# **W15 - Multiple Topics**

**Due** 28 Apr at 23:59 **Points** 20 **Questions** 16

Available 17 Apr at 5:00 - 28 Apr at 23:59 Time limit None

**Allowed attempts** Unlimited

# Instructions

# **Content and Background**

This quiz relates to the following contents:

- 1. Counting Binary Trees
- 2. Intro to IR
- 3. Postings List
- 4. tf-idf weighting
- 5. Tries
- 6. Vector Space Model

It may also draw upon supporting knowledge and skills expected from a CS sophomore. Please make sure that you are up to date on the coursework before attempting the quiz.

# **Difficulty**

This quiz is equivalent to an in-class exercise. Have pen and paper ready and be prepared to work on challenging problems.

## **Discussion**

Please use Discussion forums to discuss any of the questions. Do not reveal your answers.

This quiz was locked 28 Apr at 23:59.

## Attempt history

|        | Attempt   | Time       | Score        |
|--------|-----------|------------|--------------|
| LATEST | Attempt 1 | 20 minutes | 20 out of 20 |

## (!) Correct answers are hidden.

Score for this attempt: 20 out of 20

Submitted 28 Apr at 12:33

This attempt took 20 minutes.

| Question 1                                                    | 1 / 1 pts |
|---------------------------------------------------------------|-----------|
| The tallest Binary Tree with 63 nodes would have a height of  |           |
| The shortest Binary Tree with 63 nodes would have a height of |           |
| Answer 1:                                                     |           |
| 62                                                            |           |
| <b>Answer 2:</b> 5                                            |           |

| Question 2                                                                                            | 1 / 1 pts |
|-------------------------------------------------------------------------------------------------------|-----------|
| I am a Full Binary Tree with 31 nodes. The following are two truths and a lie about me. Spot the lie. |           |
| I have 16 leaves                                                                                      |           |
| I have a height of 8                                                                                  |           |
| I am symmetric                                                                                        |           |





Question 5

In the absence of an index, what strategy would we employ to find a term in the book?

Inspect every word in every page of the book.

Inspect a random page of the book and repeat if the query term is not found

The next few questions refer to the the postings list below.



Caesar 
$$\longrightarrow$$
 1 2 4 5 6 16 57 132 ...

Calpurnia 
$$\longrightarrow$$
 2 | 31 | 54 | 101

Question 6 1 / 1 pts

What are the returned results for the query: Calpurnia OR Brutus

Provide a comma separated list of sorted document IDs without spaces.

1,2,4,11,31,45,54,101,173,174

Question 7 1 / 1 pts

What are the returned results for the query: Brutus AND Caesar

Provide a comma separated list of sorted document IDs without spaces.

1,2,4

The next few questions relate to the corpus composed of the following documents.

| Doc 1 | breakthrough drug for schizophrenia         |
|-------|---------------------------------------------|
| Doc 2 | new schizophrenia drug                      |
| Doc 3 | new approach for treatment of schizophrenia |
| Doc 4 | new hopes for schizophrenia patients        |

| Question 8 | 2 / 2 pts   |
|------------|-------------|
| QUESTION 0 | = · = p • • |

Provide the postings list of each of the terms below.

drug: 1,2

schizophrenia: 1,2,3,4

Provide a comma separated list of sorted numerical document IDs without spaces.

#### Answer 1:

1,2

#### Answer 2:

1,2,3,4

# 1 / 1 pts **Question 9** Imagine a document containing terms of the following type. For each term, indicate the amount of boost that the document will get in the results if that term is queried for. A term that occurs rarely in High the corpus but frequently in the document. A term that occurs rarely in Medium the corpus and rarely in the document. A term that occurs Low frequently in the corpus but rarely in the document. A term that occurs Medium frequently in the corpus and frequently in the document.

| Question 10                                                                                                                                                                                                                                                                                    | 2 / 2 pts |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| We saw that the inverse document frequency (idf) score is define $\mathbf{idf}_t = \log \frac{N}{\mathrm{d}f_t}$ where N is the size of the corpus. We want to standard of this score for a term which has the maximum document frequency (df). What is the maximum value of $\mathbf{df}_t$ : | see the   |

| For that value, what is the idf score, $\mathbf{idf}_t$ : $oxed{0}$ |  |
|---------------------------------------------------------------------|--|
| Answer 1:                                                           |  |
| N                                                                   |  |
| Answer 2:                                                           |  |
| 0                                                                   |  |
|                                                                     |  |

# Question 11 The formula for $idf_t$ above is prone to error when $df_t$ is 0. Why does that not prove to be a problem? We use a special condition to guard against that case. There is no problem with the formula when that occurs. This situation will never arise because such a term will never have to be indexed.

Imagine the set of strings,

S = {"bit", "byte", "bite", "bits", "bytes", "bites"}

and a delimiter/terminal character to mark the end of string.

## **Question 12**

1 / 1 pts

How many internal nodes (nodes not containing a delimiter) are there in a standard trie on S?

11

## **Question 13**

1 / 1 pts

Including nodes with a delimiter, what is maximum number of children of any node in the standard trie on S?

3

### **Question 14**

2 / 2 pts

Given the following standard trie (T),



which of the following options correctly shows the compressed trie of T.

5/3/23, 9:54 PM





Mark all that apply.

- Option (a)
- Option (b)
- Option (c)
- None of the options.

**Question 15** 

1 / 1 pts

In a corpus,  $C=\{d_1,d_2,d_3,\dots,d_n\}$  , given any arbitrary document,  $d_i$  , which is the document most similar to it?

d\_i

**Question 16** 

2 / 2 pts

In the following vector space illustration, why do the tips of all the vectors lie on a circular arc?



- It is just for illustration purposes.
- Because each vector represents a document.
- Because all the vectors are normalized to unit length.
- Because we are interested in the cosine similarity.

Quiz score: 20 out of 20