Diplomová práce

České vysoké učení technické v Praze

F1

Fakulta stavební Katedra betonových a zděných konstrukcí

Výpočetní nástroje pro analýzu keramobetonových stropních a střešních systémů z trámů a vložek s využitím pokročilých numerických metod

Bc. Daniel Beránek

Vedoucí práce: Ing. Radek Štefan, Ph.D. Studijní program: Stavební inženýrství Specializace: Konstrukce pozemních staveb

Květen 2024

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Beránek	Jméno: Daniel	Osobní číslo:	48465

Fakulta/ústav: Fakulta stavební

Zadávající katedra/ústav: Katedra betonových a zděných konstrukcí

Studijní program: Stavební inženýrství

Studijní obor: Konstrukce pozemních staveb

ÚDAJE K DIPLOMOVÉ PRÁ Název diplomové práce:		
	eramobetonových stropních a střešních metod	ch systémů z trámů a vložek s
Název diplomové práce anglicky:		
Computational tools for analysis numerical methods	of clay beam-and-block floor and roof	systems using advanced
Pokyny pro vypracování:		
Rešerše literatury Popis výpočetních modelů a metod Popis výpočetních nástrojů Verifikace a validace výpočetních nástr Vzorové příklady Závěr	ojů	
Seznam doporučené literatury:	AD	
ČSN EN 1990 Zásady navrhování kons ČSN EN 1991 Zatížení konstrukcí ČSN EN 1992 Navrhování betonových ČSN EN 1994 Navrhování spřažených ČSN EN 1995 Navrhování dřevěných k ČSN EN 15037-1 Betonové prefabrikát	konstrukcí ocelobetonových konstrukcí	Trámy
Jméno a pracoviště vedoucí(ho) dipl	omové práce:	
Ing. Radek Štefan, Ph.D. kated	ra betonových a zděných konstrukcí	FSv
Jméno a pracoviště druhé(ho) vedou	ucí(ho) nebo konzultanta(ky) diplomové p	ráce:
Datum zadání diplomové práce: _	Termín odevzdání dip	lomové práce:
Platnost zadání diplomové práce:		
Ing. Radek Štefan, Ph.D. podpis vedouc/(ho) práce	podpis vedoucí(ho) ústavu/katedry	podpis děkana(ky)
PŘEVZETÍ ZADÁNÍ		
	ovat diplomovou práci samostatně, bez cizí pomoci, s vý	

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání Podpis studenta

Poděkování

Prohlášení

TODO: Mamko a Taťko, jste nejlepší fakt dobry jjj

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 20.5.2024

Bc. Daniel Beránek

Abstrakt

Rozvíjíme test ...

Klíčová slova: TODO Klíčová slova

Vedoucí práce: Ing. Radek Štefan,

Ph.D.

Abstract

We develop ...

Keywords: TODO Keywords

Title translation: Computational tools for analysis of clay beam-and-block floor

and roof systems using advanced

numerical methods

Obsah

Seznam použitých symbolů				
Úvod	3			
Motivace	3			
Cíle	3			
Část I Rešerše				
1 Historie a vývoj stropních systémů	ů 7			
2 Předchozí práce	9			
Část II Teoretická část				
3 Materiálové modely	13			
3.1 Pracovní diagramy betonu	13			
3.1.1 Nelineární PD	13			
3.1.2 Parabolicko-rektangulární PD	13			
3.1.3 Bilineární PD	13			
3.1.4 Obdélníkové rozdělění	13			
3.1.5 Lineární PD	13			
3.1.6 Lineární tah	13			
3.1.7 Lineární tah se zpevněním 3.2 Pracovní diagramy betonářské	13			
výztuže	13			
3.2.1 Bez omezení	13			
3.2.2 Se stoupající horní větví	13			
3.3 Pracovní diagramy pro konstrukčn	ıí			
výztuž	13			
4 Pracovní diagram průřezu	15			
4.1 Prostý ohyb	15			
síly	15			
5 Metoda konečných prvků	17			
5.1 Deformační metoda	17			
5.1.1 Lineární výpočet	17			
5.2 MKP	17			
5.2.1 Nelineární výpočet	17			
5.2.2 Iterační výpočet průhybu	17			
Část III				
Praktická část				
6 Pracovní diagram průřezu	21			
6.1 Algoritmus	21			

7 Nelineární odezva konstrukce	23	
7.1 Algoritmus	23	
7.2 Příklady	23	
Shrnutí a diskuze		
Závěr	27	
Přílohy		
A Komplexní software pro optimalizaci návrhu a posouzení		
střešních a stropních konstrukcí	31	

Obrázky Tabulky

Seznam použitých symbolů

 $f_{\rm ck}$ charakteristická hodnota pevnosti betonu v tlaku

Úvod

Motivace

Uplatnění výstupů diplomové práce v aplikaci...

Zrychlení procesu předběžného návrhu a posouzení stropních a střešních konstrukcí...

Cíle

Sjednocení a popsání problematiky...

Popsání algoritmů pro výpočet interakčního diagramu průřezu...

Implementace (refactor stávajícího) algoritmu...

Část I

Rešerše

Kapitola $oldsymbol{1}$

Historie a vývoj stropních systémů

V téhle kapitole bych zmínil nějakou omáčku okolo, dal pár obrázků stropů/střech od různých výrobců, zmínil současný stav (posuzování podle tabulek pro prosté nosníky)

Předchozí práce

Tady bych rád navázal na bakalářku, vysvětlil, co budu řešit (pracovní diagram průřezu pro kombinaci ohyb + normálová síla, nelineární odezvu nosníku na zatížení ohybem + normálovou silou).

Část II

Teoretická část

Materiálové modely

Tady se budu hodně opakovat s bakalářkou (v podstatě to bude úplně to samé), mám tuhle část vypustit a odkázat se na bakalářku?

- 3.1 Pracovní diagramy betonu
- 3.1.1 Nelineární PD
- 3.1.2 Parabolicko-rektangulární PD
- 3.1.3 Bilineární PD
- 3.1.4 Obdélníkové rozdělění
- 3.1.5 Lineární PD
- 3.1.6 Lineární tah
- 3.1.7 Lineární tah se zpevněním

(Tohle v bakalářce nemám)

- 3.2 Pracovní diagramy betonářské výztuže
- 3.2.1 Bez omezení
- 3.2.2 Se stoupající horní větví
- 3.3 Pracovní diagramy pro konstrukční výztuž

V přihlášce k projektu byli slíbené i ocelobetonové prvky, concrete-properties zvládá i ocelobetonové průřezy, možná bych to sem taky přidal?

Pracovní diagram průřezu

K čemu je to dobrý, proč to potřebujeme \dots

4.1 Prostý ohyb

Krátké shrnutí z bakálářky.

4.2 Kombinace ohybu a normálové síly

Odvození vztahů na obecném průřezu ...

Metoda konečných prvků

- 5.1 Deformační metoda
- 5.1.1 Lineární výpočet

Krátce shrnout deformační metodu (odkázat na bakálářku)

- 5.2 MKP
- 5.2.1 Nelineární výpočet
- 5.2.2 Iterační výpočet průhybu

Vbakalářce (kap. 2.4) mám celkem odbytý popis iteračních metod, tady bych je líp shrnul \ldots

Část III

Praktická část

Pracovní diagram průřezu

6.1 Algoritmus

Algoritmus, který používají concrete-properties je hodně pomalý (výpočet jedné křivky z příkladu v odkazu u mě trval cca 40 vteřin).

Algoritmus, který jsem používal v bakalářce na tom byl podobně, možná byl ještě pomalejší, což byl problém, protože ve WB aplikaci se musí výpočítat PD pro více různých průřezů \rightarrow velká výpočetní náročnost.

Nakonec v aplikaci používáme "zjednodušený" pracovní diagram, kde spojím jen pár bodů, kde se něco děje (viz kap. 2.3.3)

Možnosti

- Refactor zdrojového kódu concrete-properties trochu jsem se jim v tom hrabal a sundal jsem výpočetní čas na polovinu, šlo by to určitě ještě mnohem více (zároveň bych to mohl uvést jako jeden z výstupů diplomky)
- Refactor mého kódu na výpočet moment-křivost.

6.2 Příklady

Porovnat různé materiálové modely, případně porovnat výstup mého výpočtu s výstupem z concrete-properties,

porovnat různé stupně vyztužení, třídy betonu apd.

Nelineární odezva konstrukce

Implementace výpočtu nelineárního průhybu pro konstrukce zatížené momentem + normálovou silou. . .

7.1 Algoritmus

7.2 Příklady

Nějaké příklady...

Porovnat rozdíly výpočtů stejné konstrukce jinými přístupy (postupné zatěžovaní, napálení celého zatížení od kroku 0...)

Shrnutí a diskuze

Shrnutí celé diplomky, problémy/zajímavosti apd., diskuze příkladů...

Závěr

Znova popis toho, co jsem udělal, vyhodnocení stanovených cílů \dots

Přílohy

Příloha **A**

Komplexní software pro optimalizaci návrhu a posouzení střešních a stropních konstrukcí

Rozepsat se o aplikacewb, dát sem nějaký obrázky z GUI, popsat, jak to funguje. . .