SCRIPT ALUR

1. Introduction to ROS

Alur Pengerjaan:

- 1. Pahami konsep dasar ROS dari video atau dokumentasi.
- 2. Identifikasi keunggulan ROS untuk pengembangan robotika.
- 3. Catat poin-poin utama seperti struktur file sistem, modularitas, dan komunitas ROS.

Perintal ROS:

- 1. Membuat Paket ROS
 - catkin_create_pkg package_name [dependency1] [dependency2]
 - Contoh: catkin_create_pkg mastering_ros_demo_pkg roscpp std_msgs actionlib actionlib_msgs
- 2. Membangun Workspace
 - catkin_make
 - Perintah ini digunakan untuk membangun paket-paket dalam workspace catkin.
- 3. Menjalankan ROS Master
 - roscore
 - Perintah ini memulai ROS master, yang diperlukan untuk menjalankan node ROS.
- 4. Mendaftar Topik Aktif
 - rostopic list
 - Perintah ini mencantumkan semua topik aktif dalam sistem ROS.
- 5. Menerbitkan ke Topik
 - rostopic pub /topic_name message_type args
 - Contoh: rostopic pub /numbers std_msgs/Int32 10
- 6. Menyubscribe ke Topik
 - rostopic echo /topic_name
 - Perintah ini menampilkan pesan yang diterbitkan ke topik yang ditentukan.
- 7. Memeriksa Pesan
 - rosmsg show message_type
 - Contoh: rosmsg show std_msgs/Int32
- 8. Bekerja dengan Layanan
 - Memanggil Layanan: rosservice call /service name args
 - Mendaftar Layanan: rosservice list
 - Mendapatkan Info Layanan: rosservice info /service_name
- 9. Menggunakan Parameter Server
 - Mengatur Parameter: rosparam set parameter_name value
 - Mendapatkan Parameter: rosparam get parameter_name
 - Mendaftar Parameter: rosparam list

2. Getting Started with ROS

Alur Pengerjaan:

1. Jalankan ROS Core:

```
roscore # Menyalakan layanan inti ROS.
```

2. Clone Repositori:

```
git clone https://github.com/PacktPublishing/Mastering-ROS-for-
Robotics-Programming-Third-edition
```

3. Masuk Direktori dan Build:

```
cd Chapter2 # Masuk ke folder.
catkin make # Membangun file yang ada.
```

4. Jalankan Publisher:

```
rosrun <nama folder> <nama file> # Menjalankan file Publisher.
```

5. **Jalankan Subscriber:** Buka terminal lain:

```
rosrun <nama_folder> <nama_file_subscriber> # Menjalankan file
Subscriber.
```

6. Verifikasi apakah Publisher dan Subscriber berjalan dengan baik.

3. 3D Modeling with ROS

Alur Pengerjaan:

1. Build File:

```
cd Chapter3 # Masuk ke folder.
catkin make # Membangun file seperti langkah sebelumnya.
```

2. Jalankan File Launch untuk RViz:

```
roslaunch <nama folder> <nama file.launch> # Meluncurkan file RViz.
```

3. Buka Window RViz:

- o Gunakan RViz untuk memodifikasi model robot.
- o Uji model dengan menjalankan file lainnya jika diperlukan.

4. Simulation Robot with ROS and Gazebo

Alur Pengerjaan:

1. Masuk Direktori dan Build:

```
cd Chapter4 # Masuk ke folder.
catkin make # Bangun file di direktori Chapter4.
```

2. Jalankan File Gazebo:

```
roslaunch <nama_folder> <nama_file.launch> # Meluncurkan simulasi
Gazebo.
```

3. Verifikasi Simulasi:

- Pastikan Gazebo terbuka.
- o Jalankan skenario simulasi sesuai kebutuhan.

5. Simulating Robots Using ROS, CoppeliaSim, and Webots

Alur Pengerjaan:

1. Ekstrak File CoppeliaSim:

```
tar vxf CoppeliaSim Edu V4 8 0 rev0 Ubuntu20 04.tar
```

2. Setel Variabel Lingkungan:

```
echo "export COPPELIASIM_ROOT=$HOME/Downloads/CoppeliaSim" >> ~/.bashrc
source ~/.bashrc
```

3. Install Dependensi:

```
sudo apt-get update
sudo apt-get install liblua5.3-dev qt5-qmake qtbase5-dev
```

4. Jalankan ROS Core:

```
roscore # Jalankan ROS Core.
```

5. Jalankan CoppeliaSim:

```
cd $COPPELIASIM ROOT
```

./coppeliaSim.sh

6. Verifikasi Integrasi ROS:

```
rosnode list # Pastikan sim_ros_interface terlihat.
```

7. Buka File Simulasi:

o Pilih "Open Scene" pada menu dan jalankan file simulasi yang diinginkan.