Kinematics of Mechanisms

- Instant Centers
- Aronhold-Kennedy Theorem

Planar Body Motion Assumptions

- Rigid Body Motion
 - No axial deformation
 - No twisting
 - No bending
- Planar Motion
 - In a single plane
 - In parallel planes

Velocity at Points on a Rigid Body

- Rigid Body Motion
 - No axial deformation
 - No twisting
 - No bending
- Planar Motion
 - In a single plane
 - In parallel planes
- Link Expansion
 - Any point in the plane can move with the link
- The Link appears to Rotate about a Point

Location of the Instant Centers of Velocity

In General

$$\vec{v} = \vec{\omega} \times \vec{r}$$

For Planar Problems

$$\vec{\mathbf{v}} = \boldsymbol{\omega} \cdot \hat{k} \times \vec{r}$$

If ω and r are perpendicular

$$v = \omega \cdot r$$

I₁₂ is the instant center between the body AB and the ground.

Instant Centers of Velocity Definition:

Instant Center Revolute Joint/Pin Connections

Instant Center Prismatic Joint/Sliding Body

Instant Center Rolling-NO Slip Contact

Aronhold-Kennedy Theorem

- The three instant centers shared by three rigid bodies in relative motion to one another all lie on the same straight line
- They do not have to be connected
- Independently Discovered
 - S.H. Aronhold (1872) German Speaking Countries
 - A.B.W. Kennedy (1886) English Speaking Countries

Aronhold-Kennedy Theorem

Aronhold-Kennedy Theorem

Instant Center Rolling-Slip Contact

The Number of Instant Centers Can Be Calculated

Because any two links in a mechanism have motion relative to one another, they have a common Instant Center.

$$N = \frac{n(n-1)}{2}$$

The number of links in a mechanism taken two at a time.

Primary Instant Centers Can Be Found By Inspection

- 1. Instant Centers for Pin Connected Links
- 2. Instant Centers for Sliding Bodies
- 3. Instant Centers for Rolling Bodies
- 4. Instant Centers for Direct-Contact Mechanisms
 - a. Rolling Contact
 - b. Sliding Contact

Other ICs Are Found Using Circle Diagram Method Along with A-K

Finding Instant Centers

Finding Instant Centers

TYPE I (RRRR): 4 - BAR

TYPE II: (RRRP): SLIDER CRANK

TYPE II: (RRRP)

Type III: RRPP Elliptic Trammel

Type III: RRPP Elliptic Trammel

Type III: RRPP Elliptic Trammel: Scotch Yoke

Type IV: RPRP Rapson Slide Linkage

Rolling Instant Centers

4 Bar Linkage Instant Centers

Slider Crank Instant Centers

Another Slider Crank

Instant Centers

