Day59_AUC-ROC_Curve_&_Confusion_Matrix

August 6, 2025

AUC-ROC Curve & Confusion Matrix

1 What is a Confusion Matrix?

A Confusion Matrix is used to evaluate the performance of a classification model. It gives us a breakdown of the model's predictions:

Actual Predicted	Predicted Negative (0)	Predicted Positive (1)
Actual Negative (0) Actual Positive (1)	True Negative (TN) False Negative (FN)	False Positive (FP) True Positive (TP)

2 Real-Life Analogy – COVID Test

- True Positive (TP) \rightarrow Sick person correctly predicted as sick
- True Negative $(TN) \rightarrow Healthy person correctly predicted as healthy$
- False Positive (FP) \rightarrow Healthy person predicted as sick (Unnecessary panic)
- False Negative (FN) \rightarrow Sick person predicted as healthy (Very dangerous)

3 Model Evaluation Metrics

Here are four major metrics derived from the Confusion Matrix:

Metric	Formula	Meaning
Accuracy	(TP + TN) / Total	Overall how
		$rac{ ext{many}}{ ext{predictions}}$
		were correct

Metric	Formula	Meaning
Precision	TP / (TP + FP)	Of all
		predicted
		positives,
		how many
		were actually
		positive
Recall	TP / (TP + FN)	Of all actual
		positives,
		how many
		did the model
		correctly
		identify
F1 Score	$2 \times (Precision \times Recall) / (Precision + Recall)$	Balance
		between
		Precision and
		Recall

4 What is Recall?

Recall is also called Sensitivity or True Positive Rate.

Formula:

$$Recall = TP/(TP + FN)$$

4.1 Example:

Let's say we are building a cancer detection model. If 100 people actually have cancer and the model only catches 80 of them:

- TP = 80 (correctly predicted positive)
- FN = 20 (missed positive cases)

Then:

$$Recall = 80/(80 + 20) = 0.80 or 80$$

4.2 High Recall:

- Catches most positive cases (great for medical tests or fraud detection)
- May result in more false alarms (higher FP)

4.3 Low Recall:

• Misses many positive cases — risky in sensitive applications!

5 ROC Curve and AUC – Understanding Performance

• ROC (Receiver Operating Characteristic) curve plots:

- X-axis \rightarrow False Positive Rate (FPR)
- Y-axis \rightarrow True Positive Rate (TPR or Recall)
- AUC (Area Under Curve) measures the area under the ROC curve
 - AUC close to $1.0 \rightarrow$ Excellent model
 - AUC around $0.5 \rightarrow \text{Random guess (bad model)}$

6 How to Read the ROC Curve

AUC Score	Model Interpretation
1.0	Perfect classifier (Best)
0.9+	Excellent model
0.7 – 0.8	Good / Acceptable
0.5	No discrimination (Random)
< 0.5	Worse than random

7 Experiment Results – Scaling Comparison

7.1 Best Case - Using StandardScaler

- Clean diagonal confusion matrix (correct predictions)
- ROC curve close to top-left (high recall & low FPR)
- AUC: &&High (0.90+)&&
- Accuracy:

90

7.2 Worst Case - Using Normalizer

- More off-diagonal elements (wrong predictions)
- ROC curve flatter to less distinction between classes
- AUC: Lower

 $(\approx 0.6-0.7)$

• Accuracy: Drops significantly

8 Summary

Use Confusion Matrix to count correct vs incorrect predictions

Use **Recall** when missing actual positives is dangerous

Use ROC Curve & AUC to evaluate models across thresholds

StandardScaler performs better than Normalizer for Logistic Regression

Test multiple preprocessing methods to optimize performance