BÁO CÁO THỰC HÀNH BÀI 1

Môn học: **CHUYÊN ĐỀ THIẾT KẾ HỆ THỐNG NHÚNG 1**- Mã lớp: **CE437.N11** Giảng viên hướng dẫn thực hành: Phạm Minh Quân

Thông tin các sinh viên	Mã số sinh viên	Họ và tên sinh viên
	19520887	Phạm Trung Quốc
	19521651	Phạm Trọng Huỳnh
	19520928	Viên Minh Tân
	19520036	Phạm Quốc Đăng
Link các tài liệu tham		
khảo (nếu có)		
Đánh giá của giảng		
viên:		
+ Nhận xét		
+ Các lỗi trong chương		
trình		
+ Gọi ý		

ĐẠI HỌC QUỐC GIA TPHCM – TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

Mục lục

ΒÁΦ	O CÁO THỰC HÀNH BÀI 1	1
Yêu	ı cầu: Lập trình điều khiển GPIO trên KIT Open405R-C Package A, STM32F4 Dev	velopment
Boa	rd	3
1.	Thiết lập các cấu hình liên quan	3
2.	Sơ đồ khối	7
3.	Mã nguồn và giải thích	8
	Video demo	

Yêu cầu: Lập trình điều khiển GPIO trên KIT Open405R-C Package A, STM32F4 Development Board

- Viết chương trình để tạo ra ít nhất 2 hiệu ứng chớp/tắt trên các LED sử dụng timer để điều khiển
- Đọc trạng thái nút nhấn tại chân PA0: nếu nút PA0 được nhấn thì sinh viên thực hiện giảm thời gian chu kỳ của các hiệu ứng LED ở trên.
- Đọc trạng thái nút nhấn tại chân PA1: nếu nút PA1 được nhấn thì sinh viên thực hiện tăng thời gian chu kỳ của các hiệu ứng LED ở trên
- Nếu cả 2 nút cùng được nhấn thì sinh viên sẽ thay đổi hiệu ứng LED mới sau khi cả 2 nút nhấn được thả ra

1. Thiết lập các cấu hình liên quan

Các cấu hình ban đầu và xung clock làm như hướng dẫn.

Hình 1-1: Chọn nguồn xung clock cho vi điều khiển

ĐẠI HỌC QUỐC GIA TPHCM - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

Hình 1-2: Cấu hình xung clock cho vi điều khiển

- Thực hiện cấu hình cho 4 User LEDs trên KIT Open405R-C Package A, STM32F4 Development Board được kết nối sẵn với các chân PB0, PB1, PB2, PB3 của vi điều khiển:

Hình 1-3: Sơ đồ nguyên lý các USER LED

ĐẠI HỌC QUỐC GIA TPHCM - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

Hình 1-4: Cấu hình và đặt tên cho các chân USER LED

- Thực hiện cấu hình cho 2 User Key trên KIT Open405R-C Package A, STM32F4 Development Board được kết nối sẵn với các chân PA0, PA1 của vi điều khiển

Hình 1-5: Sơ đò nguyên lý các USER KEY

Hình 1-6: Cấu hình và đặt tên cho các USER KEY

Thực hiện cấu hình Timer (TIM3) phục vụ cho việc thay thế HAL_Delay và USART1 phục vụ cho nạp code.

Hình 1-7: Cấu hình cho phép Interrupt timer3

Hình 1-8: Setting các Parameter của timer3

- Setting tim3:
 - Với HCLK = 168Mhz => APB1 Timer1 = 84 Mhz. Đặt Prescaler = 83 (84 -1)
 - Counter Period = 999 (1000 1)
 ⇒ Timer/Counter = 1Mhz => Timer sẽ ticks mỗi 1 microsecond

2. Sơ đồ khối

Hình 2-1: Sơ đò khối của Yêu cầu lab 1

Khi khởi động bốn LED sẽ hoạt động theo hiệu ứng 1 (mode_led được khởi tạo là 0)

Khi hai nút nhấn nhận được tương tác thì EXIT Callback được gọi (giải thích chi tiết ở phần sau)

3. Mã nguồn và giải thích

```
/* Private variables ----*/
42   TIM_HandleTypeDef htim3;
43
44   UART_HandleTypeDef huart1;
45
46   uint16_t time_ms = 1000;
47   int state_0 = 0 , state_1 = 0, mode_led = 0, is_2Press = 0;
48
```

Khởi tao các biến:

- htim3, huart1
- state_0, state_1 (phục vụ kiểm tra trạng thái nút KEY0, KEY1)
- mode led
- is_2Press (phục vụ kiểm tra trạng thái nhấn đồng thời của hai nút KEY0, KEY1)

```
/* Private function prototypes -----*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM3_Init(void);
static void MX_USART1_UART_Init(void);
```

Gọi các hàm khởi tạo cần thiết cho hệ thống

```
64⊖ void delay_1ms (void)
65 {
         _HAL_TIM_SET_COUNTER(&htim3, 0); // set the counter value a 0
66
       while ( HAL TIM GET COUNTER(&htim3) < 999); // wait for the counter
67
68 }
69
70⊖ void delay_ms(int time)
71 {
72 int i = 0;
73 for(i = 0; i < time; i++)
74
75
      delay_1ms();
76
77 }
```

Hàm delay_1ms: sử dụng htim3 và chờ điểm đủ 1ms (với 1 ticks htim3 = 1 microsecond =>1000 lần)

Hàm delay_ms: gọi hàm "delay_1ms()" time lần => time (ms). Với time là đầu vào của hàm.

```
while (1)
117
118
119
         /* USER CODE END WHILE */
120
         /* USER CODE BEGIN 3 */
121
122
           if (mode led == 0)
123
124
               HAL GPIO WritePin(GPIOB, LEDØ Pin, GPIO PIN SET);
               HAL GPIO WritePin(GPIOB, LED1 Pin, GPIO PIN SET);
125
               HAL_GPIO_WritePin(GPIOB, LED2_Pin, GPIO_PIN_SET);
126
               HAL GPIO WritePin(GPIOB, LED3 Pin, GPIO PIN SET);
127
128
               delay ms(time ms);
               HAL GPIO WritePin(GPIOB, LED0 Pin, GPIO PIN RESET);
129
               HAL_GPIO_WritePin(GPIOB, LED1_Pin, GPIO_PIN_RESET);
130
               HAL_GPIO_WritePin(GPIOB, LED2_Pin, GPIO_PIN_RESET);
131
               HAL_GPIO_WritePin(GPIOB, LED3_Pin, GPIO_PIN_RESET);
132
133
               delay_ms(time_ms);
134
           }
135
           else
136
               HAL GPIO WritePin(GPIOB, LED0_Pin, GPIO_PIN_SET);
137
               HAL_GPIO WritePin(GPIOB, LED1_Pin, GPIO PIN RESET);
138
139
               HAL_GPIO_WritePin(GPIOB, LED2_Pin, GPIO_PIN_SET);
140
               HAL_GPIO_WritePin(GPIOB, LED3_Pin, GPIO_PIN_RESET);
               delay ms(time ms);
141
               HAL GPIO WritePin(GPIOB, LEDØ Pin, GPIO PIN RESET);
142
143
               HAL GPIO WritePin(GPIOB, LED1 Pin, GPIO PIN SET);
144
               HAL GPIO WritePin(GPIOB, LED2 Pin, GPIO PIN RESET);
145
               HAL_GPIO_WritePin(GPIOB, LED3_Pin, GPIO_PIN_SET);
146
               delay_ms(time_ms);
147
148
```

Vòng lặp while trong main phục vụ kiểm tra mode_led và WritePin các LED theo mode_led

```
321@ void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
323
       if(GPIO_Pin == KEY0_Pin)
324
325
           if (state_1 == 0)
326
327
               state 0 = 1:
328
               if (HAL_GPIO_ReadPin(GPIOA, KEY1_Pin) == 0)
                   is_2Press = 1;
331
332
               else if (HAL_GPIO_ReadPin(GPIOA, KEY0_Pin) == 1 && HAL_GPIO_ReadPin(GPIOA, KEY1_Pin) == 1 && is_Press == 1)
333
334
                   if (mode_led == 0 ) mode_led = 1;
335
                   is 2Press = 0:
336
337
               else
338
               {
                   time_ms +=100;
340
341
               state_0 = 0;
342
           }
343
344
```

ĐẠI HỌC QUỐC GIA TPHCM – TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

```
if(GPIO Pin == KEY1 Pin)
346
      {
347
          if (state_0 == 0)
348
349
               state 1 = 1;
               if (HAL_GPIO_ReadPin(GPIOA, KEYO_Pin) == 0)
350
351
                   is 2Press = 1;
352
353
354
               else if (HAL GPIO ReadPin(GPIOA, KEY0 Pin) == 1 && HAL GPIO ReadPin(GPIOA, KEY1 Pin) == 1 && is Press == 1)
355
                   if (mode_led == 0 ) mode_led = 1;
356
357
                   is 2Press = 0:
358
359
               else
360
               {
                   time_ms -=100;
361
362
363
               state_1 = 0;
364
          }
365
366
      }
367
```

EXIT_Callback được gọi có tương tác với các nút nhấn KEY0, KEY1: nếu KEY0 được nhấn => Tiến hành kiểm tra trạng thái KEY1 nếu KEY1 đang được nhấn thì gán is_2Press = 1, ngược lại nếu KEY1 không được nhấn tiếp tục kiểm tra nếu KEY0, KEY1 đang không được nhấn và is_2Press = 1 thì thực hiện đổi mode_led và gán lại is_2Press = 0, Ngược lại tiến hành tăng tims_ms lên 100(ms). Tương tự với khi KEY1 được nhấn.

4. Video demo

Video demo được đặt ở đường dẫn sau: https://drive.google.com/file/d/11PnyvCZKy3nowCu4nUqpqFXk8yHzMcdQ/view?usp=share_link