1 Definitions

1.1 Set

Notation:

$$X = \{x\}$$

Qualitites:

 \circ Is empty or consists of distinguishable subsets/elements $x \in X$.

1.2 Function Function

Group

Notation:

$$f: X \to Y$$

Components:

- \circ Set Domain: X
- \circ Set Codomain: Y

Qualitites:

 \circ Mapping of X onto Y:

A function f relates each $x \in X$ to exactly one element $f(x) \in Y$.

Classifications:

 \circ injective

For any $a, b \in X$ $a \neq b$ the result is different $f(a) \neq f(b)$.

• surjective

For any $y \in Y$ there is a $x \in X$ such that f(x) = y.

1.3 Group

Notation:

$$\mathbb{G} \equiv (G, \circ)$$

Components:

- \circ Set: G
- \circ Function: $\circ: G \times G \to G$

Qualitites:

• Associativity:

For all $a, b, c \in G$: $a \circ (b \circ c) = (a \circ b) \circ c$

• Identity element:

There exists an element $\mathbb{1}_{\circ} \in G$, for which $\mathbb{1}_{\circ} \circ a = a \circ \mathbb{1}_{\circ} = a$ for all $a \in G$.

• Inverse element:

For each $a \in G$, there exists an element $b \in G$ such that $a \circ b = \mathbb{1}_{\circ}$.

Classifications:

o abelian

For any $a, b \in G$, $a \circ b = b \circ a$.

1.4 Ideal

Ideal

Components:

- \circ Group: (G, \circ)
- ∘ Set Ideal: $I_{\circ} \subset G$

Qualitites:

 $\circ~I_{\circ}$ "absorbs" element of G by application of $\circ :$

$$\begin{array}{l} a\circ b\in I_{\circ},\,\forall a\in G,b\in I_{\circ}\\ b\circ a\in I_{\circ},\,\forall a\in G,b\in I_{\circ} \end{array}$$

1.5 Algebraic Field

Algebraic Field

Notation:

$$\mathbb{K} \equiv (K, +, \cdot)$$

Components:

- \circ Set: K
- $\circ \ \mbox{Function Addition:} \ + : K \times K \to K \qquad (\mathbb{1}_+ \equiv 0)$
- \circ Function Multiplication: $\cdot: K \times K \to K$ (1. $\equiv 1$)

Qualitites:

- \circ (K,+) is a Group[abelian]
- $\circ (K \setminus \mathbb{1}_+, \cdot)$ is a Group[abelian]
- o Distributivity:
 - $a \cdot (b+c) \equiv a \cdot b + a \cdot c$, which is equivalent to $\{1_+\}$ is an Ideal $I \subset K$.

Topological Space

1.6 Topological Space

Components:

 \circ Set X:

- Qualitites:
 - Neighbourhood topology:
 - 1. Neighbourhoods of x: $N_x \equiv \{N \subset X | x \in N\}$.
 - 2. Any neighbourhood N_x contains a neighbourhood N_x' such that N_x is a neighbourhood of each point of N_x' .

Classifications:

 \circ contractible

The identity map on X is null-homotopic, i.e. it is homotopic to some constant map.

1.7 Hausdorff Space

Hausdorff Space

Components:

 \circ Topological Space X:

Qualitites:

• Separation:

Two distinct elements have some disjoint neighbourhoods.

1.8 Topological Manifold

Topological Manifold

Components:

- \circ Topological Space X:
- \circ Algebraic Field \mathbb{K} :

Qualitites:

 \circ Each $x \in X$ has a neighbourhood which is a Topological Space[contractible].

Quantities:

• dimension

Minimum number of functions $f: N_x \to \mathbb{K}$ required to uniquely describe x by its function values within N_x^{-1} . Such a minimal set of functions is a chart on N_x , its elements are called coordinate functions.

1.9 Differentiable Manifold

Differentiable

Components: Manifold

 \circ Topological Manifold M:

Qualitites:

• The coordinate functions of any two intersecting neighbourhoods $N_x \cap N_y \neq \emptyset$ are C^k differentiable with respect to each other. This also implies the existence of a tangent space T_xM in each point $x \in M$: For an arbitrary function $f: M \to \mathbb{K}$, the derivatives along the coordinate functions gives a vector of the tangent space.

Quantities:

• differentiability class C^k : Up to k-th derivatives exist.

1.10 Smooth Manifold

Smooth Manifold

Components:

o Differentiable Manifold(differentiability class: C^{∞}) M:

1.11 Riemannian Manifold

Riemannian

Components:

Manifold

 \circ Smooth Manifold M:

¹This has some similarities to the definition of an entropy: assuming the function's codomains consist only of $\{0,1\}$, the dimension corresponds to the number of bits needed to encode all information about $x \in X$.