1. Beleg	BIW4-05 SIMULATION DYNAMISCHER SYSTEME	SS 2023
Thema	Elastisch gebetteter Balken	
	Bauingenieurwesen	8. Semester

Gegeben ist das als Balken auf elastischer Bettung idealisierte Modell einer Schiene (siehe Abbildung 1) mit den zugehörigen Materialparametern:

Abbildung 1: Elastisch gebetteter Balken

$$E = 21 \cdot 10^{10} \frac{\text{N}}{\text{m}^2}, \quad I = 3055 \,\text{cm}^4, \quad \mu = 60 \,\frac{\text{kg}}{\text{m}}, \quad k = 3 \cdot 10^6 \,\frac{\text{N}}{\text{m}^2}.$$

Die dynamische Steifigkeit $K(\eta)$ des Balkens kann analytisch abgeleitet werden:

$$\hat{F}_0 = \overline{K}(\eta) \,\hat{v}_0, \quad \overline{K}(\eta) = 8 \, EI \, W^3, \quad W = \frac{\sqrt{2}}{2} \, \sqrt[4]{\frac{k}{EI} \, (1 - \eta^2)}, \quad \eta^2 = \Omega^2 \, \frac{\mu}{k}.$$

Für $\eta > 1.0$ gilt $\sqrt[4]{-1} = \frac{\sqrt{2}}{2} (1+i)$. Die Koeffizienten einer gebrochenrationalen Approximation der Steifigkeit $\tilde{K}(\omega)$,

$$\overline{K}(\Omega) \approx \tilde{K}(\Omega) = \frac{P_0 + i\Omega P_1 + (i\Omega)^2 P_2 + \ldots + (i\Omega)^5 P_5}{1 + i\Omega Q_1 + \ldots + (i\Omega)^4 Q_4},$$

wurden mit Hilfe der Fehlerquadratmethode bereits ermittelt:

 $P_0 = 10337706,5 \text{ N m}^{-1}$

 $P_1 = 48744,172 \text{ N m}^{-1} \text{ s}^1$

 $P_2 = 455,205728 \text{ N m}^{-1} \text{ s}^2$

 $P_3 = 1,13950676 \text{ N m}^{-1} \text{ s}^3$

 $P_4 = 0.00483245447 \text{ N m}^{-1} \text{ s}^4$

 $P_5 = 3,11054119 \cdot 10^{-6} \text{ N m}^{-1} \text{ s}^5$

 $Q_1 = 0.00490648418 \text{ s}$ $Q_2 = 2.71147593 \cdot 10^{-5} \text{ s}^2$ $Q_3 = 5.42912842 \cdot 10^{-8} \text{ s}^3$ $Q_4 = 6.94958499 \cdot 10^{-12} \text{ s}^4$

Aufgabenstellung:

- 1. Überführen Sie die gebrochenrationale Steifigkeitsbeziehung in ein System von linearen Gleichungen in $(i\Omega)$: $i\Omega \mathbf{A} \hat{\mathbf{z}} + \mathbf{B} \hat{\mathbf{z}} = \mathbf{r}$.
- 2. Transformieren Sie das System in den Zeitbereich.
- 3. Zum Zeitpunkt t=0 befindet sich das System in Ruhe und die Durchbiegung v_0 ist gleich Null. Ermitteln Sie numerisch eine Lösung im Zeitbereich für die Durchbiegung $v_0(t)$ infolge der gegebenen Erregung für $0 \le t \le 1$ s.

$$v_0(t) = v(x = 0, t)$$

Abbildung 2: Erregung