John D. Soltis

Johns Hopkins University - Department of Physics & Astronomy Bloomberg Center for Physics and Astronomy 3400 N. Charles Street, Baltimore, MD 21218

https://johnsoltis.github.io/

https://orcid.org/0000-0002-0104-3593 | https://github.com/johnsoltis

EDUCATION:

Johns Hopkins University

2019 - 05/2025 (expected)

Baltimore, MD

Krieger School of Arts & Sciences

M.A. in Physics (2023)

Ph.D in Astronomy and Astrophysics

University of Michigan

2014 - 2018

Ann Arbor, MI

Honors Program, College of Literature, Science, and the Arts

B.S. in Physics and Mathematical Physics

PROFESSIONAL INTERESTS:

Observational Cosmology, Artificial Intelligence, Science Policy, Data Science

SKILLS:

Python, Pytorch, Tensorflow, Science Communication, Policy Advocacy

RESEARCH PROJECTS & TEACHING:

Deep Learning Applications in Galaxy Cluster Cosmology

2021 - Present

Johns Hopkins University & Space Telescope Science Institute

Advisor: Michelle Ntampaka

Designed, trained, and tested artificial intelligence models to characterize galaxy cluster mass accretion rates and improve X-ray observations. Developed novel interpretability methods to enable physical discovery.

Robustness of Cosmological Simulations

2023 - 2024

Center for Computational Astrophysics, Flatiron Institute

Advisor: Lehman Garrison

Investigated the robustness of dark matter halo mass accretion rates in cosmological simulations.

Tip of Red Giant Branch Calibration

2019 - 2020

 ${\it Johns \; Hopkins \; University \; \& \; Space \; Telescope \; Science \; Institute}$

Advisor: Adam Riess

Measured the Hubble constant using updated position data of Milky Way stars.

Experimented with hierarchical Bayesian models, Hamiltonian Monte Carlo, and kernel density estimation.

Machine Learning Applications in Wildfire Detection

2018 - 2019

Lawrence Berkeley National Laboratory

Advisor: Carl Pennypacker

Used images from wildfire detection cameras in California and Nevada to train a convolutional neural network to detect wildfires early.

Testing Statistical Isotropy with Type Ia Supernovae

2017 - 2018

University of Michigan Advisor: Dragan Huterer

Implemented a novel and robust test of statistical isotropy in the Universe using type Ia supernovae residuals.

Learning Assistant in Introductory Physics

2018

University of Michigan

Advisors: Timothy McKay & Yuri Popov

Answered students' questions in class and in office hours for the introductory physics course.

Simulation of Laser-Driven Plasma Instabilities

2015 - 2016

University of Michigan

Advisor: Matthew Trantham

Simulated laser-driven plasma instabilities with a variety of experimental conditions.

Results were used to improve experimental design.

Summer Scholar Internship Program

2015

Lawrence Livermore National Laboratory Advisors: John Heebner & Jason Chou

Improved the accuracy of laser waveform generation in order to aid experiments at the National

Ignition Facility.

PROFESSIONAL DEVELOPMENT:

Johns Hopkins University Mentorship Program

2023 - Present

Mentor to graduate student and undergraduate student. Advised mentees on networking, career paths, and professional opportunities.

Space Telescope Science Institute Liaison

2024 - Present

Serving as contact point between students in my department and Space Telescope.

Organizing lunches for students and colloquium speakers.

Union Steward 2024 - Present

Serving as an advocate for my peers on workplace issues.

American Astronomical Society

2024

Met with Members of Congress and their staffs to advocate for increased NASA and NSF funding at Congressional Visit Day.

Institute of Electrical and Electronics Engineers

2024

Advocated for NSF funding and improved STEM workforce policies at Congressional Visit Day.

Johns Hopkins Science Policy & Diplomacy Group

2024

Advocated for the Keep STEM Talent Act of 2023 during Congressional Visit Day. Co-authored memo on immigration reform for those with advanced STEM-degrees.

Graduate Representative Organization

2021 - 2023

Represented my department on issues like travel grants and campus security.

Maryland Space Grant Consortium Observatory Fellow

2021 - 2022

Hosted open house events, trained perspective observers, and helped run the MDSGC symposium.

Public Forum Debate Judge

2020 - 2022

Judged for Michigan Interscholastic Forensics Association Public Forum League

Michigan Journal of International Affairs

2014 - 2016

Writer for the Asia Region

Brother Rice Debate Team

2010 - 2014

Varsity in Public Forum Debate

SELECTED TALKS AND POSTERS:

- 1. Direct Estimation of Galaxy Cluster Mass Accretion Rates using Machine Learning. Galaxy Cluster Group Meeting, Center for Astrophysics, Harvard-Smithsonian. October 22nd, 2024.
- 2. Direct Estimation of Galaxy Cluster Mass Accretion Rates using Machine Learning. Yale Data Science X Astronomy Astrophysics Seminar, Yale University. September 17th, 2024.
- 3. Estimating Galaxy Cluster Mass Accretion Rates from Observations using Machine Learning. 2024 AstroAI Workshop, Center for Astrophysics, Harvard-Smithsonian. June 17-21, 2024.
- 4. Galaxy Cluster Dynamical State, Follow-Up Observations, and Machine Learning. Machine Learning Seminar, Argelander Institute for Astronomy, Bonn. June 6th, 2024.
- 5. Galaxy Cluster Mass Accretion History. 6th Neighborhood Workshop, Pennsylvania State University. April 25th, 2024.
- 6. Testing the Robustness of Mass Accretion Histories in Scale-Free Simulations. Merging Clusters Workshop, Yonsei University. December 21st, 2023.
- J. Soltis, M. Ntampaka. "Predicting Follow-Up Observations of Galaxy Clusters Using Machine Learning", American Astronomical Society Meeting #240, id. 139.19. Bulletin of the American Astronomical Society, Vol. 54, No. 6 e-id 2022n6i139p19 (2022)

PUBLICATIONS:

- 1. **J. Soltis**, M. Ntampaka, B. Diemer, J. ZuHone. "Estimating Galaxy Cluster Mass Accretion History from Multiwavelength Observations using Machine Learning", prepared for submission and under internal collaboration review
- 2. B. E. M. Davis, M. Razavi-Mohseni, **J. Soltis**, H. N. Zhang, E. Kavanagh. "International STEM Graduate Students: A Key to Strengthening the American Economy and Building Competitiveness", *Journal of Science Policy and Governance*, 25, 1, (2024)
- 3. **J. Soltis**, L. Garrison. "Self-Similar Mass Accretion Histories in Scale-Free Simulations", Monthly Notices of the Royal Astronomical Society, 532, 2, 1729-1743, (2024)
- M. Ho, J. Soltis, A. Farahi, D. Nagai, A. Evrard, M. Ntampaka. "Benchmarks and Explanations for Deep Learning Estimates of X-ray Galaxy Cluster Masses", Monthly Notices of the Royal Astronomical Society, 524, 3, 3289-3302, (2023)
- 5. **J. Soltis**, M. Ntampaka, J. Wu, J. ZuHone, A. Evrard, A. Farahi, M. Ho, D. Nagai. "A Machine Learning Approach to Enhancing eROSITA Observations", *The Astrophysical Journal*, 940, 1, 60 (2022)
- 6. J. Soltis, S. Casertano, A. G. Riess. "The Parallax of Omega Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant", The Astrophysical Journal Letters, 908, L5 (2021)
- 7. **J. Soltis**, A. Farahi, D. Huterer, C. M. Liberato. "Percent-Level Test of Isotropic Expansion Using Type Ia Supernovae", *Phys. Rev. Lett.*, 122, 091301 (2019)
- 8. W.C. Wan, G. Malamud, A. Shimony, C.A. Di Stefano, M.R. Trantham, S.R. Klein, **J.D. Soltis**, D. Shvarts, R.P. Drake, C.C. Kuranz. "Impact of ablator thickness and laser drive duration on a platform for supersonic, shockwave-driven hydrodynamic instability experiments", *High Energy Density Physics*, 22, (2017)