Домашняя работа №1.

- I. Для заданной модели динамической системы выполнить упражнения в среде MATLAB.
 - 1. Понять физический смысл фазовых координат динамической системы.
- 2. Представить систему в векторно-матричном представлении (выделить матрицы A и B), если этого не сделано в используемом источнике.
- 3. Проверить устойчивость разомкнутой системы (без управления), найдя её собственные числа (функция **eig** в MATLAB).
 - 4. Проверить управляемость системы (функция **rank** в MATLAB).
- 5. Синтезировать стабилизирующий в нуле линейно-квадратичный регулятор по состоянию (функция **care** или **lqr** в MATLAB).
- 6. Провести 3-4 эксперимента по моделированию замкнутой системы с линейно-квадратичным регулятором по состоянию для различных начальных условий и весовых матриц $Q \ge 0$ и R > 0 (подбираются произвольно). Построить графики переходных процессов, выявить качественные закономерности изменения переходных процессов при изменении весовых матриц Q и R. Для этого нужно увеличивать норму одной из матриц, оставляя другую матрицу неизменной.
- 7. Задать *самостоятельно* вектор выхода системы. Для это нужно задать матрицу C отличной от единичной (если C единичная, то выход y совпадает с x) так, чтобы система оставалась наблюдаемой (проверка наблюдаемости функция **rank** в MATLAB).
 - 8. Построить наблюдатель полного порядка.
- 9. Построить стабилизирующий в нуле линейно-квадратичный регулятор с наблюдателем.
- 10. Провести 2-3 эксперимента по моделированию замкнутой системы с линейно-квадратичным регулятором по выходу для различных начальных условий и весовых матриц Q, R. Построить графики переходных процессов. Убедиться в устойчивости системы.
- II. Оформить результаты в файле .doc или pdf.
- III. Продемонстрировать работающую программу при сдаче.

Варианты заданий

№	Источник	Пример, страница,
		описание.
1.		- пример 5.8. Оптимальное
		управление транспортным
	Методы классической и современной теории	самолетом при заходе на
	автоматического управления: Учебник в 5-ти тт.; 2-	посадку (стр. 189);
2.	изд., перераб. И доп. Т.4: Теория оптимизации систем	- пример 5.6. Управлением
	автоматического управления / Под ред. К. А. Пупкова	положения ротора
	и Н. Д. Егупова. М.: Изд-во МГТУ им. Н. Э. Баумана,	двигателя постоянного
	2004. 744 C. ISBN: 5-7038-2192-4:	тока (стр. 178); Формула
		(5.112)
3.		- пример 5.10. Управление

4. 5.		гироскопическим компасом. (стр. 202); Формула (5.162) - пример 5.16. Управление материальной точкой (с. 232); Формула (5.223) - пример 5.17. Стыковка космических объектов (с. 239).
6.	http://umu.diva- portal.org/smash/get/diva2:764867/FULLTEXT01.pdf	Модель продольной динамики БПЛА. (стр. 46). Формулы (2.24)-(2.25).
7.	http://umu.diva- portal.org/smash/get/diva2:764867/FULLTEXT01.pdf	Модель боковой динамики БПЛА (стр. 46). Формулы (2.24)-(2.25).
8.	http://www.ijstr.org/final-print/apr2017/Longitudinal-And-Lateral-Dynamic-System-Modeling-Of-A-Fixed-wing-Uav.pdf	Модель продольной динамики БПЛА (стр. 173). Вторая сверху формула.
9.	https://arxiv.org/pdf/1608.05786.pdf	Продольная динамика БПЛА (стр. 17, 12). Формула (2.5.8).
10.	https://arxiv.org/pdf/1608.05786.pdf	Боковая динамика БПЛА (стр. 17, 12). Формула (2.5.7).

Сдача домашней работы – 17 марта (на занятии).

По вопросам сдачи лабораторной можно общаться по почте: <u>Makarov@isa.ru</u>.