CaseStudy3

December 8, 2024

1 Module 10: Unsupervised Learning

1.1 Case Study -3

```
[4]: import pandas as pd
     from sklearn.cluster import AgglomerativeClustering
     from sklearn.metrics import mean_squared_error
     import scipy.cluster.hierarchy as sho
     from matplotlib import pyplot as plt
     # Ignore warnings for clean output
     import warnings
     warnings.filterwarnings("ignore")
     # Step 1: Load and Explore the Dataset
     data = pd.read_csv('zoo.csv')
     # Check basic information
     print("Dataset Info:")
     print(data.info())
     print("\nMissing Values Check:")
     print(data.isnull().sum())
     # Display the first 5 rows
     print("\nFirst 5 Rows of the Dataset:")
     print(data.head())
     # Summary statistics
     print("\nSummary Statistics:")
     print(data.describe())
     # 2. Find out the unique number of high-level cclasses
     # Check the unique high-level classes (class_type)
     unique_classes = data['class_type'].nunique()
     print(f"\nUnique High-Level Classes: {unique_classes}")
     # Class distribution
     class_counts = data['class_type'].value_counts()
```

print("\nClass Distribution:") print(class_counts)

Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 101 entries, 0 to 100
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	$animal_name$	101 non-null	object
1	hair	101 non-null	int64
2	feathers	101 non-null	int64
3	eggs	101 non-null	int64
4	milk	101 non-null	int64
5	airborne	101 non-null	int64
6	aquatic	101 non-null	int64
7	predator	101 non-null	int64
8	toothed	101 non-null	int64
9	backbone	101 non-null	int64
10	breathes	101 non-null	int64
11	venomous	101 non-null	int64
12	fins	101 non-null	int64
13	legs	101 non-null	int64
14	tail	101 non-null	int64
15	domestic	101 non-null	int64
16	catsize	101 non-null	int64
17	class_type	101 non-null	int64

dtypes: int64(17), object(1)

memory usage: 14.3+ KB

None

Missing Values Check:

animal_name hair 0 feathers 0 0 eggs milk 0 airborne 0 aquatic 0 predator 0 toothed 0 backbone 0 0 breathes venomous 0 fins 0 0 legs tail 0 domestic

catsize 0
class_type 0
dtype: int64

First 5 Rows of the Dataset	First	5	Rows	of	the	Dataset
-----------------------------	-------	---	------	----	-----	---------

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	\
0	aardvark	1	0	0	1	0	0	1	
1	antelope	1	0	0	1	0	0	0	
2	bass	0	0	1	0	0	1	1	
3	bear	1	0	0	1	0	0	1	
4	boar	1	0	0	1	0	0	1	

	toothed	backbone	breathes	venomous	fins	legs	tail	domestic	catsize	\
0	1	1	1	0	0	4	0	0	1	
1	1	1	1	0	0	4	1	0	1	
2	1	1	0	0	1	0	1	0	0	
3	1	1	1	0	0	4	0	0	1	
4	1	1	1	0	0	4	1	0	1	

class_type

0 1 1 1 2 4 3 1

4

Summary Statistics:

1

	hair	feathers	eggs	milk	airborne	aquatic	\
count	101.000000	101.000000	101.000000	101.000000	101.000000	101.000000	
mean	0.425743	0.198020	0.584158	0.405941	0.237624	0.356436	
std	0.496921	0.400495	0.495325	0.493522	0.427750	0.481335	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	
75%	1.000000	0.000000	1.000000	1.000000	0.000000	1.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
	predator	toothed	backbone	breathes	venomous	fins	\
count	101.000000	101.000000	101.000000	101.000000	101.000000	101.000000	
mean	0.554455	0.603960	0.821782	0.792079	0.079208	0.168317	
std	0.499505	0.491512	0.384605	0.407844	0.271410	0.376013	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	1.000000	1.000000	0.000000	0.000000	
50%	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	
75%	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
	legs	tail	domestic	catsize	class_type		

```
101.000000 101.000000 101.000000 101.000000 101.000000
count
         2.841584
                     0.742574
                                 0.128713
                                             0.435644
                                                          2.831683
mean
std
         2.033385
                     0.439397
                                 0.336552
                                             0.498314
                                                          2.102709
min
         0.000000
                     0.000000
                                 0.000000
                                             0.000000
                                                          1.000000
25%
         2.000000
                     0.000000
                                 0.000000
                                             0.000000
                                                          1.000000
50%
         4.000000
                     1.000000
                                 0.000000
                                             0.000000
                                                          2.000000
75%
         4.000000
                     1.000000
                                 0.000000
                                              1.000000
                                                          4.000000
         8.000000
                     1.000000
max
                                 1.000000
                                              1.000000
                                                          7.000000
```

Unique High-Level Classes: 7

```
Class Distribution:
class_type
```

1 41

2 20

4 13

7 10

6 8

3 5

5 4

Name: count, dtype: int64

```
[5]: # Step 2: Extract Intermediate Features and Target

# Removing non-numerical column 'animal_name' and keeping only the first 16

features

features = data.iloc[:, 1:17] # Columns 1 to 16 are the intermediate features

target = data['class_type'] # The actual high-level class
```

```
[6]: # Step 3: Perform Agglomerative Clustering
# Visualize the dendrogram to understand the clustering structure
plt.figure(figsize=(10, 7))
plt.title("Dendrogram for Agglomerative Clustering")
dendrogram = shc.dendrogram(shc.linkage(features, method='ward'))
plt.show()
```


Mean Squared Error between Actual and Predicted Classes: 7.673267326732673

2 4 6 6 3 3 6 6 2 3 4 0 2 3 0 5 5 5 2 4 1 3 4 0 1 6 3

```
[11]: # Animals in Each Cluster:
      # Add the predicted cluster labels to the original dataset
      data['predicted_cluster'] = predicted_classes
      # Group animals by their predicted cluster
      clusters = data.groupby('predicted_cluster')['animal_name'].apply(list)
      # Print the animals in each cluster
      print("\nAnimals in Each Cluster:")
      for cluster id, animals in clusters.items():
          print(f"Cluster {cluster id}: {animals}")
     Animals in Each Cluster:
     Cluster 0: ['crab', 'crayfish', 'flea', 'gnat', 'honeybee', 'housefly',
     'ladybird', 'lobster', 'moth', 'octopus', 'scorpion', 'starfish', 'termite',
     'wasp']
     Cluster 1: ['aardvark', 'antelope', 'bear', 'boar', 'buffalo', 'calf', 'cavy',
     'cheetah', 'deer', 'elephant', 'giraffe', 'goat', 'hamster', 'hare', 'leopard',
     'lion', 'lynx', 'mink', 'mole', 'mongoose', 'opossum', 'oryx', 'polecat',
     'pony', 'puma', 'pussycat', 'raccoon', 'reindeer', 'vole', 'wolf']
     Cluster 2: ['bass', 'carp', 'catfish', 'chub', 'dogfish', 'dolphin', 'haddock',
     'herring', 'pike', 'piranha', 'porpoise', 'seahorse', 'seal', 'sole',
     'stingray', 'tuna']
     Cluster 3: ['chicken', 'crow', 'dove', 'duck', 'flamingo', 'gull', 'hawk',
     'kiwi', 'lark', 'ostrich', 'parakeet', 'penguin', 'pheasant', 'rhea', 'skimmer',
     'skua', 'sparrow', 'swan', 'vulture', 'wren']
     Cluster 4: ['fruitbat', 'girl', 'gorilla', 'sealion', 'squirrel', 'vampire',
     'wallaby']
     Cluster 5: ['frog', 'frog', 'newt', 'platypus', 'toad', 'tortoise', 'tuatara']
     Cluster 6: ['clam', 'pitviper', 'seasnake', 'seawasp', 'slowworm', 'slug',
     'worm'l
[14]: # Analyze Features Driving the Clustering
      # To identify the features that most likely influence the clustering:
      #Calculate the mean values of features within each cluster.
      #Compare these means to the overall dataset or other clusters to see,
      \hookrightarrow distinguishing characteristics.
      # Exclude non-numeric columns before calculating the mean
      numeric_data = data.drop(columns=['animal_name', 'class_type']) # Drop_
       ⇔non-numeric columns
      # Calculate the mean of each feature per cluster
      cluster_features = numeric_data.groupby(data['predicted_cluster']).mean()
```

```
print("\nMean Values of Features per Cluster:")
print(cluster_features)

# Identify significant features for each cluster
print("\nKey Features Driving Each Cluster:")
for cluster_id, feature_means in cluster_features.iterrows():
    top_features = feature_means.sort_values(ascending=False).head(5) # Top 5
    features
    print(f"Cluster {cluster_id}:")
    for feature, value in top_features.items():
        print(f" - {feature}: {value}")
```

Mean Values of Features per Cluster:

mean values of rea	cures ber	CIUSCEI.					
	hair	feathers	eggs	milk	airborne	aquatic	\
<pre>predicted_cluster</pre>							
0	0.285714	0.0	0.928571	0.000000	0.428571	0.357143	
1	1.000000	0.0	0.000000	1.000000	0.000000	0.033333	
2	0.062500	0.0	0.812500	0.187500	0.000000	1.000000	
3	0.000000	1.0	1.000000	0.000000	0.800000	0.300000	
4	1.000000	0.0	0.000000	1.000000	0.285714	0.142857	
5	0.142857	0.0	1.000000	0.142857	0.000000	0.714286	
6	0.000000	0.0	0.857143	0.000000	0.000000	0.285714	
	predator	toothed	backbone	breathes	venomous	fins	\
<pre>predicted_cluster</pre>							
0	0.500000	0.000000	0.000000	0.642857	0.214286	0.000000	
1	0.533333	1.000000	1.000000	1.000000	0.000000	0.000000	
2	0.750000	1.000000	1.000000	0.187500	0.062500	1.000000	
3	0.450000	0.000000	1.000000	1.000000	0.000000	0.000000	
4	0.285714	1.000000	1.000000	1.000000	0.000000	0.142857	
5	0.714286	0.714286	1.000000	1.000000	0.142857	0.000000	
6	0.714286	0.428571	0.428571	0.571429	0.428571	0.000000	
	legs	tail	domestic	catsize	predicted	_cluster	
<pre>predicted_cluster</pre>							
0	6.071429	0.071429	0.071429	0.071429		0.0	
1	4.000000	0.900000	0.233333	0.800000		1.0	
2	0.000000	0.937500	0.062500	0.437500		2.0	
3	2.000000	1.000000	0.150000	0.300000		3.0	
4	2.000000	0.714286	0.142857	0.571429		4.0	
5	4.000000	0.571429	0.000000	0.285714		5.0	
6	0.000000	0.428571	0.000000	0.000000		6.0	

Key Features Driving Each Cluster:

Cluster 0:

- legs: 6.071428571428571 - eggs: 0.9285714285714286

```
- breathes: 0.6428571428571429
      - predator: 0.5
      - airborne: 0.42857142857142855
    Cluster 1:
      - legs: 4.0
      - hair: 1.0
      - milk: 1.0
      - toothed: 1.0
      - backbone: 1.0
    Cluster 2:
      - predicted_cluster: 2.0
      - fins: 1.0
      - toothed: 1.0
      - aquatic: 1.0
      - backbone: 1.0
    Cluster 3:
      - predicted_cluster: 3.0
      - legs: 2.0
      - breathes: 1.0
      - feathers: 1.0
      - eggs: 1.0
    Cluster 4:
      - predicted_cluster: 4.0
      - legs: 2.0
      - hair: 1.0
      - milk: 1.0
      - backbone: 1.0
    Cluster 5:
      - predicted_cluster: 5.0
      - legs: 4.0
      - breathes: 1.0
      - eggs: 1.0
      - backbone: 1.0
    Cluster 6:
      - predicted_cluster: 6.0
      - eggs: 0.8571428571428571
      - predator: 0.7142857142857143
      - breathes: 0.5714285714285714
      - venomous: 0.42857142857142855
[]:
```

8