Assignment 1

Eisha Asim

2/23/2021

Assignment 1

Answer the question using the data file. It is an artificial time series from 1950 to 2020. For the exercise, we assume that it is a series of consumption expenditure in thousands of dollars. For each chart that you create, add a main title and axis titles. When the chart contains more than one line, use a different color and shape for each line and add a legend.

Import Data and Convert to Time series data

```
# Import data from csv file
imported_data <- read.csv("assignment_data/dat138.csv")

# Subset data to include only the expenditure column
dat138 <- imported_data[,3]

# convert to time series object
dat138_ts <- ts(dat138, frequency=4, start=1950)

# Create Decimal dates from time series object
dat138_t <- time(dat138_ts)</pre>
```

Part A: Visualization

1. Plot the series using a line chart. Briefly describe what you see:

```
# Plot the series using a line chart
plot(dat138_ts,
    ylab="Expenditure(thousands of dollars)", # y axis title
    xlab = "Time", # x axis title
    main="Expenditure vs Time" # main chart title
   )
```

Expenditure vs Time

Is it a positive or negative trend? Is the trend increasing?

Answer:

What kind of short term fluctuations do you observe?

Answer:

2. Answer the previous question using the log-scale.

```
# Plot the series using a line chart
plot(log(dat138_ts),
    ylab="Expenditure(thousands of dollars)", # y axis title
    xlab = "Time", # x axis title
    main="Log of Expenditure vs Time" # main chart title
)
```

Log of Expenditure vs Time

Can you tell if the growth rate is increasing or decreasing on average over the period?

Answer:

3. To better see how the growth rate evolves through time, plot the annualized growth rate of consumption expenditure.

Annualized growth rate of consumption expenditure

Describe what you see. Is it constant on average?

Answer:

Part B: Time Series Decomposition

1. Fit a linear and quadratic trends to your series. Then, create a line chart with your original series and the two trends.

Linear Trend for Quarterly Expenditure

Which trend seems to best fit the series? Explain.

Explanation:

2. Fit a linear and quadratic trends to the log of your series. Then, create a line chart with the log of your series and the two trends.

Expenditure With a Linear and Quadratic Trends (Log-Scale)

Which trend seems to best fit the series? Do you see a difference between the best trend in this question and in the previous one? Explain.

Explanation:

Answer the following questions using the log of your series and the trends computed in question 2.

3. Plot the detrended series using the trend that best fit the series.

Detrended Expenditure Series Using a Quadratic Trend

Briefly describe what you see: Do you better detect short term fluctuations?

Answer:

4. Using a moving average of order 5, compute the cyclical component of your series. Then, plot the cycle and briefly describe what you see: interpret the values of some peaks and troughs.

Detrended Expenditure Series and Its Cyclical Component

5. Plot the low frequency of your series and briefly describe what you see.

The Low Frequency Component of Expenditure Series

6. Compute the seasonal component and represent it on a bar chart (only the 4 quarters). Interpret the four seasonal values.

Expenditure Series Seasonal Component

Part C: Comovement

For this part, select any other series in the file assignment1.zip and answer the following questions:

• Create a scatter plot of your series expressed in logs against the selected series also expressed in logs.

```
impoted_dat1 <- read.csv("assignment_data/dat1.csv")
dat1 <- impoted_dat1[,3]

dat1_ts <- ts(dat1, frequency=4, start=1950)
dat1_t <- time(dat1_ts)

ldat1 <- log(dat1_ts)

dat1coefT <- coef(lm(ldat1~dat1_t))
dat1trend <- dat1coefT[1] + dat1coefT[2]*dat1_t

dat1_t2 <- dat1_t^2
dat1coefT2 <- coef(lm(ldat1~dat1_t+dat1_t2))
dat1trend2 <- dat1coefT2[1] + dat1coefT2[2]*dat1_t + dat1coefT2[3]*dat1_t2

plot(ldat1,
    ylab="Expenditure (thousand dollars)",</pre>
```

```
main="Linear Trend for Quarterly Expenditure",
     lwd=2)
lines(dat1trend, col=2, lty=2, lwd=2)
lines(dat1trend2, col=3, lty=2, lwd=3)
legend("topleft", c("Expenditure","Linear Trend","Quadratic Trend"), col=1:3,
       lty=1:3, lwd=1:3, bty='n')
```

Linear Trend for Quarterly Expenditure

• Using the log of the selected series, compute its cyclical component. Then create a scatter plot of this cycle with the cycle of your series computed in Part B.

```
# Extracting the Cyclical Component of Temperature Anomalies
CSI dat1 <- ldat1-dat1trend2
Dec_dat1 <- decompose(CSI_dat1, filter=rep(1/5,5))</pre>
Des_dat1 <- dat1_ts - Dec_dat1$seasonal</pre>
C_dat138 <- Dec$trend
C_dat1 <- Dec_dat1$trend
plot(C_dat138, C_dat1, pch=21, col=1, bg=1,
     main="Comovement Between the Cyclical Components of
Dat138 and Dat1",
xlab="Dat138 Expenditure (thousand dollars)", ylab="Dat1 Expenditure (thousand dollars)")
```

Comovement Between the Cyclical Components of Dat138 and Dat1

• Looking at the two scatter plots, what can you say about the type of comovement between the two series?

Answer:

Cyclical Components of Expenditures in thousand dollars for Dat138 ar

