14.6 Directional Derivatives and the Gradient Vector

Directional Derivatives and the Gradient Vector

In this section we introduce a type of derivative, called a directional derivative, that enables us to find the rate of change of a function of two or more variables in any direction.

Recall that if z = f(x, y), then the partial derivatives f_x and f_y are defined as

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$f_{y}(x_{0}, y_{0}) = \lim_{h \to 0} \frac{f(x_{0}, y_{0} + h) - f(x_{0}, y_{0})}{h}$$

and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and j.

Suppose that we now wish to find the rate of change of z at (x_0, y_0) in the direction of an arbitrary unit vector $\mathbf{u} = \langle a, b \rangle$. (See Figure 2.)

To do this we consider the surface S with the equation z = f(x, y) (the graph of f) and we let $z_0 = f(x_0, y_0)$. Then the point $P(x_0, y_0, z_0)$ lies on S.

Figure 2
A unit vector $\mathbf{u} = \langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$

The vertical plane that passes through *P* in the direction of **u** intersects *S* in a curve *C*. (See Figure 3.)

Figure 3

The slope of the tangent line *T* to *C* at the point *P* is the rate of change of *z* in the direction of **u**.

The parametric equations of the line in the xy-plane through the point (x_0, y_0) with direction vector $\mathbf{u} = \langle a, b \rangle$ is given by $x = x_0 + ta$ and $y = y_0 + tb$ with t being a real parameter.

Then C has parameterization

$$x = x_0 + ta$$
 $y = y_0 + tb$ $z = f(x_0 + ta, y_0 + tb)$

and

$$\frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

If we take the limit as $h \to 0$, we obtain the rate of change of z (with respect to distance) in the direction of \mathbf{u} , which is called the directional derivative of f in the direction of \mathbf{u} .

2 Definition The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

By comparing Definition 2 with Equations 1, we see that if $\mathbf{u} = \mathbf{i} = \langle 1, 0 \rangle$, then $D_{\mathbf{i}}f = f_{\chi}$ and if $\mathbf{u} = \mathbf{j} = \langle 0, 1 \rangle$, then $D_{\mathbf{j}}f = f_{\chi}$.

In other words, the partial derivatives of *f* with respect to *x* and *y* are just special cases of the directional derivative.

When we compute the directional derivative of a function defined by a formula, we generally use the following theorem.

Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y) a + f_y(x,y) b$$

If the unit vector \mathbf{u} makes an angle θ with the positive x-axis (as in Figure 2), then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and the formula in Theorem 3 becomes

$$D_{\mathbf{u}}f(x, y) = f_{x}(x, y) \cos \theta + f_{y}(x, y) \sin \theta$$

Figure 2
A unit vector $\mathbf{u} = \langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$

Example 2

Find the directional derivative $D_{\mathbf{u}}f(x,y)$ if

$$f(x,y) = x^3 - 3xy + 4y^4$$

and u is the unit vector in the direction given by the angle $\theta = \frac{\pi}{6}$, measured from the positive x-axis. What is $D_{\mathbf{u}}f(1,2)$?

Notice from Theorem 3 that the directional derivative of a differentiable function can be written as the dot product of two vectors:

$$D_{\mathbf{u}}f(x, y) = f_{x}(x, y)a + f_{y}(x, y)b$$

$$= \langle f_{x}(x, y), f_{y}(x, y) \rangle \cdot \langle a, b \rangle$$

$$= \langle f_{x}(x, y), f_{y}(x, y) \rangle \cdot \mathbf{u}$$

The first vector in this dot product occurs not only in computing directional derivatives but in many other contexts as well.

So we give it a special name (the *gradient* of f) and a special notation (**grad** f or ∇f , which is read "del f").

8 Definition If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

Example 3

If $f(x, y) = \sin x + e^{xy}$, then find $\nabla f(x, y)$ and $\nabla f(0, 1)$.

With this notation for the gradient vector, we can rewrite the expression for the directional derivative of a differentiable function as

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

This expresses the directional derivative in the direction of **u** as the scalar projection of the gradient vector onto **u**.

For functions of three variables we can define directional derivatives in a similar manner.

Again $D_{\mathbf{u}}f(x, y, z)$ can be interpreted as the rate of change of the function in the direction of a unit vector \mathbf{u} .

10 Definition The **directional derivative** of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the directional derivative in the compact form

$$D_{\mathbf{u}}f(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{u}) - f(\mathbf{x}_0)}{h}$$

where $\mathbf{x}_0 = \langle x_0, y_0 \rangle$ if n = 2 and $\mathbf{x}_0 = \langle x_0, y_0, z_0 \rangle$ if n = 3.

This is reasonable because the vector equation of the line through \mathbf{x}_0 in the direction of the vector \mathbf{u} is given by $\mathbf{x} = \mathbf{x}_0 + h\mathbf{u}$ and so $f(\mathbf{x}_0 + h\mathbf{u})$ represents the value of f at a point on this line.

If f(x, y, z) is differentiable and $\mathbf{u} = \langle a, b, c \rangle$, then

$$D_{\mathbf{u}}f(x, y, z) = f_{x}(x, y, z)a + f_{y}(x, y, z)b + f_{z}(x, y, z)c$$

For a function f of three variables, the **gradient vector**, denoted by ∇f or **grad** f, is

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$

or, for short,

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Then, just as with functions of two variables, Formula 12 for the directional derivative can be rewritten as

$$D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$$

Note. Both Definition 11 and formula (14) can be generalized to functions of *n* variables in a straightforward fashion.

Example 5

If $f(x, y, z) = x \sin yz$, (a) find the gradient of f and (b) find the directional derivative of f at (1, 3, 0) in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

Maximizing the Directional Derivatives

Maximizing the Directional Derivatives

Suppose we have a function *f* of two or three variables and we consider all possible directional derivatives of *f* at a given point.

These give the rates of change of *f* in all possible directions.

We can then ask the questions: In which of these directions does *f* change fastest and what is the maximum rate of change? The answers are provided by the following theorem.

15 Theorem Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

Example 6

- (a) If $f(x, y) = xe^y$, find the rate of change of f at the point P(2, 0) in the direction from P to $Q(\frac{1}{2}, 2)$.
- (b) In what direction does *f* have the maximum rate of change? What is this maximum rate of change?

Suppose S is a surface with equation F(x, y, z) = k, that is, it is a level surface of a function F of three variables, and let $P(x_0, y_0, z_0)$ be a point on S.

Let C be any curve that lies on the surface S and passes through the point P. Recall that the curve C is described by a continuous vector function $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$.

Let t_0 be the parameter value corresponding to P; that is, $\mathbf{r}(t_0) = \langle x_0, y_0, z_0 \rangle$. Since C lies on S, any point (x(t), y(t), z(t)) must satisfy the equation of S, that is,

$$F(x(t), y(t), z(t)) = K$$

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use the Chain Rule to differentiate both sides of Equation 16 as follows:

$$\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

But, since $\nabla F = \langle F_x, F_y, F_z \rangle$ and $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$, Equation 17 can be written in terms of a dot product as

$$\nabla F \cdot \mathbf{r}'(t) = 0$$

In particular, when $t = t_0$ we have $\mathbf{r}(t_0) = \langle x_0, y_0, z_0 \rangle$, so

$$\nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0$$

Equation 18 says that the gradient vector $\nabla F(x_0, y_0, z_0)$ at P is perpendicular to the tangent vector $\mathbf{r}'(t_0)$ to any curve C on S that passes through P. (See Figure 9.)

Figure 9

If $\nabla F(x_0, y_0, z_0) \neq \mathbf{0}$, it is therefore natural to define the **tangent plane to the level surface** F(x, y, z) = k **at** $P(x_0, y_0, z_0)$ as the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$.

Using the standard equation of a plane, we can write the equation of this tangent plane as

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

The **normal line** to *S* at *P* is the line passing through *P* and perpendicular to the tangent plane.

The direction of the normal line is therefore given by the gradient vector $\nabla F(x_0, y_0, z_0)$ and so, its symmetric equations are

$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$$

Note: In the special case in which the equation of a surface S is of the form z = f(x, y) (that is, S is the graph of a function f of two variables), we can rewrite the equation as

$$F(x, y, z) = f(x, y) - z = 0$$

and regard S as a level surface (with k = 0) of F. Then

$$F_{x}(x_{0}, y_{0}, z_{0}) = f_{x}(x_{0}, y_{0})$$

$$F_{y}(x_{0}, y_{0}, z_{0}) = f_{y}(x_{0}, y_{0})$$

$$F_{z}(x_{0}, y_{0}, z_{0}) = -1$$

so we get the familiar equation of the tangent plane

$$f_{x}(x_{0}, y_{0})(x - x_{0}) + f_{y}(x_{0}, y_{0})(y - y_{0}) - (z - z_{0}) = 0.$$

Example 8

Find the equations of the tangent plane and normal line at the point (-2, 1, -3) to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$