

Aula 7: Ensembles

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Ensembles
- Combinação de classificadores
 - o Viés e variância
 - Boosting
 - Bagging
 - Stacking
 - o Ensembles de árvores

Ensembles

- Procuram melhorar acurácia preditiva combinando predições de múltiplos estimadores
 - Classificação
 - Constroem conjunto de classificadores a partir de dados de treinamento
 - Classificadores base
 - Classe do novo exemplo é definida pela agregação da predição dos múltiplos classificadores base
 - Também podem ser usados em tarefas de regressão e de agrupamento de dados

Combinação de classificadores

- Condições necessárias para um bom desempenho
 - Diversidade
 - Classificadores base devem ser independentes e com diferentes vieses
 - Ideal: cometer erros diferentes
 - Acurácia preditiva
 - Desempenho dos classificadores base deve ser melhor que classificação aleatória
 - E do que classificar na classe majoritária

Exemplo

- Sejam 3 classificadores induzidos para os mesmos dados, com acurácia 0.6
 - o Se eles cometem os mesmos erros
 - Acurácia do ensemble será 0.6 (taxa de erro = 0.4)
 - o Se eles são completamente independentes
 - Ensemble erra classificação apenas se pelo menos 2 classificadores erram na predição

$$erro_{ems} = \sum_{i=2}^{3} {3 \choose i} e^{i} (1-e)^{3-i}$$
 e: taxa de erro (0.35 < 0.4)

Distribuição Binomial

- Combinação Paralela
 - Treinamentos independentes
 - Algoritmos aplicados a:
 - Mesmo conjunto dados
 - Conjuntos de dados formados por diferentes amostras do conjunto de dados original
 - Conjuntos de dados com diferentes atributos preditivos do conjunto de dados originais
 - Explora semelhanças e diferenças

• Combinação Paralela

- Combinação em cascata (sequencial)
 - Saída de um classificador é utilizada como entrada para o próximo classificador
 - Não precisa combinar saídas
 - Problema: propagação de erro

- Combinação hierárquica
 - Mistura das combinações anteriores
 - Caso especial: stacking

- Combinação hierárquica
 - Mistura das combinações anteriores
 - Caso especial: stacking

Combinações paralelas

- Pode ocorrer pela manipulação de:
 - Conjunto de treinamento
 - Bosting e Bagging
 - Atributos preditivos
 - Ensemble de árvores
 - Rótulos das classes
 - Multiclasses e multirrótulo
 - o Algoritmo de aprendizado
 - Modelos gerados por algoritmo(s)

Combinação de predições

- Voto (média)
- Voto (média) ponderado
- Algoritmo combinador (stacking)

Decomposição viés-variância

- Em geral
 - Quanto mais forte a suposição de um classificador sobre o espaço de decisão, maior seu viés
 - Ex. Árvore podada faz suposição mais forte, por basear a fronteira em menos atributos
 - Menos consistente com os dados de treinamento
 - Tem maior viés (e menor variância)

Decomposição viés-variância

- Em geral
 - Algoritmo de classificação gera modelos diferentes para mesmo conjunto de dados
 - o Variabilidade do conjunto de treinamento leva a variância nos erros de predição
- Erro de modelo é definido por três componentes
 - Viés + variância + ruído

Bagging (Bootstrap Agregating)

- Cada classificador é induzido por uma amostra diferente do conjunto de treinamento
 - o Mesmo tamanho do conjunto original
 - Usa bootstrap
- Classe definida por votação
- Tende a reduzir variância associada com os classificadores base

Bagging (Bootstrap Agregating)

- Indicado para classificadores instáveis
 - Pequena mudança nos dados de treinamento afeta modelo de classificação induzido
 - Redes neurais e árvores de decisão
 - Por que eles s\u00e3o inst\u00e1veis?
- Não são indicados para classificadores estáveis
 - o Erro geralmente causado por viés do classificador base
- Menos sensível a overfitting quando dados têm ruído

Bagging

• Seja o conjunto de dados de treinamento $\{x_1, x_2, x_3, x_4, x_{5,}, x_6\}$

X₁, X₆, X₃, X₅, X₃, X₁

Amostra 1

 X_3 , X_4 , X_1 , X_5 , X_5 , X_1

Amostra 2

.

 X_1 , X_2 , X_4 , X_2 , X_6 , X_4

Amostra m

Bagging

Boosting

- Conjunto de técnicas
 - Adaboost é uma das mais conhecidas
- A cada iteração
 - o Induz um classificador
 - Pondera cada exemplo do conjunto de dados completo pelo desempenho do classificador base
 - Quanto mais difícil de ser aprendido, maior o peso associado ao exemplo
 - Maior probabilidade de ser escolhido na próxima iteração
 - Boosting funciona de forma semelhante a minimização por gradiente descendente

Boosting

• Seja o conj. treinamento $\{x_1, x_2, x_3, x_4, x_5\}$

Exemplos: x_1, x_2, x_3, x_4, x_5 Pesos atuais: 0.2 0.2 0.2 0.2 0.2 Classificação: C I C C I Novos pesos: 0.2 0.4 0.2 0.2 0.4

Exemplos: x_1, x_2, x_3, x_4, x_5 Pesos atuais: 0.2 0.4 0.2 0.2 0.4 Classificação: C I C I C Novos pesos: 0.2 0.6 0.2 0.4 0.4 Soma dos pesos = 1.0

C: correta I: incorreta

Boosting

- Indicado para classificadores base fracos
 - Acurácia ligeiramente melhor que palpite aleatório
- Convergência rápida
- Pouco indicado para dados com ruídos e pequenos conjuntos de dados
 - Por focar em exemplos difíceis de serem classificados

Stacking

- Um algoritmo estimador aprende a combinar predições de modelos base
 - Modelos gerados por algoritmos base
 - o Saídas combinadas por algoritmo estimador
 - Algoritmo de AM
- Algoritmos base podem ser:
 - Homogêneos
 - Heterógenos

Ensembles de ADs

- Combina a predição de várias árvores de decisão
- Duas principais abordagens:
 - Random forests
 - Extreme Gradient Boosting
 - o Algoritmo CART ou baseado no CART

Algoritmo CART

- Classification and regression trees
 - Árvore binária
 - Que pode ser usado para regressão ou classificação
 - Para classificação, cada nó folha possui uma classe
 - Para regressão, cada nó folha possui um valor real

- Combinar ADs, mas pode usar modelos gerados por qualquer algoritmo de AM
- Combina k ADs
 - Cada árvore é induzida usando um subconjunto aleatório dos atributos preditivos
 - Usado na escolha do atributo preditivo para cada nó
 - Hiper-parâmetros definem número de ADs e número de atributos preditivos para cada AD
 - Classificação ocorre por voto majoritário

Algoritmo de treinamento

For i = 1 to número de árvores:

Extrair por bootstrap uma amostra dos dados de treinamento Construir uma árvore, repetindo de forma recursiva até um dado critério de parada (número de objetos no nó)

Selecionar aleatoriamente m dos M atributos

Escolher o melhor destes m atributos para dividir um nó

Dividir o nó em dois nós filhos

Resultado é um ensemble de ADs

Uma predição para um novo objeto retorna:

Média dos resultados, para regressão

Classe mais votada, para classificação

Random Forest Classifier

Dados de treinamento

Cria amostras do conjunto de treinamento usando bootstrap

Constrói uma árvore de decisão

A cada nó, escolhe o atributo preditivo para o split em um subconjunto dos atributos originais, *m*<*M*

Cria uma árvore de decisão de cada amostra de bootstrap

- Bagging pode ser visto como um caso especial de RFs
 - RFs usa bootstrap de forma similar a bagging para selecionar exemplos de treinamento
- Várias alternativas para escolher aleatoriamente os atributos preditivos
 - Forest-RI (Random Input Selection)
 - Forest-RC (Random Combination)

- Forest RI (Random Input Selection)
 - o Seleciona aleatoriamente, para cada nó, um subconjunto de m atributos preditivos
 - o Algoritmo CART é usado para crescer as árvores sem poda
 - o Problema: conjunto de dados com poucos atributos preditivos
 - Pode selecionar atributos fortemente correlacionados

- Forest-RC (Random Combination)
 - Expande número de atributos criando combinações lineares aleatórias de atributos
 - A cada nó, m' combinações de m atributos são aleatoriamente geradas
 - Combina atributos utilizando pesos aleatoriamente gerados entre -1 e +1
 - Cada combinação é um novo atributo
 - Usada quando conjunto de dados tem poucos atributos preditivos

Extreme Gradient Boosting

- XGBoost
- Combina árvores geradas pelo algoritmo CART
- Treinamento aditivo
 - o Induz uma árvore
 - Inclui ela no ensemble
 - Induz próxima árvore

0 ...

 Pondera a resposta de cada árvore para reduzir complexidade do modelo final

Observações

- Boosting de árvores de decisão (C4.5) muitas vezes funciona muito bem
- Uma árvore de decisão de nível 2~3 tem um bom equilíbrio entre eficácia e eficiência
- Random forest requer menos tempo de treinamento que outros algoritmos que apresentam desempenho semelhante
- XGBoost e random forest podem ser usados em tarefas de regressão

Conclusão

- Combinação de estimadores em geral aumenta desempenho preditivo
 - E reduz variância
- As vezes chamado de meta-aprendizado
- Regressão
 - Média simples ou ponderada

Fim do apresentação

