Übungen zu Zahlentheorie für TM, SS 2013

zusammengestellt von Johannes Morgenbesser

Übungsmodus: Ausarbeitung von 10 der Beispiele 1–38, 5 der Beispiele A–O und 15 der Beispiele i–xxxi.

- 1. Zeigen Sie, dass
 - (a) $p^2 + 2$ keine Primzahl ist für p > 3 prim,
 - (b) $n^4 + 4^n$ keine Primzahl ist für n > 1.
- 2. Zeigen Sie: Sind $a, b \in \mathbb{Z}^+$, sodass $a \mid b^2, b^2 \mid a^3, a^3 \mid b^4, \ldots$ gilt, dann folgt a = b.
- 3. Zeigen Sie, dass $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ für n>1keine ganze Zahl ist.
- 4. Zeigen Sie, dass für alle $n \ge 1$ gilt: (n! + 1, (n + 1)! + 1) = 1.
- 5. (Legendre) Zeigen Sie, dass die Zahl n! den Primfaktor p genau

$$\sum_{k \geqslant 1} \left\lfloor \frac{n}{p^k} \right\rfloor$$

Mal enthält.

- 6. Lösen Sie mit Hilfe der letzten Aufgabe:
 - (a) Auf wieviel Nullen endet (169!)?
 - (b) $\sqrt[n]{n!} \leqslant \prod_{p|n!} p^{\frac{1}{p-1}}$.
- 7. Sei p eine Primzahl. Zeigen Sie, dass jeder Primteiler der Mersenne-Zahl $2^p 1$ größer als p ist (Hinweis: Satz von Lagrange).
- 8. Zeigen Sie: Die Zahl $2^s 1$ ist höchstens dann eine (Mersennsche) Primzahl, wenn der Exponent s selbst eine Primzahl ist.
- 9. Zeigen Sie, dass es unendlich viele Primzahlen der Form 4k + 3 gibt.
- 10. Zeigen Sie, dass es unendlich viele Primzahlen der Form 4k + 1 gibt.
- 11. Bestimmen Sie alle Lösungen $p, q, r \in \mathbb{Z}^+$ der Gleichung

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1.$$

- 12. Sei $F_n = 2^{2^n} + 1$ die *n*-te Fermat Zahl $(n \ge 0)$.
 - (a) Zeigen Sie, dass je zwei Fermat Zahlen relativ prim zueinander sind.

- (b) Zeigen Sie, dass F_5 nicht prim ist (Hinweis: $F_5 = 20449^2 + 62264^2$).
- 13. (Fermat) Zeigen Sie, dass 21 nicht als Summe von Quadraten zweier rationaler Zahlen dargestellt werden kann.
- 14. Sei $\alpha\beta = \gamma^n$, wobei $\alpha, \beta, \gamma \in \mathbb{Z}[i]$ und α und β relativ prim zueinander sind. Zeigen Sie, dass Gaußsche Zahlen $\varepsilon \in \{\pm 1, \pm i\}$ und $\delta \in \mathbb{Z}[i]$ existieren, sodass $\alpha = \varepsilon \delta^n$.
- 15. Benützen Sie das vorherige Beispiel um zu zeigen, dass die einzigen Lösungen von $x^2+y^2=z^2$ mit (x,y)=1 und $x\equiv 0$ mod 2 gegeben sind durch

$$x = 2ab$$
, $y = a^2 - b^2$ und $z = a^2 + b^2$,

wobei $a, b \in \mathbb{Z}$ mit (a, b) = 1 (Hinweis: $x^2 + y^2 = (x + iy)(x - iy)$).

- 16. Zeigen Sie, dass jede Zahl $n \in \mathbb{Z}^+$ dargestellt werden kann als Summe von Zahlen der Form $n = 2^i 3^j$, wobei kein Summand einen anderen teilt.
- 17. Zeigen Sie, dass für $m, n \in \mathbb{Z}^+$ mit (m, n) = 1 folgendes gilt: $m^{\varphi(n)} + n^{\varphi(m)} \equiv 1 \mod mn$.
- 18. Berechnen Sie $2^{10^{10^{10}}} \mod 77$.
- 19. Sei $f(x) = x^{99} + x^{98} + \cdots + 1$. Wieviele Lösungen hat die Kongruenz $f(x) \equiv 0 \mod 101$?
- 20. Zeigen Sie, dass die Kongruenz $(x^2-2)(x^2-17)(x^2-34) \equiv 0 \mod p$ für jedes $p \in \mathbb{P}$ lösbar ist.
- 21. Sei p > 3, prim. Zeigen Sie, dass

$$\sum_{1 \leqslant a < p} a \equiv 0 \bmod p.$$

$$\left(\frac{a}{p}\right) = 1$$

- 22. Zeigen Sie: Es gibt unendlich viele Dreieckszahlen (d.h. ganze Zahlen von der Form $(n(n+1)/2 \text{ mit } n \in \mathbb{Z}^+)$, die gleichzeitig Quadratzahlen sind.
- 23. Zeigen Sie: Die Diophantische Gleichung $x^4-4y^4=z^2$ hat keine Lösung mit $x,y,z\in\mathbb{Z}^+.$
- 24. Berechnen Sie $\left(\frac{70}{97}\right)$, $\left(\frac{-14}{83}\right)$ und $\left(\frac{55}{89}\right)$.
- 25. (a) Berechnen Sie die Kettenbruchdarstellung von $\sqrt{3}$ und $\sqrt{5}$.
 - (b) Zeigen Sie, dass die Gleichung $x^2 3y^2 = -1$ nicht lösbar ist.
 - (c) Ist die Gleichung $x^2 5y^2 = -1$ lösbar?

- 26. Sei $n \in \mathbb{Z}^+$. Zeigen Sie, dass es ein Vielfaches $(\neq 0)$ von n gibt, welches in der Dezimaldarstellung nur Nuller und Einser enthält. Zeigen Sie weiters, dass 2^n ein Vielfaches besitzt, das nur aus Einser und Zweier besteht (Dezimaldarstellung).
- 27. Seien m_1, \ldots, m_l und a_1, \ldots, a_l ganze Zahlen. Zeigen Sie: Das Kongruenzsystem

$$x \equiv a_i \mod m_i, \quad 1 \leqslant i \leqslant l,$$

ist genau dann lösbar, wenn $a_i \equiv a_j \mod (m_i, m_j)$ für alle $1 \leq i, j \leq l$. Im Falle der Lösbarkeit ist die Lösung eindeutig modulo $kgV(m_1, \ldots, m_l)$.

- 28. Lösen Sie das folgende System simultaner Kongruenzen:
 - $x \equiv 1 \mod 4$
 - $2x \equiv 3 \mod 5$
 - $4x \equiv 5 \mod 7$
- 29. Zeigen Sie, dass $x^2 + 1 = y^3$ nur die Lösung (0,1) besitzt.
- 30. Angenommen es existiert eine Primitivwurzel modulo m. Zeigen Sie, dass es genau $\varphi(\varphi(m))$ inkongruente Primitivwurzeln modulo m gibt.
- 31. (Verallgemeinerung des Satzes von Wilson) Sei $m \in \mathbb{Z}^+$. Zeigen Sie, dass

$$\prod_{\substack{1 \le k \le m \\ (k,m)=1}} k \equiv \left\{ \begin{array}{l} -1 \bmod m, & \text{wenn } m \in \{1,2,4,p^n,2p^n \ (p \in \mathbb{P} \setminus \{2\}, n \in \mathbb{Z}^+)\} \\ 1 \bmod m, & \text{sonst.} \end{array} \right.$$

- 32. Zeigen Sie: Sei a ungerade. Dann ist die Kongruenz $x^2 \equiv a \mod 2$ immer lösbar, die Kongruenz $x^2 \equiv a \mod 4$ nur im Fall $a \equiv 1 \mod 4$ lösbar und die Kongruenz $x^2 \equiv a \mod 2^e$ für $e \geqslant 3$ nur im Fall $a \equiv 1 \mod 8$ lösbar.
- 33. Zeigen Sie, dass $2^{1019} 1$ keine (Mersenne-) Primzahl ist. (Hinweis: 2039 ist eine Primzahl).
- 34. Gibt es eine Quadratzahl der Form 55k 1?
- 35. Sei p>5prim. Zeigen Sie
:pist ein Faktor von $\underbrace{11\ldots 1}_{p-1}$ (Dezimaldarstellung).
- 36. Sei p eine Primzahl und $c \in \mathbb{Z}$. Zeigen Sie, dass es unendlich viele Zahlen $x \in \mathbb{Z}^+$ gibt, die folgende simultanen Kongruenzen lösen:

$$x \equiv c \mod p$$
, $x^x \equiv c \mod p$, $x^{x^x} \equiv c \mod p$, ...

- 37. Zeigen Sie, dass jede Zahl n > 169 als Summe von fünf (!) positiven (!) Quadratzahlen dargestellt werden kann.
- 38. In der Dezimaldarstellung hat 2²⁹ genau 9 verschiedene Ziffern. Welche Ziffer fehlt? (Hinweis: Ziffernsumme).

- (A) Sei $\mathbb{Z}[\omega] = \{a + b\omega : a, b \in \mathbb{Z}\}$ mit $\omega = \frac{1}{2}(-1 + i\sqrt{3})$.
 - (a) Zeigen Sie, dass $\mathbb{Z}[\omega]$ ein euklidischer Ring mit Normabbildung $N(a+b\omega)=a^2-ab+b^2$ ist.
 - (b) Berechne alle Einheiten von $\mathbb{Z}[\omega]$.
 - (c) Zeigen Sie, dass 3 in $\mathbb{Z}[\omega]$ durch $(1-\omega)^2$ teilbar ist.
- (B) Finden Sie alle $n \in \mathbb{Z}^+$ mit $\varphi(5n) = 5\varphi(n)$.
- (C) Bestimmen Sie 123456789101112...19781979 mod 1980.
- (D) Finden Sie alle Lösungen von $x^7 14x 2 \equiv 0 \mod 49$.
- (E) Zeigen Sie, dass es unendlich viele natürliche Zahlen gibt, die nicht als Summe von vier positiven (!) Quadraten dargestellt werden können.
- (F) Sei $p \in \mathbb{P}$ ungerade. Zeigen Sie, dass

$$\left(\frac{1\cdot 2}{p}\right) + \left(\frac{2\cdot 3}{p}\right) + \dots + \left(\frac{(p-2)(p-1)}{p}\right) = -1.$$

- (G) Zeigen Sie:
 - (a) Unter n+1 positiven ganzen Zahlen kleiner gleich 2n, gibt es zwei, sodass eine die andere teilt.
 - (b) Angenommen wir haben n positive ganze Zahlen kleiner gleich 2n, sodass das kleinste gemeinsame Vielfache von je zwei Zahlen größer ist als 2n. Dann sind alle Zahlen größer als 2n/3.
- (H) Zeigen Sie:
 - (a) Unter n+1 positiven ganzen Zahlen kleiner gleich 2n gibt es zwei Zahlen die relativ prim zueinander sind.
 - (b) Seien $1 \le a_1 < a_2 < \cdots < a_l \le n$ ganze Zahlen mit l > (n+2)/2. Zeigen Sie, dass es dann Indizes $1 \le i < j < k \le l$ gibt, sodass $a_i + a_j = a_k$.
- (I) Finden Sie die kleinste positive ganze Zahl, sodass $x \equiv 5 \mod 12$, $x \equiv 17 \mod 20$ und $x \equiv 23 \mod 42$.
- (J) Berechnen Sie die ersten acht Zahlen der Kettenbruchentwicklung von π sowie die ersten 5 Konvergenten $p_k/q_k, \, k=0,\ldots,4$. Zeigen Sie weiters, dass wenn $\frac{r}{s}$ eine rationale Zahl mit $\pi<\frac{r}{s}<22/7$ ist, s>106 sein muss.
- (K) Lösen Sie die folgenden quadratischen Kongruenzen:
 - (a) $x^2 + 5x + 3 \equiv 0 \mod 11$
 - (b) $x^2 + 7x + 4 \equiv 0 \mod 10$
 - (c) $2x^2 + 3x + 7 \equiv 0 \mod 12$

- (L) Zeigen Sie, dass es in einer vorgegebenen arithmetischen Progression beliebig viele aufeinanderfolgende zusammengesetzte natürliche Zahlen gibt (Hinweis: Faktorielle).
- (M) (a) Zeigen Sie, dass $\lfloor x \rfloor + \lfloor y \rfloor \leqslant \lfloor x + y \rfloor$ für alle $x, y \in \mathbb{R}$.
 - (b) Zeigen Sie mit Hilfe von (i) und Beispiel 5, dass n! das Produkt von n beliebigen aufeinanderfolgenden Zahlen teilt.
 - (c) Wie kann man (ii) mit Hilfe von Binomialkoeffizienten zeigen?
- (N) Finden Sie die kleinste positive ganze Zahl x, sodass x geteilt durch $10, 9, \ldots, 2$ die Reste $9, 8, \ldots, 1$ hat.
- (O) Sei n eine vollkommene Zahl ($\sum_{d|n} d = 2n$). Zeigen Sie, dass

$$\left(\sum_{\substack{(r,s)=1\\1\leqslant r< s\leqslant n\\r+s>n}}\frac{1}{rs}\right)\cdot\left(\sum_{d\mid n}\frac{1}{d}\right)=1.$$

Hinweis: Leiten Sie für den ersten Faktor eine allgemeine Formel für n > 1 her.

(i) Bestimmen Sie alle Lösungen x,y>0 des Gleichungssystems

$$\begin{cases} x + y = 5432 \\ \text{kgV}(x, y) = 223020. \end{cases}$$

(ii) Auf wieviel Nuller endet

$$\frac{500!}{200!}$$
?

(iii) Zeigen Sie, dass für alle a, b, c > 0

$$[a, b, c] = \frac{abc(a, b, c)}{(a, b)(b, c)(c, a)}.$$

- (iv) Bestimmen Sie die Lösungen der Gleichung $9x^2 24x + 13 \equiv 0 \mod 59$.
- (v) Sei q>2 eine Primzahl. Ist $p=2^q-1$ auch eine Primzahl, dann besitzt $x^2\equiv 3 \bmod p$ keine Lösungen.
- (vi) Sei p=4k+1 eine Primzahl. Zeigen Sie, dass für ungerade $d\mid k$ die Gleichung $x^2\equiv d \bmod p$ Lösungen besitzt.

- (vii) Komet A ist alle 5 Jahre von der Erde aus sichtbar und wurde das letzte Mal vor einem Jahr gesehen. Komet B ist alle 8 Jahre sichtbar und wurde das letzte Mal vor 2 Jahren gesehen. Komet C ist alle 11 Jahre sichtbar und wurde das letzte Mal vor 8 Jahren gesehen. In wie vielen Jahren können alle drei Kometen frühestens gleichzeitig gesehen werden? Und in wie vielen Jahren darauf das nächste Mal?
- (viii) Bestimmen Sie alle Lösungen von $\varphi(n) = 80$.
- (ix) Es sei p=2q+1 eine Primzahl, wobei q auch eine Primzahl ist. Weiters sei a eine ganze Zahl welche $a^3-a\not\equiv 0$ mod p erfüllt. Zeigen Sie, dass a oder -a eine Primitivwurzel modulo p ist.
- (x) Berechnen Sie $(2^n 1, 2^{n^k} + 1)$ für alle $k, n \ge 1$.
- (xi) Geben Sie alle Paare $(x, y) \in \mathbb{Z}^2$ an, sodass 40x + 64y = 56.
- (xii) Geben Sie eine Zahl kleiner oder gleich 1000 an, welche dividiert durch 7 Rest 4, dividiert durch 9 Rest 7 und dividiert durch 10 Rest 6 ergibt.
- (xiii) Was sind die beiden letzten Ziffern (in Basis 10) der Zahl 3^{3333} ?
- (xiv) Es sei p eine ungerade Primzahl und g_1 und g_2 zwei Primitivwurzeln modulo p. Zeigen Sie, dass g_1g_2 keine Primitivwurzel modulo p ist.
- (xv) Zeigen Sie, dass es unendlich viele Primzahlen der Form 6k-1 gibt.
- (xvi) Es sei p eine ungerade Primzahl. Berechnen Sie $\left(\frac{\frac{p+1}{2}}{p}\right)$ und $\left(\frac{\frac{p-1}{2}}{p}\right)$.
- (xvii) Es sei peine Primzahl und keine natürliche Zahl welche $0\leqslant k\leqslant p-1$ erfüllt. Zeigen Sie

$$k!(p-1-k)! \equiv (-1)^{k+1} \mod p.$$

- (xviii) Es seien p und q Primzahlen, sodass p = 2q + 1 und m sei eine natürliche Zahl welche $1 \le m \le p 2$ erfüllt. Zeigen Sie, dass m eine Primitivwurzel modulo p ist, genau dann wenn m ein quadratischer Nichtrest modulo p ist.
- (xix) Es seien a und b zwei teilerfremde natürliche Zahlen und $m, n, r, s \in \mathbb{Z}$, sodass $ms nr = \pm 1$. Berechnen Sie (ma + nb, ra + sb).
- (xx) Es seien a und b zwei teilerfremde natürliche Zahlen. Berechnen Sie $(a^3 b^3, a^2 b^2)$.
- (xxi) Angenommen p und 8p-1 sind Primzahlen. Kann 8p+1 auch prim sein?
- (xxii) Es sei n eine natürliche Zahl p eine Primzahl. Zeigen Sie, dass
 - $11 \mid n^{11} + 10n$,
 - $42 \mid n^7 7$,

- $p \mid n^{p^p} n$.
- (xxiii) Es seien m und n natürliche Zahlen. Zeigen $\varphi(m) \mid \varphi(n)$ falls $m \mid n$.
- (xxiv) Es sei n eine ungerade natürliche Zahl. Zeigen Sie, dass $n \mid 2^{n!} 1$.
- (xxv) Berechnen Sie den Exponenten von 2 in $(2^n 1)!$.
- (xxvi) Es sei F_n die n-te Fermat-Zahl. Zeigen Sie, dass alle Teiler von F_n von der Form $2^{n+1}k + 1$ sind.
- (xxvii) Sei p > 2 eine Primzahl. Zeigen Sie, dass genau dann jeder quadratische Nichtrest modulo p eine Primitivwurzel modulo p ist, wenn p eine Fermatsche Primzahl ist.
- (xxviii) Es sei n eine natürliche Zahl. Zeigen Sie, dass alle Primteiler von $4n^2 + 1$ von der Form 4k + 1 sind.
- (xxix) Berechnen Sie Näherungsbrüche der Kettenbruchentwicklung von $(1+\sqrt{5})/2$. ?????
- (xxx) Es sei $a/b = [a_0, a_1, \ldots, a_n]$ mit (a, b) = 1 und b > 0. Zeigen Sie: Ist n gerade, dann ist $x = -cq_{n-1}$ und $y = cp_{n-1}$ eine Lösung der Gleichung ax + by = c. Ist n ungerade, dann ist $x = cq_{n-1}$ und $y = -cp_{n-1}$ eine Lösung der Gleichung ax + by = c.
- (xxxi) Finden Sie eine Lösung der Gleichung 1255x + 177y = 1.