Πανεπιστήμιο Μακεδονίας Τμ. Εφαρμοσμένης Πληροφορικής

ECLiPSe Constraints III Scheduling

Ηλίας Σακελλαρίου

Δομή

- Χρονοπρογραμματισμός (Μηχανών)
- Περιορισμοί που αφορούν χρονοπρογραμματισμό μηχανών.
 - □ disjunctive
 - cumulative

Χρονοπρογραμματισμός

Εισαγωγή

Χρονοπρογραμματισμός (1/2)

- Διαδικασία ανάθεσης πόρων (resources) σε εργασίες (jobs) σε ένα χρονικό διάστημα, δεδομένων κάποιων περιορισμών και ενός κριτηρίου στόχου (Μη-αυστηρός ορισμός).
- Παραδείγματα Εργασιών: διεργασίες υλοποίησης ΙΤ έργων, διεργασίες κατασκευής προϊόντων, εκτέλεση προγραμμάτων, μαθήματα, απογειώσεις / προσγειώσεις κλπ.
- Παραδείγματα Πόρων: ομάδες προγραμματιστών, μηχανές παραγωγής, υπολογιστικοί πόροι,αίθουσες, αεροδιάδρομοι, κλπ

Χρονοπρογραμματισμός (2/2)

- Παραδείγματα Περιορισμών: περιορισμοί διάταξης των διεργασιών, καταληκτική ημερομηνία, κλπ
- Παραδείγματα Κριτηρίων: ελαχιστοποίηση συνολικού χρόνου εκτέλεσης, ελαχιστοποίηση συνολικού χρόνου αργοπορίας σε σχέση με καταληκτικές ημερομηνίες, ολοκλήρωση διεργασιών εντός των ορίων της καταληκτικής ημερομηνίας, κλπ

Ελαχιστοποίηση Χρόνου

 Ένα έργο αποτελείται από 10 εργασίες (tasks), κάθε μια από τις οποίες έχει μια καθορισμένη διάρκεια.

Εργασίες

Υπάρχουν περιορισμοί διάταξης, πχ. η εργασία 1 πρέπει να εκτελεστεί πριν από τις εργασίες 2 και 3, η 7 μετά την 5, κοκ. Δεν υπάρχουν περιορισμοί ανάμεσα σε όλες τις εργασίες (μερική διάταξη).

Περιορισμοί

Πόροι

Διαθέσιμες είναι 4 ομάδες προγραμματιστών, όμως κάθε ομάδα μπορεί να υλοποιήσει ένα υποσύνολο από τις διαθέσιμες εργασίες.

Περιορισμοί

 Ποια είναι η ανάθεση εργασιών στις ομάδες ώστε να ελάχιστη η διάρκεια του συνολικού έργου;

Κριτήριο

Βιομηχανικές Εφαρμογές Χρονοπρογραμματισμού

- Χρονοπρογραμματισμός επιτελεί σημαντικό ρόλο σε πλήθος βιομηχανικών εφαρμογών.
- Μεγάλη αλληλεπίδραση με άλλες διεργασίες της επιχείρησης
 - Μέρος ενός ERP συστήματος το οποίο τροφοδοτεί με τρέχοντα δεδομένα τον χρονοπρογραμματιστή.
- Παραγωγή
 - Σύνδεση με διαχείριση παραγγελιών, ικανοποίηση παραγγελιών μεγάλης προτεραιότητας, διαχείριση αποθεμάτων πρώτων υλών, κλπ
- Υπηρεσίες
 - Σύνδεση με διαχείριση διαθέσιμων πόρων (ανθρώπινων και μη),
 συστήματα λήψης απόφασης κλπ

Εργοστάσιο Κατασκευής Χάρτινων Σακουλών

- Πρώτη ύλη: ρολά χαρτιού
- Στάδια Παραγωγής: Εκτύπωση βιομηχανικού σήματος, επικόλληση της μιας πλευράς συρραφή των άκρων των σακουλών
- Μηχανές: Για κάθε εργασία υπάρχει μια ή περισσότερες μηχανές που διαφέρουν στον τύπο / μέγεθος σακουλών που μπορούν να διαχειριστούν, την ταχύτητα παραγωγής, κλπ
- Παραγγελίες: ορίζουν την ποσότητα, το είδος και την ημερομηνία παράδοσης.
- Στόχοι προγράμματος:
 - Καθυστέρηση στην παραγγελία επιφέρει "ποινές" στόχος η ελαχιστοποίηση των ποινών.
 - Αλλαγή τύπου κατασκευαζόμενης σακούλας σε μια μηχανή απαιτεί χρόνο που εξαρτάται από τις διαφορές στην κατασκευή των δύο τύπων Στόχος η ελαχιστοποίηση του χρόνου αυτού.

Διαχείριση Πυλών σε Αεροδρόμιο

- Πόροι: Πύλες (gates) με διαφορετικά χαρακτηριστικά συνδεδεμένες με αίθουσες αναμονής
- Κάθε αεροπλάνο που προσγειώνεται θα πρέπει να κατευθύνεται στην κατάλληλη πύλη.
 - Διεργασίες: αποβίβαση επιβατών, εξυπηρέτηση αεροσκάφους από προσωπικό εδάφους, επιβίβαση επιβατών, κλπ
- Πτήσεις λαμβάνουν χώρα βάσει προγράμματος, το οποίο όμως επηρεάζεται από πολλούς παράγοντες πχ. καιρικές συνθήκες.

Στόχοι:

- κατάλληλη πύλη βάσει τύπου αεροσκάφους
- ελαχιστοποίηση εργασιών προσωπικού εδάφους
- ελαχιστοποίηση καθυστερήσεων στις πτήσεις

Χαρακτηριστικά Εργασιών

- Απαιτήσεις σε πόρους
 - □ ποιους **πόρους** και σε τι **ποσότητα**
- Χρόνος εκκίνησης s_i, χρόνος ολοκλήρωσης c_i,
 διάρκεια d_i
 - 🗆 δίνονται συνήθως ως κλειστά (χρονικά) διαστήματα
 - S_i ανήκει στο [S_{i min}, S_{i max}]
 - C_i ανήκει στο [C_{i min}, C_{i max}]
 - η διάρκεια είναι δυνατό να εξαρτάται από τον τύπο του πόρου που ανατέθηκε στην εργασία (χρόνος επεξεργασίαςprocessing time p_{ii})
- Βάρος w_i της εργασίας, που δηλώνει την σημασία της σε σχέση με άλλες εργασίες του προβλήματος.

Είδη Εργασίων

- Μη προεκτοπιστικές (non-preemptive) : δεν μπορούν να διακοπούν
 - $-d_i = c_i s_i$
- Προεκτοπιστικές (preemptive): μπορούν να διακοπούν και να επανεκκινήσουν.
 - $-d_i = \Sigma(d_{ki}) \leq c_i s_i | k \text{ in } I \}$
 - Μπορούν να υπάρχουν περιορισμοί στα παραπάνω διαστήματα (πχ. εργασία λαμβάνει χώρα μόνο μέρα).

Πόροι (1/3)

- Επαναχρησιμοποιήσιμοι πόροι r
 - □ δεσμεύονται για ένα χρονικό διάστημα από την εργασία και έπειτα ελευθερώνονται
 - πχ. πύλες αεροδρομίου, εργαλεία, αίθουσες, ομάδες κλπ.
 - □ συνολική χωρητικότητα Q_r, μπορεί να παίρνει συνεχείς ή διακριτές τιμές
 - \Box τρέχον επίπεδο $\mathbf{z}_r(\mathbf{t})$ ανήκει στο $[0, \mathbf{Q}_r]$
 - πχ. πέντε πύλες αεροδρομίου $Q_r = 5$, και $5 \ge z_r(t) \ge 0$
 - Αν μια εργασία απαιτεί ποσότητα q του πόρου r, τότε μειώνεται το z_r κατά q όταν η εργασία ξεκινήσει (s_i), και αυξάνεται κατά q μετά την ολοκλήρωση της (c_i).

Πόροι (2/3)

Πόροι που καταναλώνονται r

- καταναλώνονται (ή παράγονται) από μια εργασία
- □ μετά το πέρας της εργασίας το τρέχον επίπεδο του πόρου δεν επανέρχεται στην αρχική τιμή του
 - πχ. καύσιμα αεροσκαφών, πολλά χαρτιού κλπ.
- □ συνολική χωρητικότητα Q_r
- \Box τρέχον επίπεδο zr(t) ανήκει στο [0,Q $_r$]

Πόροι (3/3)

- Οι απαιτήσεις σε πόρους μιας εργασίας μπορεί να είναι μια σύζευξη
 - \square consume (a,r_i,q_i) & consume (a,r_κ,q_κ) ...
- ή διάζευξη αν η εργασία μπορεί να "καταναλώσει"
 εναλλακτικούς πόρους
 - □ consume(a, r_j, q_j) v consume(a, r_m, q_m)...

Περιορισμοί

- Χρονικά όρια
 - □χρόνος ανακοίνωσης (ri release date):
 - η εργασία δεν μπορεί να ξεκινήσει πριν από αυτό το όριο
 - πχ. άφιξη αεροσκάφους
 - □χρόνος παράδοσης (due date δi)
 - εργασία μπορεί να παραδοθεί μετά τον παραπάνω χρόνο με κάποια ποινή.

Περιορισμοί

- Περιορισμοί διάταξης
 - □ μια εργασία πρέπει να λάβει χώρα πριν από μια άλλη
 - πχ. αποβίβαση πριν επιβίβαση επιβατών επόμενης πτήσης
- Περιορισμοί καταλληλότητας πόρων
 - □ μια εργασία μπορεί/πρέπει να καταναλώσει συγκεκριμένους πόρους
 - □ περιορισμοί διαθεσιμότητας πόρων
 - χρόνοι αρχικοποίησης (setup) πόρων ανάμεσα σε δύο εργασίες
 - ...και διάφοροι άλλοι περιορισμοί

Συναρτήσεις Βελτιστοποίησης

- Ελαχιστοποίηση των ακόλουθων μεγεθών
 (c_i δηλώνει το χρόνο ολοκλήρωσης- completion time δ_i χρόνο παράδοσης -due date, deadline)
 - □ χρόνος ολοκλήρωσης χρονοπρογράμματος (makespan) max(c₁,..,c_i)
 - □ σταθμισμένο άθροισμα όλων των χρόνων ολοκλήρωσης (total weighted completion time) Σ(w_ic_i)
 - \square μέγιστη αργοπορία (lateness): max($I_1,...,I_n$)
 - αργοπορία I_i=c_i δ_i
 - Μπορεί να πάρει και αρνητικές τιμές
 - □ μέγιστη καθυστέρηση (tardiness): max(τ₁,...,τ_n)
 - \blacksquare τ_i=max(0, c_i-δ_i)

Συναρτήσεις Βελτιστοποίησης

- □σταθμισμένο άθροισμα καθυστέρησης (total weighted tardiness) Σw_iτ_i
- συνολικός αριθμός καθυστερημένων εργασιών
- □συνολικό κόστος (σε σχέση με πόρους)
- □ σταθμισμένο άθροισμα εργασιών που καθυστέρησαν (weighted sum of late jobs)

Πώς μπορούν να εκφραστούν τυποκρατικά (formally) όλα τα προηγούμενα;

Χρονοπρογραμματισμός Μηχανών

Machine Scheduling

Χρονοπρογραμματισμός Μηχανών

- Έχει συγκεντρώσει ερευνητικό ενδιαφέρον από την δεκαετία του 50.
- Ανάθεση εργασιών σε μηχανές που αντιπροσωπεύουν πόρους.
- Μηχανές έχουν χωρητικότητα 1
 - μπορούν να επεξεργαστούν μια μόνο εργασία την φορά.
- Εργασίες (jobs) αποτελούνται (συνήθως) από ένα αριθμό διεργασιών (tasks/operations)
 - πχ. J_i αποτελείται από Ο_{ii} διεργασίες
 - Δύο διεργασίες της ίδιας εργασίας δεν μπορούν να εκτελεστούν ταυτόχρονα (μια εργασία δεν μπορεί ταυτόχρονα να εκτελείται σε δύο μηχανές)
 - Δύο διεργασίες διαφορετικών εργασιών είναι ανεξάρτητες, δηλ.
 μπορούν να εκτελεστούν με οποιαδήποτε σειρά.

Ορισμός Προβλήματος Χρονοπρογραμματισμού Μηχανών (1/2)

- Ένα πρόβλημα Χρονοπρογραμματισμού Μηχανών X αναπαριστάται με μία τετράδα <M,J,C,F>, όπου:
 - To \mathbf{M} ={M₁,M₂,..M_m} είναι ένα σύνολο από μηχανές (machines)
 - − To \mathbf{J} ={J₁,J₂,...J_n} είναι ένα σύνολο από εργασίες (jobs)
 - Το **C** είναι ένα σύνολο από περιορισμούς που καθορίζουν για κάθε J_k την καταλληλότητα των μηχανών και τον χρόνο έναρξης καθώς και διάφορα άλλα χαρακτηριστικά
 - Το **F** είναι μία συνάρτηση κόστους (cost function)

Ορισμός Προβλήματος Χρονοπρογραμματισμού Μηχανών (2/2)

- Ένα χρονοπρόγραμμα (Schedule) είναι μία ανάθεση του J στο M, τέτοια ώστε να ικανοποιείται το C.
- Ένα χρονοπρόγραμμα ονομάζεται εφικτό (feasible) αν:
 - δεν περιέχει επικαλύψεις εργασιών στην ίδια μηχανή,
 - κάθε διεργασία μιας εργασίας δεν επικαλύπτεται από μια άλλη, και
 - ικανοποιούνται όλοι οι υπόλοιποι περιορισμοί.
- Ένα χρονοπρόγραμμα ονομάζεται βέλτιστο (optimal) αν ελαχιστοποιεί την **F**.

Χρονοπρογραμματισμός μηχανών ενός σταδίου (1/2)

- Κάθε εργασία αποτελείται από μια διεργασία, η οποία μπορεί να εκτελεστεί σε οποιαδήποτε μηχανή
 - ☐ Single stage machine scheduling
- 1: Μιας μηχανής: υπάρχει μόνο μια μηχανή
- Pm: Πανομοιότυπων Παράλληλων Μηχανών (Identical Parallel Machines)
 - □ Οι εργασίες εκτελούνται στον ίδιο χρόνο σε οποιαδήποτε μηχανή ή σε κάποιο υποσύνολο τους.
 - Μπορεί να χρησιμοποιηθεί για μοντελοποίηση πόρων με χωρητικότητα μεγαλύτερη του ένα.

Χρονοπρογραμματισμός μηχανών ενός σταδίου (2/2)

- Qm: Ομοιόμορφα Σχετιζόμενων Παράλληλων Μηχανών (Uniformly Related Parallel Machines)
 - Οι μηχανές έχουν διαφορετική ταχύτητα επεξεργασία, κοινή για όλες τις διεργασίες.
 - Χρόνος εκτέλεσης της εργασίας p_j/u_i (u_i ταχύτητα μηχανης/p_j χρόνος επεξεργασίας εργασίας)
- Rm: Μη Σχετιζόμενων Παράλληλων Μηχανών (Unrelated Parallel Machines)
 - Οι μηχανές έχουν διαφορετική ταχύτητα επεξεργασίας η οποία είναι συνάρτηση της εκάστοτε εκτελούμενης εργασίας.

Χρονοπρογραμματισμός μηχανών πολλαπλών σταδίων (1/2)

- Κάθε εργασία αποτελείται από περισσότερες της μίας διεργασίες
- Κάθε διεργασία έχει μια μόνο μηχανή στην οποία εκτελείται
 - Multiple-stage scheduling problems
- Fm: Προβλήματα Ροής Καταστημάτων (flow-shop problems):
 - κάθε εργασία j έχει ακριβώς m διεργασίες {O_{ji} |i = 1, ..., m}
 - Κάθε Ο_{ii} πρέπει να εκτελεστεί στην μηχανή i
 - οι εργασίες πρέπει να εκτελεστούν με την σειρά O_{j1} , O_{j2} , ..., O_{jm} (ίδια σειρά για όλες τις εργασίες)
 - Οι ουρές (queues) των μηχανών είναι FIFO Constraint Logic Programming

Χρονοπρογραμματισμός μηχανών πολλαπλών σταδίων (2/2)

- Om: Προβλήματα Ανοικτών Καταστημάτων (openshop problems)
 - παρόμοιο με το πρόβλημα ροής αλλά χωρίς διάταξη ανάμεσα στις διεργασίες μιας εργασίας.
- Jm: Προβλήματα Καταστημάτων Εργασιών (jobshop problems)
 - γενική περίπτωση των προβλημάτων ροής
 - οι διεργασίες μιας εργασίας πρέπει να εκτελεστούν με την συγκεκριμένη σειρά $O_{i1}, O_{i2}, ..., O_{im}$
 - κάθε διεργασία εκτελείται σε συγκεκριμένη μηχανή Ο_{ij}(m_k)
 και γενικά k≠j.

Σημειογραφία Προβλημάτων Χρονοπρογραμματισμού

- $\alpha \mid \beta \mid \gamma$
 - α = κατηγορία προβλήματος :
 - P (πανομοιότυπες), Q (ομοιόμορφα σχετιζόμενων), R (μη σχετιζόμενων) παράλληλων μηχανών
 - F (ροής), O (ανοικτά), J (εργασιών) καταστημάτων
 - β = χαρακτηριστικά εργασιών (καταληκτικές ημερομηνίες, χρόνοι αρχικοποίησης, περιορισμοί διάταξης), κενό αν δεν υπάρχουν περιορισμοί.
 - γ = η συνάρτηση βελτιστοποίησης
- Παραδείγματα:
 - Pm | δ_j | Σ_jw_jc_j m πανομοιότυπες παράλληλες μηχανές, deadlines on jobs, ελαχιστοποίηση σταθμισμένου αθροίσματος ολοκλήρωσης εργασιών
 - J | prec | makespan πρόβλημα καταστήματος εργασιών με τυχαίο αριθμό μηχανών και περιορισμούς διάταξης μεταξύ εργασιών με στόχο την ελαχιστοποίηση συνολικού χρόνου ολοκλήρωσης εργασιών.

Μέθοδοι Επίλυσης

- Κανόνες Διεκπεραίωσης (dispatching rules)
- Μαθηματικές Μέθοδοι
- Μέθοδοι Τοπικής Αναζήτησης
- Ικανοποίηση Περιορισμών

Χρονοπρογραμματισμός σε ECLiPSe

i.e. make your life easier with CLP...

Εύρεση Χρόνου Εκτέλεσης Εργασιών

- Υπάρχουν 5 εργασίες και 2 ομάδες προγραμματιστών.
- Κάθε εργασία έχει
 - μια προκαθορισμένη διάρκεια.
 - □ απαιτεί για την υλοποίησής της μια **συγκεκριμένη ομάδα.**
- Υπάρχουν περιορισμοί διάταξης (μερικής) μεταξύ των εργασιών.
- Κάθε ομάδα μπορεί να εκτελέσει μια εργασία σε κάθε χρονική στιγμή.
- Ποιοι είναι οι χρόνοι έναρξης των εργασιών ώστε να ελαχιστοποιείται η διάρκεια του συνολικού έργου;

Λεπτομέρειες Προβλήματος

Εργασία	Διάρκεια	Διάταξη	Ομάδα
1	5	πριν από 2	Α
2	4		В
3	7	πριν από 5	В
4	1		Α
5	9		Α

Αναπαράσταση Χρόνου

- Χρονικές Στιγμές (ακέραιοι αριθμοί)
 - □Αρχή του χρόνου: 0
 - □Εργασία Ε1, χρόνος έναρξης St1, διάρκεια 5

Αναπαράσταση Προβλήματος

- Κάθε εργασία έχει μια προκαθορισμένη διάρκεια d_i.
- Άρα για κάθε εργασία μπορώ να ορίσω δύο μεταβλητές S_i και E_i που αντιστοιχούν στην αρχή και το τέλος της εργασίας, και έχουν τον περιορισμό:
 - \Box St_i+ d_i = End_i
 - Σε Eclipse (παράδειγμα): St1 + 5 #= End1.

Αναπαράσταση Προβλήματος

- Υπάρχουν περιορισμοί διάταξης (μερικής) μεταξύ των εργασιών.
 - Πχ. η εργασία 1 πρέπει να λάβει χώρα πριν την εργασία 2.
 - Σε ECLiPSe:

```
End1 #<= St2,
End3 #<= St5,
```

- Απαιτεί για την υλοποίησής της μια συγκεκριμένη ομάδα.
 - □ Άρα χωρίζουμε τις εργασίες σε λίστες ανάλογα με την ομάδα η οποία πρέπει να τις εκτελέσει.

Ζητούμενο

- Ποιοι είναι οι χρόνοι έναρξης των εργασιών ώστε να ελαχιστοποιείται η διάρκεια του συνολικού έργου;
- Ποια είναι η τελευταία εργασία, για να πάρω τον χρόνο λήξης της;
 - □ maxlist(List, Var) (βιβλιοθήκη ic_global)
 - Η Var είναι η μεταβλητή με τη μέγιστη τιμή από την List.
- Έτσι:

maxlist([End1,End2,End3,End4,End5],MakeSpan),

Αναπαράσταση Προβλήματος

- Κάθε ομάδα μπορεί να εκτελέσει μια εργασία σε κάθε χρονική στιγμή.
- Άρα αν πρέπει να εκτελέσει η πρώτη ομάδα τις εργασίες 1,4,5 με χρόνους 5,1,9 αντίστοιχα τότε ισχύει για κάθε δυνατό ζεύγος εργασιών, πχ 1 και 4:

- Πρόβλημα: Οι διευζευκτικοί περιορισμοί (disjunctive constraints) δημιουργούν πολλά σημεία επιλογής (choice points)!
 - Χρειάζονται ειδικοί αλγόριθμοι διάδοσης περιορισμών.

Διαζευκτικοί Περιορισμοί

Βιβλιοθήκη ic_edge_finder

- :-use_module(library(ic_edge_finder)).
- Η βιβλιοθήκη περιέχει κατηγορήματα ειδικά για την έκφραση/μοντελοποίηση διαζευκτικών περιορισμών που υπάρχουν σε προβλήματα χρονοπρογραμματισμού.
 - Υπάρχει και η ic_edge_finder3 (με ισχυρότερη διάδοση περιορισμών και μεγαλύτερη πολυπλοκότητα.
- Σημαντικότερα κατηγορήματα
 - □ disjunctive/2
 - □ cumulative/4

Ο περιορισμός disjunctive

- disjunctive(+StartTimes, +Durations)
 - Θέτει τον περιορισμό ότι οι διεργασίες με αρχικού χρόνους StartTimes και διάρκειες Durations δεν μπορούν να αλληλεπικαλύπτονται χρονικά.
 - StartTimes: Λίστα με τις μεταβλητές περιορισμών χρόνου έναρξης των εργασιών.
 - Durations: Λίστα με τις διάρκειες των εργασιών (integers).

Παράδειγμα Περιορισμών Ομάδων

- Εφόσον η πρώτη ομάδα έχει να υλοποιήσει τις εργασίες 1,4,5 και 8 μ,ε χρόνους έναρξης St1, St4, St5, St8 και με διάρκειες 5,1,9,4 αντίστοιχα, και
- Κάθε ομάδα μπορεί να αναλάβει μια εργασία σε κάθε χρονική στιγμή:
 disjunctive([St1,St4,St5],[5,1,9]),...
- ...και ομοίως για κάθε ομάδα...

Τελικός Κώδικας (1/2)

```
schedule start times(teamA([St1,St4,St5]),
                      teamB([St2,St3]),MakeSpan):-
   Starts = [St1,St2,St3,St4,St5],
   Ends = [End1, End2, End3, End4, End5],
   Starts #:: 0..inf, Ends #:: 0..inf,
   End1 #= 5 + St1, %%% Start End Times and Durations
   End2 \#= 4 + St2, End3 \#= 7 + St3,
   End4 #= 1 + St4, End5 #= 9 + St5,
   End1 #<= St2, %% Ordering Constraints
   End3 #<= St5.
   ic global:maxlist(Ends,MakeSpan),
```

Constraint Logic Programming

Τελικός Κώδικας (2/2)

```
%%% No overlapping Constraint
% Assignment to teams and
% no overlapping constraints
% team A
disjunctive([St1,St4,St5],[5,1,9]),
% team B
disjunctive([St2,St3],[4,7]),
% Search for a Solution
bb min(labeling(Starts),
      MakeSpan,bb options{strategy:restart}).
```

Εκτέλεση και Πρόγραμμα

```
?- schedule_start_times(T1, T2, M).
T1 = teamA([0, 5, 7])
T2 = teamB([7, 0])
M = 16
Yes (0.00s cpu)
```


Ο περιορισμός cumulative

- Ο περιορισμός Cumulative.
- cumulative(+StartTimes, +Durations, +Resources, + +ResourceLimit)
 - □ StartTimes: Λίστα με τις μεταβλητές περιορισμών **χρόνου έναρξης** των εργασιών.
 - □ Durations: Λίστα με τις διάρκειες των εργασιών.
 - Resources: Πόσοτητα πόρου καταναλώνει η κάθε εργασία.
 - ResourceLimit: Ποια είναι η συνολική χωρητικότητα του πόρου.

Επεξήγηση

- Ο περιορισμός είναι αντίστοιχος του περιορισμού disjunctive με τις διαφορές:
 - □ο πόρος που καταναλώνεται έχει χωρητικότητα ίση με Ν,
 - □κάθε **εργασία καταναλώνει Κ** από τον πόρο
 - □και ποτέ δεν μπορεί εργασίες των οποίων το άθροισμα της κατανάλωσης **πόρων είναι** μεγαλύτερο του Ν, να αλληλεπικαλύπτονται.

Παράδειγμα

- Παράδειγμα: η ομάδα Α έχει 5 μέλη, και η ομάδα Β έχει 4 μέλη. Οι εργασίες απαιτούν:
 - η εργασία 1, ένα μέλος
 - □οι εργασίες 4 και 5 από τρία μέλη

cumulative([St1,St4,St5], [5,1,9], [1,3,3], 5)

□οι εργασίες 2 και 3 από δύο μέλη,

cumulative([St2,St3], [4,7], [2,2], 4)

Εκτέλεση και Πρόγραμμα

```
?- schedule_start_times_r(T1, T2, M).
T1 = teamA([0, 0, 7])
T2 = teamB([5, 0])
M = 16
```


Παράδειγμα 2

- Έξι φορτηγά αυτοκίνητα που έχουν διαφορετικές ταχύτητες και διαφορετικό βάρος πρέπει να περάσουν μια γέφυρα, η οποία μπορεί να αντέξει μέχρι 20 τόνους. Τα χαρακτηριστικά των αυτοκινήτων δίνονται σαν Prolog γεγονότα όπως φαίνεται παρακάτω.
- Πότε πρέπει να ξεκινήσει κάθε αυτοκίνητο για να περάσουν όλα με ασφάλεια την γέφυρα, στον ελάχιστο δυνατό χρόνο?

Δεδομένα για κάθε αυτοκίνητο

- Speed, ο χρόνος που απαιτείται για να διέλθει το αυτοκίνητο τη γέφυρα.
- Weight, το βάρος.

```
%%% car(Name, Weight, Speed)
car(alpha, 10, 4).
car(beta, 13,5).
car(gamma, 8, 3).
car(delta, 5, 4).
car(ephilon, 7, 1).
car(zita, 9, 3).
car(eta, 11, 6).
```

Μοντελοποίηση

- Μια μεταβλητή S που δηλώνει το χρόνο έναρξης της διέλευσης του αυτοκινήτου και μια Ε, που δηλώνει το πότε ολοκληρώνεται η διέλευση.
 - □ Άρα S + Speed #= E.
- Δεδομένου ότι τα πάντα είναι με την μορφή γεγονότων?
 - □findall/3

Κώδικας

```
solve(Starts, MakeSpan):-
   findall(C,car(C, , ),Cars),
   findall(W,car(,W,),Weights),
   findall(S,car(,,S),Speeds),
   length(Cars,N),
   length(Starts,N), %% My vars
   Starts #:: 0..inf,
   state crossing times(Starts, Speeds, Ends),
```

Constraints

```
state_crossing_times([],[],[]).
state_crossing_times([S|Starts],[Sp|Speeds],[E|Ends]):-
    S + Sp #= E,
    state_crossing_times(Starts,Speeds,Ends).
```

Μοντελοποίηση Πόρων

- Πόρος = Γέφυρα
- Χωρητικότητα = Βάρος που αντέχει η γέφυρα (max 20).
- Επαναχρησιμοποιήσιμος.
 - Κάθε φορτηγό χρησιμοποιεί Weight από τον πόρο όσο διαρκεί το ταξείδι του (Speed).
- Μοντελοποίηση με περιορισμό cumulative cumulative(Starts, Speeds, Weights, 20),

Κώδικας 2/2

```
ic:maxlist(Ends,MakeSpan),
cumulative(Starts,Speeds,Weights,20),
bb_min(labeling(Starts),MakeSpan,
bb_options{strategy:restart}),
pretty_print(Cars,Starts,Ends).
```

Πλήρης Κώδικας

```
solve(Starts,MakeSpan):-
   findall(C,car(C, , ),Cars),
   findall(W,car( ,W, ),Weights),
   findall(S,car( , ,S),Speeds),
   length(Cars,N),
   length(Starts,N), %% My vars
   Starts #:: 0..inf,
   state crossing times(Starts, Speeds, Ends),
   ic:maxlist(Ends,MakeSpan),
   cumulative(Starts, Speeds, Weights, 20),
   bb_min(labeling(Starts),MakeSpan,
                  bb options{strategy:restart}),
   pretty_print(Cars,Starts,Ends).
```

Δομή

- Χρονοπρογραμματισμός Μηχανών
- Περιορισμοί που αφορούν χρονοπρογραμματισμό μηχανών.
 - □ disjunctive
 - cumulative