Limit sets of Anosov representations

Giorgos

April 19, 2024

Contents

1	Introduction	2
2	Upper bound	9

Chapter 1

Introduction

Definition 1.0.1. For $p \in \{2, ..., d\}$, $s \in \mathbb{R}$ and $g \in SL(d, \mathbb{R})$ we denote with $\Psi^p_s(g) : \mathfrak{a}^+ \to \mathbb{R}$ the functional:

$$\Psi_{s}^{p}(g) = \alpha_{12}(a(g)) + \dots + \alpha_{1(p-1)}(a(g)) + (s - (p-2))\alpha_{1p}(a(g))$$

$$\tilde{\Psi}_{s}^{p}(g) = \left(\frac{\sigma_{2}}{\sigma_{1}} \cdots \frac{\sigma_{p-1}}{\sigma_{1}}(g)\right) \left(\frac{\sigma_{p-1}}{\sigma_{1}}(g)\right)^{s - (p-2)}$$

Remark 1.0.1. We have $\alpha_{ij}(a) = a_i - a_j, a_i(g) = \log(\sigma_i(g))$ and

$$\Psi_s^p(g) = \log \tilde{\Psi}_s^p(g)$$

and that

$$\min_{p \in [\![2,d]\!]} \left\{ \sum_{|\gamma| = T} \frac{\sigma_2}{\sigma_1} \cdots \frac{\sigma_{p-1}}{\sigma_1}(g) \left(\frac{\sigma_{p-1}}{\sigma_1}(g) \right)^{s - (p-2)} \right\} = \sum_{|\gamma| = T} e^{-\max_{p \in [\![2,d]\!]} \Psi_s^p(g)}$$

The following definition comes from [1], in the special case of projective Anosov representations (P=1):

Definition 1.0.2. For $s \geq 0$ we consider the Falconer functional $F_s : \mathrm{SL}(d,\mathbb{R}) \to \mathbb{R}$ by:

$$F_s(g) = \min \left\{ \sum_{j=2}^d s_j \alpha_{1j}(a(g)) : s_j \in (0,1], \sum_{j=2}^d s_j = s \right\}$$

Remark 1.0.2. Using elementary computations one may prove that for all $s \ge 0$:

$$F_s(g) = \min_{p \in [2,d]} \Psi_s^p(g)$$

Definition 1.0.3. Let $\rho: \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a linear representation and $p \in [1,d-1]$. We say that ρ is p-Anosov if there exist constants $\mu, C > 0$ such that for all $\gamma \in \Gamma$:

$$\frac{\sigma_{p+1}}{\sigma_p}(\rho(\gamma)) \le Ce^{-\mu|\gamma|}.$$

One can show that in that case there exist equivariant continuous maps $\xi^p: \hat{\Gamma} \to \mathcal{G}_p(\mathbb{R}^d), \xi^{d-p}: \hat{\Gamma} \to \mathcal{G}_{d-p}(\mathbb{R}^d)$ that are transverse and restrict to

$$\xi^p(\gamma) = U_p(\rho(\gamma)), \xi^{d-p}(\gamma) = U_{d-p}(\rho(\gamma))$$

for $\gamma \in \Gamma$, where $U_p(\gamma), U_{d-p}(\gamma)$ denote the flags corresponding to $\rho(\gamma)$.

Figure out what this exactly

Chapter 2

Upper bound

Lemma 2.0.1 (Upper bound for dimension). Let $\rho : \Gamma \to \mathrm{SL}(d,\mathbb{R})$ be a projective Anosov representation. Then:

$$\dim_{H}(\xi^{1}(\partial\Gamma)) \leq \inf \left\{ s : \sum_{|\gamma|=T} e^{-F_{s}(\rho(\gamma))} < \infty \right\}.$$

Definition 2.0.1. Let V be a finite-dimensional \mathbb{R} -vector space. We consider a decomposition

$$V = \mathbb{R}u_1 \bigoplus \cdot \bigoplus \mathbb{R}u_d$$

be a direct decomposition that is orthogonal with respect to a fixed inner-product over V. Given $\beta_2 \geq \ldots \beta_d > 0$, we define an ellipsoid about $\mathbb{R}u_1$ with axis lengths β_2, \ldots, β_d to be the image of

$$\left\{v = \sum_{1}^{d} v_i u_i \in V : \sum_{2}^{d} \left(\frac{v_j}{\beta_j}\right)^2 \leq 1\right\}$$

through the projection $V \to \mathbb{P}(V)$.

The following aims to be something along the lines of [2, Lemma 2.4]:

Lemma 2.0.2. Let $\rho: \Gamma \to \operatorname{SL}(d,\mathbb{R})$ be a projective Anosov representation. For $\alpha > 0$ small enough, there exists L > 0 such that for any geodesic ray $(a_i)_i$ through e we have:

$$\angle(U_1(\rho(a_i)), U_1(\rho(a_0))) > \alpha$$

when $|a_i|, |a_0| > T$.

Proof. Assume the contrary for the shake of contradiction. Then (see Figure 2.1) for each n > 0 there exists a geodesic ray a^n through e such that

$$|a_n^n|, |a_0^n| > n \text{ and } \angle(U_1(\rho(a_n^n)), U_1(\rho(a_0^n))) < \frac{1}{n}.$$

Due to compactness of $\partial\Gamma$ we may assume (up to a subsequence) that $a^n \to x$ in $\partial\Gamma$ for some $x \in \partial\Gamma$. Then $a_n^n, a_0^n \to x$ in $\hat{\Gamma}$ which implies

Not sure if this is true.

$$\angle(\xi^{1}(x), \xi^{d-1}(x)) = 0$$

using the fact that the limit maps ξ^1, ξ^{d-1} are continuous, which contradicts their tranversality.

Figure 2.1: Situation in Lemma 2.0.2

The following is [2, Proposition 3.5].

Lemma 2.0.3. Let $\rho: \Gamma \to SL(d,\mathbb{R})$ be projective Anosov. Then for $\alpha > 0$ small enough, there exists some $T_0 > 0$ such that for all $T \geq T_0$ the family

$$\mathcal{U}_T = \{ \rho(\gamma) B_{\alpha_1, \alpha}(\rho(\gamma)) : |\gamma| = T \}$$

is an open covering of $\xi^1(\partial\Gamma)$.

Proof. Let $\alpha, T > 0$ be as in the statement of Lemma 2.0.2 and $x \in \partial \Gamma$ be represented by a geodesic ray $(\gamma_j)_{j\geq 0}$ starting from e. Then $(\gamma_T^{-1}\gamma_j)_j$ is a geodesic ray starting from $(\gamma_T)^{-1}$ that passes through e, so

$$\angle (U_1(\rho(\gamma_T^{-1}\gamma_i)), U_{d-1}(\rho(\gamma_T^{-1}))) > \alpha$$

as implied by Lemma 2.0.2. Taking the limit $j \to \infty$ and using the equivariance of the limit map, we obtain

$$\angle(\rho(\gamma_T^{-1})\xi^1(x), U_{d-1}(\rho(\gamma_T^{-1}))) > \alpha$$

and thus $\xi^1(x) \in \rho(\gamma_T) \cdot B_{\alpha_1,\alpha}(\rho(\gamma_T))$.

The following can be found in [2, Proposition 3.3]:

Proposition 2.0.1. Let $\rho: \Gamma \to SL(d, \mathbb{R})$ be projective Anosov and $\alpha > 0$ Then there exist $c_0, c_1 > 0$ that depends only on α and ρ such that for all $\gamma \in \Gamma$:

$$(\xi^1)^{-1}(B_{\alpha_1,\alpha}(\rho(\gamma))) \subseteq C_{c_0,c_1}^{\infty}(\gamma)$$

Proof. We begin by noting that it suffices to show this for all but finitely many $\gamma \in \Gamma$, since then we may alter the constants to satisfy the wanted inclusion also for the finitely many remaining $\gamma \in \Gamma$. Given this, we shall assume that $|\gamma| \geq l_0$ where $l_0 > 0$ is such that $Ce^{-\mu l_0} < 1$ and $C, \mu > 0$ are the constants appearing in the definition of the Anosov property of ρ ..

Suppose $x \in \partial \Gamma$ such that $\xi^1(x) \in B_{\alpha_1,\alpha}(\rho(\gamma))$, and consider a geodesic ray $a_j \to x$ starting from $a_0 = e$. To prove the result, it suffices to find constants c_0, c_1 independent of γ and a (c_0, c_1) -quasi-geodesic from γ^{-1} to x that passes through e and stays at a bounded distance from $(a_j)_{j=0}^{\infty}$

Using [2, Proposition 2.5] we have that $d(\xi^1(a_j), U_{d-1}(\rho(\gamma^{-1}))) \leq Ce^{-\mu j}$, so there exists some L > 0 that depends only on α such that for all $j \geq L : U_1(\rho(a_j)) \in B_{\alpha_1,\alpha}(\rho(\gamma))$ and in particular

$$d(\xi^1(a_j), \gamma^{-1}) = d(U_1(\rho(a_j)), U_1(\rho(\gamma^{-1}))) \ge d(U_1(\rho(a_j)), U_{d-1}(\rho(\gamma^{-1}))) > \sin \alpha.$$

Along with the uniform continuity of $\xi^1: \Gamma \cup \partial \Gamma \to \mathbb{P}(\mathbb{R}^d)$ this implies there exists some $\alpha' > 0$ and L > 0 such that for all $j \geq L$:

$$d(a_j, \gamma^{-1}) \ge \alpha'.$$

Upon considering a large L, we may also assume that $|a_L| = L > l_0$. Note that both α' and L do not depend on each γ but only on ρ and α .

Using some geometric group theory, we can show that for all $j \geq L$

$$d(\gamma^{-1}, a_j) > \alpha' \Rightarrow d([\gamma^{-1}, a_j], e) < \alpha''$$

for some α'' that depends only on Γ and α' , where $[a_j, \gamma^{-1}]$ denotes the geodesic segment connecting γ^{-1} and a_j .

Consider the concatenation $(a'_j)_{j=L-K}^{\infty}$ of $[\gamma^{-1}, a_L]$ and $[a_L, x]$. To find quasi-geodesic-constants that are uniform in γ , we note that for any $c_0 \geq 1, c_1 \geq 0$:

$$c_0^{-1}|i-j|-c_1 \le d(a_i',a_j') = d(a_i,a_j) \le d(a_i)c_0^{\dagger}|i-j|+c_1 \text{ when } i,j \ge L \text{ or } i,j \le L$$

and that the upper bound follows trivially by the triangle inequality.

For the lower bound we proceed in two steps. First we bound the distance of $\gamma^- 1 = a'_{L-K}$ to a_{L+j} for $j \geq 0$:

$$d(a'_{L-K}, a'_{L+j}) \ge \nu(|a_{L+j}| - |\gamma^{-1}|) - c'_0 - c'_1 |\log(d(U_1(\rho(a_{L+j})), U_1(\rho(\gamma^{-1}))))| \ge$$

$$\ge \nu((L+j) + (K-L)) - c'_0 - c'_1 |\log(\sin a)| \ge$$

$$= c_0^{-1}(j+K) - c_1$$

for $c_0 = \nu^{-1}$, $c_1 = c_0' + c_1' |\log(\sin \alpha)|$. The first inequality comes from [2, Lemma 3.9]. For the second inequality we estimate $|\gamma^{-1}|$ from below using the triangle inequality. We are now ready to show that the concatenation $(a_i')_j$ is indeed a (c_0, c_1) -geodesic:

$$d(a_{L+j}, a_{L-i}) \ge d(a_{L+j}, a_{L_K}) - d(a_{L_K}, a_{L-i}) \ge c_0^{-1}(j+K) - c_1 - (K-i) \ge c_0^{-1}(j+i) - c_1.$$

Note however that (a_j') does not necessarily lie in $C_{\infty}^{c_0,c_1}$ since it may not pass through e. For this reason we some $L-K \leq i_0 \leq L$ such that $|a_{i_0}| < \alpha''$, the existence of which is guaranteed by the fact that $d([\gamma^{-1},a_L],\epsilon) < \alpha''$. We then consider alter (a_j') at i_0 so that it passes through e to obtain

$$a_j'' = \begin{cases} a_j & \text{for } j \neq i_0 \\ e & \text{for } j = i_0 \end{cases}$$

which is a $(c_0, c_1 + \alpha'')$ -quasigeodesic passing from e and converging to x.

Bibliography

- [1] François Ledrappier and Pablo Lessa. "Dimension gap and variational principle for Anosov representations". In: (Dec. 2023). arXiv:2310.13465 [math] version: 3 (cit. on p. 2).
- [2] Beatrice Pozzetti, Andrés Sambarino, and Anna Wienhard. "Anosov representations with Lipschitz limit set". In: *Geometry & Topology* 27.8 (Nov. 2023). arXiv:1910.06627 [math], pp. 3303–3360. ISSN: 1364-0380, 1465-3060 (cit. on pp. 3–5).