Introduction to Quiver Representation Theory

Qi WANG

Yau Mathematical Sciences Center Tsinghua University

@Xingjiang University, October 27, 2023.

Outline

Introduction

Bound quiver algebras

Auslander-Reiten theory

Application

References

Introduction

•000000

Algebra

A finite-dimensional algebra $\Lambda = (V, \mathbb{k}, +, \cdot, \times)$:

• $(V, \mathbb{k}, +, \cdot)$ is a vector space over \mathbb{k} with $\dim_{\mathbb{k}} V < \infty$.

Example (e.g., $\Bbbk = \mathbb{C}$)

Algebra

A finite-dimensional algebra $\Lambda = (V, \mathbb{k}, +, \cdot, \times)$:

- $(V, \mathbb{k}, +, \cdot)$ is a vector space over \mathbb{k} with $\dim_{\mathbb{k}} V < \infty$.
- \times is a multiplication on V (compatible with + and \cdot) such that $a \times (b \times c) = (a \times b) \times c$, for $a, b, c \in V$.

Example (e.g., $\mathbb{k} = \mathbb{C}$)

•000000

Algebra

A finite-dimensional algebra $\Lambda = (V, \mathbb{k}, +, \cdot, \times)$:

- $(V, \mathbb{k}, +, \cdot)$ is a vector space over \mathbb{k} with $\dim_{\mathbb{k}} V < \infty$.
- \times is a multiplication on V (compatible with + and \cdot) such that $a \times (b \times c) = (a \times b) \times c$, for $a, b, c \in V$.

Example (e.g., $\mathbb{k} = \mathbb{C}$)

- (1) $\mathbb{C}[x]/(x^n) = \text{span}\{1, x, x^2, \dots, x^{n-1}\}\$ is an algebra.
- (2) $T_3 = \left\{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & 2n \end{bmatrix} \mid a_{ij} \in \mathbb{C} \right\}$ is an algebra.

Representation of algebras

A representation: Λ act on a vector space M

$$M \star \Lambda \longrightarrow M$$

such that $(1, \lambda \in \Lambda, m, n \in M, x \in \mathbb{C})$

- $m \star 1 = m$.
- $(mx) \star \lambda = m \star (x\lambda) = (m \star \lambda)x$.
- $m \star (\lambda_1 \times \lambda_2) = (m \star \lambda_1) \star \lambda_2$.
- $(m+n) \star \lambda = m \star \lambda + n \star \lambda$.
- $m \star (\lambda_1 + \lambda_2) = m \star \lambda_1 + m \star \lambda_2$.

*A representation of Λ is also called a (right) Λ -module.

0000000

Quiver

Vertex, Arrow, Path, Cycle, Loop.

$$\bullet \circ \Longrightarrow \circ , \circ \Longrightarrow \circ , \bigcirc \circ \Longrightarrow \circ , \cdots$$

$$\bullet \quad \bigcirc \circ \Longrightarrow \circ \bigcirc , \circ \longrightarrow \circ \longrightarrow \circ , \circ \longrightarrow \circ$$

Representation of quivers

e.g., $\circ \longrightarrow \circ \longrightarrow \circ$. A representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$

Representation of quivers

e.g., $\circ \longrightarrow \circ \longrightarrow \circ$. A representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$

Some representations:

Introduction

$$\mathbb{C} \xrightarrow{0} 0 \xrightarrow{0} 0 \qquad \mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{0} 0$$

$$0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0 \qquad 0 \xrightarrow{0} \mathbb{C} \xrightarrow{1} \mathbb{C}$$

$$0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{C} \qquad \mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{1} \mathbb{C}$$

Representation of quivers

e.g., $\circ \longrightarrow \circ \longrightarrow \circ$. A representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$

Some representations with (some) morphisms:

0000000

e.g., $\circ \longrightarrow \circ \longrightarrow \circ$. A quiver representation:

$$V_1 \stackrel{f}{\longrightarrow} V_2 \stackrel{g}{\longrightarrow} V_3$$
.

Algebraic viewpoint:

Geometric viewpoint:

0000000

e.g., $\circ \longrightarrow \circ \longrightarrow \circ$. A quiver representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$
.

 Algebraic viewpoint: to find all building blocks for quiver rep's.

Geometric viewpoint:

0000000

e.g., $\circ \longrightarrow \circ \longrightarrow \circ$. A quiver representation:

$$V_1 \stackrel{f}{\longrightarrow} V_2 \stackrel{g}{\longrightarrow} V_3$$
.

 Algebraic viewpoint: to find all building blocks for quiver rep's.
 e.g., the above example has 6 building blocks:

$$\mathbb{C} \xrightarrow{0} 0 \xrightarrow{0} 0 \qquad \mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{0} 0$$

$$0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0 \qquad 0 \xrightarrow{0} \mathbb{C} \xrightarrow{1} \mathbb{C}$$

$$0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{C} \qquad \mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{1} \mathbb{C}$$

Geometric viewpoint:

0000000

e.g., $\circ \longrightarrow \circ \longrightarrow \circ$. A quiver representation:

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$
.

 Algebraic viewpoint: to find all building blocks for quiver rep's.
 e.g., the above example has 6 building blocks:

$$\mathbb{C} \xrightarrow{0} 0 \xrightarrow{0} 0 \qquad \mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{0} 0$$

$$0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0 \qquad 0 \xrightarrow{0} \mathbb{C} \xrightarrow{1} \mathbb{C}$$

$$0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{C} \qquad \mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{1} \mathbb{C}$$

• Geometric viewpoint: to fix all vector spaces V_i and change matrices f, g. This gives an affine module variety.

000000

Classify all indecomposable rep's of a given quiver Q and all morphisms between them, up to isomorphism.

Auslander-Reiten theory

Goal of Algebraic Representation Theory

Classify all indecomposable rep's of a given quiver Q and all morphisms between them, up to isomorphism.

e.g.,
$$\circ \longrightarrow \circ \longrightarrow \circ$$
 is done!

$$\mathbb{C}^{2} \xrightarrow{(1,1)} \mathbb{C} \xrightarrow{1} \mathbb{C} \simeq \mathbb{C} \xrightarrow{0} 0 \xrightarrow{0} 0$$

$$\mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{1} \mathbb{C}$$

Bound quiver algebras

Auslander-Reiten theory

e.g.,

$$\mathcal{T}_3 = \left\{ egin{bmatrix} a_{11} & a_{12} & a_{13} \ 0 & a_{22} & a_{23} \ 0 & 0 & a_{33} \end{bmatrix} \mid a_{ij} \in \mathbb{C}
ight\}$$

Auslander-Reiten theory

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

e.g.,

Auslander-Reiten theory

We have $T_3 \simeq \mathbb{C}Q$ with $Q: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$.

Bound quiver algebras

Any algebra Λ over \mathbb{k} (e.g., $\mathbb{k} = \mathbb{C}$) is isomorphic to a **bound** quiver algebra $\mathbb{k}Q/I$. Here,

$$I = \operatorname{span}\{\sum \lambda_i \omega_i, \cdots\},\$$

 $\lambda_i \in \mathbb{R}$ and ω_i is a path but not an arrow.

e.g.,
$$\alpha \bigcirc \circ \stackrel{\mu}{\rightleftharpoons} \circ \bigcirc \beta$$

• paths: $(\alpha\mu\beta\nu)^m$, $(\mu\nu)^n\alpha^k$, $(\alpha\mu\nu)^k(\mu\beta\nu)^m$, ...

Research Area I

Algebras with nice Q in $\mathbb{k}Q/I$.

- (1) local algebras, two-point algebras
- (2) simply connected algebras
- (3) Nakayama algebras, preprojective algebras
- (4) special biserial algebras, string algebras, gentle algebras

Algebras with nice I in $\mathbb{k}Q/I$.

- (1) monomial algebras
- (2) incidence algebras
- (3) quadratic algebras

Representation type of algebras

Theorem (Drozd 1977)

The representation type of any algebra (over k) is exactly one of rep-finite, tame and wild.

Theorem (Drozd 1977)

The representation type of any algebra (over \mathbb{k}) is exactly one of rep-finite, tame and wild.

An algebra A is said to be

- rep-finite if the number of indecomposable rep's is finite.
- tame if it is not rep-finite, but all indecomposable rep's can be organized in a one-parameter family in each dimension.

Otherwise. A is called wild.

Example: a tame algebra

e.g., $\circ \Longrightarrow \circ$ is tame. Indecomposable rep's:

dimension 2:
$$\mathbb{C} \xrightarrow{1 \atop 0} \mathbb{C}$$
 $\mathbb{C} \xrightarrow{1 \atop \lambda} \mathbb{C}$
dimension 3: $\mathbb{C}^2 \xrightarrow{(1,0)} \mathbb{C}$ $\mathbb{C} \xrightarrow{(1,0)^t} \mathbb{C}^2$
dimension 4: $\mathbb{C}^2 \xrightarrow{I_2} \mathbb{C}^2$ $\mathbb{C}^2 \xrightarrow{I_2} \mathbb{C}^2$

$$\vdots$$

$$\mathbb{C}^{n+1} \xrightarrow{[I_n,O]} \mathbb{C}^n \xrightarrow{I_n} \mathbb{C}^n$$

$$\mathbb{C}^n \xrightarrow{I_n} \mathbb{C}^n$$

Example: a wild algebra

e.g., o o . Indecomposable rep's:

dimension 3:
$$\mathbb{C}^2 \xrightarrow{a \in \mathbb{C}} \mathbb{C} \quad a = (x, y)$$

Impossible! to give a complete classification of indecomposable rep's for a wild algebra.

Classify representation type of algebras. For example,

- (1) local algebras, e.g., [Heller-Reiner, 1961], [Drozd, 1972], [Ringel, 1975].
- (2) two-point algebras, e.g., [Bongartz-Gabriel, 1981], [Han, 2002].
- (3) symmetric algebras, e.g., [Bocian-Skowronski, 2005].
- (4) Hecke algebras, e.g., [Ariki, 2000], [Ariki-Mathas, 2002].
- (5) *q*-Schur algebras, e.g., [Erdmann, 1993], [Erdmann-Nakano, 2001].
- (6) block algebras of category \mathcal{O} ; [Futorny-Nakano-Pollack, 1999].

Gabriel's Theorem

Theorem (Gabriel, 1972)

Let $\Lambda = \mathbb{k}Q$. Then, Λ is rep-finite if and only if the underlying graph of Q is one of Dynkin graphs.

- E₆:

e.g., set $\Lambda_n = \mathbb{k}Q/I_n$ with

$$Q: \circ \stackrel{\alpha}{\longrightarrow} \circ \bigcirc \beta \text{ and } I_n = \operatorname{span}\{\beta^n, \alpha\beta^2\}, \ n \geqslant 2.$$

Auslander-Reiten theory

The representation type of Λ_n is

- rep-finite if $n \leq 5$:
- tame if n = 6:
- wild if $n \ge 7$.

Auslander-Reiten Theory

Auslander-Reiten theory

•000000

000000

e.g., $1 \longrightarrow 2 \longrightarrow 3$. We denote

$$\mathbb{C} \xrightarrow{0} 0 \xrightarrow{0} 0 \Longrightarrow 1$$

$$0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0 \Longrightarrow 2$$

$$0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{C} \longrightarrow 3$$

$$\mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{0} 0 \Longrightarrow \frac{1}{2}$$

$$0 \stackrel{0}{\longrightarrow} \mathbb{C} \stackrel{1}{\longrightarrow} \mathbb{C} \stackrel{\dots}{\longrightarrow} \frac{2}{3}$$

$$\mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{1} \mathbb{C} \Longrightarrow \frac{1}{2}$$

e.g., $1 \longrightarrow 2 \longrightarrow 3$. We denote

$$\mathbb{C} \xrightarrow{0} 0 \xrightarrow{0} 0 \Longrightarrow 1$$

$$0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0 \Longrightarrow 2$$

$$0 \xrightarrow{0} 0 \xrightarrow{0} \mathbb{C} :::::> 3$$

$$\mathbb{C} \xrightarrow{1} \mathbb{C} \xrightarrow{0} 0 \Longrightarrow \frac{1}{2}$$

$$\begin{array}{c|c}
0 & \longrightarrow \mathbb{C} & \longrightarrow \mathbb{C} & \longrightarrow \\
\downarrow 0 & \downarrow 1 & \downarrow 1
\end{array}$$

$$Q: 2 \longrightarrow 3 \longrightarrow 2$$

Auslander-Reiten theory 000●000

$$Q: 2 \longrightarrow 4$$

• Projective representation $P_i := e_i \Lambda$. e.g.,

$$P_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 $P_2 = 2$ $P_3 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $P_4 = 4$

• Projective representation $P_i := e_i \Lambda$. e.g.,

$$P_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 $P_2 = 2$ $P_3 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $P_4 = 4$

• Injective representation $I_i := \Lambda e_i$. e.g.,

$$I_1 = 1$$
 $I_2 = \frac{1}{3}$ $I_3 = \frac{1}{3}$ $P_4 = \frac{1}{3}$

Auslander-Reiten theory

• Projective representation $P_i := e_i \Lambda$. e.g.,

$$P_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 $P_2 = 2$ $P_3 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $P_4 = 4$

• Injective representation $I_i := \Lambda e_i$. e.g.,

$$I_1 = 1$$
 $I_2 = \frac{1}{3}$ $I_3 = \frac{1}{3}$ $P_4 = \frac{1}{3}$

Set $\nu(P_i) = I_i$. (This is called Nakayama functor.)

Auslander-Reiten Translation

0000000

Auslander-Reiten theory

Let M be a representation of Λ . Take a minimal projective presentation

$$P'' \longrightarrow P' \longrightarrow M \longrightarrow 0$$
,

the Auslander-Reiten translation τM is defined by

$$0 \longrightarrow \tau M \longrightarrow \nu(P'') \longrightarrow \nu(P').$$

e.g.,
$$\tau(\frac{3}{2}) = 4$$
.

The Auslander-Reiten quiver of an algebra Λ is defined by

e.g., the AR-quiver of $\Bbbk (\ 1 {\:\longrightarrow\:} 2 {\:\longrightarrow\:} 3 \)$ is

Research Area III

Find the shape of AR-quivers.

(1) If $\Lambda = \mathbb{k}Q$, the shape is

(2) If Λ is a tubular algebra, the shape is

Application in Quantum Groups

Cyclotomic quiver Hecke algebras

Auslander-Reiten theory

The cyclotomic quiver Hecke algebra $R^{\Lambda}(\beta)$ is defined over some Lie theoretic data (A, P, Π, P^+, Q^+) .

The cyclotomic quiver Hecke algebra $R^{\Lambda}(\beta)$ is defined over some Lie theoretic data (A, P, Π, P^+, Q^+) . In general,

$$\Lambda = a_0 \Lambda_0 + a_1 \Lambda_1 + \cdots + a_\ell \Lambda_\ell \in P^+, \ a_i \in \mathbb{Z}_{\geq 0}.$$

$$\beta = b_0 \alpha_0 + b_1 \alpha_1 + \dots + b_\ell \alpha_\ell \in Q^+, \ b_i \in \mathbb{Z}_{\geq 0}.$$

Cyclotomic quiver Hecke algebras

The cyclotomic quiver Hecke algebra $R^{\Lambda}(\beta)$ is defined over some Lie theoretic data (A, P, Π, P^+, Q^+) . In general,

$$\Lambda = a_0 \Lambda_0 + a_1 \Lambda_1 + \dots + a_\ell \Lambda_\ell \in P^+, \ a_i \in \mathbb{Z}_{\geq 0}.$$

$$\beta = b_0 \alpha_0 + b_1 \alpha_1 + \dots + b_\ell \alpha_\ell \in Q^+, \ b_i \in \mathbb{Z}_{\geq 0}.$$

The representation-type problem on $R^{\Lambda}(\beta)$ could be reduced to

$$\Lambda - \beta \in \{\mu - m\delta \mid \mu \in \max^+(\Lambda), m \in \mathbb{Z}_{\geq 0}\},$$

where $\delta = \alpha_0 + \alpha_1 + \ldots + \alpha_\ell$.

We know the representation type of $R^{\Lambda}(\beta)$ in the following cases.

- $R^{\Lambda_0}(\beta)$ in type $A_{2\ell}^{(2)}$, see [Ariki-Park, 2014].
- $R^{\Lambda_0}(\beta)$ in type $A_{\ell}^{(1)}$, see [Ariki-lijima-Park, 2015].
- $R^{\Lambda_0}(\beta)$ in type $C_\ell^{(1)}$, see [Ariki-Park, 2015].
- $R^{\Lambda_0}(\beta)$ in type $D_{\ell+1}^{(2)}$, see [Ariki-Park, 2016].
- $R^{\Lambda_0 + \Lambda_s}(\beta)$ in type $A_{\ell}^{(1)}$, see [Ariki, 2017].

We know the representation type of $R^{\Lambda}(\beta)$ in the following cases.

- $R^{\Lambda_0}(\beta)$ in type $A_{2\ell}^{(2)}$, see [Ariki-Park, 2014].
- $R^{\Lambda_0}(\beta)$ in type $A_{\ell}^{(1)}$, see [Ariki-lijima-Park, 2015].
- $R^{\Lambda_0}(\beta)$ in type $C_{\ell}^{(1)}$, see [Ariki-Park, 2015].
- $R^{\Lambda_0}(\beta)$ in type $D_{\ell+1}^{(2)}$, see [Ariki-Park, 2016].
- $R^{\Lambda_0 + \Lambda_s}(\beta)$ in type $A_\ell^{(1)}$, see [Ariki, 2017].

In the following, we shall explain the representation type of $R^{\Lambda}(\beta)$ in type $A_{\ell}^{(1)}$, for $\Lambda = a_{i_1} \Lambda_{i_1} + a_{i_2} \Lambda_{i_3} + \cdots + a_{i_n} \Lambda_{i_n} \in P^+$.

 $max^+(\Lambda)$

Theorem (Kim-Oh-Oh 2020)

There is a bijection $\phi_{\Lambda} : \max^+(\Lambda) \to P_{cl,k}^+(\Lambda)$.

Set
$$\Lambda=a_{i_1}\Lambda_{i_1}+a_{i_2}\Lambda_{i_2}+\cdots+a_{i_n}\Lambda_{i_n}\in P^+$$
. We define
$$\operatorname{le}(\Lambda)=\sum a_{i_j}\quad\text{and}\quad\operatorname{ev}(\Lambda)=i_1+i_2+\cdots+i_n.$$

$max^+(\Lambda)$

Theorem (Kim-Oh-Oh 2020)

There is a bijection $\phi_{\Lambda} : \max^+(\Lambda) \to P_{cl}^+(\Lambda)$.

Set
$$\Lambda = a_{i_1}\Lambda_{i_1} + a_{i_2}\Lambda_{i_2} + \cdots + a_{i_n}\Lambda_{i_n} \in P^+$$
. We define

$$le(\Lambda) = \sum a_{i_j}$$
 and $ev(\Lambda) = i_1 + i_2 + \cdots + i_n$.

Suppose $le(\Lambda) = k$. Then,

$$P^+_{\mathit{cl},k}(\Lambda) = \left\{ \Lambda' \in P^+ \mid \mathsf{le}(\Lambda) = \mathsf{le}(\Lambda'), \mathsf{ev}(\Lambda) \equiv_{\ell+1} \mathsf{ev}(\Lambda') \; \right\}.$$

$\max^+(\Lambda)$

Theorem (Kim-Oh-Oh 2020)

There is a bijection $\phi_{\Lambda} : \max^+(\Lambda) \to P_{cl,k}^+(\Lambda)$.

Set
$$\Lambda=a_{i_1}\Lambda_{i_1}+a_{i_2}\Lambda_{i_2}+\cdots+a_{i_n}\Lambda_{i_n}\in P^+$$
. We define
$$\mathsf{le}(\Lambda)=\sum a_{i_j}\quad\mathsf{and}\quad \mathsf{ev}(\Lambda)=i_1+i_2+\cdots+i_n.$$

Suppose $le(\Lambda) = k$. Then,

$$P^+_{\mathit{cl},k}(\Lambda) = \left\{ \Lambda' \in P^+ \mid \mathsf{le}(\Lambda) = \mathsf{le}(\Lambda'), \mathsf{ev}(\Lambda) \equiv_{\ell+1} \mathsf{ev}(\Lambda') \; \right\}.$$

e.g., $P_{c/3}^+(\Lambda_0 + \Lambda_3 + \Lambda_6)$ with $\ell = 6$ consists of $\Lambda_0 + \Lambda_3 + \Lambda_6$, $\Lambda_1 + \Lambda_2 + \Lambda_6$, $\Lambda_1 + \Lambda_3 + \Lambda_5$, $\Lambda_0 + \Lambda_4 + \Lambda_5$, $\Lambda_2 + \Lambda_3 + \Lambda_4$, $2\Lambda_0 + \Lambda_2$, $\Lambda_4 + 2\Lambda_6$, $2\Lambda_5 + \Lambda_6$, $\Lambda_0 + 2\Lambda_1$, $2\Lambda_2 + \Lambda_5$, $\Lambda_1 + 2\Lambda_4$, $2\Lambda_0 + \Lambda_2$, $3\Lambda_3$.

A finite connected graph

We define

$$\Delta_{i,j} = \left\{ \begin{array}{ll} (0^i, 1^{j-i+1}, 0^{\ell-j}) & \text{if } i \leq j, \\ (1^{j+1}, 0^{i-j-1}, 1^{\ell-i+1}) & \text{if } i > j. \end{array} \right.$$

e.g.,

A finite quiver

Auslander-Reiten theory

e.g., $\vec{C}(\Lambda_0 + \Lambda_3 + \Lambda_6)$ with $\ell = 6$ is displayed as

A finite quiver

e.g., $\vec{C}(\Lambda_0 + \Lambda_3 + \Lambda_6)$ with $\ell = 6$ is displayed as

Advantage:

rep-infinite

→ rep-infinite

wild ≽ wild

References

- [1] R. Schiffler, Quiver Representations, CMS Books in Mathematics, Springer International Publishing, 2014.
- [2] P. Etinghof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and E. Yudovina, Introduction to Representation Theory, volume 59 of Student Mathematical Library. AMS, 2011.
- [3] I. Assem. D. Simson and A. Skowroński. Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, vol. 65. Cambridge University Press, 2006.

Any questions?

Algebra and its representation
Quiver and its representation
Bound quiver algebra
Representation type of algebra
Gabriel's Theorem
Projective and injective representations
Auslander-Reiten quiver

Thank you for listening!