

ALGEBRAISCHE STRUKTUREN

Fragen?

* (kommutative) (Halb-)Gruppe? Welche der folgenden Mengen besitzt welche algebraische Struktur?

	Halbgruppe?	Gruppe?	Kommutativ?
a) $(\mathbb{N} = \{1, 2, 3, \dots\}, +)$			
b) $(\mathbb{Z}, +)$			
c) $(\mathbb{Z}\setminus\{0\},\cdot)$		X	
$\mathrm{d})\ (\mathbb{Q}\backslash\{0\},\cdot)$			

	Halbgruppe?	Gruppe?	Kommutativ?
a) $(\mathbb{N} = \{1, 2, 3, \dots\}, +)$			
b) $(\mathbb{Z}, +)$			
c) $(\mathbb{Z}\setminus\{0\},\cdot)$			
$\mathrm{d})\;(\mathbb{Q}\backslash\{0\},\cdot)$			

* Algebraische Struktur von \mathbb{Z}_n . Welche der folgenden Mengen besitzt welche algebraische Struktur?

	Halbgruppe?	Gruppe?	Kommutativ?
a) $(\mathbb{Z}_3, +)$			
b) $(\mathbb{Z}_3 \setminus \{0\}, \cdot)$			
c) $(\mathbb{Z}_4, +)$			
$\mathrm{d})\;(\mathbb{Z}_4\backslash\{0\},\cdot)$			
e) (\mathbb{Z}_4,\cdot)			

	Halbgruppe?	Gruppe?	Kommutativ?
a) $(\mathbb{Z}_3, +)$			
b) $(\mathbb{Z}_3 \setminus \{0\}, \cdot)$			
c) $(\mathbb{Z}_4, +)$			
$\mathrm{d})\;(\mathbb{Z}_4\backslash\{0\},\cdot)$			
e) (\mathbb{Z}_4,\cdot)			

Zusammenfassung: Algebraische Struktur von \mathbb{Z}_n .

 $\forall n \in \mathbb{N} : | (\mathbb{Z}_n, +) \text{ ist eine abelsche Gruppe}$

 $(\mathbb{Z}_n \setminus \{0\}, \cdot)$ ist abelsche Gruppe \iff n ist prim

Inverse berechnen.

- 1. Berechnen Sie (falls möglich) $\overline{5}^{-1}$ in \mathbb{Z}_{1024} .
- 2. Berechnen Sie (falls möglich) $\overline{2}^{-1}$ in \mathbb{Z}_{1024} .
- 3. Wann ist $\overline{a} \in \mathbb{Z}_n$ bzgl. · invertierbar?

1.) $5x = 1+q \cdot 1024 \iff 5x + 1024 \cdot (-q) = 1$ adiophant (disch. 2.) $2x = 1 \iff 2$ d) 2x = 1 (=) 2x = 1+q.1024 (=) 2x-1024(-a) =1 555(271024)=2 f1 ; d.h. nidet (65bar 3) $\overline{a} \cdot \overline{x} = \overline{\Lambda} \Leftrightarrow \alpha x = \Lambda + q \cdot \eta \Leftrightarrow \alpha x + \eta \cdot (-\eta) = \Lambda$ a invertier or (o); ·) (=) qq[(a; n)=1 troph. Cal.

Lösung.

Invertierbarkeitskriterium. Sind 537 und 8491 in \mathbb{Z}_{63481} invertierbar?

Lösung.