Seismic Globe: 3D Visualization of Global Earthquake Activity (2020–2024)

Ghulam Abbas Zafari ghulamabbas.zafari@mail.polimi.it

August 1, 2025

Abstract

Seismic Globe is an interactive 3D visualization tool that maps global earthquake activity from 2020 to 2024. The system fetches near-real-time seismic data from the USGS Earthquake API, processes it using Python's scientific stack, and renders an animated globe with magnitude-scaled markers color-coded by depth. The project serves as both an educational tool for geoscience and a template for geospatial data visualization.

1 Technical Overview

The system architecture comprises three core components:

1.1 Data Acquisition

- Fetches M5.0+ earthquakes from USGS API (2020–2024)
- Implements automatic retry logic for API failures
- Caches data locally as CSV for offline analysis

1.2 Visualization Engine

- Plotly-based 3D globe rendering
- Dynamic marker scaling: $size = 2^{magnitude}$
- Depth-based colormap (0-700km: blue to red gradient)

1.3 Animation Pipeline

- 360° rotation at 12 frames per second
- Imageio-based MP4 encoding
- Configurable resolution (default 1920×1080)

2 Installation

2.1 Prerequisites

Listing 1: System requirements

- 1 Python >= 3.8
- 2 GPU with WebGL support (recommended)

2.2 Setup

Listing 2: Installation commands

```
git clone https://github.com/zafariabbas68/Seismic-Globe.git
cd Seismic-Globe
pip install -r requirements.txt
```


Figure 1: Workflow diagram

Figure 2: Seismic Globe data processing pipeline

3.1 Data Fetching

Listing 3: USGS API query

```
import requests

url = "https://earthquake.usgs.gov/fdsnws/event/1/query"

params = {
    "format": "geojson",
    "starttime": "2020-01-01",
    "endtime": "2024-12-31",
    "minmagnitude": 5.0
}

response = requests.get(url, params=params)
```

3.2 Interactive Visualization

Key visualization parameters:

- $\bullet \ {\tt marker_size} \colon base_size \times 2^{magnitude-5}$
- color_scale: Viridis gradient normalized to 0-700km depth
- \bullet rotation_speed: 0.5° per frame

4 Output Samples

Earthquakes (2020-2024) on a 3D Rotating Globe

Figure 3: Enter Caption

5 Performance Metrics

Metric	Value
Data fetch time (2020–2024)	$2.3s \pm 0.4s$
Globe render time (initial)	1.8s
Animation generation (30s @24fps)	4m22s
Final MP4 filesize	$18.7 \mathrm{MB}$

Table 1: System performance characteristics

6 Technical Specifications

6.1 Data Schema

• time: ISO 8601 timestamp

• latitude/longitude: WGS84 coordinates

• depth: km (0-700)

• mag: Richter scale (5.0–9.5)

• place: Nearest geographical feature

6.2 File Structure

```
Seismic-Globe/
data/
                           # Raw GeoJSON backups
frames/
                           # Animation frames (PNG)
outputs/
                           # Rendered videos
 src/
                         # USGS data fetcher
    api_handler.py
    globe_builder.py
                         # Plotly visualization
    animation.py
                         # Frame rendering
 earthquake_data.csv
                          # Processed dataset
```

7 Applications

• Seismology Education: Visualizing plate tectonics

• Disaster Preparedness: Identifying high-risk zones

• Journalism: Interactive data stories

• Research: Spatial-temporal pattern analysis

8 Extensions and Future Work

- Real-time data streaming
- Historical comparison mode
- Tsunami risk overlay
- VR/AR compatibility

Acknowledgments

This work utilizes data provided by:

- United States Geological Survey (USGS)
- Plotly Graphing Libraries
- Python Scientific Computing Ecosystem

License

MIT License. See LICENSE for full terms.

Contact

• Author: Ghulam Abbas Zafari

• Email: ghulamabbas.zafari@mail.polimi.it

• Repository: https://github.com/zafariabbas68/Seismic-Globe