7.4 集成运算放大器使用中的几个问题

7.4.1 选型

集成运放及其特性简表

3	类 型	特点	应用场合
通用型		种类多,价格便宜	一般测量、运算电路
专用型	低功耗型	功耗低	遥感、遥测电路
	高精度型 型	测量精度高、零漂小	毫伏级或更低微弱 信号测量
	高输入阻 抗型	R _{id} 对被测信号影响小	生物医电信号提取、 放大
	高速宽带 型	带宽高、转换速率高	视频放大或高频振 荡电路
	高压型	电源电压48V~300V	高输出电压和大输 出功率

7.4.2 调零

常用的调零电路

带调零引出端

无调零端

上页 下页 后退

7.4.3 消振

自激振荡的原因

运放的增益高

存在寄生电容

消振的措施: 加入消振电容

7.4.4 保护

保护电路

1.输入保护

问:加法、减法和积分电路为什么不加保护? 负反馈!

2. 输出保护

保护电路

上页 下页 后退

练习题

例1 用理想集成运算放大器实现下列运算关系,并画出电路图。要求所用的运算放大器为三个,元件的取值范围为:

$$C = 1\mu F \qquad 1k\Omega \le R \le 1M\Omega$$
$$u_0 = 2u_{i1} + 3u_{i2} - \int u_{i3} dt$$

解:根据题意,将要求实现下列运算关系变形为

$$u_{0} = -[-2u_{i1} - 3u_{i2} - (-\int u_{i3}dt)]$$

那么式 $-\int u_{i3}dt$ 可以用积分器来实现。

可以用反相输入的加法器来实现。

最后,再来一级反相器,即可实现运算

$$u_{0} = -[-2u_{i1} - 3u_{i2} - (-\int u_{i3}dt)]$$

本章小结

集成运放组成运算电路

上页 下页 后退