ML @ URL Episode 1

Intro to deep learning

Linear Regression

Model:

Objective function:

$$L = \sum_{i} (y_i - y_i^{pred})^2$$

Optimization (exact):

$$w = (X^T X)^{-1} X^T y$$

Linear Regression

Model:

Objective function:

$$L = \sum_{i} (y_i - y_i^{pred})^2$$

Optimization (iterative):

$$w_0 \leftarrow 0$$

$$w_{i+1} \leftarrow w_i - \alpha \frac{\partial L}{\partial W}$$

$$\frac{\partial L}{\partial W} = \sum_i -2x(y_i - (wx_i + b))$$

Logistic Regression

$$P(y) = \sigma(Wx + b)$$

Objective function?

Logistic Regression

Model:

Objective function:

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Optimization (iterative):

Logistic Regression

Model:

$$X \longrightarrow a_{[y=a]} = W_a x + b_a$$

$$X \longrightarrow a_{[y=b]} = W_b x + b_b$$

$$a_{[y=c]} = W_c x + b_c$$

$$P(y=a|X)$$

$$\sum_{j} e^{a_{[y=class]}} \longrightarrow P(y=b|X)$$

$$P(y=a|X)$$

$$P(y=a|X)$$

Objective function:

$$L = -\sum_{i} \sum_{class} [y_i = class] \log P(y = class | x_i)$$

Gradient descent

Update:

$$w_{i+1} \leftarrow w_i - \alpha \frac{\partial L}{\partial w}$$

- a learning rate a<<1
- L loss function

Can we do better?

Gradient descent

Update:

$$w_{i+1} \leftarrow w_i - \alpha \frac{\partial L}{\partial w}$$

- a learning rate a<<1
- L loss function

Can we do better?

Newton-Raphson

Parameter update

$$w_{i+1} \leftarrow w_i - \alpha H_L^{-1} \frac{\partial L}{\partial w}$$

Hessian:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \, \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \, \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \frac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

Red: Newton-Raphson Green: gradient descent

Any drawbacks?

Newton-Raphson

Parameter update

$$w_{i+1} \leftarrow w_i - \alpha H_L^{-1} \frac{\partial L}{\partial w}$$

Hessian:

$$\mathbf{H} = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \, \partial x_n} \ rac{\partial^2 f}{\partial x_2 \, \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_n \, \partial x_1} & rac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{bmatrix}.$$

Red: Newton-Raphson Green: gradient descent

Quadratic time/memory!

Stochastic gradient descent

Loss function is mean over all data samples.

Approximate with 1 or few random samples.

Update:

$$w_{i+1} \leftarrow w_i - \alpha E \frac{\partial L}{\partial w}$$

- E expectation
- Learning rate should decrease

SGD with momentum

Idea: move towards "overall gradient direction", Not just current gradient.

$$\begin{aligned} w_0 &\leftarrow 0; v_0 \leftarrow 0 \\ v_{i+1} &\leftarrow \alpha \frac{\partial L}{\partial w} + \mu v_i \\ w_{i+1} &\leftarrow w_i - v_{i+1} \end{aligned}$$

Helps for noisy gradient / canyon problem

SGD with momentum

Idea: move towards "overall gradient direction", Not just current gradient.

$$w_0 \leftarrow 0$$
; $v_0 \leftarrow 0$

$$\mathbf{v}_{i+1} \leftarrow \alpha \frac{\partial L}{\partial w} + \mu \mathbf{v}_{i}$$

$$w_{i+1} \leftarrow w_i - v_{i+1}$$

AdaGrad

Idea: decrease learning rate individually for each parameter in proportion to sum of it's gradients so far.

$$G_{t} = \sum_{\tau=1}^{t} \left[\frac{\partial L}{\partial w} \right]^{2}$$

"Total update path length" (for each parameter)

$$w_{t+1} = w_t - \frac{\eta}{\sqrt{G_t + \epsilon}} \frac{\partial L}{\partial w}$$

RMSProp

Idea: make sure all gradient steps have approximately same magnitude (by keeping moving average of magnitude)

$$ms_{t+1} = \gamma \cdot ms_t + (1 - \gamma) \left\| \frac{\partial L}{\partial w} \right\|^2$$

$$w_{t+1} = w_t - \frac{\eta}{\sqrt{ms + \epsilon}} \frac{\partial L}{\partial w}$$

Alltogether

Moar stuff

Without Hessian

- Adadelta ~ adagrad with window
 - Adam ~ rmsprop + momentum
 - Nesterov-momentum
 - Hessian-free (narrow)
 - Conjugate gradients

Estimate inverse Hessian

- BFGS
- L-BFGS
- ****-BFGS

Nonlinear dependencies

How to get that?

Feature extraction

Loss, for example:

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Model:

Training:

$$\underset{\theta_{1}}{\operatorname{argmin}} L(y, P(y|x))$$

Features would tune to your problem automatically!

What do we want, exactly?

Loss, for example:

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Model:

Training:

$$\underset{\theta_{1}}{\operatorname{argmin}} L(y, P(y|x))$$

What do we want, exactly?

Loss, for example:

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Gradients:
$$\underset{\theta_2}{\operatorname{argmin}} L(y, P(y|x))$$
 $\underset{\theta_1}{\operatorname{argmin}} L(y, P(y|x))$

Model:

Output:

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

$$w'_{i} = \sum_{j} w_{j}^{o} w_{ij}^{h}$$
 $b' = \sum_{j} w_{j}^{o} b_{j}^{h} + b^{o}$

$$P(y|x) = \sigma(\sum_{i} w'_{i}x_{i} + b')$$

Model:

Output:

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o} \sigma(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Model:

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o} \sigma(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Training:

$$w := w - \alpha$$

Gradient of what? w.r.t. what?

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o} \sigma(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

$$\partial E Loss(y, P(y|x))$$

$$w := w - \alpha \frac{\sum_{x_i, y_i} A_i}{\partial w}$$

Model:

Output:

$$P(y|x) = \sigma(\sum_{j} w_{j}^{o} \sigma(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Training:

$$\partial E - \log P_w(y_i|x_i)$$

$$w := w - \alpha \frac{\sum_{x_i, y_i} x_i}{\partial w}$$

Losses: (task-dependent) crossentropy MSE, MAE

TL;DR: backprop = chain rule*

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \cdot \frac{\partial g(x)}{\partial x}$$

TL;DR: backprop = chain rule*

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \cdot \frac{\partial g(x)}{\partial x}$$

* g and x can be vectors/vectors/tensors

$$\frac{\partial L(\sigma(linear_{w2,b2}(\sigma(linear_{w1,b1}(x)))))}{\partial w1} = \dots$$

$$\frac{\partial L}{\partial w 1} = \frac{\partial L}{\partial \sigma}$$
.

Backpropagation

$$\frac{\partial L}{\partial w1} = \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial linear_{w2,b2}}.$$

Backpropagation

$$\frac{\partial L}{\partial w 1} = \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial linear_{w2,b2}} \cdot \frac{\partial linear_{w2,b2}}{\partial \sigma}.$$

Backpropagation

$$\frac{\partial L}{\partial w 1} = \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial linear_{w2,b2}} \cdot \frac{\partial linear_{w2,b2}}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial linear_{w1,b1}} \cdot \frac{\partial linear_{w1,b1}}{\partial w 1}$$

39

Matrix derivatives

Let's compute:

$$\frac{\partial L(X \times W + b)}{\partial X} = \frac{\partial L(X \times W + b)}{\partial [X \times W + b]} \times$$
 What?

Variable shapes:

X

[batch size, features]

$$\frac{\partial L(X \times W + b)}{\partial X}$$

[batch size, features]

W

[features, outputs]

b

[outputs]

$$\frac{\partial L(X \times W + b)}{X \times W + b}$$

[batch size, outputs]

Matrix derivatives

Let's compute:

$$\frac{\partial L(X \times W + b)}{\partial X} = \frac{\partial L(X \times W + b)}{\partial [X \times W + b]} \times W^{T}$$

Variable shapes:

X

[batch size, features]

 $\frac{\partial L(X \times W + b)}{\partial X}$

[batch size, features]

W

[features, outputs]

b

[outputs]

$$\frac{\partial L(X \times W + b)}{X \times W + b}$$

[batch size, outputs]

Matrix derivatives (words)

Gradient of
$$\sum_{i} \log p(y_i|x_i, w) = \sum_{i} \text{gradient log } p(y_i|x_i, w)$$

linear over X :
$$\frac{\partial L}{\partial [X \times W + b]} \times W^T$$

linear over W :
$$\frac{1}{\|X\|} \cdot X^T \times \frac{\partial L}{\partial [X \times W + b]}$$

sigmoid:
$$\frac{\partial L}{\partial \sigma(x)} \cdot [\sigma(x) \cdot (1 - \sigma(x))]$$

Works for any kind of x (scalar, vector, matrix, tensor)

Matrix derivatives (formulae)

$$\frac{\partial \sum_{i} \log p(y_{i}|x_{i}, w)}{\partial w} = \frac{\sum_{i} \partial \log p(y_{i}|x_{i}, w)}{\partial w}$$

$$\frac{\partial L(X \times W + b)}{\partial X} = \frac{\partial L}{\partial [X \times W + b]} \times W^{T}$$

$$\frac{\partial L(X \times W + b)}{\partial W} = X^{T} \times \frac{\partial L}{\partial [X \times W + b]}$$

$$\frac{\partial L(\sigma(x))}{\partial x} = \frac{\partial L}{\partial \sigma(x)} \cdot [\sigma(x) \cdot (1 - \sigma(x))]$$

Works for any kind of x (scalar, vector, matrix, tensor)

Back to neural networks

Model:

Training:

Back to neural networks

Model:

Biological inspiration

Biological inspiration

Biological inspiration

Not actual neurons:)

- Neurons react in "spikes", not real numbers
- Neurons maintain/change their states over time
- No one knows for sure how they "train"
- Neuroglial cells are important But noone knows, why

Oligodendrocyte

Microglia

Ependymal cells

Neuroglial Cells of the CNS

Connectionist phrasebook

- Layer a building block for NNs :
 - "Dense layer": f(x) = Wx+b
 - "Nonlinearity layer": $f(x) = \sigma(x)$
 - Input layer, output layer
 - A few more we gonna cover later
- Activation layer output
 - i.e. some intermediate signal in the NN
- Backpropagation a fancy word for "chain rule"

Connectionist phrasebook

"Train it via backprop!"

More layers

More layers

How do we train it?

Discrete Choices

Layer 2 Features

Layer 1 Features

Original Data

Nonlinearity

•
$$f(a) = 1/(1+e^a)$$

•
$$f(a) = tanh(a)$$

•
$$f(a) = max(0,a)$$

•
$$f(a) = log(1+e^a)$$

Initialization, symmetry problem

- Initialize with zeros
 W ← 0
- What will the first step look like?

Initialization, symmetry problem

- Break the symmetry!
- Initialize with random numbers!

$$W \leftarrow N(0,0.01)?$$

 $W \leftarrow U(0,0.1)?$

 Can get a bit better for deep NNs

57

Potential caveats?

Potential caveats?

Hardcore overfitting

No "golden standard" for architecture

Computationally heavy

You gonna code this

today

