

Report No: CCIS15100080402

FCC REPORT

Applicant: XTR S.A.C.

Address of Applicant: Av. Camino Real 1225 Of 201-A San Isidro LIMA/ PERU

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: X4.5

FCC ID: 2AGAK-X45

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Oct., 2015

Date of Test: 21 Oct., to 06 Nov., 2015

Date of report issued: 09 Nov., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 **Version**

Version No.	Date	Description
00	09 Nov., 2015	Original

Viki zhul Test Engineer Tested by: Date: 09 Nov., 2015

Reviewed by: 09 Nov., 2015 Date:

Project Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

		P	Page
1	С	COVER PAGE	1
2	٧	/ERSION	2
3		CONTENTS	
4	Т	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	Т	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION.	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE.	
		.9.1 Conducted Emission Method	
		i.9.2 Radiated Emission Method	
	6.10	0.0.000	
		5.10.1 Conducted Emission Method	
		1.10.2 Radiated Emission Method	
7	Т	EST SETUP PHOTO	62
8	Е	UT CONSTRUCTIONAL DETAILS	63

4 Test Summary

100t Odiffinary							
Test Item	Section in CFR 47	Uncertainty	Result				
Antenna Requirement	15.203/15.247 (c)	/	Pass				
AC Power Line Conducted Emission	15.207	±3.28dB	Pass				
Conducted Peak Output Power	15.247 (b)(1)	±1.50dB	Pass				
20dB Occupied Bandwidth	15.247 (a)(1)	±1.50dB	Pass				
Carrier Frequencies Separation	15.247 (a)(1)	±1.50dB	Pass				
Hopping Channel Number	15.247 (a)(1)	±1.50dB	Pass				
Dwell Time	15.247 (a)(1)	±1.50dB	Pass				
Radiated Emission	15.205/15.209	±4.88dB	Pass				
Band Edge	15.247(d)	±1.50dB	Pass				

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	XTR S.A.C.
Address of Applicant:	Av. Camino Real 1225 Of 201-A San Isidro LIMA/ PERU
Manufacturer:	Shenzhen Richpad Communication Technology Co.,LTD.
Address of Manufacturer:	Room 315, HKUST SZ IER Building, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, P.R.C

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	X4.5
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	3.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: X4.5
	Input:100-240V AC,50/60Hz 300mA
	Output:5V DC MAX 1.0A

Page 6 of 63

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCIS15100080402

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:									
Item	em Test Equipment Manufacture		Model No. Inventor		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier 5 (10kHz-1.3GHz)		8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer		FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Universal radio		CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-09-2015	11-08-2018				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 3.0 dBi.

6.2 Conducted Emissions

0.2	Conducted Linissions								
	Test Requirement:	FCC Part 15 C Section 15.207							
	Test Method:	ANSI C63.4:2009							
	Test Frequency Range:	150 kHz to 30 MHz							
	Class / Severity:	Class B							
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto						
	Limit:	Frequency range (MHz)	Limit (c	dBuV)					
		Quasi-peak Average							
		0.15-0.5	66 to 56* 56	56 to 46*					
		0.5-5	46						
		5-30 60 50							
	Test setup:	* Decreases with the logarithm of the frequency. Reference Plane							
	Toot procedure:	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m							
	Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 							
	Test Instruments:	Refer to section 5.7 for details							
	Test mode:	Bluetooth (Continuous transm	itting) mode						
	Test results:	Pass	- ·						
		ı							

Measurement Data

Line:

Trace: 1

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

Condition: FCC PART15 B QP LISN LINE
EUT: Smartphone
Model: X4.5
Test Mode: BT TX mode
Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remarb: -

Remark

OMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	d <u>B</u>	dB	dBu₹	dBu∜	<u>dB</u>	
1	0.211	38.00	0.28	10.76	49.04	63.18	-14.14	QP
1 2	0.211	21.49	0.28	10.76	32.53	53.18	-20.65	Average
3	0.277	34.90	0.26	10.74	45.90	60.90	-15.00	QP
4	0.277	20.41	0.26	10.74	31.41	50.90	-19.49	Average
5 6 7 8 9	0.337	32.74	0.27	10.73	43.74	59.27	-15.53	QP
6	0.337	19.80	0.27	10.73	30.80	49.27	-18.47	Average
7	0.494	18.93	0.29	10.76	29.98			Average
8	0.683	29.36	0.22	10.77	40.35	56.00	-15.65	QP
9	0.751	18.24	0.23	10.79	29.26	46.00	-16.74	Average
10	2.133	29.10	0.26	10.95	40.31	56.00	-15.69	QP
11	2.285	12.65	0.26	10.95	23.86	46.00	-22.14	Average
12	17.199	31.50	0.33	10.91	42.74	60.00	-17.26	QP

Neutral:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smartphone Model: X4.5
Test Mode: BT TX mode
Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

: Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
MHz	—dBu⊽	<u>dB</u>	ā	dBu₹	—dBu₹	<u>d</u> B	
0.202	37.79	0.25	10.76	48.80	63.54	-14.74	QP
0.211	23.35	0.25	10.76	34.36	53.18	-18.82	Average
0.274	35.26	0.26	10.74	46.26	60.98	-14.72	QP
0.274	22.09	0.26	10.74	33.09	50.98	-17.89	Average
0.343	17.77	0.26	10.73	28.76	49.13	-20.37	Average
0.617	14.79	0.22	10.77	25.78	46.00	-20.22	Average
0.679	14.95	0.19	10.77	25.91	46.00	-20.09	Average
0.697	30.18	0.18	10.77	41.13	56.00	-14.87	QP
0.822	31.03	0.20	10.82	42.05	56.00	-13.95	QP
2.309	30.11	0.29	10.95	41.35	56.00	-14.65	QP
4.696	11.06	0.28	10.86	22.20	46.00	-23.80	Average
10.508	31.30	0.25	10.93	42.48	60.00	-17.52	QP
	0. 202 0. 211 0. 274 0. 274 0. 343 0. 617 0. 679 0. 697 0. 697 0. 822 2. 309 4. 696	Freq Level MHz dBuV 0.202 37.79 0.211 23.35 0.274 35.26 0.274 22.09 0.343 17.77 0.617 14.79 0.679 14.95 0.697 30.18 0.822 31.03 2.309 30.11 4.696 11.06	MHz dBuV dB 0.202 37.79 0.25 0.211 23.35 0.25 0.274 35.26 0.26 0.274 22.09 0.26 0.343 17.77 0.26 0.617 14.79 0.22 0.679 14.95 0.19 0.697 30.18 0.18 0.822 31.03 0.20 2.309 30.11 0.29 4.696 11.06 0.28	MHz dBuV dB dB 0.202 37.79 0.25 10.76 0.211 23.35 0.25 10.76 0.274 35.26 0.26 10.74 0.274 22.09 0.26 10.74 0.343 17.77 0.26 10.73 0.617 14.79 0.22 10.77 0.697 30.18 0.18 10.77 0.822 31.03 0.20 10.82 2.309 30.11 0.29 10.95 4.696 11.06 0.28 10.86	MHz dBuV dB dB dBuV 0.202 37.79 0.25 10.76 48.80 0.211 23.35 0.25 10.76 34.36 0.274 35.26 0.26 10.74 46.26 0.274 22.09 0.26 10.74 33.09 0.343 17.77 0.26 10.73 28.76 0.617 14.79 0.22 10.77 25.78 0.697 30.18 0.19 10.77 25.91 0.697 30.18 0.18 10.77 41.13 0.822 31.03 0.20 10.82 42.05 2.309 30.11 0.29 10.95 41.35 4.696 11.06 0.28 10.86 22.20	MHz dBuV dB dB dBuV dBuV 0.202 37.79 0.25 10.76 48.80 63.54 0.211 23.35 0.25 10.76 34.36 53.18 0.274 35.26 0.26 10.74 46.26 60.98 0.274 22.09 0.26 10.74 33.09 50.98 0.343 17.77 0.26 10.73 28.76 49.13 0.617 14.79 0.22 10.77 25.78 46.00 0.697 30.18 0.18 10.77 41.13 56.00 0.822 31.03 0.20 10.82 42.05 56.00 2.309 30.11 0.29 10.95 41.35 56.00 4.696 11.06 0.28 10.86 22.20 46.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB 0.202 37.79 0.25 10.76 48.80 63.54 -14.74 0.211 23.35 0.25 10.76 34.36 53.18 -18.82 0.274 35.26 0.26 10.74 46.26 60.98 -14.72 0.274 22.09 0.26 10.74 33.09 50.98 -17.89 0.343 17.77 0.26 10.74 33.09 50.98 -17.89 0.617 14.79 0.22 10.77 25.78 46.00 -20.37 0.679 14.95 0.19 10.77 25.91 46.00 -20.09 0.697 30.18 0.18 10.77 41.13 56.00 -14.87 0.822 31.03 0.20 10.82 42.05 56.00 -13.95 2.309 30.11 0.29

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

	GFSK mo	de		
Test channel	Peak Output Power (dBm)	Peak Output Power (dBm) Limit (dBm) Resu		
Lowest	3.91	21.00	Pass	
Middle	3.89	21.00	Pass	
Highest	3.62	21.00	Pass	
	π/4-DQPSK	mode		
Test channel	Peak Output Power (dBm)	Peak Output Power (dBm) Limit (dBm)		
Lowest	2.68	21.00	Pass	
Middle	2.92	21.00	Pass	
Highest	2.65 21.00 Pass		Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	2.77	21.00	Pass	
Middle	2.98	21.00	Pass	
Highest	2.74	21.00	Pass	

Test plot as follows:

Modulation mode: GFSK

Date: 23.OCT.2015 21:42:30

Lowest channel

Date: 23.0CT.2015 21:43:20

Middle channel

Date: 23.0CT.2015 21:43:41

Highest channel

Modulation mode: π/4-DQPSK

Date: 23.0CT.2015 21:45:43

Lowest channel

Date: 23.0CT.2015 21:45:21

Middle channel

Date: 23.0CT.2015 21:46:02

Highest channel

Modulation mode: 8DPSK

Date: 23.OCT.2015 21:47:11

Lowest channel

Date: 23.OCT.2015 21:46:49

Middle channel

Date: 23.0CT.2015 21:46:30

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Toot obonnol	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	760	1116	1164
Middle	832	1120	1168
Highest	828	1120	1172

Test plot as follows:

Modulation mode: GFSK

Date: 23.OCT.2015 21:56:41

Lowest channel

Date: 23.0CT.2015 21:57:54

Middle channel

Date: 23.0CT.2015 21:59:34

Highest channel

Modulation mode: π/4-DQPSK

Date: 23.OCT.2015 21:55:36

Lowest channel

Date: 23.OCT.2015 21:54:27

Middle channel

Date: 23.0CT.2015 21:52:19

Highest channel

Modulation mode: 8DPSK

Date: 23.OCT.2015 21:48:57

Lowest channel

Date: 23.0CT.2015 21:50:13

Middle channel

Date: 23.0CT.2015 21:51:08

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1000	554.67	Pass
Middle	1000	554.67	Pass
Highest	1004	554.67	Pass
	π/4-DQPSK mo	de	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1000	746.67	Pass
Middle	1004	746.67	Pass
Highest	1004	746.67	Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1004	781.33	Pass
Middle	1004	781.33	Pass
Highest	1004 781.33 Pass		Pass

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)	
GFSK	832	554.67	
π/4-DQPSK	1120	746.67	
8DPSK	1172	781.33	

Test plot as follows:

Modulation mode: GFSK

Date: 23.OCT.2015 22:03:16

Lowest channel

Date: 23.0CT.2015 22:02:31

Middle channel

Date: 23.0CT.2015 22:01:31

Highest channel

Modulation mode: π/4-DQPSK

Date: 23.OCT.2015 22:04:23

Lowest channel

Date: 23.0CT.2015 22:05:14

Middle channel

Date: 23.0CT.2015 22:06:14

Highest channel

Modulation mode: 8DPSK

Date: 23.OCT.2015 22:09:20

Lowest channel

Date: 23.OCT.2015 22:08:20

Middle channel

Date: 23.0CT.2015 22:07:17

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

GFSK

Date: 23.0CT.2015 22:21:5

π/4-DQPSK

Date: 23.OCT.2015 22:16:20

8DPSK

Date: 23.0CT.2015 22:12:55

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12480		
GFSK	DH3	0.26688	0.4	Pass
	DH5	0.31317		
	2-DH1	0.12672		
π/4-DQPSK	2-DH3	0.26592	0.4	Pass
	2-DH5	0.31296		
	3-DH1	0.12800		
8DPSK	3-DH3	0.26592	0.4	Pass
	3-DH5	0.31125		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.390*(1600/(2*79))*31.6=124.80ms DH3 time slot=1.668*(1600/(4*79))*31.6=266.88ms DH5 time slot=2.936*(1600/(6*79))*31.6=313.17ms

2-DH1 time slot=0.396*(1600/ (2*79))*31.6=126.72ms 2-DH3 time slot=1.662*(1600/ (4*79))*31.6=265.92ms

2-DH5 time slot=2.934*(1600/ (6*79))*31.6=312.96ms

3-DH1 time slot=0.400*(1600/ (2*79))*31.6=128.00ms

3-DH3 time slot=1.662*(1600/ (4*79))*31.6=265.92ms

3-DH5 time slot=2.918*(1600/ (6*79))*31.6=311.25ms

Test plot as follows:

Modulation mode: GFSK

Date: 23.OCT.2015 22:41:36

DH1

Date: 23.0CT.2015 22:40:51

DH3

Date: 5.NOV.2015 09:08:05

DH5

Modulation mode: π/4-DQPSK

Date: 23.OCT.2015 22:42:11

2-DH1

Date: 23.0CT.2015 22:39:44

2-DH3

Date: 23.OCT.2015 22:37:16

2-DH5

Modulation mode: 8DPSK

Date: 23.OCT.2015 22:42:54

3-DH1

Date: 23.0CT.2015 22:39:06

3-DH3

Date: 23.OCT.2015 22:38:16

3-DH5

Report No: CCIS15100080402

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

GFSK

Lowest Channel

Date: 23.0CT.2015 22:47:20

No-hopping mode

Date: 23.OCT.2015 22:48:46

Hopping mode

Highest Channel

Date: 23.0CT.2015 22:57:15

No-hopping mode

Date: 23.0CT.2015 22:56:02

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 23.0CT.2015 22:46:24

No-hopping mode

Date: 23.0CT.2015 22:50:30

Hopping mode

Highest Channel

Date: 23.0CT.2015 22:58:24

No-hopping mode

Date: 23.00T.2015 22:54:54

Hopping mode

8DPSK

Lowest Channel

Date: 23.0CT.2015 22:45:20

No-hopping mode

Hopping mode

Highest Channel

Date: 23.0CT.2015 22:51:57

Date: 23.0CT.2015 22:53:35

Date: 5.NOV.2015 09:09:47

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205		
Test Method:	ANSI C63.10: 2	009			
Test Frequency Range:	2.3GHz to 2.5G	Hz			
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
I in it.		RMS	1MHz Limit (dBuV/	3MHz	Average Value Remark
Limit:	Freque	-	54.0	,	Average Value
	Above 1	GHz	74.0		Peak Value
Test setup:	AE EUT (Turntable)	Ground Reference Plane Test Receiver	Controller	Swwww.	
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to derhorizontal an measurement 4. For each sus and then the and the rotal maximum reasonation of the emission of the em	a meter cambe e position of the position of the set 3 meters che was mount height is varietermine the modern was antenna was table was turneding. Server system with the position of the difference of the differe	er. The table was set to Pead Aximum Hole EUT in peak tested one by the highest race.	was rotated diation. The interference of a variable of the field one antennal was arrange of the form 1 regrees to 360 at Detect Fund Mode. The mode was apped and the missions the one using pressions of the state	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters distrength degrees to find the function and fold lower than the five peak values of the first did not have beak, quasi-peak or
Test Instruments:	Refer to section	-			
Test mode:	Non-hopping me	ode			
Test results:	Passed				

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site Condition

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT Smartphone

Model X4.5 : DH1-L Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK

				Preamp Factor				
-	MHz	dBuV	 d <u>B</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	 -
	2390.000 2390.000							

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smartphone Model : X4.5
Test mode : DH1-L Mode
Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki REMARK :

			Antenna Factor						Remark	
-	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	dBuV/m	dBu√/m	<u>d</u> B		-
0.00	2390.000 2390.000				0.00 0.00					

Test channel: Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smartphone

Model : X4.5
Test mode : DHI-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

$\omega_{i'}$	и .									
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
	2483.500	19.63	27.52	6.85	0.00	54.00	74.00	-20.00	Peak	
)	2483.500	7.82	27.52	6.85	0.00	42.19	54.00	-11.81	Average	

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: FCC PART 15 (PK) 3m B.
EUT : Smartphone
Model : X4.5
Test mode : DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

MAIN.	v :									
			Ant enna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	—dBu∇	dB/m	<u>dB</u>	<u>ab</u>	$\overline{dB} \overline{uV/m}$	dBuV/m	<u>dB</u>		
1	2483.500	19.05	27.52	6.85	0.00	53.42	74.00	-20.58	Peak	
2	2483, 500	7.83	27. 52	6.85	0.00	42.20	54, 00	-11.80	Average	

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

Model

: X4.5 : 2DH1-L Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

REMARK

			Antenna Factor						
-	MHz	dBu∇	$\overline{-dB/m}$	<u>d</u> B	d <u>B</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	 _
	2390.000 2390.000								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone : X4.5 EUT

: x4.5
Test mode : 2DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

1 2

TH'	- ·									
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∜	dB/m	<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>		-
	2390,000	18.41	27.58	6.63	0.00	52.62	74.00	-21.38	Peak	
)	2390.000	11.24	27.58	6.63	0.00	45.45	54.00	-8.55	Average	

Test channel: Highest

Horizontal:

Site Condition

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT Smartphone Model X4.5 :

Test mode : 2DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

REMARK

			ReadAntenna C: Level Factor l					
	MHz	Hz dBuV o	$^{}\overline{dB}/\overline{m}$		 $\overline{dBuV/m}$	dBuV/m		
1 2	2483.500 2483.500							

Site Condition

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT Smartphone Model : X4.5

Test mode : 2DH1-H Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Viki REMARK :

JIIIII		T) 1		0.11	D		T	^	
	Freq		Antenna Factor						Remark
2	MHz	dBu₹		<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2483.500	20.42	27.52	6.85	0.00	54.79	74.00	-19.21	Peak
2	2483 500	10 81	27 52	6 85	0.00	45 18	54 00	-8.82	Average

8DPSK mode

Test channel: Lowest

Horizontal:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Smartphone Model X4.5 Test mode : 3DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

1 2

м	/V									
			Read	Ant enna	Cable	Preamp		Limit	Over	
		Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
		MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390	.000	19.38	27.58	6.63	0.00	53.59	74.00	-20.41	Peak
	2300	000	11 23	27 58	6 63	0.00	45 44	54 00	-8.56	Amerage

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone

Model : X4.5
Test mode : 3DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

			Antenna Factor						
-	MHz	dBuV	$\overline{-dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smartphone EUT : X4.5 : 3DH1-H Mode Model Test mode

Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK:

			Antenna Factor						
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone : X4.5 EUT

: X4.5
Test mode : 3DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

		ReadAntenna Cabi Freq Level Factor Los						Remark	
MHz	dBu₹	dB/m	dB	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>		
2483, 500 2483, 500									

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

GFSK

Lowest channel

Date: 23.OCT.2015 23:21:30

30MHz~25GHz

Middle channel

Date: 23.OCT.2015 23:20:28

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 23:19:43

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 23.0CT.2015 23:11:49

30MHz~25GHz Middle channel

Date: 23.0CT.2015 23:13:26

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 23:14:08

30MHz~25GHz

8DPSK

Lowest channel

Date: 23.0CT.2015 23:10:52

30MHz~25GHz Middle channel

Date: 23.0CT.2015 23:09:29

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 23:08:46

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M	1								
Test Requirement:	FCC Part 15 C Section 15.209								
Test Method:	ANSI C63.10: 200)9							
Test Frequency Range:	9 kHz to 25 GHz								
Test site:	Measurement Dis	tance: 3m		T	1				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	-	300kHz	Quasi-peak Value Peak Value				
	Above 1GHz	Above 1GHz Peak 1MHz 3MHz							
	7.5010 10112	RMS	1MHz	3MHz	Average Value				
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Remark				
	30MHz-88I	MHz	40.0)	Quasi-peak Value				
	88MHz-216	6MHz	43.5	5	Quasi-peak Value				
	216MHz-960	OMHz	46.0)	Quasi-peak Value				
	960MHz-1	GHz	54.0)	Quasi-peak Value				
	Above 1G	:⊔	54.0)	Average Value				
	Above 10	11 12	74.0)	Peak Value				
	Below 1GHz Tum Tum Table 0.8 Ground Plane Above 1GHz	4m Im Im A Jan Jan Jan Jan Jan	Antenna Tower Search Antenna RF Test Receiver Antenna Tower						

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

EUT : Smartphone
Model : X4.5
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

THAILE									
	Freq		Antenna Factor					Over Limit	Remark
_	MHz	dBu∇	$\overline{dB/m}$	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	60.704	51.86	12.43	0.70	29.77	35.22	40.00	-4.78	QP
1 2 3 4 5	93.440	44.69	12.58	0.92	29.56	28.63	43.50	-14.87	QP
3	127.218	44.85	9.32	1.17	29.35	25.99	43.50	-17.51	QP
4	198.588	45.05	10.57	1.38	28.84	28.16	43.50	-15.34	QP
5	400.432	31.83	15.10	2.12	28.78	20.27	46.00	-25.73	QP
6	599.321	30.27	18.45	2.62	28.94	22.40	46.00	-23.60	QP

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Smartphone Condition EUT

: X4.5
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK :

Freq				Cable Preamp Loss Factor					Remark	
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB		
1	60.492	48.12	12.56	0.70	29.77	31.61	40.00	-8.39	QP	
2	101.289	46.84	13.02	0.97	29.52	31.31	43.50	-12.19	QP	
3	197.893	49.75	10.57	1.38	28.84	32.86	43.50	-10.64	QP	
3	337.216	30.33	14.05	1.90	28.53	17.75	46.00	-28.25	QP	
5 6	396.242	32.43	14.97	2.11	28.76	20.75	46.00	-25.25	QP	
6	595.133	28.96	18.40	2.61	28.95	21.02	46.00	-24.98	QP	

Above 1GHz:

Te	st channel:		Lowest		Lev	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	50.21	31.53	10.57	40.24	52.07	74.00	-21.93	Vertical
4804.00	49.67	31.53	10.57	40.24	51.53	74.00	-22.47	Horizontal
Te	st channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	40.50	31.53	10.57	40.24	42.36	54.00	-11.64	Vertical
4804.00	39.44	31.53	10.57	40.24	41.30	54.00	-12.70	Horizontal

Te	st channel:		Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	49.52	31.58	10.66	40.15	51.61	74.00	-22.39	Vertical	
4882.00	49.19	31.58	10.66	40.15	51.28	74.00	-22.72	Horizontal	
Te	st channel:		Mid	ldle	Lev	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	39.34	31.58	10.66	40.15	41.43	54.00	-12.57	Vertical	
4882.00	39.54	31.58	10.66	40.15	41.63	54.00	-12.37	Horizontal	

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.64	31.69	10.73	40.03	51.03	74.00	-22.97	Vertical
4960.00	48.83	31.69	10.73	40.03	51.22	74.00	-22.78	Horizontal
Te	st channel:	•	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.01	31.69	10.73	40.03	41.40	54.00	-12.60	Vertical
4960.00	39.26	31.69	10.73	40.03	41.65	54.00	-12.35	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.