

计算机网络概述

刘志敏

liuzm@pku.edu.cn

什么是计算机网络?

- → 计算机网络:用通信设备将计算机连接起来,在计算机之间传输数据(信息)的系统。
- 连网的计算机: 根据其提供的功能将之区分为客户机或服务器
- 通信设备:负责转发数据,如网络接口卡,调制解调器、中继器、交换机、路由器等。
- 通信线路: 计算机与通信设备, 计算机与计算机之间的连接线路, 可以是有线的或无线的。
- 通信协议:通信协议:计算机之间以及计算机与设备之间 进行数据交换而遵守的规则、标准或约定。

提纲

- 计算机网络的应用
- 由通信系统到计算机网络
- ■网络硬件
- ■网络软件
- 网络体系结构
- 网络实例
- ■网络标准
- 计算机网络发展简介

计算机网络的应用

- · 商业应用举例
- · 家庭应用
- · 移动用户
- · 社会问题

商业应用举例

- 实现公司中的计算机系统的资源共享
 - Common Printer 共享打印机
 - Backup Systems 磁带备份系统
- VPN (Virtual Private Networks)虚拟专用网
 - 将不同地点的网络连接为一个扩展网络,突破了"地理位置的限制"
 - ■例如使用VPN获得校园网的信息服务
- 服务模式为Client Server

Client - Server 模式

有两个客户机一个服务器的网络

在客户机服务器模式中包含请求和响应

商业应用

- 构建计算机网络的三个主要目标
 - ■数据共享
 - Web 应用
 - 个人信息共享
 - Email
 - VoIP
 - Video
 - Tele-Conferencing 电话会议
 - Desktop Sharing 桌面共享(远程群体间协同)
 - Telemedicine 远程医疗
 - ■电子商务
 - Shopping from home

家庭应用

■ 人与人的通信

- Audi + Video
- Online Audio 在线音频
- Online Video 在线视频(YouTube)
- Telelearning 远程学习
- Social Networking:
 - Facebook
 - Wiki (协作型网站) Wikipedia (维基百科,多人协作编写百科全书)
 - 微信:公众号、XX群
- 网络购物
- 网络银行

有关电子商务的专有名词

B: Business, C: Consumer,

G: Government, P:Peer

标记	全称	例子
B2C	企业对消费者	在线购书
B2B	企业对企业	汽车制造商向轮胎供应商订购轮胎
G2C	政府对消费者	政府分发电子税收表单
C2C	消费者对消费者	在线拍卖二手物品
P2P	对等	音乐分享

家庭应用

- 娱乐
 - MP3 and DVD-quality movies
 - TV shows IPTV (IP TeleVision)
 - Interactive Live TV
- ■游戏
 - Multiperson real-time simulation games.多人实时在 线游戏
- 智能家居监控
- RDIF (Radio Frequency Identification) 射频识别
 - 一种无源芯片,目的是替换条形码,用于定位及物品标识

移动用户

- 移动计算机(handheld and laptops)
 - 使用移动设备
 - Read and send email,
 - Tweet, Twitter(推特), 微博
 - Watch Movies,
 - Download Music,
 - Play Games,
 - Serf the Web 浏览网页
- 互联网的连通性易于建立与上述应用相关的网络
 - Wireless Networks (Cars, Boats, and Airplanes can not have wired Connections)
 - Cellular Networks
 - Wireless hotspots (802.11 Standard).
 - Wireless Networking vs. Mobile Wireless Networks

移动用户

- 智能手机
 - 3G & 4G 蜂窝网络提供更高的数据率
 - GPS 为标准配置,导航、定位
 - m-commerce (mobile commerce) 移动商务
 - 手机电子支付
- 传感器网络
 - 传感器将物理世界的信息转换为数据
 - 传感器网络采集并收集数据
 - 例如: "微信运动"
- 可穿戴式计算机
 - 便携和安全的设备
 - 检测仪,心脏起搏器 ...
 - 可遥测和遥控

与移动应用相关的服务

- 智能导航
 - 定位: 位置与地图匹配
 - ■导航:路况及路径选择(最短、最快)
- 共享单车
 - 互联网+移动定位
- ■智慧交通系统
 - 大数据(公交、地铁、出租车、道路设施等) +智慧运营
 - 互联网+交通: 打车软件、智能交通诱导屏
 - 互联网+信号灯: 预测流量、智能控制信号灯
- XX打车系统

商业应用及新技术

- 网络信息发布、网络数据爬取及分析
- 互联网新闻分类
 - 互联网上的信息非常庞大,如何提取自己感兴趣的信息?针对这样需求,让用户定制自己的需要,根据个性化的需求对网络新闻数据进行抽取,提取,提交个性化的需求并推送给用户关注的信息。

■ 互联网搜索日志数据挖掘

网购,更加精准的商品推荐,更高效的广告投放成了 互联网公司的主要发展方向。根据网民上网日志来分 析用户的一些喜好,分析上网时间、频率、浏览的内 容等进行多维度的分析,进而进行精准的广告投放与 营销。

互联网地图

为了探究互联网这个宇宙,俄罗斯工程师Ruslan Enikeev根据2011年底的数据,整合了全球196个国家的35万个网站数据,并根据200多万个网站链接将这些"星球"通过关系链联系起来: "星球"的大小由网站流量来决定, "星球"间的距离由链接的频率、强度和用户跳转时创建的链接来确定; 绘制了"互联网地图"(http://internet-map.net)。

图 俄罗斯工程师绘制的"互联网地图"

计算机网络的应用

网络无处不在, 网络改变生活!

请给出一个网络应用实例或网络应用中的问题。

例如:

- 1)例如:多人协作编辑书籍:微信群、云盘、网络搜索
- 2) 移动通信: 共享单车、移动支付
- 3)移动导航

计算机网络应用-实例

互联促进协作,网络**改变**生活

今年寒假我参加了一场四天四夜的数学建模竞赛,比赛的报名、查看题目、提交论文都在**网上**完成。然而计算机网络对我们最大的帮助在于完成这次比赛的方式——因为互联网,我们队伍三人即便分处襄阳、九江、广州三地,也毫无沟通困难。

多平台共享协作

通过Dropbox,我们在自己的设备上添加了一个共享文件夹。比赛期间,三人中任何一个更新了数据、保存了文件、删除了文档,都可以实时同步到另外两个人的设备上——包括电脑、安卓手机、iPhone、iPad。

10 在线检索数据

用谷歌强大的搜索功能,筛选信得过的数据源来获取比赛需要的数据;浏览各种论文库,省去我们跑到图书馆实地翻阅纸质文献的时间。

语音、视频沟通

定时的语音会议,方便队伍三人在需要时相互沟通。不需要时, 又可避免相互干扰。熬夜"赶论文"时,开着视频看着对方也可 以相互鼓励。

计算机网络应用-实例

■ 快捷全面的学术资源

通过计算机网络, 学者可以广泛获取

一领域的研究动态和前沿技术

一些常用的搜索渠道有:

百度学术、google scholar、arxiv、 IEEE Explorer、中国知网等

http://ieeexplore.ieee.org/Xplore/home.

http://www.cnki.net/

Computer Vision and Pattern Recognit

Authors and titles for recent submissions

- Mon, 5 Mar 2018
- Fri. 2 Mar 2018
- Thu. 1 Mar 2018
- Wed. 28 Feb 2018
- Tue, 27 Feb 2018

[total of 165 entries: **1-25** | 26-50 | 51-75 | 76-100 | ... | 151-165] [showing 25 entries per page: fewer | more | all]

Mon, 5 Mar 2018

[1] arXiv:1803.00974 [pdf, other]

Hashing with Mutual Information

Fatih Cakir, Kun He, Sarah Adel Bargal, Stan Sclaroff Subjects: Computer Vision and Pattern Recognition (cs.CV)

[2] arXiv:1803.00951 [pdf, other]

Multimodal Registration of Retinal Images Using Domain-Álvaro S. Hervella, José Rouco, Jorge Novo, Marcos Ortega

任旭彤—信息科学技术学院15级

社会问题

- · 社会问题、政治和伦理问题
 - 增加个人发布信息的渠道、借助公众的力量促使问题 得以解决,例如云南旅游问题
 - 不实言论的传播、违禁信息的发布,例如"魏则西事件"
- · 数字版权问题
- · 个人隐私问题
 - 电话、手机号、个人资产、通话记录、实时位置
 - 收集个人信息从中获利
- · 钓鱼网站

由通信输系统到通信网络

- 通信系统的模型
- 点到点的传输到交换网络
- 电路交换与分组交换

由通信系统到通信网络

(a) General block diagram

(b) Example

点到点的通信

■ 提供两个终端之间的通信只需一对电路

■ 5 个终端两两相连,需 10 对电路

■ N个终端两两相连,需 N(N-1)/2对电路。 电路数与终端数的平方成正比。

使用交换机

- 电路或链路(包括信号收发设备、信号中继设备、传输介质等)为稀缺资源
- 当终端数增多时,采用交换机来实现交换。
- "交换" (switching): 即转接, 把一条电路转接到另一条电路, 使之连通

通信网络

- 一般不采用点到点的通信,因为
 - ■通信设备相距太远
 - 通信链路数为终端数的平方,不实用

■ 解决方案是通信网络_{stitching}如 员特网

计算机网络的构成

■ 计算机、通信线路、传输设备、通信协议

■ 基本问题: 数据如何在网络 上传输

■ 电路交换:每次呼叫建立 一条专用电路:电话网

■ 分组交换:数据以离散的数据块形式在网络上发送,计算机网络

电路交换

为电话呼叫预约端到端资源

- 链路带宽,交换容量
- 专用资源: 非共享的
- 类似保证性能的电路
- 需要呼叫建立过程

分组交换: 统计复用

A、B的分组序列无固定模式→ 统计复用 *statistical multiplexing*

分组交换

将端到端的数据流划分成分组

- ■用户A、B分组共享网络资源
- 每个分组使用全部的链路带宽
- 资源按需使用

资源竞争:

- 需要的资源可能超过可用资源
- 拥塞: 分组排队, 等待使用链路
- 存储与转发:
 - 节点接收整个分组后才转发

分组交换

- 消息(Message)或报文
- 分组(Packet): 网络上交换数据的基本单位
 - 分组头:源地址、目的地址
- 帧(Frame): 在链路上传输数据的基本单位
 - 帧头、帧尾: 地址、序号、校验位

网络核心:分组交换(一)

■ 在发送端,先把长报文划分成较短的、固定长度的数据段。

网络核心:分组交换(二)

■ 每一个数据段前面添加上首部构成分组。

- 分组交换网以"分组"作为数据传输单元。
- 依次把各分组发送到接收端。

网络核心:分组交换(三)

■ 接收端收到分组后剥去首部还原成报文。

■ 最后,在接收端把收到的数据恢复成为原来的报文。

分组的存储转发过程

分组交换的特点

■ 优点

- 高效: 动态分配传输带宽, 逐段占用通信链路。
- 灵活:以分组为传送单位,存储转发,各链路速率可以不同。
- 迅速:不必先建立连接就能向其他主机发送分组; 充分使用链路的带宽。
- 可靠: 网络协议; 路由选择协议提高使网络的生存性。

缺点

- 分组经结点存储转发时要排队,增加了时延。
- 分组携带首部(含有要的控制信息),增加了开销。

三种交换的比较 由路交换 报文交换 分组交换 报文 连接建立 报文 数据传送 报文 连接释放 报文 B B B 报文 报文 分组 分组 分组 报文 比特流直达终点 数据传送 的特点 存储 存储 转发 转发 转发

分组交换与电路交换

分组交换的特点

- 更适于突发数据
 - 资源共享
 - 简单,无需呼叫建立电路
- 存在拥塞问题: 分组延迟和丢失
 - 需要协议处理可靠数据传送,拥塞控制
- 问题:如何使网络性能接近于电路交换网络?
 - 语音/视频应用需要保证带宽
 - 还存在其他未解决的问题(丢失、流量控制、差错)

分组交换过程

网络硬件

- 讨论有关网络的设计技术: 网络硬件与网络软件
- 计算机组网技术
 - Personal area networks
 - Local area networks
 - Metropolitan area networks
 - Wide area networks
 - internet
- 网络传输技术
- 网络规模

网络硬件——两类传输技术

■ Broadcast广播

- 信道为所有设备共享
- 发送的分组可被所有设备接收
 - 在每个分组中的地址字段给出接收者的地址
 - 若地址为接收者的,则处理,否则丢弃
- 无线网络、以太网络为典型的广播链路
- 广播系统允许一发多收

■ Point-to-point 点对点

- 将一对设备连接起来
- 短消息需要访问一个或多个中间设备
- 网络中存在多个路由器
- 找到一条好的路由非常重要
- Unicasting 单播 一个发送方一个接收方

实现数据到信号之间的转换; 传输技术决定了传输距离, 进而决定了网络规模

Interproces distance			Example	
1 m	Squar	e meter	Personal area ne	twork
10 m	Room			
100 m	Buildir	ng	Local area network	
1 kr	m Camp	us		
10 kr	m City		Metropolitan area	network
100 kr	m Count	ry	107.1-	
1000 kr	1000 km Continent		→ Wide area network	因特网是
10,000 kr	m Planet	t	The Internet	三 互联网

Personal Area Network

Bluetooth PAN (Personal Area Network) configuration

Local Area Networks

Wireless and wired LANs.

(a) IEEE 802.11 or WiFi. (b) Switched Ethernet (802.3).

Metropolitan Area Networks

- HFC: hybrid fiber coax
 - 非对称: 下行最高 30Mbps,上行最高2Mbps
- 同轴电缆和光纤混合传输,将家庭网络连接到ISP路由器
 - 多个家庭共享接入网

Cable 网络结构

Cable 网络结构

Wide Area Networks (1)

有线电话网、卫星网、蜂窝无线网

网络软件

- 协议层次结构
- 层次设计问题
- 面向连接和无连接
- 服务原语
- 服务与协议的关系

协议层次结构——层、协议与接口

虚线表示虚拟通信,实线表示物理通信; 第1层之下是物理介质,是实际发生通信的地方

名词术语

- Entity 实体—表示发送或接收信息的硬件或软件
- Protocol 协议 通信实体之间的规则和约定.
- Peers 对等体 不同机器上构成相同层的实体
 - 对等体使用协议相互通信
- 数据并非在两台机器的第n层之间直接传输
 - 每一层将数据和控制信息直接传递给其下层,一直传递到最低层
- Interface 接口(也称服务访问点SAP): 定义了下层向 上层提供哪些原语操作和服务
- Network Architecture 网络体系结构: 层和协议的集合
 - 特定的网络体系结构必须包含足够的信息,以便实现者在为每一层编写程序或设计硬件时能遵守相应的协议
- Protocol Stack 协议栈:某一系统所使用的一系列的协议 ,每层一个协议

协议层次结构

支持第5层虚拟通信的信息流

协议层次结构

- 第5层产生消息传递给第4层,以便交给对等层; 第4层增加头,标识消息;以便交给对等层;以 此类推;
- 第3层决定经过哪个传输线路发送,通常对数据 大小有限制,因此需要切割分组;
- 在网络设计中,对等层的抽象概念至关重要。
- 对等层通信可认为通信是水平的,每个对等层都有一个类似SendToOtherSide,
 GetFromOtherSide

设计问题

■ Reliability可靠性:

网络必须正确地工作,尽管网络是由本身并不可靠的 部件组成的。

■ Error Detection检错:

■ 使用编码方法定位传输错误的位或采用请求重传

■ Error Correction纠错

■ 纠正错误的位,恢复正确的消息

■ Routing路由:

■ 找到由一个设备到另一个设备的路径

Protocol Layering协议分层:

■随着网络规模的增大,需要解决网络与已存在网络的 连接的新问题

设计问题

Addressing and Naming寻址:

■ 标识发送方和接收方

■ Internetworking互联

不同的网络有不同的约束,如对消息长度的限制,通过分段重组等方式解决

■ Scalable可扩展:

■ 当网络变大时,也能保持好的性能

Resource Allocation资源分配

网络基于其底层的资源向主机提供服务,需要提供适当的资源分配机制,使得一台主机不因占用更多的资源而影响其它主机的业务。

■ Flow Control流量控制

通过接收方向发送方的反馈,使得发送方以适当的速率发送数据,而接收方还来得及处理。

设计问题

■ Congestion拥塞控制:

■ 更多的计算机发送了更多的数据,导致网络过载,传输效率急剧降低;通过检测拥塞,降低发送速率缓解拥塞

Quality of Service服务质量

- 需要更多的资源, Additional Resources (other then Bandwidth),
- 实时传输

Network Security网络安全

应对网络威胁(数据的伪造、欺骗、网络攻击)的措施:保密、认证等

服务: 面向连接和无连接

- 每层(不仅仅是最高层)向其上层可以提供两种不同的服务
 - 面向连接Connection-oriented
 - 无连接 Connectionless

面向连接的服务举例

- 电话系统的模式
 - 摘机、拨号、通话、挂机
- ■服务用户
 - 建立连接
 - 使用一个连接 (发端在一段推送数据,接收端在另一端获得数据)
 - 在连接建立过程中,发端、收伏案、通信子网需要协 商一些参数:
 - 最长消息长度
 - 服务质量需求
 - 其他
- 一条电路
 - 一个连接的另一个说法,与资源相关,如固定带宽

面向连接的网络: 呼叫虚电路

- 信令: 用于建立、维持、拆除虚电路(VC)
- ATM, 帧中继(frame-relay), X.25等采用VC
- Internet不采用VC

无连接的网络——因特网模式

- 网络层没有呼叫建立过程
- 路由器: 不维护端到端的连接状态
 - 没有网络层"连接" 这一概念
- 基于目的地址对分组进行路由选择
 - 一对源地址——目的主机的分组,可以选择不同路径

无连接服务的应用举例

- 因确认引入的延时不可接受
 - 例如数字化语音的IP传输 Voice-Over-IP (VoIP).
 - 数字化视频会议
- 并非所有的应用都需要连接
 - 例如垃圾邮件的发送者给用户发送垃圾邮件,不希望逐个建立连接,不需要100%的可靠性
- 数据报
 - 提供不可靠连接业务,类似于电报业务
- 有确认的数据报
 - 并非建立一个可靠连接,而是可靠性是其基本需求,类似于挂号 信要求一个回执,例如手机短信业务
- 请求应答服务
 - 发送端发送一个含有请求的数据报,接收端包含请求结果的响应
 - 例如网页浏览业务: 查询及响应过程

服务原语

■ 一个服务由一组原语(primitive)说明,用户进程通过原语来访问该服务。原语告诉服务要执行某个动作,例如,传输层面向连接的服务提供6个服务原语

原语	含义		
LISTEN	等待连接请求		
CONNECT	与等待的对等实体建立连接		
ACCEPT	接受来自对等实体的建立连接		
RECEIVE	等待接收报文		
SEND	给对等实体发送报文		
DISCONNECT	终止一个连接		

服务原语(2)

客户机-服务器交互:采用确认数据方式

服务与协议的关系

- 服务是一层向其上层提供的一组原语(操作)
 - 服务定义了该层准备代表其用户执行哪些操作,但并不包括如何 实现这些操作
- 协议是一组规则,规定了对等实体之间所交换的报文格式和含义
 - 实体使用协议来实现他们的服务
 - 可以自由地改变协议,只要不改变呈现给用户的服务即可
 - 按此方式,服务和协议是完全独立的

参考模型

- ・OSI 参考模型
- · TCP/IP参考模型
- 课程中采用的参考模型
- · OSI 与 TCP/IP参考模型的比较

The OSI Reference Model

开放系统互连模型: ISO的OSI

■ OSI (Open Systems Interconnection) 由国际标准化组织ISO (International Organization for Standardization)开发

物理层:建立、维持和终止比特流信号的物理 连接,提供机械、电气功能及手段

数据链路层:将比特组成数据帧,进行差错控制及流量控制

网络层: 实现基于分组的数据交换

传输层: 提供端对端的透明数据传输服务

会话层: 不同主机的进程间会话的组织和同步

表示层: 为上层用户提供共同需要的数据或信

息语法表示及转换

应用层:为用户提供服务

OSI 的体系结构

TCP/IP参考模型

课程采用的模型

FTP, SMTP, HTTP

■ 传输: 进程之间的数据传输

TCP, UDP

■ 网络: 源到目的之间的数据报路由

■ IP, ICMP, RIP路由协议

■ 链路: 临近网络部件间的数据传送

PPP, Ethernet

■ 物理: 在线路上传输的位

■ 信号、介质、调制、复用

application

transport

network

link

physical

OSI 和TCP/IP参考模型的比较

OSI 模型的概念

■服务

- 每一层向其上层提供某些服务
- 服务定义了该层的功能(或语义),而不是上层实体如何访问该层或这一层是如何工作的;

■ 接口

■ 告诉上层的进程如何访问它,规定了哪些参数以及结果是什么;但它没有说明本层的内部是如何工作的。

协议

■ 协议是内部的事情,它可以使用任何协议只要能完成 既定的任务;可以改变协议,只要不影响其上面的各 层。

- Internet
- ARPANET
- NSFNET
- Third-generation mobile phone networks
- Wireless LANs: 802.11
- RFID and sensor networks

ARPANET

Baran提出的分布式交换 系统:交换局间有多条 电路,之间采用数字的 分组交换

NSFNET

The NSFNET backbone in 1988.

互联网的结构

IXP: 因特网交换点

CMTS: 线缆调制解调终端系统

ISP: 因特网服务提供商

3G 移动蜂窝网(1)

移动电话网络的蜂窝结构:基站信号覆盖蜂窝区域,实现资源在空间中的重用,增加网络容量

3G移动蜂窝网(2)

UMTS 3G 移动电话网的结构:空口,无线接入网,核心网

3G移动蜂窝网(3)

移动电话的切换(a) 切换前, (b)切换后.

Wireless LANs: 802.11 (1)

- (a) 有 AP(access point)的无线网络.
- (b) Ad hoc (自组织)网络.

Wireless LANs: 802.11 (2)

Multipath fading

Wireless LANs: 802.11 (3)

无线信号的范围不能覆盖整个系统

RFID and Sensor Networks (1)

RFID used to network everyday objects.

RFID and Sensor Networks (2)

Multihop topology of a sensor network

网络标准化

· 电信领域telecommunications

- 国际电信联盟ITU,三个部门
 - · ITU-T (前身为CCITT): 对电话、电报和数据接口给出技术 建议,下设研究组
 - · ITU-R: 无线电通信部门,协调无线频率的分配及使用
 - · ITU-D: 发展部门

· 著名的国际标准化组织

- 国际标准化组织ISO
- 电器和电子工程师协议IEEE,例如无线局域网IEEE802.11

. 因特网标准

- IEEE
- RFC(Request For Comments): www.ietf.org/rfc

互联网标准(1)

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10 ↓	Virtual LANs and security
802.11 *	Wireless LANs (WiFi)
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)

802 工作组,重要的用*标注, 处于冬眠的用 ↓ 标注,已经解散的用+标注

互联网标准(2)

802.13	Unlucky number; nobody wanted it
802.14 ↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth, Zigbee)
802.16 *	Broadband wireless (WiMAX)
802.17	Resilient packet ring
802.18	Technical advisory group on radio regulatory issues
802.19	Technical advisory group on coexistence of all these standards
802.20	Mobile broadband wireless (similar to 802.16e)
802.21	Media independent handoff (for roaming over technologies)
802.22	Wireless regional area network

802 工作组,重要的用*标注, 处于冬眠的用 ↓ 标注,已经解散的用+标注

计算机通信与分组交换

Paul Baran

 Early 1960s: New approaches for survivable comms systems; "hot potato routing(packet switching)" and decentralized architecture, 1964 paper

Len Kleinrock (MIT thesis): "Information flow in large communication nets", 1961

- J. Licklider & W. Clark (MIT), On-line Man Computer Communication
- L. Roberts (MIT), first ARPANET plan for time-sharing remote computers, SOSP '67 paper

ARPANET 与网络互联

BBN team that implemented the interface message processor

ARPANet

- 1967: Connect computers at key research sites across the US using pt-to-pt telephone lines
- Interface Message Processors (IMP) ARPA contract to BBN
- Ted Kennedy telegram on BBN getting contract!

互联网的发展

1972-1980: 网络互联, 新的网络特性

- 1970: ALOHAnet , 在Hawaii 的卫星网
- 1974: Cerf and Kahn 互联 网体系结构
- 1976: Ethernet at Xerox PARC
- 70'年代: DECnet, SNA, XNA
- 70'年代末: 交换定长分组 (ATM 前身)
- 1979: ARPAnet 拥有 200 节点

Cerf and Kahn's 互联网原理

- 最小的, 自治的 需要 互联的网络无需做内部 改变
- 尽力而为的服务模型
- routers
- 分布式控制

定义了今天的互联网体系结构

互联网的发展

David D. Clark: Chief Protocol Architect for the Internet from 1981.

1980-1990: 新的协议

■ 1983: TCP/IP

■ 1982: smtp e-mail 协议

■ 1983: DNS

■ 1985: ftp

■ 1988: TCP 拥塞控制

David D. Clark (MIT)

■ 新的美国国家网:

Csnet, BITnet, NSFnet, Minitel

■ 主机数量为100,000

■ 2007: ~500 million hosts; IP电话,IP视频;

P2P: BitTorrent (文件共享) Skype (VoIP),

PPLive (视频); 更多应用:游戏,无线,移动

小结

- 名词解释:
 - 分组交换、网络协议、服务原语
- ■电路交换与分组交换
- C/S与P2P
- 服务与协议的关系
- 面向连接的服务与无连接服务
- 网络体系结构
- 标准化组织

三种交换的比较 由路交换 报文交换 分组交换 报文 连接建立 报文 数据传送 报文 连接释放 报文 B B B 报文 报文 分组 分组 分组 报文 比特流直达终点 数据传送 的特点 存储 存储 转发 转发 转发

分组交换的时延

1. 处理时延:

- 检测比特错或帧错
- 选择输出链路

3. 发送时延:

- R=链路带宽 (bps)
- L=分组长度 (bits)
- 发送时延 = L/R

2. 排队时延

- 在输出链路上等待发送
- 等待时间与路由器的拥 塞程度有关

4. 传播延迟:

- d = 物理链路长度
- s = 在介质中的传播速度 (~2x10⁸ m/sec)
- 传播延迟 = d/s

结点延迟

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- d_{proc} = 处理时延
 - 典型地为几ms 或更小
- d_{queue} = 排队时延
 - 与拥塞有关
- d_{trans} = 发送时延
 - = L/R, 对于低速链路尤为明显
- d_{prop} = 传播延迟
 - 为几ms或几百ms

问题

- 衡量网络性能的主要指标?
 - ■用户数、速率、时延、距离
- 影响通信距离及速率的主要因素?
- 传输技术、线路?
- 如何处理传输错误?

练习题

- 名词解释
 - 分组交换、网络协议、服务原语、分组延迟时间
- 选择题
 - 下列选项中,不属于网络体系结构中所描述的内容是

 - A) 网络的层次 B) 每一层使用的协议

 - C)协议的内部实现细节 D)每一层必须完成的功能
 - 制定台式机、笔记本和服务器等用户终端网络接口标准 的组织是

 - A) CCITT B) IETF C) IEEE D) ISO

- 填空题
 - 关于服务与协议的关系,服务是___ 接口。 遵守的一组规则。 议是

练习题

- 在如图所示的网络中,两条链路的带宽分别为2Mbps、1Mbps,传播延迟均为0.1s。假设主机A在t₀时刻给主机B发送1Mb的文件,之后发送另一个10Kb的文件。问下面两种情况下,B接收到两个文件的时刻(忽略处理延迟和协议开销,交换机缓冲区无穷大,链路无误码,1M=10⁶,1K=10³)
 - (1) 使用电路交换,电路建立延迟为300ms,忽略挂断延迟;
 - (2) 使用分组交换,分组大小为10Kb。
- 参考答案: (1) 1.51秒 (2) 1.215秒