Gorenstein Rings

CHAU CHI TRUNG
BACHELOR THESIS DEFENSE PRESENTATION
SUPERVISOR: DR. TRAN NGOC HOI

University of Science - Vietnam National University Ho Chi Minh City

May 2018

Email: chauchitrung1996@gmail.com

Content

- 1 Origin
- 2 Aim of the Thesis
- 3 Structure of Minimal Injective Resolution
- 4 Gorenstein Rings
- **5** Examples
- 6 References

Origin

- Grothendieck introduced the notion of Gorenstein variety in algebraic geometry.
- Serre made a remark that rings of finite injective dimension are just Gorenstein rings. The remark can be found in [9].
- Gorenstein rings have now become a popular notion in commutative algebra and given birth to several definitions such as nearly Gorenstein rings or almost Gorenstein rings.

Aim of the Thesis

This thesis aims to

- present basic results on the minimal injective resolution of a module over a Noetherian ring,
- 2 introduce Gorenstein rings via Bass number and
- answer elementary questions when one inspects a type of ring (e.g. Is a subring of a Gorenstein ring Gorenstein?).

Structure of Minimal Injective Resolution

Unless otherwise specified, let R be a Noetherian commutative ring with $1 \neq 0$ and M be an R-module.

Theorem (E. Matlis)

Let E be a nonzero injective R-module. Then we have a direct sum decomposition $E = \bigoplus_{i \in I} X_i$ in which for each $i \in I$, $X_i \cong E_R(R/P)$ for some $P \in \operatorname{Spec}(R)$. For each $Q \in \operatorname{Spec}(R)$, we set

$$\Lambda(Q, E) = \{X_i | I \in I, X_i \cong \mathcal{E}_R(R/Q)\}.$$

Definition

Let $i \in \mathbb{Z}$ and $Q \in \operatorname{Spec}(R)$. We set

$$\mu^{i}(Q, M) = \dim_{R_Q/QR_Q} \operatorname{Ext}_{R_Q}^{i}(R_Q/QR_Q, M_Q)$$

and call it the i-th Bass number of M.

Structure of Minimal Injective Resolution

<u>Theorem</u>

Let $i \in \mathbb{Z}$, $Q \in \operatorname{Spec}(R)$ and

$$0 \to M \xrightarrow{\partial_0} \mathcal{E}_R^0(M) \xrightarrow{\partial_1} \mathcal{E}_R^1(M) \to \cdots \to \mathcal{E}_R^i(M) \xrightarrow{\partial_{i+1}} \mathcal{E}_R^{i+1}(M) \to \cdots$$

be a minimal injective resolution of M. Then $\mu^i(Q, M)$ is equal to the cardinality of the R-modules of the form $E_R(R/Q)$ which appear in $E_R^i(M)$ as direct summands, that is $\mu^i(Q, M) = |\Lambda(Q, E_R^i(M))|$. Therefore,

$$E_R^i(M) = \bigoplus_{P \in \operatorname{Spec}(R)} E_R(R/P)^{\mu^i(P,M)}$$

A Small Remark

Proposition

If R is local and $id_R(R) < \infty$, then

$$id_R(R) = dim(R) = depth_R(R).$$

Gorenstein Rings

Definition

Suppose that R is local. R is **Gorenstein** if $id_R(R) < \infty$. Generally, R is **Gorenstein** if R_P is Gorenstein for each $P \in \operatorname{Spec}(R)$.

A question naturally arises: Are Gorenstein property and finite injective dimension equivalent? As a matter of fact, we have the following (Bass proved it in [9]).

Proposition

 $id_R(R) < \infty$ if and only if R is Gorenstein and $dim(R) < \infty$.

Gorenstein Rings and Regular Sequence

Proposition

Let (R, \mathfrak{m}) be a local ring and f_1, \ldots, f_t be an R-regular sequence. Then R is Gorenstein if and only if $R/(f_1, \ldots, f_t)R$ is Gorenstein.

Proposition (new?)

Let f_1, \dots, f_t be an R-regular sequence and $f_i \in \operatorname{Jac}(R)$ for all i. Then R is Gorenstein if and only if $R/(f_1, \dots, f_t)R$ is Gorenstein.

Gorenstein Rings and Bass Number

Theorem

Let (R, \mathfrak{m}) be a local ring and set $d = \dim(R)$. TFAE:

- R is Gorenstein.
- $\mathbf{2} \quad \mu^i(\mathfrak{m}, R) = 0 \text{ for some } i > d.$
- 3 $\mu^i(\mathfrak{m}, R) = 0$ for every i > d.
- $\mu^{i}(\mathfrak{m},R) = \begin{cases} 1 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases}.$
- $\mu^{i}(Q,R) = \begin{cases} 1 & \text{if } i = \dim(R_{Q}) \\ 0 & \text{otherwise} \end{cases} \text{ for every } i \in \mathbb{Z} \text{ and }$ $Q \in \operatorname{Spec}(R).$
- \bullet $\mu^i(\mathfrak{m}, R) = 0$ for every i < d and $\mu^d(\mathfrak{m}, R) = 1$.

Gorenstein Rings of Zero Krull Dimension

Theorem

Let (R, \mathfrak{m}) be local and suppose that $\dim(R) = 0$ (equivalently, $l_R(R) < \infty$). TFAE:

- R is Gorenstein.
- ② 0 is irreducible in R, that is if $0 = I \cap J$ for some ideals I and J of R, then I = 0 or J = 0.
- $l_R((0:_R \mathfrak{m})) = 1.$

Gorenstein Rings and Other Types of Ring

Definition

Suppose (R, \mathfrak{m}) is local. R is **regular** if \mathfrak{m} can be generated by $\dim(R)$ elements.

Generally, R is **regular** if R_P is a regular for each $P \in \operatorname{Spec}(R)$.

Definition

Suppose R is local. R is **Cohen-Macaulay** if $\operatorname{depth}_R(R) = \dim(R)$.

Generally, R is **Cohen-Macaulay** if R_P is Cohen-Macaulay for each $P \in \operatorname{Spec}(R)$.

Proposition

 $regular\ rings \subset\ Gorenstein\ rings \subset\ Cohen$ -Macaulay rings.

Examples

Example

Let k be a field.

- The formal power series ring $k[[x_1, \ldots, x_n]]$ and the polynomial ring $k[x_1, \ldots, x_n]$ are regular.
- 3 $k[[x,y]]/(x^2,xy,y^2)$ is Cohen-Macaulay but not Gorenstein.
- $k[[x,y]]/(x^2,xy)$ is not even Cohen-Macaulay.
- A quotient of a Gorenstein ring is not necessarily Gorenstein: $k[[x,y,z]]/(x^3-z^2,y^2-xz,z^3)$ is Gorenstein but $k[[x,y,z]]/(x,y,z)^2$ is not.
- 6 A subring of a Gorenstein ring is not necessarily Gorenstein: for $a \geq 3$, $k[[t^a, t^{a+1}, \dots, t^{2a-2}]]$ is Gorenstein while $k[[t^a, t^{a+1}, \dots, t^{2a-1}]]$ is not.

Examples I

Example

- Finite direct product of Gorenstein rings is Gorenstein.
- Nagata ([13]) constructed the following ring. Let $R = k[x_1, x_2, \ldots]$. We set $I_1 = \{1\}$ and $I_n = \{1 + n(n-1)/2, \ldots, n(n+1)/2\}$ for each $n \geq 2$. Let $P_i = (x_j | j \in I_i)$ be prime ideals of R. Set $S = R \setminus \bigcup_{i \geq 1} P_i$. Then the ring $S^{-1}R$ is Noetherian and has infinite Krull dimension. It is in fact regular and hence it is Gorenstein and has infinite injective dimension.

References

- [1] Shiro Goto. Homological Methods in Commutative Algebra, Graduate Lecture Series, VIASM 2016.
- [2] F. F. Atiyah; I. D. MacDonald. *Introduction to Commutative Algebra*, Addison-Wesley Publishing Company, 1969.
- [3] Joseph J. Rotman. An Introduction to Homological Algebra, Academic Press Inc, 1979.
- [4] Robert B. Ash. A Course In Commutative Algebra, 2003.
- [5] Rodney Y. Sharp. Steps in Commutative Algebra, Cambridge University Press, 2000.
- [6] W. Bruns, J. Herzog. *Cohen-Macaulay Rings*, Cambridge University Press, 1993.

- [7] D. Eisenbud. Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150, Springer, Berlin, 1994.
- [8] H. Matsumura. Commutative Ring Theory, Cambridge University Press, 1987.
- [9] H. Bass. On The Ubiquity of Gorenstein Rings, Math. Z.,
 82 (1963), 8-28.
- [10] H. Bass. Injective Dimension in Noetherian Rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
- [11] Maiyuran Arumugan. A Theorem of Homological Algebra: The Hilbert-Burch Theorem, Bachelor's Thesis, 2005.
- [12] E. L. Lady. A Course in Homological Algebra Chapter **: Gorenstein Rings and Modules, 1998.

- [13] M. Nagata. *Local Rings*, J. Wiley Interscience, New York, 1962.
- [14] K. Fujita. Infinite Dimensional Noetherian Hilbert Domains, Hiroshima Math. J., **5**(1975), 181-185.
- [15] http://www.mathreference.com/mod-acc,hbt.html
- [16] Stacks Project Authors. The Stacks Project. http://stacks.math.columbia.edu.