Let U, V, W be vector spaces over \mathbb{F} , and let

$$T \in \mathcal{L}(V, W), S \in \mathcal{L}(U, V).$$

- Let $T \circ S \in \mathcal{L}(U, W)$ be the composition.
- ³ Claim. $\ker(S) = \ker(T \circ S) \Leftrightarrow \operatorname{Im}(S) \cap \ker(T) = 0.$
- 4 Proof. 1. Suppose that $\ker(S) = \ker(T \circ S)$. Thus,

$$\forall u \in U : S(u) = 0 \Leftrightarrow T(S(u)) = 0.$$

Note that S(0) = 0 and T(0) = 0, since S, T are linear transformations, and hence

$$(0 \in \operatorname{Im}(S)) \land (0 \in \ker(T)) \Rightarrow \{0\} \subseteq \operatorname{Im}(S) \cap \ker(T).$$

- Now, suppose that $x \in \text{Im}(S) \cap \ker(T)$.
- Therefore, $\exists (u' \in U) : S(u') = x$. Since T(x) = 0, then T(S(u')) = 0, and
- hence $(T \circ S)(u') = 0$, which means that $u' \in \ker(T \circ S)$. But by assumption
- $\ker(S) = \ker(T \circ S)$ and thus S(u') = 0, hence S(u') = x = 0. Therefore,
- $\forall x \in (\operatorname{Im}(S) \cap \ker(T)) : x = 0, \text{ and hence } \operatorname{Im}(S) \cap \ker(T) = \{0\}.$
- 2. Suppose now that $Im(S) \cap \ker(T) = \{0\}.$
- Consider $x \in \ker(S)$. By definition, S(x) = 0. Since T is a linear transformation, $T(S(x)) = T \circ S(x) = T(0) = 0$. Therefore, $\ker(S) \subseteq \ker(T \circ S)$.
- Consider now $y \in \ker(T \circ S)$. By definition, T(S(y)) = 0. Therefore, $S(y) \in \ker(T)$.
- Moreover, $S(y) \in \text{Im}(S)$, and hence $S(y) \in \text{Im}(S) \cap \ker(T)$. By the assumption,
- Im $(S) \cap \ker(T) = \{0\}$, and hence S(y) = 0, which means that $y \in \ker(S)$. Therefore,
- $\ker(T \circ S) \subseteq \ker(S)$, and since also $\ker(S) \subseteq \ker(T \circ S)$, then $\ker(S) = \ker(T \circ S)$.
- From 1 and 2, it follows that $\ker(S) = \ker(T \circ S) \Leftrightarrow \operatorname{Im}(S) \cap \ker(T) = 0$.