Complementos de Análise Matemática EE

Departamento de Matemática e Aplicações

2012/2013

Folha de Exercícios 1

Pré-Requisitos

Eng^a. de Comunicações, Eng^a. de Polímeros

1. Sabendo que $(uv)' = uv' + u'v \implies P(uv') = uv - P(u'v)$, determinar:

a)
$$\int_0^1 te^t dt$$

b)
$$\int_0^{\pi/2} 2e^t \cos t \, dt$$

a)
$$\int_0^1 te^t dt$$
 b) $\int_0^{\pi/2} 2e^t \cos t dt$ c) $\int_0^{+\infty} e^{-(x+1)t} dt$.

2. Calcular os seguintes determinantes:

$$a) \quad \begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix}$$

$$b) \quad \begin{vmatrix} e^x & e^{2x} \\ e^x & 2e^{2x} \end{vmatrix}$$

a)
$$\begin{vmatrix} x & x^2 \\ 1 & 2x \end{vmatrix}$$
 b) $\begin{vmatrix} e^x & e^{2x} \\ e^x & 2e^{2x} \end{vmatrix}$ c) $\begin{vmatrix} e^x & e^{2x} & e^{2x} \\ e^x & 2e^{2x} & 2e^{2x} \\ e^x & 4e^{2x} & 4e^{2x} \end{vmatrix}$ d) $\begin{vmatrix} x & x^3 & x^2 \\ 1 & 3x^2 & 2x \\ 0 & 6x & 2 \end{vmatrix}$.

$$d) \quad \begin{vmatrix} x & x^3 & x^2 \\ 1 & 3x^2 & 2x \\ 0 & 6x & 2 \end{vmatrix}$$

3. Fatorizar os seguintes polinómios usando, se necessário, a "regra de Rufini":

a)
$$x^3 - 2x^2 + x^3$$

b)
$$x^3 - x^2 - x + 1$$

a)
$$x^3 - 2x^2 + x$$
 b) $x^3 - x^2 - x + 1$ c) $x^3 + 3x^2 + 3x + 1$ d) $x^4 - 2x^2 + 1$.

d)
$$x^4 - 2x^2 + 1$$
.

4. Decompor as seguintes funções racionais:

$$a) \quad \frac{s}{(s-1)(s+1)}$$

a)
$$\frac{s}{(s-1)(s+1)}$$
 c) $\frac{s+1}{(s-1)(s^2+4)}$ e) $\frac{4}{s^3+s-2}$

$$e) \frac{4}{s^3 + s - 2}$$

$$b) \quad \frac{1}{s\left(s+1\right)^2}$$

d)
$$\frac{25(s^2-1)}{(s-1)^3(s^2+4)}$$

b)
$$\frac{1}{s(s+1)^2}$$
 d) $\frac{25(s^2-1)}{(s-1)^3(s^2+4)}$ f) $\frac{s^5-1}{s^4-s^3+s^2-s}$.

5. Mostrar que a mudança de variável y(x) = x v(x) implica

$$\frac{dy(x)}{dx} = x\frac{dv(x)}{dx} + v(x), \qquad \frac{d^2y(x)}{dx^2} = x\frac{d^2v(x)}{dx^2} + 2\frac{dv(x)}{dx}.$$

6. Recordando que se F(x,y) é uma função real de classe \mathcal{C}^1 , então

$$dF(x,y) = \frac{\partial F(x,y)}{\partial x} dx + \frac{\partial F(x,y)}{\partial y} dy,$$

determinar o diferencial total das seguintes funções:

$$a) \quad f(x,y) = y - x^2 - c$$

$$c) \quad h(x,y) = ye^x + xe^y$$

b)
$$g(x,y) = y^2x + 4x^2y - c^2$$
 d) $m(x,y) = \cos xy$.

$$d) \quad m(x,y) = \cos xy$$

1

7. Para cada uma das seguintes relações implícitas determinar dy/dx:

a)
$$x^2 + y^2 = 3$$

a)
$$x^2 + y^2 = 3$$
 b) $yx + y^2 = k$ c) $ye^{xy} = 1$ d) $\sin xy = y$.

$$c) \quad ye^{xy} = 1$$

$$d) \operatorname{sen} xy = y.$$

8. Determinar as funções mais gerais que verificam:

a)
$$\begin{cases} \frac{\partial F(x,y)}{\partial x} = ye^{xy}, \\ \frac{\partial F(x,y)}{\partial y} = xe^{xy} + 2y, \end{cases}$$
 b)
$$\begin{cases} \frac{\partial G(x,y)}{\partial x} = e^x (\cos xy - y \sin xy), \\ \frac{\partial G(x,y)}{\partial y} = -xe^x \sin xy. \end{cases}$$

9. Sabendo que se um sistema linear de ordem n, nas n variáveis $x_1, x_2, ..., x_n$, for equivalente à equação matricial DX = B, e se $|D| \neq 0$, então as suas soluções são ("regra de Cramer")

$$x_1 = \frac{|D_{x_1}|}{|D|}, \quad x_2 = \frac{|D_{x_2}|}{|D|}, \dots, \quad x_n = \frac{|D_{x_n}|}{|D|},$$

onde D_{x_i} é a matriz que se obtém substituindo a *i*-ésima coluna de D pelo vector B, mostrar que a "regra de Cramer" para n=2 se escreve

$$\begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \qquad \Rightarrow \qquad x_1 = \frac{\begin{vmatrix} b_1 & d_{12} \\ b_2 & d_{22} \end{vmatrix}}{\begin{vmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{vmatrix}}, \quad x_2 = \frac{\begin{vmatrix} d_{11} & b_1 \\ d_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{vmatrix}},$$

e determinar as soluções de:

a)
$$\begin{cases} x + 3y = 63, \\ 2x - y = 7, \end{cases}$$
 b)
$$\begin{cases} f(x) + 2g(x) = x, \\ 2f(x) - g(x) = 1, \end{cases}$$
 c)
$$\begin{cases} f(x) - xg(x) = e^x - 1, \\ xf(x) + x^2g(x) = x(e^x + 1). \end{cases}$$

Complementos de Análise Matemática EE

Soluções da Folha de Exercícios 1

1. a) 1 b)
$$e^{\pi/2} - 1$$
 c) $\frac{1}{1+x}$, $x > -1$.

2. a)
$$x^2$$
 b) $e^x e^{2x}$ c) 0 d) $-2x^3$.

3.
$$a)$$
 $x(x-1)^2$,

b)
$$(x+1)(x-1)^2$$
,

c)
$$(x+1)^3$$
,

d)
$$(x-1)^2(x+1)^2$$
.

4. a)
$$\frac{1}{2(s-1)} + \frac{1}{2(s+1)}$$
 c) $\frac{2}{5(s-1)} + \frac{3-2s}{5(s^2+4)}$ e) $\frac{1}{s-1} - \frac{s+2}{s^2+s+2}$

b)
$$\frac{1}{s} - \frac{1}{(s+1)^2} - \frac{1}{s+1}$$
 d) $\frac{10}{(s-1)^2} + \frac{1}{(s-1)} - \frac{11+s}{s^2+4}$ f) $s+1+\frac{1}{s} - \frac{s}{s^2+1}$.

6. a)
$$df(x,y) = -2x dx + dy$$
,

b)
$$dg(x,y) = (y^2 + 8xy) dx + (2yx + 4x^2) dy$$
,

c)
$$dh(x,y) = (ye^x + e^y) dx + (e^x + xe^y) dy$$
,

$$d$$
) $dm(x,y) = -y \operatorname{sen} xy dx - x \operatorname{sen} xy dy.$

7.
$$a) \quad y' = -x/y,$$

$$b) \quad y' = -y/(x+2y),$$

c)
$$y' = -y^2/(1+xy)$$
,

$$d) \quad y' = (y\cos xy)/(1 - x\cos xy).$$

8. a)
$$F(x,y) = e^{xy} + y^2 + k$$
,

b)
$$G(x,y) = e^x \cos xy$$
.

9.
$$a)$$
 $x = 12, y = 17,$

b)
$$f(x) = (x+2)/5$$
, $g(x) = (2x-1)/5$,

b)
$$f(x) = e^x$$
, $g(x) = 1/x$.