Rozdział 1

28 września 2015

Procesy stochastyczne - teoria służąca do opisu analizy (wnioskowań) zjawisk losowych ewoluujących w czasie. Wywodzą się z rachunku prawdopodobieństwa. Modelowanie rzeczywistości obarczonej niepewnością (losowością). Przeciwieństwo równań różniczkowych.

$$y' = f(y,t)$$
$$y(t) = g(t,y_0)$$

Równania różniczkowe dostarczają modeli deterministycznych. Idealizuje, możliwe w warunkach laboratoryjnych. Bardzo dużo praktycznych zagadnień nie ma charakteru deterministycznego (a jak już ma to będzie to determinizm chaotyczny). Chaos to nie to samo, co losowość. Losowość tkwi w głębi natury. Dla przykładu mechanika kwantowa.

Podstawowe elementy (pojęcia) procesów stochastycznych:

Przestrzeń probabilistyczna (Ω, \mathcal{F}, P) Ω - zbiór zdarzeń elementarnych $\omega \in \Omega$ - zdarzenie elementarne \mathcal{F} - σ -ciało podzbioru Ω

Definicja 1 (σ -ciało)

Mówimy, że rodzina \mathcal{F} podzbiorów Ω jest σ -ciałem, jeśli spełnia:

1.

$$\emptyset \in \mathcal{F}, \quad \Omega \in \mathcal{F},$$

2.

$$\forall_{A \in \Omega} [A \in \mathcal{F} \Rightarrow A^{c} = \Omega \backslash A \in \mathcal{F}],$$

3.

$$\forall_{A_1,A_2,\dots\in\Omega}\left[\forall_nA_n\in\mathcal{F}\Rightarrow\bigcup_{n=1}^\infty A_n\in\mathcal{F}\right],$$

Definicja 2

Mówimy, że funkcja zbioru P określona na (Ω, \mathcal{F}) jest σ -addytywnym prawdopodobieństwem (miarą probabilistyczną σ -addytywną), jeżeli spełnia:

1.

$$P: \mathcal{F} \to [0,1],$$

2.

$$P(\emptyset) = 0,$$

3.

$$P(\Omega) = 1$$
,

4. warunek σ -addytywności

$$\forall_{A_1, A_2, \dots \in \mathcal{F}} \left[\forall_{i \neq j} A_i \cap A_j = \emptyset \Rightarrow P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n) \right]$$

Definicja 3 (Proces stochastyczny)

Procesem stochastycznym na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) nazywamy rodzinę zmiennych losowych $\{X_t\}_{t\in T}$ określonych na (Ω, \mathcal{F}, P) . T - zbiór indeksów (czasowych, gdy T interpretujemy jako czas)

Definicja 4 (Zmienna losowa)

Zmienna losowa X_t .

$$\forall_{t \in T} \forall_{B \in \mathfrak{B}_{\mathbb{R}}} X_t^{-1}(B) \in \mathcal{F}$$

 X_t jest \mathcal{F} mierzalne; X_t jest $\sigma(\mathcal{F}, \mathfrak{B}_{\mathbb{R}})$ mierzalna

- \bullet $\mathfrak{B}_{\mathbb{R}}$ $\sigma\text{-ciało}$ zbiorów borelowskich w \mathbb{R}
- $\mathfrak{B}_{\mathbb{R}} = \sigma\left(\left\{(\alpha, \beta) : \alpha < \beta\right\}\right)$

Uwaga!

$$\operatorname{card}(\mathfrak{B}_{\mathbb{R}}) = \mathfrak{c} < 2^{\mathfrak{c}} = \operatorname{card}(\mathcal{L}_{\mathbb{R}})$$

Definicja 5

Niech Ω będzie ustalonym zbiorem. Mówimy, że rodzina $\mathcal C$ podzbiorów Ω tworzy ciało, jeżeli spełnia:

1.

$$\emptyset, \Omega \in \mathcal{C}$$

2.

$$\forall_{A\subseteq\Omega} \left[A \in \mathcal{C} \Rightarrow A^{c} \in \mathcal{C} \right]$$

3.

$$\forall_{A,B \in \Omega} \left[A < B \in \mathcal{C} \Rightarrow A \cup B \in \mathcal{C} \right] \equiv$$

$$\equiv \left[A_1, A_2, \dots, A_n \in \mathcal{C}, \quad n \in \mathbb{N} \Rightarrow \bigcup_{j=1}^n A_j \in \mathcal{C} \right]$$

Definicja 6

Mówimy, że funkcja zbioru μ określona na (Ω, \mathcal{C}) jest miarą probabilistyczną σ -addytywną, jeśli spełnia:

1.

$$\mu(\emptyset) = 0$$

$$\mu(\Omega) = 1$$

$$\forall_{A \in \mathcal{C}} 0 \leqslant \mu(A) \leqslant 1$$

2.

$$\forall_{A_{1},A_{2},\ldots\in\mathcal{C}}\left[\forall_{i\neq j}A_{i}\cap A_{j}=\emptyset\wedge\bigcup_{n=1}^{\infty}A_{n}\in\mathcal{C}\Rightarrow\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}\mu\left(A_{n}\right)\right]$$

Rozdział 2

5 Października 2015

Twierdzenie 1

Niech C będzie ciałem podzbiorów Ω oraz $\mu: C \to [0,1]$ będzie miarą skończenie addytywną na (Ω,C) nieujemną i unormowaną, czyli

$$\mu(\Omega) = 1, \forall_{a \in \mathcal{C}} \ 0 \leqslant \mu(A) \leqslant 1.$$

Wówczas następujące warunki są równoważne:

- (A) μ jest σ -addytywna na $(a\Omega, \mathcal{C})$
- (B) Ciągłość od dołu

$$\forall_{B_{j} \in \mathcal{C}} \forall_{B_{1} \subseteq B_{2} \subseteq \dots} \bigcup_{j=1}^{\infty} B_{j} \in \mathcal{C} \Rightarrow \mu \left(\bigcup_{j=1}^{\infty} B_{j} \right) = \lim_{n \to \infty} \mu \left(B_{j} \right)$$

(C) Ciągłość od góry

$$\forall_{C_j \in \mathcal{C}} \forall_{C_1 \supseteq C_2 \supseteq \dots} \bigcap_{i=1}^{\infty} C_j = \emptyset \Rightarrow \lim_{n \to \infty} \mu\left(C_j\right) = 0$$

Dowód. (A)
$$\Rightarrow$$
 (B)
 $A_1 = B_1$
 $A_2 = B_2 \backslash B_1$
 \vdots
 $A_n = B_n \backslash B_{n-1}$
 \vdots

$$\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} A_j$$

$$\mu\left(\bigcup_{j=1}^{\infty} B_j\right) = \mu\left(\bigcup_{j=1}^{\infty} A_j\right) =$$

$$= \sum_{j=1}^{\infty} \mu(A_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(A_j) =$$

$$= \lim_{n \to \infty} \mu\left(\bigcup_{j=1}^{n} A_j\right) =$$

$$= \lim_{n \to \infty} \mu(B_n)$$

$$(B) \Rightarrow (C)$$

$$C_1 \supseteq C_2 \supseteq \dots$$

$$\bigcap_{n=1}^{\infty} C_n = \emptyset$$

$$B_n = C_n^c = \Omega \backslash C_n$$

$$\bigcup_{n=1}^{\infty} B_n = (\bigcap_{n=1}^{\infty} C_n)^c = \emptyset^c = \Omega$$

$$1 = \mu(\Omega) =$$

$$= \mu\left(\bigcup_{n=1}^{\infty} B_n\right) =$$

$$= \lim_{n \to \infty} \mu(B_n) =$$

$$= \lim_{n \to \infty} (\Omega \backslash C_n) =$$

$$= \lim_{n \to \infty} (\mu(\Omega) - \mu(C_n)) =$$

$$= \mu(\Omega) - \lim_{n \to \infty} \mu(C_n) \Rightarrow \lim_{n \to \infty} \mu(C_n) = 0$$

$$(C) \Rightarrow (A)$$

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{C}$$

$$\bigcup_{j=1}^{n-1} A_j \in \mathcal{C}$$

$$C_n = \bigcup_{j=n}^{\infty} A_j = \bigcup_{j=1}^{\infty} A_j \setminus \bigcup_{j=1}^{n-1} A_j \in \mathcal{C}$$

$$C_1 \supseteq C_2 \supseteq \dots$$
$$\bigcap_{j=1}^{\infty} C_n = \emptyset.$$

$$Z(C) \lim_{n \to \infty} \mu(C_n) = 0$$

$$\mu(C_n) =$$

$$= \mu\left(\bigcup_{j=n}^{\infty} A_j\right) =$$

$$= \mu\left(\bigcup_{j=1}^{\infty} A_j \setminus \bigcup_{j=1}^{n-1} A_j\right) =$$

$$= \mu\left(\bigcup_{j=1}^{\infty} A_j\right) - \mu\left(\bigcup_{j=1}^{n-1} A_j\right) =$$

$$= \mu\left(\bigcup_{j=1}^{\infty} A_j\right) - \sum_{j=1}^{n-1} \mu(A_j) \to 0$$

$$\lim_{n \to \infty} \mu \left(\bigcup_{j=1}^{n-1} A_j \right) = \mu \left(\bigcup_{j=1}^{\infty} A_j \right)$$
$$\lim_{n \to \infty} \sum_{j=1}^{n-1} \mu \left(A_j \right) = \mu \left(\bigcup_{j=1}^{\infty} A_j \right)$$

Ostatecznie

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu\left(A_j\right)$$

Uwaga!

Warunek (C) jest bardzo wygodny do sprawdzenia.

Twierdzenie 2

Jeżeli μ jest prawdopodobieństwem σ -addytywnym na ciele C podzbiorów Ω , to istnieje dokładnie jedno rozszerzenie μ do miary probabilistycznej $\tilde{\mu}$ na $\sigma(C)$ { $\tilde{\mu}|_{C} = \mu$ }

$$(\Omega, \mathcal{C}, \mu) \leadsto (\Omega, \sigma(\mathcal{C}), \tilde{\mu})$$

Tradycyjnie $\tilde{\mu}$ piszemy μ .

Dygresja

$$\Omega = \mathbb{N}, A \subseteq \mathbb{N}, \nu(A) = \lim_{n \to \infty} \frac{\mu(A \cap \{1, 2, \dots, n\})}{n}$$
 gęstość zbioru A. Dobra

miara "grubości" podzbiorów \mathbb{N} . Nie wszystkie podzbiory mają gęstość. Z całą pewnością ν nie jest σ -addytywna, bo $\nu(k)=0, \operatorname{card}(k)<\infty$

$$1 = \nu\left(\mathbb{N}\right) \neq \lim_{n \to \infty} \nu\left(\left\{1, 2, \dots, n\right\}\right) = 0$$

Przykład 1

 $\Omega = (0,1]$

 $\mathcal{C}_{\text{przed.}} = \left\{ \bigcup_{j=1}^{\infty} (\alpha_j, \beta_j] : n = 0, 1, \dots; 0 < \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \dots < \alpha_n < \beta_n \right\}$ $F: [0,1] \to \mathbb{R}, F \text{ niemalejące, prawostronnie ciągłe.}$

$$\mu_F\left(\bigcup_{j=1}^{\infty} (\alpha_j, \beta_j]\right) \stackrel{df}{=} \sum_{j=1}^{n} \left(F\left(B_j\right) - F\left(\alpha_j\right)\right) \geqslant 0$$

 μ_F jest skończenie addytywna na ((0,1],_{przed.}), co widać z konstrukcji. Nieco trudniej dowodzi się, że μ_F jest σ -addytywna na ciele $\mathcal{C}_{\text{przed.}}$. Zatem każda funkcja niemalejąca, prawostronnie ciągła F:[0,1] definiuje miarę σ -addytywną na ((0,1], σ ($\mathcal{C}_{\text{przed.}}$))

FUNKCJE TWORZĄCE

(p.g.f. probability geometry function)

Niech $X: (\Omega, \mathcal{F}, P) \to \mathbb{N}_0 = \{0, 1, 2, \dots\}$ będzie zmienną losową $(ychX^{-1}(B) \in \mathcal{F}, \subseteq \mathbb{N}$ - dowolny podzbiór) . Nową charakterystyką takich zmiennych losowych jest funkcja charakterystyczna.

Definicja 7 (Funkcja tworząca)

Funkcją tworzącą zmiennej losowej X o wartościach w \mathbb{N}_0 nazywamy

$$\Upsilon_X(s) = \mathbb{E}s^X \left(= \sum_{j=0}^{\infty} s^j P(X=j) = \sum_{j=0}^{\infty} s^j p_j \right)$$

Pytanie: $Dom(r_X)=?$

 r_X określona szeregiem potęgowym; pewnie analityczna. $r_X(z), z \in K(0,R)$

Twierdzenie 3

Niech $X.\tau, X^{(1)}, X^{(2)}, \ldots$ będą zmiennymi losowymi losowymi o wartościach w \mathbb{N}_0 i oznaczmy $P(X=k)=p_k$, $P\left(X^(n)=k\right)=p_k^{(n)}, k=0,1,2,\ldots$ Wówczas:

1. $dom(\Upsilon_X) \supseteq [-1,1]$ (W przypadku dziedziny zespolonej $\overline{K}(0,1)$) Υ_X jest niemalejąca i wypukła na [0,1] oraz klasy C^{∞} na (-1,1)

2.
$$\Upsilon_X(1) = 1$$

3.

$$\Upsilon'_{X}(0) = P(X = 1) = p_{1}$$
 $\Upsilon''_{X}(0) = 2 \cdot P(X = 2) = 2p_{2}$
 \vdots

$$\Upsilon^{(k)}_{X}(0) = k! \cdot P(X = k) = k! p_{k}$$

4. Dla X

$$\mathbb{E}X^n < \infty \Leftrightarrow \lim_{n \to 1^-} \Upsilon_X^{(n)}(s) = \Upsilon_X^{(n)}(1^-) < \infty$$

Co więcej

$$\Upsilon_X^{(n)}(1^-) = \mathbb{E}X(X-1)\cdots(X-n+1)$$
n-ty moment faktorialny

W szczeg'olno'sci

$$\mathbb{E}X = \Upsilon_X'(1^-)$$

$$\mathbb{E}X^2 = \mathbb{E}X(X-1) + \mathbb{E}X = \Upsilon_X''(1^-) + \Upsilon_X'(1^-)$$

- 5. Jeżeli x i Y są niezależne o wartościach w \mathbb{N}_0 , to $\Upsilon_{X+Y}(s) = \Upsilon_X(s)\Upsilon_Y(s)$
- 6. Jeżeli $X^{(1)}, X^{(2)}, \ldots$ są niezależnymi zmiennymi losowymi o tym samym rozkładzie i o wartościach w \mathbb{N}_0 i podobnie τ i dodatkowo ciąg $X^{(1)}, X^{(2)}, \ldots$ i τ są niezależne, to dla

$$U = \sum_{j=1}^{\tau} X^{(j)}$$

mamy

$$\Upsilon_U(s) = \Upsilon_{\tau} (\Upsilon_{X^{(1)}}(s))$$

7. Dla dowolnego ciągu zmiennych losowych (niekoniecznie niezależnych) $X^{(1)}, X^{(2)}, \ldots$ i zmiennej losowej X o wartościach w \mathbb{N}_0 następujące warunki są równoważne:

(a)
$$\forall_{k \in \mathbb{N}_0} \lim_{n \to \infty} P\left(X^{(n)} = k\right) = P\left(X = k\right)$$

(b)
$$X_n \stackrel{\mathcal{D}}{\Rightarrow} X$$
 (zbieżność słaba)

(c)
$$\forall_{s \in [0,1]} \lim_{n \to \infty} \Upsilon_{X^{(n)}}(s) = \Upsilon_X(s)$$

Dowód.

2.
$$\Upsilon_X(1) = \mathbb{E}1^X = \mathbb{E}1 = 1$$

1.

$$\Upsilon_X(s) = \sum_{k=0}^{\infty} s^X p_k = \sum_{k=0}^{\infty} p_k s^k$$

ten szereg potęgowy jest zbieżny dla s=1 nawet bezwzględnie.

$$\left(\sum_{k=0}^{\infty} |p_k| |s|^k\right)_{s=1}$$
$$\sum_{k=0}^{\infty} |a_k| |z^k| < \infty$$

 $\Upsilon_X(z)$ jest dobrze określone na $|z| \leq 1$.

 Υ_X jest funkcją analityczną (co najmniej) na $\{z:|z|<1\}$, a stąd wynika, że Υ_X jest ciągła na [-1,1] i ma ciągłe pochodne na (-1,1).

$$\Upsilon_X(s) = \sum_{k=0}^{\infty} p_k s^k \geqslant 0 \text{ na } [0,1]$$

$$\Upsilon_X(s) = \sum_{k=0}^{\infty} p_k s^k \geqslant 0 \text{ na } [0,1]$$

$$\Upsilon_X'(s) = \sum_{k=0}^{\infty} k \cdot p_k s^{k-1} \geqslant 0 \text{ - niemalejąca na } [0,1]$$

$$\Upsilon_X''(s) = \sum_{k=0}^{\infty} k(k-1) p_k s^{k-1} \geqslant 0 \text{ dla } s \in [0,1]$$

$$\Upsilon_X''(s) = \sum_{k=0}^{\infty} k(k-1) p_k s^{k-1} \ge 0 \text{ dla } s \in [0,1]$$

Reasumując Υ_X jest nieujemna, niemalejąca, wypukła na [0,1].

3.

$$\Upsilon_X^{(k)}(s) = \frac{d^k}{ds^k} \left(\sum_{j=0}^{\infty} p_j s^j \right) =$$

$$= \sum_{j=0}^{\infty} j(j-1) \cdots (j-k+1) p_j s^{j-k} = \sum_{j=k}^{\infty} j(j-1) \cdots (j-k+1) p_j s^{j-k}$$

$$\Upsilon_X^{(k)}(0) = k(k-1)\cdots(k-k+1)p_k = k!p_k \Rightarrow p_k = P(X=k) = \frac{\Upsilon_X}{k!}$$

4.

$$\mathbb{E}X =$$

$$= \sum_{k=0}^{\infty} k \cdot P(X = k) =$$

$$= \sum_{k=0}^{\infty} k \cdot p_k \cdot 1^k =$$

$$= \left(\sum_{k=0}^{\infty} k \cdot p_k \cdot s^k\right)_{s=1} =$$

$$= \lim_{n \to 1^-} \left(\sum_{k=0}^{\infty} k \cdot p_k \cdot s^k\right) =$$

$$= \lim_{n \to 1^-} \Upsilon'_X(s)$$

Analogicznie

$$\mathbb{E}X(X+1)\cdots(X-n+1) = \\ = \sum_{k=n}^{\infty} k(k-1)\cdots(k-n+1)p_k \cdot 1^{k-n+1} = \\ = \lim_{n \to 1^{-}} \Upsilon_X^{(n)}(s)$$

Uwaga!

$$\mathbb{E}X^n < \infty \Leftrightarrow \mathbb{E}(X(X-1)\cdots(X-n+1) < \infty$$

5. X,Yniezależne zmienne losowe o wartościach w \mathbb{N}_0

$$\Upsilon_{X+Y}(s) = \mathbb{E}s^{X+Y} = \mathbb{E}s^X \cdot s^Y = \mathbb{E}s^X \cdot \mathbb{E}s^Y = \Upsilon_X^{(s)}\Upsilon_Y^{(s)}$$

6.
$$V = \sum_{j=1}^{\tau} X^{(j)}$$
, ustalmy $\sum_{j=1}^{0} \cdots = 0$

$$\Upsilon_{V}(s) = \mathbb{E}s^{V} = \int_{\Omega} s^{V} dP =$$

$$= \sum_{n=0}^{\infty} \int_{\{\tau=n\}} s^{\sum_{j=1}^{\tau} x^{(j)}} dP =$$

$$= \int_{\{\tau=0\}} s^{\sum_{j=1}^{0} x^{(j)}} dP + \sum_{n=1}^{\infty} \int_{\{\tau=n\}} s^{\sum_{j=1}^{\tau} x^{(j)}} dP =$$

$$= 1 \cdot P(\tau = 0) + \sum_{n=1}^{\infty} \int_{\Omega} \mathbb{1}_{\{\tau=n\}} dP \int_{\Omega} s^{\sum_{j=1}^{\tau} x^{(j)}} dP =$$

$$= 1^{0} \cdot P(\tau = 0) + \sum_{n=1}^{\infty} P(\tau = n) \Upsilon_{\sum_{j=1}^{\tau} x^{(j)}}(s) =$$

$$= P(\tau = 0) \cdot s^{0} + \sum_{n=1}^{\infty} P(\tau = n) [\Upsilon_{X^{(1)}}(s)]^{n} =$$

$$= P(\tau = 0) \cdot (\Upsilon_{X^{(1)}}(s))^{0} + \sum_{n=1}^{\infty} P(\tau = n) [\Upsilon_{X^{(1)}}(s)]^{n} =$$

$$= \Upsilon_{\tau}(\Upsilon_{X^{(1)}}(s)) = \Upsilon_{\tau} \circ \Upsilon_{X^{(1)}}(s)$$