安徽大学 2023—2024 学年第一学期

《线性代数 A》模拟题(一) (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	11	111	四	总 分
得 分					
阅卷人					

—、	冼柽颙	(5 小颗.	每小题3分,	共15分)
•	~= 1 7 ~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T 1 N2 7 7 7	/ 1 + 2 / 1 /

得 分

- 1. 设A是n阶矩阵,且|A|=0,则有()

 - (A) A 的列秩等于零; (B) A 中必有两个列向量对应成比例;
 - (C) A的任一列向量可由其他列向量线性表示;
 - (D) A中必有一列向量可由其他列向量线性表示.
- 2. 设A,B为n阶方阵,且A≠O,AB=O,下列结论必然正确的是()
 - (A) B = 0:

- (B) $(A+B)^2 = A^2 + B^2$:
- (C) $(A-B)^2 = A^2 BA + B^2$; (D) $(A-B)(A+B) = A^2 B^2$.

3. 设矩阵
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $A 与 B$ 必有())

- (A) 合同,且相似;(C) 不合同,但相似;(D) 既不合同也不相似.
- 4. 设 A 为 n 阶 方阵, $B = \begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix}$, 其中 α 为 n 维列向量,且 r(A) = r(B),则(
 - (A) $AX = \alpha$ 必有无穷多解; (B) $AX = \alpha$ 必有唯一解;

 - (C) BY = 0 仅有零解; (D) BY = 0 必有非零解.
- 5. 向量组 $\alpha_1,\alpha_2,\dots,\alpha_s$ ($s \ge 2$) 线性相关的充分必要条件是(C)
 - (A) $\alpha_1, \alpha_2, \dots, \alpha_s$ 中至少有一个零向量;
 - (B) $\alpha_1, \alpha_2, \dots, \alpha_s$ 中至少有两个向量的对应分量成比例;
 - (C) $\alpha_1, \alpha_2, \dots, \alpha_s$ 中至少有一个向量可由其余向量线性表示;
 - (D) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中至少有一部分组 $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_t}$ (t < s) 线性相关.
- 二、填空题(5小题,每小题3分,共15分)

得分

6. 行列式
$$\begin{vmatrix} x-1 & 5 & 1 & 2 \\ 1 & x-2 & 1 & -1 \\ 3 & 2 & x-3 & 1 \\ 1 & 1 & 1 & x-4 \end{vmatrix}$$
 中, x^3 项的系数为_____.

7. 设 α , β 均为 3 维列向量. 若 $\alpha\beta^T = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 5 & 6 \\ 2 & 1 & 2 \end{pmatrix}$,则 $\alpha^T\beta =$ _____.

- 8. 设A为一个n阶可逆矩阵,且A有一特征值为 λ ,则 $(A^*)^2 + 2I$ 必有特征值
- 9. 设 $\alpha_1 = (1,1,1), \alpha_2 = (1,1,0), \alpha_3 = (1,0,0), \alpha = (1,2,1)$,则 α 在 $\alpha_1,\alpha_2,\alpha_3$ 下 的坐标为
- 三、分析计算题(6 小题,每小题 10 分,共 60 分)

得 分

11.
$$D_{n} = \begin{vmatrix} x_{1} & a_{1} & a_{2} & \cdots & a_{n-1} \\ a_{1} & x & a_{2} & \cdots & a_{n-1} \\ a_{1} & a_{2} & x & \cdots & a_{n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{1} & a_{2} & a_{3} & & x \end{vmatrix}.$$

- | $a_1 \quad a_2 \quad a_3 \quad x$ |
 | 12. 设矩阵 A = B 相似,且 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ 3 & 3 & a \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}.$
 - (1) 求a,b的值;
 - (2) 求可逆矩阵P, 使得 $P^{-1}AP = B$.
- 13. 已知向量组 $\beta_1 = (0,1,-1), \beta_2 = (a,2,1), \beta_3 = (b,1,0)$ 与向量组 $\alpha_1 = (1,2,-3)$, $\alpha_2 = (3,0,1)$, $\alpha_3 = (9,6,-7)$ 具有相同的秩,且 β_3 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出, 求a,b的值.
- 14. 给定 R^3 的两个基

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \stackrel{\vdash}{=} \beta_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \beta_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \beta_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

- (1) 求出由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵;
- (2) 求向量 $\alpha = \begin{pmatrix} 9 \\ 6 \\ 5 \end{pmatrix}$ 在这两组基下的坐标.

15. 已知矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 2 & 0 \\ 4 & -2 & 1 \end{pmatrix}$$
,求 A^{2024} .

16. 用正交线性替换将二次型 $x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$ 化为标准型.

四、证明题(共10分)

17. 设A是n阶正定矩阵,P为可逆阵,P^T为P的转置矩阵,证明: P^TAP 也为正定矩阵.