Дискретная математика

Зухба Анастасия Викторовна (Конспектировал Иван-Чай) 01.09.2023

1

Компонента связности - это связный подграф, максимальный по включению

- 1. Дерево связный граф без циклов
- Между любыми двумя вершинами ∃! простой путь
- 3. Связный граф, в котором |V| = |E| 1
- 4. Граф без циклов, в котором |V| = |E| 1

Доказательство. (1) -> (2)

Пусть есть два маршрута между двумя вершинами, тогда есть цикл $\ \square$

Доказательство. $(2) \rightarrow (3)$

По индукции для количества ребер

База: |V| = 1

Переход: Пусть (2) \Rightarrow (3) для $|V| \leq k$

Рассмотрим граф с |V| = k + 1

Удаление ребра приведет к тому, что граф распадется на две компоненты связности с k_1 и k_2 количеством вершин

Для каждого из подграфов: $k_1+k_2=k+1 \Rightarrow k_1 \leq k \wedge k_2 \leq k$ Выполняется (2), а значит, по предположению индукции, выполняется и (3)

Значит для исходного графа
$$1+(k_1-1)+(k_2-1)=k_1+k_2-1=k$$
 - ребер верно (3)

Доказательство. $(3) \Rightarrow (4)$

Пусть (3) - истинно, но в графе есть цикл(a значит и простой цикл)

Рассмотрим простой цикл $U_1, U_2, U_3 \dots U_n, U_1$ длины n (тогда имеет и n ребер

Для каждой вершины U_i не из цикла рассмотрим кратчайший путь к U_1

St. Первые ребра всех путей различны

Тогда $|E| \geq k+n$ - противоречие, где k - количество вершин вне цикла

Доказательство. $(4) \Rightarrow (1)$

Пусть у графа k компонент связности, тогда каждая компонента связности - дерево, а значит для нее верно $(1) \Rightarrow (2) \Rightarrow (3)$

$$\sum_{i=1}^{k} |E_i| = \sum_{i=1}^{k} (|V_i| - 1) = |V| - k \Rightarrow k = 1 \quad \Box$$

Эйлеров путь - путь, который проходит по каждому ребру ровно по одному разу

Эйлеров цикл - замакнутый эйлеров путь

Гамельтонов путь - путь, который проходит через каждую вершину по 1 разу

Гамельтонов цикл - замкнутый гамельтонов путь

Граф называется эйлеровым, если в нем существет эйлеров цикл

Th. B связном графе \exists эйлеров цикл \Leftrightarrow $\deg U \mod 2 = 0 \quad \forall U \in V$

Доказательство. Рассмотрим эйлеров цикл, каждая вершины кроме начала и конца встречается рядом с 2 своими ребрами, ребра не повторяются |E|=1+2m+1

Доказательство. Рассмотрим граф, все степени которого четны. В нем всегда будет простой цикл. Разобьем его на не пересекающиеся по ребрам простые циклы. Пусть его можно разбить на т циклов указанным способом, докажем по индукции для т

База: m=1 - граф содержит эйлеров цикл Переход: Предположим, что граф разбивается не более чем на m простых циклов $\forall m \leq k$, тогда для него \exists эйлеров цикл.

m=k+1 Рассмотрим один из простых циклов $U_1,U_2,U_3\dots U_i \qed$

Th. В связном графе \exists эйлеров цикл \Leftrightarrow в графе не более двух вершин нечетной степени