2016 年全国统一高考化学试卷 (新课标 I)

1. (6分) 化学与生活密切相关,下列有关说法错误的是()
-------------------------------	--	---

- A. 用灼烧的方法可以区分蚕丝和人造纤维
- B. 食用油反复加热会产生稠环芳香烃等有害物质
- C. 加热能杀死流感病毒是因为蛋白质受热变性
- D. 医用消毒酒精中乙醇的浓度为 95%
- 2. (6分)设 N_A为阿伏加德罗常数值.下列有关叙述正确的是()
 - A. 14g 乙烯和丙烯混合气体中的氢原子数为 2N_A
 - B. 1mol N₂与 4mol H₂反应生成的 NH₃分子数为 2N_A
 - C. 1mol Fe 溶于过量硝酸,电子转移数为 2N₄
 - D. 标准状况下, 2.24L CCI₄ 含有的共价键数为 0.4N_A
- 3. (6分)下列关于有机化合物的说法正确的是()
 - A. 20甲基丁烷也称异丁烷
 - B. 由乙烯生成乙醇属于加成反应
 - C. C₄H₉Cl 有 3 种同分异构体
 - D. 油脂和蛋白质都属于高分子化合物
- 4. (6分)下列实验操作能达到实验目的是()
 - A. 用长颈漏斗分离出乙酸与乙醇反应的产物
 - B. 用向上排空气法收集铜粉与稀硝酸反应产生的 NO
 - C. 配制氯化铁溶液时,将氯化铁溶解在较浓的盐酸中再加水稀释
 - D. 将 Cl₂与 HCl 混合气体通过饱和食盐水可得到纯净的 Cl₂
- 5. (6分) 三室式电渗析法处理含 Na₂SO₄废水的原理如图所示,采用惰性电极,ab、cd 均为离子交换膜,在直流电场的作用下,两膜中间的 Na⁺和 SO₄^{2®} 可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室.下列叙述正确的是(

- A. 通电后中间隔室的 SO420离子向正极迁移,正极区溶液 pH 增大
- B. 该法在处理含 Na₂SO₄ 废水时可以得到 NaOH 和 H₂SO₄产品
- C. 负极反应为 2H₂O[©]4e[®]=O₂+4H⁺, 负极区溶液 pH 降低
- D. 当电路中通过 1mol 电子的电量时,会有 0.5mol 的 O₂生成
- 6. (6分) 298K 时,在 20.0mL 0.10mol L^{□1} 氨水中滴入 0.10mol L^{□1} 的盐酸,溶液的 pH 与所加盐酸的体积关系如图所示。已知 0.10mol L^{□1} 氨水的电离度为 1.32%,下列有关叙述正确的是()

- A. 该滴定过程应该选择酚酞作为指示剂
- B. M 点对应的盐酸体积为 20.0mL
- C. M 点处的溶液中 c (NH₄⁺) =c (Cl[□]) =c (H⁺) =c (OH[□])
- D. N 点处的溶液中 pH<12
- 7. (6分)短周期元素 W、X、Y、Z的原子序数依次增加. m、p、r是由这些元素组成的二元化合物, n是元素 Z的单质,通常为黄绿色气体,q的水溶液具有漂白性,r溶液是一种常见的强酸,s通常是难溶于水的混合物. 上述物质的转化关系如图所示. 下列说法正确的是()

- A. 原子半径的大小 W < X < Y
- B. 元素的非金属性 Z>X>Y
- C. Y 的氢化物常温常压下为液态
- D. X 的最高价氧化物的水化物为强酸

二、解答题(共3小题,满分43分)

8. (14 分)氮的氧化物(NO_x)是大气污染物之一,工业上在一定温度和催化剂条件下用 NH_3 将 NO_x 还原生成 N_2 . 某同学在实验室中对 NH_3 与 NO_2 反应进行了探究。回答下列问题:

(1) 氨气的制备

- ①氨气的发生装置可以选择上图中的_____,反应的化学方程式为____。
- ②欲收集一瓶干燥的氨气,选择上图中的装置,其连接顺序为:发生装置→____ (按气流方向,用小写字母表示)。
- (2) 氨气与二氧化氮的反应
- 将上述收集到的 NH_3 充入注射器 X 中,硬质玻璃管 Y 中加入少量催化剂,充入 NO_2 (两端用夹子 K_1 、 K_2 夹好)。在一定温度下按图示装置进行实验。

操作步骤	实验现象	解释原因
打开 K ₁ , 推动注射器活塞, 使	①Y 管中	②反应的化学方程式
X 中的气体缓慢充入 Y 管中		
将注射器活塞退回原处并固	Y管中有少量水珠	生成的气态水凝聚
定,待装置恢复到室温		
打开 Κ2	3	<u>4</u>

- 9. (15 分)元素铬(Cr)在溶液中主要以Cr³+(蓝紫色)、Cr(OH)₄®(绿色)、Cr₂O₇²®(橙红色)、CrO₄²®(黄色)等形式存在,Cr(OH)₃为难溶于水的灰蓝色固体,回答:
 - (1) Cr^{3+} 与 Al^{3+} 的化学性质相似,往 Cr_2 (SO_4)₃ 溶液中滴入 NaOH 溶液直至过量,可观察到的现象是_____。
- (2) CrO₄^{2®}和 Cr₂O₇^{2®}在溶液中可相互转化。室温下,初始浓度为 1.0mol L^{®1} 的 Na₇CrO₄ 溶液中 c(Cr₂O₇^{2®})随 c(H⁺)的变化如图所示。
- ①用离子方程式表示 Na₂CrO₄溶液中的转化反应____。
- ②由图可知,溶液酸性增强,CrO₄²⁰的平衡转化率_____(填"增大"减小"或"不变")。

根据 A 点数据, 计算出该转化反应的平衡常数为____。

- (3) 用 K₂CrO₄ 为指示剂,以 AgNO₃ 标准液滴定溶液中的 Cl[®],Ag⁺与 CrO₄^{2®}生成 砖红色沉淀时到达滴定终点。当溶液中 Cl[®]恰好完全沉淀(浓度等于 1.0× 10^{®5}mol•L^{®1})时,溶液中 c (Ag⁺)为_____mol•L^{®1},此时溶液中 c (CrO₄^{2®})等于____mol•L^{®1}.(K_{sp}(Ag₂CrO₄)=2.0×10^{®12}、K_{sp}(AgCl)=2.0×10^{®10})。
- (4) +6 价铬的化合物毒性较大,常用 NaHSO₃ 将废液中的 $Cr_2O_7^{20}$ 还原成 Cr^{3+} ,反应的离子方程式为 。

10. (14 分) $NaClO_2$ 是一种重要的杀菌消毒剂,也常用来漂白织物等,其一种生产工艺如下:

回答下列问题:

- (1) NaClO₂ 中 Cl 的化合价为____。
- (2) 写出"反应"步骤中生成 CIO2 的化学方程式____。
- (3)"电解"所用食盐水由粗盐水精制而成,精制时,为除去 Mg²+和 Ca²+,要加入的试剂分别为____、__。"电解"中阴极反应的主要产物是。
- (4) "尾气吸收"是吸收"电解"过程排出的少量 CIO₂. 此吸收反应中,氧化剂与还原剂的物质的量之比为 ,该反应中氧化产物是 。
- (5) "有效氯含量"可用来衡量含氯消毒剂的消毒能力,其定义是:每克含氯消毒剂的氧化能力相当于多少克 Cl_2 的氧化能力。 $NaClO_2$ 的有效氯含量为____。(计算结果保留两位小数)
- (二)选考题:共45分.请考生从给出的3道物理题、3道化学题、2道生物题中每科任选一题作答,并用2B铅笔在答题卡上把所选题目题号后的方框涂黑.注意所选题目的题号必须与所涂题目的题号一致,在答题卡选答区域

指定位置答题.如果多做,则每学科按所做的第一题计分.[化学--选修 2: 化学与技术]

11. (15 分)高锰酸钾($KMnO_4$)是一种常用氧化剂,主要用于化工、防腐及制药工业等. 以软锰矿(主要成分为 MnO_2)为原料生产高锰酸钾的工艺路线如下:

回答下列问题:

- (1) 原料软锰矿与氢氧化钾按 1: 1 的比例在"烘炒锅"中混配,混配前应将软锰矿粉碎,其作用是 .
- (2) "平炉"中发生的化学方程式为 .
- (3)"平炉"中需要加压,其目的是.
- (4)将 K₂MnO₄转化为 KMnO₄的生产有两种工艺.
- ①" CO_2 歧化法"是传统工艺,即在 K_2MnO_4 溶液中通入 CO_2 气体,使体系呈中性或弱酸性, K_2MnO_4 发生歧化反应,反应中生成 $KMnO_4$, MnO_2 和_____(写化学式).
- ②"电解法"为现代工艺,即电解 K_2MnO_4 水溶液,电解槽中阳极发生的电极反应为_____
- ,阴极逸出的气体是 .
- ③"电解法"和"CO₂ 歧化法"中, K_2MnO_4 的理论利用率之比为 . .
 - (5) 高锰酸钾纯度的测定: 称取 1.0800g 样品,溶解后定容于 100mL 容量瓶中,摇匀. 取浓度为 0.2000mol•L^{□1}的 H₂C₂O₄标准溶液 20.00mL,加入稀硫酸酸化,用 KMnO₄溶液平行滴定三次,平均消耗的体积为 24.48mL,该样品的 纯 度 为 _______(列 出 计 算 式 即 可 , 已 知 2MnO₄□+5H₂C₂O₄+6H⁺=2Mn²⁺+10CO₂↑+8H₂O).

[化学--选修 3: 物质结构与性质]

12. (15分)锗(Ge)是典型的半导体元素,在电子、材料等领域应用广

泛. 回答下列问题:

- (2) Ge 与 C 是同族元素,C 原子之间可以形成双键、叁键,但 Ge 原子之间难以形成双键或叁键. 从原子结构角度分析,原因是 .
- (3) 比较下列锗卤化物的熔点和沸点,分析其变化规律及原因.

	GeCl₄	GeBr₄	Gel₄
熔点/℃	? 49.5	26	146
沸点/℃	83.1	186	约 400

- (4) 光催化还原 CO_2 制备 CH_4 反应中,带状纳米 Zn_2GeO_4 是该反应的良好催化剂。Zn、Ge、O 电负性由大至小的顺序是_____.
- (5) Ge 单晶具有金刚石型结构,其中 Ge 原子的杂化方式为______微粒之间存在的作用力是
- (6) 晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置,如图(1、2)为 Ge 单晶的晶胞,其中原子坐标参数 A 为(0,0,0); B 为($\frac{1}{2}$, 0, $\frac{1}{2}$); C 为($\frac{1}{2}$, $\frac{1}{2}$, 0). 则 D 原子的坐标参数为______.
- ②晶胞参数,描述晶胞的大小和形状,已知 Ge 单晶的晶胞参数 a=565.76pm, 其密度为 g•cm^{®3}(列出计算式即可).

[化学--选修 5: 有机化学基础]

13. (**15** 分) 秸秆(含多糖类物质)的综合利用具有重要的意义.下面是以秸秆为原料合成聚酯类高分子化合物

$$\operatorname{PET}$$
 $\stackrel{\text{Z} = \overline{e}}{\text{催化剂}}$ $\operatorname{H}_3 \operatorname{COOCH}_3$ E COOCH_3 D

回答下列问题:

- (1) 下列关于糖类的说法正确的是 . (填标号)
- a. 糖类都有甜味,具有 C_nH_{2m}O_m的通式
- b. 麦芽糖水解生成互为同分异构体的葡萄糖和果糖
- c. 用银镜反应不能判断淀粉水解是否完全
- d. 淀粉和纤维素都属于多糖类天然高分子化合物
- (2) B 生成 C 的反应类型为 .
- (3) D中的官能团名称为_____, D生成 E的反应类型为_____.
- (4) F的化学名称是_____,由 F生成 G的化学方程式为_____.
- (5) 具有一种官能团的二取代芳香化合物 W 是 E 的同分异构体,0.5molW 与 足量碳酸氢钠溶液反应生成 44gCO₂,W 共有_____种(不含立体异构), 其中核磁共振氢谱为三组峰的结构简式为 ___.
- (6)参照上述合成路线,以(反,反) ②2,4②已二烯和 C₂H₄为原料(无机试剂任选),设计制备对苯二甲酸的合成路线 .