Multiple regression 2

Frank Edwards 2/21/2020

What does it mean to condition on a variable?

Let's return to the divorce model with this DAG

We want to know how much we learn about divorce rates by knowing another variable if:

- · We already know marriage rates
- · We already know the median age at first marriage

The single and multiple regressions

```
mAge<-quap(
  alist(
    D ~ dnorm(mu, sigma),
    mu<-a + bA * A,
    a \sim dnorm(0, 0.2),
    bA \sim dnorm(0, 0.5),
    sigma ~ dexp(1)),
  data = WaffleDivorce
mMarriage<-quap(
  alist(
    D ~ dnorm(mu, sigma),
    mu < -a + bM * M.
    a \sim dnorm(0, 0.2),
    bM \sim dnorm(0, 0.5),
    sigma ~ dexp(1)),
  data = WaffleDivorce
mBoth<-quap(
  alist(
    D ~ dnorm(mu, sigma),
    mu < -a + bA * A + bM * M,
    a \sim dnorm(0, 0.2).
    bA \sim dnorm(0, 0.5),
    bM \sim dnorm(0, 0.5),
    sigma ~ dexp(1)),
  data = WaffleDivorce
```

The relationship between divorce and marriage

The relationship between divorce and marriage

The relationship between age and marriage

The relationship between age and marriage

- \cdot mMarriage tells us $\mathrm{E}(\mathit{D}|\mathit{M})$
- mBoth tells us $\mathrm{E}(\textit{D}|\textit{A},\textit{M})$

- · mMarriage tells us $\mathrm{E}(\mathit{D}|\mathit{M})$
- mBoth tells us E(D|A, M)
- \cdot mAge tells us $\mathrm{E}(\mathit{D}|\mathit{A})$
- · mBoth tells us $\mathrm{E}(\mathit{D}|A,M)$

- · mMarriage tells us $\mathrm{E}(\mathit{D}|\mathit{M})$
- mBoth tells us E(D|A, M)
- \cdot mAge tells us $\mathrm{E}(\mathit{D}|\mathit{A})$
- mBoth tells us E(D|A, M)
- Once we know the median age at first marriage, the marriage rate provides little additional information about divorce rates.

- · mMarriage tells us $\mathrm{E}(\mathit{D}|\mathit{M})$
- mBoth tells us E(D|A, M)
- mAge tells us E(D|A)
- mBoth tells us E(D|A, M)
- Once we know the median age at first marriage, the marriage rate provides little additional information about divorce rates.
- The association between marriage rates and divorce rates is spurious, driven by the underlying $D \leftarrow A \rightarrow M$ relationship

Visualizing models with more than one predictor

- 1. Prior prediction plots: What are plausible datasets we could observe?
- 2. Posterior prediction plots: Does the model fit the observed data?
- 3. Counterfactual plots: What is the effect of X on Y?

Prior prediction on the standardized scale for one value of the predictors

Prior prediction on the original scale for one value of the predictors

Prior prediction for all observed values

Visualizing models with more than one predictor

- 1. Prior prediction plots: What are plausible datasets we could observe?
- 2. Posterior prediction plots: Does the model fit the observed data?
- 3. Counterfactual plots: What is the effect of X on Y?

Posterior prediction plot

```
d_post<-sim(mBoth)</pre>
mu post<-apply(d post, 2, mean)</pre>
pi_d_post<-apply(d_post, 2, PI)</pre>
plot_dat<-data.frame(mu = mu_post,
                      d upr = pi d post[2,],
                      d lwr = pi d post[1,],
                      d_obs = WaffleDivorce$D,
                      state = WaffleDivorce$Loc)
ggplot(plot_dat, aes(x = d_obs,
                      v = mu.
                      ymin = d lwr,
                      ymax = d_upr)) +
  geom_pointrange() +
  geom abline(intercept = 0, slope = 1) +
  xlab("observed divorce rate") +
  ylab("predicted divorce rate")
```


Posterior prediction plot with labels

Visualizing models with more than one predictor

- 1. Prior prediction plots: What are plausible datasets we could observe?
- 2. Posterior prediction plots: Does the model fit the observed data?
- 3. Counterfactual plots: What is the effect of X on Y?

Counterfactual plots

Algorithm:

- 1. Pick a variable to manipulate
- 2. Choose a range or set of values for that predictor
- 3. Simulate each of the other variables in the model for each value of the predictor and each posterior sample

- 1. Pick a variable to manipulate: Age
- 2. Choose a range for that predictor: [-2, 2]

```
## scenarios: age varies from -2 to +2 SD of observed
a_cfact<-seq(-2, 2, length.out = 100)</pre>
```

- 1. Pick a variable to manipulate: Age
- 2. Choose a range for that predictor: [-2, 2]

```
## scenarios: age varies from -2 to +2 SD of observed
a_cfact<-seq(-2, 2, length.out = 100)</pre>
```

3. Simulate each of the other variables in the model for each value of the predictor

- 1. Pick a variable to manipulate: Age
- 2. Choose a range for that predictor: [-2, 2]

```
## scenarios: age varies from -2 to +2 SD of observed
a_cfact<-seq(-2, 2, length.out = 100)</pre>
```

3. Simulate each of the other variables in the model for each value of the predictor

- 1. Pick a variable to manipulate: Age
- 2. Choose a range for that predictor: [-2, 2]

```
## scenarios: age varies from -2 to +2 SD of observed
a_cfact<-seq(-2, 2, length.out = 100)</pre>
```

3. Simulate each of the other variables in the model for each value of the predictor

Recall that our DAG thinks that $A \to D$, $A \to M$, and $M \to D$. If we want to understand what will happen with A changes, we need to allow M to move as A moves.

Simulate other variables in the model

Model the relationship between A and M on D, and the relationship between A and M

```
mBothCFact<-quap(
  alist(
    ## A -> D <- M
    D ~ dnorm(mu, sigma),
    mu < -a + bA * A + bM * M.
    a \sim dnorm(0, 0.2),
    bA \sim dnorm(0, 0.5),
    bM \sim dnorm(0, 0.5).
    sigma ~ dexp(1),
    ## A -> M
    M ~ dnorm(mu m. sigma m).
    mu m <- a m + bAm \star A,
    a m \sim dnorm(0, 0.2),
    bAm \sim dnorm(0, 0.5),
    sigma m ~ dexp(1)).
  data = WaffleDivorce)
```

Simulate other variables in the model

Our predictions should account for the expected changes in M when we counterfactually "manipulate" A

summary(mBothCFact)

```
##
                                sd
                                         5.5%
                                                   94.5%
## a
           -5.396811e-09 0.09707604 -0.1551463 0.1551463
## hA
           -6.135133e-01 0.15098361 -0.8548143 -0.3722123
          -6.538064e-02 0.15077308 -0.3063451 0.1755839
## bM
## sigma 7.851181e-01 0.07784342 0.6607093 0.9095269
## a_m
          1.841448e-08 0.08684782 -0.1387996 0.1387996
## bAm
          -6.947376e-01 0.09572691 -0.8477277 -0.5417475
## sigma m 6.817367e-01 0.06758002 0.5737308 0.7897427
```

Generate predictions

```
sim_dat<-data.frame(A = seq(-2, 2, length.out = 100))</pre>
## A is fixed, simulate M then D from posterior
D cfact<-sim(mBothCFact, data = sim dat, vars = c("M", "D"))
## compute mean and PI for both M and D predictions
mu_M <-apply(D_cfact$M, 2, mean)</pre>
mu D <- apply(D cfact$M, 2, mean)</pre>
pi_M <-apply(D_cfact$M, 2, PI)</pre>
pi_D <- apply(D_cfact$D, 2, PI)</pre>
### put it all together for plotting
sim dat<-sim dat %>%
 mutate(mu_M = mu_M,
         mu D = mu D,
         D lwr = pi D[1,],
         D_{upr} = pi_D[2,],
         M_lwr = pi_M[1,],
         M \text{ upr} = pi M[2,])
```

Plot expected changes in D for changes in A

Plot expected changes in M for changes in A (for illustration)

Recall that A is negatively associated with M, but once we condition on A, M is not clearly associated with D. We allow A to change M, and M and A to change D in this approach

```
ggplot(sim_dat,
    aes(x = A,
        y = mu_M,
        ymin = M_lwr,
        ymax = M_upr)) +
geom_line() +
geom_ribbon(alpha = 0.5) +
ylab("Marriage rate, posterior prediction") +
xlab("Median age at first marriage, counterfactual")
```


Categorical variables

Kinds of categorical variables

• Binary [T,F]

Kinds of categorical variables

- · Binary [T,F]
- · Qualitative differences

Kinds of categorical variables

- · Binary [T,F]
- · Qualitative differences
- · Ranked qualitative differences

Categorical variables typically take on three formats:

- factor (a linked pair of integers and labels, can be finicky)
- character (label only vectors)
- · integers (where labels are implicit)

Categorical variables typically take on three formats:

- factor (a linked pair of integers and labels, can be finicky)
- character (label only vectors)
- · integers (where labels are implicit)

I typically prefer to work with character vectors (as.character()), but there are cases where each approach has advantages

Returning to the height data

```
data(Howell1)
d <- Howell1
str(d)
## 'data.frame': 544 obs. of 4 variables:
##
   $ height: num 152 140 137 157 145 ...
##
   $ weight: num 47.8 36.5 31.9 53 41.3 ...
##
   $ age : num 63 63 65 41 51 35 32 27 19 54 ...
##
   $ male : int 1001010101...
d<-d %>%
 mutate(h = as.vector(scale(height)),
        w = as.vector(scale(weight)))
```

Returning to the height data

```
data(Howell1)
d <- Howell1
str(d)
## 'data.frame': 544 obs. of 4 variables:
##
   $ height: num 152 140 137 157 145 ...
##
   $ weight: num 47.8 36.5 31.9 53 41.3 ...
##
   $ age : num 63 63 65 41 51 35 32 27 19 54 ...
##
   $ male : int 1001010101...
d<-d %>%
 mutate(h = as.vector(scale(height)),
        w = as.vector(scale(weight)))
```

any categoricals?

Estimating a model with sex as a predictor

```
m_h1<-quap(alist(
    h ~ dnorm(mu, sigma),
    mu <- a + b * male,
    a ~ dnorm(0, 1),
    b ~ dnorm(0, 1),
    sigma ~ dexp(1)),
    data = d)</pre>
summary(m_h1)
```

```
## mean sd 5.5% 94.5%

## a -0.1302467 0.05814938 -0.2231806 -0.03731275

## b 0.2761924 0.08451697 0.1411180 0.41126683

## sigma 0.9884536 0.02992610 0.9406260 1.03628133
```

What does this model suggest?

$$E(height_i) = \alpha + \beta \times Male_i$$

$$E(height_i) = \alpha + \beta \times Male_i$$

For males:

$$E(height_{male}) = \alpha + \beta \times 1$$

$$E(height_i) = \alpha + \beta \times Male_i$$

For males:

$$E(height_{male}) = \alpha + \beta \times 1$$

For females:

$$E(height_{female}) = \alpha + \beta \times 0$$

$$E(height_i) = \alpha + \beta \times Male_i$$

For males:

$$E(height_{male}) = \alpha + \beta \times 1$$

For females:

$$E(height_{female}) = \alpha + \beta \times 0$$

The intercept α then becomes the expected height for females, and $\alpha + \beta$ is the expected height for males.

An alternative parameterization

```
## a[1] -0.1311841 0.05824742 -0.22427476 -0.388935 | ## a[2] 0.1464392 0.06154108 0.04888464 0.2447937 | ## sigma 0.9884520 0.02992596 0.94062453 1.0362795
```

Extending to multiple category variables

```
data(iris)
head(iris)
```

```
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
               5.1
                            3.5
                                          1.4
                                                       0.2
                                                            setosa
               4.9
                            3.0
## 2
                                          1.4
                                                       0.2
                                                            setosa
## 3
               4.7
                            3.2
                                          1.3
                                                       0.2
                                                            setosa
## 4
               4.6
                            3.1
                                          1.5
                                                       0.2
                                                            setosa
## 5
               5.0
                            3.6
                                          1.4
                                                       0.2
                                                            setosa
## 6
               5.4
                            3.9
                                          1.7
                                                       0.4
                                                            setosa
```

What is the expected petal length for each species?

```
iris<- iris %>%
  mutate(p.l = as.vector(scale(Petal.Length)))
m iris<-quap(alist(</pre>
  p.l <- dnorm(mu, sigma),</pre>
  mu<- a[Species],
 a[Species] ~ dnorm(0, 1),
 sigma ~ dexp(1)),
 data = iris)
levels(iris$Species)
## [1] "setosa"
                     "versicolor" "virginica"
plot(precis(m_iris, depth = 2))
a[1]
a[2]
a[3]
sigma
                     -1.0
                                         -0.5
                                                                                0.5
                                                                                                    1.0
                                                             0.0
                                                      Value
```

Masked relationships

What is the relationship between milk nutrients and brain size in primates?

You thought we were studying criminal justice?

```
data(milk)
d <- milk
d<-d %>%
  mutate(K = as.vector(scale(kcal.per.g)),
     N = as.vector(scale(neocortex.perc)),
     M = as.vector(scale(log(mass)))) %>%
  filter(!(is.na(K) | is.na(N) | is.na(M))) # remove missings
glimpse(d)
```

```
## Observations: 17
## Variables: 11
                    <fct> Strepsirrhine, New World Monkey, New World Monkey, N...
## $ clade
## $ species
                    <fct> Eulemur fulvus. Alouatta seniculus. A palliata. Cebu...
## $ kcal.per.g
                    <dbl> 0.49, 0.47, 0.56, 0.89, 0.92, 0.80, 0.46, 0.71, 0.68...
## $ perc.fat
                    <dbl> 16.60, 21.22, 29.66, 53.41, 50.58, 41.35, 3.93, 38.3...
## $ perc.protein
                    <dbl> 15.42, 23.58, 23.46, 15.80, 22.33, 20.85, 25.30, 20....
## $ perc.lactose
                    <dbl> 67.98, 55.20, 46.88, 30.79, 27.09, 37.80, 70.77, 41....
## $ mass
                    <dbl> 1.95, 5.25, 5.37, 2.51, 0.68, 0.12, 0.47, 0.32, 1.55...
## $ neocortex.perc <dbl> 55.16, 64.54, 64.54, 67.64, 68.85, 58.85, 61.69, 60....
## $ K
                    <dbl> -0.9400408. -1.0639553. -0.5063402. 1.5382486. 1.724...
                    <dbl> -2.080196025, -0.508641289, -0.508641289, 0.01074247...
## $ N
                    <dbl> -0.4558357. 0.1274408. 0.1407505. -0.3071581. -1.076...
## $ M
```

Is milk nutrient density related to percent of the brain that is neocortex? to body weight?

Two initial models, one for brain composition, and one for body mass:

$$\begin{split} & K_i \sim N(\mu,\sigma) \\ & \mu_i = \alpha + \beta_N N_i \\ & \alpha \sim N(0,1) \\ & \beta_N \sim N(0,1) \\ & \sigma \sim \text{Exp}(1) \\ \\ & K_i \sim N(\mu,\sigma) \\ & \mu_i = \alpha + \beta_M M_i \\ & \alpha \sim N(0,1) \\ & \beta_M \sim N(0,1) \\ & \sigma \sim \text{Exp}(1) \end{split}$$

Check the priors

Maybe rein those in a bit?

Try $\alpha \sim N(0, 0.2)$, $\beta_N \sim N(0, 0.5)$

Fit the models

```
mN<-quap(alist(
  K ~ dnorm(mu, sigma),
  mu <- a + bn * N,
  a \sim dnorm(0, 0.2),
  bn \sim dnorm(0, 0.5),
  sigma ~ dexp(1)
), data = d)
mM<-quap(alist(</pre>
  K ~ dnorm(mu, sigma),
  mu < -a + bm * M,
  a \sim dnorm(0, 0.2),
  bm \sim dnorm(0, 0.5),
  sigma ~ dexp(1)
), data = d)
```

Format for visualization

```
### draw from the posterior for both models: M
sim seq<-seq(-2, 2, length.out=17)
mu_m<-link(mM, data = list(M = sim_seq))</pre>
mu_m_mn<-apply(mu_m, 2, mean)</pre>
mu m pi<-apply(mu m, 2, PI)
### N
mu_n<-link(mN, data = list(N = sim_seq))</pre>
mu n mn<-apply(mu n, 2, mean)
mu n pi<-apply(mu n, 2, PI)
### format for plotting, -2,2 sequence for M, N, mu and PI, along with observed data. Stack for facets
plot_dat<-data.frame(x = sim_seq,
                     y = mu m mn,
                     obs x = d$M.
                     obs_y = dK,
                     y_{upr} = mu_{pi[2,]}
                     v lwr = mu m pi[1,],
                     model = "Log mass only")
plot dat<-plot dat%>%
  bind rows(data.frame(x = sim seq,
                       y = mu_n_mn,
                       obs x = d$M.
                       obs y = dSK,
                       y_upr = mu_n_pi[2,],
                       v lwr = mu n pi[1.].
                       model = "Percent neocortex only"))
```

Plot it

```
ggplot(plot_dat, aes(x = x, y = y, ymin = y_lwr, ymax = y_upr)) +
geom_line() +
geom_ribbon(alpha = 0.2) +
geom_point(aes(x = obs_x, y = obs_y)) +
facet_wrap(~model)
```


Masking

```
## K_N N_M K_M
## 1 0.1554576 0.7503758 -0.3542636
```

```
## K_N N_M K_M
## 1 0.1554576 0.7503758 -0.3542636
```

When two predictor variables are correlated with each other, and have opposite sign correlations with the outcome, excluding one can *mask* an underlying relationship.

Fit a model with both mass and percent neocortex

```
mBoth<-quap(alist(
    K ~ dnorm(mu, sigma),
    mu <- a + bn * N + bm * M,
    a ~ dnorm(0, 0.2),
    bn ~ dnorm(0, 0.5),
    bm ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
), data = d)
plot(coeftab(mM, mN, mBoth))</pre>
```


Multicollinearity

- · Sometimes, adding more predictors unmasks relationships
- · Sometimes, adding more predictors masks relationships

```
library(gridExtra)
p1<-ggplot(d, aes(x = kcal.per.g, y = perc.fat)) + geom_point() + geom_smooth(method = "lm")
p2<-ggplot(d, aes(x = kcal.per.g, y = perc.lactose)) + geom_point() + geom_smooth(method = "lm")
p3<-ggplot(d, aes(x = perc.lactose, y = perc.fat)) + geom_point() + geom_smooth(method = "lm")
grid.arrange(p1, p2, p3, ncol = 3)</pre>
```


What happens when we put strongly correlated variables in a model?

```
d<-d %>% mutate(F = as.vector(scale(perc.fat)), L = as.vector(scale(perc.lactose)))
mF<-quap(alist(
    K ~ dnorm(mu, sigma),
    mu <- a + bF * F,
    a ~ dnorm(0, 0.2),
    bF ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
    ), data = d)

mL<-quap(alist(
    K ~ dnorm(mu, sigma),
    mu <- a + bL * L,
    a ~ dnorm(0, 0.2),
    bL ~ dnorm(0, 0.2),
    sigma ~ dexp(1)
    ), data = d)</pre>
```

Results from one variable regressions

With both variables as predictors

