# Machine Learning

#### Mark

### Coursera

Two types: supervised and unsupervised.

Supervised is most commonly applicable, where we know the data we're getting.

comes in two flavors:

classification based: yes/no values regression based: continuim of values.

Unsupervised: model is not provided with the correct results during training; key is to find structure or clusters in data.

#### Gradient Descent

technique to find **local** minimum of function by taking small steps in steepest direction. Take f(x, y) with step size (learning rate)  $\alpha$ . Then, update x, y (simultaneously) using

new 
$$x = x - \alpha \frac{d}{dx} f(x, y) * f(x, y)$$

if  $\alpha$  is too large, technique may not yield optimal value; too small, technique will be slow.

### Linear Regression using gradient

can use gradient to find the least squares, minimize the squared error (called cost function).

in practice useful to rescale variables btw -1 and 1

\*the squared error function supposedly only has one global min, so technique above succeeds at minimizing the error.

**normal equation** is an analytical method to find same result, but does not scale as nicely as gradient method.

# Machine Learning

Robert Snapp

#### Intro

AI - rational machines (ML is often a subset)

Machine Learning improves performance as more data is fed into Algo.

#### Types of Machine Learning

Supervised Learning learn a mapping from input to output based on training set.

- Classification: mapping inputs to *discrete* outputs (categories) e.g., classifying a document as a web page or email.
- Regression: mapping inputs to *continuous* outputs.

Unsupervised Learning only output given with goal of finding "interesting patterns" (called "Knowledge Discovery").

- clustering
- Dimensionality Reduction. e.g., PCA
- Imputation ("matrix completion"): finding plausible values for missing data points.

\*K-nearest neighbors (nearest K points to a given input) is a non-parametric classifier model.

Reinforcement Learning learning behavior based on reward/punishment signals.

### **Probability Review**

#### Axioms

Formulated by Andrey Kolmogorov

a **probability space** is comprised of :

 $\Omega$ : sample space, meaning the set of possible elementary events. e.g.,  $\Omega = \{1, 2, ..., 6\}$ 

 $\mathcal{A}$ : all measurable sets of events

\*can be something like odd numbers if we're rolling a die.

 $\mathcal{P}$ : probability

 $\mathcal{A}$  must satisfy:

- 1.  $\Omega \in A$
- $2. E \in A \iff E^c \in A$

\*complement in  $\Omega$ 

3.  $E, F \in A \rightarrow E \cup F \in A$ 

 $\mathcal{A}$  is a "sigma-algebra",  $\sigma$ -algebra (simply properties/laws for operations on sets)

 $\mathcal{P}$  assigns a numerical value for each  $E \in A$  such that natural requirements:  $\mathcal{P}(E) \geq 0$ ,  $\mathcal{P}(\Omega) = 1$ , and if  $E, F \in A$  and  $E \cap F = \emptyset$ , then

$$\mathcal{P}(E \cup F) = \mathcal{P}(E) + \mathcal{P}(F)$$

 $(\Omega, \mathcal{A}, \mathcal{P})$  defines a **probability space**.

two underlying assumptions: pattern indicates a unique state of nature, problem is driven by an underlying probability space.

#### **Distributions**

a random variable map from  $\Omega$  to a "space of interest"? a **probability mass function** of a random variable, X, is (where k is in "space of interest" produced by x)

$$P_x(k) = \mathcal{P}\{\omega \in \Omega : x(\omega) = k\}$$

e.g., X is the result of summing two dice. (probability mass is like a probability density function, but for a discrete variable)

Then  $P_x(7)$  the sum of the probability of all inputs (aka  $\omega \in \Omega$ ) summing to 7. The **cumulative probability distribution** (CDF) of a random variable X,

$$F_X(r) = \mathcal{P}\{\omega \in \Omega : X(\omega) \le r\}$$

"cumulative density function"

Instantaneous probability, aka **probability density** is the derivative of the **probability** distribution.

### Dice Example

Two dice:

$$\Omega = \{(i, j) : i, j \in \{1, ..., 6\}\}.$$
$$|\Omega| = 36$$

$$\mathcal{A} = \mathbf{power} \ \mathbf{set} \ (\text{all possible subsets}) \ \text{of} \ \Omega.$$

 $|\mathcal{A}| = 2^{36}$  (each member of  $\Omega$  has two states on/off)

Define a random variable  $X(i, j) = \max(i, j)$ . Then,

$$P_x(1) = \mathcal{P}\{(i,j) : X(i,j) = 1\} = \frac{1}{36}$$
.

$$P_x(1) = \mathcal{P}\{(i,j) : X(i,j) = 1\} = \frac{1}{36}.$$
  

$$P_x(2) = \mathcal{P}\{(i,j) : \max(i,j) = 2\} = \mathcal{P}\{(2,1), (1,2), (2,2)\} = \frac{3}{36}.$$

For the rest, think about L shape in outcomes table.

Notation: 
$$[x = 1] = \mathcal{P}\{(i, j) : X(i, j) = 1\}.$$

#### Pattern Classification

Feature Space: observable trait like diameter of cell

#### Joint Distributions

#### Discrete

Two random variables:

 $X_1$ : max of rolling two dice

 $X_2$ : min.

$$P_{x_1,x_2}(x_1,x_2) = \mathcal{P}\{\omega \in (i,j) : X_1(\omega) = x_1 \text{ and } X_2(\omega) = x_2\}.$$

Then,

$$P_{x_1,x_2}(x_1,x_2) = \begin{cases} P(x_1,x_2) + P(x_2,x_1) & \text{if } x_2 < x_1 \\ P(x_1,x_2) & \text{if } x_1 = x_2 \end{cases}$$

#### Continuous

CDF: all variables  $\leq$  number.

Let CDF = 
$$F_{x_1,x_2}(x_1,x_2)$$
.

Let CDF = 
$$F_{x_1,x_2}(x_1,x_2)$$
.  
Then, PDF =  $\frac{d^2}{dx_1dy_1}$ 

(partial with respect to  $x_1$  then differentiate with respect to  $y_1$ ; order doesn't matter).

#### Combined: Discrete and Continuous

CDF as expected with discrete condition for discrete and similarly for continuous.

PDF: same as above with partial dervitives for contious and piecewise defined function for each discrete class.

### Baye's Theorem

In a probability space,  $(\Omega, \mathcal{A}, \mathcal{P})$ . For E, F events in A,

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

(provided  $P(F) \neq 0$ ).

\*no independence necessary.

#### Why is $E \cap F$ in $\mathcal{A}$ ?

We know  $E^c$  and  $F^c$  in A.

So,  $E^c \cup F^c$  in A.

Thus, so is  $E \cap F$  by De Morgan's Law.

#### Baye's Rule

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

e.g.,

ebola = E

H = high temp

$$P(E|H) \approx 1$$
  
  $P(H|E)$  low, say  $10^{-3}$ 

can compute probability of ebola given fever.

#### HW

Snapp's paper before generating functions (4.4)

### Independence

Events E, F are **independent events** if:

$$P(E \cap F) = P(E)P(F)$$

 $E_1, E_2, ..., E_n \in \mathcal{A}$  are independent events:

For every combination of  $E_i$ , P(intersection) = P(first) \*P(second) ... "intersection distributes over multiplication"

Random variables are **independent** if for F CDF:

$$F_{x_1,...x_n}(x_1,...,x_n) = F_{x_1}(x_1)F_{x_2}(x_2)...F_{x_n}(x_n)$$

### **Pattern Classification**

In  $(\Omega, \mathcal{A}, P)$ , the process is:

- 1. seed from  $\omega \in \Omega$  (elementary event
- 2. Feature Vector (observable trait/s)
- 3. L classification: maps  $\omega$  to a state (like cancer no cancer)

Feature vector:  $(x_1, ..., x_n)$ .

Probability Distribution (combined discrete and continuous)

$$F_{x,l}(x,l) = P(\omega \in \Omega : X \leq x \text{ and } L = l)$$
, joint probability

Using Baye's Theorem we have,

$$F(x|l) = \frac{F(x,l)}{P(l)}.$$

e.g., say we have l = 0 is sick, 1 healthy; x is diameter of cell.

P(x|l=0): normal distribution centered around c

P(x|l=1): normal distribution centered around -c.

note:

$$p(x) = p(x, l = 0) + p(x, l = 1)$$
  
=  $p(x|l = 0)p(l = 0) + p(x|l = 1)p(l = 1)$ 

What's the probability someone is sick based on x?

$$P(l = 1|x = c_0) = \frac{p(x = c_0|l = 1)p(l = 1)}{p(x = c_0)}$$

use expanded formula of normal curve to solve.

To classify a patient, compute propability of l=1 given x and l=0 given x. Higher probability leads to classification (called **Baye's Classifier**)

#### Denisties from the above

#### Joint Density

$$P(x,l) = \frac{d}{dx} F_{x,L}(x,l)$$

 $P(x,l) = \frac{d}{dx} F_{x,L}(x,l)$  from joint denisty, we can derive all other info like conditional, or prior probability for class l.

#### prior class probability

(class probability density)

$$P(l) = \lim_{x \to \infty} F_{x,L}(x,l)$$

#### P(l|x) posterior probability Marginal Denisty

$$p(x) = \sum_{l=0}^{1} p(x, l)$$

#### **Class Conditional Distribution**

$$F(x|l) = \frac{P(X \le x, L = l)}{P(L = l)}$$

probability of x falling within range given a value for l.

Using Baye's Theorem, we can reformulate as

$$P(l|x) = \frac{P(x,l)}{P(x)}$$

look up Baye's Classifier

### Deriving other densities from join density

prior probability for class l

$$P(l) = \int_{-\infty}^{\infty} p(x, l) dx$$

$$P(x|l) = \frac{P(x,l)}{p(l)}$$

### Probability of misclassifying

Suppose  $R_0$  is a region of X the feature vector associated with L=0. Similarly,  $R_1$  is associated with L=1. Then,

$$P(\text{error}) = P(x \in R_0, L = 1) + P(x \in R_1, L - 0)$$
$$= \int_{R_0} p(x, 1) dx + \int_{R_1} p(x, 0) dx$$

we can related the limits of integration via

$$P(1) = \int_{-\infty}^{\infty} p(x, 1)dx = \int_{R_0} p(x, 1)dx + \int_{R_1} p(x, 1)dx$$

So,

$$P(\text{error} = P(1) + \int_{R_1} P(x,0) - P(x,1)dx$$

# Spam Email Classifier: Naive Baye's

Trick:  $p^x(1-p)^{1-x}$ 

if x, the feature vector is 1, brings in  $p^x$ ; else just 1 - p.

From data we try to estimate p(x, l), enabling us to compute

$$p(l|x) = \frac{p(x,l)}{p(x)}$$

For multidimensional  $x_1, \ldots, x_n$  feature vectors:

$$p(l|x) = p(l|x_1) * \dots p(l|x_n)$$

by assuming each feature is independent (that's the big assumption!).

Baye's Error: lowest possible error rate (by moving decision regions)

# K-nearest Neighbor Classifier

Need to select:

- 1. k
- 2. metric (similarity function) e.g., euclidean distance
- 3. Training set

Idea is to find the k elements form the training data that are closest to an input x. Then, classify input x based on the class label of the nearest k elements appearing most.

#### Discussion

Main assumption: proximity in feature space corresponds to similarity in class.

very popular algo

**Trade-offs**: Large k reduces variances (more samples), but makes classification less accurate.

\*note method is **non-parametric** (doesn't assume an underlying distribution).

\*useful rule of thumb: k scales with  $\sqrt{\text{sample size}}$ 

Cover and Hart showed the error rate of K-nearest neighbors is no more than 2\*Baye's error (missclassification based on conditional) rate for infinitely large samples.

# Triangle Problem

$$p(x|0) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

$$p(x|1) = \begin{cases} 2 - 2x & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Looks like triangle on graph.

Cover and Hart, 1967 mathematical error in paper

Theorem Stone 1997:

sample size and nearest neighbor  $\to \infty$ ,

k-neighbor error approaches baye's error

# Regression

### Linear

$$y = \beta_0 + \beta_1 x$$

we want find  $\beta_0, \beta_1$  such that

squared error = 
$$\sum_{i=1}^{n} (\beta_0 + \beta_1 x_i - y_i)^2$$

is minimized.

### Optimizing slope, intercept

Look at partial derivatives:

$$\frac{\partial}{\partial \beta_0} = 2 \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i) = 0$$
$$\frac{\partial}{\partial \beta_1} = 2 \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i) x_i = 0$$

then solve this system of equations.

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \tag{1}$$

=

$$\begin{bmatrix} n & \sum x \\ \sum x & \sum x^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum y \\ \sum xy \end{bmatrix}. \tag{2}$$

#### Multivariable Case

 $B = (X^T X)^{-1} X^T y$  where all are vectors.

### Linear Algebra Aside

gradient vector, denoted  $\vec{\nabla} f$ , is a vector,

$$<\frac{\partial}{\partial x},\frac{\partial}{\partial y},\cdots>$$

a hyperplane is an equation describing an **n-1** dimensional object in n-dimensional space dividing the space into two pieces.

e.g., a point in 1-d, a line in 2-d, a plane in 3-d.

# Fittting via any function

write as Y = B \* f(X), where f(x) is the function we're using to fit

same results apply.

Solution:  $B = (X^T X)^{-1} X^T y$  (y is point in n-space)

e.g., **cubic fit**:  $y = b_0 + b_1 x + b_2 x^2 + b_3 x^3$  we optimize by

letting  $x1, x_2, x_3,...$  data points. and  $f_1(x) = x, f_2(x) = x^2, f_3(x) = x^3$ .

Then, X =

$$\begin{bmatrix} 1 & f_1(x_1) = x_1 & f_2(x_1) = x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \dots & & & & \\ 1 & x_n & x_n^2 & x_n^3 \end{bmatrix}$$
(3)

Finally solve  $B = (X^T X)^{-1} X^T y$ .

### **Variations**

**Local Regression** increase weight of points near a point you're intested in predicting. score \* 1.25

### **Exam Solutions**

1.

$$p(x,l) = \begin{cases} \alpha/\beta & \text{if } 0 \le x \le \beta \text{ and } l = 1\\ (1-\alpha)/\beta & \text{if } 1-\beta \le x \text{ and } l = 2\\ 0 & \text{otherwise} \end{cases}$$

with  $\alpha, \beta \in [0, 1]$  and L = 1 or 2.

- (a) got it; can also use b\*h (base times height)
- (b) Compute the posterior probability. We want to find

$$P(l|x)$$
.

By Baye's,

$$P(l|x) = \frac{p(x,l)}{p(x)}$$

First let's compute p(x).

$$p(x) = p(x,1) + p(x,2)$$

Two cases:

1.  $\beta > 1/2$ :

$$p(x) = \begin{cases} \alpha/\beta & : 0 \le x \le 1 - \beta \\ \frac{1-\alpha}{\beta} + \alpha/\beta + & : 1 - \beta \le x \le \beta \\ \frac{1-\alpha}{\beta} & : \beta \le x \le 1 \end{cases}$$

2.  $\beta < 1/2$ :

$$p(x) = \begin{cases} \alpha/\beta & : 0 \le x \le \beta \\ \frac{1-\alpha}{\beta} & : 1 - \beta \le x \le 1 \end{cases}$$

3. review gaussian, including second moment

# Perceptron Algorithm

Linearly separable classification problem: (we can draw a line to separate groups)

#### **Vectors Review**

Recall:

line in  $\mathbb{R}^2$ : ax + by = c alternately written as

$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \mathbf{plane} i n \mathbb{R}^3 : ax + by + cz = d \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 (4)

In general **n-dimensions**:

(suppose vectors are all column vectors)

$$W^T = [w_1, w_2, w_3, \dots, w_n] \text{ and } X =$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \tag{5}$$

Then, the equation of a plane in n-dimensions is  $W^TX = d$ 

**dot** product of  $(WX) = ||W||||X|| \cos \theta$ , where  $\theta$  angle between W, X. (also just sum of  $x_1w_1 + x_2w_2 + \dots + x_nw_n$ )

Therefore,

$$W^T X = \text{dot prod} = ||W|| ||X|| \cos \theta$$

### Phrasing the problem

Given W and d; then the set of solutions x forms a plane in n-space. (think about "projections" of W (by varying length and angle))

Let  $g(x) = W^T x - d$ , called "discriminant".

Our goal is to find values for W so that

g(x) > 0 if x belongs to 1st class g(x) < 0 otherwise.

If we can find this, it defines a line (or plane) potentially seprating our dataset).



To the right side of blue line is one class to the left is another. Suppose data is **linearly seperable** then, we can find W and d to solve.

Choose classes  $l_1 = 1, l_2 = -1$ .

Idea (with  $\alpha$  learning rate):

```
if w * x < 1 and l = 1:

- update: w = w + x (\alpha)

if w * x > -1 and l = -1:

- update: w = w - x * (\alpha)
```

The pseudo-code for algo:

initialize W, d at some values

for every element in training set:
 if not correclty classified:

W += li Xi
d += li
(restart loop again)
#called batch process since loop over entire set again

#idea: W tweaked down or up (depending on l = 1 or -1)
#turns out tweaking leads to convergence (if linearly seperable)

If data is separable and we find one boundary separating the data, we can always tilt the boundary a bit to find another boundary (actually infinitely many boundaries exist).

#### Why does tweaking always lead to convergence?

idea: as you tweak, you move away from initial weights, W, and the **cone of solutions** gets larger. Therefore, as we increment, we are 'guaranteed' to fall within cone.

to imagine cone of solutions: think of **rays** (corresponding to boundaries) going out into space. The area they cover gets bigger.

**Theorem** algo converges to a correct solution after finite number of weight corrections.

called "Perceptron Convergence Theorem"

click for proof

proof from class:

GOAL: Find weights  $w_0, w_1, w_2$  such that the discriminant function

$$g(x_1, x_2) = w_0 + w_1 x_2 + w_2 x_2$$

divides the data set (g(x) > 0 if l = 1, g(x) < 0 if l = 1 - 1).

Define **normalized augmented** feature vector:

$$\hat{x}' = l\hat{x} =$$

$$\begin{bmatrix} l \\ lx \end{bmatrix} \tag{6}$$

Let w[k] be the adjusted weights at the kth step. Then,

$$w[1] = w[0] + n\hat{x}'(1)$$
  
$$w[2] = w[1] + n\hat{x}'(2)$$

meaning

$$w[k] - w[0] = n(x[1] + \dots + x[k])$$

Therefore,

$$w^*(w[k] - w[0]) = nw^*(x(1) + \dots + x(k))$$

where  $w^*$  is the hypothetical solution.

We want to show

$$AK^2 \le ||w[k] - w[0]||^2 \le BK$$

for some constants A, B. The thing sandwiched is the error think; area between parabola and line.

(means converges after a max of k = B/A updates)

By Cauchy Schwarz we have the left inequality:

$$[w^*(w[k] - w[0])]^2 \ge ||w^*||^2 ||w[k] - w[0]||^2$$

Next, to bound above:

first, square the equations for w[1], w[2], etc..

next, sum up all the equations to get lots of cancellation:

$$||w[k] - w[0]||^2 \le n^2 (||x'(1)||^2 + ||x'(2)||^2 + \dots + ||x'(k)||^2) - 2nw(0^T (x'(2) + \dots + x'(k))$$

Next let  $M = \max\{ \text{ all } ||x'||^2 \}$ , then

$$\leq n^2 M - n \text{ stuff })K$$

To simplify further we take  $u = \min$  of stuff:

$$\leq (n^2M - nu)K$$

et voila.

\*note: u is always negative, since u ; 0 implies no data was misclassified!

### Variation: augmented feature vector

make each feature vector x sit in n+1 dimension by adding 1 as a component. Then, the algebra cleans up and we get

This makes updating quicker, since both values are part of W.

### Another Variation: Augmented Normalized Feature Vector

agument the feature vector and normalize values.

To normalize: multiply by 1 if in class 1 and -1 if class 2 (so flips sign)

The **augmented normalized** feature vector is denoted:  $\hat{x}'$  Idea: make an error for either class look the same.

# LMS: Least Mean Squares

part of linear regression

Cost Function is the sum of squares (goal is to minimize this) also called **objective function** 

We have linear function

$$y = w_0 + w_1 x_1 + w_2 x_2$$

where output y, depends on two variables with weights  $w_1, w_2$ .

Goal is to use tweak  $w_i$  to minimize **cost function**.

Use Calculus to minimize.

Set gradient (partial derivatives with respect to each variable  $x_i$ ).

Then, the optimal solution (after some algebra) is

$$optimal = (X^T X)^{-1} X^T Y$$

where Y are the set of outputs for the training data.

Often although the above is analytically convenient, it can consume quite a bit of memory. Other methods such as **steepest descent** (also called gradient descent) are used, because their implementation is **more pratical** in terms of memory and processing power required.

### Steepest (Gradient) Descent

We use **steepest descent** (also called gradient descent) to do so. Gradient descent works by updating  $w_i$  using

$$\text{new } w_i = w_i - \alpha \frac{\partial}{\partial w_i} * \text{cost function}$$

where  $\alpha$  is the learning rate.

Stop when gradient (partials) are zero.

### multivariable chain rule (aside)

$$\frac{d}{dt}f(x(t),y(t)) = \frac{\partial}{\partial x}\frac{dx}{dt} + \frac{\partial}{\partial y}\frac{dy}{dt}$$

Two ways to implement LMS:

batch gradient descent entire dataset is used at every step, then updates Sequential (Widrow-Hoff) update after each point in training data

# **Backpropagation Algorithm**

Mathematically equivalent to LMS (similar to perceptron as well).

Goal: change weights of feature vectors to mimick a desired output.

At each step adjust the weight based on: actual - desired.

check out: tutorial

Use sign of

$$\sum_{j=1} w_{i,j}^{(l)} y_j$$

Hyperbolic tan and arctan are useful choice for Sigmoidal functions to solve optimization. (see slides for example with derivatives)

**Kronecket Delta Function** (get 1 if and only if the network nodes match; else 0) Key math from snapp's slides:

- $\delta$  tells you error between
- update w based on  $\delta$
- Kronecket used inside sums to simply to one expression when network nodes match
- chain rule used to take derivatives

### Generalization: when can we separate data

**Linear Threshold Unit** is the function  $g(x) = sign(wx + w_0)$  separating the data into two groups.

The **capacity** of the linear threshold unit is the number of patterns we can separate by a line.

First a definition:

A distribution of m points in  $\mathbb{R}^n$  is in general position if

• no subset of n+1 points lies on a line (plane, or hyperplane)

(if  $m \leq n$ , then we instead stipulate the set of m points is not contained in an m-2 dimensional hyperplane)

e.g., n = 2, m = 2, then we stipulate the two points can't coincide (0 dimensional hyperplane: same point).

e.g., n = 2 and any m, the points are in general positions if no two points are the same. e.g., m = 4, n = 2, then no 3 points lie on same line.

### Counting Linear Dichotomies

ways a set of points can be split up into groups.

For a **single point**, in any space  $\mathbb{R}^n$ , it's either group 1 or 2, so there are **two linearly** separable dichotomies.

In  $\mathbb{R}^1$ , there are 2m linearly separable dichotomies, since points lie on one line. You can draw a line at m points, then switch classes.

To summarize:

- d(1, n) = 2
- d(m, 1) = 2m

In general: 
$$d(m,n) = d(m-1,n) + d(m-1,n-1)$$
 (recursive)

Without recursion we have

$$d(m,n) = 2\sum_{i=0}^{n} {m-1 \choose i}$$

e.g., d(4,2) = 14 (four points in 2 dimensions)

observation: in a sufficiently high dimension, every linear dicotomy is possible! exam:

Baye's Rule, Theorem definitions: prior class, posterior, marginal density (p(x) = sum p(x, L) for each l), augmented feature vector, augmented normalized feature vector look over test 1: max/min, problem 1, integration gaussian

Pseudo-code: nearest neighbor, perception (backprop too hard)

what does naive baye's assume (each feature is independent), 1D regression derive solution,

### Perceptron in Pseudo-code

```
Perceptron( {(x1, 11), ..., (xm, lm)}, step size = n )
W = random weight vector
W0 = random scalar
While error:
    error = false
    for (xi, li) in training data:
        if sign(w0 + w^T xi) != li:
            error = True
            #label doesn't match adjust
        W += n li Xi
            #learning rate * label * weight
```

$$w0 += n*li$$

return w0, w

### Counting Dichotomies continued

none

# Support Vector Machines

Optimization problem for

$$L(W, w_0, \alpha) = 1/2w^t w - \sum_{i=1}^{m} \alpha [l_i(w^t x_i + w_0) - 1]$$

where we minimize with respect to w and max with respect to  $\alpha$ , subject to constraint  $\alpha_i \geq 0$  and

$$l_i(w^t x_i + w_0) - 1 \ge 0$$

where  $w = \sum_{i=1}^{m} \alpha_i l_i x_i$ .

To solve we rewrite as a dual problem.

#### **Dual Problem**

We instead want to maximize with respect to  $\alpha$ 

$$J(\alpha) = -1/2 \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j l_i l_j x_i^T x_j + \sum_{i=1}^{m} \alpha_i$$

subject to the constraint  $\alpha_i \geq 0$  and  $\sum_{i=1}^m \alpha_i l_i = 0$ .

advantage: complexity of computation depends on the number of data points in training set, not the number of features observed.

**Kernel** is defined to be:  $K(x,y) = (x^Ty + 1)^2$ .

### Example

$$X_4 = \{[(-1, -1), -1], [(-1, 1), 1], [(1, -1), 1], [(1, 1), -1]\}$$

Note  $X_4$  is not separable, so can't solve as usual (look up usual way). Letting x, y be in  $\mathbb{R}^2$ , we find the kernel

$$K(x,y) = (x^{T}y + 1)^{2} = (x_{1}y_{1} + x_{2}y_{2} + 1)^{2}$$
  
=  $x_{1}^{2}y_{1}^{2} + 2x_{1}x_{2}y_{1}y_{2} + x_{2}^{2}y_{2}^{2} + 2x_{1}y_{1} + 2x_{2}y_{2} + 1$ 

Next we compute

$$J(\alpha) = -1/2[9\alpha_1^2 - 2\alpha_1\alpha_2 + 2\alpha_1\alpha_4 + 9\alpha_2^2 + 2\alpha_2\alpha_3 - 2\alpha_2\alpha_4 + 9\alpha_3^2 - 2\alpha_3\alpha_4 + 9\alpha_4^2]$$

look at partial with respect to:  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ : set to zero to find minimum. **idea** to look up is the **Kernel trick** goal is to find g(x) so that output is correct class label.

For this example the optimal  $g(x) = -x_1x_2$ .