LOGIQUE

Sujet d'examen de Décembre 2007- G. Sénizergues

Documents autorisés: tous documents autorisés.

On rappelle les ensembles d'axiomes suivants.

EG (Théorie de l'égalité)

REF: $\forall x \ x = x$

 $\mathbf{SYM}: \forall x, y \ (x = y \to y = x)$

TRANS: $\forall x, y, z \ (x = y \land y = z) \rightarrow x = z)$

 $\begin{aligned} \mathbf{COMPF} : \forall \vec{x}, \vec{y} \ (\vec{x} = \vec{y} \rightarrow f(\vec{x}) = f(\vec{y})) \\ \mathbf{COMPR} : \forall \vec{x}, \vec{y} \ (\vec{x} = \vec{y} \rightarrow R(\vec{x}) \rightarrow R(\vec{y})) \end{aligned}$

P0'

Tous les axiomes de EG;

 $\mathbf{A1}: \forall x \ \neg S(x) = 0$

 $\mathbf{A3}: \forall x, y \ (S(x) = S(y) \rightarrow x = y)$

 $\mathbf{A4}: \forall x \ (x+0=x)$

A5: $\forall x, y \ (x + S(y) = S(x + y))$

 $\mathbf{A6}: \forall x \ (x \times 0 = 0)$

A7: $\forall x, y \ (x \times S(y) = x \times y + x)$

PA' (Arithmétique de Péano)

Tous les axiomes de P'_0 ;

 $\operatorname{REC}_{\Phi}: (\Phi(0) \wedge (\forall x (\Phi(x) \to \Phi(S(x)))) \to \forall x \Phi(x)$

pour toutes les formules $\Phi(x)$;

Exercice 3(sur 5 points)

1- Ecrire une preuve dans LJ de

$$EG \vdash \exists y (\neg (0 = 0) \rightarrow 0 = S(y))$$

2- Ecrire une preuve dans LJ de

$$EG \vdash \exists y (\neg(x=0) \to S(x) = S(y))$$

3- Ecrire une preuve dans LJ de

$$\operatorname{PA}' \models \exists y (\neg(x=0) \to x = S(y))$$

4- Existe-t-il un terme t_1 (resp. t_2, t_3) sur la signature de PA' tel que

$$EG \vdash (\neg (0 = 0) \to 0 = S(t_1))?$$

EG
$$\vdash$$
 $(\neg(x=0) \rightarrow S(x) = S(t_2))$?
PA' \vdash $(\neg(x=0) \rightarrow x = S(t_3))$?

Comment expliquez-vous ce phénomène?

Exercice 4(sur 5 points)

- 1- Donner une preuve dans LK de $\vdash (A \to B) \lor (B \to A)$ (pour toutes formules A, B).
- 2- Donner une structure de Kripke qui est un contre-modèle de $\vdash (P \to Q) \lor (Q \to P)$ (où P,Q sont des variables propositionnelles).

Que peut-on en déduire sur la prouvabilité du séquent $\vdash (P \to Q) \lor (Q \to P)$ dans LJ? 3- Une structure de Kripke $\mathcal{K} = (K, \leq, | \vdash -)$ est dite linéaire ssi, pour tous $k, k' \in K, k \leq k'$ ou $k' \leq k$. Montrer que, si \mathcal{K} est une structure de Kripke propositionnelle linéaire, alors, pour toutes formules A, B,

$$\mathcal{K} \mid \vdash - (A \to B) \lor (B \to A).$$

4- On note LT le système LJ auquel on ajoute le schéma d'axiome

$$\vdash (A \to B) \lor (B \to A)$$

Soit \mathcal{Q} un ensemble dénombrable de variables propositionnelles. Notons $\mathcal{F}(LJ)$ (resp. $\mathcal{F}(LT)$, $\mathcal{F}(LK)$) l'ensemble des formules propositionnelles sur \mathcal{Q} qui sont prouvables dans LJ (resp. dans LT, dans LK). Montrer que les inclusions $\mathcal{F}(LJ) \subset \mathcal{F}(LT) \subset \mathcal{F}(LK)$ sont strictes.