Report No. FAA-RD-77-57, II

Volume II Helicopter Models: Bell 212 (UH-IN),
Sikorsky S-61 (SH-3A), Sikorsky S-64 "Skycrane" (CH-54B),
Boeing Vertol "Chinook" (CH-47C)

April 1977 Data Report

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service Washington, D.C. 20590

JUC FILE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

PHAY.

Technical Report Documentation Page

(1,1	1. Report No.	Government Acces	sian No. 3. R	ecipient's Caralog N	0.
14	FAA-RD-77-57-11 2			(1)	
4	4. Title and S. t.				
- 1	Helicopter N	oice Mongui	comonto 7	April 19	177 (
7	DATA REPORT Volume II, Hel	dise measur		<i>y</i>	
li	Bell 212 (UH-IN), Sikorsky S-			ARD-550	on Code
- 11	Skycrane (CH-54B), Boeing V		- a		
i i	The best of the second of the	CITOT WITHOUT	H . P.	erforming Organization	an Report No.
-	(C) Harold C. True	Richard N	1 Matty		Ì
ŀ	9. Parforming Organization Name and Address			York Unit Ho. (TRA)	
1	Department of Transpor	tation /	, ,	TOR UNIT IND. (1 KA);))
)	Federal Aviation Admin		111	Contract or Grant No	
1	Systems Research and De			comment or ordination	•
		0591	1— _	ype of Report and P	ariad Caused
ł	12. Sponsoring Agency Name and Address			ypo or noport and t	eliba Caveles
1	Department of Transpor	tation		Data Repor	't
Ì	Federal Aviation Admin				
1	Systems Research and D	evelopment	Service 14. s	ponsoring Agency C	ode
- 1	Washington, D.C. 2	0591			
1	15. Supplementary Notes				
1	•				
- 1		lume I which descri	lbes the		
- 1	rest program end	tation format.			
Ì	16. Abstract				
- 1					
1	This data report				
	from an FAA Helicopter				
1	program was to provide				
	certification rule. Th				
1	report is primarily in				
	information. Only the : FAA/DOT data analysis	measured da	icans will be w	i in this i	report, Air
- 1	report which is schedu				l a later
1	The eight helicop				wice mort
1	Program constituted a	uido mesee	of aveca voich	The adding t	vdoć nar-
	Program constituted a ticipation from severa	wide lange I bolicopt	or dross werdin	Tand Inc.	contor
İ	models used in this te	r nericobe	tore the Evaber	and Herr	bee 500c
- 1	Bell 47-G, Bell 206-L,				
1	Sikorsky S-64 "Skycran				
- 1	Volume I contains the				
j	four helicopters while				
Į	ing four.	VOI GING 11	Contactio cite at	ILU LIOM CI	IC ICMUII
- 1	The test procedur	e for each	helicopter cons	sisted of a	htaining
- 1	noise data during hove				
1	data presented in this				
1	band spectra, EPNL, PN				-,
1					
1	17. Key Words		18. Distribution Statement		_
1	Helicopter Noise Level	s;	This document	: is availa	ble to the
ļ	Hover; Level Flyover;		public through		
Ì	Glide Slope; Time Hist	ories;	nical Informa		
1	EPNL, PNL, dBA, dBD an	d OASPL.	Springfield,	Virginia	22151
- 1	20	1 20 6		_	22. Price
ł	19. Security Classif. (of this report)	20. Security Class	, -	21- No. of Pages	44. PHC#
Ì	UNCLASSIFIED	UNCLAS	SIPIED	417	
ł		į.			

DATA TABLE E

BELL 212 (UHIN)

TEST DATE:	10-6-76 TEST SITE: DULLES	AIRPORT
SECTION - E	CONTENT	PAGE #
I	RUN LIST	380
II	GROUND AND FLIGHT LOG DATA	383
III	METEOROLOGICAL DATA	385
īV	LEVEL FLYOVER AND APPROACH NOISE DATA	386
v	TIME HISTORIES	388
VI	1/3-OCTAVE BAND SPECTRAFLYOVER AND APPROACH	416
VII	1/3-OCTAVE BAND SPECTRA5 FOOT HOVER	444
VIII	MAXIMUM dBA NOISE LEVEL (ALL RUNS)	461
IX	SELECTED dBA TIME HISTORIESGRAPHIC PLOTS	464

THE NOISE LEVELS PRESENTED IN SECTIONS IV, V AND VI
HAVE BEEN TABULATED FOR THE SELECTED RUNS AND MICROPHONE
LOCATIONS INDICATED ON THE FOLLOWING PAGE.

TABLE E-I
LIST OF RUNS SELECTED FOR ANALYSIS

			1	MICKOPHONI	LOCATION	
			WES	T	EAS	ST
LUN#	TEST CONDITIO	TEST CONDITION			CENTER LINE	150m SIDELINE
24	6° Approach	60 Kts	х		x	X
27	9° Approach	60 Kts	х		х	
29	Level Flyover	60 Kts			x	
30					x	
31		\downarrow			х	
32		99 Xts			х	
33					x	
34		\downarrow		.	x	
35		110 Kts			x	х
36			x		x	х
37		ll4 Kts	ļ		x	
38	₩ ₩	\downarrow			x	
43	3° Approach	60 Kts	x		x	
44	Level Flyover	110 Kts	х	Ì	х	x
45		\downarrow	x		х	х
46		114 Kts	Ì		x	
47	↓	V			x	
	Microphone Loca	ations	Over Transpo Site Surface	Over Plywood	Over Transpo Site Surface	Over Tran Site Surf
			381			

GENERAL COMMENTS

- o There were no problems encountered while testing the Bell-212 (UHIN).
- o The weather conditions during the test consisted of moderate winds with gusts in the 8-12 mph range.

Log Data
Flight
929
G round
 L
I-3
TABLE

	Test J.L: 10/6/26		Comments	Abort (Accord Taxord) Abort (Accord Taxord)	Below 9 upp at Enst - then good	manths introduced the Est of the Comment
Doto	Tet Dibi	10 (10 41)	Wind Dieritor			
Flight Log Data	5	Ground Weither	Temp RH			to the mossely
nd and	.F. Mussal 5		PM CAT	<i>y y y y y y y y y y</i>		by Cirkwi
Ground	kr: U.S.F.		4 5		286 286 26h	450 450 450 01 graping
E-II	16:5	Lor 1. 4 503	70. 20 se	e attention 5	1	300
TABLE	Registrator Nouther: U.S. R. F.	Actost	8/8 8/0	0	→ 52 53 54 55 55 54 55 55 55 55 55 55 55 55 55	55. 56. 57. 59.
	(m)		Heading	8 8 8 8 8 00 8 8 8 8 8 8 8 6 6 8 8 8 8 8	10 10> 10	Hevor.
·	(UHIN)		# # # # # # # # # # # # # # # # # # #			86.5 83.5 Worth
	Bell 213	, ovo,	Alt.take over	± 3, 5	→ ¾ → ¾	
		Conditions		0	60 C	
	Helicopter Model:	Target	Type	Haver	→ 3, · · · · · · · · · · · · · · · · · ·	50 pnd Level Meter Located 100 f
	Helicop		7.me	7.30 7.30 7.33 7.33 7.43 7.43 7.43 7.43 7.43 7.43	86.50 50 50.50 50.50 50.50 50.50 50.50 50 50.50 50 50 50 50 50 50 50 50 50 50 50 50 5	23:39 03:09 13:00 10 10 10 10 10 10 10 10 10 10 10 10 1
			Run	283 ーペシャいらりのひかんにはばまだ &	के के कि के	

Test Dithi 12/2/5	Comments			Market Tales of the aury from	Abort Abort	
7037	(to		- ·	-		
	5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.				• •
١.,	Grove Whenhow (10 st) Temp. FH was Wha	_				
11.55.51	Grs. Temp.	_			<u>.</u> .	
Pay total Homeon D.S. F.F. Mosel &	REN OFT					
2.0.5		-		-		•
() sme	PHIJ.		500	5.5. 6.5.	2 2 2 6 2 2 2 2 6 2 2 2 2 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00
to Assi	Conditions +10 / 12 m	5 5 S.		35. C.		0.0 3.0
in	!	000		20000	350 174 350 350 300	0000
	Petusi.		828	20 50 50 50 50 50 50 50 50 50 50 50 50 50	33883	200
(שואט	nd	1∨1≥1⋅0		2. 1v)		· · · · · · · · · · ›
) &u	10 F	500		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 3	
Bell 212 (UHIV)	Attook Mount	20c H	,	n	3.60. →	8
	Conditions Office	3>	o>	** · · · · · · · · · · · · · · · · · ·	3 >	SA DEL
Helisphe Ming!	Target	10 / OR Det			± 2 − − − − − − − − − − − − − − − − − −	, , , , , , , , , , , , , , , , , , ,
Heling	€ E	3.02		3.56	4.05 4.03 4.13 4.13	200 mm
	Run	\$ 8 %	u) w) w w w) #	394 394	22 5 2 3	五方 古古

TABLE E-ZZ

Meteorological Data
Dulles International Airport
October 6, 1976

Time	Temp.	Bar. Press.	Kel.Hum	Wind Speed	Wind Direction	Remarks
(Hours	(°F)	(mm Hg)	(%)	(mph)	(Degrees)	
1315	67		65	10-11	160	Scat. Clds.
1330	66		66	9-10	185	
1345	68		64	8-10	195	
1,00	68		64	10-11	200	
1415	69		61	9-10	180	
11/30	69		60	9-10	180	
1445	70		58	9-10	170	
1500	69	753	59	14-16	180	
1515	68		60	12-14	170	
1530	68		59	9 - 11	180	
1545	69		58	8-9	170	
1600	70		58	7-8	190	
1615	70		58	10-12	160	
1630	70	753	56	10-11	190	

HELICOPTER APPROACH AND FLYOVER NOISE DATA

BELL 212

OCTOBER 6, 1976

MICROPHONE OFFSET 150 METERS WEST (LEVELS-DB RE 20 MICRO PA)

EVENT	EPNL	DBA(M)	DBD(M)	OASPL	FWL(W)	PNLT(M)	LE.	DURGAD	CADMON	TC
24	95.6	80.2	86.0	91.7	93 • 1	94.0	75.7	41.0	41.0	1.0
27	97.0	80:7	8€+8	92.5	94:5	95.2	76 - 1	52.5	43.0	÷ 7
36	96.9	81-9	88 • 4	95.0	95.3	95.3	78.9	27.0	27.5	• 0
43	94.0	76.9	82 • 4	91.5	89.2	90 • 3	72.8	56.0	57.0	2 • 1
44	96.3	81.3	87.9	94.8	94.3	95•9	78 • 3	23.5	23.5	1.9
45	96 • 2	8C • 6	86.5	94.5	94.5	95•3	77.2	25.0	30.0	1 • 3

WICHOPHONE OFFSET 150 METERS EAST (LEVELS-DB RE 20 MICRO PA)

EVENT	EPNL	DBA(M)	DBD(W)	OASPL	PML(W)	PALT(M)	LE0	DURCA	DUR(P)	TÇ
24	96 • 3	79.4	83.9	89.4	91.8	93.5	73.3	69.5	7 0 • 5	1.7
35	96.8	83.3	88.6	95.0	95 • 6	96.0	79•3	21.5	24.0	1 • 1
36	96.2	81.1	89+1	95.2	95.2				55 • 0	
		80 • 3				94•7	77.6	23.0	23.5	• 0
		79.1				94.6	75•7	18.5	20.0	• 0

TABLE E-IV

HELICOPTER APPROACH AND FLYOVER NOISE DATA

BELL SIZ

OCTOBER 6. 1976

CENTERLINE MICROPHONE (SOFT SITE) (LEVELS-DB RE 20 MICRO PA)

EVENT	EPNL	DBA(M)	DBDCM	OASPL	PNL(M)	PNLT(M)	LEG	DUR(A)	DURCED	TC
24	99.3	84.2	92.3	95•0	98•0	98.0	79.8	33.5	38+5	• 0
27	100.6	85+2	93.4	95•8	99.3	99•3	81.2	36•0	35.5	• 0
29	96 • 5	79•0	87.3	91 • 4	93.3	93 • 3	73,7	62.5	69.0	•0
30	94.4	79.3	87.0	91.0	93.0	93.0	74.2	35.0	44.5	• 0
31	96.0	78.8	86.2	90.9	92•7	92.7	74.3	56.0	57.5	• 0
32	96 • 7	83.7	90•8	93.3	97.2	97.2	78 • 2	24.5	26.0	• 0
33	96.8	81.2	89.1	94.6	95 • 5	95.5	76.8	27.0	31 • 5	• 0
34	96•3	81.8	88.9	95.0	95•4	95•4	77.2	24.5	27.5	•0
35	98 • 4	83.9	89.8	95.7	97.9	97.9	80.0	23.0	29.0	• 0
36	98 • 3	86.0	91.8	96 • 1	99•9	99.9	80.3	21.5	22.5	• 0
37	99.3	85.5	91.7	97 • 1	100.2	100.8	82.2	18.5	19.5	•0
38	101 • 8	86.0	94.7	100.2	101.3	101.6	ც3∙ გ	20.0	20 • 5	1 • 1
43	98 • 4	82.9	89.1	93.8	96.9	96.9	79.1	29.0	57.0	• 0
44	98.6	85.5	91.5	¥6•5	99·5	99.5	80•6	21.5	84 • 5	٠Û
45	96.2	81.1	88.5	94.9	95 • 7	95.7	76.7	26.0	31.5	• 0
46	100.5	87.2	94.3	98 • 8	101 • 4	101 • 4	82.3	18.5	20.0	• 0
47	98•0	83.6	90•0	97.2	98•3	98•3	8ი •0	55.0	23.0	• 0

TARLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 515

OCTOBER 6: 1976

EVENT 24. 6 DEGREE APPROACH. MIC. 150 METERS WEST

INT	DBA	aaa	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	69•2	75•9	83.9	83•3	83•3	14-1	6 • 7
4	66•9	74.3	82•7	81.2	82.2	14.3	7 • 4
7	65•9	73.2	82•4	79 • 5	80•9	13.9	7 • 3
10	69•4	76 • 1 78 • 6	83.5	82•7	82•7	13.3	6 • 7
13	73.4	78•6	82.4 83.5 85.7 85.6 87.2	85•8	85 • 8	12.4	6.0
16	68•5	76.8	85 • 6	83.6	83-6	15-1	8 • 3
19	71.7	79.7	87.2	86 • 1	87-1	14.4	8 • 0
55	75 • 4	80 • 8	87•4	88•0	89 - 1	12.6	5 • 4
25	76.3	81.3	87.4	88•3	89.8	12.0	5+0
28	72.4	79•5	87•3	86.9	86•9	14.5	7 - 1
31						12.7	
34						12.0	
37						13.1	
40	73.6	79.4	86+6	86•8	86.8	13.2	5•8
43	7 2•8	78 • 1	85 • 0	85•6	86•7	12.8	5•3
46	73.2	79.0	85•1	86.2	87.7	13.0 12.5 12.9 12.2 12.0 13.3 12.9	5•€
49	72.8	73.4	83•8	85 • 3	85 - 3	12.5	5 • 6
52	73.5	78•9	83.2	86•4	87.8	12.9	5•4
55	77.0	81 • 8	85• 7	89.2	90 • 5	12.2	4.8
58	77.2	82 • 4	86•4	89.2	89.2	12.0	5•2
61 .	76 • 1	0.38	88•1	89•4	89.4	13.3	5•9
OH 64,65	78•7	84.5	90 • 3	91.6	91.6	12.9	5•8
67	78.2	84.5	91.4	91.9	91.9	13.7	ۥ3
/ U	19.3	50.3	91.9	92.4	92.9	13+1	8.0
71			9 1 • 1				5•8
74			89.2				5•8
77			88.0				
80			85.8				
83	74.9	80•2	84.2	88.0	90•0	13-1	5•3
86	71.2	77 • 5	82.7	84.8	86 - 4	13.6	6•3
89	70 • 5	77.0	88.0	84.3	85 • 6	13.8	6•5
92	69.5	75.5	81 • 1	82.6	82.6	13-1	6.0
95	68.3	74 • 4	79.8	81.5	81.5	13.2	6 • 1
98	64 • 6	72 • 1	79.0	78•7	79 • 8	14 • 1	7.5
101	67.5	74.2	82.7 82.0 81.1 79.8 79.0 78.8	81.3	83.0	13.8	6•7

NOISE LEVEL TIME HISTORY DATA

BELL SIS

OCTOBER 6. 1976

EVENT 27. 9 DEGREE APPROACH. MIC. 150 METERS WEST

INT	DBA	ава	0ASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1		75.2	83•2	82.0	83.2	15+1	
4	69.0	74.5	82.7	82.0	82.0	13.0	5•5
7	66.7	73.9		81 • !	81 • 1	14-4	7 • 2
10	70 • 1	75•7	82 • 4	83•3	81 • 1 84 • 6 89 • 0	13.2	5•6
13	75.9	80 • 1	84 • 6	87.8	89.0	11-9	21 4 2
16	72.1	77 - 6	84.3	85•0	86.2	12.9	5 • 5
19	74 • 4	7∂∗6	84.3	86•7	88.3	12•3	4 • 4
22			84.0				
25	74.6	79•4	84.9	87.2	88 • 8	12.6	
28	74.3	79•3	85 • 4	87•5	87.5	13.2	
31	75.9	80 • 7	86 • 1	88•7	88•7	12.8	4 • 8
34	78.0	82.7	86 • 7	80.5	90•2	12.2	4 • 7
37	78 • 6	83 • 2	85.8	91.2	93.0	12•6	4 • 6
40	76.5	80 • 7	85.4	89•4	92.0		
	73.1	79.0	85 • 1	86.7	89.1	13.6	5•9
			86.7			12.5	4.7
49	78.7	82•7	86.2	90•7	90.7	12.0	
52	75.9	81.0	84.6	88•4	88•4	12.5	
55	77.5	82 • 5	85.2	90 • 0	91.9	12.5	5 • 0
58	75.9	81•3	84•7	88•8	90 • 3 89 • 4 91 • 0	12.9	5 • 4
61	76 • 5	82.2	85 • 3	89•4	89•4	12.9	5.7
64	78 - 1	83 • 7	87.5	91.0		12.9	E - 6
	79.4	85 • 4	90.2	92.7	92.7	13.3	6 - 0
$OH - \frac{70}{73} ?I$			90.5			12.8	6 • 1
			92.0				
76	79 • 8	86•0	92.5	93•5	941	13.7	
78	80 • 7	86 • 8	92.4	94.5	95,2	13.8	
81	77.6	83 • 5	88.9	90•8	92 • 1	13.2	5•9
84	77.8	83.5	86 • 3	90 • 6	92.1		5•7
87	76.1	81 • 4	84.8	89.5	89•5 90•2	13.4	5 • 3
90	74.8	80 • 7	84 • 1	87•9	90.2	1 (- 1	► • • • •
93	72.9	79.2	83 • 2	86•4	86 • 4	13.5	6 • 3
96	69.8	75.9	81.2	83.3	84 • 4	13.5	6 • 1
			81.2			13.7	6 • 8
			80.2			14.2	7 • 3
:05	66.8	73 • 1	79.4	80•6	82.3	13.8	6 • 3

NOISE LEVEL TIME HISTORY DATA

BELL 213

OCTOBER 6, 1976

EVENT 36, 110 Kf. FLY BY, MIC. 150 METERS WEST

INI	DBA	DBD	UASPL	PNL	POLT	FNL-DB4	PBD-DB4
3	62.5	74.5	84.4	80•2	80•2	17.7	12.0
5	65.3	77 • 5	86.7	83.0	83.0	17.7	12.2
7	69•3	180 • 7	88.88	85•7	85.7	16.4	11-4
9	72.9	83 • 4	90.7	88.3	88•3	15.4	10.5
11	75.5	85 • 1	91.9	90.2	90.2	14.7	9.6
13	76.4	65.9	92.2	90.3	90+3	13=9	9-5
15	77.1	86 • 1	92.2	90•8	90 • 8	13.7	9.0
17	76•2	85•3	92.0	90 • 4	90 • 4	14.2	9.1
19	76 • 4	85.1	92 • 4	91.3	91.3	14.9	8.7
51	78.5	86.7	93.5	92.6	92.6	14.1	8.2
23	80•6	88 • 4	94 • 4	94.8	94.8	14.2	7.8
25	73.8	87.1	93.8	93 • 1	93 • 1	14.3	8.3
27	76.7	86 • 1	93.2	92.0	92.0	15.3	9.4
29	79.1	87.0	93.6	93.3	93.3	14.2	7•9
31	80.5	87.4	94.1	94•3	94.3	13.8	6.9
32	81.9	88•1	94.5	95•3	95•3	13-4	6.2
34	80.9	ძ7∙7	94.9	95.0	95.0	14-1	6.8
36	79.8	86.3	94.3	93•6	94.6	13.8	6 • 5
38	79.8	85.9	94.3	93.5	93.5	13.7	6 • 1
40	80.5	86.2	94.0	93.8	93.8	13.3	5 • 7
42	81.5	86.5	93.1	94.0	94.0	12.5	5.0
44	81.7	86.3	91.6	93.3	94.8	11.6	4 • 6
OH → 46	81.0	85•8	90•5	93.0	93.0	12.0	4.8
48	81.0	85 • 6	90•3	93•6	93•6	12.6	4 • 6
50	81.0	85 • 5	89.4	93•3	93.3	12.3	4.5
52	79.0	83.7	87.5	91.0	91.0	12.0	4.7
54	77.6	82.5	87.0	89•8	89.8	12.2	4.9
56	76.3	80•7	84.9	88•4	89.6	12.1	4.4
58	75.7	80•0	83 • 1	87.2	6 7. 2	11.5	4 • 3
60	73.4	78 • 1	81.0	85•0	86-1	11.6	4.7
62	70.4	74.9	79.4	82•1	83.6	11.7	4.5
64	67.7	72 · 1	77 • B	80•1	81 • 4	12.4	4 • 4
66	67.5	78 - 1	77.9	80 • 4	82.6	12.9	4 • 6
68	67.4	72.4	77.8	80.6	83.1	13.2	5.0

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6, 1976

EVENT 43. 3 DEGREE APPROACH. MIC. 150 METERS WEST

INT	DBA	ดยด	OASPL	PNL	PNLT	PNL-DBA	DBD-D84
1	57.7	69.8	80.8	76.3	76•3	18.6 18.6 17.4 14.9 14.2 14.7 15.3 16.5 15.3 14.6 14.5 14.4 14.1 14.2 15.0 15.2 14.7 15.2 14.7 15.3 15.2 14.7 15.3	12.1
4	58∙8	70.7	81.5	77.4	77.4	18.6	11.9
7	60 • 8	71 • 7	81.5	78.2	78 • 2	17.4	10.9
10	65.6	73.9	82.0	80.5	80.5	14+9	8 • 3
13	68.2	76 • 1	83.0	82.4	82 • 4	14-2	7.9
16	67•3	76.0	83.5	82.0	82.0	14.7	3 • 7
19	67 • 4	76.8	84.9	82.7	82-7	15.3	9 • 4
22	65 • 2	75 • 4	84.2	81.7	81 • 7	16.5	10.2
25	64.9	73.8	83.1	80.2	80.2	15.3	8•9
58	66.5	74.7	83 • 6	81 • 1	81 • 1	14.6	8.2
31	69.5	77.4	85.2	84.0	84.0	14.5	7.9
34	71 2	78•9	86•3	85.6	85.6	14.4	7 • 7
37	70 • 8	78 • 6	86.2	84.9	84.9	14+1	7•ខ
40	71.7	79.0	86.0	85•9	85.9	14.2	7.3
43	67 • 4	75.6	84-1	82.4	83•6	15.0	8 • 2
46	66•2	74 • 8	84 • 4	81.4	82•5	15.2	8 • 6
49	68•4	76.5	85.7	83.1	83•1	14.7	8 • 1
52	68•9	77.2	86 - 1	83•9	85 • 1	15. 0	8•3
55	71.3	77 • 8	86.2	84.8	86•5	13.5	6 • 5
58	70•7	77 • 4	86.2	84.3	86•3	13.6	6•7
61	72•8	78•3	85 • 8	85•4	85.4	12.6	5 • 5
64	71-2	77.2	84.9	84•3	84+3	13+1	6 • 0
67	73 • 4	78•2	84.7	86 • 1	87.2	12.7	4 • 8
7 0	73 • 4	78 • 5	85.2	85•9	8 7• 0	12.5 12.9	5 • 1
73	75 • 1	80.2	86•0	88•0	88.0	12.9	5 - 1
76	74.8	79 • 8	84 • 8	87.6	88•8	12.8	5 • 0
79	75•3	80 • 4	83.8	87.3	89.1	12.0	5 - 1
82	75 • 4	80.7	84.0	87.9	87.9	12.5	5•3
85	75•9	81.2	84 • 4	87•8	89.7	11-9	5 • 3
86	76 - 1	81 • 4	85.0	88 • 2	90 • 3	12-1	5 • 3
89	76.5	81.5	86.9	88•3	88 • 3	11.8	5 • 0
OH -92 >94	76•5	88.0	89•3	88.8	88 • 8	12.3	5 • 5
95	76.0	81.8	90.8	88.3	88.3	12.3	5 • 8
98	76 • 3	82.3	91.3	89•1	89.7	12.8	6+0
101	75 • 7	81.5	90.6	88.8	89.4	13.1	5 • 8
104	75.0	80.3	88.3	87.2	87.2	12.2	5.3
107	74+8	80.4	86+0	87.4	89.3	12.6	5.6
110	73.7	79.5	83.2	86.5	87.6	15.8	5 - 8
73 76 79 82 85 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131	71.0	76.7	81.7	84 • 1	85.5	13.1	5+7
116	70 • 1	75•7	80 • 1	82.8	88.8	12.7	5 • 6
119	68+0	74.5	80 • 5	81.48	83.2	13.8	6.5
155	00.6	12.9	78 • 7	80.2	85.5	13.6	0 • J
125	62.6	63+8	77.2	76.8	78.2	14.2	/•এ
128	61.9	69.2	76.5	75.9	75.9	14.0	7 - 3
133	59.0	67 • 4	75•3	74.6	76 • 4	15.6	8 • 4

THBLE E-II

NOISE LEVEL TIME HISTORY DATA

BELL SIS

OCTOBER 6. 1976

EVENT 44. 110 KT. FLY BY. MIC. 150 METERS WEST

INT	DBA	aac	OASPL	りかい	PNLT	PNL-DBA	D3D~DBA
1	65.9	77 - 1	86+0	82 • 6	82•6	16.7	11.2
3	65•0	75.2	85.2	81.8	81.8	16.8	11.2
5	67+8	77.7	86 • 2	83.5	83.5	15.7	9.9
7	71.6	81.7	89.7	86.7	86.7	15-1	10-1
9	75•8	85.2	92.6	90.0	90.0	14.2	9.4
11	78 • 1	87.0	93.8	92.0	92.0	13.9	8.9
13	78•7	87•9	94.5	92.8	92.8	14+1	9.2
15	78.1	87.2	94.3	92.9	92.9	14.8	9 • 1
17	78.6	87.1	93.9	93.0	93.0	14.4	8.5
19	78.4	87.1	93.9	93.0	93.0	14.6	8.7
21	77.0	86.2	93 • 4	91.9	91.9	14.9	9.2
23	78.2	86.9	94.6	93.4	95•0	15.2	8.7
25	79•5	87.2	94.7	94.0	95.5	14.5	7.7
27	79.9	86.9	94+5	94-0	95.2	14-1	7.0
29	79.0	85.0	94.3	93.5	94.7	14.5	7.0
31	79•9	86.3	94.8	94.3	94.3	14.4	6 • 4
33	80.2	85.6	93 - 7	93.5	93.5	13.3	5 • 4
34	81.2	86.2	93 • 1	94.0	95.9	12.8	5.0
36	81.2	86.1	91-4	93.6	94.6	12.4	4.9
38	80.0	84.9	90•0	92.1	93.3	12.1	4.9
oH> 40	79.4	84.2	89 • 4	91 • 4	91.4	12.0	4.8
42	78 .7	83.7	89.2	91.0	91.0	12.3	5•0
44	77 • 1	82.2	88.3	89.4	89.4	12.3	5 • 1
46	76.1	81.2	86.6	87.8	89.1	11.7	5-1
48	74.7	79.5	84+6	86.5	87.8	11.9	4.8
50	73 • 4	78.5	83.3	86.2	87.2	12.8	5 • 1
32	72.4	77.2	81.9	84.9	86.6	12.5	4.8
54	69.7	74.9	80 • 5	82.6	33.7	12.9	5.2
56	69.1	74.4	79.0	81.6	83.3		5•3
58	67.3	72.5	78.2	80.4	82.9	13-1	5•2
60	64 • 4	70.3	77 - 1	77.2	78.7	12.8	5.9
							J • J

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTUBER 6. 1976

EVENT 45, 110 KT. FLY BY, MIC. 150 METERS WEST

INT	DBA	ប្រម្	OASPL	PNL	PNLT	PNL-DBA	DRD-D84
1	61.7	73•6	82.1	92. 0		01.0	11.0
3	62 • 4	74•6	83.0	83•0 83•2	83. 0 83.2	21.3	11.9
5	63.7	75.1	83 • 5	83.6	83.6	20•8 19•9	12.2
7	65.7	76.5	84.9	84.9	84.9	19.9	11.4
9	69.2	78.5	87.3	87.0		17.8	10•8 9•3
11	71.6	79.9	88.3	88 • 7		17.1	9•3 8•3
13	73.2	81.3	89•2	89•4	89 • 4	16.2	8.1
15	74.2	83.4	90•8	90 • 8		16.6	
17	76.6		92.9			16.2	
19	76.1	85 • 1	92.3	92.4		16.3	
21	74.7	83.3	91.3	91.0		16.3	8.6
23	75.6	84.0	91.6	91.7	91.7	16.1	8 • 4
25	75.9	84.5	92.2	92.0	92.0	16.1	8 • 6
27	76.3	85.3	93.2	92.4	92.4	16.1	9.0
29	77.8	86 • 5	94.1	93 • 6		15.8	
31	76.1	85.8	94.4			17.2	9•7
33	75.3	84.8	94.2	92.9		17.6	
35	78.0	85.5	94.1	93.9	93.9	15.9	7 • 5
37	79.0	85 • 5	94•1	93.9 93.9	95.3	14.9	6 • 5
39	78 • 6	84.2	93.2	92.6	93.6	14.0	5.6
. 41	79.8		92•8		92 • 6	12.8	
43	80 • 6		90.7			12.7	
OH→ 45	80.0	84.4	87.8	92.4		12.4	
47	80.0	84.7	87.9	91.8		11.8	4.7
49	79.2	83.7	87.7	91 • 1	91.1	11.9	4.5
51	77.9	82.3	86.7	90 • 1	90 • 1	12.2	4.4
53	77.2	81.8	86.5	89.9		12.7	4.6
55	74.5		85 • 1			13.0	5.1
57	71.8	77.8	83.7			14.0	
59	70.2	76.3	82.7	84.6	85.9	14+4	6 • 1
61	67.7	74.4	81.5	33 • 4		15.7	6.7
63	67.7	74.2	80•7	83 • 1	84.7	15 • 4	6.5
65	68+8	75 • 1	79.7	84.2	86+5	15.4	6.3
67	66.4		79•5	82.6		16.2	
69	65.6		78.3			16.9	
71	63.9		77.1			18.0	
73	63.4		76.6			18.6	9.0
, ,	00-4	, L. + A	,0-0	02.5	02.40	•0•0	7+0

NOISE LEVEL TIME HISTORY DATA

BELL 212

UCIUSER 6, 1976

EVENT 24, 6 DEGREE APPROACH, MIC. 150 METERS EAST

1 NT 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 111 115 119 0H - 123 > 106 131 135 139 143 147 151 155 159 163 167	DRA	האמ	OASPL.	PNL	PNLT	2NL-D34	DBD-DB4
1	62.6	71.8	81 • 1	79.6	79.6	17.0	9.2
5	65.2	72.7	81 • 4	80 • 4	80 • 4	15.2	7 • 5
9	63∙8	73 • 1	81.8	80.4	80 • 4	16.6	9.3
13	67.2	76 • 4	84.9	83•5	83.5	16.3	9.2
17	71.3	79.2	86•0	86.1	86 • 1	14.8	7.9
51	74.0	80 • 1	85•6	87-4	87.4	13.4	6 • 1
25	69∙೮	76•7	83.7	84.0	84.0	14.2	6.9
29	66•3	73•9	88•3	81.7	81.7	15.4	7 • 6
33	64.3	72.0	80•9	79•5	79 - 8	15.5	7 - 7
37	64.0	72.2	81.1	79.5	7 9•5	15.5	8 • 2
41	65•9	74 • 4	82.4	81.5	81.5	15.6	8•5
45	69•5	76•9	84.1	84 • 1	84 • 1	14.6	7 • 4
49	67.2	75•6	83.9	88•6	82.6	15-4	8 • 4
53	64 • 1	74.1	83.8	80•8	80•8	16.7	10.0
57	70 • 3	79 • 4	87.1	86•4	86•4	16.1	9 • 1
61	70 • 6	80 • 8	88•1	87.1	87.1	16.5	9•6
65	69.0	77 • 6	86•4	85•0	85•0	16.0	8 • 6
69	65.8	74 • 4	84-1	82 • 3	82•3	16.5	8 • 6
73	63.9	71.9	82.5	80.2	80.2	16.3	8 • 0
77	66+0	73.8	83+8	85.0	85.0	16.0	7 • 8
61	65 • /	74.8	85+1	82.5	82.5	16.8	9•1
65	6/•6	76.1	86.5	83 • 8	83.8	16.2	8 • 5
03	71 • 3	78 • 3	87.3	85.7	87.2	14.4	7 • 0
93 67	72 7	79.1	88.1	86 • 4	86 • 4	14.4	7 • 1
101	73 2	79.2	87.0	87.6	89.1	13.9	5 • 5
101	74 5	01.0	00.3	89+3	90 • 6	18.0	4 • G
103	70.5	01.62	04.1	89.3	90.7	12.8	4 • 7
111	70.0	83.0	80.4	90 • 1	92.4	12.1	4 • 5
115	78.1	80 - H	84.2	91.0	93.5	12.4	4 • 5
119	76.9	81.0	00+3 #5.5	90 • 7	92.6	18.0	4.7
123	75.5	80.6	85.0	90 • O	90.0	13.1	5.0
OH -127 > 126	75.7	81.8	86.V	00.0	00.0	100	5 • 1
131	76.3	81.8	85.4	30.6	90 • 1	14.4	E E D•1
135	75.0	80.5	84.4	88.5	91.0	13+3	5 • 5 6 · E
139	74.3	79.9	83.6	87.8	80.6	13-5	5.6
143	73.3	78.7	82.5	86.2	87.9	10.0	5+0
147	72.4	77.7	81.9	85.K	87.3	13.4	2 * 3
151	70.8	76.2	80.1	83.9	85.3	13.1	5•4
155	68 • 2	74.5	79.5	88.0	82.0	13.8	6.3
159	63.3	70.7	77.9	78.2	78 • 2	14.9	7 • 4
163	63.7	71.0	77.8	79.0	79.0	15.3	7.3
167	62.5	71.0	77.8	78 • 3	78.3	15.8	8 • 5
			=	=			J . D

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL SIS

1

OCIOBER 6, 1976

EVENT 35, 110 KT. FLY BY, MIC. 150 METERS EAST

(DB RE 30 MICHO PA)

INT	рва	กลก	OASPL	5.NF	PNLT	PNL-DBA	D-0-044
5	67.7	77.3	85•3	83 - 7	83.7	16.0	9•6
?	70.8	80 + 1	87 + 7	86+2	86-2	15.4	9 - 3
Ģ	71.5	81.0		87.4	87.4	15.9	
11	73.9	82.7				15.4	8 • 8
13	80 • 2	86 • 4	91.8	93.0	93.0	12.8	6.2
15	83•3		93.5			12.1	
17	79.3	87.2	93•9			14.5	
19	78 • 8	87 • 4	94.4	94.2	95.3	15.4	
21	78.1	86•6	94.5	93.7	94.8	15.6	8 • 5
23	75.7	84.7	93•9	91.3	91.3	15.6	
25	77.7	85 • 6	94.0	92.7	92.7	15.0	7•9
27	79.3	86.5	94.5	94.3	94.3	15.0	7 • 2
28	80.5	86.9	95•0	94.9	96.0	14.4	6 • 4
30	82.0	87.3	94 • 6	95•6		13.6	
	80.6	86.5	92.9	95•0	95•0	14-4	5 • 9
OH $\frac{34}{36}$ 35	80.8	86•2	90•9	94.2	95•6	13.4	5•4
36	81.2	86.0	90•3	94.0	94.0	12.8	
38	80 • 2	85•6	90•3	94 • 1	94.1	13.9	5 • 4
40	79.7	84.9	89.9	93•3	93•3	13.6	5 • 2
42	79.2	84.0	89.1	92.4	92.4	13.2	4.8
44	78.0	82.9	87.7	90•7	90.7	12.7	4.9
46	77 • 4	82.3	86.7	90•2	91.3	12.8	4.9
48	75.3	80•3	85• 8	88•0	89.5	12.7	5•0
						13.0	4 • 8
52	73.2	78 • 4	85+1	86.7	88.5	13.5	5•2
54			84.1	84.3	85•7	13.6	5 • 3
56	68 • 8	74.4	82.7	82.8	84.7	14 • C	5•6
5 8	67 • 4	73.9	81.4	81.9	84.2	14.5	6 • 5
60	69.9	76•7	83.1	84-1	85.6	14.2	6 • 8

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6. 1976

EVENT 36, 110 KT. FLY BY, MIC. 150 METERS EAST

	INT	D84	DED	J48 <i>F</i> U	PNL	PNLT	PNL-DB4	DBD-D84
	1	60 • 6	69.9	7 3•7	76.7	76.7	16.1	9•3
	3	62.2	72.0	80.8	78•4	78 • 4	16.2	9.8
	5	64.0	74.2	83•6	81.3	81.3	17.3	10.2
	7	67.9	78.4	87.2	84 • 4	84.4		
	9	73.3	83.1	90.7	88.8	88.88		
	1 1	7 8•8	8,6 • 8	93 • 1	92.9	92.9	14+1	8 • 0
	13	81 • 1	88.6	94.7	94.9	94.9		7 • 5
	15	81 • 1	89•1	95.2	95.2	95•2	14+1	8 • 0
	17	79•6	88 • 1	94.8	94.7	94.7	15.1	8 • 5
	19	78 • 1	87.2	94.5	93.7	93.7		
	21	77.4	86.6	94.3	93 • 5	94.6	16.1	
	23	7 8•3	86.6	94.4	93.7	94.8	15.4	8 • 3
	25	78.9	85•6	93.8	93•8	94.5	14-3	6 • 7
	27	76.9	83.8	92.9	91.7	93.7	14.8	6.9
	29	7 8•7	84.8	93 • 1	92.5			6 • 1
	31	78•9	84-1	91.4	92.5	92.5	13.6	5 • 2
	33	78.0	83.0	88•7	91.6	93 • 1	13.6	5•0
	35	78.5	82.8	86.5	90•8	92.3		4.3
	37	7 8•8	83.2	86•7	91 • 7	91.7	12.9	4.4
οн -	39>40	79.7	84.1	88 • 1	92.3	92.3	12.6	4 • 4
J11 -		79•9	84.2	87•5	92.0	93.2	12.1	4 • 3
	43	7 8 • 3	82.8	85+2	90•5	91.5		4 • 5
	45	76.8	81.2	83.8	88.5	88.5	11.7	4 • 4
	47	75.3	79.3	82.8	86.9	88.7		
	49	73. 3	77.4	81 • 4	85•1	86.2	11.8	4 - 1
	51	71.0	75.5	79• 5	83.3	84.7	12.3	
	5 3	68•9	73.5	78 • 4	81.7	83.1	12.8	
	55	67.0	71.9	77• 9	80.0	80.0		4.9
	57	65.5	70.6	75.9	78•8	80.7		5 • 1

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL SIS

OCTOBER 6, 1976

EVENT 44. 110 AT. FLY BY. MIC. 150 METERS EAST

INT	DBA	DBD	04SPL	PNL	PNLŤ	PNL-DBA	DBD-DBA
1	61.7	7 C • 5	79.2	77.0	77.0	15.3	8•8
3	61.7	71.2	80 • 6	77•8	77.8	16.1	9•5
5	64.7	74 • 4	ن • 83	80•9	80•9	16.2	9.7
7	68•7	78 • 4	87.0	85 • 3	85 • 3	16-6	9 • 7
9	72.9	82.5	90.2	88•9	88•9	16.0	9•6
11	75.9	85 • 1	92.2	91.4	91 • 4	15.5	9.2
13	78.6	87 • 4	93.9	93.0	93.0	14.4	8 • 8
15	79.9	88•7	95•0	94 • 4	94.4	14.5	8 • 8
16	80•3	89.2	95•3	94 • 7	94 • 7	14.4	8 • 9
18	79•4	88 • 3	94.8	94 • 1	94 • 1	14.7	8.9
20	78.2	87•3	94.3	93.5	93.5	15.3	9 • 1
22	77 • 4	86•9	94.3	93.2	93.2	15.8	9.5
24	76•5	86•2	94.3	92.3	93 • 3	15.8	9 • 7
26	75 • 4	84•7	93.2	91 • 7	92.9	16.3	9•3
28	76+1	84.5	93.2	91.8	91.8	15.7	8 • 4
30	78•3	85•4	93 • 6	92.9	92.9	14.6	7 • 1
32	77•8	84.0	92 • 4	91.8	91.8	14.0	6•2
34	78 • 1	83•5	91.3	91.8	93•3	13.7	5 • 4
36	79•3	84 • 1	89.2	92 • 1	92 • 1	12.8	4 • 8
38	79•9	84.0	86•4	91.9	91.9	12.0	4 • 1
oH > 40	79.0	83.5	86.9	91.7	92.7	12.7	4.5
42	78 • 1	83.0	87.3	90•9	90•9	12.8	4.9
44	77.9	82 • 4	85 • 4	90•2	90.2	12.3	4.5
46	77.0	81.5	83.7	88 . 8	88 • 8	11.8	4.5
48	75.8	80-4	83.2	88•5	90 • 3	12.7	4 • 6
50	73.7	7E•7	81.9	86.2	87.7	12.5	5•0
52	72.7	77.2	80.8	84.8	86.2	12.1	4.5
54	68.9	73.6	79•3	81.3	82.5	12.4	4.7
56	66.6	71.6	77.8	79 • 4	80.9	12.8	5.0
58	64.9	69.7	76.3	78 - 3	80.3	13.4	4.8
60	64•3	69•3	76.3	77.6	77 • 6	13•3	5•0

TABLE - E-V

NOTSE LEVEL TIME HISTORY DATA

सदाम शास

OCTOBER 6: 1976

EJENT 45, 113 KF. FLY BY, MIC. 150 MEIERS EAST

INT	1184	ава	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	63 • 7	73•6	81•7	83•3	83•3	19.6	9.9
2	65.2	74 • 4	82-1	83.7	83.7	18.5	9.2
3	65.7	74.7	82.8	84 • 1	84.1	18.4	9.0
4	66 • 6	75.6	84-1	84.6	84.6	18.0	9.0
5	66.8	76.3	85.2	85.6	85.6	18.8	9.5
6	68.3	77 • 6	86.6	86.4	86 • 4	18.1	9.3
7	70.4	79.7	88.9	88.3	88.3	17.9	9•3
8	73.9	83.2	91 • 6	91.3	91.3	17.4	9.3
9	76.3	85.9	93.9	93.5	93.5	17.2	9.6
10	77.4	87.1	95.0	94.6	94.6	17.2	9•7
11	77.2	87.2	95.0	94.6	94.6	17.4	10.0
12	76.0	86.3	94.4	93.6	93.6	17.6	10.3
13	74.7	85 • 1	93.5	92.7	92.7	18.0	10.4
14	73 • 8	84.0	92.9	92.0	92.0	18.2	10.2
15	73.7	83.5	92.9	91.7	91.7	18.0	9.8
16	73.8	83 • 1	92.6	91.9	91.9	18.1	9.3
17	73.0	82.2	91.8	91.2	91.2	18.2	3.5 3.3
18	71 • 8	86.9	90.6	90 • 1	90.1	18.3	9.1
19	71.9	80.3	90.0	89.5	90.6	17.6	8.4
20	73.7	80.8	89.9	89.8	91.1	16.1	7.1
21	74.2	80 • 5	89.3	89.7	89.7	15.5	6.3
55	74.1	79.7	88.0	89.1	89+1	15.0	5.6
23	74.2	79-2	86.5	88.5	89.6	14-3	5 • Q
24	74.9	80.0	85.4	88 • 7	88 • 7	13.8	5 • 1
25	77.0	81.4	85.3	89.9	89.9	12.9	4.4
26	78.5	82.6	85.5	90.8	90.8	12.3	4.1
27	79.0	83.0	85.8	91.3	91.3	12.3	4.0
⊅H > 28	78.9	83 • 4	86•2	91.8		12.9	
29	78.9	83 • 6	87.0	92.0	91.8 92.0	13.1	4.5 4.7
30	79.0	83 • 4	87.1	91.7		-	
31	79.0			91.7	91.7	12.7	4-4
32	78 • 1	83•2 82•3	86∙8 85∙5		91.3	12.2 12.1	4 • 1
33	77.0	81.6		90 • 2	90 • 2		4.2
34			84•2	89 • 5	89 • 5	12.5	4 • 6
35	75∙2 75∙4	80 • 1 80 • 0	82.8	88 • 2	88 • 2	13.0	4.9
36			82•1	88 • 4	88 • 4	13.0	4.6
	75 · 8	80 • 5	82.1	88 • 6	88 • 6	12.8	4.7
37	75 • 3	80 • 2	82.0	88 • 1	89.3	12.8	4.9
38	73.9	79.3	81.5	87.3	88 - 9	13.4	5 • 4
39	72.9	78•0	80.5	86 • 6	88 • 3	13.7	5 • 1
40	72.3	77 • 3	79•5	86 • 1	87.7	13.8	5.0
41	71.3	76 • 4	79 • 1	85 • 1	86 • 4	13.8	5 • 1
42	69.3	74.8	78 • B	83.8	85.2	14.5	5.5
43	67.9	73.6	78•6	83 • 1	84•3	15.2	5.7
44	67 • 4	73 • 3	78•3	82.9	84.2	15.5	5.9

NOISE LEVEL TIME HISTORY DATA

BELL SIS

00108ER 6, 1976

EVENT 24, 6 BEGREE APPROACH, CENTERLINE MIC. (SOFT SITE)

1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 7 59 60 62 64 66 68 70 72 74 76 78 80 82 84 86 86	D94	DAD	045PL	PNL	PNLT	PNL-DBA	D9D-D94
1	70.5	79•4	85•5	84•7	84.7	14.2	8•9
3	70 • 4	79.5	85 • 4	84.9	84.9	14.5	9 • 1
5	72.4	80 • 4	85 • 8	85~5	85.5	13.1	8.0
7	72.7	80•6	85.9	86.3	88 • 1	13.6	7.9
9	72.1	80.8	86.9	86.4	87.8	14.3	8.7
11	72.5	80•9	87.0	86.3	87.7	13.8	8.4
13	72.8	81.2	87.3	86•4	87.7	13.6	8.4
15	71.9	81.2	87.3	86.0	86.0	14.1	9.3
17	73.8	82.2	87 - 9	87.7	87.7	13.9	8.4
19	76.0	83.7	87.5	89.3	90.3	13.3	7.7
18	75.7	83.9	88 • 6	89.1	89.1	13.4	8.2
23	75.2	82.8	88 • 5	88.3	88.3	13.1	3.6
25	78.0	85.1	88.9	91.4	91.4	13.4	7.1
27	78 • 1	84.7	88 • 6	91.0	91.0	12.9	6.6
29	73.6	81 • 4	87 • 7	37.5	87.5	13.9	7.8
31	71.0	79.8	67.3	85•8	85 • 8	14.8	8.8
33	72.8	81-1	88.4	87.0	87.0	14.2	8.3
3 5	77.5	84.8	89.9	90.8	91.9	13.3	7.3
37	77.9	85.2	90.7	91.3	92.8	13.4	7.3
39	78 • 1	85 • 4	90.7	91.7	91.7	13.6	7.3
41	78.3	85.9	90.9	91.7	92.5	13.4	7.6
43	78.9	86 • 4	91.0	92 - 1	93.6	13.2	7.5
45	80.3	87 • 4	91.2	92-8	94+0	12.5	7.1
47	80.5	87.7	91.9	94.0	94.0	13.5	7.2
49	81.9	88.9	92.3	95.2	95-2	13.3	7.0
51	82.1	90.2	93.2	95.9	95.9	13.8	8.1
53	82.7	90.7	93•8	96.3	96.3	13.6	8.0
55	83.6	91.8	94.3	97.5	97.5	13.9	8.2
57	82.4	90.7	93.8	96.7	96.7	14.3	8.3
59	83.7	91.8	94.3	97.4	97.4	13.7	8.1
60	84.2	92.3	95.0	98.0	98.0	13.8	8.1
04 62 63	82.6	91 • 1	94.8	97.4	97.4	14.8	8.5
64	81.1	89.6	94.2	95.5	95.5	14.4	8.5
66	81.0	90.0	94 • 4	95•6	95.6	14.6	9.0
68	81 · Q	90 • 1	94 • 1	95∙8	95.8	14.8	9.1
70	80.3	89.4	93.5	95 • 4	95 • 4	15.1	9.1
72	79.6	88.3	92.1	94.3	94.3	14.7	8.7
74	79.4	88 • 1	91 • 7	94.0	94.0	14.6	8.7
7 6	7 8•0	86.5	90-1	92.9	2.9	14.9	8.5
7 8	77.6	85.6	88.9	91.8	91.8	14.2	8.0
80	77-1	84.8	88 • 1	90•6	90.6	13.5	7.7
82	75.2	82.9	87.2	88.2	90.0	13.0	7.7
84	72.2	80.2	85.5	85 • 4	86.5	13.2	8.0
86	70.3	78.3	84.4	83.9	85.2	13.6	8.0
			-	- *	-	• • • •	V+0

TABLE E-X

NOISE LEVEL TIME HISTORY DATA

BELL SIS

OCTOBER 6, 1976

EVENT 27, 9 DEGREE APPROACH, CENTERLINE MIC. (SOFT SITE)

101	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1		7 8•8	84.9	೮4 ∗೮	გ 6∙0	14.5	8•5
3	74.5	81.1	85.6	87.2	88•5 89•1	12.7	6.6
5	74.2	81 • 6	86.0 86.9 87.0 87.2 87.7 88.2 88.5 89.0 89.7 90.4 91.3 90.9 91.5 92.0 92.3 92.9	88.0	89.1	13.8	7 • 4
7	76.2	83.0	86.9	89•4	89.4	13.2	6 • 8
9	75•4	82•4	86•9	88•8	88.8	13.4	7.0
11	74 • 4	81.7	87.0	87•8	87.8	13.4	7 • 3
13	74.8	82.2	87.2	88 • 1	90.0	13.3	7 • 4
15	76•4	83.1	87•7	89•4	91.7	13.0	6 • 7
17	77.8	४5∙ 0	88.2	90•7	92.9	12.9	
19	76-2	85-1	88 • 5	91.4	93.2	10.2	6-9
21	78.7	85• 7	89.0	91 • 1	92•5	12.4	7•0
23	78 • 6	86-1	89.7	91.3	92.8	12.7	7•5
25	79•9	87•2	90 • 4	92•7	92•7	12.8	7•3
27	82.8	89.5	91 • 3	94•3	94.3	11.5	
29	80 • 9	88 • 3	90•9	93.2	94.6	12.3	7 • 4
31	82.2	89•6	91.5	94.2	94.2	12.0	
33	82.6	90 • 0	92.0	94.8	94.8	12.2	7 • 4
35	82.3	90 • 1	92.3 92.9 93.7 95.0 95.5 95.8 95.4 94.3 94.6 94.6 94.5 94.5	94•8	95∙8	12.5	7•8
37	83 • 2	91.2	92.9	96•3	97•5	13-1	
39	83 • 4	90.8	92.9	96•2	96•2	12.8	7 • 4
41	83 • 8	91.3	93 • 7	97.0	97.0	13.2	7 • 5
43	84.9	93.0	95 • 0	98•5	98.5	13.6	8 • 1
45	84.7	92.8	95.0	98 • 1	98 • l	13.4	8 • 1
47	85.2	93.4	95 • 5	99 • 1	99-1	13.9	
48 50	85 • 1	93 • 4	95 • 8	99•3	99+3	14.2	8 • 3
50	83.3	92.0	95 • 4	98.0	98.0	14.7	
$OH = \frac{52}{54} \cdot 53$	81.5	90.2	94.3	96•3	96•3	14.8	8 • 7
54	81.7	90 • 1	94.6	96•4	96 • 4	14.7	8•5
56	81.6	90+3	94.9	96 • 4	96 • 4	14.6	
5 g	81.6	90.3	94.6	96 • 1	96+1	14.5	8•7
60	82.0	90 • 8	94 - 5	96 • 5	96.5	14.5	8 • 8
62	81.8	90•7 89•4	94.0	96.5 95.6 94.5 93.6 91.0	96.5	14-7	8•9
64	80.9	89+4	92.3	95 • 6	95•6	14.7	8 • 5
66	81.5	89 • 2 88 • 5 85 • 4	91.2	94.5	94.5	13.3	
68 70	80.6	88.5	90.5	93.6	93.6	13.0	7•9
7 0	77.1	85 • 4	88 • 5	91.0	91.0	13.9	8 • 3
72	76 • 1	84.3	87.3	89.4	91.2	13.3	8 • 2
74	74•9 76 #	82•3	85 • 6	88•0	89.5	13.1	7•4
76	70 • 4	83 • 4	85+3	89.2	90.7	12.8	7.0
78	70 • B	78+3	83 • 4	84.2	84.2	13.4	7 • 5
80 60	70.1	78 • 0	87 • 3 85 • 6 85 • 3 83 • 4 82 • 2	83.3	83.3	13.2	
82 84	03.0	11.5	91.4	83+2	84.3	14.2	8 • 5
04	66•8	76.0	81.2	81 • 6	82.6	14.8	9.2

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 212

0010BER 6. 1976

EVENT 29. 60 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

INS SECOND INTEGRATION VS NOTSE INDEXES (DB A E 20 MICHO PA)

101	DBA	เปล่า	0452L	ちんじ	PNLI	PNL-DBA	D3D=D34
1 N I 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 104 108 01 112 116 120 124 128 132 136 140 144 148 152 156 160 164	63.0	72.7	78•7	79•3	79.3	16.3	9.7
5	65 • 3	75.3	80.5	80.8	80.8	15.5	10.0
9	67.7	77 - 1	82.5	82.5	82.5	14.8	9.4
13	68 • 9	78.2	83.5	83 • 4	83.4	14.5	9.3
17	69.2	79. 2	84.0	84.8	84.8	15.6	10.0
21	67.1	77 • 4	82.7	82.9	82.9	15.8	10.3
25	65•9	76.0	82.2	81.7	81 • 7	15.8	10.1
29	6 8∙6	76.5	81.7	82.5	82.5	13.9	7.9
33	68•5	77 • 1	81.8	82.6	82.6	14.1	8.6
37	67 = 2	76.3	82.2	82.1	82.1	14.9	9•1
41	67-1	77.5	83 • 4	82.8	82.8	15.7	10.4
45	69•1	79.4	84.8	84.5	84.5	15.4	10.3
49	68 • 4	79.2	85.2	84.2	84.2	15.8	10.8
53	67•7	79.0	85•3	83.6	83.6	15.9	11.3
57	68 • 8	79.5	86.0	84.3	85.5	15.5	10.7
61	71.3	82•7	88•3	87.1	87.1	15.8	11-4
65	68•8	79.6	85•9	84.8	84.8	16.0	10.8
69	70.3	80.8	86.9	86•3	86 • 3	16.0	10.5
73	68•3	79•6	86 • 5	84.6	84.6	16.3	11.3
77	69•3	78.9	86.0	84.6	85.7	15.3	9•6
81	71 • 4	80.7	87.8	86 • 1	87.7	14.7	9•3
85	76.8	84.5	90•0	90 • 7	90.7	13.9	7•7
89	76.7	84.2	90•0	90•7	92 • 1	14.0	7•5
93	76.3	83•9	89•8	90 • 1	.90 • 1	13.8	7.6
97	76 • 8	84.6	90•4	90.7	92.0	13.9	7 • 8
101	77 • 3	85•5	90•6	92•1	92 • 1	14.8	8.2
104	78.9	87.0	91 • 4	93•3	93.3	14.4	8 • 1
108	78.7	87.0	91.3	92•8	92•8	14.1	8•3
of 112 >114	78.2	86 • 1	90•5	92•1	92 • 1	13.9	7•9
116	77.2	84.4	89.5	90•9	90.9	13.7	7 • 2
120	75.7	83 • 4	87.7	89.5	89•5	13.8	7 • 7
124	74.0	82.0	85.8	88 • 1	88 • 1	14.1	8•0
158	73.9	81.5	84.5	87.3	88•7	13.4	7 • 6
132	72.5	80 • 5	83 • 8	86.2	87.8	13.7	8•0
136	69.7	77.6	82.5	83.8	83.8	14-1	7•9
140	68.3	76 • 4	81 • 3	82.2	83.8	13.9	8 • 1
144	67.4	75.9	80 • 1	82 • 1	82.1	14.7	8•5
148	00 • 4	74.4	79.0	80 • 3	81-9	13.8	8•0
122	66.7	74.6	78 • 7	80.9	83.0	14.2	7•9
100	60 4	72.6	77.9	78 • 5	80 - 5	14.5	8 • 6
100	6U • 8	70.2	76 • 3	76 • 5	78 • O	15.7	9 • 4
164	58•0	64.2	76 • 1	76.0	76.0	18.0	11.3

NOISE LEVEL TIME HISTORY DATA

BELL SIS

UCTUBER 6, 1976

EVENT 30, 60 KT. FL. BY, CENTERLINE MIC. (SOFT SITE)

1/2 SECOND INTEGRATION US NOTSE INDEXES

101	DBA	OBO	04SPL	らめて	PULT	PNL-DBA	DBD-DP4
1	61.5	7 2.5	80.0	78.4	78 • 4	16.9	11.0
4	63.0	74.0	81.1	79.5	79•5	16.5	11.0
7	63 • 2	74.9	81.9	80.3	80.3	17.1	11.7
10	66.7	78.4	84.8	83.2	83•2	16.5	11.7
13	66•3	78.8	85.3	83.2	83.2	16.9	12.5
16	65 • 5	77.4	84.6	82.3	82•3	16.8	11.9
19	67.2	7 8•2	84.9	83•1	83+1	15.9	11.0
22	72.3	80 • 1	85•8	85 •7	85•7	13-4	7.8
25	74 • 1	81.4	86.6	87.0	88.0	12.9	7 • 3
28	72.7	81.5	87.4	86.7	86.7	14.0	8 • 8
. 31	71 • 1	80•0	86.9	85•7	85•7	14.6	8•9
34	73 • 6	81 • 1	87.0	87.3	ĕ 7∙ 3	13.7	7.5
37	76 • 1	83•1	88•0	89.3	91 • 1	13.2	7.0
40	76.5	83 • 8	88.5	90.6	90•6	14.1	7 • 3
43	74.7	83.0	89.2	88.9	90•5	14.2	8 • 3
46	76.5	84.4	89•9	90.4	90 • 4	13.9	7•9
49	78•7	86•5	91.0	92.9	92.9	14.2	7.8
50	79.3	87.0	91:0	93.0	93.0	13.7	7.7
53	77.9	85•3	89.9	91.4	91.4	13.5	7.4
of -> 56	77.2	84.8	89 • 1	90.7	90 • 7	13.5	7.6
59	75.5	82 • 4	88.0	88 •6	88•6	13.1	6.9
62	75 • 4	82.9	86•4	89.2	89.2	13.8	7 • 5
65	73 • 4	81.2	83.8	86.8	88 • 4	13.4	7 • 8
68	72.6	80•0	81.8	86.0	88•5	13 * 4	7 • 4
71	68 • 3	76.2	79 • 4	81.7	83.3	13.4	7.9
74	67.3	75•0	78 • 3	81.7	8.1.5	14.4	7 • 7
77	63•8	72.0	77•5	79.0	81 • 7	15.2	8 • 5
80	64.7	72.6	76•7	79. 5	82•5	14.8	7•9
83	62•9	71 • 3	75•7	78.3	81.0	15.4	8 • 4
86	64•B	7 2•8	7 5•8	79•4	82•3	14.6	8 • 0
89	69•B	77.0	75 • 8	83.3	86.5	13.5	7.2
92	68•3	76.5	75.9	82.0	84•9	13.7	8 • 8
95	65•3	741•2	74.9	80•4	83•6	15.1	8 • 9
98	65•3	74 • 3	74 • 8	80.5	83•2	15.2	9•0
101	64•1	73 • 4	75. 0	79.7	82.0	15.6	9•3

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6: 1976

EVENT 31. 60 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL+D34	DRD-DRA
1 4 7 10 13 16 19 22 25 6 31 4 37 40 3 46 49 25 5 5 8 6 1 4 4 7 7 9 8 2 5 5 8 8 9 1 9 2 9 5 8 8 8 10 1 10 4 10 7 11 0 11 3 11 6 11 9 12 2 12 5	60.0	70.7	79.4	76.6	76•6	16.6	10.7
L ş	61.3	72.9	81.0	78.3	78•3	17.0	11.6
7	63.9	75。6	82.8	80.7	80.7	16.8	11.7
10	66•7	77-6	84.1	82.8	82.8	16.1	10.9
13	69.2	79•2	84.8	84.3	84.3	15.1	10.0
16	68 • 6	78•4	84 • 1	84.0	84.0	15.4	9•8
19	67.9	78•2	83 • 8	83•6	83 • 6	15.7	10.3
53	68 • 4	79 • 1	84•6	84.3	84•3	15.9	16 • 7
25	68 - 4	79.4	85+2	84.4	84 • 4	16.0	11.0
ន្តខ	67.3	78•3	84 • 3	83.5	83.5	16.2	11.0
31	65.2	76.6	83 • 7	81.6	81.6	16.4	11.4
G ri	66.8	77.8	84.5	82.8	82•8	16.0	11.0
37	68.0	78•4	84.8	83•8	83•8	15.8	10.4
40	68.2	78.3	84.9	83.9	83.9	15.7	10 • 1
43	67.3	78 • 2	85•4	83.3	83•3	16.0	10.9
46	68 • 8	79.4	86.1	84.2	84.2	15.4	10.6
49	69.8	79.7	86.4	85.5	85•5	15.7	9•9
52	69.5	79.5	86 × t	84.7	86.6	15.2	10.0
55	68.5	79.2	86+2	84.3	85 • 6	15.8	10.7
58	75.0	82.2	87.4	88.0	85.0	13.0	7.2
61	73.3	81 • 6	87.6	87.2	89 • 1	13.9	8 • 3
64	77-1	83.6	88 • 6	90.0	98.8	12.9	6+5
67	77.8	85 • 8	90.0	91.7	91.7	13.9	8.0
70	77.7	84.9	90•0	91.6	91.6	13.9	7 • 2
73	74.2	82.0	89.1	88.0	89•4	13.8	7 • 8
76	77.3	34.9	90 - 4	90.8	92.2	13.5	7 • 6
79	78 - 1	85 • 3	90.3	91.2	91.2	13.1	7 • 2
82	77 • 1	85•3	80.2	91.3	91.3	14.2	8 • 2
85	78.2	86.2	90 • 1	91.9	91.9	13.7	8.0
88	78 • 5	85•8	90 - 2	91.7	91 • 7	13.2	7.3
91	78∙8	86•2	90 • 7	92.4	92•4	13.6	7-4
OH 92 94	78•7	86.2	90 49	92.7	92•7	14.0	7 • 5
y5"'	77.0	84.1	90 • 1	90 • 4	90 • 4	13-4	7 - 1
98	75.3	83.0	88 • 4	89.2	89.2	13.9	7 • 7
101	74.9	82.7	86•7	88.7	88•7	13.8	7 • 8
104	75 • 1	82.7	86.7	88*5	88.5	13.4	7.6
107	73.6	81.2	84.9	87.3	87.3	13.7	7 • 6
110	73.9	81 • 3	84.0	87.0	88 • 3	13.1	7 • 4
113	72.7	80.3	83.0	85.6	87.1	12.9	7 • 6
116	69.8	78-0	82.0	83.3	84.4	13.5	8.2
119	68•3	76.2	81.0	81.9	83.4	13.6	7.9
155	69.6	77.0	79.8	0.68	85+0	13-4	7.4
125	62 • 1	71.0	78 - 1	7 6∙8	77.9	14.7	8•9

NOISE LEVEL TIME HISTORY DATA

BELL SIS

OCTOBER 6, 1976

EVENT 32, 99 KI. FLY BY, CENTERLINE MIC. (SOFT SITE)

181	DBA	DBD	045PL	PNL	PNLT	PNL-DB4	DBD-DBA
1	68•4	79.9	85.7	83 • 8	83.8	15.4	11.5
3	76.7	87 • 4	91.6	91.0	91.0	14.3	10.7
5	77.3	88.2	92.6	91.8	91.8	14.5	10.9
7	76+1	87.5	92.8	91.4	91 • 4	15.3	11-4
9	72.7	85 • 4	91.9	89.3	89.3	16.6	12.7
11	71.3	83.3	90 • 4	87.7	87.7	16-4	12.0
13	73.7	84.8	90 • 7	88•6	88 • 6	14.9	11.1
15	75•3	86 • 4	91 • 6	90•3	90•3	15.0	11-1
17	74.3	85.9	91-4	90 • 1	90 • 1	15.8	11.6
19	74.8	86 • 4	92.0	90•5	91.8	15.7	11.6
21	75.0	86 • 5	92.5	91 • 1	91 • 1	16.1	11.5
23	74.6	86 • 3	92.9	91 • 1	93.0	16.5	11.7
25	75.0	85•9	92.9	90 • 9	92+5	15.9	10.9
27	78.9	87 • 3	93.1	93.0	93.0	14 • 1	8 • 4
29	80.5	88.4	93.2	94.3	94.3	13.8	7•9
31	81.9	89 • 1	93.1	94.9	95•9	13.0	7•2
33	82.6	89 • 8	92.9	95•9	95•9	13.3	7•2
35	83.7	90 • 8	92.9	97.2	97.2	13.5	7 - i
37	82.6	89•8	91.5	96.0	96•0	13.4	7.2
OH-→39	79.7	87 • 7	90.6	93.6	93.6	13.9	8 • 0
41	77.6	85 • 6	89.9	92.1	92 • 1	14.5	8•0
43	75.8	83 • 5	88.3	90 • 0	90.0	14.2	7 • 7
45	75.3	82.6	86 • 8	88.6	88 • 6	13.3	7•3
47	75 • 5	82.4	85 • 4	88.9	90•8	13.4	6.9
49	74.3	81.5	84.1	88.0	90•5	13.7	7•2
51	73.0	80 • 1	83.0	86•6	89•3	13.6	7 - 1
53	70.5	77.9	8ନ∙3	84.2	86.9	13.7	7 • 4
5 5	69.3	77.0	81.2	83 • 1	85 • 4	13.8	7 • 7
57	69.8	77.1	79.9	83.3	85•8	13.5	7•3
59	65 • 7	73.2	78.2	79.7	81.8	14.0	7•5

NOISE LEVEL TIME HISTORY DATA

BELL 215

OCTOBER 6, 1976

EVENT 33. 99 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

101	DBA	นธน	OASPL	5 NF	PNLI	PNL-DBA	DBD-DB4
3	63.7	74.2	83.0	80 • 6	80.6	16.9	10.5
· 5	67.1	77.0	85.2	83∘€	83•6	16.5	9.9
7	69•3	78 • 7	86.6	85•4	85 • 4	16.1	9 • 4
9	70.5	80•6	88.2	86.8	86.8	16.3	10 • 1
11	74 • 1	84.2	91.2	90 • 2	90.2	16.1	10.1
13	78•3	87.6	93.6	93 • 1	93.1	14.8	9 • 3
15	80 • 4	89.1	94.6	94.7	94.7	16 · 1 16 · 3 16 · 1 14 · 8 14 · 3	8•7
17	79+9 76+5	88•6	94.4	94.4	94.4	14.5 15.1 15.9	8 • 7
19	76•5	86.0	92.9	91.6	91.6	15.1	9•5
21	72.7	88.6	90.5	88•6	88•6	15.9	9•9
23	72.8	90.4	OO 0	G G 1	0 Q 1	16 2	0.4
25	73.7	83•5	91.0	89•6	89.6	15.9 15.8 15.0 15.2 16.6 15.4 13.9	9.8
27	75.6	84.8	92.2	91.4	91.4	15.8	9.2
2 9	77•3	85•2	92.6	92.3	98.3	15.0	7•9
31	76•3	84•4	92.3	91 • 5	92.6	15.2	8 • 1
33	72. 2	85.5	91 • 1	88•3	88•8	16.6	10.0
35	73•5	81 • 7	90•5	88•9	90 • 3	15.4	8 • 2
37	77.5	84.0	91 • 6	91 • 4	91.4	13.9	6 • 5
39	78.0	84 • 4	92.1	91.9	92.9	13.9	6 • 4
41 43 44 0H 46 47	78•6	85•0	91.9	92 • 7	92.7	14-1	6 • 4
43	80.7	87•Û	92.0	94•9	94.9	14.2	6.3
44	81.2	87•3	91.8	95•5	95•5	14.3	6 • 1
OH 46 347	79. 8	86.0	90•6	94•2	94.2	14.4	6.2
48	78.4	85.0	89•8	92•7	92.7	14.3	6 • 6
50	77.2	83•3	89•7	91.7	91.7	14.5	6 • 1
52	75•3 74•1	81.2	88•1	89•2	89.2	14.5 13.9 13.5	5•9 6•0
	74 • 1	80 • 1	86•2	87•6	88 + 6	13.5	6.0
56	73.9	79.6	84.7	87•6	89.7	13.7	5 • 7
58	73.2	79•0	84-1	87.3	90.2	14-1	5 • 8
60	72.8	78•8	33•7	87.0	89•7	14.2	6.0
62	71.5	77•3	82.5	85 • 3	8 7. 8	13.8	5 • 8
64	57•6	73.8	80•6	81.7	84.2	14.1	6.2
66	66•0	72.9	79•7	80.5	₹ `	14.1 14.2 13.8 14.1 14.5	6.9
68	68.5	74.4	79 • 1	82.8	86 - 1	14.3 14.5 14.5 14.6	5.9
70	65•4 62•9	71.4	77•9	79•9	82.8	14.5	6.0
72	62.9	69.6	77•7	77 • 4	79.2	14.5	6 • 7
74	64•8	70.6	76.4	79 • 4	82.6	14.6	5 • 8
76	63•7	69•7	75•0	78 • 5	82 • 1	14.8	6.0

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6. 1976

EVENT 34. 99 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1N1	DBA	aed	OASPL	PNL	PNLT	PNL-094	DBD-DBA
1	63.9	73•3	81.4	80.5	80•5	16.6	9 • 4
3	62.9	73.3	82.5	80 • 3	80.3	17.4	10.4
5	64.4	75.6	84.5	81.9	81.9	17.5	11.2
7	68.2	79 • 1	87.3	85.1	85 - 1	16.9	10.9
9	71.5	82.0	89.6	87.8	87.8	16.3	10.5
11	74.3	83 • 9	91.0	89.8	89.8	15.5	9.6
13	77.6	86.2	92.6	92.0	92.0	14.4	8.6
15	80 • 1	88 • 8	94.7	94.5	94.5	14.4	8.7
17	78 • 4	87.9	94.6	93 • 6	94.7	15.2	9.5
19	74.3	84.2	92.2	90 • 1	90 • 1	15.8	9.9
21	73 • B	83•4	91+1	89.3	89.3	15.5	9•6
23	73.8	83.7	91.0	89.6	89.6	15.8	9.9
25	73.9	83.8	91.8	90 • 1	90 • 1	16.2	9.9
27	73.5	84.2	92.5	90.0	91.0	16.5	10.7
29	74.6	84.6	93.0	91.0	91.0	16.4	10.0
31	74.9	84.5	93 • 1	91 • 4	91.4	16.5	9•6
33	75.0	83.6	93.∗6	90•6	92.0	15.6	8•6
35	76.9	84.5	93.0	91 • 4	91 - 4	14.5	7 • 6
37	78 • 4	85 • 2	93.2	92.6	93.8	14.2	6•8
39	79.6	86 • 1	93.2	94.0	94.0	14.4	6.5
41	80•5	86.7	92.3	95.0	95.0	14.5	6.2
43	81.5	87.4	91.3	95•4	95 • 4	13.9	5•9
OH —> 45	80•9	86 • 6	90 • 7	94.3	94.3	13 • 4	5.7
47	77.8	83 + 9	89•6	92.1	92 • 1	14.3	6 • 1
49	76•8	82.5	88.2	90 • 4	90 • 4	13.6	5 • 7
51	76•3	82.0	86.9	89.6	8.06	13.3	5•7
53	75.6	81.3	86 • 1	89.3	91.7	13.7	5•7
55	74 • 6	80 • 4	84.5	88•6	91.8	14.0	5 • 8
57	71.7	77 • 7	81.9	85.9	88 • 8	14.2	6•0
59	69.6	75.7	81.8	83.9	86 • 1	14.3	6 • 1
61	68•8	74.6	80.9	82.8	85.3	14.0	5 • 8
63	66•0	71.9	0.08	80 • 4	82.9	14-4	5•9
65	64 • 6	70.6	78 • 8	78 • 4	80.2	13.8	6.0
67	60•3	68•0	77.2	75•7	78 - 1	15.4	7.7

NOISE LEVEL TIME HISTORY DATA

BELL 212

0CIDBER 6. 1976

EVENT 35. 110 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

	1 N T	DBA	DBD	OASPL	PNL	PNLI	PNL-DBA	D9D~D9A
	1	66•5	76•0	83•7	82•4	82.4	15.9	9•5
	3	66.5	76.0	84.1	82•6	82.6	16.1	9 • 5
	5	67.4	77.0	85.2	83 • 4	83.4	16.0	9 • 6
	7	72.2	81.7	88 • 8	87.6		15.4	
	9	77.0		92.1			14-4	
	11	80 + 4	89.0	94.5	94-2	94 - 2		8.6
	13	81.4	89.0 89.8 89.0 87.8	95 • 6	95.8	95.8	14·4 15·1	8 • 4
	15	79.9	89•0	95.5	95.0	95.0	15.1	9 • 1
	17	78 • 4	87.8	95 • 1	93.9	93.9	15.5	9 • 4
	19		88•4	95•2	94•4	94•4	14.9	8 • 9
	21			94.6				8 • 9
	23						15-1	
	25			94.0				8 • 8
	27	76.3	86.0	94.0	92•2	92.2	15.9	9•7
	29	76.2	85.9		92.2	92•2 92•2 94•6	16.0	9•7
	31	78•2	86.7	94.7	93.3	94.6	15.1	8 • 5
	33	80.2	87•2	94.9	94.2	95.4	14.0	7.0
	35	88•3	88•9	95.7	96•0	96•0	13.7	6•6
	37		89•6		97.4		14.1	
				94.0				
	40		89•5		97•9			5•6
OH	42 43		88.9	92.2	97•0	97•G	13.8	5•7
V 11		80.2	86.4	91.2	94.4	94.4	14.2	6 • 2
	46	77.8	83.8		91.8	31.8	14.0	6 • 0
	48	78 • 4	84.2		92.1	93.4	13.7	5 • 8
	5 0	77 • 4	83.2	88.4	91 • 4	93.3	14.0	5 • 6
	52	74•7	80 • 4	85•9	88.5	90•5	13.8	5•7
	54		79.2		87-1			
	56		79-1	85,7	87.3			
	5 8	70.6	76.9		85•2			6•3
	6 0	69.9	77•7	85•7	85•1	87.6	15.2	7 • 8
	6 2.	69.5	78 • 6	87.0	86•5		17.0	9•1
	64	69 • 1	77.8	85•8	85•3 80•8	87.9	16.9	H - 7
	66	66.2	73.7	81.2	80•8	83.3	14.6	7•5
	68	67.0	73.6	80 • 6	81.3	83.5	14.3	6 • 6
	70	65.7	73 • 4	81 • 4	80,8	82.0	15+1	7 • 7

TABLE - E-Y

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6, 1976

EVENT 36, 110 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

INI	DBA	DBD	04SPL	PNL	PNLT	PNL-DB4	DBD-DBA
 1	68.9	78 - 1	84.9	84.7	84.7	15.8	9•2
3	69.8	79.3	86.7	85.8	65•6	16.0	9+5
5	70.0	80.2	88.0	86.3	86•3	16.3	10.2
7	74.2	83.8	90•8	89.6	89.6	15.4	9+6
9	78.9	87.6	93.5	93 • 2	93.2	14.3	8•7
11	80.0	88.3	93.8	94.2	94.2	14.2	8 • 3
13	77.6	86 • 4	92•7	92 • 1	92 • 1	14.5	8 • 8
15	76 • 6	85.6	98•0	91.2	91.2	14.6	9•0
17	77.1	86.2	92.6	91.7	91 - 7	14.6	9+1
19	76.5	86 • 1	93.0	91.8	91.8	15.3	9•6
21	78•7	88 • 1	94.4	93.5	93•5	14.8	9 • 4
23	78 • 4	87.8	94•5	93.6	93•6	15.2	9-4
25	78.2	87.2	94.3	93.8	95 • 1	15.6	9•0
27	79.0	88.2	95.1	94.5	.96 • 4	15+5	9.2
29	78.9	87.9	95•2	94.8	94•8	15.9	9•0
31	79•5	87.5	95•5	94.7	94.7	15∙€	8.0
33	80 • 1	87 - 4	95 • 3	94.8	95+9	14.7	7.3
35	82.1	88 • 4	95.4	95.8	95∙8	13.7	6.3
37	85•6	91 • 4	96 • 1	99•5	99•5	13.9	5•8
38	86.0	91.8	95•7	99.9	99•9	13.9	5•8
40	84 - 1	89.9	92.9	98•0	98•0	13.9	5+8
oH → 42	81.9	88.0	90•9	95 • 4	95•4	13.5	6 • 1
44	79.2	85.2	88 • 8	93.4	93 • 4	14.2	6 • 0
46	77•9	83 • 3	86.3	91.0	91.0	13.1	5•4
48	77.1	82.2	86 • 1	90 • 4	92.3	13.3	5 • 1
50	75 • 9	81.2	85.9	89.1	90 • 7	13-2	5•3
52	74.5	79.7	84.5	87.7	89•0	13.2	5•2
54	71.6	77.0	81.5	85 • 3	87 • 4	13.7	. 5.4
56	73.3	78 - 4	80.5	86.2	88-3	12.9	5 • 1
58	70 - 1	75.0	79.0	83.1	84.8	13.0	4.9

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6, 1976

EVENT 37, 114 KT. FLY BY, CENTERLINE MIC. (SUFT SITE)

1/2 SECOND INTEGRATION VS NOISE INDEXES

101	DBA	oso	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	68•1	77 - 1	84.7	84•0	84•0	15.9	9•0
2	69.7	79.3	86 • 7	85.8	85.8		9.6
3	72.4	81.7	88•6	87.9	87.9		9.3
4	74.6	83.8	90 • 4	90 • 4	91.8	15.8	9.2
5	77• 0	85.7	92.0	92.2	92 • 2	15.2	8 • 7
6	78•7	86.7	93.2	93.3	93.3	14.6	8.0
7	81.2	88•4	94.6	94.8	94.8	13.6	7.2
8	82•4	89.7	95•7	96•3	96 • 3	13.9	7:3
9	83 • 3	90•9	96•5	97.3	97.3	14.0	7 • 6
10	82.8	91.1	96•9	97.2	97.2	14.4	8 • 3
11	82.0	90•5	96 • 4	96+4	96 • 4	14.4	8 • 5
12	81.4	89•8	95.9	95•6	95•6	14.2	8 • 4
13	81.9	90 • 1	95•3	96•0	96•0	14-1	8 • 2
14	82.5	90•5	95•6	96•5	96•5	14.0	8•0
15	83•0	91.2	96•2	97.0	97.0	14.0	8 • 2
16	82.7	91•1	96•6	96•9	96.9	14.2	8 • 4
17	82.5	91.3	97.1	96.9	96.9	14.4	8•8
13	81 • 9	90 • 6	97•0	96•9	96•9	15.0	8•7
19	82.0	90•3	97•0	96•7	967	14.7	8•3
20	81 • 7	89.9	96.9	96•5	96•5	14.8	8•2
21	81 + 3	89.5	9ۥ8	96•1	97.2	14.8	8 • 2
22	81.3	89•3	96•7	96•3	96•3	15.0	ყ•ე
23	82 • 1	89.3	96•4	96•3	97•4	14.2	7 - 2
24	83.3	89.9	96•6	97.5	97.5	14.2	6 • 6
25	83.5	89.9	96•4	97.4	97.4	13.9	6 • 4
26	84.2	90 • 3	96•5	9,.9	97.9	13.7	6 • 1
27	84 • 1	90 • 2	96.2	97.8	97.8	13.7	6 • i
ឧន	84.9	90.9	96•1	98•5	98.5	13.6	6•0
29	84.6	90•9	95.8	98.8	98•8	14.2	6 • 3
30	85.5	91.7	96 - 1	100 • 1	100 • 1	14.6	6•2
31	85+5	91.7	95 8	100.2	100.2	14.7	6.2
32	84.9	91.1	94.8	99.4	99.4	14.5	6 • 2
OH → 33	82.9	89•3	92.9	96•7	96 • 7	13.8	6 • 4
34	80 • 6	87 • 1	91.2	94.8	94.8	14.2	6 • 5
35	78 • 8	85.1	89.9	93.1	93.1	14.3	6 • 3
36	77.7	83.8	88.9	91.8	91.5	14-1	6 • 1
37	77 • 1	83.2	88•6	90 • 9	90•9	13.8	6 • 1
38	76 • 6	82.6	88 • 8	90.3	91 • 4	13.7	6•0
39	76 • 1	81.9	87•3	89.8	91.2	13.7	5 • 8
40	75 - 4	81.3	86 • 4	89.5	91.6	14.1	5•9
41	74.9	80 • 8	85.7	89 - 1	91.6	14.2	5 • 9
42	73.7	79•7	84.8	88.0	90•5	14.3	6.0
43	73.0	78.8	83•7	86 • 9	89 • 4	13.9	5 • 8

TABLE E-I

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6, 1976

EVENT 38, 114 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

101	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
3	71.0	79•0	82.2	87.0	87.0	16.0	8 • 0
5	72 • 1	80.7	84.8	88.2	88.2	16.1	8.6
7	73.0	83.0	89.1	90.3	90+3	17.3	10.0
9	81.7	89•6	94.8	96.6	96•6	14.9	7.9
11	85 • 8	93.7	98.2	99.6	59.6	13.8	7.9
13	84.5	93.5	98 • 8	99.6	99.6	15.1	9.0
15	85.5	94.1	99 • 1	100.0	100.0	14.5	8 • 6
17	85 • 1	94.0	99•4	100•0	100.0	14.9	8.9
19	83.7	93.1	99.2	99.1	99.1	15-4	9.4
21	84.5	93.9	99.7	100-1	101.1	15.6	9.4
23	86.0	94.7	100.2	101.3	101.3	15.3	8 • 7
25	85.3	94.3	100 • 1	100.5	101.6	15.2	9•0
27	82.5	92 • 3	99.2	98.4	98 • 4	15.9	9 • 8
29	81.7	91.3	99.1	98.3	98.3	16.6	9.6
31	83.6	91.8	99•6	98.8	98 • 8	15.2	8 • 2
33	85.3	92 • 1	98 • 8	99.6	99.6	14.3	6 • 8
35	85.0	91 +4	97.5	99.4	99.4	14.4	6 - 4
37	85.2	90•9	95.5	99.4	99.4	14.2	5.7
OH —≯39	83.5	88 • 4	92.2	96.6	96.6	13.1	4.9
41	81.2	86.5	89.5	94.6	94.6	13.4	5•3
43	79.0	84.7	87.5	92.4	92.4	13.4	5.7
45	78-1	83 • 4	85 - 1	91.8	93 • 4	13.7	5 • 3
47	76.2	81.9	83.7	90.3	92.0	14.1	5.7
49	73.7	79.1	82.9	87.9	89.9	14.2	5 • 4
51	72.5	77.9	80.8	86.7	88.9	14.2	5.4
53	69.7	75 • 6	78 • 2	64.4	86.6	14.7	5.9

TABLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6, 1976

EVENT 43. 3 DEGREE APPROACH. CENTERLINE MIC. (SOFT SITE)

1NI 1 4 7 10 13 16 19 22 25 26 31 34 37 40 43 46 49 52 55 61 64 67 70 73 76 79 82 85 88 91 94 97 6H 103 106 109 112 115 118 121 124 127 130	D94	aea	045PL	PNL	PNLT	PNL-DBA	DBD-DBA
1	66.0	73.8	81.7	80.7	80•7	14.7	7.8
4	65.6	73 ⋅ €	82 • 1	80.7	80.7	15.1	8.0
7	68.8	76.8	83.6	83.8	83.8	15.0	8.0
10	72.4	80.2	85.4	87.2	87.2	14.8	7.8
13	70.0	78.7	85.1	85.1	85 • 1	15.1	8.7
16	66.7	76 • 1	83.9	82.7	82.7	16.0	9.4
19	67.8	76.3	84.2	83 • 1	83 • 1	15.3	8.5
22	67.5	76.0	84.2	82.9	82.9	15.4	8.5
25	66 • 4	75•3	83.8	82.2	82.2	15.8	8.9
28	63.5	72.4	83.0	80 - 1	30 • 1	16.6	8.9
31	61.7	71.5	81.7	78 • 7	78 • 7	17.0	9.8
34	62.6	71.7	82.0	79.4	79 • 4	16.8	9 - 1
37	63 • 6	72.9	82 • 6	80.2	80 • 2	16.6	9.3
40	66.6	74.7	83.0	81.8	81.8	15.2	8 • 1
43	66.3	74.9	83.3	81.9	83.4	15.6	8.6
46	67.7	75•3	83.8	82.6	84.2	14.9	7.6
49	64.5	73.4	83.2	80.3	80.3	15.8	8.9
52	65•3	74.3	84.1	81.1	81.1	15.8	9.0
55	67.8	77.6	85.9	83.9	83.9	16.1	9.8
58	70 • 0	79.5	87.4	86.2	86.2	16.2	9.5
61	70.4	79 - 1	87.4	86.2	86.2	15.8	8.7
64	72.1	79.9	87.6	86.6	88 - 1	14.5	7.8
67	76.5	81.8	88•6	89.4	90 • 7	12.9	5.3
70	75.2	81-4	88.8	89.5	90.8	14.3	6.2
7 3	75 • 1	81.8	88.9	89.5	90.9	14.4	6 • 7
76	78 - 1	83.8	90 • 3	91.9	91.9	13.8	5•7
79	77.0	82.7	89.9	90.9	92 - 1	13.9	5 • 7
82	78•7	85.0	91 • 1	92.5	92.5	13.8	ნ • 3
85	81.6	87.2	92.0	94.4	94.4	12.8	5∙6
88	81 - 4	87.5	92.4	95.4	95 • 4	14-0	6.1
91	60 • 5	87.8	92.8	95.9	95.9	15.4	7.3
94	82.2	88.7	93 • 6	96.5	96.5	14.3	6.5
97	82.9	88.8	93.8	96.9	96.9	14.0	5.9
AH 100 102	80 • 5	86 • 4	92.8	93.9	93.9	13.4	5.9
103	79.7	85.9	93 • 4	93.7	93 • 7	14.0	6.2
106	78.5	85.1	92.8	93.3	93.3	14.8	6 • 6
109	76.9	83.7	91.2	91.7	91.7	14.8	6.8
112	78 - 1	84.6	90.7	92.9	92.9	14.8	6.5
115	76.3	83.0	88 • 9	90.6	91.7	14.3	6.7
118	75.2	82.0	87.6	89.3	89.3	14.1	6.8
121	74.0	80.4	85.6	87.5	89.2	13.5	6.4
124	69.7	77.0	83.9	84.3	85 • 4	14.5	7.3
127	69.3	75.8	81.9	83.2	84.6	13.9	6.5
130	64.7	72.0	80.2	79.1	80.9	14.4	7.3

NOISE LEVEL TIME HISTORY DATA

BELL SIS

UCIUBER 6, 1976

EVENT 44. 110 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

INT	DB4	บลอ	QASPL	PNL	PNLT	PNL-DBA	D3D-D34
1	67 • 1	74.7	80+9	81.8	81.8	14.7	7.6
3	67 • 4	74.9	81.6	82.2	82.2	14.8	7.5
5	68.0	76.0	83.3	82.8	82.8	14.8	8.0
7	75•3		88•8	89.6	89.6	14.3	
9	80 - 4	88.2	93 • 4	94.0	94.0	13.6	
11	80.8	88.6	94.2		94.8	14.0	7.8
13	80.6	89.0	94.3	94.9	94.9	14.3	
15	80 - 1	88.9	94.5	94.2	94.2	14.1	8.8
17	80 • 4	89.3	95.2	94.7	94.7	14.3	8•9
19	79•3	88•6	95 • 1	94.5	94.5		
21	79•0	87.9	94.2	93.8	93.8	14.8	
23	78 • 1	87.3	93.8		92.9	14.8	
25	76.9	86 • 6	93.7	92.5	92.5		
27	77 • 6	87.0	94.7		95 - 1		
29	7 8•3	87 • 4	95•3	94.0	94.0		
31	78.5	87.8	95.9	94-1	94.1	15.6	9.3
33	79.5	87.8	95•8	94.6	94.6	15.1	8+3
35	82.8	89•6	96 • 4	97.0	98 • 2	14.2	
37	85.5	91.5	96.3	99.5	99.5	14.0	
39	84.9	90•6	94.5		98.9	14.0	5.7
OH 41 42	83.0		91.2	96.4	96.4	13.4	5•2
	81.1	86•7	89.3	94.5	94.5		5.6
45	79.1	84.5	88.4		92.2	13-1	5 • 4
47	77.8	82.9	87.3	90 • 7	90•7	12.9	
49	75.9	81.3	86.3		91 • 1	13.6	
51	7 3•8	79.7	84.9	88.2	90.3		
53	73.7	7905	83•4	87.7	90.6		
5 5	73.0	7 ੪• 7	82.1		90.3		5.7
5 7	70.3	75.9	80 • 4	84.4	87.5	14-1	5.6
59	66.1	72.0	78 • 8	80.0	81.8		5.9
61	67.9	73 • 4	78•3		85•3		5.5

TARLE E-V

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6, 1976

EVENT 45. 110 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	0ASPL	PNL	PNLT	PNL-DBA	DBD-DBA
3	63.4	73 • 1	80 • 8	81.5	81.5	18•1	9.7
5	66 • 1	76 - 1	83-4		83.6		10.0
7	67.5	77.9	85 - 1	85.4	85.A	17.0	10.4
9	68.7	78.9	86 • 0	86.3	86 • 3	17-6	10.2
11	70.2	80.3	87•3	87.4	87.4	17.2	10-1
13	72.1	81.7	88 • 2	88.7	88 • 7	16.6	9.6
15	75.3	83.9	89 • 5	90.5	90.5	17.6 17.2 16.6 15.2	8 - 6
17	76.5	84.7	89.8	91.5	91.5	15.0	8.2
19	77.2	85•3	90•3	91.9	91.9	14.7	8 • 1
21	77.2	85.5	90 • 8	92.4	92.4	15.2	8 • 3
23	76.9	85•4	90 • 3 90 • 8 91 • 1 90 • 1	92.1	92 • 1	15.2	8 • 5
25	74.8	83.6	90 • 1	90.8	90.8	15•2 16•0	8.8
27	73•9	83 • 4	90.7	89.8	89.8	15.9	9.5
29	75.3	84.8	92.0	91.0	91.0	15.7	0.5
31	77.7	87.1	93 • 5	93.3	93.3	15+6	9 • 4
33	79.5	88.5	94.9	94.6	94+6	15-1	9.0
35	76•6	86•5	94.0	93.0	93.0	16.4	9.9
37	72.9	84.0	93 • 3	91.1	91•1	15.6 15.1 16.4 18.2	11-1
39	1601	0.1 • 0	93.42	90.9	90.49	18.9	11.1
41	72.6	82.9	92•5	90.2	90.2	17.6 16.8 15.1 14.9	10.3
43	73.8	83.0	93.0	90•6	90•6	16.8	9.2
45	73 • 8 77 • 4	84.3	92•7	92.5	92.5	15.1	6 - 9
41	79.3	86.0	91 • 8	94.2	94.2	14.9	6.7
$\frac{49}{51}$ 50	81 - 1	87.2	91.2	95 • 7	95•7	14-6	6 - 1
	79•7	85.7	89.0	93 • 4	93.4	13.7	6.0
53	78 • 4	84.3	87 • 6	92.5	92.5	14.1 13.7 12.3 13.1 13.5	5 • 9 _.
55 57	76•6	82.6	85.5	و: ، ع	90•3	13.7	6.0
	75.3	80 • 4	84 • 1	87.6	87.6	12.3	5 • 1
59	75 • 4	80•5	84.5	88.5	90.2	13.1	5 • 1
61	75.1	80 • 1	83•8	88•6	90•8	13.5	5•0
6 3	70.8	76 • 1	81.5	85.0	87.2	14.2	5•3
65	68•3	74.3	81.2	82.5	84.0	14.2	6.0
67	69.2	75.0	81 • 2 79 • 9 79 • 0 77 • 7 77 • 7	83.6	85.9	14.4 14.6 14.3	5.8
69	68•3	73.8	79•0	82.9	85 • 4	14.6	5 • 5
71	66•7	72.0	77.7	81.0	83.5	14.3	5 • 3
73	67.5	72.6	77 • 7	81.6	83.3	14.1	5 • 1
75	65•9	71.4	77•3	80 • 5	81.9	14.6	5 • 5

NOISE LEVEL TIME HISTORY DATA

BELL 212

OCTOBER 6. 1976

EVENT 46. 114 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	a8 a	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	67.7	77.5	85•6	88 • 3	88•3	20•6	9•8
2	67.9	78.2	86.6	88.6	88.6	20.7	10.3
3	69.5	79.7	88 • 1	89.6	89.6	20 • 1	10.2
4	72.1	81.6	89.9	91 - 4	91.4	19.3	9.5
5	76.5	84.6	92.2	94.0	94.0	17.5	8 • 1
6	82.7	90.7	95.9	98 • 3	98.3	15.6	8.0
7	86 • 4	93.5	97.9	100-7	100.7	14.3	7-1
8	87.2	94.3	98.8	101 • 4	101.4	14.2	7 • 1
9	86•8	94.0	98.7	101.2	101.2	14.4	7.2
10	85 • 1	93.2	98 - 4	100.3	100.3	15.2	8-1
11	83+8	92.7	98.2	99.6	99.6	15.8	8 • 9
12	82.7	91.6	97.5	98 . 7	98.7	16.0	8.9
13	81.9	90.5	96.9	98 • 1	98 • 1	16.2	8.6
14	81.7	89.8	96.5	97-6	97.6	15.9	8 • 1
15	81.0	89.4	96.4	97.5	97.5	16.5	8 • 4
16	81 - 1	89.8	96.7	97.7	98.7	16.6	8 • 7
17	81.8	90.6	97.4	98•3	99.5	16.5	8.8
18	81.9	90.8	97.7	98•6	98.6	16.7	8+9
19	81.6	90.5	97.9	98.5	98.5	16.9	8.9
20	81 - 1	90.2	97.9	98 • 3	98.3	17.2	9.1
21	81.3	90.2	98.2	98.4	98.4	17.1	8.9
22	81-1	90.0	98.2	98.3	98.3	17.2	8.9
23	80 • 4	89.3	97.8	97.9	97.9	17.5	8.9
24	80.2	89.0	97.6	97.3	98.4	17.1	8 • 8
25	80.7	89.0	97.3	97.2	97.2	16.5	8 - 3
26	81.9	89.2	97.0	97.2	97.2	15.3	7 • 3
27	82.2	88.8	96.5	97.3	97.3	15.1	6.6
28	82.9	88.9	96.2	97.8	97.8	14.9	6.0
29	83.2	88.9	95.5	97.7	97.7	14.5	5.7
30	83.8	89 - 4	94.8	98.1	98.1	14.3	5.6
31	83.3	89.0	93.8	97.8	97.8	14.5	5.7
32	82.6	88.5	92.7	97.0	97.0	14.4	5.9
OH > 33	81.7	87.5	91.3	95.7	95.7	14-0	5.8
34	81.1	86.7	89.9	94.9	94.9	13.8	5 • 6
35	80 • 1	85 5	88 • 6	94.2	94.2	14-1	5.5
36	78.7	84 • 1	87.2	92.8	92.8	14-1	5.7
37	77.8	83 • 4	85 • 5	91.4	91 - 4	13.6	5.6
38	77.8	83.0	84.2	91.0	91.0	13.2	5.2
39	77.8	82.6	83.5	91 • 1	92.3	13.3	4.8
40	77.7	82.6	82.9	91 - 1	98.6	13.4	4.9
41	77.6	82.4	82.4	91.2	92.9	13.6	4.8
42	76 • 6	81.6	81 + 7	90 - 4	92 • 1	13.8	5.0
43	75.3	80.2	80.9	89.5	91.3	14.2	4.9
44	74.0	79.2	80.2	88 • 2	89.4	14.2	5•2
				_	- " •	+ · · ·	

NOISE LEVEL TIME HISTORY DATA

BELL 5.5

OCTOBER 6, 1976

EVENT 47, 114 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DRA	DBD-DB4
1	70 • 3	80.0	87•8	86•5	86.5	16.2	9•7
3	70 • 6	81.3	89 • 4	87.2	87.2	16.6	10.7
5	71 • 4	82.0	89.6	88.0	88.0	16.6	10+6
7	72.2	82.6	89.9	88.3	88.3	16.1	10.4
ð	74.6	84.4	91.0	89 • 8	89.8	15.2	9 • 8
11	78.0	86.9	92 • 6	92.6	92.6	14.6	8•9
13	81 • 1	89.1	94.3	95.0	95.0	13.9	8•0
15	81.5	89.6	. 94.7	95•4	95.4	13.9	8 • 1
17	80•6	89.2	94.9	94.8	94.8	14.2	8 • 6
19	79 • 1	88•4	94•7	93+8	93.8	14.7	9•3
21	78•2	87.6	94 • 4	93•3	93.3	15.1	9 • 4
23	77•6	86.9	93+8	92.8	92.8	15.2	9 • 3
25	76.8	86.5	93.7	92.0	92.0	15.2	9.7
. 27	78 • 9	88-1	94.8	94.0	94.0	15.1	9 • 2
29	80•6	89.4	96•6	95•6	95 • 6	15.0	8 • 8
31	80.2	89.2	96•7	95•5	95.5	15.3	9•0
33	81.0	89.3	97.0	95•8	95 • 8	14.8	8•3
35	82.2	89.5	97 • 1	96•7	96.7	14.5	7 • 3
37	83 • 3	89•9	96•8	98•0	98.0	14.7	6 • 6
38	83•6	90•0	96•3	98•3	98 • 3	14.7	6 • 4
40	83.0	89.0	93.8	97•4	97.4	14.4	6.0
OH>42	80•9	86•9	90•6	94.4	94.4	13.5	6.0
44	78 • 4	84 • 5	88•3	92•3	92.3	13.9	6 • 1
46	76.9	82.6	85.7	89•9	89.9	13.0	5•7
48	76•7	81.8	84 • 6	90•2	92.3	13.5	5 • 1
50	74.8	80.3	83.3	88•6	91+0	13.8	5 • 5
52	72.0	77•6	31.6	86•1	88 • 4	14-1	5•6
54	71 • 1	77.0	81.0	85.3	87.4	14.2	5 • 9
56	70.7	76.7	80 • 5	85•0	87.2	14.3	6•0
58	67 • 4	74.0	80.3	81.9	83.7	14.5	6 • 6

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 24: 6 DEGREE APPROACH. MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE SO MICHO PA)

BAND	-27.5	-22.0	-16.5	-11-0	-5.5	0	3.0	5 • 5	11.0	13.0
17	77.2	80.8	79•3	76.6	70 • 9	78.9	84.1	80.8	75.9	75 • 2
18	77.3	80.7	80 • 3	77.9	78.3	75.3	82.3	78 • 3	76.9	74.5
19	73.9	79.1	78.2	74.9	77.9	76 . 4	71.8	77.2	72.5	70 • 3
20	72.7	78.3	78.2	69.8	74.3	72.0	73.3	77.6	73 . 4	72.2
21	71.5	77.0	76.1	70.6	69.0	65 • 6	69.7	70.0	70.5	69.7
22	67.4	71 • 1	67.6	62.0	59.1	74 • 7	75.4	69.7	71.6	70 • 6
23	67.2	70.9	65 • 4	57.6	66.7	76.0	79.7	78 - 1	68 • 1	69 • 4
24	67.3	68.9	60.0	61.4	72.6	78.0	80.3	81.9	62 • 1	65.0
25	64.6	64.8	68.5	65 • 4	73.0	74.9	79.1	77.7	64 • 6	62 • 1
26	63.2	65 • 5	75.2	69.9	71.3	67 • 6	71.0	72.6	67-4	65.0
27	63 • 6	68.0	74.8	69.1	67 - 1	72 • 8	74.3	71.0	67.2	66.9
28	64.2	68.5	69.5	62.1	70 • 4	66 • 8	69.6	72 - 1	58 • 0	62 • 1
29	60 • 8	65 + 1	62.0	64.4	65 • 6	68•9	71.2	69.0	60 • 3	54.7
30	55.7	59.5	66.9	60 • 1	67.2	67.3	66.6	66.2	57.8	58 • 1
31	57 • 6	62 - 8	62 • 7	63 - 6	67 • 1	65+8	65+0	65.7	54.8	55.5
32	55•5	60 • 6	61.7	62.0	66.2	65 • 4	64.3	65.2	56.0	57 • 5
33	49.5	55•2	58 • 5	60 • 8	65.0	62.8	63.2	65.2	55 • 8	55 • 6
34	47.0	53.0	54.5	56.5	61.3	61 • 1	60 • 4	58 • 8	50.2	50 • 6
35	45.0	48.9	51.7	52.3	60.0	57.2	57.8	56•6	48 • 6	48.9
36	45.0	45 • 4	47.2	48.5	56.3	55 • 1	57 • 1	56 • 6	48.5	47.4
37	45.0	45 • 0	45.0	45.0	50.8	50.0	50•9	49.7	45.0	45.0
38	45.0	45 • 0	45.0	45.0	46.7	47.3	49.2	46.5	45.0	45.0
39	45.0	45.0	45.0	45.0	45.3	48 • 4	50•9	48.9	45.0	45.0
40	45.0	45 • 0	45.0	45.0	45.0	45.0	45 • 7	45.0	45.0	45.0
Α	69.4	73.9	76.9	72.8	77 • 1	77.8	80 • 2	79 • 4	70 • 3	70 • 1
α	76 • 1	80•3	81.8	78.1	81.7	83.7	86.0	85 • 1	76•7	76 • 4
OASPL	83.5	87 • 0	87.2	85.0	85.4	90.8	91.1	89•C	82.6	81.5
PNL	82.7	87 • 3	89.2	85•6	89.3	90•9	93.0	93 • 1	83•9	53-4
PNLT	82.7	87 • 3	90 • 7	86.7	90 • 6	90 • 9	94.0	93.6	83.9	83 • 4

TRELS E-DI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 27. 9 DEGREE APPROACH. MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	- 30 e5	-24.5	-18.5	-12.5	-6.5	- •5	0	3•5	5•ა	11.5	12.0
17	76.2	77.5	79-1	78 • 4	75.5	79 - 1	78.9	82.5	80.5	76 • 1	76.0
18	76.4	78.1	79.6	79 . ;	76.7	73 • 7	74.3	77.5	77.9	75.5	74.7
19	73.8	76.4	77.3	77.3	76.9	75 • 5	74.9	76.6	73 • 4	7 i • Ü	70 • 9
20	71.8	73.0	75.4	76.0	71.2	72.4	73.5	78.0	75 • 4	72.9	72.2
21	71.9	71.2	75.0	74.4	67.6	66.6	67.4	70.0	69.3	72 • 3	71.6
22	64.9	63.4	67.5	69.4	62 · i	73 • 6	73 • 6	75.5	64.9	71 • 3	71 • 1
23	64.4	60.9	64.8	60•5	72.5	78.3	77.2	81.8	73.9	68 • 4	67.7
24	61.3	56 • 8	65.8	70.2	75.0	77.3	76.8	83.5	75.2	62.2	62.5
25	58.3	62.8	73.0	74.4	72.4	76.6	75.3	78.0	75.6	64.2	62•6
26	68 • 1	70 • 1	78 • 1	76 - 1	69.3	67.2	67.7	70 • 1	71 • 6	68 • 4	õ6∙5
27	69.7	68 • 4	74.6	72.0	67.1	71 • 1	71.8	73.9	68•5	69.5	66•8
28	64.7	59.7	67 • 3	66•8	70.5	66 • 6	66.6	70.2	70•8	61 • 4	61.0
29	56 • 4	51.2	66•6	69.8	65 • 0	69.2	69 • 4	71.5	66.0	57.9	54.4
30	50.5	54.3	61.9	63.2	65.3	66.3	66.8	67.5	64 • 7	60 • 7	59 • 1
31	52.9	51 • 1	61.9	65.2	64.9	64.9	65.2	66.2	63 • 7	55.8	54•9
32	48.0	52.0	59 • 1	64.1	63 • 5	64+5	63.5	63•9	63•5	60.0	60.2
33	46.1	48.2	57.6	62.0	62.3	63 • 3	62.8	63•7	63 • 4	57•7	57.7
34	45.0	45.2	55•4	58•0	60 • 1	61.3	60.9	61.7	58 • 1	53•6	52 • 4
35	45.0	45.0	51 • 6	54•9	58.2	58 • 8	58.1	59.2	56 • 6	52.5	51 • 1
36	45.0	45.0	47.5	50 • 2	54.9	56 • 5	55.6	59 • 1	58 • 6	51 • 0	49.7
37	45.0	45.0	45.0	45 • 8	49 • 1	50 • 9	50•7	51 • 6	50 • 5	45.0	45.0
38	45.0	45.0	45.0	45.0	45.0	47.4	47.7	49.0	47.6	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	48.2	48.6	51.8	50 • 2	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.2	46.0	45.3	45.0	45.0
Α	70 • 1	69 • 1	73.0	77 • 6	75.9	77•9	77•8	80•7	77•0	71 • 4	70 • 3
D	75•7	76 - 1	82.7	82•3	81 + 3	84.0	83.6	86•8	82.9	77 • 7	76 • 7
OASPL	82.4	84.0	86 -7		84.7	90.5	90.9	92.4	87 • 6	82.6	81.7
PNL	83 • 3	83 • 6	90+2		88 • 8	90 • 7	90 • 4	94.5	90•0	85.2	83+8
PNLT	84 • 6	84 • 6	90.2	91 • 7	90 • 3	90•7	90•4	95.2	91.6	86 • 5	85•3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY
BELL 212

OCTOBER 6. 1976

EVENT 36, 110 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-19-5	-16.0	-12.5	-9.0	-5.5	-2.0	0	1.5	5+0	7.5
17	81.2	82.4	85.5	85.9	88 • 4	86.7	78 • 3	83.1	81.3	75.2
18	82.3	83.5	86 • 1	85 • 8	88 • 1	85.2	80 6	81.2	74.2	68.2
19	83.0	35 • 2	86.6	86.4	88.4	81.2	75.0	75 • 1	73.8	69.5
20	80.8	83 • 4	84.6	83.9	84.3	74.3	72.0	68 • 5	72.8	67.6
21	79.2	83.9	84-1	83.6	83.5	73.2	68.0	65 • 4	64.8	62.8
22	73.0	82.5	80.6	82.2	76.2	61.6	73 • 0	75.6	63.5	64.7
23	67.9	81.2	80 • 4	81.5	78 - 1	64.6	72.4	76.4	65.2	58.6
24	64.9	77.6	78.5	77.2	66.9	74.4	76.7	78 • 2	ა8 • 6	60.3
25	61.6	70 •.5	74.€	72.0	62.7	76.8	77.4	75.2	71 - 1	63.1
26	55 • 6	53.3	71.7	69.2	67.4	78 • 2	72.6	73 • 1	71 - 1	66.3
27	51.5	56.3	68.6	62.5	73.5	71.6	76 • 3	79 - 1	68.0	64.5
28	46.4	56.0	65 • 6	64.6	70.9	74.2	75.0	72.2	70 • 4	56.6
29	45 - 1	54.6	65 • 8	67.1	69-1	73.2	73.4	73.7	65.7	62.9
30	45.2	51.5	62.5	66.5	63 • 3	71.7	70.0	70-6	67.8	58 - 7
31	45.0	48.7	58 • 7	65.1	67.8	70.6	70 • 3	67.8	65.5	60 • 4
32	45 • 0	47.0	56.0	63.3	64-1	70 - 4	59.6	67.2	66.7	62.2
33	45.0	45 • 1	54.8	59.6	61.8	63 • 7	67.6	65.2	62.2	56.7
34	45.0	45.0	48.0	55.0	57.5	66.4	65+6	63.5	60.0	55.4
35	45.0	45.0	45.2	51.2	52.5	62 • 5	62 • 1	60.7	57.3	52.5
36	45.0	45.0	45.0	46.2	48 • 4	60.2	59.3	57.8	53 • 5	46.4
37	45-0	45.0	45.0	45.0	45.0	55 • 1	55 - 2	52.6	48 . 7	45.0
38	45.0	45.0	45.0	45.0	45.0	48.5	50.6	49.0	45.3	45.0
39	45.0	45.0	45 • 0	45.0	45.0	45 - 4	48.2	49.2	45.6	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	46.3	46 • 1	45.0	45.0
Α	69.3	76•8	78 • 5	78.5	78 • 8	81.5	81.0	81 - 1	76+3	71 - 3
D	80.7	86.0	86.7	86.5	86.6	86.5	85.3	85.4	80.7	76 - 1
OASPL	38 • 8	92.2	93.5	93.4	94.7	93.1	90.5	89 + 8	84.9	19.9
PNL	85.7	90.7	25 • €	93.1	93.7	94.0	93.0	93.6	88 • 4	83.2
PNLT	85.7	90.7	92.6	93.1	.95 • 1	94.0	93.0	93.6	89.6	84.9

TABLE E-YI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6. 1976

EVENT 43, 3 DEGREE APPROACH, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-42.0	-34.0	-26.0	-18.0	-10.0	-2.0	0	6.0	14.0	14.5
17	74.2	76 - 1	76.5	ម0∙0	77.4	78.2	77.2	80.2	73 • 0	73.0
18	75.7	76.6	78 • 1	79.9	77.2	76.2	72.5	77.6	71 • 5	71 - 1
19	73.5	73.4	74.5	76.5	74.9	70 • 8	63.3	74.6	71.0	70 • 0
20	72.8	73.5	73.3	76+1	74.8	66 - 6	64-3	72-0	70 - 3	69.2
21	70.9	72.3	74.3	75 • 1	75 • 8	65.1	63 • 1	68 • 0	64.2	63.8
22	67.8	66.0	69.0	68.3	66 • 4	63.2	69.6	60.9	61 - 5	61 • 1
23	65.5	64.9	68.7	67.7	62.9	69.7	70.7	68 • 6	59 • 3	59 • 1
24	67 • 7	65+1	70.6	64.3	60 • 2	73.1	73.7	71.9	53.5	54.2
25	63 • 7	61.4	65.9	57.6	66 · 8	73.1	71.0	72.9	56.4	53 • 2
26	58 • 6	58 • 3	60 • 9	61.5	73.5	67.9	64.1	69.7	60.5	58 • 1
27	54.2	54.2	52 • 3	65.9	73 • 1	68.6	70.0	64.8	63 - 1	60 • 3
28	51.7	52.3	55 - 3	65.9	65.6	70 - 1	67.7	69.5	59.2	58.2
29	45.6	48 • 4	56.8	60.9	64.5	68.0	68.7	63.6	50 • 5	49.8
30	45.0	45.9	53.5	54.0	63.2	66.1	65.6	64.5	55 • ชิ	54 - 1
31	45.2	45.2	59 • 1	59.4	64.8	66.5	64.5	8.59	52.1	51.6
32	45.0	45.0	49.8	52.7	62.3	65 • 4	62.9	61.9	58 • 6	58.0
33	45.0	45.0	48.4	51.4	60.4	63.6	62.0	60.2	53 • 4	52.8
34	45 • 0	45.0	46.0	48.2	57.3	60.9	60.3	56.7	48 .0	46.6
35	45 • 0	45.0	45 - 1	45.6	53.1	5E • 4	57.6	54.2	48 • 2	47.0
36	45 = 0	45.0	45.0	45 • 1	50.5	55.6	54.8	53.7	46 • 2	45.7
37	45.0	45.0	45.0	45.0	46 . 3	50.4	49.7	47.5	45.0	45.0
38	45 • 0	45.0	45.0	45.0	45.0	47.2	46.4	45.0	45.0	45.0
39	45.0	45.0	45.0	45.0	45 + 0	47.3	48.5	46.0	45.0	4500
40	45+0	45.0	45.0	45.0	45.0	45.2	45.2	45.0	45.0	45 v C
Α	65•6	65.3	68 . 6	70.7	75.0	76.5	75.7	75.0	66.6	65.6
D	73•9	74.0	76.1	77.4	80.2	81.8	81.4	80 • 4	72 ~ 9	71.8
OASPL	85.0	83 • 3	84.3	86.2	85 • 3	88.1	90 • 1	87.1	78 • 7	76 (2
PM,	80 • 5	80•4	83 - 1	84.3	88 - 1	88•5	87.8	87.5	80.2	79.4
PNLT	80 • 5	80 • 4	83 - 1	66+3	86 • 1	88.5	8.73	69.2	88.5	81.3

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

BELL 515

UCTOBER 6. 1976

EVENT 44: 110 KT. FLY BY: MIC. 150 METERS WEST

1/3 OCTAVE FREDJENCY BAND VS: [IME (SECONDS)

BAND	-16.5	-13-5	-10-5	-7.5	-4.5	-3.0	-1.5	0	1.5	4.5	6•5
17	82.7	85 • 5	86•0	88•3	89+1	87.2	74 2	70 4	<i>u</i> 2	60	5 .00 0
18	82,7	86 • 4	85 • B	88.8	88.9	85.9	78 • 3	79.4	83.0	80 • 6	77.7
19	82.8	87 • š	86.7	88 • 3	88.4	83.5	75•9	79 • 0	79 • 8	74 • 4	70 • 5
20	79.7	85 • 6	84.8	85.5	83.3		76.5	74.6	75.9	72 • 2	71 - 2
21	78.7	86.0	85.3	64•9		77.6	75 • 3	70 • 4	71 • 6	72 • 4	71 • 4
22	77.3	83 • 4	83.0		81.1	77 - 1	72.1	67.8	65+1	64 • 4	64.5
23	75 • 1	82.0		81.0	74.0	67.5	60 • 1	69.2	6€ • 4	60 • 1	62•7
			81 • 1	79 • 8	74.8	62•8	65+3	70 • 4	73.3	62 • 4	59 • 4
24	72.1	78 • 2	76.0	75 - 4	63.9	69 • 4	75 - 1	74.9	75 • 5	66•8	59.0
25	66 • 2	73 • 4	73.2	72 • 1	66 • 4	74.3	76•8	76 • 4	74.5	69.9	64.3
26	58.7	70 • 3	72 • 1	67.5	73.6	79.0	77•3	71 • 6	69 • 2	71 • 3	68•3
27	55.0	65 • 4	68.4	65 • 5	76.5	75.2	69.9	71 - 7	72 • 7	65•4	67.4
28	52.3	58 • 2	65•4	72.8	74.5	68 • 7	73 • 8	73.6	71.8	66+9	58 • 1
29	50 - 1	54.5	62.2	73•3	67.5	74.8	72.1	71.1	7 0 • 5	66+4	63.0
30	47.7	52.5	59.5	67 ∙ 战	68•4	69.6	70.4	69.2	66.8	64.9	59.5
31	47.0	53.7	59 , 6	61.6	67.3	70•3	69 • 8	69.1	66.5	62 • 1	60.5
32	46 • 4	50 • 5	57 • 4	64-1	67.0	68 • 6	69.7	68.1	65.6	63.7	63.2
33	45.4	46 • 4	52.6	57.8	64.7	66.9	67.7	65.9	63.7	59 • 1	56.6
34	45.0	45 • 3	50.0	53∙8	61.5	64.5	65.3	63.8	60.9	55.9	53 • 5
35	45.Û	45.0	47.2	49.8	56.8	60.9	62.0	60.2	57.8	55.2	54.3
36	45.0	45.0	45.1	46.9	53.6	56.6	59.8	57.9	55 • 3	49.7	48 • 8
37	45.0	45.0	45.0	45.0	48.2	51.6	54 • 4	53-1	50 • 5	46.1	45.0
38	45.0	45.0	45.0	45.0	45.0	416.0	49.0	49.1	46.7	45.0	45.0
39	45.0	45.0	45 0	45.0	45.0	45.0	46.1	47.5	47.6	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.7	46.2	45.8	45.0	45.0
A	71.6	78.7	78.4	79.5	79.9	81.2	80.3	79.4	78.0	74 • 1	71.5
Ŋ	81.7	87.9	87.1	87.2	86.3	86.2	85.2	84+2	82.8	79 • 1	76.6
OASPL	89.7	94.5	93.9	94.7	94.8	93.1	90.5	89.4	88 • 8	34.0	81-4
PNL	86.7	92.8	93+0	94.0	94.3	94.0	92.7	91.4	90.3	86.6	84.8
PNLT	86.7	92.8	93•0	95+5	94.3	95.3	92.7	91.4	90.3	87.6	85 • 8
	20 - 1	22.13	20-17	20-0		,,,,,	J 2 (2 A - 4	70-5	0140	00.0

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

the state of

OCTUBER 6, 1976

EVENT 45. 110 KT. FLY BY. MIC. 150 METERS WEST

1/3 OCTAVE FREQJENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-19.0	-15.0	-11.0	-7.0	-4.0	-3.0	0	1 • 0	5+0	9•0	10.5
17	79.0	83•6	84.9	88•3	88 • 8	88.2	77.6	79 • 1	80•6	74.3	71.9
18	79.2	83.7	85.9	88 • 1	88 - 1	87.5	77.6	78 • 3	74.3	70.4	69.0
19	78.8	84.0	85•6	88 • 1	87.1	83.8	72.3	72.5	72 - 1	68 • 7	68.2
20	74 • 1	81.9	82.3	85.4	82.5	77.4	63.3	61.7	67.8	68 • 8	69.0
21	74.0	82.7	80.5	83.6	79.1	73.5	65.8	66 - 1	65.0	64.8	66.8
22	70.8	80.7	79.5	80.6	71.2	63.6	70 • 4	75 • 6	63 • 1	50 • 1	63.8
-23	62.7	77.3	78 • 1	78 • 1	70 • 6	68.3	73.6	74.2	68 • 4	58 • 0	58 • 2
24	61.6	71 • 4	74.5	71.4	67.7	72.5	79.7	75.5	70 . 4	61.4	58 • 8
25	60 • 4	66 • 4	70.9	63.6	70 • 4	72.0	69.9	69.7	67.1	61.2	57.5
26	55.0	60 • 1	70.8	64.6	74 • 4	73.1	74 • 8	74.9	64.5	63 - 1	63.0
27	55•0	57 • 3	65 • 4	65-4	72.8	68.9	77.2	75.2	70 • 8	60 • 1	60 • 1
28	55•0	55•2	60 • 1	62 • 8	68 • 4	72.7	72.0	72.9	64 - 7	57:4	55=9
29	55.0	55.0	57•9	64.2	72.2	70.4	70 • 4	70.9	65.0	58 • 4	57.8
30	55.0	55•0	55 • 5	59.7	68.0	69.5	68.9	69.8	64.0	56 • 1	55.7
31	55•0	55.0	56•6	57•5	69.3	67.7	68 - 1	68 • 9	63.2	55.5	56 • 5
32	55.0	55.0	57.2	60.7	67.2	65.9	67.1	68.2	64.3	60 • 1	61 • 5
33	55•0	55.0	55 • 4	55.5	64.8	62.7	65.0	65 • 3	60.3	55.0	55 • 4
34	55•0	55•0	55.0	55.2	61 • 1	60.2	62.9	63.0	57.6	55.0	55.0
35	55.0	55.0	55.0	55.0	56.7	57.3	58 • 3	59.0	55.8	55.0	55.0
36	55•0	55•0	55.0	55.0	55 • 0	55.5	56.2	55.8	55.0	55.0	55.0
37	55•0	55•0	55.0	55.0	55.0	55.0	55.0	55•0	55•0	55.0	55.0
3 8	55. 0	55•0	55.0	55.0	55 • 0	55.0	55.0	55.0	55.0	55.0	55 • 0
39	55•0	55.0	55.0	55•0	55.0	55.0	55.0	55.0	55•0	55.0	55.0
40	55.0	55.0	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	65•7	74.2	75 • 6	76 • 1	79.0	78 • 6	80.0	80.0	74.5	67.7	67.8
D	76.5	83 • 4	84.0	85•8	85.5	84.2	84 • 4	84.7	79 • 6	74.2	74.5
OASPL	84.9	90•8	91 • 6	94.4	94 • 1	93.2	87.8	87.9	85 • 1	80.7	79.5
PNL	84.9	90 • 8	91.7	93.3	93.9	92.6	92.4	91 +8	87.5	83.1	83 • 4
PNLT	84 - 9	90 • 8	91 • 7	94.7	95•3	93.6	92.4	91.8	87.5	84.7	85 • 3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6: 1976

EVENT 24. 6 DEGREE APPROACH. MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-56.5	-46.5	-36.5	-26.5	-16.5	-6•5	0	3 • 5	13.5
17	78 •7	7 3.8	79.0	77.8	84 - 5	81.3	80 - 4	77.2	70 - 3
18	79.2	75.9	78 • 4	78•5	82.4	81 • 1	81.6	73.1	66 • 6
19	78•3	71.5	74 • 1	72.9	76 • 9	71 • 3	72.6	78 - 1	66 • 6
20	77.5	72.9	74.3	71.8	74.8	73.6	71 • 1	74.8	70 • 1
21	75•5	70 • 5	71.8	70 • 6	73 • 6	74.7	68 • 6	64 • 4	70.3
22	70•0	65.7	68•3	62.3	73.0	63 • 3	74 • 1	71.0	68.7
23	64 • 7	62•9	65 • 4	59.2	70 • 5	68 • 8	76.9	73.6	63.2
24	60 • 4	64 • 4	62 • 4	59.9	64.7	77-1	76 • 4	74 - 1	56 • 7
25	65.2	63.8	57 • 6	60 • 7	65 • 6	76.0	70 • 3	72.3	54.4
26	64 • 1	58.0	59 • 1	55•9	70.2	73.3	65.0	65.5	61.0
27	59 • 1	56•7	52 • 4	59•5	70.2	67 - 1	70 • 6	70.3	64-0
28	54 • 3	48 • 4	48 • 4	58 • 6	66.2	72.9	65.5	65 • 4	59 • 4
29	49 - 1	48•7	47.8	53.5	59.9	69.4	67.5	67.2	51.2
30	46.0	47 • 2	46 • 1	46.8	57.2	67.2	65 • 3	63.7	54.6
31	45.0	45 • 0	45.1	45 • 1	58•3	64 - 8	62.8	61.5	54.3
32	45.0	45•0	45.0	45.5	54•6	64 • 1	63.3	62.0	60 • 1
33	45.0	45 • 0	45.0	45.0	53.2	61.8	62.4	66.0	58 • 4
34	45 • 0	45.0	45.0	45.0	49.6	60 • 6	59.8	57.1	50 • 1
35	45.0	45.0	45.0	45.0	46 • 4	56 • 3	57.3	54.5	51.7
36	45.0	45.0	45•0	45.0	45.0	54.0	55.9	55.2	50.9
37	45.0	45.0	45.0	45.0	45.0	43.8	51.6	49.6	45.0
38	45.0	45•Q	45.0	45.0	45.0	45 • 8	48.7	46.9	45.0
39	45 • 0	45.0	45.0	45.0	45.0	45.0	49.3	48.9	45.0
40	45 • 0	45.0	45.0	45.0	45.0	45.0	46.8	45.6	. 45 • 0
Α	67 • 2	64 • 3	64 - 1	63.9	72.0	78.1	75.9	75.4	67.9
D	76 • 4	72.0	74 • 1	71.9	79 • 1	82.8	81.8	80.9	74.3
OASPL	84.9	80 • 9	83.8	82.5	88 • 1	88.2	86.7	84.8	79 • 8
PNL	83.5	79•8	80.8	80.2	86 • 4	90 • 4	89.9	89.0	81.8
PNLT	83.5	79 • 8	80 • 8	80.8	86 • 4	92.0	89.9	91.2	83-1

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL SIS

OCTUBER 6, 1976

EVENT 35, 110 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-15.0	-12.0	-9.0	-6•0	-3.0	0	3 • 0	6•0	8•5
17	79•5	83 • 1	87.9	89•1	88.4	81.7	84.3	81.6	81.0
18	80.0	82 • 4	86.3	86.5	86.7	84.3	83.5	77.6	77•7
19	81.8	82.8	87.7	86.9	83.9	75.8	72.1	72 • 1	69.9
20	79 • 4	82.2	86.7	84.3	78 - 4	75.2	72.0	70 - 3	65•6
21	78.8	83.2	86.7	83-1	80.5	78 • 7	74.0	66.2	68 • 8
22	75.2	83.2	84 - 1	79.5	76.2	76 - 1	73.5	65 • 1	67.1
23	75 • 4	81.3	82 • 3	79.7	79 • 6	79.0	77.9	69.3	66.3
24	72.9	77.4	76.4	74.7	79.0	79.5	76.9	69.1	64.1
25	66.9	77 • 1	73.2	70.5	78 - 4	74.9	72 • 4	69.8	64.3
26	60 • 6	75.4	70.6	70 • 4	80 • 3	70.9	70.0	70.5	66.3
27	58•0	75.8	66.2	72.0	76.7	75.0	75.9	64.5	66.3
28	52 • 9	73.2	66.9	69.9	72.1	75-1	70.0	67.2	59•8
29	51 • 7	69.7	69.2	63.9	72.2	74.1	71 • 4	65.3	60.9
30	49.3	64 • 5	64 • 4	64 • 1	68 • 8	70.3	67.7	63.5	61.2
31	47.5	59.8	60.7	62.9	67.2	68 • 7	64.5	62.1	59.2
32	45.0	56 • 8	58.0	57.7	66.4	66 • 9	65.0	64.6	61.9
33	45.0	52 • 1	54.1	54.2	63.6	66.1	64.1	59 • 1	56.0
34	45.6	49.2	50.9	52.5	61.3	62.8	58 • 3	55.5	52.8
35	45.0	45.9	47.8	48 • 8	57.6	61 - 1	56.2	56 • B	54.0
36	45.0	45.2	46.1	46.5	54.9	58 • 8	54.9	52.1	48 • 4
37	45.0	45.0	45.0	45.0	49.8	54.8	49.7	49.3	45 • 1
38	45.0	45.0	45.0	45.0	45.7	51 • 1	47.4	45.7	45.0
39	45.0	45 • 0	45.0	45.0	45.0	47.5	47.4	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	46.8	45 . 5	45.0	45.0
Α	70 • 8	80 • 2	78.8	77•7	81.4	80.8	78 • 6	74.3	70.7
D	80 • 1	86 • 4	87.4	85 • 6	86.8	85.8	83.5	79.1	76.0
OASPL	87 • 7	91.8	94.4	94.0	93.8	90.0	88 - 5	85.0	84 • 1
PNL	86.2	93.0	94.2	92.7	95.4	93.9	91.6	87.0	84.3
PNLT	86.2	93.0	95.3	92.7	95 • 4	93.9	91.6	88.3	85.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6. 1976

EVENT 36. 110 KT. FLY BY. MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-15.5	-12.5	-9.5	-6+5	-3.5	~ • 5	O	2.5	5•5	6.0
17	82.1	85 • 3	86.7	87•8	86 • 4	77.6	79•5	83.2	75.5	73 • 6
18	80 • 3	86.2	87.4	87 • 4	85 • 8	83 • 8	83.7	73 • 1	71.2	70.6
19	78.9	87 • 1	87.7	87.4	82.9	71 - 1	68 • 6	64.4	66+3	66.2
20	76.6	86.6	87.0	85 • 6	77.6	69.5	68 - 4	64.2	64.3	63.2
21	77.3	87 • 4	87.0	84.2	79 • 3	74.1	72.2	62.2	61.5	61.8
22	75.2	86 • 1	83.6	78 • 0	72.2	67.7	69.7	70 • 3	61.3	60.7
23	70.0	84.6	80.5	75.5	69.9	72 • 1	73 - 4	75.3	62.1	60.0
24	66 • 4	80 • 5	75.3	72.3	66.5	77.6	78 • 3	76.0	65.0	6.2 • 2
25	59.9	77.4	71.3	63.5	73.6	71.5	72.0	71.4	68•2	66 • 6
26	57.6	75.9	69.6	66 • 6	77.9	68 • 5	67.6	67.5	69.9	69.3
27	56 • 4	74.9	65•7	72.4	76.3	72.4	73.9	76.0	64.6	64.5
28	53.5	69.5	66.2	73.2	69.7	73.5	72.5	71.2	67.5	64-3
29	49.2	64.6	66.0	73.3	70 - 1	72.0	73.0	72.6	65.9	65.0
30	46 • 4	57 • 5	62.3	65.3	67.5	69.5	69.7	67.7	64.4	62 • 1
31	45.0	53 • 2	58 • 4	66.8	64 • 3	68 • 4	68.0	65.3	61.9	60 • 7
32	45.0	51 • 6	54.3	61.2	63 • 6	67.9	67.8	65.0	63.1	62.4
- 33	45.0	48 • 3	49.4	57.8	60.5	65.9	66.2	62.4	58.0	57.0
34	45.0	46.2	47.9	54.8	57.7	62.9	63 • 4	59 • 1	54.5	53 • 6
35	45.0	45.0	45.0	49.7	55 • 3	60 • 4	60.9	57.1	54 • 1	53.7
36	45.0	45.0	45.0	46.7	51 • 4	58 • 3	58 • 8	55.2	50 • 4	49.1
37	45.0	45.0	45.0	45.0	47.5	55 • 1	55 • 4	50.2	47.8	46.4
36	45.0	45.0	45.0	45.0	45.0	51 • 1	51.2	48 • 1	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	47.8	48.2	47.4	45.0	45.0
40	45.0	45.0	45+0	45.0	45 • 0	48 • 1	47.9	45.5	45.0	45.0
Α	67 • 9	81 • 1	78 • 1	78.9	78.9	78 • 8	79.2	78.3	73.3	71.9
D	78.4	88 • 6	87.2	85•6	84 • 1	83.2	83.5	82.8	77.4	76.3
OASPL	87.2	94.7	94.5	93.8	91.4	86.7	87.5	85.2	81.4	80.2
PNL	84.4	94.9	93.7	93.2	92.5	91.7	92 • 1	90.5	85.1	84-1
PNLT	84 • 4	94.9	93 • 7	94.5	92.5	91.7	92-1	91.5	86.2	85.3

NOISE LEVEL FREQUENCY SPECIFA TIME HISTORY

BELL 212

OCTOBER 6: 1976

EVENT 44, 110 KI. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-16.5	-13.5	-12.0	-10.5	-7.5	-4.5	-1. 5	0	i•5	4.5	6.5
17	82 • 1	85•4	87.0	86.2	87.0	87.1	80 - 1	78 • 6	83.0	77.0	69.1
18	80 • 1	85.3	87 • 1	85.7	86.2	86.3	83.3	83.2	78.2	71.6	71.8
19	78.7	86.8	87.2	88.0	87.2	86.7	74.5	70.6	68.2	66.3	67.0
20	77.9	86 • 1	87.0	87.3	86.3	83.7	74.2	68.2	63.5	67.6	62.9
21	78.2	86 • 6	88.2	87.3	85•8	32.2	74.0	69 • 4	59.9	61 • 1	62.1
22	73.7	84.6	87.3	84.9	81.6	73.2	63.9	70 • 6	74.7	56∙0	60.9
23	67.5	82.8	85.5	82.5	76.8	72.6	70.2	74.0	75.4	66.2	56.8
24	65.8	79.1	79.1	77.5	69.5	64.3	75.6	77.3	75•7	68.8	59.9
25	63.4	73.1	73.4	71.9	62.8	71 - 7	75 • 4	70.2	69.6	69 • 7	63.3
26	63 • 4	69.3	71.1	70.0	59.7	76.9	72.8	66.6	69.6	67.9	67.9
27	62.7	67.5	71.6	67.5	64 • 4	74.8	69 • 3	73.5	75 • 1	65.6	66.1
28	53 • 7	62 • 4	65.5	60.0	67.8	70.2	74-3	71 • 4	68 • 6	67.9	58 • 8
29	51.8	56 • 1	59.7	61.2	65•9	66.5	71.2	73.3	70 - 1	65.0	64.0
30	52.3	47.9	52.5	59.5	56 • 1	66.2	70 • 4	69.2	68 • 8	65 • 4	59•3
31	48.2	47.4	49.4	55 • 1	54.5	61.0	68 • 4	67-6	66.1	63.2	60.5
32	45.2	46 • 7	47.5	50 • 0	53.3	61.3	68.6	67.4	65∙ა	68•3	63.6
33	45.0	45.0	45.5	48.9	47.7	57.9	65.5	66•0	63•6	62.4	57•2
34	45.0	45.0	45.0	45.7	46 • 1	54.9	64-1	63.7	61.3	5 7• 5	55.2
35	45.0	45•0	45.0	45.0	45•0	52.1	61.3	61 • 1	5 8 • 9	57.0	54.6
36	45.0	45.0	45.0	45.0	45.0	48.9	59.2	60 • 1	57.3	53•7	50.0
37	45•0	45.0	45.0	45.0	45.0	45.2	54.7	54.8	53.3	51 • 6	47.0
38	45.0	45.0	45.0	45.0	45.0	45.0	51 • 7	52.2	50 • B	48 • 1	45•4
39	45.0	45.0	45.0	45.0	45.0	45.0	46.7	49.5	51.0	48 • 3	45.0
40	45.0	45•∪	45.0	45.0	45.0	45.0	46.7	49.2	49 • 3	45.2	45.0
Α	68.7	78.6	80.3	78 • 6	76 • 1	78.0	79 • 6	79 • 0	78 • 3	75 • 1	71 • 6
D	78 • 4	87 • 4	89.2	87.5	85.6	84.8	84.0	83.5	82.9	79•9	75• 9
OASPL	87.0	93•9	95+3	94.4	93.7	93.0	87.5	86•9	86.6	82.6	80.0
PNL	85.3	93.0	94•7	93.7	92.0	92.4	91.8	91.7	90•8	87.8	83 • 8
PNLT	85.3	93.0	94.7	93.7	93.2	92.4	93 • 1	92.7	90.8	89•6	85•4

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTUBER 6, 1976

EVENT 45, 110 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-12.0	- 9•5	-7.0	-4.5	-5.0	0	•5	3.0	5•5	7.5
17	78•5	86 • 7	87.6	85 •7	77.4	75.8	78 • 3	80•6	74•3	69•7
18	76.8	87.3	87.3	84.7	83.7	82.1	81.6	70.3	69 • 5	70.2
19	75 - 1	88.3	87.0	83.6	70 • 3	66.7	66.6	65.3	64.8	67.7
20	72.7	86.2	84.8	79.4	67.0	60.8	61.3	59 • 9	64.0	63.2
21	73.2	85.7	83.7	78.9	69.9	62 • 3	64.3	61.9	61.6	61.7
22	71 - 7	83.0	79.4	68.7	64.5	72.2	72.2	72 • 5	61.5	58 • 3
23	66 • 1	79.2	75.3	66 • 1	71.7	75.5	76.7	72.2	67.8	60.0
24	65 • 8	73.5	69.8	61.3	70 • 1	78 • 4	79.3	71.6	69.2	62.7
25	63.5	67 • 8	64 - 1	66∙0	70 • 7	70.0	67.9	63.9	67 • 1	63.3
26	58 • 6	67.5	58•6	68.2	67.9	70 • 0	71 •8	68 • 7	62.0	62.9
27	59.2	65.2	61.0	66.0	67.3	75 • 3	74.4	71.0	67.7	58 • 1
28	56.3	60 • 6	60.9	61.5	69.0	70.2	70.9	69.0	65.2	62.3
29	55.0	59.0	60 • 4	64.0	65.9	70 • 7	69.9	67.3	64.3	59 • 1
30	55 • 0	56.2	57.1	59.9	65.0	69.2	68 • 4	65 • 6	61 • 0	59 • 6
31	55.0	55.0	55.2	59.8	62.9	67.9	67.3	64.7	62.0	57.1
32	55•0	55.0	56 • 3	58 • 1	62 • 1	66.8	65.9	64.1	65.8	59.5
33	55.0	55.0	55.0	56.8	61.3	65•5	64.5	62 • 4	59.3	55 • 5
34	55.0	55 • 0	55.0	55.0	58 • 4	62.6	62 • 1	58 • 5	55•9	55+0
35	55.0	55.0	55.0	55.0	57.4	60 • 1	59 • 3	56•5	55.2	55.0
36	55 • 0	55 • 0	55.0	55.0	56 • 1	58.5	58 • 3	55 • 4	55•0	55.0
37	55•0	55.0	55.0	55.0	55.0	55•3	55.0	55.0	55.0	55.0
38	55•0	55.0	55.0	55 • 0	55.0	55.0	55.0	55.0	55•0	55.0
39	55•0	55.0	55•0	55•0	55.0	55•0	55.0	55•0	55•0	55•0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	66•6	76.3	73.8	71.9	74.9	78 • 9	78 • 9	75.2	72.9	67.9
D	75•6	85•9	84.0	80.3	80.0	83 • 4	83.6	80 • 1	78•0	73 • 6
OASPL		93.9	92.9	90 • 0	85 • 4	86.2	87.0	82.8	80.5	78 • 6
PNL	84.6	93.5	92.0	89.5	88 • 7	91.8	92.0	88 • 2	86•6	83 • 1
PNLT	84 • 6	93.5	92.0	90 • 6	88.7	91.8	92.0	88.2	88.3	84.3

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 24. 6 DEGREE APPROACH. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-28.0	-23.0	-18.0	-13.0	-8.0	-3-0	-1.5	0	2.0	7.0	10.0
17	79-4	81 - 1	81-9	85 - 4	85=9	84-1	83:6	82 • 6	80+6	78+0	75 -7
18	80.3	82.5	83 • 3	84.6	83.4	83 • 1	81.6	79.9	75.7	76.0	76.0
19	77.8	79.9	80 • 4	79.6	77.6	68 • 7	66.5	70.2	71.0	72.3	71.6
20	78.3	77.3	75.9	77.0	72.8	68 • 7	78 • 1	82.6	85.1	68.9	72.2
21	76.1	76.3	75 • 1	77.5	73 • 1	79.9	85.8	0.68	86.9	71.5	69.6
22	72.5	72.1	70.3	72.9	72.8	85.7	88.5	86.5	87.0	79.6	64.7
23	71.9	70.4	66 • 5	67.8	78 • 1	86.8	87.2	80 • 4	81.8	81 - 1	72.5
24	65•6	60.8	66•3	72.6	82.7	82.8	79.0	76 • 4	76.8	78.0	73.6
25	59.0	66.6	76 • 7	76.9	80.8	76.9	83.1	79.9	79 • 7	71.2	73.2
26	69.7	73.5	80 • 0	77.0	73.4	79 • 1	79.5	74.3	74.4	70.9	68 • 5
27	70.0	73.1	74.6	72.7	70.6	73.2	76.6	76.0	74.3	71.7	61 • 4
28	68.2	67.6	63 • 1	62.3	70 • 6	72.6	72.5	72.3	70 • 1	66.2	65.2
29	62.5	60 • 1	61 • 8	68.3	70.8	70.7	71.0	69.5	68 • 1	65.3	61.0
30	53.7	58.3	60 • 2	64.8	67 • 1	67.3	68 • 5	69.3	66 • 6	64.0	59.6
31	58.2	58 • 4	58.2	65.9	66.0	66.8	68.3	68.7	65 • 5	62.3	57.4
32	52.0	52.9	55•9	60•8	63.0	64.9	67.5	67.3	64 • 5	65 • 4	63.6
33	49.2	48.3	52.2	58 • 4	61.1	65 • 4	67.1	65.5	63 • 7	64.5	63.7
34	47.4	45.9	48.5	56•3	62.4	63 • 4	64.7	63.0	61.5	59.1	54.7
35	45.0	45.0	45 • 1	51.3	58.2	61 • 1	61.4	60.6	59 • 8	57.7	53 • 6
36	45.0	45.0	45 • 0	47.8	55.6	57.5	59.3	57.9	57.0	57.1	51.6
37	45.0	45.0	45.0	45.0	52 • 4	54.8	57.1	55.9	54.3	53.9	48 • 1
38	45.0	45.0	45.0	45.0	48.3	52+9	55.7	55+3	54 • 7	52.5	45.9
39	45.0	45.0	45 • 0	45.0	45 • 1	53 • 6	56.8	57 • 7	59.2	55.5	45.7
40	45.0	45.0	45.0	45.0	45.7	52.2	57.8	60.6	62.3	52.7	45.0
Α	72.7	73.8	78 • 1	77.9	80.5	82.4	84.2	81.6	81.2	77 • 1	74.3
D	80 • 6	82.2	84.7	85.2	87.7	90.7	92.3	90.0	90.2	85.4	82.0
OASPL	85•9	87.9	88•6	90.7	91.9	93•8	95.0	94.4	94.3	89.2	86.3
PNL.	86.3	87.7	91.0	91.3	94.0	96.7	98.0	90.2	96.0	92.0	87.1
PNLT	88 • 1	87.7	91.0	92.8	94.0	96.7	98.0	96.2	96.0	92.0	88•5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL SIS

OCTOBER 6, 1976

EVENT 27, 9 DEGREE APPROACH, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)

(DB RE 20 MICRO PA)

```
BAND
       -23.0 -18.0 -13.0
                             -8.0
                                                           7.0
                                    -3.0
                                              0
                                                    2.0
                                                                 12.0
  17
        80.0
               81.7
                      83.3
                             83.1
                                    83.3
                                           82.6
                                                  80.9
                                                          78.9
                                                                 74.9
        81.3
  18
               82.9
                      84.8
                             83.8
                                    84.6
                                           80.1
                                                          75.3
                                                   78.5
                                                                 72 . 4
  19
        78 • 4
               77.6
                      79.3
                             76.5
                                    70 • 4
                                           73.9
                                                   78.1
                                                          72.4
                                                                 70.7
  20
        74.8
               73.7
                      72.8
                             73.0
                                    71.1
                                           82.6
                                                  85.7
                                                          72.0
                                                                 73 . 4
  2i
        72.8
               72.7
                      71.7
                             68.2
                                    82.7
                                           85.4
                                                  86.4
                                                          70.0
                                                                 71.9
  22
        66.1
                                    87.5
               65.7
                      61.7 75.7
                                           86.3
                                                  86.0
                                                          80.2
                                                                 72.4
  23
        63.3
               62.5
                      71.6
                             81.3
                                    89.8
                                           79.3
                                                  80.3
                                                          84.1
                                                                 68.0
  24
        64.6
               71.0
                      81.7
                             86.7
                                    84.7
                                           75.8
                                                   77.1
                                                          83.5
                                                                 64.9
  25
        74.1
               77.4
                      84.5
                             84.6
                                    83.0
                                           79.6
                                                   79.8
                                                          78.4
                                                                 70.2
  26
        78.4
               79.4
                      82.4
                             76.2
                                    82.9
                                           73.5
                                                   74.9
                                                         76.0
                                                                 72 . 5
  27
        74.5
               73.1
                      69.8
                             77.4
                                    72.7
                                           74.5
                                                   74.4
                                                          75.3
                                                                 70.4
  28
        65.8
               64.2
                      71.4
                             69.5
                                    72.8
                                           73.1
                                                          67.9
                                                   72.1
                                                                 62.6
  29
        61.8
               68.0
                      67.7
                             71 - 1
                                    70.6
                                           69.3
                                                  69.8
                                                          67.9
                                                                 65 • 0
  30
        59 - 1
               58.7
                      65.7
                             65.6
                                    68 • 6
                                           67.9
                                                  67.7
                                                          64.9
                                                                 62.1
  31
        55.7
               60.2
                      61.6
                             64.2
                                    68.3
                                                  66.5
                                           67.6
                                                          62.8
                                                                 60.0
  32
        55 • 6
               57.7
                      60.3
                             62.7
                                    67.4
                                           66-4
                                                  65.9
                                                         64.2
                                                                 66.2
  33
        51.5
               56 • 1
                      57.5
                             62.3
                                    65.9
                                           64.8
                                                  65.0
                                                          63.7
                                                                 65.2
  34
        46.9
               51 • 6
                      56.3
                             60.3
                                    65.5
                                           64 • 1
                                                  62.9
                                                          58.8
                                                                 55.9
  35
        45.0
               47.5
                      52.7
                             58.8
                                    63.1
                                           61.4
                                                  60.8
                                                          57.2
                                                                 55.9
  36
        45.0
               45.4
                      50.2
                             58.3
                                    59.1
                                           58.4
                                                  58.4
                                                          56.0
                                                                 52 . 6
  37
        45.0
               45.0
                                    56.3
                      45.7
                             52.6
                                           55 • 7
                                                  55.7
                                                         52.7
                                                                 48.8
  38
        45 .C
               45.0
                      45.0
                             48.1
                                    52.2
                                           55 • 1
                                                  55.3
                                                          51.7
                                                                 46.3
  39
        45.0
               45.0
                      45.0
                             45.6
                                    52.8
                                           58.3
                                                  59.3
                                                         54.8
                                                                 45.7
  40
        45.0
               45.0
                      45.0
                             45.7
                                    51.9
                                           61.6
                                                  63.0
                                                         52.8
                                                                 45.0
  Α
        76.2
               77.8
                      82.8
                             83.2
                                    85.2
                                           81.2
                                                  81.6
                                                         81.3
                                                                 75.0
  D
        83.0
               85 • 0
                      89.5
                             91.2
                                    93.4
                                           89.7
                                                  90.1
                                                          89.2
                                                                 82.3
OASPL
        86.9
                      91.3
               88.2
                             92.9
                                    95.5
                                           94.2
                                                  94.7
                                                         91.0
                                                                 84.7
 PNL
               90.7
        89.4
                      94.3
                             96.3
                                    99.1
                                           96.0
                                                  96.1
                                                         94.3
                                                                 88 - 1
PNLT
        89.4
               92.9
                      94.3
                             97.5
                                    99.1
                                           96.0
                                                  96.1
                                                         94.3
                                                                 89.4
```

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 213

OCTOBER 6, 1976

EVENT 29, 60 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)

(DB RE 20 MICRO PA)

BAND	-50.5	-41.0	-31.5	-22.0	-12.5	-3.0	0	6•5	16.0	18.0
17	77.5	75•3	78.0	79.9	84 • 3	81 • 0	75.8	74.9	73 • 8	72.4
18	77.8	76 • 1	79.3	81.3	84.7	77.7	73 • 4	69.5	68.8	68 • 7
.19	74.4	73.2	77.3	78.8	79.4	64.2	66.2	67.5	65.8	63.5
20	74.7	70 • 5	76 • 1	77.1	77 • 8	71 • 1	76.3	67.8	69.8	71.2
21	75.2	69-0	76 - 6	78 - 4	77 • 7	77 - 5	77 = 1	68 - 1	63=6	63 = 6
22	71.8	70.2	74 - 3	74.9	70 • 3	81.9	81.5	74.9	65 • 4	64.5
23	70.9	71 - 4	72.2	71.8	65 • 6	79.4	72.8	74.9	61.2	58 • 3
24	66.0	66 • 5	66 • 7	67.9	68 • 6	78.0	71 • 4	67.8	60.8	57 • 6
25	65.2	66 • 5	59.2	58.0	74.7	75 • 1	72.9	60.9	61.8	59.9
26	67.8	68 • 4	55 • 8	57 • 1	77 • 4	75 • 7	67.1	67 • 1	62 • 4	61 • 4
27	64.6	65 • 8	52 • 8	58•7	72 • 7	71 - 4	69.3	63.5	58 • 8	60•0
28	55.5	56.7	52 • 5	60 • 6	63 • 3	69.8	68.7	64.4	57.2	51 • 1
29	48.9	45.9	50 • 2	57.0	66•3	67.8	67.4	65 • 3	59•3	58 • 1
30	45.3	45.7	47.9	51 • 3	60.5	66.9	67.3	61 - 8	56•2	53 • 1
31	45 • 0	47.2	46.8	50 • 1	62 • 1	65•6	67.5	59 • 8	54.8	54 • 1
32	45.0	47.8	45.1	48.5	58•6	66•7	65.3	62.9	58 - 7	61.7
33	45.0	45 • 0	45.0	45 • 8	57•3	65 • 8	63•3	60 • 4	58•3	57 • 4
34	45.0	45.0	45.0	46.5	55•3	62.3	61.5	55 • 1	52.7	48 • 8
35	45.0	45.0	45.0	45.0	50 • 4	60•9	58•9	55 • 4	52.6	48.2
36	45.0	45•0	45.0	45.0	47.0	57.1	56 • 1	53•8	49.6	45.5
37	45.0	45 • 0	45.0	45.0	45 • 0	54.1	53.7	50 • 1	45.8	45.0
38	45.0	45 • 0	45.0	45.0	45•0	51.0	52.7	49.0	45.0	45.0
38	45.0	45.0	45.0	45.0	45 • 0	51.9	55 • 6	50 • 9	45.0	45.0
40	45.0	45 • 0	45.0	45.0	45 • 0	50•8	57.3	48 • 2	45.0	45.0
Α	68•9	69•5	67.4	69 • 5	76.7	78 • 7	77.6	73 • 2	87.4	67.7
D	78 • 2	77 • 4		80 • 3	84.2	87.0	85 • 1	80.8	75.4	75•3
OASPL	83.5	81.9	84.7	86 • 8	90.0	91.3	90 • S	84.6	79 • 5	78•9
PNL	83 • 4		83•6	85•5		92.8	91.4	86•9	81.8	81.4
PNLT	83.4	82 • 8	83 • 6	85.5	92 • 1	92.8	91.4	86.9	81.8	83 • 4

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY BELL 212

OCTOBER 6, 1976

EVENT 30, 60 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQJENCY BAND VS TIME (SECONDS)
(DB RE 20 MICHO PA)

BAND	-23.0	-17.0	-11.0	-5•0	0	1 • 0	7•0	13.0	19•0	21.0
17	78 • 5	80.6	82.3	85.0	74 • 1	72.2	74.8	71 • 3	68 • 8	69 • 4
18	78.5	79.9	81.3	82.6	72.9	69.0	69 • 1	65.9	66.3	65 • 0
19	78.5	78 • 8	78.6	77.1	60 • 1	58 • 7	65 • 1	64.3	61.7	61.6
20	77.4	76.4	74.1	71.6	72.3	75.5	68.5	55 • 3	65.9	64.2
21	75.9	73.6	73.5	69.8	76.0	73.8	58 • 2	61.7	63 • 4	62.4
22	72 • 4	72.4	69.8	70.3	79.4	77.3	66.8	59 • 9	63 • 1	63.6
23	71 - 1	71:9	65 - 1	75 - 1	74 - 1	68 • 4	70.6	55 • 7	59 • 7	58 • 5
24	65 • 2	63 • 4	64.0	78.5	68 - 8	65.9	66•6	50 • 7	53.4	55 • 1
25	55 • 1	57.9	67.9	77.0	72.7	68.5	61.5	52.7	50 9	51 • 1
26	51.8	70 • 1	73.7	72.0	68 • 5	66.0	58.3	54.5	50 • 4	49.4
27	51 • 1	70.9	71.3	71 - 1	69.6	68 • 3	63.5	55 • 4	52.9	50.8
28	49 • 3	67 • 2	62-1	67.8	67.4	67.5	58 • 3	51.0	50 • 5	50 • 1
29	49.3	58 • 2	61.7	62.5	66.5	67.6	59 • 6	48.0	48 • 3	48 • 8
30	46.3	52.1	58.2	60.8	67.9	68.0	57.2	49.7	48.0	48 • 3
31	46.9	51.2	56 • 6	60.5	67.4	67.7	55.1	49.8	51 - 5	52 - 6
32	45 • 4	48.5	54.7	58.5	66.1	65.3	62.2	59 • 6	60 - 8	60.5
33	45.0	47.7	55•1	56.4	65.3	63.7	56 • 1	52.7	54.4	55.0
34	45.0	47.0	50 • 8	55.8	62.7	€2.5	53 • 4	47-2	49.9	52.6
35	45.0	45.0	47 • 1	53.9	61.6	61.2	55.7	49.5	57.6	57.9
36	45.0	45.0	45.0	53 • 1	58 • 6	58 • 4	50.9	45.0	46.3	46.7
37	45.0	45.0	45.0	48.8	55 • 3	55.8	47.8	45.0	45.0	45.0
38	45.0	45.0	45.0	46 • 1	52.6	54.0	45.0	45.0	45.0	45.0
39	45.0	45.0	45.0	45.0	53.2	55.0	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	54.2	56.5	45.0	45.0	45.0	45.0
Α	66•7	72.3	73.6	76.5	77.2	76.0	69.3	63.4	65.5	65.3
D	78 • 4	80 • 1	81 • 1	84.4	84.8	83.3	77.2	71.7	74.4	74.3
OASPL	84.8	85.8	87.0	89.9	89.1	88.3	80.2	76.2	74.8	74.8
PNL	83.2	85.7	87.3	90.4	90.7	89.4	83 • 1	78 • 6	80 • 3	80.5
PNLT	83.2	85 • 7	87 • 3	90.4	90.7	89.4	85.3	81.4	83.5	83.2
						•				

NOISE LEVEL FREADENCY SPECINA TIME HISTORY

BELL SIS

00 I ∪488 6 x 1976

EVENT 31, 60 KT. FLY BY, CENTERLINE MIC. (SOFI SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-42.0	-34.0	-25.0	-18.0	-10.0	-2.0	-1.0	0	6. 0	14.0	15.0
i 7	78.3	78 • 6	79.5	80.9	83.6	76•Ê	75.6	73.7	76 • 6		5.43
18	78.6	79.4	80 • 3	82.0	83 • 4	75.0	73.9	72.1		73 • 7	72.9
19	75 . 7	77.0	77.3	77.3	77.0	60.9	63.7	63.8	72.2	68.3	67.4
20	75 • 8	76.3	74.2	76.4	73 • 8	73 - 1	75.0	•	64 • 1	65•3	63•6
21	74.9	76.0	73 • 3	77.0	73 • 2	77.6		75•7	63.6	66 • 8	65•8
នខ	72.2	74.2	71.5	74.6	63 • 4		78 • 7	76.7	66.4	60•9	59•3
23	71.0	73.0	71.8	72.6	67.6	81 • 1	81.9	80.9	75 • 5	55•8	55•8
24	66 • 4	67.8	67.4	63.6	73.8	75.5	74.8	72.4	76•5	61.3	58 • 4
25	62.8	62.2	60.5	63.6		72.9	72 • 1	71 • 3	69 • 3	65.5	57 • 1
26	62 • 3	61 + 3	59.2		75.0	76.2	76.5	73.9	66 • 1	62.1	59•5
27	56.6	59 • 8		72.2	73 • 2	71.9	71 • 1	68.7	69.6	60.9	58 • 7
28	50.9	53 • 1	59 • 6	73 • 5	66.0	72.6	73.5	71 • 1	66•9	55.0	52.9
29	46 - 4		55 • 5	69.0	67.3	67.9	69.7	68.9	66.5	59.4	55.2
30	45.0	47 - 0	52 - 9	59 = 6	59 - 1	67.0	68.2	68 4	66+9	56.1	54+0
31		46 • 5	51.2	59+2	58 • 5	67 • B	69.8	68.4	64.0	56.7	54.7
	45 - 1	47 - 1	51.5	59.0	57.5	67.2	68 • 6	68 • 1	€2 • 1	55 • 1	53 • 4
32	45.0	45 • 1	47 • 7	55.2	58•9	66.2	67.4	64.8	62.3	64.1	62 • 3
33	45.0	45 • 0	47.4	51.6	55.4	65.4	65 • 1	63.4	61.3	61 • 1	59.4
34	45.0	45.0	45.9	49.9	54.9	63-1	63.0	61.6	58.2	53.4	51 • 1
35	45.0	45.0	45.0	48.2	52 • 9	59.8	60.4	59.5	56 • B	52.6	49.6
3 გ	45.0	45.0	45.0	45.6	49.1	57.7	58.4	56.3	54.8	49 · B	47.6
37	45.0	45.0	45.0	45.0	45.7	54.5	55.6	54.5	51.7	46.0	45.4
38	45.0	45.0	45.0	45.Q	45.0	53.3	54.0	53.0	49.8	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	54.6	55.8	55.3	52 4	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	54.4	56.6	57.4	50 • 4	45.0	-
A	66.7	68 • 1	67 • 6	75.0	74.6	78.3	75.7	77.7	74.5	43•0 69•6	45.0
D	77.6	79.2	$7\varepsilon \cdot 1$	88.2	82.7	85 • 6	86•E	84•8	82.1		67.5
CASPL	84.1	84.9	85.2	87.4	89.4	90.4	90.9	90.4	85.8	77.0	75.0
PML	8 - 58	84.0	83.5	88.0	86∙3	92.0	92.7	91.3		79.8	78 • 6
PNLT	83.6	84.0	83.5	88.0	89.9	92.0	92.7	_	88+4	83.0	81.0
	_			00.0	0,743	20.40	7641	91.3	88 • 4	85.0	83•0

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 32, 99 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-18.5	-15.0	-11.5	-8-0	-4-5	-2.0	-1.0	0	2.5	6•0	7.0
17	80.8	86•5	84.8	86•7	88•2	82.5	76•6	78.0	78.0	74.5	75 • 1
16	81.6	86.0	84.9	86.2	86•i	83•i	80+9	78.4	59.0	72 - 3	72 - 8
19	81 • 7	86.2	84.8	86.8	84.7	77.0	69.8	63.1	62.2	65.3	67.4
20	82 • 1	84.0	83.0	84.6	80.9	70.2	69.0	74 : 3	75.6	63 • 4	64.3
21	82.2	83 • 2	83.4	84.2	78.7	73.7	79.1	81.0	69.8	57.3	58.2
22	81.2	78.3	81.7	80 • 1	69.3	77.1	79.9	81.8	77.4	64.5	58.2
23	79.5	74.8	79•7	76.5	75 • 4	84.3	83.3	79.1	71.9	69.6	66 • 4
24	75 • 1	68.0	75.2	65+6	80.4	84.9	79.7	73.2	66.2	67.1	64.8
25	68.9	63.0	65 • 6	66 • 1	82.2	77.9	77.9	77.2	70.0	63 • 4	63 • 8
26	61.7	61.7	59.9	66.1	79.5	81.2	81.2	74 • 4	66.2	62 - 1	58 • 1
27	55.9	54.2	56 • 0	67.5	71 - 4	79 - 1	76.6	74.9	70.2	67.3	62.9
28	52 • 3	51 • 0	58 • 7	64.5	74.0	74 • 4	73.8	70.9	68.2	61 • 1	60.6
29	47 • 4	50 • 3	58 • 6	56.5	68.8	73.4	73-1	69.5	66.1	63.8	61.2
30	46 • 5	49 = 3	54.9	61 + 6	69 - 1	70-3	69.8	68.0	63.6	61.7	58 • 4
31	44.2	47 • 6	50 • 7	55•4	64 • 3	70.3	69.4	68 • 1	62.2	60.2	57.6
32	44.5	45.4	48 • 8	51.6	62.0	69.5	68 • 8	67.3	63.3	67.8	65.0
33	43.6	45.0	47.6	50 • 1	59•7	67.8	66.7	66.7	62.2	59.5	56.7
34	43.5	45.0	45.5	47.2	58•4	68.0	66+6	64.7	60.5	56.4	54.0
35	43.5	45.0	45.0	45.0	55 • 4	65+0	64.3	63.0	59.6	57.5	55.8
36	43 • 5	45.0	45.0	45.0	51.5	61 • 3	60.9	59.8	58 • 2	53.0	51.2
37	43.5	45.0	45.0	45.0	48.0	57.4	57.5	57.1	55.7	50.7	47.7
38	43.5	45.0	45.0	45.0	45•7	53.4	54.6	54.7	55.0	48.4	45.7
39	43.5	45.0	45.0	45.0	45+0	50.2	54.1	57.4	57.7	47.9	45.4
40	43.5	45.0	45.0	45.0	45.0	47.8	51.6	56.7	58.7	45 • 8	45.0
Α	74.5	72.7	74.9	74.6	81.2	83.7	82.6	79.7	75 • 5	73.0	70.5
D	85 • 4	85•4	86 • 3	86.3	88 • 88	90 • 8	89•8	87.7	83.0	80 • 1	77.9
OASPL	89.8	91.9	91.5	92.9	93.3	92.9	91.5	90.6	87.5	83.0	82.3
PNL	88.7	89.3	90 •2	91 • 1	94.8	97.2	96.0	93.6	89.2	86.6	84.2
PNLT	88 • 7	89 • 3	90 • 2	93.0	96 • 1	97.2	96.0	93.6	89.2	89.3	86.9

THBLE E-YL

. NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 33. 99 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	0.03-	-16.0	-12:0	-8.0	-4.0	-1.5	0	4.0	8.0	11.0
17	80 • 5	84.0	84.6	87.0	87.2	60 • 1	78 - 1	76•6	74.9	71 • 6
13	81.0	85.3	84.4	35.7	85.0	3.18	78.2	73 • 7	73.8	71.4
រួទ្	80∙8	€7 • Û	83 + 7	86.C	88.1	71.5	63.6	65.2	69.6	67.5
20	76 • 0	86.9	79.9	83.7	78 • 5	68 • 1	74.2	65.6	67.3	66.7
21	76 • 6	87 • 8	78 - 1	82.9	74.9	77.7	81.6	6604	61.4	63 • 1
22	72.5	85.6	79.9	78.7	69.7	79.7	81.3	74.2	54.9	61.2
23	71 • 1	85.3	77 . 9	75.0	76.5	84.8	79.6	73.2	61.2	55 • 5
24	69•3	81 - 1	71.3	66.6	78.7	82.6	72.5	66.6	66.1	53 • 3
25	63.4	76.6	64.0	69 o r	78.4	73 - 1	76.9	86.0	63.6	57 - 5
26	64 • 4	73.2	59•9	72.5	75.3	77.8	72.6	68 • 7	60.7	62.6
27	60+9	70.2	55 • 5	72.3	70.0	72.9	72 - 1	£8.7	57.5	62.0
28	60 • 2	65 • 7	55•6	66+4	71 01	74.0	69.7	66.3	61.1	53 - 2
29	55 ° l	59.2	55•7	62.5	65.9	72.1	69.2	65.9	57.2	57.7
30	51 - 3	56 • \$	53+3	65.9	01.3	69 • 4	66+9	62 - 7	58.4	54.0
31	47.5	54.0	48.5	62.8	59.3	58 - 2	66∙€	61 • 4	56.6	53 • 4
32	45 • 7	50 • 7	46.2	56.6	57 · 2	66 • 8	66.0	64.0	62.7	64.3
33	45.2	47 • 8	45 • 3	52.5	57.1	65.6	65.9	60.0	55.4	54 - 6
34	45 • 0	45.4	45.7	50.9	56.2	64.9	64.3	56•6	54.1	50.2
35	45.0	45.0	45.0	47.7	54.7	62.9	62 - 1	57.3	55.2	54.3
36	45.0	45.0	45.0	45.8	50.8	59•7	59 • 1	54.6	49.2	47.0
37	45.0	45.0	45.0	45.0	48.2	55 • 6	55.9	52 • 4	46.7	45.1
38	45.0	45.0	45 • €	45.0	45 • 3	52.6	54 • 1	50.9	45.0	45.0
39	45 • 0	45.0	45.0	45.0	45.0	50.2	55•4	53.9	45.0	45.0
40	45•0	45.0	45.0	45.0	45.0	47.7	54.8	53.2	45.0	45 • 0
Α	69 • 3	80 • 4	72.8	76.3	78•0	81.2	78 • 8	74.0	69.2	68 • 1
D	78.7	89 • 1	82.4	84.4	84.4	87.3	85 • 3	79.6	75.1	73.9
OASPL	86 • 6	94.6	90•0	92.3	92 • 1	91.8	90.2	85.5	81.5	78 • 4
PNL	85 • 4	94.7	88.1	91.5	91.9	95.5	93.0	87.2	82.9	82.4
PNLT	85•4	94.7	88•1	98•6	92.9	95•5	93.0	88.3	85.1	85•8

TABLE E-YI

NOISE SEVEL FREQUENCY SPECIMA TIME HISTORY

BELL 212

OCTUBER 6, 1976

EVENT 34. 99 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREITENCY BAND VS TIME (SECONDS) (DB RE 80 MICHO PA)

BIAND	-19.0	-15-5	-12+0	- ₹ •5	-5.0	-1 • 5	-1-0	C	2.0	5+5	8 ± 0
17	80.9	84.8	85 • 0	86.9	88.0	81.2	77.3	76 • 1	78 • 8	74.2	73.2
18	80.0	34.5	84-9	55 • 5	86.3	81.9	80.9	78.2	73 • 1	75.1	73.0
1 9	81.5	85.8	83.9	86.5	85.1	72.2	67.3	63.3	61.5	68.7	70.3
20	79.5	86.8	81.9	84.7	82.5	68.3	71.6	75.3	76 • 1	67.0	68.9
21	70.3	86 ≥ 5	81 . 7	83.9	80.3	77.9	80.5	81.6	71 - 1	61.8	65.0
22	73.9	84.9	79.1	80.3	71.7	79.2	80.7	82.6	78 - 4	61.4	60.7
23	71 -8	83.6	70.8	76.4	71.3	34.1	83 • 4	79.6	73 • 4	65∙8	56 • 1
24	6֥8	79.6	75 - 1	65.9	76.1	ರ1 • 1	78 • 7	73.2	67.1	64.7	57.5
25	61•!	74.7	67 • 6	65.3	76.2	72.5	76 • 1	78 • 3	70.0	64.1	61.4
26	52.2	71.6	60 • 3	65.5	75.4	76.5	77.2	74.3	67.3	59 • 1	64.3
27	49.2	68.3	56•7	62.9	63.9	72.9	74.5	74.9	71 • 4	66 - 1	60.9
28	48.2	65 • 4	58 • 3	60.8	66.3	72.4	72.4	71.6	70 • 1	61 • 1	57.6
29	47.3	59•6	59.7	53 • 6	66.2	70 • 9	71.4	70 • 4	66•9	63.2	60•7
30	46.9	57.0	57 • 2	52.8	61.2	63.3	68•4	69.6	65•9	60.3	56-1
31	45.2	55•5	48 • 6	51.9	59.2	68 • 1	68 • 4	68•3	63•8	59•9	55•7
32	45.0	52.1	46 • 4	43 - 7	56.9	68 • 4	69.1	68.3	64.5	68•9	63 • 1
33	45.0	49.0	46.8	45.6	55.2	66.6	67.1	67.0	65.9	59.8	55•9
34	45.0	46.7	45•3	45 • 3	54.3	65•8	66.2	65•6	62.0	5 7•7	52•6
35	45.0	45.0	45.0	45.0	51 • 8	62 • 8	63.0	62.7	61.0	59•6	53.0
36	45.0	45.0	45.0	45.0	49.6	60•7	61.3	60.6	58 • 5	54.9	48.3
37	45.0	45.0	45.0	45 • C	45.9	57.5	58.7	58 • 6	56 •6	51.6	45•6
38	45.0	45.0	45 • 0	45.0	45.0	54.6	55.8	56.7	56•0	48 • 5	45.0
39	45.0	45.0	45.0	45.0	45.0	53.0	56.4	58 • 7	59 • 5	48.2	45.0
40	45.0	45.0	45.0	45.0	45.0	50.9	54.6	59 • 3	59•9	45 • 8	45.0
Α	68.5	79.2	73 • 8	74 • 1	76.9	81 • 1	81.5	80•9	76.8	73.0	68•8
D	79.1	87 • 7	83 • 4	84 5	84.5	87.2	37.4	86•6	82•5	79•0	74.6
のひらちて	87 • 3	93.7	91 • 1	92.8	93.0	91.8	91.3	90•7	88•8	82.5	80.9
PNL	85 - 1	93.5	89.3	90 • 4	91.4	95•3	95 • 4	94.3	90 • 4	87.2	82 • 8
PNLT	გე • I	93.5	89•3	90 • 4	91 • 4	95•3	95.4	94.3	90•4	90.2	85•3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL SIS

OCTUBER 6. 1976

EVENT 35. 110 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECUNDS)
(DB RE 20 MICRO PA)

BAND	-18.0	-14.0	-10.0	-6.0	-2.0	0	2•0	6.0	10.0	10.5
17	82.4	88 • 1	88.2	88•7	85 • 3	80 • 1	79•9	76.9	79•6	77.7
18	80.6	87.1	85.5	88 • 4	85 • 8	79 • 1	79.2	79•0	81.8	80 • 7
19	81.5	87.9	85.8	87.8	79.5	68.9	70.3	75.4	82.2	81.5
20	79.9	87.4	84.3	85•3	72.9	76.2	74.4	72 • 5	76∙8	76.3
21	80.6	88 • 1	85.2	84.6	77 • 7	82.0	74.3	68.2	68 • 2	67.6
22	78.0	85.4	83.5	0.08	79.6	83.2	7 8 • 8	66•5	70•9	70 • 1
23	76.6	83.9	83.1	78.2	85.8	80.0	76 • 1	66•5	67.4	63.2
24	72.9	80.0	78.7	75.8	84.5	73.5	69.5	69.1	64•3	65•3
25	69.3	73.7	70.0	75 • 4	77.4	78•2	72.0	67.9	62•4	62 • 3
26	62.7	73.8	68.0	75.3	80.2	74.0	70.8	65.0	61.3	61.0
27	57.0	71.0	64.2	72.0	77.7	74.9	71.9	62.0	63•5	62.5
28	54.3	66 • 6	63.9	63.9	75 - 1	72.8	69•7	65•9	60.0	60 • 1
29	50 • 8	63 • 4	61.9	66.0	74.3	73.8	69•3	62 • 4	56 • 1	55 • 0
30	48 - 1	61.0	58 • 8	60.2	72•3	71.5	67.0	63•5	57.8	57•4
31	46.4	58 • 0	58.4	58 • 8	70 • 2	70 • 6	65•Ź	61 • 6	54.3	54.0
32	45.0	54.2	54.3	56.8	68•9	69 • 6	66•5	67•5	60 • 8	61.0
33	45.0	51.3	49.5	53 • 1	66•7	69 • 2	64.5	60 • 1	53 • 6	52 • 4
34	45.0	47.1	48.4	51.9	67 • 4	68 • 4	62 • 4	58 • 2	52 • 1	51 • 0
35	45.0	45.0	45.3	48.0	64•8	66 • 3	61 • 1	57.9	51 • 6	5 0•3
36	45.0	45.0	45.0	45.7	61 • 7	63.0	5 8 • 5	52 • 1	46.0	45 • 8
37	45.0	45•0	45.0	45-0	57•3	60 • 5	56 • 8	49.7	45.0	45.0
3 8	45.0	45.0	45.0	45.0	55 • 1	58.0	55•4	46 • 1	45.0	45,0
39	45.0	45.0	45.0	45.0	52•2	59•9	58 • 8	45.9	45.0	45.0
40	45.0	45.0	45.0	45.0	49.6	61 • 3	59 • 4	45.0	45.0	45.0
Α	72.2	79.9	77•9	78.2	33.5	81.8	77.6	73 • 8	69•5	69.1
D	81.7	89•0		86•7	89•3	87 • 7	83.6	79 • 6	78 • 4	77.8
OASPL	88 • 8	95.5		94.7	94•0	91.8	89•8	85.8	86.6	85•8
PNL	87 • 6	95+0		93 • 3	97.6	95 • 6	91.5	87.7	85•0	85.3
PNLT	87 • 6	95•0	93.0	94.6	97.6	95 • 6	91.5	90•0	88 • 3	87 • 9

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 36, 110 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-17.5	-14.5	-11.5	-8.5	∽5•5	-2.5	0	• 5	3 • 5	4-5
17	83.0	84.4	85 • 4	87.3	89•6	89.7	75.2	75.5	72.7	73 • 7
18	83.9	85.2	84.7	86.4	88.5	88.8	78 • 4	75.7	77.2	76.8
19	83 • 6	84.9	86.2	87.2	89.0	86 • 1	63.6	61.6	68 • 4	71.0
20	83.8	84.2	85.7	86.8	86.5	79 • 7	76 . 4	78 - 1	62.6	66.0
21	82.9	85 • 1	85 • 5	86.9	85.4	76.3	82.6	80.8	63.7	61 • 4
22	80 • 9	83.0	83.5	83.5	79.7	79.3	83.6	83.9	71.4	67.3
23	77.6	82.0	81.3	82.9	75.2	85.6	79.8	76.9	72.8	70.4
24	72.2	7ۥ5	76.3	75.2	75 • 4	86.8	74.2	73 • 4	70.0	69 • 1
25	68 • 6	73.8	68 • 8	70.5	74.8	84.2	78 • 5	76.8	64.3	66 • 1
26	66•4	70 • 5	66.2	69.3	77.2	80 • 4	74.6	72.1	69 • 1	64.0
27	60.9	66 • 2	61 • 4	67.6	75 • 7	79.4	75 • 2	72.1	69.6	70•0
28	54 • 8	63 • 4	56 • 1	66.8	68 • 6	76.8	72.7	71.6	68 - 1	65.5
29	53 • 5	55.6	55 • 5	65.2	67.7	75 • 5	72.2	71.4	67.3	67.6
30	50.9	52.7	54.8	58 • 1	68 • 2	72.0	70.6	69 • 4	64.7	65.5
31	50 • 4	51.5	52 • 6	60 • 5	65 • 6	70 • 5	70.0	69.0	64.0	64 • 5
32	47.2	49.7	47.7	55•1	61.8	69 • 1	69•6	68.8	69.7	68 • 2
33	46.2	46.4	46 • 4	52.0	58 • 2	67.5	69•5	68 • 5	63.1	62.5
34	45.0	46.3	45.6	50.8	55 • 5	67•4	67.6	66.2	59•5	60 • 5
35	45.0	45.0	45.0	46.3	51.0	65•9	65•1	64.2	60 • 7	61 • 1
36	45.0	45.0	45.0	45.0	48 • 5	63 • 1	62.2	61.5	55•8	56 • 1
37	45.0	45.0	45 • 0	45 • 0	45.0	59.2	60 • 4	59.6	53.2	53 • 4
38	45.0	45.0	45.0	45.0	45.0	55.2	58 • 8	58 • 3	51.2	50 • 3
39	45.0	45.0	45.0	45.0	45 • 0	51.5	59•5	60 • 1	53•5	50.2
40	45.0	45.0	45.0	45.0	45.0	50.2	61 • 0	62.3	52.2	47.2
Α	74.2	77 • 6	76•5	78.2	79 • 5	85 • 6	81.9	80.5	76 • 4	75 - 4
D	83.8	86 • 4	86 • 1	87.2	87.5	91 • 4	88.0	86.8	81.5	80.5
OASPL		92 • 7	93.0	94.3	95•5	96 • 1	90 • 9	90 • 1	86.2	85.3
PNL	89•6	92 • 1	91 -8	93 • 8	94.7	99•5	95 • 4	94.7	89•7	88 • 7
PNLT	89•6	92.1	91.8	95 - 1	94.7	99.5	95 • 4	94.7	91.7	90.2

TABLE E-II

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

Appropriate the second section of the second

OCTOBER 6, 1976

EVENT 37, 114 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FAEX-JENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14.5	-12.0	-9•5	-7.0	-4-5	-2.0	-1 -0	0	• 5	3.0	4.5
17	84.0	87.9	86.0	89 • 1	91 - 3	90.3	87 • 7	81.8	79.7	75 • 5	73 • 8
18	81.7	87 • 4	86.0	89.2	90 • 1	86.9	86.2	83 • 3	79.8	80.0	78 . 0
19	79.2	88.7	86.6	89.7	88.88	81.6	73 • 1	66.5	66.2	70 • 8	73 + 3
20	83 • 4	89.2	87.7	89.8	86.8	75.2	74.1	77.6	78 • 7	67.2	70 • 7
21	84.0	89.3	88 • 6	89.3	85 • 4	79.2	84+4	83 • 5	81.0	70 • 3	66 • 1
22	80.7	87.7	88.0	86.5	78 • 3	84.0	86 • 6	84.3	88.88	76 • 1	66•3
23	76.1	85.4	86.7	83.0	78.7	87.3	89 - 4	82.8	77.4	76.6	70 • 9
24	72.2	81 • 4	80.5	77.1	81.7	85 • 8	83 • 6	75 • 7	73.8	71.3	70 • 7
25	71.9	76.2	75.0	79.2	80 • 1	78 • 6	82.6	80.9	77.4	65 • 4	68 • 2
26	69.5	78.6	77.3	77.1	81.9	79.2	82.5	77 - 1	72.5	70.2	63.5
27	67 • 8	77.9	75.5	.74.3	78•0	78.2	78 • 2	76 • 5	73 • 7	68•6	66 • 3
28	58.7	73.9	69.9	72.9	72.1	75.8	76 • 3	73 • 7	71.6	66+9	64•9
29	60 • 5	71.3	67 • 7	67.0	73.7	73.5	74.4	73.9	72.0	66•9	63 • 3
30	53.9	68 - 1	64.8	62 - 1	69.5	71.5	72.0	71.3	70.2	65 • 1	62 • 5
31	51 • 8	65 • 4	62.7	61.2	70.4	70•9	70 • 9	70 - 1	69 • 1	63.7	61 • 1
32	51 • 3	59.8	56.7	60.9	68 • 2	69 • 1	70.2	70 • 7	69 • 8	67.2	67•9
33	47.6	56 - 1	55 • 8	56 • 4	64.7	67.7	69•9	69 • 4	68 • 1	62 • 1	59 • 7
34	45.6	51.4	50 • 0	50 • 6	61.9	67.8	69.3	68 • 6	66.9	59.9	58•0
35	45 -0	48 • 4	46.8	47.3	58•6	65.0	66+3	66 • 1	65.0	59.2	58 • 7
36	45.0	46.8	45.0	45.2	54 • 1	59.9	63.0	62 • 5	61 - 1	56•5	53 • 8
37	45.0	45 • 4	45.0	45.0	50.2	57 • 1	60 • 3	59.9	58 • 9	53 • 5	51.9
38	45.0	45.0	45 • 0	45.0	46 • 3	54 • 1	57.5	57•7	57.7	52 • 8	48•7
39	45.0	45.0	45.0	45.0	45.0	50 • 9	56•6	59.5	59.9	56.0	49 • 1
40	45.0	45.0	45.0	45.0	45+0	47.8	54 • 3	59.9	61.2	54 • 5	46 • 5
Α	74.6	83 • 3	82.5	82.0	83.3	84.6	85•5	82.9	80.6	76 • 1	73 • 7
D	83.8	90•9	90.5	90.3	89.9	90.9	91.7	89.3	87.1	81.9	79.7
OASPL	90 • 4	96.5	95•6	97.0	96•6	95.8	95•8	92.9	91.2	87•3	84 + 8
PNL	90 • 4	97.3	96.5	96 • 7	97.5	98 • 6	100.2	96•7	94.8	89•8	88.0
PNLT	91 • 8	97 • 3	96•5	96.7	97.5	98.8	100.2	96.7	94.8	91.2	90 • 5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6. 1976

EVENT 38. 114 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-16.0	-13.5	-11.0	-8.5	-6.0	+3 • 5	-1.0	o	1.5	4.0
17	82.4	89.0	89.6	90.5	91.8	94.3	88.9	80 - 1	75 • 6	73.0
18	81.3	90 - 4	90.6	91.0	91.5	93.1	86.1	80 - 1	73 • 1	73.6
19	81.1	90.6	91.5	92.1	92.0	92.6	78.7	65.0	63.3	67.3
20	80.2	90.8	91.5	. 92.1	90.8	89.2	72.0	76.5	76 + 7	64.9
21	78.7	92.2	92.3	92.6	91.2	87.8	81.3	83 • 4	72.2	59.6
22	79.5	90.2	91.8	91.8	89.5	80.6	82.0	84.0	79.6	64.5
23	77.9	89.0	90 - 4	91.1	88.3	80.8	87.2	82.5	74.6	69.5
24	76.0	86.9	86.6	87.4	81.8	85.0	83.8	75.1	70.0	69.2
25	70 • 8	83 • 4	80.6	80.3	70 • 4	85.2	77.9	78 • 9	73 • 7	67.2
26	66.5	80.3	75.3	73 • 1	66.7	83.3	80.3	76.6	71.7	64.9
27	64.0	76.0	71.8	69 - 1	70.2	76.9	77.8	76.3	74 • 1	69.7
28	59.8	73.0	67 • 4	69 • 1	70.2	73.0	75.6	74.0	70.8	66.6
29	56 • 1	64.7	64 • 1	69 • 1	67.9	70.0	75.0	73 • 6	71.3	66 • 6
30	55.0	60 + 1	60.0	69 • 5	61.7	65∙8	73.7	71.2	69.7	65•0
31	55.0	57.3	58 • 4	64.4	58.7	63.2	73.5	71.9	68.5	65.2
32	55+0	56.7	55•6	61.0	56 • 1	61.7	72.3	71 - 7	68 - 8	70 • 4
33	55.0	55.0	55.0	58 • 1	55.0	60 • 4	70.2	70 • 1	67.9	65 • 5
34	55.0	55.0	55.0	55•5	55.0	60 • 9	70 • 1	68•3	66•5	64.0
35	55.0	55+0	55 • 0	55.0	55 • 0	58 • 7	67.7	65•5	65.3	63 • 4
36	55.0	\$5.0	55.0	55.0	55.0	57 • 1	64.8	63.6	63 • 1	59•8
37	55 • 0	55.0	55•0	55.0	55 • 0	55 • 0	61.8	60 • 8	61 • 1	56 • 6
38	55.0	55.0	55•0	55.0	55 ∙ ∩	55 • 0	59 • 8	59.9	60 • 1	55 • 5
39	55.0	55.0	55•0	55.0	55. 0	55.0	58 • 9	61.7	62.6	56 • 0
40	55.0	55 • 0	55 · O	55.0	55.0	55.0	58•0	65.9	64.5	55 • 2
A	73.0	85.5	85 • 1	85•2	82.5	84•7	85•8	83.5	79.9	76 • 2
D	83 • 0	93.9	94.0	94.5	92.3	92.0	90•9	88•4	85 • 4	81.9
OASPL		98 • 8	99 • 4	99.9	99.2	99.3	95.5	92.2	88.3	83.7
PNL	90 • 3	99.8	100.0	100 • 7	98 • 4	99 - 1	99.4	96•6	93.5	90 • 3
PNLT	90 • 3	93.8	100.0	10C.7	98 • 4	99 • 1	99.4	96.6	93•5	92 • C

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTUBER 6, 1976

EVENT 43, 3 DEGREE APPHOACH, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-46.0	-38.0	-30 •0	-22.0	-14.0	-6.0	-2.5	0	2.0	10.0	10.5
17	76.9	78 • 8	78.0	80.8	83.7	84.3	82.8	79-1	81.8	77 - 1	76 • 8
18	78.9	79.4	77 • 3	81.4	84.2	84.7	82.6	75.9	75.9	73.9	74.1
19	76.9	74.6	73.8	78 • 4	80 • 0	75.9	68.2	34.6	67 • 7	69 • 4	69 • 7
20	76.5	72.3	71.6	78.4	77•7	70.7	70.3	76.5	79.6	70.5	70.9
21	75.5	72.5	71 • 1	79 • 1	77.4	69.0	79.2	79.9	78 • 2	67.4	67.1
22	75.0	67.2	71.7	76.4	75 • 1	77.8	83.6	81.6	82.1	63.9	64.5
23	77.3	67.6	71.0	75.0	71.3	82.5	84.9	75.2	74.9	71 • 7	69.1
24	74.0	66 • 5	68 • 1	2∙9ن	67.0	84.2	79.1	73 • 1	73 + 1	75. 0	73.0
25	72.0	64 • 6	66 - 4	63 • 4	72 • 8	78 • 5	78.9	76.7	74.9	74.5	72.9
26	67.8	60 • 6	62 • 1	60•9	76 • 6	71.5	77.6	72.5	70 • 8	68•5	66 • 8
27	64 . 9	61.3	52 • 0	56•9	74 • 8	75 • 3	74.8	73 • 4	71.9	59•3	59.0
88	57.3	53 • 2	51.2	54•7	65 • 0	70.0	73.7	71.5	70.2	64.6	61 • 3
29	52.2	50.2	51.6	54•5	65-3	71 • 5	71.8	69•7	68•5	60 • 6	60 • 1
30	52 • 0	52 + 7	52 • 7	53+9	66 • 9	68 • 8	71.1	69 • 4	67.2	60 • 4	58∙9
31	53 • 4	48 • 4	48 • 6	47.0	64 • 4	68.2	72.0	69•0	66•0	58 • 3	57.2
32	50 • 4	45.4	45.2	46.9	62 • 1	68 • 2	71.5	67.9	66•5	61.0	60•4
33	46 • 4	45.0	45 • 3	45.9	60.2	67 • 1	7 0•3	65•9	66 - 1	59 • 5	59.2
34	45.0	45 • 0	45.0	45.2	55•6	65 • 4	67.7	64.3	64.2	55•7	54.5
35	45 • 0	45.0	45.0	45.0	51 • 9	61.9	64.2	62.6	61.9	54•2	53.0
36	45.0	45.0	45.0	45+0		57.9	62.2	61.3	60.0	51.8	51.0
37	45.0	45.0	45.0	45 • 0	45 • 0	55.0	59.7	58 • 2	57•4	48 • 8	47.9
38	45 • 0	45.0	45•0	45.0	45•0	50 • 5	56.2	56 • 5	56•7	45 • 8	45 • 6
39	45.0	45 • 0	45.0	45•0		48 • 1	56 • 4	59•5	59•9	45 • 0	45.0
40	45 • 0	45.0	45.0	45•0	45.0	49.4	55•8	62•6	63 • 4	45.0	45.0
Α	72.4	65.9	67.3	70 • 0	76 • 4	81.0	82.9	80 • 1	78 • 5	73.5	71.8
D	80.2	74.7	75 • 6	79 • 5	82.7	87.4	86.8	86.0	85 • 1	79.9	78 • 6
OASPL	85 • 4	83 • 8	83.6	87 • 4	89•5	92.5	93.8	93 • 1	92.8	85.3	84.6
PNL	87.2	81.9	82 • 4	86 • 2	91 • 0	95.6	96.9	93.5	93 • 3	87.2	85.9
PNLT	87.2	83.0	82 • 4	86.2	91.0	95•6	96•9	93•5	93 • 3	88•7	85.9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 44, 110 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-17.5	-14.5	-11.5	- 8 • 5	-5.5	-2.5	0	•5	3 • 5	6 • 5
17	81.7	85.0	86 • 2	86•9	90 • 3	91 • 3	78 • 7	76•6	75• 7	74+3
18	80.7	85.6	86.9	86.2	89.4	87.9	78.0	75.1	78 • 2	73.8
i 9	79.9	85.0	88 • 1	86.5	89.4	66.5	64.3	61.3	59.1	70.9
20	79.6	85.4	87.9	85 • 8	87.0	81.3	74.3	77.0	63.6	70.0
21	79.8	86.9	88.2	86.0	86 • 4	76.3	79.9	78 • 7	64.9	63.7
22	77.8	87.7	85.8	84.2	81.3	77.6	80.8	80.9	72.0	58 • 5
23	79.8	86 • 1	82.9	81 • 6	76.8	85.3	78 . 8	75.6	73.3	57.5
24	77.4	80.5	78.2	73.2	76.0	87.2	72.5	69.6	71 • 1	61.8
25	74.0	73.3	71.8	67.8	76.5	84.4	75 • 4	73.8	65.8	65.2
26	70 • 3	72.7	71.4	67.7	73 • 4	79.5	74.2	70.9	69 • 3	65.6
27	66.5	70.4	68.2	64-4	71.9	78.3	75 - 4	73 - 3	69.2	61.7
28	60.0	66 • 4	63 • 1	62.5	65 • 1	77.4	74.2	73.5	68 • 4	62.2
29	54.0	62.0	58.0	59.0	60.2	75 • 1	73 • 4	72.9	66.0	62.5
30	51.5	56.2	56 • 1	53 • 1	60.2	72.0	71.4	71.2	65.5	59.9
31	49.9	55.8	54.9	54.3	56.3	71.2	71.6	71.2	64.1	59.5
32	47.5	49.9	54.0	50 • 4	55 • 1	70.2	71.0	70 . 7	68.2	69.6
33	45.0	48 • 4	51 • 1	50 • 1	52.3	68.5	69.0	68 • 4	62.6	60 • 3
. 34	45.0	45.2	50.7	47.4	51 • 4	67.2	67.9	67.5	60 • 8	57.3
35	45 • 0	45.0	46.4	45.1	48 • 1	63.8	67.0	66.6	59.6	57.0
36	45.0	45.0	45.0	45.0	47.4	60.8	64.7	64.2	56 • 1	51.9
37	45 • 0	45.0	45.0	45.0	45.5	57.6	62.7	62.4	54.6	50.0
38	45.0	45.0	45.0	45.0	45.0	55.3	59.5	59.9	52.6	46.0
39	45.0	45.0	45.0	45.0	45.0	49.4	60.6	61.4	55.4	45.3
40	45.0	45.0	45.0	45.0	45 • 0	48.9	61 • 4	63.5	54 • 1	45.0
A	75.3	80 • 6	79.3	76.9	78• 5	85.5	81.8	81 - 1	75.9	73.0
D	83.2	89.0	88 • 6	86•6	87.8	91.5	87.1	86.7	81.3	78 • 7
OASPL	88.88	94.3	95 • 1	93.7	95.9	96.3	89.9	89.3	86.3	82 • 1
PNL	89.6	94.9	94.5	92.5	94•1	99.5	95.2	94.5	89.5	87.0
PNLT	89•6	94.9	94.5	92.5	94.1	99.5	95.2	94.5	91.1	90.3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTUBER 6, 1976

EVENT 45. 110 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-21.5	-17.5	-13-5	-9.5	- 5•5	-1.5	0	2.5	6•5	9 • 5
17	79.7	78 • 6	82.3	85 • 2	88 • 1	86+3	78 • 8	73 - 1	68+3	68 • 4
18	78.9	80 • 3	81.5	85.5	87.2	83.5	80 • 1	67.8	73.2	71 • 0
19	79.2	81.7	82.1	87.1	87.0	78 • 4	66 • 1	63.5	67.9	68 • 4
20	75 • 7	81.2	83 • 1	85.0	84.6	68 • 8	70 • 4	75.8	64.4	67+5
21	74.2	82 . 8	84.0	85.9	82.6	73.3	80.9	71.3	64.0	63 • 1
22	74.3	81 • 6	82.1	84 - 4	77.5	75.8	80.5	79 • 1	64.2	61.3
23	73.8	80 • 2	82.4	82.9	72.5	83.8	83.6	70.0	67.9	59•9
24	71 • 0	76 • 4	79.0	78 • 1	67.6	81.6	77.1	68.3	67.1	63 • 1
25	64.7	71 - 1	72.4	72.7	68 • 1	70 • 8	76.7	71.2	62.2	62 - 1
26	59 • 8	68 • 0	70.2	68.0	65 • 5	72.5	76.3	68.7	62.9	64.0
27	52 - 6	63.9	66.8	66•6	61.0	70 • 6	72.4	70.0	65•6	58 • 8
28	51.2	60 • 0	59.8	59.2	55.9	69.0	70.7	68 • 4	62 • 1	60.2
29	50 • 0	56 • 1	57•6	57 • 8	53 • 6	68.5	69.6	68.2	61.7	59.2
30	50 • 0	52 • 9	53•4	56∙3	54.8	65.9	67.9	66.5	60 • 4	57.7
31	50 • 0	50 • 2	51.9	53 • 4	52 • 9	66.2	68.0	65.6	58 • 8	55 • 3
32	50 +0	50.0	50.0	52.4	52 • 1	65•7	66.3	65.3	64.6	62.2
33	50 • 0	50 • 0	50.0	50 • 7	50 • 6	€^	65•6	64.2	57.4	54 • 5
34	50 • 0	50 • 0	50.0	50•3	50 • 0	63•6	65.9	62.6	54.6	53 • 4
35	50 + 0	50 • 0	50.0	50 • 0	50 • 0	60.0	63 • 2	61 • 1	54.8	53 • 5
36	50 • 0	50•0	50.0	50 • 0	50 • 0	57•9	60.0	59.0	50•9	50 • 0
37	50 • 0	50 • 0	50.0	50.0	50.0	54+6	56 • 1	55.9	50.0	50 • 0
38	50 • 0	50•0	50 • 0	50 • 0	50.0	52 • 3	53 • 3	54 • 1	50 • 0	50.0
39	50.0	50 • 0	50.0	50 • 0	50.0	50 • 0	52•3	55 .7	50 • O	50 • O
40	50 • 0	50 • 0	50 ∘ 0	50.0	50 • 0	50 • 0	50 • 6	55 • 4	50 • 0	50.0
Α	67.5	75•3	76.9	77 • 7	72•7	79.3	80.7	76 • 6	70 • 8	68 • 3
D	77.9	83•9	85 • 4	87.1	83.8	86.0	86.5	82.6	76 • 1	73 • 8
QASPL	85.1	89•5	91 • 1	93•5	93 • 2	91.8	90 • 1	85.5	81.5	79•0
PNL	85•4	90∘5	92.1	93•3	90 • 9	94.2	94.8	90.3	85.0	82.9
PNLT	85.4	90.5	92.1	93.3	90 • 9	94.2	94.8	90•3	87.2	85 • 4

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY BELL 212

OCTOBER 6. 1976

EVENT 46, 114 KI. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14.5	-12.5	-12.0	-9.5	-7.0	-4.5	-2.0	0	•5	3•0	5•0
17	82.6	88.7	88 • 4	89.6	91.2	92.6	90.9	77.6	76.0	72.5	68•8
18	83.5	88.88	88.88	89.2	90.8	91.5	88 • 1	79.3	76.8	65 • 7	67.9
19	83 * 1	89.1	89.2	89 • 1	91.4	91.2	84.8	64.2	63-1	62+7	64.8
50	81 • 4	90 - 5	90.9	88 • 6	90.4	89.1	77.3	75.9	77.5	68 - 1	63.8
21	80 • 8	91.6	92.2	89 • 1	90 • 1	87.5	74.8	82.2	81.3	67.1	61.3
55	79.0	90∙8	91.3	87.5	87.9	81 • 4	79.7	82.7	83.3	72 • 4	63.6
23	73.5	89.9	89 . 8	86 • 1	85.8	75.0	85.3	82.1	77.6	72.8	68.0
24	71.0	87 • 7	87.7	83.0	78 • 4	78.2	84.5	75.6	73.9	67.9	68.0
25	68-1	84.3	83.9	76.6	70 • 4	78 • 4	79.2	78 • 2	77.8	70 - 1	65+2
26	65•5	88.8	81.5	70 • 6	72.7	77.9	76.6	75-1	73.0	70.9	64.0
27	61 • 3	80 • 3	7 8•5	64.6	74.3	73.9	76 • 6	75.2	74.5	69.9	68.7
28	60•0	77 • 3	75 • 4	65.0	72.8	65 • 3	73 • 4	71.8	71 - 1	68.9	65.6
29	60•0	73 • 1	71.3	63•7	66 - 4	66 • 4	72 • 1	71.2	71 • 1	71 42	66.2
30	60.0	70.9	69.2	61.6	61.9	60 • 8	69.8	70 • 1	69.8	68 • 6	66.2
31	60 - 0	67 • 7	66.5	60.0	61.7	60.2	67.4	69.5	68-6	67.3	65+3
32	60•0	63.2	62.7	60 • 0	60.0	60 • 5	66•6	69.4	68 • 4	69.5	69.2
33	60•0	60 • 4	60 • 3	60•0	60.0	60.0	64.7	67.9	67.3	64.6	62.7
34	60 • 0	60.0	60.0	60.0	60.0	60•0	64.5	68 • 1	67.4	62.0	62.0
35	60 • 0	60 • 0	60.0	60 • 0	60.0	60 • 0	62 • 7	65 • 4	65 - 1	61 • 4	60+9
36	60•0	60 • 0	60 • 0	60•0	60.0	60 • 0	60.9	63.8	63.8	60 • 1	60.0
37	60 • 0	60 • 0	60.0	60•0	60.0	60•0	60 • 0	60 • 6	60 • 5	60.0	60.0
38	60 • 0	60 • 0	60•0	60.0	60 • 0	60 • 0	60•0	60.0	60 • 0	60.0	60.0
39	60•0	60 • 0	60.0	60.0	60.0	60 • 0	60.0	60.0	60.0	60.0	60.0
40	60 • 0	60•0	60 • 0	60.0	60.0	60.0	60.0	60 • i	60 • 8	60.0	60.0
Α	72 • 1	87.2	86•8	81.7	81.6	80 • 2	83.2	81.7	81 • 1	77.8	75.3
D	81.6	94•3	94.0	89.8	90.5	89.0	88.9	87.5	86 • 7	82.6	80.2
OASPL	89.9	98•8	98.7	96•5	97.9	97.6	95•5	91.3	89.9	83 • 5	80.9
PNL	-	101 • 4	101.2	97.6	98•5	97.3	97.7	95.7	94.9	91.1	89.5
PNLT	91.4	101.4	101.2	97.6	98.5	98 • 4	97.7	95.7	94.9	92.3	91.3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

BELL 212

OCTOBER 6, 1976

EVENT 47. 114 RT. FLY BY. CENTERLINE MIC. (SOFT SIT!)

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-17.5	-14.5	-11-5	- 8• 5	-5.5	-2.5	0	•5	3 • 5	5 • 0
17	84.2	83 • 5	85•9	86.9	90 • 4	91.8	78 • 2	77.3	74.2	71.9
18	82.8	84.9	87.1	86.7	90.4	88 • 7	79.3	76.5	74.9	72.7
19	8•\$\$	85.7	87.3	86.5	89.6	86.2	65.8	64.7	67.6	68 • 5
20	82.3	86 • 3	87.6	85.0	88 • 4	81.6	75.3	77•3	65.3	67.9
21	1.58	86.2	87.5	85.2	88.0	78.7	81.6	79.8	64.4	65 • 1
25	79.6	86.4	85.7	84 • 1	84.2	80 • 4	81.9	81.8	71.8	64.7
23	76.5	85.9	83.3	82.1	79.5	84.7	79.3	75 • 5	72.6	67.5
24	69.5	82.9	78.2	75 • 4	77.7	85.2	72.4	71.6	70.5	67.0
25	62.7	77.5	72.5	66.7	78.6	81.6	76.3	75 • 3	64.6	64 • 7
26	59,5	73.7	70.5	67 • 7	75.9	77.0	73.6	69.9	69.6	60•9
27	58.2	72.4	67.8	64.0	73.0	78.0	73.2	70.5	68.0	66 • 1
នន	54.0	67 • 9	61.8	60.5	68.7	75 • 4	71.5	70 • 8	66.7	63.7
29	47.7	63 • 4	54.9	57.2	61.9	73 • 1	70.9	69 • 8	66.8	62 • 6
30	47.0	57 • 6	53.8	52.8	56•4	69•1	69•9	68.9	65 • 1	60•9
31	45.3	53 • 4	50 • 1	48•5	56•4	69.0	70 • 1	69.2	63.7	60 • 6
32	45.0	47 • 6	46.3	49.6	54.9	67.0	70 • 3	69.2	70 • 1	66•3
33	45.0	45 • 9	45.2	47.1	52 • 4	64 • 4	68•6	67•7	62.5	58 • 4
34	45.0	45.0	45.0	46.8	51.2	63.8	66•6	65.7	60 • 7	56•3
35	45.0	45.0	45.0	45.0	48.0	60 • 4	64.5	63.7	59•9	58.2
36	45.0	45.0	45.0	45.0	45.5	58.2	63.2	62.0	56.2	53 • 3
37	45.0	45 • 0	45.0	45.0	45.0	54 • 7	60•6	59 • 7	53.7	50.2
38	45.0	45.0	45.0	45.0	45 • 0	51.4	57•6	57.2	51 • 6	47.0
39	45.0	45.0	45.0	45.0	45.0	48 • 1	58 • 4	58.8	53.7	46.9
40	45.0	45.0	45.0	45.0	45•0	46.7	58 • 6	60.2	50 • 5	45 • 1
A	72.2	81 • 1	79.1	76.8	80.2	83.3	80.9	79.7	76 • 1	72.0
D	82.6	89 - 1	88 • 4	86.5	89.2	89•9	86•9	85.9	81 • 4	77 • 6
OASPL	89.9	94.3	94.7	93.7	96•7	96.8	90 • 6	89•4	84.0	81 • 6
PNL	88.3	95.0	93.8	92.0	95.5	98.0	94.4	93.6	89.8	86 • 1
PNLT	88.3	95.0	93.8	92.0	95.5	98•0	94.4	93.6	92 • 1	88 • 4

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECIRA

BELL 212

OCTOBER 6, 1976

EVENT 1. O DEGREES: MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	STD	ARITH.			ENERGY	
	DEV	AVERAGE	MIN	MAX	AVERAGE	BAND
270° (Microphone L Relative to h				7.6	70 6	1 /
	1.8	72 • 1	68 • 6	74.5	72 • 4	14
/ Microphone L	1.9	81.5	77.6	84.0	81.9	15
	1.9	78 • 3	74 • 4	80 • 7	78 • 6	16
Relative to h	2.2	78•5	74 • 1	81.6	79.0	17
	5.5	76-8	72.4	79.9	77.2	18
	1.9	74•9	70.9	78.2	75 • 3	19
•	2 • 8	74.5	67•6	78 • 4	75.3	50
	2.7	73•2	66•4	77•6	73.9	51
	1.5	76•3	73.0	78 • 4	76•6	2 2
	1.6	75•3	72.4	77.8	75.5	23
	1 • 3	75•7	73.5	78 • 8	75•9	24
	1.9	75.5	79.7	80.5	76•0	25
	2 • 1	74.2	70 • 7	78.9	74.7	26
	5.5	72.1	69.0	77.2	72•7	27
	2 • 1	67.8	64.6	72.2	68•3	28
	1 • 7	61.9	58 • 9	64.9	62.2	29
	2.1	57.6	53.9	61.0	58•0	30
	2 - 3	57.9	53 • 1	60.9	58 • 4	31
	2.4	57.8	53.0	61 • S	58 • 4	32
	2.3	56.8	52.3	60 • 7	57 • 4	33
	2 • 4	54.6	49.7	-58 • 6	55.2	34
	1.9	52.3	48 • 1	54.8	52 • 7	35
	1.6	51.4	47.5	54.0	51.7	36
	1 • 1	47.3	45 - 1	49.7	47.5	37
	•5	45.5	45.0	47.0	45.5	38
	-4	45.4	45.0	46 • 4	45.4	39
	•8	45.9	45.1	47.9	46.0	40
	1.7	76.6	74.1	80 - 4	76.9	DBA
	1.3	82.9	80.8	86.0	83 • 1	DBD
	•6	88.4	87.3	89.4	88.4	OASPL
	₹ U	00 ***	0,40	U / = 4	U U T -4	~

92.9 87.1 89.8

89.9

92.9 87.1

1 - 4

1.5

PNL

PNLT

90.0

90.2

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 212

OCTOBER 6, 1976

EVENT 2. 45 DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	75 • 4	76.8	71.0	75 • 2	1.5
15	84.7	86 • 1	79 • 2	84•4	1 • 8
16	81.5	83.1	75.2	81.1	2.1
17	86.0	88•4	78•7	85•6	2.1
18	83 • 2	85.2	74.2	82.8	2.4
19	79.3	81.4	69.5	78.5	3.2
20	80 • 4	84.4	75 • 2	79.9	2.0
21	78 • 1	80.3	72.0	77.8	2.0
55	79 • 4	81.3	76.2	79.3	1 - 1
23	78 • 0	80.9	76.0	77.8	1 • 3
24	79.1	82.2	76.9	78 - 8	1.6
25	79•3	81.8	75 • 8	79.0	1.7
26	79.2	82.8	74.0	78•7	2 - 1
27	78.0	82.9	72.3	77.3	2.5
28	74.7	80 • 1	66.8	73.7	3 • 0
29	69•5	72.5	59 • 1	68 • 4	3 • 5
30	65•0	67 • 7	56 • 5	64.4	2.5
31	65 • 8	68 - 1	57.2	65+3	2 • 4
32	65 • 8	68 • 5	56•9	65.2	2.8
33	65+0	67 • 7	57.8	64•5	2.4
34	61 • 3	64•6	54•3	60.8	2 • 4
35	58•3	60 • 4	52 • 8	58•0	1.9
36	56•0	58•0	51 • 6	55.7	1.6
37	51 + 9	54.0	48.0	51•7	1 • 5
38	48 • 7	51 • 1	46 • 8	48 • 6	1 - 1
33	47.0	48•7	45.5	46.9	• 7
40	46 • 4	47.8	45 • 1	46-4	• 7
DBA	81.7	85•3	77.2	81.3	1.9
DBD	87.3	89.9	84 • 5	87-1	1 - 4
OASPL	91 • 8	93 - 1	90•6		• 7
PNL	94 • 7	97.3	91.3	94.5	1.4
PNLT	94.7	97•3	91+3	94.5	1 • 4

A25°
(Microphone Location
Relative to Helicopte

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL SIS

OCTOBER 6. 1976

EVENT 3. 90 DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AUE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
	a c D	76.4	74.2	75•2	•5
14	75-2	85.4	82.9	84.0	• 6
15	84-1	82.8	80 • 3	81.5	• 7
16	81.3	87.0	84.7	85.7	₹6
17	85.7	85-0	81.5	82.9	•8
18	83.0		74.9	78•7	1 • 7
19	79.0	82.1		81 • 8	•9
50	81.9	83.3	80 • 1	78.5	•9
21	78 • 6	79.8	76.7	78 • 6	1.6
22	78 - 9	80 • 8	73 • 8		1 • 7
23	75.9	79.8	71 • 4	75 • 6	2.1
24	76.6	30.6	70.8	76 • 1	
25	76.0	80.2	69 • 7	75 • 4	2.5
26	74.2	78.2	67.9	73.5	2.5
27	68 • 9	72.6	63.0	68 • 4	8.3
28	65 • 9	71.3	60 • 7	65 • 1	2.4
29	64.2	68.8	60.3	63.5	2.4
30	58 • 2	64.8	52•9	56.6	3 • 3
31	56.0	62.0	50 • 5	54 • 7	3.1
32	55.4	61.8	50 - 6	54.0	3.2
33	54 • 4	60.2	49.9		2.9
34	52.4	57.0	47.9		2.7
35	50 • 5	54.9	46.0		2.3
36	48 • 5	52.5	45.0	48 • 1	1.8
37	46.3	50 • 3	45.0	46+1	1 • 4
38	45.2	46.3	45.0	45.2	• 3
39	45.2	46.0	45.0	45•2	٠3
40	45.0	45.0	45 • 0	45.0	~O
DBA	76.9	60. 0	73.2	76 • 6	1 • 6
DBD	84.0	86.9	81.7	83+8	1.2
JASPL	90.7	92.3	89.8	90.7	•6
PNL	90.7	93.8	85.4	90.4	1 • 3
PNLT	90 • 9	93.8	88 • 4	90.7	1 - 4

Microphore Location Relative to Helicart

TABLE E-III

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECIRA

BELL 212

OCTOBER 6, 1976

EVENT 4. 135 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD DEV
14	75•2	76.6	7 3• 3	75.2	• 7
15	84.5	85.5	83.5	84.4	•5
16	81.6	82 • 8	80.6	81.6	• 5
17	84 - 1	84.8	83.3	84.1	•4
18	81.5	82.5	79.9	81.5	• 7
19	77.4	80 • 1	70.2	76.9	2.2
20	76+3	77.7	72.7	76 • 1	1.2
21	73 • 9	76.0	71.7	73 • 8	1 • 1
22	74.6	75.7	72.6	74.5	•8
23	73•9	75.8	70.9	73 • 7	1.3
24	74.0	76.7	71.5	73.8	1 - 4
25	74.3	77.1	71 • 7	74 • 1	1.4
86	73 • 5	76.2	70 • 6	73 • 3	1.5
27	71 • 7	74.1	68.3	71.3	1 • 7
28	68•6	71.6	63.8	68 • 1	2.1
29	64.9	67.7	59.8	64.5	2 • 1
30	59 • 6	63 • 1	55 • 1	59.2	1.9
3 i	58•0	61.6	50 • 1	57-6	5 • 0
32	58•0	61.3	52.9	57•5	2.1
33	58 • 0	60•7	54.8	57.7	1 - 4
34	54 • 6	57.6	51 • 3	54.3	1 • 7
35	52 • 0	54•7	48 • 9	51 • 7	1 • 8
36	50 • 2	53•0	47.4	49.9	1 • 7
37	47 • 7	50 • 1	45.9	47.5	1 - 4
38	46•3	46.2	45•2	46.2	• 8
39	46.7	48 • 1	45•6	46•7	•6
40	46.2	48.0	45 - 4	46.2	• 7
DBA	76 • 1	78•3	73 • 4	75•9	1.3
DBD	82 • 4	83.9	80•9	82•3	•8
OASPL	89.3	90.0	88 • 6	89•2	• 3
PNL.	89+4	91 • 1	87•5	89•3	1.0
PNLT	89•5	91 • 1	87 • 5	89•4	• 9

1350
(Microphora Location Relative to Helicopter)

TABLE E-JUL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL S15

OCTOBER 6. 1976

EVENT 5. 160 DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO FA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	75•8	76•5	75 • 1	7 5•8	•3	۵۸ô
15	84.4	85.4	82.4	84.3	• 7	70
16	81.5	82.8	78.8	81.3	1.0	Macaphane Location
17	81 - 4	83 • 1	78.9	81.3	1.0	90° (Microphone Location Relative to Helicopi
18	79 • 6	81.7	77.7	79.5	1.0	Relative to Helicopi
19	78.0	81.3	75.7	77.8	1 • 4	
20	73.9	77.2	70.2	73.5	1.8	
21	71 • 6	75.3	68 • 4	71.2	1 • 8	
22	73 • 1	74.7	70.4		1.0	
23	72 • 4	74.8	69.4		1.3	
24	73 • 6		70.5	73.4	1.2	
25	72.1	74.3	70.0	71.9	1.2	
26	70 • 7	72 - 4	68 - 1	70.6	1 - 1	
27	68 - 9	71.0	66.9	68.7	1.2	
28	66 • 4		63.9	6€ •3	1 - 0	
29	64 • 1		61.7	64.0	1 - 2	
30	58 • 8		56.6	58 • 6	1 - 3	
31	55•7		53.0	55.4	1 • 4	
32	55 • 5	57.9	53.2	55.3	1 - 4	
33	55 • 7	57.4	52∞8	55.5	1.2	
34	54•2	56.7	50.8	54.0	1 - 4	
35	51.3	52.9	49.0	51.1	1.2	
36	49 • 4	51.0	47.2	49+3	1.0	
37	46.4	47.9	45.0	46-3	• 7	
38	45.4	46.4	45.0	45.3	• 4	
39	45 • 8	46.6	45.0	45.7	•5	
40	46.5	47-8	45.2	46.4	• 7	
DBA	74.0	75.6	72.8	74.0	ه ه	
DBD	80•6	81.8	79.2	80.5	•7	
OASPL	88•4	89•5	87.1	88.3	•6	
PNL	8 7 • 6	89.0	86.2	87.5	• 7	
PNLT	87.6	89.0	86.2	87.5	• 7	
					-	

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECIRA

BELL SIS

OCTOBER 6, 1976

Microphone Location Relative to Helicopter)

EVENT 6, 225 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	XAM	MIN	AVERAGE	DEV
14	76.9	77.8	76.3	76+9	- 4
15	84.9	86.1	83.6	84.9	-7
16	81 • 6	83.0	79•5	81 • 5	•9
17	82.4	83.6	80.7	82.3	•9
18	80•9	82.6	78 • 8	80.8	•9
19	78•9	80.5	76 • 4	78 • 8	1 • 1
20	77•0	78• 5	74.5	76 • 8	1.0
21	74•7	76•5	71 • 7	74 • 6	1.3
22	73.7	76.1	69•5	73.5	15
23	73.3	75•8	69+0	73 • 1	1.6
24	72.8	75 • 6	69.3	72.5	1.6
25	71.9	74.5	66.8	71.6	1.8
26	71 • 6	74.9	66.9	71.2	1.9
27	70 - 1	7 3•8	65 • 4	69 • 7	1.9
28	67 • 6	71 - 1	63 • 8	67.3	1.5
29	64.2	67.9	.61.2	63.9	1.7
30	60 • 2	64.0	56 •7	59.9	1.6
31	60 • 2	63.2	56.0	59•8	1.9
32	61.0	64.2	56.2	60.5	2.2
33	60•0	63 • 1	55•7	59•5	2.0
34	57 • 5	60.0	53.7	57-1	1.8
35	55•6	56.2	50 • 8	55.2	2.1
36	55.5	58•8	49.5	54.9	2.4
37	52 • 0	54.7	47.9	51.6	8.0
38	50 • 8	53 • 8	47.2	50.5	1.8
39	55•3	58 - 4	51 • 4	55.0	1.6
40	61.3	64.7	57.2	60.9	1.7
DBA	75•2	77 - 4	72.0	75 • 0	1.3
DBD	81.9	83.6	79.5	81.8	1.1
OASPL	89+3	90.5	88.2	89.2	• 7
PNL	89•6	91.9	86.9	89.4	1.3
PNLT	29•6	91.9	86.9	89•4	1.3

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 213

OCTOBER 6, 1976

90°
(Microphone Location
Relative to Helicopt

EVENT 1. O DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	76.8	78.1	74.6	76+7	1.0
15	84.6	86.2	82.9	84.5	•9
16	81.7	84.1	79.2	81.5	1.4
17	80 • 8	84.3	76.6	80 • 3	2.1
18	77.7	81.5	72.3	77.0	2.6
19	77.2	82 • 4	73.5	75•6	2.3
20	79.4	83.2	74.5	78•9	2.0
Si	81.2	84.9	77.2	80•8	2.1
55	82.6	86.4	77.8	81.8	2.5
23	84.4	85.4	78.3	83.6	2.6
24	84.5	86.2	78 • 7	83.9	2.5
25	83.3	85.1	76.2	82.9	2.1
26	82 • 5	85 • 4	74.5	81.9	2.6
27	79.9	83.1	72.9	79.3	2.5
28	77.5	80.5	71.5	76.7	2.3
29	74 • 1	76.2	69.5	73.8	1.6
30	71 - 1	72.9	68.0	70.8	1.6
31	69•3	71.2	66.3	69.0	1.5
3:2	66.7	67.7	65 • C	66.6	• 9
33	65•7	65.5	65.0	65.5	1.3
34	66.3	65.0	65.0	65.6	1.9
35	65.2	65.0	65.0	65.2	• 5
36	65.0	65.0	65.0	65.0	• 2
37	65.0	65.0	65.0	65.0	•0
38	65.0	65.0	65.0	65.0	•0
39	65.0	65•0	65•0	65.0	•0
40	65.0	65.0	65.0	65.0	•0
DBA	85.0	86.6	79.7	84.7	1.8
DBD	90 • 3	92.3	85.0	89.9	1.9
OASPL	93.2	94.9	90.7	93.1	1 • 1
PNL	98 • 7	102.1	94.6	98•5	1.5
PNLT	98.9	103.5	94.6	98.5	1 • 7

TABLE E-TIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL SIS

OCTOBER 6, 1976

EVENT 2, 45 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD DEV	•
14	77 - 1	78.7	75.9	77•0		Microphone Location Relative to Helicopter)
15	84.4	85 • 4	83.2	84.3	•8	45
16	82 • 1	83.4	80.4	82 • 1	•6	
17	82 • 1	83.3	80.3	82.0	•6	Microphone Location
18	78 • 5	80.3	76.3	78 • 4	• 7	
19	75 • 6	78.4	70.2	75 • 2	1.0	Relative to Helicopter 1
20	76.9	79.9	73.5	76.6	2.1	The state of the s
21	75 • 6	79.7	72.8	75 • 3	1.6	
22	74.7	79.3	70 - 3	74.3	1 • 6	
23	74.7	77.9	71 • 5	74•4	1.9	' :
24	75 - 1	79.3	71.7	74.6	1.6	
25	75.2	78 - 4	70.8	74.6	2.1	· ;
86	75.0	78.5	70-2	74.3	5.5	•
27	73.3	77.9	67.8	72.4	2.5	•
28	71.4	76.0	65.7		2.8	_ ;
29	68.6	72.4	65.0	70 - 6 67 _" 9	2 • 7	
30	66.8	70.3	65.0		2.4	
31	66.1	70.4	65.0	66 • 4 65 • 8	1 • ?	
32	65.6	69.6	65.0		1 • 5	
33	65.2	66.8	65.0	65 • 4	1 • 2	
34	65.0	65.5	65.0	65•) 65•0	٠5	•
35	65.0	65.0	65.0	65.0	• 1	
36	65.0	65.0	65.0	65.0	•0	:
37	65.0	65.0	65•Q	65.0	•0	
38	65.0	65.0	65.0	65.0	•0	
39	65.0	65.0	65.0		•0	
40	65.0	65.0	65.0	65.0	•0	
DBA	78.5	83.2	74.4	65•0 77•8	•0	
DBD	84.1	87.4	81.5	_	2.4	
OASPL	90 • 0	92.0	88.9	83.8	1.6	
PNL	94 • C	96.3	92.8	90.0	• 7	
PNLT	94.0	96.3	92.8	93.9	•9	
•	· • • •	2043	32 + Q	93.9	•9	

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 212

OCTOBER 6, 1976

EVENT 3, 90 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND AVERAGE MAX MIN AVERAGE DEV 14 76·1 77·2 74·9 76·1 .6 15 83·7 84·6 82·7 83·7 .5 16 82·1 83·5 80·5 82·0 .8 17 83·0 34·0 81·8 82·9 .6 18 80·1 61·7 78·1 80·0 1·0 19 78·1 80·0 75·4 77·7 1·2 20 77·8 80·0 75·4 77·7 1·2 21 76·5 78·4 74·1 76·4 1·1 22 76·7 79·6 73·4 76·5 1·5 23 78·4 82·6 73·9 77·9 2·2 24 79·4 83·1 72·9 78·7 2·6 25 79·1 83·2 74·0 78·5 2·4 26 78·1 81·6 73·7 77·6		ENERGY			ARITH.	STD
15 83.7 84.6 82.7 83.7 .5 16 82.1 83.5 80.5 82.0 .8 17 83.0 34.0 81.8 82.9 .6 18 80.1 81.7 78.1 80.0 1.0 19 78.1 80.4 75.0 77.9 1.4 20 77.8 80.0 75.4 77.7 1.2 21 76.5 78.4 74.1 76.4 1.1 22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 <td>BAND</td> <td>AVERAGE</td> <td>MAX</td> <td>MIN</td> <td>AVERAGE</td> <td></td>	BAND	AVERAGE	MAX	MIN	AVERAGE	
15 83.7 84.6 82.7 83.7 .5 16 82.1 83.5 80.5 82.0 .8 17 83.0 34.0 81.8 82.9 .6 18 80.1 81.7 78.1 80.0 1.0 19 78.1 80.4 75.0 77.9 1.4 20 77.8 80.0 75.4 77.7 1.2 21 76.5 78.4 74.1 76.4 1.1 22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
16 82.1 83.5 80.5 82.0 .8 17 83.0 34.0 81.8 82.9 .6 18 80.1 81.7 78.1 80.0 1.0 19 78.1 80.4 75.0 77.9 1.4 20 77.8 80.0 75.4 77.7 1.2 21 76.5 78.4 74.1 76.4 1.1 22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4 </td <td>14</td> <td>76 • 1</td> <td>77.2</td> <td>74.9</td> <td>76 • 1</td> <td>• 6</td>	14	76 • 1	77.2	74.9	76 • 1	• 6
17 83.0 34.0 81.8 82.9 .6 18 80.1 81.7 78.1 80.0 1.0 19 78.1 80.4 75.0 77.9 1.4 20 77.8 80.0 75.4 77.7 1.2 21 76.5 78.4 74.1 76.4 1.1 22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4		83 • 7		82.7	83•7	• 5
18 80 · 1 81 · 7 78 · 1 80 · 0 1 · 0 19 78 · 1 80 · 4 75 · 0 77 · 9 1 · 4 20 77 · 8 80 · 0 75 · 4 77 · 7 1 · 2 21 76 · 5 78 · 4 74 · 1 76 · 4 1 · 1 22 76 · 7 79 · 6 73 · 4 76 · 5 1 · 5 23 78 · 4 82 · 6 73 · 9 77 · 9 2 · 2 24 79 · 4 83 · 1 72 · 9 78 · 7 2 · 6 25 79 · 1 83 · 2 74 · 0 78 · 5 2 · 4 26 78 · 1 81 · 6 73 · 7 77 · 6 2 · 1 27 75 · 7 79 · 0 71 · 7 75 · 3 1 · 9 28 73 · 8 77 · 3 70 · 9 73 · 5 1 · 7 29 70 · 9 73 · 7 67 · 3 70 · 3 2 · 2 30 67 · 6 71 · 5 63 · 1 66 · 9 2 · 4		82 • 1	83.5	80.5	82.0	•8
19 78.1 80.4 75.0 77.9 1.4 20 77.8 80.0 75.4 77.7 1.2 21 76.5 78.4 74.1 76.4 1.1 22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4		83.0	84.0	81 • 8	82.9	•6
20 77.8 80.0 75.4 77.7 1.2 21 76.5 78.4 74.1 76.4 1.1 22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4		80 • 1		78 - 1	80.0	1.0
21 76.5 78.4 74.1 76.4 1.1 22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4			80.4	75.0	77•9	1.4
22 76.7 79.6 73.4 76.5 1.5 23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4			80.0	75.4	77•7	1.2
23 78.4 82.6 73.9 77.9 2.2 24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4		76•5	78 • 4	74.1	76 • 4	1 • 1
24 79.4 83.1 72.9 78.7 2.6 25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4			79 • 6	73 • 4	76 • 5	1.5
25 79.1 83.2 74.0 78.5 2.4 26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4		78 - 4	82.5	73.9	77.9	2.2
26 78.1 81.6 73.7 77.6 2.1 27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4		79.4	83 • 1	72.9	78.7	2.6
27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4	25	79 - 1	83.2	74.0	78 • 5	2.4
27 75.7 79.0 71.7 75.3 1.9 28 73.8 77.3 70.9 73.5 1.7 29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4		78 • 1	81.6	73.7	77.6	2.1
29 70.9 73.7 67.3 70.3 2.2 30 67.6 71.5 63.1 66.9 2.4			79.0	71.7		
30 67.6 71.5 63.1 66.9 2.4	28		77.3	70.9	73.5	1.7
		70•9	73.7	67 • 3	70.3	2.2
31 65-0 69-4 60-9 64-9 6-7		67 • 6	71.5	63 • 1	66.9	2.4
	31	65.0	69 • 4	60.2	64.2	2.8
32 61.6 65.7 56.3 60.6 3.0		61.6	65 + 7	56 • 3	60.6	3.0
33 59.1 62.6 55.1 58.5 2.4		59•1	62.6	55 • 1	58 • 5	2.4
34 58.6 62.2 55.0 58.0 2.2	34	58 • 6	65.5	55•Ù	58 • ₽	2.2
35 56.6 59.0 55.0 56.4 1.3		56•6	59•0	55.0	56•4	1.3
36 55.8 58.4 55.0 55.8 .9		55 • 8	58 • 4	55.0	55•8	•9
37 55.1 55.9 55.0 55.1 .2		_	55+9	55•0	55 • 1	• 2
38 55.0 55.0 55.0 50.0		5 5•0	55.0	55.0	55.0	• C
39 55.6 57.0 55.0 55.6 .7	-	55 • 6	57.0	55 • 0	55.6	٠7
40 60.9 63.4 56.7 60.5 1.9		60•9	63 • 4	56.7	60 • 5	1.9
DBA 80.7 84.2 76.6 80.3 1.7		80.7	84.2	76 • 6	80.3	1.7
DBD 86.0 89.6 82.6 65.6 1.6		86 • 0		82.6	85 • 6	1.6
OASPL 90.2 92.3 88.9 90.1 .9			92.3	88.9	90 • 1	• 9
PNL 93.8 96.2 90.6 93.6 1.5			96-3	90.6	93.6	1.5
PNLT 94.1 96.8 90.6 93.9 1.5	PNLT	94.1	96•8	90 • 6	93.9	1.5

Microphone bocation |
Keiklan to Helmopter

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 212

OCTOBER 6, 1976

EVENT 4, 135 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

DAME	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	75•5	76.7	74.4	70 /	,
15	83.9	84.7	83.4	75.4	• 6
16	82.0	83.2	80.8	83.9	• 3
17	82 • 4	83.0	81.3	82•0 82•4	• 7
18	79.8	81.0	77.8	79•7	• 4
19	77.7	79.4	75.2	77.5	•8
<u> 20</u>	75•6	78.4	71.1	75.3	1.2
51	74.5	78 • 1	68.3	73•3 73•8	1 • 6
22	75•0	79.4	70.4	74•3	2•6
23	75.7	78.9	69.9	74.9	2.6
24	75.5	79.9	69.5	74.6	2 • 8
25	74.8	77.9	70.2	74.4	8•S
26	73.7	78.4	68.7	73.1	2.4 2.4
27	72.4	76.8	65.7	71.3	3.1
28	71 - 1	75,4	64.2	70 • 1	3.2
29	68.9	73.9	62.9	67 • B	3.2
30	65.5	71.8	58.8	64.0	3.5
31	62.7	69.2	56.0	61.2	3.5
32	60 • 6	66.8	53.8	59.0	3 • 8
33	59-1	64.9	51.6	57.4	3 • 8
34	57.8	65.3	50.1	55.6	4.2
35	55.5	62.7	48.0	53.3	4.2
36	53.6	59.0	47.2	52.0	3.7
3 7	50 • 4	54.5	45.3	49.4	3.0
38	49.9	57.4	45.0	48.3	3.2
39	51 - 1	54.1	46.9	50.6	2.1
40	56 • 6	58 • 8	52.5	56.2	
DBA	77.3	80.0	72.3	76.7	1 • 8 2 • 3
DBD	82.6	84.7	78.6	82.2	
OASPL	88.7	89.7	87.1	88.6	1 • 9
PNL	90 • 7	93.6	86.4	90.2	•8 2•2
PNLT	90.9	94•1	86.4	90.2	2.3
		<i>y</i> -1 - 1	0004	2013	C • J

3150 (Microphero Location Relative to Helitok

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL SIS

OCTOBER 6, 1976

EVENT 5. 180 DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	SID	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	75•7	76.3	75 • 1	75•7	• 3	
15	83•2	83.8	82.4	83.2	• 4	
16	81.7	82.9	80 • 6	81.7	•5	
17	81.2	81.9	79.8	81.2	• 5	
18	78•7	80.2	76.9	78•7	• 7	
19	77.2	78.6	74.0	77.1	1.2	
20	76.2	78.2	73 • 1	76.0	1.2	
21	74 • 4	78.9	71.3	74.0	1.8	
22	75.0	77.4	71.2	74.7	1.5	
23	74+8	77.1	71 • 1	74.4	1.8	
24	76 • 1	79.0	70 • 4	75•4	2.5	
25	75.8	79.8	70.6	75.0	2.7	
26	75 • 0	78.9	68 • 4	73•9	3 • 1	
27	72.6	77.6	65.1	71 - 4	3 • 4	
28	70•8	76 • 1	63 • 3	69.6	3 • 3	
29	68•6	74.9	61.1	67.1	3.6	
30	65.9	72.7	57.9	64 • 4	3.5	
31	62.9	68.6	56 • 4	61 • 5	3 - 1	
32	60 • 6	66.6	53.9	59.3	3 • 3	
33	59•0	65.2	52.8	57.6	3 • 3	
34	56 • 5	62.0	50 • 7	55 • 3	3 • 3	
35	53.5	57 • 5	48.9	52.7	2.6	
36	52 • 8	58 • 1	48 • 0	51.8	2.8	
37	49.5	53.8	45 • 8	48.9	2.3	
38	48 • 0	52 • 1	45.0	47.5	2.0	
39	47 • 6	49.8	45.0	47.3	1.5	
40	51.2	54.9	47.6	50 • 7	2.0	
DBA	77.9	82.9	72.6	77.0	2.8	
DBD	83.0	86•7	78•7	82.5	2.1	
OASPL	88 • 5	90.0	87.0	88 • 4	• 7	
PNL	90 • 8	94.5	86.4	90.2	2.2	
PNLT	91.0	95-4	86.4		2.4	

270°
(Microphone Location Relative to Helicopter)

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 212

OCTOBER 6, 1976

EVENT 6. 225 DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			'ARITH.	STD
BAND	AVERAGE	MAX	NIM	AVERAGE	DEV
					•
14	75 • 8	76•8	74.0	.75 • 7	• 7
15	82 • 4	83.5	80 • 7	82.4	• 7
16	81.2	82.5	80.2	81.2	•6
17	83.0	84.4	81.9	82.9	. • 7
18	79.9	81-4	78 • 6	79•9	. • 7
19	77•5	79.9	74.6	77.4	1.2
20	79.4	81.6	77.2	79 • 1	1.4
21	78 • 1	81.5	74.6	77.7	1.9
22	79 • 1	83.7	75 • 3	78 • 6	2.1
23	79•5	84.8	74.5	78 • 4	2.9
24	80 • 1	86-1	74.9	78.3	3.1
25	79.3	85.5	73.0	77.6	3.6
26	78 • 4	85.2	72.7	76.5	3.7
27	76•5	83 • 4	71.6	74.7	3.6
28	74.8	81.7	67 • 6	72.8	3.8
29	72.1	78.8	65.2	70 • 4	3.6
30	69.0	74.9	61.5	67.9	3.1
31	67.3	73.5	59.8	66.0	3.2
32	65•6	72.6	58 • 4	63.7	3.7
33	65.1	72.5	56.7	62 • 4	4.3
34	62 • 8	70.4	53.5	59•9	4.6
35	58.9	66 • 4	51.6	56 • 7	3.9
36	57•2	64.3	50 • 6	55.2	3.8
37	53.7	60.7	47.8	51.9	3.6
38	50 • 8	56.5	46.2	49.6	2.9
39	48 • 3	52 • 4	45.0	47.7	2.1
40	48 -2	51.5	46.1	47.9	1.5
DBA	82.0	88•6	76.7	80 • 3	3.4
DBD	86.9	92.8	82.5	85.7	2.9
OASPL	90 • 4	94.0	88 • 4	90 - 1	1.6
PNL	94.4	100 • 4	89.9	93.3	2.9
PNLT	94.4	100-4	89.9	93.3	2.9

Missophone Lunation
Relative to Helioopete

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 212

OCTOBER 6, 1976

EVENT 8, 315 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
				•	•
14	77.4	79.9	74.1	77.2	1 - 4
15	86.3	88.6	83.9	86.2	1.0
16	85 • 1	86.9	82.7	85.0	1.0
17	87 • 1	89 • 1	85.3	87.0	1.0
18	84.3	88 • 1	81.4	84.0	1.6
19	83.6	0.88	79.1	83.2	2.0
20	85 • 5	88.5	79.7	85.0	2.2
21	87.3	90.3	81.6	86.8	2 • 3
22	87.8	90•6	81.9	87 • 4	2.1
23	88.2	91.0	83.0	87.8	2.0
24	88-7	91.9	83 = 1	86 + 3	2.1
25	88 - 1	91.2	82.0	87.6	2.1
26	88.2	92.2	81.7	87.8	2.0
27	85•9	90.0	80 • 5	85 • 3	2.2
26	84.6	88.1	80.0	84.3	1 • 8
29	82 • 4	85.6	79.0	82.0	1.8
30	79.0	81.6	75.3	78•7	1.7
31	76.4	78.5	74.2	76.2	1.2
32	72.7	74.8	67.8	72.6	1.3
33	70.9	73.3	67.7	70.7	1.3
34	70 • 6	74.4	67.2	70•3	1.7
35	67 • 6	70.4	64.3	67 • 4	1.6
36	65.0	66.5	61.9	64.8	1 • 4
37	61.2	63.9	58•5	61.0	1 • 3
38	58.7	60.7	56 • 4	5੪∙6	1.2
39	55.9	57•5	\$5.0	55•8	. • 7
40	55.2	55.9	55.+0	55.2	• 2
DBA	91 - 1	94.0	87 • 4	90•9	1 - 4
DBD	95•6	98.3	92.7	95 • 4	1.4
OASPL	97.8	100.5	95 - 1	97.6	1.3
PNL	103.4	106.3	99.8	103-1	1 - 4
PNLT	103.5	106.6	99.8	103.2	1.4

Microphone Location Relative to Helmorter

5 FOOT HOVER TEST

The second second second

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL SIS

OCTOBER 6, 1976

EVENT 15. 270 DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH:	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	76 • 7	78.5	75 • 1	76• 6	•8
15	84•6	85•8	82•8	84.5	• 9
16	83 • 4	84.9	81 - 4	83.3	• 9
17	87•7	89•1	86 • 5	87•6	• 7
18	83 • 6	86•2	81 • 3	83.4	1 • 2
19	80 • 6	84.1	76 • 6	80.0	2 - 1
20	86•5	68• 0	83 • 8	86•4	1 - 1
51	84 • 2	87 • 4	88•3	84.0	1.2
28	86 • 7	89•0	83.3	86.5	1.2
23	86 • 5	89.4	61.9	86.2	1.6
24	87 • 0	90.5	83.0	86.7	1.8
25	86.2	90•8	81 • 4	85•8	1.9
26	85 • 2	89.8	81.5	84.7	2.0
27	82 • 4	84.9	77 • 5	82.1	1.9
28	80 • 5	83.0	75•4	80.2	1.8
29	78 • 8	81.7	74 • 1	78.4	2.2
30	75 • 6	79.2	71.0	75.2	2•0
31	72 • 1	74.7	68 • 5	71.8	1.5
32	68 • 2	71.3	64 • 1	67.9	1 - 7
33	66 • 8	69.8	62.0	66+6	1 • 6
34	66 • 6	69.5	61 • 0	66.2	1.9
35	64 • 1	66 • 4	59 • 6	63.9	1.5
36	62 • 1	64.9	58 • 4	61.9	1 • 4
37	58 • 9	61.5	55 • 7	58 • 7	1 • 4
38	56.9	59.0	55.0	56.7	1 - 1
39	55 • 1	55.5	55.0	55 • 1	• 2
40	55.0	55.0	55•0	55.0	•0
DBA	88 • 1	91.1	84.6	87.8	1.6
DBD	93 • 1	96.0	89.6	92.8	1.5
OASPL	96 • 0	97.9	94 • 1	95.9	1.0
PNI	100 • 7	103.1	97.8	100.5	1.3
PNLT	100 • 7	103.1	97.8	100.5	1 • 3

180°
(Microphone Location)
Relative to Helicopter)

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 212

OCTOBER 6, 1976

EVENT 20, 170 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEA
• 4	7. 0	.			
14	71.2	73-1	67.4	71.0	i • 3
15	75.7	78 • 5	71.5	75 • 4	1 • 7
16	69 • 8	73.3	64.6	69.0	2.8
17	73 • 6	76.4	67.9	73.1	2.2
18	75.2	77 • 4	70.0	74•9	1.8
19	73•7	76.2	68 • 4	73•4	1.9
50	68 • 8	71.7	65+1	68.5	1 • 9
21	59•6	62.5	56.8	59.4	1.5
22	66•3	68 • 1	63.4	66 • 1	1 - 4
83	73.5	75• 3	70.2	73.2	1.5
24	75•6	77.7	71.9	75.3	1.7
25	73.3	75.6	69.3	73.0	1.7
86	68 • 5	70 • 4	63.6	68 • 3	1 - 4
27	74.2	76.2	69.2	74 - 1	1 - 4
28	68.7	70.8	63 • 1	68 • 5	1.5
29	70.2	72.6	65.7	70.0	1 • 3
30	67 • 1	69.7	63 • 1	67.0	1.3
31	64.3	66.4	60.6	64.2	1.2
32	62 • 1	64-4	59.9	62.0	1 - 1
33	61.0	63.8	58 • 8	60.3	1.2
34	57 • 3	59 • 5	54.0	57.1	1 • 4
35	54.2	56.8	51.2	54.0	1 • 3
36	51.5	53.8	48.2	51.3	1.2
37	46.6	48 • 3	45 • 1	46.6	• 7
38	45 • 1	46.0	45.0	45.1	•2
39	45 • 1	46 - 1	45.0	45 1	• 3
40	45.0	45.2	45.0	45.0	• 1
DBA	77.2	79.1	73.2	77.0	1.2
DED	81.7	83.5	78.3	81 • 6	1 • 1
OASPL.	84.3	85.8	82.7	84.2	•8
PNI.	88.9	90.5	85.5	88 • 8	1.1
PNLT	89.0	90.5	85.5	88.8	1.0
	0,740	3043	0263	00 • 0	1.0

Missophone Loralism
Pelatine to Helicopter

SOO FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 212

UCTOE & 1976

EVENT 20, 190 DECREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEA
14	75.8	78.0	71 1	9C C	0.0
15	80.4	82.4	71 • 1	75• 5	2.0
16	72.0		75 • 3	80.0	1.9
17	79.5	76.5	67 • 1	71.5	\$ • S
18	74.9	80 • 7	77.9	79 • 4	• 7
19		76.0	73 • 4	74 • 8	. •8
20	64•4 64•5	66 • 1	61.2	64.3	1 - 1
21		66 • 1	58 • 2	64.2	1.8
22	64•1 74•9	65 • 5	61.5	64.0	1.0
23		77.0	72.4	74.7	1.2
	77 • 2	78 - 8	74.9	77 • 1	1.0
24	75• 8	77.5	73 • 4	75.7	1 • 1
25	68.0	70 • 2	64.2	67.8	1.5
26	76.4	78 • 5	73.2	76 • 2	1 • 3
27	72.5	74.6	68 • 6	72.3	1 • 6
28	74.5	76.5	69.8	74.2	1 • 8
29	74.4	76.6	68 • 0	73.9	2.4
30	70.8	72.8	64 • 1	70.3	2.3
31	69+1	71 • 1	62.5	68.7	2.3
32	68 • 4	70.6	63.7	68•0	2.2
33	67.0	69 • 1	62.5	66.7	1.8
34	63.2	66•5	57 • 8	62.8	5.5
35	60 • 3	62•8	55.9	60•0	1 • 7
3 ა	57.4	59 • 5	53.3	57.1	1.5
37	52 • 5	54 • 8	49.2	52.3	1 • 4
38	49 • 1	50 • 4	47.2	49.1	• 8
39	49.1	50•5	47.9	49.0	. • 6
40	48•9	50.2	47 • 2	48.9	• 7
DBA	80 • 5	82.5	76.0	80.5	1 • 7
DBD	84 • 4	გ2• 9	80.6	84.2	1 - 4
CASPL	87 • Q	88.4	83.9	86 • B	1.2
PNL	92.0	93.5	88 • 6	91.9	1.3
PHLT	92.2	93.5	6.83	92.0	1.2

Microphy bords (Microphy bords (Aller to Hollogy)

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

BELL 812

OCTOBER 6, 1976

EVENT 20, 180 DEGREES. CENTERLINE MICROPHONE (SOFT SITE)

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICHO PA)

	E.VEITG X			Anlin.	SID
UK.Au	AVERAGE	MAX	MIN	AVERAGE	DEV
1	72.7	75•ë	68 • 4	72•4	1.8
14		76.7	68 • 2	72.7	2.3
15	73 • 3	79.9	72.3	76.5	2.4
16	77 - 1	77.3	75 • 2	77.3	1.2
17	77 • 5	75.2	69.8	72.3	1.5
18	72.6		59.7	64.3	1.9
19	64.7	67.5	74.)	77.4	1.3
20	77 • 6	80 • 1	74 - 1	74.2	2 - 1
21	79.6	82.0		83.6	1.6
22	83.9	₹6•0	ಕ0 • 3		1.6
83	79.6	81 • 3	74.3	79.4	
24	78 • 2	77.9	74.8	77.3	1.6
25	83.3	85.7	7/•8	43.0	1 • ?
26	21.9	81 • 6	73-1	79.4	2 • 3
27	ø2 • 1	84.0	75 • 7	81.7	2.2
58	80.5	82.5	72.3	79.9	2.6
29	77.6	79.8	69.9	77.0	2.6
30	76 • 5	76.5	69 • 4	76.0	2.5
31	74.0	76.7	66 • 5	73.4	2.7
32	71 - 5	73.6	66 • 6	71 + 1	1 • 8
33	69.5	71.6	66 • 4	69+3	1 • 4
34	66 • 6	66.2	62 - 6	66•3	1.6
35	62 • 6	64.6	5 9 • 8	62 • 4	1.3
36	60.0	61.6	5 ძ • 5	59.9	• 9
37	55 • 4	57 • 1	53 • 8	55 • 4	•8
38	54.6	55.7	53.3	54 • 6	• 6
39	56.0	56.9	54.4	55+9	• 5
40	57.0	57 • 9	55.7	57 · O	• 5
DBA	86.0	87.9	79.8	85•6	2.1
טטע	90.2	91.8	85.0	90.0	1.9
OASEL	91.3	92.7	86.3	91 • 1	1 • 6
PNL	37.6	40.9	92.5	97 • 4	1.7
5 NL 1	97 • 6	98-9	92.5	97 • 4	2.7

Heleopter Located)

Halicopter Noise Level Data Ball 212 October 6, 1976

MAX RMS Noise Level - JBA ne RomPa

	MAX RMS Noise Level - JUN NE ROMIA									
nelicopter operation	RUN MUK BER		OPHONE THE WEST	NICROP OFFSET TO C 75 M :	THE ERST					
5Ft.	,	80.3	85.8		_					
HOVER O°	10	- (a90°7	94.8	86.5					
5Ft. HOVER	a	84.5	9/.8		-					
45°	11	- (225°)—	89.8	23.0					
5FE.	3	79.0	88.8	_						
HOVER 90°	12	- ((80)	9.8.8	84.0					
5 Ft.	4	76.5	86.5	88.3	84.3					
HOVER	/3		(35°) —	92.0	83.8					
5ft	5	75.3	87.3	88.5	82.3					
HOVER 180°	14	- ((9 0 °)		85.5					
5Ft	6	77.3	84.3	94.3	82.5					
HOVER			y (5°)							
5 Fi	7	78.5	82.8	94.8	85.0					
HOVER 270°			(o°)							
5 Ft.										
H-0VER 315°			3(5°)							
500F	20	78.5	8.6.3 K	87.3#	82.3					
HOVER 180°		(90°)			(270)					
500 FE	<i>a</i> /	84.3	85.81	86.5 %	82.0					
HOVER 90°		(/80°)			(o°)					

of Minophus at continue

TABLE E-VIII Halicopten Noisa Level Data BELL 212

OCTUBER 6, 1976

		MAX RMS	Noise Level				
HELI COPTER	RUN	MICRO	PHONE	MICROPHONE OFFSET TO THE EAST			
OPERATION	NUNBER	150 M	THE WEST				
		13474	CENTER LINE	CENTER LINE	15011		
3°	41	81.3	86.5	84.9	78.0		
SLOPE SLOPE	42	77.8	81.8	82.3	81.3		
	43	77.8	83.0	83.9	81.0		
6 °	22	79.8	84.3	84.0			
GLI.DE	23	78.5	85.0	84.0	82.0		
SLOPE	24	81.0	84.6	845	80.0		
9°	25	€3. §	88.0	86.5	79.0		
GLIDE	26	84.5	86.0	86.5	78.8		
5 LOPE	727 28	81.0	87.0	86.0	78.5		
		79.5	85.0	848	78.0		
60 KT	29	76.0	79.8	79.5	77.0		
LEVEL	30	80.5	80.8	79.3	7510		
	3/	77.8	78.8	79.3	79.5		
99 kT	32	81.0	845		79.8		
LEVEL	33	80.0	82.5	82.5	80.0		
FLYOVER	34	81.0	£3:3	81.0	78.8		
	3						
LEVEL	35	82.0	85.3	84.5	83.8		
FLY OVER	44	83.0 82.5	85.5	82.3 86.0	818 80.5		
	45	R/.8	81.3	81.5	79.5		

Helicopten Noise Level Data

BELL 212

OCTUBER 6, 1976

	·	MIRE KM	- IBA ne zom Pa				
HELICOPTER	RUM	OFFSET T	O THE WEST	MICROPHONE OFFSET TO THE EAST			
O PER ATTOM	NUMBER		TREATER LINE	CENTER LINE	150M		
MAKT,	37	82.3	90.0	87.0	863		
LEVEL	38	84.5	90.8	86.5	85.0		
FLYOVER	46	84.5	87.0	85.0	85.3		
	47	82.3	86.0	83.0	85.0		
LEVEL							
FLYOVER							
12/00/20							
					~		
LEVEL		•			Principles rather range or you		
1							
PLY OVER							
LEVE L.	1						
FLYOVER							
"							
LFYEL							
FLYOVER							
INT OVER							
			-				
LEVEL	1						
FLYOVER							
THE TUVERS							

150 METERS WEST OF CENTER LINE

NOISE LEVEL TIME HISTORIES BELL 212 HELICOPTER 90" HOVER - 5FT

The supply surple of the sales

NOISE LEVEL TIME HISTORIES

BELL ZIZ HELICOPTER

180° HOVER - 5 FT. RUN 5

NOISE LEVEL TIME HISTORIES BELL ZIZ HELICOPTER 3° APPROACH

San Maria

V = CENTER CROSSING

150 METERS WEST OF FLIGHT PATH

DIRECTLY UNDER FLIGHT PATH

NOISE LEVEL TIME HISTORIES
BELL 212 HELICOPTER
G. APPROACH

RUN Z4

DIRECTLY UNDER FLIGHT PATH

NOISE LEVEL TIME HISTORIES

BELL 212 HELICOPTER

9. APPROACH RUN 26

...

NOISE LEVEL TIME HISTORIES
BELL 212 HELICOPTER
LEVEL FLYOVER - GO KTS

V = CENTER CROSSING

NOISE LEVEL TIME HISTORIES BELL 212 HELICOPTER LEVEL FLYOVER - 99 KTS.

NOISE LEVEL TIME HISTORIES
BELL ZIZ HELICOPTER
LEVEL FLYOVER - 110 :TS

DIRECTLY UNDER FLIGHT PATH

NOISE LEVEL TIME HISTORIES
BELL 212 HELICOPTER
LEVEL FLYOVER - 114 KTS

DATA TABLE F

Sikorsky S-61(SH-3A)

TEST DATE:	10-28-76 TEST SITE: NASA L	ANGLEY
SECTION - F	CONTENT	PAGE #
I	RUN LIST	473
II	GROUND AND FLIGHT LOG DATA	476
III	METEOROLOGICAL DATA	479
īv	LEVEL FLYOVER AND APPROACH NOISE DATA	480
v	TIME HISTORIES	482
VI	1/3-OCTAVE BAND SPECTRAFLYOVER AND APPROACH	502
VII	1/3-OCTAVE BAND SPECTRA5 FOOT HOVER	522
VIII	MAXIMUM dBA NOISE LEVEL (ALL RUNS)	545
IX	SELECTED dBA TIME HISTORIESGRAPHIC PLOTS	547

THE NOISE LEVELS PRESENTED IN SECTIONS IV, V AND VI
HAVE BEEN TABULATED FOR THE SELECTED RUNS AND MICROPHONE
LOCATIONS INDICATED ON THE FOLLOWING PAGE.

TABLE F-I
LIST OF RUNS SELECTED FOR ANALYSIS

		•	1	MICROPHONE	LOCATION	
	Ì		WES	ST	EA	ST
UN#	TEST CONDITIO	N	150 m SIDELINE	CENTER LINE	CENTER LINE	150m SIDELINE
16	9° Approach	60 Kts		x		
18	Level Flyover	60 Kts		x		
19		\downarrow		x		
20	6° Approach	60 Kts		x		
26	Level Flyover	100 K+s		x		
27				х		
28	↓	\downarrow		х		
31	3° Approach	60 Kts		х		
32	Level Flyover	115 Kts	х	x	x	x
33			х	х	x	х
34	↓	\downarrow	X	х	х	х
	Microphone Loca	Microphone Locations		Over Concrete	Over Grass	Over Concrete
			474			

GENERAL COMMENTS

- o There were no problems encountered while testing the Sikorsky S-61 (SH-3A).
- o The weather conditions during the test were very windy with gusts in the 10-20 mph range.
- o Because the S-61's gross weight was effected by its rate of fuel consumption, a table has been inserted which provides a log of the gross weight as a function of time.

١

TABLE F-II Ground and Flight Log Data

23 Fets good ron; on clide slope good run : or alide share About Amtode to Low Hoding 245° chi't get 270° house Tet Joh : Out 48, 1976 Ground Speed Comments Abort 4.2 12 1⊋ 5,13 10-30+7 7 T. Granni 39.54 Long 4004 NASE 720 Registration Tombers 528 25.50 25.50 25.50 245. S 103 ξο **→** 3 00-≯ ξη. • 6,1.4 3336 Rate of 200 W y. 3008/ g,r Spærå ž 3 → 1. 0 → 1) dBA Heaving: 90° E 1111 12 12 14 6 6 8 SK-30 8 0.3 0.3 1 60 00 85.0 85.5 0. 50 % SE Helizopte, Modri : Mithey Designation Sikorsky 5-61 Velocity Attitude ÷>0€3 ş; } **→** å·→ r 5005 Tord tor £ 29 \$ \$ *°* → Target Type 3.00.9 1. me 0 0 0 0 0 0 0 90 70 70 00 10 60 ć Š 9:05 (5) (6) C. 60 4.6 %:13 6:13 80 Cr 00 18 2, 5 5 6 ಜಿ ಜಿ स स स स 66 6 2 6 5 5

かいあまる こうこうき

Test Date: Oct. 28,1476	Councerts	Needs to extend flight positivities that Estended Company	Sightly below glide slape Sightly above glide slape Glide Slape lanks good	130 KS. Ground Speed 185 KS. 130 KB.		
. 88 	Wind Director			1>		
	bund Spara			\$ 00.00		
	RH			r3 r4		
_	Temp			4 6 /n		
	097	÷ →	0. 5- 80.	۶ 		
	8 PM	7 503 %	105%	103%		
	HITTONE 1 Over M.CS.	68% 500 41.	375 4.	5° 3° 3°		
Fegistration Numbers	Mp or Torque	2000	8 8 C	2800		
इस्टाइ कि	fiv Rate of Mp or Spred Decent Torque	0>	600 kg	0>		-
		3 -→	8 -→	13 13 14 13		
45-4S	Hedry	iv ~	10	10>		
	# 8P	88 33 65 62 33 65 64 0 64 0	85.57 1 0.59	\$ \$\$ \$\$ \$ \tau \tau \tau \tau \tau \tau \tau \tau		
2-6 Designat	Attude Over Mics.	\$ →	\$ →	§	No.	
Sikonski Military	Velocit; Attude	, , , , , , , , , , , , , , , , , , ,	** ***	£.		
Helicoptor Model: Military Desgnation	ad!s	19.63/ 19.63/ 19.63/	3° Fpp.	Level Flyover		
tocities	- m	9.34	64:43 64:43	10:06 10:10 10:15		
Helic	Run	8 4 4 8 5 00	200 12	网络素		

. .

TABLE F-II

SIKORSKY S-61 (SH-3A)

LOG OF GROSS WEIGHT vs. TIME

Time	Run #	Fuel (lbs.)	Total Gross Weight
8:15	1	3000	18,724
8:56	17	2700	18,424
9:11	19	2500	18,224
9:20	22	2350	18,074
9:30	25	2200	17,924
10:00	31	1700	17,424
10:14	34	1500	17,224

TABLE F-III

Meteorological Data Langley Air Force Base

October 28, 1976

						•
TIME	TEMP.	BAR. PRESS.	REL. HUM.	WIND SPEED	WIND	REMARKS
(hours)	(of)				DIRECTION	
(tours)	(OL)	(mhs)	(%)	(mph)	(degrees)	
0800	53	778	62	5–19	0	Sky - Partly Cloudy
0815	53		6 6	10-19	20	Cleany
0 830	53		67	16-23	25	
0845	53		68	14-22	20	
0 900	54		69	9-19	30	
0915	54		70	11-19	30	•
0 930	54		69	13-22	25	
0945	54		69	8-20	20	
1000	54		69	7-16	30	
1015	54		68	12-18	30	
1030	55		67	18-23	40	
1130	54		65	14-18	10	
1145	5 6		64	10-16	30	
1200	56		64	8-12	35	Sky - Clear
1215	55		63	8-14	20	0.07
1230	56		60	8-12	20	
1245	56		58	13-18	25	
1300	57	774	56	8-1 5	40	
1315	58		53	8-16	40	
1330	57		52	5-12	50	
1345	57		50	8-15	40	Sky - Clear
1400	57		48	8-12	45	5.0
1415	57		48	5-12	15	
1430	57		47	5-1.2	50	
1445	58		48	5-9	30	
1 500	57	772	47	5-8	20	
1515	57		47	6-12	• 25	
1 530	57		47	5-15	60	
· 1 545	58		48	8-11	30	
1600	58		4 7	8-10	50	
1615	57		46	9-11	60	
1630	56		46	5-8	40	
1645	57		46	2-9	40	
1700	57		47	1-6	25	
1715	56		48	27	40	

TABLE F-IV

ţ

HELICOPTEH APPROACH AND FLYOVER NOISE DATA

SIKURSKY S-61

OCTOBER 28 1976

MICROPHONE OFFSET 150 METERS WEST (LEVELS-DB RE 20 MICRO PA)

EVENT	EPNL	DBA(M)	DBD(W)	OASPL	PNL(M)	PNLT(M)	LEQ	DUR (A)	בוא (א)	TP
32	90.3	83.9	87.7	89.3	94.6	94•6	80•0	8•5	8 • 5	• 0
33	89.5	80.9	85+0	86.6	92.43	93+3	77-1	11.0	10.0	1.2
34	89•6	81.8	85•6	87.1	92.9	92.9	7 8 • 8	8 • 5	8•5	•0

MICROPHONE OFFSET 150 METERS EAST (LEVELS-DB RE 20 MICRO PA)

EVENT	EPNL	DBA (M)	DBD (W)	OASPL	PNL(M)	PNLT(M)	LE3	DUR (A)	DUR (P)	TP
33	89.2	81.7	85•4	85•1	91.7	92.8 91.7 93.8	77.1	13.0	14.5	-0

TABLE F-IV

HELICOPTER APPROACH AND FLYOVER NOISE DATA SIKORSKY 5-61

OCTOBER 28 1976

CENTERLINE MICROPHONE - HARD SITE (LEVELS-DB RE 20 MICRO PA)

EVENT	EPNL	DBA(M)	DBD(M)	UASPL	PNL(M)	PNLT(M)	LEQ	DUR(A)	טאנים (פ)	TP
16	91.7	80.4	85.5	93.0	92.7	92.7	71. 4			
18	92.4	80.2	84.8	90 • 1	91.3	91.3	75 • 4		22.5	• 0
19	92.1	81.3	86 • 1	90.8	93.2	93.8	76.7	24.0	25.0	• 0
20	95.1	84.6	90.4	94.0	97.0		76+9	21.0	21.0	• 0
26	92.5	84 • 1	88.2	88.3	· -	97.0	80.2	16.5	17.5	• 0
27	91.3	82.8	87.1	87.6	95.2	95•2	80 • €	10.5	14.0	• D
28	89.5	81.0	85.9		94.3	94.9	79•3	10.0	0.81	1.0
31	95.6	86.6		¥7•1	9.1.5	92.5	77 • 1	12.0	12.0	• 0
32	92.0	84.8	91.2	93•1	97.9	97.9	83.1	11.5	13.0	• 0
33	90.4	80.9	89.2	88•7	96.2	96•S	82.1	7.5	8 • 5	• 0
34	91.4		85 • 7	87.3	92.5	92.5	77.2	14.5	14.5	• 0
54	74 44	83.5	8 7 • 8	8 7∙ 8	54.9	94.9	79 - 4	11.5	11.5	• 0

CENTERLINE MICROPHONE - SOFT SITE - (LEVELS-DB RE 20 MICRO PA)

EVENT	0	DBA (M)	DBD(M)	OASPL	PNL(M)	PNLT(M)	LEQ	DUR(4)	נים) אנים	TP
33	89.2 88.1	81 • 0 78 • 8	85•7 83•4	86•4 85•8	92•3 90•6 92•0	92•3	77•6 75•6	10.5 11.0	10.5	•0

TABLE F-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 32, 115 KT. FLY BY, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	65•7	71 • 3	79•7	78 • 3	78•3	12.6	5•6
2	67 • 4	72. 8	80.6	79.6	79.6	12.2	5 • 4
3	71.7	75•9	81.6	82.7	84.0	11.0	4.2
4	73.2	77.1	82.2	84.1	84.1	10.9	3.9
5	74.9	78•5	83.0	85•4	86•9	10.5	3•6
6	75.5	79•0	83.6	86.2	87.9	10.7	3 • 5
7	77.6	81.6	84.9	88•5	88•5	10.9	4 • 0
8	79.8	83•9	86•2	90 • 4	90•4	10.6	4 • 1
9	80 • 9	85•1	87•2	91.0	91.9	11.0	4.2
10	82.5	86 • 4	88 • 4	93.3	93•3	10.8	3.9
OH → 11	83.5	87.4	89.2	94.1	94.1	10.6	3•9
12	83•9	87.7	89•3	94.6	94.6	10.7	3 • 8
13	83.2	86.9	88•2	93.9	93.9	10.7	3 • 7
14	81.6	85.4	86 • 4	92.6	92.6	11.0	3 • 8
15	80.0	83.9	84.7	91.5	91.5	11.5	3.9
16	78.6	82.5	83•3	90.0	90•0	11 • 4	3•9
17	77∙੪	81 • 4	82.6	89.0	89.0	11.2	3 • 6
18	77.0	80.5	81.8	88.0	88.0	11.0	3.5
19	76.0	79•7	81.1	87.3	87.3	11.3	3 • 7
20	74.4	78 • 1	79•8	85 • 5	85.5	11.1	3 - 7
21	72.3	76•5	7 8•5	83 • 4	83.4	11 • 1	4.2
58	69.8	74.6	77.7	81.5	81.5	11.7	4.8
23	67.6	73.0	77 • 1	80.0	80.0	12.4	5 • 4

TABLE F-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 33, 115 KT. FLY BY, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	OASPL	PNL.	PNLT	PNL-DBA	DBD-DBA
1	65.9	72.0	80.7	79 • 4	79。4	13.5	6 • 1
2	67.7	72.7	80.8	79.9	81 • 1	12.2	5.0
3	69.4	73.9	80 • 7	80.7	82.1	11.3	4.5
4	71.4	75•6	80.2	82.3	83.3	10.9	4.2
5	72.3	76.3	80 • 7	83.2	83.2	10.9	4.0
6	73.0	76.9	81.1	83.7	85 • 4	10.7	3•9
7	74 • 6	78.3	82.0	85.5	87.2	10.9	3.7
8	75•9	79.8	82.5	86 • 6	87.8	10.7	3.9
9	76•6	80•7	82•8	87.6	87.6	11.0	4 • 1
10	78•0	82•0	84.2	89.2	90-4	11.2	4.0
11	79.6	83 • 6	85•0	20 .9	93.5	11.3	4.0
12	80•9	84 • 6	85•9	92.1	93.3	11.2	3 • 7
OH>13	80•9	85∙0	86•3	92.3	92.3	11.4	4 • 1
14	80 • 4	84.7	86.6	92.3	.92•3	11.9	4.3
15	79•7	84.2	86•3	92.0	92.0	12.3	4.5
16	79•3	83 • 6	85.7	91.2	91.2	11.9	4.3
17	78.7	82•8	84•6	90.3	90 • 3	11.6	4 • 1
18	77•5	81 • 6	83.7	88.9	88.9	11.4	4 • 1
19	76 • 1	80•0	82.5	87.6	87.6	11.5	3.9
20	74.3	7ช∙3	81.5	86.0	86.0	11.7	4.0
21	73 • 2	77.3	80 • 3	84.6	84.6	11.4	4.1
22	7 2 • 8	76 - 8	80.8	84 • 1	84.1	11.3	4.0
23	72 • 1	76•0	80.7	83.6	83.6	11.5	3.9
24	71.6	75•6	80 • 3	82.8	82.8	11.2	4.0
25	70•3	74•6	78.6	81.5	81.5	11.2	4.3
86	69.4	73 • 8	77 • 8	80.8	80•8	11.4	4 • 4
27	67.5	72 - 1	77.2	79-8	79 • 8	12.3	4.6
28	65•9	70 • B	76•3	79.0	7 9 . 0	13-1	4.9

TABLE F-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 34, 115 KT. FLY BY, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBL	0ASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	65•8	72.2	80 • 1	79•2	79.2	13 • 4	6.4
2	67.8	73.7	81.2	80•9	80•9	13 • 1	5•9
3	69.3	74.8	81.7	81 • 7	81.7	12.4	5 • 5
4	71.7	76.3	82.5	83•0	83.0	11.3	4.6
5	74.4	78 • 8	83 • 4	85 • 3	86•7	10.9	4.4
6	77.3	81 • 8	84.9	88 • 3	90•5	11.0	4.5
7	77.7	82.2	გ 5∙2	88•8	90•5	11.1	4 • 5
8	76∙8	83•2	წნ∙1	89.9	89+9	11 = 1	∠ <u>i</u> + ∠ <u>i</u>
9	79.8	ধ3∙৪	86.5	90•7	90•7	10-9	4.0
10	81 - 1	84 • 8	86.9	91.9	91.9	10.8	3•7
OH → 1.1	81.5	85 • 4	87 • 1	92 • 4	92.4	10.9	3•9
12	81.8	85.6	86.9	92.8	92.8	11.0	3 • 8
13	81.4	85•6	86.5	92.9	92.9	11.5	4.2
14	80•8	84.9	85• 7	92.3	92 • 3	11.5	4 • 1
15	79.7	84-1	84.9	91.3	91.3	11.6	4 • 4
16	7 8•9	83 • 1	84.1	90•6	90•6	11.7	4.2
17	77.3	81.5	82•8	89•0	89.0	11 • 7	4 • 8
18	75 • 4	79.4	81.0	86.8	86.8	11 • 4	4 • O
19	7 2•7	76•7	79.0	83.9	83•9	11.2	4 • O
20	71.3	75.1	78•8	82•6	82.6	11.3	3 • ₿
21	70 - 1	74.2	78.6	81 • 4	81 • 4	11.3	4 - 1
22	69 • 1	73 • 4	78 • 7	80•5	80 • 5	11 • 4	4.3
23	68•3	73 • 1	77 • b	80 • 4	81.5	11.6	4 • 3

TABLE F-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 32: 115 KT. FLY BY. MIC. 150 METERS EAST

INT	DBA	DBD	0ASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	67•9	73.5	7 8•4	79.7	7 9•7	11.8	5•6
2	68 • 9	74.2	7 8•5	80•5	80•5	11.6	5•3
3	69•7	75.1	79.2	82.0	83•2	12.3	5 • 4
4	71.8	76•9	79• 8	83 • 4	83•4	11.6	5•1
5	75 • 4	79.8	80.7	86 • 4	87.6	11.0	4.4
6	76.5	80·9	81.0	87.5	89.0	11.0	4 • 4
7	76•8	81.3	81.3	87•9	89•3	11-1	4.5
૪	77.8	82.2	82•6	88.9	88•9	11 • 1	4.4
9	79.0	83 • 4	83•8	90 • 1	90 • 1	11.1	4 • 4
10	80 • 5	84.7	84.9	91.4	91.4	10.9	4.2
11	81.5	85•5	85.0	92.2	92•2	10.7	4.0
OH -> 12	81 • 6	85•6	84.7	92.2	92.2	10.6	4.0
13	81 • 4	85•6	84.6	92.1	92•1	10.7	4.2
14	ಕ೦∙9	85 • 1	84.6	91.4	91.4	10.5	4.2
15	80.2	84.3	84.4	90•8	90•8	10.6	4.1
16	79.2	83•1	83.5	89.7	89•7	10.5	3.9
17	78.1	82•3	82 •7	88•7	88•7	10.6	4.2
18	77.6	81.7	81.7	88 • 1	88•1	10.5	4 • 1
19	76.0	80•2	80.5	86.7	86.7	10.7	4.2
20	74.3	7 8•4	79.0	85 • 2	85•2	10•9	4 • 1
÷:	72.4	76•6	77.7	83.5	83•5	11 - 1	4.2
22	71.3	75•7	76.7	82.3	82•3	11.0	4.4
23	69•3	74.2	75•7	81.0	82.2	11 + 7	4.9
24	67 • 6	73.0	74.6	79•6	79•6	12.0	5 • 4
25	66.2	72 • 1	75.0	78.7	7 8 • 7	12.5	5•9

TABLE F-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 33. 115 KT. FLY BY. MIC. 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	63•8	71.6	78•7	77.8	77.3	14.0	7.8
2	68•6	74.0	80.0	80.8	82.4	12.2	5 • 4
3	70.9	75.6	81.2	82.3	83.7	11 • 4	4.7
4	71-7	76-4	82+2	82 - 8	83.8	11 = 1	4.7
5	73.3	77.8	82.7	84.3	84.3	11.0	4.5
6	75.9	80 • 1	83.2	86.7	86.7	10.8	4.2
7	76 • 4	80.7	83.2	87.3	87.3	10.9	4.3
ខ	75.2	79•8	82.6	86.5	86.5	11.3	4.6
9	71.6	77•2	81 • 4	83.7	83.7	12.1	5•ΰ
10	70.8	75• 8	80•6	82-1	83.5	11.3	5.0
11	72.6	76•7	80 • 4	83•5	86.1	10.9	4 • 1
12	7 3.8	77•6	80.7	84.6	86•6	10.8	3 • 8
13	73.1	79 • 1	80.9	85•9	87.0	10.8	4.0
14	78.0	82.3	82.4	89•1	89 • 1	11-1	4.3
15	79.9	83∙8	83.4	90.5	90.5	10.6	3.9
16	81.0	84.9	84.4	91.5	91.5	10.5	3•9
17	81.4	85-1	84.9	91.5	91.5	10-1	3 • 7
OH —→18	81.7	85•4	85 • 1	91.7	91.7	10.0	3 • 7
19	80.9	84.6	84.8	90.8	90.8	9.9	3.7
20	79.8	83.5	84.3	89.8	89.8	10.0	3 • 7
21	78.2	82.2	83•7	88.6	88.6	10-4	4.0
22	77.6	81•9	83.3	88.3	88.3	10.7	4.3
23	76.7	81.3	82•6	87.5	87.5	10.8	4.6
24	75 2	80 • 1	81.8	86.5	86.5	11.3	4.9
25	74.4	79.0	81.3	85•9	85•9	11.5	4.6
26	73.5	78.0	80.7	85.1	85.1	11.6	4.5
27	73.7	77.9	80 • 2	84.8	84.8	11.1	4.2
28	73.1	77.7	79• 6	84.3	84.3	11.2	4.6
29	71 • 6	76•7	78 • 6	83.1	83.1	11.5	5 • 1
30	69.1	75-0	77.4	81.5	81.5	12.4	5.9
31	65•9	73,2	7/2+4	80.2	80.2	14.3	7 • 3
32	65•5	72.9	76.3	80 - 1	80.1	14.6	7 • 4

TABLE F-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 34. 115 KT. FLY BY, MIC. 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNI.T	PNL-DBA	DBD-DBA
1	63•6	71.1	79•2	77.0	78 • 4	13.4	7• 5
8	66 • 4	73.0	79•7	79 • 1	80•5	12.7	6•6
3	70.9	75.6	80.5	88•8	83•4	11.3	4.7
4	73.1	77•2	80 • 6	83.6	83+6	10.5	4.1
5	73.6	77•8	80 • 4	84.0	84.0	10.4	4.2
6	72.6	77 • 1	79•9	83.7	83 •7	11.1	4.5
7	72.5	77 • 3	79.6	83.8	84.9	11.3	4.8
8	74.4	7 8•5	80 • 1	85 • 1	86•6	10.7	4 • 1
9	76•3	81.0	80•8	87.1	88•1	10.8	4.7
10	78•5	83•1	82 •7	89.2	90.2	10.7	4.6
11	79.9	84•8	83•9	90•7	91•8	10.8	4.9
12	81.5	85.7	85 • 1	91.9	91.9	10.4	4.2
13	81.2	85•3	85•1	91.6	91 • 6	10.4	4 • 1
14	80•7	84.6	84.7	91.0	91.0	10-3	3•9
15	80 • 2	84.5	84•4	90.8	90.8	10 • 6	4 = 3
16	81 - 1	85•0	84.7	91.2	91.2	10.1	3.9
17	81.0	85•2	84.9	91.2	91.2	10.2	4.2
18	82.8	86•6	86•4	92.8	92.8	10.0	3 • 8
oh \longrightarrow 19	83 • O	86•7	86•5	93.2	93.2	10.2	3 • 7
20	83•;	86•6	86 • 2	93.1	93•1	10.0	3 • 5
21	8•03	84•2	83•7	90.7	90.7	9•9	3 • 4
22	78.6	82•1	81.6	88.4	88.4	9•8	3 • 5
23	76.3	79•6	79•8	86.0	86.0	9•7	3 • 3
24	75 • 8	79•2	79.3	85.6	85.6	9•8	3 • 4
25	74.6	7 8•0	78 • 3	84.6	85•9	10.0	3 - 4
26	73.2	77-1	77•4	83.3	84.5	10.1	3.9
27	70.7	75•2	76.5	81.8	81.8	11-1	4.5
28	70.2	75• 0	76.7	81.6	81.6	11-4	4.8
29	68.7	73•6	76 • 4	80.1	80-1	11.4	4.9

TABLE F-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 16, 9 DEGREE APPROACH, CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	62.3	69•3	78 1	77.0	77.0	14.7	7.0
3	64.0	69.9	79.0	77.5	78 • 5		
5	65.6	70•9	79 • 6	78.5	80.2	12.9	
7	69.6	74.4	79 • 7	82.2	82.2	12.6	
9	74.0	78 • 8	82.1	86.1	86-1	12-1	
11	69.5	74.8	81.6	82.5	82.5	13.0	
13	68.1	73.9	82.7	80.9	82.2	12.8	
15	68-1	73.9	82.7	81.1	81.1	13.0	
17	67.6	73-5	83 • 2 84 • 1	81.3	82.3	13.7	
19	68.3	74.5	84 • 1	82 • 1	83.1	13-8	
21	07.3	75.3	84.4	82.9	82•9	13.6	
23	70•7	76.5	85 • 7	83.5	84.7	12.8	
25	73•2	78.6	85.9	85.9	87.8	12.7	
27	73.3	78 • 8	86.6	86+3	87.7	13.0	5.5
29	73.0	79.0	87.4	86.3	86-3	13.3	
31	72.4	78 • 8	88•3	86.2	86.2		
33	73.4	80.0	90•5	ხ6•9	86.9		
35	76.0	82 _° 3	92.2	88•6	88•6	12.6	
37	77.7	83.5	93,0	90 • 4	90 • 4	12.7	5-8
OH 39 70	79•5	85•0	91.0	92.3	92.3	12.8	5.5
	79•9	85 • 4	88 • 3	92.7	92•7	12.8	
43	80-4	85,3	88.3	98.4			4.9
45	80•4	85•3	89•3	92.4	92•4	12.0	4.9
47	78•0	83.2	87.3	90 • 4	90 - 4	12.4	5 • 2
49	74-4	79 • 6	83.5	86.3	86•3	11.9	
51		77.0		83.5	83.5	11.6	
53	70 • 4	75 - 1	79.2	82.0	82.0	11.6	
55	69+1	74•3	77•6	81.2	82.2	12.1	
57	67•0	72.2	77•4	79.1	79 • 1	12.1	5•2
59	66•7	71.8	77 • 4	78 • 8	78 - 8		5 • 1

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 18, 60 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	62.3	69•3	77.2	76-3	76+3	14.0	7•0
3	63.5	69.9	78.0	77•3	77.3	13-8	6 • 4
5	67 • 1	72.6	79.0	79∙8	79.8	12.7	5+5
7	70.8	75•2	79.8	83•i	83.1	12.3	4-4
9	76 • 5	80.5	82 - 7	87.9	89.5	11.4	4 • 0
11	77.8	81.6	82.9	88 • 2	89.7	10.4	3 • 8
13	76 • 1	80 • 1	81.7	87.1	89.2	11.0	4.0
15	73 • 1	77.3	81.0	85.0	86.0	11.9	4.2
17	71.0	75.8	80.8	83 • 2	84.2	12.2	4.8
19	69.7	74.6	80.8	81.6	81.6	11.9	4.9
21	74.3	78.4	81.3	85.8	87.8	11.5	4 • 1
23	75.2	79.4	83.0	86.5	88.2	11.3	4.2
25	74.7	79。4	84.3	86•9	86.9	12.2	4.7
27	76.0	80-5	83.5	87•7	89.2	11.7	4.5
29	76•8	81 - 4	84.0	88 • 1	89.1	11.3	4.6
31	78 • 1	82.8	85.0	89.6	89.6	11.5	4.7
33	78•9	83.7	86.2	90•7	90.7	11.8	4.8
35	79•7	84.4	87.3	91.2	91.2	11.5	4.7
37	80.0	848	87.7	91.3	91.3	11.3	4.8
oh > 39	80.2	84.4	88.7	91.2	91.2	11.0	4.2
41	79 - 1	83.5	89.7	90•3	90.3	11.2	4.4
43	78.0	82.3	90 • 1	89•0	89.0	11.0	4.3
45	77.3	81.3	89.3	87.9	87.9	10.6	4.0
47	76.5	⊳0•4	87.5	87-1	87.1	10.6	3•9
49	75 • 1	79.2	85•9	86.0	86.0	10-9	4 • 1
51	74.2	78 • 4	84.1	85 • 1	85 • 1	10.9	4.2
53	72.6	77-1	82.5	83•9	83.9	11-3	4.5
55	69-1	73.6	80.7	80.9	80.9	11.8	4.5
57	66 • 0	71.6	80.3	78•7	78 • 7	12.7	5•6
59	66+0	71 • 1	78 • 8	78 • 1	78 • 1	12.1	5 • 1
61	64.9	69.7	77.1	76•9	78•5	12.0	4.8

TABLE F-II

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 19, 60 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	63•6	71.2	76•9	78 • 2	78.2	14.6	7.6
3	62.8	70.7	77.2	78 • 6	78•6	15.8	7•9
5	64.8	72 .2	78.0	80.0	80•0	15.2	7 • 4
5 7 9	70.8	75.5	80 • 1	83•0	84.1	12.2	4.7
9	74-3	77.9	81 • 4	86.2	86•2		3•6
11	70.2	75.2	79.8	82.7	82•7		5.0
13	66•9	73.0	78 -7	80 • 7	82-1	13.8	6.1
15	66.7	73.0	78 • 6	€0∙5	82•2	13.8	6• 3
17	68•1	74-1	79.6	81.1	81.1	13.0	6.0
19	67.7	73.9	80.5	81.4	82 • 7	13.7	6•2
21	71.6	76.3	81-3	84.0	85•6	12.4	4.7
23	73.2	77.8	82.2	85.2	85•2	12.0	4.6
25	75.0	79.9	84.2	87•5	87•5	12.5	4.9
27	76.3	81 • 1	85•5	55• 8	88 • 8	12.5	4.8
29	77.4	82.5	85.6	39•7	89-7	12.3	5 • 1
31	77.2	82.1	85.8	89.0	89•0	11.8	4.9
33	80.4	85.5	87.2	92 • 3	92•3	11.9	5 • 1
35	80.6	85.4	88.1	92.7	92•7	12.1	4.8
37 3	81.3	86.1	90 • 0	93.2	93.2	11-9	4 • 8
он 37) 38	80.9	85.8	90.8	92.5	92•5	11.6	4.9
41	8-1-2	84.7	90.8	91.3	91.3	11.1	4.5
43	76.7	81.0	89.8	87.8	87.8	11.1	4.3
45	76 • i	80.2	88.2	86•8	86.8	10.7	4-1
47	75.7	79.9	87.0	86-7	86.7	11.0	4.2

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 20, 6 DEGREE APPROACH, CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL.	PNLT	PNL-DBA	DBD~DBA
1	70 • 5	77.0	84.6	84.3	85•3	13.8	6•5
2	71-1	77.5	84.8	84.7	85.8	13.6	6 • 4
3	72 • 3	78.0	84.9	85.4	86.5	13-1	5 - 7
L į	74.2	79.2	85.2	86.5	87.7	12.3	5.0
5	75•2	79.9	85.6	87.3	87.3	12-1	4.7
6	75.8	80 • 5	86.0	88.0	88.0	12.2	4.7
7	76.0	80.9	66•6	86.2	89.9	12.2	4.9
8	75•9	81.2	87.9	88 • 3	90.2	12.4	5•3
9	75.4	81.2	88•4	88•6	90 • 1	13.2	5•8
10	75•3	81.0	88 • 6	88•7	88•7	13.4	5•7
11	75 • 1	81.0	88.9	88•6	88•6	13.5	5•9
12	75 • 4	81.5	89.0	88•9	88•9	13.5	6 • 1
13	76 • 1	82•5	89.2	89.7	89.7	13.6	6 • 4
14	7 8•7	84.3	89.2	91.3	91.3	12.6	5•6
15	79.2	84.9	89.4	92.0	92.0	12.8	5 • 7
16	79.8	85 • 4	89.6	92•6	92.6	12.8	5•6
17	80.3	86.0	89.9	92.9	92.9	12.6	5•7
18	80•9	86•7	90 • 1	93.5	93.5	12.6	5.8
19	81 • 4	87.2	90 • 1	94.0	94.0	12.6	5•8
20	81.3	87.0	89.8	94.2	94•2	12.9	5•7
oh> 21	81.9	87.6	90•0	94.6	94•6	12.7	5•7
22	82•5	88•1	90.9	95.3	95•3	12.8	5•6
23	83.5	89.1	92.3	96•0	96•0	12.5	5•6
24	84.1	89•8	93.4	96 • 4	96.4	12.3	5•7
25	84.2	90 • 1	93.9	96•7	96•7	12.5	5•9
26	84.6	90 • 4	94.0	97.0	97.0	12.4	5.8
27	84.1	89 •7	93.2	96•3	96•3	12.2	5•6
28	83•4	89•0	92.2	95•8	95∙3	12.4	5 • 6
29	81.4	87•2	90 • 4	94.3	94.3	12.9	5•8
30	80 • 1	85•9	89•2	93.0	93•0	12.9	5•8
31	78•7	84 • 4	8 7. 5	91 - 4	91 • 4	12.7	5•7
32	77•9	83•4	86•3	90•6	90•6	12.7	5•5
33	76•6	82.4	85+0	89.4	89~4	12.8	5•8
34	75•3	80•9	83.6	88•0	88•0	12.7	5•6
35	75-1	80.2	82.6	87.5	87.5	12.4	5•1
36	74.8	79•6	81.9	87.2	88•5	12.4	4•8
37	73.9	78.6	81.0	86.3	86.3	12.4	4 • 7
38	71.8	76.8	80.0	84.3	84.3	12.5	5•0
39	70•3	75.8	79.2	83.0	83.0	12.7	5•5

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 26, 100 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DвA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	7 0 • 5	7 ੪•0	84.5	85+0	85.0	14.5	7 • 5
2	71.4	78 • 4	84.1	85•5	85.5	14-1	7.0
3	72.0	79.1	84.4	86 • 4	87.6	14 • 4	7 • 1
4	73 • 6	79•7	85•3	87.5	87.5	13.9	6 • 1
5	75 • 3	80 • 8	85•6	88•7	90.2	13.4	5.5
6	76•7	81 • 5	86.0	89.2	91.0	12.5	4 • 8
7	78.0	82.5	85.9	89•9	89.9	11.9	4.5
8	79.4	83•5	86.0	90•6	90.6	11.2	4 • 1
9	80•7	85•1	86•0	91.5	91.5	10.8	4 • 4
10	81.5	85•8	85.5	91.9	91.9	10+4	4 + 3
11	82.2	86 • 8	86•4	93 • 4	93 • 4	11.2	4.6
12	83 • 4	87.6	87.4	94.5	94.5	11-1	4.2
13	84.0	88 • 2	88•2	95.2	95•2	11.2	4.2
OH ->14	84 - 1	88 • 2	88•3	94•9	94.9	10.8	4 - 1
15	83.6	87 • 8	88.2	94.5	94.5	10.9	4.2
16	82.8	87.1	87.8	93•9	93.9	11-1	4.3
17	82.0	86 • 1	87•2	93•0	93.0	11.0	4 • 1
18	80.5	85•0	86•1	91.7	91.7	11.2	4.5
19	79•3	83•8	85•5	90•7	90•7	11-4	4.5
20	77•9	82 • 7	84.9	89•6	89•6	11.7	4.8
21	77.2	82.0	84 • 4	89•0	89.0	11.8	4 • 8
22	76 • 6	81 • 2	83.2	88•4	88.4	11.8	4.6
23	75.3	80•3	82 • 4	87.5	87.5	12.2	5.0
24	73•3	78 • 7	81.8	86 • 1	86 • 1	12.8	5 • 4
25	70•9	77.6	81.2	84.5	84.5	13 - 6	6 • 7
26	69•4	76.9	81 • 8	83•9	83.9	14.5	7.5
27	69.6	77 • 3	82•4	84.0	85•2	14-4	7 • 7

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 27, 100 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DBA	DRD	JASPL	PNL	PNL.T	PNL-DBA	DBD-DBA
1	72.0	77.6	84.5	84.2	85•3	12.2	5.6
2	72.2	78.0	84.3	84.7	84.7	12.5	5 • 8
3	72.5	7 8•5	84.5	85•6	85.6	13.1	6•0
4	73 • 1	78.9	84.6	86.0	86.0	12.9	5•8
5	72.8	78.9	84.6	85•8	85•8	13.0	6 • 1
6	73.9	80.4	84.3	86.7	88.2	12.8	6.5
7	74.8	80.9	84.7	87.1	89.2	12.3	6 • 1
8	76.2	81.6	85.2	88.2	89•3	12.0	5 • 4
9	77.4	82.2	85•5	89.3	89•3	11.9	4.8
10	78•6	83.6	86.2	90.5	90.5	11.9	5 • Ü
11	80•6	85.3	86.8	92.3	93•5	11.7	4.7
12	82.4	86 • 9	87.6	93.9	94.9	11.5	4.5
13	82.8	87.1	87.6	94.3	94.3	11.5	4 • 3
CH>14	82.5	86.7	86.8	93•9	93•9	11.4	4.2
15	81.7	85.9	86.0	93.2	93.2	11.5	4.2
16	81.5	85 • 7	85.9	92•8	92•8	11.3	4.2
17	81.2	85•1	85.9	92 • 1	92•1	10.9	3•9
18	80 • 4	84.2	85 • 3	90.9	90•9	10.5	3.8
19	79.3	83.0	84.4	89.5	89•5	10.2	3.7
20	78 • 1	81.8	83.3	88.3	88.3	10.2	3.7
21	76•7	80.2	82.5	87.0	87.0	10.3	3.5
22	75 • 4	78 • 8	81.8	85•9	85•9	10.5	3 • 4
23	73.5	77 • 3	80.9	84.3	84•3	10.8	3•8
24	71 • 1	75.5	79.7	82.3	82.3	11.2	4 • 4
25	69.6	74.3	78.9	80•9	80•9	11.3	4.7
26	70.0	74.2	78 • 6	80.9	80•9	10.9	4.2

TABLE F-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 28, 100 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	66•6	73 - 1	83.7	79.0	80.8	12.4	6.5
5	67.5	73.4	82.5	79.7	81.6	12.2	5•9
3	69.0	74-5	82.4	81 + Ö	81.0	12.0	5 • 5
4	71.0	75•9	83.8	82.4	82.4	11-4	4.9
5	71.2	76.2	84.2	82.7	82.7	11.5	5•0
6	72.4	77.0	84.6	83.9	83.9	11.5	4-6
7	72.6	77-2	84-2	84.5	84.5	11.9	4•6
8	73.2	77•7	84.5	85 • 1	86.8	11.9	4.5
9	74-1	78 • 7	84.7	85•9	88 • 1	11.8	4.6
10	74.8	79•7	85.0	87-1	88 • 2	12.3	4.9
11	75•3	80•3	85 • 1	87.9	87•9	12.6	5•0
12	75.7	80•6	84 • 8	88.0	88•0	12.3	4.9
13	76•5	81 • 5	85.9	88.7	88 •7	12.2	5•0
14	77.8	82.8	86+4	89.5	89.5	1 i • 7	5•℧
15	80.0	85 • 1	87 - 1	91.8	91.8	11.8	5 • 1
16	80 • 6	85•7	86-6	92.4	92.4	11.8	5•1
17	81.0	85•9	86•5	92.5	92•5	11.5	4.9
OH > 18	80.5	85•3	86•3	91.9	91.9	11.4	4.8
19	80 • 5	84.8	86+3	91.8	91.8	11.3	4.3
20	79.6	83-9	86 - 1	91.0	91.0	11-4	4.3
21	78 • 6	82.6	85.5	89.5	89.5	10.9	4.0
22	77•5	81 • 6	85.3	88.2	88•2	10.7	4-1
23	76•6	80.3	84.5	86•9	86.9	10.3	3.7
24	75•3	79•3	83.7	85•9	85،9	10.6	4.0
25	73.8	77.7	82.0	84.8	84•8	11.0	3•9
26	72.3	76.4	80.8	83.6	83.6	11.3	4 • i
27	70.8	74.9	79.8	81.7	81.7	10.9	4-1
88	68•9	73.2	78.9	80.3	80.3	11.4	4.3
29	68.5	72.9	79•2	79.7	79-7	11.2	4.4
30	69.2	73•6	79.6	80•5	81.5	11.3	4.4

NOISE LEVEL TIME HISTORY DATA

\$IKORSKY 5-61

OCTUBER 28 1976

EVENT 31. 3 DEGREE APPROACH. CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69•6	76•9	84•7	84•9	84.9	15+3	7+3
2	70•8	77•7	84.7	85 •7	85•7	14.9	6•9
3	73.5	78 • 8	83.9	87.0	87.0	13.5	5•3
4	76.8	81-6	84.5	89•6	89 • 6	12.8	4.8
5	77.9	88•6	85-3	90•5	90•5	12.6	4.7
6	77.8	82•9	85 • 4	90.5	90•5	12.7	5+1
7	77.0	82 • 3	84.9	89•6	89•6	12.6	5•3
8	80.7	85•0	8 6• 9	91 • 6	91.6	10.9	4.3
9	82.9	87-4	89-1	94.0	95•4	11-1	4 • 5
10	84.6	89-1	90•4	95•5	95•5	10.9	4•5
11	84.6	89•4	90 • 8	96+3	96•3	11.7	4.6
12	85•0	90•0	91.0	96•7	96•7	11.7	5•0
13	86•6	91 • 2	91.7	97∙€	97•8	11.2	4.6
14	86•2	91.0	91.3	97•9	97.9	11 • 7	4.8
15	85•9	90•8	91.8	97•7	97•7	11.5	4.9
16	83.9	89•2	90•6	96 • 1	96 • 1	15.5	5•3
17	84.3	89•4	91.2	96•2	96.2	11.9	5•1
c) →18	84-1	88•9	91•9	96•0	96•0	11.9	4.8
19	84 • 6	89 • 4	92.7	96 • 4	96 • 4	11.8	4.8
20	84.8	89•4	93 • 1	96•3	96•3	11.5	4.6
21	83.9	88•5	95 19	95 • 4	95 • 4	11.5	4.6
22	82.3	8 6•8	\$2.1	93•7	93•7	11.4	4.5
23	79•8	84-6	90•8	91 • 4	91 - 4	11.6	4.8
24	78•4	83.5	89 • 3	90•5	90•5	12.1	5 • 1
25	77.3	82•7	88•6	89.7	89.7	12.4	5 • 4
26	76.9	82•6	0.88	89•7	89•7	12.8	5.7
2 7	76.0	82-1	87.0	89•3	89•3	13.3	6 • 1
28	74.7	81.3	85•3	88•4	88 • 4	13.7	6•6
29	72.7	79•4	83•7	86 • 1	86-1	13-4	6.7

TABLE F-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 32. 115 KT. FLY BY. CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	70 • 4	76.0	81.9	82.4	83.9	12.0	5•6
2	71 - 8	76.7	82.0	83.5	84.5	11.7	4.9
3	73.6	78.0	82.3	84.8	86.5	11.2	4.4
4	76.0	80 • 1	82.9	87.0	87.0	11.0	4 • 1
5	80.5	83.7	85 • 4	90•6	90.6	10-1	3 • 2
6	32.1	85.6	86.5	92.2	92.2	10 - 1	3 • 5
7	84.1	87.7	87.9	94.4	94.4	10.3	3.6
8	84.2	88 • 4	87.9	95.0	95•0	10.8	4.2
9	84.8	89.2	88 • 5	96.0	96.0	11.2	4 • 4
OH->10	84.7	89.0	88 • 4	96.2	96.2	11.5	4.3
11	84.7	88.8	88•7	96.1	96 • 1	11-4	4 • 1
12	83.3	87.1	87 • 6	94.5	94.5	11.2	3 • 8
13	81.5	85.7	86+2	92.8	92.8	11.3	4.2
14	80 • 1	84.2	84.9	91.4	91.4	11.3	4 • 1
15	80 • 1	83.9	84.3	91.0	91.0	10.9	3.8
16	79.2	82.6	83 • 6	89.7	89.7	10.5	3.6
17	77.2	80.9	81.7	87.8	87.8	10.6	3.7
18	74.9	73.8	80.6	85.7	85.7	10.8	3.9
19	73.4	77.4	80.2	84.2	84.2	10.8	4.0
20	72.2	76.4	79.6	83.0	83.0	10.8	4.2
21	71.5	75.7	78.6	82-1	82.1	10.6	4.2

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 33, 115 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	67 • 1	72.5	81 • 3	79•3	80 • 5	12.2	5 • 4
2	66.1	72.2	81.5	79 • 0	79.0	12.9	
3	69.1	74.5	82.0	81.4	81.4	12-3	5 • 4
4	71.8	76.6	83.4			11.7	4.8
5		77 • 6	84.4	84.3		11 • 4	
6		77.8				11.9	
7		77•5				12.3	4.8
8	72.0	76•9	83•9	84 • 4	85•6	12.4	4.9
9		77 • 1				11.8	
10		77.9				12.0	
11		79•3			87.5	11.8	5•5
12		80•9				11.5	
13	77.1	81.8	84•7	88•4		11.3	
14		82.8				11.2	
15	78.9	83-5	86.0			11.3	
16		84.9				11.3	
17		85•4				11-4	
18	80.9	85•7		92+5		11.6	4-8
OH>19	80•5	85•4		92.3		11.8	4.9
20		85•3		92•2		11 • 7	
SI		85-2		92•0		11.5	
55			86.4			11.3	
23		83.0				11.2	
24	77.7						
25	77•0			87.6		10.6	
26	76.3			87.0			
27	75.2	79•0		86.2		11.0	
28	74.7	78 • 7		85.9			
29	74.5	78 • 4		85 • 8	85.8		
30	73.9	77-8	81-1	85.0	85.0		3.9
31	72.8	76.6	80.6	83 . 8		11.0	3.8
32	70.8	74.8		82 • 1		11.3	4-0
33	68.4	73.0		80.2			4 • 6
34	66.7	72 • 3		79 • 4			5 • 6
35	66•0	72.7	83.0	79•8	81 • 3	13.8	6•7

TABLE F-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 34, 115 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	7 0•5	7 5•7	81 • 7	83.5	86.4	13.0	5.2
2	72.7	77.7	81.8	85 • 3	88•0	12.6	5•0
3	73.4	78•3	81 • 3	85•9	88.4	12.5	4.9
4	73.2	78.0	81 • 1	85•8	88 • 4	12.6	4•3
5	75.2	79.5	81 • 3	86.7	88.9	11.5	4.3
6	76.8	80.7	82 • 3	87.4	88•6	10.6	3•9
7	77 • 1	81.2	82 • 5	87.5	89.0	10.4	4 • 1
8	78•2	82 • 1	82•9	88 - 4	88•4	10-2	3.9
9	79.9	83•8	83•5	89•8	89•8	9•9	3•9
10	81.2	84•9	85•3	91 • 1	91 • 1	9•9	3•7
11	82•5	86•4	86•7	92.7	92.7	10.2	3•9
12	83 • 3	87•6	87.8	94.3	94.3	11.0	4.3
⊙н >13	83.5	87.8	87 -7	94.9	94.9	11-4	4.3
14	83.0	87.5	87.6	94.7	94.7	11 • 7	4.5
15	82•3	86•8	87.3	94.0	94.0	11 + 7	4.5
16	81.5	86•0	86•8	93 • 1	93 • 1	11.6	4.5
17	80 • 4	84•8	85.•9	91.9	91.9	11.5	4.4
1	79•0	83.0	84.7	90•2	90•2	11.2	4.0
19	7 8•0	82•0	83•9	88•9	88•9	10.9	4.0
20	76•2	80•3	82.7	86.9	86•9	10 • 7	4 • 1
21	74.7	7 8•9	81.8	85•8	85∙8	11.1	4.2
22	73.6	78 • 1	80•8	85•0	85•0	11-4	4 • 5
23	73.0	77•4	79 • ï	83.9	83•9	10.9	4 • 4
24	7 2•5	76•6	78 • 4	83.2	83•2	10.7	4 • 1
25	73.0	76•5	78•7	83.2	84•3	10.2	3 • 5
26	73.5	76•7	78•9	83•2	84•3	9•7	3 • 2
27	72•7	76•0	79• 3	85.5	82.2	9•5	3•3
28	70•3	74 • 1	80 • 6	80•6	81 • 7	10.3	3 • 8
29	66•3	71.3	81.4	78 • 1	79•2	11.8	5•0

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

UCTOBER 28 1976

EVENT 32, 115 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/2 SECOND INTEGRATION VS NOTSE INDEXES
(DB RE 20 MICRO PA)

INT	DBA	טטט	OASPL	PNL	PNLT	PAL-DBA	DBD-DBA
1	61 • 4	68+2	79•3	7 5•0	75.0	13.6	6•8
2	65 • 4	70.8	78 • 7	77•8	77.8	12.4	5 • 4
3	68 • 4	73.0	78•9	79•7	80.7	11.3	4.6
4	71.4	76.2	79.3	82•7	84.5	11.3	4.8
5	71.6	76 • 4	80.0	83.0	84.9	11.4	4.8
6	72.6	77• 5	80•3	84.2	85.9	11.6	4.9
7	73.6	78.3	80 • 7	85.2	85.2	11.6	4 • 7
8	75.7	80 •8	81.1	87.5	87.5	11.8	5 • 1
9	77.2	82.1	81.9	88•8	88.8	11.6	4.9
10	78∙7	83∙7	83•0	90.0	91.0	11.3	5.0
11	80•3	85•1	84.9	91 • 6	91.6	11.3	4 • 8
12	ಚ1•0	85•7	85 •7	92•3	92.3	11.3	4 • 7
OH -> 13	80•9	85•4	86•8	92.2	92.2	11.3	4.5
14	80.7	85.3	86.4	92•0	92.0	11.3	4 • 6
15	80 • 5	85.1	86.4	91-8	91.8	11.3	4 • 6
16	೮0 ∙ 1	84.6	85•8	91.4	91 • 4	11.3	4.5
17	79 - 1	83.2	84.5	90•0	90•0	10.9	4 - 1
1 8	77•9	81.9	83.8	88 • 7	88 • 7	10.8	4.0
19	76.9	80•9	82.0	87.5	87.5	10 • 6	4 • 0
20	75 • 4	79.7	80.7	გ ე•გ	85•8	10.4	4.3
21	74.2	78.4	79.9	84•8	84.8	10.6	4.2
22	72.9	76•9	78.7	83•4	83•4	10.5	
23	71 • 7	75.4	77 • 7	82.1	82 • 1	10.4	3 • 7
24	70.5	74.2	76.5	೮1 • 1	81 • 1	10.6	3 • 7
25	68.7	72 • 3	75.5			10.9	3•6
26	66•8	70 • 6	74.2	77•9	77.9	11-1	3 • 8
27	64.5	68∙6	73.2	76.5	76 • 5	12.0	4 - 1

100

TABLE F-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

OCTUBER 28 1976

EVENT 33. 115 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

I NT	DВА	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	64.9	71.6	81.8	78.3	79.6	13.4	6•7
2	67.2	73 • 1	82.8	79•8	80.9	12.6	5•9
3	68 • 3	73.8	82.7	80.5	80.5	12.2	5 • 5
4	69.0	74.3	82.7	81.3	82+6	12.3	5 • 3
5	69.1	74.5	8 1 • 8	81 • 6		12.5	5 • 4
6	70.5	75.4	82•2	82•8	85•0	12.3	4.9
7	73 • 3	78 • 2	33∙ 0	85 • 1	86.2	11.8	4.9
3	75 • 3	79.9	83.7	87.0	87.0	11.7	4 • 6
'	75.9	30 • 2	83 • 4	87.5	87.5	11.6	4.3
10	75.7	79.3	82.9	87 • 3	87•3	11-6	4 • 1
11	75 • 4	79.9	8≥•7	87∙ 0	87.0	11.6	4.5
12	76 • 1	31.0	გ3∙გ	87.5	88•8	11.4	4.9
CH ->13	77 • 3	32 • 1	84.8	89.0	89•0	11.7	4.8
14	7੪•≥	82.9	ძ5∙4	90•1	90 • 1	11.9	4 • 7
15	78 ∙ 8	83•4	85 • 5	90.6	90.6	11.8	4•6
16	78.7	83•4	85•8	90•6	90•6	11.9	4•7
17	78.4	83.0	85•8	90•3	90 • 3	11.9	4•6
1 5	77.5	82•1	35•2	89 •7	89.7	12.2	4.6
19	76.8	81.1	84.43	88.2	88 • 2	11.4	4.3
20	75 • 6	79.9	83 2	87.0	87.0	11.4	4.3
21	74.6	7 ♂∙5	82.9	85.7	85.7	11.1	3.9
នន	72.9	77 • 1	೮2∙2	84.2	84.2	11.3	4.2
23	71 • 6	76.2	81.∙ 5	83+1	83.1	11.5	4 • 6
24	70.8	75 • 4	80 • 4	82•8	82•8	12.0	4.6
25	69.6	74.1	79.5	81.7	31.7	12.1	4.5
56	67 • 8	72.5	7 8•5	80.3	80.3	12.5	4.7
27	67.0	71.5	77 • 4	79•3	79.3	12.3	4.5
88	66•5	71.2	77.2	78.9	78.9	12.4	4.7

TABLE F-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-61

and the second second

OCTOBER 28 1976

EVENT 34. 115 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

Int	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69.4	73.9	79.9	80 • 4	81.8	11.0	4 • 5
2	69.0	73.8	79.6	80 • 2	81.3	11.2	4 • 8
3	68.6	73.8	79.4	80.6	82.0	12.0	5•2
4	70 • 1	74.8	78.9	82.0	83.5	11.9	4.7
5	74.4	78.7	79.7	85 • 1	85 • 1	10.7	4•3
5	77.9	82.0	81.6	88 • i	88+1	10.2	4 • 1
7	79.9	84.2	83.8	90 • 5	90 • 5	10.6	4.3
OH B	80.5	85.2	84.8	91.6	91.6	11-1	4.7
9	80 • 4	85.5	85 • 3	91.9	91.9	11.5	5 • 1
10	0.08	85.3	85 • 4	91.9	91.9	11.9	5•3
11	80.3	85.5	85.9	92.0	92.0	11.7	5 • 2
12	80 • 5	85 • 3	86 • 4	91.9	91.9	11.4	4.8
13	0.08	84.6	86.6	91.6	91.6	11.6	4.6
14	78.9	83.3	86 • 1	90.8	90•8	11.9	4.4
15	77.8	82.3	85.0	89.3	89.3	11.5	4 • 5
16	77.1	81.3	€3•4	88.3	88 • 3	11.2	4.2
17	76.1	80.0	82.0	87.0	87.0	10.9	3.9
18	73.9	77.7	81.3	84.4	84-4	10.5	3.8
19	71.9	75•9	80.9	82.9	82.9	11.0	· •O
20	69.4	73.5	79,8	80.8	80.8	11.4	4-1
21	68 • 1	72.4	78.3	79.7	79.7	11.6	4 • 3
22	67-2	71.5	77.6	79.0	79•0	11.8	4.3
23	65.7	70 • 4	77 • 4	77.6	77.6	11.9	4.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 32. 115 KT. FLY BY. MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-3 - 5	- 2.5	-1 -5	5	o	•5	1.5	2.5	3.5	5.0
17	65•8	66 • 1	66•8	69 • 4	70.5	71.9	69•8	66.4	64 • 1	61.9
18	68∙8	71.7	70.0	72.5	72 • 2	70 - 1	66+1.	65+4	65.7	64.8
19	65.0	63 • 1	63•6	64.7	65 • 3	64.8	61.0	61.9	64.0	66.5
20	64.3	63 • 2	61.6	63.0	68 • 1	71.5	71.8	63 • 1	65.5	69.4
21	69.8	68 • 7	67•5	68 • 8	72.2	73.0	70 • 6	66.8	62.3	60.3
55	59.2	57 • 7	65•6	71.9	74 • 4	75.8	74.5	70 • 7	67.8	60.8
23	54.9	61.2	70.7	75.2	76.8	78 • 6	78 • 4	74.9	72.8	65 • 1
24	65 • 6	68.7	77 • 1	80.5	79.9	78.9	74.1	70 • 4	71.8	69.1
25	65.5	66 • 4	70•3	69 • 1	69•6	72.0	72 • 4	67.7	67.4	67.5
26	68 • 8	68.3	69.5	73.8	76.5	77.7	77.8	76.2	73.0	63.0
27	65.2	65.2	74.4	75 • 8	75.9	75.8	74.7	73.2	74.0	67.4
88	67.0	71 • 1	74.2	77.0	78 • 3	78.7	75 • 4	72.8	69 • 5	65.0
29	67.0	66.6	73 • 4	74.5	75 • 8	76 • 6	73 • 8	71 + 3	68 • 7	64+8
30	62 • 1	67.3	71.9	74.0	74 • 8	75.4	72.6	68.9	67.0	62.8
31	62.2	65 • 4	69•7	71.7	72.7	73.3	70.5	67.0	65 • 4	62.3
32	60 • 7	64•3	68•3	71.2	72.2	72.3	69 • 1	65.7	63.0	60.8
33	58 • 3	62 • 1	65•9	69•0	70 • 1	70 • 1	66.4	63.3	59•7	56.7
34	56 • 5	58 • 6	62.9	65•5	66•7	66 • 6	63.9	60 • 5	56.9	52.7
35	52 • 1	55.5	60 • 1	63.2	64.3	64.0	60 • 6	57.2	53.5	49.0
36	46 • 1	49.6	55.2	58•9	59.9	59.5	56.6	52.9	49.3	45.4
37	45.0	45.0	48.5	52 • 7	54 • 4	54.3	51 • 4	48.0	45.1	45.0
38	45.0	45.0	45.0	46.8	47.6	47.7	45.8	45.0	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
A	73.2	75.5	79•8	82.5	83.5	83.9	81.6	78 • 6	77.0	72.3
D	77 • 1	79.0	83•9	86 • 4	87.4	87.7	85 • 4	82.5	80 • 5	76.5
OASPL	82.2	83.6	86.2	88 • 4	89.2	89.3	86.4	83.3	81.8	78 • 5
PNL	84 • 1	86.2	90.4	93.3	94.1	94.6	92.6	90.0	88.0	83.4
PNLT	84 • 1	87 • 9	90 • 4	93 • 3	94.1	94.6	92.6	90.0	88.0	83.4

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 33, 115 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-5.0	- 3•5	-2.0	- •5	0	1 • 0	2.5	4.0	5•5
17	64.0	65.0	69.3	68 • 7	69.7	69.2	66.0	65•4	67.4
18	68.3	66.9	68 • 4	70.9	70 • 3	68.0	65.5	67.1	68 • 5
19	61.7	63.5	66.3	63.0	63.2	63.0	63.2	64.9	66.3
20	59.2	60.2	62.7	66.5	70 • 1	75 • 6	67.6	64.3	66 • 1
21	70.9	69.6	69.2	74 • 4	75 • 6	74.2	69.2	66 • 4	64.6
22	58 • 1	56.8	63.3	69.0	71 - 1	73 • 7	71.3	64.7	58.7
23	50 • 8	56•6	68.7	72.1	72.9	74.7	75 - 1	70.5	63.0
24	60.2	67.4	73.6	76.7	75.7	69.9	67.6	67 • 1	66.3
25	59.7	64.4	67 • 4	67.6	69 • 1	72 • 3	71.5	63 • 6	66.2
26	64.9	66.7	65 • 8	74.1	74.2	71.8	74.1	69.3	64.4
27	60 • 3	61.4	70.4	75.0	77.0	77.7	73.2	67.7	66.8
28	59 • 4	68•6	70.9	77.3	76 • 4	71.8	69 • 4	66 • 1	65 • 1
23	63.0	65•8	67.2	72.5	73.0	72.2	69.6	65 • 1	64.7
30	58•7	64.5	67.6	71.9	71.9	71 - 3	68.0	63.7	62.2
31	60•9	61.7	65.8	69.9	70.0	69.2	66.0	62.2	61.0
32	57 • 2	60•9	65•4	69.4	69.5	68 • 7	64.4	60.3	58.8
33	56 • 1	58•6	63.3	66.2	66 • 6	65.8	61.7	57·U	54.8
34	52.5	55•7	61.3	64.3	64.6	62.5	59.1	54 • 4	52.3
35	48.2	51 •8	57 • 6	62.0	62.0	60.0	56.2	51.6	48.9
36	45.0	46.0	54 • 1	57 • 8	5 7. 9	56.2	52 • 3	47.9	45.2
37	45.0	45.0	48.0	52.2	52.7	50•8	47.8	45.0	45.0
3 8	45.0	45.0	45.0	45.5	46.0	45.4	45-0	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
Α	69•4	73.0	76 • 6	80.9	80•9	79.7	77.5	73.2	71.6
D	73.9	76.9	80.7	84.6	85.0	84.2	81.6	77•3	75.6
OASPL	80 • 7	81.1	85•8	85.9	86.3	86.3	83.7	80.3	80.3
PNL	80 • 7	83•7	87.6	92.1	92.3	92.0	88.9	84.6	82.8
PNLT	82 • 1	85.4	87.6	93 • 3	92.3	98.0	88.9	84 • 6	88.88

TABLE F-YE

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 34, 115 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-4.0	-3.0	-2.0	-1.0	0	1.0	5.0	3.0	4.5
17	65•8	65•4	66•0	65 • 4	67.3	69•5	68.2	66.7	64.5
18	69.3	67.4	68.3	67.2	66.8	63 • 8	64.3	62 - 4	60 • 4
19	65.4	66.5	65.5	65.3	64 • 4	61.5	61.9	61.1	62.7
20	64.6	66 • 6	66.6	62.3	69.2	75.9	72.4	60.9	66 • 7
21	72.6	71.8	71 • 1	64.4	73.4	73 • 7	70.2	65.4	54.6
22	\$2.1	58 • 3	60.8	66.7	72.5	74.2	73.2	69.8	61.0
23	57.6	59.1	67.6	72.5	74.9	76 • 4	76.2	75.0	67.3
24	63 • 1	68 • 3	73.6	77.6	78.3	73.8	69.6	70.2	66.6
25	61.6	67.0	70.4	68 • 4	68.9	73 • 6	72.9	67.8	64.6
26	63.4	67.2	69.0	70.8	75.3	75 • 7	76.7	75.8	64.1
27	62.7	63.3	69.0	74.0	75.3	77.5	75.9	71.7	67.6
28	60 • 3	69•5	73 • 4	73.8	75.9	74 • 1	72.1	71.6	64 • 4
29	62.2	67.2	67.7	71.8	74.2	73 • 5	71 • 1	69.5	63.9
30	60 • 1	64.9	69•0	71.9	73.8	72 • 4	69.7	66.8	60 • 7
31	57.9	62.7	67 • 3	70.0	71.6	70 • 3	67.8	65.2	59 • 6
32	57 • 8	63 • 1	67.2	68 • 1	69.8	69 • 8	67.1	63.4	58 • 4
33	56.7	60 • 3	65 • 3	66.1	67.2	67 • 4	64.7	60.6	55 • 1
34	53.0	58 • 1	62•7	63.6	65 • 1	65.2	63.0	58.6	51.0
35	49.6	54.3	59.0	61.2	62.1	61 • 8	59.6	55•8	48 • 1
36	45.0	50.2	54.4	56.8	57.9	58•0	55•4	51.5	45.5
37	45+0	45.5	49.3	50 • 3	5 2•8	52 • 6	49.9	47.0	45.0
38	45.0	45.0	45.0	45 • 1	46.5	47.3	45.6	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
A	69.3	74.4	77.7	79.8	81.5	81.4	79.7	77.3	71 - 3
D	74.8	78 • 8	82.2	83.8	85•4	85•6	84 • 1	81.5	75 • 1
OASPL.	81.7	83 • 4	85•5	86.5	87.1	86.5	84-9	85.8	78 • 8
PNL	81.7	85•3	88 • 8	90•7	92.4	92.9	91.3	89.0	88•6
PNLT	81.7	86 • 7	90•5	90•7	92.4	92.9	91.3	89.0	82 • 6

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 32, 115 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-5.0	-3.5	-2.0	5	0	1.0	2.5	4.0	5 • 5
17	64.8	64.7	64.9	68.8	69 • 6	68 • 6	67.4	66.5	61.8
18	70.0	68.8	67.1	68.8	68 • 6	67.3	66.9	65.7	64.8
19	66 • 8	63.9	64.2	65.2	64 • 4	60.9	62.8		64.2
20	64.5	64.2	67 • 1	63.5		66.3	63.8		
21	71.2	74.5	73 • 7	69.2	68.7	68 • 7	65.7	63.3	60.8
22	58•7	57 • 4	59 • 6	67.6	69 - 4	70.9	66.5	60 • 5	54.7
23	52.7	55.2	63 • 9	71 • 1	72.6	76.7	74.6	68.6	59.0
24	55.9	66.2	71.6	74.4	74.2	73.2	72.3	68.3	64.2
25	59•5	64.8	67 • 4	68 • 4	66•9	67.2	66.3	66.3	66 • 1
26	63•0	68.6	65•9	72.3	73.5	74.9	72 • 1	65.6	65 • 5
27	62 • 4	60.2	70.5	75.6	74.6	71 • 3	71.5	69•4	60.4
28	58•4	67 • 6	70.2	72.9	73 +8	74:5	72 • 2	67-2	63.5
29	61.2	67.5	69.9	74.2	74.3	74.4	70 • 4	68.0	59 • 1
30	59 • 2	67 • 4	69.9			72.4	70 • 3	65•7	61 • 1
31	59 • 4	66.0	69•1		71.9	71 - 1	68.8	65-1	59 • 1
32	58.2	66•3	68•?	1.9	71 • 6	70.0	67.0	64.2	57.9
33	55 • 3	63.5	65	Q • Fis.	68.7	67.6	63 • 5	59.8	53 • 3
34	51.0	59.7	62.5	56•2	66 - 1	64.7	60 • 3		49 • 1
35	47•9	56.2	58•0	62.5		61.2	56∙8		46 • 3
36	45.0	47.2	52.9	58 • 3	58•3	56•8	52 • 1	46.6	45.0
37	45 -0	45.0	46 ∙ 8	51.8	51.8	51 • 1	47.0	45.0	45.0
38	45 • 0	45.0	45.0	45.0	45.2	45•7	45.0	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.0		45 • 0
40	45 • 0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45 • Q
Α		75 • 4	77.8	81.5	81.6	30•9	78 • 1	74.3	69•3
D	74.2	79.8	82.2	85.5	85.6	85 • 1	82.3	78 • 4	74.2
CHSPL	78.5	80.7	82 • 6	85.0	84.7	84.6	82.7		75•7
PNL	80 • 5	86 • 4	88 • 9	92.2	92.2	91 - 4	88 • 7		81.0
PNLT	80 • 5	87•6	88.9	92.2	92•2	91.4	88•7	85.2	82.2

TABLE F-YI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY SIKORSKY S-61

OCTOBER 28 1976

EVENT 33, 115 KT . FLY BY, MIC . 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

17 64.1 67.7 66.2 66.3 67.0 67.6 66.8 64.6 61.1 61.3 18 71.7 74.3 71.7 68.6 68.3 67.4 67.6 70.6 68.4 66.0 19 65.1 68.3 67.3 65.2 63.1 63.3 63.0 62.5 63.2 61.9 20 61.5 65.4 64.3 61.9 60.2 61.3 62.1 65.4 67.3 66.7 21 68.1 74.2 74.7 68.3 63.0 68.8 72.0 75.9 74.6 73.7 22 59.6 61.2 60.2 58.6 66.0 68.4 67.6 65.1 65.1 64.5 23 58.6 59.5 57.4 63.5 71.8 72.6 75.1 70.9 61.3 59.7 24 56.0 56.4 63.1 70.3 75.6 75.1 70.9 61.3 59.7 24 56.0 56.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.4 67.3 66.4 25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 66.8 54.7 61.4 29 53.3 54.1 61.5 55.9 73.6 74.4 71.4 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 66.8 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.	BAND	-8 • 5	- 6•5	-4.5	-2.5	 5	0	1.5	3.5	5•5	6•0
18 71.7 74.3 71.7 68.6 68.3 67.4 67.6 70.6 68.4 66.0 19 C5.1 68.5 67.3 65.2 63.1 63.3 63.0 62.5 63.2 61.9 20 61.5 65.4 64.3 61.9 60.2 61.3 62.1 65.4 67.3 66.7 21 68.1 74.2 74.7 68.3 68.0 68.8 72.0 75.9 74.6 73.7 22 59.6 61.2 60.2 58.6 66.0 68.4 67.6 65.1 65.1 64.5 23 58.6 59.5 57.4 63.5 71.8 72.6 75.1 70.9 61.3 59.7 24 56.0 56.4 63.1 70.3 75.6 75.1 71.4 70.0 64.0 61.2 25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26.5 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 37 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	17	64 • 1	67 • 7	66.2	66.3	67.0	67.6	66.8	64.6	61.1	61.3
19	18	$71 \cdot 7$	74.3	71.7	68 • 6	68 • 3	67.4			-	
20 61.5 65.4 64.3 61.9 60.2 61.3 62.1 65.4 67.3 66.7 21 68.1 74.2 74.7 68.3 68.0 68.8 72.0 75.9 74.6 73.7 22 59.6 61.2 60.2 58.6 66.0 68.4 67.6 65.1 65.1 64.5 23 58.6 59.5 57.4 63.5 71.8 72.6 75.1 70.9 61.3 59.7 24 56.0 56.4 63.1 70.3 75.6 75.1 71.4 70.0 64.0 61.2 25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.9 57.0 51.1 46.8 45.2 36 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	19	65 • 1	68•3	67.3	65.2						
21 68.1 74.2 74.7 68.3 68.0 68.8 72.0 75.9 74.6 73.7 22 59.6 61.2 60.2 58.6 66.0 68.4 67.6 65.1 65.1 64.5 23 58.6 59.5 57.4 63.5 71.8 72.6 75.1 70.9 61.3 59.7 24 56.0 56.4 63.1 70.3 75.6 75.1 71.4 70.0 64.0 61.2 25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.9 61.6 67.4 67.4 60.9 57.0 51.1 46.8 45.2 47.8 35 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.	20	61.5	65 • 4	64.3	61.9	60.2					
22 59.6 61.2 60.2 58.6 66.0 68.4 67.6 65.1 65.1 64.5 23 58.6 59.5 57.4 63.5 71.8 72.6 75.1 70.9 61.3 59.7 24 56.0 56.4 63.1 70.3 75.6 75.1 71.4 70.0 64.0 61.2 25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 65.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 59.9 61.6 67.4 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 59.9 61.6 67.4 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45	21	68 • 1	74.2	74.7	68.3	68.0					
23 58.6 59.5 57.4 63.5 71.8 72.6 75.1 70.9 61.3 59.7 24 56.0 56.4 63.1 70.3 75.6 75.1 71.4 70.0 64.0 61.2 25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 64.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	55	59 • 6	61 • 2	60.2	58 ⋅ 6	66.0					
24 56.0 56.4 63.1 70.3 75.6 75.1 71.4 70.0 64.0 61.2 25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	23	58•6	59•5	57.4	63.5	71.8					
25 51.6 58.5 59.8 66.3 67.2 66.3 63.2 66.1 67.3 65.4 26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 64.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0		56•0	56 • 4	63 • 1	70.3	75 • 6	75 • 1				
26 55.0 65.4 66.3 62.4 70.8 73.4 72.4 66.9 66.5 65.5 27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	25		58•5	59•8	66.3	67.2					
27 56.9 66.9 61.7 67.2 74.7 74.6 69.3 70.5 61.8 59.7 28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0			65 • 4			70 • B	73.4				
28 57.8 65.2 61.1 69.6 72.9 74.2 71.8 66.8 54.7 61.4 29 53.3 64.1 61.5 55.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 37 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0				61.7		74.7	74.6				
29 53.3 64.1 61.5 65.9 73.6 74.4 71.4 67.1 62.2 60.3 30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0			65.2		69.6	72.9	74.2	71.8			
30 56.5 66.0 62.0 65.5 74.1 74.5 69.3 65.0 62.2 59.1 31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0			$64 \cdot 1$	61.5		73.6	74.4	71.4	67-1		
31 54.8 63.4 63.8 65.6 72.8 73.3 68.0 63.2 61.6 58.3 32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	30	56 • 5		62.0	65.5	74.1	74.5	69.3			
32 55.4 63.1 62.8 64.9 71.0 70.9 66.9 60.8 58.3 55.1 33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0					65.6	72.8	73.3	68.0	63.2	61.6	
33 51.3 60.0 59.9 61.6 67.4 67.8 63.5 57.6 54.3 51.3 34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0						71.0	70.9	66.9		58 • 3	
34 46.3 56.0 55.4 59.3 64.2 64.1 60.1 53.8 50.2 47.8 35 45.0 49.4 51.8 54.7 61.4 60.9 57.0 51.1 46.8 45.2 36 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0					61.6	67 • 4	67.8	63.5	57.6	54.3	
36 45.0 45.0 45.3 49.8 57.1 56.1 52.2 46.9 45.0 45.0 37 45.0 45.0 45.0 45.0 50.4 49.9 47.4 45.0 45.0 45.0 38 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0					59.3	64.2	64.1	60 • 1	53.8	50.2	
37 45.0 45.0 45.0 45.0 50.4 49.9 47.4 45.0 45.0 45.0 38 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0					54.7		60.9	57.0	51.1	46.8	45.2
38 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 39 45.0			45.0	45.3		57 • 1	56 • 1	52.2	46.9	45.0	45.0
39 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0			_			50 • 4	49.9	47.4	45.0	45.0	45.0
40 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45						45.0	45.0	45.0	45.0	45.0	45.0
A 63.8 73.3 71.6 75.1 81.4 81.7 78.2 74.4 71.6 69.1 D 71.6 77.8 77.2 79.1 85.1 85.4 82.2 79.0 76.7 75.0 OASPL 78.7 82.7 81.4 80.9 84.9 85.1 83.7 81.3 78.6 77.4 PNL 77.8 84.3 83.7 85.9 91.5 91.7 88.6 85.9 83.1 81.5							45.0	45.0	45.0	45.0	45.0
D 71.6 77.8 77.2 79.1 85.1 85.4 82.2 79.0 76.7 75.0 OASPL 78.7 82.7 81.4 80.9 84.9 85.1 83.7 81.3 78.6 77.4 PNL 77.8 84.3 83.7 85.9 91.5 91.7 88.6 85.9 83.1 81.5							45.0	45.0	45.0	45.0	45.0
OASPL 78.7 82.7 81.4 80.9 84.9 85.1 83.7 81.3 78.6 77.4 PNL 77.8 84.3 83.7 85.9 91.5 91.7 88.6 85.9 83.1 81.5							81.7	78 • 2	74.4	71.6	59 - 1
PNL 77.8 84.3 83.7 85.9 91.5 91.7 88.6 85.9 83.1 81.5						85 • 1			79.0	76.7	75.0
									81.3	78•6	77 • 4
PNLT 77.8 84.3 83.7 87.0 91.5 91.7 88.6 85.9 83.1 81.5								88•6		83.1	81.5
	PNLT	77.8	84.3	83•7	87.0	91.5	91.7	88•6	85•9	83.1	81.5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 34, 115 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-8•5	-7.0	- 5•5	-4.0	-2•5	-1.0	0	•5	2.0	4.0
17	65.8	63.4	62 • 1	63.7	65•6	66.9	67.9	67.7	62 • 2	61.6
18	70 - 1	70.3	66.3	65.7	66.7	63.7	63.5	63 • 1	60.7	60 • 7
19	66.0	67.0	64.3	66 • 1	65.7	62.7	63.0	63 • 4	63 • 1	63.7
20	61.6	64.6	65.3	65.7	64 • 4	63 • 1	63.8	65+3	67.1	69 • 1
21	67 • 4	74.7	74.0	75.0	70.9	63.7	63.5	62 • 6	55 • 7	62.5
22	58 • 6	6i •0	59.2	56.7	64.9	68.5	69.6	68 • 6	60.2	58 • 1
23	51.2	56 • 4	52.6	64.5	70.5	75.7	77.2	76.7	69.4	55.7
24	49.3	54 • 1	63.0	71.8	75.2	76.0	76 • 7	76.7	71 • 4	61.9
25	52.9	60 • 6	62.9	71.2	71.0	68.3	68.3	70.6	69 • 6	66 • 4
26	56 • 4	66.9	68.5	70 • 6	68.2	.74.7	77.0	76 • 4	65 • 4	66.7
27	60.5	67 • 1	62.6	68.7	75.2	73.7	75.6	76.5	70 • 0	62.7
28	60 • 7	65.9	64 • 4	73.0	72.3	73.9	76.8	76.7	69 - 4	63 - 3
29	55.8	66.8	69.3	70.7	74.0	73 (1	75.4	75 • 7	69 • 5	64.3
30	60 • 1	66.9	64.5	71.3	73.0	72.8	75.0	75 • 3	66.9	60.9
31	55 • 8	64.5	65.9	71.0	71.3	71.8	74.0	74.0	66 • 3	59.8
32	57.6	61.9	64.4	70.2	69.6	69.7	72.7	72.5	64.5	58.0
33	54.8	59.7	61.8	68 • 3	67.4	67.1	69.3	68 • 9	60 • 3	53.6
34	50 • 5	56.2	58•0	66 • 3	65.0	64.8	65.8	65.3	56 • 7	50 • 3
35	46.7	51.9	53 • 4	62 • 8	62 • 1	60.9	61.2	60.5	52 • 3	46.4
36	45.0	45.0	46.5	56 • 8	57.5	56.0	56.2	55 • 4	48 • 1	45.0
37	45.0	45.0	45.0	49.5	50 • 7	50 • 5	51.1	50.2	45.0	45.0
38	45.0	45.0	45.0	45.0	45.0	45.2	45.6	45.5	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
Α	66 • 4	73.6	74.4	79•9	80.7	81.0	83.0	83 • 1	76.3	70.7
D	73.0	77•8	78• 5	84.8	84.6	85.2	86.7	86.6	79.6	75.2
OASPL	79 • 7	80 - 4	80 - 1	83•9	84.7	84.9	86.5	86.2	79.8	76.5
PNL	79 • 1	84.0	85 • 1	90•7	91.0	91.2	93.2	93 - 1	86.0	81.8
PNLT	80 • 5	84.0	86 • 6	91.8	91.0	91.2	93.2	93-1	86.0	81-8

NOISE LEVEL FREQUENCY SPECIAL TIME HISTORY

SIKURSKY S-61

OCTOBER 28 1976

EVENT 16. 9 DEGREE APPROACH. CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREIJENCY BAND US TIME (SECONDS)

(DB RE SO MICRO PA)

BAND	-16.5	-13.5	-10.5	-7.5	-4.5	-1.5	O	• 5	1.5	4.5	6•0
17	63.5	65.4	66•6	65.6	67.4	68•0	71.4	71 • 6	70 • 4	68•9	66 •3
18	65 • 2	69.0	69 • 1	69.7	69.5	70.8	68.9	65.3	64.0	66.1	65+0
19	61 • 1	62.4	63 - 1	62.8	65.9	62.8	63-4	64.5	65 • 4	65.4	63.6
20	59.7	60 • 1	61.3	60 • 5	59.7	65.3	74.1	76.7	78 • 4	63.2	66•6
21	69 • 1	70.3	70.2	69.9	59.0	77.5	80.4	80.9	80.2	63 • 8	60.6
\$5	54 • 1	56.0	53 • 8	53.0	59.4	71.1	74 - 1	75.2	78 • 4	70 • 4	55.6
23	51.8	51 • 2	54.5	60.8	64.8	70 • 4	72.3	71.9	72.4	73.0	62-1
24	63.4	62 • 7	65.9	74.7	76.3	73.9	71.3	74.3	76.1	71.6	65 • 6
25	64.2	61.8	63.3	67.4	62.8	68.4	75.2	75.3	74.6	66.0	66.2
26	70.2	66 • 7	70.0	68.7	62.9	74.6	73 • 4	74.0	74.5	67.1	63.5
27	67.6	61.2	60 • 4	61.7	66.2	69.6	73.5	72.9	73.6	67-3	61.3
28	58.2	54 • 1	56 • 8	66.6	58 • 1	67.8	72.9	73.2	74.1	66.3	62.9
29	60.2	59 • 6	58.9	60.6	61.5	68 • 7	72.0	72 • 1	72.5	66.7	62.0
30	56 • 5	57.3	54.8	63.3	61.0	68 • 7	70 • 4	70.3	70.4	64.3	61.0
31	57.1	58 • 8	54.9	62.4	59.9	67.2	69.3	68.9	69.0	63 • 7	60 • 0
32	55.9	56 • 6	54 • 6	62.3	60 • 4	66•6	68 • 4	68 • 4	68.0	62.9	59.7
33	49.8	54 • 4	52 • 6	60.7	60.2	64.2	67.4	67.4	65.8	59.8	57 • 1
34	45.4	50 • 6	49 • 1	58 • 1	58 • 5	63.9	66.6	65.8	63.5	58.8	55 • 4
35	45.0	45.3	45 • 1	54.2	55.9	63.7	63.9	63.6	62.3	\$6.9	53 • 1
36	45.0	45.0	45.0	49.7	52.9	60.3	61.3	61.5	60.0	53.5	49.3
37	45.0	45.0	45.0	45.0	47.0	55 . 2	57.6	57.9	57 • 4	49.8	45.2
38	45.0	45+0	45.0	45.0	45.0	50.0	53.7	54.5	54∙6	46+0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.3	48.9	49.7	50.3	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	46.0	46.4	46.2	45.0	45.0
Α	69.6	68 • 1	68 • 3	73.2	72.4	77.7	80.0	79.9	80 • 4	74.4	70.5
D	74.4	73.9	74.5	78.6	78 • 8	83.5	85.5	85.4	85+3	79.6	75 • 4
OASPL	79•7	82.7	84.1	85.9	88.5	93.0	89.2	88.3	88 • 3	83.5	79.8
PNL	82.2	80 - 9	62 • 1	85.9	86.2	90.4	92.6	92.7	92.4	86.3	82-1
PNLT	82.2	82.2	83.1	87.8	86.2	90 • 4	92 • ó	92.7	92.4	86.3	82 - 1

NOISE LEVEL FREQJENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 18, 60 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-17.0	-13.5	-10.0	-6.5	-3.0	-1.0	0	•5	4.0	7.5	8.0
17	62.1	61 • 4	65.3	64.9	70.2	69.7	68 • 6	68 • 7	68.0	72.2	71.3
18	63.0	61.0	62 • 1	71.0	76.8	70.3	64.4	62.7	59.8	64.3	64.2
19	62.4	63∙∂	64.6	69.5	71 - 1	63.9	59.9	62.4	56 • 1	61.9	62.2
20	63.5	61.9	63.0	65.6	63.0	68 • 2	74.9	77.7	65.0	60.7	61.6
21	66.6	69.2	69.6	71 - 1	67.0	75.3	76.5	76.7	67.8	56.4	59.6
22	60 • 4	61.7	59 • 1	58.7	69 • 4	71 - 1	70 • 4	70 • 2	69.7	60.3	59.7
23	61.7	62.3	56.9	61.3	72.0	71.3	68 • 4	67.6	69 • 6	62.9	61.7
24	64 • 6	63 • 1	57.8	70.3	76.0	72.8	67.5	67.8	64.3	63.3	63.3
25	64.7	68 • 7	61.5	69.5	65 • 1	71.3	71.4	71.0	71.3	63.6	64.4
26	65 • 1	77.3	66.9	73.0	69,9	71 -0	69.4	69.6	68 - 4	61.2	60 - 1
27	64.9	76.2	66 • 1	64.9	71 • 4	71.3	72.7	72 - 1	70.9	65.8	63+6
28	60 • 1	70 • 4	57.8	68.0	69.6	71.9	73.0	72.9	69 - 8	62.1	60.9
29	55•6	61.6	61.3	66-1	71.5	72.0	72.8	72.7	69.0	63.8	61.5
30	53∙8	66 • 4	61.0	65.6	70.8	73 • 1	72.4	71.8	67.3	61.3	59.0
31	51.9	60.7	59.8	64.5	69.3	71.2	71.3	70.3	66.B	63 - 1	60.3
32	48.9	58•7	57.3	64.8	68 • 8	69.7	69.8	69.2	65.8	62 - 4	59.1
33	45 • 1	55•8	54.8	61.8	66•6	67.1	67.3	66.8	61.4	57.6	54.5
34	45.0	49.6	51.5	58.3	65 • 1	65.6	65.4	64.4	59.1	53.4	50.9
35	45•0	45.0	46.0	54.7	63.9	62.7	61.9	61.0	56.9	50.5	47.6
36	45.0	45•0	45.0	49.4	59.5	57.8	57.6	57.2	53 - 1	46.5	45 - 3
37	45.0	45.0	45.0	45.0	51.6	52.6	53.0	53.0	49.0	45.0	45.0
38	45 • 0	45.0	45.0	45.0	45.2	47.0	45.3	48.7	45.5	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45-0	45.0
40	45.0	45.0	45.0	45.0	45 • 0	45.0	45.0	45.0	45.0	45.0	45-0
A	67 - 1	77 - 1	69.7	74.9	78•9	80.0	80.2	79.9	76.5	71 . 1	69 - 1
D	72.6	81.0	74.6	79.7	83.7	84.8	84.4	84.0	80 - 4	75 - 6	73 - 6
OASPL	79.0	82 - 1	80.8	84.0	86.2	87.7	88.7	89.2	87.5	81.3	80.7
PNL	79.8	87 • 8	81.6	87.1	90.7	91.3	91.2	90•9	87.1	82.9	80.9
PNLT	79.8	89.5	81.6	87.1	90.7	91.3	91.2	90•9	87-1	82.9	80.9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 19, 60 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-16.0	-13-0	-10.0	-7-0	-4.0	-1-0	0	2.0	5.0
17	59.3	61.2	62 • 8	67.5	70 - 1	72.8	73.6	71 • 6	73 • 1
18	72.6	72.9	74.0	75.6	76.7	73	72.4	68 • 0	69.0
19	62.3	68 • 4	70 • 4	72.5	71.7	65	86.0	64.6	60.5
20	64.7	65.8	07.5	68+6	66.7	72.0	78 - 1	76 • 1	61.7
21	73.8	73.8	72.8	73-3	69 - 4	78 • 4	79.7	73.6	68 • 4
22	65.1	64.0	60.3	59.4	66 • 6	77.5	78 • 0	71.8	68 • 6
23	67.3	63 • 1	57 • 3	63.8	71 - 4	74.3	74-1	67.3	69 • 3
24	58.2	58 • 1	54 -7	72.7	75.6	72.8	74.8	70 • 7	63.0
25	55.3	56 • 8	59.9	69.9	67.9	76.8	77.3	70.7	63.2
26	63.4	60.7	63 • 6	69.2	69 • 1	74.7	75-1	71.6	69.2
27	66.9	60-4	61 - 6	65 - 1	72 - 4	76 = 2	74.9	71+4	66.9
28	59.3	58.5	55 • 4	67.4	67.6	73.5	74.0	71.9	67.9
29	55•3	56.0	58 • 8	64.4	69 • 4	72.9	72.4	71.8	68 • 5
30	55.5	59•2	58•7	64.9	68 • 3	72 • 6	71.2	69.5	67-1
31	53.9	57 • 4	60.2	64.6	66.5	71 - 4	70.7	68 • 6	66.9
32	53.7	56.2	58•0	64.3	66 • 6	70 • 3	69.2	67.0	65 - 1
33	49.9	51.6	53.0	60.6	63.5	68 • 4	67.4	63.7	61.3
34	47.3	48•3	50 • 8	57.7	62.4	66 • 4	65.0	61.7	59 • 4
35	45.0	45.0	46 • 6	54.3	60.3	63 • 1	62.0	59.4	57.0
36	45.0	45.0	45.0	49.7	56 • 4	59 • 0	58 • 5	56.0	53.0
37	45.0	45.0	45.0	45 • 1	47.8	53•9	54.3	52.4	48.5
38	45.0	45+0	45 • D	45.0	45.0	48 • 8	49.5	48 • 4	45.2
39	45.0	45.0	45.0	45.0	45.0	45.0	45.4	45.1	45.0
40	45.0	45.0	45.0	45.0	45.0	45 • 0	45.0	45.0	45.0
A	68.2	67.2	68•3	74.3	77.2	81.2	81.0	78.5	75.5
D	74 • 3	73.2	74.2	79.3	82.2	85•7	85.9	63.0	79 • 6
OASPL	79.0	79.1	80 • 0	85.3	85.5	89 • 1	90.5	90.5	86.3
PNL	81 • 3	81.2	81 • 2	86.6	89 • 3	93.0	93.0	89•7	86 • 7
PNLT	81.3	81.2	81.2	86•6	89•3	93.0	93.0	89.7	86.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY 5-61

OCTOBER 28 1976

EVENT 20. 6 DEGREE APPROACH. CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-9•0	-7•0	-5.0	-3•0	-1 • 0	0	1.0	3.0	5•0	8•0
17	66 • S	66 • 1	67+8	69.0	68 - 7	69 • 7	70.9	72 - 4	72 - 1	67=6
18	72.6	73.6	72.0	72.1	70 • 3	68.9	68 • 8	70.6	72 • 7	69.9
19	65 • 7	66.5	65.1	67.6	66.7	66.2	68.0	62.7	67.6	65.0
20	66 • 7	66+3	64.0	63.5	74 • 1	79.5	83.0	75.7	67.8	68.6
21	75•7	75.3	74.6	77 • i	80.8	84.2	86.6	83.9	76.7	69.9
22	66 • 3	61.9	61.9	73.2	80.0	80 • 6	84.4	87.0	75.5	66.5
23	68 • 8	66.2	67.1	76.9	75 · 8	77.3	77.2	85.8	80.8	67.9
24	67.7	75 • 1	78 • 6	79.9	75 • 3	78 • 4	82.3	77.4	80•6	68 • 1
25	66 • 4	71 • 4	68-6	69.7	78 • 7	79.5	79.8	83.5	74.8	70.7
26	70•7	74.4	68 • 1	75•5	75.9	76.2	79.5	81.5	72.9	73 • 4
27	65.7	64.9	69•7	73.6	74.7	76 • 1	77.0	78.0	73.7	69 • 1
28	61.0	70 • 0	64.5	71.3	72.2	73.8	75.3	74.0	67.6	62.5
29	63.7	64.5	64.2	68 • 1	71.9	72.0	73.3	71 - 4	66.7	63 • 4
30	59 • 4	64.9	62.3	66•3	71.2	71.0	70 • 7	69.3	64.0	60 • 1
31	60 • 4	62.5	61.2	65•6	69 • 7	69.5	69.4	68 • 6	62.8	59.9
32	61.8	61 • 1	61.2	65.9	68 • 8	68 • 4	68 • 4	66.2	61.9	58 • 3
33	58•3	60 • 8	60 • 1	63 • 1	67.5	67.2	66.4	63 • 1	58 • 7	55.6
34	54 • 4	59.0	58.7	62.9	67.6	65 • 7	63.6	61.8	57.2	53.2
35	50 • 1	55 • 5	55 • 6	63.5	65 • 4	63.2	62.4	59.6	55.0	50.8
36	46 • 5	50.7	53.5	59.5	61.3	60 • 5	59.8	57.3	51.5	46.9
37	45.0	45.5	47.7	52.3	56 • 8	57.1	56.6	53.6	46.9	45.0
38	45 • 0	45.0	45.0	46.6	52.5	53.5	54.1	50.0	45.0	45.0
39	45.0	45 • 0	45.0	45.0	47.1	49.1	49.8	46.1	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.5	46.0	45.1	45.0	45.0
A	72.3	76.0	75 • 1	79.2	81 • 4	81.9	83.5	84.1	78•7	73.9
D	78 • 0	80.9	81.0	84.9	87.2	87.6	89 • 1	89.7	84.4	78 • 6
OASPL	84.9	86.8	88.9	89.4	90.1	90.0	92.3	93.2	87.5	81.0
PNL	85 • 4	88.2	88.6	92.0	94.0	94.6	96.0	96.3	91.4	86.3
PNLT	86.5	89.9	88.6	92.0	94.0	94.6	96.0	96.3	91.4	86.3

TABLE F-YL

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY 5-61

OCTOBER 28 1976

EVENT 26. 100 KT. FLY BY. CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICHO PA)

BAND	-6. 5	-4.5	-2.5	5	0	1.5	3.5	5•5	7 • 5
17	69.8	70 • 7	68•0	68.5	63.9	68•3	68•0	66•2	68•0
18	73 + 2	75.0	71.5	71 · 8	71 .0	70 - 0	71 - 7	69.8	70 • 7
19	67.0	69.3	66 • 6	69.3	70.3	66.8	66.3	64.6	67.9
20	65•9	67.6	65.5	71.4	76.5	82.3	64.6	64.2	64.1
21	73.7	78.9	74.7	80.8	81.6	75.4	71.8	70.0	69.2
55	66.3	67.0	63.9	70.9	71 • 4	70 • 7	70.0	64.6	62.3
23	67.3	70 • 6	70.2	72.2	71.0	69.1	72.9	68 • 1	66.5
24	61.6	70 • 8	77.3	75.5	72.2	69.0	66.8	64.6	60 • 6
25	58.7	64.3	65.5	73 • 1	73 • 4	72.1	66.9	63.2	62.7
26	64.2	71.5	67.8	75•9	74.9	74.8	71.5	61.7	65.6
27	63.2	63.5	73.7	77.0	77.6	73.9	69.7	65.3	59.7
28	61.0	70 - 1	72.2	76 - 1	75 • 8	73.2	70.6	63.2	63.6
59	61.5	67.5	74.1	76.6	76 • 4	75.0	69.9	64.4	63.0
30	61.5	68 • 4	72.4	76.0	76 • 1	72.9	68•3	63 • 1	62.0
31	60 • 2	64.0	70 • 8	73.9	73.8	72.0	67.4	61.5	61.5
38	60 • 5	61.7	69-1	71.9	72.2	70 • 4	66.3	60.2	59 • 4
33	59 •7	60 • 3	66•3	70 • 1	69•9	67.8	62.5	57.4	55 •7
34	57.2	57.3	64.9	69•4	38 • 7	66.0	60 • 1	55 • 5	55.0
35	55.0	55.5	63.2	66•"	66 • 4	63•6	57.6	5 5•0	55.0
36	55•0	55.0	58•7	63.5	63.0	60.2	55.2	55.0	55.0
37	55.0	55.0	55 • 4	58 • 1	58 • 2	56 • 6	55.0	55.0	55.0
38	55.0	55.0	55.0	\$5•0	55.0	55.0	55 • 0	55.0	55.0
39	55•0	55.0	55.0	\$ 5•0	55.0	55.0	55+0	55•0	55.0
40	55•0	55.0	55.0	55.0	55.0	55+0	55•0	55 • 0	55.0
A	70.5	75.3	80.7	84.0	84.1	82.0	77.2	70•9	70.2
D	78. 0	80.8	85 • 1	88.5	88.2	86 • 1	88.0	77.6	77.2
OASPL	84.5	85•6	86•0	88.2	88.3	87.2	84.4	81.2	81.2
PNL	85 ∙0	88.7	91.5	95.2	94.9	93.0	89.0	84.5	84.0
PNLT	85.0	90.2	91.5	95.2	94.9	93.0	89.0	84.5	84.0

TABLE F-YI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY 5-61

OCTOBER 28 1976

EVENT 27, 100 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB + RE 20 MICRO PA)

BAND	-7.5	-6.0	-4-5	3•0	-1.5	~1.0	0	1 • 5	3 • 0	4.5
17	70 - 1	71.0	68 • 8	69.3	7i • 9	71.9	69+6	69.0	€8.0	66+2
18	73.6	73.7	72.4	72.9	69.9	70 • 6	69.1	63 • 1	62.6	64.8
19	68.9	69.4	68 • 5	66.5	66.6	66 • 1	63.2	62.8	57.2	61.3
20	70.7	72.4	74.7	75.3	72.0	71.6	71.9	79 • 2	66 • 6	62.8
21	70.5	74.2	73 • 6	70.2	69.9	76.0	78 - 2	74.6	65 • 8	59 • 1
22	59.5	61.5	58 • 4	57.5	65.9	67.3	68 • 5	69.9	67.4	63.5
23	57.5	57.0	55.0	62.6	69.3	69.7	67.5	63.7	66 • 3	68 • 1
24	55.8	58 • 4	65.8	74.0	78 • 3	78 • 2	73 • 5	66.7	63.2	62.7
25	53 • 6	62.2	63.5	65.4	64.9	68 • 1	71.4	68 • 7	70 • 9	60 • 5
26	61.9	66.7	67.4	68.7	72.0	75.5	74.7	74.9	72 • 1	69.0
27	64.3	66.5	61.5	67.9	72 • 1	74 - 4	76.6	73.9	72.7	64.9
28	64.9	65.4	61.9	70.6	75 • 7	77.3	75+6	74=0	71 - 1	66.7
29	58.6	60.6	63.5	66.5	72.0	74.0	74.8	74.9	71.2	65 • 8
30	61.5	64.0	62.3	67.3	72.1	74.1	74.7	73.6	69.6	65.7
31	60 ∙ ≥	62 • 1	62 • 6	65 • 4	70 • 1	72 • 2	73.0	71.8	68.2	64.2
32	59.7	63.1	63.9	66.4	69.7	71.3	72.3	70.3	66.4	61.9
33	56.6	60 • 6	63.0	64.1	68.0	69.3	70.2	68.0	63.2	58 • 7
34	53 • 4	57.4	59 . 6	62.9	67.6	68.7	68 • 5	65 • 6	60 • 4	56 • 1
3 5	47.6	52.0	57.2	59.0	64.2	66.3	66.5	63.3	58.5	53 • 1
36	45.0	45.7	51.2	$53 \cdot 7$	61.0	62.9	62 • 5	59.6	55.3	49.3
37	45.0	45.0	45.0	47.2	54.8	55.8	57.0	55.7	50 • 7	45.5
38	45.0	45.0	45.0	45.0	47.9	49.8	51.2	51.0	46.5	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.8	45.8	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
A	69.9	72.2	72.8	76.2	30.6	88 • 4	82.5	81.2	78 • 1	73.5
D	75.7	78.0	78.9	81.6	85.3	86.9	86.7	85.1	81.8	77.3
OASPL	83 • 8	84.3	84.6	85.2	86.8	87.6	86.8	85.9	83.3	80.9
PNL	81.9	84.7	85•8	88.2	92.3	93.9	93.9	92.1	88 • 3	84.3
PNLT	83.0	84.7	85.8	89.3	93.5	94.9	93.9	92.1	88.3	84.3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY SIKORSKY S-61

OCTOBER 28 1976

EVENT 28, 100 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-7.0	-5.5	-4.0	~ 2•5	-1.0	0	•5	S•0	3•5	4.5
17	68 • 3	71 • 7	69.6	69.8	69.4	68.9	69 - 1	69 = 7	7 0 • 2	67.5
i 8	73.6	72.9	74 - 1	72.9	68 • 5	67.8	68 • 3	67.9	68 • 1	67.1
19	68.0	67 • 5	66 • 5	64.8	58.9	61.2	64.6	62.3	61 - 1	61.3
20	61.8	62 • 4	62.9	61.7	68 • 4	78.7	80.3	73 - 1	60 • 3	60.3
21	69.9	71.7	70.2	68.2	79.0	79.9	78.5	67.9	62.4	59.6
58	57.7	57.6	57 • 4	65.5	69.5	69.9	70.0	67.6	65•3	62.3
23	55.2	55 • 6	62 • 3	56.5	6 8•6	65.4	64.6	65•6	68.6	66.5
24	54.5	67.0	75.2	76.3	71.9	67.5	69.0	63 • ଖ	62•6	64.0
25	59. 0	62.5	64.8	62.3	59.8	69 0	69 • 5	71.4	64 • 1	60.3
26	66.0	70 • 3	70.5	68•3	72.9	72.2	72.6	70.5	69.7	65 • 1
27	64 • 8	52.7	66.3	68.9	73.5	73.2	72.7	70.7	66.5	63.8
23	68.9	66.0	69.0	69.6	71.8	72.8	73.2	70.9	66.9	64.2
29	60.5	63 • 7	64.7	67.4	72.1	73.0	73 • 4	71.0	65•6	62.5
30	80 • S	61.9	63.5	67.2	72.6	73.2	72.5	69.3	64.5	61.5
31	61.0	61 • 4	63.1	66 • 1	70.9	71.5	71 • 1	67.9	63.9	60 • 5
32	61.0	61.5	62.7	65 • 8	70.6	70 • 1	69.8	66.0	62.4	59 • 1
33	59 • 1	57.5	61.3	63•7	68 • 3	67.9	67.4	63.3	58•8	55.0
34	54 • 4	54 • 8	59.5	61.7	67.3	66 • 1	65.2	60 • 3	56•8	52 • 5
35	50 • 1	50 • 9	55.8	59 • 7	65 - 9	63.0	62.3	58 • 1	53 • 1	49.5
36	45.0	45.1	50 • ช	56•3	61.9	59•3	58.9	54.3	48 • 9	46 • 1
37	45.0	45 • C	45.5	50.9	55 • 8	54.9	54.6	50.5	45.5	45.0
3 8	45.0	45.0	45.0	45.0	49.7	50.0	49.9	46.3	45.0	45.0
39	45.0	45.0	45.0	45.0	45.2	45.2	45 • 1	45.0	45.0	45.0
40	45 • C	45.0	45.0	45.0	45.0	45.0	45.0	45+0	45.0	45.0
Α	71.0	72.6	74 • 8	76.5	80 • 6	80.5	80.5	77.5	73 -8	70.8
D	75.9	77.2	79.7	81.5	85.7	85 • 3	84.8	81.6	77.7	74.9
OASPL	83 • 8	84.2	85.0	85•9	86•6	86.3	86.3	85•3	88.0	79.8
PNL	82 • 4	84.5	87 - 1	88.7	92.4	91.9	91.8	88.2	84.8	81 • 7
PNLT	82.4	84.5	88.2	88 • 7	92.4	91.9	91.8	88.2	84.8	81.7

TABLE F-DI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 31, 3 DEGREE APPROACH, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-7.5	-6.0	-4.5	-3•0	-1.5	0	1 • 5	3.0	5 • 5
17	66.8	66•1	68.8	67.2	70 • 4	73.0	72.4	71 • 4	71 • 3
18	70.4	70 • 7	73.3	70 • 8	74.4	71.8	67.8	69.1	71 · 8
19	65 • 1	66.7	68 • 1	67.3	69.9	65.0	69•6	66.8	68 • 5
20	61.9	62.3	65.8	64.4	64.7	79.5	83.8	69.7	69.2
21	66.2	67.6	69.5	67.0	76.0	81.9	80.6	71.5	63.8
22	58 • 1	57 • 8	62 • 1	71.4	78.5	77 • 7	77.2	73 • 7	62.9
23	55.6	60•9	71.6	79.2	79.4	75.9	73.2	75.2	66•5
24	63.0	70.9	79.4	83.4	80.6	75.0	76.4	68 • 1	70 • ៜ
25	68•9	76.9	81.7	83•3	77.7	78 • 8	76.9	71.3	70 • 4
26	74.4	78•3	79.4	79.9	82.7	77.5	77.4	70.8	64 • 1
27	69.6	69•6	77.6	82 • 1	78+3	78 • 0	76 • 6	70 • 9	65 - 2
28	60 • 5	69.7	77.9	77.0	78 • 4	75.3	76•7	71 • 1	65.2
29	62.5	66.4	69.3	75 • 6	74.5	75.3	75.9	70.5	63.7
30	58•7	65•3	70.0	71.8	74.7	74.7	74.5	70 • 1	63.0
31	59.2	64.7	68 • 1	71 • 7	74.8	74 • 3	72.6	68.5	63.0
32	59.7	63.5	66 • 9	71.5	73.3	73 • 1	72.0	67.6	61.8
33	57.0	60.8	64.7	69.3	71.9	70 • B	69•4	64.8	58 • 6
34	55 • 5	59•4	63.6	67.7	70 • 4	68 • 9	66•9	62.5	56.6
35	55.0	57.3	60 • 6	67.0	69 • 6	66•7	65.3	61 • 1	55 - 1
36	55• 0	55 • 1	57.0	64.7	66.0	63 • 6	62.9	58 • 9	55.0
37	55.0	55.0	55.0	59.5	61.0	60.6	59•9	56.1	55.0
38	55.0	55• 0	55.0	55•0	56 • 4	5 7 • 5	57.9	55.0	55.0
39	55.0	55.0	55.0	55.0	55•0	55.0	55•3	55.0	55.0
40	55.0	55•მ	55.0	55•0	55•0	55.0	55•0	55.0	55.0
A	73.5	77.8	82.9	85-0	85.9	84.1	83.9	78 • 4	72 • 7
D	78 • 8	85.3	87.4	90.0	90•8	88 • 9	88•5	83.5	79 • 4
UASPL	83.9	85 • 4	89.1	91.0	91.2	91.9	92.9	89.3	83.7
LNT	87.0	90 • 5	94.0	96•7	97.7	96.0	95 • 4	90.5	86.1
PNLT	87.0	90.5	95.4	96.7	97.7	96.0	95•4	90.5	86.1

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 32, 115 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-4.0	-3.0	-2.0	-1.0	0	1 • 0	2.0	3 • 0	4.0
17	67.6	69 • 1	69 • 1	69.5	70 • 4	69•3	69.2	69•3	65•6
18	72.6	72.1	71.1	72.6	70 • 6	68.0	68 • 8	69 • 1	67.1
19	66•3	64 • 1	65.1	67 - 1	62.8	63.7	63.3	62.8	63.3
20	63.3	64.0	66•3	67.3	73 • 7	79.3	74.6	66.3	61.7
21	70.9	71.2	70.9	76.5	77.4	75 • 3	70 • 6	67.3	62.2
22	57.5	57.7	64.7	69•5	72.4	71 • 7	70 • 4	70.2	67.4
'23	54.9	63•3	69.0	70 • 7	69 • 7	66.2	67.4	71.2	69 • 4
. 24	66.1	73 • 4	79.0	79.2	73 • 4	69.9	67.6	66 • 4	66.8
. 25	63.6	66 • 1	66.3	70•9	74.6	72.4	73.3	70.8	63 • 5
26	67.8	69.5	69.1	77 • 3	76 • 3	74.4	73.6	73.0	69.9
27	60 • 4	67 • 6	74.2	74.7	77.2	75•9	74.9	73.5	68 • 3
,28	65。9	70.7	75-1	78 • 2	78.0	75•7	73.5	72.3	68.9
29	65.2	69 • 1	76•7	76.6	77 • 1	75 • 6	72.5	71 - 4	67.5
30	59.7	65 • 8	75.2	76 • 1	76 • 6	75 • 1	71.4	70 • 5	66.8
31	59.8	64 • 8	72.8	74.9	76 • 1	74 • 4	71 • 1	70 • 3	65.8
32	59.0	63 • 8	70.7	73 • 8	74.9	73.2	69.8	68.2	63 • 5
33	58.2	65.9	68.2	70•8	73.2	71.5	67.4	64.7	59.5
34	56.4	60 • 5	65.9	68•5	70 • 9	69.1	64.7	61.8	56.9
35	54 • 1	57 • 4	62 • 4	66•6	68 • 4	66.3	61.8	59.2	53 • 4
36	47.8	51.3	58.0	63 • 1	64.9	62.7	58 • 1	54.8	49.4
37	45.0	45.9	52.6	57• 5	60.3	58•0	53.0	49.9	45.5
38	45.0	45.0	46.3	50 • 4	55 • 1	53.0	48.4	45.5	45.0
39	45.0	45.0	45.0	45 • 1	48.7	47.7	45.0	45.0	45.0
40	45.0	45.0	45.0	45-1	45 • 3	45.0	45.0	45.4	45 • 3
A	71.8	76.0	82.1	84.2	84.7	83.3	80.1	79.2	74.9
D	76•7	80 • 1	85•6	88 • 4	89.0	87.1	84.2	82.8	78 • 8
OASPL	82.0	82.9	86.5	87.9	88 • 4	87.6	84.9	83.6	80.6
PNL	83.5	87.0	92.2	95•0	96.2	94.5	91.4	89.7	85 • 7
PNLT	84.5	8 7 • 0	92.2	95•0	96.2	94.5	91.4	89•7	85.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

5

OCTOBER 28 1976

EVENT 33, 115 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-8.0	-6.0	-4.0	-2.0	0	2.0	4.0	6.0	6.5
17	68 • 3	69.5	7 0 •8	70•5	66•2	66.8	66.9	67•3	67.8
18	74.9	74.0	73.7	73.3	72.0	70 • 6	72.1	70 • 1	68.9
19	69.9	69.5	67.7	64.6	63 - 8	64.4	64.2	63.8	63 - 4
30	64.8	63 • 8	62.3	62.0	73 • 6	77.6	63.7	62 • 4	62.3
21	70.4	74 - 1	72 • 1	75.5	80.9	73 • 6	74.3	71.5	70.4
22	60.0	61.9	59.6	66 • 1	69.7	68 • 6	67.5	62.3	60 • 8
23	57.2	55 • 7	60.2	69.3	66 • 4	65 • 6	70 • 4	63 • 8	61.9
24	54.4	62.5	71.0	76.8	69.8	66 • 8	63.8	64+3	61.9
25	56.0	64.7	64.5	65 • 6	70 • 7	72 • 1	63.2	64.8	63.5
26	60 • 4	70 • 4	67.7	69.2	73 • 1	73.0	70.0	61.7	62.6
27	60.9	66.8	61.0	72.4	73 • 6	73 • 3	67.8	66•i	62.6
28	59.8	63 • 4	68.0	73 • 7	72.2	71.5	68.9	66.9	66.3
29	57 • 1	65.2	63.3	71.2	72.6	71.3	68+2	66.8	64.4
30	60.7	61.3	63.8	70 • 7	72.7	70 • 3	66 • 3	64.6	62.0
31	60 - 1	63.3	64.2	68.5	71 • B	68 • 4	65 • 5	62.9	60 • 4
32	60 • 1	61.5	€3•3	67.4	69.9	67.5	63.7	62.0	59.0
33	56.8	60.3	61.9	65.6	68 • 1	64.8	59.3	57.3	54.1
34	52 • 4	54.9	59.4	63 • 5	66.6	62.6	57.0	53.6	50 • 5
35	46.5	50 .8	56 • 1	60.0	64.8	60 • 1	54 • 1	49.7	48.0
36	45.0	46 - 1	50.0	55∙8	60 • 4	56.0	50.5	46 • C	45 • 3
37	45.0	45.0	45.2	50 • 3	55.5	51.5	45.4	45.0	45.0
38	45.0	45.0	45.0	45.0	49.5	47.1	45.0	45.0	45.0
39	45.0	45.0	45.0	45.0	45.2	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
A	69 • 1	72•7	73.8	78.9	80.5	78 • 7	75.2	72.8	70.8
D	7 4•5	77.5	79.3	83.5	85 • 4	83.0	79.0	76.6	74.8
OASPL	82.0	84.3	84.7	86.0	86 • 1	85 • 2	82.2	80.6	80 • 4
PNL	81.4	85 • 0	85•6	90.2	92·3.	89.9	86.2	83.8	88•1
PNLT	81 - 4	85•0	87.5	90.2	92.3	89.9	86.2	83•8	82.1

TABLE F-II

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 34. 115 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-6•5	-5.0	-3.5	-2.0	- • 5	0	1.0	2.5	4.0	5•0
1.7	60.0	67.1	67 • 8	66.0	69 • 3	70 - 1	70.6	69.8	65•7	64.7
17	69.2	67 • 1 69 • 0	7042	67.6	69.0	68 • 4	68 • 1	63.7	64.9	63-1
18	68 • 0 64 • 3	64.2	65.1	65.5	65.3	65.0	66.8	64-1	60.5	62.2
20 19	62.2	62.0	61.6	61.3	65 3	69.5	80.8	77.7	60.0	59.2
20	67.5	71.0	71 • 1	68 • 1	75 • 8	78 • 7	79.4	70.2	63.0	57.5
55	58.8	58.2	57.8	60.5	68.9	69 • 8	70 • 7	70.5	66.5	64.0
23	56 • 4	54 • 6	56.2	65.8	69.7	69.3	65.8	67.7	70.5	68 • 9
24	54.8	55 - 8	68 • 1	76.3	79.0	77.5	.70 • 0	67.0	64.1	66 • 7
25	52.0	58.0	64 • 1	65.7	70 • 4	73 - 3	74.1	72 • 1	66.7	63.2
26	55.5	63.9	69.8	68.2	76 - 1	76.6	74.1	73.6	70 • 6	68 • 3
27	56 • 4	64.2	63 • 1	74.2	74.7	75 • 4	75.8	73 • 7	67.9	66.8
28	57.4	64.9	70.6	73.3	77.0	76.5	74.5	72.0	67.3	66+2
29	52.2	61.3	70.6	74.0	76 • 4	76.2	74.8	71 - 1	66 • 8	64.8
30	51 • 1	64.2	68.5	71.0	75 • 5	75.7	74 • 1	70.5	65.8	64.2
31	51.8	62.0	65.2	68 • 5	73 • 6	73.9	72 • 4	69 • 1	65 • 5	64.4
32	62.9	69.0	67.9	67.9	71.8	72.1	70.9	67.9	63.3	65.0
33	50.9	60.9	63 • 1	66 • 6	70 - 1	70.6	70.3	64.9	59•7	57•6
34	45.7	56.5	59.0	64.3	69 • 1	69.5	68 • 2	62 • 7	57•3	54.6
35	46.3	53.0	56.6	60.4	66.8	67 • 7	66 • 1	60 • 5	54.5	50 • 8
36	45.0	45.5	49.5	54.9	64 0 1	64.9	62.5	57.2	50 • 6	46.9
37	45.0	45.0	45.0	49.0	57.2	58 • 4	57.5	52 • 7	46 • 1	45.0
38	45.0	45.0	45.0	45.2	50 - 1	51.8	52 • 4	48 • 8	45.0	45.0
39	45.0	45.0	45.0	45.0	45.2	45.5	46 • 6	45.0	45.0	45.0
40	45.0	45.1	45.0	45 · C	45.0	45.0	45.0	45.0	45.0	45.0
A	56 • 1	73.4	76.8	79.9	83 • 3	83 • 5	82.3	79.0	74.7	73.0
Ď	72.6	78.3	80.7	83.8	87.6	87.8	86+8	83.0	78.9	77.4
OASPL	82 • 3	81.3	82+3	83.5	87.8	87 • 7	87.3	84.7	81.8	79.7
PNL	80 • 3	85.9	87.4	89.8	94.3	94.9	94.0	80.5	85.8	83.9
PNLT	84 • 1	88.4	88.6	89.8	94.3	94.9	94.0	90.2	85 • 8	83.9
		-								

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY 5-61

OCTOBER 28 1976

EVENT 32, 115 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-5.0	-4.0	-3 •0	-2.0	-1.0	0	1.0	\$∙0	5.0
17	65 • 4	65 • 8	65.0	64.8	65-1	67 • 4	67.1	66 - 1	62.9
18	70.4	70.6	70 • 4	69.9	66.3	63.2	64.2	66.0	64.5
19	63 • 4	63.7	61.9	60.5	59 • 8	60.2	62.1	61.9	60 • 3
20	59.0	59.6	58 • 0	60 • 3	64.7	74.2	82 • 1	79.1	57.4
21	63.5	63 • 3	63 • 2	69.0	77.7	80 • 7	77 • 4	70.2	57.7
55	49.3	52.5	57.2	62.8	68.5	^70 • B	70.9	69 • 4	63.5
23	53.9	57 • 6	63.5	66 • 4	68 • 8	67 • 6	63.9	35 • 4	66.9
24	60.8	65 • 0	72.6	76.3	76.4	72.6	70 - 1	69 • 8	65•3
25	60.0	61 • 4	62.8	63.0	69.2	72.6	71 - 1	73.6	60+3
26	60.7	62 • 1	61.6	64.8	75.2	74 • 4	71 • 1	71 • 1	64•2
27	56.6	58 • 7	65.8	68.5	70•9	74.8	73.0	73.0	65 • 9
28	62 - 3	67 • 0	66 • 6	70 ± 8	73 - 6	73 • 6	72 + 6	71.9	65-1
29	62.0	63.5	64.9	68.8	72 • 1	73.2	73•9	71.9	64.3
30	57.9	61.8	63 • 4	68.2	71.8	72 • 6	72.7	70•7	62•8
31	58.3	60.2	63.0	67.2	70.2	70 • 4	71.2	69 • 2	61.6
32	56.9	60 • 7	62 • 5	66.6	69 • 1	69 • 4	69 • 8	67.8	60.0
33	55 • 4	60 • 5	61 • 4	64.9	66 • 9	67 • 4	67.5	65 • 4	56+4
34	53 • 1	57 • 4	59•9	63 • B	65•9	65∙9	65.1	62 • 1	52.9
35	49.3	53 • 4	57.7	62.0	64 - 1	64 - 1	62.7	59•6	49.0
36	45.0	46.5	51.7	57 • 1	60.8	60 • 9	59•6	56.2	45.2
37	45.0	45.0	46 • 8	51 • 4	55.2	55•7	54 - 6	52 • 1	45+0
38	45.0	45.0	45.0	45 • 1	47.9	49•6	49.8	47.7	45.0
39	45.0	45 .0	45.0	45.0	45 • 0	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45 • C	45.0	45.0
Α	68 • 4	71.6	73.6	77.2	80 • 3	80•9	80•5	79 • 1	71.7
D	73.0	76 • 4	78 • 3	82.1	85 • 1	85 • 4	85 • 1	83.2	75 • 4
CASPL	78.9	80.0	80.7	81.9	84•9	86.8	86 • 4	84.5	77.7
PNL	79.7	83.0	85.2	88.8	91.6	92 • 2	91.8	90.0	82.1
PNLT	80 • 7	84.9	85.2	88•8	91.6	92.2	91.8	90•0	82-1

TABLE F-YE

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 33, 115 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-6.0	-4.5	-3•0	-1 -5	0	î •5	3.0	4•5	6•5
17	68.6	67.5	69.0	67.8	68•9	67.2	66•3	69 • 3	64.7
18	71.9	72.5	73.0	71.5	71 - 1	71.8	69 • 8	69.6	70.3
19	68.5	64.9	63.4	62.8	61.8	64 • 1	62.6	63.2	62.4
20	62.7	60.7	60 • 1	58.7	65.2	79.4	78.9	65 • 1	58 • 6
21	69.2	70.0	68.6	72.2	79.5	81.3	74.6	72.6	71.9
22	55.7	57 • 6	59 • 6	63.2	68 • 5	68.9	69.0	66.8	62.7
23	51.4	57.5	63 • 1	65.0	67.6	63.7	66•6	68 • 3	64.3
24	59.2	68.0	72.6	75 • 7	72.7	67.2	67.0	61.6	61.3
25	58.0	62.0	64.9	63.5	66.5	70.5	71 • 7	66.9	59.0
26	59.8	64 • 1	63.2	64.1	70.8	69.4	69.8	66.3	59.0
27	55.9	56 • 1	66.2	69+6	68 • 1	71.2	70 - 4	67.3	63 - 1
28	55.7	62.1	58.2	69.2	69.6	70 • 8	69.9	64.9	60.7
29	58 • 6	60.0	53.5	68 • 5	68 • 6	71.3	68 • 8	65.2	59.2
30	53.8	57 • 3	62+4	67.5	68 • 4	70 • 1	68 • 1	63 • 7	58 • 7
31	55.3	57.7	62.5	64.5	66.6	68.9	66.9	63 - 1	57.1
32	54.8	58 • 1	62.0	62 • 1	66.0	67.8	65.0	61.3	54.5
33	51.2	56.0	59.2	60 . B	63 • 4	65 • 4	61.8	57.6	51 • 4
34	46.7	52.0	57 . 8	58 • 8	61.5	63.1	59 • 3	54.3	48 • 3
35	45.0	46.4	53.5	55.0	59.6	60 • 4	56 • 3	51.7	46.0
36	45.0	45.0	47.9	49.5	55.7	56 • 7	52.5	47.8	45.0
37	45.0	45.0	45.0	45.2	49.5	51.6	48 • 8	45.2	45.0
38	45.0	45.0	45.0	45.0	45.0	46 • 4	45.2	45.0	45.0
39	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
40	45.0	45.0	45 • 0	45.0	45.0	45.0	45.0	45.0	45.0
A	64.9	69.0	73.3	75.7	77 • 3	78.7	76 • 8	72.9	67.8
D	71.6	74.3	78.2	79.8	82.1	83 • 4	81 • 1	77.1	72.5
OASPL	81.8	82.7	33.0	82.9	84.8	85.8	84.3	82.2	78.5
PNL	78.3	81 - 3	85 • 1	87.3	89.0	90.6	88.2	84.2	80.3
PNLT	79.6	82.6	86.2	87.3	89.0	90.6	88 • 2	84.2	80.3

TABLE F-VI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-61

OCTOBER 28 1976

EVENT 34. 115 kT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-3 -0	-2 -0	-1 = 0	0	1 • 0	2 = 0	3 ÷ 0	4:0	6 = 0
17	64.1	63.5	63 • 7	64.3	65.8	65.4	66-1	68 • 3	69+7
18	69.3	68.2	68 - 1	56.8	63 • 6	59.9	61.1	61.9	64.4
19	64.2	63 • 6	63.9	62.9	60 • 1	60 • 1	62.0	59 • 9	62.9
20	59.2	59 • 4	57 • 8	60.5	69.5	81.4	82.5	73 • 4	57.5
21	64.3	63.2	62.9	74.5	79.9	80 • 6	74.9	67.8	57.1
58	50.9	53 • 6	62.6	68 • 8	69.6	68.7	69.7	68 • 7	63.1
23	56.3	60 • 9	66 • 8	70.5	68.9	64.5	65.8	69 • 4	67.5
24	66.2	69.9	75.5	78.3	75.4	68 • 6	68 • 4	66 • 3	63.9
25	61.9	61.6	63.9	65.8	71.0	73.3	72.5	72.6	59.5
26	64.3	63.8	64.2	72.2	73.6	71.2	71.5	69 • 4	64.5
27	58•3	60 • 4	70 • 1	72.4	71.4	72.8	72.4	72.6	63.8
នន	64.0	64 • 7	69 • 4	73.0	72.4	71 • 3	71 • 0	70 • 7	62.9
29	63.2	60 - 5	70 • 3	72.5	71.7	73.2	72.1	69.0	61.4
30	56.9	61.4	68.5	71.8	71.2	72.6	70.7	58 • 0	59.2
31	55•5	58 • 2	67 • 6	71.0	70.7	71.4	69.5	67 • 4	58.5
32	56 • 2	57 • 7	66 • 0	69•6	69.8	70.0	68.0	66.0	56 • 6
33	53 • 4	56 • 1	64 • 4	68•0	67.6	68 • 1	65.5	62.0	53.0
34	50.5	52 • 6	62.6	66.2	66.2	66 • 1	62 • 4	60.2	50.3
35	47.2	49 • 1	59•6	63•6	64.1	62 • 7	59.9	57.7	47.4
36	45.0	45 • 4	54 • 7	60 • 5	61.5	59.7	56 • 6	54 - 1	45 • 3
37	45.0	45.0	48 • 4	53.9	54.7	54.3	52 • 1	49.4	45.0
38	45.0	45.0	45.0	46.7	48 • 1	48.8	47.3	45.9	45.0
39	45.0	45 • 0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
40	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
Α	69.0	70 • 1	77•9	80 • 5	80.0	80 • 5	78•9	77 - 1	69•4
Ď	73.8	74.8	82.0	85.2	85•3	85•3	83.3	81.3	73.5
OASPL	79.6	78 + 9	81.6	84.8	85 • 4	86 • 4	86 • 1	83 • 4	79.8
PNL	80.2	85.0	88 • 1	91.6	91.9	91.9	90.8	88 • 3	80·8
PNLT	81 • 3	83 • 5	88 • 1	91.6	91.9	91.9	90•8	88•3	80.8

LOWER LIMIT OF ANALYSIS SYSTEM= 45.0

TABLE F-VIL 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

270°
(Microphone Location)
(Relitive to Helicopter)

EVENT 1. O DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	76.5	81.5	66.2	74.4	4.8
15	76.5	81 • 4	69.8	75.5	3.0
16	73.4	80.0	66.8	71.8	3.5
17	74.3	78•3	70.0	73.8	2•S
18	74.0	76.8	69.4	73.6	1.9
19	74.9	77.9	72.1	74.6	1.5
20	85 • 2	88.6	81.2	84.9	1 • 6
21	78.9	82.C	76.7	78.7	1.3
52	79 • 4	82.0	76.4	79.2	1 • 4
33	81.7	83.6	79.1	81.6	1 - 1
24	80•৪	83.0	79.3	80.7	1.0
25	81.0	83.5	79.5	80.9	1.0
26	80.0	82 • 3	77.7	79.9	1.2
27	79.8	81.8	78.0	79.7	•9
28	79.9	81.9	77•3	79.8	1 • 1
59	80 • 2	82.8	76•9	80.0	1 • 4
30	79.9	82 •7	76 • 5	79.6	1 • 5
31	79•6	8 2 • 7	75•9	79.3	1 • 6
32	78 • 8	82 • 4	74•5	78•4	1 • 8
33	73.3	76 • 4	69 • 6	73.0	1 • 6
34	68 • 2	70•9	65 • 1	68.0	1 • 4
35	66 • 1	68 • 1	63 • 1	65.9	1.3
36	64 • 4	65.9	62 • 3	64.3	•9
37	58•9	60•6	57•0	58•9	•8
38	55.0	55.0	55 • 0	55.0	•0
39	55 • 0	55•0	55•0	55.0	•0
40	55.0	55.0	55• 0	55.0	•0
DBA	87•9	90 • 1	85.9	87.8	1 • 0
DBD	91 • 8	93.7	90.2	91.7	• 9
OASPL	92.5	94•0	91 - 4	92.5	- 7
PNL	99.6	101.9	97.5	99.4	1-1
PNLT	99.6	101.9	97.5	99.4	1+1

522

TABLE F-VII

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 3, 45 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			AHITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	70 • 8	74.6	62.5	69.8	3 • 3
15	71 • 2	75 • 1	65.5	70.6	2.2
16	66 • 8	70.5	63.0	66 • 4	1.9
17	71.0	74.5	67.4	70•7	1.6
18	70 - 9	74.4	68.5	70.7	1 • 5
19	74.5	77.8	70 • 6	74.0	2.0
20	85 • 0	87 • 8	80.3	84.5	2.0
21	7 8•8	81.2	76.2	78.6	1 • 3
22	78.0	80 • 4	75.0	77.7	1.6
23	82 • 4	84 • 1	80.3	82.3	1 • 1
24	81.9	84 • 1	79 • 4	81.7	1.2
25	83 • 0	85 • 8	79.3	82.7	1.6
26	81 • 4	84.3	78 - 1	81.0	1 • 7
27	80 • 7	82.7	73.3	80.6	1.2
88	80 • 5	82.7	77.9		1.2
29	81 • 1	83.8	78.2	80.9	1 • 4
30	79.8	83 • 5	76.4	79.5	1.5
31	78.2	82.0	74.5	78.0	1.5
32	76•6	80.0	71.9	76.2	2.0
33	74 • 1	78.8	68.9	73.4	2.4
34	72.8	77.8	67.8	72.1	2.4
35	69.3	73.0	65.6	68.9	2.0
36	65 • 5	68.2	62.3	65.2	1.6
37	59 • 5	61.9	57.3	59.3	1.2
38	55 • 3	56 • 4	55.0	55.3	• 4
39	55.0	55.0	55.0	55.0	•0
40	55 • 0	55.0	55.0	55.0	•0
DBA	88.2	91.4	85.7	88 • 1	1 - 1
DBD	92.6	95.5	90.2	92.4	1 - 1
OASPL	92.6	93.8	90.5	92.5	• 8
PNL	99.6	102.3	97.5	99.5	1 - 1
PNLT	99.6	102.3	97.5	99.5	1 - 1

1225°
(Microphyse becation)
(Robbin to 1/s/2/4)

TABLE F-VII 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 4, 90 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB: RE 20 MICRO PA)

_	SID	ARITH.			ENERGY	
Microphone La Relative to 1	DEV	AVERAGE	MIN	MAX	AVERAGE	BAND
/ Marsahaus /	3.0	67.9	59.9	72.1	68 • B	14
I WILLIAM PHONE LEG	2.4	73 • 4	67 • 4	77 • 1	73.9	15
Relative to 1	1.6	67.7	64.0	70.5	68.0	16
(10)	3 • 5	76.5	71 • 1	83.8	77•9	17
	3 • 1	76.6	71.8	83.2	77 • 8	18
	3.0	77.9	73.6	85 • 2	79.2	19
	2.3	84.0	80 • 7	88.2	84.7	20
	2.6	82.1	78 - 6	88 • 8	83+0	21
	2.3	82 • 4	78.7	85.8	83 - 0	22
	2.0	84.4	80 • 5	88.2	84.8	23
	1.6	84•4	81.5	67.5	84.7	24
	1 • 7	84.1	80 - 1	87 • Q	84 • 4	25
	1.8	83-6	79.6	87.2	84.0	26
	2.0	81.6	78 • 4	85 • 3	82.0	27
	1.9	79.4	75.8	ಟ3 • 1	79.8	28
	2.0	79.0	75 • 1	82.8	79.5	29
	2 • 1	76 • 4	72.2	80 • 1	76.9	30
	2.1	74.5	71.2	78.4	75.0	31
	2.6	74.2	70 • 3	78.6	74.9	32
	2.7	71.3	66,1	76.2	72 • 1	33
	2.3	69.6	64.3	73.4	70.2	34
	2.1	67 • 6	63 • 5	71 • 1	68 - 1	35
	1.9	64.3	60.9	67.7	64.7	36
	1 • 7	59 • 1	56.0	62.3	59 • 4	37
	• 7	55.5	55.0	57.2	55 • 6	38
	• 0	55.0	55.0	55+0	55 • 0	39
	•0	55•0	55.0	55.0	55 - 0	40
	1 • 4	87.7	85.6	90.4	88.0	DBA
	1 • 4	92.7	90.2	95 • 4	92.9	บยบ
	1 + 7	93-8	91.2	97.3	94 • 1	OASPL
	1.5	99.8	97.2	102.9	100-1	PNL
	1.5	99.8	97.2	102.9	100-1	PNLT

TABLE F-III 5 FOOT HOVER TEST

Mangarahan as a mark adolesis.

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 5, 135 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) CDB RE 20 MICHO PA)

DAND	ENERGY			ARITH.	SID	_
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	135° (Mors, Var Lo Relative to H
14	67 • 1	72.6	62.0	66•3	2.6	1 1
15	81 • 0	84.0	78.3	80.8	1.5	- / 1/20x2, 1021 60
16	72.7	74.4	71.2	72.6	•9	
17	81 • 7	85 • 1	77.8	81.3	1 • 7	- Chelatian to H
18	81.3	83.6	78 • 1	81.0	1.6	
19	84.0	86.2	79.8	83.7	1.7	
20	88•6	90.5	86 • 1	88 • 4	1.2	
21	86.9	88.9	81.8	86.6	1 -8	
22	87 • 5	89.8	83.8	87.2	1 +6	
23	88 - 9	91.4	85.5	88.6	i • 5	
24	88 • 6	90.5	82.4	88 • 3	1 •8	
25	87 • 6	89.3	82 • 1	87.3	1 • 7	
26	87 • 2	89.6	81.8	86.9	1 • 7	
27	85 • 8	89.4	19.9	85•3	2.0	
88	83 • 6	86.0	78.7	83 • 4	1.7	
29	82 • 3	84.9	77.1	81.9	1.9	
30	78 • 4	81 • 1	73.7	78 • 1	1 • 7	
31	76•7	78.4	73.4	76.5	1 - 4	
32	76•7	78.6	73.5	76 • 6	1.3	
33	74.8	76.9	71.0	74.6	1 • 4	
34	72.2	74.3	70 • 1	72 • 1	1 - 1	
35	68 • 4	69.9	66 • 4	68 • 3	i •O	
36	65 • 0	66 • 4	63.2	65.0	•8	
37	59 • 5	60.7	57。9	59 • 4	•8	
38	55 • 1	55•6	55•0	55 • 1	•2	
39	55 • 0	55.0	55.0	55.0	•0	
40	55.0	5 5•0	55.0	55.0	•0	
DBA	91 - 1	93.2	87.2	91.0	1 • 3	
DBD	96 • 0	97.7	92.8	95•9	1 - 1	
OASPL	97 • 7	99•6	94.7	97.5	1.2	
PNL	103.2	104.7	100.2	103.0	1.0	
PNLT	103.2	104.7	100.2	103.0	1.0	

TABLE F-VIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY 5-61

OCTOBER 28 1976

EVENT 6, 180 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH:	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
		<i>a.</i> •			2 6	
14	66•0	71-2	60 - i	64.5	3 • 5	/
15	80 •2	84.0	73 • 3	79 • 4	8 • 8	
16	71.9	74.9	68 • 5	71.5	1.9	(
17	77.0	79•0	72.6	76•8	1 • 6	\ /
1 g	76.6	79.9	72.9	76.2	1 • 8	_
19	76•7	7 8•8	73 • 1	76.5	1 • 6	
20	87 • 3	90 • 7	84.5	87.0	1 • 7	
21	81 • 6	84.2	79.0	81.4	1.3	
22	81.8	84.3	79.3	81.6	1.2	
23	84.3	86 - 1	81.2	84 • 1	1.2	
24	83 - 1	65• 0	79.7	82.0	i • 3	
25	84.0	86 • 3	81.8	83.9	1 • 1	
26	83 • 1	85.0	79.9	82.9	1 • 4	
27	82.8	84.3	78.9	82.5	1.6	
28	82.0	83.7	76.8	81.7	1 • 7	
29	80 •2	81 - 1	76.3	79.9	1.6	
30	77.4	78 • 6	72.6		1.8	
31	75.0	77.2	70.9		1.8	
32	73.4	75.5	69.9		1 • 7	
33	70.0	72.3	66.8		1.6	
34	68•0	70 • 4	65.7		1 • 4	
35	65 • 7	67.6	63.7		1.2	
36	63.2	64.8	61-4		•9	
37	58•7	60 • 6	56 • 8		1.0	
38	55 • 3	56 • 4			• 4	
			55.0			
39	55.0	55 • 0	55 • 0		•0	
40	55.0	55.0	55.0		•0	
DBA	87.9	89 • 1	84.7		1.2	
DBD	92+4	93 • 6	89.7		1 • 0	
OASPL	94.1	95•7	92.3		• 8	
PNL	99•5	101.2	97•1	99•4	1.0	

101.2

97.1

PNLT

100°
(Marophoro Londing
Pelatine to Helioptor)

TABLE F-VII

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 7, 225 DEGREES, MICROPHONE 150 METERS WEST

1/3 CTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(DB RE 80 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	62 • 1	68•0	67 1	40.0	2 2
15			57.1	60 • 9	3 • ○
16	69.5	74.1	65 • 4	69.0	٥٠٤
	65 • 0	66.7	62.0	64.9	1 • 3
17	74.8	74.3	66 • 6	71.5	1 -8
18	72.0	74.9	67 • 3	71.7	1 • 6
19	73 • 4	75.0	31-5	73.3	1.2
20	77.3	80.8	73.8	76.7	દેવાં
21	75.2	77 • 1	72.2	74.9	1 - 5
22	75 • 1	77.6	72.6	74.9	1.5
23	78.7	81 . 4	75.4	78•5	1 • 4
24	78.∙0	81.8	74,2	77•5	0.0
25	80.2	85.2	75.5		2.4
26	80 • O	84.7	75.7		2.3
27	80 • 1	84.9	75.5	79.5	8.3
28	78 • 6	83.8	74+5	78.0	2.1
29	77 - 6	81.2	75 • 1		1.6
30	74+8	77.2	72.6	74.6	1.2
31	73.4	77.1	71+0	73 • 1	1.5
32	71 • 8	75.8	66.9	71.4	1.6
33	68.0	70.2	65 • 4	67.9	1 1 1
34	66-3	68+5	64.7	66.8	1.0
35	64.2	66 • 1	62.6	64.1	1.0
36	61 • 4	62.7	60 • 1	61 - 4	•7
37	57 : 5	59-1	55.0	57.4	
38	55	55 • 7	55.0		67
39	58.00	55.0		55 • 1	• 2
40	55 • O		55+0	55.0	-0
DRV		55.0	55.0	55.0	•0
	85 • 0	89 • 1	81 "	84+6	1 • 7
DED	89 • 1	98+8	86 • 3	88.8	i•€
OASPL	89.4	93.0	86 • 5	€9.2	1.5
PNL	96 • 1	99.5	93 • S	95-9	1.5
PNLT	96 • 1	99.5	93.2	95.9	1.5

Mosophone Locator \
(Mesophone Locator)

Kelatue to Helicopter

TABLE F-VI

5 FOCT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 8, 270 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	Microphone Loca Relative to Heli
14	70 • 4	76.5	60 • 6	69.0	3 • 6	
15	72-3	75.8	65 • 4	71.7	2.4	Missophone Loora
16	67 • 1	70 • 6	63.8	66•8 -	1.7	1 2 2 2 1 11 11 11
17	71+6	74.7	66.8	71.2	1.7	\ Reintige \ \ Reintige \ \ \text{Telline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
18	7 2.0	74.9	69.4		1-4	
19	72.7		68+9		1.6	
20	75 - 1	77.2	71.4	74.7	1.7	
ខ្ម	76 • 5	80.7	73.0	76.0	2.0	
22	76.7	79.5	72.0	76.3	1 • 8	
23	79.0	81.1	74.1	78•7	1 - 7	
24	80 - 8	83.5	77.2	80.5	1 - 7	
25	62 • 2	85 • 8	77.8	81.7	2.2	
26	81.6	85•9	76.5	80.9	2.5	
27	80 • 0	84 • 6	76.2		2 • 1	
28	77.4		73.5	77+0	1.9	
29	77.5	80 • 5	73 • 7	77-1	1.9	
30	75.3	78 • 1	71.6	75.0	1.8	
31	73.7	75.9	69.5	73.4	1.7	
38	72.1	74.4	68 • 5	71.8	1.6	
33	68.5	71.5	65.2	68.3	1.6	
34	67 • 4	79.0	64.0	67 • 1	1 - 5	
35	64.46	66.4	61.8	64.4	1 - 3	
36	62-1	(3.7	59 .8	62.0	1 . 1	
37	57 • 5	59.3	55 • 8	57.5	• B	
38	55 • 0	55.2	55+0	55.0	• 1	
39	55.0	55.0	55 • 0	55•0	•0	
40	55 • 0	55.0	55.0	55.0	·• O	
DBA	85 - 4	87.5	81.9	65 • 1	1 • 7	
DBD	89.8	92.0	86.3	89.5	1.6	
OASPL	90 • 3		86.8	90+0	1.6	
PNL.	26.9		93.5		1.6	
PNLT	96.9	99.5	93.5	96.6	1 - 6	
				• •	- -	

TABLE F-VII

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 9. 315 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			AHIIH.	SŢD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	69.7	76 2	61 a	69.0	2 9
		76•3	61.8	68.0	3 • 8
15	70 • 3	74•6	64.2		2.4
16	66 • 5	71.5	62.8	65.9	2.0
17	72.6	74 • 3	69+4		1 • 3
18	71 - 3	73+2	8 • 8 6	71 - 1	1 • 3
19	72.9	75.2	70.2		1 - 1
20	78 • 2	79•6	75•3		1 • 4
21	75 • 4	76•5	73.2		1.0
22	75•9	77.1	73.9	75•8	• 9
23	78 . 2	79•7	76.0	78 • 1	1.0
24	78•3	79-7	74-7	78.2	1 - 1
25	79•4	82•7	76 • 6	79.2	1.5
26	79.3	83.2	76.5	79.0	1.6
27	78•9	81.9	75.7	78•6	1 - 4
28	78 • 1	81.2	74.8	77.9	1 • 4
29	77.2	79.7	72.6	76.9	1 • 6
30	74.0	78.0	70.2		1.7
31	71.8	73.9	69.4	71 • 6	1.2
32	71.3	73.2	69.2	71.2	1 • 1
33	68.9	71.0	66.1	68.7	1.2
34	67 • 7	69.3	65.5	67.7	• 9
35	65 • 2	66.2	63.5	65 • 2	• 7
36	63 • 4	64.5	61.4	63.3	• 7
37	59+3	60 • 4	57.5	59.3	• 7
38	55 • 9	57.3	55.0	55.9	• 7
39	55.0	55.0	55+0	55.0	•0
40	55 • 0	55.0	55 0		• 0
DBA	84 • 4	87 • 1	81.9		1.0
aga	88 • 8	91 • 1	87.2	88•7	•9
OASPL	89•3	91.3	87.1	89.3	•8
PNL	96 • 0	98 • 2	93.9	95.9	•9
PNLI	96 • 0	98 - 2	93.9	95.9	1.0

TO ATTOCK OF A

315°
(Microspher Locatus
Felician to Helicoptes)

TABLE F-VIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

90°
(Microphure Location)
(Relative to Helicopter)

EVENT 1, O DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

ENERGY ARITH. S	TD
	4714
BAND AVERAGE MAX MIN AVERAGE D	ΕV
14 (7.7 75.7 60.0 67.0	
	• 1
	-2
	• 3
	• 6
18 74.7 76.8 73.0 74.6	• 9
19 73 • 1 74 • 8 71 • 7 73 • 1	• 7
	• 5
	•2
	•0
	• l
	• 9
	•8
	= 5
27 72.5 74.4 69.9 72.4 1	• 1
	- 1
	• 4
30 73.2 75.9 69.8 72.9 1	• 6
31 72.5 75.4 69.9 72.4 1	• 2
32 71.7 73.5 68.6 71.5 1	• 3
33 68.8 71.2 65.4 68.5 1	• 5
34 67.9 69.5 64.7 67.7 1	• 3
35 66.6 68.2 64.2 66.5	• 9
	•0
37 61.0 62.7 59.2 60.9	•8
38 57.6 59.3 56.2 57.5	•8
39 55.0 55.0 55.0 55.0	•0
40 55.0 55.0 55.0 55.0	•0
	•0
DBD 86.8 87.9 84.6 86.7	•9
OASPL 88.0 89.0 86.6 88.0	•6
PNL 94.3 95.4 92.2 94.2	•8
PNLT 94.3 95.4 92.2 94.2	• §

30

TABLE F-VII. 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 3, 45 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH.	STD DEV
SHIVE	HATHROD	Parent.	****	MADUMOD	DEV
14	74.3	80 - 1	67.7	73.2	3 • 1
15	74-8	78+2	70.5	74-4	1 -8
16	75 • 5	79-1	69.6	74.8	2.6
17	74.6	76 • 4	71.4	74.4	1.2
18	73.5	76.8	69.8	73.2	1.6
19	73.5	79.0	70.6	72.9	2.1
20	76.9	79.2	73.3	76 • 6	1.7
21	74 • 6	76.1	72.4	74.4	1 - 1
22	73.9	75 • 9	71.7	73.8	1.2
23	73.1	75 • 4	70-1	72.9	1.3
24	69 • 6	71.3	67.1	69.4	1.2
25	70.2	73.4	67.0	70.0	1.5
26	71.8	75.0	67.8	71 ~4	1.8
27	73.5	76.5	69-1	73 • 1	1.8
28	72.4	74.9	68.9	72.1	1.6
89	72 • 1	74.4	68.6	71.9	1.5
30	70.1	72.2	66.0	69•9	1.5
31	71.6	73.2	67.4	71.4	1 • 4
32	71.0	72.5	67.5	70•8	1 • 4
33	68.8	70.5	65.5	68•7	1.2
34	68 • 5	70 • 2	65+6	68 • 4	1 • 1
35	67 • 6	68•9	64.9	67.6	• 9
36	65 • 2	66 • 3	62.8	65.2	• B
37	62 •0	53∙ 2	59.8	62•0	• 8
38	58 • 6	59•6	56 • 4	58 • 6	. 7
39	55 • 1	55.7	55.0	55 • 1	• 2
40	55.0	55.0	55.0	55.0	•0
DBA	81 • 1	82.6	78.2	81.0	1.2
DBD	86 • 6	87.9	84.3	86.5	1 • 1
OASPL	87.0	88.7	85.2	86.9	-8
PNL	94 • 2	95•4	92.2	94 • 1	•9
PNLT	94.2	95 • 4	92.2	94 - 1	• 9

Mistophen London Relative to Helmograp

TABLE F-VII

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 4, 90 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	O°
14	67 •2	72.8	60.7	65•9	3.3	(Maroplan London) Relative to Helmortic
15	72 • B	76•9	69•3	72-3	2 • 1 1 • 7	Maroplan London
16	69•0	72.8	66 • 0	68•7	1 - 7	n 14. + 11./1. 11.
17	71.7	74.5	6.7.5		1.9	- The work of the Melwok of
18	73 • 7	76 • 2	71.6	73.5	1 • 1	•
19	72.0	73∙8	70 • 1	71.9	•9	
20	74 • 1	77 • 4	71.0	73 - 8	1.7	
21	74.4	75.9	72.4	74.3	1.0	
55	72 • 4	73.7	70.5	72.3	• 7	
23	71.7	75∙୨	69.5	71 • 4	1.5	
24	69+1	71.7	66.7	66.9	1.2	
25	70.2	72.8	66.5	69.9	1.5	
26	71 • 1	74•9	67.9	70.8	1.8	
27	72.6	76.2	69.2	72.2	1.9	
28	72.6	75•7	68.7	72.2	2.0	
29	73 • 3	77.7	68 • 4	72.6	2.6	
30	72 • 4	77 - 1	67.3	71 - 4	2.9	
31	71 • 5	74.9	66 • 4	70 • 8	2.5	
32	70 • 4	74.0	66.4		2.0	
33	67.9	69•8	65 - 1	67 - 7	1 + 3	
34	67 • 7	70 • 1	65 • 8	67.6	1.0	
35	65 - 5	68.0	64.5	65.5	•8	
36	63 • 8	65.9	62.5	63.8	• 7	
37	59 • 8	61 • 3	58 • 4	59.7	•6	
38	56+5	57 • 6	55.2	56-4	• 5	
39	5 5 • 0	55.0	55.0	55+0	•0	
40	55 • 0	55.0	55 • 0	55.0	•0	
DBA	80 • 9	83.5	77.8		1.8	
DBD	85.7	88.2	83.1	85.5	1.3	
OASPL	85 • 5	87.3	83.9		• 9	
PNL	93 • 3	95 • 4	91.3	93.2	1 + 1	
PNLT	93 • 3	95 • 4	91 • 3	93.2	1 • 1	

TRSLE F-VII.

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 5, 135 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH.	STD DEV	Microphorie Location Pelative to Helicopte
שייייני	MATHUR	LIFT	17114	AVERHUE	₽₽V	3/3
14	68.0	71.6	63.1	67.6	2.0	/ Mushahara Location
15	76 • 6	78.3	74.1	76.5	1.2	A MILE OF THE PARTY OF THE PART
16	71.6	73.2	68 • 8	71.5	1.0	Dolatus to Helianote
17	74.1	77.4	69.8		2.8	Charles in his inchis
18	73.5	74.8	71.5	73.4	• 5	3
19	72 •8	74.0	70 • 3	72.7	• 8	
80	79.2	83+5	75.0	78 • 6	2.2	
21	74.6	75.7	72.6	74.6	• 7	
55	73.2	75.3	69.9	73.0	1.3	, and the second se
23	74 • 6	77 - 1	72.7	74.5	1 - 1	***************************************
24	73 • 7	76.3	70 • 3	73.3	1.8	<u>₩</u>
25	77.2	80 • 1	?3.9	76.8	1 + 9	
26	77.2	80.3	73+3	76∙ 8	1.9	3
27	78 . 7	81.1	74.3	78 • 4	1 - 7	3
88	78 • 8	81.5	75 • 4	78.5	1 • 8	3
29	78•7	82.2	74.1	78.3	2.0	3
30	76 -4	80 • 4	72.2	75 • B	2.3	:4
31	75 • 8	78 - 9	71.2		2.0	-
32	74.5	76•3	71 ∘ 2	74.4	1 .0	7
33	72.5	74.8	69.5		1 • 3	·
34	71 • 4	73.7	68.9	71.2	1 - 3	7
35	68•7	70.9	66 • 1	68+5	1 - 1	
36	67.3	68 • 8	64 • 5	67.8	1 - 1	
37	63 • 8	65 - 4	61 06	63 . 7	•9	3
38	60 • 7	53 ∗8	58 • 2		1 • 0	
39	56 • 8	58 • 4	55.0	56 • 4	-8	\$
40	55 • O	55.0	55+0	55.0	•0	
DBA	85 • 8	87 • 8	83.3	85.5	1.4	
DBD	90 - 1	92.0	87.9		1.2	,
OASPL	88+2	90+9	87.7		• 9	
PNL.	97 • 3	99.1	95+3		1.0	3
PNLT	97 - 3	99.1	95•3	97.1	1.0	j i i i i i i i i i i i i i i i i i i i
						- Art

TABLE F-VIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 6, 180 DEGREES, MICROPHONE 150 METERS EAST

1/3 CCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	270° (Microphone Location) Relative to Helicopter)
						Q y o
14	65 • 5	69•3	60 • 0	64.7	2.7	(Minimohone Location)
15	72.0	75 • 1	67 • 4	71.5	8.8	/ /melophone
16	72 • 1	74.4	68 • 9	71.9	1 • 3	Onlative to Helicontec
17	75 • 4	77•9	71.6	75 • 1	1 - 7	MEIDING 10 MEMORILI
18	75•3	79.3	72.7	75.0	16	
19	75•7	79.3	73.8	75.5	1.2	
20	82.0	85.2	78 - 1	81 - 6	8.0	
21	75.7	77•5	73.9	75 • 6	• 9	
22	72.6	74.0	70 • 6	72.5	1 • 1	
23	77.6	79.6	70.9	77-0	2.4	
24	74.4	76.6	70.5	74.1	1.6	
25	76.7	79,6	72.4	76.3	1 -8	
26	76 • 9	80 • 1	72.2	76.6	1.9	
27	78.6	81-1	73.7	78 • 2	1.9	
28	78.9	81.7	73.2	78-4	2 • 1	
29	79•0	83.0	74 • 1	76 - 4	2.4	
30	77.6	82.3	72.7	76.9	2.4	
31	75•9	80.3	70.9		2.5	
32	74.7	80 • 1	69.3	73.5	3.0	
33	72.2	77.5	65.6	70 • 6	3.5	
34	70.2	75.9	64.3		3.2	
35	67 • 0	71.0	62.9	66.4	2.3	
36	64 • 1	66.9	61.5	63.9	1.6	
37	59.9	62 - 1	57.8	59 • 8	1.2	
38	56.0	56 • 8	55.0	55.9	• 5	
39	55.0	55.0	55.0	55•0	•0	
40	55.0	55.0	55.0	55.0	•0	
DBA	85 • 7	89.1	81 • 4	85.2	2 - 1	
DBD	89.7	93.5	85.8	89.2	8+1	
OASPL	89.8	91.6	87.3	89,6	1.2	
21.01	07-0		0,.5	0710	1.5	

PNL

PNLT

97.0

97.0

100.3

100.3

93.9

93.9

96.5

8.0

2.0

TABLE F-JUL 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 7, 225 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DE RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	71 • 3	76 • 1	62.9	69 • 8	3.9
15	74.7	77.9	67.5	74.2	2.2
16	74.8	82.5	66 • 4	72.4	4.0
17	73.4	77.1	3-86	72.9	2 • 1
18	73 + 4	75 • 4	71-5	73 • 1	1 - 1
19	74.0	79.1	70 - 3		2.0
50	82.2	85 • 4	77-1	81.8	1.9
21	75 • 7	77.5	73.5	75•6	•9
22	71.7	73.7	69,1	71 • 5	1.3
23	73.5	77.0	70.8		1.5
24	70.2	72.8			1.9
25	74.4	78.7	69.4		2.7
25	73.0	76 • 4			2.4
27	74.3	77 • 3	68 • 6		2 • 6
28	74.0	76 • 6	68.8		2.2
89	75.0	78.5	71.2		2 • 1
30	73.7	77 - 7	69.0	73.2	2.1
31	72.6	77 - 1	68 • 1		2.2
32	70 • 1	74-1	65 • 2		2.1
33	66 • 6	69.6	61.3	65 • 2	2.0
34	55 • 8	68 • 6	60 • 4	65 • 4	2.1
35	63.8	66 • 6	58.0	63 • 4	1.9
36	61 .7	64.1	56 • 7	61 • 4	1 • 6
37	58 • 3	60 • 4	55•0	58 • 1	1 • 3
38	55•4	56 • 5	55.0	55 • 3	•4
39	55.0	55 • 0	55.0	55.0	•0
40	55.0	55.0	55.0	55. 0	•0
DBA.	81 • 8	85.2	77 • 6	81 • 4	2.0
DBD	86.0	88.7	82 - 1	85.7	1 • 7
OASPL	87 • 7	89.8	85.3		1.2
PNL	93.5	96 • 3	90 • 3	93.3	1 • 4
PNLT	93.5	96.3	90.3		1.0

225°
(Microphone Location)
Relative to Helicopter

TABLE F-VIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTGBER 28 1976

EVENT 8, 270 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	66 • 4	70 • 4	E 0 0	45.0	2 5
15	73.3	74.9	58 • 8	65.3	3 • 5
16	70.2	73.1	68 • 8	73 • 1	1.5
17	72.0	74.1	64.5	69+8	5 • 1
18	74.5	·	69.5	71 • 8	1.2
19	73.6	76.6	72.3	74.4	1.0
20	83 • 4	75.0	72.6	73.6	• 7
21		84.5	81.0	83 • 3	• 9
22	77 • 4	80.2	75.3	77.2	1 - 4
23	71.9	73.5	70.4	71 •8	•8
	72.6	74.3	70.2	72.5	1.0
24	65 • 6	68 • 4	61.8	65 • 4	1.5
25	67 • 7	70-2	65+3	67.5	1 • S
26	67 • 7	71.8	64.2	67.3	1.8
27	69.9	74.4	65.7	69 • 4	3.5
28	69.0	72.3	66.7	68.7	1.7
29	68 • 8	72.3	66.0	68 • 4	1.8
30	67 • 3	70.3	65.2	67-1	1 • 3
31	67.3	69.2	64.8	67.2	1.2
32	67.2	70.3	64.3	67.0	1 • 4
33	65 • 1	68 - 1	65.5	64.9	1.5
34	64.0	68 • 1	61.3	63.7	1 • 7
35	62 • 5	64.5	60.2	62.3	1 - 1
36	60 • 6	62.3	58.8	60.5	•8
37	57 • 6	59+1	55.8	57.6	•8
38	55 • 3	56 • 1	55.0	55 • 2	•3
39	55 • C	55.0	55.0	55 • 0	•0
40	55.0	55.0	55.0	55.0	•0
DBA	77.5	80+3	75.5	77.3	1 • 3
DBD	83 • 4	85.5	81.6	83.2	1+0
OASPL	86 - 6	87.8	85.5	86.6	• 7
PNL	91 •8	93.6	90.5	91.7	•8
PNLT	91.8	93.6	90.5	91.7	•8

180°
(Microphone Location)
Relative to Helicopter)

TABLE F-VIL

5 FOOT HOVER TEST

173 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 9, 315 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND	ENELGY AVERAGE	MAX	MIN	ARITH.	STD DEV	135 (Microphone Relative to	.0
					007	/33	
14	66 • 5	68•9	62.0	66 • 1	1.9	/ 10 4 = 0 0	/ antina
15	76.3	78•2	74.2	76 • 1	1.2	/ fricerophone	1705 4/10A
16	71 • 6	73.0	70•0	71.5	•8	(Dalating +	Halin to
17	72.8	75 • 1	70.3	72.6	1.2	Kelalise 10	Telleoples
18	74.5	76•0	72.8	74 • 4	• 9		, ,
19	73.4	76.3	70.9	73.2	1.2		
20	83•8	86 • 1	80 • 6	83.6	1.5		
21	77 •7	79+6	75.2	77.5	1 • 1		
22	71.8	73.0	70 • 1	71.7	•8		
23	70 • 9	73.3	68.2	70.7	1.2		
24	67 • 5	70 • 7	64 • 4	67.1	1.9		
25	69 • 0	72 - 7	65•6	68 • 4	2.1		
26	68 • 0	70 • 4	64.8	67.6	1.7		
27	69 • 4	71 • 4	66.4	69.1	1.5		
28	69 • 4	71.6	66.0	69.1	1.5		
29	69.9	72 - 1	67.0	69.7	1 - 4		
30	69 • 1	70 • 6	65 - 1	68.9	1 - 4		
31.	68.5	69.7	65.7	68+3	1 • 1		
32	66 • 8	69.2	64.3	66.6	1 • 1		
33	63 • 1	64.8	60.9	63.0	1 • 0		
34	61.9	63.3	60 • 4	61.8	•9		
35	60 • 8	62.2	59.6	60.8	•8		
36	59 • 3	60.6	57.8	59.2	•8		
37	56.2	57.4	55.0	56 • 1	•7		
38	55.0	55.0	55.0	55.0	•0		
39	55.0	55.0	55.0	55.0	•0		
40	55.0	55.0	55+0	55.0	•0		
DBA	77.8	79.6	75.1	77.6	1 - 1		
DBD	82 • 9	84.7	80.7	82.8	1.0		
OASPL	86 • 9	88 • 1	85.6	86.8			
ONUL	00.7	00 • 1	03.0	00.0	-8		

PNL

PNLT

91.7

91.7

93.2

93.2

90.0

90.0

91.6

91.6

1.0

1.0

TRBLE F-VII

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA .

SIKORSKY 5-61

OCTUBER 28 1976

EVENT 1. O DEGREES. MICROPHONE 75 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	70 • 2	75 • 1	66.0	69 • 4	2.6
15	77.6	81.6	73.9	77 • 4	1.5
16	71.9	73.3	69.3	71.9	•8
17	77 • 1	80.9	72.8	76 • 6	2 • 1
18	77 • 1	80.5	73.9	76 • 7	1.8
19	78.9	82 • 1	76.2	78 • 6	1.5
20	89.4	92.9	85 • 8	89 • 1	1 • 4
51	83 • 4	87.2	81.0	83 • 1	1.5
55	83.9	87.3	80 • 6	83.7	1.4
23	£6•1	88.5	83.9	86.0	1 • 1
24	85 • 3	87.4	83.7	85 • 2	1.0
25	85 • 4	87.0	83.2	85.3	•9
26	84 - 7	86.0	82 • 7		* 8
27	85.0	86.7	82.4	84.9	•9
28	84.7	86 • 6	81.8	84.6	1 • 1
29	84.6	86,5	82.2	84.5	1.0
30	84.4	87.3	82.1	84-3	1.2
31	84.0	87.3	81.8	83.7	1 • 4
32	83 • 1	86.2	80 - 1	82.8	1.6
33	80.0	83.2	77.0	79.7	1.7
34	75 • 6	79.4	73.7	76+3	1 - 4
35	74.0	76.2	71.8	73.9	1.0
36	71 • 0	72.7	69.6	70.9	• 7
37	66.9	68.0	65.8	66.8	•6
38	62 • 3	63.5	61.4	62.3	•6
39	58 • 7	59.6	57.8	58 • 7	•5
40	56 • 3	56.8	55.5	56+3	-4
DBA	92.7	95.2	91.0	92.6	1.0
DBD	97 • 0	99.3	94.9	96.9	1.0
OASPL	96 • 9	98.2	95.6	96.8	• 7
PNL	104.5	106.6	102.6	104.4	1.0
PNLT	104.5	106.6	102.6	104.4	1.0

270°
(Microphone Location Polistus to Helmaytin

TABLE F-VII

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 3, 45 DEGREES, MICROPHONE 75 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD DEV	Microphone Location Relative to Helicopter
14	68.2	73.1	63.4	67.6	2 • 3	CA.A.
15	74.3	77.2	68.9	73.7	2.3	/ w / agoting
16	68.8	70.5	56.7	68.7	1.2	/ Microprone Godaller /
17	73.4	76.8	69.7	73.0	1.8	
18	74.2	78 • 1	71.0	73.9		(Relative to Helicopler)
19	77.3	80.9	73.0	76.9	1.8	
20	88 • 8	91.2	85.0	88 • 4	1.8	·
21	82.2	85.0	80.0	82 • 1	1.2	
55	80.5	83.0	77.8	80.3	1.3	
23	85 - 1	86.9	82.4	84.9	1.2	
24	84.2	86 • 1	81.5	84 • 1	1.0	
25	85.1		82.4	85.0	1.0	
26	83.5	85=5	80 - 2	83 - 3	1.2	
27	83.6	86.2	80.4	83 • 4	1 • 5	
28	81.9	84.4	79.2	81. • 7	1.4	
29	82.8	85.5	79.4	82.4	1 - 7	
30	81.4	84.4	78.4	81.2	1.6	
31	80 • 1	82.6	77.1	79.9	1.5	
32	79.4	82.2	75.5	79-1	1 • 7	
33	78.6	81.3	73.0	78•2	2 • 1	
34	78 • 1	81.3	71.2	77.5	2.5	
35	75.5	78.2	69.8	75 - 1	2.1	
36	72.6	74.8	68 • 3	72.3	1 • 8	
37	68.1	69.9	64.7	67.9	1.5	
38	63 • 8	65.6	60.9		1.3	
39	59•1	60.3	57.3	59.0	•9	
40	55.5	56.3	55.0		• 4	
DBA	90 • 8	92.9	88.3		1.2	
DBD	96 • 1	98.1	93 • 3		1.3	
OASPL	95.2	97-1	93.6		•8	
PNL	103.4	105.6	100.5		1.3	
PNLT	103.4	105.6	100.5		1.3	
FIATT	103.4	103.0	100+3	103+3	4 + 3	

TABLE F-VIL 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 1. O DEGREES, MICROPHONE 75 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB: RE 20 MICRO PA)

	ENERGY			ARITH.	ŞTD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	72.6	76.5	65.7	71.4	3.5
15	82 • 4	84.4	80.2	82.3	1.0
16	76.2	77.4	73.6	76 • 1	•9
17	78 • 6	81.9	75.2	78 • 3	1.6
18	78.3	80 • 1	76.6	78.3	•9
19	78.8	80.5	76.7	78.7	•8
20	87 - 6	90+8	82.9	87 - 1	2.1
21	81.0	82.6	79.1	80.9	• 9
22	79.8	81 • 4	77.9	79.7	•8
23	78.3	80 • 6	76.2	78 • 1	1.1
24	69 • 4	72.9	66+3	69 • 1	1.7
25	70 - 4	72.9	66.9	70-1	1.5
26	74 • 8	76.9	71.9	74.6	1.3
27	79 • 1	81.0	75.8	78.9	1.3
28	81 • 0	83.2	77.0	80.7	1.7
29	83 • O	86.0	79.3	82.6	2.0
30	83 • 2	86.6	78.9	82.7	2.1
31	82.4	85 • 2	79.7	82.1	1.7
32	79.7	82.3	77.3	79 • 5	1 • 4
33	76.3	78.4	73.6	76.1	1 • 1
34	74.7	76.3	72.8	74 • 6	1.0
35	74.2	75.7	72.3	74-1	• 9
36	73.0	74.7	71.5	72.9	٠8
37	71 - 1	72.6	69.2	71 - 1	-8
38	69•3	70.5	67.2	69.2	-8
39	67.0	68 • 4	65•3	67.0	•8
40	63.7	64.8	62-1	63.7	• 7
DBA	89•8	92.0	87 • 8	89+6	1 • 3
DBD	94 • 4	96 - 1	92.9	94.3	1.0
OASPL	94.1	95,9	92.8	94.0	• 8
PNL	101.7	103.3	100.5	101 • 6	• 9
PNLT	101.7	103.3	100.5	101-6	• 9

Microphore Location Relative to Helmopter

THOLE F. YIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

Microphone Location
Relative to Helinspton

EVENT 3. 45 DEGREES, MICROPHONE 75 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	67.0	70.0	62.9	66.5	2.0
15	75•9	78 • 9	71.5	75 • 5	2•0
16	71.2	72.8	69.4	71 - 1	• 8
17	76 • 7	80.2	74.0	76 • 4	1 • 5
18	76 • 1	78.3	72.2	75•9	1 • 3
19	76 • 4	78.7	74.3	76.3	•9
20	81 +1	83.5	77.6	80•9	1 • 5
21	78 • 9	80.7	77.4	7 8 • 8	•8
22	78 • 0	80 • 1	75.8	77•9	1 • 0
23	75.9	78.5	73 • 6	75 • 8	1.2
24	66 • 5	68.3	64.5	66 • 3	1.2
25	67 • 8	70.6	63.9	67.5	1 • 6
26	71 • 6	73.6	67.8	71-4	1 • 4
27	75 • 8	78.3	72.5	75 • 5	1 • 6
28	77 • 7	79.7	75.0	77•5	1.2
29	79 • 1	81 • 3	76.3	78•9	1 • 3
30	78 •0	80.3	75.6	77•8	1 • 1
31	78 • 1 •	80 • 1	75 • წ	78• 0	i • 0
38	76.2	78 • 8	73.8	76 • 1	1 • 2
33	74.7	77.1	72.6	74.5	1 • 3
34	73 • 5	75.2	71.3	73 • 4	1.0
35	73 • 8	75.8	71.3	73.7	1 - 1
36	72.9	74.4	71.0	72.8	1 • 0
37	71 • 3	72.9	69.4	71.2	1 • 0
38	70 • 1	72.0	68.0	70.0	1 - 1
39	68 • 3	70 • 0	65 • 7	68 • 1	1.2
40	65 • 9	67.5	63 • 6	65 • 8	1 • 1
DEA	86 • 9	88 • 8	85 • 4	86.8	• 9
DBD	92 • 7	94 - 4	91 • 1	92.6	• 9
OASPL	91 • 0	92.1	90.2	91.0	• 5
PNL	99.9	101 • 4	98 • 2	99•8	1 • 0
PNLT	99•9	101.4	98.2	99.8	1.0

TABLE F-VIL

500 FT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 23, O DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	270°
BAND	AVERAGE	MAX	MIN	AVERAGE	DEA	Ø.70
14	71 • 9	76.2	65•7	71 - 1	2.7	270° (Microphone Location Relative to Helicopter)
15	71 - 3	74.6	67.2	70.8	2 - 1	Olto + Holonston
16	67 - 1	70 • 4	63 • 1	66•5	2.3	Kelalive to Helicopiet
17	67 • 1	69.8	64.7	66.9	1 • 4	
18	65 • 0	66 • 6	62.9	64.9	• 9	
19	62 • 4	64.3	59.9	62.3	1 • 1	
20	61 • 9	64.6	58.8	61.7	1 • 4	
21	71 -8	76.2	62.4	70•5	3 • ੪	
55	77 • 8	80.6	68 • 6	76.8	3 • 4	
23	1.58	84.3	74.0	8:•3	3.0	
24	80 • 0	82.5	74.4	79.6	2 • 1	
25	78.6	82.1	65.9	77.3	4 + 1	
26	81.9	83 - 6	75.3	81.5	1 • 9	
27	77 • 7	79.2	74.2	77.5	1.0	
28	78 • 2	79.4	75.8	78-1	•9	
29	77 • 2	78 - 3	74.3	77.1	1.0	
30	75 - 5	77.2	72 • 5	75.4	1 - 1	
31	73 • 3	74.5	70.6	73.2	1 - 1	
32	71 - 1	72.2	67.9	71.0	1.0	
33	66 • 7	67.9	64.3	66•6	•9	
34	62.9	64 • 3	60.2	১2∙ 战	1 - 1	
35	59-1	60.3	55+9	59.0	1 - 1	
36	54 • 4	56 • 4	52.2	54.3	• 9	
37	49 • 4	51 • 6	46.3	49•2	1 - 1	
38	45 • 6	47.0	45.0	45.5	•5	
39	45 • 0	45.0	45.0	45.0	•0	
40	45.0	45+0	45.0	45.0	•0	
DBA	84.7	86.0	80.8	84.6	1 • 2	
DBD	88.7	90.2	84.0	88 • 4	1.5	
OASPL	89.8	91.3	85.5	89.6	1.5	
PNL	95•3	96.7	90.0	95 • 1	1.5	
PNLT	95 • 3	96.7	90.6	95.1	1.5	

TABLE F-VII

500 FT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 23, O DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEA	90° (Marcophore Los Pelative to He
14	68 • 7	74.4	63.4	67.5	2.9	Marchare Lio
15	74.2	77•7	68•7	73.8	2 - 1	
16	68 • 2	72.3	63.5	67.7	2.1	- \ Pelative to He
17	70.0	73.9	66 • 1	69.5	2.2	
18	68 • 8	71 • 4	64+4	68.5	1.5	
19	64 • 6	67 • 1	58 • 6	64 - 1	2.0	
80	62 • 4	66 • S	57 • 8	61.8	5.5	
21	72.3	75•2	68•6	71.9	2.0	
22	77 • 7	81 • 1	73.5	77.3	2.0	
23	81 • 8	84.4	78 • 1	81.5	1.5	
24	78•6	80.0	74.6	7 8 • 5	1.2	
25	76•5	80•6	70•6	75 • 4	3 • 1	
26	80 • 5	82 • 4	77•9	80 • 4	1 - 1	
27	77 • 8	80•9	75 - 1	77 • 4	1 • 8	
28	78 • 6	80 - 1	77.3	7 8•5	•8	
29	77. 0	79.7	75.0	76.8	1 • 3	
3 0	74.3	77 • 1	72.4	74.1	1 - 4	
31	71 - 7	74.4	69.6	71.5	1.5	
32	69 • 7	71.9	67.3	69.5	1 • 3	
33	65 • 9	68.2	63.0	65 • 7	1 • 4	
34	62 • 4	64.3	60 - 1	62.2	1.2	
35	59 • 5	60.8	57.3	59 • 4	1 - 1	
36	54.3	55.9	58.0	54.2	1 - 1	
37	49 • 6	52.0	47.5	4: •5	1 - 1	
38	45 • 4	46.9	45.0	45 • 4	• 5	
39	45 • 0	45.0	45.Q	45.0	•0	
40	45 • 0	45.0	45.0	45.0	•0	
DBA	83.9	86 - 1	81.8	83.8	1 - 1	
DBD	87.7	90.0	85.4	87.5	1 - 1	
OASPL	88.9	91.2	86 • 4	89.7	1.2	
PUL	94.6	96 • 6	92.4	94.4	1.0	
DAILT	04.4	000	00 6			

PNLT

94.6

96.6 92.4

1.0

94 • 4

TABLE F-JII

500 FT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-61

OCTOBER 28 1976

EVENT 23 , O DEGREES, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	たれにってく			AIST THE	0.00
BAND	ENERGY AVERAGE	MAY.	₩ 7 1.1	ARITH.	STD
DHUD	HVEAMUE	MAX	MIN	AVERAGE	DEV
14	70.7	74.4	63.3	69•9	2.9
15	72 • 1	74.7	67.6	71.8	1.7
16	67 • 7	70.8	63.8	67.2	2 - 1
17	68.5	71.1	64.8	68.2	1.7
18	64.8	67.6	61.9	64+6	1 - 3
19	66.6	70.3	61.3	66.0	2.4
20	81.6	84.7	78.7	81.3	1.6
21	82.9	85.0	75.8	82.3	2.4
22	84.3	86 • 8	75.2	83.7	2.6
23	79.5	81.2	73.4	79.2	1.8
24	86 • 8	88 • 4	78.8	86.5	S•0
25	85.7	87.9	81.0	85•5	1 - 4
26	85 • 8	87.4	81.5	85 •7	1 • 1
27	84.2	85.6	80.9	84.1	1 • 1
28	83.0	84.8	80.6	82.9	9
29	80 • 7	82.2	78.7	80 • 6	•9
30	77.3	79.2	75.6	77.1	1.0
31	75.5	77.1	74.0	75.4	1.0
32	73 • 1	75.1	71.8	73.0	• 9
33	69 - 1	70.4	67.6	69 • 1	•8
34	65 • 8	67.0	64.4	65.8	• 7
35	62.3	63 • 4	61.0	62.3	•5
36	57.7	58 • 6	56.7	57.7	• 5
37	53.0	53.7	51.8	53.0	•5
38	46 • 5	49.1	48.1	48.5	•3
39	45.0	45.0	45.0	45.0	• 0
40	45.0	45.0	45.0	45.0	•0
DBA	89.2	90+3	86.0	89+1	•9
DBD	93 • 3	94.3	89.6	93.2	• 9
UASPL	94.6	95.6	90.0	94.4	1.2
PNL	99 • 7	100.7	96.2	99.6	•8
PNLI	99.7	100.7	96.2	99.6	-8

Directly Overhead

Halicopter Noise Level Pata SIKORSKY SEI OCTOBER 28, 1976

MAX RMS Noise Lavel - JBA NE BOMPa

		MAX KINS	NOISE LAV	AL- BON NE GLA		
HELICOPTER OFERATION	RUN Nomi BER	MICROPHONE OFFSET TO THE WEST 150M 75 M		OFFSET TO THE EAST		
5Ft. Hover O°	10	90.5 87.5	95.0 92.3	92.8	86.3 83.0	
5ft. Hover 45°	3	91.3 89.3	93.5 94.5	89.0	85.0 81.8	
5Ft. HOVER	12	94.3	5°) 96.8 96.3	8 8.5 90.8	6°) 86.0 83.0	
90° 5Ft. HOVER 135°	5 13	93.8 96.3	0°) 98.5 98. 3 5°)	93.3 94.5	87.8 86.8	
5Ft HOVER 180°	14	91.3	94.0 95.0	95.0 95.5	89.5 89.0	
FFE HOVER 225°	7	89.0	92.0 5°)	94.8	85.5 5')	
SFL HOVER 270°	8	88.0	91.0	88.0	80.5 (°)	
5Ft. Hover 315°	9	87.5	90.5 (5°)	82.8	79.0 (5°)	
500Ft HOVER D	23	(270°)	89.54	38.8	85.6 (90°)	
500 Ft HOVER 90	24	(180")	90.5	89.5	84.0 (0°)	

* Microphine at centerline

Halicopten Noise Level Dota SIKORSKY S-GL DETERME 28, 1936

max RMS Noise Level - SBA ne 20 MF2 MICHOPADNE MICROPHONE HELI COPTER RUN OFFIRT TOTHE EAST OFFSET TO THE WEST NUMBER OPERATION 150M CENTER WAS CENTER LINCE 30 82.3 86.8 84.3 80.3 29 GLIDE 85.5 83.0 81.8 82.3 30 SLOPE 82.5 840 87.0 80.5 3/ 60 85.0 79.5 82.8 83.5 20 GLIDE 86.3 えー 85.0 84.0 79.5 SLOPE 79.8 78.8 80.5 84.0 15 GLIDE 80.3 80.3 800 16 84.5 SLOPE 81.8 1) 83.5 82.8 81.0 79.5 78.5 60 KT 18 80.0 81.0 LEVEL FLYOVER 80.0 83.0 82.0 19 82.5 81.5 82.5 100KT 82.8 84.0 26 LEVEL 81.3 80.5 83.5 82.3 2.7 FLYOVER 80.5 79.5 81.8 28 81.8 62.3 84:0 85.3 82.0 32. 115 KT LEVEL 78.8 82.0 81.8 81.5 33 FLYOVER 84.0 34 81.8 81.8 85.3

West appearance -

NOISE LEVEL TIME HISTORIES SIKORSKY S-61 HELICOPTER 90 HOVER - 5 FT.

NOISE LEVEL TIME HISTORIES SIKORSKY 5-61 HELICOPTER 80° HOVER 5FT

NOISE LEVEL TIME HISTORIES SIKORSKY S-GI HELICOPTER 3° APPREACH

NOISE LEVEL TIME HISTORIES SIKORSKY S-GI HELICOPTER G* APPROACH

RUN ZI

NOISE LEVEL TIME HISTORIES SIKORSKY S-GI HELICOPTER 9 APPROACH

NOISE LEVEL TIME HISTORIES SIKORSKY S-GI HELICOPTER LEVEL FLYOVER - GO KTS

NOISE LEVEL TIME HISTORIES SIKORSKY S-GI HELICOPTER LEVEL FLYOVER - 100 KTS.

NOISE LEVEL TIME HISTORIES SIKORSKY S-G! HELICOPTER LEVEL FLYOVER - 115 KTS

DATA TABLE G

Sikorsky S-64 "Skycrane" (CH-54B)

TEST DATE:	10.28-76 TEST SITE: NASA	LANGLEY
SECTION - G	CONTENT	PAGE #
I	RUN LIST	555
II .	GROUND AND FLIGHT LOG DATA	558
III	METEOROLOGICAL DATA	561.
IV	LEVEL FLYOVER AND APPROACH NOISE DATA	562
v	TIME HISTORIES	564
VI	1/3-OCTAVE BAND SPECTRAFLYOVER AND APPROACH	598
VII	1/3-OCTAVE BAND SPECTRA5 FOOT HOVER	632
VIII	MAXIMUM dRA NOISE LEVEL (ALL RUNS)	668
XX	SELECTED dBA TIME HISTORIESGRAPHIC PLOTS	672

THE NOISE LEVELS PRESENTED IN SECTIONS IV, V AND VI
HAVE BEEN TABULATED FOR THE SELECTED RUNS AND MICROPHONE
LOCATIONS INDICATED ON THE FOLLOWING PAGE.

TABLE G-1
LIST OF RUNS SELECTED FOR ANALYSIS

			MICROPHONE LOCATION				
				WEST		EAST	
run#	TEST CONDITION	N	150 m SIDELINE	CENTER LINE	CENTER LINE	150m SIDELIN	
	Heavy (with Tr	uck)					
43	9° Approach	60 Kts	х	х		х	
49	Level Flyover	60 Kts		х			
50	\	₩		X			
51	6° Approach	60 Kts	х	х		х	
55	Level Flyover	85 Kts		х	!		
66				х	}		
67		95 Kts	х	х	x	х	
68		<u> </u>	х	х	x	x	
69	\	1	х	х	x	x	
70	3° Approach	60 Kts		х	İ		
	Light (without 1	li ick)					
74	6° Approach	€0 Kts		х			
76	Level Flyover	85 Kts		x			
77		\downarrow		х			
78		95 Kts		x		}	
79		1		x			
80		105 Kts	х	x		х	
81	₩	1	х	х		х	
	Microphone Loca	ations	Over Concrete	Over Concrete	Over Grass	Over Concrete	

GENERAL COMMENTS

- o There were no problems encountered while testing the Sikorsky S-64 "Skycrane" (CH-54B).
- o The weather conditions during the test were very windy with gusts in the 10-15 mph range.
- o The S-64 "Skycrane" used a 13,500 lb. army truck for ballast. Because the truck could easily be detached from the helicopter, noise data was taken both with and without the truck.
- o Because the S-64 "Skycrane's" gross weight during testing was greatly effected by its rate of fuel consumption, a table has been inserted which provides a log of the gross weight as a function of time.

. 1
Flight
ů L S
Ground
G-1
Trale

				$\mu = k - j - k$	4 17 - F 17-						
t Date: Oct. 28, 1976		Comments		are plane		good tun	Door to the state of the state	need to lengthen approach run length looks good	the peop	is bort Abort	
Test		W.rd Dreston	12				1>				
	125. 4 P.P.	ار المارد الماردين	7 25-5 5-5				ı				
	. !	1	8. (5.				1				
	Graund	day	4.5				ئر بر بر				
		782	c) û,	→ ° →	;, →	, y O ->	£ 200	°,	23	1 1 % %	
1875		KPM	, n				3 >	\$ →	,000	2027	
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	<u>.</u>		>	4004	3	609 ->	25 -7 25 -7	3000	
Pegistists, Mombolis	Petas Conditions	70 or	4.0 (a)	·> d̄,	£ 8 \$	ر بر د ب	66.4	35, 38	(r) -a)	1128	
4. 6. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	12.30	北大	0			10 m	(۲) —	0 8	**************************************	0>	
U.S.		Doined Doined	ر م برد د		>	5. 29 →	03	20.3	() -≯	10 · · · · · · · · · · · · · · · · · · ·	•
, a e ,		Su pear	Print Contract	Jm 10	13 0000	10) ->	12 16 16 0 16 0	10) →	100 -9	100	
"Skyrrane"	į	4619		94.0 156.0 134.5 108.0	10 0 kg	55.0	3 9 2 1	25 S5 25 C5 25 C5	97.5°	1 1 22 %	
5-64 519 Tetror	<u>~</u>	Alt. tade	(S) tested 555		>	\$ →	32 3 32 3	2, -2	3 ;	33	۰۰۰
Schoolty S44 '	Cond. + bre	Volating Attitude	, , , , , , , , , , , , , , , , , , ,			∂ 7. √.	0>	3 → 13	60	35	Tested
	Taract	لالمات	64 Skyrone CH Skyrone		>	*********	#5.00	Leve)	.d	Figure:	RS 57.0 G
Jee 1		₽! \$ 	5. Ransky 5. 64 3.6 // 33 h	7.25 7.25 7.38 7.38	11.45 11.45 11.45	किंद्र	18.07 18.05 18.09	2 50	36.61	13 C C C C C C C C C C C C C C C C C C C	Hug Ales
ر. دوري	-	<u> </u>	55. 35.	3888	\$ 2 4	£ £	9353	\$: B	15.00	क हा क	المرابع

TABLE GIT Ground and Flight Log Data

,0		;				7	* * * * * * *	117	TITA N N	(2)	,
. Date: Oct. 188, 1976		Comments		good run goog	nus beeg					Horas Salas	Abort
Test		Drietin	1>	12							
	Weather	build Speni	7-15 KB 8-19-1 5-18 KB	6 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	£						
	6 nound	Ħα	2. 10 14	88							
	ري د	Temp.	40°F	37 00 14							
	_	140	3 6 -	5° → 5° →	£ 60	ب - و•		 →		ى كى	
		w/dc/	%c9/	700%	10025	200 -		~		600/ 	
Registration Number:		1977 Todo	5005.	400 to 600 400 64	£ 00 }				* -	· · · · · · · · · · · · · · · · · · ·	
ior M	Conditions	Mp or	<i>z</i> →	8 8 8	15%	å, →	8	(2) (2) 70 3-		5 5 8 7	3 5 5 6 6
egistraj	Actual		o →	, , o ,	£ + 5.	0		-		0 —	
	T.	A,r Spred	± 50 →	# 14.	Ž.	± 53 →	75kt	# 50/		0 —	
S-64 "Skycrane" Bignation CH-54 B		Burpealt	1n →	37 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10 →	100 ->	1√7 →3	1:n -3		17 20 25	25 83 85 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Jesignation		# &P	830	88.3 87.3 87.0 87.0 93.5	86.7	15 25 25 25	85 80 pri pri	00 00 6. 6.			1111
ā		hittale miss	8 -→	25 → \$7 × 38 → \$7 × 38 →	75 004	₹. 8 →	J3	3 → 3 →		3,	
Sikorsky Military	Conditions	Velocity Attitude	95 +75.	\$	3 → E	95 43	95 1.75	, vest.	Tester.	0	
	Target (Түре	Figure 1	Step Skyerone	6° App.	Level Kyour	ا من جا ابا ہو ہال	Level Froyer	3 500 c	Have	
copter,		T.me	9 9 35 9 4 53 9 4 60	20 2.45 2.40rsky S- 7.2 3.00 7.3 3.00	3:04	3.14	a : is	3.83	Hughes	404	20000
Heli		Son	699	2, Si.ko	8.5	35	3,28	જ જ	158-4 4	8328	3222

TABLE G-IL

SIKORSKY S-64 "SKYCRANE" (CH-54B)

LOG OF GROSS WEIGHT VS. TIME

Time	Run#	Army Truck	Fue! (1bs.)	Total Gress Weight
11:33	35	13,500	6600	42,895
12:00	44	13,500	5000	41,295
12:20	51	13,500	3500	39,795
12:36	52	13,500	2600	38,895
		REFUI	g r	
		REFU	5M	~ ~ 11 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2:30	66	13,500	4900	41,195
2:50	71	13,500	3400	30,695
		REMOVED ARI	MY TRUCK	
		KENOVED AKI	III TROCK TEST	
3:06	75	-	2800	25,595
3:20	80	-	2100	24,895
4:05	88	-	-1400	24,195
4:13	93	-	1060	23,795

TABLE G-III

Meteorological Data Langley Air Force Base

October 28, 1976

TIME	TEMP.	BAR. PRESS.	rel. Her.	WIND SPEED	WIND DIRFCTION	PEMARKS
(hours)	(of)	(muhs)	(%)	(mph)	(degrees)	
0800	53	778	62	5-19	0	Sky - Partly Cloudy
0815	53		66	10-19	20	
093მ	ذ5		67	36-2 3	25	
0845	53		68	14-22	20	
0900	54		69	9-19	30	
0915	54		70	1119	30	
0930	54		69	13-22	25	
0945	54		69	8-20	20	
1900	54		<u>6</u> 9	7-16	30	
1015	54		68	12-18	30	
1030	55		€7	18-23	40	
1130	54		65	14-18	10	
1145	56		64	19-16	30	
1200	56		64	8-12	32	Sky - Clear
1215	55		63	8-14	23	
1.230	56		60	8-12	20	
1.245	56		53	1.3~1.8	25	
1300	57	774	56	8-15	40	
1315	58		53	816	40	
1330	57		52	5-12	50	
1345	57		50	8~15	40	Sky - Clear
1400	57		4 0	5-12	45	<u>-</u>
1415	57		48	5-12	2.5	
1430	57		47	51.2	5 ∪	
1445	58		48	5-9	30	
1500	57	772	47	5-8	20	
1515	57		47	6- 10	25	Section 2
1530	57		47	5~15	60	
1545	58		48	8-11	30	
1600	5 8		47	8-10	50	
1615	57		45	9-11	€0	
1630	56		46	5-i	40	
1645	5 7		46	امين ا	40	
1700	57		47	1-5	25	
1715	56		48	2-7	40	

TABLE G-IV

HELICOPTER APPROACH AND FLYOVER NOISE DATA SIKORSKY S-64

OCTOBER 28 1976

MICROPHONE OFFSET 150 METERS WEST (UD RE 20 MICRO PA)

EVENT	EPWL	DBA (II)	DEDICMO	OASPL	PNL(M)	FNLT(M)	LEQ	DUE (A)	DUR (P)	TC
43	100.0	36.5	91.9	95.4	99.8	102.3	83+1	16.0	15.0	2.5
51	9ઇ•0	85 • 7	91 • 1	94.7	93.8	100.6	82.9	13.5	13.5	1.8
67	96•5	87 · B	92.0	94.8	99.2	99.5	34.8	10.5	11.5	•0
63	96.0	85.7	89-7	94.8	97.3	97.3	82.9	12.5	14.5	1 - 1
69	95.7	8 7 - 0	91•4	93.9	98•4	98.4	84.0	9.5	12.0	•0
Rij	95.3	86.8	90 • 6	93.3	98.2	98•₽	83.7	9.0	11.5	•0
81	95.9	87 • 7	91 • 4	93.2	98 • 6	93.6	83∘9	9.5	13.0	• 0

MICROPHONE OFFSET 150 METERS EAST

EVENT	EPKL	(M) AEG	DBD(W)	0ASPL	PNL(M)	PNLT(M)	LEG	DUR (A)	DUR CEO	1 C
43	77.C	83.6	87.7	92.2	95.3	97.5	78 - 7	26-5	27.0	2.4
51	90.0	€2.7	86.9	91.7	94.5	94-1	77.9	31 - 0	33.5	1 - 1
67	96+2	86 • 7	90.6	94.6	98.0	98.0	83.2	12.5	14.0	٠0
68	95.5	84.5	88.9	95 • 4	96.3	97.5	82 • 3	12.5	13.0	1 • 4
و ب	95.8	86.6	90.2	94.3	97.9	95 - 4	83-3	11.5	13.0	• 5
80	94.0	83.9	88.0	95 / 5	ۥ6	25.6	81.0	11.0	14.0	• 0
81	93.2	82•8	37.E	94.1	94.6	94.6	70 • 7	18.0	15.0	• 0

TABLE G-IV

HELICOPTER APPROACH AND FLYOVER NOISE DATA

SIKORSKY S-64

OCTOBER 28 1976

CENTERLINE MICROPHONE - HARD SITE (DB RE 20 MICRO PA)

EVENT	EPNL	DBA (M)	DBD(M)	OASPL	PNL(M)	PNLT(M)	TEG	DUR(A)	DUR (P)	TC
43	101.4	88•3	95•3	100 - 4	102.5	102.6	84.9	15.0	14.0	1 • 7
49	95.8	84.5	89 • 4	94.3	96.7	96.7	80.9	16.0	21.0	• 0
50	96 • 8	84.2	90.3	95 • 1	97.9	97.9	81.1	17.5	22•0	•0
51	99•4	87.0	93.5	98 • 5	101•Í	102.3	83.5	15.5	13.5	1 • 4
55	94.9	84 • 4	89.3	96.2	96•7	96.7	80.8	13.0	18.0	• 0
66	95•6	85.3	90 • 2	97.5	98 • 1	98 • 1	81.8	11+0	16.0	•0
67	96.7	86.8	91.7	98 • 4	99•2	99.2	83.2	11.0	16.5	• 0
68	96 • 1 •	86 • 7	90•8	99 • 1	98 • 4	98 • 4	82.9	11.0	15.5	• 0
69	95 • 3	86.6	91.8	97.5	98•9	98.9	83.6	8 • 5	10.0	•0
70	99.5	88.2	93.9	99.5	101.4	101.4	84.0	16.0	16.5	• 0
74	100.0	86.0	92•5	99.0	100 - 1	101.3	82.8	18•5	18.0	2.3
76	98.2	87.3	92.3	99.4	100.2	100 • 8	84.9	10.0	10.0	1 • O
77	97 • 1	੪7•3	92•3	97.5	100 • 1	100.5	84.2	10.5	11.0	• 6
78	98 • 1	88.2	93.9	100.0	101.7	102.9	85.3	9.0	7 • 5	1.2
79	98 • 1	89+3	94 • 4	99.4	102.3	163.2	85.8	8.0	8.0	1.0
80	97.7	88 • 5	94.2	100.2	102.3	103.1	84.8	8.0	8.0	• 8
81	98.0	89.6	94.7	100.6	102.7	103 • 4	85.8	8.0	7.0	• 7

CENTERLINE MICROPHONE - SOFT SITE

EVENT	EPNL	DBA (M)	DBD(M)	OASPL	PNL(M)	PNLT(M)	TEG	DUR(A)	CA) ROD	TC
K G	95.9	85.3	89.8	97.7	97.6	98•9 97•6 98•5	81 • 7	11.0	14+0	• 0

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with truck

OCTORER 28 1976

EVENT 43 9 DEGREE APPROACH MIC. 150 METERS WEST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69•7	77.6	86•6	86 • 1	87.4	16.4	7•9
2	73.1	79.6	87-3	88 - 1	89.9		6.5
3	75.6	81.6	88.3	89+5	91 • 1		6.0
4	76.7	82.4	89.2	90.3	91.8		5 • 7
5	77.5	83.2	89.9	91.0	92-3	13.5	5.7
6	77.9		90 - 1	91.4	92.6		
7	78.0	83.8	90•3	91.4		13.4	5•8
8	78•7	84.2	90•6	92 • 1	92 • 1	13.4	5•5
9	79.7	85 •1	91 - 1	92.8	92.8	13.1	5 • 4
10	79.9	85•3	91 • 3	93.1	94.2	13.2	5 • 4
11	79.4	84.8	91.2	92.7	94-1	13.3	5 • 4
12		85.2	91 • 4			13.4	5•6
13	80•8	86.3	91.7	93•9	95•2		5•5
14	81.8	87.4		95.0	95•0	13.2	5•6
15	82 • 1	87•9		95•0 95•6 96•2	95•6		5.8
16		88•8	93.0	2014	7046	13.5	6 • 1
17		89•3	93•5	96•9			6 • 1
16	84.3	90.2	93-9	97.8	100 • 1		5•9
19	84.8	90.3		98 • 1	100.8		5•5
20	85•7	90•9		98•8	101.5	13.1	5•2
21		91.6		99.5	102.1		5•3
28		91.9		99•8	102.3		
23	86.2	91.5	95 • 1	99.5	101-7		
OH->24	85∙7	91 • 1	95•3	99•2			5•4
25	85.5	90 • 8	95.2	98•8			5•3
26		91.0		99•0	100.7		5 • 4
27		91.0		98•9			
28		90•6		98•7			5•2
29	84.5	89.5	94•)	97•6		13.1	5•0
30 ⋅	83•1	88•0	93 • 4	96•0	96•0		4•9
31	81.6	86-6	92.5	94.5	94.5		5•0
38		੪5∙5		93+6	93.6	13.1	5•0
33		84.3		93 • 2			5 • 1
34	7807	83.7	89•4	91.9		13.2	5.0
35	77.1	82.4	88•2	90.3			5•3
36	74.2	80.0		88.0	89.2		5•8
37		78 • 3	86 • 1	86.3	87.9	14.4	6 • 4
38	70.4	77.5	86•7			15.0	7 • 1

TABLE G-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT 51 6 DEGREE APPROACH MIC-150 METERS WEST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DED-DBA
1	72.3	7 8•7	86.2	87 • 4	87.4	15-1	6.4
2	72.7	79.1	86.7	87.7	88•9	15.0	6 • 4
3	73 • 6	79.6	86•9	88.2	89.4	14.6	6.0
4	75.0	80•9	87.2	89.4	90.9	14-4	5•9
5	77-2	82.4	87.4	90•9	90•9	13.7	5-2
6	79•6	84.9	88•6	92.7	92.7	13.1	5•3
7	81 • 6	87.1	90 • 1	94.3	95.4	12.7	5•5
8	82.2	87.8	90•8	94.9	96.3	12.7	5.6
9	82.1	87.8	91 • 4	94.9	96•4	12.8	5 • ?
10	81 • 3	86•9	91.0	94.4	94.4	13.1	5•6
11	81 - 1	86 • 7	90•9	94.2	94.2	13.1	5•6
12	81 + 5	86•9	90•8	94.5	94.5	13.0	5 • 4
13	82.9	88 • 1	91.7	95 •7	95.7	12.8	5.2
14	84.2	89•5	92.8	97.2	98•8	13.0	5•3
15	85.3	90 • 7	93 • 6	98•3	100 • 4	13.0	5•4
16	85•7	91.1	93.9	98•8	100+6	13.1	5 • 4
17	85 •7	91.0	94.0	98.6	100-1	12.9	5•3
18	85•0	90 • 3	94.0	97•9	99•2	12.9	5•3
CH ->19	84.5	89•8	94.2	97•6	99.2	13.1	5•3
20	84.5	89.4	94.4	97•4	99.0	12.9	4.9
21	85.0	89•6	94.5	97.0	98.3	12.0	4.6
22	85.2	89.7	94.7	96.9	96•9	11.7	4.5
23	84 • 6	89.3	94.6	96.6	96•6	12.0	4.7
24	83.9	88.7	94•3	96 • 1	96•1	12.2	4.8
25	82.9	87•6	93+4	95 • 1	95.1	12.2	4.7
26	82.2	86.8	92.3	94.4	94-4	12.2	4.6
27	80 • 6	85 • 3	91.0	93 • 1	93 • 1	12.5	4.7
28	79.0	83 • 8	89.6	91.7	91.7	12.7	4.8
29	76.3	82.0	88.5	90 • 1	90.1	13.3	5.2
30	75 • 4	80.8	87.8	88.9	90 • 1	13.5	5•4
31	74.0	79•8	87.1	88.0	89.1	14.0	5•8
32	73 • 8	79 • 4	86•6	87.6	87.6	13.8	5•6
33	73.0	78•9	85•9	87.0	88.2	14.0	5.9

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with Truck

OCTOBER 28 1976

EVENT 67 95 KT, FLY BY MIC . 150 METERS WEST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69•9	78.8	88.7	86.7	86 • 7	16.8	8•9
2	73 • 1	79.6	88.9	87.6	87.6	14.5	6.5
3	75-4	81.0	89.2	88.8	88 • 8	13.4	5•6
4	76 • 6	81.9	89 • 6	89.9	89•9	13.3	5 • 3
5	79-1	83.9	90 • 4	91.6	93 - 1	12.5	4.8
6	81.3	85.8	91.5	93.7	95.0	12.4	4.5
7	83 • 0	86.9	92.0	94.9	96-1	11.9	3.9
8	84.0	87.9	92.5	95.9	97.2	11.9	3.9
9	85.2	89.0	92.7	97.1	97.1	11.9	3 • 8
10	86.2	90 • 1	92.9	97.9	97.9	11.7	3.9
11	86.5	90•3	92 • 4	97.7	97.7	11.2	3 • 8
12	86.2	89.7	91.8	97•1	97.1	10.9	3 • 5
13	86 • 4	90•2	92•2	97.2	97.2	10.8	3•8
14	87.2	91.1	93 • 1	98•3	98•3	11-1	3.9
oH →1 5	8 7 • 8	91.9	94.0	99.1	99•1	11.3	4.1
16	87•7	92.0	94•5	99.2	99•2	11.5	4.3
17	87 • 4	91.7	94•8	98•9	98•9	11.5	4.3
18	86.6	90.8	94.7	98 • 1	98 • 1	21.5	4.2
19	85.1	89.2	94.0	96.6	96•6	11.5	4.1
20	83.0	87.4	92•7	94.8	94.8	11.8	4.4
21	81.5	85•9	91 • 3	93.4	93•4	11.9	4 • 4
22	80.5	84.7	90 • 0	92.3	92•3	11.8	4.2
23	79.0	83.1	88.7	91.0	91.0	12.0	4-1
24	76.9	81.6	87 • 6	89•5	89•5	12.6	4.7
25	75 • 1	80•4	86•5	88 • 4	89•4	13.3	5 • 3
26	74.6	79.9	85-8	87.9	87-9	13.3	5•3
27	73 • 6	79.2	84.8	87.4	87.4	13.8	5•6

TABLE G.T.

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 68 95 KT. FLY BY MIC. 150 METERS WEST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	71.6	78•9	88.3	86.8	86.8	15.2	7•3
2	72.5	79• 5	88.9	87.3	87.3	14.8	7.0
3	73.1	80.0	89.6	8 7•7	88.9	14.6	6.9
4	75.0	81 • 4	90•3	88 • 8	88•8	13.8	6 • 4
5	7 8•7	83.5	91.6	91.3	93.3	12.6	4.8
6	80.2	84.9	92.3	92.4	94.3	12.2	4.7
7	81.0	85•7	92.4	93 • 2	\$4.7	12-2	4.7
8	82.5	86•9	93.2	95.0	95•0	12.5	4 • 4
9	83.9	88.0	94.1	96.3	97+3	12.4	4 - 1
10	85+0	89•1	94.8	97.2	97.2	12.2	4 • 1
11	84.9	89•0	94.5	97=0	97.0	12.1	4 - 1
12	84.5	88•8	93.4	96.3	96•3	11.8	4.3
13	84.5	88 • 4	92.2	95.8	95•8	11.3	3.9
14	85 • 1	89 • 1	91.9	96•2	96.2	11.1	4.0
15	85.7	89•7	92 • 1	96•9	96•9	11.2	4.0
oh →16	85•6	89•6	92•3	96+9	96•9	11.3	4.0
17	85.3	89•3	92•6	96•5	96•5	11.2	4.0
18	84.5	88•7	93.0	96 • 1	96 • 1	11.6	4.2
19	84.1	88•3	93.3	96•0	96•0	11.9	4.2
20	83.4	87-8	93•3	95.4	95•4	12.0	4.4
21	82.7	87.0	92•8	94.6	94.6	11.9	4.3
2 2	81.6	85•9	91.7	93.2	93.2	11.6	4.3
23	80.3	84 • 3	90 • 4	92.2	92.2	11.9	4.0
24	79.4	83 • 5	89.1	91.3	91.3	11.9	4 - 1
25	78.2	82.8	88.1	90 • 6	90•6	12.4	4-6
26	76.9	82.0	87.1	89•7	89.7	12.8	5 • 1
27	76.6	81.8	86•3	89.3	89.3	12.7	5.2
28	75.5	80.7	85•2	88 • 4	89.7	12.9	5.2
29	74-1	79.6	84.2	87.4	88.5	13.3	5.5
30	71.8	77.9	83.2	86.2	86.2	14.4	6.1
31	71.3	77.6	82.7	85 • 8	86•9	14.5	6•3

TABLE G-V

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 69 95 KT. FLY BY MIC. 150 METERS WEST

INT	DBA	DBD	OASPL.	PNL	PNLT	PNL-DBA	DBD-DBA
1	72 • 1	79•0	89•2	87-1	87.1	15•∩	6•9
5	74.6	80.5	89.9	88.5	89.5	13.9	5.9
3	76.5	81.7	90.0	89.6	91.3	13.1	5.2
4	78•3	83.1	90.2	90•9		12.6	4.8
5	79.9	84 • 1	90•0	92 • 1	92.1	12.2	4.2
6	81.0	85.3	90 • 6	93 • 6	94.6		4.3
7	82.3	86.3	91.0	94-4		12.1	4.0
8	83 • 1	87.6	91.6	95 • 3		12.2	4.5
9	84.2	88.5	91.8	95.8			4.3
10	85 • 9	90.0	92.4				4 - 1
11	87.1	90.9	93.0	97.7			3.8
12	87•6	91 • 4	93.3			10.8	3.8
oh → 13	87 • 1	91.2	93.3	98 • 4		11.3	4 • 1
14	86 • 4	90.8	93.5	98•0		11.6	4.4
15	85 • 5	90 • 1	93.9			11.8	
16	84.5	89.2	93 • 8		96.4	11.9	4.7
17	83 • 3	87.9	93 • 3	95•3			4.6
18	88•1	86.7	92.2	94.2			4.6
19	81.2	85.7	90.9	93.3		12.1	4.5
20	80 • 1	84.6	89 • 6	92.4			4.5
21	79•0	83.3	88 • 3	91.0	91.0	12.0	
22	77.6	82.0	87.0	89.7	89.7	12.1	4 • 4
23	76.3	81.0	85.9	88.9			
24	75 • 3	80 • 4	85.2			12.9	
25	74.3	79•5	84.4	87.5		13.2	5•3

TABLE G-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT 43 9 DEGREE APPROACH MIC. 150 METERS EAST

INT	DBA	DBD	0ASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	66 - 7	75.5	83+4	84.3	84.3	17.6	8 • 8
3	68.8	76.5	83.9	85•2	85.2	16.4	7 • 7
5	70.4	77 • 1	84.4	85•9	85.9	15.5	6•7
7	73.5	7 8•7	84.7	87.4	87•4	13.9	5.2
9	74.3	79.3	85•ŝ	88•0	88.0	13.7	5 • 0
11	73 • 4	78 • 6	86.2	87.4	87.4	14.0	5 • 2
13	72.4	7 8•4	86.5	86•9		14.5	6.0
15	73.7	79.2	86.9	87•7	87•7		5 • 5
17	7 5•0	80 • 1	87.6	88•6		13.6	5 • 1
19	72.4	78 • 6	87.8	87.0	88•2		6•2
21	70.8	78 • 1	88.2	86+4	87.9	15.6	7 - 3
23	71 = 4	78 • 5	88•8	36 - 8	88 • 1	15-4	7 = 1
25	71.6	7 8•8	89•5	87.0	87.0	15.4	7 • 2
27	73.9	79• 8	89•6	87.6	87•6	13.7	5•9
29	75.9	81.2	90.2	89.2	90 • 2	13.3	5 • 3
31	77.2	82•3	91 • 1	90 • 0	91 • 1	12.8	5•1
33	79.8	84•1	92.1	91.9		12.1	4 • 3
35	82.7	86.7	98•0	94.3		11.6	4.0
37	83.2	87 • 4	91.9	94.8	97.1	11.6	4.2
39	80 • 9	85.8	90•3	93.2		12.3	4•9
OH> 41	82.7	87 • 1	90 • 0	94.7		12.0	4 • 4
43	82.9	87.4	90.8	95 • 3	95•3	12.4	4.5
45	82.9	87.4	90•9	95.0	96.0	12.1	4 • 5
47	81 • 7	86 • 5	90 • 8	94.4	94.4	12.7	4 • 8
49	80·3	86.0	90 • 8	93 • 8	95•3	13.5	5•7
51 53	79.9	85 • 6	90.3	94.0	94.0	14-1	5 • 7
53 5 5	78•0	83.7	89.1	92.1	92•1	14.1	5 • 7
55 57	73 • B	80.3	87•4	89 • 2	89.2	15.4	6 • 5
57 59	74•0 74•0	80.5	87•7	89 • 7	91.4	15.7	6.7
61	69•6	80 • 5	87.0	89 • 3	91.5	15.3	6+5 g.0
63	66 • 8	77 • 6	84.6	86.3	86.3	16.7	8.0
65	65.0	75•6 74•5	83.0	84.0	84.0	17.2	8 • 8
CO	00+0	14.5	81.7	83.2	83•2	18.2	9 • 5

TABLE G-II

NOISE LEVEL TIME HISTORY DATA

SIKORSKY 5-64

with truck .

OCTOBER 28 1976

EVENT 51 6 DEGREE APPROACH MIC • 150 METERS EAST

INI	DBA	นสน	OASPL	PNL	PNLT	PNL~DBA	DBD-DBA
1	64.6	75.2	82.9	84.3	84.3	19.7	10.6
3	66•6	75.6	83-1	84.6	84.6	18.0	9•G
5	70 • 7	77.0	83•8	85.5	85•5	14.8	6•3
7	73.0	78.9	85+5	87.5	88•8	14.5	5•9
9	72.2	79.4	87.4	87.6	87.6	15.4	7.2
11	71.0	79.2	87.7	88.0	88.0	17.0	8 • 2
13	71.2	79.2	87.1	88 • C	33.∙O	16.8	8•€
15	70 • 8	78•5	87.0	87.3	83∙6	16.5	7.7
17	71.3	79.2	88.7	89.0	90.3	17.7	7•9
19	71.4	78•7	87.7	87 .7	87 .7	16.3	7.3
21	73 • 1	7८∙৪	87.2	87.4	87.4	14.3	5.7
23	73•9	79•5	38•3	87.8		13.9	5•6
25	74.5	80.0	89•2	88.2	88•2	13.7	5 • 5
27	74.7	80 • 4	89.9	89•1	90 • 6	14.4	5•7
29	74.6	80 • O	89+4	89.0	91.0	14.4	5•4
31	75•7	81.1	90 • 4	89•4	89•4	13.7	5 • 4
33	78 • 1	82.7	91 • 3	90.7	91 • 8	12.6	4.6
35	80 - S	84.3	91.5	92 • 1	93.6	11.6	8 = E
37	80.9	85.2	91.5	92.7	92.7	11.8	4.3
39	81.6	85•9	91 • 6	93.3	94.4	11.7	4.3
41	82.0	86•3	91 - 0	94.0	94.0	12.0	4.3
O H → 43	82 •7	86•9		94.4		11.7	
45	82•7	ধ6∙৪		94.5	94.5	11.8	4 • 1
47	೮1 • ೮	86•2	9 0 · 7	94•2	94.2	12.4	4 • 4
49	80•6	85.4	90 • 1	93.5	93.5	12.9	4.8
51	79•7	85.0	90•0	93,6	94.7	13.9	5•3
53	४ 0•೧	85•3	89•3	93•3	93•3	13.3	5•3
55	77.0	82 • 5		90.9	92.0	13.9	5•5
57	75.2	81.3		89.9	89.9	14.7	6 • 1
59	73 • 6	80•3	86•8	88•8	90 • 5	15.2	6 • 7
61	72.2	79.5	85•9	83.4	89.6	16.2	7 • 3
63	7 0 •8	79-1	85•9	87.7		16.9	8 • 3
65	74.9	81 • 8	87 • 8	90.2	91.3	15.3	6.9
67	75•9	82 • 4	37•5	90•6		14.7	6 • 5
69	69•1	77.2	83 •1	85+5	85•5	16.4	8 • 1
71	64 • 6	74.7		83•4	83•4	18.8	10.1
73	63 • 1	73.7		82.8	82.8	19.7	10.6
7 5	60•7	72.6	77•7	•0	•0	-60.6	11.9

TABLE G-V

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 67 95 KT. FLY BY MIC. 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69•8	7 7•5	88•2	85•4	86•5	15.6	7 • 7
2	70.9	78.2	88•7	85•9	85 • 9	15.0	7 • 3
3	73 • 6	79•6	89.0	87•4	87•4	13.8	6•0
4	76.6	81.0	89•4	89•3	89•3	12.7	4 • 4
5	79•7	83.0	89•9	91.2	92.4	11.5	3 • 3
6	80•9	84•2	90.6	92.4	93•9	11.5	3 • 3
7	80.7	84.5	91.2	92.6	94 • 1	11+9	3•8
8	80•2	84.5	91.8	92•8	94.2	12.6	4.3
9	81.5	85•9	92.5	94•0	94.0	12.5	4 • 4
10	82.6	86•8	93.0	94.7	94.7	12.1	4.2
1 1	83.9	88.0	93 • 6	95 •7	95 •7	11.8	4 • 1
12	84•4	88 - 5	93•9	96•2	96.2	11.8	4 • 1
13	85•0	89•1	94.0	96 • 3	97•5	11.3	4-1
14	ช5 - 1	89•4	94.0	96.5	97•5	11.4	4.3
15	85•8	90.0	94.1	97.0	97.5	11.2	4.2
16	86.5	90.6	94.5	97•7	97•7	11.2	4 • 1
$OH \longrightarrow 17$	86 - 7	90.5	94•6	98•0	98•0	11.3	3 • B
1 8	86•4	90•4	94.6	97•9	97.9	11.5	4.0
19	85•8	89•9	93.9	97.4	97.4	11.6	4 • 1
20	84.7	89.1	92•3	96•6	96.6	11.9	4 • 4
21	83.4	8 7 • 7	91 • 1	95 • 2	95•2	11.8	4.3
53	81.7	86 • 1	89.3	93•5	93.5	11.8	4.4
23	೮0 ∙ 6	84.7	87.7	92 • 4	92.4	11.8	4 • 1
24	79.2	83.4	86 • 4	90.9	90.9	11.7	4.2
25	78 . 8	82 .7	85∙ 2	90 • 4	90 • 4	11.6	5 • 9
26	78.3	82.2	84.4	90 - 1	91.2	11.5	3.9
27	77.5	81.4	83.7	89.8	89.8	12.3	3.9
នន	76.7	37.8	83 • 4	89.3	90 • 4	12.6	4 • 1
29	75.3	79.6	82.8	88 • 3	89.7	13.0	4.3
30	73.7	78.5	82.0	87.2	87.2	13.5	4.8
31	72 • 1	77 • 1	80 • 9	85 • 6	85 • 6	13.5	5.0

TABLE G-V

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT 68 95 KT • FLY BY MIC • 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	66 • 8	77•4	66.6	84.8	84.3	18.0	10-6
2	68 • 8	78 • 1	89.1	85∙8	85.8	17.0	9•3
3	72.0	79.3	89•7	8 7• 5	8 7• 5	15.5	7 • 3
4	74.9	80•5	90 • 5	89•0	89•0	14 • 1	5•6
5	78.9	83•5	91.8	91.7	92.8	12.8	4.6
6	82.1	86•2	93.0	94.2	94.2	12.1	4 • 1
7	83.0	87.3	93.8	95.2	95.2	12.2	4.3
8	82.8	87.4	94.2	95 • 4	95 • 4	12.6	4.6
9	82.7	88•0	94.7	95•7	95.7	13.0	5•3
10	83.2	88.5	95.2	96.0	96•0	12.8	5•3
11	83.7	88.8	95.4	96 • 1	97.5	12.4	5 • 1
12	83.3	88.0	95.2	95.5	96 • 8	12.2	4.7
13	82.8	87.4	95•1	94 • 4	94.4	11.6	4.6
14	83.2	87.7	95 • 1	94.6	94.6	11.4	4.5
15	84 • 1	87.9	95•0	95.5	95•5	11.4	3.8
16	84.4	88•2	94.8	95.7	95 •7	11.3	3 • 8
oH > 17	84.2	88•4	94 • 4	95.5	95.5	11.3	4.2
18	84.4	88.8	94.0	96.0	96.0	11.6	4 • 4
19	84.6	88.9	93 • 3	96.3	96.3	11.7	4 • 3
20	84.1	88.3	92.3	95.7	95 •7	11.6	4.2
21	82•9	87.1	90•8	94 • 4	94.4	11.5	4.2
22	81.8	85 •7	89•1	93.0	93.0	11.2	3.9
23	80.9	84.7	ಕ 7 • 7	92.4	92.4	11.5	3.8
24	79•7	83.7	86.4	91 • 4	91.4	11.7	4.0
25	7 8•7	82.9	85.3	90.8	90.8	12.1	4.2
26	77 • 4	81.8	84.1	89.4	89.4	12.0	4 • 4
27	76.0	80.6	83.2	88.6	88.6	12.6	4.6
28	73.7	78.6	81.6	86.9	87.9	13.2	4.9
29	72. 3	77.7	80•9	86.2	86.2	13.9	5 • 4
30	72.1	77.3	80 • 5	85.8	87.2	13.7	5.2
31	72.1	77.3	80.8	85.7	87.1	13.6	5.8

TABLE G-V

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 69 95 KT. FLY BY MIC. 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	68•4	77.0	87.2	84.9	84.9	16.5	8•6
8	70.7	78.0	87.7	36.0	86.0	15.3	7.3
3	74.5	79.9	88•3	87.9	89.2	13.4	7•3 5•4
4	78.2	82.7	89.2	90 • 9	92.4	12.7	4.5
5	80 .7	84.6	90.3	92.6	93.9	11.9	3.9
6	೮1 • ೮	85.5	90.8	93.5	93.5	11.7	3•7
7	81.8	{ • 41	91.2	93.5	93.5	11.7	3•6
8	81.5	85•3	91.5	93.6	93 • 6	12.1	3•8
9	81.5	85.5	92.4	93.6	93.6	18 • 1	4.0
10	82.4Û	86 • 1	92.9	93.8	93.8	11.8	4.1
1 1	82.5	86•8	93 • 4	94.0	95.2	11.5	4.3
12	83.5	87.7	93.5	94.5	95.5	11.0	4.2
13	84.7	88 • 6	93.8	95.3	95.3	10.6	3.9
14	86.2	82.6	94.0	96.9	97.5	10.7	3 • 4
15	86.6	90 • 1	94.2	97.9	98.4	11.3	3 • 5
OH →16	86•6	90•2	94.3	97.9	97.9	11.3	3.6
17	86.0	90•0	94.3	97.5	97.5	11.5	4•0
18	85 •7	89•5	94.0	96.8	96 • B	11.1	3 • 8
19	84.7	88•8	93 • 4	96.2	96.2	11.5	4 • 1
20	83.6	87.8	92.0	95•3	95 • 3	11.7	4.2
21	82.5	86.7	90.5	94.1	94.1	11.6	4.2
22	81 •੪	85•9	38•8	93.2	93.2	11.4	4.1
23	81.0	85•0	87.5	92.6	92.6	11.6	4.0
24	79•5	ઇ3 • 9	86 • 4	91.6	91.6	12.1	4.4
25	77•6	82.2	85.2	90 • 1	90 • 1	12.5	4.6
26	76•3	81.0	84.2	89.0	89.0	12.7	4.7
27	75 • 7	80 • 4	83.7	88•4	89.6	12.7	4.7
28	75.0	79.7	82.9	87.7	87.7	12.7	4.7
29	73.5	78 • 5	88•3	86.7	86.7	13.2	5.0

TABLE G-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 43 9 DEGREE APPROACH MIC. CENTERLINE (HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	75•2	81.9	91•2	89.2	89•2	14.0	6.7
ż	76.3	82.6	91.9	90•0	90•0	13.7	6•3
3	77.1	83.2	92.6	90.7	90•7	13.6	6 • 1
4	78.2	84-1	92.8	91.7	91 • 7	13.5	5•9
5	78.7	84.7	92.7	92.3	93•4	13.6	6.0
6	80 • 2	86 • 1	92.8	93.6	95•3	13.4	5.9
7	82 • 4	87.•9	93•3	95.6	97.5	13.2	5.5
8	83.6	89.4	94.9	96•8	98•8	13.2	5.8
9	83.8	89.8	95•3	97.2	98•6	13 • 4	6.0
10	82.9	89.4	95•2	96.7	98•0	13.8	6.5
11	82.5	89•3	95-1	96.5	97.8	14.0	6.8
12	83.2	89.8	95•3	97•0	98•7	13.8	6.6
13	84.4	90•9	95•8	98•3	99•9	13.9	6.5
14	85 • 6	92.2	96•7	99•7	101.5	14.1	6.6
15	86 • 4	93.3	97.5	100.7	102.4	14.3	6.9
16	86•6	93 • 4	97.8	100.9	102.6	14.3	6+8
17	86.6	93 • 4	98-1	100.8	102.2	14.2	6 • 8
OH -→18	86.8	93•3	98•4	100.7	100.7	13.9	6.5
19	87.2	94 • C	99 • 1	101-4	101-4	14.2	6-8
20	୪8∙2	95.0	100.0	102.4	102.4	14.2	6.8
21	88•3	95•3	100.3	102.5	102.5	14.2	7.0
22	0.88	95•1	100 • 4	102.4	102.4	14.4	7 • 1
23	86.6	93.7	99•6	101.3	101.3	14.7	7 - 1
24	85.0	92•2	98.7	99•6	99.6	14.6	7.2
25	84 • 4	90•9	97.8	98•3	98 • 3	13.9	6 • 5
26	85.1	91 • 6	97•9	99•0	99.0	13.9	6 • 5
27	86.0	92•5	97•9	100.0	100.0	14-0	6.5
28	85•5	92.1	97.2	99•8	99.8	14+3	6.6
29	84-1	90 • 4	96.1	98•3	99.6	14.2	6 • 3
30	81.7	87.7	94.5	95•7	97.0	14-0	6•0
31	80•0	85•2	93•3	93•1	94.1	13-1	5.2
32	78.9	83•9	92.1	91.7	91 • 7	12-8	5•0
33	77.7	0.68	91.3	90.9	90.9	13.2	5•3
34	76 • 1	81.8	90.0	90.0	90.0	13.9	5•7
35	74.3	80•6	88•8	89.0	89.0	14.7	6.3
36	73.2	79•7	87.6	88•2	88•2	15.0	6.5

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with truck

OCTOPER 28 1976

EVENT 49 60 KT.FLY BY MIC. CENTERLINE(HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69.7	77.5	85•4	85•2	85 • 2	15.5	7.8
2	71.3	78 • 4	86•0	86•3	87.4	15.0	7 • 1
3	72.7	79.6	86.9	87.4	89.0	14.7	6.9
4	, 74.5	81.0	88.0	88•7	89.9	14.2	6 • 5
5	75 • 5	81.5	88•3	89.5	89.5	14.0	6.0
6	76.0	82 • 1	88.9	90•3	90 • 3	14.3	6 • 1
?	76 - 6	82 = 3	89-2	90-7	91.7	14-1	5•7
8	77.1	83.0	90•2	91.3	91.3	14.2	5•9
9	78.0	83.6	90•9	91.9	91.9	13.9	5.6
10	78.6	84.2	91.8	92 • 3	92•3	13.7	5 • 6
11	79.8	85•4	92.2	92.9	92•9	13-1	5•6
12	80.9	86.3	92.6	94.0	94•0	13-1	5 • 4
13	82.0	87.4	93•3	95 • 4	95•4	13-4	5 • 4
14	83 • 2	88.0	93.9	96•0	96•0	12.8	4.8
OH → 15	84 • 1	89.1	94•3	96•6	96•6	12.5	5.0
16	84.5	89.4	93.9	96•7	96•7	12.2	4.9
17	84.3	89.3	93 • 4	96•6	96•6	12.3	5•0
18	84.1	88•7	93•0	96+4	96 • 4	12.3	4.6
19	83•6	88•2	93 • 4	95•8	95•8	12.2	4•6
20	83.7	88•2	93.8	95+2	95•2	11.5	4•5
ខរ	82.9	87•7	93.9	94.5	94.5	11.6	4.8
52	82 • 3	87.2	93•8	93 - 9	93.9	11.6	4•9
23	81.2	85•7	93•2	92•7	92.7	11.5	4.5
24	80 • 7	84.9	92•4	92.3	93.5	11.6	4-2
25	80•6	84.7	91.7	92 • 3	92•3	11.7	4 • 1
26	80•3	84.8	91.3	92.3	92•3	12.0	4.5
27	80•3	84.6	90•7	91.9	91.9	11.6	4.3
28	80 • 1	84.3	90•3	91 • 6	91 • 6	11.5	4.2
29	80.2	83.9	89.8	91.5	92•6	11.3	3•7
30	79.7	83.7	89•3	91.3	92•6	11.6	4.0
31	78•7	82.8	88 • 1	90•5	91 • 8	11.8	4 • 1
32	77.3	82•1	87•6	89•4	90•6	12.1	4.8
33	76.5	81.1	86.9	88 • 5	89•9	12.0	4.6
34	75.8	80.7	86•6	88•2	89.4	12.4	4.9
35	75 • 1	79•7	85 • 3	87•6	89•0	12.5	4 • 6
36	73 • 4	78•6	84.6	86 • 4	88•2	13.0	5•2
37	71.3	77•3	82•9	84.7	86•0	13.4	6•0
38	69. 0	76.7	82•1	83.8	83 • 8	14.8	7•7

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT SO 60 KT. FLY BY MIC.CENTERLINE(HARD)

1 NT	DBA	DBD	OASPL	PNL	PNLT	PNL-DHA	DBD-DBA
1	72.2	79•3	88•3	87.0	88•5	14.8	7 • 1
2	72.3	79.5	88.5	87.1	88 • 4	14.8	7.2
3	72.9	80.2	88.6	87.9	88•9	15.0	7•3
4	75.2	81.3	89.1	88.7	89.8	13.5	6 • 1
5	77.0	82 • 1	89•7	89.8	91.5	12.8	5 • 1
6	77.9	83.3	90•3	90.7	92.4	12.8	5 • 4
7	78•9	84.4	91 • 1	92.1	93•6	13.2	5•5
8	79.9	. 35•8	92.1	93.8	93.8	13.9	5•9
9	82+2	88+3	93+5	96.0	96•0	13.8	6 • 1
10	83•6	89•8	94•7	97.4	97.4	13.8	6•2
11	84.0	90•0	94.8	97.6	97.6	13.6	6.0
12	84.2	90•3	95 • 1	97.9	97•9	13.7	6 • 1
13	84.0	89•8	94.6	97.8	97.8	13.8	5•8
14	83•7	89•3	94 • 1	97.5	97•5	13.8	5•6
15	82•8	8 7 - 8	93•0	96 • 1	96 • 1	13.3	5.0
15	82.8	87•5	92 • 5	95 • 1	95•1	12.3	4.7
17	83.8	88 • 1	93 • 1	95.7	95•7	11.9	4.3
$0H \longrightarrow 18$	84.2	88 • 1	93 • 1	95.8	95•8	11.6	3•9
19	84.2	88•2	92.9	95•9	95•9	11.7	4.0
20	83•5	87 • 6	92.2	95•5	95•5	12.0	4 • 1
21	8.58	87•3	92 • 1	94.5	94.5	$11 \cdot 7$	4.5
22	82 • 2	86•9	92•6	94•0	94.0	11.8	4.7
23	81.6	86•3	93.0	93•4	93•4	11.8	4.7
24	80•9	85.5	92.7	92.5	92•5	11.6	4.6
25	79•6	84•2	92 • 3	91 • 4	91.4	11.8	4.6
26	78.5	83.5	91.5	90 • 4	90•4	11.9	5•0
27	78•3	83•5	90•9	90•3	90.3	12.0	5•2
28	7 8•3	83•4	90 • 4	90 • 3	90•3	12.0	5•1
29	78,4	83 • 1	· 9 0 • 0	90 • 1	90 • 1	11.7	4.7
30	78.3	82.5	89•6	80.5	91+3	11.9	4.2
31	7 8•0	82•2	88 • 8	90 • 1	91.5	12.1	4.2
32	7 7•5	82.1	88 • 2	89•9	91 • 4	12.4	4.6
33	77 • 4	81.9	87•6	89•7	91.0	12.3	4.5
34	77 • 4	81.7	87 • 1	89•5	90•7	12.1	4.3
35	77 • 3	81 • 4	35•7	89•3	90•5	12.0	4 • 1
36	76 • 4	80•9	४6∙0	88•5	89•6	12.1	4.5
3 7	75•3	80.5	85.4	87•6	87.6	12.3	4.9
38	74.0	79•2	84.6	86•6	87.7	12.6	5.2
39	73.3	78.5	84.2	86 • 4	88.1	13.1	5 • 2
40	72.8	78 • 1	83 • 4	85•9	87•9	13.1	5•3
41	71.5	77•5	82•7	85•0	86.8	13.5	6.0

TABLE G-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT 51 6 DEGREE APPROACH MIC . CENTERLINE (HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	73.0	81.0	89.7	88 • 2	89•6	15.2	8•0
2	73.9	81.3	90.0	88.7	90 • 1	14.8	7 - 4
3	75.3	82.2	90 • 4	89.8	91.3	14.5	6•9
4	76.7	83.2	90.7	90 • 6	90•6	13.9	6.5
5	78.5	84.5	91.3	91.7	91.7	13.2	6•0
6	79.7	85.7	92.2	92 = 7	92.7	13-0	6-0
7	80.7	86•6	93.0	93 • 5	94• <i>6</i>	12.8	5•9
8	81 - 1	87.1	93.6	94.0	95•3	12.9	6•0
9	81.2	87.1	94.0	94.0	95•4	12.8	5•9
10	80.8	87.0	94.3	93•9	93•9	13.1	6.2
11	81.3	87 • 6	94.8	94.7	94-7		6•3
12	83 • 1	89•4	95•7	96•6	96•6	13.5	6•3
13	84.6	91.0	96•6	98 • 1	98 • 1		6•4
14	85 .7	92.3	97.6	99 • 1	99.1		6•6
15	86.2	92.9	98•0	99•9	99.9		6•7
: 6	56. 8	93.5	98•4	100 • 9			6•7
17	86.9	93•5	98•3		101 • 1		6•6
18	87.0	93•4	98-4		101-1		6•4
OH ->19	86.8	93•0	98•2		100•6	13.8	6.2
20	86•5	92•8	98 • 1	100 • 1	100 • 1		6•3
21	86.0	92.3	97.9	99•8	99•8	13.8	6 • 3
22	85.5	91•8	98•0	99.3	99•3	13.8	6•3
23	84.7	90•9	98•3	98•6	98•6		
24	83.9	90•0	98•5	97•9			6 • 1
25	82.7	88•8	98•1	96•7			6 • 1
26	82.0	87•9	97.2	95•7	95 · 7		5•9
27	81.3	87.3	95•9	95 • 1	96 - 1		6•0
28	81.4	87 • 8	95•1	95•4			6 • 4
29	81.4	87 • 8	94•4	95•6		14.2	6•4
30	81.3	87 • 4	93•6	95•4			
31	80.0	86.0	92.3	94.2			
38	79.0	84•8	91.4	92•7		13.7	5 • 8
33	78.0	83 • 8	90•5	91 • 4	91 • 4	13.4	5.8
34	77 - 1	83.0	90 • 1	90 • 7		13.6	5•9
35	75.2	81 • 6	89.1	89•6		14.4	6 • 4
36	73.0	80 • 4	88 • 3	88.7		15.7	7 • 4
37	72.3	79•5	87.1	88 + 2	89•3	15.9	7.2

TABLE G-Y

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 55 85 KT. FLY BY MIC.CENTERLINE(HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	70•6	7 8 • 8	91.0	86.5	87.7	15.9	8.2
s	71 • 6	79.5	91.4	87.1	87.1	15.5	7.9
3	73.1	80.5	91.9	87.9	87.9	14.8	7 • 4
4	74.3	81 • 1	92.1	88 • 8	90•3	14.5	6•8
5	74.8	81.5	92•1	89.2	90•6	14-4	6•7
6	76 • 1	82•6	92.1	90.2	90.2	14-1	6•5
7	76.7	83•2	92.4	90 • 7	90 • 7	14.0	6•5
8	77.5	83•9	93•3	91.4	91.4	13.9	6 • 4
9	7 8•5	84 • 6	94.2	91.9	91.9	13.4	6 • 1
10	80.0	85•7	95•3	93•3	93.3	13.3	5 • 7
11	80 • B	86.4	95.9	93•7	93.7	12.9	5•6
12	81.8	87.2	96•2	94.7	94•7	12.9	5 • 4
13	82.4	87.9	95•7	95•4	95•4	13.0	5•5
14	83.4	88•7	95•0	96•5	96+5	13 • 1	5•3
15	83.8	89.2	94.0	96•7	.96 • 7	12.9	5 • 4
OH ->16	84.4	89.3	92.8	96•5	96•5	12.1	4•9
17	84.2	88 • 9	91.9	96 • 1	96•1	11.9	4.7
18	84.0	88•4	91.8	95•7	95 •7	11 • 7	4 • 1
19	83.3	87.5	92•3	94.7	94.7	11 • 4	4.2
20	82.6	86.9	93•0	93•9	93.9	11.3	4.3
21	82.0	86.3	93•8	93•5	93•5	11.5	4.3
22	81.2	85•8	93•7	92.9	92•9	11 • 7	4 • G
23	80.5	84.8	92 •7	92 • 1	92.1	11.6	4.3
24	79•0	83•2	91.1	91.0	91.0	12.0	4.2
25	77 + 8	82.2	90•2	90•0	90•0	12.2	4 • 4
26	76 • 1	81 • 1	89•4	88 - 7	88•7	12.6	5 • 0
27	75.5	80.8	88•3	88 • 4	88•4	12-9	5 • 3
28	74.5	80.0	87.0	87.6	87.6	13-1	5 • 5
29	74.4	79.9	86.2	87 • 4	87.4	13.0	5 • 5
30	73.8	79•2	85•2	86.9	88 • 2	13.1	5 • 4
31	73.3	78.8	84+3	86•4	87.7	13-1	5 • 5
32	72.0	77•9	83•3	85•2	85•2	13.2	5•9

TABLE G-I

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 66 85 KT . FLY BY MIC . CENTERLINE (HARD)

101r	DBA	บยบ	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	74.1	80•9	91.0	89•5	90•8	15.4	6.8
2	73•7	81.0	91•9	89•4	90•4	15.7	7 • 3
3	74.2	81.5	92-6	89.4	89•4	15.2	7 • 3
4	76 - 1	82.5	93•2	90•3	90.3	14.2	6 • 4
5	77•7	83.5	94.3	91 • 4	91-4	13.7	5•8
6	78•7	84∙5	95•5	92•6	92.6	13.9	5•8
7	80 • 1	85-6	96•7	93.5	93•5	13.4	5•5
8	81 • 1	8 6• 8	97.2	94.5	94.5	13.4	5 . 7
9	82.48	88.2	97.5	26.4	96.4	13.6	5 • 4
10	83.7	89•1	97.3	97 • 4	97•4	13.7	5•4
OH 11	84.7	90•0	96.9	98 • 1	98•1	13.4	5 • 3
12	85•3	90.2	95.7	97.8	97.8	12.5	4.9
13	85•3	४9 •9	94.5	97•8	97.8	12.5	4.6
14	84.8	89.3	92.9	97.1	97 • 1	12.3	4.5
15	83.6	88.1	92.7	95•9	95•9	12.3	4 • 5
16	82.8	87.4	92.9	94.4	94 • 4	11.6	4.6
17	82.1	86.6	93.0	93.7	93.7	11.6	4.5
18	81.7	86.0	92.5	93•2	94.5	11.5	4.3
19	80.9	85•0	91.2	92.3	93•8	11 + 4	4 • 1
80	80.0	84.0	89•8	91.5	93.0	11.5	4.0
21	79•4	83.5	88•7	90•9	90•9	11.5	4 • 1
22	7 8∙8	82.6	8 7.7	90 • 2	90.2	11.4	3•8
23	77.5	81.7	87.0	89•4	89•4	11.9	4•8
24	76.0	80•6	86.5	88.5	89 • 8	12.5	4.6
25	75.0	80 • 4	86 • 4	88.1	89.5	13 • 1	5.4
26	75.3	80 • 6	86 • 1	88.2	89•9	12.9	5 • 3
27	75.0	80.3	85.7	88•1	89•6	13.1	5•3
28	74.7	79•9	85 • 1	87.9	89•7	13.2	5.2

TABLE G-V

SIKORSKY S-64
With truck

OCTORER 28 1976

EVENT 67 95 KT. FLY BY MIC. CENTERLINE (HARD)

101	DBA	บยบ	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	70•9	79.5	92.0	86 • 4	86•4	15.5	8•6
2	72.8	80•6	93.0	87.3	87.3	14.5	7. 8
3	75.0	82.0	93.7	88•9	90•3	13.9	7.0
4	76.9	8 3 • 0	94.7	90 • 4	90 • 4	13.5	6 • 1
5	78.4	84 • 4	95 •7	92.0	92.0	13.6	6•0
6	79.3	85•6	96.9	93•2	93.2	13.9	6.3
7	81.6	8 7 • 5	97.9	94.8	95.5	13.2	5•9
8	83.3	89 • 1	98 • 4	96•9	97.7	13.6	5.8
9	85.0	90∙5	98.3	93 • 5	99.0	13.5	5•5
10	85•9	91•3	97.7	99•1	99.1	13.2	5 • 4
OH 11	86.5	91.7	96.6	99•2	99•2	12.7	5•2
12	86•6	91.6	95•5	98•8	98•8	12.2	5.0
13	86•8	91+3	94.4	98•6	93•6	11.8	4.5
14	86.4	90•7	94.0	97•8	97•8	11 • 4	4.3
15	85•5	89•7	93.2	96 • 4	96.4	10.9	4.2
16	84.0	88•0	92.1	94∙8	94•3	10.8	4.0
17	82 • 4	86•3	90 • 6	93 • 4	93.4	11+0	3•9
1 8	81.3	85 • 1	89.6	92•6	92•6	11.3	3 • 8
19	80.7	84.9	89.2	92 • 1	92•1	11-4	4.2
20	80.8	84•9	88•6	92•0	92.0	11.2	4 • 1
21	80 • 4	84.8	88•1	91•9	92•9	11.5	4 • 4
22	79.3	83.8	87-4	91 • 1	91 • 1	11.8	4 • 5
23	77.9	82•8	87.2	90•4	90 • 4	12.5	4.9
24	77.2	81.9	86.7	90•0	91.2	12.8	4.7
25	76. 8	81.3	86.0	89•7	90•9	12.9	4 • 5
26	75•9	80 .7	85•5	89.0	90.2	13.1	4.8
27	74.7	80.1	84.9	88.3	89•4	13 • 6	5 • 4
28	73 • 4	79•€	84•5	87.7	89.2	14.3	6.2

TABLE G-I

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 68 95 KT. FLY BY MIC. CENTERLINE (HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DED-DBA
1	72.4	81.6	94.0	38•8	90•2	16.4	0.0
2	74.0	82.5	95.1	89.7	89.7	15.7	9•2
3	74 • 4	82.8	95.8	90.1	90 • 1	15.7	8 • 5
4	75 • 6	83.9	96.7	91.4	91.4	15.8	8 • 4 8 • 3
5	78 • 1	85.5	97.6	92.9	92.9	14.8	8•3 7•4
6	80.0	86.8	93.5	94.0	95.4	14.0	7 • 4 6 • 8
7	81.5	88.0	99.1	94.8	94.8	13.3	6.5
8	0.58	88.0	99.1	95.0	95.0	13.0	6.0
9	82.2	88•3	98•8	95.7	95.7	13.5	6 • 1
10	83.1	88.8	98 • 4	96.8	96.8	13.7	5•7
11	84.2	89.8	97•8	97.8	97.8	13.6	5•6
18	85•8	90.6	96•6	98.4	98 • 4	12.6	4.8
$OH \longrightarrow 13$	86.5	90.8	94 • 6	97.9	97.9	11.4	4.3
14	86.7	90•8	93.3	97.9	97.9	11.2	4 • 1
15	86.2	90.2	92 • 8	97.3	97.3	11-1	4.0
16	85.5	89•8	93•3	96.9	96.9	11-4	4 • 3
17	84.2	88•7	93•5	95.7	95.7	11.5	4.5
18	83.2	87•7	93 • 1	94.6	94.6	11.4	4.5
19	81.9	86.2	92.0	93.5	93.5	11.6	4.3
20	80 • 8	85.0	90.5	92.6	92.6	11.8	4.2
21	79.4	84.2	89.4	91.6	91.6	12.2	4.8
22	78 • 2	83.3	88•3	90.3	90.3	12.1	5 • 1
23	77.5	82.4	87.6	89.6	89.6	12.1	4.9
24	77.0	81.7	86.7	89.2	90•2	12.2	4.7
25	76.5	81.5	86.1	88.9	88.9	12.4	5•0
26	76• 3	81•3	85•4	88.7	88.7	12.4	5•0
27	76.3	81.0	85•5	88.9	88.9	12.6	4-7
28	76 - 1	80.7	85•1	88•7	90•2	12.6	4.6

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 69 95 KT . FLY BY MIC . CENTERLINE (HARD)

INT	DBA	DBD	0A\$PL	PNL	PNLT	PNL-DBA	DBD-DBA
1	7 2•8	80.7	93•0	88•8	88•8	16.0	7•9
2	73.3	81.2	93•5	89.1	89 • 1	15.8	7•9
3	74.9	82 •2	94.3	90.2	90.2	15.3	7=3
4	76.9	83.9	95•3	91 • 4	91 • 4	14+5	7.0
5	79.5	85•8	96.5	93 • 1	93 • 1	13.6	6 • 3
6	82 • 1	87.9	97.2	95 •7	96•4	13.6	5•8
7	83.9	89•5	97.5	97•5	98•1	13.6	5 • 6
8	85•6	90•8	97.0	98•5	98•5	12.9	5•2
9	86•5	91.8	96•1	98•9	98•9	12.4	5•3
oH —>10	86.6	91.6	94•7	98•4	98.4	11.8	5.0
1.1	86•3	90•9	93•3	98•0	98•0	11.7	4.6
12	86.1	90•4	92.6	97.6	97.6	11.5	4 • 3
13	85•9	90•2	92.0	97.0	97.0	11 • 1	4.3
14	84.7	89.2	91 2	95•8	95•8	11-1	4.5
15	82.5	86.9	89.8	93.7	94.9	11.2	4.4
16	80.3	84.8	88 • 6	92.0	92.0	11.7	4 • 5
17	79.5	84.1	88 . 1	91.4	91.4	11.9	4 • 6
18	78.6	83.2	37.5	90.5	90•5	11.9	4 • 6
19	77 • 4	82.3	85°₿	89•7	89.7	12.3	4.9
20	76.2	81.2	8ۥ0	88•6	88•6	12.4	5.0
21	75.0	80•4	85.1	88.0	88•0	13.0	5 • 4
2 2	74.4	80.0	84.5	87.4	88 • 6	13.0	5•6
23	74.3	79•7	84.0	87.3	88•6	13.0	5 • 4

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 70 3 DEGREE APPROACH MIC . CENTERLINE (HARD)

INT	DBA	DBD	0ASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	73.2	81.0	90•0	88 • 8	89.9	15.6	7.8
2	74.5	81.6	90.3	89.3	89.3	14-8	7 • 1
3	77.0	83-1	90•9	91 • 3	91.3	14.3	6 - 1
4	79.3	84.6	91.3	92.6	92.6	13-3	5.3
5	80.0	85.2	91.6	92.9	94 • 1	12.9	5•2
6	80.3	85•6	92.1	92.9	94.4	12.6	5•3
7	79.9	85.5	92•3	93.0	94.4	13.1	5•6
ខ	80.7	86.2	92.9	93•8	93.8	13.1	5•5
9	82.0	87.5	93• 8	94.8	94.8	12.8	5•5
10	82.5	88•0	94.4	95.1	95•1	12.6	5•5
11	82.6	88•4	95•0	95.5	96•7	12.9	5•8
12	82 • 1	88•2	95•4	95•5	96 • 1	13.4	6 • 1
13	82.9	89•2	96 • 1	96•6	97•3	13.7	6+3
14	83.8	90 • 1	96•8	97 • 4	98•1	13.6	6•3
15	84•9	91 • 3	97.8	98.5	99•0	13.6	6 • 4
16	85•5	92•0	98•4	99.3	99•3	13.8	6+5
17	86.0	92•6	98•8	100.0	100.0	14.0	6•6
18	87-1	93 • 2	99•0	100 • 6	100.6	13.5	6 + 1
19	87•9	93•8	99•2	101.2	101-2	13.3	5•9
oH > 20	88•2	93+9	99.2	101-4	101-4	13.2	5•7
21	87•6	93 • 2	98•7	100.9	100•9	13.3	5•6
22	86•6	91 • 9	98•8	99•8	99•8	13.2	5•3
ຂ3	85•9	91.0	99•3	98•3	98•3	12.4	5 • 1
24	85.2	90 • 3	99•5	97.5	97•5	12.3	5•1
25	84.6	89•9	98•3	96•9	98•0	12.3	5 • 3
26	83.7	89•2	97•6	96•1	97•5	12.4	5.5
27	83•1	88 • 2	96.2	95•2	96∙8	12.1	5 • 1
28	82.5	87.5	95•4	94•7	96 • 1	12.2	5•0
29	82 • 1	86 • 5	94•1	94•0	95 • 1	11.9	4.4
30	81.7	86.2	93 • 1	93•6	94•8	11.9	4.5
31	81.4	85.7	91 • ^{ç.}	93.2	94.6	11.8	4 • 3
32	80 • 9	85 • 1	91 • 0	92.8	94.5	11.9	4.2
33	80 • 4	84 • 6	90 • 6	92.5	94 • 1	12.1	4.2
34	79.5	83.7	90 • 1	91.6	92.8	12.1	4.2
35	78 • 4	82.9	89.5	90.5	90 • 5	12.1	4.5
36	76 • 8	81.9	88 • 1	89+2	89 • 2	12.4	5 • 1
37	75 • 1	81.0	87 • 4	88 • 1	89.2	13.0	5 • 9
38	73 • 6	80.0	86.3	87.3	88•5	13.7	6 • 4

TABLE G-V

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 67 95 KT. FLY BY MIC. CENTERLINE(SOFT)

1 NT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69•2	77.8	90•6	86-1	86•1	16.9	8•6
2	70.3	78.5	91 • 1	86.5	86.5	16.2	8 • 2
3	74.1	80 • 1	92.2	88•2	89 • 6	14 - 1	6•0
4	7 6 • 2	81.7	93.4	89 .7	91.2	13.5	5.5
5	77•5	83.0	94.5	91.0	91.0	13.5	5 • 5
6	78. 8	84.4	95•6	92.2	92.2	13.4	5.6
7	81.0	86 • 7	96•6	94.4	94.4	13+4	5 - 7
8	83.5	89•0	57.2	96•8	96•8	13.3	5 • 5
9	85.3	90.3	97.3	98.2	98 • 2	12.9	5 • 0
$OH \longrightarrow 10$	85•8	90•8	96∙8	98.5	98•5	12.7	5.0
11	86•3	90•9	95•9	98•6	98 • 6	12.3	4.6
12	86 • 1	90•9	94.8	98•9	98•9	12.8	4.8
13	85 • 8	90.3	93 • 4	98•3	98•3	12.5	4.5
14	84.6	89•0	92 • 1	96•6	96•6	12.0	4 • 4
15	83•4	87.4	91 • 1	95•0	95•0	11.6	4.0
16	82.1	86 • 1	90•5	93.5	93•5	11-4	4.0
17	30 - 9	85.0	89•5	92.7	92.7	11.8	4 • 1
18	80.0	83.9	88•7	91.7	91.7	11.7	3.9
19	79• 8	83.6	87•9	91.3	91 • 3	11.5	3•8
20	79-4	83 • 4	87 • 3	90•9	90 • 9	11.5	4.0
51	78•3	82.5	86.7	90•0	90•0	11.7	4.2
2 2	77•5	81 - 7	86.0	89•3	90•5	11.8	4.2
83	77.0	81.4	85 • 6	89 • 4	90•8	12.4	4 • 4
24	76-4	8C • 7	85•0	89.2	90.2	12.8	4 • 3
25	74.8	79 • 4	84 • 4	88•0	89•5	13.2	4.6
26	72.8	78.2	83.6	86•9	88.5	14-1	5 • 4
27	72.3	78. 0	83.8	86.8	88 • 1	14.5	5•7

TABLE G-Y

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT 68 95 KT • FLY BY MIC • CENTERLINE(SOFT)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	69.3	78•6	91.8	86•5	86.5	17.2	9•3
2	70.9	79.7	92.9	87.6	87.6	16 • 7	8 • 8
3	72.1	80 • 5	93 • 6	88•6	88 • 6	16.5	8 • 4
4	74.4	82.0	94.7	89.9	89.9	15.5	7.6
5	77-1	83•9	95•8	91.3	92.8	14.2	6•8
6	80.3	86 • 1	97.0	93 • 4	93 • 4	13.1	5•8
7	81.2	86.8	97.6	94.0	94.0	12.8	5 • 6
8	81.9	87.7	97•7	95•2	95.2	13.3	5•8
9	81.8	87•9	97•6	95•7	95.7	13.9	6 • 1
10	82.9	88 • 8	97.7	96.7	96•7	13.8	5•9
11	84.0	89•6	97•4	97.4	97.4	13.4	5•6
12	84.9	89•8	96•5	97•6	97.6	12.7	4.9
OH> 13	85.3	89•8	94.9	97•6	97.6	12.3	4.5
14	85•3	89•4	93•3	97 • 6	97.6	12.3	4 • 1
15	84.7	88•8	92 • 1	96•7	96•7	12.0	4 • 1
16	84.1	88•0	91.7	95•5	95•5	11 • 4	3•9
17	82.7	86.6	91.6	94.1	94.1	11.4	3.9
18	81.3	85•4	91 • 4	93.1	93•1	11.8	4 • 1
19	79.5	84.0	90 • 3	91.2	91.2	11.7	4.5
20	78.0	82•7	88•9	90•3	90•3	12.3	4 • 7
21	77.2	81.8	87.9	89.8	8 • 8	12.6	4.6
55	76.5	80•8	86•9	88•8	88•8	12.3	4.3
23	76 • 4	80•7	86•3	88•6	88•6	12.2	4.3
24	75.8	80•3	85.2	88•1	88 • 1	12.3	4.5
25	75.3	79•8	84.5	87.7	87.7	12.4	4.5
26	74.7	79.3	83.8	87.5	88.8	12.8	4.6
27	74.4	79.2	83.7	87•7	8 • 8	13.3	4.8
28	73.8	78 • 6	83.1	87.2	88.7	13-4	4.8

TABLE G-I

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 69 95 KT. FLY BY MIC. CENTERLINE (SOFT)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	70 • 4	79.0	91.5	87 • 5	87.5	17.1	8•6
2	72 - 1	80.2	92.4	88.3	89•5	16.2	8-1
3	74.0	81.4	93 • 1	89.2	89.2	15.2	7 • 4
4	75.5	82.8	94.2	90 • 2	90.8	14.7	7•3
5	77.8	84.5	95 • 4	91 • 7	91.7	13.9	6.7
6	80∙8	86.8	96•3	94.3	94.3	13.5	6.0
7	83.4	88 • 8	96 • 7	96 • 6	96•6	13.2	5.4
8	84.9	90 • 1	96.5	97 • 6	97•6	12.7	5•2
9	85.5	90 - 4	95•9	97.8	97.8	12.3	4.9
OH>10	86.2	90:7	95 • 0	98.5	98•5	12.3	4.5
11	86.0	90.2	93 • 6	98•3	98•3	12.3	4.2
12	85.3	89.4	92.0	97.3	97.3	12.0	4 • 1
13	83.7	88.0	90 • 6	95 • 4	96.4	11.7	4.3
14	82.3	87.0	89.8	93.9	94.9	11.6	4.7
15	81.2	85.8	89+0	92.6	93•7	11-4	4.6
16	79.9	84.3	88.0	91.5	91.5	11.6	4.4
17	78.3	82.5	87.3	90 • 4	90 • 4	12.1	4.2
18	76.9	81.3	86 • 4	89-1	89.1	12.2	4.4
19	75 • 4	80 • 0	85 • 4	88 • 3	88 • 3	12.9	4.6
20	75.1	79.8	84.7	88 • 1	89.1	13.G	4.7
21	75.3	79.9	84.2	87.9	89 • 4	12.6	4.6

TABLE G-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64
Without truck

OCTOBER 28 1976

EVENT 80 105 KT . FLY BY MIC . 150 METERS WEST

INT	DBA	DBD	OASPL .	PNL	PNLT	PNIDBA	DBD-DBA
1	71.4	79•5	89•3	88+0	89•5	16•6	8 • 1
2	72.9	80.2	89•8	88 - 7	89.7	15.8	7.3
3	74.0	81.2	90 • 7	59•7	89.7	15.7	7.2
4	75•9	82.2	91.0	90.6	92.0	14.7	6.3
5	77• 8	83.7	91 • 4	91.9	93.2	14-1	5•9
6	80 • 1	85 • 1	91•6	93+2	93.2	13-1	5.0
7	81.7	86.5	91.6	94.1	94.1	12.4	4.8
8	83.7	87.9	91.4	94.9	94.9	11.2	4.2
9	84.7	89.2	91.3	96 • 1	96 • 1	11-4	4.5
10	85 • 4	89•7	91+5	96 • 6	96•6	11.2	4.3
11	85•8	90.0	92.1	97.3	97.3	11.5	4.2
31 (H0	86.7	90.3	92.7	98 • 1	98 • 1	11.4	3 • 6
13	86.8	90.6	93•3	98 • 2	98 • 2	11-4	3.8
14	86.5	90 • 4	93.2	97 • 7	97•7	11.2	3.9
15	85.4	89.8	93.2	96.9	96 • 9	11.5	4.4
16	84.7	88.9	92.3	96.2	96.2	11.5	4.2
17	83.6	87.9	91.3	95 • 4	95•4	11.8	4.3
18	82.1	86 • 4	89•6	93•9	93•9	11.8	4.3
19	80 • 4	84.5	88.2	92.1	92 • 1	11.7	4-1
20	78.8	82.8	87 • 1	90.3	90 • 3	11.5	4.0
21	77.0	81.2	85•7	89.0	89+0	12.0	4.2
22	74.5	79.6	84.2	87.4	88 • 6	12.9	5 • 1
23	73.3	79.0	83 • 4	87.1	87-1	13.8	5 • 7
24	72.5	78.3	82•8	86 • 4	87 • 7	13.9	5 • 8

TABLE G-IT
NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 81 105 KT - FLY BY MIC - 150 METERS WEST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	73.4	80 • 6	89.7	89•1	90•2	15.7	7•2
2	75.3	82.0	90•5	90 • 6	92•6	15.3	6.7
3	76.2	83.0	91.2	91.6	93.2	15.4	6•8
4	77•3	83.9	91.8	92.4	92 • 4	15.1	6.6
5	80.3	85 • 8	91.9	93.7	94.9	13.4	5 •5
6	81.7	86 • 8	92.0	94.3	94.3	12.6	5 • 1
7	83.0	87.8	91.5	94.9	94.9	11.9	4.8
8	82 • 6	87 • 3	91 • 1	94.5	94.5	11.9	4.7
9	84.3	88 • 4	91-4	95•5	95•5	11.2	4.1
10	84.9	89.0	91.8	96 • 3	96•3	11-4	4 - 1
11	85.6	89•8	92.2	97.0	97•0	11.4	4.2
12	86 • 6	90 • 5	92.6	97.9	97•9	11.3	3.9
oH → 13	87.7	91 • 4	93.1	98•6	98•6	10.9	3.7
14	87.5	91.2	93.2	98•5	98 • 5	11.0	3 • 7
15	86.0	89.9	92•3	97.3	97.3	11.3	3.9
16	83 .7	87•9	91 • 4	95 • 5	95•5	11.8	4.2
17	83 • 8	87 • 6	90.5	95•3	95.3	11-5	3 • 8
18	83.5	87.0	89•6	95•1	95•1	11.6	3 • 5
19	82•6	85•9	88.1	94•0	94.0	11.4	3 • 3
20	79•9	83 • 6	86.3	91.6	91.6	11.7	3.7
21	78 • 4	82 • 4	85.2	89.8	89.8	11-4	4.0
22	77 • 4	81.7	84.6	89.2	90 • 4	11.8	4.3
23	76.9	21.2	84.0	89.0	90.2	12.1	4.3
24	76.2	80.4	83.2	88 • 6	88•6	12.4	4.2
25	74.9	. 79.5	82.7	87.6	88 .7	12.7	4.6

TABLE G-I

SIKORSKY S-64 Without truck

OCTOBER 28 1976

EVENT 80 105 KT . FLY BY MIC . 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	67 • 4	77.3	89.2	84.9	84.9	17.5	9.9
2	68•9	78.0	89.8	85•5	85.5	16.6	9 • 1
3	73 • 1	79.6	90•8	87.1	87.1	14.0	6•5
4	74.0	80.6	91.8	87.8	87.8	13.8	6 • 6
5	75.5	81.4	92.5	88 • 8	90•0	13-3	5•9
6	77.2	82.5	93.1	90.2	91.8	13.0	5•3
7	7 8•5	83.3	93.5	91 • 1	92.7	12.6	4.8
8	79•3	84.0	94.0	92.0	92.0	12.7	4.7
9	80•5	85.2	94.3	93 • 1	93 • 1	12.6	4.7
10	81.8	86.2	94.7	93.9	93.9	12-1	4-4
11	82.9	87.2	95•2	94+3	94.3	11-4	4.3
12	82.9	87.2	95•5	94•4	94•4	11.5	4.3
13	82.6	87.0	95•1	94 • 4	94.4	11.8	4.4
14	82.3	86.9	94•3	94.2	94.2	11.9	4.6
15	83.2	87.9	93•6	95•0	95•0	11.8	4.7
oH →16	83•8	88 • 4	93 • 4	95•5	95 • 5	11.7	4.6
17	83.9	88 • 4	92.9	95•6	95•6	11.7	4.5
18	82.8	87.2	91.9	94•9	94.9	12.1	4 • 4
19	82.4	86.7	90•6	94.8	94•8	12.4	4.3
20	81 • 4	85.6	89•1	93•9	93•9	12.5	4.2
21	80.9	85.0	88 • 0	93.2	93•2	12.3	4 • 1
22	79•0	83.3	86.9	91.4	91 • 4	12.4	4.3
23	77 • 6	82 • 1	86 - 1	90•2	90 • 2	12.6	4.5
24	75.8	80.7	85.0	88.8	88•8	13.0	4.9
25	73.5	79.0	83.7	87.1	88 • 4	13.6	5 • 5
26	72 - 1	78.0	82.7	86.2	87.3	14.1	5•9
27	70 • 8	76.8	81.8	85•6	85•6	14.8	6.0
28	70 - 5	76.8	81.5	85 •7	86•8	15.1	6.2

TABLE G-V

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 81 105 KT. FLY BY MIC. 150 METERS EAST

INT	DBA	DBD	0A\$PL	PNL	PNLT	PNL-DBA	DBD-DBA
1	66.7	77.7	90•2	85•3	85•3	18.6	11.0
S	67 • 7	78 • 4	90.9	85.9	87.0	18.2	10.7
3	69•1	78.9	91.5	86.5	87.8	17.4	9.8
4	72.5	80.2	92.2	88•3	89-4	15.8	7 • 7
5	76•0	81.6	92.9	90.2	91.2	14.2	5.6
6	77 • 3	82.9	93.2	91.3	91.3	13.5	5 • 1
7	79.4	84.3	93.2	92.3	92.3	12.9	4.9
8	79.9	84.7	93.4	92.7	92.7	12.3	4.8
9	80 • 6	85.3	93.8	93.2	93.2	12.6	4.7
10	81.0	85.6	94.1	93.6	93 • 6	12.6	4.6
11	81.9	86•6	94.0	94.1	94.1	12.2	4.7
12	82.5	87.0	94.0	94.6	94.6	12.1	4.5
13	82.8	87.2	93.7	94.6	94.6	11.8	4.4
o# →14	82 • 8	86.9	93.1	94.3	94.3	11.5	4.1
15	82.2	86•8	91.7	93.6	93.6	11.4	4.0
16	81.2	85•4	90•2	92.9	92.9	11 + 7	4.2
17	80.6	84.9	89.1	92.5	92.5	11.9	4.3
18	80.5	84.8	88•4	92.6	92.6	12.1	4.3
19	80.8	84.9	87.8	92.8	92•8	12.0	4.1
20	79•7	84-1	86.7	92.0	92.0	12.3	4.4
21	78.5	83.0	85•7	90.8	90•8	12.3	4.5
85	75•9	80.7	84.4	88.9	88.9	13.0	4.8
23	74.7	79.7	8.68	87.9	89.0	13.2	5.0
24	73.3	78.6	83.5	87.1	88.5	13.8	5 • 3
25	73.2	78•3	83.3	87.1	88 • 1	13.9	5.1
26	73.2	78.3	83.3	86.9	86.9	13.7	5 • 1
27	72.6	77•6	82.7	86.3	86.3	13.7	5+0
28	71.3	77.0	82.1	85.5	85.5	14.2	5•7
29	69+5	75.8	81.0	84.2	84.2	14-7	6•3
30	68.7	75.3	80.5	83.8	83.8	15.1	6•6

TABLE G-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 74 6 DEGREE APPROACH MIC . CENTERLINE(HARD)

1/2 SECOND INTEGRATION US NOISE INDEXES (DB RE 20 MICRO PA)

	INT	DBA	DBD	OASPL	PNL	Palit	PNL-DBA	DBD-DBA
	1	68•2	78 • 1	88•5	85.6	85+6	17.4	9.9
	2	69.2	78.6	88.9	86.2	86.2	17.0	9.4
	3	70 - 4	79.2	89•3	86.5	86.5	16.1	8•8
	4	74.3	80 • 8	89-8	38-1	88 • 1	13.8	6.5
	5	78 - 1	82.8	90.8	90.9	92.1	12.8	4.7
	6	80 • 2	84 • 4	92.0	92.5	93.7	12.3	4.2
	7	80 • 7	84.8	92.8	93.2	93.2	12.5	4 - 1
	8	79•7	84.4	93 • 4	96.6	92.6	12.9	4.7
	9	78.3	83 - 7	93.5	91.8	92.9	13-5	5-4
	10	77.2	83 • 6	93•8	91 • 1	92.4	13.9	6 • 4
	11	78.2	84.3	93.9	91.7	91.7	13.5	6 • 1
	12	79.0	85.0	94.2	92.4	92.4	13.4	6.0
	13	79•6	85.5	94.5	93.0	93.0	13-4	5.9
	14	79•7	85 • 8	94.9	93.3	93.3	13.6	6 • 1
	15	79•9	85 • 9	95•2	93 • 7	94.9	13.8	6•0
	16	80 • 8	87 • 1	95•8	94.6	96.8	13.8	6.3
	17	82.4	88.8	96•3	96.1	98.7	13.7	6 • 4
	18	83.9	90 • 4	96•9	97.6	100 • 3	13.7	6.5
	19	85 • 1	91.7	97•6	99.0	101.3	13.9	6 • 6
	20	85.5	92.1	98•1	99.5	101.2	14.0	6.6
	21	85.4	92.1	98+4	99-6	100.9	14.2	6 • 7
	22	85.5	92.0	98.7	99.6	100∙8	14.1	6.5
	23	85•8	92.5	99•0	99.9	99.9	14-1	6 • 7
	24	86.0	92.5	98.9	100 • 1	100 • 1	14.1	6.5
	25	85.7	92.3	98•4	99.6	99 • 6	13.9	6.5
	26	85 • 2	91.8	97.5	98.9	98 • 9	13.7	6.6
011>		84.9	91.4	96•6	96.8	98 • 8	13.9	6.5
· · ·	28	84.5	90 • 7	95.8	98•6	98 • 6	14-1	6.2
	29	84.2	90 • 4	95.5	98 • 4	98 • 4	14.2	6.2
	30	84.4	90 • 7	95•5	98.3	98 • 3	13.9	6.3
	31	84.5	90 • 9	95•4	98•1	98 • 1	13.6	6 • 4
	32	84 • 4	90.7	95.1	98•0	98.0	13.6	6.3
	33	83 • 6	89.6	94.4	97.0	97.0	13.4	6.0
	34	82.6	88 • 3	93.6	95.6	96•7	13.0	5•7
	35	81.2	36 • 9	92.9	94.3	95.5	13.1	5 • 7
	36	80.9	86.4	92.3	93.6	94.8	12.7	5.5
	37	80 • 3	86 • 1	91.9	93.6	93 • 6	13.3	5.8
	38	80 • 0	85.6	91.3	93.2	94,3	13.2	5 • 6
	39	78•5	84.2	90 • 4	92.0	92.0	13.5	5.7
	40	76.8	82.6	89•3	90.2	91.3	13.4	5•8
	41	74.8	80.9	88•8	88.5	89.7	13.7	6 • 1
	42	73.9	80 • 1	88 • 2	87.5	88.8	13.6	6.2
	43	74.5	80 • 3	87•7	87.9	89.2	13.4	5.8
	40	, , , ,	00.00	5	591		•	

591

TABLE G-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 76 85 KT . FLY BY MIC . CENTERLINE (HARD)

INT	DBA	מממ	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	70.9	80•5	91.5	87-9	89 • 1	17.0	9•6
2	71.8	81.1	92.0	88•9	88•9	17.1	9.3
3	72.9	81.6	92.7	89.5	89.5	16.6	8 • 7
4	76.2	83•2	93.2	90.6	91.6	14-4	7.0
5	79.3	85 • 1	93•9	92.5	92.5	13.2	5 • 8
6	80 • 6	86 • 2	95•0	93.6	93.6	13.0	5•6
7	82•6	87.9	96.0	95•3	95•3	12.7	5 • 3
8	84.9	89.5	97.1	96.7	96.7	11.8	4.6
9	86 • 6	91 • 1	98•0	97.8	99•1	11.2	4.5
10	86.7	91.6	98•6	98•5	99•7	11.8	4.9
11	86•8	91 • 8	99•4	99•3	100 • 4	12.5	5.0
18	86•7	91.9	59.4	99.8	100.8	13.1	5.2
13	87.3	92•3	98•6	100.2	100.7	12.9	5.0
oH →1 4	87.3	92.2	96•9	99•8	99•8	12.5	4.9
15	87•3	91.9	95•3	99.2	99.2	11.9	4.6
16	86 • 9	91.3	93•9	99.1	99•1	12.2	4.4
17	86 • 5	90 • છ	92.9	99•0	100 - 4	12.5	4.3
18	85 • 5	89•9	91.8	98•4	100 • 4	12.9	4.4
19	84 • 3	88•6	91.0	96•9	98.9	12.6	4.3
20	82.2	86 • 6	90•5	94.6	96 • 1	12.4	4.4
21	80 • 5	84.8	89.5	91.9	92.9	11-4	4.3
22	78•6	83•1	88.2	90 • 4	91.9	11.8	4.5
23	77.2	82•1	87.0	89 • 4	90•7	12.2	4.9
24	76 • 4	81 • 4	86.6	88 • 8	90 • 1	12.4	5•0
25	76.0	81.1	86.2	88.5	88.5	12.5	5 • 1
26	75 • 4	80•5	86 • 1	88 • 1	88 • 1	12.7	5 - 1

TABLE G-V

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

without truck

OCTOBER 28 1976

EVENT 77 85 KT. FLY BY MIC. CENTERLINE (HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DDD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 04 → 15 16 17 18 19 20 21 22 23 24 25 26 27	73.3 73.5 74.6 79.0 81.4 82.1 83.3 84.1 85.6 86.2 86.9 87.3 86.7 85.9 87.3 82.9 81.9 82.9 81.9 82.9 77.7 76.1 74.5	81.1 81.4 81.8 84.2 86.2 87.1 87.9 88.5 89.4 90.6 91.4 92.2 91.6 90.5 89.0 87.8 86.0 83.9 83.9 83.9 83.9	91.2 91.5 91.9 92.9 93.9 95.2 96.1 97.3 97.4 97.5 97.2 96.4 94.9 93.1 91.4 90.4 90.0 89.6 88.3 87.8 87.0 66.3 85.3 85.1	88.9 89.0 89.4 91.9 93.5 94.3 95.7 96.4 98.9 100.1 99.9 97.8 96.5 94.3 93.0 94.3 93.0 94.3 95.4 96.6 87.7 87.4	89.9 89.0 90.5 91.9 93.5 94.3 96.8 97.1 98.5 100.1 99.9 98.7 97.8 96.5 95.4 94.2 93.5 94.3 94.2 93.5 94.3 94.6 88.6 88.7 88.5	15.6 15.5 14.8 12.9 12.1 12.2 11.9 11.6 11.7 12.0 12.6 13.0 13.1 12.6 13.0 11.9 11.8 11.5 11.4 11.5 11.4 11.5 11.7 11.9	DBD-DBA 7.9 7.2 5.8 5.6 4.7 5.2 4.9 4.6 4.3 4.9 4.1 4.3 4.8 5.4 5.5 5.5 5.5 5.6 5.6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY 5-64 Without truck

OCTOBER 28 1976

EVENT 78 95 KT . FLY BY MIC . CENTERLINE (HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DISD-DB6
1	71.6	81.5	93•4	88 • 8	88•8	17.2	9•9
2	72.6	82.0	94.0	89.6	89.6	17.0	9-4
3	76.3	83•8	94.9	91.2	91•2	14.9	7.5
4	80 • 0	86-1	95.8	93.6	93•6	13.6	6 • 1
5	84•9	89•8	97.1	97.2	98•6	12.3	4.9
6	86.2	90•7	97.8	98•2	98•2	12.0	4.5
7	87•3	91.7	98•3	98 • 8	100.0	11.5	4-4
8	87 • 4	92•3	98 •7	99•3	100 • 7	11.9	4.9
9	88.2	93.5	99•5	100.8	102.2	12.6	5 • 3
10	88 • 2	93•9	100.0	101.7	102•9	13.5	5•7
11	87.9	93.5	99.7	101.6	102.3	13-7	5•6
OH →12	86•9	92•4	98•5	100.5	100.5	13.6	5•5
13	86.0	91.3	96.5	98•7	98.7	12.7	5•3
14	85•3	90.2	94•0	97.7	97•7	12.4	4.9
15	84.5	89.0	91.5	96.5	96•5	12.0	4.5
16	83 • 4	87.5	89•5	95.0	9 5•0	11.6	4 • 1
17	81.8	86 • 1	88.6	93.5	93•5	11.7	4 • 3
18	80 • 9	85•4	88•5	92.8	92•8	11.9	4.5
19	80 • 1	84.6	88•2	92.1	92 • 1	12.0	4.5
20	79•5	84 • 1	87.7	91.4	91 • 4	11.9	4.6
21	78•5	83.2	87.1	90•5	90•5	12.0	4.7
22	77.4	82.3	86.8	90.0	90•0	12.6	4.9
23	77 • 0	81 • 8	86•5	89•4	89•4	12.4	4.8
24	76•9	81-8	86.4	89+3	90 • 4	12-4	4.9

TABLE G-I

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

without truck

OCTOPER 28 1976

EVENT 79 95 KT. FLY BY MIC. CENTERLINE (HA. D)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	72.2	80•9	92•0	88 • 3	88 • 8	16.6	8 • 7
2	74.6	32 • 1	92.8	90 • 1	90 • 1	15.5	7•5
3	76.7	83 • 4	93.6	91.2	91.2	14.5	6.7
4	79.1	85 • 2	94.6	92.7	92.7	13.6	6 • i
5	80.7	86 • 4	95•3	94.5	94.5	13.8	5.7
6	82•4	87 • 4	96•0	95•6	96•8	13.2	5•0
7	83.9.	88•9	96•9	96.5	97•6	12.6	5•0
გ	86.0	90•9	97•8	98•0	99•3	12.0	4.9
9	88•2	93 - 1	98•9	100 • 6	101.9	12.4	4.9
10	89•3	94.4	99.4	108.8	103.2	12.9	5•1
OH —→ 11	89.2	94.4	99•2	102.3	103.0	13.1	5•2
12	88•2	93•5	97 ∙ 8	101.3	101.3	13.1	5•3
13	87.1	91.9	95•7	99•4	99•4	12.3	4.8
14	86.5	91.0	93•4	98•2	98•2	11 • 7	4.5
15	S6•0	90 • 1	91 • 7	97 • 1	97.1	11.1	4 - 1
16	84·9	89.0	90•3	96•0	97.4	11-1	4.1
17	83•1	87•2	89 • 2	94.2	95•7	11.1	4 • 1
18	80.8	85•2	88 • 1	92•6	94.4	11.8	4.4
19	79.2	83 • 3	86 • 7	90•8	92•2	11.6	4 • 1
80	79 • 1	88 • 8	86•5	90•6	92.0	11.5	3 • 7
21	78.3	82 • 8	86•9	90 • 4	90 • 4	12.1	4•5
55	77.6	82.3	86.9	89•9	89•9	12.3	4.7

TABLE G-II

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 80 105 KT . FLY BY MIC . CENTERLINE (HARD)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
ì	71.3	81.2	93+1	89 • 1	90 • 3	17.8	9•9
2	71.5	81.7	93.7	89.2	89.2	17.7	10.2
3	72.5	82.4	94.5	89.8	89+8	17-3	9.9
4	77.0	84.5	95•6	91.4	91 - 4	14.4	7.5
5	81 • 1	87.3	97.3	94.7	95.8	13.6	6.2
6	83.4	89.2	98•6	96•7	97.2	13.3	5 • 8
7	84 • 1	89.6	99,4	97.0	98•0	12.9	5 • 5
8	65.2	91 • 1	99.8	98 • 4	99.6	13.2	5.9
9	87.2	93•1	100.2	101.2	102.3	14.0	5.9
10	88•5	94.2	99.9	102.3	103.1	13.8	5.7
OH → 11	88•4	93 • 8	98 •7	101.9	101.9	13.5	5 • 4
12	87.0	92.2	96•4	99.7	99.7	12.7	5.2
13	85•6	90•5	93.8	97.9	97.9	12.3	4.9
14	84.7	89•5	92.3	96•9	98.1	12.2	4.8
15	84 • 1	88•6	90•9	96•3	97•7	12.2	4.5
16	82•7	87.3	90•0	94.7	96 • 1	12.0	4.6
17	81.8	86 - 1	88•8	93.4	94.9	11.6	4.3
18	80•7	84.8	87.5	92.2	93.8	11.5	4 • 1
19	79.6	83.9	87.0	91.3	92.9	11.7	4.3
20	77 • 5	82.5	86.7	90.2	91 • 4	12.7	5.0
21	75-1	81.1	86.5	89.0	89.0	13.9	6.0
55	73.3	80 - 1	86∙0	88.2	88.2	14.9	6.8

NOISE LEVEL TIME HISTORY DATA

SIKORSKY S-64 Without truck

OCTOBER 28 1976

EVENT 81 105 KT. FLY BY MIC. CENTERLINE (HARD)

INI	DBA	DBD	OASPL	PNL	PNLT	PNL-DBO	DBD-DBA
1	70 • 4	80.9	92.5	88.2	88•8	17.8	10.5
S	72.3	81.8	93 • 1	89.2	89.2	16.9	9.5
3	75.3	83 • 1	94.0	90 • 7	91 • 7	15.4	7 = 8
4	78.3	84.9	94.9	92.0	92.0	13.7	6 • 6
5	81.3	87.2	95.6	94.6	94.6	13.3	5•9
6	84.0	89.2	96.2	96.5	97.6	12.5	5.2
7	84.9	90 • 1	97.0	97.2	97.2	12.3	5.2
8	85.5	90•6	98.2	97•9	98•9	12.4	5 • 1
9	87.7	92•8	99•8	100.5	101.7	12.8	5 • 1
10	88•8	94 • 1	100.6	102.1	103-1	13.3	5.3
11	89•6	94.7	100.2	102.7	103 • 4	13.1	5 • 1
12	88 - 7	93 • 7	98•4	101.5	101 • 5	12.8	5.0
13	87.8	92 • 4	95.7	99•6	99•6	11.8	4.6
$OH \longrightarrow 14$	86+3	90•8	92.8	97.9	97•9	11.6	4.5
15	85 • 1	89.5	91 • 1	96•7	96.	11.6	4 • 4
16	83•6	87•9	89.9	95•4	96•7	11.8	4.3
17	81.7	86.3	89.0	93 • 6	95•0	11.9	4.6
18	80.5	85.0	87.8	91.9	93.4	11.7	4.8
19	79.7	84 • 1	86 • 8	91.4	92•7	11.7	4-4
20	79•3	83 • 8	86.2	90•9	92.5	11.6	4 • 5
21	78 • 1	82.9	86•3	90 • 4	91•9	12.3	4.8
22	76.5	82.0	86 • 1	89•7	91.2	13.2	5.5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 43 9 DEGREE APPROACH MIC • 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-10-0	-8.0	-6 •0	-4.0	-2.0	0	2•0	4.0	5•5
17	70 • 4	70.6	75.3	74.7	75 • 1	77.6	78 • 9	82.5	81.7
18	83.2	84.9	85.9	86.0	85.9	81.6	79.9	80.7	76.7
19	71.7	74.4	74.8	75•7	77.8	76.4	76 • 1	78.3	79.2
20	71.7	70.8	72.1	72.5	73.3	70.9	74.0	76.4	77.7
21	81 • 6	76.7	74.8	72.1	71.6	75.9	75.8	69.3	72 • 1
22	68.0	63.5	65.6	74.9	80.0	83.8	81.0	70.9	65 • 7
23	63.5	67.5	75.0	83.5	86.5	86.4	86•5	77.2	68 • 3
24	73 - 1	78.5	80.9	86.5	87.5	88.3	87.4	78.7	71.8
25	77.5	80 . 8	81.0	82.2	81.9	78.5	77.6	78 • 6	74.1
26	75.9	77 • 1	76 • 1	73 • 6	77 • 4	79.4	78.9	73 - 1	72.8
27	67 • 8	65 • 8	65.0	72.6	78 • 3	77.4	78 • 6	74.8	66.2
28	62.3	67.0	70 • 1	69.7	73 • 2	76.2	76.0	73.2	70 - 1
29	66 • 1	66+9	65•9	71 • 3	74.9	75.2	75 • 3	71 • 7	68 • 6
30	61.0	64.3	67 • 6	67 + 6	74 • 5	74.4	74.2	69 • 4	67.6
31	60 • 5	61.3	64.7	66•6	72.6	73.0	74.7	70 • 1	68.3
32	59 • 4	60•9	63 • 9	66 • 1	72 • 1	71 • 7	71 • 4	67.5	64.8
33	55•9	56.9	59•6	68.8	68 • 7	68.9	68 • 8	65.9	62 • 4
34	55•0	55.4	56 • 1	59.7	66•3	66.3	66.1	62 • 1	59•6
35	55 •0	55•0	55.2	57 • 1	63 • 6	63.8	63.6	59.9	57 • 1
36	55•0	55. 0	55.0	55•0	59•6	61.2	60 • 7	57•2	55•3
37	55•0	55+0	55.6	57.1	65 • 4	64.8	61.0	57.6	55•3
38	55•0	55• 0	55•0	55•0	55 • 0	55•3	55•4	55•0	55•0
39	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55•0	55.0
40	55+0	55 • 0	55.0	55.0	55 • 0	55.0	55.0	55.0	55•0
Α	76•7	78.7	79•6	82.•7	85 •7	85•7	85.4	80.5	77 • 1
D	82.4	84.2	85•2	88•8	90•9	91.1	90 • 6	85•5	82.4
OASPL	89.2	90 • ś	91.4	93•0	93 • 8	95•3	95•3	91.4	88.2
PNL	90 • 3	92 • 1	93•0	96•2	98•8	99.2	98 • 7	93•6	90 • 3
PNLT	91.8	92 • 1	94.5	96.2	101.5	101.4	98•7	93.6	90•3

TABLE G-YI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 51 6 DEGREE APPROACH MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-8•0	-6•5	-5•0	-3.5	-2.0	 • 5	0	1-0	2•5	5-0
17	69.2	70.9	73.3	73.8	76 • 1	76 • 6	77.8	79 • 4	80 • 4	80 • 3
18	80 • 7	83.6	86 • 3	84.9	84.6	82.6	82.3	83.6	81.8	79 • 1
19	71-1	72.4	75 • 5	76.7	74.2	73.6	73.0	74.9	76 • 3	76.2
20	73.0	71.8	73.3	74.7	73 • 6	70 - 7	68.8	69.8	72.5	76.4
21	75.5	73.4	74.9	70 • 4	68.0	73.2	74-1	74.1	72 • 5	67.5
22	65 • 4	63 • 4	64.5	68.5	77.8	82.0	81.9	80.6	77.9	65.5
23	62.6	68 • 4	75 - 1	78 - 1	84.7	86.9	86.6	84.4	81.5	71.3
24	69.2	78.7	84.3	83.3	88.0	86 - 1	84.7	82.6	83.3	75 - 1
25	74.6	82.2	84.6	82 • 4	83 • 6	76.8	74.2	73.3	77.6	74.7
26	74.0	77.2	78.0	74.0	75 • 1	77 • 7	78 • 1	79.5	78 • 2	69.5
27	66 • 7	65 • 1	67.2	73.0	79 - 1	78 • 2	77.0	77.4	79+4	71.3
28	58.3	67.7	71.2	72 - 1	74.3	74.9	75.5	77.6	75.4	70.9
29	62.2	66.9	66 • 2	70.0	75 • 3	75.2	75.6	76.8	73.8	68.7
30	58.9	65.5	67.4	88.6	73 • 1	75.2	74.9	75.5	73.2	66 • 1
31	57•9	62.1	64.0	67.6	71.0	73 • 5	73.4	74.2	72.4	66.6
32	55.9	61.6	63 • 3	66 - 1	70 • 4	72.6	72.4	72.4	68 - 7	63.0
33	55.0	57 • 6	59.0	62.0	67 - 1	69 - 1	69-1	69.8	67-1	61.2
34	55.0	55 • 4	56 • 4	59.0	62.9	65 • 8	66.0	66 • 4	63.8	57.0
35	55.0	55.0	55.0	55.6	60 • 1	62.8	63.0	63.2	60 • 9	55.0
36	55 • 0	55.0	55.0	55.0	56.3	58 • 8	59.4	59 • 8	57.7	55.0
37	55.0	55.0	55.0	55.0	61.9	60.9	61.9	.61.3	57-1	55.0
38	55.0	55.0	55 • 0	55.0	55.0	55.0	55.0	55.0	55.0	55 • 0
39	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
A	73.6	79.6	82 • 1	81.5	85.3	85.0	84.5	85.0	83.9	76.8
D	79.6	84.9	87.8	86.9	90.7	90.3	89.8	89.6	88.7	82.0
OASPL	86•9	88.6	91.4	90.8	93.6	94.0	94.2	94.5	94.3	88.5
PNL	88.2	92.7	94.9	94.5	98.3	97.9	97.6	97.0	96 • 1	90 - 1
PNLT	89-4	92.7	96 • 4	94.5	100 • 4	99•2	99.2	98+3	96-1	90-1

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 67 95 KT. FLY BY MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-6•0	-4.5	-3.0	-1 +5	.0	•5	1.5	3•0	4•5	5•5
17	78.0	79.3	77.9	74.2	79 • 1	81.9	85•6	81.4	81.9	82.3
18	82.0	85 • 1	87.8	87.5	91+1	91.3	88 • 3	77.8	75.1	72.5
19	73 • 1	78.3	79.7	78 • 6	75 - 7	75.9	75 • 9	75.9	75.5	74.1
20	71.2	75.7	77.0	75.4	72.9	71.2	70 • 7	73.2	76.3	76.7
21	78.7	82.8	83.3	74.4	69.0	70 • 1	71 • 1	64.7	66.6	68 • 7
22	69.2	71.8	69.9	66.5	74.0	77.5	79.3	73 • 5	63.0	60 • 4
23	69.0	67 • 6	64.9	76.5	81.8	83-1	82.3	76 • 6	69.5	62.9
24	63 • 6	65.4	74.6	81.0	84.4	84.9	83.7	79 • 4	75 - 1	70 • 4
25	61.5	73 • 6	81.3	82.8	81.5	80 • 4	76 • 7	75 • 3	73.9	72.2
26	69.0	77.8	83.2	80.5	80.9	82.2	82.3	75 • 5	69.2	70 • 6
27	71.9	79 - 1	80.0	76.8	83.7	83+4	82 - 4	78 • 5	70 - 2	65=0
28	70.8	74.0	75.2	79.8	79.2	80.2	79 • 4	72.2	70 - 1	67.8
29	66 • 1	70 • 4	77.7	77.8	80.5	79.7	77.2	72.5	69 - 4	66 • 5
30	65 • 6	73.5	75 • 4	78.0	79 • 6	79 • 5	77.6	71.9	67.2	66.0
31	64.5	68 • 9	74.6	75.9	78 • 1	78.3	77 • 1	70 • 1	65.9	64.2
32	59.8	66.3	71.2	73.9	75 • 7	75 • 1	72.8	66.9	61-4	60 • 5
33	56.0	61 • 3	66.0	69.5	71.8	71.4	69.5	63.6	57.9	56.7
34	55.0	60 • 2	65.3	65•6	68 • 1	68.2	66.0	58.9	55.2	55.0
35	55.0	55-4	58 • 7	60.0	64.2	64.0	61 • 7	55 • 3	55.0	55.0
36	55.0	55 • 0	55.0	55.8	58.6	58.9	57.5	55.0	55.0	55 • 0
37	55.0	55•0	55.0	55.0	55.2	56-1	55 • 8	55.0	55.0	55.0
38	55.0	55 • 0	55.0	55.0	55.4	55.0	55.0	55.0	55.0	55.0
39	55•0	55•0	55.0	55•0	55∙0	55.0	55.0	55.0	55.0	55.0
40	55.0	55 • 0	55.0	55.0	55.0	55 + 0	55.0	55.0	55.0	55.0
A	75 • 4	81.3	85.2	86.2	87.8	87.7	86.6	81.5	76.9	74.6
D	81.0	83•8	89.0	89.7	91.9	92.0	90.8	85.9	81.6	79.9
OASPL	89.2	91 - 5	92.7	91.8	94.0	94.5	94.7	91-3	87.6	85.8
PNL	88.88	93.7	97 • 1	97 - 1	99-1	99.2	98 - 1	93 • 4	89.5	87.9
PNLT	88.8	95•0	97 • 1	97-1	99 • 1	99.2	98 • 1	93.4	89.5	87.9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 68 95 KT . FLY BY MIC . 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-7.0	-5.0	-3.5	-3.0	-1 •0	0	1 • 0	3.0	5 • 0	7.0
17	79.4	82.5	82 • 4	81.8	74.6	76.7	80.0	79 • 4	80.6	80.2
1 8	82.2	85.3	89 • 1	90 • 1	88.7	88•7	88.9	78.0	73.6	70.5
19	74.6	77.3	79•4	79.4	76•5	74.3	73 • 3	73.0	74.8	71.5
20	74.1	75.7	76.7	76.4	73 • 6	70 • 4	68 • 4	70.0	72 • 1	72.7
21	75.7	81 - 4	83.5	82.7	68•9	69.7	71.2	68•6	65.0	67.5
85	69.0	71 - 6	72.4	70.6	71 • 0	74.0	75 • 4	74.2	63.4	60 • 3
53	68 • 7	69•8	66•3	68 • 5	78 • 6	80•6	80 • 1	78 • 2	70.8	61 • 1
24	64 • 9	61.9	74.6	76•7	81.5	82 • 1	80 - 1	79 • 4	75.7	66 • 1
25	59•6	70 • 6	79 - 1	81.5	81 - 1	79.2	73 • 6	73 • 3	74.7	69.3
26	63 • 2	75.8	82.0	83.5	75 • 7	78•7	80•5	77。6	69 • 6	69.5
27	68 • 1	77.0	79.5	79.2	80.5	81.7	79•2	77.8	71.7	63-1
88	67 • 8	73 • 4	72.8	75•9	77•5	77 • 6	78 • 5	75 • Û	70 • 8	64.9
29	66 • 2	68 •7	76.3	77.0	77 • 4	77.4	76.5	72.6	69.5	64.9
30	60 • 6	73 • 3	73.4	75•6	76•3	77.0	75 • 1	71 • 7	67.3	62 • 1
31	61.8	: ۥ3	72.7	73 • 1	74.0	75.8	74.2	70 • 5	65•8	61.8
32	57 • 2	٠.،3	70 • 1	70 • 7	72•6	72.5	71 • 1	66.0	62.3	58 • 8
33	55 • 4	\$2.0	64.2	64.9	68•3	69 • 0	68 • 1	62.9	58 - 7	55.2
34	55.0	56•3	62.0	62.2	64.5	65•C	64.3	58 • 6	55.2	55•0
35	55.0	55 •0	56.3	56+6	60•0	60.7	60 • 4	55.7	55•0	55 + 0
36	55+0	55•0	55.0	55•0	55•5	56.0	56.2	55.0	55.0	\$5 • 0
37	55•0	55•0	55.0	55•0	55.0	55.0	55.0	55.0	55.0	55.0
38	55.0	55•0	55.0	55.0	55•5	55.2	55•0	55.0	55.0	55.0
39	55•0	55.0	55.0	55•0	55.0	55•0	55•0	55.0	55.0	55.0
40	55• 0	55• 0	55.0	55•0	55.0	55.0	55.0	55.0	55.0	55.0
Α	72.5	80.8	83 • 9	85 • 0	85 • 1	85.6	84.5	31.6	76.9	71.8
D	79.5	84.9	88.0	89-1	89 • 1	89 • 6	88•7	85 - 9	88.0	77.9
OASPL	88.9	92.3	94.1	94.8	91.9	92•3	93.0	91.7	87.1	83 • 2
PNL	87.3	92 • 4	96•3	97.2	96•2	96.9	96-1	93.2	89.7	86.2
PNLT	87•3	94•3	97•3	97.2	96.2	96•9	96 • 1	93.5	89.7	86.2

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 69 95 KT . FLY BY MIC . 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-6 '0	-4.5	-3.0	-1-5		1.5	3•0	4+5	6•0
17	76.7	77.6	77.3	75•3	78 • 7	86.8	84-1	77.1	79•7
18	81.0	83 • 5	86.7	88.5	90 • 2	88.8	76 • 1	73 + 1	71.8
19	74-1	75 • 2	78.2	77.7	77-0	74 • 4	75.7	76.5	72.9
20	72 - 1	73.7	75.0	74.8	72.5	69 - 8	72.2	75.4	76 • 5
21	77.3	79.7	79.9	74.9	69.5	70.2	65.2	65.0	67.3
28	67.8	68.9	66.9	66.5	74.2	78 • 2	74.3	65.8	59 • 1
23	65.5	66 • 5	63.0	75 • 5	81.3	81 - 1	77.8	71 - 1	63 • 3
24	58 • 4	62 • 4	70.8	81.9	83.8	81 • 6	78.9	74.7	69.6
25	59 • 1	71.2	78.2	82.6	81.1	74.3	74.8	73.9	72.0
26	66.8	74.9	80.0	78 • 4	79 • 4	80 • 3	76.6	70 • 4	70.5
27	68.6	75 • 1	76.3	77.9	83.2	79.8	77.9	72.8	64.2
26	67.5	71.7	71.7	78 • 7	78 - 1	78•5	73 - 1	73.0	68 • 2
29	62.1	68 • 1	75.5	78.8	79.5	76.3	73.8	69.7	67-1
30	61.9	71.2	74.0	77.9	79.0	75.7	71.2	67.7	65 • 1
31	62 - 1	65.2	71.9	76.5	77.2	74.3	69.7	66.3	62.8
32	57.0	64.0	68.0	74-1	74.6	71.4	66.3	62.4	59.8
33	55 • 0	59 • 3	63.3	69·8	70.2	66.7	62.3	58 - 1	55.5
34	55•0	56.7	62 • 1	66.3	66.8	63.0	58 - 1	55.2	55.0
35	55.0	55.0	55 • 8	61.2	61.7	59 • 4	55.3	55.0	55.0
36	55.0	55.0	55.0	56-7	57∙⊶	55.6	55.0	55.0	55.0
37	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
38	55.0	55•0	55 • 0	55•0	55 • 3	55.0	55.0	55+0	55 • 0
39	55.0	55.0	55.0	55•0	55.0	55.0	55.0	55.0	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	72.1	78 • 3	82.3	85.9	87 - 1	84.5	81.2	77.6	74.3
D	79.0	83 • 1	86.3	90•0	91.2	89.2	85.7	82.0	79 • 6
OASPL	89.8	90 • 2	91.0	92•4	33.3	93.8	90•9	87.0	84.4
PNL	87.1	90.9	94 • 4	97-1	98 - 4	96.4	93.3	89.7	87.5
PNLT	87 - 1	92.4	94.4	97-1	98 • 4	96 - 4	93.3	89.7	87.5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 43 9 DEGREE APPROACH MIC • 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-17.0	-13.5	-10.0	-6.5	-3.0	0	• 5	4.0	7.5	10.0
17	68 • 7	69 • 8	73.0	74.4	77.8	82.0	82 • 3	81 • 1	78 • 4	75 • 5
18	76.0	80 • 1	80.9	81.2	78.9	82 • 3	82 • 3	84.1	78.5	73.8
19	66.9	69 • 3	71.2	73.2	74.7	78 • 2	79.4	83.6	80.6	74.4
20	71 • 1	70.8	71.0	71.7	77.2	78.2	78 • 4	80.6	80.8	77.8
21	76.0	76 • 2	76.6	73.1	71.2	68 • 8	69.0	75.5	76 • 1	73.2
22	67 • 3	69 • 1	64.2	63.4	65.2	72.0	74.2	65.5	74.7	69.9
23	67 • 6	64.7	58.2	63.3	73.9	77 • 4	78 • 6	74.4	72.9	72.3
24	59•8	62 • 2	64.6	70.7	77.2	79.9	80.6	79.2	66.5	69.7
25	66•9	67 • 3	68•7	72.9	78.2	77.5	77.7	78.5	63.0	61.9
26	71.3	70 • 3	67.8	72.3	74.3	70.0	70 • 0	77.9	67.4	55 • 6
27	72.2	68 • 4	63•4	65•5	72 • 2	75.3	76 • 7	68.7	68 • 8	56 • 1
28	63.3	62 • 6	58.4	68 • 1	75.2	73 - 1	73.6	73.3	67.5	59.7
29	65•5	64.0	63 • 4	66.5	76.5	75 • 4	75 • 7	68.9	62.0	61.5
30	64.8	63 • 2	59.2	67 • 1	73.2	72.1	72.5	69.8	63 • 1	59 • 1
31	58•5	60 • 2	59.5	62.7	73.1	72.5	72.8	69.6	64.5	58 • 9
32	57.2	58 • 0	59•7	65.8	72.1	71 • 1	71 - 1	66•3	60•4	56 • 4
33	55•0	55 • 0	56.0	58•8	67 • 4	68 - 1	68 • 4	64.1	56.9	55.0
34	55• 0	55•0	55•0	56•3	64.5	65 • 3	65.8	60 • 8	55 • 1	55•Q
35	55•0	55•0	55•0	55.0	62.2	62 • 3	63.0	57.9	55.0	55.0
36	55•0	55 • 0	55.0	55•0	58 • 2	5੪ • ੪	59•4	55.5	55.0	55.0
37	55•0	55•0	55.0	55.0	63.2	60 • 5	60 • 6	55.0	55•0	55.0
38	55•0	55 • 0	5 5 • 0	55•0	55 • 0	55 • 0	55.0	55.0	55.0	55.0
39	55 ∘ 0	55.0	55.0	55•0	55.0	5 5• 0	5 5•0	55.0	55.0	55•0
40	55•0	55• 0	55•0	55•0	55 • 0	55•0	55.0	55.0	55•0	55 • 0
Α	73.5	72•5	70.8	75.2	82•7	82 • 7	82•9	80.3	73.8	69.6
D	78.7	78 • 4	78 • 1	80.8	86.7	87 • 1	87.4	86.0	80.4	77.6
OASPL	84•7	86 • 5	88.2	89•9	92.0	90•0	90•5	90•8	87.6	84.6
PNL	87 • 4	86 • 9	86 • 4	88•6	94.3	94 • 7	95•2	93.8	89•5	86•3
PNLT	87 • 4	86 • 9	87.9	88 • 6	96.5	95•8	96•3	95•3	89•5	86•3

TABLE G-II

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 51 6 DEGREE APPROACH MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-20.0	-15.5	-11.0	-6.5	-2.0	0	2.5	7.0	11.5	13.5
17	68•6	70.9	70.8	69•8	77 • 1	80•9	81.9	77.4	78 • 4	74.7
18	75 • 5	84.4	81.9	79.9	84.2	85.3		78•0	76.2	70.5
19	70.9	76.8	70.5	72.3	78.6	77.4		81.7	77.6	73.0
20	70 • 8	72.2		75.4	77.4	75.5		81.3	79.7	
21	75.5	79.2	75.1	75.4	69.2	67.5		74.2	74 • 2	71.2
22	66 • 1	70.5	68.9	65.7	67.4	73.8	74.8	73.5	74.5	65.8
23	63 • 8	66.3		63.5	75.8	77.0		70 • 5	79 • 4	
24	60 • 8	64.5		67.2	77.8	78 • 5		66•8	78.2	
25	58 • 1	63.2	65.7	72.5	76.5	74.8		72.3	76.1	
26	62.3	66 - 1	70.9	74.3	71:4	70.2		72 - 5	70 = 8	62 = 4
27	63 • 4	68.6	71.3	66.9	75.0	77.7	76.3	71.3	65.9	58 - 1
28	59•3	63 • 4	64.7	63.5	73 • 4	73.2	71 . 7	66.7	62.6	56.4
29	57 • 1	60.7	64.3	67.4	75.6	75 - 7	73.8	62.3	63 • 5	55.5
30	55 • 5	60.3	63.7	61.7	72.2	74.0	72.0	62.0	62.3	55 • 1
31	55•0	56•7	58•5	59.9	71.2	72•4	70.7	62.5	65•6	55.0
32	55.0	55• 0	56.3	59.3	69 • 2	71 - 4	67.9	59.5	60.0	55.0
33	55•0	55•0	5 5•0	56.3	65.9	67.6	65.5	56 • 4	56 • 3	55.0
34	55 • Q	55. 0	55.0	55.2	62.3	63 • 8	62.3	55.0	55.0	55.0
35	55•0	55.0	55.0	55.0	59•5	60•9		55.0	55.0	55.0
36	55.0	55.0	55.0	55.0	55•9	57.1	56.5	55.0	55.0	55.0
37	55 • 0	55•0	55.0	55.0	58•9	57.2		55.0	55.0	55.0
38	55•0	55•0	55.0	55•0	55•2	55.0	55.0	55• 0	55.0	55.0
39	55•0	55.0	55.0	55.0	55.0	55•0		55.0	55.0	55.0
40	55•0	55•0	55.0	55.0	55 • 0	\$5 • Ü		55.0	55.0	55.0
Α	66•6	71.3	73.1	74.5	81 • 6	82.7	81 • 4	75.2	76.4	66 • 1
D	75.6		78.8	0.08	85 • 9	86.9		81.3	82•9	
OASPL	83 • 1	87 • 4	87.2	89.8	91.6	90.5		87.3	88.2	
PNL	84 • 6	88.0		88•8	93 • 3	94.4			91 • 1	84.2
PNLT	84•6	88.0	87.4	90.4	94.4	94 •	93.9	89.9	92.6	84.2

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT67 95 KT. FLY BY MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-7.0	-5.5	-4.0	-2.5	-1-0	o	• 5	2.0	3 - 5	6.5
17	78.2	77.7	78.0	75.5	75 • 4	79.2	82.4	85.0	79.6	69•6
18	81.5	85.5	85.6	89.6	89.8	91 - 1	90.9	83.6	73.9	70.0
19	70.2	71.1	74.9	76.5	76.3	74.7	74.5	74.4	76.7	74.5
20	66.7	70.7	72.5	73.9	73.9	74.7	74.3	72.7	75.4	75 • 5
21	77.6	81.0	79.7	76.3	68•7	68.6	67.9	66.9	66.3	67.5
22	67.2	69.3	68.8	65.2	68 • 1	73.5	74.9	72.6	64.7	63.7
23	66•3	73.2	68.2	6 8•8	7 8•2	80,6	81.5	78 - 3	71.5	58 • 2
24	63•4	64.3	67.7	76-4	81 • 6	82.7	82 • 4	81.1	75.8	61 • 6
25	60 • 6	70.3	75.8	80•9	82.3	80.3	78 • 3	76.0	76.2	68.3
26	66.4	77 • 1	79.3	81.6	77.3	78 • 4	79 • 6	76•7	71.5	71.9
27	70 • 1	78.5	79.7	77.7	8Û•1	82.7	82•8	80.0	74.8	69.7
28	69•9	75.9	73.0	78 • 1	79 • 6	77.9	77.3	74.5	72.5	63.6
29	62.7	67.9	72.8	76.5	78 • 6	79.5	78.3	75 • 3	70.5	66.7
30	64.2	71.3	72.0	76.0	76.9	7 7∙6	77.9	73.9	69.1	64.3
31	65.5	65.6	71.3	74.5	76.4	76.7	76 - 1	73 • 4	68 • 8	63.8
32	57 • 1	63•6	68 • 2	71.7	73 • 3	74.2	73.7	70 • 2	63.9	59.0
33	55.0	57•9	62.8	68 • 2	70.0	70.5	69.8	66 • 4	59.9	55 • 1
34	55+0	55.2	59.2	64.1	66.2	66•3	65•9	62.3	56 • 1	55.0
35	55.0	55.0	55.5	58•9	62 • 1	62.5	€ •8	58•6	55•0	55.0
36	55•0	55.0	55.0	55 • 1	57 • 1	57.6	57.2	55•7	55•0	55.0
37	55.0	55• 0	55.0	55.0	55•0	55 • 4	55•4	55•3	55•0	55.0
38	55. 0	55•0	55•0	55•0	58 • 1	56 • B	55.5	55.0	55.0	55.0
39	55• 0	55•0	55.0	55•0	55•0	55.0	55•0	55.0	55•Q	55.0
40	5 5•0	55•0	55.0	55.0	55•0	55.0	55.0	55.0	55.0	55.0
A	73•6	გე•9	81.5	84.4	85•8	86.7	86.4	83 • 4	79.2	73.7
Ð	79•6	84.2	85•9	88 • 5	90•0	90.5	90.4	87.7	83.4	7 ੪∙5
OASPL	89.0	90.6	92.5	93•9	94 • 1	94.6	94.6	91.1	86.4	82.0
PNL	87 • 4	$92 \cdot 4$	94.0	96.2	97.0	98 • ೦	97.9	95.2	90.9	87.2
PNLT	87 • 4	93•9	94.0	96.2	97.5	98•0	97.9	95.2	90•9	87.2

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64
With truck

OCTOBER 28 1976

EVENT 68 95 KT. FLY BY MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-7•0	-5.5	-4.0	-3.0	-2.5	-1 •0	0	• 5	8•0	3.5	6•0
17	80.5	82.8	82.9	79.4	77.0	75 - 1	77.0	78.9	82.1	76.6	68 • 4
18	82.4	84.4	86 • 6	87.1	86.3	87.6	89.3	89.4	83.2	73.6	70.9
19	72.4	74.8	77.9	76.8	75.6	75.5	72.7	72.0	72.9	74.7	72.9
20	68 • 4	72.7	74.0	73.5	72.7	70 • 1	67.7	66.4	68 • 4	72.2	72.7
21	77.8	79.9	81.8	78.7	74.7	67.5	73 • 3	74.2	70.0	63.6	67.0
22	68.8	89.9	71.4	67.7	65.3	71.7	75.3	76.5	73.6	71.2	61.8
23	68.0	71.1	66.7	72.9	75.0	78 • 1	80.4	81.6	79.0	74.9	60.9
24	60.7	67.9	76.0	79.9	80.0	80 • 6	79.4	79.3	79.4	77.9	67.0
25	63.7	75.2	81 • 3	83.6	82.9	77.5	72.7	72.1	71.8	73.7	70 - 1
26	68.0	81.7	82.5	81.7	79.6	76.8	79.1	80.2	79 - 1	71.9	70.0
27	67.9	80.9	77 • 4	74.5	75.5	80.2	78.7	76.9	75.8	75.7	64 • 1
28	66.3	73.6	73.9	78.0	77.9	75.6	77.0	78.7	77.3	71.5	65 • 3
29	59.8	71.7	73.8	73.2	72.6	75.5	76.0	77.0	74.3	72.3	65.5
30	61.2	69.8	71.3	73.2	72.4	75.3	75.3	75.4	73.5	70.0	61 • 4
31	59.3	62.9	69.6	70.7	71.0	73.9	74.2	74.2	72.4	68.7	61.2
32	57.2	60.3	66 • 1	68.4	68.2	71.6	71.9	71.8	69.2	64.7	58 • 2
33	55.0	56,6	60 • 3	64.1	64.4	67.0	67.8	63.0	65.5	60.9	55+1
34	55.0	55.0	59 • 1	61.6	61.2	64.0	64.2	64.0	61.4	56.4	55.0
35	55.0	55.0	55 • 7	57.0	57.0	60.0	60.7	60.5	57.4	55.0	55.0
36	55.0	55.0	55 • 0	55.0	53.0	56.2	56 • 3	56.3	55.0	55.0	55.0
37	55.0	55.0	55.0	55.0	55.0	55.0	55.9	55.9	55.0	55.0	55.0
3 8	55.0	55.0	55 • 0	55.0	55.0	56 • 1	55 • 8	55.3	55.0	55.0	55.0
39	55.0	55.0	55.0	55-0	55.0	55+0	55.0	55.0	55.0	55.0	55.0
40	55.0	55.0	55.0	55.0	55.0	55+0	55.0	55.0	55.0	55.0	55.0
A	72.0	82 • 1	82.7	83.7	83.3	84.1	84.2	84.4	82.9	79.7	72.3
\mathbf{D}	79.3	86.2	88.0	88.88	88.0	87.9	88 • 4	88.8	87.1	83.7	77.7
OASPL	89.7	93.0	94.7	95 • 4	95.2	95.0	94.4	94.0	90.8	86.4	80.9
PNL	87.5	94.2	95.7	96 - 1	95.5	95.5	95.5	96.0	94.4	91.4	86.5
PNLT	87.5	94.2	95•7	97.5	96•8	95.5	95+5	96.0	94.4	91.4	86.2

TABLE G-TI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY 5-64

With truck

OCTOBER 28 1976

EVENT 69 95 KT. FLY BY MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-7. 0	-5.5	-4.0	- 2•5	-1 •0	 5	0	• 5	2•0	3•5	6•0
17	76.0	76 • 5	77•5	77•9	74.8	75 • 8	78 • 3	81.0	86•4	80•6	71.9
1 ខ	80.9	82.9	84.9	88 • 4	89.3	90 • 1	90.7	90.9	84.7	75.5	73.2
19	70 - 1	71 - 1	74.0	75.6	74.5	75.8	76 • 1	75.7	74.5	77.2	74.6
20	67.8	70.5	71.7	73.0	72.2	72.0	70.9	70.5	70-8	74.3	74.2
21	76.3	78.8	76.3	72.6	66.0	66.8	69 • 1	71.0	69 • 7	64.0	68 • 3
22	66.7	66.8	66 • 1	62 • ೮	70.0	72.0	73.7	76.6	75.0	71.6	60 • 7
23	64 • 1	72.6	63.7	68 • 6	77 • 7	79.9	80.7	81.0	79.8	75.2	63.5
24	59.3	63 • 4	67.8	75.6	80.8	82.0	82.2	81.9	80•6	78.7	70 • 6
25	58 • 8	71.3	75.4	79.1	79.8	78.8	77.3	75 • 2	73 • 3	74.9	72.0
26	65.9	77.9	80 • 1	78 • 5	76 • 1	78.3	79.9	80.8	80 • 3	74.2	70.8
27	67.6	79.3	78.0	71.8	82.0	83.4	83.3	82.0	78 • 9	77-1	64.8
28	65.3	75.5	72.5	76.5	77.9	77.6	78.5	78 • 9	76.8	72 • 1	69+3
29	60•6	70.0	74.3	73•₿	79.7	79.5	78 • 6	77.1	74-1	73.2	67.9
30	60 • 6	71.4	70. 8	75 • 5	76.3	76.8	77 • 1	77.4	73 • 7	71 • 1	67.0
31	59.8	64.7	71.0	71.6	75.9	76.3	76.0	75.9	72.5	70.2	64.5
32	55 • 6	62 • 1	67.5	69.5	73.6	74.2	74.0	73.5	68 • 5	66 • 1	60.9
33	55.0	56 • ೮	61.6	64.9	69 • 1	69.7	69 • 4	69.2	64 • 4	61.9	56.6
34	55.0	55 • 3	58.9	62.0	65.3	65.6	65.3	65 • 1	60.5	58 • 1	55.0
35	55.0	\$5.0	55.0	57.0	61.9	62.6	62.2	61.8	57.2	55.0	55•0
36	55.0	55.0	55.0	55.0	56 • 6	57.1	57.2	57.0	55.0	55 • C	55.0
37	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
38	55.0	55.0	55.0	55.0	58 • 1	58 • 1	56.5	55.4	55.0	55.0	55.0
39	55∙0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55•0	55.0	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	70 • 7	80.7	81.5	82.5	86.2	86.6	86.6	86.0	83.6	81.0	75•0
D	78.0	84.6	85.3	86.8	89.6	90 • 1	90.2	90.0	87.8	85.0	79.7
QASPL	87.7	90 • 3	91.5	93.4	94.0	94.2	94.3	94.3	92.0	87.5	82.9
PNL	86.0	92.6	93.6	94.0	96.9	97.9	97.9	97.5	95.3	98.6	87.7
PNLT	86.0	93.9	93 • 6	95.2	97.5	98.4	97.9	97.5	95+3	92.6	87+7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 43 9 DEGREE APPROACH MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	~7.0	- 5•0	-3.0	-1 • 0	0	1.0	3.0	5.0	7.0
1.7	74.0	96 0	3 0 0	, ao n	a	~ ~			
17	74.0	76.8	79.9	80.7	84.5	86.9	86.8	87.5	85.8
18	84.5	86.7	87.3	86.5	84.3	84.2	83.9	87.0	79.9
19	71 •2	73.8	76 • 2	74.7	72.2	80.8	76.7	85•2	82.1
20	69.7	72.8	73 • 3	7 8•5		89.0		82.3	80.6
21	75 • 3	74.7	73.6				90.8	76.0	75.7
22	64.0	72 • 3	81 • 6	90 • 6	91.0	93 • 1	89•3	82.0	71 • 1
23	74.0	83.7	87.6	91.6	88.0	88.2	86.6	88 • 1	66.6
24	80 • 6	86•3	86 • 3	85•6	79.1	84.7	80.9	89.6	71.6
25	77.9	83.5	78.5	79.7	83.2	87.2	83.7	84.7	73.2
26	75.0	75 • 3	73 - 1	81.2	80.1	81.8	79.2	76.8	73.2
27	66.3	74-1	74.3	74.3	79.7	80.3	78.0	76.9	73.3
28	67.5	72.7	69.3	73.8	75.7	77.3	74.2	74.2	70.4
29	62.9	71.1	69.9	73.6	75 - 6	76.3	73.0	72.1	71.8
30	64.7	69.0	69.3	72.3	74.5	74.6		68 • 6	69.6
31	60.8	68.9	67.0	70.6	73.9	73.3		70.5	69.8
32	60 • 1	67.3	66.9	71 • 7	73.9	72.9		66.8	65.8
33	57.8	64.5	63.7	68 • C	70 • 6	69.9	67-1	64.2	62.1
34	56 • 1	65.0	61.5	65.5	68.5	68 • 5	65.5	62 • 3	60.0
35	55.0	59.5	59.5	62.9	65.2	66·7	63.2	58.9	55.9
36	55.0	55.4	56 • 4	60 • 3		63 • 6			55.3
37	55 • 3	61.3	61.0	63 • 6	62.3	62.3	61.0	57.0	55.1
38	55.0	55 • 4	55.6	56.5	56 • 8	58 • 5	55.9	55.0	55.0
39	55.0	55.0	55.0	55.0	55 • 0	56.7		55.0	55.0
40	55+0	55.0	55.0	55 • 0		55.0		55.0	55.0
A	78.2	83 • 6	83.2					85.5	78.9
D	84 • 1	89.4				95.0		98 • 1	83.9
OASPL	92.8	94.9		97.8		100.0	98.7	97.2	92.1
PNL	91.7	96.8		100.9		102.4		99.8	91-7
PNLT	91.7	98 • 8				102.4		99.8	91.7
	•		,					,,,,	1

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 49 60 KT . FLY BY MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-10.0	7 • 0	-4.0	-1.0	0	•5	2.0	5•0	8•0	11.0
17	66•0	67.2	72.9	76.6	76.5	75.7	77.0	81.6	83•1	78 • 8
18	78 • 6	80 • 0	86 • 4	87.6	85 • 3	83.5	80.3	74 • 1	75.9	70.3
19	68•3	70• 5	74.4	72.8	67.6	66.2	67.4	71 • 1	76.6	72.4
20	69•5	70•6	72.3	66.3	73.3	74.8	78 • 1	70 • 4	75.5	73 • 1
21	75 • €	75 • 2	77.0	77.3	83 • 1	83.7	84.5	71.8	65.8	66.0
22	66.0	63 • 4	ú2∙6	75.7	78 • 5	79.4	77.9	77.9	63 • 1	58 • 3
23	65•8	60 • 8	67.0	83.4	83.3	82.2	74.9	75.3	69•5	56 • 5
24	58• 3	58.6	71.3	77 - 1	75 - 1	72 • 9	73.8	72.8	73 • 7	60 - 1
25	62.0	65.3	73 • 4	69.9	76.5	78 • 6	78•9	71.8	72.4	61.9
26	65•5	66•5	70.0	76.5	76•9	76.5	77.1	75.6	68 • 4	64.7
27	65 • 8	64 • 6	64.9	75 • 4	76 • 4	77•7	76•7	72.1	70 • 3	64.6
28	62.5	59 • 1	68 ∙ 6	73•2	75.2	75.9	76.8	72.4	71.0	62-1
29	57 • 3	61 - 1	66•0	73.0	75 • 7	76.3	76.0	72.2	70 • 8	66.2
30	60 • 3	60 • 5	67 • 4	72.2	75.7	76.3	75.3	71.5	68.9	62.6
31	57 • 8	57.5	66 • 1	72.0	74 • 1	74.5	74.2	72.3	71.9	64.0
32	57.0	56.5	65•9	71 • 4	74.0	74.2	71 • 6	67.7	67.0	60.0
33	55.0	55 • 1	63.3	68 • 1	70 • 3	70 - 7	68•9	64.8	61 • 4	55•7
34	55.0	55.0	60.3	65.7	67.6	67•9	67.3	61.8	58 • 7	55.0
35	55.0	55•0	58 • 2	62.8	64.6	65 • 2	64.7	58.2	55•3	55.0
36	55.0	55•0	55•2	59 • 1	60•5	61+1	61.6	56 • 1	55.0	55.0
37	55.0	55•0	55.0	55•8	58 • 4	60.2	61.5	57.2	55.0	55.0
38	55.0	55•0	55.2	57•1	58 • 1	58 • 5	56.7	55•0	55.0	55.0
39	55•0	55•0	55.0	55• 0	55•0	55.0	55•0	55.0	55.0	55.0
40	55.0	55 • C	55.0	55.0	55•0	55.0	55.0	55.0	55.0	55.0
A	69•3	69•7	76 • 6	82.0	84.1	84.5	83.6	80•6	78 • 7	71.3
D	77 • 4	77.5	82.3	87.4	1.68	89.4	88.2	84.7	82.8	77 • 3
OASPL	83 • 8	85 • 4	89.2	93.3	94.3	93.9	93 • 4	91.7	88 • 1	82.9
PNL	85 • 3	85 • 2	90•7	95•4	96•6	96•7	95•8	92.3	90 • 5	84.7
PNLT	85•3	85•2	91.7	95•4	96•6	96•7	95•8	92•3	91.8	86•0

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 50

60 KT. FLY BY MIC. CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-11-0	-8•0	•5•0	-2•0	0	1.0	4.0	7.0	10.0	11.0
17	69•9	71.0	74.7	76.2	74 - 1	74.3	80.7	83.5	78 • 6	77.6
18	81 • 3	82.7	86.2	85.8	81.7	79.6	72 • 1	75.0	71.9	71 • 3
19	72.4	73.1	77.9	73.7	65 • 4	64.9	65.2	76.8	76 • 1	75.0
S 0	71 • 3	70 • 8	74.2	67.7	76.0	78•4	71.6	74.3	74.7	73 • 4
21	75 • 7	75.8	75.1	79.2	84.7	85 • 1	71.7	62.8	65.7	65.6
22	65•9	62.8	ა6∙9	81.7	80.2	78.3	76 - 1	67-1	59.3	59.4
23	64.8	58.0	77.€	87.6	81.0	74.9	73 • 6	70.2	59 • 4	55 • 6
24	58.9	65.7	82.0	83.2	71.8	73.5	68 • 3	72.1	65.3	61 • 1
25	67•9	70.2	78•7	73.0	78 • 7	77.6	71.9	70.9	67.2	64 • 1
26	68 • 8	70•8	72.7	78.7	75.8	76 • 6	72.8	67.0	67.2	65.8
27	66.0	66.2	70.1	75.3	77.4	76.8	70 • 7	71 - 9	64-1	65.0
28	61 • 8	62.5	72.3	75.5	75 • 4	75 • 8	70.2	69.5	67.0	64.1
29	57.8	65•4	69.4	74.2	76.0	75•3	70 • 8	70.9	69 • 1	69.5
30	62.5	60 • 4	68.9	71.9	76.7	75 • 3	69.5	68.9	65.1	63.0
31	57.7	59 • 6	67.1	71.3	74.6	73.9	70-5	71 • 3	65.5	64.5
32	58•0	59.0	65.5	70.7	72.7	71 • 4	66.9	65•3	61.7	58•0
33	55.0	55.7	63•3	67.3	69 • 3	68•5	64.0	60.1	56.6	55.0
34	55•0	55.0	60 • 1	64.0	66•4	66•3	60.2	56 • 4	55.0	55.0
35	\$5•0	55.0	56.9	60.9	63.2	63.0	57.4	55.0	55.0	55.0
36	55.0	55•0	55.0	56.5	59.1	59•3	55 • 5	55•0	55.0	55.0
37	55•0	55.0	55.0	55.0	57 • 6	57•3	55•3	55.0	55 • 0	55.0
38	55•0	55.0	55.0	55•1	55.0	55•0	55.0	55.0	55.0	55.0
39	55.0	55 • €	55.0	55.0	55.0	55.0	55•0	55.0	55.0	55+0
40	\$5.0	55.0	55.0	55.0	55.0	55•0	55• 0	55.0	55.0	55.0
Α	71.0	72.3	79.9	83.7	84.2	83•5	78•5	77.5	74.0	72.8
D	78•7	79•5	85.8	89.3	88.1	87.6	83 • 5	82 • 1	79 • 2	78 • 1
OASPL		88 • 5	92 • 1	94.1	93 • 1	92.2	91.5	88.2	84.6	83 • 4
PNL	86 • 1	87 • 1	93.8	97•5	95.8	95•5	90 • 4	89.9	86 • 6	85•9
PNLT	87.7	88 • 4	93.8	97.5	95.8	95•5	90•4	91 • 4	87.7	87.9

TABLE G-III

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 51 6 DEGREE APPROACH MIC.CENTERLINE(HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-7.0	-5.0	-3 • 0	-1.5	-1.0	0	1.0	3.0	5•0	7 - 0
17	75•0	76.6	77.9	73 - 8	75.2	79 • 1	79•3	83.5	87.2	84•0
18	83 - 6	85 • 1	86 • 6	86.5	86 • 1	84.7	82.6	79.5	80 • 6	78 • 3
19	72 • 1	72.2	75.0	71.9	71.2	70.8	74.9	72.3	79.7	78 • 3
20	72 • 1	73.4	70.9	74.7	78 • 3	84.0	86.4	82.2	76.5	78.0
21	78.6	76.0	72.3	84.7	86.7	90.0	90.9	84.9	75.7	73.1
22	66.9	67.4	81.3	88.9	89.6	90.6	89.8	86.2	80.9	68.4
23	72.2	78.9	88.3	92.8	92.3	89.8	85.2	83.3	83.7	69.2
24	79.7	83 • 4	88.4	87.4	85•8	81.3	79.9	76.0	84.4	75.6
25	79.2	82.9	81.2	77.6	79.6	82.9	82.5	78.3	75 • 1	76.5
				80 • 4						
26	74.5	76.8	74.8		80 • 6	79 • 4	73 • 6	74.2	71.5	74.7
27	67.5	68 • 4	77 • 1	75.8	75 • 8	79.2	78 • 1	76.6		68 • 5
28	67.5	70.5	71 • 3	75.0	75 • 5	76 • 1	76 • 5	73.5	71.3	68 • 3
29	67 • 4	64.7	70 -8	73.6	74.4	75 • 7	76.2	73.0	71.0	70 • 4
30	65 • 1	65 • 5	69.8	71.9	73 - 1	75 • 2		72.1	68.9	67.8
31	61.9	62 • 3	68•8	70 • 4	71 •8	73 • 3	73 • 7	73 - 1	69 • 4	69.2
38	60 • 3	61.5	68 • 2	70 • 1	72 • 5	73.5	71.9	69.0	65•5	65.0
33	56 • 7	58•2	64.0	68 • 5	69.4	69•0	68•8	67-1	63 • 1	61.0
34	55.2	55 • 8	61 • 9	69.0	69.5	66•8	68.3	65.0	60 • 3	58 • 1
35	55.0	55.0	59 • 0	60•9	62•8	64.2	65.3	62 • 1	56.9	55.0
36	55.0	55.0	55∙6	57.2	58 • 5	60.2	61.5	59.8	55 • 3	55.0
37	55.0	55.0	56 • 6	57.0	57 • 7	58 • 5	59 • 7	59.7	55.0	55.0
38	55.0	55.0	56.9	55•3	55.8	56.2	56.6	55.3	55.0	55.0
39	55.0	55.0	55.0	55.0	55.0	55.0	55.4	55.0	55+0	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	78 • 5	81.2	84.6	86.8	86.9	86.8	86.0	82.7	81.4	78.0
D	84.5	87.1	91.0		93.5	93.0	92.3	88.8	87.8	83.8
OASPL	91 • 3	94.0	96.6	98.4	98•3	98.2	97.9	98 • 1	94.4	90.5
PNL	91.7	94.0	98 • 1		101 • 1	100.6	99.8	96.7		91.4
PNLT	91.7	95.4			101 - 1		99.8	96.7	95.6	91.4
	'							,	* W - Q	

TABLE G-II

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 55 85 KT. FLY BY MIC. CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-10.0	-7.5	-5•0	-2.5	~•5	0	2.5	5 •0	7.5	8 • 0
17	78.3	79.3	7 8 • 5	77.8	72.8	73 • 1	77.6	82.9	79 - 7	77+3
18	82.9	82.8	85.5	87.3	85.1	82.7	74.3	72.6	71 • 6	70.8
19	72.2	71.0	73.0	73.1	68.8	67.3	66.2	69.9	73 • 1	72.2
20	69.2	68.3	69.8	68.2	73 - 1	76.2	80.0	68.5	70.9	71.2
21	75.6	74.9	78.6	71.8	83.5	83.9	77.9	64.3	64.0	64-1
22	66.0	65.0	65.2	69.6	79.5	79 • 7	78 • 8	72.2	58 • 4	58 • 3
23	65•3	63 • 1	63.5	81.4	84.3	82.8	13.1	72.9	63.9	61.3
24	60.4.	57.8	69.2	80.5	75.4	74.0	72.2	72.8	70.5	68 • 2
25	56 • 8	63.0	69.3	75.5	77.5	79.3	77.8	65.9	68.7	67.9
26	59.8	67.3	69.7	71.4	78.3	77.7	74.4	70.9	65.5	66.1
27	64•0	66.7	65.8	75.7	75.2	76 • 4	75.5	69.8	61.6	60.2
28	64.8	63.3	65.5	71.3	73.9	74.7	74.2	69.7	66.5	64.9
29	61 • 9	59•3	68.3	72.7	75.5	76.6	74 • 1	68.7	64.6	64.7
30	57.9	62 • 8	66.8	69 • 1	74.5	76 - 1	73.5	66.7	65.2	64.6
31	-60 • 1	59.2	65.1	67.7	73.1	74.4	72 • 1	67.1	67 • 1	64.6
32	56•3	57 • 4	66.8	67.6	72.5	73.5	68.7	64.5	61 • 4	59.8
33	55.0	55.2	66.0	66.0	71.9	72.0	66 • 5	59.3	56•4	55.8
34	55•0	55•0	60•6	62.8	68.0	68.0	63•6	56.2	55.0	55.0
35	55.0	55.0	56.4	58•4	62.7	63.5	60.5	55.0	55.0	55.0
36	55.0	55+0	55•0	55.0	58 • 7	59.5	57.2	55.0	55.0	\$5.0
37	55.0	55.0	55. 0	55.0	56.2	57.5	56 • 1	55.0	55.0	5 5• 0
38	5 5•0	55.0	55.0	55•4	55•4	55.7	55.0	55.0	55.0	55.0
39	55.0	55.0	55.0	55.0	55.0	55.0	55•0	55.0	55•0	55•0
40	55.0	55• 0	55.0	55.0	55.0	55.0	55•0	55.0	55.0	55.0
Α	69.9	70 • 6	76.1	80.8	83.8	84.4	82.0	76.1	73.3	72.0
D	78.2	78 • B	82.6	86 • 4	89.2	89.3	86•3	31 • 1	78 • 8	77.9
OASPL	88•6	91.0	92.1	95.9	94.0	92.8	93∙8	89•4	84+3	83.3
PNL	86.3	86 • 5	90 • 2	93.7	96.7	96•5	93•5	88.7	86•4	85•2
PNLT	86•3	87.7	90.2	93•7	96.7	96.5	93.5	8 8 • 7	87.7	85.2

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 66 85 KT. FLY BY MIC. CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

							•			
BAND	-6.5	-4.5	-2.5	-•5	0	1.5	3.5	5•5	7.5	9.5
17	74.0	77.4	78.5	75.2	75.7	74.5	76.6	82.4	80.5	77.6
18	81.1	84.8	87.9	89.1	88 • 3	81.2	70 - 4	71.9	74.1	70 • 1
19	71.7	74 • 1	76.8	75.0	72 • 1	65.6	63.3	71.9	78.3	75.9
20	71.5	72.9	74.8	70.7	74.1	79.5	76.5	69 • 6	76.9	76.8
21	76.1	80 • 8	80.3	82.3	86.2	87.4	75.8	60 • 6	64.7	67.2
22	68.4	68 • 1	67.0	77.9	79.8	77.8	77.4	70.6	62.3	66.8
23	68.5	68 • 4	74.0	85.9	86.2	78.1	74.7	72.8	63.8	59.9
24	61.3	60 • 2	75.2	80 • 7	78.8	75.3	72.4	74 - 1	70.8	60+3
25	58 • 1	66.7	74.4	74.5	77.4	78.6	76.6	69 • 8	70.8	66•6
26	64.5	70.4	73.1	77.4	78 • 4	78 - 4	75.2	71 • 8	70.2	69.8
27	67.9	70 • 1	70.2	76.2	76.9	77.7	75.4	73.6	63.9	68.9
28	68 • 1	64.6	70.6	74.6	75.5	76.5	73.7	70.9	67.1	64.4
29	64.7	63•9	68.6	74.9	76.2	76.7	73.1	71 - 6	68.0	64.7
30	62.4	65.7	69.7	7 5.2	76.2	76.6	72.5	69 • 8	66.2	64.5
31	62.0	61.5	67.6	73.8	74.4	75.7	74.6	69 • 5	69.1	63.2
32	59.3	59•6	65.7	72.9	73.9	73.7	69 • 1	65.5	62.0	57.0
33	55.9	56.0	63.3	70.0	70.8	69.9	66.1	60 • 8	56.7	55.0
34	55.0	55.0	60.8	66.7	67 • 4	66.8	63.7	57.6	55.0	55•0
35	55.0	55.0	58 • 4	63 • 4	64 • 1	64.1	60.0	55.0	55.0	55.0
36	5 5•0	55• 0	55.3	59.2	59.9	59.8	57.2	55.0	55.0	55 . 0
37	55.0	55.0	55.0	55.2	55∙8	59.2	56.7	55.0	55.0	55+0
38	55.0	55•0	55•5	55•8	56+1	55.8	55.0	55.0	55.0	55.0
39	55. 0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
40	55.0	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	72.7	73.7	78.7	83•7	84.7	84.8	81.7	78 • 8	75.3	72.9
D	79.3	81 • 0	84.5	89 • 1	90•0	89.3	86.0	82 • 6	80.6	78 • 8
OASPI.	88.3	91.9	95.5	97.3	96•9	92.9	92.5	87.7	86.1	83 •8
PNL	86 • 7	89•4	92.6	97.4	98 • 1	97.1	93.2	90.2	88.2	86.6
PNLT	86.7	90 • 4	92•6	97 • 4	98 • 1	97 • 1	94.5	80.5	89.9	86 • 6

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S~64

with truck

OCTOBER 28 1976

EVENT 67 95 KT . FLY BY MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-4.5	-2.5	-•5	0	1.5	3.5	5•5	7•5	9•5	12.0
17	81.2	81.9	74.7	75.2	79.3	83.0	82.1	80.3	76 • 7	75 • 3
18	82.8	88 • 3	88.9	86.4	78 • 3	71.8	73.0	71.8	72.6	70.8
19	72.3	76.4	74.6	70.4	67.3	70.5	77.3	77.6	78 • 0	77.5
80	69+3	74.2	74.6	76.4	81.8	71.2	77.8	78 • 8	79.5	79 - 8
21	75.2	78.6	87.1	87.8	84.3	68 • 7	68 • 4	69.5	69.7	72.3
22	65.7	68 • 0	78 • 8	80.5	79.0	77.4	64.4	68.2	70.2	71.0
23	60•9	76.0	87.7	86.6	74.5	76.3	69.5	59 • 1	67.1	71 - 1
24	60.5	74.7	79.7	77 • 1	77.7	76.0	76.3	64.9	65.2	72.5
25	65.5	74-1	78.5	80.8	80.3	72.8	74.9	69.6	62.3	70.9
S 6	69•4	72.7	80.2	79.8	79.9	75.7	72.7	72.3	67.0	65.4
27	69•0	71.3	78 • Ž	79.2	79.2	73.9	70.6	70.9	68.9	63 • 3
88	61.5	72.3	76.5	78 • 6	79.4	73.6	73.4	66.5	68.0	65 • 1
29	65.5	70.2	76.0	77• 5	78 • 7	73.6	70.8	68.9	64.3	66 • 4
30	63.6	70 • 4	76 • 1	77•7	77.6	72.2	70.8	67.2	62 • 4	64.6
31	61.9	68•1	74.4	76.3	76.8	72.6	71.7	69.0	65.6	63.7
32	58•9	67 - 1	74.4	76.0	74.9	68.7	66.8	63.5	58•2	55.8
33	55.8	63 • 8	70.7	71.7	71.9	64.3	61.1	57.5	55.0	55.0
34	55.3	62.4	68•7	69.5	69.4	61.5	57.2	55 • 6	55.0	55.0
35	55•Q	59.8	65 • 6	66•5	66.0	57.7	55.0	55.0	55.0	55.0
36	55•0	56 • 1	61.7	62.6	62.9	55•3	55.0	55.0	55.0	55.0
37	55.0	55.0	57 • 3	58 • 9	59.8	55.0	55.0	55 • 0	55.0	55.0
38	55.0	57.0	57 • 9	58 • 7	56.9	55.0	55.0	55.0	55.0	\$5.0
39	55.0	55.0	55.0	55.2	55.2	55•0	55.0	55.0	55.0	55.0
40	55•0	55•0	55 • 0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	72.8	79.3	85.9	86.5	86.4	81.3	79•3	75.9	73.0	73.8
D	80 • 6	85∙€	91 - 3	91.7	90•7	85 • 1	83.8	80.7	79•4	80.3
OASPL	93.0	96.9	97•7	96•6	94.0	89•6	87.4	85•5	84.5	84.4
PNL	87.3	93.2	99•1	99.2	97.8	92•6	91 • 1	89.0	88.0	88.5
PNLT	87.3	93.2	99 • 1	99.2	97.8	92.6	91 • 1	90.2	89.8	88.5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 68 95 KT . FLY BY MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-7. 0	~ 5•0	-3•0	-1.0	0	1.0	3.0	5•0	7•0	8 • 5
17	84.0	87.2	8 7 • 8	7 6•0	70 • 7	76.0	79•8	84.0	81.8	78 • 5
18	83.5	86.3	89.7	87.8	83.0	79∙0	71.0	72.7	72.2	72.2
19	75 • 1	77.4	79.4	72.0	67.3	68.9	66.7	73.9	76.3	75 • 3
20	72.4	72.7	72.6	70.4	76 • 1	77.6	74.9	73.2	74.8	76.5
21	73.8	77.7	75.6	83.9	85.7	83.7	72.5	61.7	64.6	69.8
22	66 • 6	69.3	68.7	79.4	80 • 4	78 • 7	79.2	66.1	63.9	66.5
23	65.7	64.0	79.9	86.6	84.2	76.6	76.2	72.2	61.0	60.6
24	6 0 • 3	61.3	81.1	80.0	74.9	76 • 1	73.3	74.2	68 . 7	60 • 3
25	56•6	67.0	80 • 4	77.0	80 • 6	79.5	76 · 3	71.8	72.5	67.7
26	62.5	71.0	76.0	78•2	79.0	79.5	77.1	68.3	72.5	71.3
27	66.7	70.5	73.3	75.5	79.6	80 • 1	75 • 1	71.5	67.8	70.3
28	67•2	64 • 4	74.6	74.9	77•5	79•0	74.0	69.8	66.9	67.0
29	62 • 0	65 • 4	70 • 7	75.3	78 • 6	7 8 • 3	74.1	69.8	69.9	66.4
30	63.5	64 • 6	69 • 1	74.9	78•0	78 • 6	73.1	67.7	67.0	63.9
31	62.9	63.5	68 • 4	73.6	76.5	77.1	73.2	69 • 1	67.5	64.6
32	58•2	60 • 9	66.5	72 • 4	75 • 0	74.3	69.3	66•0	64.1	60 • 1
33	55 • 1	57.6	63 • 4	69•4	71.7	71 .6	66 • 1	61.0	58.7	55 • 6
34	55.0	55 • 1	61.7	66•6	68 • 4	68 • 5	63•4	57.4	55•3	55.0
35	55.0	5 5•0	58•4	63.3	65 • 4	65•4	59 • 4	55 • 1	55.0	55.0
36	55.0	55•0	55•4	59•3	61.5	61.5	56.4	55•0	55.0	55.0
37	55.0	55.0	55•0	55∙6	59 • 4	60 • 0	55•3	55.0	55.0	\$5•0
38	55.0	55.0	55.9	57.6	58 • 0	56 • 1	55.0	55.0	55.0	55.0
39	55.0	55.0	55•0	55.0	55. 0	55. 0	55.0	55•0	35.0	55.0
40	55.0	55.0	55•0	55.0	55.0	55•0	55.0	55.0	55.0	\$5 • 0
A	71.7	74 • 4	81 • 5	84.2	8 6• 5	86•2	81.9	77.5	76-3	74.2
D	80 • 1	82.8	88.0	89.8	90•8	90.2	86.2	85.4	81.0	79 • 6
OASPL	91.7	95•B	99•1	97.8	94.6	92•8	92.0	87•6	85.5	84.0
PNL.	87.5	90 • 1	94.8	97.8	97.9	97.3	93.5	89•6	88.9	87.6
PNLT	87.5	90 • 1	94.8	97.8	97.9	97 •3	93•5	89•6	88.9	87.6

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 69 95 KT. FLY BY MIC. CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-4.5	- 3•5	-2.5	-1.5	-•5	o	•5	1 • 5	2•5	5•0
17	80.7	79.0	77.9	74.9	73.8	73+8	76 • 4	79 • 6	77.2	82.6
18	85.3	86.4	88 • 4	89.6	87.2	83.9	80 • 5	76.3	69.9	71 • 7
19	74.3	75 • 4	75.8	74.9	70 • 0	67.6	67.5	66.3	66.0	73.7
20	71.9	73.0	72.1	68.6	75.3	77.6	78 • 8	81.2	76.8	74.7
21	77.0	77.3	74.2	81.1	86.4	87.0	85.9	80 • 6	74.9	62.8
22	66.3	65.8	66.9	74.3	80.0	80.6	80 • 1	80 • 7	79.0	61.6
23	60.7	67.3	80 -1	86.3	86.3	84.1	81.1	74.2	75 • 6	69 - 1
24	62.0	70 - 1	76.8	80.4	77.6	75.3	76.0	76 • 1	72.9	73.4
25	66.4	70 • 9	73.8	73.4	80.3	80.8	0.08	79.7	76.6	72.6
26	69.0	70.2	69.8	78.5	80.3	79.4	78.7	78 • 4	75.9	68 • 8
27	68.0	65.5	73 - 7	78.0	80 - 3	80 • 8	80 • 1	79.2	74.8	71.2
28	62.9	67 • 7	70.8	75.1	77.8	78 - 1	78 • 2	77.6	73 - 4	68.9
29	65.2	65.8	70.6	74.9	77.8	78.3	78 • 1	76.9	73.5	68 • 6
30	64 - 1	65.9	70.2	74.5	77.8	78.2	78.3	77.6	72.8	66.5
31	63 - 1	63.6	68 • 4	73.0	76.2	76.5	77.0	77.9	75.3	67.0
32	60.3	61.5	66•3	72.4	75.2	75.5	75.3	74.0	70 • 1	62 • 4
33	56.7	58 • 4	62.6	68.4	71.4	72.1	71.8	71 • 3	66.6	57.8
34	56.1	57.7	63 • 4	67.2	68.9	69.6	69.6	69.5	64.7	55.5
35	55.0	55 • 4	60•6	64.0	65.8	66.8	67.0	65 • 4	60 • 4	55.0
36	55.0	55.0	56.2	58.9	62.0	62.9	63 • 1	61.5	57.0	55.0
37	55.0	55•Q	55.0	55 • 4	57.8	59.0	59.8	58 • 8	55.3	55.0
38	55.0	55.0	57.9	58•8	58.0	58 - 4	58 • 5	56 • 4	55.0	55 • 0
39	\$5.0	55.0	55.0	55.0	55.0	55 • O	55.0	55.0	55.0	55.0
4Ç	55.0	55.0	55•0	55•0	55.0	55.0	55.0	55•0	55•0	55•0
A"	72.8	74.9	79•5	83•9	86.5	86.6	86.3	85•9	82.5	76.2
D	80.7	85.5	85 • 8	89.5	91.8	91.6	90.9	90.2	86.9	81.2
OASPL	93.0	94.3	96.5	97.5	96 • 1	94 • 7	93.3	92.0	89.8	86•0
PNL	88.8	90.2	93 • 1	97.5	98•9	98.4	98.0	97.0	93•7	88•6
PNLT	88.8	90 • 2	93 • 1	98 • 1	98•9	98 • 4	98.0	97.0	94.9	88•6

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64
With truck

OCTOBER 28 1976

EVENT 70 3 DEGREE APPROACH MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-8+5	-6+5	-4.5	-2:5	5	0	1 = 5	3 = 5	5 = 5	7 - 5
17	73.2	74.4	76.2	77.0	81.7	82 • 4	81.8	84.7	87.3	85.9
18	85 • 7	86.3	88.0	88.7	87.7	85.8	81.9	77.3	78.9	76.4
19	74.3	75.7	79.1	77.1	70.2	68+9	74.0	71.3	78 • 4	80.8
20	73.7	75 • 4	76.0	71.6	80.9	83.0	81.2	77.1	75.7	78.2
21	79.3	81.2	78.9	75.5	90.0	91.2	87.0	77.5	64.8	71.5
32	73.5	72.0	68.3	84.3	91.5	91.3	83.8	82.3	71.3	63.6
23	70.3	69.0	78.2	88.8	89.2	88.0	77.1	81.0	75 • 1	65.2
24	70.0	78 • 1	83.7	86.6	82.4	81.5	78 • 7	75.3	77 • 1	71.7
25	74.1	79.4	82.8	78.8	85.0	85.9	81.7	76 - 1	74.4	73.0
26	77.0	77.8	79.0	78.6	83.0	82.2	80.6	77.5	71.9	70.8
27	72.9	74.9	70.6	79.0	82.4	83 • 1	79.3	74.9	74.7	65.6
28	66 • 1	68.2	73.7	72.6	77.8	79.5	78.7	73.8	71.9	70 • 1
29	65.9	71.4	69.5	72.7	76.8	77 - 7	77.3	74.5	73.7	70.9
30	65 • 8	66•3	69.8	71.7	76.3	77.5	76.6	73.0	71.9	70 - 7
31	61.7	64.8	67.8	69.6	74.8	75.5	76.0	76.2	74.7	70.9
32	59.0	62 • 4	65.8	69.1	73.3	73.7	73.6	69.9	69 • 1	66.8
33	56.7	59•3	62 • 4	65.5	70 • 4	70.7	70.0	67.9	65 • 2	61.9
34	55∙ଥ	56.8	59.7	62.6	67.3	67.9	68.7	64.7	61.0	56.7
35	55.0	55.5	57.3	59+6	64.5	65 • 4	66.3	60.8	56.3	55.0
36	55.0	55.0	55.0	56.2	61 • 1	61.7	62.8	58.5	55.0	55.0
37	55.0	55.0	55.0	59.2	59•7	61.0	63.0	59.9	55 • 4	55.0
38	55.0	55.0	56.2	60.2	57.4	58.3	59.2	55 • 3	55.0	55.0
39	55.0	55•0	55.0	55.0	55 • 4	56.0	58.5	55.0	55.0	55.0
40	55.0	55.0	55.0	55.0	55.2	55 • 4	55 • 4	55.0	55.0	55.0
A	77.0	79.9	82.6	84.9	87.9	88 • 2	85.9	83 • 1	81 • 4	78 • 4
D	83 • 1	85 • 5	88 • 4	91.3	93.8	93.9	91.0	88.2	85.7	82.9
OASPL	90.9	92.3	95.0	97.8	99.2	99.2	99.3	96.2	91.9	89.5
PNL	91 • 3	93.0	95.5	98.5	101.2	101.4	98.3	95.2	93.2	90.5
PNLT	91.3	94.4	96.7	99.0	101.2	101.4	98 • 3	96.8	94.6	90.5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT 67 95 KT . FLY BY MIC . CENTERLINE(SOFT)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

I										
BAÑD	-4.0	-2.5	-1 •0	0	•5	2.0	3 • 5	5•0	6.5	8.0
17	79.9	80.0	77.5	75.2	74 • 6	79 • 1	78 • 4	80 • 3	79.0	77•8
18	82.7	86.3	89•5	88.9	86.8	79.4	69.6	71.5	70.6	71.0
19	72.0	75. 0	75.3	72.3	68 • 8	66.5	68.0	73.6	75.5	75.6
20	66.9	69.3	66.9	74.8	78 • 4	80.7	73.2	72.2	75.5	77.1
21	70.6	72.2	80.8	86.8	89.2	85.7	74.0	62.7	65 • 4	67.0
55	60.2	64.7	74.3	78.9	79.8	80.6	77.8	68.7	61.6	65•1
23	66•5	74.8	85•6	86.6	84.8	75.7	77.4	73.7	67.9	60.3
24	66.5	74.7	80.2	77.3	75 • 4	76.8	74.0	76.2	73.3	66.1
25	66.7	73.6	74.8	79.3	80.9	80.0	73 • 6	73.3	73.5	68 • 6
26	67.5	69.3	79.3	81.0	79.5	77 • 3	76.4	70.9	73.3	69.8
27	62.0	70 • 4	78•9	79 • 4	79.7	78 • 3	74.4	73.6	67.4	67.2
28	62 • 1	71.2	75-1	77.6	78 • 5	77 • 3	73.4	72.0	72.1	64.9
29	62.6	67.3	73.4	76.7	77-5	76.5	73.2	72 - 5	68 ÷ 4	66 • 4
30	59.5	68•6	73.5	76.3	77 • 2	75•9	71.8	71.0	68•2	62.7
31	58•3	65.7	71 • 4	74.6	75 • 7	76 • 6	72.0	70 • 8	67.7	65.0
32	56. 8	64 • 1	70 • 2	73.5	74.4	72.6	68.2	67.1	62.6	57.8
33	55.0	60 • 1	66•7	70.3	71.0	69.2	64.4	62.1	56.7	55.0
34	55.0	58 • 4	64 • 1	66•6	67.7	66.2	61 • 4	58 • 7	55.0	55.0
35	55 • 0	55·5	60•7	63 • 1	64.4	63 • 1	57.6	55.0	55.0	55.0
36	55.0	55 • O	57.0	59.7	60 • 4	60 • 1	55.3	55.0	55.0	55.0
37	55.0	55.0	55.0	55• 5	56.7	56.8	55.0	55.0	55.0	55.0
38	55 • 0	55•0	58•0	56.7	56 • 4	55.0	55.0	55.0	55.0	55.0
39	5 5• 0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
40	55.0	55 • 0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	70 • 3	77 • 5	83.5	85.8	86.3	84.6	80.9	79 • 4	77.0	72.8
D	73.5	83 • 0	89.0	90•8	90•9	89.0	85.0	83.4	81 • 4	78.2
OASPL	91.1	94 • 5	97.2	96•8	95•9	92 • 1	89.5	87.3	85•6	83.6
PNL	86•5	91.0	96•8	98•5	98•6	96.6	92.7	90.9	89.4	86.9
PNLT	86.5	91 • 0	96•8	98•5	98•6	96•6	92.7	90.9	90•8	88.5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 68 95 KT • FLY BY MIC • CENTERLINE(SOFT)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-5.5	-3.5	-1.5	0	•5	2.5	4.5	6.5	8 • 5
17	85.1	86 • 4	77 • 1	72.4	73 • 4	75 • 9	wà n		and a
18	84-2	86.6	87.7	83.8	81.3	68.9	80.9	77.5	75 • 0
19	74.6	77.2	73.8	67.8	68 • 4	61.7	71.5	68 • 4	69 • 8
20	69 • 6	71 • 1	67.7	76.8	79 • 1	76.5	69.3	74.0	73 • 8
21	70.2	72.4	81.7	88.0	88 • 5	76.1	67.7	71.9	75.0
22	61.4	67.5	77.9	79.6	79.3	77.0	61.2	61 • 8	64.2
2;	62 • 3	80.0	86.3	83 - 1	79.3		70.9	59 • 4	61 • 7
24	64.8	79.2	81.0	74.8	75.9	73.9	72.9	66•3	59 • 1
25	66.0	79.2	75.5	79.9		72.9	72.9	71 • 4	65•5
26	67.7	74.4	78.0		79.3	76-8	67.7	72 • 3	68 • 7
27	65 • 3	73.4		78.4	78.0	75 - 1	71 • 7	71 • 0	70.9
28	61-5		76.0	79.6	79.4	76.8	71 • 6	65•2	66.6
		74+0	73 - 1	77 + 6	78 • 0	75 - 1	67-8	69.0	62•4
29	63 • 1	68.9	72.2	77 - 1	77.7	74.0	69 • 3	64.8	65•5
30	61.5	69 • 1	72.4	76.5	77 - 1	72.8	68•0	65•6	63•7
31	60 - 2	66 • 3	71.4	75 • 1	75.4	71 • 7	67.4	65.8	63.7
32	57.5	64.9	69.8	73.6	73.6	68 • 3	64 • 1	60•9	58 • 0
33	55 • 1	60 • 9	66•5	69•6	69 • 5	64.8	59•4	55•7	55•0
34	55.0	58 • 5	63•6	66.7	67•0	62.5	56 • 1	55.0	55.0
35	55.0	55.4	60.6	63.2	63.3	58 - 7	55.0	55.0	55.0
36	55.0	55.0	56•4	58.9	59 • 3	55•9	55.0	55.0	55.0
37	55.0	55.0	55•Q	56•6	57.2	55.2	55.0	55•0	55.0
38	55•0	55.0	55.0	55.1	55 • 1	55 • 0	55.0	55.0	55.0
39	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
Α	70•9	80.3	82.9	85.3	85 • 3	81.3	76.5	74.7	72.5
D	79•7	86 • 1	88.8	89.8	89 • 4	85 • 4	80.8	79.3	77.7
OASPL	92.9	97.0	97 • 7	94.9	93 • 3	91.4	86.9	83.8	81.9
PNL	87.6	93.4	96.7	97.6	97.6	93 - 1	88.8	87.5	86.6
PNLT	87 • 6	93 • 4	96.7	97.6	97.6	93 • 1	88.8	88 • 8	86.6
								*	-

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 69 95 KT. FLY BY MIC. CENTERLINE (SOFT)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-4.5	-3.0	-1.5	0	1.5	3 • 0	4.5	6•0	8•0
17	79.6	78.0	75.2	74.0	78 • 3	77 - 1	81.0	79.2	77.1
18	84.8	86.3	89.3	85.2	76.6	68.9	69.8	71.0	71 • 1
19	73.6	74.9	74.0	68 • 4	65 • 4	65.5	70.8	73.8	75 • 6
20	68 • 1	69.0	67.6	79.2	79.9	70.8	69.9	73.4	75.6
21	69.8	71.0	82.6	89.2	81.8	73.0	62.2	62.0	65.9
82	60 • 1	64.1	75 • 4	80.3	79.5	78.0	69.7	61.3	63.2
23	67.1	76.2	85.5	82.5	74.1	75.6	71.8	66.0	60.2
24	67.1	75.4	78.2	75.2	76.2	72.2	73.6	72.6	65 • 6
25	67.3	73.0	74.9	80.6	79.2	72.2	70.3	73.0	68 • 5
26	66.4	67 • 1	80.2	79.2	77.4	75 • 1	68.7	71.0	69.3
27	61.7	67.3	77.4	79.9	77.6	72.0	70 • 7	66+3	66 + 1
28	63.0	66.3	74.8	78 - 1	76.1	71 - 4	67.1	69.0	62 • 1
29	61.3	65 • 1	72.4	78 • 1	76-1	71.4	67.5	65.3	64.6
30	60 • 4	65.5	73 • 4	77.4	75 • 1	70.4	66.3	66.5	61.8
31	58.8	63.8	70 • 7	75.8	76.2	71.6	65.6	67.5	62.8
32	56.9	61.7	69.4	74.4	71.3	67.3	61.7	60.7	56 • 4
33	55.0	58•5	66 • 4	70.7	68.0	63.8	57.1	55.8	55.0
34	55.0	57 • 6	64 • 1	67.9	65.3	61.5	55.3	55.0	55.0
35	55.0	55•7	61 - 1	64.2	62.0	57.2	55.0	55.0	55.0
36	55.0	55.0	56 • 8	60 • 3	58 • 1	55 • 1	55.0	55.0	55.0
37	55.0	55•0	55.0	56.9	55 • 7	55.0	55.0	55.0	55 • 0
38	55.0	55.0	55 • 6	55.9	55.0	55.0	55.0	55.0	55.0
39	55.0	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
40	5 5•0	55.0	55•0	55.0	55.0	55.0	55.0	55.0	55 • 0
A	70.4	75.5	83 • 4	86.2	83.7	79.9	75 • 4	75.3	71.7
D	79.0	82.8	88 • 8	90.7	88.0	84.3	80.0	80.0	77.4
OASPL	91.5	94.2	96 • 7	95.0	90•6	88.0	85.4	84-2	82.4
PNL	87.5	90.2	96 • 6	98.5	95•4	91.5	88.3	88.0	86.2
PNLT	87.5	90.2	96 • 6	98.5	96.4	91.5	88.3	89.3	87.4

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 80 105 KT. FLY BY MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-6.5	-5.0	-3 • 5	-2.0	 5	0	1 • 0	2•5	4.0	5•5
17	79.0	80 • 4	79.8	77.0	76•5	77 - 1	82.7	84+5	74.3	74.8
18	82.3	84.8	88 • 1	88.4	87.0	88.0	87.7	78.5	72.2	70.5
19	73.7	76.7	78.5	78 • 1	76-1	75. 8	74.9	74.5	75.5	73.1
20	71.8	75.0	75.6	76.6	73.6	70.6	68.9	72.4	73.4	74.5
21	76 • 1	78.0	79.9	77.8	69.3	68 • 1	68.4	64.8	63.7	65.8
22	68•0	68•5	69.0	66.0	72.1	73.9	76.9	74.5	66 • 1	60.2
23	65•7	62 • 3	60•9	72.2	79•4	80.1	80.5	80.6	71.5	62.6
24	59.0	59.6	67 • 5	79.2	82.2	82.4	83.5	80 • 4	74.8	67.0
25	56.0	63 • 8	71.8	79 • 1	81 • 4	79.1	76.8	75.4	75 • 4	70 • 6
26	62.3	67 • 4	74 • 4	76.9	76 • 7	79.8	81.1	79.5	70.6	70 • ৪
27	64.6	67 - 1	68•6	73 - 1	85 = 0	83.5	82.5	80.5	73 • 6	66.8
28	63 • 4	62•3	67 • 1	76. 5	76.7	77.6	79.6	76 • 1	72.9	67.3
29	59•9	63.8	71.3	75•3	77.4	78•0	77.8	75 • 3	71 - 7	67 • 3
30	60.5	66 • 1	68•2	76-1	77 - 1	78.5	77.8	74.0	68•6	64.3
31	58 • 1	61.8	67.4	73.3	76.2	77.0	76 • 5	73 • 4	68 • 1	62.5
32	57.0	60.2	65•2	71 - 1	73.6	74-0	72.5	69 • 8	64.0	60 • 1
33	55.0	57 • 4 .	61 • 6	67.0	70 • 4	71.0	69•8	66 • 1	61.2	55•6
34	55.0	55•8	60 • 1	64.6	66 • 1	66.9	65•7	61.5	57.0	55.0
35	55.0	55.0	56.2	60 • 1	62.3	63.2	62 • 1	57 • 1	55•0	55.0
36	55.0	55.0	55•0	56 • 4	57.9	58 • 7	58.0	\$5.0	55.0	55.0
37	55.0	55.0	55•0	55•Q	55 • 8	56.3	56.0	55.0	55.0	55.0
38	55.0	55.0	55•4	55•8	55•9	55 • 1	55•0	55.0	55•0	55.0
39	55.0	55•0	55•0	55.0	55.0	55.0	55.0	55. 0	55•0	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55•0	55.0	55.0	55•0
A	69.6	72.9	77 • 8	83.7	85.8	86.7	86.5	83 • 6	78•8	73.3
D	78.3	80.2	83.7	87.9	90+0	90.3	90 • 4	87.9	88 • 8	79.0
OASPL	88 • 1	89.8	91 • 4	91 • 4	92.1	92.7	93.2	91.3	87.1	83 • 4
PNL	86.3	88.7	91.9	94.9	97.3	98 • 1	97•7	95 • 4	90•3	87.1
PNLT	86•3	89•7	93•2	94.9	97•3	98 • 1	97.7	95+4	90•3	87.1

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

SIKURSKY 5-64

without truck

OCTOBER 28 1976

EVENT 81 105 KT. FLY BY MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	~6. 5	-5•0	-3.5	-2•0	-•5	o	1.0	2.5	4.0	6•5
17	78.9	79.4	78.0	75.0	78 • 6	81.3	84.6	83.2	72.7	76.6
18	83.4	87.0	89 • 4	38 • 5	88 • 4	88.7	85.3	74.5	71.7	69.5
19	74.5	77.3	77.6	76.9	74.9	74.2	72.6	73.9	72.3	74.3
20	72.5	74.6	75 • 6	74 - 4	72.0	69.8	67.5	73.6	73.6	73.4
21	79.7	83.6	82.9	74 - 1	68.9	69.7	68 • 3	64.8	63.5	66+5
22	69.7	72.0	70.0	67 • 1	74.8	76.5	78 • 8	71.6	61.4	62.9
23	68 • 1	66.3	64.2	75 • 4	80.3	80.6	80.2	78.5	70.3	56.9
24	61.9	62.7	74.8	79.5	82.7	33.2	82.1	78 • 6	72.5	61.0
25	57.3	66.9	74.7	79.7	78.0	76.5	74.7	75 • 2	74.7	67 • 1
26	64 • 4	70.5	78.3	76.3	79.3	82.2	82.4	76.7	69.2	70.0
27	66.2	69.9	73.6	78 • 1	82.6	83.2	81.0	80.9	73.9	67.7
28	65.3	67.4	73 - 1	77 • 8	78 • 5	80 - 1	79.5	75.9	72.7	63-9
29	62.5	66.2	75.3	77.3	78 • 6	79.6	77.0	76.2	70.8	67.4
30	62.7	70 • 1	72.8	76.2	79 - 1	79.6	75.9	74.4	68.7	62.6
31	62 • 1	64.1	70.7	74.5	77 • 3	78 . 7	76 • 3	73 ∗8	68 • 6	63.3
32	58 • 6	63 • 4	68.9	72.5	74 - 1	75.0	72.5	69.5	64.4	60.3
33	56•3	59.4	65 • 6	68.9	70 - 7	71 • 6	68.9	65•6	60.9	56 • 1
34	55 • 1	58 • 6	64.4	65 • 1	67-1	67.6	64.8	61.8	56.8	55.0
35	55.0	55•6	59+2	60 • 6	63 • 6	63.9	60.6	56.1	55.0	55.0
36	55.0	55.0	55•4	56 • 8	58•9	59.2	56.6	55.0	55.0	55.0
3 7	55•0	55. 0	55.0	55.0	56 • 5	56.5	55.2	55.0	55.0	55.0
38	55.0	55.0	55 • 4	57.0	55.2	55.2	55.0	55.0	55.0	55.0
39	55•0	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
40	55•0	55.0	55+0	55.0	55 • 0	55.0	55.0	55.0	55.0	55.0
А	71 • 8	76.2	81.7	84.3	86.6	67.7	86.0	83.5	78 • 4	73.0
D	80 • 0	83.0	86.8	88 • 4	90 • 5	91.4	89.9	87.0	82.4	78 • 1
OASPL	59 • 1	91.2	92 • O	91.4	92.6	93.1	92.3	89.6	85.2	82.0
PNL	83 • 4	91.6	94.3	95.5	97.9	98•6	97.3	95 • 1	89.8	86.4
PNLT	88 • 4	93.2	94.3	95.5	97.9	98.6	97.3	95.1	89.8	87.8

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 80 105 KT. FLY BY MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-7.0	-5.0	-3.0	-1 -0	O	•5	1.0	3.0	5•0	7.0
17	82•6	84.6	79.6	75•5	78•0	80 • 1	82.4	81.5	78.6	77.0
18	81.4	84.3	87.9	88•5	88 • 1	87 • 6	86•3	73.9	70 - 1	69 • 1
19	71.6	73.8	76.9	74.8	72.8	73.0	74.8	72.9	72.8	72 • 3
20	67.9	72.8	73.8	75.2	73.8	73 • 1	71.8	76.2	76.0	72.6
21	74.4	77 • 7	73.9	70.2	65•9	65•C	65•0	65.9	64.7	67.5
22	66•4	67.3	66•9	67 - 1	72.0	73.2	74.2	65 • 1	58 • 7	67.0
23	58.7	65.5	63 • 1	74.7	76.4	77 • 1	77.2	72.6	60.2	59 • 1
24	59 • 4	60•6	71 • 7	78 • 7	80 • 3	80•6	80 • 3	76•8	68 • 1	57.9
25	58•3	65.7	76.7	79 • 1	78•6	77 • 7	76.4	75• 2	70 • 3	64.5
26	60 • 4	72.8	78 • 7	74 - 4	76.3	77.8	77.4	70.0	69•3	69 • 1
27	62 • 8	74.3	74.2	7 6•8	79.9	30-2	79-0	75.8	62 • 6	66 • 2
28	63.0	70.1	72.0	75.7	74.8	74.8	74.2	71.2	66.4	60.0
29	60.2	66 • O	74.6	75.2	76.2	75•7	74.6	72.2	63 • 3	68 • 8
30	59.5	70.5	73.4	73.3	75. 8	75.6	74.5	69•3	62.6	61.6
31	59•6	65•4	71 • 1	71.5	73 • 3	73.5	72.4	68•6	60 • 4	60.9
32	55•9	63 • 4	69.8	69.3	70.9	7 ∩•9	69•3	65•6	58 • 8	57 • 7
33	55.0	58•2	65•6	66.5	69.3	68.8	67.8	62.1	55 • 1	55.0
34	55•0	55.2	63.2	63.2	64.2	63•6	62.3	57.4	55.0	55.0
35	55.0	55.3	59 • 1	59.2	60 • 7	60.3	58.9	55.0	55.0	55.0
36	55.0	55.0	55.3	55.8	56.5	56 • 1	55.2	55•0	55 • 0	55.0
37	55.0	55.0	55.0	55.0	55•4	55•3	55.1	55•0	55.0	55 • 0
38	55.0	55 • 0	55 • 3	55•5	55•0	55•0	55.0	55.0	55.0	55.0
39	55.0	55.0	55.0	55.0	55•0	55.0	55.0	5 5•0	55.0	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55•0	55.0	55•0
Α	68•9	77.2	81.8	82.3	83 • 8	e•83	82.8	79•0	72 • 1	70.6
D	78.0	82.5	85.2	86.9	88.4	88•4	87.2	83 • 3	78.0	76.6
OASPL	89.8	93 • 1	94•7	94.3	93+4	92.9	91.9	86.9	82.7	80.8
PNL	85.5	90.2	93•9	94.2	95•5	95.6	94.9	91.4	86.2	85•5
PNLT	85•5	91 • 8	93.9	94.2	95•5	95•6	94.9	91 • 4	87.3	შ5∙ 5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

without truck

GCTOBER 28 1976

EVENT 81 105 KT. FLY BY MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-7 ÷5	- 5 ÷ 5	- 3 = 5	-1.5	0	•5	2.5	4.5	5 • 5	7•5
17	80 • 1	81 - 1	7 8 • 2	78 • 0	79.9	81 • 2	82.5	78•9	79 • 3	78 • 3
18	80.7	83 • 1	88 • 1	88.9	87.9	86.7	74.7	72.7	70 • 3	68 • 9
19	70 • 1	72.9	75 • 4	75.0	72.9	71 • 4	75.8	74.7	75.5	72.0
20	67.5	70.9	73.2	74.0	68 • 5	68 • 2	75.7	76.6	73.7	70-8
21	74.1	77.2	73.2	67.8	65 • 6	65•6	64.9	65.9	67.3	66.0
22	64.8	65.3	64.2	67.8	72.5	73.0	69.3	60 • 4	66 • 1	66 • 7
23	58 • 6	59.9	61 • 1	75 • 7	76.8	76.0	74.9	65.5	58 • 2	59 • 8
24	55.7	58•9	67•3	77 • 4	78.0	77.5	77.6	70.9	59 • 1	55 • 7
25	56.6	61.5	73 • 3	77.0	72.9	71 • 8	75.4	72 • 1	65 • 6	57.5
26	56.2	64.1	76.3	73 • 1	77 • 1	76.6	72.0	69 • 6	69.1	64.2
27	57 • 1	63 • 4	73.9	77.8	78 • 5	77.6	78.0	66.1	68 • 1	66.3
28	56 • 8	61.2	69•8	73 • 2	74.6	74.6	72.4	69•3	63.9	65 • 3
29	55 • 6	56.6	71.7	74.9	73.6	73 . 4	73.5	66 • 1	66.2	59 • 5
30	55.0	61.0	71.6	73.5	73.7	73 • 1	70 • 6	65•9	63 • 7	61 • 1
31	56•3	5 7.7	68 • 5	71.0	72.7	71 . 9	70.2	65.6	63.6	59•7
32	55.0	55•7	66•5	69 • 7	69.9	68 • 7	66.4	61.8	59 • 1	56 • 7
33	5 5•0	55•0	63 • 4	66 • 5	67 • 1	66 • 4	63.6	57.3	55.8	55.0
34	55.0	55 • O	63.7	62 • 8	63 • 1	62.2	58.2	55.0	55.0	55.0
35	55.0	55.0	58.9	59 • 6	59.3	58 • 2	55.0	55.0	55.0	55•0
36	55.0	55.0	55•6	55•7	55 • 8	55 • 3	55.0	55•0	55.0	55.0
37	55.0	55.0	55.0	56.0	55 • 4	55.2	55.0	55.0	55 • 0	55•0
38	55.0	55.0	57 • 1	57 • 6	55 • 0	55 • 0	55.0	55.0	55.0	55 • ∪
39	55.0	55.0	55.0	55.0	55 • 0	55.0	55.0	55.0	55.0	55•0
40	55 • 0	55.0	55.0	55.0	55 • 0	55.0	55.0	55.0	55.0	55.0
Α	65 • 1	69 • 1	79.4	81.9	82.8	82.2	80.8	74.7	72.6	69 • 5
D	76.6	78•9	84.3	86 • 6	86 • 9	86.2	84.9	79• 7	77.6	75.8
OASPL	89,0	91.5	93.2	94.0	93 • 1	91.7	87.8	83.8	82 • 7	81.0
PNL	84.0	86•5	92.3	94-1	94.3	93.6	92.8	87.9	86.3	84.2
PNLT	84.0	87 • 8	92.3	94 • 1	94.3	93.6	92.8	89.0	86.3	84.2

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64 Without truck

OCTOBER 28 1976

EVENT 74 6 DEGREE APPROACH MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-11.5	-9•0	- 6•5	-4.0	-1.5	0	1 • 0	3.5	6•0	6 • 5
17	70.2	73.5	74.1	75.4	77 • 6	76 • 1	79.3	81.3	84.9	84.2
18	83.3	87.0	87.5	88.0	86+3	83 • 4	82.9	77.8	77.8	77.2
19	68 ∙ 6	73.4	74.1	75.9	71.5	73.9	75 • 6	70.6	75.6	75 • 6
20	69.4	72.0	75.8	72.0	80.8	83.9	84.9	81.5	75 - 1	76-1
21	7 8•3	81.5	79.8	73.5	87.8	90 • 3	89.5	83.9	69 • 1	68 • 8
22	64.5	67 • 1	65.8	84.4	90.3	87.4	85.5	84.0	75 • 4	70 • 1
23	70 • 5	69.6	74.5	89.9	89.8	83.3	79.9	82.2	78 • 4	75 • 4
24	62 _* 8	74.2	80 • 4	86 • 3	83.5	76.8	79.1	77.1	78 • 6	75 • 5
25	71.5	75.5	79.8	81.2	81.0	81.7	79.8	79.3	76.9	74.7
26	72.4	76.9	75.4	76.0	82.5	78 • 7	79.1	77.0	69.4	65.8
2 7	71.6	75.0	69.0	77=6	77-1	78 - 1	77.6	75.1	72.6	63.8
28	63.9	65.9	71.4	72.6	74 • 6	75.0	75.5	72.9	68.4	68.2
29	63+3	69.0	67•9	73.5	74.2	75.2	74.8	72.9	68 •6	67.0
30	62.2	65•3	68.9	71.3	73 • 3	74.8	73.8	70.8	66.2	65 • 4
31	58.9	64.7	66.0	59•1	71.6	72.3	72.1	73.0	67.7	67.5
32	57•1	63.5	64.7	70•8	71.2	71.4	70.8	68 • 4	63.6	63.2
33	55•6	59•0	61.4	65•9	67.2	68 • 2	68.7	65.4	60.8	60.5
34	55.0	55+3	58•5	63 • 5	64.7	66.7	66.3	63.7	57.3	56.7
35	55.0	55.0	56•3	60.7	62.8	63 - 8	64.1	60.5	55.0	55.0
36	55.0	55.0	55.0	56•9	59•6	61.2	62.0	58.9	55.0	55.0
37	55.0	55.0	57 •7	64.6	59 • 1	60•5	61.5	56.9	55.0	55.0
38	55.0	55 _° 0	55.0	58•3	55 • 6	56•3	57.6	55 - 1	55• 0	55.0
39	55.0	55.0	55.0	55. 0	55.0	55•5	56.7	55.0	55.0	55.0
40	55.0	55.0	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
A	74.3	78.3	79•7	85•1	86•0	84.9	84.2	82.6	7 8 • 5	76.8
D	80.8	83.7	85.8	91.7	92 • 5	91.4	90•4	88.3	84.2	82.6
OASPL	89.8	93 • 5	94.9	97•6	98•9	96 • 6	95.5	93 • 6	90 • 4	89.3
PNL	88 • 1	91.8	93•3	99•0	100 • 1	98 • 8	98•4	95.6	92.0	90.2
PNLT	88•1	92.9	93•3	101.3	100 • 1	98 • 8	98•4	96.7	92.0	91.3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY 5-64

without truck

OCTOBER 28 1976

EVENT 76 85 KT . FLY BY MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-5+5	-4.5	-3.5	-2•5	-1-5	-1.0	-•5	0	•5	1.5	4.5
17	80 • 4	80 • 6	80.8	80.8	78.3	76•6	76.2	76.1	75.5	77•9	77.8
18	85.6	86.7	88.2	89.4	90.1	89.4	88.0	86.0	84.3	80-8	70.2
19	74.0	74.9	76.2	76.3	75-1	73 • 7	71.0	68 • 3	68.0	68.3	69.5
20	70 • 6	70.9	72.4	73 • 1	69.8	69.9	73.6	76.1	79.0	80.9	36.6
21	81.5	81.2	81.6	78•5	79.5	83 • 1	86.9	87.9	88.4	86.2	66.2
22	68 • 5	68 • 1	68.0	68.9	76.9	79.3	81.1	82.0	82.3	79.5	73.0
23	68.0	64 • 1	73 - 1	81.0	87.3	88.8	89.0	87.6	84.9	75.9	75.2
24	67 • 3	77.8	80 • 1	83.0	83.2	81.5	79.7	76.5	75.6	76.1	71.9
25	71.5	78.7	8i .7	83•0	79.5	77.9	80•1	81.4	81.6	79.8	67.2
26	69.6	75.9	79.1	79.6	81.1	82.4	82.7	81.6	80.9	79.6	73.1
27	66 • 1	71.8	73.7	81.2	82.4	81.3	80.7	80.9	81.2	78.9	70.2
28	59.4	66.9	75 - 1	80.2	78.5	78 - 5	79.0	79.4	79.8	78.7	69.6
29	60.9	69 • 4	71.2	77.7	77.4	76.9	78.0	78 • 8	79.3	77.9	68.8
30	60 • 8	66.4	73.3	77.4	76.6	76.2	77.0	78.0	79.0	77.8	67.8
31	59.6	66.6	69.4	74.1	74.7	74.9	75.7	76 • 4	77.5	77.5	70.4
32	57.8	66.2	68.7	74.9	75.7	74.4	75.1	75-8	76.1	78•7	65.2
33	56.2	62.6	65.5	68.3	69.9	70 • 3	71.9	73.0	73.2	71.5	
34	55.0	58 • 1	61.8	65-1	67.7	68 • 2	68 • 3	68.9	69.1	67.9	61 • 1 58 • 0
35	55.0	55 • 4	59 • 3	62.2	65.0	65 • 5	65.7	65.8	66.0	65.8	_
36	55.0	55.0	56.2	58 • 0	60.4	61.2	61.5	62.4	62.9	62.3	55-3
37	55.0	55.0	55.0	55.5	58 • 1	58 • 4	58.2	60.3.	61.4	_	55.0
38	55.0	55.0	55.3	60.2	63.6	62.5	59.6	58 • 3		61 • 1	55.0
39	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	57.2	56 • 6	55.0
40	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55 • 1	55.0
A	72.9	79.3	82.6	86.6	86.8	86.7	33.0 3 7.3	87.3	55.0	55.0	55.0
D	81.6	85 • 1	87.9	91.1	91.8	91.9	92.3		87.3	86.5	77.2
OASPL	92.7	93.9	96.0	98.0	99.4	99.4	98.6	92•2	91.9	90.8	82.1
PNL	89.5	92.5	95+3	97.8	99.3	99.4		96.9	95.3	92.9	87.0
PNLT	89.5	92.5	95.3	99.1			100.2	99.8	99.5	99•0	89.4
	57.5	20.0	70-0	7711	100 • 4	100.8	100 • 1	99•8	99.2	100-4	90.7

TABLE C.VI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

without truck

OCTOBER 28 1976

EVENT 77 85 KT. FLY BY MIC. CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-6.0	-4•5	-3.0	-1.5	.o	1.5	3.0	4.5
17	78•0	79•1	78.3	73•5	73.4	7 9 • 6	77-4	80•3
18	84.9	87.0	88.5	87.6	83 2	78 • 5	69 • 6	70 • 7
19	72.7	73.6	74.2	71.4	65 • 7		65 • 4	69 • 7
20	68 • 5	69.6	69 • 1	6B•6	78 • 2		73.7	71.9
21	80 40	80 - 1	73.6	83.0	88 • 1	82.1	72.6	62 • 3
22	66•6	65.9	70.3	80.0	81.0	71.0	70.1	72 + 5
23	66•6	73 • 3	80.9	88.8	84.8	71.8	73.7	72 • 3
24	70.6	80 • 6	82.0		75.6	74.3	70 • 6	74.6
25	73.1	80.6	80.9		83.3	79.8	75.4	69.3
26	72.1	79.0	76.8	84.2	80.8	77.6	74.8	72.3
27	69.4	74.2	80.9	80.9	80 - 6	77.8	73.3	71.9
28	62 • 4	74.8	79.3	78.2	78 - 5	76.4	78+0	69 . 0
29	65.7	72.2	75.3	77.5	78 - 6	76.0	72.3	69 • 5
3 0	68.6	72.0	74.7	76.9	77.7	75 . 6	71.1	68.0
31	62.0	69 • 1	72.7	75.5	76.5	75.0	73.7	69.5
32	59•5	66.7	70.8	74.7	74.9	71.6	68.3	65 • 5
33	57 • 2	63.0	67.5	71.0	72 • 4	69 - 1	65.3	61.0
34	55.3	59.6	64.8	68.2	68 • 1	65 . 3	61.8	57.4
35	55.0	56.5	61.4	65+3	65 • 3	63 • U	58 • 3	55 + 1
36	55.0	55•0	56•6	60.7	61.6	59.4	56+4	55.0
37	55•0	55.0	55•B	59.7	60 • 7	56.2	55.5	55.0
38	55•0	55•0	59 • 1	61.2	57.0	55.7	55-0	53.0
39	55 • 0	55.0	55.0	55 • C	55 • 0	55.0	55.0	55.0
40	55.0	55.0	55.0	55.0	\$5.0	55.0	55.0	55.0
Α	74.6	82 • 1	84.7	86•9	86 • ?	83.9	80.9	77.7
D	81 • 8	87 • 1	89.4	92.2	91.6	87.8	35.0	82.5
OASPL	91.9	95.2	97-1	97.5	94.9	90-4	89.2	87.0
PNL	89.4	94.3	96•4	99.9	98 - 7	95.4	92.1	89.6
PNLT	90•5	94.3	97.1	100.5	96 - 7	95.4	92.5	85.6

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY 5-64

Without truck

OCTOBER 28 1976

EVENT 78 95 KT + FLY BY MIC + CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-4.5	-3 • 5	-2.5	-1.5	-1.0	-•5	0	• 5	1.5	2.5	3.0
17	83.9	82.5	80 • 6	76.9	75.3	74.9	74.8	75.7	80.9	80•7	77.5
18	87.2	88 • 3	89.5	89 • 6	89.0	88 • 1	86.5	84.7	80.5	72.9	70.2
19	76.0	75.6	75.4	74.2	72.4	69.7	67.6	67.7	66.3	66.0	67.1
20	72.8	72.9	70.9	68 • 1	69•4	73.9	77.0	80.2	80.8	77.6	76-1
21	82.2	83 • 2	80.0	82.2	85•6	88•1	88.2	88•7	85• 7	75.6	74.1
5.5	69.4	69 • 4	68.8	76.5	79.7	81 • 1	82.0	81 - 7	79.7	77.6	77.2
23	66•6	77.6	81.4	89.9	92.0	91.8	89.8	85.1	74.6	73 - 7	75.3
24	73.5	88 • 6	84.3	87.6	87.2	84•6	79 • 8	75 • 1	74.9	71 - 6	72.0
25	76.2	84.7	85.0	79.5	80•5	82.2	82.7	81.4	77•7	76.5	75.3
26	74.0	88 • 6	81.9	82 • 1	83•5	83.1	81 • 4	78• 8	76.0	75.6	76.6
27	68 • 4	74•6	81.9	83 • 4	81.2	79 • 1	79•0	79.0	76.7	75.4	74.0
28	62•9	77 • 8	81.0	81-1	80•3	79.2	77-3	77.1	75.9	73 • 1	71.7
29	65 - 4	72 • 6	78 • 4	78•9	77.7	77.3	77.0	77.4	76.7	73.8	72.5
30	62.0	75-2	77.9	78∙9	78•2	77.2	77•7	78 • 1	76.2	73.2	71.7
31	62.5	71.5	75 - 1	75.3	74.9	75.2	75.5	7 5 • 5	75.9	73.8	72.5
32	61.1	69•0	72.5	73.9	74•3	75.3	7 5•5	75.0	73.0	70.4	69.0
33	58.0	64.5	68 • 8	70 • 5	70 • 6	71.6	71 •8	71.8	70 • 4	67.4	65.7
34	55 • 7	61 - 1	65.3	68•2	68•6	69•0	69-1	69.0	67•4	63.8	62 - 1
35	55 • O	58•0	62•6	65.0	65.2	65 • 5	65•9	66•0	64.8	61.0	58•7
36	55.0	55 • 4	57.6	60.3	60 . 7	61 • 5	62•0	60.0	60.9	58.2	56.7
37	55.0	55•0	55•8	57 • 6	58•0	58 • 8	59•7	60.6	60.0	57.1	56 • 1
38	55.0	55 • 4	62.2	65 • 1	63.7	61.2	59 • 1	5 7 • 8	56.3	55.1	55.0
39	55.0	55 - 0	55.0	55.0	55•0	55 • C	55 • 0	55•C	55.0	≎5∙0	55.0
40	55.0	55•0	55.0	55∙2	55. 0	55•0	55- 0	55+0	55.0	55.0	55.0
A	76.3	84.9	87.3	88.2	88.2	87.9	86.9	86.0	84.5	8:•8	80.9
D	83.8	89.8	91.7	93.5	93.9	93 • 5	92-4	91 • 3	89.0	86.1	85+4
OASPL	94.9	97 • 1	98.3	99.5	160.0	99.7	98.5	96.5	91.5	88.6	88.5
PNL	91.2	97 • 2	99.8		101.7	101.6	100.5	93 • 7	96.5	9 3 • 5	92.8
PNLT	91.2	98•6	100.0	102.8	102.9	102.3	100+5	98 •7	96•5	93.5	98.8

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY ..

SIKORSKY S-64
Without truck

OCTOBER 28 1976

EVENT 79 95 KT. FLY BY MIC. CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS (IME (SECONDS) (DB RE 20 MICRO PA)

		•								
BAND	- 3•5	- 2•5	-1.5	5	U	• 5	1 • 5	2.5	3∙5	4.0
17	81.3	79•7	77 • 4	75.5	75 • 5	74.9	77.4	80.7	74.6	75.5
18	87.7	88 • 6	89.1	88.3	87.3	85 • 4	81.5	76.2	69-2	69.9
19	75 • 7	75 • 6	74.2	70.9	68•9	67 • 1	66 • 8	65.3	66.4	67.8
20	72.6	71.2	69•3	71.4	75 • 7	77.8	81 • 1	80.0	76 • 7	67.7
21	83 + 2	82.0	77.7	86.4	89.0	89.2	87.1	79.6	72.3	67.4
22	69.8	68•6	72.2	80.5	82.0	82•3	80.3	80.8	80.5	76.3
23	69.8	77•5	85•6	92.3	92.1	90•1	79.3	74.4	75.0	73.5
24	76.9	80.6	83.7	86.4	84•6	79 • 6	77.0	75•5	71.2	72.8
25	79 • 6	82•7		83.0	84.5	84 • 4			74.2	70 - 3
86	76 • 8	78 • 8	79.5	84.9	84.8	83 • 0	79 • 3			74 • B
27	70 - 4	73.0	81.3	81.5	81 • 1	81 • 3	79.8	78.2	73 • 3	70 • 3
28	66 • 7	75 • 3	78.6	80.2	79.9	79 • 1	78 • 4	76-3	71.3	71 .0
53	66 • 8	70 • 7	76.5	79.4	79 • 3	78 • 7		76.7		70.5
30	64.5	71 • 1	76.2	79.1	79•2	78 • 3	76 • 9	74.9	70.7	69.5
31	64.2	69•3	74.1	77.3	77 • 3	77.3	77.9	77.4	74.6	72.2
32	62.5	67 • 7	71.6	76.0	76.8	76∙8	75.6			66.7
33	59.0	63 • 6	68.0	72.0	73.2	73.2	7 2 • 3	69.0	64•3	8.88
34	57 • 1	61.2	66.2	69.3	70 • 1	70.2	69.0	66.2	62.6	60.5
35	55.0	59•3	63 • 4	66.8	66.7	56×8	66 • 1	63 • 1	58 • 6	56.1
36	55.0	55.8	59.3	62.1	62 • 4	62 . 7	62•6	59 • 3	55+6	55.2
37	55.0	55.0	56.2	58.0	58 • 7	59 • 8	60 + 4	57.8	56 • 3	55.9
38	55.0	56 • 6	63 • 4	62.5	61.0	59•7	56.5	55•0	55.0	55.0
39	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55• 0	55.0
40	55.0	55.0	55.0	55.0	55 • 0	55 • 0	55.0	55 • 0	55.0	55.0
Α	79.1	82.4	86.0	89.3	89.2	88.2	86.5	84.9	8 • 03	79.2
IJ	85.2	87 • 4	90.9	94.4	94 • 4	93 • 5	91.0	89+0		83.3
OASPL	94.6	96.0	97.8	99.4	99.2	97.8	53.4		1.83	86.7
PNL	92.7	95.6	98.0	102 - 2	102.3	101.3	90.42	96.0	35 • 9	90.8
PNLT	92.7	96.3	99•3	103.2	103-0	101.3	98.2	97.4	94.4	38 ° S

LOWER LIMIT OF ANALYSIS SYSTEM= 55.0

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64 Without truck

OCTOBER 28 1976

EVENT 80 105 KT . FLY BY MIC . CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-3 - 5	-2.5	-1.5	5	O	•5	1.5	2.5	3•5	4.0
17	85•7	84.5	81.5	76.6	75•5	76•0	81.3	80.2	7 8 - 0	80 • 1
18	86.7	89.7	90.9	89.0	86.9	84.7	79.7	71.6	70 • 7	70 • 4
19	77.7	78.2	77.4	72.2	70 • 2	69•7	68+3	68•0	69 • 7	70 • 6
20	74.0	71.2	69.7	75.6	73 • 4	81 • 4	82.5	78•9	70.0	74.5
21	79.7	82.0	80 • 1	88 • i	88•7	88•6	85.2	77.1	68 • 3	64.0
22	69.2	70.2	74.5	81.6	82.3	81 • 9	79 • 6	80.8	74.5	72.0
23	68.7	79.7	86.8	92.3	91.2	86.8	74.6	76•7	75 - 1	72 - 1
24	75.9	82.3	83•6	84.3	82 • 1	77•3	77.0	73.2	75 • 4	76.8
25	77•3	83.6	80.3	83 • 1	83 • 6	82.5	79 0 6	76•6	70•7	71 • 6
26	74.6	80.3	78.3	83.7	83•5	80.8	76.5	75 • 7	75•2	73 • 3
27	66.7	74.8	78.9	80.3	31 • 0	80.7	77.4	75. 0	72,4	72.1
28	65•3	75.0	76.0	78.8	79 • 0	78.5	76.8	73.7	71.8	70.7
29	65.2	71.5	74.8	78 • 2	78 • 4	77•6	76.9	74.0	70•8	70 • 1
30	63•7	72.3	75.5	77.9	78.2	77.4	76.0	73.8	71.2	70.0
31	62 - 1	70.9	73.7	76.7	76 • 8	76.0	78.0	76 • 4	74.8	73•5
32	60 • 5	66•6	72.4	76.3	76 • 7	75•6	72.9	70.6	68 • 7	67.3
3 3	58.0	64.6	68∙9	73.3	73 • 5	72.7	70.2	67.4	63.5	61.8
34	56.6	61,3	66.5	70•3	70 • 3	69 • 4	67.4	65 • 6	61.5	59 • 4
35	55•3	59.0	63.1	67.3	67 • 7	56 • 8	64.6	61.3	56•6	55•6
36	55.0	55•9	59.3	63.2	63.8	63 • 1	61 • 4	58 • 6	55 • 4	55 • 1
37	55∙0	55 . 0	56.3	59 • 9	61 • 4	61.9	60 • 4	59.0	5 7. ∙8	56.2
38	55•0	58 • 0	62.9	62 • 6	61 • 1	59•3	56 • 2	55 • 1	55 • 0	55• 0
39	55.0	55.0	55.0	55•4	55 • 8	55+6	55 • 1	55.0	55•0	55.0
40	55.0	55.0	55.0	55.0	55 • 3	55•3	55.0	55 •0	55+0	55.0
A	77.0	83 • 4	85•2	88.5	88 • 4	87.0	64.7	82•7	80•7	79 • 6
D	84.5	89.2	91.1	94.2	93 • 8	35 . 5	39 · 5	87•3	84.8	83.9
OASPL	95 • 6	98.6	99•B	69.65	98•7	96 • 4	92 • 3	90.0	87•5	87.0
PNL	91.4	96.7	98.4	102.3	101.9	99.7	96.9	94.7	35.5	91 • 3
PNLT	91 • 4	97,2	99.6	103.1	101-9	99.7	98•1	96 - 1	93+8	92.9

LOWER LIMIT OF ANALYSIS SYSTEM= 55.0

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

SIKORSKY S-64

without truck

CCTOBER 28 1976

EVENT 81 105 KT. FLY BY MIC. CENTERLINE (HARD)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS) (DB RE 20 MICRO PA)

BAND	-5.0	-4.0	-3.0	- 8•0	-1 -5	-1.0	O	1.0	S•0	2.5
17	85.0	84.3	81.7	78•5	76.8	76•0	78.2	80.2	76 • 4	76.5
18	87.5	87.8	89.2	89.4	88.1	84.9	80.0	74.6	68 • 5	68 . 8
19	77.0	77.3	76.9	73.9	71.5	68 • 3	66.6	67.5	64.9	67.3
20	73.1	72.6	70.8	70.8	74.1	75 • 7	81.0	80.9	75.7	68 • 2
21	81.6	82.0	79 • 1	87.4	89.5	89•0	85.4	78.9	71.7	68.3
22	70.0	70.7	71.5	80.9	82.2	82.4	78.8	80.7	80.5	76.1
23	70.1	81.5	86.4	92.2	92.3	90 • 1	79.3	74.8	75.7	74.8
24	76.1	82.5	83.4	87.0	86.0	81 - 1	78.0	77.0	70.7	72.8
25	77.8	83.2	81.6	81.6	34.9	84.9	80.9	78.5	73.6	71.8
26	76.5	81.1	79.4	84.6	85.2	83•7	80.8	76.6	75.5	7 5•3
27	69.5	75.1	81.3	82.2	82.5	81.9	79 • 7	76.6	71.9	72.1
28	65.2	77.0	78.8	80.0	80.3	79.6	78.7	74.8	71.2	71.7
29	65.9	72.4	76-4	79.3	79.9	79.8	78.2	74.5	70.4	70.5
30	64.1	72.4	74.1	77.9	79.6	80.1	78.2	74.5	70.4	70.2
31	63.1	70 • 1	72.0	76.3	77 : 4	77.4	77.3	76.7	73.6	72.8
32	61.7	67.2	69•3	74.4	76 • 4	76.9	74.7	70.8	67.7	67.4
33	58.1	63.5	65 • 4	$71 \cdot 4$	73 - 4	7 3•5	71.9	67.7	63.5	62.7
34	56.8	60.6	62•7	68•5	69•9	70•3	69 • 4	65•3	61 • 1	59.9
35	55.0	58.5	60•5	65•7	67 • 3	67.6	66.5	61.8	56.9	55.2
36	55.0	55•1	57 • 0	61 • 1	62 • 8	63.2	61.9	59.0	55•6	55.0
37	55.0	55.0	55.0	57 • 4	59.0	59.9	60.2	59.0	56.4	55•3
38	55.0	55.5	61.1	62.3	61.0	59.2	56.2	55•3	55.0	55.0
39	55.0	55.0	55 • 0	55.0	55• 0	55•0	55.0	55.0	55•0	55.0
40	55∙Ა	55•0	55•0	55 • 0	55•0	55•0	55.0	55+0	55.0	55.0
Α	78.3	84.0	ชร•ร	88.8	89.6	88•7	86.3	83.6	80.2	79•7
D	84.9	89.2	90 • 6	94.1	94.7	93•7	90•8	8 7. 9	85.0	84.1
OASPL	94.9	96.2	98•2	100.6	100.2	98•4	92.8	89•9	87•8	86•8
PNL	92.0	96•5	97•9	102.1	102.7	101.5	97.9	95.4	91.9	91 • 4
PNLT	92.0	97.6	98.9	103 • 1	103-4	101.5	97.9	96.7	93 • 4	92.7

LOWER LIMIT OF ANALYSIS SYSTEM= 55.0

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With Truck

OCTOBER 28 1976

270°
(Microphone Location)
Relative to Helicopter)

EVENT 35, O DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 80 MICRO PA)

BAND	ENERGY AVERAGE	MAV	MTN	ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	72.6	76.4	68 • 4	72 • 1	2.1
15	75.5	77.6	72.7	75.3	1.4
16	80.5	84.2	76.0	80 • 1	1.8
17	81.3	84.0	77.8	81.0	1.6
18	82.6	85 • 8	79.2	32.3	1.7
19	84.3	86 • 6	81.8	84 • 1	1.5
20	86.7	90 • 1	83 • 6	86 • 3	1.9
21	87.9	91.7	82.3	87.3	2.4
55	87 • 9	91.2	81 • 1	87.1	2.9
23	89.7	95•4	82.5	88 • 5	3.3
24	89 • 5	93.8	82.0	88 • 5	3.2
25	87 • 6	90•8	78 • 6	86 • 6	3.3
26	86 - 1	89 - 3	78•0	85•1	3.2
27	86 • 5	90•2	78 • 6	85•6	3.0
28	85 • 1	90 • 0	79•7	84.5	2.4
29	82.3	84.9	76•7	81.8	2.3
30	80 • 0	82.3	74.6	79•7	2.0
31	77.9	80 • 1	71.9	77•5	2.0
32	76.2	78 • 4	70.9	75•9	1.9
33	73.0	. 75.2	67 • 8	72.6	1 • 9
34	69.5	71.6	65•0	69•3	1 • 7
35	66 • 3	68•3	62 • 7	66+1	1.6
36	65 • 6	64.2	59.2	62 • 4	1.5
37	61 - 1	63.0	58.0	61.0	1.3
38	61 - 4	64.3	58.3	61 • 1	1.6
39	55.0	55.0	55.0	55•0	•0
40	55.0	55.0	55.0	55.0	۰0
DBA	91 . 3	94.7	85 • 1	90•8	2 • 4
DBD	96 • 1	99•5	90 • 0	95.6	2 - 4
OASPL	98 • 2	101.5	92.7	97.7	2.3
PNL	103.3	106.5	97.2	102.8	2.2
PNLT	103.7	107-1	97.2	103.1	2.4

632

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 36, 45 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	EMERGY					
DAMO	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	225° (Microphone Location Relative to Helicopter)
14	73 • 6	77 • 4	67.9	72.8	2.6	
15	74.0	76 • B	69.2	73.7	1.7	Microphone Location
16	79•7	82.9	73.7	79.0	2.5	
17	88.2	90 • 2	85.2	88 • 1	1.3	Relative to Helicopter
18	91 •0	92.7	88.5	90.8	1 - 1	Carative to the treeting
19	80 • 2	82.7	76.5	79.9	1.8	
20	83 • 6	86-9	79.5	83.3	1.7	
21	84.5	87.7	79.9	84.1	2.0	
22	83.7	89.8	79.0	82.7	2.8	
23	85 • 4	93 - 1	79.0	83.6	3 • 4	
24	86 • 1	93.4	78 • 6	84.6	3.2	
25	85.7	92.9	77.9	84+3	3.2	
26	84 • 4	89.6	78.2	83.6	2.5	
27	84.9	89.7	79.2	84.2	2.6	
28	83.0	87.4	79.4	82.5	2.	
29	81.0	83 • 5	77.9	80.7	1.4	
30	79.6	82-1	76.2	79 • 4	1.4	
31	78.2		75.8	78 • 1	1.3	
32			74.4	76.4	1.8	
33	74.7	78.2	71.7	74.4	1.7	
34	71.8	75.2	68 • 3	71.4	1.8	
35	68 • 4	72.1	65.3	68 - 1	1.7	
36	64 • 2	67 • 5	61.5	63.9		
37	59.3	62.0	56.9	59-1	1.6	
38	55+9	57 • 6	55.0	55.9	1.3	
39	55.0	55.0	55.0		• 7	
40	55.0	55.0	55.0	55.0	•0	
DBA	89•8	94.3		55.0	•0	
DBD	94.5	99.4	86 • 6	89-4	1.8	
OASPL	96.9	101.1	91 • 3	94.0	1 - 8	
PNL	102.0	106.0	93+8	96.5	1 • 6	
DAIL T	102.0	106+0	98 • 8	101.6	1 • 7	

98.8 101.6

1.7

PNLT 102.0

TABLE G-VII S FOUR HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With truck OCTOBER 28 1976

EVENT 37, 90 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	74.8	79+5	69 • 1	74.0	2 • 7
15	77 • 4	79.9	72.8	77.0	1.9
. 16	84 • 3	87.3	79.3	83.9	1.8
17	88•5	91.0	85.2	88.2	1.9
18	90 • 6	93•3	86.6	90.3	1.7
19	87 • 4	92.6	82.2	86 • 6	2.7
20	90 • 6	95.9	85.0	89.7	2 • 8
21	91 • 7	96 • 1	86.5	90.9	2.5
22	90•5	96.2	84.6	89.5	2.9
23	91 • 7	97.7	84.4	90.4	3 • 2
24	92.0	96 • 4	86.0	91.2	2.7
25	91.2	94.8	85.9	90.6	2.4
26	89.5	93.4	83 • 8	88.8	2.5
27	88 • 6	92.4	84.3	88.0	2.2
28	86.7	91.7	82 • 1	85.9	2.6
29	84 - 1	89.2	80 • 2	83.3	2.5
30	82.3	86.3	78 • 4	81.6	2.4
31	80 • 4	83.2	77.5	80.0	1 -8
32	78•9	81.7	76 • 1	78 • 6	1 • 7
33	75 • 6	78.0	72.5	75.3	1 - 4
34	72.6	75•3	69.0	72.3	1 +8
35	70.0	72.3	66.6	69.7	1.7
36	66 • 4	68•6	62.9	66 • 1	1 • 6
37	61 • 5	63.5	58 • 2	61 • 3	1 • 5
38	56 • 8	58.5	55.0	56.7	1.0
39	55•0	55.0	55•0	55.0	•0
40	55•0	55.0	55.0	55.0	•0
DBA	93.7	97.5	90•3	93.2	2.1
DBD	98•8	102.5	95•0	98.3	2 • 1
OASPL	101.3	105.3	97.3	100.8	2 • 1
PNL	106.2	109.8	102.3	105.7	2.0
PNLT	106.2	109.8	102.3	105.7	2.0

180°
(Microphora Location Relative to Helipopter)

TABLE G-VII 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 38, 135 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERACE	MAX	MIN	AVERAGE	DEV
14	75 • 1	79.5	72.5	74.9	1 - 4
15	81 • 7	84.5	77 • 7	81 • 2	2 • 1
16	88 • 8	92•0	84.4	88 • 1	2.5
17	90 • 7	94.5	88.0	90.3	1.8
18	91 • 3	93.6	88.7	91 • 1	1 • 4
19	93 • 0	97 - 1	88.2	92.3	2.6
50	94 • 5	98•8	89-1	93.7	2.6
21	95 • 1	99•9	89.2	94.3	2 • 6
88	95 • 3	100.8	89.2	94.0	3.2
23	95•9	101.7	88.0	94.4	3 • 5
24	96 • 2	102.3	90.9	95•0	3 • 1
25	94 • 6	99•6	86.8	93.3	3 • 5
86	91 • 6	95 • 5	85 • 1	90.8	2.8
27	91 • 6	95.9	85 • 8	90.8	2.7
28	89•5	93.7	84 • 8	88 • 8	2.6
53	87 • 3	91.5	82.5	86 • 6	2.5
30	85.0	87.9	81.9	84.6	1.9
31	83•7	87.7	80 • 1	83.2	2.1
32	81 • 8	85.9	77 - 7	81.3	2.1
33	79-1	82.7	75 • 8	78 • 6	2.0
34	75 • 6	79 • 1	72.0	75 • 1	2.2
35	72 • 1	75.2	69.0	71.7	1.8
36	68 • 6	71 - 4	66.0	68.3	1.6
37	65•3	66 • 4	65.0	65.3	• 4
38	65 • 0	65.0	65.0	65.0	•0
39	65 • 0	65.0	65.0	65.0	•0
40	65•0	65.0	65.0	65 • 0	•0
DBA	97.0	101.5	92.3	96 • 2	2.6
DBD	102 • 2	106.7	97 • 7	101-4	2.6
OASPL	104-8	109.6	100 • 4	104.0	2.6
PNL	109.7	114.3	105 • 6	109.0	2.5
PNLT	109.7	114.3	105.6	109.0	2 • 5

1350
(Microphone Localism
Relative to Helicopter)

TABLE G-YIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With truck OCTOBER 28 1976

EVENT 39, 180 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 M1CRO PA)

	ENERGY			ADITU	CTD	
BAND	AVERAGE	MAX	MIN	ARITH. AVERAGE	STD	_
BAND	AVERAGE	MAA	171 14	AVENAGE	DEV	90°
14	73.6	77.9	68 • 1	72.9	2.7	90° (Microphone Loop) Relative to Helios
15	77.2	80 • 4	71.9	76.6	2.2	Microphere Good
16	88.3	85 • 2	76.1	81.6	2.7	(C 1 2 1 1 1 1 1
17	84.5	88.0	80.9		1 -9	Telation to Helicon
18	86 - 1	89 • 4	83.0	85.7		
19	86 • 6	89.6	82.1	86.3	1.8	
20	88 • 6	91 • 7	83.5	88.3	1.9	
21	89.8	92 • 4	84.8	89.3	2 • 1	
58	89.5	92.9	85.0	89.0	2.0	
23	89.3	92•3	84.6	88.9	2 • 1	
24	90 • 4	93 • 3	85.5	89.8	2.2	
25	89.5	93-1	84-3	59-0	2+2	
26	87 • 5	91 • 1	83.9		2 • 1	
27	87.2	91.0	82.8	86.7	2 • 1	
28	85 • 6	89.7	82 • 3	85 • 1	2.0	
29	83.0	86.9	79.9	82.6	1.9	
30	80 • 2	83•6	76.5	79.9	1 • 7	
31	78.7	81•3	75.2	78 • 4	1 • 7	
32	77.2	79•8	72.9	76.8	1.9	
33	74.3	76•7	70.2	74.0	1 • 6	
34	71.4	75.2	67.0	71 - 1	1.9	
35	68.3	70•9	65.1		1.6	
36	65.7	67.5	65.0		• 7	
37	65.0	65 • 2	65.0	65.0	•0	
38	65.0	65 • 1	65.0	65.0	• C	
39	65 • 0	65.0	65.0	65.0	•0	
40	65.0	65.0	65.0	65.0	•0	
DBA	92•3	95.5	89.1	92.0	1 • 7	
DBD	97.4	100.3	94.1	97 • 1	1 • 6	
OASPL	99.5	102.3	95.6	99.2	1.6	
PNL	104.8	107.5	101.1	104.5	1.6	
DAILT	104 0	102 6		104 6		

107.5 101.1 104.5

1.6

PNLT 104.8

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With truck OCTOBER 28 1976

EVENT 10, 225 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY		•	ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
• 4	70 4					// -
14	72.6	76 • 7	68 • 8	72.0	2.2	73
15	75.3	78.3	71.8	75 • 1	1 • 6	/A1 1 1
16	80 • 7	83.5	77 • 3	80•3	1 • 8	/ Microprove Lo
17	79.8	82 • 1	76 • 0	79•5	1 • 5	45° (Microphone Lo Relative to He
18	80 • 8	83.5	78•5	80 • 6	1.4	KEISINE 10 HE
19	82 • 1	85.4	80 • Q	81 • 9	1.2	
20	84 • 6	86.9	62.0	84.5	1 - 1	
21	83•9	85 - 2	82 • 6	83•9	•6	
22	81.5	84 - 6	77.4	81.2	1.5	
23	81+8	84.3	78 • 1	81.5	1.7	
24	83 • 3	86 • 6	79.6	82 • 9	5 * 0	
25	83.4	87.3	79.1	82.9	2.0	
86	81.9	83 • 8	78.5	81 • 7	1 - 4	
27	82 • 1	84.4	77.1	81 - 7	1.8	
28	80 • 5	82 - 5	75.6	80 • 2	1.7	
29	79.0	80 • 1	74.5	78 • 7	1.5	
30	77 • 4	79.3	72.6	77 - 1	1.5	
31	75 • 4	77.0	71.2	75.2	1.5	
32	74.0	75.8	70.2	73.8	1 - 4	
33	71.7	74 - 1	69 • 1	71.5	1.4	
34	70.7	74.9	68.0	70 • 4	1.7	
35	67.7	70.6	65.5	67.5	1.2	
36	65 • 4	67.0	65.0	65.3	•6	
37	69.7	73 - 1	66.3	69.5	1,6	
38	70.2	73.7	65.2	69.7	2.1	
39	65.0	65.0	65.0	65.0	•0	
40	65.0	65.0	65.0	65.0	•0	
DBA	87 • 6	89 • 1	83.9	87.4	1.2	
DBD	93 • 3	94-5	91.3	93.2	•8	
OASPL	94.6	95 • 8	93.2	94.5	• 7	
PNL.	100.5	102.0	98.0	100-3	1.0	
PNLT	100.9	103.2	98.0	100.8	1.2	
			2040	100.0	1.5	

TABLE G-VIL 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

with truck OCTOBER 28 1976

EVENT 41, 270 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD		
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	^°	
14	72.6	78.0	66•0	71 • 7	2.7	Microprove Relative to	1 ,
15	74.4	77.4	69.9	74.1	1 • 8	Microriore	Location
16	76 • 8	79.3	72.9	76.5	1 • 5		
17	76 • 8	78.7	74.6			Relative to	Helicopt
18	77 •2	78 • 8	.74.2	77.0	1.0	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
19	78•7	80 • 1	76 - 1		1.0		
20	80.2	82.2	77.9	80 • 1	1.0		
21	79•8	81.7	77 - 1	79.6	1.0		
22	79 • 1	82.2	76.6		1 • 6		
23	80 • 2	83 • 4	76.6		1 • 8		
24	81 • 1	83.9	77.2	80.8	1 • 7		
25	80 • 5	83.6	75+0	79.9	2.3		
26	78 • 4	81.5	74.0		2.0		
27	77.8	80.6	74.9		1.5		
28	76.0	78.7	73 • 1	75•7	1.5		
29	74.0	77.7	71.5	73.7	1.5		
30	72.8	73.6	69.0		2.2		
31	71.3	74.0	67.5		2.2		
32	70 • 1	72.0	66 • 1	69 • 7	1.8		
33	68 • 5	70 - 4	65.7		1 • 4		
34	66.9	70 - 1	63.8		1.5		
35	66 • 0	68 • 4	63.2		1 • 4		
36	62 • 6	64.8	60.2	62.5	1.2		
37	68•0	70.3	65.8		1.3		
38	69 • 4	72.7	66.3		1.6		
39	55.0	55 • 3	55.0		O		
40	55 • 0	55.0	55.0	55.0	•0		
DBA	84.0	87 - 1	81.8				
DBD	89 • 6	91.7	87.7		1.0		
OASPL	91 • 3	92.7	90 - 1		• 7		
PNL	97 • 1	99.1	95.0	97.0	1.0		

98.5

PNLT

98.6

100.7

TABLE G-VII 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64 With Truck

OCTOBER 28 1976

EVENT 42, 315, DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	5 T D
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	71.8	75.7	67 • 2	71 - 4	2.0
15	74.9	76.7	72.4	74 • 8	1.0
16	81 • 6	83.8	79.5	81 • 5	1.2
17	80 • 6	82.5	78.0	80 • 4	1.2
18	83•9	85.8	81.7	83 • 8	•9
19	82 • 8	86.5	79.9	82.5	1 • 7
80	84 • 6	86.9	81.3	84.3	1.6
21	84.2	86.6	81.0	84.0	1.3
22	81.9	84.8	78.3	81 - 6	1 • 4
23	81 • 8	86.2	77 • 4	81.3	2.0
24	83 • 4	87.6	77.8	83.0	2.0
25	84.3	89+1	79.2	83.6	2.4
26	82.8	86.3	78.0	82.4	1.9
27	83 • 1	86.1	77.9	82.8	1.8
28	82.0	84.2	78 • 2	81.8	1.3
29	,81 - 3	83.4	77 • 5	81 - 1	1.4
30	79.9	82.2	77.4		1.2
31	77.3	79.0	75 • 1	77 • 2	•9
32	75.8	77.1	73 - 4	75 • 7	1.0
33	75.7	78.4	72.7	75 • 4	1.5
34	72 - 1	74.4	68.7	71.9	1 • 4
35	68.7	70.3	66.3	68.6	1.0
36	66.9	68.9	64.9	66 • 8	1.2
37	72.7	74.8	70.6	72.6	1.2
38	72.1	74.6	69.3	71.9	1 • 4
39	57.0	58 • 5	55 • 4	56.9	
40	55 • 0	55.0	55.0	5 5• 0	•9
DBA	89.3	91.7	85.8		•0
DBD	94.0	96.4		89 • 1	1.3
OASPL	94.6	96.9	90.9	93.9	1.2
PNL	101 -6		92.0	94.5	1.2
		104-1	98 • 6	101-5	1 • 3
PNLT	102.9	105.0	99.8	102.7	1 • 3

315 *

(Microphone Location Relative to Helicopter)

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With truck OCTOBER 28 1976

EVENT 35, O DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD DEV	Microphone Location (Felative to Helicopter)
14	71 - 7	75.2	68.5	71.5	1 - 4	70
15	74.2	77.5	71 • 6	74 • 1	1.2	Microchone Localist
16	80 • 0	84 • 6	77.3	79.7	1.6	
17	81 • 2	83 • 4	78-1	81.0	1.5	(felatile to Helicoping)
18	84 • 2	86 - 7	81 • 6	83.9	1.5	
19	82.5	85 • 1	79 . 4	82.3	1.2	
20	83 • 2	84 • 8	79.8	83.0	1 • 4	
21	81 • 8	83•9	78•3	81.6	1+5	,
22	76 • 3	78.5	73•3	76.1	1.2	
23	74 • 6	76•9	72•7	74.5	1 - 1	
24	73 • 6	76-4	71.3	73.4	1 • 4	
25	72.0	74 - 1	69 • 5	71.7	1 - 4	
26	73.0	76•6	69.9	72•7	1.7	
27	72.7	75. 3	69 • 8	72.5	1 • A	•
28	73.0	76 • 4	70 • 1	72•7	1 - 7	
29	72 • 3	75.0	69.9	72.1	3 - 1	
30	71.5	74.2	68•9	71.3	1 - 3	
31	70 • 7	73.0	68 • 5	70•6	1.2	
32	70 - 1	71 - 7	67.9	69.9	1.0	
33	69 - 1	70 • 5	66 . 6	68.9	1 • 2	
34	66 • 3	67 • 9	64.2	66.2	1 - 1	
35	63 • 6	65.5	61 • 4	63.5	1 - 1	
36	61 • 1	63 • 3	59.1	61 • 0	1 - 1	
37	63 - 1	65.5	60 - 7	62.9	1.3	
38	63 • 3	66.9	60 • 2	63.0	1 - 7	
39	59.0	61.0	57 • 6		•9	
40	55 • 0	55+0	55.0		•0	
DBA	81 - 1	83 • 1	79.3		1.0	
DBD	87 • 0	88-4	85 • 3		+9	
OASPL	91 • 1	92.3	89 • 5		•7	
PNL	95•0	96.9	-		1.0	
PNLT		97.5	93 • 4		1 - 1	
1 1457	J J - L				• •	

TABLE G-YIL S FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY 5-64

With truck

OCTOBER 28 1976

EVENT 36, 45 DEGREES, MICROPHONE 150 METERS EAST-

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVEHAGE	DEV	11 10
14	74.6	79•3	70.9	73.9	8.8	(Minisphore Location) Felative to Helizopter
15	74.9	77.9	71.9			/ Minister Lastifing
16	81.3	84.8	76.6		1.3 2.1	
17	79.0	81.8	75.8		1.9	(Reisting to Helizopter)
18	80 • 6	83 • 1	77.6		1 • 4	
19	82.3		80 - 1	82.2	• 9	
20	84.0		81 - 1	83.8	1.2	
21	82.8	86.1	78 - 0	82.4	1.9	
22	77 • 6	80.2	74.9		1.5	
23	75 • 4	77 • 7	71.5	75 • 1	1.8	
24	74 • 4	76.6	70 • 5	74.1	1.9	
25	73 - 1	76.2	67 - 1	72.4	2.6	
26	72 - 9	77.2	67.6	72.2	2.6	
27	72 • 6	77 - 1	66.7	71.7	3.0	
28	72 • 6	77.5	67.3	71.7	2.9	
29	73 - 4	78.2	66.8	72.3	3.1.	
30	73.3	77•9	67.3		2.8	
31	72.6	76.7	65.7		2.9	
32	71 • 6	75.0	64.2	70.8	2.9	
33	71 -4	74.6	64.4	70.8	2.6	
34	71 • 6	74.5	65 • 4	71 - 1	2.2	
35	67.5	70 - 1	61.8	67.1	2.0	
36	64.5	66.7	59 • 6	64.2	1.7	
37	71 07	74.9	68 • 5	71.5	1 • 5	
38	72.2	75.2	66 45	71.8	2.0	
39	63 • 4	65.0	60.7	63.3	1.0	
40	55 • 0	55.0	55.0	55.0	•0	
DBA	83 • 4	86 • 6	77.9	82.9	2.2	
DBD	90 • 0	92.4	85 • 6	89.7	1.8	
OASPL	92 • 1	93.3	90 • 5	92.1	• 8	
PNL	97 • 9	100.1	93.5	97.5	1.7	
			~			

101.6 95.3 99.0

1.7

PNLT

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With truck OCTOBER 28, 1976

EVENT 37, 90 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

ENERGY			ARITH.	STD	
AVERAGE	MAX	MIN	AVERAGE	DEV	~°
70.2	74.2	63.1	69.5	2.6	Microphore Loc Relative to Helic
				_	(1 1
					Microphone Loc
					(m 1) 4 11 1.
					Relative to Helic
99 • 1				1 • 4	
101-1	103.0	97.1	100-8	1 • 5	
	AVERAGE 70 · 2 73 · 2 79 · 7 78 · 1 80 · 3 81 · 0 62 · 0 80 · 8 79 · 5 75 · 9 76 · 5 75 · 8 76 · 2 76 · 3 75 · 6 75 · 1 73 · 6 72 · 2 71 · 4 71 · 9 71 · 4 69 · 5 66 · 2 71 · 6 74 · 9 55 · 3 55 · 0 84 · 2 90 · 4 92 · 2 99 · 1	AVERAGE MAX 70.2 74.2 73.2 76.6 79.7 83.6 78.1 81.0 80.3 83.2 81.0 84.2 82.0 84.2 80.8 84.0 79.5 83.8 75.9 80.8 76.5 80.4 75.8 79.4 76.2 80.2 76.3 79.7 75.6 79.1 75.1 77.8 73.6 75.7 72.2 74.3 71.4 73.5 71.9 73.4 71.4 72.7 69.5 71.6 66.2 68.7 71.6 73.5 74.9 78.1 55.3 57.2 55.0 55.0 84.2 86.4 90.4 92.0 92.2 94.2 99.1 101.0	AVERAGE MAX MIN 70.2 74.2 63.1 73.2 76.6 68.4 79.7 83.6 74.2 78.1 81.0 70.6 80.3 83.2 74.1 81.0 84.2 75.9 82.0 84.2 76.2 80.8 84.0 72.9 79.5 83.8 73.8 75.9 80.8 70.3 76.5 80.4 72.3 75.6 79.4 71.7 75.1 77.8 70.3 75.6 79.1 71.6 75.1 77.8 70.3 73.6 75.7 69.6 72.2 74.3 67.6 71.4 73.5 67.6 71.4 73.5 67.5 69.5 71.6 64.9 66.2 68.7 61.4 71.6 73.5 68.3 74.9 78.1 69.4	AVERAGE MAX MIN AVERAGE 70.2 74.2 63.1 69.5 73.2 76.6 68.4 72.8 79.7 83.6 74.2 79.1 78.1 81.0 70.6 77.8 80.3 83.2 74.1 80.0 81.0 84.2 75.9 80.7 82.0 84.2 76.1 81.7 80.8 84.0 72.9 80.3 79.5 83.8 73.8 78.9 75.9 80.8 70.3 75.2 76.5 80.4 72.3 75.8 75.8 79.4 71.7 75.3 76.2 80.2 78.9 75.8 75.8 79.1 71.6 75.3 76.2 80.2 78.9 75.8 75.6 79.1 71.6 75.3 75.1 77.8 70.3 74.8 73.6 75.7 69.6 73.3 <tr< td=""><td>AVERAGE MAX MIN AVERAGE DEV 70.2 74.2 63.1 69.5 2.6 73.2 76.6 68.4 72.8 2.0 79.7 83.6 74.2 79.1 2.4 78.1 81.0 70.6 77.8 1.9 80.3 83.2 74.1 80.0 1.9 81.0 84.2 75.9 80.7 1.8 82.0 84.2 76.1 81.7 1.8 80.8 84.0 72.9 80.3 2.2 79.5 83.8 73.8 78.9 2.3 75.9 80.8 70.3 75.2 2.4 76.5 80.4 72.3 75.8 2.3 75.8 79.4 71.7 75.3 2.1 76.2 80.2 78.9 75.8 1.9 75.6 79.1 71.6 75.3 1.8 75.1 77.8 70.3 74.8 1.8</td></tr<>	AVERAGE MAX MIN AVERAGE DEV 70.2 74.2 63.1 69.5 2.6 73.2 76.6 68.4 72.8 2.0 79.7 83.6 74.2 79.1 2.4 78.1 81.0 70.6 77.8 1.9 80.3 83.2 74.1 80.0 1.9 81.0 84.2 75.9 80.7 1.8 82.0 84.2 76.1 81.7 1.8 80.8 84.0 72.9 80.3 2.2 79.5 83.8 73.8 78.9 2.3 75.9 80.8 70.3 75.2 2.4 76.5 80.4 72.3 75.8 2.3 75.8 79.4 71.7 75.3 2.1 76.2 80.2 78.9 75.8 1.9 75.6 79.1 71.6 75.3 1.8 75.1 77.8 70.3 74.8 1.8

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

with truck

The second secon

OCTOBER 28, 1976

EVENT 38, 135 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICHO PA)

	ENERGY			ARITH.	SID	
BAND	AVERAGE	MAX	MIN	AVERAGE	DFV	
•	70 O	13.0 .0	E O	* 0 0		Microphone Location (Relative to Helicoping)
14	70 • 2	73 • 9	59.9		3 • 1	1 1 1
15	74.7	79.1	66.9		2.9	1 Microphone Lancalian \
16	81 • 3		73 • 6		3.0	(w i d al 11al · · · ·)
17	80 +4	84.2		79 • 6		Kelalive to Helicopicy
18	81 • 8	85 • 1	76.4		2.4	. /
19	81 • 6	84.9	74.4		2.4	
20	84.0	87.9	70 ∙ 6		5 • 9	
21	82.4	€5•5			2 • 5	
88	81.2	83.8	78.3	8:-1	1 - 1	
23	75•6	78 • 5	72.9	75.5	1.2	
24	74.7	77 . 4	72.7	74.5	1.2	
25	72 . 8	75.6	69.8	72.5	1.5	
26	73.5	76.7	70 - 1	73.2	1 - ?	
27	73.7	76.8	69.7	73 • 4	1 -8	
28	73.4	75 - 8	69.5	73 • 1	1.7	
29	73•8	76.5	71.0	73.5	1.5	
30	73.5	76.3	70.9	73 • 3	1 • 4	
31	72.5	74.9	69.9		1 . 4	
35	71.9	75.0	69.0		1.5	
33	72.4	75.9	69.7	72 • 1	1.6	
34	71 • 3	74.7	68.0		1.9	
35	68 • 1	71.4	64.3		1.9	
36	65.7	69.2	62 • 1		1.9	
37	69•0	71.6	65 • 1		1.9	
38	73.9	77 • 4	70.3		2.0	
39	55 • 6	57 • 1	55.0		• 7	
40	55.0	55.0	55 • 0		•0	
DBA	83.5	86 - 1	81.0		1 • 3	
DBD	69.9		87.5		1.3	
OASPL	92 • 4		91+5		•5	
PNL	98.4	100.7	96.0		1.3	

97.6 100.1

PNLT 100.3

TABLE G-VII 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY 5-64

with truck OCTOBER 28 1976

EVENT 39, 180 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	_າໆ ∩ °
14	73 • 6	78+5	70.2	73 • 1	2.0	270° (Microphone Location Relative to Helmonton)
15	74.5	77 - 1	71.1	74.3	1.3	Marchene Location
16	79.4	82.2	74.7	79.0	1.9	Mierolaisue actual
17	82.9	85.2	79.5	82.7	1 - 3	Polative to Helmanick
18	85 • 8	88 • 6	81.7	85.5	1 • 7	Melalin 10 mm
19	83 - 6	85 • 6	81.9	83.5	• 9	
20	86 • 3	89.2	84.3	86 • 1	1.2	
21	87 • 5	91.2	83 • 4	87 • 1	1.9	
22	82 • 7	84.7	78.6	82.5	1.5	
23	79.5	88 • 8	75.3	79.2	1.7	
24	78 • 4	80.7	74.8	78-1	1.7	
25	77.9	80.6	74.2	77.4	2.2	
26	78 - 8	80 • 6	73.2	78.2	2.4	
27	79.9	81.7	73-1	79.0	2.8	
28	79.7	82+3	72.5	78.9	2.8	
29	79.3	82.3	71.9	78.3	3.0	
30	77.0	79.5	70.3	76.3	2.7	
31	75.2	77.6	69 • 8	74.6	2 • 4	
32	73.6	75.9	68.8		2.1	
33	71 - 1	73.9	67.2		1 • 7	
34	68 • 5	71.1	65 • 7	68.2	1.4	
35	65.9	67.9	65.0		•8	
36	65 • 1	65.5	65.0		• 1	
37	65.0	65.3	65.0		• 1	
38	65 + 11	67 - 1	65.0	65 • 4	∞ 5	
39	65.2	66.0	65 • 0	65-2	• 3	
40	65.0	65.0	.65+0		•0	
DBA	86 • 1	88.7	81 - 3		2.3	
DBD	91 - 1	92.8	88 • 6		1.5	
OASPL	94.6	95.9	92.5		1.0	
PNL	99.4	102.3	97.0		1 - 4	
PNLT		102.3	97.0		1 + 4	
EMPI	/ V - ¬	200.0	0			

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With truck OCIOBER 28, 1976

EVENT 40, 225 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICHO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	ř.A.v.	MIN	AVERAGE	DEV	235° (Microphone Location) Relative to Helicopter)
14	70 - 1	74 - 1	61.6	68.9	3.4	
١5	74.7	77.6	69.6	74.2	2 • 3	Microphone Location
16	81 • 9	85.4	74.6	81.3	2.5	
17	85.6	90.9	76.9	84.6	3 • 2	Kelative to Helicopter
18	87.7	92 - 1	73.9	86•9	5.9	
19	82.8	86 • 1	76+9		2 - 4	
20	84 • 0	86.6	77.6	83.4	2 . 5	
21	82.7	85.9	77 • 1	82.0	2.4	
22	79.9	82.2	77.2	79.7	1.3	
23	75.6	77.5	70 • 9	75 • 4	1 - 7	
24	77.5	80 -4	71.1	76.9	2 • 5	
25	76.3	80.4	69∗6	75-4	2.8	
26	56.4	32 • 1	υ9∗6	75.3	3 • 1	
27	76 • 1	81.8	69.0	74.9	3.3	
દ્વ	75.7	80.8	70 • ≥	74.8	2.9	•
23	74 • 8	81.3	68 • 5	73 • 7	8.9	
30	72.3	77.5	66 · b	71 • 7	2.2	•
31	71.3	75.6	68 • 5	71 .0	2 + 6	
32	69.8	73.8	67.2	69.5	1.5	
33	72.9	75.4	68+8	72.5	1.9	
34	65 - 9	68-0	65.0	65.8	• (3	
35	55.0	65.1	65+0	65.0	•0	
36	65.0	65•U	65.0	65.0	40	
37	65.0	65.0	65. 0	65.0	• ()	
38	65.0	55 ←0	65 • 0	65.0	• 0	
39	65.0	65.0	65-0	65 • 0	• 0	
40	65.0	65.0	65.0	65∙0	•0	
1938	წ 3∙2	87.4	79.9	88.9	1 • 7	
DBD	69. 5	91.0	87∙ 8	89-4	9	
OASFI.	94.4	96•6	90.4	94+3	1.0	
PNL	98.7	100 - 4	96.2	98.6	1.2	
PNLI	99.9	101.5	96.2	99•8	1 - 1	

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

with truck

OCTOBER 28, 1976

EVENT 41, 270 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD DEV	_
DRIVD	AVERAGE	PIMA	61 1 14	HVENHUE	DEV	1800
14	70 • 4	75 • 1	61.9			180° (Miccophore Lo Relative to Hel
15	75.5	78 • 4	71.4	75 • 1	1 • 7	/ Miccophore La
16	80 • 6	83 • 6	73 - 1			
17	86.2	88•9	81.9			\ Keiative To Mel
18	88 • 1	91.2	83.1	87.6	2 • 1	
19	80 • 5	82 • 5	75 • 1	80.2	1 • 7	
20	83.5	85•9	78.4	83.0	2 • 1	
21	83.7	87.0	75 • 4	83.1	2.5	
\$5	80 • 3	84 • 1	77.1	79.9	1.9	
23	73.6	77•5	70.2	73.0	2 • 1	
24	73.7	78•9	69 • 7	72.9	8.6	
25	70.2	72 - 1	66.2	69.5	2 • 3	
26	69.7	73 • 7	65 • 2	69.1	2•3	
27	69.4	73.2	65.0	68 • 6	2.7	
28	68.5	72.7	65 . 0	67.9	2.2	
29	68 • 1	69•8	65.0	67.4	2 • 4	
30	68.5	74.2	65 • 4	67.7	2.5	
31	68.6	70 • 4	65 • 5	67.8	2.5	
38	67.7	68 • 8	65.2	66.9	2 • 3	
33	69.9	70 • 0	66.1	68•8	2.6	
34	65+6	65 • 1	65•0	65.4	1.2	
35	65 • 1	65.0	65.0	65 - 1	- 4	
36	65.0	65∙∪	65•0	65.0	• 1	
37	65.0	65•0	65•0	65.0	•0	
38	65.0	65•0	65 • 0	65.0	•0	
39	65.0	65.0	65 • 0	65.0	•0	
40	65.0	65•0	65+0	65.0	• 0	
DBA	79.8	80 • 2	76.5		2 • 1	
DBD	S•88	88.0	86•7	88.0	1 • 3	
OASPL	94.3	95•9	92.5		1.2	
PNL	96 • 4	100.5	94.8	96.2	1 • 4	
PNLT	97 - 1	102.5	94•8	96.6	1.9	

TABLE G-VIL 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

with truck

OCTOBER 28 1976

EVENT 42, 315 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	WIN	AVERAGE	DEV
14	74 • 1	79.8	69+5	73 • 1	2 • 8
15	75 • 8	77.9	72.2	75.6	1.6
16	80 • 7	83•3	76.4	80 • 4	1.6
17	79•9	82.4	77 • 6	79•7	1.2
18	83 • 6	86.0	81.2	83 • 4	1.3
19	81.9	83 • 4	79•8	81.9	• 8
20	85 • 8	87.6	83•6	85 •7	•8
21	87.5	89.4	84.9	87.4	1.0
22	79•9	82•5	76 • 7	79•7	1.5
23	77 - 1	79.7	73.9	76.8	1.5
24	75 • 1	78•0	72.3	74.9	1.5
25	73∙8	75.9	71.1	73.7	1 - 3
26	74 • 0	76 • 1	71 • 6	73 • 8	1.2
27	73 • 4	75.3	70 • 7	73.2	1.2
28	73 • 1	75.2	69.3	72.9	1 + 3
29	72 • 3	74.3	69 • 4	72.1	1.2
30	71.0	72.6	68 • 1	70•9	1.0
31	72 • 3	75.2	69.5	72.1	1.3
32	70 • 6	72 • 8	68 • 7	70•5	• 9
33	71 • 6	73.7	69 • 4	71 • 4	1.3
34	65 • 9	67.0	65 • 1	65+9	• 4
35	65 • 0	65 - 1	65.0	65.0	•0
36	65 • 0	65•0	65.0	65•0	• 0
37	65 • 0	65.0	65.0	65.0	•0
38	65 • 0	65.0	65.0	65.0	•0
39	65•0	65.0	65•0	65•0	•0
41	65 • €	65.0	65.0	65•0	•0
DBA	81 • 8	83.0	79.7	81.7	•8
DBD	88.7	89 • 4	87.7	88.7	•5
OASPL	92 • 9	94.3	91.5	92.9	•6
PNL	97 • 6	98•4	96 • 4	97.5	• 5
PNLT	98 • 3	99 • 4	96.7	98 • 3	• 7

1350
(11 or opinor a Location
Relative to Helicopter)

5 FOUT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKUNSKY S-64

without truck OCTOBER 28 1976

EVENT 86, O DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DBA RE 20 MICRO PA)

0.0.0	STD	ARITH.			ENERGY		
270°	DEV	AVERAGE	MIN	MAX	AVERAGE	BAND	
A70° (Microphora L Relative to A	•9	67•6	66.2	69.6	67 • 7	14	
/ metoprofe ==	1.3	72.1	70.0	76.1	72.3	15	
Relative to A	2.2	76.5	73.0	82 • 4	77 • 1	16	
Checker, in the second	1 • 8	77.2	74.3	81.5	77.6	17	
	1 - 7	78 • 2	74.8	81 • 2	78.6	18	
	2.5	80 • 3	76.4	86.0	81.2	19	
	2.0	81.6	77.9	85.6	82 • 1	20	
	2.2	80 • 6	77.3	85.8	81.2	21	
	2.3	79.7	75.6	85 • 3	80 • 4	22	
	2 • 5	80.8	74.8	86.7	೮1 • 5	23	
	2.7	80 • B	73.9	85.8	31.5	24	
	2 - 1	79 • 1	73 • 4	82 • 6	79.5	25	
	1.9	78.9	74.8	81.6	79.3	26	
	1.9	78.9	75.2	82.4	79.3	27	
	2.2	77.4	73.2	81.9	77.9	28	
	2.0	75.9	72.0	80.0	76 - 4	29	
	1.8	74.3	70 - 1	78.0	74-6	30	
	1 • 4	71.8	68.8	74.6	72.0	31	
	1.2	69.7	67.2	72.0	69.9	32	
	1.2	67.0	65 • 1	69.3	67.2	33	
	•5	65+3	65.0	66 • 6	65 • 3	34	
	•0	65+0	65.0	65.0	65 • 0	35	
	•0	65.0	65.0	65.0	65.0	36	
	•0	65.0	65.0	65.0	65 • 0	37	
	•0	65.0	65.0	65.0	65.0	38	
	•0	65+0	65.0	65.0	65 • 0	39	
	•0	65.0	65.0	65.0	65.0	40	
	1.7	84.0	80.8	87-1	84 • 3	DBA	
	1.3	89 • 6	87.3	92.5	89.8	DBD	
	1.5	91.5	88 - 8	95.4	91 - 7	OASPL .	
	1.3	97.5	94.9	100.5	97 • 7	PNL	
	1.3	97.5	94.9	100.5	97 • 7	PNLT	
		,,			- • •	· · · ·	

TABLE G-VII-5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY 5-64

without truck

OCTOBER 28 1976

EVENT 87, 45 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB4 RE 20 MICHO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	66•2	68•0	64-1	66 - 1	1 • 0
15	70.2	72.5	66.9	70-0	1 • 4
16	75.0	78 • 1	71.0	74.5	2.0
17	83.9	85.5	81.7	83.8	1.0
18	85 • 8	87.5	83.9	85.7	•9
19	79 • 1	80.6	77.0	79.0	1 • 1
20	82.2	84.9	79.3	82.0	1 • 6
21	82.5	84.9	77.2	52.1	2 • 1
22	80 • 1	83 • 4	75.4	79.8	1 • 5
23	80 • 8	85.0	77.4	80.3	2.0
24	80.8	83 • 4	77.3	80.5	1 • 6
25	79 • 1	82.6	76-0	78.8	1 • 8
26	78 • 7	81.7	75 • 4	78.4	1 • 6
27	79.1	82.7	74.9	78.7	1 • 8
28	78 • 1	80.8	74.8	77.8	1 • 6
29	76 • 6	79+4	73.0	76 • 4	1 • 4
30	75.3	76.9	70.9	75.1	1 • 3
31	75.0	76.8	70•6	74.6	1 • 6
32	73 - 1	75•7	69 • 8	72.8	1 • 6
33	70.9	73.4	67 • 8	70 • 6	1 + 4
34	68 • 5	71.5	65 • 1	68.3	1 • 4
35	65 • 3	69.4	62.5	65.0	1 • 4
36	60 • 7	63.3	58 • 1	60•5	1.2
37	55•9	57.5	55•0	55.9	• 6
38	55.0	55•0	55.0	55.0	• G
39	55•0	55.0	55.0	55.0	•0
40	55•0	55.0	55 • 0	55.0	•0
DBA	85 • 1	87 • 6	82 • 4	85.0	1 • 3
DBD	89.8	92.2	87 • 8	89 .7	1 • 1
OASPL	92 • 5	94 • 1	91.0	92.4	•8
PNL	97.5	99.6	95.5	97.4	1 - 1
PNLT	97.5	99•6	95 • 5	97.4	1 - 1

225°
(Microphore Location
Relative to Helicopter

TABLE G-VII 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

without truck

OCTOBER 28 1976

EVENT 88, 90 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	69.5	71.5	66.0	69+3	1.4
15	79-1	82.3	72.5	78•3	2.9
16	86 • 4	89.0	77.8	85.5	3.2
17	88 • 8	90•8	87.1	88.7	1.0
18	89.9	91.8	88.3	89.8	•9
19	86.8	89•9	83 • 1	86 • 4	1.8
20	89•3	92.0	87.2	89+2	1.2
21	90 • 1	92.7	87 • 6	89.9	1.3
22	88•6	91.0	84.6	88.4	1.5
23	88 - 3	92.2	82.9	87.9	2.0
24	88 • C	91.0	82.9	87.6	1.9
25	85.7	89•6	80.6	85.3	2.1
26	84 • 8	88 • 4	81.0	84+4	1.9
27	84.0	86 • 4	79.9	83.7	1.6
28	82.2	84.5	77.0	82.0	1.6
29	80•9	82.6	76.7	80.7	1.5
30	79•3	81.9	74.4	79.0	1.7
31	78 • 4	80.7	74.1	78 • 1	1.7
38	75 • 8	78.6	72.5	75.6	1.3
33	72.0	73.8	70.0	71.9	•9
34	69 • 1	70.9	66.5	69.0	1.1
35	65 • 6	67.2	63.2	65.5	•9
36	61.0	62.6	59+3	61.0	• 7
37	56 • 6	57.4	55 • 5	56.6	•5
38	55 • 0	55.0	55.0	55.0	•0
39	55 • 0	55.0	55.0	55.0	•0
40	55 • 0	55.0	55.0	55.0	•0
DBA	89 • 8	91.6	86.0	89 • 6	1.3
DBD	95 • 0	96.8	91.7	94.8	1.3
0ASPL	98 • 8	100.3	96.2	98.6	1.1
PNL	102.7	104-3	99.5	102.5	1.2
PNLT	102.7	104.3	99.5	102.5	1.2

180°

(Nonuphers Location
Relative to Helicopter)

5 FOJI HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

Without truck

OCTOBER 23 1976

EVENT 89, 135 DEGREES, MICROPHHNE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DEA RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
					-3.5 (
14	70 • i	72.4	ಕ್ಕೆಕ್	69.5	1.5
15	78.6	80 • 8	75.2	78.3	1.6
16	85.3	87.9	80.7	84.9	2.0
17	89.3	92.2	86.2	89.0	1.5
18	86.88	91.5	85.5	88.6	1 - 4
19	90 • 9	95.9	85.7	90.3	2.2
20	93 - 0	98.2	89.5	92.4	2 - 1
21	92 -5	97.1	88.5	91.9	2.1
22	92.4	97.9	87.2	91.4	2.9
53	98.2	98.5	85,9	90.8	3.3
24	90•8	96 - 1	85-0	89.9	8.8
2.5	87 • 7	91.5	82 - 4	87.0	2.5
26	ხ6•2	89.1	81.0	85.7	2.3
27	86 • 3	89.2	83.2	86.0	1.5
28	85.2	88.7	80.8	84+7	2.2
29	G2.8	86 • 1	79.3	82.4	1.9
30	80 • 6	83.1	77.8	80.3	1.6
31	79.8	82.5	77.2	79.5	1 • 5
38	77 - 1	79.6	75.1	77.0	1.3
33	74.8	77.0	73 • 1	74.7	1.0
34	70.8	74.1	68 - 1	70.6	1 • 4
35	67.2	70.6	65.5	67.0	1.3
36	65 • 1	65.6	65.0	65 - 1	• 2
37	65.0	65.0	65.0	55.0	• 0
38	65.0	65.0	65.0	65.0	•0
39	65.0	65.0	65.0	65.0	•0
40	65.0	65.0	65.0	65.0	•0
DBA	92.3	96.1	88.8	91.7	1.9
DBD	97.7	102-1	94.3	97.2	2.0
OASPI	101.3	105-8	98.0	100-8	8.0
PNI.	105 • 6	109.8	102.4	105.1	1.9
PNLT	105.6	109.8	102.4	105.1	1 • 9

1350

(Microphone Location Relative to Helicopter)

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

Without Truck OCTOBER 28 1976

EVENT 90, 180 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STU	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	67-1	70.0	65+4	66.9	1.2	Microphore Lu Relative to He
15	71.7	73.7	69.1	71.6	1.2	,
16	76.9	79.6	72.4	76.6	1.8	/ Marachare /
17	80.8	83.1	77.5	80.5	1.5	111101011101110111
18	80 • 7	83.2	76.8	80.5	1 • 4	Relative to ite
19	82.0	84.0	78.6	81.7	1 • 5	Mela. M.
20	85.1	87.2	81.2	84.9	1.5	
21	84.9	86.9	80.9		1.5	
22	83 • 8	86 • 4	78 • 8	83.6	1.7	
23	83 • 4	87.3	76.2	82.9	2.1	
24	84.1			83.6	2•3	
25	82.6		77.7	82.1	2.2	
26	82.4	86.9	77.5	81.3	5.3	
27	81.6	85.2	77.6	81.1	2.0	
28	80 • 4	84.4	76.3	80.0	1.9	
8.9	77.6	79.8	75.0	77.4	1.3	
30	75.5	76.9	72.7	75.3	1.3	
31	74.3	75.9	71.9	74.2	1-0	
32	72.4	74.6	69.0	72.2	1.3	
33	69-1	70.6	66.5	69.0		
. 34	66 • 1	67.4	65.0	66.0	1 • O • 7	
35	65 • 0	65.0	65.0	65.0	•0	
36	65+0		65.0	65.0	•0	
37	65 • 2		65.0	65.2	_	
38	65.0		65.0	65.0	•3	
39	65.0	65.0	65.0	65.0	•0 •0	
40	65 • 0	65.0	65.0	65.0		
DBA	86 • 8	90-1	83.8	86.5	•0	
הפס	92 • 0		89.2	91.8	1 • 6	
OASPL	94 • 4	96.9	91.5	94.2	1 • 4	
PNL	99.8	102.4	97.3		1.3	

PNLT

99.8

102.4

97.3

TABLE G-VIL 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

Without Truck OCTOBER 28 1976

EVENT 92, 225 DEGREES, MICHOPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(OF RE 20 MICRO PA)

		` ' '	Dr. trm .	L G		
	ENLHUY			ARITH.	STD	
PAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
						Microp): (Microp): Paizing
14	66 • 4	68.3	64.5	66•3	1 • 0	
15	69.0	72.3	65 - 1	68 • 7	1 • 5	[[M:(or):
16	75.3	80 • 4	70 • 4	74.7	5.5	
17	76 . 1	80 • 1	72.8	75.8	1 • 5	1 Po : 1.10
18	78 - 1	81.2	75.3	77.8	1.5	\
19	80 • 6	82.9	77.3	80 • 4	1.5	
20	82 • 4	84.0	79.8	82.3	1 • 1	
21	81.8	84.4	78.9	\$1.6	1 . 4	
22	80 • O	82.8	76-2	79.5	2.0	
23	79.0	83.7	74.8	78.1	2.6	
24	79.2	83.2	74.5	78 • 4	2.6	
25	78.7	82.6	72.9	77.7	8.9	
26	78.9	83 - 5	71 - 4	77.9	3 • 1	
27	79.7	84.1	72.6	78.5	3.2	
28	78.9	84.5	72.6	77.7	3 - 1	
29	77.2	81 • 4	71.3	76 • 4	2.7	
30	75.8	80.2	69.7	75 • 1	2.6	
31	73.9	77 • 6	68 • 3	73 • 4	2.1	
32	71.5	74.9	67.3	71 • 1	: • ઇ	
33	68 • 6	71.8	64-6	68•3	1.6	
34	€6 • 3	68 • 4	61.8	66.0	1.7	
35	64 - 4	66•3	60 • 6	64+2	1.5	
36	61 • 3	63 - 1	57 • 7	61+1	1 • 4	
37	72.0	74 • 4	68.0	71+7	1.6	
38	58 • ध	61 • 1	16 • 1	58+6	1.2	
39	56 •8	58•0	55 • 5	56+8	• 6	
40	55 • 0	55•0	55.0	\$5.0	·)	
DBA	85 • 1	88.7	79.9	84.5	2 • 3	
ดลด	89 • B	92•7	85.5	89.5	1 -8	
OASPL	91.5	94.4	89.0	91.3	1.5	
5 MT	98•0	100.6	93.9	97•7	1 • 7	
PNLT	101.9	104.3	97 • 6	101.6	1 • 7	

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECIRA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 93, 270 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DBA RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	46.5	49 O	40.0	4 F 1	
15	65•7 71•1	67 • 9	62.0	65 • 4	1.7
16		72.9	65 • 2	70 • B	1.6
	78 • 3	80.9	67.9	77 • 8	2.4
17	79 • 1	82 • 5	75 • 8	78 • 8	1.6
18	81 • 7	84.8	77 • 5	81.5	1 • 6
19	81 • 2	83.8	78.9	81 • 1	1.2
20	83 • 5	86.7	81,5	83.3	1 - 4
21	82.5	85.3	76 • 9	82.2	1.6
55	8C • 4	84.3	77 • 4	80.1	1.5
23	79•6	82.5	76•7	79•4	1.3
24	79•8	81.5	76 • 6	79.6	1 • 4
25	78 • 4	80 • 4	74 - 1	78 • 1	1.5
26	78.6	80.7	73.3	78.3	1.9
27	79.7	83.4	72 • 6	79.2	2 - 1
28	78•6	80 • 5	72.1	78 • 3	1 • 7
29	77 • 0	78 + ♀	71.9	75.8	1 • 4
30	74.7	76+2	69.9	74.5	1.3
31	72.5	74.1	69.2	72.4	1 - 1
35	70.3	72.7	68.0	70.8	1.2
33	69 - 4	71.5	65.9	69.2	1.2
34	68.2	70.4	65+2	68.0	1.5
35	68 • 5	71.3	64.5	68.2	1.7
36	62.7	65.3	5).9	ú2•5	3.4
37	70 40	73.0	66 • 3	33.6	1 - 3
38	59 • 4	62-3	56 - 1	59.1	1.5
39	57 - 1	58.0	55 - 5	57.0	+ 67
40	55.0	55•0	55 • 0	55•0	• (3
DBA	85.0	86.7	8: 0	34.8	1.1
מבמ	90.0	\$1.6	87.1	89.9	1.0
UASPL	02.0	93.7	90.3	92.0	.9
PML	98.0	99.4	94.9	97-9	1.0
PNLT	100+2	102.2	97.6	8-991	1 • G

Microphone Location (Relative to Helicopter)

778LE G-VII 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY 5-64

Without truck OCTOBER 28 1976

EVENT 86. O DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	200
14	69 • 1	70.7	67.4	69+0	1.0	90° (Mecopione Lossid Robotine to Heling
15	72.6	74.2	70 - 4		1.0	1 11 sept 221 300
16	76.7	78.8	74.2	76.5	1.2	
17	77.0	78.8	75.1		• 9	- Chaleton to Helm
18	79 • 1	80.3			1.0	
19	81 • 2	84.1	78.9		1.2	
20	83 • 8	86.4	82.2	83.7	1.0	
21	82.4	84.0	79.9		1 • 1	
22	77 • 8	81.5	75.4	77.6	1 . 4	
23	74.6	76.2	72.7	74.5	1.0	
24	74.5	76+9	72.0	74+3	1.2	
25	73 • 2	75.7	70-1	73 • 1	1.2	
26	72.6	74.4	69.9		1.2	
27	71.9	73.8	69.0	71.7	1.3	
28	71 -2		69.4		• 9	
29	70 • 4	72.2	67.5	70.2	1.0	
30	69 • 5	71.2	66.9	69 • 4	• 9	
31	69 • 6	71.4	67.1	69 • 4	1.2	
32	67 • 9	70 - 1	65.5	67 • 8	• 9	
33	67.5	69.8	65 • 6	67•3	1 - 1	
34	65 - 1	66.0	65.0	65 • 1	• 2	
35	65 • 0	65.0	65.0	63.0	• 0	
36	ć5•0	65+0	65.0	65+0	• 0	
37	65 • 5	67.0	65.0	65.5	• 7	
38	65 • 0	65.0	65.0	65.0	• 0	
39	65 • O	65.0	65.0	65•0	• 0	
40	65∗0	65+0	65.0	65.0	• 0	
DBA	79.5	80 • 9	77.1	79.4	• ႘	
DBD	86+9	88.0	85.8	86.9	• 5	
OASPL	90 • 4		89.4	90 • 4	• 5	
PNL	95 • 1	95.9	93.9	95.1	•5	

95.9

93.9

PNLT

95 • 1

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S+64

Without truck OCTOBER 28 1976

EVENT 87, 45 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
						Microphone Los Relative to He
14	64.3	66.2	62•5	64.3	• 9	70
15	70•2	71.7	68•5	70 • 1	•9	Maria share / 00
16	76 • 4	79.0	73.2	76.1	1 • 8	Microprovie do
17	74•7	80 -4	70 • 6	74.0	2.3	Palitin to Ha
18	76 • 4	81.4	72.5	75.7	2.2	Kelstise to the
19	80 • 7	84.7	77•2	80.3	1 • 9	
20	82.5	84.9	78 • 6	82.2	1 +8	
21	80•3	83 • 1	77•5	80.0	1 • 6	
88	75 • 1	78 • 3	72•3	74.7	1 . 7	
23	72 • 4	76 • 5	65•6	71.9	2.0	
24	7 2•6	76.2	68 • 2	72.1	2.3	
25	71.3	76•0	65•1	70.6	2 • 6	
26	70•9	74.9	64•9	70.2	2.6	
27	71.3	76 • 1	64.8	70.5	2.7	
28	72-1	76•0	66 • 4	71.3	2.8	
29	73•7	78.2	67.8	72.8	2.8	
30	72•8	78 • 1	67.5	71.8	3.0	
31	71 - 3	76 • 1	66•5	70.5	2.6	
32	69•9	73 • 7	54.9	69.2	2.5	
33	69,2	72.5	64.7	68.5	2.4	
34	66 • 8	69 • 1	62.0	66.3	2.1	
35	65 • 5	68 • 1	61 • 1	65.0	2.0	
36	62 • 4	64•8	58•9	62.1	1.7	
37	74.0	76 • 4	69•1	73.5	2.2	
38	60 • 2	62.5	56.6	59.9	1 • 8	
39	57 • 5	58 . 7	55 • 8	57.4	• 9	
40	55•0	55.0	55.0	55.0	• Q	
DBA	81 -8	84.7	77.7	81+3	2.1	
ดยม	88 • 4	90.2	84.9	88.0	1 +8	
OASPL	89.3	98.0	87.1	89.1	1 • 4	
PNL	96 • 8	98.6	93.3	96.5	1 -8	
PNLT	101.0	103.0	97 - 1	100.6	1.9	

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECIRA

SIKORSKY S-64

Without Trues: OCTOBER 28, 1976

EVENT 88, 90 DEGREES, MICROPHONE 150 METERS EAST

1/3 GUTAVE HAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MIGRJ FA)

	ENERGY			ARITH,	S T D	
BAND	AVERAGE	MeX	MIN	AVERAGE	DEC	(Minisophere Location Relative to Helmogton)
14	65 • 2	6 7 • 0	62.5			
1.5	72 • 3	73.8	70 • 1	72.2	1 - 0	Musophane Gooding
16	78.0	80 - 5	74.9	78•4 81•6	1.5	Dolating & Holismit
17	81 • 7	83 • 6	79.2	81.6	1.0	Kejalike is Hellishiri
1 8	82 - 5	54.3	79.8	82 • 4	1.1	•
19	79.1	81.06		78.9		
20	81.7	83.3	77.8	81.5	1.4	
21	80 • 3	82.8	76.4	80.1	2 - 4	
23	77.0	80 - 5	71 - 1	76-3	2.05	
23	71.9	73.9	67.3	71,5	j - 9	
24	73 - 0	76 • ?	68 • 5	72.5	2.0	
25	71.6	73.9	68.6	71.3	1 • 6	
26	72.1	75.5	68.6	7: • 6	1.0	
27	71 - U	75 €	68.1	7104	1.9	
28	71 • 4	74.5	67.5	71.0	1.7	
29	71.2	74.7	67.7	70 • 9	1 • 8	
30	70.2	72.9	66+9	69.9	1.5	
31	8 • 36	71.6	65.8	68 - 5	1.6	
32	67.7	70.5	63.9	67.4	1 • 6	
33	68• 8	71.3	63.2	68 • 4	2 • 1	
34	67.0		62+0	66.6	8.0	
35	67•3	71 - 1	50.9	66-6	2 • 6	
36	61.3	64.7	56.0	60 • 7	2.3	•
37	69 • 4	72.6	64.3	69.0	2-1	
38	57 • 7	60 • 4	55.1	57.4	1.7	
39	55.0	55.0	55.0	55.0	•0	
40	ა5 ∙ 5	58.0	53.0	55:4	•8	
DBA	80 • 5	83.1	77 . ;	80.5	1 .5	
DBD	85+9	89.2	83.3	86.7	1*4	
OASPI.	90 •0		87.8	89.9	• 8	
FNL.	95 • 1		91.3		1.5	
					• •	

PNLT

98 - 4

100+8

5 FOOT HOVER TEST in

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 89. 135 DEGREES: MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	ĽEV	
14	64 • 9	67•5	61.3	64.6	1.6	
15	69.5	76.3	66.8	69.3	1.3	/
16	75 • 1	77.6	70 • 1	74.5	2.3	- 1
17	78.8	82.7	74.2	78•2	2.4	,
18	79.2	81.8	76.2	18.8	1. ខ	\
19	80 • C	8,38	78 • 1	79 -8	1 • 1	
20	2° £3	85.8	30.7	83~4	1 - 1	
21	81.2	83 • 4	79-0	81.0	1 • 1	
22	77 • 7	81.5	78.7	77.0	2.4	
23	73.6	77.0	68•3	73.1	2.4	
24	74.2	78.3		73.4	2.4	
25	73.9	76.0	67.3	73.2		
26	74.8	76.2	69 • 7	74.2	2.3	
27	75. 3	76-8	70.2	74.6	2.5	
28	74.5	76.5	70.2	74.3	2.1	
29	75.0	77.9	71 8		1 • 8	
30	74.2	76.4	70 • 4	73.9	3 - 7	
31	73.9	76-1	69 • 4		1 - 4	
32	71.6	73.8	69.0	71.6	1.4	
32	70.7	73.5	67.1		1.6	
34	68 • 4	69+8	65•3	68.8	9.45	
35	66.7	68.6	63.5	66+5	1.5	
36	63.9	66.3	60.9	63.7	1 - 4	
37	74.9	78 - 1	71-1		2.0	
38	63 • 5	66.2	30.9		1.5	
39	59 • 2	60•5	58.0	59 • 1	• 7	
40	55 • C	55.0			•0	
DBA	83 • 7	85+5	81 • 1	83.5	3 • 5	
DBD	89.8	92.2	87.0	89.6	1.4	
OASPL	90 • 1	91.8	88.4		•9	
PIN	98 • 4	101.1	95+6		1.5	
PULT	102-1	105.2	99.C	101.8	1.7	

315°
(Microphone Location
Relative to Helicopter)

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

without truck OCTOBER 28, 1976

EVENT 90, 180 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICHO PA)

BAND	ENEPGY AVERAGE	MAX	MIN	ARITH.	STD DEV	A70° (Microphy Location Relative to Helicitis)
2		••••••	*****	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D L · V	w/6
14	68.7	70.0	66.8	68 • 6	•9	Allenga Incating
15	73.7	74.6	72 - 1	73 • 6	•9 •용	The contract
16	73.6	80.6	76.9			Relative to Helmoter
17	81.8	86.0	77.2	81.0	2.6	
18	81.9	86.0	77.3	81.2	2.5	
19	81.6	83.9	79.0	81.5	1 - 1	
೭೦	84 - 5	86.3	81.3	84.4	1 • 1	
87	82 • 6	85.8	79.8	82 • 4	1 • 3	
55	78.6	81.0	75.9		1.3	
23	75.1	79.0	70.5		2 • 1	
24	76.9	80.5	72.5		2.3	
25	76.8	80.2	70.6	76.4	2.1	
26	78.7	82.1	73.9		2.1	
27	79.3	81.4	75.2		1.7	
28	79.6	81.7	75.4		1.6	
29	79+7	81.9	75.8	79.4	1.5	
30	78.2	80.7	73.5	77.9	1 ~ 7	
31	77.2	79.3	73•€	76.5	1.7	
35	75.2	77.7	70.2	74.8	8.0	
3 ૧	73-1	75.9	68.6	72-6	2-1	
34	69.2	71.7	65.5	68 . 9	1 -7	
35	64.0	66.2	60 • 8	63 • 8	1 • 5	
36	59.0	60.49	56.7	\$8 • 8	1 • 🗈	
37	62.9	64.8	59.4	62 • 5	1.6	
38	55.2	55.6	55.0	55+8	• 2	
39	55.0	55.0	55.0	55 • 0	•0	
40	55.0	50 •0	55•0	55.0	• O	
DЫA	J5 • 4	58.4	88.47		15	
DBD	90.4	92+3	87.4		1.3	
OASPL	92.3	94-3	91.0	92.2	• 👌	
-						

P.N.

PNLT

98.1

100.0

190.5

102.2

95,2

96.9

97.9

99.7

1.3

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKURSKY S-64

Without truck

OCTOBER 28, 1976

EVENT 92, 225 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	XAM	MIN	AVERAGE	DEŲ
14	67.0	69•6	63.9	66•9	1 - i
15	7 2 •8	75.1	70.3	72.5	1 + 4
16	81.6	83.9	78 • 4	81.6	1.6
17	84 • 4	86.8	80.7	84.2	1.5
18	B6 • 4	89.2	83.2	86.2	1 • 4
19	82.7	84.4	80 • 0	82•5	1.2
20	84.2	86.5	81 • 3	84.1	1 • 1
21	82 -4	85.4	78•7	82.2	1.5
58	81.7	85.3	78 • 4	81.4	1.8
23	80.7	84.3	75∙8	80.2	2.1
24	85.46	84.0	77.9	81.3	1.6
25	80 • 7	63.2	76.2	80 • 4	1 • 7
86	79 ∗3	82.5	74.7	79 • 4	5.0
27	80 • 9	84 • 1	76 - 1	80 • 4	2.2
28	79.5	81.9	75•5	79.2	1 • 8
29	78 • 1	80.3	74.1		1.6
30	76.3	78+1	72.9	76 • 1	1 - 4
31	76.5	79.5	73 • 8	76•3	1.2
32	74.2	76.7		74.0	1.3
33	73.2	75.5	70 • 6		1.3
34	68 - 2	70 - 1	65•0	68 • 0	1.3
35	64 • 8	δ ό∙ β	61 • 9		1.3
36	8 • 08	62.9	58 • 3		1.2
37	56 • 9	58 • 7	55 • 1		1.0
38	55.0	55-0	55.0		• 0
39	55.0	55.0			• 0
40	55+0	55•0			• 0
DBA	8€ +3	88.4	\$3.0		1 • 4
กยก	94.7	96.2	92 • 1		1 - 1
OASPL	93 ∉ಚ	95•1	92•4		• 7
r NL	98 • 6	100.3	96.2		1 - 1
PNLT	88 • 8	100.3	96.2	98.7	1 • 1

Ad5 Microphone Location

Relative to Helicopter

TABLE G-TIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 93, 270 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	68.0	70.0	65•6	67 • B	1 • 1
15	73.5	74.8	71.6	73 • 4	1 - 1
16	81 • 3	82.9	79.2	81.2	1.3
17	84 • 3	86•3	82.5	84.2	•8
18	87 • 2	88.8	84-4	87.2	•9
19	83 • 4	85 • 1	80 • 0	83.2	1.3
20	87.0	88.1	83 • 8	86.9	•9
21	87 • 1	88.6	85 - 1	87.0	• 9
22	2 • 0 6	82 • 4	78 • 0	80 • 1	1.2
23	75 • 3	77.5	73.0	75 • 1	1.2
24	76.2	79.3	72.8	75•7	2.1
25	74.3	79.4	70 • 6	73.6	2.3
26	73.9	78.6	69+8	73•3	2.2
27	73.6	78 • 4	69.3	73.0	2.3
28	73 • 4	77.5	68 • 6	72•6	2.5
29	73.8	77.9	68 • 4	73.3	2.2
30	72 • 1	76.0	67.2	71.6	2.1
31	74.9	80.7	68 • 3	73 • 6	3.2
32	71 - 1	75.7	66 • 6	70 • 4	2.3
33	70.0	73.2	67.0	69.7	1.8
34	65•9	69•5	62.2	65 • 6	1.8
35	62.9	65.9	60 • 1	62.7	1 • 4
36	60 • 3	62 • 4	58 • 4	60.2	1.0
37	57 • 7	59•8	56.0	57•7	• 9
38	55.0	55.0	55.0	55.0	•0
39	55•0	55.0	55•Q	55+0	•0
40	55•0	55.0	55.0	55.0	•0
DBA	82 • 7	86 • 4	78.9	82.3	1.9
DBD	88•6	91 • 1	86 • 3	88 • 4	1.2
OASPL	94.0	95+5	92 • 6	94.0	• 6
PNL	96 • 9	99•2	94 • 7	96•8	1.0
PNLT	97 • 6	100.9	94.7	97.3	1 • 6

180°
(Microphon Looston
Felicine to Helicopton)

TRBLE G-VII 500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64 With truck

OCTOBER 28 1976

EVENT 45. O DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	4
						6 7AP
14	72.2	7 6 • 6	66.5	71.3	2.9	Microphine Location Relative to Helicopter
15	72 • 5	75.2	69.6	72.2	1.5	
16	74 - 1	77 • 1	69.7	73.8	1.6	Microphine Localian
17	78 • 1	80.3	76.0	77.9	1 • 1	
18	80 • 5	82 • 4	78 • 1	80•4	1.0	Relative To HeliopyTen
19	75 • 8	78 • 4	74.0	75•7	1 - 1	· ·
20	72 • 7	75 • 4	70.6	70•5	1.2	.
21	69 • 1	71-1	67.0	69•0	1 - 1	.
22	78•3	81.3	75.8	78.0	1.5	3
23	83 • 8	86 • 1	80.7	83•6	1 • 4	
24	86 • 0	88.6	82.8	85.7	1.5	4
25	80 • 9	84.3	77 • 5	80 • 5	2.0	<u>.</u>
26	79.7	81.2	76.7	79.5	1.2	1
27	83 • 5	86.2	80.9	83 • 3	1 - 4	1
28	79 • 4	80.5	75.6	79.2	1.2	4
29	79 • C	81 - 1	76.2	78.8	1.2	₹
30	76•9	79.1	73.2	76•7	1.3	·
31	75 • 4	77.0	71.0	75.2	1.3	j
32	71.9	74.0	68 • 4	71.7	1.2	***
33	69 • 4	71 - 1	66.0	69•3	1.2	-
34	64 • 1	65+7	60.5	64.0	1.2	4
35	60 • 1	61.5	56.9	59•9	1 • 1	enter in the second of the sec
36	56 • 3	57•7	55.0	56.2	• 7	*
37	55 • 0	55.0	55.0	55•0	•0	•
38	55 • 0	55.0	55.0	55.0	•0	
39	55 • 0	55.0	55.0	55.0	•0	•
40	55 • O	55.0	55.0	55.0	+ 0	Ĭ
DBA	86 • 9	88.5	84.7	86.8	•9	ì
DBD	91 • 2	92.7	89.3	91.1	• • •	Į.
OASPL	92.5	94.4	90.4	92.4	1 • 1	n
PNL	98 • 2	100.0	96.3	98 • 1	1.0	

98 - 1

PNLT

98.2 100.0 96.3

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

With truck

OCTOBER 28 1976

EVENT 45. O DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
						90° (Microphone Location) (Relative to Helicopter)
14	74.2	75•7	71.4	74 - 1	1 - 1	70
15	74.8	77.0	72.7	74.7	1.0	Missachana / ocation
16	78•6	80.8	75.4	78 • 4	1.3	Interophone working
17	79•7	81.6	77.8		1.0	Rolation to Holanator
18	80 +6	82 • 4	77.7	80.5	1.0	(Kalalia 19 Malladale)
19	72.1	74.2	70 • 1	72.0	1.0	
50	72.7	74.5	70 • 7	72.5	1.3	
21	1.38	84.3	78.7	81.8	1.6	
22	86.6	88 • 5	83.3	86.3	1.6	
23	87 • 4	88 • 8	84 • 7	87.2	1.3	
24	83.9	85 • 5	81.2	83.8	1.2	
25	84.0	85+5	81+6	83+9	1 - 1	
26	86 • 8	88.2	83.9	86.7	1.0	
27	82.3	83.9	80.0	82.2	1.0	
28	81 • \$	83 • 5	78.3	81.5	1 - 1	
29	80 • 1	81 • 4	76.8	80 • 0	1 - 1	
30	77.8	79 • 1	74.9	77•7	1 • 1	
31	76.5	78.0	73 - 6	76.3	1.2	
32	73.7	75.2	71.2	73.6	1.0	
33	71.2	73.3	68 • 6	71.0	1.2	
34	67 - 1	68 • 4	65.2	67 - 1	•8	
35	64 • 1	65 • 5	62.6	64 • 1	•8	
36	60.8	62 • 3	59.4	60 • 7	•8	
37	57.3	59 • 0	56.0	57.3	•8	
36	55•6	56.6	55.0	55.5	• 5	
39	55.3	55•8	55 • 0	55.3	• 3	
40	55 • Q	55.0	55.0	55• 0	•0	
DBA	88.7	90 • 1	86.2	88.6	• 9	
DBD	93.3	94.3	91.0	93.2	• 9	
OASPL	94 • 8	95•9	92.5	94.7	1.0	
PNL	100.7	101.0	98.3	100.7	• 9	
CLASS OF	100 0		~~ ~		_	

161.9 98.3 100.7

PNLT 100.7

SOU FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

without truck OCTOBER 28 1976

EVENT 72, 0 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	2700
14	66 • 8	69 • 1	63 • 4	66.5	1 - 4	270° (Mistophye Konitor Relative to Helmopte
15	70.8	73 • 4	67.9	70 • 6	1 - 4	Marco Are Norther
16	74.4	78.2	70.2	73. 8	2 • 1	
17	75 • 8	77.9	74.4	75•7	-8	Relative to Helmonth
18	78.0	79.4	76.4	77•9	-8	(1)
19	67•0	69•0	65.2	66.8	1.0	
20	74.9	76•6	72.8	74.9	•9	
ខរ	82 • 1	84.7	0.08	82.0	1.2	
22	85 • 0	87.5	81.7	84.5	2.0	
23	85 • 7	88•7	81.5	85 • 1	2.5	
24	79.7	82.8	75.0	79.0	2.6	
25	85•0	87 • 6	80.4	84 • 4	2.4	
26	82.6	84.4	78.6	82.2	1.9	
27	82 • 5	85 • 1	78.9	82 • 1	2.0	
28	79•5	82 • 1	75.8	79.0	2.0	
29	78•4	81.0	74.3	78.0	2.0	
30	75•9	78 • 4	72.8	75.7	1.5	
31	75 - 8	77 • 8	72.8	75• 5	1.6	
32	71 -8	73.7	69.9	71.7	1 - 1	
33	67 • 8	70.0	65 • 5	67.7	1 - 1	
34	63 • 3	65.0	61.6	63∙2	• 9	
35	60 • 0	64.5	58.0	59.7	1 - 4	
36	56 • 0	59.2	55 - 1	55.9	•9	
37	55 • 9	57 • 6	55.0	55 • 8	•9	
38	55 • 0	55-1	55.0	55.0	•0	
39	55 • 0	55.0	55.0	55.0	•0	
40	55.0	55.0	55.0	55.0	•0	
DBA	87 • 2	89.2	83.6	86.9	1.8	
DBD	91 • 8	93.4	88.5	91+4	1.8	
OASPL	93 • 3	94.9	90 • 6	93.0	1.6	
PNL	98•5	100.2	95.5	98•2	1 • 7	
PNLT	98•5	100.9	95.5	98•8	1 - 7	

THOLF G-VIL 500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

Without truck OCTOBER 28 1976

EVENT 72, O DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	69•6	74.8	64.4	68•5	2.9	
15	71.4	76.6	68.2	70.8	2 • 1	
16	77 • 4	82.9	71.6	76.5	2.6	
17	76.2	78.9	73.9	76.0	1.2	
18	77 • 7	80 • 1	74.4	77.6	1.2	
19	74.0	76.9	71.3	73.8	1.3	
20	71.5	73.4	69.2	71 • 4	1.0	
21	68 • 6	70.2	66.4	68.5	1.0	
5.	75 • 1	77.0	73.1	74.9	1 • 1	
23	79.5	81.4	77.5	79.4	1 - 1	
24	81 •8	83.9	79.3	81-7	1 - 1	
25	77 • 3	79•7	73.4	77.0	1.6	
26	76 - 1	78 - 1	72.9	75.8	1 • 6	
27	79 • 3	81.9	76.8	79.0	1.3	
28	73.9	75•8	71.2	73.7	1 • 3	
29	73.8	76.5	71.4	73 • 6	1 • 4	
30	71.7	74 • 1	68.9	71.5	1 • 4	
31	70 • 0	72.4	67.0	69.8	1 • 3	
32	66 • 6	68•8	63.5	66•4	1 • 4	
33	63 • 2	66 • 1	59.9	63.0	1 • 4	
34	58 • 2	60•9	56.3	58.0	1.2	
35	55 • 4	57 • 1	55.0	55 • 4	• 6	
36	55.0	55•0	55.0	55.0	•0	
37	5 5 • 0	55.0	55• 0	55.0	• 0	
38	55.0	55.0	55.0	55.0	•0	
39	55•0	55.0	55.0	55.0	•0	
40	55. 0	55.0	55.0	55.0	•0	
DBA	82 • 2	84.2	80.3	82.1	: • i	
DBD	86 • 6	88.2	84.8	86.5	• 9	
OASPL	89.2	91.7	87.6	89-1	1.0	
PNL	94.2	95∙8	92.5	94 • 1	• 9	
PNLT	94.2	95 • 8	92.5	94.1	. 9	

90°

(Maraghan Sanda)

Feldin to Hologran)

TABLE G-III

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64 With truck OCTOBER 28 1976

EVENT 45, O DEGREES, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	76.0	79.2	72•3	75•7	1.7
15	75 -7	77.7	72.2	75•5	1.2
16	76•6	79•9	71.9	76 • 1	2.1
17	83•i	84.0	81.8	83.0	• 6
:8	82.6	83•6	80.2	82.5	•9
19	70.3	7 2•0	68 • 1	70.2	• 9
20	82.9	85 • 3	80.7	82.8	1 - 1
21	87 • 8	90.2	83 • 8	87•5	1.7
22	90 • 5	93-3	85-0	90.0	8.8
23	88 • 4	90•6	83 • 4	88 • 1	S•0
24	87.0	88 • 3	83.3	86•8	1 • 4
25	92.0	93.3	89•4	91.9	1 - 1
26	87.6	89.0	84 • 8	87.5	•9
27	88.8	90 • 0	86.6	88.7	• 8
28	85.5	86•6	83.8	85.4	• 8
29	83 • 8	84 • 9	82.3	83.7	• 6
30	82.5	83.6	81.0	82.4	• 7
31	80 • 0	81.2	78 • 8	80.0	• 6
32	77.2	78•2	76.1	77.2	• 5
33	74.2	75.6	72.9	74.2	• 7
34	70 • 8	71.8	69 • 8	70.8	• 5
35	68 - 1	69.2	67 • 0	68 - 1	•6
36	64 • 8	66.2	63.8	64 • 7	• 6
37	62 • 1	63.7	59.8	62 • 0	• 9
38	59.4	61.6	56•6	59•2	1.2
39	55 • O	55+0	55•0	55•0	•0
40	55.0	55.0	55•0	55•0	•0
DBA	92.8	93•6	91 - 1	92.7	• 7
$\mathbf{D}\mathbf{B}\mathbf{D}$	97.4	98•3	95•3	97.3	• 9
OASPL	98.8	100.2	96.0	98•7	1.2
PNL	104.8	105.7	102.7	104.7	• 8
PNLT	104.8	105 • 7	102.7	104.7	• 8

Helicopter Location
Directly Overhead

TABLE G-III

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

SIKORSKY S-64

Without truck

OCTOBER 28 1976

EVENT 72, O DEGREES, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
	·				
14	72.2	75.5	67.9	71.5	2 • 4
15	73.7	79.3	69.6	72.7	2 • 8
16	78.7	84.7	70 • 4	77.0	3 • 9
17	77.2	79.7	74.4	77.0	1 • 2
18	78.6	80 • 8	76.0	78.3	1 • 5
19	68.5	69.9	67 • 1	68 • 4	• 7
20	81.0	83.2	78.6	80.8	1 • 3
21	86 • 4	87 • 8	83.6	86+3	1 • 1
22	87.9	90 • 3	84.6	87.5	1.9
23	85.8	88 • 3	88.3	85.4	2 • 1
24	83.8	85 • 6	81.0	83.6	1 • 4
25	88.9	91.4	84.8	88.4	2.2
26	85•0	87.3	82.4	84.8	1 • 4
2 7	86 • 2	88.4	82.9	85.9	1.7
28	83 • 1	85 • 3	80.4	82.9	1.5
29	79.8	81 • 3	78.0	79.7	1.0
30	77 • 5	79.1	76.4	77.5	•8
31	76.7	78 • 0	74.2	76.6	1.0
32	72.9	73 • 8	71.0	72.8	• 7
					1.5
33	69•3 65•3	71•8 66•8	67•3 62•8	69•0 65 •2	1.5
34					
35	62 - 1	63 • 9	59 • 8	61.9	1.2
36	58 • 8	60 • 8	56•7	58 • 6	1 • 1
37	58 • 1	61.6	55+8	57.8	i • 4
38	55.1	55.5	55.0	55 • 1	• 2
39	55.0	55 • 2	55.0	55.0	• 1
40	55.0	55.0	55.0	55.0	•0
DPA	89•6	91.3	87 • 3	89 • 4	1 • 3
DBD	94•4	96 • 1	98•1	94.2	1 • 3
OASPL	97 • 2	98•8	96•0		• 7
PNL	101-3	103.0	99 - 1	101.2	1.2

PNLT 101.4 103.0 99.1 101.3 1.1

Halicopten Noise Level Data SIKORSKY 564 OCTOBER 28, 1976 With truck

max RMS Noise Level - JBA Ne BOMPa

MAX MINS Noise KEVEY - BUN TO SECOND										
HELICOPTER	RUN		PHONE	MICROP OFFSET TO	HONE THE EAST					
OPERATION	NUMBER	OFFSET TO	75 M	1 75 M	150M					
5Ft.	35	95.3	103.0	91.0	87.3					
HOVER	{									
o°		(2)	10°)	(9)	<i>D°)</i>					
5F£.	36	95.8°	102.8	96.8	87.3					
HOVER	1		,	} }						
450		99.5	(5°)	(4,	50)					
5Ft.	37	99.5	104.0	96.5	84.3					
HOVER			_							
700		(18	vo°)	())					
5Ft.	38	101.8	105.8	96.3	88.0					
HOVER					. `					
135 °		(/3	25°)	(3	(5°)					
5F£	39	98.3	101.0	94.3	90.3					
HOVER			<u> </u>		-1					
1800		(9	<i>(</i>)°)	(2	70°)					
5Ft	40	91.0	97.3	97.0	87.8					
HOVER	İ		,		,					
2250		(4	5°)	(20	(5°)					
5Ft	41	89.5	97.5	92.0	84.8					
HOVER	1	1	1.							
270°			D°)		80 °)					
5 Pt.	42	93.3	99.5	93.8	83.0					
HOVER	!									
3150		(3	(5°)	Q:	5")					
500Ft	45	88.0	93.3 A	92.8	91.0					
HOVER	1									
O°		(270°)			(90°)					
5 00 Ft	46	87.5	92.5	91.8	93.5					
HOVER	47	88.8	94.0	93.5	91.8					
90°		(180°)			(\circ)					
	7 7		T							

A Microphine at centurline

TABLE G-VIII Halicopter Noise Level Data

SIKORSKY 5 64 OCTOBER 28, 1976

With truck

		maps RMS	Noise Level	- dBA Ne 20	M.Pa		
HELI COPTER OPERATION	RUN NUMBER	MICRO	MICKOPHONE OFFSET TO THE WEST		OFFSET TO THE EAST CENTER LINE 50M		
		OVER Concrete	OVER Concrete	Over Grass	Concrete		
3° GLIDE	70	85.5	89.0	88.0	85.8		
SLOPE	7/	84.8	87.3	85.8	85.8		
6° GHDE	51	86.0	86.8	84.0	83.3		
SLOPE	52	85. O	8 K. B	86.8	81.8		
9°. GLIPE	43	87.0	89.5	87.5	84.5		
SLOPE	44	86.8	87.8	87.0	8.3.0		
60 KT LEVEL	49	84.0	84.8	82.3	84.8		
FLYOVER	50	84.8	85.0	843	85.5		
85 KT LEVEL	55	84.6	84.0	82.3	84.3		
FLYOVER	66	87.5	85.8	84.8	86.0		
95KT LEVEL	67	87.8	87.0	86.3 85.3	87.3		
FLY OVER	68 69	86.0	86.8	86.5	85.3		

TABLE G-VIII

Halicopten Noise Leval Pata SIKORSKY 564 OCTOBER 28, 1976 Without truck

MAX	RMS	Noise	Level-	JBA re	BAMPA
-----	-----	-------	--------	--------	-------

		, MAX MINS	Maise Keve	A- ARN VO BY	
HELICOPTER OPERATION	RUN NUMBER	OFFSET TO	THE WEST	OFFSET TO	HONE THE EAST 150M
5Ft. HOVER	86	86.8	90.3	91.0	85.0
o° 5Fti	87	88.5	91.8	93.5	85.5
HOVER		(2	9 <i>5°</i>)	(4	5°)
5Ft. HOVER	88	93.5	97.3	93.5	85.0
900	80		30°))°)
5Ft. HOVER	89	99.3	99.8	97.5	85.0
135°	90	89.5	91 ,5 °)	94.8	5°) 89.8
HOVER 180°		(9)	p°)	(a:	(°)
5 Ft HOVER	92	88.5	92.0	76.3	\$ \$ \$ \$
225° 5Ft	93	89.0	5°) 91.5	93.0	5°) 96.3
HOVER 270°		(0)°)	(18	\mathcal{O})
5Ft. H-0VER 3150					
500Ft HOVER		-			_
5 00 Ft HOVER					_

TABLE G-VIII Halicopter Noise Level Data SIKORSKY S 64 OCTUBER 28, 1976

Without truck

max RAS Noise Level - del	ne 20	su Pa
---------------------------	-------	-------

			Noise Level	- dBA ne 20 m Pa MICROPHONE		
HELI COPTER	RUN		THE WEST	OFFSET TO THE EAST		
OPERATION	NUMBER	150M	CENTER LINE	CENTER LINE		
		OVER	Over		over	
		Concrete	Concrete	Over Grass	Conerete	
3°						
_			1	ļ	ŀ	
GLIDE						
SLOPE		i	1			
			1		1	
6°						
- 1	74	86.5	85.8	83.8	82.8	
GLIDE		İ	İ İ	İ		
SLOPE	75	86.0	86.5	83.5	83.5	
					ر رون	
			 			
- 00						
90						
GLIDE	1		i			
Į.						
SLOPE						
					ļ	
85 KT	_ ,	C	02.3		92	
	76	86.5	87.3	85.0	83.0	
LEVEL				1		
FLYOVER	7)	85.0	522	03.0	83.5	
ľ	_	43.0	87.3	83.8	ر.وه	
			 	_	ļ	
95 v-		_				
95KT	78	85.5	88.5	84.5	82.0	
LEVEL	†		1			
FLYOVER	79	88.3	80 4	G.C.	61 -	
-1 -1-1	,	د.ن.	89.8	85.8	86.0	
				+		
					<u> </u>	
أأ يحسيا			1 60 0	1 6/4	520	
105KT	80 1	0 / 3	1 57.1	1 05.5	0.5.8	
LEVEL	80	87.5	89.3	85.3	83.8	
	80 81	89.0	89.5	86.8	82.8	

NOISE LEVEL TIME HISTORIES SIKORSKY 5-CH HELICOPTER 90° HOVER - 5 FT.

NOISE LEVEL TIME HISTORIES SIKORSKY S-G4 HELICOPTER 180° HOVER - 5 FT.

NOISE LEVEL TIME HISTORIES
SIKORSKY S-64 HELICOPTER
3º APPROACH

NOISE LEVEL TIME HISTORIES SIKORSKY S - GY HELICOPTER G° APPROACH

UNDER FLIGHT

PATH

DIRECTLY

60-

t

NOISE LEVEL TIME HISTORIES SIKORSKY 5-64 HELICOPTER 9° APPROACH

NOISE LEVEL TIME HISTORIES SIXORSKY S-64 HELICOPTER GO KTS LEVEL FLYOVER

NOISE LEVEL TIME HISTORIES SIKORSKY S-64 HELICOPTER 85 KTS LEVEL FLYOVER

NOISE LEVEL TIME HISTORIES SIKORSKY S-64 HELICOPTER LEVEL FLYOVER - 95 KTS

DATA TABLE H

Boeing Vertol "Chinook" (CH-47C)

TEST DATE:	10-13-76 TEST SITE: DULLES	AIRPORT
SECTION - H	CONTENT	PAGE #
I	RUN LIST	680
II	GROUND AND FLIGHT LOG DATA	683
III	METEOROLOGICAL DATA	686
IV	LEVEL FLYOVER AND APPROACH NOISE DATA	687
\mathbf{v}	TIME HISTORIES	689
VI	1/3-OCTAVE BAND SPECTRAFLYOVER AND APPROACH	726
VII	1/3-OCTAVE BAND SPECTRA5 FOOT HOVE:	763
VIII	MAXIMUM dBA NOISE LEVEL (ALL RUNS)	785
хх	SELECTED dBA TIME MISTORIESGRAPHIC PLOTS	788

THE NOISE LEVELS PRESENTED IN SECTIONS IV, V AND VI

HAVE BEEN TABULATED FOR THE SELECTED RUNS AND MICROPHONE

LOCATIONS INDICATED ON THE FOLLOWING PAGE.

TABLE H-I
LIST OF RUNS SELECTED FOR ANALYSIS

				MICROPHONE	LOCATION	
			WES	T	EA	ST
RUN#	TEST CONDITIO	ON	150 m SIDELINE	CENTEP LINE	CENTER LINE	150m SIDELINE
12	6° Approach	CJ Kts	x		х	x
17	Level Flyover	60 Kts			x	
18					x	
20	♥ 9° Approach	€0 Kts			x	
22	Level Flyover	100 Kts	x		x	х
23			x		x	x
24		141 Kts	x	х	x	x
25			x	х	x	х
26			х	х	x	x
27			x	х	x	X
28		150 Kts	x		x	x
29			x		x	х
30		126 Kts			x	
31					x	
35	3° Approach	60 Kts			х	
	Microphone Loca	tions	Over Transpo Site Surface	Over Plywood	Over Transpo Site Surface	Over Trans

GENERAL COMMENTS

- o The weather conditions during the test were excellent with very low winds and clear and sunny skies.
- o Because the "Chinook's" gross weight during testing was greatly effected by its rate of fuel consumption, a table has been inserted which provides a log of the gross weight as a function of time.
- o No EPNL levels were calculated for the centerline microphones of run 22 and 23 because the microphone gains were set such that the lower limit of the dynamic range of the data recording system was not low enough to include the 10 dB down points necessary to calculate the EPNL levels.
- o During the 5 foot hover portion of the test, the downwash of the "Chinook" was so strong that it knocked over both the East and West 246 feet (75 meter) sideline microphones. As a result, no data was obtained at these locations.

TRRLE H.II Ground and Flight Log

Doto

					line in	عالية السالية	TR L A	智则人们的 。		
. Date: Oct. 13, 1976		Comments	good run Basisle, insprierent of Very en of run.		Abort					14 possible to take readings mail 150 ft. microphones for
Test	(+5 0/)	Wind Director								· .e
,	Wether C	baacs Speed		····						op was the
		7 Q						· · · · · · · · · · · · · · · · · · ·		S Chinosh
	Ground	Temp								0 to 65
		TIVO .	€ + €	-	,,,	9 3 3	& -→	\$ → ° 0	15.00	the downwast of the
		£ 00	\$	>	#	€ \$.	345	i ₀ →	37.7	the down
Nombor:	Conditions	A. t. d.	т ь	-	400 47.	\$ 005	500 %	\$ ⁴ →	z. % →	
	- 1	200	8	~ >	25 25 25 25 25 25 25 25 25 25 25 25 25 2	664.3	40%	₹>	% 64	1-10) bers position.
re I was su gas	Atos/	\$ 0.00 \$	0	>	\$\$\$ 4/4.	0 ->	0 ->	900 ith	0 -3	(febras 1-10) becauses hower position. In
ومح		Br. P	0	>	60 +ts	0 ->	3 ->	ž>	100Kis	test CF the hou
* *		Hesing	15 15 18 55 50 55 55 55 55 55 55 55 55 55 55 55	12	10)	157 144 *05.00 60.00	₩ →	10	1√) →	5. 64. 0 5. 64. 0
o/ Chinook"		d as	SONIECON O		96.0 96.0 98.5 7.5	3.5	90.06	93.0 95.8 85.0	83.5	tie Nouth
Boeing Verte: CH-49C	;; <u>k</u>	Art tode	#	3	\$ 	500 {4	500 51.	₹ →	€000€	100 ft
	Cond. +.	Velonty	0	>	\$ 09>	0->	60 +	₩ →	1001	Me for Roadings and location - 100
	Tapact	1/pe	Hours		6. 20pp.	Hover	Leve?	. His &	اجریما اجریما	Level Stord
Feopter	_	ا چ د	20.11 90.11 90.11 90.11 90.11	11.16	53 // 54 // 54 //	11:59	18:01	63:10 43:14 43:17	95:00	a c
ء // ه		£	61000 temp-	n 4 5	7002	5/8	7.08	6 % G	4 3	No

Ļ

TABLE H-II Ground and Flight Log Data

Doto: Oct. 13, 1976			,	* * *	· ·		¢.	
OET.		neats						
Do.t. :		Comments						Abort
Test	Ground Weather (10 ft)	ال الماري المارية المارية						
	ther (نس ار مع کینجه دا						
	In Plans	H.J						•
	Green	Tempo						
		740	15.0		6. → 21	% →	° ° ° >	0
• •		Myd	, x, —					r, 2
Registration Homber:	SNO. t	Alt Lyde	500 5-					33
٠ <u>٠</u> ٠.	Actual Corditions	Mo or Torgue	58.2%		39	33.53	45°	1° 5° →
915tra7	10,001	Pate of Moor Decent Torque	0	CHAD			>	300 story
100	1	Fords .	£ -	0 f the	<i>-</i> →	750 Hs	77 981 →	ÿ
*		fu,peay	107.					
rto/ "Chinook"		484	0.00 0.13	end Pd-fue	89.00 89.50	2 % 8 %	8 %	8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	S	PIT. THE	50.59 90.0					1300h
Beeing CH-47	Conditions	Jelaity Altitute de A	/#/ Kts	for Concord Flight	\rightarrow	\$ 3→	50 C +	\$>
Baeing Ve telicoptor Model: CH-47 C	Target	7,pe	Leve?					3° App.
optor	•	sa le	15:34	Stopped	1.5:1	1:35	94:1	1:51 1:53 1:56 3:00
,51/a _t		5	\$ \$3 \$7		35	85 Kg	30	# # £ £

,

.

1

. .

.

BOEING VERTOL "CHINOOK" CH-47C

LOG OF GROSS WEIGHT vs. TIME

Time	Run #	Fuel (lbs.)	Total Gross Weight
11:00	1	-6900	41,000
11:15	9	6100	40,200
11:38	11	5300	39,400
11:50	13	4800	38,900
12:05	18	4300	38,400
12:21	22	3700	37,800
12:32	25	3300	37,400
		25215-	
		REFUEL	
1:25	26	6900	41,000
1:36	28	6300	40,400
1:42	30	6000	40,100
1:56	34	5500	39,600

TABLE H-DE

METEOROLOGICAL DATA

DULLES INTERNATIONAL AIRPORT

OCTOBER 13, 1976

TIME	TEMP.	BAR. PRESS.	REL. HOM.	WIND SPEED	WIND DIRECTION	REMARKS
(Hours)	(°F)	(mmHg)	(%)	(mph)	(Degre e s)	
1100	57		64	3-4	190	Sky-Clear
1115	58		61	9-11	170	
1130	60		60	3-7	170	
1145	61		56	4-6	190	
1200	62		55	4-5	180	
1215	64	754	50	4-5	180	
1230	64		50	3-6	170	
1245	66		48	56	200	
1300	68		44	5-6	180	
1315	68		42	4-6	190	
1330	70		40	57	190	
1345	74		37	5-7	190	
1400	78	748	35	4-7	180	
1415	79		34	4-5	180	
1430	79		34	7-8	210	
1445	79		33	9-10	200	
1500	80		33	11-14	200	
1515.	80		32	7-12	210	
1530	80		32	9-16	190	

TABLE H-IV.

HELICOPTER APPROACH AND FLYOVER NOISE DATA

JEALOL CH-47 C

JCT095K 13, 1976

MICHURADNE OFFSET 150 METERS WEST (ESUEUS-DE RE 80 MICHO 24)

元 リルンコ	EP NL	D34 (W)	DBO (M)	JASPL	トッピ(M)	577 (w)	Fea	DJR(4)	D Jr.(P)	tc
12	103.8	91 • 1	96.8	99.4	104.0	105.8	85.0	29.5	29.5	1.8
22	97.8	83 • 7	89+3	96 • 1	97.5	98•0	79.7	19.5	24.5	1.3
23	97.3	80 • 9	87.8	95.6	95.5	96.3	77.6	25.0	27.0	1 - 1
24	104.8	89.7	97.6	104.7	105.0	105.4	86.5	17.5	18.0	1.7
25	105.8	93.7	100.6	106.3	107:8	108 - 4	89.4	12.5	13.0	1.3
26	106 • 1	91.2	98.2	104.8	106 • 4	107.3	87.4	17.0	16.0	1.2
27	106.5	94.2	99.5	106.5	107.7	108.5	89.5	15.0	16-5	1 - 1
58	106.5	95•5	103.4	109.7	111.0	111.0	91.5	8 • 5	9•0	• Q
59	107.0	96 • 1	103.2	109.7	110.9	110.9	92.4	8 • 5	9.5	•0

MICHARDAE OFESSI 120 ASLERS EAST (FA ANDIW 02 SW BULL 64

: 5 1 5 -> 0										
EVENT	RP.7L	DB4(A)	D30(w)	JASPL	50r(v)	50F1(%)	LEG	DJr(A)	Dig (5)	1C
12	103.1	86 • 4	91.8	98.5	99.6	101.1	81 • 1	54.0	68•0	1.5
22	100 • 6	0.63	90.7	97.3	98.6	100.4	81.0			
			•				01.0	23.3	28•5	1.8
23	97 • 0	79•6	88.7	90∙7	95.7	95.7	76.7	26.0	26.5	• 0
24	103.9	89.9	97.5	103.9	104 2	104.3				
		0949	21.0	103.9	104.3	104.3	85•5	21.0	19.5	•0
25	104.0	91,4	99.4	105.4	105.5	105.8	86.7	16.0	13.0	1.7
26	106.0	93 • 1	100 0	100	100	•				/
20	100.0	33.1	100.0	106.7	108.1	108 • 1	89.0	11.5	12.0	•0
27	107.3	95•6	102.0	107.9	110.6	110.6	91.4	10.0		
^ ~						110.0	3194	10.0	10.5	•0
28	109.0	99•5	105.8	110.3	113.3	114.5	95.7	6.0	7.0	1.2
29	109.1	09.7	105 4	100 0	110 /	•				
67	103.1	98•7	105 • 4	109.9	112.6	112.6	95•7	7•0	8•Ω	•0

TABLE H-IV.

HELICOPTER APPROACH AND FLYOUER NOISE DATA

VERTUL CH-47 C

UCTUBER 13, 1976

CENTERLIVE MICHOPHONE (SOFT SITE)
CLEVELS-DB RE 20 MICHO PA)

IVEVS	SPVL	D94(×)	i)i3i) (~)	りもちとし	50L(W)	50FL(W)	LEG	DUR (A)	DUR (P)	IC
	107-6	95-8	102-3	105-7	108.6	108	91.8	15-5	21.0	•0
	105.6	90 - 0	96.0	100.8	104-1	104.1	85.0	36.5	38.5	•0
	106.9 107.5	91 • 5	97.0	100.8	105.0	105.0	86.2	42.0	44.5	•0
22		95•1 88•6	101.8	105.3	108.2	108.2	90•7	18.0	23.0	•0
23		84.2	93•1 91•2	97•8	101.5	101.5	83.2	0.53		•0
	106.5	91 • 1	99.1	98 • 1 105 • 6	99•7	99•7	79 • 6	26.5		•0
	106.8			106.5	106•1 108•1	106 • 1	87.3	50.0	20.5	•0
26	106.4			106.1	107.4	108-1	88.0	17.5	18.0	•0
27	108.9	•	111	108.6	110.0	107.4 111.1	88 • 1	17.0	17.0	•0
28	109.0			109.8	111.4	111.4	91 • 7 92 • 7	14.0	14.0	1 • 4
	111-3	99.3		111.1	113.5	113.5	95.4	13.0 13.0	13,5	•0
	103.5	88 • 8	28.0	104-9	105.1	105-1	84.4	16.5	13.5	•0
	104.2	87.9	96.3	103.3	103.9	103.9	85 4	17.0	16.5 18.5	•0
35	108•1	94 • 4	100.8	104.6	107.6	107.6	90.6	19.0	46.0	•0 •0

CENTENTINE MICHOPHONE (HARD SITE)
(LEVELS-OB RE 20 X.Cho P4)

四人は2	L ELNE	D94 (M)	CW) GEG	945PL	PNL(M)	PNLL(W)	LEJ	DUR (A.)	DURCED	TC
24	106.8	90 • 7	98.9	106.3	106.0	106.0	87.6	20.5	20.5	•0
						109.2				
						108-1				
						110.6				

⁻⁻⁻⁻ INSURFICIENT DATA - 10 DB DOWN POINTS NOT DISCERNIBLE ABOVE AMBIENT LEVELS

NOISE LEVEL TIME HISTORY DATA

VERIOL CH-47 C

OCTOBER 13, 1976

EVENT 12, 6 DEGREE APPROACH, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	UASPL	PNL	PNLT	PNL-DBA	DBU-UBA
1	75.2	83.0	92•3	91.6 92.8	92.8	16•4 15•7 13•3	7•8
3	77 • 1	84.3	92 • 1	92.8	92.8	15.7	7.2
5	80.8	85.7	92.3	94 • 1	95•1	13.3	4.9
		86.2					
9	77.7	84.7	92.4	93 • 1	94.3	15.4	7.0
11	75 • 8	83.9	91.9	92 • 1	92•1	16.3 15.3 13.5 13.2	8 • 1
13	75 • 7	82.7	92.2	91.0	91.0	15.3	7.0
15	79.3	84.3	92.8	92.8	92.8	13.5	5.0
17	83.0	88.2	94•4	96.2	96.2	13.2	5•2
19	81.9	88.2	94.6	96.3	97.6	14.4	6.3
21	82.4	87 • 4	94 • 1	95.7	97.0	13.3 13.2 13.5 12.4 12.5	5.0
23	81.46	86.7	94.2	94.8	96.0	13.2	5 • 1
25	82.4	87.0	94.7	95.9	97.5	13.5	4.6
27	84.6	88.6	94.2	97.0	98.3	12.4	4.0
29	85.9	90 • 7	94.7	98 • 4	98•4	12.5	4.8
31	86 • 4	91.3	95•2	98 • 4	100-3	12.0	4.9
33	86.0	91.2	95.8	98.5	100.9	12.5 12.4 12.1 12.2 13.0	5.2
35	87.2	92 • 1	95-4	99+6	99.6	12-4	4.9
37	87.0	91.5	95•3	99.1	99-1	12.1	4.5
39	88 • 4	93.2	96.6	100.6	100.6	12.2	4.8
41	90.7	96.0	99.0	103-7	105.7	13.0	5 • 3
42	91 • 1	96 • 8	99.4	104.0	105+8	12.9	5 • 7
44	88 • 1	94.6	98 • 3	101.4	101 • 4	13.3 14.2 14.5 14.7 14.3	6+5
46	86+0	92.7	98 • 1	100.2	100+2	14.2	6.7
48	84.6	91 • 4	97.7	99•1	99•1	14.5	6.8
0.H. 50 51	84+0	90.8	97.2	98 • 7	98•7	14.7	5.8
52	84.8	91.1	96.7	99•1	99•1	14.3	6.3
54	84.5	90.2	95.7	98+1	98-1	13.6	5.7
56 50	85.2	91.3	95.6	99 • 1	99•1	13.9 13.7 13.6	6 • 1
58	85 • 4	91.5	94.9	99•1	99•1	13.7	5 • 8
60	82.9	88 • 4	93+1	96•5	97.5	13.6	5 • 5
62	81 • 4	86.8	91.4	94.8	94.8	13.4	5 - 4
64	81.2	86.3	61.43	94.7	95•9	13.5	5 • 1
66	79.7	85.2	90 • 8	93•3	94 • 4	13.6	5.5
68	76 • 7	82.2	88 • 1	90.3	91 • 7	13.6	5.5
7 0	73 • 8	79.7	86.7	88.2	89 • 4	13.6 13.6 14.4 14.8	5.9
72	71.5	78•0	85•8	86.3	86•3	14.8	6.5

NOISE LEVEL TIME HISTORY DATA

JERTOL CH-47 C

OCTOBER 13, 1976

EVENT 22, 100 KT. FLY BY, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICHO PA)

INT	DBA	DBD	045PL	PNL	PNLT	PNL-DB4	DBD-DB4
1	64.8	77.5	88•0	85.0	85.0	20•2	12.7
3	66.0	78 • 6	89.0	86 • 1	86 • 1	20 • 1	12.6
5	67•6	79•5	89.7	86.9	86•9	19.3	11.9
7	70-4	89•7	90+8	88 • 4	88 • 4	18.0	10.3
9	71 • 4	81.6	91.6	89 • 4	89 • 4	18.0	10.2
11	71.7	82 • 1	92.1	89.5	91.2	17.8	10.4
13	71.2	81 • 7	92.0	89 • 1	89 • 1	17.9	10.5
15	71.0	81 • 4	91.8	89.0	89.0	18.0	10-4
17	71.6	82 • 1	92.5	89.8	89.8	18.2	10.5
19	75•6	84.4	93.7	91.9	91-9	16.3	8•8
21	77.5	85•5	94.5	93.2	93.2	15.7	8.0
23	77•6	85 • 4	94.5	93•3	94•3	15.7	7.8
25	78 - 4	85 • 4	94.3	93 • 4	93 • 4	15.0	7.0
27	79•5	86•3	94.2	94.1	95•4	14.6	6 • 8
29	77•6	85.2	94.0	93.2	94•3	15.6	7 • 6
31	79.2	87.0	94.9	54.4	94 • 4	15.2	7.8
33	82 • 3	88.7	94.8	96.8	98•0	14.5	6 • 4
35	83•7	89.3	93.9	97.4	97.4	13.7	5 • 6
37	82•2	88 • 1	94.1	95•8	95 • 8	13.6	5•9
39	80 • 8	88•3	95.2	95.8	95 • 8	15.0	7.5
$0.H_i \longrightarrow 41$	81.2	88•9	96 • 1	96 • 4	97.6	15.2	7 • 7
43	79.2	86.7	95.2	94 • 1	95•3	14-9	7.5
45	78.3	84.8	93.3	92•5	93.6	14.2	6.5
47	80 • O	85 • 4	91.7	93 • 0	93.0	13.0	5 • 4
49	80 • 1	85.4	91.2	92.6	92•6	12.5	5 • 3
51	78.5	83•9	90.0	91 - 1	91 - 1	12-6	5 • 4
53	76.9	82.2	88.8	89.5	89 • 5	12.6	5.3
55	75 • 1	80 • 4	87.2	87.8	89.0	12.7	5.3
57	73.2	78 • 4	85.6	86.3	86.3	13.1	5.2
59	72.6	78.0	84.5	86.0	87.8	13-4	5 • 4
61	71.3	77 • 1	84.0	84.9	84.9	13.6	5 • 8

TABLE H-V

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTUBER 13, 1976

EVENT 23, 100 KT. FLY BY, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOTSE INDEXES (DB HE 20 MICRO PA)

INI	DB4	DBD	OASPL	トルト	PNLT	PNL-DBA	DBD-D34
1	61.4	75•0	85.6	82+5	82.5	21.1	13.6
3	53 • 1	76.2	86.7	83.3	83.3	20•2	13.1
5	65.1	77 • 6	88.2	84.7	84.7	19.6	12.5
7	67.0	79.3	89.6	86.3	86.3	19.3	12.3
9	68.2	80.6	91.2	87 - 6	87•6	19.4	12.4
11	70 -4	82.3	92.7	89.3	89+3	18.9	11.9
13	72.7	83.9	94.2	91.0	91.0		
15	74.1		95.5				
17						18 • 1	
19						17.4	
21			93 • 5				9 - 4
23						17.4	
25	72.6					18.3	
27	72.7		94.2				
29						17.9	
31						17.0	
33						16 - 7	
35						15.7	
37						14.4	
39						14-6	
41			94.3				
O.H. 43 44						15.3	
45						14.8	
47		86•3				13.8	
49	80 • 4		92.5		94.9	13.4	· 5•6
51	80 • 4	85.3	90•9	93•2	93 • 2	12.8	4.9
5 3	79•6	84.3		92.0	98.0	12.4	
55	77 • 7	82 • 7			91.6		
57	75 • 6	80.9	88.0	89.0	90 • 1		
59	73.0	78.9	85•8	86.9	86•9		
61	70.3		83.7	84.3	85•7	14.0	
63	68•9	75.6	82.4	33.4	83 • 4	14.5	
65		75.0		83 • 1	83•1		
67	66 • 4	74 - 2	80•9	82.6	88•6	16.2	7 • 8

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 24. 141 KT. FLY BY. MIC. 150 METERS WEST

1/2 SECOND INTEGRATION US NOISE INDEXES (DB RE 20 MICHO PA)

INI	DBA	DBD	OASPL	PNL	PNLT	PNL-DEA	DBD-DBA
1	74.8	83.9	92.2	91.6	91.6	16.8	9 • 1
2	77 • 3	85•9	93.8	93.5	93.5	16.2	8-6
3	78 • 1	86.7	94.6	94.6	94.6	16.5	8.6
4	78 • 6	87.0	95.1	95 • 1	95-1	16.5	8 • 4
5	79.0	86.8	95.2	95 • 8	95.8	16.8	7.8
6	79.3	87 - 1	95.5	96 • 4	96.4	17.1	7.8
7	79•6	87 • 7	96.2	96.8	96.8	17.2	8 • 1
8	79.7	88.5	96.8	97.0	97.0	17.3	8.8
è	80.9	89.7	97.7	97.8	97.8	16.9	8.8
10	82.5	91.3	98.6	99.2	99.2	16.7	8-8
11	84 • 1	92 • 7	99•7	100.9	100.9	16.8	8•6
12	85 • 1	93.6	100.5	101.9	101.9	16.8	8+5
13	86 • 6	94•6	101.3	102.8	102.8	16.2	8 • 0
14	87.3	95 • 4	101.9	103.4	103-4	16.1	8 - 1
15	87.5	95 • 5	102.3	104.0	104.0	16.5	8.0
16	88-1	95•8	102•5 102•8	104.0	104.0	15.9	7 • 7
17	88.3	96•0	102.8	104.2	104.2	15.9	7 • 7
18	89.3	97 • 1	103.8	104.5	104.5	15.2	7.8
19	89.6	97 • 6	104.5	105.0	105.0	15.4	8.0
20	89.4	97.6	104.7	105.0	105.0	15.6	8.2
21	88•4	96 • 6	104-2	104.4	104.4	16.0	8.2
22	88 • 2	96 • 1	103.8	103.8	105.4	15.6	7.9
23	88-1	95 • 6	103.8	103.7	105.4	15.6	7.5
24	87 • 8	95•6	104.0	103.5	104.9	15.7	7.8
25	88.7	96 • 4	104.3	103.8	105.0	15-1	7.7
26	88.9	96 • 4	104.1	103.8	105.1	14.9	7 • 5
27	89.7	96•2	103.5 102.5	103.5	103.5	13.8	6 • 5
28	88 • 4	94 * 6	102.5		103.7		6.2
29	87 • 4	93.3	101.5	100.6	102.5	13.2	5•9
30	84•9	91.7	100.5	99•0	100.3	14.1	6•8
31	84.3	91.4	99.8	98 • 6	98•6	14.3	7-1
32	84•8	92 • 4	99•2	99.7	99.7		7 • 6
O.H. →33	85 • 1	92.7	98.7	100.8	100.2	15-1	7•6
34	85-2	92.6	98 • 2	100.0	100.0	14.8	7 • 4
35	84.5	91.4	97•3	99 • 1	99.1	14.6	6•9
36	83.8	90 • 3	95.7	98.0	98.0	14.2	6 • 5
37	83.4	89-3	93.8	97 • 1	97.1	13.7	5•9
38	82.8	88 • 4	92.4	96.1	96-1	13.3	5•6
39	82.5	87 • 7	91.3	95 • 1	95.1		5•2
40	81 - 7	86 • 4	89.7	93.8	93.8	12.1	4.7
41	81.0	85.9	88.6	93.2	93.2	12.2	4.9
42	79•6	84 • 6	87.9	92.3	92.3	12.7	5•0

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTUBER 13, 1976

EVENT 25, 141 Kr. FLY BY, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES
(DB RE 20 MICRO PA)

101	DBA	рвр	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	77 • 1	85.9	94 • 1	94.0	94.0	16.9	8.8
2	77.0	85.8	94.4	94.2	94.2	17.2	8•8
3	78 • 4	86.6	95.2	95-1	95 - 1	16.7	8.2
4	82.1	89.5	96.4	97 • 7	97.7	15.6	7.4
5	83 - 4	90.9	98-0	99.3	99.3	15.9	7.5
6	84.6	92.6	99.9	101-1	101 • 1	16.5	8.0
7	85 • 6	94.5	101.9	102.7	102.7	17.1	8•9
8	89 • 4	96 • 8	103.6	105.0	105.0	15.6	7 • 4
9	91.9	98.8	104.8	106.5	106.5	14.6	6.9
10	93.7	100.6	105.9	107.8	107.8	14-1	6•9
11	93 • 3	100.6	106.0	107.7	107.7	14.4	7 • 3
12	92.4	100 • 4	106.3	107.6	107.6	15.2	8.0
13	90 • 3	99.1	105.9	106.3	106.3	16.0	8 • 8
14	92 • 1	99.6	106-1	107-1	108.2	15.0	7•5
15	92.9	99.4	105.8	107.1	108 • 4	14.2	6 • 5
16	92.8	99.2	105.6	106.8	108.3	14.0	6 • 4
17	90•2	97.3	104.6	104.7	106.2	14.5	7 • 1
18	88 • 2	95.8	103.6	103.3	104.7	15.1	7.6
19	86•6	94.6	102.9	102 • 1	103.6	15.5	8•0
20	87•7	94.7	102.8	102.5	102.5	14.8	7.0
21	87 • 2	94.0	102 • 4	102.2	103.7	15.0	6.8
22	86 • 8	93.0	101 • 6	101 • 1	102.8	14+3	6.2
23	85•3	91.7	100 • 4	99.7	99•7	14.4	6 • 4
24	84.2	91.0	99•5	98 • 1	98.1	13.9	6•8
25	54 - 1	91.3	98•6	99•0	99.0	14.9	7.2
O.H. > 26	84.6	92.0	98•2	99.8	99•8	15.2	7 • 4
27	84.6	92.0	97•7	99.9	99.9	15.3	7 • 4
28	84.2	91.2	97.0	99.0	99•0	14.8	7.0
29	83 • 6	89.8	95.7	\$7.9	97.9	14.3	6.2
30	83.5	89.2	94.3	97 • 1	97.1	13.6	5 • 7
31	83.5	89.0	93.3	96•8	96•8	13.2	5 • 4
32	83 • 4	88.5	91.9	96 • 1	96.1	12.7	5 • 1

NOISE LEVEL TIME HISTORY DATA

VERTUL CH-47 C

UCTURER 13, 1976

EVENT 26. 141 KT. FLY BY. MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 26 MICRO PA)

1.01	DB4	DBD	OASPL	P'NL	PNLI	PNI. DR4	DBD~DBA
1	73.3	83.5	90 • 5	93•0	93+0	19.7	10.2
2	74 • 1	84 • 6	92•7	93.8	93 • 8	19.7	10.5
3	74.6	85 • 4	94•5	95•2	95•2	20.6	10.8
4	77.5	87.1	96.2	96•7	96.7	19.2	9 • 6
5	81 • 4	89.5	97•9	99•0	99•0	17.6	8 • 1
6	84.1	92.3	99•9	101 • 4	101.4	17.3	8 • 2
7	86+0	94.6	101-9	103.2	103-2	17.2	8 • 6
8	87.0	95.7	103.0	104.1	104.1	17-1	8.7
9	87.3	96•3	103.6	104.6	104.6	17.3	9•0
10	87.2	96•3	103.7	104.6	104.6	17.4	9 • 1
11	87 •8	96,5	103.7	105.0	105.0	17.2	8•7
12	89•3	96.6	103.8	106.1	106-1	16.8	7•3
13	89.9	96.9	103.9	106.2	106.2	16.3	7•0
14	91.1	97•8	104.2	106 • 4	106.4	15.3	6•7
15	91.2	98•2	104.5	106 • 1	107.3	14.9	7•0
16	91.0	98•2	104.7	106.3	106.3	15.3	7 • 2
17	89•7	9 7 • 7	104.8	105.6	105.6	15.9	8•0
18	88.9	97.0	104-6	105.2	106.9	16.3	8 • 1
19	88•9	96•5	104.3	104.3	106 • 1	15.9	7•6
20	88.3	95•5	103.9	104.0	105-4	15.7	7.2
21	88•0	95•3	104.0	103.8	105.5	15.8	7•3
22	88.2	95 • 1	104.1	104.0	105.5	15.8	6.9
23	88.2	95 • 1	104.1	104 • 1	105•4	15.9	6•9
24	88.6	95.3	103.7	104.0	104.0	15.4	6 • 7
25	88.7	95•2	103.3	103.9	105.2	15.2	6 • 5
26	88 • 2	94•4	102+3	102.7	104.4	14.5	6•2
27	86•3	92•5	100.8	100.7	101.8	14.4	6.2
28	84.2	90.9	99.4	98•7	98•7	14.5	6•7
29	84.0	91.4	98•7	98•9	98•9	14.9	7 • 4
30	84.3	91.9	98•2	99•5	99.5	15.2	7 • 6
o.H. -> 31	84.6	92.3	97.9	100.0	100.0	15.4	7 • 7
32	84.2	91.8	97•5	99•7	99.7	15.5	7•6
33	83.5	90.8	96 • 8	99•0	99•0	15.5	7 • 3
34	82.9	89.3	95.3	97.9	97.9	15.0	6 • 4
35	82.8	88 • 8	93 • 6	97.3	97.3	14.5	6•0
36	82.4	88.2	92 • 1	96•6	96.6	14.2	5•8
37	82.2	87.9	91.5	96.0	96.0	13.8	5 • 7
38	81.4	87.2	90•6	95•3	95•3	13.9	5•8

TABLE H-V

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 27. 141 KT. FLY BY. MIC: 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	04SPL	PNL	PNLT	PNL-D34	DBD-DHA
1	76.1	84.6	87.5	93.3	93.3	17.2	8 • 5
2	76.3	85.0	89.3	93.8	93.8	17.5	8.7
3	77 • 1	86.2	91.4	94.9	94.9	17.8	9 • 1
4	79.2	88.7	94.2	96.7	96.7	17.5	9•5
5	84.8	93•7	98•3	100.7	100.7	15.9	8 • 9
6	86.7	95 4	100.3	102.5	102.5	15.8	8•7
7	86-9	95•4	100.6	102.7	102.7	15.8	8 • 5
8	85 • 3	93 • 6	99.9	101.7	101.7	16.4	8 • 3
9	84 • 4	92.5	99.6	101.2	101.2	16.8	8 - 1
10	84.9	92•5	99•9	101.8	101.8	16.9	7.6
11	86.0	93.0	100 • 4	102.8	102.8	16.8	7.0
12	86•9	94.0	101.0	103.6	103.6	16.7	7 • 1
13	86•7	93•9	101 - 1	103.7	103.7	17.0	7.2
14	86 • 2	93.3	100 • 6	103.1	103.1	16.9	7 • 1
15	85.5	92 • 1	99•6	102.3	102.3	16.8	6•6
16	84.9	91.5	99•3	101.7	102.8	16.8	6•6
17	86•6	93 • 4	101.2	103•1	103.1	16.5	6•8
18	88.0	95.9	103.3	104.8	104.8	16.8	7•9
19	90•6	98 • 1	104.8	106.4	106.4	15.8	7 • 5
80	91.5	98•8	105.7	107.1	107.1	15.6	7 • 3
21	92•3	99•4	106+1	107.7	107.7	15.4	7 • 1
55	92.5	99•4	106.5	167.4	107.4	14.9	6.9
23	93.0	99•5	106 • 4	107.4	108.5	14.4	6 • 5
24	93•5	99•2	106.2	107.3	108.3	13.8	5 • 7
25	93.5	98•9	105.6	107-1	108.5	13.6	5 • 4
26	94.2	99•5	105•1	107.0	107.0	12.8	5 • 3
27	93.4	98 • 7	104.2	105.8	105.8	12.4	5•3
28	91.8	97 • 1	103.0	104.7	104.7	12.9	5•3
29	87.3	93.0	101 • 4	101.9	101.9	14.6	5 • 7
30	84.9	92.0	100.0	99.7	99.7	14.8	7 - 1
31	85 • 4	92 • 8	99.2	100 • 7	100.7	15.3	7 • 4
32	86.0	93 • 5	98+8	101 • 4	101 • 4	15.4	7 - 5
o.H.→ 33	85.5	93 • 1	98 • 3	101 • 1	101+1	15.6	7 • 6
34	84.3	91 • 7	97 • 1	99.9	99.9	15.6	7 • 4
35	83 • 6	90•6	95•5	98•8	96.8	15.2	7.0
36	83.5	90 • 1	94.0	98 • 3	98.3	14.8	6.6
37	82.9	89+3	92.6	97•3	97.3	14.4	6 • 4
38	81.9	87.9	90 • 9	96•1	96.1	14.2	6.0
39	80.6	86 • 4	89 • 1	94.6	94.6	14.0	5•3

TABLE H.-V

NOISE LEVEL TIME HISTORY DATA VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 28. 150 KT. FLY BY. MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	78 • 4	87.9	96•2	97.2	97.2	18.8	9•5
2	79.5	89.3	97.8	98 • 4	98•4	18.9	9•8
3	81 • 4	91 - 1	99•6	99.8	99.8	18.4	9•7
4	83.6	92.9	101.6	102.2	102.2	18.6	9•3
5	85 • 4	95.1	103.5	104.0	104.0	18.6	9•7
	88.4	97 • 4	105.2	105.7	105.7	17.3	9•0
6 7	91.0	99.7	106.5	107.0	107.0	16.0	8•7
8	93.2	101.5	107-7	108.8	108.8	15.6	8•3
9	95 • 4	103.2	109.2	110.8	110.8	15.4	7 • 8
10	95.5	103 • 4	109.7	111+0	111.0	15.5	7•9
11	94.7	102.7	109 • 4	110.3	110.3	15.6	8.0
18	92.9	100.9	108-2	108-4	108 • 4	15.5	8.0
13	91.7	99.4	107.2	107-4	107.4	15.7	7.7
14	91.3	98.3	106.2	107+1	107.1	15.8	7.0
15	90 • 6	97 • 5	105 • 4	106.2	106.2	15.6	6.9
16	90 • 4	96.5	104.4	105.0	105.0	14.6	6 • 1
17	89.3	95•7	103.9	104.3	104.3	15.0	6.4
18	88.0	94.9	103 • 3	103.0	103.0	15.0	6 • 9
19	86.9	95 • 1	102.5	102.6	102.6	15.7	8 - 2
aH>20	86.1	94.5	101-4	102.1	102.1	16.0	8 • 4
21	85 • 3	93.6	100 • 1	101-2	101.2	15.9	8.3
55	84 • 1	91.8	98.7	99.8	99.8	15.7	7.7
23	83.2	90 • 4	96.5	98 - 5	98.5	15.3	7.2
24	82.7	89.0	94.0	97.4	98 • 4	14.7	6+3

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTUBER 13, 1976

EVENT 29, 150 KT. FLY BY, MIC. 150 METERS WEST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

INT	DBA	DBD	OASPL	りいて	PNLT	PNL-DBA	DBD-DBA
3	77 • 8	86•8	94-3	96+2	96.2	18-4	9.0
:4	82 • 1	91.0	98•2	99•3	99•3	17.2	8•9
5	86 • 1	94.5	101.7	103.3	103.3	17.2	8 • 4
6	88.5	96•9	103.7	105.2	105.2	16.7	8 • 4
7	89.5	97.7	104.5	106.0	106.0	16.5	8 • 2
8	90 • 2	98 • 4	104.9	106.2	106.2	16.0	8 • 2
9	91.6	99 • 1	105.3	107-1	107.1	15.5	7 • 5
10	94.1	101 • 7	107.3	108.5	108.5	14.4	7 • 6
11	95.9	102.9	109.0	110.2	110.2	14.3	7.0
12	96 • 1	103.2	109.7	110.9	110.9	14.8	7 • 1
13	94.9	102.0	109.2	110.4	110 - 4	15+5	7 - 1
14	95.0	101.9	108 • 4	109.7	109.7	14.7	6.9
15	94 63	100 - 9	107 • 4	108 • 8	110.1	14.5	6+6
16	93.7	99.9	106.5	107.7	108.7	14.0	6.2
17	90 • 7	97•0	104.8	105.5	105.5	14.8	6 • 3
18	89.2	95 • 1	103.2	103.7	103.7	14.5	5 • 9
19	88+2	94	102-1	102.7	102.7	14.5	6 • 4
20	86 - 4	93•	101.1	101.5	101.5	15.1	7 • 5
a.n.→21	86.0	93 • 7	100.5	101.2	101.2	15.2	7 • 7
85	85.4	93 • 1	99.7	100.7	100.7	15+3	7 • 7
23	84.6	92 • 1	98.7	99.8	99.8	15.2	7•5
24	84.1	91 • 1	97.2	99.1	99.1	15.0	7 • 0
25	83.5	90 • 1	95.0	98 • 4	98 • 4	14.9	6.6

TABLE H-X

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 12. 6 DEGREE APPROACH. MIC. 150 METERS EAST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE SO MICHO PA)

INT	1)84	ава	JASPL	PNL	PNLT	PNL-DBA	DBD-D84
1	72.2	81 • 2	87.3	89.4	90.5	17.2	9.0
5	73.8	82.7	88.2	90•6	90•6	16.8	
9	73 • 3	82•6	88•6	90•8	90.8	17.5	
13	73.3		88 • 7	90•9	90•9		9•2
17	75 • 1	82.9	87.8	90 • 8	90•8		7. 8
21	74 • 6	81 • 7	86•8	89.4	89•4	14.8	7 • 1
25	72.6	80 - 3	85-1	88 - 6	88 • 6	16=0	7 = 7
29	77.2	84.0	88.2	91.5	91.5	14.3	6•8
33	76.8	84 • 1	88•5	92.0	92.0		
37	76.2	84.7	90.0		92.6		8 • 5
41	77 - 1	85 • 7	90 • 7	93.6	93.6		8•6
45	75 • 1	82•5	87•3	90 • 4	90.4	15.3	7 • 4
49	78.2	82 • 4			92.1	12.5	4.2
53	73 • 1	79 • 7	87.4	89•0	90 • 1	15•9	
5 7	69.8	79.2	88•8	89.0	89•0		
61	69.2		8 7•7				
65	72 - 1	80.9	90.2	89.8	39∙8	17-7	8•8
69	73.7	81 • 4	89 • 2	90 • 5	90 • 5 91 • 7	16.8	7 • 7
73	75•0	81.0	88.9	90•5	91.7	15.5	ნ∙℧
77	72.9	80 • 4	00 • 3	07.0	91.0	16.5	7.5
81	7 8•2	83•9	90 • 1				
85	79•3		91.5		93•8		
89	83 • 1	88•2	93.9		98•6		5 • 1
93	84.2	88•5	93•6	97•0	98•3 99•7	12.8	4.3
97	85 • 4	89•9	94.7	98.6	99•7	13.2	4•5
101	84 • 5			98•3	99.5	13.8	5 • 3
105	84.7	90-1	95.7		98•3		
107	ძ6 • 4		98.5				
111			96•8	97•6	97•6		
o.H. $\frac{115}{119} > 118$		89•9	96•2	97.9	97•9	13.6	5 • 6
119	83.0	88•4	95 • 4	96.2	96.2	13.2	5 • 4
123	83•3	88•9	96 • 1 91 • 9	97.2	98•4	13.9	3 • 0
197	82-1	87.3	91.9	95 • 4	96.2 98.4 97.2	13.3	5.2
131			89.7	95•1	97•0	14.0	5 • 4
135			87.2		91.7		
139			85•3		86•3		
143	70 • 5	77.3	83.5	86.0	87.2	15.5	6•8

NOISE LEVEL TIME HISTORY DATA

VERIOL CH-47 C

OCTOBER 13, 1976

EVENT 22. 100 KT. FLY BY. MIC. 150 METERS EAST

1/2 SECOND INTEGRATION VS NOISE INDEXES (DB RE 20 MICRO PA)

101	DBA	DBD	UASPL	りいし	PNLT	PNL-DBA	DBD~DBA
2	66 - 4	76.7	86.6	94.5	æh.e	PNL-DBA 18.1 17.3 17.0 15.8 16.1 17.3 15.5 14.7 15.5 14.7 15.4 13.8 12.6 13.5 14.2 15.8 12.7 12.3 12.7 12.3 12.7 12.3 12.7	10.3
5 5	70 - 4	70-7	99 4	04.40	27 7	70.1	10.5
7	70.1	91.0	90.1	80 1	0/•/	17.0	9.0
, a	74.0	91.7	90 • 1	09•1 00-7	90 • Z	1.50	9.0
11	75.0	02.1	21.0	90 • 7	92.40	15.0	0 • U
12	74.9	00 • t	92.40	91.0	33.1	17 2	7 • 7
15	70.0	94.5	95+4	96 1	96.1	17.5	9.0
17	82.0	97.5	95•U	94 • 7	94 • 1	10.0	0+3
10	80.6	90.5	90.0	91•1	91.1	14.7	7.0
21	81 0	80-3	91•3 06.a	97.0	91.0	15.0	9 2
21	24 E	09.3	90.0	31.1	90 • 2	10.1	0.3
د ی ٥٥	70 - 3	00.0	93+3	93•2	95.2	10.7	0 • 3
45 07	70 • 3 60 · 7	86.6	94.0	94.6	94.6	16.3	7 • 7
21	50 • <i>1</i>	60.6	94.6	95.9	91.4	15.2	5.9
29	81 • 4	87.8	95.6	95.8	98.0	15.4	6 • 4
31	80 • 2	87.4	95.8	95.5	96.9	15+3	7.2
33	78 • 8	87.1	96+1	95.2	96.6	16-4	8 • 3
35	83+1	88+6	96.2	96.9	96.9	13.8	5 • 5
37	86.0	90.3	96.1	98.6	100.4	12.6	4.3
39	82.0	87.6	94.4	95.5	97.3	13.5	5 • 6
41	78.2	84.9	94.5	93.1	94.2	14.9	6 • 7
43	85.6	87.6	94.6	96+3	98.0	13.7	5 • 0
45	84.3	89.7	95.0	98 • 4	98 • 4	14-1	5 • 4
47	83.0	88 • 8	94.2	97•2	98 • 7	14.2	5 • 8
49	78 • 8	85.7	93.8	93 • 8	93.8	15.0	6•9
$0.4. \frac{51}{53} 52$	77 • 1	84.3	94.6	91.9	91.9	14-8	7 • 2
53	76 • 5	83 • 3	93•3	90•9	92 • 1	14-4	6•8
55	77•9	83.7	91.2	91 • 4	91.4	13.5	5•8
57	78•6	83.9	92•7	91.5	92•5	12.9	5•3
59	78 • 4	83•8	93.2	91.6	92.7	13.2	5•4
61	79.2	83.7	90 • 4	91.9	91.9	12.7	4•5
63	78.4	82.7	87.5	90.7	90.7	12.3	4.3
65	75.4	79•8	84.5	88 • 1	83•1	12.7	4 • 4
67	72.7	77.7	83.3	86.2	87.9	13.5	5•0
69	69.5	75 • 3	83.0	84.2	86•3	14.7	5 • 8

TABLE H-Y

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

UCTUBER 13, 1976

EVENT 23. 110 KT. FLY BY. MIC. 150 METERS EAST

1/2 SECOND INTEGRATION VS NOTSE INDEXES (DB RE 20 MICHO PA)

INT	D84	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	59.8	72.3	83.9	82.3	82.3	22.5	12.5
	60.9	73.2	85.0	82.6	82.6	21.7	12.3
	61.9	74.8	86.6	83.3	83.3	21.4	12.9
7	64.9	77.4	88 • 9	86.0	86.0	21 • 1	12.5
9	69.7	80.6	91.0	89.2	89.2	19.5	10.9
1 1	75.3	84.2	93•6	92 • 4	92.4	22.5 21.7 21.4 21.1 19.5 17.1 16.2 16.2	8.9
	78.9	88•1	96.2	95 • 1	95 - 1	16.2	9.2
	79.5	88.7	96.7	95 • 7	95.7	16.2	9.2
	77.9	87.6	96.2	95•3	95•3	17.4	9.7
18							
20	77• 5	84.6	94.3	93.7	95.0	16.2	7 - 1
22	74.1	83•3	93 • 3	91.9	93.3	17.8	9.2
	72.8	82.8	93•3	91.6	91.6	18.8	10.0
	74.3	84.2	93•7	92.5	92.5	18.2	9.9
28	75•3	84.9	93.5	92.9	94.2	17.6	9•6
30	74.5	83.0	93•6	91.9	91.9	17.4	8.5
	75.5	83•4	95•2	91 • 4	92•5	15.9	7•9
34	76.7	84.9	94.8	92.8	94.0	16.1	8.2
36	78.0	85•0	92.5	93.5	93.5	15.5	7.0
38	76.9	84.0	92•1	92+3	93 • 4	15.4	7 - 1
0.4. 40 41	77.6	84.8	94.7	92.8	92.8	15.2	7.2
42	77 - 1	84.0	94 • 4	91 • 1	91 - 1	14.0	6 • 9
44	76.8	83•3	91 • 6	91.3	91.3	14.5	6.5
46	78• 8					12.7	
48	79.6	84.8	93•6	92.1	93•5	12.5	5•2
5 0	78.3	83 • 4	90 • 6	90•8	90•8	12.5	5 • 1
52	78.5	83.2	87.5	90•7	92.0	12.2	4.7
54	76•7	81 • 4	85 • 5	89•5	89•5	12.8	4.7
56	74.2	79.3	84 • 4	87•7	90 - 1	13.5	5 • 1
58	72.2	77.2	83 • 3	85•6	87.1	13 • 4	5.0
60	70 • 1	75.2	81.9	83.5	83.5	13-4	5 • 1
62	67 • O	73.1	80.5	82.5	82•5	15.5	6 • 1
	66.0	72.2	79•4	32.1	82 - 1	16.1	6.2
66	66.0	72.3	7 8 • 5	82 • 1	82.1	16.1	6•3

TABLE H-Y

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 24. 141 KT. FLY BY, MIC. 150 METERS EAST

101	DB4	นสน	OASPL	PNL	PNLI	PNL-DB4	DBD-DBA
1	73.5	82.5	90•2	91.2	91.2	17.7	9.0
2	74.5	83 • ?	91.2	92.0	92.0	17.5	9.2
3	76.1	85.3	92.3	93.2	93.2	17.1	9.2
4	80.0	87.0	93.4	95.0	95.0	15.0	7.0
5	81.7	88 • 6	94.7	96.3	96.3	14.6	6.9
6	82.2	89.4	95.7	96.9	96.9	14.7	7.2
7	82.8	90.0	96 • 4	97.4	97.4	15-2	7 • 8
8	83.7	91 • 1	97.4	99.3	100.3	15.6	7 • 4
9	85.4	92.5	98.6	100.9	101.9	15.5	7 • 1
10	86.9	93.9	99.6	101.8	102.9	14-9	7.0
11	87.4	94.6	100.4	101.8	101.8	14.4	7.2
12	87.5	95.1	101.3	101.7	101.7	14.2	7.6
13	87 • 4	95.6	102.2	101.8	101.8	14-4	8 • 2
14	88.3	96 • 4	103.0	102+6	102.6	14.3	8 • 1
15	88.5	96.6	103.2	102.9	102.9	14.4	8 • 1
16	88.9	96 • 7	103.0	103.2	103.2	14.3	7 • 8
17	88.5	96 • 3	102.7	103.0	103.0	14.5	7 • 8
18	89-4	96.9	103.0	103.3	103.3	13.9	7.5
19	89.9	97.5	103.5	103.8	103.8	13.9	7 • 6
50	89 • 8	97 • 5	103.8	104.3	104-3	14.5	7.7
21	88.7	96-9	103.7	104.1	104-1	15.4	8.2
22	88.2	96 • 7	103.9	103.7	103.7	15.5	8 • 5
23	87 • 7	96 • 7 96 • 7	103.9	103.2	103.2	15.5	9.0
24	87.1	96.3	103-7	103+1	103.1		9.2
25	85•4	95 • 4	103.5	102.3	102.3	16.9	10.0
26	84.7	94.8	103.4	101.9	101.9	17.2	10 • 1
27	84.6	94.7	103-3	101.9	101.9	17.3	10.1
28	84.3	93.6	102.5	101.3	101.3	17.0	9•5
29	83.2	92 • 4	101-4	100-3	101 • 4	17.1	9.2
30	82.0	90.9	100.9	98.7	98•7	16.7	8.9
31	80 • 8	90 • 3	101+3	0.36	98.0	17.2	9•5
32	81 • 4	90 • 4	101-4	98.2	98 • 2	16.~	9•0
33	81.3	89.5	100+6	97.2	97.2	15.9	8 • 2
34	81 • 8	88•7	99.2	96 • 2	97•4	14-4	6•9
35	81 • 5	88∙3	98.3	96•0	97•3	14.5	6•8
o.H. > 36	81.6	88 • 4	98•5	96•2	96•2	14+6	6 • 8
37	81.0	88.0	98•5	95•9	95.9	14-9	7•0
38	81.0	87•7	97.5	95∙5	95•5	14+5	6•7
39	81.3	87 • 4	95•3	95•2	95.2	13.9	6 • 1
40	81.5	8 7 • 0	93•3	94.8	94.8	13+3	5 • 5
41	81.0	86•0	93 • 4	94-1			5.0
42	80.8	85.5	93.7	93•3	94.5	12-5	4 • 7
43	80 • 5	85•3	93•3	98.8	93•8		4.8
44	80 - 3	85 • 1	98.0	85 • 3	92.3	15.0	4-8
45	79.6	84.2	90 • 6	91.7	91 • 7	12.1	4•6

TABLE H-Y

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 25. 141 KT. FLY BY. MIC. 150 METERS EAST

INT	DBA	DBD	UASPL	SNF	PNLT	PNL-DBA	DBD-DB4
1	76• 3	83 • 1	88•4	91.3	91.3	15+0	6•8
2	77.0	84.3	90.2	92.2	92.2	15.2	7•3
3	79 • 1	86.7	92.7	94.3	94.3	15.2	7•6
4	80 • 6	88•5	95.0	96.3	96•3	15.7	7•9
5	81 • 3	89.8	96.9	97.3	97.3	16.0	8 • 5
6	81.2	90 • 3	98 • 3	97.8	97•8	16.6	9•1
7	82.2	91.2	99.8	99.8	99.8	17.6	9•0
8	87.1	93 • 4	100.9	101.7	101.7		6•3
9	89.7	95•3	102.2	103.2	103.2	13.5	5•6
10	91.2	97 • 7	103 • 6	104.8	104.8		6 • 5
11	91.4	98•8	104.8	105.5	105.5		
12	91 • 1	99•4	105 • 4	105.5	105.5	14-4	
13	91.0	99•3	105 • 4	105.4	105•4	14-4	8•3
14	90 • 6	98•7	104.9	105•4	105•4	14-8	8 • 1
15	90 • 1	98.0	104.6	105 • 1	105.1	15.0	7•9
16	88.7	97•3	104 • 4	104.5	105.5	15.8	6•6
17	88.0	97.2	104 • 6	104.1	105.8		9.2
18	87.2	96.7	104.5	103.6	103.6	16.4	
19	87 • 1	96 • 5	104.5	103.3	103.3	16.2	
20	86•6	95•9	104.2	103.3	103.3	16.7	9•3
21	86.2	95•6	103.8	102.8	102.8	16.6	
22	84.9	94.6	103.0	101.9	101.9	17.0	
23	83.5	93 • 1	101.8	100.7	1.00 • 7	17.2	9•6
24	82.9	91.6	101.3	99.5	99.5	16.6	8 - 7
25	82.6	90.7	101-4	98•9	99•9	16.3	
26	82.8	90•7	101 • 7	99.2	100.2	16.4	
27	82.1	90.0	101-1	98•3	99.4	16.2	
28	81.6	88•9	99.9	96•9	96.9	15.3	7.3
29	80.9	87.9	98 • 8	95.5	95.5	14.6	7.0
. <i>H,</i> -→30	80.8	87.7	98.8	94.9	94.9	14.1	6•9
31	81.3	87.9	98•9		95.1	13.8	
32	81.5	87.7	97•9	95•0	95•0	13.5	6 • 3

TABLE H-TT

NOISE LEVEL TIME HISTORY DATA

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 26. 141 KT. FLY BY. MIC. 150 METERS EAST

INT	DBA	מפּם	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	76.5	85•4	92.5	95•7	95•7	19.2	8.9
2	77.1	86.2	93.6	96 • 1	96 • 1	19.0	9 • 1
3	78 • 4	87.7	95+3	97.3	97.3	18.9	9.3
4	80 • 6	89.9	97.2	98•7	98 • 7	18.1	9.3
5	86.2	94.2	100.5	102.3	102.3	16.1	8.0
6	89.2	96•8	103.1	105.2	105.2	16.0	7 • 6
7	91.7	98•8	105 • 1	107.0	107.0	15.3	7 • 1
8	93 • 1	99.9	106.2	108 • 1	108 • 1	15.0	6•8
9	98•9	100.0	106 • 4	107.9	107.9	15.0	7.1
10	92.4	99.9	106•4	108-0	108.0	15.6	7.5
11	91.5	99.9	106+6	107.8	107.8	16.3	8 • 4
12	91 • 1	99.7	106 • 7	107.6	107.6	16.5	8 • 6
13	90 • 1	98•6	106+1	107.1	107.1	17.0	8.5
14	89•5	97.0	105.0	106.2	106.2	16.7	7.5
15	89•Û	96.2	104.2	105•6		16.6	7.2
16	88•4	96.2	103.9	105.3	105.3	16.9	7 • 8
17	87•9	96.2	104-2	105.3	106•4	17.4	8 • 3
18	87 • 4	95•6	103.9	104.7	104.7	17.3	8 • 2
19	86•8	95•0	103.8	103.8	103.8	17.0	8.2
20	85•8	94•5	103.4	103.6	103.6	17.8	8 • 7
21	85•8	94.7	103.3	103.5	103.5	17.7	8•9
22	84.7	93.7	102.5	102.8	102.8	18.1	9.0
23	83 • 6	92 • 5	102.0	101.3	101.3	17.7	8•9
24	85.6	91 • 4	101.9	100.5	101.5	17.9	8 • 8
25	83.3	91.5	101.9	100.5	100.5	17.2	8.5
26	83.2	90•9	101.7	99.7	99•7	16.5	7 • 7
27	82 • 8	89.7	100.7	98 • 4	98•4	15.6	6•9
28	81.9	88.8	99.9	97 • 1	97.1	15.2	6 • 9
O.H.→29	81 • 6	88.5	99.7	96.6	96 • 6	15.0	6•9
30	81.7	88•5	99•4	96•7	96•7	15.0	6 • 8

NOISE LEVEL TIME HISTORY DATA

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 27, 141 KT. FLY BY, MIC. 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD~DB4
1	79•6	86.7	91 • 6	96•0	96•0	16.4	7 • 1
2	81.7	89.5	93 • 7	97.9	99.0	16.2	7•8
3	84.3	91.9	95•8	99.5	99.5	15.2	7.6
4	85•4	93 • 1	97•9	101.1	101-1	15.7	7 • 7
5	86•5	94.2	99•9	102.0	102.0	15.5	7.7
6	87.0	95•3	102.2	103.7	103.7	16.7	8 • 3
7	88•6	97.2	104.1	105.6	105.6	17.0	8 • 6
8	92.9	100 • 1	106.0	107.7	107.7	14.8	7.2
9	95.4	101.7	107.4	110.2	110.2	14.8	6•3
10	95 • 6	102.0	107.9	110.6	110.5	15.0	6 • 4
11	94.3	101.2	107.6	110.0	110.0	15.7	6 • 9
12	92.7	100 • 4	107.0	108.8	108.8	16.1	7 • 7
13	92.5	100 • 0	106 - 7	108-4	168 • 4	15• 9	7• 5
14	92.1	99•5	106 • 4	108.2	108.2	16+1	7.4
15	92.2	99.8	106 • 6	108.6	108 • 6	16.4	7.6
16	92.8	99.9	106 • 6	108.8	168.8	16.0	7 • 1
17	92.3	99•5	106.5	108 • 1	108 • 1	15.8	7.2
18	90.8	98 - 1	105 • ₽	106.9	106.9	16.1	7 • 3
19	88.0	96.2	104 ∙ ≎	105 • 4	105.4	17.4	8 • 2
20	87.2	94.8	103 3	104.2	104.2	17.0	7 • 6
21	86 • 3	94 - 1	103.5	102.7	102.7	16.4	7.8
22	86.0	93.9	103.7	102.3	102.8	16.8	7.9
23	85.7	93.5	103.5	102.2	102.2	16.5	7.8
24	85.0	91.7	102.1	100.5	100.5	15.5	6 • 7
25	84.2	90•3	100.8	98.9	98.9	14.7	6.1
26	83 • 1	89.5	100.0	97.6	97.6	14.5	6 • 4
O.H. > 27	82 • 5	89.5	100.3	97.7	97.7	15.2	7.0

TABLE H-I

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 28, 150 KT. FLY BY, MIC. 150 METERS EAST

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	80 • 0	89.4	96.5	98•2	98+2	18.2	9 • 4
2	83.8	92.6	99.0	100.6	100+6	16.8	8 • 8
3	86.7	94 • 8	101.9	103.0	103.0	16.3	8-1
4	88 - 1	96 • €	103.9	105.0	105.0	16.9	8 • 1
5	87.7	\$8.0	105 • 4	106 • 6	106 • 6	16.9	8 • 3
6	92.8	100 • 4	107.0	109 • 1	109+1	16.3	7•6
7	97 • 8	104.1	108.9	111.8	112.4	14.0	6 • 3
г	99.0	105 • 4	109.9	112.9	113.5	13.9	6 • 4
9	99.5	105.8	110.3	113.3	114.5	13.8	6 • 3
10	97 • 6	104 • 6	109.9	112.6	112.6	15.0	7.0
11	96.3	103.5	109.1	111.6	111.6	15.3	7•2
12	94.5	102 • 1	108.3	110.3	110.3	15.8	7.6
13	93.8	101-1	107.7	109.4	109.4	15.6	7.3
14	92 • 8	:00 -0	107.2	108-8	108.8	16.0	7.2
15	91.1	98•7	106.1	107.4	108.7	16.3	7•6
16	89.8	96.9	105.0	105.7	105.7	15.9	7 • 1
17	88.8	96-2	105.1	104.4	104.4	15•6	7 • 4
18	88 - 1	95.7	105.1	104-1	104.1	16•0	7 • 6
19	87.3	95 • 1	104.8	103.5	103.5	16.2	7.8
20	86 • 1	93 • 1	103.2	101.8	101.8	15.7	7•0
o.H. —> 3a							

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 24, 141 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DBA	บลบ	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
- /- 1	73-1	82.9	87.9	93.0	93.0	19.9	9•8
3	74.3	84 • 1	90•0	93.5	93.5	19.2	9•8
	75 • 6	85.0	92 • 1	94.3	94.3	18.7	9 • 4
5 7	78 • 2	87 • 6	94.6	96 + 2	96.2	18.0	9 • 4
9	82.7	91 • 1	98.0	99.7	99•7	17.0	8 • 4
11	88.5	96•6	102.0	103.8	103.8	15.3	8 • 1
13	90 • 7	98•7	104.3	105.8	105.8	15.1	8•0
14	90 • 6	98•8	104.7	106.0	106.0	15.4	8•2
16	90 • 2	98 • 4	104.5	105.7	105.7	15.5	8 • 2
18	88 • 6	97.0	103.7	105.0	105.0	16 • 4	8 • 4
20	86.7	94.6	102.3	103.3	103.3	16.6	7•9
22	85 • 8	93.2	101.3	102.3	102.3	16.5	7 • 4
24	85.6	92.9	101-6	102.1	102.1	16.5	7 • 3
26	87.6	96.4	103-9	103.8	103.8	16.2	8 • 8
28	88.5	98+2	105.5	105.0	105+3	16.5	9•7
30	88•8	98•7	106.3	105.5	105.5	16.7	9•9
32	87.5	97.3	105.6	104.7	104.7	17.2	9 • 8
34	84.9	94.8	104.2	103.2	104.4	18.3	9•9
36	84.5	94.2	103.7	102.1	102.1	17.6	9.7
38	87.9	96.0	103.2	103.4	103.4	15.5	8 • 1
0.H> 40	89.0	96.7	102.6	104.0	104.0	15.0	7 - 7
42	88.2	96.2	102.5	163.9	103.9	15.7	8.0
44	86.8	93.8	99•8	105.5	102.2	15.4	7 • 0
46	85.0	91.0	96 • 7	98•9	98.9	13.9	6.0
48	80.7	86.9	92.5	95 • 2	95.2	14.5	6.2
50	78.4	84.6	89.7	93 • 6	93.6	15.2	6.2
52	75 • 4	82.8	87.2	92.5	92.5	17-1	7 • 4
54	74.4	81.9	84 • 8	91-9	91.9	17.5	7 • 5

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 29, 150 KT. FLY BY, MIC. 150 METERS EAST

	INT	DBA	กยก	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
	2	80 • 8	89.9	95•7	98 - 1	98•1	17.3	9-1
	3	82 • 4	91-5	97.7	99°8	99.48	17.4	9.1
	4	83.7	92.6	99.5	101.1	101+1	17.4	8.9
	5	86.8	95.0	102.5	104.2	104.2	17.4	8+2
	6	95•0	102.0	106.0	109.7	109.7	14.7	7.0
	7	98•2	104.6	108.2	111.7	111-7	13.5	6 • 4
	ខ	98•7	105 • 4	109.3	112.6	112.6	13.9	6.7
	9	98.5	105.1	109.9	112.5	112.5	14.0	6.6
	10	97.5	104.6	109.9	112.5	112.5	15.0	7 • 1
	11	96 • 9	104.1	109.5	112.0	112.0	15.1	7.2
	12	95.6	103.2	109.2	111.2	111.2	15.6	7.6
	13	95 • 1	102.4	108.9	110.6	110.6	15.5	7•3
	14	94.9	101.8	108.5	110.3	110.3	15.4	6.9
	15	94.9	101-4	108.1	109.8	109.8	14.9	6.5
	16	93 • 6	100 • 1	107-1	109.0	109.0	15.4	6.5
	17	91.8	98•6	106.2	107.6	107.6	15.8	6.8
	18	87.6	95.8	104.7	104-6	104.6	17.0	8•2
	19	86.5	94.2	104.0	102.9	102.9	16.4	7.7
	20	86.7	93.5	103.5	102.0	102.0	15.3	6.8
	21	86.6	93.0	103.0	101.6	101.6	15.0	
	22	85.2	91.9	102.6	99.9	99.9		6 • 4
0.H	->23	~ ~ · · ·		10010	2303	77•7	14.7	6•7

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 25, 141 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

INT	DB4	DBD	0ASPL	PNL	PNLT	PNL-DBA	DBD-DSA
1	76.5	85+5	91.1	94.5	94.5	18.0	9.0
2	78.1	87 - 1	93.1	95.9	95.9	17.8	9.0
3	79.6	89.4	95 • 4	97.5	97.5	17.9	9•8
4	80.7	91.1	97.4	98.8	9୫୫୫	13-1	10 • 4
5	82.4	92.9	99•3	100.3	100.3	17.9	10.5
6	84.7	95.2	101.4	102.4	102.4	17.7	10.5
7	87.3	97-4	103.4	104.6	104-6	17.3	10 • 1
3	89.4	99.2	105.2	106+3	106.3	16.9	9 • 8
9	91.3	100.7	106.5	107.6	107+6	16.3	9 • 4
10	93 . 4	102.2	107.6	108.7	108.7	15.3	8 • 8
11	94.4	103.1	108+3	109.2	109.2	14.8	8.7
12	94.3	102.8	108 • 1	109.0	109.0	14.7	8.5
13	93.1	101.8	107.2	108.3	108.3	15-2	8 + 7
14	91.5	100 - 1	105.9	107-3	107.3	15.8	8 • 6
15	90.6	99•1	105.2	106+4	106 • 4	15.8	6.5
16	89.7	98.2	104.7	105-6	105.6	15.9	8 • 5
17	1.68	97 • 7	104.5	105-2	105.2	16.1	8 • 6
18	88.3	97.0	104.2	104.6	104.6	16.3	8•7
18	87.7	96.4	103:8	104.2	104.2	16.5	8.7
20	87 • 2	95.7	103.5	103.7	193.7	16.5	8∙5
51	87.0	95.3	103.7	103.5	103.5	16.5	8.3
22	87.2	95+3	104.2	103.9	103.9		8•6
23	87.7	96 • 8	105.0	104.5	104+5	16.8	9•1
24	87.9	97.6	105.7	105.0	105.0	17.1	9.7
25	87.4	97 - 6	105.9	104.9	104.9	17.5	10.2
26	86.4	97.2	105.9	104.5	104.5	18.1	10.8
27	85•3	96•3	105.5	104.1	104.1	18.8	11.0
28	84.4	95 • 4	105 • 1	103.6	103.6	19.2	11.0
29	84.0	94.5	104.3	102.9	102.9	18.9	10.5
30	85.4	94.7	103.9	102.3	102.3	16.9	9 • 3
31	86.5	95 • 1	103.5	102.3	102.3	15.8	8 • 6
aH,->32	87 • 7	95.9	102.9	103.1	103.1	15.4	8 • 2
33	87.8	95.7	102.1	103 • 3	103.3	15.5	7 • 9
34	87 • 7	95.4	101.9	103-1	103-1	15.4	7 • 7
35	87.0	94.8	101.5	103.1	103.1	16.1	7 • 8
36	87.0	94.7	101.0	102.9	102.9	15.9	7 - 7
37	87.1	94.4	100.2	102.7	102.7	15.6	7 • 3
38	86.8	93.5	99.4	101.8	101-8	15.0	6.7
39	85.6	91.9	98 • 1	99.9	99.9	14+3	6+3
40	83.7	89.3	95.8	97.9	97.9	14.2	6 • 1
41	81.9	88.2	94.0	96 • 5	96.5	14.6	6 • 3
42	80.2	86.8	92.5	95+3	95•3	15.1	6.6

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 26. 141 KT. FLY BY. CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	UASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	76 • 1	85.2	91.4	94.2	94.2	18•i	9 • 1
2	77 • 0	85.7	92.3	94.6	94.6	17.6	8.7
3	78.2	86.7	93.8	95.7	95 • 7	17.5	8.5
4	79.7	88.2	95.9	97.2	97.2	17.5	8.5
5	82.5	91.8	98.9	99•9	99.9	17.4	9•3
6	86•6	95 • 7	102.0	103.3	103.3	16.7	9-1
7	90 • 6	۵۵ ⁻ 5	104.5	105.9	105.9	15.3	8 • 6
8	92.6	100.8	105.7	107.5	107.5	14.9	8.2
9	92•5	100.5	105.5	107.3	107.3	14.8	8 • 0
10	90 • 7	ς8∙5	104-1	105.7	105.7	15.0	7.8
11	87.6	95.5	102.3	103.7	103.7	16.1	7•9
12	86.6	94.5	101.8	102.9	102.9	16.3	7.9
13	86.4	94.5	101.8	102.7	102.7	16+3	8 • 1
14	85.8	94.1	101.7	102.6	102.6	16.8	8 • 3
15	85.7	94.1	101.9	102.7	102.7	17.0	8 • 4
16	87•3	95•5	102.9	103.7	103.7	16.4	8 • 2
17	88-6	96•7	103.7	104.7	104.7	16.1	8 • 1
18	89.5	97.8	104.5	105.6	105+6	16.1	8 • 3
19	90 • O	98 • 7	105-5	106.6	106•6	16.6	8•7
20	90 • 3	99.2	106.3	107.0	108-1	16.7	8•9
21	89•6	98•6	106.1	106-4	106 • 4	16.8	9•0
53	88•2	97.0	105 - 1	105.0	105.0	16.8	3 • 8
23	86.9	95.8	104.5	104.0	104.0	17.1	8•9
24	87.5	96.2	104.7	104-1	104 • 1	16•6	ĕ•7
25	87 . 5	96 • 4	104.8	104.3	104.3	16.8	8•9
26	86.9	96•0	104 • 4	103.9	103.9	17.0	9 • 1
87	85.1	95•3	103-8	103.1	103 • 1	17.0	9•2
28	87.5	95.9	103.5	103.3	103.3	15.8	8 • 4
29	89.3	96.0	103.5	103.4	103-4	15.1	7 • 7
30	88.9	96 • 6	103.3	104.0	104.0	15 - 1	7 • 7
31	88•7	96•6	102.9	103+8	103∙€	15.1	7•9
o.H, > 32	88•2	96 • 1	102.4	103.6	103•6	15.4	7.9
33	87.2	95•2	101.7	103.2	103.2	16.0	8 • O
34	86 • 4	93.9	100.8	102 • 4	102 • 4	16.0	7∘ 5
35	86.3	93 • 3	99•7	101.9	101.9	15+6	7. 0
3 €	86 • 1	92-3	98•5	100.7	100 • 7	14.6	6 • 8
37	85.3	91 • 2	97.2	99+1	99.1	13.8	5 • 9
38	84.1	89•6	95•6	97.7	97.7	13.6	5 • 5
39	88.0	87.9	94.1	96,3	96•3	14.3	5•9
40	80.0	86•2	92.2	94.8	\$4.8	14.8	6~2
41	77.9	84.7	90•6	93•7	93.7	15.8	6•8

TABLE H-Z

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 27, 141 KT. FLY BY. CENTERLINE MIC. (HARD SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	78 • 1	86•3	94.4	95 • 6	95•6	17.5	8 • 2
2	78.0	87.0	96 • 1	96•7	96•7	18.7	9•0
3	79 - 1	88.9	97.8	98 • 2	98.2	19.1	9•8
4	82.2	92 • 1	100 • 4	100.5	100.5	18.3	9•9
5	89.2	97.6	103.9	104.9	104.9	15.7	8 • 4
6	93 • 1	101.2	106.3	107.7	107.7	14.6	8 • 1
7	94.7	102.7	107.7	109-1	109+1	14.4	8 • 0
8	95.2	103 • 1	108.0	109.7	109.7	14.5	7•9
9	94.9	102 • 4	107.7	109.6	109.6	14.7	7 • 5
1 G	94.2	101.8	107.5	109.2	109.2	15.0	7 • 6
11	94.3	102.0	108.0	110.0	110.0	15.7	7 • 7
12	94.2	102.6	108 • 7	110.2	110.2	16.0	8 • 4
13	94.5	103.0	109.2	110.6	110.6	16.1	8•5
14	94•7	103.1	109.4	110.2	110.2	15.5	8 • 4
15	94.4	102.6	109.0	110 - 1	110-1	15.7	8 • 2
16	93 • 1	101.5	108.4	109.0	109.0	15.9	ö•4
17	90.8	99.8	107-3	107.6	107.6	16.8	9•0
18	89•7	98•6	106.7	106.3	106.3	16.6	8•9
19	89.3	97.9	106.1	105.5	105-5	16.2	8 • 6
20	89.0	97.5	105.6	105.0	105.0	16.0	8•5
21	89•1	97.2	105.2	104 • 4	104.4	15.3	8 • 1
22	88.8	96 • 7	104.8	104.2	104.2	15.4	7•9
23	88 • 4	96 • 3	104.3	103.7	103-7	15.3	7.9
24	88 • 2	96.3	103-4	103.8	103.8	15.6	8 • 1
25	89.5	97 • 4	103.5	104.7	104.7	15.2	7.9
o.H.→26	89.9	97.6	103.3	105.0	105.0	15+1	7•7
27	89.5	97.2	103.2	104.9	104-9	15.4	7 • 7
28	88.5	96 • 1	102.2	104.2	104.2	15.7	7 • 6
29	88.3	95 • 5	101.5	103.7	103.7	15.4	7 • 2
30	87.3	94.0	100.2	102.3	102.3	15.0	6 • 7
31	85 • 6	91 • 8	98-2	100 - 1	100-1	14.5	6.8
32	82.7	88.7	95.2	97.0	97.0	14.3	6•0
33	81 • 1	87.2	93.0	95•6	95 • 6	14.5	6 • 1
34	79-3	85,7	90•9	94.2	94.2	14.9	6 • 4

NOISE LEVEL TIME HISTURY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 12. 6 DEGREE APPROACH. CENTERLINE MIC. (SOFT SITE)

INI	DBA	DBD	UASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	7 8•6	86.1	92.9	95•7	95.7	17-1	7 • 5
3	78.5	86.4	93.2	95.8	95.8	17.3	7.9
5	79.9	87.1	94.1	96.7	96.7	16.8	7.2
7	82.8	88•9	95.3	98.5	98 • 5	15.7	6 • 1
9	84.2	89.8	96.5	99.7	99•7	15.5	5 • 6
11	83.9	89•3	95•7	99.1	100.6	15.2	5•4
13	84.3	90 • 4	96.2	99•6	101.6	15.3	6 • 1
15	85.2	91.3	96.5	100.2	100.2	15.0	6 • 1
17	87.4	93.4	98.2	102.2	103.5	14.8	6.0
19	88.9	94.4	98•7	103.1	104.7	14.2	5.5
21	87•9	93.2	98•2	101.7	102.8	13.8	5 • 3
23	88.9	94.7	99•3	102.8	102.8	13.9	5•3
25	91.4	97.0	101.5	104.5	104.5	13.1	5•6
27	92.1	98.0	102.4	105.5	105.5	13.4	5•9
29	92.0	98 • 1	102.3	105.6	105.6	13.6	6 • 1
31	92.4	98•2	102.5	105•6	105.6	13.2	5•8
33	94.3	100 • 8	104-1	107.4	107-4	13.1	6 • 5
o.H. →35	95 • 8	102 • 3	105.5	108 • 6	108•6	12.8	6•5
37	95.2	102.0	105.6	108 • 1	108 • 1	12.9	6•8
39	92.7	99•6	104.0	106.2	106.2	13.5	6•9
41	90.9	97.5	102.2	104.7	104.7	13.8	6 • 6
43	89.1	95 • 1	99•6	102.6	103.9	13.5	6.0
45	85.7	28.0	96.9	100 • 4	100 • 4	14.7	6•3
47	84 • 1	90 • 2	95•8	99•0	99.0	14.9	6 • 1
49	83.2	88 • 9	94.4	98•0	98•0	14.8	5.7
51	80.8	86•9	92.5	95.8	97•0	15.0	6 • 1
53	78.2	84 • 6	90•7	94.0	95•1	15.8	6 • 4
55	75•5	82•4	88•3	•0	•0	-75•4	6•9

NOISE LEVEL TIME HISTORY DATA

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 17. 60 KT. FLY BY. CNETERLINE MIC. (SOFT SITE)

INT	DBA	DBD	UASPL	₽ WL.	PNLT	PNL-DRA	DBD-DB4
1	72.9	81 • 4	87 • 6	92.7	92.7	19.8	8 • 5
3	72.4	81•3 82•0	87•8	92.7	92.7	20•3	8•9
5	73.2	82.0	88 • 4	93.1	93 • 1	20•3 19•9	8 • 8
7	76•9	84 • 4	90 • 5	94.6	94.6	17.7	7•5
9	81 • 8	87 • 4	93.2	97•3	98•4	15.5	5+6
1 1	85.2	90.5	95•3	99.9	99.9	14.7	5 • 3
13	86•9	91.9	95 • 6	101.1	101 • 1	14.2	5•0
15	87 • 2	91.6	95•4	100.8	100 • 8	13.6	4.4
17	85 • 5	89•5	94.4	99 • 1	99.1	13.6	4.0
19	8i • 1	87 • 1	91-9	96.3	96•3	15-2	6•0
21	79.2	85.0	80.5	94-8	94•8	15•6	5•8
23	74.2	81.9	89.0	93.2	93•2	19•0	7•7
25	72•9	81.6	88•6	92.8	92.8	19•9	8.7
27	78•9	85-1	91.0	94.5	94•5	15.6	6.2
29	80 • 5	86+0	91.9	95 • 8	96•8	15.3	5•5
31	80 • 4	85 - 1	91.0	94.9	96•2	14+5	4.7
33	74.7	82.3	89.3	93 • 4	93-4	18.7	7•6
35	74.3	82 • 1	89•9	93 • 1	93 • 1	18.8	7•8
37	76•0	83.8	91.2	93.7	93•7	17•7	7 • 8
39	79.6	85.7	92.1	95.6	95•6	16.0	6 - 1
41	81 • 9	87 - 1	92.3	97.2	98•8	15•3	5•2
43	85 • 2	89•6	94.2	99•3	100•4	14-1	4 • 4
45	85•8	90.2	94.6	99+5	101-1	13.7	4 • 4
47	84.9	90•0	94.3	99•0	101 • 1	14-1	5•1
49	83•9	89.7	94•4	99 • O	99•0	15+1	5 • 8
51	84.5	90 • 8	95•5	100.1	101 - 6	15.6	6 • 3
53	86•2	92 • 4	97•0	101.2	101-2	15.0	6.5
55	88•2	93.7	98•3	101.8	103•6	13.6	5 • 5
57	88•7	94-8	100 • 1	102.8	102.8	14-1	6 • 1
59	89•4	95•7	100.8	104.1	104-1	14.7	6•3
61	90 • 0	96•0	100.2	104.0	104.0	14.0	6•0
63	89•3	94.9	98•7	102-6	102.6	13.3	5 • 6
65	86 • 3	92.7	97 • 4	100 • 4	100 • 4	14-1	6 • 4
O.H 67 68	84•9	91,•8	96•8	100.0	100.0	15.1	6•9
69	85 • 4	92.6	97•4	100.6	100.6	15.2	7.2
71	85+9	92.7	97.7	100 • 6	100.6	14.7	6 • 8
73	86 • 7	93 • 3	98•7	100.7	100.7	14.0	6 • 6
75	87.3	93.5	99.6	100 • 6	100-6	13.3	6.2
77	84.5	90.8	97.8	98.0	99•0	13.5	5•7
7 7	81-4	87.0	93.7	95.6	97-1	14.2	5 • 6
8 i	79 - 1	84.7	89•7	94.2	96•0	15+1	5 • 6
83	77.1	83 • 1	88•0	92.9	94-3	15.8	6.0
85	75 • 4	81.9	87.2	92.5	92.5	17.1	6 • 5
⇒ 87	74•9	81 • 5	86•9	92.3	92•3	17.4	6•6
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 445 47 49 51 53 55 57 59 61 63 65 67 68 71 73 75 77 71 81 83 85 77 77 81 83 85 78 89	73.7	80,•8	86.6	91.9	91•9	18.8	7 • 1

TRBLE H-V

NOISE LEVEL TIME HISTORY DATA

VERIOL CH-47 C

OCTOBER 13, 1976

EVENT 20, 9 DEGREE APPROACH, CENTERLINE MIC. (SOFT SITE)

INT	DBA	QEQ	UASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	78•3	84.6	91.2	94.7	94•7	16.4	6.3
3	78 • 2	85.0	91.9	95 • 1	95.1	16.9	6.8
5	. 80.0	85.8	92.7	95.9	95+9	15.9	5 • 8
7	81 • 6	57.0	93 • 6	97.1	98 • 1	15.5	5 • 4
9	82.7	88.2	94.5	98 • 2	99•9	15.5	5 • 5
11	83 • 5	88 • 6	94.6	98.4	100.0	14.9	5 • 1
13	85 • 1	89.9	95•0	99.1	99•1	14.0	4+8
15	85.2	90.2	95.6	99.0	99•0	13-8	5•0
17	86 - 6	.91 • 9	97.0	100.3	101.8	13.7	5.3
19	86 • 6	92.2	97.3	100 • 4	101-5	13.8	5+6
21	86.3	91.9	97.5	100.7	100 • 7	14.4	5•6
23	87.1	93.0	98•7	101.6	102.7	14.5	5•9
25	88 • 4	94.5	99•4	102.5	103.5	14-1	6 • 1
2 7	88.9	95.4	100 • 1	102.9	102.9	14.0	6 • 5
29	89 • 8	96•3	101.0	103.3	104.4	13.5	6+5
31	91.2	97 • 6	101.7	104.7	104.7	13.5	6 • 4
33	93.0	99•4	102.9	106.3	106.3	13.3	6 • 4
35	93.8	100.3	103.7	107.3	107.3	13.5	6.5
0.H,-+37	94∙6	101.5	104.7	108.0	108.0	13.4	6.9
38	95 • 1	101.8	105 • 1	108.2	108.2	13-1	6.7
40	93.9	100.7	104.8	107.2	107.2	13.3	6•8
42	91.3	98 • 4	103.2	105.2	106.2	13.9	7 • 1
44	90 • 4	96.5	101.8	104.0	105.6	13.6	6 • 1
46	88•7	94.7	100 • 1	102.6	103.8	13.9	6.0
48	85.1	91.1	96•8	99 • 4	99•4	14.3	6+0
50	83.5	89.1	94 • 1	98.0	98•0	14.5	5 • 6
52	82.0	87.5	93.0	96•9	97.9	14.9	5•5
54	80 • 1	85•9	91.5	95•7	97.2	15.6	5 • 8
56	76.7	83.5	89.6	93•6	94.8	16.9	6.8
58	74.6	82.2	87•7	•0	-0	-74.5	7 • 6

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 18, 60 KI. FLY BY, CENTERLINE MIC. (SOFT SITE)

INT	DBA	dea	OASPL	PNL	PNLT	PNL-DB4	DBD-DBA
1	70.9	79 • 1	81.7	•0	•0	-70 • 8	8+2
4	74.2			92.2	92.2	18.0	
7	74.3	81.0	84.9	92.3	92 • 3	18.0	6•7
10	78 - 4	85 • 1	90•0	95 • 1	95 • 1	16.7	6.7
13	82.6	88 • 6	90 • 0 93 • 0	97.9	97.9	15.3	6•0
16	85.6	91 • 1	94.0	99 • 1	99 • 1	13.5	5•5
19	84.4	91 • 1	95•4	99.3	99.3	14.9	6.7
88	80.5	88 • 8	94.7	97•7	97.7	17.2	8•3
25	79.2	86.7	92.0	96 • 1	96 • 1	16.9	7.5
28	79.5	86.2	91.8	95•9	95•9	16.4	6•7
31	78.0	85 • 5	92.0	95.6	95 • 6	17.6	7.5
34	78.7	86•7	93.5	96•7	96•7	18.0	8.0
37	85.0	90 • 5	95•3	99.0	99.0		5•5
40		87 • 4		97•0			
43		90.5		99.2			
46	83.9	89•5		98•6	98•6	14.7	
49	81 • 4	87 • 3	93.5	96•8	98•0	15-4	
52	88•8	89•2	95.2	98 • 8		16.0	6 • 4
55	83 • 8	89•2	94.5	98•6	∡00•3	14.8	5 - 4
58	66•6	92•2	97•4	101.2		14.6	5∙6
61	85•7	91 • 1	96•5	100.3			
64		92.2		101-2			5 • 3
67		90 • 2	95 • 8	99•1	100 • 7	14-7	
70	86.5	92.9	97.9	101-9	101.9	15-4	6 • 4
73	89.2	94.6	99.1	102•€	102.6	13.4	5•4
76	91.5	96.7	100.8	105.0	105.0	13.5	5.2
79	91.5	97.0	99•8	104-1	104•1	12.6	5 • 5
o.H 82 > 83		95•0			102.4	13-4	
85		96•3		103.8	103.8	13.3	
88		92•9	98•7	100.9	100.9	14.4	
91	85.9	91.5	98•0	99 • 1	100.2	13.2	5 • 6
94	82.7	88 • 2 85 • 8	95 • 6	96•7	98 • 1	14.0	5.5
97	79.6	85 • 8	92.2	94.8	96 • 3		6.2
100	77 • 1	83 • 3	89•6	93•3		16.2	
103		83 • 6				15.9	
106		81.3		92.5		18.1	6 • 9
109	73 • 8	80 • 9	87.0	98•0	92•0	18.2	7 • 1

NOISE LEVEL TIME HISTORY DATA

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 22. 100 KT. FLY BY. CENTERLINE MIC. (SOFI SITE)

INT	DBA	DBD	OASPL	5 ML	PNLT	PNL-DBA	DBD-DB4
7	. 69.5	79.8	86•5	92.1	92•1	22•6	10.3
9	74 • 1	82.2	89.3				8 - 1
11	75.7	83.5	90•6	93.8	03.g	18-1	7.8
13	75.0	83 • 9	91.6	94.0	94.0	19.0	8•9
15	76.3	85 • 4	92.5	95.0	95•0	18.7	9.1
17	77 • 3	83 • 9 85 • 4 86 • 7 86 • 8	93.6	95.9	95+9	18.6	9 • 4
19	77.0	86.8	94.3	96.1	96 • 1	18•6 19•1	9•8
21	77.4	87.4	01120	96.3	96.3	10.0	10.6
23	78•0	87.5	95.2	96.7	96•7	18.7	9.5
25	78.9	87 • 6	95.2	96.8	96•8	17.9	8•7
27	79.0	87.5	94.5	96.7	96•7	18.7 17.9 17.7 17.8 18.1	8 • 5
29	78•9	87.5	94.9	96•7	96.7	17.8	8 • 6
31	78•2	87.0	94.9	96.3	96.3	18.1	8 • 8
33	11.2	86+5	95•1	95•7	95•7	18 • 5	9•3
35	76•3	86 • 4	95•6	95.7	95 •7	19.4	10.1
37	77.9	87•5	96•3	96.5	96.5	18.6	9•6
39	82 • 3	88 • 8	97•1	97.9	97.9	18.6 15.6 14.1 14.1	6 • 5
41	86.2	91 • 5	97 • 8	100.3	100.3	14.1	5•3
43	86 • 1	91.5	97 • 1	100.2	100.2	14.1	5•4
45	81.43	88•3	96+3	97•4	97•4	16+1	7•0
47	82.7	89 • 4	96 • 4	98•0	98•0	15.3	6 • 7
49	86.2	91 • 3 93 • 1 92 • 1	96•6	100 • 1	100-1	13.9	5-1
51	88•6	93 • 1	96.9	101.5	101.5	12.9	4.5
53	86.5	92•1	96•0	100 • 7	100.7	14.2	5 • 6
o.H. 55 57 56	82.5	90•8	95•9	98•6	98•6	16.1	8 • 3
		92.3		100 • 1	100.1	16.1	8•3
59	83•3	91.8	97.5	99.9	99•9	16.6	8 • 5
61	83.5	91.0	97.0	99•3	99•3	15.8 14.4 14.9 15.4	7•5
63	83 • 8	90 • 1	95 • 6	98•2	98•2	14.4	6 • 3
6 5	81.6	87 • 6	93 • 0	96•5	96.5	14.9	6•0
67	79 • 1	85•2	90•5	94.5	94.5	15.4	6 • 1
69	77.2	83+3	87+9	93 • 1	93•1	15.9	6 • 1
71	74.8	81.5	84•9	92.0	92.0	17.2	6.7
73	72.9	80 • 1 79 • 4 78 • 4	83 • 7	91.5	91.5 91.3 91.1	18.6	7 • 2
75	72.3	79•4	82.6	91•3	91.3	19.0 21.7	7 - 1
77	69.4	78.4	81 - 4	91 • 1	91 • 1	21.7	9•0
79	70.9	79•0	81.2	91.2	91.2	20•3	8 • 1

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 23. 100 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

101	DBA	DBD				PNL-DBA	DBD-DB4
4	66 • 4	77.7	79.9	91.0	91.0	24.6 23.6 22.7 23.2 24.0 24.5 23.9	11.7
7	67 • 8	78.7	81.2	91.4	91.4	23.6	10.0
10	63.8	78.9	81.7	91.5	91.5	22.7	10.1
13	68.2	78.5	81.5	91.4	91.4	23.2	10-3
16	67.5	78 • 4	82 • 4	91.5	91.5	2/1.0	10-0
19	67 • 1	78 • 8	83.5	91.6	91.6	24.5	11.7
55	68.0	79.5	85.5	91.9	91.9	23.9	11.5
25	70.2	81.0	88.5	92.6	92.6	22.4	10.8
28	72.2	82.7	90.8	93.3	93.3	21.1	10.5
31	72•6	83-4	92.1	93.6	93.6	21.0	10.8
34	75.5	85•7	94.0	95.5	95.5	20.0	10.3
37	76.3	86 • 5	94.8	95.9	95.9	19.6	10.2
40	75•7	85.9	94.2	95.4	95.4	19.7	10.2
43	75.3	85 • 8	93.9	95.2	95.2	19.0	10.5
46	77 • 4	87.2	95•5	96.4	96.4	19.0	9-8
49	76 • 9	86.8	95.5	96 • 1	96.1	19.9	9.0
52	77.2	87.7	96.8	96.5	96.5	19.3	10.5
55	78•7	88•8	98.0	97.8	97.8	19.1	10.1
58	80.2	66 • 4	97.8	97.6	97.6	17.4	10 • t
61	79.4	87.8	97.3	96.4	96.4	17.0	0 1
64	81.3	89.0	96.1	97.3	97.3	16.0	7.7
O.H. 67 369	81.5	89.5	94.9	97.9	97.9	16.4	9.0
70	82.7	90 • 8	96.5	99.2	99.2	16.5	9.1
73	83 • 1	91 • 1	96.9	99.4	99.4	16.3	g . n
74	83.9	91.2	97.0	99.7	99.7	15.8	7.3
77	81.8	87.8	93.3	96.4	96.4	14.6	6.0
80	78•8	85•6	90.7	94.5	94.5	15.7	6.8
83	76 • 1	82 • 8	87.6	92.8	92.8	16.7	6.7
86	73 - 1	80 • 1	83.5	91.4	91.4	18.3	7-0
89	71.6	79.5	81.0	91.2	91.2	19.6	7.9
92	72•7	79.8	80 • 8	91.2	91.2	18.5	7.1
95	69.0	78.3	78 • 6	90.9	20.9	21.9	9.3
98	68 • 8	78 • 4	77.6	90.9	90.9	22.1	9.6
101	67 • 4	78.0	76.8	90.8	90.8	23.4	10.6
104	66•0	77.7	75.6	90.7	90.7	24.5 23.9 22.4 21.1 20.0 19.0 19.0 19.2 19.3 19.1 17.0 16.4 16.5 16.3 15.7 16.3 19.6 18.5 22.1 23.4 24.7	11.7
			•				4 4 4 7

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 24, 141 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

INT	DBA	DBD	OASPL	りるに	PNLI	PNL-DB4	DBD-D34
1	73.0	81.8	87.0	92.8	92.8	19.8	8.8
3	74.0	82.5	89 • 1	93.2	93.2	19.2	8 • 5
5	75.4	84.5	91.6	93.9	93•9	18.5	9 • 1
7	78•3	87 • 1	94.1	96•0	96•0	17.7	8 • 8
9	83•6	91.2	98.2	100 • 1	100 • 1	16.5	7 • 6
11	86.9	95•3	101.7	103.4	103.4	16.5	8 • 4
13	89.5	97.9	103.9	105.1	105 • 1	15.6	8 • 4
15	91.0	99•0	104.8	106.1	106 • 1	15.1	0 • 8
17	90.5	98•8	104.5	105.9	105.9	15.4	8 • 3
19	88•5	96.7	103-1	104+4	105•4	15.9	8 • 2
21	86 • 4	93.9	101-4	102.6	102.6	16.2	7 • 5
23	84.9	92.2	100 • 4	101.2	101.2	16-3	7 • 3
25	85.9	94.2	101.9	102.1	102.1	16.2	8 • 3
27	86.9	96.2	103-6	103.6	103.6	16.7	9•3
29	87.3	97.0	105.0	104.4	104.4	17.1	9•7
31	87.4	97.4	105+6	104.8	104.8	17 • 4	10-0
33	85.5	95.2	104-1	103.7	104.9	18.2	9-7
35	84.3	93.9	103.4	102.3	102.3	18.0	9•6
37	86.3	94-7	102.8	101.9	101-9	15.6	8 • 4
O.H. 39 40	88.2	95•7	101.6	103.2	103.2	15.0	7•5
41	88-1	95•6	101.7	103.6	103.6	15.5	7.5
43	86.9	94.2	99.8	102.6	102.6	15.7	7•3
45	84.8	90•8	96+8	99•3	99•3	14.5	6•0
47	81.2	86.9	92.8	95•6	95•6	14-4	5•7
49	78 • 4	84.6	89.7	93•7	93.7	15+3	6.2
51	76.5	82.8	87.2	92.7	92.7	16.2	6•3
53	74.1	80 • 9	84.5	91.7	91.7	17.6	6.8

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 25, 141 KT . FLY BY, CENTERLINE MIC. (SOFT SITE)

INT	DBA	מפס	OASPL	PNL	PNLT	PNL-DBA	DBD~DBA
1	76.6	85.0	91.6	94.9	94•9	18.3	8 • 4
2	77.0	85.8	93-1	95.8	95.8	18.8	8 • 8
3	77.7	87.0	94.9	96.8	96 • 8	19.1	9.3
4	79.1	89.0	96+9	98.0	98 - 0	18.9	9.9
5	81.0	91.0	98.8	99.6	99•6	18.6	10.0
6	83.2	93 • 1	100.7	101.6	101.6	18.4	9.9
7	85.3	95•0	102.4	103.3	103.3	18.0	9.7
8	87.1	96•7	103•9	104.9	104.9	17.8	9.6
9	89.8	98.5	105=1	106-4	106•4	16.5	8.7
10	91.8	100-1	106.1	107.6	107.6	15.8	ರ∙3
11	92.6	100 • 7	106.5	108 • 1	108 • 1	15.5	8 • 1
12	92•7	100.5	106.3	107.7	107.7	15.0	7.8
13	91.9	99.7	105.6	107.0	107.0	15.1	7.8
14	91.0	99.2	105 • 1	106.3	106.3	15.3	8 • 2
15	90 • 1	98•8	104.9	105.7	105 • 7	15.6	8.7
16	89.7	98•7	105.0	105.8	105-8	16.1	9•0
17	89•3	98•2	104.9	105.5	105.5	16.2	8.9
18	88.7	97.4	104.4	105.0	105.0	16.3	8 • 7
19	87•7	95 • 1	103+8	104.0	104.0	16.3	8 • 4
20	86•6	95+0	103.2	103 - 4	103-4	16.8	8 • 4
21	86.0	94.5	103.3	103•1	103-1	17.1	8 • 5
22	86.2	94.9	103.7	103.2	103.2	17.0	8•7
23	86•7	95•6	104.3	103•7	103.7	17.0	8 • 9
24	86 • 8	95.9	104.7	103.9	103.9	17.1	9 • 1
25	86.3	96.1	104.9	104-1	104-1	17.8	9•8
86	85 • 8	96•0	104.9	104.3	104.3	18.5	10-2
27	85.4	95.8	104.7	104-2	104.2	18.8	10.4
28	84.8	95•0	104.1	103-6	103.6	18.8	10.5
29	84 • 9	94.6	103.5	102.7	102.7	17.8	9.7
30	85.9	94.7	103.1	102.0	102.0	16.1	8 • 8
31	86 • 7	95•1	102.2	102-4	102-4	15.7	8 • 4
0.H. —332	87 • 1	95.0	101.3	108.6	102.6	15.5	7.9
33	86.7	94+5	100.9	102.4	102.4	15.7	7 • 8
34	86 • 4	94.2	100.8	102.5	102.5	16.1	7 • 8
35	85.9	93.6	100.3	102-1	102.1	16.2	7 • 7
36	86 • 1	93.5	99.4	108.0	102.0	15.9	7 • 4
37	85.9	92.6	98 • 6	101 • 3	101.3	15.4	6.7
38	85 • 3	91 • 7	97.4	100.0	100.0	14.7	6 • 4
39	83 • 8	89.5	95•3	98 • 1	98 • 1	14-3	5 • 7
40	82 • 1	88.0	93.6	96.6	96+6	14.5	5.9
41	80 - 1	86+3	92.1	95 • 1	95 • 1	15.0	6 • 2
42	78•3	84.6	90.5	93.9	93.9	15.6	6 • 3

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 26, 141 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

INT	рва	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	76•8	85.7	92.0	94.9	94•9	18.1	8•9
2	77.2	85•8	92.7	94.9	94.9	17.7	8 • 6
3	77 • 6	86 • 4	94.2	96 • 1	96•1	18.5	8 • 8
4	79.3	89.0	96.8	97•9	97•9	18.6	9•7
5	83•8	93.5	100.2	101.5	101.5	17.7	9.7
6	88.2	97.2	103.2	104.5	104.5	16.3	S • O
7	91 • 8	100.1	105.3	106.5	106.5	14.7	8•3
8	92.9	100.9	106.1	107-4	107.4	14.5	8•0
9	92 • 4	100.2	105.6	107.0	107.0	14.6	7•8
10	90•2	98•0	104.2	105.8	105.8	15.6	7•8
11	88•2	96 • 1	102.9	104.3	104.3	16.1	7•9
12	87.5	95•8	102.5	103.9	103.9	16.3	8 • 2
13	86 • 9	95•5	102.4	103.5	103.5	16.6	8•6
14	86 • 1	94.8	102.2	103.0	103.0	16.9	8 • 7
15	86+0	94.4	102.5	102.9	102.9	16.9	8 • 4
16	86.9	95 • 1	103.0	103.2	103-2	16.3	8•8
17	8 7 • 5	95•9	103.5	103.9	103.9	16-4	8 • 4
18	88•6	96•7	104.4	104.9	104•9	16.3	8 • 1
19	89 • 7	97 • 8	105.3	106.1	106+1	16+4	8 • 1
50	89•7	97.9	105.5	106.3	106 • 3	16.6	8 • 2
21	88•6	97 • 1	104.9	105 • 4	105 • 4	16.8	8 • 5
22	86.5	95.5	104-1	104.0	104.0	17.5	9.0
23	85 • 6	95•2	104.0	103.6	104.7	18.0	9+6
24	86 • 1	95•7	104.3	104.0	105.2	17.9	9•6
25	86 • 2	\$5•5	104+2	104.0	104.0	17.8	9 • 3
26	86 • 7	95 • 3	103.7	103.7	103.7	17.0	8 • 6
27	87 • 1	95•2	103.3	103.1	103 - 1	16.0	8 • 1
28	88.0	95 • 6	103.1	103.3	103.3	15.3	7 • 6
29	86 • 4	95 • 8	102.7	103 • 4	103.4	15.0	7 • 4
30	89.0	96 • 2	102.3	103.8	103 • 8	14.8	7 • 2 7 • 0
Ø.H. → 31	88 • 6	95•8	101.8	103.5	103.5	14.9	7•2
32	87•7	95•0	101.4	103.2	103.2	15.5	7 • 3
33	86•4 25•7	93.9	100.6	102.5	102.5 101.8	16•1 16•1	7•5 7•5
34	85. 7	93.2	99-5	101•8 100-9	100.9	15.6	7 • S
35	85	92.3	98•4	99.3	99.3	14.9	6.5
36	84•4	90.8	97 • 2 95 • 7	97.9	97.9	14.9	5.9
37	83.9	89•8	95•7 94•3	96.9	96.9	14.0	5•9 5•6
38	82.6	88 • 2	94.5	95•9 95•5	95.5	14.5	5•6 5•7
39	81.0	86•7					5•7 5•8
40	79•3	85 • i	90.9	94.1	94•1	14.8	3.0

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 27. 141 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

INT	DBA	QEQ	OASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	80 • 1	87.5	94.8	97•1	97•1	17.0	7 • 4
2	79.6	87.4	96+0	97.5	97.5	17.9	7 • 8
3	80 • 1	88.2	97.2	98 • 7	98 • 7	18.6	8-1
4	83•7	91.5	99.3	100.8	100-8	17.1	7 • 8
5	90 • 4	97.9	102.8	105 • 4	105-4	15÷0	7-5
6	94.3	101.6	106.2	108.5	108.5	14.2	7•3
7	96•0	103.3	107.7	110.0	110.0	14+C	7.3
8	95•9	103.2	107.9	110.0	110.0	14.1	7 • 3
9	95 • 1	102.4	107.2	109.3	109.3	14.2	7•3
10	93 • 6	101.3	106.7	108.3	109.3	14.7	7.7
11	94.4	102.1	107.3	108.8	110-6	14.4	7.7
12	93 • 9	102.3	108 • 1	109.1	110.8	15.2	8 4
13	93•6	102 • 4	108.6	109.7	111-1	15.9	8 • 6
14	92.7	101.9	108.6	109.6	109.6	16.9	9.2
15	92.5	101.3	108.2	109.4	109.4	16.9	8 • 8
16	91.7	100.5	107.7	108.4	108 • 4	16.7	8 • 8
17	90 • 1	99.2	106.9	107.1	107.1	17.0	9.1
18	89•6	98•3	106.3	106.0	107.2	16.4	8.7
19	89.2	97•8	105.7	105.5	106.5	16.3	8 • 6
20	88•9	97.1	105 • 1	105.1	105.1	16.2	8.2
21	88.9	96.8	104.8	104.5	104.5	15.6	7.9
88	89.2	96•6	104.7	104.6	104.6	15 - 4	7.4
23	89•1	96.5	104.2	104-1	104.1	15.0	7.4
24	88•7	96.3	103.0	103.9	103.9	15.2	7.6
25	89.2	96•7	102.6	104.4	104.4	15.2	7.5
o.H.—≯26	89.7	97 • 1	102.8	104.8	104.8	15.1	7 • 4
27	89.3	96•8	102.8	104.8	104.8	15.5	7.5
28	88•7	96 • 1	102.0	104-1	104.1	15.4	7 • 4
29	87•9	94.8	100.9	103 • 4	103.4	15.5	6.9
30	87.0	93.5	99.8	102.0	102.0	15.0	6.5
31	85•4	91+5	98.0	100.3	100.3	14.9	6.2
32	82.9	88 • 7	95.3	97 • 1	97.1	14.2	5.8
33	81.1	86 • 8	92.9	95•6	95,6	14.5	5.7
34	79•3	85•0	90•5	94•2	94.2	14.9	5.7

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 28, 150 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	76.9	85•9	93.2	•0	•0	-76.8	9•0
2	79 • 4	88.9	96.0	97.7	97.7	18.3	9•5
3	82.2	92.0	98 • 8	99•9	99•9	17.7	9•8
4	84-6	94-5	100-9	102-0	102-0	17 + 4	9+9
5	88 • 4	97 • O	103.2	104.3	104.3	15.9	8•6
6	90•7	99•1	105.3	106.3	106.3	15.6	8 • 4
7	93.0	101.3	107.3	108.2	108.2	15.2	8•3
8	96.0	103-8	108.9	110-3	110.3	14-3	7•8
9	97.4	104-8	109.8	111.2	111.2	13.8	7 • 4
10	97.6	104.9	109.3	111-4	111-4	13.8	7•3
11	96.2	103-8	109.0	110.5	110.5	14.3	7.6
12	94.2	102.2	107.9	109.4	109.4	15-2	8.0
13	92.5	100-6	107.0	108 • 3	108.3	15.8	8 • 1
14	92.3	99•8	106.6	107.8	107.8	15.5	7 • 5
15	92.3	100.0	107.0	107.9	107.9	15.6	7.7
16	92.3	100 • 5	107.5	108.2	108.2	15.9	8 • 2
17	92.3	100.9	107.9	108.5	108.5	16-2	8 • 6
18	92 • 1	100.9	108.0	108 • 4	108•4	16.3	8•8
19	91.7	100.5	107.9	108.0	108.0	16.3	8 • 8
20	90•6	99•6	107.5	107.3	107.3	16.7	9•0
21	90 • 1	98 • 6	106.9	106.7	106.7	16.6	8 • 5
22	90 • 1	97.8	106.2	106 • 1	106.1	16.0	7•7
23	91.0	98 • 1	106.0	105.8	105.8	14.8	7 - 1
24	91.2	98 • 1	105.4	105.9	105.9	14-7	6•9
0.H.→25	91 • 1	97•9	104.6	105•7	105.7	14.6	6•8
26	90 • 1	97 • 1	103.1	104.9	104.9	14.8	7.0
27	89.8	96 - 7	102.6	104.8	104.8	15.0	6•9
28	89.2	96 • 1	101.8	104-3	104.3	15.1	6.9
29	88.9	95 • 4	101.0	103.6	103.6	14.7	6 • 5
30	87 • 4	93 • 5	99.2	101.7	101.7	14.3	6 • 1
31	85 • 6	91.3	97 • ∪	100.0	100.0	14-4	5 • 7
32	83 • 3	88.6	94.5	97.5	97.5	14.2	5•3
33	81 • 4	87.0	92 48	95.7	95•7	14.3	5•6

NOISE LEVEL TIME HISTORY DATA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 29. 150 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

INT	DBA	DBD	OASPL	PNL	PNLT	PNL-DBA	DBD-DBA
1	82.9	89•1	95•2	98 • 4	98.4	15.5	6.2
2	84.2	90•7	97.3	99•6	99•6	15.4	6.5
3	86.0	92.9	99•8	101-4	101.4	15•4	6•9
4	87 • 1	94•7	101.9	103.2	103.2	16.1	7 • 6
5	89•6	97•2	104.5	105.7	105.7	16.1	7.6
6	90•7	99.2	106•4	107.4	107.4	16.7	8•5
7	92.9	101.2	107.9	109.2	109.2	16.3	8•3
8	96 • 1	103.5	109 • 1	111-1	111-1	15.0	7.4
9	98 • 2	104-8	109.8	112.3	112.3	14.1	6 • 6
10	98•9	105.3	110.2	112.9	112.9	14.0	6 • 4
11	98.8	105.6	110.5	113.3	113.3	14.5	6•8
12	99.3	106•3	110.9	113.5	113.5	14.2	7.0
13	99.2	106.6	111-1	113+4	113.4	14.2	7 • 4
14	99•3	106•3	110.8	113.2	113.2	13.9	7•0
15	98 • 4	105.5	110-7	112.8	112.8	14.4	7 • 1
16	97 • B	104.7	110.3	112-4	112.4	14.6	6•9
17	96 • 3	103.9	110.1	111.6	111.6	15.3	7.6
18	94 • 4	102.5	109.2	110.2	110.2	15•€	8 • 1
19	92.7	101.2	108.5	108 • 8	108.8	16.1	8 • 5
2 0	90 • 5	99•5	107.3	107.3	108.3	16.8	9•0
21	89.3	98.4	106.8	106.3	106.3	17-0	9 • 1
22	89 • 1	97•8	106.6	105.5	105.5	16.4	8•7
23	90 • 7	98•4	106.5	105•9	105.9	15.2	7.7
24	91 • 6	98•8	105.7	106 • 7	106.7	15.1	7.2
O.H -> 25	92.0	99•0	105.0	106.7	106.7	14.7	7.0
26	91.7	98.5	104.2	106.3	106.3	14.6	6•8
27	91.3	98.0	103.9	106+0	106.0	14-7	6.7
28	90•7	97•3	102.8	105 • 4	105•4	14.7	6•6
29	90 • 2	96 • 6	101.8	104.4	104.4	14.2	6 • 4
30	88.8	95 • 1	100.3	103.1	103.1	14+3	6.3
31	86 • 8	92.8	98.2	101.2	101.2	14.4	6•0
32	83.5	89 - 1	94•8	98.2	98•2	14.7	5 • 6
33	81.3	86•9	92.3	95•8	95•8	14.5	5•6

NOISE LEVEL TIME HISTORY DATA

VERIOL CH-47 C

OCTOBER 13, 1976

EVENT 30, 126 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

INT	рва	DBD	JASPL	りかに	PNLT	PNL-DBA	DBD-DBA
_							
1	70.6	80.9	87.5	92.4	92.4	21.8	10.3
2	71 • 9	82 • 1	89.4	92.8	92.8	20.9	10.2
3	74.0	83.9	91.7	93.6	93.6	19.6	9.9
4	76.7	86.3	94.0	95 • 4	95•4	18.7	9.6
5	79.0	88.3	96 • 2	97•5	97.5	18.5	9 • 3
6	81.0	90.2	93•6	99•3	99•3	18.3	9.2
7	83•1	92 - 7	100∘8	101 - 2	101+2	18-1	9•6
8	86.2	95•5	103.0	103.5	103.5	17.3	9.3
9	88.5	97•6	104.5	104.9	104.9	16.4	9 • 1
10	88•8	98+0	104.9	105.1	105.1	16.3	9.2
11	87.6	97 • 1	104.2	104.3	104.3	16.7	9•5
12	84.7	94.8	102.7	102.5	102.5	17.8	10.1
13	82.2	92 • 4	101.1	100.7	100.7	18.5	10.2
14	80∙8	90•7	100.0	99•8	99•8	19.0	9.9
15	80.9	90.7	100.3	99.9	99•9	19.0	9.8
16	83.40	92.0	101.5	101-0	102.0	18.0	9.0
17	83•5	92.5	102.3	101.5	102.6	18.0	9.0
18	83.6	92.7	102.5	101.8	101.8	18.2	9 • 1
19	83.0	92.6	102.4	101.8	101.8	15.8	9.6
20	83 • 1	92•6	102.3	101.8	101.8	18.7	9.5
21	83.2	92.4	102.0	101.8	101.8	18.6	9.2
22	83.5	92•2	101.7	101.9	101.9	18 • 4	8.7
23	83.3	91.6	101.3	101.3	101.3	18.0	8.3
24	83.2	91.0	100.8	100.3	100.3	17-1	7.8
25	83.9	91.8	100.3	100.0	100.0	16.1	7.9
26	84.7	92.9	99.6	100.5	100.5	15.8	8•8
27	85.3	93.4	99.1	101.0	101.0	15.7	8 + 1
0.H,-> 28	85.3	93 • 4	99.6	101.5	101.5	16.2	8 • 1
29	86.0	93.5	100.2	102.1	102.1	16.1	7.5
30	86.0	93.4	100.2	102.0	102.0	16.0	7.4
31	85 • 5	92.7	99.1	101.2	101.2	15.7	7.2
32	84.8	91.5	97.9	100 • 2	100.2	15.4	6.7
33	84.3	90.3	96.7	98 • 8	98.8	14.5	6.0
34	83.7	89.0	95.4	97.5	97.5	13.8	5 • 3
35	82.2	87.5	93 • 6	96.2	96.2	14.0	5 • 3
36	80.7	86.1	92 • 1	94.9	94.9	14.2	5 • 4
37	79.3	85.2	91.3	94.2	94.2	14.9	5.9
38	78 • 1	84.0	90 • 2	93.5	93.5	15-4	5.9
39	76•7	83.0	89.4	92.9	92.9	16.2	6.3
• •					- -		- · -

NOISE LEVEL TIME HISTORY DATA

JERFOL CH-47 C

OCTOBER 13, 1976

EVENT 31. 126 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1 / 1	DBA	ФВG	JASPL	PNL	PNLI	PNL-D44	DBD-DB4
1	70.7	80.9	86∙7	92.3	92.3	21.6	10.2
2	72 • 4	82.0	88 • 2	92.7			9.6
3	74.0	83.2	89.7	93.3	93 • 3	19.3	9.2
4	75.4	84.2	91.0	94.0	94.0	18.6	
5	76.0	84.8	91.0 92.1 93.1	94.3	94.3	18.3	
6	76.2	85.2	93 • 1	95.0	95.0	18•3 18•8	9.0
7	76 • 8	86.3	94.6	96-1	96 - 1	19.3	9.5
ರ	7 8•8	88.0	94•6 96•4 98•5	97.6	97.6	18.8	
9	81.2	90.2	98•5	99.5	99•5	18.8 18.3	9.0
10	83•2	92.2	100•5 102•1	101.1			
11	85 • 1	94.1	102 • 1	102.2	101 • 1 102 • 2 103 • 4		
12	86•8	95.5	103.0	103.4	103.4	17·1 16·6	8.7
13	87.8	96•3	103•3 103•3	103,9			8.5
14	87•9	96.3	103.3	103.9	103.9 103.9 103.6		
15	87.2	95.6	103.2	103.6	103.6	16.0 16.4	8 • 4
16	86•3 85•8	94.6	103.0	103.2	103.2	16.9	8.3
17	85•8	94.5	102.8	102.9	102.9		
18	86•2	95 • 1	102•8 102•8	102.8	102.8	1·7·1 16·6	8.9
19	86.5	95.2	102•8	102.7	100.7	16.0	8.7
20	86•3	95•0	102•6 102•2	102.6	102.6	16.3	8 • 7
21		94.3	102.2	102.5	102.5	16.8	8.6
22	85•2	94 • 1	102.3	102.4	102.4	17.2	
23	84.7	93+8	102•4 102•3	102.2	102.4 102.2 102.0	17.5	9 • 1
24		93.4	102.3	102.0	102.0	17.5 17.9	9 • 3
25	83∙४	92.8	102.2	101.9			9.0
26	83•2	92 • 1	102•1 101•9	101.8	101.9 101.8 101.5	18.6	
27	83•4	91.7	101.9	101.5			8 • 3
28	83•8	92•3 93•2	101.6	101-0	101.0	17 0	8 • 5
29	85•3	93.2	100•7 100•3	101.5	101.5 102.5	16.2	7•9
30	86.9	94.6	100 • 3	102.5	102.5	15.6	7.7
31	87•3	94•8	100 • 1 100 • 9 101 • 3	102.8	102.8	15.5	7 • 5
0.H → 32	87.6	95.1	100.9	103.0	103.0	15-4	7•5
33	87 • 4	95 • 1	101.3	103.0	103.0	15.6	7 • 7
34	87 • 1	95•0	101-1	102.8	102.8	15.7	7.9
35	80.0	93.7	99•8 98•1	101.9	101.9	15.9	7.7
36	85•3	92.2	98-1	100.7	100.7	15.4	6.9
37	ಚ4∙6	90•5	96+6	98•9	98•9	14.3	
38	83.7	89.3	95 • 0 92 • 8	97•5	97•5 95•4	13.8	
39	81.2	86.8	3 5 • 8	95.4	95•4	14.2	5•6
40	79•0	84.7	90.2	93.7	93.7	14.7	5.7
41	77•3	83.6	88•6 8 7• 8	92.9	92•9 92•8	15.6	6 • 3
42	77.0	83.5	87∙ 8	92.B	92.8	15.R	۸.5

NOISE LEVEL TIME HISTORY DATA

VERTUL CH-47 C

Marie of the state of the state of

UCIOBER 13. 1976

EVENT 35, 3 DEGREE APPROACH, CENTERLINE MIC. (SOFT SITE)

INT	DBA	ded	UASPL	PNL	PNLT	PNL-DBA	DBD-DB4
1	78 + 1	85•9	91.3	95•8	95•8	17.7	7•8
4	81 • 4	88+3	92.8	97.1	97 • 1	15.7	6.9
7	81.2	87.8	93.3	97.2	97.2	16.0	6.6
10	81.0	88.8	93.8	97.6		16.6	7.8
13	81.5	88•6	93.5	98.2		16.7	7-1
16	80.9	89.0	93.7	97.5	97.5	16.6	8 - 1
19	82.4	89.4	94.4	98•1	98 • 1		7.0
22	82.2	89.5	94.3	98 • 1		15.9	7 • 3
25	80.7	88•6	93•9	97.4	97.4	16.7	7.9
28	79.2	86 • 7	92.2	96 • 1	96 • 1	16.9	7•5
31	76.2	84.5	90.9	94.5	94.5	18.3	8 • 3
34	73.1	82.3	90 • 1	93.4	93 • 4	20.3	9•2
. 37	73.8	82.4	89•9	93 • 4	93•4	19.6	8 • 6
40	74.6	83.1	90.0	93•6	93•6	19.0	8 • 5
43	76.2	83.7	89.7	93.9	93.9	17.7	7 • 5
46	76 • 1	84.2	89•3	93•9	93•9	17.8	8 • 1
49	80 • 1	86•0	91 • 4	95•6		15.5	5•9
5 2	78 • 4	85•3	91.9	95•4	95 • 4	17.0	6.9
55	81.0	86•9	93 • 4	96•9	96•9	15.9	5•9
58	80.5	87•2		96•5	98 • 1	16.0	6.7
61	83 • 6	89•3	94.2	98 • 1	98 • 1	14.5	5 • 7
64	84.1	89•3	94•6	99•1	100.7	15.0	5•2
67	85•6	90•5	95•0	99•3	99•3	13.7	4.9
70	86.5	91.7		101 • 1		14.6	
73	88 + 8	94.0	98•3	102.5	102.5		5•2
76	90.8	95.7	99•7	103.9	103.9	13.1	4.9
79	92.5	98•3		106 • 6	106 • 6	14-1	5 • 8
82	93.8	99.2	102.8	107•4	107.4	13.6	5 • 4
o.H. - → 85	93•7	99•7	103.2	107-1	107.1	13-4	6.0
8 7	94 • 4	100.8	104.6	107.6	107.6	13.2	6 • 4
90	91 • 1	97•7	102.5	105•2	105.2	14-1	6•6
93	90•9	97 • 4	102.3	104.7	104.7	13.8	6 • 5
96	85•7	91 • 6	97.3	99•6	99•6	13.9	5•9
99	83.8	89.8		98 • 4		14.6	6•0
102	79•1	85.3		94.6	94.6	15.5	6.5
105	75•6	82 • 6	89.2	93 • 1	94.3	17.5	7•0
108	74 • 6	81.6	87.4	92.3	92.3	17.7	7.0
111	70•5	79.4	85•7	•0	•0	-70 • 4	8 • 9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 12. 6 DEGREE APPROACH. MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-52.0	-18.0	-14.0	-10.0	-6.0	-2.0	0	2.0	6•0	7.0
17	84.3	86 • 9	89 - 1	89 - 1	86.9	89.5	90.9	90.5	82 • 4	82.5
13	85 8	84 • 1	85 • 4	87.7	80.0	90.0	89.5	85 • 3	84.5	85.4
19	84.8	82.8	84.5	83.7	73.9	85.9	86 - 1	79.9	77.2	79.2
50	82.7	81.7	83.7	79.3	77.2	85 • 4	81.7	79.2	76 - 1	80.9
21	74.2	75.7	78 + 6	80.8	79.5	76 • 1	76.0	71 .8	78 • 1	77.8
22	76.8	78.5	80.0	79.1	74.7	84 - 1	83.7	77.4	75 • 4	77.5
23	81.9	76.6	79.1	73 - 1	85.0	87.9	88.0	84.5	72 • 6	69 • 0
24	76.7	77.9	74.5	83.1	89.9	88 • 3	84.5	85 • 6	7 8,5	73.3
25	76.1	72.4	71.5	82 • 6	86.2	81.8	79.8	82.5	80.2	78 • 1
26	73.1	61+6	74.7	83 • 1	82.9	73.6	76.5	73.6	79.9	79.3
27	73.2	71.8	77.5	88.0	80.3	78 . 8	78 = 8	79 - 4	73 - 4	77.0
28	74.3	74.3	78 • 2	74.8	81.3	72.2	74.4	74.4	72.1	69.9
29	76 - 1	73.5	71.5	79.4	76.5	73 • 8	74.2	75.6	72.8	72.9
30	71.3	65.7	68.2	72.8	77.9	71.9	71.6	72.5	70.3	67.8
31	68.0	64.4	67.6	74.7	75.0	69.0	69.5	69.9	67.4	67.3
32	65+8	64+5	64.8	71.8	72.3	69.3	69.8	70.5	69.0	67.4
33	63.2	61.2	62.3	67 • 7	68.9	66 - 2	66.2	66.6	63 • 2	62.2
34	57.9	57.3	57.2	64.3	65 • 6	63 • 7	63.9	65-1	60.5	59.9
35	55.0	55 • 2	55.0	59•6	63 • 1	62 - 4	62.7	65 • 3	59.7	59.2
36	55.0	55 ∙0	55.0	55.9	59.7	60 • 6	61.3	62 - 4	57.4	56 • 3
37	55.0	55.0	55.0	55•0	55.8	57 • 4	58.3	59.1	55 • 5	55.0
38	55•0	55.0	55•0	55•0	55+0	55 • i	55.4	56 • 1	55.0	55.0
39	55•0	55.0	55•0	55•0	55 • 0	55• 0	55.0	55.0	55.0	55.0
40	55•0	55.0	55.0	55•0	55.0	55 • 0	55.0	55.0	55.0	55.0
Α	80 • 9	79.3	81.6	86•4	88 .4	85•3	84.5	84.5	81.3	80 - 7
D	86 • 2	84.3	86.7	91.3	93.2	92.1	$91 \cdot 1$	90.5	86.7	86.0
OASPL	92.5	92.8	94.2	95.2	96 • 6	97.9	97.0	95.5	91.1	91.5
PNL	94.7	92.8	94.8	98•4	100.6	99.7	99.2	98.2	94.8	94.4
PNLT	95.6	92.8	96.0	100.3	100.6	99•7	99.2	98.2	96.0	95.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 22, 100 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-17.0	-14.0	-11.0	-8•0	-5.0	-2.0	0	1.0	4.0	7.0
17	76.7	50 • 4	85 • 1	88.0	88.3	85.2	85.8	85.9	86.2	79.0
18	83.6	82 • 3	85.2	38 • 7	89.7	80 • 3	89.0	87.4	81.2	74.9
19	84.0	84.7	86 - 1	81.0	87.9	80.7	87.5	85.3	76.4	68 • 6
20	78 • 7	76.6	83.7	81.5	83.3	84.3	83.7	78 • 7	68 • 7	70.3
21	76.8	75.9	76.2	75.7	79.6	78.6	75.5	73.9	64.1	69.0
22	73.0	72.7	74.8	78.3	79.4	73 • 4	82.6	78 • 1	72.4	59•6
23	69.9	72.9	74.8	80 • 4	73.8	80.6	64.2	80.9	75•7	65 • 8
24	62.0	69.0	74.4	77.6	72 • 1	80 • 1	83.9	79.0	76•5	69 • 4
25	58.0	64.5	71.9	71-8	71.8	81.2	75 - 1	70.0	74.5	72.2
26	57.0	62.0	70.7	65.7	77.0	77.6	71.2	71.8	70.9	70 • 3
27	60.0	58 - 4	67.3	70.9	76.3	74.1	$71 \cdot 1$	68.9	74 • 7	65 - 9
28	62.2	57 • 1	ö6•1	73 • 1	67.3	74.2	67.4	69.7	69•5	69.2
29	62.6	61.43	64.7	71.0	67.1	71.2	67.0	69•0	72 • 3	64.8
30	57.3	61 • 1	61.2	64.4	66.4	72.0	67.0	67.2	71 • 3	65 • 8
31	55.0	56.6	59.7	64.4	61.8	71 • 1	65•4	65.2	68 • 2	63 • 1
32	55.0	55 • 4	57•4	60.7	63 - 1	68 • 5	68 • 3	68 • 1	69.2	63.5
33	55.0	55.0	55.0	60.7	62.6	66•3	64•4	64.1	66 - 4	59•7
34	55.0	55.0	55.0	55.6	58 • 4	63 • 1	62.0	61.7	62.9	57.4
35	55.0	55.0	55∙0	55.0	57.0	61 • 3	61.5	60•8	62.0	56 • 1
36	55.0	55.0	55.0	55•0	55 • 1	59.2	59.5	59.4	59•9	55.0
37	55 • 0	55.0	55.0	55.0	55.0	56•7	57.8	57•7	57.3	55•0
38	55.0	55.0	55.0	55•0	55.0	55•0	55 • 1	55•0	55 • 1	55•0
39	55 + 0	55 • 0	55.0	55.0	55.0	55•0	55.0	55.0	55•0	55.0
40	55.0	55+0	55.0	55•0	55.0	55•0	55.0	55•0	55.0	55.0
Α	70 • 4	71.2	75.6	78 • 4	79.2	85.5	81.2	79.2	80 • 1	75 • 1
D	80 • 7	81.7		85•4	87.0	88 • 1	88 • 9	86.7	85 • 4	80.4
OASPL	90•8	92.0	93.7	94.3	94.9	94-1	96 • 1	95.2	91.2	87-2
PNL	88 • 4	89 • 1	91.9	93•4	94•4	95•8	96 • 4	94-1	92.6	87.6
PNLT	88•4	89 • 1	91.9	93.4	94.4	95•8	97•6	95•3	92.6	89.0

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 23. 100 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-18.5	-15-0	-11-5	-8.0	-4.5	-1.0	0	• 5	2•5	6•0	8.0
17	77 • 1	83.2	83.7	88.2	86.5	85.4	84.8	85.9	85.6	79.3	73.2
18	79.5	85 - 1	84 - 1	89.0	89.2	86.8	88.8	88.7	80.8	75.8	69.7
19	82.3	88 • 4	86.2	80.9	88.2	86 • 5	87.0	86.3	80.3	74.5	73.3
20	76.7	81.2	80.8	83-6	84.6	85.5	82.7	80.4	71.2	75.0	71.5
21	73.5	82 • 4	78.5	76.7	80.3	74.1	74.0	74.7	68 • 5	71.5	68.2
22	70.3	76.9	74.6	72.1	76.4	79.5	79.5	79.6	78 • 5	60 • 6	62.3
23	67.0	76.0	76 • 1	74.5	69.0	80 • 7	81.6	81.7	79.7	67.3	58.2
24	58 • 4	68 • 5	74.6	69.0	73.8	80.6	79.7	80-1	78.5	73.2	62 - 1
25	55 • 0	65 • 4	70.6	62.4	73.6	74.8	72.6	71.9	71.7	74.3	65.2
26	55.0	55 • 2	65+6	59:4	76.5	69 - 1	70.8	72.2	73•7	73•2	68 • 4
27	55 • 1	55 • 8	63.4	65.9	74.7	72.2	71.3	71.0	74 • 4	66•8	66.2
28	55.0	56 • 5	61.2	66 • 1	63.6	67 • 4	68.6	69•9	72.2	70•6	61.0
29	55.0	56 • 2	60.9	62.4	67.9	68.3	68 • 1	69.3	70 • 9	65 • 6	65.0
30	55 • 0	55 • 1	61.6	55•6	64.7	66•9	68 • 1	68 • 4	69 • 8	67•0	59.8
31	55 • 0	55.0	59•7	58∙ ნ	62.1	66.0	66 • 1	66.5	68 • 6	64•9	61.0
32	55 • 0	55 0	56.7	57 • 1	62.9	67.9	69•3	69.5	70•5	64.0	59.9
33	55•0	55•0	55.5	59.1	61.8	66•0	65 • 8	65•9	66-1	61 • 4	57.3
34	55•0	55 • 0	55.0	55.4	58.3	63.8	63.5	63•7	63 • 4	58•5	55.6
35	55•0	55.0	55•0	55.0	57.5	63.0	62.5	62.6	62.9	56•8	55.0
36	55•0	55•0	55•0	55.0	55•5	59 • 6	60 • 4	60.8	61 • 0	55•3	55•0
37	55.0	55+0	55.0	55.0	55.0	58•0	59•0	59 • 4	58 • 5	55.0	55•0
38	55•0	55•0	5 5•0	55•0	55.0	55.0	55 • 8	56 - 1	55•7	55.0	55.0
39	55•0	55.0	55.0	55•0	55.0	55.0	55•0	55•0	55•0	55•0	55.0
40	55 • 0	55•0	55.0	55 • 0	55.0	55.0	55•0	55.0	55•0	55.0	55.0
A	67 • 0	73.6	74.2	73.0	78 • 5	79.9	80 - 1	80.4	80 • 4	76•7	71.5
D	79 - 3		-	83 - 2	86.5	87•8	87.7	87.6	86.0	81.8	77.5
OASPL	89.6			94.2	94.7	94.6	95.2	95•5	92.5	88.8	84.6
PNL	86 • 3	91.6	-	91.5	94.2	95.0	95.1	95.2	33•8	89.6	85.3
PNLT	86 • 3	91 • 6	91.3	91.5	95•5	95•0	98.2	96•3	94.9	91-1	86•9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 24. 141 KT. FLY BY. MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14.5	-12.0	-9.5	-7.0	- 5 • 5	-4.5	-2.0	0	• 5	3.0
17	91.0	92.5	95•0	97.2	96•4	94.9	90 • 4	87.4	89.4	85 • 1
18	82.3	90.3	93.9	97.8	99.3	99.6	93.2	91.2	91.5	79.8
19	86 • 6	84.8	88.9	90 • 4	95 • 1	93 • 1	92.6	92.0	91.7	79.4
20	87.7	92.7	97.4	99.4	95 • 4	92.4	90.2	90.6	88 • 4	74.7
21	82.3	85 • 6	89.0	92.6	95 • 0	93 • 4	87.8	80.0	76.4	68 • 6
22	79.4	87 • 4	91.0	95.0	89.6	88.2	81.0	83.1	83.4	78.0
23	76.6	80.0	88.0	89 • 4	87.6	85.2	76 - 1	86.3	87.3	80.5
24	77.9	72.0	81.9	84.5	80•5	77.0	78 • 7	87.8	87.7	80 • 4
25	77.9	71.7	81.5	84.3	78 • 8	72.9	82.2	83.2	81.5	77.4
26	73.5	68.9	78•6	82 • 1	76•5	78 • 3	85.2	74.5	74.1	72.7
27	69•6	70.5	77.3	84.0	81-0	83.9	81 • 4	75 • 6	74.8	76 • 4
28	68 • 8	69•5	76.8	79•7	83.9	84•9	74 • 3	70.5	71.2	71.8
29	67.7	64-2	74.5	72.6	77 • 5	77•6	80 • 5	71 • 7	71.8	75.0
30	68•0	66 • 8	75•7	71 • 7	79 • 0	78•7	75 • 6	72.1	72.1	72.7
31	65.3	65.0	75 - 1	73.2	76.0	75•3	74.2	69 - 4	69.3	70.2
32	62 • 4	63 • 5	72.9	71.6	73 • 6	72 • 8	70•5	10.2	70.3	70 • 7
33	58 • 3	61 • 8	70.9	68•9	71 - 2	70 • 2	67 • 4	68•3	67.8	68 • 2
34	56 • 2	59•4	66 • 5	65 • 3	68•0	66 • 9	64.5	66 • 1	66.0	65.0
35	55.0	58 • 6	65 • 4	60•9	62.9	63•9	63•6	65.4	65•0	63•8
36	55•0	55 • 7	62 • 3	58•9	60 • 8	59.2	61.7	63.5	63.3	61.9
37	55•0	55.0	55 • 1	55•0	56•6	57 • 1	5 7 • 8	61 • 4	61.2	58 • 6
38	55•0	55.0	55.0	55.0	55.0	55•0	55 • 2	57.2	56.6	55•8
39	55.0	55•0	55.0	55•0	55•0	55•0	55•0	55•0	55.0	55•0
40	55.0	55.0	55•0	55•0	55.0	55.0	55•0	55.0	55.0	55•0
Α	78 • 6	80 • 9	87.3	89•6	88 • 2	87•8	87 • 4	85 • 1	85.2	82.5
D	87.0	89.7	95 • 4	97.6	96.1	95 • 6	93.3	92.7	92.6	87.7
OASPL	95 • 1	97 • 7	101.9	104.5	103.8	104-0	101.5	98•7	98.2	91.3
PNL	95 • 1	97 • 8	103.4	105.0	103.8	103.5	100.6	100.2	100.0	95.1
PNLT	95 • 1	97 • 8	103-4	105.0	105•4	104.9	102.5	100.2	100.0	95 • 1

THOLE H-VI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 25, 141 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-11.0	-9.5	-8.0	-6.5	-5•5	-5•0	-3.5	-2.0	5	0	1 • 5
17	92.6	95.8	96.7	97.5	97.8	97•5	93.2	90•8	84.5	86 • 1	88•4
18	88 • 4	92.9	95.9	99.3	100.9	100 • 7	97.5	93.6	87.3	89.4	87.3
19	85-6	90.0	92.8	93.4	96.8	97.6	97.7	93.5	88.8	90.0	87.9
20	89.6	97.6	101.3	100 • 8	97.5	95 • 4	94.4	92.1	88.9	89.0	79.4
21	82.9	90 • 6	94 • 1	96.5	98.0	97.5	89.0	88.5	83.3	79.8	73-1
22	81.8	89.8	96.6	96.4	92.2	90.8	86.6	80.0	81.1	82.2	82.2
23	80.8	84.3	93.9	91 • 1	91.8	91.3	79•9	75.2	84.2	85.7	85.4
24	76.0	78.2	88.5	85.9	84.2	82.6	69 • 5	77•4	85.3	87.2	84.4
25	73.7	79.9	88.0	83.3	79.6	77.9	73.0	81.2	82.5	82 • 4	76-1
26	74.1	79.8	86.1	79.9	78.2	79 - 1	81 • 1	85.8	77.6	74.6	76.8
27	76.4	79.7	87 • 5	81 • 1	84.5	85 • 8	83•7	81.2	75.0	75•7	75.0
28	73.3	76 • 9	83.2	78 • 8	87 - 1	88 • 4	80 • 3	74.6	72.9	71.0	72.8
29	72.5	71-1	82.0	75.2	83.2	83 • 3	76.2	80.0	71.9	73.0	72.2
30	71.9	70 • 5	80 • 7	76 • 1	80 • 2	80 • 7	77•9	75•6	72.0	72.7	71.0
31	70.1	73.5	78.3	75 • 1	80.8	81.8	70 - 9	74.8	69•6	69.9	69.7
32	72.6	72.0	76.9	70 • 7	77 • 8	77 • 6	70 • 9	72 • 1	69•6	70.2	70 · B
33	70.4	67 • 7	76+3	69 • 8	76.5	76 • 6	67.6	70.2	69 • 3	69.7	68 • 1
34	62.2	63 • 5	71 • 7	67 • 3	75•7	75•3	64 • 4	66.9	66 • 0	66•6	65•6
35	58 • 1	60 • 0	68.2	66•5	70•5	70 • 6	60 • 7	64.0	65.8	66.2	64•B
36	56.1	55•7	61 • 1	60 • 3	66 • 5	66 • 3	57•5	64.0	63•\$	64.2	62•7
37	55 • 0	55 • 0	58 • 2	57 • 1	61 • 1	60 • 7	55 • 3	57.7	60•9	61 • 9	61.0
38	55.0	55.0	55.3	55•0	65.0	61-4	55•0	55 • 6	57•7	58 • 1	57.2
39	55.0	55.0	55.0	55 • 0	56•7	56 • 5	55•0	55• 0	55.0	55.0	55•0
40	55.0	55.0	55.0	55+0	55+0	55.0	55•0	55.0	55• 0	55.0	55•0
Α	1 • \$8	85 • 6	93.7	90 • 3	98•9	92•8	86•6	86.8	84+1	84.6	83.5
D	89.5			99 - 1	99•4	99.2	94.6	93.0	91.3	92.0	89.8
OASPL		101.9		- · -	105.8	105.6	102.9		98 • 6	98.2	95.7
PNL	97•7	102.7			107.1	106 · B	102.1	101.1	99.0	99.8	97.9
PNLT	97 • 7	102.7	107.8	106.3	108-4	108 • 3	103 • 6	102.8	99•0	99•8	97.9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 26, 141 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-13.5	-11.5	-9.5	-8-0	-7.5	.=5=5	-3-5	=1.5	O.	•5	$\hat{0} \bullet \hat{\mathbf{S}}$
17	93 • 6	97.0	98•0	98•0	97 • 4	96.2	94.0	88.8	87.0	88.7	87-6
18	77.0	91.8	96.5	98.2	98 • 8	99.5	98.0	88.6	90 • 5	90.8	82.8
19	88.5	94.5	89.4	89.6	92.9	98 • 1	98 • 6	87.5	91.2	90.8	82.5
20	85.9	98.3	99.4	98.8	99.0	93.0	96.5	87.5	88 • 4	85.8	74.7
21	81.1	93.3	91.6	94.7	96.2	95+3	87.6	84.9	78 • 0	76.0	73 • 1
22	77.0	91.4	93.3	96.0	95 • 1	91.2	86.0	79.2	83-5	84.0	80.2
23	74.0	90 • 1	91.9	91 • 4	91.5	87.9	79 • 1	81.6	86.2	86 • 1	83.5
24	72.9	83.7	86 • 5	88.0	88 - 9	82.0	71.9	81.6	86.5	85.9	81.0
25	70.7	79•3	85.0	83.8	83•5	73.8	77.4	79.4	79 • 7	77 • 4	74 • 4
26	69.2	77 • 3	81.0	78•7	77 • 0	$71 \cdot 1$	84 • 4	80.3	75 • 6	77.0	77.2
27	69•3	76•0	81.3	78.0	76.4	79•0	84.9	74 • 6	74-6	73•9	75+3
28	68.9	73 • 6	79.6	77.2	77 • 1	83 • 4	79.0	74.0	71 - 3	72.2	75 • 1
29	68.3	72.4	78.4	75.4	77 • 8	80.4	78 • 4	72.9	72.3	72•5	74.2
30	68.5	72.4	79.7	77•9	77.6	70 • 8	78 • 1	72.3	71.9	71 • 6	72 - 1
31	68.3	71.2	76.1	80 • 6	79.7	72.0	75.0	70.4	69 • 7	69 • 8	70 • 7
32	66.4	68 • 0	75.3	76 - 1	75 • 8	69 • 8	73.0	69.0	69.5	69.8	70 • 4
33	65.0	65•3	71.2	72.0	71.9	67 • 8	71.8	69 • 1	68.7	68 • 6	68•7
34	65•0	65•0	68.8	71.0	70-4	65 • 4	67.4	66 • 7	67.2	67.1	65•8
35	65.0	65•0	65•6	67 • 6	67•5	65.0	65•8	65.7	66.3	66 • 1	65-1
36	65.0	65 • 0	65•7	65•0	65•0	65.0	65.0	65.2	65.2	65.2	65.0
37	65•0	65•0	65.0	65.0	65•0	65+0	65•0	65•Q	65•0	65•0	65•0
38	65•0	65•0	65.0	65.0	65•0	65•0	65.0	65.0	65.0	65•0	65•0
39	65.0	65.0	65.0	65.0	65.0	65 • 0	65.0	65.0	65.0	65•0	65.0
40	65.0	65+0	65.0	65.0	65.0	65•0	65.0	65.0	65.0	65.0	65.0
A	77•5	87.0	89.3	91.2	91.0	88•3	88.6	84.2	84•6	84-2	8 • \$8
D	87 • 1	95•7	96.6	98.2	98.2	95.5	95•3	90•9	92.3	91.8	88.88
OASPL	96.2	103.0	103.8	104.5	104-7	103.9	103.7	99.4	97. 9	97.5	93.6
PNL	96•7	104+1	106.1	106 • 1	106.3		104.0	98•7		99.7	97.3
PNLT	96.7	104 • 1	106.1	107.3	106.3	105.4	104.0	98 . 7	100.0	99.7	97.3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 27, 141 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14-5	-12.5	-10.5	-8.5	≂6•5	-5. 0	-4-5	- 2.5	5	o	1.5
17	84.9	94 • 4	94.8	94.8	98•7	96 • 4	96•0	93•8	87.8	89•3	88 • 1
18	78.2	84.0	89.2	92.5	100 • 1	100.7	100.0	93.2	91 • 1	91.9	84.9
19	85 • 1	87 • 3	87 • 3	83 • 5	96.4	101.0	100 + 7	93 • 1	92.0	92.2	84.5
20	87.8	92.9	98.0	93.8	97.8	97.9	98.5	92.6	90 • 1	88 • 5	76.6
21	85.8	92•0	89.4	85 • 5	97.3	95 • 4	91 • 3	90•8	79•6	77.0	74.3
\$5	84.6	90•0	90 • 1	88.0	93.5	94.7	93 • 4	85 • 8	82.6	83 • 1	81 • 6
23	81.5	90 • 7	85.5	84.7	94 • 4	90 • 1	86•7	80.0	87.1	87-1	84.5
24	75.8	83 • 7	80•7	83 • 4	89.6	86 - 1	82.5	80 • 8	88•5	88 - 1	82.8
25	73.0	78 • 9	82 • 4	81.8	83 • 6	75.9	73 • 7	84.2	83 • 1	80.8	77.0
26	71 • 3	75-9	81 • 4	78 • 8	78 • 4	80.7	85•7	89.7	75•5	75.2	76.4
27	69 • 7	76 • 1	82.8	77 • B	78 • 2	88 • 1	20 • 5	87 • 6	77 • 1	76 • 7	76.1
28	67 • 4	73.0	77 • 8	75 - 1	80.8	88.9	89+6	78 • 1	72.0	72.6	74.2
29	66 • 9	70•5	73 • 4	72.0	83 • 7	83•4	82 • 4	81 • 3	73.5	73 - 1	74.6
30	66•3	7 0 • 0	69.2	72.9	80.8	78.5	82.0	80.3	72•9	72.6	73.0
31	65 • 4	67 • 6	68•9	69•6	80.0	79 • 6	79.0	77.4	71.0	70.8	71 • 4
32	65•0	65•6	68 • 1	72.5	78.9	78 • 6	80.0	76 • 1	70 • 8	70 • 6	71.3
33	65 • 0	65+0	66 • 4	68 • 3	74.8	76.0	76.9	75.0	70.4	70.0	70.0
34	65 • Q	65 • 0	65.0	66.2	73.1	71 • 7	71 • 8	69.9	67.9	67.8	67.7
35	65•0	65•0	65.0	65 • 1	70.8	69 • 1	69 • 4	68•0	67.2	66.9	66.2
36	65.0	65•0	65+0	65.0	65•9	67.0	67 • 4	66.2	65•7	65 • 4	65 • 3
37	65 • 0	65.0	65•0	65 • 0	65.0	65•4	66 • 0	65•0	65+0	65.0	65.0
38	65+0	65+0	65.0	65•0	65•0	65•0	65•0	65.0	65.0	65.0	65.0
39	65 • 0	65.0	65 ∙0	65.0	65.0	65.0	65+0	65.0	65.0	65+0	65.0
40	65•0	65.0	65.0	65+0	65+0	65+0	65•0	65.0	65•0	65•0	65.0
A	79.2	85 • 3	86•9	84.9	91.5	93.0	93.5	91.8	86.0	85.5	83.5
D	88.7	93•6	94•0	91.5	98•8	99.5	99.2	97.1	9:•5	93.1	90 • 1
OASPL	94.2	99•9		99.3	105.7	106.4		103.0	98 • 8	98•3	94.0
PNL	96.7	101.7	-		107-1	107.4			101.4		98•3
PNLT	96.7	101.7	103.6	102.8	107-1	108.5	108.3	104.7	101.4	101.1	98.3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 28, 150 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-8•0	~7•0	-6.0	-5.0	-4.0	-3.0	-2.0	-1.0	O	• 5
17	98.2	99.5	99.7	100 • 4	98•9	96.5	95.8	93.5	92•0	98.8
18	95.8	99.3	102.0	103.9	102.9	99.8	96.5	95.5	94.5	94.0
19	84.4	94.3	99.7	102.1	102.4	100.8	95.7	94.7	95.2	93.9
20	96.8	99.5	97.4	97.9	98 • 3	99.9	96.2	93.0	92.9	90.5
21	87.8	95.6	99.6	102.9	99.7	93.8	92.8	89.4	85.3	78 • 7
22	86.3	93.8	96.2	98.6	96.8	93.6	88.2	80.7	78 • 0	79.3
23	82.9	88 • 6	97.1	99.4	94.5	87.8	82.5	79.7	84.4	84.9
24	78.7	84.6	93.5	93 • 8	89.2	83.2	78.2	84.2	86 * 3	85 • 5
25	75.5	80 • 3	89.7	90.0	82.0	74.7	82.7	86.3	84.8	82•7
26	73.0	77.0	86.4	85.4	77.2	83.3	89.4	37.0	77.2	74.0
27	74.4	76.9	85.8	85 • 4	84.4	86 • 7	88.7	82.1	76.8	77.2
28	74.0	77.6	83.5	85.2	87.2	85.5	80.2	76.1	73.6	72.7
29	71.5	77.9	81.9	86.2	85.1	81.4	80.9	75.6	74.2	74 • 8
30	68.9	74.0	77.2	84.2	78.0	80 • 1	79.3	75 • 1	73.2	73 • 3
31	67.9	72.0	74.8	78.9	77.5	77.8	75•9	72.5	72.2	72.2
32	68 • 4	70.3	74.2	76.7	76.5	75.9	74.4	72.3	72.2	72 • 1
33	65.8	70 • 0	72.6	76.7	75.2	75 ∙ €	72.8	70 • 5	71 - 1	71.2
34	65.0	67.9	69.5	73.3	68∙8	69 • 0	68.2	68.6	69.5	69 • 5
35	65.0	66.3	66.1	70.0	66.8	66 • 9	66•9	67.8	68.2	68 • 1
36	65.0	65.0	65.0	67.5	65.0	65 • 0	65.2	66.8	67•0	66 • 8
37	65.0	65.0	65.0	67 • 1	65.0	65 • 0	65.0	65.0	65•3	65.2
38	65.0	65.0	63.0	65.5	65.0	65•0	65.0	65•0	65.0	65.0
39	€5 • 0	65 · C	65.0	65.0	65.0	65•0	65.0	65.0	65.0	65•0
40	65.0	65.0	65.0	65.0	65•0	65 • 0	65+0	65•0	65+0	65.0
A	83 • 6	88 • 4	93.2	95•5	92•9	91.3	90•4	88.0	86 - 1	85 • 3
D	92.9	97.4	101.5	103-4	100.9	98 • 3	96•5	94.9	94.5	93+6
OASPL	101-6	105.2	107.7	109.7	108 • 2	106.2	104-4	103.3	101-4	100 • 1
PNL	102.2	105.7	108.8	111.0	108 • 4	107.1	105.0	103.0	105.1	101.2
PNLT	105.5	105.7	108.8	111-0	108 -4	107.1	105.0	103.0	102.1	101.2

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 29, 150 KT. FLY BY, MIC. 150 METERS WEST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-8•5	-7 • 5	-6.5	-5.5	-4.5	-3.5	-2.5	-1.5	0	•5
17	95.3	99.2	99.9	98 • 1	97.7	96+3	96+2	94.3	90.3	91 • 4
18	92 • 1	98.0	99.6	100.2	102.6	100 • 3	97.5	94.5	93 • 1	93 • 1
19	83.9	89.7	91.8	99.2	103.8	102.8	99.2	92.3	93.5	93.0
20	89.4	98.2	97.5	96.2	101.1	103.2	100.8	92.5	91.5	89.2
21	86.6	94.4	95.1	99.4	99.7	95.2	95.2	90 • 3	83.9	77.3
22 ′	81.6	89.2	93.7	97.3	100.7	96.9	89.6	85.8	77.6	80.2
23	80.2	87.5	93.9	96.6	96.3	93 - 1	88.3	78.8	84.0	85.0
24	80 • 5	85.2	90.0	93.2	95 • 1	88•6	78 • 5	78 • 3	86.2	85.9
25	78.3	83.8	85 • 1	89.0	89.2	78.5	76.9	83.7	85.0	81.9
26	72.0	78 • 4	80.7	84.2	82.7	82.5	86.9	88 • 4	78 • 8	73.4
27	74.0	79.0	78.6	81.3	84+8	90 • 9	92 • 1	85.6	76 • 6	77.2
28	72.5	78•5	76.5	82.0	88•3	90.3	88 • 1	78 - 1	73.7	72.8
29	71.6	78.2	76.0	83.2	89.3	85 • 8	79.4	79.5	73.8	74.4
30	72.1	78 • 1	76.8	81.7	86 • 6	79.4	81.5	77.1	73.1	73.4
31	70.8	76.8	76.0	77•9	80.2	81 • 1	80.6	74.7	71.9	71 • 8
32	69.6	75 • 6	76.8	75.2	78.7	77.2	76 • 6	72.7	71.8	71.7
33	66 • 8	73.0	75.5	72.8	78.2	74.2	74-3	71.8	70•9	70 • 9
34	65 • 6	67.0	69.7	71.4	74.9	71.0	70 • 9	69.5	69+5	69.5
35	65 ∘0	65•6	67 • 7	68 • 4	72.6	67•9	67•9	67 • 4	68.0	68 • 5
36	65+0	65.0	66.6	65•6	68 • 0	66 • 6	67.0	67.3	66 • 8	66.7
37	65.0	65.0	65.0	65•0	65.2	65 - 1	65 • 1	65.0	65+0	65•0
38	65•0	65.0	65.0	65•0	65.0	65•0	65 • 0	65 • 0	65.0	65.0
39	65.0	65.0	65+0	65•0	65.0	55.0	65•0	65.0	65•0	65.0
40	65.0	65•0	65+0	€5∗0	65•0	65 • 0	65.0	65•0	65•0	65.0
A	82 • 1	88•5	90.2	94.1	96 • 1	95•0	93•7	89.2	86•0	85•4
D	91.0	96•9	98 • 4	101.7	103.2	101.9	99•9	95.1	93.7	93.1
OASPL	98.2	103.7	104.9	107.3	109.7	108 • 4	106 • 5	103.2	100.5	99.7
PNI.	99.3	105.2	106.2		110.9	109.7	107.7	103.7	101.2	100.7
PNLT	99•3	105.2	106.2	108.5	110.9	109.7	108 • 7	103.7	101.8	100.7

.

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 12, 6 DEGREE APPROACH, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-52.5	-44.0	-35.5	-27.0	-18.5	-10.0	-5.5	-1.5	0	7.0	9•0
17	74.2	68•3	71 - 4	80 • 2	79 • 4	88•7	90 - 1	88.7	86.6	82.1	79•0
18	82.2	80.5	81 • 1	86.0	80.9	89.3	88.7	87.E	87.5	82.5	82.3
19	77.9	77.0	79.0	80.8	85.7	87.2	83.8	85.5	81.0	80.1	77.7
20	84 • 7	79.2	81.6	78:2	82.2	88.6	83.5	81.7	76.3	83.2	77.6
21	83 • 5	77.8	77 • 4	70 • 3	82.6	85 • 1	81.9	72.6	71.9	79.6	76.3
22	79•3	78 • 0	76 • 3	73.0	76.5	. 79 • 4	70.2	81.0	80.0	76.3	73.5
23	73 • 1	80 • 0	72.0	72.3	74.0	73.6	79.7	81.9	81.7	68.3	66 • 7
24	69 • 0	79•3	67 • 8	68.0	71 • 3	75 • 4	86•4	84.9	83.3	73.5	62.1
25	67.5	78 • 2	72.3	69.3	68 • 8	81 - 1	85.9	82.1	77.5	78.0	63 • 0
26	66 • 1	71 • 6	73.0	65.2	63.6	81.9	84.7	75.6	76.3	80.6	71.5
27	63 • 1	67 • 7	70 • 0	64.2	68 • 4	82 • 9	77.4	80.2	80.9	75•9	71 - 3
28	62 • 8	61.9	73 - 1	61.2	73 - 1	76 • 6	81.0	74.8	75 • 3	68•8	67.4
29	62.5	61 • 5	70 • 8	61.3	70 • 6	78 • 9	75.6	76.5	75.8	74 • 1	61.2
30	56 • 4	59 • 1	68.3	56.8	64.4	78 • 0	74.7	72.3	72.9	68.2	64.1
31	5 5 • 2	56 • 1	62 • 4	55 • 1	66 • 3	75 • 7	72.7	70 • 1	69•6	66.9	60.9
38	55 • 0	55 ∙0	59 • 8	55•2	67.9	73 - 4	71.9	69 - 4	68•0	66.0	64.4
33	55 • 0	55 • 0	56 • 2	55.0	63.9	70 • 1	69•0	64.8	64-8	62.5	57.6
34	55•0	55 • 0	55 • Q	55 • 0	61.9	64 • 4	64.3	63 • 1	62 • 4	61.0	55 • 7
35	55•0	55 • 0	55.0	55•0	57.8	61.4	61.5	60.6	60.9	59•9	55.0
36	55 • 0	55 • 0	55.0	55 • 0	55•0	57 • 1	58•5	59 • 1	59• 5	57.2	55•0
37	55 • 0	55 • 0	55.0	55 • 0	55 • 0	55.0	55.9	55•7	57.1	55•0	55•0
38	55.0	55 • 0	55 • 0	55 • 0	55 • 0	55•0	55• 0	55.0	55•0	55.0	55.0
39	55 • 0	55 • 0	55 • 0	55•0	55•0	55.0	55.0	55.0	55•0	55•0	55.0
40	55•0	55 • 0	55•0	55• 0	55•0	55•′)	55.0	55.0	55•0	55•0	55•0
A	73.3	76 • 9	78 • 1	71.1	78 • 2	86 • 1	86.4	84.3	83.5	81.0	74.5
D	82 • 5	83•9	82 • 5	79.7	83.9	90•6	91.8	89.9	88.9	86 • 1	80.5
OASPL	88•7	88 • 2	87 • 5	89 • 4	90 • 1	95 • 2	98 • 5	96.2	95.9	89.4	86 • 8
PNL	90•9	91 • 4	90 • 9	89.2	92•7	99•1	99•6	97.9	96.7	94.9	89.0
PNLT	90•9	91 • 4	90.9	89.2	93.9	99 • 1	101-1	97.9	96•7	96.7	90 • 7

NOISE LEVEL FREQUENCY SPECIFIA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 22, 100 AT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-22.5	-18-5	-14.5	-10.5	-6.5	-2 - 5	0	1.5	5•5
17	76.0	80-2	85-0	88 = 0	81 -2	84 • 4	86-3	87•3	75.9
18	82 • 5	85.4	86•7	91.4	86.3	86 • 8	83.2	80 • 4	80 • 3
19	83.3	89.5	90.6	୍ 85 • 2	87.9	88.2	72.5	75.5	78 • 3
20	78.3	83 • 6	87 • 4	88-1	85•7	81.6	72.7	70.0	71.5
21	79.8	87.2	86•5		81.3	74 • 8	67.5	65• 0	67.9
22	78•0	82.9	81 • 3	80•3	77 • 1	66•0	72.9	74.6	61.0
23	74 • 1	77.3	75.2	73.7	72.9	75 • 4	77.5	75.9	68•4
24	68 • 0	74 • 1	71.5	72.6	66 • 8	83.2	77.2	76.2	73 • 7
25	66.9	74.8			73.0	82•7	69.6	70.2	75•6
26	65 • 1	78.0		70 • 8	79.5	78.2	64.9	68.0	
27	59 • 1	73 • 5	65 • 4	64.2	79 • 3		70.2	71.5	65 • 4
28	62.0	67.9	66.0	68.9	76 • 6	76.0	63.6	66 • 5	70.2
53	58.0	61.2	70.5	75•2	66 • 5	72.0	67.0	68 • 6	69 • 3
30	56•9	55.7		72.3	72.9	73.2	64 • 4	68 • 1	70.7
31	55•2	56 • 1			68 • 7		63.7	65.8	68 • 2
32	55 • 0	55 • 4			69 • 4	72.3	66.9	67.8	67.6
33	55.0	55 • 0		62 • 6	65 • 6	69 • 7	61.6	64 • 1	64•5
34	55.0	55+0	55 • 8	56.0	63.7	66•9	61 • 4	62 • 1	60 • ଞ
35	55.0	55 • 0		55•0	59 • 4	64.5	59.2	59•9	57.9
36	55.0	55 • 0		55.0	55 • 7	60 - 1	57.8	58.5	56•3
37	55 • 0	55.0			55.0	58 • 0	55.0	55•7	55•0
38	55.0	55+0		55•0	55.0	55.0	55.0	55•0	55.0
39	55.0	55•0		55•0	55.0	55 • 0	55.0	55.0	55.0
40	55 • 0	55•0		55•0	55.0	55 • 0	55.0	55.0	55•0
Α	72 - 1	79.2			82.0	83 • 0	76•7	77 • 9	78 • 4
D	81.9					88 • 8	83.8	83.7	
OASPL		95+0			94.4	94.2	94.2	91.2	87.5
PNL	89 • 1	94 • 7		95 - 5	95.5	97.2	91.2	91 • 4	90.7
PNLT	90.2	94.7	95•2	96.9	97.3	98.7	92.3	91 • 4	90.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 23, 100 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

PAND	-17.0	-13-5	-10.0	-6.5	-3.0	0	• 5	4.0	7.5	9•0
17	76.6	86+1	86 • 4	80 • 7	84.8	85.6	86 • 8	83.4	70 • 3	70 • 8
18	79.2	87.5	89-1	87.5	85.1	85.9	80.3	82.4	76.4	70 • 1
19	82.8	90.9	82.3	88.88	88.3	75.3	74.5	76 • 4	76 • 9	73.3
23	72.8	89.3	85.9	85.4	83.2	76.2	75,2	74.0	72.9	68 • 4
21	71.8	87.9	83.9	80.6	76.0	69.5	67.6	67.6	69.3	67.7
23	61.0	83.5	77.6	75.5	69.0	71 • 1	71.9	66 • 5	64.3	62 • 7
23	61-9	79.9	70 • 7	70 • 4	65 • 9	76.8	76 • 1	72 • 6	59.6	57.1
24	61.7	76.2	69.9	69.5	73.8	77.2	75.5	76.2	65+4	56 • 1
25	56.8	75 • 3	69.4	59.3	74.9	72.0	71.2	75.9	69.7	63.0
26	55 • 1	75.7	69 • 1	68.2	75.0	66.0	66.6	69 • 2	71 +6	67.5
27	55.0	70.8	58 • 6	70.5	68 • 8	70 • 1	70.9	59 • 1	67.8	66.5
23	55.0	65 • 4	65 • 4	68∙6	67.3	65.7	65.2	68.9	61 • 1	59 • 2
29	55.0	62.5	67.9	62.9	67.0	67.8	68•3	72.0	68.7	63.3
30	55.0	55•9	62.8	58.0	63.9	65.3	66.0	69.2	61.9	62 • 0
31	55.0	56.2	58 • 1	62.1	63.0	64 • 6	G4 • 6	68.0	62.8	61 • 6
32	55.0	56 • 3	56 • 7	59.2	64.0	67.2	66•7	67.9	62.8	61 • 4
33	55.0	55•0	56 • 3	61 • 4	64.7	64.9	64.9	64.7	58 • 5	56 • 4
34	55•0	5 5 • 9	55.2	56 • 1	60 • 5	63.8	63.8	61.5	57.5	55 • 6
35	55.0	55•0	55.0	55.0	58 • 2	60 • 1	60-4	59.7	56.0	55.0
36	55.0	55•0	55.0	55.0	56•5	58 • 2	58•5	57.6	55.1	55.0
37	55.0	55•0	55.0	55.0	55•0	55 • 5	55 • 5	55•0	55.0	55.0
38	55.0	55.0	55 • 0	55.0	55.0	55.0	55.0	55×0	55.0	55•0
39	55•0	55•0	55+0	55. 0	55 • O	55.0	55.0	53.0	55.0	55.0
40	55. 0	55•0	55•0	5 5 • 0	55.0	55.0	55•C	55.0	55.0	55.0
Α	54.9	79.5	75 ∙ 6	75.3	77•7	77 • 6	77.1	79 • 1	74.2	71.9
D	77.4	88•7	83 • 8	84.9	85 • 4	84.6	84.0	84.4	79 + 3	76 • 7
OASPL		96•7	93•6	93.5	93.7	95.0	94.4	92.7	84.4	82.6
PNL	86.0	95•7	92 • 7	92.9	93 • 5	91.9	91.1	91.6	87.7	84.7
PNLT	86.0	95 • 7	94-3	94.2	93.5	91.9	91-1	92.6	90 • 1	84.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY VERTOL CH-47 C

OCTUBER 13, 1976

EVENT 24, 141 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-16.0	-13.5	-11.0	-8• 5	-6.0	-3.5	-1 -0	0	1.5	3.0
17	83.1	90.5	93.9	95.7	95.0	89.4	89-0	88 - 3	87.0	81.5
18	85.7	89 • 8	90 • 8	93.8	99.3	93.8	91.0	90.0	85.7	83.0
19	82 • 6	90 - 4	97.4	93.9	96 - 1	95.9	85.0	83.0	76.7	75.8
20	86 • 6	89 • 1	95.2	97.0	95.8	95.5	79.4	79.7	72.2	72.9
21	84.9	88 • 4	94.0	95+3	97.1	90 • 1	77.8	74.9	68 • 7	67.7
22	82.5	88 - 1	92.9	92.6	92.2	82.9	69.3	72.6	78.2	73.8
23	82.2	89.9	91.7	92.0	88 • 4	78.5	73 • 1	79.5	80.4	75.9
24	79.5	85 • 7	88 + 3	88 • 5	84.8	70.0	76.6	81.8	80.8	77.0
25	76.2	83.0	85 • 6	85 • 9	80 • 5	69.9	77.3	75.6	74.8	75.7
26	76 • 4	88.2	84.2	85 • 1	75 • 9	78.3	79.0	73.3	72.6	70 • 9
27	73.7	78.2	80 • 9	82.8	73.3	79 • 4	71.9	73.2	75•0	74.4
28	73.3	75 • 5	72.7	78.2	73 • 3	75 • 1	74.7	73.4	7 0 • 3	69.8
29	69 • 4	74.8	66.2	74.6	72•7	67.9	70.3	70.9	71.4	74.3
30	67 • 5	73.1	66 • 1	72.4	68 • 8	69.0	69•8	69 • 7	70.4	71.9
31	62 • 3	69.4	65 • 7	69 • 4	64.5	63.2	69•0	70 - 1	68•9	69.6
32	59 • 1	65.6	61 • 8	65•4	62 • 1	64.7	69.0	69.7	69.8	70.4
33	56 • 6	66 • 8	57•3	63•0	59•5	64.5	69.2	69.3	67.7	66.7
34	55 • 0	61.5	55•0	56•6	55 • 5	60 • 8	ó6∙4	67.5	68 • 4	65.4
35	55.0	55•4	55 • 0	55•0	55•0	59.5	65+3	65.2	65.1	61.8
36	55.0	55.0	55.0	55•0	55.0	55.6	62.3	62.8	63.4	60.0
37	55 • 0	55.0	55 • 0	55.0	55•0	55.2	61 • 1	61.0	59.3	56 - 3
38	55 • 0	55.0	55 • 0	55•0	55.0	55 • 0	55•0	55 • 1	55 • 1	.55∙0
39	55.0	55•0	55 • 0	55. 0	55.0	55.0	55•0	55•0	55+0	55.0
40	55.0	55+0	55•0	55.0	55.0	55.0	55.0	55.0	55.0	55.0
A	80 • 0	85。4	88 • 3	89.9	87 • 1	83.2	81.8	81.6	81.3	80.8
D	87.0	92.5	96 • 4	97•5	96•3	92.4	88 - 7	88.4	87.4	85.5
OASPL	93.4	98 • 6	103.0	103.5	103.7	101 • 4	99.2	98 • 5	95•3	93.7
PNL	95.0	100.9	102.6	103-8	103.1	100.3	96.2	98.8	95•2	93•3
PNLT	95.0	101.9	102.6	103.8	103-1	101.4	97.4	96.5	95•8	94.5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 25, 141 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-13.0	-11.5	-10.0	-8.5	-7.0	≁6∙5	- 5•5	-4.0	-2.5	0	- •5
17	88 • 8	94.2	96 • 4	96 • 7	97.1	97.2	96.4	91 - 1	92+3	86+5	88.2
18	83.0	87.2	85.3	92.5	98.2	98.9	100.3	97.2	96 • 3	87.7	89.6
19	€7·5	94.5	96.3	97.6	91.2	92.3	96.9	99.2	93.1	82.8	84.1
20	0.63	89.9	94.0	99.2	99.2	99.4	97.0	96.5	89.3	77.6	78.8
21	84 · 8	87 • 8	95.9	98.4	94.9	95.0	97.2	92.8	86.2	73 • 2	75.5
22	85.0	85.6	93.8	94.6	95.0	94.9	91.9	88.2	78.9	71.2	69.8
23	85.5	83 • 6	92.2	93.0	90 • 1	89.0	88.28	81.9	70 • 3	77.9	76.6
24	78 + 5	80.2	89.3	89.6	86.9	85.1	82.2	74-1	69 • 6	79.2	78 • 9
25	76 - 1	77.9	87.8	87.7	83.9	81.0	74.7	69.4	75 ≠ 0	76-0	77.4
26	73.9	79.5	87.6	85 • 8	81.4	78.2	71.7	78.0	88.0	72 • 3	75.8
27	71 • 1	77.9	85.2	82.7	78 • 4	74.5	75 • 4	79 • 1	78 • 8	72.7	71.6
28	70 • 1	76 - 1	83.6	79.6	73 • 1	73.5	78.0	77.3	70.0	70 • 8	72.2
29	68 . 7	74.9	80.8	75 - 7	74.3	74.9	76 • 4	70.3	72.1	71 • 5	70 • 3
30	66.7	73.5	78.3	69.1	73.4	72.8	71.0	67.5	68 • 1	69 • 4	69 • 5
3!	63•6	71 • 4	73.7	67 - 1	72.2	68 • 3	65 • 6	66 - 1	66+3	68 • 9	68 • 4
32	60 • 8	68 • 3	72.1	65 - 5	64 • 4	61.3	63.4	64.0	65.4	69.2	68.2
33	60 • 3	65 • 7	68.2	64.3	64.7	64 - 1	59•5	63.9	66.7	69•3	69 • 1
34	58•7	58 • 8	60.9	57 • 1	58.7	56.6	55•0	59 • 8	63.0	67.6	66 • 1
35	55•9	57 • 1	57.7	55 v O	55 •7	55 • 5	55.0	57.0	60.7	65•4	65•3
36	55.0	55.0	55.7	55.0	55.0	55.0	55•0	55.1	58 • 6	62•3	61.8
37	55•0	55 ∢0	55.0	55 • 0	55.0	55.0	55.0	55.0	58.0	59•9	61.0
38	55•0	55•0	55.0	55.0	55.0	55 • Q	55 • O	55.0	55.0	55 • 4	55•0
39	55.0	55•0	55.0	55.0	55 • 0	55.0	55.0	55.0	55.0	55 • 0	55•0
40	55 • 0	55.0	55 • 0	55.0	55.0	55.0	55.0	55.0	55•C	55.0	55•0
A	80•6	82.2	91.2	91.0	88 • 7	88.0	67.1	84.9	82.6	80.8	80.9
D	88•5	91 • 2	97.7	99•3	97 - 3	97.2	96.5	94.6	90.7	87.7	87.9
OASPL	95.0	99+8	103-6	105•4	104.4	104.6	104.5	103.0	101 - 4	98 • 8	98.3
PNL	96 • 3	99 • 8	104.8	105.4	104.5	104.1	103.3	101.9	98.9	94.9	95-5
PNLT	96•3	99 • 8	104-8	105-4	105.5	105.8	103-3	101.9	99.9	94.9	95 •5

TANE 11- II

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

Control of the second of the second s

EVENT 26, 141 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MIGRO PA)

BAND	-12.5	-11 • 0	-9•5	-8.0	-6•5	-5+0	-3.5	-2.0	-1.0	0	~1.0
17	90 • 5	96.8	97.7	99.5	97.5	96.9	91.3	93.7	90 • 4	87.8	90 • 4
18	82.2	92.6	90 • 6	93.3	94.8	98.9	94.4	97+5	93.3	89 • 1	93.3
19	90 • 5	99.3	100.2	99.5	94.5	97.3	97.0	93.9	87.6	82.8	87.6
20	90 • 4	97 • 5	99.1	99.1	99.2	96.7	97.4	86.9	80 • 1	77.3	80 • 1
21	88.2	96,3	99 • 1	99.6	95 • 1	95.7	91.6	80 • 7	75.3	72.4	75.3
22	84.8	95 • 6	97 • 1	94.7	93.3	90.7	83.6	74.2	70.8	74.3	70.8
23	83.4	94.8	95.2	93.0	91 • 1	85.5	78.0	70 • 9	75 • 3	79.0	75.3
24	79•5	91 • 1	91 • 6	89.4	86.8	78 • 8	70.3	74.9	79 • 6	80.4	79 • 6
25	75.9	87 • 2	90.0	85.6	81.7	72.9	74.9	77.8	78.0	75.3	78.0
26	74.5	87.3	30.5	83 - 1	76 - 6	79.2	81:3	82 • 3	78 • 3	72.2	78 • 3
27	71.2	85.4	88.4	77 • 4	76.2	82.2	€0×5	76 • 4	73.4	75.0	73.4
88	67.2	83 • 5	84.8	76 - 1	79 • U	80.7	74.7	72.9	74.0	71.4	74.0
29	65.2	80.0	82.0	79.9	78.7	73.2	70.2	72•7	71 • 8	72.4	71.8
30	65•0	77.6	76•5	80 • 2	74.0	68 • 4	69 • 8	70 • 5	71.6	71.1	71 - 6
31	65.0	75.6	74.0	75 • 7	71 • 7	69.0	67.3	69 • 3	71 • 1	70.7	71 . 1
32	65•0	74.9	70•8	71 • 1	69 • 5	65.2	67.8	69.0	70.6	70•9	70 • 6
33	65 • 0	70 • 6	66.8	68•9	65.2	65•0	66∙ช	69 • 6	70.0	69 • 7	70.0
34	65.0	68 • 2	65.8	65.8	65.2	65.0	65.3	67 • 4	68 • 1	68.0	68 • 1
35	65.0	65 • 4	65.0	65•0	65 • 0	65•0	65.0	66 • 1	66 • 7	66.6	66 • 7
36	65.0	65•0	65•0	65•0	65 • 0	65.0	65.0	65 • 1	05 • 1	65.2	65 • 1
37	65•0	65 • 0	65•0	65•0	65 0	65.0	65.0	65•0	65.0	65+0	65•0
38	65.0	65.0	65.0	65•0	65•0	65•0	65.0	65.0	65•0	65.0	65.0
39	65.0	65 · J	65.0	65 - 0	65+0	05.0	65.0	65•0	65.0	65.0	65•0
40	65 • 0	65 • 0	65•0	65.0	65.0	65.0	65.0	65•0	65•0	65.0	65•0
A	80 • 6	91.7	92.4	90 • 1	88 • 4	56 • 8	34•7	83.3	82.8	81.6	82.8
D	89.9	98 • 8	99.9	98 • 6	96+2	95∙0	93.7	91.5	89.7	88.5	89•7
OASPL	97.2	105-1	106.4	106 • 1	103.9	103.3	102.5	101 • 9	100.7	99.7	100 • 7
PNL	98 • 7	107.0	108.0	107-1	105-3	103.8	8.50:	100 • 5	98 • 4	96.6	98 • 4
PNLT	98•7	107.0	108.0	107-1	105.3	103.8	102.8	100-5	98•4	96.6	98•4

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 27, 141 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-11.5	-10.5	-9•5	-৪∙১	-7.5	-6•5	-5•5	-4.5	-1.5	0	-1.5
17	91.9	96 • 1	98.4	99 • 7	100.3	99•6	97.6	94•0	92.7	87.4	92.7
18	81 -4	84.2	87.5	91.6	96 • 8	99.3	101.4	99.4	96.0	88.9	96.0
19	91.6	96.7	99.2	100 • 7	98.2	96 • 1	100 • 6	101.3	91.8	83.8	91.8
20	89.0	94.2	97.8	100 • 3	101.3	100 • 4	97.0	99.3	84.8	80 - 1	84.8
21	88.0	95.0	99.7	101.0	98 • 6	98.8	100.9	97.3	81.2	74 • 1	81.2
28	87 • 6	91.4	96 • 4	98 • 2	96.9	96.8	94.4	92.9	75.8	74 - 1	75.8
23	88 - 1	88 • 7	92.8	96 • 5	95 • 1	94.2	94.7	91.2	73 • 5	80.9	73.5
24	84 • 6	84 • 4	89.6	93 • 7	92 • 5	91.5	90.0	86.9	78 • 2	82.0	78.2
25	79.2	80.3	88.5	92.5	90 • 6	89.1	84.6	80 • 1	81.5	76.5	81.5
26	78.9	79.3	88.6	92.0	88 • 8	86.0	80 = 8	79 • 3	84.2	74.0	84.2
27	76.5	78.2	87.0	89.7	84.9	80.0	82.3	84.6	77.5	74.9	77.5
28	73.7	75.6	81.5	86 • 1	81.2	81.7	86.3	85.9	75 • 3	71.9	75.3
29	72.9	74.8	77.5	84.5	81 • 3	83.9	86 • 1	84.1	74.2	73 - 4	74.2
30	74.4	73.4	74.9	84.1	79.8	80 • 3	81.8	77.4	73.0	72.4	73.0
31	71.8	72.7	74.9	82.5	76.2	78.0	79.3	77.0	71 • 1	71 • 4	71 - 1
32	70.9	73.9	73.6	79.6	73 • 7	75 • 4	77.7	74.8	71.2	72.4	71.2
33	71.8	71.7	72.8	79.8	73.4	73 • 4	73.5	71 • 4	70 • 5	71.2	70.5
34	68.8	69.0	70.2	77.0	71 - 4	71.8	71.8	68 • 4	68 • 7	69.5	68 • 7
35	66.0	65.5	65•7	73.4	68 • 8	68.0	66.8	65 • 2	66 • 7	67.5	66 • 7
36	65.0	65.0	65.9	68 • 7	65.3	65•3	65.1	65 - 1	65.0	65•5	65.0
37	65.0	65.0	65.0	65.3	65.0	65.0	65.0	65.0	65.0	65•0	65.0
38	65.0	65+0	65 • 0	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0	65•0
39	65.0	65.0	65.0	65.0	65.0	65•0	65•0	65.0	0∙5ن	65.0	65•0
40	65.0	65.0	65.0	65.0	65.0	65•0	65.0	65.0	65.0	65.0	65.0
Α	85•4	87 • 0	92 • 9	95.6	92.7	92 • 1	92.8	90•8	85.0	82.5	85•0
D	93 - 1	95.3	100 - 1	102.0	100 • 4	99•5	99.9	98 • 1	91.7	89.5	91•
OASPL	97.9	102.2	106.0	107.9	107.0	106 - 4	106.6	105.8	102-1	100.3	102.
PNL	101-1	103.7	107.7		108.8	108.5	108.8	106.9	100.5	97•7	100.
PNLT	101.1	103.7	107.7	110.6	108.8	108.2	108.5	106.9	100.5	97.7	100

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 28, 150 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-9•0	-8•5	-8•0	- 7•5	-7.0	-6.5	-6.0	-5.5	0	-2.5
17	98 • 4	99•6	100.3	101.0	101.9	102.5	102.3	101.6	92.3	97.2
18	89.5	91-3	93.5	96.1	98.2	99.2	100.0	101.4	91.0	99.4
19	98.7	100 • 1	100.6	100.9	100.5	99.8	97.8	98 • 4	84.8	97.7
20	96 • 1	98.2	100.6	103.0	104.3	104.9	104.9	104.0	82.1	95.8
21	94.6	97 • 4	99.5	101.2	101-9	101.8	101-1	101.2	78.3	94.1
22	91.7	93 • 6	95.8	97.6	99.0	99.9	100.6	99.7	74.8	89.2
23	89.0	91.2	94.1	97.2	99.0	99.8	99 • 1	97.5	79.7	83.7
24	86 • 1	87 • 7	90.6	94.2	96.3	97 • 1	96 • 4	94.4	82.3	75.6
25	84.2	84.7	88.2	91.9	94.2	94.8	93.6	90•6	80.0	75.6
26	84.3	84.2	88•0	92.2	94.0	94 • 1	92.0	88.3	79 • 1	85.3
27	81.2	80 • 3	87.0	91.0	92.6	92.2	90•0	86.0	75 • 5	86.2
28	78•0	78 - 7	84.2	88 • 5	89.3	88 • 8	86•6	85.2	74.8	84.0
29	78 • 1	80.2	83.6	87.4	87.5	87.7	86.1	86.2	74.4	76.0
3 0	77.7	78 • 8	82 • 4	85.2	85.5	86.2	85.4	85 - 1	73.3	75.9
31	76•3	77•7	80 • 0	82.8	84.2	86 • 0	84.9	83•4	72 • 6	74.8
32	73.2	76•7	79•7	83.2	83.0	83.6	81 • 3	81.3	72.9	72 • 1
33	70.2	74.1	77.5	80.8	81.0	80 • 8	78•9	78•5	72.2	70.2
34	67.2	70 • 9	73 • 1	76.9	77.2	77-4	75.5	75.8	70.8	67.1
35	65.0	68•5	70.6	76.9	76 • 8	78 • 1	75 • 4	75.2	69 • 1	65•7
36	65.0	65 • 3	69 • 1	71.5	71 • 9	71.9	70 + 5	63.6	67 • 4	65•0
37	65.0	65 • 1	66 • 1	67.7	67•9	67.8	66.8	66 3	65 • 7	65 • 0
38	65 • 0	65 • 0	65•0	70.0	70.0	69•7	65•4	65.3	65+0	65+0
39	65.0	65•0	65•0	65•0	65.0	65 • 0	65.0	65.0	65•0	65.0
40	65.0	65 • 0	65•0	65•0	65.0	65.0	65.0	65.0	65.0	65•0
A	88 • 1	89.7	92.8	97.8	99+0	99.5	97.6	96•3	84 • 1	88 • 8
D	96 • 2	98 • 0	100 • 4	104.1	105-4		104-6	103.5	90.9	96.2
OASPL	103.9				109.9		109.9	109 • 1	102.1	105 • 1
PNL	105.0	106.6	109 • 1	111.8	112.9		112.6		99.0	104-4
PNLT	105.0	106.6	109-1	112.4	113.5	114.5	112.6	111.6	99.0	104.4

NOISE LEVEL FREQUENCY SPECTRA TIME HISTOR.

VERIOL CH-47 C

OCTOBER 13, 1976

EVENT 29, 150 KT. FLY BY, MIC. 150 METERS EAST

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-9.5	-8•5	-7 - 5	-6 ÷ 5	-5-5	-4.5	÷3 • 5	-2.5	-2.0	O	-2.0
	a										
17	94 • 8	99 • 1		102.8			95.7	97.1	96.7	90.8	96.7
18	81 • 1	91 - 2	96 • 4	99.1		103.2	99.6		99.2	90+3	99.2
19	91 • 1	98•0	99.3	97.4	95+3	101.7	101.7	97.5	96.8	84.7	96.8
20	92.0	98 • 1	103 • 1	105 • 1	104.3	101.3	101.7	97.2	91.8	83.0	91.8
21	92 • 7	98 • 2		100.8	99.9	101.3	98.9	95•4	86.7	78.3	86.7
55	89.4	95•5	98•9	99.9		97-8	95 • 1	89.8	82.2	74.2	82.2
23	84.8	94•7	99•0	99.2	96.7	95•3	91 • 7	84.6	77 - 1	79 • 4	77.1
24	81.0	92.4	96•6	96 • 1	94.0	91.8	87.5	76.7	72.8	82.4	72.6
25	76 • 7	90 • 6	94.6	94.3	92.5	88.2	79.2	75.5	80.0	80.2	80.0
26	74.9	89 • 9	94.3	93.7	90.8	85.8	83.8	84.2	86.3	79.8	86.3
27	73•7	88 • 6	92.6	91.7	88 .0	83 • 4	89.0	84.9	84.0	75.4	84.0
28	72•6	85•3	90•0	88.8	85.2	84.8	88.9	81.9	77.0	74.9	77.0
29	73.4	63 • 4	87•6	86.3	82.6	87.0	85.6	73.2	75.2	74.8	75.2
30	71.8	84 • 1	85•3	82.9	81.3	86 • 2	82.7	74.1	71 • 1	73.9	71 - 1
31	70.3	82.0	82 • 1	82.6	81.3	82•4	80 • 6,	70 • 7	69.6	73.9	69.6
32	68 • 5	88.0	81 • 7	79 • 1	77•3	77•9	78 • 3	70.2	69.9	73.3	69.9
33	66•5	80 • 4	80 • 1	76.7	74.3	77.5	75.6	68.8	69.9	72.3	69.9
34	65•4	79•0	79•3	76.0	71 • 7	73.0	72.5	67.0	68.0	70 • 3	68•0
35	65.0	79.1	78 • 8	71.4	69 • 8	70 • 2	67.4	65.2	67.5	69.2	67.5
36	65•0	75.2	74 • B	70 - 1	69.8	69+3	65.0	65.0	65.7	67.2	65.7
37	65 • 0	72.9	72 • 4	65.8	66.0	66 • 9	65.0	65.0	65.2	65.5	65.2
38	65.0	71 •8	71 • 3	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0	65.0
39	65.0	66•3	66 • 1	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0	65.0
40	65.0	65+0	65•0	65•0	65.0	65.0	65.0	65.0	65.0	65.0	65.0
A	83.7	95•0	98•7	97.5	95 • 6	94.9	93 • 6	87.6	86.5	84.5	86.5
D	92.6	102.0		104.6	103.2	101.8	100.1	95.8	94.2	91.3	94.2
OASPL			109.3		109.2		107.1	104.7	104.0	102.5	104.0
FNL	101-1	109.7	112.6	112.5	111.2	110.3	109.0	104.6	102.9	99.0	102.9
PNLT	101-1	109.7	112.6	112.5	111.2	110.3	109.0	104.6	102.9		102.9
										•	

TABLE H-II

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 24. 141 KT. F..Y BY. CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND US TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-16-5	-14=0	-13:0	-11:5	-9:0	-6 -5	-4-0	-1.5	Q	1 - 0	3.5
17	86 • 7	90 • 3	92.2	92.7	89.4	87.4	89.4	93.2	90 • 6	91.5	86.2
18	82.9	95 • 0	95.2	94.7	96 - 3	99.5	102.3	95.5	87.6	84.4	81.3
19	81.8	96.4	98 • 2	97.3	93.0	95.3	95.2	91.5	83.6	86.7	74.3
20	85 • 4	96.5	98.6	98.8	95 • 1	98 • 5	98.0	88.3	90 • 1	93.1	75 • 1
21	85.7	95.5	96 • 8	96.3	92.7	97.9	97.4	83.8	94.6	96.6	1.58
22	83 • 1	93.8	95.3	94 • 1	89 • 1	94.3	92.8	85.8	94.9	93.6	81.5
23	81.2	91.9	93.9	93 • 1	86.9	92.6	88.0	89 • 4	91.9	86.6	81.0
24	78.0	89.8	91 • 1	90.7	86.3	88.5	78 • 1	88.3	84.2	84.8	75.2
25	72.6	87 • 3	87 • 8	86 • 1	81 - 1	81 • 3	82.5	81.0	83.1	84.3	75 • 4
26	72.7	88 1	87 • 8	85.3	81 + 5	77.9	83.5	80 • 5	80.9	78.2	77.2
27	67.3	82.2	82.4	79.2	76.7	71.3	78.9	78.0	75 • 1	75 • 4	74.0
28	65 • 2	79.6	77.6	72.7	69 • 8	66 • 4	73.7	74.2	74.7	74.5	73.5
29	65.0	75.3	72.7	69.8	66.0	65.5	72.8	73.1	74.0	73 • 1	74.5
30	65.0	74.5	70.8	68.0	66 • 1	65.9	69.4	71.2	73 • 4	72 • 3	72 • B
31	65•0	71.3	69.4	67 • 1	65 • 9	65.0	67.0	70 • 1	72.8	72 • 3	72·8
32	65•0	69.7	67 • 4	65•7	65•0	65.0	65 • 9	70•5	73.3	73.2	72.0
33	65 • 0	68.0	65•9	65•3	€5∙0	65.0	66 • 1	70 • 1	72 • 5	70 • 9	70 - 3
34	65•0	65.0	65.0	65.0	65 • 0	65.0	65.0	69 • 6	71.5	70.5	68 - 4
35	65 • 0	65.0	65•0	65.0	65.0	65.0	65.0	68 • 1	70.2	69 • 1	66.8
36	65.0	65.0	65.0	65.0	65∙0	65•0	65.0	66.0	68•5	67•7	65.5
37	65.0	65.0	65.0	65.0	65•0	65•0	65+0	65.0	67.0	66 • 1	65.0
38	65.0	65.0	65.0	65.0	65 • 0	65.0	65•0	65 • 0	65•0	65•0	65•0
39	65 • 0	65 • 0	65•0	65.0	65•0	65•0	65•0	65.0	65•0	65•0	65.0
40	65.0	65.0	65.0	65.0	65•0	65∙0	65.0	65.0	65.0	65•0	65.0
A	78 • 2	89.9	90•6	89.6	85 • 8	88 • 2	87.5	86.0	89.0	88.2	82.5
D	87 • 6	97 • 8	98 • 8	97.9	93.2	97 • 6	97.3	94.9	96 • 7	96 • 2	88 • 8
OASPL		103.4	104.7	104.2	101 • 3	104.9	105.6	103.5	102.6	102.5	94.5
PNL	96 • 2	105.1			102.3		104.7			103.9	96.8
PNLT	96.2	105 • 1	106.0	105 • 4	102.3	104.7	104.7	102.1	104.0	103.9	96•8

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 25, 141 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14.0	-11.5	-9.0	-6.5	-4.0	~1. 5	0	1.0	3.5
17	88 • 9	92 • 1	88 • 5	86 • 4	90 • 4	91.5	91.3	90.7	89.0
18	90 • 7	99.0	98 • 5	98.2	101.4	101.3	90.2	86.3	83.0
19	91.2	99.9	97.3	93.8	97.0	92.1	87.2	82.8	74.8
20	90 • 5	101.5	100.7	98.2	99.4	93.0	85 • 3	91.2	82.6
81	86.5	98.5	99-1	96 - 4	97.9	0•88	89.7	94.3	88€
22	84 • 1	96 • 1	97 • 1	92.8	93 • 4	81.5	91.6	93.1	86.9
23	80.5	94 . 4	94.6	91.8	89.5	84.0	91.7	89.5	84-6
24	77 • 1	92 • 4	92.3	90.2	84.2	84.0	86.8	80.5	78.7
25	78.5	87.5	87.0	81.9	76.7	83.7	77.8	80•6	80.7
26	77.2	86 • 0	86.3	75.2	80.5	78.1	85.8	79.2	79.9
27	71.2	83 • 2	82.8	70.2	76 • 1	74.4	77.2	76.5	75.6
28	68.6	78.3	76.7	70 • 5	71.6	72.4	73.9	74 • 1	75.9
29	66.5	74.9	75.8	71.4	68•3	71.5	73 • 1	73•7	76.2
30	65 • 1	72 • 1	76.6	69.4	67.5	68 9	72.4	73 • 1	75 • 4
31	65.0	68.2	72.7	65 • 3	65 • 1	67.6	71.6	73.0	74-1
32	65 • 0	67 • 3	70.2	65.0	65.0	67 • 1	72.2	74.1	73 - 3
33	65 • 0	65 • 7	65 • 4	65.0	65 • 4	66 • 5	72.3	73.0	71.8
34	65.0	65.0	65.0	65.0	65.0	65•7	71 • 4	72.0	70 • 1
35	65•0	65 • 0	65.0	65.0	65.0	65 • 1	69 • 6	70.9	68•0
36	65•0	65 • 0	65.0	65•0	65 • 0	65.0	68.7	69.7	66 • 4
37	65•0	65•0	65•0	65.0	65 • 0	65•0	66 • 7	67 • 7	65 • 5
38	65•0	65 • 0	65.0	65.0	65.0	65.0	65 • 0	65•0	65•0
39	65•0	65• 0	65.0	65.0	65.0	65.0	65 • 0	65.0	65•0
40	65•0	65 • 0	65•0	65.0	65.0	65•0	65•0	65.0	65•0
A	80 • ?	91 • 3	91.5	87.7	87•9	84.0	87.7	87.7	85•6
D	91 • 1	100 • 7	100 • 1	96 • 4	97.6	94.5	95•9	95 • 4	91.9
OASPL	97 • 4	106 • 5	105.9	103.8	105.7	104.3	102.9	101.9	98 • 1
PNL	98 • 8	107 • 6	107.3	104.2	105.0	102.9	103 • 1	103 • 1	99.9
PNLT	98 • 8	107.6	107.3	104.2	105.0	102.9	103.1	103 • 1	99•9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 26, 141 KT. FLY BY, CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14.0	-18.0	-10.0	-8.0	-6.0	-4.0	-2.0	0	3.0
17	78.3	87.5	89•4	91.5	95•0	89 • 8	91.2	90 • 6	87.1
18	92.0	98.0	95.9	95.6	98 • 8	101.3	97.3	87.0	81.9
19	85.5	96.2	94.6	97 • 1	99.8	95•1	87.2	83.0	75.6
20	87.7	99.1	95 • 4		100.9	97.1	88 • 3	91.7	76.4
21	80 • 4	98.3	93 • 4	92.9	97.5	94.3	85.0	95∙0	82.6
22	79.7	96.5	91 • 1	90.0	95 • 2	89.0	87.6	94.1	82.8
23	82.3	94.7	89.7	89.6	93 • 3	82.2	90.0	90 • 4	82.0
24	81.3	95.2	88 • 1	87.8	87.9	80 • 1	90.7	81.9	76.4
25	75.7	91.5		80.5	79.1	87.2	85 • 6	81.9	77-1
26	76.0	90.0	80.7	78 • 6	84.3	86•6	82.3	79.7	79.2
27	72.0	85.9	76.4	74.2	82.2	80.0	80 • 7	76.9	75.0
28	67 • 6	80 • 6	69.5	74.2	32 • 4	73.0	77 • 6	75.8	75.9
29	67.5	77 • 1	69.6	73.3	77.0	73.9	75.5	73.9	75 • 6
30	66.3	73.5	68.2	70.8	70 . 2	69.6	72.4	73.2	74.7
31	65 • 1	73.3	67.2	68.2	72 - 1	68.9	71.5	73 - 1	73.4
32	65.0	70.5	65 • 1	68.8	67 • 1	67.9	70.2	74.0	73.0
33	65.0	65 • 4	65.0	66.4	67 • 8	67.0	70 • 1	72.8	71 • 1
34	65+0	65.0	65.0	65 - 0	65.2	65 • 6	68•5	72.2	69.2
35	65.0	65.0	65.0	65.0	65.0	65.0	67.0	70 • 5	66.8
36	65•0	65.0	65.0	65.0	65 • 0	65.0	65 • 5	68 • 7	65.8
37	65.0	65.0	65.0	65.0	65 • 0	65.0	65 • 0	66.2	65.0
38	65.0	65.0	65.0	65.0	65∙0	65.0	65•0	65.0	65.0
39	65•0	65.0	65.0	65.0	65•0	65.0	65.0	65.0	65.0
40	65 • 0	65.0	65•0	65.0	65•0	65.0	65 • 0	65.0	65.0
A	79.7	92.6	86 • 6	87.3	90 • 3	87.5	87.5	88.2	84.1
D	88 • 2	100.8	94.5	95.5	99.2	96 • 2	95•9	96 • 1	89.6
OASPL	95•9	105.7		102.9	106.3	104.7	103.5	102.4	95.6
PNL	97.2		102.9		107.0		103.3	103.6	97.7
PNLT	97.2	107.5	102.9	103.7	108 • 1	104 - 1	103.3	103.6	97.7

TAB: H-121

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 27. 141 KT. FLY BY. CENTERLINE MIC. (HARD SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
+ DB RE 20 MICRO PA)

BAND	-11.0	-9.5	-8•0	-6.5	-5•0	-3•5	-2.0	5	0	2.5
17	0.83	94-1	93.8	91.3	93 • 3	90.3	93.9	91.5	90.9	90•9
18	96.3	100-1	100.8	103.0	102.9	102.5	97.9	87.4	87.6	83 • 4
19	93 (1	29.7	98.7	97.9	99.7	95.3	89.4	83.6	84.4	76.6
20	93 - 1	101 = 1	101=0	103.7	162-7	98-6	90 • 6	91 - 7	93 - 7	83 * 9
21	89.2	99 • 1	99.6	102.8	100 • 4	95.9	85.9	94 • 4	96.3	88.88
55	85•9	97.9	97.5	99•6	97.4	89.2	84.3	95 • 3	95•9	87.6
23	82.9	96•7	95 • 7	97.8	94.2	82.3	89.6	98.86	91 • 8	83.9
24	80•9	95•0	95•2	94.3	87.9	85.0	91.5	85 - 1	34.2	77 • 6
25	74+9	91 • 6	90 • 7	86.6	83 • 6	a0.3	87.2	83.7	84 • 8	8i•6
26	75 • 6	91 • 4	90 • 1	81 • 3	88+4	87∙6	83.6	82.5	80 • 7	78.9
27	71.7	87 • 3	86.6	81.7	88 • 3	81.8	81.7	78 • 3	79 • 0	76.8
28	70.3	84 • 2	83•6	84.7	85 ~2	76.5	79•9	75 • 8	76 • 2	76.5
29	68 • 4	79.8	79•5	85•€	80 - 1	77 • 3	74.4	75 • 3	75.2	77 • 1
30	67.8	76 • 2	79.3	83 • 6	76.1	72.5	74 - 1	74 • 7	74.7	76.0
31	65 • 5	76-2	78.8	78 • 9	75•8	70 • 8	71.3	74.4	74.8	74.7
32	65 • 0	74.6	79 • 1	78 • 1	72. 5	69.9	71.8	74 • 4	75.0	74.4
33	65.0	72 - 4	75.9	76.0	70 • 4	69.0	71.9	73 • 3	73 • 5	72.3
34	65•0	68.9	71.4	74.6	67 • 3	66 • 8	70•7	72.7	73.0	69 • 7
3.5	65.0	65•6	67.0	71.5	65•0	65∙0	68 • 1	71.0	71 • 2	67.8
36	65 • 0	6 5 • 0	56 • 1	67.3	65•0	65•0	65 - 9	68•9	69 • 4	66.7
37	65.0	65 • C	65,0	67.0	65•0	65.0	65.0	66•7	66•7	65• 3
38	65 • D	65.0	65 • 0	65•0	65 • 0	65+0	65.0	65•0	65•0	65.0
39	65.0	65.0	65 • 0	65.0	65 • 0	65.0	65•0	65 • 0	65•0	65•0
40	65.0	65 : 0	65 • 0	65.0	65•0	65.0	65•0	65∙0	65 • 0	65.0
A	85 • 5	94 • 7	94.2	94.5	93 • 1	89•3		89 • 5	89.9	85•6
D	92.1	102.7	101.8	103.0	101.5		96.7	97.4	97.6	
OASPL	100 • 4		107.5		108 • 4		104.8	103.5	103.3	98 • 2
PNL	:00.5	109+1	109.2		109.0		104.2		105.0	100 • 1
PNLT	100.5	109 • 1	109.2	110-6	109.0	105.5	104.2	104.7	105.0	100 • 1

TABLE H-DI

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 12, 6 DEGREE APPROACH, CENTERLINE MIC. (SOFT SITE)

1/3 OCIAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14.0	-11.5	-9•0	-6.5	~4•0	-1.5	0	1.0	3 • 5	6.5
17	89.1	89.5	92.0	89.4	89•2	87+3	84-2	87.1	87-1	91.5
18	34.7	84.2	88 • 8	91.1	84.4	_			92.5	87.3
19	38 • 5	88.7	89.3	84.0	75 • 3					83.9
20	87 • 9	87.6	88 + 6	86.5	77.6	_	94.7			RS•1
51	83.8	84.3	81.8	73 • 6	86.3		100.0			75.9
55	78 • 8	79.7	74.9		90.4		96.9		91.4	75.8
23	77.2	71.5	80 • 1	87.0	94.9		92.5	91.7	89 - 8	82.5
24	70•3	77 • 4	87 • 1	90 • 3	92.7	89 • 1	95.6	96 • 6	83.2	54.0
25	78.8	81 - 4	88 - 4	87.2	82.4	92.2	96.1	95 • 1	88 • 8	81.1
26	82 • 6	83 • 1	85 • 6	79.7	88.3	89.4		93.3	85.7	75+1
27	79.0	78 • 6	75.6	78 - 1	84.4		88.3	87.5	84-1	77.8
28	75.9	71 • 3	79.9	77.8	84.5	84.3	85.0	82.6	81.7	75.4
29	70. 8	76 • 4	76+3	76.8	83 • 4	81.5	83.2	79.9	79.3	74 • 3
30	71.6	69.9	77.1	73.0	80.9	79.3	79.8	77.9	76 03	71 • 7
31	68 • 1	71 • 1	73.5	71.9	78.4	76.6	76.5	75 - 4	74.6	71.5
32	66•6	68 • 4	72 • 5	70.7	77.0	75.0	75.0	74 - 4	76.5	71 • 4
33	65 • 0	67.0	70.7		73.8	72.1	71.2	70.6	70.7	66.8
34	65.0	65 • 4	69.0	67 • 1	72.3	69.6	69.4	68.9	69 • B	65.7
35	65. 0	65 • 0	67 • 5	65.0	68.9	67.2	67.1	66.8	68 - 3	65.0
36	65. 0	65 • 0	65.7	65.0	66.9	65.7	66.3	65•9		65.0
37	65.0	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0	65.2	65.0
38	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0
39	65.0	65 • 0	65.0	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0
40	65 • 0	65.0	65•0	65.0	65.0	65.0	65.0	65.0	65.0	65.0
A	82.8	83 • 8	87 • 4	৪7 ∙ ৪	92 • 1	93.2	95.8	95.2	90 • 1	83.6
D	88 • 9	89.6	93 • 4	93•6	98.0	99•6	102.3	102.0	96 • 4	89.4
OASPL	95 • 3	95 • 7	98.2	98 • 5		103.3	105.5	105-6	101.1	95.2
PNL	96∙5			102-1				108 - 1		98.6
PNLT	98•5	100 • 9	103.5	102.1	105.5	106.2				98 • 6

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13. 1976

EVENT 17. 60 KT. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-30.5	-25.5	-20.5	~15.5	-10-5	-5.5	-4.5	5	0	4.5	7•5
17	83 + 0	83 • 6	84•1	85•1	86.8	89-4	92.8	79 - R	52 - 3	77.9	82.5
18	79.8	79.7	79.8	78.3	88.2	91.8	90 • 4	80.8	78 - 7	80.9	73.8
19	83 • 1	85 • 8	83 • 6	82.7	82.9	91.0	89.5	81.3	83+3	73.9	73.9
20	83 • 1	87 • 1	83.3	82.Ù	85.8	84.5	81 - 4	88.7	0.88	81-4	66.2
21	80 + 5	88.0	79.4	78 • 4	82.0	74.3	78 • 6	91.1	91+3	34.2	69.4
85	78 - 1	85.5	73.8	71.4	73.8	82.8	89.3	90.7	90 • 3	83.7	73.2
23	74.8	78 • 6	75.5	69.4	69 - 1	90.3	92.7	80 - 4	78 • 7	83.0	73.7
24	71-4	78.9	72.8	68.1	77.9	89.5	88.1	82.8	83.9	74.6	74.2
25	72.2	77.8	71.9	71.0	85.9	85.9	78.3	82.2	80.7	81.6	66.1
26	73.3	80 • 6	63.3	75.6	83.2	79.9	86.3	78.2	81 - 1	77.6	70.4
27	73.3	75 • 3	68.3	70.0	75.4	82.5	82.6	76 ₂ 7	78.6	79.1	69.4
88	72.1	69.2	73.3	68.7	69.5	78.7	80.5	73.6	74.0	76.6	71.9
29	67.6	75 - 1	72 47	65+6	75+8	79.3	78.9	70.7	72.9	75.9	68.6
30	67.5	79 - 1	66 · i	65.7	69.7	76.9	76.7	70.5	71 +4	74.1	67.0
31	65.0	78 - 1	66 • 1	65.5	72.5	74.8	76.4	68.5	69 • 4	72.6	66-1
32	65.0	71 - 1	67.0	65.0	69.3	74.3	75 • 7	69.0	69 • 7	73.9	69.5
33	65.0	70.7	65.0	65.0	67.7	72.3	73.5	66.0	67.0	68 - 7	65.0
34	65.0	65.5	65.0	65.0	66.3	70.8	71 - 6	65.2	65 • 9	66.7	65-0
35	65.0	65+0	65.0	65.0	65.0	68.0	69.3	65.0	65 - 1	55 • 3	65.0
36	65.0	65.0	65.0	65.0	65.0	65.6	67.1	65.0	65.0	65.0	65+0
37	65-0	65 • 0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65+0
38	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0
39	65.0	65.0	65.0	65.0	65+0	65.0	65.0	65.0	65.0	65.0	65.0
40	65.0	65.0	65.0	65.0	65 (0	65.0	65.0	65.0	65+0	65.0	65.0
Α	76.9	85.5	78.9	76.0	84.9	88.7	89.4	24.9	85.1	84.5	77.1
a	34.4	89.5	85 • 1	83.0	90.0	94.8	95.7	91.8	92.1	90.2	83.1
OASPL	90.5	94.4	91.0	91.2	94.3	100 - 1	100.8	96.8	97.1	97.8	88.0
PNL	94.6	99 • 1	94.5	93.7	99.0	102.8	104-1	100.0	100.2	98.0	92.9
PNLT	94.6	99.1	94.5	93.7	101.1	102 ·B	104-1	100.0	100.2	99.0	94.3

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 18, 60 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRU PA)

BAND	-36•5	-30 • 5	-24.5	-18 • 5	-12-5	-6 • 5	 5	Q	5 • 5	7•5
17	79•5	87.5	85 • 2	87 •7	89+0	84 • 1	83 • 4	84.3	78 • 6	86.9
18	76.4	85•7	84.3	83.7	88.3	91.9	83.9	81-4	78.9	82.0
19	80 • 5	88•7	86•9	87•9	88.8	88.0	79 • 6	82.3	73.0	73.3
20	79.8	87•9	87 • 7	87.9	92.1	89 • 1	87.3	88.2	76.0	67.7
51	79.3	83.0	85 • 1	86 • 9	89.5	78•9	89.0	90 • 4	82.1	72.6
22	81.3	79.7	78 • 0	85•3	82.3	77 • 1	91.7	93.4	82.6	73.6
23	80.5	79.6	76 • 8	78•7	76.3	83 * 4	87.0	85 • 4	80.2	76.1
24	74.5	83•5	75•8	78 • 2	75•9	89 - 1	83.8	87.7	73 - 3	77•9
25	73 • 6	79 • 4	72.3	71.5	80.0	83.2	88 • 3	88.8	76.0	68•3
26	70 • 4	74.3	72.9	73 • 7	84.3	78 • 8	84.0	83•5	77.7	72.9
27	72.7	70•0	71 - 4	78 • 3	81.2	80•5	82.7	81.4	77.5	72 • 1
28	71.6	69.3	71 + 5	80 • 6	79.7	79 • 7	77.8	80.4	74.2	72.6
29	72.0	59.1	68•3	78 - 2	74 - 3	77 = 5	76.8	78 • 6	73.9	69.9
30	71.0	66.3	66+3	70 • 7	77 • 3	75•2	76 • 3	77.2	72.5	68 • 1
31	68.2	66 - 5	65•7	71 -2	72.2	75 • 4	74 • 4	74•5	71 • 1	67.4
32	66 • 0	65.4	65•2	69•6	73 • 3	74 • 1	72 • 7	72 • B	73• 8	70 - 3
33	65 • 0	რ5∙0	65•0	66 • 8	71 -8	71.8	70 • 8	70.3	67.9	65•3
34	€5.0	65.0	65.0	65 • 2	69•7	69 • 4	69 • J	68•9	65•7	65.0
35	65.0	65.0	65∘0	65 • 0	65•7	66•6	66 • 5	8.69	65•0	65.0
36	65•0	65.0	65.0	65.0	65.0	65 • 2	65•7	65•5	65•0	65 • 0
37	65 • 0	65+0	65•0	65.∙∪	65.0	65•0	65.0	65 • 0	65•0	65•0
38	65.0	65.0	65.0	65•0	65.0	65.0	65.0	35.0	65•0	65.0
39	65.0	65•0	65 • 0	65•0	65•0	65•0	65.0	65.0	65.0	65 • 0
40	65•0	65+0	65 • 0	65•0	65 • 0	65.0	65.0	65 • 0	65•0	65.0
,A	78 • 4	80 • 5	78•7	83•9	86.6	მ6∙5	89•0	90 • 3	82 • 7	78 • E
ν	85.1	88.8	86•7	89•5	92.2	92.9	95.0	95.8	88.2	84.9
OASPL	90 • 0	94.7	93 • 5	95.0	97.4	97.9	97.8	98.9	95.6	91.3
PNL	95 • 1	97 • 7	96.7	98•6	101.2	101.9	102.4	103.1	96.7	$94 \cdot 1$
PNLT	95 • 1	97 - 7	96•7	98 • 6	102.5	101.9	102.4	103 • 1	98 • 1	95 • 5

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 20, 9 DEGREE APPROACH, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-15.0	-12.0	-9.0	-6.0	-3.0	0	3.0	6.0	7.5
17	87.9	88 • 2	90 • 2	89.5	80.8	76 • 8	85.2	38•0	89.0
18	82.2	83 • 2	85.3	86.5	75.9	82.9	85.4	84.5	85.6
19	83.1	84.1	83 • 8	79.2	79 - 1	86 • 1	81.5	82.6	82.2
20	77.5	79.2	80 • 4	79.2	79.0	92.9	94:6	78 • 3	77.2
21	71.2	72.1	71 - 1	75.3	90.2	99.3	93.7	81.1	78 • 4
22	76 • î	73.3	75 • 6	86.0	93.2	96.7	94.9	82.7	73.3
23	72.2	74.8	83.7	89.1	94.6	92.2	89.1	83.0	76.1
24	75.2	84-6	88.9	91.8	90.4	94.6	86.6	83.5	79.0
25	80.2	84 • 4	87.3	86.2	88.8	95.6	89.9	81.5	80.6
26	83.1	84.7	83.5	80.3	88.4	91.6	84.0	78 • 6	77.8
27	76.2	7849	75.5	80.2	83.7	38 • 3	83 • 3	7 8 ~ 7	74.8
28	66.7	75.1	76.6	77.5	82.1	85 • 1	80.4	76.2	75+5
29	69.6	76.2	71 • 4	78.7	81.8	88•1	78 • 7	74.9	72.8
30	66.5	72.1	70.9	73.6	76.4	80.2	75.€	72-9	71.3
31	66.6	69 • 7	68 • 7	71.6	74.7	77.3	74.1	71.2	69+9
32	65.2	67.2	67.2	70.7	72.8	74.0	75.8	71.7	71.0
33	85.0	65.7	66 • 3	68.8	7 0 • 7	71.6	70.0	67.1	65.7
34	65.0	65 •0	65.0	66.0	68 ∗ ₽	69 • 2	69.7	66•3	65+0
35	65.0	65.0	65.0	65.0	66 • 4	66 - ଟ	69.3	65.7	65+0
36	65.0	65.0	65.0	65.0	65 • 5	65 • 7	6.86	65.0	65.0
37	65.0	65.0	65.0	65.0	65.0	65.0	66.2	65+0	65•0
38	65.0	65.0	65.0	65.0	65.0	65 • 0	65 · Q	65.0	65.C
39	65.0	65.0	65.0	65.0	65.40	65.0	65.0	65.0	65.0
40	65.0	65.0	65+0	65.0	650	65+0	65.0	65.0	65+0
A	81.6	85 • 1	86 • 6	88.4	91.2	94.6	90∘8	84.2	88.0
D	87.0	89.9	92.2	94.5	97.6	101.5	97.4	90 a 0	87.5
OASPL	93.6	95.0	97•3	99.4	101.7	104.7	102.4	95.1	93.0
PNL	97 • 1	99.1	100 • 4	102.5	104.7	108.0	104.6	98.7	36 • 3
PNLT	98 • 1	99.1	101+5	103.5	104.7	108.0	105.9	98.7	97.5

NOISE LEVEL FREQUENCY SPECTAR TIME HISTORY

VERTOL CH-47 C

OCTOBER 13: 1976

EVENT 22, 100 KI. FLY BY. CENTERLINE MIG. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND US TIME (SECORDS)
(DB RE 20 MICAO PA)

BAND	-24-5	~20•0	-15.5	11.0	- 6 ∗5	-2.0	0	2.5	7.0	8.5
17	76.8	82.7	84.5	85 • 6	87.6	31.8	35 • 4	35.9	80 - 1	77.4
18	31.3	86+5	86 • 3	89.6	90 • 2	81.9	85.5	82.6	74.7	70 • 8
19	77.8	86 • 7	66.2	87.2	86 - 1	85.5	77.1	80-0	78-1	74+5
20	71.6	81.4	85.8	84.3	87.6	79 • 5	86 • x	87.9	69.5	68.9
21	73.7	84.1	86 - 1	80.8	86.8	79.0	91 • 4	89.8	65.6	68 • 1
88	70.7	81.6	83 • 1	80 + 9	82.5	80 • 4	89.8	27.4	69.4	65+0
23	68 • 1	79.1	80.9	78 - 1	75 • 2	87 • 5	83.4	82.2	72.9	66-1
24	67.0	73 • 6	71 • 7	69.9	71.0	85.9	79.4	78.6	72.7	67.6
25	66.1	7 0 ° 0	73.9	72.2	79.3	78.3	78.0	78.5	69.6	67.2
26	65•4	70•8	72.5	66.8	83.0	83.8	69.2	74.2	65.6	66.3
27	65•4	69.9	71.7	65.0	78 • 4	83 + 7	70 • 4	73.9	70.4	65.0
26	65.0	68.4	71.2	67.5	73.0	79 • 5	68.9	73.3	69.1	66.2
59	65 • 0	65.7	65 • 1	66.6	76 • 5	73 • 7	67.4	74.3	68.0	65 - 8
30	65.0	65 • 0	65 • 6	66.0	75.8	78 * 1	67:3	71.8	65 - 1	65+0
31	65.0	65 ∙ 0	65 • 2	65+0	75 • 6	74.4	66.8	70.0	66.8	65.6
32	65 • O	65 • €	65.0	65.0	73.7	75 • 4	68 • 4	71.7	66-5	65-5
33	65∙ 0	65.0	65.0	65.0	74.2	72.3	66.9	68.2	65.0	65.0
34	65.0	65.0	65.0	65.0	72.1	71.9	66.3	67.0	65+0	65+0
35	65+0	65.0	65 • C	65.0	69.0	63.7	65.7	5E-3	65.0	65.0
36	65•0	65 • 0	65.0	65.0	66.8	67.3	65.2	65+5	65.0	€5+0
37	65.0	65.0	65.0	65+0	65+0	65 • 3	65.0	65.0	65.0	65.0
38	65.0	65.0	65.0	65.0	65•0	65.0	65 · U	65.0	65.0	610
39	65.0	65.0	65.0	65.0	65 • 0	65 ÷ Q	65=0	65.0	65.0	65.0
40	65.0	65 • Q	65+0	65.0	65 • 0	65 • 0	65.0	65.0	65.0	65.0
A	69.5	77 • 0	78•9	76.5	86.1	88.0	4088	83.5	76.2	72.9
D	79.8	86 • 1	87 • 6	86•4	91.5	93.0	91.8	91.0	82.5	80.1
OASPL	86.5	93.1	95.2	95.4	97.1	96-7	97.1	97.0	85.4	53.7
PNL	92.1	95 • 5	96 . 8	95-7	100.2	101.2	99.2	99.3	¥2.+6	91.5
PNLT	92 • 1	95•5	96.8	95•7	100.2	101.2	99.2	89.3	92+6	91+5

TABLE H-DI

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 23. 100 KI. FLY BY. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DE RE 80 MICRO PA)

BAND	-33.5	-25.5	-19.5	-12.5	-5 • 5	0	1.5	8.5	15.5	18.0
17	67.2	72.3	80.9	83.4	88.7	85 • 8	87.4	76 • 1	66-5	66.6
18	71.5	76.4	85.6	87 • B	92.6	85 • 1	80.0	70 • 1	70 • 6	68.0
15	59.6	74.7	83.7	86.0	87.1	77.C	83.3	74.5	66.1	65 • Û
80	67.5	69.6	78.1	83.9	88 • 7	85.5	89.0	69.9	67.1	65.5
21	65.7	71 04	81 - 1	85.6	84.4	89.3	90.2	67.3	66 • 1	65.0
55	63 • 5	68 • 0	77.8	81.4	76 • 9	87.2	87.4	65.0	85.2	65.0
83	65+1	67.9	74.5	78.2	69.5	80 • 4	79.0	65.5	65.0	65.0
24	63 • 6	65 • 0	69.2	8.83	74.5	7 5•5	80.7	67.5	65.0	65.0
25	63 • 5	65+0	65+3	65.0	76.6	7 5•0	77.7	67 = 8	65.0	65.0
25	63 • 5	65•0	65∙1	65.0	79.9	71 - 1	73.0	67.2	65.0	55.0
27	გ⊹ა5	65.0	65.0	65.0	74.2	70.2	63.7	65.0	ċ5•0	65.0
28	63.5	65.0	65 • 0	65.0	67.0	68.4	69.2	65.4	65.0	65.0
89	63.5	65 • 0	65.0	65+0	66.5	68 - 6	71 -8	65.0	65+0	65.0
30	63 = 5	65+0	65+0	65+0	65+5	€8+3	58 - 6	65+1	65+0	65.0
33	63 • 5	65.0	65.0	63.0	65.0	67.7	69 • 4	66.8	65.0	65 • 0
32	63 • 5	65.0	65.0	65.0	65.0	69.5	70 • 4	65.5	65.0	63.0
33	63 • 5	65 • 0	65.0	35.0	65+0	68 * 8	68 • 5	65•0	65.0	65.0
34	63 • 5	65 • C	65 • G	65+0	65.0	67+8	67.3	65.0	65.0	65 • 0
35	63 • 5	65-0	65 0	65.0	65 * 0	8.33	66.8	65.0	65 • U	65.0
35	63.5	65+0	65.0	65.0	65.0	66∙0	66-2	65.0	65.0	65. 0
37	63 • 5	65 • 0	65 • 0	65.0	65 • 0	65.0	65.0	65.0	65.0	65.0
38	63+5	65.0	65.0	65.0	65 • 0	65 - 0	65.0	65.0	65.0	65.0
39	63 + 5	65 • 0	65+0	65-C	65,0	65+0	65.0	65.0	65 • C	65.0
40	63 • 5	65∙0	65.0	65+0	65.0	65.0	65.0	65.0	65-0	65.0
A	65.2	67.5	72.5	75 • 4	80 • 2	81.6	6+88	73 • 1	67.7	56.0
D	76 • 5	78 • 4	83 • 3	66°3	88 • 4	89.7	91.0	1.03	78.2	77.5
CASPL,	78 ∗5	82 • 4	91.5	94.2	97.8	35.6	96.6	83.5	77 - 1	75•2
PNL	89.5	91.5	93.5	95.5	97.6	98.4	99.1	91.4	90 ° B	90 • 7
PNLT	89 • 5	91.5	93.5	95.5	97.6	98 • 4	99 • 1	91 • 4	90.8	90•7

TRBLE H-DI

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 24. 141 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	~16.5	-14.0	-12.5	-11.5	-9.0	-6 -5	-4.0	-1.5	0	1.0	3.5
1.7	85.7	89.3	91.5	90 • 6	85 • 8	85•3	90•0	93 • 3	90 • 3	90•6	84.7
3 \$	86 • 1	95 . 5	96.7		96•5	99.9	102.9	92.4	87.5	83+9	80 • 4
19	81 • 8	96.0	97.5	96.6	90.4	92.2	94.9	92.0	83 • 1	86 • 3	74.3
20	83.5	96.2	98.4	98.9	94.6	96 • 1	97.5	86 • 1	90.0	92.6	71.2
21	83 - 1	94.8	96.9	97.3	93 • 4	96.8	96.9	83.7	94.3	95.4	78.0
22	83.3	92.7	95 • 1	95.1	90 • 6	93.9	89.9	87.4	93 • 8	92.1	78 • 4
23	81.5	52.0	94.8	93.7	87.4	92.3	85.2	89 • 4	90 • 1	85 • 1	78.9
24	78.2	89.2	92.3	91.8	85•9	85.9	78 • 1	87.1	84.2	85-7	74.7
25	74	85 • 7	37.6	87.9	80 • 0	78 • 3	81.9	79.0	84.0	84.9	74.2
26	73.0	84.0	87.5	87 - 3	78 • 5	75.0	82.3	81.8	79.2	78 • 7	77.6
27	69+4	78.4	82.4	80 • 4	72•7	67.6	77.8	77•3	75.5	74.6	74.0
88	66+1	76.2	76.2	73.4	66 • 2	67.2	70 • 2	74.2	74 - 3	74.7	73.3
29	$65 \cdot 0$	73 - 9	72 • 6	59.3	56 • 0	67.7	72.3	72.8	73.0	73 • 4	73.0
30	65 × C	72.3	70.6	68•9	66 • 8	66.3			72 • 3	71.9	70.8
3 1	65+0	69.3	67.2	69.0	66 • 1	65.0	66 • 1	70 • 5	71 - 1	71 • 3	70.7
38	65•0	67.0	65 • 0	63.4	65 - 0	65.0	65•3	70.6	72.2	72.5	69 • 4
33	65•0	66 - 5	65.0	65.7	€5 ∙ 0	65.0	66.2	70 • 4	71.5	70 • 4	67.4
34	65×0	65.0	65.0	გ5∙0	65 ∙ Մ	65.0	65.0	69.7	70 • 7	70 • 3	66•5
35	65.0	65 • 0	55.0	65:0	65 • 0	65•0	65+0	67•3	59.9	69.0	65•6
36	65+0	65.0	65.0	65*2	65.0	65.0	65.0	66.8	68 • 4	67.7	65.2
37	65 40	65 * 0	65.0	65.0	65 • 0	65.0	65.0	65•4	66.9	66 • 1	65.0
35	65+0	65.0	65 + 0	65+0	65 • 0	65 • 0	65.0	65.0	65•0	65 • 1	65.0
39	65+0	65 + 0	6 5 ∘ 0	65.0	65 • 0	65.0	65+0	65.0	65.0	65.0	65•0
40	65.0	65.∗0		65.0	65.0	65.0				65.0	65•0
Α	78.3	81.8					86.6				81.2
Ľ		96 • 8					96.4				86.9
OASPL.	941		104.8		100.3		105.0				92•8
PNL	96 • C	104.3	105.1								95•6
PWLI	96 . 6	104.3	166.1	.05.9	101-8	103.6	105.5	101.9	103.2	103.3	95.6

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 25, 141 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICHO PA)

BAND	-14.0	-11.5	-9•0	-6.5	~4.0	-1.5	0	1.0	3•5
17	88.0	90•7	87.7	85•3	87.3	93.6	90.6	90 • 4	86.7
18	92.4	100.2	99.4	99.5	102.0	99.8	87-5	84.9	81.6
19	90.0	98 • 5	96+1	92.8	94.1	93+8	84.9	84.4	76.9
20	89.8	100.3	99.0	96.9	98.0	91.0	87.1	91.2	77.2
21	85 • 3	96 • 3	97.7	96.8	97.1	85 • 1	91.5	93.7	84.2
22	82.9	92.2	94.8	94.1	91 • 1	83 • 1	91.7	91.0	83.3
23	78.9	89.2	94.0	91.4	87.0	86.2	90.3	86.0	83.4
24	75.1	89 • 8	94.5	87.2	80.0	86.5	83.9	81 • 1	76• 8
25	74-1	84 • 8	87 • 4	77.5	79.2	82.3	80.2	81.7	78•7
26	73.3	86 • 1	85 • 7	74.9	81.6	78 • 7	82.2	79 • 1	79•7
27	69.8	83.0	80 • 3	75.7	76.2	77.2	76.0	75.9	76 • 1
28	65.2	78.3	74.9	75.6	71.5	73.6	74.1	74.3	75 • 4
29	65.0	76.2	72 • 1	73.7	68 • 4	71.9	73.5	73 • 5	75.5
30	65.0	73.0	71.0	69.0	66.8	70 • 1	73 • 1	72 - 1	73 • 3
31	65.0	69.3	70 • 1	65.0	65.2	69.3	72.2	71 • 4	72 • 1
32	65.0	68•5	68 • 5	65 • 0	65.0	68 • 7	72.2	72•7	71 • 1
33	65.0	65 • 7	65 • 1	65•0	65 • 0	68.7	72.3	72.0	70.0
34	65 • 0	65 • U	65 • 0	65•0	65 • 0	67 : 4	72 • 1	71.8	68 • 8
35	65.0	65+0			65 • 0				66 • 6
36	65.0	65.0	65 • 0	65.0	65.0	65 • 6	69.4		65.9
37	65.0	65.0	65•0	65•0	65 • 0	65 • 0			65.0
38	65 • Q	65.0	65•0	65.0	65.0	65+0		65 • 1	65.0
39	65.0	65.0		65.0					65.0
40	65.0	65.0			65 • 0		65.0		65.0
A	79-1	89.8			86.8				83•3
D	89.0		99.2	96 • 1	95.9	-	95•0		89.5
OASPL	96 • 9	105.1		103.8	104.7		101.3	100.8	95•3
PNL	98•0		106.3		103.9				98 • 1
PNLT	98•0	106 • 4	106.3	104.0	103.9	102.7	102.6	102.5	98 • 1

TABLE H-IL

NOISE LEVEL FREQUENCY SPECTRA TIME HISTON

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 26, 141 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-13-5	-11.5	-9.5	-7. 5	- 5•5	-3.5	-1.5	0	• 5	3.0
	55.4									
17	80 • 6	87 • 3	89•1	92.2		87.7		89•7	89.8	87•2
18	94.0	99+0	97 • 2		100 - 1		_	87+0	85 - 4	82 - 6
19	85.8	96 • 5	94.3		98 • 6	93 - 1	88 • 5	83•7	84.7	73.2
50		100.0	96•8		100.2	97.0		90•7	91.8	80.0
21	86.2	99•1	94.7	92.7				94.1	94.8	84.5
22	82.2	97 • 1	92.3	91.7	93•6		87.4	93.3	92.4	83•7
23	82•7	95•5	91 • 1	90 • 6	90 • 8	81 • 1	90 • 3	90 • 4	87•9	81.9
24	76.5	95 • 1	89.2	86•9	85 • 8	81.8		83.5	82.3	75•8
25	78.4	90 • B	84.1	78 • 3	78 • 6	87.0	83.1	83.9	83.4	79.8
56	73.3	४9•4	82.0	75.5	84.5	84 • 6	83.2	81.5		79 • 1
27	70 • 1	83 • 8	75.2	72.9	83 • 8	77 • 1	80 • 6	77.8	77 • 1	76 • 8
28	66 • 0	79 • 6	71 - 1	73 • 3	82.2	71.5	77.3	75.4	74.9	76.3
29	65 • 8	74.8	70 • 4	72 • 4	76 - 1	73.2	75.9	74.8	73.8	75.3
30	66.2	72.2	69-1	70 • 3	70 - 8	68 • 1	73 • 4	74.2	72•3	74.3
31	65 •0	70 • 8	66•9	65•4	70 • 7	67.6	71.7	73.5	72.5	72.2
32	65.0	67•9	65.0	65•0	66•5	66.2	71 - 1	72.9	72.3	71 • 8
33	65.0	65+9	65• 0	65•0	66 • 9	65 • 8	71.5	73.2	72 • 7	69.8
34	65.0	65.0	65•0	65.0	65•0	65.2		72.8	72.3	68 • 4
35	65•0	65.0	65.0	65•0	65•0	65 • 0	67.7	70 • 8	70.3	66.7
36	65.0	65.0	65.0	65•0	65•0	65.0	66.0	68.9	68 • 4	65.7
37	65+0	65.0	65• 0	65•0	65•0	65•0	65.0	67.1	66.8	65.0
38	65.0	65•0	65•0	65•0	65•0	65.0	65.0	65.0	65∙0	65.0
39	65.0	65 • 0	65.0	65•0	65.0	65.0	65.0	65•0	65.0	65.0
40	65 • C	65.0	65 • 0	65.0	65 • 0	65 • 0	65.0	65.0	65.0	65.0
A	79.3	92.9	87 • 6	86•9	89.7	86 • 1	88.0	88 • 6	87.7	83.9
D	89+0	100.9	95•8	95 • 1	97 y	95.7	95.6	95.8	95.0	89.8
OASPL	96.8	106 • 1	102.5	103.0	105.5	104.3	103.1	101.8	101.4	95.7
$^{5}N\Gamma$	97.9	107.4	103.9	103.2	106.3	104.0	103.3	103.5	103.2	97.9
PNLT	97.9	107.4	103.9	103-2	106.3	105.2	103.3	103.5	103.2	97.9

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 27, 141 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-11.0	-9.5	-8.0	-6•5	-5.0	-3.5	-8.0	 5	0	2•5
17	85 • 4	91.8	91.5	87 - 8	89 • 4	88 • 1	95•5	91.3	90 • 6	90.9
18	96 • 6	99.8	100.8	103.5	104.0	103.2	97.9	87.7	86.9	83.3
19	88.7	97.5	96 • 8	95.8	96.9	93.9	91.6	84.8	85.9	76 - 5
20	91.9	100.8	100.5	102.8	101.9	98.6	90 • 6	91.5	93.6	85 • 1
21	88 • 1	99.8	99.0	101.7	100.2	95.7	84.6	94.3	96.3	89 • 4
22	83.9	98.4	96.9	99.4	96.9	89.3	83.5	94.5	95.2	87.5
23	83.0	97 • 0	96 • 1	97.5	93.2	81.5	90.0	91.8	90.3	83.7
24	81.2	96.9	95•0	93.0	84.8	85 • 5	92.2	85 • 2	85.7	79.0
25	78 • 5	93.9	90 • 1	86•6	84.2	90.2	86.5	84.5	85 • 6	81.9
26	81.4	94 • 1	88 • 6	84 • 1	89.3	86+9	83.9	82.6	80.6	79 • 3
27	77.3	89.7	83.5	83.0	87•6	80•6	82.7	77.8	77.7	78 • 3
28	75.5	86 • 8	78 • 6	85•5	85•5	75 • 3	78 • 4	75 • 6	75•9	76 • 4
29	72.8	83 • 8	77•6	85 • 6	80 • 3	76.2	75.3	75 • 1	74.9	76 • 5
30	70 • 6	80.8	77.9	81.3	77 • 8	71.0	73.5	75.0	74.4	75 • 4
31	69.9	76.7	75•7	78 • 4	75•7	71 • 4	72.6	73.9	73 • 7	73 • 1
32	68.7	74.8	74 • 1	74•6	71 - 1	70 • 1	72 • 3	74.2	74.0	72.7
33	67.2	72.6	74.9	76•9	70 • 0	68 • 3	72.6	73 • 4	73 • 4	71.0
34	65.0	70 • 5	69•7	71 - 1	66 • 1	ს 6 ∙2	70 • 6	72.9	73.2	69 • 6
35	65.0	66•5	66 • 1	69 • 1	65 • 3	65•0	69.0	70 • 9	70•9	68 • 1
36	65.0	65•0	65.0	67 • 2	65+0	65 • 0	65•9	69 • 7	69.7	66+8
37	65.0	65.0	65.0	65•0	65•0	65.0	65•0	67.5	67•6	65.2
38	65.0	65.0	65•0	65•0	65 • 0	65•0	65.0	65+0	65.0	65•0
39	65•0	65•0	65•0	65.0	65 • 0	65•0	65.0	65.0	65•0	65•0
40	65.0	65.0	65.0	65.0	65•0	65•0	65.0	65•0	65+0	65.0
Α	83.7	96•0	93 • 6	93.8	91 • 7			89.2		85 • 4
Ð	91.5	103.3	101.3		100.5	97.8	96•6	96 • 7	97•1	91.6
OASPL	99.3	107.7	106.7	108.6			104.7			98•0
PNL	100.8	110-0				105.5				100 • 3
PNLT	100.8	110.0	109.3	111.1	108 • 4	106.5	104.6	104 • 4	104-8	100.3

TABLE H-III

NOISE LEVEL FREQUENCY SPECTHA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 28, 150 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-10.5	-9.0	~7.5	-6.0	-4.5	-3.0	-1.5	0	2.5
17	88•6	91.2	92.8	94•4	89•5	89•1	92.5	93+2	89•9
18	95.9	102.3	103-1	100.6	103.3	105.0	103-1	89.9	85+0
19	93.6	98.8	100.3	100 - 1	96.5	96 • 1	92.8	86.0	78.9
20	94.2	101.1	103.6	101.1	101.8	102.4	96.1	91.1	86.5
21	92.5	100 • 1	102.2	98 • 8	100.2	100.1	91.0	93.9	89.6
22	90.2	97.3	100.4	96.7	97.1	95.0	85 • 4	93.2	88 • 7
23	86.7	95.0	98.8	94.8	93.4	89.1	88.9	92.9	86.7
24	85.0	92.2	97.9	91.6	87.9	85 • 1	91.2	88.7	81.4
. 25	78.7	88.3	94.7	85 • 1	80.2	89.1	89.7	86.8	84.1
26	75.9	86.9	93.7	83 • 4	87.6	90.9	84.8	87.0	83.2
27	74.8	82.4	85.8	82.7	85 • 4	86.2	84.2	82.1	80 + 1
28	71.1	81.1	85 • 6	83.9	84.8	78.7	80.2	79.5	78 • 5
29	72.0	77.5	84.0	83.3	80.3	74.6	77.7	78.2	78.9
30	70.2	76.2	81.0	78.9	75.9	73.6	75 • 6	77.0	77.8
31	69.4	76.6	79•3	74.6	76 • 5	69.7	72.9	75.5	75 • 5
32	66.9	74.6	76.6	76.3	73.2	68.6	72.0	76.0	74.6
33	65.9	71.2	72.7	72.7	71 • 8	67.2	71 - 7	75 • 2	72.8
34	65∙0	66+3	72.0	69 • 4	68 • 2	65 • 4	70 • 5	74.4	71.9
35	65.0	65•0	67 • 8	65+3	65•6	65.0	68•9	73 • 3	70 • 1
36	65.0	65.0	65•3	65.0	65.0	65.0	66 • 4	71.5	68.5
37	65•0	65•0	65.0	65.0	65•0	65.0	65 • 3	69 • 4	66.9
38	65.0	65•0	65•0	65•0	65 • 0	65.0	65.0	66•5	65.3
39	65•0	65•0	65 • 0	65.0	65.0	65 • 0.	65•0	65.0	65.0
40	65•0	65•0	65.0	65+0	65•0		65.0	65.0	65.0
Α	84 • 6	93.0	97•6	92.5	92 • 3		90 • 1	91 • 1	87.4
D	94•5	101.3	104.9	100 • 6	100.5	100.5	97.8	97.9	93.5
OASPL	100.9	107.3	109.8	107.0		107.9	106.2	104.6	99•2
PNL	102+0		111.4		108-2		106 • 1	105.7	101.7
PNLT	102.0	108.2	111-4	108.3	108.2	108.0	106 • 1	105.7	101.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTUBER 13, 1976

EVENT 29, 150 Kr. FLY BY, CENTERLINE MIC. (SUFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-10.5	-9•0	-7•5	-6.5	-6.0	-4.5	-3.0	-1.5	0	2.5
17	92•3	95•3	91.4	91 • 1	91.4	93.9	91+1	98•6	94.5	90•9
18	98 • 4	103.3	104.6	104.3	104.2	104.8	105.4	101-3	90+5	85=8
19	90 • 7	98.1	98.4	99.5	100.4	101.5	97.9	97.1	87.1	80.2
20	93.7	102.5	104.7	105.5	105.4	104.7	102.8	95.7	93.2	87.4
21	87.2	99.5	102.4	103.0	103.3	102.3	99.7	88 • 5	94.4	91.5
22	86.9	97.2	100.5	102.1	102.1	100.3	94.6	84.4	95•1	91.2
23	86.0	92.9	99.3	100.6	150.6	97.2	88.4	88.6	93 • 7	89 • 6
24	87.0	90•3	96.7	98•9	98 • 7	93.2	85.7	90.7	88.2	83.0
25	85 • 8	86 • 1	94.0	94.7	94.2	85 • 4	90.0	88 • 4	86.4	86.3
26	85•3	86•8	95.2	94.4	93.4	89.8	92.3	83.6	88.2	84.6
27	82•5	84 • 1	92.2	90.0	88 • 3	90•6	88.0	83.2	83.0	81.5
28	80•4	82•3	90.3	88 • 1	86 • 8	90.4	80.9	77.9	81.4	79.7
29	75•5	82.5	88 • 4	86•3	86.7	88 • 5	78•8	75.8	79•5	78 • 1
30	73.5	81.2	85.9	86•6	86+5	83.6	77•3	74.2	79.0	77.4
31	72.7	78•5	82.9	85.4	85•7	84.8	72.8	72.6	78•2	75 • 7
32	69•7	74.8	82.5	83•9	83 -7	81.2	70.5	72 • 6	77•6	73.9
33	67•7	73.9	80 • 4	81.9	82.2	80.5	69.0	72.5	76 • 4	72.7
34	65•9	71.2	77.0	78•3	7 8 • 8	78 • 2	66 • 5	71 • 3	76. 2	71.6
35	65•0	6 8•0	73.8	76.2	76 • 1	73•3	65.2	69 • 4	74.3	69.7
36	65•0	65•9	69•3	70 • 8	71.0	72 • 4	65•0	67 • 4	72 • 6	68 • 5
37	65•0	65•3	65.2	67.2	67.3	68 • 5	65.0	66 • 8	70 • 1	66•3
38	65•0	65•0	65.0	65•0	65 • 0	69•9	65•0	65.0	66•5	65.2
35	65•0	65•0	65.0	65.0	65•0	66•0	65•0	65•0	65 • 0	65.0
40	65 • 0	65.0	65.0	65•0	65 • 0	65 • O	65•0	65.0	65∙0	€5•0
A	87 • 1	92•9	98•9	99•3	99•2	97.8	92.7	89.1	92.0	88•8
\mathbf{p}	94•7	101.2	105.3	106.3	106.6	104.7	101.2	97.8	99.0	95 • 1
OASPL	101.9	107.9	110.2	110.9	111-1	110.3	108.5	106.6	105.0	100.3
PNL	103.2	109.2	112.9		113.4		108.8	105.5	106.7	103 • 1
PNLT	103.2	109.2	112.9	113.5	113.4	112.4	108.8	105.5	106.7	103 • 1

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 30, 126 KI . FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-12.0	-10.0	-8.0	-6.0	-4.0	-2.0	0	2.0	4.0
17	79.6	86 • 8	86•4	87.4	88•6	90.4	88•7	88•7	84.3
18	90 • 1	99.2	99.2	98.1	100.3	96.3	86.0	82.9	81.4
19	80.2	94.1	94.3	94.5	93 - 8	90.6	83 - 1	83 - 1	75-1
20	80.9	95 • 5	95.9	94.1	93 • 1	89.0	89.9	88.9	70.8
21	82 • 7	95.9	95.3	91.9	92.6	82.5	92.9	90.3	75 • 1
22	83.0	92 • 7	91.4	87.7	87.0	80.3	91.3	86.0	77.9
23	80.0	90.5	88.1	83.5	78 • 9	83.6	86.8	78•3	77.6
24	77.5	87.3	84.5	79.8	72.0	83.1	79.3	79.9	75.7
25	70.9	80 • 4	76.7	70.0	72.6	78.2	78 • 7	79.5	70 • 4
26	65.8	77 • 8	71.8	69.6	78 • 6	76.5	75.9	75 • 8	75 • 7
27	65•4	75 • 6	69.3	71.2	76.9	75.9	73 • 3	74.6	72.9
28	65.3	70.3	65.6	72.6	70 • 6	73.2	71.9	74.9	73.3
29	65.0	67 • 6	65.2	67.6	69.2	72.1	72.2	75•5	72.0
30	65 • 0	65•6	65.0	65.4	66.9	70.7	71.2	73 • 8	71 • 0
31	65•0	65 • 0	65.0	66.2	65 • 4	67.8	70.5	72•5	70 • 7
32	65•0	65.0	65.0	65.0	65.0	67.8	71.9	73 • 1	70•2
33	65•0	65•0	65.0	65.0	65•5	67.9	71 • 6	71.2	67•6
34	65•0	65•0	65.0	65.0	65.0	66 • 5	70 • B	69 • 5	66•3
35	65•0	65•0	65.0	65.0	65•0	65•3	68•9	68•0	65 • 5
36	65 • 0	65 • 0	65•0	65.0	65•0	65.0	68•3	67 • 4	65•2
37	65•0	65•0	65.0	65.0	65.0	65.0	66.0	65•3	65 • 0
38	65•0	65•0	65.0	65.0	65.0	65.0	65 • 0	65• 0	65.0
39	65•0	65•0	65.0	65.0	65•0	65•0	65•0	65•0	65•0
40	65•0	65•0	65 • 0	65.0	65.0	65.0	65 • 0	65.0	65.0
Α	76•7	86+2	84.7	83.0	83 • 1	83.2	85•3	84.8	80 .7
D	86•3	95•5	94.8	92.0	92.6	91.0	93.4	91.5	86.1
OASPL		103.0	102.7	101.5	102.3	100.8	99•6	97•9	92.1
PNL	95•4		102.5	101.0	101.8	100.3	101.5	100.2	94.9
PNLT	95 • 4	103.5	102.5	102.0	101.8	100.3	101-5	100.5	94.9

NOISE LEVEL FREQUENCY SPECIRA TIME HISTORY

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 31, 126 KT. FLY BY, CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(DB RE 20 MICRO PA)

BAND	-14-0	-11.5	-9.0	-6.5	-4.0	-1.5	С	i • 0	3 • 5	4•0
17	77•5	81.6	85 • 4	85•3	88 • 1	90 • 7	89-1	89.7	83•3	81 • 4
18	84.9	96 • 6	99.6	98.9	99.7	92.4	87.0	83.9	81.3	78.2
19	76 - 3	85 • 9	92 - 1	92.5	93.0	91 - 3	84-6	87.9	72 • 6	72.9
20	78 • 4	89•7	96.5	95.7	93 • 4	86 • 3	91.5	93 • 6	71.8	67.9
18	79.9	85•9	96.2	94.8	94 • 1	82 • 7	94.0	94.9	79.3	71.2
22	79.3	85 • 4	93.2	93.1	89.7	85 • 6	93.5	92.2	79.0	7-1-7
23	79•6	84.3	92.0	91.3	83.0	88 • 6	89.0	83.5	78 • 1	75.1
24	77 • 4	83 • 6	90.2	88•3	73 • 4	86 • 9	82.9	85.2	72.3	72.9
25	69•1	76.0	83.3	77.9	75 • 3	78 • 3	81.2	81.2	73.0	68 • 5
26	67.0	73.3	78 -8	69•3	79.6	78 • B	79.7	76 • 4	76.8	75•3
27	65•0	70 • 2	74.7	68•4	76 • 3	78 • 5	75 • B	72.9	74.5	73.2
28	65+0	67 • 7	67 • 6	69.2	73.0	74.8	74.0	73.3	74 • 1	72.2
29	65 • 0	65 • 8	68 • 1	68 • 4	65+9	73+9	73.3	72.6	72.3	70 - 1
30	65•0	65•9	67 • 6	65.9	65 • 9	73 • 7	72 • 4	71.2	71.8	69 • 1
31	65•0	65.0	65•0	65.0	65 • 2	73.0	72•9	71.9	71.0	68 • 9
32	65 ∙0	65.0	65.0	65.0	65 • 0	72 • 5	72.4	72.7	70.7	68•5
33	65 • 0	65•0	65.0	65.0	65•0	71 • 8	71.8	71.0	67.8	66.3
34	65•0	65.0	65•0	65.0	65•0	69 • 4	71.0	70 • 1	66.6	65.2
35	65•0	65 • 0	65.0	65.0	65.0	67.5	69 • 4	68.7	65 • 7	65•0
36	65 • 0	65 • 0	65.0	65.0	65 • 0	66 • 0	68.0	65 • 2	65 • 3	65.0
37	65•0	65 • 0	65.0	65.0	65•0	65•0	65•9	66 • 1	65.0	65.0
38	65•0	65.0	65.0	65.0	65•0	65•0	65 + 0	65.0	65.0	65.0
39	65•0	65•0	65.0	65.0	65•0	65•0	65.0	65.0	65.0	65•0
40	65.0	65.0	65•0	65.0	65 • 0	65 • 0	65.0	65.0	65.0	65.0
Α	75 • 4	81.2	87.9	86 • 5	84 • 1	85•3	87.6	87.1	81.2	79.0
D	84.2	90.2	96•3	95.2	93 • 4	93.2	95 • 1	95.0	86.8	84.7
OASPL	91.0	98•5	103.3	102.8			100+9	101 - 1	92.8	90.2
PNL	94.0	99•5	103.9	102.7	102.0	101.5	103.0	102.8	95.4	93.7
PNLT	94.0	99.5	103.9	102.7	102.0	101.5	103.0	102.8	95.4	93.7

NOISE LEVEL FREQUENCY SPECTRA TIME HISTORY

VERTUL CH-47 C

UCTOBER 13, 1976

EVENT 35. 3 DEGREE APPROACH. CENTERLINE MIC. (SOFT SITE)

1/3 OCTAVE FREQUENCY BAND VS TIME (SECONDS)
(OB RE 20 MICRO PA)

BAND	-37.5	-31.0	-24.5	-18.0	-11.5	-5.0	0	1 • 0	1.5	8 • 0
17	81.2	84 • 1	83.9	82.8	87.0	86 • 6	88•6	87.5	89.5	89.2
18	80.9	84•4	80.2	79.2	81.5	93.3	87.9	83 • 6	81.9	85.9
19	83•5	86 • 5	82.7	81.6	86.3	88.8	85.6	88.0	87.9	81.8
20	86.6	87.0	81.5	83 • 8	87.2	91.2	92.7	96.3	96.2	73.2
21	87.0	84.9	76.8	83.0	85•9	80.3	97.3	99.5	99.2	68 • 3
22	86 • 6	83.7	68•9	83•8	83.7	80.9	96.0	97.7	96.8	74.0
23	83•9	83 • 8	69.8	78.8	75•6	86.3	90.9	91.4	90 • 4	80.8
24	78.7	82.5	70 • 5	71.9	68 • 5	89.9	90.0	95•3	94.9	81.6
25	74.2	77 • 7	71.7	65•1	77•9	87.0	93.5	93 • 4	92.1	79.3
98	77.5	78 • 0	70 • 4	68 • 5	84•3	80•5	88.2	89•5	88•7	73.3
27	73 • 3	75 • 1	66•8	72.0	81.7	82.6	87.8	85.0	83 • 8	74.5
28	73. 0	70.2	65 • 1	74.0	74.8	79.9	83.4	82•3	81.7	71.2
89	67 • 1	67.9	65•0	73.2	73 • 4	81 • 1	82.4	81 • 7	80.8	72.6
30	65 • 1	57 • 3	65•0	65•8	77 • 4	79.3	80.8	79 • U	78 • Ŭ	70 • 5
31	65•0	65.2	65•0	65•7	71.9	77.7	77.8	76.9	76-1	68 • 7
32	65•0	65•0	65∙0	66.2	71.5	76.2	76.0	74.9	74.6	70 • 1
33	65. 0	65.0	65+0	65•0	69 • 5	74 • 1	73.4	72.5	71.8	65•9
34	65.0	65.0	65•0	65•0	66•7	72.0	72.4	71 • 6	70 • 7	65•2
35	65.0	65.0	65 • 0	£5 ∗ 0	65 • 0	67•9	69 • 4	67.9	67 • 7	65.0
36	65.0	65.0	65+0	65.0	65.0	66.7	67.7	66•4	66 • 3	65.0
37	65.0	65.0	65 • 0	65.0	65•0	65.0	65.0	65•0	65•0	65.0
38	65.0	65.0	65•Q	65 • 0	65.0	65.0	65.0	65•0	65 • 0	65.0
39	65.0	65.0	65•0	65 • 0	65•0	65.0	65.0	65•0	65.0	65.0
40	65 • 0	65.0	65•0	65.0	65•0	65.0	65.0	65 • 0	65 0	65 ∙ 0
A	81.0	81.4	73 • 6	80 • 1	85.2	90.2	93.7	94.4	93 • 4	81 • 4
D	88.8	88.9	82.3	86.0	90•5	95 • 1	99.7	100 • ខ	100 • 1	87.3
OASPL	93 • 8	94.2	89.8	91 • 4	95•0	99.5	103.2	104.6	104 • 1	92.5
PNL	97 • 6	97.8	93 • 3	95•6	99.7	103.5	107.1	107-6	107.2	96.5
PNLT	97 • 6	97 • 8	93 • 3	95.6	101.3	103.5	107.1	107.6	107.2	96 • 5

TABLE 4-DI

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 2. O DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICHO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD DEV		
14	81.9	85•3	77.8	0. -			
15	76.5	79.4	73.5	81.5	1.8		
16	82.1	85.1	79.0	76.2	1 . 6		
17	84.6	87.5	82.2	81.8	1.7		
18	77.2	79.9	73.1	84.4	1.3		
19	79.9	82.9	76.1	76 • 8	1.9	270 (Microphone Relative to	. •
20	82.1	84.7	77.6	79.6	1.9	, 0,70	•
21	79.9	82.7	76.7	81.8	1.6	Microphone	Location
55	81 • 0	83.5	76.9	79.6	1.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
53	85.5	86.7	77.4	80.7	1.7	Relative to	Helicopter
24	82.7	86.5	77.8	81.6	2.3		, ,
25	81.8	85.7	76.6	82.1	2.3		
26	78 • 6	82.3	74.0	81.1	2.6		
27	75 • 6	79.0	71.3	78.0	2.3		
28	71.5	73.8	68.3	75.2	1 • B		
29	68 - 4	71.0	65.5	71.3	1.3		
30	65.9	67.8	63.7	68.2	1 • 4		
31	65.2	66.9	63.2	65.7	1 - 1		
32	67.8	69.3	65.8	64.9	1.4		
33	64.9	66.9	62.5	67•7 64•7	1.0		
34	63.1	68-4	59.6	62.5	1.2		
35	63 • 1	66.6	58.9		2.1		
36	61 - 1	63.2	59.2	62•3 61•0	9.6		
37	5 7 • 7	59.5	56.5	57.6	1.0		
38	5 5•5	56.6	55.0		•8		
39	55•0	55.0	55.0	55.4	• 5		
40	55 • 0	55.0	55.0	55•C	•0		
DBA	82 • 4	85.4	79.3	55.0	•0		
DBD	88.8	91.5	85.9	82•1 88•6	1 • 5		
OASPL	92.1	94.1	89.8	91.9	1 - 4		
PNL	96 • 1	98 • 5	93.2	95.9	1 • 1		
PNLT	96 • 6	98.6	94.0	96.4	1 • 3		
			~ · • · · ·	70 • 4	1.3		

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 3. 45 DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND V5 LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	91.2	93-1	88 • 2	91 • 0	1 - 4	
15	81-4	83.5	78.5	81-3	1.3	
16	86.7	88.0	83.8	86.6	1 • 3	
17	83.3	87 • 4	79.0	82.5	2.6	
18	79.8	83.9	75 • 5	79.3	2 • 1	1250
19	84.5	87 • 6	82.3	84.3	1 • 3	ARS° (Microphore Local Relative to Itelia
20	84.7	88 - 1	81.5	84-4	1 • 7	Marachara Loca
21	85.9	87.3	83 • 4	85.8	1.0	micropro. =
22	85 • 4	89.2	81 • 1	85 • 1	1 • 7	Relative to Iteli
23	86 • 5	88.8	83 • 5	86.3	1.5	, ice ia i i
24	85•9	88 • 5	82 • 5	85.7	1 • 6	
25	85 • 4	89.9	81 - 4	84.8	2.2	
26	82.2	87.6	79.1	81.5	2 • 3	
27	79 • 4	64 • 1	76 • 1	79.0	i•9	
28	76.6	79.8	73 • 5	76 • 4	1.5	
29	74 • 1	75•9	71.8	73.9	1 - 1	
30	71.7	74.4	69 • 4	71.5	1 • 3	
31	69.7	72.4	67.8	69.5	1.2	
38	71.0	73.4	68 • 4	70 • 8	1.2	
33	69.0	70. 8	67.2	68•9	1 - i	
34	66+2	68 • 4	64.3	66 • 1	1.2	
35	63 • 7	65.9	61.9	63•6	1 • 1	
36	62 • 4	65-1	60 • 2	62.2	1 - 1	
37	59 • 4	62 • 1	57.2	59.2	1 • 3	
38	56.7	59 • 3	55 • 1	56.5	1.2	
39	55.0	55 • 4	55.0	55.0	• 1	
40	55.0	55.0	55•0	55.0	•0	
DBA	86 • 4	59.6	84.3	86.2	1.3	
DBD	92.6	95.2	90 • 4	92.4	1.2	
OASPL	96 • 3	98•4	94.6	96.2	• 9	
PNL	99+6	102.3	97•7	99 • 4	1.2	
PNLT	99•6	108 • 3	97 • 7	99.4	1.2	

TAGLE H-VII.

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 4, 90 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENELGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	92.0	96.3	86.9	90+9	3.0
15	79.1	82.0	73.9	78 • 6	2.2
16	84 • 6	67.7	74.0	63•6	3 + 5
17	84 • 1	83.7	76.7	82.1	3.9
18	83 • 8	86.7	77 • 8	83•4	2.1
19	85•4	88.1	83.0	85•2	1.2
20	85•6	87 • 4	83 • 2	85•3	1 - 4
21	87 • 1	90.2	82 • 3	86•7	1.9
22	88 • 6	93.5	85 • 1	88 • 1	2.0
23	89.0	92.2	85.5	88 • 7	1 • 6
24	89.6	94.9	85 • 7	88•9	2.3
25	89.0	93.6	83.5	88 • 2	ន+5
26	85 - 6	90.2	80 • 3	85.0	5.5
27	82.5	86.5	78.5	82.0	2.0
28	78 • 9	84.4	74.5	78 • 2	2.2
29	74.9	79.6	71 + 5	74 - 4	1.9
30	72.9	77.9	68 - 1	72.3	2.2
31	71.2	74.6	67 - 1	70.8	1.9
32	71.2	74.0	68.2	70.9	1.7
33	69 • 3	72.6	66 • 3	69.0	1.7
34	66 • 7	69.2	63 • 1	66+5	1.4
35	64 - 6	67.9	61 • 6	64.3	1.4
36	61.7	63.8	59.8	61 • 6	• 9
37	59.0	60.7	57.8	58+9	-7
38	56 - 1	57.0	55.2	56 • 1	• 4
39	55 • 0	55.0	55+0	55.0	•0
40	55.0	55.0	55.0	55•0	•0
DBA	89.0	93.4	85+2	88 • 6	1.9
DBD	95.3	99.5	92.2	94.8	1.8
OASPL	98 • 4	101.7	96.2		1.5
PNL	102.0	105.6	99.2		1.7
PNLT	102.0	105.6	99.2		1.7

180°
(Microphore bosation
Felative to Helicopter)

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 5. 135 DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	92.8	94.4	91.7	92•8	• 7	
15	85.5	87.2	84 - 1	85.5	•8	
16	91 - 1			91.0	•8	
17	86.8			86.6	1.3	
18	86•6		83.6			- 0
19	87.5		84.6	87.2		/35"
20	88.0	90.9	84.5	87 • 7	1.9	1 1 1 00
21	87.8	91.6	84.6	87 • 4	1.9	Microphove Live
22	88.7	92.1	85.4	88.3	1 • 8	1350 (Microphova Lioc Relative to Heli
23	90.0			89.7		(Kelative to Mell
24	91.3			91.0		
25	89-9			89-4		
26	85.7			85.3		
27	83.7			83.3		
58	83.9		79.0			
29	81.6	85.7	76.7	80.9	2.5	
30	78 - 8	83.0	72.6	78 - 1	2.6	
31	77.6	80.2			1.9	
32	78.3	80.8	73.9		1.8	
33	77.0	80.2		76.6	1.9	
34	74.3	77.7			2.0	
35	72.3	76.0	68.7		1.9	
36	70.0	73.7	64.4		2.3	
37	67 • 3	71.0	63.3		2.2	
38	63 • 4	67-1		63.0	2.0	
39	59.3			58 • 6	2.3	
40	56.0			55.9	1.0	
DBA	91.6	93.5	88.4	91.3	1.5	
DBD	97 • 2	99.7	94.4	97.0	1.4	
OASPL		101.5			1.0	
PNL	105.0			104.8	1.3	
LIAT.				104.0	1.5	

107.7 101.9 104.9

PNLT 105.1

TABLE H-DI

5 FOOT HOVER TEST

1/3 OCTAVE NGISE LEVEL FREQUENCY SPEC RA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 6, 180 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
4.6	90 F			70. 4	
14	89.5	91.4	87.5	89 • 4	1 • 1
15	80 • 6	82 • 8	76.4	80 - 3	1 • 7
i 6	86 - 1	88•3	83 • 5	85.9	1 - 1
17	96 • 4	97.8	94.9	96.3	• 7
18	87.5	90 • 3	82.3	86.9	2.5
19	89.5	92.5	85 • 6	89•2	1.7
20	90 • 0	91.9	87 • 8	89.9	1.0
21	86.8	88.8	82 • 4	86.4	1.8
22	87 • 3	90•0	62 • 1	86.8	2.2
23	80 • 8	92 • 1	81.9	87.1	3.0
24	89.9	94.2	85•5	89.0	2.7
25	88.3	98 - 1	84-1	87.7	2.3
86	83.7	87.3	80.0	83.3	1.9
27	81 - 4	84.4	75.7	80.9	2.2
28	78.6	63.3	74.8	78 • 1	2.O
29	74.8	80.2	71.5	74.1	2.3
30	71.9	75.8	67 • 1	71.5	2 • 1
31	70 - 1	74.2	66.9	69.6	8.0
32	69.9	74.0	66.9	69.5	1.8
33	67.6	70-4	65.2	67.3	1 • 4
34	64.5	66.6	62.1	64-4	1 - 1
35	62 • 5	64.7	60 • 6	62.3	1 - 1
36	60.2	62.6	58 • 3	60.0	1 - 1
37	57.9	60.2	56 • 4	57.8	1.0
38	55 • 2	56 • 1	55.0	55.2	• 3
39	55+0	55.0	55.0	55.0	•0
40	55.0	55.0	55.0	55.0	.•0
DBA	88 • 6	92 • 1	84.9	88 - 1	2.0
DBD	95.1	98 • 1	92.4	94.8	1.7
OASPL	100.0	101.5	98.8	99.9	•8
PNL.	102.2	105.2	100 - 1	101.9	1.5
PNLT	102.2	105.2	100-1	101.9	1.5

90

Microphone Location
Relative to Helicopter

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 7. 225 DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	91.7	93.3	90.4	91 • 6	• 7
15	81.7	83.6	79.2	81.5	1.2
16	87.5	88.8	85.2	87 • 4	1.0
17	89+5	91-1	88.0	89 • 5	• 9
18	91 • 4	92.7	89.8	91.3	+8
19	93 • 2	95•0	90.9	93 • 1	•8
20	93 • 2	95 - 9	90.8	93.0	1 • 1
21	92 • 4	94.8	90.9	92.3	• 9
22	90 • 0	92.8	86.4	89.8	1.5
23	88 • 8	91-7	B3•5	88.5	1 • 8
24	87 • 9	90•5	82.8	87.6	1 • 7
25	85 • 9	88.9	80 • 4	85• 5	1.9
26	84 - 6	86.9	78.5	84.3	1 • 9
27	81.7	85-2	75 - 0	81.2	2 • 3
28	78 • 4	81.6	73.6	78•0	S • 0
29	75+6	78-0	71.3	75.3	1.6
30	72.0	76.6	68 • 5	71.6	1 • 8
31	70 • 6	74.5	67.8	70•3	1 • 5
32	71.6	75.8	68.9	71.3	1 • 5
33	70 • 4	73.3	67.2	70.3	1.2
34	69 • 8	73.2	65 • 4	69 • 4	1 • 9
35	67•9	70.0	64.8	67 - 7	1 - 4
36	66 • 3	68+9	63.8	66+1	1 • 4
37	64.9	67•5	63.0	64.7	1 • 3
38	60 • 7	62 • 4	59 • 1	60•6	• 9
39	56•9	58•7	55.4	56.8	•9
40	55 • 0	55•0	55.0	55•0	•0
DBA	88•7	90 • 8	85•0	88.5	1 - 3
DBD	96 • 0	98 • 4	93+8	95.9	1 • 0
OASPL	101.0	103.0	100 • 1	100.9	• 7
PNL	103.0	105.3	101.3	102.9	• 9
PNLT	103+0	105.3	101.3	102.9	• 9

(Microphore Location Relative to Helicopter)

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C'

OCTOBER 13, 1976

EVENT 8, 270 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
iā	97.2	97.9	96.4	97.2	- 4
15	85 • 5	86.7	84-0	85 • 4	8•
16	90 • 9	92.0	89.5	90.8	•7
17	81 - 3	85.0	75.0	80 • 4	2.8
18	83.7	85.7	79-8	83 • 5	1.2
19	86.1	88.0	83.2	85•9	1 - 1
20	88.4	89.9	86.2	88•3	• 7
21	87.3	89.3	85 • 4	87.2	1 - 1
22	86.8	88.6	84.8	86.7	•9
23	87.2	90 - 1	81.9	86.7	2.2
24	88 • 3	92.7	80.3	87-2	3.3
25	87.9	93 • 4	79.4	86.5	3 • 5
26	84.9	90 • 3	77.4	83.9	3 • 1
27	82.4	87 • 1	77.4	81 • 4	8.8
28	80.3	84.6	74.6	79•6	2.5
29	77 · 6	81.5	71.9	77•0	2.4
30	75.0	79.2	69.2	74-1	8.9
31	73.0	76.0	68•4	72.6	2.0
32	73.1	76.5	70.0	72.9	1.5
33	71.7	75.7	68•3	71 • 3	1.9
34	68.9	72.6	65•9	68•5	1.9
35	67.3	72.2	63.7	66∙∜	2.1
36	65 • 7	69.9	62.9	65•3	1.5
37	64.9	68.2	62.0	64.7	1 • 3
38	60 • 8	63 - 5	58 • 6	60•6	1 • 1
39	56 • 4	58 • 8	55.0	56•3	•9
40	55.0	55.0	55.0	55•0	•0
DBA	89 • 1	92 • 3	84-2	88.6	2.1
PBD	94.9	97.9	91.0	94.5	1.7
OASPL	99.5	101.2	97 • 8		• 9
PNL	102 • 1	105.2	97.9		1.8
PNLT	102.1	105.2	97•9	101+8	1 - 7

(Microphone Location)
Relative to Helicopter

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VELTUL CH-47 C

OCTOBER 13, 1976

EVENT 9, 315 DEGREES, MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	84.5	86+0	81-1	84 • 4	i • 2
15	81 -0	82.2	79.2	80.9	•9
16	87 • 4	88 • 4	85+4	87.3	• B
17	87•6	89.0	86.5	87.5	•6
18	82•6	85•4	79.4	82.3	1.5
19	85 • 7	88.2	82.9	85 • 4	1.3
80	84 • 4	86.9	81.8	84.2	1.5
81	84 • 6	87.2	81.1	84.3	1.7
82	83 • 8	87.0	80.0	83.3	2.1
23	84.2	86.9	81-1	83.9	1 • 7
24	85 • 3	87 • 4	81.8	85+0	1 • 8
25	84.3	87.2	80-8	84.0	1.8
26	81-1	83.5	77 • 5	80+8	1.5
27	78•7	81.7	74.8	7 8•5	1.5
28	74.2	76.7	70 • 1	73.9	1.8
8.8	68 • 4	70.9	64.7	68•0	1.7
30	64 • 8	67.9	61 - 1	64.4	1.3
31	64.9	68.0	60.7	64.5	2.0
32	67 • 2	70.2	63.3	66•9	1.9
33	65,6	68.3	61.5	65.2	1.9
34	62 • 8	64.8	59.3	62.5	1.5
35	61 • 8	63.5	58 • 3	61.6	1.4
36	63.9	65.8	61.0	63.6	1.5
37	60 • 8	62.1	58 • 9	60 • 7	1.0
36	58 • 2	59.9	56 • 1	58 • 0	1 - 1
39	55 • 1	55.7	55.0	55 • 1	• 2
40	55.0	55.0	55.0	55.0	•0
DBA	84.9	87.0	81.8	84.6	1 - 6
DBD	91.2	93.3	88.5	91.0	1.5
OASPL	95 • 4	97.0	93.8	95.3	1.0
PNL	98 • 5	100 • 4	95.8	98.3	1 - 4
PNLT	98.9	101.0	95.8	98.7	1.6

Merophore Lordon

(Merophore Lordon

Relative to the repair)

TABLE H-VIII 5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 10. O DEGREES. MICHOPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICHO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD Dev	
14	87 • 3	90•6	20 1			
15	76•7	80.8	78 • 1	86.0	3 • 8	
16	82.7	87.1	68 • 8	75 • 7	3.2	;
17	84 • 1	86.7	74.3	81.5	3 • 5	
18	79.8	84.5	78.5 73.6	83.6	2.2	
19	80.9	86.0	73.5	78 • 4	3 • 3	270° (Microphore Losaton) (Relative to Helcopter)
só	80 • 9	85.9		79 • 3	3.7	αn
21	80 • 7	85.7	70 · 8 73 · 4	79 • 3	4 - 5	/ marsham lastin
22	80.7	85.3	74.4		3.7	1 111/2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
23	82.0	85.7	75.8	79•7	3 • 1	Relative to Helcorting
24	83.4	87.5	76.6	81.2	2.7	Chestina 19 mines
25	83.2	87·2	75.2	82•5 82•2	8 • 8	
26	78 • 5	81-4	71.6	78•0	3.2	
27	75.3	78.6	70 • 1		2.4	
28	71.3	75.1	67.3	74•8	2•1	
29	67.7	71.2	62.8	70 • 7 67 • 0	2.3	
30	66 • 4	69.7	61.1	65•8	2.6	
31	64.9	67.2	60.8	64.4	2.5	
32	65.6		62.5	65+3	2.0 1.7	
33	63.5		59.6	63 • 1	S•0	
34	60 • 6		56.5	60 • 2	2.0	
35	59.0	62.1	56.2	58 • 6		
36	58 • 6	61.0	56.1	58.3	1 • 8 1 • 4	
37	56.0	57.9	55.0	56.0	•9	
38	55 • 1	55.5	55.0	55•!	•1	,
39	55.0	55.0	55.0	55.0	•0	
40	55.0	55.0	55.0	55.0	•0	
DBA	82.5	85.9	77.5	82.0	2.3	
DBD	88.9	92.2	83.8	88.3	2.4	
OASPL	92.9	55.8	88.3	92.4	2.1	
PNL	96 • 1	99.4	91.8	95.6	2.5	
PNLT	96 • 1	99.4	91.8	95.6	2.2	
			,	25.00	C • C	

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 2. O DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	84.8	86.0	32.8	84.8	•8
15	75.0	77 • 1	73.2	75.0	• 9
16	82.5	84-4	80 · B	82.4	• 9
17	91.4	92.5	90.5	91 • 4	• 6
18	93.0	93.9	92.2	93.0	- 4
19	90 • 3	91.5	88.6	90.2	• 7
20	88.7	90 • ₿	86 • 1	88 • 6	1.0
21	88.3	90.8	86.8	88.3	•8
22	89.0	91.7	87.1	88.9	1 • 1
23	88.0	89.6	85.0	87.9	1 • 1
24	86.3	88 • 6	82.9	86.1	1 • 4
25	85 • 5	87 • 9	82.6	85.3	1 • 3
26	83.3	8 6 • 8	81.0	83.1	i • 3
27	80.0	82 • 6	76.9	79.8	1.5
28	78.7	81.9	73.9	78.3	1.9
29	75.5	78 • 1	72.5	75.3	1 • 3
30	72.8	74-1	70.2	72.7	• 9
31	71.0	72 • 1	68.7	71.0	• 8
32	70.9	72.0	69•6	70•9	• 6
33	68 • 1	70.0	65.8	68.0	1.2
34	67.2	70 • 0	64.2	66.9	1.6
35	65.2	67 • 4	61.8	65.0	1.3
36	62•6	64.8	59.8	62 • 4	1.2
37	60 • 7	62 - 5	58•7	60•6	1.0
38	57 • 4	59 • 4	55.8	57.3	•9
39	55 • 1	55 • 4	55.0	55 • 1	- 1
40	55.0	55+0	55.0	55.0	• 0
DBA	87.3	89 - 6	85.8	87.2	•9
DBD	93.8	95•9	92.7	93.8	•8
OASPL	98•6	99.9	97 • 7	98•6	• 5
PNL	101.5	103-1	100.2	101 • 4	• 7
PNLT	101.5	103-1	100.2	101.4	-7

900
(Microphore Location
Relative to Helicopter)

TABLE H-VII

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 3, 45 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	88+3	89.7	86 - 5	8803	. g	
15	77 • 3	73.8	75.0	77.2	1.0	
16	83.5	85.6	80.7	83.3	1.3	
17	85•9	90.0	81 • 7	85.5	1.9	
18	87•0	88 • 9	85 • 3	86.9	1.0	
19	90 • 4	92.2	88.5	90 • 3	• 9	(Microphone Location Relative to Helicopter)
20	89•3	91.2	87 • 1	89.2	1.2	, , , , , , , , , , , , , , , , , , , ,
21	91 • 1	93•5	86.7	90 • 6	. 2 • 1	Minconline Location
88	38.7	92.5	84 - 1	88.2	2 • 1	Times of mone
23	87.9		83 • 3	87.2	2.4	Relative to Helicopter /
24	87 • 4		82.5	86 • 8	2 · 3	/
25	85 • 8	90 • B	81 - 1		8.5	
26	84.3		80.9	83•7	2 • 1	
27	81 • 1		77.9	80.8	1 • 5	
28	78.5		75.6	78 • 1	1 • 7	
29	76.3		71.2	75•7	2.2	
30	72.7		66.7	71.5	3 • 1	
31	72.0	78.6	64.9	70 • 4	3.7	
32	72.2		65.0	71 • 1	3 • 3	
33	69.6	74.8	62.7	68 • 6	2.9	
34	69.9	75.1	62.5	68 • 8	3 • 2	
35	66 • 6	69.7	60.2	65•8	2 • 8	
36	65 • 8	71.7	60 • 1	64 • 7	3.0	
37	63 • 4	66+0	58 • 5	62.9	2.3	
38	59.4	62.4	55.2	58 • 8	2.2	
39	55.6	57 • 1	55.0	55.5	• 6	
40	55 • 0	55.0	55.0	55•0	•0	
DBA	87 • 8	91.7	84 • 4	87.4	1 • 8	
DBD	94.5	98 • 1	91.0	94 • 1	1 • 8	
OASPL	98 • 4		95.7	98 • 1	1.5	
PNL	.01.9		98.2	101-5	8•0	
PNLT	102.2	106.7	98.2	101.6	2.2	

TABLE H-VIII

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 4. 90 DEGREES, MICHOPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	NIM	AVERAGE	DEV
14	92 • 4	8•66	91.3	92.4	•8
15	83.0	85.4	73.4	81.5	4.3
16	89 • 4	91.8	77 • 1	87 • 6	5 • 1
17	84.0	87.7	75 • O	82.3	4.3
18	81.0	85.3	74.3	80.2	2.6
19	84.4	87.3	81.3	84.1	1.7
20	85.6	88.3	83 • 4	85.3	1.5
21	85 • 4	88.9	80.9	84.8	2.5
\$5	87.2	89.9	82.0	86.6	2.4
23	88.5	92.3	81 • 7	87.5	3.2
24	88.5	91.9	81.8	87.8	2.8
25	86 • 8	89.7	78.2	86.0	2.9
26	85 • 5	89+1	76.1	84.6	3.2
27	80.0	84.3	71 • 4	79.2	3 - 1
28	74.6	76.8	68 • 5	74-1	2.1
29	73.2	76.4	66.9	72.5	2.7
30	71 • 3	75•7	63 • 8	70•5	8.5
31	69 • 4	72.5	62.9	68 • 7	2.6
32	68 • 8	71 • 1	63•9	68 • 4	1.8
33	64.9	67.5	59.8	64.5	2.3
34	63 • 8	66 • 7	58•9	63.3	2.2
3 5	62 - 1	64.3	57 • 6	61.6	2.2
36	61.5	64.0	57 • 7	61 - 1	1.9
37	62 • 4	66 • 1	56.9	61.5	3.0
38	58•3	61.2	55 • 1	57.9	1.9
39	55•2	56•3	55.0	55.2	• 4
40	55• 0	55.0	55.0	55.0	•0
DBA	87•5	90 • 4	80 • 5	87.0	2.5
DBD	93 • 8	96 • 6	87.9	93.3	2.3
JASPL	97 • 4	99•7	94.7	97 • 1	1.3
PNL	100 • 6	102.9	95.3	100.2	2.0
PNLT	100.9	104.0	95•6	100.5	1.9

(Microphone Localing Polative to Helington)

TABLE H-VIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

UERTOL CH-47 C

OCTOBER 13, 1976

EVENT 5. 135 DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	84 • 6	87 • 8	79•7		1.8	
15	81.6	83 • 4	79•2	81-5	1 .0	
16	88•6	90•0	86.9		•8	
17	85 • 2	87•7	83.0	85•1	1.2	
18	82.5	88 • 2	77.7		2.7	315° (Microphone Location Relative to Helicopter
19	82 • 8	85•1	79 • 1	82.5	1.8	3/3
20	83.2	87 • 4	78.2		1.9	· / · · · · · · · · · · · · · · · · · ·
21	83 - 7	86 • 1	81 • 1	83.5	1.3	Mirrophone Location
22	83.0	85 • 1	78 • 1	82•7	1 • 8	
23	85 • 0	89 • 6	81.0	84.5	2.0	Relative to Helicopter
24	85 • 5	88•6	82 - 1	85 • 1	1 • 9	
25.	84.5	87 • 4	81 - 1	84 • 1	1 +8	
26	82 • 3	85.6	78 • 6	81.9	1.8	
27	77.7	81.3	75 - 1	77 • 4	1.7	
28	74 • 6	78.5	71.5	74.2	1 • 8	
29	71.1	73.0	68.7	70 • 8	1-4	
30	69.0	71.9	66 • 1	68 • 8	1.5	
31	67 • 3	69.9	64.2	67 • 1	1 • 4	
32	67 • 8	70.7	65.5	67.5	1 - 4	
33	64.8	69 • 4	61.2	64.2	2.1	
34	63 • 5	66•6	60.2	63•1	1.8	
3 5	62 • 2	64.8	59.5	62.0	1.6	
36	64 • 8	67.2	62.0	64.5	1.6	
37	60 • 9	63 • 4	58 • 8	60 • 7	1.3	
38	58 • 1	60 • 4	56.4		1 - 1	
39	55 • 1	55.7	55.0		• 2	
40	55 • 0	55•0	55.0	55.0	•0	
DBA	85.0	87.6	82 • 6		1.5	
DBD	91.2	93.6	88 • 8		1.3	
OASPL	94 • 6	96.5	93.2		•8	
PNL	98 • 6	100.8	96 • 6		1.2	
PNLT	99 • 4	102.3	96 • 7		1 - 4	
. •						

TABLE H-VIL

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 6, 180 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DB RE 20 MICHO PA)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	92•3	93.9	91 • 3	92.2	•6	
15	83.0	84.3	80 • 9	83.0	•7	
16	89.3	90.7	87.7	89.3	• 7	
17	83 • 4	86.9	78.0	82.7	2.6	
18	85.9	89.5	80 • 6	85.2	2.5	
19	86 • 4	90 • 4	82.6	85.7	2.4	•
20	85 • 7	89.6	80 • 5	85 • 1	2.4	270° (11-resphere L Keister do
21	84.8	87.4	82.0	84.5	1 • 7	,
22	82 • 4	83.9	80.0	82.3	1 • 0	1 Muchanna 1
23	83.2	85 • 6	78.8	82.9	1.5	
24	83 • 6	85.6	80 • 6	83.3	1.8	Kostin to
25	81.9	84.8	77 • 8	81.4	2.0	
26	80 • 6	84.2	76.2	80.0	2.3	
27	77.6	80.7	73.5	77.2	2.0	
28	75•7	79.1	70 • 8	75•3	2.0	
29	72.7	75.9	69 • 1	72 • 4	1.6	
30	70 • 1	72.4	67 • 3	69∙战	1 • 5	
31	67.9	70.0	65 • 5	67 • 7	1 • 3	
32	69.0	70.8	66.7	68.9	1.2	
33	65 • 1	66 • 6	63+0	65•0	1 • 1	
34	64 • 0	65•7	61.7	63.9	1.0	
35	61.5	63.5	59 • 3	61 • 4	~ '9	
36	61 • 3	63.2	59 • 5		•8	
37	58 • 2	59•6	56•5	58 • 1	•8	
38	55.7	56.5	55.0	55 • 7	• 4	
39	55 • 0	55•0	55 • 0	55 • 0	•0	
40	\$5•0	55 • O	55•0	55+0	•0	
DBA	84.0	86•3	81.2	83•8	1.3	
DBD	90 • 4	91 • 8	88 • 1	90•3	•9	
OASPL	95.7	96•9	94+2	95•6	• 7	
PNL	97.9	99•7	95+3		• 9	
PNLT	98 • 1	99.9	95•4	98•0	• 9	

TABLE H-VI

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL PREJUENCY SPECINA

VERIOL CH-47 C

UCTOBER 13 1975

EVENT 7. 225 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND US LEVEL (AVE OVER 19 SECUNDS) (A4 ChOIM US En EC)

	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	92•2	93•3	91.3	92•2	• 5	
15	78•9	80 • 4	76 • 2	7 8•8	1 • 3	
16	85•5	87.0	32 • 3	85•3	1.5	
17	78•6	€4•0	73 • 1	77• 8	2.6	
18	81.9	83.9	79 • 8	81.8	1 • 0	
19	87 • 6	89•8	85•7	87.5	1 - 1	
20	84 • 4	86 • 3	81.6	84.2	1 • 3	
21	86•5	88•2	84.9		•8	
55	85•5	87•8	82.6	85-4	1.3	
23	86•8	88•9	83•2	86•5	1 • 5	•
24	87 • 4	90 • 1	84-1	87.2	1 • 4	
25	85.9	89•7	81+6	85+6	1 • 6	
26	84.5	87 • 6	80.8	84.2	1 - 4	
27	80.6	83.2	77.6	80 • 4	1 - 4	
28	78•9	81.5	76•5	78 • 8	1.0	
29	76.7	78•0	75.2	76.6	• 9	
30	72.9	74.9	70.8	72.8	1 - 1	
31	70 • 4	72.3	67.0	70.2	1.2	
32	70 • 8	72.5	65 • 0	70.5	1 • 6	
33	68 • 4	70•5	62.8	68 • 2	1.6	
34	66.7	67 • 8	62.6	66 • 5	1 - 1	
35	62.9	64.5	59 • 8	62.8	1.0	
36	61.1	62.2	58 - 8	61 - 1	• 8	
37	57 • 8	58•6	\$5•7	57.8	•6	
38	55•3	55.7	55.0	55•3	• 2	
39	55•0	55•0	55+0	55.0	•0	
40	55.0	55•Q	55 • 0	55•0	•O	
DBA	87.3	89.6	85 • 1		1.0	
DBD	93.2	95•6	91.0		1.0	
OASPL	96.7	98.3	95.0	96•6	• 7	
PNL	100 • 4	102.5	98.0	100.3	•9	
PNLT	100.4	102.5	98.0	100 • 3	•9	

ACCEPTANCE OF A CONTROL OF THE PARTY OF THE

Miscophoro Location Latitude to Helicophore

TABLE 11-VII

5 FOOT HOVER LEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

JERIOL CH-47 C

OCTOBER 13, 1976

EVENT 8, 270 DEGREES, MICHOPHOVE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE JVER 19 SECONDS)

(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
14	90+3	91 • 3	87-7	90 • 1	1.8
15	82.3	84.3	80.9	82.1	1.0
16	88.9	91 • 1	87.5	88•8	•9
17	78.2	81.8	74.3	77•7	2.1
18	84.5	87•7	81.7	84.2	1.5
19	83 • 7	88•0	78.9	83 • 1	5.5
20	84.2	85•8	80.8	83•9	1.6
21	84.2	86 • 3	81.4	84.0	1.3
22	83.7	85• 7	81 • 3	83.5	1 • 4
23	85 .7	88-4	81.9	85.2	2.0
24	86.2	89+3	82.7	85•8	1.8
25	85•5	88•8	80.5	85•0	2.0
26	83 • 1	87.0	79.3	82.7	1.8
27	79.9	83.3	77.0	79•6	1.6
28	77.2	80.5	74.2	ó•8	1 • 7
29	74.7	77.3	71.3	74.2	1.9
30	70•9	74.8	66.6	70 • 4	2.0
31	68 • 2	72.2	62.9	67.8	2.0
35	67.9	71.9	64 - 1	67.4	5.0
33	64 • 8	68 • 2	60.7	64.3	2 • 1
34	63 • 4	66-4	59.2	63.0	1.9
35	60 • 6	63.3	57.0	60.3	1 • 7
36	58•5	61 • 4	56.0	58.3	1 • 3
37	56.0	57.0	55.0	55.9	• 7
3 8	55•0	55.2	55.0	55•0	• 1
39	55 • O	55.0	55.0	55.0	• C
40	55 • C	55.0	55.0	55.0	•0
DBA	86.0	88.7	83.3	85.8	1.5
DBD	91.9	94.5	89.7	91.7	1 • 3
OASPL	95 • 6	97.7	94 • 1	95.5	1 - 1
PNL.	99•0	101.5	97.1	98.8	1.2
PNLT	99•0	101.5	97 • 1	98.8	1.2

180° (Microphone Lonation Relative to Helinopter)

TABLE H-VI

5 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERIOL CH-47 C

OCTOBER 13, 1976

EVENT 9, 315 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)

(DB RE 80 MICRO PA)

	ENERGY			ARITH.	STD
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV
				_	
14	89.8	90.8	88,•0	89.7	• 7
15	81 - 2	82 - 6	78.9	81=1	ع ء
16	88.0	89 - 1	86.2	88.0	•8
17	80.0	82•7	75.5	79•7	1 -8
18	82 • 8	86•7	76.8	82.2	2.4
19	86 • 4	89•7	80.3	86 • 1	1.9
20	86 • 8	89.9	82.2	86•4	1.8
21	87 • C	89.9	82.5	86•6	2.1
22	87 • 2	90 • 7	82.8	86.7	2.1
23	86•9	90 • 6	83.3	86.5	1.8
24	86 • 4	89•3	82.6	85•9	2.1
25	84.5	89.0	78.8	83.7	2.7
26	83.5	88 • 5	77.8	82.5	2.9
27	80 • 5	84.3	75.2	79.8	8•6
28	79.5	83.0	73.6	78 • 6	2.9
29	77.6	82.6	72.5	76.8	2.6
30	75 • 6	79.0	70.6	75.0	2.4
31	74.0	77.0	70.3	73.5	2.0
32	72.3	74+8	69 • 1	72.1	1.5
33	69.7	72.5	66.3	69-4	1.6
34	63 • 7	71.4	65.6	68 • 4	1.6
35	65 • 1	67.5	61.9	64.8	1.4
36	63.0	64 • 6	60.2	62.8	1.4
37	60 • 4	63.2	58.0	60.2	1.4
38	56.4	59•0	55.2	56 • 3	1.0
39	55.0	55.0	55.0	55.0	•0
40	55•0	55.0	55.0	55.0	•0
DBA	87.5	90.2	83.6	87.1	2.0
DBD	93.2	95 • 8	89.7	92.9	1.7
OASPL	96 • 7	99+1	94.6	96.5	1.3
PNL	100.7	103.3	97.5	100.4	1.7
PNLT	100.8	103.3	97.5	100.5	1.7
			- · ·	~~~~	

135°

(Microphorn Location
Relative to Helicopter)

TABLE H-VII

5 FOUR HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 10. O DEGREES. MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

	ENERGY			ARITH.	STD		
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV		
14	87.5	89 • 1	84.5	87.4	1 - 1		
15	74.4	76.6	70.8	74.2	1 • 4		
16	83 • 1	85 • 1	80.9	82.9	1 - 3		
17	95 • 1	96.6	91.5	94.9	1.6		
18	92 • 3	94.7	87.6	91.9	1.8	00°	
19	90 • 4	92.2	88.2	90.3	1.0	90° (Miscophore Relative to	
20	90 • 4	92.6	86.2	90 • 1	1.8	/ Manahara	Location
21	90 • 1	91 • 8	86.8	89.9	1 - 4	/ Militapheric	Ta octavion
22	89 • 4	91.7	84.4	89•9 89•0	1.9	(Delail 10 to	Holicapter
23	90 • 8	93 • 2	86.3	90 • 4	2.1	Melalin 18	The thirty of the state of the
24	8 • 0 •	93 • 6	85 • 4	89.4	2.7		
25	88•3		83.0	87.6	2.5		
26	85.5	88•5	81+3	85 • 1	1.9		
27	82.3	86 - 1	78.8	81.8	2.0		
28	81.5	84 • 1	78.5	81 - 1	1.8		
29	79.2	81.9	76.6	78.9	1.5		
30	76 • 3	79.3	73.4	75.9	1.8		
31	73.8	76.2	70.8	73.6	1.3		
32	73.2	75 • 1	69.8	73.0	1.3		
33	70 • B	72.8	67.0	70.5	1 • 6		
34	69 • 6	72.9	65.7	69.2	1.8		
35	67 • 1	69•3	63 • 1	66•8	1.6		
36	65 • 0	67.5	61.6	64.7	1.5		
37	62 • 8	64•৪	60.5	62+6	1.2		
38	59 • 1	60•8	55.9	58.9	1.3		
39	55• 5	56.6	55.0	55 • 4	•5		
40	55•0	55.0	55.0	55.0	•0		
DBA	90 • 0	92.3	87.0	89.7	1.7		
DBD	96 • 2	98 • 3	93.5	95.9	1.6		
OASPL	100 • 4	102.0	98.3	100.3	1.2		
PNL		106.0	100.9	103.7	1.4		
PNL		106.0	100.9		1.4		

TABLE H-VI

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTUBER 13, 1976

EVENT 15, 180 DEGREES. MICROPHONE 150 METERS WEST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD Dev	
14	87 • 3	90 • 4	83.7	86.8	2.2	6 0 ⁹
15	79 • 7	81 • 5	77.2	79.6	1.3	
16	85 • 3	87 • 0	82.8	85.2	1.2	
17	90 • 7	91 • 8	88.1	90.6	1.0	
18	87 • 9	90 • 0	83.6	87.3	2.5	
19	90 • 6	92·3	88.0	90•4	1 • 6	90° (Microphone Location Relative to Helicopter)
20	85 • 5	87·1	83.2	85•2	1 • 4	
21	80 • 3	82·5	77.3	80•2	1 • 2	
22	89 • 8	91·4	86.7	89•6	1 • 5	
23	95 • 1	97.2	91.5	94.8	1 • 7	(Keloliva 10 Memoliti)
24	96 • 0	98.7	92.0	95.7	1 • 8	
25	90 • 3	93.6	85.9	89.8	2 • 1	
26	88 • 7	91.4	82.8	88.1	2 • 5	
27	91.5	95.3	85.4	90 • 7	2 · 8	
28	85.6	88.8	77.9	84 • 6	3 · 1	
29	85.7	89.7	79.8	84 • 9	2 · 8	
30	84.4	88.5	77.1	83 • 5	2 · 8	
31	81.7	84.8	74.8	80.9	2.8	
32	80.2	83.3	74.3	79.6	2.5	
33	78.5	82.1	70.6	77.7	2.8	
34	75.8	79.2	67.6	75.2	2.5	
35	74.3	77.4	65.8	73.5	2.5	
36	72.4	75.9	63 • 4	71 • 4	3 • 2	
37	69.3	73.8	61 • 5	68 • 0	3 • 5	
38	65.7	71.4	56 • 8	63 • 7	4 • 1	
39	62.0	67.6	55 • 0	60 • 1	4 • 1	
40 DBA DBD OASPL PNL	58.7 95.1 100.2 102.3 108.2	64.6 97.9 102.8 104.5	55.0 90.0 95.7 98.7 103.3	57.6 94.6 99.9 101.9	2.9 2.1 1.9 1.8 2.1	
PNLT	108.2	111.1	103.3	107.8	2.1	

TABLE H-VIL

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 15, 180 DEGREES, MICROPHONE 150 METERS EAST

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS) (DS RE 20 MICRO PA)

BAND	ENERGY AVERAGE	MAX	MIN	ARITH. AVERAGE	STD Dev
DHIVD	AVENAGE	PAA	1.7 T !A	HVERHUE)EV
14	61.3	85 • 1	72.6	80.2	3 • 3
15	80 • 3	82.5	77.6	80 • 1	1 • 6
16	86.9	88.7	85.0	86.8	1.2
17	77.5	80.2	72.9	77.1	1 • 7
18	83.6	86.2	81.4	83 • 4	1 • 3
19	80 • 1	81.9	77.0	79.9	1 • 4
20	73.1	76.3	69.7	72.8	1 • 7
21	73.0	75.2	71 - 1	72.9	1 • 0
55	81 -0	85+3	78.4	80.6	1 • 7
23	85 • 5	90 • 5	82.3	85.0	S • 0
24	86.2	92 - 1	81.0	85•5	2 • 3
25	80 - 1	86.0	72.8	79.2	5.9
26	81 • 3	86•6	77.2	80.8	1 • 9
27	82 • 1	86•9	75•6	31.6	2 • 3
28	80 • 1	88•9	74.6	79•7	2 • 1
89	78 . 8	81.2	73.3	7 8•5	1.9
30	77.3	78.9	71.8	77.0	1 • 8
31	75•6	77•6	70 • 6	75•3	1 • 8
32	73.6	75.1	71.3	73 • 4	1 • 0
33	70.3	71.8	67•8	70.2	1 • 0
34	67.5	68•9	66•4	67.5	• 6
35	63.7	65-1	68.8	63•7	• 8
36	61.9	63.9	59•9	61.7	1.5
37	58 • 3	60•0	56 • 6	58•2	•9
38	55 • 1	55.7	55.0	55 • 1	•2
39	55.0	55•0	55•0	55•0	•0
40	55.0	55 • 0	55•0	5 5•0	•0
DBA	87 • 2	91.3	82.5	86•8	1 • 7
DBD	91.6	95 • 7	88 • 1	91.3	1 • 5
OASPL	93 • 6	97.4	90 • 8	93.3	1 • 4
PNL	99.0	103.0	95•9	98•8	1 • 4
PNI.T	99.0	103.0	95•9	98.8	1 - 4

270°
(Microphore Locate)
(Relative to Helicophi)

TABLE H-VII

500 FOUL HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTOL CH-47 C

OCTOBER 13, 1976

EVENT 15, O DEGREES, CENTERLINE MICROPHONE (HARD SITE)

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)
(DB RE 20 MICRO PA)

						· ·
	ENERGY			ARITH.	STD	
BAND	AVERAGE	MAX	MIN	AVERAGE	DEV	
14	98.0	98 • 8	96.2	98•0	•9	
15	79.7	81.0	78.2	79.6	• 7	
1,6	84.2	86 - 1	82.5	84 • 1	•9	11-1. + 1 . 4 .
17	77 • 7		69.9	76.9	2.8	Helicopter Located Discretif Outsides
18	78 • 8		75•9		1 • 5	mandi Andia
19	71.9	74-1		71 • 4	2.0	DICESTIA ON COME
20	82.5		75.0	31 • 7	2.9	
21	83 • 5	86.6	76 • 4	82.9	2.5	
58	83 • 2	86.5	78.9	82.7	2 • 1	
23	80 • 1	84.5	76.5	79.6	1 • 9	
24	77•8	0.88	73 • 5	77.3	2.2	
25	80 • 8		76.8	80 • 5	1 • 7	
26	77 • 0	79.3	73.6	76.7	1 • 6	
27	77 • 8	80.6	73.7	77.5	1 • 1	
28	76•8	79.4	72.0	76 • 5	1 - 7	
29	75.5	78 • 1	70•5	75-2	1 • 8	
30	74.1	77.0	70 • 6	73.8	1.5	
31	71.8	72.9	69•0	71 • 6	1.3	
32	72.5	76.3	69•7		1.9	
33	69.2	70.2	67.0		1.0	
34	68.3	69.6	66•6		•9	
35	65.9	66.9	65.0		• 7	
36	65 • 1	65+2	65.0		•2	
37	65.0	65+0	65.0		•0	
38	65 • 0	65•0	65.0		•0	
39	65.0	65 • 0	65.0		•0	
40	65-0	65•0	65.0	65.0	•0	
DBA	83 • 8	85.5	80.0		1 - 3	
DBD	90 • 0	92•1	86.8		1.2	
OASPL	96 • 8	97.9	94.48		• 9	
PNL	97.6	99.3	94.7		1 • 1	
PNLT	97 • 8	100-4	94.7	97.6	1 • 4	

TABLE H-IVI

500 FOOT HOVER TEST

1/3 OCTAVE NOISE LEVEL FREQUENCY SPECTRA

VERTUL CH-47 C

OCTOBER 13, 1976

EVENT 15. O DEGREES. CENTERLINE MICROPHONE (SOFT SITE)

1/3 OCTAVE BAND VS LEVEL (AVE OVER 19 SECONDS)

(DB RE 20 MICRO PA)

BAND	ENERGY AVERAGE	'MAX	MIN	ARITH. AVERAGE	STD DEV
14	97.9	98•7	95•9	97•8	1 • 0
15	79.6	81.1	76-1	79.7	•9
16	83.5	85 • 4	82.0	83.4	1.0
17	79.0	88.2	72.4	78 • 4	2.6
18	80.0	83.3	76 • 1	79 • 6	1.8
19	70.9	73 • 8	65.2	70.0	2.8
20	81 - 1	84.2	74.3	80 • 1	3.1
21	83.7	88 • 1	78 • 4	82.9	2.7
22	82 • 8	86.6	79 - 1	82.4	1.9
23	80 • 4	848	76.8	79.9	2.0
24	78 • 3	83.0	72.1	77.5	2.7
25	81.5	85.7	76.0	81.0	2.1
26	77.2	79.3	73.2	76.9	1.7
27	78 + 3	80.9	74.9	78 - 1	1.4
28	77.3	79 • 4	72.8	77.1	1 • 7
29	75.6	77.5	71.0	75.3	1.8
30	74.2	76 • 1	70 • 1	73.9	1.6
31	71 • 6	72.6	68 • 4	71 - 4	1.3
32	72.4	74.8	63.9	72.0	1.7
33	68 • 3	69• 8	66 • 3	68•2	1.0
34	66.7	68∙3	65 - 1	66+5	1.0
35	65.2	65•5	65.0	65.2	• 4
36	65.0	65•0	65.0	65•0	- 1
37	65.0	65.0	65.0	65.0	• O
38	65.0	65•0	65•0	65.0	•0
39	65.0	65•0	65•0	65.0	•0
40	65.0	65•0	65.0	65.0	•0
DBA	84 • 0	86•4	80 • 8	83.8	1.5
DBD	89 • 4	92 • 1	86.7	89.2	1.4
OASPL	96 • 1	97•6	94•0	95.9	1 + 1
PNL	97 • 6	100 • 4	95•0	97.4	1 • 3
PNLT	98 - 0	101-4	95•2	97.8	1 • 5

Helicopter Boestes)
Directly Overhead

TROLE H-VIII Halicopten Noise Level Data VERTOL CH-47C OCTOBER 13, 1976

		. MAX RMS	Noise Lev	l- 1BA re ac	n Pa	
HELICOPTER OPERATION	RUN NUMBER	OFFSET 70	OFFSET TO THE WEST		MICROPHONE OFFSET TO THE EAST CENTER LINE 150M	
5Ft. Hover O°	2	86.5 85.5 (270°)			91.0	
5FL. Hover 45°	3	89.3 (225°)			92.0 (45°)	
5Ft. HOVER	4	93.0			99.0	
5 Ft. HOVER 135°	5	94.5	4		90.8	
5Ft Hover 180°	6	93.0	74	474	86.0 (270°) 89.3	
5 Ft Hover 225°	7	93.5 (45°)	2	Q	89.3 (225°)	
5 Ft Hover 270°	8	92.3	X	- Na	93.0 (180°)	
5 Pt. H-0 V ER 3 15°	9	88.3 (315°)			92.0 (135°)	
500Ft HOVER	15	97.5				
5 00 Ft HOVER	16	89.8			88.8	

TABLE H-VIII Halicopter Noise Level Data VERTOL CH 47 C OCTOBER 13, 1976

HELI COPTER	RUN	MICRO PHONE OFFSHT TO THE WEST		MICROPHONE	
OPERATION	NUNBER	150M	CENTER LINE	OFFET TO	THE EAST
		OVER Existing	OVER	OVER EXISTIN	9 OVER Existing
3°	32	89.0	92.8		Surface
GLIDE	34	86.3	99.0	92.5	88.5
JLOPE	35	89.5	96.5		85.5
			10.5	95.0	85.0
6°	12	940			
GLIDE	13	70.8	97.3	968	88.3
SLOPE	_	86.3	98.0	99.0	88.0
	14	87.8	97.0	96.0	87.3
90					
GLIDE	19	85.5	96.0	95.8	86.3
SLOPE	20	88.8	96.0	95.8	85.0
	21	90.0	96.8	96.5	85.3
GO KT LEVEL	17	86.0	90.0	90.3	87.5
FLYOVER	18	86.3	91.0	91.5	86.0
10010					
LEVEL	22	84.0	88.3	89.8	87.3
FLYOVER	23	81.3	84.8	83.6	80.0
LEVEL	30	85.5	89.5	90.3	87.0
FLY OVER	3/	87.9	87.8	88.0	90.0

TABLE H-VIII Helicopter Noise Level Data VERTOL CIT 47 C OCTOBER 13, 1976

Mar RMS Noise Level - BBA me som Pa

	<u> </u>	MAY KMS Noise Level - dBH AR 20 A. Fa			
HELI COPTER	RUN	OFFSET TO THE WEST		MICROPHONE OFFSET TO THE EAST	
oper ation'	NUMBER	150M	CENTER LINE	CENTER LINE	1 150M
		OVER Eusting Surface	Plywood	OVER Existing Surface	OVER Existing
141 KT	24	90.0	91.3	71.5	90.0
LEVEL	25	94.0	95.3	93.5	91.5
FLYOVER	26	92.3	94.9	94.0	95.0
	2)	94.5	96.3	97.8	97.5
150 KT	28	97.8	99.3	98.0	99.0
LEVEL	-0		ر.، ،		
FLYOVER	29	98.0	95.5	99.3	98.5
LEVEL					
FLYOVER					,
					
LEVEL					
FLYOVER					Į.
					
} -~ -					
4 4.55.	}				
LEVEL					
FLYOVER					
					-
LEVEL					
FAY OVER					
<u> </u>				 	

NO DATA

75 METERS WEST OF CENTER LINE

NOISE LEVEL TIME HISTORIES VERTOL CH-47C HELICOPTER 90° HOVER 5 FT.

RUN 4

TABLE H-IX

The second secon

NO DATA

75 METERS WEST OF CENTER LINE

NOISE LEVEL TIME HISTORIES VERTOL CH-47C HELICOPTER 180' HOVER - 5 FT.

NOISE LEVEL TIME HISTORIES

VERTOL CH- 47 C HELICOPTER

3° APPROACH RUN 34

DIRECTLY UNDER FLIGHT PATH

NOISE LEVEL TIME HISTORIES VERTOL CH. 47C HELICOPTER 6. APPROACH

LEVEL TIME HISTORIES HELICOPTER VERTOL APPROACH

RUN ZO

NOISE LEVEL TIME HISTORIES
VERTOL CH-47C HELICOPTER
LEVEL FLYOVER - GO KTS

NOISE LEVEL TIME HISTORIES

VERTOL CH-47 C HELICOPTER

LEVEL FLYOYER - 100 KTS RUN 22

NOISE LEVEL TIME HISTORIES

VERTOL CH-47 C HELICOPTER

LEVEL FLYOVER - 126 KTS RUN 36

NOISE LEVEL TIME HISTORIES VERTOL CH - 47 C HELICOPTER LEVEL FLYOVER - 141 KTS

NOISE LEVEL TIME HISTORIES VERTOL CH-47C HELICOPTER LEVEL FLYOVER - 150 KTS

RUN ZB

SUPPLEMENTARY

INFORMATION

1. Report No.	Sovernment Accession to.	3. Recipient's Catalog No.
YAA-RD-77-57, II		
4. Tille and Suptition Helicopter No	S. Report Date April 1977	
DATA REPORT Volume II. Hel Bell 212 (UH-IN), Sikorsky S-	6. Performing Organization Cada ARD-550	
"Skycrane" (CH-54B), Boeing V M. Avihor's) H. C. True, E. J. Rickle	9. Performing Organization Report No.	
P. Felforming Organization Name and Address Department of Transport	10. Work Unit No. (TRAIS)	
Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591		11. Contract or Grant No.
		13. Type of Report and Period Covered
2. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration		Data Report
Systems Research and De Washington, D.C. 20	-	14. Sponsoring Agency Code
5. Supplementary Noies		

Refer to the main text in Volume I which describes the test program and data presentation format.

16. Abstract

This data report contains the measured noise levels obtained from an FAA helicopter Noise Test Program. The purpose of this test program was to provide a data base for a possible helicopter noise certification rule. The noise data presented in this two volume report is primarily intended as a means to disseminate the available information. Only the measured data is presented in this report. All FAA/DOT data analysis and comparisons will be presented in a later report which is scheduled for distribution in July, 1977.

The eight helicopters tested during this Helicopter Noise Test Program constituted a wide range of gross weights and included participation from several helicopter manufacturers. The helicopter models used in this test program were the Hughes 300C, Hughes 500C, Bell 47-G, Bell 206-L, Eell 212 (UH-IN), Sikorsky S-61 (SH-3A), Sikorsky S-64 "Skycrane" (CH-54B), and Boeing Vertol "Chinook" CH-17C Volume I contains the measured noise levels obtained from the first four helicopters while Volume II contains the data from the remaining four.

The test procedure for each helicopter consisted of obtaining noise data during hover, level flyover, and approach conditions. The data presented in this report consists of time histories, 1/3-octave band spectra, EPNL, PNL, dBA, dBD and OASPL noise levels.

17. Key Words	18. Distribution Statement			
Helicopter Noise Levels; Hover; Level Flyover; Approach; Glide Slope; Time Histories; EPNL, PNL, dBA, dBD and OASPL.		This document is available to the public through the Mational Tech-nical Information Service Springfield, Virginia 22151		
19. Security Classif, (of this report)	20. Security Classif. (of this page)		21. No. of Pages	22. Price
UNCLASSIFIED	UNCLAS	SIFIED	417	