MATH 4.1EL

Assignment 2

(Quadratic Equations in One Unknown)

T Yeung

Answer the questions in the spaces provided on the question sheets. If you do not know how to answer a certain question, write down where you get stuck. Answers can be corrected to 3 significant figures if necessary.

1 Factorization of Polynomials

1. Expand the following polynomials.

(a)
$$(x+y)^2$$

(c)
$$(x+y)(x-y)$$

(e)
$$(x-y)(x^2+xy+y^2)$$

(b)
$$(x-y)^2$$

(d)
$$(x+y)(x^2-xy+y^2)$$

2. Expand the following polynomials

(a)
$$(3x + 2y)^2$$

(c)
$$(3x+2y)(3x-2y)$$

(e)
$$(2x-3y)(4x^2+6xy+9y^2)$$

(b)
$$(2x - 3y)^2$$

(d)
$$(2x+y)(4x^2-2xy+y^2)$$

3. Factorize the following polynomials

(a)
$$x^2 + 9x + 8$$

(c)
$$x^3 - 3x^2 - 10x$$

(e)
$$m(x+y)^2 - 4m(x-y)^2$$

(b)
$$4x^2 + 20x + 25$$

(d)
$$(p+q)^2 - 9$$

(f)
$$(x-1)^2 + 16(x-1) + 64$$

2 Solving Quadratic Equations

Quadratic equations are polynomials with the degree 2. To solve a quadratic equation, we rely on the following fact heavily:

Theorem: Product being 0 implies one of its factors must be 0

For any real numbers m and n, if mn = 0, then m = 0 or n = 0 (or both).

- 4. Solve the quadratic equation (x+8)(x-1)=0.
- 5. Solve the quadratic equation $2x^2 x 3 = 0$.
- 6. Solve the quadratic equation $x^2 6x = -9$.
- 7. Solve the quadratic equation $81x^2 = 9$.
- 8. Solve the quadratic equation (7x-1)(3x-4) = 5(7x-1).

2.1 Graphical Method

- 9. Given the above graph, how should we solve $x^2 + 3x 4 = 0$, how about $\begin{cases} y = x^2 + 3x 4 \\ y = \frac{1}{4}x 4 \end{cases}$? Explain your reasoning behind your method.
- 10. According to the graphical method, when will the equation $ax^2 + bx + c = 0$ have no solution? How about one and two solutions? (a, b and c are constants) Explain your answer in terms of the shape of the graph.

2.2 Quadratic Formula

Theorem: Quadratic formula

The roots of the quadratic equation $ax^2 + bx + c = 0$ (where $a \neq 0$) are given by the formula below

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

11. Use the quadratic formula to solve the following quadratic equations.

(a)
$$x^2 - 4x - 5 = 0$$

(d)
$$3(2x+4) = 3 - 5x^2$$

(b)
$$6x^2 + 7x + 2 = 0$$

(e)
$$(x+3)(x-3) = x(3x+4)$$

(c)
$$5x^2 + 6x - 7 = 0$$

(f)
$$5x^2 + \frac{2}{5} = 2\sqrt{2}x$$

2.3 Discriminant

Theorem: Discriminant

The discriminant, often denotes as Δ is the expression inside the surd in the quadratic formula.

$$\Delta = b^2 - 4ac$$

Value of Δ	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
Number of real roots	2	1	0

12. Explain the why Δ has a relationship with the number of real roots.

13. If the quadratic equation $kx^2 + 70x - 25 = 0$ has two equal real roots, find the value of k.

14. If the quadratic equation $7x^2 - 3(x+1) = k - x$ intersect with the x-axis, find the range of values of k.

15. The base radius and the height of a solid right circular cylinder are (9+x) cm and (12-x) cm respectively.

(a) Express the curved surface area of the cylinder in terms of x.

(b) If the curved surface area of the cylinder is $200\pi\text{cm}^2$, use the graph of $y = -x^2 + 3x + 8$ to find the value(s) of x, correct to 1 decimal place.

16. The following shows some patterns.

1st pattern 2nd pattern

3rd pattern

Figure 1: A pattern with dots

(a) Deduce a quadratic formula in n for the number of dots in the n^{th} figure.

(b) If the number of dots in the m^{th} pattern is 506, find the value of m.

(c) If the total number of dots in the k^{th} and $(k+2)^{\text{th}}$ pattern is 422, find the value of k

(d) Is there a pattern with 307 dots? Explain your answer.

17. Given that the graph of $y = 16px^2 - 8(3p+2)x - 1$ touches the x-axis.

- (a) Find the two values of p
- (b) For each of the values of p, solve the equation $16px^2 8(3p+2)x 1 = 0$.

18. If the sum of two numbers is 36 and the sum of their reciprocals is $\frac{1}{5}$, find the two numbers.

Note: Reciprocals

The reciprocal of a number x is $\frac{1}{x}$, for example, the reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$.

19. (a) Solve the equation $2x^2 + 3x + 1 = 0$.

(b) Hence, solve the equation $\frac{1}{y^2} + \frac{3}{y} + 2 = 0$

3 Relations between Roots and Coefficients

Theorem: Sum of roots and Product of roots

For a quadratic equation $ax^2 + bx + c = 0$ with roots α and β ,

Sum of roots =
$$\alpha + \beta = -\frac{b}{a}$$

Product of roots =
$$\alpha\beta = \frac{c}{a}$$

Determine whether the following statements are correct.

20. ____The theorem is true for all complex roots α and β .

21. ____The theorem is true for quadratic equations with $\Delta < 0$.

22. $\underline{\hspace{0.2cm}} \alpha \neq \beta$

23. ____If a>0 and c>0, then $\alpha\beta>0$

24. Find the sum of roots and product of roots of the quadratic equation $3x^2 + 3x - 5$. Also, find the solutions α and β to verify the result.

25. If α and β are the roots of the equation $7x^2 - 2x - 1 = 0$, find the value of each of the following expressions, assuming that $\alpha > \beta$

(a)
$$(3 - \alpha)(3 - \beta)$$

(c)
$$7\alpha^2 + 2\beta$$

(e)
$$\alpha^2 + \beta^2$$

(b)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(d)
$$\frac{1+2\alpha}{\alpha^3} + \frac{1+2\beta}{\beta^3}$$

(f)
$$\alpha - \beta$$

Common mistake: $a^2 + b^2 \neq (a+b)^2$

$$a^{2} + b^{2} \neq (a+b)^{2} = a^{2} + 2ab + b^{2}$$

Visualize it!

Figure 2: $(a+b)^2 = a^2 + 2ab + b^2$

- 26. Form a quadratic equation in x with roots $6 + \sqrt{5}$ and $6 \sqrt{5}$.
- 27. If α and β are the roots of the equation $3x^2 5x 9 = 0$, form a quadratic equation in x with roots $\alpha + 2$ and $\beta 2$.
- 28. α and β are the roots of the equation $x^2 4x + 2 = 0$, where $\alpha > \beta$.
 - (a) Find the value of $\alpha \beta$
 - (b) Form a quadratic equation in x with roots $\frac{1}{\alpha} + \frac{1}{\beta}$ and $\frac{1}{\alpha} \frac{1}{\beta}$. (Leave the radical sign $\sqrt{ }$ in the answers.)
- 29. α and β are the roots of the equation $x^2 + 3x 8 = 0$.
 - (a) Find the value of $\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$.
 - (b) Form a quadratic equation in x with roots $\alpha \frac{1}{\alpha}$ and $\beta \frac{1}{\beta}$.

4 Exercises

30. If
$$\alpha \neq \beta$$
 and $\begin{cases} 3\alpha = \alpha^2 - 5 \\ 3\beta = \beta^2 - 5 \end{cases}$, then $\alpha\beta = ?$

31. If the roots of the quadratic equation
$$x^2 - kx + 3 = 0$$
 are α and β , then $\alpha^3 + \beta^3 =$

A.
$$k^3$$

B.
$$k^3 - 3k$$

C.
$$k^3 - 9k$$

D.
$$k^3 - 12k$$

32. If
$$\alpha$$
 and β are unequal real numbers, and

$$\begin{cases} \alpha^2 + 12\alpha = 2\\ \beta^2 + 12\beta = 2 \end{cases}$$
, then $(3\alpha + 1)(3\beta + 1) =$

B.
$$x = \frac{1}{6}$$

C.
$$x = 6 \text{ or } \frac{1}{6}$$

D.
$$x = -6$$

33. Solve the equation
$$x + \frac{1}{x} = 6 + \frac{1}{6}$$

A.
$$x = 6$$

B.
$$x = \frac{1}{6}$$

C.
$$x = 6 \text{ or } \frac{1}{6}$$

D.
$$x = -6$$

34. Which of the following quadratic equations can be formed from the roots
$$-k$$
 and $\frac{1}{k}(k \neq 0)$

A.
$$x^2 + (\frac{1}{k} - k)x - 1 = 0$$

B.
$$x^2 + (k - \frac{1}{k})x - 1 = 0$$

C.
$$x^2 + (\frac{1}{k} - k)x + 1 = 0$$

D.
$$x^2 + (k - \frac{1}{k})x + 1 = 0$$

35. Let
$$k$$
 be a constant. If the roots of the quadratic equation $x^2 + 4x + 3k = 0$ are α and β , then

A.
$$3k - 4$$

B.
$$3k + 4$$

C.
$$3k - 16$$

D.
$$3k + 16$$

36. If the equation
$$2x^2 + (4k-1)x - k + \frac{5}{4} = 0$$
 has no real roots in x , where k is a constant, find the range of possible values of k .

37. A piece of wire of length 42 cm is cut into two parts and bent into a square and an equilateral triangle respectively. If the area of the square and that of the triangle are in the ratio $4:\sqrt{3}$, find the length of the side of the square.