Χ

harshaldharpure9922@gmail.com v

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Introduction to Large Language Models (LLMs) (course)

Click to register for Certification exam

(https://examform.nptel.a

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online course work?

Week 1 ()

()

Week 2 ()

Week 3 ()

Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2025-02-19, 23:59 IST.

Assignment submitted on 2025-02-10, 22:41 IST

	,	
1)	What is the main drawback of representing words as one-hot vectors?	

- They cannot capture semantic similarity between words.
- They are computationally inefficient.
- They cannot incorporate word order effectively.
- They are not robust to unseen words.

Yes, the answer is correct.

Score: 1

Accepted Answers:

They cannot capture semantic similarity between words.

2) What is the key concept underlying Word2Vec?

1 point

1 point

- Ontological semantics
- Decompositional semantics
- Distributional semantics
- Morphological analysis

Yes, the answer is correct.

Week 4 ()

- Lec 07 : Word Representation : Word2Vec & fastText (unit? unit=36&lesson =37)
- Lec 08 : WordRepresentation: GloVe (unit?unit=36&lesson=38)
- Lec 09:
 Tokenization
 Strategies
 (unit?
 unit=36&lesson
 =39)
- Lecture Material (unit? unit=36&lesson =40)
- Feedback Form (unit? unit=36&lesson =41)
- Quiz: Week 4 : Assignment 4 (assessment? name=42)

Week 5 ()

Week 6 ()

Week 7 ()

Week 8 ()

Week 9 ()

Week 10 ()

Week 11 ()

Week 12 ()

Score: 1

Accepted Answers:

Distributional semantics

3) Why is sub-sampling frequent words beneficial in Word2Vec?

1 point

- It increases the computational cost.
- It helps reduce the noise from high-frequency words.
- It helps eliminate redundancy.
- It prevents the model from learning embeddings for common words.

Yes, the answer is correct.

Score: 1

Accepted Answers:

It helps reduce the noise from high-frequency words.

4) Which word relations cannot be captured by word2vec?

1 point

- Polysemy
- Antonymy
- Analogy
- All of the these

Partially Correct.

Score: 0.5

Accepted Answers:

Polysemy

Antonymy

For Question 5 to 6, Consider the following word-word matrix:

		W ₆	W ₇	W ₈	W ₉	W ₁₀	W ₁₁	W ₁₂
١	W ₁	1	5	3	0	1	5	7
١	W ₂	4	2	4	1	6	2	0
,	W ₃	2	1	9	2	5	1	5
١	W ₄	5	0	7	4	2	0	4
١	W ₅	3	5	1	0	1	2	1

5) Compute the cosine similarity between w₂ and w₅.

1 point

- 0.516
- 0.881
- 0.705
- 0.641

Yes, the answer is correct.

Year 2025 Solutions ()

	Score: 1			
	Accepted Answers:			
	0.641			
	6) Which word is most similar to w ₁ based on cosine similarity?	4 points		
	\bigcirc w ₂			
	\bigcirc w ₃			
	\bigcirc w ₄			
	\bigcirc w ₅			
	Yes, the answer is correct. Score: 4			
	Accepted Answers:			
	W_5			
	7) What is the difference between CBOW and Skip-Gram in Word2Vec?	1 point		
CBOW predicts the context word given the target word, while Skip-Gram predicts word given the context words.				
	CBOW predicts the target word given the context words, while Skip-Gram predicts the context words given the target word.	ie		
	CBOW is used for generating word vectors, while Skip-Gram is not.			
	Skip-Gram uses a thesaurus, while CBOW does not.			
	Yes, the answer is correct. Score: 1			
		ntext		