AGR. Algorithmes. k plus proches voisins

L'algorithme des k plus proches voisins est l'un des algorithmes utilisés dans le domaine de **l'intelligence artificielle**. Il intervient dans de nombreux domaines de l'apprentissage automatique et de **prédictions**.

I/ Algorithme de prédiction

1/ Un problème de classement

Voici un problème qui peut être résolu en utilisant l'algorithme des k plus proches voisins. <u>Exemple</u> : Classer des Pokémons.

De façon très simpliste, on admettra ici que les Pokémons ne possèdent que deux caractéristiques : leurs points de vie et leur valeur d'attaque. On suppose également qu'ils se répartissent en deux types seulement : *Eau* et *Psy*.

Quelques exemples de Pokémons					
Nom	Ecayon	Deoxys	Eoko	Grotet	Tarpaud
PDV	49	50	80	90	90
Attaque	49	95	45	75	75
Type	Eau	Psy	Psy	Psy	Eau

A partir du graphique précédent, on peut **prédire** la classification probable d'un nouveau Pokémon à partir de ses données (PDV, attaque).

2/ Utilisation d'un diagramme

On considère un Pokémon « mystère » ayant pour caractéristiques :

- 65 points de vies.
- 40 en attaque.

Sur le diagramme ci-dessous, il sera représenté par le point vert.

On cherche les six voisins les plus proches de ce Pokémon : on peut choisir d'évaluer sa distance avec les autres Pokémons connus en traçant un cercle d'un rayon adapté.

On constate qu'il y a <u>quatre</u> Pokémons <u>Psy</u> et <u>deux</u> Pokémons <u>Eau</u> : le **Pokémon mystère** est probablement de type **Psy**.

II/ Implémentation de l'algorithme

1/ Algorithme formel

Voici un algorithme permettant de résoudre le problème.

<u>Données</u>:

- Une table de données de taille n.
- Une donnée cible.
- Un entier k (inférieur à n).
- Une règle établissant la distance entre deux données.

Algorithme:

- Trier les données de la table selon la distance croissante avec la donnée cible.
- Lister les *k* premiers voisins de la donnée cible.
- Trouver le type de la cible.

2/ En langage Python

Squelette d'un algorithme des k plus proches voisins en Python

```
# Definition du critère de tri
def distance_cible(donne) :
    # Renvoie la distance en la donnée et la cible
    return distance(donnee,cible)

def k_plus_proches_voisin(table,cible, k) :
    # Tri selon la distance croissante de la table
    table_triee = sorted(table, key = distance_cible)

# Choix des k plus proches voisins
    proches_voisins = []
    for i in range(k) :
        proches_voisins.append(table_triee[i])

return proches_voisins
```

<u>A noter</u> : des activités proposeront des exemples d'applications de cet algorithme.

3/ Exemples de distances

A noter: |x-y| est la <u>distance</u> entre x et y. Il s'agit de la valeur absolue.

Exemples: |5-3|=2; |4-8|=4.