XAI eXplainable Artificial Intelligence Cours 9 - mardi 5 décembre 2023

Marie-Jeanne Lesot Christophe Marsala Jean-Noël Vittaut Gauvain Bourgne

LIP6. Sorbonne Université

XAI non supervisée : expliquer les données

- Objectif global
 - comprendre le contenu d'un ensemble de données collectées
 - besoin de le rendre intelligible
- Principe : résumer les données et les caractériser
 - mettre en évidence leur structure sous-jacente
 - identifier de corrélation entre attributs
 - obtenir une représentation simplifiée
- Différentes approches
 - décomposition en sous-groupes homogènes et distincts
 - construction de résumés linguistiques
 - mise en évidence de cas particuliers

XAI non supervisée : expliquer les données

- Objectif global
 - comprendre le contenu d'un ensemble de données collectées
 - besoin de le rendre intelligible
- Principe : résumer les données et les caractériser
 - mettre en évidence leur structure sous-jacente
 - identifier de corrélation entre attributs
 - obtenir une représentation simplifiée
- Différentes approches
 - décomposition en sous-groupes homogènes et distincts : clustering
 - construction de résumés linguistiques : data-to-text
 - mise en évidence de cas particuliers : détection d'exceptions

XAI non supervisée : expliquer les données

- Objectif global
 - comprendre le contenu d'un ensemble de données collectées
 - besoin de le rendre intelligible
- Principe : résumer les données et les caractériser
 - mettre en évidence leur structure sous-jacente
 - identifier de corrélation entre attributs
 - obtenir une représentation simplifiée
- Différentes approches
 - décomposition en sous-groupes homogènes et distincts : clustering
 - construction de résumés linguistiques : data-to-text
 - mise en évidence de cas particuliers : détection d'exceptions

• Objectif : décomposer les données en sous-groupes, clusters

- Objectif : décomposer les données en sous-groupes, clusters
 - homogènes : même cluster ⇒ objets similaires
 - **distincts** : clusters différents ⇒ objets dissimilaires

- Objectif : décomposer les données en sous-groupes, clusters
 - homogènes : même cluster ⇒ objets similaires
 - **distincts** : clusters différents ⇒ objets dissimilaires
- Utilité
 - mise en évidence de la structure cachée des données
 - représentation simplifiée des données : nombre réduit de groupes homogènes au lieu d'un nombre élevé d'objets

- Objectif : décomposer les données en sous-groupes, clusters
 - homogènes : même cluster ⇒ objets similaires
 - **distincts** : clusters différents ⇒ objets dissimilaires
- Utilité
 - mise en évidence de la structure cachée des données
 - représentation simplifiée des données : nombre réduit de groupes homogènes au lieu d'un nombre élevé d'objets
- Cadre XAI : de plus, descriptions intelligibles des clusters
 - visualisation de la structure des clusters :
 - p. ex. dendrogramme du clustering hiérarchique
 - caractérisation par régions
 - approche par substitution, score d'importance d'attribut, subspace clustering
 - example-based explanation: caractérisation par représentant
 - construction de prototypes

• Nombreux algorithmes !

- Nombreux algorithmes!
- Approches par partitionnement : GMM, k-moyennes et ses variantes
 - principe : déterminer la "meilleure" partition en un nombre fixé de clusters
- Clustering spectral : diagonalisation de la matrice de similarité
 - principe : deux données se ressemblent si elles ont le même profil de similarité, i.e. si elles ressemblent aux mêmes données
- Clustering hiérarchique
 - principe : multiples partitions, de niveaux de granularité différents
- Approches par densité : DBSCAN
 - principe : estimation de la densité locale des données
- Deep clustering : architecture encodeur-décodeur
 - coût de reconstruction standard ou avec préservation de la localité
 - exploitation de l'espace latent, p.ex. k-moyennes

Au programme du jour

- 1. Clustering par partitionnement
- 2. Autres approches de clustering
- 3. Prototypes : explication de clusters par l'exemple
- 4. Exemples d'applications

Au programme du jour

- 1. Clustering par partitionnement
 - GMM
 - k-moyennes
 - autres variantes pondérées
- 2. Autres approches de clustering
- 3. Prototypes : explication de clusters par l'exemple
- 4. Exemples d'applications

GMM

• Estimation paramétrique de la densité de distribution des données

$$p(x) = \sum_{r=1}^{k} \pi_r \mathcal{N}(x|\mu_r, \Sigma_r)$$

$$\mathcal{N}(x|\mu_r, \Sigma_r) = \frac{1}{\sqrt{(2\pi)^k |\Sigma_r|}} \exp\left(-\frac{1}{2}(x - \mu_r)^T \Sigma_r^{-1} (x - \mu_r)\right)$$

$$\sum_{r=1}^{k} \pi_r = 1$$

• Fonction de coût : maximiser la vraisemblance des données

$$\ln p(X) = \sum_{i=1}^{n} \ln \left(\sum_{r=1}^{k} \pi_r \mathcal{N}(x_i | \mu_r, \Sigma_r) \right)$$

GMM

• Optimisation : EM Expectation-Maximisation

$$u_{ir} = \frac{\pi_r \mathcal{N}(x_i | \mu_r, \Sigma_r)}{\sum_{s=1}^k \pi_s \mathcal{N}(x_i | \mu_s, \Sigma_s)}$$

$$\mu_r = \frac{1}{n_r} \sum_{i=1}^n u_{ir} x_i$$

$$\Sigma_r = \frac{1}{n_r} \sum_{i=1}^n u_{ir} (x_i - \mu_r) (x_i - \mu_r)^T$$

$$\pi_r = \frac{n_r}{n} \text{ avec } n_r = \sum_{i=1}^n u_{ir}$$

Algorithme des *k*-moyennes

- Par rapport aux GMM
 - affectation : pondérée → binaire
 - distance : Mahalanobis → euclidienne
 - fonction de coût : vraisemblance → quantification
- Notations
 - données : x_i , i = 1...n
 - centres : w_r , r = 1...k
 - affectation :

$$u_{ir} = \begin{cases} 1 \text{ si } x_i \in C_r \\ 0 \text{ sinon} \end{cases}$$

Algorithme des k-moyennes

- Fonction de coût : erreur de quantification
 - erreur commise quand on représente x_i par le centre du cluster auguel elle est affectée

$$J = \sum_{r=1}^{k} \sum_{i=1}^{n} u_{ir} ||x_i - w_r||^2$$

Algorithme des k-moyennes

- Fonction de coût : erreur de quantification
 - erreur commise quand on représente x_i par le centre du cluster auguel elle est affectée

$$J = \sum_{r=1}^{k} \sum_{i=1}^{n} u_{ir} ||x_i - w_r||^2$$

- Sous contraintes
 - chaque donnée appartient à un

et un seul cluster
$$\forall i=1...n \quad \sum_{r=1}u_i$$

- aucun cluster n'est vide

$$\forall i = 1...n \qquad \sum_{\substack{r=1\\n}}^{k} u_{ir} = 1$$
$$\forall r = 1...k \qquad \sum_{i=1}^{k} u_{ir} > 0$$

$$J = \sum_{i=1}^{k} \sum_{i=1}^{n} u_{ir} ||x_i - w_r||^2 \quad \text{sous contraintes}$$

- Mise à jour itérative
 - optimisation des u_{ir} pour w_r fixés

$$J = \sum_{r=1}^{k} \sum_{i=1}^{n} u_{ir} ||x_i - w_r||^2 \quad \text{sous contraintes}$$

- Mise à jour itérative
 - optimisation des u_{ir} pour w_r fixés

$$u_{ir} = \begin{cases} 1 & \text{si } r = \arg\min_{s=1...k} \|x_i - w_s\| \\ 0 & \text{sinon} \end{cases}$$

$$J = \sum_{r=1}^{k} \sum_{i=1}^{n} u_{ir} ||x_i - w_r||^2 \quad \text{sous contraintes}$$

- Mise à jour itérative
 - optimisation des u_{ir} pour w_r fixés

$$u_{ir} = \begin{cases} 1 & \text{si } r = \arg\min_{s=1...k} \|x_i - w_s\| \\ 0 & \text{sinon} \end{cases}$$

- optimisation des w_r pour u_{ir} fixés

$$J = \sum_{r=1}^{k} \sum_{i=1}^{n} u_{ir} ||x_i - w_r||^2 \quad \text{sous contraintes}$$

- Mise à jour itérative
 - optimisation des u_{ir} pour w_r fixés

$$u_{ir} = \begin{cases} 1 & \text{si } r = \arg\min_{s=1...k} \|x_i - w_s\| \\ 0 & \text{sinon} \end{cases}$$

- optimisation des w_r pour u_{ir} fixés

$$w_r = \frac{\sum_{i=1}^n u_{ir} x_i}{\sum_{i=1}^n u_{ir}}$$

k-moyennes

(Ball & Hall, 66)

- Paramètre
 - k le nombre de clusters recherchés
- Entrée
 - la matrice des données x_i , i = 1...n
- Initialisation : choix de k centres w_r , r=1...k
- Itération : jusqu'à stabilisation des positions des centres
 - mise à jour des affectations : chaque donnée est affectée au centre le plus proche
 - mise à jour des centres : chaque centre = moyenne des données qui lui sont affectées

k-moyennes

(Ball & Hall, 66)

- Paramètre
 - k le nombre de clusters recherchés
- Entrée
 - la matrice des données x_i , i = 1...n
- Résultat
 - les centres des clusters w_r , r = 1...k
 - la matrice d'affectation qui indique, pour chaque donnée x_i et chaque cluster C_r , si $x_i \in C_r$

$$u_{ir} = \begin{cases} 1 \text{ si } x_i \in C_r \\ 0 \text{ sinon} \end{cases}$$

Quelques limites des k-moyennes

- Pas de garantie d'obtention de l'optimum global
 - obtention d'un minimum local
 - nécessité de lancer l'algorithme plusieurs fois, avec plusieurs initialisations
 - étude des propriétés de convergence (Bottou et Bengio, 95)
- Sensibilité aux exceptions (outliers)
 - erreur quadratique
- Recherche de clusters sphériques

fcm: fuzzy c-means

- Motivation : traitement des cas ambigus
 - points à égale distance de deux clusters
 - chevauchement de clusters
- Principe : cf cours 7 théorie des sous-ensembles flous
 - appartenance floue de x_i au cluster C_r
 - ⇒ un point peut appartenir à plusieurs clusters
 - représentée par un degré d'appartenance : $u_{ir} \in [0, 1]$
 - sémantique de multi-appartenance ≠ appartenance inconnue

Référence initiale : Bezdek 1973

Exemple : notes d'étudiants à deux ue

Partition classique

Exemple : notes d'étudiants à deux ue

Fonction de coût des c-moyennes floues

Définie comme l'erreur de quantification

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} u_{ir}^{\mathbf{m}} \|x_i - w_r\|^2 \text{ avec } u_{ir} \in [0, 1]$$

- m = fuzzifier : détermine le degré de flou de la partition
 - le plus souvent m=2
- Sous contraintes
 - aucun cluster n'est vide : $\forall r=1...c \quad \sum_{i=1}^{n} u_{ir}>0$
 - même poids de chaque donnée : $\forall i=1...n$ $\sum u_{ir}=1$

Optimisation de la fonction de coût

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} u_{ir}^{m} \|x_i - w_r\|^2 \text{ avec } u_{ir} \in [0, 1]$$
 sous contrainte $\forall i = 1...n$
$$\sum_{r=1}^{c} u_{ir} = 1$$

• Exercice : établir les formules de mises à jour de u_{ir} et de w_r

Optimisation des c-moyennes floues

- Notation $d_{ir} = ||x_i w_r||$
- Optimisation alternée : mise à jour itérative
 - dans le cas de la distance euclidienne
- optimisation des u_{ir} pour w_r fixés

$$u_{ir} = \frac{1}{\sum_{c}^{c} \left(\frac{d_{ir}}{d_{io}}\right)^{\frac{2}{m-1}}}$$

- optimisation des w_r pour u_{ir} fixés

$$w_r = \frac{\sum_{i=1}^n u_{ir}^m x_i}{\sum_{i=1}^n u_{ir}^m}$$

- Si $\exists r$ tel que $d_{ir} = 0$,
 - poser $u_{ir=1}$ et $u_{is}=0$ pour tout $s\neq r$

L'algorithme des c-moyennes floues

- Paramètres
 - c le nombre de clusters recherchés
 - m le fuzzifier
- Entrée
 - la matrice des données x_i , i = 1...n
- Initialisation : choix de c centres w_r , r = 1...c
- Itération : jusqu'à stabilisation des positions des centres
 - mise à jour de la matrice d'affectation
 - mise à jour des centres
 centre = moyenne pondérée des données
 avec pour poids les degrés d'appartenance

L'algorithme des c-moyennes floues

- Paramètres
 - c le nombre de clusters recherchés
 - m le fuzzifier
- Entrée
 - la matrice des données
- Résultat
 - les centres des clusters
 - la matrice d'affectation qui indique, pour chaque donnée x_i et chaque cluster C_r , le degré d'appartenance de x_i à C_r

Caractéristiques des c-moyennes floues

• Définition relative des degrés d'appartenance

$$u_{ir} = \frac{1}{\sum_{s=1}^{c} \left(\frac{d_{ir}}{d_{is}}\right)^{\frac{2}{m-1}}}$$

- dépend de la distance au cluster r
- mais aussi de la distance aux autres clusters

Propriétés

- méthode plus stable et plus robuste que les k-moyennes
- moins sensible à l'initialisation que les k-moyennes
- moins de risque de tomber dans un minimum local

c-moyennes possibilistes

(Krishnapuram & Keller, 93)

• Motivation : le problème

- degré d'appartenance : degré de partage entre les clusters
- dû à la normalisation des degrés d'appartenance

$$\forall i = 1...n, \quad \sum_{r=1}^{k} u_{ir} = 1$$

c-moyennes possibilistes

Fonction de coût

$$J = \sum_{r=1}^c \sum_{i=1}^n u_{ir}^m d_{ir}^2 + \sum_{r=1}^c \eta_r^2 \sum_{i=1}^n (1 - u_{ir})^m$$
 sous contrainte
$$\sum_{i=1}^n u_{ir} > 0$$

- nouveau terme : récompenser les degrés d'appartenance élevés, et éviter la solution triviale
- Equation de mise à jour : exercice

c-moyennes possibilistes

Fonction de coût

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} u_{ir}^{m} d_{ir}^{2} + \sum_{r=1}^{c} \eta_{r}^{2} \sum_{i=1}^{n} (1 - u_{ir})^{m}$$

sous contrainte
$$\sum_{i=1}^{n} u_{ir} > 0$$

- nouveau terme : récompenser les degrés d'appartenance élevés, et éviter la solution triviale
- Equation de mise à jour

$$u_{ir} = \frac{1}{1 + \left(\frac{d_{ir}}{n}\right)^{\frac{2}{m-1}}}$$

- pour m=2, $\eta_r=$ distance à partir de laquelle $u_{ir}<0.5$

Comparaison des degrés des fcm et pcm

$$u_{ir} = \frac{1}{\displaystyle\sum_{s=1}^{c} \left(\frac{d_{ir}}{d_{is}}\right)^{\frac{2}{m-1}} }$$

$$c\text{-moyennes possibilistes} \\ u_{ir} = \frac{1}{1 + \left(\frac{d_{ir}}{\eta_r}\right)^{\frac{2}{m-1}}}$$

Cas flou

- degré de partage \implies effet de répulsion entre les clusters
 - si un cluster prend une partie des poids, il en reste moins pour les autres
 - désavantageux de partager les données
- problèmes dans le cas de données bruitées ou d'exceptions
 - distorsion des centres, attirés par les exceptions

Comparaison des degrés des fcm et pcm

$$u_{ir} = \frac{1}{\displaystyle\sum_{s=1}^{c} \left(\frac{d_{ir}}{d_{is}}\right)^{\frac{2}{m-1}}}$$

$$c\text{-moyennes possibilistes} \\ u_{ir} = \frac{1}{1 + \left(\frac{d_{ir}}{\eta_r}\right)^{\frac{2}{m-1}}}$$

Cas possibiliste

- degré de ressemblance
- pas d'interaction entre les clusters : définis indépendamment
 - contributions à la fonction de coût indépendantes
- clusters potentiellement confondus
 - en fait, minimum global de J =tous les clusters confondus!
 - c : nombre maximal de clusters souhaités

Caractéristiques des pcm

- Peuvent manquer certaines zones
- Peuvent identifier des exceptions (outliers) :
 - ajustement individuel des poids
- Mode-seeking plus qu'algorithme de partitionnement : identification de
 - clusters pertinents et représentatifs
 - et non d'une partition de toutes les données
- Sensibilité à l'initialisation
 - réalisée par les c-moyennes floues
 - les fcm donnent également des valeurs pour η_r

Variantes des pcm

- Combinaison avec les *c*-moyennes floues (Pal et al. 97; Pal et al. 04)
 - bénéficier des sémantiques de chacun des types de coefficients

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} (au_{ir}^{m} + bt_{ir}^{\eta})d_{ir}^{2} + \sum_{r=1}^{c} \eta_{r}^{2} \sum_{i=1}^{n} (1 - t_{ir})^{\eta}$$

- avec la contrainte de sommation à 1 pour les u_{ir}
- Prise en compte d'un coefficient de répulsion entre les clusters (Timm et al, 04)

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} u_{ir}^{m} d_{ir}^{2} + \sum_{r=1}^{c} \eta_{r}^{2} \sum_{r=1}^{n} (1 - u_{ir})^{m} + \sum_{r=1}^{c} \gamma_{r} \sum_{s=1, s \neq r}^{c} \frac{1}{\xi d(w_{r}, w_{s})^{2}}$$

Variantes des c-moyennes floues

- Autre contrainte de normalisation de la partition
 - c-moyennes possibilistes
- Autres fonctions de distance
 - pour détecter des formes de clusters spécifiques
 - pour traiter des données non vectorielles
- Autres fonctions de coût
 - pour prendre en compte des contraintes particulières
 - concernant le bruit ou les exceptions par exemple
- Estimation alternée de clusters
 - généralisation de l'optimisation alternée
 - pas de fonctions de coût
 - flexibilité accrue

Autres fonctions de distances

- Problématique
 - c-moyennes floues : clusters sphériques
 - changer la mesure de distance
 - donc changer la mise à jour des centres des clusters

Algorithme de Gustafson-Kessel : distance de Mahalanobis

$$d^{2}(x_{i}, C_{r}) = {}^{t}(x_{i} - w_{r}) \Sigma_{r}^{-1}(x_{i} - w_{r})$$

- clusters ellipsoïdaux, et non sphériques
- un cluster = un centre + une matrice de covariance
- équations de mise à jour pour w_r et Σ_r

Autres fonctions de distances fuzzy shell clustering

- Principe
 - détecter des structures plus complexes
 - comme des lignes, des cercles, des ellipses
- Variantes
 - fuzzy c-varieties: clusters affines
 un cluster = un point + ensemble de vecteurs unitaires orthogonaux
 - fuzzy c-quadric shell
 - fuzzy c-rectangles

(Höppner et al. 00)

Autres fonctions de distances

- Traitement de données non vectorielles
 - séquences, arbres, graphes
 - pas de centres des clusters : comment définir une moyenne (pondérée)
- Variantes relationnelles (Hathaway & Bezdek, 94)
 - entrée : matrice de distance
- Variante à noyau (Wu et al. 03)
 - entrée : matrice des produits scalaires
 - changement de représentation implicite

Autres fonctions de coût : traitement du bruit

- c-moyennes possibilistes (Krishnapuram & Keller, 93)
- Noise clustering (Davé, 91): ajout d'un cluster bruit
 - relâchement de la contrainte de sommation à 1

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} u_{ir}^{m} d_{ir}^{2} + \sum_{i=1}^{n} \delta^{2} \left(1 - \sum_{r=1}^{c} u_{ir} \right)^{m}$$

- Estimateurs robustes (Frigui et Krishnapuram, 96) :
 - remplacer la fonction des moindres carrés
 - ρ minimale en 0 et qui tend vers 0 pour les grandes valeurs

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} u_{ir}^{m} \rho_{r}(d_{ir})$$

Introduction explicite de poids de représentativité (Keller, 00)

Autres fonctions de coût : changement de fuzzifier

$$J = \sum_{r=1}^{c} \sum_{i=1}^{n} u_{ir}^{m} d_{ir}^{2}$$

- Fuzzifier $m > 1 \Rightarrow u_{ir} \in [0,1]$, mais en fait, $u_{ir} \in [0,1]$
 - noyau : singleton, le centre
 - support : non borné
 - toutes les données influencent tous les centres
- Fonction g qui favorise les degrés extrêmes (Klawonn et Höppner, 03)

$$J = \sum_{r=1}^{n} \sum_{i=1}^{n} g(u_{ir}) d_{ir}^{2}$$

- par exemple $q(u_{ir}) = \alpha u_{ir} + (1 - \alpha)u_{ir}^2$ (Rousseeuw et al, 95)

Estimation alternée de clusters

- Heuristiques de mises à jour des centres ou des degrés d'appartenance
 - et non dérivée d'une fonction de coût
- Exemple : pour forcer la convexité

(Höppner et al. 00)

Au programme du jour

- 1. Clustering par partitionnement
- 2. Autres approches de clustering
 - DBSCAN : estimation non paramétrique de densité
 - clustering hiérarchique
- 3. Prototypes explications de clusters par l'exemple
- 4. Exemples d'applications

DBSCAN

(Ester et al. 96)

- Algorithme principal
 - tirer aléatoirement un point non encore visité x, et le marquer comme visité
 - construire son voisinage $\mathcal{N}_{\epsilon}(x) = \{z | d(x, z) \leq \epsilon\}$
 - si $|\mathcal{N}_{\epsilon}(x)| < minPts$, marquer x comme bruit
 - sinon, étendre le cluster $(x, \mathcal{N}_{\epsilon}(x))$
- Extension du cluster (x, \mathcal{N}) : pour chaque $z \in \mathcal{N}$
 - si z n'a pas été visité
 - marquer z comme visité
 - si $|\mathcal{N}_{\epsilon}(z)| \geq minPts$, $\mathcal{N} = \mathcal{N} \cup \mathcal{N}_{\epsilon}(z)$
 - si z n'est membre d'aucun cluster, l'ajouter au cluster en cours

source : wikipedia

DBSCAN

- Typologie des données
 - points centraux (core) : points dont le voisinage est dense
 - points frontières (border) : point non central dans le voisinage d'un point central
 - points aberrants (noise) : point non central et non frontière
- Paramètres : densité minimale pour la définition d'un cluster
 - ϵ taille du voisinage
 - minPts nombre de points minimum
- Variante : OPTICS

$$\begin{array}{rcl} coreDist(x) & = & \left\{ \begin{array}{ll} \operatorname{ind\acute{e}fini} & \operatorname{si} \left| \mathcal{N}_{\epsilon}(z) \right| < minPts \\ \min(d(x,z)) & \operatorname{sinon} \end{array} \right. \\ reachabilityDist(x,z) & = & \left\{ \begin{array}{ll} \operatorname{ind\acute{e}fini} & \operatorname{si} \left| \mathcal{N}_{\epsilon}(z) \right| < minPts \\ \max(coreDist(x),d(x,z)) & \operatorname{sinon} \end{array} \right. \end{array}$$

Clustering hiérarchique

- Approche agglomérative
 - initialiser un cluster par donnée
 - itérativement regrouper les clusters les plus proches
- Stratégies de chaînage
 - minimale $d(C_1,C_2) = \min(d(x,z), x \in C_1, z \in C_2)$
 - complète $d(C_1,C_2) = \max(d(x,z), x \in C_1, z \in C_2)$
 - moyenne $d(C_1,C_2) = avg(d(x,z), x \in C_1, z \in C_2)$
 - Ward $d(C_1,C_2) = \frac{n_1 n_2}{n_1 + n_2} d(\bar{x}_1,\bar{x}_2)$
- Visualisation du dendrogramme

source : wikipedia

Au programme du jour

- 1. Clustering par partitionnement
- 2. Autres approches de clustering
- 3. Prototypes : explications de clusters par l'exemple
- 4. Exemples d'applications

Résumé et interprétation

- Caractériser un ensemble de données
 - typiquement un cluster
 - aider à l'interprétation du résultat
- Description par une valeur
 - moyenne (pondérée), médiane, ...
 - problème : une valeur unique représente mal un ensemble
- Description enrichie
 - distribution : movenne → loi normale
 - problème : décrit le cluster dans son ensemble, n'est pas une caractérisation ou un résumé

Notion cognitive de prototype

(Rosch, 78)

- Un prototype
 - représente un groupe de données, le résume et le caractérise
 - capture à la fois
 - les points communs des membres du groupe
 - leurs traits distinctifs par rapport à d'autres groupes
- Notion de typicalité
 - toutes les données ne sont pas également représentatives
 - un individu typique
 - ressemble aux autres membres du groupe : ressemblance interne
 - diffère des membres des autres groupes : dissimilarité externe

Notion cognitive de prototype

(Rosch, 78)

- Un prototype
 - représente un groupe de données, le résume et le caractérise
 - capture à la fois
 - les points communs des membres du groupe
 - leurs traits distinctifs par rapport à d'autres groupes
- Notion de typicalité
 - toutes les données ne sont pas également représentatives
 - un individu typique
 - ressemble aux autres membres du groupe : ressemblance interne
 - diffère des membres des autres groupes : dissimilarité externe
- Contre-exemples pour les mammifères

Mise en œuvre

(Rifqi, 96)

Etant donné une catégorie C et un point $x \in C$

- Ressemblance interne R_C et dissimilarité externe D_C
 - r mesure de ressemblance, d mesure de dissimilarité

$$R_C(x) = moy(r(x, y), y \in C)$$

 $D_C(x) = moy(d(x, y), y \notin C)$

• Degré de typicalité : agrégation de R_C et D_C

$$T_C(x) = agr(R_C(x), D_C(x))$$

ullet Prototype de C: agrégation des points les plus typiques

Mesures de ressemblance et de dissimilarité

• Comparer la position relative de deux points

- formellement : $r: \mathbb{R}^p \times \mathbb{R}^p \to [0,1]$ $d: \mathbb{R}^p \times \mathbb{R}^p \to [0,1]$
- définies en fonction d'une distance ou d'un produit scalaire
- non nécessairement duales
- Exemples :

$$d_{1}(x,y) = \frac{1}{\gamma_{D}}d(x,y) \qquad r_{1}(x,y) = 1 - \frac{1}{\gamma_{R}}d(x,y)$$

$$d_{2}(x,y) = 1 - \frac{1}{1 + \left(\frac{d(x,y)}{\gamma_{D}}\right)^{\eta}} \qquad r_{2}(x,y) = \frac{1}{1 + \left(\frac{d(x,y)}{\gamma_{R}}\right)^{\eta}}$$

Marie-Jeanne Lesot - 2023

Exemple des iris

- 150 fleurs, 4 attributs, 3 classes
 - longueur et largeur des pétales et sépales
 - 3 sortes d'iris setosa, virginica, versicolor

On considère un seul attribut

Comparaisons

Opérateurs d'agrégation

typicalité = agr(ressemblance interne, dissimilarité externe)

- Opérateurs conjonctifs : attitude sévère
 - t-normes, p. ex. $\min(R, D)$, $R \cdot D$, $\max(R + D 1, 0)$
- Opérateurs disjonctifs : double sémantique
 - p. ex t-conormes, $\max(R, D)$, $R + D R \cdot D$, $\min(R + D, 1)$
- Opérateurs de compromis : propriété de compensation
 - moyennes arithmétique, géométrique, pondérée
 - Ordered Weighted Average OWA (Yager, 88)
- Opérateurs à attitude variable : propriété de renforcement
 - exemple mica $\max(0, \min(1, k + (R k) + (D k)))$
 - somme symétrique g(R,D)/(g(R,D)+g(1-R,1-D) avec g(x,y)=xy

(Eude, 98; Detyniecki, 00)

Application aux iris

typicalité = agr(ressemblance interne, dissimilarité externe)

Disjonction e.g. max, double sémantique

Attitude variable e.g. *mica*, propriété de renforcement

Agrégation en un prototype

- Prototype = agrégation des données les plus typiques
 - globalement ou attribut par attribut
 - comme l'individu (la valeur) qui maximise la typicalité
 - par agrégation des individus (valeurs), pondérés par leurs degrés de typicalité
- Prototype = notion imprécise
 - exemple: l'étudiant typique mesure environ 1m75
 - mieux modélisée par un sous-ensemble flou
- Agrégation des données les plus typiques en un ensemble flou :
 - noyau = points de degré de typicalité > 0.9
 - support = points de degré de typicalité > 0.7
 - interpolation linéaire dans la partie intermédiaire

Applications aux iris

Autre exemple : notes

- Mesure de comparaison - dissimilarité : $d(x,y) = \min\left(1, \frac{||x-y||}{Z_d}\right)$
 - ressemblance : $r(x,y) = \max\left(0,1-\frac{||x-y||}{Z_r}\right)$ avec Z_r = diamètre maximal des clusters

avec Z_d = demi-diamètre des données

- Opérateur d'agrégation :
 - opérateur à attitude variable : somme symétrique

Résultat

prototypes flous

Résultat

Au programme du jour

- 1. Clustering par partitionnement
- 2. Autres approches de clustering
- 3. Prototypes explications de clusters par l'exemple
- 4. Exemple d'applications

- Importance de la forme dans le design émotionnel
 - rôle majeur dans la perception des objets créés
 - étape essentielle de la phase générative du design

Description linguistique subjective : 40 adjectifs émotionnels

abstrait, acidulé, aérien, agressif, apaisant, attrayant, austère, chaud, classique, de qualité, doux, dynamique, élégant, équilibré, extravagant, féminin, fluide, libre, futuriste, géométrique, glamour, high-tech, jeune, ludique, luxueux, masculin, mystérieux, naturel, original, poétique, puissant, pur, rafraîchissant, rétro, séduisant, sécurisant, sensuel, simple, sophistiqué, sport

Description numérique objective : descripteurs de forme globale largeur, hauteur, périmètre, aire, circularité, compacité, élongation, moments invariants

- Prototypes de forme
 - 8 formes principales, principalement définies en termes d'élongation

• 17 exceptions, par exemple

- Caractérisation sémantique des types de formes
 - identification de termes significativement présents ou absents
 - critère numérique : équivalent du lift

 $\frac{\text{fréquence du terme } t \text{ dans le cluster } c}{\text{fréquence globale du terme } t}$

Prototype	Présence significative	Absence significative
	éthéré	puissant
\cap	acidulé	attrayant
	dynamique	extravagant
	mystérieux	agressif
	jeune	high-tech
	sport	
$\overline{\Lambda}$	sport	glamour
	high-tech	séduisant
		chaud
	puissant	fluide
		sensuel
		mystérieux
		ludique

Parmi les questions non discutées

- Choix des paramètres
- Mesures de qualité et validation
- Gain en intelligibilité ?