

Wrocław University of Technology

Group Evolution Discovery in Social Networks

Piotr Bródka, Stanisław Saganowski, Przemysław Kazienko Wrocław University of Technology, Poland Research Engineering Center, Poland piotr.brodka@pwr.wroc.pl, stanislaw.saganowski@pwr.wroc.pl, kazienko@pwr.wroc.pl

Agenda

- ✓ Problem description and motivation
- ✓ Basic concepts
- ✓ Group evolution
- ✓ Inclusion measure
- **✓** GED
- ✓ Experiments
- √ Final remarks

Tracking Group Evolution in Social Networks

- Groups extraction is nice
- ... but group evolution prediction is nicer ...

• ... so we need to identify $I(G_1,G_2) = \frac{G_1 \cap G_2}{G_1 \cap G_2}$ changes in group evolution.

T₁ forming

 T_2

growing

 T_3

splitting

4

shrinking

5

continuing

 T_6

merging

 Γ_7

dissolving

 T_8

Basic Concepts: Social Network 7 \

Social Network Group

(a) Wroclaw University of Technology

Social network: SN(V,E)

V – a set of vertices

E – a set of directed edges $\langle x,y \rangle : x,y \in V$

Basic Concepts: Temporal Social Network

TSN - a list of following timeframes (time windows) T, each is a social network SN(V,E)

Basic Concepts: Group (Community)

- No commonly accepted group definition
- A group is a set of people, who have strong mutual (internal) relationships and weak with people outside the group (external)
- Group G in the social network SN(V,E) is a subset of vertices $(G \subseteq V)$, extracted using any method (clustering algorithm)

- Group evolution is a sequence of events succeeding each other in the successive time windows within TSN
 - Continuing
 - Shrinking
 - Growing
 - Splitting
 - Merging
 - Dissolving
 - Forming

continuing

 T_{i+1}

- Group evolution is a sequence of events succeeding each other in the successive time windows within TSN
 - Continuing

Shrinking

- Growing
- Splitting
- Merging
- Dissolving
- Forming

- Group evolution is a sequence of events succeeding each other in the successive time windows within TSN
 - Continuing
 - Shrinking
 - Growing
 - Splitting
 - Merging
 - Dissolving
 - Forming

 T_{i+1}

- Group evolution is a sequence of events succeeding each other in the successive time windows within TSN
 - Continuing
 - Shrinking
 - Growing
 - Splitting
 - Merging
 - Dissolving
 - Forming

- Group evolution is a sequence of events succeeding each other in the successive time windows within TSN
 - Continuing
 - Shrinking
 - Growing
 - Splitting
 - Merging
 - Dissolving
 - Forming

 Group evolution is a sequence of events succeeding each other in the successive time windows within TSN

Τi

- Continuing
- Shrinking
- Growing
- Splitting
- Merging
- Dissolving
- Forming

dissolving

- Group evolution is a sequence of events succeeding each other in the successive time windows within TSN
 - Continuing
 - Shrinking
 - Growing
 - Splitting
 - Merging
 - Dissolving

Forming

GED Method: Introduction

- GED (Group Evolution Discovery) method takes into account
 - quantity of the group members
 - quality of the group members
- Members quality: any centrality measure
 - social position and degree centrality measures was utilized in the experiments

GED method: Inclusion measure

$$I(G_1, G_2) = \frac{|G_1 \cap G_2|}{|G_1|}$$

7

Group quantity

GED - Group Evolution Discovery Method

Input: TSN in which at each timeframe T_i groups are extracted by any community detection algorithm. Calculated any user importance measure.

For each pair of groups $\langle G_1, G_2 \rangle$ in consecutive timeframes T_i and T_{i+1} inclusion of G_1 in G_2 and G_2 in G_1 is counted according to equations (3).

Based on inclusion and size of two groups one type of event may be assigned:

Continuing: $I(G_1,G_2) \geq a$ and $I(G_2,G_1) \geq B$ and $|G_1| = |G_2|$

Shrinking: $I(G_1,G_2) \ge a$ and $I(G_2,G_1) \ge B$ and $|G_1| > |G_2|$ OR $|I(G_1,G_2)| < a$ and $|G_1| \ge B$ and $|G_1| \ge |G_2|$ and there is only one match (matching event) between $|G_2|$ and all groups in the previous time window $|G_1| \ge B$

Growing: $I(G_1,G_2) \ge a$ and $I(G_2,G_1) \ge B$ and $|G_1| < |G_2|$ OR $I(G_1,G_2) \ge a$ and $I(G_2,G_1) < B$ and $|G_1| \le |G_2|$ and there is only one match (matching event) between G_1 and all groups in the next time window T_{i+1}

Splitting: $I(G_1,G_2) < a$ and $I(G_2,G_1) \ge B$ and $|G_1| \ge |G_2|$ and there is more than one match (matching events) between G_2 and all groups in the previous time window T_i

Merging: $I(G_1,G_2) \ge a$ and $I(G_2,G_1) < B$ and $|G_1| \le |G_2|$ and there is more than one match (matching events) between G_1 and all groups in the next time window T_{i+1}

Dissolving: for G_1 in T_i and each group G_2 in T_{i+1} $I(G_1,G_2)$ < 10% and $I(G_2,G_1)$ < 10%

Forming: for G_2 in T_{i+1} and each group G_1 in T_i $I(G_1,G_2)$ < 10% and $I(G_2,G_1)$ < 10%

GED - Group Evolution Discovery Method

Input: TSN in which at each timeframe T_i groups are extracted by any community detection

Merging: $I(G_1,G_2) \ge a$ and $I(G_2,G_1) < B$ and $|G_1| \le |G_2|$ and there is more than one match (matching events) between G_1 and all groups in the next time window T_{i+1} Dissolving: for G_1 in T_i and each group G_2 in T_{i+1} $I(G_1,G_2) < 10\%$ and $I(G_2,G_1) < 10\%$ Forming: for G_2 in T_{i+1} and each group G_1 in T_i $I(G_1,G_2) < 10\%$ and $I(G_2,G_1) < 10\%$

GED: Following Events

Experiments: Setup

- Data Set
 - Staff email exchange from WrUT (270K+ emails, 2 years)
 - 5,845 nodes and 149,344 edges
 - Fourteen moving 90-days frames (overlap 45 days)
- Community extraction methods
 - Fast modularity optimization (disjoint groups)
 - CPM (overlapping groups)
- Methods for tracking group evolution
 - by Asur et al.
 - by Palla et al.
 - GED

Experiments: Results

- Execution time
 - Asur ~5.5h
 - Palla ~7 days
 - GED ~4h
- Group extraction method
 - Palla works only with CPM
 - Asur and GED work with any group extraction method

Experiments: Results

- Palla returns all possible events between groups, but does not assign its type
- Asur does not return all events and sometimes assigns many events (overlapping groups)
- GED may return all events depending on α and β (near to 0) and assigns the event type

Final Remarks

- Identification of event types for group evolution
- Inclusion measure used for event discovery
- Group Evolution Discovery (GED)
 - a new method

Future Work: Event Prediction

Thank you for your attention ©

Social Network Group

Wroclaw University of Technology

Basic concepts: Social position

$$SP_{n+1}(x) = (1-\varepsilon) + \varepsilon \cdot \sum_{y \in V} SP_n(y) \cdot C(y \to x)$$

Aktor	SP	Rank SP	CD	Rank CD
Α	0,566	4	2	4
В	0,667	5	3	2
C	1,440	1	4	1
D	1,217	2	2	4
Е	1,110	3	3	2

