

Le deep learning et l'analyse prédictive

Table of Content

```
rzipfseeko-0.so.13 -> libzzipfsee
zzinfseeko-0.so.13.0.72
ozzipfseeko.so -> libzzipfseeko-0.s
bzzipmmapped-0.so -> libzzipmmapped
ibzzipmmapped-0.so.10 -> libzzipmmar
ibzzipmmapped-0.so.11 -> libzzipmma
libzzipmmapped-0.so.12 -> libzzipmma
libzzipmmapped-0.so.13 -> libzzipmmaı
libzzipmmapped-0.so.13.0.72
libzzipmmapped.so -> libzzipmmapped-
6 libzzip.so -> libzzip-0.so.13.0.72
6 libzzipwrap-0.so -> libzzipwrap-0.so
56 libzzipwrap-0.so.13 -> libzzipwrap-0
S6 libzzipwrap-0.so.13.0.72
:56 libzzipwrap.so -> libzzipwrap-0.so.1
11:24 11vm14
12:09 LLVMgold.so
2:11 locale
09:08 localepaper
  2022 mail-dotlock
```

- **1.Introduction to ML and DS in Python**
- 2.Deep Learning with Tensorflow
- 3. Containerized Machine Learning
- 4.Azure IA
- 5.Dataiku
- 6.Assessment

zipfseeko-0.so.13 -> libzzipfsee zzipfseeko-0.so.13.0.72 ozzipfseeko.so -> libzzipfseeko-0.s bzzipmmapped-0.so -> libzzipmmapped ibzzipmmapped-0.so.10 -> libzzipmmar ibzzipmmapped-0.so.11 -> libzzipmmap libzzipmmapped-0.so.12 -> libzzipmma libzzipmmapped-0.so.13 -> libzzipmma libzzipmmapped-0.so.13.0.72 libzzipmmapped.so -> libzzipmmapped-6 libzzip.so -> libzzip-0.so.13.0.72 6 libzzipwrap-0.so -> libzzipwrap-0.so 56 libzzipwrap-0.so.13 -> libzzipwrap-0 56 libzzipwrap-0.so.13.0.72 :56 libzzipwrap.so -> libzzipwrap-0.so.1 11:24 **11vm14** 12:09 LLVMgold.so 22:11 locale 09:08 localepaper 2021 **lua** 2022 mail-dotlock 11:24 man-db 2021 marble 17:00 mbim-proxy

1. Introduction to ML and DS in Python

Al vs ML vs DL

Artificial Intelligence

Development of smart systems and machines that can carry out tasks that typically require human intelligence

2 Machine Learning

Creates algorithms that can learn from data and make decisions based on patterns observed

Require human intervention when decision is incorrect

3 Deep Learning

Uses an artificial neural network to reach accurate conclusions without human intervention

Some AI Applications

02 Recommending Products

O3 Customer Segmentation

Image and Video Recognition

05

Fraudulent Transactions

06

Demand Forecasting

07

Virtual Personal Assistant

08

Sentiment Analysis

09

Customer Service Automation

AI-ML Pipelines

Lotfi Hocini

AI-ML Pipelines

production

ML model in production

and retrain or rebuild when

performance degrades

improve performance and

efficacy

a way that demonstrates its

value to stakeholders

Some ML Approaches

Lotfi Hocini

Supervised vs Unsupervised ML

Input data is labeled

Has a feedback mechanism

Data is classified based on the training dataset

Divided into Regression & Classification

Used for prediction

Unsupervised learning

Input data is unlabeled

Has no feedback mechanism

Assigns properties of given data to classify it

Divided into Clustering & Association

Used for analysis

Supervised vs Unsupervised ML

Supervised learning

Algorithms include: decision trees, logistic regressions, support vector machine

A known number of classes

Unsupervised learning

Algorithms include: k-means clustering, hierarchical clustering, apriori algorithm

A unknown number of classes

Some Metrics - Regression -

1.3 Minimizing the MSE

First, we find the gradient of the MSE with respect to β :

$$\nabla MSE(\beta) = \frac{1}{n} \left(\nabla \mathbf{y}^T \mathbf{y} - 2\nabla \beta^T \mathbf{x}^T \mathbf{y} + \nabla \beta^T \mathbf{x}^T \mathbf{x} \beta \right)$$
$$= \frac{1}{n} \left(0 - 2\mathbf{x}^T \mathbf{y} + 2\mathbf{x}^T \mathbf{x} \beta \right)$$
$$= \frac{2}{n} \left(\mathbf{x}^T \mathbf{x} \beta - \mathbf{x}^T \mathbf{y} \right)$$

We now set this to zero at the optimum, $\widehat{\beta}$:

$$\mathbf{x}^T \mathbf{x} \widehat{\beta} - \mathbf{x}^T \mathbf{y} = 0$$

Some Metrics- Binary Classification -

TP+TN

Confusion Matrix

Some Metrics- Binary Classification -

- ROC curves should be used when there are roughly equal numbers of observations for each class.
- Precision-Recall curves should be used when there is a moderate to large class imbalance.

Some Metrics - Multi Class Classification -

Some Metrics - Multi Class Classification -

Micro average method

- Sum up individual tp, fp.
- Micro precision = $tp_1+tp_2+..tp_n/(tp_1+tp_2+..tp_n+fp_1+fp_2+..fp_n)$
- Micro recall = $= tp_1 + tp_2 + ...tp_n / (tp_1 + tp_2 + ...tp_n + fn_1 + fn_2 + ...fn_n)$

Macro average method

Compute metric independently for each class and then take average

Exercice 1

Accuracy = $\frac{TP+TN}{TP+FP+TN+FN}$ F1 - Score = $\frac{2*Recall*Precision}{Recall+Precision}$

Calculate the classification metrics

Exercice 2

- Calculate the classification metrics
- Derive insights

Configure VSCode

- Install Data Science Profil
- Install Additional extensiions

Python - Advanced

https://www.geeksforgeeks.org/python-programming-language/?ref=lbp

19 Lotfi Hocini

Python - Virtual environment

https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtualents/

20

Python - FastApi

https://fastapi.tiangolo.com/tutorial/

ML Practice

- Topics: Data Preparation, Missing Data, Imbalanced data, Split Datasets, Metrics, Visualization, model selection, saving ...
- Database: 'data' Folder

To install:

- pip install virtualenv, then create virtual environment and activate it
- pip install ipykernel
- pip install pandas
- Pip install numpy
- pip install matplotlib
- pip install seaborn
- pip install scikit-learn

Next Sesssion

2. Deep Learning with Tensorflow