Exercise 1. Show that there is a bijective correspondence of $A \times B$ with $B \times A$.

Proof. If either $A = \emptyset$ or $B = \emptyset$, then both $A \times B$ and $B \times A$ are empty. Since there is no function with image the empty set, both A and B must be nonempty for a bijection between them to exist.

Suppose then that both A and B are nonempty, and define:

$$\phi: A \times B \to B \times A \qquad \qquad \psi: B \times A \to A \times B$$
$$(x, y) \mapsto (y, x) \qquad \qquad (y, x) \mapsto (x, y)$$

Then $\phi \circ \psi = i_{B \times A}$ and $\psi \circ \phi = i_{A \times B}$, so ϕ and ψ are bijections.