University of Calgary

CPSC 457: Principles of Operating System, Winter 2018

Assignment 5

For Coskun Sahin, Dr.Pavol Federl

> By BenKun Chen 30005337

 $\underline{benkun.chen@ucalgary.ca}$

Tutorial Section: T02

Q1 – Written question (5 marks)

Execute sequence: P1(212KB), P2(417KB), P3(112KB), P4(426KB)

First-fit:

Free	P10	P1	Р3	Free	P11	Free	P12	Free	P13	P2	Free
100KB	30KB	212KB	112KB	176KB	30KB	200KB	30KB	300KB	30KB	417KB	183KB

After P1, P2 and P3 been executed, the process P4 can't be placed due to fragmentation.

Best-fit:

Free	P10	P2	Free	P11	Р3	Free	P12	P1	Free	P13	P4	Free
100KB	30KB	417KB	83KB	30KB	112KB	88KB	30KB	212KB	88KB	30KB	426KB	174KB

P1, P2, P3, P4 have been executed successfully.

Worst-fit:

Free	P10	P2	Free	P11	Free	P12	Free	P13	P1	Р3	Free
100KB	30KB	417KB	83KB	30KB	200KB	30KB	300KB	30KB	212KB	112KB	276KB

After P1, P2 and P3 been executed, the process P4 can't be placed due to fragmentation.

Next-fit:

Free	P10	P1	Free	P11	Free	P12	Free	P13	P2	Р3	Free
100KB	30KB	212KB	288KB	30KB	200KB	30KB	300KB	30KB	417KB	112KB	71KB

After P1, P2 and P3 been executed, the process P4 can't be placed due to fragmentation.

Q2 – Written question (5 marks)

Consider a system with 1KB (1024 bytes) page size. What are the page numbers and offsets for the following addresses?

Since page size = 1024 bytes = 2^{10} bytes. So that, offset = 10 bit

Address	Page number	Offset
2375	10b	0101000111b
19366	10010b	1110100110b
30000	11101b	0100110000b
256	0b	100000000ь
16385	10000Ь	000000001b

Q3 – Written question (5 marks)

Consider a system with a 32-bit logical address space and 4KB page size. The system supports up to 512MB of physical memory. How many entries are there in each of the following?

a) A conventional single-level page table.

Entries =
$$\frac{logical\ address\ space}{page\ size} = \frac{2^{32}}{2^2*2^{10}} = 1048576\ entries$$

b) An inverted page table.

Entries =
$$\frac{physical\ memory\ space}{page\ size}$$
 = $\frac{512MB}{4KB}$ = $\frac{2^9*2^{20}}{2^{12}}$ = 131072 entries

Q4 – Written question (5 marks)

Consider a system where a direct memory reference takes 200ns.

a) If we add a single-level page table stored in memory to this system, how much time would it take to locate and reference a page in memory?

Since we know the direct memory reference takes 200 ns, we can conclude that the memory access takes 200 ns. In this case, every instruction access requires at least 2 memory access, which are for page table lookup and fetching. So that, the time which takes to locate and reference a page in memory is 2 * 200ns = 400ns.

b) If we also add a TLB, and 75% of all page-table references are found in the TLB, what is the effective access time? Assume that searching TLB takes 10ns.

Since the equation to calculate effective memory-access time for TLB equals to (1-p)*(tlbs + 2*ma) + p*(tlbs + ma).So that, $effective \ access \ time = (1-p)*(tlbs + 2*ma) + p*(tlbs + ma)$ = (1-0.75)*(10ns + 2*200ns) + 0.75*(10ns + 200ns)= 260ns

Q5 – Written question (5 marks)

Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

Assume there are 3 frames in the physical memory and all frames are initially empty. Illustrate how pages are placed into the frames according to the LRU and the optimal replacement algorithms. How many page faults would occur for each algorithm?

LRU:

1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
1	1	1	4		4	5	5	5	1		1	7	7		2	2			2
	2	2	2		2	2	6	6	6		3	3	3		3	3			3
		3	3		1	1	1	2	2		2	2	6		6	1			6

15 page faults

Optimal replacement algorithm:

1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
1	1	1	1			1	1				3	3			3	3			6
	2	2	2			2	2				2	7			2	2			2
		3	4			5	6				6	6			6	1			1

11 page faults

Q6 - Programming question (20 marks)

Please see attached file "pagesim.cpp".

Q7 - Programming question (30 marks)

Please see attached file "impl.cpp".