Restricted Boltzmann Machines

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics

- 1. Boltzmann machines
 - 2. Restricted Boltzmann machines
 - 3. Deep Belief Networks
 - 4. Deep Boltzmann machines
 - 5. Boltzmann machines for continuous data
 - 6. Convolutional Boltzmann machines
 - 7. Boltzmann machines for structured and sequential outputs
 - 8. Other Boltzmann machines
- 9. Backpropagation through random operations
- 10. Directed generative nets
- 11. Drawing samples from autoencoders
- 12. Generative stochastic networks
- 13. Other generative schemes
- 14. Evaluating generative models
- 15. Conclusion

2. Restricted Boltzmann Machines

- Some of the most common building blocks of deep probabilistic models
- Units are organized as a layer of observed variables and a single layer of latent variables
- RBMs can be stacked on top of another

RBM is a bipartite graph

- RBM is a special case of Boltzmann machines and Markov networks
- No visible-visible and hidden-hidden connections
 — Bipartite graph

General BM

Some examples of RBMs

RBM is an undirected graphical model based on a bipartite graph Typically no intralayer connections

Deep belief network
Is a hybrid graphical model
Involving both directed and
Undirected connections
No intralayer connections
Has multiple hidden layers

Deep Boltzmann
Machine is an undirected
graphical model with
several layers of latent
variables

Binary version of RBM

- Observed layer: set of $n_{m v}$ binary r.v.s, ${m v}$
- Latent or hidden set of n_h binary r.v.s h
- Its energy function is

$$\mathbf{E}(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{b}^{\mathrm{T}}\boldsymbol{v} - \boldsymbol{c}^{\mathrm{T}}\boldsymbol{h} - \boldsymbol{v}^{\mathrm{T}}\mathbf{W}\boldsymbol{h}$$

- where $m{b}$, $m{c}$ and f W are unconstrained, real-valued learnable parameters
- Thus model is divided into two groups of units $m{v}$ and $m{h}$ and the interaction between them is described by matrix f W

Machine Learning

RBM: an energy-based model

- RBM is an energy-based model, like the **Boltzmann machine**
- Joint-probability distribution is specified by the energy function:

$$P(\mathbf{v}=\mathbf{v},\mathbf{h}=\mathbf{h})=(1/\mathbf{Z})\exp(-\mathbf{E}(\mathbf{v},\mathbf{h}))$$

- The energy function for an RBM is
- $-E(\boldsymbol{v},\boldsymbol{h}) = -\boldsymbol{b}^{\mathrm{T}}\boldsymbol{v} \boldsymbol{c}^{\mathrm{T}}\boldsymbol{h} \boldsymbol{v}^{\mathrm{T}}\mathbf{W}\boldsymbol{h}$
- Z is the partition function

$$Z = \sum_{v} \sum_{h} E(v,h)$$

- Since Z is intractable P(v) is also intractable

But, RBM conditionals are tractable

- Although P(v) is intractable,
 - Bipartite structure of RBM has special property that
 - Conditionals P(h|v), P(v|h) are factorial & easily computed:

$$P(\boldsymbol{h} \mid \boldsymbol{v}) = \frac{P(\boldsymbol{h}, \boldsymbol{v})}{P(\boldsymbol{v})} = \frac{1}{P(\boldsymbol{v})} \frac{1}{Z} \exp\left\{\boldsymbol{b}^{T} \boldsymbol{v} + \boldsymbol{c}^{T} \boldsymbol{h} + \boldsymbol{v}^{T} W \boldsymbol{h}\right\} = \frac{1}{Z'} \exp\left\{\boldsymbol{c}^{T} \boldsymbol{h} + \boldsymbol{v}^{T} W \boldsymbol{h}\right\}$$
$$= \frac{1}{Z'} \exp\left\{\sum_{j=1}^{n_h} c_j h_j + \sum_{j=1}^{n_h} \boldsymbol{v}^{T} W_{:,j} \boldsymbol{h}_j\right\} = \frac{1}{Z'} \prod_{j=1}^{n_h} \exp\left\{\boldsymbol{c}_j \boldsymbol{h}_j + \boldsymbol{v}^{T} W_{:,j} \boldsymbol{h}_j\right\}$$

Normalizing the distributions over individual binary h

$$P(h_j = 1 \mid \boldsymbol{v}) = \frac{\tilde{P}(h_j = 1 \mid \boldsymbol{v})}{\tilde{P}(h_j = 0 \mid \boldsymbol{v}) + \tilde{P}(h_j = 1 \mid \boldsymbol{v})} = \frac{\exp\left\{c_j + \boldsymbol{v}^T W_{:,j}\right\}}{\exp\left\{0\right\} + \exp\left\{c_j + \boldsymbol{v}^T W_{:,j}\right\}} = \sigma\left(c_j + \boldsymbol{v}^T W_{:,j}\right)$$

We now express full conditional as a factorial distribution

$$\left| P(\boldsymbol{h} \mid \boldsymbol{v}) = \prod_{j=1}^{n_h} \sigma \left(\left(2\boldsymbol{h} - 1 \right) \odot \left(\boldsymbol{c} + \boldsymbol{W}^T \boldsymbol{v} \right) \right)_j \right| \text{ and similarly } \left| P(\boldsymbol{v} \mid \boldsymbol{h}) = \prod_{j=1}^{n_v} \sigma \left(\left(2\boldsymbol{v} - 1 \right) \odot \left(\boldsymbol{b} + \boldsymbol{W}^T \boldsymbol{h} \right) \right)_i \right|$$

$$P(\boldsymbol{v} \mid \boldsymbol{h}) = \prod_{j=1}^{n_v} \sigma((2\boldsymbol{v} - 1) \odot (\boldsymbol{b} + W^T \boldsymbol{h}))$$

Training RBMs

- RBM admits
 - efficient evaluation and differentiation of P(v)
 - efficient MCMC sampling: block Gibbs sampling
- So it can be trained using techniques for training models with intractable partition functions: CD, SML (PCD) etc
- Compared to other undirected models in deep learning, RBM is relatively straightforward to train because $P(\boldsymbol{h}|\boldsymbol{v})$ can be computed in closed form
 - Deep Boltzmann machines are harder