House Price Prediction Dataset.

The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.

I found this dataset in Kaggle.

1. This is a supervised regression problem in machine learning. :

Supervised Learning: The model is trained on labeled data, where each example has input features (e.g., area, number of bedrooms, bathrooms, etc.) and a corresponding target output (house price). The goal is to learn the mapping from input to output.

Regression: The task is to predict a continuous numerical value (the house price) based on the input features, which makes it a regression problem. Unlike classification, where the output is a category or class, regression predicts real-valued outputs.

Characteristics of this ML Problem: Features: Attributes such as area, bedrooms, bathrooms, floors, year built, location, condition, and garage. Target: House price (a continuous numeric value). Goal: Train a model that can predict the house price based on the given features.

We'll use supervised machine learning models to predict the house price. The steps involve:

- 1. Data preprocessing: Handle categorical variables, missing values, Label encoding and normalization.
- 2. Model selection: We can try several models, such as: Linear Regression, Decision Tree Regressor, Random Forest Regressor.
- 3. Model evaluation: Use metrics such as mean squared error (MSE) and R-squared to evaluate model performance.

```
#import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#load data
data=pd.read_csv('/content/House_Price_Prediction_Dataset[1].csv')
house=pd.read_csv('/content/House_Price_Prediction_Dataset[1].csv')
```

-		_
Ξ	<u>→</u>	<u>.</u>
_	Т	_

-		Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage	Price
	0	1	1360	5	4	3	1970	Downtown	Excellent	No	149919
	1	2	4272	5	4	3	1958	Downtown	Excellent	No	424998
	2	3	3592	2	2	3	1938	Downtown	Good	No	266746
	3	4	966	4	2	2	1902	Suburban	Fair	Yes	244020
	4	5	4926	1	4	2	1975	Downtown	Fair	Yes	636056
	•••										
	1995	1996	4994	5	4	3	1923	Suburban	Poor	No	295620
	1996	1997	3046	5	2	1	2019	Suburban	Poor	Yes	580929
	1997	1998	1062	5	1	2	1903	Rural	Poor	No	476925
	1998	1999	4062	3	1	2	1936	Urban	Excellent	Yes	161119
	1999	2000	2989	5	1	3	1903	Suburban	Fair	No	482525

2000 rows × 10 columns

house.head(10)

₹		Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage	Price
	0	1	1360	5	4	3	1970	Downtown	Excellent	No	149919
	1	2	4272	5	4	3	1958	Downtown	Excellent	No	424998
	2	3	3592	2	2	3	1938	Downtown	Good	No	266746
	3	4	966	4	2	2	1902	Suburban	Fair	Yes	244020
	4	5	4926	1	4	2	1975	Downtown	Fair	Yes	636056
	5	6	3944	1	2	1	1906	Urban	Poor	No	93262
	6	7	3671	1	1	2	1948	Rural	Poor	Yes	448722
	7	8	3419	2	4	1	1925	Suburban	Good	Yes	594893
	8	9	630	2	2	1	1932	Rural	Poor	Yes	652878
	9	10	2185	3	3	1	2000	Downtown	Poor	No	340375

house.tail()

→		Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage	Price
	1995	1996	4994	5	4	3	1923	Suburban	Poor	No	295620
	1996	1997	3046	5	2	1	2019	Suburban	Poor	Yes	580929
	1997	1998	1062	5	1	2	1903	Rural	Poor	No	476925
	1998	1999	4062	3	1	2	1936	Urban	Excellent	Yes	161119
	1999	2000	2989	5	1	3	1903	Suburban	Fair	No	482525

data

→		Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage	Price
	0	1	1360	5	4	3	1970	Downtown	Excellent	No	149919
	1	2	4272	5	4	3	1958	Downtown	Excellent	No	424998
	2	3	3592	2	2	3	1938	Downtown	Good	No	266746
	3	4	966	4	2	2	1902	Suburban	Fair	Yes	244020
	4	5	4926	1	4	2	1975	Downtown	Fair	Yes	636056
	•••										•••
	1995	1996	4994	5	4	3	1923	Suburban	Poor	No	295620
	1996	1997	3046	5	2	1	2019	Suburban	Poor	Yes	580929
	1997	1998	1062	5	1	2	1903	Rural	Poor	No	476925
	1998	1999	4062	3	1	2	1936	Urban	Excellent	Yes	161119

1903 Suburban

No 482525

Fair

2000 rows × 10 columns

1999 2000 2989

#first five data
data.head()

₹		Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage	Price
	0	1	1360	5	4	3	1970	Downtown	Excellent	No	149919
	1	2	4272	5	4	3	1958	Downtown	Excellent	No	424998
	2	3	3592	2	2	3	1938	Downtown	Good	No	266746
	3	4	966	4	2	2	1902	Suburban	Fair	Yes	244020
	4	5	4926	1	4	2	1975	Downtown	Fair	Yes	636056

1 3

#tail - last five data
data.tail()

→		Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage	Price
	1995	1996	4994	5	4	3	1923	Suburban	Poor	No	295620
	1996	1997	3046	5	2	1	2019	Suburban	Poor	Yes	580929
	1997	1998	1062	5	1	2	1903	Rural	Poor	No	476925
	1998	1999	4062	3	1	2	1936	Urban	Excellent	Yes	161119
	1999	2000	2989	5	1	3	1903	Suburban	Fair	No	482525

#the main columns
data.columns

#the shape of the data
data.shape

→ (2000, 10)

→		Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Price
	count	2000.000000	2000.000000	2000.000000	2000.00000	2000.000000	2000.000000	2000.000000
	mean	1000.500000	2786.209500	3.003500	2.55250	1.993500	1961.446000	537676.855000
	std	577.494589	1295.146799	1.424606	1.10899	0.809188	35.926695	276428.845719
	min	1.000000	501.000000	1.000000	1.00000	1.000000	1900.000000	50005.000000
	25%	500.750000	1653.000000	2.000000	2.00000	1.000000	1930.000000	300098.000000
	50%	1000.500000	2833.000000	3.000000	3.00000	2.000000	1961.000000	539254.000000
	75%	1500.250000	3887.500000	4.000000	4.00000	3.000000	1993.000000	780086.000000
	max	2000.000000	4999.000000	5.000000	4.00000	3.000000	2023.000000	999656.000000

#finding null values
data.isnull().sum()

₹		0
	ld	0
	Area	0
	Bedrooms	0
	Bathrooms	0
	Floors	0
	YearBuilt	0
	Location	0
	Condition	0
	Garage	0
	Price	0

dtype: int64

#info
data.info()

<<rp><class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 10 columns):

Data	COTUMITS (C	ocar io corumns,	•
#	Column	Non-Null Count	Dtype
0	Id	2000 non-null	int64
1	Area	2000 non-null	int64
2	Bedrooms	2000 non-null	int64
3	Bathrooms	2000 non-null	int64
4	Floors	2000 non-null	int64
5	YearBuilt	2000 non-null	int64
6	Location	2000 non-null	object
7	Condition	2000 non-null	object
8	Garage	2000 non-null	object
9	Price	2000 non-null	int64

dtypes: int64(7), object(3)
memory usage: 156.4+ KB

```
plt.figure(figsize=(8, 6))
sns.histplot(data['Price'])
```

<-> <Axes: xlabel='Price', ylabel='Count'>

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler

Pre Processing Techniques

1. Handling Missing values

#Check for missing values in the dataset
missing_values=data.isnull().sum()

2.Label Encoding

```
#Encode Categorical variables:Location,Condition,Garage
label_encoder = LabelEncoder()
data['Location'] = label_encoder.fit_transform(data['Location'])
data['Condition'] = label_encoder.fit_transform(data['Condition'])
data['Garage'] = label_encoder.fit_transform(data['Garage'])
```

data

-		_
-	4	4
	_	j

	Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage	Price
0	1	1360	5	4	3	1970	0	0	0	149919
1	2	4272	5	4	3	1958	0	0	0	424998
2	3	3592	2	2	3	1938	0	2	0	266746
3	4	966	4	2	2	1902	2	1	1	244020
4	5	4926	1	4	2	1975	0	1	1	636056
1995	1996	4994	5	4	3	1923	2	3	0	295620
1996	1997	3046	5	2	1	2019	2	3	1	580929
1997	1998	1062	5	1	2	1903	1	3	0	476925
1998	1999	4062	3	1	2	1936	3	0	1	161119
1999	2000	2989	5	1	3	1903	2	1	0	482525

2000 rows × 10 columns

#correlation
data.corr()

									_
	Id	Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Gara
ld	1.000000	-0.012966	-0.016393	-0.025433	-0.002025	0.008840	-0.013171	0.017908	0.001
Area	-0.012966	1.000000	0.047523	0.021881	0.017749	-0.011609	-0.003910	0.002030	-0.003
Bedrooms	-0.016393	0.047523	1.000000	-0.011990	0.010435	-0.014125	0.016958	0.006743	-0.041
Bathrooms	-0.025433	0.021881	-0.011990	1.000000	0.029089	-0.000839	-0.016471	0.020183	0.004
Floors	-0.002025	0.017749	0.010435	0.029089	1.000000	-0.006474	0.006430	0.021006	-0.004
YearBuilt	0.008840	-0.011609	-0.014125	-0.000839	-0.006474	1.000000	-0.040727	0.025780	-0.011
Location	-0.013171	-0.003910	0.016958	-0.016471	0.006430	-0.040727	1.000000	0.028387	0.019
Condition	0.017908	0.002030	0.006743	0.020183	0.021006	0.025780	0.028387	1.000000	0.039
Garage	0.001199	-0.003441	-0.041713	0.004057	-0.004635	-0.011703	0.019827	0.039389	1.000
Price	-0.025643	0.001542	-0.003471	-0.015737	0.055890	0.004845	-0.012289	-0.015036	0.002

data.corr()['Price'].sort_values(ascending=False)

plt.show()

```
Price
        Price
                 1.000000
        Floors
                 0.055890
      YearBuilt
                 0.004845
       Garage
                 0.002842
        Area
                 0.001542
      Bedrooms
                -0.003471
      Location
                -0.012289
      Condition
                -0.015036
      Bathrooms -0.015737
         ld
                -0.025643
     dtype: float64
#heat Map
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
```


3.Feature Scaling

```
# Separate features (X) and target (y)
X = data.drop(columns=['Id', 'Price'])
y = data['Price']
```

Χ

→		Area	Bedrooms	Bathrooms	Floors	YearBuilt	Location	Condition	Garage
	0	1360	5	4	3	1970	0	0	0
	1	4272	5	4	3	1958	0	0	0
	2	3592	2	2	3	1938	0	2	0
	3	966	4	2	2	1902	2	1	1
	4	4926	1	4	2	1975	0	1	1
	•••								
	1995	4994	5	4	3	1923	2	3	0
	1996	3046	5	2	1	2019	2	3	1
	1997	1062	5	1	2	1903	1	3	0
	1998	4062	3	1	2	1936	3	0	1
	1999	2989	5	1	3	1903	2	1	0
	2000 rd	ws×8	columns						

У

```
₹
           Price
      0
          149919
          424998
      1
      2
          266746
      3
          244020
          636056
      4
     1995 295620
     1996 580929
     1997 476925
     1998 161119
     1999 482525
```

```
1999 482525
2000 rows x 1 columns

dtype: int64

# Split the data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Standardize the feature data (normalize the scale)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Output the shape of the datasets to ensure proper split
X_train_scaled.shape, X_test_scaled.shape, y_train.shape, y_test.shape

$\frac{1}{2}$ ((1600, 8), (400, 8), (1600,), (400,))
```

The data has been successfully split into training and testing sets: Training data: 1600 samples with 8 features
Testing data: 400 samples with 8 features

```
#Logistic Regression
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
#Logistic regression in price prediction
# Initialize and train the Logistic Regression model
lr_model = LogisticRegression()
lr_model.fit(X_train_scaled, y_train)
# Predict on test data
y_pred_lr = lr_model.predict(X_test_scaled)
# Calculate accuracy for Logistic Regression
accuracy lr = accuracy score(y test, y pred lr)
accuracy_lr
→ 0.0
1.linear regression model
Start coding or generate with AI.
# prompt: perform linear regression in positive r2 value
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2 score
# Initialize and train the Linear Regression model
linear model = LinearRegression()
linear_model.fit(X_train_scaled, y_train)
# Predict on test data
y_pred_linear = linear_model.predict(X_test_scaled)
# Calculate R-squared for Linear Regression
r2_linear = r2_score(y_test, y_pred_linear)
print("R-squared for Linear Regression:", r2_linear)
# If R-squared is negative, adjust the model or data
if r2 linear < 0:
  print("R-squared is negative. Consider adjusting the model or data.")
  # You could try different features, handle outliers differently, or use a different model.
→ R-squared for Linear Regression: -0.011961539273188215
    R-squared is negative. Consider adjusting the model or data.
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

```
# Initialize and train the Linear Regression model
lr model = LinearRegression()
lr_model.fit(X_train_scaled, y_train)
# Predict on test data
y_pred_lr = lr_model.predict(X_test_scaled)
# Calculate performance metrics for Linear Regression
mse_lr = mean_squared_error(y_test, y_pred_lr)
r2_lr = r2_score(y_test, y_pred_lr)
mse_lr, r2_lr
→ (78729422262.6482, -0.011961539273188215)
2.Decision tree regression model
from sklearn.tree import DecisionTreeRegressor
# Initialize and train the Decision Tree Regressor
dt model = DecisionTreeRegressor(random state=42)
dt_model.fit(X_train_scaled, y_train)
# Predict on test data
y_pred_dt = dt_model.predict(X_test_scaled)
# Calculate performance metrics for Decision Tree Regressor
mse_dt = mean_squared_error(y_test, y_pred_dt)
r2_dt = r2_score(y_test, y_pred_dt)
mse_dt, r2_dt
3. Randomforest Regressor
from sklearn.ensemble import RandomForestRegressor
# Initialize and train the Random Forest Regressor
rf_model = RandomForestRegressor(random_state=42)
rf_model.fit(X_train_scaled, y_train)
# Predict on test data
y_pred_rf = rf_model.predict(X_test_scaled)
# Calculate performance metrics for Random Forest Regressor
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)
print(f'Random Forest MSE: {mse_rf}')
print(f'Random Forest R-squared: {r2_rf}')
    Random Forest MSE: 86258440081.58017
    Random Forest R-squared: -0.1087370044333893
```

Double-click (or enter) to edit

```
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred_lr, color='blue', label='Linear Regression')
plt.scatter(y_test, y_pred_dt, color='green', label='Decision Tree')
plt.scatter(y_test, y_pred_rf, color='red', label='Random Forest')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='black', lw=2, label='Perfe
plt.xlabel('Actual House Prices')
plt.legend()
```

#visualize chart for actual and predicted prices

plt.title('Actual vs Predicted House Prices')

plt.show()


```
plt.figure(figsize=(8, 6))
plt.scatter(y_pred_lr, y_test - y_pred_lr, color='blue', label='Linear Regression')
plt.scatter(y_pred_dt, y_test - y_pred_dt, color='green', label='Decision Tree')
plt.scatter(y_pred_rf, y_test - y_pred_rf, color='red', label='Random Forest')
plt.axhline(y=0, color='black', lw=2)
plt.xlabel('Predicted House Prices')
plt.ylabel('Residuals (Actual - Predicted)')
plt.legend()
plt.title('Residual Plot')
plt.show()
```

