

APPARATUS FOR TRANSPORTING OPTICAL FIBER PREFORM

[71] Applicant: FURUKAWA ELECTRIC
CO LTD:THE

[72] Inventors: DAITO HIROSHI

[21] Application No.: JP07268118

[22] Filed: 19951017

[43] Published: 19970428

Retrieve text/document

[57] Abstract:

PROBLEM TO BE SOLVED: To obtain an apparatus for transporting an optical fiber preform capable of transporting the preform outside a clean room as well.

SOLUTION: This apparatus has a base plate 12, an optical fiber preform fixing member 14 which is disposed one the base plate 12, an housing vessel 16 which houses the optical fiber preform 1 fixed onto the optical fiber preform fixing member 14 together with the optical fiber preform fixing member 14 and an air supplying device 18 which supplies clean air into the housing vessel 16. The housing vessel 16 and the air supplying device 18 are connected by an air supplying pipe 24. Clean air is fed into the housing vessel 16 from the air supplying device 18, by which the atmosphere in the housing vessel 16 is held at a positive pressure with the clean air.

[51] Int'l Class: C03B037012 G02B00600

RECEIVED
JUN 10 2002
TC 1700

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平9-110454

(43) 公開日 平成9年(1997)4月28日

(51) Int.Cl.⁶
C 03 B 37/012
G 02 B 6/00

識別記号 庁内整理番号
356

F I
C 03 B 37/012
G 02 B 6/00

技術表示箇所
Z
356 A

審査請求 未請求 請求項の数5 O L (全4頁)

(21) 出願番号 特願平7-268118

(22) 出願日 平成7年(1995)10月17日

(71) 出願人 000005290

古河電気工業株式会社

東京都千代田区丸の内2丁目6番1号

(72) 発明者 大東 拓

東京都千代田区丸の内2丁目6番1号 古
河電気工業株式会社内

(54) 【発明の名称】 光ファイバ母材の搬送装置

(57) 【要約】

【課題】 クリーンルーム外でも搬送可能にした光ファイバ母材の搬送装置を提供する。

【解決手段】 基台12と、基台12上に設けられた光ファイバ母材固定部材14と、光ファイバ母材固定部材14に固定された光ファイバ母材1を光ファイバ母材固定部材14とともに収納する収納容器16と、収納容器16内に清浄空気を供給する空気供給装置18を備え、収納容器16と空気供給装置18が空気供給管24で連結されていて、空気供給装置18より収納容器16内に清浄空気を送り込むことにより収納容器16内の雰囲気を清浄空気で正圧にする。

【特許請求の範囲】

【請求項1】 基台と、前記基台上に設けられた光ファイバ母材固定部材と、前記光ファイバ母材固定部材に固定された光ファイバ母材を前記光ファイバ母材固定部材とともに収納する収納容器と、前記収納容器内に清浄空気を供給する空気供給装置を備え、前記収納容器と前記空気供給装置は空気供給管で連結されており、前記空気供給装置より前記収納容器内に清浄空気を送り込むことにより前記収納容器内の雰囲気を正圧にすることを特徴とする光ファイバ母材の搬送装置。

【請求項2】 収納容器には清浄空気の排気孔が設けられており、該排気孔または前記空気供給管の少なくとも一方には圧力調整弁が設けられていることを特徴とする請求項1記載の光ファイバ母材の搬送装置。

【請求項3】 収納容器内に空気供給装置より清浄空気を送り込む空気供給管の清浄空気供給口が前記収納容器内の光ファイバ母材の長手方向全長にわたって所定間隔で設けられていることを特徴とする請求項1または請求項2記載の光ファイバ母材の搬送装置。

【請求項4】 基台は、基台に設けられたキャスタによって移動可能となっていることを特徴とする請求項1ないし請求項3記載の光ファイバ母材の搬送装置。

【請求項5】 基台は、レールにしたがって移動可能となっていることを特徴とする請求項1ないし請求項3記載の光ファイバ母材の搬送装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、光ファイバ母材を収納して搬送する装置に関するものである。

【0002】

【従来の技術】 通常、光ファイバ母材は、クリーンルーム内に設置された光ファイバ母材製造装置、例えばVAD装置、脱水焼結装置等で製造される。VAD装置、脱水焼結装置等で製造された光ファイバ母材は、次工程の線引き装置に搬送されることになる。従来の搬送方法は、①作業者が直接手に持つて搬送する、②光ファイバ母材専用のキャスターに載せて搬送する、③光ファイバ母材を容器内に収納してキャスターに載せて搬送する等であり、工場内のそれぞれの装置の配置等により適宜の方法で搬送している。

【0003】

【発明が解決しようとする課題】 ところで、上記光ファイバ母材は外気に触れると品質が劣化するためクリーンルーム外には持ち出しが不可である。よって、その搬送は、全て光ファイバ母材製造装置や線引き装置が設置されている同一のクリーンルーム内で行われている。したがって、クリーンルーム内に光ファイバ母材搬送用の搬送ルートを設ける必要があり、上記の製造設備のスペースの他に搬送ルート用スペースを必要とするので、クリーンルームを有効に利用する上問題があった。

【0004】 本発明は上記の課題を解決し、クリーンルーム外でも搬送を可能にした光ファイバ母材の搬送装置を提供することを目的とするものである。

【0005】

【課題を解決するための手段】 本発明は上記の課題を解決するために以下のような手段を有している。

【0006】 本発明の請求項1の光ファイバ母材の搬送装置は、基台と、前記基台上に設けられた光ファイバ母材固定部材と、前記光ファイバ母材固定部材に固定された光ファイバ母材を前記光ファイバ母材固定部材とともに収納する収納容器と、前記収納容器内に清浄空気を供給する空気供給装置を備え、前記収納容器と前記空気供給装置は空気供給管で連結されており、前記空気供給装置より前記収納容器内に清浄空気を送り込むことにより前記収納容器内の雰囲気を正圧にすることを特徴とする。

【0007】 本発明の請求項2の光ファイバ母材の搬送装置は、収納容器には清浄空気の排気孔が設けられており、該排気孔または空気供給管の少なくとも一方には圧力調整弁が設けられていることを特徴とする。

【0008】 本発明の請求項3の光ファイバ母材の搬送装置は、収納容器内に空気供給装置より清浄空気を送り込む空気供給管の清浄空気供給口が前記収納容器内の光ファイバ母材の長手方向全長にわたって所定間隔で設けられていることを特徴とする。

【0009】 本発明の請求項4の光ファイバ母材の搬送装置は、基台が、基台に設けられたキャスターによって移動可能となっていることを特徴とする。

【0010】 本発明の請求項5の光ファイバ母材の搬送装置は、基台が、レールにしたがって移動可能となっていることを特徴とする。

【0011】 本発明の請求項1の光ファイバ母材の搬送装置によれば、光ファイバ母材固定部材とともに光ファイバ母材が収納された収納容器内に空気供給装置から清浄空気を送り込んで収納容器内の雰囲気を正圧にするので、収納容器内には外気が入り込むことがない。したがって光ファイバ母材を収納した収納容器を有する光ファイバ母材の搬送装置をクリーンルームの外に出しても光ファイバ母材が外気に触れることなく搬送することができる。その結果、光ファイバ母材をクリーンルーム内の搬送だけでなく、クリーンルームから一旦外に出して外の搬送ルートを通って別のクリーンルーム内の次工程の装置に移送することができる。よって、クリーンルーム内に搬送ルートを設ける必要がなくなり、クリーンルーム内の有効利用率を高くすることができる。

【0012】 本発明の請求項2の光ファイバ母材の搬送装置によれば、収納容器には清浄空気の排気孔が設けられていて、この排気孔または空気供給管の少なくとも一方には圧力調整弁が設けられているので、収納容器内を確実に正圧とする事ができる。

【0013】本発明の請求項3の光ファイバ母材の搬送装置によれば、収納容器内に空気供給装置より清浄空気を送り込む空気供給管の清浄空気供給口が、収納容器内の光ファイバ母材の長手方向全長にわたって所定間隔で設けられているので、収納容器内の光ファイバ母材をその長手方向全長にわたって確実に清浄空気で覆うことができる。

【0014】本発明の請求項4の光ファイバ母材の搬送装置は、基台にキャスターが備えられているので、搬送装置を別の台車等に載せることなくそのまま別の場所に移送することができる。

【0015】本発明の請求項5の光ファイバ母材の搬送装置は、基台が、レールにしたがって移動可能となっているので、自動化、無人化に適したものとなっている。

【0016】

【発明の実施の形態】

(実施の形態1) 以下に本発明の実施の形態の一例についてより詳細に説明する。図1は、本発明の光ファイバ母材の搬送装置10の一部を縦に切開した説明図である。搬送装置10は、基台12、光ファイバ母材固定部材14、収納容器16および空気供給装置18を備えている。基台12には、キャスター20が取り付けられている。搬送装置10はそのまま台車として機能する。基台12の上部には、逆L字状に光ファイバ母材固定部材14が立設されている。光ファイバ母材固定部材14の上部の固定棒22に、光ファイバ母材1が係止されて固定される。

【0017】また、基台12の上部には、光ファイバ母材固定部材14全体を覆うように天板を有する筒状の収納容器16が載置されている。収納容器16の下部には、空気供給装置18に接続する空気供給管24が貫通している。空気供給管24の先端部は、収納容器16内で立ち上げられて、光ファイバ母材固定部材14に固定されるべき光ファイバ母材1に対して長手方向にわたって所定間隔に清浄空気を供給できるように複数の清浄空気供給口26が設けられている。収納容器16の上部には、清浄空気の排気孔28が設けられている。

【0018】また、収納容器16には図示していない光ファイバ母材1の出し入れのための開閉扉が気密に取り付けられている。すなわち、収納容器16は排気孔28を除いて全て気密の状態になっている。さらに、基台12の上部には、空気供給装置18が載置されている。空気供給装置18は、バッファタンク30および圧力調整弁32を有している。バッファタンク30は圧縮された清浄空気を貯蔵するもの、圧力調整弁32は収納容器16内に送り込む清浄空気の供給圧力を制御するものである。

【0019】上記のように構成された光ファイバ母材の搬送装置10を用いた光ファイバ母材1の搬送は以下のようにして行なれる。先ず、クリーンルーム内で収納容

器16の開閉扉を開いて図示していない脱水焼結装置等で製造された光ファイバ母材1を収納容器16内に収納する。光ファイバ母材1は、その種棒1Aの上部に形成された膨らみ頭部1Bを光ファイバ母材固定部材14の上部の固定棒22に設けられたU字状の切り欠きに嵌め込むことによって係止、固定される。上記の状態で収納容器16の開閉扉を密閉して空気供給装置18の圧力調整弁32を開放してバッファタンク30内の清浄空気を収納容器16内に送り込む。収納容器16内はバッファタンク30より送り込まれた清浄空気により収納容器16の外より圧力が高くなり正圧となる。

【0020】したがって、収納容器16内には外部の空気が入ることないので、そのままクリーンルーム外に出しても、光ファイバ母材1が外部の空気に触れることはない。また、収納容器16内の清浄空気は、収納容器内の光ファイバ母材の長手方向全長にわたって設けられている清浄空気供給口26より送り込まれるので、光ファイバ母材をその長手方向全長にわたって確実に清浄空気で覆うことができる。上記のようにして搬送装置10に光ファイバ母材1が収納されたら、搬送装置10に備えられているキャスター20によって搬送装置10を所定の場所に搬送する。

【0021】また、図2に示すように、収納容器16の上部に設けられた排気孔28に圧力調整弁34を設けると、より確実に外部の空気の遮断が達成できる。

【0022】(実施の形態2) 上記の実施の形態1の光ファイバ母材の搬送装置10の場合、バッファタンク30内の圧縮された清浄空気は、有限であるので搬送装置10をクリーンルーム外の搬送には時間的な限度がある。しかし図3に示すようにするより長時間の搬送に耐えることができる。

【0023】図3の光ファイバ母材の搬送装置40の特徴は、空気供給装置42にある。空気供給装置42は、チャンバ44、コンプレッサ46およびフィルタ48を有していて、収納容器16の排気孔28には排気回収管50の一方が接続され、この排気回収管50の他方は圧力調整弁34を介して空気供給装置42のチャンバ44に連結している。

【0024】この光ファイバ母材の搬送装置40は、排気孔28より回収した清浄空気とチャンバ44の空気導入口52より新たに導入した外部の空気をコンプレッサ46で圧縮する。コンプレッサ46で圧縮された圧縮空気は、フィルタ48で清浄化されて圧力調整弁32を経て収納容器16内に送り込まれる。その他の構成は実施の形態1と同様につき同様の部材には同様の符号を付して詳細な説明を省略する。この光ファイバ母材の搬送装置40は、コンプレッサ46が稼働できる限り清浄空気を作ることができるので長時間のクリーンルーム外の搬送が可能となる。

【0025】なお、上記各実施の形態の形態において、

搬送装置がその移動手段としてキャスターを備えている例を示したが、移動手段はキャスターに限らない。例えば、モノレールホイストによって搬送装置を搬送できるようにもよい。このモノレールホイスト方式は自由なレール配置とすることことができ、また分岐・交差等が可能となるので、より自動化、無人化に適した光ファイバ母材の搬送装置となる。

【0026】

【発明の効果】以上述べたように、本発明の請求項1の光ファイバ母材の搬送装置によれば、光ファイバ母材固定部材とともに光ファイバ母材が収納容器内に空気供給装置から清浄空気を送り込み、収納容器内の雰囲気を清浄空気で正圧にするので、収納容器内に外気が入り込むことがない。したがって光ファイバ母材を収納した収納容器を有する光ファイバ母材の搬送装置をクリーンルーム外に出しても光ファイバ母材が外気に触れることなく搬送することが可能となる。その結果、光ファイバ母材をクリーンルーム内の搬送だけでなく、クリーンルームから一旦外に出しても搬送ルートを通じて別のクリーンルームの次工程の装置に移送することができる。よってクリーンルーム内に搬送ルートを設ける必要がなくなり、クリーンルーム内の有効利用率を高くすることができる。

【0027】本発明の請求項2の光ファイバ母材の搬送装置によれば、収納容器には清浄空気の排気孔が設けられていて、この排気孔または空気供給管の少なくとも一方には圧力調整弁が設けられているので、収納容器内の清浄空気を確実に正圧とすることができる。

【0028】本発明の請求項3の光ファイバ母材の搬送装置によれば、収納容器内に空気供給装置より清浄空気を送り込む空気供給管の清浄空気供給口が、収納容器内の光ファイバ母材の長手方向全長にわたって所定間隔で

設けられているので、収納容器内の光ファイバ母材をその長手方向全長にわたって確実に清浄空気で覆うことができる。

【0029】本発明の請求項4の光ファイバ母材の搬送装置は、基台にキャスターが備えられているので、搬送装置を別の台車等に載せることなくそのまま別の場所に移送することができる。

【0030】本発明の請求項5の光ファイバ母材の搬送装置は、基台が、レールにしたがって移動可能となっているので、自動化、無人化に適したものとなっている。

【図面の簡単な説明】

【図1】本発明の光ファイバ母材の搬送装置の実施の形態の一例を示す一部を縦に切開した正面図である。

【図2】本発明の光ファイバ母材の搬送装置の他の実施の形態を示す正面図である。

【図3】本発明の光ファイバ母材の搬送装置のその他の実施の形態を示す正面図である。

【符号の説明】

- 1 光ファイバ母材
- 10 光ファイバ母材の搬送装置
- 12 基台
- 14 光ファイバ母材固定部材
- 16 収納容器
- 18 空気供給装置
- 20 キャスター
- 24 空気供給管
- 26 清浄空気供給口
- 28 排気孔
- 30 圧力調整弁
- 32 圧力調整弁
- 40 光ファイバ母材の搬送装置
- 42 清浄空気装置

【図1】

【図2】

【図3】

CLAIMS

JPN 19110454A

[Claim]

[Claim 1] The stowage container which contains a pedestal, the optical fiber base-metal holddown member prepared on the aforementioned pedestal, and the optical fiber base metal fixed to the aforementioned optical fiber base-metal holddown member with the aforementioned optical fiber base-metal holddown member, Have the air supply equipment which supplies pure air in the aforementioned stowage container, and the aforementioned stowage container and the aforementioned air supply equipment are connected with the air supply spool. The transport device of the optical fiber base metal characterized by making the ambient atmosphere in the aforementioned stowage container into a positive pressure by sending in pure air in the aforementioned stowage container from the aforementioned air supply equipment.

[Claim 2] The transport device of the optical fiber base metal of the claim 1 publication characterized by preparing the exhaust hole of pure air in the stowage container, and preparing the pressure regulating valve in either [at least] this exhaust hole or the aforementioned air supply spool.

[Claim 3] The transport device of the optical fiber base metal of claim [which is characterized by preparing the pure air supply opening of the air supply spool which sends in pure air at intervals of predetermined from air supply equipment in a stowage container covering the longitudinal direction overall length of the optical fiber base metal in the aforementioned stowage container] 1, or claim 2 publication.

[Claim 4] A pedestal is the transport device of the optical fiber base metal of claim [which is characterized by the ability to move by the axle-pin rake prepared in the pedestal] 1, or claim 3 publication.

[Claim 5] A pedestal is the transport device of the optical fiber base metal of claim [which is characterized by the ability to move according to a rail] 1, or claim 3 publication.

[Translation done.]

【図1】

【図2】

【図3】

DETAILED DESCRIPTION

[Detailed description]

[0001]

[The technical field to which invention belongs] this invention relates to the equipment which contains and conveys optical fiber base metal.

[0002]

[Prior art] Usually, optical fiber base metal is manufactured with the optical fiber base-metal manufacturing installation installed in the clean room, for example, VAD equipment, dehydration sintering equipment, etc. The optical fiber base metal manufactured with VAD equipment, dehydration sintering equipment, etc. will be conveyed by the drawing equipment of the following process. The conventional conveyance technique is conveyed by proper technique by arrangement of each equipment in the works [convey / carry and / contain in a container ** optical fiber base metal which ** operator has in a direct hand and conveys and which is carried and conveyed to the axle-pin rake only for ** optical fiber base metal, and / to the axle-pin rake] etc.

[0003]

[Object of the Invention] By the way, since a quality will deteriorate if the open air is touched, the above-mentioned optical fiber base metal cannot be carried out out of a clean room. Therefore, the whole of the conveyance is performed in the same clean room in which an optical fiber base-metal manufacturing installation and drawing equipment are installed. Therefore, since it is necessary to prepare the conveyance root for optical fiber base-metal conveyance and the space for the conveyance roots other than the space of the above-mentioned manufacturing facility is needed in a clean room, when using a clean room effectively, there was a problem.

[0004] this invention solves the above-mentioned technical problem, and it aims at offering the transport device of the optical fiber base metal which made conveyance possible also out of the clean room.

[0005]

[The means for solving a technical problem] this invention has the following meanses, in order to solve the above-mentioned technical problem.

[0006] The transport device of the optical fiber base metal of the claim 1 of this invention The stowage container which contains a pedestal, the optical fiber base-metal holddown member prepared on the aforementioned pedestal, and the optical fiber base metal fixed to the aforementioned optical fiber base-metal holddown member with the aforementioned optical fiber base-metal holddown member, It has the air supply equipment which supplies pure air in the aforementioned stowage container, the aforementioned stowage container and the aforementioned air supply equipment are connected with the air supply spool, and it is characterized by making the ambient atmosphere in the aforementioned stowage container into a positive pressure by sending in pure air in the aforementioned stowage container from the aforementioned air supply equipment.

[0007] The transport device of the optical fiber base metal of the claim 2 of this invention is characterized by preparing the exhaust hole of pure air in the stowage container, and preparing the pressure regulating valve in either [at least] this exhaust hole or the air supply spool.

[0008] The transport device of the optical fiber base metal of the claim 3 of this invention is characterized by preparing the pure air supply opening of the air supply spool which sends in pure air at intervals of predetermined from air supply equipment in a stowage container covering the longitudinal direction overall length of the optical fiber base metal in the aforementioned stowage container.

[0009] It is characterized by the ability of a pedestal to move the transport device of the optical fiber base metal of the claim 4 of this invention by the axle-pin rake prepared in the pedestal.

[0010] It is characterized by the ability of a pedestal to move the transport device of the optical fiber base metal of the claim 5 of this invention according to a rail.

[0011] Since according to the transport device of the optical fiber base metal of the claim 1 of this invention pure air is sent in from air supply equipment in the stowage container with which optical fiber base metal was contained and the ambient atmosphere in a stowage container is made into a positive

pressure with an optical fiber base-metal holddown member, the open air does not enter in a stowage container. Therefore, it is enabled to convey, without optical fiber base metal touching the open air, even if it takes out the transport device of the optical fiber base metal which has the stowage container which contained optical fiber base metal out of a clean room. Consequently, optical fiber base metal can once be taken out not only from conveyance in a clean room but from a clean room outside, and it can transport to the equipment of the following process in another clean room through the outer conveyance root. Therefore, it becomes unnecessary to prepare the conveyance root in a clean room, and the rate of a deployment in a clean room can be made high.

[0012] Since according to the transport device of the optical fiber base metal of the claim 2 of this invention the exhaust hole of pure air is prepared in the stowage container and the pressure regulating valve is prepared in either [at least] this exhaust hole or the air supply spool, let the inside of a stowage container be a positive pressure certainly.

[0013] According to the transport device of the optical fiber base metal of the claim 3 of this invention, since the pure air supply opening of the air supply spool which sends in pure air from air supply equipment in a stowage container is prepared at intervals of predetermined covering the longitudinal direction overall length of the optical fiber base metal in a stowage container, it can cover certainly the optical fiber base metal in a stowage container with pure air covering the longitudinal direction overall length.

[0014] Since the pedestal is equipped with the axle-pin rake, the transport device of the optical fiber base metal of the claim 4 of this invention can be transported to somewhere else as it is, without putting a transport device on another truck etc.

[0015] Since a pedestal can move according to a rail, the transport device of the optical fiber base metal of the claim 5 of this invention is a thing suitable for an automation and full automation.

[0016]

[Gestalt of implementation of invention]

(Gestalt 1 of enforcement) An example of the gestalt of the enforcement of this invention to the following is more explained to a detail. Drawing 1 is explanatory drawing which cut open perpendicularly a part of transport device 10 of the optical fiber base metal of this invention. The transport device 10 is equipped with a pedestal 12, the optical fiber base-metal holddown member 14, the stowage container 16, and the air supply equipment 18. The axle-pin rake 20 is attached in the pedestal 12, and a transport device 10 functions on it as a truck as it is. The optical fiber base-metal holddown member 14 is ****ed in the shape of an inverted-L character by the upper part of a pedestal 12. Optical fiber base metal 1 is ****ed by the tie rod 22 of the upper part of the optical fiber base-metal holddown member 14, and it is fixed to it.

[0017] Moreover, the tubed stowage container 16 which has a top plate so that the optical fiber base-metal holddown-member 14 whole may be covered is laid in the upper part of a pedestal 12. In the lower part of a stowage container 16, the air supply spool 24 it connects [air supply / equipment / air supply / 18] has penetrated. The point of the air supply spool 24 is started within a stowage container 16, and two or more pure air supply openings 26 are formed so that pure air can be supplied to a predetermined spacing over a longitudinal direction to the optical fiber base metal 1 which should be fixed to the optical fiber base-metal holddown member 14. The exhaust hole 28 of pure air is formed in the upper part of a stowage container 16.

[0018] Moreover, the opening-and-closing door for receipts and payments of the optical fiber base metal 1 which is not illustrated is airtightly attached in the stowage container 16. Namely, the stowage container 16 is in the airtight status altogether except for the exhaust hole 28. Furthermore, the air supply equipment 18 is laid in the upper part of a pedestal 12. The air supply equipment 18 has the buffer tank 30 and the pressure regulating valve 32. What stores the pure air into which the buffer tank 30 was compressed, and the pressure regulating valve 32 control the pure air-supply pressure sent in in a stowage container 16.

[0019] Conveyance of the optical fiber base metal 1 using the transport device 10 of the optical fiber base metal constituted as mentioned above is performed as follows. First, the optical fiber base metal 1

manufactured with the dehydration sintering equipment which is not opening and illustrating the opening-and-closing door of a stowage container 16 in a clean room is contained in a stowage container 16. By inserting in U character-like notching which was formed in the upper part of the *** 1A and in which it swells and head 1B was prepared by the tie rod 22 of the upper part of the optical fiber base-metal holdown member 14, it ***'s and the optical fiber base metal 1 is fixed. The opening-and-closing door of a stowage container 16 is sealed in the above-mentioned status, the pressure regulating valve 32 of the air supply equipment 18 is opened wide, and the pure air in the buffer tank 30 is sent in in a stowage container 16. A pressure becomes high from the outside of a stowage container 16 with the pure air sent in from the buffer tank 30, and the inside of a stowage container 16 serves as a positive pressure.

[0020] Therefore, since external air does not enter in a stowage container 16, even if it takes out out of a clean room as it is, the optical fiber base metal 1 does not touch external air. Moreover, since the pure air in a stowage container 16 is sent in from the pure air supply opening 26 prepared covering the longitudinal direction overall length of the optical fiber base metal in a stowage container, it can cover optical fiber base metal with pure air certainly covering the longitudinal direction overall length. If the optical fiber base metal 1 is contained by the transport device 10 as mentioned above, a transport device 10 will be conveyed in the predetermined location by the axle-pin rake 20 with which the transport device 10 is equipped.

[0021] Moreover, if a pressure regulating valve 34 is formed in the exhaust hole 28 prepared in the upper part of a stowage container 16 as shown in drawing 2, a cutoff of external air can be more attained to an authenticity.

[0022] (Gestalt 2 of enforcement) In the case of the transport device 10 of the optical fiber base metal of the gestalt 1 of the above-mentioned enforcement, since the pure air into which it was compressed in the buffer tank 30 is limited, there is a time limit in conveyance outside a clean room about a transport device 10. However, it can be equal to more nearly prolonged conveyance if it is made to be shown in drawing 3.

[0023] The characteristic feature of the transport device 40 of the optical fiber base metal of drawing 3 is in the air supply equipment 42. The air supply equipment 42 has the chamber 44, the compressor 46, and VCF 48, one side of the exhaust air recovery spool 50 is connected to the exhaust hole 28 of a stowage container 16, and another side of this exhaust air recovery spool 50 is connected with the chamber 44 of the air supply equipment 42 through a pressure regulating valve 34.

[0024] The transport device 40 of this optical fiber base metal compresses the air of the more newly than the air introduction opening 52 of pure air and the chamber 44 collected [from the exhaust hole 28] introduced exterior by the compressor 46. The defecation of the compressed air compressed by the compressor 46 is carried out with VCF 48, and it is sent in in a stowage container 16 through a pressure regulating valve 32. Other configurations are attached like the gestalt 1 of enforcement, give the same sign to the same component, and omit a detailed explanation. Since the transport device 40 of this optical fiber base metal can make pure air as long as it can work a compressor 46, conveyance of it outside a prolonged clean room is attained.

[0025] In addition, in the gestalt of the gestalt of each above-mentioned implementation, although the example which the transport device equips with the axle-pin rake as the move means was shown, a move means is not restricted to an axle-pin rake. For example, you may enable it to convey a transport device with a monorail hoist. Since this monorail hoist formula can be considered as free rail arrangement and branching, the transposition, etc. of it are attained, it serves as the transport device of the optical fiber base metal which was more suitable for an automation and full automation.

[0026]

[Effect of the invention] Since pure air is sent in from air supply equipment in the stowage container which was described above and with which optical fiber base metal was contained with the optical fiber base-metal holdown member and the ambient atmosphere in a stowage container is made into a positive pressure with pure air like according to the transport device of the optical fiber base metal of the claim 1 of this invention, the open air does not enter in a stowage container. Therefore, it is enabled to

convey, without optical fiber base metal touching the open air, even if it takes out the transport device of the optical fiber base metal which has the stowage container which contained optical fiber base metal out of a clean room. Consequently, optical fiber base metal can once be taken out not only from conveyance in a clean room but from a clean room outside, and it can transport to the equipment of the following process of another clean room through the outer conveyance root. Therefore, it becomes unnecessary to prepare the conveyance root in a clean room, and the rate of a deployment in a clean room can be made high.

[0027] Since according to the transport device of the optical fiber base metal of the claim 2 of this invention the exhaust hole of pure air is prepared in the stowage container and the pressure regulating valve is prepared in either [at least] this exhaust hole or the air supply spool, let the pure air in a stowage container be a positive pressure certainly.

[0028] According to the transport device of the optical fiber base metal of the claim 3 of this invention, since the pure air supply opening of the air supply spool which sends in pure air from air supply equipment in a stowage container is prepared at intervals of predetermined covering the longitudinal direction overall length of the optical fiber base metal in a stowage container, it can cover certainly the optical fiber base metal in a stowage container with pure air covering the longitudinal direction overall length.

[0029] Since the pedestal is equipped with the axle-pin rake, the transport device of the optical fiber base metal of the claim 4 of this invention can be transported to somewhere else as it is, without putting a transport device on another truck etc.

[0030] Since a pedestal can move according to a rail, the transport device of the optical fiber base metal of the claim 5 of this invention is a thing suitable for an automation and full automation.

[Translation done.]