CS251: Introduction to Language Processing

Mid Semester Examination Solutions (2023-24-M Semester)

Max. Points: 100 Duration: 1 hour 30 minutes

October 4, 2023

Question-1 (Lexical Analysis)

[18 Marks]

Letter = [a-zA-Z]

Digit=[0-9]

NAME= (Letter|Digit)+

BACKDIR=..

EXT: .txt|.dat

VALID_NAME= (NAME|BACKDIR)

(/VALID_NAME)+(EXT)? VALID_PATH .|\n INVALID_PATH

Question has 5 rules: each rule that is followed for VALID_PATH carries 3 marks. INVALID_PATH token carries 3 marks.

Question-2 (Context Free Grammar)

1. [5 marks]: 2.5 marks each tree

Left most derivation tree 1

Left most derivation tree 2

2. [3 Marks] Define your precedence and associative rules that removes the ambiguity.

Higher Precedence - - (higher precedence is evaluate first)

3. [2 Marks] Draw the unique parse trees, by applying leftmost or rightmost derivation, for the string int – – int – int using the above rules.

Question-3 (Bottom Up Parsing):

- (1) **[2 Marks]** Assume that a number can contain only digit 1 of any length > 0. Then, the given grammar accepts all the following:
 - (a) Multiplication of negative number with negative number (or)
 - (b) Multiplication of negative number with positive number (or)
- (2) **[3 Marks]** Yes, it accepts the string. The bottom up parse tree is listed below [We need to reverse the below picture]

(3) [20 Marks] DFA for LR(0). Each correct state carries 2 Marks

(4) **[12 Marks]:** LR(0) Parer table. There are 6 production rules, each correct reduction carries 1 Marks. There are 12 shift actions, each correct action carries 0.5 Marks.

State	Action			Goto				
	1	-	*	\$	S'	S	N	Р
S0		S5				S4	S1	
S1			S2					
S2	S6	S5					S7	S3
S3	r3	r3	r3	r3				
S4	r1	r1	r1	r1				
S5	S6							S8
S6	S6/r6	r6	r6	r6				S9
S7	r2	r2	r2	r2				
S8	r4	r4	r4	r4				
S9	r5	r5	r5	r5				

⁽⁵⁾ **[1 Marks]** The grammar is not LR(0) as there is shift/reduce conflict at S6 on seeing the next token 1.

(6) [6 Marks]

Visited Token stream	Not visited Token Stream	State
	-11*-11	S0
-	11*-11	S5
-1	1*-11	S6

Currently, the state is S6, since the next token is 1, we have a shift/reduce conflict here.

Question-4 (Top Down Parsing):

Consider the following grammar

$$\mathsf{E} \,\to\, \mathsf{FH}$$

$$\mathsf{F} \,\to\, \mathsf{F!} |\mathsf{G}$$

$$G \rightarrow n|(E)$$

(1) FIRST and FOLLOW sets: **Total 12 Marks. The table has 8 entries, each correct entry carries 1.5 Marks.**

	FIRST	FOLLOW
E	{n, (}	{\$,)}
Н	{*, ∈}	{\$,)}
F	{n, (}	{!, *, \$,)}
G	{n, (}	{!, *, \$,)}

(2) LL(1) parser table: Total 11 Marks. Each correct entry fetches 1 Marks

	*	!	n	()	\$
E			E→ FH	E→ FH		
н	H→ *E				H → ∈	H → ∈
F			F→ F! F→ G	F→ F! F→ G		
G			$G \rightarrow n$	$G \rightarrow (E)$		

(3) The grammar is not LL(1) because the grammar is left recursive so the LL1(1) parser table has at least one cell with more than one entry.

Marks: 1 Marks

$$\begin{array}{ccc} (4) \ E \ \rightarrow \ FH \\ H \ \rightarrow \ ^*E| \in \\ F \ \rightarrow \ GK \\ K \ \rightarrow \ !K| \in \end{array}$$

 $G \rightarrow n|(E)$

This part carries: 4 Marks