API_example_Boundary_Value_Problem.f90

Listing 5.7: API_example_Boundary_Value_Problem.f90

5.4 Poisson equation

Poisson's equation is a partial differential equation of elliptic type with broad utility in mechanical engineering and theoretical physics. This equation arises to describe the potential field caused by a given charge or mass density distribution. In the case of fluid mechanics, it is used to determine potential flows, streamlines and pressure distributions for incompressible flows. It is an in-homogeneous differential equation with a source term representing the volume charge density, the mass density or the vorticity function in the case of a fluid. It is written in the following form:

$$\nabla^2 u = s(x, y),$$

where $\nabla^2 u = \partial^2 u/\partial x^2 + \partial^2 u/\partial y^2$ and s(x,y) is the source term. This Poisson equation is implemented by the following code:

```
function Poisson(x, y, u, ux, uy, uxx, uyy, uxy) result(L)
  real, intent(in) :: x, y, u(:), ux(:), uy(:), uxx(:), uyy(:), uxy(:)
  real :: L( size(u) )
        L = uxx + uyy - source(x,y)
end function
```

Listing 5.8: API_example_Boundary_Value_Problem.f90

It is considered two punctual sources given by the expression:

$$S(x,y) = ae^{-ar_1^2} + ae^{-ar_2^2}, \quad r_i^2 = (x-x_i)^2 + (y-y_i)^2,$$

where a is an attenuation parameter and (x_1, y_1) and (x_2, y_2) are the positions of the sources. The source term is implemented in the following code:

```
real function source(x, y)
    real, intent(in) :: x, y

real :: r1, r2, a=100

r1 = norm2( [x, y] - [ 0.2, 0.5] )
    r2 = norm2( [x, y] - [ 0.8, 0.5] )

source = a * exp(-a*r1**2) + a * exp(-a*r2**2)
end function
```

Listing 5.9: API_example_Boundary_Value_Problem.f90

In this example, homogeneous boundary conditions are considered and they implemented by the function PBCs:

Listing 5.10: API_example_Boundary_Value_Problem.f90

The differential operator Poisson with its boundary conditions PBCs are used as input arguments for the subroutine Boundary_value_problem

```
! Poisson equation call Boundary_Value_Problem(x,y,Poisson,PBCs, U)
```

Listing 5.11: API_example_Boundary_Value_Problem.f90

In figure 5.2 the solution of this Poisson equation is shown.

Figure 5.2: Solution of the Poisson equation with Nx = 30, Ny = 30 and piecewise interpolation of degree q = 11. (a) Source term s(x,y).(b) Solution u(x,y).

5.5 Deflection of an elastic linear plate

In this section, an elastic plate submitted to a distributed load is implemented. It is Considered a plate with simply supported edges with a distributed load p(x,y) in a domain $\Omega \subset \mathbb{R}^2 : \{(x,y) \in [-1,1] \times [-1,1]\}$. The deflection w(x,y) of a the plate is governed by the following bi-harmonic equation:

$$\nabla^4 w(x,y) = p(x,y),$$

where $\nabla^4 = \nabla^2(\nabla^2)$ is the bi-harmonic operator. The simply supported condition is set by imposed that the displacement is zero and bending moments are zero at the boundaries. It can be proven that the zero bending moment condition is equivalent that the Laplacian of the displacement is zero $\nabla^2 w = 0$.

Since the module Boundary_value_problems only takes into account second-order derivatives, the problem must be transformed into the second-order problem by means of the transformation:

$$u(x,y) = [w(x,y), v(x,y)],$$

which leads to the system:

$$\nabla^2 w = v,$$
$$\nabla^2 v = p(x, y).$$

The above equations are implemented in the function Elastic_Plate

```
function Elastic_Plate(x, y, u, ux, uy, uxx, uyy, uxy) result(L)
    real, intent(in) :: x, y, u(:), ux(:), uy(:), uxx(:), uyy(:), uxy(:)
    real :: L(size(u))

    real :: w, wxx, wyy, v, vxx, vyy

        w = u(1); wxx = uxx(1); wyy = uyy(1)
        v = u(2); vxx = uxx(2); vyy = uyy(2)

        L(1) = wxx + wyy - v
        L(2) = vxx + vyy - load(x,y)

end function
```

Listing 5.12: API_example_Boundary_Value_Problem.f90

In this example, it is considered a vertical plate in y direction submitted to ambient pressure to one side and a hydro-static pressure to the other side. Besides,

the fluid at y = 0 has ambient pressure. With these considerations, the plate is submitted to the following non-dimensional net force:

$$p(x, y) = ay,$$

where a is a non-dimensional parameter. This external load is implemented in the function load

```
real function load(x, y)
   real, intent(in) :: x, y

load = 100*y
end function
```

Listing 5.13: API_example_Boundary_Value_Problem.f90

The boundary conditions are:

$$w\big|_{\partial\Omega} = 0,$$
$$\nabla^2 w\big|_{\partial\Omega} = 0.$$

Since $v = \nabla^2 w$, these conditions leads to w = 0, v = 0 at the boundaries and they are implemented in the following function Plate_BCs:

```
function Plate_BCs(x, y, u, ux, uy) result(BCs)
    real, intent(in) :: x, y, u(:), ux(:), uy(:)
    real :: BCs(size(u))

    real :: w, v

    w = u(1)
    v = u(2)

    if (x==x0 .or. x==xf .or. y==y0 .or. y==yf ) then

        BCs(1) = w
        BCs(2) = v

    else
        write(*,*) " Error BCs x=", x; stop
    endif
end function
```

Listing 5.14: API_example_Boundary_Value_Problem.f90

In this example, piecewise polynomial interpolation of degree q=4 is chosen. The non-uniform grid points are selected by the subroutine $\texttt{Grid_initialization}$ by imposing constant truncation error.

The differential operator Elastic_Plate and its boundary conditions Plate_PBCs are used as input arguments for the subroutine Boundary_value_problem.

```
! Elastic linear plate
    call Grid_Initialization( "nonuniform", "x", x, q )
    call Grid_Initialization( "nonuniform", "y", y, q )

call Boundary_Value_Problem( x, y, Elastic_Plate, Plate_BCs, U )
```

Listing 5.15: API_example_Boundary_Value_Problem.f90

In figure 5.3a, the external load is shown. As it was mentioned, the net force between the hydro-static pressure and the ambient pressure takes zero value at the vertical position y=0. For values y>0, the external load is positive and for values y<0 the load is negative. This external load divides the plate vertically into two parts. A depressed lower part and a bulged upper part is shown in figure 5.3b.

Figure 5.3: Linear plate solution with 21×21 nodal points and q=4. (a) External load p(x,y). (b) Displacement w(x,y).

5.6 Deflection of an elastic non linear plate

A more complex example of a 2D boundary value problem is shown in this section. A nonlinear elastic plate submitted to a distributed load simply supported on its four edges is considered. The deflection w of the nonlinear plate is ruled by the bi-harmonic equation plus a non linear term which depends on the stress Airy function ϕ . As in the section before, the simply supported edges are considered by imposing zero displacement and zero Laplacian of the displacement. The problem in a domain $\Omega \subset \mathbb{R}^2$: $\{(x,y) \in [-1,1] \times [-1,1]\}$ is formulated as:

$$\nabla^4 w = p(x, y) + \mu \mathcal{L}(w, \phi),$$

$$\nabla^4 \phi + \mathcal{L}(w, w) = 0,$$

where μ is a non-dimensional parameter and \mathcal{L} is the bi-linear operator:

$$\mathcal{L}(w,\phi) = \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 \phi}{\partial x^2} - 2 \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 \phi}{\partial x \partial y}.$$

Since the module Boundary_value_problems only takes into account second-order derivatives, the problem must be transformed into the second-order problem by means of the transformation:

$$\boldsymbol{u}(x,y) = [w, v, \phi, F],$$

which leads to the system:

$$\nabla^2 w = v,$$

$$\nabla^2 v = p(x, y) + \mu \mathcal{L}(w, \phi),$$

$$\nabla^2 \phi = F,$$

$$\nabla^2 F = -\mathcal{L}(w, w).$$

The external load applied to the nonlinear plate is the same that it was used in the deflections of the linear plate

$$p(x,y) = ay.$$

It allows comparing a linear solution with a nonlinear solution. The plate behaves non-linearly when deflections are of the order of the plate thickness. Since the deflections are caused by the external load, the non-dimensional parameter a can be used to take the plate to a nonlinear regime.

The nonlinear plate equations expressed as a second order derivatives system of equations is implemented in the following function NL_Plate:

```
function NL_Plate(x, y, u, ux, uy, uxx, uyy, uxy) result(L)
 real, intent(in) :: x, y, u(:), ux(:), uy(:), uxx(:), uyy(:), uxy(:)
 real :: L(size(u))
 real :: w, wxx, wyy, wxy, v, vxx, vyy
 real :: phi, phixx, phiyy, phixy, F, Fxx, Fyy
     = u(1); wxx = uxx(1);
                             wyy = uyy(1); wxy = uxy(1)
    = u(2);
             vxx = uxx(2);
                              vyy = uyy(2)
 phi = u(3); phixx = uxx(3); phiyy = uyy(3); phixy = uxy(3)
              Fxx = uxx(4);
                              Fyy = uyy(4)
    = u(4);
 L(1) = wxx + wyy - v
 L(2) = vxx + vyy - load(x,y)
                                                          &
        - mu * Lb(wxx, wyy, wxy, phixx, phiyy, phixy)
 L(3) = phixx + phiyy - F
 L(4) = Fxx + Fyy + Lb(wxx, wyy, wxy, wxx, wyy, wxy)
end function
```

Listing 5.16: API_example_Boundary_Value_Problem.f90

In this function the bi-linear operator \mathcal{L} is implemented in the function Lb

```
real function Lb( wxx, wyy, wxy, pxx, pyy, pxy)
  real, intent(in) :: wxx, wyy, wxy, pxx, pyy, pxy

Lb = wxx * pyy + wyy * pxx - 2 * wxy * pxy
end function
```

Listing 5.17: API_example_Boundary_Value_Problem.f90

The boundary conditions are implemented in the function NL_Plate_BCs

Listing 5.18: API_example_Boundary_Value_Problem.f90

The differential operator NL_Plate and its boundary conditions NL_Plate_BCs are used as input arguments for the subroutine Boundary_value_problem.

```
! Elastic nonlinear plate
U = 0.0
call Boundary_Value_Problem(x, y, NL_Plate, NL_Plate_BCs, U)
```

Listing 5.19: API_example_Boundary_Value_Problem.f90

In figure 5.4, the solution of the nonlinear plate model is shown.

Figure 5.4: Non linear elastic plate solution with $N_x=20$, $N_y=20$, q=4 and $\mu=100$. (a) Displacement w(x,y). (b) Solution $\phi(x,y)$

Initial Boundary Value Problems

6.1 Overview

In this chapter, several Initial Boundary Value problems will be presented. These problems can be divided into those purely diffusive are the heat equation and those purely convective as the wave equation. In between, there are convective and diffusive problems that are represented by the convective-diffusive equation. In the subroutine IBVP_examples, different examples of these problems are implemented.

```
call Heat_equation_1D
call Stability_and_Error_Heat1D
call Stability_Heat_equation_1D

call Heat_equation_1D_implicit
call Advection_Diffusion_1D

call Wave_equation_1D

call Heat_equation_2D
call Stability_and_Error_Heat2D
call Advection_Diffusion_2D
call Advection_Diffusion_2D
call Stability_and_Error_Heat2D
call Wave_equation_2D
end subroutine
```

Listing 6.1: API_Example_Initial_Boundary_Value_Problem.f90

The statement use Initial_Boundary_Value_Problems should be included at the beginning of the program.

6.2 Heat equation 1D

The heat equation is a partial differential equation that describes how the temperature evolves in a solid medium. The physical mechanism is the thermal conduction is associated with microscopic transfers of momentum within a body. The Fourier's law states the heat flux depends on temperature gradient and thermal conductivity. By imposing the energy balance of a control volume and taking into account the Fourier's law, the heat equation is derived:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}.$$

This spatial domain is $\Omega \subset \mathbb{R} : \{x \in [-1,1]\}$ and the temporal domain is $t \in [0,1]$. The boundary conditions are set by imposing a given temperature or heat flux at boundaries. In this example, a homogeneous temperature is imposed at boundaries:

$$u(-1,t) = 0,$$

$$u(1,t) = 0,$$

and the initial temperature profile is:

$$u(x,0) = \exp(-25x^2).$$

The implementation of the differential operator is done by means of the function ${\tt Heat_equation1D}$

Listing 6.2: API_Example_Initial_Boundary_Value_Problem.f90

and the boundary conditions by means of the function Heat_BC1D

Listing 6.3: API_Example_Initial_Boundary_Value_Problem.f90

The problem is integrated with piecewise polynomials of degree six or finite differences of sixth-order q=6. Once the grid or the mesh points are chosen by the subroutine Grid_initialization and the initial condition is set, the problem is integrated by the subroutine Initial_Boundary_Value_Problem by making use of the definition of the differential operator and the boundary conditions previously defined.

Listing 6.4: API_Example_Initial_Boundary_Value_Problem.f90

In figure 6.1, the temperature u(x,t) is shown during time integration by different parametric curves. From the initial condition, the temperature diffuses to both sides of the spatial domain verifying zero temperature at boundaries.

Figure 6.1: Time evolution of the heat equation with Nx = 20 and q = 6. (a) Temperature profile u(x,t) at t = 0, 0.2, 0.4. (b) Temperature profile u(x,t) at t = 0.6, 0.8, 1.

6.3 Heat equation 2D

In this section, the heat equation is integrated in a two-dimensional quadrangular box $\Omega \subset \mathbb{R}^2 : \{(x,y) \in [-1,1] \times [-1,1]\}$ allowing heat fluxes in both in vertical and horizontal directions. The heat equation expressed in a Cartesian two dimensional space is:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2},$$

This differential operator is implemented in Heat_equation2D

Listing 6.5: API_Example_Initial_Boundary_Value_Problem.f90

In this example, the influence of the non-homogeneous boundary conditions is taken into account by imposing the following temperatures at boundaries:

```
u(-1, y, t) = 1, u(+1, y, t) = 0, u_y - 5u|_{(x, -1, t)} = 0, u_y + 5u|_{(x, 1, t)} = 0,
```

and zero temperature as an initial condition u(x, y, 0) = 0.

Listing 6.6: API_Example_Initial_Boundary_Value_Problem.f90

The subroutine InitialValue_Boundary_Problem uses these definitions to integrate the solution

```
! Heat equation 2D

call Initial_Boundary_Value_Problem(

Time_Domain = Time, x_nodes = x, y_nodes = y, &

Differential_operator = Heat_equation2D, &

Boundary_conditions = Heat_BC2D, Solution = U)
```

Listing 6.7: API_Example_Initial_Boundary_Value_Problem.f90

In figure 6.2, the two dimensional distribution of temperature is shown from the early stages of time to its final steady state. The temperature evolves from the zero initial condition to a steady state assuring the imposed boundary conditions.

Figure 6.2: Solution of the 2D heat equation solution with $N_x=20, N_y=20$ and order q=4, (a) temperature at t=0.125, (b) temperature at t=0.250,(c) temperature at t=0.375, (d) temperature at t=0.5.

6.4 Advection Diffusion equation 1D

When convection together with diffusion is present in the physical energy transfer mechanism, boundary conditions become tricky. For example, let us consider a fluid inside a pipe moving to the right at constant velocity transferring by conductivity heat to right and to the left. At the same time and due to its convective velocity, the energy is transported downstream. It is clear that the inlet temperature can be imposed but nothing can be said of the outlet temperature. In this section, the influence of extra boundary conditions is analyzed. The one-dimensional energy transfer mechanism associated to advection and diffusion is governed by the following equation:

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2},$$

where ν is a non dimensional parameter which measures the importance of the diffusion versus the convection. This spatial domain is $\Omega \subset \mathbb{R} : \{x \in [-1,1]\}$. As it was mentioned, extra boundary conditions are imposed to analyze their effect.

$$u(-1,t) = 0, \quad u(1,t) = 0.$$

Together with the following initial condition:

$$u(x,0) = \exp(-25x^2).$$

The differential operator and the boundary equations are implemented in the following two subroutines:

Listing 6.8: API_Example_Initial_Boundary_Value_Problem.f90

Listing 6.9: API_Example_Initial_Boundary_Value_Problem.f90

The subroutine InitialValue_Boundary_Problem uses these definitions to integrate the solution

```
! Advection diffusion 1D

call Initial_Boundary_Value_Problem(

Time_Domain = Time, x_nodes = x,

Differential_operator = Advection_equation1D,

Boundary_conditions = Advection_BC1D, Solution = U)
```

Listing 6.10: API_Example_Initial_Boundary_Value_Problem.f90

In this example, fourth-order finite differences q = have been used. In figure 6.3, the evolution of the temperature is shown for the early stage of the simulation. The initial temperature profile moves to the right due to its constant velocity 1. At the same time, it diffuses to the right and to the left due to its conductivity. The problem arises when the temperature profile reaches the boundary x = +1 where the extra boundary condition u(+1,t) = 0 is imposed. The result of the simulation is observed in figure 6.3b where the presence of the extra boundary condition introduces oscillations of disturbances in the temperature profile which are not desirable, the solution evaluated at four instants of time.

Figure 6.3: Solution of the advection-diffusion equation subjected to extra boundary conditions with $N_x = 20$ and order q = 4. (a) Early stages of the temperature profile for t = 0, 0.3, 0.6, (b) the temperature profile for t = 0.9, 1.2, 1.5.

6.5 Advection-Diffusion equation 2D

The purpose of this section is to show how the elimination of the extra boundary conditions imposed in the 1D advection-diffusion problem allows obtaining the desired result.

Let us consider a fluid moving with a given constant velocity v. While the convective energy transfer mechanism is determined by $v \cdot \nabla u$, the energy transferred by thermal conductivity is ∇u . With these considerations, the temperature evolution of the fluid is governed by the following equation:

$$\frac{\partial u}{\partial t} + \boldsymbol{v} \cdot \nabla u = \nu \nabla u,$$

here ν is a non dimensional parameter which measures the importance of the diffusion versus the convection.

In this example, $\mathbf{v} = (1,0)$ and the energy transfer occurs in a two dimensional domain $\Omega \subset \mathbb{R}^2 : \{(x,y) \in [-1,1] \times [-1,1]\}$. The above equation yields,

$$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right).$$

This differential operator is implemented in the function Advection equation2D

```
function Advection_equation2D(x, y, t, U, Ux, Uy, Uxx, Uyy, Uxy) result(F)
    real,intent(in) :: x, y, t, U(:), Ux(:), Uy(:), Uxx(:), Uyy(:), Uxy(:)
    real :: F( size(U) )

    real :: nu = 0.02

    F(1) = - Ux(1) + nu * ( Uxx(1) + Uyy(1) )
end function
```

Listing 6.11: API_Example_Initial_Boundary_Value_Problem.f90

The constant velocity v of the flow allows deciding inflow or outflow boundaries by projecting the velocity on the normal direction to the boundary. In our case, only the boundary x=+1 is an outflow. It is considered the flow enter at zero temperature but no boundary condition is imposed at the outflow.

$$u(-1, y, t) = 0$$
, $u(x, -1, t) = 0$, $u(x, +1, t) = 0$.

The question that arises is: if no boundary condition is imposed, how these boundaries conditions are modified or evolved? The answer is to consider the boundary points as interior points. In this way, the evolution of these points is governed by the advection-diffusion equation. To take into account that there are points with

this requirement, the keyword FREE_BOUNDARY_CONDITION is used. In the following function Advection_BC2D these special boundary points are implemented:

Listing 6.12: API_Example_Initial_Boundary_Value_Problem.f90

The subroutine InitialValue_Boundary_Problem uses the function of the differential operator as well as the function that imposes the boundary conditions to integrate the solution

```
! Advection diffusion 2D

call Initial_Boundary_Value_Problem( &

Time_Domain = Time, x_nodes = x, y_nodes = y, &

Differential_operator = Advection_equation2D, &

Boundary_conditions = Advection_BC2D, Solution = U)
```

Listing 6.13: API_Example_Initial_Boundary_Value_Problem.f90

In figure 6.4, the temperature distribution is shown. At the early stages of the simulation 6.4a and 6.4b, the energy is transported to the right and at the same time the thermal conductivity diffuses its initial distribution. In figure 6.4c and 6.4d, the flow has reached the outflow boundary. Since no boundary conditions are imposed at the outflow boundary x=+1, the simulation predicts what is supposed to happen. The energy abandons the spatial domain with no reflections or perturbation in the temperature distribution.

Figure 6.4: Solution of the advection-diffusion equation with outflow boundary conditions with $N_x = 20, N_y = 20$ and order q = 8. (a) Initial condition u(x, y, 0), (b) solution at t = 0.45, (c) solution at t = 0.9, (d) solution at t = 1.35

6.6 Wave equation 1D

The wave equation is a conservative equation that describes waves such as pressure waves or sound waves, water waves, solid waves or light waves. It is a partial differential equation that predicts the evolution of a function u(x,t) where x represents the spatial variable and t stands for time variable. The equation that governs the quantity u(x,t) such as the pressure in a liquid or gas, or the displacement of some media is:

$$\frac{\partial^2 v}{\partial t^2} - \frac{\partial^2 v}{\partial x^2} = 0.$$

Since the module Initial_Boundary_Value_Problems is written for systems of second order derivatives in space and first order in time, the problem must be rewritten by means of the following transformation:

$$u(x,t) = [v(x,t), w(x,t)].$$

The wave equation is transformed in a system of equations of first order in time and second order in space

$$\frac{\partial v}{\partial t} = w,$$

$$\frac{\partial w}{\partial t} = \frac{\partial^2 v}{\partial x^2}.$$

This set of two differential equations is implemented in Wave_equation1D

```
function Wave_equation1D( x, t, u, ux, uxx) result(F)
    real, intent(in) :: x, t, u(:), ux(:), uxx(:)
    real :: F(size(u))

    real :: v, vxx, w
    v = u(1); vxx = uxx(1);
    w = u(2);

    F = [w, vxx]
end function
```

Listing 6.14: API_Example_Initial_Boundary_Value_Problem.f90

These equations must be completed with initial and boundary conditions. In this example, a one-dimensional tube with closed ends is considered. This spatial domain is $\Omega \subset \mathbb{R}$: $\{x \in [-1,1]\}$ and the temporal domain is $t \in [0,4]$. It means that waves reflects at the boundaries conserving their energy with $v(\pm 1,t)=0$ and $w(\pm 1,t)=0$. The initial condition is $v(x,0)=\exp\left(-15x^2\right)$, and w(x,0)=0. The boundary conditions are implemented in the following function Wave BC1D:

Listing 6.15: API_Example_Initial_Boundary_Value_Problem.f90

The differential operator and the boundary conditions function are used as input arguments of the subroutine Initial_Boundary_Value_Problem

```
! Wave equation 1D

call Initial_Boundary_Value_Problem( &

Time_Domain = Time, x_nodes = x, &

Differential_operator = Wave_equation1D, &

Boundary_conditions = Wave_BC1D, Solution = U)
```

Listing 6.16: API_Example_Initial_Boundary_Value_Problem.f90

In figure 6.5, time evolution of u(x,t) is shown. Since the initial condition is symmetric with respect to x=0 and the system is conservative, the solution is periodic of periodicity T=4. It is shown in 6.5b that the displacement profile u(x,t) at t=T coincides with the initial condition.

Figure 6.5: Wave equation solution with $N_x = 41$ and order q = 6. (a) Time evolution of u(x,t) from t = 0 to t = 2. (b) Time evolution of u(x,t) from t = 2 to t = 4.

6.7 Wave equation 2D

In two space dimensions, the wave equation is

$$\frac{\partial^2 v}{\partial t^2} = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$$

As it was done with the wave equation in 1D, the problem must transformed to a system of first order in time by means of the following change of variables:

$$\boldsymbol{u}(x,t) = [v(x,t), w(x,t)]$$

giving rise to the system

$$\begin{split} \frac{\partial v}{\partial t} &= w, \\ \frac{\partial w}{\partial t} &= \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}. \end{split}$$

This system is implemented in the function Wave_equation2D

```
function Wave_equation2D( x, y, t, u, ux, uy, uxx, uyy, uxy ) result(L)
    real, intent(in) :: x,y,t,u(:),ux(:),uy(:),uxx(:),uyy(:),uxy(:)
    real :: L(size(u))

        real :: v, vxx, vyy, w

        v = u(1); vxx = uxx(1); vyy = uyy(1)
        w = u(2);

        L(1) = w
        L(2) = vxx + vyy
end function
```

Listing 6.17: API_Example_Initial_Boundary_Value_Problem.f90

Regarding boundary conditions, reflexive or non absorbing walls are considered in the spatial domain $\Omega \equiv \{(x,y) \in [-1,1] \times [-1,1]\}$. The time interval is $t \in [0,2]$. Hence, the boundary conditions are:

$$v(+1, y, t) = 0,$$
 $v(-1, y, t) = 0,$ $v(x, -1, t) = 0,$ $v(x, +1, t) = 0,$ $w(+1, y, t) = 0,$ $w(-1, y, t) = 0,$ $w(x, -1, t) = 0,$ $w(x, +1, t) = 0.$

And the initial values:

$$v(x, y, 0) = \exp(-10(x^2 + y^2)),$$

 $w(x, y, 0) = 0.$

The boundary conditions are implemented in Wave BC2D

Listing 6.18: API_Example_Initial_Boundary_Value_Problem.f90

The differential operator, its boundary conditions and initial condition are used in the following code snippet:

Listing 6.19: API_Example_Initial_Boundary_Value_Problem.f90

In figure 6.6 time evolution of u(x, y, t) is shown from the initial condition to time t = 2. Since waves reflect from different walls with different directions and the round trip time depends on the direction, the problem becomes much more complicated to analyze than the pure one-dimensional problem.

Figure 6.6: Wave equation solution with $N_x=20,\ N_y=20$ and order q=8. (a) Initial value u(x,y,0). (b) Numerical solution at t=0.66, (c) numerical solution at t=1.33, (d) numerical solution at t=2.

Chapter 7

Mixed Boundary and Initial Value Problems

7.1 Overview

In this chapter, a mixed problem coupled with elliptic and parabolic equations is solved making use of the module IBVP_and_BVP. Briefly and not rigorously, these problems are governed by a parabolic time dependent problem for $\boldsymbol{u}(\boldsymbol{x},t)$ and an elliptic problem or a boundary value problem for $\boldsymbol{v}(\boldsymbol{x},t)$. Let Ω be an open and connected set and $\partial\Omega$ its boundary. These problems are formulated with the following set of equations:

$$\frac{\partial \boldsymbol{u}}{\partial t}(\boldsymbol{x},t) = \boldsymbol{\mathcal{L}}_{u}(\boldsymbol{x},t,\boldsymbol{u}(\boldsymbol{x},t),\boldsymbol{v}(\boldsymbol{x},t)), \qquad \forall \boldsymbol{x} \in \Omega,
\boldsymbol{h}_{u}(\boldsymbol{x},t,\boldsymbol{u}(\boldsymbol{x},t))\big|_{\partial\Omega} = 0, \qquad \forall \boldsymbol{x} \in \partial\Omega,
\boldsymbol{u}(\boldsymbol{x},t_{0}) = \boldsymbol{u}_{0}(\boldsymbol{x}), \qquad \forall \boldsymbol{x} \in D,
\boldsymbol{\mathcal{L}}_{v}(\boldsymbol{x},t,\boldsymbol{v}(\boldsymbol{x},t),\boldsymbol{u}(\boldsymbol{x},t)) = 0, \qquad \forall \boldsymbol{x} \in \Omega,
\boldsymbol{h}_{v}(\boldsymbol{x},t,\boldsymbol{v}(\boldsymbol{x},t))\big|_{\partial\Omega} = 0, \qquad \forall \boldsymbol{x} \in \partial\Omega,$$

where \mathcal{L}_u is the spatial differential operator of the initial value problem of N_u equations, $u_0(x)$ is the initial value, h_u represents the boundary conditions operator for the solution at the boundary points $u|_{\partial\Omega}$, \mathcal{L}_v is the spatial differential operator of the boundary value problem of N_v equations and h_v represents the boundary conditions operator for v at the boundary points $v|_{\partial\Omega}$.

7.2 Non Linear Plate Vibration

The vibrations w(x, y, t) of an nonlinear plate subjected to a transversal load p(x, y, t) are governed by the following set of equations:

$$\frac{\partial^2 w}{\partial t^2} + \nabla^4 w = p(x, y, t) + \mu \ \mathcal{B}(w, \phi),$$
$$\nabla^4 \phi + \mathcal{B}(w, w) = 0.$$

where \mathcal{B} is the bilinear operator:

$$\mathcal{B}(w,\phi) = \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 w}{\partial y^2} - 2 \frac{\partial^2 \phi}{\partial x \partial y} \frac{\partial^2 w}{\partial x \partial y}.$$

These equations together with boundary and initial conditions allow predicting the oscillations of the plate. Since second order derivatives of the displacement w(x, y, t) are involved, the initial position and the initial velocity are given. In this example,

$$w(x, y, 0) = e^{-10(x^2 + y^2)}.$$
$$\frac{\partial w}{\partial t}(x, y, 0) = 0.$$

Besides, simple supported edges are considered which means that the displacement w(x,y,t) and the bending moments $\nabla^2 w$ are zero at boundaries. In this example, the spatial domain $\Omega \equiv \{(x,y) \in [-1,1] \times [-1,1]\}$ and the time domain $t \in [0,1]$. Since the module IBVP_and_BVP is written for systems of second order derivatives in space and first order in time, the problem is rewritten by means of the following transformation:

$$u = [w, w_2, w_3],$$

which leads to the evolution system of equations for u(x, y, t) with:

$$\mathcal{L}_u = [w_2, -\nabla^2 w_3 + p + \mu \mathcal{B}(w, \phi), \nabla^2 w_2],$$

To implement the elliptic boundary problem in terms of second order derivatives, the following transformation is used:

$$\boldsymbol{v} = [\phi, F],$$

which leads to the system $\mathcal{L}_v(\boldsymbol{x},t,\boldsymbol{v},\boldsymbol{u})=0$ with:

$$\mathcal{L}_v = [\nabla^2 \phi - F, \nabla^2 F + \mathcal{B}(w, w)].$$

The evolution differential operator \mathcal{L}_u together with the elliptic differential \mathcal{L}_v are implemented in the following vector functions:

```
function Lu(x, y, t, u, ux, uy, uxx, uyy, uxy , v, vx, vy, vxx, vyy, vxy)
real, intent(in) :: x, y, t, u(:), ux(:), uy(:), uxx(:), uyy(:), uxy(:)
real, intent(in) ::
                              v(:), vx(:), vy(:), vxx(:), vyy(:), vxy(:)
real :: Lu(size(u))
    real :: wxx, wyy, wxy, pxx, pyy, pxy
    real :: w2, w2xx, w2yy, w3xx, w3yy
    wxx = uxx(1); wyy = uyy(1); wxy = uxy(1);
    w2xx = uxx(2); w2yy = uyy(2); w2 = u(2);
    w3xx = uxx(3); w3yy = uyy(3);
    pxx = vxx(1); pyy = vyy(1); pxy = vxy(1);
    Lu(1)
           = - w3xx - w3yy + load(x, y, t)
    Lu(2)
              + mu * B( wxx, wyy, wxy, pxx, pyy, pxy)
    Lu(3) =
               w2xx + w2yy
end function
```

Listing 7.1: API_Example_IBVP_and_BVP.f90

Listing 7.2: API_Example_IBVP_and_BVP.f90

To impose simple supported edges, the values of all components of $\boldsymbol{u}(x,y,t)$ and $\boldsymbol{v}(x,y,t)$ must be determined analytically at boundaries. Since w(x,y,t) is zero at boundaries for all time and $w_2 = \partial w/\partial t$ then, w_2 is zero at boundaries. Since $\nabla^2 w$ is zero at boundaries for all time and

$$\frac{\partial w_3}{\partial t} = \frac{\partial \nabla^2 w}{\partial t}$$

then, w_3 is zero at boundaries. The same reasoning is applied to determine v(x, y, t) components at boundaries. With these considerations, the boundary conditions h_u and h_v are implemented by:

Listing 7.3: API_Example_IBVP_and_BVP.f90

Listing 7.4: API_Example_IBVP_and_BVP.f90

These differential operators Lu and Lv together with their boundary conditions BCu and BCv are used as input arguments for the subroutine IBVP and BVP

```
! Nonlinear Plate Vibration call IBVP_and_BVP( Time, x, y, Lu, Lv, BCu, BCv, U, V)
```

Listing 7.5: API_Example_IBVP_and_BVP.f90

In figure 7.1, the oscillations of a plate with zero external loads starting from an elongated position with zero velocity are shown.

Figure 7.1: Time evolution of nonlinear vibrations w(x,y,t) with 11×11 nodal points and order q=6. (a) w(x,y,0.25). (b) w(x,y,0.5). (c) Numerical solution at w(x,y,0.75). (d)Numerical solution at w(x,y,1).

Part II Developer guidelines

Systems of equations

1.1 Overview

In this chapter, it is intended to cover the implementation of some classic issues that might appear in algebraic problems from applied mathematics. In particular, the operations related to linear and non linear systems and operations with matrices such as: LU factorization, real eigenvalues and eigenvectors computation and SVD decomposition will be presented.

1.2 Linear systems and LU factorization

In all first courses in linear algebra, the resolution of linear systems is treated as the fundamental problem to be solved. This problem consists on solving for an unknown $x \in \mathbb{R}^N$ the problem:

$$Ax = b, (1.2.1)$$

where $A \in \mathcal{M}_{N \times N}$ verifies $\det(A) \neq 0$ and $\boldsymbol{b} \in \mathbb{R}^N$.

Concepts such as linear combination, pivots and elemental operations matrices are used, leading to the well-known Gauss elimination method. This method operates by rows on an extended matrix which contains all the columns of A and b as its last column until the rows of A form an upper diagonal matrix. Once we have the upper diagonal matrix, the resolution of the problem is straightforward. However, even though Gauss elimination is a successful algorithm to deal with linear systems, its straightforward implementation has an inconvenient: it depends on b. This means that every time we change the independent term we have to apply again the algorithm and perform around N^3 operations. This is undesirable as in many situations, we need to compute the solution of Ax = b for different source terms. A more efficient manner to think of Gaussian elimination is through LU factorization. The latter method is based on the fact that to reach the upper diagonal matrix of Gauss method, which we will denote U, a bunch of elemental row operations have to be performed over A. This means that there exists a $N \times N$ invertible matrix L^{-1} containing these operations such that when A is premultiplied by it we get U. In other words this means that we can express A as:

$$A = LU, (1.2.2)$$

where L and U are lower and upper triangular matrices respectively. Note that as U is obtained through a Gaussian elimination process, the number of operations to compute LU factorization is the same. However, relation (1.2.2) gives a recursion to obtain both L and U operating only over elements of A. The factorization of A is equivalent to the relation between their components:

$$A_{ij} = \sum_{m} L_{im} U_{mj}, \text{ for } m \in [1, \min\{i, j\}],$$
 (1.2.3)

from which we want to obtain L_{ij} and U_{ij} . By definition, the number of non null terms in L and U are N(N+1)/2, which leads to N^2+N unknown variables. However, the number of equations supplied by (1.2.2) is N^2 . This makes necessary to fix the value of N unknown variables. To solve this, we force $L_{kk}=1$. Once this is done, we can obtain the k-th row of U from the equation for the components A_{kj} with $j \geq k$ if the previous k rows are known. Taking into account that $U_{11} = A_{11}$ we can compute the recursion

$$U_{kj} = A_{kj} - \sum_{m} L_{km} U_{mj}, \text{ for } m \in [1, k-1].$$
 (1.2.4)

Note that the first row of U is just the first row of A. Hence, we can calculate each row of U recursively by a direct implementation.

```
do j=k, N
A(k,j) = A(k,j) - dot_{product}(A(k, 1:k-1), A(1:k-1, j))
end do
```

Listing 1.1: Linear_systems.f90

Note that the upper diagonal matrix U is stored on the upper diagonal elements of A. Once we haved calculated U, a recursion to obtain the i-th row of, if all the previous i-1 rows of L are known. Note that for i>j=1, $A_{i1}=L_{i1}U_{11}$ and the first column of L can be given as an initial condition. Therefore, we can compute the recursion as:

$$L_{ik} = \frac{A_{ik} - \sum_{m} L_{mk} U_{im}}{U_{kk}}, \quad \text{for} \quad m \in [1, k-1].$$
 (1.2.5)

Again, this recursion can be computed through a direct implementation:

```
do i=k+1, N
    A(i,k) = (A(i,k) - dot_product( A(1:k-1, k), A(i, 1:k-1) ) )/A(k,k)
end do
```

Listing 1.2: Linear_systems.f90

The factorization of A is implemented in the subroutine LU_factorization

```
subroutine LU_factorization( A )
     real, intent(inout) :: A(:, :)
 integer :: N
 integer :: k, i, j
 N = size(A, dim = 1)
 A(1, :) = A(1, :)
 A(2:N,1) = A(2:N,1)/A(1,1)
 do k=2, N
  do j=k, N
      A(k,j) = A(k,j) - dot product(A(k, 1:k-1), A(1:k-1, j))
  end do
  do i=k+1, N
      A(i,k) = (A(i,k) - dot_product(A(1:k-1, k), A(i, 1:k-1)))/A(k,k)
  end do
 end do
end subroutine
```

Listing 1.3: Linear_systems.f90

Once the matrix A is factorized it is possible to solve the system (1.2.1). In first place it is defined y = Ux, and thus:

$$\sum_{j} L_{ij} y_j = b_i, \quad \text{for} \quad j \in [1, i].$$
 (1.2.6)

As $L_{ij} = 0$ for i < j, and $L_{ii} = 1$ the first row of (1.2.6) gives $y_1 = b_1$ and the value of each y_i can be written on terms of the previous y_j , that is:

$$y_i = b_i - \sum_j L_{ij} y_j, \text{ for } 1 < j < i,$$
 (1.2.7)

thus, sweeping through $i=2,\ldots N,$ over (1.2.7) \boldsymbol{y} is obtained. This is computed through a direct implementation as:

```
do i=2,N
      y(i) = b(i) - dot_product( A(i, 1:i-1), y(1:i-1) )
enddo
```

Listing 1.4: Linear_systems.f90

To obtain x it is used the definition of y, which is written:

$$y_i = \sum_j U_{ij} x_j, \quad \text{for} \quad j \in [i, N].$$
 (1.2.8)

In a similar manner than before, as $u_{ij} = 0$ for i > j, the last row of (1.2.8) gives $x_N = y_N/u_{NN}$ and each x_i can be written in terms of the next x_j with $i < j \le N$ as expresses the equation (1.2.9):

$$x_i = \frac{y_i - \sum_j U_{ij} x_j}{u_{ii}}, \quad \text{for} \quad j \in [i, N].$$
 (1.2.9)

Therefore, evaluating recursively $i = N - 1, \dots 1$ (1.2.9), the solution \boldsymbol{x} is obtained. The implementation of this recursion is straightforward:

```
do i=N-1, 1, -1
  x(i) = (y(i) - dot_product( A(i, i+1:N), x(i+1:N) ) )/ A(i,i)
end do
```

Listing 1.5: Linear_systems.f90

Hence, we can contain the whole process of obtaining the solution of LUx = b in a subroutine named Solve_LU which contains the presented pieces of code along with the initialization $y_1 = b_1$.

```
function Solve_LU( A, b )
 real, intent(in) :: A(:, :), b(:)
 real :: Solve_LU( size(b) )
  real :: y (size(b)), x(size(b))
   integer :: i, N
   N = size(b)
   y(1) = b(1)
   do i=2,N
         y(i) = b(i) - dot_product( A(i, 1:i-1), y(1:i-1) )
   enddo
    x(N) = y(N) / A(N,N)
   do i=N-1, 1, -1
    x(i) = (y(i) - dot_product( A(i, i+1:N), x(i+1:N) ) )/ A(i,i)
    end do
    Solve_LU = x
end function
```

Listing 1.6: Linear_systems.f90

1.3 Condition number

Let's consider a system of linear equations:

$$A \mathbf{x} = \mathbf{b}, \tag{1.3.1}$$

where A is a square system matrix, \boldsymbol{b} is the independent term and \boldsymbol{x} the exact solution. When solving this linear system of equations by iterative of direct methods, the approximate solution denoted by $\bar{\boldsymbol{x}}$ does not verify exactly the system of linear equations. The residual \boldsymbol{r} that this solution leaves in the linear system is defined by:

$$r = b - A \bar{x} \tag{1.3.2}$$

allows to determine the error of the solution by means of the condition number $\kappa(A)$ of the matrix A,

$$\frac{\|\boldsymbol{x} - \bar{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \le \kappa(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|}.$$
 (1.3.3)

To demonstrate this result, let subtract equation (1.3.1) and equation (1.3.2),

$$A (\mathbf{x} - \bar{\mathbf{x}}) = \mathbf{r}, \tag{1.3.4}$$

Let's define the norm of a matrix induced by the norm $\|\cdot\|$ of a vector space V by:

$$||A|| = \sup \frac{||Ax||}{||x||},$$
 (1.3.5)

for all $x \in V$. By multipliying equation (1.3.4) by the inverse of A and taking norms,

$$\|x - \bar{x}\| \le \|A^{-1}\| \|r\|.$$
 (1.3.6)

Dividing this equation by $\|x\|$

$$\frac{\|x - \bar{x}\|}{\|x\|} \le \|A^{-1}\| \frac{\|r\|}{\|x\|}.$$
 (1.3.7)

Finally, taking norms in equation (1.3.1) gives

$$\|\boldsymbol{x}\| \ge \frac{\|\boldsymbol{b}\|}{\|A\|},\tag{1.3.8}$$

and substituting this result in equation (1.3.7) yields the expected result:

$$\frac{\|x - \bar{x}\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|r\|}{\|b\|}, \tag{1.3.9}$$

where $||A|| ||A^{-1}||$ is defined as the condition number $\kappa(A)$ of the matrix A.

When the quadratic norm $\|\cdot\|_2$ is considered, it will be shown in the following section that the norm of a matrix can be obtained by the square root of maximum eigenvalue of the matrix A^TA which coincides with the maximum singular value of the matrix A. Hence, the condition number is expressed as:

$$\kappa(A) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}},$$

where the norm of A is σ_{max} , the norm of A^{-1} is $1/\sigma_{\text{min}}$ and σ_{max} and σ_{min} represent the maximum and minimum singular values of the matrix A respectively. To implement the condition number computation for a matrix we follow three steps.

- 1. Maximum singular value of A^TA : This is done calling Power_method using as input a matrix B that stores A^TA and computing the square root of the resulting eigenvalue storing it in sigma_max
- 2. Minimum eigenvalue of A^TA : This is done calling Power_method using as input B and computing the square root of the resulting eigenvalue storing it in sigma_min
- 3. Condition number of A: The condition number is calculated for the output of the function Condition number doing the ratio sigma max/sigma min

```
real function Condition_number(A)
    real, intent(in) :: A(:,:)

integer :: i, j, k, N
    real, allocatable :: B(:,:), U(:)
    real :: sigma_max, sigma_min, lambda

N = size(A, dim=1)
    allocate( U(N), B(N,N) )
B = matmul( transpose(A), A )

call Power_method(B, lambda, U)
    sigma_max = sqrt(lambda)

call Inverse_power_method(B, lambda, U)
    sigma_min = sqrt(lambda)

Condition_number = sigma_max / sigma_min

end function
```

Listing 1.7: Linear_systems.f90

1.4 Non linear systems of equations

A nonlinear system of equations is a set of simultaneous equations in which the unknowns appear non-linearly. In other words, the equations to be solved cannot be written as a linear combination of the unknown variables. As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations or linearized.

Let $f: \mathbb{R}^N \to \mathbb{R}^N$ be a real mapping and $x \in \mathbb{R}^N$ the independent variable. The roots of system can be calculated by solving:

$$f(x) = 0. (1.4.1)$$

As in general there is no analytical way of solving (1.4.1) for \boldsymbol{x} , methods which give approximate solutions have been developed historically. There are many ways to approximate the solution of (1.4.1) but the most famous method for differentiable functions was developed by sir Isaac Newton from whom receives its name. The goal of Newton method is to construct a sequence which converges to the solution \boldsymbol{x} by linearizing \boldsymbol{f} around a point \boldsymbol{x}_i , called initial guess. That is, the sequence must provide a point \boldsymbol{x}_{i+1} which is closer to \boldsymbol{x} than \boldsymbol{x}_i . To do this, the method takes into account that for every differentiable mapping there is a neighborhood of \boldsymbol{x}_i in which we can approximate the function as:

$$f(x) = f(x_i) + \nabla f(x_i) \cdot (x - x_i) + O(\|x - x_i\|^2),$$
 (1.4.2)

where ∇f is the gradient or Jacobian matrix of f. Hence, the sequence is constructed by evaluating (1.4.2) in the next iteration initial guess x_i and imposing that $f(x_i) = 0$, leading to the system of equations:

$$\nabla f(x_i) \cdot (x_{i+1} - x_i) = -f(x_i), \qquad (1.4.3)$$

and if f is invertible in a neighborhood of x_i we can write¹:

$$\boldsymbol{x}_{i+1} - \boldsymbol{x}_i = -\left(\nabla \boldsymbol{f}(\boldsymbol{x}_i)\right)^{-1} \cdot \boldsymbol{f}(\boldsymbol{x}_i), \tag{1.4.4}$$

where $(\nabla f(x_i))^{-1}$ is the inverse of the Jacobian matrix. Equation (1.4.4) provides an explicit sequence which converges to the solution of (1.4.1) \boldsymbol{x} if the initial condition is sufficiently close to it. Hence, a recursive iteration on (1.4.4) will give an approximate solution of the non linear problem. The recursion is stopped defining a convergence criteria for \boldsymbol{x} . That is, the recursion will stop when $\|\boldsymbol{x}_{i+1} - \boldsymbol{x}_i\| \leq \varepsilon$, where ε is a sufficiently small positive number for the desired accuracy. The implementation of an algorithm which computes the Newton method for any function is presented in the following pages.

 $^{^{1}}$ Local invertibility is equivalent to the invertibility of the Jacobian matrix as the inverse function theorem states.

1. Jacobian matrix calculation

In order to implement the Newton method, first, we have to calculate the Jacobian matrix of the function. To avoid an excessive analytical effort, the columns of $\nabla f(x_i)$ are calculated using order 2 centered finite differences:

$$\frac{\partial \mathbf{f}(\mathbf{x}_i)}{\partial x_i} \simeq \frac{\mathbf{f}(\mathbf{x}_i + \Delta x \mathbf{e}_j) - \mathbf{f}(\mathbf{x}_i - \Delta x \mathbf{e}_j)}{2\Delta x},$$
(1.4.5)

where $e_j = (0, ..., 1, ..., 0)$ is the canonical basis vector whose only non zero entry is the j-th. Thus, the implementation of the computation of each column $\partial f(x_i)/\partial x_j$ is straightforward:

```
Jacobian(:,j) = (F(xp + xj) - F(xp - xj))/(2*Dx)
```

Listing 1.8: Jacobian_module.f90

where xj is a small perturbation along the coordinate x_j . The calculation of all the Jacobian columns is implemented in a function called Jacobian, which computes the gradient at the point x_i sweeping through $j \in [1, N]$, that is introducing the piece of code exposed in a do loop:

```
function Jacobian( F, xp )
  procedure (FunctionRN_RN) :: F
  real, intent(in) :: xp(:)
  real :: Jacobian( size(xp), size(xp) )

integer :: j, N
  real :: xj( size(xp) ), Dx = 1d-3

  N = size(xp)

  do j = 1, N
        xj = 0
        xj(j) = Dx
        Jacobian(:,j) = ( F(xp + xj) - F(xp - xj) )/(2*Dx)
  enddo

end function
```

Listing 1.9: Jacobian_module.f90

Hence, the Jacobian can be calculated by a simple call.

```
J = Jacobian( F, x0 )
```

Listing 1.10: Non_linear_systems.f90

2. Linear system solution

Once the Jacobian is calculated, it is used to compute the next iteration initial guess x_{i+1} . Instead of computing the inverse of the Jacobian, we solve the system:

$$\nabla f(x_i) \cdot \Delta x_i = f(x_i), \tag{1.4.6}$$

whose solution is $\Delta x_i = x_i - x_{i+1}$. This is implemented by performing a Gauss elimination as explained in the previous section:

$$Dx = Gauss(J, b)$$

Listing 1.11: Non_linear_systems.f90

and thus, the calculation of Δx_i allows to compute x_{i+1} as:

$$\boldsymbol{x}_{i+1} = \boldsymbol{x}_i - \Delta \boldsymbol{x}_i,$$

$$x0 = x0 - Dx;$$

Listing 1.12: Non_linear_systems.f90

3. Next iteration

Once we have calculated the next iteration initial guess x_{i+1} we just have to make the assignation:

$$i \leftarrow i+1, \qquad \quad \boldsymbol{x}_i \leftarrow \boldsymbol{x}_{i+1}. \tag{1.4.7}$$

The assignation of the value x_{i+1} to x_i is done immediately as the value of the former is stored over the latter in the vector x0. The iteration evolution is implemented as:

Listing 1.13: Non_linear_systems.f90

This process is carried out until $\|\Delta x_i\| \le \varepsilon = 10^{-8}$ or a maximum number of iterations itmax is achieved. This means that the pieces of code presented above have to be contained in a conditional loop whose mask takes into account the convergence criteria. Thus, the iterative process is embedded in a subroutine named Newton which takes the initial guess through its input x0 and the function to be solved as a module procedure. To avoid overflows, the mask for the conditional loop is not only the convergence criteria but also that the number of iterations does not overcome itmax. In addition, a warning message is displayed on command line if this latter condition is not satisfied. In case that happens it means that the solution may not be as accurate as specified and the subroutine also displays the final value of $\|\Delta x_i\|$ which is stored on the scalar eps:

```
subroutine Newton(F, x0)
procedure (FunctionRN_RN) :: F
real, intent(inout) :: x0(:)
  real :: Dx( size(x0) ), b(size(x0)), eps
  real :: J( size(x0), size(x0) )
  integer :: iteration, itmax = 1000
  integer :: N
  integer :: i
  N = size(x0)
  iteration = 0
  eps = 1
  do while ( eps > 1d-8 .and. iteration <= itmax )
      iteration = iteration + 1
     J = Jacobian(F, x0)
     b = F(x0);
     Dx = Gauss(J, b)
     x0 = x0 - Dx;
      eps = norm2(Dx)
     write(*,*) "iteration =", iteration, "Newton eps = ", norm2( Dx );
          !read(*,*)
  end do
  if (iteration == itmax+1) then
     write(*,*) " morm2(J) =", maxval(J), minval(J)
     write(*,*) " Norm2(Dx) = ", eps, iteration
  endif
end subroutine
```

Listing 1.14: Non_linear_systems.f90

1.5 Eigenvalues and eigenvectors

Calculation of eigenvalues and eigenvectors is a fundamental problem from linear algebra with a wide variety of applications: structural analysis, image processing, stability of orbits and even the most famous search engine requires of computing eigenvectors. In this section, an introduction to eigenvalues and eigenvectors computation and a piece of their foundings will be presented. Besides, we shall see how to implement algorithms to obtain eigenvalues and eigenvectors for a certain set of normal matrices. The eigenvalues and eigenvectors problem for a real square matrix A consists on finding all scalars λ_i and non zero vectors \mathbf{v}_i such that:

$$(A - \lambda_i I) \mathbf{v}_i = 0. \tag{1.5.1}$$

In figure 1.1 is given a classification from the spectral point of view, of the possible situations for a real square matrix. The main characteristic which will classify a matrix is whether is normal or not. A normal matrix commutes with its transpose, that is, it verifies $AA^T = A^TA$ and these matrices can be diagonalized by orthonormal vectors. The fact that normal matrices can be diagonalized by a set of orthonormal vectors is a consequence of Schur decomposition theorem² and the fact that all normal upper-triangular matrices are diagonal. A practical manner to check (not to prove) this fact is by taking two eigenvectors v_i and v_j of A and noticing that:

$$\mathbf{v}_i \cdot A \mathbf{v}_i = \lambda_i \mathbf{v}_i \cdot \mathbf{v}_i, \tag{1.5.2}$$

and if v_i and v_j are orthogonal and unitary, then the matrix whose components are given by

$$D_{ij} = \boldsymbol{v}_i \cdot A \boldsymbol{v}_j = \lambda_j \delta_{ij},$$

is diagonal and its non zero entries are the eigenvalues of A. This means that defining a matrix V whose columns are the eigenvectors of A, we can factorize A as:

$$A = VDV^*, (1.5.3)$$

where V^* stands for the conjugate transpose of V. Until now, we have not specified to which field (\mathbb{R} or \mathbb{C}) belong the eigenvalues of λ and over which field is defined the vector space containing its eigenvectors. A sufficient condition for a real matrix to have real eigenvalues and eigenvectors is given by the spectral theorem: all symmetric matrices (which are normal) have real eigenvalues and eigenvectors and are diagonalizable. If a matrix is normal but not symmetric then in general its

²This theorem asserts that for any square matrix A we can find a unitary matrix U (that is $U^* = U^{-1}$) such that $A = UTU^{-1}$, where T is an upper-triangular matrix and where U^* stands for the conjugate transpose of U.

eigenvalues and eigenvectors are complex but they can have zero imaginary part (not only symmetric matrices have real eigenvalues). Non normal matrices are not diagonalizable in the sense we have defined but can be diagonalized by blocks through the Jordan canonical form. In this book we will restrict ourselves to the case of normal matrices with real eigenvalues, that is, to the case in which the eigenvectors of A spans the real vector space \mathbb{R}^n .

Figure 1.1: Spectral classification of real matrices.

1.6 Power method and deflation method

In this section we will present an iterative method to compute the eigenvalues and eigenvectors of normal matrices whose spectrum spans the whole real vector space \mathbb{R}^n . The power method is an iterative method which gives back the module of the maximum eigenvalue. Let $A \in \mathcal{M}_{n \times n}$ be a square real normal matrix with real eigenvalues $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$, and their orthonormal associated eigenvectors $\{v_1, \ldots, v_n\}$. The method is based on the fact that as the eigenvectors of A form a basis of \mathbb{R}^n we can write for any vector $\mathbf{x}_0 \in \mathbb{R}^n$:

$$\boldsymbol{x}_0 = \sum_i a^i \boldsymbol{v}_i. \tag{1.6.1}$$

From (1.6.1) and the definition of eigenvectors we can compute:

$$A^k oldsymbol{x}_0 = \sum_i a^i \lambda_i^k oldsymbol{v}_i = \lambda_1^k \left(a^1 oldsymbol{v}_1 + \sum_{i
eq 1} a^i rac{\lambda_i^k}{\lambda_1^k} oldsymbol{v}_i
ight),$$

therefore we have that:

$$\frac{A^k \boldsymbol{x}_0}{\|A^k \boldsymbol{x}_0\|} = \left(a^1 \boldsymbol{v}_1 + \sum_{i \neq 1} a^i \frac{\lambda_i^k}{\lambda_1^k} \boldsymbol{v}_i\right) \left\|a^1 \boldsymbol{v}_1 + \sum_{i \neq 1} a^i \frac{\lambda_i^k}{\lambda_1^k} \boldsymbol{v}_i\right\|^{-1}.$$
 (1.6.2)

Thus, if we define $\boldsymbol{x}_k = A^k \boldsymbol{x}_0 / \|\boldsymbol{x}_0\|$ we get a recursion

$$x_{k+1} = \frac{Ax_k}{\|x_k\|} = \frac{A^k x_0}{\|A^k x_0\|},$$
 (1.6.3)

which as $|\lambda_1| > |\lambda_i|$ for all i > 1 and taking in account (1.6.2) verifies:

$$\lim_{k \to \infty} \boldsymbol{x}_k = \boldsymbol{v}_1. \tag{1.6.4}$$

Hence, by iterating over (1.6.3) we can obtain an approximation of the eigenvector associated to the maximum module eigenvalue v_1 . The process of approximating the eigenvector is stopped using a convergence criteria: when $||x_{k+1} - x_k|| \le \epsilon$, where ϵ is a sufficiently small positive number, the iteration process stops.

Once we have computed this eigenvector we can obtain the associated eigenvalue λ_1 from the Rayleigh quotient as³:

$$\lim_{k \to \infty} \boldsymbol{x}_k \cdot A \boldsymbol{x}_k = \boldsymbol{v}_1 \cdot A \boldsymbol{v}_1 = \lambda_1. \tag{1.6.5}$$

The algorithm that carries out the power method can be summarized in three steps

1. **Initial condition**: We can set x_0 to be any vector, for example its components can be the natural numbers $1, 2, \ldots, n$:

$$U = [(k, k=1, N)]$$

Listing 1.15: Linear_systems.f90

³Note that we have used that $||x_k|| \to 1$ when $k \to \infty$.

2. **Eigenvector calculation**: The eigenvector is calculated using recursion (1.6.3) as:

$$\boldsymbol{v} = A\boldsymbol{x}_k / \|\boldsymbol{x}_k\|,\tag{1.6.6}$$

$$\boldsymbol{u} = \boldsymbol{v}/\|\boldsymbol{v}\|,\tag{1.6.7}$$

$$\boldsymbol{x}_{k+1} = \boldsymbol{u} \tag{1.6.8}$$

which has an straightforward implementation in a conditional loop. For each iteration \mathbf{V} stores $\mathbf{v} = A\mathbf{x}_k/\|\mathbf{x}_k\|$ and the approximation $\mathbf{u} = \mathbf{x}_{k+1}/\|\mathbf{x}_{k+1}\|$ is stored in \mathbf{U} which is finally assigned to. The vector $\mathbf{U}\mathbf{0}$ is used to define the convergence criteria for $\epsilon = 10^{-12}$. To avoid overflows in case that the process does not converge a number maximum of 10000 iterations is set.

Listing 1.16: Linear_systems.f90

3. **Eigenvalue calculation**: Once we have computed the approximate eigenvector $x_k \simeq v_1$ and is stored on U, the eigenvalue is calculated taking in account equation (1.6.4) as:

$$\lambda_1 \simeq \boldsymbol{x}_k \cdot A \boldsymbol{x}_k. \tag{1.6.9}$$

The implementation of this calculation is immediate and the result is stored on lambda:

```
lambda = dot_product( U, matmul(A, U) )
```

Listing 1.17: Linear_systems.f90

All the previous steps are implemented in the subroutine Power_method which takes the matrix A and gives back the eigenvalue lambda and the eigenvector U.

```
subroutine Power_method(A, lambda, U)
     real, intent(in) :: A(:,:)
     real, intent(out) :: lambda, U(:)
 integer :: N, k, k_max = 10000
 real, allocatable :: UO(:), V(:)
    N = size(A, dim=1)
   allocate( UO(N), V(N) )
    U = [(k, k=1, N)]
    do while( norm2(U-U0) > 1d-12 .and. k < k_max )
        UO = U
         V = matmul(A, U)
        U = V / norm2(V)
        k = k + 1
    end do
    lambda = dot_product( U, matmul(A, U) )
end subroutine
```

Listing 1.18: Linear_systems.f90

This subroutine, given a normal matrix A gives back its maximum module eigenvalue λ_1 and its associated eigenvector \mathbf{v}_1 . The eigenvalue is yielded on the real lambda and the eigenvector in the vector \mathbf{U} .

Once we have presented the power method iteration to compute the dominant eigenvalue λ_1 and its associated eigenvector \boldsymbol{v}_1 , a method to compute all the eigenvalues and eigenvectors of a matrix using power method is presented. This iterative method is call deflation method. Note that for the power method to work properly we need $|\lambda_1|$ to be strictly greater than the rest of eigenvalues, but if $|\lambda_1| = |\lambda_2|$ the method works fine. Deflation method requires a stronger condition which is that the eigenvalues satisfy $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$. The method is based on the fact that as the matrix $B_2 = A - \lambda_1 \boldsymbol{v}_1 \otimes \boldsymbol{v}_1$ replaces the eigenvalue λ_1 for an eigenvalue of zero value. The symbol \otimes stands for the tensor product in \mathbb{R}^n which is defined from the contraction $\boldsymbol{a} \otimes \boldsymbol{b} \cdot \boldsymbol{c} = \boldsymbol{a}(\boldsymbol{b} \cdot \boldsymbol{c})$. When this is done λ_1 is replaced, but the rest of the eigenvalues and eigenvectors remain invariant and therefore the dominant eigenvector of B_2 is λ_2 . This is a consequence of the spectral theorem, which asserts that A can be written as:

$$A = \sum_{i} \lambda_i \boldsymbol{v}_i \otimes \boldsymbol{v}_i, \tag{1.6.10}$$

and therefore we can write B_2 as

$$B_2 = \mathbf{v}_1 \otimes \mathbf{v}_1 + \sum_{i \neq 1} \lambda_i \mathbf{v}_i \otimes \mathbf{v}_i, \tag{1.6.11}$$

where we see explicitly how the eigenvalue is replaced and the rest remain unaltered. Hence, if we define a succession of matrices

$$B_{k+1} = B_k - \lambda_k \mathbf{v}_k \otimes \mathbf{v}_k, \quad \text{for} \quad k = 1, \dots, n-1, \quad (1.6.12)$$

which starts at the value $B_1 = A$, for each B_k , the dominant eigenvalue is λ_k . Therefore, if we use the power method for each B_k we can compute both λ_k and v_k . Thus, the algorithm can be summarized in two steps for which we consider B_k as the initial matrix:

1. Power method over the initial matrix: First we apply the power method to B_k and compute λ_k and v_k . This is implemented by a simple call to the subroutine Power_method where the array A stores the entries of B_k .

Listing 1.19: Linear_systems.f90

2. Next step matrix: Once we have λ_k and v_k stored over lambda(k) and U(:,k) respectively, we can obtain B_{k+1} by simply applying formula (1.6.12) and storing its result on A:

$$A = A - lambda(k) * Tensor_product(U(:, k), U(:, k))$$

Listing 1.20: Linear_systems.f90

To sweep k through the values $1, \ldots, n$, we contain both steps of the algorithm in a loop. Thus, a subroutine named Eigenvalues is implemented to carry out the deflation method. Given a square matrix A it gives back the scalar lambda and the square matrix U, whose columns are the eigenvectors of A:

```
subroutine Eigenvalues_PM(A, lambda, U, lambda_min)
     real, intent(inout) :: A(:,:)
     real, intent(out) :: lambda(:), U(:,:)
     real, optional, intent(in) :: lambda_min
     integer :: k, N
     real :: l_min
      logical :: next
      next = .true.
      N = size(A, dim=1)
      if ( present(lambda_min) ) then
                                      l_min = lambda_min
      else
                                      1_min = epsilon(1.)
      end if
     k=1;
              lambda = 0
      do while (next)
          call Power_method(A, lambda(k), U(:, k) )
          A = A - lambda(k) * Tensor_product(U(:, k), U(:, k))
          next = lambda(k) > l_min .and. k < N
      end do
end subroutine
```

Listing 1.21: Linear_systems.f90

1.7 Inverse power method

For non singular matrices, a method which gives the eigenvalue of lesser module $|\lambda_n|$ and its associated eigenvector \mathbf{v}_n is presented. If A is non singular, we can premultiply (1.5.1) by its inverse A^{-1} obtaining:

$$A^{-1}\boldsymbol{v} = \lambda^{-1}\boldsymbol{v}.\tag{1.7.1}$$

Therefore, we can extract two conclusions, the first is that A and A^{-1} have the same eigenvectors and the second is that their eigenvalues are inversely proportional to each other. This means that if μ is an eigenvalue of A^{-1} with eigenvector \mathbf{v} , it satisfies $\mu = \lambda^{-1}$. Therefore if the eigenvalues of A^{-1} satisfy $|\mu_n| > |\mu_{n-1}| \ge \cdots \ge |\mu_1|$, we have that the dominant eigenvalue of A^{-1} is related to the eigenvalue of A of minimum module λ_n . Hence, if we apply the power method to A^{-1} we get λ_n^{-1} and \mathbf{v}_n . This method is known as inverse power method for obvious reasons and

the recursion for it is obtained substituting A by A^{-1} in (1.6.3), leading to:

$$\boldsymbol{x}_{k+1} = \frac{A^{-1}\boldsymbol{x}_k}{\|\boldsymbol{x}_k\|},$$

or equivalently:

$$A\boldsymbol{x}_{k+1} = \frac{\boldsymbol{x}_k}{\|\boldsymbol{x}_k\|},\tag{1.7.2}$$

and for each iteration we solve the system (1.7.2). The algorithm that carries out the inverse power method is summarized in four steps:

1. **LU** factorization of A: Prior to solve the system of the recursion, we factorize A by a simple call for the array that will store the lower and upper matrices of the LU factorization, which is named Ac:

call LU_factorization(A)

Listing 1.22: Linear_systems.f90

2. **Initial condition**: We can set x_0 to be any vector, for example its components can be the natural numbers $1, 2, \ldots, n$:

U = [(k, k=1, N)]

Listing 1.23: Linear_systems.f90

3. **Eigenvector calculation**: The eigenvector is calculated solving recursion (1.7.2) by LU factorization. First, the matrix **Ac** is factorized

$$v = A^{-1}x_k/\|x_k\|,$$
 (1.7.3)

$$\boldsymbol{u} = \boldsymbol{v} / \|\boldsymbol{v}\|, \tag{1.7.4}$$

$$\boldsymbol{x}_{k+1} = \boldsymbol{u} \tag{1.7.5}$$

which has an straightforward implementation in a conditional loop. For each iteration \mathbf{V} stores $\mathbf{v} = A^{-1}\mathbf{x}_k/\|\mathbf{x}_k\|$ and the approximation $\mathbf{u} = \mathbf{x}_{k+1}/\|\mathbf{x}_{k+1}\|$ is stored in \mathbf{U} which is finally assigned to. The vector $\mathbf{U}\mathbf{0}$ is used to define the convergence criteria for $\epsilon = 10^{-12}$. To avoid overflows in case that the process does not converge a number maximum of 10000 iterations is set. The only change of this step with respect to the algorithm for power method is that now \mathbf{V} stores the value that comes out of solving a LU system:

```
V = solve_LU(Ac, U)
```

Listing 1.24: Linear_systems.f90

4. Eigenvalue calculation: Once we have computed the approximate eigenvector $x_k \simeq v_n$ and is stored on U, the eigenvalue is calculated taking in account equation (1.6.4) as:

$$\lambda_n \simeq \boldsymbol{x}_k \cdot A \boldsymbol{x}_k, \tag{1.7.6}$$

where we have used that A and A^{-1} share eigenvectors. The implementation of this calculation is immediate and the result is stored on lambda:

```
lambda = dot_product( U, matmul(A, U) )
```

Listing 1.25: Linear_systems.f90

The algorithm of the inverse power method is implemented in the subroutine Inverse_power_method. This subroutine, given a normal matrix A whose minimum module eigenvalue λ_n is strictly lesser than the rest of eigenvalues, gives λ_n and its associated eigenvector \boldsymbol{v}_n . The eigenvalue is stored on the real lambda and the eigenvector in the vector \mathbf{U} .

```
subroutine Inverse_power_method(A, lambda, U)
     real, intent(inout) :: A(:,:)
     real, intent(out) :: lambda, U(:)
 integer :: N, k, k_max = 10000
 real, allocatable :: UO(:), V(:), Ac(:, :)
    N = size(U)
   allocate ( Ac(N,N), UO(N), V(N) )
   call LU_factorization(Ac)
    U = [(k, k=1, N)]
    do while (norm2(U-U0) > 1d-12 .and. k < k_max)
         V = solve_LU(Ac, U)
        U = V / norm2(V)
        k = k + 1
    end do
    lambda = norm2(matmul(A, U))
end subroutine
```

Listing 1.26: Linear_systems.f90

1.8 Singular Value Decomposition (SVD)

In linear algebra, we can find many factorizations of a matrix: LU factorization, Schur factorization, polar decomposition, eigendecomposition and Jordan form...In the following pages we will describe a factorization that has many deep theoretical implications and also numerous practical applications: Singular Value Decomposition. This decomposition is applicable to any given matrix and in a sort of way "diagonalizes" any matrix. SVD permits to write any matrix A as

$$A = U\Sigma V^*$$
.

where U and V are squared unitary matrices and Σ is a diagonal matrix. We will see that, singular value decomposition is a powerful tool which appart from its applications gives a better understanding of the factorized matrix. We will see that the matrices U and V contain bases for the four fundamental subspaces of A, which are: Im A, ker A, Im A^* and ker A^* . Besides, in the matrix Σ lies the information that tells us (among other things) how far is A from being orthonormal.

Motivation and definition

Let A be an $m \times n$ matrix over the field \mathbb{K} (can be \mathbb{R} or \mathbb{C}). Singular Value Decomposition (SVD) arises from formulating the following question: Is there an orthonormal basis $\{v_i\}_{i=1}^n$ of \mathbb{K}^n which is mapped by A into an orthogonal set of vectors (not always a basis) of \mathbb{K}^m ? First, without loss of generality let's precise that if A is rank $r \leq \min(m, n)$, the set $\{v_i\}_{i=1}^n$ we are looking for is mapped into r non zero vectors of \mathbb{K}^n ordered as

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i, \qquad i = 1, 2, \dots r, \tag{1.8.1}$$

where $\|\boldsymbol{u}_i\|_2 = 1$ and $\sigma_i \neq 0$. Thus defined, $\{\boldsymbol{u}_i\}_{i=1}^r$ span the image of A. The orthogonality condition for \boldsymbol{u}_i can be stated as

$$\sigma_i^* \sigma_j \mathbf{u}_i^* \mathbf{u}_j = \mathbf{v}_i^* A^* A \mathbf{v}_j = \sigma_i^* \sigma_j \delta_{ij}, \tag{1.8.2}$$

where the superscript * denotes conjugate transpose and δ_{ij} is the delta Kronecker symbol. Condition (1.8.2) requires each v_i to be an eigenvector of A^*A with associated eigenvalue $|\sigma_i|^2$. Let's see if we can find an orthonormal set of eigenvectors of A^*A with r positive associated eigenvalues.

As A^*A is normal we can be sure that an orthonormal set of eigenvectors exists. For the eigenvalues positivity we can check that A^*A is semidefinite positive as for any $v \in \mathbb{R}^n$

$$\mathbf{v}^* A^* A \mathbf{v} = \|A \mathbf{v}\|_2^2 \ge 0, \tag{1.8.3}$$

and $||A\boldsymbol{v}||_2 = 0$ only if $\boldsymbol{v} \in \ker A$. Identity (1.8.3) reveals that the rank of A^*A is the same as A. To prove this, check from (1.8.3) that if $\boldsymbol{v} \in \ker A^*A$ then $||A\boldsymbol{v}||_2 = 0$ and $\boldsymbol{v} \in \ker A$ and is always true that if $\boldsymbol{v} \in \ker A$ then $\boldsymbol{v} \in \ker A^*A$. Therefore $\ker A = \ker A^*A$ and their ranks are also equal. As the ranks are equal A^*A has r real positive non zero eigenvalues which correspond to the first r eigenvectors (in the order chosen) $\{\boldsymbol{v}_i\}_{i=1}^r$. The other n-r eigenvectors $\{\boldsymbol{v}_i\}_{i=r+1}^n$ form an orthonormal basis of $\ker A$.

Hence, we see that we can find a set of orthonormal vectors $\{v_i\}_{i=1}^n$ for which the first r are mapped into an orthogonal set of vectors $\{\sigma_i u_i\}_{i=1}^r$ and the rest span the nullspace of A. The vectors $\{u_i\}_{i=1}^r$ can be interpreted as dual to $\{v_i\}_{i=1}^r$ in the following sense: $\{u_i\}_{i=1}^r$ are the orthonormal eigenvectors of AA^* and also, the first r of them are mapped into a set of orthogonal eigenvectors

$$A^* \boldsymbol{u}_i = \sigma_i^* \boldsymbol{v}_i, \qquad i = 1, 2, \dots r. \tag{1.8.4}$$

Analogously as before, $\{v_i\}_{i=1}^r$ span the image of A^* and $\{u_i\}_{i=r+1}^m$ constitute a basis for ker A^* .

Note that we have treated the values σ_i as if they could be real or complex. However, we can always choose the decomposition to obtain real positive values of σ_i . This is so as condition (1.8.2) only restricts the module of σ_i and we can choose any $\sigma_i = |\sigma_i|e^{i\theta}$. For simplicity we set θ to be any multiple of 2π and therefore $\sigma_i = |\sigma_i|$. Thus defined, the real values $\sigma_i \geq 0$ are called the *singular values* of A. Now we are in conditions to rewrite (1.8.1) in matricial form as

$$AV = U\Sigma, \tag{1.8.5}$$

where U and V are the unitary matrices

$$U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{K}^{m \times m}, \quad V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{K}^{n \times n}, \quad (1.8.6)$$

and

$$\Sigma = \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{m \times n}, \tag{1.8.7}$$

where Σ_r is a square $r \times r$ diagonal matrix composed of the first r singular values $\sigma_i > 0$

$$\Sigma_{r} = \begin{bmatrix} \sigma_{1} & 0 & 0 & \dots & 0 \\ 0 & \sigma_{2} & 0 & \dots & 0 \\ 0 & 0 & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \dots & \sigma_{r} \end{bmatrix},$$
(1.8.8)

and for convenience we order them as $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$.

As V is unitary we finally write the Singular Value Decomposition (SVD) of A as

$$A = U\Sigma V^*. (1.8.9)$$

Thus, not only we have found the orthonormal basis $\{v_i\}_{i=1}^n$ that is mapped into an orthonormal set of vectors but also, we have found a matrix factorization which is applicable to any given matrix. This factorization permits to write any matrix in terms of a positive diagonal real matrix Σ . Besides, we have found two bases U and V which contain explicit bases for the four fundamental subspaces of A (Im A, ker A^* , Im A^* and ker A).

An equivalent form to (1.8.9) is called the Reduced Singular Value Decomposition and is written in terms of the tensor product as

$$A = \sum_{i=1}^{r} \sigma_i \boldsymbol{u}_i \otimes \boldsymbol{v}_i^*. \tag{1.8.10}$$

Geometric interpretation of matrix multiplication

From SVD we can extract a nice geometric interpretation of how a matrix A acts on a vector. Using SVD we can write the matrix-vector product as

$$Ax = U\Sigma V^*x. \tag{1.8.11}$$

Inspecting step by step what happens to \boldsymbol{x} in (1.8.11) we conclude that matrices submit to their inputs to a process of (Rotation/Reflection)-(Stretching)-(Rotation/Reflection). First, as V^* is unitary, it rotates or reflects \boldsymbol{x} in \mathbb{K}^n . Then, Σ maps $V^*\boldsymbol{x}$ into \mathbb{K}^m stretching it. Finally, another rotation or reflection in \mathbb{K}^m is performed by U. According to this interpretation, the image of the unit sphere in \mathbb{K}^n is mapped into an (possibly degenerate) ellipsoid in \mathbb{K}^m . On Figure 1.2 the effect of a matrix over the unit sphere is illustrated. The reader can intuitively think about it as if it was a mapping in the plane but the schematic picture is the same for any dimension: the unitary matrix V^* preserves the unit sphere, then the matrix Σ stretchs it into an ellipsoid and last U rotates or reflects it. The semiaxes of this ellipsoid are the singular values σ_i . This comes from the fact that $A\boldsymbol{v}_i = \sigma_i \boldsymbol{u}_i$ and that $\{\boldsymbol{v}_i\}_{i=1}^n$ and $\{\boldsymbol{u}_i\}_{i=1}^m$ are orthonormal. As $\{\boldsymbol{v}_i\}_{i=1}^n$ is an orthonormal basis of \mathbb{K}^n we can express any vector \boldsymbol{x} as the linear combination

$$\boldsymbol{x} = \sum_{i=1}^{n} x^{i} \boldsymbol{v}_{i}. \tag{1.8.12}$$

Expressing x in this basis immediately gives the components of y = Ax in the basis $\{u_i\}_{i=1}^m$

$$\mathbf{y} = A\mathbf{x} = \sum_{i=1}^{m} y^{i} \mathbf{u}_{i} = \sum_{i=1}^{r} x^{i} \sigma_{i} \mathbf{u}_{i}.$$
 (1.8.13)

Hence, we have

$$x^{i} = \frac{y^{i}}{\sigma_{i}}, \qquad i = 1, 2, \dots r,$$
 (1.8.14)

and $y^i = 0$ for i > r.

From (1.8.14) is clear that for full rank square matrices (r = n), condition $\|\boldsymbol{x}\|_2 = 1$ traduces into

$$\sum_{i=1}^{n} \left(\frac{y^i}{\sigma_i}\right)^2 = 1,\tag{1.8.15}$$

which is the ellipsoid equation. For singular matrices, it is more complicated but essentially the result is that the ellipsoid is degenerate. One can think of it as a crushed ellipsoid along the axes with $\sigma_i = 0$. Note that the image of the unit sphere is the same as its projection over the r-dimensional hyperplane which is orthogonal to ker A (that is, Im A^*). Hence, for singular matrices, the image of the unit sphere is just the image of the closed r-dimensional disk obtained as the projection of the unit sphere over Im A^* . One way to think about this is illustrated on Figure 1.3. The unit sphere is mapped on a degenerate ellipsoid due to the singularity of the matrix. We can think that for the example represented, the horizontal axis is the r-dimensional hyperplane orthogonal to ker A and all x in the unit sphere are mapped just like the region of this axis with $||x|| \leq 1$. As before, the drawing can be interpreted as an example in the plane but the essential idea works also for higher dimensions. Algebraically we can understand the degenerate ellipsoid by splitting x = n + r where $n \perp \ker A$ and $r \in \ker A$. Then, by noting that (1.8.14) is an expression for the components of n (in the basis V) we can write

$$\|\boldsymbol{x}\|_{2} = \|\boldsymbol{n}\|_{2}^{2} + \lambda^{2} = \sum_{i=1}^{r} \left(\frac{y^{i}}{\sigma_{i}}\right)^{2} + \lambda^{2} = 1,$$
 (1.8.16)

and we have called $\lambda = \|\boldsymbol{n}\|_2 \leq 1$. From (1.8.16) we can check that for each fixed λ an ellipsoid contained in the r-dimensional hyperplane (which is Im A) is defined. Thus, a continuous structure of nested ellipsoids determines the degenerate ellipsoid in \mathbb{K}^m .

Figure 1.2: Geometric interpretation of singular value decomposition and matrix multiplication through its action on the unit sphere.

Figure 1.3: Geometric interpretation of singular matrices.

1.9 Implementation with the Numerical HUB

Thus, the reader can have an idea of the importance of SVD factorization as once is done, it provides all the information about the four fundamental sub-spaces condensed on U and V. Besides, the rank of Σ is the rank of A.

For square matrices the SVD is computed in two steps:

1. Eigenvalues and eigenvectors of A^TA : In first place we compute the eigenvalues of A^TA and their associated singular values. As is symmetric we can use the Eigenvalues subroutine previously presented.

```
B = matmul( transpose(A), A )

call Eigenvalues_PM( B, sigma, V, lambda_min )

sigma = sqrt( abs(sigma) ) ! to avoid negative round-off
```

Listing 1.27: Linear_systems.f90

2. Calculation of U: With the eigenvectors of A^TA and the singular values of A we can compute the i-th column of U as given by $(\ref{eq:colored})$:

```
U(:,i) = matmul( A, V(:, i) ) / sigma(i)
```

Listing 1.28: Linear_systems.f90

The whole precess is embedded in the subroutine SVD which takes A as input and gives back the singular values, U and V respectively on the arrays sigma , U and V.

```
subroutine SVD(A, sigma, U, V, sigma_min)
      real, intent(in) :: A(:,:)
      real, intent(out) :: sigma(:), U(:,:), V(:,:)
      real, optional, intent(in) :: sigma_min
      integer :: i, r, N, M ! r < N, rank of AT A</pre>
      real, allocatable :: B(:,:)
      real :: lambda_min
      M = size(A, dim=1); N = size(A, dim=2)
      if (present(sigma_min)) then
                           lambda_min = sigma_min**2
      else
                           lambda_min = epsilon(1.)
      end if
      B = matmul( transpose(A), A )
      call Eigenvalues_PM( B, sigma, V, lambda_min )
      sigma = sqrt( abs(sigma) ) ! to avoid negative round-off
      r = count( sigma > sqrt(lambda_min) )
      do i=1, r
          U(:,i) = matmul( A, V(:, i) ) / sigma(i)
      end do
      if (r<M) call Gram_Schmith( r, U )</pre>
      if (r<N) call Gram_Schmith( r, V )</pre>
end subroutine
```

Listing 1.29: Linear_systems.f90

Lagrange Interpolation

2.1 Overview

One of the core topics in theory of approximation is the interpolation of functions. The main idea of interpolation is to approximate a function f(x) in an interval $[x_0, x_f]$ by means of a set of known functions $\{g_j(x)\}$ which are intended to be simpler than f(x). The set $\{g_j(x)\}$ can be polynomials, monomials or trigonometric functions. In this chapter we will restrict ourselves to the case of polynomial interpolation, and in particular when Lagrange polynomials are used.

2.2 Lagrange interpolation

In this section, polynomial interpolation using Lagrange polynomials will be presented. For this a general view on how to use Lagrange polynomials is explained, considering different scenarios. First how to calculate recursively Lagrange polynomials, their derivatives and integral will be explained. After that, once we have available the derivatives and integral of these polynomials, how to use them to approximate this quantities for a function f(x). At the same time, an implementation of the discussed procedures shall be presented. To end the chapter, we present briefly how to extend the notion of Lagrange interpolation to functions of more than one variable considering the case of a function of two variables.

2.2.1 Lagrange polynomials

The Lagrange polynomials $\ell_j(x)$ of grade N for a set of points $\{x_j\}$ for $j=0,1,2\ldots,N$ are defined as:

$$\ell_j(x) = \prod_{\substack{i=0\\i\neq j}}^{N} \frac{x - x_i}{x_j - x_i},\tag{2.2.1}$$

which satisfy:

$$\ell_i(x_i) = \delta_{ij},\tag{2.2.2}$$

where δ_{ij} is the delta Kronecker function. This property is fundamental because as we will see it permits to obtain the Lagrange interpolant very easily once the Lagrange polynomials are determined.

Another interesting property specially for recursively determining Lagrange polynomials appears when considering ℓ_{jk} as the Lagrange polynomial of grade k at x_j for the set of nodes $\{x_0, x_1, \dots, x_k\}$ and $0 \le j \le k$, that is:

$$\ell_{jk}(x) = \prod_{\substack{i=0\\i\neq j}}^{k} \frac{x - x_i}{x_j - x_i} = \left(\frac{x - x_{k-1}}{x_j - x_{k-1}}\right) \prod_{\substack{i=0\\i\neq j}}^{k-1} \frac{x - x_i}{x_j - x_i},\tag{2.2.3}$$

which results in the property:

$$\ell_{jk}(x) = \ell_{jk-1}(x) \left(\frac{x - x_{k-1}}{x_j - x_{k-1}} \right), \tag{2.2.4}$$

where $1 \leq k \leq N$. This property permits to obtain the Lagrange interpolant of grade k for the set of points $\{x_0, x_1, \dots, x_k\}$ if its known the interpolant of grade k-1 for the set of points $\{x_0, x_1, \dots, x_{k-1}\}$. Besides, for k=0 is satisfied:

$$\ell_{j0}(x) = 1. (2.2.5)$$

Hence, it can be obtained recursively the interpolant at x_i for each grade as:

$$\ell_{j1}(x) = \left(\frac{x - x_0}{x_j - x_0}\right),$$

$$\ell_{j2}(x) = \left(\frac{x - x_0}{x_j - x_0}\right) \left(\frac{x - x_1}{x_j - x_1}\right),$$

$$\vdots$$

$$\ell_{jk}(x) = \underbrace{\left(\frac{x - x_0}{x_j - x_0}\right) \dots \left(\frac{x - x_{j-1}}{x_j - x_{j-1}}\right) \left(\frac{x - x_{j+1}}{x_j - x_{j+1}}\right) \dots \left(\frac{x - x_{k-2}}{x_j - x_{k-2}}\right)}_{\ell_{jk-1}(x)} \left(\frac{x - x_{k-1}}{x_j - x_{k-1}}\right).$$

From equation (2.2.4). a recursion to calculate the k first derivatives of $l_{jk}(x)$ is obtained.

$$\ell'_{jk}(x) = \ell'_{jk-1}(x) \left(\frac{x - x_{k-1}}{x_j - x_{k-1}}\right) + \left(\frac{\ell_{jk-1}(x)}{x_j - x_{k-1}}\right),$$

$$\ell''_{jk}(x) = \ell''_{jk-1}(x) \left(\frac{x - x_{k-1}}{x_j - x_{k-1}}\right) + \left(\frac{2\ell'_{jk-1}(x)}{x_j - x_{k-1}}\right),$$

$$\vdots$$

$$\ell^{(m)}_{jk}(x) = \ell^{(m)}_{jk-1}(x) \left(\frac{x - x_{k-1}}{x_j - x_{k-1}}\right) + \left(\frac{m\ell^{(m-1)}_{jk-1}(x)}{x_j - x_{k-1}}\right),$$

$$\vdots$$

$$\ell^{(k)}_{jk}(x) = \ell^{(k)}_{jk-1}(x) \left(\frac{x - x_{k-1}}{x_j - x_{k-1}}\right) + \left(\frac{k\ell^{(k-1)}_{jk-1}(x)}{x_j - x_{k-1}}\right).$$
(2.2.6)

Note that equation (2.2.6) is also valid for m=0, value for which it reduces to (2.2.4). Hence, starting from the value $\ell_{j0}=1$ we can compute the polynomial ℓ_{jk} and its first k derivatives using recursion (2.2.6). The idea is known the first k-1 derivatives of ℓ_{jk-1} we start computing ℓ_{jk}^k , then ℓ_{jk}^{k-1} until we calculate $\ell_{jk}^0 = \ell_{jk}$. For example, supposing $j \neq 0$ we calculate ℓ_{j1}^0 and ℓ_{j1} from $\ell_{j0} = 1$ as

$$\ell'_{j1} = \frac{\ell_{j0}}{x_j - x_0} = \frac{1}{x_j - x_0},$$

$$\ell_{j1} = \ell_{j0} \frac{x - x_0}{x_j - x_0} = \frac{x - x_0}{x_j - x_0}.$$

The reason to sweep m in descending order through the interval [0, k] is because computing the recursion in this manner permits to implement the calculation of the derivatives storing the values of $\ell_{ik}^{(m)}$ over the value of $\ell_{ik-1}^{(m)}$.

Once ℓ_{jk} and its k first derivatives are calculated we can compute the integral of ℓ_{jk} in the interval $[x_0, x]$ from its truncated Taylor series of grade k. Hence, we can express the integral as:

$$\int_{x_0}^x \ell_{jk}(x) dx = \ell_{jk}(x_0)(x - x_0) + \ell'_{jk}(x_0) \frac{(x - x_0)^2}{2} + \dots + \ell_{jk}^{(k)}(x_0) \frac{(x - x_0)^{k+1}}{(k+1)!}.$$
(2.2.7)

The computation of the first k derivatives and the integral for a grid of k+1 nodes, is carried out by the function Lagrange_polynomials. The derivatives and integrals at a point xp are stored on a vector d whose dimension is the number of set nodes. For a fixed point of the grid (that is, for fixed j) the following loop computes the derivatives and the image of the Lagrange polynomial ℓ_j , evaluated at xp.

Listing 2.1: Lagrange_interpolation.f90

The integral is computed in a different loop once the derivatives are calculated

```
! ** integral of lagrange(x) form x(jp) to xp
    f = 1
    j1 = minloc( abs(x - xp) ) - 2
    jp = max(0, j1(1))

do k=0, Nk
    f = f * ( k + 1 )
        d(-1) = d(-1) - d(k) * ( x(jp) - xp )**(k+1) / f
enddo
```

Listing 2.2: Lagrange_interpolation.f90

Both processes are carried out in the pure function Lagrange_polynomials, once both derivatives and integral are computed at a nodal point labeled by j the values stored at ${\tt d}$ are assigned to the output of the function. Then the same procedure is carried out for the next grid point j+1.

```
pure function Lagrange_polynomials( x, xp )
  real, intent(in) :: x(0:), xp
  real Lagrange_polynomials(-1:size(x)-1,0:size(x)-1)
  integer :: j
                 ! node
  integer :: r ! recursive index
  integer :: k ! derivative
  integer :: Nk ! maximum order of the derivative
  integer :: N, j1(1), jp
  real :: d(-1:size(x)-1)
  real :: f
  Nk = size(x) - 1
  N = size(x) - 1
  do j = 0, N
     d(-1:Nk) = 0
     d(0) = 1
! ** k derivative of lagrange(x) at xp
     do r = 0, N
        if (r/=j) then
         do k = Nk, 0, -1
           d(k) = (d(k) *(xp - x(r)) + k * d(k-1)) /(x(j) - x(r))
         end do
       endif
     enddo
  ** integral of lagrange(x) form x(jp) to xp
     f = 1
     j1 = minloc(abs(x - xp)) - 2
     jp = \max(0, j1(1))
     do k=0, Nk
        f = f * (k + 1)
        d(-1) = d(-1) - d(k) * (x(jp) - xp) **(k+1) / f
     enddo
     Lagrange_polynomials(-1:Nk, j ) = d(-1:Nk)
 end do
 end function
```

Listing 2.3: Lagrange_interpolation.f90

2.2.2 Single variable functions

Whenever is considered a single variable scalar function $f : \mathbb{R} \to \mathbb{R}$, whose value $f(x_j)$ at the nodes x_j for j = 0, 1, 2, ..., N is known, the Lagrange interpolant I(x) that approximates the function in the interval $[x_0, x_N]$ takes the form:

$$I(x) = \sum_{j=0}^{N} b_j \ell_j(x).$$
 (2.2.8)

This interpolant is used to approximate the function f(x) within the interval $[x_0, x_N]$. For this, the constants of the linear combination b_j must be determined. The interpolant must satisfy to intersect the exact function f(x) on the nodal points x_i for i = 0, 1, 2, ..., N, that is:

$$I(x_i) = f(x_i). (2.2.9)$$

Taking into account the property (2.2.2) leads to:

$$I(x_i) = f(x_i) = \sum_{j=0}^{N} b_j \ell_j(x_i) = \sum_{j=0}^{N} b_j \delta_{ij}, \quad \Rightarrow \quad f(x_j) = b_j.$$
 (2.2.10)

Hence, the interpolant for f(x) on the nodal points x_j for $j=0,1,2\ldots,N$ is written:

$$I(x) = \sum_{j=0}^{N} f(x_j)\ell_j(x).$$
 (2.2.11)

Note that in the equation above the degree of ℓ_j does not necessarily need to be N and in general its degree q satisfies $q \leq N$.

A very common use of interpolation is to compute an approximation of f in a non-nodal point x_p . The implementation of the interpolation of f evaluated at x_p is carried out by the function Interpolated_value which given a set of nodes x and the image of the function at those points y, computes the interpolated value of f in xp using Lagrange interpolation of a certain degree. First, it checks whether the degree of the polynomial degree is even or odd as depending on this, the starting point of the set of nodes used by the Lagrange polynomials varies. Once the stencil is determined is necessary to compute the coefficients that multiply the images $f(x_j)$ which are the Lagrange polynomials evaluated at x_p . For this task, it calls the function Lagrange_polynomials and stores its output in the array Weights.

Finally, we just need to sum the values of the Lagrange polynomials stored on Weights at each point, scaled by the nodal images y.

```
real pure function Interpolated_value1D(x, f, xp, degree)
    real, intent(in) :: x(0:), f(0:), xp
    integer, optional, intent(in) :: degree
    integer :: N, s, j
   maximum order of derivative and width of the stencil
    integer :: Nk !
    Lagrange coefficients and their derivatives at xp
   real, allocatable :: Weights(:,:)
    N = size(x) - 1
    if(present(degree))then
        Nk = degree
    else
        Nk = 2
    end if
   allocate( Weights(-1:Nk, 0:Nk))
    j = \max(0, \max(x, 1, x < xp) - 1)
    if( (j+1) \le N ) then ! the (j+1) cannot be accessed
        if(xp > (x(j) + x(j + 1))/2) then
            j = j + 1
        end if
    end if
    if (mod(Nk, 2) == 0) then
        s = max(0, min(j-Nk/2, N-Nk)) ! For Nk=2
    else
        s = \max(0, \min(j-(Nk-1)/2, N-Nk))
    endif
    Weights(-1:Nk, 0:Nk) = Lagrange_polynomials(x = x(s:s+Nk), xp = xp)
    Interpolated_value1D = Sum ( Weights(0, 0:Nk) * f(s:s+Nk) )
    deallocate(Weights)
end function
```

Listing 2.4: Interpolation.f90

A different application of interpolation is to estimate the derivatives of the function f by calculating the derivatives of the interpolant I. Mathematically, the solution to the problem is straightforward once the interpolant has been con-

structed. The k-th derivative of the interpolant is written as:

$$I^{(k)}(x) = \sum_{j=0}^{N} f(x_j) \ell_j^{(k)}(x).$$
 (2.2.12)

In many situations is required to compute the first k derivatives and image of the interpolant in a set of points $x_{p,i}$, $i=0,\ldots M$ contained in the interval $[x_0,x_N]$. Given the equation above, we just have to evaluate it in the set of nodes $x_{p,i}$, that is, we calculate them as:

$$I^{(k)}(x_{p,i}) = \sum_{j=0}^{N} f(x_j) \ell_j^{(k)}(x_{p,i}), \qquad i = 0, \dots M.$$
 (2.2.13)

The implementation of this calculation is obtained in a similar manner as it was done to obtain the interpolated value in a single point. In fact, the function Interpolant is an extension of the function Interpolated_value. Note that in this new function, the degree of the interpolant used is also checked as the stencil used to compute the derivatives of the interpolant varies whenever the degree is odd or even. For each point $x_{p,i}$ we have to calculate the derivatives of the Lagrange polynomials. In other words, we have to summon the function Lagrange_polynomials to compute these derivatives at each point $x_{p,i}$. From the implementation point of view this requires embedding the process in a loop that goes from i=0 to i=M. The derivatives $\ell_j^{(k)}(x_{p,i})$ are stored in the array Weights for a posterior usage. Once the Lagrange polynomials derivatives are computed, we just have to linearly combine the images $f(x_j)$ using the elements of the array Weights as coefficients.

The implementation of the function Interpolant is shown in the following listing:

```
function Interpolant1D(x, f, degree, xp ) result(I_N)
   real, intent(in) :: x(0:), f(0:), xp(0:)
    integer, intent(in) :: degree
   real :: I_N(0:degree, 0:size(xp)-1)
    integer :: N, M, s, i, j, k
    maximum order of derivative and width of the stencil
    integer :: Nk
    Lagrange coefficients and their derivatives at xp
   real, allocatable :: Weights(:,:)
    N = size(x) - 1
    M = size(xp) - 1
    Nk = degree
   allocate( Weights(-1:Nk, 0:Nk))
do i=0, M
    j = max(0, maxloc(x, 1, x < xp(i)) - 1)
    if( (j+1) \le N ) then ! the (j+1) cannot be accessed
        if(xp(i) > (x(j) + x(j + 1))/2) then
            j = j + 1
        end if
    end if
    if (mod(Nk, 2) == 0) then
        s = max(0, min(j-Nk/2, N-Nk)) ! For Nk=2
    else
        s = \max(0, \min(j-(Nk-1)/2, N-Nk))
    endif
    Weights(-1:Nk, 0:Nk)=Lagrange_polynomials(x = x(s:s+Nk), xp = xp(i))
   do k=0, Nk
        I_N(k, i) = sum (Weights(k, 0:Nk) * f(s:s+Nk))
    end do
end do
    deallocate(Weights)
end function
```

Listing 2.5: Interpolation.f90

Interpolation serves also to approximate integrals in an interval $[x_0, x_N]$. Mathematically, the integral is computed from the interpolant as:

$$\int_{x_0}^{x_N} I(x) dx = \sum_{j=0}^{N} f(x_j) \int_{x_0}^{x_N} \ell_j(x) dx.$$
 (2.2.14)

The implementation is done in a function called Integral given the set of nodes x_i , the images y_i , i = 0, ... N and optionally the degree of the polynomials used.

```
real function Integral(x, f, degree)
    real, intent(in) :: x(0:), f(0:)
    integer, optional, intent(in) :: degree
    integer :: N, j, s
    real :: summation, Int, xp
    maximum order of derivative and width of the stencil
    integer :: Nk
   Lagrange coefficients and their derivatives at xp
    real, allocatable :: Weights(:,:,:)
    N = size(x) - 1
    if(present(degree))then
                          Nk = degree
    else
                          Nk = 2
    end if
    allocate(Weights(-1:Nk, 0:Nk, 0:N))
    summation = 0
    do j=0, N
    if (mod(Nk, 2) == 0) then
                          s = \max(0, \min(j-Nk/2, N-Nk))
    else
                          s = \max(0, \min(j-(Nk-1)/2, N-Nk))
    endif
     xp = x(j)
     Weights(-1:Nk, 0:Nk, j)=Lagrange_polynomials(x = x(s:s+Nk), xp = xp )
     Int = sum ( Weights(-1, 0:Nk, j) * f(s:s+Nk) )
               = summation + Int
     summation
   enddo
   Integral = summation
   deallocate(Weights)
end function
```

Listing 2.6: Interpolation.f90

Finally, an additional function which is important for the next chapter is defined. This function determines the stencil or information that a q order interpolation requires.

Listing 2.7: Lagrange_interpolation.f90

2.2.3 Two variables functions

Whenever the approximated function for the set of nodes $\{(x_i, y_j)\}$ for $i = 0, 1, ..., N_x$ and $j = 0, 1, ..., N_y$ is $f : \mathbb{R}^2 \to \mathbb{R}$, the interpolant I(x, y) can be calculated as a two dimensional extension of the interpolant for the single variable function. In such case, a way in which the interpolant I(x, y) can be expressed is:

$$I(x,y) = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} b_{ij} \ell_i(x) \ell_j(y).$$
 (2.2.15)

Again, using the property of Lagrange polynomials (2.2.2), the coefficients b_{ij} are determined as:

$$b_{ij} = f(x_i, y_j), (2.2.16)$$

leading to the final expression for the interpolant:

$$I(x,y) = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} f(x_i, y_j) \ell_i(x) \ell_j(y).$$
 (2.2.17)

Notice that when the interpolant is evaluated at a particular coordinate line $x = x_m$ or alternatively at $y = y_n$, it is obtained:

$$I(x_m, y) = \sum_{j=0}^{N_y} f(x_m, y_j) \ell_j(y), \qquad I(x, y_n) = \sum_{j=0}^{N_x} f(x_i, y_n) \ell_j(x), \qquad (2.2.18)$$

which permits writing the interpolant as

$$I(x,y) = \sum_{i=0}^{N_x} I(x_i, y) \ell_i(x)$$

$$= \sum_{i=0}^{N_y} I(x, y_j) \ell_j(y).$$
(2.2.19)

The form in which the interpolant is written in (2.2.19) suggests a procedure to obtain the interpolant recursively.

Another manner to interpret the equation (2.2.18) is as a bi-linear form. If the vectors $\ell_x = \ell_i(x)e_i$, $\ell_y = \ell_j(y)e_j$ and the second order tensor $\mathcal{F} = f(x_i, y_j)e_i \otimes e_j$ are defined, where the index (i, j) go through $[0, N_x] \times [0, N_y]$. This manner, the equation (2.2.18) can be written:

$$I(x,y) = \ell_x \cdot \mathcal{F} \cdot \ell_y. \tag{2.2.20}$$

Another perspective to interpret the interpolation is obtained by considering the process geometrically. In first place, it is calculated a single variable Lagrange interpolant for the function restricted at y = s:

$$f(x,y)\Big|_{y=s} = \tilde{f}(x;s) \simeq \tilde{I}(x;s) = \sum_{i=0}^{N_x} b_i(s)\ell_i(x),$$
 (2.2.21)

where $\tilde{f}(x;s)$ is the restricted function, $\tilde{I}(x;s)$ its interpolant, $b_i(s) = \tilde{f}(x_i;s)$ are the coefficients of the interpolation and $\ell_i(x)$ are Lagrange polynomials.

The coefficients $b_i(s)$ can also be interpolated as:

$$b_i(s) = \sum_{j=0}^{N_y} b_{ij} \ell_j(s). \tag{2.2.22}$$

Hence, the restricted interpolant can be written:

$$\tilde{I}(x;s) = I(x,y) \Big|_{y=s} = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} b_{ij} \ell_i(x) \ell_j(s),$$
 (2.2.23)

and therefore the interpolant I(x, y) can be expressed:

$$I(x,y) = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} b_{ij} \ell_i(x) \ell_j(y).$$
 (2.2.24)

In the same manner, the interpolated value I(x, y) can be achieved restricting the value in x = s:

$$f(x,y)\Big|_{x=s} = \tilde{f}(y;s) \simeq \tilde{I}(y;s) = \sum_{j=0}^{N_y} b_j(s)\ell_j(y),$$
 (2.2.25)

in which the coefficients $b_j(s)$ can be interpolated as well:

$$b_j(s) = \sum_{i=0}^{N_x} b_{ij} \ell_i(s). \tag{2.2.26}$$

This time, the restricted interpolant is expressed as:

$$\tilde{I}(y;s) = I(x,y) \Big|_{x=s} = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} b_{ij} \ell_i(s) \ell_j(y),$$
 (2.2.27)

which leads to the interpolated value:

$$I(x,y) = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} b_{ij} \ell_i(x) \ell_j(y).$$
 (2.2.28)

The interpolation procedure and its geometric interpretation can be observed on figure 2.1. In blue are represented the values $b_{ij} = f(x_i, y_j)$, in red the desired value $f(x, y) \simeq I(x, y)$ and in black the restricted interpolants.

Figure 2.1: Geometric interpretation of the interpolation of a 2D function. (a) Geometric interpretation when restricted along y. (b) Geometric interpretation when restricted along r

Chapter 3

Finite Differences

3.1 Finite differences

On chapter 2, the interpolation using Lagrange polynomials has been presented. By means of this interpolation we have seen how it is possible to compute an approximation of the derivatives of a function. This is very advantageous not only to calculate derivatives of a known function but also to obtain approximate solutions of differential equations. Given a set of nodes $\{x_i \in \mathbb{R} \mid i = 0, \dots, q\}$ a finite difference formula is an expression that permits to approximate the derivative of a function f(x) at these nodal points from its image at the set of nodes $\{f_i = f(x_i) \mid i = 0, \dots, q\}$. Let's suppose that we approximate f in a domain $[x_0, x_q]$ using Lagrange interpolation, that is we consider f to follow the expression:

$$f(x) = \sum_{i=0}^{q} f_i \ell_i(x), \tag{3.1.1}$$

therefore its k-th order derivative is written as

$$\frac{\mathrm{d}^k f(x)}{\mathrm{d}x^k} = \sum_{i=0}^q f_i \frac{\mathrm{d}^k \ell_i(x)}{\mathrm{d}x^k}.$$
 (3.1.2)

If we want to calculate the derivative at a nodal point x_j we just have to evaluate (3.1.2) at that point, that is:

$$\frac{\mathrm{d}^k f(x_j)}{\mathrm{d}x^k} = \sum_{i=0}^q f_i \frac{\mathrm{d}^k \ell_i(x_j)}{\mathrm{d}x^k}.$$
(3.1.3)

The expression (3.1.3) is the finite difference formula of order q which approximates the derivative of order k at the point x_j . To illustrate the procedure let's consider the computation of the two first derivatives for order q=2 and the set of equispaced nodes $\{x_0, x_1, x_2\}$, that is $x_2 - x_1 = x_1 - x_0 = \Delta x$. For this problem the interpolant and its derivatives are:

$$\begin{split} f(x) &= f_0 \frac{(x-x_1)(x-x_2)}{2\Delta x^2} - f_1 \frac{(x-x_0)(x-x_2)}{\Delta x^2} \\ &+ f_2 \frac{(x-x_0)(x-x_1)}{2\Delta x^2}, \\ \frac{\mathrm{d}f(x)}{\mathrm{d}x} &= f_0 \frac{(x-x_1) + (x-x_2)}{2\Delta x^2} - f_1 \frac{(x-x_0) + (x-x_2)}{\Delta x^2} \\ &+ f_2 \frac{(x-x_0) + (x-x_1)}{2\Delta x^2}, \\ \frac{\mathrm{d}^2f(x)}{\mathrm{d}x^2} &= \frac{f_0}{\Delta x^2} - \frac{2f_1}{\Delta x^2} + \frac{f_2}{\Delta x^2}. \end{split}$$

Note that the second derivative is the famous finite difference formula for centered second order derivatives. Evaluating the first derivative in the nodal points we obtain the well-known forward, centered and backward finite differences approximations of order 2:

Forward:
$$\frac{\mathrm{d}f(x_0)}{\mathrm{d}x} = \frac{-3f_0 + 4f_1 - f_2}{2\Delta x}.$$
Centered:
$$\frac{\mathrm{d}f(x_1)}{\mathrm{d}x} = \frac{f_2 - f_0}{2\Delta x}.$$
Backward:
$$\frac{\mathrm{d}f(x_2)}{\mathrm{d}x} = \frac{f_0 - 4f_1 + 3f_2}{2\Delta x}.$$

The main application of finite differences is the numerical resolution of differential equations. They serve to approximate the value of the unknown function in a set of nodes taking a finite number of points of the domain. For example, if we want to solve the 1D Boundary value problem:

$$\frac{d^2u}{dx^2} + 2\frac{du}{dx} + u(x) = 0, x \in (0, 1),$$
$$\frac{du}{dx}(0) = -2, u(1) = 0.$$

We can select a set of equispaced nodes $\{x_j \in [0,1] | j=0,1,\ldots N\}$ which satisfy $0=x_0 < x_1 < \cdots < x_N=1$ and approximate the derivatives at those points by means of finite differences. If we use the previously derived second order formulas

we get the following system of N+1 equations:

$$\frac{-3u_0 + 4u_1 - u_2}{2\Delta x} = -2,$$

$$\frac{u_{j-1} - u_j + u_{j+1}}{\Delta x^2} + 2\frac{u_{j+1} - u_{j-1}}{2\Delta x} + u_j = 0, j = 1, 2, \dots N - 1,$$

$$u_N = 0,$$

whose solution is an approximation of u(x) in the nodal values. Note that for every point $j = 0, 1, \dots, N-1$ the formula used to approximate the first derivative is different. This is so as the set of Lagrange polynomials used to approximate the derivative at each point is different. For j=0 we use $\{\ell_0,\ell_1,\ell_2\}$ for the stencil $\{0,1,2\}$, while for $j=1,\ldots,N-1$ we use $\{\ell_{j-1},\ell_j,\ell_{j+1}\}$ for the stencil $\{j-1,j,j+1\}$. The selection of the stencil must be done taking into account the order q of interpolation. In this example, we just had to differentiate between the inner points 0 < j < N and the boundary points j = 0, N (note that if we needed to compute derivatives at x_N the formula would be the backward finite difference) but for generic order q the situation is slightly different. First of all, the stencil for even values of q consists of an odd number of nodal points and therefore the formulas can be centered. On the contrary, for odd values of q as the stencil contains an even number of nodal points the formulas are not centered. Nevertheless, in both cases the stencil is composed of q+1 nodal points which will be the ones used by the corresponding Lagrange interpolants. In the following lines we give a classification for both even and odd generic order q.

- 1. Even order: When q is even we have three possible scenarios for the stencil depending on the nodal point x_j . We classify the stencil in terms of its first element which corresponds to the index j q/2.
 - For j q/2 < 0 we use the stencil $\{x_0, \ldots, x_q\}$ and its associated Lagrange polynomials $\{\ell_0(x), \ldots, \ell_q(x)\}$ evaluated at x_j .
 - For $0 \le j q/2 \le N q$ we use the stencil $\{x_{j-q/2}, \ldots, x_{j+q/2}\}$ and its associated Lagrange polynomials $\{\ell_{j-q/2}(x), \ldots, \ell_{j+q/2}(x)\}$ evaluated at x_j .
 - For j-q/2 > N-q we use the stencil $\{x_{N-q}, \ldots, x_N\}$ and its associated Lagrange polynomials $\{\ell_{N-q}(x), \ldots, \ell_N(x)\}$ evaluated at x_j .

On figure 3.1 is represented a sketch of the three different stencils for even order and the conditions under which are used.

2. **Odd order**: When q is odd we have three possible scenarios for the stencil depending on the nodal point x_j . We classify the stencil in terms of its first element which corresponds to the index j - (q-1)/2.

Figure 3.1: Sketch of the possible stencils for finite differences of even order q. Each set of three nodes represent the q+1 nodes that constitute the grid for the Lagrange polynomial $\ell_i(x)$.

- For j-(q-1)/2<0 we use the stencil $\{x_0,\ldots,x_q\}$ and its associated Lagrange polynomials $\{\ell_0(x),\ldots,\ell_q(x)\}$ evaluated at x_j .
- For $0 \le j (q-1)/2 \le N q$ we use the stencil $\{x_{j-(q-1)/2}, \dots, x_{j+(q+1)/2}\}$ and its associated polynomials $\{\ell_{j-(q-1)/2}(x), \dots, \ell_{j+(q+1)/2}(x)\}$ evaluated at x_j .
- For j (q-1)/2 > N q we use the stencil $\{x_{N-q}, \ldots, x_N\}$ and its associated Lagrange polynomials $\{\ell_{N-q}(x), \ldots, \ell_N(x)\}$ evaluated at x_j .

On figure 3.2 is represented a sketch of the three different stencils for odd order and the conditions under which are used.

$$0 \qquad \frac{q-1}{2} \qquad q \qquad j - \frac{q-1}{2} \qquad j \qquad j + \frac{q+1}{2} \qquad N - q \quad N - \frac{q-1}{2} \quad N \\ \bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \qquad \bullet \\ j - (q-1)/2 < 0 \qquad \qquad 0 \leq j - (q-1)/2 \leq N - q \qquad j - (q-1)/2 > N - q$$

Figure 3.2: Sketch of the possible stencils for finite differences of odd order q. Each set of three nodes represent the q+1 nodes that constitute the grid for the Lagrange polynomial $\ell_j(x)$.

Hence, given a set of nodal points $\{x_0,\ldots,x_N\}$ and an order of interpolation q, we can compute the coefficients of the finite difference formulae for the k-th derivative selecting the stencil as exposed using equation (3.1.3). This procedure is used to discretize the spatial domains of differential equations and transform them into systems of N equations. Although the procedure presented is for 1D domains it can be extended to higher dimensions in which the coefficients will involve Lagrange polynomials and stencils along the different dimensions. The main purpose of the module Finite_differences is: given a spatial grid (set of nodes) and an order q to compute the coefficients of the finite difference formulas for each point of the grid. In the following pages we present a brief explanation of how a library that carries out this procedure is implemented.

3.1.1 Algorithm implementation

In order to store the information and properties of the grid, a derived data type called **Grid** is defined and its properties declared as globals. This will permit to perform the computation of the coefficients of the high order derivatives just once.

```
type Grid

character(len=30) :: name
  real, allocatable :: Derivatives( :, :, :)
  integer :: N
  real, allocatable :: nodes(:)
  integer :: Order

end type

integer, parameter :: Nmax = 20
  type (Grid), save :: Grids(1:Nmax)
  integer, save :: ind = 0
```

Listing 3.1: Finite_differences.f90

The computation of the derivatives is carried out by the subroutine: High_order_derivatives which calls the function Lagrange_polynomials.

```
subroutine High_order_derivatives( z_nodes, Order, Derivatives)
 real, intent(in) :: z_nodes(0:)
 integer, intent(in) :: Order
 real, intent(out) :: Derivatives(-1:Order, O:Order, O:Size(z_nodes)-1)
  integer :: N, j, s
  real :: xp
  N = size(z_nodes) - 1;
  do j=0, N
   if (mod(Order,2)==0) then
                            s = max(0, min(j-Order/2, N-Order))
   else
                            s = \max(0, \min(j-(0rder-1)/2, N-0rder))
   endif
   xp = z_nodes(j)
   Derivatives(-1:Order, 0:Order, j) = &
   Lagrange_polynomials( x = z_nodes(s:s+Order), xp = xp )
  enddo
end subroutine
```

Listing 3.2: Finite_differences.f90

The coefficients are computed once by the subroutine Grid initialization.

```
subroutine FD_Grid_Initialization( grid_spacing, direction, nodes, q )
  character(len=*), intent(in) :: grid_spacing, direction
  integer, intent(in) :: q
 real, intent(inout) :: nodes(:)
  integer d, df
     if (grid_spacing == "unmodified" ) then
     elseif (grid_spacing == "uniform" .or. q <=2) then</pre>
                call Uniform_grid( nodes )
     elseif (grid_spacing == "nonuniform") then
                call Non_uniform_grid( nodes, q )
     endif
     d = findloc( Grids(:) % name, direction, dim=1
     if (d == 0) then
       ind = ind + 1
       Grids(ind) \% N = Size(nodes) - 1
       Grids(ind) % name = direction
      Grids(ind) % Order = q
      allocate(Grids(ind)%nodes(0:Grids(ind) % N ))
      allocate(Grids(ind)%Derivatives(-1:q, 0:q, 0:Grids(ind)%N))
      Grids(ind) % nodes = nodes
      call High_order_derivatives( Grids(ind) % nodes, q, &
                                    Grids(ind) % Derivatives
      write(*,*) " Grid name = ", Grids(ind) % name
     elseif (d > 0) then
       Grids(d) % Order = q
       Grids(d) \% N = Size(nodes) - 1
       Grids(d) % name = direction
      deallocate(Grids(d) % nodes, Grids(d) % Derivatives)
      allocate(Grids(d) % nodes(0:Grids(d) % N ))
      allocate(Grids(d) % Derivatives(-1:q, 0:q, 0:Grids(d)%N))
      Grids(d) % nodes = nodes
      call High_order_derivatives( Grids(d) % nodes, q, &
                                    Grids(d) % Derivatives
     endif
end subroutine
```

Listing 3.3: Finite_differences.f90

Hence, after a single call to $\mathtt{Grid_initialization}$, the uniform or non uniform grid of order q is defined and the coefficients of the derivatives settled down. In these conditions, defining a derivative (by finite differences) requires only an aditional slice of information, which is the stencil. It is clear that the amount of nodes required to compute a finite difference increases as the interpolation order does. For this, the subroutine that computes the derivatives must know how is defined the computational cell, that is, it must call the function $\mathtt{Stencilv}$. Taking this into account, the subroutine $\mathtt{Derivative1D}$ which calculates derivatives of single variable functions is implemented as follows.

```
subroutine FD_Derivative1D( direction, derivative_order, W, Wxi, j )
  character(len=*), intent(in) :: direction
  integer, intent(in) :: derivative_order
  real, intent(in) ::
                         W(0:)
  real, intent(out)::
                         Wxi(0:)
  integer, optional, intent(in) :: j
   integer :: i, d, N, i1, i2
    integer, allocatable :: sx(:)
    integer :: k, Orderx
    d = 0
    d = findloc( Grids(:) % name, direction, dim=1
    k = derivative_order
    if (d > 0) then
        N = Grids(d) \% N
        Orderx = Grids(d) % Order
        allocate ( sx(0:N) )
        sx = Stencilv( Orderx, N )
        if (present(j)) then
                      i1 = j; i2 = j
        else
                      i1 = 0; i2 = N
        end if
        do i= i1,
                  i2
            Wxi(i)=dot_product( Grids(d) % Derivatives(k, 0:Orderx, i), &
                                W(sx(i):sx(i)+Orderx))
        enddo
       deallocate( sx )
    else
        write(*,*) " Error Derivative1D direction =", direction; stop
    endif
end subroutine
```

Listing 3.4: Finite_differences.f90

In an analogous manner, the computation of derivatives of functions of two variables is carried out by the subroutine Derivative2D.

```
subroutine FD_Derivative2D( direction, coordinate, derivative_order, W,
    Wxi )
   character(len=*), intent(in) :: direction(1:2)
   integer, intent(in) :: coordinate, derivative_order
  real, intent(in) :: W(0:, 0:)
  real, intent(out)::
                       Wxi(0:, 0:)
    integer :: i, j, d1, d2, Nx, Ny
   integer, allocatable :: sx(:), sy(:)
   integer :: k
   integer :: Orderx, Ordery
           d1 = findloc( Grids(:) % name, direction(1), dim=1 )
           d2 = findloc( Grids(:) % name, direction(2), dim=1 )
k = derivative order
if (d1 > 0 .and. d2 > 0) then
   Nx = Grids(d1) \% N; Ny = Grids(d2) \% N
   Orderx = Grids(d1) % Order; Ordery = Grids(d2) % Order
   allocate( sx(0:Nx), sy(0:Ny) )
   sx = Stencilv(Orderx, Nx); sy = Stencilv(Ordery, Ny)
  do i=0, Nx; do j=0, Ny
              (coordinate == 1) then
         Wxi(i,j) = dot_product( Grids(d1) % Derivatives(k, 0:Orderx, i),
                                 W(sx(i):sx(i)+Orderx, j));
        elseif (coordinate == 2) then
         Wxi(i,j) = dot product( Grids(d2) % Derivatives(k, 0:Ordery, j),
                                 W(i, sy(j):sy(j)+Ordery));
        else
               write(*,*) " Error Derivative"
               stop
       endif
   enddo; enddo
   deallocate( sx, sy )
else
       write(*,*) " Error Derivative2D"
       write(*,*) "Grids =", Grids(:)% name, "direction =", direction
       write(*,*) "d1 =", d1, "d2 =", d2
        stop
end if
end subroutine
```

Listing 3.5: Finite_differences.f90

Cauchy Problem

4.1 Overview

In this chapter, a mathematical description of the Cauchy Problem is presented. Different temporal schemes are discussed as different algorithms to obtain the solution of a Cauchy problem. These algorithms are implemented by using vector operations that allows the Fortran language.

From the physical point of view, a Cauchy problem represents the evolution of any physical system with different degrees of freedom. From the movement of a material point in a three-dimensional space to the movement of satellites or stars, the movement is governed by a system of ordinary differential equations. If the initial condition of all degrees of freedom of this system is know, the movement can be predicted and the problem is named a Cauchy problem. Generally, this system involves first and second order derivatives of functions that depend on time. In order to design and to use the different temporal schemes, the problem is always formulated a system of first order equations.

From the mathematical point of view, a Cauchy problem is composed by a system of first order ordinary differential equations for $U: \mathbb{R} \to \mathbb{R}^N$ together with an initial condition $U(t_0) \in \mathbb{R}^N$.

$$\frac{dU}{dt} = F(U; t), \qquad F: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^N, \tag{4.1.1}$$

$$U(t_0) = U^0, \quad \forall \ t \in [t_0, +\infty).$$
 (4.1.2)

4.2 Algorithms or temporal schemes

To obtain temporal schemes, equation (4.1.1) is integrated between t_n and t_{n+1}

$$U(t_{n+1}) = U(t_n) + \int_{t_n}^{t_{n+1}} F(U; t) dt.$$
 (4.2.1)

The idea of any temporal scheme is to approximate the integral appearing in (4.2.1) with an approximate value. Once the integral is approximated, U^n is used to denote the approximate value to differentiate it from the exact value $U(t_n)$. In figure 4.1, an scheme with the nomenclature of this chapter is shown. Superscript n stands for the approximated value at the temporal instant t_n . The approximated value of $F(U(t_n), t_n)$ is denoted by F^n .

Figure 4.1: Partition of the temporal domain

Depending on how the integral appearing in equation (4.2.1) is carried out, different schemes are divided in the following groups:

1. Adams-Bashforth Moulton methods. If a polynomial interpolant to calculate the integral of equation (4.2.1) based on s time steps

$$F^{n+1-j}, = 0, \dots, s$$

is used, the resulting schemes are called Adams-Bashforth-Moulton methods.

- 2. Runge-Kutta methods. In this case, the integral of equation (4.2.1) is approximated by internal evaluations or temporal stages of F(U, t) between t_n and t_{n+1} .
- 3. Gragg-borslish-Stoer methods. An algorithm based on successive refined grids inside the interval $[t_n, t_{n+1}]$ and using the Richardson extrapolation technique yields this schemes.

From the implementation point of view, two main main subroutines are designed. Given a temporal domain partition $[t_i, i=0,...M]$, a subroutine called Cauchy_ProblemS is responsible to call different temporal schemes to approximate (4.2.1). In the following code the implementation of this subroutine is shown:

```
subroutine Cauchy_ProblemS( Time_Domain, Differential_operator,
                            Solution, Scheme )
    real, intent(in) :: Time_Domain(:)
    procedure (ODES) :: Differential_operator
    real, intent(out) :: Solution(:,:)
    procedure (Temporal_Scheme), optional :: Scheme
  *** Initial and final time
      real :: start, finish, t1, t2
      integer :: i, N_steps, ierr
  *** loop for temporal integration
      call cpu_time(start)
       N_steps = Size(Time_Domain) - 1;
      do i=1, N_steps
           t1 = Time_Domain(i); t2 = Time_Domain(i+1);
           if (present(Scheme)) then
               call Scheme( Differential_operator, t1, t2,
                            Solution(i,:), Solution(i+1,:), ierr )
           else if (family/=" ") then
               call Adavanced_Scheme
               call Runge_Kutta4( Differential_operator, t1, t2,
                                  Solution(i,:), Solution(i+1,:), ierr )
           endif
           if (ierr>0) exit
      enddo
      call cpu time(finish)
write(*, '("Cauchy_Problem, CPU Time=",f6.3," seconds.")') finish-start
write(*, *)
contains
```

Listing 4.1: Cauchy_problem.f90

The arguments of this subroutine are: the Time_Domain represented in figure (4.1), the Differential_operator or the vector function F(u,t), the Solution or the vector U and the selected temporal scheme to carry out the integral of equation (4.2.1). Note that Solution is a two-dimensional array that stores the value of every variable of system (second index) at every time step (first index).

It can be seen that the temporal scheme is an optional argument, if it is not present, this subroutine uses a classical fourth order Runge-Kutta scheme. Besides, advanced high order methods, belonging to different families or groups, can be used.

Once the arguments of Cauchy_ProblemS are associated, this subroutine calls the selected temporal scheme to integrate from t_i to t_{i+1} . In this way, the Scheme subroutine calculates Solution(i+1,:) from the input value Solution(i,:). Hence, the intelligence of the particular details of any specific algorithm is hidden in Scheme. In the following code the implementation of this subroutine Runge_Kutta4 is shown:

```
subroutine Runge_Kutta4( F, t1, t2, U1, U2, ierr )
    procedure (ODES) :: F
    real, intent(in) :: t1, t2, U1(:)
    real, intent(out) :: U2(:)
    integer, intent(out) :: ierr
      real :: t, dt
      real :: k1(size(U1)), k2(size(U1)), k3(size(U1)), k4(size(U1))
      dt = t2-t1;
                  t = t1
      k1 = F(U1, t)
      k2 = F(U1 + dt * k1/2, t + dt/2)
      k3 = F(U1 + dt * k2/2, t + dt/2)
      k4 = F(U1 + dt * k3,
                             t + dt
      U2 = U1 + dt * (k1 + 2*k2 + 2*k3 + k4)/6
      ierr = 0
   end subroutine
```

Listing 4.2: Temporal_Schemes.f90

This is the classical fourth order Runge-Kutta. Given the input value U1, and the vector function F, the scheme calculates the value U2. In the following code the interface of the vector function F is shown:

```
function ODES( U, t)
    real :: U(:), t
    real :: ODES( size(U) )
end function
```

Listing 4.3: ODE_Interface.f90

4.3 Implicit temporal schemes

When the integral of equation (4.2.1) done by any the the different temporal schemes involves the value U^{n+1} , the resulting scheme becomes implicit and a nonlinear system of N equations must be solved at each time step. Since the complexity and the computational cost of implicit methods is much greater than the explicit methods, the only reason to implement these methods relies on the stability behavior. Generally, implicit methods do nor require time steps limitations or constraints to be numerically stable. The simplest implicit method is the inverse Euler method,

$$U^{n+1} = U^n + \Delta t_n \ F^{n+1}. \tag{4.3.1}$$

It is obtained when interpolating in equation (4.2.1) with a constant value F^{n+1} . If U^n is known from the last time step, equation (4.3.1) can be formulated as the determination of roots of the following equation:

$$G(X) = X - U^{n} - \Delta t \ F(X, \ t_{n+1}). \tag{4.3.2}$$

From the implementation point of view, the scheme can be implemented with the methodology presented above. In the following code, the subroutine Inverse_Euler uses a Newton method to solve the equation (4.3.2) each time step.

```
subroutine Inverse_Euler(F, t1, t2, U1, U2, ierr )
     procedure (ODES) :: F
     real, intent(in) :: t1, t2, U1(:)
     real, intent(out) :: U2(:)
     integer, intent(out) :: ierr
      real :: dt
      dt = t2-t1
      U2 = U1
    ! Try to find a zero of the residual of the inverse Euler
      call Newtonc( F = Residual_IE, x0 = U2 )
      ierr = 0
contains
function Residual_IE(X) result(G)
         real, target :: X(:)
         real :: G(size(X))
      G = X - U1 - dt * F(X, t2)
      where (F(X, t2) == IMPOSE_ZERO) G = 0
end function
end subroutine
```

Listing 4.4: Temporal_Schemes.f90

4.4 Richardson's extrapolation to determine error

Since the error of a numerical solution is defined as the difference between the exact solution $u(t_n)$ minus the approximate solution U^n at the same instant t_n

$$E^n = \boldsymbol{u}(t_n) - U^n, \tag{4.4.1}$$

the determination the error requires knowing the exact solution. This situation is unusual and makes necessary to find some technique out.

If the global error could be expanded in power series of Δt like

$$E^{n} = k(t_n)\Delta t^{q} + O(\Delta t^{q+1}), \tag{4.4.2}$$

with $K(t_n)$ independent of Δt , then an estimation based on Richardson's extrapolation could be done.

For one-step methods this expansion can be found. However, for multi-step methods, the presence of spurious solutions do not allow this expansion. To cure this problem and to eliminate the oscillatory behavior of the error, averaged values \overline{U}^n can be defined as:

$$\overline{U}^{n} = \frac{1}{4} \left(U^{n} + 2U^{n-1} + U^{n-2} \right), \tag{4.4.3}$$

allowing expansions like (4.4.2).

If the error can be expanded like in (4.4.2) and by integrating two grids one with time step Δt_n and other with $\Delta t_n/2$, an estimation of the error based on Richardson's extrapolation can be found. Let U_1 be the solution integrated with Δt_n and U_2 the solution integrated with $\Delta t_n/2$. The expression (4.4.2) for the two solutions is written:

$$\mathbf{u}(t_n) - U_1^n = k(t_n)\Delta t^q + O(\Delta t^{q+1}),$$
 (4.4.4)

$$u(t_n) - U_2^{2n} = k(t_n) \left(\frac{\Delta t}{2}\right)^q + O(\Delta t^{q+1}).$$
 (4.4.5)

Substracting equation (4.4.4) and equation (4.4.5),

$$U_2^{2n} - U_1^n = k(t_n)\Delta t^q \left(1 - \frac{1}{2^q}\right) + O(\Delta t^{q+1}), \tag{4.4.6}$$

allowing the following error estimation:

$$E^n = \frac{U_2^{2n} - U_1^n}{1 - \frac{1}{2q}}. (4.4.7)$$

In the following code, the error estimation based on Richardson's extrapolation is implemented:

```
subroutine Error_Cauchy_Problem( Time_Domain, Differential_operator, &
                                Scheme, order, Solution, Error )
            real, intent(in) :: Time_Domain(0:)
            procedure (ODES) :: Differential_operator
            procedure (Temporal_Scheme) :: Scheme
            integer, intent(in) :: order
            real, intent(out) :: Solution(0:,:), Error(0:,:)
  integer :: i, N, Nv
  real, allocatable :: t1(:), U1(:,:), t2(:), U2(:,:)
      N = size(Time_Domain)-1; Nv = size(Solution, dim=2)
      allocate (t1(0:N), U1(0:N, Nv), t2(0:2*N), U2(0:2*N, Nv))
      t1 = Time_Domain
      t2 = refine_mesh(t1)
      U1(0,:) = Solution(0,:); U2(0,:) = Solution(0,:)
      call Cauchy_ProblemS(t1, Differential_operator, U1, Scheme)
      call Cauchy_ProblemS(t2, Differential_operator, U2, Scheme)
      do i=0, N
           Error(i,:) = (U2(2*i,:) - U1(i,:))/(1 - 1./2**order)
      end do
      Solution = U1 + Error
      deallocate (t1, U1, t2, U2)
end subroutine
```

Listing 4.5: Temporal_error.f90

Given a Time_Domain, two temporal grids are defined t1 and t2. While t1 is the original temporal grid, t2 has double of points than t1 and it is obtained by halving the time steps of t1. Then, two independent simulations U1 and U2 are carried out starting from the same initial condition. They are averaged with expression (4.4.3) to eliminate oscillations and Error is calculated with expression (4.4.7). Finally, the Error is used to correct the U1 solution to give the Solution.

4.5 Convergence rate of temporal schemes

A numerical scheme is said to be of order q if its numerical error is $O(\Delta t^q)$. It means that if Δt is small enough, error tends to zero with the same velocity than Δt^q . Taking norms and logarithms in the error expression (4.4.2) and taking into account that $\Delta t \propto N^{-1}$,

$$\log ||E^n|| = C - q \log N. \tag{4.5.1}$$

When plotting this expression in log scale, it appears a line with a negative slope q which is the order of the method. When dealing with complex temporal schemes or when developing new methods, it is importance to know the convergence rate of the scheme or its real order. To do that, the error must be known. As it was shown in the last section, error can be determined based on Richardson's extrapolation. In the following code, a sequence of Cauchy problems with $\Delta t_n/2^k$ is integrated. This subroutine allows obtaining the dependency of logarithm of the error \log_E with the logarithm of number of time steps \log_N .

```
subroutine Temporal_convergence_rate( Time_Domain, Differential_operator,&
                                     UO, Scheme, order, log_E, log_N)
                 real, intent(in) :: Time_Domain(:), U0(:)
                 procedure (ODES) :: Differential_operator
                 procedure (Temporal_Scheme), optional :: Scheme
                 real, intent(out) :: order, log_E(:), log_N(:)
    real :: error, coef(2)
    real, allocatable :: t1(:), t2(:), U1(:, :), U2(:, :)
    integer :: i, j, m, N, Nv
    N = Size( Time_Domain ) - 1; Nv = Size( UO ); m = Size(log_N)
    allocate ( t1(0:N), U1(0:N, Nv) )
    U1(0,:) = U0(:); t1 = Time_Domain
    call Cauchy_ProblemS( t1, Differential_operator, U1, Scheme )
    do i = 1, m ! simulations in different grids
       N = 2 * N; allocate (t2(0:N), U2(0:N, Nv))
       t2 = refine_mesh(t1); U2(0,:) = U0(:)
       call Cauchy_ProblemS( t2, Differential_operator, U2, Scheme )
       error = norm2( U2(N, :) - U1(N/2, :) ) !/ (1 - 1./2**order)
       log_E(i) = log_10(error); log_N(i) = log_10(real(N))
       deallocate( t1, U1 ); allocate ( t1(0:N), U1(0:N, Nv) )
                              deallocate( t2, U2)
       t1 = t2; U1 = U2;
    end do
    do j=1, m; if (abs(log_E(j)) > 12) exit; end do
    j = min(j, m); coef = linear_regression( log_N(1:j), log_E(1:j) )
    order = abs(coef(2)); log_E = log_E - log_10(1 - 1./2**order)
end subroutine
```

Listing 4.6: Temporal_error.f90

4.6 Embedded Runge-Kutta methods

Adaptive Runge-Kutta methods are designed to produce an estimate of the local truncation error. If that error is below the required tolerance, the time step is accepted and the ne time step is increased. If not, the time step is reduced based on the local truncation error. This is done by having two Runge-Kutta methods at the same time, one with order q and one with order q+1. These methods are interwoven sharing intermediate steps or stages. Thanks to this, the error estimation has negligible computational. Moreover, the time adapts automatically depending on the gradients of the solution reducing the computational cost.

The two Runge-Kutta formulas calculate the approximation \boldsymbol{u}^{n+1} of order q and another approximation $\boldsymbol{\hat{u}}^{n+1}$ of order q+1. The subtraction $\boldsymbol{u}^{n+1}-\boldsymbol{\hat{u}}^{n+1}$ gives an estimation of the local truncation error. Hence, the local error can be controlled by changing the step size for each temporal step.

A Runge-Kutta method of e stages predicts the approximation u^{n+1} from the previous value u^{n+1} by the following expression:

$$\mathbf{u}^{n+1} = \mathbf{u}^n + h \sum_{i=1}^{e} \mathbf{k}_i b_i,$$
 (4.6.1)

where $h = t_{n+1} - t_n$, matrix a_{ij} is the Butcher's array, b_i and c_i are constant of the scheme and

$$oldsymbol{k}_i = oldsymbol{F}\left(t_n + c_i h, oldsymbol{u}^n + \sum_{j=1}^e a_{ij} \, oldsymbol{k}_j
ight).$$

The Butcher array for a generic Runge-Kutta is written as follows:

Note that as $c_1 = 0$, it does not appear on the Butcher array. In the special case in which $a_{ij} = 0$, $\forall i \leq j$, then the Runge-Kutta is explicit, that is, \mathbf{k}_i can be obtained from $\{\mathbf{k}_1, \ldots, \mathbf{k}_{i-1}\}$.

The embedded Runge-Kutta method uses two explicit schemes sharing c_i and

 a_{ij} for all $i,j \leq e$. Therefore, this method has the extended Butcher's array:

In which b_i and \hat{b}_i are respectively the coefficients of the approximated solutions \boldsymbol{u}^{n+1} and $\hat{\boldsymbol{u}}^{n+1}$. Since the local truncation error of \boldsymbol{u}^{n+1} is C h^{q+1} and the error of $\hat{\boldsymbol{u}}^{n+1}$ is \hat{C} h^{q+2} , the estimation of the local truncation error \boldsymbol{T}^{n+1} of order q+1 is obtained by substantiating the two approximations:

$$T^{n+1} = u^{n+1} - \hat{u}^{n+1} = C h^{q+1}. \tag{4.6.4}$$

If the norm of the local truncation error should less than a prescribed tolerance ϵ , then the optimal time step \hat{h} can be obtained from equation (4.6.4) to yield:

$$\epsilon = \|\boldsymbol{C}\| \ \hat{h}^{q+1}. \tag{4.6.5}$$

Taking norms into equation (4.6.4) and dividing the result by equation (4.6.5)

$$\frac{\epsilon}{\|\mathbf{T}^{n+1}\|} = \left(\frac{\hat{h}}{h}\right)^{q+1} \tag{4.6.6}$$

and the optimum time step can be obtained from the previous time step

$$\hat{h} = h \left(\frac{\epsilon}{\|\boldsymbol{T}^{n+1}\|} \right)^{\frac{1}{q+1}}.$$
(4.6.7)

This step size selection is implemented in the following code:

```
real function Step_size( dU, tolerance , q , h )
    real, intent(in) :: dU(:), tolerance, h
    integer, intent(in) :: q

real :: normT
normT = norm2(dU)

if (normT > tolerance) then

    Step_size = h * (tolerance/normT)**(1./(q+1))

else
    Step_size = h
end if
end function
```

Listing 4.7: Embedded_RKs.f90

With this time step selection, an embedded Runge-Kutta scheme is implemented:

```
subroutine ERK_scheme( F, t1, t2, U1, U2, ierr )
      procedure (ODES) :: F
      real, intent(in) :: t1, t2, U1(:)
      real, intent(out) :: U2(:)
      integer, intent(out) :: ierr
      real :: V1(size(U1)) , V2(size(U1)), h, t
      integer :: i, N
  *** Check if a method has been selected
      if (.not.Method_selection) then
          RK_Method = "DOPRI54"
          RK_Tolerance = 1d-4
      end if
  *** First order q solution and Second order q+1
      for initial step size
      call RK_scheme( RK_Method,
                                  "First", F, t1, t2, U1, V1)
      call RK_scheme( RK_Method, "Second", F, t1, t2, U1, V2 )
  *** Local error estimation and step size calculation
      to satisfy tolerance condition
      h = t2 - t1
      h = min(h, Step_size(V1 - V2, RK_Tolerance, minval(q), h))
  *** Grid for the new step
      N = int((t2 - t1) / h) + 1
      h = (t2 - t1) / N
 ! *** Solution for embedded grid
      V1 = U1 ; V2 = U1
      do i = 0, N - 1
          t = t1 + i * (t2 - t1) / N
          V1 = V2
          call RK_scheme( RK_Method, "First", F, t, t + h, V1, V2 )
      end do
      U2 = V2
      ierr = 0
end subroutine
```

Listing 4.8: Embedded_RKs.f90

The subroutine RK_scheme is called twice to calculate the approximate solution V1 and V2 form the previous solution U1. Once the subroutine set_tolerance assign a specific value to the required tolerance RK_tolerance, the subroutine Step_size validates or reduces the time step h=t2-t1. Then, with the resulting time step h and by means of the "First" Runge-Kutta scheme, the approximate solution U2 is obtained.

In the following code, the subroutine RK_schme is implemented

```
subroutine RK_scheme( name, tag , F, t1, t2, U1, U2 )
      character(len=*), intent(in) :: name , tag
      procedure (ODES) :: F
      real, intent(in) :: t1, t2, U1(:)
      real, intent(out) ::
      real :: Up( size(U1) ), h
      integer :: i, j, Ne
      h = t2 - t1
  *** Solution for the first RK
       if ( tag == "First" ) then
          call Butcher_array( name, Ne )
          if (.not.allocated(k)) allocate ( k( Ne, size(U1) ) )
         do i = 1, Ne
            Up = U1
            do j=1, i-1
              Up = Up + h * a(i,j) * k(j, :)
            end do
            k(i,:) = F(Up, t1 + c(i) * h)
          end do
          N_eRK_effort = N_eRK_effort + Ne
          U2 = U1 + h * matmul(b, k)
  *** Solution for the second RK
      elseif ( tag == "Second") then
          U2 = U1 + h * matmul(bs, k)
          deallocate(k)
       end if
end subroutine
```

Listing 4.9: Embedded_RKs.f90

A pair of Runge-Kutta schemes are identified by its name which must be previously selected by the subroutine $\mathtt{set_solver}$. If the subroutine is called with $\mathtt{tag="First"}$, the butcher's array is created and the values of different stages k_i are calculated and stored in $\mathtt{k(i,:)}$ where the first index stands for the stage index and the second index represents the index of the variable. Later, an approximate value for U2 is calculated by using b coefficients previously defined. If the subroutine is called with $\mathtt{tag="Second"}$ and since the butcher's array and the $\mathtt{k(i,:)}$ are saved, an approximate value for U2 is calculated by using bs coefficients previously defined.

4.7 Gragg-Bulirsch-Stoer method

The GBS algorithm improves error solution by halving consecutively the interval $[t_n, t_{n+1}]$ and by using the Richardson's extrapolation technique. The method divides consecutively the interval in $2N_i$ pieces from i = 1 to i = L where N_i is the sequence of grid levels. The number of grids L is also called the number of levels that the GBS algorithm descends. For each level, a solution at the next step u_i^{n+1} is obtained applying the Modified midpoint scheme. Note that this solution is the solution for a certain grid at t_{n+1} . Hence, t_n solutions t_n^{n+1} will allow by using the Richardson's extrapolation to obtain an estimation of the global error of order t_n^{n+1} the setimation is used to correct the approximated solution. The algorithm for Gragg-Bulirsch-Stoer method can be summed up as follows:

- 1. Sequence of grid levels.
- 2. Modified midpoint scheme.
- 3. Richardson extrapolation.

Sequence of grid levels

Divide the interval in $2N_i$ pieces. For each level, the time step h is divided into $2N_i$ segments:

$$t_i = t_n + j \ h_i, \qquad j = 0, 1, \dots, 2N_i,$$
 (4.7.1)

where $h_i = h/(2N_i)$.

```
function mesh_refinement(Levels) result(N)
          integer, intent(in) :: Levels
        integer :: N(Levels)

integer :: N_Romberg(10) = [ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 ]
    integer :: N_Burlirsch(10) = [ 1, 2, 3, 4, 6, 8, 12, 16, 24, 32 ]
    integer :: N_Harmonic(10) = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

!N = N_Romberg(1:Levels)
!N = N_Burlirsch(1:Levels)
N = N_Harmonic(1:Levels)
end function
```

Listing 4.10: Gragg_Burlisch_Stoer.f90

Modified midpoint scheme

The midpoint or Leap-Frog scheme is used to obtain solution U_2 at t_{n+1} from the given solution U_1 at t_n .

$$\tilde{\boldsymbol{u}}^1 = \boldsymbol{U}_1 + h_i \boldsymbol{f}(t_0, \boldsymbol{u}^0), \tag{4.7.2}$$

$$\tilde{\boldsymbol{u}}^{j+1} = \tilde{\boldsymbol{u}}^{j-1} + 2h_i \boldsymbol{f}(t_j, \tilde{\boldsymbol{u}}^j), \qquad j = 1, 2 \dots, 2N_i,$$
 (4.7.3)

$$U_2 = (\tilde{u}^{2N_i - 2} + 2\tilde{u}^{2N_i - 1} + \tilde{u}^{2N_i})/4$$
(4.7.4)

The midpoint scheme or the Leap-Frog method is used to determine the solution at the inner points of any level. Since the Leap-Frog method is a two-step scheme, an extra initial condition is required. This is given an explicit Euler scheme (4.7.2). Once the Leap-Frog reaches the end of the interval, the solution is smoothed by equation (4.7.4).

The modified midpoint method is implemented in the following code:

```
subroutine Modified_midpoint_scheme(F, t1, t2, U1, U2, N)
      procedure (ODES) ::
      real, intent(in) ::
                             t1, t2 , U1(:)
      real, intent(out) ::
                             U2(:)
      integer, intent(in) :: N
      real :: ti, h, U( size(U1), 0:2*N+1 ) ! number of steps is even
      integer :: i
       h = (t2 - t1) / (2*N)
       U(:,0) = U1
       U(:,1) = U(:,0) + h * F(U(:,0), t1)
      ! Leap Frog goes to t2 + h = t_{(2N+1)}
       do i=1, 2*N
           ti = t1 + i*h
           U(:, i+1) = U(:, i-1) + 2 * h * F(U(:,i), ti)
      ! average value at t2 = t1 + 2*N h
       U2 = (U(:, 2*N+1) + 2 * U(:, 2*N) + U(:, 2*N-1))/4.
       N_GBS_effort = N_GBS_effort + 2*N + 1
end subroutine
```

Listing 4.11: Gragg_Burlisch_Stoer.f90

Richardson extrapolation

Due to the symmetry of the GBS scheme, it was proven by Gragg (1963) that a solution U can be exappded in even powers of its time step h:

$$U(h) = a_0 + a_1 h^2 + a_2 h^4 + a_3 h^6 + \dots$$
 (4.7.5)

By integrating with the midpoint rule with different time steps h_i , we obtain different evaluations of the above expression:

$$U(h_i) = a_0 + a_1 h_i^2 + a_2 h_i^4 + a_3 h_i^6 + \dots + a_L h_i^{2L}, \qquad i = 1, \dots, L.$$
 (4.7.6)

The Lagrange interpolation formula allows to express:

$$\boldsymbol{U}(h) = \ell_1(h)\boldsymbol{U}_1 + \dots + \ell_L(h)\boldsymbol{U}_L, \tag{4.7.7}$$

where $\ell_j(h)$ is the Lagrange interpolant associated to the interpolation points (h_j, U_j) . Once this interpolant is built, the corrected solution is obtained:

$$U_c(0) = \ell_1(0)U_1 + \dots + \ell_L(0)U_L.$$
 (4.7.8)

This is done in the following subroutine:

```
function Corrected_solution_Richardson( N, U ) result (Uc)
      integer, intent(in) :: N(:)
      real, intent(in) :: U(:,:)
      real :: Uc( size(U, dim=2) )
    integer :: j, NL ! number of levels
    real, allocatable :: Lagrange(:), h(:), x(:), w(:)
    NL = size(N)
    allocate( Lagrange(NL), h(NL), x(NL), W(NL) )
    h = 1. / (2*N) ! Leap Frog
                    ! even power of h (time step)
    if (NL==1) then
         Lagrange = 1
         w = 1
    else
       do j=1, NL
         Lagrange(j) = product(x / (x - x(j)), x /= x(j))
         w(j) = 1 / product(x(j) - x, x /= x(j))
       end do
    end if
    Barycentric formula
    Uc = matmul(w/x, U) / sum(w/x)
    Lagrange formula
    Uc = matmul( Lagrange, U)
end function
```

Listing 4.12: Gragg_Burlisch_Stoer.f90

GBS solution

With the above ingredients, a corrected solution based on L levels is obtained. This is done with the following subroutine:

```
subroutine GBS_solution_NL( F, t1, t2, U1, U2, NL)
     procedure (ODES) ::
     real, intent(in) ::
                           t1, t2, U1(:)
     real, intent(out) :: U2(:)
     integer, intent(in) :: NL
    real, allocatable :: U(:,:)
    integer, allocatable :: N(:)
    integer :: i, Nv
    Nv = size(U1)
    if (NL<1) then
        write(*,*) " ERROR: NL must be greater or equal than 1, NL =", NL
    else
        allocate( U(NL, Nv), N(NL) )
    end if
   ! *** Partition sequence definition
        N = mesh_refinement(NL)
   ! *** Modified midpoint scheme for each level
        do i = 1, NL
           call Modified_midpoint_scheme( F, t1, t2, U1, U(i,:), N(i) )
        end do
   ! *** Richardson extraplation
        U2 = Corrected_solution_Richardson( N, U )
end subroutine
```

Listing 4.13: Gragg_Burlisch_Stoer.f90

The corrected solution U_2 is obtained by integrating L different solutions with the midpoint scheme through L different grids and by using the Richardson extrapolation technique.

GBS scheme can run in two different modes: (i) fixed number of levels L and (ii) adaptive number of levels L.

The number of levels L can be fixed by the following subroutine:

```
subroutine set_GBS_levels( NL )
   integer, intent(in) :: NL
   NL_fixed = NL
end subroutine
```

Listing 4.14: Gragg_Burlisch_Stoer.f90

If the number of levels is not fixed, an specific algorithm should decide automatically the number of levels L. This algorithm requires to estimate the error and to decide if it is under tolerance. The following subroutine computes two corrected solutions: Uc based on L levels and the Ucs based on L+1 levels.

```
subroutine GBS_solutionL( F, t1, t2, U1, UL, Uc, Ucs, NL)
     procedure (ODES) ::
                          F
     real, intent(in) ::
                          t1, t2, U1(:)
     real, intent(inout) :: UL(:, :)
     real, intent(out) :: Uc(:), Ucs(:)
     integer, intent(in) :: NL
    integer :: i, N(NL+1)
 ! *** Partition sequence definition
      N = mesh_refinement(NL+1)
  *** Modified midpoint scheme for each level
      if (NL==2) then
        call Modified_midpoint_scheme( F, t1, t2, U1, UL(1,:), N(1) )
        call Modified_midpoint_scheme( F, t1, t2, U1, UL(2,:), N(2) )
      endif
     call Modified_midpoint_scheme( F, t1, t2, U1, UL(NL+1,:), N(NL+1) )
 *** Corrected solution with NL levels NL and with NL+1 levels
      Uc = Corrected_solution_Richardson( N(1:NL), UL(1:NL,:)
      Ucs = Corrected_solution_Richardson( N(1:NL+1), UL(1:NL+1,:) )
end subroutine
```

Listing 4.15: Gragg_Burlisch_Stoer.f90

By substracting Uc and Ucs the error solution is estimated and compared to the required tolerance. This is done in the following subroutine that finally encapsulates the complete GBS scheme. If the numer of levels is fixed, GBS scheme integrates with this numer of levels. Otherwise, GBS scheme begins integrating with two levels. If the error does not satisfy the tolerance, the algorithm integrates with one more level until error tolerance is reached.

```
subroutine GBS_Scheme( F, t1, t2, U1, U2, ierr)
     procedure (ODES) :: F
     real, intent(in) :: t1, t2, U1(:)
     real, intent(out) :: U2(:)
     integer, intent(out) :: ierr
    real :: dt, t1s, t2s, U1s( size(U1) )
    complex :: lambda( size(U1) )
    integer :: i, N_steps
    if (NL_fixed>0) then
        call GBS_solution_NL(F, t1, t2, U1, U2, NL_fixed)
    else
        N_steps = 0
        U1s = U1; t1s = t1; t2s = t1
        do while( t2s < t2 )</pre>
              lambda = Eigenvalues Jacobian(F, U1s, t1s)
              dt = 0.1 / maxval( abs(lambda) )
              if (t1s + dt > t2) then
                  t2s = t2
             else
                  t2s = t1s + dt
              end if
              call GBS_Solution(F, t1s, t2s, U1s, U2, ierr)
              U1s = U2; t1s = t2s
              N_steps = N_steps + 1
        end do
       ! write(*,*) " N_steps = ", N_steps
    end if
     ierr = 0
end subroutine
```

Listing 4.16: Gragg_Burlisch_Stoer.f90

4.8 Linear multistep methods

Linear multistep methods approximate the solution $u : \mathbb{R} \longrightarrow \mathbb{R}^{N_v}$ to the Cauchy problem

$$\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = \boldsymbol{F}(\boldsymbol{u}(t), t) \tag{4.8.1}$$

in the interval $[t_n, t_{n+1}]$ of length Δt_n , with the initial condition $u(t_n) = u^n$, by means of an interpolant for the differential operator and/or the solution. In Adams methods a polynomial interpolation is carried out, and instead of solving (4.8.1) it is solved

$$\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = \boldsymbol{I}(t),\tag{4.8.2}$$

where I(t) is the Lagrange interpolant

$$I(t) = \sum_{j=j_0}^{s} \ell_{n+1-j}(t) \ \mathbf{F}^{n+1-j}, \qquad s > 1$$
(4.8.3)

and $\ell_{n+1-j}(t)$ are the Lagrange polynomials of degree $s-j_0$ constructed with the set of nodes $\{t_{n+1-j}\}_{j=j_0}^s$

$$\ell_{n+1-j}(t) = \prod_{\substack{k=j_0\\k\neq j}}^{s} \frac{t - t_{n+1-k}}{t_{n+1-j} - t_{n+1-k}}.$$
(4.8.4)

The notation $\mathbf{F}^{n+1-j} = \mathbf{F}(\mathbf{u}(t_{n+1-j}), t_{n+1-j})$ is used, and the index j_0 serves to write in a compact manner both explicit (or Adams-Bashforth) and implicit (or Adams-Moulton) methods

$$j_0 = \begin{cases} 1 & \text{for Adams-Bashforth,} \\ 0 & \text{for Adams-Moulton.} \end{cases}$$
 (4.8.5)

The number s of previous temporal steps to t_{n+1} which are required to construct I(t) is called the number of steps of the method. Note that expression (4.8.3) is restricted to methods with more than one step. For $s = j_0$, setting $I(t) = F^{n+1-j_0}$ provides either the explicit or implicit Euler scheme. There is also another one step Adams-Moulton, the so called trapezoidal rule, which is obtained by approximating F as a straight line in the interval $[t_n, t_{n+1}]$. Nevertheless, for this section, unless explicitly expressed otherwise, we will restrict ourselves to methods with s > 1. On figure 4.2, the stencil used to approximate the differential operator F in Adams methods is represented schematically. Note that for a fixed number of steps s, the interpolant used in Adams-Moulton method is one degree higher than the one used in Adams-Bashforth methods. Therefore, it is expected that implicit methods approximate the differential operator with one extra order of accuracy.

Figure 4.2: Stencil for linear multistep methods of s steps.

To fix ideas, an Adams methods of s steps approximates the solution at an instant t if the solution in the instants $\{t_{n+1-j}\}_{j=1}^s$ is known. To do so, instead of solving (4.8.1) it is solved its approximate version (4.8.2), which is easily integrated to yield

$$u(t) = u^n + \int_{t_n}^t I(t') dt', \qquad t \in [t_{n+1-s}, t_{n+1}].$$
 (4.8.6)

Of course, the interest of these methods is to approximate the solution at the next temporal step $t = t_{n+1}$. By evaluating (4.8.6) at this instant we obtain the typical expression for Adams formulas

$$u^{n+1} = u^n + \Delta t_n \sum_{j=j_0}^s \beta_j \ F^{n+1-j},$$
 (4.8.7)

where the coefficients are just

$$\beta_j = \frac{1}{\Delta t_n} \int_{t_n}^{t_{n+1}} \ell_{n+1-j}(t) \, \mathrm{d}t \,. \tag{4.8.8}$$

Note from (4.8.7) that Adams-Bashforth methods approximate \boldsymbol{u}^{n+1} by means of polynomial extrapolation. On the other hand, in Adams-Moulton methods the differential operator is interpolated using the solution at an instant which a priori we do not know. In this case, (4.8.7) defines an implicit equation which is to be solved for \boldsymbol{u}^{n+1} .

4.8.1 Linear multistep methods as a Taylor expansion

It is obvious from quadrature (4.8.6) that the approximation u(t) is a polynomial of grade $s + 1 - j_0$. Therefore, u(t) is equal to its Taylor polynomial. Indeed

$$u(t) = u^{n} + \sum_{k=1}^{s+1-j_{0}} \frac{d^{k} u}{dt^{k}} \Big|_{t_{n}} \frac{(t-t_{n})^{k}}{k!}$$

$$= u^{n} + \sum_{k=1}^{s+1-j_{0}} \frac{d^{k-1} I}{dt^{k-1}} \Big|_{t_{n}} \frac{(t-t_{n})^{k}}{k!}$$

$$= u^{n} + \int_{t_{n}}^{t} \left(\sum_{k=1}^{s+1-j_{0}} \frac{d^{k-1} I}{dt^{k-1}} \Big|_{t_{n}} \frac{(t'-t_{n})^{k-1}}{(k-1)!} \right) dt'$$

$$= u^{n} + \int_{t_{n}}^{t} I(t') dt', \qquad (4.8.9)$$

where it has been used (4.8.2) (with the notation $d^0\mathbf{I}/dt^0 = \mathbf{I}$) and that $\mathbf{I}(t)$ also matches exactly its Taylor expansion. Identity (4.8.9) reflects the fact that if $\mathbf{I}(t)$ approximates sufficiently well $\mathbf{F}(\mathbf{u}(t),t)$ and its derivatives (i.e. if \mathbf{F} and \mathbf{u} are sufficiently regular), for fixed s, Adams-Moulton methods ($j_0 = 0$) overcome Adams-Bashforth methods ($j_0 = 1$) in one extra order of accuracy as the Taylor expansion includes one extra term. Besides, it shows that Adams methods are an approximation of the truncated Taylor polynomial of the solution of the exact Cauchy problem (4.8.1).

Thus, for linear multistep methods it is equivalent to obtain \boldsymbol{u}^{n+1} from the s previous values to produce $\{\boldsymbol{F}^{n+1-j}\}_{j=1}^s$ than to obtain it using the s first derivatives $\{\mathrm{d}^k\boldsymbol{u}/\mathrm{d}t^k\mid_{t_n}\}_{k=1}^s$. In fact, this is what motivates the next section in which we will speak about a reformulation of Adams methods which is very useful for implementing algorithms that vary the step size and the order of accuracy of the solution.

4.8.2 Multivalue formulation of Adams methods

In the previous pages it has been stated the equivalence between Adams methods and approximated truncated Taylor expansions. In the classical formulation of Adams methods given by (4.8.7) the number of steps is fixed while the order of accuracy depends on the stencil used to construct the approximation of the differential operator I(t). It was mentioned that implicit methods of s steps have one order more of accuracy than explicit methods. In the following pages a new formulation of these methods that fixes the order q of accuracy is presented. But first, we will answer the question "Why do we need a reformulation of Adams methods?". The reason is that in the formulation (4.8.7) the chosen method is determined by

the coefficients (4.8.8) which have different values depending on the step size distribution and the amount of steps required. Let's suppose that we wanted to advance some steps with a given method and then for other specific steps we wanted a method with a different step size and/or order of accuracy. This would require to calculate again the coefficients β_j using (4.8.8), which is computationally expensive. Only for the case in which we have equally distributed step sizes is easy to change the order of the method, as the coefficients of Adams methods for this case have to be computed just once in a lifetime. Changing the step size however, would always require to recompute the coefficients β_j . This fact makes complicated to use multistep methods in variable step variable order algorithms. To overcome this complication, an alternative formulation exists, which is based on the equivalence between Adams methods and approximated truncated Taylor expansions, the multivalue formulation. In multivalue formulation we write the approximation of order q as the Taylor expansion

$$\mathbf{u}(t) = \mathbf{u}^n + \sum_{k=1}^q \frac{\mathrm{d}^k \mathbf{u}}{\mathrm{d}t^k} \Big|_{t_n} \frac{(t - t_n)^k}{k!}, \qquad t \in [t_n, t_{n+1}], \tag{4.8.10}$$

which uses the q+1 values $\{d^k \boldsymbol{u}/dt^k \mid_{t_n}\}_{k=0}^q$ (with the notation $d^0 \boldsymbol{u}/dt^0 = \boldsymbol{u}$). We have seen that to obtain an Adams method we just have to approximate $\{d^k \boldsymbol{u}/dt^k \mid_{t_n}\}_{k=1}^q$ using an interpolant for $\boldsymbol{F}(\boldsymbol{u}(t),t)$ with the appropriate stencil. On figure 4.3 are represented the stencil used by the interpolant for Adams-Bashforth methods (denoted I(t)) and for Adams-Moulton methods (denoted I(t)) of order q. However, for multivalue methods the approach is slightly different. The method evolves in time both u and its derivatives $\{d^k u/dt^k\}_{k=1}^q$ and the manner in which they are evolved determines the multistep method. To clarify the link between both approaches, we advance that for Adams-Bashforth methods the solution $\widetilde{\boldsymbol{u}}^{n+1}$ is obtained using the interpolant $\widetilde{\boldsymbol{I}}(t)$ from figure 4.3 in the interval $[t_n, t_{n+1}]$, however, we will see that evolving the derivatives at $t = t_{n+1}$ requires the usage of the interpolant I(t) once \tilde{u}^{n+1} is known. This fact dictates a manner in which the solution and its derivatives evolve in an Adams-Bashforth method. For Adams-Moulton methods both the solution u^{n+1} and its derivatives at $t = t_{n+1}$ can be obtained with the interpolant I(t). Multivalue formulation evolves the solution and its derivatives in this manner. In the following pages the multivalue formulation of Adams-Bashforth and Adams-Moulton methods is presented. For each method we will show its equivalence to the correspondent Adams and later the scheme for the solution and its derivatives is given. Finally, the more practical matricial formulation of multivalue methods is presented.

Figure 4.3: Different stencils used by the interpolants for multivalue Adams methods of order q.

Multivalue Adams-Bashforth

As has been stated before, an order q Adams-Bashforth method matches the expansion

$$\widetilde{\boldsymbol{u}}(t) = \boldsymbol{u}^n + \sum_{k=1}^q \frac{\mathrm{d}^k \boldsymbol{u}}{\mathrm{d}t^k} \bigg|_{t_n} \frac{(t - t_n)^k}{k!}, \qquad t \in [t_n, t_{n+1}], \tag{4.8.11}$$

in which the derivatives are obtained as

$$\frac{\mathrm{d}^k \boldsymbol{u}}{\mathrm{d}t^k} \bigg|_{t_n} = \frac{\mathrm{d}^{k-1} \widetilde{\boldsymbol{I}}}{\mathrm{d}t^{k-1}} \bigg|_{t_n},$$
(4.8.12)

where $\widetilde{I}(t)$ is the interpolant constructed with the stencil $\{t_{n+1-j}\}_{j=1}^q$

$$\widetilde{I}(t) = \sum_{j=1}^{q} \widetilde{\ell}_{n+1-j}(t) F^{n+1-j}, \qquad t \in [t_{n+1-q}, t_{n+1}],$$
 (4.8.13)

and

$$\widetilde{\ell}_{n+1-j}(t) = \prod_{\substack{k=1\\k\neq j}}^{q} \frac{t - t_{n+1-k}}{t_{n+1-j} - t_{n+1-k}}$$
(4.8.14)

are the correspondent Lagrange polynomials of degree q-1.

Note that (4.8.11) produces also an approximation for the derivatives

$$\frac{\mathrm{d}^{i}\widetilde{\boldsymbol{u}}}{\mathrm{d}t^{i}} = \sum_{k=i}^{q} \frac{\mathrm{d}^{k}\boldsymbol{u}}{\mathrm{d}t^{k}} \bigg|_{t_{n}} \frac{(t-t_{n})^{k-i}}{(k-i)!},\tag{4.8.15}$$

which however is not suitable to be applied to the interval $[t_n, t_{n+1}]$. The reason is that it should include the value $\tilde{\boldsymbol{u}}^{n+1} = \tilde{\boldsymbol{u}}(t_{n+1})$ obtained by evaluating (4.8.11) at t_{n+1} . To convince the reader, first notice that for i=1 equation (4.8.15) does not satisfy the differential equation, i.e. $d\tilde{\boldsymbol{u}}/dt \mid_{t_{n+1}} \neq \tilde{\boldsymbol{F}}^{n+1} = \boldsymbol{F}(\tilde{\boldsymbol{u}}^{n+1}, t_{n+1})$ which would yield an incorrect approximation. Second, for i=q, we obtain a non evolving in time q-th derivative, i.e. $d^q\tilde{\boldsymbol{u}}/dt^q \mid_{t_{n+1}} = d^q\tilde{\boldsymbol{u}}/dt^q \mid_{t_n}$. Therefore, $\tilde{\boldsymbol{u}}$ alone cannot be used to correctly update the derivatives $d^i\boldsymbol{u}/dt^i$ at $t>t_n$. Multivalue formulation evolves $d^i\boldsymbol{u}/dt^i$ at $t>t_n$ by correcting (4.8.15) as follows

$$\frac{\mathrm{d}^{i}\boldsymbol{u}}{\mathrm{d}t^{i}} = \frac{\mathrm{d}^{i}\widetilde{\boldsymbol{u}}}{\mathrm{d}t^{i}} + \frac{i!}{(t-t_{n})^{i}}r_{i}\boldsymbol{\alpha}(t), \qquad t \in [t_{n}, t_{n+1}], \tag{4.8.16}$$

for i = 1, 2, ..., q and we select r_i and $\alpha(t)$ to heal the aforementioned issues of (4.8.15). Notice that we have q + 1 unknowns and (4.8.16) provides only q equations¹. To close the system, we can set $r_1 = 1$. In first place, forcing $d\mathbf{u}/dt = \mathbf{F}(\mathbf{u}(t), t)$ yields

$$\alpha(t) = (t - t_n) \left(\mathbf{F}(\mathbf{u}(t), t) - \frac{\mathrm{d}\widetilde{\mathbf{u}}}{\mathrm{d}t} \right). \tag{4.8.17}$$

In order to fix r_i for i > 1, we introduce a new set of Lagrange polynomials $\ell_{n+1-j}(t)$ associated to the stencil $\{t_{n+1-j}\}_{j=0}^{q-1}$

$$\ell_{n+1-j}(t) = \prod_{\substack{k=0\\k\neq j}}^{q-1} \frac{t - t_{n+1-k}}{t_{n+1-j} - t_{n+1-k}}.$$
(4.8.18)

The strategy to fix the rest of r_i consists on selecting them in such a manner that transform (4.8.16) in $d^i \boldsymbol{u}/dt^i = d^{i-1}\boldsymbol{I}/dt^{i-1}$, for this we will change the polynomial basis in which $\tilde{\boldsymbol{I}}$ is expressed. Polynomia (4.8.18) constitute a basis of the vector space of degree q polynomia and permit to express the interpolant $\tilde{\boldsymbol{I}}(t)$ as

$$\widetilde{I}(t) = \sum_{k=0}^{q-1} \widetilde{I}(t_{n+1-k})\ell_{n+1-k}(t)
= \widetilde{I}(t_{n+1})\ell_{n+1}(t) + \sum_{k=1}^{q-1} F^{n+1-k}\ell_{n+1-k}(t).$$
(4.8.19)

¹This count of equations and unknowns takes α as a single unknown. A componentwise count would lead to $q + N_v$ unknowns and qN_v equations but as for both counts the system is closed and solved in the exact same manner, the latter introduces an unnecessary complication.

Imposing $d^i\widetilde{\boldsymbol{u}}/dt^i = d^{i-1}\widetilde{\boldsymbol{I}}/dt^{i-1}$, (4.8.17) and (4.8.19) to (4.8.16) yields

$$\frac{\mathrm{d}^{i}\boldsymbol{u}}{\mathrm{d}t^{i}} = \widetilde{\boldsymbol{I}}(t_{n+1})\ell_{n+1}^{(i-1)}(t) + \sum_{k=1}^{q-1}\boldsymbol{F}^{n+1-k}\ell_{n+1-k}^{(i-1)}(t)
+ \frac{i!}{(t-t_{n})^{i-1}}r_{i}\left(\boldsymbol{F}(\boldsymbol{u}(t),t) - \widetilde{\boldsymbol{I}}(t_{n+1})\ell_{n+1}(t) - \sum_{k=1}^{q-1}\boldsymbol{F}^{n+1-k}\ell_{n+1-k}(t)\right)
= \frac{i!}{(t-t_{n})^{i-1}}r_{i}\boldsymbol{F}(\boldsymbol{u}(t),t) + \sum_{k=1}^{q-1}\left(\ell_{n+1-k}^{(i-1)}(t) - \frac{i!}{(t-t_{n})^{i-1}}r_{i}\ell_{n+1-k}(t)\right)\boldsymbol{F}^{n+1-k}
+ \widetilde{\boldsymbol{I}}(t_{n+1})\left(\ell_{n+1}^{(i-1)}(t) - \frac{i!}{(t-t_{n})^{i-1}}r_{i}\ell_{n+1}(t)\right).$$
(4.8.20)

Evaluating (4.8.20) at $t = t_{n+1}$ reveals the condition that r_i must satisfy

$$\frac{\mathrm{d}^{i} \boldsymbol{u}}{\mathrm{d}t^{i}} \Big|_{t_{n+1}} = \frac{i!}{\Delta t_{n}^{i-1}} r_{i} \boldsymbol{F}^{n+1} + \sum_{k=1}^{q-1} \ell_{n+1-k}^{i-1} (t_{n+1}) \boldsymbol{F}^{n+1-k} + \widetilde{\boldsymbol{I}}(t_{n+1}) \left(\ell_{n+1}^{(i-1)} (t_{n+1}) - \frac{i!}{\Delta t_{n}^{i-1}} r_{i} \right). \tag{4.8.21}$$

The condition for r_i is that $d^i \boldsymbol{u}/dt^i|_{t_{n+1}}$ must be independent of the value of $\widetilde{\boldsymbol{I}}(t_{n+1})$. Thus, in order to eliminate the term proportional to $\widetilde{\boldsymbol{I}}(t_{n+1})$ in (4.8.21), the coefficient r_i must be

$$r_{i} = \frac{\Delta t_{n}^{i-1}}{i!} \ell_{n+1}^{(i-1)}(t_{n+1}). \tag{4.8.22}$$

As was advanced, the selection of r_i given by (4.8.22) the multivalue method evolves the derivatives as

$$\frac{\mathrm{d}^{i}\boldsymbol{u}}{\mathrm{d}t^{i}}\Big|_{t_{n+1}} = \frac{\mathrm{d}^{i-1}\boldsymbol{I}}{\mathrm{d}t^{i-1}}\Big|_{t_{n+1}},$$
(4.8.23)

for the interpolant

$$I(t) = \sum_{k=0}^{q-1} \ell_{n+1-k}(t) \mathbf{F}^{n+1-k}, \qquad t \in [t_{n+2-q}, t_{n+1}].$$
 (4.8.24)

Summarizing, with the given values of $\alpha(t)$ and r_i (4.8.17) and (4.8.22), a

multivalue method of order q equivalent to a q steps Adams-Bashforth reads

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \sum_{k=1}^q \frac{\mathrm{d}^k \boldsymbol{u}}{\mathrm{d}t^k} \Big|_{t_n} \frac{\Delta t_n^k}{k!}$$
(4.8.25)

$$\frac{\mathrm{d}^{i}\boldsymbol{u}}{\mathrm{d}t^{i}}\Big|_{t_{n+1}} = \sum_{k=i}^{q} \frac{\mathrm{d}^{k}\boldsymbol{u}}{\mathrm{d}t^{k}}\Big|_{t_{n}} \frac{\Delta t_{n}^{k-i}}{(k-i)!} + \frac{i!}{\Delta t_{n}^{i}} r_{i}\boldsymbol{\alpha}(t_{n+1}), \qquad i = 1, 2 \dots q.$$
(4.8.26)

Multivalue Adams-Moulton

In the previous pages the multivalue formulation of an order q Adams-Bashforth has been presented. The derivation of the multivalue formulation of an Adams-Moulton method is very similar to the one for the Adams-Bashforth. The derivatives of $\boldsymbol{u}(t)$ at t_{n+1} are calculated in the same exact manner that for Adams-Bashforth multivalue formulation, but $\boldsymbol{u}(t)$ is not. For computing $\boldsymbol{u}(t)$, again a correction with respect to the extrapolation $\tilde{\boldsymbol{u}}(t)$ is done

$$\mathbf{u}(t) = \widetilde{\mathbf{u}}(t) + r_0 \mathbf{\alpha}(t), \qquad t \in [t_n, t_{n+1}]. \tag{4.8.27}$$

The coefficient r_0 is again obtained by expressing $\widetilde{I}(t)$ in the basis $\{\ell_{n+1-k}(t)\}_{k=0}^{q-1}$ and that

$$\widetilde{\boldsymbol{u}}(t) = \boldsymbol{u}^n + \int_{t_n}^t \widetilde{\boldsymbol{I}}(t') \, \mathrm{d}t'$$
 (4.8.28)

Using that

$$\mathbf{u}(t) = \mathbf{u}^{n} + r_{0}\Delta t_{n}\mathbf{F}(\mathbf{u}(t), t) + \sum_{k=1}^{q-1}\mathbf{F}^{n+1-k} \int_{t_{n}}^{t} \ell_{n+1-k}(t') dt' + \widetilde{\mathbf{I}}(t_{n+1}) \left(\int_{t_{n}}^{t} \ell_{n+1}(t') dt' - r_{0}\Delta t_{n}\ell_{n+1}(t) \right) - r_{0}\Delta t_{n} \sum_{k=1}^{q-1}\mathbf{F}^{n+1-k}\ell_{n+1-k}(t).$$

$$(4.8.29)$$

Forcing $u(t_{n+1})$ in (4.8.29) to be independent of $\tilde{I}(t_{n+1})$ gives

$$r_0 = \frac{1}{\Delta t_n} \int_{t_n}^{t_{n+1}} \ell_{n+1}(t) \, \mathrm{d}t, \qquad (4.8.30)$$

which matches β_0 from (4.8.8). Note that this selection of r_0 gives

$$\mathbf{u}^{n+1} = \widetilde{\mathbf{u}}^{n+1} + r_0 \alpha(t_{n+1}) = \int_{t_n}^{t_{n+1}} \mathbf{I}(t) \, dt, \qquad (4.8.31)$$

for the interpolant (4.8.24) which clarifies the equivalence between the Adams-Moulton method and the multivalue formulation just derived.

Matricial form of multivalue methods

We have just seen that we can express both explicit and implicit Adams methods as

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n + \sum_{k=1}^q \frac{\mathrm{d}^k \boldsymbol{u}}{\mathrm{d}t^k} \bigg|_{t_n} \frac{\Delta t_n^k}{k!} + r_0 \alpha(t_{n+1})$$
(4.8.32)

$$\frac{\mathrm{d}^{i}\boldsymbol{u}}{\mathrm{d}t^{i}}\Big|_{t_{n+1}} = \sum_{k=i}^{q} \frac{\mathrm{d}^{k}\boldsymbol{u}}{\mathrm{d}t^{k}}\Big|_{t_{n}} \frac{\Delta t_{n}^{k-i}}{(k-i)!} + \frac{i!}{\Delta t_{n}^{i}} r_{i}\boldsymbol{\alpha}(t_{n+1}), \qquad i = 1, 2 \dots q, \quad (4.8.33)$$

where

$$r_0 = \begin{cases} 0, & \text{for Adams-Bashforth,} \\ \beta_0, & \text{for Adams-Moulton,} \end{cases}$$
 (4.8.34)

and r_i for $i \geq 1$ is given by (4.8.22) and $\alpha(t)$ is given by (4.8.17). Although this serves to understand the equivalence between multistep and multivalue methods is not of practical use. Instead, it is convenient for multivalue formulation to define the state array

$$\boldsymbol{y}^{n} = \begin{bmatrix} \boldsymbol{y}_{0}^{n} \\ \boldsymbol{y}_{1}^{n} \\ \vdots \\ \boldsymbol{y}_{i}^{n} \\ \vdots \\ \boldsymbol{y}_{q}^{n} \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}^{n} \\ \Delta t_{n} \, d\boldsymbol{u}/dt \big|_{t_{n}} \\ \vdots \\ (\Delta t_{n}^{i}/i!) \, d^{i}\boldsymbol{u}/dt^{i} \big|_{t_{n}} \\ \vdots \\ (\Delta t_{n}^{q}/q!) \, d^{q}\boldsymbol{u}/dt^{q} \big|_{t_{n}} \end{bmatrix} \in \mathcal{M}_{q+1 \times N_{v}}, \tag{4.8.35}$$

whose rows are $\boldsymbol{y}_i^n = (\Delta t_n^i/i!) \ \mathrm{d}^i \boldsymbol{u}/\mathrm{d}t^i \mid_{t_n} \in \mathbb{R}^{N_v}$ and which permits to write the extrapolation as

$$\widetilde{\boldsymbol{y}}^{n+1} = B\boldsymbol{y}^n, \tag{4.8.36}$$

where the components of $B \in \mathcal{M}_{q+1 \times q+1}$ are

$$B_{ij} = \begin{cases} 0, & \text{if } i > j, \\ \frac{j!}{i!(j-i)!}, & \text{if } i \leq j, \end{cases}$$
 $i, j, = 0, 1, \dots q$ (4.8.37)

which is a matrix whose upper triangular components are given by the binomial coefficients. Hence, we can rewrite multivalue methods compactly, as

$$y^{n+1} = \widetilde{y}^{n+1} + r \otimes \alpha(t_{n+1})$$

$$= By^{n} + r \otimes \left(\Delta t_{n} F^{n+1} - e_{1} \cdot \widetilde{y}^{n+1}\right)$$

$$= (I - r \otimes e_{1}) \cdot By^{n} + \Delta t_{n} r \otimes F^{n+1}, \qquad (4.8.38)$$

where I is the $(q+1)\times (q+1)$ identity matrix, $\boldsymbol{e}_1=(0,1,\ldots,0)\in\mathbb{R}^{q+1}$ is the canonical basis vector, $\boldsymbol{r}=(r_0,r_1,\ldots,r_q)\in\mathbb{R}^{q+1}$ and \otimes denotes the tensorial product between real vector spaces. There are a few major advantages in multivalue formulation (4.8.38) for implementing predictor-corrector and variable step-variable order algorithms. To switch between an Adams-Bashforth (predictor) to an Adams-Moulton (corrector) is easy just by setting $r_0=0$ for the predictor and r_0 from (4.8.30) for the corrector. The order of the scheme is determined by the size of the state vector \boldsymbol{y}^{n+1} and can be changed by using the appropriate B and \boldsymbol{r} . Last, but not least, multivalue formulation permits to modify the step size Δt_n in a very simple manner. If we denote by $\hat{\boldsymbol{y}}^{n+1}$ the solution correspondent to a new step size $\Delta \hat{t}_n = \hat{t}_{n+1} - t_n$ we have the nice property that $\hat{\boldsymbol{y}}^{n+1}$ is obtained by updating in (4.8.38) the initial condition to $\hat{\boldsymbol{y}}^n = D\boldsymbol{y}^n$, where D is the diagonal $(q+1)\times (q+1)$ matrix whose entries are

$$D_{ij} = \delta_{ij} \left(\frac{\Delta \hat{t}_n}{\Delta t_n} \right)^i, \qquad i, j, = 0, 1, \dots q.$$

$$(4.8.39)$$

Explicitly $\hat{\boldsymbol{y}}^{n+1}$ reads

$$\widehat{\boldsymbol{y}}^{n+1} = (I - \boldsymbol{r} \otimes \boldsymbol{e}_1) \cdot B\widehat{\boldsymbol{y}}^n + \Delta \widehat{t}_n \boldsymbol{r} \otimes \widehat{\boldsymbol{F}}^{n+1}$$
$$= (I - \boldsymbol{r} \otimes \boldsymbol{e}_1) \cdot BD\boldsymbol{y}^n + \Delta \widehat{t}_n \boldsymbol{r} \otimes \widehat{\boldsymbol{F}}^{n+1}$$
(4.8.40)

where we have denoted $\widehat{\boldsymbol{F}}^{n+1} = \boldsymbol{F}(\boldsymbol{u}(t_n + \Delta \hat{t}_n), t_n + \Delta \hat{t}_n)$. Of course, in case $r_0 \neq 0$ the change of step requires to solve the implicit equation for $\widehat{\boldsymbol{y}}_0^{n+1}$. However, for explicit methods the solution for the new step size is obtained as a correction of the solution for the old step size

$$\widehat{\boldsymbol{y}}_0^{n+1} = \boldsymbol{y}_0^{n+1} + B(D-I)\boldsymbol{y}_0^n. \tag{4.8.41}$$

This fact about the easiness of changing the step size for explicit multivalue methods is of special interest for predictor-corrector algorithms. It permits to change the step size of the predictor-corrector scheme by two consecutive corrections. First we obtain \hat{y}_0^{n+1} as a correction of y_0^{n+1} . With this new solution we evaluate F to obtain the derivatives \hat{y}_i^{n+1} (for i > 0). Thus, we can obtain the predictor solution for the new step size which will serve to produce the final solution using the corrector.

Boundary Value Problems

5.1 Overview

In this chapter, the mathematical foundations of the boundary value problems are presented. Generally, these problems are devoted to find a solution of some scalar or vector function in a spatial domain. This solution is forced to comply some specific boundary conditions. The elliptic character of the solution of a boundary value problem means that the every point of the spatial domain is influenced by the whole points of the domain. From the numerical point of view, it means that the discretized solution is obtained by solving an algebraic system of equations. The algorithm and the implementation to obtain and solve the system of equations is presented.

Let $\Omega \subset \mathbb{R}^p$ be an open and connected set and $\partial\Omega$ its boundary set. The spatial domain D is defined as its closure, $D \equiv \{\Omega \cup \partial\Omega\}$. Each point of the spatial domain is written $\boldsymbol{x} \in D$. A Boundary Value Problem for a vector function $\boldsymbol{u} : D \to \mathbb{R}^N$ of N variables is defined as:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{u}(\boldsymbol{x})) = 0, \qquad \forall \ \boldsymbol{x} \in \Omega, \tag{5.1.1}$$

$$|\boldsymbol{h}(\boldsymbol{x}, \boldsymbol{u}(\boldsymbol{x}))|_{\partial\Omega} = 0, \quad \forall \ \boldsymbol{x} \in \partial\Omega,$$
 (5.1.2)

where \mathcal{L} is the spatial differential operator and h is the boundary conditions operator that must satisfy the solution at the boundary $\partial\Omega$.

5.2 Algorithm to solve Boundary Value Problems

If the spatial domain D is discretized in N_D points, the problem extends from vector to tensor, as a tensor system of equations of order p appears for each variable of $\boldsymbol{u}(\boldsymbol{x})$. The order of the tensor system merging from the complete system is p+1 and its number of elements is $N=N_v\times N_D$ where N_v is the number of variables of $\boldsymbol{u}(\boldsymbol{x})$. The number of points in the spatial domain N_D can be divided on inner points N_Ω and on boundary points $N_{\partial\Omega}$, satisfying: $N_D=N_\Omega+N_{\partial\Omega}$. Thus, the number of elements of the tensor system evaluated on the boundary points is $N_C=N_v\times N_{\partial\Omega}$. Once the spatial discretization is done, the system emerges as a tensor difference equation that can be rearranged into a vector system of N equations. Particularly two systems appear: one of $N-N_C$ equations from the differential operator on inner grid points and another of N_C equations from the boundary conditions on boundary points:

$$L(U) = 0,$$

$$H(U)\big|_{\partial\Omega} = 0$$

where $U \in \mathbb{R}^N$ comprises the discretized solution at inner points and boundary points. Notice that

$$L: \mathbb{R}^N \to \mathbb{R}^{N-N_C}$$

is the difference operator associated to the differential operator \mathcal{L} and

$$H: \mathbb{R}^N \to \mathbb{R}^{N_C}$$

is the difference operator associated to the boundary conditions operator h. To solve the systems, both set of equations are packed in the vector function

$$F: \mathbb{R}^N \to \mathbb{R}^N,$$

with F = [L, H] satisfying the differential equation and the boundary conditions

$$F(U) = 0.$$

The algorithm to solve this boundary value problem is explained in two steps:

1. Obtention of the vector function F.

From a discretized solution U, derivatives are calculated and the differential equation is forced at inner grid points yielding N_{Ω} equations. Imposing the boundary conditions constraints, additional $N_{\partial\Omega}$ equations are obtained.

2. Solution of an algebraic system of equations.

Once F is built, any available solver to obtain the solution of a system of equations is used.

The algorithm is represented schematically on figure 5.1. If the differential operator $\mathcal{L}(x, u)$ and the boundary conditions h(x, u) depend linearly with the dependent variable u(x), the problem is linear and the function F can be expressed by means of system matrix A and independent term b in the following form:

$$F = A U - b$$
.

Figure 5.1: Linear and non linear boundary value problems.

5.3 From classical to modern approaches

This section is intended to consolidate the understanding of the procedure to implement the boundary value problem based on lower abstraction layers such as the finite differences layer. A nonlinear one-dimensional boundary value problem is considered to explain the algorithm. The following differential equation in the domain $x \in [-1, 1]$ is chosen:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \sin u = 0,$$

along with boundary conditions:

$$u(-1) = 1,$$
 $u(1) = 0.$

The algorithm to solve this problem, based on second order finite differences formulas, consists on defining a equispaced mesh with Δx spatial size

$$\{x_i, i = 0, \dots, N\},\$$

impose the discretized differential equations in these points

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} + \sin u_i, \quad i = 1, \dots N - 1,$$

and impose the boundary conditions

$$u_0 = 1, \quad u_N = 0.$$

Finally, these nonlinear N+1 equations are solved.

However, this approach is tedious and requires extra analytical work if we change the equation or the order of the finite differences formulas. One of the main objectives of our NumericalHUB is to allow such a level of abstraction that these numerical details are hidden, focusing on more important issues related to the physical behavior or the numerical scheme error.

This abstraction level allows integrating this boundary value problem with different finite-difference orders or with different mathematical models by making a very low effort from the algorithm and implementation point of view. As it was mentioned, the solution of a boundary value problem requires three steps: select the grid distribution, impose the difference equations and solution of the resulting system. Let us try to do it from a general point of view.

1. Grid points.

Define an equispaced or a nonuniform grid distribution of points x_i . This can be done by the following subroutine which determines the optimum distribution of points to minimize the truncation error depending on the degree or

order of the interpolation. If second order is considered, this distribution is uniform.

```
! Grid points call Grid_Initialization("nonuniform", "x", x, Order)
```

Listing 5.1: API_Example_Finite_Differences.f90

This grid defines the approximate values u_i of the unknown u(x) at the grid points x_i . Once the order is set and the grid points are given, Lagrange polynomials and their derivatives are built and particularized at the grid points x_i . These numbers are stored to be used as the coefficients of the finite differences formulas when calculating derivatives.

2. Difference equations.

Once the grid is initialized and the derivative coefficients are calculated, the subroutine Derivative allows calculating the second derivative in every grid point x_i and their values are stores in uxx. Once all derivatives are expressed in terms of the nodal points u_i , the difference equations are built by means of the following equation:

```
! Difference equations
function Equations(u) result(F)
   real, intent (in) :: u(0:)
   real :: F(0:Size(u)-1)

  real :: uxx(0:Nx)

  call Derivative( "x", 2, u, uxx )

  F = uxx + Sin(6*u) ! inner points

  F(0) = u(0) - 1 ! B.C. at x = -1
  F(Nx) = u(Nx) ! B.C. at x = 1

end function
```

Listing 5.2: API_Example_Finite_Differences.f90

3. Solution of a nonlinear system of equations.

The last step is to solve the resulting system of difference equations by means of a Newton-Raphson method:

```
call Newton(Equations, u)
```

Listing 5.3: API_Example_Finite_Differences.f90

To have a complete image of the procedure presented before, the following subroutine BVP_FD implements the algorithm:

```
subroutine BVP_FD
    integer, parameter :: Nx = 40 ! grid points
    integer :: Order = 6     ! finite differences order
real :: x(0:Nx)     ! Grid distribution
    real :: u(0:Nx)
                                  ! Solution u(x)
    Spatial domain
    x(0) = -1; x(Nx) = +1
 ! Grid points
    call Grid_Initialization("nonuniform", "x", x, Order)
   Initial guess
    u = 1
    Newton solution
    call Newton(Equations, u)
   Graph
    call qplot(x, u, Nx+1)
contains
! Difference equations
function Equations(u) result(F)
   real, intent (in) :: u(0:)
   real :: F(0:size(u)-1)
   real :: uxx(0:Nx)
    call Derivative( "x", 2, u, uxx )
    F = uxx + sin(6*u)! inner points
    F(0) = u(0) - 1 ! B.C. at x = -1
    F(Nx) = u(Nx)
                          ! B.C. at x = 1
end function
end subroutine
```

Listing 5.4: API_Example_Finite_Differences.f90

5.4 Overloading the Boundary Value Problem

Boundary value problems can be expressed in spatial domains $\Omega \subset \mathbb{R}^p$ with d=1,2,3. From the conceptual point of view, there is no difference in the algorithm explained before. However, from the implementation point of view, tensor variables are of order p+1 which makes the implementation slightly different. To make a user friendly interface for the user, the boundary value problem has been overloaded. It means that the subroutine to solve the boundary value problem is named Boundary_Value_Problem for all values of d and for different number of variables of d. The overloading is done in the following code,

Listing 5.5: Boundary_value_problems.f90

For example, if a scalar 2D problem is solved, the software recognizes automatically associated to the interface of $\mathcal{L}(x,u(x))$ and h(x,u(x)) using the subroutine Boundary_Value_Problem2D. If the given interface of \mathcal{L} and h does not match the implemented existing interfaces of the boundary value problem, the compiler will complain saying that this problem is not implemented. As an example, the following code shows the interface of 1D and 2D differential operators \mathcal{L}

Listing 5.6: Boundary_value_problems1D.f90

Listing 5.7: Boundary_value_problems2D.f90

5.5 Linear and nonlinear BVP in 1D

For the sake of simplicity, the implementation of the algorithm provided below is only shown 1D problems. Once the program matches the interface of a 1D boundary value problem, the code will use the following subroutine:

```
subroutine Boundary_Value_Problem1DS( x, Differential_operator,
                                 Boundary_conditions, Solution, Solver)
    real, intent(in) :: x(0:)
    procedure (DifferentialOperator1DS) :: Differential_operator
    procedure (BC1DS) :: Boundary_conditions
    real, intent(out) :: Solution(0:, :)
    procedure (NonLinearSolver), optional:: Solver
    integer :: Nv
    logical :: linear1D
    Nv = size(Solution, dim=2)
    linear1D = Linearity_BVP1DS( Differential_operator, Nv )
    if (linear1D) then
       call Linear_Boundary_Value_Problem1DS &
             (x, Differential_operator, Boundary_conditions, Solution)
    else
     call Non_Linear_Boundary_Value_Problem1DS( x, &
        Differential_operator, Boundary_conditions, Solution, Solver)
    end if
end subroutine
```

Listing 5.8: Boundary_value_problems1D.f90

Depending on the linearity of the problem, the implementation differs. For this reason and in order to classify between linear and nonlinear problem, the subroutine Linearity_BVP_1D is used. Besides and in order to speed up the calculation, the subroutine Dependencies_BVP_1D checks if the differential operator $\mathcal L$ depends on first or second derivative of u(x). If the differential operator does not depend on the first derivative, only second derivative will be calculated to build the difference operator. The same applies if no dependency on the second derivative is encountered.

Once the problem is classified into a linear or a nonlinear problem and dependencies of derivatives are determined, the linear or nonlinear subroutine is called in accordance.

5.6 Non Linear Boundary Value Problems in 1D

The following subroutine Nonlinear_boundary_Problem1d solves the problem

```
subroutine Non_Linear_Boundary_Value_Problem1DS( x,
         Differential_operator, Boundary_conditions, Solution, Solver )
    real, intent(in) :: x(0:)
    procedure (DifferentialOperator1DS) :: Differential_operator
    procedure (BC1DS) :: Boundary_conditions
    real, intent(inout) :: Solution(0:, :)
    procedure (NonLinearSolver), optional:: Solver
   *** variables specification
      integer :: Nx, Nv, M
      real, allocatable :: F(:), Us(:)
      logical, allocatable :: dU(:, :)
   *** Integration domain
      Nx = size(x) - 1; Nv = size(Solution, dim=2); M = (Nx+1)*Nv
      allocate(F(M), Us(M), dU(Nv,2)); dU = .true.
   *** initial guess for iteration
       Us = reshape(Solution, [ M ])
      Non linear solver
       if (present(Solver)) then
                  call Solver(Space_discretization, Us)
       else
                  call Newton(Space_discretization, Us)
       end if
       Solution = reshape( Us, [Nx+1, Nv] )
contains
```

Listing 5.9: Boundary_value_problems1D.f90

As it was mentioned, the algorithm to solve a BVP comprises two steps:

- 1. Construction of the difference operator or system of nonlinear equations. The system of nonlinear equations is built in BVP_discretization. Notice that the interface of the vector function that uses the Newton-Raphson method must be $F: \mathbb{R}^N \to \mathbb{R}^N$. This requirement must be taken into account when implementing the function BVP_discretization.
- 2. Resolution of the nonlinear system of equations by a specific method.

 This subroutine checks if the Solver is present. If not, the code uses a classical Newton-Raphson method to obtain the solution. Since any available and validated Solver can be used, no further explanations to the resolution method will be made.

The function Space discretization is implemented by the following code:

```
function Difference_equations( du, Nv, Nx, x, W, &
                               Differential_operator, Boundary_conditions
                                    ) result(F)
   logical :: dU(Nv, 2)
   integer :: Nv, Nx
   real :: x(0:Nx), W(0:Nx, Nv)
   procedure (DifferentialOperator1DS) :: Differential_operator
  procedure (BC1DS) :: Boundary_conditions
   real :: F(0:Nx, Nv)
     real :: Wx(0:Nx, Nv), Wxx(0:Nx, Nv)
     integer :: i
     do i=1, Nv
       if (dU(i,1)) call Derivative ("x", 1, W(0:,i), Wx(0:,i))
       if (dU(i,2)) call Derivative( "x", 2, W(0:,i), Wxx(0:,i) )
      call Derivative( "x", 1, W(0:,i), Wx(0:,i), 0 ) ! Derivative
           always at x=0 (BCs)
      call Derivative( "x", 1, W(0:,i), Wx(0:,i), Nx ) ! Derivative
           always at x=Nx(BCs)
     end do
                                                  Wx(0,:), Wxx(0,:)
     F(0,:) = Boundary_points(x(0),
                                        W(0,:),
     F(Nx,:) = Boundary\_points(x(Nx), W(Nx,:), Wx(Nx,:), Wxx(Nx,:))
     do i=1, Nx-1
          F(i, :) = Differential_operator( x(i), W(i,:), Wx(i,:), Wxx(i
               ,:) )
     enddo
contains
```

Listing 5.10: Boundary_value_problems1D.f90

First, the subroutine calculates only the derivatives appearing in the problem. Second, the boundary conditions at x_0 and x_N are analyzed. If there is no imposed boundary condition (C == FREE_BOUNDARY_CONDITION), the corresponding equation is taken from the differential operator. Otherwise, the equation represents the discretized boundary condition. Once the boundary conditions are discretized, the differential operator is discretized for the inner grid points x_1, \ldots, x_{n-1} .

Listing 5.11: Boundary_value_problems1D.f90

5.7 Linear Boundary Value Problems in 1D

The implementation of a linear BVP is more complex than the implementation of a nonlinear BVP. However, the computational cost of the linear BVP can be lower. The idea behind the implementation of the linear BVP relies on the expression of the resulting system of equations. If the system is linear,

$$F(U) = A \ U - b, \tag{5.7.1}$$

where A is the matrix of the linear system of equations and b is the independent term.

The algorithm proposed to obtain A is based on N successive evaluations of F(U) to obtain the matrix A and the vector b. To determine the vector b, the function in equation 5.7.1 is evaluated with U=0

$$F(0) = -b.$$

To determine the first column of matrix A, the function in equation 5.7.1 is evaluated with $U^1 = [1, 0, \dots, 0]^T$

$$F(U^1) = A U^1 - b$$

The components of $F(U^1)$ are $A_{i1} - b_i$. Since the independent term b is known, the first column of the matrix A is

$$C_1 = F(U^1) + b$$

Proceeding similarly with another evaluation of F with $U^2 = [0, 1, 0, \dots, 0]^T$, the second column of A is obtained

$$C_2 = F(U^2) + b.$$

In this way, the columns of the matrix A are determined by means of N+1 evaluations of the function F.

Once the matrix A and the independent term b are obtained, any validated subroutine to solve linear systems can be used. This algorithm to solve the BVP based on the determination of A and b is implemented in the following subroutine called Linear_Boundary_Valu_Problem1D:

```
subroutine Linear_Boundary_Value_Problem1DS(x, Differential_operator,
                                            Boundary_conditions, Solution)
    real, intent(in) :: x(0:)
    procedure (DifferentialOperator1DS) :: Differential_operator
    procedure (BC1DS) :: Boundary_conditions
    real, intent(out) :: Solution(0:, :)
  *** variables specification
      integer :: j, Nx, Nv, M
      real, allocatable :: A(:,:), U(:), b(:)
      logical :: dU(size(Solution,dim=2), 2) ! matrix of dependencies(
           variable, derivative )
       Integration domain
       Nx = size(x) - 1
       Nv = size(Solution, dim=2)
       M = (Nx+1)*Nv
       dU = BVP1D_system_dependencies( Differential_operator, Nv )
       allocate( A(M, M), b(M), U(M) )
       independent term F = A U - b ( U = inverse(A) b )
       b = - v_Difference_equations(U)
       Delta kronecker to calculate the difference operator
       do j=1, size(x)*Nv
        U = 0
        U(j) = 1
        A(:, j) = v_Difference_equations(U) + b
      end do
  *** solve the linear system of equations
      U = Gauss(A, b)
      Solution = reshape( U, [ Nx+1, Nv ] )
contains
```

Listing 5.12: Boundary_value_problems1D.f90

The function ${\tt BVP_discretization}$ gives the components of the function F and it is the same function that is described in the nonlinear problem.

At the beginning of this subroutine, the independent term ${\tt b}$ and the matrix ${\tt A}$ are calculated. Then, the linear system is solved by means of a Gauss method.

Chapter 6

Initial Boundary Value Problems

6.1 Overview

In this chapter, an algorithm and the implementation of initial boundary value problems will be presented. From the physical point of view, an initial boundary value problem represents an evolution problem in a spatial domain in which some constraints associated to the boundaries of the domain must be verified.

From the mathematical point of view, it can be defined as follows. Let $\Omega \subset \mathbb{R}^p$ be an open and connected set, and $\partial\Omega$ its boundary set. The spatial domain D is defined as its closure, $D \equiv \{\Omega \cup \partial\Omega\}$. Each element of the spatial domain is called $x \in D$. The temporal dimension is defined as $t \in \mathbb{R}$.

An Initial Boundary Value Problem for a vector function $u: D \times \mathbb{R} \to \mathbb{R}^{N_v}$ of N_v variables is defined as:

$$\frac{\partial \boldsymbol{u}}{\partial t}(\boldsymbol{x},t) = \boldsymbol{\mathcal{L}}(\boldsymbol{x},t,\boldsymbol{u}(\boldsymbol{x},t)), \qquad \forall \quad \boldsymbol{x} \in \Omega,
\boldsymbol{h}(\boldsymbol{x},t,\boldsymbol{u}(\boldsymbol{x},t))\big|_{\partial\Omega} = 0, \qquad \forall \quad \boldsymbol{x} \in \partial\Omega,
\boldsymbol{u}(\boldsymbol{x},t_0) = \boldsymbol{u}_0(\boldsymbol{x}),$$

where \mathcal{L} is the spatial differential operator, $u_0(x)$ is the initial value and h is the boundary conditions operator for the solution at the boundary points $u|_{\partial\Omega}$.

6.2 Algorithm to solve IBVPs

If the spatial domain D is discretized in N_D points, the problem extends from vector to tensor, as a tensor system of equations of order p appears from each variable of u. The order of the complete tensor system is p+1 and its number of elements N is $N=N_v\times N_D$. The number of points in the spatial domain N_D can be divided on inner points N_Ω and on boundary points $N_{\partial\Omega}$, satisfying: $N_D=N_\Omega+N_{\partial\Omega}$. Thus, the number of elements of the tensor system evaluated on the boundary points is $N_C=N_v\times N_{\partial\Omega}$. Once the spatial discretization is done, even though the system emerges as a tensor Cauchy Problem, it can be rearranged into a vector system of N equations. Particularly, two systems of equations appear: one of $N-N_C$ ordinary differential equations and N_C algebraic equations related to the boundary conditions. These equations can be expressed in the following way:

$$\frac{\mathrm{d}U_{\Omega}}{\mathrm{d}t} = F(U;t), \qquad H(U;t)\big|_{\partial\Omega} = 0,$$

$$U(t_0) = U^0.$$

where $U \in \mathbb{R}^N$ is at inner and boundary points, $U_{\Omega} \in \mathbb{R}^{N-N_C}$ is the solution at inner point, $U|_{\partial\Omega} \in \mathbb{R}^{N_C}$ is the solution at boundary points, $U^0 \in \mathbb{R}^N$ is the discretized initial value, $F : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^{N-N_C}$ is the difference operator associated to the differential operator and $H : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^{N_C}$ is the difference operator of the boundary conditions.

Hence, once the spatial discretization is carried out, the resulting problem comprises a system of $N-N_C$ first order ordinary differential equations and N_C algebraic equations. This differential-algebraic system of equations (DAEs) contains differential equations (ODEs) and algebraic equations are generally more difficult to solve than ODEs. Since the algebraic equations must be verified for all time, the algorithm to solve an initial boundary value problem comprises the following three steps:

1. Determination of the solution at boundaries.

If the initial condition or the values U_{Ω} at a given t_n are given, boundary conditions can be discretized at boundaries. The number of the discretized equations must be the number of the unknowns $U_{\partial\Omega}$ at boundaries. In these equations the inner points act as forcing term or a parameter.

2. Spatial discretization of the differential operator at inner points.

Once inner and boundary values U_D are known, the spatial discretization at inner points allows building a system of ODEs for the values of the inner points.

3. Temporal step to update the evolving solution.

Once the vector function is known, a validated temporal scheme is used to determine the next time step.

The sequence of the algorithm is represented in figure 6.1. This algorithm is called method of lines.

Figure 6.1: Line method for initial value boundary problems.

6.3 From classical to modern approaches

This section is intended to show to advantages of implementing with a high level of abstraction avoiding tedious implementations, sources of errors and misleading results. To explain the algorithm and the different levels of abstraction when implementing a programming code, a one-dimensional initial boundary value problem is considered. The 1D heat equation with the following initial and boundary conditions in the domain $x \in [-1, 1]$ is chosen:

$$\begin{split} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \\ u(x,0) &= 0, \\ u(-1,t) &= 1, \qquad \frac{\partial u}{\partial x}(1,t) = 0. \end{split}$$

The algorithm to solve this problem, based on second order finite differences formulas, consists on defining a equispaced mesh with Δx spatial size

$$\{x_i, i = 0, \dots, N\}.$$

If $u_i(t)$ denotes the approximate value of the function u(x,t) at the nodal point x_i , the partial differential equation is imposed in these points by expressing their spatial derivatives with finite difference formulas

$$\frac{du_i}{dt} = \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2}, \quad i = 1, \dots, N - 1.$$

The discretized boundary conditions are also imposed by:

$$u_0(t) = 1,$$

 $\frac{1}{2\Delta x}(3 u_N - 4 u_{N-1} + u_{N-2}) = 0.$

These equations constitute a differential-algebraic set of equations (DAEs). There are two algebraic associated to the boundary conditions and N-1 evolution equations governing the temperature of the inner points $i=1,\ldots,N-1$. Finally, a temporal scheme such as the Euler method should be used to determine the evolution in time. If u_j^n denotes the approximate value of u(x,t) at the point x_i and the instant t_n , the following difference set of equations governs the evolution of the temperature

$$\begin{split} u_0^n &= 1, \\ u_N^n &= \frac{4}{3} \ u_{N-1}^n - \frac{1}{3} \ u_{N-2}^n \\ \\ u_i^n &= u_i^n + \frac{\Delta t}{\Delta x^2} \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n \right), \quad i = 1, \dots, N-1. \end{split}$$

The above approach is tedious and requires extra analytical work if we change the equation, the temporal scheme or the order of the finite differences formulas. One of the main objectives of our NumericalHUB is to allow such a level of abstraction that these numerical details are hidden, focusing on more important issues related to the physical behavior or the numerical scheme error. This abstraction level allows integrating any initial boundary value problem with different finite-difference orders or with different temporal schemes by making a very low effort from the algorithm and implementation point of view.

The following abstraction levels will be considered when implementing the solution of the discretized initial boundary value problem:

1. Since Fortran is vector language, the solution can be obtained by performing vector operations. That is, U^n is a vector whose components are the scalar values u_i^n .

$$U^{n+1} = U^n + A U^n, \quad n = 0, \dots$$

2. To decouple the spatial discretization form the temporal discretization and to allow reusing the spatial discretizations effort with different temporal schemes, a vector function can be defined to hold the spatial discretization. That is, $F: \mathbb{R}^{N+1} \to \mathbb{R}^{N+1}$ whose components are the equations resulting of the spatial semi-discretization.

$$U^{n+1} = U^n + \Delta t \ F(U^n), \quad n = 0, \dots$$

3. To reuse the implementation of a complex and validated temporal scheme, a common interface of temporal schemes can be defined to deal with a first order Cauchy problem. That is, a temporal scheme can be a subroutine which gives the next time step of the vector U2 from the initial vector U1 and the vector function F(U)

4. To reuse the implementation of a complex and validated spatial discretization, a common interface of spatial derivatives can be defined to deal with a partial differential equations written as a second order systems in space. That is, a derivative subroutine can be defined to give the first or second order derivative from a set of nodal points U. The results can be held in the vector Ux. For example, to calculate the first order derivative of U in the "x" direction

With these different levels of abstraction, modern Fortran programming becomes reliable, reusable and easy to maintain.

6.4 Overloading the IBVP

Initial boundary value problems can be expressed in spatial domains $\Omega \subset \mathbb{R}^p$ with d=1,2,3. From the conceptual point of view, there is no difference in the algorithm explained before. However, from the implementation point of view, tensor variables are of order p+1 which makes the implementation slightly different. To make a user friendly interface for the user, the initial boundary value problem has been overloaded. It means that the subroutine to solve the boundary value problem is named Initial_Boundary_Value_Problem for all values of d and for different number of variables of u. The overloading is shown in the following code,

Listing 6.1: Initial_Boundary_value_problems.f90

For example, if a scalar 2D problem is solved, the software recognizes automatically associated to the interface of $\mathcal{L}(x,t,u(x))$ and h(x,t,u(x)). If the given interface of \mathcal{L} and h does not match the implemented existing interfaces, the compiler will complain saying that this problem is not implemented. As an example, the following code shows the interface of 1D and 2D differential operators \mathcal{L}

Listing 6.2: Initial_Boundary_Value_Problem1D.f90

```
function DifferentialOperator2DS(x, y, t, u, ux, uy, uxx, uyy, uxy)
  real, intent(in) :: x, y, t, u(:), ux(:), uy(:), uxx(:), uyy(:), uxy(:)
  real :: DifferentialOperator2DS (size(u))
  end function
```

Listing 6.3: Initial_Boundary_value_problem2D.f90

6.5 Initial Boundary Value Problem in 1D

For the sake of simplicity, only the 1D problem is shown.

```
subroutine IBVP1DS( Time_Domain, x_nodes, Differential_operator, &
                    Boundary_conditions, Solution, Scheme
    real, intent(in) :: Time_Domain(:)
    real, intent(inout) :: x_nodes(0:)
    procedure (DifferentialOperator1DS) :: Differential_operator
    procedure (BC1DS) :: Boundary_conditions
    real, intent(out) :: Solution(0:,0:, :)
    procedure (Temporal_Scheme), optional :: Scheme
    real, pointer :: U_Cauchy(:, :)
    integer :: Nt, Nx, Nv
    Nt=Size(Time_Domain)-1; Nx=Size(x_nodes)-1; Nv=Size(Solution, dim=3)
    call my_reshape( Solution, Nt+1, Nv*(Nx+1), U_Cauchy )
    call Cauchy_ProblemS( Time_Domain, F_Cauchy, U_Cauchy, Scheme )
contains
function F_cauchy( U, t ) result(F)
         real :: U(:), t, F(size(U))
  F = Space_discretization1D( Nx, Nv, Differential_operator, &
                               Boundary_conditions, x_nodes, U, t)
end function
```

Listing 6.4: Initial_Boundary_Value_Problem1D.f90

The function Spatial_discretization1D calculates the spatial discretization:

```
It solves boundary equations to yield values at boundaries
      call Determine_boundary_points( Ub, dBC, BC, Nx, Nv, x, U, t, &
                                       Boundary_conditions )
1 ***
      It calculates only derivatives which are used
      call Involved_Derivatives( Nx, Nv, dU, U, Ux, Uxx )
      do i=0, Nx
           Fi = Differential_operator(x(i), t, U(i,:), Ux(i,:), Uxx(i,:))
      ! ** Boundary point
           k = Boundary_index(Nx, i)
          if (k>0) then
           do 1=1, Nv
            if (BC(k) % impose(l) .or. BC(k) % interfaces(l)) &
                               Fi(1) = IMPOSE_ZERO
           end do
          end if
       ** inner point
          F(i, :) = Fi(:)
      enddo
```

Listing 6.5: Initial_Boundary_Value_Problem1D.f90

In order to speed up the calculation, the subroutine Dependencies_IBVP_1D checks if the differential operator \mathcal{L} depends on first or second derivative of u(x). If the differential operator does not depend on the first derivative, only second derivative will be calculated to build the difference operator. The same applies if no dependency on the second derivative is encountered.

The treatment of boundary points is done by the subroutine Boundary_points and it is implemented in the following code:

```
subroutine Determine_boundary_points( Ub, dBC, BC, Nx, Nv, x, U, t,
    Boundary_conditions )
       real :: Ub(:)
       logical, intent(in) :: dBC(:,:)
        type (BoundaryP1DS) :: BC(:)
        integer, intent(in) :: Nx, Nv
        real, intent(in) :: x(0:Nx), t
        real, intent(inout) :: U(0:Nx, Nv)
       procedure (BC1DS) :: Boundary_conditions
        integer :: i, k, l, m
       tial condition for Ub
      do k=1, size(BC); do l=1, Nv
           i = BC(k) % index
           m = BC(k) \% B_index(1)
          if(BC(k)\% impose(1)) Ub(m) = U(i, 1)
      end do; end do
    *** Solve boundary equations
       call Newton( Boundary_equations, Ub )
contains
```

Listing 6.6: Initial_Boundary_Value_Problem1D.f90

As it was mentioned, the algorithm to solve a IBVP has to deal with differential-algebraic equations. Hence, any time the vector function is evaluated by the temporal scheme, boundary values are determined by solving a linear or nonlinear system of equations involving the unknowns at the boundaries. Once these values are known, the inner components of F(U) are evaluated.

Mixed Boundary and Initial Value Problems

7.1 Overview

In the present chapter, the numerical resolution and implementation of the initial boundary value problem for an unknown variable \boldsymbol{u} coupled with an elliptic problem for another unknown variable \boldsymbol{v} are considered. Prior to the numerical resolution of the problem by means of an algorithm, a brief mathematical presentation must be given.

Evolution problems coupled with elliptic problems are common in applied physics. for example, when considering an incompressible flow, the information travels in the fluid at infinite velocity. This means that the pressure adapts instantaneously to the change of velocities. From the mathematical point of view, it means that the pressure is governed by an elliptic equation. Hence, the velocity and the temperature of fluid evolve subjected to the pressure field which adapts instantaneously to velocity changes.

The chapter shall be structured in the following manner. First, the mathematical presentation and both spatial and temporal discretizations will be described. Then, an algorithm to solve the discretized algebraic problem is presented. Finally, the implementation of this algorithm is explained. Thus, the intention of this chapter is to show how these generic problems can be implemented and solved form an elegant and mathematical point of view using modern Fortran.

Let $\Omega \subset \mathbb{R}^p$ be an open and connected set, and $\partial\Omega$ its boundary. The spatial domain D is defined as its closure, $D \equiv \{\Omega \cup \partial\Omega\}$. Each element of the spatial domain is called $\boldsymbol{x} \in D$. The temporal dimension is defined as $t \in \mathbb{R}$.

The intention of this section is to state an evolution problem coupled with a boundary value. The unknowns of the problem are two following vector functions:

$$\boldsymbol{u}:D\times\mathbb{R}\to\mathbb{R}^{N_u}$$

of N_u variables and

$$\boldsymbol{v}:D\times\mathbb{R}\to\mathbb{R}^{N_v}$$

of N_v variables. These functions are governed by the following set of equations:

$$\frac{\partial \boldsymbol{u}}{\partial t}(\boldsymbol{x},t) = \mathcal{L}_{\boldsymbol{u}}(\boldsymbol{x},t,\boldsymbol{u}(\boldsymbol{x},t),\boldsymbol{v}(\boldsymbol{x},t)), \qquad \forall \ \boldsymbol{x} \in \Omega,$$
 (7.1.1)

$$\left. \boldsymbol{h}_{u}(\boldsymbol{x},t,\boldsymbol{u}(\boldsymbol{x},t)) \right|_{\partial\Omega} = 0, \qquad \forall \boldsymbol{x} \in \partial\Omega,$$
 (7.1.2)

$$\boldsymbol{u}(\boldsymbol{x}, t_0) = \boldsymbol{u}_0(\boldsymbol{x}), \qquad \forall \ \boldsymbol{x} \in D,$$
 (7.1.3)

(7.1.4)

$$\mathcal{L}_{v}(\boldsymbol{x}, t, \boldsymbol{v}(\boldsymbol{x}, t), \boldsymbol{u}(\boldsymbol{x}, t)) = 0, \qquad \forall \boldsymbol{x} \in \Omega,$$
 (7.1.5)

$$\left. \boldsymbol{h}_{v}(\boldsymbol{x}, t, \boldsymbol{v}(\boldsymbol{x}, t)) \right|_{\partial\Omega} = 0, \qquad \forall \boldsymbol{x} \in \partial\Omega,$$
 (7.1.6)

where \mathcal{L}_u is the spatial differential operator of the initial boundary value problem of N_u equations, $u_0(x)$ is the initial value, h_u is the boundary conditions operator for the solution at the boundary points $u|_{\partial\Omega}$, \mathcal{L}_v is the spatial differential operator of the boundary value problem of N_v equations and h_v is the boundary conditions operator for v at the boundary points $v|_{\partial\Omega}$.

It can be seen that both problems are coupled by the differential operators since these operators depend on both variables. The order in which appear in the differential operators \boldsymbol{u} and \boldsymbol{v} indicates its number of equations, for example: $\mathcal{L}_{\boldsymbol{v}}(\boldsymbol{x},t,\boldsymbol{v},\boldsymbol{u})$ and \boldsymbol{v} are of the same size as it appears first in the list of variables from which the operator depends on.

It can also be observed that the initial value for \boldsymbol{u} appears explicitly, while there is no initial value expression for \boldsymbol{v} . This is so, as the problem must be interpreted in the following manner: for each instant of time t, \boldsymbol{v} is such that verifies $\mathcal{L}_v(\boldsymbol{x},t,\boldsymbol{v},\boldsymbol{u})=0$ in which \boldsymbol{u} acts as a known vector field for each instant of time. This interpretation implies that the initial value $\boldsymbol{v}(\boldsymbol{x},t_0)=\boldsymbol{v}_0(\boldsymbol{x})$, is the solution of the problem $\mathcal{L}_v(\boldsymbol{x},t_0,\boldsymbol{v}_0,\boldsymbol{u}_0)=0$. This means that the initial value for \boldsymbol{v} is given implicitly in the problem. Hence, the solutions must verify both operators and boundary conditions at each instant of time, which forces the resolution of them to be simultaneous.

7.2 Algorithm to solve a coupled IBVP-BVP

If the spatial domain D is discretized in N_D points, both problems extend from vectors to tensors, as a tensor system of equations of order p appears from each variable of \mathbf{u} and \mathbf{v} . The order of the tensor system for \mathbf{u} and \mathbf{v} is p+1.

The number of elements for both are respectively: $N_{e,u} = N_u \times N_D$ and $N_{e,v} = N_v \times N_D$. The number of points in the spatial domain N_D can be divided on inner points N_{Ω} and on boundary points $N_{\partial\Omega}$, satisfying: $N_D = N_{\Omega} + N_{\partial\Omega}$. Thus, the number of elements of each tensor system evaluated on the boundary points are $N_{C,u} = N_u \times N_{\partial\Omega}$ and $N_{C,v} = N_v \times N_{\partial\Omega}$.

Once the spatial discretization is done, the initial boundary value problem and the boundary value problem transform. The differential operator for \boldsymbol{u} emerges as a tensor Cauchy Problem of $N_{e,u}-N_{C,u}$ elements, and its boundary conditions as a difference operator of $N_{C,u}$ equations. The operator for \boldsymbol{v} is transformed into a tensor difference equation of $N_{e,v}-N_{C,v}$ elements and its boundary conditions in a difference operator of $N_{C,v}$ equations. Notice that even though they emerge as tensors is indifferent to treat them as vectors as the only difference is the arrange between of the elements which conform the systems of equations. Thus, the spatially discretized problem can be written:

$$\frac{\mathrm{d}U_{\Omega}}{\mathrm{d}t} = F_U(U, V; t), \qquad H_U(U; t)\big|_{\partial\Omega} = 0,$$

$$U(t_0) = U^0,$$

$$F_V(U, V; t) = 0, \qquad H_V(V; t)\big|_{\partial\Omega} = 0,$$

where $U \in \mathbb{R}^{N_{e,u}}$ and $V \in \mathbb{R}^{N_{e,u}}$ are the solutions comprising inner and boundary points, $U_{\Omega} \in \mathbb{R}^{N_{e,u}-N_{C,u}}$ is the solution of inner points, $U\big|_{\partial\Omega} \in \mathbb{R}^{N_{C,u}}$ and $V\big|_{\partial\Omega} \in \mathbb{R}^{N_{C,v}}$ are the solutions at the boundary points, $U^0 \in \mathbb{R}^{N_{e,u}}$ is the discretized initial value, the difference operators associated to both differential operators are,

$$F_U: \mathbb{R}^{N_{e,u}} \times \mathbb{R}^{N_{e,v}} \times \mathbb{R} \to \mathbb{R}^{N_{e,u}-N_{C,u}},$$

$$F_V: \mathbb{R}^{N_{e,v}} \times \mathbb{R}^{N_{e,u}} \times \mathbb{R} \to \mathbb{R}^{N_{e,v}-N_{C,v}},$$

and

$$H_U: \mathbb{R}^{N_{e,u}} \times \mathbb{R} \to \mathbb{R}^{N_{C,u}},$$

$$H_V: \mathbb{R}^{N_{e,v}} \times \mathbb{R} \to \mathbb{R}^{N_{C,v}},$$

are the difference operators of the boundary conditions.

Hence, the resolution of the problem requires solving a Cauchy problem and algebraic systems of equations for the discretized variables U and V. To solve the Cauchy Problem, the time is discretized in $t = t_n e_n$. The term $n \in \mathbb{Z}$ is the index of every temporal step that runs over $[0, N_t]$, where N_t is the number of temporal steps. The algorithm will be divided into three steps that will be repeated for every n of the temporal discretization. As the solution is evaluated only in these discrete time points, from now on it will be used the notation for every temporal step t_n : $U_{\Omega}(t_n) = U_{\Omega}^n$, $U(t_n) = U^n$ and $V(t_n) = V^n$.

The Cauchy Problem transforms a system of ordinary differential equations into a system of difference equations system by means of a a s-steps temporal scheme:

$$G(U_{\Omega}^{n+1}, \underbrace{U^n, \dots U^{n+1-s}}_{s \text{ steps}}; t_n, \Delta t) = F_U(U^n, V^n; t_n),$$

$$U(t_0) = U^0, \qquad H_U(U^n; t_n)\big|_{\partial\Omega} = 0,$$

$$F_V(U^n, V^n; t_n) = 0, \qquad H_V(V^n; t_n)\big|_{\partial\Omega} = 0,$$

where

$$G: \mathbb{R}^{N_{e,u}-N_{C,u}} \times \underbrace{\mathbb{R}^{N_{e,u}} \times \dots \times \mathbb{R}^{N_{e,u}}}_{s \ steps} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{N_{e,u}-N_{C,u}},$$

is the difference operator associated to the temporal scheme and Δt is the temporal step. Thus, at each temporal step four systems of $N_{e,u} - N_{C,u}$, $N_{C,u}$, $N_{e,v} - N_{C,v}$ and $N_{C,v}$ equations appear. In total a system of $N_{e,u} + N_{e,v}$ equations appear at each temporal step for all components of U^n and V^n .

Once the spatial discretizations are done, it is proceeded to integrate in time. This method is called the method of lines and it is represented in figure 7.1.

Figure 7.1: Method of lines for mixed initial and boundary value problems.

Starting from the initial value U^0 , the initial value V^0 is calculated by means of the BVP that governs the variable V. Using both values U^0 and V^0 , the difference operator F_U at that instant is constructed. With this difference operator, the temporal scheme yields the next temporal step U^1_{Ω} . Then, the boundary conditions of the IBVP are imposed to obtain the solution U^1 . This solution will be used as the initial value to solve the next temporal step. In this way, the algorithm consists of a sequence of four steps that are carried out iteratively.

Step 1. Determination of boundary points $U_{\partial\Omega}^n$ from inner points U_{Ω}^n .

In the first place, the known initial value at the inner points U_{Ω}^n is used to impose the boundary conditions determining the boundary points $U_{\partial\Omega}^n$. That is, solving the system of equations:

$$H_U(U^n;t_n)\big|_{\partial\Omega}=0.$$

Even though this might look redundant for the initial value U^0 (which is supposed to satisfy the boundary conditions), it is not for every other temporal step as the Cauchy Problem is defined only for the inner points U^n_{Ω} . This means that to construct the solution U^n its value at the boundaries $U^n|_{\partial\Omega}$ must be calculated satisfying the boundary constraints.

Step 2. Boundary Value Problem for V^n .

Once the value U^n is updated, the difference operator $F_V(V^n, U^n; t_n)$ is calculated by means of its derivatives. The known value U^n is introduced as a parameter in this operator. When U^n and the time t_n is introduced in such manner, the system of equations defined by the difference operator is invertible, a required condition to be solvable. The difference operator F_V is used along with the boundary conditions operator H_V , to solve the boundary value problem for V^n . It is precisely defined by:

$$F_V(V^n, U^n; t_n) = 0,$$

$$H_V(V^n;t_n)\big|_{\partial\Omega}=0.$$

Since U^n and t_n act as a parameter, this problem can be solved by using the subroutines to solve a classical boundary value problem. However, to reuse the same interface than the classical BVP uses, the operator F_V and the boundary conditions H must be transformed into functions

$$F_{V,R}: \mathbb{R}^{N_{e,v}} \to \mathbb{R}^{N_{e,v}-N_{C,v}},$$

$$H_{V,R}: \mathbb{R}^{N_{e,v}} \to \mathbb{R}^{N_{C,v}}.$$

This is achieved by restricting these functions considering U^n and t_n as external parameters.

Once this is done, the problem can be written as:

$$F_{V,R}(V^n) = 0,$$

$$H_{V,R}(V^n)\big|_{\partial\Omega}=0,$$

which is solvable in the same manner as explained in the chapter of Boundary Value Problems. Since this algorithm reuses the BVP software layer which has been explained previously, the details of this step will not be included. By the end of this step, both solutions U^n and V^n are known.

Step 3. Spatial discretization of the IBVP.

Once U^n and V^n are known, their derivatives are calculated by the selected finite differences formulas. Once calculated, the difference operator $F_U(U^n, V^n; t_n)$ is built.

Step4. Temporal step for U^n .

Finally, the difference operator previously calculated F_U acts as the evolution function of a Cauchy problem. Once the following step is evaluated, the solution U_{Ω}^{n+1} at inner points is yielded. This means solving the system:

$$G(U_{\Omega}^{n+1}, U^n, \dots U^{n+1-s}; t_n, \Delta t) = F_U(U^n, V^n; t_n).$$

In this system, the values of the solution at the s steps are known and therefore, the solution of the system is the solution at the next temporal step U^{n+1}_{Ω} . However, the temporal scheme G in general is a function that needs to be restricted in order to be invertible. In particular a restricted function \tilde{G} must be obtained:

$$\tilde{G}(U_{\Omega}^{n+1}) = \left. G(U_{\Omega}^{n+1}, U^{n}, \dots U^{n+1-s}; t_{n}, \Delta t) \right|_{(U^{n}, \dots U^{n+1-s}; t_{n}, \Delta t)}$$

such that,

$$\tilde{G}: \mathbb{R}^{N_{e,u}-N_{C,u}} \to \mathbb{R}^{N_{e,u}-N_{C,u}}$$

Hence, the solution at the next temporal step for the inner points results:

$$U_{\Omega}^{n+1} = \tilde{G}^{-1}(F_U(U^n, V^n; t_n)).$$

This value will be used as an initial value for the next iteration. The philosophy for other temporal schemes is the same, the result is the solution at the next temporal step.

7.3 Implementation: the upper abstraction layer

Once the algorithm is set with a precise notation, it is very easy to implement following rigorously the steps provided by the algorithm. The ingredients that are used to solve the IBVP coupled with an BVP are given by the equations (7.1.1)-(7.1.6). Hence, the arguments of the subroutine IBVP_BVP to solve this problem is implemented in the following way:

```
subroutine IBVP_and_BVP( Time, x, y, L_u, L_v, BC_u, BC_v, &
                         Ut, Vt, Scheme, Boundary_data)
  real, intent(in) :: Time(0:), x(0:), y(0:)
  procedure (L_uv) ::
                       L_u, L_v
  procedure (BC2DS) :: BC_u, BC_v
  real, intent(out) :: Ut(0:, 0:, 0:, :), Vt(0:, 0:, 0:, :)
  procedure (Temporal_Scheme), optional :: Scheme
  procedure (B_data), optional :: Boundary_data
  real, pointer :: U_Cauchy(:, :)
  real :: t_BC
  integer :: it, Nx, Ny, Nt, Nu, Nv, M1, M2, M3, M4
  real, allocatable :: Ux(:,:,:), Uxx(:,:,:), Uxy(:,:,:),
                       Uy(:,:,:), Uyy(:,:,:)
  Nx = size(x) - 1; Ny = size(y) - 1; Nt = size(Time) - 1
  Nu = size(Ut, dim=4); Nv = size(Vt, dim=4)
  allocate( Ux(0:Nx,0:Ny, Nu), Uxx(0:Nx,0:Ny, Nu), Uxy(0:Nx,0:Ny, Nu), &
            Uy(0:Nx,0:Ny, Nu), Uyy(0:Nx,0:Ny, Nu))
  M1 = Nu*(Ny-1); M2 = Nu*(Ny-1); M3 = Nu*(Nx-1); M4 = Nu*(Nx-1)
  call my_reshape( Ut, Nt+1, Nu*(Nx+1)*(Ny+1), U_Cauchy )
  call Cauchy_ProblemS( Time, BVP_and_IBVP_discretization, U_Cauchy,
       Scheme )
contains
```

Listing 7.1: IBVP_and_BVPs.f90

These arguments comprise two differential operators L_u and L_v for the IBVP and the BVP respectively. The boundary conditions operators or functions of these two problems are called BC_u and BC_v. There are two output arguments Ut and Vt which the solution of the IBVP and the BVP respectively. The first three steps of the algorithm are carried out in the function BVP_and_IBVP_discretization and the four step is carried out in the subroutine Cauchy-ProblemS.

7.4 BVP_and_IBVP_discretization

```
subroutine BVP_and_IBVP_discretization_2D( U, t, F_u )
         real :: U(0:Nx,0:Ny, Nu), t, F_u(0:Nx,0:Ny, Nu)
   integer :: i, j, k
   real :: Vx(0:Nx,0:Ny, Nv), Vxx(0:Nx,0:Ny, Nv), Vxy(0:Nx,0:Ny, Nv)
   real :: Vy(0:Nx,0:Ny, Nv), Vyy(0:Nx,0:Ny, Nv), Uc(M1+M2+M3+M4)
       t_BC = t; call Binary_search(t_BC, Time, it)
   *** Step 1. BVP for V
      call Boundary_Value_Problem( x, y, L_v_R, BC_v_R, Vt(it,0:,0:,:))
  *** Derivatives for V
      do k=1. Nv
       call Derivative( ["x","y"], 1, 1, Vt(it, 0:,0:, k), Vx (0:,0:,k) )
       call Derivative( ["x","y"], 2, 1, Vt(it, 0:,0:, k), Vy (0:,0:,k) )
       call Derivative( ["x","y"], 1, 2, Vt(it, 0:,0:, k), Vxx(0:,0:,k) )
       call Derivative( ["x","y"], 2, 2, Vt(it, 0:,0:, k), Vyy(0:,0:,k) )
       call Derivative(["x","y"], 2, 1, Vx(0:
                                                 ,0:, k), Vxy(0:,0:,k)
      end do
      if (present(Boundary_data)) then
       call Boundary_data( Vt(it, 0:,0:, :), Vx, Vy, Vxx, Vyy)
      end if
   *** initial boundary value : Uc
       call Asign_BV2s( U(0, 1:Ny-1, 1:Nu ), U( Nx, 1:Ny-1, 1:Nu ), &
                        U(1:Nx-1, 0, 1:Nu ), U( 1:Nx-1, Ny, 1:Nu ), Uc)
   *** Step 2. Boundary points Uc from inner points U
       call Newton( BCs, Uc )
   *** asign boundary points Uc to U
       call Asign_BVs(Uc, U(0, 1:Ny-1, 1:Nu), U(Nx, 1:Ny-1, 1:Nu), &
                          U(1:Nx-1, 0, 1:Nu), U(1:Nx-1, Ny, 1:Nu)
  *** Derivatives of U for inner grid points
      do k=1, Nu
         call Derivative( ["x","y"], 1, 1, U(0:,0:,k), Ux(0:,0:,k))
         call Derivative( ["x","y"], 1, 2, U(0:,0:, k),
                                                        Uxx(0:,0:,k))
         call Derivative(["x","y"], 2, 1, U(0:,0:, k), Uy (0:,0:,k))
         call Derivative(["x","y"], 2, 2, U(0:,0:,k), Uyy(0:,0:,k))
         call Derivative(["x","y"], 2, 1, Ux(0:,0:,k), Uxy(0:,0:,k))
  *** Step 3. Differential operator L_u(U,V) at inner grid points
do i=1, Nx-1; do j=1, Ny-1
   F_u(i, j, :) = L_u(x(i), y(j), t, U(i, j, :),
                        Ux(i, j, :), Uy(i, j, :), Uxx(i, j, :),
                        Uyy(i, j, :), Uxy(i, j, :), Vt(it, i, j, :), &
                        Vx(i, j, :), Vy(i, j, :), Vxx(i, j, :),
                        Vyy(i, j, :), Vxy(i, j, :) )
end do; end do
end subroutine
```

Listing 7.2: IBVP_and_BVPs.f90

7.5 Step 1. Boundary values of the IBVP

As it was mentioned, the subroutine BVP_and_IBVP_discretization is the core subroutine of the algorithm. As it can be seen written in the code, it comprises the three first step of the algorithm. Step 1 is devoted to solve a system of equations for the boundary points Uc by means of Newton solver. The system is equations is constructed in the function BCs

Listing 7.3: IBVP_and_BVPs.f90

This subroutine prepares the functions **G** to be solved by Newton solver by packing equations of different edges of the spatial domain. The unknowns are gathered in the subroutine <code>Asign_BVs</code> and the equations are imposed in the subroutine <code>Asign_BCs</code>

```
subroutine Asign_BVs( Y, U1, U2, U3, U4)
  real, intent(in) :: Y(M1+M2+M3+M4)
  real, intent(out) :: U1(M1), U2(M2), U3(M3), U4(M4)

  integer :: i1, i2, i3, i4

  i1 = 1 + M1; i2 = i1 + M2; i3 = i2 + M3; i4 = i3 + M4

  U1 = Y(1 : i1-1)
  U2 = Y(i1 : i2-1)
  U3 = Y(i2 : i3-1)
  U4 = Y(i3 : i4-1)
end subroutine
```

Listing 7.4: IBVP_and_BVPs.f90

```
subroutine Asign_BCs( G1, G2, G3, G4 )
  real, intent(out) :: G1(1:Ny-1,Nu), G2(1:Ny-1,Nu),
                                                                      &
                       G3(1:Nx-1,Nu), G4(1:Nx-1,Nu)
  real :: Wx(0:Nx, 0:Ny, Nu), Wy(0:Nx, 0:Ny, Nu)
  integer :: i, j, k
  do k=1, Nu
   call Derivative(["x","y"], 1, 1, Ut(it, 0:, 0:, k), Wx(0:, 0:, k))
   call Derivative(["x","y"], 2, 1, Ut(it, 0:, 0:, k), Wy(0:, 0:, k))
  end do
  do j = 1, Ny-1
    G1(j,:) = BC_u(x(0), y(j), t_BC,
                    Ut(it, 0, j, :), Wx(0, j,:), Wy(0, j,:))
    G2(j,:) = BC_u(x(Nx), y(j), t_BC,
                    Ut(it, Nx, j, :), Wx(Nx, j, :), Wy(Nx, j, :))
  end do
  do i = 1, Nx-1
    G3(i,:) = BC_u(x(i), y(0), t_BC,
                    Ut(it, i, 0,:), Wx(i, 0, :), Wy(i, 0,:))
    G4(i,:) = BC_u(x(i), y(Ny), t_BC, &
                    Ut(it, i, Ny, : ), Wx(i, Ny, :), Wy(i, Ny, :))
  end do
end subroutine
```

Listing 7.5: IBVP_and_BVPs.f90

As it was mentioned, the function BC_u is the boundary conditions operator that is imposed to the IBVP and it is one of the input arguments of subroutine IBVP_an_BVP. To sum up, step 1 allows by gathering the unknowns of the boundary points and by building an algebraic system of equations to obtain the boundary values. This system of equations is solved by means of a Newton method.

7.6 Step 2. Solution of the BVP

As it can be seen in the subroutine BVP_and_IBVP_discretization, step 2 is carried out by the using the subroutine Boundary_Value_Problem which was developed in chapter devoted to the Boundary Value Problem. Since the interface of the differential operator argument L_v is not as the interface of the argument that uses Boundary_Value_Problem, some restrictions must be done. This restrictions for L_v and BC_v are done by menas of the functions L_v_R and BC_v_R.

Listing 7.6: IBVP_and_BVPs.f90

```
function BC_v_R(xr, yr, V, Vx, Vy) result (G_v)
    real, intent(in) :: xr, yr, V(:), Vx(:), Vy(:)
    real :: G_v(size(V))

    G_v = BC_v( xr, yr, t_BC, V, Vx, Vy )

end function
```

Listing 7.7: IBVP_and_BVPs.f90

As it can be observed, the interface of L_v_R and BC_v_R comply the requirements of the subroutine Boundary_Value_Problem. The extra arguments that L_v and BC_v require are accessed as external variables using the lexical scoping of subroutines inside another by means of the instruction contains.

7.7 Step 3. Spatial discretization of the IBVP

The spatial discretization of the IBVP is done in the last part of the subroutine BVP_and_IBVP_discretization by means of the differential operator L_u which is an input argument of the subroutine BVP_and_IBVP. Once derivatives of U and V are calculated in all grid points, the subroutine calculates the discrete or difference operator in each point of the domain. It is copied code snippet of the subroutine BVP_and_IBVP_discretization to follow easily these explanations.

Listing 7.8: IBVP_and_BVPs.f90

As it observed, two loops run through all inner grid points of U variable. In step 1, the boundary values of U are obtained by imposing the boundary conditions. It is important also to notice that the evolution of the inner grid points U depends on the values of U, V and their derivatives that are calculated previously

```
! *** Derivatives of U for inner grid points
    do k=1, Nu
        call Derivative( ["x","y"], 1, 1, U(0:,0:, k), Ux (0:,0:,k) )
        call Derivative( ["x","y"], 1, 2, U(0:,0:, k), Uxx(0:,0:,k) )
        call Derivative( ["x","y"], 2, 1, U(0:,0:, k), Uy (0:,0:,k) )
        call Derivative( ["x","y"], 2, 2, U(0:,0:, k), Uyy(0:,0:,k) )
        call Derivative( ["x","y"], 2, 1, Ux(0:,0:,k), Uxy(0:,0:,k) )
        end do
! *** Step 3. Differential operator L_u(U,V) at inner grid points
```

Listing 7.9: IBVP_and_BVPs.f90

7.8 Step 4. Temporal evolution of the IBVP

Finally, the state of the system in the next temporal step n+1 is calculated by using the classical subroutine Cauchy_ProblemS. A code snippet of the subroutine BVP_and_IBVP is copied here to follow the explanations.

Listing 7.10: IBVP_and_BVPs.f90

To reuse the subroutine Cauchy_ProblemS and since the interface of the function BVP_and_IBVP_discretization does not comply the requirements of the subroutine Cauchy_ProblemS, a restriction is used by means of the subroutine BVP_and_IBVP_discretization_2D

```
function BVP_and_IBVP_discretization( U, t ) result(F)
    real :: U(:), t
    real :: F(size(U))

    call BVP_and_IBVP_discretization_2D( U, t, F )
end function
```

Listing 7.11: IBVP_and_BVPs.f90

Listing 7.12: IBVP_and_BVPs.f90

As it can be observed, whereas U is a vector of rank one for the subroutine Cauchy_ProblemS, the rank of U for the subroutine BVP_and_IBVP_discretization_2D is three. This association between dummy argument and actual argument violates the TKR (Type-Kind-Rank) rule but allows pointing to the same memory space without duplicating or reshaping variables.

Nomenclature

 \mathbb{R}^N : N-dimensional real numbers field.

 $\mathcal{M}_{N\times N}$: Set of all square matrices of dimension $N\times N$.

I: Identity matrix.

 $\det(A)$: Determinant of a square matrix A. e_i : Base vector of a vectorial space. $e_i \otimes e_j$: Base tensor of a tensorial space.

 δ_{ij} : Delta Kronecker function.

L: Lower triangular matrix on a LU factorization. U: Upper triangular matrix on a LU factorization.

f: Application $f: \mathbb{R}^p \longrightarrow \mathbb{R}^p$.

 J_f : Jacobian matrix of an application f.

 $\overrightarrow{\nabla}$: Nabla operator $\partial/\partial x_i \ \boldsymbol{e}_i$. λ : Eigenvalue of a square matrix. ϕ : Eigenvector of a square matrix.

 $\Lambda(A)$: Spectra of a matrix A.

 $\kappa(A)$: Condition number of a matrix A.

 ℓ_i : Lagrange polynomial centered at x_j for global interpolation.

 ℓ_{jk} : k grade Lagrange polynomial centered at x_j for piecewise interpolation.

 ℓ_x : Interpolation vector along $OX \ \ell_x = \ell_i(x) e_i$. ℓ_y : Interpolation vector along $OY \ \ell_y = \ell_j(y) e_j$.

 \mathcal{F} : Second order tensor for 2-dimensional interpolation. $\mathrm{d}\boldsymbol{u}/\mathrm{d}t$: Temporal derivative for a function $\boldsymbol{u}:\mathbb{R}\longrightarrow\mathbb{R}^p$.

F(u,t): Differential operator $F: \mathbb{R}^p \times \mathbb{R} \longrightarrow \mathbb{R}^p$ for a Cauchy problem.

 $egin{array}{ll} oldsymbol{u}_0 & : & \mbox{Initial condition for a Cauchy problem.} \\ t_n & : & \mbox{n-th instant of the temporal mesh.} \\ \end{array}$

 u^n : Discrete solution of the Cauchy problem, $u^n \in \mathbb{R}^p$. s: Number of time steps for any numerical scheme.

 $\textbf{\textit{G}} \hspace{1cm} : \text{Temporal scheme } \textbf{\textit{G}} : \mathbb{R}^p \times \mathbb{R}^p \times \ldots \times \mathbb{R}^p \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}^p.$

 $ilde{m{G}}$: Restricted temporal scheme, $m{G}|_{(m{u}^n,\dotsm{u}^{n+1-s}:t_n,\Delta t)},\, ilde{m{G}}:\mathbb{R}^p\longrightarrow\mathbb{R}^p.$

 $\tilde{\boldsymbol{G}}^{-1}$: Restricted temporal scheme inverse, $\tilde{\boldsymbol{G}}^{-1}: \mathbb{R}^p \longrightarrow \mathbb{R}^p$.

```
\Omega
                       : Interior of the spatial domain of PDE problem.
\partial\Omega
                       : Boundary of the spatial domain of a PDE problem.
                       : Domain of a PDE problem, D \equiv \{\Omega \cup \partial \Omega\}.
D
                       : Differential operator of a BVP, \mathcal{L}: D \times \mathbb{R}^{N_v} \longrightarrow \mathbb{R}^{N_v}.
\mathcal{L}(x, u)
\left. oldsymbol{h}(oldsymbol{x},oldsymbol{u}) \right|_{\partial\Omega}
                       : Boundary conditions operator for a BVP.
U
                       : Discrete solution of a BVP.
F(U)
                       : Inner points difference operator for a BVP.
H(U)|_{\partial\Omega}
                       : Boundary points difference operator for a BVP.
                       : Inner and boundary points difference operator for a BVP.
S(U)
                       : Temporal partial derivative of an IVBP u: \mathbb{R} \longrightarrow \mathbb{R}^{N_v}.
\partial \boldsymbol{u}/\partial t
                       : Differential operator of an IVBP, \mathcal{L}: D \times \mathbb{R} \times \mathbb{R}^{N_v} \longrightarrow \mathbb{R}^{N_v}.
\mathcal{L}(\boldsymbol{x},t,\boldsymbol{u})
|\boldsymbol{h}(\boldsymbol{x},t,\boldsymbol{u})|_{\partial\Omega}
                       : Boundary conditions operator of an IVBP.
\boldsymbol{u}_0(\boldsymbol{x})
                       : Initial condition for an IVBP.
                       : Spatially discretized solution of an IVBP, U: \mathbb{R} \longrightarrow \mathbb{R}^N
U
                       : Inner points, U: \mathbb{R} \longrightarrow \mathbb{R}^{N-N_C}
U_{\Omega}
U|_{\partial\Omega_{\iota}}
                       : Boundary points, U: \mathbb{R} \longrightarrow \mathbb{R}^{N-N_C}
\mathrm{d}U_{\Omega}/\mathrm{d}t
                       : Temporal derivative for inner points.
F(U;t)
                       : Difference operator for a spatially discretized IVBP
H(U;t)|_{\partial\Omega}
                       : Difference operator for boundary points conditions.
U^n
                       : Discretized solution of an IVBP solution at the instant t_n.
U_{\Omega}^{n}
                       : Inner points of a discretized solution.
                       : Boundary points of a discretized solution.
U_{\partial\Omega}^n
E^n
                       : Temporal discretization error for an IVBP.
E
                       : Spatial discretization error for an IVBP.
                       : Spatial discretization error at x_i, \varepsilon_i : \mathbb{R} \longrightarrow \mathbb{R}.
arepsilon_i
\boldsymbol{arepsilon}_{i}^{n}
                       : Temporal discretization error at x_i.
oldsymbol{arepsilon}_{T,i}^n
                       : Total error at x_i.
                       : Total error on the resolution of a linear IVBP.
E_T
                       : Truncation error at \boldsymbol{x}_i, \, \boldsymbol{r}_i : \mathbb{R} \longrightarrow \mathbb{R}^{N_v}
oldsymbol{r}_i
                       : Truncation error for an IVBP, R : \mathbb{R} \longrightarrow \mathbb{R}^{N-N_C}.
R
                       : Fundamental matrix, \Phi: \mathbb{R} \longrightarrow \mathcal{M}_{N-N_C \times N-N_C}.
\exp(A)
                       : Exponential of the matrix A.
\sup K
                       : Supreme element of a set K.
\alpha(A)
                       : Spectral abscissa of a matrix A.
T^n
                       : Truncation temporal error at instant t_n.
\rho(A)
                       : Spectral radius of a matrix A.
                       : Differential operator for an evolution variable u: D \times \mathbb{R} \longrightarrow \mathbb{R}^{N_u}
\mathcal{L}_u
                       of an IVBP and BVP mixed problem,
                       \mathcal{L}_u: D \times \mathbb{R} \times \mathbb{R}^{N_u} \times \mathbb{R}^{N_v} \longrightarrow \mathbb{R}^{N_u}.
                       : Differential operator for a variable v: D \times \mathbb{R} \longrightarrow \mathbb{R}^{N_v} of an
\mathcal{L}_v
                       IVBP and BVP mixed problem,
                       \mathcal{L}_v: D \times \mathbb{R} \times \mathbb{R}^{N_v} \times \mathbb{R}^{N_u} \longrightarrow \mathbb{R}^{N_v}.
                       : Boundary conditions operator for a mixed problem.
h_{u}
                       : Boundary conditions operator for a mixed problem.
\boldsymbol{h}_v
```

Part III

Application Program Interface

Systems of equations

1.1 Overview

This is a library designed to solve systems of equations. The module Linear_systems has functions and subroutines related to linear algebra.

```
module Linear_systems
use Utilities
implicit none
private
public ::
  LU_factorization,
                              & ! A = L U (lower, upper triangle matrices)
  Solve_LU,
                              & ! It solves L U x = b
                              & ! Inverse of A
  Inverse,
  Gauss, & ! Inverse of A

& ! Inverse of A

& ! It solves A x = b by Guass elimination

Condition_number, & ! Kappa(A) = norm2(A) * norm2(inverse(A))

Power_method, & ! It determines to largest eigenvalue of A
  Inverse_Power_method, & ! It determines the smallest eigenvalue of A
  Eigenvalues_PM, & ! All eigenvalue of A by the power method
  SVD,
                             & ! A = U S transpose(V)
  linear_regression
                               ! y = c1 x + c0
contains
```

Listing 1.1: Linear_systems.f90

1.2 Linear systems module

LU factorization

```
call LU_factorization( A )
```

The subroutine $LU_factorization$ finds the LU factorization of the input matrix A. The results is given in the same argument. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
A	two-dimensional	inout	Square matrix.
	array of reals		

Table 1.1: Description of LU_factorization arguments

Solve LU

```
x = Solve_LU( A , b )
```

The function Solve_LU finds the solution to the linear system of equations A x = b, where the matrix A has been previously L U factorized and b is a given vector. The arguments of the function are described in the following table.

Argument	Type	Intent	Description
A	two-dimensional	inout	Square matrix A pre-
	array of reals		viously factorized by
			LU_factorization.
b	vector of reals	in	Independent term \boldsymbol{b} .

Table 1.2: Description of Solve_LU arguments

Inverse

```
B = Inverse( A )
```

The function Inverse finds the inverse of the square matrix A by means of a L U factorization.

Gauss

```
x = Gauss(A, b)
```

The function Gauss finds the solution of the linear system of equations A x = b by means of a classical Gaussian elimination. The arguments of the function are described in the following table.

Argument	Type	Intent	Description
A	two-dimensional	inout	Square matrix A .
	array of reals		
b	vector of reals	in	Independent term \boldsymbol{b} .

Table 1.3: Description of Gauss arguments

Condition number

```
kappa = Condition_number(A)
```

The function Condition_number determines the condition number $\kappa = ||A||_2 ||A^{-1}||_2$ where A is a square matrix.

Power method

```
call Power_method(A, lambda, U)
```

The function $Power_method$ finds the largest eigenvalue of A by the power method. The arguments of the function are described in the following table.

Argument	Type	Intent	Description
A	array of reals	inout	Square matrix A .
lambda	real	out	Largest eigenvalue.
U	vector of reals	out	Associated eigenvector.

Table 1.4: Description of Power_method arguments

Inverse Power method

```
call Inverse_Power_method(A, lambda, U)
```

The function $Power_method$ finds the smallest eigenvalue of A by the inverse power method. The arguments of the function are described in the following table.

Argument	Type	Intent	Description
A	array of reals	inout	Square matrix A .
lambda	real	out	Smallest eigenvalue.
U	vector of reals	out	Associated eigenvector.

Table 1.5: Description of Inverse_power_method arguments

Eigenvalues by means of the power method

```
call Eigenvalues_PM(A, lambda, U, lambda_min)
```

The function $Eigenvalues_PM$ calculates the eigenvalues of a symmetric matrix A. Since the power method obtains the greatest eigenvalue, eigenvalues are calculated sequentially until the minimum value $lambda_min$ is reached. The arguments of this subroutine are described in the following table.

Argument	Type	Intent	Description
A	array of reals	in	symmetric matrix A .
lambda	vector of reals	out	eigenvalues of A .
U	array of reals	out	U_{ik} is the associated eigenvec-
			tor of A .
lambda_min	real, optional	in	min value of calculated eigen-
			values.

Table 1.6: Description of Eigenvalues_PM arguments

SVD

```
call SVD(A, sigma, U, V, sigma_min)
```

The subroutine SVD finds the decomposition $A = U S V^T$ of a non-square matrix A. The singular values sigma are calculated sequentially until the minimum value $sigma_min$ is reached. If the rank of matrix A is $r < \min(N, M)$, eigenvalues are completed by means of Gram–Schmidt orthonormalization. The arguments of the function are described in the following table.

Argument	Type	Intent	Description
A	two-dimensional	in	Square matrix A .
	array of reals		
sigma	vector of reals	out	σ_k^2 eigenvalues of $A^T A$
U	two-dimensional	out	U_{ik} is the associated eigenvec-
	array of reals		tor of $A A^T$
V	two-dimensional	out	V_{ik} is the associated eigenvec-
	array of reals		tor of $A^T A$

Table 1.7: Description of SVD arguments

1.3 Non Linear Systems module

The module Non_Linear_Systems is used to solve non linear system of equations.

Listing 1.2: Non_Linear_Systems.f90

Newton

```
call Newton( F , x0 )
```

The subroutine Newton returns the solution of a non-linear system of equations. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
F	vector function	in	System of equations to be
	$F: \mathbb{R}^N \to \mathbb{R}^N$		solved.
x0	vector of reals	inout	Initial iteration point. When
			the iteration reaches conver-
			gence, this vector contains
			the solution of the problem.

Table 1.8: Description of Newton arguments

Newtonc

```
call Newtonc( F , x0 )
```

The subroutine Newtonc returns the solution of implicit and explicit equations packed in the same function F(x). Hence, the function F(x) has internally the following form:

$$\begin{array}{lll} x_1 = & g_1(x_2, x_3, \dots x_N), \\ x_2 = & g_2(x_1, x_3, \dots x_N), \\ \vdots & \vdots & \\ x_m = & g_m(x_1, x_2, \dots x_N), \\ \\ F_1 = & 0, \\ F_2 = & 0, \\ \vdots & \vdots & \\ F_m = & 0, \\ \\ F_{m+1} = & g_{m+1}(x_1, x_2, \dots x_N), \\ \vdots & \vdots & \\ F_N = & g_N(x_1, x_2, \dots x_N). \end{array}$$

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
F	vector function	in	System of implicit and ex-
			plicit equations to be solved.
x0	vector of reals	inout	Initial iteration point. When
			the iteration reaches conver-
			gence, this vector contains
			the solution of the problem.

Table 1.9: Description of Newtonc arguments

Interpolation

2.1 Overview

This library is intended to solve an interpolation problem. It comprises: Lagrangian interpolation, Chebyshev interpolation and Fourier interpolation. To accomplish this purpose, Interpolation module uses three modules as it is shown in the following code:

```
module Interpolation
    use Lagrange_interpolation
    use Chebyshev_interpolation
    use Fourier_interpolation
    implicit none
  private
  public ::
  Interpolated_value, & ! It interpolates at xp from (x_i, f_i)
            & ! It integrates II om x_ ... ... t ! It interpolates I(xp) from (x_i, f_i)
  Integral,
  Interpolant
  interface Interpolant
        module procedure Interpolant1D, Interpolant2D, Interpolant3D
  end interface
  interface Interpolated_value
        module procedure Interpolated_value1D, Interpolated_value2D,
             Interpolated_value3D
  end interface
contains
```

Listing 2.1: Interpolation.f90

2.2 Interpolation module

Interpolated value

The function interpolated_value is devoted to conduct a piecewise polynomial interpolation of the value of a certain function f(x) in $x = x_p$. The data provided to carry out the interpolation is the value of that function f(x) in a set of nodes.

yp = Interpolated_value(x, f, xp, degree)

Argument	Type	Intent	Description
x	vector of reals	in	Points in which the value of
			the function $f(x)$ is provided.
f	vector of reals	in	Values of the function $f(x)$ in
			the group of points denoted
			by x .
xp	real	in	Point in which the value of
			the function f will be inter-
			polated.
degree	integer	op-	Degree of the polynomial
		tional,	used in the interpolation. If it
		in	is not presented, it takes the
			value 2.

Table 2.1: Description of interpolated_value arguments

Integral

```
I = Integral( x, f, degree )
```

The function Integral is devoted to conduct a piecewise polynomial integration of a certain function f(x). The data provided to carry out the interpolation is the value of that function f(x) in a group of nodes. The limits of the integral correspond to the minimum and maximum values of the nodes.

The arguments of the function are described in the following table.

Argument	Type	Intent	Description
x	vector of reals	in	Points in which the value of
			the function $f(x)$ is provided.
f	vector of reals	in	Values of the function $f(x)$ in
			the group of points denoted
			by x .
degree	integer	in (op-	Degree of the polynomial
		tional)	used in the interpolation. If it
			is not presented, it takes the
			value 2.

Table 2.2: Description of Integral arguments

Interpolant for $\mathbf{x} \in \mathbb{R}^k$

Since the space domain $\Omega \subset \mathbb{R}^k$ with k = 1, 2, 3, 1D, 2D or 3D interpolants are calculated depending on the numerical problems. To avoid dealing with different names associated to different space dimensions, the subroutine Interpolant is overloaded with the following subroutines:

```
interface Interpolant
    module procedure Interpolant1D, Interpolant2D, Interpolant3D
end interface
```

Listing 2.2: Interpolation.f90

Interpolant1D

The function Interpolant builds a polynomial interpolation and its derivatives by means of a given set of points (x_i, f_i) . The interpolant and its derivatives are evaluated at the set of points x_p .

```
Ip = Interpolant( x, f, xp, degree )
```

The result Ip is a matrix containing the interpolant and its derivatives evaluated at the set of points x_p . First index represents the derivative order and the second index represents the point in which the interpolant is evaluated.

Argument	Type	Intent	Description
X	vector of reals	in	Points in which the value of
			the function $f(x)$ is provided.
f	vector of reals	in	Values of the function $f(x)$ in
			the set of points denoted by
			x.
xp	vector of reals	in	Points in which the inter-
			polant and its derivatives are
			evaluated.
degree	integer	in	Degree of the polynomial
			used in the interpolation.

Table 2.3: Description of Interpolant arguments

Interpolant 2D

The function Interpolant builds a polynomial interpolation by means of a given set of points (x_i, y_j, f_{ij}) . The interpolant are evaluated at the set of points (x_p, y_p) .

```
Ip = Interpolant( x, y, f, xp, yp, degree )
```

The result is a tensor of rank 2 containing the interpolant evaluated at the set of points (x_p, y_p) . First and second indexes represent the point (x_p, y_p) in which the interpolant is evaluated.

Argument	Type	Intent	Description
X	vector of reals	in	Points in which the value of
			the function $f(x,y)$ is pro-
			vided.
У	vector of reals	in	Points in which the value of
			the function $f(x,y)$ is pro-
			vided.
f	vector of reals	in	Values of the function $f(x,y)$
			in the set of points (x_i, y_j) .
xp	vector of reals	in	Points in which the inter-
			polant is evaluated.
yp	vector of reals	in	Points in which the inter-
			polant is evaluated.
degree	integer	in	Degree of the polynomial
			used in the interpolation.

Table 2.4: Description of Interpolant arguments

Interpolant 3D

The function Interpolant builds a polynomial interpolation by means of a given set of points (x_i, y_j, z_k, f_{ijk}) . The interpolant are evaluated at the set of points (x_p, y_p, z_p) .

```
yp = Interpolant( x, y, z, f, xp, yp, zp, degree )
```

The result is a matrix containing the interpolant evaluated at the set of points (x_p, y_p, z_p) . First index and second indexes represent the point in which the interpolant is evaluated.

Argument	Type	Intent	Description
x	vector of reals	in	Interpolation x-coordinate
У	vector of reals	in	Interpolation y-coordinate
Z	vector of reals	in	Interpolation z–coordinate
f	vector of reals	in	Values $f(x_i, y_j, z_k)$.
xp	vector of reals	in	Points in which the inter-
			polant is evaluated.
yp	vector of reals	in	Points in which the inter-
			polant is evaluated.
zp	vector of reals	in	Points in which the inter-
			polant is evaluated.
degree	integer	in	Degree of the polynomial
			used in the interpolation.

Table 2.5: Description of Interpolant arguments

2.3 Lagrange interpolation module

The Lagrange interpolation module is devoted to determine Lagrange interpolants as well as errors associated to the interpolation. To accomplish this purpose, Lagrange_interpolation module comprises the two following functions:

Listing 2.3: Lagrange_interpolation.f90

Lagrange polynomials

The function Lagrange_interpolation determines the value of the different Lagrange polynomials at some point xp. Given a set of nodal or interpolation points x, the following sentence determines the Lagrange polynomials:

```
yp = Lagrange_polynomials( x, xp )
```

The interface of the function is:

```
pure function Lagrange_polynomials( x, xp )
   real, intent(in) :: x(0:), xp
   real Lagrange_polynomials(-1:Size(x)-1,0:Size(x)-1)
```

Listing 2.4: Lagrange_interpolation.f90

The result is a matrix containing all Lagrange polynomials

$$\ell_0(x), \ \ell_1(x), \ldots \ell_N(x)$$

and their derivatives $\ell_j^{(i)}(x)$ (first index of the array) calculated at the scalar point xp. The integral of the Lagrange polynomials is taken into account by the first index of the array with value equal to -1. The index 0 means the value of the Lagrange polynomials and an index k greater than 0 represents the "k-th" derivative of the Lagrange polynomial.

Lebesgue functions

The function Lebesgue_functions computes the Lebesgue function and its derivatives at different points xp. Given a set of nodal or interpolation points x, the following sentence determines the Lebesgue function:

```
yp = Lebesgue_functions( x, xp )
```

The interface of the function is:

```
pure function Lebesgue_functions( x, xp )
   real, intent(in) :: x(0:), xp(0:)
   real Lebesgue_functions(-1:Size(x)-1, 0:Size(xp)-1)
```

Listing 2.5: Lagrange_interpolation.f90

The result is a matrix containing the Lebesgue function:

$$\lambda(x) = |\ell_0(x)| + |\ell_1(x)| + \ldots + |\ell_N(x)|$$

and their derivatives $\lambda^{(i)}(xp_j)$ (first index of the array) calculated at different points xp_j . The integral of the Lebesgue function is represented by the first index with value equal to -1. The index 0 means the value of the Lebesgue function and an index k greater than 0 represents the "k-th" derivative of the Lebesgue function. The second index of the array takes into account different components of xp.

2.3.1 Error polynomial

Given a set of of nodal or interpolation points x, the function $\mathtt{PI_Error_polynomial}$ computes the truncation error polynomial

$$\pi_{N+1}(x) = |x - x_0| |x - x_1| \dots |x - x_N|$$

and its derivatives at different points xp. The following sentence determines the error polynomial and its derivatives:

```
yp = PI_error_polynomial( x, xp )
```

The interface of the function is:

```
function PI_error_polynomial( x, xp )
    real, intent(in) :: x(0:), xp(0:)
    real PI_error_polynomial(0:size(x)-1, 0:size(xp)-1)
```

Listing 2.6: Lagrange_interpolation.f90

The result is a matrix containing the error polynomial and its derivatives of π_{N+1} calculated at different points xp. The first index of the array is used to hold the value of the derivatives if the error polynomial (0 for the value and values greatr than zero for high order derivatives). The second index takes into account different components of xp.

Collocation methods

3.1 Overview

This library is intended to calculate total or partial derivatives of functions at any specific $x \in \mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$. Since the function is known through different data points $(x_i, f(x_i))$, it is necessary to build an interpolant.

$$I(x) = f(x_0) \phi_0(x) + f(x_1) \phi_1(x) + \ldots + f(x_N) \phi_N(x).$$

Hence, given a set of nodals or interpolation points, the coefficients for different derivatives are calculated by means of the subroutine <code>Grid_initialization</code>. Later, the subroutine <code>Derivative</code> calculates the derivative by multiplying the function values by this calculated coefficients.

```
module Collocation_methods
    use Dependencies_BC
    use Finite_differences
    use Fourier_interpolation
    use Chebyshev_interpolation
    implicit none

private
    public :: &
        Grid_Initialization, & ! Coefficients of derivatives
        Derivative, & ! k-th derivative of u(:)
```

Listing 3.1: Collocation_methods.f90

3.2 Collocation methods module

Grid Initalization

call Grid_Initialization(grid_spacing, direction, q, grid_d)

Argument	Type	Intent	Description
grid_spacing	character	in	Collocation nodes
direction	character	in	Given name of the grid.
q	integer, optional	in	Degree of the interpolant.
grid_d	vector of reals	inout	Calculated mesh:grid_d(0:)

Table 3.1: Description of Grid_Initalization arguments

The argument grid_spacing can take the values: 'uniform' (equally-spaced), 'nonuniform', 'Fourier' or 'Chebyshev'. If grid_spacing is 'nonuniform', this subroutine calculates an optimum set of points within the space domain defined with the first point at x_0 and the last point x_N . This set of points depends on the interpolation order q. Later, it builds the interpolant and its derivatives at the same data points x_i and it stores their values for future use by the subroutine Derivative. The q argument is optional and if it is only used when dealing with finite difference methods ('uniform' or 'nonuniform'). It represents the degree of the interpolating polynomial and q nust be smaller or equal to N-1 nodes.

If the selected collocation method is 'Fourier' or 'Chebyshev', derivatives are calculated by transforming the nodal points from the physical plane to the spectral plane. Then, derivatives are calculated in the spectral plane and, finally, an inverse transform form the spectral plane to the physical plane allows to obtain the derivatives in the nodal grid or physical plane.

Derivatives for $x \in \mathbb{R}^k$

Since the space domain $\Omega \subset \mathbb{R}^k$ with k=1,2,3, derivatives (1D,2D or 3D) are calculated depending on the numerical problems. To avoid dealing with different names associated to different space dimensions, the subroutine **Derivative** is overloaded with the following subroutines:

```
interface Derivative
  module procedure Derivative3D, Derivative2D, Derivative1D
end interface
```

Listing 3.2: Collocation_methods.f90

Derivative for 1D grids

```
call Derivative( direction, derivative_order, W, Wxi, j )
```

Argument	Type	Intent	Description
direction	character	in	It selects the direction which
			composes the grid from the
			ones that have already been
			defined.
derivative_or-	integer	in	Order of derivation.
der			
W	vector of reals	in	Given nodal values W(0:N).
Wxi	vector of reals	out	Value of the k-th derivate
			at the same nodal values
			Wxi(0:N).
j	integer, optional	in	Index in which the derivative
			is calculated.

Table 3.2: Description of Derivative arguments for 1D grids

If the j argument is present then, only the derivative is calculated at x_j . If this argument is not present, derivatives are calculated at every grid point form x_0 to x_N .

To explain how the Collocation_methods module works, the following snippet is shown:

```
subroutine Derivative1D( direction, derivative_order, W, Wxi, j )
  character(len=*), intent(in) :: direction
  integer, intent(in) :: derivative_order
  real, intent(in) ::
                       W(0:)
  real, intent(out)::
                       Wxi(0:)
  !real, intent(in) :: W(:)
  !real, intent(out)::
                         Wxi(:)
  integer, optional, intent(in) :: j
     if (method == "Fourier" ) then
         call Fourier_Derivative1D( direction, derivative_order, W, Wxi )
     else if (method == "Chebyshev" ) then
         call Chebyshev_Derivative1D( direction, derivative_order, W, Wxi
     else
         call FD_Derivative1D( direction, derivative_order, W, Wxi, j )
     end if
end subroutine
```

Listing 3.3: Collocation_methods.f90

Once Grid_Initialization has selected the collocation methods, the subroutine Derivative calculates derivatives of basis functions $\phi_k(x)$. These functions are sine or cosine functions in the Fourier method or Lagrange polynomials in the finite difference method.

Derivative for 2D and 3D grids

 ${\color{red} \textbf{call}} \ \, \texttt{Derivative(direction , coordinate , derivative_order , W , Wxi)} \\$

Argument	Type	Intent	Description
direction	vector of charac-	in	It selects the directions
	ters		which compose the grid
			from the ones that have
			already been defined by
			Grid_Initilization.
coordinate	integer	in	Coordinate at which the
			derivate is calculated. It can
			be $1,2$ for $2D$ grids and $1,2$ or
			3 for 3D grids.
derivative_or-	integer	in	Order of derivation.
der			
W	N-dimensional ar-	in	W(:,:) in 2D problems and
	ray of reals		W(:,:,:) in 3D problems.
Wxi	N-dimensional ar-	out	Values of the derivative at
	ray of reals		grid points. Wxi(:,:) in 2D
			and Wxi(:,:,:) in 3D.

Table 3.3: Description of Derivative arguments for 2D and 3D grids

If direction = ["x", "y"], coordinate = 2 and derivative_order = 1, then Wxi represent the first partial derivative of W(x,y) with respect to y.

Chapter 4

Cauchy Problem

4.1 Overview

The module Cauchy_Problem is designed to solve the following problem:

$$\frac{\mathrm{d}\boldsymbol{U}}{\mathrm{d}t} = \boldsymbol{F} (\boldsymbol{U}, t), \quad \boldsymbol{U}(0) = \boldsymbol{U}^{0}, \quad \boldsymbol{F} : \mathbb{R}^{Nv} \times \mathbb{R} \to \mathbb{R}^{Nv}$$

```
module Cauchy_Problem

use ODE_Interface
use Temporal_scheme_interface
use Temporal_Schemes
implicit none

private
public :: &
    Cauchy_ProblemS, & ! It calculates the solution of a Cauchy problem
    set_tolerance, & ! It sets the error tolerance of the integration
    set_solver, & ! It defines the family solver and the name solver
    get_effort, & ! # function evaluations (ODES) after integration
    set_GBS_levels ! It fixes the number of levels of GBS schemes

contains
```

Listing 4.1: Cauchy_Problem.f90

The subroutine Cauchy_ProblemS is called to calculate the solution $\boldsymbol{U}(t)$. If no numerical method is defined, the system is integrated by means of a fourth order Runge Kutta method. To define the error tolerance, the subroutine set_tolerance is used. To specify the discrete temporal method, the subroutine set_solver is called.

4.2 Cauchy problem module

Cauchy ProblemS

call Cauchy_ProblemS(Time_Domain, Differential_operator, Solution, Scheme)

The subroutine Cauchy_ProblemS calculates the solution to a Cauchy problem. Previously to using it, the initial conditions must be imposed. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
Time_Do-	vector of reals	in	Time domain partition where
main(0:N)			the solution is calculated.
Differential_op-	vector function:	in	It is the function $F(U, t)$ de-
erator	$oldsymbol{F}: \mathbb{R}^N imes \mathbb{R} o \mathbb{R}^N$		scribed in the overview.
Solution(0:N,	matrix of reals.	out	The first index represents the
1:Nv)			time and the second index
			contains the components of
			the solution.
Scheme	temporal scheme	op-	Defines the scheme used to
		tional	solve the problem. If it is
		in	not present, the subroutine
			set_solver allows to define
			the family and the member of
			the family. If the family is
			not defined, it uses a Runge
			Kutta of four stages.

Table 4.1: Description of Cauchy_ProblemS arguments

Set solver

```
call set_solver( family_name, scheme_name)
```

The subroutine set_solver allows to select the family of the numerical method and some specific member of the family to integrate the Cauchy problem.

Argument	Type	Intent	Description
familiy_name	character array	in	family name of the numerical
			scheme to integrate the evo-
			lution problem.
scheme_name	character array	in	name of a specific member of
			the family.

Table 4.2: Description of set_tolerance arguments

The following list describes new software implementations of the different families and members:

- 1. Embbeded Runge Kutta familty ("eRK"). Specific scheme names:
 - (a) "HeunEuler21".
 - (b) "RK21".
 - (c) "BogackiShampine".
 - (d) "DOPRI54".
 - (e) "Fehlberg54".
 - (f) "Cash_Karp".
 - (g) "Fehlberg87".
 - (h) "Verner65".
 - (i) "RK65".
 - (j) "RK87".
- 2. Gragg, Burlish and Stoer method ("GBS"). Specific scheme names:
 - (a) "GBS".
- 3. Adams, Bashforth, Moulton methods ("ABM") implemented as multivalue methods. Specific scheme names:
 - (a) "PC_ABM".

The following list describes wrappers for classical codes for the different families:

- Wrappers of classical embbeded Runge Kutta ("werk"). Specific scheme names:
 - (a) "WDOP853".
 - (b) "WDOPRI5".
- 2. Wrappers of classical Gragg Burlish and ("wGBS"). Specific scheme names:
 - (a) "WODEX".
- 3. Wrappers of classical Adams, Bashforth Methods ("wABM"). Specific scheme names:
 - (a) "WODE113".

Set tolerance

```
call set_tolerance(Tolerance)
```

The subroutine set_tolerance allows to fix the relative and absolute error tolerance of the solution. Embedded Runge-Kutta methods, Adams Bashforth or GBS methods are able to modify locally their time step to attain the required error tolerance.

Set levels of the GBS scheme

```
call set_GBS_levels(NL)
```

The subroutine set_GBS_levels allows to fix the number NL of refinement levels of the GBS methods. If this number of levels is not fixed, the GBS determines automatically the number of levels required to achieve a specified error tolerance.

Get effort

```
get_effort()
```

The function get_effort determines the number of evaluations of the vector function associated to the Cauchy problem that are done by the numerical scheme to accomplish the required tolerance.

4.3 Temporal schemes

The module Temporal_schemes comprises easy examples of temporal schemes and allows checking new methods developed by the user.

```
module Temporal_Schemes
use Embedded_RKs
use Gragg_Burlisch_Stoer
use Adams_Bashforth_Moulton
use Wrappers
use ODE_Interface
use Non_Linear_Systems
implicit none
 private
 public :: &
                             & ! U(n+1) \leftarrow U(n) + Dt F(U(n))
       Euler,
       Inverse_Euler, & ! U(n+1) <- U(n) + Dt F(U(n+1))
Crank_Nicolson, & ! U(n+1) <- U(n) + Dt/2 (F(n+1))
                            & ! U(n+1) \leftarrow U(n) + Dt/2 (F(n+1) + F(n))
                            & ! U(n+1) \leftarrow U(n-1) + Dt/2 F(n)
       Leap_Frog,
Runge_Kutta2,
"-++a4.
                            & ! U(n+1) \leftarrow U(n) + Dt/2 (F(n)+F(U_Euler))
                            & ! Runge Kutta method of order 4
       Predictor_Corrector1,& ! Variable step methods
```

Listing 4.2: Temporal_schemes.f90

The Cauchy_problem module uses schemes with the following interface:

Listing 4.3: Temporal_scheme_interface.f90

4.4 Stability

The module Stability_regions allows to calculate the region of absolute stability of any numerical method. This region is defined by the following expression:

$$\mathcal{R} = \{ \omega \in \mathbb{C}, \pi(\rho, \omega) = 0, |\rho| < 1 \}$$

where $\pi(\rho,\omega)$ is the characteristic polynomial of stability of the numerical scheme.

```
module Stability_regions
    use Temporal_scheme_interface
    implicit none

private
public :: Absolute_Stability_Region ! For a generic temporal scheme
contains
```

Listing 4.4: Stability_regions.f90

```
call Absolute_Stability_Region(Scheme, x, y, Region)
```

Argument	Type	Intent	Description
Scheme	temporal scheme	in	Selects the scheme whose sta-
			bility region is computed.
X	vector of reals	in	Real domain $\operatorname{Re} z$ of the com-
			plex plane.
у	vector of reals	in	Imaginary domain $\operatorname{Im} z$ of the
			complex plane.
Region	matrix of reals	in	Maximum value of the roots
			of the characteristic polyno-
			mial for each point of the
			complex domain.

Table 4.3: Description of Cauchy_ProblemS arguments

4.4. STABILITY 243

The module Stability allows to calculate the eigenvalues $||lambda_k|$ of the Jacobian of F(u,t) particularized at u_0,t_0 to determine the time step to have a stable solution by imposing $\lambda_k \Delta t \in \mathcal{R}$.

Listing 4.5: Stability.f90

To calculate the Jacobian of F(U,t)

$$J_{ij} = \frac{\partial F_i}{\partial U_j}(U_0, t_0)$$

evaluated at u_0, t_0 the following sentence is used:

```
A = System_matrix( F, UO, tO)
```

To calculate the eigenvalues of the above Jacobian, the following sentence is used:

```
lambda = Eigenvalues_Jacobian( F, UO, tO)
```

where lambda is a vector of complex numbers that holds the eigenvalues of the Jacobian of F(U,t).

4.5 Temporal error

The module Temporal_error allows to determine, based on Richardson extrapolation, the error of a numerical solution.

Listing 4.6: Temporal_error.f90

The module uses the Cauchy_Problem module and comprises three subroutines to analyze the error of the temporal schemes. It is an application layer based on the Cauchy_Problem layer. The error is calculated by integrating the same solution in successive time grids. By using the Richardson extrapolation method, the error is determined.

Error of the solution

Argument	Type	Intent	Description
Time_Do-	vector of reals	in	Time domain partition where
main(0:N)			the solution is calculated.
Differential_op-	vector function	in	It is the function $\boldsymbol{F}\left(\boldsymbol{U},\ t\right)$ de-
erator	$oldsymbol{F}: \mathbb{R}^N imes \mathbb{R} ightarrow \mathbb{R}^N$		scribed in the overview.
Scheme	temporal scheme	op-	Defines the scheme used to
		tional	solve the problem.
		in	
order	integer	in	order of the numerical
			scheme.
Solution(0:N,	matrix of reals.	out	The first index represents the
1:Nv)			time and the second index
			contains the components of
			the solution.
Error(0:N,	matrix of reals.	out	The first index represents the
1:Nv)			time and the second index
			contains the components of
			the solution.

Table 4.4: Description of Error_Cauchy_Problem arguments

Convergence rate with time steps

Argument	Type	Intent	Description
Time_Do-	vector of reals	in	Time domain partition where
main(0:N)			the solution is calculated.
Differential_op-	vector function	in	It is the function $\boldsymbol{F}\left(\boldsymbol{U},\ t\right)$ de-
erator	$oldsymbol{F}: \mathbb{R}^N imes \mathbb{R} o \mathbb{R}^N$		scribed in the overview.
U0	vector of reals	in	Components of the initial
			conditions.
Scheme	temporal scheme	in (op-	Defines the scheme used to
		tional)	solve the problem.
order	integer	in	order of the numerical
			scheme.
log_E	vector of reals	out	Log of the norm2 of the er-
			ror solution. Each component
			represents a different time
			grid.
log_N	vector of reals	out	Log of number of time steps
			to integrate the solution. Se-
			quence of time grids N, 2N,
			4N Each component repre-
			sents a different time grid.

Table 4.5: Description of Temporal_convergence_rate

Error behavior with tolerance

Argument	Type	Intent	Description
Time_Do-	vector of reals	in	Time domain partition where
main(0:N)			the solution is calculated.
Differential_op-	vector function	in	It is the function $\boldsymbol{F}\left(\boldsymbol{U},\ t\right)$ de-
erator	$oldsymbol{F}: \mathbb{R}^N imes \mathbb{R} o \mathbb{R}^N$		scribed in the overview.
U0	vector of reals	in	Initial conditions.
log_mu	vector of reals	in	Log of the 1/tolerances. This
			vector is given and it allows
			to integrate internally differ-
			ent simulations with different
			error tolerances.
log_steps	vector of reals	out	Log of the number of time
			steps to accomplish a simula-
			tion with a given error toler-
			ance. The numerical scheme
			has to be selected previously
			with set_solver.

Table 4.6: Description of Temporal_error_with_tolerance

Boundary Value Problems

5.1 Overview

This library is intended to solve linear and nonlinear boundary value problems. An equation involving partial derivatives together with some constraints applied to the frontier of its spatial domain constitute a boundary value problem.

```
module Boundary_value_problems

use Boundary_value_problems1D
use Boundary_value_problems2D

implicit none
private
public :: Boundary_Value_Problem ! It solves a boundary value problem

interface Boundary_Value_Problem
    module procedure Boundary_Value_Problem1DS, &
    Boundary_Value_Problem2DS

end interface
end module
```

Listing 5.1: Boundary_value_problems.f90

Since the space domain $\Omega \subset \mathbb{R}^k$ with k=1,2,3, boundary value problems are stated in 1D, 2D and 3D grids. To have the same name interface when dealing with different space dimensions, the subroutine Boundary_value_problem has been overloaded.

5.2 Boundary value problems module

1D Boundary Value Problems for system of equations

This subroutine calculates the solution of a boundary value problem of N variables in a one dimensional domain [a, b]:

$$\mathcal{L}\left(x, \ u, \ \frac{\partial u}{\partial x}, \ \frac{\partial^2 u}{\partial x^2}\right) = 0, \qquad h\left(x, \ u, \ \frac{\partial u}{\partial x}\right) = 0.$$

Argument	Type	Intent	Description
x	vector of reals	in	Mesh nodes
Differential_op-	vector function: \mathcal{L}	in	$\mathcal{L}: \mathbb{R} imes \mathbb{R}^N imes \mathbb{R}^N imes \mathbb{R}^N ightarrow \mathbb{R}^N$
erator			
Boundary_con-	vector function: \boldsymbol{h}	in	$oldsymbol{h}: \mathbb{R} imes \mathbb{R}^N imes \mathbb{R}^N ightarrow \mathbb{R}^N$
ditions			
Solution	two-dimensional	out	Solution(:,:). First index
	array of reals		stands for x and the sec-
			ond index stands for different
			variables.

Table 5.1: Description of Boundary_Value_Problem arguments for 1D vector problems

2D Boundary Value Problems for system of equations

This subroutine calculates the solution of a 2D boundary value problem of N variables in a rectangular domain $[a,b] \times [c,d]$. The differential operator \mathcal{L} and the boundary conditions \mathcal{L} are expressed as:

$$\mathcal{L}\left(x,\ y,\ \boldsymbol{u},\ \frac{\partial\boldsymbol{u}}{\partial x},\ \frac{\partial\boldsymbol{u}}{\partial y},\ \frac{\partial^2\boldsymbol{u}}{\partial x^2},\ \frac{\partial^2\boldsymbol{u}}{\partial y^2},\ \frac{\partial^2\boldsymbol{u}}{\partial x\partial y}\right) = \boldsymbol{0},$$

$$\boldsymbol{h}\left(x,\ y,\ \boldsymbol{u},\ \frac{\partial\boldsymbol{u}}{\partial x},\ \frac{\partial\boldsymbol{u}}{\partial y}\right) = \boldsymbol{0}.$$

The solution of this problem is calculated using the libraries by a simple call to the subroutine:

Argument	Type	Intent	Description
x	vector of reals	in	Mesh nodes in x direction.
У	vector of reals	in	Mesh nodes in y direction.
Differential_op-	function: \mathcal{L}	in	Vector function to implement
erator			the differential operator.
Boundary_con-	function: \boldsymbol{h}	in	Vector function to imple-
ditions			ment different boundary con-
			ditions.
Solution	three-dimensional	out	Solution(:,:,:). Third in-
	array of reals		dex stands for different vari-
			ables.

Table 5.2: Description of Boundary_Value_Problem arguments for vector 2D problems

Initial Boundary Value Problem

6.1 Overview

This library is intended to solve an initial value boundary problem. This problem is governed by a set time evolving partial differential equations together with boundary conditions and an initial condition.

Listing 6.1: Initial_Boundary_Value_Problems.f90

Since the space domain $\Omega \subset \mathbb{R}^k$ with k=1,2,3, initial value boundary problems are stated in 1D, 2D and 3D grids. To have the same name interface when dealing with different space dimensions, the subroutines Initial_Value_Boundary_Problem, Spatial_discretization, Spatial_truncation_error and Linear_operator have been overloaded.

6.2 Initial Boundary Value Problem

1D Initial Boundary Value Problem for systems of equations

```
callInitial_Boundary_Value_Problem(Time_Domain, x_nodes,&Differential_operator,&Boundary_conditions, Solution, Scheme)
```

The subroutine Initial_Value_Boundary_Problem calculates the solution at x_nodes of the following problem:

$$\frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{\mathcal{L}}(x, t, \boldsymbol{u}, \boldsymbol{u}_x, \boldsymbol{u}_{xx}), \qquad \boldsymbol{h}(x, t, \boldsymbol{u}, \boldsymbol{u}_x) \bigg|_{\partial \Omega} = 0.$$

Together with an initial condition $u(x,0) = u_0(x)$, the solution is simulated in some time domain. The arguments of the subroutine are described in the following code:

```
real, intent(in) :: Time_Domain(:)
real, intent(inout) :: x_nodes(0:)
procedure (DifferentialOperator1DS) :: Differential_operator
procedure (BC1DS) :: Boundary_conditions
real, intent(out) :: Solution(0:,0:, :)
procedure (Temporal_Scheme), optional :: Scheme
```

Listing 6.2: Initial_Boundary_Value_Problem1D.f90

The first index of Solution stands for time, the second space and third is the index of variable to integrate. Besides, the differential operator \mathcal{L} and the boundary conditions h are defined with the following interface:

Listing 6.3: Initial_Boundary_Value_Problem1D.f90

Initial Boundary Value Problem for 2D systems of equations

The subroutine Initial_Value_Boundary_ProblemS calculates the solution at (x_nodes, y nodes) of the following problem:

$$\frac{\partial \boldsymbol{u}}{\partial t} = \boldsymbol{\mathcal{L}}(x, y, t, \boldsymbol{u}, \boldsymbol{u}_x, \boldsymbol{u}_y, \boldsymbol{u}_{xx}, \boldsymbol{u}_{yy}, \boldsymbol{u}_{xy}), \qquad \boldsymbol{h}(x, y, t, \boldsymbol{u}, \boldsymbol{u}_x, \boldsymbol{u}_y) \bigg|_{\partial \Omega} = 0.$$

Together with an initial condition $u(x, y, 0) = u_0(x, y)$, the solution is simulated in some time domain. The arguments of the subroutine are described in the following code:

```
real, intent(in) :: Time_Domain(0:)
real, intent(in) :: x_nodes(0:), y_nodes(0:)
procedure (DifferentialOperator2DS) :: Differential_operator
procedure (BC2DS) :: Boundary_conditions
procedure (Temporal_Scheme), optional :: Scheme
```

Listing 6.4: Initial_Boundary_Value_Problem2D.f90

The first index of Solution stands for time, the second x_nodes position, the third x_nodes position and the fourth is the index of variable to integrate. Besides, the differential operator \mathcal{L} and the boundary conditions h are defined with the following interface:

```
abstract interface
function DifferentialOperator2DS(x, y, t, u, ux, uy, uxx, uyy, uxy)
  real, intent(in) :: x, y, t, u(:), ux(:), uy(:), uxx(:), uyy(:), uxy(:)
  real :: DifferentialOperator2DS (size(u))
  end function

function BC2DS(x, y, t, u, ux, uy)
    real, intent(in) :: x, y, t, u(:), ux(:), uy(:)
    real :: BC2DS(size(u))
  end function

end interface
```

Listing 6.5: Initial_Boundary_Value_Problem1D.f90

6.3 Spatial discretization

To carry out the numerical integration of the initial boundary value problem, the method of lines is used. This method performs the spatial discretization of the differential operator together with the boundary conditions. Once the spatial discretization is accomplished, the following ordinary systems of equations is obtained:

$$\frac{d\mathbf{U}}{dt} = \mathbf{F}(\mathbf{U}, t),$$

where F(U,t) represents the spatial discretization of the problem. The following function allows to calculate the space discretization:

```
F = Spatial_discretization(Differential_operator, & Boundary_conditions, x, y, U, t)
```

1D Spatial discretization for systems of equations

Listing 6.6: Initial_Boundary_Value_Problem1D.f90

The differential operator and the boundary conditions share the same definition than the subroutine Initial_Boundary_Value_Problem. The argument x represents the grid nodes which are previously calculated by Grid_initialization. The argument U represents the solution or some test function evaluated at all grid nodes. The first index stands for space and second for the variable. The result discretization F share the dimensions of U. It is important to mention that the vector F includes inner and boundary points.

Spatial discretization for 2D systems of equations

Listing 6.7: Initial_Boundary_Value_Problem2D.f90

The differential operator and the boundary conditions share the same definition than the subroutine Initial_Boundary_Value_Problem. The argument x and y represent the grid nodes which are previously calculated by $Grid_initialization$. The argument U represents the solution or some test function evaluated at all grid nodes (x_i, y_j) . The first and the second index of U stand for the grid nodes and the third for the variable. The result discretization F share the dimensions of U. The matrix F includes inner and boundary points. Since, spatial discretization is accomplished for those points in which no boundary conditions are imposed, those points that must satisfy boundary conditions have zero components of the matrix F.

6.4 Spatial truncation error

The spatial truncation error is defined at different grid points (x_i, y_j) by the following equation:

$$R_{ij} = \mathcal{L}(x, y, t, \boldsymbol{u}, \boldsymbol{u}_x, \boldsymbol{u}_y, \boldsymbol{u}_{xx}, \boldsymbol{u}_{yy}, \boldsymbol{u}_{xy})|_{(x_i, y_i)} - \boldsymbol{F}_{ij}$$

where F_{ij} represents the spatial discretization of some test function $\boldsymbol{u}(x,y,t)$. The first term of the above equation represents the differential operator together with the boundary conditions applied to same test function evaluated at all different grid points. The definition of the spatial truncation error requires to differentiate analytically the test function to determine the spatial truncation error. The following function allows to calculate this error numerically by means of two grids using Richardson extrapolation.

1D Spatial truncation error for systems of equations

```
function Spatial_Truncation_Error1DS( Nv, Differential_operator,
                                                                          Вr.
                                      Boundary_conditions,
                                      x, Order, Test_function ) result(R)
    procedure (DifferentialOperator1DS) :: Differential_operator
    procedure (BC1DS) :: Boundary_conditions
    real, intent(inout) :: x(0:)
    interface
        function Test_function(Nv,x) result(U)
           integer, intent(in) :: Nv
           real, intent(in) :: x(0:)
          real :: U(0:size(x)-1, Nv)
        end function
    end interface
    integer, intent(in) :: Nv, Order
    real :: R(0:size(x)-1, Nv)
```

Listing 6.8: Initial_Boundary_Value_Problem1D.f90

The differential operator and the boundary conditions share the same definition than the subroutine Initial_Boundary_Value_Problem. Nv stands for the number of variables. For example, the heat equation has $N_v=1$ and the wave equation has $N_v=1$. The argument x represents the grid nodes which are previously calculated by Grid_initialization and Order stands for the degree of the interpolation

to accomplish the space discretization. The Test_function evaluates any test function u(x) at the grid points. The first index of the result R allows to know the truncation error at every grid node x_i and the second index stands for different variables.

Spatial truncation error for 2D systems of equations

Listing 6.9: Initial_Boundary_Value_Problem2D.f90

The differential operator and the boundary conditions share the same definition than the subroutine Initial_Boundary_Value_Problem. Nv stands for the number of variables. The arguments x and y represent the grid nodes which are previously calculated by $Grid_initialization$ and Order stands for the degree of the interpolation to accomplish the space discretization. The $Test_function$ evaluates any test function u(x,y) at the grid points. The first index and the second index of the result R allows to know the truncation error at every grid node (x_i, y_i) and the third index stands for different variables.

6.5 Linear operator

If the differential operator and the boundary conditions are linear, and once the space discretization is accomplished, an ordinary system of differential equations is obtained.

$$\frac{dU}{dt} = A \ U + b,$$

where A is the system matrix of size $M \times M$ where M is the dimension of the vector U which represents the solution of all variables at all different grid or collocation nodes. The following function allows to obtain the matrix A associated to the space discretization problem:

```
A = Linear_operator( Nv, x, y, Order, Differential_operator, & Boundary_conditions)
```

Linear operator 1D for systems of equations

Listing 6.10: Initial_Boundary_Value_Problem1D.f90

The differential operator and the boundary conditions share the same definition than the subroutine Initial_Boundary_Value_Problem. Nv stands for the number of variables. The argument x represents the grid nodes which are previously calculated by Grid_initialization and Order stands for the degree of the interpolation to accomplish the space discretization. The function returns a square matrix A of size $M \times M$ with $M = (N_x + 1)Nv$ which includes inner and boundary points.

Linear operator 2D for systems of equations

Listing 6.11: Initial_Boundary_Value_Problem2D.f90

The differential operator and the boundary conditions share the same definition than the subroutine Initial_Boundary_Value_Problem. Nv stands for the number of variables. The arguments x and y represens the grid nodes which are previously calculated by Grid_initialization and Order stands for the degree of the interpolation to accomplish the space discretization. The function returns a square matrix A of size $M \times M$ with $M = (N_x + 1)(N_y + 1)Nv$ which includes inner and boundary points. Those rows associated to boundary points have all components equal to zero.

Mixed Boundary and Initial Value Problems

7.1 Overview

This library is intended to solve an initial value boundary problem for a vectorial variable u with a coupled boundary value problem for v.

```
module IBVPs_and_BVPs

use Cauchy_Problem
use Temporal_scheme_interface
use Collocation_methods
use Linear_Systems
use Non_Linear_Systems
use Boundary_value_problems
use Utilities

implicit none
private
public :: IBVP_and_BVP
```

Listing 7.1: IBVP_and_BVPs.f90

7.2 Mixed BVP and IBVP module

The subroutine IBVP_and_BVP calculates the solution to a boundary initial value problem in a rectangular domain $(x, y) \in [x_0, x_f] \times [y_0, y_f]$:

$$\begin{aligned}
\frac{\partial \boldsymbol{u}}{\partial t} &= \mathcal{L}_{u}(x, y, t, \boldsymbol{u}, \boldsymbol{u}_{x}, \boldsymbol{u}_{y}, \boldsymbol{u}_{xx}, \boldsymbol{u}_{yy}, \boldsymbol{u}_{xy}, \boldsymbol{v}, \boldsymbol{v}_{x}, \boldsymbol{v}_{y}, \boldsymbol{v}_{xx}, \boldsymbol{v}_{yy}, \boldsymbol{v}_{xy}) \\
\mathcal{L}_{v}(x, y, t, \boldsymbol{v}, \boldsymbol{v}_{x}, \boldsymbol{v}_{y}, \boldsymbol{v}_{xx}, \boldsymbol{v}_{yy}, \boldsymbol{v}_{xy}, \boldsymbol{u}, \boldsymbol{u}_{x}, \boldsymbol{u}_{y}, \boldsymbol{u}_{xx}, \boldsymbol{u}_{yy}, \boldsymbol{u}_{xy}) &= 0, \\
\left. \boldsymbol{h}_{u}(x, y, t, \boldsymbol{u}, \boldsymbol{u}_{x}, \boldsymbol{u}_{y}) \right|_{\partial \Omega} &= 0, \quad \left. \boldsymbol{h}_{v}(x, y, t, \boldsymbol{v}, \boldsymbol{v}_{x}, \boldsymbol{v}_{y}) \right|_{\partial \Omega} &= 0.
\end{aligned}$$

Besides, an initial condition must be stablished: $\mathbf{u}(x,y,t_0) = \mathbf{u}_0(x,y)$. The problem is solved by means of a simple call to the subroutine:

```
call IBVP_and_BVP( Time, x_nodes, y_nodes, L_u, L_v, BCs_u, BCs_v, & Ut, Vt, Scheme )
```

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
Time	vector of reals	in	Time domain.
x_nodes	vector of reals	inout	Mesh nodes along OX .
y_nodes	vector of reals	inout	Mesh nodes along OY .
L_u	function: \mathcal{L}_u	in	Differential operator for u .
L_v	function: \mathcal{L}_v	in	Differential operator for \boldsymbol{v} .
BCs_u	function: h_u	in	Boundary conditions for u .
BCs_v	function: h_v	in	Boundary conditions for \boldsymbol{v} .
Ut	four-dimensional	out	Solution u of the evolution
	array of reals		problem. Fourth index: in-
			dex of the variable.
Vt	four-dimensional	out	Solution \boldsymbol{v} of the boundary
	array of reals		value problem. Fourth index:
			index of the variable.
Scheme	temporal scheme	op-	Scheme used to solve the
		tional	problem. If not given, a
		in	Runge Kutta of four steps is
			used.

Table 7.1: Description of ${\tt IBVP_and_BVP}$ arguments for 2D problems

Utilities

8.1 Overview

This library comprises different utilities to help the developer to build his simulation codes. These utilities go from the extraction of the system matrix of a linear operator to plotting utilities.

```
module Utilities
implicit none
private
public ::
                             ! A_ij = u_i v_j
          Tensor_product, &
          my_reshape, &
                                ! Creates a pointer
          split,
                          &
                               ! split a char string based on delimiter
          Binary_search, &
                               ! Binary search in an ordered list
          Linear_operatorF
public :: operator (.x.)
interface operator(.x.)
      module procedure Tensor_product
end interface
contains
```

Listing 8.1: Utilities.f90

System matrix of a linear operator

Given a vector function

$$F: \mathbb{R}^N \to \mathbb{R}^N$$
.

and if the function is linear, then the function can be expressed by:

$$F(U) = A U + b,$$

where A is a square system matrix of size $N \times N$ and b is a column vector of size N. The function Linear_operator allows to obtain the system matrix with the following sentence:

A = Linear_operatorF(F, N).

To understand the use of this function, the following example is considered. Let's discretize spatially the following differential problem:

$$\frac{d^2u}{dx^2} = s(x), \qquad u(0) = 0, \qquad u(1) = 0$$

with a second order finite difference

$$F_i = u_{i+1} - 2u_i + u_{i-1} - \Delta x^2 s_i, \qquad i = 2, \dots, N-1$$

The function Linear_operatorF is used in myexampleE with N=6 to give the following matrix A associated to the linear system of equations:

Tensor product

A = Tensor_product(u, v)

The function Tensor_product determines the matrix $A_{ij} = u_i \ v_j$ where u and v are vector of different size.

8.2 Plotting routines

Listing 8.2: plots.f90

8.3 Plot parametrics with Latex

This subroutine plots a given number of parametric curves (x, y) on the screen and creates a Latex file for optimum quality results. This subroutine is overloaded allowing to plot parametric curves sharing x-axis for all curves or with different data booth for x and y axis. That is, x can be a vector the same for all parametric curves or a matrix. In this case, (x_{ij}, y_{ij}) represents the the point i of the parametric curve j. The last three arguments are optional. If they are given, this subroutine creates a plot data file (path.plt) and a latex file (path.tex) to show the same graphics results by compiling a latex document.

Argument	Type	Intent	Description
X	vector or matrix of	in	First index is the point and
	reals		second index is the paramet-
			ric curve.
У	matrix of reals	in	First index is the point and
			second index is the paramet-
			ric curve.
legends	vector of char	in	These are the legends of the
	strings		parametric curves.
x_label	character string	in	x label of the graph.
y_label	character string	in	y label of the graph.
title	character string	op-	title of the graph.
		tional	
		in	
path	character string	op-	path of Latex and data files.
		tional	
		in	
graph_type	character string	op-	graph type
		tional,	
		in	

Table 8.1: Description of plot_parametrics arguments for Latex graphs

```
subroutine myexampleC
           real, parameter :: PI = 4 * atan(1d0)
            integer, parameter :: N=200, Np = 3
           real :: x(0:N), y(0:N, Np), a = 0, b = 2 * PI
           integer :: i
           character(len=100) :: path(4) =
            ["./results/myexampleCa", "./results/myexampleCb", & "./results/myexampleCc", "./results/myexampleCd" ]
           x = [ (a + (b-a)*i/N, i=0, N) ]
           y(:, 1) = \sin(x); y(:, 2) = \cos(x); y(:, 3) = \sin(2*x)
        call plot_parametrics( x, y, ["x", "x", "x",
                                                                            "$x$", "$y$", "(a)", path(1) )
        call plot_parametrics( y(:,1), y(:,:), ["01", "02", "03"],
                                                                            "$y_2$", "$y_1$", "(b)", path(2) )
        call plot_parametrics( y(:,1), y(:,2:2), ["02"], "$y_2$", "$y_1$", &
                                                                                "(c)", path(3) )
        call plot_parametrics( y(:,1), y(:,3:3), ["03"], "$y_2$", "$y_1$", &
                                                                               "(d)", path(4))
end subroutine
```

Listing 8.3: my_examples.f90

The above Fortran example creates automatically four plot files and four latex files. By compiling the following Latex file, the same plots showed on the screen can be included in any latex manuscript.

```
\documentclass[twoside,english]{book}
\usepackage{tikz}
\usepackage{pgfplots}
\pgfplotsset{compat=1.5}
\newcommand{\fourgraphs}[6]
  \begin{figure}[htpb]
     \begin{minipage}[t]{0.5\textwidth} {#1} \end{minipage}
     \begin{minipage}[t]{0.5\textwidth} {#2} \end{minipage}
     \begin{minipage}[t]{0.5\textwidth} {#3} \end{minipage}
     \begin{minipage}[t]{0.5\textwidth} {#4} \end{minipage}
     \caption{#5} \label{#6}
  \end{figure}
\begin{document}
     \fourgraphs
     {\input{./results/myexampleCa.tex} }
     {\input{./results/myexampleCb.tex} }
     {\input{./results/myexampleCc.tex} }
     {\input{./results/myexampleCd.tex} }
     {Heinon-Heiles system solution.
     (a) Trajectory of the star (x,y).
     (b) Projection (x,\det\{x\}) of the solution.
     (c) Projection (y,\det\{y\}) of the solution.
     (d) Projection (\det\{x\},\det\{y\}).
     {fig:exampleCad}
```

Listing 8.4: Latex.tex

After compiling the above Latex code, the plot of figure 8.1 is obtained.

Figure 8.1: Heinon-Heiles system solution. (a) Trajectory of the star (x, y). (b) Projection (x, \dot{x}) of the solution. (c) Projection (y, \dot{y}) of the solution. (d) Projection (\dot{x}, \dot{y}) .

8.4 Plot contour maps with Latex

This subroutine plots a contour map of z=z(x,y) on the screen and creates a Latex file for optimum quality results. Given a set of values x_i and y_j where some function z(x,y) is evaluated, this subroutine plot a contour map. The last three arguments are optional. If they are given, this subroutine creates a plot data file (path.plt) and a latex file (path.tex) to show the same graphics results by compiling a latex document.

Argument	Type	Intent	Description
X	vector of reals	in	x_i grid values.
у	vector of reals	in	y_j grid values.
Z	matrix of reals	in	z_{ij} different evaluations of
			z(x,y).
x_label	character string	in	x label of the graph.
y_label	character string	in	y label of the graph.
levels	vector of reals	op-	Levels for the iso-lines.
		tional	
		in	
legend	character string	op-	title of the graph.
		tional	
		in	
path	character string	op-	Latex and data files.
		tional	
		in	
graph_type	character string	op-	"color" or "isolines"
		tional	
		in	

Table 8.2: Description of plot_contour arguments

```
subroutine myexampleD
   integer, parameter :: N=20, N1 = 29
   real :: x(0:N), y(0:N), z(0:N, 0:N)
   real, parameter :: PI = 4 * atan(1d0)
   real :: levels(0:N1), a = 0, b = 2 * PI
   integer :: i
   character(len=100) :: path(2) = ["./results/myexampleDa", &
                                      "./results/myexampleDb" ]
   x = [ (a + (b-a)*i/N, i=0, N) ]
   y = [ (a + (b-a)*i/N, i=0, N) ]
   a = -1; b = 1
   levels = [(a + (b-a)*i/N1, i=0, N1)]
   z = Tensor_product( sin(x), sin(y) )
   call plot_contour(x, y, z, "x", "y", levels, "(a)",path(1),"color")
   call plot_contour(x, y, z, "x", "y", levels, "(b)",path(2),"isolines")
end subroutine
```

Listing 8.5: my_examples.f90

The above Fortran example creates the following data files and latex files:

```
./{\tt results/myexampleDa.plt}, \ ./{\tt results/myexampleDa.tex},
```

./results/myexampleDb.plt, ./results/myexampleDb.tex.

By compiling the following Latex file, the same plots showed on the screen are included in any latex manuscript.

Listing 8.6: Latex.tex

To compile successfully the above code, gnuplot must be installed in the com-

puter. Besides, during installation, the path environmental variable should be added. If TexStudio is used to compile the Latex file, the lualatex and PDFLatex orders should be modified as follows:

pdflatex -synctex=1 -interaction=nonstopmode -shell-escape %.tex lualatex.exe -synctex=1 -interaction=nonstopmode -shell-escape %.tex The results are shown in figure 8.2.

Figure 8.2: Isolines. (a) $z = \sin x \sin y$. (a) $z = \sin x \sin y$.

Bibliography

- [1] M.A. Rapado Tamarit, B. Moreno Santamaría, & J.A. Hernández Ramos. Programming with Visual Studio: Fortran & Python & C++. Amazon Kindle Direct Publishing 2020.
- [2] Lloyd N. Trefethen & D. Bau. Numerical linear algebra. SIAM 1977.
- [3] William H. Press, Saul A. Teukolsky, William T. Vetterling & Brian P. Flannery. Numerical Recipes in Fortran 77, The Art of Scientific Computing Second Edition. Cambridge University Press 1992.
- [4] E. Hairer, S. P. Norsett, G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems, Second Revised Edition. Springer Series in Computational Mathematics 2008.
- [5] E. Hairer, C. Lubich, G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Second Revised Edition. Springer Series in Computational Mathematics 1996.
- [6] L. Shampine. Numerical solution of ordinary differential equations. Chapman & Hall 1994.
- [7] J.A. Hernandez Ramos. Cálculo numérico en Ecuaciones Diferenciales Ordinarias. Second Edition Amazon Kindle Direct Publishing 2020.
- [8] J.A. Hernandez Ramos & M. Zamecnik Barros. FORTRAN 95, programación multicapa para la simulación de sistemas físicos. Second Edition Amazon Kindle Direct Publishing 2019.
- [9] J.R.Dormand & P.J.Prince. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics Volume 6, Issue 1, March 1980, Pages 19-26.

278 BIBLIOGRAPHY

[10] J.R.Dormand & P.J.Prince. High order embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics Volume 7, Issue 1, March 1981, Pages 67-75.

- [11] Euaggelos E. Zotos. Classifying orbits in the classical Henon-Heiles Hamiltonian system. Nonlinear Dynamics (NODY), 2015, vol. 79, pp. 1665-1677.
- [12] J. D. Lambert. Numerical Methods for ordinary Differential systems: The Initial Value Problem. John Wiley & Sons. May, 1993.