Please check the examination details below before entering your candidate information		
Candidate surname	C	Other names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Time 2 hours	Paper reference	4PM1/02
Further Pure Market Paper 2	athemat	ics

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P66027RRA
©2021 Pearson Education Ltd.
1/1/1/1/1/1/1

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Series

Arithmetic series

Sum to *n* terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE DO NOT WRITE ON THIS PAGE

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 (a) Use the formula for cos(A + B) to show that $cos 2A = 1 - 2 sin^2 A$

(2)

Given that $\sin A = \frac{x+1}{2}$ and $\cos 2A = \frac{4-y}{3}$

(b) show that $y = \frac{1}{2} (3x^2 + 6x + 5)$

(3)

DO NOT WRITE IN THIS AREA

Question 1 continued	
	(Total for Question 1 is 5 marks)
	(2000 201 Yearson 2 20 0 MM IND)

DO NOT WRITE IN THIS AREA

2	The finite region enclosed by the curve with equation $y = 4 - x^2$ and the line with equation $y = x + 2$ is rotated through 360° about the <i>x</i> -axis.	
Use algebraic integration to find the exact volume of the solid formed.		
		(6)

Question 2 continued	
	(Total for Question 2 is 6 marks)

3

Figure 1

Figure 1 shows a sketch of the curve with equation

$$y = \frac{a - bx}{cx - d} \qquad x \neq \frac{d}{c}$$

where a, c and d are prime numbers and b is an integer.

The asymptote to the curve that is parallel to the y-axis has equation $x = \frac{3}{2}$

(a) Write down the value of c and the value of d

(2)

The curve crosses the *x*-axis at the point $\left(\frac{5}{4}, 0\right)$

(b) Find the value of a and the value of b

(2)

The curve crosses the y-axis at the point (0, p) where p is a rational number.

(c) Find the value of p

(2)

(d) Find an equation of the asymptote to the curve that is parallel to the *x*-axis.

(1)

DO NOT WRITE IN THIS AREA

Question 3 continued

DO NOT WRITE IN THIS AREA

Question 3 continued	

$(\times \times \times \times)$	
~~~	
XXXX	0
~~~	5
$\times\!\!\times\!\!\times$	<
XXXX	
~~~	
$\times \times \times \times$	
~~~	1
$\sim\sim\sim$	-
$\times \times \times \times$	
~~~	
$\times \times \times \times$	
$\sim\sim\sim$	0
$\times \times \times \times$	
~~~	
$\times\!\!\times\!\!\times$	
XXXX	
××××	
$(\times \times \times \times)$	
$\times \times \times \times$	
~~~	
$\infty$	
$\times \times \times \times$	
××××	- 5
$\times \times \times$	
^///	
XXXX	
$\triangle \triangle \triangle \triangle$	
XXXX	0
$\sim$	
$=\times\times$	
XXXX	
XXXX	
$\sim\sim$	
XXX	
	1
<del>zz</del> xx	- 2
$\propto$ $\propto$	
××	- 3
	5
$\propto \times \times$	
	3
	000
	000
	0000
	00000
	000000
	00000
	000000
AR R	0000000
	000000000
WR THE	000000000
W RITH	000000000000000000000000000000000000000
ARITH I	000000000000000000000000000000000000000
	200000000000000000000000000000000000000
WRITH IN	200000000000000000000000000000000000000
	200000000000000000000000000000000000000
WRITE IN T	200000000000000000000000000000000000000
WRITH IN IN	200000000000000000000000000000000000000
WRITE IN TH	200000000000000000000000000000000000000
VRITE NITE	200000000000000000000000000000000000000
WRITE IN TH	200000000000000000000000000000000000000
VRITE IN THE	200000000000000000000000000000000000000
WRITE IN THIS	200000000000000000000000000000000000000
VRITE IN THIS	200000000000000000000000000000000000000
WRITE IN THIS	200000000000000000000000000000000000000
ARITE IN THIS A	244000000000000000000000000000000000000
WRITE IN THIS A	
WRITE IN THIS AI	
VRITE IN THIS AF	240000000000000000000000000000000000000
VRITE IN THIS AR	000000000000000000000000000000000000000
VRITE IN THIS ARI	
VRITE IN THIS ARE	
WRITE IN THIS ARE	
WRITE IN THIS AREA	
WRITE IN THIS AREA	
VRITE IN THIS AREA	
WRITE IN THIS AREA	
VRITE IN THIS AREA	
VRITE IN THIS AREA	
VRITE IN THIS AREA	
WRITE IN THIS AREA	
WRITE IN THIS AREA	
WRITE IN THIS AREA	
DO NOT WRITE IN THIS AREA	

Question 3 continued
(Total for Question 3 is 7 marks)



DO NOT WRITE IN THIS AREA

4	The curve C has equation $y = 2x^2 + px + q$ where p and q are integers.	
	The curve $C$ has a stationary point at $(3, -5)$	
	(a) Show that $p = -12$ and find the value of $q$	(4)
	(b) State, giving a reason, the nature of the stationary point.	(1)
	(c) Find an equation of the normal to $C$ at the point on $C$ where $x = 1$	
	Give your answer in the form $ax + by + c = 0$	(6)

DO NOT WRITE IN THIS AREA

Question 4 continued	
	Potal for Question 4 is 11 morts)
	Total for Question 4 is 11 marks)



DO NOT WRITE IN THIS AREA

5	y and x vary so that $y = xe^{-2x}$	
	Given that the value of $x$ increases by 3%, use calculus to find, in terms of $x$ , an estimate for the percentage change in $y$ Give your answer in the form $a(b-cx)$ where $a$ , $b$ and $c$ are integers.	
		(6)

DO NOT WRITE IN THIS AREA

Question 5 continued
(Total for Question 5 is 6 marks)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

6	A particle <i>P</i> is moving along the <i>x</i> -axis. At time <i>t</i> seconds ( $t \ge 0$ ) the displacement, <i>s</i> metres, of <i>P</i> from the origin <i>O</i> , is given by $s = t^3 - 4t^2 - 16t - 8$	
	(a) Find the distance of $P$ from $O$ when $t = 0$	(1)
	(b) Find the value of t for which P is instantaneously at rest.	(4)
	(c) Find the value of $t$ for which $P$ is accelerating at $10 \mathrm{m/s^2}$ in the positive $x$ direction.	(3)

16



Question 6 continued	
	(Total for Question 6 is 8 marks)



7 A geometric series G has first term a and common ratio r

The sum of the first three terms of G is  $\frac{61}{6}$ 

The sum to infinity of G is  $\frac{125}{6}$ 

- (a) (i) Show that  $r = \frac{4}{5}$ 
  - (ii) Find the value of a

(6)

The sum of the first n terms of G is  $S_n$ 

Given that  $S_n > 19.8$ 

(b) show that  $n \lg \left( \frac{4}{5} \right) < \lg \left( \frac{31}{625} \right)$ 

(2)

(c) Hence find the least value of n

(2)

18



DO NOT WRITE IN THIS AREA

Question 7 continued	



DO NOT WRITE IN THIS AREA

Question 7 continued

Question 7 continued
(Total for Question 7 is 10 marks)



8 (a) Complete the table of values for  $y = 2x + \frac{3}{x^2} - 3$  giving your answers to 2 decimal places where appropriate.

х	0.5	0.75	1	1.5	2	3	4	5
у	10		2				5.19	7.12

(2)

(b) On the grid opposite, draw the graph of  $y = 2x + \frac{3}{x^2} - 3$  for  $0.5 \le x \le 5$ 

(2)

(c) By drawing a suitable straight line on the grid, obtain estimates, to one decimal place, of the roots of the equation  $4x^3 - 10x^2 + 3 = 0$  for  $0.5 \le x \le 5$ 

(5)

I	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	





Turn over for a spare grid if you need to redraw your graph.

DO NOT WRITE IN THIS AREA

Question 8 continued



Only use this grid if you need to redraw your graph.



(Total for Question 8 is 9 marks)

9



Figure 2

Figure 2 shows a triangular pyramid ABCD with base ABC

$$AB = BC = 10 \text{ cm}$$
  $AD = CD = 8 \text{ cm}$   $\angle ABC = 90^{\circ}$ 

(a) Find the exact length of AC

Give your answer in the form  $p\sqrt{q}$  cm where p is an integer and q is a prime number.

2)

The point M is the midpoint of AC

(b) Find the exact length of BM

Give your answer in the form  $m\sqrt{n}$  cm where both m and n are prime numbers.

(2)

Given that BD = 6 cm,

(c) find, in degrees to one decimal place, the size of the acute angle between the plane ACD and the plane ABC

(4)

The base *ABC* of the pyramid is placed on a horizontal plane.

(d) Find, in cm to 3 significant figures, the vertical height of *D* above the base.

(2)

Question 9 continued



DO NOT WRITE IN THIS AREA

Question 9 continued

DO NOT WRITE IN THIS AREA

(Total for Question 9 is 10 marks)



10 (a) Show that  $\frac{3}{\sqrt{9-3x}} = \left(1-\frac{x}{3}\right)^{-\frac{1}{2}}$ 

- (2)
- (b) Hence expand  $\frac{3}{\sqrt{9-3x}}$  in ascending powers of x up to and including the term in  $x^3$  expressing each coefficient as an exact fraction in its lowest terms.
- (3)

$$f(x) = \frac{1+2x}{\sqrt{9-3x}}$$

- (c) Find the expansion of 3f(x) in ascending powers of x up to and including the term in  $x^3$  expressing each coefficient as an exact fraction in its lowest terms.
- (4)
- (d) Hence, using algebraic integration, obtain an approximation to 6 significant figures for

$$\int_{0.1}^{0.2} \frac{1+2x}{\sqrt{9-3x}} \, \mathrm{d}x \tag{4}$$



DO NOT WRITE IN THIS AREA

Question 10 continued



DO NOT WRITE IN THIS AREA

Question 10 continued			

Question 10 continued			
(Total for Question 10 is 13 marks)			



DO NOT WRITE IN THIS AREA

11	The points A and B have coordinates $(-3, -5)$ and $(7, 5)$ respectively.	
	(a) Find an equation for the line $AB$	
		(2)
	The point C has coordinates $(p, 1)$ where $p < 0$	
	Given that AC and BC are perpendicular,	
	(b) prove that $p = -5$	
		(7)
	The point $D$ , where $BCD$ is a straight line, is such that $C$ divides $BD$ in the ratio $4:3$	
	(c) Find the coordinates of D	(2)
	(d) (i) Find the exact length of AC	
	(ii) Hence, or otherwise, find the area of triangle ABD	(4)

DO NOT WRITE IN THIS AREA

Question 11 continued			



Question 11 continued			
	•••		
(Total for Question 11 is 15 marks)			
TOTAL FOR PAPER IS 100 MARKS			