Math 131AH – Honors Real Analysis I

University of California, Los Angeles

Duc Vu

Fall 2020

This is math 131AH – Honors Real Analysis I taught by Professor Greene, and our TA is Haiyu Huang. We meet weekly on MWF from 1:00pm – 2:00pm for lectures. There are two textbooks used for the class, *Principles of Mathematical Analysis* by *Rudin* and *Metric Spaces* by *Copson*. You can find other lecture notes at my github site. Please let me know through my email if you spot any mathematical errors/typos.

Contents

1	Lec 1: Oct 2, 2020 1.1 Introduction	3
2	Lec 2: Oct 5, 20202.1 Mathematical Induction and More on Real Numbers2.2 Least Upper Bound Property	
3	Lec 3: Oct 7, 20203.1 Cauchy Sequence	
4	Lec 4: Oct 9, 2020 4.1 Bolzano – Weierstrass Theorem	8
5	Lec 5: Oct 12, 2020 5.1 Equivalence Relation	11 11
6	Lec 6: Oct 14, 2020 6.1 Continuous Functions on Closed Interval	13 13
7	Lec 7: Oct 16, 2020 7.1 Uniform Continuity	18 18
8	Lec 8: Oct 19, 2020 8.1 Convergence of Series	20
	Lec 9: Oct 21, 2020 9.1 Metric Spaces	23 23

	1: Oct 1, 2020 Induction	27 27
	2: Oct 8, 2020	28
	Number System	29
	Equivalence Relation	$\frac{29}{29}$
12 Dis	3: Oct 13, 2020	30
	Equivalence Relation (Cont'd)	30
	Construction of \mathbb{R} via Cauchy Sequences(Cantor)	31
13 Dis	4: Oct 20, 2020	32
	Least Upper Bound and Its Applications	32
13.2	2 Continuity	33
List	of Theorems	
2.2	Fundamental Theorem of Arithmetic	5
4.1	Bolzano – Weierstrass	8
7.3	Heine – Cantor (Uniformly Continuous)	19
8.2	Absolute Convergence	22
	8 Nested Interval	32
13.4	4 (4.1)	32
List	of Definitions	
3.1	Sequence	6
3.2	Cauchy Sequence	7
6.2	Continuity	13
7.1	Uniform Continuity	18
8.1	Convergence of Series	20
9.1	Metric Spaces	23
11.1	Least Upper Bound Property	29
11.5	Convergent Sequences	30
13.8	8 Monotone Sequence	33
13.1	0 (6.2)	33
13.1	1 (7.1)	33

$\S1$ Lec 1: Oct 2, 2020

Overview:

 \bullet Hmwrk: 30 %

 \bullet Midterm 1: 20 %

 \bullet Midterm 2: 20 %

• Final: 30 %

§1.1 Introduction

 $\underline{\text{functions}} \to 1, 2, 3, 4, 5, 6, 7 \dots$

functions defined on \mathbb{Q} with value in \mathbb{Q}

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$$

 $a_i \in \mathbb{Q}$ $f(x) \in \mathbb{Q}$ if $x \in \mathbb{Q}$. Continuity makes sense.

$$x_0, x$$
 xclose to $x_0 \implies f(x) \operatorname{close} f(x_0)$

polynomials are continuous.

Somthing wrong: $\sqrt{2}$ is missing. What are these numbers that are not $\in \mathbb{Q}$? Choice:

- 1. Assume everything works and isolate what you need about "real numbers" (most of Rudin chap 1).
- 2. Construct the real numbers from rational numbers.

Classical argument:

$$x^2 \neq 2$$
 if $x = \frac{p}{q} \in \mathbb{Q}$

Proof. Suppose $\left(\frac{p}{q}\right)^2 = 2$

<u>Note</u>: wolog(without loss of generality)

can take $\frac{p}{q} > 0$ p > 0 q > 0

$$\left(\frac{p}{q}\right)^2 = 2$$

$$\frac{p^2}{q^2} = 2$$

$$p^2 = 2q^2$$

Now also wolog, can assume p and q are not <u>both</u> even numbers. But $p^2 = 2q^2$ means p has to be even $(p^2 \text{ odd if } p \text{ is odd})$.

$$p = 2n$$
$$p^2 = 2q^2$$
$$4n^2 = 2q^2$$

So $q^2 = 2n^2$, q is even. But it contradicts the initial assumption, p and q not both even \Box

Related to: Why functions $\mathbb Q$ to $\mathbb Q$ not ideal for analysis? – INFINITE DECIMAL

$\S2$ Lec 2: Oct 5, 2020

§2.1 Mathematical Induction and More on Real Numbers

 $P(n) \to 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$, where n is positive numbers. Math induction: Proof by two steps:

- 1. Check P(1) is true \checkmark
- 2. Assume P(n) is true for all $n \leq N$. Check that

$$P(N+1)$$
 is true

Assume $1 + \ldots + N = \frac{N(N+1)}{2}$. Check

$$1 + \ldots + N + (N+1) = \frac{(N+1)(N+1+1)}{2}$$

Induction on k:

$$1^k + 2^k + \ldots + n^k$$

2nd illustration:

$$1 + r + r^2 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r} \quad r \neq 1$$

 $r = 1 \implies 1 + r = \frac{1 - r^2}{1 - r}$

$$1 + r + r^{2} + \dots + r^{n} + r^{n+1} = \frac{1 - r^{n+1}}{1 - r} + r^{n+1}$$

$$= \frac{1 - r^{n+1} + r^{n+1} - r^{n+2}}{1 - r}$$

$$= \frac{1 - r^{n+2}}{1 - r}$$

$$(1-r)(1+r+\ldots+r^n) = 1-r^{n+1}$$
 Inspection
$$1+r+r^2+\ldots+r^n = \frac{1-r^{n+1}}{1-r}, \quad r \neq 1$$

|r| < 1 get inifite sum $\frac{1}{1-r}$

Example 2.1

Prime factors, prime = positive integers (> 1) with no factors except itself and 1, p = ab, a > 1, b > 1

Thin out as go along

Theorem 2.2 (Fundamental Theorem of Arithmetic)

Every positive integer > 1 is a product of primes.

Proof. Induction: P(n) n = 2, 3, ...

$$P(2) = 2\sqrt{}$$

Assume $P(n) \dots n \le N$ (N > 2). Every integer greater than 1 but smaller than or equal to N as a product of primes. We try to prove: N + 1 is a product of primes.

- 1. N + 1 is prime: Done N + 1 = N + 1
- 2. N+1 is not a prime

$$N+1=a\cdot b$$
 $a>1$ $b>1$

Induction assumption (a < N + 1 since b > 1), a is a product of primes $a > 1 \implies b < N + 1$, b also a product of primes. So, N + 1 = ab is a product of primes.

N+1=ab is a product of prime.

Why does induction work? If P(n) not always true, P(n) look at smallest n where P(n) is false.

n=1 not there P(1) is supposed true (checked already). N_0 smallest one where $P(N_0)$ false $N_0 > 1$. Induction step says that P(n) is true for all $n \le \underbrace{N_0 - 1}_{>0} \implies P(N_0)$ true (×

).

Let's go back to real numbers.

Last time: talked about $\sqrt{2}$ is irrational but $\sqrt{2}$ exists, so we need to enlarge our number system: \mathbb{Q} rational numbers.

$$\frac{p}{q} > \frac{r}{s} \qquad ps > rq \qquad (p, q, r, s > 0)$$
-1 \(-\frac{1}{2} \) \(\frac{1}{2} \) 1
-1 \(0 \)

x, y rational x, y > 0, x + y > 0, xy > 0

 $x^2 = 2$ no answer in \mathbb{Q} . Enlarge number system, $\mathbb{Q} \subset \mathbb{R}$. What should \mathbb{R} be like?

1. \mathbb{R} ought of have arithmetic like \mathbb{Q}

$$x+y$$
 xy $\frac{x}{y}$ 0 1

- 2. $\mathbb{Q} \subset \mathbb{R}$, arithmetic in \mathbb{R} restricted to \mathbb{Q} , $\frac{1}{2} + \frac{1}{3}$ in \mathbb{Q} ought to be $\frac{5}{6}$ in \mathbb{R} .
- 3. Order should positive in $\mathbb{Q} \implies$ in \mathbb{R} . \mathbb{R} should have an order of its own too, x y positive then x + y pos and xy pos.
- 4. want to fill in the holes in Q. Want to have Least Upper Bound Property

 $S \subset \mathbb{R}$: An upper bound for S is a number A with property $A \geq x$ if $x \in S$

 $1, 2, 3, 4, \ldots$ have no upper bound.

S is <u>bounded above</u> means that some upper bound A exists.

§2.2 Least Upper Bound Property

If S is bounded above $(S \neq \emptyset)$ then it has a "least upper bound" where a number A_0 is called the least upper bound of S if A_0 is an upper bound for S & if A is an upper bound for S then $A_0 \leq A$.

Motivation: Think about $\sqrt{2}$

Denote: l.u.b(or supremum)(sequence) = $\sqrt{2}$

Means can define an infinite decimals: least upper bound of successive truncations

$$0.99999... \rightarrow 1.0$$

$\S3$ Lec 3: Oct 7, 2020

§3.1 Cauchy Sequence

$$\{x_n\}$$
 x_1, x_2, x_3, \dots values $x_j \in \mathbb{Q}$ $x_j \in \mathbb{R}$
 S $x_1, x_i \dots x_j \in S$

Definition 3.1 (Sequence) — A sequence with values in a set S is a function from positive integers $\{1, 2, 3...\}$ into S.

Definition 3.2 (Cauchy Sequence) — A <u>Cauchy sequence</u> is (\mathbb{Q} valued or \mathbb{R} valued) $\{x_i\}$ is sequence s.t. for every $\epsilon > 0$ there is a positive integer N_{ϵ} s.t.

$$|x_i - x_j| < \epsilon$$
 if $i, j > N_{\epsilon}$

 ϵ rational or real (same idea).

Lemma 3.3

If $\{x_j\}$ has a finite limit then it's a Cauchy sequence.

 $\{x_i\}$ has L as a limit $\lim x_j = L$ means for every $\epsilon > 0$ then there is an N_{ϵ} such that $j \geq N_{\epsilon}$, $|x_j - L| < \epsilon$

Everybody in $(L - \epsilon, L + \epsilon)$ except a finite number

Proof. Given $\epsilon > 0$, want to find N so that $i, j \geq N \implies |x_i - x_j| < \epsilon |x_i - L| \text{ small}, |x_j - L| \text{ small and } \lim x_j = L.$

$$|x_{i} - x_{j}| \leq |x_{i} - L| + |x_{j} - L|$$

$$|x_{i} - x_{j}| = |L - x_{i}| + |L - x_{j}|$$

$$\xrightarrow{x_{i}} L x_{j}$$

 $i,j \geq N_{\frac{\epsilon}{2}}$:

$$|x_i - x_j| \le \underbrace{|x_i - L|}_{< \frac{\epsilon}{2}} + \underbrace{|x_j - L|}_{< \frac{\epsilon}{2}}$$

Because $\lim x_n = L$, there is an $N_{\frac{\epsilon}{2}}$ s.t. $|L - x_n| < \frac{\epsilon}{2}$ if $n \ge N_{\frac{\epsilon}{2}}$ Get $|x_i - x_j| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ if $i, j \ge N$. Cauchy sequence: there exists number N s.t.

$$|x_i - x_j| < \epsilon \quad \text{if} \quad i, j \ge N$$

Cauchy sequence \implies the existence of limit? Yes, for $\mathbb R$ valued sequences but NO for $\mathbb Q$ valued things.

 $\{x_n\}$ can be Cauchy seq without there being a rational number L such that $\lim x_j = L$

But allow real L then $\exists L$ s.t. $\lim x_j = L$ if $\{x_j\}$ is Cauchy sequence(no rational limit – since $\sqrt{2}$ is irrational). Because \mathbb{Q} has holes in it! (intuitive idea).

Example 3.4

 $1, 1.4, 1.41, 1.414, 1.4142\dots$ (decimal approx of $\sqrt{2}$) – Cauchy sequence. No – since $\sqrt{2}$ is irrational.

$\S 3.2$ Cauchy Completeness of $\mathbb R$

If $\{x_i\}, x_i \in \mathbb{R}$ is Cauchy sequence, then $\exists L \in \mathbb{R}$ s.t. $\lim x_i = L$.

" \mathbb{Q} is not Cauchy complete" but \mathbb{R} is. Why does this work?

Need: Least upper bound property. Assume L.U.B Property proof.

Proof. (Cauchy completeness from L.U.B Property)

Hypothesis: $\{x_i\}$ Cauchy seq

1. Prove that $\{x_i\}$ bounded $\iff \exists M > 0 \text{ s.t. } |x_i| \leq M \text{ all } i.$

Clear if take $\epsilon = 1$ in def. of Cauchy seq $\exists N$ s.t. $|x_i - x_j| < 1$ if $i, j \ge N \implies |x_N - x_j| < 1$ if $j \ge N \implies |x_j| \le |x_N| + 1$ $j \ge N$

So, $M = \max(|x_N| + 1, |x_1|, \dots, |x_{N-1}| \text{ then } |x_j| \le M \text{ all } j!$

Next stage is to show that a bounded sequence always has a subsequence (tricky!) with a limit. Then if a Cauchy seq has a subseq with limit L, then L is limit of whole seq. (Bolzano – Weierstrass Theorem)

 $\S4$ Lec 4: Oct 9, 2020

§4.1 Bolzano – Weierstrass Theorem

- implied by Least Upper Bound Property

Theorem 4.1 (Bolzano – Weierstrass)

If $\{x_n\}$ sequence $(x_1, x_2, x_3...)$ that is bounded (means: $\exists M > 0 \ni |x_n| \le M \forall n$), then $\exists L$ and a subsequence $\{x_{n_i}\}$ s.t. $\lim x_{n_i} = L$.

Slogan: Every bounded sequence has a convergent subsequence.

Example 4.2

$$1, 2, 1, 2, 1, 2, \dots$$

The subsequence of the above sequence has either 1 or 2 as the limit.

$$1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \dots$$

Unbounded sequence – subsequence (limit 1, limit 2, limit 3...)

No claim of uniqueness of anything.

Proof - Summer 2008 Analysis Lec 4

Proof. So either [-M, 0] or [0, M] (maybe both) contains x_n for infinitely many n values. If each contained x_n for only finitely many n values X.

$$-M \qquad 0 \qquad M$$

$$\vdash \qquad \vdash \qquad \vdash \qquad \vdash$$
Every x_n is in $[-M, M] - \{x_n\}$ is bounded
$$[-M, M] = [-M, 0] \cup [0, M]$$

$$I_1 = [-M, 0] \quad \text{or} \quad [0, M]$$

where chosen intervalhas x_n for infinitely many n values. Do this again!

$$I_1 = [a_1, b_1]$$
 $|b_1 - a_1| = M$

$$I_1 \leftarrow \text{length}$$

left half of I_1 , right half of I. Let $I_2 =$ one of halves that contains x_n for infinitely many n values.

$$I_2 = [a_2, b_2]$$
 $a_2 < b_2, b_2 - a_2 = \frac{M}{2}$

Continue

$$I_3 = [a_3, b_3]$$
 $a_3 < b_3, b_3 - a_3 = \frac{M}{4}$

:

$$I_k = [a_k, b_k]$$
 $b_k - a_k = \frac{M}{2^{k-1}}$

Each I_k contains x_n for infinitely many n values.

Claim $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$

Reason: $\sup a_k \in \bigcap_{k=1}^{\infty} I_k$ where $\sup = \sup$ of left hand endpoint(=greatest lower bound of bs). l.u.b of a's $\leq b_k$, b_k bigger than or \geq all a's.

$$\alpha = \text{lub a's}$$
 $\alpha \ge a_k \quad \forall k$
 $\alpha \le b_k \quad \forall k$
 $\alpha \in [a_k, b_k]$

Goal: $\alpha \in \bigcap_{k=1}^{\infty}$. Find a subsequence of $\{x_n\}$ converges to α .

Choose $x_k = x_n$ that belongs to I_k . Can also arrange successively:

$$n_1 < n_2 < n_3 < n_4$$

 $x_{n_1} \in I_1$ $x_{n_2} \in I_2$ can make $n_2 > n_1$ because infinitely possible $x'_n s$ in I_2 n value. Continue to get subsequence, $\{x_{n_k}\}$ subsequence. Claim:

$$\lim_{k \to \infty} x_{n_k} = \infty$$

Reason:

$$\operatorname{dis}(x_{n_k}, \alpha) \leq \operatorname{length} \text{ of } I_k \quad \alpha \in I_k, \quad x_{n_k} \in I_k$$

which is equivalent to

$$|x_{n_k} - \alpha| \le \frac{M}{2^{k-1}}$$
 given $\epsilon > 0$

When k is large,

$$\frac{M}{2^{k-1}} < \epsilon$$

So $|x_{n_k} - \alpha| < \epsilon$

This argument (or a variant) shows something else: If $\{x_n\}$ sequence in [0,1] then there's an $\alpha \in [0,1]$ with it never happening that

$$x_n = \alpha$$

"The real numbers in [0, 1] are uncountable." (come from the least upper bound property)

$$\begin{array}{c|c} x_1 & \swarrow \\ & & \downarrow \\ \hline & & \downarrow \\ \hline & I_1 \end{array}$$

 I_1 one of $[0, \frac{1}{3}]$ $[\frac{1}{3}, \frac{2}{3}]$ $[\frac{2}{3}, 1]$ such that $x_1 \notin I_1$,

$$[0,\frac{1}{3}]\cap [\frac{1}{3},\frac{2}{3}]\cap [\frac{2}{3},1]=\emptyset$$

 $x_1 \notin I_2$ $I_2 \subset I_1$, & $x_1 \notin I_1$. Continue. Get

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

length $I_k = \frac{1}{3^k}$ and I_k is such that $x_1, x_2, x_3 \dots x_k$ are none of the ?n? in I_k . Same as before

$$\exists \alpha \in \bigcap_{\infty}^{k=1} I_k$$

 $\alpha = \sup$ of set of left hand endpoints of I_k . Claim α cannot be an x_N value. Clear: $x_N \notin I_N$ but $\alpha \in I_n$ $\alpha \in \bigcap_{n=1}^{\infty} I_n$. But contrast:

There is a list of rational numbers in [0, 1]

$\S 5$ Lec 5: Oct 12, 2020

§5.1 Equivalence Relation

(p.10, Copson – Metric Space) R set, relation of A and B $(A \times B)$ $(a,b) \in R$ aRbFunctions: one b given a – exact one. $(A \to B)$

Example 5.1

A = B = Q aRb or $(a, b) \in R$ if a > b(mother,child)

- (Sara, Sebastian) $\in R$
- (Sara, Alita) $\in R$

Equivalence is a special kind of relation: (on a set A; B = A = B) Properties:

- 1. aRa A = Q
- $2. \ aRb \implies bRa$
- 3. aRb & bRc then aRc

Example: \mathbb{Z} $a \sim b$ means a - b is divisible by 5

$$1 \sim 6 \quad 0 \sim 5 \dots$$

 $a \sim a$ a - b div $\implies b - a$ div. by 5.

If a-b div. by 5, and b-c div by 5, then is a-c div. by 5 true? Sure, a-b=5k, $b-c=5l \implies a-c=5(k+l)$ "Equivalence classes": set $[a]=\{$ all b such that $aRb\}$ In the example above, $[a] = \{ \text{ all b such that } a - b \text{ div. by 5} \}$

$$[2] = \{2, 7, -3, 12, -8, \ldots\}$$

 \mathbb{Z}_5 : integer mod 5.

- 1. [a] [p] either equal or have nothing in common.
- 2. $a \in [a]$ so is in some equivalence class.

A equivalence relation \sim on $A \leftrightarrow$ a partition of A into subsets which are pairwise disjoint. Q Cauchy seq. of rational numbers

$$\{x_n\} \sim \{y_n\}$$

means $\lim_{n\to\infty} |x_n - y_n| = 0$. Equivalence relation:

- 1. $\{x_n\} \sim \{x_n\} (\lim (x_n x_n) = 0)$
- 2. $\{x_n\} \sim \{y_n\} \implies \{y_n\} \sim \{x_n\}$
- 3. $\{x_n\} \sim \{y_n\} \& \{y_n\} \sim \{z_n\} \implies \{x_n\} \sim \{z_n\}$

Idea: Define a real number to be a (Cauchy seq. of rationals) equivalence class. Homework: want to check that arithmetic extends to "real numbers"

$$[\{x_n\}] + [\{z_n\}] = [\{x_n + z_n\}]$$

Check that

- 1. $\{x_n + z_n\}$ is a Cauchy seq.
- 2. Only depends on equivalence classes.

Want

$$\{x_n\} \sim \{y_n\} \qquad \{z_n\} \sim \{w_n\}$$

then $\{x_n + z_n\} \sim \{y_n + w_n\}$. So,

$$[\{x_n + z_n\}] = [\{y_n + w_n\}]$$

Example 5.2

$$[2] + [11] = [2 + 11] = [13]$$

So, $[2+1] \sim [13]([11] = [1])$. Arithmetic (addition) in \mathbb{Z}_5 thus makes sense. How about multiplication? $\frac{[1]}{[a]} \leftarrow \text{exists } [a] \neq 0$.

$$\frac{[1]}{[2]} = [3]$$
 $[2][3] = [6] = [1]$

Thus, \mathbb{Z}_5 is a field.

 $\frac{p}{q} \sim \frac{r}{s}$, $q, s \neq 0$ means ps = rq (when talking about fractions – associate it with equivalence relation). Q = set of equivalences classes. $(\frac{p}{q})$: equivalence classes).

Last time, we proved that Cauchy seq. of real numbers have limits (lub property). Also, no sequence $\{x_n\}$ such that it hits all real numbers in [0,1] – this is important. Contrast with $Q \cap [0,1]$, then there is a sequence that hits them all. Refer to the last figure in Lec 4 or math.ucla.edu/~greene – Summer 2008.

$\S 6$ Lec 6: Oct 14, 2020

Bolzano - Weierstrass:

Every bounded sequence has a convergent subsequence.

And we know about the Least Upper Bound Prop.

§6.1 Continuous Functions on Closed Interval

$$f: S \to \mathbb{R}, \quad S \subset \mathbb{R}$$

Example 6.1

$$S = [a, b]$$

$$S = \mathbb{R}$$

Definition 6.2 (Continuity) — $s_0 \in S$, f is continuous at s_0 if given $\epsilon > 0$, $\exists \delta > 0$ s.t.

$$|s - s_0| < \delta_{\epsilon} \implies |f(s) - f(s_0)| < \epsilon$$

Three properties:

$$f:[a,b]\to\mathbb{R}$$

fcontinuous

1. f is bounded on [a, b] means $\exists M$ s.t. for all $x \in [a, b], |f(x)| \leq M$

2. There exists $x_{\min}, x_{\max} \in [a, b]$ such that for all $x \in [a, b]$

$$f(x_{\min}) \le f(x) \le f(x_{\max})$$

Slogan: f attains its maximum and minimum.

3. If $\alpha, f(x_{\min}) < \alpha < f(x_{\max})$, then $\exists x \in S = [a, b]$ s.t. $f(X) = \alpha$.

"Intermediate Value Theorem" Need the least upper bound prop – "completeness of

real numbers"

Exercise: def of continuity $\{s_n\}$ converges to $s_0 \iff$ if $s_n \to s_0$, $s_n \in S, s_0 \in S$ then $\{f(s_n)\}$ converges to $f(s_0)$.

Example 6.3

For (3),

$$f(x) = x^2 - 2$$
 on $Q \cap [1, 2]$

Then f(1) = -1, f(2) = 2, but no rational $x \in [1, 2]$ s.t. f(x) = 0.

Back to the properties:

1. f is bounded – Think about $|f| \leftarrow$ continuous if f is (exercise).

 $\exists M \text{ such } |f(x)| \leq M \text{ all } x \in [a,b].$ Suppose no such M exists.

Try
$$M = 1, 2, 3, 4, 5, 6, \dots$$
 So $\exists x_1 |f(x_1)| > 1$

$$|f(x_2)| > 2$$

:

$$|f(x_n)| > n$$

But Bolzano – Weierstrass: subsequence $\{x_{n_i}\}$ that converges to x_0 say $|f(x_0)| \leftarrow$

finite number. So $\exists N \ni |f(x_0)| \leq N$.

 $\underline{\text{Now}}$ for j large enough

$$\left| f(x_{n_i}) - f(x_0) \right| < 1$$

 x_{n_i} converges to x_0

$$|f(x_{n_j})| < |f(x_0)| + |f(x_{n_j} - f(x_0)|$$

So j is large enough that

$$|f(x_{n_j})| \le N + \text{ something less than } 1 \le N$$

2. Attains max and min

Similar: $\{f(x): x \in [a,b]\}$ bounded set, has sup where

$$\sup\left\{f(x):x\in[a,b]\right\}$$

either in the set of f-values (done if that's true), sup $f = f(x_0)$.

OR: sup f acutally not in the set $\{f(x) : x \in [a, b]\}$

Now $\{x_{n_j}\}$ converges to $x_0 \in [a, b]$

Claim 6.1. $f(x_0) = \sup \{f(x) : x \in [a, b]\}$

$$f(x_{n_j}) \leq \sup \{f(x): x \in [a,b]\}$$
 and $\lim f(x_{n_j}) = f(x_0) = f(\lim x_{n_j})$. So
$$f(x_0) = \sup f$$

3. $\alpha \in [f(x_{\min}), f(x_{\max})]$ then x such that $f(x) = \alpha$.

Proof. Wolog:

$$f(a) < 0$$
 and $f(b) > 0$

then $\exists x \in [a, b]$ with f(x) = 0.

Use l.u.b: Look at $S: \{x: f(x) < 0\}$ and $S \neq \emptyset$ because $f(a) \in S$. Also, S is bounded above $-\exists$ l.u.b for S, sup $S \in [a, b]$. Hope that $f(\sup S) = 0$.

 $\sup S \neq b$ is clear because f(b) > 0 so $f(b - \epsilon) > 0$ for small ϵ .

So $\sup S = x_0$, $a < x_0 < b$. What is $f(x_0)$? If it's negative, then there are slightly bigger $x \in [a_0, b] \ni f(x) < 0$ (continuity). In addition, x_0 cannot be a limit of x with $f(x) < 0 - x_0 = \sup$ places where f < 0.

f continuous on [a, b] if it is

- 1. bounded.
- 2. attains max and min.
- 3. attains every value between max value and min value.

f([a,b]) = [c,d] where c is min of f and d is max of f.

§7 Lec 7: Oct 16, 2020

§7.1 Uniform Continuity

Definition 7.1 (Uniform Continuity) — $S \subset \mathbb{R}$, $f: S \to \mathbb{R}$. f is uniformly continuous on S if given $\epsilon > 0$ there is a $\delta > 0$ s.t. $|f(x) - f(y)| < \epsilon$ if $x, y \in S$ and $|x - y| < \delta_{\epsilon}$

Example 7.2

 $f:S\to\mathbb{R},\ S=\mathbb{R},\ f(x)=x^2.$ Continuous on \mathbb{R} but it is not uniformly continuous on \mathbb{R} .

Continuity: Given fixed x, and $\epsilon > 0$ want δ so that

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

 $|x^2 - y^2| = |x - y||x + y|$ and want it smaller than ϵ . Assume $\delta \leq 1$.

$$|x + y| \le |x| + |y|$$

 $|y| < |x| + 1$ if $|x - y| < \delta(\le 1)$

So, if $|x - y| < \delta \le 1$,

$$|x^2 - y^2| = |x - y||x + y|$$

 $\leq |x - y|(2|x| + 1)$

Choose $\delta < \frac{\epsilon}{2|x|+1}$ (ok since x is fixed)

$$|x^2 - y^2| < \frac{\epsilon}{2|x| + 1} (2|x| + 1)$$

= ϵ if $|x - y| < \min\left\{1, \frac{1}{2|x| + 1}\right\}$

Uniform continuity does not work on \mathbb{R} .

Claim 7.1. $\epsilon = 1 > 0$, there is no $\delta > 0$ s.t. $|x^2 - y^2| < 1 = \epsilon$ for all x, y with $|x - y| < \delta$.

Why? Look at for $\delta > 0$, consider $y = \frac{1}{\delta} + \frac{\delta}{2}$, $x = \frac{1}{\delta}$

$$|x - y| < \delta$$

Also,

$$\left| \left(\frac{1}{\delta} + \frac{\delta}{2} \right)^2 - \left(\frac{1}{\delta} \right)^2 \right|$$

$$= \left| \frac{1}{\delta^2} + 2 \left(\frac{1}{\delta} \right) \left(\frac{\delta}{2} \right) + \left(\frac{\delta}{2} \right)^2 - \frac{1}{\delta^2} \right|$$

$$= 1 + \left(\frac{\delta}{2} \right)^2 > 1$$

which is a contradiction.

Exercise 7.1. $\frac{1}{x}$ on (0,1) is continuous but <u>not</u> uniformly continuous. Sugges plausibly f

continuous on [a, b] then it's uniformly continuous on [a, b] where a, b are finite.

Theorem 7.3 (Heine – Cantor (Uniformly Continuous))

A continuous function f on a closed interval is uniformly continuous.

Proof. (By contradiction) Suppose not. Then $\epsilon > 0$ s.t. no δ "works". In particular, $\exists \epsilon > 0$

s.t. $\delta = 1$ fails, $\delta = \frac{1}{2}$ fails, etc. So $x, y \in [a, b]$ with $|f(x_1) - (fy_1)| \ge \epsilon$ but $|x_1 - y_1| < 1$. $x_n, y_n \in [a, b]$ with $|f(x_n) - f(y_n)| \ge \epsilon$ but $|x_n - y_n| < \frac{1}{n}$. Hope this is impossible. Bolzano - Weierstrass $\implies \{n_j\}$ s.t. $\{x_{n_j}\}$ has a limit

$$x_0 = \lim, \quad x_0 \in [a, b]$$

Now, claim $\{y_{n_i}\}$ also has limit x_0 .

$$\left| x_{n_j} - y_{n_j} \right| < \frac{1}{n_j}$$

small when n_j large (j large).

$$\lim x_{n_j} = x_0$$

$$\lim y_{n_j} = x_0$$

$$\lim f(x_{n_j}) = f(x_0)$$

$$\lim f(y_{n_j}) = f(x_0)$$

So, $\lim f(x_{n_j}) - f(y_{n_j}) = 0$, but it contradicts $|f(x_{n_j} - f(y_{n_j}))| \ge \epsilon$ for all j.

$$f(x_0) \le |f(x_{n_i}) - f(x_0)| + |f(x_0) - f(y_{n_i})| \to 0$$

Ideas of continuity and uniform continuity and Bolzano - Weierstrass Theorem - all have reasons in metric spaces.

$\S 8 \mid \text{Lec 8: Oct } 19, 2020$

§8.1 Convergence of Series

Series is "formal sum", an infinite sum

$$a_0 + a_1 + a_2 + \ldots = \sum_{j=1}^{\infty} a_j$$

A series \iff sequence a_1, a_2, a_3, \ldots add together. Associated to $a_1 + a_2 + a_3 + a_4 \ldots$ is a sequence of partial sum

$$S_N = \sum_{n=1}^N a_n, \qquad N = 1, 2, 3, 4, 5, \dots$$

number valued sequence.

Definition 8.1 (Convergence of Series) — Series converges if sequence associated $\{S_N\}$ converges (has a limit).

Lots of things are defined by series such as $(x \in \mathbb{R})$,

$$e^x = \lim_{N \to \infty} \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^N}{N!} \right)$$

Given series $a_0 + a_1 + a_2 + a_3 + \dots$, when does it converge?

$$1-2+3-4+5-6+7...$$

 $S_1 = 1, \quad S_2 = -1, \quad S_3 = 2...$

NO LIMIT! Series do not necessarily have to converge then it's okay to write

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$$

First thing to look at – Case where $a_i \geq 0$

$$S_N \leq S_{N+1}, \quad N = 1, 2, 3, \dots$$

 $S_{N+1} = S_N + a_{N+1}$ so $a_{N+1} \ge 0$ means $S_{N+1} \ge S_N$. Two cases:

Case 1: $\{S_n\}$ not bounded above.

 $\lim S_N$ does not exist \to Series diverges (sequences with limits are always bounded above and below).

Case 2: $\{S_n\}$ bounded above.

 $\lim_{n\to\infty} S_n$ always exists. Namely, it is the least upper bound of set of values of S_n .

There is an S_{n_0} in this interval $(M_0 - \epsilon, M_0]$, M_0 is lub

From that n_0 on,

$$S_n > S_{n_0}, \quad S_n < M$$

 S_n satisfies $|S_n - M_0| < \epsilon$ if $n \ge n_0$. So $\lim S_n = M_0$. This implies that S_n is a Cauchy

sequence (it has a limit). Given $\epsilon > 0, \exists N_{\epsilon} \text{ s.t. } \left| \sum_{1 \leq n_1}^{n_1} a_n - \sum_{1 \leq n_2}^{n_2} a_n \right| < \epsilon \text{ if } n_1, n_2 \geq N_{\epsilon}.$

Suppose $n_1 > n_2 \ge N_{\epsilon}$

$$\sum_{1}^{n_1} a_n - \sum_{1}^{n_2} a_n = \sum_{n_2+1}^{n_1} a_n$$

<u>Note</u>: $S_7 - S_5 = a_6 + a_7$ which explains the above expression.

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} \dots$$

converges, but so does the following series

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots < 2$$

This works for arbitrary choices of + or -.

Theorem 8.2 (Absolute Convergence)

If $|b_1| + |b_2| + |b_3| + \dots$ converges, then

$$b_1 + b_2 + b_3 + \dots$$
 converges

"Absolute convergence" \implies convergence (but not necessarily the same limit).

Proof. Assume $\underbrace{\left\{S_n^A\right\}}_{A \text{ for absolute}}$ for absoluted series has limit. So

$$\sum_{1}^{\infty} |b_n|$$
 converges

 $\implies \{S_n^A\}$ Cauchy sequence.

We hope it $\implies \{S_n\} = \left\{\sum_{j=1}^n b_j\right\}$ is a Cauchy sequence.

$$S_{n_1}^A - S_{n_2}^A = |b_{n_2+1}| + |b_{n_2+2}| + \ldots + |b_n|$$

<u>But</u>

$$|b_{n_2+1} + \ldots + b_n| \le |b_{n_2+1}| + \ldots + |b_n| (= S_{n_1}^A - S_{n_2}^A)$$

So,

$$|S_{n_1} - S_{n_2}| \le S_{n_1}^A - S_{n_2}^A < \epsilon \quad \text{for } n_1, n_2 \ge N_{\epsilon}$$

Then $|S_{n_1} - S_{n_2}| < \epsilon$ for $n_1, n_2 \ge N_{\epsilon}$.

This is IMPORTANT – Better understand it thoroughly.

Corollary 8.3 (Root Test)

 $|b_n| \le Cr^n, 0 < r < 1, C, r$ fixed, then $\sum b_n$ converges.

Reason: $\sum_{n=0}^{\infty} Cr^n = C \frac{1}{1-r}$ (geometric series).

Exercise 8.1. $\sum_{n=0}^{N} Cr^n = C\frac{r^{N+1}-1}{r-1}, 0 < r < 1$ has limit $\frac{C}{1-r}$. Prove by induction.

 $\underline{\text{Detail}} :$ Hypothesis:

$$|b_n| \le Cr^n$$

$$\sum_{1}^{\infty} |b_n| \le \sum_{1}^{\infty} Cr^n < \infty$$

$$\sum_{1}^{N} |b_n| \le \sum_{1}^{N} Cr^n \le M < \infty$$

So $\sum_{0}^{N} |b_n|$ converges and bounded by Cr, and $b_1 + b_2 + \dots$ converges absolutely.

$\S{9}$ Lec 9: Oct 21, 2020

§9.1 Metric Spaces

Definition 9.1 (Metric Spaces) — A set X, elements are "points", together with a function on $\underbrace{X \times X}_{\text{ordered pairs }(x,y)}$, $x \in X, y \in Y$, $\underbrace{d(x,y)}_{\text{distance}}$ with the following properties:

- 1. $d(x,y) \ge 0$ for all x, y. $d(x,y) = 0 \iff x = y$. Or d(x,x) = 0.
- 2. d(x,y) = d(y,x).
- 3. \triangle inequality:

$$d(x,y) + d(y,z) \ge d(x,z)$$

$$d(x,z) \le d(x,y) + d(y,z)$$

Example 9.2 1. X set. Can you define a $d: X \times X \to \mathbb{R}$ to make (x, d) a metric space?

YES! Define given set X, $d(x_1, x_2) = 0$ if $x_1 = x_2$, or $d(x_1, x_2) = 1$ if $x_1 \neq x_2$. "discrete".

- $d(x, y) \ge 0$.
- d(x, y) = d(y, x). x = y both are 0. $x \neq y$ both are 1.
- $d(x, z) \le d(x, y) + d(y, z)$ $x = z \implies d = 0.$ $x \ne z \implies d(x, z) = 1.$ If x = y then $y \ne z$ so $1 \le 0 + 1$
- 2. (INTERESTING) d(x,y) = |x-y| for \mathbb{R} . $d(\frac{p}{q}, \frac{r}{s}) = |\frac{p}{q} \frac{r}{s}|$ for \mathbb{Q} .

Note: X is a metric space $Y \subset X$ then $\left(Y, d\Big|_{Y \times Y}\right)$ is a metric space.

<u>Motivation</u>: Stuff about \mathbb{R} involving e.g., continuity and limits can be transferred to metric space.

Example 9.3

 $\{x_n\}$ is a sequence in a metric space (X,d) (or X) has limit $x_0 \in X$ if for every $\epsilon > 0$, there is an N_{ϵ} s.t. $d(x,x_0) < \epsilon$ if $n \geq N_{\epsilon}$. (If $X = \mathbb{R}$, d(x,y) = |x-y| same as before)

Example 9.4

Function: $f:(X,d_1)\to (Y,d_2)$. Continuity at $x_0\in X$?

Real case: f cont at x_0 means given $\epsilon > 0$ $\exists \delta > 0$ s.t. $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \delta$

Metric space case: f cont at x_0 means given $\epsilon > 0 \exists \delta > 0$ s.t. $d(x, x_0) < \delta \implies d(f(x), f(x_0)) < \epsilon$.

More examples:

Example 9.5

```
\mathbb{R}^{2} = \{(x_{1}, x_{2}) : x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}\}
\mathbb{R}^{3} = \{(x_{1}, x_{2}, x_{3}) : x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}, x_{3} \in \mathbb{R}\}
\vdots
\mathbb{R}^{n} = \{(x_{1}, x_{2}, \dots, x_{n}) : x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}, \dots, x_{n} \in \mathbb{R}\}
```

Interesting metric on \mathbb{R}^2 $d((a_1, a_2), (b_1, b_2))$

$$d = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$

 $\mathbb{R}^n(x_1,x_2,\ldots,x_n),(y_1,\ldots,y_n)$

$$d := \sqrt{(y_1 - x_1)^2 + \ldots + (y_n - x_n)^2}$$

diff of x coord

Is this function on \mathbb{R}^n a metric?

- 1. $d(x,y) \ge 0, = 0 \iff x = y \text{ where } x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \text{ and}$ $d(x,y) = \sqrt{(x_1 y_1)^2 + \dots + (x_n y_n)^2}$
- 2. d(x,y) = d(y,x)
- 3. BUT BUT $-\Delta$ inequality is not so easy.

$$\sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2} \le \sqrt{(x_1 - z_1)^2 + \ldots + (x_n - z_n)^2} + \sqrt{(z_1 - y_1)^2 + \ldots + (z_n - y_n)^2}???$$

Does $d(x, y) \le d(x, z) + d(z, y)$ work?

YES but proof later:(

Realize that it's okay to assume $z = (0, 0, \dots, 0)$

Example 9.6

Try another metric \mathbb{R}^2 – taxicab

$$|c-a|+|d-b|=d((a,b),(c,d))$$
 min of length of taxi car

Easy to see that this d is really a metric. \triangle inequality is easy!

 $\begin{aligned} \text{Euclidean distance} &= \sqrt{2} \\ \text{diff of x's} &\leq \text{Euc dis} \\ \text{diff of y's} &\leq \text{Euc dis} \end{aligned}$

$$d(P_1, P_2) + d(P_2, P_3) \ge d(P_1, P_3)$$

$\S10$ Dis 1: Oct 1, 2020

Notation:

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$$

$$\mathbb{Q} = \left\{\frac{p}{q} | p, q \in \mathbb{Z}, q \neq 0\right\}$$

$$\mathbb{R} = \text{real numbers}$$

$$\mathbb{C} = \{a + bi, \quad a, b \in \mathbb{R}\}$$

Set theory:

- $A \subset B$ (or $A \subseteq B$) means $x \in A \implies x \in B$
- $x \in A \cap B$ means $x \in A$ and $x \in B$
- $x \in A \cup B$ means $x \in A$ or $x \in B$
- $x \in A \setminus B \iff x \in A \text{ and } x \notin B$
- $A = B \iff A \subset B \text{ and } B \subset A$

§10.1 Induction

Given a sequence of mathematical statement P(n) indexed by \mathbb{N} . If P(1) is true and $P(k) \implies P(k+1)$ is true $\forall k \in \mathbb{N}$, then P(n) is true $\forall n \in \mathbb{N}$.

Example 10.1

Prove $\sum_{k=1}^{n} (2k-1) = n^2$ (*) using induction.

Base case $n = 1: 1 = 1^2$

Induction step: assume as induction hypothesis that (*) holds

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(n+1) - 1$$
$$= n^2 + 2n + 1$$
$$= (n+1)^2$$

Or we can prove it the following way

$$S = 1 + 3 + 5 + \dots + (2n - 1)$$

$$S = (2n - 1) + (2n - 3) + \dots + 3 + 1$$

$$2S = 2n \cdot n$$

$$S = n^{2}$$

Example 10.2

 $a_{n+1}=\sqrt{2+a_n}, \quad a_1=1.$ Prove $a_n>0$ and a_n increasing. $a_1>0$ assume $a_n>0, \ a_{n+1}=\sqrt{2+a_n}>0$

$$a_2 = \sqrt{3} \approx 1.732 > 1 = a_1$$

Assume $a_n \le a_{n+1}$, want to show $a_{n+1} \le a_{n+2} \iff \sqrt{a_n+2} \le \sqrt{a_{n+1}+2} \iff a_n \le a_{n+1}$

Example 10.3

 $(1+x)^n \ge 1 + nx$: Bernoulli Inequality $x \ge -1, n \ge 0$

base case $1 \ge 1$

Assume $(1+x)^n \ge 1 + nx$

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2$$
$$= 1 + (n+1)x$$

Strong Induction:

If P(1) true and $P(1), P(2), \dots P(k) \implies P(k+1)$ true $\forall k \in \mathbb{N}$ then P(n) holds for all $n \in \mathbb{N}$

Remark 10.4. Induction \iff strong induction

Example 10.5

Every integer greater than 1 is a product of primes.

Assume 2, 3, ..., n is a product of primes. n+1 is either a prime or a composite, in which case n+1=ab, 1 < a, b < n+1.

By strong induction hypothesis, both a and b are product of primes, hence so is n+1=ab.

Exercise 10.1. Every integer greater than 1 has a prime divisior.

Proof of infinitude of primes by Euclid:

Proof. Assume on the contrary there are finitely many primes $\{p_1, p_2, \ldots, p_k\}$. Define $N = p_1 \ldots p_k + 1 > 1$ and (by above exercise) let p be a prime divisior of N but $p \neq p_j$ for any $1 \leq j \leq k$ otherwise if $p = p_j$ then $p|p_2 \ldots p_k$ also $p|N \implies p|N - p_1 \ldots p_k \implies p|1$, a contradiction. (no primes divide 1)

$\S11$ Dis 2: Oct 8, 2020

§11.1 Number System

- $(\mathbb{N}, +, \cdot, <) : + : \mathbb{N} \times \mathbb{N} = \mathbb{N}^2 \to \mathbb{N}$ satisfies commutativity and associativity. Note that 0 is the identity with respect to addition, but \mathbb{N} has no additive inverse.
- $(\mathbb{Z}, +, \cdot, <) : (\mathbb{Z}, +)$ is a commutative group (associativity, identity, inverse). (\mathbb{Z}, \cdot) satisfies commutativity, associativity with 1 as mult identity but 2 has no mult inverse.
- $(\mathbb{Q}, +, \cdot, <) : (\mathbb{Q}, +)$ and (\mathbb{Q}, \cdot) are commutative group(i). + and \cdot are compatible with distributive law: a(b+c) = ab + ac (ii). Both (i) and (ii) mean $(\mathbb{Q}, +, \cdot)$ is a FIELD. (Q, <) is an ordered set with < satisfying trichotomy and transitivity. $+, \cdot$ are compatible: $y < z \implies x + y < x + z \forall x, x > 0, y > 0 \implies xy > 0$. With the above compatibility, $(\mathbb{Q}, +, \cdot, <)$ is an ordered field. Even though \mathbb{Q} is additivity adn multiplicatively complete, \mathbb{Q} is not satisfying in that
 - 1. \mathbb{Q} is not algebraically closed, x^2-2 is a polynomial with no root in \mathbb{Q} .
 - 2. \mathbb{Q} is not complete in a metric space: there exists subsets of \mathbb{Q} bounded above but with no least upper bound (supremum), e.g. $A := \{p \in \mathbb{Q} : p < 0 \text{ or } p^2 < 2\}$ and $B = \mathbb{Q} \setminus A$. A contains no largest number and B contains no smallest.

$$\forall p \in A \exists q \in A \quad q > p$$

Let $p \in A$. Define $q \coloneqq p - \frac{p^2 - 2}{p + 2} > p$

$$q^{2} - 2 = \left(\frac{2p+2}{p+2}\right)^{2} - 2 = \frac{2(p^{2}-2)}{(p+2)^{2}} < 0 \implies q^{2} < 2$$

If A has an upper bound α , $\alpha \notin A$: then $\alpha \in B$. It follows that B is the set of all upper bounds for A. Since B contains no smallest number, A has no least upper bound in \mathbb{Q} .

Definition 11.1 (Least Upper Bound Property) — S has the least-upper-bound property if $\forall E \subset S$ nonempty, bounded above $\sup E \in S$.

Remark 11.2. \mathbb{Q} does not satisfy the least-upper-bound property.

 $(\mathbb{R}, +, \cdot, <)$ there exists an ordered field with the l.u.b property that contains an isomorphic copy of \mathbb{Q} .

$\S 11.2$ Equivalence Relation

An equivalence relation given \sim on $A \times A$ satisfies

- $x \sim x$ reflexity
- $x \sim y \iff y \sim x$ symmetry
- $x \sim y \cdot y \sim z \implies x \sim z$ transitivy

Example 11.3

 \mathbb{Q} Define \sim on $\{(a,b): a,b \in \mathbb{Z}, b \neq 0\}$ by $(a,b) \sim (c,d)$ if ad = bc

$$A = \mathbb{Z}^2 \setminus \{(a,0) : a \in \mathbb{Z}\}\$$

 \mathbb{Q} = the set of all equivalence classes of A write \sim = A/\sim = {[x] : x \in A}

In this construction, $\mathbb{Z} \to \mathbb{Q}$, $n \to [(n,1)]$ +\\\cdot\: $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$: note that + and \cdot\need to be well-defined on \mathbb{Q}^2 . (need to show $\frac{a}{b} + \frac{c'}{d} = \frac{a'}{b'} + \frac{c'}{d'}$ if $\frac{a}{b} \sim \frac{a'}{b'}$ and $\frac{c}{d} \sim \frac{c'}{d'}$.

Example 11.4

$$S' = [0,1]/0_m$$

Definition 11.5 (Convergent Sequences) — $\{a_n\}_{n\geq 1}\subseteq \mathbb{R}$ is said to be convergent to l if $\forall \epsilon>0$ $\exists N(\epsilon)>0$ s.t. $\forall n\geq N, \quad |a_n-l|<\epsilon$

§12 Dis 3: Oct 13, 2020

§12.1 Equivalence Relation (Cont'd)

Example 12.1

Define $\sim p$ on \mathbb{Z} by $a \sim pb$ if $a - b \in p\mathbb{Z}(p|a - b)$. $\forall a \exists ! b \in \mathbb{Z}, \quad 0 \le r$

$$F_p = \mathbb{Z}/p\mathbb{Z} = \mathbb{Z}/\sim p = \{[0]_p, [1]_p, [2]_p, \dots, [p-1]_p\}$$

 $[a]_p + [b]_p = [a+b]_p$ & $[a]_p[b]_p = [ab]_p$

Remark 12.2. $(F_p, +, \cdot)$ is a finite field. F_p cannot be ordered: $1 > 0, 1+1 > 0, \dots, p-1 > 0$ but p-1=-1

Example 12.3

$$\begin{split} T &= \mathbb{R}/\mathbb{Z} \quad a \sim b \text{ if } ab \in \mathbb{Z} \\ &[0,1]/0 \sim 1 \\ \forall a \in \mathbb{R}, \quad \exists b = \underbrace{\{a\}}_{\text{fractional part of } a} \in [0,1) \text{ s.t. } a \sim b \end{split}$$

$\S 12.2$ Construction of $\mathbb R$ via Cauchy Sequences (Cantor)

S = set of rational Cauchy sequences.

 \sim on $S: \{x_n\} - \{y_n\}$ if $\lim (x_n - y_n) = 0$ (Q3 – Homework 2) $Q = S/\sim = \{[\{x_n\}] : \{x_n\} \in S\}$. First we need to define arithmetic on Q.

$$\begin{aligned} & [\{p_n\}] + [\{q_n\}] = [\{p_n + q_n\}] \\ & [\{p_n\}] - [\{q_n\}] = [\{p_n - q_n\}] \\ & [\{p_n\}] \cdot [\{q_n\}] = [\{p_nq_n\}] \\ & [\{p_n\}] / [\{p_n/q_n\}] = [\{p_n/q_n\}], \quad [\{q_n\}] \neq 0, = [\{0, 0, 0, \dots\}] \end{aligned}$$

 $+: Q \times Q \to Q$. Check well-defined

- $\{x_n\} \cdot \{y_n\}$ cauchy then so is $\{x_n + y_n\}(Q4)$
- $\{x_n\} \sim \{y_n\}$ & $\{z_n\} \sim \{w_n\}$ then $\{x_n + z_n\} \sim \{y_n + w_n\}$ (Q5) Commutativity, assoc, identity, $\{0 = [\{0, 0, 0, \dots\}], \text{ inverse.}$
- Well-defined: $\{x_n\}, \{y_n\}$ so is $\{x_ny_n\}$ (Q4).
- {x_n} ~ {y_n} & {z_n} ~ {w_n} (Q6, Q7) comm, assoc, iden, (1 = [{1,1,...,1}] mult. inverse (Q9,Q10).
 <: trichotomy (Q11), transitivity various compatibility (distributivity, etc) l.u.b property (Q12)

Note: All the Q used above is assumed to be Q^{hat}

Remark 12.4.

$$\begin{aligned} Q &\to Q^{\mathrm{hat}} \\ q &\mapsto [q^*] \\ p &< q \iff [p^*] < [q^*] \end{aligned}$$

Sequences:

- Cauchy seq. are bounded.
- Convergent seq. is Cauchy.

Theorem: in \mathbb{R} , every Cauchy seq. is convergent.

Example 12.5

$$a_n = \frac{1}{n}$$

$$\forall \epsilon > 0 \exists N \text{ s.t. } \epsilon N > 1.$$

$$\forall n \ge N \quad \left| \frac{1}{n} - 0 \right| = \frac{1}{n} \le \frac{1}{N} < \epsilon.$$

Dis 4: Oct 20, 2020

$\S 13.1$ Least Upper Bound and Its Applications

Remark 13.1 (ϵ – Principle). $a, b \in \mathbb{R}, \forall \epsilon > 0, a \leq b + \epsilon \implies a \leq b$.

• $x, y \in \mathbb{R} \quad \forall \epsilon > 0, |x - y| \le \epsilon \implies x = y.$

Supremum: $E\subset S$ bounded above. Suppose $\sup E\in S$

- $e \le \sup E \forall e \in E$. $\forall \beta < \sup E$, $\exists e \in E \text{ s.t. } \beta < e < \sup E$

 $\forall \epsilon > 0, \exists e \in E \text{ s.t. } \sup E - \epsilon < e \leq \sup E.$

Example 13.2

 $\sup\left\{\frac{1}{n}\right\}_{n\geq 1} = 1, \ \inf\left\{\frac{1}{n}\right\} = 0.$

- $0 \le \frac{1}{n} \forall n \in \mathbb{N}$.
- $\forall \epsilon > 0, \exists n \in \mathbb{N} \text{ s.t. } 0 \leq \frac{1}{n} < \epsilon \text{ by Archimedean Prop.}$

Theorem 13.3 (Nested Interval)

 $\{I_n = [a_n, b_n]\}_{n > 1} \subset \mathbb{R}, I_n \supset I_{n+1} \implies \bigcap_{n=1}^{\infty} I_n \neq \emptyset.$ Moreover, if $|I_n| \to 0$, then $\bigcap I_n$ is a singleton (a set with exactly one element).

Proof. $\sup a_n \in \bigcap I_n$.

Theorem 13.4 ((4.1))

(Bolzano – Weierstrass): Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof. $I_0 = [-M, M] \supset I_1 \supset I_2 \supset \dots$

$$|I_n| = (2M) \cdot 2^{-n} \to 0$$
 as $n \to \infty$

From Nested Interval Thm, $\bigcap_{n=0}^{\infty} I_n = \{x\}$. Choose $x_{n_k} \in I_k, x_{n_k} \to x$.

Remark 13.5. l.u.b property of $\mathbb{R} \implies \text{Nested Interval} \implies \text{Bolzano} - \text{Weierstrass} \stackrel{(*)}{\Longrightarrow}$ Cauchy Completeness.

(*) Exercise: $\{x_n\}$ Cauchy. $x_{n_k} \to x \implies x_n \to x$.

Remark 13.6. In \mathbb{R} , to check convergence, it suffices to check Cauchyness. Useful especially when you don't have a candidate for the limit. Cauchy criterion for series $\sum_{n=1}^{\infty} a_n$ converges $(\lim_{n\to\infty}\sum_{k=0}^n a_k)$ exists. $\iff \sum a_n$ Cauchy $(\forall \epsilon > 0 \exists N \mid \sum_{k=n}^m a_k \mid < \epsilon \quad \forall m \geq n \geq N)$.

Corollary 13.7

Absolute convergence \implies convergence. $(\sum |a_n| \text{ converges } \implies \sum a_n \text{ converges}).$

Monotone convergence theorem, $\{a_n\}$ monotone. Then $\{a_n\}$ bounded \iff $\{a_n\}$ convergent. (HW 3 – Q1).

Definition 13.8 (Monotone Sequence) — $\{a_n\}$ monotone if $a_n \leq a_{n+1} \forall n$ or $a_n \geq a_{n+1} \forall n$.

Corollary 13.9

 $\sum |a_n| < \infty \iff \sum |a_n|$ converges.

§13.2 Continuity

Definition 13.10 ((6.2)) — $f: X \to \mathbb{R}$ is continuous at x (local prop) if

- 1. $(\epsilon \delta \operatorname{def}) \ \forall \epsilon > 0, \exists \delta(\epsilon, x) > 0 \text{ s.t. } \forall y \in X, |x y| < \delta \implies |f(x) f(y)| < \epsilon.$
- 2. (Sequential def) $\forall \{x_n\} \subset X, x_n \to x \implies f(x_n) \to f(x)$ (f preserves sequential convergence).
- 3. $\lim_{y\to x} f(y) = f(x)$

 $f: X \to \mathbb{R}$ is continuous if f is continuous at all $x \in X$.

Definition 13.11 ((7.1)) — f is uniformly continuous on X (global prop) if

- 1. $(\epsilon \delta) \ \forall \epsilon > 0, \exists \delta(\epsilon) > 0 \text{ s.t. } \forall x, y \in X \ |x y| < \delta \implies |f(x) f(y)| < \epsilon.$
- 2. (Sequential) $\forall \{x_n\} \subset X$, $\{x_n\}_{n\geq 1}$ Cauchy $\Longrightarrow \{f(x_n)\}_{n\geq 1}$ Cauchy. (f preserves Cauchy seq).

Remark 13.12. Uniform continuity \implies continuity.

Example 13.13

 $f:(0,\infty)\to\mathbb{R},\,f(x)=rac{1}{x}$ is continuous.

$$\left| \frac{1}{x} - \frac{1}{y} \right| = \frac{|x - y|}{xy} < \frac{|x - y|}{x \cdot \frac{x}{2}} = |x - y| \cdot 2x^{-2} < \epsilon$$

 $\delta = \min\left\{\frac{x}{2}, \frac{\epsilon x^2}{2}\right\}.$

Remark 13.14. $x \mapsto \frac{1}{x}$ is uniformly continuous on $(a, \infty) \forall a > 0$. $x \mapsto \frac{1}{x}$ is NOT uniformly continuous on $(0, \infty)$.

- $x_n = \frac{1}{n}, y_n = \frac{1}{n+1}$ $|x_n y_n| \to 0$ but $|\frac{1}{x_n} \frac{1}{y_n} = 1 \forall n$.
- $\left\{\frac{1}{n}\right\}_{n\geq 1}$ Cauchy but $\{n\}$ is not.