$\hat{\mathbf{x}}_k$ ($n \times 1$): State estimate at time k Measurement (input)

 \mathbf{z}_{k} ($m \times 1$): Measurement at time k

State Estimate (output)

System Model

A $(n \times n)$: State transition matrix

H $(m \times n)$: Measurement matrix **Q** $(n \times n)$: State error autocovariance matrix

R $(m \times m)$: Measurement error autocovariance matrix Internal Computation Quantities

Internal Computation Quant \mathbf{K}_k $(n \times m)$: Kalman gain

 \mathbf{P}_k ($n \times n$): Estimate of error covariance matrix

 $\hat{\mathbf{x}}_{k}^{-}$ ($n \times 1$): Prediction of the state estimate \mathbf{P}_{k}^{-} ($n \times n$): Prediction of error covariance matrix