

INSIEMI E OPERAZIONI

(parte 3)

Stefania Bandini

INSIEMI ORDINATI

Quanto finora studiato a proposito del concetto di **insieme** non fa riferimento all'ordine con cui gli elementi di un insieme sono elencati.

E' però utile, in determinati casi, specificare un particolare **ORDINAMENTO** all'interno di un dato insieme

Coppia ordinata

Una coppia ordinata è una collezione di due oggetti tale che uno può distinguersi come il primo elemento e l'altro come il secondo elemento. Una coppia ordinata con primo elemento x e secondo elemento y si scrive $\langle x,y\rangle$.

Proprietà 1. $\langle x,y\rangle=\langle z,t\rangle$ sse x=z e y=t.

Notare che $\langle x,y\rangle \neq \langle y,x\rangle$ e che $\langle x,x\rangle$ denota la coppia in cui il primo e il secondo elemento sono uguali tra di loro.

Una rappresentazione insiemistica di $\langle x, y \rangle$ è $\{\{x\}, \{x, y\}\}$.

n-upla ordinata

Una n-upla ordinata di oggetti x_1, \ldots, x_n è definita come

$$\langle x_1, \dots, x_n \rangle = \langle \langle x_1, \dots, x_{n-1} \rangle, x_n \rangle$$

dove $\langle x_1, \ldots, x_{n-1} \rangle$ è una (n-1)-upla ordinata.

PRODOTTO CARTESIANO

Dati due insiemi non vuoti *S* e *T* si definisce prodotto cartesiano

$$S \times T = \{ \langle x, y \rangle \mid x \in S, y \in T \}$$

dove il simbolo <x, y> denota una coppia ordinata, cioè un insieme di due elementi nel quale specifichiamo chi è il primo elemento e chi è il secondo.

Nel caso in cui almeno uno dei due insiemi *S* o *T* sia vuoto, il loro prodotto Cartesiano è **l'insieme vuoto**.

In generale $S \times T \neq T \times S$. Nel caso in cui S = T il prodotto $S \times T$ si denota anche con S^2 .

PRODOTTO CARTESIANO

Una rappresentazione grafica del prodotto Cartesiano di due insiemi.

Prodotto Cartesiano e sequenze

Dati due insiemi S e T, possiamo formare l'insieme $S \times T$ di tutte le coppie $\langle x,y \rangle$ per le quali $x \in S$ e $y \in T$. L'insieme $S \times T$ è chiamato *il prodotto cartesiano* di S e T.

 S^n è l'insieme di tutte le n-uple di elementi di S, per esempio, per n=4, $S^4=(((S\times S)\times S)\times S)$.

Dato un insieme S, σ è una sequenza finita di elementi di S se $\sigma = \langle s_1, \ldots, s_n \rangle$ per qualche intero positivo n e ciascun $s_i \in S$.

Un segmento di una sequenza finita $\sigma = \langle s_1, \ldots, s_n \rangle$ è una sequenza finita $\sigma' = \langle s_k, s_{k+1}, \ldots, s_{m-1}, s_m \rangle$, dove $1 \le k \le m \le n$. Se k = 1 il segmento è detto iniziale.

DAL PRODOTTO CARTESIANO ALLE RELAZIONI

Se a $S \times T$ appartengono tutte le coppie ordinate costituite da un primo elemento tra S e da un secondo elemento tratto da T, ogni sottoinsieme di $S \times T$ potrà essere considerato come una **RELAZIONE** tra gli elementi di S e quelli di T, esplicitata da specifiche proprietà

ESEMPIO

Consideriamo gli insiemi:

S = {Arno, Po, Tevere} e T = {Firenze, Pisa, Torino}

Consideriamo il loro prodotto cartesiano

 $S \times T = \{ < Arno, Firenze >, < Arno, Pisa >, < Arno, Torino >, < Po, Firenze >, < Po, Pisa >, < Po, Torino >, < Tevere, Firenze >, < Tevere, Pisa >, < Tevere, Torino > \}$

Tra tutte le coppie aventi per primo elemento un elemento di S (un fiume) e per secondo un elemento di T (una città), individuiamo quelle costituite dal nome di un fiume e da quello di una città bagnata da quel fiume

R = {<Arno, Firenze>, <Arno, Pisa>, <Po, Torino>}

DAL PRODOTTO CARTESIANO ALLE RELAZIONI

Il sottoinsieme R di $S \times T$ è caratterizzato esattamente dalla proprietà che tutte (e soltanto) le coppie ad esso appartenenti sono costituite da un fiume e da una città bagnata da esso.

Il sottoinsieme R è uno dei possibili sottoinsiemi di S × T

Altri sottoinsiemi possono essere individuati mediante la definizione di altre relazioni denotate da specifiche proprietà

BICOCA WINNERSTRA

FONDAMENTI DELL'INFORMATICA

DAL PRODOTTO CARTESIANO ALLE RELAZIONI

Se si considera la coppia $\langle x, y \rangle$ appartenente a un dato sottoinsieme R di $S \times T$, si dice che l'elemento $x \in S$ ha come corrispondente $y \in T$ nella relazione R, oppure, più semplicemente, che

x è in relazione con y

Una relazione, come ogni sottoinsieme del prodotto cartesiano fra insiemi, può essere rappresentata graficamente con una tabella

	Arno	Ро	Tevere
Torino		•	
Pisa	•		
Firenze	•		

RAPPRESENTAZIONE MATRICIALE

R si può anche rappresentare tramite una matrice booleana

$$\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Ogni riga rappresenta un'elemento in A; ogni colonna un'elemento in B

In questo caso:

- $\langle Arno, Pisa \rangle \in R$
- $\langle Tevere, Pisa \rangle \notin R$

A D O C C Y A D O O UNIVERSITA

FONDAMENTI DELL'INFORMATICA

RELAZIONI BINARIE

Una relazione binaria R tra due insiemi S e T è un insieme di coppie ordinate $\langle x,y \rangle$ con $x \in S$ e $y \in T$: $R \subseteq S \times T$).

Il dominio di R, indicato con dom(R), è l'insieme di tutti gli oggetti x tali che $\langle x,y\rangle\in R$ per qualche y.

Il codominio di R, indicato con codom(R), è l'insieme di tutti gli oggetti y tali che $\langle x,y\rangle\in R$ per qualche x.

L'unione del dominio e del codominio di una relazione R si chiama il *campo* di R oppure *estensione*.

$$dom(R) \cup codom(R)$$

ELEMENTI DI UNA RELAZIONE

dominio

Sia R \subseteq A \times B una relazione

Il dominio di R (dom(R)) è:

l'insieme di tutti gli oggetti $x \in A$ tali che $\langle x,y \rangle \in R$ per qualche $y \in B$

 $dom(R) = \{x \in A \mid \exists y \in B. \langle x,y \rangle \in R\}$

(∃: esiste almeno un ...)

ELEMENTI DI UNA RELAZIONE

codominio

Il codominio di R (codom(R)) è:

l'insieme di tutti gli oggetti $y \in B$ tali che $\langle x,y \rangle \in R$ per qualche $x \in A$

 $codom(R) = \{y \in B \mid \exists x \in A. \langle x,y \rangle \in R\}$

Il campo o estensione di R è:

 $dom(R) \cup codom(R)$

ESEMPIO: DOMINIO E CODOMINIO

- Il dominio di R è {Arno, Po}
- Il codominio di R è B

DIAGRAMMA DI EULERO-VENN:

DOMINIO E CODOMINIO

PROPRIETA' DELLE RELAZIONI

Una relazione R definita su un insieme X è:

- riflessiva se $(x,x) \in R$, $\forall x \in X$, equivalentemente se $I_X \subset R$.
- simmetrica se $(x, y) \in R \implies (y, x) \in R$, equivalentemente se $R = R^t$.
- antisimmetrica se $(x, y) \in R$ e $(y, x) \in R$ \Rightarrow x = y, equivalentemente se $R \cap R^t \subset I_X$.
- transitiva se $(x, y) \in R$ e $(y, z) \in R \Rightarrow (x, z)$.

PROPRIETA' DELLE RELAZIONI

Sia
$$X = \{a, b, c\}$$
 e $R_i \subseteq X \times X$

- $R_1 = \{(a, a), (a, b), (b, a), (a, c)\}$ non riflessiva, non simmetrica, non transitiva, non antisimmetrica
- $R_2 = \{(a,a), (b,b), (c,c), (a,b), (b,a), (a,c)\}$ riflessiva, non simmetrica, non transitiva, non antisimmetrica
- $R_3 = \{(a, a), (b, b)\}$ non riflessiva, simmetrica, transitiva, antisimmetrica

RELAZIONI *n*-ARIE

Una relazione n-aria su un insieme S è un sottoinsieme di S^n , $n \geq 1$. Se n = 1 la relazione R su S si dice *unaria*.

Se n=2 la relazione R su S si dice binaria.

Se n=3 la relazione R su S si dice ternaria.

. . .

OPERAZIONI SU RELAZIONI

 $R_1 \cup R_2$ è una relazione su $S \times T$, ed è costituita da tutte le coppie che appartengono a R_1 o a R_2 .

 $R_1 \cap R_2$ è la relazione costituita da quelle coppie che appartengono a entrambe R_1 e R_2 .

 $\overline{R} = \{\langle x, y \rangle | \langle x, y \rangle \not\in R\} \subseteq S \times T$ è la relazione *complementare* di R.

 $R^{-1} = \{\langle y, x \rangle | \langle x, y \rangle \in R\} \subseteq T \times S$ è la relazione *inversa* di R.

OPERAZIONI SU RELAZIONI

Siano $R, S \subseteq A \times B$ due relazioni

1. se
$$R \subseteq S$$
 allora $\overline{S} \subseteq \overline{R}$

2.
$$\overline{(R \cap S)} = \overline{R} \cup \overline{S} \ e \ \overline{(R \cup S)} = \overline{R} \cap \overline{S}$$

3. se
$$R \subseteq S$$
 allora $R^{-1} \subseteq S^{-1}$

4.
$$(R \cap S)^{-1} = R^{-1} \cap S^{-1} \in (R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

Esempio

Siano
$$A = \{a, b\}, R = \{\langle a, b \rangle, \langle b, a \rangle\}, S = \{\langle a, b \rangle, \langle a, a \rangle\}$$

1.
$$R \cap S = \{\langle a, b \rangle\}$$

2.
$$\overline{(R \cup S)} = \{\langle b, b \rangle\}$$

3.
$$R^{-1} = R$$

4.
$$S^{-1} \neq S$$

L'identità

Dato un insieme A, la relazione

$$I_A = \{\langle x, x \rangle \mid x \in A\}$$

dove ogni elemento è in relazione con se steso si chiama l'identità su A

Proprietà delle Relazioni Binarie

Una relazione $R \subseteq A^2$ è

riflessiva se
$$\langle x, x \rangle \in R$$
 per ogni $x \in A$ $(I_A \subseteq R)$ simmetrica se $\langle x, y \rangle \in R$ implica $\langle y, x \rangle \in R$ $(R = R^{-1})$ antisimmetrica se $\langle x, y \rangle$, $\langle y, x \rangle \in R$ implica $x = y$ $(R \cap R^{-1} \subseteq I_A)$

transitiva se $\langle x, y \rangle$, $\langle y, z \rangle \in R$ implica $\langle x, z \rangle \in R$

Esempio

Sia
$$A = \{a, b, c\}$$

- 1. $R_1 = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle\}$ non riflessiva, non simmetrica, non transitiva, non antisimmetrica
- 2. $R_2 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle\}$ riflessiva, non simmetrica, non transitiva, non antisimmetrica
- 3. $R_3 = \{\langle a, a \rangle, \langle b, b \rangle\}$ non riflessiva, simmetrica, transitiva, antisimmetrica

INSIEMI E OPERAZIONI

(parte 3)

END