

МІНІСТЕРСТВО ОСВІТИ, НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Комп'ютерний практикум №6 з дисципліни " Методи обчислень "

Розв'язання задачі Коші методами Рунге-Кутта та Адамса-Башфорта

Варіант № 4

Виконав:

студент 3 курсу групи ФІ-84

Коломієць Андрій Юрійович

Email: andrew.kolomiets.work@gmail.com

Перевірила:

Стьопочкіна Ірина Валеріївна

Варіант завдання згідно варіанту

Рівняння має вигляд: $y' = (1 - x^2)y + F(x)$. Покласти h = 0,1, початкові умови x(0) визначити, використовуючи точне значення розв'язку.

Нехай розв'язок відомий:

$$v = x \cos x$$

Необхідно підставити розв'язок у рівняння та визначити F(x) у правій частині. Таким чином, відомим є вигляд рівняння та його точний розв'язок, за допомогою числових методів далі будуємо наближений розв'язок:

$$(x) = y' - (1 - x^{2}) y =$$

$$= (\cos(x) - x \sin(x)) - (1 - x^{2}) x \cos(x) =$$

$$= \cos(x) (1 - x + x^{3}) - x \sin(x)$$

Звідси у 'набуває вигляду:

$$y' = (1 - x^2)y + \cos(x) (1-x+x^3)-x \sin(x)$$

Розглядаємо інтервал [-1; 1].

Знайдемо наближений розв'язок за допомогою метода Рунге-Кутта четвертого порядку:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$\begin{cases} k_1 = hf(x_i, y_i), \\ k_2 = hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1), \\ k_3 = hf(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2), \\ k_4 = hf(x_i + h, y_i + k_3). \end{cases}$$

Шукаємо наближений розв'язок методом Адамса-Башфорта четвертого порядку. В якості початкових даних використовуємо дані із попереднього кроку.

$$y_{k+1} = y_k + h(55 f_k - 59 f_{k-1} + 37 f_{k-2} - 9 f_{k-3})/24$$

Обрахуємо похибки обчислень для обох методів, як різницю отриманого значення та значення точного розв'язку, взяту по модулю.

Результати роботи програми виводяться в Excel

Runge-Kutta methods:

X	У
-1	-0.5403
-0.9	-0.55945
-0.8	-0.55737
-0.7	-0.53539
-0.6	-0.4952
-0.5	-0.43879
-0.4	-0.36842
-0.3	-0.2866
-0.2	-0.19601
-0.1	-0.0995
-1.39E-16	1.45E-06
0.1	0.099502
0.2	0.196015
0.3	0.286603
0.4	0.368426
0.5	0.438793
0.6	0.495203
0.7	0.535392
0.8	0.557368
0.9	0.559451

Adams-Bashforth methods:

Х	у
-1	-0.5403
-0.9	-0.55945
-0.8	-0.55737
-0.7	-0.53539
-0.6	-0.49521
-0.5	-0.4388
-0.4	-0.36844
-0.3	-0.28661
-0.2	-0.19603
-0.1	-0.09952
-1.39E-16	-1.53E-05
-1.39E-16 0.1	-1.53E-05 0.099485
0.1	0.099485
0.1	0.099485 0.195998
0.1 0.2 0.3	0.099485 0.195998 0.286585
0.1 0.2 0.3 0.4	0.099485 0.195998 0.286585 0.368409
0.1 0.2 0.3 0.4 0.5	0.099485 0.195998 0.286585 0.368409 0.438777
0.1 0.2 0.3 0.4 0.5 0.6	0.099485 0.195998 0.286585 0.368409 0.438777 0.495188
0.1 0.2 0.3 0.4 0.5 0.6 0.7	0.099485 0.195998 0.286585 0.368409 0.438777 0.495188 0.535377

Exect solution:

y_0
-0.5403
-0.55945
-0.55737
-0.53539
-0.4952
-0.43879
-0.36842
-0.2866
-0.19601
-0.0995
1 205 16
-1.39E-16
0.0995
0.0995
0.0995 0.196013
0.0995 0.196013 0.286601
0.0995 0.196013 0.286601 0.368424
0.0995 0.196013 0.286601 0.368424 0.438791
0.0995 0.196013 0.286601 0.368424 0.438791 0.495201
0.0995 0.196013 0.286601 0.368424 0.438791 0.495201 0.53539
0.0995 0.196013 0.286601 0.368424 0.438791 0.495201 0.53539 0.557365

Errors of Runge-Kutta methods: Errors of Adams-Bashforth methods:

0	
1.17E-07	
3.14E-07	
5.46E-07	
7.77E-07	
9.82E-07	
1.15E-06	
1.27E-06	
1.35E-06	
1.40E-06	
1.45E-06	
1.50E-06	
1.58E-06	
1.68E-06	
1.81E-06	
1.96E-06	
2.13E-06	
2.28E-06	
2.42E-06	
2.50E-06	
2.50E-06	

0
1.17E-07
3.14E-07
5.46E-07
9.44E-06
1.08E-05
1.20E-05
1.31E-05
1.40E-05
1.48E-05
1.53E-05
1.57E-05
1.57E-05
1.56E-05
1.51E-05
1.44E-05
1.34E-05
1.22E-05
1.09E-05
9.33E-06
7.69E-06

Код програми

```
#include <iostream>
#include <math.h>
#include <string>
#include <fstream>
using namespace std;
const double P = 3.141592653589793;
double function (double x, double y)
     return (1 - pow(x,2))*y + cos(x)* (1 - x + pow(x,3)) - x*sin(x);
double* null vector(double* array, int size)
     for (int i = 0; i < size; i++)
           array[i] = 0;
     return array;
}
int main()
     fstream fout; fout.open("graph addition.xls", ios::out);
     double h = 0.1;
     int n = (2 * 1) / h + 1;
     double* x i = new double[n];
                                  null vector(x i, n); x i[0] = -1;
     double* y i = new double[n]; null vector(y i, n);
     double* f_i = new double[n]; null_vector(f_i, n);
```

```
for (int j = 1; j < n; j++)
      x_i[j] = x_i[j - 1] + h;
y i[0] = x i[0]*cos(x i[0]);
double k1, k2, k3, k4;
                                                                              " << endl;
fout << endl << "
fout <<endl<< "Runge-Kutta methods: " << endl;</pre>
for (int j = 0; j < n - 1; j++)
      k1 = h * function(x i[j], y i[j]);
      k2 = h * function(x i[j] + (h / 2), y i[j] + (k1 / 2));
      k3 = h * function(x i[j] + (h / 2), y i[j] + (k2 / 2));
      k4 = h * function(x i[j] + h, y i[j] + k3);
     y i[j + 1] = y i[j] + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
}
fout << endl << "x \t y" << endl;
for (int j = 0; j < n; j++)
   fout << x i[j] << " \t " << y i[j] << endl;
fout << endl<< "x i:" << endl;</pre>
for (int j = 0; j < n; j++)
      fout << x i[j] << endl;
fout << "y i:" << endl;
```

```
for (int j = 0; j < n; j++)
                                         fout << y i[j] << endl;
                     fout << endl << " " << endl;
                     fout << "Adams-Bashforth methods" << endl;</pre>
                    double* z i = new double[n]; null vector(z i, n);
                     for (int j = 0; j < n; j++)
                                         if (j < 4)
                                                          z i[j] = y i[j];
                                          else {
                                                               z i[j] = y i[j - 1] + (h / 24) * (55 * function(x i[j - 1], y i[j - 1]) - 59 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 1]) - 50 * function(x i[j - 2], y i[j - 2], y i[j - 2]) - 50 * function(x i[j - 2], y i[j - 2], 
y_{i}[j-2]) + 37 * function(x_{i}[j-3], y_{i}[j-3]) - 9 * function(x_{i}[j-4], y_{i}[j-4]));
                     }
                    fout << "x \t y" << endl;
                    for (int j = 0; j < n; j++)
                                         fout << x i[j] << "\t" << z i[j] << endl;
               fout <<endl<< "y i:" << endl;</pre>
                     for (int j = 0; j < n; j++)
                                        fout << z i[j] << endl;
                    fout << endl << "
                                                                                                                                                                                                                                                                                                  " << endl;
```

```
fout << "Original function:" << endl;</pre>
double* y 0 = new double[n]; null vector(y 0, n);
for (int j = 0; j < n; j++)
     y 0[j] = x i[j]*cos(x i[j]);
fout << "y 0" << endl;
for (int j = 0; j < n; j++)
     fout << y 0[j] << endl;
                                                                       " << endl;
fout << endl << "
fout << endl << "Errors" << endl;</pre>
double* Errors of Runge Kutta = new double[n]; null vector(Errors of Runge Kutta, n);
double* Errors of Adams Bashforth = new double[n]; null vector(Errors of Adams Bashforth, n);
for (int i = 0; i < n; i++)
      Errors of Runge Kutta[i] = abs(y i[i] - y 0[i]);
     Errors of Adams Bashforth[i] = abs(z i[i] - y 0[i]);
}
fout << "Errors of Runge-Kutta methods" << endl;</pre>
for (int i = 0; i < n; i++)
      fout << Errors of Runge Kutta[i] << endl;</pre>
fout <<endl<< "Errors of Adams-Bashforth methods" << endl;</pre>
```

```
for (int i = 0; i < n; i++)
{
          fout << Errors_of_Adams_Bashforth[i] << endl;
}

fout << endl << "______" << endl;
fout.close();
return 0;</pre>
```