# Complex Analysis Lecture Notes

Hand written summary from lectures

#### Acknowledgment

Special thanks to my professor MR.BAKIR FARHI, who gave the lectures and explanations, this work wouldn't exist without his teaching. here is the link to his website:

http://farhi.bakir.free.fr/home/index-fr.html

# Disclaimer

These notes were written in real-time during the lectures, this is not the final version, yet. so they may contain:

- Incomplete or incorrect information.
- Typos, transcription mistakes, or missing content.
- Interpretations or notations that reflect my own understanding. at the moment

Please double check anything important with official material or trusted sources.

| If you spot an error feel free | e to open an issue or submit a pull request, or contact me via gmail:                                       |
|--------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                             |
|                                | kara.abderahmane@nhsm.edu.dz                                                                                |
| Notes on Contribution :        |                                                                                                             |
|                                | ative effort. students who contribute by reporting errors or helping                                        |
|                                | be credited in the next page as contributors in future versions, your s improve this document for everyone. |
| neip is appreciated and neip   | s improve this document for everyone.                                                                       |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |
|                                |                                                                                                             |

| My Github Page  Last Update: 2025-10-11 |                   |                   |  |
|-----------------------------------------|-------------------|-------------------|--|
|                                         |                   |                   |  |
| Main Drawer                             |                   | Haddar Noureddine |  |
| News Reporter                           |                   | Hammiche Ismail   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         |                   |                   |  |
|                                         | ARMWRESTLING4EVER |                   |  |

# **Contents** 1 Power Series 2 5 10 1.2.1 1.3.1 13 1.3.2 16 23 1.5.1 24 1.5.2 28 2 The Cauchy integral formula on a circle and applications 31

# Chapter 1

# **Power Series**

#### Lecture 1

08:06 AM Mon, Sep 29 2025

**Definition 1.0.1 (Power Series)**: A power series is a formal series of the form  $\sum_{n=0}^{\infty} a_n z^n$ , where  $a_n \in \mathbb{C}$  for all  $n \in \mathbb{N}_0$ .

More generally, given  $z_0 \in \mathbb{C}$ , a power series centered at  $z_0$  is a formal series of the form:

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n,$$

where  $a_n \in \mathbb{C} \quad (\forall n \in \mathbb{N}_0)$ 

## Remark 🐿

The set of all complex power series (centered at 0) is denoted by  $\mathbb{C}[[z]]$ . More generally, given  $z_0 \in \mathbb{C}$ , the set of all complex power series centered at  $z_0$  is denoted by  $\mathbb{C}[[z-z_0]]$ .

# Operations on Formal Power Series:

Given  $z_0 \in \mathbb{C}$ , we equip  $\mathbb{C}[[z-z_0]]$ . with the following operations:

① **Additions:** For all  $(a_n)_{n\in\mathbb{N}_0}$ ,  $(b_n)_{n\in\mathbb{N}_0}\subset\mathbb{C}$ :

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=0}^{\infty} b_n (z-z_0)^n = \sum_{n=0}^{\infty} (a_n + b_n) (z-z_0)^n.$$

2 Multiplication

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \times \sum_{n=0}^{\infty} b_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

where,  $c_n := \sum_{k=0}^n a_k b_{n-k}$  for all  $n \in \mathbb{N}_0$ . Also  $(c_n)_{n \in \mathbb{N}}$  is called the covolution of the two sequences  $(a_n)_{n \in \mathbb{N}_0}$  and  $(b_n)_{n \in \mathbb{N}_0}$ .

③ Scalar Multiplication: For all  $\lambda \in \mathbb{C}$ , and all  $(a_n)_{n \in \mathbb{N}_0} \subset \mathbb{C}$ :

$$\lambda \sum_{n=0}^{\infty} a_n (z-z_0)^n = \sum_{n=0}^{\infty} (\lambda a_n) (z-z_0)^n.$$

It's straightforward to verify that  $\mathbb{C}[[z-z_0]]$  equipped with these operations forms a commutative algebra over  $\mathbb{C}$ . The Multiplicative identity is the constant power series:

$$1 = 1 + 0 \cdot (z - z_0) + 0 \cdot (z - z_0)^2 + \dots$$

**Definition 1.0.2 (Domain of Convergence) :** The domain of convergence of a power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  is the set of all points  $z \in \mathbb{C}$  for which the series converge. The structure of this domain is very specific. Its a disk (possibly with some points in its boundary) centered at  $z_0$ .

**Proposition 1.0.1 (Abel's Lemma)**: Let  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  be a power series and let  $z_1 \in \mathbb{C} \setminus \{z_0\}$ . Suppose that the sequence  $\{a_n(z_1-z_0)^n\}_{n\in\mathbb{N}_0}$  is bounded. Then, the power series in question converges absolutely (so converges) for every  $z\in\mathbb{C}$ , such that:

$$|z-z_0|<|z_1-z_0|$$

*Proof.* By hypothesis,  $\exists M > 0$  such that  $\forall n \in \mathbb{N}_0$ :

$$|a_n(z_1-z_0)^n| \le M$$

Then, for all  $z \in \mathbb{C}$  such that  $|z - z_0| < |z_1 - z_0|$  we have:

$$|a_n(z - z_0)^n| = \underbrace{|a_n(z_1 - z_0)^n|}_{\leq M} \cdot \underbrace{\left|\frac{z - z_0}{z_1 - z_0}\right|^n}_{\leq 1}$$

$$\leq M \underbrace{\left|\frac{z - z_0}{z_1 - z_0}\right|^n}_{\leq 1}.$$

Since  $\left|\frac{z-z_0}{z_1-z_0}\right| < 1$  then the geometric series

$$\sum_{n=0}^{\infty} M \left| \frac{z - z_0}{z_1 - z_0} \right|^n \text{ Converges }.$$

Thus, the series  $\sum_{n=0}^{\infty} |a_n(z-z_0)^n|$  also converges, that is  $\sum_{n=0}^{\infty} a_n(z-z_0)^n$  is absolutely convergent.

**Corollary 1.0.2 :** Let  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  be a power series which converges at some  $z=z_1 \in \mathbb{C} \setminus \{z_0\}$ . Then the power series in question converges absolutely (so converges), for every  $z \in \mathbb{C}$  such that:

 $\hat{z_0}$ 

$$|z - z_0| < |z - z_1|$$

*Proof.*  $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$  converges implies that  $a_n (z - z_0)^n \to 0$  as  $n \to +\infty$ , which implies that the sequence  $\{a_n (z_1 - z_0)^n\}_{n \ge 0}$  is bounded. *Proposition 1.0.1* permits us to conclude the required result.

**Theorem 1.0.3 (Radius of Convergence) :** Let  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  be a power series. Then there exists a unique  $R \in [0, \infty]$ , called the radius of convergence with the following properties:

- ① The power series converges absolutely for every  $z \in \mathbb{C}$  satisfying  $|z z_0| < R$ .
- ② The power series diverges for every  $z \in \mathbb{C}$  satisfying  $|z-z_0| > R$ . The disk  $D(z_0,R)=\{z\in\mathbb{C}: |z-z_0|< R\}$  is called the disk of convergence.

*Proof.* Define the set  $A \subset \mathbb{R}_{\geq 0}$  of nonegative real numbers for which the sequence  $\{|a_n| r^n\}_{n \in \mathbb{N}_0}$  is bounded.

$$A:=\left\{ r\geq 0: \quad \sup_{n\in\mathbb{N}_0}\left|a_n\right|r^n<\infty
ight\}$$

we have  $A \neq \emptyset$  because  $0 \in A$ . Define  $R := \sup A \in [0, \infty]$ , we now show that R has the stated properties.

- Let  $z \in D(z_0, R)$ . By definition of the supremum, there exists  $r \in A$ , (i.e.,  $|a_n| r^n$  is bounded) such that  $|z z_0| < r \le R$ . Since  $|z z_0| < r$  and  $\{|a_n| r^n\}_{n \ge 0}$  is bounded, then by Abel's lemma, we deduce that the series  $\sum_{n=0}^{\infty} a_n (z z_0)^n$  converges absolutely.
- **◆**② Let  $z ∈ \mathbb{C}$  such that  $|z z_0| > R$ , suppose for contradictions that the power series converges at z. Then by the *Corollary 1.0.2*, it would converge absolutely for any ω with  $|ω z_0| < 1$

 $|z - z_0|$ . In particular, for any r such that:

$$R < r < |z - z_0|$$

the series would converge at points on the circle  $C(z_0, r)$ , implying  $r \in A$ . This contradicts the fact that  $R = \sup A$ . Therefore, the power series diverges.

## → The Uniqueness of R:

If another  $R' \in [0, \infty]$  satisfies the same properties, a point z such that  $|z - z_0|$  lies between R and R' would lead to a contradiction regarding the convergence or divergence of the power series.

# 1.1 Formulas for Calculating the Radius of Convergence

**Proposition 1.1.1 (Hadamard's Formula) :** Let  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  be a power series centered at  $z_0 \in \mathbb{C}$ . Denote by R its radius of convergence. Then:

$$\frac{1}{R} = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$$

with the convention  $\frac{1}{0} = \infty$  and  $\frac{1}{\infty} = 0$ 

*Proof.* Let  $L := \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} \in [0, \infty]$ . We must show that  $R = \frac{1}{L}$ . Let  $z \in \mathbb{C} \setminus \{z_0\}$ , we distinguish three cases:

•• ① If L = 0. In this case, we have:

$$0 \le \lim_{n \to \infty} \inf |a_n|^{\frac{1}{n}} \le \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} = 0$$

Thus,  $\lim_{n\to\infty}\inf|a_n|^{\frac{1}{n}}=\lim_{n\to\infty}\sup|a_n|^{\frac{1}{n}}=0$ . This implies that  $\lim_{n\to\infty}|a_n|^{\frac{1}{n}}$  exists and equals to 0, so for all n sufficiently large, we have:

$$|a_n|^{\frac{1}{n}} < \frac{1}{2|z-z_0|};$$

That is,

$$|a_n(z-z_0)^n|<\frac{1}{2^n}.$$

Since the geometric series  $\sum_{n=1}^{\infty} \frac{1}{2^n}$  converges then the series  $\sum_{n=0}^{\infty} |a_n(z-z_0)^n|$  converges  $\forall z \in \mathbb{C}$ , thus  $R = +\infty = \frac{1}{L}$ 

• ② If  $L = +\infty$ , we have  $L = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}} = +\infty$  is equivalent to the fact that the sequence  $\left\{|a_n|^{\frac{1}{n}}\right\}_{n \in \mathbb{N}}$  is bounded. Therefore, the sequence:

$$|a_n(z-z_0)^n|^{\frac{1}{n}} = |a_n|^{\frac{1}{n}} |z-z_0|$$

is also unbounded. This implies that  $|a_n(z-z_0)^n|$  is unbounded, thus  $|a_n(z-z_0)^n|$  does not converge to 0 as  $n \to \infty$ . Hence  $\sum_{n=0}^{\infty} a_n(z-z_0)^n$  diverges. Hence R=0.

- •• ③ If  $L \in (0, \infty)$ . Let  $z \in \mathbb{C}$ . We consider two subcases:
  - If  $|z-z_0| < \frac{1}{L}$ . Choose r such that  $|z-z_0| < r < \frac{1}{L}$ , thus  $L < \frac{1}{r}$ . By defintion of a  $\lim_{n\to\infty} \sup$ , for all n sufficiently large we have:

$$|a_n|^{\frac{1}{n}}<\frac{1}{r},$$

which implies that:

$$|a_n(z-z_0)^n| < \underbrace{\left(\frac{|z-z_0|}{r}\right)^n}_{\leq 1}.$$

Since  $\left|\frac{z-z_0}{r}\right| < 1$ , the geometric series  $\sum_{n=0}^{\infty} \left|\frac{z-z_0}{r}\right|^n$  converges. By comparison, the power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  converges absolutely.

**2** If  $(|z-z_0| > \frac{1}{L})$ . In this case, we have:

$$\lim_{n \to \infty} \sup |a_n (z - z_0)^n|^{\frac{1}{n}} = \lim_{n \to \infty} \sup \left( |a_n|^{\frac{1}{n}} |z - z_0| \right)$$
$$= L |z - z_0| > 1$$

Thus,  $\{a_n(z-z_0)^n\}_{n\in\mathbb{N}}$  is unbounded, hence  $|a_n(z-z_0)^n|$  does not converge to zero as  $n\to\infty$ , implying that  $\sum_{n=0}^{\infty}a_n(z-z_0)^n$  diverges. Therefore:

$$R=\frac{1}{L}$$
.

#### Lecture 2

08:00 AM Mon, Oct 06 2025

**Proposition 1.1.2 (Ratio Test Formula) :** Let  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  be a power series. Suppose that the limit

$$\alpha = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

exists (i.e.,  $\in [0, \infty]$ ). Then the radius of convergence R of the power series in question is  $R = \alpha$ .

Proof. We use the d'Allembert rule for the series

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \qquad (z \in \mathbb{C} \setminus \{z_0\}).$$

Let  $z \in \mathbb{C} \setminus \{z_0\}$ . we have:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(z - z_0)^{n+1}}{a_n(z - z_0)^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot |z - z_0|$$
$$= |z - z_0| \cdot \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
$$= \frac{|z - z_0|}{\alpha}$$

By the d'Allembert rule, we have:

 $\implies$  The series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  converges if

$$\frac{|z-z_0|}{\alpha} < 1 \quad \text{i.e.} \quad |z-z_0| < \alpha.$$

 $\implies$  The series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  diverges if

$$\frac{|z-z_0|}{\alpha} > 1 \quad \text{i.e.} \quad |z-z_0| > \alpha.$$

Hence  $R = \alpha$ .

Example: Determine the radius of convergence of the power series  $\sum_{n=0}^{\infty} \frac{z_n}{n!}$  where  $z_0 = 0$ .

1 st METHOD: (BY HADAMARD FORMULA)

We must compute  $\lim_{n\to\infty} \sup\left(\frac{1}{n!}\right)^{\frac{1}{n}}$ . By the stirling formula, we have that:

$$n! \sim_{+\infty} n^n e^{-n} \sqrt{2\pi n}$$
.

Thus we get:

$$(n!)^{\frac{1}{n}} \sim_{+\infty} ne^{-1} (2\pi n)^{\frac{1}{2n}}.$$

Thus

$$\left(\frac{1}{n!}\right)^{\frac{1}{n}} \sim_{+\infty} \frac{e}{n} (2\pi n)^{-\frac{1}{2n}} \to 0 \text{ as } n \to +\infty.$$

Thus  $R = \frac{1}{0} = +\infty$ .

This means that the power series  $\sum_{n=0}^{\infty} \frac{z^n}{n!}$  converges for all  $z \in \mathbb{C}$ .

2 <sup>nd</sup> METHOD:

We use *Proposition 2* . we have:

$$\lim_{n \to \infty} \left| \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} \right| = \lim_{n \to \infty} \frac{(n+1)!}{n!}$$
$$= \lim_{n \to \infty} (n+1) = +\infty.$$

Thus  $R = +\infty$ 

# 1.2 Analytic Functions

**Definition 1.2.1**: Let  $\Omega$  be a non empty open subset of  $\mathbb C$  and let  $z_0 \in \Omega$ .

Let  $f: \Omega \longrightarrow \mathbb{C}$  be a map. then:

1. f is said to be analytic at  $z_0$  if there exists r>0 and a complex sequence  $(a_n)_{n\in\mathbb{N}_0}$  such that  $D(z_0,r)\subset\Omega$  and:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad (\forall z \in D(z_0, r)).$$

2. f is said to be analytic on  $\Omega$  if its analytic at every point of  $\Omega$ .



# Example:

1. Every complex polynomial is analytic on  $\mathbb{C}$ . Indeed, let  $P \in \mathbb{C}[\mathbb{Z}]$ , and  $z_0 \in \mathbb{C}$ . since  $P(z+z_0) \in \mathbb{C}[\mathbb{Z}]$ , we can write:

$$P(z+z_0)=\sum_{n=0}^d a_n z^n \quad (d\in\mathbb{N}_0).$$

Substituting z by  $(z - z_0)$ , we get:

$$P(z) = \sum_{n=0}^{d} a_n (z - z_0)^n,$$

which is a power series centered at  $z_0$  with infinite randius of convergence. Thus, P is analytic at  $z_0$ . Since  $z_0$  was arbitrary, P is analytic on  $\mathbb{C}$ .

2. The function  $z \longrightarrow \frac{1}{z}$  is analytic on  $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ . Indeed, let  $z_0 \in \mathbb{C}^*$  arbitrary. For  $z \in D(z_0, |z_0|)$ , we have:

$$\left|\frac{z-z_0}{z_0}\right|<1.$$

We can write

$$\frac{1}{z} = \frac{1}{z_0 + (z - z_0)}$$

$$= \frac{1}{z_0} \cdot \frac{1}{1 + \frac{z - z_0}{z_0}}$$

$$= \frac{1}{z_0} \cdot \sum_{n=0}^{\infty} (-1)^n \left(\frac{z - z_0}{z_0}\right)^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{z_0^{n+1}} (z - z_0)^n,$$

which is a power series centered at  $z_0$ , valid on  $D(z_0, |z_0|)$ . Hence  $z \longrightarrow \frac{1}{z}$  is analytic at  $z_0$ . Since  $z_0 \in \mathbb{C}^*$  was arbitrary, then  $z \longrightarrow \frac{1}{z}$  is analytic on  $\mathbb{C}^*$ .

# 1.2.1 Properties of Analytic Functions

**Proposition 1.2.1**: Let  $\Omega$  be a non empty open subset of  $\mathbb{C}$  and let  $z_0 \in \Omega$ . If  $f,g:\Omega \to \mathbb{C}$  are analytic at  $z_0$ , then the same is for (f+g) and  $(f \cdot g)$ . Moreover, if f and g are represented by power series with radii of convergence  $R_f$  and  $R_g$  respectively then (f+g) and  $(f \cdot g)$  are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P and P are represented by power series with radii of convergence P are represented by P and P are represented by P and P are represented by P are represented by P and P are represented by P are represented by P and P are represented by P are represented by P and P are r

Proof. Exercise.

**Corollary 1.2.2**: Let  $\Omega$  be a non empty open subset of  $\mathbb{C}$  and let  $f,g:\Omega\longrightarrow\mathbb{C}$ . If f and g are both analytic on  $\Omega$ , then the same is for (f+g) and  $(f\cdot g)$ .

**Proposition 1.2.3 (Analyticity**  $\Longrightarrow$  **Continuity)**: Let  $\Omega$  be a non empty open subset of  $\mathbb C$  and let  $z_0 \in \Omega$ . Let also  $f: \Omega \longrightarrow \mathbb C$  be a map. If f is analytic at  $z_0$  then f is continuous at  $z_0$ 

*Proof.* Suppose that f is analytic at  $z_0$  then there exists R > 0 and a complex sequence  $(a_n)_{n \in \mathbb{N}_0}$  such that  $D(z_0, R) \subset \Omega$  and:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad (\forall z \in D(z_0, R))$$

In particular,  $f(z_0) = a_0$ . Thus for all  $z \in D(z_0, R)$  we have:

$$f(z) - f(z_0) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$$

$$= (z - z_0) \sum_{n=1}^{\infty} a_n (z - z_0)^{n-1}$$

$$= (z - z_0) \sum_{n=0}^{\infty} a_{n+1} (z - z_0)^n$$
 (1)

By the Hadamard formula, we see that the power series  $\sum_{n=0}^{\infty} a_{n+1}(z-z_0)^n$  has the same radius of convergence as the original power series  $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ . Consequently, the power series  $\sum_{n=0}^{\infty} a_{n+1}(z-z_0)^n$  converges absolutely for  $|z-z_0| < R$ . Let  $r \in \mathbb{R}$  such that 0 < r < R. Then

for all  $z \in D(z_0, r)$ , we have from (1) the estimate:

$$|f(z) - f(z_0)| = |z - z_0| \cdot \left| \sum_{n=0}^{\infty} a_{n+1} (z - z_0)^n \right|$$

$$\leq |z - z_0| \sum_{n=0}^{\infty} |a_{n+1}| |z - z_0|^n$$

$$\leq |z - z_0| \sum_{n=0}^{\infty} |a_{n+1}| \cdot r^n.$$

$$< +\infty \text{ since } r < R$$

Taking the limit as  $z \to z_0$ , we conclude that  $\lim_{z \to z_0} f(z) = f(z_0)$ , so f is continuous at  $z_0$ .

**Corollary 1.2.4** (Immediate): Let  $\Omega$  be a non empty open subset of  $\mathbb{C}$  and  $f:\Omega\longrightarrow\mathbb{C}$ . If f is analytic on  $\Omega$ , then f is continuous on  $\Omega$ .

**Proposition 1.2.5 (Composition of Analytic functions)**: Let  $\Omega_1$  and  $\Omega_2$  be two nonempty open subsets of  $\mathbb C$  and let  $f:\Omega_1\longrightarrow\Omega_2$  and  $g:\Omega_2\longrightarrow\mathbb C$  be two maps. Let also  $z_0\in\Omega_1$ . If f is analytic at  $z_0$  and g is analytic at  $f(z_0)$ , then  $(g\circ f)$  is analytic at  $z_0$ .

Proof. Exercise

**Corollary 1.2.6 (Immediate)**: Let  $\Omega_1$  and  $\Omega_2$  be two nonempty open subsets of  $\mathbb C$  and let  $f:\Omega_1\longrightarrow\Omega_2$  and  $g:\Omega_2\longrightarrow\mathbb C$  be two maps. If f is analytic on  $\Omega_1$  and g is analytic on  $\Omega_2$  then  $(g\circ f)$  is analytic on  $\Omega_1$ .

**Proposition 1.2.7 (Quotient of Analytic Functions) :** Let  $\Omega$  be a nonempty open subsets of  $\mathbb{C}$  and let  $z_0 \in \Omega$ . Let also  $f,g:\Omega \longrightarrow \mathbb{C}$  be two functions which are both analytic at  $z_0$  and such that  $g(z_0) \neq 0$ . Then the function  $\frac{f}{g}$  is analytic at  $z_0$ .

*Proof.* Since  $g(z_0) \neq 0$  then the function  $h: w \longrightarrow \frac{1}{w}$  is analytic at  $g(z_0)$  (as seen in previous examples). Therefore, by *Proposition* 1.2.5, the function  $\frac{1}{g} = h \circ g$  is analytic at  $z_0$ . It then follows from *Proposition* 1.2.1 that the product  $f \cdot \left(\frac{1}{g}\right)$  is analytic at  $z_0$ .

Corollary 1.2.8 (Immediate): Let  $\Omega$  be a non empty open subset of  $\mathbb C$  and let  $f,g:\Omega\longrightarrow\mathbb C$  be two analytic functions on  $\Omega$  such that  $g(z)\neq 0$  for every  $z\in\Omega$ . Then the function  $\frac{f}{g}$  is analytic on  $\Omega$ .

Example: Every rational function is analytic on its domain of definition. This is because a rational function is a quotient of two polynomials, and polynomials are analytic on  $\mathbb{C}$ .

# 1.3 Power series define Analytic functions

**Theorem 1.3.1**: A power series with a positive radius of converges defines an analytic function on its disk of convergence.

*Proof.* Let  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  be a power series  $(z_0 \in \mathbb{C}, (a_n)_{n \in \mathbb{N}}) \subset \mathbb{C}$  with radius of convergence R > 0. Define the function f on the disk  $D(z_0, R)$  by:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

We must show that f is analytic on  $D(z_0, R)$ . Let  $z_1 \in D(z_0, R)$  arbitrary. We will show that f is analytic at  $z_1$ . For  $z \in D(z_1, R - |z_1 - z_0|)$ , we have

$$|z - z_0| \stackrel{T.I}{\leq} \underbrace{|z - z_1|}_{< R - |z_1 - z_0|} + |z_1 - z_0| < R$$

Thus  $D(z_1, R - |z_1 - z_0|) \subset D(z_0, R)$ , so the power series  $\sum_{n=0}^{\infty} a_n (z - z_0)^n$  converges absolutely. so:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

$$= \sum_{n=0}^{\infty} a_n ((z - z_1) + (z_1 - z_0))^n$$

$$= \sum_{n=0}^{\infty} a_n \sum_{k=0}^n \binom{n}{k} (z - z_1)^k (z_1 - z_0)^{n-k}$$

$$= \sum_{k=0}^{\infty} \left(\sum_{n=k}^{\infty} a_k \binom{n}{k} (z_1 - z_0)^{n-k}\right) (z - z_1)^k$$

The interchange of summation is justified by the absolute convergence of the double series for  $z \in D(z_1, R - |z_1 - z_0|)$ . This express f(z) as a power series in  $(z - z_1)$  in the disk  $D(z_1, R - |z_1 - z_0|)$ , proving that f is analytic at  $z_1$ . Since  $z_1$  was arbitrary in  $D(z_0, R)$ , then f is analytic on  $D(z_0, R)$ .

#### Lecture 3

08:14 AM Mon, Oct 13 2025

**Example:** The power series  $\sum_{n=0}^{\infty} \frac{z^n}{n!}$  has radius of convergence  $R = +\infty$ . Therefore (by the previous Theorem), it defines an analytic function on the whole complex plane  $\mathbb{C}$ .

**Definition 1.3.1:** The analytic function on C defined by:

$$\exp(z) = e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

is called the exponential function.

**Definition 1.3.2 (Entire function) :** A complex function  $f : \mathbb{C} \longrightarrow \mathbb{C}$  which is analytic on the whole complex plane  $\mathbb{C}$  is called an <u>entire function</u>.

# Example:

- ① Every complex polynomial is an entire function.
- ② The exponential function  $\exp(z)$  is an entire function.

# 1.3.1 Properties of the exponential function

**Proposition 1.3.2:** The exponential function defines the following properties:

①  $\forall z_1, z_2 \in \mathbb{C}$ , we have:

$$e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$$
 and  $e^{z_1-z_2}=\frac{e^{z_1}}{e^{z_2}}$ .

- ② for all  $z \in \mathbb{C}$ , we have  $e^z \neq 0$ .
- ③ (EULER'S FORMULA):  $\forall \theta \in \mathbb{R}$ , we have:

$$e^{i\theta} = \cos\theta + i\sin\theta.$$

 $\textcircled{4} \ \forall z \in \mathbb{C}$ , we have:

$$e^z = 1 \iff z \in 2\pi i \mathbb{Z}.$$

More generally, for all  $z, z' \in \mathbb{C}$ , we have:

$$e^z = e^{z'} \iff z - z' \in 2\pi \mathbb{Z}.$$





# 1.3.2 Trigonometric and hyperbolic functions

**Definition 1.3.3 (Complex Trigonometric functions) :** We define the trigonometric functions cosine and sine by:

$$\cos z := \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!},$$
  

$$\sin z := \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \qquad (\forall z \in \mathbb{C}).$$

Clearly, these functions extend the real functions cos and sin. The power series defining cos and sin have infinite radius of convergence, thus (By a previous theorem) cos and sin are analytic on C; that is, cos and sin are <u>entire functions.</u>

## Remark 🐿

We easily verify the extended Euler's formula:

$$e^{iz} = \cos z + i \sin z$$
  $(\forall z \in \mathbb{C}).$ 

From this formula, we derive:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2},$$
  

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} \qquad (\forall z \in \mathbb{C}).$$

## **Exercise**

Using property @ of *Proposition 1.3.2* and Euler's formula, show the following properties:

- ① The functions cos and sin are both  $2\pi$ -periodic.
- ② The set of zeros of  $z \mapsto \cos z$  is  $(\frac{\pi}{2} + \pi \mathbb{Z})$ , while the set of zeros of  $z \mapsto \sin z$  is  $\pi \mathbb{Z}$ .
- ③ For all  $z \in \mathbb{C}$ , we have

$$\cos^2 z + \sin^2 z = 1.$$

These functions are not bounded in C, when you replace  $x \leftarrow ix$ , you get  $\cos ix = \cosh x$ .

FOR EXAMPLE, FOR ③: By the Euler formula, we have for all  $z \in \mathbb{C}$ :

$$\cos^{2} z + \sin^{2} z = \left(\frac{e^{iz} + e^{-iz}}{2}\right)^{2} + \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^{2}$$
$$= \frac{4}{4} = 1$$

**Definition 1.3.4 (Complex hyperbolic functions):** We define the hyperbolic functions cosh and sinh by:

$$\cosh z := \sum_{n=0}^{+\infty} \frac{z^{2n}}{(2n)!} = \frac{e^z + e^{-z}}{2} = \cos(iz), 
\sinh z := \sum_{n=0}^{+\infty} \frac{z^{2n+1}}{(2n+1)!} = \frac{e^z - e^{-z}}{2} = -i\sin(iz) \qquad (\forall z \in \mathbb{C}).$$

Clearly, these definitions extend the real functions cosh and sinh. Like the trigonometric functions cos and sin, the hyperbolic functions cosh and sinh are also entire functions.

#### **Exercise**

Using the expressions of cosh and sinh in terms of cos and sin, verify the following properties:

- ① The functions cosh and sinh are both  $2\pi$ -periodic.
- ② The set of zeros of cosh is  $(\frac{\pi}{2}i + \pi i \mathbb{Z})$ , while the set of zeros of sinh is  $\pi i \mathbb{Z}$ .

$$\cosh^2 z - \sinh^2 z = 1.$$

**Definition 1.3.5 (Further trigonometric and hyperbolic functions) :** We define the following functions:

$$\tan z := \frac{\sin z}{\cos z} \qquad \left( \forall z \in \mathbb{C} \setminus \left( \frac{\pi}{2} + \pi \mathbb{Z} \right) \right),$$

$$\cot z := \frac{\cos z}{\sin z} \qquad \left( \forall z \in \mathbb{C} \setminus \pi \mathbb{Z} \right),$$

$$\tanh z := \frac{\sinh z}{\cosh z} \qquad \left( \forall z \in \mathbb{C} \setminus \left( \frac{\pi}{2} i + \pi i \mathbb{Z} \right) \right),$$

$$\coth z := \frac{\cosh z}{\sinh z} \qquad \left( \forall z \in \mathbb{C} \setminus \pi i \mathbb{Z} \right).$$

This clearly extends the well-known real functions tan, cot, tanh, and coth. Note that each of these four functions is analytic in its domain of definition (according to the previous

results on analytic functions).

# 1.4 Holomorph functions

**Definition 1.4.1**: Let  $\Omega$  be a nonempty open subset of  $\mathbb{C}$  and  $z_0$  be a point in  $\Omega$ . Let also  $f:\Omega\longrightarrow\mathbb{C}$  be a map.

• We say that f is holomorphic at  $z_0$  if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists and belong to C. In this case, the limit is called the <u>derivative</u> of f at the point  $z_0$  and denoted by  $f'(z_0)$ .

• We say that f is holomorphic on  $\Omega$  if it is holomorphic at every point in  $\Omega$ . In this case, the function

$$f': \Omega \longrightarrow \mathbb{C}$$
 $z \longmapsto f'(z)$ 

is called the derivative of f.

**Proposition 1.4.1 (Holomorphy of power series) :** Let  $z_0 \in \mathbb{C}$ ,  $(a_n)_{n \in \mathbb{N}_0} \subset \mathbb{C}$ , and S be the power series

$$S(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n.$$

Suppose that *S* has a positive radius of convergence *R*. Then *S'* is holomorphic on  $D(z_0, R)$  and we have for all  $z \in D(z_0, R)$ :

$$S'(z) = \sum_{n=0}^{+\infty} n a_n (z - z_0)^{n-1}$$
$$= \sum_{n=0}^{+\infty} (n+1) a_{n+1} (z - z_0)^n.$$

*Proof.* For simplicity, suppose without loss of generality that  $z_0 = 0$ . First, remark that by using the Hadamard formula, the power series

$$\sum_{n=1}^{+\infty} n a_n z^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} z^n$$

has the same radius of convergence R as S. It follows that  $\sum_{n=1}^{+\infty} na_nz^{n-1}$  is absolutely convergent on D(0,R); That is, for all 0 < r < R, the series  $\sum_{n=1}^{+\infty} n |a_n| r^{n-1}$  converges. Now, let  $z_1 \in D(0,R)$  be arbitrary and show that S is holomorphic at  $z_1$ . Choose  $r \in \mathbb{R}$  such that  $|z_1| < r < R$ . For all  $z \in D(0,r) \setminus \{z_1\}$ , we have

$$\frac{S(z) - S(z_1)}{z - z_1} = \frac{\sum_{n=0}^{+\infty} a_n z^n - \sum_{n=0}^{+\infty} a_n z_1^n}{z - z_1}$$

$$= \sum_{n=0}^{+\infty} a_n \frac{z^n - z_1^n}{z - z_1}$$

$$= \sum_{n=1}^{+\infty} a_n \sum_{k=0}^{n-1} z^k z_1^{n-1-k}$$

$$= \sum_{n=1}^{+\infty} a_n \sum_{k=0}^{n-1} z^k z_1^{n-1-k} \qquad (*).$$

Next, we show that this last series of functions converges normally on  $D(0,r)\setminus\{z_1\}$ . For  $z\in D(0,r)\setminus\{z_1\}$ , we have:

$$\begin{vmatrix} a_n \sum_{k=0}^{n-1} z^k z_1^{n-1-k} \\ \le |a_n| \sum_{k=0}^{n-1} \underbrace{|z|^k}_{< r} \underbrace{|z_1|^{n-1-k}}_{< r}$$

$$\le |a_n| \sum_{k=0}^{n-1} r^{n-1}$$

$$= n |a_n| r^{n-1}$$
 (independent on z).

Since the series  $\sum_{n=1}^{+\infty} n |a_n| r^{n-1}$  converges (as explained at the beginning of this of this proof) then the series of function  $\sum_{n=1}^{+\infty} a_n \sum_{k=0}^{n-1} z^k z_1^{n-1-k}$  converges normally (no uniformally) on  $D(0,r) \setminus \{z_1\}$ . Therefore, we can interchange the limit as  $z \to z_1$  and the summation for computing

 $\lim_{z\to z_1}\sum_{n=1}^{+\infty}\sum_{k=0}^{n-1}z^kz_1^{n-1-k}$ . Doing so, we get according to (\*);

$$\lim_{z \to z_1} \frac{S(z) - S(z_1)}{z - z_1} = \sum_{n=1}^{+\infty} \lim_{z \to z_1} a_n \sum_{k=0}^{n-1} z^k z_1^{n-1-k}$$

$$= \sum_{n=1}^{+\infty} a_n \sum_{k=0}^{n-1} z_1^k z_1^{n-1-k}$$

$$= \sum_{n=1}^{+\infty} n a_n z_1^{n-1} \in \mathbb{C}.$$

Hence S is holomorphic at  $z_1$  and we have

$$S'(z_1) = \sum_{n=1}^{+\infty} n a_n z_1^{n-1}$$
$$= \sum_{n=0}^{+\infty} (n+1) a_{n+1} z_1^n.$$

Since  $z_1$  is arbitrary in D(0, R) then S is holomorphic on D(0, R) and we have for all  $z \in D(0, R)$ :

$$S'(z) = \sum_{n>1} n a_n z^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} z^n.$$

Lecture 4

08:04 AM Mon, Oct 20 2025

Corollary 1.4.2 (Infinite differentiability of power series) : Let  $z_0 \in \mathbb{C}$ ,  $(a_n)_{n \in \mathbb{N}_0} \subset \mathbb{C}$ , and S be the power series

$$S(z) := \sum_{n=0}^{+\infty} a_n (z - z_0)^n.$$

Suppose that *S* has a positive radius of convergence *R*. Then *S* is infinitely  $\mathbb{C}$ —differentiable on  $D(z_0, R)$  and we have for all  $k \in \mathbb{N}_0$  and all  $z \in D(z_0, R)$ :

$$S^{(k)}(z) = \sum_{n=k}^{+\infty} n(n-1)\dots(n-k+1)a_n(z-z_0)^{n-k}$$

$$= \sum_{n=0}^{+\infty} (n+k)(n+k-1)\dots(n+1)a_{n+k}(z-z_0)^n$$

$$= \sum_{n=0}^{+\infty} \frac{(n+k)!}{n!} a_{n+k}(z-z_0)^n.$$

In particular, we have for all  $k \in \mathbb{N}_0$ :

$$S^{(k)}(z_0) = k!a_k.$$

Corollary 1.4.3 (Analytic functions are  $\mathbb{C}$ -infinitely differentiable): Let  $\Omega$  be a nonempty open subset of  $\mathbb{C}$  and  $z_0 \in \Omega$ . Let also  $f : \Omega \longrightarrow \mathbb{C}$  be a map.

① If f is analytic at  $z_0$  then f is infinitely  $\mathbb{C}$ -differentiable (no holomorphic) on some neighborhood of  $z_0$  and we have in that neighborhood:

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

#### TAYLOR'S FORMULA

② If f is analytic on  $\Omega$  then f is infinitely  $\mathbb{C}$ -differentiable (so holomorphic) on  $\Omega$ .

*Proof.* Represent f by a power series in S in a neighborhood of  $z_0$  and apply Corollary 3.

Remark 🐿

Analytic  $\implies$  holomorphic

② CAUCHY (1825):

 $f_n$  holomorphic + f' is continuous  $\implies f$  is analytic.

3 GOURSAT (1900):

f is holomorphic  $\implies f$  is analytic.

**Definition 1.4.2**: Let  $\Omega$  be a nonempty open subset of  $\mathbb C$  and  $f:\Omega\longrightarrow\mathbb C$  be a map. An antiderivative of f is a holomorphic function  $F:\Omega\longrightarrow\mathbb C$  such that F'=f.

**Proposition 1.4.4 (Existence of Local antiderivatives)**: Let  $\Omega$  be a nonempty open subset of  $\mathbb C$  and  $z_0 \in \Omega$ . Let also  $f: \Omega \longrightarrow \mathbb C$  be a map. If f is analytic at  $z_0$  then f admits an antiderivative in a neighborhood of  $z_0$ . Precisely,  $\exists r > 0$  and  $F: D(z_0, r) \longrightarrow \mathbb C$  analytic such that F'(z) = f(z) for all  $z \in D(z_0, r)$ .

*Proof.* Suppose that f is analytic at  $z_0$ . then  $\exists r > 0$ ,  $\exists (a_n)_{n \in \mathbb{N}_0} \subset \mathbb{C}$  such that for all  $z \in D(z_0, r)$ :

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n.$$

Define  $F: D(z_0, r) \longrightarrow \mathbb{C}$  by

$$F(z) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (z-z_0)^{n+1} = \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} (z-z_0)^n \qquad (\forall z \in D(z_0, r)).$$

The Hadamard formula shows that this last power series has the name radius of convergence as the original power series  $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$  representing f (which is  $\geq r$ ). Consequently, F is well-defined on  $D(z_0,r)$ , and by the previous results, F is even analytic on  $D(z_0,r)$  so holomorphic on

 $D(z_0, r)$  and for all  $z \in D(z_0, r)$ :

$$F'(z) = \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n} n(z - z_0)^{n-1}$$
$$= \sum_{n=1}^{+\infty} a_{n-1} (z - z_0)^{n-1}$$
$$= \sum_{n=0}^{+\infty} a_n (z - z_0)^n = f(z).$$

Thus, *F* is an antiderivative of *f* on  $D(z_0, r)$ , completing the proof.

# Remark 🐿

The rules of differentiation for analytic/holomorphic functions are the same as those of real-valued functions. For example:

$$(fg)' = f'g + fg'$$
$$(f \circ g) = g' \cdot (f' \circ g).$$

On the other hand, the derivatives of known elementary functions, such that  $z \to e^z$ ,  $z \to \cos z$ ,  $z \to \sin z$ , etc are the same as in the real case. For example:

$$(e^z)' = e^z \qquad (\forall z \in \mathbb{C})$$
  
 $(\sin z)' = \cos z \qquad (\forall z \in \mathbb{C})$ 

Proof.

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!} \qquad R = +\infty.$$

$$(e^{z})' = \sum_{n=1}^{+\infty} \frac{n}{n!} z^{n-1}$$
$$= \sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!}$$
$$= \sum_{n=0}^{+\infty} \frac{z^{n}}{n!} = e^{z}.$$

# 1.5 The Cauchy-Riemann equations

**Theorem 1.5.1 (Cauchy-Riemann equations)**: Let  $\Omega$  be a nonempty open subset of  $\mathbb{C}$ ,  $z_0 = x_0 + iy_0$  with  $(x_0, y_0 \in \mathbb{C})$  a point in  $\Omega$ , and  $f : \Omega \longrightarrow \mathbb{C}$  be a map. Let  $P : \text{Re} f : \Omega \longrightarrow \mathbb{R}$  and  $Q : \text{Im} f : \Omega \longrightarrow \mathbb{R}$  so that

$$f(z) = P(x,y) + iQ(x,y).$$

for all  $z = x + iy \in \Omega$ , with  $x, y \in \mathbb{R}$  then f is holomorphic at  $z_0$  if and only if P and Q are differentiable at  $(x_0, y_0)$  and satisfy the following Cauchy-Riemann equations at  $(x_0, y_0)$ :

$$\begin{cases} \frac{\partial P}{\partial x}(x_0, y_0) = \frac{\partial Q}{\partial y}(x_0, y_0) \\ \frac{\partial P}{\partial y}(x_0, y_0) = -\frac{\partial Q}{\partial x}(x_0, y_0) \end{cases}$$

Proof.

$$(\Longrightarrow)$$

Suppose that f in holomorphic at  $z_0$ . Then for  $h = u + iv \quad (u, v \in \mathbb{R})$ , sufficiently small, we have:

$$f(z_0 + h) = f(z_0) + \cosh + o(h),$$

with  $c = c_1 + ic_2 \in \mathbb{C}$   $(c_1, c_2 \in \mathbb{R})$ . expanding this, we find:

$$P(x_0 + u, y_0 + v) + iQ(x_0 + u, y_0 + v) = P(x_0, y_0) + iQ(x_0, y_0) + (c_1 + ic_2)(u + iv) + o(u, v).$$

Identifying real and imaginary parts gives:

$$P(x_0 + u, y_0 + v) = P(x_0, y_0) + c_1 u - c_2 v + o(u, v),$$

$$Q(x_0 + u, y_0 + r) = Q(x_0, y_0) + c_2 u + c_1 v + o(u, v).$$

$$\frac{\partial P}{\partial x}(x_0, y_0) = c_1, \quad \frac{\partial P}{\partial y}(x_0, y_0) = -c_2, \quad \frac{\partial Q}{\partial x}(x_0, y_0) = c_2, \quad \frac{\partial Q}{\partial y}(x_0, y_0) = c_1.$$

Thus, *P* and *Q* indeed satisfying the Cauchy-Riemann condition at  $(x_0, y_0)$ .

$$(\Leftarrow )$$

Conversly, suppose that P and Q are differentiable at  $(x_0, y_0)$  and satisfy the Cauchy-Riemann conditions at this point. Set

$$c_1 := \frac{\partial P}{\partial x}(x_0, y_0) = \frac{\partial Q}{\partial y}(x_0, y_0) \in \mathbb{R}$$

$$c_2 := \frac{\partial Q}{\partial x}(x_0, y_0) = -\frac{\partial f}{\partial y}(x_0, y_0) \in \mathbb{R}$$

By hypothesis, for  $(u, v) \in \mathbb{R}^2$  sufficiently small, we have:

$$P(x_0 + u, y_0 + v) = P(x_0 + y_0) + c_1 u - c_2 v + o(u, v)$$

$$Q(x_0 + u, y_0 + v) = Q(x_0, y_0) + c_2 u + c_1 v + o(u, v).$$

Then, setting h = u + iv:

$$f(z_0 + h) = P(x_0 + u, y_0 + v) + iQ(x_0 + u, y_0 + v)$$

$$= P(x_0, y_0) + iQ(x_0, y_0) + \underbrace{(c_1 + ic_2)}_{c}(u + iv) + o(u, v)$$

$$= f(z_0) + ch + o(h),$$

with  $c = c_1 + ic_2$ . This shows that f is holomorphic at  $z_0$ . The theorem is proved.

## Lecture 5

14:41 PM Tue, Oct 21 2025

Corollary 1.5.2 (Cauchy-Riemann equations on an open set): Let  $\Omega$  be an open subset of  $\mathbb{C}$  and  $f:\Omega\longrightarrow\mathbb{C}$  be a map. Let  $P:=\mathrm{Re} f:\Omega\longrightarrow\mathbb{R}$  and  $Q:=\mathrm{Im} f:\Omega\longrightarrow\mathbb{R}$ , so that

$$f(z) = P(x, y) + iQ(x, y)$$

for all  $z = x + iy \in \Omega$ , with  $x, y \in \mathbb{R}$ . Then f is holomorphic on  $\Omega$  if and only if P and Q are differentiable on  $\Omega$  and satisfy the following Cauchy-Riemann equations:

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y},$$
$$\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x},$$

on  $\Omega$ .

#### 1.5.1 The isolated zeros thereom

Some toplogical remainders:

**Definition 1.5.1 (Limit points) :** Let E be a toplogical space,  $A \subset E$ ,  $x \in E$ . we say that x is a limit point of A if every neighborhood of x intersect A in a point different from x; That is,

$$\forall V \in \mathcal{V}(x): V \cap (A \setminus \{x\}) \neq \emptyset.$$

Note that this is equivalent to  $x \in \overline{A \setminus \{x\}}$ . The set of all limit points of A is denoted by A' and is called the derived set of A.

→ In metric spaces, we have the following equivallent definition:

**Definition 1.5.2 :** Let *E* be a metric space,  $A \subset E$ , and  $x \in E$ . We say that *x* is a <u>limit point</u> of *A* if there exists a sequence  $(x_n)_{n \in \mathbb{N}}$  in  $A \setminus \{x\}$  that converges to *x* .

**Definition 1.5.3**: Let *E* be a toplogical space and  $A \subset E$ .

- ① We say that an element  $a \in A$  is <u>isolated</u> if its not a limit point of A.
- ② We say that *A* is a discrete set if all its points are isolated.

**Example:** The set  $\mathbb{N}$  and  $\mathbb{Z}$  are discete in  $\mathbb{R}$ , whereas the set  $\mathbb{Q}$  is not (even though its countable).

**Proposition 1.5.3 :** In  $\mathbb{R}^n (n \in \mathbb{N})$ , every discrete set is at most countable.

*Proof.* ⇔ Exercise!

**Theorem 1.5.4 (The isolated zeros theorem) :** Let  $\Omega$  be a nonempty connected open set in  $\mathbb{C}$  and let f be a an analytic function on  $\Omega$  that is not identically zero. Then the zero of f in  $\Omega$  are all isolated; In other words, the set of zeros of f in  $\Omega$  is discrete.

*Proof.* We proceed by contradiction. Suppose that there exists a zero  $z_0 \in \Omega$  of f that is not isolated; i.e.,  $z_0$  is a limit point of the set of all zeros of f in  $\Omega$ . Therefore, there exists a sequence  $(z_k)_{k\geq 1}$  of zeros of f in  $\Omega$ , with all terms distinct from  $z_0$ , that converges to  $z_0$ . Since f is analytic at  $z_0$ ,  $\exists r>0$  and a power series representation:

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
  $(\forall z \in D(z_0, r))$ 

with  $a_n \in \mathbb{C}$  for all  $n \in \mathbb{N}_0$ .

•• ① Let us first show that the coefficients  $a_n (n \in \mathbb{N})$  must necessarily all be zero. We proceed by contradictiom, assuming the contrary, and consider

$$P := \min \left\{ n \in \mathbb{N}_0 : a_n \neq 0 \right\}.$$

We then have for all  $z \in D(z_0, r)$ :

$$f(z) = \sum_{n=p}^{+\infty} a_n (z - z_0)^n$$

$$= (z - z_0)^p \left[ a_p + a_{p+1} (z - z_0) + a_{p+2} (z - z_0)^2 \right]$$

$$= (z - z_0)^p \sum_{n=0}^{+\infty} a_{n+p} (z - z_0)^n.$$

By specializing to  $z = z_k$  (for k sufficiently large so that  $z_k \in D(z_0, r)$ ) we find that (for  $k \ge 1$  sufficiently large):

$$\underbrace{f(z_k)}_{=0} = \underbrace{(z_k - z_0)^p}_{\neq 0} \sum_{n=0}^{+\infty} a_{n+p} (z_k - z_0)^n.$$

Hence

$$\sum_{n=0}^{+\infty} a_{n+p} (z_k - z_0)^n = 0,$$

taking the limit as  $k \to +\infty$  and noting the normal convergence of the series on the left, we obtain:  $a_p = 0$ . This contradicts the definition of p and shows that  $a_n = 0$  for all  $n \in \mathbb{N}_0$ . In follows from this that:

$$f(z) = 0$$
  $(\forall z \in D(z_0, r)).$ 

Now, we will show that f is identically zero on all  $\Omega$ , which will yield the desired contradiction. Let  $\omega \in \Omega$  be arbitrary and show that  $f(\omega) = 0$ . Since  $\Omega$  is connected (no path-connected, as its an open subset of  $\mathbb{C}$ ), there exists a continuous path  $\gamma : [0,1] \longrightarrow \Omega$  such that  $\gamma(0) = z_0$  and  $\gamma(1) = \omega$ . Consider

$$t_0 := \sup \{ t \in [0,1] : (f \circ \gamma)(t) = 0 \}$$

The supremum exists because the set is non empty, as it contains 0, and it is bounded from above by 1. Since f and  $\gamma$  are continuous, the function  $f \circ \gamma$  are continuous on [0,1]. Consequently, the set

$$\{t \in [0,1] : (f \circ \gamma)(t) = 0\} = (f \circ \gamma)^{-1}(\{0\})$$

which is closed in [0,1]. Thereforem  $t_0$  belongs to this set; in other words, we have

$$(f \circ \gamma)(t_0) = 0 \tag{1}$$

Let us show that  $t_0 = 1$ . Suppose for contradiction, that  $t_0 < 1$ . By the reasoning from the previous part of this proof (replacing  $z_0$  by  $\gamma(t_0)$ , which is a limit point of the zero of f), there exists r' > 0 such that

$$f(z) = 0$$
  $(\forall z \in D(\gamma(t_0), r')).$ 

FOr  $\varepsilon > 0$ , sufficiently small, we have:

$$\gamma(t_0 + \varepsilon) \in D(\gamma(t_0), r'),$$

(by the continuity of  $\gamma$ ). Therefore:

$$g(\gamma(t_0 + \varepsilon)) = 0,$$

i.e.  $(f \circ \gamma)(t_0 + \varepsilon) = 0$ . This contradicts the very definition of  $t_0$  as the supremum. Hence, necessarily  $t_0 = 1$ . This gives, from (1),  $f(\omega) = 0$ . Since  $\omega$  was arbitrary in  $\Omega$ , we have  $f \equiv 0$  on  $\Omega$ . Contradiction. This final contradiction ensures that the zeros of f in  $\Omega$  are all isolated. The theorem is proved. there is a tiny error in this proof, will be fixed next time.

Corollary 1.5.5 (Principle of analytic continuation): Let f and g be two analytic functions on a nonempty <u>connected</u> open subset  $\Omega$  of  $\mathbb C$  that coincide on a subset  $A \subset \Omega$  pocessing a limit point in  $\Omega$ . Then f and g are identical on  $\Omega$ .

*Proof.* Let  $\varphi := f - g$ . Then  $\varphi$  is analytic on  $\Omega$  and vanishes on the set  $A \subset \Omega$ , which has a limit point  $a \in \Omega$ . So  $a \in \overline{A \setminus \{a\}} \subset \overline{A}$ . Since  $\varphi$  vanishes on A and is continuous on  $\Omega$ , then it vanishes on  $\overline{A} \cap \Omega$ . In particular,  $\varphi$  vanishes at a. Therefore, a is a non-isolated zero of  $\varphi$ . By the isolated zero theorem, this implies that  $\varphi \equiv 0$  on  $\Omega$ ; That is,  $f \equiv g$  on  $\Omega$ .

**Example:** Let us show that (without using the extended Euler formulas) that for all  $z \in \mathbb{C}$ , we have:

$$\cos^2 z + \sin^2 z = 1.$$

consider  $f(z) := \cos^2 z + \sin^2 z$  and g(z) := 1. f and g are analytic on  $\mathbb{C}$  (which is an connected open subset of  $\mathbb{C}$ ) and coincide on  $\mathbb{R}$ , which posesses a limit point in  $\mathbb{C}$ . Thus,

by the principle of analytic continuation  $f \equiv g$  on  $\mathbb{C}$ ; i.e.

$$\cos^2 z + \sin^2 z = 1 \qquad (\forall z \in \mathbb{C}).$$

# 1.5.2 Multiplicity of a zero of an analytic function

**Theorem 1.5.6**: Let  $\Omega$  be a nonempty connected open subset of  $\mathbb{C}$ , and let f be an analytic function on  $\Omega$ , not identically zero. Let  $z_0 \in \Omega$  be a zero of f. Then there exists a unique positive integer p and a unique analytic function g on  $\Omega$  does not vanish at  $z_0$ , such that

$$f(z) = (z - z_0)^p g(z) \qquad (\forall z \in \Omega)$$

# *Proof.* ightharpoonup Existence of p and g:

Since f is analytic at  $z_0$ ,  $\exists r > 0$  and a complex sequence  $(a_n)_{n \in \mathbb{N}_0}$  such that  $D(z_0, r) \subset \Omega$  and

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \qquad (\forall z \in D(z_0, r)).$$

Since f is not identically zero on  $\Omega$ , it is certainly not identically zero on  $D(z_0, r)$  (By the isolated zeros theorem). Thus the coefficients  $a_n$  are not all zero. We can therefore define

$$p:=\min\left\{n\in\mathbb{N}_0:a_n\neq 0\right\}.$$

since  $a_0 = f(z_0)$ , we have  $p \ge 1$ . Then, for all  $z \in D(z_0, r)$ :

$$f(z) = \sum_{n=p}^{+\infty} a_n (z - z_0)^n$$
$$= (z - z_0)^p \sum_{n=0}^{+\infty} a_{n+p} (z - z_0)^n$$

Now, define  $g: \Omega \longrightarrow \mathbb{C}$  by:

$$g(z) := \begin{cases} \frac{f(z)}{(z-z_0)^p} & \text{if } z \neq z_0, \\ a_p & \text{if } z = z_0. \end{cases}$$

We observe that:

- g is analytic on  $\Omega \setminus \{z_0\}$  (as a quotitent of two analytic functions on  $\Omega \setminus \{z_0\}$ ).
- For  $z \in D(z_0, r)$ ,  $g(z) = \sum_{n=0}^{+\infty} a_{n+p} (z z_0)^n$  which shows that g is analytic at  $z_0$ . Hence, g is analytic on  $\Omega$ . Moreover, we have

$$f(z) = (z - z_0)^p g(z) \qquad (\forall z \in \Omega)$$

and 
$$g(z_0) = a_p \neq 0$$
.

#### $\bullet \bullet$ Uniqueness of p and g:

Suppose there exists  $p_1, p_2 \in \mathbb{N}$  and analytic functions  $g_1, g_2$  on  $\Omega$  that do not vanish at  $z_0$ , such that

$$f(z) = (z - z_0)^{p_1} g_1(z) = (z - z_0)^{p_2} g_2(z) \qquad (\forall z \in \Omega).$$

Then, for all  $z \in \Omega \setminus \{z_0\}$ , we have:

$$g_1(z) = (z - z_0)^{p_2 - p_1} g_2(z).$$

If  $p_1 < p_2$  then taking the limit as  $z \to z_0$  and using the continuity of  $g_1$  and  $g_2$  at  $z_0$ , we obtain  $g_1(z_0) = 0$ , which contradicts the hypothesis  $g_1(z_0) \neq 0$ . Therefore, we must have  $p_1 \geq p_2$ . By symmetry, we also have  $p_2 \geq p_1$ , so  $p_1 = p_2$ . Then, from above, we get

$$\forall z \in \Omega \setminus \{z_0\} : g_1(z) = (z - z_0)^{p_2 - p_1} g_2(z),$$

since  $p_2 - p_1 = 0$ , we get

$$g_1(z) = g_2(z).$$

Since  $g_1$  and  $g_2$  are continuous at  $z_0$ , taking the limit as  $z \to z_0$  gives  $g_1(z_0) = g_2(z_0)$ . Hence  $g_1 \equiv g_2$  on  $\Omega$ , which completes the proof of uniqueness.

**Definition 1.5.4**: In the context of the above theorem, the positive integer p is called the multiplicity of the zero  $z_0$  of f. if  $z_1$  is not a zero of f, its multiplicity is conventionally taken to be 0.

# Chapter 2

# The Cauchy integral formula on a circle and applications

Lecture 6

08:09 AM Mon, Oct 27 2025

**Theorem 2.0.1 :** Let  $z_0 \in \mathbb{C}$  and  $f : \mathbb{C} \longrightarrow \mathbb{C}$  be a function, analytic at  $z_0$ . Let also R be the radius of convergence of the power series representing f in a neighborhood of  $z_0$ . Then for every  $n \in \mathbb{N}_0$  and every 0 < r < R, we have:

$$f^{(n)}(z_0) = \frac{n!}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-ni\theta} d\theta$$

In particular, for n = 0 and 0 < r < R.

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

*Proof.* By hypothesis,  $\exists$ ! complex sequence  $(a_n)_{n \in \mathbb{N}_0}$  such that for all  $z \in D(z_0, R)$ 

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \qquad (\forall z \in D(z_0, R))$$

Fix  $r \in (0, R)$ . For every  $\theta \in [0, 2\pi]$ , taking  $z = z_0 + re^{i\theta} \in C(z_0, r) \subset D(z_0, R)$  in the formula

above, we obtain

$$f(z_0 + re^{i\theta}) = \sum_{n=0}^{+\infty} a_n r^n e^{in\theta}.$$

Since the trigonometric series on the right converges normally (so uniformally) with respect to  $\theta \in [0,2\pi]$  (Because for all  $n \in \mathbb{N}_0$ , we have  $|a_n r^n e^{ni\theta}| = |a_n r^n|$ , and the series  $\sum_{n=0}^{+\infty} |a_n| r^n$  converges by properties of power series) then that is the Fourier series of the function  $\theta \mapsto f(z_0 + re^{i\theta})$ . Consequently, for every  $n \in \mathbb{N}_0$ , the Fourier coefficients are given by:

$$a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-ni\theta} d\theta.$$

Thus

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-ni\theta} d\theta.$$

Comparing this with Taylor's formula

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

, we obtain for every  $n \in \mathbb{N}_0$ :

$$f^{(n)}(z_0) = \frac{n!}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta,$$

as required.

#### Remark ®

In the context of *Theorem* 1, the right-hand side of the second formula (corresponding to n = 0):

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

is precisely the average value of f on the circle  $C(z_0, r)$ . Therefore, according to *Theorem 1*, the average value of f on any circle centered at  $z_0$  and contained in  $D(z_0, R)$  is equal to the value of f at  $z_0$ .

# 2.0.1 Analytic continuation of power series

**Theorem 2.0.2**: Let  $\Omega$  be a nonempty open subset of  $\mathbb{C}$ , and let  $f:\Omega \longrightarrow \mathbb{C}$  be an analytic function on  $\Omega$ . Let  $z_0 \in \Omega$ , and let  $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$  (where  $a_n \in \mathbb{C}$ , for all  $n \in \mathbb{N}_0$ ) be the unique power series representing f in a small neighborhood  $D(z_0,r) \subset \Omega$  of  $z_0$  with (with r > 0). Then, the power series  $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$  converges on every disk centered at  $z_0$  and contained in  $\Omega$ , and it sum remains f(z).

Proof. We have

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \qquad (\forall z \in D(z_0, r)).$$

Let R > r such that  $D(z_0, R) \subset \Omega$  and show that the above formula remains valid on  $D(z_0, R)$ . Given  $n \in \mathbb{N}_0$ , by Cauchy's integral formula on a circle, we have for all  $0 < \sigma < r$ :

$$a_n = \frac{1}{2\pi\sigma^n} \int_0^{2\pi} f(z_0 + \sigma e^{i\theta}) e^{-ni\theta} d\theta.$$

hence  $\sigma \mapsto \frac{1}{2\pi\sigma^n} \int_0^{2\pi} f(z_0 + \sigma e^{i\theta}) e^{-ni\theta} d\theta$  is constant (with respect to  $\sigma$ ) in (0, r). This suggests us to define

$$\varphi: (0,R) \longrightarrow \mathbb{C}$$

$$\sigma \longmapsto \varphi(\sigma) = \frac{1}{2\pi\sigma^n} \int_0^{2\pi} f(z_0 + \sigma e^{i\theta}) e^{-ni\theta} d\theta.$$

 $(\varphi \text{ is constant in } (0,r).$  with value  $a_n$  ). Since f is analytic (so continuous) on  $D(z_0,R)\subset\Omega$  then  $\varphi$  is well-defined and differentiable on (0,R). We now show that  $\varphi$  remains constant on (0,R) on (0,R). By applying results from measure theory and integration (which allow differentiation under the integral sign), we have for all  $\sigma\in(0,R)$ :

$$\varphi'(\sigma) = -\frac{n\sigma^{-n-1}}{2\pi} \int_{0}^{2\pi} f(z_{0} + \sigma e^{i\theta}) e^{-ni\theta} d\theta + \frac{\sigma^{-n}}{2\pi} \int_{0}^{2\pi} f'(z_{0} + \sigma e^{i\theta}) e^{(-n+1)i\theta} d\theta.$$

$$= \frac{\sigma^{-n-1}}{2\pi} \int_{0}^{2\pi} \underbrace{\left[ -nf(z_{0} + \sigma e^{i\theta}) e^{-ni\theta} + \sigma f'(z_{0} + \sigma e^{i\theta}) e^{(-n+1)i\theta} \right]}_{\frac{d}{d\theta}(-if(z_{0} + \sigma e^{i\theta}) e^{-ni\theta})} d\theta$$

$$= \frac{\sigma^{-n-1}}{2\pi} \underbrace{\left[ -if(z_{0} + \sigma e^{i\theta}) e^{-ni\theta} \right]_{0}^{2\pi}}_{0} = 0.$$

This shows that  $\varphi$  is constant on (0, R), and its value is  $a_n$  (since  $\varphi \equiv a_n$  on (0, r)). Thus, we have shown that:

$$a_n = \frac{1}{2\pi\sigma^n} \int_0^{2\pi} f(z_0 + \sigma e^{i\theta}) e^{-ni\theta} d\theta \qquad (\forall n \in \mathbb{N}_0, \forall \sigma \in (0, R))$$

This formula allows us to estimate  $|a_n|$  in terms of n. Giving  $n \in \mathbb{N}_0$ ,  $\sigma \in (0, R)$ , and setting

$$M(f) := \sup_{z \in C(z_0, \sigma)} |f(z)|$$
, we have:

$$a_n = \left| \frac{1}{2\pi\sigma^n} \int_0^{2\pi} f(z_0 + \sigma e^{i\theta}) e^{-ni\theta} d\theta \right|$$

$$\leq \frac{1}{2\pi\sigma^n} \int_0^{2\pi} \left| \underbrace{f(z_0 + \sigma e^{i\theta})}_{\leq M(f)} \right| d\theta$$

$$|a_n| \le \frac{M(f)}{\sigma^n} \quad \forall n \in \mathbb{N}_0, \forall \sigma \in (0, R)$$

So  $\forall z \in D(z_0, \sigma)$ :

$$|a_n(z-z_0)^n| \le M(f) \left| \frac{z-z_0}{\sigma} \right|^n$$

implying that the power series  $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$  converges absolutely on  $D(z_0,\sigma)$ ,  $\forall \sigma \in (0,R)$ . Consequently,  $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$  converges (absolutely) on  $D(z_0,R)$ . Further, define

$$g(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n \quad (\forall z \in D(z_0, R)).$$

Since g is analytic on  $D(z_0, R)$  and coincides with f on  $D(z_0, r)$ , by the principle of analytic continuation, g coincides with f on  $D(z_0, R)$ . Hence

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
  $(\forall z \in D(z_0, R)),$ 

completing the proof.

Corollary 2.0.3 : Let  $\Omega$  be a nonempty open subset of  $\mathbb{C}$  and  $z_0$  be a point in  $\Omega$ . Let also  $f:\Omega \longrightarrow \mathbb{C}$  be an analytic function on  $\Omega$  and  $\sum_{n=0}^{+\infty} a_n(z-z_0)^n$  (where  $(a_n)_{n\in\mathbb{N}_0}\subset\mathbb{C}$ ) be a power series representing f in a neighborhood of  $z_0$ . Then the radius of convergence R of that power series satisfies;

$$R \geq \operatorname{dist}(z_0, \mathbb{C} \setminus \Omega).$$

*Proof.* Set  $\sigma := \operatorname{dist}(z_0, \mathbb{C} \setminus \Omega)$ . By definition of S, we have  $D(z_0, \sigma) \subset \Omega$ . (Indeed, if  $z \in \mathbb{C} \setminus \Omega$  then  $d(z, z_0) \geq \inf_{w \in \mathbb{C} \setminus \Omega} d(w, z_0) = d(z_0, \mathbb{C} \setminus \Omega) = \sigma$ , thus  $z \in \mathbb{C} \setminus D(z_0, \sigma)$ .) Thus, by *Theorem 2*, the power series  $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$  converges on  $D(z_0, \sigma)$ . Hence  $R \geq \sigma$ , as required.

Example: ♥ VERY IMPORTANT.

Consider the function  $f(z) = \frac{z}{e^z - 1}$  with the convention f(0) = 1. For all z in a small

neighborhood of  $\theta$ , with  $z \neq 0$ , we have:

$$f(z) = \frac{z}{z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots}$$
$$= \frac{1}{1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots},$$

Which also holds for z=0, showing that f is analytic at 0 (as a quotient of two analytic functions at 0, with the denominator nonzero at 0). Moreover, the zero of  $z\mapsto e^z-1$  are the complex numbers  $2k\pi i$  with  $k\in\mathbb{Z}$ , implying that f is analytic on  $\mathbb{C}\setminus 2\pi i\mathbb{Z}$  (as a quotient of two analytic functions on this domain, with the denominator nonzero at any point of the domain). In conclusion, f is analytic on the domain

$$\Omega = (\mathbb{C} \setminus 2\pi \mathbb{Z}) \cup \{0\}$$
$$= \mathbb{C} \setminus 2\pi i \mathbb{Z}^*.$$

Consider the power series expansion of f at 0:

$$\frac{z}{e^z - 1} = \sum_{n=0}^{+\infty} B_n \frac{z^n}{n!}, \quad (*)$$

where  $B_n(n \in \mathbb{N}_0)$  are the famous Bernoulli numbers, which appear in nearly all branches of mathematics (number theory, analysis, combinatorics, algebraic geometry, etc...).:w

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = \frac{1}{42}, \dots$$
  
 $(B+1)^n = B^n \quad (\forall n > \mathbb{N}_2).$ 

for n = 2:

$$B^2 + 2B + 1 = B_2 \implies B_1 = -\frac{1}{2}$$

for n = 3:

$$(B+1)^3 = B^3 \implies 3B_2 = \frac{1}{2} \implies B_2 = \frac{1}{6}.$$

*Theorem* 2 shows that formula (\*) is valid on the largest disk centered at 0 and contained in  $\Omega$ , which is  $D(0,2\pi)$ . Hence

$$\frac{z}{e^z - 1} = \sum_{n=0}^{+\infty} B_n \frac{z^n}{n!} \qquad (\forall z \in \mathbb{C}, |z| < 2\pi).$$

Remark 🐿 It can be shown that  $B_{2n+1}=0 \quad \forall n\geq 1,$ and  $B_{2n} \sim_{+\infty} (-1)^{n-1} \cdot \frac{2(2n)!}{(2\pi)^{2n}}.$ This allows us to directly verify (using Hadamard formula) that the radius of convergence of the power series  $\sum_{n=0}^{+\infty} B_n \frac{z^n}{n!}$  is exactly  $2\pi$ .

CHAPTER 2. THE CAUCHY INTEGRAL FORMULA ON A CIRCLE AND APPLICATIONS 35