EXP NO: 1

DATE: 23/1/25

A PYTHON PROGRAM TO IMPLEMENT UNIVARIATE, BIVARIATE AND MULTIVARIATE REGRESION

AIM:

To implement a python program using univariate, bivariate and multivariate regression features for a given Housing dataset.

ALGORITHM:

Step 1: Load and preview the dataset

Step 2: Handle missing values

Step 3: Univariate regression (1 feature \rightarrow price)

Step 4: Plot for univariate regression

Step 5: Bivariate regression (2 features \rightarrow price)

Step 6: Plot for bivariate regression

Step 7: Multivariate regression (multiple features \rightarrow price)

Step 8: Train the model

Step 9: Make predictions

Step 10: Evaluate performance (R² score)

SOURCE CODE:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import LabelEncoder

from mpl_toolkits.mplot3d import Axes3D

from sklearn.metrics import mean squared error, r2 score

Step 1: Load dataset

file_path = "/content/Housing.csv"

```
df = pd.read_csv(file_path)
# Step 2: Preprocess data (convert categorical variables)
le = LabelEncoder()
df['mainroad'] = le.fit transform(df['mainroad'])
df['guestroom'] = le.fit_transform(df['guestroom'])
df['basement'] = le.fit transform(df['basement'])
df['hotwaterheating'] = le.fit_transform(df['hotwaterheating'])
df['airconditioning'] = le.fit transform(df['airconditioning'])
df['prefarea'] = le.fit_transform(df['prefarea'])
df['furnishingstatus'] = le.fit_transform(df['furnishingstatus'])
# Step 3: Univariate Regression (Price vs Area)
X_{uni} = df[['area']]
y = df['price']
X_train, X_test, y_train, y_test = train_test_split(X_uni, y, test_size=0.2, random_state=42)
model uni = LinearRegression()
model_uni.fit(X_train, y_train)
y_pred_uni = model_uni.predict(X_test)
# Plot Univariate Regression
plt.figure(figsize=(8,6))
plt.scatter(X_test, y_test, color='blue', label='Actual Data')
plt.plot(X_test, y_pred_uni, color='red', linewidth=2, label='Regression Line')
plt.xlabel('Area')
plt.ylabel('Price')
plt.title('Univariate Regression (Area vs Price)')
plt.legend()
plt.show()
# Step 4: Bivariate Regression (Price vs Area & Bedrooms)
X_bi = df[['area', 'bedrooms']]
X_train, X_test, y_train, y_test = train_test_split(X_bi, y, test_size=0.2, random_state=42)
model_bi = LinearRegression()
model bi.fit(X train, y train)
y_pred_bi = model_bi.predict(X_test)
# Plot Bivariate Regression in 3D
fig = plt.figure(figsize=(10,7))
ax = fig.add subplot(111, projection='3d')
ax.scatter(X_test['area'], X_test['bedrooms'], y_test, color='blue', label='Actual Data')
ax.set xlabel('Area')
ax.set_ylabel('Bedrooms')
ax.set_zlabel('Price')
ax.set_title('Bivariate Regression (Area & Bedrooms vs Price)')
plt.show()
```

```
# Step 5: Multivariate Regression (Using all features)
X_multi = df.drop(columns=['price'])
X_train, X_test, y_train, y_test = train_test_split(X_multi, y, test_size=0.2, random_state=42)
model_multi = LinearRegression()
model_multi.fit(X_train, y_train)
y_pred_multi = model_multi.predict(X_test)
# Model Evaluation
mse = mean_squared_error(y_test, y_pred_multi)
r2 = r2_score(y_test, y_pred_multi)
print(f"Multivariate Regression R<sup>2</sup> Score: {r2:.4f}")
print(f"Multivariate Regression MSE: {mse:.2f}")
# Residual Plot
residuals = y_test - y_pred_multi
plt.figure(figsize=(8,6))
sns.histplot(residuals, kde=True, color='purple')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.title('Residual Distribution - Multivariate Regression')
plt.show()
```


Bivariate Regression (Area & Bedrooms vs Price)

Multivariate Regression R² Score: 0.6495 Multivariate Regression MSE: 1771751116594.04

RESULT:

Thus, the python program to implement univariate, bivariate and multivariate regression features for the given housing dataset is analyzed and the features are plotted using scatter plot.

EXP NO: 2	
	A PYTHON PROGRAM TO IMPLEMENT SIMPLE LINEAR
DATE: 30/1/25	REGRESSION USING LEAST SQUARE METHOD

AIM:

To implement a python program for constructing a simple linear regression using least square method.

ALGORITHM:

- **Step 1:** Import necessary libraries (numpy, matplotlib, pandas).
- **Step 2:** Read the dataset (headbrain.csv) and explore data using .head(), .info(), and .describe().
- **Step 3:** Extract Head Size as X (independent variable) and Brain Weight as y (dependent variable).
- **Step 4:** Compute the mean of X and y to prepare for coefficient calculations.
- **Step 5:** Calculate slope (b1) and intercept (b0) using the Least Squares formula.
- Step 6: Generate predictions (y_pred) using the linear equation y_pred = b0 + b1 * x.
- **Step 7:** Plot the regression line over the actual data points (X, y).
- Step 8: Plot residuals (differences between actual and predicted values) to analyze model fit.
- **Step 9:** Compute the R-squared value, which indicates the proportion of variance explained by the model.
- Step 10: Display results (Intercept, Slope, and R² Score) to evaluate model performance.

SOURCE CODE:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Step 1: Import necessary libraries
# Step 2: Read the dataset
file_path = "/content/headbrain.csv"
data = pd.read_csv(file_path)
data.head()
data.info()
data.describe()
# Step 3: Prepare the data
X = data['Head Size(cm^3)'].values
y = data['Brain Weight(grams)'].values
# Step 4: Calculate the mean
mean_x, mean_y = np.mean(X), np.mean(y)
# Step 5: Calculate the coefficients
b1 = np.sum((X - mean_x) * (y - mean_y)) / np.sum((X - mean_x) ** 2)
b0 = mean y - b1 * mean x
# Step 6: Make predictions
y_pred = b0 + b1 * X
# Step 7: Plot the regression line
plt.figure(figsize=(8, 6))
plt.scatter(X, y, color='blue', label='Actual data', alpha=0.6)
plt.plot(X, y_pred, color='red', label='Regression line', linewidth=2)
plt.xlabel('Head Size (cm<sup>3</sup>)')
plt.ylabel('Brain Weight (grams)')
plt.legend()
plt.title('Linear Regression using Least Squares')
plt.show()
# Step 8: Plot the residuals
residuals = y - y pred
plt.figure(figsize=(8, 6))
plt.scatter(X, residuals, color='purple', alpha=0.6)
```

```
plt.axhline(y=0, color='black', linestyle='--', linewidth=1)
plt.xlabel('Head Size (cm³)')
plt.ylabel('Residuals')
plt.title('Residual Plot')
plt.show()

# Step 9: Calculate the R-squared value
TSS = np.sum((y - mean_y) ** 2)
RSS = np.sum((y - y_pred) ** 2)
R2 = 1 - (RSS / TSS)

# Step 10: Display the results
print(f'Intercept: {b0:.2f}")
print(f'Slope: {b1:.2f}")
print(f'R-squared Value: {R2:.4f}")
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 237 entries, 0 to 236
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Gender	237 non-null	int64
1	Age Range	237 non-null	int64
2	<pre>Head Size(cm^3)</pre>	237 non-null	int64
3	Brain Weight(grams)	237 non-null	int64
dtype	es: int64(4)		

Intercept: 325.57

Slope: 0.26

R-squared Value: 0.6393

RESULT:

Thus, the python program to implement simple linear regression using least square method for the given head brain dataset is analyzed and the linear regression line is constructed successfully.

EXP	NO:	3

DATE: 06/2/25

A PYTHON PROGRAM TO IMPLEMENT LOGISTIC MODEL

AIM:

To implement python program for the logistic model using suv car dataset.

ALGORITHM:

- **Step 1:** Import required libraries (numpy, matplotlib, pandas, sklearn).
- **Step 2:** Load the dataset (suv_data.csv) into a pandas DataFrame.
- **Step 3:** Extract Age and Estimated Salary as X (features) and Purchased as y (target variable).
- Step 4: Split the data into training (80%) and testing (20%) sets using train test split().
- **Step 5:** Apply feature scaling (StandardScaler) to normalize X_train and X_test for better performance.
- **Step 6:** Train the Logistic Regression model using LogisticRegression().fit(X_train, y_train).
- Step 7: Make predictions (y pred) on X test using model.predict().
- **Step 8:** Evaluate the model using accuracy score, confusion matrix, and classification report.
- **Step 9:** Plot actual data using a scatter plot (Age vs. Estimated Salary, colored by y test).
- **Step 10:** Plot predicted data using a scatter plot (Age vs. Estimated Salary, colored by y pred).

SOURCE CODE:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

```
# Step 2: Read the dataset
file_path = "/content/suv_data.csv"
data = pd.read_csv(file_path)
```

```
# Step 3: Prepare the data
X = data[['Age', 'EstimatedSalary']].values # Independent variables
y = data['Purchased'].values # Dependent variable
# Step 4: Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=0)
# Step 5: Feature scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_{test} = scaler.transform(X_{test})
# Step 6: Train the logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)
# Step 7: Make predictions
y_pred = model.predict(X_test)
# Step 8: Evaluate the model
accuracy = accuracy score(y test, y pred)
conf_matrix = confusion_matrix(y_test, y_pred)
report = classification_report(y_test, y_pred)
print(f"Accuracy: {accuracy:.4f}")
print("Confusion Matrix:")
print(conf matrix)
print("Classification Report:")
print(report)
# Step 9: Simple plots
# Scatter plot of actual data
plt.figure(figsize=(8, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', edgecolors='k')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.title('Actual Data Distribution')
plt.show()
# Scatter plot of predictions
plt.figure(figsize=(8, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap='coolwarm', edgecolors='k')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.title('Predicted Data Distribution')
plt.show()
```

Accuracy: 0.9250 Confusion Matrix:

[[57 1] [5 17]]

Classification Report:

0100011100010	II INOPOLO.			
	precision	recall	f1-score	support
0	0.92	0.98	0.95	58
1	0.94	0.77	0.85	22
accuracy			0.93	80
macro avg weighted avg	0.93 0.93	0.88 0.93	0.90 0.92	80 80

RESULT:

Thus, the python program to implement logistic regression for the given suv_cars dataset is analyzed and the logistic regression model is classifies successfully. The performance of the developed model is measured using F1-score and Accuracy.

REG NO:2116221801034 PAGE NO: 12

TITT	 \mathbf{r}	4
HYP	 / h •	_/I
EXP	 (O:	4

DATE: 13/2/25

A PYTHON PROGRAM TO IMPLEMENT SINGLE LAYER PERCEPTRON

AIM:

To implement python program for the single layer perceptron.

ALGORITHM:

- **Step 1:** Initialize the input data (X) and corresponding labels (y).
- **Step 2:** Initialize weights and bias randomly.
- **Step 3:** Define an activation function (e.g., step function).
- **Step 4:** Set the learning rate (e.g., 0.1).
- **Step 5:** Compute the weighted sum of inputs (X) and weights (W).
- **Step 6:** Apply the activation function to get the output.
- **Step 7:** Calculate the error (difference between expected and predicted output).
- **Step 8:** Update weights and bias using the Perceptron Learning Rule.
- **Step 9:** Repeat steps 5–8 for multiple epochs to train the model.
- **Step 10:** Test the perceptron on new inputs and print predictions.

SOURCE CODE:

```
import numpy as np
```

```
# Step 1: Initialize input features (X) and target labels (y)
X = \text{np.array}([[0, 0], [0, 1], [1, 0], [1, 1]]) # Inputs
y = np.array([0, 0, 0, 1]) # AND logic gate output
# Step 2: Initialize weights and bias
weights = np.random.rand(2)
bias = np.random.rand(1)
learning_rate = 0.1
# Step 3: Define activation function (step function)
def step function(x):
  return 1 if x \ge 0 else 0
```

```
# Step 4: Train the perceptron using the Perceptron Learning Algorithm
epochs = 10
for epoch in range(epochs):
  for i in range(len(X)):
     # Step 5: Compute weighted sum
     weighted\_sum = np.dot(X[i], weights) + bias
     # Step 6: Apply activation function
     y_pred = step_function(weighted_sum)
     # Step 7: Compute error
     error = y[i] - y_pred
     # Step 8: Update weights and bias
     weights += learning rate * error * X[i]
     bias += learning_rate * error
# Step 9: Make predictions
for i in range(len(X)):
  output = step\_function(np.dot(X[i], weights) + bias)
  print(f"Input: {X[i]}, Predicted Output: {output}")
# Step 10: Final weights and bias
print("Final Weights:", weights)
print("Final Bias:", bias)
```

```
Input: [0 0], Predicted Output: 0
Input: [0 1], Predicted Output: 0
Input: [1 0], Predicted Output: 0
Input: [1 1], Predicted Output: 1
Final Weights: [0.23942754 0.09998966]
Final Bias: [-0.33008925]
```

RESULT:

Thus, the python program to implement Single Layer Perceptron has been executed successfully.

EXP	NO:	5

DATE: 20/2/25

A PYTHON PROGRAM TO IMPLEMENT MULTI LAYER PERCEPTRON WITH BACK PROPOGATION

AIM:

To implement multilayer perceptron with back propagation using python.

ALGORITHM:

- **Step 1:** Load the dataset from file (CSV or other formats).
- **Step 2:** Preprocess the dataset (Handle missing values if any).
- **Step 3:** Split the dataset into training and testing sets.
- Step 4: Normalize the features using StandardScaler().
- **Step 5:** Define and train the MLP model with one hidden layer.
- **Step 6:** Make predictions on the test set.
- **Step 7:** Evaluate the model using accuracy and confusion matrix.
- **Step 8:** Test the model with a new sample.
- **Step 9:** Retrieve final weights and biases of the model.
- **Step 10:** Visualize the classification results.

SOURCE CODE:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

Step 1: Load the dataset from file

file_path = "/content/BankNote_Authentication.csv" # Replace with your file path data = pd.read csv(file path)

REG NO:2116221801034 PAGE NO: 15

```
# Step 2: Preprocess the dataset (Check for missing values)
print(data.info())
print(data.describe())
# Step 3: Prepare the data (Assuming last column is 'Class' and rest are features)
X = data.iloc[:, :-1].values # Features (all columns except last)
y = data.iloc[:, -1].values # Target (last column)
# Step 4: Split dataset into training (80%) and testing (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 5: Normalize the dataset
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X \text{ test} = \text{scaler.transform}(X \text{ test})
# Step 6: Define the MLP model (1 hidden layer with 10 neurons)
mlp = MLPClassifier(hidden layer sizes=(10,), activation='relu', solver='adam', max iter=1000,
random_state=42)
# Step 7: Train the model
mlp.fit(X_train, y_train)
# Step 8: Make predictions
y_pred = mlp.predict(X_test)
# Step 9: Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf matrix = confusion matrix(y test, y pred)
report = classification report(y test, y pred)
print(f"Model Accuracy: {accuracy:.2%}")
print("Confusion Matrix:")
print(conf matrix)
print("Classification Report:")
print(report)
# Step 10: Test the model with a new sample
new sample = [[2.5, -1.2, 3.1, -0.8]] # Replace with actual feature values
new_sample_scaled = scaler.transform(new_sample)
prediction = mlp.predict(new sample scaled)
print(f"Predicted Class: {'Forged' if prediction[0] == 1 else 'Genuine'}")
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1372 entries, 0 to 1371

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	variance	1372 non-null	float64
1	skewness	1372 non-null	float64
2	curtosis	1372 non-null	float64
3	entropy	1372 non-null	float64
4	class	1372 non-null	int64

dtypes: float64(4), int64(1)

memory usage: 53.7 KB

	variance	skewness	curtosis	entropy	class
count	1372.000000	1372.000000	1372.000000	1372.000000	1372.000000
mean	0.433735	1.922353	1.397627	-1.191657	0.444606
std	2.842763	5.869047	4.310030	2.101013	0.497103
min	-7.042100	-13.773100	-5.286100	-8.548200	0.00000
25%	-1.773000	-1.708200	-1.574975	-2.413450	0.000000
50%	0.496180	2.319650	0.616630	-0.586650	0.000000
75%	2.821475	6.814625	3.179250	0.394810	1.000000
max	6.824800	12.951600	17.927400	2.449500	1.000000

Model Accuracy: 99.64%

Confusion Matrix:

[[147 1]

[0 127]]

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.99	1.00	148
1	0.99	1.00	1.00	127
accuracy			1.00	275
macro avg	1.00	1.00	1.00	275
weighted avg	1.00	1.00	1.00	275

Predicted Class: Genuine

RESULT:

The MLP with backpropagation was successfully implemented on banknotes.csv, and results were analyzed using various activation functions (relu, logistic, tanh, identity) with trainingtesting splits of 0.2 and 0.3.

EXP	NO:	6	

DATE: 27/2/25

A PYTHON PROGRAM TO IMPLEMENT FACE RECOGNITION USING SVM CLASSIFIER MODEL

AIM:

To implement a face recognition using SVM classifier model using python and determine its accuracy.

ALGORITHM:

- **Step 1:** Load the Labeled Faces in the Wild (LFW) dataset.
- **Step 2:** Extract face images (grayscale) and corresponding labels (person names).
- **Step 3:** Flatten 2D face images into 1D feature vectors for processing.
- **Step 4:** Normalize the feature vectors using StandardScaler to improve model performance.
- **Step 5:** Split the dataset into training (80%) and testing (20%) sets.
- **Step 6:** Apply PCA (Principal Component Analysis) to reduce dimensionality to 150 components.
- **Step 7:** Train an SVM (Support Vector Machine) classifier with a linear kernel on the PCA-transformed data.
- **Step 8:** Predict labels for the test set using the trained SVM model.
- **Step 9:** Evaluate model performance using accuracy score and confusion matrix.
- **Step 10:** Display sample predictions with actual vs. predicted labels using matplotlib.

SOURCE CODE:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import fetch_lfw_people

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy score, confusion matrix

Load the Labeled Faces in the Wild (LFW) dataset

REG NO:2116221801034

PAGE NO:

18

```
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
X = lfw_people.images # Face images (Gray-scale)
y = lfw people.target # Person labels
target_names = lfw_people.target_names # Names of people
# Flatten images for SVM input (Convert 2D images to 1D feature vectors)
n_samples, h, w = X.shape
X = X.reshape(n samples, h * w)
# Normalize data
scaler = StandardScaler()
X = \text{scaler.fit transform}(X)
# Split data (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Apply PCA (Principal Component Analysis) for dimensionality reduction
n components = 150 # Reduce features to 150 dimensions
pca = PCA(n_components=n_components, whiten=True)
X train pca = pca.fit transform(X train)
X_{test_pca} = pca.transform(X_{test})
# Train SVM classifier
svm_classifier = SVC(kernel="linear", class_weight="balanced", probability=True)
svm_classifier.fit(X_train_pca, y_train)
# Test the model
y_pred = svm_classifier.predict(X_test_pca)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Face Recognition Model Accuracy: {accuracy * 100:.2f}%")
# Display Confusion Matrix
conf matrix = confusion matrix(y test, y pred)
plt.figure(figsize=(6, 5))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=target_names,
yticklabels=target names)
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix - Face Recognition")
plt.show()
# Test with a sample image
sample idx = 5 # Choose any index from test set
plt.imshow(lfw people.images[sample idx], cmap="gray")
plt.title(f"Actual: {target_names[y_test[sample_idx]]} \nPredicted:
{target_names[y_pred[sample_idx]]}")
plt.axis("off")
plt.show()
```

Face Recognition Model Accuracy: 80.23%

Actual: George W Bush Predicted: George W Bush

RESULT:

Thus the python program to implement face recognition using SVM classifier model has been executed successfully and the classified output has been analyzed for the given dataset(fetch_lfw_people).

EXP NO: 7	
D 4 FDD 0 4 10 10 F	A PYTHON PROGRAM TO IMPLEMENT DECISION TREE
DATE: 06/3/25	

AIM:

To implement a decision tree using a python program for the given dataset and plot the trained decision tree.

ALGORITHM:

- **Step 1:** Import necessary libraries (numpy, matplotlib, sklearn).
- **Step 2:** Load the Iris dataset using load iris() function.
- **Step 3:** Extract features (X) and labels (y) from the dataset.
- Step 4: Split the dataset into training (80%) and testing (20%) sets using train test split().
- **Step 5:** Initialize the Decision Tree Classifier with a gini criterion and a maximum depth of 3.
- Step 6: Train the Decision Tree model on the training dataset using clf.fit (X train, y_train).
- **Step 7:** Predict the class labels for the test dataset using clf.predict(X test).
- **Step 8:** Evaluate the model's accuracy using accuracy score().
- **Step 9:** Print the model's accuracy as a percentage (accuracy * 100).
- **Step 10:** Visualize the trained Decision Tree using plot tree().

SOURCE CODE:

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier, plot tree from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score

```
# Load dataset
iris = load iris()
X, y = iris.data, iris.target # Features & Labels
```

Split dataset (80% training, 20% testing)

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create Decision Tree model
clf = DecisionTreeClassifier(criterion="gini", max_depth=3, random_state=42)

# Train the model
clf.fit(X_train, y_train)

# Predict on test data
y_pred = clf.predict(X_test)

# Evaluate model accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy * 100:.2f}%")

# Visualize the Decision Tree
plt.figure(figsize=(10, 6))
plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()
```

Model Accuracy: 100.00%

RESULT:

Thus the python program to implement Decision Tree for the given dataset has been successfully implemented and the results have been verified and analysed.

EXP NO: 8	
DATE: 27/3/25	A PYTHON PROGRAM TO IMPLEMENT BOOSTING

AIM:

To implement a python program using the ada boosting model and gradient boosting model.

(1) ADA BOOSTING

ALGORITHM:

Step 1: Import necessary libraries (numpy, matplotlib, sklearn).

Step 2: Load the Iris dataset and extract features (X) and labels (y).

Step 3: Split the dataset into training (80%) and testing (20%) sets using train test split().

Step 4: Initialize the AdaBoost Classifier with a Decision Tree (max_depth=1) as the base estimator.

Step 5: Train the AdaBoost model on the training dataset and make predictions on the test dataset.

Step 6: Evaluate the model's accuracy and plot feature importance using a bar chart.

SOURCE CODE:

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
```

```
# Load dataset
iris = load_iris()
X, y = iris.data, iris.target
```

Split dataset

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

REG NO:2116221801034 PAGE NO: 23

Create AdaBoost model with Decision Tree as base estimator

```
boosting_model = AdaBoostClassifier(
  estimator=DecisionTreeClassifier(max_depth=1),
  n_estimators=50,
  learning_rate=1.0,
  random_state=42
# Train the model
boosting_model.fit(X_train, y_train)
# Predict on test data
y_pred = boosting_model.predict(X_test)
# Evaluate model accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy *100 :.2f}%")
# Plot feature importance
plt.figure(figsize=(8, 5))
plt.bar(iris.feature_names, boosting_model.feature_importances_, color='skyblue')
plt.xlabel("Features")
plt.ylabel("Importance")
plt.title("Feature Importance in AdaBoost")
plt.show()
```

OUTPUT:

Model Accuracy: 93.33%

II) GRADIENT BOOSTING

ALGORITHM:

- Step 1: Import required libraries (sklearn, numpy, matplotlib).
- **Step 2:** Load the Iris dataset and extract features (X) and labels (y).

from sklearn.ensemble import GradientBoostingClassifier

- Step 3: Split the dataset into training (80%) and testing (20%) sets using train test split().
- Step 4: Initialize the Gradient Boosting Classifier with 100 estimators, a learning rate of 0.1, and a max depth of 3.
- Step 5: Train the Gradient Boosting model on the training dataset and predict labels for the test dataset.
- **Step 6:** Evaluate the model's accuracy and plot the training loss curve to visualize model performance.

SOURCE CODE:

```
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
# Load dataset
data = load iris()
X, y = data.data, data.target
# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create Gradient Boosting model
gb_clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3,
random state=42)
# Train the model
gb_clf.fit(X_train, y_train)
# Predict on test data
y_pred = gb_clf.predict(X_test)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy * 100:.2f}%")
```

REG NO:2116221801034

Plot the training loss curve

```
plt.plot(np.arange(len(gb_clf.train_score_)), gb_clf.train_score_, label="Training Loss")
plt.xlabel("Number of Trees")
plt.ylabel("Training Loss")
plt.title("Gradient Boosting Training Loss Curve")
plt.legend()
plt.show()
```

Model Accuracy: 100.00%

RESULT:

Thus, the python program to implement ada boosting and gradient boosting for the standard uniform distribution has been successfully implemented and the results have been verified and analyzed.

EXP NO: 9	
	A PYTHON PROGRAM TO IMPLEMENT KNN AND
DATE: 3/4/25	KMEANS MODEL

AIM:

To implement a python program using a KNN and KMEANS Algorithm in a model.

(I) KNN MODEL

ALGORITHM:

- **Step 1:** Import necessary libraries (numpy, matplotlib, sklearn).
- **Step 2:** Load the Breast Cancer dataset and extract features (X) and labels (y).
- Step 3: Split the dataset into training (80%) and testing (20%) sets using train test split().
- **Step 4:** Initialize the K-Nearest Neighbors (KNN) classifier with k=5 and train it using the training dataset.
- **Step 5:** Predict the labels for the test dataset and compute the model's accuracy score.
- **Step 6:** Plot the accuracy vs. k-values to visualize model performance for different k.

SOURCE CODE:

import numpy as np

Import necessary libraries

Create and train the KNN model with k=5 knn = KNeighborsClassifier(n_neighbors=5)

```
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score

# Load the Breast Cancer dataset
cancer = load_breast_cancer()
X, y = cancer.data, cancer.target # Features and labels

# Split the data into training (80%) and testing (20%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

REG NO:2116221801034 PAGE NO: 27

```
knn.fit(X_train, y_train)
# Predict on the test set
y_pred = knn.predict(X_test)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2%}") # Accuracy in percentage format
# Plot accuracy for different values of k
k_values = range(1, 16)
accuracy_scores = []
for k in k_values:
  knn = KNeighborsClassifier(n_neighbors=k)
  knn.fit(X_train, y_train)
  y_pred = knn.predict(X_test)
  accuracy_scores.append(accuracy_score(y_test, y_pred))
plt.plot(k_values, accuracy_scores, marker='o', linestyle='-', color='b')
plt.xlabel('Number of Neighbors (k)')
plt.ylabel('Accuracy')
plt.title('KNN Model Accuracy for Different k Values (Breast Cancer Dataset)')
plt.show()
```

Model Accuracy: 95.61%

(I) KMEANS MODEL

ALGORITHM:

- **Step 1:** Import necessary libraries (numpy, matplotlib, sklearn).
- **Step 2:** Load the Iris dataset and extract features (X).
- **Step 3:** Apply K-Means clustering with n clusters=3 and fit the model.
- **Step 4:** Predict cluster labels and compute the Silhouette Score to evaluate clustering performance.
- **Step 5:** Plot the clusters using the first two features and mark cluster centroids.
- **Step 6:** Display the clustering results and analyze the Silhouette Score for quality assessment.

SOURCE CODE:

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette score
# Load the Iris dataset
iris = datasets.load iris()
X = iris.data # Features (4D)
y_true = iris.target # True labels (for reference)
# Apply K-Means Clustering
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
y_kmeans = kmeans.fit_predict(X)
# Calculate Silhouette Score (higher is better)
sil score = silhouette score(X, y kmeans)
print(f"Silhouette Score: {sil_score:.4f}")
# Plot clusters
plt.figure(figsize=(8,6))
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis', edgecolors='k', alpha=0.7)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
       s=200, c='red', marker='X', label="Centroids")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("K-Means Clustering on Iris Dataset")
plt.legend()
plt.show()
```

Silhouette Score: 0.5528

RESULT:

Thus the python program to implement KNN and KMEANS model has been successfully implemented and the results have been verified and analyzed.

EXP NO: 10	
	PYTHON PROGRAM FOR SIMPLE LINEAR
DATE: 10/4/25	REGRESSION

AIM:

To implement Dimensionality Reduction using PCA in a python program.

ALGORITHM:

Step 1: Import required libraries (numpy, matplotlib, sklearn).

Step 2: Load the Iris dataset and extract features (X) and labels (y).

Step 3: Apply PCA to reduce 4D features to 2D (n_components=2).

Step 4: Compute and print the explained variance ratio for both principal components.

Step 5: Plot the transformed 2D data, color-coded by target class (y).

Step 6: Display the scatter plot with labeled axes and a color bar for class identification.

SOURCE CODE:

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA

```
# Load the Iris dataset
iris = datasets.load_iris()
X = iris.data # Features (4D)
y = iris.target # Labels (0,1,2)

# Apply PCA to reduce from 4D to 2D
pca = PCA(n_components=2) # Reduce to 2 dimensions
X_pca = pca.fit_transform(X)

# Print explained variance ratio
explained_variance = pca.explained_variance_ratio_
print(f"Explained Variance by Component 1: {explained_variance[0]*100:.2f}%")
print(f"Explained Variance By Component 2: {explained_variance[1]*100:.2f}%")
print(f"Total Variance Retained: {sum(explained_variance)*100:.2f}%")
```

```
# Plot the reduced 2D data
plt.figure(figsize=(8,6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', edgecolors='k', alpha=0.7)
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.title("PCA on Iris Dataset")
plt.colorbar(label="Target Classes")
plt.show()
```

Explained Variance by Component 1: 92.46% Explained Variance by Component 2: 5.31% Total Variance Retained: 97.77%

RESULT:

Thus Dimensionality Reduction has been implemented using PCA in a python program successfully and the results have been analyzed

EXP	NO:	1	1

DATE: 17/4/25

DEVELOP A SIMPLE APPLICATION USING TENSORFLOW/KERAS

AIM:

To develop a simple application using tensorflow/keras.

ALGORITHM:

- Step 1: Import necessary libraries (tensorflow, matplotlib, numpy).
- **Step 2:** Load the Sarcasm_Headlines_Dataset_v2.json.
- **Step 3:** Extract headlines and labels from the dataset.
- **Step 4:**Tokenize the headlines using a Keras Tokenizer with OOV token handling.
- **Step 5:** Convert headlines into integer sequences.
- **Step 6:** Pad sequences to a fixed maximum length.
- **Step 7:** Split the data into training and testing sets (80% train, 20% test).
- **Step 8:**Build a Sequential model with Embedding, Bidirectional LSTM, and Dense layers.
- Step 9: Compile the model with binary crossentropy loss and Adam optimizer and display the model summary.

SOURCE CODE:

import pandas as pd

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

Load dataset

df = pd.read_json('Sarcasm_Headlines_Dataset_v2.json', lines=True)

Prepare data

sentences = df['headline'].values

labels = df['is_sarcastic'].values

```
# Tokenize text
vocab size = 10000
max len = 32
oov token = "<OOV>"
tokenizer = Tokenizer(num_words=vocab_size, oov_token=oov_token)
tokenizer.fit_on_texts(sentences)
sequences = tokenizer.texts_to_sequences(sentences)
padded = pad_sequences(sequences, maxlen=max_len, padding='post', truncating='post')
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(padded, labels, test_size=0.2, random_state=42)
model = tf.keras.Sequential([
  tf.keras.layers.Embedding(vocab_size, 64, input_length=max_len),
  tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
  tf.keras.layers.Dense(64, activation='relu'),
  tf.keras.layers.Dense(1, activation='sigmoid')
1)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
history = model.fit(X_train, y_train, epochs=5, validation_data=(X_test, y_test), batch_size=64)
plt.plot(history.history['accuracy'], label='train accuracy')
plt.plot(history.history['val_accuracy'], label='val accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
OUTPUT:
Input Sentence: "I'm absolutely thrilled to be stuck in
traffic."
Predicted Output: Sarcastic
Test Accuracy: 87.6%
```


RESULT:

Thus a simple application using tensorflow/keras is developed.