Théorème de progression arithmétique de Dirichlet

Sacha Cardonna

Université de Montpellier cardonna.sacha@gmail.com

9 juillet 2020

Théorème de progression arithmétique

Théorème

Soient $a, m \in \mathbb{N}^*$, tels que $a \wedge m = 1$. Il existe une infinité de nombres premiers p vérifiant $p \equiv a[m]$. Autrement dit, la progression arithmétique suivante :

$$\{a+mn\}_{n\in\mathbb{N}}=\{a,a+m,a+2m,...\}$$

admet une infinité de nombres premiers. En notant ${\mathcal P}$ l'ensemble des nombres premiers, on a donc:

$$\operatorname{card}\left(\mathcal{P}\cap\{a+mn\}_{n\in\mathbb{N}}\right)=\infty$$

Figure 1 : Une photographie de Gustav Lejeune-Dirichlet

Plan de la présentation

- 1 Caractères des groupes abéliens finis
 - Premières définitions
 - Propriétés des caractères et dualité
 - Relations d'orthogonalité entre caractères
 - Caractères de Dirichlet
- 2 Séries de Dirichlet
 - Résutats d'analyse complexe
 - Définition et propriétés
 - Séries de Dirichlet à coefficients positifs
 - Séries de Dirichlet proprement dites

- 3 Fonction (de Riemann
 - Produits eulériens
 - Définition et propriétés de la fonction ζ
- 4 L−fonctions de Dirichlet
 - Définition et premières propriétés
 - Non-nullité de $\mathcal{L}(1,\chi)$
- 5 Théorème de progression arithmétique
 - Densité analytique
 - Résultats préliminaires
 - Démonstration du théorème

Caractères des groupes abéliens finis

Premières définitions

Définition d'un caractère

Dans cette partie, on désignera par G un groupe abélien fini. Sa loi sera notée *.

Définition

On appelle caractère de G tout homomorphisme multiplicatif $\chi:G\to\mathbb{C}^*$. On nomme caractère trivial le caractère χ_0 tel que pour tout $g\in G, \chi_0(g)=1$.

ction ζ de Riema0

 \mathcal{L} — fonctions de Diric 000 00000000000 Théorème de progression arithmétiqu

Premières définitions

Définition du dual d'un groupe

Définition

Soient χ_1,χ_2 deux caractères d'un groupe abélien fini G. On définit le produit $\chi_1\chi_2$ en posant $\chi_1\chi_2(g)=\chi_1(g)\chi_2(g), g\in G$. L'ensemble des caractères de G muni de ce produit forme un groupe abélien \widehat{G} appelé dual de G, dont l'élément neutre est le caractère trivial χ_0 .

•00000

Caractères des groupes abéliens finis

Remarques importantes

- Soit *H* un sous-groupe de *G*. Tout caractère de *H* peut être prolongé en un caractère de *G*.
- L'opération de restriction $\rho:\widehat{G}\to\widehat{H}$ définit un homomorphisme. De plus, d'après la remarque précédente, ρ est surjectif. Également, $\operatorname{Ker}(\rho)$ est formé des caractères de G qui sont triviaux sur H. Donc en munissant $\operatorname{Ker}(\rho)$ d'une structure de groupe, on a $\operatorname{Ker}(\rho)\simeq\widehat{G/H}$.
- Supposons que G soit cyclique, d'ordre n et de générateur a. On prend χ un caractère de G, alors $\omega = \chi(a)$ vérifie $\omega^n = 1$, donc est une racine n-ième de l'unité. Inversement, à partir de n'importe quel $\omega \in \mathbb{U}_n$, on peut définir un caractère χ de G au moyen de $g^k \mapsto \omega^k$, $k \in \mathbb{N}$. Ainsi l'application $\chi \mapsto \chi(g)$ est un isomorphisme de \widehat{G} sur le groupe \mathbb{U}_n des racines n-ièmes de l'unité, et donc on obtient que \widehat{G} est cyclique d'ordre n.

Égalité des ordres

Proposition

Le groupe dual \widehat{G} est de même ordre que G.

Preuve. Supposons que $\operatorname{ord}(G) = n$. On procède par récurrence sur n. Le cas n=1 est trivial. Pour n>1, on prend H un sous-groupe cyclique non-trivial de G. On sait que $\operatorname{ord}(\widehat{G}) = \operatorname{ord}(\widehat{H}) \times \operatorname{ord}(\widehat{G/H})$. Or H et son dual sont de mêmes ordres (H étant un groupe cyclique). Également, G/H et son dual sont de mêmes ordres car $\operatorname{ord}(G/H) < n$. Donc

 $\operatorname{ord}(\widehat{G}) = \operatorname{ord}(H) \times \operatorname{ord}(G/H) = \operatorname{ord}(G)$, ce qu'on voulait démontrer.

Proposition

Le groupe dual \widehat{G} est isomorphe à G.

Preuve. Cette proposition est déjà connue pour un groupe cyclique. On sait que tout groupe abélien fini est produit direct de *m*-groupes cycliques. On se charge donc de montrer que le produit direct des duaux est isomorphe au dual du produit, en considérant l'application suivante :

$$\psi : \widehat{G} \longrightarrow \widehat{H_1} \times \cdots \times \widehat{H_m}$$
$$\chi \longmapsto (\chi_{|H_1}, \dots, \chi_{|H_m})$$

Proposition

Le groupe dual \widehat{G} est isomorphe à G.

Preuve. On constate que ψ est injective car :

$$\operatorname{Ker}(\psi) = \{ \chi \in \widehat{\mathsf{G}} \mid (\chi_{|H_1}, \dots, \chi_{|H_m}) = (\chi_0, \dots, \chi_0) \} = \{ \chi_0 \}$$

L'égalité des ordres $\operatorname{ord}(\widehat{G}) = \operatorname{ord}(\widehat{H_1} \times \cdots \times \widehat{H_m})$ implique la surjectivité comme ψ est injective, donc ψ est un isomorphisme.

Proposition

Le groupe bidual \hat{G} est canoniquement isomorphe à G.

Preuve. Si $g \in G$, l'application $\delta_g : \chi \mapsto \chi(g)$ est un caractère de \widehat{G} . On obtient donc le morphisme δ suivant :

$$\delta: G \longrightarrow \hat{G}$$
$$g \longmapsto \delta_g(g)$$

Montrons que δ est un isomorphisme. On sait qu'un groupe et son dual sont de même ordre, donc $\operatorname{ord}(G) = \operatorname{ord}(\widehat{G}) = \operatorname{ord}(\widehat{G})$.

Proposition

Le groupe bidual \hat{G} est canoniquement isomorphe à G.

Preuve. On doit donc juste démontrer que δ est injectif, c'est-à-dire que pour $g \in G, g \neq 1$, il existe un caractère χ de G tel que $\chi(g) \neq 1$. Soit H le sous-groupe de G engendré par g. En reprenant les notations de la preuve précédente, on sait que pour tout $\eta \in \mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}$, il existe χ caractère de H tel que $\chi(g) = \eta$, donc si $\eta \neq 1$, $\chi(g) \neq 1$. De plus, on sait qu'on peut prolonger χ en un caractère de G. Donc δ est injectif, donc $\hat{G} \simeq G$, ce qu'il fallait prouver.

Relations d'orthogonalité entre caractères

Première relation d'orthogonalité

Théorème

Soit G un groupe abélien fini. On a :

$$\sum_{g \in G} \chi(g) = \begin{cases} \operatorname{ord}(G) & \text{si } \chi = \chi_0 \\ 0 & \text{sinon.} \end{cases}$$

Preuve. Le fait que $\sum_{g \in G} \chi(g) = \operatorname{ord}(G)$ si $\chi = \chi_0$ est évident. Maintenant, si $\chi \neq \chi_0$, on prend $h \in G$ tel que $\chi(h) \neq \chi_0(h) = 1$. Alors :

$$\chi(h) \sum_{g \in G} \chi(g) = \sum_{g \in G} \chi(gh) = \sum_{g \in G} \chi(g) \iff (\chi(h) - 1) \sum_{g \in G} \chi(g) = 0$$

Comme on sait que $\chi(h) \neq 1$, on a forcément que $\sum_{g \in G} \chi(g) = 0$, ce qu'on voulait démontrer.

Relations d'orthogonalité entre caractères

Deuxième relation d'orthogonalité

Corollaire

Soit G un groupe abélien fini, \widehat{G} son dual. On a :

$$\sum_{\chi \in \widehat{G}} \chi(g) = \begin{cases} \operatorname{ord}(G) & \text{si } g = e \\ 0 & \text{sinon.} \end{cases}$$

Preuve. Il suffit d'appliquer la première relation d'orthogonalité sur \widehat{G} , et d'utiliser le fait que $\widehat{\widehat{G}} \simeq G$.

 Caractères des groupes abéliens finis
 Séries de Dirichlet
 Fonction ζ de Riemann
 \mathcal{L} —fonctions de Dirichlet
 Théorème de progression arithmétiq

 00
 00000
 000
 000
 00
 00

 00
 00000
 000000000
 0000000000
 0000000000

 00
 00000
 000000000000
 00000000000

Caractères de Dirichlet

Groupe multiplicatif des entiers inversibles modulo m

Définition

Soit $m \in \mathbb{N}^*$. On définit $(\mathbb{Z}/m\mathbb{Z})^*$ le groupe multiplicatif des entiers inversibles modulo m. C'est un groupe abélien fini, et son ordre est $\phi(m)$, où ϕ est l'indicatrice d'Euler.

Un élément \bar{a} appartient à $(\mathbb{Z}/m\mathbb{Z})^*$ si et seulement si $a \wedge m = 1$.

e Dirichlet Théorème de progression arithmétique

OO OOOOO
OOOOOO

Caractères de Dirichlet

Caractère de Dirichlet

Définition

Un caractère de Dirichlet modulo m est un morphisme de groupes de $(\mathbb{Z}/m\mathbb{Z})^*$ dans le groupe multiplicatif \mathbb{C}^* des complexes non-nuls. On peut l'étendre en une fonction définie sur \mathbb{Z} en posant :

$$\chi(a) = \begin{cases} \chi(\bar{a}) & \text{si } a \land m = 1 \\ 0 & \text{sinon.} \end{cases}$$

Caractères de Dirichlet

Séries de Dirichlet

Formule intégrale de Cauchy

Proposition

Soit U un ouvert simplement connexe du plan complexe $\mathbb C$. On considère $f:U\to\mathbb C$ une fonction holomorphe sur U. Soit $\gamma:[a,b]\to\mathbb C$ un lacet inclus dans U, et soit $z\in U\setminus\gamma([a,b])$. On a alors la formule suivante :

$$f(z) \cdot \operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Quelques lemmes

Lemme

Soit U un ouvert de \mathbb{C} , et f_n une suite de fonctions holomorphes sur U, convergente uniformément sur tout compact vers une fonction f. Alors la fonction f est holomorphe sur U et toutes les dérivées de f_n convergent vers les dérivées de f.

Preuve. Soit D un disque fermé contenu dans U, et soit C son bord, orienté positivement. La formule de Cauchy nous donne :

$$f_n(z_0) = \frac{1}{2\pi i} \oint_C \frac{f_n(z)}{z - z_0} dz$$

où $z_0 \in D$. Par passage à la limite, on a :

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} \, \mathrm{d}z$$

ce qui montre bien que f est holomorphe dans $\mathring{\mathcal{D}}$.

Quelques lemmes

Lemme

Soit U un ouvert de \mathbb{C} , et f_n une suite de fonctions holomorphes sur U, convergente uniformément sur tout compact vers une fonction f. Alors la fonction f est holomorphe sur U et toutes les dérivées de f_n convergent vers les dérivées de f.

Preuve. Pour montrer que les dérivées de f_n convergent vers les dérivées de f, on raisonne de manière identique en appliquant :

$$f'(z_0) = -\frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$$

ce qui achève la preuve.

C-fonctions de Dirichle

Fhéorème de progression arithmétiqu

Résutats d'analyse complexe

Quelques lemmes

Lemme d'Abel

Soient deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$. Pour tout $m,m',p\in\mathbb{N}$, on pose $A_{m,p}$ et $S_{m,m'}$ tels que :

$$A_{m,p} = \sum_{n=m}^{p} a_n$$
 et $S_{m,m'} = \sum_{n=m}^{m'} a_n b_n$

Alors on peut écrire ce qu'on appelle une transformation d'Abel :

$$S_{m,m'} = A_{m,m'}b_{m'} - \sum_{n=m}^{m'-1} A_{m,n}(b_{n+1} - b_n) = A_{m,m'}b_{m'} + \sum_{n=m}^{m'-1} A_{m,n}(b_n - b_{n+1})$$

Quelques lemmes

Lemme

Soient $\alpha, \beta \in \mathbb{R}$ tels que $0 < \alpha < \beta$, et soit z = x + iy un nombre complexe où $\Re(z) = x > 0$. On a alors :

$$\left|e^{-\alpha z}-e^{-\beta z}\right| \leq \left|\frac{z}{x}\right| \left(e^{-\alpha x}-e^{-\beta x}\right)$$

Preuve. On écrit simplement :

$$e^{-\alpha z} - e^{-\beta z} = z \int_{\alpha}^{\beta} e^{-tz} dt$$

On passe alors en valeurs absolues :

$$\left| e^{-\alpha z} - e^{-\beta z} \right| \le |z| \int_{\alpha}^{\beta} e^{-tx} dt = \frac{|z|}{x} (e^{-\alpha x} - e^{-\beta x})$$

Ш

Définition et propriétés

Définition d'une série de Dirichlet

Définition

Soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que $\lim_{n\to\infty}\lambda_n=+\infty$.

On suppose que tous les termes de la suite sont positifs (quitte à supprimer les termes négatifs, en nombre fini).

Soit $(a_n)_{n\in\mathbb{N}}$ une suite quelconque de nombres complexes. Pour $z\in\mathbb{C}$, on appelle série de Dirichlet d'exposants $(\lambda_n)_{n\in\mathbb{N}}$ une série de la forme :

$$f(z) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n z}$$

Convergence uniforme d'une série de Dirichlet

00000

Théorème

Si la série de Dirichlet $f(z) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n z}$ converge pour $z = z_0$, alors elle converge uniformément dans tout domaine de la forme $\Re(z-z_0) > 0$, avec $|\arg(z-z_0)| \leq \alpha$, où $\alpha < \pi/2$.

Preuve. Supposons qu'on ait une série de Dirichlet f(z) convergente pour $z=z_0=0$. On a donc $\sum_{n=1}^{\infty} a_n$ qui converge. On prend un domaine $\Re(z)\geq 0$ et $|\arg(z)| \le \alpha < \pi/2$. Soit $\varepsilon > 0$. On sait que $\sum_{n=1}^{\infty} a_n$ converge donc il existe N tel que pour tous m, m' > N, $|A_{m,m'}| \ge \varepsilon$, où $A_{m,m'} = \sum_{n=-\infty}^{m'} a_n$. On applique alors la transformation d'Abel vue précédemment, avec $b_n = e^{-\lambda_n z}$:

$$S_{m,m'} = A_{m,m'}e^{-\lambda_{m'}z} + \sum_{n=m}^{m'-1} A_{m,n}(e^{-\lambda_n z} - e^{-\lambda_{n+1}z})$$

Convergence uniforme d'une série de Dirichlet

Théorème

Si la série de Dirichlet $f(z) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n z}$ converge pour $z = z_0$, alors elle converge uniformément dans tout domaine de la forme $\Re(z - z_0) \ge 0$, avec $|\arg(z - z_0)| \le \alpha$, où $\alpha < \pi/2$.

Preuve. Posons z = x + iy, et appliquons un lemme vu précédemment pour obtenir, pour m, m' > N:

$$|S_{m,m'}| \le \left(1 + \frac{|z|}{x} \sum_{n=m}^{m'-1} (e^{-\lambda_n x} - e^{-\lambda_{n+1} x})\right)$$

On remarque que :

$$|\arg(z)| \le \alpha \iff \cos(\arg(z)) \ge \cos(\alpha) \iff \frac{|z|}{\Re(z)} \le \frac{1}{\cos(\alpha)}$$

Définition et propriétés

Convergence uniforme d'une série de Dirichlet

Théorème

Si la série de Dirichlet $f(z) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n z}$ converge pour $z = z_0$, alors elle converge uniformément dans tout domaine de la forme $\Re(z - z_0) \ge 0$, avec $|\arg(z - z_0)| \le \alpha$, où $\alpha < \pi/2$.

Preuve. On pose alors $k := (\cos(\alpha))^{-1}$, et on en déduit :

$$|S_{m,m'}| \leq \varepsilon \left(1 + k(e^{-\lambda_{m^{\chi}}} - e^{-\lambda_{m'}^{\chi}})\right)$$

D'où:

$$|S_{m,m'}| \leq \varepsilon (1+k)$$

Ceci démontre la convergence uniforme dans $\Re(z) \geq 0$.

0000

Définition et propriétés

Quelques corollaires

Corollaires

- Si f converge pour $z=z_0$, f converge pour tout z tel que $\Re(z)>\Re(z_0)$, la fonction ainsi définie étant holomorphe.
- L'ensemble de convergence de la série f contient un demi-plan ouvert maximal, qu'on nomme demi-plan de convergence. Notons que si le demi-plan de convergence est donné par $\Re(z) > \rho$, on appelle ρ l'abscisse de convergence de la série considérée.
- $f(z) \to f(z_0)$ lorsque z tend vers z_0 en restant dans le domaine $\Re(z-z_0)$, et $|\arg(z-z_0)| \leq \alpha$, avec $\alpha < \pi/2$.
- La fonction f ne peut être identiquement nulle que que si tous ses coefficients sont nuls.

Séries de Dirichlet

Proposition

Soit $f(z) = \sum a_n e^{-\lambda_n z}$ une série de Dirichlet où tous les coefficients a_n sont réels positifs. Soit ρ l'abscisse de convergence de la série f. Supposons que fconverge sur le domaine $\Re(z) > \rho$ et que la fonction f puisse être prolongée analytiquement en une fonction holomorphe au voisinage de $z = \rho$. Il existe alors $\varepsilon > 0$ tel que pour $\Re(z) > \rho - \varepsilon$, f converge.

Preuve. On étudie le voisinage $z = \rho$ en supposant $\rho = 0$. La fonction f étant holomorphe à la fois sur $\Re(z) > 0$ et au voisinage de 0, elle est donc holomorphe sur le disque $D_{\varepsilon} = \{z \in \mathbb{C} \mid |z-1| \le 1+\varepsilon\}$, où $\varepsilon > 0$. Ainsi sa série de Taylor converge dans D_{ε} , et par le lemme sur la convergence des f_n , on en déduit la dérivée p-ième de f, pour $\Re(z) > 0$:

$$f^{(p)}(z) = \sum_{n=0}^{\infty} a_n (-\lambda_n)^p e^{-\lambda_n z}$$

Séries de Dirichlet à coefficients positifs

Proposition

Soit $f(z) = \sum a_n e^{-\lambda_n z}$ une série de Dirichlet où tous les coefficients a_n sont réels positifs. Soit ρ l'abscisse de convergence de la série f. Supposons que fconverge sur le domaine $\Re(z) > \rho$ et que la fonction f puisse être prolongée analytiquement en une fonction holomorphe au voisinage de $z = \rho$. Il existe alors $\varepsilon > 0$ tel que pour $\Re(z) > \rho - \varepsilon$, f converge.

Preuve. D'où:

$$f^{(p)}(1) = (-1)^p \sum_{n=0}^{\infty} a_n \lambda_n^p e^{-\lambda_n}$$

On écrit maintenant la série de Taylor, sur D_{ε} :

$$f(z) = \sum_{p=0}^{\infty} \frac{(z-1)^p}{p!} (-1)^p \sum_{n=0}^{\infty} a_n \lambda_n^p e^{-\lambda_n} = \sum_{p=0}^{\infty} \frac{(z-1)^p}{p!} f^{(p)}(1)$$

Proposition

Soit $f(z) = \sum a_n e^{-\lambda_n z}$ une série de Dirichlet où tous les coefficients a_n sont réels positifs. Soit ρ l'abscisse de convergence de la série f. Supposons que fconverge sur le domaine $\Re(z) > \rho$ et que la fonction f puisse être prolongée analytiquement en une fonction holomorphe au voisinage de $z = \rho$. Il existe alors $\varepsilon > 0$ tel que pour $\Re(z) > \rho - \varepsilon$, f converge.

Preuve. En prenant $z=-\varepsilon$:

$$f(z=-\varepsilon)=\sum_{p=0}^{\infty}\frac{(\varepsilon+1)^p}{p!}(-1)^pf^{(p)}(1)$$

Cette série est bien convergente. Or $(-1)^p f^{(p)}(1) = \sum_{n>0} a_n \lambda_n^p e^{-\lambda_n}$ est par hypothèse convergente à termes positifs. Ainsi la série double est convergente :

$$f(z=-\varepsilon)=\sum_{n=0}^{\infty}\sum_{p=0}^{\infty}\frac{(\varepsilon+1)^p}{p!}a_n\lambda_n^pe^{-\lambda_n}$$

Proposition

Soit $f(z) = \sum a_n e^{-\lambda_n z}$ une série de Dirichlet où tous les coefficients a_n sont réels positifs. Soit ρ l'abscisse de convergence de la série f. Supposons que f converge sur le domaine $\Re(z) > \rho$ et que la fonction f puisse être prolongée analytiquement en une fonction holomorphe au voisinage de $z = \rho$. Il existe alors $\varepsilon > 0$ tel que pour $\Re(z) > \rho - \varepsilon$, f converge.

Preuve. Grâce à la série $e^{\lambda_n(1+\varepsilon)}=\sum_{n=0}^\infty \frac{(\varepsilon+1)^p}{p!}\lambda_n^p$, on regroupe les termes :

$$f(z = -\varepsilon) = \sum_{n=0}^{\infty} a_n e^{-\lambda_n} \sum_{p=0}^{\infty} \frac{(\varepsilon + 1)^p}{p!} \lambda_n^p$$
$$= \sum_{n=0}^{\infty} a_n e^{-\lambda_n} e^{\lambda_n (1+\varepsilon)} = \sum_{n=0}^{\infty} a_n e^{\lambda_n \varepsilon}$$

ce qui démontre que la série de Dirichlet f converge, avec $\rho=0$, pour $\Re(z)>-\varepsilon.$

Fhéorème de progression arithmétiqu DO DOOOO DOOOOO

Séries de Dirichlet proprement dites

Séries de Dirichlet proprement dites

•00

Définition

Soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que $\lambda_n=\ln(n)$. Soit $(a_n)_{n\in\mathbb{N}}$ une suite quelconque de nombres complexes. Pour $s\in\mathbb{C}$, on appelle série de Dirichlet proprement dite une série de la forme :

$$f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

Séries de Dirichlet

000

Propriétés essentielles

Propositions

- Si les termes a_n sont bornés, il y a convergence absolue pour $\Re(s) > 1$.
- Si les sommes partielles $A_{m,p} = \sum_{n=m}^{p} a_n$ sont bornées, il y a convergence (pas nécessairement absolue) de f pour $\Re(s) > 0$.

Preuve. La première est évidente. Pour la deuxième : soit $k \in \mathbb{R}$. Supposons qu'on ait $|A_{m,p}| = \left|\sum_{n=m}^{p} a_n\right| \le k$. On applique de nouveau le lemme d'Abel vu précédemment, et on trouve :

$$|S_{m,m'}| = \left|\sum_{n=m}^{m'} a_n b_n\right| \le k \left(\sum_{n=m}^{m'-1} \left|\frac{1}{n^s} - \frac{1}{(n+1)^s}\right| + \left|\frac{1}{(m')^s}\right|\right)$$

Grâce à la première proposition, on peut supposer $s \in \mathbb{R}$, ce qui permet de réécrire cette inégalité sous la forme simplifiée : $|S_{m,m'}| \leq \frac{k}{m^s}$. On en déduit la convergence, évidente en faisant tendre $m' \to \infty$.

Séries de Dirichlet proprement dites

Fonction ζ de Riemann

Produits eulériens

Produit eulérien pour une série de Dirichlet

Proposition

La série de Dirichlet $\sum_{n=1}^{\infty} \frac{f(n)}{r^s}$ converge absolument pour $\Re(s) > 1$. Sa somme dans ce domaine est alors le produit eulérien convergent suivant, pour $p \in \mathcal{P}$:

$$\prod_{p\in\mathcal{P}}\sum_{k=0}^{\infty}\frac{f(p^k)}{p^{ks}}=\prod_{p\in\mathcal{P}}\left(1+\frac{f(p)}{p^s}+\cdots+\frac{f(p^m)}{p^{ms}}+\ldots\right)$$

Preuve. La convergence de $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ est dûe au fait qu'on a supposé f bornée, une proposition précédente permet de conclure. Soit maintenant $\Gamma \subset \mathcal{P}$ un ensemble fini de nombres premiers. On considère $\mathbb{N}(\Gamma)$ l'ensemble des entiers supérieurs à 1 dont tous les facteurs premiers sont dans Γ . On obtient directement l'égalité suivante :

$$\sum_{n \in \mathbb{N}(\Gamma)} \frac{f(n)}{n^s} = \prod_{p \in \Gamma} \sum_{k=0}^{\infty} \frac{f(p^k)}{p^{ks}}$$

Produits eulériens

Produit eulérien pour une série de Dirichlet

Proposition

La série de Dirichlet $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ converge absolument pour $\Re(s) > 1$. Sa somme dans ce domaine est alors le produit eulérien convergent suivant, pour $p \in \mathcal{P}$:

$$\prod_{p\in\mathcal{P}}\sum_{k=0}^{\infty}\frac{f(p^k)}{p^{ks}}=\prod_{p\in\mathcal{P}}\left(1+\frac{f(p)}{p^s}+\cdots+\frac{f(p^m)}{p^{ms}}+\ldots\right)$$

Preuve. Lorsque le cardinal de Γ croît, on a :

$$\sum_{n\in\mathbb{N}(\Gamma)}\frac{f(n)}{n^s}\longrightarrow\sum_{n=1}^\infty\frac{f(n)}{n^s}$$

On en déduit aisément que le produit eulérien converge, et que sa limite est égale à $\sum \frac{f(n)}{n}$.

Produits eulériens

Mise en produit d'une série de Dirichlet

Proposition

Si f est multiplicative au sens strict, on a :

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{f(p)}{p^s}}$$

Preuve. Comme f est supposée multiplicative au sens strict, on a $f(p^m) = f(p)^m$ pour chaque puissance de nombre premier. On a alors :

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p \in \mathcal{P}} \sum_{k=0}^{\infty} \frac{f(p^k)}{p^{ks}} = \prod_{p \in \mathcal{P}} \sum_{k=0}^{\infty} \frac{f(p)^k}{p^{ks}} = \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{f(p)}{p^s}}$$

Ce qu'on voulait.

Définition de la fonction ζ

Définition

Soit $s\in\mathbb{C}$. On définit la série de Dirichlet suivante, sur le demi-plan $\Re(s)>1$:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

On peut également écrire ζ sous forme de produit, grâce à la proposition précédente :

$$\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}}$$

Cette fonction est communément appelée fonction Zêta de Riemann.

Réécriture de la fonction

Proposition

On peut écrire l'égalité :

$$\zeta(s) = \frac{1}{s-1} + \rho(s)$$

où ρ est une fonction holomorphe sur $\Re(s) > 0$.

Preuve. On peut tout d'abord remarquer que :

$$\frac{1}{s-1} = \int_1^\infty t^{-s} dt = \sum_{n=1}^\infty \int_n^{n+1} t^{-s} dt$$

On écrit maintenant :

$$\zeta(s) = \frac{1}{s-1} + \sum_{n=1}^{\infty} \left(\frac{1}{n^s} - \int_n^{n+1} t^{-s} dt \right) = \frac{1}{s-1} + \sum_{n=1}^{\infty} \int_n^{n+1} (n^{-s} - t^{-s}) dt$$

Réécriture de la fonction

Proposition

On peut écrire l'égalité :

$$\zeta(s) = \frac{1}{s-1} + \rho(s)$$

où ρ est une fonction holomorphe sur $\Re(s) > 0$.

Preuve. On pose alors maintenant:

$$\rho_n(s) = \int_n^{n+1} (n^{-s} - t^{-s}) \, dt$$

et:

$$\rho(s) = \sum_{n=1}^{\infty} \int_{n}^{n+1} (n^{-s} - t^{-s}) dt = \sum_{n=1}^{\infty} \rho_{n}(s)$$

On doit maintenant montrer que ρ est bien définie et holomorphe sur $\Re(s) > 0$.

Réécriture de la fonction

Proposition

On peut écrire l'égalité :

$$\zeta(s) = \frac{1}{s-1} + \rho(s)$$

où ρ est une fonction holomorphe sur $\Re(s) > 0$.

Preuve. On va donc montrer que $\sum \rho_n$ est normalement convergente sur tout compact inclus dans le demi-plan $\Re(s) > 0$. On a donc :

$$|\rho_n(s)| = \left| \int_n^{n+1} (n^{-s} - t^{-s}) dt \right| \le \sup_{n \le t \le n-1} \left| n^{-s} - t^{-s} \right|$$

Par théorème des accroissements finis, on obtient $|\rho_n(s)| \leq \frac{|s|}{n^{\Re(s)+1}}$. Alors, pour tout $\varepsilon > 0$, on a donc bien une série qui converge normalement pour $\Re(s) \geq \varepsilon$. \square

Équivalent avec $\sum_{p \in \mathcal{P}} p^{-s}$

Proposition

Lorsque $s \longrightarrow 1$, on a :

$$\sum_{p\in\mathcal{P}}p^{-s}\sim\ln\left(\frac{1}{s-1}\right)$$

alors que $\sum_{p\geq 2} \sum_{k\geq 2} p^{-ks}$ reste bornée.

Preuve. On utilise le développement en série entière

$$\ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}z^n}{n}$$
. On a donc :

$$\ln(\zeta(s)) = \sum_{k=1}^{\infty} \sum_{p \in \mathcal{P}} \frac{p^{-ks}}{k} = \sum_{p \in \mathcal{P}} \frac{1}{p^s} + \sum_{k=2}^{\infty} \sum_{p \in \mathcal{P}} \frac{p^{-ks}}{k}$$

On pose donc
$$\psi(s) = \sum_{k=2}^{\infty} \sum_{p \in \mathcal{P}} \frac{p^{-ks}}{k}$$
.

Équivalent avec $\sum_{p \in \mathcal{P}} p^{-s}$

Proposition

Lorsque $s \rightarrow 1$, on a :

$$\sum_{p\in\mathcal{P}} p^{-s} \sim \ln\left(\frac{1}{s-1}\right)$$

alors que $\sum_{p\geq 2} \sum_{k\geq 2} p^{-ks}$ reste bornée.

Preuve. La série $\psi(s) = \sum_{k=2}^{\infty} \sum_{p \in \mathcal{P}} \frac{p^{-ks}}{k}$ est alors majorée :

$$\sum_{k=2}^{\infty} \sum_{\rho \in \mathcal{P}} \frac{p^{-ks}}{k} \leq \sum_{k=1}^{\infty} \sum_{\rho \in \mathcal{P}} \frac{1}{p^{ks}} = \sum_{\rho \in \mathcal{P}} \frac{1}{p^s(p^s-1)} \leq \sum_{\rho \in \mathcal{P}} \frac{1}{p(p-1)} \leq \sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$

Or $\sum_{n=2}^{\infty} \frac{1}{n(n-1)} = 1$. Ainsi par théorème d'encadrement, ψ reste bornée, et on remarque que $\ln(\zeta(s)) \sim \ln(\frac{1}{s-1})$ d'après le résultat précédent, ce qui nous permet de conclure.

\mathcal{L} -fonctions de Dirichlet

Définition et premières propriétés

Définition d'une \mathcal{L} -fonction

Dans cette partie, on prend $s \in \mathbb{C}$, $m \in \mathbb{N}^*$ et χ un caratère de Dirichlet modulo m

Définition

La \mathcal{L} -fonction de Dirichlet associée à χ est la série suivante :

$$\mathcal{L}(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

En supposant qu'on a choisi d'étendre χ sur $\mathbb Z$ tout entier, on remarque qu'on peut écrire :

$$\mathcal{L}(s,\chi) = \sum_{n \wedge m=1} \frac{\chi(n)}{n^s} + \sum_{n \wedge m \neq 1} \frac{\chi(n)}{n^s} = \sum_{n \wedge m=1} \frac{\chi(n)}{n^s}$$

Car si $n \wedge m \neq 1$, on sait que $\chi(n) = 0$.

Définition et premières propriétés

Propriétés

Proposition

Supposons qu'on ait $\chi = \chi_0$, alors :

$$\mathcal{L}(s,\chi_0) = \prod_{p|m} (1-p^{-s}) \sum_{n=1}^{\infty} \frac{\chi_0(s)}{n^s} = \prod_{p|m} (1-p^{-s}) \zeta(s)$$

De plus, $\mathcal{L}(s,\chi_0)$ est prolongeable analytiquement pour $\Re(s)>0$ et admet s=1 comme pôle simple.

Preuve. On écrit simplement :

$$\mathcal{L}(s,\chi_0) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \nmid m} \frac{1}{1 - p^{-s}} = \prod_{p \mid m} (1 - p^{-s}) \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-s}} = \prod_{p \mid m} (1 - p^{-s}) \zeta(s)$$

Quant au prolongement analytique de $\mathcal{L}(s,\chi_0)$, il découle des propriétés de la fonction ζ et des résultats d'analyse complexe cités précédemment.

Définition et premières propriétés

Propriétés

Proposition

Supposons qu'on ait $\chi \neq \chi_0$, alors la série $\mathcal{L}(s,\chi)$ converge sur le demi-plan $\Re(s) > 0$. On aura alors :

$$\mathcal{L}(s,\chi) = \prod_{
ho \in \mathcal{P}} rac{1}{1 - rac{\chi(
ho)}{
ho^s}} \; \; \mathsf{pour} \; \; \Re(s) > 1$$

Preuve.

- Étude de la convergence sur $\Re(s) > 0$, en montrant que les sommes $A_{u,v} = \sum_{n=u}^{v} \chi(n)$ sont bornées, grâce aux relations d'orthogonalités entre caractères.
- **Démontrer** la décomposition en produit, en montrant que χ est bornée et multiplicative au sens strict.

Notation

Dans cette partie, on prend $m \in \mathbb{N}^*$ et $p \in \mathcal{P}$. Si $\bar{p} \in (\mathbb{Z}/m\mathbb{Z})^*$, c'est-à-dire si $p \nmid m$, on pose $g(p) = \frac{\phi(m)}{n}$, où $n = \operatorname{ord}(\langle \bar{p} \rangle)$ dans $(\mathbb{Z}/m\mathbb{Z})^*$. On allège également les notations en prenant $\mathcal{G}_m = (\mathbb{Z}/m\mathbb{Z})^*$.

Lemmes

Lemme

Si $p \nmid m$, on a l'identité suivante :

$$\prod_{\chi \in \widehat{\mathcal{G}_m}} (1 - \chi(\rho) \Lambda) = (1 - \Lambda^n)^{g(\rho)}$$

Preuve. On reprend \mathbb{U}_n le groupe des racines *n*-ièmes de l'unité. On admet que $\operatorname{card}(\mathbb{U}_n) = n$. On prouve dans un premier temps que :

$$\prod_{\omega\in\mathbb{U}_n}(1-\omega\mathsf{\Lambda})=1-\mathsf{\Lambda}^n$$

Pour tout $\omega \in \mathbb{U}_n$, on a $\left(\frac{1}{\omega}\right)^n = \frac{1}{\omega^n} = 1$, donc $\frac{1}{\omega}$ est une racine du polynôme $1-\Lambda^n$.

Lemmes

Lemme

Si $p \nmid m$, on a l'identité suivante :

$$\prod_{\chi \in \widehat{\mathcal{G}_m}} (1 - \chi(p)\Lambda) = (1 - \Lambda^n)^{g(p)}$$

Preuve. On a donc :

$$1 - \Lambda^{n} = -\prod_{\omega \in \mathbb{U}_{n}} (\Lambda - \frac{1}{\omega}) = -\prod_{\omega \in \mathbb{U}_{n}} \left(\frac{\omega \Lambda - 1}{\omega} \right) = \frac{-\prod_{\omega \in \mathbb{U}_{n}} (\omega \Lambda - 1)}{\prod_{\omega \in \mathbb{U}_{n}} \omega}$$
$$= -(-1)^{n} \frac{\prod_{\omega \in \mathbb{U}_{n}} (1 - \omega \Lambda)}{\prod_{\omega \in \mathbb{U}_{n}} \omega} = \frac{(-1)^{n+1}}{\prod_{\omega \in \mathbb{U}_{n}} \omega} \prod_{\omega \in \mathbb{U}_{n}} (1 - \omega \Lambda)$$

Le produit des $\omega \in \mathbb{U}_n$ dépend de la parité de n.

Lemmes

Lemme

Si $p \nmid m$, on a l'identité suivante :

$$\prod_{\chi \in \widehat{\mathcal{G}_m}} (1 - \chi(\rho) \Lambda) = (1 - \Lambda^n)^{g(\rho)}$$

Preuve. De plus, pour tout $\omega \in \mathbb{U}_n$, il existe $k \in [0, n-1]$ tel que $\omega = e^{2ik\pi/n}$. Alors:

$$\prod_{\omega \in \mathbb{U}_n} \omega = \prod_{k=0}^{n-1} e^{2ik\pi/n} = \exp\left(\frac{2i\pi}{n} \sum_{k=0}^{n-1} k\right) = \exp\left(\frac{2i\pi n(n-1)}{2n}\right) = \exp((n-1)i\pi)$$

Ainsi, si n est pair, $\prod_{\omega \in \mathbb{U}_n} \omega = -1$, et sinon $\prod_{\omega \in \mathbb{U}_n} \omega = 1$, d'où :

$$\frac{(-1)^{n+1}}{\prod_{\omega \in \mathbb{U}_n} \omega} \prod_{\omega \in \mathbb{U}_n} (1 - \omega \Lambda) = \prod_{\omega \in \mathbb{U}_n} (1 - \omega \Lambda) = 1 - \Lambda^n$$

Lemmes

Lemme

Si $p \nmid m$, on a l'identité suivante :

$$\prod_{\chi \in \widehat{\mathcal{G}_m}} (1 - \chi(\rho) \Lambda) = (1 - \Lambda^n)^{g(\rho)}$$

Preuve. Maintenant, on montre que pour tout $\omega \in \mathbb{U}_n$, il existe g(p) caractères $\chi \in \widehat{\mathcal{G}_m}$ tels que $\chi(p) = \omega$. On prend le morphisme suivant :

$$\psi: \widehat{\mathcal{G}_m} \longrightarrow \mathbb{U}_n$$
$$\chi \longmapsto \chi(p)$$

On a $\operatorname{Ker}(\psi) = \{ \chi \in \widehat{\mathcal{G}_m} \mid \chi(p) = 1 \}$. On sait de plus que $\operatorname{card}\left(\operatorname{Ker}(\psi)\right) \times \operatorname{card}\left(\operatorname{Im}(\psi)\right) = \operatorname{card}\left(\widehat{\mathcal{G}_m}\right) = \phi(m)$, or ψ est surjective par construction, donc card $(\operatorname{Im}(\psi)) = \operatorname{card}(\mathbb{U}_n) = n$.

Lemmes

Lemme

Si $p \nmid m$, on a l'identité suivante :

$$\prod_{\chi \in \widehat{\mathcal{G}_m}} (1 - \chi(p)\Lambda) = (1 - \Lambda^n)^{g(p)}$$

Preuve. D'où $\operatorname{card}\left(\operatorname{Ker}(\psi)\right)=\frac{\phi(m)}{n}=g(p)$. Donc pour tout $\omega\in\mathbb{U}_n$, il existe g(p) caractères $\chi\in\widehat{\mathcal{G}_m}$ tels que $\chi(p)=\omega$. De ce que l'on vient de montrer, on en déduit finalement, en notant $\Omega=\{\chi\in\widehat{\mathcal{G}_m}\mid \chi(p)=\omega\}$:

$$(1-\Lambda^n)^{g(p)} = \prod_{\omega \in \mathbb{U}_n} (1-\omega\Lambda)^{g(p)} = \prod_{\omega \in \mathbb{U}_n} \prod_{\chi \in \Omega} (1-\chi(p)\Lambda) = \prod_{\chi \in \widehat{\mathcal{G}_m}} (1-\chi(p)\Lambda)$$

Ce que l'on souhaitait démontrer.

Définition de ζ_m

Définition

On définit la fonction ζ_m par :

$$\zeta_m(s) = \prod_{\chi \in \widehat{\mathcal{G}_m}} \mathcal{L}(s,\chi)$$

C'est une série de Dirichlet à coefficients positifs et convergente pour $\Re(s)>1$.

Résultat préliminaire

Lemme

On peut écrire l'égalité :

$$\zeta_m(s) = \prod_{p \nmid m} \frac{1}{(1 - p^{-ns})^{g(p)}}$$

Preuve. D'après le lemme précédent et en utilisant le produit eulérien, on a, pour $\Re(s) > 1$:

$$\mathcal{L}(s,\chi) = \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{\chi(p)}{p^s}}$$

Donc on peut écrire, en utilisant cette égalité :

$$\zeta_m(s) = \prod_{\chi \in \widehat{\mathcal{G}_m}} \mathcal{L}(s,\chi) = \prod_{\chi \in \widehat{\mathcal{G}_m}} \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{\chi(p)}{p^s}}$$

Résultat préliminaire

Lemme

On peut écrire l'égalité :

$$\zeta_m(s) = \prod_{p \nmid m} \frac{1}{(1 - p^{-ns})^{g(p)}}$$

Preuve. On peut alors utiliser le produit eulérien de $\mathcal L$ ainsi que le lemme précédent, en prenant $\Lambda=p^{-s}$:

$$\zeta_m(s) = \prod_{\chi \in \widehat{\mathcal{G}_m}} \prod_{p \nmid m} \frac{1}{1 - \frac{\chi(p)}{p^s}} = \prod_{p \nmid m} \prod_{\chi \in \widehat{\mathcal{G}_m}} \frac{1}{1 - \frac{\chi(p)}{p^s}} = \prod_{p \nmid m} \frac{1}{(1 - p^{-ns})^{g(p)}}$$

La convergence pour $\Re(s) > 1$ est claire.

Non-nullité de $\mathcal{L}(1,\chi)$

Théorème

La fonction $\mathcal{L}(1,\chi)$ est non-nulle pour tout $\chi \neq \chi_0$.

Preuve. On raisonne par l'absurde en supposant qu'il existe un caractère χ tel que $\mathcal{L}(1,\chi)=0$. Alors on obtient que $\zeta_m(1)=0$ et ζ_m est holomorphe en s=1 et converge, pour tout s tel que $\Re(s)>0$ (car ζ_m est une série de Dirichlet à coefficients positifs). On peut minorer ainsi chaque terme du produit $\prod \frac{1}{(1-p^{-ns})^{g(p)}}$ de la manière suivante :

$$\frac{1}{(1-p^{-ns})^{g(p)}} = \left(\sum_{k=0}^{\infty} p^{-kns}\right)^{g(p)} \ge \sum_{k=0}^{\infty} p^{-k\phi(m)s} \ge p^{-\phi(m)s}$$

ainsi ζ_m a tous ses coefficients supérieurs à ceux de la série $\sum n^{-\phi(m)s}$, qui est divergente pour $s = \frac{1}{\phi(m)}$. On obtient une contradiction.

Théorème de progression arithmétique

Densité analytique

Définition de la densité analytique de $\Gamma \subset \mathcal{P}$

Définition

On dit qu'une partie $\Gamma\subset\mathcal{P}$ a une densité analytique $\delta\in[0,1]$ si :

$$\lim_{s \to 1} \frac{\sum_{p \in \Gamma} p^{-s}}{\ln\left(\frac{1}{s-1}\right)} = \delta$$

On constate que si $\operatorname{card}(\Gamma) < \infty$, alors $\delta = 0$. De plus, d'après le chapitre sur la fonction ζ , la densité de l'ensemble des nombres premiers $\mathcal P$ est égale à 1.

Séries de Di 00000 00000 0000 onction ζ de Riem 200 2000000 \mathcal{L} —fonctions de Dirichlet 000 0000000000

Densité analytique

Reformulation du théorème de progression arithmétique

Théorème de progression arithmétique

Soit $m \geq 1$, et soit $a \in \mathbb{N}^*$ tel que $a \wedge m = 1$. Soit \mathcal{P}_a l'ensemble des $p \in \mathcal{P}$ tels que $p \equiv a[m]$. Alors la densité de \mathcal{P}_a est $\frac{1}{\phi(m)}$.

Définition de f_{χ} et objectif

Dans cette partie, on prend χ un caractère de Dirichlet modulo m.

Définition

Pour le reste de la présentation, on définit :

$$f_{\chi}(s) = \sum_{p \nmid m} \frac{\chi(p)}{p^s}$$

Cette série est convergente pour s>1. L'objectif est d'étudier le comportement de la fonction $\sum_{p\in\mathcal{P}_s}p^{-s}$ et de montrer que sa limite n'est pas finie lorsque $s\to 1$. En effet, s'il y avait un nombre fini de termes dans la somme, alors on aurait une limite finie lorsque $s\to 1$, alors que chaque terme p^{-s} tend vers p^{-1} .

Lemmes

Lemme

Si $\chi = \chi_0$, on a la limite suivante :

$$\lim_{s \to 1} \frac{f_{\chi_0}(s)}{\ln(s-1)^{-1}} = 1$$

Preuve. D'après une proposition précédente, on a :

$$\lim_{s\to 1}\frac{\sum_{p\in\mathcal{P}_a}p^{-s}}{\ln(s-1)^{-1}}=1$$

Or la série $\sum_{p\in\mathcal{P}_s} p^{-s}$ et $f_{\chi_0}(s) = \sum_{p\nmid m} \chi_0(p) p^{-s} = \sum_{p\nmid m} p^{-s}$ ne diffèrent que d'un nombre fini de termes, donc on a l'équivalent à la limite :

$$\lim_{s\to 1}\frac{\sum_{p\nmid m}p^{-s}}{\ln(s-1)^{-1}}=1$$

Lemmes

Lemme

Si $\chi \neq \chi_0$, alors f_{χ} est bornée quand $s \to 1$.

Preuve. On sait que $\mathcal{L}(s,\chi) = \prod_{p \in \mathcal{P}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}$, pour $\Re(s) > 1$.

Également, on constate que les facteurs du produit sont sous la forme $(1-\alpha)^{-1}$, où $|\alpha|<1$ On définit la détermination principale du logarithme comme ceci :

$$\ln\left(\frac{1}{1-\alpha}\right) = \sum_{k=1}^{\infty} \frac{\alpha^k}{n}$$

Ce qui nous donne l'égalité suivante, toujours pour $\Re(s)>1$:

$$\ln\left(\mathcal{L}(s,\chi)\right) = \sum_{p \in \mathcal{P}} \ln \frac{1}{1 - \frac{\chi(p)}{p^s}} = \sum_{p \in \mathcal{P}} \sum_{n=1}^{\infty} \frac{\chi(p)^n}{np^{ns}}$$

Lemmes

Lemme

Si $\chi \neq \chi_0$, alors f_{χ} est bornée quand $s \to 1$.

Preuve. Or on peut décomposer la double somme :

$$\ln \left(\mathcal{L}(s,\chi) \right) = \sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s} + \sum_{p \in \mathcal{P}} \sum_{n=2}^{\infty} \frac{\chi(p)^n}{np^{ns}}$$

D'autre part, $f_{\chi}(s) = \sum_{p \nmid m} \frac{\chi(p)}{p^s} = \sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s}$ car si $p \mid m, \chi(p) = 0$. On a donc :

$$\ln \left(\mathcal{L}(s,\chi)\right) = f_{\chi}(s) + \sum_{p \in \mathcal{P}} \sum_{n=2}^{\infty} \frac{\chi(p)^n}{np^{ns}}$$

Or ici $\chi \neq \chi_0$, donc d'après ce qui précède, $\mathcal{L}(1,\chi) \neq 1$, ce qui assure que $\ln(\mathcal{L}(s,\chi))$ est bornée quand $s \to 1$.

Lemmes

Lemme

Si $\chi \neq \chi_0$, alors f_{χ} est bornée quand $s \rightarrow 1$.

Preuve. Quant à la double somme $\sum_{p\in\mathcal{P}}\sum_{n=2}^{\infty}\frac{\chi(p)^n}{np^{ns}}$, elle est également bornée car :

$$\left| \sum_{p \in \mathcal{P}} \sum_{n=2}^{\infty} \frac{\chi(p)^n}{np^{ns}} \right| \leq \sum_{p \in \mathcal{P}} \sum_{n=2}^{\infty} \frac{1}{np^{ns}}$$

Et d'après ce qui a été vu, $\sum_{p\in\mathcal{P}}\sum_{n=2}^{\infty}\frac{1}{np^{ns}}$ est bornée lorsque $s\to 1$. Donc $f_{\chi}(s)$ est une différence de fonctions bornées, donc elle est aussi bornée, ce qui achève la preuve.

 $\mathcal{L}-$ fonctions de Diri 000 00000000000 Théorème de progression arithmétique

Démonstration du théorème

Définition de la fonction g_a

Définition

Soit \mathcal{P}_a l'ensemble des $p \in \mathcal{P}$ tels que $p \equiv a[m]$. On définit la fonction :

$$g_a(s) = \sum_{p \in \mathcal{P}_a} p^{-s}$$

Lemme sur g_a

Lemme

On a le résultat suivant :

$$g_{\mathsf{a}}(\mathsf{s}) = \frac{1}{\phi(\mathsf{m})} \sum_{\chi \in \widehat{\mathcal{G}_m}} f_{\chi}(\mathsf{s}) \chi^{-1}(\mathsf{a})$$

Preuve. Par définition de f_{χ} , on a :

$$\sum_{\chi \in \widehat{\mathcal{G}_m}} f_{\chi}(s) \chi^{-1}(a) = \sum_{p \nmid m} \sum_{\chi \in \widehat{\mathcal{G}_m}} \frac{\chi^{-1}(a) \chi(p)}{p^s}$$

Or d'après la propriété des caractères, $\chi^{-1}(a)\chi(p)=\chi(a^{-1}p)$. Les relations d'orthogonalités sur \mathcal{G}_m donnent alors :

$$\sum_{\chi \in \mathcal{G}_m} \chi(a^{-1}p) = \begin{cases} \operatorname{ord}(\mathcal{G}_m) = \phi(m) & \text{si } a^{-1}p \equiv 1[m] \Leftrightarrow p \in \mathcal{P}_a \\ 0 & \text{sinon.} \end{cases}$$

Lemme sur g_a

Lemme

On a le résultat suivant :

$$g_a(s) = \frac{1}{\phi(m)} \sum_{\chi \in \widehat{\mathcal{G}}_m} f_{\chi}(s) \chi^{-1}(a)$$

Preuve. Donc on a:

$$\sum_{p\nmid m}\sum_{\chi\in\widehat{\mathcal{G}_m}}\frac{\chi^{-1}(a)\chi(p)}{p^s}=\sum_{p\in\mathcal{P}_a}\frac{\phi(m)}{p^s}=\phi(m)g_a(s)$$

ce qu'on souhaitait démontrer.

Démonstration du théorème de progression arithmétique

Théorème de progression arithmétique

Soit $m \geq 1$, et soit $a \in \mathbb{N}^*$ tel que $a \wedge m = 1$. Soit \mathcal{P}_a l'ensemble des $p \in \mathcal{P}$ tels que $p \equiv a[m]$. Alors la densité de \mathcal{P}_a est $\frac{1}{\phi(m)}$.

Preuve. On calcule la densité de l'ensemble \mathcal{P}_a . D'après le lemme précédent, on a :

$$\lim_{s \to 1} \frac{g_{s}(s)}{\ln(s-1)^{-1}} = \lim_{s \to 1} \frac{1}{\phi(m)} \sum_{\chi \in \widehat{\mathcal{G}_{m}}} \frac{\chi^{-1}(a) f_{\chi}(s)}{\ln(s-1)^{-1}}$$

Or si on décompose la somme, on obtient :

$$\frac{1}{\phi(\textit{m})} \sum_{\chi \in \widehat{\mathcal{G}_m}} \frac{\chi^{-1}(\textit{a}) f_\chi(\textit{s})}{\ln(\textit{s}-1)^{-1}} = \frac{1}{\phi(\textit{m})} \frac{f_{\chi_0}(\textit{s})}{\ln(\textit{s}-1)^{-1}} + \frac{1}{\phi(\textit{m})} \sum_{\chi \neq \chi_0} \frac{\chi^{-1}(\textit{a}) f_\chi(\textit{s})}{\ln(\textit{s}-1)^{-1}}$$

Démonstration du théorème de progression arithmétique

Théorème de progression arithmétique

Soit $m \geq 1$, et soit $a \in \mathbb{N}^*$ tel que $a \wedge m = 1$. Soit \mathcal{P}_a l'ensemble des $p \in \mathcal{P}$ tels que $p \equiv a[m]$. Alors la densité de \mathcal{P}_a est $\frac{1}{\phi(m)}$.

Preuve. Or, quand $s \to 1$, $\chi = \chi_0$, $f_{\chi_0}(s) \sim \ln(s-1)^{-1}$, et si $\chi \neq \chi_0$, f_{χ} est bornée, donc $\sum_{\chi \neq \chi_0} \frac{\chi^{-1}(s)f_{\chi}(s)}{\ln(s-1)^{-1}} \to 0$. On obtient ainsi que :

$$\lim_{s\to 1}\frac{g_a(s)}{\ln(s-1)^{-1}}=\frac{1}{\phi(m)}$$

La densité analytique de \mathcal{P}_a est donc $\delta=\frac{1}{\phi(m)}$, ce qui indique que l'ensemble des $p\in\mathcal{P}$ tels que $p\equiv a[m]$ est infini, mais également que ces nombres premiers sont également répartis selon les différentes classes modulo m premières à m.

fonction ζ de Riema 200 2000000 $\mathcal{L}-$ fonctions de Dirichlet 000 00000000000

Démonstration du théorème

Références

- [1] H. GIANELLA, S. NICOLAS & S. FRANCINOU. Oraux X-ENS, Algèbre 1. Cassini, 2016.
- François de Marçay. Analyse complexe. Polycopié de cours, 2019.
- [3] Gérald TENENBAUM. Introduction à la théorie analytique et probabiliste des nombres. Société mathématique de France, 1995.
- [4] Jean-Pierre Serre. Cours d'arithmétique. Presses universitaires de France, 1995.
- [5] Pierre-Louis Montagard. Algèbre linéaire et théorie des groupes. Polycopié de cours, 2019.
- [6] Sylvain Brochard. Théorie des groupes. Polycopié de cours, 2015.
- [7] Xavier Gourdon. Algèbre. Ellipses, 2008.