CSC341 HW3

Havin Lim

February 13 2024

1 Academic Honesty

Written Sources Used:

Michael Sipser - Introduction to the Theory of Computation https://www.geeksforgeeks.org/conversion-from-nfa-to-dfa/

Help Obtained: None

2 Question 1

$$(-)^?\Sigma^+(.)^?\Sigma^+$$

3 Question 2

4 Question 3

$$\begin{split} Q &= \{q_1, q_2, q_3\} \\ \Sigma &= \{0, 1\} \\ q_0 &= \{q_0, q_2\} \\ F &= q_2 \\ \delta &= \end{split}$$

5 Question 4

5.1 Number 1

 $Q^{`}=Q$

 $\Sigma ^{`}=\Sigma$

 δ will be in the reverse order of the DFA so that the NFA accepts the string in reverse order. For example, if $\delta(a,b)=c$, then δ (c,b)=a.

 $q_0^{\cdot}=F$ meaning that the accepting states in the DFA will become the starting states in the NFA.

 $F'=q_0$ meaning that the starting states in the DFA will become the accepting states in the NFA.

5.2 Number 2

The constructed NFA N from the above question corresponds to the same automata but in reverse order; the accepting states and the starting states are the opposite but the path that leads to each other stays the same. Since the DFA D recognizes the language A, meaning that there is a path that leads from the starting state to the accepting state, there also exists a path that leads from F to q_0 which is q_0 to F. This leads to the conclusion that the NFA N recognizes A^R .