Лабораторная работа № 9

Изучение технологии полуавтоматической дуговой сварки в углекислом газе (СО2)

- Цель работы: ознакомиться с технологией полуавтоматической сварки в среде углекислого газа и применяемым оборудованием; изучить факторы, влияющие на процесс сварки и её производительность.
- Содержание работы: ознакомление с техникой полуавтоматической сварки в среде углекислого газа, определение экспериментально коэффициентов расплавления, наплавления и разбрызгивания металла, разработка технологии сварки заданной детали и выбор режимов сварки.
- Применяемое оборудование и материалы: сварочный полуавтомат; баллон с углекислым газом; газовые редукторы для регулирования давления; сварочная проволока; заготовка из стали; защитные щитки; спецодежда; молоток; щетка; плоскогубцы; весы с разновесами.

Порядок проведения работы

- 1. Ознакомиться с устройством и принципом действия сварочного выпрямителя.
- 2. Определить коэффициент расплавления и наплавки, процент потерь на угар:
 - а) определить вес стальной пластины;
- метра электродной проволоки б) определить вес 1 погонного (взвешиванием на весах);
- в) установить заданный режим сварки I_{cs} , u_{∂} , V_{cs} (проверяется наплавкой на пробной пластине);
- г) при помощи металлической линейки разметить длину электродной проволоки;
- д) после наплавки зачистить сварной шов до металлического блеска и определить вес наплавленного металла $G_{\scriptscriptstyle H}$ и вес расплавившейся части электродной проволоки $G_{\scriptscriptstyle 3Л}$ (по длине израсходованной части электродной проволоки и весу ее 1 погонного метра);
- е) вычислить коэффициент расплавления (α_n), наплавки (α_n) и процент потерь на угар и разбрызгивание (ϕ), пользуясь формулами:

$$\alpha_{\delta} = \frac{G_{\hat{y}\hat{e}} \cdot 3600}{I_{\hat{n}\hat{a}} \cdot t} \, \tilde{\mathbf{a}} / \dot{\mathbf{A}} \cdot \dot{\div}, \, \alpha_{i} = \frac{G_{i} \cdot 3600}{I_{\hat{n}\hat{a}} \cdot t} \, \tilde{\mathbf{a}} / \dot{\mathbf{A}} \cdot \dot{\div}, \, \varphi = \frac{G_{\hat{y}\hat{e}} - G_{i}}{G_{\hat{y}\hat{e}}} \cdot 100 \, \%,$$

где $G_{\scriptscriptstyle \mathfrak{I}\!\!J}$ – вес расходованной электродной проволоки, г; $G_{\scriptscriptstyle H}$ – вес наплавленного металла, г; I_{cs} — величина сварочного тока в процессе сварки, A; t – время горения дуги, с.

3. Определить скорость сварки исходя из получения заданного сечения по площади наплавки $F_{H,W,}$ cM^2 :

$$V_{\tilde{n}\hat{a}} = \frac{I_{c\hat{a}} \cdot \alpha_i}{100 \cdot F_{i,\sigma} \cdot \gamma} i / \div,$$

где $\gamma = 7.8 \text{ г/см}^3 - \text{плотность стали}.$

4. Определить расход электроэнергии на 1 погонный метр шва:

$$\hat{A} = \frac{I_{c\hat{a}} \cdot U_{\ddot{a}}}{1000 \cdot \hat{E} \cdot V_{\tilde{a}\hat{a}}} \hat{e} \hat{a} \hat{o} \cdot \div / \hat{i} ,$$

где K = 0.8 – коэффициент полезного действия источника питания.

5. Определить основное время сварки сварного шва с параметрами, заданными преподавателем по определенному коэффициенту наплавки (α_{μ}), сварочному току (I_{cs}):

$$t_i = \frac{\gamma \cdot S^2 \cdot L}{2I_{ca} \cdot \alpha_i} \div,$$

где S и L – толщина и длина свариваемых заготовок, мм.

6. Определить расчетное значение расходованной электродной проволоки:

$$G_{\dot{y}\ddot{e}.\bar{t}\,\delta.} = \frac{\alpha_{\delta} \cdot I_{\tilde{n}\hat{a}} \cdot t_{\hat{t}}}{1000} \,\hat{e}\tilde{a}.$$

Сравнить полученное значение с величиной расходованной проволоки, определенной экспериментально (G_{2n}).

7. Выбрать источник тока для сварки (табл. 9.1).

1. Общие сведения о дуговой сварке в углекислом газе

Сварку в углекислом газе выполняют плавящимся электродом из непокрытой металлической проволоки на постоянном токе повышенной плотности обратной полярности (электрод подключают к отрицательному сварочного выпрямителя). Процесс сварки осуществляется следующим образом (рис. 9.1). Проволока, проходя через токопровод 2, непрерывно подается в зону сварки. Для защиты расплавленного металла сварочной ванны и капель 1 расплавленного металла электрода в зону сварки через сопло 3 подается углекислый газ, образующий газовую защиту. При применении СО2 в качестве защитного газа необходимо учитывать некоторые металлургические особенности, связанные с окислительным действием газа. В центре сварочной ДУГИ при высоких температурах углекислый диссоциирует на оксид углерода СО и кислород О по эндотермической реакции:

$$CO_2 \rightarrow CO + O - Q\uparrow$$

На диссоциацию СО₂ расходуется до 20–25 % тепловой мощности дуги. Образующийся в результате диссоциации кислород окисляет капли металла электродной проволоки и металл сварочной ванны. Образующиеся окислы железа ухудшают механические свойства шва. Для подавления реакции окисления сварку выполняют проволокой с повышенным содержанием марганца, кремния и алюминия (Св08ГСА, Св08Г2С, Св10ГС, Св07ГС10). Например, марка проволоки Св08Г2С расшифровывается: сварочная проволока, содержащая: 0,08 % углерода; ~ 2 % марганца, ~ 1 % кремния. Марганец и кремний имеют большее сродство к кислороду, чем железо, раскисляют (восстанавливают) его и образуют на поверхности шва тонкий слой шлака, состоящий из окислов железа, марганца и кремния, частично покрывающий сварочную ванну и сварной шов. На поверхности шва шлак застывает в виде отдельных чешуек.

Рис. 9.1. Схема сварки в среде СО2

При этом способе сварки расстояние от торца электрода до токопровода значительно меньше, чем при ручной дуговой сварке. Рабочая часть электрода имеет длину 40-60 мм. Поэтому можно значительно увеличить сварочный ток без чрезмерного разогрева проволоки. Формируется мощная электрическая дуга, которая механически воздействует на расплавленный металл, вытесняя его в конец сварочной ванны. Вытеснение жидкого металла облегчается благодаря снижению поверхностного натяжения в сварочной ванне. Поверхность жидкого металла бомбардируется ионами СО, которые разрыхляют окисную пленку и снижают силу поверхностного натяжения. В результате обнажаются более глубокие, еще не расплавленные, слои металла. электрической Они подвергаются быстрому разогреву дугой, способствует возрастанию глубины проплавления по сравнению с ручной дуговой сваркой.

Сварка в среде углекислого газа обеспечивает: меньший разогрев кромок при сварке толстого металла; обладает большей скоростью сварки; высокой экономичностью; производительностью процесса; стойкостью против образования трещин, которая обусловлена окислительной атмосферой в зоне сварки, возможностью наблюдения за сварочной ванной и формированием сварного шва. Помимо этого, при сварке в среде CO_2 требуются менее квалифицированные сварщики.

К недостаткам этого способа относится: большое разбрызгивание (до 10% от веса сварочной проволоки), низкая прочность металла шва, плохой внешний вид шва. Но высокая производительность, более низкие требования к квалификации сварщика способствуют широкому распространению этого способа и в настоящее время он находится на втором месте среди известных способов сварки плавлением. Его целесообразно применять во всех случаях сварки низкоуглеродистых и низколегированных сталей швами любого типа в любом пространственном положении как при единичном, так и серийном производстве при условии невысоких требований к прочности металла шва (< 500 МПа).

2. Устройство и принцип работы сварочного полуавтомата

Для осуществления полуавтоматической сварки в среде CO₂ необходимо следующее оборудование (рис. 9.2): источник питания сварочной дуги 7, шланговый держатель с горелкой 2, баллон с углекислым газом и редуктором 4, подающий механизм 6 с подогревателем углекислого газа.

Рис. 9.2. Пост для полуавтоматической сварки в среде СО₂: 1 – заготовка; 2 – шланговый держатель; 3 – гибкий шланг; 4 – баллон с газом; 5 – механизм подачи проволоки; 6 – кассета с проволокой; 7 – источник питания – сварочный выпрямитель

Подающий механизм состоит из механизма подачи проволоки и кассеты с проволокой. Он осуществляет в процессе сварки непрерывную подачу сварочной проволоки из кассеты через шланговый держатель в зону сварки. В управления размещена электрическая схема полуавтомата. Подогреватель служит для нагрева углекислого газа, т. к. во время истечения из баллона он расширяется и охлаждается до отрицательных температур, что может привести к замерзанию канала подачи газа при перепаде давления.

Редуктор предназначен для понижения до требуемой величины давления газа, хранящегося в баллоне под избыточным давлением. В качестве источников питания дуги используются источники постоянного тока (табл. 9.1) – генераторы и выпрямители, т. к. на переменном токе в среде СО2 сварочная дуга горит неустойчиво.

В данной работе используется полуавтомат А-825М.

Техническая характеристика полуавтомата А-825М

Диаметр сварочной проволоки 0.8 - 1.4 MM

80-315 A Сварочный ток 18-27 B Напряжение на дуге

Скорость подачи сварочной проволоки 140-650 м/час

Перед включением сварочного полуавтомата необходимо убедиться, что оголенная часть шлангового держателя 2 не касается стола и других металлических предметов. Переключатели ПЗ и П4 находятся в одинаковом положении, переключатель П2 – в положении →. Включение источника питания осуществляется

нажатием на кнопку «Пуск». Включение подающего механизма – переводом переключателя П1 в положение «Вкл». Для выключения источника питания необходимо нажать кнопку «Стоп» подающего механизма переключатель $\Pi 1$ в положение «Выкл». Регулирование режима сварки производится следующим образом: расход CO_2 регулируется редуктором и определяется по расходомеру; напряжение – регулятором R2 (необходимо установить напряжение холостого хода 25 В, что будет соответствовать напряжению на дуге 20–23 В); скорость подачи сварочной проволоки определяется положением регулятора R1 (его необходимо установить на делении 4); сварочный ток определяется скоростью подачи сварочной проволоки и в несколько меньшей степени – напряжением на дуге.

Таблица 9.1 **Технические данные полуавтоматов для сварки в углекислом газе**

	Марки полуавтоматов						
Технические данные	ПДГ-305	ПДГ-502	ПДГ-601	А-765 (без CO ₂)	Magpol		
Напряжение питающей сети, В	380	380, 220	380	380	380		
Номинальный сварочный ток, А	315	500	630	500	315		
Пределы регулирования сварочного тока, А	50–315	100–500	100-700		50–315		
Номинальный режим работы ПР, %	60	60	60		60; 100		
Диаметр электродной проволоки, мм	0,8–1,4	1,2-2,0	1,2-2,5	1,6–2,0 пор. 1,6–3,0	0,8–1,6		
Скорость подачи проволоки, м/ч	180–720	180–720	109,8–1094	58–582	93,6–1260		
Тип выпрямителя	ВДГ-302У3	ВДУ-500-1	ВДГ-600	BC-600	EPI		

3. Технология дуговой сварки в углекислом газе

Перед началом сварки необходимо изучить дополнительные меры по технике безопасности (приведены в конце методических указаний к данной лабораторной работе).

Для зажигания сварочной дуги необходимо взять держатель в руку, включить полуавтомат, поднести сопло горелки шлангового держателя к свариваемым деталям на расстояние 10–20 мм, не меняя положения держателя, закрыть лицо маской и нажать на тангенту «Т». При этом полуавтомат начинает подачу газа и проволоки; при соприкосновении проволоки с деталью самопроизвольно загорается электрическая дуга. В начальный момент времени (доли секунды) после соприкосновения проволоки и детали дуга может не загореться и поступающая из держателя проволока попытается оттолкнуть руку с держателем от детали. Нужно не дать ей этого сделать и дуга загорится сама собой. В процессе сварки необходимо поддерживать в указанных пределах расстояние от свариваемых кромок до сопла горелки. Дуга для обеспечения устойчивости горения должна находиться на сварочной ванне или ее границе с основным металлом. Поперечные колебания могут выполняться так же, как и при ручной дуговой сварке. Горелку чаще всего наклоняют вперед на угол 10–40° к оси шва. Сварочная дуга обращена

при этом к уже сваренному шву. На протяжении всего процесса сварки необходимо не допускать касания соплом свариваемых деталей, т. к. в этом случае дуга загорается между соплом и свариваемой деталью и сопло выходит из строя.

Для прекращения процесса сварки необходимо, не меняя положения держателя, отпустить тангенту «Т» и через несколько секунд процесс сварки прекратится.

Сварка стыковых и нахлесточных соединений в нижнем положении при толщине S=0,8-1,2 мм выполняется при установке заготовок на подкладке или на весу при равномерном поступательном перемещении электрода (рис. 9.3a). Металл толщиной $S\leq 3$ мм в нижнем положении сваривают без поперечных колебаний электрода, а при S>3 мм применяют эти колебания.

Сварку вертикальных швов с S < 6 мм выполняют сверху вниз с наклоном электрода углом назад, направляя дугу на переднюю часть сварочной ванны (рис. 9.36), что обеспечивает хорошее проплавление кромок и исключает прожоги. При толщине металла S > 6 мм вертикальные швы выполняют при движении электрода вверх с его поперечными колебаниями и произвольным наклоном (рис. 9.3в, г). Потолочные швы сваривают электродом $d_3 = 0.5-1.4$ мм с наклоном электрода углом назад (рис. 9.3д) при минимальных значениях тока и напряжения.

Рис. 9.3. Схемы расположения шва и поперечные колебания электрода при полуавтоматической сварке в углекислом газе

Ориентировочный режим полуавтоматической сварки в углекислом газе стыковых швов без разделки кромок в нижнем положении проволокой СВ-08Г2С приведен в таблице 9.2.

Таблица 9.2 Ориентировочный режим полуавтоматической дуговой сварки в углекислом газе стыковых швов без разделки кромок в нижнем положении проволокой СВ08Г2С

Толщина	Режим сварки						
свариваемого	Диаметр	Сила тока,	Напряже	Скорость	Вылет	Расход	Число
материала,	мм	Д ТОКа,	ние дуги,	сварки,	электрод	газа,	проходов
MM	WHY	7.1	В	м/ч	а, мм	дм³/мин	проходов

1	0,8	60–70	17	25–40	7–12	6–7	1
1,5	0,8	85–100	18–19	30–40	7–21	6–7	1
	1,0	100-110	18–19	30–40	8–15	6–7	1
	1,2	120–160	19–20	35–40	9–13	6–7	1
2,0	0,8	110–140	19–21	20–30	7–12	6–7	1
	1,0	130–150	20-21	30–35	8-13	6–8	1
	1,2	160–180	21	35–40	9–15	6–8	1
3–4	1,0	140–160	20–21	20-30	8–13	7–9	1
	1,2	150-170	20-21	25–35	9–15	7–9	2
	1,2	190–230	21	30–40	9–15	7–10	2
5–8	1,6	180–220	23–26	20–35	15–20	12–15	2
	2,0	200–240	24–28	25–35	15–20	12–15	2
	2,0	260–280	28-30	25–30	15–25	15–17	2
10	2,0	280–300	28-30	25–30	20–25	15–17	2
12	2,0	380-400	30–32	20–30	20–25	15–17	2
14	2,0	480–500	33–40	15–25	15–25	12–16	2

Содержание отчета

- 1. Название и цель работы.
- 2. Схема полуавтоматической сварки в среде CO_2 с указанием каждого элемента схемы.
- 3. Порядок и результаты выполнения работы (с указанием формул, по которым ведутся расчеты).
- 4. Вывод о результатах эксперимента и сравнение производительности ручной дуговой сварки и полуавтоматической сварки в среде CO₂ с указанием, за счет каких параметров один способ сварки производительнее другого.

Контрольные вопросы

- 1. Металлургические особенности сварки в среде СО₂.
- 2. Почему сварочная проволока для сварки в среде CO_2 дополнительно легирована марганцем и кремнием?
- 3. Почему глубина проплавления при сварке в среде CO_2 выше, чем при ручной дуговой?
- 4. Влияние глубины проплавления на производительность.
- 5. Влияние глубины проплавления, высоты усилия, ширины и катета шва на его прочность.
- 6. Оборудование, необходимое для сварки в среде CO_2 .
- 7. Какие источники питания применяются при сварке в среде СО2 и почему?
- 8. Достоинства и недостатки сварки в среде CO_2 .