

AI-DRIVEN EXPLORATION AND PREDICTION OF COMPANY REGISTRATION TRENDS WITH REGISTER OF COMPANIES(RoC)

PHASE4

PROJECT

PREPARED BY

A.PRIYANKA,
510521205029,
BHARATHIDASAN ENGINEERING COLLEGE,
PHASE4 PROJECT SUBMISSION.

-orstrick

Registrar Of Companies

-

nigerst cx

Al-driven exploration and prediction performing exploratory data analysis refers to the use of artificial intelligence (AI) techniques to automate and enhance the process of exploring and analyzing data to make predictions. It involves leveraging machine learning algorithms, data mining, and statistical methods to uncover hidden patterns, trends, and insights within a dataset, thereby aiding in the prediction of future outcomes or behavior. This approach combines the power of AI to assist in data preprocessing, feature selection, and modeling, making the exploratory data analysis more efficient and accurate.

DATASET

1	CORPORAT	COMPANY_COMPAN	Y_COMPANY	COMPANY	COMPANY	DATE_OF_F	REGISTEREE AUT	THORIZE PAIDUP_	CAINDUSTRIA	a manufactured by longing they have been as a few year free.	REGISTEREC REGISTRAR EMAIL_ADD	LATEST_	YE/ LATES
2	F00643	HOCHTIEFF NAEF	NA	NA	NA	1/12/1961	Tamil Nadu	0	0 NA		NAMES AND ADDRESS OF TAXABLE PARTY.	NA	NA
3	F00721	SUMITOMC ACTV	NA	NA	NA	NA	Tamil Nadu	0	0 NA	per high make her year property the second by the second	FLAT NO. 6, ROC燚ELHI shuchi.chu{		NA
4	F00892	SRILANKAN ACTV	NA	NA	NA	1/3/1982	Tamil Nadu	0	0 NA	Agriculture	SRILANKANROC燚ELHI shree16us(NA	NA
5	F01208	CALTEX INC NAEF	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	GOLD CRES ROC燚ELHI NA	NA	NA
6	F01218	GE HEALTH(ACTV	NA	NA	NA	NA	Tamil Nadu	0	0 NA		FF-3 Palani ROC燚ELHI karthick999		NA
7	F01265	CAIRN ENEINAEF	NA	NA	NA	NA	Tamil Nadu	0	0 NA	per high sector has property the bearing by high	WELLINGT(ROC燚ELHI neerja.shar		NA
8	F01269	TORIELLI S.I ACTV	NA	NA	NA	5/9/1995	Tamil Nadu	0	0 NA	Agriculture	6, Mangaya ROC燚ELHI chennai@ti	NA	NA
9	F01311	HARDY EXP ACTV	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	5TH FLOOR, ROC燚ELHI venkatesh.	NA	NA
10	F01314	HOCHTIOF ACTV	NA	NA	NA	11/4/1996	Tamil Nadu	0	0 NA	Agriculture	NEW NO.8€ ROC燚ELHI kumar@int	NA	NA
11	F01412	EPSON SINCACTV	NA	NA	NA	25-04-1997	Tamil Nadu	0	0 NA	Agriculture	7C CEATUR' ROC燚ELHI NA	NA	NA
12	F01426	CARGOLUX ACTV	NA	NA	NA	11/6/1997	Tamil Nadu	0	0 NA	Agriculture	OFFICE NO ROC燚ELHI NA	NA	NA
13	F01468	CHO HEUN (NAEF	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	129, MANP ROC燚ELHI chowelacco	NA	NA
14	F01543	NYCOMED / ACTV	NA	NA	NA	27-10-1998	Tamil Nadu	0	0 NA	Agriculture	A D 46 1ST ROC燚ELHI NA	NA	NA
15	F01544	CHERRINGT ACTV	NA	NA	NA	1/5/2000	Tamil Nadu	0	0 NA	Agriculture	10HADDOW ROC燚ELHI NA	NA	NA
16	F01563	SHIMADZU NAEF	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	FIRST FLOO ROC燚ELHI kousik@vsi	NA	NA
17	F01565	CORK INTEFACTV	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	ARJAY APE) ROC燚ELHI NA	NA	NA
18	F01566	ERBIS ENGCACTV	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	39,2nd Maii ROC燚ELHI NA	NA	NA
19	F01589	RALF SCHNINAEF	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	FLAT C, 'SAI ROC燚ELHI NA	NA	NA
20	F01593	MITRAJAYA ACTV	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	OLD NO 14EROC燚ELHI NA	NA	NA
21	F01618	HEAT AND (ACTV	NA	NA	NA	13-07-1999	Tamil Nadu	0	0 NA	Agriculture	A40 OLD NCROC燚ELHI ncrajagopal	NA	NA
22	F01628	DIREX SYSTI ACTV	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	F-1, FIRST F ROC燚ELHI direx@vsnl	NA	NA
23	F01641	NMB-MINE NAEF	NA	NA	NA	NA	Tamil Nadu	0	0 NA	Agriculture	Level - 2 Re ROC燚ELHI stsogawa@	NA	NA

Exploratory
Data
Analysis

Feature Engineering Predictive Modeling

EXPLORATORY DATA ANALYSIS:

Al-driven exploration and prediction performing exploratory data analysis refers to the use of artificial intelligence (AI) techniques to automate and enhance the process of exploring and analyzing data to make predictions. It involves leveraging machine learning algorithms, data mining, and statistical methods to uncover hidden patterns, trends, and insights within a dataset, thereby aiding in the prediction of future outcomes or behavior. This approach combines the power of AI to assist in data preprocessing, feature selection, and modeling, making the exploratory data analysis more efficient and accurate.

FEATURE ENGINEERING:

Al-driven exploration and prediction performing feature engineering involves using artificial intelligence techniques to automatically create, select, or transform features (variables) in a dataset to improve the performance of machine learning models. Feature engineering is a critical step in the machine learning pipeline, and Al-driven methods can help identify relevant features, reduce dimensionality, and generate new attributes from the existing data. This process aims to enhance the predictive capabilities of Al models by optimizing the input data, ultimately leading to better model accuracy and effectiveness in solving specific tasks.

PREDICTIVE MODELING:

Al-driven exploration and prediction performing predictive modeling refers to the application of artificial intelligence and machine learning techniques to build and deploy models that make predictions based on historical or existing data. In this process, Al algorithms analyze the data to identify patterns, relationships, and trends, and use this information to forecast future outcomes or make informed decisions. The predictive models created through this approach can be used in various domains, such as finance, healthcare, marketing, and more, to make predictions about customer behavior, stock prices, disease diagnoses, or any other relevant forecasting task. Al-driven predictive modeling automates and enhances the accuracy of prediction tasks by leveraging advanced machine learning algorithms and data-driven insights.

STEPS FOR EXPLORATORY DATA ANALYSIS

- 1.Data Collection
- 2.Data Preprocessing
- 3. Feature Selection
- 4. Data Visualization
- **5.Descriptive Statistics**
- 6. Correlation Analysis
- 7. Outlier Detection
- 8.Data Exploration

- 9. Hypothesis Testing
- 10.Feature Engineering
- 11.Model Training
- 12.Model Evaluation
- 13. Hyperparameter Tuning
- 14. Model Interpretability
- 15.Model Deployment
- 16. Continuous Monitoring

STEPS FOR FEATURE ENGINEERING

- 1.Data Collection
- 2.Data Preprocessing
- 3. Feature Selection
- 4. Data Visualization
- **5.Descriptive Statistics**
- 6. Correlation Analysis
- 7. Outlier Detection
- 8.Data Exploration

- 9. Hypothesis Testing
- 10. Feature Engineering
- 11. Model Training
- 12.Model Evaluation
- 13. Hyperparameter Tuning
- 14. Model Interpretability
- 15.Model Deployment
- 16. Continuous Monitoring

STEPS FOR PREDICTIVE MODELING

- 1.Data Collection
- 2.Data Preprocessing
- 3. Feature Engineering
- 4.Data Splitting
- 5. Model Selection
- 6.Model Training
- 7. Hyperparameter Tuning
- 8Model Evaluation

- 9. Model Interpretability
- 10.Cross-Validation
- 11.Model Fine-Tuning
- 12. Ensemble Methods
- 13.Model Validation
- 14. Model Deployment
- 15. Continuous Monitoring
- 16.Feedback Loop

STEPS FOR PREDICTIVE MODELING

- 1.Data Collection
- 2.Data Preprocessing
- 3. Feature Engineering
- 4.Data Splitting
- 5. Model Selection
- 6.Model Training
- 7. Hyperparameter Tuning
- 8Model Evaluation

- 9. Model Interpretability
- 10.Cross-Validation
- 11.Model Fine-Tuning
- 12. Ensemble Methods
- 13.Model Validation
- 14. Model Deployment
- 15. Continuous Monitoring
- 16.Feedback Loop

PROGRAM

Pandas and Numpy have been used for Data Manipulation and numerical Calculations

Pandas and Numpy have been used for Data Manipulation and numerical Calculations Matplotlib and Seaborn have been used for Data visualizations. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns #to ignore warnings import warnings warnings.filterwarnings('ignore') data = pd.read csv("used cars.csv") data.head()

S.No.		Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_price	Price
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.60	998.0	58.16	5.0	NaN	1.75
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67	1582.0	126.20	5.0	NaN	12.50
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.20	1199.0	88.70	5.0	8.61	4.50
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77	1248.0	88.76	7.0	NaN	6.00
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.20	1968.0	140.80	5.0	NaN	17.74

```
cat_cols=data.select_dtypes(include=['object']).columns
num_cols =
data.select_dtypes(include=np.number).columns.tolist()
print("Categorical Variables:")
print(cat_cols)
print("Numerical Variables:")
print(num_cols)
```

```
Categorical Variables:
Index(['Name', 'Location', 'Fuel Type', 'Transmission', 'Owner Type', 'Brand',
       'Model'],
     dtype='object')
Numerical Variables:
['Year', 'Kilometers Driven', 'Mileage', 'Engine', 'Power', 'Seats', 'New price', 'Price', 'Car Age']
```

```
for col in num_cols:
print(col)
print('Skew:'
, round(data[col].skew(), 2))
plt.figure(figsize = (15, 4))
plt.subplot(1, 2, 1)
data[col].hist(grid=False)
plt.ylabel('count')
plt.subplot(1, 2, 2)
sns.boxplot(x=data[col])
plt.show()
```



```
# Function for log transformation of the column
def log_transform(data,col):
for colname in col:
if (data[colname] == 1.0).all():
data[colname + '_log'] = np.log(data[colname]+1)
else:
data[colname + '_log'] = np.log(data[colname])
data.info()
log transform(data,['Kilometers Driven'
'Price'])
#Log transformation of the feature 'Kilometers_Driven'
sns.distplot(data["Kilometers_Driven_log"], axlabel=
"Kilometers_Driven_log"
```


CONCLUSION

In conclusion, AI-driven exploration and prediction represent a transformative approach to data analysis and forecasting. By harnessing the power of artificial intelligence, this methodology enhances the efficiency, accuracy, and depth of insights derived from data. Through advanced techniques in data preprocessing, feature engineering, and predictive modeling, AI enables us to uncover hidden patterns, make informed predictions, and drive data-driven decision-making in a wide range of applications.

This approach has the potential to revolutionize industries such as finance, healthcare, marketing, and many others, by automating and optimizing the data analysis process. By continuously learning from data and adapting to changing circumstances, Al-driven exploration and prediction systems provide a valuable tool for organizations seeking to gain a competitive edge, improve efficiency, and make more informed choices.

Thank you so much for your

watching

My name: Aaron

My major: