1

Assignment 1 - EE1030

ee24btech11018 - D. Swaraj Sharma

SECTION-B // JEE MAIN / AIEEE

1. If $1, \log_9(3^{1-x} +$	2), $\log_3(4.3^x - 1)$ are in A.P then
x equals	[2002]
x equals (a) log ₁ 4	(b) $1 - \log_3 4$

(c) $1 - \log_4 3$

(b) $1 - \log_3$ (d) $\log_4 3$

2. l, m, n are the p^{th}, q^{th} and r^{th} term of a G.P. all $\log l p 1$ positive, then $|\log m - q| = 1$ equals [2002] $\log n$ r 1

(a) 1

(b) 2

(c) 1

(d) 0

3. The value of $2^{\frac{1}{4}}.4^{\frac{1}{8}}.8^{\frac{1}{16}}...\infty$ is (b) 2 [2002]

(d) 4(c) 3/2

4. Fifth term of a GP is 2, then the product of its 9 terms is [2002]

(a) 256

(b) 512

(c) 1024

(d) none of these

5. Sum of infinite number of terms of a GP is 20 and sum of their square is 100. The common ratio of GP is [2002]

(a) 5

(b) 3/5

(c) 8/5

(d) 1/5

6. $1^3 - 2^3 + 3^3 - 4^3 + \dots + 9^3 =$ (a) 425 (b) -425[2002]

(c) 475

(d) -475

7. The sum of the series

 $\frac{1}{1.2} - \frac{1}{2.3} + \frac{1}{3.4} \cdots$ up to ∞ is equal to (a) $\log_e(\frac{4}{e})$ (b) $2\log_e 2$ [2003]

(c) $\log_e \tilde{2} - 1$

8. If $S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$ and $t_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{S_n}$ is equal

(a) $\frac{2n-1}{2}$ (c) n-1

9. Let T_r be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers $m, n, m \neq n, T_m = \frac{1}{n}$ and $T_n = \frac{\hat{1}}{m}$, then a - d equals

(a) $\frac{1}{m} + \frac{1}{n}$ (c) $\frac{1}{m}$

(b) 1

(d) 0

10. The sum of the first *n* terms of the series $1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \cdots$ is $\frac{n(n+1)^2}{2}$ when *n* is even. When *n* is odd the sum is [2004]
(a) $\left[\frac{n(n+1)}{2}\right]^2$ (b) $\frac{n^2(n+1)}{2}$ (c) $\frac{n(n+1)^2}{4}$ (d) $\frac{3n(n+1)}{2}$

11. The sum of series $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots$ is [2004] (a) $\frac{(e^2-2)}{e}$ (b) $\frac{n^2(n+1)}{2}$ (c) $\frac{n(n+1)^2}{2e}$ (d) $\frac{(e^2-1)}{2}$

12. If the coefficients of rth, (r+1)th, and (r+2)th terms in the bionomial expansion of $(1 + y)^m$ are in A.P., then m and r satisfy the equation

(a) $m^2 - m(4r - 1) +$ (b) $m^2 - m(4r + 1) +$ $4r^2 - 2 = 0$ $4r^2 + 2 = 0$

 $4r^{2} - 2 = 0$ (c) $m^{2} - m(4r + 1) + (d) m^{2} - m(4r - 1) + 4r^{2} - 2 = 0$ $4r^{2} + 2 = 0$ $4r^{2} + 2 = 0$ $4r^{2} + 2 = 0$

13. If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$ where a, b, c are in A.P and |a| < 1, |b| < 1, |c| < 1 then x, y, zare in (a) G.P.

Arithmetic (c) Geometric

(b) A.P. (d) H.P.

Progression

14. The sum of the series $1 + \frac{1}{4.2!} + \frac{1}{16.4!} + \frac{1}{64.6!} +$

 $\begin{array}{l}
\cdots \infty is \\
\text{(a)} \ \frac{e-1}{\sqrt{e}} \\
\text{(c)} \ \frac{e-1}{2\sqrt{e}}
\end{array}$

15. Let $a_1, a_2, a_3 \cdots$ be terms on A.P. If $\frac{a_1 + a_2 + \cdots + a_p}{a_1 + a_2 + \cdots + a_p} = \frac{1}{a_1 + a_2 + \cdots + a_p}$ $\frac{p^2}{q^2}$, $p \neq q$, then $\frac{a_6}{a_{21}}$ equals (a) $\frac{41}{11}$ (c) $\frac{2}{7}$

(b) $\frac{7}{2}$ (d) $\frac{11}{41}$