Cálculo Avanzado - 2° Cuatrimestre 2020 1° Parcial (26/10/2020)

1. Notamos con $\mathcal{C}(\mathbb{R})$ al conjunto de funciones continuas de \mathbb{R} en \mathbb{R} . Calcular el cardinal del conjunto

$$\mathcal{A} = \{ f \in \mathcal{C}(\mathbb{R}) \mid f \text{ es inyectiva y } f(\mathbb{Q}) \subset \mathbb{R} - \mathbb{Q} \}.$$

2. Sea X un espacio métrico para el cual existen subconjuntos $A_i \subset X$ $(i \in I)$ tales que

$$X = \bigcup_{i \in I} A_i \quad \text{e} \quad \inf\{d(A_i, A_j) \mid i \neq j\} > 0.$$

Sea Y otro espacio métrico.

- a) Probar que una función $f: X \to Y$ es continua si y sólo si $f|_{A_i}: A_i \to Y$ es continua para todo $i \in I$.
- b) Probar la afirmación anterior no es cierta si se cambia continua por uniformemente continua.
- 3. Consideremos en $\mathbb{R}^{\mathbb{N}}$ la distancia

$$\tilde{d}(x,y) = \sup_{n \in \mathbb{N}} \frac{d(x_n, y_n)}{n},$$

donde $d(s,t)=\frac{|s-t|}{1+|s-t|}$ para $s,t\in\mathbb{R}.$ Probar que $(\mathbb{R}^{\mathbb{N}},\tilde{d})$ es separable.

4. Sea (X,d) un espacio métrico completo y $U\subset X$ un conjunto abierto. Definimos en U la distancia

$$\diamondsuit(x,y) := d(x,y) + \left| \frac{1}{d(x,U^c)} - \frac{1}{d(y,U^c)} \right|.$$

- a) Probar que \Diamond y $d|_{U\times U}$ son topológicamente equivalentes.
- b) Probar que si $(x_n)_{n\in\mathbb{N}}\subset U$ es de Cauchy para la métrica \diamondsuit entonces $d(\{x_n\}_{n\in\mathbb{N}},U^c)>0$.
- c) Probar que (U, \diamondsuit) es completo.

Aclaración: no es necesesario probar que \Diamond es una distancia.

Puede usar como ciertos los resultados de las guías prácticas o los vistos en la teórica.