6. Interface Definition

The planner is realized as a C++ standalone application to be called via command-line.

The call will have two arguments and that will be the input-file names, defined as described in the following sections.

The following is an exemplary call:

FlySmart_Planner_v0_01.exe AircraftFileName.txt WayPointsFileName.txt

The output will consist of a single file containing all the necessary spline information.

6.1. Input Files Structures

6.1.1. Aircraft File Structure

The Aircraft input file will be a space-separated value ASCII file located in the same directory as the executable of the planner.

The filename will contain the word "Aircraft" followed by the aircraft type, e.g.:

Aircraft_DA42.txt

The file will consists of several lines illustrating the aircraft limitations to be respected during the planning process, as described in the following table:

Line	Units	Guard	Description
1	rad/s	Psi_Dot	Desired turn rate
2	rad	Phi_Max	Maximum bank angle
3	m/s	RoC	Desired Rate of Climb in cruise
4	m/s	RoD	Desired Rate of Descent in cruise
5	%g	Max_Load	Maximum vertical load
6	m	Lat_Dist	Maximum lateral deviation
7	m	Ceiling	Ceiling Height
8	m/s	VMin_UP	Minimum Cruise speed
9	m/s	VMax_UP	Maximum Cruise speed
10	m	Range	(residual) Flight range
11	m	TO_Dist	Minimum Take-Off Runway Length (worst case scenario)
12	m	LDG_Dist	Minimum Landing Runway Length (worst case scenario)
	Continued on next page		

Line	Units	Guard	Description
13	m	Flare_H	Flare Height
14	m	ТО_Н	Minimum height to reach with TO Climb.
15	m	LDG_H	Minimum height above ground from which to initiate descent.
16	m/s	TO_RoC	TO Rate of Climb
17	m/s	APP_RoD	Approach Rate of Descent (positive)
18	m/s	V_R	Velocity to be reached before rollout
19	m/s	V_Climb	Velocity to be maintained during TO Climb
20	m/s	V_APP	Velocity with which begin the descent
21	m/s	V_Flare	Velocity to be maintained at Flare execution
22	s	CFG_Time	Upper limit for the time needed to change the configuration of the aircraft

All the values listed will be always preceded with their sign and written in the scientific format with 15 digits after the comma and 3 digits for the exponent.

Each line will be in the format:

%Guard% %Value%

The guard is case-sensitive. The following is a partial exemplary file. Please note that the gray numbers indicate the line number and are not actual part of the file.

- 1 Psi Dot +1.047197551196598e-001
- 2 Phi Max +5.235987755982988e-001
- 3 RoC +2.726646259971647e+000
- 4 RoD -1.235987755982988e+000
- 5 Max Load +1.250000000000000e+000
- 6 Lat Dist +5.00000000000000e+000
- 7 Ceiling +1.00000000000000e+004
- 8 VMin_UP +4.500000000000000e+001

6.1.2. WayPoint File Structure

The WayPoints input file will be a space-separated value ASCII file located in the same directory as the executable of the planner.

The filename will contain the word "WayPoints" followed by the 2-digit mission number, e.g.:

WayPoints 05.txt

Each line will respect the following format:

Value Name	Format	Description
Phase of Flight	Integer	The index of the phase of flight to which the waypoint is to be assigned. It shall follow the following convention: • 0: Pre-flight taxiing • 1: Take-off • 2: Cruise • 3: Holding • 4: Landing • 5: Post-flight taxiing
WayPoint ID	Integer	Incremental index of the waypoint. Each phase of flight will start with its own Waypoint "0"
Horizontal Type	Integer	It describes how the waypoint should be treated during horizontal planning. It shall follow the following convention: • 0: GoNear • 1: GoThrough • 2: GoTo • 3: GoAround
4D Type	Binary	It describes whether the waypoint is part of a time or velocity-priority phase of flight according to the following convention: • 0: Time • 1: Velocity
Latitude	Scientific	In degrees, preceded by the sign, 15 digits after the comma and 3 digits for the exponent. In the range $[-80\hat{A}^{\circ}, +84\hat{A}^{\circ}]$
Longitude	Scientific	In degrees, preceded by the sign, 15 digits after the comma and 3 digits for the exponent. In the range $[-180\hat{A}^{\circ}, +180\hat{A}^{\circ}]$
Height	Scientific	In meters, preceded by the sign, 15 digits after the comma and 3 digits for the exponent. 0 is the sea level.
4D Coordinate	Scientific	If time, in seconds since last month change. If velocity, in meters per second. Preceded by the sign, 15 digits after the comma and 3 digits for the exponent.
Desired Heading	Scientific	If Horizontal type == 2 this specifies which heading is to be mantained at the location described. Otherwise it should be equal to 0. Preceded by the sign, 15 digits after the comma and 3 digits for the exponent.

The following are line examples:

2 0 1 1 +1.123456789012345e+001 +1.123456789012345e+001 +6.0000000000000000e+003

+5.500000000000000e+001 +0.00000000000000e+000

2 1 1 1 +1.123456789012345e+001 +1.123456789012400e+001 +6.000000000000000e+003

... +5.50000000000000e+001 +0.00000000000000e+000

6.2. Output File Structure

The output file will be a space-separated value ASCII file located in the same directory as the executable of the planner.

The filename will contain the word "Splines" followed by the 2-digit mission number and a 4-digit number indicating the total number of splines, e.g.:

Splines_05_0025.txt

The first line will contain a list of the indexes of the first splines of each phase of flight (e.g. spline 2000 for the cruise). If a phase has not been planned (taxiing phases of take-off), the number will either be 0 or the index of the last spline:

00091625

Each subsequent line of the file will contain all data describing a spline and it will respect the following format:

Value Name	Format	Description
Spline ID	Integer	It will be in the format XYYY where X will indicate the phase of flight to which the spline belongs according to the following convention: • 0: Pre-flight taxiing • 1: Take-off • 2: Cruise • 3: Holding • 4: Landing • 5: Post-flight taxiing YYY is instead the incremental index of the spline. Each phase of flight will start with its own Spline "000"
4D Type	Binary	It describes whether the spline is part of a time or velocity-priority phase of flight according to the following convention: • 0: Time • 1: Velocity
UTMLong	Integer	Specifies the UTM longitude origin for the coordinates of the spline divided by 3 since the possible longitudes are all multiples of $3\hat{A}^{\circ}$, with the Greenwich meridian being equal to $180\hat{A}^{\circ}$. It is a value in the interval $[0,119]$.
Area	Integer	Indicates how many million meters lays the spline origin from the south pole (it is thus a value defined in the interval [0, 19], with 10 being immediately north of the equator). See App. A
Continued on next page		

Value Name	Format	Description
Exit Condition	Integer	Determines which condition to apply in order to check the end of the spline • 0: Spline Coefficient [default] • 1: Velocity larger than indicated value • 2: Velocity smaller than indicated value • 3: Height larger than indicated value • 4: Height smaller than indicated value
Exit Value	Scientific	Units according to the variable specified by the previous index. Preceded by the sign, 15 digits after the comma and 3 digits for the exponent. It is equal to 0.0 if "Exit Condition" is 0
Spline Length	Scientific	In meters, preceded by the sign, 15 digits after the comma and 3 digits for the exponent.
Coefficients	Scientific	The 16 coefficients, each preceded by the sign, 15 digits after the comma and 3 digits for the exponent. Following the naming convention of Eq. (1.1), first the spatial coefficients in the following order: $a_0^x \ a_1^x \ a_1^x \ a_3^x \ a_0^y \ a_1^y \ a_1^y \ a_3^y \ a_0^z \ a_1^z \ a_3^z$ followed by the coefficients of the 4th dimension in analogous order.

The following is a line example:

2001 1 62 15 0

- ... +0.0000000000000000e+000 +1.123456789012345e+006 +1.123456789012345e+000
- ... +1.123456789012345e+001 +1.123456789012345e+002 +1.123456789012345e+003
- $\dots +1.123456789012345e+000 +1.123456789012345e+001 +1.123456789012345e+002$
- ... +1.123456789012345e+003 +1.123456789012345e+000 +1.123456789012345e+001
- ... +1.123456789012345e+002 +1.123456789012345e+003 +1.123456789012345e+000
- ... +1.123456789012345e+001 +1.123456789012345e+002 +1.123456789012345e+003

6.3. Return Value

If the planning is successful, the planner will return a value of "0" and the output file will have been created and will contain all the necessary information.

Should a problem have occourred, the return value will describe it according to the following table:

Value	Description		
Call Errors			
1	The planner has been called with not enough call arguments.		
2	The planner has been called with too many call arguments.		
3	The Aircraft filename is not correct.		
4	The WayPoints filename is not correct.		
Continued on next page			

Value	Description		
Input Values Errors			
10	The selected takeoff runway has insufficient length.		
11	The selected landing runway has insufficient length.		
30	Flight range beyond aircraft capabilities.		
4y	Incomplete Mission: not enough waypoints for phase of flight y.		
5y	Improper Mission: too many waypoints for phase of flight y.		
60	Holding Pattern must have velocity as 4th dimension.		
61	Holding pattern WPs must have same velocity.		
62	Holding pattern WPs must have same height.		
63	Holding pattern WPs are too close.		
64	Holding pattern WPs must be "GoAround".		
65	Holding pattern is not at the same height as last Cruise WP.		
70	Take Off climb is too short.		
71	Approach descent is too short.		
Files Errors			
1000	The given aircraft file was not found/could not be accessed.		
2xxx	The given aircraft file is not correctly formatted at line xxx.		
3000	The given waypoint file was not found/could not be accessed.		
4xxx	The given waypoint file is not correctly formatted at line xxx.		
5000	The designated output file could not be created.		
	WayPoints Errors		
8xxx	The geodetic distance between Cruise waypoint xxx and xxx+1 is not sufficient to perform a UTM zone switch.		
9xxx	The longitude distance between Cruise waypoint xxx and xxx+1 is not sufficient to perform a UTM zone switch.		
1yxxx	Waypoint xxx in phase of flight y is above specified height ceiling.		
2yxxx	Climb/descent too steep after waypoint xxx in phase of flight y.		
Зуххх	Not enough horizontal space to perform "S" maneuver at waypoint xxx in phase of flight y.		
4yxxx	Not enough vertical space to perform change of altitude maneuver after way-point xxx in phase of flight y.		
5yxxx	Waypoint xxx in phase of flight y has inconsistent 4th dimension type.		
6yxxx	Excessive velocity required at waypoint xxx in phase of flight y.		
7yxxx	Insufficient velocity required at waypoint xxx in phase of flight y.		
	Continued on next page		

Value	Description		
8yxxx	Insufficient time interval after waypoint xxx in phase of flight y.		
9yxxx	Excessive time interval after waypoint xxx in phase of flight y.		
10yxxx	Waypoint xxx in phase of flight y is too near to the North Pole.		
11yxxx	Waypoint xxx in phase of flight y is too near to the South Pole.		
	Internal Errors		
12yxxx	Cannot Match Velocity at waypoint xxx in phase of flight y.		
200000	Too many splines have been generated.		

Please note that in addition to the standard flight phases, an internal phase "6" is used by the planner to indicate all intercept splines (See Chap. 5).