工	Gamma function
	Gomma function is defined as
	y x ²⁻¹ e ⁻⁷ dx = √n
	Now, To = [(n-1)!
	eg. [4=3! = 3+2x] eg. [4=3! = 3+2x] fg=8!= 8x7x6x5x4x3+2x).
	Mostly used to solve integrals of By part questions containing these fun?.
	By part questions containing these fun.
	as integrand.
	Small Examples:
	$\int x^8 e^{-4x} dx = 19 = 8!$
<u> </u>	
②	. J x = 76 = 5!
	Examples & containing eax:
	Examples & containing e.
Œ	· NKT. 00
	$\int_{0}^{\infty} \sqrt{e^{\alpha}} d\alpha = \int_{0}^{\infty} d\alpha$
	eq. $\int x^6 e^{-5x} dx = \sqrt{7}$
	$(5)^{7}$
	5 x e 37 dx = /10
	$(3)^{16}$
	(3)
"	Scanned with CamScanner

	classante
	Date
3	July e dy.
	o Vm e dm.
_=	put a svaretta asitions and
	$\exists x = t^2$
	sea senda = etation = campe
	٩.
	: 1000 + 500 + 500 m
	$\rightarrow \infty + \rightarrow \infty$
	<i>∞</i>
	I = J TA e JA = J t. et 2 tat
	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	- 2 j t. etat: 1 8 = (1, m) 8
	270
	$= \frac{2}{27} \times \sqrt{3} = \frac{2}{27} \times 2! = \frac{2}{27} \times 27!$
	27 27 27
	= 4 D P Wê
7	= 4 P 1118
-	
(8)	1 2 E X dm. (-1) 1 . (-1)
3	put 1012 = t.
<u> </u>	228-11-01
	$\int_{\Omega} ut dx^{2} = t.$ $2x^{2} dx = dt.$ $2x^{2} dx = dt.$ $2x^{2} \sqrt{t} 2x\sqrt{t}.$
	2 Kn. 2 Kg TE 2 K VE.
	P in p (ma) of K (ma) of K
	: Jule Kulus (NE). E AF
	: Jule Kingula (KF). Ef 9F
	OK) 2KVE.
	∞ n-1
	$= \frac{1}{2K^{n+1}} \int (\sqrt{E}) \cdot e^{-t} dt \cdot = 1 \int t^{2} e^{-t} dt \cdot$
	2Kn+1 0
	= 1 . [n+1
	nt!

3.5 GAMMA FUNCTIONS

Consider the definite integral $\int_{0}^{\infty} e^{-x} x^{n-1} dx$, it is denoted by the symbol n (we read it as Gamma 'n') and is called as Gamma

function of n. Thus,

$$\int_{0}^{\infty} e^{-x} x^{n-1} dx (n > 0)$$
 ...(1)

Gamma function is also called as Euler's integral of the second kind.

3.6 PROPERTIES OF GAMMA FUNCTIONS

1.
$$n = 2 \int_{0}^{\infty} e^{-x^{2}} \cdot x^{2n-1} dx$$

Proof: We have,

x 0 ∞ t 0 ∞

[It may be borne in mind that variable of integration is immaterial in a definite integral.] Relations (1) and (2) are both considered as definitions of Gamma functions.

$$\int_{0}^{\infty} e^{-X} x^{n-1} dx$$

$$\boxed{1} = \int_{0}^{\infty} e^{-X} x^{0} dx = [-e^{-X}]_{0}^{\infty} = (-e^{-\infty} + e^{0}) = 0 + 1 = 1$$

3. Reduction Formula for Gamma Functions:

$$(n+1) = n n$$

Proof: By definition

$$\int_{0}^{\infty} = \int_{0}^{\infty} e^{-x} x^{n-1} dx,$$

Replace n by n + 1.
$$(n + 1)$$
 = $\int_0^\infty e^{-x} x^n dx$.

Now, integrating by parts

$$(n+1) = \{x^n (-e^{-x})\}_0^{\infty} - \int_0^{\infty} nx^{n-1} (-e^{-x}) dx.$$

Now,

$$\lim_{x\to\infty} \frac{x^n}{e^x} = 0. \text{ Also if } n > 0, \quad \frac{x^n}{e^x} = 0 \quad \text{for } x = 0 \quad \therefore \quad \left[\frac{x^n}{e^x}\right]_0^\infty = 0$$

:.

$$(n+1)$$
 = 0 + n $\int_{0}^{\infty} e^{-x} x^{n-1} dx = n n$

:.

...(4)

If n is a positive integer,

Hence

$$(n + 1) = n!$$
 if n is a positive integer.
 $(n + 1) = n n$, in general

= n! if n is a positive integer.

$$\therefore \quad \boxed{n} = \frac{\boxed{(n+1)}}{n} \quad \therefore \quad \boxed{0} = \frac{\boxed{1}}{0} = \frac{1}{0} = \infty$$

$$5. \quad \boxed{\frac{1}{2}} = \sqrt{\pi}$$

6. Since
$$(n + 1) = n!$$

::

$$\frac{11}{2} = \frac{9}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}$$

7. For negative fraction n, we use

$$\begin{bmatrix} \frac{5}{-3} & = & (\frac{3}{5}) \end{bmatrix} \begin{bmatrix} (\frac{2}{-3}) & = & (-\frac{3}{5}) & (-\frac{3}{2}) \end{bmatrix} \begin{bmatrix} \frac{1}{3} & = \frac{9}{10} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \end{bmatrix}$$

3.7 TRANSFORMATION OF GAMMA FUNCTIONS

1. We know that

 $\int_{0}^{\infty} e^{-ky} y^{n-1} dy = \frac{\lceil n \rceil}{k^{n}}$

x	0	00
у	0	∞

Ex. 11: Evaluate $\int_{0}^{\infty} x^{9} e^{-2x^{2}} dx$

(Dec. 2009, 2018; May 2006)

Sol. :

$$1 = \int_0^\infty x^9 e^{-2x^2} dx$$

Put $2x^2 = t$ o

$$x = \left(\frac{t}{2}\right)^{1/2}, \quad 4x \, dx = dt$$

$$I = \int_{0}^{\infty} x^{8} e^{-2x^{2}} \cdot x \, dx = \int_{0}^{\infty} \left(\frac{t}{2}\right)^{4} e^{-t} \, \frac{dt}{4}$$

$$= \frac{1}{64} \int_{0}^{\infty} t^{4} e^{-t} \, dt = \frac{1}{64} \int_{0}^{\infty} e^{-t} t^{5-1} \, dt$$

$$= \frac{1}{64} \left[5\right] = \frac{4!}{64} = \frac{24}{64}$$

_		
X	0	8
t	0	7
		_~

Ex. 12: Show that $\int_{0}^{1} \left(\log \frac{1}{y} \right)^{n-1} dy = \left[n \right]$

Sol. : Let

$$I = \int_{0}^{1} \left(\log \frac{1}{y} \right)^{n-1} dy \text{ Put } \log \frac{1}{y} = t \text{ or } \frac{1}{y} = e^{t} \text{ or } y = e^{-t} dy = -e^{-t} dt$$

$$= \int_{-\infty}^{0} t^{n-1} (-e^{-t}) dt = \int_{0}^{\infty} e^{-t} t^{n-1} dt$$

у	0	1
t	80	0

Ex. 13: Evaluate $\int_{0}^{\infty} (x \log x)^{4} dx.$

(May 2005; Dec. 2011, 2007)

Sol.: Let

$$I = \int_{0}^{1} (x \log x)^{4} dx \text{ Put } \log x = -t \text{ or } x = e^{-t}, dx = -e^{-t} dt$$

x	0	1
t	8	. 0

$$= \int_{-\infty}^{0} (e^{-t})^{4} (-t)^{4} (-e^{-t} dt) = \int_{0}^{\infty} e^{-5t} t^{4} dt = \frac{5}{5^{5}}$$

$$I = \frac{4!}{5^5}$$

$$\left(\text{Put } k = 5, \, n = 5 \text{ in } \int_{0}^{\infty} e^{-ky} y^{n-1} \, dy = \frac{\left[n \right]}{k^{n}} \right)$$

6

m

-(M