K-CHAIN Documentation

Nurali Virani

CONTENTS:

1 Module: kChain	3
2 Indices and tables	7
Python Module Index	9
Index	11

DARPA ASKE TA1

CONTENTS: 1

2 CONTENTS:

MODULE: KCHAIN

This module consists of kChainModel class to create, fit, append, and update K-CHAIN models in TensorFlow class kChain.kChainModel (debug=False)

```
__init__(debug=False)
```

Initialize object of type K-CHAIN model.

Parameters debug (bool) – various print statements throughout the code execution will be executed to help in debugging.

 $\verb|_createEqnModel| (input Var, output Var, mdlName, eqMdl)$

Build a K-CHAIN model using input and output variables from the KG and the physics equation.

Parameters

- inputVar (JSON array) array of JSON variable objects with name, type, and value fields
- outputVar (JSON array) array of JSON variable objects with name, type, and value fields
- mdlName (string) Name to assign to the final model (E.g.: 'Newtons2ndLaw')
- eqMdl (string) Equation relating inputs to output (E.g.: "c = a * b")

Returns

- TensorFlow Graph: Computational graph of the physics equation
- metagraphLoc: string of location on disk where computational model was stored

Return type (TensorFlow Graph, string)

_createNNModel (inputVar, outputVar, mdlName)

Build a K-CHAIN model as a neural network using input and output variables from the KG.

Parameters

- inputVar (JSON array) array of JSON variable objects with name (as in dataset) and type fields
- outputVar (JSON array) array of JSON variable objects with name (as in dataset) and type fields
- mdlName (string) Name to assign to the final model (E.g.: 'Newtons2ndLaw')

Returns

• TensorFlow Graph: computational graph of the neural network

• metagraphLoc: string of location on disk where computational model is stored

Return type (TensorFlow Graph, string)

_getDefaultValues()

Reads json from file and return if exists, else create new and return empty

_getVarType(typeStr)

Obtain tensorflow datatypes for variable type information from KG

Parameters typeStr (*string*) – String denoting type of variable with possible values of bool, integer, float, and double (default).

Returns datatype in TensorFlow (e.g. tf.bool)

_makePyFile (stringfun)

Write the formatted code into a python module for conversion to tensorflow graph

Parameters stringfun (string) – formatted python code as string to be written in python file

setDefaultValues (defValues)

Writes json with provided values back to file

build (inputVar, outputVar, mdlName, dataLoc=None, eqMdl=None)

Build a K-CHAIN model using input and output variables from the KG.

Parameters

- inputVar (JSON array) array of JSON variable objects with name (as in dataset), type, and value fields
- **outputVar** (*JSON array*) array of JSON variable objects with name (as in dataset), type, and value fields
- mdlName (string) Name to assign to the final model (E.g.: 'Newtons2ndLaw')
- dataLoc (string) Location of dataset as .csv with Row 1 Variables names, Row 2 Units, Row 3 onwards data (default = None)
- eqMdl (string) python TF eager-compatible code (e.g. "c = a * b" or "a = tf.math.sqrt(x*y)")

evaluate (inputVar, outputVar, mdlName)

Evaluates a model with given inputs to compute output values

Parameters

- inputVar (JSON array) array of JSON variable objects with name, type, and value fields
- outputVar (JSON array) array of JSON variable objects with name, type, and value fields
- mdlName (string) Name to model to use (E.g.: 'Newtons2ndLaw')

Returns array of JSON variable objects with name, type, and value fields. The resulting output of the computation is assigned to the value field of the JSON object.

Return type JSON array

fitModel (dataset, inputVar, outputVar, mdlName)

Fit a K-CHAIN model using input and output variables from the KG and the corresponding dataset.

Parameters

- dataset (Pandas Dataframe) dataset with inputs and outputs
- inputVar (JSON array) array of JSON variable objects with name (as in dataset) and type fields
- outputVar (JSON array) array of JSON variable objects with name (as in dataset) and type fields
- mdlName (string) Name to assign to the final model (E.g.: 'Newtons2ndLaw')

Returns Location on disk where computational model and trained parameters are stored

Return type string

getDataset (dataLoc=None)

Create Pandas DataFrame from identified csv.

Parameters dataLoc (string) – Location of dataset as .csv with Row 1 - Variables names, Row 2 - Units, Row 3 onwards - data (default = None)

Returns DataFrame with values read from csv file

Return type df (Pandas DataFrame)

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

k

kChain, 3

10 Python Module Index

INDEX

Symbols

```
__init__() (kChain.kChainModel method), 3
_createEqnModel()
                            (kChain.kChainModel
        method), 3
_createNNModel() (kChain.kChainModel method),
        3
_getDefaultValues()
                            (kChain.kChainModel
        method), 4
_getVarType() (kChain.kChainModel method), 4
_makePyFile() (kChain.kChainModel method), 4
_setDefaultValues()
                            (kChain.kChainModel
        method), 4
В
build() (kChain.kChainModel method), 4
Ε
evaluate() (kChain.kChainModel method), 4
fitModel() (kChain.kChainModel method), 4
G
getDataset() (kChain.kChainModel method), 5
K
kChain (module), 3
kChainModel (class in kChain), 3
```