Quicksort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 3

Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly
- Inherently recursive
 - Recursive calls and returns are expensive

Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly
- Inherently recursive
 - Recursive calls and returns are expensive
- Merging happens because elements in the left half need to move to the right half and vice versa
 - Consider an input of the form [0,2,4,6,1,3,5,9]

2/7

Shortcomings of merge sort

- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly
- Inherently recursive
 - Recursive calls and returns are expensive
- Merging happens because elements in the left half need to move to the right half and vice versa
 - Consider an input of the form [0,2,4,6,1,3,5,9]
- Can we divide the list so that everything on the left is smaller than everything on the right?
 - No need to merge!

■ Suppose the median of L is m

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

■ How do we find the median?

- \blacksquare Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- \blacksquare So T(n) is $O(n \log n)$

- How do we find the median?
 - Sort and pick up the middle element

- \blacksquare Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- \blacksquare So T(n) is $O(n \log n)$

- How do we find the median?
 - Sort and pick up the middle element
 - But our aim is to sort the list!

- Suppose the median of L is m
- Move all values $\leq m$ to left half of L
 - Right half has values > m
- Recursively sort left and right halves
 - L is now sorted, no merge!
- Recurrence: T(n) = 2T(n/2) + n
 - Rearrange in a single pass, time O(n)
- So T(n) is $O(n \log n)$

- How do we find the median?
 - Sort and pick up the middle element
 - But our aim is to sort the list!
- Instead pick some value in L pivot
 - Split L with respect to the pivot element

- Choose a pivot element
 - Typically the first element in the array

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

43 32 22	78	63	57	91	13
--------------	----	----	----	----	----

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

	43	32	22	78	63	57	91	13
--	----	----	----	----	----	----	----	----

Identify pivot

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

	43	32	22	78	63	57	91	13
--	----	----	----	----	----	----	----	----

- Identify pivot
- Mark lower elements and upper elements

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

43	32	22	78	63	57	91	13
----	----	----	----	----	----	----	----

- Identify pivot
- Mark lower elements and upper elements
- Rearrange the elements as lower-pivot-upper

- Choose a pivot element
 - Typically the first element in the array
- Partition L into lower and upper parts with respect to the pivot
- Move the pivot between the lower and upper partition
- Recursively sort the two partitions

High level view of quicksort

Input list

43	32	22	78	63	57	91	13

- Identify pivot
- Mark lower elements and upper elements
- Rearrange the elements as lower-pivot-upper

Recursively sort the lower and upper partitions

■ Scan the list from left to right

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

43	32	22	78	63	57	91	13

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

43	32	22	78	63	57	91	13
	$\uparrow \uparrow$						

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

43	32	22	78	63	57	91	13
		\uparrow					

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

43	32	22	78	63	57	91	13
			\uparrow \uparrow				

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments

Partitioning

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Examine the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

- Pivot is always the first element
- Maintain two indices to mark the end of the Lower and Upper segments
- After partitioning, exchange the pivot with the last element of the Lower segment

Quicksort code

- Scan the list from left to right
- Four segments: Pivot, Lower, Upper, Unclassified
- Classify the first unclassified element
 - If it is larger than the pivot, extend Upper to include this element
 - If it is less than or equal to the pivot, exchange with the first element in Upper. This extends Lower and shifts Upper by one position.

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
  lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Quicksort uses divide and conquer, like merge sort

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort
- We can also provide an iterative implementation to avoid the cost of recursive calls

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort
- We can also provide an iterative implementation to avoid the cost of recursive calls
- The partitioning strategy we described is not the only one used in the literature
 - Can build the lower and upper segments from opposite ends and meet in the middle

7/7

- Quicksort uses divide and conquer, like merge sort
- By partitioning the list carefully, we avoid a merge step
 - This allows an in place sort
- We can also provide an iterative implementation to avoid the cost of recursive calls
- The partitioning strategy we described is not the only one used in the literature
 - Can build the lower and upper segments from opposite ends and meet in the middle
- Need to analyse the complexity of quick sort

7/7

Analysis of Quicksort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 3

Quicksort

- Choose a pivot element
- Partition L into lower and upper segments with respect to the pivot
- Move the pivot between the lower and upper segments
- Recursively sort the two partitions

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot,lower,upper) = (L[1],l+1,l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

■ Partitioning with respect to the pivot takes time O(n)

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1],L[lower-1]) = (L[lower-1],L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median

$$T(n) = 2T(n/2) + n$$

T(n) is $O(n \log n)$

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot,lower,upper) = (L[1],l+1,l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median

$$T(n) = 2T(n/2) + n$$

- T(n) is $O(n \log n)$
- Worst case? Pivot is maximum or minimum
 - Partitions are of size 0, n-1

$$T(n) = T(n-1) + n$$

$$T(n) = n + (n-1) + \cdots + 1$$

$$T(n)$$
 is $O(n^2)$

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
 # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
 quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

- Partitioning with respect to the pivot takes time O(n)
- If the pivot is the median

$$T(n) = 2T(n/2) + n$$

- T(n) is $O(n \log n)$
- Worst case? Pivot is maximum or minimum
 - Partitions are of size 0, n-1

$$T(n) = T(n-1) + n$$

$$T(n) = n + (n-1) + \cdots + 1$$

- T(n) is $O(n^2)$
- Already sorted array: worst case!

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
 # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
 quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Analysis . . .

■ However, average case is $O(n \log n)$

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Analysis . . .

- However, average case is $O(n \log n)$
- Sorting is a rare situation where we can compute this
 - Values don't matter, only relative order is important
 - Analyze behaviour over permutations of $\{1, 2, ..., n\}$
 - Each input permutation equally likely

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Analysis . . .

- However, average case is $O(n \log n)$
- Sorting is a rare situation where we can compute this
 - Values don't matter, only relative order is important
 - Analyze behaviour over permutations of $\{1, 2, ..., n\}$
 - Each input permutation equally likely
- Expected running time is $O(n \log n)$

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Randomization

 Any fixed choice of pivot allows us to construct worst case input

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Randomization

- Any fixed choice of pivot allows us to construct worst case input
- Instead, choose pivot position randomly at each step

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot,lower,upper) = (L[1],l+1,l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Randomization

- Any fixed choice of pivot allows us to construct worst case input
- Instead, choose pivot position randomly at each step
- Expected running time is again $O(n \log n)$

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], l+1, l+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Iterative quicksort

- Recursive calls work on disjoint segments
 - No recombination of results is required

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Iterative quicksort

- Recursive calls work on disjoint segments
 - No recombination of results is required
- Can explicitly keep track of left and right endpoints of each segment to be sorted

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Quicksort in practice

■ In practice, quicksort is very fast

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
 # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

Quicksort in practice

- In practice, quicksort is very fast
- Very often the default algorithm used for in-built sort functions
 - Sorting a column in a spreadsheet
 - Library sort function in a programming language

```
def quicksort(L,1,r): # Sort L[1:r]
 if (r - 1 \le 1):
   return(L)
  (pivot, lower, upper) = (L[1], 1+1, 1+1)
 for i in range(l+1,r):
    if L[i] > pivot: # Extend upper segment
      upper = upper+1
    else: # Exchange L[i] with start of upper segment
      (L[i], L[lower]) = (L[lower], L[i])
      # Shift both segments
      (lower,upper) = (lower+1,upper+1)
  # Move pivot between lower and upper
  (L[1], L[lower-1]) = (L[lower-1], L[1])
 lower = lower-1
  # Recursive calls
  quicksort(L,1,1ower)
  quicksort(L,lower+1,upper)
 return(L)
```

■ The worst case complexity of quicksort is $O(n^2)$

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs
- Quicksort works in-place and can be implemented iteratively

- The worst case complexity of quicksort is $O(n^2)$
- However, the average case is $O(n \log n)$
- Randomly choosing the pivot is a good strategy to beat worst case inputs
- Quicksort works in-place and can be implemented iteratively
- Very fast in practice, and often used for built-in sorting functions
 - Good example of a situation when the worst case upper bound is pessimistic

Sorting: Concluding Remarks

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 3

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, ...

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, ...
- Suppose students have already been sorted by roll number

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, ...
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, . . .
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?
- Stability of sorting is crucial in many applications

- Often list values are tuples
 - Rows from a table, with multiple columns / attributes
 - A list of students, each student entry has a roll number, name, marks, . . .
- Suppose students have already been sorted by roll number
- If we now sort by name, will all students with the same name remain in sorted order with respect to roll number?
- Stability of sorting is crucial in many applications
- Sorting on column B should not disturb sorting on column A

- The quicksort implementation we described is not stable
 - Swapping values while partitioning can disturb existing sorted order

- The quicksort implementation we described is not stable
 - Swapping values while partitioning can disturb existing sorted order
- Merge sort is stable if we merge carefully
 - Do not allow elements from the right to overtake elements on the left
 - While merging, prefer the left list while breaking ties

Other criteria

- Minimizing data movement
 - Imagine each element is a heavy carton
 - Reduce the effort of moving values around

• Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case

- Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case
- Merge sort is typically used for "external" sorting
 - Database tables that are too large to store in memory all at once
 - Retrieve in parts from the disk and write back

- Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case
- Merge sort is typically used for "external" sorting
 - Database tables that are too large to store in memory all at once
 - Retrieve in parts from the disk and write back
- Other $O(n \log n)$ algorithms exist heapsort

- Quicksort is often the algorithm of choice, despite $O(n^2)$ worst case
- Merge sort is typically used for "external" sorting
 - Database tables that are too large to store in memory all at once
 - Retrieve in parts from the disk and write back
- Other $O(n \log n)$ algorithms exist heapsort
- Sometimes hybrid strategies are used
 - Use divide and conquer for large n
 - Switch to insertion sort when n becomes small (e.g., n < 16)

Lists and Arrays

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 3

Sequences

- Two basic ways of storing a sequence of values
 - Lists
 - Arrays
- What's the difference?

Sequences

- Two basic ways of storing a sequence of values
 - Lists
 - Arrays
- What's the difference?

- Lists
 - Flexible length
 - Easy to modify the structure
 - Values are scattered in memory

Sequences

- Two basic ways of storing a sequence of values
 - Lists
 - Arrays
- What's the difference?

- Lists
 - Flexible length
 - Easy to modify the structure
 - Values are scattered in memory
- Arrays
 - Fixed size
 - Allocate a contiguous block of memory
 - Supports random access

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence
 - "Linked" list

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence
 - "Linked" list

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence

- Easy to modify
 - Inserting and deletion is easy via local "plumbing"
 - Flexible size

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence

- Easy to modify
 - Inserting and deletion is easy via local "plumbing"
 - Flexible size

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence
 - "Linked" list

- Easy to modify
 - Inserting and deletion is easy via local "plumbing"
 - Flexible size

PDSA using Python Week 3

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence

- Easy to modify
 - Inserting and deletion is easy via local "plumbing"
 - Flexible size

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence
 - "Linked" list

- Easy to modify
 - Inserting and deletion is easy via local "plumbing"
 - Flexible size

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence
 - "Linked" list

- Easy to modify
 - Inserting and deletion is easy via local "plumbing"
 - Flexible size
- Need to follow links to access A[i]
 - Takes time O(i)

Arrays

- Fixed size, declared in advance
- Allocate a contiguous block of memory
 - \blacksquare *n* times the storage for a single value

Index	Value
A[0]	<i>v</i> ₀
A[1]	<i>v</i> ₁
÷	:
A[i]	Vi
:	:
A[n-1]	v_{n-1}

Arrays

- Fixed size, declared in advance
- Allocate a contiguous block of memory
 - \blacksquare *n* times the storage for a single value
- "Random" access
 - Compute offset to A[i] from A[0]
 - Accessing A[i] takes constant time, independent of i

Index	Value
A[0]	<i>v</i> ₀
A[1]	<i>v</i> ₁
:	:
A[i]	Vi
A[n-1]	v_{n-1}

Arrays

- Fixed size, declared in advance
- Allocate a contiguous block of memory
 - \blacksquare *n* times the storage for a single value
- "Random" access
 - Compute offset to A[i] from A[0]
 - Accessing A[i] takes constant time, independent of i
- Inserting and deleting elements is expensive
 - Expanding and contracting requires moving O(n) elements in the worst case

Index	Value
A[0]	<i>v</i> ₀
A[1]	v_1
:	:
A[i]	Vi
:	:
A[n-1]	v_{n-1}

Operations

- Exchange A[i] and A[j]
 - Constant time for arrays
 - O(n) for lists
- Delete A[i], insert v after A[i]
 - Constant time for lists if we are already at A[i]
 - O(n) for arrays
- Need to keep implementation in mind when analyzing data structures
 - For instance, can we use binary search to insert in a sorted sequence?
 - Either search is slow, or insertion is slow, still O(n)

Sequences can be stored as lists or arrays

- Sequences can be stored as lists or arrays
- Lists are flexible but accessing an element is O(n)

- Sequences can be stored as lists or arrays
- Lists are flexible but accessing an element is O(n)
- Arrays support random access but are difficult to expand, contract

- Sequences can be stored as lists or arrays
- Lists are flexible but accessing an element is O(n)
- Arrays support random access but are difficult to expand, contract
- Algorithm analysis needs to take into account the underlying implementation

- Sequences can be stored as lists or arrays
- Lists are flexible but accessing an element is O(n)
- Arrays support random access but are difficult to expand, contract
- Algorithm analysis needs to take into account the underlying implementation
- How does it work in Python?
 - Is the built-in list type in Python really a "linked" list?
 - Numpy library provides arrays are these faster than lists?

Designing a flexible list

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 3

- Typically a sequence of nodes
- Each node contains a value and points to the next node in the sequence
 - "Linked" list

- Easy to modify
 - Inserting and deletion is easy via local "plumbing"
 - Flexible size
- Need to follow links to access A[i]
 - Takes time O(i)

■ Python class Node

```
class Node:
    def __init__(self, v = None):
        self.value = v
        self.next = None
        return

def isempty(self):
        if self.value == None:
            return(True)
        else:
            return(False)
```

- Python class Node
- A list is a sequence of nodes
 - self.value is the stored value
 - self.next points to next node

```
class Node:
    def __init__(self, v = None):
        self.value = v
        self.next = None
        return

def isempty(self):
        if self.value == None:
            return(True)
        else:
            return(False)
```

- Python class Node
- A list is a sequence of nodes
 - self.value is the stored value
 - self.next points to next node
- Empty list?
 - self.value is None

```
class Node:
    def __init__(self, v = None):
        self.value = v
        self.next = None
        return

def isempty(self):
        if self.value == None:
            return(True)
        else:
            return(False)
```

- Python class Node
- A list is a sequence of nodes
 - self.value is the stored value
 - self.next points to next node
- Empty list?
 - self.value is None
- Creating lists
 - l1 = Node() empty list
 - 12 = Node(5) singleton list

```
class Node:
    def __init__(self, v = None):
        self.value = v
        self.next = None
        return

def isempty(self):
        if self.value == None:
            return(True)
        else:
            return(False)
```

- Python class Node
- A list is a sequence of nodes
 - self.value is the stored value
 - self.next points to next node
- Empty list?
 - self.value is None
- Creating lists
 - l1 = Node() empty list
 - 12 = Node(5) singleton list
 - l1.isempty() == True
 - l2.isempty() == False

```
class Node:
    def __init__(self, v = None):
        self.value = v
        self.next = None
        return
    def isemptv(self):
        if self.value == None:
            return(True)
        else:
            return(False)
```

Appending to a list

- Add v to the end of list 1
- If l is empty, update l.value from None to v
- If at last value, l.next is None
 - Point next at new node with value v
- Otherwise, recursively append to rest of list

```
def append(self,v):
    # append, recursive
    if self.isempty():
        self.value = v
    elif self.next == None:
        self.next = Node(v)
    else:
        self.next.append(v)
    return
```

Appending to a list

- Add v to the end of list 1
- If l is empty, update l.value from None to v
- If at last value, l.next is None
 - Point next at new node with value v
- Otherwise, recursively append to rest of list
- Iterative implementation
 - If empty, replace l.value by v
 - Loop through l.next to end of list
 - Add v at the end of the list

```
def appendi(self,v):
    # append, iterative
    if self.isemptv():
        self value = v
        return
    temp = self
    while temp.next != None:
        temp = temp.next
    temp.next = Node(v)
    return
```

Insert at the start of the list

- Want to insert *v* at head
- Create a new node with v

Insert at the start of the list

- Want to insert *v* at head
- Create a new node with v
- Cannot change where the head points!

PDSA using Python Week 3

Insert at the start of the list

■ Want to insert *v* at head

 \blacksquare Exchange the values v_0 , v

- Create a new node with v
- Cannot change where the head points!

Insert at the start of the list

- Want to insert v at head
- Create a new node with v
- Cannot change where the head points!

- Exchange the values v_0 , v
- Make new node point to head.next
- Make head.next point to new node

Appending to a list

- Create a new node with v
- **Exchange the values** v_0 , v
- Make new node point to head.next
- Make head.next point to new node

```
def insert(self,v):
    if self.isemptv():
        self.value = v
        return
    newnode = Node(v)
    # Exchange values in self and newnode
    (self.value, newnode.value) =
        (newnode.value, self.value)
    # Switch links
    (self.next, newnode.next) =
        (newnode, self.next)
    return
```

- Remove first occurrence of *v*
- Scan list for first v look ahead at next node
- If next node value is *v*, bypass it

- Remove first occurrence of v
- Scan list for first v look ahead at next node
- If next node value is *v*, bypass it
- Cannot bypass the first node in the list
 - Instead, copy the second node value to head
 - Bypass second node

PDSA using Python Week 3

- Remove first occurrence of v
- Scan list for first v look ahead at next node
- If next node value is *v*, bypass it
- Cannot bypass the first node in the list
 - Instead, copy the second node value to head
 - Bypass second node
- Recursive implementation

```
# delete. recursive
    if self.isempty():
        return
    if self.value == v:
        self.value = None
        if self.next != None:
            self.value = self.next.value
            self.next = self.next.next
        return
    else:
        if self.next != None:
            self.next.delete(v)
            if self.next.value == None:
                self.next = None
    return
```

def delete(self,v):

- Remove first occurrence of v
- Scan list for first v look ahead at next node
- If next node value is *v*, bypass it
- Cannot bypass the first node in the list
 - Instead, copy the second node value to head
 - Bypass second node
- Recursive implementation
- Exercise: write an iterative version

```
def delete(self,v):
# delete. recursive
    if self.isempty():
        return
    if self.value == v:
        self.value = None
        if self.next != None:
            self.value = self.next.value
            self.next = self.next.next
        return
    else:
        if self.next != None:
            self.next.delete(v)
            if self.next.value == None:
                self.next = None
    return
```

Summary

- Use a linked list of nodes to implement a flexible list
- Append is easy
- Insert requires some care, cannot change where the head points to
- When deleting, look one step ahead to bypass the node to be deleted

Lists and Arrays in Python

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 3

Lists and arrays in Python

- Sequences can be stored as lists or arrays
- Lists are flexible but accessing an element is O(n)
- Arrays support random access but are difficult to expand, contract
- Algorithm analysis needs to take into account the underlying implementation
- How does it work in Python?
 - Is the built-in list type in Python really a "linked" list?
 - Numpy library provides arrays are these faster than lists?

■ Python lists are not implemented as flexible linked lists

- Python lists are not implemented as flexible linked lists
- Underlying interpretation maps the list to an array
 - Assign a fixed block when you create a list
 - Double the size if the list overflows the array

- Python lists are not implemented as flexible linked lists
- Underlying interpretation maps the list to an array
 - Assign a fixed block when you create a list
 - Double the size if the list overflows the array
- Keep track of the last position of the list in the array
 - l.append() and l.pop() are constant time, amortised O(1)
 - Insertion/deletion require time O(n)

- Python lists are not implemented as flexible linked lists
- Underlying interpretation maps the list to an array
 - Assign a fixed block when you create a list
 - Double the size if the list overflows the array
- Keep track of the last position of the list in the array
 - l.append() and l.pop() are constant time, amortised O(1)
 - Insertion/deletion require time O(n)
- Effectively, Python lists behave more like arrays than lists

- Arrays are useful for representing matrices

■ In list notation, these are nested lists
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 [[0,1], [1,0]]

- Arrays are useful for representing matrices
- In list notation, these are nested lists $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ [[0,1], [1,0]]
- Need to be careful when initializing a multidimensional list

```
zerolist = [0,0,0]
zeromatrix = [zerolist,zerolist,zerolist]
```

- Arrays are useful for representing matrices
- In list notation, these are nested lists $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ [[0,1], [1,0]]
- Need to be careful when initializing a multidimensional list

```
zerolist = [0,0,0]
zeromatrix = [zerolist,zerolist,zerolist]
zeromatrix[1][1] = 1
print(zeromatrix)
```

- Arrays are useful for representing matrices
- In list notation, these are nested lists $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ [[0,1], [1,0]]
- Need to be careful when initializing a multidimensional list

```
zerolist = [0,0,0]
zeromatrix = [zerolist,zerolist,zerolist]
zeromatrix[1][1] = 1
print(zeromatrix)
[[0, 1, 0], [0, 1, 0], [0, 1, 0]]
```

Mutability aliases different values

4/6

- Arrays are useful for representing matrices
- In list notation, these are nested lists $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ [[0,1], [1,0]]
- Need to be careful when initializing a multidimensional list

```
zerolist = [0,0,0]
zeromatrix = [zerolist,zerolist,zerolist]
zeromatrix[1][1] = 1
print(zeromatrix)
[[0, 1, 0], [0, 1, 0], [0, 1, 0]]
```

- Mutability aliases different values
- Instead, use list comprehension

■ The Numpy library provides arrays as a basic type

```
import numpy as np
zeromatrix = np.zeros(shape=(3,3))
```

■ The Numpy library provides arrays as a basic type

```
import numpy as np
zeromatrix = np.zeros(shape=(3,3))
```

Can create an array from any sequence type

```
identitymatrix = np.array([[1,0],[0,1]])
```

■ The Numpy library provides arrays as a basic type

```
import numpy as np
zeromatrix = np.zeros(shape=(3,3))
```

Can create an array from any sequence type

```
identitymatrix = np.array([[1,0],[0,1]])
```

arange is the equivalent of range for lists

```
row2 = np.arange(5)
```

■ The Numpy library provides arrays as a basic type

```
import numpy as np
zeromatrix = np.zeros(shape=(3,3))
```

Can create an array from any sequence type

```
identitymatrix = np.array([[1,0],[0,1]])
```

arange is the equivalent of range for lists

```
row2 = np.arange(5)
```

- Can operate on a matrix as a whole
 - C = 3*A + B
 - \blacksquare C = np.matmul(A,B)
 - Very useful for data science

Summary

- Python lists are not implemented as flexible linked structures
- Instead, allocate an array, and double space as needed
- Append is cheap, insert is expensive
- Arrays can be represented as multidimensional lists, but need to be careful about mutability, aliasing
- Numpy arrays are easier to use

Implementing dictionaries

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 3

Dictionary

An array/list allows access through positional indices

Dictionary

- An array/list allows access through positional indices
- A dictionary allows access through arbitrary keys
 - A collection of key-value pairs
 - Random access access time is the same for all keys

Dictionary

- An array/list allows access through positional indices
- A dictionary allows access through arbitrary keys
 - A collection of key-value pairs
 - Random access access time is the same for all keys
- How is a dictionary implemented?

- The underlying storage is an array
 - Given an offset i, find A[i] in constant time

PDSA using Python Week 3

- The underlying storage is an array
 - Given an offset i, find A[i] in constant time
- Keys have to be mapped to $\{0, 1, \dots, n-1\}$
 - Given an key k, convert it to an offset i

- The underlying storage is an array
 - Given an offset i, find A[i] in constant time
- Keys have to be mapped to $\{0, 1, \dots, n-1\}$
 - Given an key k, convert it to an offset i
- Hash function
 - $h: S \to X$ maps a set of values S to a small range of integers $X = \{0, 1, \dots, n-1\}$

- The underlying storage is an array
 - Given an offset i, find A[i] in constant time
- Keys have to be mapped to $\{0, 1, \dots, n-1\}$
 - Given an key k, convert it to an offset i
- Hash function
 - $h: S \to X$ maps a set of values S to a small range of integers $X = \{0, 1, \dots, n-1\}$
 - Typically $|X| \ll |S|$, so there will be collisions, $h(s) = h(s'), s \neq s'$
 - A good hash function will minimize collisions

- The underlying storage is an array
 - Given an offset i, find A[i] in constant time
- Keys have to be mapped to $\{0, 1, \dots, n-1\}$
 - Given an key k, convert it to an offset i
- Hash function
 - $h: S \to X$ maps a set of values S to a small range of integers $X = \{0, 1, \dots, n-1\}$
 - Typically $|X| \ll |S|$, so there will be collisions, $h(s) = h(s'), s \neq s'$
 - A good hash function will minimize collisions
 - SHA-256 is an industry standard hashing function whose range is 256 bits
 - Use to hash large files avoid uploading duplicates to cloud storage

 \blacksquare An array A of size n combined with a hash function h

- An array A of size n combined with a hash function h
- h maps keys to $\{0, 1, \dots, n-1\}$

PDSA using Python Week 3

- An array A of size n combined with a hash function h
- \blacksquare h maps keys to $\{0, 1, \dots, n-1\}$
- Ideally, when we create an entry for key k, A[h(k)] will be unused

- An array A of size n combined with a hash function h
- *h* maps keys to $\{0, 1, ..., n-1\}$
- Ideally, when we create an entry for key k, A[h(k)] will be unused
 - What if there is already a value at that location?
- Dealing with collisions

PDSA using Python Week 3

- An array A of size n combined with a hash function h
- *h* maps keys to $\{0, 1, ..., n-1\}$
- Ideally, when we create an entry for key k, A[h(k)] will be unused
 - What if there is already a value at that location?
- Dealing with collisions
 - Open addressing (closed hashing)
 - Probe a sequence of alternate slots in the same array

- An array A of size n combined with a hash function h
- *h* maps keys to $\{0, 1, ..., n-1\}$
- Ideally, when we create an entry for key k, A[h(k)] will be unused
 - What if there is already a value at that location?
- Dealing with collisions
 - Open addressing (closed hashing)
 - Probe a sequence of alternate slots in the same array
 - Open hashing
 - Each slot in the array points to a list of values
 - Insert into the list for the given slot

- An array A of size n combined with a hash function h
- *h* maps keys to $\{0, 1, ..., n-1\}$
- Ideally, when we create an entry for key k, A[h(k)] will be unused
 - What if there is already a value at that location?
- Dealing with collisions
 - Open addressing (closed hashing)
 - Probe a sequence of alternate slots in the same array
 - Open hashing
 - Each slot in the array points to a list of values
 - Insert into the list for the given slot
- Dictionary keys in Python must be immutable
 - If value changes, hash also changes!

Summary

- A dictionary is implemented as a hash table
 - An array plus a hash function
- Creating a good hash function is important (and hard!)
- Need a strategy to deal with collisions
 - Open addressing/closed hashing probe for free space in the array
 - Open hashing each slot in the hash table points to a list of key-value pairs
 - Many heuristics/optimizations possible for dea