PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 90/13292 (51) International Patent Classification 5: (11) International Publication Number: A1 15 November 1990 (15.11.90) (43) International Publication Date: A61K 31/23 (81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent). PCT/US90/02320 (21) International Application Number: (22) International Filing Date: 27 April 1990 (27.04.90) (30) Priority data: US 28 April 1989 (28.04.89) 344,633 **Published** (71) Applicant: BRIGHAM AND WOMEN'S HOSPITAL With international search report. [US/US]; 75 Francis Street, Boston, MA 02115 (US). (72) Inventors: SERHAN, Charles, N.; 20 Chapel Street, Brookline, MA 02146 (US). BADR, Kamal; 624 Har-peth Trace Drive, Nashville, TN 37221 (US). (74) Agents: FOX, Samuel, L. et al.; Saidman, Sterne, Kessler & Goldstein, 1225 Connecticut Avenue, N.W., Suite 300, Washington, DC 20036 (US). (54) Title: USE OF LIPOXIN A4 AND ITS DERIVATIVES AS ANTAGONISTS FOR SLOW-REACTING SUB-STANCES OF ANAPHYLAXIS

(57) Abstract

Composition and methods are disclosed for antagonizing SRS-A, and especially LTD₄, comprising the administration of LXA₄ or an active derivative thereof to an animal. These compositions and methods are useful in the control of hemostasis, vascular reactivity, and especially vasoconstriction, and anaphylactic and allergic reactions in animals.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	Pl	Finland	MG	Madagascar
BB	Barbados	PR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	π	Italy	RO	Romania
CA	Canada	JP	Japan	SD	Sudan
CF.	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CC	Congo		of Korea	SN	Senegal
CH	Switzerland -	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	ш	Liechtenstein	TD	Chad
DB	Germany, Federal Republic of	LK	Sri Lanka .	TC	Togo
DK	Denmark	LU	Luxembourg	US	United States of America

USE OF LIPOXIN A4 AND ITS DERIVATIVES AS ANTAGONISTS FOR SLOW-REACTING SUBSTANCES OF ANAPHYLAXIS

This invention was made with government support; the government has certain rights in this invention.

Field of the Invention

This invention is in the area of vasodilators. Specifically, this invention is directed to medicinal compositions comprising lipoxin A4 (LXA4) or derivatives of this compound and their use as leukotriene D4 (LTD4) receptor antagonists to alleviate leukotriene-mediated vascular constriction. These compositions and methods are useful in the treatment of hemostasis, vascular reactivity and inflammation, and especially anaphylactic and allergic reactions in animals.

Background of the Invention

Lipoxygenase products of arachidonic acid (eicosatetraenoic acid) display a diverse array of biological activities (Samuelsson, B., et al., Science 237:1171-1176 (1987)). At least four major classes of lipoxygenase-derived products of arachidonic acid metabolism have been identified: hydroperoxides (for example, 12-HPETE, 15-HPETE), non-peptidic leukotrienes (for example, LTB₄), sulfidopeptide leukotrienes (for example LTC₄, LTD₄, and LTE₄) and lipoxins. Generally, these classes are grouped together as lipoxygenase-derived eicosanoids

(LDE); however, each class has a distinct profile of biological activities.

Lipoxins (lipoxygenase interaction products) are a novel series of arachidonic acid-derived metabolites which have been characterized only recently (Serhan, C.N. et al., Biochem. Biophys. Res. Commun. 118:943-949 (1984); Serhan, C.N. et al., Proc. Natl. Acad. Sci. USA 81:5335-5339 (1984)). The distinguishing feature of the lipoxin chemical structure is the presence of a trihydroxy conjugated tetraene structure. At least two biologically active lipoxins have been characterized; LXA4 ((55,6R,155)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid) and LXB4 ((55,14R,155)-5,14,15-trihydroxy-6,10,12-trans-8-cis-eicosatetraenoic acid (Serhan, C.N. et al., J. Biol. Chem. 261:16340-16345; Serhan, C.N. et al., Proc. Natl. Acad. Sci. USA 83:1983-1987 (1986)).

Very little is known about the biological roles or activities of the lipoxins. It has been suggested to use LXB4 to treat diseases characterized by inflammation mediated through the activation of neutrophils such as that found in asthma, arthritis, physical trauma and radiation exposure (Morris, J., U.S. 4,576,758; Samuelsson, B. et al., U.S. 4,560,514).

LXA4 has been shown to contract pulmonary smooth muscle (guinea pig lung), but not guinea pig ileum or trachea, and to relax (dilate) vascular smooth muscle at concentrations of less than 1 µM (Dahlen, S.-E. et al., Acta Physiol. Scand. 130:643-647 (1987)). Topical administration of LXA4 to the hamster cheek pouch induces a pronounced arteriolar dilation, but does not change venular diameters (Dahlen, S.-E. et al., in Adv. Exper. Med. Biol. 229: Chapter 9, pp. 107-130, 1988). LXA4 has also been shown to induce neutrophils to generate superoxide radicals, release elastase, and promote chemotaxis by leukocytes (Serhan, C.N. et al., in Prostaglandins, Leukotrienes and Lipoxins, J.M. Bailey, ed., Plenum, New York, pp. 3-16, 1985).

It has been suggested to use LXA4 to induce the inflammatory response of neutrophils so as to provide an experimental model to

evaluate the efficacy of compounds such as LXB4 derivatives in preventing this response (Samuelsson, B. et al., U.S. 4,560,514). It has also been suggested that LXA4 may exert some of its biological effects by binding to the LTD4 receptor (Jacques, C.A.J. et al., Br. J. Pharmacol. 95: 562-568 (1988)) and that LXA4 and LTD4 may even share a common receptor (Lefer, A.M. et al., Proc. Natl. Acad. Sci. USA 85:8340-8344 (1988)).

Slow-reacting substances of anaphylaxis (SRS-A) are considered to be the physiological mediators of anaphylactic and allergic reactions in animals. SRS-A consist primarily of a mixture of the LDE leukotrienes LTC_4 and LTD_4 .

The release of SRS-A has also been implicated as the underlying cause of disorders of the mucociliary and cardiovascular system. SRS-A induced contraction of bronchial smooth muscle results in impairment of ventilatory function in allergic asthma. SRS-A induced impairment of mucus clearance leads to mucus plugging of the airways and bronchial hyper-reactivity seen in subjects with asthma. SRS-A induced pulmonary hypertension plays a role in cor polmonale, chronic bronchitis and emphysema. SRS-A induced negative inotropism, coronary vasoconstriction and increased vascular permeability have an effect on the cardiovascular system. SRS-A also participates in mediating the functional consequences of glomerular inflammatory injury (Badr, K.F., et al., J. Clin. Invest. 81:1702-1709 (1988)).

Inhibition of SRS-A, and amelioration of the physiological consequences of SRS-A, can occur either by blocking release of SRS-A or by blocking the actions of released SRS-A. Thus inhibition of the actions of SRS-A may be used to alleviate and treat the above disorders.

It is known to inhibit physiological responses to SRS-A by blocking the LTD₄ receptor with LTD₄ receptor antagonists. Sheard \underline{et} al. have described a synthetic compound, FPL 55712, and derivatives thereof, which inhibit the SRS-A response by acting as LTD₄ receptor antagonists (Sheard, P. \underline{et} al., in \underline{The} Development of Anti-Asthma

Drugs, D.R. Buckle et al., eds., Butterworth, London, 1984, pp.133-158). However, FPL-55712 is short-acting. Other antagonists of SRS-A have been reported (for example, Gleason, J.G. et al., J. Med. Chem. 30:959-961 (1987)) including many which retain close structural similarity with FPL 55712 (Fleisch, J.H., et al., J. Pharmacol. Exp. Ther. 233:148 (1985); Young, R.N. et al., J. Med. Chem. 29:1573 (1986); O'Donnell, M. et al., Ann. Allergy 278 (1985). However, most of these compounds exhibit a low affinity for LTD4 receptors, are orally inactive or exhibit low bioavailability. The status of currently known LTD4 receptor antagonists has been recently reviewed (Lefer, A.M., ISI Atlas Sci. (Pharmacology) 2:109-115 (1988); Cashman, J.R. et al., Drugs of Today 24:723-732 (1988); Fleisch, J.H. et al., Ann. N. Y. Acad. Sci. 524:356-368 (1988); Musser, J.H. et al., Agents and Actions 18:332-341 (1986)).

Studies in human neutrophils, have established an inverse relation between the generation of lipoxins and leukotrienes following exposure of these cells to 15-HETE and the calcium ionophore A23187 (Serhan, C.N., in <u>Advances in Prostaglandin. Thromboxane and Leukotriene Research</u>, Samuelsson, B., <u>et al.</u> (eds.), Raven Press, New York, Volume 18). In addition, recent results indicate that mesangial cells can generate lipoxins from exogenous sources of LTA4 (Garrick, R., <u>et al.</u>, <u>Kidney Int. Proceedings 21st Annual Meeting of the American Society of Nephrology</u>, Vol. 25, p. 292 (1989)), which may be provided by activated leukocytes (e.g., during transcellular metabolism). Thus, the local levels of these compounds may be elevated following the infiltration of leukocytes into the glomerulus.

Use of LTD4 receptor antagonists which are based on a natural product would be preferable to the use of completely synthetic compounds in that the natural products would ameliorate the physiological consequences of leukotriene-induced physiological injury with greater bioavailability and less toxicity than the synthetic

inhibitors. Thus it is desirable to develop SRS-A antagonists which are natural compounds or derivatives thereof.

Summary of the Invention

In response to the long-standing need for controlling the vasoconstriction associated with SRS-A, the present invention was developed. Recognizing that current compounds used as antagonists of the LTD4 receptor were derived from a chemical structure unrelated to a natural product, the inventors postulated that fewer side effects and better bioavailability might be obtained with a natural antagonist of SRS-A or a compound structurally derived from a natural antagonist. The present invention is directed to compositions comprising natural antagonists of SRS-A, and especially of LTD4. Further, the invention is directed to methods for antagonizing SRS-A, and especially LTD4, in an animal, such methods comprising administration of antagonisteffective amounts of LXA4 or an active derivative thereof to such animal. These antagonists and methods are useful in the treatment of physiological disorders in which LTD4 receptors play a contributing role, for example, hemostasis, vascular reactivity, and especially vasoconstriction, inflammation, and anaphylactic and allergic reactions.

Brief Description of the Figures

Figure 1 is a plot of the percent inhibition of $[^3H]LTD_4$ (10 nM) binding to rat glomerular mesangial cells by LTD₄ (squares) and LXA₄ (triangles). Each point represents the mean of four experiments performed in duplicate.

Figure 2 is a plot of inositol triphosphate (IP $_3$) formation in rat mesangial cells in response to LXA $_4$ and LTD $_4$ and its complete abolition in the presence of 100-fold concentrations of SKF 104353 (SKF). The far-right column depicts the abrogation of LTD $_4$ -induced

stimulation of IP3 formation by preexposure of the cells to 100 nM LXA4 for 10 minutes. *, \underline{P} <0.01 versus vehicle-stimulated controls. +, \underline{P} ,0.05 versus LTD4 alone.

Figure 3 is a plot of the percent reduction in glomerular filtration rate (GFR, panel A) and renal plasma flow (RPF, panel B) in response to increasing doses on intrarenal arterial LTD₄ without (filled squares) and with (open squares) LXA₄. See Table 1 for mean absolute values. *, \underline{P} ,0.05 versus corresponding points in the presence of LXA₄.

<u>Definitions</u>

In order to provide a clearer and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

LXA4. By "LXA4" is meant lipoxin A4 or an active derivative thereof, including synthetic analogues of LXA4 which are converted by the body to LXA4 or an active derivative thereof, and pharmaceutically suitable salts thereof.

<u>Pharmaceutically Acceptable Salts.</u> By the term "pharmaceutically acceptable salts" is intended salts formed from pharmaceutically acceptable acids or bases, e.g., acids such as sulfuric, hydrochloric, nitric, phosphoric acid, etc. or bases such as alkali or alkaline earth metal hydroxides, ammonium hydroxides, alkyl ammonium hydroxides, etc.

Animal. By the term "animal" is intended all animals in which LXA4 is capable of antagonizing LTD4 receptor responses. Foremost among such animals are humans; however, the invention is not intended to be so limiting, it being within the contemplation of the present invention to treat any and all animals which may experience the beneficial effects of the invention.

Receptor. The term "receptor" is intended to refer generally to a functional macromolecule or complex of macromolecules with which

certain groups of cellular messengers, such as LDE's, hormones and neurotransmitters, must first interact before the biochemical and physiological responses to those messengers are initiated. Therefore, as used herein, the term "receptor" is used operationally to denote any cellular macromolecule (or complex of macromolecules) to which a chemical or macromolecular entity specifically binds to initiate its effects.

Agonist. The term "agonist" is intended to refer generally to a chemical agent which mimics at least some of the effects of a natural chemical messenger by interaction with the appropriate physiological receptor for the natural messenger.

Antagonist. The term "antagonist" is intended to refer generally to a chemical compound which is able to bind to the receptor for a natural chemical messenger, but which has no intrinsic physiological activity at that receptor and does not invoke the physiological response mediated by activation of that receptor. As recognized by those skilled in the art, the binding of an antagonist results in an interference with the effect of the natural ligand or with an agonist. As used herein, compounds that are themselves devoid of intrinsic pharmacological activity but cause effects by inhibition of the action of a specific messenger, by competition for receptor binding sites, are designated as antagonists. Thus, a method for "antagonizing" a response to specific agents such as SRS-A is a method in which the natural binding of SRS-A to specific SRS-A receptors is interferred with so as to block the activation of such receptors.

Response. The term "response" is intended to refer to a change in any parameter which can be used to measure and describe an effect associated with interaction of a chemical agent with the LTD₄ receptor. The response may be a physical one such as a change in the vascular reactivity, renal glomerular dynamics or pulmonary functioning; or, it may be a molecular one for example, a change in a level of a metabolite, (for example, IP₃) or protein, receptor, enzyme, or genomic expression.

By "controlling" a response, for example, Controlling. controlling vasoconstriction. is mean ameliorating. reversing. regulating or interfering with such response. wherein amelioration, reversal, regulation or interference is the result of administration of anti-response effective amounts of a desired agent. Thus, administration of anti-vasoconstrictive effective amounts of an anti-vasoconstriction agent results in amelioration, regulation or interference with vasoconstriction. Such administration may be used to medically "treat" the response in an animal so as to improve a medical disorder, disease or symptom associated with the response.

Agent. The term "agent," for example a anti-vasoconstriction agent, is intended to refer generically to any compound which interacts with the stated receptor or response.

Detailed Description of the Invention

The present invention comprises methods of treating leukotrieneinduced vasoconstriction by administration of efficacious levels of $\mathsf{LXA_4}$ and derivatives thereof. The compounds of the invention are $\mathsf{LTD_4}$ receptor antagonists and inhibit LTD4 receptor action; this makes the compounds useful in the treatment and prevention of disorders and disease states wherein leukotriene-induced vasoconstriction implicated as a contributing or causative agent such as, but not limited to, disorders resulting from the release of SRS-A, and especially asthma, anaphylactic reactions, allergic reactions, shock, circulatory disease states and inflammatory reactions such as, for example, rheumatoid arthritis, gout, psoriasis, allergic rhinitis, adult respiratory distress syndrome, Crohn's disease, endotoxin shock, traumatic shock, hemorrhagic shock, bowel ischemic shock (i.e. splanchnic artery occlusion shock), renal glomerular disease, benign prostatic hypertrophy, inflammatory bowel disease, and/or myocardial ischemia and infarction, circulatory shock, brain injury, systemic

lupus erythematosus, and hypertension, especially essential hypertension and malignant hypertension.

The methods of the invention are based on the inventors' discovery that selective administration of LXA4 into the renal artery anesthetized rats elicits vasodilator responses in renal arterioles, and reduces the glomerular capillary ultrafiltration coefficient (Kf) (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987); Badr, K.F., et al., Biochem. Biophys. Res. Comm. 145:408-414 (1987)). The latter results from the concerted contractile action of smooth muscle-containing glomerular mesangial cells which reduces the glomerular capillary area available for ultrafiltration and, hence, Kf. Since the orientation of the polar groups is similar in the peptido-LTs and LXA4 (i.e., $5\underline{S}$, $6\underline{R}$) and is a crucial requirement for biologic activity of these eicosanoids, the inventors investigated whether LXA4-induced falls in Kf were due, in part; to interaction with the mesangial cell LTD4 receptor. Surprisingly, the inventors discovered that LXA4 was capable of binding to the mesagial cell LTD4 receptor and of acting as a LTD4 receptor antagonist. The inventors realized that LXA4 would function as a LTD4 receptor antagonist in any tissue sensitive to LTD4 action. Such a finding is a significant advance in the treatment of the functional consequences of glomerular inflammatory reactions (Badr, K.F., et al., J. Clin. Invest. 81:1702-1709 (1988); Badr, K.F., in Advances in Prostaglandin, Thromboxane and Leukotriene Research, Samuelsson, B., et al. (eds.), Raven Press, New York, Volume 18 (1989); and Badr, K.R. et al., Proc. Natl. Acad. Sci. USA 86: (1989), incorporated herein by reference)).

LXA4 can be isolated from leukocytes exposed to 15-HPETE ((15<u>S</u>), 15-hydroperoxy-5,8,11-<u>cis</u>-13-<u>trans</u>-eicosatetraenoic acid (Serhan, C.N. et al., <u>J. Biol. Chem. 261</u>:16340-16345 (1986)), incorporated herein by reference, or chemically synthesized (Webber, S. E. et al., <u>Adv. Exper. Med. Biol. 229</u>:61-78 in <u>Lipoxins: Biosynthesis. Chemistry. and Biological Activities</u>, P. Wong et al., eds., Plenum Publishing Corporation, New York, 1988).

WO 90/13292 PCT/US90/02320

As will be understood by one of skill in the art, derivatives of LXA4 may be constructed which, while retaining the ability of the natural compound to act as a LTD4 receptor antagonist, have an enhanced bioavailability, half-life, affinity for the LTD4 receptor, or other desirable property. Such derivatives may include covalent substitutions at one or more of the three hydroxyl groups and/or at the terminal carboxyl group of LXA4. Especially, such substitutents include esterification of the carboxyl group, and preferably, the α -methyl ester derivative thereof. Substitutents at carbon positions 5, 6, and 15 include addition of the acetate, methyl, of n-butylboronate derivative.

LXA4 and derivatives thereof can be administered by any method which results in deliverance of efficacious levels of said LXA4 or derivatives thereof such that amelioration of the targeted leukotriene-based physiological disorder occurs. For example, LXA4 may be administered parenterally, orally, or topically, in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants and vehicles as desired. The term parenteral as used herein includes subcutaneous, intravenous, intraarterial injection or infusion techniques, without limitation. The term "topically" encompasses administration rectally and by inhalation spray (aerosol), as well as by the more common routes of the skin and the mucous membrane of the mouth and nose.

Total daily doses of the compounds of this invention administered to a host in single or divided doses may be in amounts, for example, of from about 0.1 to about 10 mg/kg body weight daily and more preferrably 0.5 to 5 mg/kg/day. Dosage unit composition may contain such amounts of such submultiples thereof as may be used to make up the daily doses. It will be understood however, that the specific dose level for any particular patient will depend upon a variety of factors including the body weight, general health, sex, diet, time and routine of administration, rates of absorption and excretion,

combination with other drugs and the severity of the particular disease being treated.

This invention also provides for compositions in unit dosage form for the suppression or inhibition of LTD4 receptor activity in a human or lower animal host in need of such treatment, comprising LXA4 or an active derivative thereof and one or more nontoxic pharmaceutically acceptable carriers, adjuvants, or vehicles. The amount of active ingredients that may be combined with such materials to produce a single dosage form will vary depending upon various factors, as indicated above. As described herein, variety of materials can be used as carriers, adjuvants and vehicles in the composition of this invention, as available in the pharmaceutical arts.

Injectable preparations, such as oleaginous solutions. suspensions or emulsions, may be formulated according to known art. using suitable dispersing or wetting agents and suspending agents, as When the active compounds are in water-soluble form, for example, in the form of water soluble salts, the sterile injectable preparation may employ a nontoxic parenterally acceptable diluent or solvent as, for example, sterile nonpyrogenic water or 1.3-butanediol. Among the other acceptable vehicles and solvents that may be employed are 5% dextrose injection, Ringer's injection and isotonic sodium chloride injection (as described in the USP/NF). When the active compounds are in a non-water soluble form, sterile, appropriate oily suspensions containing suitable lipophilic solvents or vehicles, such as fatty oil, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides, are used. Alternatively, aqueous injection suspensions which contain substances which increase the viscosity, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran, and optionally also contain stabilizers may be used.

The pharmaceutical preparations of the present invention are manufactured in a manner which is in itself know, for example, by means of conventional mixing, granulating, dragee-making, dissolving, or lyophilizing processes. Thus, pharmaceutical preparations for oral

use can be obtained by combining the active compounds with solid excipients, optionally granulating a resulting mixture and processing the mixture or granules, after adding suitable auxiliaries, if desired or necessary, to give tablets of dragee cores.

Suitable excipients are, in particular, fillers such as sugars, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders, such as starch, pastes, using, for example, maize starch, wheat starch, rice starch, or potato starch, gelatine, tragacanth, methyl cellulose, hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose, and/or polyvinyl pyrrolidone, and/or, if desired, disintegrating agents, such as the above-mentioned starches, and also carboxymethyl-starch, crosslinked polyvinyl pyrrolidone, agar or alginic acid or a salt thereof, such as sodium alginate. Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, with suitable coating, which if desired, are resistant to gastric juices and for this purpose, inter alia concentrated sugar solutions, which optionally contain gum arabic, talc, polyvinyl polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. In order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations such as acetyl cellulose phthalate or hydroxypropylmethyl cellulose phthalate, are used. Dyestuffs or pigments may be added to the tablets or dragee coatings, for example, for identification or in order to characterize different combinations of active compound doses.

Other pharmaceutical preparations which can be used orally are push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol. The push-fit capsules can contain the active compounds in the form of granules, for example, mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate

and, optionally, stabilizers. In soft capsules, the active compounds are preferably dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin or liquid polyethylene glycols, it also being possible to add stabilizers.

Suppositories for rectal administration of the compound of this invention can be prepared by mixing the drug with suitable suppository bases such as a nonirritating excipient, for example, cocoa butter, natural or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols, or higher alkanols, and especially bases which are solid at ordinary temperature but liquid at body temperature and which therefore melt in the rectum and release the drug. In addition, it is possible to use gelatin rectal capsules which consist of a combination of the active compounds with a base; possible base materials are, for example, liquid triglycerides, polyethylene glycols, or paraffin hydrocarbons.

Solid dosage forms for oral administration include capsules, tablets, pills, troches, lozenges, powders and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, pharmaceutical adjuvant substances, e.g., stearate lubricating agents. Solid oral preparations can also be prepared with enteric or other coatings which modulate release of the active ingredients.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs containing inert nontoxic diluents commonly used in the art, such as water and alcohol. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying, suspending, sweetening, flavoring and perfuming agents.

The compositions of the present invention, in and of themselves, find utility in the control of vasoconstriction, be it chronic or acute. The compositions for the present invention direct the body's own mechanisms for dealing with vasoconstriction to its maximum

potential. In intravenous dosage form, the compositions of the present invention have a sufficiently rapid onset of action to be useful in the management of vasoconstriction of short duration such as that found in vasospastic responses or malignant hypertension.

Additionally, a low potency version is useful in the management of mild or chronic vasoconstriction. This low potency version is useful in the management of essential hypertension, and chronic renal disease.

Further, it has also been found that the compositions of the present invention are useful in the management of chronic severe vasoconstriction such that associated with cardiovascular disease and glomerular kidney disease.

In addition, the compounds of the present invention provides insight into the structural requirements for leukotriene receptor activation and show that lipoxins can serve as structural models for the design of more potent receptor level antagonists for the peptidoleukotrienes.

The following examples are illustrative, but not limitative of the method and composition of the present invention. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in clinical therapy and which are obvious to those skilled in the art are within the spirit and scope of this invention.

EXAMPLES

Statistical: ANOVA with Bonferroni modification for multiple pre-planned comparisons was used, within each group and between groups, to compare the changes in various whole kidney and microcirculatory indices which occurred from one period to another. In phosphoinositide generation studies, increases in $[^3H]$ -IP3 CPMs in

agonist-treated cells were compared to vehicle-treated controls using unpaired students t-test. Differences were considered significant at a p value ≤ 0.05 . All values are reported as mean \pm SEM.

Example 1

Binding of LXA4 to LTD4 Receptors In Kidney Mesangial Cells

The ability of LXA $_4$ to bind to mesangial cell LTD $_4$ receptors in a concentration-dependent manner was investigated in mesangial cell cultures.

Mesangial Cell Culture: Rat mesangial cells were isolated and cultured as described previously (Harris, R.C., et al., J. Clin. Invest. 82:1028-1039 (1988)). Briefly, kidneys were excised from two young Sprague-Dawley rats under sterile conditions, and the cortices removed, minced, and washed several times in Hank's Balanced Salt Solution, containing 10 mM HEPES pH 7.4, amphotericin (0.25 μ g/ml), and gentamicin (50 μ g/ml). The tissue was then passed through consecutive sterilized stainless mesh filters with pore sizes of 212 μ m, 150 μ m, and then onto the final mesh of 75 μ m. The isolated glomeruli were harvested from the surface of the 75 μm filter and washed twice with the Hank's Media. The glomeruli were suspended in RPMI 1640 Medium with 15% Fetal Bovine Serum (Gibco), penicillin (100 U/ml) and streptomycin (100 μ g/ml) (Gibco), plated into 100 mm cell culture petri dishes, and incubated at 37°C in a humidified atmosphere of 95% air and 5% CO2. Mesangial cell colonies were subcultured in 60 mm culture dishes, and experiments were carried out in cells from passages 2 to 12. The criteria used to establish the identity of mesangial cells were as described previously (Harris, R.C., et al., J. Clin. Invest. 82:1028-1039 (1988)). Cells were routinely grown in RPMI-1640, supplemented with 20% fetal calf serum, penicillin 100 U/ml, and streptomycin 100 μ g/ml.

 $[^3H]$ -LTD₄ Binding Studies: LXA₄ was obtained from Biomol Research Laboratories Inc., Philadelphia, PA and $[14,15^{-3}H]$ LTD₄ (32.0 Ci/mmol) was obtained from New England Nuclear. All eicosanoids were

stored under argon at -70°C in methanol and their purity and quantity verified periodically by ultraviolet scanning and high pressure liquid chromatography (Serhan, C.N. et al., <u>J. Biol. Chem.</u> 261:16340 (1986)).

Studies of $[^3H]$ -LTD₄ binding were performed on mesangial cells grown to confluence in 24-well cluster dishes. experiments indicated that increased [3H]-LTD4 binding in other systems (Lewis, M.A., et al., Biochem. Pharmacol. 34:4311-4317 (1985); Sarau, H.M., et al., J. Biol. Chem. 262:4034-4041 (1987)). Therefore, experiments were performed in a buffer previously determined to optimize [3H]-LTD4 binding (Sarau, H.M., et al., J. Biol. Chem. 262:4034-4041 (1987); Mong, S., et al., Mol. Pharmacol. 32:223-229 (1987)) consisting of 20 mM HEPES, 10 mM CaCl₂, 10 mM MgCl₂, 5 mM glycine and 5 mM cysteine (Buffer A). Binding studies were routinely performed at 4°C. Cells were washed once with buffer A and then exposed to the appropriate concentration of $[^3H]-LTD_4$ in buffer A. At the completion of the experiment, the experimental medium was removed and the cells were washed 5 times with ice-cold buffer. were then dissolved with 1.0 ml of 1.0 N NaOH, neutralized with HCl, dissolved in 10 ml of Aquasol (New England Nuclear, Boston, MA), and the bound radioactivity was determined using a scintillation counter (Beckman Instruments). Non-specific binding was determined by measuring the amount of $[^3H]$ -LTD₄ bound in the presence of 1000-fold excess of unlabeled LTD4. Cell density was determined by counting cells from replicate wells, using a Coulter Counter ZBi (Coulter Electronics, Inc., Hialeah, FL).

Competitive binding-inhibition studies were carried out by incubation of mesangial cells with 10 nM $[^3H]$ -LTD₄ and addition, at equilibrium, of 10-fold to 1000-fold increasing concentrations of LXA₄.

Figure 1 depicts the percent inhibition of the binding of 10 nm $[^3H]$ -LTD₄ by LTD₄ and LXA₄. In early passage cultured mesangial cells, LXA₄ was a potent competitor for $[^3H]$ -LTD₄ binding in a manner similar to that of unlabeled LTD₄ (Figure 1). Half maximal inhibition

of binding by LXA4 was at 100 nM compared to 100 nM for the homoligand.

Competition by LXA₄ was equipotent to that of LTE₄ and several-fold greater than that of the non-peptidoleukotriene, LTB₄. The potent $[^3H]$ -LTD₄ binding inhibition obtained with LXA₄, compared to the relatively weak competitive properties of the biologically inactive 5R, 6S-LTD₄ isomer, suggests strongly that the S, R orientation of the polar substituents at C5 and C6 confers optimal advantage for receptor recognition and biological activity. This is supported by additional studies in which 6S-LXA₄ (5S, 6S, 15S, trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid) failed to compete for $[^3H]$ -LTD₄ even at a 1000-fold excess concentration.

These results demonstrate that the binding of [3H]-LTD4 to rat mesangial cells displays a number of characteristics which suggest the presence of specific, membrane-bound receptors for this eicosanoid on mesangial cells. The presence of such receptors takes on particular importance in view of the demonstrated functional responses of mesangial cells to exogenous LTD4 and their possible relevance during inflammatory glomerular injury: LTD4 contracts mesangial cells in culture (Barnett, R., et al., Am. J. Physiol. 19:F838-F844 (1986); Simonson, M.S., et al., Kidney Int. 30:524-531 (1986)), markedly reduces K_f and GFR in vivo (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987); Badr, K.F., et al., Circ. Res. 54:492-499 (1984)), and, through these actions, plays an important role in mediating the impairment of glomerular filtration and permselectivity functions in experimental models of glomerulonephritis (Badr, K.F., et al., J. Clin. Invest. 81:1702-1709 (1988)).

Example 2

Inhibition of LTD4-Induced IP3 Formation by LXA4

LXA₄ also blocked LTD₄-induced stimulation of IP₃ formation (Figure 2). To label mesangial cells with $[^3H]$ -Inositol, cells grown to confluence in 60 mm culture dishes (10^6 cells/dish) were cultured

in RPMI, supplemented with 10% dialyzed fetal calf serum and $[^3H]$ -inositol (1 μ Ci/ml) in a total incubation volume of 5 ml. Preliminary experiments revealed that incorporation of label was maximal at 48 hours and stable for up to 72 hours. All subsequent experiments were therefore carried out on cells preincubated with $[^3H$ -inositol for 48-60 hours.

The formation of inositol monophosphate (IP1), bisphosphate (IP2), and IP3 in [3H]-inositol labeled mesangial cells in response to either LTD4 or LXA4 was measured as follows: plates were washed with Krebs-Ringer solution containing 118 mM NaCl, 4.6 mM KC1, 24.9 mM NaHCO₃, 1 mM KH₂PO₄, 11.1 mM glucose, 1.1 mM MgSO₄, 1.0 mM CaCl, 5 mM HEPES, and 0.1% BSA, pH 7.4, 37°C. concentrations (0.1 to 100 nM) of LTD4, LXA4, or LTD4 following preincubation of cells with 100-fold concentration LXA4 for 10 min were then added to 2 ml of warmed (37°C) Krebs-Ringer and the cells incubated for the indicated time. In experiments in which the effect of the LTD4 antagonist, SKF 104353, on IP formation was tested, the cells were preincuated in the presence of this agent for 10 min prior to addition of agonist (Mong, S., et al., Mol. Pharmacol. 32:223-229 (1987); Gleason, J.G., et al., J. Med. Chem. 30:959-961 (1987)). Reactions were terminated by the addition of cold 10% trichloroacetic acid (TCA), the supernatants subjected to ether extraction, and the aqueous phase titrated to neutral pH using 0.1 M Tris base. [3H]-IP1. $[^{3}H]-IP_{2}$, and $[^{3}H]-IP_{3}$ in the aqueous phase were separated and quantitated by anion exchange column chromatography, using the method of Berridge et al. (Berridge, M.J., Biochem. J. 220:345-360 (1984)). To ensure the reliability of the separation technique, the same methods for extraction and separation were applied to known amounts of $[^3H]-IP_1$, $[^3H]-IP_2$, and $[^3H]-IP_3$ standards (New England Nuclear) mixed in a ratio of 3:2:1, respectively, and subjected to separation by The latter was performed using established methodology HPLC. described previously (Cunha-Melo, J.R., et al., J. Biol. Chem. 262:11455-11463 (1987)). The results from both separation techniques

revealed indistinguishable differences in the percentage of recovered counts (about 80%) and the quantitative ratio of the three IPs separated.

Phosphoinositide hydrolysis in mesangial cells was measured five secs after addition of 1 nM (n = 3), 10 nM (n = 6), 50 nM (n = 3), and 100 nM (n = 5) LXA₄ to mesangial cells labeled with $[^3H]$ -inositol. Low but significant increases [46 \pm 14% (p < 0.05), 50 \pm 21% (p<0.05), 44 \pm 22% (p<0.05), and $45\pm26\%$ (p<0.05), respectively] in radioactive counts (CPM) corresponding to IP3 formation by these cells was noted over those obtained in vehicle-treated samples (controls). Addition of 10 nM (n=5) and 50 nM (n=4) LTD_A to these cells was associated with $146\pm20\%$ (p<0.01) and $106\pm13\%$ (p<0.005) increases in [3H]-IP2 counts as compared to controls, values significantly greater than those for LXA4 (p<0.05). Incubation of the mesangial cells with the LTD4 receptor antagonist, SKF 104353, in concentrations 100-fold in excess of the ligand, followed by addition of LTD4 in the 10 and 50 nM concentrations (n=3 for each) was associated with total abrogation of the LTD₄-induced stimulation of [3H]-IP₃ formation in these cells. Similarly, pre-incubation of these cells with 100 nM LXA4 for 10 min prior to addition of 10 nM LTD4 (n=3) completely prevented LTD4induced IP3 generation. Incubation of mesangial cells with SKF 104353 (100 nM) also abrogated the stimulation of IP3 formation induced by LXA₄ (n=3) (Figure 2).

Intracellular generation of IP₃ is, in general, held to play an important role in mediating responses to various vasoactive agents. The demonstration of a rapid (5 sec) formation of IP₃ following addition of LTD₄ to mesangial cells is in agreement with reports by other investigators regarding the involvement of phosphoinositide hydrolysis in the signaling of LTD₄-mediated biological responses in rat basophilic leukemia cells (Sarau, H.M., et al., J. Biol. Chem. 262:4034-4041 (1987)), sheep tracheal smooth muscle cells (Mong, S., et al., J. Pharmacol. Exp. Ther. 244: 508-515 (1988)), bovine endothelial cells (Clark, M.A., et al., Proc. Natl. Acad. Sci. USA

è

83:7320-7324 (1986)), and guinea pig lung (Mong, S., et al., Mol. Pharmacol. 31:35-41 (1987)). It is reasonable to assume that the contraction of mesangial cells by LTD4 may proceed via a similar mechanism involving the formation of IP3 and mobilization of intracellular Ca²⁺. In fact, the capacity of LTD4 to increase intracellular Ca^{2+} concentrations has been demonstrated recently by Baud et al. in DMSO-differentiated HL-60 myeloid cells (Baud, L., et al., J. Clin. Invest. 80:983-991 (1987)). In the present studies, LXA4 elicited similar, though significantly less potent stimulation of IP3 generation in mesangial cells, presumably due to occupancy of the That LXA₄-induced IP₃ formation is indeed a LTD₄ receptor. consequence of LTD4 receptor activation is supported by its total abrogation in the presence of a specific LTD4 receptor antagonist, SKF 104353_(Figure 2). SKF 104353 is a structural analog of LTD4 and LTE4 that itself is devoid of agonist activity both in vivo (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987); Mong, S., et al., Mol. <u>Pharmacol.</u> 32:223-229 (1987)) and <u>in vitro</u> (Mong, S., <u>et al.</u>, <u>Mol.</u> Pharmacol. 32:223-229 (1987); Gleason, J.G., et al., J. Med. Chem. 30:959-961 (1987)), and it competes for the binding of homoligands to LTD4/LTE4 receptors in a highly potent and specific manner (Gleason, J.G., et al., J. Med. Chem. 30:959-961 (1987)), 400- to 500-fold more effectively than the putative leukotriene antagonist, FPL 55712 (Gleason, J.G., et al., J. Med. Chem. 30:959-961 (1987)). capable of antagonizing and reversing LTD4 effects in a number of tissues, including human and guinea pig lung (Mong, S., et al., Mol. Pharmacol. 32:223-229 (1987)), rat basophilic leukemia cells (Sarau. H.M., et al., J. Biol. Chem. 262:4034-4041 (1987)), and renal vasculature (Badr, K.F., et al., J. Clin. Invest. 81:1702-1709 (1988)). In systems where it has been tested, SKF 104353 was found to compete specifically with [3H]-LTD4 for binding to whole cells (Sarau, H.M., et al., J. Biol. Chem. 262:4034-4041 (1987); Mong, S., et al., Mol. Pharmacol. 32:223-229 (1987); Gleason, J.G., et al., J. Med. Chem. 30:959-961 (1987)), as well as cell membrane fractions (Sarau,

H.M., et al., J. Biol. Chem. 262:4034-4041 (1987); Mong, S., et al., Mol. Pharmacol. 32:223-229 (1987); Gleason, J.G., et al., J. Med. Chem. 30:959-961 (1987)), and it shifts the dose-response curves obtained for LTD4-mediated phosphoinositide hydrolysis, intracellular calcium mobilization, and thromboxane synthesis (Sarau, H.M., et al., J. Biol. Chem. 262:4034-4041 (1987); Mong, S., et al., Mol. Pharmacol. 32:223-229 (1987); Gleason, J.G., et al., J. Med. Chem. 30:959-961 In other studies, we demonstrated the capacity of this (1987)). antagonist to inhibit [3H]-LTD4 binding to its mesangial cell binding site in a manner similar to that reported for this compound in other systems (Sarau, H.M., <u>et al., J. Biol. Chem. 262</u>:4034-4041 (1987); Mong, S., et al., Mol. Pharmacol. 32:223-229 (1987); Gleason, J.G., et al., J. Med. Chem. 30:959-961 (1987)). When taken together, the findings that LXA4 (1) blocks the binding of $[^3H]$ -LTD4, (2) effects the generation of IP3, and (3) is antagonized by a well-defined LTD4 receptor antagonist (e.g., SKF 104353) establish the involvement of a common recognition site in mediating the actions of these two eicosanoids on mesangial cells.

Example 3

Physiologic Interactions of LTD₄ and LXA₄

Renal function was measured in vivo in Inactin-anesthetized male Munich-Wistar rats weighing 220-240 gms which were surgically prepared according to protocols described previously (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987)). Inulin and para-aminohippurate (PAH) clearances were used to measure GFR and effective RPF. A needle was placed at the take-off of the left renal artery through which a maintenance infusion of 0.9% NaCl at a rate of 0.05 ml/min was initiated. This infusion originated from two separate pumps each delivering at 0.025 ml/min and connected to the renal arterial catheter by means of a three-way connector. Homologous rat plasma was administered intravenously according to a protocol shown previously to maintain euvolemia (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243

Intra-renal arterial administration of LTD4 (1 μ g/kg/min) results in systemic hemodynamic alterations identical to those we previously reported for LTC4 (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987); Badr, K.F., et al., Circ. Res. 54:492-499 (1984)) which included an elevation in systemic arterial pressure and a progressive loss of plasma volume. In order to minimize the systemic effects of LTD4 and allow for adequate assessment of renal functional parameters, the rate of infusion of homologous rat plasma was increased upon starting LTD4 and approximately 4-5 ml of plasma were administered throughout the LT infusion. The degree of change in hematocrit varied with the dose of LTD4 (Table 1). Inulin and PAH concentrations were determined according to Fuhr et al. (Führ, J., Klin. Wochhenschr. 33:729-499 (1955)) and Smith et al. (Smith, H.W., et al., J. Clin. Invest. 24:388-391 (1945)). Two experimental groups were studied as follows:

Group I (n'= 14). First period: Clearances were performed during vehicle infusion. Second period: Measurements were repeated during a 20-minute infusion of LTD₄ delivered through one of the infusion pumps into the left renal artery at doses of 0.5 (n = 4), 7 (n = 3), 14 (n = 3), and 20 (n = 4) μ g/kg/min.

Group II (n = 12). First period: Clearances were performed during vehicle infusion. Second period: Measurements were repeated during a 20-min infusion of LXA4 as in the second period, LTD4 infusion was initiated through the second pump again in doses of 0.5 (n = 3), 7 (n = 3), 14 (n = 3), and 20 (n = 3) μ g/kg/min (as in Group I).

TABLE 1

			AP	Hct	RPF	GFR
			(mmHg)	(Vol./dl)	ml/min	
				GROUP I		
CONTROL	A	(n=4)	118±8	46.3±0.7	4.35±0.17	1.11±0.02
[Period 1]	В	(n=3)	110±5	45.3±2.2	4.53±0.13	1.15±0.10
•		(n=3)	124±3	49.4±1.0	4.33±0.12	1.08±0.03
	D	(n=4)	112±4	46.1±0.8	4.45±0.08	1.12±0.04
LTD4	A		127 1 9*	48.3±1.2	3.41±0.50	0.81±0.11
[Period 2]	В		124±6*	53.0±1.5*	2.76±0.59*	0.84±0.15*
	С		148±5*	59.2±2.2*	1.51±0.44*	0.32±0.10*
	D		128±4*	55.0±1.8*	1.20±0.15*	0.34±0.80*
				GROUP II		
CONTROL	A	(n=3)	116±6	43.7±0.9	4.37±0.04	1.02±0.05
[Period 1]	В	(n=3)	115±1	45.3±0.9	4.29±1.09	0.94±0.10
	С	(n=3)	129±3	44.0±0.7	4.15±0.30	1.00±0.20
	D	(n=3)	110±2	45.2±0.1	3.98±0.45	1.08±0.05
LXA4	A		121±4	43.7±0.9	4.50±0.08	1.20±0.20
[Period 2]	В		120±0	44.7±1.2	4.76±0.83*	0.98±0.06
	С		127±2	45.2±0.7	4.87±0.10*	1.30±0.10*
	D		108±3	44.5±0.3	4.58±0.20*	1.27±0.04*
LXA ₄ +LTD ₄	A		126±3	44.3±2.6	3.60±0.43†	1.08±0.15
[Period 3]	В		130±4 [†]	50.3±0.7 [†]	2.94±0.44 [†]	0.88±0.18
	С		147±7†	51.2±1.0 [†]	2.40±0.32 [†]	0.74±0.20 [†]
	D		131±3 [†]	54.0±1.7 [†]	1.58±0.30 [†]	0.65±0.10 [†]

Administration of LTD4 [LTD4 doses: 0.5, 7.0, 14.0, and 20.0 (µg/kg/min)] in Group I animals was associated with dose-dependent reductions in the mean value for GFR and RPF which are summarized in In Group II animals, administration of LXA $_4$ was associated with moderate increases in both GFR and RPF in all animals (Table 1). These responses to LTD4 and LXA4 were as expected from previously reported studies (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987); Badr, K.F., et al., Biochem. Biophys. Res. Comm. 145:408-414 (1987); Badr, K.F., et al., Circ. Res. 54:492-499 (1984)). administration of increasing doses of LTD₄ in the presence of LXA₄, however (Group II, third period), was associated with marked blunting of the LTD4-provoked reduction in GFR (period 2 as compared to period 3), but was without effect on OTD4-induced falls in RPF (Table 1). Mean percent falls in GFR/RPF during LTD4 administration were 27*/24, 25*/40*, 70*/65*, and 73*/70* at the above doses, respectively (* p<0.05 vs baseline). In the presence of LXA₄, these values were: 9/20*, 11/37*, and 42*/51*, and 50*/68*. The dose-response curves for LTD4-induced falls in GFR and RPF in the absence and presence of LXA4 are depicted in Figure 3.

In previous studies utilizing micropuncture techniques, we defined the glomerular microcirculatory responses to both LTD4 (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987)) and LXA4 (Badr, K.F., et al., Biochem. Biophys. Res. Comm. 145:408-414 (1987)) in the Munich-Wistar rat. While LTD4 is a renal vasoconstrictor, the principal mechanism through which it leads to a reduction in GFR is its potent K_f -lowering action, resulting from mesangial cell contraction (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987)). These effects of LTD4 on glomerular perfusion and function are evidenced by the dose-response curves established for this eicosanoid in Group I rats (Figure 3). The vasodilatory and GFR-augmenting effects of LXA4 (Badr, K.F., et al., Biochem. Biophys. Res. Comm. 145:408-414 (1987)), on the other hand, are evident in the changes in GFR and RPF seen in

Group II animals (Period 2 vs. Period 1). The subsequent administration of LTD4 in these rats during the continued infusion of LXA4, however, is associated with a dramatic shift in the dose-response for the LTD4-induced falls in GFR (Period 2 to Period 3 in Group 2 rats). The relative protection against the GFR-depressant action of LTD₄ (which is provided by LXA4), despite absence of any modification of LTD4's potent vasoconstrictor action (Figure 3B), is interpreted as LXA4-mediated prevention of LTD4-induced fall in Kf. Although it is conceivable that the afferent arteriolar dilatory action of LXA4 may have augmented intraglomerular capillary pressure (PGC), and hence increased GFR, the elevated values of P_{GC} observed during LTD₄ infusion (Badr, K.F., et al., Am. J. Physiol. 22:F239-F243 (1987)) argues against further elevations in this parameter as a mechanism for the observed preservation of GFR. It is possible, however, that as yet undefined actions of LXA4 may play some role in the in vivo Nevertheless, these <u>in vivo</u> observations lend strong support to our in vitro studies demonstrating competition for LXA4 for the LTD4 mesangial cell receptor and its inhibition of LTD4-induced IPa formation in these cells. They also provide a basis for possible relevance of LT/LX interactions in the regulation of glomerular function, particularly during inflammatory injury (Badr, K.F., et al., J. Clin. Invest. 81:1702-1709 (1988)).

In summary, we have shown that LXA₄ can displace LTD₄ from its binding site on rat glomerular mesangial cells and block LTD₄-induced IP₃ formation, as well as offset the physiological contractile actions of LTD₄ on these cells <u>in vivo</u>. Together these findings suggest that LXA₄, a product of human leukocytes, may regulate the actions of the peptidoleukotrienes <u>in vivo</u>.

Having now fully described this invention, it will be understood by those with skill in the art that the invention may be performed within a wide and equivalent range of conditions, parameters, and the like without affecting the spirit or scope of the invention or any embodiment thereof.

WHAT IS CLAIMED IS:

- 1. A method for antagonizing a response to SRS-A in an animal comprising administering a composition comprising an SRS-A-antagonist effective amount of LXA4 or an active derivative thereof to said animal.
 - 2. The method of claim 1, wherein said SRS-A is a leukotriene.
 - The method of claim 2, wherein said leukotriene is LTD₄.
- 4. The method of claim 1, wherein said response to SRS-A is vasoconstriction.
- 5. The method of claim 1, wherein said response to SRS-A is associated with a medical disorder selected from the group consisting of asthma, anaphylactic reactions, allergic reactions, shock, inflammation, rheumatoid arthritis, gout, psoriasis, allergic rhinitis, adult respiratory distress syndrome, Crohn's disease, endotoxin shock, traumatic shock, hemorrhagic shock, bowel ischemic shock, renal glomerular disease, benign prostatic hypertrophy, inflammatory bowel disease, myocardial ischemia, myocardial infarction, circulatory shock, brain injury, systemic lupus erythematosus, and hypertension.
- 6. A method for controlling vasoconstriction in an animal comprising administering a composition comprising an anti-vasoconstrictive effective amount of LXA4 or an active derivative thereof to said animal.
- 7. The method of claim 6, wherein said vasoconstriction is due to activation of a leukotriene receptor.

- 8. The method of claim 7, wherein said receptor is the LTD_4 receptor.
- 9. The method of claim 6, wherein said vasoconstriction is the result of release of SRS-A.
- 10. The method of claim 6, wherein said vasoconstriction is associated with a medical disorder selected from the group consisting of asthma, anaphylactic reactions, allergic reactions, shock, inflammation, rheumatoid arthritis, gout, psoriasis, allergic rhinitis, adult respiratory distress syndrome, Crohn's disease, endotoxin shock, traumatic shock, hemorrhagic shock, bowel ischemic shock, renal glomerular disease, benign prostatic hypertrophy, inflammatory bowel disease, myocardial ischemia, myocardial infarction, circulatory shock, brain injury, systemic lupus erythematosus, and hypertension.
- 11. The method of claim 5 or 10, wherein said medical disorder is asthma.
- 12. The method of claim 5 or 10, wherein said medical disorder is an anaphylactic reaction.
- 13. The method of claim 5 or 10, wherein said medical disorder is an allergic reaction.
- 14. The method of claim 5 or 10, wherein said medical disorder is renal glomerular disease.
- 15. The method of claim 5 or 10, wherein said medical disorder is systemic lupus erythematosus.

- 16. The method of claim 5 or 10, wherein said medical disorder is hypertension.
- 17. The method of claim 1 or 6, wherein said effective amount is about 0.1 to about 10 mg/kg body weight/day.
- 18. The method of claim 17, wherein said effective amount is about 0.5 to 5 mg/kg body weight/day.
- 19. The method of claim 1 or 6, wherein said derivative comprises a covalent substitution at one or more of the three hydroxyl groups of LXA4.
- 20. The method of claim 19, wherein said covalent substitution is selected from the group consisting of an acetate; methyl and n-butylboronate substitution.
- 21. The method of claim 1 or 6, wherein said derivative comprises a covalent substitution at the terminal carboxyl group of LXA_4 .
- 22. The method of claim 21, wherein said covalent substitution comprises esterification of the carboxyl group.
- 23. The method of claim 1 or 6, wherein said composition is administered parenterally, orally, or topically.
- 24. The method of claim 23, wherein said parenteral administration is selected from the group consisting of subcutaneous, intravenous, and intraarterial administration.

25. The method of claim 23, wherein said topical administration is selected from the group consisting of rectal and aerosol administration.

FIGURE 1

FIGURE 2

FIGURE 3A

FIGURE 3B

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US90/02320

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, ind According to International Patent Classification (IPC) or to both National Classification and IPC IPC (5): A61K 31/23	41AID 2							
According to International Patent Classification (IPC) or to both National Classification and IPC TPC: (5) • A61K 31/23	1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3							
1 1PG: (5) • AB1K 51/25	According to International Patent Classification (IPC) or to both National Classification and IPC							
U.S. CI : 514/552								
II. FIELDS SEARCHED -								
Minimum Documentation Searched 4								
Classification System Classification Symbols								
υ.s. 514/552								
Documentation Searched other than Minimum Documentation								
to the Extent that such Documents are included in the Fields								

III. DOCUMENTS CONSIDERED TO BE RELEVANT 14								
Category Citation of Document, 18 with Indication, where appropriate, of the relevant pas	Relevant to Claim No. 19							
A Chemical Abstracts, Vol. 111, No. 9 (Colum	bus, 1-25							
Ohio, US,A), (NICOLAU ET AL) "Identificat								
a novel 7-cis-11-trans-Lipoxin A generate								
	human neutrophils," see pages 608 and 609, the							
abstract No. 76329v, Biochim. Biophys. Act	a							
1989, 1003(1), 44-53 (Eng).								
X Chemical Abstracts, Vol. 111, No. 1 (Colum	bus,							
Ohio, US,A) (BADR ET AL) "Lipoxin A4								
antagonizes cellular and in vivo actions of								
leukotriene D in rat glomerular mesangial								
evidence for competition at a common recep								
"see page 529, the abstract No. 5366u, Pro								
Natl. Acad. Sci. USA, 1989, 86(9), 3438-42	(EUG).							
TID A A EGO E4A (CAMPIET COON EVIL AT)	1-25							
X US,A 4,560,514 (SAMUELSSON ET AL)	1-25							
24 December 1985								
See entire document.								
X Br. J. Pharmacol. (1988) Vol. 95 see pp. 5	62-568 1-25							
Crawford et al.	02 300 2 23							
orawioid et al.								
Special categories of cited documents: 15 "T" later document pub	dished after the international filing date							
"A" document defining the general state of the art which is not	not in conflict with the application but the principle or theory underlying the							
considered to be of particular relevance invention								
"E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to								
"L" document which may throw doubts on priority claim(s) or involve an inventive step								
citation or other special reason (as specified) cannot be considered to involve an inventive step when the								
"O" document referring to an oral disclosure, use, exhibition or other means document is combined with one or more other such documents, such combination being obvious to a person skilled								
"P" document published prior to the international filing date but in the art.								
taken then the mindle date elalored #77 decomment would								
	IV. CERTIFICATION							
IV. CERTIFICATION								
IV. CERTIFICATION Date of the Actual Completion of the International Search 2 Date of Mailing of this International Se	ternational Search Report ²							
IV. CERTIFICATION Date of the Actual Completion of the International Search 2 Date of Mailing of this International Se								
IV. CERTIFICATION Date of the Actual Completion of the International Search 2 24 JULY 1990 Date of Mailing of this international Search 2	AUG 1990							
IV. CERTIFICATION Date of the Actual Completion of the International Search 2 Date of Mailing of this International Se	AUG 1990							