Study Guide for the Midterm Exam –Deep and Reinforcement Learning

Machine learning basics

- Machine learning recipes (their ingredients)
- Fundamental issues in machine learning
 - o Generalization and how to improve generalization
- Capacity, overfitting and Underfitting
 - o Variance and bias for overfitting
 - o Generalization gap
 - K-fold cross validation algorithm

Neurons

- Structure of a neuron
- Activation functions (the commonly used ones: ReLU, sigmoid, tanh, hard-tanh, softmax)

Neural networks

- Expressive power of multilayer neural networks
- Neural network architectures
 - Loss functions
 - Cross-entropy loss
 - Softmax (how to compute the output and its gradient)
 - o Exponential advantages of deep neural networks
 - o Challenges of deep neural networks
 - Saddle points
 - Cliffs and the gradient exploding problem
 - Long-term dependencies
- Backpropagation algorithms
 - o Training protocols
 - o Computational graphs
 - Forward computation and backpropagation algorithms in general and for fully-connected neural networks

Regularization techniques

- L₂ normalization and early stopping
- Dataset augmentation and local manifolds
- Parameter sharing and parameter tying
- Dropout
- Adversarial training

Optimization algorithms

- Optimization and generalization problems
- Challenges in neural network optimization
- Optimization algorithms
 - Stochastic gradient descent
 - o Momentum (need to understand Algorithm 8.2)
 - o Adam (How is the Adam algorithm (Algorithm 8.7) related to the momentum term in Algorithm 8.2?)
- Parameter initialization strategies
 - Weight initialization

- o Bias initialization
- Batch normalization

Convolutional neural networks

- Filtering and cross correlation as local template matching
- Zero-padding
- Convolution with a stride
- Convolutional networks (compared to fully and locally connected neural networks)
- Pooling and translation invariance
- Convolutional neural networks for classification (input, multiple convolution layers, fully connected layers, and softmax)

Recurrent neural networks

- Advantages of recurrent neural networks over convolutional neural networks
 - Variable-length sequence processing
- Different RNN input-output architectures
- Training recurrent neural networks
 - o Unfolded computational graphs and backpropagation through time
 - o Gradient calculation for RNN
 - o Gradient vanishing and exploding problems
 - Echo state networks
 - Long short-term memory
 - Gated recurrent units
 - o Encoder-decoder sequence-to-sequence architectures

Multi-armed bandit problem

- Exploitation and exploration
- ε-greedy policy
- Incremental implementation
 - Stationary and nonstationary
 - o Optimistic initial values
 - o Upper-confidence-bound action selection
 - o Gradient bandit algorithms

Reinforcement learning – formal tabular approaches

- Return and discounted return
- State value function
- State action value function
- Policy evaluation, policy improvement, and policy iteration for a simple problem like Example 4.1 (even simpler)