Лабораторная работа №6 на тему «Проблема собственных значений матрицы».

Цель: Найти методом простых итераций одно из собственных значений и все собственные значения симметричной положительно определенной матрицы *A* методом вращений (Якоби).

Метод вращений Якоби заключается в сведении исходной матрицы *А* к почти диагональной. Из курса линейной алгебры известно, что собственными значениями диагональной матрицы являются элементы на главной диагонали:

$$\lambda_i = a_{ii}, i = 1, ..., n$$

Таким образом, если свести матрицу A к диагональному виду, то решением полной задачи собственных значений будет являться вектор с элементами:

$$\lambda = (a_{11}, a_{22}, ..., a_{nn}).$$

Ход работы.

Ход работы.

- 1. Реализовать метод итераций по следующей схеме:
 - а. Задаем нормированное начальное приближение x^0 и точность нахождения собственного значения ε ;
 - b. Находим значение вектора $y^{k+1} = Ax^k$;
 - с. Осуществляем нормировку $x^{k+1} = \frac{y^{k+1}}{\|y^{k+1}\|}$
 - d. Вычисляем значение $\lambda^{k+1} = \max\left(\frac{x_i^{k+1}}{x_i^k}\right)$, где $i = \overline{0, n-1}$, n размерность матрицы A.
 - е. Повторяем шаги (a) (d) до тех пор, пока не будет выполняться условие $|\lambda^{k+1} \lambda^k| \le \varepsilon$.
- 2. Реализовать метод вращений:
 - а. Задаем точность нахождения собственных значений є;
 - b. Поскольку по условию исходная матрица симметричная, мы можем рассматривать либо верхний треугольник матрицы, либо нижний. Рассмотрим верхнюю треугольную наддиагональную часть матрицы A. В ней выделяем максимальный по модулю элемент $a_{i,i}$, $i \neq j$;
 - с. Найти угол поворота по формуле $\varphi = \frac{1}{2} \operatorname{arctg} \frac{2a_{ij}}{a_{ii} a_{jj}}$ (если $a_{ii} = a_{jj}$, то угол $\varphi = \frac{\pi}{4}$);
 - d. Составить матрицу вращения T_{ij} , где:

$$t_{ii} = t_{jj} = cos(\varphi), \quad t_{ij} = -t_{ji} = -sin(\varphi),$$

$$t_{kk} = 1, \qquad k \neq ii, ij, ji, jj.$$
(1)

Остальные элементы матрицы вращений равны нулю;

- е. Вычислить новое приближение $A^{k+1} = \left(T_{ij}^k\right)^T A^k T_{ij}^k$ Замечание: в целях оптимизации перемножать полностью на матрицы T не нужно, поскольку по факту у матрицы A поменяются только компоненты ii, ij, ji и jj;
- f. Повторять шаги (a) (e) до тех пор, пока не будет выполняться условие $\sum_{i \neq j} \left| a_{ij}^{k+1} \right|^2 \le \varepsilon$, то есть сумма квадратов внедиагональных элементов матрицы A^{k+1} не должна превышать заданную на первом шаге точность.
- 3. Необходимо сгенерировать симметричную, положительно определенную матрицу А /размерностей n=3, n=5, n=7. Изучить, сколько требуется шагов обоим методам для каждого случая при $\varepsilon=10^{-3},\ 10^{-7};$
- 4. Вывести полученные собственные значения матрицы A^{k+1} .
- 5. Для каждой из матриц пункта 2 вывести число итераций, потребовавшихся для нахождения значений.
- 6. Подготовить отчет о выполненной работе.