Math 325K - Lecture 10 Section 4.6 & Review

Bo Lin

October 2nd, 2018

Outline

- Some square roots of integers are irrational numbers.
- The cardinality of the set of prime numbers.
- Review of Midterm # 1.

Reduced fractions

Proposition

For any rational number x, there exist integers m and n such that $x=\frac{m}{n}$ and m,n do not have a common divisor greater than 1.

Reduced fractions

Proposition

For any rational number x, there exist integers m and n such that $x = \frac{m}{n}$ and m, n do not have a common divisor greater than 1.

Sketch of proof.

Since x is rational, there exists integers a,b such that $x=\frac{a}{b}$. If a and b have a common divisor d>1, then both a/d and b/d are integers, so $x=\frac{a/d}{b/d}$. If a/d and b/d still have a common divisor greater than 1, then we can repeat the procedure. By the "well-ordering principle for the integers" (we will discuss in Section 5.4), this procedure will terminate after finitely many steps and we are done.

Reduced fractions

Proposition

For any rational number x, there exist integers m and n such that $x = \frac{m}{n}$ and m, n do not have a common divisor greater than 1.

Sketch of proof.

Since x is rational, there exists integers a,b such that $x=\frac{a}{b}$. If a and b have a common divisor d>1, then both a/d and b/d are integers, so $x=\frac{a/d}{b/d}$. If a/d and b/d still have a common divisor greater than 1, then we can repeat the procedure. By the "well-ordering principle for the integers" (we will discuss in Section 5.4), this procedure will terminate after finitely many steps and we are done.

Definition

Such a fraction is called the **reduced form** of a rational number.

Example

For the following rational numbers, write them in the reduced form:

- **1.5**;
- \bullet $-\frac{6}{15}$;
- $2 + \frac{3}{4}$.

Example

For the following rational numbers, write them in the reduced form:

- **1.5**;
- $-\frac{6}{15}$;
- $2 + \frac{3}{4}$.

Solution

(a)
$$\frac{3}{2}$$
.

Example

For the following rational numbers, write them in the reduced form:

- **1.5**;
- $-\frac{6}{15}$;
- $2 + \frac{3}{4}$.

Solution

(a)
$$\frac{3}{2}$$
. (b) $\frac{-2}{5}$.

Example

For the following rational numbers, write them in the reduced form:

- **a** 1.5;
- $-\frac{6}{15}$;
- $2 + \frac{3}{4}$.

Solution

(a)
$$\frac{3}{2}$$
. (b) $\frac{-2}{5}$. (c) $\frac{11}{4}$.

Pythagorean Theorem

Mathematics flourished in Ancient Greece. In particular, mathematician Pythagoras developed a lot of results in math. For example:

Pythagorean Theorem

Mathematics flourished in Ancient Greece. In particular, mathematician Pythagoras developed a lot of results in math. For example:

Theorem (Pythagorean Theorem)

In a right-angled triangle, suppose the skew side has length c and the other two sides have lengths a and b respectively, then

$$c^2 = a^2 + b^2.$$

Figure: A right-angled triangle

The interpretation of $\sqrt{2}$

If we take a=b=1 in the triangle, then Pythagorean Theorem tells us that $c^2=2$, in other words the square of c is 2.

The interpretation of $\sqrt{2}$

If we take a=b=1 in the triangle, then Pythagorean Theorem tells us that $c^2=2$, in other words the square of c is 2.

Remark

Apparently c cannot be any integer, what about rational numbers?

The very first irrational number discovered

Even though Pythagoras believed and preached that all numbers are rational, people managed to prove the existence of irrational numbers.

The very first irrational number discovered

Even though Pythagoras believed and preached that all numbers are rational, people managed to prove the existence of irrational numbers.

Theorem

 $\sqrt{2}$ is irrational.

The proof

Here we introduce a proof by Aristotle:

Proof.

We prove by contradiction. Suppose $\sqrt{2}$ is rational, then it has a reduced form, which is $\frac{m}{n}$ where m,n are integers that do not have a common divisor greater than 1. We have $\frac{m^2}{n^2} = (\frac{m}{n})^2 = (\sqrt{2})^2 = 2. \text{ So } m^2 = 2n^2 \text{ is even. Then } m \text{ is even.}$ So there exists an integer k such that m = 2k. In addition, since m,n do not have a common divisor greater than 1 and 2|m,n must not be divisible by 2, so n is odd. However, we have $2n^2 = m^2 = (2k)^2 = 4k^2$, so $n^2 = 2k^2$ is even, too. Then n is even, a contradiction! We are done.

The proof

Here we introduce a proof by Aristotle:

Proof.

We prove by contradiction. Suppose $\sqrt{2}$ is rational, then it has a reduced form, which is $\frac{m}{n}$ where m,n are integers that do not have a common divisor greater than 1. We have $\frac{m^2}{n^2} = (\frac{m}{n})^2 = (\sqrt{2})^2 = 2. \text{ So } m^2 = 2n^2 \text{ is even. Then } m \text{ is even.}$ So there exists an integer k such that m = 2k. In addition, since m,n do not have a common divisor greater than 1 and 2|m,n must not be divisible by 2, so n is odd. However, we have $2n^2 = m^2 = (2k)^2 = 4k^2$, so $n^2 = 2k^2$ is even, too. Then n is even, a contradiction! We are done.

The general case

In general we have the following theorem.

Theorem

Let n, k be positive integers such that n is not the k-th power of any integer, then $\sqrt[k]{n}$ is irrational.

Consecutive integers have no common prime divisor

Proposition

Let p be a prime number and a be an integer. If $p \mid a$, then $p \nmid (a+1)$.

Consecutive integers have no common prime divisor

Proposition

Let p be a prime number and a be an integer. If $p \mid a$, then $p \nmid (a+1)$.

Proof.

We prove by contradiction. Suppose $p \mid (a+1)$, then there is an integer s such that a+1=ps. Since $p \mid a$, there is an integer r such that a=pr. Then

$$1 = (a+1) - a = ps - pr = p(s-r).$$

So p is a divisor of 1, a contradiction! We are done.

There are infinitely many prime numbers

If we list all prime numbers in an increasing order, we end up with an endless list.

There are infinitely many prime numbers

If we list all prime numbers in an increasing order, we end up with an endless list.

Theorem

There are infinitely many prime numbers.

There are infinitely many prime numbers

If we list all prime numbers in an increasing order, we end up with an endless list.

Theorem

There are infinitely many prime numbers.

Proof.

We prove by contradiction. Suppose there are only finitely many prime numbers, then we may list them as: (here $n \in \mathbb{N}$)

$$2 = p_1 < p_2 < p_3 < \dots < p_n.$$

Now we let M be the product of all p_i 's and we consider the divisors of the number M+1.

Proof continued

Proof.

(continued) For each $1 \le i \le n$, we have $p_i \mid M$. By the previous proposition, p_i does not divide M+1. However, since M+1 is greater then 1, it has at least one prime divisor, a contradiction! We are done.

Proof continued

Proof.

(continued) For each $1 \le i \le n$, we have $p_i \mid M$. By the previous proposition, p_i does not divide M+1. However, since M+1 is greater then 1, it has at least one prime divisor, a contradiction! We are done.

Remark

There are many other methods to prove this theorem. In particular, Riemann consider the Zeta function when considering the distribution of prime numbers in \mathbb{N} , and led to the famous Riemann Conjecture.

Midterm # 1 Review Outline

Sets, relations and functions

- Sets each element appears only once, elements are not ordered.
- Relations subsets of Cartesian products.
- Functions each element in the domain corresponds to exactly one element in the co-domain.

Logical statements

- The logical connectives \sim , \wedge , \vee , \rightarrow , \leftrightarrow .
- Truth values and truth tables.
- Logical equivalence, tautology and contradiction.
- Contrapositive, converse and inverse, common errors.

Arguments and validity

- Definition of argument and argument form.
- Definition of validity.
- Test validity using truth tables, critical row.
- Difference between "true" and "valid", definition of sound.
- Rules of inference. (provided on the exam paper)

Arguments and validity

- Definition of argument and argument form.
- Definition of validity.
- Test validity using truth tables, critical row.
- Difference between "true" and "valid", definition of sound.
- Rules of inference. (provided on the exam paper)

Predicates and quantifiers

- Definitions of them.
- Meanings of \forall and \exists .
- Related forms (negation etc.) of quantified statements.
- Multi-quantified statements.
- Quantified rules of inference.

Methods of proof

- Direct proof.
- Proof by example or counterexample.
- Proof by division into cases.
- Proof by contradiction.
- Proof by contraposition.

Elementary number theory

- Even and odd numbers.
- Prime and composite numbers.
- Divisors and multiples.
- Rational and irrational numbers.