

Eyeriss v2: A Flexible Accelerator for Emerging Deep **Neural Networks on Mobile Devices**

Authors: Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, Vivienne Sze

Presented by: Florian Mahlknecht

Energy Efficient Multimedia Systems Group

Professor Vivienne Sze

Design Principles

Efficiency

Motivation: Energy Efficiency

- 6 GB of data every 30 seconds
- Avg. 2.5kW

(slide credits: Prof. Sze, see Wired 02.06.2018)

Motivation: Latency

(Lin et al., 2018)

Motivation: Edge Processing

Motivation: Flexibility

Metrics	LeNet 5	AlexNet	Overfeat fast	VGG 16	GoogLeNet v1	ResNet 50
Top-5 error [†]	n/a	16.4	14.2	7.4	6.7	5.3
Top-5 error (single crop) [†]	n/a	19.8	17.0	8.8	10.7	7.0
Input Size	28×28	227×227	231×231	224×224	224×224	224×224
#_of_CONV_Layers	_ 2	5	5	13	57	53
Depth in # of CONV Layers	2	5	5	13	21	49
Filter Sizes	5	3,5,11	3,5,11	3	1,3,5,7	1,3,7
# of Channels	1, 20	3-256	3-1024	3-512	3-832	3-2048
* # of Filters	20, 50	96-384	96-1024	64-512	16-384	64-2048
Stride	1	1,4	1,4	1	1,2	1,2
Weights	2.6k	2.3M	16M	14.7M	6.0M	23.5M
MACs	283k	666M	2.67G	15.3G	1.43G	3.86G
# of FC Layers	2	3	3	3	1	1
Filter Sizes	1,4	1,6	1,6,12	1,7	1	1
# of Channels	50, 500	256-4096	1024-4096	512-4096	1024	2048
# of Filters	10, 500	1000-4096	1000-4096	1000-4096	1000	1000
Weights	58k	58.6M	130M	124M	1M	2M
MACs	58k	58.6M	130M	124M	1 M	2M
Total Weights	60k	61M	146M	138M	7M	25.5M
Total MACs	341k	724M	2.8G	15.5G	1.43G	3.9G
Pretrained Model Website	[56] [‡]	[57, 58]	n/a	[57–59]	[57–59]	[57–59]

(Sze et al., 2017)

[†]Accuracy is Measured Based on Top-5 Error on ImageNet [14]. ‡This Version of LeNet-5 has 431 000 Weights for the Filters and Requires 2.3 million MACs Per Image, and Uses ReLU Rather Than Sigmoid.

Recall core operations

- 4 Memory transfers, 2 FLOP
- Parallelizable!

(Sze et al., 2017)

Architecture Overview

- GPU / CPU
- Vector / Thread
- Centralized control for ALUs
- data from memory

(Sze et al., 2017)

Processing

Local memory

Control logic

Engines

Memory access cost

Relative energy cost Operation: Energy (pJ) 8b Add 0.03 16b Add 0.05 32b Add 0.1 16b FB Add 0.4 32b FB Add 0.9 8b Mult 0.2 32b Mult 3.1 16b FB Mult 1.1 32b FB Mult 3.7 32b SRAM Read (8KB) 5 32b DRAM Read 640

DRAM access 20'000 x 8-bit addition

(Hennessy, 2019)

100 1000 10 10000

Memory access cost on Spatial Architecture

(Sze et al., 2017)

Memory access speed

(slide credits: Prof. Koumoutsakos ETH)

Exploiting reuse opportunities

- Convolutional Reuse
- Filter Reuse
- Ifmap Reuse

Row Stationary Dataflow

Split into 1D CONV primitives:

- 1 row of weights
- 1 row of ifmap

Map each *primitive* on 1 PE:

- Row pairs remain stationary:
 - psum and weights in local register
- Sliding window

Row Stationary 2D convolution

Filter rows reused horizontally

ifmap

ifmap

row 2

ifmap

row

Psums accumulated vertically

(Chen et al., 2017)

Systems Group

Alex Net example mapping

Row Stationary Dataflow

(Sze et al., 2017)

Eyeriss v1

layer by layer

Scalability Eyeriss v1

Scalability Eyeriss v2

Design Principles Eyeriss v2

Efficiency

Latency

Scalability

Hierarchical Mesh Network

Flat multicast network

- PEs and GLB grouped into clusters
- Hierarchical structure

Why use a Mesh?

(Chen et al., 2019)

Systems Group

Mesh operation modes

DW CONV layer

FC layer

Eyeriss v2 Architecture

Network for input activations

Architecture Hierarchy

Hierarchy	# of Components		
	8×2 PE clusters		
Cluster Array	8×2 GLB clusters		
	8×2 router clusters		
PE cluster	3×4 PEs		
GLB cluster	3×1.5 kB SRAM banks for iacts		
GLD cluster	4×1.875 kB SRAM banks for psums		
	3 iact routers (4 src/dst ports, 24b/port)		
router cluster	3 weight routers (2 src/dst ports, 24b/port)		
	4 psum routers (3 src/dst ports, 40b/port)		

Specification

Technology	TSMC 65nm LP 1P9M		
Gate Count (logic only)	2695k (NAND-2)		
On-Chip SRAM	246 KB		
Number of PEs	192		
Global Buffer	192 KB (SRAM)		
Scratch Pads (per PE)	weight addr: 14B (Reg) weight data: 288B (SRAM) iact addr: 4.5B (Reg) iact data: 24B (Reg) psum: 80B (Reg)		
Clock Rate	200 MHz		
Peak Throughput	153.6 GOPS		
Arithmetic Precision	weights & iacts: 8b fixed-point psums: 20b fixed-point		

Exploit sparsity

Weight Matrix

CSC Compressed Data:

data vector: {**a**, b, **c**, d, e, **f**, **g**, **h**, i, **j**, k, l} count vector: {1, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0}

address vector: {0, 2, 5, 6, 6, 7, 9, 9, 12}

• process in CSC format

Latency gain

Exploit sparsity

Results for Eyeriss v2

DNN	ImageNet Accuracy ¹	Nominal Num. of MACs	Inference/sec	Inference/J	GOPS/W	DRAM Acc. (MB)	PE Utilization ²
AlexNet	80.43%	724.4M	102.1	174.8	253.2	71.9	100%
sparse AlexNet	79.56%	724.4M	278.7	664.6	962.9	22.3	100%
MobileNet	79.37%	49.2M	1282.1	1969.8	193.7	4.1	91.5%
sparse MobileNet	79.68%	49.2M	1470.6	2560.3	251.7	3.9	91.5%

 $^{^{1}}$ top-5 accuracy for the image classification task. 2 measured in terms of number of utilized MAC datapaths; each PE has 2 MAC datapaths.

Comparison

		Eyeriss [33]	ENVISION [15]	Thinker [16]	UNPU [17]	This	s Work
Technology		65nm	28nm	65nm	65nm	6	5nm
Area		1176k gates	1950k gates	2950k gates	4.0mm×4.0mm	2695k gates	
		(NAND-2)	(NAND-2)	(NAND-2)	(Die Area)	(NAND-2)	
On-chip SRAM (kB)		181.5	144	348	256	2	246
Max Core Frequency		200 MHz	200 MHz	200 MHz	200 MHz	200	MHz
Bit Precision		16b	4b/8b/16b	8b/16b	1b-16b	8b	
Num. of MACs		168 (16b)	512 (8b)	1024 (8b)	13824 (bit-serial)	384 (8b)	
DNN I	Model	AlexNet	AlexNet	AlexNet	AlexNet	sparse AlexNet	sparse MobileNet
Batch Size		4	N/A	15	N/A	1	1
Core Frequency (MHz)		200	200	200	200	200	200
Bit Pro	ecision	16b	N/A	adaptive	8b	8b	8b
Inference/sec	(CONV only)	34.7	47	-	346	342.4	-
	(Overall)	_	_	254.3	-	278.7	1470.6
Inference/J	(CONV only)	124.8	1068.2	-	1097.5	743.4	-
interence/j	(Overall)	-	-	876.6	-	664.6	2560.3

Conclusion

- > 10x improvement over v1
- processing sparse weights and iacts in compressed domain
- flexibility from high bandwidth to high data reuse, for filter shape variety
- extend with cache

Latency

Flexibility

Scalability

Systems Group

Final comment

(slide credits: Dr. Sergio Martin ETH)

Systems Group

Final comment

References and image credits

- 1. Hennessy, J. L. Computer architecture: a quantitative approach. (Morgan Kaufmann Publishers, 2019).
- 2. Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. *Proc. IEEE* **105**, 2295–2329 (2017).
- 3. Chen, Y.-H., Yang, T.-J., Emer, J. S. & Sze, V. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices. *IEEE J. Emerg. Sel. Topics Circuits Syst.* **9**, 292–308 (2019).
- 4. Chen, Y.-H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. *IEEE J. Solid-State Circuits* **52**, 127–138 (2017).
- 5. Lin, S.-C. *et al.* The Architectural Implications of Autonomous Driving: Constraints and Acceleration. in *Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems* 751–766 (ACM, 2018). doi:10.1145/3173162.3173191.

Images: MIT EEMS Group (slide 2), Audi (slide 4), Nvidia (slide 5), WabisabiLearning (slide 6), iStock.com/VictoriaBar (slide 31)

Online video talks:

- slideslive.com
- youtu.be/WbLQqPw_n88

Q & A

Additional slides for interested readers

Systems Group

Energy Efficiency

B	
Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
NLP pipeline (parsing, SRL)	39
w/ tuning & experimentation	78,468
Transformer (big)	192
w/ neural architecture search	626,155

(Strubell et al., 2019)

Motivation: Flexibility, Software

Eyeriss v1 Implementation

- **Customized Coffee** Framework run on NVIDIA development board
- Xlinix serves as PCI controller

Eyeriss v1 PE architecture

Router implementation details

Network for psums

Network for weights

