DEVOIR SURVEILLÉ 1

Les documents, la calculatrice et tout matériel éléctronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez.

Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Toutes vos réponses doivent être justifiées, de manière claire et précise.

Ce sujet comporte 1 page et est constitué de 5 problèmes. Bon courage!

Exercice 1 – Donner l'écriture des nombres suivants sous la forme d'un entier ou d'une fraction irréductible.

1.
$$A = \frac{2}{3} - \frac{1}{2} + \frac{3}{4}$$

Solution:

$$A = \frac{2}{3} - \frac{1}{2} + \frac{3}{4}$$
$$= \frac{8}{12} - \frac{6}{12} + \frac{9}{12}$$
$$= \frac{11}{12}$$

2.
$$B = \frac{2}{3} - \frac{1}{3} \times \left(2 - \frac{1}{4}\right)$$

Solution:

$$B = \frac{2}{3} - \frac{1}{3} \times \left(2 - \frac{1}{4}\right)$$

$$= \frac{2}{3} - \frac{1}{3} \times \frac{7}{4}$$

$$= \frac{2}{3} - \frac{7}{12}$$

$$= \frac{8}{12} - \frac{7}{12}$$

$$= \frac{1}{12}$$

3.
$$C = \frac{1 + \frac{5}{6}}{\frac{1}{5} - 2 \times (\frac{1}{3} + \frac{1}{4})}$$

Solution:

$$C = \frac{1 + \frac{5}{6}}{\frac{1}{5} - 2 \times (\frac{1}{3} + \frac{1}{4})}$$

$$= \frac{\frac{11}{6}}{\frac{1}{5} - 2 \times \frac{7}{12}}$$

$$= \frac{\frac{11}{6}}{\frac{\frac{12}{60} - \frac{70}{60}}{\frac{70}{60}}}$$

$$= \frac{11}{6} \times \frac{-60}{58}$$

$$= -\frac{110}{58}$$

$$= -\frac{55}{29}$$

4.
$$D = \left(\frac{1}{2} - \frac{1}{3}\right) \times \left(\frac{1}{4} - \frac{1}{5}\right) \div \left(1 + \frac{1}{2}\right)^2$$

Solution:

$$D = \left(\frac{1}{2} - \frac{1}{3}\right) \times \left(\frac{1}{4} - \frac{1}{5}\right) \div \left(1 + \frac{1}{2}\right)^2$$
$$= \frac{1}{6} \times \frac{1}{20} \div \frac{9}{4}$$
$$= \frac{1}{120} \times \frac{4}{9}$$
$$= \frac{1}{270}$$

Exercice 2 – Résoudre les équations et inéquations suivantes.

1. 2x - 3 = 4

Solution: On a $2x-3=4 \iff 2x=7 \iff x=\frac{7}{2}$ donc $\mathscr{S}=\left\{\frac{7}{2}\right\}$.

2. $x - \frac{1}{2} = 2x - 1$

Solution: On a $x - \frac{1}{2} = 2x - 1 \iff -x = -\frac{1}{2} \iff x = \frac{1}{2} \operatorname{donc} \mathscr{S} = \left\{ \frac{1}{2} \right\}.$

3. 2x-4 < 3x+5

Solution: On a $2x-4 < 3x+5 \iff -x < 9 \iff x > -9 \operatorname{donc} \mathscr{S} =]-9; +\infty[$.

4. $x^2 - 12x + 27 = 0$

Solution : Commençons par calculer le discriminant $\Delta = 144 - 108 = 36$.

Il y a donc deux racines qui sont

$$x_1 = \frac{12-6}{2} = 3$$
 et $x_2 = \frac{12+6}{2} = 9$.

Donc $\mathcal{S} = \{3; 9\}.$

5.
$$-x^2 + 3x + 10 < 0$$

Solution : Commençons par calculer le discriminant $\Delta = 9 + 40 = 49$. Il y a donc deux racines qui sont

$$x_1 = \frac{-3-7}{-2} = 5$$
 et $x_2 = \frac{-3+7}{-2} = -2$.

On en déduit le tableau de signe suivant.

Ainsi, $\mathcal{S} =]-\infty; -2[\cup]5; +\infty[.$

6.
$$x(x-2) = -1$$

Solution : On a $x(x-2) = -1 \iff x^2 - 2x + 1 = 0$. Le discriminant vaut $\Delta = 4 - 4 = 0$. Il y a donc une seule racine

$$x_0 = \frac{2}{2} = 1.$$

Ainsi, $\mathcal{S} = \{1\}$.

7.
$$\frac{2}{x+3} = \frac{1}{x+1}$$

Solution: On a

$$\frac{2}{x+3} = \frac{1}{x+1} \iff \frac{2}{x+3} - \frac{1}{x+1} = 0$$

$$\iff \frac{2(x+1) - (x+3)}{(x+1)(x+3)} = 0$$

$$\iff \frac{2x+2-x-3}{(x+1)(x+3)} = 0$$

$$\iff \frac{x-1}{(x+1)(x+3)} = 0$$

On a $(x+1)(x+3) = 0 \iff x+1 = 0$ ou $x+3 = 0 \iff x = -1$ ou x = -3 donc les valeurs interdites sont x = -1 et x = -3.

Par ailleurs, $x - 1 = 0 \iff x = 1$. Cette valeur ne fait pas partie des valeurs interdites donc $\mathcal{S} = \{1\}$.

$$8. \ \frac{x^2 - 5x + 6}{x - 3} = 0$$

Solution : On a $x-3=0 \iff x=3$ donc il y a une valeur interdite qui est x=3. Par ailleurs, le discriminant de x^2-5x+6 vaut $\Delta=25-24=1$. Il y a donc deux racines qui sont

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

Au final, on a donc $\mathcal{S} = \{2\}$.

9.
$$\frac{x}{x+1} \le \frac{2}{2x-3}$$

Solution: On a

$$\frac{x}{x+1} \le \frac{2}{2x-3} \iff \frac{x}{x+1} - \frac{2}{2x-3} \le 0$$

$$\iff \frac{x(2x-3) - 2(x+1)}{(x+1)(2x-3)} \le 0$$

$$\iff \frac{2x^2 - 3x - 2x - 2}{(x+1)(2x-3)} \le 0$$

$$\iff \frac{2x^2 - 5x - 2}{(x+1)(2x-3)} \le 0$$

Calculons le discriminant de $2x^2 - 2x - 5$: $\Delta = 25 + 16 = 41$. Il y a donc deux racines qui sont

$$x_1 = \frac{5 - \sqrt{41}}{4} \simeq -0.3$$
 et $x_2 = \frac{5 + \sqrt{41}}{4} \simeq 2.8$.

On en déduit le tableau de signe suivant.

х	$-\infty$		-1		x_1		$\frac{3}{2}$		x_2		+∞
$2x^2 - 2x - 5$		+		+	0	_		_	0	+	
x + 1		_	0	+		+		+		+	
2x-3		_		_		_	0	+		+	
$\frac{2x^2 - 5x - 2}{(x+1)(2x-3)}$		+		_	0	+		_	0	+	

Donc $\mathcal{S} =]-1; x_1] \cup \left[\frac{3}{2}; x_2 \right].$

10.
$$x^3 - 9x^2 + 11x + 21 = 0$$

Solution : On a $(-1)^3 - 9 \times (-1)^2 + 11 \times (-1) + 21 = -1 - 9 - 11 + 21 = 0$. On effectue donc la division euclidienne de $x^3 - 9x^2 + 11x + 21$ par x + 1.

Conclusion : $P(x) = (x+1)(x^2 - 10x + 21)$.

On calcule le discriminant de $x^2 - 10x + 21$: $\Delta = 100 - 84 = 16$.

Il y a donc deux racines, qui sont

$$x_1 = \frac{10-4}{2} = 3$$
 et $x_2 = \frac{10+4}{2} = 7$.

Au final, on a donc $\mathcal{S} = \{-1; 3; 7\}$.

Exercice 3 – Soit m un nombre réel. On considère l'équation $x^2 + 4x + 2(m-1) = 0$.

1. Cette équation admet-elle une solution lorsque m = 4?

Solution : Lorsque m = 3, $x^2 + 4x + 2(m - 1) = x^2 + 4x + 2 \times 3$.

L'équation que l'on cherche à résoudre est donc la suivante : $x^2 + 4x + 6 = 0$.

On commence par calculer le discriminant. $\Delta = 4^2 - 4 \times 1 \times 6 = 16 - 24 = -8 < 0$.

Comme le discriminant est négatif, l'équation n'admet pas de solution réelle lorsque m=4.

2. Déterminer m pour que cette équation admette une unique solution. Déterminer cette solution.

Solution : On sait que cette équation admet une unique solution si et seulement si son discriminant est nul. Or $\Delta = 4^2 - 4 \times 1 \times 2(m-1) = 16 - 8(m-1)$.

Donc $\Delta = 0 \iff 8(m-1) = 16 \iff m-1 = 2 \iff m = 3$.

Lorsque m=3, l'équation devant x^2+4x+4 . Son discriminant est nul et l'unique solution est donnée par

 $x_0 = \frac{-4}{2 \times 1} = -2.$

3. Préciser les cas, en fonction de *m*, où cette équation admet deux solutions distinctes, et où cette équation n'admet aucune solution.

Solution : L'équation admet 2 solutions distinctes si et seulement si $x\Delta > 0 \iff 16 - 8(m-1) > 0 \iff m-1 < 2 \iff m < 3$.

De la même façon, l'équation n'admet aucune solution réelle lorsque $x\Delta < 0 \iff m > 3$.

Exercice 4 -

- 1. Soit le polynôme $P(x) = 3x^3 7x^2 7x + 3$.
 - (a) Montrer que le polynôme P peut se factoriser sous la forme P(x) = (x+1)Q(x) où Q est un polynôme de degré 2 que l'on déterminera.

Solution : On a P(-1) = -3 - 7 + 7 + 3 = 0. Donc il existe Q tel que P(x) = (x+1)Q(x). On détermine ce polynôme Q en effectuant la division euclidienne de P par x+1.

Donc $P(x) = (x+1)(3x^2 - 10x + 3)$.

(b) Déterminer alors les solutions de l'équation $3x^3 - 7x^2 - 7x + 3 = 0$.

Solution : Calculons le discriminant de $3x^2 - 10x + 3$. On a $\Delta = 100 - 36 = 64$. Il y a donc deux racines qui sont

$$x_1 = \frac{10-8}{6} = \frac{1}{3}$$
 et $x_2 = \frac{10+8}{6} = 3$.

Donc $\mathcal{S} = \left\{-1; \frac{1}{3}; 1\right\}.$

- 2. On considère la fraction rationnelle $f(x) = \frac{3x^3 7x^2 7x + 3}{3x^2 12x + 12}$.
 - (a) Déterminer les valeurs interdites de f(x).

Solution : Déterminons les valeurs interdites. Ce sont les solutions de l'équation $3x^2 - 12x + 12 = 0$. Le discriminant vaut $\Delta = 144 - 144 = 0$. Il y a donc une racine qui est

$$x_0 = \frac{12}{6} = 2.$$

Donc 2 est valeur interdite de f(x).

(b) Résoudre l'inéquation $f(x) \ge 0$.

Solution : On a le tableau de signes suivant.

x	$-\infty$		-1		$\frac{1}{3}$		1		2		+∞
<i>x</i> + 1		_	0	+		+		+		+	
$3x^2 - 10x + 3$		+		+	0	_	0	+		+	
$3x^2 - 12x + 12$		+		+		+		+	0	+	
f(x)		_	0	+	0	_	0	+		+	

Et donc $\mathcal{S} = \left[-1; \frac{1}{3}\right] \cup [1; 2[.$

Exercice 5 – Soit $f(x) = x + \frac{16}{x}$. Montrer que $f(x) \ge 8$ pour tout $x \in \left]0; +\infty\right[$.

Solution: On a

$$f(x) \ge 8 \iff x + \frac{16}{x} - 8 \ge 0$$

$$\iff \frac{x \times x + 16 - 8x}{x} \ge 0$$

$$\iff \frac{x^2 - 8x + 16}{x} \ge 0$$

Or je reconnais en $x^2 - 8x + 16$ une identité remarquable :

$$x^{2} - 8x + 16 = x^{2} - 2 \times x \times 4 + 4^{2} = (x - 4)^{2}$$
.

On en déduit le tableau de signe suivant.

x	$-\infty$		0		4		+∞
$(x-4)^2$		+		+	0	+	
x		-	0	+		+	
$\frac{x^2 - 8x + 16}{x}$		_		+	0	+	

Donc pour tout $x \in \left]0; +\infty\right[$, on a bien $\frac{x^2 - 8x + 16}{x} \ge 0$ *i.e.*, $f(x) \ge 8$.