

0	ffice U	Ise Only	

Semester Two 2016 Examination Period

	Examination Period										
	Faculty of Information Technology										
ЕХАМ СО	DES:		MAT1841								
TITLE OF	PAPER:		Continuous Mathematics for Computer Science – Paper 1								
EXAM DU	RATION:		3 hours writing time								
READING	READING TIME: 10 minutes										
THIS PAPER IS FOR STUDENTS STUDYING AT: (tick where applicable) □ Berwick □ Clayton □ Malaysia □ Off Campus Learning □ Open Learning □ Caulfield □ Gippsland □ Peninsula □ Monash Extension □ Sth Africa □ Parkville □ Other (specify)							_				
your exan calculator Items/ma	During an exam, you must not have in your possession any item/material that has not been authorised for your exam. This includes books, notes, paper, electronic device/s, mobile phone, smart watch/device, calculator, pencil case, or writing on any part of your body. Any authorised items are listed below. Items/materials on your desk, chair, in your clothing or otherwise on your person will be deemed to be in your possession.										
or noting following Failure to	down cor your exa comply v	aterials are to the standard of exame the standard of the above the standard of the standard o	n material ve instructi	for persona	I use or to mpting to o	share with cheat or ch	any other	person by a	ny means		
 The Att Ans 	 Instructions: The exam has 10 questions with a total of 100 marks. Attempt all questions in each section (Pages 2—17). Answers are to be written in the spaces provided in this paper. Some relevant formulae are provided at the end of the paper (pages 18—22). 										
<u>AUTHORI</u>	SED MAT	ERIALS									
OPEN BO	ОК			ПΥ	YES ☑ NO						
CALCULA	TORS			□Y	ES	s 🗹 NO					
SPECIFICALLY PERMITTED ITEMS ☐ YES ☑ NO					☑ NO						
	Candida	ites must cor	mplete this	s section if I	equired to	write ans	wers within	this paper			
STUDENT	ID:			-	DESK	NUMBER:					
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10		

1. Let $\mathbf{u} = (2, 4, -3)$, $\mathbf{v} = (3, 6, 2)$ and $\mathbf{w} = (1, 0)$,-2). Find the following:
(a) $\mathbf{u} \cdot \mathbf{v}$	
	1 marks
(b) $\mathbf{v} \times \mathbf{w}$	
	2 marks
(c) The vector projection of \mathbf{w} onto \mathbf{v} , \mathbf{w}_v	
	2 marks

MAT1841 Semester 2, 2016 Page 2 of 22

d) Find the shortest distance	ee, d , between the line	
	x(t) = 5 + 2t $y(t) = 3$ $z(t) = 2 + t,$	
and the line	x(s) = 1 + 2s $y(s) = 2 + 2s$ $z(s) = 4 - s.$	

2. Let <i>A</i> ,	B and C be defined a	as below and calculate	e as directed.
		$A = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$
(a) B	A		

$A B^T$			

2 marks

3. For the matrix equation $A \mathbf{x} = \mathbf{b}$, answer the following questions who	3.	For	the	${\rm matrix}$	equation	$A \mathbf{x} =$	= b ,	answer	the	following	questions	when
---	----	-----	-----	----------------	----------	------------------	--------------	--------	-----	-----------	-----------	------

$$A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 2 & -1 & 1 & 0 \\ -1 & 0 & 2 & 1 \\ 3 & 0 & 3 & 2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}.$$

1	(a)	Find	tho	determinant	α f	Δ
(a) rma	ше	determinant	OI	A.

(b) Calculate
$$A^{-1}$$
 using the Gauss-Jordan algorithm

	6 ma
Find the value of x	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of \mathbf{x} .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma
Find the value of x .	6 ma

	ulate the following:
(a)	$f'(x)$ when $f(x) = \frac{\sin(x^2 + 4)}{\cos(e^{-x})}$
(3.)	d (2) 1 (2) (2)
(b)	$\frac{d}{dx}\left(x^2\tan^{-1}(\ln(x+1))\right)$

(c)	The equation of the tangent line to the parametric curve $x = t^3 - 3t$ and $y = t^2$ when $t = \sqrt{2}$
	$t = \sqrt{3}$.
(1)	3 mark
(d)	Find any critical points of the function $f(x) = e^{-(x-2)^2}$ on the interval $x \in [0,4]$ and classify them.
	2 marks

5.	The	following questions relate to Taylor series.
	(a)	Write down the first four non-zero terms in the Taylor series expansion of $f(x) = e^{3x+1}$ about $x = 0$, and write down the Taylor expansion as an infinite sum of the form $\sum_{n=0}^{\infty} a_n x^n$.
	(b)	Deduce the Tayor series expansion of $f(x) = e^{-x^2}$ at $x = 0$ from $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots = 0$
		$\sum_{n=0}^{\infty} \frac{x^n}{n!}$ and write down the resulting series as an infinite sum.

4 marks Total: 10 marks

Calculate the following indefinite integrals.	
(a) $I = \int xe^x dx$.	
J	
	2 marks
(b) $I = \int xe^{-(x^2+3)/3} dx$.	
J	
	2 marks

6.

MAT1841 Semester 2, 2016 Page 11 of 22

6 marks Total: 10 marks

- $7. \ \, {\rm Calculate} \,\, {\rm the} \,\, {\rm following} \,\, {\rm definite} \,\, {\rm integrals} \,\, {\rm or} \,\, {\rm numerical} \,\, {\rm estimates}.$
 - (a) Find the area, A, of the region lying above the line y=1 and below the curve $y=\frac{5}{x^2+1}$ as shown in the figure.

Leave as a sur	m of terms on	a common de	enominator.	mate value of I	· 0

 $\begin{array}{c} 5 \text{ marks} \\ \text{Total: } 10 \text{ marks} \end{array}$

		• (, 0)	y^3 at the point		,	101111.
simplify).	(x,y) for the s	surface $f(x, y)$	y = x y at $y = x y$	The point (x, y)	(3,1) (you	do not need

MAT1841 Page 16 of 22 Semester 2, 2016

Com	pute the	Tollowing	·•					
(a)	Compute	$\frac{df}{ds}$ for f	$f(x,y) = x^2$	y + x + 2y,	where $x(s) =$	$2\cos(s/2)$ and	ad y(s) = 2	$\sin(s/2)$.
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivative point (x, y)	we of the fur $= (1, 1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^3 + x^2y^2$ in t	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo o int (x, y)	we of the fur $= (1, 1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^3 + x^2y^2$ in t	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1, 1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$3 + x^2y^2$ in (
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivative point (x, y)	we of the fur $= (1, 1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in the second	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivative point (x, y)	we of the fur $= (1, 1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in the second	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1, 1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in the second	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1,1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2 y^2$ in the second	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1,1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in the second	4 ma
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1,1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in the second	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1,1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in (
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1,1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in the second	
(b)	Find the $\mathbf{t} = \mathbf{i} + 2$	direction j at the p	nal derivativo point (x, y)	we of the fur $= (1,1)$.	nction $f(x,y)$	$= y^4 + 2xy^3$	$x^2 + x^2y^2$ in the second	

6 marks Total: 10 marks

END OF EXAMINATION QUESTIONS

Formulae:

Scalar and vector projections:

The scalar projection, v_w , of v in the direction of w is given by

$$v_w = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|}$$

The vector projection, \mathbf{v}_w , of \mathbf{v} in the direction of \mathbf{w} is given by

$$\mathbf{v}_w = \left(rac{\mathbf{v}\cdot\mathbf{w}}{|\mathbf{w}|^2}
ight) \, \mathbf{w}$$

Vector cross product:

The vector cross product of vectors $\mathbf{v} = (v_x, v_y, v_z)$ and $\mathbf{w} = (w_x, w_y, w_z)$ is

$$\mathbf{v} \times \mathbf{w} = (v_y w_z - v_z w_y, v_z w_x - v_x w_z, v_x w_y - v_y w_x)$$

Vector equation of a plane:

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{d}) = 0$$

Matrix inverse (2×2) :

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

for $ad - bc \neq 0$.

Schematic of Gauss-Jordan algorithm:

$$[A|I] \xrightarrow{\longrightarrow} [U|*] \xrightarrow{JA} [I|B]$$
 where $B = A^{-1}$.

Derivative definition:

The **derivative** of f(x) at the point x is defined as

$$\frac{\mathrm{d}f}{\mathrm{d}x} = f'(x) = \lim_{\Delta x \to 0} \left(\frac{\Delta f}{\Delta x} \right) = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right).$$

Some rules for finding derivatives:

Description	Function	Derivative
Sum (or difference) of functions	$f(x) \pm g(x)$	$f'(x) \pm g'(x)$
Product of functions	f(x)g(x)	f(x)g'(x) + g(x)f'(x)
Quotient of functions	$\frac{f(x)}{g(x)}$	$\frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$

Chain rule for composite functions

If u = g(x) and y = f(u) so that y = f(g(x)) then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x} = f'(u)g'(x)$$

Derivative rule for inverse functions

If
$$y = f^{-1}(x) \Leftrightarrow x = f(y)$$
, then $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\mathrm{d}x/\mathrm{d}y} = \frac{1}{f'(y)}$

Parametric differentiation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} / \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{g'(t)}{f'(t)} \quad \text{where } f'(t) = \frac{\mathrm{d}f}{\mathrm{d}t} \text{ and } g'(t) = \frac{\mathrm{d}g}{\mathrm{d}t}.$$

Taylor series at x = 0:

$$T_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n.$$

Integration by substitution:

$$I = \int f(x)dx = \int f(x(u))\frac{dx}{du}du$$

Integration by parts:

$$\int f \frac{dg}{dx} dx = fg - \int g \frac{df}{dx} dx$$

Fundamental Theorem of Calculus:

If f(x) is a continuous function on the interval [a, b] and there is a function F(x) such that F'(x) = f(x), then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

MAT1841 Semester 2, 2016 Page 19 of 22

Area between two curves. Given two continuous functions f(x) and g(x) where $f(x) \ge g(x)$ for all x in the interval [a, b], the area of the region bounded by the curves y = f(x) and y = g(x), and the lines x = a and x = b is given by the definite integral

$$\int_{a}^{b} \left[f(x) - g(x) \right] dx$$

Trapezoidal rule:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2n} \left(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(x_i) \right)$$

Tangent plane to surface:

$$z = f(a,b) + f_x(a,b) \cdot (x-a) + f_y(a,b) \cdot (y-b)$$

Multivariate chain-rule:

$$\frac{df}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds}$$

Directional derivative:

The directional derivative df/ds of a function f in the direction t is given by

$$\frac{df}{ds} = \underbrace{t} \cdot \nabla f = \nabla_{\underbrace{t}} f$$

where the gradient ∇f is defined by

$$\nabla f = \frac{\partial f}{\partial x} \underline{i} + \frac{\partial f}{\partial y} \underline{j}$$

and \underline{t} is a unit vector, $\underline{t} \cdot \underline{t} = 1$.

Quadratic approximation to surface:

$$T_2(x,y) = f(a,b) + f_x(a,b) \cdot (x-a) + f_y(a,b) \cdot (y-b)$$

+
$$\frac{1}{2!} \left[f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2 \right]$$

MAT1841 Semester 2, 2016 Page 20 of 22

Table of the derivatives of the basic functions of calculus				
Original function f	Derivative function f'			
$\sin x$	$\cos x$			
$\cos x$	$-\sin x$			
$\tan x$	$\sec^2 x \equiv 1 + \tan^2 x$			
$\csc x \equiv 1/\sin x$	$-\csc x \cdot \cot x$			
$\sec x \equiv 1/\cos x$	$\sec x \cdot \tan x$			
$\cot x \equiv 1/\tan x$	$-\csc^2 x$			
$\sin^{-1} x \text{domain: } -1 \le x \le 1 \text{ (ie } x \le 1)$	$\frac{1}{\sqrt{1-x^2}}$			
$\cos^{-1} x \text{domain: } -1 \le x \le 1 \text{ (ie } x \le 1)$	$-\frac{1}{\sqrt{1-x^2}}$			
$\tan^{-1} x$ domain: $-\infty < x < \infty$	$\frac{1}{1+x^2}$			
e^x	e^x			
$\ln x$ domain: $x > 0$	$\frac{1}{x}$			

Table of Useful Power Series

Series	Domain
$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots$	-1 < x < 1
$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$	-1 < x < 1
$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots$	$-\infty < x < \infty$
$\ln(1+x) \equiv \log_e(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$	$-1 < x \le 1$
$+(-1)^n\frac{x^{n+1}}{n+1}+\dots$	
$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$	$-\infty < x < \infty$
$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$	$-\infty < x < \infty$

END OF EXAMINATION PAPER

MAT1841 Semester 2, 2016 Page 22 of 22