Importing Libraries

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Loading Dataset

 $\label{ling.csv'} $$ df=pd_read_csv(r'C:\Users\LENOVO\Downloads\Churn_Modelling.csv')$$ df.shape $$ (10000, 14)$$ df.head()$

G1.	iicuu()													
	Row Num ber	Cust omer Id	Sur na me	Credi tScor e	Geog raph y	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	HasC rCar d	IsActiv eMemb er	Estimat edSalar y	Ex ite d
0	1	1563 4602	Har grav e	619	Fran ce	Fe mal e	4 2	2	0.00	1	1	1	101348. 88	1
1	2	1564 7311	Hill	608	Spai n	Fe mal e	4	1	8380 7.86	1	0	1	112542. 58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe mal e	4 2	8	1596 60.8 0	3	1	0	113931. 57	1
3	4	1570 1354	Bon i	699	Fran ce	Fe mal e	3 9	1	0.00	2	0	0	93826.6	0
4	5	1573 7888	Mit chel l	850	Spai n	Fe mal e	4 3	2	1255 10.8 2	1	1	1	79084.1 0	0
df.	tail()													
	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
9 9 9 5	9996	1560 6229	Obij iaku	771	Fran ce	Ma le	3 9	5	0.00	2	1	0	96270.6 4	0

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
9 9 9 6	9997	1556 9892	Joh nsto ne	516	Fran ce	Ma le	3 5	10	573 69.6 1	1	1	1	101699. 77	0
9 9 9 7	9998	1558 4532	Liu	709	Fran ce	Fe ma le	3 6	7	0.00	1	0	1	42085.5 8	1
9 9 9 8	9999	1568 2355	Sab bati ni	772	Ger man y	Ma le	4 2	3	750 75.3 1	2	1	0	92888.5	1
9 9 9	10000	1562 8319	Wal ker	792	Fran ce	Fe ma le	2 8	4	130 142. 79	1	1	0	38190.7 8	0

Visualizations

1. Univariate

 $sns. distplot (df ['Estimated Salary'], hist = \pmb{True})$

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

 $<\!\!AxesSubplot:\!xlabel=\!'EstimatedSalary',\,ylabel=\!'Density'\!\!>$

2. Bivariate

sns.relplot(x='Age',y='Balance',data=df) <seaborn.axisgrid.FacetGrid at 0x1fd190d2070>

sns.catplot(x='Geography',y='CreditScore',data=df)
for categorical data

<seaborn.axisgrid.FacetGrid at 0x1fd194e8d90>

3. Multivariate

sns.relplot(x='Age',y='Balance',hue='Geography',data=df) <seaborn.axisgrid.FacetGrid at 0x1fd1956e580>

sns.boxplot(x='Exited',y='CreditScore',hue='Gender',data=df) # for categorical data

<AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

Descriptive Statistics

df.describe()												
	RowN umbe r	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product s	HasC rCard	IsActive Membe r	Estimat edSalar y	Exited	
co un t	10000. 00000	1.0000 00e+0 4	10000. 00000 0	10000. 00000 0	10000. 00000 0	10000. 000000	10000.0 00000	10000 .0000 0	10000.0 00000	10000.0 00000	10000. 00000 0	
m ea n	5000.5 0000	1.5690 94e+0 7	650.52 8800	38.921 800	5.0128	76485. 889288	1.53020 0	0.705 50	0.51510	100090. 239881	0.2037 00	
st d	2886.8 9568	7.1936 19e+0 4	96.653 299	10.487 806	2.8921 74	62397. 405202	0.58165 4	0.455 84	0.49979 7	57510.4 92818	0.4027 69	
mi n	1.0000	1.5565 70e+0 7	350.00 0000	18.000 000	0.0000	0.0000	1.00000	0.000	0.00000	11.5800 00	0.0000	
25 %	2500.7 5000	1.5628 53e+0 7	584.00 0000	32.000 000	3.0000	0.0000	1.00000	0.000	0.00000	51002.1 10000	0.0000	

	RowN umbe r	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product s	HasC rCard	IsActive Membe r	Estimat edSalar y	Exited
50 %	5000.5 0000	1.5690 74e+0 7	652.00 0000	37.000 000	5.0000	97198. 540000	1.00000	1.000	1.00000	100193. 915000	0.0000
75 %	7500.2 5000	1.5753 23e+0 7	718.00 0000	44.000 000	7.0000	127644 .24000 0	2.00000	1.000	1.00000	149388. 247500	0.0000
m ax	10000. 00000	1.5815 69e+0 7	850.00 0000	92.000 000	10.000	250898 .09000 0	4.00000	1.000	1.00000	199992. 480000	1.0000

Handling the missing(null) values

df.isnull().any()
RowNumber

False

CustomerId False Surname False False CreditScore Geography False Gender False Age False False Tenure Balance False NumOfProducts False False HasCrCard IsActiveMember False EstimatedSalary False Exited False dtype: bool df.isnull().sum() 0 Row Number0 CustomerId Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited dtype: int64

Since no null values are found no need to handle

Split the data into dependent and independent variables

x=df.iloc[:,3:13].values print(x.shape) y=df.iloc[:,13:14].values print(y.shape) (10000, 10)(10000, 1)

Finding and Replacing Outliers

df.skew()

C:\Users\LENOVO\AppData\Local\Temp\ipykernel_3336\1665899112.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.skew()

RowNumber 0.000000 CustomerId 0.001149 CreditScore -0.071607 1.011320 Age Tenure 0.010991 Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 1.471611 Exited dtype: float64

sns.boxplot(df["Age"])

<AxesSubplot:xlabel='Age'>

q1 = df["Age"].describe()["25%"]

q3 = df["Age"].describe()["75%"]

iqr = q3-q1

 $l_b = q1 - (1.5*iqr)$

 $u_b = q3 + (1.5*iqr)$

 $df[df["Age"] < l_b]$

		. – .												
	Row Num ber	Cust omer Id	Sur na me	Credi tScor e	Geog raph y	Ge nd er	A g e	Te nu re	Bal anc e	NumOf Produc ts	HasC rCar d	IsActiv eMemb er	Estimat edSalar y	Ex ite d
df[o	df["Age'	']>u_b]												
	Row Num ber	Cust omer Id	Surna me	nsco		Ge nd er		Te nu re	Bal anc e		Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
5 8	59	1562 3944	T'ier	n 511	Spai n	Fe ma le	n	4	0.00	1	1	0	1643.1 1	1
8 5	86	1580 5254	Nduk aku	nn/	Spai n	Fe ma le		10	0.00	2	1	1	114675 .75	0
1 0 4	105	1580 4919	Dunt abir	6/0	Spai n	Fe ma le	5	1	0.00	1	1	1	177655 .68	1

	Row Num ber	Cust omer Id	Surna me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
1 5 8	159	1558 9975	Macle an	646	Fran ce	Fe ma le	7 3	6	972 59.2 5	1	0	1	104719 .66	0
1 8 1	182	1578 9669	Hsia	510	Fran ce	Ma le	6 5	2	0.00	2	1	1	48071. 61	0
9 7 5 3	9754	1570 5174	Chied ozie	656	Ger man y	Ma le	6 8	7	153 545. 11	1	1	1	186574 .68	0
9 7 6 5	9766	1577 7067	Thom as	445	Fran ce	Ma le	6 4	2	136 770. 67	1	0	1	43678. 06	0
9 8 3 2	9833	1581 4690	Chuk wujek wu	595	Ger man y	Fe ma le	6 4	2	105 736. 32	1	1	1	89935. 73	1
9 8 9 4	9895	1570 4795	Vagin	521	Fran ce	Fe ma le	7 7	6	0.00	2	1	1	49054. 10	0
9 9 3 6	9937	1565 3037	Parks	609	Fran ce	Ma le	7 7	1	0.00	1	0	1	18708. 76	0

$359 \; rows \times 14 \; columns$

#Replace the outlier

 $outlier_list = list(df[df["Age"] > u_b]["Age"])$

outlier_list

[66,

75,

65,

73,

65,

72,

79,

80,

68,

75,

66,

66,

70,

63,

72, 64,

64,

70,

67,

82,

63,

69,

65,

69,

64,

65, 74,

67,

66, 67,

63,

70, 71,

72, 67,

74,

76,

66,

63, 66,

68,

67,

63,

71,

66,

69,

73,

65, 66,

64,

69,

64,

77,

74,

65, 70,

67,

69,

67,

74, 69,

64,

63,

63,

70,

74,

65,

72,

77,

66,

65,

74,

88,

63,

71, 63,

64,

67,

70, 68,

72,

71,

66, 75,

67,

73, 69,

76,

63,

85,

67, 74,

76,

66,

69,

66,

72, 63,

71,

63,

74, 67,

72, 72,

66,

84,

71,

66,

63, 74,

69,

84,

67,

64,

68,

66,

67,

79,

67,

76,

73,

66,

67,

64,

73,

76,

72,

64,

71, 63,

70,

65,

66,

65,

80, 66,

63,

63, 63,

63,

66,

74,

69, 63,

64,

76,

75, 68,

69,

77,

64, 66,

74,

71,

67,

68,

64, 68,

70,

64,

75,

66,

64, 78,

65,

74, 64,

64,

71,

77, 79,

64,

68,

68,

63,

79,

66,

64,

70,

69,

71,

72,

66,

68,

63, 71,

72,

72, 64,

78, 75,

65,

65,

67, 63,

68,

71,

73, 64,

66,

71, 69,

71,

66,

76,

69, 73,

64, 64,

75,

73, 71,

72,

63,

67,

68, 73,

67,

64,

63,

92,

65,

75,

67, 71,

64,

66,

67,

77, 92,

67, 63,

66,

66,

68,

65, 72,

71, 76,

63, 67,

67,

66, 67,

63,

65, 70,

72,

77, 74,

72,

73, 77,

67,

71, 64,

72,

81,

76, 69,

68,

74,

64, 64,

71,

68, 63,

67,

63,

64, 76,

63,

63,

68,

67, 72,

70,

81,

67, 73,

66,

66,

63,

75,

69,

64,

69,

70,

71,

71,

66,

70,

63, 64,

65, 63,

67,

71, 67,

65,

66, 63,

73,

66,

64, 72,

71,

69,

67, 64,

81,

73, 63,

67,

74,

83,

69,

71, 78,

63,

70, 69,

72,

70,

63,

74, 80,

69,

72,

67,

76, 71,

67,

71,

78,

63,

```
68,
64,
70,
78,
69,
68,
64,
64,
77,
77]
outlier_dict = { }.fromkeys(outlier_list,u_b)
outlier_dict
{66: 62.0,
75: 62.0,
65: 62.0,
73: 62.0,
72: 62.0,
67: 62.0,
79: 62.0,
80: 62.0,
68: 62.0,
70: 62.0,
63: 62.0,
64: 62.0,
82: 62.0,
69: 62.0,
74: 62.0,
71: 62.0,
76: 62.0,
77: 62.0,
88: 62.0,
85: 62.0,
84: 62.0,
78: 62.0,
81: 62.0,
92: 62.0,
83: 62.0}
df["Age"] = df["Age"].replace(outlier_dict)
sns.boxplot(df["Age"])
```

 $<\!\!AxesSubplot\!:\!xlabel = \!\!'Age'\!\!>$

 $df[df["Age"]>u_b]$ Credi NumOf HasC **IsActiv Estimat** Row Cust Sur Geog Ge Te Bal $\mathbf{E}\mathbf{x}$ Num omer tScor raph nu Produc rCar eMemb edSalar ite Id ber me re ts d er d

Check for Categorical columns and perform encoding.

from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct=ColumnTransformer([('oh',OneHotEncoder(),[1,2])],remainder='passthrough')
x=ct.fit_transform(x)
print(x.shape)
(10000, 13)
saving the data
import joblib
joblib.dump(ct,"churnct.pkl")
['churnct.pkl']

Split the data into training and testing

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
print(x_train.shape)
print(x_test.shape)
(8000, 13)

Scale the independent variables

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_test=sc.transform(x_test)
joblib.dump(sc,"churnsc.pkl")
['churnsc.pkl']