Chapter 11

Design via Frequency Response

Figure 11.1
Bode plots showing gain adjustment for a desired phase margin

Figure 11.2 System for Example 11.1

Figure 11.3
Bode magnitude
and phase plots for

Example 11.1

Figure 11.4
Visualizing lag
compensation

Figure 11.5
Frequency response plots of a lag compensator,

$$G_c(s) = (s + .1)/(s + .01)$$

Figure 11.6
Bode plots for Example 11.2

Figure 11.7
Visualizing lead compensation

Figure 11.8

Frequency response of a lead compensator,

$$G_c(s) = [1/\beta][(s + 1/T)/(s + 1/\beta T)]$$

 ωT

Figure 11.9
Bode plots for lead compensation in Example 11.3

Chapter 11: Design via Frequency Response

Figure 11.10
a. The lowa Driving Simulator;
b. test driving the simulator with its realistic graphics

Figure 11.11

Sample frequency response curves for a lag-lead compensator, $G_c(s) =$ [(s + 1)(s + 0.1)]/ $[(s + \gamma)(s + \frac{0.1}{\gamma})]$

Figure 11.12
Bode plots for laglead compensation in
Example 11.4

Figure P11.1

Figure P11.2 Towed-vehicle roll control

Figure P11.3

Figure P11.4
a. A self-guided vehicle;
b. simplified block diagram

Figure P11.5

