BIGTREETECH

Pi2User Manual

Revision Log

Version	Date	Revisions
v1.00	16th November 2023	Initial Version

CONTENTS

Revisi	on Log
Produ	ct Profile 5
F	eatures Highlights5
S	pecifications6
D	mensions
Periph	eral Interface
In	terface Diagram
Interfa	ce Introduction 8
P	ower Supply
40	pin GPIO
U	PS POWER
S	PI FLASH9
S	PDIF OUT
E	MMC-EN
0	TG11
M	IC IN
D	SI
C	31
Flashi	ng the System
D	ownload the System Image
D	ownload and Install the Writing Software
FI	ash the System
	Using Raspberry Pi Imager
	Using balenaEtcher
	Using RKDevTool to Flash the eMMC
	Image Flashing from SD card to eMMC
Confi	gure Network
E	hernet
S	et un WiFi

Configure Display 2	22
Configure HDMI Display2	22
Configure DSI Display 2	23
Configure SPI Display 2	23
Use Bluetooth2	24
Configuring the Board	26
SSH Connect to Device	26
Compile MCU Firmware	27

Product Profile

BIGTREETECH Pi2 uses the higher performance quad-core A55-RK3566 chipset, has rich interface functions, built-in EMMC5.1, onboard support for 2.4G/5G dual-mode, WIFI transmission speeds up to 433.3Mbps, also supports Bluetooth BT5.2 version. It has the same mounting hole positions as the Raspberry Pi, making installation and use convenient and quick.

Features Highlights

- CPU: Rockchip RK3566, quad-core Cortex-A55 @1.8GHz
- · GPU: Mali-G52 EE
- NPU: 0.8 TOPS NPU
- RAM: 2GB LPDDR4 (other customizable options: 1GB/2GB/4GB/8GB)
- Onboard EMMC 32GB (other customizable options: 8GB/32GB/64GB/128GB...)
- MIPI DSI display support (320P-1080P 60Hz)
- SPI Flash 256M (other customizable options: W25Q256JWEIQ)
- Dual-lane MIPI CSI-2 Camera Interface (320P-1080P 60Hz)
- 3 x USB 2.0 ports, 1 x USB 3.0 port (USB 2.0 60Mb/s, USB 3.0 600Mb/s)
- PCIe 2.1 1x1 Lane (Supports M.2 2242 4PIN+5PIN)
- MicroSD card slot (SDIO2.0)
- Networking: Gigabit Ethernet, 433Mbps WiFi, BT 5.2
- Gigabit Ethernet, 100Mbps WiFi, Bluetooth 5.0
- · Audio: 3.5mm jack supports mic input
- Capacitive mic input
- · 40-pin GPIO header
- HDMI 2.0 OUT (480P-4K 60Hz)
- Onboard infrared receiver (38kHz)
- Same mounting hole positions as Raspberry Pi
- · 24V DC power input

Specifications

Dimensions: 93.8mm x 56mm

Installation Hole Spacing: 64mm x 49.4mm

USB-C Input: DC 5V±5%/2A

Output Voltage: 3.3V±2%/100mA

Onboard WiFi: 2.4G/5G, 802.11 b/g/n wireless standards

Onboard Bluetooth: 5.2

Dimensions

Peripheral Interface

Interface Diagram

Interface Introduction

Power Supply

Input:

· UBS-C: DC 5V 2A

Terminal Block: DC 12-24 V

40 pin GPIO

40Pin-GPIO										
BTT Pi	CB1-e II C	CB1	PI2/CB2	CM4		CM4	PI2/CB2	CB1	CB1−e II C	BTT Pi
3. 3V	3. 3V	3. 3 v	3. 3V	3. 3 v		5 V	5 v	5 v	5 V	5 v
PC3	NC	NC	GP104_B2	GPIO 2 (I2C1 SDA)		5 v	5 v	5 v	5 v	5 v
PC0	NC	NC	GP104_B3	GPIO 3 (I2C1 SCL)		GND	GND	GND	GND	GND
PC7	PI14	PC7	GP103_A1	GPIO 4 (GPCLKO)		GPIO 14 (UART TX)	GIPIOO_D1	TX	TX	TX
GND	GND	GND	GND	GND	•	GPIO 15 (UART RX)	GIPIOO_DO	RX	RX	RX
PC14	PI15	PC14	GP100_C7	GPIO 17	0 0	GPIO 18 (PCM CLK)	GIPIOO_BO	PC13	P17	PC13
PC12	PI6	PC12	GP101_A0	GPIO 27		GND	GND	GND	GND	GND
PC10	PI4	PC10	GP101_A1	GPIO 22		GPIO 23	GPIO4_C6	PC11	P15	PC11
3. 3V	3. 3 v	3. 3 v	3. 3V	3. 3V	•	GPIO 24	GPIO4_A3	PC9	PI3	PC9
РН7	PH7	РН7	GP103_C1	GPIO 10 (SPIO MOSI)		GND	GND	GND	GND	GND
РН8	РН8	РН8	GP103_C2	GPIO 9 (SPIO MISO)		GPIO 25	GPIOO_C4	NC	NC	PG13
РН6	PH6	РН6	GP103_C3	GPIO 11 (SPIO SCLK)	• •]	GPIO 8 (SPIO CEO)	GP104_A2	NC	NC	PG12
GND	GND	GND	GND	GND	•	GPIO 7 (SPIO CE1)	GP100_A6	PG8	PI11	P19
PC2	NC	NC	GP100_B4	GPIO O (EEPROM SDA)		GPIO 1 (EEPROM SCL)	G1P100_B3	PG7	PI10	PI10
PC4	NC	NC	GP103_D6	GPIO 5		GND	GND	GND	GND	GND
PI5	P19	PG6	GP103_D7	GPIO 6	• •	GPIO 12 (PWMO)	GP100_C1	PG9	PI12	PI6
PI14	NC	NC	GPIOO_CO	GPIO 13 (PWM1)		GND	GND	GND	GND	GND
PC6	PII	PC6	GP104_C5	GPIO 19 (PCM FS)	• •]	GPIO 16	GPIOO_AO	NC	NC	PG11
PC15	PI13	PC15	GPIOO_C3	GPIO 26	• •]	GPIO 20 (PCM DIN)	GP104_C3	PH10	PH10	PH4
GND	GND	GND	GND	GND	• 🖸	GPIO 21 (PCM DOUT)	GP104_C2	PC8	PI2	PC8

UPS POWER

The specification is HX5P-2.54MM horizontal type, it needs to be used with our company's emergency power supply board.

SPI FLASH

Model: W25Q256JWEIQ

SPDIF OUT

EMMC-EN

The EMMC can be used normally by default. To disable EMMC boot, switch the EMMC-EN switch to the NO position to forcibly disable EMMC startup.

OTG

For OTG mode, switch the OTG KEY switch to the NO position. (Note: EMMC-EN cannot be switched to NO, or the black USB 2.0 ports will not work properly).

- 1. Enter **maskrom mode** using Type-C.
- 2. For RECOVERY mode, long press the RECOVERY KEY button, then insert the Type-C cable to enter **Loader mode**.

MIC IN

DSI

CSI

Flashing the System

Download the System Image

Only use the image we provide: https://github.com/bigtreetech/CB2/releases

Download and Install the Writing Software

Download and install either:

Official Raspberry Pi Imager: https://www.raspberrypi.com/software/

balenaEtcher: https://www.balena.io/etcher/

Flash the System

Using Raspberry Pi Imager

- 1. Insert the microSD card into your computer via a card reader.
- 2. Select "Choose OS".

3. Select "Use Custom" and select your downloaded image.

4. Select the microSD card and click "WRITE" (WRITE the image will format the microSD card. Be careful not to select the wrong storage device, otherwise the data will be formatted).

5. Wait for the process to complete.

Using balenaEtcher

1. Insert the microSD card via a reader.

2. Select your downloaded image.

3. Select the microSD card and click "WRITE" (WRITE the image will format the microSD card. Be careful not to select the wrong storage device,

otherwise the data will be formatted).

4. Wait for the process to complete.

Using RKDevTool to Flash the eMMC

1. Install the driver as shown.

2. Set DIP switches to ON position as shown.

3. Connect Type-C cable between board and PC as shown.

4. Open RKDevTool, configure it, and write image as shown in steps.

Image Flashing from SD card to eMMC

1. Enter the following command: nand-sata-install and you will see the interface as shown below, select 2.

2. After selecting 2, press Enter and the following interface appears, select yes.

3. Press Enter and the following interface appears, select 1, as shown below.

- 4. Select ok and press Enter to start the flashing from the SD card to the eMMC.
- 5. After powering on and entering kernel state, the blue LED will be solid on and green LED blinking.
- 6. Change root password in Terminal as shown.

Enter the command: passwd root

Configure Network

Ethernet

Ethernet works plug and play without configuration.

Set up WiFi

Edit WiFi name and password in the system.cfg file on the FAT32 partition.

Open it with Notepad, replace WIFI_SSID with your WiFi name, and replace WIFI PASSWD with your password.

Configure Display

Open overlay file as shown

Configure HDMI Display

Modify as pictured

Connect wiring as below

Configure DSI Display

Connect wiring as below

Configure SPI Display

Connect wiring as below

Simultaneous DSI and HDMI only displays preset primary resolution set in device tree.

Use Bluetooth

 Scan for Bluetooth devices by entering the following command, a list of discovered Bluetooth devices will be shown as below:

bluetoothctl --timeout 15 scan on

```
TX errors 0 dropped 0 overruns 0 carrier 0 collisi
root@Hurakan:~# bluetoothctl --timeout 15 scan on
Discovery started
[CHG] Controller 50:41:10:F1:18:DD Discovering: yes
[NEW] Device 61:81:3F:18:80:79 61-81-3F-18-80-79
[NEW] Device 67:06:15:E1:7A:62 67-06-15-E1-7A-62
[NEW] Device 67:06:15:E1:7A:62 67-06-15-E1-7A-62
[NEW] Device 78:77:40:B5:D8:02 78-77-40-B5-D8-02
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 67:D8:78:63:4F:CD 6F-D8-78-63-4F-CD
[NEW] Device 40:E8:2E:37:02:CE 40:E8-2E-37-02-CE
[NEW] Device 73:B9:D8:2D:F1:08 73-B9-D8-2D-F1-08
```

 Find your Bluetooth device, for example my Bluetooth device name is HONOR xSport PRO. Find its Bluetooth MAC ID in the device list as shown:

```
[CHG] Device 42:70:F4:03:91:BA ManufacturerData Value:
10 07 7a 1f 3b 4d ef 5c 68 ..z.;M.\h
[CHG] Device 4E:80:A9:B4:33:11 RSSI: -75
[CHG] Device 45:69:88:00:E0:7B RSSI: -92
[CHG] Device 7F:E1:35:CF:F8:A3 RSSI: -77
[CHG] Device 4E:80:A9:B4:33:11 RSSI: -88
[CHG] Device 04:7A:08:19:E7:AF ManufacturerData Key: 0x038f
[CHG] Device 04:7A:08:19:E7:AF ManufacturerData Value:
0a 10 ff ff ff 64 93 15 36 c3 26 de 20 11 08 08 ....d..6.\...
10 17 25 34
[NEW] Device 04:7A:08:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:08:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 0000110a-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 0000110a-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 0000110a-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 000011110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 000011110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001111-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 000001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 000001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 000001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 000001100-0000-1000-8000-00805f9b34
```

3. Connect to the Bluetooth device by entering the following command. Successful connection is shown below (refer to 3.1 and 3.2 if connection has issues):

bluetoothctl connect E0:9D:FA:50:CD:4F

```
[CH6] Device 90:0F:0C:2F:50:C2 UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
root@bigtreetech-cb2:~# bluetoothctl connect E0:9D:FA:50:CD:4F
Attempting to connect to E0:9D:FA:50:CD:4F
[CH6] Device E0:9D:FA:50:CD:4F Connected: yes
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000110b-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000110e-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
[CH6] Device E0:9D:FA:50:CD:4F ServicesResolved: yes
[CH6] Device E0:9D:FA:50:CD:4F Paired: yes
Connection successful
root@bigtreetech-cb2:~#

□ bigtreetech-cb2 □ 2%
□ 0.36 GB / 1.94 GB □ 0.01 Mb/s □ 0.01 Mb/s □ 64 min □ biqu root □ /: 15
```

3.1 If the following output is seen when connecting a Bluetooth device, turn the Bluetooth device off and on again, then redo steps 1 and 2 to reconnect

```
[CHG] Device 04:7A:0B:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:0B:19:E7:AF ICON: computer
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 00001103-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 00001103-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 00001102-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 00001112-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 00001171-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UIDIDS: 00001171-000
```

3.2 If the following output is seen when connecting a Bluetooth device, enter the following command, then redo steps 1 and 2 to reconnect:

bluetoothctl remove E0:9D:FA:50:CD:4F (your device's MAC ID)

rfkill block bluetooth
sleep 3s
rfkill unblock bluetooth
pulseaudio -k
pulseaudio --start

```
[DEL] Device 40:60:97:F3:85:D6 40-60-97-F3-85-D6
root@bigtreetech-cb2:~# bluetoothctl connect E0:9D:FA:50:CD:4F
Attempting to connect to E0:9D:FA:50:CD:4F
[CHG] Device E0:9D:FA:50:CD:4F Connected: yes
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110b-0000_1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110e_0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 000011/e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 000011/e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F ForvicesRest lved: yes
Failed to connect: org.bluez.Error.Failed
Toot@bigtreetech-cb2:~# bluetoothcil remove E0:9D:FA:50:CD:4F
[DEL] Device E0:9D:FA:50:CD:4F HONOR xSport PRO
Device has been removed
Toot@bigtreetech-cb2:~# rfkill block bluetooth
```

Configuring the Board

SSH Connect to Device

- Install the SSH application Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. Insert microSD card to the motherboard, wait for system to load after power on, approx. 1-2min.
- 3. The device will automatically be assigned an IP address after being successfully connected to the network.
- 4. Access the router management interface to find the device's IP (it should be BTT-CB2 here).

5. Open Mobaxterm and click "Session", and click "SSH", inset the device IP into Remote host and click "OK" (Note: your computer and the device needs to be in the same network).

6. Login as: biqu password: biqu

Compile MCU Firmware

1. After SSH successfully connected to the device, enter in terminal:

cd ~/klipper/

make menuconfig

- 2. Compile the firmware using the appropriate board configuration, here using Manta M4P as an example:
 - * [*] Enable extra low-level configuration options
 - * Micro-controller Architecture (STMicroelectronics STM32) --->
 - * Processor model (STM32G0B1) --->
 - * Bootloader offset (8KiB bootloader) --->
 - * Clock Reference (8 MHz crystal) --->
 - * Communication interface (USB (on PA11/PA12)) --->

3. Press q to exit, and Yes when asked to save the configuration.

 Run make to compile firmware, "klipper.bin" file will be generated in home/pi/klipper/out folder when make is finished, download it onto your computer using the SSH application.

If you need further resources for this product, you can find them at [GitHub](https://github.com/bigtreetech/). If you cannot find what you need, you may contact our after-sales support(service005@biqu3d.com).

If you encounter any other problems during use or have suggestions or feedback, please contact us. Thank you for choosing BIGTREETECH products.