Bhoris Dhanjal

Calculus IV

Lecture Notes for SMAT401

Contents

1	Tuto	rial 1																	1
	1.1	Question	n 1																1
	1.2	Question	n 2																1
	1.3	Question	n 3																1
	1.4	Question	n 4																2
	1.5	Question	n 5																2
	1.6	Question	n 6																2
Tu	torial	1.5																	3
	1.7	Question	n 1																3
Tu	torial	2																	4
	1.8	Question	n 1																4
	1.9	Question	n 2																4
	1.10	Question	n 3																5
	1.11	Question	n 4																5

Chapter 1

Tutorial 1

Show that the limits as the function approaches (0,0) dont exist

1.1 Question 1

$$\frac{x^2 - y^2}{x^2 + y^2}$$

use x and y axis

1.2 Question 2

$$\frac{x^3y}{x^6+y^2}$$

consider y = 0 then we have limit equal 0. Consider now $y = x^3$ so now limit of $\frac{x^6}{2x^6} = \frac{1}{2}$.

1.3 Question 3

$$\frac{\sin(x^2 + y)}{x + y}$$

along the x axis (y=0) we get $\sin(x^2)/x$ and the lim is 0. But for y axis (x=0) we get $\sin(y)/y$ and the lim is 1.

1.4 Question 4

$$\frac{x^3 + y^3}{x - y}$$

take the line y = 0 we get $\frac{x^3 + m^3 x^3}{x - mx} = \frac{(1 + m)x^3}{x(1 - m)}$ is 0 but with $y = x - x^3$ is equal to 2. Try with $y = x - x^2$ we get

$$\lim \frac{x^3 + (x - x^3)^3}{x - (x - x^3)} = \lim \frac{x^3}{x^3} + \frac{((x - x^3)^3)}{x^3}$$
$$= 1 + \lim \frac{(x - x^3)^3}{x^3} = 1 + 1 = 2$$

1.5 Question 5

$$\frac{x^2y^2}{x^2y^2 + (x - y)^2}$$

consider the line x = 0 then the limit is obviously 0. Now consider y = x then the limit of $\frac{x^4}{x^4} = 1$.

1.6 Question 6

$$\frac{2xy^2}{x^3 + y^3}$$

take y=0 and x=y.

Tutorial 1.5

1.7 Question 1

$$\lim_{(x,y)\to(0,0)} xy \sin\left(\frac{1}{x^2 + y^2}\right) = 0$$

Tutorial 2

1.8 Question 1

Using polar coordinates, show that the function $f:\mathbb{R}^2\to\mathbb{R}$ defined as

$$f(x, y) = \frac{x^3 - y^3}{x^2 + y^2}$$

with f(0,0) = 0 is continuous at (0,0).

Proof.

$$f(r,\theta) = r\cos\theta^3 - \sin\theta^3$$

Let $\varepsilon > 0$ so

$$|f(r,\theta) - f(0,0)| = |r||\cos\theta^3 - \sin\theta^3$$

$$\leq |r|(|\cos\theta|^3 + |\sin\theta|^3)$$

$$\leq r(1+1)$$

$$= 2r$$

So pick $\delta = \varepsilon/2$

1.9 Question 2

Prove that

$$\lim_{(x,y)\to(0,0)} xy \sin\left(\frac{1}{x^2 + y^2}\right) = 0$$

using without polar form.

Proof. Let $\varepsilon > 0$

$$|f(x, y) - f(0, 0)| = |xy| \left| \sin \left(\frac{1}{x^2 + y^2} \right) \right|$$

TUTORIAL 2 5

$$\leq |x||y|$$

$$\leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2}$$

$$\leq x^2 + y^2$$

So just take $\delta = \sqrt{\varepsilon}$

1.10 Question 3

Prove that

$$\lim_{(x,y)\to(0,0)} \frac{1}{xy} \sin(x^2y + xy^2) = 0$$

with epsilon delta.

Proof. We will use the fact that for small θ , $|\sin \theta| \le \theta$. Let $\varepsilon < 0$ then,

$$\left| \frac{1}{xy} \sin(x^2 y + xy^2) \right| \le \frac{1}{|x||y|} |x^2 y + xy^2|$$

$$\le |x| + |y|$$

$$\le \sqrt{x^2 + y^2} + \sqrt{x^2 + y^2}$$

$$\le 2\sqrt{x^2 + y^2}$$

So pick $\delta = \varepsilon/2$

1.11 Question 4

Prove that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x, y) = \frac{\sqrt{x^2 + y^2 + 1} - 1}{x^2 + y^2}$$

for non zero and f(0,0) = (0,0) is continuous at (0,0).

Proof. Consider limit as f approaches (0,0). Let $\varepsilon > 0$

$$|f(0,0) - L| = \left| \frac{\sqrt{x^2 + y^2 + 1} - 1}{x^2 + y^2} \right|$$

$$= \left| \frac{x^2 y^2}{(x^2 + y^2)(\sqrt{x^2 + y^2 + 1} + 1)} \right|$$
Hint, $\sqrt{x} + 1 \ge 1$, $\frac{1}{\sqrt{x^2 + y^2 + 1} + 1}$

$$= \left| \frac{1}{\sqrt{x^2 + y^2 + 1} + 1} \right|$$