A type system for deadlock freedom in the linear π -calculus

Un système de types pour prévenir les interblocages dans le π -calcul linéaire

Luca Padovani - Département d'Informatique - Turin

Processus communicants

Proprietés

- absence d'erreurs de communication
- absence d'interblocages
- vivacité

Méthode

• système de types

Exemple


```
while true do
  send(a, state)
  state' := receive(b)
  state := update(state, state')
```

Difficile à traiter par les systèmes de types actuels

- itération
- reseaux cyclique
- plusieurs canaux

Sommaire

- **1** Le π -calcul linéaire
- 2 Prévention des interblocages
- 3 Autres proprietés et problèmes
- **4** Conclusion

Sommaire

- **1** Le π -calcul linéaire
- 2 Prévention des interblocages
- 3 Autres proprietés et problèmes
- 4 Conclusion

Qu'est-ce que c'est le π -calcul linéaire?

$$id \equiv \lambda x.x$$

$$*id?(x, c).c!\langle x\rangle$$

 Kobayashi, Pierce, Turner, Linearity and the pi-calculus, TOPLAS 1999

Qu'est-ce que c'est le π -calcul linéaire?

$$id \equiv \lambda x.x$$

 Kobayashi, Pierce, Turner, Linearity and the pi-calculus, TOPLAS 1999

Pour quoi le π -calcul linéaire?

"communications on linear channels [. . .] account for up to 50% of communications in a typical program"

Kobayashi, Pierce, Turner 1999

Pour quoi le π -calcul linéaire?

"communications on linear channels [. . .] account for up to 50% of communications in a typical program"

Kobayashi, Pierce, Turner 1999

Canaux "linéarisés" vs canaux linéaires

$$a!\langle 3 \rangle . a!\langle 4 \rangle . . .$$
 $(\nu b)a!\langle 3, b \rangle . (\nu c)b!\langle 4, c \rangle . . .$

- Kobayashi, Type systems for concurrent programs, 2002
- Dardha, Giachino, Sangiorgi, **Session types revisited**, 2012

Théorème (Kobayashi, Pierce, Turner, 1999)

Dans un processus bien typé, chaque canal linéaire est utilisé pour une communication au plus une fois

Théorème (Kobayashi, Pierce, Turner, 1999)

Dans un processus bien typé, chaque canal linéaire est utilisé pour une communication au plus une fois

$$a?(x).b!\langle x \rangle \mid b?(y).a!\langle y \rangle$$

Théorème (Kobayashi, Pierce, Turner, 1999)

Dans un processus bien typé, chaque canal linéaire est utilisé pour une communication au plus une fois

```
![int] ?[int]
a?(x).b!\langle x\rangle \mid b?(y).a!\langle y\rangle
?[int] ![int]
```

- © le processus est bien typé (a et b sont linéaires)
- © aucune communication possible

Théorème (Kobayashi, Pierce, Turner, 1999)

Dans un processus bien typé, chaque canal linéaire est utilisé pour une communication au plus une fois **exactement une fois**

```
![int] ?[int]
a?(x).b!\langle x\rangle \mid b?(y).a!\langle y\rangle
?[int] ![int]
```

- © le processus est bien typé (a et b sont linéaires)
- © aucune communication possible

Sommaire

- \bullet Le π -calcul linéaire
- Prévention des interblocages
- 3 Autres proprietés et problèmes
- 4 Conclusion

Stratégie

- 1 associer à chaque canal un numéro⇒ le numéro fait partie du type du canal
- verifier que les canaux soient utilisés en ordre ⇒ selon le numéro associé

$$a ?(x).b !\langle x \rangle | b ?(y).a !\langle y \rangle$$

Stratégie

- 1 associer à chaque canal un numéro⇒ le numéro fait partie du type du canal
- verifier que les canaux soient utilisés en ordre ⇒ selon le numéro associé

$$a^m?(x).b^n!\langle x\rangle \mid b^n?(y).a^m!\langle y\rangle$$

Stratégie

- 1 associer à chaque canal un numéro⇒ le numéro fait partie du type du canal
- verifier que les canaux soient utilisés en ordre
 ⇒ selon le numéro associé

$$a^{m}\widehat{?(x).b^{n}}!\langle x\rangle \mid b^{n}\widehat{?(y).a^{m}}!\langle y\rangle$$

La plupart des processus récursifs sont mal typés

$$*s?(a^m).a^m?(x,c^n).s!\langle c^n\rangle$$

La plupart des processus récursifs sont mal typés

types différents
$$(m < n)$$

* $s?(a^m).a^m?(x, c^n).s!\langle c^n \rangle$
même type $(m = n)$

Renoncer à la linearité

$$\mu\alpha$$
.?[int]. α

$$*s?(a).a?(x).s!\langle a \rangle$$

 $\mu\alpha$.?[int]. α

Usages

- Kobayashi, Information & Computation, 2002
- Kobayashi, Acta Informatica, 2005
- Kobayashi, CONCUR 2006

Types de session

- Dezani et al. CONCUR 2008 + MSCS (à paraître)
- Padovani, PLACES 2013
- Vasconcelos et Vieira, COORDINATION 2013
- . . .

Renoncer à la linearité

- © processus récursifs bien typés...
- ② ...s'ils utilisent seulement **un** canal

Tous les processus recursifs qui utilisent deux (ou plus) canaux differents sont mal typés

$$a?(b^7).b?(x).c^8!\langle x\rangle$$
 $a?(b^7, c^8).b?(x).c!\langle x\rangle$

$$a?(b^7).b?(x).c^8!\langle x\rangle$$
 $a?(b^7, c^8).b?(x).c!\langle x\rangle$

Il faut regarder la continuation après la réception sur le canal a?(x).P

Il faut regarder la continuation après la réception sur le canal a?(x).P quelque canal linéaire libre $\Rightarrow a$ monomorphe

Il faut regarder la continuation après la réception sur le canal a?(x).P aucun canal linéaire libre $\Rightarrow a$ polymorphe

Il faut regarder la continuation après la réception sur le canal

$$a?(x).P$$
 aucun canal linéaire libre $\Rightarrow a$ polymorphe

Typage du π -calcul linéaire (Kobayashi, Pierce, Sangiorgi, 1999)

$$\frac{\vdash P \qquad \text{aucun canal linéaire libre en } P}{\vdash *a?(x).P}$$

Il faut regarder la continuation après la réception sur le canal

$$a?(x).P$$
 aucun canal linéaire libre $\Rightarrow a$ polymorphe

Typage du π -calcul linéaire (Kobayashi, Pierce, Sangiorgi, 1999)

$$\frac{\vdash P \qquad \text{aucun canal linéaire libre en } P}{\vdash *a?(x).P}$$

Conclusion

Tous les canaux utilisés par processus repliqués sont polymorphes

Le récepteur récursif

types différents
$$(m < n)$$

* $s?(a^m).a^m?(x,c).s!\langle c^n \rangle$

Le récepteur récursif

types différents
$$(m < n)$$
* $s?(a^m).a^m?(x,c).s!\langle c^n \rangle$
* s polymorphe

Exemple

Les résultats

Théorème (preservation du typage)

Si P est bien typé et $P \rightarrow Q$, alors Q est bien typé aussi

Théorème (absence d'interblocages)

Si P est bien typé et $P \rightarrow$, alors P n'a pas des canaux linéaires

Sommaire

- **1** Le π -calcul linéaire
- 2 Prévention des interblocages
- 3 Autres proprietés et problèmes
- 4 Conclusion

Expressivité

- © Problème ouvert
 - caracterisation des processus bien typés

Expressivité

- Problème ouvert
 - caracterisation des processus bien typés
- © Types "globaux"
 - Honda, Yoshida, Carbone, POPL 2008
 - Deniélou, Yoshida, ESOP 2012

Expressivité

- 2 Problème ouvert
 - caracterisation des processus bien typés
- © Types "globaux"
 - Honda, Yoshida, Carbone, POPL 2008
 - Deniélou, Yoshida, ESOP 2012

Théorème

Si un protocole d'interaction entre deux (ou plusieurs) participants peut être décrit par un type global, alors il est réalisable par un processus bien typé

De l'absence d'interblocages à la vivacité

Théorème (absence d'interblocages)

Si P est bien typé et $P \rightarrow$, alors P n'a pas des canaux linéaires

De l'absence d'interblocages à la vivacité

Théorème (absence d'interblocages)

Si P est bien typé et $P \rightarrow$, alors P n'a pas des canaux linéaires

Il faut renforcer le système de types

- assurer l'arrêt du processus Kobayashi, Sangiorgi, TOPLAS 2010
- limiter la mobilité des canaux
 Kobayashi, Information & Computation 2002
 Padovani, CSL-LICS 2014 (à paraître)

De l'absence d'interblocages à la vivacité

Théorème (absence d'interblocages)

Si P est bien typé et $P \rightarrow$, alors P n'a pas des canaux linéaires

Il faut renforcer le système de types

- assurer l'arrêt du processus Kobayashi, Sangiorgi, TOPLAS 2010
- limiter la mobilité des canaux
 Kobayashi, Information & Computation 2002
 Padovani, CSL-LICS 2014 (à paraître)

Théorème (vivacité)

Si *P* est bien typé et il a une émission/réception en attente sur un canal linéaire, alors tôt ou tard cette operation se termine

Les types sont très détaillés

*bob?(
$$x^0, y^2$$
).
 $(\nu a^3 b^5)(x^0?(\bar{x}^1).(\bar{x}^1!\langle a^3\rangle \mid y^2?(\bar{y}^3).(\bar{y}^3!\langle b^5\rangle \mid bob!\langle a^3, b^5\rangle)))$

- © Il y a un algorithme d'inférence
 - 1 les numéros deviennent des variables entières
 - 2 les regles de typage produisent des contraintes linéaires
 - 3 si les contraintes ont une solution, le processus est bien typé

Sommaire

- **1** Le π -calcul linéaire
- 2 Prévention des interblocages
- 3 Autres proprietés et problèmes
- 4 Conclusion

En conclusion

Système de types

- pour prévenir interblocages
- dans processus communicants
- sur canaux linéaires

Comparaison avec les systèmes de types actuels

- plus simple
- plus expressif

Bibliographie

 Padovani, Deadlock and lock freedom in the linear π-calculus, CSL-LICS 2014 (à paraître)

http://www.di.unito.it/~padovani