Лабораторная работа. Циклические операторы

1. Написать программу, которая выводит на экран температуры в градусах Цельсия от 0° до 100° с шагом 10° и их эквиваленты в градусах Фаренгейта.

Для перевода используется формула: $t_F = \frac{9}{5}t_C + 32$

- a) циклом while
- б) циклом do..while
- в) циклом for вывести таблицу значений функции $y = \cos(x)$ в диапазоне от 0 до 2π с шагом $\pi/6$
- 2. Среди 7-ми введенных действительных чисел определить (массивы не использовать)
 - а) количество положительных чисел
 - б) сумму отрицательных чисел
 - в) наибольшее из введенных
- 3. Вводить целые числа в диалоге с пользователем до тех пор, пока он не откажется от ввода (хотя бы одно число он должен обязательно ввести). Вывести общее количество введенных чисел и количество среди них четных чисел.
- 4. а) дано целое число n. Вычислить и вывести сумму $S = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots + \frac{1}{2n}$
- б) дано маленькое положительное число (например $\varepsilon = 0.001$). Реализовать алгоритм приближенного вычисления бесконечной суммы. Нужное приближение считается полученным, если вычислена сумма нескольких первых слагаемых, и модуль следующего слагаемого меньше данного положительного числа.

$$1-rac{1}{3}+rac{1}{5}-rac{1}{7}+\cdots$$
 $\left(pproxrac{\pi}{4}
ight)_{ ext{ОТВЕТ ДЛЯ ТЕСТИРОВАНИЯ}}$

5. Вычислите наибольший общий делитель (НОД) двух целых чисел по алгоритму Евклида:

На экран выведите исходные числа и НОД для них. Например: для p=18 и q=24 НОД(18, 24) = 6. Правильно организуйте работу алгоритма для отрицательных чисел.

Используя в программе циклические операторы for решите следующие задачи

- 6. Дано вещественное число B>0. Последовательность чисел образуется по правилу: $a_0=1$,
- $a_{i+1} = a_i^2 + 1$. Распечатать все числа a_i такие, что $a_i < B$. Вывести количество напечатанных чисел.
- 7. Написать программу вывода на экран текстового изображения шахматной доски (белые клетки можно обозначить, например, пробелом или символом 'o', а черные символом '*').
- 8. Написать программу, выводящую на экран таблицу умножения чисел от 1 до 10
- 9. Вводятся данные о координатах точек на плоскости (x_i,y_i), i=1,2,...,N, где N заранее указывает пользователь. Программа вычисляет и печатает количество точек в каждом из квадрантов (углов) координатной плоскости.
- 10. Найти периметр n-угольника, вершины которого имеют соответственно координаты $(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$. Число n и координаты вводятся пользователем
- 11. Написать программу, которая позволяет ввести n чисел. Программа выводит сообщение о том имелась ли во введенной последовательности чисел хоть одна пара находящихся рядом одинаковых чисел.

Дополнительные задания

(используя любые циклы)

12. Написать программу приближенного вычисления интеграла функции f(x) методом прямоугольников. Приближенное значение интеграла определяется как сумма площадей прямоугольников, нижними сторонами которых являются длины отрезков интегрирования, а длины боковых сторон соответствуют значениям функции f(x) в серединах

$$\int_{0}^{\pi} \sin(x) dx = 2$$

отрезков). Проверить работу программы на функции с известным ответом, например,

13. Задана функция и ее разложение в ряд. Вычислить разложение в ряд с заданной погрешностью ξ (малое положительное число) и сравнить с точным значением функции. Оценить требуемое для достижения заданной точности число итераций.

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \left(-1\right)^n \frac{x^{2n}}{(2n)!} + \dots \qquad \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \left(-1\right)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

- 14. Известно время начала и окончания работы автобусного маршрута с одним автобусом на линии (например, 6:00 и 23:30), а также протяженность маршрута в один конец (в минутах) и время отдыха на конечных остановках. Вывести суточное расписание этого маршрута (моменты отправления с конечных пунктов) без учета времени на обед и пересмену.
- 15. Прямоугольник на плоскости а≤х≤b, с≤у≤d задается своими габаритами а,b,c,d Последовательно вводятся габариты N прямоугольников. В процессе ввода находить сумму площадей их пересечения, не запоминая самих габаритов.