PUID: _____

Rule	Expression
Commutativity	X + Y = Y + X
	$X \cdot Y = Y \cdot X$
Associativity	(X+Y)+Z=X+(Y+Z)
	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
Distributivity	$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$
	$(X+Y)\cdot(X+Z) = X+Y\cdot Z$
Covering	$X + X \cdot Y = X$
	$X \cdot (X + Y) = X$
Combining	$X \cdot Y + X \cdot Y = X$
	$(X+Y)\cdot(X+Y)=X$
Consensus	$X \cdot Y + X \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$
	$(X+Y)\cdot(X+Z)\cdot(Y+Z) = (X+Y)\cdot(X+Z)$
Generalized Idempotency	$X + X + \dots + X = X$
	$X \cdot X \cdot \cdots \cdot X = X$
DeMorgan's Theorems	$(X_1 \cdot X_2 \cdot \dots \cdot X_n)' = X_1' + X_2' + \dots + X_n'$
	$(X_1 + X_2 + \dots + X_n)' = X_1' \cdot X_2' \cdot \dots \cdot X_n'$
Generalized DeMorgan's	$F(X_1, X_2, \dots, X_n, +, \cdot) = F(X_1, X_2, \dots, X_n, \cdot, +)'$
Shannon's Expansion	$F(X_1, X_2, \dots, X_n) = X_1 \cdot F(1, X_2, \dots, X_n) + X_1' \cdot F(0, X_2, \dots, X_n)$
	$F(X_1, X_2, \dots, X_n) = [X_1 + F(0, X_2, \dots, X_n)] \cdot [X_1' + F(1, X_2, \dots, X_n)]$
Dual	Interchange $+$ with \cdot , and 0 with 1

```
// ! : Logical NOT, ~ : Bitwise NOT

// && : Logical AND, & : Bitwise AND

// || : Logical OR, | : Bitwise OR

// ^ : Bitwise XOR

// ~ : Bitwise XNOR

// == : Equality, == : Case Equality (4-state)

// != : Inequality, !== : Case Inequality (4-state)
```

```
module my_module (
  input logic clk,  // clock
  input logic rst,  // reset
  output logic out
);
  // Module internals here
endmodule
```

```
// Sequential (synchronous) logic
always_ff @(posedge clk or posedge rst) begin
  if (rst)
    out <= 0;
  else
    out <= ~out;
end

// Combinational logic
always_comb begin
    // assignments that depend solely on input combinatorics
end</pre>
```

```
interface simple_if (input logic clk);
  logic data;
  modport master (output data);
  modport slave (input data);
endinterface
```

```
property p_reset;
  @(posedge clk) disable iff (rst) (a |-> b);
endproperty
assert property(p_reset);
```

A	Output
0	0
1	1

 \mathbf{NAND}

Output

1

1

1

В

1

1

 $0 \quad 0$

0

NOT

A	Output
0	1
1	0
1	

\mathbf{OR}

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

XOR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

AND

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

XNOR

A	В	Output	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

NOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

NMOS

Parameter	PMOS	NMOS
Substrate Type	n-type	p-type
Threshold Voltage	Negative	Positive