[千葉大]

 $z = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$ (i は虚数単位)とおく。

- (1) $z+z^2+z^3+z^4+z^5+z^6$ を求めよ。
- (2) $\alpha = z + z^2 + z^4$ とするとき、 $\alpha + \alpha$ 、 α および α を求めよ。ただし、 α は α の共役素数である。
- (3) $(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$ を求めよ。

[東北大]

多項式P(x)を、 $P(x) = \frac{(x+i)^7 - (x-i)^7}{2i}$ により定める。ただし、i は虚数単位とする。以下の問いに答えよ。

- (1) $P(x) = a_0 x^7 + a_1 x^6 + a_2 x^5 + a_3 x^4 + a_4 x^3 + a_5 x^2 + a_6 x + a_7$ とするとき、係数 a_0 、…、 a_7 をすべて求めよ。
- (2) $0 < \theta < \pi$ に対して、 $P\left(\frac{\cos \theta}{\sin \theta}\right) = \frac{\sin 7\theta}{\sin^7 \theta}$ が成り立つことを示せ。
- (3) (1)で求めた a_1 , a_3 , a_5 , a_7 を用いて、多項式 $Q(x) = a_1 x^3 + a_3 x^2 + a_5 x + a_7$ を考える。 $\theta = \frac{\pi}{7}$ として、k = 1, 2, 3 について、 $x_k = \frac{\cos^2 k\theta}{\sin^2 k\theta}$ とおく。このとき、 $Q(x_k) = 0$ が成り立つことを示し、 $x_1 + x_2 + x_3$ の値を求めよ。

[東京大]

z を複素数とする。複素数平面上の 3 点 A(1), B(z), C(z^2)が鋭角三角形をなすようなzの範囲を求め、図示せよ。

[広島大]

複素数平面上を,点Pが次のように移動する。

- 1. 時刻 0 では、P は原点にいる。時刻 1 まで、P は実軸の正の方向に速さ 1 で移動する。移動後の P の位置を $Q_1(z_1)$ とすると、 $z_1=1$ である。
- 2. 時刻 1 に P は $Q_1(z_1)$ において進行方向を $\frac{\pi}{4}$ 回転し、時刻 2 までその方向に速さ $\frac{1}{\sqrt{2}}$ で移動する。移動後の P の位置を $Q_2(z_2)$ とすると、 $z_2 = \frac{3+i}{2}$ である。
- 3. 以下同様に、時刻 n に P は $Q_n(z_n)$ において進行方向を $\frac{\pi}{4}$ 回転し、時刻 n+1 までその方向に速さ $\left(\frac{1}{\sqrt{2}}\right)^n$ で移動する。移動後の P の位置を $Q_{n+1}(z_{n+1})$ とする。ただしn は自然数である。

 $\alpha = \frac{1+i}{2}$ として、次の問いに答えよ。

- (1) z₃, z₄を求めよ。
- (2) $z_n \delta \alpha$, $n \delta$ 用いて表せ。
- (3) P が $Q_1(z_1)$, $Q_2(z_2)$, …と移動するとき, P はある点 Q(w) に限りなく近づく。w を求めよ。
- (4) z_n の実部が(3)で求めたwの実部より大きくなるようなすべてのnを求めよ。

[筑波大]

複素数平面上を動く点を考える。次の問いに答えよ。

- (1) 等式|z-1|=|z+1|を満たす点zの全体は虚軸であることを示せ。
- (2) 点 z が原点を除いた虚軸上を動くとき、 $w=\frac{z+1}{z}$ が描く図形は直線から 1 点を除いたものとなる。この図形を描け。
- (3) a を正の実数とする。点 z が虚軸上を動くとき, $w=\frac{z+1}{z-a}$ が描く図形は円から 1 点を除いたものとなる。この円の中心と半径を求めよ。

[千葉大]

(1) $z = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$ に対して、 $z^7 = \cos 2\pi + i \sin 2\pi = 1$ となり、

$$z+z^2+z^3+z^4+z^5+z^6=\frac{z(z^6-1)}{z-1}=\frac{z^7-z}{z-1}=\frac{1-z}{z-1}=-1$$

(2) $\alpha = z + z^2 + z^4$ とするとき, $\alpha = \overline{z} + \overline{z^2} + \overline{z^4} = z^6 + z^5 + z^3$

$$\alpha + \overline{\alpha} = z + z^{2} + z^{4} + z^{6} + z^{5} + z^{3} = -1$$

$$\alpha \overline{\alpha} = (z + z^{2} + z^{4})(z^{6} + z^{5} + z^{3})$$

$$= z^{7} + z^{6} + z^{4} + z^{8} + z^{7} + z^{5} + z^{10} + z^{9} + z^{7}$$

$$= 3 + z^{6} + z^{4} + z + z^{5} + z^{3} + z^{2}$$

$$= 3 - 1 = 2$$

よって, α , α は 2 次方程式 $x^2 + x + 2 = 0$ の解より,

$$x = \frac{-1 \pm \sqrt{7}i}{2}$$

(3) $x^7 = 1$ の解は、x = 1, z, z^2 , z^3 , z^4 , z^5 , z^6 より、

$$x^7 - 1 = (x-1)(x-z)(x-z^2)(x-z^3)(x-z^4)(x-z^5)(x-z^6)$$

₹ して,
$$x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$
 より,

$$x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

$$= (x-z)(x-z^2)(x-z^3)(x-z^4)(x-z^5)(x-z^6)\cdots (*)$$

(*)にx=1を代入すると,

$$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6) = 7$$

[解 説]

 $1 \ on\ n$ 乗根に関する超有名問題です。解答例に示した図がすべてと言っても構わない内容です。

[東北大]

(2) ド・モアブルの定理を用いると,

$$P\left(\frac{\cos\theta}{\sin\theta}\right) = \frac{1}{2i} \left\{ \left(\frac{\cos\theta}{\sin\theta} + i\right)^7 - \left(\frac{\cos\theta}{\sin\theta} - i\right)^7 \right\}$$

$$= \frac{1}{2i\sin^7\theta} \left\{ (\cos\theta + i\sin\theta)^7 - (\cos\theta - i\sin\theta)^7 \right\}$$

$$= \frac{1}{2i\sin^7\theta} \left\{ (\cos7\theta + i\sin7\theta) - (\cos7\theta - i\sin7\theta) \right\}$$

$$= \frac{2i\sin7\theta}{2i\sin^7\theta} = \frac{\sin7\theta}{\sin^7\theta} \dots (*)$$

(3) $P(x) = a_1 x^6 + a_3 x^4 + a_5 x^2 + a_7$, $Q(x) = a_1 x^3 + a_3 x^2 + a_5 x + a_7$ より, x > 0 で, $Q(x) = P(\sqrt{x})$ さて, $\theta = \frac{\pi}{7}$ のとき $\frac{\cos \theta}{\sin \theta} > 0$, $\frac{\cos 2\theta}{\sin 2\theta} > 0$, $\frac{\cos 3\theta}{\sin 3\theta} > 0$ から, (*)を用いて, $Q(x_1) = Q\left(\frac{\cos^2 \theta}{\sin^2 \theta}\right) = P\left(\left|\frac{\cos \theta}{\sin \theta}\right|\right) = P\left(\frac{\cos \theta}{\sin \theta}\right) = \frac{\sin 7\theta}{\sin^7 \theta} = \frac{\sin \pi}{\sin^7 \theta} = 0$ $Q(x_2) = Q\left(\frac{\cos^2 2\theta}{\sin^2 2\theta}\right) = P\left(\left|\frac{\cos 2\theta}{\sin 2\theta}\right|\right) = P\left(\frac{\cos 2\theta}{\sin 2\theta}\right) = \frac{\sin 14\theta}{\sin^7 2\theta} = \frac{\sin 2\pi}{\sin^7 2\theta} = 0$ $Q(x_3) = Q\left(\frac{\cos^2 3\theta}{\sin^2 3\theta}\right) = P\left(\left|\frac{\cos 3\theta}{\sin 3\theta}\right|\right) = P\left(\frac{\cos 3\theta}{\sin 3\theta}\right) = \frac{\sin 21\theta}{\sin^7 3\theta} = \frac{\sin 3\pi}{\sin^7 3\theta} = 0$ さらに、 $x_1 = \frac{1}{\tan^2 \frac{\pi}{7}}$, $x_2 = \frac{1}{\tan^2 \frac{2\pi}{7}}$, $x_3 = \frac{1}{\tan^2 \frac{3\pi}{7}}$ なので、 x_1 , x_2 , x_3 は互いに

異なる。よって、 x_1 、 x_2 、 x_3 は3次方程式Q(x)=0の異なる3つの解となり、

$$x_1 + x_2 + x_3 = -\frac{a_3}{a_1} = 5$$

「解説]

一見、複素数の難問という構成ですが、細かな誘導のため、それに従えば最後の結論まで導けるようになっています。ただ、いろいろな定理が絡んでいますが。

[東京大]

3 点 A(1), B(z), $C(z^2)$ に対し, $\triangle ABC$ は鋭角三角形より, まず $z \neq 1$ かつ $z^2 \neq z$ かつ $z^2 \neq 1$ より,

$$z \neq 0$$
, $z \neq \pm 1$

さて、
$$\angle {\rm CAB} < \frac{\pi}{2}$$
 から、 $-\frac{\pi}{2} < \arg \frac{z^2 - 1}{z - 1} < \frac{\pi}{2} \ \angle \%$ り、
$$-\frac{\pi}{2} < \arg (z + 1) < \frac{\pi}{2} \ , \quad -\frac{\pi}{2} < \arg \{z - (-1)\} < \frac{\pi}{2}$$

すると、zは点-1を通り実軸に垂直な直線の右側にある。

次に、
$$\angle ABC < \frac{\pi}{2}$$
 から、 $-\frac{\pi}{2} < \arg \frac{z^2 - z}{1 - z} < \frac{\pi}{2}$ となり、 $-\frac{\pi}{2} < \arg (-z) < \frac{\pi}{2}$

すると、-z は虚軸の右側にあるので、z は虚軸の左側にある。

さらに、
$$\angle BCA < \frac{\pi}{2}$$
から、 $-\frac{\pi}{2} < \arg \frac{z-z^2}{1-z^2} < \frac{\pi}{2}$ となり、

$$-\frac{\pi}{2} < \arg \frac{z}{1+z} < \frac{\pi}{2} \,, \ \ -\frac{\pi}{2} < \arg \frac{0-z}{-1-z} < \frac{\pi}{2}$$

「解説]

複素数平面についての問題です。鋭角三角形という条件を,偏角の言葉に翻訳して 処理をしました。なお、余弦定理を利用する方法も考えられます。

[広島大]

(1)
$$\alpha = \frac{1+i}{2} = \frac{1}{\sqrt{2}} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
なので、点 αz は点 z を 原点回りに $\frac{\pi}{4}$ 回転し、原点との距離 $\frac{1}{\sqrt{2}}$ 倍した点である。

 $\begin{array}{c|cccc}
x & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 &$

$$z_{n+2} - z_{n+1} = \alpha(z_{n+1} - z_n) \cdots (*)$$

 $z_3 = z_2 + \alpha(z_2 - z_1) = \frac{3+i}{2} + \frac{1+i}{2} \cdot \frac{1+i}{2}$
 $= \frac{3+i}{2} + \frac{i}{2} = \frac{3+2i}{2}$

$$z_4 = z_3 + \alpha(z_3 - z_2) = \frac{3+2i}{2} + \frac{1+i}{2} \cdot \frac{i}{2} = \frac{3+2i}{2} + \frac{-1+i}{4} = \frac{5+5i}{4}$$

(2) (*)より,
$$z_{n+1} - z_n = (z_2 - z_1)\alpha^{n-1} = \frac{1+i}{2}\alpha^{n-1} = \alpha^n$$
 となり, $n \ge 2$ で, $z_n = z_1 + \sum_{k=1}^{n-1} \alpha^k = 1 + \sum_{k=1}^{n-1} \alpha^k = \sum_{k=0}^{n-1} \alpha^k = \frac{1-\alpha^n}{1-\alpha}$ $n = 1$ のときも成立するので, $z_n = \frac{1-\alpha^n}{1-\alpha}$ である。

(3)
$$n \to \infty$$
 \mathcal{O} $\succeq \stackrel{*}{\succeq} |\alpha^n| = |\alpha|^n = \left(\frac{1}{\sqrt{2}}\right)^n \to 0 \stackrel{*}{\gimel} \emptyset$, $\lim_{n \to \infty} \alpha^n = 0 \stackrel{*}{\succeq} \stackrel{*}{\gimel} \emptyset$, $w = \lim_{n \to \infty} z_n = \frac{1}{1-\alpha} = \frac{2}{1-i} = 1+i$

(4) (2)より,
$$z_n = \frac{1-\alpha^n}{1-\alpha} = (1+i)(1-\alpha^n) = (1+i)\left\{1-\left(\frac{1}{\sqrt{2}}\right)^n\left(\cos\frac{n}{4}\pi + i\sin\frac{n}{4}\pi\right)\right\}$$

ここで, z_n の実部が w の実部 1 より大きくなることより,
$$1-\left(\frac{1}{\sqrt{2}}\right)^n\cos\frac{n}{4}\pi + \left(\frac{1}{\sqrt{2}}\right)^n\sin\frac{n}{4}\pi > 1, \ \sin\frac{n}{4}\pi - \cos\frac{n}{4}\pi > 0$$
すると, $\sqrt{2}\sin\left(\frac{n}{4} - \frac{1}{4}\right)\pi > 0$ となるので, k を 0 以上の整数として,
$$2k\pi < \left(\frac{n}{4} - \frac{1}{4}\right)\pi < (2k+1)\pi, \ 8k+1 < n < 8k+5$$
よって, $n = 8k+2$, $8k+3$, $8k+4$ である

[解 説]

複素数平面上の点の移動を題材にした頻出問題です。現行課程で復活し、日も浅い ためなのか、問題文の説明が度を超えた丁寧さです。 [筑波大]

① |z-1|=|z+1| ……①に対して、左辺は点z と点1 との距離、右辺は点z と点-1 との距離を表す。

これより、①を満たす点zの全体は、点1と点-1を結ぶ線分の垂直二等分線、すなわち虚軸となる。

ここで、w=1とすると②は成立しないので、 $w \neq 1$ で $z=\frac{1}{w-1}$ ……3

③を①に代入すると、
$$\left|\frac{1}{w-1}-1\right|=\left|\frac{1}{w-1}+1\right|$$
となり、 $\left|\frac{2-w}{w-1}\right|=\left|\frac{w}{w-1}\right|$ から、

$$\frac{|2-w|}{|w-1|} = \frac{|w|}{|w-1|}, |2-w| = |w|$$

すると、点zが原点を除いた虚軸上を動くとき、点wは点2と点0を結ぶ線分の垂直二等分線、すなわち点1を通り実軸に垂直な直線上を動く。ただし $w \ne 1$ から点1は除く。

図示すると, 右図のようになる。

(3)
$$a > 0$$
 $\forall w = \frac{z+1}{z-a} \downarrow \emptyset$, $w(z-a) = z+1 \succeq \not \downarrow \emptyset$, $(w-1)z = aw+1 \cdots \oplus (w-1)z = aw+1 \cdots \oplus (w-$

ここで、w=1 とすると④は成立しないので、 $w \neq 1$ で $z = \frac{aw+1}{w-1}$ ⑤

⑤を①に代入すると、
$$\left|\frac{aw+1}{w-1}-1\right|=\left|\frac{aw+1}{w-1}+1\right|$$
となり、

$$\left| \frac{(a-1)w+2}{w-1} \right| = \left| \frac{(a+1)w}{w-1} \right|, |(a-1)w+2| = \left| (a+1)w \right|$$

両辺を 2 乗して, $|(a-1)w+2|^2 = (a+1)^2 |w|^2$ より,

$$\{(a-1)w+2\}\{(a-1)\overline{w}+2\}=(a+1)^2w\overline{w}$$

$$4aw\overline{w} - 2(a-1)w - 2(a-1)\overline{w} = 4$$
, $w\overline{w} - \frac{a-1}{2a}w - \frac{a-1}{2a}\overline{w} = \frac{1}{a}\cdots\cdots$

⑥より,
$$(w-\frac{a-1}{2a})(\overline{w}-\frac{a-1}{2a})=\frac{1}{a}+\frac{(a-1)^2}{4a^2}$$
 となり,

$$\left| w - \frac{a-1}{2a} \right|^2 = \frac{(a+1)^2}{4a^2}, \left| w - \frac{a-1}{2a} \right| = \frac{a+1}{2a}$$

よって、点z が虚軸上を動くとき、点w は中心 $\frac{a-1}{2a}$ で半径 $\frac{a+1}{2a}$ の円を描く。ただし、 $w \ne 1$ から点 1 は除く。

「解説]

複素数平面上の変換を問う問題です。(1)において、まず①を変形して、z+z=0という関係を導き、この式をもとに(2)、(3)を解くという方法もあります。