10天入门高数

Qi'ao Chen

2020年9月3日

目录

1	函数	与极限	2
	1.1	映射与函数	2
	1.2	数列的极限	2
	1.3	函数的极限	4
		1.3.1 函数极限的定义	4
		1.3.2 函数极限的性质	5
	1.4	无穷大与无穷小	6
	1.5	极限运算法则	6
	1.6	极限存在准则两个重要极限	7
	1.7	无穷小的比较	9
	1.8	函数的连续性与间断点 1	1
	1.9	极限函数的运算与初等函数的连续性 1	1
		1.9.1 连续函数的和、差、积、商的连续性	1
		1.9.2 反函数与复合函数的连续性	1
		1.9.3 初等函数的连续性 1	2
	1.10	闭区间上连续函数的性质	2
2	导数	与微分 1	3
	2.1	导数概念	3
	2.2	函数的求导法则 1	4

2.3	高阶导数
2.4	隐函数及由参数方程所确定的函数的导数相关变化率
2.5	函数的微分
微分	分中值定理与导数的应用
3.1	微分中值定理
3.2	洛必达法则
3.3	泰勒公式
3.4	函数的单调性与曲线的凹凸性
3.5	函数的极值与最大值最小值
3.6	曲率
不知	定积分
4.1	不定积分的概念与性质
4.2	换元积分法
	4.2.1 第一类换元法
	4.2.2 第二类换元法
4.3	分布积分法
4.4	有理函数的积分
定和	积分
5.1	定积分的概念与性质
5.2	微积分基本公式
5.3	定积分的换元法和分部积分法
5.4	反常积分
定和	织分的应用
6.1	定积分的元素法
6.2	定积分在几何学上的应用
微分	分方程
7.1	微分方程的基本概念

目录

		E CONTRACTOR OF THE CONTRACTOR	1		
	7.0		41		
	7.2	可分离变量的微分方程	41		
	7.3	齐次方程	41		
	7.4	一阶线性微分方程	42		
	7.5	可降阶的高阶微分方程	45		
		7.5.1 $y^{(n)=f(x)}$ 型微分方程	45		
		7.5.2 $y'' = f(x, y')$ 型的微分方程	45		
		7.5.3 $y'' = f(y, y')$ 型的微分方程	48		
	7.6	高阶线性微分方程	49		
	7.7	常系数齐次线性微分方程	51		
	7.8	常系数非齐次线性微分方程	54		
8	向量	代数与空间解析几何	54		
	8.1	向量及其线性运算	54		
	8.2	数量积向量积混合积	55		
9	App	endix	56		
Αŗ	pend	lices	56		
_	.1	Trigonometry	56		
10 Index					
			58		

1 函数与极限

1.1 映射与函数

Proposition 1.1. Suppose f(x)'s domain is (-l, l), then there is odd function $f_o(x)$ and even function $f_e(x)$ on (-l, l) s.t.

$$f(x) = g(x) + h(x)$$

证明.

$$f_e(x) = \frac{f(x) + f(-x)}{2}$$
 $f_o(x) = \frac{f(x) - f(-x)}{x}$

基本初等函数

• 幂函数: $y = x^{\mu} (\mu \in \mathbb{R} \text{ is a constant})$

• 指数函数: $y = a^x (a > 0 \text{ and } a \neq 1)$

• 对数函数: $y = \log_a x \ (a > 0 \text{ and } a \neq 1)$

• 三角函数: $y = \sin x, \cos x, \tan x$

• 反三角函数: $y = \arcsin x$, $\arccos x$, $\arctan x$

1.2 数列的极限

Definition 1.2. suppose $\{x_n\}$ is a sequence, if there is a constant a for any positive ϵ , there is a positive integer N s..t if n > N, then

$$|x_n - a| < \epsilon$$

always holds, then a is called the limit of $\{x_n\}$, or $\{x_n\}$ converges to a, written as

$$\lim_{n\to\infty} x_n = a$$

or

$$x_n \to a(n \to \infty)$$

Theorem 1.3 (极限的唯一性). 如果数列 $\{x_n\}$ 收敛,那么它的极限唯一

证明. 假设同时有 $x_n \to a$ 及 $x_n \to b$,且 a < b,取 $\epsilon = \frac{b-a}{2}$,因为 $\lim_{n \to \infty} x_n = a$,故存在正整数 N_1 ,当 $n > N_1$ 时,

$$\left|x_{n}-a\right| < \frac{b-a}{2} \tag{1.2.1}$$

同理有当 $n > N_2$ 时

$$\left|x_n - b\right| < \frac{b - a}{2} \tag{1.2.2}$$

取 $N = \max\{N_1, N_2\}$,由 (1.2.1) 有 $x_n < \frac{a+b}{2}$,由 (1.2.2) 有 $x_n > \frac{a+b}{2}$,矛盾 \square

Theorem 1.4 (收敛数列的有界性). 如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 一定有界

证明. 因为数列 $\{x_n\}$ 收敛,设 $\lim_{n\to\infty}x_n=a$,对于 $\epsilon=1$,存在正整数 N,当 n>N 时有

$$|x_n - a| < 1$$

于是当 n > N 时

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a| < 1 + |a|$$

取 $M = \max\{x_1|, ..., |x_N|, 1+|a|\}$,那么数列 $\{x_n\}$ 中的一切 x_n 都满足不等式

$$|x_n| \leq M$$

Theorem 1.5 (收敛数列的保号性). 如果 $\lim_{n\to\infty} x_n = a$ 且 a>0 (或 a<0),那么存在正整数 N,当 n>N 时,都有 $x_n>0$ (或 $x_n<0$)

证明. Suppose a > 0, let $\epsilon = \frac{a}{2} > 0$, then there is N for n > N s.t.

$$\left|x_n-a\right|<\frac{a}{2}$$

Hence

$$x_n > a - \frac{a}{2} = \frac{a}{2} > 0$$

Corollary 1.6. 如果数列 $\{x_n\}$ 从某项起有 $x_n \ge 0$ (或 $x_n \le 0$), 且 $\lim_{n\to\infty} x_n = a$, 那么 $a \ge 0$ (或 $a \le 0$)

在数列 $\{x_n\}$ 中任意抽取无限多项并保持这些项在原数列 $\{x_n\}$ 中的先后次序,这样得到的一个数列称为原数列 $\{x_n\}$ 的 **子数列**

Theorem 1.7 (收敛数列与其子数列的关系). 如果数列 $\{x_n\}$ 收敛于 a, 那么它的任一子数列也收敛,且极限也是 a

证明. 设数列 $\{x_{n_k}\}$ 是数列 $\{x_n\}$ 的任一子数列

由于 $\lim_{n\to\infty} x_n = a$, 故对任意 $\epsilon > 0$, 存在正整数 N 当 n > N 时, $|x_n - a| < \epsilon$

取 K=N,则当 k>K 时, $n_k>n_K=n_N\geq N$,于是 $\left|x_{n_k}-a\right|<\epsilon$,因此 $\lim_{k\to\infty}x_{n_k}=a$

1.3 函数的极限

1.3.1 函数极限的定义

Definition 1.8. 设函数 f(x) 在点 x_0 的某一去心邻域内有定义,如果存在常数 A 对于任一给定的正数 ϵ 总存在正数 δ 使得当 x 满足不等式 $0 < |x - x_0| < \delta$ 时,对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \epsilon$$

那么常数 A 就叫做 函数 f(x) 当 $x \to x_0$ 时的极限,记作

$$\lim_{x \to x_0} f(x) = A \quad \text{or} \quad f(x) \to A(\text{when } x \to x_0)$$

Proposition 1.9. $\lim_{x\to 1} (2x-1) = 1$

证明. Since

$$|f(x) - A| = |2x - 2| = 2|x - 1|$$

for any $\epsilon > 0$, let $\delta = \epsilon/2$, then if

$$0 < |x - 1| < \delta$$

we have

$$|f(x) - 1| = 2|x - 1| < \epsilon$$

hence

$$\lim_{x \to 1} (2x - 1) = 1$$

将 $0 < |x - x_0| < \delta$ 改为 $x_0 - \delta < x < x_0$,那么 A 就叫做函数 f(x) 当 $x \to x_0$ 时的 **左极限**,记作

$$\lim_{x \to x_0^-} f(x) = A$$
 or $f(x_0^-) = A$

函数 f(x) 当 $x \to x_0$ 时极限存在的充分必要条件时左极限及右极限各自存在且相等

Definition 1.10. 设函数 f(x) 当|x| 大于某一正数时有定义,如果存在常数 A 对于任意给定的正数 ϵ 总存在正数 X 使得当 x 满足不等式|x| > X 时,对应的函数值满足

$$|f(x) - A| < \epsilon$$

那么常数 A 就叫做 函数 f(x) 当 $x \to \infty$ 时的极限,记作

$$\lim_{x \to \infty} f(x) = A \quad \text{or} \quad f(x) \to A(\text{when } x \to \infty)$$

1.3.2 函数极限的性质

Theorem 1.11 (函数极限的唯一性). 如果 $\lim_{x\to x_0} f(x)$ 存在,那么这极限唯一

证明. If $\lim_{x\to x_0} f(x) = a$ and $\lim_{x\to x_0} f(x) = b$, let $\epsilon = \frac{b-a}{2}$, there is δ_1 and δ_2 s.t. for $0<|x-x_0|<\delta_1, |f(x)-a|<\frac{b-a}{2}$, and balabala...

Theorem 1.12 (函数极限的局部有界性). 如果 $\lim_{x\to x_0} f(x) = A$,那么存在常数 M>0 和 $\delta>0$ 使得当 $0<|x-x_0|<\delta$ 时,有 $|f(x)|\leq M$

证明. 取 $\epsilon = 1$, then there is δ for $0 < |x - x_0| < \delta$, we have

$$|f(x) - A| < 1 \Rightarrow |f(x)| \le |f(x) - A| + |A| < |A| + 1$$

记
$$M = |A| + 1$$
 \square

Theorem 1.13 (函数极限的局部保号性). 如果 $\lim_{x\to x_0} f(x) = A$,且 A > 0 (或 A < 0),那么存在常数 $\delta > 0$,使得当 $0 < |x - x_0| < \delta$ 时有 f(x) > 0 (或 f(x) < 0)

1.4 无穷大与无穷小

Definition 1.14. 如果函数 f(x) 当 $x \to x_0$ (或 $x \to \infty$)时的极限为 0,那么称 f(x) 为当 $x \to x_0$ (或 $x \to \infty$)时的无穷小

Theorem 1.15. 在自变量的同一变化过程 $x \to x_0$ (或 $x \to \infty$) 中,函数 f(x) 具有极限 A 的充分必要条件是 $f(x) = A + \alpha$,其中 α 是无穷小

Definition 1.16. 设函数 f(x) 在 x_0 的某一去心邻域内有定义(或 absx 大于某一正数时有定义),如果对于任一给定的正数 M,总存在正数 δ ,如果 $0 < |x - x_0| < \delta$ 则|f(x)| > M 那么称函数 f(x) 是当 $x \to x_0$ (或 $x \to \infty$)时的无穷大记作

$$\lim_{x \to x_0} f(x) = \infty$$

Theorem 1.17. 在自变量的同一变化过程中,如果 f(x) 为无穷大,那么 $\frac{1}{f(x)}$ 为无穷小;反之亦然

1.5 极限运算法则

Theorem 1.18. 两个无穷小的和是无穷小

Theorem 1.19. 有界函数与无穷小的乘积是无穷小

Corollary 1.20. 常数与无穷小的乘积时无穷小

Corollary 1.21. 有限个无穷小的乘积是无穷小

Theorem 1.22. 如果 $\lim f(x) = A, \lim g(x) = B$, 那么

- 1. $\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = A \pm B$
- 2. $\lim [f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x) = A \cdot B$
- 3. 如果 B ≠ 0, 则

$$\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}$$

Corollary 1.23. *If* $\lim f(x)$ *exists, and c is a constant, then*

$$\lim[cf(x)] = c\lim f(x)$$

Corollary 1.24. *if* $\lim f(x)$ *exists, and n is a positive integer, then*

$$\lim[f(x)]^n = [\lim f(x)]^n$$

Theorem 1.25. 设有数列 $\{x_n\}$ 和 $\{y_n\}$, 如果

$$\lim_{n\to\infty} x_n = A, \quad \lim_{n\to\infty} y_n = B$$

那么

- 1. $\lim_{n\to\infty}(x_n\pm y_n)=A\pm B$
- 2. $\lim_{n\to\infty} (x_n \cdot y_n) = A \cdot B$
- 3. 当 $y_n \neq 0 (n = 1, 2, ...)$ 且 $B \neq 0$ 时, $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{A}{B}$

Theorem 1.26. 如果 $\varphi(x) \ge \psi(x)$,而 $\lim \varphi(x) = A$, $\lim \psi(x) = B$,那么 $A \ge B$

Theorem 1.27 (复合函数的极限运算法则). 设函数 y = f[g(x)] 是由函数 u = g(x) 与函数 y = f(u) 复合而成,f[g(x)] 在点 x_0 的某去心邻域内有定义,若 $\lim_{x \to x_0} g(x) = u_0$, $\lim_{u \to u_0} f(u) = A$,且存在 $\delta_0 > 0$,当 $x \in U^0(x_0, \delta_0)$ 时,有 $g(x) \neq u_0$,则

$$\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = A$$

1.6 极限存在准则两个重要极限

Proposition 1.28 (准则 1). 如果数列 $\{x_n\}, \{y_n\}, \{z_n\}$ 满足

1. 存在 $n_0 \in \mathbb{N}$, 当 $n > n_0$ 时, 有

$$y_n \leq x_n \leq z_n$$

2. $\lim_{n\to\infty} y_n = a$, $\lim_{n\to\infty} x_n = a$ 那么数列 $\{x_n\}$ 的极限存在,且 $\lim_{n\to\infty} x_n = a$

Proposition 1.29. if

1. when $x \in U^{0}(x_{0}, r)$ (or|x| > M)

$$g(x) \le f(x) \le h(x)$$

Proposition 1.30 (准则 2). 单调有界数列必有极限

Corollary 1.31. $\lim_{x\to\infty} (1+\frac{1}{x})^x$

证明. let
$$x_n = (1 + \frac{1}{n})^n$$

$$x_n = (1 + \frac{1}{n})^n$$

$$= 1 + \frac{n}{1!} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \dots + \frac{n(n-1)\dots(n-n+1)}{n!} \cdot \frac{1}{n^n}$$

$$= 1 + 1 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \dots (1 - \frac{n-1}{n})$$

similarly

$$x_{n+1} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \frac{1}{3!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{n-1}{n+1}\right)$$

$$\frac{1}{(n+1)!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{n}{n+1}\right)$$

Hence $\{x_n\}$ is an increasing sequence and

$$x_n \le 1 + \left(1 + \frac{1}{2!} + \dots + \frac{1}{n!}\right) \le 1 + \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}\right)$$

= $3 - \frac{1}{2^{n-1}} < 3$

Hence $\{x_n\}$ 的极限存在

if $n \le x < n + 1$, then

$$(1 + \frac{1}{n+1})^n < (1 + \frac{1}{x})^x < (1 + \frac{1}{n})^{n+1}$$

因为夹逼准则, 我们有

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$$

Proposition 1.32 (准则 2′). 设函数 f(x) 在点 x_0 的某个左邻域内单调并且有界,则 f(x) 在 x_0 的左极限 $f(x_0^-)$ 存在

Proposition 1.33 (柯西极限存在准则). 数列 $\{x_n\}$ 收敛 *iff* 对于任意给定的正数 ϵ , 存在正整数 N 使得当 m,n>N 时,有

$$|x_n - x_m| < \epsilon$$

1.7 无穷小的比较

Definition 1.34. 如果 $\lim \frac{\beta}{\alpha} = 0$,那么就说 β 是比 α **高阶的无穷小**,记作 $\beta = o(\alpha)$

如果 $\lim_{\alpha \to \infty} \frac{\beta}{\alpha} = \infty$,那么就说 β 是比 α **低阶的无穷小** 如果 $\lim_{\alpha \to \infty} \frac{\beta}{\alpha} = c \neq 0$,那么就说 β 与 α 是 **同阶无穷小** 如果 $\lim_{\alpha \to \infty} \frac{\beta}{\alpha^k} = c \neq 0, k > 0$,那么就说 β 是关于 α 的 k **阶无穷小** 如果 $\lim_{\alpha \to \infty} \frac{\beta}{\alpha} = 1$,那么就说 β 与 α 是 **等价无穷小**,记作 $\alpha \sim \beta$

Proposition 1.35. $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{n}}-1}{\frac{1}{n}x} = 1$

证明.

$$\lim_{x \to 0} \frac{(1+x)^{1}n - 1}{\frac{1}{n}x} = \frac{1+x-1}{\frac{1}{n}x[\sqrt[n]{(1+x)^{n-1}} + \sqrt[n]{(1+x)^{n-2}} + \dots + 1]}$$
$$= \lim_{x \to 0} \frac{n}{\sqrt[n]{(1+x)^{n-1}} + \dots + 1} = 1$$

Theorem 1.36. β 与 α 是等价无穷小的充分必要条件是

$$\beta = \alpha + o(\alpha)$$

证明. if $\alpha \sim \beta$, then

$$\lim \frac{\beta - \alpha}{\alpha} = \lim (\frac{\beta}{\alpha} - 1) = \lim \frac{\beta}{\alpha} - 1 = 0$$

Hence $\beta - \alpha = o(\alpha)$

If $\beta = \alpha + o(\alpha)$, then

$$\lim \frac{\beta}{\alpha} = \lim \frac{\alpha + o(\alpha)}{\alpha} = 1$$

Theorem 1.37. 设 $\alpha \sim \tilde{\alpha}$, $\beta \sim \tilde{\beta}$, 且 $\lim \frac{\tilde{\beta}}{\tilde{\alpha}}$ 存在,则

$$\lim \frac{\beta}{\alpha} = \lim \frac{\tilde{\beta}}{\tilde{\alpha}}$$

证明.

$$\lim \frac{\beta}{\alpha} = \lim (\frac{\beta}{\tilde{\beta}} \cdot \frac{\tilde{\beta}}{\tilde{\alpha}} \cdot \frac{\tilde{\alpha}}{\alpha})$$

1.8 函数的连续性与间断点

Definition 1.38. 设函数 y = f(x) 在点 x_0 的某一邻域内有定义,如果

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$

那么就称函数 y = f(x) 在点 x_0 连续

设函数 y = f(x) 在点 x_0 的某一邻域内有定义,如果

$$\lim_{x \to x_0} f(x) = f(x_0)$$

那么就称函数 f(x) 在点 x_0 连续

设函数 f(x) 在点 x_0 的某一去心邻域内有定义,如果有下列三种情况之

- 1. 在 $x = x_0$ 没有定义
- 2. 虽在 $x = x_0$ 有定义,但 $\lim_{x \to x_0} f(x)$ 不存在
- 3. 虽在 $x = x_0$ 有定义,且 $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} f(x) \neq f(x_0)$ 那么 f(x) 在点 x_0 不连续,而点 x_0 称为函数 f(x) 的 **不连续点或 间 断点** 如果 x_0 时函数 f(x) 的间断点,但左极限 $f(x_0^-)$ 及右极限 $f(x_0^+)$ 都存在,那么 x_0 称为函数 f(x) 的 第一类间断点,其他为 第二类间断点

1.9 极限函数的运算与初等函数的连续性

1.9.1 连续函数的和、差、积、商的连续性

Theorem 1.39. 设函数 f(x) 和 g(x) 在点 x_0 连续,则它们的和、差、积、商 (当 $g(x_0) \neq 0$ 时)都在点 x_0 处连续

1.9.2 反函数与复合函数的连续性

Theorem 1.40. 如果函数 y = f(x) 在区间 I_x 上单调增加(或单调减少)且连续,那么它的反函数 $x = f^{-1}(y)$ 也在对应区间 $I_y = \{y \mid y = f(x), x \in I_x\}$ 上单调增加(或单调减少)且连续

Theorem 1.41. 设函数 y = f[g(x)] 由函数 u = g(x) 与函数 y = f(u) 复合而成, $U^{o}(x_{0}) \subset D_{f \circ g}$,若 $\lim_{x \to x_{0}} g(x) = u_{0}$,而函数 y = f(u) 在 $u = u_{0}$ 处连续,则

$$\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = f(u_0)$$

Theorem 1.42. 设函数 y = f[g(x)] 是由函数 u = g(x) 与函数 y = f(u) 复合而成, $U(x_0) \subset D_{f \circ g}$,若函数 u = g(x) 在 $x = x_0$ 连续,且 $g(x_0) = u_0$,而函数 y = f(u) 在 $u = u_0$ 连续,则复合函数 y = f[g(x)] 在 $x = x_0$ 也连续

1.9.3 初等函数的连续性

一切初等函数在其定义区间内都是连续的

$$\ln(1+x) \sim x \quad (x \to 0)$$
$$e^{x} - 1 \sim x \quad (x \to 0)$$
$$(1+x)^{\alpha} - 1 \sim \alpha x \quad (x \to 0)$$

1.10 闭区间上连续函数的性质

Theorem 1.43 (有界性与最大值最小值定理). 在闭区间上连续的函数在该区间上有界且一定能取得它的最大值和最小值

Theorem 1.44 (零点定理). 设函数 f(x) 在闭区间 [a,b] 上连续,且 f(a) 与 f(b) 异号,则在开区间 (a,b) 内至少有一点 ξ 使

$$f(\xi) = 0$$

Theorem 1.45 (介值定理). 设函数 f(x) 在闭区间 [a,b] 上连续,且在这区间的端点取不同的函数值

$$f(a) = A$$
 and $f(b) = B$

则对于A = B之间的任意一个数C,在开区间(a,b)内至少有一点 ξ ,使得

$$f(\xi) = C \quad (a < \xi < b)$$

Corollary 1.46. 在闭区间 [a,b] 上连续的函数 f(x) 的值域为闭区间 [m,M], 其中m与M依次为f(x)在[a,b]上的最大值、最小值

2 导数与微分

2.1 导数概念

Definition 2.1. 设函数 y = f(x) 在点 x_0 的某个邻域内有定义,当自变量 x 在 x_0 处取得增量 Δx (点 $x + \Delta x$ 仍在该邻域内) 时,相应地,因变量取得增量 $\Delta y = f(x_0 + \Delta x) - f(x_0)$;如果 Δy 与 Δx 之比当 $\Delta x \to 0$ 时的极限存在,那 么称函数 y = f(x) 在点 x_0 处 可导,并称这个极限为函数 y = f(x) 在点 x_0 处的 导数,记为 $f'(x_0)$,即

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

左导数,右导数

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$
$$f'_{+}(x_0) = \lim_{h \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h}$$

f(x) 在点 x_0 处可导的充分必要条件是左导数右导数存在且相等 设函数 y = f(x) 在点 x 处可导,即

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$$

存在, 因此

$$\frac{\Delta y}{\Delta x} = f'(x) + \alpha$$

其中 α 为当 $\Delta x \rightarrow 0$ 时的无穷小。两边同乘 Δx ,得

$$\Delta y = f'(x)\Delta x + \alpha \Delta x$$

由此可见,当 $\Delta x \to 0$ 时, $\Delta y \to 0$,这就是说 y = f(x) 在点 x 处连续,因此可导必连续,但连续不一定可导

Example 2.1. 函数 $y = f(x) = \sqrt[3]{x}$ 在区间 $-\infty, +\infty$ 内连续,但在点 x = 0 处不可导,因为

$$\frac{f(0+h) - f(0)}{h} = \frac{\sqrt[3]{h} - 0}{h} = \frac{1}{h^{2/3}}$$

因而 $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = +\infty$

2.2 函数的求导法则

Theorem 2.2. 如果函数 u = u(x) 及 v = v(x) 都在点 x 具有导数,那么它们的和差积商(除分母为零的点外)都在点 x 具有导数,且

- 1. $[u(x) \pm v(x)]' = u'(x) \pm v'(x)$
- 2. [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)
- 3. $\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)v(x) u(x)v'(x)}{v^2(x)}(v(x) \neq 0)$

Theorem 2.3. 如果函数 x = f(y) 在区间 I_y 内单调、可导且 $f'(y) \neq 0$,那么它的反函数 y = f'(x) 在区间 $I_x = \{x \mid x = f(y), y \in I_y\}$ 内也可导,且

$$[f^{-1}(x)]' = \frac{1}{f'(y)}$$

Theorem 2.4. 如果 u = g(x) 在点 x 可导,而 y = f(u) 在点 u = g(x) 可导,那 么复合函数 y = f[g(x)] 在点 x 可导,且其导数为

$$\frac{dy}{dx} = f'(u) \cdot g'(x)$$
 or $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

$$(a^x)' = a^x \ln a$$

2.3 高阶导数

2.4 隐函数及由参数方程所确定的函数的导数相关变化率

若参数方程

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

若函数 $x = \varphi(t)$ 具有单调连续反函数 $t = \varphi^{-1}(x)$,且此反函数能与函数 $y = \psi(t)$ 构成复合函数,则

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{\psi'(t)}{\varphi'(t)}$$

2.5 函数的微分

Definition 2.5. 设函数 y = f(x) 在某区间内有定义, x_0 及 $x_0 + \Delta x$ 在这区间内, 如果函数的增量

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

可表示为

$$\Delta y = A\Delta x + o(\Delta x)$$

其中 A 是不依赖于 Δx 的常数,那么称函数 y = f(x) 在点 x_0 是 **可微**的,而 $A\Delta x$ 叫做函数 y = f(x) 在点 x_0 相应与自变量增量 Δx 的 **微分**,记作 dy,即 $dy = A\Delta x$

if y = f(x) 在点 x_0 可微, then

$$dy = A\Delta x$$

and

$$\frac{\Delta y}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}$$

hence

$$A = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$

如果 y = f(x) 在点 x_0 可导

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$

we have

$$\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha$$

其中 $\alpha = o(\Delta x)$, hence

$$\Delta y = f'(x_0)\Delta x + \alpha \Delta x$$

hence f(x) 在点 x_0 可微

因此 f(x) 在点 x_0 可微 iff f(x) 在点 x_0 可导,且当 f(x) 在点 x_0 可微时,其微分是

$$dy = f'(x_0)\Delta x$$

当 $f'(x_0) \neq 0$ 时,有

$$\lim_{\Delta x \to 0} \frac{\Delta y}{dy} = \lim_{\Delta x \to 0} \frac{\Delta y}{f'(x_0)\Delta x} = \frac{1}{f'(x_0)} \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1$$

Hence

$$\Delta y = dy + o(dy)$$

即 dy 是 Δy 的 主部 (线性主部)

通常把自变量 x 的增量 Δx 称为 **自变量的微分**,记作 dx,即 $dx = \Delta x$,于是

$$dy = f'(x)dx$$

从而

$$\frac{dy}{dx} = f'(x)$$

3 微分中值定理与导数的应用

3.1 微分中值定理

Theorem 3.1 (费马定理). 设函数 f(x) 在点 x_0 的某邻域 $U(x_0)$ 内有定义,并且在 x_0 处可导,如果对任意的 $x \in U(x_0)$,有

$$f(x) \le f(x_0)$$
 (or $f(x) \ge f(x_0)$)

那么 $f'(x_0) = 0$

证明. for any $x_0 + \Delta x \in U(x_0)$, we have

$$f(x_0 + \Delta x) \le f(x_0)$$

when $\Delta x > 0$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Lambda} \le 0$$

when $\Delta x < 0$

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Lambda} \ge 0$$

Hence

$$f'(x_0) = f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0$$
$$f'(x_0) = f'_-(x_0) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0$$

Hence $f'(x_0) = 0$

通常称导数等于零的点为函数的 驻点(稳定点,临界点)

Theorem 3.2 (罗尔定理). 如果函数 f(x) 满足

- 1. 在闭区间 [a,b] 上连续
- 2. 在开区间 (a,b) 上可导
- 3. 在区间端点处的函数值相等,即 f(a) = f(b) 那么在 (a,b) 内至少有一点 $\xi(a < \xi < b)$ 使得 $f'(\xi) = 0$

证明. 由于 f(x) 在闭区间 [a,b] 上连续,根据闭区间上连续函数的最大值最小值定理, f(x) 在闭区间 [a,b] 上必取得它的最大值 M 和最小值 m

- 1. 若 M = m, f(x) = M
- 2. 若 M > m, 因为 f(a) = f(b), 所以 M 和 m 这两个数中至少有一个不等于 f(x) 在 [a,b] 的端点处的函数值,不妨设 $M \neq f(a)$,那么必存在开区间 (a,b) 内有一点 ξ 使 $f(\xi) = M$,由费马定理

Theorem 3.3 (拉格朗日中值定理). 如果函数 f(x) 满足

- 1. 在闭区间 [a,b] 上连续
- 在开区间 (a,b) 内可导
 那么在 (a,b) 内至少有一点 ξ(a < ξ < b) 使等式

$$f(b) - f(a) = f'(\xi)(b - a)$$

成立

Theorem 3.4. 如果函数 f(x) 在区间 I 上连续,I 内可导且导数恒为 0,那么 f(x) 在区间 I 上是一个常数

Theorem 3.5 (柯西中值定理). 如果函数 f(x) 及 F(x) 满足

- 1. 在闭区间 [a,b] 上连续
- 2. 在开区间 (a,b) 内可导
- 3. 对任一 $x \in (a,b)$, $F'(x) \neq 0$ 那么在 (a,b) 内至少有一点 ξ 使等式

$$\frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f'(\xi)}{F'(\xi)}$$

3.2 洛必达法则

Theorem 3.6 (洛必达法则). 设

- 1. 当 $x \to a$ 时,函数 f(x) 及 F(x) 都趋于零
- 2. 在点 a 的某去心邻域内 f'(x) 及 F'(x) 都存在且 $F'(x) \neq 0$
- 3. $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ 存在(或为无穷大)则

$$\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$$

Theorem 3.7. 设

- 1. 当 $x \to \infty$ 时, 函数 f(x) 及 F(x) 都趋于零
- 2. 当 x > |N| 时 f'(x) 及 F'(x) 都存在, 且 $F'(x) \neq 0$
- 3. $\lim_{x\to\infty} \frac{f'(x)}{F'(x)}$ 存在(或为无穷大)

$$\lim_{x \to \infty} \frac{f(x)}{F(x)} = \lim_{x \to \infty} \frac{f'(x)}{F'(x)}$$

3.3 泰勒公式

Theorem 3.8 (泰勒中值定理). 如果函数 f(x) 在 x_0 处具有 n 阶导数,那么存在 x_0 的一个邻域,对于该邻域内的任一 x,有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中

$$R_n(x) = o((x - x_0)^n)$$

证明. 记 $R_n(x) = f(x) - p_n(x)$, 则

$$R_n(x_0) = R'_n(x_0) = R''_n(x_0) = \dots = R_n^{(n)}(x_0) = 0$$

由于 f(x) 在 x_0 处有 n 阶导数,因此 f(x) 必在 x_0 的某邻域内有 n-1 阶导数, 反复洛必达

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{R'_n(x)}{n(x - x_0)^{n-1}} = \lim_{x \to x_0} \frac{R''_n(x)}{n(n-1)(x - x_0)^{n-2}}$$

$$= \dots = \lim_{x \to x_0} \frac{R_n^{(n-1)}(x)}{n!(x - x_0)}$$

$$= \frac{1}{n!} \lim_{x \to x_0} \frac{R_n^{(n-1)}(x) - R_n^{(n-1)}(x_0)}{x - x_0}$$

$$= \frac{1}{n!} R_n^{(n)}(x_0) = 0$$

Theorem 3.9 (泰勒中值定理 2). 如果函数 f(x) 在 x_0 的某个邻域 $U(x_0)$ 内具 有 (n+1) 阶导数,那么对任一 $x \in U(x_0)$,有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \quad (\xi \in U(x_0, |x - x_0|))$$

 $R_n(x)$ 的表达式称为 **拉格朗日余项**

麦克劳林公式

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1}, (0 < \theta < 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + R_{2m}$$

$$\cos x = 1 - \frac{1}{2!} x^{2} + \frac{1}{4!} x^{4} - \dots + (-1)^{m} \frac{x^{2m}}{(2m)!} + R_{2m+1}$$

3.4 函数的单调性与曲线的凹凸性

Theorem 3.10. 设函数 y = f(x) 在 [a,b] 上连续, 在 (a,b) 内可导

- 1. 如果在 (a,b) 内 $f'(x) \ge 0$,且等号仅在有限多个点处成立,那么函数 y = f(x) 在 [a,b] 上单调增加
- 2. 如果在 (a,b) 内 $f'(x) \le 0$,且等号仅在有限多个点处成立,那么函数 y = f(x) 在 [a,b] 上单调减少

Definition 3.11. 设 f(x) 在区间 I 上连续,如果对 I 上任意两点 x_1, x_2 恒有

$$f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2}$$

那么称 f(x) 在 I 上的 **图形是(向上)凹的(或凹弧)**; 如果恒有

$$f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2}$$

那么称 f(x) 在 I 上的 **图形是(向上)凸的(或凸弧)**

Theorem 3.12. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内具有一阶和二阶导数,那 么

- 1. 若在 (a,b) 内 f''(x) > 0, 则 f(x) 在 [a,b] 上的图形是凹的
- 2. 若在 (a,b) 内 f''(x) < 0, 则 f(x) 在 [a,b] 上的图形是凸的

证明. if f''(x) > 0, suppose $x_1, x_2 \in [a, b]$ and $x_1 < x_2$. Let $x_0 = \frac{x_1 + x_2}{2}$ and $h = x_2 - x_0 = x_0 - x_1$. Hence we have

$$f(x_0 + h) - f(x_0) = f'(x_0 + \theta_1 h)h$$

$$f(x_0) - f(x_0 - h) = f'(x_0 - \theta_2 h)h$$

where $0 < \theta_1, \theta_2 < 1$. By substraction

$$f(x_0 + h) + f(x_0 - h) - 2f(x_0) = [f'(x_0 + \theta_1 h) - f'(x_0 - \theta_2 h)]h$$

and

$$[f'(x_0 + theta_1h) - f'(x_0 - \theta_2h)]h = f''(\xi)(\theta_1 + \theta_2)h^2$$

where $x_0 - \theta_2 h < \xi < x_0 + \theta_1 h$. Since $f''(\xi) > 0$, we have

$$f(x_0 + h) + f(x_0 - h) - 2f(x_0) > 0$$

hence

$$\frac{f(x_0 + h) + f(x_0 - h)}{2} > f(x_0)$$

设 y = f(x) 在区间 I 上连续, x_0 是 I 内的点,如果曲线 y = f(x) 在经过点 $(x_0, f(x_0))$ 时,曲线的凹凸性改变,那么就称点 $(x_0, f(x_0))$ 为这曲线的 **拐** 点

3.5 函数的极值与最大值最小值

Definition 3.13. 设函数 f(x) 在点 x_0 的某邻域 $U(x_0)$ 内有定义,如果对于去心邻域 $U^{o}(x_0)$ 内的任一x,有

$$f(x) < f(x_0)$$
 (or $f(x) > f(x_0)$)

那么就称 $f(x_0)$ 是函数 f(x) 的一个 **极大值(极小值)**

Theorem 3.14 (必要条件). 设函数 f(x) 在 x_0 处可导,且在 x_0 处取得极值,则 $f'(x_0) = 0$

Theorem 3.15 (第一充分条件). 设函数 f(x) 在 x_0 处连续,且在 x_0 的某去心 邻域 $U^{o}(x_0,\delta)$ 内可导

1. 若 $x \in (x_0 - \delta, x_0)$ 时, f'(x) > 0, 而 $x \in (x_0, x_0 + \delta)$ 时, f'(x) < 0,则 f(x) 在 x_0 处取得极大值

- 2. 若 $x \in (x_0 \delta, x_0)$ 时,f'(x) < 0,而 $x \in (x_0, x_0 + \delta)$ 时,f'(x) > 0,则 f(x) 在 x_0 处取得极小值
- 3. 若 $x \in U^{0}(x_{0}, \delta)$ 时, f'(x) 的符号保持不变, 则 f(x) 在 x_{0} 处没有极值

Theorem 3.16 (第二充分条件). 设函数 f(x) 在 x_0 处具有二阶导数且 $f'(x_0) = 0$, $f''(x_0) \neq 0$, 则

- 1. 当 $f''(x_0) < 0$ 时, 函数 f(x) 在 x_0 处取得极大值
- 2. 当 $f''(x_0) > 0$ 时, 函数 f(x) 在 x_0 处取得极小值

3.6 曲率

设函数 f(x) 在区间 (a,b) 内具有连续导数,在曲线 y = f(x) 上取固定点 $M_0(x_0,y_0)$ 作为度量弧长的几点,并规定依 x 增大的方向作为曲线的争相,对 曲线上任一点 M(x,y),规定有向弧度 $\widehat{M_0M}$ 的值 s (简称为弧) 如下: s 的绝对值的等于这弧段的长度,当有向弧段 $\widehat{M_0M}$ 的方向与曲线的正向一致时,s>0,相反时 s<0

$$\Delta s = \widehat{M_0 M'} - \widehat{M_0 M} = \widehat{M M'}$$

于是

$$(\frac{\Delta s}{\Delta x})^2 = (\frac{\widehat{MM'}}{\Delta x})^2 = (\frac{\widehat{MM'}}{|MM'|})^2 \cdot \frac{|MM'|^2}{(\Delta x)^2}$$
$$= (\frac{\widehat{MM'}}{|MM'|})^2 \cdot \frac{(\Delta x)^2 + (\Delta y)^2}{(\Delta x)^2}$$
$$= (\frac{\widehat{MM'}}{|MM'|})^2 [1 + (\frac{\Delta y}{\Delta x})^2]$$

因此

$$\frac{\Delta s}{\Delta x} = \pm \sqrt{(\frac{\widehat{MM'}}{|MM'|})^2 \cdot \left[1 + (\frac{\Delta y}{\Delta x})^2\right]}$$

 $\diamondsuit \Delta x \to 0$ 取极限,由于 $\Delta x \to 0$ 时, $M' \to M$,这时弧的长度与弦的长度之比的极限等于 1,即

$$\lim_{M' \to M} \frac{\left| \widehat{MM'} \right|}{\left| MM' \right|} = 1$$

又

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'$$

因此

$$\frac{ds}{dx} = \pm \sqrt{1 + {y'}^2}$$

由于 s = s(x) 是单调增加函数,于是有

$$ds = \sqrt{1 + y'^2} dx$$

$$ds^2 = dx^2 + dy^2$$

在曲线 C 上选定一点 M_0 作为度量弧 s 的基点,设曲线上点 M 对应与弧 s,在点 M 处切线的倾角为 α ,曲线上另外一点 M' 对应于弧 $s+\Delta s$,在点 M' 处切线的倾角为 $\alpha+\Delta\alpha$,则弧段 $\widehat{MM'}$ 的长度为 $|\Delta s|$

我们用比值 $\left|\frac{\Delta\alpha}{\Delta s}\right|$ 来表达弧段 $\widehat{MM'}$ 的平均弯曲程度,叫做弧段 $\widehat{MM'}$ 的**平均曲率**,并记作 \overline{K}

设圆的半径是 a, $\angle MDM' = \frac{\Delta s}{a}$, 因此

$$\frac{\Delta \alpha}{\Delta s} = \frac{\frac{\Delta s}{a}}{\Delta s} = \frac{1}{a}$$

从而

$$K = \left| \frac{d\alpha}{ds} \right| = \frac{1}{a}$$

设曲线的直角坐标方程是 y=f(x),且 f(x) 具有二阶导数,因为 $\tan\alpha=y'$,所以

$$\sec^2 \alpha \frac{d\alpha}{dx} = y''$$

$$\frac{d\alpha}{dx} = \frac{y''}{1 + \tan^2 \alpha} = \frac{y''}{1 + y'^2}$$

于是

$$d\alpha = \frac{y''}{1 + y'^2} dx$$

又因为

$$ds = \sqrt{1 + {y'}^2} dx$$

因此

$$K = \frac{|y''|}{(1 + y'^2)^{3/2}}$$

设曲线 y = f(x) 在点 M(x,y) 处的曲率为 $K(K \neq 0)$,在点 M 处的曲线的法线上,在凹的一侧取一点 D,使 $|DM| = \frac{1}{K} = \rho$,以 D 为圆心, ρ 为半径作圆,这个圆叫做曲线在点 M 处的 **曲率圆**,D 为 **曲率中心**, ρ 为曲率半径

4 不定积分

4.1 不定积分的概念与性质

Definition 4.1. 如果在区间 I 上,可导函数 F(x) 的导函数为 f(x),那么函数 F(x) 就称为 f(x) 在区间 I 上的一个 **原函数**

Theorem 4.2 (原函数存在定理). 如果函数 f(x) 在区间 I 上连续,那么在区间 I 上存在可导函数 F(x),使对任一 $x \in I$ 都有

$$F'(x) = f(x)$$

Definition 4.3. 在区间 $I \perp$,函数 f(x) 的带有任意常数项的原函数称为 f(x) 在区间 $I \perp$ 的 **不定积分**,记为

$$\int f(x)dx$$

其中 \int 称为 **积分号**, f(x) 称为 **被积函数**, f(x)dx 称为 **被积表达式**, x 称为 **积分变量**

$$\int f(x)dx = F(x) + C$$

基本积分表

$$\int kdx = kx + C(k \text{ is a constant})$$

$$\int x^{\mu}dx = \frac{x^{\mu+1}}{\mu+1} + C(\mu \neq -1)$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int \frac{dx}{1+x^2} = \arctan x + C$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \frac{dx}{\cos^2 x} = \int \sec^2 x dx = \tan x + C$$

$$\int \frac{dx}{\sin^2 x} = \int \csc^2 x dx = -\cot x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \csc x \cot x dx = -\csc x + C$$

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

Proposition 4.4. 设函数 f(x) 及 g(x) 的原函数存在,则

$$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$

Proposition 4.5. 设函数 f(x) 的原函数存在, k 为非零常数, 则

$$\int kf(x)dx = k \int f(x)dx$$

4 不定积分

4.2 换元积分法

4.2.1 第一类换元法

Theorem 4.6. 设 f(u) 具有原函数, $u = \varphi(x)$ 可导,则有换元公式

$$\int f[\varphi(x)]\varphi'(x)dx = \left[\int f(u)du\right]_{u=\varphi(x)}$$

Proposition 4.7. $\int \frac{1}{3+2x} dx$

证明. let u = 3 + 2x

$$\int \frac{1}{3+2x} dx = \int \frac{1}{2} \cdot \frac{1}{3+2x} (3+2x)' dx = \int \frac{1}{2} \cdot \frac{1}{u} du$$
$$= \frac{1}{2} \ln|u| + C$$

Proposition 4.8. $\int \frac{1}{a^2+x^2} dx (a \neq 0)$

证明.

$$\int \frac{1}{a^2 + x^2} dx = \int \frac{1}{a^2} \cdot \frac{1}{1 + (\frac{x}{a})^2} dx$$
$$= \frac{1}{a} \int \frac{1}{1 + (\frac{x}{a})^2} d\frac{x}{a} = \frac{1}{a} \arctan \frac{x}{a} + C$$

Proposition 4.9. $\int \frac{1}{x^2 - a^2} dx (a \neq 0)$

证明.

$$\frac{1}{x^2 - a^2} = \frac{1}{2a} \left(\frac{1}{x - a} - \frac{1}{x + a} \right)$$

Proposition 4.10. $\int \sin^2 x \cos^4 x dx$

证明.

$$\int \sin^2 x \cos^4 x dx = \frac{1}{8} \int (1 - \cos 2x)(1 + \cos 2x)^2 dx$$

$$= \frac{1}{8} \int (1 + \cos 2x - \cos^2 2x - \cos^3 2x) dx$$

$$= \frac{1}{8} \int (\cos 2x - \cos^3 2x) dx + \frac{1}{8} \int (1 - \cos^2 2x) dx$$

$$= \frac{1}{8} \int \sin^2 2x \cdot \frac{1}{2} d(\sin 2x) + \frac{1}{8} \int \frac{1}{2} (1 - \cos 4x) dx$$

$$= \frac{1}{48} \sin^3 2x + \frac{x}{16} - \frac{1}{64} \sin 4x + C$$

Proposition 4.11. $\int \sec^6 x dx$

证明.

$$\int \sec^6 x dx = \int (\sec^2 x)^2 \sec^2 x dx = \int (1 + \tan^2 x)^2 d(\tan x)$$

Proposition 4.12. $\int \tan^5 x \sec^3 x dx$

证明.

$$\int \tan^5 x \sec^3 x dx = \int \tan^4 x \sec^2 x \sec x \tan x dx$$
$$= \int (\sec^2 - 1)^2 \sec^2 x d(\sec x)$$

Proposition 4.13. $\int \csc x dx$

证明.

$$\int \csc x dx = \int \frac{dx}{\sin x} = \int \frac{dx}{2 \sin \frac{x}{2} \cos \frac{x}{2}}$$
$$= \int \frac{d(\frac{x}{2})}{\tan \frac{x}{2} \cos^{2} \frac{x}{2}} = \int \frac{d(\tan \frac{x}{2})}{\tan \frac{x}{2}} = \ln \left| \tan \frac{x}{2} \right| + C$$

4 不定积分

Since

$$\tan\frac{x}{2} = \frac{1 - \cos x}{\sin x} = \csc x - \cot x$$

we have

$$\int \csc x dx = \ln|\csc x - \cot x| + C$$

Proposition 4.14. $\int \sec x dx$

证明.

$$\int \sec x dx = \int \csc(x + \frac{\pi}{2}) d(x + \frac{\pi}{2})$$
$$= \ln \left| \csc(x + \frac{\pi}{2}) - \cot(x + \frac{\pi}{2}) \right| + C$$
$$= \ln \left| \sec(x) + \tan(x) \right| + C$$

4.2.2 第二类换元法

Theorem 4.15. 设 $x = \psi(t)$ 是单调的可导函数,且 $\psi'(t) \neq 0$,又设 $f[\psi(t)]\psi'(t)$ 具有原函数,则有

$$\int f(x)dx = \left[\int f[\psi(t)]\psi'(t)dt\right]_{t=\psi^{-1}(x)}$$

其中 $\psi^{-1}(x)$ 是 $x = \psi(t)$ 的反函数

Proposition 4.16. $\int \sqrt{a^2 - x^2} dx (a > 0)$

证明. let $x = a \sin t$, $-\pi/2 < t < \pi/2$, hence

$$\int \sqrt{a^2 - x^2} dx = \int a \cos t \cdot a \cos t dt = a^2 \int \cos^2 t dt = a^2 (t/2 + \sin 2t/4) + C$$

and $t = \arcsin \frac{x}{a}$

$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{1}{2} x \sqrt{a^2 - x^2} + C$$

Proposition 4.17. $\int \frac{dx}{\sqrt{x^2+a^2}}$

证明. let $x = a \tan t(-\pi/2 < t < \pi/2)$, $dx = a \sec^2 t dt$ hence

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \int \sec t dt = \ln|\sec t + \tan t| + C$$

Hence

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(\frac{x}{a} + \frac{\sqrt{x^2 + a^2}a}{2}) + C = \ln(x + \sqrt{x^2 + a^2}) + C'$$

Proposition 4.18. $\int \frac{dx}{x^2 - a^2}$

证明. since $\sec^2 t - 1 = \tan^2 t$

if x > a, let $x = a \sec t (0 < t < \pi/2)$, $dx = a \sec t \tan t dt$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \sec t dt = \ln(\sec t + \tan t) + C$$
$$= \ln(x + \sqrt{x^2 - a^2}) + C'$$

else if x < -a

consequently

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right| + C$$

Proposition 4.19. $\int \frac{dx}{\sqrt{1+x-x^2}}$

证明.

$$\int \frac{dx}{\sqrt{1+x-x^2}} = \int \frac{d(x-1/2)}{\sqrt{(\sqrt{5}/2)^2 - (x-1/2)^2}}$$
$$= \arcsin \frac{2x-1}{\sqrt{5}} + C$$

4 不定积分

Proposition 4.20.
$$\int \frac{x^3}{(x^2-2x+2)^2} dx$$

证明. let $x - 1 = \tan t(-\pi/2 < t < \pi/2)$

$$x^2 - 2x + 2 = \sec^2 t, dx = \sec^2 t dt$$

4.3 分布积分法

$$uv' = (uv)' - u'v$$

$$\int uv'dx = uv - \int u'vdx$$

$$\int udv = uv - \int vdu$$

Proposition 4.21. $\int x \cos x dx$

证明.

$$\int x \cos x dx = x \sin x - \int \sin x dx$$

Proposition 4.22. $\int \arccos x dx$

证明.

$$\int \arccos x dx = x \arccos x - \int x d(\arccos x)$$

$$= x \arccos x + \int \frac{x}{\sqrt{1 - x^2}} dx$$

$$= x \arccos x - \frac{1}{2} \int \frac{1}{(1 - x^2)^{0.5}} d(1 - x^2)$$

$$= x \arccos x - \sqrt{1 - x^2} + C$$

Proposition 4.23. $\int e^x \sin x dx$

证明.

$$\int e^x \sin x dx = e^x \sin x - \int \cos x d(e^x)$$
$$= e^x \sin x - e^x \cos x - \int e^x \sin x dx$$

Hence

$$\int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) + C$$

Proposition 4.24. $\int \sec^3 x dx$

证明.

$$\int \sec^3 x dx = \int \sec x d(\tan x)$$

$$= \sec x \tan x - \int \sec x \tan t^2 x dx$$

$$= \sec x \tan x - \int \sec x (\sec^2 x - 1) dx$$

$$= \sec x \tan x - \int \sec^3 dx + \int \sec x dx$$

$$= \sec x \tan x + \ln|\sec x + \tan x| - \int \sec^3 x dx$$

4.4 有理函数的积分

Proposition 4.25. $\int \frac{1+\sin x}{\sin x(1+\cos x)} dx$

证明.

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\tan\frac{x}{2}}{\sec^2\frac{x}{2}} = \frac{2\tan\frac{x}{2}}{1 + \tan^2\frac{x}{2}}$$
$$\cos x = \cos^2\frac{x}{2} - \sin^2\frac{x}{2} = \frac{1 - \tan^2\frac{x}{2}}{\sec^2\frac{x}{2}} = \frac{1 - \tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2}}$$

 $let u = tan \frac{x}{2}, dx = \frac{2}{1+u^2}u$

5.1 定积分的概念与性质

Definition 5.1. 设函数 f(x) 在 [a,b] 上有界,在 [a,b] 中任意插入若干个分点

$$a = x_0 < x_1 < \dots < x_n = b$$

把区间 [a,b] 分成 n 个小区间

$$[x_0, x_1], \dots, [x_{n-1}, x_n]$$

各个小区间的长度依次为

$$\Delta x_1 = x_1 - x_0, \dots, \Delta x_n = x_n - x_{n-1}$$

在每个小区间 $[x_{i-1}, x_i]$ 上任取一点 $\xi_i(x_{i-1} \le \xi \le x_i)$,作函数值 $f(\xi_i)$ 与小区间 长度 Δx_i 的乘积 $f(\xi_i)\Delta x_i (i = 1, 2, ..., n)$,并作出和

$$S = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

记 $\lambda = \max\{\Delta x_1, ..., \Delta x_n\}$,如果当 $\lambda \to 0$ 时,这和的极限总存在,且与闭区间 [a,b] 的分法及点 ξ_i 的取法无关,那么称这个极限 I 为函数 f(x) 在区间 [a,b] 上的 **定积分**,记作 $\int_a^b f(x)dx$,即

$$\int_{a}^{b} f(x)dx = I = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

其中 f(x) 叫做 被积函数, f(x)dx 叫做 被积表达式,x 叫做 积分分量,a 叫做 积分下限,b 记作 积分上限,[a,b] 记作 积分空间

Theorem 5.2. 设 f(x) 在区间 [a,b] 上连续,则 f(x) 在 [a,b] 上可积

Theorem 5.3. 设 f(x) 在区间 [a,b] 上有界,且只有有限个间断点,则 f(x) 在 [a,b] 上可积

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{n} [\alpha f(x) + \beta g(x)] dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

证明.

$$\int_{a}^{b} [\alpha f(x) + \beta g(x)] dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} [\alpha f(\xi_{i}) + \beta g(\xi_{i})] \Delta x_{i}$$

$$= \lim_{\lambda \to 0} \alpha \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} + \lim_{\lambda \to 0} \beta \sum_{i=1}^{n} g(\xi_{i}) \Delta x_{i}$$

$$= \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

Proposition 5.5. 设 a < c < b,则

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Proposition 5.6. 如果在区间 [a,b] 上 $f(x) \equiv 1$, 那么

$$\int_{a}^{b} 1 dx = \int_{a}^{b} dx = b - a$$

Proposition 5.7. 如果在区间 [a,b] 上 $f(x) \ge 0$, 那么

$$\int_{a}^{b} f(x)dx \ge 0 \quad (a < b)$$

Corollary 5.8. 如果在区间 [a,b] 上 $f(x) \leq g(x)$, 那么

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \quad (a < b)$$

Corollary 5.9. $\left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$

Proposition 5.10. 设 M 及 m 分别是函数 f(x) 在区间 [a,b] 上的最大值及最小值,则

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a) \quad (a < b)$$

Theorem 5.11 (定积分中值定理). 如果函数 f(x) 在积分区间 [a,b] 上连续,那么在 [a,b] 上至少存在一点 ξ , 使得

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a) \quad (a \le \xi \le b)$$

5.2 微积分基本公式

记

$$\Phi(x) = \int_{a}^{x} f(t)dt \quad (a \le x \le b)$$

Theorem 5.12. 如果函数 f(x) 在区间 [a,b] 上连续,那么积分上限的函数

$$\Phi(x) = \int_{a}^{x} f(t)dt$$

在 [a,b] 上可导, 且

$$\Phi'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x) \quad (a \le x \le b)$$

Theorem 5.13. 如果函数 f(x) 在区间 [a,b] 上连续,则函数

$$\Phi(x) = \int_{a}^{x} f(t)dt$$

就是 f(x) 在 [a,b] 上的一个原函数

Theorem 5.14 (微积分基本定理). 如果函数 F(x) 是连续函数 f(x) 在区间 [a,b] 上的一个原函数,那么

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

5.3 定积分的换元法和分部积分法

Theorem 5.15. 假定函数 f(x) 在区间 [a,b] 上连续, 函数 $x = \varphi(t)$ 满足

- 1. $\varphi(\alpha) = a, \varphi(\beta) = b$
- 2. $\varphi(t)$ 在 [a,b] 上具有连续导数,且其值域 $R_{\varphi}=[a,b]$,则有

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f[\varphi(t)]\varphi'(t)dt$$

Proposition 5.16. *Prove*

1. 若 f(x) 在 [-a,a] 上连续且为偶函数,则

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$

2. 若 f(x) 在 [-a,a] 上连续且为奇函数,则

$$\int_{-a}^{a} f(x)dx = 0$$

$$\int_{-a}^{0} f(x)dx = -\int_{a}^{0} f(-t)dt = \int_{0}^{a} f(-t)dt = \int_{0}^{a} f(-x)dx$$

Proposition 5.17. 设 f(x) 在 [0,1] 上连续,证明

- 1. $\int_0^{\frac{\pi}{2}} f(\sin x) dx = \int_0^{\frac{\pi}{2}} f(\cos x) dx$
- 2. $\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$ 计算

$$\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$$

证明. 1. 设 $x = \frac{\pi}{2} - t$

$$\int_0^{\frac{\pi}{2}} f(\sin x) dx = -\int_{\frac{\pi}{2}}^0 f[\sin(\frac{\pi}{2} - t)] dt$$
$$= \int_0^{\frac{\pi}{2}} f(\cos t) dt$$

 $2. \, \diamondsuit x = \pi - t$

$$\int_0^{\pi} x f(\sin x) dx = -\int_{\pi}^0 (\pi - t) f(\sin(\pi - t)) dt$$
$$= \int_0^{\pi} (\pi - t) f(\sin t) dt$$
$$= \pi \int_0^{\pi} f(\sin x) dx - \int_0^{\pi} x f(\sin x) dx$$

Proposition 5.18.
$$\int_0^3 \frac{x^2}{(x^2-3x+3)^2} dx$$

证明.
$$x^2 - 3x + 3 = (x - 1.5)^3 + 3/4$$
. let $x - 1.5 = \frac{\sqrt{3}}{2} \tan u(u) < \pi/2$.
$$(x^2 - 3x + 3)^2 = (\frac{3}{4} \sec^2 u)^2, dx = \frac{\sqrt{3}}{2} \sec^2 u du$$

$$\int_{a}^{b} u(x)v'(x)dx = \left[\in u(x)v'(x)dx \right]_{a}^{b}$$

$$= \left[u(x)v(x) - \int v(x)u'(x)dx \right]_{a}^{b}$$

$$= \left[u(x)v(x) \right]_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx$$

5.4 反常积分

设函数 f(x) 在区间 $[a,+\infty)$ 上连续,取 t>a,作定积分 $\int_a^t f(x)dx$,再求极限

$$\lim_{t \to +\infty} \int_{a}^{t} f(x) dx$$

称为 **函数** f(x) **在无穷区间** $[a, +\infty)$ 上的反常积分,记作 $\int_a^{+\infty} f(x) dx$

Definition 5.19. 设函数 f(x) 在区间 $[a, +\infty)$ 上连续,如果极限存在,那么称反常积分收敛,并称此极限为反常积分的值,若不存在,那么反常积分发散设函数 f(x) 在区间 $(-\infty, +\infty)$ 上连续,如果反常积分 $\int_{-\infty}^{0} f(x) dx$ 与反常积分 $\int_{0}^{+\infty} f(x) dx$ 均收敛,那么称反常积分 $\int_{-\infty}^{+\infty} \psi$ 数,

设 F(x) 为 f(x) 在 $[a, +\infty)$ 上的原函数,若 $\lim_{x\to +\infty} F(x)$ 存在,则反常积分

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} F(x) - F(a)$$

若不存在,则反常积分发散

Proposition 5.20. $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$

证明.

$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = [\arctan x]_{-\infty}^{+\infty} = \pi$$

Proposition 5.21. $\int_0^{+\infty} t e^{-pt} dx, p > 0$

证明.

$$\int_{0}^{+\infty} t e^{-pt} dt = \left[-\frac{1}{p} \int t d(e^{-pt}) \right]_{0}^{+\infty}$$
$$= \left[-\frac{t}{p} e^{-pt} + \frac{1}{p} \int e^{-pt} dt \right]_{0}^{+\infty}$$
$$= \frac{1}{p^{2}}$$

如果函数 f(x) 在点 a 的任意邻域内都无界,那么点 a 称为函数 f(x) 的**瑕点** (也称无界间断点),无界函数的反常积分又称为 **瑕积分**

设函数 f(x) 在区间 (a,b] 上连续,点 a 为 f(x) 的瑕点,任取 t>a,作定积分 $\int_{t}^{b} f(x)dx$,再求极限

$$\lim_{t \to a^+} \int_t^b f(x) dx$$

Definition 5.22. 如果极限存在,那么称反常积分 $\int_a^b f(x)dx$ 收敛,并称此极限为该反常积分的值

设函数 f(x) 在区间 [a,c) 及区间 (c,b] 上连续,c 为 f(x) 的瑕点,反常积分 $\int_a^c f(x)dx + \int_c^b f(x)dx$ 称为 f(x) 在区间 [a,b] 上的反常积分

Proposition 5.23. $\int_0^a \frac{dx}{\sqrt{a^2 - x^2}} dx (a > 0)$

证明.

$$\int_0^a \frac{dx}{\sqrt{a^2 - x^2}} = \left[\arcsin \frac{x}{a}\right]_0^a = \lim_{x \to a^-} \arcsin \frac{x}{a} - 0 = \pi/2$$

- 6 定积分的应用
- 6.1 定积分的元素法
- 6.2 定积分在几何学上的应用

Example 6.1. 求椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围成的面积

证明. 利用椭圆的参数方程

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \quad (0 \le t \le \frac{\pi}{2})$$

- 7 微分方程
- 7.1 微分方程的基本概念
- 7.2 可分离变量的微分方程

讨论一阶微分方程

$$y' = f(x, y)$$

若一阶微分方程能写成

$$g(y)dy = f(x)dx$$

的形式,原方程称为 可分离变量的微分方程

7.3 齐次方程

若一阶微分方程可化成

$$\frac{dy}{dx} = \varphi(\frac{y}{x})$$

的形式,那么就称这方程为 **齐次方程**

引入新的未知函数

$$u = \frac{y}{x}$$

就有

$$y = ux, \frac{dy}{dx} = u + x \frac{du}{dx}$$
$$u + x \frac{du}{dx} = \varphi(u)$$
$$x \frac{du}{dx} = \varphi(u) - u$$
$$\frac{du}{\varphi(u) - u} = \frac{dx}{x}$$

7.4 一阶线性微分方程

$$\frac{dy}{dx} + P(x)y = Q(x)$$

叫做 一**阶线性微分方程**,若 Q(x) == 0,就称为 **齐次**的,不然是 **非齐次**的 对于非齐次线性方程,先考虑

$$\frac{dy}{dx} + P(x)y = 0$$

叫做对应于非齐次线性方程的 齐次线性方程, 我们有

$$\frac{dy}{y} = -P(x)dx$$

$$\ln|y| = -\int P(x)dx + C_1$$

$$y = Ce^{-\int P(x)dx} (C = \pm e^{C_1})$$

现在使用 **常数变易法**,把通解中的 C 换成 x 的未知函数 u(x),作变换

$$v = ue^{-\int P(x)dx}$$

于是

$$\frac{dy}{dx} = u'e^{-\int P(x)dx} - uP(x)e^{-\int P(x)dx}$$

$$u'e^{-\int P(x)dx} - uP(x)e^{-\int P(x)dx} + P(x)ue^{-\int P(x)dx} = Q(x)$$

$$u'e^{-\int P(x)dx} = Q(x), u' = Q(x)e^{\int P(x)dx}$$

$$u = \int Q(x)e^{\int P(x)dx}dx + C$$

因此

$$y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx}dx + C \right)$$

Proposition 7.1. 求方程

$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{5/2}$$

的通解

证明. 这是一个非齐次线性方程, 先求对应的齐次方程的通解

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0$$
$$\frac{dy}{y} = \frac{2dx}{x+1}$$
$$\ln|y| = 2\ln|x+1| + C_1$$
$$y = C(x+1)^2(C = \pm e^{C_1})$$

令

$$y = u(x+1)^2$$

那么

$$\frac{dy}{dx} = u'(x+1)^2 + 2u(x+1)$$

代入非齐次方程得

$$u' = \sqrt{x+1}$$

两端积分,得

$$u = \frac{2}{3}(x+1)^{3/2} + C$$

因此

$$y = (x+1)^2 \left[\frac{2}{3}(x+1)^{3/2} + C\right]$$

Proposition 7.2.

Consider a circuit. 其电源电动势为 $E=E_m\sin\omega t\ (E_m,\omega$ 都是常量),电阻 R 和电感 L 都是常量,求电流 i(t)

证明. 当电流变化时,L上有感应电动势 $-L\frac{di}{dt}$,由回路电压定律得出

$$E - L\frac{di}{dt} - iR = 0$$

即

$$\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$$

代入得

$$\frac{di}{dt} + \frac{R}{L}i = \frac{E_m}{L}\sin\omega t$$

46

7 微分方程

同时 i(t) 满足初值

$$i|_{t=0}=0$$

7.5 可降阶的高阶微分方程

7.5.1 $y^{(n)=f(x)}$ 型微分方程

$$y^{(n-1)} \int f(x)dx + C_1$$
$$y^{(n-2)} = \int [\int f(x)dx + C_1]dx + C_2$$
:

Proposition 7.3. 质量为 m 的质点受力 F 的作用沿 Ox 轴做直线运动,设力 F = F(t) 在开始时刻 t = 0 时 $F(0) = F_0$,随着时间 t 的增大,力 F 均匀地减小,直到 t = T 时,F(T) = 0,如果开始时质点位于原点,且初速度为零,求这质点的运动规律

证明.

$$F(t) = m\frac{d^2x}{dt^2}$$

7.5.2 y'' = f(x, y') 型的微分方程

$$p' = f(x, p)$$

设其通解为

$$p = \varphi(x, C_1)$$

但是 $p = \frac{dy}{dx}$,因此

$$\frac{dy}{dx} = \varphi(x, C_1)$$

于是有通解

$$y = \int \varphi(x, C_1) dx + C_2$$

Proposition 7.4. 求微分方程 $1+x^2y''=2xy'$ 满足初值

$$y|_{x=0} = 1, y'|_{x=0} = 3$$

的特解

$$\frac{dp}{p} = \frac{2x}{1+x^2} dx$$

$$\ln|p| = \ln(1+x^2) + C$$

$$p = y' = C_1(1+x^2)(C_1 = \pm e^C)$$

$$C_1 = 3(y'_{x=0} = 3)$$

$$y' = 3(1+x^2)$$

$$y = x^3 + 3x + C_2$$

$$C_2 = 1$$

$$y = x^3 + 3x + 1$$

Proposition 7.5. 设有一均匀、柔软的绳索,两端固定,绳索仅受中立的作用下垂,试问该绳索在平衡状态时是怎样的曲线

证明.

设绳索的最低点为 A,取 y 轴通过 A 点铅直向上,并取 x 轴水平向右,且 |OA| 等于某个定值。设绳索曲线的方程为 $y=\varphi(x)$,考察绳索上点 A 到 另一点 M(x,y) 间的一段弧 \widehat{AM} ,设其长为 s,假定绳索的线密度为 ρ ,则弧 \widehat{AM} 所受重力为 ρgs 。由于绳索时柔软的,因而在点 A 处的张力沿水平的切线方向,其大小设为 H;在点 M 处的张力沿该点处的切线方向,设其倾角为 θ ,其大小为 T ,因作用于弧段 arcAM 的外力相互平衡,得

$$T \sin \theta = \rho gs, T \cos \theta = H$$

将两式相除,得

$$\tan \theta = \frac{s}{a}(a = \frac{H}{\rho g})$$

由于 $\tan \theta = y', s = \int_0^x \sqrt{1 + y'^2} dx$,代入得

$$y' = \frac{1}{a} \int_0^x \sqrt{1 + y'^2} dx$$

对 x 求导,得

$$y'' = \frac{1}{a}\sqrt{1 + y'^2}$$

初值条件

$$y|_{x=0} = a, y'|_{x=0} = 0$$

设 p = y', 则

$$p' = \frac{1}{a}\sqrt{1+p}$$

$$\frac{dp}{\sqrt{1+p^2}} = \frac{dx}{a}$$

$$\ln(p+\sqrt{1+p^2}) = \frac{x}{a} + C_1$$

代入初值得 $C_1 = 0$ 解得

$$p=\frac{1}{2}(e^{\frac{x}{a}}-e^{-\frac{x}{a}})$$

因此

$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right)$$

7.5.3 y'' = f(y, y') 型的微分方程

$$p\frac{dp}{dy} = f(y, p)$$

设它的通解为 $y' = p = \varphi(y, C_1)$ 则

$$\int \frac{dy}{\varphi(y,C_1)} = x + C_2$$

Proposition 7.6. 求微分方程

$$yy'' - y'^2 = 0$$

的通解

证明. 设 y' = p

$$y'' = \frac{dp}{dx} == \frac{dp}{dy} \cdot \frac{dy}{dx} = p\frac{dp}{dy}$$

因此

$$yp\frac{dp}{dy} - p^2 = 0$$

在 y ≠ 0, p ≠ 0 时约去 p 并分离变量

$$\frac{dp}{p} = \frac{dy}{y}$$

$$\ln|p| = \ln|y| + C$$

$$p = C_1 y(C_1 = \pm e^C)$$

$$\ln|y| = C_1 + C_2'$$

$$y = C_2 e^{C_1 x} (C_2 = \pm e^{C_2'})$$

7.6 高阶线性微分方程

先讨论二阶齐次线性方程

$$y'' + P(x)y' + Q(x)y = 0$$

Theorem 7.7. 如果函数 $y_1(x)$ 与函数 $y_2(x)$ 二阶齐次线性方程的两个解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是一个解, C1, C2 是任意常数

设 $y_1(x),...,y_n(x)$ 为定义在区间 I 上的 n 个函数,如果存在 n 个不全为零的常数 $k_1,k_2,...,k_n$ 使得当 $x\in I$ 时有恒等式

$$k_1 y_1 + \dots + k_n y_n \equiv 0$$

成立,那么就称这n个函数在区间I上线性相关;否则称线性无关

Theorem 7.8. 如果 $y_1(x)$ 与 $y_2(x)$ 是方程两个线性无关的特解,那么

$$y = C_1 y_1(x) + C_2 y_2(x)$$

是方程的通解

Corollary 7.9. 如果 $y_1(x), ..., y_n(x)$ 是 n 阶齐次线性方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$

的 n 个线性无关的解, 那么此方程的通解为

$$y = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x)$$

其中 C₁,..., C_n 为任意常数

Theorem 7.10. 设 $y^*(x)$ 是二阶非齐次线性方程

$$y'' + P(x)y' + Q(x)y = f(x)$$

的一个特解, Y(x) 是 y'' + P(x)y' + Q(x)y = 0 的通解, 则

$$y = Y(x) + y^*(x)$$

是二阶非齐次线性微分方程的通解

Theorem 7.11 (叠加原理). 设非齐次线性方程的右端 $f(x) = f_1(x) + f_2(x)$, 而 $y_1^*(x)$ 与 $y_2^*(x)$ 分别是方程

$$y'' + P(x)y' + Q(x)y = f_1(x)$$

与

$$y'' + P(x)y' + Q(x)y = f_2(x)$$

的特解,则 $y_1^*(x) + y_2^*(x)$ 就是原方程的特解

7.7 常系数齐次线性微分方程

二阶齐次线性方程

$$y'' + P(x)y' + Q(x)y = 0$$

中,如果 y',y 的系数 P(x),Q(x) 均为常数

$$y'' + py' + qy = 0 (7.7.1)$$

那么称为 二**阶常系数齐次线性微分方程**,如果 p,q 不全为常数,称为 二**阶** 变系数齐次线性方程

要找微分方程的通解,可以先求出它的两个解 y_1, y_2 ,如果它们线性无 关,那么 $y = C_1 y_1 + C_2 y_2$ 的通解

将 $y = e^{rx}$ 求导,得

$$y' = re^{rx}, \quad y'' = r^2e^{rx}$$

代入方程得

$$(r^2 + pr + q)e^{rx} = 0$$

由于 $e^{rx} \neq 0$, 所以

$$r^2 + pr + q = 0 (7.7.2)$$

因此只要 r 满足代数方程 $r^2 + pr + q = 0$,函数 $y = e^{rx}$ 就是微分方程的解,称 方程 (7.7.2) 为方程 (7.7.1) **的特征方程**

特征方程 (7.7.2) 的两个根

$$r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

有三种不同情形

1. 当 $p^2 - 4q > 0$ 时, r_1, r_2 是两不相等的实根 $y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$ 是微分方程 (7.7.1) 的两个解,且 $\frac{y_2}{y_1} = e^{(r_2 - r_1)x}$ 不是 常数,因此微分方程 (7.7.1) 的通解为

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

2. 当 $p^2 - 4q = 0$ 时, r_1, r_2 是两个相等的实根 这时只得到 (7.7.1) 的一个解

$$y_1 = e^{r_1 x}$$

这时还需另一个解 y_2 , 设 $\frac{y_2}{y_1} = u(x)$, 即 $y_2 = e^{r_1 x} u(x)$

$$y_2' = e^{r_1 x} (u' + r_1 u)$$

$$y_2'' = e^{r_1 x} (u'' + 2r_1 u' + r_1^2 u)$$

将 y₂, y₂, y₂" 代入微分方程 (7.7.1) 得

$$e^{r_1x}[(u'' + 2r_1u' + r_1^2u) + p(u' + r_1u) + qu] = 0$$

$$u'' + (2r_1 + p)u' + (r_1^2 + pr_1 + q)u = 0$$

由于 r_1 是特征方程 (7.7.2) 的二重根, 因此 $r_1^2 + pr_1 + q = 0$, 且 $2r_1 + p = 0$, 于是

$$u'' = 0$$

因为这里只要得到一个不为常数的解,不妨取 u = x,由此得到微分方程的另一个解

$$y_2 = xe^{r_1x}$$

从而通解为

$$y = (C_1 + C_2 x)e^{r_1 x}$$

3. 当 $p^2 - 4q < 0$ 时, r_1, r_2 是一对共轭复根

$$r_1 = \alpha + \beta i$$
, $r_2 = \alpha - \beta i$

其中

$$\alpha = -\frac{p}{2}, \beta = \frac{\sqrt{4q - p^2}}{2}$$

利用欧拉公式 $e^{i\theta} = \cos\theta + i\sin\theta$

$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x}(\cos \beta x + i \sin \beta x)$$

$$y_2 = e^{(\alpha - \beta i)x} = e^{\alpha x}(\cos \beta x - i \sin \beta x)$$

由于 y_1, y_2 有共轭关系,且方程 (7.7.1) 的解符合叠加原理,所以实值函数

$$\overline{y_1} = \frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x$$

$$\overline{y_2} = \frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x$$

还是微分方程 (7.7.1) 的解,且 $\frac{\overline{N}}{\overline{N}} = \cot \beta x$,不是常数,所以微分方程 的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

综上所述, 二阶常系数齐次线性微分方程 (7.7.1) 的通解的步骤如下

1. 写出特征方程

$$r^2 + pr + q = 0$$

- 2. 求出特征方程的两个根 r_1, r_2
- 3. 根据解的不同情形

$$r_1, r_2$$
 通解
 $r_1 \neq r_2$ $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
 $r_1 = r_2$ $y = (C_1 + C_2 x) e^{r_1 x}$
 $r_{1,2} = \alpha \pm \beta i$ $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

n 阶常系数齐次线性微分方程的一般形式是

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_{n-1} y' + p_n y = 0$$
 (7.7.3)

其中 $p_1, ..., p_n$ 都是常数

有时我们用记号 D (叫做 **微分算子**) 表示对 x 求导的运算 $\frac{d}{dx}$,把 $\frac{dy}{dx}$ 记作 Dy,把 $\frac{d^ny}{dx^n}$ 记作 D^ny ,并把方程 (7.7.3) 记作

$$(D^{n} + p_{1}D^{n-1} + \dots + p_{n-1}D + p_{n})y = 0 (7.7.4)$$

记

$$L(D) = D^{n} + p_{1}D^{n-1} + \dots + p_{n-1}D + p_{n}$$

L(D) 叫做 **微分算子** D **的** n 次多项式,于是方程 (7.7.4) 记作

$$L(D)y = 0$$

$$r^{n} + p_{1}r^{n-1} + \dots + p_{n-1}r + p_{n} = 0$$

为 特征方程

根 通解中的对应项

单实根 r Ce^{rx}

一对单复根 $r_{1,2} = \alpha \pm \beta i$ $e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

k 重实根 $e^{rx}(C_1 + C_2x + \dots + C_kx^{k-1})$

一对 k 重复根 $r_{1,2} = \alpha \pm \beta i$ $e^{\alpha x}[(C_1 + C_2 x + \dots + C_k x^{k-1})\cos\beta x + (D_1 + D_2 x + \dots + D_k x^{k-1})\sin\beta x]$

Proposition 7.12. 求方程 $y^{(4)} - 2y''' + 5y'' = 0$ 的通解

证明. 特征方程

$$r^4 - 2r^3 + 5r^2 = 0$$

$$r^2(r^2 - 2r + 5) = 0$$

$$r_1=r_2=0, r_{3,4}=1\pm 2i$$

因此通解

$$y = C_1 + C_2 x + e^x (C_3 \cos 2x + C_4 \sin 2x)$$

- 7.8 常系数非齐次线性微分方程
- 8 向量代数与空间解析几何
- 8.1 向量及其线性运算

Theorem 8.1. 设向量 $a \neq 0$,则向量 b 平行于 a 的充分必要条件是:存在唯一的实数 λ ,使 $b = \lambda a$

非零向量 ${\bf r}$ 与三条坐标轴的夹角 α 、 β 、 γ 称为 ${\bf r}$ 的方向角,设 $\vec{OM}={\bf r}=(x,y,z)$

$$\cos \alpha = \frac{x}{|OM|} = \frac{x}{|\mathbf{r}|}$$
$$\cos \beta = \frac{y}{|\mathbf{r}|}, \cos \gamma = \frac{z}{|\mathbf{r}|}$$
$$(\cos \alpha, \cos \beta, \cos \gamma) = \frac{\mathbf{r}}{|\mathbf{r}|} =_{r}$$

 $\cos \alpha, \cos \beta, \cos \gamma$ 称为向量 r 的 方向余弦

设点 O 及单位向量 确定 u 轴,任给向量 \mathbf{r} ,作 $\overrightarrow{OM} = \mathbf{r}$,再过点 M 作与 u 轴垂直的平面交 u 轴于点 M' (点 M' 叫做 点 M 在 u 轴上的投影),则向量 $\overrightarrow{OM'}$ 称为向量 \mathbf{r} 在 u 轴上的分向量,设 $\overrightarrow{OM'} = \lambda$,则 λ 称为 向量 \mathbf{r} 在 u 轴上的投影,记作 $(\mathbf{r})_u$

8.2 数量积向量积混合积

数量积,记作 a·b

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Appendix

Appendices

.1 Trigonometry

$$\sec \alpha = \frac{1}{\cos \alpha}, \quad \csc \alpha = \frac{1}{\sin \alpha}$$

Suppose we have two units $\vec{u} = (\cos x, \sin x), \vec{v} = (\cos y, \sin y)$, then

$$\vec{u} \cdot \vec{v} = \cos x \cos y + \sin x \sin y = \cos(x - y)$$

Hence by substitute -y for y or $\frac{\pi}{2} - x$ for x, we have

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

let x = y, we have

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 -1$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Hence we have

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$

$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$
$$\tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

$$\tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

$$\tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = \frac{2\sin^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}} = \frac{1 - \cos x}{\sin x} = \csc x - \cot x$$

10 Index

· 连续 · · · · · · · · 13