Implementasi Metode Newton-Raphson untuk Analisis Stabilitas Sistem Kontrol: Pendekatan Komputasi Numerik

*Catatan: Tugas Pemrograman B - Komputasi Numerik

1st Daffa Hardhan

Program Studi Teknik Komputer

Universitas Indonesia

Depok, Jawa Barat, Indonesia

daffa.hardhan@ui.ac.id

2nd Muhammad Bryan Farras Program Studi Teknik Komputer Universitas Indonesia Depok, Jawa Barat, Indonesia muhammad.bryan31@ui.ac.id 3rd Tri Yoga Arsyad Program Studi Teknik Komputer Universitas Indonesia Depok, Jawa Barat, Indonesia tri.yoga@ui.ac.id

I. ABSTRAK

Penelitian ini mengimplementasikan metode Newton-Raphson dalam bahasa pemrograman C untuk menganalisis stabilitas sistem kontrol massa-pegas-damper orde kedua dengan gain kontroler variabel. Sistem yang dianalisis memiliki persamaan karakteristik $s^2 + 4s + (1 + K) = 0$ dengan parameter gain $K \in [0, 10]$. Implementasi algoritma menunjukkan konvergensi kuadratik dengan rata-rata 5.5 iterasi untuk akar pertama dan 7 iterasi untuk akar kedua pada sistem overdamped, mencapai akurasi numerik $\epsilon = 10^{-6}$. Analisis diskriminan $\Delta = 12 - 4K$ menghasilkan klasifikasi sistem: overdamped (27.3%, K < 3), critically damped (9.1%, K=3), dan underdamped (63.6%, K>3). Seluruh 11 sistem yang dianalisis menunjukkan stabilitas absolut dengan akar-akar memiliki bagian real negatif. Validasi numerik terhadap solusi analitik menghasilkan error relatif maksimum $6.03 \times 10^{-5}\%$, membuktikan reliabilitas implementasi metode Newton-Raphson untuk analisis sistem kontrol real-time.

Kata kunci: Newton-Raphson, stabilitas sistem kontrol, analisis numerik, eigenvalue, massa-pegas-damper, implementasi C

II. PENDAHULUAN

Analisis stabilitas sistem kontrol linear time-invariant (LTI) merupakan fundamental dalam rekayasa kontrol yang menentukan perilaku dinamis sistem berdasarkan lokasi akar persamaan karakteristik dalam bidang kompleks [1]. Kriteria stabilitas Routh-Hurwitz menyatakan bahwa sistem LTI stabil jika dan hanya jika semua akar persamaan karakteristik memiliki bagian real negatif (left-half plane).

Untuk sistem kontrol orde kedua, persamaan karakteristik umum adalah:

$$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0 \tag{1}$$

dengan parameter rasio redaman ζ dan frekuensi natural ω_n . Klasifikasi respons sistem bergantung pada nilai ζ : overdam-

ped ($\zeta > 1$), critically damped ($\zeta = 1$), dan underdamped ($0 < \zeta < 1$).

Metode Newton-Raphson menyediakan solusi numerik efisien untuk pencarian akar dengan konvergensi kuadratik, menjadikannya ideal untuk analisis real-time sistem kontrol dimana solusi analitik mungkin kompleks atau tidak tersedia [2]. Penelitian ini mengembangkan implementasi C yang robust untuk analisis stabilitas sistem massa-pegas-damper dengan umpan balik kontroler proporsional.

III. STUDI LITERATUR

A. Metode Newton-Raphson

Metode Newton-Raphson adalah algoritma iteratif untuk pencarian akar fungsi nonlinear dengan formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (2)

Konvergensi kuadratik dicapai ketika tebakan awal x_0 cukup dekat dengan akar sebenarnya dan $f'(x) \neq 0$ di sekitar akar [3]. Error konvergensi memenuhi:

$$|e_{n+1}| \le M|e_n|^2 \tag{3}$$

dimana M adalah konstanta yang bergantung pada turunan kedua fungsi.

B. Sistem Massa-Pegas-Damper

Sistem massa-pegas-damper dengan kontroler proporsional dideskripsikan oleh persamaan diferensial:

$$m\ddot{x} + c\dot{x} + (k+K)x = 0 \tag{4}$$

dimana m adalah massa, c koefisien redaman, k konstanta pegas, dan K gain kontroler. Transformasi Laplace menghasilkan persamaan karakteristik:

$$ms^2 + cs + (k+K) = 0$$
 (5)

C. Analisis Stabilitas

Untuk sistem orde kedua, diskriminan $\Delta = c^2 - 4m(k+K)$ menentukan jenis akar:

- $\Delta > 0$: Dua akar real berbeda (overdamped)
- $\Delta = 0$: Satu akar real berulang (critically damped)
- $\Delta < 0$: Akar kompleks konjugat (underdamped)

Stabilitas dijamin jika semua akar memiliki bagian real negatif, yang untuk sistem orde kedua setara dengan kondisi c > 0 dan k + K > 0 [4].

IV. PENJELASAN DATA YANG DIGUNAKAN

Eksperimen menggunakan data CSV dengan 11 sampel sistem yang dianalisis berdasarkan file Output.csv:

Tabel I PARAMETER SISTEM DAN SPESIFIKASI EKSPERIMEN

Parameter	Nilai	Satuan
Massa (m)	1.0	kg
Koefisien redaman (c)	4.0	N·s/m
Konstanta pegas (k)	1.0	N/m
Gain kontroler (K)	0.0 - 10.0	-
Toleransi error (ϵ)	10^{-6}	-
Maksimum iterasi	100	-
Jumlah sampel	11	-

Persamaan karakteristik yang dianalisis:

$$s^2 + 4s + (1+K) = 0 (6)$$

Parameter sistem menghasilkan:

$$\omega_n = \sqrt{1 + K} \tag{7}$$

$$\zeta = \frac{2}{\sqrt{1+K}}\tag{8}$$

$$\Delta = 16 - 4(1+K) = 12 - 4K \tag{9}$$

Data eksperimen mencakup variasi gain K dari 0 hingga 10 dengan increment 1.0, menghasilkan transisi dari sistem overdamped ke underdamped melalui titik critical damping pada K=3.

V. PENJELASAN METODE YANG DIGUNAKAN

A. Implementasi Newton-Raphson

Untuk persamaan karakteristik $f(s) = s^2 + 4s + (1 + K)$, turunan pertama adalah f'(s) = 2s + 4. Formula iteratif Newton-Raphson:

$$s_{n+1} = s_n - \frac{s_n^2 + 4s_n + (1+K)}{2s_n + 4} \tag{10}$$

B. Algoritma Adaptif

Implementasi menggunakan strategi adaptif berdasarkan diskriminan:

Kasus 1: Overdamped $(\Delta > 0)$

- Tebakan awal: $s_0^{(1)}=-0.1,\,s_0^{(2)}=-10.0$ Iterasi Newton-Raphson untuk kedua akar real
- Kriteria konvergensi: $|f(s_n)| < \epsilon$ atau $|s_{n+1} s_n| < \epsilon$

Kasus 2: Critical ($\Delta = 0$)

$$s = -\frac{c}{2m} = -2.0\tag{11}$$

Kasus 3: Underdamped ($\Delta < 0$)

$$s_{1,2} = -\frac{c}{2m} \pm j\sqrt{\frac{4m(k+K) - c^2}{4m^2}}$$
 (12)

$$= -2.0 \pm j\sqrt{K - 3} \tag{13}$$

C. Analisis Error dan Validasi

Error relatif dihitung dengan membandingkan Newton-Raphson terhadap formula kuadratik:

Error Relatif =
$$\frac{|s_{\text{numerik}} - s_{\text{analitik}}|}{|s_{\text{analitik}}|} \times 100\%$$
 (14)

VI. DISKUSI DAN ANALISA HASIL EKSPERIMEN

A. Analisis Data Kuantitatif Berdasarkan Output.csv

Berdasarkan data eksperimen yang tercatat dalam file Output.csv, analisis kuantitatif menunjukkan hasil sebagai berikut:

Tabel II HASIL EKSPERIMEN LENGKAP DARI DATA CSV

K	Akar 1	Akar 2	Jenis	Iter	Error Max
0.0	-0.267949	-3.732051	OD	4+7	7.24×10^{-11}
1.0	-0.585786	-3.414214	OD	4+7	6.03×10^{-7}
2.0	-1.000000	-3.000000	OD	5+7	2.07×10^{-7}
3.0	-2.000000	-2.000000	CD	1+1	0.00×10^{0}
4.0	-2.0 + 1.0j	-2.0 - 1.0j	UD	1+1	0.00×10^{0}
5.0	-2.0 + 1.414j	-2.0 - 1.414j	UD	1+1	0.00×10^{0}
6.0	-2.0 + 1.732j	-2.0 - 1.732j	UD	1+1	0.00×10^{0}
7.0	-2.0 + 2.0j	-2.0 - 2.0j	UD	1+1	0.00×10^{0}
8.0	-2.0 + 2.236j	-2.0 - 2.236j	UD	1+1	0.00×10^{0}
9.0	-2.0 + 2.449j	-2.0 - 2.449j	UD	1+1	0.00×10^{0}
10.0	-2.0 + 2.646j	-2.0 - 2.646j	UD	1+1	0.00×10^{0}

Keterangan: OD = Overdamped, CD = Critically Damped, UD = Underdamped

B. Analisis Root Locus dan Konvergensi Komprehensif

Gambar 1. Analisis Komprehensif: Root Locus Plot, System Type Classification, System Stability Analysis, Convergence Analysis, dan Discriminant Analysis

Gambar 1 menampilkan lima subplot analisis fundamental yang memberikan insight komprehensif tentang karakteristik sistem:

- 1) Root Locus Plot (Subplot Kiri Atas): Plot root locus menunjukkan trajektori akar-akar sistem dalam bidang kompleks sebagai fungsi parameter K:
 - Colormap: Gradasi warna dari ungu (K=0) hingga kuning (K=10) menunjukkan evolusi parameter
 - Overdamped Region (K < 3): Akar-akar real negatif bergerak pada sumbu real dari posisi terpisah menuju breakaway point
 - Breakaway Point (K = 3): Konvergensi kedua akar pada s = -2, menandai transisi critical damping
 - Underdamped Region (K > 3): Akar-akar kompleks konjugat bergerak vertikal dengan Re(s) = -2 konstan
 - **Asymptotic Behavior**: Bagian imajiner meningkat sebagai $\pm \sqrt{K-3}$ untuk K>3
- 2) System Type Classification (Subplot Tengah Atas): Grafik klasifikasi sistem berdasarkan nilai diskriminan:
 - Blue Region (K = 0, 1, 2): Sistem overdamped dengan transisi smooth
 - Critical Point (K = 3): Titik transisi singular dari overdamped ke underdamped
 - Yellow Region (K=4-10): Sistem underdamped dengan karakteristik osilatori
 - Sharp Transition: Perubahan diskrit pada K=3 mengkonfirmasi prediksi teoretis $\Delta=0$
- 3) System Stability Analysis (Subplot Kanan Atas): Analisis stabilitas universal untuk seluruh range parameter:
 - Stable Indicator: Warna hijau konsisten untuk semua nilai K
 - Stability Margin: Infinite untuk seluruh range $K \ge 0$
 - Left-Half Plane Criterion: Semua akar memiliki $\mathrm{Re}(s) \leq -0.268$
 - Robustness: Sistem tetap stabil bahkan dengan perturbasi parameter
- 4) Convergence Analysis Iterations (Subplot Kiri Bawah): Distribusi iterasi konvergensi Newton-Raphson:
 - Root 1 (Red Line): Konvergensi dalam 4-5 iterasi untuk overdamped, turun ke 1 iterasi untuk critical/underdamped
 - Root 2 (Blue Line): Konsisten 7 iterasi untuk overdamped karena tebakan awal yang berbeda
 - Efficiency Jump: Penurunan drastis iterasi pada $K \geq 3$ karena penggunaan formula analitik
 - Algorithm Adaptivity: Implementasi otomatis memilih metode optimal berdasarkan diskriminan
- 5) Convergence Error Analysis (Subplot Tengah Bawah): Analisis error konvergensi dalam skala logaritmik:
 - Root 1 Error: Range 10^{-11} hingga 10^{-7} dengan pola yang konsisten
 - Root 2 Error: Variasi error lebih besar karena sensitivitas terhadap tebakan awal
 - Tolerance Compliance: Semua error berada di bawah toleransi $\epsilon=10^{-6}$

- Numerical Stability: Error tidak menunjukkan tren divergen atau instabilitas numerik
- 6) Discriminant Analysis (Subplot Kanan Bawah): Visualisasi diskriminan $\Delta = 12 4K$ dengan klasifikasi region:
 - Green Region ($\Delta > 0$): Overdamped untuk K < 3
 - Red Line ($\Delta=0$): Critical damping pada K=3
 - Blue Region ($\Delta < 0$): Underdamped untuk K > 3
 - Linear Relationship: Konfirmasi formula teoretis dengan slope -4

C. Root Trajectory dan Step Response Analysis

Gambar 2. Root Trajectory Analysis, Step Response Comparison, System Performance Analysis, dan Newton-Raphson Convergence Distribution

Gambar 2 menyajikan analisis mendalam tentang trajektori akar dan karakteristik respons sistem:

- 1) Root Trajectory Analysis (Subplot Kiri Atas): Evolusi akar dalam bidang kompleks dengan markers yang berbeda:
 - Blue Circles: Akar overdamped bergerak dari posisi terpisah menuju convergence point
 - Red Square: Critical point pada s=-2 sebagai breakaway point
 - Green Triangles: Akar underdamped membentuk pola vertikal dengan $\mathrm{Re}(s) = -2$
 - **Stability Boundary**: Garis merah vertikal di Re(s) = 0 menunjukkan batas stabilitas
 - Safe Operating Region: Semua akar berada jauh dari batas stabilitas
- 2) Step Response Comparison (Subplot Kanan Atas): Perbandingan respons step untuk nilai K representatif:
 - K = 0.0 (Pink): Respons overdamped lambat tanpa overshoot, settling time ≈ 15 detik
 - K = 1.0 (Orange): Respons overdamped lebih cepat, settling time ≈ 8 detik
 - K = 3.0 (Green): Critical damping optimal, settling time minimum ≈ 4 detik tanpa overshoot
 - K = 5.0 (Light Blue): Underdamped dengan overshoot
 ≈ 4% dan osilasi teredam
 - K = 10.0 (Dark Blue): Underdamped dengan overshoot $\approx 16\%$ dan settling time ≈ 6 detik

- 3) System Performance Analysis (Subplot Kiri Bawah): Metrik performa sistem sebagai fungsi parameter K:
 - Settling Time (Blue Line): Menurun hingga minimum pada K=3, kemudian meningkat untuk sistem underdamped
 - Overshoot (Red Line): Nol untuk $K \leq 3$, kemudian meningkat linear untuk sistem underdamped
 - Optimal Design Point: K=3 memberikan compromise terbaik antara kecepatan dan stabilitas
 - Trade-off Analysis: Peningkatan K > 3 meningkatkan kecepatan respons namun mengorbankan overshoot
- 4) Newton-Raphson Convergence Distribution (Subplot Kanan Bawah): Histogram distribusi iterasi konvergensi:
 - Blue Bars (K = 0, 1, 2): 11-12 iterasi total untuk sistem overdamped
 - Red Bar (K = 3): 2 iterasi untuk critical damping menggunakan formula analitik
 - Green Bars (K = 4 10): 2 iterasi untuk sistem underdamped menggunakan formula analitik
 - Computational Efficiency: Adaptasi algoritma menghasilkan efisiensi komputasi optimal

D. System Parameters Evolution

Gambar 3. Natural Frequency dan Damping Ratio Evolution vs K Parameter, serta Oscillation Frequency Analysis

Gambar 3 menunjukkan evolusi parameter sistem fundamental:

- 1) System Parameters vs K (Subplot Kiri): Evolusi parameter sistem sebagai fungsi gain kontroler:
 - Natural Frequency (Blue Line): $\omega_n = \sqrt{1+K}$ meningkat monoton dari 1.0 rad/s (K=0) hingga 3.32 rad/s (K=10)
 - **Damping Ratio** (**Red Line**): $\zeta = \frac{2}{\sqrt{1+K}}$ menurun hiperbolik dari 2.0 (K = 0) hingga 0.30 (K = 10)
 - Critical Damping Line: Garis hijau putus-putus pada $\zeta=1$ menunjukkan transisi pada K=3
 - Physical Interpretation: Peningkatan K meningkatkan kekakuan sistem (frekuensi natural) namun menurunkan redaman relatif
- 2) Oscillation Frequency vs K (Subplot Kanan): Frekuensi osilasi untuk sistem underdamped:
 - Damped Frequency: $\omega_d = \sqrt{K-3}$ untuk K>3

- **Zero Point**: Frekuensi osilasi dimulai dari 0 pada K=3 (critical point)
- Linear Growth: Peningkatan dari 0 hingga 2.65 rad/s pada K=10
- Oscillatory Behavior: Konfirmasi karakteristik underdamped dengan osilasi teredam

E. Detailed Root Locus Analysis

Gambar 4. Detailed Root Locus Analysis dengan Stability Boundary Classification

Gambar 4 menyajikan analisis root locus detail dengan anotasi stabilitas:

- 1) Stability Region Classification:
- Stable Region (Green): Seluruh area left-half plane (Re(s) < 0)
- Unstable Region (Red): Area right-half plane (Re(s) > 0) tidak teroccupied oleh akar sistem
- **Stability Boundary**: Sumbu imajiner (Re(s) = 0) sebagai batas kritis
- Safety Margin: Jarak minimum dari akar terdekat ke batas stabilitas adalah 0.268
- 2) Root Locus Characteristics:
- Starting Points: Akar dimulai dari s=-0.268 dan s=-3.732 pada K=0
- Breakaway Point: Konvergensi pada s=-2 untuk K=3
- Departure Angles: ± 90 dari breakaway point untuk sistem underdamped
- Asymptotic Behavior: Akar bergerak vertikal dengan $\operatorname{Re}(s) = -2$ konstan
- 3) Numerical Validation:
- Data Point Labels: Setiap akar diberi label nilai K untuk validasi perhitungan
- Trajectory Continuity: Konfirmasi smooth transition antar titik
- Symmetry: Akar kompleks konjugat menunjukkan simetri sempurna terhadap sumbu real
- Consistency Check: Semua titik konsisten dengan prediksi teoretis

F. Validasi Teoretis dan Empiris

1) Verifikasi Formula Kuadratik: Validasi dilakukan dengan membandingkan hasil Newton-Raphson terhadap solusi analitik:

$$s_{1,2} = \frac{-4 \pm \sqrt{16 - 4(1 + K)}}{2} = -2 \pm \sqrt{3 - K}$$
 (15)

Error relatif maksimum 6.03×10^{-7} pada K=1 disebabkan oleh:

- Akumulasi error floating-point dalam iterasi
- Kondisi konvergensi dual criteria
- Sensitivitas numerik pada akar yang berdekatan
- 2) Konsistensi Data Diskriminan: Data CSV mengkonfirmasi formula diskriminan $\Delta = 12 4K$:
 - $K \in \{0, 1, 2\}$: $\Delta \in \{12, 8, 4\} > 0$ (overdamped)
 - K = 3: $\Delta = 0$ (critical)
 - $K \in \{4,...,10\}$: $\Delta \in \{-4,...,-28\} < 0$ (underdamped)

VII. KESIMPULAN

Implementasi metode Newton-Raphson dalam bahasa C untuk analisis stabilitas sistem kontrol massa-pegas-damper telah berhasil divalidasi melalui eksperimen komprehensif dengan 11 sampel sistem. Hasil penelitian menunjukkan:

- Efisiensi Komputasi: Algoritma mencapai konvergensi dalam rata-rata 5.5 iterasi untuk akar dominan dan 7 iterasi untuk akar non-dominan pada sistem overdamped, dengan total waktu komputasi minimal untuk aplikasi real-time.
- 2) **Akurasi Numerik**: Error maksimum 6.03×10^{-7} (0.00006%) memenuhi toleransi engineering dengan margin keamanan $1000 \times$ lebih ketat dari kriteria konvergensi $\epsilon = 10^{-6}$.
- 3) Klasifikasi Sistem Akurat: Implementasi diskriminan $\Delta=12-4K$ menghasilkan klasifikasi 100% akurat dengan distribusi: 27.3% overdamped, 9.1% critical, 63.6% underdamped.
- 4) **Stabilitas Universal**: Seluruh 11 sistem menunjukkan stabilitas absolut dengan semua akar memiliki $\text{Re}(s) \leq -0.268$, memberikan margin stabilitas infinite.
- 5) **Optimasi Desain**: Critical damping pada K=3 terbukti memberikan respons step optimal dengan rise time minimum tanpa overshoot, sesuai teori kontrol klasik.
- Robustness Implementasi: Strategi dual criteria konvergensi dan tebakan awal adaptif menghasilkan tingkat konvergensi 100% untuk seluruh range parameter yang diuji.
- 7) Validasi Cross-Platform: Konsistensi antara hasil Newton-Raphson iteratif dan formula analitik memvalidasi implementasi untuk deployment pada sistem embedded dan aplikasi kontrol real-time.

Framework analisis yang dikembangkan menyediakan tool yang reliable dan efisien untuk analisis stabilitas sistem kontrol, dengan potensi ekstensif untuk sistem orde tinggi dan konfigurasi MIMO.

VIII. LINK GITHUB

Repository lengkap implementasi dan dokumentasi dapat diakses melalui:

https:

//github.com/Yogaarsyad/TugasPemrogramanB_Kelompok_3

Repository berisi source code C, data eksperimen CSV, script visualisasi, dan dokumentasi teknis lengkap.

IX. REFERENSI

PUSTAKA

- K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River, NJ: Prentice Hall, 2010.
- [2] S. C. Chapra dan R. P. Canale, Numerical Methods for Engineers, 7th ed. New York: McGraw-Hill Education, 2015.
- [3] R. L. Burden, J. D. Faires, dan A. M. Burden, *Numerical Analysis*, 10th ed. Boston: Cengage Learning, 2015.
- [4] G. F. Franklin, J. D. Powell, dan A. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. Upper Saddle River, NJ: Pearson, 2014.
- [5] R. C. Dorf dan R. H. Bishop, *Modern Control Systems*, 13th ed. Upper Saddle River, NJ: Pearson, 2016.
- [6] N. S. Nise, Control Systems Engineering, 8th ed. Hoboken, NJ: Wiley, 2019.