Estimación práctica del error. Integración a paso variable. Pares encajados

Guión de la práctica:

En esta práctica implementaremos en MATLAB pares encajados de métodos Runge-Kutta (RK) para resolver el problema de valor inicial (PVI)

$$u'(t) = f(t, u(t)),$$
 $t \in (t_0, T),$
 $u(t_0) = u_0$

Pares Encajados

Un par encajado de métodos RK de s etapas y órdenes p(q) es un par de métodos con la misma matriz de coeficientes A y distintos pesos b y \hat{b} con órdenes p y q respectivamente, representándose en tabla de Butcher como

$$\begin{array}{c|c}
c & A \\
\hline
 & b^T \\
\hline
 & \widehat{b}^T
\end{array}$$

Explícitamente:

$$K_i = f(t_n + c_i h, y_n + h \sum_{j=1}^s a_{ij} K_j)$$

$$y_{n+1} = y_n + h \sum_{i=1}^s b_i K_i$$

$$\widehat{y}_{n+1} = y_n + h \sum_{i=1}^s \widehat{b}_i K_i$$

Observaciones:

- Nos centraremos en los pares encajados de métodos explícitos, aunque se puedo aplicar todo al caso de métodos implícitos
- Normalmente q = p 1 o q = p + 1
- Al tener la misma matriz A, las etapas solo se calculan una vez
- Observese que no son dos métodos independientes, sino que ambos parten del punto anterior del mismo (t_n, y_n) .

Guión de programación:

1. Se calculan las etapas K_i , i = 1, ..., s.

- 2. Se computa la fórmula de avance y_{n+1} .
- 3. Considerando que el error local relativo sea de un número de cifras rTol, definimos la tolerancia local que vamos a exigir como

$$tol = rTol * \max(||y_n||, ||y_{n+1}||)$$

Se toma

$$est = y_{n+1} - \hat{y}_{n+1} = h \sum_{i=1}^{s} (\hat{b}_i - b_i) K_i.$$

- 4. Si ||est|| < h * tol se acepta el paso h y se sigue avanzando al siguiente paso, se calcula (t_{n+1}, y_{n+1}) según la fórmula de avance del método y se propone $h_{new} > h$ para el paso siguiente $(t_{n+1} \to t_{n+2})$.
- 5. Si $||est|| \ge h * tol$ se rechaza el paso h y se busca $h^* < h$ para el paso $t_n \to t_{n+1}$.

Previsión de paso tras un paso aceptado

Hemos calculado (t_{n+1}, y_{n+1}) y $est \leq tol$. Consideramos

$$h_{new} = rh, \quad r \in (0, r_0],$$

donde r se llama razón de cambio de paso,

$$r = \alpha \left(\frac{h * tol}{est} \right)^{\frac{1}{p}}.$$

Aquí $\alpha = 0.8$ ó 0.9 ó 0.95 ó 0.99 es un factor de seguridad que se introduce para evitar que el proximo paso sea rechazado y r_0 es la máxima razón de paso posible.

Reducción de paso tras un paso rechazado

Hemos calculado (t_{n+1}, y_{n+1}) pero est > tol, por lo que se rechaza este h y se busca un nuevo $h^* < h$ para el mismo paso $t_n \to t_{n+1}$. Consideramos

$$h^* = r^*h$$
, con $r^* = \alpha \left(\frac{h*tol}{est}\right)^{\frac{1}{p}}$.

La función a construir es la siguiente:

```
function [u,t,no,ha,tol_r]=par_RK(f,T,t0,u0,bp,bq,p,c,A,rTOL,alpha)
Esta función resuelve el problema de valor inicial
%
       u'=f(t,u)
%
       u(t0)=u0
% utilizando para la estimación del error local pares encajados p(q)
 de métodos Runge-Kutta
%
%
%
     [u,t,no,ha,tol_r]=par_RK(f,T,t0,u0,bp,bq,p,c,A,rTOL,aTOL)
%
%
  Variables de Entrada:
%
%
       f: vector columna. función que rige el sistema de EDO,
%
         tiene dos argumentos f(t,u) donde t es escalar
%
         y u vector columna.
```

```
%
       t0: tiempo inicial
%
       T: tiempo final
%
       u0: vector columna. Dato inicial
%
       bp,bq,c,A: coeficientes del tablero de BUTCHER para los pares
%
                 encajados bp, bq
%
                 A: matriz cuadrada de orden s.
%
                 bp, bq: vectores fila de orden s.
%
                 c: vector columna de orden s.
%
       p: orden del método de avance asociado a bp.
%
       rTOL: tolerancia relativa
%
       alpha: parámetro de control de paso
%
%
  Variables de Salida:
%
%
       u: matriz de length(u0) x length(tiempo) que contiene la solución
%
       t: vector de tiempos
%
       no: Numero de pasos rechazados
%
       ha: tamaño de los pasos aceptados
%
       tol_r: valores de la tolerancia
```

Tableros de Butcher para los pares encajados que usaremos:

• Método implementado en Matlab, ode23:

0	0	0	0
1	1	0	0
1/2	1/4	1/4	0
y_{n+1}	1/6	1/6	2/3
\hat{y}_{n+1}	-1/6	-1/6	4/3

• Par de Chescino 2(4) (1962):

• Pares encajados de Fehlberg (1969) RKF4(5)

0	0	0	0	0	0	0
2/9	2/9	0	0	0	0	0
1/3	1/12	1/4	0	0	0	0
3/4	69/128	-243/128	135/64	0	0	0
1	-17/12	27/4	-27/5	16/15	0	
5/6	65/432	-5/16	13/16	4/27	5/144	0
y_{n+1}	1/9	0	9/20	16/45	1/12	0
\hat{y}_{n+1}	47/450	0	16/25	32/225	1/30	6/25

Comentarios: Para realizar esta práctica se puede implementar todas las funciones o ficheros .m auxiliares que se necesiten aparte de los citados aquí.

Ejercicios:

1. Considerar el problema de valor inicial siguiente: En el intervalo [0, 10],

$$\begin{cases} u' = \begin{bmatrix} -2 & 1\\ 1 & -2 \end{bmatrix} u + \begin{bmatrix} 2\sin(t)\\ 2(\cos(t) - \sin(t)) \end{bmatrix} \\ u(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix} \end{cases}$$
 (1)

- (a) Resolver el problema utilizando los pares encajados descritos anteriormente.
- (b) Calcular la solución numérica del PVI con varios datos iniciales y representar conjuntamente las trayectorias obtenidas.
- (c) Representar gráficamente con los diferentes tablero de butcher:
 - i. Las componentes de la solución del problema de valor inicial.
 - ii. Los valores de h de aceptados.
 - iii. Los valores del error local estimado, el valor de rTOL dado y los valores de TOL utilizados en parRK.
- (d) Calcula el porcentaje de pasos aceptados y rechazados y el tamaño de paso medio.
- 2. Consideremos el sistema autónomo conocido con el nombre de "Brusselator" para $t \in [0, 20]$

$$\begin{cases} x' = 1 + x^2y - 4x \\ y' = 3x - x^2y \end{cases}$$
 (2)

con condición inicial

$$x(0) = 3/2, y(0) = 3.$$

Este sistema aparece como modelo de ciertas reacciones químicas multimoleculares.

- (a) Resolver el problema utilizando los pares encajados descritos anteriormente.
- (b) Calcular la solución numérica del PVI con varios datos iniciales y representar conjuntamente las trayectorias obtenidas.
- (c) Representar gráficamente con los diferentes tablero de butcher:
 - i. Las componentes de la solución del problema de valor inicial.
 - ii. Los valores de h de aceptados.
 - iii. Los valores del error local estimado, el valor de rTOL dado y los valores de TOL utilizados en parRK.
- (d) Calcula el porcentaje de pasos aceptados y rechazados y el tamaño de paso medio.