

Computer Science & Software Engineering Fundamentals

Course Description;

This course provides the students with a broad and rudimentary foundation incomputer science, computer architecture and software engineering along with a survey of real-life repercussions of the concepts and common pitfalls in each category. The topics addressed in this course include: a historical review of the evolution of computer architecture, automata, data representations in binary and hexadecimal systems, basic hardware components and interfaces, operating systems, and basic concepts regarding software development lifecycle.

Course Objectives:

By the end of this course, the students should be able to:

- Demonstrate a clear understanding of the basic concepts of Computer Science: Computer architecture, OS, Data representation, etc.
- Clearly describe Software Development Lifecycle (SDLC), processes and culture

Prerequisites;

None

Course Duration;

9 hours

Preferred Days;

Tuesday

Required Materials;

A carefully selected set of reading materials and online resources, provided at the end of each class

Training Topics;

Session #	Topic
1	Introduction
2	Computer Architecture

3	Software Engineering
---	----------------------

Number of Homework, Quizzes and Exams;

Assignment	Occurrences		
Homework	2		
Quiz	3		

Session	Duration	Topics	Session Learning	Materials	Practical Work/Examples	Homework/est.
#			Objective			time
	3 hours	 History Review Number Representations Binary, Hex, Float, Two's Complement, Glitches, and pitfalls Turing Machine, Von NeumannArchitecture 	Participants will be able to perform arithmetic operations and conversions involving binary, octal and hexadecimal systems.	Slides	 Exhibition of physical hardware components Factorial calculation problem with 32-bit and 64bit signed integers and debugging. 	 Reading and research (120 mins) Homework assignment 1. (180 mins, 25%)
		 Hardware Components, Chipset,RAM, I/O Processors, CPU, GPU, Bus, Control unit, ALU, Registers 	•Participants will be able to explain the risks involving floating point and integer calculations and reproduce scenarios in which buggy phenomena can be observed.			
			•Participants will be able to identify hardware components, explain the purpose and the units of measurement for each and how each contributes to the overall performance of a computer system.			

		•Cycles, Fetch-Decode-Execute	•Participants will be able to	Slides	Architecture	•Reading and
2	3 hours		describe the inner workings		Implementation.	research (120
		Process, Virtual Memory,	of running processes.			mins)
		Paging,Threads			•Tracing all the inner	
			•Participants will be able to		workings necessary for	•Homework
		●Compilation vs.	explain fundamentals of		accomplishing the task of	assignment 2.
		Interpretation,	hardware components,		opening a web page.	(180 mins,
		(dis)assembly	firmware, and drivers.			25%)
						0 1 4 4 507
		•Firmware, BIOS, UEFI, MBR,	●Participants will be able to			•Quiz1 15%
		BootSequence	identify and describe			
			fundamentals and common			
		 Network, Protocols, Layers, 	practices for organizing			
		DNS	communications between			
			hardware components and			
			between computer systems			
			over networks, various			
			protocols, and security.			
			Participants will be able to			
			construct the model for a			
			rudimentary CPU along			
			with its registers,			
			architecture and instruction			
			set.			

		•Introduction	•Participants will be able to	∙Slides	Group activity for	•Reading and
3	3 hours		demonstrate an		specifying requirements	research (120
		Software Development	understanding of the main	∙Bennatan, E. M.	of a project.	mins)
		Lifecycle	concepts of SDLC and	(2000). On time within		
		relevant terminology along	budget: Software	●Group activity about	•Quiz2 15%	
	•SDLC Models: Agile, vvateriali	•SDLC Models: Agile Waterfall	with Waterfall and Scrum	project management	resource management for	
		workflow models and their	practices and	agile workflows.	•Quiz3 15%	
	●Methods, Layers, Tools	phases.	techniques. New York:			
		•Methods, Layers, 100is		Wiley.		
	●Demonstration and	•Participants will be able to				
		identify and compose basic				
		Implications	SLDC related artifacts; use			
			cases, requirements, etc.			