

University of Padova

DEPARTMENT OF MATHEMATICS "TULLIO LEVI-CIVITA" MASTER DEGREE IN COMPUTER SCIENCE

Titolo della tesi

 ${\it Academic Year 2023-2024}$

Abstract

Abstract

Acknowledgments

?

Contents

1	Framework		
	1.1	The Imp language	1
	1.2	Semantics	1
		1.2.1 Functions in Imp	4
	1.3	Deciding invariant finiteness	4
2 Intervals		6	
3	Non	relational collecting	7

Chapter 1

Framework

1.1 The Imp language

We'll denote by \mathbb{Z} the set of integers with the usual order plus two bonus elements $-\infty$ and $+\infty$, s.t. $-\infty \leqslant z \leqslant +\infty \quad \forall z \in \mathbb{Z}$. We also extend addition and subtraction by letting, for $z \in \mathbb{Z} \quad +\infty + z = +\infty - z = +\infty$ and $-\infty + z = -\infty - z = -\infty$.

We'll focus on the following non-deterministic language.

$$\begin{aligned} \operatorname{Exp}\ni e ::= & \quad x\in S\mid x\in [a,b]\mid x\leqslant k\mid x>k\mid \mathtt{true}\mid \mathtt{false}\mid \\ & \quad x := k\mid x := y+k\mid x := y-k \end{aligned}$$

$$\operatorname{Imp}\ni C ::= & \quad e\mid C+C\mid C;C\mid C*$$

where $x,y\in \text{Var}$ a finite set of variables of interest, i.e., the variables appearing in the considered program, $S\subseteq \mathbb{N}$ is (possibly empty) subset of numbers, $a\in \mathbb{Z}\cup \{-\infty\}, b\in \mathbb{Z}\cup \{+\infty\}, a\leqslant b, k\in \mathbb{Z}$ is any finite integer constant.

1.2 Semantics

The first building block is that of environments. We'll use environments to model the most precise invariant our semantic can describe for a program.

Definition 1.1 (Environments). Environments are (total) maps from variables to (numerical) values

$$\operatorname{Env} \triangleq \{ \rho \mid \rho : \operatorname{Var} \to \mathbb{Z} \}$$

Note: the set of notable variables is assumed to be finite.

Definition 1.2 (Semantics of Basic Expressions). For basic expressions $e \in \text{Exp}$ the concrete

semantics (\cdot) : Exp \to Env \to Env $\cup \{\bot\}$ is recursively defined as follows:

The next building block is the concrete collecting semantics for the language, maps each program in Imp to a function on the \mathbb{C} complete lattice.

Definition 1.3 (Concrete collecting domain). The concrete collecting domain for the Imp language concrete collecting semantics is the complete lattice

$$\mathbb{C} \triangleq \langle 2^{\mathrm{Env}}, \subseteq \rangle$$

We can therefore define the concrete collecting semantics for our language:

Definition 1.4 (Concrete collecting semantics). The concrete collecting semantics for Imp is given by the total mapping

$$\langle \cdot \rangle : \operatorname{Imp} \to \mathbb{C} \to \mathbb{C}$$

which maps each program $C \in \text{Imp}$ to its total mapping

$$\langle C \rangle : \mathbb{C} \to \mathbb{C}$$

on the complete lattice \mathbb{C} . The semantics is recursively defined as follows: given $X \in 2^{\text{Env}}$

$$\begin{split} \langle e \rangle X &\triangleq \{ (\![e]\!] \rho \mid \rho \in X, (\![e]\!] \rho \neq \bot \} \\ \langle C_1 + C_2 \rangle X &\triangleq \langle C_1 \rangle X \cup \langle C_2 \rangle X \\ \langle C_1; C_2 \rangle X &\triangleq \langle C_2 \rangle (\langle C_1 \rangle X) \\ \langle C^* \rangle X &\triangleq \bigcup_{i \in \mathbb{N}} \langle C \rangle^i X \end{split}$$

Along with the collecting semantics we're also defining a one step transition relation.

Definition 1.5 (Program State). Program states are tuples of programs and program environments:

State
$$\triangleq$$
 Imp \times Env

Definition 1.6 (Small step semantics). The small step transition relation \rightarrow : State \times (State \cup Env) is a small step semantics for the Imp language. It is defined based on the following rules

$$\frac{\langle e | \rho \neq \bot}{\langle e, \rho \rangle \to \langle e | \rho} \operatorname{expr}$$

$$\frac{\langle C_1 + C_2, \rho \rangle \to \langle C_1, \rho \rangle}{\langle C_1, \rho \rangle \to \langle C_1, \rho \rangle} \operatorname{sum}_1 \frac{\langle C_1 + C_2, \rho \rangle \to \langle C_2, \rho \rangle}{\langle C_1, \rho \rangle \to \langle C'_1, \rho' \rangle} \operatorname{comp}_1 \frac{\langle C_1, \rho \rangle \to \rho'}{\langle C_1; C_2, \rho \rangle \to \langle C'_1; C_2, \rho' \rangle} \operatorname{comp}_2$$

$$\frac{\langle C^*, \rho \rangle \to \langle C'_1; C_2, \rho' \rangle}{\langle C^*, \rho \rangle \to \langle C; C^*, \rho \rangle} \operatorname{star} \frac{\langle C^*, \rho \rangle \to \rho}{\langle C^*, \rho \rangle \to \rho} \operatorname{star}_{\operatorname{fix}}$$

Lemma 1.1 (Collecting and small step link). For any $C \in Imp, X \in 2^{Env}$

$$\langle C \rangle X = \{ \rho_t \mid \rho \in X, \langle C, \rho \rangle \to^* \rho_t \}$$

Therefore $\langle C \rangle X = \emptyset \iff \forall \rho \in X \langle C, \rho \rangle$ does not reach a final environment ρ_t .

Proof. by induction on C:

Base case $C \equiv e$:

$$\begin{split} \langle e \rangle X &= \{ (\![e]\!] \rho \mid \rho \in X \land (\![e]\!] \rho \neq \bot \}, \, \forall \rho \in X. \langle e, \rho \rangle \rightarrow (\![e]\!] \rho \text{ if } (\![e]\!] \rho \neq \bot \text{ because of the expr rule} \\ \langle e \rangle X &= \{ (\![e]\!] \rho \mid \rho \in X \land (\![e]\!] \rho \neq \bot \} = \{ \rho_t \in \text{Env} \mid \rho \in X \langle e, \rho \rangle \rightarrow \rho_t \} \end{split}$$

Inductive cases:

1. $C \equiv C_1 + C_2 : \langle C_1 + C_2 \rangle X = \langle C_1 \rangle X \cup \langle C_2 \rangle X$, $\forall \rho \in X. \langle C_1 + C_2, \rho \rangle \rightarrow \langle C_1, \rho \rangle \vee \langle C_1 + C_2, \rho \rangle \rightarrow \langle C_2, \rho \rangle$ respectively according to rules sum₁ and sum₂. By inductive hypothesis

$$\langle C_1 \rangle X = \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C_1, \rho \rangle \to^* \rho_t \} \quad \langle C_2 \rangle X = \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C_2, \rho \rangle \to^* \rho_t \}$$

Therefore

$$\langle C_1 + C_2 \rangle X = \langle C_1 \rangle X \cup \langle C_2 \rangle X$$
 (by definition)
$$= \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C_1, \rho \rangle \to^* \rho_t \} \cup \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C_2, \rho \rangle \to^* \rho_t \}$$
 (by ind. hp)
$$= \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C_1, \rho \rangle \to^* \rho_t \vee \langle C_2, \rho \rangle \to^* \rho_t \}$$

$$= \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C_1 + C_2, \rho \rangle \to^* \rho_t \}$$

2. $C \equiv C_1; C_2 : \langle C_1; C_2 \rangle X = \langle C_2 \rangle (\langle C_1 \rangle X)$. By inductive hp $\langle C_1 \rangle X = \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C_1, \rho \rangle \to^* \rho_t \} = Y$, by inductive hp again $\langle C_2 \rangle Y = \{ \rho_t \in \text{Env} \mid \rho \in Y, \langle C_2, \rho \rangle \to^* \rho_t \}$. Therefore

$$\langle C_1; C_2 \rangle X = \langle C_2 \rangle (\langle C_1 \rangle X)$$
 (by definition)
$$= \{ \rho_t \in \text{Env} \mid \rho_x \in \{ \rho_x \mid \rho \in X, \langle C_1, \rho \rangle \to^* \rho_x \}, \langle C_2, \rho_x \rangle \to^* \rho_t \}$$
 (by ind. hp)
$$= \{ \rho_t \in \text{Env} \mid \rho \in X \langle C_1, \rho \rangle \to^* \rho_x \land \langle C_2, \rho_x \rangle \to^* \rho_t \}$$
 (by definition)
$$= \{ \rho_t \in \text{Env} \mid \rho \in X. \langle C_1; C_2, \rho \rangle \to^* \rho_t \}$$

3. $C \equiv C^* : \langle C^* \rangle X = \cup_{i \in \mathbb{N}} \langle C \rangle^i X$ (by definition) $= X \cup \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C, \rho \rangle \to^* \rho_t \} \cup \{ \rho_t \in 2^{\text{Env}} \mid \rho \in X, \langle C; C, \rho \rangle \to^* \rho_t \} \cup \dots$ (by ind. hp) $= \cup_{i \in \mathbb{N}} \{ \rho_t \in \text{Env} \mid \rho \in X, \langle C^i, \rho \rangle \to^* \rho_t \}$ $= \{ \rho_t \in \text{Env} \mid \rho \in X, \vee_{i \in \mathbb{N}} \langle C^i, \rho \rangle \to^* \rho_t \}$ $= \{ \rho_t \in \text{Env} \mid \rho \in X, \vee_{i \in \mathbb{N}} \langle C^i, \rho \rangle \to^* \rho_t \}$ $= \{ \rho_t \in \text{Env} \mid \rho \in X, \vee_{i \in \mathbb{N}} \langle C^i, \rho \rangle \to^* \rho_t \}$

We can notice that $\langle C \rangle X = \emptyset \iff \nexists \rho_t \in \text{Env}, \rho \in X \mid \langle C, \rho \rangle \to^* \rho_t$.

1.2.1 Functions in Imp

Since we're usually dealing with a finite number of free variables in our programs, we can without loss of generality refer to (input) variables as x_n with $n \in \mathbb{N}$. Therefore the collections of states $X \in 2^{\text{Env}}$ will look like

$$[x_1 \mapsto v_1, x_2 \mapsto v_2, \dots, x_n \mapsto v_n, y \mapsto v_y, z \mapsto v_z, \dots]$$

(since we're interested in finite programs, we can have only a finite set of free variables per program).

Notation 1.1 (Program input). Let $C \in \text{Imp}$ be a program, $(a_1, \ldots, a_k) \in \mathbb{N}^{\omega}$ be a sequence of natural numbers. We indicate the sequence of \to relations starting from the configuration $\langle C, [x_1 \mapsto a_1, \ldots, x_k \mapsto a_k] \rangle$ as

$$C(a_1,\ldots,a_k)$$

Notation 1.2 (Program output). We say

$$C(a_1,\ldots,a_n)\downarrow b\iff \exists \langle C,[x_1\mapsto a_1,\ldots,x_k\mapsto a_k]\rangle \to^* \rho_t \text{ s.t. } \rho_t(y)=b$$

In this sense we're considering the variable y as an output register for the program.

Observation 1.1. notice that this means, by lemma 1.1 that

$$C(a_1,\ldots,a_k)\downarrow b\iff \exists \rho_t\in\langle C\rangle\{[x_1\mapsto a_1,\ldots x_k\mapsto a_k]\}\ .\ \rho_t(y)=b$$

Notation 1.3 (Program termination). We'll also write

$$C(a_1,\ldots,a_k)\downarrow\iff\langle C\rangle[\{x_1\mapsto a_1,\ldots x_k\mapsto a_k]\}\neq\varnothing$$

Definition 1.7 (Imp computability). let $f: \mathbb{N}^k \to \mathbb{N}$ be a function. f is Imp computable if

$$\exists C \in \text{Imp} \mid \forall (a_1, \dots, a_k) \in \mathbb{N}^k \land b \in \mathbb{N}$$
$$C(a_1, \dots, a_k) \downarrow b \iff (a_1, \dots, a_k) \in dom(f) \land f(a_1, \dots, a_k) = b$$

We argue that the class of function computed by Imp is the same as the set of partially recursive functions $\mathbb{N} \stackrel{r}{\hookrightarrow} \mathbb{N}$ (as defined in [Cut80]).

From this we get a couple of facts that derive from well known computability results:

• deciding weather $\langle C \rangle X \neq \emptyset$ is the same as deciding $x \in dom(f)$ for some $f \in \mathbb{N}^k \stackrel{r}{\hookrightarrow} \mathbb{N}$, which is undecidable (from the input problem in [Cut80, p. 104])

1.3 Deciding invariant finiteness

Lemma 1.2. Given $C \in Imp$ where the * operator does not appear, and a finite $X \in 2^{env}$, the predicate " $\langle C \rangle X$ is finite" is decidable.

Proof. By induction on the program C:

Base case:

 $C \equiv e$, therefore $\langle e \rangle X = \{ \langle e \rangle \rho \mid \rho \in X, \langle e \rangle \rho \neq \bot \}$, which is finite, since X is finite.

Inductive cases:

- 1. $C \equiv C_1 + C_2$, therefore $\langle C_1 + C_2 \rangle X = \langle C_1 \rangle X \cup \langle C_2 \rangle X$. By inductive hypothesis, both $\langle C_1 \rangle X, \langle C_2 \rangle X$ are finite, as they're sub expressions of C. Since the union of finite sets is finite, $\langle C_1 + C_2 \rangle X$ is finite.
- 2. $C \equiv C_1; C_2$, therefore $\langle C_1; C_2 \rangle X = \langle C_2 \rangle (\langle C_1 \rangle X)$. By inductive hypothesis $\langle C_1 \rangle X = Y$ is finite. Again by inductive hypothesis $\langle C_2 \rangle Y$ is finite.

Lemma 1.3. Given $C \in Imp$ where the * operator does not appear, and a finite $X \in 2^{env}$, the predicate " $\langle C^* \rangle X$ is finite" is undecidable.

Proof.

Chapter 2

Intervals

Chapter 3

Non relational collecting

Bibliography

[Cut80] Nigel Cutland. Computability: An introduction to recursive function theory. Cambridge university press, 1980.