Convolutional Neural Networks

CS5242

Lee Hwee Kuan & Wang Wei

Teaching assistant:

Connie Kou Khor Li, Ji Xin, Ouyang Kun

cs5242@comp.nus.edu.sg

Questions

SMS to **76767**

OR https://peerq.nus.edu.sg.

Content: <code><space><answer or question>

For exmaple: "nn what is the group size limit"

Roadmap

- Convolution and Pooling
 - 1D convolution
 - 2D convolution
 - Pooling
- Architectures
 - AlexNet, VGG, InceptionNet, ResNet, DenseNet, XceptionNet
- Training
 - Activation functions
 - Normalization functions
 - Hyper-parameters
- Applications
 - Classification, Detection, NeuralStyle

Intended learning outcome

Know	Know the difference between convolution and MLP		
Understand	Understand the characteristic of convolution layers		
Calculate	Calculate the size of convolution outputs and kernel size		
Implement	Implement 1D and 2D conv operations from scratch		

From MLP to Convolution

- House price prediction (https://www.kaggle.com/harlfoxem/housesalesprediction)
 - location x_1
 - # bedrooms x_2
 - # bathrooms x_3
 - # size(sqft) x_4
 - Etc.
- MLP
 - $y = relu(x_1w_1 + x_2w_2 + x_3w_3 + x_4w_4 + b)$

Source from http://www.jwbrealestatecapital.com/realestate-rental-properties-for-sale-in-north-jacksonville/

From MLP to Convolution

Predict the digit in an image? (http://yann.lecun.com/exdb/mnist/)

- Image representation
 - height 28 pixels, width 28 pixels
 - size=28x28=784
- Multi-layer perceptron (MLP)
 - $h^i = relu(h^{i-1}W^i + b^i), W^i \in R^{|h^{i-1}| \times |h^i|}, b^i \in R^{|h^i|}, h^0 = x$
 - $y = softmax(h^{n-1})$

Source from: deeplearning.net/tutorial/

From MLP to Convolution

- Problems:
 - $W^i \in R^{|h^{i-1}| \times |h^i|}$
 - 2500x2000=5,000,000
 - Too many parameters→ overfitting

NN architecture	Dataset	Distortions	Test Error [%]
MLP:2500-2000-1500-1000-500-10		no	1.47
MLP:2000-2000-2000-2000-2000-2000-10	MNIST	no	1.531 ± 0.051
MLP:1500-1500-1500-1500-1500-1500-10	MNIST	no	1.513 ± 0.052
MLP:1000-1000-1000-1000-1000-1000-1000-100	MNIST	no	1.628 ± 0.035
MLP:1000-1000-1000-1000-1000-1000-1000-10	MNIST	no	1.542 ± 0.052
MLP:1000-1000-1000-1000-1000-1000-10	MNIST	no	1.517 ± 0.069
MLP:1000-1000-1000-1000-1000-10	MNIST	no	1.529 ± 0.078
MLP:1000-1000-1000-1000-10	MNIST	no	1.571 ± 0.046
MLP:1000-1000-1000-1000-10	MNIST	no	1.549 ± 0.038
MLP:1000-1000-1000-10	MNIST	no	1.650 ± 0.030
MLP:500-500-500-500-500-500-10	MNIST	no	1.744 ± 0.038
MLP:500-500-500-500-500-10	MNIST	no	1.702 ± 0.064
MLP:500-500-500-500-10	MNIST	no	1.719 ± 0.069
MLP:500-500-500-500-10	MNIST	no	1.728 ± 0.028
MLP:500-500-500-10	MNIST	no	1.765±0.040
MLP:2000-1500-1000-500-10	MNIST	5% translation	0.94
MLF 2500-2000-1500-1000-500-10		affine + elastic	0.35
MLP committee:2500-2000-1500-1000-500-10		affine + elastic	0.31
CNN 20M-40M-60M-80M-100M-120M-150N	MNIST	affine + elastic	0.35

Source from: http://people.idsia.ch/~ciresan/results.htm

Convolution

- Location estimation
 - At time t, the server will receive the location x_t from a sensor, which may include some noise.
 - The location estimation relies on recent locations more than historical locations with weights $w_0 \ge w_1 \ge \dots w_{k-1}$, with their sum=1.
 - The estimated location

•
$$y_t = w_0 \times x_t + w_1 \times x_{t-1} + ... + w_{k-1} \times x_{t-(k-1)}$$

$$\bullet \qquad = \sum_{i=1}^k w_i \times x_{t-i}$$

•
$$= \sum_{i=-\infty}^{\infty} w_i \times x_{t-i}, (w_i = 0 \text{ for } i < 0 \text{ or } i \ge k)$$

Convolution and Cross-Correlation

Formal definition

•
$$y_t = \sum_{i=-\infty}^{\infty} w_i \times x_{t-i}$$

- *x* is the input; length *l*
- the input area, i.e. t, t-1, ... t-(k-1) is called the receptive field for CNN

Receptive field

- y_t is the output feature; length o
- Cross-correlation (https://en.wikipedia.org/wiki/Cross-correlation)

•
$$y_t = \sum_{i=-\infty}^{\infty} u_i \times x_{t+i}, u_i = w_{-i}$$

• In CNN, convolution refers to cross-correlation

3

kernel

Padding (why?)

- Manual padding (p)
 - Kernel size/length: *k*
 - Input length: *l*
 - # outputs o = l + p k + 1
 - Output feature values for p=1
 - 3x1+2x0+2x2=7
 - 3x0+2x2+2x2=8
 - 3x2+2x2+2x3=16
 - 3x2+2x2+2x1=14
 - 3x3+2x1+2x0=11
 - Torch, PyTorch, Caffe, SINGA

Padding

- Valid/No padding (p = 0)
 - # inputs denoted as l
 - # outputs o = l k + 1 = 6 3 + 1 = 4
 - Output feature values
 - 3x1+2x0+2x2=7
 - 3x0+2x2+2x2=8
 - 3x2+2x2+2x3=16
 - 3x2+2x2+2x1=14
 - Outputs become shorter
 - TensorFlow, Keras

Padding

- Same padding (p?)
 - l + p k + 1 = l
 - p = k 1
 - Left padding = $\lfloor p/2 \rfloor$
 - Right padding = $\lfloor p/2 \rfloor$
 - Output values
 - 3x0+2x1+2x0=2
 - 3x1+2x0+2x2=7
 - 3x0+2x2+2x2=8
 - 3x2+2x2+2x3=16
 - 3x2+2x3+2x1=14
 - 3x3+2x1+2x0=11
 - TensorFlow, Keras

Question

- Given the input length, kernel size, and padding size, what is the output length?
 - qn1: l = 8, k = 3, p = 2, o = ?
 - qn2: l = 224, k = 5, p = 1, o = ?
- Given the input length, kernel size and padding type, what is the padding size and output length?
 - l = 224, k = 5,
 - qn3: Valid, p = ?
 - qn4: Valid, *o* =?
 - qn5: Same, p = ?
 - qn6: Same, o = ?

Question

- Given the input length, kernel size, and padding size, what is the output length?
 - qn1: l = 8, k = 3, p = 2, o = 8
 - qn2: l = 224, k = 5, p = 1, o = 221
- Given the input length, kernel size and padding type, what is the padding size and output length?
 - l = 224, k = 5,
 - qn3: Valid, p=0
 - qn4: Valid, o = 220
 - qn5: Same, p = 4
 - qn6: Same, o = 224

Stride (Why?)

- How many steps to move towards the next receptive field
 - s=1, every receptive field is considered -> many outputs
 - s>1, some receptive fields are skipped.
 - Miss some (redundant) information
 - Faster
 - Fewer outputs

Stride

- Exact matching
 - With padding p (=1)

•
$$o = \left\lfloor \frac{l+p-k}{s} \right\rfloor + 1$$

• (6+1-3)/2+1=3

Stride

- Not exact matching
 - With padding p (=2)

•
$$o = \left\lfloor \frac{l+p-k}{s} \right\rfloor + 1$$

• (6+2-3)/2+1=3

Question

- Given the input length, kernel size, padding size, stride, what is the output length?
 - qn7: l = 224, k = 5, p = 1, s = 2, o = ?

Question

- Given the input length, kernel size, padding size, stride, what is the output length?
 - qn7: l = 224, k = 5, p = 1, s = 2, o = 111

References and additional readings

- [1] LeCun, Yann; Léon Bottou; Yoshua Bengio; Patrick Haffner (1998). "Gradient-based learning applied to document recognition" (PDF). Proceedings of the IEEE. 86 (11): 2278–2324. doi:10.1109/5.726791. Retrieved October 7, 2016.
- http://cs224d.stanford.edu/
- http://cs231n.stanford.edu/
- Goodfellow Ian, Bengio Yoshua, Courville Aaron. Deep learning. MIT Press. http://www.deeplearningbook.org. Chapter 9.
- https://www.tensorflow.org/api_guides/python/nn#Notes_on_SAME _Convolution_Padding

Final Projects (40%)

- Projects will be held on Kaggle-in-class
 - Register using your nus email (https://inclass.kaggle.com/)
 - No data disclosure, no additional data
 - Each group <=2 students
 - Submission deadline: 04-Nov-2017 06:00 PM, Singapore Time
 - Report deadline: 11-Nov-2017 06:00 PM, Singapore Time
- Each group will be randomly assigned to
 - A computer vision project, https://inclass.kaggle.com/c/cs5242-project-1
 - A natural language processing project, https://inclass.kaggle.com/c/cs5242-project-2
- First task
 - Find a partner register your group information on IVLE (Project -> Final project).

Questions

- nt1 do you know transpose convolution?
- nt2 do you know separable convolution?
- nt3 do you know max pooling?
- nt4 do you know average pooling?
- nt5 do you know alexnet?
- nt6 do you know vgg?
- nt7 do you know resnet?