CS 747, Autumn 2020: Week 9, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.
```

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_{\top}$

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

(Let *T* denote the number of episodes.)

• Is $\lim_{T \to \infty} \hat{V}_{\mathsf{First-visit}}^T = V^\pi$?

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_\top.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_\top.

Episode 4: s_3, 1, s_\top.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_\top
```

(Let *T* denote the number of episodes.)

• Is $\lim_{T\to\infty} \hat{V}_{\mathsf{First-visit}}^T = V^\pi$? Yes.

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{First-visit}}^T = V^{\pi}$? Yes.
- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{Every-visit}}^T = V^\pi$?

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

- Is $\lim_{T\to\infty} \hat{V}_{\mathsf{First-visit}}^T = V^\pi$? Yes.
- Is $\lim_{T o \infty} \hat{V}_{\mathsf{Every-visit}}^T = V^\pi$? Yes.

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{First-visit}}^T = V^\pi$? Yes.
- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{Every-visit}}^T = V^\pi$? Yes.
- ullet Is $\lim_{T o\infty} \hat{V}_{ ext{Second-visit}}^T = V^\pi$?

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{First-visit}}^T = V^\pi$? Yes.
- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{Every-visit}}^T = V^\pi$? Yes.
- Is $\lim_{T\to\infty} \hat{V}_{\text{Second-visit}}^T = V^{\pi}$? Yes.

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}.
```

- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{First-visit}}^T = V^\pi$? Yes.
- Is $\lim_{T\to\infty} \hat{V}_{\mathsf{Every-visit}}^T = V^{\pi}$? Yes.
- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{Second-visit}}^T = V^{\pi}$? Yes.
- ullet Is $\lim_{T o\infty} \hat{V}_{\mathsf{Last-visit}}^T = V^\pi$?

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}.
```

- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{First-visit}}^T = V^\pi$? Yes.
- Is $\lim_{T\to\infty} \hat{V}_{\mathsf{Every-visit}}^T = V^\pi$? Yes.
- Is $\lim_{T\to\infty} \hat{V}_{\text{Second-visit}}^T = V^{\pi}$? Yes.
- Is $\lim_{T \to \infty} \hat{V}_{\mathsf{Last-visit}}^T = V^\pi$? No.

Reinforcement Learning

- Least-squares and Maximum likelihood estimators
- 2. On-line implementation of First-visit MC
- 3. TD(0) algorithm
- 4. Convergence of Batch TD(0)
- 5. Control with TD learning

Reinforcement Learning

- 1. Least-squares and Maximum likelihood estimators
- 2. On-line implementation of First-visit MC
- 3. TD(0) algorithm
- 4. Convergence of Batch TD(0)
- 5. Control with TD learning

You have two coins.

- You have two coins.
- You are told that the probability of a head (1-reward) for Coin 1 is $p \in [0, 0.5]$, and that for Coin 2 is 2p.

- You have two coins.
- You are told that the probability of a head (1-reward) for Coin 1 is $p \in [0, 0.5]$, and that for Coin 2 is 2p.
- Hence the corresponding probabilities of a tail (0-reward) are 1 p and 1 2p, respectively.

- You have two coins.
- You are told that the probability of a head (1-reward) for Coin 1 is $p \in [0, 0.5]$, and that for Coin 2 is 2p.
- Hence the corresponding probabilities of a tail (0-reward) are 1 p and 1 2p, respectively.
- You toss each coin once and see these outcomes.

 $\mathbb{P}\{\text{heads}\} = \mathbf{p}$ Outcome = 1

Coin 2

 $\mathbb{P}\{\text{heads}\} = \frac{2p}{p}$ Outcome = 0

- You have two coins.
- You are told that the probability of a head (1-reward) for Coin 1 is $p \in [0, 0.5]$, and that for Coin 2 is 2p.
- Hence the corresponding probabilities of a tail (0-reward) are 1 p and 1 2p, respectively.
- You toss each coin once and see these outcomes.

 $\mathbb{P}\{\text{heads}\} = p$ Outcome = 1 Coin 2

 $\mathbb{P}\{\text{heads}\} = \frac{2p}{p}$ Outcome = 0

What is your estimate of p (call it \hat{p})?

Least-squares estimate.

For
$$q \in [0, 0.5]$$
,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{\text{def}}{=} \underset{q \in [0,0.5]}{\operatorname{argmin}} SE(q) = 0.2.$

Least-squares estimate.

For
$$q \in [0, 0.5]$$
,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{\text{def}}{=} \underset{q \in [0,0.5]}{\operatorname{argmin}} SE(q) = 0.2.$

Maximum likelihood estimate.

For
$$q \in [0, 0.5]$$
,

$$egin{aligned} \mathcal{L}(q) &= q (1-2q). \ \hat{p}_{ML} \stackrel{ ext{def}}{=} rgmax_{q \in [0,0.5]} \mathcal{L}(q) &= 0.25. \end{aligned}$$

Least-squares estimate.

For
$$q \in [0, 0.5]$$
,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{\text{def}}{=} \underset{q \in [0,0.5]}{\operatorname{argmin}} SE(q) = 0.2.$

Maximum likelihood estimate.

For
$$q \in [0, 0.5]$$
,

$$L(q) = q(1-2q).$$
 $\hat{p}_{ML} \stackrel{ ext{def}}{=} \mathop{\mathrm{argmax}}_{q \in [0,0.5]} L(q) = 0.25.$

Which estimate is "correct"?

Least-squares estimate.

For
$$q \in [0, 0.5]$$
,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{\text{def}}{=} \underset{q \in [0,0.5]}{\operatorname{argmin}} SE(q) = 0.2.$

Maximum likelihood estimate.

For
$$q \in [0, 0.5]$$
,

$$L(q) = q(1-2q).$$
 $\hat{p}_{ML} \stackrel{ ext{def}}{=} rgmax_{q \in [0,0.5]} L(q) = 0.25.$

Which estimate is "correct"? Neither!

Least-squares estimate.

For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{\text{def}}{=} \underset{q \in [0,0.5]}{\operatorname{argmin}} SE(q) = 0.2.$

Maximum likelihood estimate.

For $q \in [0, 0.5]$,

$$L(q) = q(1-2q).$$
 $\hat{p}_{ML} \stackrel{\text{def}}{=} \operatorname*{argmax}_{q \in [0,0.5]} L(q) = 0.25.$

- Which estimate is "correct"? Neither!
- Which estimate is more useful?

Least-squares estimate.

For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{\text{def}}{=} \underset{q \in [0,0.5]}{\operatorname{argmin}} SE(q) = 0.2.$

Maximum likelihood estimate.

For $q \in [0, 0.5]$,

$$L(q) = q(1-2q).$$
 $\hat{p}_{ML} \stackrel{\text{def}}{=} \operatorname*{argmax}_{q \in [0,0.5]} L(q) = 0.25.$

- Which estimate is "correct"? Neither!
- Which estimate is more useful? Depends on the use!

Least-squares estimate.

For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{\text{def}}{=} \underset{q \in [0,0.5]}{\operatorname{argmin}} SE(q) = 0.2.$

Maximum likelihood estimate.

For $q \in [0, 0.5]$,

$$L(q) = q(1-2q).$$
 $\hat{p}_{ML} \stackrel{\text{def}}{=} \mathop{\mathrm{argmax}}_{q \in [0,0.5]} L(q) = 0.25.$

- Which estimate is "correct"? Neither!
- Which estimate is more useful? Depends on the use!
- Note that there are other estimates, too.

Reinforcement Learning

- Least-squares and Maximum likelihood estimators
- 2. On-line implementation of First-visit MC
- 3. TD(0) algorithm
- 4. Convergence of Batch TD(0)
- 5. Control with TD learning

- Assume episodic task with $S = \{s_1, s_2, s_3\}$; following π .
- Say we start each episode with state s (for illustration s_2).

```
Episode 1: s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

- Assume episodic task with $S = \{s_1, s_2, s_3\}$; following π .
- Say we start each episode with state s (for illustration s_2).

```
Episode 1: s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

• $\hat{V}^1 = G(s_2, 1, 1) = 4.$

- Assume episodic task with $S = \{s_1, s_2, s_3\}$; following π .
- Say we start each episode with state s (for illustration s_2).

```
Episode 1: s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

- $\hat{V}^1 = G(s_2, 1, 1) = 4.$
- $\hat{V}^2 = \frac{1}{2} \{ G(s_2, 1, 1) + G(s_2, 2, 1) \} = 5.5.$

- Assume episodic task with $S = \{s_1, s_2, s_3\}$; following π .
- Say we start each episode with state s (for illustration s_2).

```
Episode 1: s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_2, 3, s_2, 3, s_1, 1, s_{\top}.
```

- $\hat{V}^1 = G(s_2, 1, 1) = 4.$
- $\hat{V}^2 = \frac{1}{2} \{ G(s_2, 1, 1) + G(s_2, 2, 1) \} = 5.5.$
- $\hat{V}^3 = \frac{1}{3} \{ G(s_2, 1, 1) + G(s_2, 2, 1) + G(s_2, 3, 1) \} \approx 6.33.$

- Assume episodic task with $S = \{s_1, s_2, s_3\}$; following π .
- Say we start each episode with state s (for illustration s_2).

```
Episode 1: s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_2, 3, s_2, 3, s_1, 1, s_{\top}.
```

- $\hat{V}^1 = G(s_2, 1, 1) = 4.$
- $\hat{V}^2 = \frac{1}{2} \{ G(s_2, 1, 1) + G(s_2, 2, 1) \} = 5.5.$
- $\hat{V}^3 = \frac{1}{3} \{ G(s_2, 1, 1) + G(s_2, 2, 1) + G(s_2, 3, 1) \} \approx 6.33.$
- In general, for $t \ge 1$:

$$\hat{V}^t(s) = \frac{1}{t} \sum_{i=1}^t G(s, i, 1).$$

$$\hat{V}^t(s) = \frac{1}{t} \sum_{i=1}^t G(s, t, 1)$$

$$\hat{V}^t(s) = rac{1}{t} \sum_{i=1}^t G(s, t, 1)$$

$$= rac{1}{t} \left(\sum_{i=1}^{t-1} G(s, i, 1) + G(s, t, 1)
ight)$$

$$\hat{V}^{t}(s) = \frac{1}{t} \sum_{i=1}^{t} G(s, t, 1)$$

$$= \frac{1}{t} \left(\sum_{i=1}^{t-1} G(s, i, 1) + G(s, t, 1) \right)$$

$$= \frac{1}{t} \left((t-1)\hat{V}^{t-1}(s) + G(s, t, 1) \right)$$

$$\hat{V}^{t}(s) = \frac{1}{t} \sum_{i=1}^{t} G(s, t, 1)$$

$$= \frac{1}{t} \left(\sum_{i=1}^{t-1} G(s, i, 1) + G(s, t, 1) \right)$$

$$= \frac{1}{t} \left((t-1)\hat{V}^{t-1}(s) + G(s, t, 1) \right)$$

$$= (1 - \alpha_{t})\hat{V}^{t-1}(s) + \alpha_{t}G(s, t, 1) \text{ for } \alpha_{t} = \frac{1}{t}.$$

$$\hat{V}^{t}(s) = \frac{1}{t} \sum_{i=1}^{t} G(s, t, 1)$$

$$= \frac{1}{t} \left(\sum_{i=1}^{t-1} G(s, i, 1) + G(s, t, 1) \right)$$

$$= \frac{1}{t} \left((t-1) \hat{V}^{t-1}(s) + G(s, t, 1) \right)$$

$$= (1 - \alpha_{t}) \hat{V}^{t-1}(s) + \alpha_{t} G(s, t, 1) \text{ for } \alpha_{t} = \frac{1}{t}.$$

• We already know that $\lim_{t \to \infty} \hat{V}^t(s) = V^\pi(s)$.

$$\hat{V}^{t}(s) = \frac{1}{t} \sum_{i=1}^{t} G(s, t, 1)$$

$$= \frac{1}{t} \left(\sum_{i=1}^{t-1} G(s, i, 1) + G(s, t, 1) \right)$$

$$= \frac{1}{t} \left((t-1)\hat{V}^{t-1}(s) + G(s, t, 1) \right)$$

$$= (1 - \alpha_{t})\hat{V}^{t-1}(s) + \alpha_{t}G(s, t, 1) \text{ for } \alpha_{t} = \frac{1}{t}.$$

- We already know that $\lim_{t\to\infty} \hat{V}^t(s) = V^{\pi}(s)$.
- Will we get convergence to $V^{\pi}(s)$ for other choices for α_t ?

• Result due to Robbins and Monro (1951).

- Result due to Robbins and Monro (1951).
- Let the sequence $(\alpha_t)_{t\geq 1}$ satisfy
 - $\blacktriangleright \sum_{t=1}^{\infty} \alpha_t = \infty.$
 - $\sum_{t=1}^{\infty} (\alpha_t)^2 < \infty.$

- Result due to Robbins and Monro (1951).
- Let the sequence $(\alpha_t)_{t\geq 1}$ satisfy

 - $\sum_{t=1}^{\infty} (\alpha_t)^2 < \infty.$
- For t > 1, set

$$\hat{V}^t(s) \leftarrow (1-\alpha_t)\hat{V}^{t-1}(s) + \alpha_t G(s,t,1).$$

- Result due to Robbins and Monro (1951).
- Let the sequence $(\alpha_t)_{t\geq 1}$ satisfy
 - $\blacktriangleright \sum_{t=1}^{\infty} \alpha_t = \infty.$
 - $\sum_{t=1}^{\infty} (\alpha_t)^2 < \infty.$
- For $t \ge 1$, set

$$\hat{V}^t(s) \leftarrow (1 - \alpha_t)\hat{V}^{t-1}(s) + \alpha_t G(s, t, 1).$$

• Then $\lim_{t\to\infty} \hat{V}^t(s) = V^\pi(s)$.

- Result due to Robbins and Monro (1951).
- Let the sequence $(\alpha_t)_{t\geq 1}$ satisfy
 - $\blacktriangleright \sum_{t=1}^{\infty} \alpha_t = \infty.$
 - $\sum_{t=1}^{\infty} (\alpha_t)^2 < \infty.$
- For $t \ge 1$, set

$$\hat{V}^t(s) \leftarrow (1-\alpha_t)\hat{V}^{t-1}(s) + \alpha_t G(s,t,1).$$

- Then $\lim_{t\to\infty} \hat{V}^t(s) = V^\pi(s)$.
- $(\alpha_t)_{t\geq 1}$ is the "learning rate" or "step size".

- Result due to Robbins and Monro (1951).
- Let the sequence $(\alpha_t)_{t\geq 1}$ satisfy
- For $t \ge 1$, set

$$\hat{V}^t(s) \leftarrow (1-\alpha_t)\hat{V}^{t-1}(s) + \alpha_t G(s,t,1).$$

- Then $\lim_{t\to\infty} \hat{V}^t(s) = V^\pi(s)$.
- $(\alpha_t)_{t\geq 1}$ is the "learning rate" or "step size".
- Must be large enough, as well as small enough!

- Result due to Robbins and Monro (1951).
- Let the sequence $(\alpha_t)_{t\geq 1}$ satisfy

 - $\sum_{t=1}^{\infty} (\alpha_t)^2 < \infty.$
- For $t \ge 1$, set

$$\hat{V}^t(s) \leftarrow (1-\alpha_t)\hat{V}^{t-1}(s) + \alpha_t G(s,t,1).$$

- Then $\lim_{t\to\infty} \hat{V}^t(s) = V^\pi(s)$.
- $(\alpha_t)_{t>1}$ is the "learning rate" or "step size".
- Must be large enough, as well as small enough!
- No need to store all previous episodes; t and \hat{V}^t suffice.

Reinforcement Learning

- 1. Least-squares and Maximum likelihood estimators
- 2. On-line implementation of First-visit MC
- 3. TD(0) algorithm
- 4. Convergence of Batch $TD(\lambda)$
- 5. Control with TD learning

• Suppose \hat{V}^t is our current estimate of state-values.

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

• At what point of time can we update our estimate $\hat{V}^t(s_2)$?

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- At what point of time can we update our estimate $\hat{V}^t(s_2)$?
- With MC methods, we would wait for s_{\top} , and then update $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}M$, where $M = 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1$.

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- At what point of time can we update our estimate $\hat{V}^t(s_2)$?
- With MC methods, we would wait for s_{\top} , and then update $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}M$, where $M = 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1$.
- Instead, how about this update as soon as we see s_3 ? $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}B$, where $B = 2 + \gamma \hat{V}^t(s_3)$.

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- At what point of time can we update our estimate $\hat{V}^t(s_2)$?
- With MC methods, we would wait for s_{\top} , and then update $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}M$, where $M = 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1$. Monte Carlo estimate.
- Instead, how about this update as soon as we see s_3 ? $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}B$, where $B = 2 + \gamma \hat{V}^t(s_3)$. Bootstrapped estimate.

Assume policy to be evaluated is π . Initialise \hat{V}^0 arbitrarily. Assume that the agent is born in state s^0 .

```
For t=0,1,2,\ldots:
Take action a^t \sim \pi(s^t).
Obtain reward r^t, next state s^{t+1}.
\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}.
For s \in S \setminus \{s^t\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s). //Often left implicit.
```

Assume policy to be evaluated is π . Initialise \hat{V}^0 arbitrarily. Assume that the agent is born in state s^0 .

```
For t=0,1,2,\ldots:
    Take action a^t \sim \pi(s^t).
    Obtain reward r^t, next state s^{t+1}.
    \hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}.
    For s \in S \setminus \{s^t\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s). //Often left implicit.
```

- $\hat{V}^t(s^t)$: current estimate; $r^t + \gamma \hat{V}^t(s^{t+1})$: new estimate.
- $r^t + \gamma \hat{V}^t(s^{t+1}) \hat{V}^t(s^t)$: temporal difference prediction error.
- α_{t+1} : learning rate.

Assume policy to be evaluated is π . Initialise \hat{V}^0 arbitrarily. Assume that the agent is born in state s^0 .

For $t=0,1,2,\ldots$:
Take action $a^t \sim \pi(s^t)$.
Obtain reward r^t , next state s^{t+1} . $\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}.$ For $s \in S \setminus \{s^t\}$: $\hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s)$. //Often left implicit.

- $\hat{V}^t(s^t)$: current estimate; $r^t + \gamma \hat{V}^t(s^{t+1})$: new estimate.
- $r^t + \gamma \hat{V}^t(s^{t+1}) \hat{V}^t(s^t)$: temporal difference prediction error.
- α_{t+1} : learning rate.
- Under standard conditions, $\lim_{t \to \infty} \hat{V}^t = V^{\pi}$.

Assume policy to be evaluated is π . Initialise \hat{V}^0 arbitrarily.

Assume that the agent is born in state s^0 .

```
For t=0,1,2,\ldots:
    Take action a^t \sim \pi(s^t).
    Obtain reward r^t, next state s^{t+1}.
    \hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}.
    For s \in S \setminus \{s^t\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s). //Often left implicit.
```

- $\hat{V}^t(s^t)$: current estimate; $r^t + \gamma \hat{V}^t(s^{t+1})$: new estimate.
- $r^t + \gamma \hat{V}^t(s^{t+1}) \hat{V}^t(s^t)$: temporal difference prediction error.
- α_{t+1} : learning rate.
- Under standard conditions, $\lim_{t\to\infty} \hat{V}^t = V^{\pi}$.
- In episodic tasks, keep $\hat{V}^t(s_{\perp})$ fixed at 0 (no updating).

Reinforcement Learning

- Least-squares and Maximum likelihood estimators
- 2. On-line implementation of First-visit MC
- 3. TD(0) algorithm
- 4. Convergence of Batch TD(0)
- 5. Control with TD learning

First-visit MC Estimate

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_T .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{First-visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{I}} G(s,i,1)}{\sum_{i=1}^{\mathsf{T}} \mathbf{1}(s,i,1)}.$$

First-visit MC Estimate

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$.

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{First-visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{I}} G(s,i,1)}{\sum_{i=1}^{\mathsf{T}} \mathbf{1}(s,i,1)}.$$

• For $s \in S$, $V : S \rightarrow \mathbb{R}$, define

$$Error_{First}(V, s) \stackrel{\text{def}}{=} \sum_{i=1}^{T} \mathbf{1}(s, i, 1) (V(s) - G(s, i, 1))^{2}$$
.

First-visit MC Estimate

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{First-visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{T}} G(s,i,1)}{\sum_{i=1}^{\mathsf{T}} \mathbf{1}(s,i,1)}.$$

• For $s \in S$, $V : S \rightarrow \mathbb{R}$, define

$$Error_{\mathsf{First}}(V,s) \stackrel{\mathsf{def}}{=} \sum_{i=1}^T \mathbf{1}(s,i,1) \left(V(s) - G(s,i,1)\right)^2.$$

• Observe that for $s \in S$, $\hat{V}_{\text{First-visit}}^{T}(s) = \operatorname{argmin}_{V} \operatorname{\textit{Error}}_{\text{First}}(V, s)$.

Every-visit MC Estimate

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_T .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: $s_3, 1, s_{\top}$.

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{Every\text{-}visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} G(s,i,j)}{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} \mathbf{1}(s,i,j)}.$$

Every-visit MC Estimate

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$.

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{Every-visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} G(s,i,j)}{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} \mathbf{1}(s,i,j)}.$$

• For $s \in S$, $V : S \rightarrow \mathbb{R}$, define

$$Error_{Every}(V, s) \stackrel{\text{def}}{=} \sum_{i=1}^{T} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j) (V(s) - G(s, i, j))^{2}.$$

Every-visit MC Estimate

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_T .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{Every\text{-}visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} G(s,i,j)}{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} \mathbf{1}(s,i,j)}.$$

• For $s \in S$, $V : S \rightarrow \mathbb{R}$, define

$$Error_{\mathsf{Every}}(V,s) \stackrel{\mathsf{def}}{=} \sum_{i=1}^T \sum_{j=1}^\infty \mathbf{1}(s,i,j) \left(V(s) - G(s,i,j)\right)^2.$$

• Observe for $s \in S$, $\hat{V}_{\text{Every-visit}}^{T}(s) = \operatorname{argmin}_{V} \textit{Error}_{\text{Every}}(V, s)$.

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}.
```

- After any finite T episodes, the estimate of TD(0) will depend on the initial estimate V^0 .
- To "forget" V^0 , run the T collected episodes over and over again, and make TD(0) updates.

```
Episode 1
Episode 2
Episode 3
Episode 4
Episode 5
Episode 6 (= Episode 1)
Episode 7 (= Episode 2)
Episode 8 (= Episode 3)
Episode 9 (= Episode 4)
Episode 10 (= Episode 5)
Episode 11 (= Episode 1)
Episode 12 (= Episode 2)
```

- Anneal the learning rate as usual $(\alpha_t = \frac{1}{t})$.
- $\lim_{t\to\infty} V^t$ will not depend on \hat{V}^0 .
- It only depends on T episodes of real data.
- Refer to $\lim_{t \to \infty} \hat{V}^t$ as $\hat{V}^T_{\mathsf{Batch-TD}(0)}$.
- Can we conclude something relevant about \$\hat{V}_{Batch-TD(0)}^T\$?

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$.

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_T .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_T .

• Let M_{MLE} be the MDP $(S, A, \hat{T}, \hat{R}, \gamma)$ with the highest likelihood of generating this data (true T, R unknown).

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$.

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: $s_3, 1, s_{\top}$.

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top} .

- Let M_{MLE} be the MDP $(S, A, \hat{T}, \hat{R}, \gamma)$ with the highest likelihood of generating this data (true T, R unknown).
- $\hat{V}_{\text{Batch-TD(0)}}^{T}$ is the same as V^{π} on $M_{MLE}!$

Comparison

Data.

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_\top$. Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$. Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_\top$. Episode 4: $s_3, 1, s_\top$. Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_\top$.

Estimates.

	<i>S</i> ₁	<i>S</i> ₂	S ₃
$\hat{V}_{\text{First-visit}}^{T}$	7.33	6.5	3
$\hat{V}_{Every-visit}^{T}$	5.83	4.57	3.25
$\hat{V}_{Batch-TD(0)}^{T}$	7.5	7	6

Comparison

Data.

Episode 1:
$$s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_\top$$
.
Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$.
Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_\top$.
Episode 4: $s_3, 1, s_\top$.
Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_\top$.

Estimates.

	<i>S</i> ₁	s_2	S ₃
$\hat{V}_{First-visit}^T$	7.33	6.5	3
$\hat{V}_{Every-visit}^T$	5.83	4.57	3.25
$\hat{V}_{Batch-TD(0)}^{T}$	7.5	7	6

- Which estimate is "correct"? Which is more useful?
- Is it recommended to bootstrap or not?

Comparison

Data.

Episode 1:
$$s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_\top$$
.
Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_\top$.
Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_\top$.
Episode 4: $s_3, 1, s_\top$.
Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_\top$.

Estimates.

	<i>S</i> ₁	S ₂	s ₃
$\hat{V}_{First-visit}^T$	7.33	6.5	3
$\hat{V}_{Every-visit}^T$	5.83	4.57	3.25
$\hat{V}_{Batch-TD(0)}^{T}$	7.5	7	6

- Which estimate is "correct"? Which is more useful?
- Is it recommended to bootstrap or not?
- Usually a "middle path" works best. Coming up next week!

Reinforcement Learning

- 1. Least-squares and Maximum likelihood estimators
- 2. On-line implementation of First-visit MC
- 3. TD(0) algorithm
- 4. Convergence of Batch TD(0)
- 5. Control with TD learning

1. Maintain action value function estimate $\hat{Q}^t : S \times A \to \mathbb{R}$ for $t \geq 0$, initialised arbitrarily.

We would like to get \hat{Q}^t to converge to Q^* .

- 1. Maintain action value function estimate $\hat{Q}^t : S \times A \to \mathbb{R}$ for $t \geq 0$, initialised arbitrarily. We would like to get \hat{Q}^t to converge to Q^* .
- 2. Follow policy π^t at time step $t \ge 0$, for example one that is ϵ_t -greedy with respect to \hat{Q}^t .
 - Set ϵ_t to ensure infinite exploration of every state-action pair and also being greedy in the limit.

- 1. Maintain action value function estimate $\hat{Q}^t : S \times A \to \mathbb{R}$ for $t \geq 0$, initialised arbitrarily. We would like to get \hat{Q}^t to converge to Q^* .
- Follow policy π^t at time step t ≥ 0, for example one that is
 ε_t-greedy with respect to Q
 ^t.

 Set ε_t to ensure infinite exploration of every state-action pair and also being greedy in the limit.
- 3. Every transition (s^t, a^t, r^t, s^{t+1}) conveys information about the underlying MDP. Update \hat{Q}^t based on the transition. Can use TD learning (suitably adapted) to make the update.

- 1. Maintain action value function estimate $\hat{Q}^t : S \times A \to \mathbb{R}$ for $t \geq 0$, initialised arbitrarily. We would like to get \hat{Q}^t to converge to Q^* .
- Follow policy π^t at time step t ≥ 0, for example one that is
 ε_t-greedy with respect to Q
 ^t.

 Set ε_t to ensure infinite exploration of every state-action pair and also being greedy in the limit.
- 3. Every transition (s^t, a^t, r^t, s^{t+1}) conveys information about the underlying MDP. Update \hat{Q}^t based on the transition. Can use TD learning (suitably adapted) to make the update. We see three different update rules.

• From state s^t , action taken is $a^t \sim \pi^t(s^t)$.

- From state s^t , action taken is $a^t \sim \pi^t(s^t)$.
- Update made to \hat{Q}^t after observing transition s^t , a^t , r^t , s^{t+1} :

$$\hat{Q}^{t+1}(s^t, a^t) \leftarrow \hat{Q}^t(s^t, a^t) + \alpha_{t+1} \{ \text{Target} - \hat{Q}^t(s_t, a^t) \}.$$

- From state s^t , action taken is $a^t \sim \pi^t(s^t)$.
- Update made to \hat{Q}^t after observing transition s^t , a^t , r^t , s^{t+1} :

$$\hat{Q}^{t+1}(s^t, a^t) \leftarrow \hat{Q}^t(s^t, a^t) + \alpha_{t+1}\{\text{Target} - \hat{Q}^t(s_t, a^t)\}.$$

Q-learning: Target = $r^t + \gamma \max_{a \in A} \hat{Q}^t(s^{t+1}, a)$.

Sarsa: Target = $r^t + \gamma \hat{Q}^t(s^{t+1}, a^{t+1})$.

Expected Sarsa: Target = $r^t + \gamma \sum_{a \in A} \pi^t(s^{t+1}, a) \hat{Q}^t(s^{t+1}, a^{t+1})$.

- From state s^t , action taken is $a^t \sim \pi^t(s^t)$.
- Update made to \hat{Q}^t after observing transition s^t , a^t , r^t , s^{t+1} :

$$\hat{Q}^{t+1}(\boldsymbol{s}^t, \boldsymbol{a}^t) \leftarrow \hat{Q}^t(\boldsymbol{s}^t, \boldsymbol{a}^t) + \alpha_{t+1} \{ \text{Target} - \hat{Q}^t(\boldsymbol{s}_t, \boldsymbol{a}^t) \}.$$

Q-learning: Target
$$= r^t + \gamma \max_{a \in A} \hat{Q}^t(s^{t+1}, a)$$
.
Sarsa: Target $= r^t + \gamma \hat{Q}^t(s^{t+1}, a^{t+1})$.
Expected Sarsa: Target $= r^t + \gamma \sum_{a \in A} \pi^t(s^{t+1}, a) \hat{Q}^t(s^{t+1}, a^{t+1})$.

- Q-learning's update is off-policy; the other two are on-policy.
- $\lim_{t\to\infty} \hat{Q}^t = Q^*$ for all three if π^t is ϵ_t -greedy w.r.t. \hat{Q}^t .
- If $\pi^t = \pi$ (time-invariant) and it still visits every state-action pair infinitely often, then $\lim_{t\to\infty} \hat{Q}^t$ is Q^{π} for Sarsa and Expected Sarsa, but is Q^* for Q-learning!

Temporal Difference Learning: Review

- Temporal difference (TD) learning is at the heart of RL.
- An instance of on-line learning (computationally cheap updates after each interaction).
- Applies to both prediction and control.
- Q-learning, Sarsa, Expected Sarsa are all model-free (use $\theta(|S||A|)$ -sized memory); can still be optimal in the limit.
- Bootstrapping exploits the underlying Markovian structure, which Monte Carlo methods ignore.
- The TD(λ) family of algorithms, $\lambda \in [0, 1]$, allows for controlling the extent of bootstrapping: $\lambda = 0$ implements "full bootstrapping" and $\lambda = 1$ is "no bootstrapping."

Temporal Difference Learning: Review

- Temporal difference (TD) learning is at the heart of RL.
- An instance of on-line learning (computationally cheap updates after each interaction).
- Applies to both prediction and control.
- Q-learning, Sarsa, Expected Sarsa are all model-free (use $\theta(|S||A|)$ -sized memory); can still be optimal in the limit.
- Bootstrapping exploits the underlying Markovian structure, which Monte Carlo methods ignore.
- The TD(λ) family of algorithms, λ ∈ [0, 1], allows for controlling the extent of bootstrapping: λ = 0 implements "full bootstrapping" and λ = 1 is "no bootstrapping."
 Coming up next week.