Mathematical Proof

John Shea

January 21, 2019

Assignment #2

Question 1

- a. Any of:
 - $\{x \mid x \text{ is a positive integer that is divisible by } 5\}$
 - $\{x \in \mathbb{Z}^+ \mid x \equiv 0 \pmod{5}\}$
 - $\{x \in \mathbb{Z}^+ \mid 5|x\}$
 - $\{5x \mid x \in \mathbb{Z}^+\}$
- b. Any of:
 - $\{x \mid x \text{ is an integer between -4 and 3 inclusive}\}$
 - $\bullet \ \{x \in \mathbb{Z} \mid -4 \le x \le 3\}$
- c. Any of:
 - $\{x \mid x \text{ is a prime number}\}$
 - $\{x \mid \pi(x)\}$

Question 2

a. To show that $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$, we begin by building the left side of the statement. First, we look at $(A \cap B)$, and the we remove C.

We then look at $A \setminus C$ and $B \setminus C$, and then take their intersection.

Clearly, the above Venn Diagrams demonstrate that $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.

b. To show that $C \cup (A \setminus B) = ((A \cup C) \setminus B) \cup (B \cap C)$, we begin with the left side. First, we diagram $A \setminus B$, and then we add C.

Next, we move to the right side of the statement. We will first diagram $A \cup C$, then remove B. Next, we will diagram $B \cap C$, and finally we will put them together.

From the above diagrams, it's easy to see that $C \cup (A \setminus B) = ((A \cup C) \setminus B) \cup (B \cap C)$

Question 3

Explanation

 $A \cup B$ is similar to $C \cup (A \setminus B)$, with the exception of any element that is in A and B, but not C (i.e. $(A \cap B) \setminus C$). For example: if we have sets $A = \{1, 4, 5, 7\}$, $B = \{2, 4, 6, 7\}$,

and $C = \{3, 5, 6, 7\}$. $A \cup C = \{1, 3, 4, 5, 6, 7\}$. Whereas $C \cup (A \setminus B) = \{1, 3, 5, 6, 7\}$. This is created by taking $A \setminus B = \{1, 5\}$ and adding C. The difference between the two sets is $A \cap B \setminus C = \{4\}$. All of which is depicted below.

Question 4

a.
$$W \to (S \land \neg M)$$

b.
$$S \to (W \land \neg M)$$

• This statement is different than a and c in that it specifies what conditions can be determined from the knowledge that I will go shopping. While a and c detail what information can be gleaned from the information that I will go shopping.

c.
$$W \to (S \land \neg M)$$

• equivalent to statement a. Both statements allow for the conclusion that I will got shopping and I will not go to a movie based on the information that it is Wednesday.

Question 5

$$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$$

$$\begin{array}{l} P \leftrightarrow Q & (Begin) \\ \equiv (P \to Q) \land (Q \to P) & (\text{definition of bi-directionality}) \\ \equiv (\neg P \lor Q) \land (\neg Q \lor P) & (\text{Conditional Law}) \\ \equiv (Q \lor \neg P) \land (P \lor \neg Q) & (\text{Commutative Law}) \\ \equiv (\neg Q \to \neg P) \land (\neg P \to \neg Q) & (\text{Conditional Law}) \\ \equiv \neg P \leftrightarrow \neg Q & (\text{definition of bi-directionality}) \end{array}$$

This can also be shown with truth tables.

$P \leftrightarrow Q$

Q	$P \to Q$	$Q \leftarrow P$	$P \leftrightarrow Q$
Τ	Τ	Τ	Τ
\mathbf{F}	\mathbf{F}	Τ	\mathbf{F}
Τ	${ m T}$	${ m F}$	\mathbf{F}
F	Τ	Τ	${ m T}$
	T F T	T T F F T T	$egin{array}{cccccccccccccccccccccccccccccccccccc$

$$\neg P \leftrightarrow \neg P$$

$\neg P$	$\neg Q$	$\neg P \to \neg Q$	$\neg Q \leftarrow \neg P$	$\neg P \leftrightarrow \neg Q$
F	F	${ m T}$	Τ	Τ
F	\mathbf{T}	${ m T}$	${ m F}$	\mathbf{F}
T	\mathbf{F}	F	${ m T}$	\mathbf{F}
T	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$

$$P \leftrightarrow Q \land \neg P \leftrightarrow Q$$

P	Q	$P \leftrightarrow Q$	$\neg P \leftrightarrow \neg Q$
Т	Τ	Τ	Τ
\mathbf{T}	F	\mathbf{F}	F
\mathbf{F}	Τ	\mathbf{F}	\mathbf{F}
F	F	${ m T}$	Τ

Question 6

a.
$$P \lor Q \equiv \neg P \to Q$$

• By the rules of implication, $\neg P \to Q$ will be true whenever P is true. This accounts for the left side of the statement $P \lor Q$. When P is false, the implication requries Q to be true in order to be a true statement (which is the conditional law), thus perfectly replicating the original disjunct term, as the following truth table demonstrates.

P	Q	$P\vee Q$	$\neg P \to Q$
Т	Τ	Τ	Τ
\mathbf{T}	F	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$
F	F	F	F

b.
$$P \wedge Q \equiv \neg (P \rightarrow \neg Q)$$

• The \neg on the outside of the parenthesis reverses the meaning of the inside term (i.e. $P \rightarrow Q$). Therefore, to make this statement equivelant to $P \land Q$, this statement needs to return fase only when P and Q are both true. $P \leftarrow Q$ will return true whenever P is false, so this gaurentees that P must be true. By setting the right-hand side of the implication to $\neg Q$, This gaurantees that if P is true and Q false $P \rightarrow Q$ will return true. Therefore, the only way the inside statement fails is if P and Q are both true. Thus return a true for the overall statement. This is best demonstrated with the following equivalences:

$$P \wedge Q$$
 (Begin)
 $\equiv \neg(\neg P \vee \neg Q)$ (Negation Rule)
 $\equiv \neg(P \rightarrow \neg Q)$ (Conditional Law)