Suites de fonctions

Types de convergence

Définition : Suite de fonctions

On appelle suite de fonctions de D vers \mathbb{K} toute suite $(f_n)_{n\in\mathbb{N}}$ ou $(f_n)_{n\geq n_0}$ (pour un certain $n_0\in\mathbb{N}$) où $\forall n,f_n:D\to\mathbb{K}$

Convergence simple

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers \mathbb{K} .

<u>Définition</u>: Convergence simple.

On dit que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement (CVS) sur $A\subset D$ vers $f:A\to\mathbb{K}$ si :

$$\forall x \in A$$
, la suite numérique $\big(f_n(x)\big)_{n \in \mathbb{N}}$ converge vers f

C'est-à-dire:

$$\forall x \in A, f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

C'est-à-dire:

$$\forall x \in A, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N \Longrightarrow |f_n(x) - f(x)| \le \varepsilon)$$

On dira que $(f_n)_{n\in\mathbb{N}}$ CVS sur A s'il existe une fonction $f:A\to\mathbb{K}$ telle que $(f_n)_{n\in\mathbb{N}}$ CVS sur A vers f.

<u>Définition</u>: Domaine de convergence simple

Le domaine de convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ de D vers \mathbb{K} est la plus grande partie $A\subset D$ sur laquelle $(f_n)_{n\in\mathbb{N}}$ CVS.

Définition : Limite simple

Si $(f_n)_{n\in\mathbb{N}}$ CVS sur A vers f, on dit que f est la limite simple de $(f_n)_{n\in\mathbb{N}}$ sur A.

Paramètres préservés par le passage à la limite simple

<u>Propriété</u>: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers $\underline{\mathbb{R}}$.On suppose que $(f_n)_{n\in\mathbb{N}}$ CVS sur $A\subset D$ vers f.

- (i) Si $\forall n \in \mathbb{N}$, f_n est positive sur A, f est positive sur A
- (ii) Si $\forall n \in \mathbb{N}$, f_n est croissante sur A, alors f est croissante sur A
- (iii) Si $\forall n \in \mathbb{N}$, f_n est convexe sur un intervalle $I \subset A$, f est convexe sur I.

Paramètres NON conservés par le passage à la limite simple (mais par la convergence uniforme)

- (i) La continuité
- (ii) Le caractère borné
- (iii) L'interversion série-intégrale

Convergence uniforme

<u>Définition</u>: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers \mathbb{K} . On dit que $(f_n)_{n\in\mathbb{N}}$ converge uniformément (CVU) sur $A\subset D$ vers $f:A\to\mathbb{K}$ si :

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall n \geq N, \forall x \in A, |f_n(x) - f(x)| \leq \varepsilon$$

 \Leftrightarrow

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall x \in A, (n \ge N \Longrightarrow |f_n(x) - f(x)| \le \varepsilon$$

<u>Théorème</u>: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de D vers \mathbb{K} , $A\subset D$ et $f:A\to\mathbb{K}$. On a équivalence entre :

- (i) $(f_n)_{n\in\mathbb{N}}$ CVU sur A vers f
- (ii) $\exists N_0 \in \mathbb{N} \text{ tel que } \forall n \in \mathbb{N} \text{, la fonction } f_n f \text{ est bornée sur } A \text{, et :}$

$$||f_n - f||_{\infty} = \sup_{x \in A} |f_n(x) - f(x)| \underset{n \to \infty}{\longrightarrow} 0$$

 $\underline{\text{Th\'eor\`eme}:}\operatorname{Si}\left(f_{n}\right)_{n\in\mathbb{N}}\operatorname{CVU}\operatorname{sur}A\operatorname{vers}f,\operatorname{alors}\left(f_{n}\right)_{n\in\mathbb{N}}\operatorname{CVS}\operatorname{sur}A\operatorname{vers}f.$