UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

FACET

Cálculo III

Lista 02 - Integrais Duplas

29 de Março de 2016

(1) Calcule as integrais iteradas:

a)
$$\int \int_R x e^{xy} dA$$
, onde $R = [1, 3] \times [0, 1]$.

b)
$$\int \int_R x \cos xy dA$$
, onde $R = [0, 2] \times [1, \frac{\pi}{2}]$.

c)
$$\int \int_R (x \cos x + y) dA$$
, onde $R = [0, \pi] \times [0, 1]$.

d)
$$\int_0^1 \int_x^{2x} (2x + 4y) dy dx$$
.

e)
$$\int_{1}^{e} \int_{\ln x}^{1} x dy dx$$
.

(2) Calcule
$$\int \int_R (2x+y)dA$$
, onde R é a região limitada por $x=y^2-1, x=5, y=-1$ e $y=2$.

(3) Calcule
$$\int \int_R (x+y) dA$$
, onde R é a região limitada por $y=x^2+1,\,y=-1-x^2,\,x=-1$ e $x=1$.

(4) Calcule
$$\iint_R e^{-x^2} dA$$
, onde R é a região limitada por $x = 4y$, $y = 0$ e $x = 4$.

(5) Calcule
$$\int \int_R y dA$$
, onde R é a região do primeiro quadrante compreendida pelo círculo $x^2+y^2=25$ e a reta $x+y=5$.

(6) Esboce a região de integração e mude a ordem de integração:

a)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$
.

b)
$$\int_{0}^{1} \int_{x}^{1} e^{\frac{x}{y}} dy dx$$
.

c)
$$\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} dy dx$$
.

- (7) Usando coordenadas polares, calcular:
 - a) $\int \int_R \frac{dA}{1+x^2+y^2},$ onde Ré a região do segundo quadrante delimitada pela

circunferência $x^2 + y^2 = 4$.

- b) $\int \int_R \sqrt{x^2 + y^2} dA$, onde R é a região delimitada por $x^2 + y^2 = 1$ e $x^2 + y^2 = 9$.
- c) $\int \int_R x dA$, onde R é a região delimitada por $x^2 + y^2 4x = 0$.
- d) $\int \int_R y dA$, onde R é a região delimitada por $y=x,\,y=2x$ e $y=\sqrt{4-x^2}$.
- e) $\int \int_R xy dA$, onde R é a região delimitada por $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- (8) Usando uma integral dupla em coordenadas polares, calcule a área da região:
 - a) No interior do círculo $x^2 + y^2 = 4$ e à direita da reta x = 1.
 - b) Dentro do círculo $(x-1)^2 + y^2 = 1$ e fora do círculo $x^2 + y^2 = 1$.
- (9) Determine o volume do sólido que está abaixo do paraboló
ide hiperbólico $z=4+x^2-y^2$ e acima do retângulo $R=[-1,1]\times[0,2].$
- (10) Usando coordenadas polares, determine o volume do sólido que está acima do cone $z=\sqrt{x^2+y^2}$ e abaixo da esfera $x^2+y^2+z^2=1$.

Bons estudos!