MAC105 FUNDAMENTOS DE MATEMÁTICA PARA A COMPUTAÇÃO FOLHA DE SOLUÇÃO

Nome: PEDRO GIGECKO FREIRE

Número USP: 10737136

Assinatura

PEDRO GIGELIE PREIRE

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E35

Data: 02/05/2018

SOLUÇÃO

(i) SABEMOS QUE QUANTO, MAÍOR O N, MAÍOR SERÁ O ELEMENTO DE X E QUANTO MAÍOR O M, THE FICA MENOR, DEIXA N- /M MAÍOR, PORTANTO, DE X E O É O MENOR TERMO ELEMENTO DE X.

VAMOS SUPOR, POR ABSURDO, QUE EXISTE Y C X NÃO VAZIO QUE NÃO TENHAU

um mínimo.

SEJA Z = X\Y

Se 0 \(\mathbb{Z} \), ENTÃO 0 \(\mathbb{Y} \), SENTÃO SEU MÍNIMO, O QUE \(\mathbb{U} \) WHOU COMPRADI
ÇÃO. SENTÃO O A BASE, VAMOS FAZER A INDUÇÃO EM \(\mathbb{J} \), SENTÃO QUE 0 (\(\mathbb{J} \))

\(\mathbb{E} \) Z, POR hipotese; Sentão \(\mathbb{J} \) o major Elemento de X.

Se $y' \in Z$ Entrão $y' \notin Y$, como $\forall y < y', y$ não PERTENCE A Y, ENTRÓ $Y \neq \emptyset$. Caso contrario, como $y \notin Y$ Entrão $y' \notin$ mínimo de Y.

Portanto, Y TEM UM mínimo. $((\forall Y \subset X)(\exists y \in Y)(\forall y' \in Y)(y \leqslant y'))$

(ii) NESSE CASO, QUANTO MAIOR O m, 1/m fica menor, DEIXANDO n-1/m MENOR, COMO m não TEM limite superior (um valor máximo) sempre existira um m' TAL que n+ 1/m < n + 1/m. Portanto, não existe um valor mínimo para Y.