SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 14.03.2021

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course Number : BITS F114

Course Title : General Mathematics II Instructor-In charge : TRILOK MATHUR

1. Course Description:

I. Polar coordinates, Function of several variables, multiple integrals, Vector valued functions.

II. Complex functions and their analyticity.

III. First order and second order ordinary differential equations, Laplace transformations and how to solve initial value problems of ordinary differential equations.

2. Scope and Objective of the Course:

The course is for Pharmacy students keeping in mind the importance of Calculus and Differential equations in every branch of Science and Engineering. Functions of several variables appear more frequently in scientific problem than functions of a single variable. Their derivatives are more interesting because of the different ways in which the variables can interact, while differential equations of both homogeneous and non-homogeneous also plays a vital role in Engineering and Sciences.

3. Text Books:

T₁-For module 1-4: Thomas, Weir, M.D., and Hass, J.: Thomas Calculus, 14th Edition, Pearson Education.

T₂-For module 5-8: Kreyszig: Advanced Engineering Mathematics, Wiley-India.

4. Reference Book:

Stewart, J. (2009): Calculus with Early Transcendental Functions, 1st Edition, Cengage learning.

5. Course Plan:

Module No.	Lecture Session	Reference	Learning Outcomes		
1	Lecture 1-2: Vector valued functions and	13.1 (T ₁)	Difference between real valued		
	Space curve		and vector valued functions		
2.	Lecture 3-5: Introduction to polar co-	11.3-11.4	Understanding the Polar co-		
	ordinates, Relation between Cartesian	(T_1)	ordinate system and its		
	and polar, Polar curves (without		advantages		
	sketching)				
3.	Lecture 6-14: Function, Limit,	14.1-14.8	Study of the calculus of function		
	Continuity, Partial derivatives, Chain	(T_1)	of several variables,		
	rule, Directional derivatives, Extreme				
	values and Saddle point,				

4.	Lecture 15-17: Double integral	15.1-15.2	Set & evaluate double integrals		
		(T_1)	2.0.00		
5.	Lecture 18-22: Complex number, root	13.1-13.4	Difference between Analytic and differentiable function		
	and functions, Derivative and Cauchy	(T_2)			
	Riemann equations and Analyticity				
6.	Lecture 23-27: Introduction (Degrees	1.1-1.4	How to solve the first order		
	and Order), Linear first order ordinary	(T_2)	Ordinary differential equation		
	differential equations, Linear differential				
	equations, Separable and Exact ordinary				
	differential equations				
7.	Lecture 28-33: Second order linear	2.1-2.3,	Solution of the second order ordinary differential equations		
	homogeneous Ordinary differential	2.5, 2.7			
	equations, Cauchy-Euler Ordinary	(T_2)			
	differential equations, non-homogeneous				
	Ordinary differential equations.				
8.	Lecture 34-37: Laplace transformations,	6.1-6.7	Solutions of Ordinary		
	Solutions of initial value problems	(T_2)	differential equations and		
	through Laplace transformations		Laplace Transformation		

6. Evaluation Scheme:

Component	Duration	Weightage %	Date & Time	Nature of component
Mid-Semester Exam	90 Min	30	To be announced later	Open book
Quizzes (2) and	30 Min	30	30/3 (Q-1), 13/4 (A-1)	Open book
Assignments (2)	for each		18/5 (Q-2), 1/6 (A-2)	
	quiz			
Comprehensive Exam	120 Min	40	21/6, 3.00- 5.00 PM	Open book

- 7. Chamber Consultation Hour: To be announced in the class.
- **8. Notices:** All announcements in relation to the above course will be put up on Nalanda.
- 9. Make up: Prior permission must be taken in advance for makeup of all components.

Instructor In-Charge BITS F114