What we need

A model of steering control

- A model that processes information from the visual scene
- A motor system that converts steering intention into actions

Two-levels visual control of steering

Donges (1978), Human Factors

Anticipatory control

- anticipation of changes in road curvature
- fed by far visual information

Compensatory control

- on-line correction of lateral position errors
- fed by near visual information

Two-levels visual control of steering

Compensatory control only

- few lateral deviations
- steering becomes jerky

Anticipatory control only

- large lateral errors
- smooth steering

Two-levels visual control of steering

Donges (1978), Human Factors

Anticipatory control

- fed by what?

Compensatory control

- fed by near peripheral vision

Which sensory cue for far vision?

65% of glances are directed toward the tangent point

Land & Lee, Nature (1994)

Which sensory cue for far vision?

A simple geometrical relationship between the angle to the TP and the road curvature

Looking at the TP as a way to read the curvature at the sensorimotor level

Tracking any point that has the dynamics of the TP improves steering control (Mars 2008, J. of Vision)

TP or not TP?

Tangent point hypothesis

Land & Lee (1994), Nature

Future path hypothesis

Wilkie et al. (2010), Experimental Brain Research

Which sensory cue for far vision?

Mars & Navarro (2012), PLoS One

Gaze strategy = looking at the boundary of a safe trajectory envelope

The TP as an input to visual anticipation = a good enough approximation

Two visual inputs for the model

Salvucci & Gray (2002), Perception