Может ли длина суммы этих векторов равняться а) 1998; б)\*  $\sqrt{1998}$ ? Ответ на оба вопроса задачи утвердительный. Начнем построение примера к пункту а). Длина суммы  $\overrightarrow{OB2} + \overrightarrow{OB3} + \overrightarrow{OB4}$  векторов рисунка 2 равна 2. Чтобы построить систему векторов, длина суммы которых равна 3, помимо шестиугольника рассмотрим пятиугольник (рис.3).



Благодаря формуле (1) сумма четырех векторов  $\overrightarrow{OC}_1 + \overrightarrow{OC}_2 + \overrightarrow{OC}_3 + \overrightarrow{OC}_4$ , проведенных из центра в четыре вершины правильного пятиугольника, противоположна вектору  $\overrightarrow{OC}_5$ , соединяющему центр с пятой вершиной пятиугольника. И вершины пятиугольника, и вершины пятиугольника, и вершины вершины вершины нестиугольника лежат в вершинах

правильного 30-угольника. Аналогично, чтобы построить систему векторов,



длина суммы которых равна 4, добавим еще 6 векторов  $\overrightarrow{OA}_1, \dots \overrightarrow{OA}_6$ , соединяющих центр с вершинами семиугольника (см. рис.1). Продолжая в таком же духе, мы и получим пример к пункту а). Формальное описание изложенной конструкции таково. Пусть  $n_1, n_2, \dots n_{1998}$  — попарпольное попартинами.

но взаимно простые числа. Рассмотрим правильный  $n_1 n_2 \dots n_{1998}$  -угольник. Зафиксируем некоторую его вершину А. Назовем «выделенным»  $n_i$  -угольником  $(i=1,\dots 1998)$  правильный  $n_i$  -угольник, одной из вершин которого является точка A, а другие вершины являются вершинами  $n_1 n_2 \dots n_{1998}$  -угольника. Выделенные  $n_i$  -угольник и  $n_i$  -угольник  $(i \neq j)$  имеют, благодаря взаимной простоте чисел  $n_i$  и  $n_j$ , единственную общую вершину А. Рассмотрим векторы, идущие из центра О многоугольника во все вершины всех выделенных  $n_i$  угольников, кроме A. Их сумма равна  $-1998\vec{OA}$ , что и требовалось. б) В следующем разделе статьи мы построим с привлечением комплексных чисел сумму длиной  $\sqrt{n}$  при любом натуральном n, а пока предлагаем ряд упражнений. Тот, кто справится с ними, получит решение пункта б), не использующее никаких выходящих за рамки школьной программы понятий (но, к сожалению, существенно использующее специфику числа  $\sqrt{1998}$  ).

**Упражнение 1**. Воспользовавшись приемом решения пункта а), докажите, что если можно представить в искомом виде (т.е. в виде суммы векторов, проведенных из центра вписанного в единичную окружность правильного многоугольника в его вершины) некоторый вектор  $\vec{v}$ , то можно представить в таком виде и вектор  $\vec{av}$ , где a –

натуральное число.

Упражнение 2. Докажите, что если можно представить в искомом виде вектор длиной x, то можно представить в таком виде и вектор длиной а)  $x\sqrt{a^2+b^2}$ , б)  $x\sqrt{a^2+2b^2}$ , где a и b — натуральные числа. Замечание. Если в искомом виде можно представить некоторый вектор длиной  $\sqrt{m}$ , то можно представить и вектор длиной  $\sqrt{2m}$ . Поэтому в дальнейшем мы можем искать вектор длиной  $\sqrt{n}$  только для нечетных n.

**Упражнение 3.** Решите пункт 6) задачи M1648. Указание.  $\sqrt{1998} = \sqrt{3^2 + 18^2} \cdot \sqrt{2^2 + 2 \cdot 1^2}$ .

## Корни из еденицы

Сейчас мы запишем равенство (1) в довольно неожиданном виде. Для этого рассмотрим уравнение  $z^{n-1} = 0$  и разложим его левую часть на множители:

$$(z-1)(z^{n-1}+z^{n-2}+\ldots+z+1)$$

Значит, если  $z^n = 1$  и  $z \neq 1$ , то

$$z^{n-1} + z^{n-2} + \ldots + z + 1 = 0$$
 (2)

. В статье «Многочлены деления круга» («Квант» №1 за 1998 год) рассказано о том, что уравнение  $z^n=1$  имеет n решений – «корней из единицы». Они являются вершинами правильного n-угольника, вписанного в единичную окружность, и имеют вид

$$\zeta^k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n},$$

где  $\zeta=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}, k=1,\ldots,n$ . Сумма всех корней n-й степени из единицы (при n>1) равна 0:

$$1 + \zeta + \ldots + \zeta^{n-2} + \zeta^{n-1} = 0$$

. Это, по сути, и есть равенство (1)! Зная все n корней  $\zeta, \zeta^2, \ldots, \zeta^n (=1)$  многочлена  $\zeta^n - 1$ , мы можем разложить его на множители:

$$\zeta^n - 1 = (z - \zeta)(z - \zeta^2) \dots (z - \zeta^{n-1})(z - 1)$$
 (3)

Сократив обе части на z-1, получим

$$z^{n-1} + z^{n-2} + \dots + z + 1 = (z - \zeta)(z - \zeta^2) \dots$$
  
  $\dots (z - \zeta^{n-1})$  (4)

Подставим в последнее равенство вместо z число 1:

$$n = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{n-1}). \tag{5}$$

Упражнение 4. Чтобы получить равенство (5), мы подставили z=1 в равенство (4), которое получилось делением на  $z^-1$  обеих частей равенства (3). Объясните, почему так делать можно, хотя «на ноль делить нельзя». Пусть n — нечетное число. Тогда все множители правой части (5) можно разбить на комплексно сопряженные (т.е. симметричные относительно оси абсцисс) пары чисел  $1-\zeta^k=1-\cos\frac{2\pi k}{n}-i\sin\frac{2\pi k}{n}$  и  $1-\zeta^{n-k}=1-\cos\frac{2\pi k}{n}+i\sin\frac{2\pi k}{n}$  (рис. 4.) Взяв из каждой пары сопряженных множителей только один множитель, мы получим число, модуль которого — квадратный корень из

| № бутылки | время наполнения | время закупоривания |
|-----------|------------------|---------------------|
| 4         | 2                | 4                   |
| 6         | 5                | 12                  |
| 1         | 7                | 10                  |
| 2         | 9                | 8                   |
| 5         | 11               | 6                   |
| 3         | 3                | 1                   |