Mini-projet : étude de la régression linéaire au sens des moindres carrés

Ce travail est à réaliser en binôme ou en trinôme et à rendre sur Moodle pour le 31/03.

1. Étude théorique de la régression linéaire simple

- 1. Calculer les dérivées partielles d'ordre 1 de E, fonction définie dans la section 1 de la page précédente.
- 2. Déterminer la hessienne de E. On admettra qu'elle est définie positive : que peut-on en déduire à propos des points critiques de E?
- 3. Montrer que les points critiques de E sont solution du système d'inconnues (a, b)

$$\begin{pmatrix} N & \sum_{i=1}^{N} x_i \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\ \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{N} y_i \\ \sum_{i=1}^{N} x_i y_i \\ \sum_{i=1}^{N} x_i y_i \end{pmatrix}.$$

- 4. On note dans cette question \overline{x} et \overline{y} les moyennes respectives de x et y.
 - (a) Montrer que $Var(x) = \frac{1}{N} \sum_{i=1}^{N} x_i^2 \overline{x}^2$.
 - (b) Montrer que $Cov(x, y) = \frac{1}{N} \sum_{i=1}^{N} x_i y_i \overline{x} \ \overline{y}$.
 - (c) En déduire la solution de la régression linéaire simple est donnée par :

$$\begin{cases} a = \frac{\text{Cov}(x, y)}{\text{Var}(x)} \\ b = \overline{y} - a\overline{x} \end{cases}$$

- 5. (Facultative) Dans cette question, on note $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}, X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix}$ et $\theta = \begin{pmatrix} b \\ a \end{pmatrix}$ notre inconnue.
 - (a) Montrer que $||y X\theta||^2 = E(a, b)$.
 - (b) Montrer que résoudre la régression linéaire simple revient à résoudre l'équation normale :

$${}^{t}XX\theta = {}^{t}Xy$$
.

(c) Montrer que lorsque la matrice tXX est inversible, l'équation normale a pour solution :

$$\theta = ({}^t X X)^{-1} {}^t X y,$$

et que cette solution est équivalente à celle trouvée à la question 4 (c).

2. En pratique, un exemple de régression linéaire multiple

On considère les données du taux de criminalité de 50 villes étasusiennes 1, regroupées dans le fichier crime.csv à télécharger sur Moodle.

city	crime rate	violent crime rate	funding	hs	not-hs	college	college4
1	478	184	40	74	11	31	20
2	494	213	32	72	11	43	18
:	:	:	:	:	:	:	
50	940	1244	66	67	26	18	16

Détail des variables :

- crime rate : taux global de criminalité déclaré pour 1 million d'habitants
- violent crime rate: taux de criminalité violente déclaré pour 100 000 habitants
- funding: financement annuel de la police en \$/habitant
- hs : pourcentage de personnes âgées de 25 ans et plus ayant suivi 4 années d'études secondaires
- not-hs: pourcentage de jeunes de 16 à 19 ans n'ayant pas terminé leurs études secondaires et n'ayant pas obtenu de diplôme d'études secondaires.
- college : pourcentage de jeunes de 18 à 24 ans dans l'enseignement supérieur
- college4 : pourcentage de personnes âgées de 25 ans et plus ayant suivi au moins 4 années d'études supérieures

Le but de cet exercice est de construire un modèle de régression linéaire au sens des moindres carrés pour expliquer la variable crime rate à partir des variables explicatives funding, hs, not-hs, college, et college4.

- 1. Le modèle de régression linéaire est-il simple ou multiple ? Justifier.
- 2. Donner l'expression du modèle linéaire et de la fonction d'erreur associés, en prenant soin de bien expliciter les notations utilisées.
- 3. On utilise Python dans cette question pour résoudre la régression linéaire.
 - (a) Compléter le script projet_squelette.py afin de calculer la solution au problème de régression linéaire.
 - (b) Quelle valeur de la variable crime rate renvoie ce modèle si l'on donne en entrée les valeurs des variables explicatives de la ville 1? Commenter.
 - (c) Pour quelle ville la valeur de la variable crime rate que renvoie ce modèle est-elle la plus proche de la valeur réelle?
 - (d) Quelle variable explicative semble avoir le plus d'effet sur la variable expliquée ? Comment pourrait-on l'interpréter ?