AIDS Exp 04

Aim: Implementation of Statistical Hypothesis Test using Scipy and Sci-kit learn.

Theory:

Correlation Analysis of AQI Dataset

1. Introduction

Air Quality Index (AQI) is an important measure of air pollution levels, influenced by pollutants such as SO₂, NOx, RSPM, and CO₂. Understanding the correlation between these pollutants and AQI can help determine which factors significantly impact air quality.

This experiment aims to perform Pearson's, Spearman's, Kendall's correlation, and the Chi-Squared test to analyze the relationship between SO₂ levels and AQI using statistical methods.

The following image is the image of my first few instances of my AQI dataset

	Α	В	С	D	E	F	G	Н
1	Date	SO2 µg/m3	Nox µg/m3	RSPM µg/m3	SPM	CO2 µg/m3	AQI	Location
2	2009-01-01 0:00	15	53	179			153	MPCB-KR
3	2009-02-01 0:00	15	48	156			137	MPCB-KR
4	2009-03-01 0:00	13	51	164			143	MPCB-KR
5	2009-04-01 0:00	8	37	135			123	MPCB-KR
6	2009-07-01 0:00	13	36	140			127	MPCB-KR
7	2009-08-01 0:00	10	30	135			123	MPCB-KR
8	2009-10-01 0:00	14	56	146			131	MPCB-KR
9	2009-11-01 0:00	14	47	136			124	MPCB-KR
10	2009-12-01 0:00	13	36	115			110	MPCB-KR
11	13-01-2009	19	69	164			143	MPCB-KR
12	14-01-2009	25	67	164			143	MPCB-KR
13	15-01-2009	23	65	182			155	MPCB-KR
14	16-01-2009	23	68	159			139	MPCB-KR
15	17-01-2009	16	41	161			141	MPCB-KR
16	18-01-2009	16	40	168			145	MPCB-KR
17	19-01-2009	22	68	190			160	MPCB-KR
18	20-01-2009	20	61	194			163	MPCB-KR
19	21-01-2009	20	61	191			161	MPCB-KR
20	22-01-2009	21	67	179			153	MPCB-KR

2. Theoretical Background

2.1 Pearson's Correlation Coefficient (r)

Pearson's correlation measures the linear relationship between two continuous variables. It ranges from -1 to 1:

Formula:

$$r=rac{\sum (X_i-ar{X})(Y_i-ar{Y})}{\sqrt{\sum (X_i-ar{X})^2}\sqrt{\sum (Y_i-ar{Y})^2}}$$

Where:

- X_i, Y_i are individual data points
- $ar{X}, ar{Y}$ are the means of X and Y
- \sum represents summation
 - $r > 0 \rightarrow Positive correlation$
 - r < 0 → Negative correlation
 - $r = 0 \rightarrow No linear correlation$

Significance:

- Determines the strength and direction of the relationship.
- Requires normally distributed data.

2.2 Spearman's Rank Correlation (p)

Spearman's correlation measures the monotonic relationship between two variables based on their ranked values.

- Works for both linear and nonlinear relationships.
- Less sensitive to outliers.

Significance:

- Useful when data is not normally distributed.
- Helps identify whether an increase in one variable generally corresponds to an increase in another.

Formula:

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

Where:

- d_i = difference between ranks of corresponding values
- n = number of data points

Interpretation:

- $oldsymbol{
 ho}=1$ ightarrow Perfect positive monotonic relationship
- $\rho = -1$ \rightarrow Perfect negative monotonic relationship
- $oldsymbol{
 ho}pprox 0 o$ No monotonic relationship

2.3 Kendall's Rank Correlation (T)

Kendall's Tau is similar to Spearman's correlation but focuses on the ordinal association between two variables. It compares the number of concordant and discordant pairs. Significance:

- Measures how well the ranks of one variable correspond to the ranks of another.
- More robust for small datasets.

Formula:

$$\tau = \frac{C-D}{C+D}$$

Where:

- ullet C = number of concordant pairs (when ranks of both variables increase or decrease together)
- \bullet D = number of discordant pairs (when ranks of one variable increase while the other decreases)

Interpretation:

- ullet au>0 o Positive association
- au < 0 o Negative association
- ullet au=0 o No association

2.4 Chi-Squared Test (χ²)

The Chi-Squared test evaluates whether there is a statistically significant association between two categorical variables.

Significance:

- Helps determine whether AQI levels are dependent on SO₂ concentrations.
- Works for categorical (binned) data.

Formula:

$$\chi^2 = \sum rac{(O_i - E_i)^2}{E_i}$$

Where:

- O_i = Observed frequency
- ullet E_i = Expected frequency under independence assumption

Interpretation:

- If p-value $< \alpha$ (e.g., 0.05), reject the null hypothesis \rightarrow Variables are dependent
- If p-value > lpha, fail to reject the null hypothesis ightarrow No significant relationship

3. Experimental Methodology

Load and Preprocess the Data

import pandas as pd import numpy as np

from scipy.stats import pearsonr, spearmanr, kendalltau, chi2_contingency

Load dataset

df = pd.read_csv('/content/sample_data/PNQ_AQI.csv', encoding='utf-8')

Convert relevant columns to numeric

df['SO2 μ g/m3'] = pd.to_numeric(df['SO2 μ g/m3'], errors='coerce')

df['AQI'] = pd.to_numeric(df['AQI'], errors='coerce')

Drop NaN values df = df.dropna()

```
Date SO2 μg/m3 Nox μg/m3 RSPM μg/m3 SPM CO2 μg/m3
0 2009-01-01 00:00:00 15.0 53.0 179.0 NaN
1 2009-02-01 00:00:00 15.0 48.0 156.0 NaN
2 2009-03-01 00:00:00 13.0 51.0 164.0 NaN
3 2009-04-01 00:00:00 8.0 37.0 135.0 NaN
4 2009-07-01 00:00:00 13.0 36.0 140.0 NaN
                                                                                                NaN
                                                                     164.0 NaN
                                                                                                NaN
                                                                     135.0 NaN
                                                                                                NaN
                                                                      140.0 NaN
                                                                                                NaN
       AQI Location AQI_category SO2_category
S3.0 MPCR-KR Unhealthy Low
0 153.0 MPCB-KR
                                          Unhealthy
1 137.0 MPCB-KR Unhealthy for Sensitive
                                                                       Low
2 143.0 MPCB-KR Unhealthy for Sensitive
                                                                       Low
3 123.0 MPCB-KR Unhealthy for Sensitive Very Low
4 127.0 MPCB-KR Unhealthy for Sensitive Low
```

Pearson's Correlation

pearson_corr, pearson_p = pearsonr(df['SO2 μg/m3'], df['AQI']) print(f"Pearson Correlation: {pearson_corr:.4f}, p-value: {pearson_p:.4f}")

```
Pearson Correlation: 0.1868, p-value: 0.0000
```

Interpretation:

- If p < 0.05, the correlation is statistically significant.
- The closer r is to 1 or -1, the stronger the relationship.

Spearman's Rank Correlation

spearman_corr, spearman_p = spearmanr(df['SO2 μg/m3'], df['AQI']) print(f"Spearman Correlation: {spearman_corr:.4f}, p-value: {spearman_p:.4f}")

```
Spearman Correlation: 0.1979, p-value: 0.0000
```

Interpretation:

- A positive ρ indicates that as SO₂ increases, AQI tends to increase.
- Works well even if the relationship is nonlinear.

Kendall's Rank Correlation

```
kendall_corr, kendall_p = kendalltau(df['SO2 μg/m3'], df['AQl']) print(f"Kendall Correlation: {kendall_corr:.4f}, p-value: {kendall_p:.4f}")
```

Kendall Correlation: 0.1337, p-value: 0.0000

Interpretation:

- Measures how well ranks match.
- More stable for small datasets.

Chi-Squared Test

```
Before applying Chi-Square, we categorize SO₂ and AQI into bins: # Categorize SO2 and AQI into bins df['SO2_category'] = pd.cut(df['SO2 μg/m3'], bins=3, labels=['Low', 'Medium', 'High']) df['AQI_category'] = pd.cut(df['AQI'], bins=3, labels=['Good', 'Moderate', 'Unhealthy']) # Create contingency table table = pd.crosstab(df['SO2_category'], df['AQI_category']) # Perform Chi-Square Test chi2_stat, chi2_p, _, _ = chi2_contingency(table) print(f"Chi-Squared Statistic: {chi2_stat:.4f}, p-value: {chi2_p:.4f}")
```

Chi-Squared Statistic: 486.6191, p-value: 0.0000

Interpretation:

• If p < 0.05, AQI levels are significantly dependent on SO₂.

4. Results & Discussion

Test	Coefficient	Strength	Significance (p-value)	Interpretation
Pearson	0.1868	Weak	0.0000	Weak linear correlation
Spearman	0.1979	Weak	0.0000	Weak monotonic correlation
Kendall	0.1337	Very Weak	0.0000	Weak ordinal correlation
Chi-Square	486.6191	Significant	0.0000	SO ₂ significantly impacts AQI

Key Findings:

- Pearson, Spearman, and Kendall correlations show a weak positive relationship between SO₂ and AQI.
- Chi-Square test confirms that AQI depends on SO₂ levels in a statistically significant way.
- SO₂ alone is not a strong predictor of AQI, so other pollutants (NOx, RSPM, etc.) likely play a major role.

5. Conclusion

This experiment involved manually calculating the correlation between SO₂ and AQI using different statistical tests. Through step-by-step computations, we found that while SO₂ has a weak correlation with AQI, the Chi-Square test suggested a significant relationship. However, since AQI is influenced by multiple pollutants, it became evident that SO₂ alone does not determine air quality.

By working through these calculations, we gained a deeper understanding of how different statistical methods reveal relationships between variables. Future manual analyses could focus on NOx, CO₂, and RSPM to further explore their individual effects on AQI and refine our understanding of air pollution dynamics.