

Réseaux de neurones

LIONEL PREVOST

HEAD OF LEARNING, DATA & ROBOTICS LAB — ESIEA lionel.prevost@esiea.fr

Sommaire

Réseaux de neurones et apprentissage supervisé

- Du neurone naturel au neurone artificiel
- Le perceptron
- Les réseaux de neurones monocouches
- L'Adaline
- Les réseaux multicouches
- La rétro-propagation

Bilan et limites du perceptron

Neurone à **fonction seuil**, capable de traiter UNIQUEMENT :

- Des données linéairement séparables
- Des problèmes binaires (2 classes)
- **Q** intuitivement, comment traiter un problème multiclasse ? (\rightarrow solution)

Paramètre à optimiser : vecteur des poids (1)

Fonction objectif:

« nombre d'exemples mal classés = 0»

→ Minimum de la fonction F(X) où F est le nombre d'erreur de classification sur la base d'apprentissage

→ F peut s'exprimer en fonction de W mais n'est pas dérivable par rapport à W!!

1960: Algorithme Adaline

Adaptive Linear Neuron

Modifications du perceptron

1) Neurones à fonction d'activation linéaire : $y = W^T . X$

$$y = \sum \omega_j x_j$$

2) Erreur (entre sortie désirée et sortie réelle/prédiction) :

$$y_d - y = y_d - \sum \omega_j x_j$$

Fonction objectif

2) Fonction d'erreur : Erreur quadratique pour un exemple X ayant pour valeur désirée y_d

$$E = \frac{1}{2}(y_d - y)^2$$

paramètres et intérêt de cette fonction ?

3) **Fonction objectif * (à minimiser)** : erreur quadratique MOYENNE (*Mean Squared Error: MSE*) sur les données d'apprentissage

$$E = \sum_{1}^{Nb_app} \frac{1}{2} (y_d - y)^2$$

(*) aussi appelé fonction de perte (LOSS function)

Descente de gradient

4) **Minimiser l'erreur par rapport aux poids** ⇔ modifier <u>itérativement</u> les poids jusqu'à atteindre un gradient nul (correspondant à un minimum de la fonction E – **voir cours optimisation**)

Gradient d'une fonction $E(w_0, w_2, ..., w_D)$ de (D+1) variables :

$$\nabla E = \left(\frac{\partial E}{\partial \omega_0}, \frac{\partial E}{\partial \omega_1}, \dots, \frac{\partial E}{\partial \omega_D}\right)^T$$

mise à jour du vecteur : $W(t+1) = W(t) - \lambda \nabla E$

→ Modification des poids dans la direction opposée au gradient de l'erreur

Modification des poids

mise à jour de chaque poids : $\omega_j(t+1) = \omega_j(t) - \lambda \frac{\partial E}{\partial \omega_j}$

Calcul des dérivées partielles :

$$E = \frac{1}{2}(y_d - y)^2 = \frac{1}{2}(y_d - \sum_j \omega_j x_j)^2$$

$$\frac{\partial E}{\partial \omega_{j}} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial \omega_{j}} = -(y_{d} - y)x_{j}$$

1960 : cas multiclasse (N classes)

Exemple : reconnaissance de CHIFFRES manuscrits → 10 neurones :

neurone du « 1 » : actif quand l'image d'un « 1 » est présentée au réseau neurone du « 2 » : actif quand l'image d'un « 2 » est présentée au réseau

Réseau de neurones monocouche

Principe d'un réseau monocouche

N neurones (1 par classe) : le neurone i « sépare » la classe i des autres classes

Fun time

Q1 Trouver la classe de l'exemple X produisant les sorties y

Q2 Déterminer les frontières de décision

Fun time

Q1 Trouver la classe de l'exemple X produisant les sorties y

Q2 Déterminer les frontières de décision

Frontières de décision

N neurones (1 par classe) : le neurone i « sépare » la classe i des autres classes

Architecture

N neurones (1 par classe) : le neurone i « sépare » la classe i des autres classes

Neurone « actif » : $y_i \rightarrow 1$

Neurone « inactif » : $y_i \rightarrow -1$

Paramètres

N neurones (1 par classe) : le neurone i « sépare » la classe i des autres classes

- → Matrice de poids W de dimensions (D,N) (nombre d'entrées, nombre de sorties)
- → Vecteur des biais B de dimension N

→ vecteur des valeurs désirées : y_d = (y_{d1}, y_{d2}, ..., y_{dN})

Apprentissage

4) Trouver les poids optimaux :

mise à jour de chaque poids :
$$\omega_{ij}$$
 (t+1) = ω_{ij} (t) – $\lambda \frac{\partial E}{\partial \omega_{ij}}$

(Modification des poids dans la direction opposée au gradient de l'erreur)

Calcul des dérivées partielles :
$$\frac{\partial E}{\partial \omega_{ij}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial \omega_{ij}} = -(y_{di} - y_i) x_j$$

$$\Rightarrow \Delta \omega_{ij} = -\lambda \frac{\partial E}{\partial \omega_{ii}} = -\lambda \frac{\delta_i}{\delta_i} x_j$$

Algorithme

Initialiser W(0) <u>aléatoirement</u>

- Apprentissage :
 - (1) Tirer au hasard un exemple X de la base d'apprentissage
 - (2) Modifier les poids ω suivant la relation :

$$\omega_{ij}$$
 (t+1) = ω_{ij} (t) + $\lambda \Delta \omega_{ij}$ avec $\Delta \omega_{ij} = \delta_i x_j$

λ: pas d'apprentissage

Incrémenter le compteur de mises à jour t=t+1

(3) critère d'arrêt :

Si MSE (mean squarred error) $< \varepsilon$ OU t = t_{max} (nombre d'itération max)

Fin

Sinon: retour en (1)

Fun time

- 1) Quel paramètre explique ces différences de fonctionnement ?
- 2) Que vaut-il dans ces 4 cas ?
- 3) Quel est la meilleure solution?

(*) itération = epoch

(...)

- 1) Quel paramètre explique ces différences de fonctionnement ?
- 2) Que vaut-il dans ces 4 cas ?
- 3) Quel est la meilleure solution?

Décision: Winner takes all

- Décision directe : la cellule de sortie la plus active donne la classe «gagnante»
- → Interprétation probabiliste (FAUSSE!) : chaque sortie évalue la probabilité a posteriori P(C_i|X) que l'exemple appartienne à la classe C_i. D'après la règle de Bayes, la classe «gagnante» est celle qui maximise P(C_i|X)

Décision avec rejet –reconnaissance de lettres (26 classes)

Dans certain cas le coût d'une erreur de classification peut être élevé

→ Mieux vaut « rejeter » l'exemple

→ Rejet de distance sortie la plus active inférieure à un seuil

→ Rejet d'ambiguïté
faible écart entre les deux
sorties les plus actives

Sommaire

Réseaux de neurones et apprentissage supervisé

- Du neurone naturel au neurone artificiel
- Le perceptron
- Les réseaux de neurones monocouches
- L'Adaline
- Les réseaux multicouches
- La rétro-propagation

Limites

Les régions 1, 2 et 3 sont linéairement séparables

→ l'algorithme converge ©

La région 1 est LS de la région 2 et de la région 3 Les régions 2 et 3 ne le sont pas

→ L'algorithme converge vers une solution suboptimale!!

(2) incapacité à traiter les problèmes non linéairement séparables !!

Résoudre le "problème du XOR"

→ Solution : projeter les données dans un espace où elles sont linéairement séparables

Résoudre le "problème du XOR"

Une solution à base de portes logiques

Solution: réseau à deux couches

(...)

Pb : impossible d'apprendre les poids de la 1ère couche... **Premier « hiver » du connexionnisme**

→ systèmes experts

Bilan

Apprentissage supervisé : classe connue

- → cas binaire, linéairement séparable : perceptron (1 neurone)
- → cas multiclasse (N classes), linéairement séparable : réseau monocouche (N neurones)
- → cas non linéairement séparable : réseau multicouche
 - **→**Comment apprendre ??

Apprentissage d'un réseau multicouche

→ MLP : Multi Layer Perceptron

Un nouveau neurone ...

Neurone **produit scalaire** $\rightarrow v = W^T.X$

Fonctions d'activation :

- à seuil (non linéaire, non dérivable)
- linéaire (linéaire, dérivable)
- linéaire saturée
- sigmoïde (non linéaire, dérivable)

$$f(\nu) = \frac{1 - e^{-\nu}}{1 + e^{-\nu}}$$

Phase 1: propagation

• Propager un exemple dans le réseau :

$$x_i^c = f(v_i) = f\left[\sum_i \omega_{ij} x_j^{c-1}\right]$$
 pour la couche c

Phase 2 : calcul de l'erreur

Erreur Quadratique :
$$E = \frac{1}{2} \sum_{i=1}^{i=N} (y_{di} - y_i)^2$$

Phase 3: retro-propagation

On souhaite minimiser l'erreur : $\frac{\partial E}{\partial \omega} = 0$

$$\left(\frac{\partial E}{\partial \omega_{ij}}\right) = \frac{\partial E}{\partial \nu_i} \frac{\partial \nu_i}{\partial \omega_{ij}} = \delta_i x_j$$

Neurones de sortie :

$$\delta_{i} = \frac{\partial E}{\partial \nu_{i}} = \frac{\partial}{\partial \nu_{i}} \left[\frac{1}{2} (y_{di} - f(\nu_{i}))^{2} \right]$$

$$\delta_i = -f'(\nu_i)(y_{di} - f(\nu_i))$$

On souhaite minimiser l'erreur : $\frac{\partial E}{\partial \omega} = 0$

$$\frac{\partial E}{\partial \omega_{ij}} = \frac{\partial E}{\partial \nu_i} \frac{\partial \nu_i}{\partial \omega_{ij}} = \delta_i x_j$$

Neurones cachés : calcul de $\delta_{
m i}$

$$\delta_{i} = \frac{\partial E}{\partial \nu_{i}} = \sum_{k} \frac{\partial E}{\partial \nu_{k}} \frac{\partial \nu_{k}}{\partial \nu_{i}} = \sum_{k} \delta_{k} \frac{\partial \nu_{k}}{\partial \nu_{i}}$$

$$k : couche suivante$$

On souhaite minimiser l'erreur : $\frac{\partial E}{\partial \omega} = 0$

$$\frac{\partial E}{\partial \omega_{ij}} = \frac{\partial E}{\partial \nu_i} \frac{\partial \nu_i}{\partial \omega_{ij}} = \delta_i x_j$$

$$\frac{\delta_i}{\delta_i}$$

Neurones cachés:

$$\begin{split} \delta_{i} &= \frac{\partial E}{\partial \nu_{i}} = \sum_{k} \frac{\partial E}{\partial \nu_{k}} \frac{\partial \nu_{k}}{\partial \nu_{i}} = \sum_{k} \delta_{k} \frac{\partial \nu_{k}}{\partial \nu_{i}} \\ \text{or } \nu_{k} &= \sum_{i} \omega_{ki} x_{i} = \sum_{i} \omega_{ki} f(\nu_{i}) \\ \text{donc } \frac{\partial \nu_{k}}{\partial \nu_{i}} = \omega_{ki} f'(\nu_{i}) \delta_{i} = f'(\nu_{i}) \sum_{k} \omega_{ki} \delta_{k} \end{split}$$

Bilan: Algorithme

- 1. Initialiser les ω_{ii} aléatoirement
- 2. Propager un exemple X dans tout le réseau : $X_i^k = f(v_i)$ avec $v_i = \sum_i \omega_{ij} X_j^{k-1}$
- 3. Calcul l'erreur quadratique en sortie
- 4. Rétro-propager :

Couche de sortie (pour k de 1 à N):
$$\delta_k = -f'(\nu_k)(y_{dk} - x_k)$$

Couche cachée (pour i de 1 à C) :
$$\delta_i = f'(\nu_i) \sum_k \omega_{ki} \delta_k$$

5. Modifier les poids :

$$\omega_{ij}(t+1) = \omega_{ij}(t) - \lambda \frac{\partial E}{\partial \omega_{ij}}$$
 avec $\frac{\partial E}{\partial \omega_{ij}} = \delta_i x_j$

6. Si critère d'arrêt alors FIN sinon retour en 2 (nouvelle itération)

Critères d'arrêt

- \rightarrow erreur admissible : E < ϵ
- \rightarrow nombre d'itérations : $t = t_{max}$
- \rightarrow ?

Exemple en 2D, à deux classes

MLP 2x8x2 : frontières initiales

nombre de poids du réseau?

Exemple en 2D, à deux classes

MLP 2x8x2 : frontières initiales

Entrée->cachée (2+1)x8 = 24

Cachée->sortie (8+1)x2 = 18

42 = 32 + 10 (biais)

(...)

Comment obtenir cette décision ???

Réseaux de neurones : inférence

1) Propager un exemple dans le réseau :

$$X_i^c = f(v_i) = f\left[\sum_j \omega_{ij} X_j^{c-1}\right]$$
 pour la couche c

2) Appliquer le critère WTA pour décider de la classe de l'exemple

Paramètres du réseau

Nombre de cellules d'entrée et de sortie : dépend du problème à résoudre

Nombre de couches et de cellules cachées déterminé par recherche exhaustive mais :

- Pour des problèmes de complexité « raisonnable », une ou deux couches suffisent
- Au-delà, phénomène de disparition du gradient (→ deep learning)

Le nombre de poids doit être inférieur au produit du nombre d'exemples d'apprentissage par le nombre de sorties

Initialisation des poids : aléatoire entre –1/M et 1/M où M est le nombre de connexions du neurone (afin d'éviter la saturation)

Bilan

- → cas binaire, linéairement séparable : perceptron (1 neurone)
- → cas multiclasse (N classes), linéairement séparable : réseau monocouche (N neurones)
- → cas non linéairement séparable : réseau multicouche
 (C neurones cachés et N neurones de sorties)
 - → Préparation des données
 - → Apprentissage par rétro-propagation
 - → Comment régler les paramètres ?