Question Review All From a uniform square plate, one-fourth part is removed as shown. The centre of mass of remaining part will lie on \bigcirc oc OA OB OD **EXPLANATIONS** Report ! Centre of mass will lie on the line of symmetry. Α D В OA is the line of symmetry of the remaining part. A ball is released from the top of a tower. The ratio of work done by force of gravity in first, second and third second of the motion of the ball is O 1:2:3 1:4:9

1:3:5

1:5:3

EXPLANATIONS

Report !

48 % were correct!

When the ball is released from the top of tower then ratio of distances covered by the ball in first, second and third second

Test Result | EngineeringDote

 $h_I:h_\Pi:h_M=1:3:5: \quad [ext{ because } h_n \propto (2n-1)]$

- $\therefore ext{ Ratio of work done } mgh_I: mgh_I: mgh_M = 1:3$
- :5

A motorcyclist of mass m is to negotiate a curve of radius r with a speed v. The minimum value of the coefficient of friction so that this negotiation may take place safely, is

○ v²rg

 $\frac{v^2}{ar}$

 $\frac{gr}{v^2}$

 $\frac{g}{v^2}$

The unit of inductance is

- O Volt/Ampere
- Joule/Ampere

(Volt × sec)/Ampere

○ (Volt × Ampere)/sec

EXPLANATIONS

Report !

54 % were correct!

Emf induced in a conductor

$$E=Lrac{di}{dt}$$

 $\Rightarrow L = \frac{ ext{Volt} imes ext{sec}}{ ext{Ampere}}$

A ball is projected vertically down with an initial velocity from a height of 20 m onto a horizontal floor. During the impact it loses 50% of its energy and rebounds to the same height. The initial velocity of its projection is

20m/s

- 15 m/s
- 10 m/s
- 5 m/s

EXPLANATIONS Report (!)

49 % were correct!

Let ball is projected vertically downward with velocity v from height h

Total energy at point $A=rac{1}{2}mv^2+mgh$

During collision loss of energy is 50% and the ball rises up to same height. It means it possess only potential energy at same level.

$$50\% \left(rac{1}{2}mv^2+mgh
ight)=mgh$$

$$rac{1}{2}igg(rac{1}{2}mv^2+mghigg)=mgh$$

$$v=\sqrt{2gh}=\sqrt{2 imes10 imes20}$$

 $\therefore v = 20 \mathrm{m/s}$

A proton and a deutron both having the same kinetic energy, enter perpendicularly into a uniform magnetic field B. For motion of proton and deutron on circular path of radius R_p and R_d respectively, the correct statement is

 $Rd = \sqrt{2}Rp$

- \bigcirc R_d= R_p $/\sqrt{2}$
- \bigcirc R_d=R_p
- \bigcirc R_d= 2R_p

EXPLANATIONS Report (!)

39 % were correct!

We have $F_{
m Magnetic} = F_{
m Centrifugal}$

$$\Rightarrow Bqv = rac{mv^2}{R}$$

For proton $R_p=rac{m_p v}{qB}=rac{\sqrt{2m_p E}}{qB}\left[E=rac{1}{2}mv^2\Rightarrow v=\sqrt{rac{2E}{m}}
ight]$

And for deutron $R_d=rac{\sqrt{2m_dE}}{qB}$

$$\Rightarrow \; rac{R_d}{R_p} = \sqrt{rac{m_d}{m_p}} = \sqrt{2}$$

$$\Rightarrow R_d = \sqrt{2} R_p$$

The half-life of a radioactive substance is 48 hours. How much time will it take to disintegrate to its $\frac{1}{16}$ th part

- 12 h
- 16 h
- 48 h

192 h

EXPLANATIONS Report (!)

76 % were correct!

$$rac{N}{N_0} = \left(rac{1}{2}
ight)^{t/T} \Rightarrow rac{1}{16} = \left(rac{1}{2}
ight)^{t/48}$$

$$\Rightarrow \left(rac{1}{2}
ight)^4 = \left(rac{1}{2}
ight)^{t/48} \Rightarrow t = 192 ext{ hour}.$$

There are n similar conductors each of resistance R. The resultant resistance comes out to be x when connected in parallel. If they are connected in series, the resistance comes out to be

 \bigcirc x/n²

n²x

○ x/n

 \bigcirc nx

EXPLANATIONS Report (!)

74 % were correct!

Resistance of a single conductor =R

In parallel connection, equivalent resistance $x=\dfrac{R}{n}$ $\qquad R=nx$

In series connection, equivalent resistance $=R+R+R\dots n ext{ times } =nR=n(nx)=n^2X$

In an isochoric process if $T_1=27^oC$ and $T_2=127^oC$, then P_1/P_2 will be equal to

- 0 9/59
- 0 2/3
 - 3 / 4
- None of these

EXPLANATIONS Report !

76 % were correct!

At constant volume, $P \propto T$

$$\Rightarrow \frac{P_1}{P_2} = \frac{T_1}{T_2}$$

$$\Rightarrow \frac{P_1}{P_2} = \frac{300}{400} = \frac{3}{4}$$

It is desired to photograph the image of an object placed at a distance of 3m from the plane mirror. The camera which is at a distance of 4.5m from the mirror, should be focussed for a distance of

- 3m
- 4.5m
- 6m

7.5m

EXPLANATIONS Report (!)

56 % were correct!

 F_o using distance of image = 4.5 m + 3 m = 7.5 m.

A Carnot engine absorbs an amount Q of heat from a reservoir at an abosolute temperature T and rejects heat to a sink at a temperature of T/3. The amount of heat rejected is

O Q / 4

Q/3

- O Q / 2
- O 2Q / 3

EXPLANATIONS

Report !

54 % were correct!

Let $Q_1=Q$ be the heat absorbed from the reservoir and Q_2 be the heat rejected to the sink.

$$\eta=1-rac{T_2}{T_1}=rac{W}{Q_1}$$

Given
$$T_2=rac{T_1}{3}=rac{T}{3}$$
 ,

$$\Rightarrow 1-rac{T/3}{T}=rac{W}{Q_1}$$

$$\Rightarrow \frac{2}{3} = \frac{Q_1 - Q_2}{Q_1}$$

$$\Rightarrow rac{2}{3} = 1 - rac{Q_2}{Q_1}$$

$$\Rightarrow rac{Q_2}{Q_1} = rac{1}{3}$$

$$\Rightarrow Q_2 = \frac{Q_1}{3} = \frac{Q}{3}$$

A weightless thread can support tension upto 30 N. A stone of mass 0.5 kg is tied to it and is revolved in a circular path of radius 2 m in a vertical plane. If $g=10m/s^2$, then the maximum angular velocity of the stone will be

5 rad/s

- $\bigcirc \sqrt{30} \text{ rad/s}$
- \bigcirc $\sqrt{60}$ rad/s
- 10 rad/s

Report (

EXPLANATIONS

44 % were correct!

$$T_{
m max} = m \omega_{\scriptscriptstyle
m max}^2 r + m g$$

$$\Rightarrow rac{T_{
m max}}{m} = \omega^2 r + g$$

$$\Rightarrow rac{30}{0.5} = \omega^2{}_{
m max} r + 10$$

$$ightarrow \omega_{
m max} = \sqrt{rac{50}{r}} = \sqrt{rac{50}{2}} = 5\,rad/s$$

The angle between the planes 3x-4y+5z=0 and 2x-y-2z=5 is :

 $\frac{\pi}{3}$

 $\frac{\pi}{2}$

 $\frac{\pi}{6}$

None of these

<u>Report</u> (!)

73 % were correct!

$$heta = \cos^{-1}igg[rac{6+4-10}{\sqrt{50}\sqrt{9}}igg] = \cos^{-1}(0) = rac{\pi}{2}.$$

Aliter: Checking for perpendicularity: $3 \cdot 2 - 4 \cdot (-1) + 5 \cdot (-2) = 6 + 4 - 10 = 0$

Product of real roots of the equation $t^2x^2+|x|+9=0$

is always positive

is always negative

does not exist

one of these

<u>Report</u> !

57 % were correct!

Product of real roots $=rac{9}{t^2}>0$ for all $t\in R$

... Product of real roots is always positive

The angle between the pair of lines $2x^2-4xy-2y^2=0$ is:

OO

○ 60°

900

one of these

EXPLANATIONS

Since a+b=0, the lines are perpendicular.

$$\int rac{1}{x} dx, (x
eq 0) =$$

72 % were correct!

 \bigcirc Inx+c

 $\ln |x| + c$

 $-\frac{1}{x^2} + c$

none of these

<u>Report</u> (!)

57 % were correct!

For x>0,

$$rac{d}{dx}{\ln x}=1/x$$

For x<0

$$rac{d}{dx} ext{ln}(-x)=-rac{d}{d(-x)} ext{ln}(-x)=-rac{1}{-x}=rac{1}{x}$$

So,
$$\int rac{1}{x} dx = \ln |x| + c$$

The equivalent function of $\log x^2$ is

2logx

2 log |x|

 \bigcirc $|\log x^2|$

 $\bigcirc (\log x)^2$

<u>Report</u> !

56 % were correct!

As $\log x$ is defined for only positive values of x. But $\log x^2$ defined for all real values of x, also $\log |x|$ is also defined for all real x. Hence $\log x^2$ and $2\log |x|$ are identical functions.

Report !

 $\int_0^1 0 dx =$

0

- constant
- not determined
- meaningless

EXPLANATIONS

Report !

43 % were correct!

We have,

$$\int 0dx = \epsilon$$

So,

$$\int 0 dx = c$$

$$\int_0^1 0 dx = c - c = 0$$

 $ec{a}.\,ec{b}=0,$ then

- aTp
- \bigcirc a = b = 0
- \bigcirc a = 0 or b = 0

(a) or (c)

EXPLANATIONS

Report !

45 % were correct!

 $a \cdot b = ab \cos \theta$

So,
$$a\cdot b=0\Rightarrow a=0$$
 or $b=0$ or $heta=\pi/2$

The area of triangle formed by $\dfrac{x}{5}+\dfrac{y}{6}=1$ with cartesian axes is:

O 30

Test Nesult EngineeringDote	
	Report !
axes at $(5,0)$ and $(0,6)$.	
a right angled triangle with legs 5 and 6.	
Previous 1 2 Next	
	axes at $(5,0)$ and $(0,6)$. a right angled triangle with legs 5 and 6.

2022 © **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal