Резюме

В простейших случаях предел функции вычисляют с помощью теоремы об арифметических действиях с пределами (II, п. 2.4, глава 2), теоремы об арифметических действиях с непрерывными функциями (теорема 1.3, глава 3) и теоремы об арифметических действиях с бесконечно большими функциями (утверждения a) – r), п. 2.6, глава 2). Если для вычисления предела следует раскрыть неопределенность, указанных выше средств может оказаться недостаточно. Неопределенность часто удается раскрыть с помощью «замечательных пределов» и свойств эквивалентных функций.

Если существуют $C \neq 0$ и $\lambda > 0$ такие, что $\alpha(x) \sim C(x - x_0)^{\lambda}$, $x \to x_0$, $x_0 \in \mathbf{R}$, то $\beta(x) = C(x - x_0)^{\lambda}$ называют главной частью бесконечно малой при $x \to x_0$ функции $\alpha(x)$.

Если существуют $C \neq 0$ и $\lambda > 0$ такие, что $\alpha(x) \sim C \left(\frac{1}{x}\right)^{\lambda}$, $x \to \infty$, то $\beta(x) = C \left(\frac{1}{x}\right)^{\lambda}$ называют главной частью бесконечно малой при $x \to \infty$ функции $\alpha(x)$.

Отыскание предела методом выделения главной части основано на возможности упрощать вычисление предела, заменяя б. м. функции их главными частями.

Контрольные вопросы к главе 3

1. Вычисление каких ИЗ ЭТИХ пределов связано с раскрытием неопределенностей? Какого вида неопределенностей?

a)
$$\lim_{x\to 0} x \ln(1+x^2)$$
;

$$\mathsf{G}) \lim x \ln(1+x^2);$$

$$\Gamma) \lim_{x \to +0} x^{\ln(1+x^2)}; \qquad \qquad Д) \lim_{x \to +\infty} x^{\ln(1+x^2)}; \qquad \qquad e) \lim_{x \to 1} x^{\ln x};$$

Д)
$$\lim_{n \to \infty} x^{\ln(1+x^2)}$$

e)
$$\lim_{n \to 1} x^{\ln x}$$
;

ж)
$$\lim_{x\to +0}(x+\ln x)$$
;

3)
$$\lim_{x \to +\infty} (x + \ln(1 + x^2));$$

Ж)
$$\lim_{x \to +0} (x + \ln x)$$
; 3) $\lim_{x \to +\infty} (x + \ln(1 + x^2))$; И) $\lim_{x \to -\infty} (x + \ln(1 + x^2))$.

2. Какие из этих формул верны при $x \to a$?

a)
$$\sin 3x \sim \ln \cos 3x$$
, $a = 0$;

6)
$$\cos 3x \sim \ln(1 + \cos 3x)$$
, $a = \frac{\pi}{2}$;

B)
$$\ln \frac{x+1}{x} \sim \operatorname{tg} \frac{1}{x}$$
, $a = \infty$;

$$\Gamma$$
) $\sqrt{\frac{1+x}{x}} \sim \sin \frac{1}{\sqrt{x}}$, $a = +0$;

3. Найдите пределы:

a)
$$\lim_{x\to 1}\frac{1-x}{\ln x}$$
;

a)
$$\lim_{x \to 1} \frac{1-x}{\ln x}$$
; 6) $\lim_{x \to 1/2} \frac{4x^2 - 1}{\sin(1-2x)}$; B) $\lim_{x \to 0} \frac{1-\cos 4x}{\cos x - \cos 2x}$.

B)
$$\lim_{x\to 0} \frac{1-\cos 4x}{\cos x - \cos 2x}$$
.

4. Какие из этих формул верны при $x \to a$?

a)
$$\ln \cos 3x = o(\sin 3x)$$
, $a = 0$;

$$6) \frac{x}{1+x^2} = o(e^x - 1), \ a = 0;$$

B)
$$\frac{x^4}{1+x^2} = o(x^3), \ a = \infty;$$

$$\Gamma$$
) $x^3 - x^2 - x + 1 = o(x^3 - x)$, $a = 1$.

5. Найти главную часть и порядок бесконечно малых при $x \to 0$:

a)
$$\frac{3\sqrt[3]{x^2}}{1-x}$$
; 6) $\sqrt[3]{x^2}-x$; B) $3\sin^3 x-x^4$; Γ) $e^x-\cos x$.

Ответы на контрольные вопросы

- 1. в) $0 \cdot \infty$; г) 0^0 ; и) $\infty \infty$.
- 2. б); в); д).
- 3. a) 1; б) -2; в) $\frac{16}{3}$.
- 4. a); в); г).
- 5. a) $3\sqrt[3]{x^2}$, порядок равен $\frac{2}{3}$; б) $\sqrt[3]{x^2}$, порядок равен $\frac{2}{3}$; в) $3x^3$, порядок равен 3; Γ) x, порядок равен 1.