

UNIVERSITY OF CALOOCAN CITY COMPUTER ENGINEERING DEPARTMENT

Data Structure and Algorithm Laboratory Activity No. 6

Singly Linked Lists

Submitted by: Regondola, Jezreel P. *Instructor:* Engr. Maria Rizette H. Sayo

August 23, 2025

DSA

I. Objectives

Introduction

A linked list is an organization of a list where each item in the list is in a separate node. Linked lists look like the links in a chain. Each link is attached to the next link by a reference that points to the next link in the chain. When working with a linked list, each link in the chain is called a Node. Each node consists of two pieces of information, an item, which is the data associated with the node, and a link to the next node in the linked list, often called next.

This laboratory activity aims to implement the principles and techniques in:

- Writing algorithms using Linked list
- Writing a python program that will perform the common operations in a singly linked list

II. Methods

- Write a Python program to create a singly linked list of prime numbers less than 20. By iterating through the list, display all the prime numbers, the head, and the tail of the list. (using Google Colab)
- Save your source codes to GitHub

III. Results

```
class Node:
         def __init__(self,data = None):
    self.data = data
    self.next = None
      class SinglyLinkedList:
         def __init__(self):
    self.head = None
    self.tail = None
         def append(self, data):
    new_node = Node(data)
            if not self.head:
              self.head = new_node
self.tail = new_node
              self.tail.next = new_node
self.tail = new_node
         def display(self):
   current = self.head
   while current:
              print(current.data, end = ", ")
               current = current.next
            print("None")
         def get_head(self):
            if self.head:
              return self.head.data
         def get_tail(self):
            if self.tail:
              return self.tail.data
              return None
       def get_primes(limit):
         primes = []
for num in range(2, limit):
            is_prime = Tru
            for i in range(2, int(num ** 0.5) + 1):
              if num % i == 0:
   is_prime = False
            if is_prime:
              primes.append(num)
         return primes
       primes = get_primes(20)
      linked_list = SinglyLinkedList()
       for prime in primes:
         linked_list.append(prime)
      print("Linked list prime numbers:")
       linked_list.display()
      print(f"Head of the list: {linked_list.get_head()}")
print(f"Tail of the list: {linked_list.get_tail()}")
Linked list prime numbers:
2, 3, 5, 7, 11, 13, 17, 19, None
Head of the list: 2
Tail of the list: 19
```

Figure 1 Screenshot of program

This program generates prime numbers less than 20, stores them in a singly linked list, and then displays the list along with the head (first prime) and tail (last prime).

IV. Conclusion

This activity helped us implement and understand the core principles of linked lists. By writing a Python program to create a singly linked list of prime numbers, we learned how to perform a basic linked list operations such as insertion, traversal, and accessing the head and tail.

References

[1] Co Arthur O.. "University of Caloocan City Computer Engineering Department Honor Code," UCC-CpE Departmental Policies, 2020.