Prototyping embedded solutions

Kevin Holm - KEA Village 2023

ESP32 microcontroller

Microcontroller	ESP-WROOM-32
Arcitecture	Xtensa® dual-core 32-bit LX6 + Ultra low power processor
USB to Serial convertor	CP2102N
Supply voltage	5V
IO voltage	3.3V
Flash memory	4 MB
SRAM	520 KB
Clockfrequency	240 MHz
Interfaces	WiFi, Bluetooth,1 x ADC, 2 x DAC, 1 x Hall effekt sensor, 10 x Capacitive touch sensor, 1 x Ethernet, $4 \times SPI$, 1 x MMC, $3 \times UART$, $2 \times I2C$, $2 \times I2S$, $8 \times IR$, PWM, $4 \times SPI$ og kryptografiske acceleratorer (SHA, AES, RSA og ECC)
ADC input pins	16
DAC output pins	2
Capacitive touch pins	10
EEPROM	512 KB
DC power per I/O pin	15 mA
Digital I/O pins	15
Powerconsumption	67 mA
Powerconsumption In deepsleep	350uA

ESP32 DevKitC V4

PINOUT

What is MicroPython?

- MicroPython: re-implementation of "regular"(C)Python
- Resource optimized (smaller size and less memory usage)
- Kompact > 1MB (256KB storage, 16KB RAM) vs CPython (~100MB)
- Open source (MIT license)

Includes:

- Compiler & runtime on "bare metal"
- REPL (interactive prompt)
- Compatibility with Cpython

Sensors/Inputs

Design methods

Finding a good problem - 5 whys

paper, scissors, sticky tape, Blu-tack

In this exercise, you will design a low-fidelity prototype that addresses a specific brief. Focus on your own design problem, or choose a design brief (p.138). If you have findings from user research (e.g. interviews, p.78), be sure to consider these in your design.

- Sketch the parts of your product that you want to be represented in the prototype. Choose a specific task and sketch all the steps required to fulfil this task.

 E.g. adding a person to your friends in a social network app.

 [15 minutes]
- Create wireframes (p.136) of your product using pen and paper. These are an iteration of the sketches produced in the first step and show the key elements on each screen.

[30 minutes]

- Create a physical prototype based on the previous step using any suitable materials.
 - E.g. for the social network app example, use the smartphone drawing templates provided (p.195) to create a paper version of each screen.

Add dynamic features to allow for user interaction. This can be achieved either by swapping out a screen or by adding layers in the form of Post-it notes.

E.g. in a social network app, pressing the

E.g. in a social network app, pressing the 'Find' button will bring up a new screen that lists people matching the name that was 'typed' into the search field.

[30 minutes]

- Add real content by writing it directly into your prototype or on additional materials that can be overlaid, such as Post-it notes.
 - E.g. In a screen showing search results in a social network app, add names that are made up but sound real. This will help to give the prototype a more realistic feel

[15 minute

You can also prototype other physical aspects. For example, you could create a physical representation of a virtual reality headset with minimal materials E.g. using a cardboard VR headset

Is IT a good solution?

What qualities does computers systems have?

Does it make sense to solve the problem with a material with the chosen qualities?

https://www.youtube.com/watch?v=2HEF2_I-2KA

MQTT protocol

Hall sensor to adafruit text message

https://io.adafruit.com/

https://randomnerdtutorials.com/micropython-mgtt-esp32-esp8266/

Find a thing to embed the system into/onto