a)

- x_1 = the number of Collegiate backpacks produced in a week. Must be >= 0 backpacks
- x_2 = the number of Mini backpacks produced in a week. Must be >= 0 backpacks
- b) Maximize: $Z = 32x_1 + 24x_2$

c)

- Fabric in square feet: $3x_1 + 2x_2 \le 5000$ sq ft of material
- Labor in minutes $45x_1 + 40x_2 \le 84,000$ minutes total
- Sales upper bounds:
 - \circ $x_1 \le 1000 \text{ dollars}$
 - \circ X₂ <= 1200 dollars
- Subject to: x_1 and $x_2 \ge 0$ backpacks

d)

- Maximize: $Z = 32x_1 + 24x_2$
- Subject to:
 - \circ 3x₁ +2x₂ <= 5000
 - \circ 45 x_1 + 40 x_2 <= 84,000
 - \circ $x_1 \le 1000$
 - o x₂ <= 1200
 - $\circ x_1, x_2 >= 0$

2.)

a)

- x_{1L} = large product
- x_{2M} = medium product
- x_{3S} = small product
- All $x_i >= 0$
- Where alpha is the fraction of each plant's capacity used for the product
- Plant capacities:
 - \circ c₁ = 750 units/day
 - \circ c₂ = 900 units/day
 - \circ c₃ = 450 units/day

- Plant storage:
 - o $b_1 = 13,000 \text{ sq ft/day}$
 - o $b_2 = 12,000 \text{ sq ft/day}$
 - o $b_3 = 5000 \text{ sq ft/day}$
- Storage per-unit
 - o Large = 20 sq ft
 - o Medium = 15 sq ft
 - o Small = 12 sq ft
- Demand caps
 - Large = 900 units/day
 - Medium = 1200 units/day
 - o Small = 750 units/day
- b)
- Maximize: $Z = 420(x_{1L} + x_{2L} + x_{3L}) + 360(x_{1M} + x_{2M} + x_{3M}) + 300(x_{1S} + x_{2S} + x_{3S})$
- Constraints:
 - \circ $x_{1L} + x_{1M} + x_{1S} = 750$ alpha

 - $x_{3L} + x_{3M} + x_{3S} = 450$ alpha
- Storage limits per plant:
 - O Plant 1: $20_{x1L} + 15_{x1M} + 12_{x1S} \le 13,000$
 - \circ Plant 2: $20_{x2L} + 15_{x2M} + 12_{x2S} \le 12,000$
 - \circ Plant 3: $20_{x3L} + 15_{x3M} + 12_{x3S} <= 5000$
- Market limits or daily sales caps:
 - o Large: $x_{1L} + x_{1M} + x_{1S} \le 900$
 - \circ Medium: $x_{2L} + x_{2M} + x_{2S} \le 1200$
 - o Small: $x_{3L} + x_{3M} + x_{3S} \le 750$
- $x_{ij} \ge 0$; Where i = all plants, j = all unit sizes
- alpha must be between 0 and 100% (0 <= alpha <= 1)