Tribhuvan University Institute of Science and Technology 2069

攻

Bachelor Level / Second Year/ Third Semester/ Science Computer Science and Information Technology (Che. 204) (Numerical Method) Full More and Pass More and Lane: 2 family

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Assume sultable data if necessary

Attempt all questions:

Derive the formula to solve nonlinear equation using second method. Using your formula estimate a real root of following nonlinear equation using second places x² + 1nx = 3.

2 Estimate f (3) from the following data using Cubic Spline interpolation.

x	1	2.5	4	5.7
f(x)	-2.0	4.2	14.4	31.2

OR

Find the best fitting quadratic polynomial from following data using least approximation.

1	1 2	1 12	0	1 1	12	25	2 1	7.	347
1	-4	-1-4	- 1		1.4			4.3	الديان
HX.	10.39	2.96	-2.0	-2.63	-2.46	0.83	3.1	12.8	30.4

3. (a) For the function $f(x) = e^x \sqrt{\sin x + \ln x}$ estimat: f'(6.3) and f''(6.3) [takeh = 0.01]

Of Evaluate $\int (\ln x + x^2 \sin x) dx$ using Gaussian in egration 3 point forwards.

4. Solve the following set of equations using Gauss elimination or Gauss Jordan method.

$$3x_1 + 5x_2 - 3x_3 + x_4 = 16$$

$$2x_1 + x_2 + x_3 + 4x_4 = 9$$

$$3x_1 - 4x_2 - x_4 = 1$$

$$2x_1 + x_2 - 3x_1 + 9x_4 = 5$$

flow can you solve higher order differential equation? Explain Solve the following differential within 0 ≤ x ≤1 using Heun's method.

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2xy = 1 \text{ with } y(0) = 1 \text{ and } y'(0) = 1(takeh = 0.5)$$

CSC204-2069₽

6. (a) How can you obtain numerical solution of a partial differential equation? Explain

(b) The steady-state two-dimensional heat-flow in a metal plate is defined by $\frac{\partial^2 T}{\partial v^2} + \frac{\partial^2 T}{\partial v^2} = 0$. Given the boundary conditions as shown or figure below

temperatures at faterior points 1. To, T, and Ta-

7. Write an algorithm and C-program code to solve non-linear equation it my Newton's method. Your program should read an initial puess from legshound and desplay the followings if the solution is obtained.

- Estimated root of the equation
- Functional value at calculated root
- Required number of iterations