Linear Algebra Class on 5 January

Seanie Lee

5 January 2019

1.4 Linear Combination, Linear Independence, Dimension

Definition. $Sym_n(\mathbb{R}) := \{A \in \mathfrak{M}_n(\mathbb{R}) \mid A^t = A\} \text{ and } Alt_n(\mathbb{R}) := \{A \in \mathfrak{M}_n(\mathbb{R}) \mid A^t = -A\}$

Note. $A \in \mathfrak{M}_n(\mathbb{R}) A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t)$

A square matrix can be written the sum of symmetric and skew-symmetric matrix.

Definition. Let V be a vector space and S a nonempty subset of V. A vector $v \in V$ is called a linear combination of vectors S if there exist a finite number of vectors $v_1, v_2, \ldots, v_n \in S$ and scalars $a_1, a_2, \ldots, a_n \in F$ such that $v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$.

Definition. Let S be a nonempty subset of a vector space \mathbf{V} . Then **span** of S, denoted spanS, is the set consisting of all linear combinations of the vectors in S. For convenience, we define $\operatorname{span}\emptyset := \{0\}$.

Remark. spanS is a subspace of V. In particular, if V = spanS, then we say that S generates(spans) V or S is a generating subset of V.

Proof. Suppose $a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n, b_1\mathbf{v}_1 + \cdots + b_n\mathbf{v}_n \in S$ be given. We want to show that $c(a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n) + b_1\mathbf{v}_1 + \cdots + b_n\mathbf{v}_n \in S$.

$$c(a_1\mathbf{v}_1+\cdots+a_n\mathbf{v}_n)+b_1\mathbf{v}_1+\cdots+b_n\mathbf{v}_n=(ca_1+b_1)\mathbf{v}_1+\cdots+(ca_n+b_n)\mathbf{v}_n\in\mathrm{span}S$$

Definition. S is linearly independent if $a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n = \mathbf{0} \Longrightarrow a_1 = \cdots = a_n = 0$

Example 1. $\mathbf{V} := \mathbb{R}^2$, $S_1 = \{(1,0), (0,1), (1,1)\}$ is linearly dependent subset because 1(1,0) + 1(0,1) - 1(1,1) = (0,0). But $S_2 = \{(1,0), (0,1)\}$ is linearly independent subset because $a_1(1,0) + a_2(0,1) = (0,0) = (a_1,a_2)$. Note that $\mathbb{R}^2 = spanS_1$, but (3,2) = 3(1,0) + 2(0,1) + 0(1,1) = 1(1,0) = 0(0,1) + 2(1,1). The expression is not unique.

Definition. S is called a basis for V if V = spanS and S is linearly independent.

Note. Every vector space has a basis.

Definition. $dim \mathbf{V} := |S|$ where S is a basis for \mathbf{V} and called "dimension of \mathbf{V} ".

Note. All bases for **V** have the same cardinality.

Theorem. Let $\beta = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ subset of \mathbf{V} . Then β is a basis if and only if $\forall \mathbf{v} \in \mathbf{V}$ can be uniquely expressed as linear combinations of vectors of β .

 $Proof. \Longrightarrow$

Suppose that $\beta = \{bv_1, \dots, \mathbf{v}_n\}$ be a basis for \mathbf{V} . Then $\mathbf{v} = a_1\mathbf{v}_1 + \dots + n\mathbf{v}_n = b_1\mathbf{v}_1 + \dots + b_n\mathbf{v}_n \forall \mathbf{v} \in \mathbf{V}$. $(a_1 - b_1)\mathbf{v}_1 + \dots + (a_n + b_n)\mathbf{v}_n = \mathbf{0}$. Since β is a linearly independent subset of \mathbf{V} , $(a_i - b_i) = 0$ for all i. I.e., $a_i = b_i$ for all i.

 \therefore v can be uniquely expressed as linear combinations of vectors of β .

 \leftarrow

Since every \mathbf{v} can be uniquely expressed as linear combinations of β , span $\beta = \mathbf{V}$. Suppose $a_1\mathbf{v}_1 + a_n\mathbf{v}_n = 0$ and let's assume that there is at least non-zero coefficient a_i . With out the loss of generality, suppose that $a_1 \neq 0$. Then $\mathbf{v}_1 = -a_1^{-1}(a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n)$. But it contradicts to the assumption. Because \mathbf{v}_1 can be expressed as two different linear combinations. $\mathbf{v}_1 = 1 \cdot \mathbf{v}_1 = -a_1^{-1}(a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n)$. Thus there cannot be non-zero coefficient a_i , i.e., $a_i = 0$ for $i = 1, \ldots, n$.

 $\therefore \beta$ is a basis for **V**.

Example 2.

- 1. A basis of \mathbb{R}^n is $\mathcal{E} := \{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ and is called standard basis for \mathbb{R}^n . $\dim \mathbb{R}^n = |\mathcal{E}| = n$
- 2. A basis of $\mathfrak{M}_{m\times n}(\mathbb{R})$ is E^{ij} where $(E^{ij})_{ij}=1$ otherwise 0. Thus $A=\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}a_{ij}E^{ij}$ and $dim\mathfrak{M}_{m\times n}(\mathbb{R})=mn$
- 3. $\mathbf{P}_n(\mathbb{R}) = \{ f(x) \in \mathbf{P}(R) \mid \deg f(x) \le n \} = \{ a_0 + a_1 X + \dots + a_n X^n \mid a_i \mathbb{R} \} = span\{1, X, \dots, X^n \}$ $dim \mathbf{P}_n(\mathbb{R}) = n + 1$
- 4. A basis of $\mathbf{U}_n(\mathbb{R}) \coloneqq \{A \in \mathfrak{M}_n(\mathbb{R}) \mid a_{ij} = 0 \ \forall i > j\}$ is $\{E^{ij} \mid 1 \leq i \leq j \leq n \}$ and dimension is $\frac{n(n+1)}{2}$.
- 5. A basis of $\mathbf{L}_n(\mathbb{R}) := \{A \in \mathfrak{M}_n(\mathbb{R}) \mid a_{ij} = 0 \ \forall i < j\}$ is $\{E^{ij} \mid 1 \leq j \leq i \leq n\}$ and dimension is $\frac{n(n+1)}{2}$.
- 6. A basis of $\mathbf{D}_n(\mathbb{R}) := \{A \in \mathfrak{M}_n(\mathbb{R}) \mid a_{ij} = 0 \ \forall i \neq j \}$ is $\{E^{ij} \mid i = j\}$ and dimension is n.
- 7. A basis of $Sl_n(\mathbb{R}) := \{A \in \mathfrak{M}_n(\mathbb{R}) \mid trA = 0\}$ is $\{E^{ij} \mid i \neq j\} \cup \{E^{ii} E^{i+1,i+1} \mid 1 \leq i < n\}$ and dimension is $n^2 1$
- 8. A basis of $Alt_n(\mathbb{R}) := \{A \in \mathfrak{M}_n(\mathbb{R}) \mid A^t = -A\}$ is $\{E^{ii} \mid i = 1, ..., n\} \cup \{E^{ij} E^{ji} \mid i < j\}$ and dimension is $\frac{n(n+1)}{2}$.
- 9. A basis of $Sym_n(\mathbb{R}) := \{A \in \mathfrak{M}_n(\mathbb{R}) \mid A^t = A\}$ is $\{E^{ii} \mid i = 1, ..., n\} \cup \{E^{ij} + E^{ji} \mid i < j\}$ and dimension is $\frac{n(n+1)}{2}$