Аппроксимация фазовых траектории квазипериодических сигналов с помощью сферических гармоник*

Аннотация: Цель данной работы - построить модель аппроксимации наименьшей структурной сложности. Для этогов решается задача аппроксимации фазовой траектории, построенной по квазипериодическому временному ряду. Фазовая траектория представлена в сферических и декартовых координатах в виде проекции на единичную сферу в пространстве оптимальной размерности. Оптимальное пространство - это пространство минимальной размерности, в котором фазовая траектория не имеет ярковыроженных самопересечений на поверхности единичной сферы. Предлагается аппроксимировать полученную фазовую траекторию с помощью сферических гармоник. Эксперимент проведен на показателях акселерометра мобильного устройства во время ходьбы и бега.

Ключевые слова: временные ряды; траекторное подпространство; фазовая траектория; сферические функции.

1 Введение

Ставится задача построения модели аппроксимации квазипериодического временного ряда. Примерами таких сигналов являются показания акселерометра во время ходьбы и бега.

Для этого строится пространство фазовой тракеториии по выбранному временному ряду. Это делается с помощью построения траекторной матрицы или матрицы Ганкеля. Для нашего исследования Размерность траекторного пространства может оказаться избыточна. Это может приводить к неустойчивости исследуемых моделей и сложному описанию временного ряда. Для понижения размерности фазового пространства предлагается для сравнения использовать различные линейные и нелинейные методы рассмотренные в [2].

В выбранном пространстве уменьшенной размерности предлагается спроецировать имеющуюся траекторию на p-мерную единичную сферу и перейти в p-1-мерное сферическое пространство. Полученную определенную на поверхности сферы функцию предлагается представить в виде ряда разложенного по сферическим функциям.

На рис. 1 показан изначальный временной ряд и его разложение, пунктирной и сплошной линией соответственно, а также его фазовая траектория уменьшенная в пространство размерности 3 с помощью метода главных компонент (principal component analysis, PCA).

2 Постановка задачи

По имеющемуся временному ряду $\mathbf{s} = [s_1,...,s_N]^\mathsf{T}$ строится траекторная матрица или матрица Ганкеля

$$\mathbf{H_{s}} = \begin{bmatrix} s_{1} & s_{2} & \dots & s_{n-1} & s_{n} \\ s_{2} & s_{3} & \dots & s_{n} & s_{n+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ s_{N-n+1} & s_{N-n+2} & \dots & s_{N-1} & s_{N} \end{bmatrix}$$
(1)

*

Рис. 1 Исследуемый временной ряд и его фазовая траетория.

где N-длинна временного ряда, n-ширина окна, не меньшая, чем предполагаемый период. Обозначим t-ую строку матрицы Ганкеля $\mathbf{H_s}$ за $\mathbf{x_t}$. Матрица $\mathbf{H_s}$ пребразуется к:

$$\mathbf{H_s} = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \\ \vdots \\ \mathbf{x_m} \end{bmatrix}, \mathbf{x_t} = [s_t, s_{t+1}, \dots, s_{t+n-1}], m = N - n + 1$$
(2)

Все векторы $\mathbf{x_t}$ принадлежат $\mathbb{H}_{\mathbf{x}} \subseteq \mathbb{R}^n$. Предполагается, что размерность траекторного пространства избыточна, поэтому предлагается исследовать некоторые проекции на траекторное подпространство. Однако заранее неизвестно, в каком пространстве необходимо уменьшать размерность, поэтому задача приобретает следующий состоящий из двух вариантов вид:

$$t \mapsto \mathbf{x} \mapsto \mathbb{H}_x^n \to \mathbb{H}_x^p \to \mathbb{S}_z^{(p-1)} \hookrightarrow [0, 2\pi] \xrightarrow{f} r$$
 (3)

$$t \mapsto \mathbf{x} \mapsto \mathbb{H}_x^n \to \mathbb{S}_z^n \to \mathbb{S}_z^{(p-1)} \hookrightarrow [0, 2\pi] \xrightarrow{f} r$$
 (4)

При понижении пространства, во-первых, требуется отыскать подходящий способ снижения размерности (линейные, нелинейные, нейросетевые методы), во-вторых, необходимо определить в каком пространсве сокращение размерности приведет к наименьшей потери информации и далее найти оптимальной сложности приближение при отысканию вложений.

Определение 1. Параметрическая аппроксимирующая модель временного ряда ${\bf x}$ - это такое отображение g, что:

$$q: \mathbb{R}^q \times \mathbf{S} \to \mathbf{S} \tag{5}$$

Предполагается, что аппроксимирующая модель строится в пространстве меньшей размерности (p-1), в котором выбранное отображение $h: \mathbf{H}_x^n \to \mathbf{S}_x^{(p-1)}$, где $(p-1) \ll n$, сохраняет геометрическую структуру множество точек \mathbf{H}_x^n .

Определение 2. Структурная сложность - это количество параметров *q* модели, позволяющих строить адекватную аппроксимацию.

3 Понижение размерности

3.1 Алгоритмы понижения размерности

Рассматриваемый поход предполагает использование и анализ различных алгоритмов понижения размерности согласно [2]. Предполагается, что исследуемые способы относятся к различным семействам алгоритмов понижения размерности и позволяют качественно отыскивать одномерные многообразия в многомерных пространствах.

Используется алгоритм Kernel Principal Component Analysis (KPCA), описанный в [3, 4], позволяющий обобщить классический PCA с помощью нелинейных преобразиваний Φ матрицы несмещенных данных \mathbf{x}_i , $i=1,...,m,\ \mathbf{x}_i\in\mathbb{R}^n$:

$$C = \frac{1}{m} \sum_{i=1}^{m} \Phi(\mathbf{x}_i) \Phi(\mathbf{x}_i)^T, \qquad \sum_{i=1}^{m} \Phi(\mathbf{x}_i) = 0, \qquad \Phi : \mathbb{R}^n \to \mathbb{R}^{n'}, \quad n \ll n'$$
 (6)

Далее применяется ядерный метод позволяющий избегать явного отображения в новое пространство высокой размерности, включающий в себя матрицу Грама $\mathbf{K} \in \mathbb{R}^{m \times m}$ и функцию ядро k. Для нахождения итогового отображения в пространство малой размерности находятся собственные значения и собственные вектора матрицы $\tilde{\mathbf{K}}$, если данные не центрированы.

$$\mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j), \quad \tilde{\mathbf{K}} = \mathbf{K} - \mathbf{1}_m \mathbf{K} - \mathbf{K} \mathbf{1}_m + \mathbf{1}_m \mathbf{K} \mathbf{1}_m, \tag{7}$$

где $\mathbf{1}_m$ - это матрица $m \times m$, в которой каждый элемент равен 1/m.

Применяются следующие базовые варианты ядерной функции k.

– Линейное ядро (англ. linear)

$$k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \mathbf{x}_j^T, \tag{8}$$

это ядро приводящее КРСА к классическому линейному РСА.

– Полиномиальное ядро (англ. polynomial или poly)

$$k(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i \mathbf{x}_i^T + c)^d, \quad d \geqslant 0, \quad c \geqslant 0$$
(9)

– Гауссово ядро (англ. Radial basis function, rbf)

$$k(\mathbf{x}_i, \mathbf{x}_j) = exp\left(-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma^2}\right), \quad \sigma > 0$$
(10)

– Сигмоидальное ядро (англ. sigmoid)

$$k(\mathbf{x}_i, \mathbf{x}_j) = tanh(\gamma(\mathbf{x}_i \mathbf{x}_j^T) + c), \quad \gamma > 0, \quad c \geqslant 0$$
 (11)

– Косинусное ядро (англ. cosine)

$$k(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i \mathbf{x}_j^T}{||\mathbf{x}_i|| \ ||\mathbf{x}_j||}$$
(12)

Рис. 2 Уменьшенит размерности фазовой траектории в декартовых координатах.

Таблица 1 МАРЕ восстановленной траектории.

Алгоритм	p=2	p=3	p=4	p=5	p=6	p=7
PCA	_	_	_	_	_	_
KPCA Cosine	46.35	38.50	29.61	28.84	28.49	28.54
KPCA poly	46.36	36.86	22.22	20.02	19.25	17.94
KPCA rbf	45.55	45.36	44.93	44.82	44.50	44.56
KPCA sigmoid	47.04	47.04	47.04	47.04	47.04	47.04
t-SNE	_	_	_	_	_	_
Autoencoder	_	_	_	_	_	_
MDS	_	_	_	_	_	_
Hessian LLE	_	_	_	_	_	

3.2 Фазовые траектории в пространстве малой размерности

Некоторые из исследуемых моделей уже можно использовать в качестве аппроксимационных, так как с помощью координат в уменьшенном пространстве можно задавать вид фазовой траектории для различных типов движения.

В таблице 1 сравним точности различных алгоритмов в смысле точности восстановления изначальной траектории согласно МАРЕ:

$$MAPE(\mathbf{x}, \hat{\mathbf{x}}) = \frac{100\%}{n} \sum_{t=1}^{n} \left| \frac{x_t - \hat{x}_t}{x_t} \right|$$
 (13)

4 Модели аппроксимации

4.1 GAN для фазовых траекторий в 2D

- Модель генератор реальных данных

$$t \to s \xrightarrow{Hankel} \mathbf{x}_i \xrightarrow{PCA} x_i,$$
 (14)

где x_i - точка фазовой траектории в уменьшенном пространстве, $x_i \in \mathbb{R}^2$.

- Модель генератор синтетических данных

$$f_{ph}(\mathbf{w},\varphi) = \sum_{j=0}^{l} w_{0,j} cos(j\varphi) + i w_{1,j} sin(j\varphi), \tag{15}$$

$$\varphi \xrightarrow{f_{ph}} \hat{x}_{\varphi}, \quad \hat{x}_{\varphi} = [real(f_{ph}), imag(f_{ph})], \quad \hat{x}_{\varphi} \in \mathbb{R}^2,$$
 (16)

где \mathbf{w} - вектор параметров (коэффициентов) тригонометрического ряда, l-количество пар коэффициентов.

Восстановление изначального временного ряда с помощью f_{ph} можно представить в виде

$$\varphi \xrightarrow{f_{ph}} \hat{x}_{\varphi} \xrightarrow{inverse\ PCA} \mathbf{x}_{i} \xrightarrow{inverse\ Hankel} s$$
 (17)

– Дискриминатор или функция потери и оптимизация

Функцию потерь представляется в виде

$$Loss(\hat{\mathbf{x}}_{\varphi}, \mathbf{x}) = \sum_{i=1}^{101} \sum_{j=1}^{k} (\hat{x}_{\varphi,i} - x_{i,j})^2$$
(18)

где для любого фиксированного $i \{x_{i,j}\}_1^k - k$ ближайших соседей к $\hat{x}_{\varphi,i}$. Решается задача оптимизации:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^{2l}} \text{Loss}(\mathbf{w} | \{x\})$$
 (19)

4.2 GAN для фазовых траекторий в 3D

Предполагается, что структура модели проще в сферических координатах. Построим отображение $x_p \in \mathbb{H}^p_x$ в \mathbb{S}^{p-1}_z .

$$\varphi: \mathbf{x}_p(t) \to \mathbf{z}_{(p-1)}(t) = [\alpha 1(t), ..., \alpha_{p-1}(t)]$$
(20)

– Модель генератор синтетических данных

$$MAP_{ph}(\mathbf{w}, \alpha_1, \alpha_2) = \sum_{n, m \in N, M} w_{n, m} Y_l^m(\alpha_1, \alpha_2)$$
(21)

- Дискриминатор или функция потери и оптимизация

Функцию потерь представляется в виде

$$Loss = \sum_{n,m \in N,M} MAP_{ph}(\mathbf{w}, \alpha_1, \alpha_2) - MAP_{real}(\alpha_1, \alpha_2)$$
 (22)

Решается задача оптимизации:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^{2l}}{\min} \operatorname{Loss}(\mathbf{w} | \{z_2\})$$
 (23)

- 5 Эксперимент
- 6 Заключение

Литература

- 1. author. title. journal, 1999.
- 2. Laurens van der Maaten, Eric Postma, and H. Herik. Dimensionality reduction: A comparative review. *Journal of Machine Learning Research*, 10, 01 2007.
- 3. Bernhard Scholkopf, Alex Smola, and Klaus-Robert Muller. Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation*, 10:1299–1319, 07 1998.
- 4. Kenneth Ezukwoke and Samaneh Zareian. Kernel methods for principal component analysis (pca) a comparative study of classical and kernel pca. 12 2019.