

No capítulo de hoje...

No capítulo de hoje...

Champions League

No capítulo de hoje...

No capítulo de hoje...

$$x_1 + 2x_2 \ge 10$$

$$2x_1 - 3x_2 \le 6$$

$$x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$

$$2x_1 - 3x_2 \le 6$$

$$x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (I)

$$2x_1 - 3x_2 \le 6$$

$$x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (1)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (I)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (I)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (1)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (1)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (1)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (1)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (1)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \ge 10$$
 (1)

$$2x_1 - 3x_2 \le 6$$
 (II)

$$x_1 + x_2 \ge 6$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$

$$2x_1 + 3x_2 = 12$$

$$2x_1 + x_2 \ge 8$$

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (I)

$$2x_1 + 3x_2 = 12$$

$$2x_1 + x_2 \ge 8$$

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (1)

$$2x_1 + 3x_2 = 12$$
 (11)

$$2x_1 + x_2 \ge 8$$

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (I)

$$2x_1 + 3x_2 = 12$$
 (11)

$$2x_1 + x_2 \ge 8$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (1)

$$2x_1 + 3x_2 = 12$$
 (II)

$$2x_1 + x_2 \ge 8$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (1)

$$2x_1 + 3x_2 = 12$$
 (II)

$$2x_1 + x_2 \ge 8$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (1)

$$2x_1 + 3x_2 = 12$$
 (II)

$$2x_1 + x_2 \ge 8$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (1)

$$2x_1 + 3x_2 = 12$$
 (II)

$$2x_1 + x_2 \ge 8$$
 (III)

$$x_1, x_2 \ge 0$$

$$x_1 + 2x_2 \le 12$$
 (1)

$$2x_1 + 3x_2 = 12$$
 (II)

$$2x_1 + x_2 \ge 8$$
 (III)

$$x_1, x_2 \ge 0$$

No capítulo de hoje...

No capítulo de hoje...

Maximizar
$$Z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le m$
 $x_1, x_2, \dots, x_n \ge 0$

$$Maximizar Z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le m$$

$$x_1, x_2, \dots, x_n \ge 0$$

Maximizar
$$Z = 3x_1 + 2x_2$$

 $2x_1 + x_2 \le 100$
 $x_1 + x_2 \le 80$

$$x_1 + x_2 \le 80$$
$$x_1 \le 40$$

$$x_1, x_2 \ge 0$$

$$Maximizar Z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &\leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &\leq b_2 \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &\leq m \end{aligned}$$

$$x_1, x_2, \dots, x_n \ge 0$$

$$\begin{aligned} Maximizar \ Z &= 3x_1 + 2x_2 \\ 2x_1 + x_2 &\leq 100 \end{aligned}$$

$$x_1 + x_2 \le 80$$

$$x_1 \le 40$$

$$x_1, x_2 \ge 0$$

$$Maximizar Z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le m$$

$$x_1, x_2, ..., x_n \ge 0$$

Maximizar
$$Z = 3x_1 + 2x_2$$

 $2x_1 + x_2 \le 100$
 $x_1 + x_2 \le 80$

$$x_1 + x_2 \le 80$$

$$x_1 \le 40$$

$$x_1, x_2 \ge 0$$

$$Minimizar Z = 3x_1 + 2x_2$$
$$2x_1 + x_2 \le 12$$

$$2x_1 + 3x_2 = 12$$

$$2x_1 + x_2 \ge 8$$

$$x_1, x_2 \ge 0$$

$$Maximizar Z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le m$$

$$x_1, x_2, ..., x_n \ge 0$$

Maximizar
$$Z = 3x_1 + 2x_2$$

 $2x_1 + x_2 \le 100$
 $x_1 + x_2 \le 80$
 $x_1 \le 40$
 $x_1, x_2 \ge 0$

X

Minimizar
$$Z = 3x_1 + 2x_2$$

 $2x_1 + x_2 \le 12$
 $2x_1 + 3x_2 = 12$
 $2x_1 + x_2 \ge 8$
 $x_1, x_2 \ge 0$

Algoritmo

Tiozão

Cariani decidiu fazer uma nova dieta de preparo para o Mr. Olympia, e está na fase de "cutting". Por isso, a sua dieta terá somente frango cozido e batata doce. Cada 100g de frango cozido tem cerca de 200 calorias, e cada 100g de batata doce tem aproximadamente 90 calorias. Ele pode consumir até 2000 calorias por dia. Além disso, como ele não quer perder massa magra, precisará consumir o máximo possível de proteínas. Cada 100g de frango e de batata doce tem, respectivamente, 27 e 2g de proteína. Como ele não curte muito frango, consome no máximo 200g. A sua nutricionista, Tati, permite que ele consuma no máximo 20g de gordura. Note que 100g de frango possui 14g de gordura, enquanto a batata doce tem 1g. Determine qual é a melhor combinação de frango e batata doce para a dieta de "cutting" do Cariani.

- Modelo Aumentado
- Adicionar variáveis de folga

$$Maximizar Z = 27x_1 + 2x_2$$

$$200x_1 + 90x_2 \le 2000$$

$$x_1 \leq 2$$

$$14x_1 + x_2 \le 20$$

$$x_1, x_2 \ge 0$$

$$Maximizar Z - 27x_1 + 2x_2 = 0$$

$$200x_1 + 90x_2 + x_3 = 2000$$

$$x_1 + x_4 = 2$$

$$14x_1 + x_2 + x_5 = 20$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

- Construir a tabela inicial

	Z	x1	x2	х3	x4	x 5	RHS
Z	1	-27	-2	0	0	0	0
Х3	0	200	90	1	0	0	2000
X4	0	1	0	0	1	0	2
x5	0	14	1	0	0	1	20

- Cálcular o Ratio

	Z	x1	x2	х3	х4	х5	RHS	RATIO
Z	1	-27	-2	0	0	0	0	
Х3	0	200	90	1	0	0	2000	2000/200
X4	0	1	0	0	1	0	2	2/1
x 5	0	14	1	0	0	1	20	20/14

- Cálcular o Ratio

	Z	x1	x2	х3	x4	x 5	RHS	RATIO
Z	1	-27	-2	0	0	0	0	
Х3	0	200	90	1	0	0	2000	2000/200
X4	0	1	0	0	1	0	2	2/1
x5	0	14	1	0	0	1	20	20/14

- Encontrar uma nova solução

	Z	X1	x2	Х3	х4	x 5	RHS	RATIO
Z	1	0	-1/14	0	0	27/14	270/7	
Х3	0	0	530/7	1	0	-100/7	-100/7	
X4	0	0	-1/14	0	1	-1/14	-1/14	
x1	0	1	1/14	0	0	1/14	1/14	

- Calcular o ratio

	Z	X1	x2	Х3	x4	х5	RHS	RATIO
Z	1	0	-1/14	0	0	27/14	270/7	
Х3	0	0	530/7	1	0	-100/7	1200/7	12000/530
X4	0	0	-1/14	0	1	-1/14	4/7	-
x1	0	1	1/14	0	0	1/14	20/14	20/1

- Calcular o ratio

	Z	X1	X2	Х3	х4	X5	RHS	RATIO
Z	1	1	0	0	0	2	40	
Х3	0	-1060	0	1	1	430/7	200	
X4	0	1	0	0	1	0	2	
x1	0	14	1	0	0	1	20	

- Encontrar a solução ótima

	Z	X1	X2	Х3	х4	X 5	RHS	RATIO
Z	1	1	0	0	0	2	40	
Х3	0	-1060	0	1	1	430/7	200	$Z^* = 40$ $x_1^* = 20$
X4	0	1	0	0	1	0	2	$x_1 - 20$ $x_2^* = 0$
x1	0	14	1	0	0	1	20	2.2

- Encontrar a solução ótima

	Z	X1	X2	Х3	х4	X 5	RHS	RATIO
Z	1	1	0	0	0	2	40	
Х3	0	-1060	0	1	1	430/7	200	$Z^* = 40$ $x_1^* = 20$
X4	0	1	0	0	1	0	2	$x_1 - 20$ $x_2^* = 0$
x1	0	14	1	0	0	1	20	2.2

	Z	X1
Z	1	1
Х3	0	-1060
X4	0	1
x1	0	14

INÍCIO

Encontre uma solução

> Essa solução é ótima?

> > FIM

, SIM

Método Gráfico

 $Maximizar Z = 27x_1 + 2x_2$

$$200x_1 + 90x_2 \le 2000$$

$$x_1 \leq 2$$

$$14x_1 + x_2 \le 20$$

$$x_1, x_2 \ge 0$$

Método Gráfico

 $Maximizar Z = 27x_1 + 2x_2$

$$200x_1 + 90x_2 \le 2000$$

$$x_1 \leq 2$$

$$14x_1 + x_2 \le 20$$

$$x_1, x_2 \ge 0$$

Referências

DIALLO, C. Lecture notes - Operations Research 1: Linear Models. Dalhousie University, 2021

EISELT, H. A.; SANDBLOOM, C.-L. **Operations Research: A Model-Based Approach**. 2. ed. New York: Springer, 2012

HILLIER, F. S.; LIEBERMAN, G. J. Introduction to Operations Research. 10. ed. New York: McGraw-Hill Education, 2015.

CAPPELLI, P. Cariani bloqueia comentários mas é massacrado após operação da PF. 2023. Metrópoles.

Disponível em: https://www.metropoles.com/colunas/paulo-cappelli/cariani-bloqueia-comentarios.

Acesso em: 18 de Setembro de 2024.

Growth Suplementos. Team Growth. s.d.. Disponível em:

https://www.gsuplementos.com.br/teamgrowth/renato-cariani. Acesso em: 18 de Setembro de 2024.