§4. Геометрический и механический смысл дифференциала

1°. Пусть функция y = f(x) имеет конечную производную $y'(x_0)$, а точка $M_1(x_0 + \Delta x, f(x_0 + \Delta x))$ принадлежит её графику Γ (рис. 4.1). В точке $M_0(x_0, y_0)$, $y_0 = f(x_0)$, проведём к Γ касательную T, $B(x_B, y_B)$ — точка пересечения прямых $L: x = x_0 + \Delta x$ и T. Подставим координаты $x_B = x_0 + \Delta x$ и y_B точки B в уравнение касательной (2.2),

и y_B точки B в уравнение касательнои (2. в силу (3.3) получим:

$$y_B - y_0 = y'(x_0)\Delta x$$
 или $y_B - y_0 = df(x_0)$.

На рис. 4.1 длина отрезка AM_1 есть приращение функции $\Delta y = f(x_0 + \Delta x) - f(x_0)$, а длина отрезка AB — дифференциал dy данной функции в точке $x = x_0$. Замена Δy на dy приводит к замене части графика функции (рис. 4.1, дуга $M_0M_1 \subset \Gamma$) на отрезок касательной, т.е. на отрезок прямой (рис. 4.1, отрезок $M_0B \subset T$).

Рис. 4.1. К геометрической интерпретации понятия

Дифференциал функции y=f(x) в точке x_0 геометрически трактуется как приращение y_B-y_0 ординаты касательной T к графику этой функции, проведённой в точке $M_0(x_0,y_0)$, при перемещении из точки M_0 в точку B или при изменении аргумента x от x_0 до $x_0+\Delta x$.

2°. Пусть s = s(t) — путь, пройденный материальный точкой за время t при движении по прямой, тогда $s(t_0 + \Delta t) - s(t_0) = \Delta s$ — путь, пройденный материальный точкой за время Δt . По формуле (3.2) имеем $ds = \dot{s}(t_0) \Delta t$.

Дифференциал функции s=s(t) механически можно трактовать как путь, который прошла бы материальная точка за время Δt , если бы она двигалась всё это время с постоянной скоростью $v=\dot{s}(t_0)$. При замене приращения этой функции Δs дифференциалом ds реальное движение за время Δt заменяется равномерным со скоростью $\dot{s}(t_0)$.

Так, при свободном падении материальной точки $s(t) = gt^2/2$ (g-y ускорение земного тяготения). За промежуток времени Δt она пройдёт путь $\Delta s = g(t+\Delta t)^2/2 - gt^2/2 = gt\Delta t + g(\Delta t)^2/2$, при этом $ds = gt\Delta t$. Замена Δs на ds означает замену реального движения равномерным со скоростью v=gt.