MECHANIZMY KRZYŻOWANIA

I. Binarne kodowanie zmiennych w chromosomie

• Krzyżowanie jednopunktowe

losowo wybrany punkt krzyżowania

ch1: 53 19 12 39 ch2: 31 54 53 21

Potomkowie: jeżeli $p < p_k$ to:

	x1	x2	x3	x4
Ch1	110101	01 0110	110101	010101
Ch2	011111	11 0011	001100	100111
ch1:	53	22	53	21
ch2:	31	51	12	39

ale jeżeli $p > p_k$ to potomkowie są identyczni jak rodzice (brak wymiany łańcuchów genów).

Krzyżowanie dwupunktowe

Potomkowie: jeżeli $p_1 < p_k$ i $p_2 < p_k$ to:

	•			
	$\mathbf{x}1$	x2	x 3	x4
Ch1	11 1111	110110	1101 00	100111
Ch2	01 0101	010011	0011 01	010101
ch1:	63	54	52	39
ch2:	21	19	13	21

Jeżeli warunek $p_1 < p_k$ i $p_2 < p_k$ nie jest spełniony to łańcuchy genów nie są wymieniane (brak krzyżowania).

- Krzyżowanie lokalne (dla każdej zmiennej)
- Dla każdej zmiennej w łańcuchu losuje się prawdopodopieństwo p_j , j = 1, ..., N.
- Jeżeli $p_j \le p_k$, to w danej zmiennej zachodzi krzyżowanie w losowo wybranym punkcie, w przeciwnym przypadku krzyżowanie nie zachodzi.

Np. wylosowano krzyżowanie dla zmiennej x1 i x3 w łańcuchu 4 zmiennych ($p_1 < p_k$, $p_2 > p_k$, $p_3 < p_k$, $p_4 > p_k$).

	x1	x2		x 3	x4
Ch1	11 0101	010011	0011	00	100111
Ch2	01 1111	110110	1101	01	010101
	\downarrow			\downarrow	
	losowy I p	ounkt	losowy II punkt		
	krzyżowa	nia	krzyżowania		
ch1:	53	19	12		39
ch2:	31	54	53		21

Ch1

Potomkowie: dla $p_1 < p_k$, $p_2 > p_k$, $p_3 < p_k$, $p_4 > p_k$:

X I	x2	x3	x4
11 111	1 010011	0011 01	100111
01 010	1 110110	1101 00	010101

ch1: 63 19 13 39 ch2: 21 54 52 21

- Krzyżowanie globalne lub lokalne wielopunktowe
- 1. Przebiega podobnie jak krzyżowanie jedno- lub dwu-punktowe.
- 2. Losuje się jednak więcej punktów krzyżowania, dla których sprawdza się prawdopodobieństwo zajścia krzyżowania.
- 3. W przypadku jego zaistnienia wymienia się odpowiednie fragmenty ciągu genów (globalnie lub lokalnie) pomiędzy odpowiednimi fragmentami ciągu genów.

Krzyżowanie równomierne

- 1. W tym rodzaju krzyżowania generuje się osobno dla każdej pary osobników rodzicielskich binarny wzorzec krzyżowania w postaci losowo wygenerowanego ciągu zer i jedynek o długości równej liczbie genów w chromosomie populacji.
- 2. Allele o wartości równej 1 takiego wzorca decydują o zamianie genów pomiędzy rodzicami, zaś allele o wartości równej 0 decydują o pozostawieniu genów rodziców na ich pozycjach.

Rodzice:

	x1	x2	x3	x4
Ch1	110101	010011	001100	100111
Ch2	011111	110110	110101	010101
ch1:	53	19	12	39
ch2:	31	54	53	21

Wylosowany wzorzec krzyżowania:

100101 110011 011010 100101

Dzieci:

	x1	x 2	x3	x4
Ch1	010101	110010	010100	000111
Ch2	1 11111	110111	101101	110101
ch1:	21	50	20	6
ch2:	63	55	45	53

II. Zmiennoprzecinkowe kodowanie zmiennych w chromosom

• Krzyżowanie jednopunktowe

Może następować wyłącznie pomiędzy genemi, czyli zmiennymi projektowymi.

Rodzice:

	x 1	x2	x3	x4	x5
				4.255	
Ch2	4.023	2.819	4.180	3.436	2.291

 \downarrow

losowo wybrany punkt krzyżowania

Potomkowie: jeżeli $p < p_k$ to:

x1 x2 x3 x4 x5

 Ch1
 1.463
 2.050
 0.389
 3.436
 2.291

 Ch2
 4.023
 2.819
 4.180
 4.255
 0.744

• Krzyżowanie dwu- i wielopunktowe

Jest realizowane podobnie.

Rodzice:

	<u>x1</u>	x2	х3	x4	x5
Ch1	1.463	2.050	0.389	4.255	0.744
Ch2	4.023	2.819	4.180	3.436	2.291
		,	$\overline{\downarrow}$		$\overline{\downarrow}$

losowo wybrane punkty krzyżowania

Potomkowie: jeżeli $p < p_k$ to:

	X1	x2	x3	x4	x5
Ch1	1.463	2.050	4.180	3.436	0.744
Ch2	4.023	2.819	0.389	4.255	2.291

Krzyżowanie arytmetyczne globalne

Liniowa kombinacja dwóch chromosomów rodzicielskich. Jeżeli $p^t < p_k$ to:

Potomkowie:
$$\begin{cases} \mathbf{ch1}^{t+1} = a \cdot \mathbf{ch1}^t + (1-a) \cdot \mathbf{ch2}^t \\ \mathbf{ch2}^{t+1} = (1-a) \cdot \mathbf{ch1}^t + a \cdot \mathbf{ch2}^t \end{cases}$$

gdzie $a \in [0,1]$ – wybierane losowo lub zależne od wieku populacji (nr. iteracji)

np. dla a = 0.645 otrzymamy:

Rodzice:

	<u>x1</u>	x2	x3	x4	x5
Ch1	1.463	2.050	0.389	4.255	0.744
Ch2	4.023	2.819	4.180	3.436	2.291

Potomkowie:

Potomek1:
$$x_1 = 0.645 \times 1.463 + 0.355 \times 4.023 = 2.372$$

Potomek 2:
$$x_1 = 0.355 \times 1.463 + 0.645 \times 4.023 = 3.114$$

					x4	
					3.694	
C	lh2	3.114	2.546	2.834	3.727	1.742

Lokalne krzyżowanie arytmetyczne

Liniowa kombinacja każdej zmiennej w dwóch chromosomów odzicielskich.

Jeżeli $p_j^t < p_k$ to:

Potomkowie:
$$\begin{cases} x_{j,ch1}^{t+1} = a \cdot x_{j,ch1}^{t} + (1-a) \cdot x_{j,ch2}^{t} \\ x_{j,ch2}^{t+1} = (1-a) \cdot x_{j,ch1}^{t} + a \cdot x_{j,ch2}^{t} \end{cases}$$

gdzie $a \in [0,1]$ – wybierane losowo lub zależne od wieku populacji (nr. iteracji)

np.dla a = 0.379 otrzymamy:

Rodzice:

	$\mathbf{x}1$	x 2	x 3	x4	x5
II II				4.255	
Ch2	4.023	2.819	4.180	3.436	2.291

Potomkowie:

Potomek1:
$$x4 = 0.379 \times 4.255 + 0.621 \times 3.436 = 3.746$$

Potomek 2:
$$x4 = 0.621 \times 4.255 + 0.379 \times 4.023 = 3.945$$

x 1	x2	x 3	x4	x5

				3.746	
Ch2	4.023	2.819	4.180	3.945	2.291

Krzyżowanie mieszane (proste)

Ten rodzaj krzyżowania jest połączeniem krzyżowania jednopunktowego z krzyżowaniem arytmetycznym.

Polega ono na:

- 1. Wyznaczeniu punktu krzyżowania.
- 2. Wylosowaniu prawdopodobieństwa p zajścia krzyżowania jednopunktowego.
- 3. Jeżeli $p < p_k$ to krok 4, inaczej krok 2.
- 4. Przepisanie pierwszej części łańcucha genów (zmiennych) obu chromosomów rodzicielskich do chromosomów potomnych.
- 5. Wylosowanie wagi $a \in [0,1]$ i poddanie drugiej części łańcucha genów (pozostałych zmiennych) obu chromosomów rodzicielskich krzyżowaniu arytmetycznemu w celu wyznaczenia wartości pozostałych genów potomnych.

Rodzice:

Ch1	x 1	x2	x3	x4	x5
Ch2	x 1	x 2	x 3	x4	x 5
•	·				•

Wylosowany punkt krzyżowania

Potomkowie:

Ch1	x 1	x2	x3'	x4'	x5'
Ch2	x 1	x2	x3'	x4'	x5'

gdzie:
$$x_{ch1pi} = \alpha x_{ch1ri} + (1-\alpha)x_{ch2ri}$$
; $x_{ch2pi} = (1-\alpha)x_{ch1ri} + \alpha x_{ch2ri}$ $i = 3, 4, 5$

Krzyżowanie heurystyczne.

Krzyżowanie heurystyczne jest nieco podobne do globalnego krzyżowania arytmetycznego. Jest jednak krzyżowaniem stosunkowo nietypowym, gdyż para rodziców może stworzyć maksymalnie jednego potomka lub też go nie utworzyć.

Polega ono na:

- 1. Wylosowaniu całkowitej liczby r z przedziału [0,1] oraz pary chromosomów rodzicielskich **ch**1^t i **ch**2^t.
- 2. Wyznaczeniu chromosomu pochodnego na podstawie następującej relacji:

$$\mathbf{ch}^{t+1} = r(\mathbf{ch}2^t - \mathbf{ch}1^t) + \mathbf{ch}2^t$$

gdzie: t oznacza numer aktualnej populacji oraz spełniony musi być warunek:

$$FP(\mathbf{ch1}^t) \leq FP(\mathbf{ch2}^t)$$

3. Jeżeli utworzony potomek nie jest dopuszczalny, losuje się ponownie liczbę r oraz nowe chromosomy rodzicielskie **ch**1^t i **ch**2^t

Jeżeli po założonej liczbie powtórzeń *m* nie zostanie utworzony chromosom potomny, to sugeruje się wykorzystanie innego algorytmu krzyżowania.