Dr. Alireza Aghamohammadi

Transformers (Part 4)

Self Attention Mechanism

- Given an input sequence $X = (x_1, x_2, \cdots, x_m)$.
- ▶ When processing the token x_t (e.g., "She"), we determine how much attention to give to each other token x_i (e.g., "Sarah", "cat", "Alex").

Sarah was walking in the park with her cat, Alex.

She was wearing a beautiful gold watch.

- ▶ Each token x_i is a vector: $x_i \in \mathbb{R}^n$, so $X \in \mathbb{R}^{n \times m}$.
- ▶ The attention weight of token x_t to token x_i is formalized as:

$$h_t = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_m x_m$$
 where $\alpha_i \ge 0$

▶ In matrix form, this is written as $h_t = Xa_t \in \mathbb{R}^n$, where $a_t = [\alpha_1, \alpha_2, \cdots, \alpha_m]^T$.

Deterministic Approach for Attention Weights

- $lackbox{ Our goal is to find the attention weights vector } a_t = \left[\alpha_1, \alpha_2, \cdots, \alpha_m\right]^T$. How can we achieve this?
- ► Let's simplify the problem and solve it deterministically without learning.
- ▶ The similarity between two vectors x_t and x_i can be computed as the dot product $x_t \cdot x_i$. We can use this idea.
- ▶ For each token x_t , we compute the attention weights vector $a_t \in \mathbb{R}^m$:

$$a_t = \operatorname{softmax}\left(X^T \cdot x_t\right) \in \mathbb{R}^m$$

- ▶ The softmax function ensures that the attention weights are positive and sum to 1.
- lacktriangle We define the matrix $A \in \mathbb{R}^{m \times m}$, where each column corresponds to the attention weights vector:

$$A = [a_1, a_2, \cdots, a_m]$$

Finally, the hidden representation is defined as:

$$H = XA \in \mathbb{R}^{n \times m}$$

▶ Note that this similarity-based attention does not consider the context of the sentence. Therefore, we need to incorporate parameters to learn the context as well.

Learnable Queries, Keys, and Values

► To make our inputs learnable, we define:

$$q = W_q x_i \quad k = W_k x_i \quad v = W_v x_i$$

- ▶ Here, $W_q, W_k, W_v \in \mathbb{R}^{d \times n}$, so $q, k, v \in \mathbb{R}^d$.
- ▶ This gives us m queries $Q=[q_1,q_2,\cdots,q_m]$, m keys $K=[k_1,k_2,\cdots,k_m]$, and m values $V=[v_1,v_2,\cdots,v_m]$:

$$Q, K, V \in \mathbb{R}^{d \times m}$$

► The attention matrix is calculated as:

$$A = \operatorname{softmax}\left(\frac{K^T \cdot Q}{\sqrt{d}}\right) \in \mathbb{R}^{m \times m}$$

- ▶ The normalization factor \sqrt{d} helps to prevent the dot products from becoming too large, which can lead to very small gradients.
- ▶ The softmax function ensures that the attention weights are positive and sum to 1.
- ► Finally, the hidden representation is defined as:

$$H = VA \in \mathbb{R}^{d \times m}$$