Employee Attrition Analysis and Prediction Report

1. Problem Statement

Employee attrition is a critical challenge for organizations, leading to increased recruitment costs, loss of institutional knowledge, and reduced team morale. This project aims to:

- Predict attrition: Build a model to classify employees as "likely to leave" or "likely to stay."
- Identify drivers: Uncover key factors influencing attrition to inform retention strategies.
- **Provide actionable insights**: Recommend interventions to reduce turnover and improve employee satisfaction.

2. Methodology

The analysis followed a structured workflow:

1. Data Understanding:

- o Explored dataset structure, variables, and missing values.
- Analyzed descriptive statistics (e.g., mean age, income distribution).

2. Data Cleaning:

- Handled missing values via median (numerical) and mode (categorical) imputation.
- o Fixed encoding errors in categorical columns (e.g., "Bachelor's Degree").
- Dropped non-informative columns (e.g., Employee ID).

3. Train-Validation Split:

- Split data into 70% training (34,611 observations) and 30% validation (14,833 observations) sets.
- Ensured class balance preservation (Stayed = 83%, Left = 17%).

4. Exploratory Data Analysis (EDA):

- Performed univariate, bivariate, and correlation analysis.
- Visualized trends and relationships (see Section 5).

5. Feature Engineering:

- o Created dummy variables for categorical features (e.g., Gender, Job Role).
- Scaled numerical features using standardization.

6. Model Building:

- Trained a logistic regression model (GLM with binomial family and logit link).
- Evaluated performance using accuracy, sensitivity, specificity, and precision.

7. Validation:

Tested model generalizability on unseen data.

Analyzed feature importance via coefficients and odds ratios.

3. Techniques Used

Data Preprocessing

- **Missing Values**: Median imputation for numerical features (e.g., Monthly Income), mode imputation for categorical features (e.g., Education Level).
- Categorical Encoding: One-hot encoding for variables like Job Satisfaction and Work-Life Balance.
- **Feature Scaling**: Standardized numerical features (e.g., Age, Distance from Home) using StandardScaler.

Modeling

- Logistic Regression: Chosen for interpretability and suitability for binary classification.
- Multicollinearity Check: All VIF values < 2.0, confirming no significant collinearity.
- **Performance Metrics**: Accuracy, sensitivity, specificity, precision, and recall.

4. Visualizations

Training data between all the categorical columns and target variable to analyse how the categorical variables influence the target variable.

Figure 1: Class Distribution

Insight: Severe class imbalance, with "Stayed" dominating the dataset.

Figure 2: Correlation Heatmap

• Key Findings:

- Negative correlation between Work-Life Balance and attrition.
- Monthly
 Income and Job
 Level positively
 correlated with
 retention.

Figure 4: ROC Curve

• AUC: 0.79, indicating moderate model discriminative power.

5. Key Insights

A. Retention Drivers

- 1. Job Level:
 - o Senior employees are **12.6x more likely to stay** than junior staff.
- 2. Remote Work:
 - o Remote workers show **5.6x higher retention odds**.
- 3. Education:
 - o PhD holders are **4.4x more likely to stay**.

B. Attrition Drivers

1. Work-Life Balance:

Employees with "Poor" balance are 71% more likely to leave.

2. Marital Status:

o Single employees have 82% higher attrition risk.

3. Job Satisfaction:

o Paradoxically, "Very High" satisfaction correlates with attrition (38% higher risk).

C. Model Performance

Metric	Training	Validation
Accuracy	73.87%	73.57%
Sensitivity	75.33%	74.65%
Specificity	72.28%	72.40%
Precision	74.75%	74.59%

• **Consistency**: Minimal overfitting (training vs. test accuracy gap < 0.5%).

6. Actionable Outcomes

A. Retention Strategies

1. Target High-Risk Groups:

- Implement mentorship programs for single employees and those in low job levels.
- o Offer flexible hours to improve work-life balance in high-attrition departments.

2. Leverage Remote Work:

Expand remote work policies to retain talent (e.g., hybrid models).

3. Address the "Very High" Satisfaction Paradox:

o Conduct exit interviews to understand why highly satisfied employees leave.

B. Policy Recommendations

1. Compensation Review:

Benchmark salaries in roles with high attrition (e.g., Technology).

2. Reputation Management:

 Improve employer branding through transparency and employee engagement initiatives.

C. Model Deployment

- **Predictive Monitoring**: Flag at-risk employees using the model for proactive HR interventions.
- **Threshold Adjustment**: Tune classification cutoff to prioritize sensitivity (reduce false negatives).

7. Conclusion

The logistic regression model achieved **73.5% accuracy** with balanced sensitivity (75%) and specificity (72%), identifying **job level, remote work, and marital status** as critical attrition drivers. While the model provides actionable insights, addressing the paradox of "Very High" job satisfaction and expanding remote work policies are key next steps.

Future Work:

- Explore ensemble models (e.g., Random Forest) for improved accuracy.
- Conduct qualitative research to validate counter-intuitive findings.

Appendix:

• Confusion Matrix:

	Predicted "Stayed"	Predicted "Left"
Actual "Stayed"	10,450	1,200
Actual "Left"	1,350	2,833

This report equips stakeholders with data-driven strategies to enhance retention and operational efficiency.