Amendments to the Specification

Please replace paragraph [0091] with the following amended paragraph:

[0091] In comparative experiment G efforts were made to produce an EPDM polymer having a high VNB content applying a borate-activated catalyst. It was not possible to run such experiment under stable conditions without to much reactor fouling.

TABLE 2

Polymerisation conditions															
Ex.	C6 l/h	C2 NL/h	C3 g/h	ENB mmol/L C6	VNB mmol/L C6	MMAO-7 mmol/h	BHT mmol/h	BHEB mmol/h	CoCat t-BF20 mmol/b		Cat mmol/h	Temp ° C. feed	Temp ° C. 1st reactor	Temp ° C. 2nd reactor	Pro rate g/f
1	18	905	1058	18.9	9.4	10.4	5.2			2	0.057	-25	90		147
2	16.6	1119	1832	26.7	22.2	8.7	4.4			2	0.012	-24	91	89	171
3	17.3	1048	1511	5.1	50.8	11	5.5	_		2	0.046	-26	90		147
4	16.5	1001	2031	5.3	41.7	10.4	5.2			2	0.029	-25	89		146
5	14.5	992	3313	66.5	19.9	6.18	11			3	0.070	-47	93		193
6	17.3	1106	1596	27.6	18.6	4.3		4.1		2	0.051	-55	90	_	197
7	17.2	1138	1349	20.3	3.4	3.6		_		2	0.046	-55	94		176
8	18.1	1123 9	00 200	1123 19.3	2.9	18.3	4.8			1	0.546	-26	89		140
9	18.1	1125 8			3.8	7.87	4.0	. —	-	2	0.013	-25	89.7		150
10	15.2	566	1426	4.0	53.2	10.4	5.2	_		4	0.008	10	71		71
11	18.1	900	1124	21.1	7.8	5.2	2.6	_	_	4	0.028	-29	90		148
Compar- ative experi- ments	C6 i/h	C2 NL/h	C3 g/h	ENB mmol/L C6	VNB mmol/L C6	MMAO-7 mmol/h	BHT mmol/b	BHEB mmol/h	CoCat t-BF20 mmol/h	Cat	Cat mmol/h	Temp ° C. Feed	Temp ° C. 1st reactor	Temp ° C. 2nd reactor	Proc rate g/h
Α	18	897	1136	19.1	2.8	3.28	1.64		0.01	2	0.007	-25	91		147
В	18	844	1132	17.4	2.6	3.28	1.6		0.03	2	0.010	-24	89	81	147
С		1139 <u>83</u>	<u>6 836 j</u>	1139 19.2	3.8	3.94	1.87		0.02	1	0.008	-25	92		151
D	15.1	855	3180	24.2	8.1	_	_			V cat	0.008	-55	52	_	124
E	18.0	969	523	32.3		4.34	216		0.020	system*					
F	18.1	975	516	24.3	0.8		2.16		0.039	Cat A	0.026	-36	82		141
G			210	د.۳۵	V.6	1.93 Failed atten	0.97	_	0.02	Cat B	0.014	25	90		136

^{*}Vanadium based Ziegler Natta cat system consisted of 1.63 SEAC mmol/l C6, 0.055 mmol/lC6 VOCI3 and 0.22 mmol/lC6 DCPAE