2-BAC Section des sciences expérimentales: Option de sciences physiques

_Physique-Chimie _____

	Exercice 1 : Propagation des ondes					
domaine de la question	Q	Référence de la question dans le cadre de référence	La difficulté de la question	Estimation du temps	Champ couvert par le sujet	
	1.1	Définir une onde mécanique	90%	5min		
Les Ondes	1.2	Définir une onde transversale et une onde longitudinale	85%	5min		
	1.3	Connaître les caractéristiques de l'onde lumineuse	85%	5min		
	2.1	Exploiter la relation entre le retard temporel, la distance et la célérité.	70%	8min	70%	
	2.2	Exploiter des documents expérimentaux et des données pour déterminer la vitesse	70%	8min		
	2.3	Calculer la valeur du retard temporel	90%	3min		

	Exercice 2 : LES SYSTÈMES ÉLECTRIQUES						
	Partie 1 : la réponse d'un dipôle RC						
domaine de la question	Q	Référence de la question dans le cadre de référence	La difficulté de la question	Estimation du temps	Champ couvert par le sujet		
Electricité	1.1	Représenter les tensions électrique et Reconnaître le phénomène de la charge d'un condensateur	50%	2min			
	1.2	Etablir l'équation différentielle lorsque le dipôle RC est soumis à un échelon de tension.	80%	3min			
	1.3	vérifier la solution de l'équation différentielle lorsque le dipôle RC est soumis à un échelon de tension.	60%	2min	50%		
	1.4	Connaitre et exploiter l'expression de la constante du temps	80%	2min			
	1.5	exploiter l'expression de la constante du temps	80%	2min			

	Partie 2 : la réponse d'un dipôle RL						
domaine de la question	Q	Référence de la question dans le cadre de référence	La difficulté de la question	Estimation du temps	Champ couvert par le sujet		
	2.1	mis en évidence retard à l'établissement du courant, déterminer L'élément du circuit responsable de ce phénomène	50%	2min			
Electricité	2.2	Déterminer l'expression de l'intensité du courant $i(t)$ lorsque le dipôle RL est soumis à un échelon de tension et en déduire l'expression de la tension aux bornes de la bobine et aux bornes du conducteur ohmique.	30%	4min	50%		
	2.3	Reconnaître et représenter les courbes de variation, en fonction du temps, de l'intensité du courant $i(t)$ passant dans la bobine et les grandeurs qui lui sont liées et les exploiter.	30%	3min			
	2.4	Connaître et exploiter l'expression de la constante de temps.	80%	2min			
	2.5	Connaître et exploiter l'expression de la constante de temps.	80%	2min			

	Partie 3 : la réponse d'un dipôle RLC						
domaine de la question	Q	Référence de la question dans le cadre de référence	La difficulté de la question	Estimation du temps	Champ couvert par le sujet		
Electricité	3.1	Exploiter des documents expérimentaux pour reconnaitre les régimes d'amortissement	90%	3min			
	3.2	Etablir l'équation différentielle pour la tension aux bornes du condensateur	70%	6min			
	3.3	Connaître et exploiter l'expression de la période propre.	50%	2min	50%		
	3.4	Connaître la méthode entretenir les oscillations en apportant de l'énergie au système grâce à un dispositif qualifié de "montage à résistance négative".	60%	2min			

		Exercice 3 : Mécanique					
	Partie A						
domaine de la question	Q	Référence de la question dans le cadre de référence	La difficulté de la question	Estimation du temps	Champ couvert par le sujet		
Mécanique	1	Connaitre et exploiter les expressions du vecteur vitesse et de la position	40%	6min			
	2	trouver l'équation de la trajectoire et établir les expressions de la portée et la flèche et les exploiter.	90%	5min			
		Partie B					
Mécanique	1.1	Etablir l'expression de la période propre du pendule pesant.	50%	5min			
	1.2	Connaître et exploiter l'expression de la période propre et la fréquence propre du pendule dans le cas des petites oscillations.	50%	5min			
	2.1	Appliquer la relation fondamentale de la dynamique à un pendule de torsion pour établir l'équation différentielle	90%	6min			
	2.1	-Connaître et exploiter l'expression de l'énergie mécanique du pendule de torsion.	60%	8min	40%		
	2.2	-Connaître et exploiter l'expression de l'énergie mécanique du pendule de torsion et le Travail d'une force.	40%	8min			
	2.3	Exploiter la conservation et la non-conservation de l'énergie mécanique du pendule de torsion.	40%	5min			

Eléments de réponse

$N^{\circ}\mathbf{Q}$ 1.1 1.2 1.3	Réponse Une onde mécanique correspond à la propagation d'une perturbation dans un milieu matériel, sans transport de matière mais avec transport d'énergie. Pour une onde longitudinale, la direction de la perturbation et la direction de propagation sont identiques. La lumière peut se propager dans le vide contrairement au son. Ce n'est pas une onde mécanique, mais c'est une onde électromagnétique.	
1.2	un milieu matériel, sans transport de matière mais avec transport d'énergie. Pour une onde longitudinale, la direction de la perturbation et la direction de propagation sont identiques. La lumière peut se propager dans le vide contrairement au son. Ce n'est pas une onde mécanique, mais c'est une onde électromagnétique.	0,25pts
1.2	Pour une onde longitudinale, la direction de la perturbation et la direction de propagation sont identiques. La lumière peut se propager dans le vide contrairement au son. Ce n'est pas une onde mécanique, mais c'est une onde électromagnétique.	0,25pts
1.3	propagation sont identiques. La lumière peut se propager dans le vide contrairement au son. Ce n'est pas une onde mécanique, mais c'est une onde électromagnétique.	
1.3	La lumière peut se propager dans le vide contrairement au son. Ce n'est pas une onde mécanique, mais c'est une onde électromagnétique.	
	mécanique, mais c'est une onde électromagnétique.	$\begin{vmatrix} 0,25pts \end{vmatrix}$
		0, 20pto
2.1		, 1
2.1	L'onde se dirige vers le véhicule à la célérité c, elle parcourt la distance	
	d1, elle effectue ensuite le trajet retour. Il s'est écoulé une durée Δt_1	0.5pt
	$d_1 = \frac{c \cdot \Delta t_1}{2}$	
	la date $t = 0$ s, la voiture est située à la distance d_1 du cinémomètre. À la date $t = T$,	
	la voiture s'est rapprochée et est située à la distance d_2 du cinémomètre.	
2.2	Pendant la durée T, la voiture a parcouru la distance $d = d_1 - d_2$ enroulant à la vitesse.	0,75pt
	$v = \frac{d}{T} = \frac{d_1 - d_2}{T}$	
	D'après $2.1 d_1 = \frac{c.\Delta t_1}{2}$ et de $d_2 = \frac{c.\Delta t_2}{2}$	
	D'après 2.1 $d_1 = \frac{c.\Delta t_1}{2}$ et de $d_2 = \frac{c.\Delta t_2}{2}$ donc $v = \frac{c.(\Delta t_1 - \Delta t_2)}{2T}$ $(\Delta t_1 - \Delta t_2) = \frac{v.2T}{c} = 0,33ns$	
6	$ \frac{\left(\Delta t_1 - \Delta t_2\right) = \frac{v.2I}{c} = 0,33ns}{$	0,5pts
	LES SYSTÈMES ÉLECTRIQUES	(2,5pts)
$N^{\circ}\mathbf{Q}$	Réponse	Note
	le schéma du montage	
1.1	Quand on ferme l'interrupteur, on met en évidence la charge	0,25pt
	du condensateur.	
	A partir de $t = 0.03$ s, la tension u_C reste constante,	
1.2	le condensateur est chargé et $u_C = E$ On lit sur la courbe 1, $E = 2.0 \text{ V}$	0,5pt
	l'équation différentielle vérifiée : $R.C.\frac{du_c}{dt} + u_c = E$	
1.3		0,5pt
1.4	la valeur de $\tau = 0.006$ s	0,25pt
1.5		0,25pt
	LE DIPOLE RL	(2,5pts)
$N^{\circ}\mathbf{Q}$	Réponse	Note
2.1		0,25pt
	Ona $E = (R+r)i + L \cdot \frac{di}{dt}$ en régime permanent $i(t) = 1$ = Cte alors $\frac{di}{dt} = 0$	0,25pt
2.2		
2.2	Il vient $E = (R + r).I$, soit $I = \frac{E}{R+r}$ D'après la courbe 2, $I = 18mA$ donc $r = 11\Omega$	
	La courbe 2 montre qu'à la date $t = 0$, $i(0) = 0$ mA	
2.2	La courbe 2 montre qu'à la date $t = 0$, $i(0) = 0$ mA D'après l'équation (1),on a $E = L \cdot \frac{di}{dt}$ et on a établi précédemment que $E = (R + r) \cdot I$	0,25pt
	La courbe 2 montre qu'à la date $t = 0$, $i(0) = 0$ mA D'après l'équation (1),on a $E = L \cdot \frac{di}{dt}$ et on a établi précédemment que $E = (R + r) \cdot I$	
	La courbe 2 montre qu'à la date $t = 0$, $i(0) = 0$ mA D'après l'équation (1),on a $E = L \cdot \frac{di}{dt}$ et on a établi précédemment que $E = (R + r) \cdot I$	
	La courbe 2 montre qu'à la date $t = 0$, $i(0) = 0$ mA	
1.3 1.4 1.5 N°Q 2.1	solution de cette équation différentielle : $U_C = E(1 - e^{-\frac{t}{\tau}})$ la valeur de $\tau = 0{,}006\mathrm{s}$ Vérifier que la capacité du condensateur $C = \frac{\tau}{R} = 60\mu$. F LE DIPÔLE RL Réponse On observe un retard à l'établissement du courant : l'intensité n'atteint pas immédiatement sa valeur maximale et constante. L'élément du circuit responsable de ce phénomène est la bobine Ona $E = (R+r)i + L \cdot \frac{di}{dt}$ en régime permanent $i(t) = I$ = Cte alors $\frac{di}{dt} = 0$	0, 2 0, 2 (2,5p No

	LE DIPÔLE RLC	(2,5pts)
$N^{\circ}\mathbf{Q}$	Réponse	Note
3.1	Il y a transfert d'énergie entre la bobine et le condensateur. Les oscillations obtenues sont amorties en raison d'une dissipation d'énergie par effet Joule dans la résistance interne de la bobine. L'amplitude des oscillations diminue au cours du temps, les oscillations ne sont pas périodiques mais pseudo-périodiques. Les oscillations sont libres car il n'y a pas d'énergie extérieure apportée au circuit (absence de générateur avec l'interrupteur en position 2).	0,25pt
3.2	l'équation différentielle vérifiée par la tension uc	0,5pt
3.3	$3T = 0.09s \text{ donc } T = 0.03s T_0 = 2\pi.\sqrt{LC}$ L = 0.38H	0,75pt
3.4	On peut entretenir les oscillations en apportant de l'énergie au système grâce à un dispositif qualifié de " montage à résistance négative". ancien programme	0,25pt

	Mécanique	$\overline{(2,5 ext{pts})}$
$N^{\circ}\mathbf{Q}$	Réponse	Note
	on obtient les équations horaires du mouvement du projectile puis et les positions	
1	x = 60 m pour y = -20 m	0,25pt
	$t = \frac{x}{v_0 \cdot \cos \alpha} = 3s$	
$\begin{vmatrix} 2 \end{vmatrix}$	Pour $tg\theta = \frac{y}{x-x_0} = \frac{20}{18,82} = 46,735^{\circ}$ et les équations horaires du mouvement du projectile	$\begin{vmatrix} 0,75pt \end{vmatrix}$
2	$v_0' = \frac{x}{\cos\theta.t} = 29,18m/s$	0, ropi
	Partie B	(2,5pts)
$N^{\circ}\mathbf{Q}$	Réponse	Note
1 1	$T_0 = 2.\pi \cdot \sqrt{\frac{J_{\Delta}}{C}} \text{ avec } J_{\Delta} = J_0 + 2md^2$	0.05.
1.1	donc $T'_0 = \sqrt{2} \cdot T_0 = \sqrt{2} \cdot 2\pi \cdot \sqrt{\frac{J_0 + 2md^2}{C}}$ $T' = 2T_0 \text{ car } C = \frac{k}{L + L/4}$	0,25pt
1.0	$T' = 2T_0 \text{ car } C = \frac{k}{L + L/4}$	0.05.4
1.2	$T_0' = 2.T_0 = 4\pi.\sqrt{\frac{J_0 + 2md^2}{C}}$	0,25pt
	Bilan des forces qui s'exercent sur la tige et En appliquant	
2.1	le principe fondamental de la dynamique $\sum M = J_{\Delta}\ddot{\theta}$	0,25pt
	on obtient l'équation différentielle	
2.2	la variation de l'énergie mécanique $\frac{dE_m}{dt} = \sum W(forcedefrottement)$	0,25pt
4.4	$\frac{dE_m}{dt} = w(f) = M\dot{\theta} = -\alpha.\dot{\theta}$	0, 23pt
	Expresion de la variation de l'énergie potentielle de torsion :	
2.3	$\Delta E_p = \frac{1}{2} \cdot C(\theta_2^2 - \theta_1^2) = -W(f)_{1-2}$	0,25pt
	W(f) = 0.0492.C	