

SPECIFICATION TECHNIQUE DE BESOIN

Version: 0.2

Date: 03/11/2016

Rédigé par : L'équipe SmartLogger

Relu par : L'équipe SmartLogger

Approuvé par : ---

Signature du superviseur :

Objectif : Ce document est destiné à traduire les besoins des utilisateurs du logiciel et à établir une référence pour sa validation. Il doit être élaboré en coopération avec le demandeur puis approuvé par ce dernier. Son but est de recenser les principales exigences que l'équipe de développement s'engage à satisfaire dans le cadre du projet.

Master 1 GIL - Conduite de Projet

SmartLogger Spécification Technique du Besoin

HISTORIQUE DE LA DOCUMENTATION

Version	Date	Modifications réalisées
0.1	03/11/16	Création
0.2	10/11/16	Augmentation et correctifs

Master 1 GIL - Conduite de Projet

SmartLogger

Spécification Technique du Besoin

1. Objet:

Le but du projet est de créer un système, permettant d'alerter l'utilisateur sur des données en provenance d'applicatifs défectueux dans l'optique de faciliter leurs correctifs. Une fois produit, ce système sera utilisé par l'entreprise cliente à leurs propres fins.

L'objectif est donc de mettre en place un système d'alarme qui disposerait de ses propres capacités d'apprentissage. Sa tâche principale sera de prioriser les différentes données à traiter selon leur niveau de criticité et d'adopter une stratégie de prévention adaptée.

Sur le long terme, ce dernier devra améliorer son analyse en exploitant ses résultats précédents afin de constamment améliorer le taux de confiance des alertes émises. L'enjeu sera donc de créer un système combinant facultés d'analyse et de prédiction.

Dans cette optique, l'entreprise client nous a recommandé l'emploi de certaines technologies qui, pour la plupart, sont connues et utilisées pour leurs propres projets.

Ceci inclut:

- Spring Boot : afin de réaliser la partie applicative.
- Angular 2 : pour la réalisation de l'interface graphique.
- Spark : pour la mise en place des algorithmes.

Le développement du projet entier ne repose sur aucune fonctionnalité ou logiciel existant.

De ce fait, l'équipe projet devra concevoir le fonctionnement du système dans son intégralité et en assurer la production.

Cependant, comme demandé par le client, le produit final devra respecter les contraintes suivantes :

- Il devra analyser des flux de données de type Shinken, Logstash et Apache Kafka.
- Il alertera les opérateurs en employant des moyens de communication utilisés par l'entreprise, tels que l'application Slack, l'envoi de mails ou par notification SMS.
- Il pourra s'adapter à des flux de données ou méthodes d'alerte non prédéfinies qui seront implantées dans le système par de futurs utilisateurs.
- Enfin, il devra fonctionner sur de longues périodes de fonctionnement et, dans l'idéal, être opérationnel indéfiniment.

2. <u>Documents applicables et de référence</u>

• Le document de spécification client : SmartLogger.pdf

3. <u>Terminologie et sigles utilisés</u>

Définitions et Notions :

Log: Un fichier log ou «log» est un fichier contenant l'historique des événements d'un processus en particulier. Ici, nous considérerons des logs issus d'applications WEB externes.

Événement: Un événement représente un changement au sein d'un processus. Il peut s'agir d'un changement en mémoire (ajout d'une donnée), un changement dans l'interface (clic de souris), etc.

<u>Flux de données</u>: Un flux de données représente une quantité potentiellement illimitée de données qui est manipulée sur un laps de temps défini afin d'en extraire une certaine quantité.

Traitement en temps réel: Un traitement est réalisé en temps réel, si le système qui l'effectue peut adapter sa vitesse à l'évolution de ce dernier.

Machine Learning (ML) : Champ d'étude de l'intelligence artificielle ayant pour but de faire évoluer, au cours du temps, la façon dont un système effectue un même traitement. Par extension, un algorithme de Machine Learning est un algorithme permettant d'implanter une telle capacité d'apprentissage à un système.

User Interface (UI) : Désigne une application pouvant être manipulée par un utilisateur dans le but d'utiliser un système.

Technologies employées :

SGBD: Système de gestion de base de données, permet de stocker, manipuler et organiser un (très) grand nombre de données diverses.

Shinken : Application permettant la surveillance de systèmes et de réseaux. Elle surveille les hôtes et services spécifiés, lancant une alerte lorsque les systèmes vont mal et quand ils vont mieux.

<u>Logstash</u>: Outil informatique permettant de gérer des événements et des logs.

Apache Kafka: Projet open-source visant à fournir un système unifié en temps réel à latence faible pour la manipulation de flux de données.

Slack : Logiciel de gestion de projets, principalement utilisé pour son système de communication entre membres d'équipes de projet.

MongoDB : SGBD orienté documents, il permet de manipuler des données sans avoir à concevoir la façon dont ces dernières seront gérées en interne.

NoSQL : Désigne une certaine famille de SGBDs pouvant manipuler de plus grands volumes de données en outrepassant d'anciennes règles pré-établies sur les autres types de SGBD.

4. Exigences fonctionnelles

4.1. Présentation de la mission du produit logiciel

Le logiciel final, bien que scindé en plusieurs parties distinctes, sera déployé sur un serveur externe appartenant au client puisqu'il nécessite divers flux de données issus de systèmes extérieurs. Il agira en tant qu'intermédiaire entre les logs et les opérateurs de maintenance, prenant ainsi position dans ce type de procédure.

Sa fonction principale reposera sur la mécanique suivante :

- La première phase consiste en la récupération des données. En effet, vu qu'elles proviennent de sources extérieures au système, il faudra veiller à leur conformité mais également à la cohérence de leur contenu. Le but étant de protéger la machine contre des attaques externes (e.g. :injections de code) ou échantillons de données qui tronqueraient le modèle de prévision mis en place.
- La deuxième phase consiste en l'analyse de ces dites données. Celle-ci s'opère à deux niveaux :
 - Une analyse brute qui déterminera l'état de l'applicatif en fonction des données physiques présentes sur le log. Il permet de déterminer l'état d'une application à un instant donné.
 - Une analyse prédictive qui emploiera des algorithmes de Machine Learning pour déterminer l'état d'une application dans un futur proche.

Cette analyse permettra d'identifier des défaillances dans certains logiciels. Ces défaillances seront alors classifiées puis triées selon leur niveau de criticité.

• La troisième phase exploite la classification précédente : si le résultat d'une analyse témoigne d'un état critique, le système va alors alerter les différents opérateurs concernés au moyen de canaux de communication (Slack, Mail, SMS).

Néanmoins, pour fournir une telle capacité de prédiction au système, il va falloir fournir des jeux d'essais et offrir la possibilité d'ajuster les traitements effectués afin de perfectionner le processus d'analyse prédictive .

Le système devra donc proposer à un utilisateur, via une interface graphique, de pouvoir modifier la façon dont un échantillon de données précis doit être convenablement traité, mais également de pouvoir rajouter des échantillons supplémentaires pour augmenter la capacité prédictive du logiciel.

Ainsi, en fonction de ses tâches, le système accordera un certain niveau de permission selon le rôle à assurer ; ce qui permet de partitionner la fonction de chaque utilisateur vis-à-vis du système.

Master 1 GIL - Conduite de Projet

SmartLogger

Spécification Technique du Besoin

De ce fait, le système distinguera 4 profils d'utilisateurs différents :

- Les **systèmes informatiques:** les principaux bénéficiaires du système.
- Les **entraîneurs**: Des utilisateurs qui réalisent l'apprentissage initial du système en fournissant des jeux d'essais.
- Les **testeurs**: Des entraîneurs particuliers pouvant modifier le comportement de l'analyse.
- Les **opérateurs :** Des utilisateurs polyvalents pouvant assurer le rôle de testeur ou donner des ordres directs au système afin de procéder à la réutilisation de données exploitables.

On décrira alors les différents modes de fonctionnement en 4 cas distincts :

4.2. Mode de fonctionnement principal

Ce mode de fonctionnement comporte un sous-cas de fonctionnement selon la cohérence des données reçues :

4.2.1. Fonctionnement lors du stockage de données erronées

	Stockage de données erronées			
Acteurs concernés				
Description	Intervient lorsqu'un système externe envoie des données erronées ou incohérentes au système.			
	Si une erreur apparaît lors de la conversion ou de la vérification des données, on procède à leur stockage en attendant leur possible exploitation future (format inconnu, etc.)			
	On envoie également une alerte afin de notifier les opérateurs de cette anomalie.			
Pré-conditions	Idem 4.1			
Événements déclenchants				
Conditions d'arrêt	b) The natification à unidee enérgique (a) e été enveyée			
Diagramme de cas				
Systèmes externes	Envoi de données Conversion Stockage des données Vérification Envoi d'une alerte Sortie			

4.3. Réutilisation de données

	Réutilisation de données			
Acteurs concernés	Un opérateur, le système (Interface, Entrée, DB, ML, Sortie)			
Description				
Pré-conditions	a) Le système est opérationnel. b) Le système dispose de données à traiter. c) Le système est inactif (ne réalise aucune autre tâche).			
Événements déclenchants	h) La companion des demotes a fabricá			
Conditions a) Les données sont stockées dans la base de données. b) Une alerte est envoyée.				
-	t d 'événements principal :			
Force	Données Conversion Conversion Récupération des données Vérification Vérification Stockage des données Sortie Sortie			

Entraînement du système 4.4.

	Entraînement de la Machine			
Acteurs concernés				
Description	Mode de fonctionnement correspondant à l'entraînement de la Machine Learning.			
	A cet effet, l'opérateur entre un jeu de données au système. Ce dernier effectue alors le même processus qu'en 4.1, à la différence qu'il affiche les résultats sur l'interface graphique.			
	Dans ce cas de figure, l'opérateur peut également consulter la base de données afin de vérifier certains résultats précédents.			
Pré-conditions	 a) Le système est opérationnel. b) La base de données possède des données affichables. c) Le système est inactif (ne réalise aucune autre tâche). 			
Événements	Action de l'opérateur sur l'interface.			
déclenchants				
Conditions	Fin des processus d'affichage et d'apprentissage.			
d'arrêt				
	d 'événements principal :			
l r	nterface Utilisateur Entrée Machine Learning			
<u>,</u>	Entrée de données Vérification Actions Apprentissage Consultation			
Entraineur	Affichage Envoi de données Renvoie les données Sortie Base de Données			

4.5. Ajustement du comportement de la machine.

Ajuste	ement du comportement de la machine		
Acteurs concernés	Un testeur, le système (Interface, Entrée, ML, Sortie).		
Description	Correspond à l'ajustement de l'analyse de la machine. L'interface sert alors d'intermédiaire entre l'opérateur et le système, lui permettant de réaliser des modifications. Ce dernier les applique puis, confirme leur application.		
Pré-conditions	a) Le système est opérationnel. b) Le système est inactif (ne réalise aucune autre tâche).		
Événements déclenchants			
Conditions d'arrêt Description du flot	La machine a confirmé les différentes modifications effectuées. t d 'événements principal :		
	Corrige le comportement de la modification Affichage Entrée Entrée Ajustement du comportement Confirmation de la modification Sortie		

5. Exigences opérationnelles

Référence	Désignation	Priorité
OP-1	Le système doit fonctionner sans interruption	Essentiel
OP-1.1	La maintenance du système doit s'opérer le plus rapidement possible.	Essentiel
OP-1.2	Le nombre d'arrêts du système doit être le plus faible possible, sur toute la période de sa durée de vie. (Hors opérations d'ajout de modules externes)	
OP-1.3	Le système doit être conçu pour fonctionner sur un serveur de type Linux.	Essentiel
OP-2	Le traitement des résultats doit être adapté à la	Essentiel
	criticité détectée	
OP-2.1	Les détections de failles critiques doivent mener à une levée d'alerte.	Essentiel
OP-2.2	Les détections de failles mineures doivent être signalées avec une importance moindre qu'une alerte.	Essentiel
OP-2.3	Les résultats sans importance ne doivent pas être signalés.	Essentiel
OP-3	Toute donnée manipulée par le système doit être enregistrée	Essentiel
OP-3.1	Les données incohérentes ou non vérifiées seront stockées sans traitement préalable.	Essentiel
OP-3.2	Les données valides doivent être chiffrées avant enregistrement, afin d'assurer une sécurité sur les données.	Optionnel
OP-3.3	Les résultats issus d'une analyse seront stockés avec les données brutes correspondantes.	Essentiel
OP-4	Le système doit fonctionner de manière cyclique	Essentiel
OP-4.1	Les résultats des analyses seront envoyés à intervalle régulier.	Essentiel
+ OP-4.1.1	Un script devra assurer l'envoi de résultats toutes les X secondes.	Essentiel
+ OP-4.1.2	Même si une analyse est en cours, le système doit procéder à un envoi de l'ensemble des résultats obtenus.	Essentiel
OP-4.2	Chaque cycle d'exécution doit commencer par un traitement des données reçues.	Essentiel
OP-4.3	Chaque cycle d'exécution doit se terminer par un apprentissage des données traitées.	Essentiel

6. Exigences d'interface

Référence	Désignation	Priorité
IN-1	L'interface d'entrée du système doit pouvoir	Essentiel
	traiter tout type de log	
IN-1.1	L'interface d'entrée doit offrir la possibilité d'utiliser plusieurs types de données prédéfinis.	Essentiel
+ IN-1.1.1	L'entrée doit gérer des flux de type Apache Kafka, de type Logstash et de type Shinken.	Essentiel
IN-1.2	L'interface d'entrée doit pouvoir être modifiée afin d'accepter de nouveaux types de données.	Essentiel
IN-2	L'interface de sortie doit disposer de plusieurs	Essentiel
	fonctionnalités d'alerte et de notification	
IN-2.1	L'interface de sortie doit disposer de plusieurs fonctionnalités prédéfinies afin d'effectuer ses alertes.	Essentiel
+ IN-	La sortie doit pouvoir effectuer ses alertes par Mail et	Essentiel
2.1.1	via l'application Slack.	
+ IN-	La sortie doit pouvoir effectuer ses alertes par SMS.	Optionnel
2.1.2		
IN-2.2	L'interface de sortie doit pouvoir s'adapter à des formats de sorties supplémentaires.	Essentiel

7. Exigences de qualité logicielle et de réalisation

Référence	Désignation	Priorité
QR-1	La compréhension du code source doit être facilitée	Essentiel
QR-1.1	Le code source fourni doit être propre et commenté.	Essentiel
QR-1.2	Les identificateurs de variables et de fonctions doivent être significatifs de leur utilité.	Essentiel
QR-1.3	Les identificateurs utilisés doivent être issus de la langue anglaise.	Essentiel
QR-1.4	Le code source final devra être correctement documenté.	Essentiel
QR-2	Le type de programmation employé doit être le plus	Important
	modulaire possible	
QR-2.1	Les nouveaux types de flux d'entrées doivent être facilement implémentables, au moyen de nouveaux modules d'entrée.	Essentiel
QR-2.2	L'ajout de nouvelles méthodes d'alerte ou de notification souhaitées, doit pouvoir s'effectuer de façon simple, en ajoutant de nouveaux modules de sortie.	Essentiel
QR-2.3	Les modules algorithmiques gérant la partie d'analyse prédictive du système doivent être interchangeables.	Essentiel