The *must* preorder revisited An algebraic theory for Web services contracts

Cosimo Laneve¹ <u>Luca Padovani</u>²

¹University of Bologna

²University of Urbino

CONCUR 2007

Web services in a nutshell

- distributed processes
- communicating through standard Web protocols (tcp, http, soap)
- exchanging data in platform-neutral format (xml)
- dynamically linked
- with machine-understandable descriptions

Technologies for Web services

Interface descriptions

- WSDL 1.1 (W3C note, 2001)
- WSDL 2.0 (W3C recommendation, 2007)

Behavioral descriptions

- WSCL 1.0 (W3C note, 2002)
- WSCI 1.0 (W3C note, 2002)
- WS BPEL 2.0 (OASIS standard, 2007)

"Enabling users to describe business process activities as Web services and define how they can be connected to accomplish specific tasks"

Web services yellow pages (registries)

• UDDI 3.0.2 (OASIS standard, 2004)

"Defining a standard method for enterprises to dynamically discover and invoke Web services"

Technologies for Web services

Interface descriptions

- WSDL 1.1 (W3C note, 2001)
- WSDL 2.0 (W3C recommendation, 2007)

Behavioral descriptions

- WSCL 1.0 (W3C note, 2002)
- WSCI 1.0 (W3C note, 2002)
- WS BPEL 2.0 (OASIS standard, 2007)

"Enabling users to describe business process activities as Web services and define how they can be connected to accomplish specific tasks"

Web services yellow pages (registries)

• UDDI 3.0.2 (OASIS standard, 2004)

"Defining a standard method for enterprises to dynamically discover and invoke Web services"

Technologies for Web services

Interface descriptions

- WSDL 1.1 (W3C note, 2001)
- WSDL 2.0 (W3C recommendation, 2007)

Behavioral descriptions

- WSCL 1.0 (W3C note, 2002)
- WSCI 1.0 (W3C note, 2002)
- WS BPEL 2.0 (OASIS standard, 2007)

"Enabling users to describe business process activities as Web services and define how they can be connected to accomplish specific tasks"

Web services yellow pages (registries)

• UDDI 3.0.2 (OASIS standard, 2004)

"Defining a standard method for enterprises to dynamically discover and invoke Web services"

Discovering Web services

Search key

- name
- industrial classification
- location
- ...
- behavioral type!

Problem

We need a formal notion of behavioral equivalence which

- preserves client satisfaction
- is abstract (based on the described, observable behavior)

Plan

Synthesize *contracts* from Web service descriptions, give contracts a formal semantics, use contracts for searching (and possibly more. . .)

Summary

- understand what contracts look like
- 2 define client satisfaction (compliance)
- **3** define contract equivalence (*subcontract*)
- 4 see how to query a registry (duality)
- **6** study the properties enjoyed by the equivalence w.r.t. common Web service scenarios (*choreographies*)

What's in a contract?

the behavior of the service at Login is

$$\sigma = \texttt{Login.}(\overline{\texttt{InvalidLogin}}.\sigma \oplus \overline{\texttt{ValidLogin}}.\sigma')$$

• the behavior of the service at Query is

$$au = extsf{Query.}\overline{ extsf{Catalog}}.(au + extsf{Logout} + extsf{Purchase}. au')$$

What's in a contract?

• the behavior of the service at Login is

$$\sigma = \texttt{Login.}(\overline{\texttt{InvalidLogin}}.\sigma \oplus \overline{\texttt{ValidLogin}}.\sigma')$$

• the behavior of the service at Query is

$$\tau = \text{Query.}\overline{\text{Catalog.}}(\tau + \text{Logout} + \text{Purchase.}\tau')$$

A language for contracts – ccs without τ 's

Contracts are pairs $I: \sigma$

- the *interface I* is a finite set of *names*
- the behavior σ is defined by the grammar $(\alpha = a, \overline{a})$:

```
\sigma ::= \\ 0 \qquad \qquad \text{(end of connection)} \\ \alpha.\sigma \qquad \qquad \text{(action prefix)} \\ \sigma+\sigma \qquad \qquad \text{(external choice)} \\ \sigma\oplus\sigma \qquad \qquad \text{(internal choice)} \\ x \qquad \qquad \text{(variable)} \\ \text{rec } x.\sigma \qquad \text{(recursion)}
```

Example

```
\begin{array}{l} \operatorname{rec} x. \operatorname{Login.}(\overline{\operatorname{InvalidLogin.}} x \oplus \overline{\operatorname{ValidLogin.}} \operatorname{rec} y. \\ \operatorname{Query.} \overline{\operatorname{Catalog.}}(y + \operatorname{Logout} + \operatorname{rec} z. \operatorname{Purchase.} \\ \overline{\operatorname{Accepted}} \oplus \overline{\operatorname{InvalidPayment.}}(z + \operatorname{Logout}) \oplus \overline{\operatorname{OutOfStock.}}(y + \operatorname{Logout}))) \end{array}
```

Behavior transition relation

$$\alpha.\sigma \xrightarrow{\alpha} \sigma \qquad \frac{\sigma \xrightarrow{\alpha} \sigma'}{\sigma + \tau \xrightarrow{\alpha} \sigma'}$$

$$\sigma \oplus \tau \longrightarrow \sigma \qquad \frac{\sigma \longrightarrow \sigma'}{\sigma + \tau \longrightarrow \sigma' + \tau} \qquad \text{rec } x.\sigma \longrightarrow \sigma\{\text{rec } x.\sigma/_X\}$$

Standard notation

$$\Longrightarrow$$
, $\sigma \stackrel{\alpha}{\Longrightarrow} \sigma'$, $\sigma \uparrow$, $\sigma \downarrow$, $\text{init}(\sigma) = \{\alpha \mid \sigma \stackrel{\alpha}{\Longrightarrow} \}$

Remark

Same transition relation as the one of ccs without au's

- $a + (b \oplus c) \longrightarrow a + b$
- $(a+b) \oplus (a+c) \longrightarrow a+b$

Compliance = graceful termination

Client/service interaction

$$\frac{\rho \longrightarrow \rho'}{\rho \mid \sigma \longrightarrow \rho' \mid \sigma} \qquad \frac{\sigma \longrightarrow \sigma'}{\rho \mid \sigma \longrightarrow \rho \mid \sigma'} \qquad \frac{\rho \stackrel{\alpha}{\longrightarrow} \rho' \quad \sigma \stackrel{\overline{\alpha}}{\longrightarrow} \sigma'}{\rho \mid \sigma \longrightarrow \rho' \mid \sigma'}$$

Compliance (e indicates client's satisfaction)

- ① if $\rho' \mid \sigma' \longrightarrow$, then $\{e\} \subseteq init(\rho')$
- **2** if $\sigma' \uparrow$, then $\{e\} = init(\rho')$

Examples

- $a.e + b.e \dashv \overline{a} \oplus \overline{b}$ and $a.e + b.e \dashv \overline{a}$
- $a.e \oplus b.e \not \exists \overline{a} \oplus \overline{b}$
- $e + \overline{a}.e \dashv 0$ and $e + \overline{a}.e \not\dashv$ ($\dot{} = rec x.x$)

Compliance = graceful termination

Client/service interaction

$$\frac{\rho \longrightarrow \rho'}{\rho \mid \sigma \longrightarrow \rho' \mid \sigma} \qquad \frac{\sigma \longrightarrow \sigma'}{\rho \mid \sigma \longrightarrow \rho \mid \sigma'} \qquad \frac{\rho \stackrel{\alpha}{\longrightarrow} \rho' \quad \sigma \stackrel{\overline{\alpha}}{\longrightarrow} \sigma'}{\rho \mid \sigma \longrightarrow \rho' \mid \sigma'}$$

Compliance (e indicates client's satisfaction)

 ρ is compliant with σ $(\rho \dashv \sigma)$ if $\rho \mid \sigma \Longrightarrow \rho' \mid \sigma'$ implies

- **1** if $\rho' \mid \sigma' \longrightarrow$, then $\{e\} \subseteq init(\rho')$
- **2** if $\sigma' \uparrow$, then $\{e\} = init(\rho')$

Examples

- $a.e + b.e \dashv \overline{a} \oplus \overline{b}$ and $a.e + b.e \dashv \overline{a}$
- a.e \oplus b.e $\forall \overline{a} \oplus \overline{b}$
- $e + \overline{a}.e \dashv 0$ and $e + \overline{a}.e \dashv i$ ($\dot{} = rec x.x$)

Compliance = graceful termination

Client/service interaction

$$\frac{\rho \longrightarrow \rho'}{\rho \mid \sigma \longrightarrow \rho' \mid \sigma} \qquad \frac{\sigma \longrightarrow \sigma'}{\rho \mid \sigma \longrightarrow \rho \mid \sigma'} \qquad \frac{\rho \stackrel{\alpha}{\longrightarrow} \rho' \quad \sigma \stackrel{\overline{\alpha}}{\longrightarrow} \sigma'}{\rho \mid \sigma \longrightarrow \rho' \mid \sigma'}$$

Compliance (e indicates client's satisfaction)

 ρ is compliant with σ $(\rho \dashv \sigma)$ if $\rho \mid \sigma \Longrightarrow \rho' \mid \sigma'$ implies

- **1** if $\rho' \mid \sigma' \longrightarrow$, then $\{e\} \subseteq init(\rho')$
- **2** if $\sigma' \uparrow$, then $\{e\} = init(\rho')$

Examples

- $a.e + b.e \dashv \overline{a} \oplus \overline{b}$ and $a.e + b.e \dashv \overline{a}$
- $a.e \oplus b.e \not \exists \overline{a} \oplus \overline{b}$
- $e + \overline{a}.e \dashv 0$ and $e + \overline{a}.e \not\dashv$ ($\dot{} = rec x.x$)

Querying the registry with the right key

Searching services with compliance

$$\mathtt{query}(K:\rho) = \{I: \sigma \mid K \subseteq I \text{ and } \rho \dashv \sigma\}$$

- effective but not efficient
- still don't have equivalence for contracts

ldea: subcontract relation

$$\llbracket I : \sigma \rrbracket = \{ K : \rho \mid K \subseteq I \text{ and } \rho \dashv \sigma \}$$
$$I : \sigma \prec J : \tau \iff \llbracket I : \sigma \rrbracket \subseteq \llbracket J : \tau \rrbracket$$

- **1** compute ρ^{\perp} such that $\rho \dashv \rho^{\perp}$
- 3 make sure $K: \rho^{\perp}$ is the principal dual contract

Querying the registry with the right key

Searching services with compliance

$$\mathtt{query}(K:\rho) = \{I: \sigma \mid K \subseteq I \text{ and } \rho \dashv \sigma\}$$

- effective but not efficient
- still don't have equivalence for contracts

Idea: subcontract relation

$$\llbracket I : \sigma \rrbracket = \{ K : \rho \mid K \subseteq I \text{ and } \rho \dashv \sigma \}$$
$$I : \sigma \preceq J : \tau \iff \llbracket I : \sigma \rrbracket \subseteq \llbracket J : \tau \rrbracket$$

- **1** compute ρ^{\perp} such that $\rho \dashv \rho^{\perp}$
- 3 make sure $K: \rho^{\perp}$ is the principal dual contract

Querying the registry with the right key

Searching services with compliance

$$\mathtt{query}(K:\rho) = \{I: \sigma \mid K \subseteq I \text{ and } \rho \dashv \sigma\}$$

- effective but not efficient
- still don't have equivalence for contracts

Idea: subcontract relation

$$\llbracket I : \sigma \rrbracket = \{ K : \rho \mid K \subseteq I \text{ and } \rho \dashv \sigma \}$$
$$I : \sigma \preceq J : \tau \iff \llbracket I : \sigma \rrbracket \subseteq \llbracket J : \tau \rrbracket$$

- **1** compute ρ^{\perp} such that $\rho \dashv \rho^{\perp}$
- 2 query $(K : \rho) = \{I : \sigma \mid K : \rho^{\perp} \leq I : \sigma\}$ (cached!)
- **3** make sure $K: \rho^{\perp}$ is the *principal dual contract*

Subcontract relation: examples

- I: ' ≤ I: σ
- $\{a,b\}$: $\overline{a} \oplus \overline{b} \preceq \{a,b\}$: \overline{a}
- $\{a,b\}$: $\overline{a} \oplus \overline{b} \preceq \{a,b\}$: $\overline{a} + \overline{b}$
- $\{a\}: \overline{a} \leq \{a,b\}: \overline{a} + \overline{b} \text{ (width extension)}$
 - Query + Logout + Purchase ≤
 Query + Logout + Purchase + SaveForLater
- $\{a\}$: $\overline{a} \leq \{a, b\}$: $\overline{a}.\overline{b}$ (depth extension)
 - Purchase. $\overline{\texttt{Accepted}} \preceq \texttt{Purchase}.\overline{\texttt{Accepted}}.\overline{\texttt{Invoice}}$
- $\{a,b\}$: $\overline{a} \not \preceq \{a,b\}$: $\overline{a} + \overline{b}$ (because of $\{a,b\}$: a.e + b.a.e)

Subcontract relation: examples

- I: '≺I: σ
- $\{a,b\}$: $\overline{a} \oplus \overline{b} \preceq \{a,b\}$: \overline{a}
- $\{a,b\}$: $\overline{a} \oplus \overline{b} \preceq \{a,b\}$: $\overline{a} + \overline{b}$
- $\{a\}$: $\overline{a} \leq \{a, b\}$: $\overline{a} + \overline{b}$ (width extension)
 - Query + Logout + Purchase ≤
 Query + Logout + Purchase + SaveForLater
- $\{a\}$: $\overline{a} \leq \{a, b\}$: $\overline{a}.\overline{b}$ (depth extension)
 - Purchase. $\overline{\texttt{Accepted}} \leq \texttt{Purchase}.\overline{\texttt{Accepted}}.\overline{\texttt{Invoice}}$
- $\{a,b\}$: $\overline{a} \not\preceq \{a,b\}$: $\overline{a} + \overline{b}$ (because of $\{a,b\}$: a.e + b.a.e)

Subcontract relation: examples

- I: '≺I: σ
- $\{a,b\}$: $\overline{a} \oplus \overline{b} \preceq \{a,b\}$: \overline{a}
- $\{a,b\}$: $\overline{a} \oplus \overline{b} \preceq \{a,b\}$: $\overline{a} + \overline{b}$
- $\{a\}$: $\overline{a} \leq \{a, b\}$: $\overline{a} + \overline{b}$ (width extension)
 - Query + Logout + Purchase ≤
 Query + Logout + Purchase + SaveForLater
- $\{a\}$: $\overline{a} \leq \{a, b\}$: $\overline{a}.\overline{b}$ (depth extension)
 - Purchase. $\overline{\texttt{Accepted}} \leq \texttt{Purchase}.\overline{\texttt{Accepted}}.\overline{\texttt{Invoice}}$
- $\{a,b\}$: $\overline{a} \not \leq \{a,b\}$: $\overline{a} + \overline{b}$ (because of $\{a,b\}$: a.e + b.a.e)

Contracts for WS's being compliant

 \preceq

Clients

$$e + \overline{a}.b.e \neq a$$

Services

$$\{a\} : a \leq \{a, b\} : a + b$$

 $\{a\} : a \leq \{a, b\} : a.b$

Testing framework "passing a test"

 $\sqsubseteq_{\mathtt{must}}$

Tests

$$a \text{ must } e + \overline{a}.b.e$$
 $mu/st e \oplus e$

Processes

$$a \not\sqsubseteq_{\text{must}} a + b$$

Theorem

 $I: \sigma \leq I: \tau$ if and only if $\sigma \sqsubseteq_{\text{must }} \tau$

Contracts for WS's being compliant

 \preceq

Clients

$$e + \overline{a}.b.e \not \neg a$$

 $\mathbf{e}\oplus\mathbf{e}\dashv$.

Services

$$\{a\}: a \leq \{a, b\}: a + b$$

Testing framework

"passing a test"

 $\sqsubseteq_{\mathtt{must}}$

Tests

 $a \text{ must } e + \overline{a}.b.e$

 $\text{`mu/st} \overset{\cdot}{\mathbf{e}} \oplus \overset{\cdot}{\mathbf{e}}$

Processes

$$a \not\sqsubseteq_{\text{must}} a + b$$

a ⊈_{must} a.b

Theorem

 $I: \sigma \leq I: \tau$ if and only if $\sigma \sqsubseteq_{\text{must}} \tau$

Contracts for WS's being compliant

 \preceq

Clients

$$e + \overline{a}.b.e \not \neg a$$

 $e \oplus e \dashv \dot{a}$

Services

$$\{a\}: a \leq \{a, b\}: a + b$$

 $\{a\}: a \leq \{a,b\}: a.b$

Testing framework

"passing a test"

 $\sqsubseteq_{\mathtt{must}}$

Tests

 $a \text{ must } \mathbf{e} + \overline{a}.b.\mathbf{e}$

`mu⁄st <mark>e</mark> ⊕ e

Processes

 $a \not\sqsubseteq_{\mathtt{must}} a + b$

 $a \not\sqsubseteq_{\mathtt{must}} a.b$

^{*}Theorem

 $I: \sigma \leq I: \tau$ if and only if $\sigma \sqsubseteq_{\text{must }} \tau$

Contracts for WS's being compliant

 \preceq

Clients

$$e + \overline{a}.b.e \not \exists a$$

 $e \oplus e \dashv \dot{}$

Services

$${a} : a \leq {a, b} : a + b$$

 ${a} : a \leq {a, b} : a.b$

Testing framework

"passing a test"

_must

Tests

 $a \text{ must } \mathbf{e} + \overline{a}.b.\mathbf{e}$

 $mu/ste \oplus e$

Processes

 $a \not\sqsubseteq_{\mathtt{must}} a + b$

a ⊈must a.b

Theorem

 $I: \sigma \leq I: \tau$ if and only if $\sigma \sqsubseteq_{\text{must}} \tau$

Problem: given a (client) contract $K: \rho$ compute the least (\preceq) contract $K: \rho^{\perp}$ such that $\rho \dashv \rho^{\perp}$

Attempt 1: complement actions and swap choices

- $(a.e + b.e)^{\perp} = \overline{a} \oplus \overline{b}$
- swapping does not preserve equivalence

$$\{a, b, c\}$$
: $a.b.e + a.\overline{c}.e \simeq \{a, b, c\}$: $a.(b.e \oplus \overline{c}.e)$, but $\{a, b, c\}$: $\overline{a}.b \oplus \overline{a}.c \simeq \{a, b, c\}$: $\overline{a}.(b + c)$

- $(a.\overline{b}.e + a.\overline{c}.e)^{\perp} = \overline{a}.(b+c)$
- not enough for principality

$$a.e \dashv \overline{a} + a \text{ but } \{a\} : \overline{a} \not\preceq \{a\} : \overline{a} + a$$

Problem: given a (client) contract $K:\rho$ compute the least (\preceq) contract $K:\rho^{\perp}$ such that $\rho\dashv\rho^{\perp}$

Attempt 1: complement actions and swap choices

- $(a.e + b.e)^{\perp} = \overline{a} \oplus \overline{b}$
- swapping does not preserve equivalence

$$\{a, b, c\} : a.b.e + a.\overline{c}.e \simeq \{a, b, c\} : a.(b.e \oplus \overline{c}.e), \text{ but}$$

$$\{a,b,c\}: \overline{a}.b \oplus \overline{a}.c \not\simeq \{a,b,c\}: \overline{a}.(b+c)$$

- $(a.\overline{b}.e + a.\overline{c}.e)^{\perp} = \overline{a}.(b+c)$
- not enough for principality

$$a.e \dashv \overline{a} + a \text{ but } \{a\} : \overline{a} \not\preceq \{a\} : \overline{a} + a$$

Problem: given a (client) contract $K:\rho$ compute the least (\preceq) contract $K:\rho^{\perp}$ such that $\rho\dashv\rho^{\perp}$

Attempt 1: complement actions and swap choices

- $(a.e + b.e)^{\perp} = \overline{a} \oplus \overline{b}$
- swapping does not preserve equivalence

$$\{a, b, c\}$$
: $a.\overline{b}.e + a.\overline{c}.e \simeq \{a, b, c\}$: $a.(\overline{b}.e \oplus \overline{c}.e)$, but $\{a, b, c\}$: $\overline{a}.b \oplus \overline{a}.c \not\simeq \{a, b, c\}$: $\overline{a}.(b + c)$

- $(a.\overline{b}.e + a.\overline{c}.e)^{\perp} = \overline{a}.(b+c)$
- not enough for principality

$$a.e \dashv \overline{a} + a \text{ but } \{a\} : \overline{a} \not\prec \{a\} : \overline{a} + a$$

Problem: given a (client) contract $K: \rho$ compute the least (\preceq) contract $K: \rho^{\perp}$ such that $\rho \dashv \rho^{\perp}$

Attempt 1: complement actions and swap choices

- $(a.e + b.e)^{\perp} = \overline{a} \oplus \overline{b}$
- swapping does not preserve equivalence

$$\{a, b, c\}$$
: $a.\overline{b}.e + a.\overline{c}.e \simeq \{a, b, c\}$: $a.(\overline{b}.e \oplus \overline{c}.e)$, but $\{a, b, c\}$: $\overline{a}.b \oplus \overline{a}.c \not\simeq \{a, b, c\}$: $\overline{a}.(b + c)$

- $(a.\overline{b}.e + a.\overline{c}.e)^{\perp} = \overline{a}.(b+c)$
- not enough for principality

$$a.e \dashv \overline{a} + a \text{ but } \{a\} : \overline{a} \not\preceq \{a\} : \overline{a} + a$$

Problem: given a (client) contract $K:\rho$ compute the least (\preceq) contract $K:\rho^{\perp}$ such that $\rho\dashv\rho^{\perp}$

Attempt 1: complement actions and swap choices

- $(a.e + b.e)^{\perp} = \overline{a} \oplus \overline{b}$
- swapping does not preserve equivalence

$$\{a,b,c\}$$
: $a.\overline{b}.e + a.\overline{c}.e \simeq \{a,b,c\}$: $a.(\overline{b}.e \oplus \overline{c}.e)$, but $\{a,b,c\}$: $\overline{a}.b \oplus \overline{a}.c \not\simeq \{a,b,c\}$: $\overline{a}.(b+c)$

- $(a.\overline{b}.e + a.\overline{c}.e)^{\perp} = \overline{a}.(b+c)$
- not enough for principality

$$a.e \dashv \overline{a} + a \text{ but } \{a\} : \overline{a} \npreceq \{a\} : \overline{a} + a$$

Principal dual contracts: the definition at last

Ready set

$$\sigma \Downarrow \mathsf{r} \quad \mathsf{iff} \quad \sigma \Longrightarrow \sigma' \; \mathsf{and} \; \mathsf{r} = \mathsf{init}(\sigma')$$

The dual operator is relative to the interface K and works for "canonical" clients only

$$\mathrm{dual}(K:\rho) = \begin{cases} \ddots, & \text{if } \mathrm{init}(\rho) = \{\mathrm{e}\} \\ \\ \sum_{\rho \Downarrow \mathrm{r}, \mathrm{r} \backslash \{\mathrm{e}\} \neq \emptyset} \Big(\underbrace{0 \oplus \bigoplus_{\alpha \in \mathrm{r} \backslash \{\mathrm{e}\}} \overline{\alpha}.\mathrm{dual}(K: \bigoplus_{\rho \Longrightarrow \overset{\alpha}{\longrightarrow} \rho'} \rho') \Big) \\ \\ + \Big(0 \oplus \bigoplus_{\alpha \in (K \cup \overline{K}) \backslash \mathrm{init}(\rho) \neq \emptyset} , & \text{otherwise} \end{cases}$$

where $\overline{K} = \{ \overline{a} \mid a \in K \}$

Examples

```
• \operatorname{dual}(\{a\} : a.e) = \overline{a} : + (0 \oplus a.)

\simeq \overline{a} : \oplus (\overline{a} : + a.) \preceq \overline{a} + a

• \operatorname{dual}(\{a\} : a.e + e) = ... the same...

• \operatorname{dual}(\{a\} : a.e + e) = (0 \oplus \overline{a}.) + (0 \oplus a.)

\simeq 0 \oplus a. \oplus \overline{a}.

• \operatorname{dual}(\{a\} : rec \ x.a.x) = \overline{a}.\operatorname{dual}(\{a\} : rec \ x.a.x) + (0 \oplus a.)

\simeq rec \ x (\overline{a} \ x \oplus (\overline{a} \ x + a.))
```

Theorem

- **2** if $\rho \dashv \sigma$ and $K \subseteq I$, then $K : dual(K : \rho) \preceq I : \sigma$

Examples

```
• \operatorname{dual}(\{a\} : a.e) = \overline{a} \cdot + (0 \oplus a \cdot)

\simeq \overline{a} \cdot \oplus (\overline{a} \cdot + a \cdot) \preceq \overline{a} + a

• \operatorname{dual}(\{a\} : a.e \oplus e) = ... the same...

• \operatorname{dual}(\{a\} : a.e + e) = (0 \oplus \overline{a} \cdot) + (0 \oplus a \cdot)

\simeq 0 \oplus a \cdot \oplus \overline{a} \cdot

• \operatorname{dual}(\{a\} : rec \times a.x) = \overline{a} \cdot \operatorname{dual}(\{a\} : rec \times a.x) + (0 \oplus a \cdot)
```

Theorem

- **2** if $\rho \dashv \sigma$ and $K \subseteq I$, then $K : dual(K : \rho) \preceq I : \sigma$

Examples

```
• \operatorname{dual}(\{a\} : a.e) = \overline{a}. + (0 \oplus a.)

\simeq \overline{a}. \oplus (\overline{a}. + a.) \preceq \overline{a} + a

• \operatorname{dual}(\{a\} : a.e \oplus e) = \ldots the same...

• \operatorname{dual}(\{a\} : a.e + e) = (0 \oplus \overline{a}.) + (0 \oplus a.)

\simeq 0 \oplus a. \oplus \overline{a}.

• \operatorname{dual}(\{a\} : ) = \ldots exercise...

• \operatorname{dual}(\{a\} : \operatorname{rec} x.a.x) = \overline{a}.\operatorname{dual}(\{a\} : \operatorname{rec} x.a.x) + (0 \oplus a.)
```

Theorem

- $\rho \dashv \text{dual}(K : \rho)$
- **2** if $\rho \dashv \sigma$ and $K \subseteq I$, then $K : dual(K : \rho) \preceq I : \sigma$

Examples

```
• \operatorname{dual}(\{a\} : a.e) = \overline{a} \cdot + (0 \oplus a \cdot) \simeq \overline{a} \cdot \oplus (\overline{a} \cdot + a \cdot) \preceq \overline{a} + a

• \operatorname{dual}(\{a\} : a.e \oplus e) = \dots \text{the same.} \dots

• \operatorname{dual}(\{a\} : a.e + e) = (0 \oplus \overline{a} \cdot) + (0 \oplus a \cdot) \simeq 0 \oplus a \cdot \oplus \overline{a} \cdot

• \operatorname{dual}(\{a\} : \cdot) = \dots \text{ exercise.} \dots

• \operatorname{dual}(\{a\} : \text{rec } x.a.x) = \overline{a}.\operatorname{dual}(\{a\} : \text{rec } x.a.x) + (0 \oplus a \cdot)
```

Theorem

- $\bullet \rho \dashv \operatorname{dual}(K : \rho)$
- **2** if $\rho \dashv \sigma$ and $K \subseteq I$, then $K : dual(K : \rho) \preceq I : \sigma$

Examples

```
• \operatorname{dual}(\{a\}: a.e) = \overline{a}. + (0 \oplus a.)

\simeq \overline{a}. \oplus (\overline{a}. + a.) \leq \overline{a} + a

• \operatorname{dual}(\{a\}: a.e \oplus e) = \ldots the same...

• \operatorname{dual}(\{a\}: a.e + e) = (0 \oplus \overline{a}.) + (0 \oplus a.)

\simeq 0 \oplus a. \oplus \overline{a}.

• \operatorname{dual}(\{a\}: ) = \ldots exercise...

• \operatorname{dual}(\{a\}: \operatorname{rec} x.a.x) = \overline{a}.\operatorname{dual}(\{a\}: \operatorname{rec} x.a.x) + (0 \oplus a.)

\simeq \operatorname{rec} x.(\overline{a}.x \oplus (\overline{a}.x + a.))
```

Theorem

- $\bullet \cap \operatorname{dual}(K : \rho)$
- **2** if $\rho \dashv \sigma$ and $K \subseteq I$, then $K : dual(K : \rho) \preceq I : \sigma$

Examples

•
$$\operatorname{dual}(\{a\} : a.e)$$
 $= \overline{a}. + (0 \oplus a.)$
 $\simeq \overline{a}. \oplus (\overline{a}. + a.) \preceq \overline{a} + a$
• $\operatorname{dual}(\{a\} : a.e \oplus e)$ $= \ldots \text{the same.} \ldots$
• $\operatorname{dual}(\{a\} : a.e + e)$ $= (0 \oplus \overline{a}.) + (0 \oplus a.)$
 $\simeq 0 \oplus a. \oplus \overline{a}.$
• $\operatorname{dual}(\{a\} : rec \ x.a.x)$ $= \overline{a}.\operatorname{dual}(\{a\} : rec \ x.a.x) + (0 \oplus a.)$

Theorem

Let $K: \rho$ be a (client) contract and $I: \sigma$ be a (service) contract. Then

- $\rho \dashv \text{dual}(K : \rho)$
- **2** if $\rho \dashv \sigma$ and $K \subseteq I$, then K: dual $(K : \rho) \preceq I : \sigma$

 $= \overline{a}.dual(\{a\} : rec x.a.x) + (0 \oplus a.)$

 \simeq rec $x.(\overline{a}.x \oplus (\overline{a}.x + a.^{\cdot}))$

From services to choreographies

Web services and parallelism

- if $I : \sigma \leq J : \tau$, the service $J : \tau$ can be used in place of $I : \sigma$
- what happens if $I : \sigma$ is part of a larger system?
- larger system = choreography
- a choreography description specifies which communications occur in the (parallel) composition of n services
- a choreography description can be projected to a term

$$\Sigma = (I_1 : \sigma_1 \mid \cdots \mid I_n : \sigma_n) \setminus L$$

From services to choreographies

Web services and parallelism

- if $I : \sigma \leq J : \tau$, the service $J : \tau$ can be used in place of $I : \sigma$
- what happens if $I : \sigma$ is part of a larger system?
- larger system = choreography
- a choreography description specifies which communications occur in the (parallel) composition of *n* services
- a choreography description can be projected to a term

$$\Sigma = (I_1 : \sigma_1 \mid \cdots \mid I_n : \sigma_n) \setminus L$$

Lifting \leq to choreographies

Choreography refinement

$$\Sigma = (I_1 : \sigma_1 \mid \cdots \mid I_n : \sigma_n) \setminus L$$

$$\Sigma' = (J_1 : \tau_1 \mid \cdots \mid J_n : \tau_n) \setminus L'$$

$$|I_k:\sigma_k\preceq J_k:\tau_k|$$

Under which conditions can Σ' be safely used in place of Σ ?

- ② for every $1 \le i, j \le n$ with $i \ne j$ we have that $L' \cap (\texttt{names}(\tau_i) \setminus \texttt{names}(\sigma_i)) \cap (\texttt{names}(\tau_i) \setminus \texttt{names}(\sigma_i)) = \emptyset$

Theorem

If $K: \rho$ is compliant with Σ and Σ' is a refinement of Σ , then $K: \rho$ is also compliant with Σ'

Lifting \leq to choreographies

Choreography refinement

$$\Sigma = (I_1 : \sigma_1 \mid \cdots \mid I_n : \sigma_n) \setminus L$$

$$\Sigma' = (J_1 : \tau_1 \mid \cdots \mid J_n : \tau_n) \setminus L'$$

$$I_k : \sigma_k \leq J_k : \tau_k$$

Under which conditions can Σ' be safely used in place of Σ ?

- $\bullet \bigcup_{k \in 1..n} I_k \setminus L = \bigcup_{k \in 1..n} J_k \setminus L'$
- ② for every $1 \leq i, j \leq n$ with $i \neq j$ we have that $L' \cap (\texttt{names}(\tau_i) \setminus \texttt{names}(\sigma_i)) \cap (\texttt{names}(\tau_j) \setminus \texttt{names}(\sigma_j)) = \emptyset$

Theorem

If $K:\rho$ is compliant with Σ and Σ' is a refinement of Σ , then $K:\rho$ is also compliant with Σ'

Lifting \leq to choreographies

Choreography refinement

$$\Sigma = (I_1 : \sigma_1 \mid \cdots \mid I_n : \sigma_n) \setminus L$$

$$\Sigma' = (J_1 : \tau_1 \mid \cdots \mid J_n : \tau_n) \setminus L'$$

$$\boxed{I_k : \sigma_k \leq J_k : \tau_k}$$

Under which conditions can Σ' be safely used in place of Σ ?

- ② for every $1 \le i, j \le n$ with $i \ne j$ we have that $L' \cap (\texttt{names}(\tau_i) \setminus \texttt{names}(\sigma_i)) \cap (\texttt{names}(\tau_j) \setminus \texttt{names}(\sigma_j)) = \emptyset$

Theorem

If $K:\rho$ is compliant with Σ and Σ' is a refinement of Σ , then $K:\rho$ is also compliant with Σ'

Wrap-up

- theory for searching and reasoning about services by their contracts (= behavioral types)
- <u>≺</u> gives safe substitution of services
- <u>≺</u> can speed up querying Web service registries
- ullet \leq behaves well in choreographies

With respect to ⊑_{must}

- ⊢ has a (more) practical justification
- interfaces make \leq more general than \sqsubseteq_{must} (width and depth extensions are possible)
- interfaces permit the computation of finite principal dual contracts

Wrap-up

- theory for searching and reasoning about services by their contracts (= behavioral types)
- ≤ gives safe substitution of services
- <u>≺</u> can speed up querying Web service registries
- ullet \leq behaves well in choreographies

With respect to \sqsubseteq_{must}

- ⊢ has a (more) practical justification
- interfaces permit the computation of finite principal dual contracts

Related work

Foundations

- acceptance trees (Hennessy)
- testing processes (De Nicola, Hennessy)
- ccs without τ 's (De Nicola, Hennessy)

Contracts aka...

- session types (Gay, Hole, Vasconcelos)
- interface automata (De Alfaro)

Variations on the theme

- "Performace-oriented comparison of Web services via client-specific testing preorders", FMOODS'07 (Bernardo, Padovani)
- "A theory of contracts for Web services", POPL'08 (Castagna, Gesbert, Padovani)

What next?

Languages

- checking and inferring contracts
- progress guarantees for choreographies

Implementations

- from contracts to session types (and back)
- asynchrony

Extensions

names and higher-order Web services (WSDL 2.0)

Subcontract relation: alternative characterization

Coinductive subcontract relation

If $(I : \sigma, J : \tau) \in \mathcal{R}$, then $I \subseteq J$ and whenever $\sigma \downarrow$ then

- \bullet $\tau\downarrow$, and
- 2 $\tau \Downarrow r$ implies $\sigma \Downarrow s$ and $s \subseteq r$, and

Watch for condition 3

- $\{a,b,c\}$: $a.\overline{b} + a.\overline{c} \simeq \{a,b,c\}$: $a.(\overline{b} \oplus \overline{c})$
- no single a-derivative of $a.\overline{b} + a.\overline{c}$ is smaller than $\overline{b} \oplus \overline{c}$
- we take the internal choice of all the a-derivatives: $\overline{b} \oplus \overline{c}$

Theorem

 \preceq is the largest coinductive subcontract relation

Subcontract relation: alternative characterization

Coinductive subcontract relation

If $(I : \sigma, J : \tau) \in \mathcal{R}$, then $I \subseteq J$ and whenever $\sigma \downarrow$ then

- \bullet $\tau\downarrow$, and
- 2 $\tau \Downarrow r$ implies $\sigma \Downarrow s$ and $s \subseteq r$, and

Watch for condition 3

- $\{a,b,c\}$: $a.\overline{b} + a.\overline{c} \simeq \{a,b,c\}$: $a.(\overline{b} \oplus \overline{c})$
- no single a-derivative of $a.\overline{b}+a.\overline{c}$ is smaller than $\overline{b}\oplus\overline{c}$
- we take the internal choice of all the a-derivatives: $\overline{b} \oplus \overline{c}$

Theorem

 \preceq is the largest coinductive subcontract relation

Subcontract relation: alternative characterization

Coinductive subcontract relation

If $(I : \sigma, J : \tau) \in \mathcal{R}$, then $I \subseteq J$ and whenever $\sigma \downarrow$ then

- \bullet $\tau\downarrow$, and
- 2 $\tau \downarrow r$ implies $\sigma \downarrow s$ and $s \subseteq r$, and

Watch for condition 3

- $\{a,b,c\}$: $a.\overline{b} + a.\overline{c} \simeq \{a,b,c\}$: $a.(\overline{b} \oplus \overline{c})$
- no single a-derivative of $a.\overline{b}+a.\overline{c}$ is smaller than $\overline{b}\oplus\overline{c}$
- we take the internal choice of all the a-derivatives: $\overline{b} \oplus \overline{c}$

Theorem

 \preceq is the largest coinductive subcontract relation

An alternative compliance relation

- ρ is compliant with σ $(\rho \dashv \sigma)$ if $\rho \mid \sigma \Longrightarrow \rho' \mid \sigma'$ implies
 - **1** if $\rho' \mid \sigma' \longrightarrow$, then $\{e\} \subseteq init(\rho')$
 - **2** if $\sigma' \uparrow$, then $\{e\} = init(\rho')$

Practical implications

- a client cannot *try* to perform an action: $e + a.e \neq 0$
- among the actions proposed by the client, at least one must succeed

Theoretical implications

- 0 and are indistinguishable
- depth extensions are possible without interfaces: $\{a\}: 0 \leq \{a\}: a$

An alternative compliance relation

- ρ is compliant with σ $(\rho \dashv \sigma)$ if $\rho \mid \sigma \Longrightarrow \rho' \mid \sigma'$ implies
 - **1** if $\rho' \mid \sigma' \longrightarrow$, then $\{e\} = init(\rho')$
 - **2** if $\sigma' \uparrow$, then $\{e\} = init(\rho')$

Practical implications

- a client cannot *try* to perform an action: $e + a.e \neq 0$
- among the actions proposed by the client, at least one must succeed

Theoretical implications

- 0 and are indistinguishable
- depth extensions are possible without interfaces: $\{a\}: 0 \leq \{a\}: a$

The *must* preorder

- $\sigma_0 \mid \rho_0 \longrightarrow \sigma_1 \mid \rho_1 \longrightarrow \cdots$ is *maximal* if either it is infinite or the last term $\sigma_n \mid \rho_n$ is such that $\sigma_n \mid \rho_n \longrightarrow$
- σ must ρ if, for every maximal $\sigma \mid \rho = \sigma_0 \mid \rho_0 \longrightarrow \sigma_1 \mid \rho_1 \longrightarrow \cdots$, there exists $n \ge 0$ such that $\rho_n \stackrel{\mathrm{e}}{\longrightarrow}$

• $\sigma \sqsubseteq_{\mathtt{must}} \tau$ if and only if, for every ρ , σ must ρ implies τ must ρ

Lifting ⊢ to choreographies

Notation

- $\Sigma[i \mapsto J : \rho]$ is Σ where the *i*-th participant replaced by $J : \rho$
- write Σ_L when we want to recall the private names of the choreography

Transition relation of choreographies

$$\frac{\sigma \xrightarrow{\alpha} \sigma' \quad \text{names}(\alpha) \notin L}{\Sigma_{L}[i \mapsto I : \sigma] \xrightarrow{\alpha} \Sigma_{L}[i \mapsto I : \sigma']} \qquad \frac{\sigma \longrightarrow \sigma'}{\Sigma_{L}[i \mapsto I : \sigma] \longrightarrow \Sigma_{L}[i \mapsto I : \sigma']}$$
$$\frac{i \neq j \quad \sigma \xrightarrow{\alpha} \sigma' \quad \rho \xrightarrow{\overline{\alpha}} \rho' \quad \text{names}(\alpha) \in L}{\Sigma_{L}[i \mapsto I : \sigma][j \mapsto J : \rho]}$$

Compliance w.r.t. a choreography $\rho \dashv \Sigma$ (overload \longrightarrow)

(Missing) parallelism

- we restrict to *finite-state* conversations
- we may need to *overestimate* the contract of clients
- we may need to underestimate the contract of services
- we can use the expansion law for describing finite (sub)processes

$$egin{array}{cccccc} a \mid b & \simeq & a.b + b.a \ \overline{a} \mid a.b & \simeq & (\overline{a}.a.b + a.(\overline{a} \mid b) + b) \oplus b \ (\overline{a} \mid a.b) \setminus a & \simeq & b \end{array}$$

