Module 1: Reasoning and Proof Models

Models of Argument

- **Definition:** Structured frameworks for reasoning, showing how claims are supported by evidence and logic.
- In NLP, it is used in argument mining, discourse analysis, and Al reasoning.
- Example:
 - Claim: "The model is biased."
 - **Evidence:** "It misclassifies 70% of sentences with gendered pronouns."
 - Warrant: "Consistent misclassification indicates bias."

Proof by Demonstration

- Definition: Showing correctness by working example or execution, not formal math.
- Demonstrating an algorithm works on a real input.
- Example:
 - Running a sentiment analysis model on the text:
 - Input: "The movie was fantastic!".
 - Output: Positive.
- Demonstrates that the sentiment classifier functions.

Proof by Empirical Methods

- **Definition:** Validating a claim by repeated experiments and data-driven evidence.
- In NLP, it is used for model evaluation through benchmarks, test sets, or metrics.

Example:

- An NLP classifier tested on 10 000 emails achieves 92% accuracy, 0.89 F1-score.
- This is empirical proof that the model performs well on average.

Mathematical Proofs

- **Definition:** Rigorous derivations using logic, theorems, and formal definitions.
- Used in algorithm analysis, complexity proofs, or correctness proofs.
- Example:
 - Claim: "The edit distance dynamic programming algorithm runs in $\mathcal{O}(nm)$ ".
 - **Proof:** By analyzing the DP (dynamic programming) table size $(n \times m)$ and constant-time cell updates.

Proof by Hermeneutics

- **Definition:** Interpretation-based justification, often used in qualitative, philosophical, or human-centered CS/NLP research.
- In NLP, it is used for explaining results by interpreting meaning rather than strict numerical or formal reasoning.

Example:

- Analyzing why a chatbot's response "I understand your feelings" is more empathetic:
 - Interpretation: It mirrors human conversational norms.
- Proof through interpretive understanding of language use.

Lab 1

To get familiar with the basics of the aforementioned methods of proof in Python.