Chiusure dei linguaggi Regolari

Chiusura dell'unione in REG

L'operatore unione è chiuso in REG, ossia:

 $\forall L1, L2 \in REG, \ L1 \cup L2 \in REG$

Dimostrazione

- Dati $L_1,\ L_2 \in REG$, siano $D_1 := (Q_1,\ \Sigma,\ \delta_1,\ q_1,\ F_1)$ e $D_2 := (Q_2,\ \Sigma,\ \delta_2,\ q_2,\ F_2)$ due DFA tali che $L_1 = L(D_1)$ e $L_2 = L(D_2)$.
- Definiamo allora il DFA $D:=(Q,\;\Sigma,\;\delta,\;q_0,\;F)$ come:
 - $q_0 = (q_1, q_2)$
 - $Q = Q_1 \times Q_2$
 - $F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$
 - $\forall (r_1, r_2) \in Q, \ a \in \Sigma$ si ha che

$$\delta((r_1,r_2),a) = (\delta_1(r_1,a),\delta_2(r_2,a))$$

ullet A questo punto, per costruzione stessa di D ne segue che:

$$w \in L_1 \cup L_2 \iff w \in L(D)$$

Dunque $L_1 \cup L_2 = L(D) \in REG$

La dimostrazione dell'*intersezione* è identica.

Chiusura del Complemento in REG

L'operatore complemento è chiuso in REG, ossia:

$$\forall L \in REG, \ \neg L \in REG$$

Dimostrazione

- Dato $L \in REG$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D).
- Definiamo quindi il DFA $D' = (Q, \Sigma, \delta, q_0, Q \setminus F)$, cioè lo stesso DFA di D ma con gli stati accettanti invertiti.
- Per costruzione stessa di *D'* si ha che:

$$w \in L \iff w \notin L(D')$$

Dunque $\overline{L} = L(D') \in REG$

Chiusura della concatenazione in REG

L'operatore concatenazione è chiuso in REG, ossia:

$$\forall L1, L2 \in REG, \ L1 \circ L2 \in REG$$

Dimostrazione

- Dati $L_1,L_2\in REG$, siano $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ i due NFA tali che $L_1=L(N_1)$ e $L_2=L(N_2)$.
- Definiamo quindi l'NFA $N=(Q,\Sigma,\delta,q_0,F)$ tale che:

1.
$$q_0 = q_1$$

2.
$$Q = Q_1 \cup Q_2$$

3.
$$F = F_2$$

4. $\forall q \in Q, \ a \in \Sigma$ si ha che:

$$\delta(q,a) = egin{cases} \delta_1(q,a) & ext{se } q \in Q_1 \setminus F_1 \ \delta_1(q,a) & ext{se } q \in F_1 \wedge a
eq arepsilon \ \delta_1(q,a) \cup \{q_2\} & ext{se } q \in F_1 \wedge a = arepsilon \ \delta_2(q,a) & ext{se } q \in Q_2 \end{cases}$$

• A questo punto, per costruzione stessa di N ne segue che:

$$w \in L_1 \circ L_2 \iff w \in L(N)$$

Dunque
$$L_1\circ L_2=L(N)\in REG$$

Chiusura dell'operatore star in REG

L'operatore star è chiuso in REG, ossia:

$$\forall L \in REG, \ L^* \in REG$$

Dimostrazione

- Dato $L \in REG$, sia $N = (Q, \Sigma, \delta, q_0, F)$ l'NFA tale che L = L(N).
- Definiamo quindi l'NFA $N' = (Q', \Sigma, \delta', q_0^*, F')$ tale che:
 - 1. q_0^* è un nuovo stato iniziale aggiunto

2.
$$Q' = Q \cup \{q_0^*\}$$

3.
$$F' = F \cup \{q_0^*\}$$

4. $\forall q \in Q', \ a \in \Sigma \text{ si ha che:}$

$$\delta'(q,a) = egin{cases} \delta(q,a) & ext{se } q \in Q \setminus F \ \delta(q,a) & ext{se } q \in F \wedge a
eq arepsilon \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \{q_0\} & ext{se } q = q_0^* \wedge a = arepsilon & ext{se } q = q_0^* \wedge a
eq arepsilon \delta(q,a) \cup \{q_0\} & ext{se } q = q_0^* \wedge a
eq arepsilon \delta(q,a) \cup \{q_0\} & ext{se } q = q_0^* \wedge a
eq arepsilon \delta(q,a) \cup \{q_0\} & ext{se } q \in Q \setminus F \\ \delta(q,a) & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q,a) \cup \{q_0\} & ext{se } q \in F \wedge a = arepsilon \\ \delta(q$$

• A questo punto, per costruzione stessa di N' ne segue che:

$$w \in L^* \iff w \in L(N')$$

Dunque
$$L^* = L(N') \in REG$$