РК 1 По дисциплине «Технология машинного обучения» Вариант 6

Выполнил:

ФИО Павлов Сергей Алексеевич

Рецензент:

ФИО Гапанюк Юрий Евгеньевич

Задание: для заданного набора данных построить модели классификации. Для построения моделей использовать метод опорных векторов и метод случайного леса. Оценить качество моделей на основе подходящих метрик качества (не менее двух метрик).

Выполнение работы

Загрузим необходимые библиотеки. Также пропишем в тексте программы команду, позволяющую отображать графики в ячейках блокнота, и установим стиль графиков для отображения делений на осях графиков:

pip install scikit-learn

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear_model import LinearRegression, LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier

from sklearn.metrics import accuracy_score, balanced_accuracy_score

from sklearn.metrics import precision_score, recall_score, f1_score, classification_report

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, median_absolute_error, r2_score

from sklearn.metrics import roc_curve, roc_auc_score

from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz

 $from\ sklearn.ensemble\ import\ Random Forest Classifier,\ Random Forest Regressor$

from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor

from sklearn.ensemble import GradientBoostingClassifier,

Gradient Boosting Regressor

```
%matplotlib inline
sns.set(style="ticks")
```

Загрузим обучающую выборку:

original_train = pd.read_csv('data.csv', sep=",")

Сделаем дупликат выборки:

train = original_train.drop_duplicates()

Отобразим первые 5 строк датасета:

train.head()

Результат работы команды представлен на рисунке 1.

	lackrupt?	ROA(C) before interest and depreciation before interest				Realized Sales Gross Margin		Netwest Rate	After tax net browss Rate	Non-industry income and expenditure/revenue	Net income to Tetal Assets	Total assets to GNP price		Gross Profit to Sales	Net Incores to Stockholder's Equity		Degree of Financial Leverage (OFL)	Orderest expense to (B/T)	Flag	Liability
0	1	0.370994	0.424309	0.405750	0.001457	0.605457	0.998969	0790682	0.808809	0300646	0.716845	0.009219	0.622879	0.901453	0.827890	0.290202	0.026601	0.564050	1	0.016469
1	1	0.464291		0.316790	0.610223	0.610225	0.000046	0.797380	0.809001	0.00356	0.795297	0.008327	0.621852	0.636237	0.829900	0.283845	0.266577	0.539125		6020794
2	2	6.429171	0.499019	0.472295	0.001450	0.601364	0.998057	0.796469	0.806300	0.302095	0.774670	0.040005	0.623841	0.601449	0.896774	0.290189	0.026555	8,563706	1	0016474
1	1	0.299544	0.451265	0.457733	0.582541	0.583543	0.998700	0.796967	0.000006	0.00350	0.799555	0.003252	0.822509	0,582538	0.834607	0.281721	0.020697	0.564663	- 1	0.021082
4	1	0.465022	0.539432	0.522298	0.198783	0.596763	0.998973	0.797166	0.809304	0.303475	0.795016	0.003878	0.623521	0.598752	0,829973	0.270514	0.004752	0.075017	1	0.095490

Рисунок 1 — Результат выполнения команды

Отобразим размер обучающего датасета:

train.shape

Результат работы команды представлен на рисунке 2.

(6819, 96)

Рисунок 2 — Результат выполнения команды

Представим список колонок с помощью команды:

 $train_subset = train.head(500)$

train_subset.columns

Результат работы команды представлен на рисунке 3.

```
"Backwort?", "BBC() before interest and depreciation before interest."

*BOA(A) before interest and K effect tax",

*BOA(A) before interest and K effect tax",

*BOA(A) before interest and depreciation after tax",

*BOA(A) before interest and depreciation after tax",

*BOA(A) before interest after."

*BOA(A) before interest after."

*BOA(A) before tax and t
```

Рисунок 3 — Результат выполнения команды

Отобразим список колонок с типами данных:

train_subset.dtypes

Результат работы команды представлен на рисунке 4.

```
[10]: Bankrupt?
                                                                                                                       int64
            ROA(C) before interest and depreciation because float64
ROA(B) before interest and % after tax float64
ROA(B) before interest and depreciation after tax float64
float64
            float64
Interest Coverage Ratio (Interest expense to EBIT)
Net Income Flag
Equity to Liability
Length: 96
           Length: 96, dtype: object
```

Рисунок 4 — Результат выполнения команды

Проверим, есть ли пропущенные значения:

train_subset.isnull().sum()

Результат работы команды представлен на рисунке 5.

```
[11]: Bankrupt?
       ROA(C) before interest and depreciation before interest
       ROA(A) before interest and % after tax
       ROA(B) before interest and % after tax
       Operating Gross Margin
       Liability to Equity
Degree of Financial Leverage (DFL)
       Interest Coverage Ratio (Interest expense to EBIT)
                                                                0
       Net Income Flag
       Equity to Liability
      Length: 96, dtype: int64
```

Рисунок 5 — Результат выполнения команды

Оценим дисбаланс классов для 'Bankrupt?':

```
fig, ax = plt.subplots(figsize=(2,2))
plt.hist(train['Bankrupt?'])
```

plt.show()

Результат работы команды представлен на рисунке 6.

Рисунок 6 — Результат выполнения команды

Подсчитаем количество уникальных значений в столбце 'Bankrupt?:

train_subset['Bankrupt?'].value_counts()

Результат работы команды представлен на рисунке 7.

```
[14]: 0 469
1 31
Name: Bankrupt?, dtype: int64
```

Рисунок 7 — Результат выполнения команды

Подсчитаем дисбаланс классов:

total = train_subset.shape[0]

class_0, class_1 = train_subset['Bankrupt?'].value_counts()

print('Класс 0 составляет {}%, а класс 1 составляет {}%.'

.format(round(class_0 / total, 4)*100, round(class_1 / total, 4)*100))

Результат работы команды представлен на рисунке 8.

```
Класс 0 составляет 93.8%, а класс 1 составляет 6.2%. 
Рисунок 8 — Результат выполнения команды
```

Создадим вспомогательные колонки, чтобы наборы данных можно было разделить:

train_subset = train_subset.copy()

train_subset['dataset'] = 'TRAIN'

Колонки для объединения:

- 'ROA(B) before interest and depreciation after tax', 'Liability to Equity',
- 'Degree of Financial Leverage (DFL)',
- 'Interest Coverage Ratio (Interest expense to EBIT)',
- ' Net Income Flag', 'Equity to Liability', 'dataset']

Проверим корректность объединения:

```
data_all = pd.concat([train_subset[join_cols]])
```

assert data_all.shape[0] == train_subset.shape[0]

Отобразим первые 5 строк:

data_all.head()

Результат работы команды представлен на рисунке 9.

[33]:	Bankrupt?		ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Liability to Equity	Degree of Financial Leverage (DFL)	Interest Coverage Ratio (Interest expense to EBIT)	Net Income Flag	Equity to Liability	dataset
	0	1	0.370594	0.424389	0.405750	0.290202	0.026601	0.564050	1	0.016469	TRAIN
	1	1	0.464291	0.538214	0.516730	0.283846	0.264577	0.570175	1	0.020794	TRAIN
	2	1	0.426071	0.499019	0.472295	0.290189	0.026555	0.563706	1	0.016474	TRAIN
	3	1	0.399844	0.451265	0.457733	0.281721	0.026697	0.564663	1	0.023982	TRAIN
	4	1	0.465022	0.538432	0.522298	0.278514	0.024752	0.575617	1	0.035490	TRAIN

Рисунок 9 — Результат выполнения команды

Числовые колонки для масштабирования:

scale_cols = ['Bankrupt?', 'ROA(C) before interest and depreciation before interest',

- 'ROA(A) before interest and % after tax',
- 'ROA(B) before interest and depreciation after tax',
- 'Interest Coverage Ratio (Interest expense to EBIT)', 'Equity to Liability']

Добавим масштабированные данные в набор данных:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data_all[scale_cols])
for i in range(len(scale_cols)):
   col = scale_cols[i]
   new_col_name = col + '_scaled'
   data_all[new_col_name] = sc1_data[:,i]
```

Отобразим первые 5 строк:

data_all.head()

Результат работы команды представлен на рисунке 10.

Bankrupt?		ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(E) before interest and depreciation after tax	Liability to Equity	Degree of Financial Leverage (DFL)	Interest Coverage Ratio (Interest expense to EBIT)	Net Income Flag	Equity to Liability	dataset	Bankrupt?	ROA(C) before interest and depreciation before interest scaled	ROA(A) before interest and % after tax scaled	ROA(8) before interest and depreciation after tax scaled	Interest Coverage Ratio (Interest expense to EBIT) scaled	Equity to Liability scaled
0	1	0.370594	0.424389	0.405750	0.290202	0.026601	0.564050	1	0.016469	TRAIN	1.0	0.570578	0.623531	0.602537	0.564050	0.037652
1	1	0.464291	0.538214	0.516730	0.283846	0.264577	0.570175	1	0.020794	TRAIN	1.0	0.746634	0.816810	0.793088	0.570175	0.059991
2	1	0.426071	0.499019	0.472295	0.290189	0.026555	0.563706	1	0.016474	TRAIN	1.0	0.674819	0.750255	0.716794	0.563706	0.037680
3	1	0.399844	0.451265	0.457733	0.281721	0.026697	0.564663	- 1	0.023982	TRAIN	1.0	0.625538	0.009166	0.691792	0.564663	0.076456
	- 4	0.465022	0.538432	0.533308	0.279514	0.034752	0.575617	1	0.035490	TRAIN	10	0.748000	0.817180	0.000647	0.575617	0.135688

Рисунок 10 — Результат выполнения команды

Проверим, что масштабирование не повлияло на распределение данных:

for col in scale_cols:

```
col_scaled = col + '_scaled'
fig, ax = plt.subplots(1, 2, figsize=(8,3))
ax[0].hist(data_all[col], 50)
ax[1].hist(data_all[col_scaled], 50)
ax[0].title.set_text(col)
ax[1].title.set_text(col_scaled)
plt.show()
```

Результат работы команды представлен на рисунке 11.

Рисунок 11— Результат выполнения команды

Воспользуемся наличием тестовых выборок, включив их в корреляционную матрицу:

```
corr_cols_1 = scale_cols + ['Bankrupt?']
corr_cols_1
```

Результат работы команды представлен на рисунке 12.

```
['Bankrupt?',
  'ROA(C) before interest and depreciation before interest',
  'ROA(A) before interest and % after tax',
  'ROA(B) before interest and depreciation after tax',
  'Interest Coverage Ratio (Interest expense to EBIT)',
  'Equity to Liability',
  'Bankrupt?']
```

Рисунок 12 — Результат выполнения команды

Создадим новый список элементов:

```
scale_cols_postfix = [x+'_scaled' for x in scale_cols]
corr_cols_2 = scale_cols_postfix + ['Bankrupt?']
corr_cols_2
```

Результат работы команды представлен на рисунке 13.

Рисунок 13 — Результат выполнения команды

Исходные данные (до масштабирования):

```
fig, ax = plt.subplots(figsize=(10,5))
sns.heatmap(data_all[corr_cols_1].corr(), annot=True, fmt='.2f')
ax.set_title('Исходные данные (до масштабирования)')
plt.show()
```

Результат работы команды представлен на рисунке 14.

Рисунок 14— Результат выполнения команды

Масштабированные данные:

fig, ax = plt.subplots(figsize=(10,5))
sns.heatmap(data_all[corr_cols_2].corr(), annot=True, fmt='.2f')
ax.set_title('Масштабированные данные')
plt.show()

Результат работы команды представлен на рисунке 15.

Рисунок 15 — Результат выполнения команды

Выбор метрик для последующей оценки качества моделей. В качестве метрик для решения задачи классификации будем использовать: Метрики, формируемые на основе матрицы ошибок:

Метрика precision: Можно переводить как точность.

precision=TPTP+FP Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Используется функция precision_score.

Метрика recall (полнота): recall=TPTP+FN Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Используется функция recall_score.

Метрика F1 -мера Для того, чтобы объединить precision и recall в единую метрику используется $F\beta$ -мера, которая вычисляется как среднее гармоническое от precision и recall:

 $F\beta$ =(1+ β 2)·precision·recallprecision+recall где β определяет вес точности в метрике.

На практике чаще всего используют вариант F1-меры (которую часто называют F-мерой) при β =1 :

F1=2·precision·recallprecision+recall Для вычисления используется функция f1_score.

Метрика ROC AUC Основана на вычислении следующих характеристик:

TPR=TPTP+FN

• True Positive Rate, откладывается по оси ординат. Совпадает с recall.

FPR=FPFP+TN

• False Positive Rate, откладывается по оси абсцисс. Показывает какую долю из объектов отрицательного класса алгоритм предсказал неверно.

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество классификатора.

Для получения ROC AUC используется функция roc_auc_score.

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества:

```
self.df = self.df.append(temp, ignore_index=True)
  def get_data_for_metric(self, metric, ascending=True):
    temp_data = self.df[self.df['metric']==metric]
    temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
    return temp_data_2['alg'].values, temp_data_2['value'].values
  def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
    array_labels, array_metric = self.get_data_for_metric(metric, ascending)
    fig, ax1 = plt.subplots(figsize=figsize)
    pos = np.arange(len(array_metric))
    rects = ax1.barh(pos, array_metric,
               align='center',
               height=0.5,
               tick_label=array_labels)
    ax1.set_title(str_header)
    for a,b in zip(pos, array_metric):
       plt.text(0.5, a-0.05, str(round(b,3)), color='white')
    plt.show()
Для задачи классификации будем использовать следующие модели:
   • Метод опорных векторов
   • Случайный лес
Модели:
clas_models = {'SVC':SVC(probability=True),
         'RF':RandomForestClassifier()}
Сохранение метрик:
clasMetricLogger = MetricLogger()
Отрисовка ROC-кривой
def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
  fpr, tpr, thresholds = roc_curve(y_true, y_score,
```

```
pos_label=pos_label)
        roc_auc_value = roc_auc_score(y_true, y_score, average=average)
        1w = 2
        ax.plot(fpr, tpr, color='darkorange',
              lw=lw, label='ROC curve (area = %0.2f)' % roc auc value)
        ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
        ax.set_xlim([0.0, 1.0])
        ax.set_xlim([0.0, 1.05])
        ax.set_xlabel('False Positive Rate')
        ax.set_ylabel('True Positive Rate')
        ax.set_title('Receiver operating characteristic')
        ax.legend(loc="lower right")
      Создадим класс:
      from sklearn.metrics import ConfusionMatrixDisplay
      def
             clas_train_model(model_name,
                                                          clas X train,
                                                model.
                                                                           clas_Y_train,
clasMetricLogger):
        model.fit(clas_X_train, clas_Y_train)
        Y_pred = model.predict(clas_X_train)
        Y_pred_proba_temp = model.predict_proba(clas_X_train)
        Y_pred_proba = Y_pred_proba_temp[:,1]
        precision = precision_score(clas_Y_train, Y_pred)
        recall = recall_score(clas_Y_train, Y_pred)
        f1 = f1_score(clas_Y_train, Y_pred)
        roc_auc = roc_auc_score(clas_Y_train, Y_pred_proba)
        clasMetricLogger.add('precision', model_name, precision)
        clasMetricLogger.add('recall', model_name, recall)
        clasMetricLogger.add('f1', model_name, f1)
        clasMetricLogger.add('roc auc', model name, roc auc)
        fig, ax = plt.subplots(ncols=2, figsize=(10,5))
        draw_roc_curve(clas_Y_train, Y_pred_proba, ax[0])
```

```
cm = confusion_matrix(clas_Y_train, Y_pred)
```

 $\label{eq:disp} disp = ConfusionMatrixDisplay.from_estimator(model, clas_X_train, clas_Y_train, display_labels=['0','1'], cmap=plt.cm.Blues, normalize='true', ax=ax[1]) \\ fig.suptitle(model_name)$

plt.show()

for model_name, model in clas_models.items():

 $clas_train_model(model_name, model, clas_X_train, clas_Y_train, \\ clasMetricLogger)$

Результат работы команды представлен на рисунке 16.

Рисунок 16— Результат выполнения команды

Метрики качества модели:

clas_metrics = clasMetricLogger.df['metric'].unique()
clas_metrics

Результат работы команды представлен на рисунке 17.

Рисунок 17 — Результат выполнения команды

Построим графики метрик качества модели:

for metric in clas_metrics:

clasMetricLogger.plot('Метрика: ' + metric, metric, figsize=(7, 6))

Результат работы команды представлен на рисунке 18.

Рисунок 18— Результат выполнения команды

Вывод: на основании четырех метрик из четырех используемых, лучшими оказались модели случайного леса и дерево.