计数

xgzc

长郡中学

1/40

组合数

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

xgzc (长郡中学) 计数 2/40

组合数的相关性质

对称性

$$\binom{n}{m} = \binom{n}{n-m}$$

加法公式

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

上指标求和

$$\sum_{i=0}^{n} \binom{i}{k} = \binom{n+1}{k+1}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

3 / 40

xgzc (长郡中学) 计数

组合数的相关性质

吸收恒等式

$$m\binom{n}{m} = n\binom{n-1}{m-1}$$
$$\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$$

范德蒙德卷积

$$\sum_{i+j=m} \binom{k}{i} \binom{n-k}{j} = \binom{n}{m}$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へで

4 / 40

xgzc(长郡中学) 计数

加法公式应用

试试看!

求和:

$$\sum_{i=0}^{n} \binom{n-i}{i}$$

组合意义

试试看!

尝试使用组合意义的方法证明上面的所有公式。

xgzc (长郡中学) 计数 6/40

组合意义

试试看!

尝试使用组合意义的方法证明上面的所有公式。

可以看出,有时组合意义的方法更加简洁。

xgzc (长郡中学) 计数 6/40

格路

例 1

求 Catalan 数的通项公式 C_n 。

例 2

求满足下列条件的序列 $\{a_n\}$ 的个数:

- $\forall i, 0 \leq a_i \leq m, a_i \in \mathbb{Z}_{\circ}$

洛谷 P3266 [JLOI2015] 骗我呢

题目描述

现在有一个 $n \times m$ 的数组 $x_{i,j} (1 \le i \le n, 1 \le j \le m)$ 。 对于 $1 \le i \le n, 1 \le j \le m$,满足 $0 \le x_{i,j} \le m$,且对于 $1 \le i \le n, 1 \le j < m$,满足 $x_{i,j} < x_{i,j+1}$,对于 $1 < i \le n, 1 \le j < m$,满足 $x_{i,j} < x_{i-1,j+1}$ 。 求可能的数组 $x_{i,j}$ 的解数模 $10^9 + 7$ 的结果。

数据范围

 $1 \le m, n \le 10^6$.

行列式

一种特殊的容斥形式。

性质

- 交换两行时行列式结果乘 -1。
- ② 将一行加到另一行上时,行列式结果不变。
- 上三角行列式很容易求值。

xgzc (长郡中学) 计数 9/40

洛谷 P7736 [NOI2021] 路径交点

题目描述

有 k 层的图,第 i 层有 n_i 个点,每层的点从上到下排列,层从左到右排列。再给出连接相邻层的一些有向边(从 i 层连向 i+1 层)。 对于 n_1 层每个点作为起点同时出发走到不同的 n_k 层的点的所有路径方案中,交点数量为偶数的减去为奇数的方案有多少个?

数据范围

有 T 细询问。

 $1 \le k \le 100, 2 \le n_1 \le 100, n_1 = n_k, n_1 \le n_i \le 2n_1, 1 \le T \le 5$

矩阵树定理

11 / 40

xgzc (长郡中学) 计数

线性递推

主要讨论常系数齐次线性递推。利用特征方程解决问题。

xgzc (长郡中学) 计数 12/40

线性递推

主要讨论常系数齐次线性递推。 利用特征方程解决问题。

例 3

求斐波那契数的通项公式。

xgzc (长郡中学)

线性递推

主要讨论常系数齐次线性递推。 利用特征方程解决问题。

例 3

求斐波那契数的通项公式。

特别注意重根的问题。

xgzc (长郡中学) 计数 12/40

生成函数

OGF

对于序列 $f_0, f_1, \cdots, f_n, \cdots$, 定义 $F(z) = \sum_{i \geq 0} f_i z^i$ 为序列 $\{f_n\}$ 的普通型 生成函数 (OGF)。

EGF

对于序列 $f_0,f_1,\cdots,f_n,\cdots$,定义 $F(z)=\sum_{i\geq 0}f_i\frac{z^i}{i!}$ 为序列 $\{f_n\}$ 的指数型生成函数(EGF)。

xgzc (长郡中学) 计数 13/40

普通型生成函数一般用来解决无标号问题和递推问题。

普通型生成函数一般用来解决无标号问题和递推问题。

例 4

给定一个正整数 n, 求它的无序拆分数。 $n \leq 10^5$ 。

xgzc (长郡中学) 计数 14/40

普通型生成函数一般用来解决无标号问题和递推问题。

例 4

给定一个正整数 n, 求它的无序拆分数。 $n < 10^5$ o

例 5

求斐波那契数的通项公式。

普通型生成函数一般用来解决无标号问题和递推问题。

例 4

给定一个正整数 n, 求它的无序拆分数。 $n < 10^5$.

例 5

- 求斐波那契数的通项公式。
- 求斐波那契数列前缀和的生成函数。

普通型生成函数一般用来解决无标号问题和递推问题。

例 4

给定一个正整数 n, 求它的无序拆分数。 $n < 10^5$.

例 5

- 求斐波那契数的通项公式。
- 求斐波那契数列前缀和的生成函数。

例 6

求 Catalan 数的生成函数并根据此计算通项公式。

求逆的意义?

对于一个生成函数 A,

$$\frac{1}{1-A} = \sum_{i \ge 0} A^i$$

15 / 40

求逆的意义?

对于一个生成函数 A,

$$\frac{1}{1-A} = \sum_{i \ge 0} A^i$$

从组合意义的观点看,就是有序拼接。

15 / 40

xgzc (长郡中学)

【UNR #4】校园闲逛

题目描述

给定一个 n 个点 m 条边(有边权,不超过 W)的无向图,多次询问从 u_i 到 v_i 的所有路径中(可以重复经过同一条边)权值和恰好为 w_i 的方案数对 998244353 取模的结果。

数据范围

 $n \leq 8, W \leq 65000, w_i \leq W_{\circ}$

解题思想值得借鉴,但是具体实现难度远超提高组范围,建议大家在水平提升后再落实此题。

简单生成函数练习题 求出

$$\sum_{i=0}^{n} \binom{n-i}{i} z^{i}$$

的封闭形式。

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

17 / 40

xgzc (长郡中学) 计数

二项卷积

定义

设序列 $\{f_n\}, \{g_n\}, \{h_n\}$ 满足

$$h_n = \sum_{i=0}^n \binom{n}{i} f_i g_{n-i}$$

那么称 $\{h_n\}$ 是 $\{f_n\}$ 和 $\{g_n\}$ 的二项卷积的结果。

xgzc (长郡中学) 计数 18/40

指数型生成函数(EGF)

可以发现,指数型生成函数的卷积对应序列的二项卷积。 所以,指数型生成函数的意义也就水落石出:即在处理有顺序的的物品的排列问题时经常会使用。

xgzc (长郡中学) 计数 19/40

指数型生成函数(EGF)

可以发现,指数型生成函数的卷积对应序列的二项卷积。

所以,指数型生成函数的意义也就水落石出:即在处理有顺序的的物品的排列问题时经常会使用。

当然,如果某个序列的 EGF 形式比 OGF 更加简洁,也会使用 EGF 作为工具进行处理(后面会讲到例子)。

指数型生成函数(EGF)

可以发现,指数型生成函数的卷积对应序列的二项卷积。

所以,指数型生成函数的意义也就水落石出:即在处理有顺序的的物品的排列问题时经常会使用。

当然,如果某个序列的 EGF 形式比 OGF 更加简洁,也会使用 EGF 作为工具进行处理(后面会讲到例子)。

为什么要叫指数型生成函数?

答

由泰勒展开:

$$e^z = \sum_{i \ge 0} \frac{z^i}{i!}$$

xgzc (长郡中学) 计数 19 /40

exp 的意义?

例

贝尔数: 求把 n 个有区别的小球放到若干个(任意多个)无区别的非空 盒子里的方案数。

例

贝尔数: 求把 n 个有区别的小球放到若干个(任意多个)无区别的非空 盒子里的方案数。

对于一个生成函数 A(z), 定义 $\exp A = \sum_{i \geq 0} \frac{A^i}{i!}$

xgzc (长郡中学) 计数 20/40

例

贝尔数: 求把 n 个有区别的小球放到若干个(任意多个)无区别的非空 盒子里的方案数。

对于一个生成函数 A(z),定义 $\exp A = \sum_{i \geq 0} \frac{A^i}{i!}$ 用组合意义的观点看,就是有标号的无序组合。 所以贝尔数的生成函数是 $\exp(e^x - 1)$,记为 $\mathcal{B}(x)$ 。 例 7

求 n 个点的无向连通图个数。

xgzc (长郡中学) 计数 21/40

In 的意义?

例 7

求 n 个点的无向连通图个数。

可以发现, ln 是 exp 的逆运算(?), 所以组合意义也刚好相反。

exp / In 的其它意义?

例 8

现在有一个背包,有 n 种商品,每种商品体积为 v_i ,都有无限件 给定 m, 对于 $s \in [1, m]$, 请你回答用这些商品恰好装 s 体积的方案数。

exp / In 的其它意义?

例 8

现在有一个背包,有 n 种商品,每种商品体积为 v_i ,都有无限件给定 m,对于 $s \in [1, m]$,请你回答用这些商品恰好装 s 体积的方案数。

利用 exp 和 ln 的代数意义。

FFT?

以上有部分内容可能需要使用 FFT 相关的技术解决。

鉴于 FFT 是 10 级内容,这里不想展开。但是理解上面的思想的意义是重要的。

xgzc (长郡中学) 计数 23/40

第二类斯特林数

定义

将 n 个互不相同的球放入 m 个非空盒子的方案数记为第二类斯特林数,用 $\left\{ egin{array}{l} n \\ m \end{array} \right\}$ 表示。

性质

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

第一类斯特林数

定义

n 个人坐在 m 张非空圆桌上的方案数记为第一类斯特林数,用 $\begin{bmatrix} n \\ m \end{bmatrix}$ 表 示。

性质

$$\begin{bmatrix} n \\ 0 \end{bmatrix} = [n = 0]$$

$$\begin{bmatrix} n \\ m \end{bmatrix} = \begin{bmatrix} n-1 \\ m-1 \end{bmatrix} + (n-1) \times \begin{bmatrix} n-1 \\ m \end{bmatrix}$$

25 / 40

洛谷 P4609 [FJOI2016] 建筑师

题目描述

多次给定 n, A, B,求有多少个长度为 n 的排列满足恰好有 A 种前缀最 大值和 B 种后缀最大值?

数据范围

 $n \le 50000, 1 \le A, B \le 100$.

xgzc (长郡中学) 26 / 40

下降幂和上升幂

定义

$$a^{\underline{n}} = a(a-1)(a-2)\cdots(a-n+1)$$

$$a^{\overline{n}} = a(a+1)(a+2)\cdots(a+n-1)$$

其中 $a \in \mathbb{R}, n \in \mathbb{Z}$ 。

27 / 40

xgzc (长郡中学) 计数

斯特林数的性质

第一类斯特林数

$$x^{\overline{m}} = \sum_{k=0}^{m} {m \brack k} x^{k}$$
$$x^{\underline{m}} = \sum_{k=0}^{m} (-1)^{m-k} {m \brack k} x^{k}$$

第二类斯特林数

$$x^m = \sum_{k=0}^m \begin{Bmatrix} m \\ k \end{Bmatrix} x^{\underline{k}}$$

28 / 40

斯特林数的性质

第一类斯特林数

$$x^{\overline{m}} = \sum_{k=0}^{m} \begin{bmatrix} m \\ k \end{bmatrix} x^k$$
$$x^{\underline{m}} = \sum_{k=0}^{m} (-1)^{m-k} \begin{bmatrix} m \\ k \end{bmatrix} x^k$$

第二类斯特林数

$$x^m = \sum_{k=0}^m \begin{Bmatrix} m \\ k \end{Bmatrix} x^{\underline{k}}$$

由上可知,第一类斯特林数的 OGF 比较简洁。

斯特林数的 EGF?

$${n \brace m} = n! [x^n y^m] \mathcal{B}(x)^y$$
$${n \brack m} = n! [x^n y^m] \left(\frac{1}{1-x}\right)^y$$

可以用来求一列斯特林数。

xgzc (长郡中学) 29 / 40

莫比乌斯反演 (子集反演)

定义两个在集合上的函数 (?) f,g, 如果

$$\mathbf{f}(S) = \sum_{T \subseteq S} \mathbf{g}(T)$$

那么有

$$\mathbf{g}(S) = \sum_{T \subseteq S} (-1)^{|S| - |T|} \mathbf{f}(T)$$

xgzc (长郡中学) 计数 30/40

洛谷 P5206 [WC2019] 数树

题目描述

给定 n, y。

定义两棵树 $T_1=G(V,E_1),\,T_2=G(V,E_2)(|V|=n)$, 定义两棵树的权值 $F(T_1,\,T_2)=y^{n-|E_1\cap E_2|}$ 。

请解决以下问题:

- ② 给定 E_1 , 计算 $\sum_{T_2} F(T_1, T_2)$ 。
- **③** 计算 $\sum_{T_1,T_2} F(T_1,T_2)$ 。

数据范围

$$n \leq 10^5$$
 .

 子集反演的特殊情况。

定义序列 f, g, 如果满足:

$$f_n = \sum_{i=1}^n \binom{n}{i} g_i$$

那么有

$$g_n = \sum_{i=1}^n \binom{n}{i} (-1)^{n-i} f_i$$

当然还有其它的一些类似等价形式,这里不再赘述。

32 / 40

推论

例 9

求错排数的计算式。

例 9

求错排数的计算式。

例 10

证明第二类斯特林数的计算式:

$$\begin{Bmatrix} m \\ k \end{Bmatrix} = \frac{1}{k!} \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^m$$

33 / 40

斯特林反演

定义序列 f, g, 如果满足:

$$f_n = \sum_{i=1}^n \begin{Bmatrix} n \\ i \end{Bmatrix} g_i$$

那么有

$$g_n = \sum_{i=1}^n \begin{bmatrix} m \\ k \end{bmatrix} (-1)^{n-i} f_i$$

xgzc (长郡中学) 计数 34/40

[BZOJ 4671] 异或图

题目描述

给定 S 张 n 个点的图。

定义图的异或是:如果一条边在两个图中出现次数和为 1,那么异或后的图中存在这条边,否则不存在。

问有多少图的集合满足异或后的图是连通图。

数据范围

 $S \le 60, n \le 10$.

 ×gzc (长郡中学)
 计数

求和科技

显然

一切可求和的仅带一个 \sum 的式子的项都可以裂项,即如果 $\sum_{i=1}^{n} a_i = s_n$ 那么 $a_n = s_n - s_{n-1}$ 。

36 / 40

求和科技

显然

一切可求和的仅带一个 \sum 的式子的项都可以裂项,即如果 $\sum_{i=1}^{n} a_i = s_n$ 那么 $a_n = s_n - s_{n-1}$ 。

所以,聪明的人们就想到能不能万物皆可裂项。

xgzc (长郡中学) 计数 36/40

有限微积分

定义

差分算子 Δ 满足 $\Delta f(n) = f(n+1) - f(n)$ 。 平移算子 E 满足 $\mathbf{E} f(n) = f(n+1)$ 。

37 / 40

xgzc(长郡中学) 计数

有限微积分

定义

差分算子 Δ 满足 $\Delta f(n) = f(n+1) - f(n)$ 。 平移算子 E 满足 $\mathbf{E}f(n) = f(n+1)$ 。

性质

 $\Delta uv = u\Delta v + \mathbf{E}v\Delta u$

对两边同时求和可以得到分部求和公式。

xgzc (长郡中学) 计数 37 / 40

下降幂

性质

- $(a+b)^{\underline{n}} = \sum_{i=0}^{n} \binom{n}{i} a^{\underline{i}} b^{\underline{n-i}}$

由此可见,下降幂在求和方面具有及其优秀的性质,并且能够独立进行一些运算。

←□▶ ←□▶ ← □ ▶ ←

38 / 40

实例

自然数幂和

例 11

给定 $n (n \le 10^9), k$,求

$$\sum_{i=1}^{n} i^k$$

对 998244353 取模的结果。

$$k = 2 ? k = 3 ?$$

39 / 40

自然数幂和

例 11

给定 $n (n \le 10^9), k$, 求

$$\sum_{i=1}^{n} i^{k}$$

对 998244353 取模的结果。

$$k = 2 ? k = 3 ?$$

$$k \leq 1000$$
 ? $k \leq 10^5$?

39 / 40

自然数幂和

例 11

给定 $n (n \le 10^9), k$, 求

$$\sum_{i=1}^{n} i^{k}$$

对 998244353 取模的结果。

$$k = 2$$
 ? $k = 3$? $k < 1000$? $k < 10^5$?

利用普通幂转下降幂可以实现简单地求和。

拉格朗日插值

通过点值求解多项式的方法。

$$f(x) = \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

xgzc (长郡中学) 计数 40/40

实例

拉格朗日插值

通过点值求解多项式的方法。

$$f(x) = \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

众所周知,自然数幂和的结果是多项式,所以可以直接用插值求出。 当然还有伯努利数的做法,这里不再赘述。

xgzc (长郡中学) 40 / 40