Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Cientifica Departamento de Estatística

Relatório - Parte I Exercício 1

Guilherme Pazian RA:160323 Henrique Capatto RA:146406 Hugo Calegari RA:155738 Leonardo Uchoa Pedreira RA:156231

Professor: Caio Lucidius Naberezny Azevedo

Campinas-SP, 12 de Junho de 2017

Exercício 1

SUGESTÃO:

O código do trabalho poderia terminar antes do início do trabalho de forma a melhorar a vizualização e organização

1.Introdução

Descrição do problema, conjunto de dados e objetivos.

2. Análise Descritiva

Toda a parte da análise descritiva, incluindo gráficos pertinentes.

	Nível de microinfiltração					
Material	0	1	2	3	4	Total
Allbond	9	18	31	12	2	72
Optibond	26	34	8	3	1	72
Scotchbond	9	17	15	25	6	72

Acima observa-se as contagens das classificações por tipo de material selante.

Definir-se-á uma estatística para podermos captar algum indício de que um Material Selante possui melhor desempenho do que os outros, sabendo que quanto mais dentes forem classificados com 0 ou 1, melhor será o Material, logo:

Seja *soma*_{01i} definida como sendo a soma das contagens de classificações 0 ou 1 feita no i-ésimo material. Seja *somatotal*_i igual ao total de dentes analisados por tipo de material, que pelo problema sabe-se que são setenta e dois. Essa estatística pode ser considerada uma proporção e visa identificar qual Material produz os casos de Maior interesse em relação ao problema, expressando-se os resultados numa porcentagem.

Logo,

$$soma_{01i} = \frac{soma_{0i} + soma_{1i}}{72}$$

para i = 1, 2, 3

Portanto, para o material Allbond obteve-se $soma_{011} = \frac{soma_{01} + soma_{11}}{72} = \frac{9 + 18}{72} = \frac{27}{72} = 0,375$. Já para Optibond, $soma_{012} = \frac{soma_{02} + soma_{12}}{72} = \frac{26 + 34}{72} = \frac{60}{72} = 0,8333333$. Para Scotchbond, $soma_{013} = \frac{soma_{03} + soma_{13}}{72} = \frac{9 + 17}{72} = \frac{26}{72} 0,3611111$

Quantidade de Dentes selados com Allbond x Tipo de Microinfiltração

Quantidade de Dentes selados com Allbond x Tipo de Optibond

Quantidade de Dentes selados com Allbond x Tipo de Scotchbond

O Modelo probabilistico gerador da Tabela é o Produto de Multinomiais Independentes pois os totais marginais relacionados aos tipos de materiais de Selante são fixados, portanto o modelo é dado pela seguinte equação:

$$N_i = (N_{i0}, N_{i1}, N_{i2}, N_{i3}, N_{i4})' \sim multinomial(n_i, \theta_i) \ i = 1, 2, 3$$

$$N_i \perp N_j \ \forall \ i \neq j \ ; \ i,j=1,2,3 \ , \ \theta_{\mathbf{i}} = (\theta_{i0},\theta_{i1},\theta_{i2},\theta_{i3})^{'} \ e \ \theta_{ij} \in (0,1)$$

Matriz

Medida de Desempenho:

A medida de desempenho proposta foi a média dos escores ponderadas pela probabilidade de classificação em cada grupo. Temos então que as medidas de desempenho dos materiais são dadas por:

$$\bar{S}_{Allbond} = 0\theta_{10} + 1\theta_{11} + 2\theta_{12} + 3\theta_{13} + 4\theta_{14}$$

$$\bar{S}_{Optibond} = 0\theta_{20} + 1\theta_{21} + 2\theta_{22} + 3\theta_{23} + 4\theta_{24}$$

$$\bar{S}_{Scotchbond} = 0\theta_{30} + 1\theta_{31} + 2\theta_{32} + 3\theta_{33} + 4\theta_{34}$$

Temos o interesse em testar se as medidas de desempenho dos três materiais são iguais, ou seja, testar a hipóteses:

$$H_0: egin{dcases} ar{S}_{Allbond} - ar{S}_{Optibond} = 0 \ ar{S}_{Allbond} - ar{S}_{Scotchbond} = 0 \end{cases} Vs \ H_1:$$
 Há pelo menos uma diferença

A qual é equivalente a testar:

$$H_0: B\pi = D \ Vs \ H_1: B\pi \neq D$$

onde:

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 & 4 \\ 0 & 0 \\ -1 & 0 \\ -2 & 0 \\ -3 & 0 \\ -4 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0$$

Conforme Azevedo(XXXano), podemos testar as hipóteses acima utilizando um teste assintótico baseado na estatística quiquadrado. Ao realizar o teste, observou-se um valor de 54,27 que, respeitando-se os graus de liberdade da estatística do teste ("2"
nesse caso), obtemos um p-valor de <0.0001, ou seja, temos evidências contra a hipóte nula. Desta maneira, temos evidências
contra a hipótese de que as medidas de desempenho dos três materiais são iguais. Uma vez que temos a indicação de que as
medidas de desempenho dos materiais são diferentes, podemos agora testar as hipóteses de igualdade dos materiais dois a dois.
Temos então as novas hipóteses:

$$H_{01}: \bar{S}_{Allbond} - \bar{S}_{Optibond} = 0 \ Vs \ H_{11}: \bar{S}_{Allbond} - \bar{S}_{Optibond} \neq 0$$

A qual é equivalente a testar:

$$H_{01}: B_1\pi = D \ Vs \ H_{11}: B_1\pi \neq D$$

Os vetores B_1 , π e D estão definidos em anexo.

A partir do teste da hipótese acima, observou-se um valor de 30,42 que, respeitando-se os graus de liberdade da estatística do teste

("1" nesse caso), obtemos um p-valor de <0.0001

$$H_{02}: \bar{S}_{Allbond} - \bar{S}_{Scotchbond} = 0 \ Vs \ H_{12}: \bar{S}_{Allbond} - \bar{S}_{Scotchbond} \neq 0$$

A qual é equivalente a testar:

$$H_{02}: B_2\pi = D \ Vs \ H_{12}: B_2\pi \neq D$$

Os vetores B_2 , π e D estão definidos em anexo. A partir do teste da hipótese acima, observou-se um valor de 2,84 que , respeitando-se os graus de liberdade da estatística do teste ("1" nesse caso), obtemos um p-valor de 0,0919

$$H_{03}: \bar{S}_{Optibond} - \bar{S}_{Scotchbond} = 0 = 0 \ Vs \ H_{13}: \bar{S}_{Optibond} - \bar{S}_{Scotchbond} \neq 0$$

A qual é equivalente a testar:

$$H_{03}: B_3\pi = D \ Vs \ H_{13}: B_3\pi \neq D$$

Os vetores B_3 , π e D estão definidos em anexo.

Os vetores B_2 , π e D estão definidos em anexo. A partir do teste da hipótese acima, observou-se um valor de 44,21 que , respeitando-se os graus de liberdade da estatística do teste ("1" nesse caso), obtemos um p-valor de <0.0001.

Portanto, temos a indicação de que as medidas de desempenho dos três materiais diferem estatísticamente entre si.

Uma outra análise poderia ser feita a partir de um modelo de regressão linear para Tabela de Contingência, escrito na forma $A\pi = X\beta$.

Dados os resultados expostos anteriormente, podemos testar o ajuste de um modelo que leva em consideração a hipótese de que todos as medidas de desempenho dos materiais são diferentes, e partir desse modelo se obtem as estimativas para a medida de desempenho de cada material.

Pode-se observar, através da tabela XXX os valores estimados da medida de desempenho de cada material (MD Estimada), seus respectivos desvios padrão (DP) e intervalos de confiança (LIIIC e LSIC são respectivamente os limites inferior e superior dos intervalos de confiança para as medidas de desempenho levando-se um consideração um nível de confiança de 95%).

Para fácil identificação, os nomes das colunas indicando as quantidades calculadas foi renomeada para melhor visualização. DP significa desvio Padrão, LIIC significa Limite Inferior do Intervalo de Confiança(IC) e LSIC, Limite Superior do IC.

A figura XXX é uma representação gráfica dos Intervalos de confiança apresentados na tabela XXX.

Material	MD Estimada	DP	LIIC	LSIC
Allbond	1.72	0.11	1.50	1.95
Optibond	0.87	0.10	0.68	1.07
Scotchbond	2.03	0.14	1.75	2.30

Note que, os intervalos de confiança para as medidas dos materiais Allbond e Scothbond, apesar de não ter nenhuma intersecção, são bem próximos, o que também indica a proximidade das medidas de desempenho destes materiais. O respectivo intervalo de confiança para o material Opitbond é vizualmente bem distante dos demais, o que nos indica um melhor desempenho deste, uma vez que observamos este intervalo abaixo dos demais.

Como, a partir dos testes do tipo $B\pi = D$, obtivemos um nível de significância marginal (0,0919) é interessante fazer um teste do tipo $C\beta = M$ para verificar, utilizando outra metodologia, a igualdade das medidas de desempenho dos materiais $\bar{S}_{Allbond}$ e $\bar{S}_{Scotchbond}$. Temos então o teste:

$$H_0: \bar{S}_{Allbond} - \bar{S}_{Scotchbond} = 0 \ Vs \ H_1: \bar{S}_{Allbond} - \bar{S}_{Scotchbond} \neq 0 \leftrightarrow C\beta = M$$

Onde

$$C =$$

A estatística

acho que não precisa esse modelo, reservar caso falte algo Depois, utilizando a medida de desempenho para Allbond como referência, compararemos as outras duas medidas em relação aquela para determinação de qual é o melhor material

Já para o segundo modelo, temos a seguinte tabela

4. Conclusões

O que se pode concluir da análise, em termos do problema apresentado, e críticas em relação a análise feita.

5. Anexos

Para testar a hipótese

$$H_{01}: \bar{S}_{Allbond} - \bar{S}_{Optibond} = 0 \ Vs \ H_{11}: \bar{S}_{Allbond} - \bar{S}_{Optibond} \neq 0 \leftrightarrow H_{01}: \ B\pi = D \ \ Vs \ \ H_{11}: B\pi \neq D$$

definimos:

$$\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ \theta_{11} \\ \theta_{12} \\ 3 \\ 4 \\ \theta_{13} \\ \theta_{14} \\ 0 \\ \theta_{20} \\ -1 \\ -2 \\ ; \pi = \begin{bmatrix} \theta_{21} \\ \theta_{22} \\ \theta_{23} \\ -4 \\ 0 \\ \theta_{30} \\ 0 \\ 0 \\ \theta_{31} \\ 0 \\ \theta_{32} \\ 0 \\ \theta_{33} \\ 0 \end{bmatrix} e D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Para testar a hipótese:

$$H_{02}: \bar{S}_{Allbond} - \bar{S}_{Scotchbond} = 0 = 0 \ Vs \ H_{12}: \bar{S}_{Allbond} - \bar{S}_{Scotchbond} \neq 0 \\ \leftrightarrow H_{02}: \ B\pi = D \ \ Vs \ \ H_{12}: B\pi \neq D$$

Para testar a hipótese:

$$H_{03}: \bar{S}_{Optibond} - \bar{S}_{Scotchbond} = 0 = 0 \ Vs \ H_{13}: \bar{S}_{Optibond} - \bar{S}_{Scotchbond} \neq 0 \leftrightarrow H_{03}: \ B\pi = D \ \ Vs \ \ H_{13}: B\pi \neq D$$

onde:

Para os modelos de regressão temos as seguintes hipóteses:

$$H_0: egin{cases} ar{S}_{Allbond} = lpha_1 \ ar{S}_{Optibond} = lpha_2 \quad \textit{Vs } H_1: ext{H\'a pelo menos uma diferença} \ ar{S}_{Scotchbond} = lpha_3 \end{cases}$$

Temos então o modelo de regressão definido como