Dinámica de sistemas físicos

Modelado en el dominio del tiempo

Dr. Jesús Emmanuel Solís Pérez

jsolisp@unam.mx

EDO lineales

 $\dot{x} = Ax$

donde A es una matriz de $n \times n$ y

$$\dot{x} = \frac{\mathrm{d}x}{\mathrm{d}t} = \begin{bmatrix} \frac{\mathrm{d}x_1}{\mathrm{d}t} \\ \vdots \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} \end{bmatrix}.$$

Sea la solución $x(0) = x_0$, la solución del sistema está dada como $x(t) = e^{At}x_0$, donde e^{At} es una función matricial de $n \times n$ definida mediante su serie de Taylor.

Método de los factores integrantes

Para resolver una ecuación diferencial ordinaria de la forma:

$$ax'' + bx' + cx = 0,$$

sustituyendo $u(t) = e^{mt}$ en la ecuación anterior, tenemos:

$$(am^2 + bm + c)e^{mt} = 0.$$

Puesto que e^{mt} no se anula, tenemos la siguiente ecuación característica:

$$am^2 + bm + c = 0.$$

Aquí tenemos tres casos que considerar:

- 1. Si $b^2 4ac > 0$, la ecuación anterior tiene dos soluciones reales m_1 y m_2 . Entonces la solución general es: $u(t) = c_1 e^{m_1 t} + c_2 e^{m_2 t}$.
- 2. Si $b^2 4ac < 0$, la ecuación tiene dos raíces complejas conjugadas $\mu \pm i\sigma$. Entonces la solución general es: $u(t) = e^{\mu t} (c_1 \cos(\sigma t) + c_2 \sin(\sigma t))$.
- 3. Si $b^2 4ac = 0$, la ecuación tiene una raíz doble m. Entonces la solución general es: $u(t) = e^{mt}(c_1 + c_2 t)$.

1

Sistemas lineales desacoplados

El método de factores integrantes se puede usar para resolver la ecuación diferencial lineal de primer orden

$$\dot{x} = ax$$
.

La rescribimos como $\dot{x} - ax = 0$, la multiplicamos por e^{-at} para obtener:

$$(xe^{-at})'=0,$$

con lo que $xe^{-at} = c$, donde c es una constante. La solución general está dada por:

$$x(t) = ce^{at}$$
,

donde la constante c = x(0), es el valor de la función x(t) en el tiempo t = 0.

Ejemplo 1

Consideremos ahora el sistema lineal desacoplado:

$$\dot{x}_1 = -x_1,$$

$$\dot{x}_2 = 2x_2$$
.

Este sistema se puede escribir en forma matricial como:

$$\dot{x} = Ax$$
,

donde

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Nota. Observe que A es una matriz diagonal, y en general siempre que A sea una matriz diagonal, el sistema se reduce a un sistema lineal desacoplado.

La solución general del sistema desacoplado anterior puede obtenerse mediante el método de los factores integrantes (o usando el de separación de variables) y se expresa como

$$x_1(t) = c_1 e^{-t},$$

$$x_2(t) = c_2 e^{2t},$$

o equivalentemente por

$$x(t) = \begin{bmatrix} e^{-t} & 0\\ 0 & e^{2t} \end{bmatrix} c,$$

donde c = x(0).

Definición 1. El **retrato fase**, o **diagrama de órbitas**, de un sistema de ecuaciones diferenciales tales con $x \in \mathbb{R}^n$, es el conjunto de todas las curvas integrales en el espacio fase.

Ejemplo 2

Consideremos el siguiente sistema lineal desacoplado en \mathbb{R}^3 :

 $\dot{x}_1 = x_1,$

 $\dot{x}_2 = x_2,$

 $\dot{x}_3 = -x_3$

cuya solución general está dada por:

 $x_1(t) = c_1 e^t,$

 $x_2(t) = c_2 e^t,$

 $x_3(t) = c_3 e^{-t}$.

El retrato fase para este sistema se muestra a continuación:

El plano x_1x_2 se define como **subespacio inestable** y al eje x_3 se le llama el **subespacio estable**.

Diagonalización

Se pueden usar las técnicas algebraicas para diagonalizar una matriz A cuadrada para reducir el sistema lineal

 $\dot{x} = Ax$,

a un sistema lineal desacoplado. Primero consideramos el caso cuando A tiene eigenvalores reales y distintos. El siguiente teorema del Algebra Lineal nos ayudará a resolver este problema.

Teorema 1. Si los eigenvalores $\lambda_1, \lambda_2, \dots, \lambda_n$ de una matriz Ade orden $n \times n$ son reales y distintos, entonces cualquier conjunto de eigenvectores correpondientes v_1, v_2, \dots, v_n forma una base para \mathbb{R}^n , la matriz $P = [v_1 \ v_2 \ \dots \ v_n]$ es invertible y

$$P^{-1}AP = diag[\lambda_1, \lambda_2, \dots, \lambda_n].$$

Definición 2. Sean $A, I \in \mathbb{R}^{n \times n}$ con Ila matriz identidad. Sea $\lambda \in \mathbb{R}$. Entonces:

- 1. La matriz característica de A se define como: $A \lambda I$
- 2. El determinante de la matriz característica de A es un polinomio en λ , se denomina **polinomio** característico de A y se define como: $\phi_A(\lambda) = \det(A \lambda I)$
- 3. La ecuación característica de A se define como $\phi_A(\lambda) = \det(A \lambda I) = 0$.

Definición 3. Sea $A \in \mathbb{R}^{n \times n}$. Se dice que un escalar $\lambda \in \mathbb{R}$ es un **eigenvalor** de A si satisface la ecuación característica de A:

$$\phi_{A}(\lambda) = \det(A - \lambda I) = 0.$$

Si $A \in \mathbb{R}^{n \times n}$ y $\lambda \in \mathbb{R}$, entonces $\phi_A(\lambda) = \det(A - \lambda I) = 0$ si, y sólo si, el sistema

$$(A - \lambda I)v = 0$$
,

tiene soluciones no triviales. La ecuación anterior se puede expresar como

 $Av = \lambda v$.

Así, tenemos que $\lambda \in \mathbb{R}$ es un **eigenvalor** de A si existe un $v \in \mathbb{R}^n$, con $v \neq 0$ tal que $(A - \lambda I)v = 0$.

Definición 4. Todo vector v que satisfaga $(A - \lambda I)v = 0$, se llama un **eigenvector** de A correspondiente a λ .

Ejemplo 3

Considere el sistema lineal

$$\dot{x}_1 = -x_1 - 3x_2, \quad \dot{x}_2 = 2x_2.$$

Escriba el sistema anterior en la forma $\dot{x} = Ax$, encuentre los eigenvalores de A así como un par de eigenvectores correspondientes. A partir de esto, obtenga el sistema desacoplado.

Definición 5. Supongamos que la matriz A de orden $n \times n$ tiene k eigenvalores negativos $\lambda_1, \lambda_2, \dots, \lambda_k$ y n - k eigenvalores positivos $\lambda_{k+1}, \dots, \lambda_n$ y que estos eigenvalores son distintos. Sea $\{v_1, v_2, \dots, v_n\}$ el conjunto

de eigenvectores correspondientes. Entonces los **subespacios estable** e **inestable** del sistema lineal, E^e y E^i , son los subespacios generados por $\{v_1, v_2, \dots, v_k\}$ y $\{v_{k+1}, \dots, v_n\}$, respectivamente, i.e.

$$E^e = gen\{v_1, \dots, v_k\},\,$$

$$E^i = gen\{v_{k+1}, \dots, v_n\}.$$

Si la matriz A tiene eigenvalores imaginarios puros, entonces también hay otro subespacio llamado el subespacio centro, E^c .

Ejercicios

1. Encuentre los eigenvalores y eigenvectores de la matriz *A*:

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix},$$

$$A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}.$$

1. Encuentre los eigenvalores y eigenvectores de la matriz A, resuelva el sistema lineal $\dot{x} = Ax$

$$\dot{x} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & -2 \end{bmatrix} x.$$

1. Escriba las siguientes ecuaciones diferenciales lineales en la forma $\dot{x} = Ax$ y resuelva:

$$\ddot{x} + \dot{x} - 2x = 0,$$

$$\ddot{x} + \dot{x} = 0,$$

$$\ddot{x} - 2\ddot{x} - x + 2x = 0$$
.

Ecuaciones en variables de estado

La representación de un sistema LTI en espacio de estados tiene la siguiente forma

$$\dot{x}_1(t) = a_{11}x_1(t) + a_{12}x_2(t) + a_{13}x_3(t) + b_1u(t),$$

$$\dot{x}_2(t) = a_{21}x_1(t) + a_{22}x_2(t) + a_{23}x_3(t) + b_2u(t),$$

$$\dot{x}_3(t) = a_{31}x_1(t) + a_{22}x_2(t) + a_{33}x_3(t) + b_3u(t),$$

$$y(t) = c_1 x_1(t) + c_2 x_2(t) + c_3 x_3(t) + du(t),$$

donde u, y son la entrada y la salida; x_i , i = 1, 2, 3 son llamadas las **variables de estado**; a_{ij} , b_i , c_i y d son constantes; $\dot{x}_i := \mathrm{d}x_i(t)/\mathrm{d}t$.

Sistema definido en espacio de estados

$$\dot{x} = \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix},$$

además

$$C = \begin{bmatrix} c_1 & c_2 & c_3 \end{bmatrix}$$
.

Considérese el sistema definido mediante

 $\dot{x} = Ax + Bu$,

$$y = Cx + Du$$
,

donde

- x = vector de estado (vector de dimensión n)
- y = vector de salida (vector de dimensión m)
- *u* = vector de control (vector de dimensión *t*)
- A = matriz de estado (matriz de dimensión $n \times n$)
- B = matriz de control (matriz de dimensión $n \times r$)
- $C = \text{matriz de salida (matriz de dimensión } m \times n)$
- D = matriz de transmisión directa (matriz de dimensión $m \times r$)

La aplicación de la transformada de Laplace al sistema

$$sX(s) - x(0) = AX(s) + bU(s),$$

donde
$$X(s) = L\{x(t)\}\ y\ U(s) = L\{u(t)\}.$$

Ejemplo 3.

Considere el siguiente sistema

$$\dot{x}_1 = -6x_1 - 3.5x_2 - u$$

$$\dot{x}_2 = 6x_1 + 4x_2 + u$$

$$y = 4x_1 + 5x_2$$
.

Determine:

- Si la función de transferencia es propia o impropia.
- Sus polos y zeros.
- La respuesta ante una entrada tipo escalón unitario u(t) = 1.

Sistemas no lineales

La solución de una ecuación diferencial elemental

$$\dot{x} = g(x),$$

está dada por

$$x(t) = x(0) + \int_0^t g(s) \mathrm{d}s,$$

si g es integrable.

Para tratar con sistemas dinámicos que son modelados por un número finito de ecuaciones diferenciales de primer orden acopladas

$$\dot{x}_1 = f_1(t, x_1, \dots, x_n, u_1, \dots, u_n),$$

$$\dot{x}_2 = f_2(t, x_1, \dots, x_n, u_1, \dots, u_p),$$

 $\vdots = \vdots$

$$\dot{x}_n = f_n(t, x_1, \dots, x_n, u_1, \dots, u_p),$$

donde \dot{x}_i denota la derivada de x_i con respecto a la variable tiempo t y u_1, u_2, \dots, u_p . Del mismo modo, llamamos a las variables x_1, x_2, \dots, x_n variables de estado.

Usualmente utilizamos la notación vectorial para escribir estas ecuaciones de una forma compacta, i.e.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}, \quad u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_p \end{bmatrix}, \quad f(t, x, u) = \begin{bmatrix} f_1(t, x, u) \\ f_2(t, x, u) \\ f_3(t, x, u) \\ \vdots \\ f_n(t, x, u) \end{bmatrix},$$

y reescribimos las n ecuaciones diferenciales diferenciales de primer orden como una ecuación diferencial vectorial de primer orden de dimensión n, i.e.

$$\dot{x} = f(t, x, u),$$

donde x es el estado y u como la entrada. Aquí, definimos la salida del sistema como sigue:

$$y = h(t, x, u)$$
.

Ejemplo 4

Considere la ecuación del péndulo simple

$$ml\ddot{\theta} = -mg\sin(\theta) - kl\dot{\theta}.$$

Método de Euler

Sea $\phi(x)$ la solución exacta de la ecuación diferencial

$$\dot{\mathbf{y}}(\mathbf{x}) = f(\mathbf{x}, \mathbf{y}),$$

con condición iniciales

$$y(x_0) = y_0,$$

donde $\phi(x)$ satisface la relación

$$\dot{\phi}(x) = f(x, \phi(x)), \quad \phi(x_0) = y_0.$$

La solución de una ecuación diferencial vía numérica es una solución aproximada del valor de la solución $\phi(x)$ en un conjunto finito de puntos. Es decir, $\phi(x_n): y_n \approx \phi(x_n)$.

Es común elegir los puntos x_n de forma equiespaciada, esto es $h = x_{n+1} - x_n$. En este caso, $x_n = x_0 + nh$ donde h es el tamaño del paso.

8

Integramos la relación dada en la ecuación anterior entre x_0 y x_1

$$\int_{x_0}^{x_1} f(x, \phi(x)) dx = \int_{x_0}^{x_1} \dot{\phi}(x) dx = \phi(x_1) - \phi(x_0),$$

o bien

$$\phi(x_1) = \phi(x_0) + \int_{x_0}^{x_1} f(x, \phi(x)) dx.$$

Recordando que $\phi(x_0) = y_0$, entonces

$$\phi(x_1) = y_0 + \int_{x_0}^{x_1} f(x, \phi(x)) dx,$$

podemos hallar el valor de $\phi(x_1)$ evaluando la integral anterior.

El método de Euler estima esta integral mediante la regla del rectángulo

$$\int_{x_0}^{x_1} f(x, \phi(x)) dx \approx f(x_0, y_0)(x_1 - x_0).$$

Es decir, aproxima el área que hay bajo la curva $f(x,\phi(x))$ entre x_1 y x_0 por el área del rectángulo de ancho (x_1-x_0) con altura igual a la ordenada de la curva en su extremo izquierdo $f(x_0,y_0)$

$$\phi(x_1) \approx \phi(x_0) + f(x_0, \phi(x_0))h.$$

Para estimar el valor de $\phi(x)$ en el siguiente punto x_2 , integramos entre x_1 y x_2 , *i.e.*

$$\int_{x_1}^{x_2} \dot{\phi}(x) \ dx = \phi(x_2) - \phi(x_1) = \int_{x_1}^{x_2} f(x, \phi(x)) \ dx.$$

Aproximando la integral mediante la regla del rectángulo se tiene

$$\phi(x_2) \approx \phi(x_1) + f(x_1, \phi(x_1))(x_2 - x_1).$$

Dado que $\phi(x_1)$ es desconocido, entonces lo aproximamos por y_1 como sigue

$$\phi(x_2) \approx \phi(x_1) + f(x_1, \phi(x_1))(x_2 - x_1),$$

$$\phi(x_2) \approx y_1 + f(x_1, y_1)(x_2 - x_1),$$

o bien

$$\phi(x_2) \approx y_1 + f(x_1, y_1)h.$$

Estimando $\phi(x_2)$ por y_2 , entonces cualquier estimación y_{n+1} de $\phi(x_{n+1})$ puede hacerse por el método de Euler de acuerdo con la siguiente expresión

$$\phi(x_{n+1}) \approx y_{n+1} = y_n + f(x_n, y_n)h$$

Ejemplo 5

• Encuentre la solución exacta y aproximada a la siguiente ecuación diferencial

$$\dot{y} = x + y$$
, $y(0) = 1$.

• Encuentre la solución exacta y aproximada al siguiente oscilador lineal

$$\ddot{y}(x) + \frac{1}{10}\dot{y}(x) + y(x) = 10\cos(x), \quad y(0) = 1, \quad \dot{y}(0) = 0.$$

Método de Runge-Kutta

Sirve para buscar aproximaciones a la solución en puntos intermedios del intervalo $[x_n, x_{n+1}]$ con una combinación lineal de los valores de la derivada en varias aproximaciones para obtener un valor de y_{n+1} .

Sea la ecuación diferencial

$$\dot{y}(x) = f(x, y), \quad y(y_0) = y_0,$$

y sea

$$x_n = x_0 + nh$$
, $h > 0$.

Para evaluar $y(x_{n+1})$ conociendo el valor y_n y además $0 \le \alpha_1 \le \alpha_2 \dots \le \alpha_r \le 1$, $\gamma_1, \dots, \gamma_r \in [0, 1]$ de modo que $\sum_{n=1}^r \gamma_n = 1$, el método de Runge-Kutta evalúa y_{n+1} como sigue

$$y_{n+1} = y_n + \sum_{n=1}^r \gamma_n k_n,$$

donde

$$k_n = h f\left(x_n + \alpha_n h, y_n + \sum_{j=1}^r \beta_{n,j} k_j\right), \quad \sum_{j=1}^r \beta_{n,j} = \alpha_n.$$

Los métodos de Runge-Kutta se clasifican en:

- **Explícitos**. Cuando los valores de k_n pueden ser evaluados en función de k_1, k_2, \dots, k_{n-1} .
- Implícitos. Cuando lo anterior no es posible.

Además, en los métodos explícitos se satisface la siguiente restricción

$$\beta_{n,j}=0, \ \forall n\leq j.$$

Mientras que para los implícitos se resuelve en cada paso un sistema de ecuaciones de la forma

$$k_1 = f(x_n + \alpha_1 h, y_n + \beta_{1,1} k_1 + \beta_{1,2} k_2 + \dots + \beta_{1,p} k_p),$$

$$k_2 = f(x_n + \alpha_2 h, y_n + \beta_{2,1} k_1 + \beta_{2,2} k_2 + \dots + \beta_{2,p} k_p),$$

 $\cdot = \cdot$

$$k_p = f(x_n + \alpha_p h, y_n + \beta_{p,1} k_1 + \beta_{p,2} k_2 + \dots + \beta_{p,p} k_p).$$

El méto de Runge-Kutta de 4to orden es el más utilizado y evalúa la función f(x, y) en los puntos x_n , $x_n + \frac{h}{2}$ y $x_n + h$ de la forma

$$y_{n+1} = y_n + \alpha_1 k_1 + \alpha_2 k_2 + \alpha_3 k_3 + \alpha_4 k_4,$$

con

$$k_1 = f(x_n, y_n)h$$

$$k_2 = f(x_n + a_2h, y_n + b_{21}k_1)h,$$

$$k_3 = f(x_n + a_3h, y_n + b_{31}k_1 + b_{32}k_2)h,$$

$$k_4 = f(x_n + a_4h, y_n + b_{41}k_1 + b_{42}k_2 + b_{43}k_3)h.$$

Eligiendo arbitrariamente $\alpha_2 = \alpha_3 = \frac{1}{3}$ y hallando el resto de los coeficientes mediante un sistema algebráico de 11 ecuaciones, tenemos

$$\alpha_1 = \frac{1}{6}$$

$$\alpha_2 = \frac{1}{3}, \ \alpha_2 = \frac{1}{2}, \ b_{21} = \frac{1}{2},$$

$$\alpha_3 = \frac{1}{3}, \ \alpha_3 = \frac{1}{2}, \ b_{31} = 0, \ b_{32} = \frac{1}{2},$$

$$\alpha_4 = \frac{1}{6}$$
, $\alpha_4 = 1$, $b_{41} = 0$, $b_{42} = 0$, $b_{43} = 1$.

Tendríamos entonces queda

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

con

$$k_1 = f(x_n, y_n)h,$$

$$k_2 = f\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)h,$$

$$k_3 = f\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)h,$$

$$k_4 = f(x_n + h, y_n + k_3)h.$$

Ejemplo 6

Las ecuaciones de **Lotka-Volterra**, también conocidas como ecuaciones **presa-depredador** son utilizadas para describir la dinámica de sistemas biológicos en los cuáles interactuan dos especies

$$\dot{x}(t) = \alpha x(t) - \beta x(t) y(t),$$

$$\dot{y}(t) = \delta x(t)y(t) - \gamma y(t),$$

donde x denota el número de la presa, y el número de algún depredador, $\alpha, \beta, \gamma > 0$ describen la interacción entre las dos especies.

Considere los siguientes parámetros: $\alpha = 2.0$, $\beta = 0.001$, $\gamma = 10.0$, $\delta = 0.002$; c.i.: x(0) = 5000, y(0) = 100 y resuelva numéricamente el sistema dado en la ecuación anterior mediante:

- Euler
- Runge-Kutta de 4to orden
- Compare resultados numéricos

Videos de apoyo

• Eigenvalores y eigenvectores