Recall: k: alg. closed field

Nullstellensatz (strong form): $I(V(I)) = \sqrt{I}$ Moreover, we have inverse bijections

alg. Varieties
$$\frac{I}{V}$$
 radical ideals $V \subseteq \mathbb{R}^n$ $I \subseteq \mathbb{R}[x_{j_1 - j_1} x_n]$

Weak form:

Let $T \subseteq k[x_1,...,x_n]$ be an ideal. Then $V(I) = \emptyset$ if and only if $1 \in I$ (and so $I = k[x_1,...,x_n]$)

Moreover, we have inverse bijections

Points
$$\xrightarrow{I}$$
 max'l ideals $a \in \mathbb{R}^n \leftarrow V$ $I \subseteq \mathbb{R}[x_{1,1-1}x_n]$

Last time: $I(a) := \{ f \in k[x_1, -\gamma x_n] \} f(a) = 0 \}$ is a maximal ideal and $I(a) = (x_1 - a_1, - -\gamma x_n - a_n)$

Prop: Every max'l ideal is of the form I(a) for some acknowle be when k is uncountable (e.g. C, not Q or Fp):

Let $I \subseteq k[x_{11}-yx_{1}]$ be a max'l ideal, and let $F = k[x_{11}-yx_{1}]/I$. $k \subseteq F$ since $k \cap I = 0$, so either $F = k \cap F$ is a transcendental extra of k. In the former case, $I = I(a) = I((a_{11}-ya_{1}))$ where $x_{1} \mapsto a_{1}$. In the latter case, dim $k \cap F$ is at most countable since dim $k[x_{11}-yx_{1}]$ is countable, and the quotient may is a vector space homom. On the other hand, let $f \in F$ be trans. / $f \in F$

{ \frac{1}{t-a} | a \end{a} \end{a} is an uncountable linearly indep. set, a contradiction.

 $e_{f}: \text{If } \frac{c_{1}}{t-a_{1}} + \cdots + \frac{c_{n}}{t-a_{n}} = 0, \text{ then}$ $c_{1}(t-a_{2})\cdots(t-a_{n})+\cdots+c_{n}(t-a_{1})\cdots(t-a_{n-1})=0,$ and setting $t=a_{1}$ shows that each $c_{1}=0$

 \prod

Pf of weak Nullstellensatz: Every proper ideal I is contained in a max'l ideal I(a) (don't need zorn's lemma since ring is Noetherian). If $V(I)=\emptyset$, then $V(I(a))=\emptyset$, but this contradicts the fact that $V(I(a))=\{a\}$. I

Pf of strong Nullstellensatz: Already proved $\nabla I \subseteq I(V(I))$ (lecture 35).

Since $k[x_1,...,x_n]$ is Moetherian, I is finitely-generated i.e. $I = (f_1,...,f_m)$. Let $g \in I(v(x))$. Introduce a new variable x_{n+1} , and consider $I = (f_1,...,f_n,x_{n+1}g-1) \subseteq k[x_1,...,x_{n+1}]$

For any $a \in k^{n+1}$, if $f_i(a) = \cdots = f_n(a) = 0$, then also g(a) = 0 (since $g \in I(V(I))$, so $x^{n+1}g - 1 \neq 0$. Thas, $V(I') = \emptyset$.

By the weak form of the Nullstellensatz, 1 E I', so

1=h, f, + ··· + hm fm + h m+1 (xn+19-1) for some hitk[x1,-1,xn+1]

Let $y = x_{n+1}^{-1}$, and multiply by y^{N} , $N \gg 0$:

 $y^{N} = P_{1}f_{1} + ... + P_{m}f_{m} + P_{m+1}(9-y)$ for some $P_{i} \in k[x_{1},...,x_{n},y]$

Plug in y=g:

 $9^N = \stackrel{\sim}{P_1} f_1 + \cdots + \stackrel{\sim}{P_m} f_m \in I \subseteq k[x_1, ..., x_n]$

Where P: (x1,..,xn) = P, (x1,..,xn,9) + k[x1,..,xn]

So gett, and so I(v(I))=II.

If time: coordinate ring

Def: The coord ring of a variety V is

 $k[V] = \{f:V \rightarrow k \mid f = 9 \mid V \text{ for some } g \in k[x_1, -, x_n] \}$

ie. k[v]= k[x,,..,xn]/I(v)

Since I(V) is the kernel of the ring homom.

 $k[x_1,...,x_n] \rightarrow k[V]$

Cor of previous results:

a) Virred = k[v] int. domain

b) V pt. = k[v] = k

c) For any variety V_1 {pts in $V_3 \stackrel{bij.}{\longleftarrow} \{ \text{max'l ideals in k[V]} \}$

Pf: a) V irred. $\Leftrightarrow I(V)$ prime $\Leftrightarrow k[V] = k[x_1, y_1, x_n]/I$ int. domain

b) V pt. \rightleftharpoons I(V) maximal \rightleftharpoons $k[V] = k[x_{1}, y_{N}]/I$ field

(and this field = k since we know I=I(a) for some a Ek)

C) By the 4th ring isom. thm., for a ring R and ideal I,

fideals in R containing I } { ideals in R/I}

Maximality is preserved under this bijection, so combine this w/ the weak Nullstellensatz a