TRANSFORMADA DE LAPLACE

Transformada de Laplace. Transformada inversa. Solución de problemas con condiciones iniciales.

Manuel Carlevaro

Departamento de Ingeniería Mecánica

Grupo de Materiales Granulares - UTN FRLP

manuel.carlevaro@gmail.com

Cálculo Avanzado • 2025 ∆ · X¬IAT¬;X · ⊗⊕⊚

Motivación:

Motivación:

Definición: Transformada de Laplace.

Sea f(t) definida para todo $t \geq 0$. Su transformada de Laplace se define: $t \geq 0$

$$F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$$

Motivación:

Definición: Transformada de Laplace.

Sea f(t) definida para todo $t \ge 0$. Su transformada de Laplace se define:

 $F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$

Teorema : Existencia.

Si f(t) está definida y es continua a tramos en cada intervalo finito de \mathbb{R}^+ , y satisface la condición

 $|f(t)| \leq Me^{kt}$ (restricción de crecimiento exponencial)

para algunas constantes, M y k, entonces existe $\mathcal{L}(f), \ \forall s > k$.

Motivación:

Definición: Transformada de Laplace.

Sea f(t) definida para todo $t \geq 0$. Su transformada de Laplace se define: t^{∞}

$$F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$$

Teorema : Existencia.

Si f(t) está definida y es continua a tramos en cada intervalo finito de \mathbb{R}^+ , y satisface la condición

$$|f(t)| \leq Me^{kt}$$
 (restricción de crecimiento exponencial)

para algunas constantes, M y k, entonces existe $\mathcal{L}(f), \ \forall s > k$.

Si
$$F(s)=\mathscr{L}[f(t)]$$
, $f(t)$ es la transformada inversa de $F(s)$:

$$f(t) = \mathcal{L}^{-1}[F(s)]$$

Por lo tanto: $\mathscr{L}^{-1}[\mathscr{L}(f)] = f$ y $\mathscr{L}[\mathscr{L}^{-1}(F)] = F$.

Caso general:

$$(Tf)(u) = \int_{t_1}^{t_2} f(t) K(t, u) dt = F(u)$$

donde K(t, u) es la función **núcleo** o **kernel**.

Cuando K tiene asociado un $kernel\ inverso\ K^{-1}(u,t)$, se puede definir (más o menos) la transformación inversa:

$$f(t) = \int_{u_1}^{u_2} (Tf)(u) K^{-1}(u, t) dt$$

Si el kernel es **simétrico**: $K(t,u)=K(u,t)\mapsto$ operadores auto-adjuntos.

CASO GENERAL: EJEMPLOS

Transformada	Símbolo	K	(t_1, t_2)	K^{-1}	(u_1, u_2)
Fourier	F	$\frac{e^{-iut}}{\sqrt{2\pi}}$	$(-\infty,\infty)$	$\frac{e^{+iut}}{\sqrt{2\pi}}$	$(-\infty,\infty)$
Fourier seno	\mathscr{F}_s	$\sqrt{\frac{2}{\pi}}\operatorname{sen}(ut)$	$(0,\infty)$	$\sqrt{\frac{2}{\pi}}\operatorname{sen}(ut)$	$(0,\infty)$
Fourier coseno	${\mathscr F}_c$	$\sqrt{\frac{2}{\pi}}\cos(ut)$	$(0,\infty)$	$\sqrt{\frac{2}{\pi}}\cos(ut)$	$(0,\infty)$
Laplace	\mathscr{L}	e^{-ut}	$(0,\infty)$	$\frac{e^{+ut}}{2\pi i}$	$(c-i\infty, c+i\infty)$
Laplace bilateral	${\mathscr B}$	e^{-ut}	$(-\infty,\infty)$	$\frac{e^{+ut}}{2\pi i}$	$(c-i\infty, c+i\infty)$
Hilbert	$\mathcal{H}il$	$\frac{1}{\pi} \frac{1}{u-t}$	$(-\infty,\infty)$	$\frac{1}{\pi}\frac{1}{u-t}$	$(-\infty,\infty)$
Legendre	\mathcal{J}	$P_n(t)$	(-1,1)	(%)	$(0,\infty)$

(*)
$$\mathcal{J}[f(x)] = \tilde{f}(n) = \int_{-1}^{1} P_n(x) f(x) dx$$

$$\mathcal{J}^{-1}[\tilde{f}(n)] = f(t) = \sum_{n=0}^{\infty} \frac{2n+1}{2} \tilde{f}(n) P_n(x)$$

EJEMPLOS

$$f(t) = 1, t \ge 0$$

$$\mathcal{L}(f) = \mathcal{L}(1) = \int_0^\infty e^{-st} dt$$

$$= \lim_{T \to \infty} \int_0^T 1 \cdot e^{-st} dt$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-st} \right]_0^T$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} e^0 \right]$$

$$= \frac{1}{s}$$

$$\mathcal{L}(1) = \frac{1}{s}$$

$$f(t) = 1, t \ge 0$$

$$\mathcal{L}(f) = \mathcal{L}(1) = \int_0^\infty e^{-st} dt$$

$$= \lim_{T \to \infty} \int_0^T 1 \cdot e^{-st} dt$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-st} \right]_0^T$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} e^0 \right]$$

$$= \frac{1}{s}$$

$$\mathscr{L}(1) = \frac{1}{s}$$

$$f(t) = e^{at}, t > 0$$

$$\mathcal{L}(e^{at}) = \int_0^\infty e^{-st} e^{at} dt$$

$$= \frac{1}{a-s} e^{-(s-a)t} \Big|_0^\infty$$

$$= \frac{1}{s-a}$$

$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$

cuando
$$s - a > 0$$
.

LINEALIDAD

Teorema : Linealidad de \mathscr{L} .

Para funciones f(t) y g(t) cuyas transformadas de Laplace existan, y para dos constantes arbitrarias a y b, se cumple que:

$$\mathscr{L}[af(t)+bg(t)]=a\mathscr{L}[f(t)]+b\mathscr{L}[g(t)]$$

Teorema : Linealidad de \mathscr{L} .

Para funciones f(t) y g(t) cuyas transformadas de Laplace existan, y para dos constantes arbitrarias a y b, se cumple que:

$$\mathscr{L}[af(t)+bg(t)]=a\mathscr{L}[f(t)]+b\mathscr{L}[g(t)]$$

Ejemplo: Hallar las transformadas de $\cosh at$ y $\sinh at$. Dado que:

$$\cosh at = \frac{1}{2}(e^{at} + e^{-at})$$

$$senh at = \frac{1}{2}(e^{at} - e^{-at})$$

Por la linealidad:

$$\begin{split} \mathcal{L}(\cosh at) &= \frac{1}{2} [\mathcal{L}(e^{at}) + \mathcal{L}(e^{-at})] \\ &= \frac{1}{2} \left(\frac{1}{s-a} + \frac{1}{s+a} \right) \\ &= \frac{s}{s^2 - a^2} \end{split}$$

$$\mathcal{L}(\operatorname{senh} at) = \frac{1}{2} [\mathcal{L}(e^{at}) - \mathcal{L}(e^{-at})]$$
$$= \frac{1}{2} \left(\frac{1}{s-a} - \frac{1}{s+a} \right)$$
$$= \frac{a}{s^2 - a^2}$$

TRANSFORMADA DE LA DERIVADA

Teorema : Transformada de f'.

Sea f continua en $[0,\infty)$, con f' continua a tramos en [0,k] para todo k>0, $y \lim_{k\to\infty} e^{-sk}f(k)=0$ si s>0. Entonces:

$$\mathscr{L}[f'(t)] = sF(s) - f(0)$$

Demostración.

De la definición, integrando por partes:

$$\begin{split} \int_0^k e^{-st} f'(t) \, dt &= \left[e^{-st} f(t) \right]_0^k - \int_0^k -s e^{-st} f(t) \, dt \\ &= e^{-sk} f(k) - f(0) + s \int_0^k e^{-st} f(t) \, dt \end{split}$$

Tomando el límite $k \to \infty$:

$$\mathcal{L}[f'(t)] = \lim_{k \to \infty} \left[e^{-sk} f(k) - f(0) + s \int_0^k e^{-st} f(t) dt \right]$$
$$= -f(0) + s \int_0^\infty e^{-st} f(t) dt = -f(0) + sF(s)$$

TRANSFORMADA DE DERIVADAS SUPERIORES

Si f y f' son continuas para $t \geq 0$, cumplen la restricción de crecimiento exponencial y f'' es continua por tramos en cada intervalo finito en \mathbb{R}^+ :

$$\mathscr{L}(f'') = s^2 \mathscr{L}(f) - sf(0) - f'(0)$$

Aplicamos el teorema anterior a f'':

$$\mathcal{L}(f'') = s\mathcal{L}(f') - f'(0)$$

$$= s[s\mathcal{L}(f) - f(0)] - f'(0)$$

$$= s^2 \mathcal{L}(s) - sf(0) - f'(0)$$

TRANSFORMADA DE DERIVADAS SUPERIORES

Si f y f' son continuas para $t \geq 0$, cumplen la restricción de crecimiento exponencial y f'' es continua por tramos en cada intervalo finito en \mathbb{R}^+ :

$$\mathscr{L}(f'') = s^2 \mathscr{L}(f) - sf(0) - f'(0)$$

Aplicamos el teorema anterior a f'':

$$\mathcal{L}(f'') = s\mathcal{L}(f') - f'(0)$$

$$= s[s\mathcal{L}(f) - f(0)] - f'(0)$$

$$= s^2 \mathcal{L}(s) - sf(0) - f'(0)$$

Transformada de derivada n-ésima:

Si $f, f', \cdots, f^{(n-1)}$ son continuas para todo $t \geq 0$ y satisfacen la restricción de crecimiento exponencial, y si $f^{(n)}$ es una función continua por tramos en cada intervalo finito en \mathbb{R}^+ , entonces la transformada de $f^{(n)}$ satisface:

$$\mathcal{L}[f^{(n)}] = s^n \mathcal{L}(f) - s^{n-1} f(0)$$
$$- s^{n-2} f'(0) - \dots f^{(n-1)}(0)$$

EJEMPLOS

Transformada de $\cos \omega t$:

$$f(t) = \cos \omega t$$
,
 $f(0) = 1$, $f'(0) = 0$, $f''(t) = -\omega^2 \cos \omega t$:

$$\mathscr{L}(f'') = s^2 \mathscr{L}(f) - s = -\omega^2 \mathscr{L}(f)$$

$$\mathscr{L}(\cos \omega t) = \frac{s}{s^2 + \omega^2}$$

EJEMPLOS

Transformada de $\cos \omega t$:

$$f(t) = \cos \omega t$$
,
 $f(0) = 1$, $f'(0) = 0$, $f''(t) = -\omega^2 \cos \omega t$:

$$\mathscr{L}(f'') = s^2 \mathscr{L}(f) - s = -\omega^2 \mathscr{L}(f)$$

$$\mathcal{L}(\cos \omega t) = \frac{s}{s^2 + \omega^2}$$

Transformada de $\sin \omega t$:

$$g(t) = \sin \omega t$$
, $g(0) = 0$, $g'(t) = \omega \cos \omega t$:

$$\mathcal{L}(g') = s\mathcal{L}(g) = \omega \mathcal{L}(\cos \omega t)$$

$$\mathscr{L}(\sec \omega t) = \frac{\omega}{s^2 + \omega^2}$$

ECUACIONES DIFERENCIALES: PROBLEMA CON VALORES INICIALES

$$f'' + af' + bf = r(t), \ f(0) = K_0, \ f'(0) = K_1$$

ECUACIONES DIFERENCIALES: PROBLEMA CON VALORES INICIALES

$$f'' + af' + bf = r(t), \ f(0) = K_0, \ f'(0) = K_1$$

▶ Paso 1: $t \mapsto s$

$$[s^{2}F - sf(0) - f'(0)] + a[sF - f(0)] + bF = R(s)$$

$$(s^2 + as + b)F = (s+a)f(0) + f'(0) + R(s)$$

$$f'' + af' + bf = r(t), \ f(0) = K_0, \ f'(0) = K_1$$

▶ Paso 1: $t \mapsto s$

$$[s^{2}F - sf(0) - f'(0)] + a[sF - f(0)] + bF = R(s)$$
$$(s^{2} + as + b)F = (s + a)f(0) + f'(0) + R(s)$$

Paso 2: Resolver F(s)

Función transferencia:

$$Q(s) = \frac{1}{s^2 + as + b} = \frac{1}{\left(s + \frac{1}{2}a\right)^2 + b - \frac{1}{4}a^2}$$

$$F(s) = [(s+a)f(0) + f'(0)]Q(s) + R(s)Q(s)$$

$$f'' + af' + bf = r(t), \ f(0) = K_0, \ f'(0) = K_1$$

▶ Paso 1: $t \mapsto s$

$$[s^{2}F - sf(0) - f'(0)] + a[sF - f(0)] + bF = R(s)$$
$$(s^{2} + as + b)F = (s + a)f(0) + f'(0) + R(s)$$

Si
$$f(0) = f'(0) = 0$$
, $F = RQ$:

$$Q = \frac{F}{R} = \frac{\mathcal{L}(\text{salida})}{\mathcal{L}(\text{entrada})}$$

Q no depende de r ni de las condiciones iniciales (solo de $a\ \mathbf{y}\ b$).

▶ **Paso 2:** Resolver F(s)

Función transferencia:

$$Q(s) = \frac{1}{s^2 + as + b} = \frac{1}{\left(s + \frac{1}{2}a\right)^2 + b - \frac{1}{4}a^2}$$

$$F(s) = [(s+a)f(0) + f'(0)]Q(s) + R(s)Q(s)$$

$$f'' + af' + bf = r(t), \ f(0) = K_0, \ f'(0) = K_1$$

▶ Paso 1: $t \mapsto s$

$$[s^{2}F - sf(0) - f'(0)] + a[sF - f(0)] + bF = R(s)$$
$$(s^{2} + as + b)F = (s + a)f(0) + f'(0) + R(s)$$

▶ Paso 2: Resolver F(s)
Función transferencia:

$$Q(s) = \frac{1}{s^2 + as + b} = \frac{1}{\left(s + \frac{1}{2}a\right)^2 + b - \frac{1}{4}a^2}$$

$$F(s) = [(s+a)f(0) + f'(0)]Q(s) + R(s)Q(s)$$

Si
$$f(0) = f'(0) = 0$$
, $F = RQ$:

$$Q = \frac{F}{R} = \frac{\mathcal{L}(\text{salida})}{\mathcal{L}(\text{entrada})}$$

Q no depende de r ni de las condiciones iniciales (solo de a y b).

Paso 3: Inversión de F

$$f(t) = \mathcal{L}^{-1}(F)$$

EIEMPLO

Resolver:

$$y'' - y = t$$
, $y(0) = 1$, $y'(0) = 1$

Solución:

Paso 1

$$s^{2}Y - sy(0) - y'(0) - Y = \frac{1}{s^{2}}$$
$$(s^{2} - 1)Y = s + 1 + \frac{1}{s}$$

Paso 2

La función transferencia es $Q=1/(s^2-1)$ y

$$Y = (s+1)Q + \frac{1}{s^2}Q = \frac{s+1}{s^2 - 1} + \frac{1}{s^2(s^2 - 1)}$$

$$Y = \frac{1}{s-1} + \left(\frac{1}{s^2 - 1} - \frac{1}{s^2}\right)$$

Paso 3

$$y(t) = \mathcal{L}^{-1}(Y)$$

$$= \mathcal{L}^{-1}\left(\frac{1}{s-1}\right) + \mathcal{L}^{-1}\left(\frac{1}{s^2-1}\right) + \mathcal{L}^{-1}\left(\frac{1}{s^2}\right)$$

$$= e^t + \operatorname{senh} t - t$$

Espacio sTransformación Laplace $(s^2-1)Y=s+1+rac{1}{s^2}$ Solución algebraica

TEOREMAS DE CORRIMIENTO

Teorema : Corrimiento s.

Si f(t) tiene transformada F(s) (s > k para algún k), entonces:

$$\mathscr{L}[e^{at}f(t)] = F(s-a)$$

o, antitransformando miembro a miembro:

$$e^{at}f(t) = \mathcal{L}^{-1}[F(s-a)]$$

donde s - a > k.

Teorema : Corrimiento t.

Si f(t) tiene transformada F(s), entonces la **función** desplazada

$$\tilde{f}(t) = f(t-a)H(t-a) = \begin{cases} 0 & \text{si } t < a \\ f(t-a) & \text{si } t > a \end{cases}$$

tiene transformada $e^{-as}F(s)$, es decir:

$$\mathscr{L}[f(t-a)H(t-a)] = e^{-as}F(s)$$

o, tomando antitransformadas:

$$f(t-a)H(t-a) = \mathcal{L}^{-1}[e^{-as}F(s)]$$

Convolución

$$c(t) = (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

o equivalentemente

$$c(t) = (f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$$

Teorema : Convolución.

Si dos funciones f y g satisfacen la restricción de crecimiento exponencial, de modo que sus transformadas F y G existen, el producto C = FG es la transformada de (f * g).

LECTURAS RECOMENDADAS

- ▶ E. Kreyszig, H. Kreyszig y E.J. Norminton. *Advanced Engineering Mathematics*. Hoboken, USA: John Wiley & Sons, Inc, 2011. Capítulo 6.
- Peter V O'Neil. Matemáticas avanzadas para ingeniería. 7.ª ed. México, DF: CENGAGE Learning Custom Publishing, 2012. Capítulo 1.
- ▶ K A Stroud y Dexter J Booth. *Advanced Engineering Mathematics*. 6.ª ed. London, England: Bloomsbury Academic, 2020. Programas 2, 3 y 4.