Lista 1 - Topologia 2025

Zad. 1 Zbadaj jak wyglądają ciągi zbieżne w kostce Cantora.

Zad. 2 Na przestrzeni funkcji ciągłych C[0,1] możemy zdefiniować metrykę

$$d_c(f,g) = \int |f(x) - g(x)| dx.$$

Te osoby, które jeszcze nie całkują, mogą myśleć, że d(f,g) jest polem między wykresami funkcji f i g.

- a) Pokaż, że $d_c(f,g) \leq d_{sup}(f,g)$ dla dowolnych funkcji f i g,
- b) Pokaż, że dla dowolnie dużego r istnieje f, g takie, że $d_c(f,g) < 1$ i $d_{sup}(f,g) > r$.
- c) Wywnioskuj, że zbieżność ciagu funkcyjnego w metryce supremum pociąga zbieżność w metryce całkowej, ale nie odwrotnie.
- d) Spróbuj zwizualizować sobie kulę w metryce całkowej.

Definicja. Niech X, d będzie przestrzenią metryczną i $A \subseteq X$. Wtedy

- wnętrzem zbioru A nazywamy $Int(A) = \{x \in A : \exists r > 0 \ B_r(x) \subseteq A\},\$
- domknięciem zbioru A nazywamy $\overline{A} = \{x \in X : \exists (x_n) \ \forall n \ x_n \in A \land \lim x_n = x\},\$
- brzegiem zbioru A nazywamy $Bd(A) = \overline{A} \setminus Int(A)$.

 ${\bf Zad.~3}~$ Znajdź wnętrze, domknięcie (i brzeg) następujących podzbiorów \mathbb{R}^2 z metryką euklidesową.

$$\mathbb{R}\times\mathbb{N},\quad \{\langle x,y\rangle\colon x^2+y^2=1\},\quad \mathbb{Q}\times(\mathbb{R}\setminus\mathbb{Q}),\quad \{\langle x,y\rangle\colon y=2x\},\quad \{\langle x,y\rangle\in(0,\infty)^2\colon y=\sin 1/x\}$$

Powtórz polecanie dla metryki maksimum i metryki centrum.

Zad. 4 Znajdź wnętrze i domknięcie poniższych zbiorów w przestrzeni C[0,1] (z metryką supremum):

- a) $\{f \in C[0,1]: f(0) < 2\},\$
- b) $\{fC[0,1]: f \text{ jest ściśle rosnąca}\}.$

Definicja. Zbiór $U \subseteq X$ jest zbiorem *otwartym*, jeżeli dla każdego $x \in U$ istnieje r > 0 takie, że $B_r(x) \subseteq U$. Zbiór F jest zbiorem *domkniętym*, jeżeli granica każdego zbieżnego ciągu elementów F jest elementem F.

Zad. 5 Podaj przykłady zbiorów otwartych i zbiorów domkniętych w różnych przestrzeniach metrycznych. Czy zawsze istnieje zbiór, który nie jest ani otwarty ani domknięty? Czy mogą istnieć zbiory, które są zarówno otwarte jak i domknięte?

- **Zad. 6** Niech (X,d) będzie przestrzenią metryczną i niech $A\subseteq X$. Pokaż, że $\mathrm{Int}(A)$ jest największym zbiorem otwartym zawartym w A, a \overline{A} jest najmniejszym zbiorem domkniętym zawierającym A. Wywnioskuj, że U jest zbiorem otwartym wtedy i tylko wtedy, gdy $\overline{F}=F$.
- **Zad. 7** Sprawdź, że w dowolnej przestrzeni metrycznej (X,d) sfera, a więc zbiór postaci $\{y \in X : d(x,y) = r\}$ (dla ustalonego $x \in X$ i r > 0) jest zbiorem domkniętym. Pokaż, we $\overline{B_r(x)} \subseteq \{y : d(x,y) \le r\}$, ale niekoniecznie musi zachodzić przeciwna inkluzja.
- **Zad. 8** Wykaż, że podzbiory \mathbb{R}^n postaci $(a_1, b_1) \times \cdots \times (a_n, b_n)$ są otwarte, a $[a_1, b_1] \times \cdots \times [a_n, b_n]$ są domknięte.