0.1 Likskapsteiknet, mengder og tallinjer

Likskapsteiknet

Som namnet tilseier, viser *likskapsteiknet* = til at noko er likt. I kva grad og når ein kan seie at noko er likt er ein filosofisk diskusjon, og innleiingsvis er vi berre prisgitt dette: Kva likskap = sikter til må bli forstått ut ifrå konteksten teiknet blir brukt i. Med denne forståinga av = kan vi studere nokre grunnleggande eigenskaper for tala våre, og så komme tilbake til meir presise tydingar av teiknet.

Språkboksen

Vanlege måtar å seie = på er

- "er lik"
- "er det same som"

Mengder og tallinjer

Tal kan representere så mangt. I denne boka skal vi halde oss til to måtar å tolke tala på; tal som ei *mengde* og tal som ei *plassering på* ei linje. Alle representasjonar av tal tek eigentleg utganspunkt i kva forståinga er av tala 0 og 1.

Tal som mengde

Når vi snakkar om ei mengde, vil talet 0 vere¹ knytt til "ingenting". Ein figur der det ikkje er noko til stades vil slik vere det same som 0:

$$=0$$

1 vil vi teikne som ei rute:

$$=1$$

Andre tal vil da vere definert ut ifrå kor mange einarruter (einarar) ein har:

¹I kapittel?? skal vi sjå at det også er andre tolkingar av 0.

Tal som plassering på ei linje

Når vi plasserer tal på ei linje, vil 0 vere utgangspunket vårt:

Så plasserer vi 1 ei viss lengde til høgre for 0:

Andre tal vil da vere definert ut ifrå kor mange einarlengder (einarar) vi er unna 0:

Positive heiltal

Vi skal straks sjå at tal ikkje naudsynleg treng å vere *heile* antal einarar, men tala som *er* det har eit eige namn:

0.1 Positive heiltal

Tal som er eit heilt antal einarar kallast $positive^1heiltal$. Dei positive heiltala er

$$1,2,3,4,5$$
 og så vidare.

Positive heiltal blir også kalla $naturlege\ tal.$

Kva med 0?

Nokre forfattarar inkluderer også 0 i omgrepet naturlege tal. I nokre samanhengar vil dette lønne seg, i andre ikkje.

¹Kva ordet positiv inneber skal vi gjere greie for i kapittel ??.

0.2 Tal, siffer og verdi

Tala våre er bygd opp av siffera~0,1,2,3,4,5,6,7,8 og 9, og plasseringa av dei. Siffera og deira plassering definerer 1 verdien til talet.

Heiltal større enn 10

La oss som eit eksempel skrive talet fjorten ved hjelp av sifra våre.

Vi kan no lage ei gruppe med 10 einarar, i tillegg har vi da 4 einarar. Da skriv vi fjorten slik:

¹Etterkvart skal vi også sjå at *forteikn* er med på å definere verdien til talet (sjå *kapittel* ??).

Desimaltal

I mange tilfelle har vi ikkje eit heilt antal einarar, og da vil det vere behov for å dele 1 inn i mindre bitar. La oss starte med å teikne ein einar:

Så deler vi einaren vår inn i 10 mindre bitar:

Sidan vi har delt 1 inn i 10 bitar, kallar vi ein slik bit for ein tidel:

Tidelar skriv vi ved hjelp av desimalteiknet , :

${\bf Språkboksen}$

På engelsk bruker ein punktum $\underline{\ }$ som desimalte
ikn i staden for komma $\underline{\ }$;

$$3,5 \quad (norsk)$$

$$3.5 \quad (english)$$

Titalssystemet

Vi har no sett korleis vi kan uttrykke verdien til tal ved å plassere siffer etter antal tiarar, einarar og tidelar, og det stoppar sjølvsagt ikkje der:

0.2 Titalssystemet

Verdien til eit tal er gitt av siffera 0, 1, 2, 3, 4, 5, 6, 7, 8 og 9, og plasseringa av dei. Med sifferet som angir einarar som utgangspunkt vil

- siffer til venstre (i rekkefølge) indikere antal tiarar, hundrarar, tusenar osv.
- siffer til høgre (i rekkefølge) indikere antal tidelar, hundredelar, tusendelar osv.

0.3 Partal og oddetal

Heiltal som har 0, 2, 6 eller 8 på einarplassen kallast partal.

Heiltall som har 1, 3, 5, 7 eller 9 på einarplassen kallast oddetal .

Eksempel

Dei ti første (positive) partala er

$$0,\,2,\,4,\,6,\,8,\,10,\,12,\,14,\,16,\,\mathrm{og}\,\,18$$

De ti første (positive) oddetala er

0.3 Koordinatsystem

I mange tilfelle er det nyttig å bruke to tallinjer samtidig. Dette kallar vi eit koordinatsystem. Vi plasserer da éi tallinje som går horisontalt og éi som går vertikalt. Ei plassering i eit koordinatsystem kallar vi eit punkt.

Strengt tatt fins det mange typar koordinatsystem, men i denne boka bruker vi ordet om berre éin sort, nemleg det *kartesiske koordinatsystem*. Det er oppkalt etter den franske filosofen og matematikaren René Descartes.

Eit punkt skriv vi som to tal inni ein parentes. Dei to tala blir kalla førstekoordinaten og andrekoordinaten.

- Førstekoordinaten fortel oss kor langt vi skal gå langs horisontalaksen.
- Andrekoordinaten fortel oss kor langt vi skal gå langs vertikalaksen.

I figuren ser vi punkta (2,3), (5,1) og (0,0). Punktet der aksane møtast, altså (0,0), kallast origo.

