스마트 농업

신선한 과채 이미지

분류 모델 개발

작성자 : AI15_이소림

목 차

000

- ▶ 1. 프로젝트 소개
- ▶ 2. 데이터 설명
- > 3. 모델학습 및 성능 확인
- ▶ 4. 회고 및 향후 연구

1. 프로젝트 소개

[그림 1] 스마트농업 관련 개념들의 적용 범위

출처: 한국과학기술기획평가원(KISTEP) 기술동향브리프 | 2021-03호

▶ 스마트 농업

- 농업 밸류체인(생산과 유통, 소비) 전반에 첨단 정보통신 기술이 접목되어 자동화,지 능화를 구현하는 개념
- ▶ 디지털 농업
- 농업 관련 전반의 데이터를 디지털화하여 수집, 분석하 고 공유하는 기술을 의미함

1. 프로젝트 설명

벨기에 옥티니온의 딸기 수확 로봇 루비온

- -빛 감지 센서로 익은 딸기만 선별
- -하루 360kg 수확 (사람은 하루 50kg 수확)

미국 어번던트 로보틱스의 사과 수확 로봇

- -뉴질랜드 식품 회사와 함께 사과 농장에 도입
- -카메라로 과일 선별 후 진공 용기 로 흡입 수확

영국 필드로보틱스의 나무딸기 수확 로봇

- -인공지능과 카메라로 익은 딸기 선별
- -하루 2만5000개 수확 가능 (사람은 8시간 1만5000개 수확)

미국 루트AI의 방울 토마토 수확 로봇 비르고

- -인공지능과 카메라로 익은 토마토 선별
- -미국과 캐나다 비닐하우스 에서 시험 성공

자료=각 사

출처: 조선비즈(https://biz.chosun.com/site/data/html_dir/2019/07/10/2019071002946.html)

1. 프로젝트 소개

- ▶ 신선한 과채 분류 모델 활용 (농업용 로봇)
 - 생산
 - ▶ 신선한 과일과 채소 수확
 - ▶ 신선하지 못한 과일과 채소의 제거
 - 유통
 - 수확 후 포장과정 자동화
 - 유통 중 품질관리

1. 프로젝트 소개

- ▶ 프로젝트 아이디어
 - ▶ 사과 이미지 분류 모델 개발
 - ▶ 다양한 과채가 존재 → 모든 과채별로 모델을 만들기에는 한계
 - → 주요 과채모델을 만들어서 다른 과채에 적용 가능
 - ▶ 형태가 비슷한 과일(배, 오렌지, 복숭아) 과 형태가 비슷하지 않은 과일(바 나나, 파인애플)을 사과 분류 모델 적용시 성능차이가 존재

2. 데이터 설명

- ▶ 데이터 출처
 - ▶ 캐글 (Fruits fresh and rotten for classification)
 - ▶ Train, Test 데이터, fresh, rotten이 풀더에 각각 분류된 자료
 - ▶ 이진분류 (target : fresh, rotten)
 - ▶ 전처리 없이 이미지 분류 모델

2. 데이터 설명

	Train			Test			
	fresh	rotten	total	fresh	rotten	total	
Apples	1,693	2,342	4,035	395	601	996	
Banana	1,581	2,224	3,805	381	530	911	
Oranges	1,466	1,595	3,061	388	403	791	

- Train
 - Apples

- Test
 - Apples
 - Banana
 - Oranges

- ▶ 프로젝트 진행
 - ▶ 사과 분류 모델 개발
 - ▶ 전이학습을 통한 사과 분류 모델을 개발
 - ▶ 사전 학습모델 : Resnet50, VGG16, InceptionV3, EffecientNetB7
 - ▶ 다른 과채 분류 모델로 사용가능 여부 검토
 - ▶ Train : fresh apples, rotten apples로 모델학습 진행
 - ▶ Test : apples, banana, oranges 모델 성능 테스트 진행

- ▶ 사과 분류 모델 학습
 - ▶ 사전 학습모델 : Resnet50, VGG16, InceptionV3, EffecientNetB7
 - ▶ 완전 연결신경망 (epochs=30)

Case1 (256)	<pre>x = GlobalAveragePooling2D()(x) x = Dense(256, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x)</pre>
Case2 (64_128)	<pre>x = GlobalAveragePooling2D()(x) x = Dense(64, activation='relu')(x) x = Dense(128, activation='relu')(x) x = Dropout(0.2)(x) predictions = Dense(1, activation='sigmoid')(x)</pre>

분류평가지표 Accuracy	Resnet50		VGG16		InceptionV3		EfficintNetB7	
	Case1 (256)	Case2 (64_128)	Case1 (256)	Case2 (64_128)	Case1 (256)	Case2 (64_128)	Case1 (256)	Case2 (64_128)
Apples	0.7349	0.7631	0.9819	0.9849	0.9980	0.9970	0.6456	0.6114
Banana	0.6224	0.6158	0.8353	0.8397	0.6378	0.6367	0.5851	0.5939
Oranges	0.6776	0.6928	0.8673	0.8824	0.6005	0.5891	0.5259	0.5461

- ▶ 분류모델 학습 결과
 - ▶ 사과 분류에서는 사전학습모델 VGG과 Inception의 정확성이 높음
 - ▶ 사과 분류 모델을 다른 과일 분류에 테스트
 - ▶ 바나나와 오렌지의 분류 성능에 큰 차이는 없음
- ▶ 가설검정
 - ▶ 사과 분류 모델을 이용하여 오렌지 분류가 가능하다. → 기각

- ▶ VGG16과 InceptionV3의 추가 모델 검증
 - Train
 - Apples + Banana (total: 7,840)
 - Apples + Oranges (total:7,096)
 - Apples + Banana + Oranges (total: 10,901)
 - Test
 - Apples (total: 996)
 - ▶ Banana (total: 911)
 - Oranges (total: 791)

평가지표 Accuracy	VGG16 Case2 (64_128)					Incept Case1		
Train Test	Apples	Apples Banana	Apples Oranges	Apples Banana Oranges	Apples	Apples Banana	Apples Oranges	Apples Banana Oranges
Apples	0.9849	0.9869	0.9779	0.9759	0.9980	0.9980	0.9970	0.9980
Banana	0.8397	0.9934	0.8441	0.9835	0.6378	0.9989	0.6169	0.9980
Oranges	0.8824	0.8496	0.9772	0.9735	0.6005	0.6321	0.9949	0.9937

4. 회고 및 향후 목표

000

- ▶ 사전학습모델의 성능테스트
 - ▶ epochs=5 정도에서 윤곽이 형성되므로 epochs=30까지는 불필요
 - ▶ Resnet50의 경우 epochs=100 → 정확도 0.85수준
 - ▶ VGG16, InceptionV3의 경우 epochs=5 → 정확도 0.9 이상

▶ Case1과 Case2의 성능차이가 미세하므로 분류 불필요

4. 회고 및 향후 목표

000

- ▶ 프로젝트 아이디어
 - ▶ 형태가 비슷한 과일(배, 오렌지) 과 형태가 비슷하지 않은 과일(바 나나, 파인애플)을 사과 분류 모델 적용시 성능차이가 존재

- ▶ 프로젝트 결과
 - ▶ 과일 형태에 따른 성능차이가 존재하지 않음
 - ▶ 가설 기각

4. 회고 및 향후 연구

- ▶ 추가적 연구
 - ▶ 하나의 과채가 아니라 다양한 과채를 포함한 훈련데이터 → 과채
 의 형태에 따른 분류모델을 모델링 하는 것이 가능한지 여부에 대하여 추가적으로 분석실시
 - 과채 중심의 이미지 뿐만 아니라 주변 배경과 함께 있는 과채 이미 지를 포함한 과채분류 모델학습
 - ▶ 실제 유용성 증대 → 영상을 통한 과채분류 모델학습

감사합니다