Lista Ejercicios Análisis Matemático IV

Cristo Daniel Alvarado

5 de junio de 2024

Índice general

1. Lista 4 2

Capítulo 1

Lista 4

Ejercicio 1.0.1

Haga lo siguiente:

I. Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Defina $P : \mathbb{R}^n \to \mathbb{R}$ como:

$$P(x_1, ..., x_n) = e^{-\sum_{k=1}^n |x_k|}, \quad \forall x \in \mathbb{R}^n$$

Fije $\nu \in \mathbb{N}$, demuestre la fórmula:

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) dx = (2\nu)^n \int_{\mathbb{R}^n} \frac{f(x_1, ..., x_n)}{(1 + \nu^2 x_1^2) \cdots (1 + \nu^2 x_n^2)} dx_1 \cdots dx_n$$

II. **Deduzca** que si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C}) \cap \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{C})$ y $\mathcal{F}f \geqslant 0$, entonces $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Sugerencia. Aplique el teorema de Beppo-Levi.

Demostración:

De (i): Defina $g(x) = P\left(\frac{x}{\nu}\right)$, para todo $x \in \mathbb{R}^n$. Veamos que $g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. En efecto, se tiene que

$$\int_{\mathbb{R}^{n}} g(x) dx = \int_{\mathbb{R}^{n}} P\left(\frac{x}{\nu}\right) dx$$

$$= \int_{\mathbb{R}^{n}} P\left(\frac{x_{1}}{\nu}, ..., \frac{x_{1}}{\nu}\right) dx_{1} \cdots dx_{n}$$

$$= \int_{\mathbb{R}^{n}} e^{-\sum_{k=1}^{n} \left|\frac{x_{k}}{\nu}\right|} dx_{1} \cdots dx_{n}$$

$$= \int_{\mathbb{R}^{n}} e^{-\frac{1}{\nu} \sum_{k=1}^{n} \left|x_{k}\right|} dx_{1} \cdots dx_{n}$$

$$= \int_{\mathbb{R}^{n}} e^{-\frac{\left|x_{1}\right|}{\nu}} \cdot ... \cdot e^{-\frac{\left|x_{n}\right|}{\nu}} dx_{1} \cdots dx_{n}$$

$$= \underbrace{\left(\int_{\mathbb{R}} e^{-\frac{\left|x_{1}\right|}{\nu}} dx_{1}\right) \cdots \left(\int_{\mathbb{R}} e^{-\frac{\left|x_{n}\right|}{\nu}} dx_{n}\right)}_{n \text{-veces}}$$

$$= \left(\int_{\mathbb{R}} e^{-\frac{\left|t\right|}{\nu}} dt\right)^{n}$$

$$< \infty$$

Usando Fubini para funciones medibles no negativas. Por tanto, por el Teorema de transferencia se sigue que

$$\int_{\mathbb{R}^n} \mathcal{F}f(x)P\left(\frac{x}{\nu}\right) dx = \int_{\mathbb{R}^n} \mathcal{F}f(x)g(x) dx$$
$$= \int_{\mathbb{R}^n} f(x)\mathcal{F}g(x) dx$$

Calculemos $\mathcal{F}g(x)$. Como $g(x)=P\left(\frac{x}{\nu}\right)$ para todo $x\in\mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = \nu^n \mathcal{F}P(\nu x)$$

(por una proposición), donde

$$\mathcal{F}P(x) = \int_{\mathbb{R}^{n}} e^{-i\langle x|y\rangle} P(y) \, dy$$

$$= \int_{\mathbb{R}^{n}} e^{-i\sum_{k=1}^{n} x_{k}y_{k}} e^{-\sum_{k=1}^{n} |y_{k}|} \, dy$$

$$= \int_{\mathbb{R}^{n}} e^{-\sum_{k=1}^{n} (|y_{k}| + ix_{k}y_{k})} \, dy$$

$$= \int_{\mathbb{R}^{n}} e^{-|y_{1}| - ix_{1}y_{1}} \cdot \dots \cdot e^{-|y_{n}| - ix_{n}y_{n}} \, dy_{1} \cdot \dots \cdot dy_{n}$$

$$= \underbrace{\left(\int_{-\infty}^{\infty} e^{-|y_{1}| - ix_{1}y_{1}} \, dy_{1}\right) \cdot \dots \left(\int_{-\infty}^{\infty} e^{-|y_{n}| - ix_{n}y_{n}} \, dy_{n}\right)}_{n\text{-veces}}$$

$$= \underbrace{\left(\int_{-\infty}^{\infty} e^{-|t| - ix_{1}t} \, dt\right) \cdot \dots \left(\int_{-\infty}^{\infty} e^{-|t| - ix_{n}t} \, dt\right)}_{n\text{-veces}}$$

$$= \mathcal{F}h(x_{1}) \cdot \dots \mathcal{F}h(x_{n})$$

donde $h: \mathbb{R} \to \mathbb{R}$ es la función tal que $t \mapsto e^{-|t|}$ y, se sabe que

$$\mathcal{F}h(x) = \frac{2}{1+x^2}$$

Por tanto,

$$\mathcal{F}P(x) = \frac{2^n}{(1 + x_1^2) \cdots (1 + x_n^2)}$$

$$\Rightarrow \mathcal{F}P(\nu x) = \frac{2^n}{(1 + \nu^2 x_1^2) \cdots (1 + \nu^2 x_n^2)}$$

Se sigue que

$$\int_{\mathbb{R}^{n}} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) dx = \nu^{n} \int_{\mathbb{R}^{n}} f(x) \mathcal{F}P(\nu x) dx
= \nu^{n} \int_{\mathbb{R}^{n}} \frac{2^{n} f(x_{1}, ..., x_{n})}{(1 + \nu^{2} x_{1}^{2}) \cdots (1 + \nu^{2} x_{n}^{2})} dx_{1} \cdots dx_{n}
= (2\nu)^{n} \int_{\mathbb{R}^{n}} \frac{f(x_{1}, ..., x_{n})}{(1 + \nu^{2} x_{1}^{2}) \cdots (1 + \nu^{2} x_{n}^{2})} dx_{1} \cdots dx_{n}$$

De (ii): Para cada $\nu \in \mathbb{N}$ defina la función $g_{\nu} : \mathbb{R}^n \to \mathbb{C}$ como sigue:

$$g_{\nu}(x) = \mathcal{F}f(x)P\left(\frac{x}{\nu}\right), \quad \forall x \in \mathbb{R}^n$$

Esta es una sucesión creciente de funciones en $\mathcal{L}_1(\mathbb{R}^n,\mathbb{C})$, pues si $\nu \in \mathbb{N}$:

$$\frac{1}{\nu+1} \sum_{k=1}^{n} |x_k| \leqslant \frac{1}{\nu} \sum_{k=1}^{n} |x_k|, \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow -\frac{1}{\nu} \sum_{k=1}^{n} |x_k| \leqslant -\frac{1}{\nu+1} \sum_{k=1}^{n} |x_k|, \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow e^{\frac{1}{\nu} \sum_{k=1}^{n} |x_k|} \leqslant e^{-\frac{1}{\nu+1} \sum_{k=1}^{n} |x_k|}, \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow P\left(\frac{x}{\nu}\right) \leqslant P\left(\frac{x}{\nu+1}\right), \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) \leqslant \mathcal{F}f(x) P\left(\frac{x}{\nu+1}\right), \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow g_{\nu} \leqslant g_{\nu+1}$$

pues, $\mathcal{F}f \geqslant 0$. Además, como $f \in \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{C})$, entonces

$$f \leqslant \mathcal{N}_{\infty}(f)$$
 c.t.p. en \mathbb{R}^n

luego,

$$\int_{\mathbb{R}^n} g_{\nu}(x) dx = \int_{\mathbb{R}^n} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) dx$$
$$= (2\nu)^n \int_{\mathbb{R}^n} \frac{f(x_1, ..., x_n)}{(1 + \nu^2 x_1^2) \cdots (1 + \nu^2 x_n^2)} dx_1 \cdots dx_n$$

Hagamos el cambio de variable $(y_1,...,y_n)=(\frac{x_1}{\nu},...,\frac{x_n}{\nu})$, se tiene que

$$(2\nu)^{n} \int_{\mathbb{R}^{n}} \frac{f(x_{1}, ..., x_{n})}{(1 + \nu^{2}x_{1}^{2}) \cdots (1 + \nu^{2}x_{n}^{2})} dx_{1} \cdots dx_{n} = (2\nu)^{n} \int_{\mathbb{R}^{n}} \frac{f(\nu y_{1}, ..., \nu y_{n})}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})} \frac{dy_{1} \cdots dy_{n}}{\nu^{n}}$$

$$= 2^{n} \int_{\mathbb{R}^{n}} \frac{f(\nu y_{1}, ..., \nu y_{n})}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})} dy_{1} \cdots dy_{n}$$

$$= 2^{n} \int_{\mathbb{R}^{n}} \frac{\mathcal{N}_{\infty}(f)}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})} dy_{1} \cdots dy_{n}$$

$$= 2^{n} \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^{n}} \frac{dy_{1} \cdots dy_{n}}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})}$$

$$\Rightarrow \left| \int_{\mathbb{R}^{n}} g_{\nu}(x) \right| = 2^{n} \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^{n}} \frac{dy_{1} \cdots dy_{n}}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})}$$

pues $\int_{\mathbb{R}^n} \frac{dy_1 \cdots dy_n}{(1+y_1^2)\cdots(1+y_n^2)} < \infty$ y $\int_{\mathbb{R}^n} g_{\nu}(x) \ge 0$. Por tanto, por Beppo-Levi se sigue que existe una función $g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ tal que

$$\lim_{\nu \to \infty} g_{\nu} = g$$
 c.t.p. en \mathbb{R}^n

Pero, también se tiene que

$$\lim_{\nu \to \infty} g_{\nu}(x) = \lim_{\nu \to \infty} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right)$$

$$= \mathcal{F}f(x) \lim_{\nu \to \infty} P\left(\frac{x}{\nu}\right)$$

$$= \mathcal{F}f(x) P\left(0, ..., 0\right)$$

$$= \mathcal{F}f(x), \quad \forall x \in \mathbb{R}^{n}$$

Entonces $\mathcal{F}f = g$ c.t.p. en \mathbb{R}^n , luego $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Más aún,

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) dx = \lim_{\nu \to \infty} 2^n \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^n} \frac{dy_1 \cdots dy_n}{(1 + y_1^2) \cdots (1 + y_n^2)}$$
$$= 2^n \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^n} \frac{dy_1 \cdots dy_n}{(1 + y_1^2) \cdots (1 + y_n^2)}$$

Ejercicio 1.0.2

Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Se supone que f(x) > 0, para todo $x \in \mathbb{R}^n$. Pruebe que si $x \neq 0$, entonces

$$\mathcal{F}f(0) > |\mathcal{F}f(x)|$$

Sugerencia. Una vez que ha demostrado $|\mathcal{F}f(x)| \leq \mathcal{F}f(0)$, para todo $x \in \mathbb{R}^n$, Para demostrar la desigualdad estricta para $x \neq 0$ proceda por reducción al absurdo y use el Problema 2 de la Lista 6 de Análisis Matemático II.

Demostración:

Ejercicio 1.0.3

Haga lo siguiente:

I. Sean a > 0 y $\lambda \in \mathbb{R}$. **Pruebe** que la función $x \mapsto (\cos \lambda x)/(x^2 + a^2)$ es integrable en $[0, \infty[$. **Muestre** que si $\lambda \neq 0$, la función $x \mapsto (x \sin \lambda x)/(x^2 + a^2)$ no es integrable en $[0, \infty[$, pero existe la integral impropia

$$\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} \, dx$$

Sugerencia. Muestre que

$$\left| \frac{x \sin \lambda x}{x^2 + a^2} \right| \underset{x \to \infty}{\sim} \left| \frac{\sin \lambda x}{x} \right|$$

Para probar la existencia de la integral impropia use los criterios de Abel.

II. Recuerde que la función $x \mapsto (2a)/(x^2 + a^2)$ es la transformada de Fourier de la función $x \mapsto e^{-a|x|}$. Usando el teorema de inversión de Fourier, **demuestre** que

$$\int_0^\infty \frac{\cos \lambda x}{x^2 + a^2} \, dx = \frac{\pi}{2a} e^{-a|\lambda|}$$

III. Usando el inciso (ii), calcule la integral impropia

$$\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} \, dx$$

Sugerencia. Para $\lambda \neq 0$ defina

$$\Phi(\lambda) = \int_0^{-\infty} \frac{\cos \lambda x}{x^2 + a^2} \, dx$$

Calcule $\Phi'(\lambda)$ primero suponiendo $\lambda > \lambda_0$, donde $\lambda_0 > 0$ es arbitrario fijo, de forma análoga para $\lambda < 0$ y finalmente para $\lambda = 0$.

Demostración:

Ejercicio 1.0.4

Sea H una matriz simétrica real $n \times n$ positiva definida, es decir, la forma cuadrática $\langle x|Hx\rangle$

sobre \mathbb{R}^n es positiva definida. Sea $f: \mathbb{R}^n \to \mathbb{R}$ la función

$$f(x) = e^{-\langle Hx|x\rangle}, \quad \forall x \in \mathbb{R}^n$$

Demuestre que f es integrable y que

$$\mathcal{F}f(x) = \frac{\pi^{n/2}}{\left(\det H\right)^{1/2}} e^{-\frac{1}{4}\langle H^{-1}x|x\rangle}, \quad \forall x \in \mathbb{R}^n$$

Sugerencia. f es medible. Para ver que es integrable, pruebe que $\langle Hx|x\rangle \geqslant m||x||^2$, donde

$$m = \min_{x \in S} \left\{ \langle Hx | x \rangle \right\} > 0$$

con $S=\left\{x\in\mathbb{R}^n\Big|\|x\|=1\right\}$. Se sabe de álgebra que existe una matriz ortogonal U tal que $U^{-1}HU=(\lambda_1,...,\lambda_n)$, donde $\lambda_1,...,\lambda_n$ son números estrictamente positivos. En la integral $\mathcal{F}f(x)=\int_{\mathbb{R}^n}e^{-i\langle x|y\rangle}e^{-\langle Hx|x\rangle}\,dy$ haga el cambio de variable y=Uz siendo tal que $|\det U|=0$, $\langle Ur|Us\rangle=\langle r|s\rangle$ (y lo análogo para U^{-1}) y observe que $(1/\lambda_1,...,1/\lambda_n)=U^{-1}H^{-1}U$.

Demostración:

Ejercicio 1.0.5

Recuerde que si $f = \chi_{[-a,a]}$, entonces

$$\mathcal{F}f(x) = \sqrt{\frac{\pi}{2}} \frac{\sin ax}{x}, \quad \forall x \neq 0$$

Deduzca la fórmula

$$\int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^2 dx = \pi a$$

Demostración:

Ejercicio 1.0.6

Haga lo siguiente:

I. Sea $f(x) = \left(1 - \frac{|x|}{a}\right) \chi_{[-a,a]}(x)$, para todo $x \in \mathbb{R}$. **Pruebe** que

$$\mathcal{F}f(x) = a\left(\frac{\sin\frac{ax}{2}}{\frac{ax}{2}}\right)^2$$

II. Usando $\mathcal{F}f$ muestre la fórmula

$$\int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^4 dx = \frac{2}{3} \pi a^3$$

III. Calcule la integral

$$\int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^3 dx$$

Sugerencia. Escriba $f(x) = \left(1 - \frac{|x|}{a}\right) \chi_{[-a,a]}(x)$ y $g(x) = \chi_{[-a,a]}(x)$, para todo $x \in \mathbb{R}$. Aplique la identidad de Parseval

$$\int_{\mathbb{R}} \mathcal{F} f \mathcal{F} g = \langle \mathcal{F} f | \mathcal{F} g \rangle = \langle f | g \rangle = \int_{\mathbb{R}} f g$$

para deducir el resultado.

Solución:

Ejercicio 1.0.7

Sea $n \ge 2$ y $r : \mathbb{R}^n \to \mathbb{R}$ la función $x \mapsto r(x) = ||x|| = \sqrt{x_1^2 + \dots + x_n^2}$. Sea $f : [0, \infty[\to \mathbb{C} \text{ una función tal que } f \circ r \text{ es integrable en } \mathbb{R}^n$.

I. **Pruebe** que la transformada de Fourier $\mathcal{F}(f \circ r)$ es una función radial.

Sugerencia. Si U es una matriz ortogonal $n \times n$, se tiene que $\mathcal{F}(f \circ r)(Ux) = \mathcal{F}(f \circ r)(x)$. Dados $x, y \in \mathbb{R}^n$ tales que ||x|| = ||y||, siempre existe una matriz ortogonal U tal que Ux = y.

II. Muestre que se cumple la fórmula de Bochner

$$\mathcal{F}(f \circ r)(x) = 2(n-1)\omega_{n-1} \int_0^\infty v_n(u(\|x\|))f(u)u^{n-1} du, \quad \forall x \in \mathbb{R}^n$$

donde ω_{n-1} es el volumen de la bola euclideana de radio uno en \mathbb{R}^{n-1} y v_n se define por la fórmula

$$v_n(t) = \int_0^{\frac{\pi}{2}} \cos(t\cos\theta) \sin^{n-2}\theta \, d\theta$$

Sugerencia. Según el inciso (i),

$$\mathcal{F}(f \circ r)(x) = \mathcal{F}(f \circ r)(\|x\|, 0, ..., 0) = \int_{\mathbb{R}^n} f(\|y\|) e^{-i\|x\|y_1} dy_1 \cdots dy_n$$

Transforme esta integral por el Teorema de Fubini y exprese la integral con respecto a $y_2, ..., y_n$ como una integral simple. La doble integral resultante se transforma a coordenadas polares.

Solución:

Ejercicio 1.0.8

Haga lo siguiente:

I. Sea $h:[0,\infty[\to 0\mathbb{C}$ una función integrable en $[0,\infty[$. Sea a>0, demuestre que existe la integral impropia

$$\int_{-\infty}^{+\infty} \frac{dx}{x} \int_{0}^{\infty} h(y) \sin xy \, dy$$

Sugerencia. Justifique la inversión del orden de las integraciones.

II. Sea $f: \mathbb{R} \to \mathbb{R}$ la función

$$f(x) = \begin{cases} \frac{1}{e}x & \text{si} \quad |x| < e \\ \frac{\text{Sgn}(x)}{\log|x|} & \text{si} \quad |x| \geqslant e \end{cases}, \quad \forall x \in \mathbb{R}$$

Muestre que, para a > 0 no existe la integral impropia

$$\int_{a}^{+\infty} \frac{f(x)}{x} \, dx$$

De este hecho y del inciso (i) **deduzca** que no existe $g \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tal que $f = \mathcal{F}g$. Así pues, la transformación de Fourier no es una aplicación suprayectiva de $L_1(\mathbb{R}, \mathbb{C})$ en $\mathcal{C}_0(\mathbb{R}, \mathbb{C})$.

Solución:

Ejercicio 1.0.9

Haga lo siguiente:

I. Sea $f: \mathbb{R} \to \mathbb{C}$ una función integrable en \mathbb{R} . Se supone que existe una función $\varphi: \mathbb{R} \to \mathbb{C}$ localmente integrable en \mathbb{R} tal que

$$f(x) = f(0) + \int_0^x \varphi, \quad \forall x \in \mathbb{R} \quad y \quad |\varphi(x)| \underset{|x| \to \infty}{=} O\left(\frac{1}{|x|^m}\right)$$

donde m > 2. **Pruebe** que

$$|f(x)| = = O\left(\frac{1}{x^{m-1}}\right)$$

y que, para todo $x \in \mathbb{R}$, existen las sumas

$$\Phi(x) = \sum_{k \in \mathbb{Z}} \varphi(x+k)$$
 y $F(x) = \sum_{k \in \mathbb{Z}} f(x+k)$

siendo la convergencia absoluta y uniforme en [-1,1], luego en \mathbb{R} . Muestre finalmente que

$$F(x) = F(0) + \int_0^x \Phi, \quad \forall x \in \mathbb{R}$$

F es una función periódica de periodo uno. **Demuestre** que los coeficientes de Fourier de F respecto al sistema O.N. $(e^{2\pi int})_{n\in\mathbb{Z}}$ son

$$\int_0^1 F(x)e^{-2\pi inx} dx = \mathcal{F}f(2\pi n), \quad \forall n \in \mathbb{Z}$$

Deduzca la fórmula Sumatoria de Poisson

$$\sum_{k \in \mathbb{Z}} f(x+k) = \sum_{k \in \mathbb{Z}} \mathcal{F}f(x+k), \quad \forall x \in \mathbb{R}$$

8

Aplicando la fórmula sumatoria de Poisson a la función $x\mapsto e^{-\alpha|x|}$ para $\alpha>0$, obtenga el desarrollo

$$\coth x = \frac{1}{x} + 2x \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2 \pi^2}, \quad \forall x \geqslant 0$$

Se define la **función theta** por

$$\Theta(x) = \sum_{n = -\infty}^{\infty} e^{-\pi n^2 x}, \quad \forall x > 0$$

Aplicando la fórmula sumatoria de Poisson a la función $x\mapsto e^{-\alpha x^2}$ para $\alpha>0,$ **pruebe** la identidad

 $\Theta(x) = \sqrt{\frac{1}{x}}\Theta\left(\frac{1}{x}\right), \quad \forall x > 0$

Solución:

Ejercicio 1.0.10

Haga lo siguiente:

I. Sea $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tal que f(x) = 0 para todo x < 0. Para todo $z \in \mathbb{C}$ tal que $\Im z \leq 0$ se define

$$\mathcal{F}f(x) = \int_0^\infty e^{-izx} f(x) \, dx$$

Pruebe que esta definción tiene sentido, que $\mathcal{F}f$ es continua en el semiplano cerrado $\left\{z\in\mathbb{C}\left|\Im z\leqslant0\right\}\right\}$ y holomorfa en el semiplano abierto $\left\{z\in\mathbb{C}\left|\Im z<0\right.\right\}$.

Sugerencia. El teorema de derivación de funciones defindas por integrales continúa siendo válido al sustituir el intervalo I por un abierto de \mathbb{C} .

II. Sean $f, g \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tales que f(x) = g(x) = 0, $\forall x < 0$. Muestre que para todo $z \in \mathbb{C}$ tal que $\Im z \leq 0$ se tiene

$$\mathcal{F}(f*g)(z) = \mathcal{F}f(z)\mathcal{F}g(z)$$

III. Sean f, g como en el inciso (ii). Se supone además que $\mathcal{F}(f*g) = 0$ c.t.p. en \mathbb{R} . **Demuestre** que f = 0 c.t.p. en \mathbb{R} o bien g = 0 c.t.p. en \mathbb{R} .

Sugerencia. Deduzca de (i) y (ii) que $\mathcal{F}f = 0$ o bien $\mathcal{F}g = 0$.

Solución:

Ejercicio 1.0.11

Solución:

Ejercicio 1.0.12

Solución: