

1. Date Generale B1uSC-SOT523:

• Tip: Blauschild

• Tehnologie: CMOS 500 nm

• Curent de ieșire: 1.012 [µA]

• Tensiune maximă de alimentare: 5 [V]

• Tensiunea minimă de alimentare: 1.81 [V]

• Gama de temperatură: -40 ÷ 125 [°C]

2. Descriere:

Circuitul realizat prezintă arhitectura unei surse de curent de tip Blauschild implementată într-o tehnologie CMOS de 500nm și cunoscută în domeniul circuitelor analogice pentru un raport optim între simplitate și performanțe.

În configurația propusă, aceasta este implementată pentru generarea unui curent stabil de tip CTAT (*eng.* Complementary to Absolut Temperature), care prezintă o dependență negativă de temperatură (-2mV/oC).

Avantajul principal este simplitatea circuitului, având un număr redus de componente atât active, cât și pasive, deci implicit și un consum redus de putere.

Poate fi adaptată cu ușurință în foarte multe aplicații analogice ca circuit de polarizare în funcție de cerințele acestora.

3. Specificații tehnice finale:

Parametru	Descriere	Condiții	Min.	Nom.	Max.	Unitate
$ m V_{DD}$	Gama de alimentare	Temp. = 27 °C	1.81	2.02	5	V
I_Q	Curentul total consumat	Temp. = $27 {}^{\circ}\text{C}$ V _{DD} = Nom.	n/a	3.43	n/a	μΑ
I_{OUT}	Gama de variație a I_{OUT} cu V_{DD}	Temp. = $27 {}^{\circ}\text{C}$ V _{DD} = Min. \longleftrightarrow Max.	0.91	1.01	1.01	μΑ
Syppi	Sensibilitatea I_{OUT} în funcție de V_{DD}	Temp. = 27 °C	n/a	0.07	n/a	
I _{OUT}	Gama de variație a I _{OUT} cu temperatura	Temp. = -40 °C \longleftrightarrow 125 °C \longleftrightarrow V _{DD} = 5V.	0.73		1.21	μА

TC	Coeficient de variație cu temperatura	$V_{DD} = 5V$.	n/a	-3.00	n/a	nA/ºC
m	Media din simularea Monte Carlo	Temp. = $27 ^{\circ}$ C V _{DD} = Nom.	n/a	1.00	n/a	μΑ
σ	Deviația standard din simularea Monte Carlo	Temp. = $27 {}^{\circ}\text{C}$ V _{DD} = Nom.	n/a	0.12	n/a	μΑ
I_{OUT}	Gama de variație a I _{OUT} cu procesul	Temp. = $27 {}^{\circ}\text{C}$ V _{DD} = Nom.	0.65	1.01	1.37	μА
$ m V_{OUT}$	Tensiunea maximă de ieșire	Temp. = -40 °C \longleftrightarrow 125 °C \longleftrightarrow V _{DD} = 5 V	4.85	4.88	4.91	V
Arie	Nr. total de dispozitive din	Schemă electrică inițială	n/a	25	n/a	N/A
	schemă	Schemă electrică layout*		42	n/a	N/A

^{*}Pentru etapa de implementare la nivel de mască (*eng.* layout), au fost aduse modificări schemei electrice asupra lățimii canalului și a multiplicităților (menținând produsul w*m constant, w rămâne neschimbat) pentru ca tehnicile de minimizare/optimizare a ariei, precum și cele de împerechere (*eng.* matching) să poată fi aplicate, de unde și numărul crescut de dispozitive.

4. Schemă electrică:

• Setup de simulare a variației curentului de ieșire

5. Schemă Layout

• Coordonatele implementării la nivel de mască

Region : ((0.0 0.0) (150.55 0.0) (150.55 126.74) (0.0 126.74))

TotalArea= 19080.707000

 \Rightarrow Blocul ocupă o suprafață totală de $0.019~\text{mm}^2$

6. Caracteristici de performanță

• Curentul de ieșire în raport cu tensiunea de alimentare

• Variația curentului de ieșire în raport cu sarcina

• Curentul consumat

• Curentul de ieșire în funcție de temperatură

• Histograma Monte Carlo a curentului de ieșire

7. Performanțe Tehnologice

Parametru	Tip	Valoare inițială	Valoare finală	Pas / 1 pct	Puncte
VTO dev/gauss NMOS	NMOS	10m	4m	3m	2
VTO dev/gauss PMOS	PMOS	10m	4m	3m	2
VTO lot/gauss NMOS	NMOS	40m	20m	10m	2
RPOLY TC1	RPOLY	900u	700u	100u	2
RPOLY lot/gauss	RPOLY	0.15	0.09	0.03	2
TOTAL					10

Nr. crt.	Parametri	Date inițiale	Date finale	Observații
1	VDD (nominal)	2.02 V	2.02 V	Neschimbat
2	IQ (curent total consumat)	3.43 μΑ	3.43 μΑ	Neschimbat
3	IOUT (la VDD nominal)	1.01 μΑ	1.0121 μΑ	Ușor crescut
4	Sensibilitate IOUT vs VDD	0.07	0.0693	Mai mică, deci mai stabil
5	IOUT variatie cu temperatura	0.717 – 1.2 μΑ	0.732 – 1.21 μA	Variație mai mică cu temperatura
6	Coef. variatie temperatură (TC)	-0.0029 μA/°C	-0.00289 μA/°C	Ușor îmbunătățit
7	Monte Carlo – medie (m)	1.01 μΑ	1.005 μΑ	Mai aproape de 1 μA
8	Monte Carlo – deviație (σ)	0.17 μΑ	0.12 μΑ	Mult mai mică ⇒ distribuție mai strânsă
9	IOUT variatie cu proces (±3σ)	0.5 – 1.52 μΑ	0.65 – 1.37 μΑ	Variație mult redusă
10	VOUT max. (la VDD = 5 V)	4.90 V	4.88 V	Mică scădere, dar în limite

8. Dimensiunile capsulei

SOT523					
Dim	Min	Max	Тур		
A1	0.00	0.10	0.05		
A2	0.60	0.80	0.75		
A3	0.45	0.65	0.50		
b	0.15	0.30	0.22		
С	0.10	0.20	0.12		
D	1.50	1.70	1.60		
E	1.45	1.75	1.60		
E1	0.75	0.85	0.80		
е	0.50 BSC				
e1	0.90	1.10	1.00		
L	0.20	0.40	0.33		
а	0°		8°		
All Dimensions in mm					