PSNID (overview & tutorial)

Chris D'Andrea
University of Pennsylvania
16 November 2016

- Initially developed as spectroscopic targeting algorithm
- Updated to analyze photometric SNIa samples

Important to remember this point!

NOT designed for optimal SN classification across all subtypes

References: Sako 2011; Sako 2014

Computes (over a grid of redshift, color, Ic shape):

- Probability of each template fitting the data (reduced χ^2)
- Best-fit template for each subtype (Ia, Ibc, II)
- Bayesian probability of each subtype

MORE important points to remember

- A limited subset of CCSN templates are used intentionally
- Probabilities are normalized to 1
 (sensitive to non-SN or other contamination)

Additional Features

- Can use DM15 model or SALT2 for ("no difference")
- MCMC mode for estimating SNIa parameter uncertainty
- Absolute magnitude allowed to float ('dmu' parameter)

Potential Changes/Improvements

- Increased core-collapse sample (more templates already in SNANA for simulations)
- Inclusion of other subtypes

Nearest Neighbor Method (NN)

- PSNID parameters for each SN is compared to those PSNID params generated in a survey from which the SN originates
- Best-fit type is that with highest concentration of simulated SNe close to it in param space
- Distance in each dimension of param space weighted according to survey characteristics (i.e., needs to be re-calibrated for each survey)

Part 2: Running PSNID

For examples, please refer to directory PSNID_Tutorial_LSST2016

Running PSNID: SNANA

- PSNID currently exists only as part of SNANA
 - Plans underway to make a public, standalone, python version
- Only proper (limited) documentation is part of the SNANA manual
 - Description of algorithm in 2011 paper; 2014 for NN
- Download SNANA: http://snana.uchicago.edu/
 - Both SNANA and SNDATA_ROOT

Running PSNID: SNANA

Important scripts/utilities

- \$SNANA_DIR/bin
 - psnid.exe: Main PSNID module
 - snana.exe: Various uses, including photometry versioning
 - snlc_sim.exe: Create simulations; useful for NN mode
 - snlc_fit.exe: Fits a SNIa model to data;
 e.g., for params of a spec-confirmed sample
 - kcor.exe: To create k-correction table for new set of filters
- \$SNANA_DIR/util
 - split_and_fit.pl: Run code (PSNID; snlc_fit) in batch mode
 - sim_SNgrid.pl: Create a new grid for PSNID templates
 - NEARNBR_pipeline.pl: Nearest-neighbor version of PSNID
- Survey Specific Information
 - \$SNDATA_ROOT/SURVEY.DEF
 - \$SNDATA_ROOT/filters
 - \$SNDATA_ROOT/kcor)

Running a test script

> psnid.exe FIRST_PSNID.nml

- Namelist files (.nml)
 - Contain all input information to SNANA scripts
 - Different namespaces within code:
 &SNLCINP = selection of input data; format of outputs; SNANA data cut params
 &PSNIDINP = parameters specific to PSNID
- Outputs (for 'version')
 - version.SNANA.text: CIDs after SNANA specific cuts w/ basic LC info
 - version.FITRES.text: MAIN OUTPUT; includes fit and bayesian probability, plus best-fit parameters
 - version.LCPLOT.text: observed + fit data for each best-fit template
 - version.LCLIST.text: List of CIDs in the above file

Turning light curves into SNANA readable format

> snana.exe SNANA_to_ASCII.nml

- Light curve requirements
 - Filters must be defined in \$SNDATA_ROOT/filters; kcor.exe run
 - FLUXCAL units $(f = 10^{0.4}(27.5-mag))$
 - Input: .IGNORE, .README, .LIST files (plus text files for each SN)
 - Output: same as Input, plus ...
 - *_PHOT.FITS: (all the photometric information for all the CIDs)
 - *_HEAD.FITS: (all the header information for all the CIDs)
- Photometry versions locations
 - Default path is \$SNDATA_ROOT/Icmerge (idea is that there are well-defined sets of photometry)
 - PRIVATE_DATA_PATH = 'My/Path' for accessing data stored elsewhere

Understanding SNANA (&SNLCINP) inputs

> psnid.exe SNANA_PSNID.nml

CIDs

- cutwin_cid: window of CID range
- SNCID_LIST: list of CIDs in NML file (must be used with cutwin_cid)
- SNCID_LIST_FILE: list of CIDs in separate file (must be used with cutwin_cid)

SNTABLE_LIST

various options for defining output format

Other

- OPT_MWEBV: extinction parameters
- CUTWIN_NEPOCH: range of valid epochs necessary
- also available: cuts on SNRMAX; epoch relative to peak

Understanding PSNID outputs

> psnid.exe FIRST_PSNID.nml

FITRES

- ITYPE_BEST: Dependent on cuts placed in NML file on PBAYES and FITRES for each subtype
- TMAX, TOBSMIN, TOBSMAX: MJD of best-fit peak, plus observer-frame constrained phase range
- ePARAMs: uncertainties only defined for SNIa model in MCMC mode
- Optional outputs (e.g., peakmag_r)

LCPLOT

- Gives LC for best-fit model for EACH subtype
- Chi-squared from best-fit model to data at each datapoint
- MJD and rest-frame phase for each observation

Changing PSNID Parameters

- > psnid.exe PSNID_CUTS.nml
- > psnid.exe PSNID_CUTS_MCMC.nml

Main Options

- GRID models: *Templates_Ia* and *Templates_NonIa* keywords
- Color, DMU are interpolated over: specify number of grid points
- OPT_ZPRIOR: Flat (0); spectroscopic (1); or photo-z (2) redshift prior.
- MCMC_NSTEP: 0 —> grid only; >0 —> MCMC, which gives uncertainties
- Outlier rejection: Optional cuts to remove outliers from fit.
 CHISQMIN_OUTLIER; NREJECT_OUTLIER

Changing PSNID Grid

> sim_SNgrid.pl sim_SDSS_SALT2.input

- la input file
 - Type la model (e.g., SALT2.GUY10)
 - Number of grid parameters in redshift, shape space (color & T as well)
 - Filters & kcorrection file specified
 - Parameter ranges
 - Input cosmology (for absolute magnitudes)
- Non-la input file
 - No parameter ranges; rather, input file of non-la models to use
 - Weights can be specified

Batch Mode

> split_and_fit.pl BATCH_PSNID.NML

- NML Parameters
 - JOBNAME_LCFIT: name of script to be run on each submitted job (i.e., psnid.exe)
 - PSNID_OUTPUT: Directory to store outputs for jobs, plus final merged FITRES
 - GZIP_FLAG: useful for reducing the size of the directory of individual jobs