Contents

1	测度	和积分																	
	1.1	测度空间	 																

测度和积分

1.1 测度空间

令 E 是集合, \mathcal{E} 是 E 的一个子集族. 若对于任意 $A, B \in \mathcal{E}$ 有 $A \cap B \in \mathcal{E}$, 那么我们说 \mathcal{E} **对交封闭**. 如果 \mathcal{E} 中任意可数个集合的交还在 \mathcal{E} 中, 那么我们说 \mathcal{E} 对可数交封闭. 类似地, 我们可以定义对补封闭、对并封闭和对可数并封闭的概念.

σ-代数

如果 E 的非空子集族 E 对补和有限并封闭, 那么我们说 E 是 E 上的**代数**. 如果 其对补和可数并封闭, 那么我们说 E 是 E 上的 G-**代数**, 即:

- a) $A \in \mathcal{E} \Rightarrow E \setminus A \in \mathcal{E}$,
- b) $A_1, A_2, \ldots \in \mathcal{E} \Rightarrow \bigcup_n A_n \in \mathcal{E}$.

由于 $(\bigcup_n A_n)^c = \bigcap_n A_n^c \in \mathcal{E}$,所以对补和可数并封闭可以自然导出对可数交封闭,即 σ -代数对可数交也封闭.

任取 $A \in \mathcal{E}$, 那么 $E = A \cup (E \setminus A) \in \mathcal{E}$, 所以 E 上任意 σ -代数都至少包含 E 和 \emptyset . 事实上, $\mathcal{E} = \{E,\emptyset\}$ 是 E 上的最简单的 σ -代数, 被称为**平凡** σ -代数. E 上最大的 σ -代数当然是 $\mathcal{E} = 2^E$, 即 \mathcal{E} 就是 E 的幂集, 被称为**离散** σ -代数.

不难看出, E 上一族 σ -代数的任意交 (不一定可数) 还是 E 上的 σ -代数. 给定 E 的一个子集族 C, 我们可以考虑所有包含 C 的 σ -代数 (总是存在至少一个这样的 σ -代数, 即 2^E), 将这些 σ -代数取交集, 我们便得到了包含 C 的最小的 σ -代数, 被称为由 C 生成的 σ -代数, 记为 σC .

如果 E 是拓扑空间,由 E 的所有开集族生成的 σ -代数被称为 E 上的 **Borel** σ -**代 数**, 记为 $\mathcal{B}(E)$ 或者 \mathcal{B}_E , 其元素被称为 **Borel 集**.

p-系和 d-系

对于 E 的子集族 C, 如果其对交封闭,那么我们说 C 是一个 p-系,这里 p 代表 product,是 "交"的另一种说法. E 的子集族 D 被称为 d-系,如果其满足:

a) $E \in \mathcal{D}$,

- b) $A, B \in \mathcal{D}$ and $A \supset B \Rightarrow A \setminus B \in \mathcal{D}$,
- c) $(A_n) \subseteq \mathcal{D}$ and $A_n \nearrow A \Rightarrow A \in \mathcal{D}$.

其中 $(A_n) \subseteq D$ 表明 (A_n) 是 D 中的集合序列, $A_n \nearrow A$ 表明这个序列递增于极限 A:

$$A_1 \subseteq A_2 \subseteq \cdots, \quad \bigcup_{n=1}^{\infty} A_n = A.$$

显然一个 σ -代数既是 p-系又是 d-系, 其反面也是成立的. 所以 p-系和 d-系是产生 σ -代数的原始结构.

命题 1.1. E 的子集族是 σ -代数当且仅当其既是 p-系又是 d-系.

Proof. (⇒) 若 \mathcal{E} 是 σ -代数,其显然是 p-系并且满足 d-系的条件 (a) 和 (c). 下面我们 验证其满足 d-系的条件 (b). 任取 $A, B \in \mathcal{E}$ 且 $A \supseteq B$,那么 $A \setminus B = A \cap (E \setminus B) \in \mathcal{E}$,所以 \mathcal{E} 是 d-系.

(←) 若 \mathcal{E} 既是 p-系又是 d-系. 任取 $A \in \mathcal{E}$, 根据 d-系的 (a) 和 (b), 我们有 $E \setminus A \in \mathcal{E}$. 所以 \mathcal{E} 对补封闭. 然后我们说明对并封闭. 任取 $A, B \in \mathcal{E}$, 由于

$$A \cup B = E \setminus (A \cup B)^c = E \setminus (A^c \cap B^c),$$

结合 p-系对交封闭, 所以 $A \cup B \in \mathcal{E}$. 最后我们说明对可数并封闭. 如果 $(A_n) \subseteq \mathcal{E}$, 令 $B_n = A_1 \cup \cdots \cup A_n$, 那么 $(B_n) \subseteq \mathcal{E} \perp B_n \nearrow A$, 根据 d-系的 (c), 所以 $A \in \mathcal{E}$, 故 \mathcal{E} 对可数并封闭.

下面的引理为本节的主要定理做准备.

引理 1.2. 令 \mathcal{D} 是 E 上的 d-系, 固定 $D \in \mathcal{D}$, 令

$$\hat{\mathcal{D}} = \{ A \in \mathcal{D} : A \cap D \in \mathcal{D} \},\$$

那么 \hat{D} 仍然是 d-系.

单调类定理

这是一个非常有用的工具来证明某些集族是 σ -代数.

定理 1.3. 如果一个 d-系包含一个 p-系, 那么其包含这个 p-系生成的 σ -代数.

Proof.