Árboles de Derivación

Fabio Martínez Carrillo

Autómatas Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

24 de octubre de 2017

Árboles de Derivación

Representación para las derivaciones

- Muestra como se agrupan los simbolos terminales en subcadenas
- Las subcadenas pertenecen al lenguaje de una variable de la gramatica
- Es la estructura de datos que representa el programa fuente

Permite expresar el concepto de **Ambig**üedad en gramáticas.

 Propiedad de tener una unica estructura de arbol para cada cadena del lenguaje

Arboles de Derivación

Para G = (V, T, P, S)

- Cada nodo esta etiquetado con la varaibale V
- Cada hoja con un simbolo, terminal o ε
 - Si es ε entonces tiene que ser el único hijo
 - Las variables son nodos interiores
- Si el nodo esta etiquetado con A y sus hijos como X_1, X_2, \dots, X_k
 - Entonces $A \rightarrow X_1, X_2, \dots, X_k$ es una producción
 - X puede reemplazarse por ε cuando es unico hijo y existe $A \to \varepsilon$

Ejemplo: "palindromos"

Arbol de derivación para la cadena 0110

Árboles de Derivación para parentesis

Observaciones

- la concatenación de las hojas de cualquier arbol obtenemos la cadena de resultado.
- El resultado es una cadena terminal
- La raiz esta etiquetada con el simbolo inicial

Cual es el arbol de derivación para la cadena a*(a+b00)

- $\begin{array}{ccccc} 2. & E & \rightarrow & E+E \\ 3. & E & \rightarrow & E*E \\ 4. & E & \rightarrow & (E) \end{array}$

Cual es el arbol de derivación para la cadena a*(a+b00)

Inferencia, Derivaciones y Árboles de derivación

Descripción equivalente de cadenas para G = (V, T, P, S)

- **1** La inferencia recursiva determina que $w \in L(A)$
- $\mathbf{2} A \Rightarrow^* W$

- Existe un árbol de derivación de raiz A y resultado w

De los Árboles a las derivaciones

Propiedad de independencia del contexto

Podemos realizar sustituciones de cuerpos de produciones por sus cabezas de forma independiente.

$$\bullet \ E + (E) \Rightarrow E + (I) \Rightarrow E + (Ib) \Rightarrow E + (ab)$$

Teorema. Sea G = (V, T, P, S)

Existe un árbol de derivación con una raíz etiquetada con la variable A y resultado w. Entonces existe una derivación más a la izquierda $A \Rightarrow_{lm}^* w$ en la gramática G.

Demostración

Caso Base

La altura del arbol es 1. $A \rightarrow w$ tiene que ser una producción y por lo tanto $A \Rightarrow_{lm} w$ es una derivación

Demostración

Paso Inductivo

Si la altura del árbol es n > 1. Existe una raíz etiquetada con A e hijos $X_1 X_2 ... X_N$ desde la izquierda. X_i puede ser terminal o variable:

- Si X_i es un simbolo terminal, entonces w_i es la cadena formada unicamente por X_i
- Si X_i es una variable entonces tiene que ser la raíz de un sub-árbol.
 - EL árbol tiene altura menor que n
 - Por inducción existen entonces una derivación más a la izquierda:
 X_i ⇒^{*}_{lm} w_i

Entonces construimos una derivación más a la izquierda para $w = w_1 w_2 \dots w_k$ como:

$$A \Rightarrow_{lm}^* w_1 w_2 \dots w_i X_{i+1} X_{i+2} \dots X_k$$

De forma análoga podemos construir un árbol a partir de una derivación más a la derecha

Agenda

Aplicaciones

2 Ambigüedad en gramáticas y lenguajes

Árboles de Derivación para parentesis

Analizadores sintacticos

Parentesis balanceados

Evaluación de estructuras

Analizador para if - else C

- $S \rightarrow \varepsilon \mid SS \mid iS \mid iSe$
- Las secuencias ieie, iie, iei son posibles
- La secuencia iee no pertence

iieie

Evaluación de estructuras

Analizador para if - else C

- $S \rightarrow \varepsilon \mid SS \mid iS \mid iSe$
- Las secuencias ieie, iie, iei son posibles
- La secuencia iee no pertence

iieie

```
if (Condición) {
    ...
    if (Condición) Instrucción;
    else Instrucción;
    ...
    if (Condición) Instrucción;
    else Instrucción;
    ...
}
```

Lenguaje de marcado

Es un meta-lenguaje que permite definir lenguajes de marcas. las cadenas estan determinados por determinadas marcas (etiquetas). Ej: HTML, XML, . . .

HTML

- Crea vinculo entre documentos (cadenas terminales) y describe el formato.
- Existen una serie de clases de cadenas: documento, texto, item, otros.

Agenda

Aplicaciones

2 Ambigüedad en gramáticas y lenguajes

Eliminación Ambigüedad

Una gramática libre de contexto es ambig \ddot{u} a si existe una cadena en el lenguaje que puede ser representado por dos árboles de derivación.

parentesis balanceados

$$\bullet \ S \rightarrow SS \mid (S) \mid ()$$

Existen dos árboles para generar: ()()()?

parentesis balanceados para ()()()

Ambigüedad: derivaciones por izq y der

- Si hay dos diferentes árboles, estos deben producir dos derivaciones diferentes por izquierda
- Dos diferentes derivaciones por izquierda deben producir dos diferentes árboles

Ambigüedad

Existe una cadena que tiene dos diferentes derivaciones por izquierda/derecha

Ambigüedad es una propiedad de las gramáticas y no de los lenguajes

 Sin embargo, no existe un algoritmo que nos diga si una Gramática es ambigua

Re-definición para los parentesis balanceados

- $B \rightarrow (RB \mid \varepsilon)$
- R →) | (RR
- B es el simbolo de inicio, deriva cadenas balanceadas
- R genera una o más cadenas que tienen uno o mas parentesis a la derecha que a la izq

- $B \rightarrow (RB \mid \varepsilon)$
- R →) | (RR
- ullet Si se necesita expandir B se aplica (RB en otro caso arepsilon

Ejemplo: (())()

Pasos de derivación desde la izq.

B

- $B \rightarrow (RB \mid \varepsilon)$
- R →) | (RR
- ullet Si se necesita expandir B se aplica (RB en otro caso arepsilon

Ejemplo: (())()

- B
- (RB

- $B \rightarrow (RB \mid \varepsilon)$
- R →) | (RR
- ullet Si se necesita expandir ${\it B}$ se aplica (${\it RB}$ en otro caso arepsilon

Ejemplo: (())()

- B
- (RB
- ((RRB

- $B \rightarrow (RB \mid \varepsilon)$
- *R* →) | (*RR*
- ullet Si se necesita expandir B se aplica (RB en otro caso arepsilon

Ejemplo: (())()

- B
- (RB
- ((RRB
- (()RB

- $B \rightarrow (RB \mid \varepsilon)$
- *R* →) | (*RR*
- ullet Si se necesita expandir B se aplica (RB en otro caso arepsilon

Ejemplo: (())()

- B
- (RB
- ((RRB
- (()RB
- (())B

- $B \rightarrow (RB \mid \varepsilon)$
- R →) | (RR
- ullet Si se necesita expandir ${\it B}$ se aplica (${\it RB}$ en otro caso arepsilon

Ejemplo: (())()

- B
- (RB
- ((RRB
- (()RB
- (())B
- (())(RB

- $B \rightarrow (RB \mid \varepsilon)$
- R →) | (RR
- ullet Si se necesita expandir ${\it B}$ se aplica (${\it RB}$ en otro caso arepsilon

Ejemplo: (())()

- B
- (RB
- ((RRB
- (()RB
- (())B
- (())(RB
- (())()B

- $B \rightarrow (RB \mid \varepsilon)$
- R →) | (RR
- ullet Si se necesita expandir ${\it B}$ se aplica (${\it RB}$ en otro caso arepsilon

Ejemplo: (())()

- B
- (RB
- ((RRB
- (()RB
- (())B
- (())(RB
- (())()B
- **(**())()

Otro ejemplo

- $1. \ E \Rightarrow E + E \Rightarrow E + E * E$
- 2. $E \Rightarrow E * E \Rightarrow E + E * E$
- \bullet 1 + (2 * 3) = 7
- (1+2)*3=9

Diferentes derivaciones para una cadena no implica que la gramática sea defectuosa

Causas de Ambigüedad

- 1. $E \Rightarrow E + E \Rightarrow E + E * E$
- $2. \ E \Rightarrow E*E \Rightarrow E+E*E$
- La precedencia de operadores no se respeta.
- Una secuencia de operadores idénticos puede agruparse empezando por la izquierda o por la derecha

Solución

Fuerza de acoplamiento

- Se introducen algunas variables distintas que representan expresiones que comparten el mismo nivel
 - **① Factor:** expresión que no se puede separar mediante *, +
 - Identificadores
 - Cualquier expresión entre parentesis
 - Termino: expresión que se puede separar mediante el operador +.
 - Una expresión: cualquier posible expresión, incluyendo aquellas que pueden separarse mediante un signo * adyacente o un signo + adyacente

Gramática no ambigua

```
2. E \to E + E

3. E \to E * E

4. E \to (E)

5. I \to a

6. I \to b

7. I \to Ia

8. I \to Ib

9. I \to I0

10. I \to I1

1 I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1

F I \to I \mid (E)

T I \to I \mid (E)
```

Árbol de derivación: a + a * a

 Cualquier cadena derivada de T es factor de *. Cualquier identificador o expresión entre parentesis

Derivaciones de T

Árbol de derivación para la expresión $f_1 * f_1 * \dots * f_n$

 Una expresión es una secuencia de terminos conectados mediante el +

$$L = \{a^{n}b^{n}c^{m}d^{m} \mid n \geq 1, m \geq 1\} \cup \{a^{n}b^{m}c^{m}d^{n} \mid n \geq 1, m \geq 1\}$$

L esta conformado por **a**⁺**b**⁺**c**⁺**d**⁺

- Existen tantos símbolos a como b y tantos símbolos c como d
- Existen tantos símbolos a como d y tantos símbolos b como c.

$$\begin{array}{cccc} S & \rightarrow & AB \mid C \\ A & \rightarrow & aAb \mid ab \\ B & \rightarrow & cBd \mid cd \\ C & \rightarrow & aCd \mid aDd \\ D & \rightarrow & bDc \mid bc \end{array}$$

Inherentemente ambiguos: aabbccdd

Considere la gramática:

$$S o aS \mid aSbS \mid \varepsilon$$

- Muestre que aab tiene dos arboles de derivación
- Dos derivaciones a la izquierda
- Dos derivaciones a la derecha
- Determine una gramática no ambigua para el lenguaje

Muchas gracias por su atención

