CÁLCULOS(LEY DE KIRCHOFF)

Figura 1.1. Circuito Resistivo Mixto identificando mallas

Ley de Ohm

V = IR

Ley de voltaje de Kirchhoff

Malla 1	Malla 2
$\sum V = 0$	$\sum V = 0$
$-10 + V_1 + V_2 + V_5 = 0$	$V_3 + V_4 - V_2 = 0$
$-10 + 1I_1 + 3.9(I_1 - I_2) + 1.8I_1 = 0$	$2.2I_2 + 2.2I_2 - 3.9(I_1 - I_2) = 0$
$-10 + 1I_1 + 3.9I_1 - 3.9I_2 + 1.8I_1 = 0$	$2.2I_2 + 2.2I_2 - 3.9I_1 + 3.9I_2 = 0$
$Ec1: -10 + 6.7I_1 - 3.9I_2 = 0$	$Ec2: 8.3I_2 - 3.9I_1 = 0$

remplazo Ec2 en Ec1

$$-10 + 6.7I_1 - 3.9\left(\frac{3.9I_1}{8.3}\right) = 0$$

$$I_1 = 2.05 \, mA$$
 $I_2 = 0.96 mA$

Corriente en cada resistencia

$$I_{R1} = I_1 = 2.05 mA$$

 $I_{R2} = (I_1 - I_2) = 1.09 mA$
 $I_{R3} = I_2 = 0.69 mA$
 $I_{R4} = I_2 = 0.69 mA$
 $I_{R5} = I_1 = 2.05 mA$

Voltaje en cada resistencia

$$V_{R1} = I_{R1} * R_1 = (2.05)(1) = 2.05(V)$$

 $V_{R2} = I_{R2} * R_2 = (2.05 - 0.96)(3.9) = 4.25(V)$
 $V_{R3} = I_{R3} * R_3 = (0.96)(2.2) = 2.112(V)$
 $V_{R4} = I_{R4} * R_4 = (0.96)(2.2) = 2.112(V)$
 $V_{R5} = I_{R5} * R_5 = (2.05)(1.8) = 3.69(V)$

NODOS

La corriente en el nodo 1 va a ser igual que la corriente uno por ley de Ohm.

NODO1

$$I_{N1} = I_1$$

$$I_{N1} = 2.05mA$$

NODO2

La corriente en el nodo 2 va a ser igual a cero ya que es la suma de las corrientes que ingresan y las que salen. La corriente que ingresa es de 2.05mA y sale una corriente $I_2=1.09mA$ y I_3 0.69Ma

$$I_{N2} = I_2 + I_3$$

 $I_{R2} = 1.09mA$
 $I_{R3} = 0.69mA$
 $I_{N2} = 2.05 mA$

NODO 3

La corriente en el nodo 3 va a ser igual que la corriente I₃

$$I_{N3} = I_3$$

$$I_{N3} = 0.96mA$$

NODO 4

La corriente en el nodo 4 tomamos la corriente que ingresa con signo positivo y la que sale con signo negativo y cumple que el nodo va a ser cero.

$$I_{N4} = I_2 + I_3$$

 $I_{N4} = 2.05mA$

NODO 5

En el nodo 5 las corrientes que ingresaron al circuito se unen llegando a una equivalencia de toda la corriente que ingreso

$$I_{N5}=I_4$$

$$I_{N5}=2.05~mA$$