RUSSIA - KAZAN

International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1 2

railroad
Country: EST

Ameerika raudtee

Anna töötab lõbustuspargis ja vastutab uue ameerika raudtee ehitamise eest. Ta on juba projekteerinud n erilõiku (tähistatud 0...n-1), mis mõjutavad neil sõitva rongi kiirust. Nüüd peab ta need lõigud terviklikuks rajaks ühendama. Selles ülesandes võib eeldada, et rongi pikkus on null.

Erilõigul i (kus $i \in 0...n-1$) on kaks parameetrit:

- lõigule sisenemisel on kiirusepiirang: rongi kiirus **ei tohi ületada** s_i km/h;
- \circ lõigult väljumisel on rongi kiirus **täpselt** t_i km/h, sõltumata rongi kiirusest lõiku sisenemisel.

Valmis rada peab sisaldama kõiki n erilõiku mingis järjekorras, iga lõiku täpselt ühe korra. Järjestikuseid erilõike ühendavad omavahel tavalõigud. Anna peab valima n erilõigu järjekorra rajal ja seejärel neid ühendavate tavalõikude pikkused. Tavalõikude pikkusi mõõdetakse meetrites ja need võivad olla mistahes mittenegatiivsed täisarvud (ka nullid).

Tavalõigu iga meetri läbimisega väheneb rongi kiirus 1 km/h võrra. Raja alguses sõidab rong (Anna valitud järjekorras) esimesele erilõigule kiirusega 1 km/h.

Valmis rada peab rahuldama järgmisi tingimusi:

- o rong ei ületa ühegi erilõigu alguses selle kiirusepiirangut;
- rongi kiirus on positiivne kogu raja ulatuses, kuni viimase erilõigu lõppu jõudmiseni.

Kõigis alamülesannetes peale alamülesande 3 on vaja leida tavalõikude vähim võimalik kogupikkus. Alamülesandes 3 tuleb ainult tuvastada, kas on võimalik koostada rada, millel kõigi tavalõikude pikkused on nullid.

Realisatsioon

Sinu lahendus peab realiseerima järgmise funktsiooni (meetodi):

- o int64 plan roller coaster(int[] s, int[] t).
 - s: n elemendiga massiiv, maksimaalsed erilõikudele sisenemise kiirused;
 - t: n elemendiga massiiv, erilõikudelt väljumise kiirused;
 - o kõigis alamülesannetes peale alamülesande 3 peab funktsioon tagastama erilõikude vahel olevate tavalõikude vähima võimaliku kogupikkuse; alamülesandes 3 peab funktsioon tagastama nulli, kui on võimalik koostada rada, millel kõigi tavalõikude pikkused on nullid, või mistahes positiivse arvu, kui selline rada pole võimalik.

C keeles on funktsiooni liides natuke teistsugune:

- o int64 plan_roller_coaster(int n, int[] s, int[] t)
 - on: massiivide s ja t elementide arv (erilõikude arv),
 - teised parameetrid on samasugused nagu eelmisel juhul.

Näide

```
plan_roller_coaster([1, 4, 5, 6], [7, 3, 8, 6])
```

Selles näited on neli erilõiku. Parima lahenduse annab erilõikude järjekord 0, 3, 1, 2 ja nendevaheliste tavalõikude pikkused 1, 2, 0. Sellisel rajal sõidab rong järgmiselt:

- Rong alustab kiirusega 1 km/h.
- Rong siseneb erilõigule 0.
- Rong väljub erilõigult 0 kiirusega 7 km/h.
- Seejärel on tavalõik pikkusega 1 m. Selle lõpus on rongi kiirus 6 km/h.
- Rong siseneb erilõigule 3 kiirusega 6 km/h ja väljub sama kiirusega.
- Pärast erilõigust 3 väljumist läbib rong 2 m pikkuse tavalõigu. Selle lõpus on rongi kiirus 4 km/h.
- Rong siseneb erilõigule 1 kiirusega 4 km/h ja väljub kiirusega 3 km/h.
- Kohe pärast erilõiku 1 sõidab rong erilõigule 2.
- Rong väljub erilõigust 2. Tema lõppkiirus on 8 km/h.

Funktsioon peab tagastama erilõikude vahel olevate tavalõikude pikkuste summa: 1+2+0=3.

Alamülesanded

Kõigis alamülesannetes kehtib $1 \le s_i \le 10^9$ ja $1 \le t_i \le 10^9$.

- 1. (11 punkti): $2 \le n \le 8$,
- 2. (23 punkti): $2 \le n \le 16$,
- 3. (30 punkti): $2 \le n \le 200\,000$. Selles alamülesandes peab Sinu program ainult kontrollima, kas vastus on null või mitte. Kui tegelik vastus ei ole null, loetakse iga positiivne arv õigeks vastuseks.
- 4. (36 punkti): $2 \le n \le 200000$.

Näitekood

Näitekood loeb sisendi järgmisel kujul:

- Rida 1: täisarv n.
- Read 2 + i (kus i = 0...n 1): täisarvud s_i ja t_i .