Группы 33501/1,3,4. Расчетное задание №2. Системы массового обслуживания.

Задача 2.

В информационную систему с числом устройств обработки N поступает непрерывный поток сообщений. При занятости системы очередное сообщение записывается в буферную память, рассчитанную на хранение m сообщений. При этом информация, которая содержится в каждом сообщении, теряет свою ценность в среднем через T минут после его получения. Поток сообщений простейший с интенсивностью $\lambda = 10 \, \mathrm{миh}^{-1}$. В среднем за минуту система обрабатывает K сообщений. Все случайные величины распределены по экспоненциальному закону.

Определить:

- вероятность отказа вероятность того, что сообщение не будет обработано изза ограниченности очереди.
- вероятность потери вероятность того, что поступившее сообщение не будет своевременно обработано и, следовательно, будет потеряно.
- вероятность неуспешного обслуживания включает в себя вероятность отказа и вероятность потери.

Сравнить систему с такой же системой, в которой информация не теряет свою ценность.

Вариант	T	K	m	N
8	T 2 1	12	5	1
	1	13	6	1
13	4	11	4	1
14	2 1 3 2 3 2 1 2	20	3 5	1
19	1	12	5	1
24 27	3	11	6	1
27	2	25	8	1
31	3	15	4 5 3	1
37	2	15	5	1
40	1	14	3	1
41	2	6	5	2
11	1	7	6	2
	1 4	8	4	2
	2	6 7 8 10 7	3 5	2
	1	7	5	2
	3	8	6	2
	2	12	8	2
	2 1 3 2 3 2	9	4 5 3	1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
	2	9	5	2
	1	10	3	2

Задача С.

Рассматривается работа столовой самообслуживания. Обеды выдают К поваров. Среднее время выдачи обеда на одного посетителя равно t1 минут. Плотность потока посетителей около N человек в минуту. В очереди могут одновременно стоять не более m человек. В среднем посетитель стоит в очереди t2 минут, после чего покидает столовую. Если посетителя начали обслуживать, то обслуживание не прерывается. На обед посетитель в среднем затрачивает t3 минут

Определить, сколько времени потратит посетитель в столовой, если количество мест за столами всегда достаточно для размещения лиц, уже получивших обед. Определить среднее число занятых поваров и среднее число ожидающих посетителей. Определить вероятности того, что посетитель:

- успешно пообедает;
- уйдет, не дождавшись своей очереди;
- уйдет, не имея возможности встать в очередь.

Вариант	N	t1	t2	t3	K	m
3	2	4	10	10	4	20
9	1	4	10	10	3	15
15	1	3	10	10	2	18
20	1	3	10	10	2	18
25	2	4	10	10	4	18
32	1	4	10	10	3	16
38	1	3	10	10	2	16

Задача А17.

Бакалейный магазин работает с K кассами и общей очередью. Вывеска возле касс извещает покупателей, что в любой момент будет открыта дополнительная касса, как только число покупателей в очереди превысит L. Это означает, что если число покупателей меньше или равно L, то работать будет лишь одна касса. Если число покупателей от (L+1) до (2*L), то будет работать две кассы, и т.д. Если имеется больше $(L^*(K-1))$ покупателей, будут открыты все K касс. Покупатели подходят к кассам с интенсивностью I человек в час. Время обслуживания одного покупателя в кассе распределено по экспоненциальному закону со средним t минут.

Определить среднее число покупателей в очереди и вероятность отказа, если очередь ограничена емкостью m.

Вариант	1	K	L	t	m
4	10	3	3	12	12
16	4	2	3	20	10

Задача Т5.

Рассматривается модель бильярдного клуба, куда посетители обычно приходят парами для игры в бильярд. Нормальная интенсивность прихода клиентов равна \boldsymbol{I}_0 пар в час. Однако если число пар в бильярдном клубе превышает M, интенсивность поступления клиентов уменьшается на 1 пару в час. Время игры каждой пары является случайной величиной, распределенной по экспоненциальному закону с математическим ожиданием t мин. Бильярдный клуб имеет в своем распоряжении K бильярдных столов и одновременно может расположить не более N пар.

Определить следующие величины:

- вероятность того, что клуб полон и все приходящие клиенты уходят;
- вероятность того, что все бильярдные столы заняты;
- среднее количества используемых бильярдных столов;
- среднее число пар, ожидающих освобождения бильярдного стола.

Сравнить полученные характеристики с моделью, в которой входной поток имеет постоянную интенсивность.

Вариант	$I_{\scriptscriptstyle 0}$	t	K	M	N
5	6	30	5	7	12
10	5	40	4	5	10
17	6	30	5	8	12
33	5	40	4	6	10

Задача АС9.

Компания решила довести число своих машин до N. Президент компании интересуется, как будут справляться с ремонтом имеющиеся R механиков. Средняя скорость прибытия на ремонт равна K раза в час для каждой машины, средняя скорость обслуживания — М машин в час. Если число ожидающих ремонта машин становится больше, чем число ремонтируемых машин, то механики отказываются от перекуров и увеличивают скорость обслуживания на 25%.

Определить:

- вероятность того, что все машины работают и механики отдыхают;
- среднее число ожидающих ремонта машин;
- среднее число машин в системе (машины в очереди и на обслуживании);
- среднее время ожидания начала ремонта;
- среднее время нахождения в системе (ожидание и ремонт).

Вариант	N	K	M	R
6	8	0.05	0.5	1
12	8	0.05	0.5	2
18	8	0.05	0.5	3
23	7	0.05	0.5	1
26	7	0.05	0.5	2
29	7	0.05	0.5	3
35	9	0.05	0.5	1
39	9	0.05	0.5	2
42	9	0.05	0.5	3