Laboratorijska vežba 6 – Data Mining

Cilj vežbe: Upoznavanje sa algoritmima za klasifikaciju, regresiju i klasterizaciju i normalizacija podataka korišćenjem Weka alata.

U okviru ove vežbe koristiće se:

- Weka Java biblioteka za mašinsko učenje,
- iris.arff podaci za klasterizaciju,
- housing.arff podaci za regresiju
- weather.numeric.arff podaci za klasterizaciju

Regresija

U ovom delu vežbe biće opisan način kreiranja različitih modela za regresiju korišćenjem Weka alata.

Domen problema

U okviru ovog dela razmatraće se problem cena nekretnina na tržištu. Potrebno je napraviti model koji određuje cenu nekretnine na osnovu njenih karakteristika. Svaka nakretnina opisana je sa 13 atributa u zavisnosti od kojih se određuje cena nekretnine.

Korišćeni podaci

Podaci koji se koriste u ovom primeru nalaze se u housing.arff fajlu. Postoji ukupno 506 primera.

Zadatak 1 – Linearna regresija

- 1. Pokrenuti Weku.
- 2. Po otvaranju grafičkog interfejsa, odabrati opciju Explorer.
- 3. Po otvaranju **Explorer** prozora, aktivna je **Preprocess** kartica za učitavanje i predprocesiranje podataka. Odabrati opciju **Open file** i izabrati housing.arff.
 - U delu **Attributes** su prikazani svi atributi. Po potrebi, neki od atributa koji postoji u originalnom skupu se može ukloniti.
 - U delu **Selected attributes** se prikazuju podaci o selektovanom atributu: koje su moguće vrednosti, koliko ima instanci sa svakom od mogućih vrednosti itd.
- 4. Odabrati karticu Classify.
- 5. U delu **Classifier**, odabrati opciju **Choose**. Ovom akcijom otvara se lista dostupnih algoritama.
- 6. Odabrati weka/classifiers/functions/LinearRegression
- 7. Klikom na ime algoritma otvaraju se podešavanja algoritma (Slika 1).

Elektronski fakultet Niš | Katedra za računarsto

Slika 1 - Podešavanja algoritma za linearnu regresiju

Performanse ovog algoritma mogu značajno da se smanje ukoliko u dataset-u postoje atributi koji su jako korelisani. Weka ima mogućnost da prepozna i eliminiše takve atribute postavljanjem eliminateColinearAttributes = True.

Pored toga, aktiviranjem opcije *attributeSelectionMethod* omogućava se da Weka sama izbaci one atribute koji ne utiču na izlaz jednačine iz računice.

- 8. Klikom na OK zatvaraju se podešavanja algoritma.
- 9. U delu Test options ostaviti podrazumevane vrednosti. Za testiranje se na taj način koristi cross-validation procedura.
- 10. Klikom na Start izvršava se algoritam. Rezultati algoritma prikazani su na slici 2.

Slika 2 - Rezultati linearne regresije

U okviru rezultata se može videti dobijena linearna jednačina i rezultat testiranja modela. Pored toga, mogu da se vide neki osnovni rezultati testiranja modela i sumarne informacije. Vrednost *Correlation coefficient* uklazuje na to koliko je model pouzdan. Ovaj koeficijent može da uzme vrednost u opsegu od 0-1. Što je rezultat bliže 1 to je model pouzdaniji.

Zadatak 2 – k-Nearest Neighbors

- 1. Ponoviti korake od 1-5 iz prethodnog zadatka.
- 2. Odabrati weka/classifiers/lazy/IBk i otvoriti podešavanja algorietma IBk Instance Based k

Slika 3 - IBk podešavanja algoritma

Parametar *k* određuje koliko će najbližih suseda trening set-a biti razmatrano za predikciju rezultata. Na primer, ukoliko je K = 1 za predikciju koristiće se samo jedna – najsličnija (najbliža) trening instanca, instanci za koju se traži predikcija. Uobičajene vrednosti za K su 3, 7, 11 i 21. Što je veći dataset to se uzima veća vrednost za K. Weka može sama da odredi pogodnu vrednost za K korišćenjem *cross validation* podešavanjem parametra *crossValidate* na *true*.

Drugi, jako bitan parametar prilikom podešavanja algoritma je mera udaljenosti koja se podešava korišćenjem *nearestNeighbourSearchAlgorithm* parametra. On određuje na koji način se trening set pamti i pretražuje. Osnovna vrednost je *LinearNNSearch*.

- 3. Klikom na OK zatvaraju se podešavanja algoritma.
- 4. U delu Test options ostaviti podrazumevane vrednosti. Za testiranje se na taj način koristi cross-validation procedura.
- 5. Klikom na Start izvršava se algoritam. Rezultati algoritma prikazani su na slici 4.

Elektronski fakultet Niš | Katedra za računarsto

Slika 4 – Rezultati regresije korišćenjem k-Nearest Neighbors algoritma

- 6. Nakon kreiranja modela može da se uradi testiranje i vidi koje vrednosti bi model dodelio nekretninama za koje nisu poznate cene.
- 7. Kreirati test.arff fajl sa sadržajem:

```
@relation 'housing'
@attribute CRIM real
@attribute ZN real
@attribute INDUS real
@attribute CHAS real
@attribute NOX real
@attribute RM real
@attribute AGE real
@attribute DIS real
@attribute RAD real
@attribute TAX real
@attribute PTRATIO real
@attribute B real
@attribute LSTAT real
@attribute class real
0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,?
0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,?
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 392.83, 4.03, ?
```

Znakovi pitanja stavljaju se na poziciju atributa **class** koji određuje cenu nekretnine koja treba da se odredi.

8. U okviru **Test options** dela izabrati **Supplied test set**. Klik na dugme **Set** otvara dijalog za učitavanje fajla sa podacima kojima treba da se odredi cena (Slika 5). Učitati kreirani test.arff fajl.

Slika 5 - Učitavanje fajla za testiranje modela

9. U okviru opcije More options postaviti Output predictions na PlainText (Slika 6).

Slika 6 - Podešavanja izlaza

- 10. U delu menija koji se otvara desnim klikom na model odabrati opciju **Re-evaluate model on current test set** (Slika 7).
- 11. **Classifier output** prikazani su rezultati. Kolona **predicted** sadrži predviđene vrednosti za podatke iz test seta podataka (Slika 8).

Elektronski fakultet Niš | Katedra za računarsto

Slika 7 - Izvršavanje modela sa test setom podataka

Slika 8 - Rezultati predikcije

Elektronski fakultet Niš | Katedra za računarsto

Zadatak 3 – M5P algoritam

- 1. Ponoviti korake od 1-5 iz prethodnog zadatka.
- 2. Odabrati weka/classifiers/trees/M5P
- 3. Ostaviti podrazumevana podešavanja algoritma i podrazumevana podešavanja testiranja modela.
- 4. Pokrenuti algoritam.
- 5. Rezultati su prikazani na Slici ispod.

=== Cross-validation ===	
=== Summary ===	
Correlation coefficient	0.9131
Mean absolute error	2.5047
Root mean squared error	3.7502
Relative absolute error	37.5666 %
Root relative squared error	40.6789 %
Total Number of Instances	506

Slika 9 - Rezultati algoritma

6. Stablo odluke prikazano je na slici ispod.

Slika 10 - Stablno M5P algoritma

Elektronski fakultet Niš | Katedra za računarsto

Klasterizacija

U ovom delu vežbe biće opisan način korišćenja klasterizacije u okviru Weka alata.

Domen problema

U okviru ovog dela razmatraće se klasifikacija cveća u klastere na osnovu parametra samog cveta.

Korišćeni podaci

Podaci koji se koriste u ovom primeru nalaze se u **iris.arff** fajlu. Svi podaci razvrstani su u tri klase Iris Setosa, Iris Versicolour i Iris Virginica. Fajl sadrži 150 instanci (po 50 u svakoj klasi) i svaka instanca okarakterisana je sa četiri numerička atributa koja bliže opisuju parametre cveta irisa.

Zadatak 1 – Simple k-Means Clustering

- 1. Startovati Weka alat i učitati podatke iz fajla iris.arff (Slika 11)
- 2. U delu Cluster, odabrati opciju Choose. Ovom akcijom otvara se lista dostupnih algoritama.
- 3. Odabrati weka/clusters/SimpleKMeans
- 4. Klikom na ime algoritma otvara se prozor sa podešavanjima samog algoritma. (Slika 12)
- 5. Postaviti parametar *numClusters* na 3. Time se određuje na koliko klastera podaci treba da se podele.

Slika 11 - Učitavanje podataka za klasterizaciju

Slika 12 - Podešavanja algoritma

- 6. Klikom na OK izaći iz podešavanja
- 7. U okviru **Cluster Mode-a** izabrati **Classes to cluster evaluation** podešavanje u čijoj padajućoj listi treba da bude selektovano **(nom) class**. Ovim podešavanjem definiše se da se za evaluaciju klasterizacije koristi class atribut koji u učitanom skupu podataka određuje pravu podelu učitanih podataka u klase.
- 8. Klikom na Start izvršava se algoritam i evaluacija.
- 9. Rezultat algoritma prikazan je na slici 13.

Elektronski fakultet Niš | Katedra za računarsto

Initial starting points (random):

```
Cluster 0: 6.1,2.9,4.7,1.4
Cluster 1: 6.2,2.9,4.3,1.3
Cluster 2: 6.9,3.1,5.1,2.3

Missing values globally replaced with mean/mode

Final cluster centroids:

Cluster#

Attribute Full Data 0 1 2
(150.0) (61.0) (50.0) (39.0)

sepallength 5.8433 5.8885 5.006 6.8462
sepalwidth 3.054 2.7377 3.418 3.0821
petallength 3.7587 4.3967 1.464 5.7026
petalwidth 1.1987 1.418 0.244 2.0795
```

```
Time taken to build model (full training data) : 0.01 seconds
=== Model and evaluation on training set ===
Clustered Instances
     61 ( 41%)
     50 ( 33%)
1
       39 ( 26%)
Class attribute: class
Classes to Clusters:
 0 1 2 <-- assigned to cluster
 0 50 0 | Iris-setosa
 47 0 3 | Iris-versicolor
14 0 36 | Iris-virginica
Cluster 0 <-- Iris-versicolor
Cluster 1 <-- Iris-setosa
Cluster 2 <-- Iris-virginica
Incorrectly clustered instances : 17.0 11.3333 %
```

Slika 13 - Rezultati klasterizacije KMeans algoritmom

Zadatak 2 – Expectation Maximization algoritam

- 1. Startovati Weka alat i učitati podatke iz fajla iris.arff
- 2. U delu **Cluster**, odabrati opciju Choose. Ovom akcijom otvara se lista dostupnih algoritama.
- 3. Odabrati weka/clusters/EM
- 4. Klikom na ime algoritma otvara se prozor sa podešavanjima samog algoritma.
- 5. Postaviti parametar *numClusters* na 3. Time se određuje na koliko klastera podaci treba da se podele.
- 6. Klikom na OK izaći iz podešavanja
- 7. U okviru **Cluster Mode-a** izabrati **Classes to cluster evaluation** podešavanje u čijoj padajućoj listi treba da bude selektovano **(nom) class**.
- 8. Klikom na Start izvršava se algoritam i evaluacija.
- 9. Rezultat algoritma prikazan je na slici 14.

	(0.41)	(0.33)	(0.25)			
sepallength						
mean		5.006				
std. dev.	0.4817	0.3489	0.5339			
sepalwidth						
mean	2.7503	3.418	3.0709			
std. dev.		0.3772				
petallength						
mean	4.4057	1.464	5.7233			
std. dev.	0.5254	0.1718	0.4991			
petalwidth						
mean	1.4131	0.244	2.1055			
std. dev.	0.2627	0.1061	0.2456			
Time taken to	build mod	iel (full	trainin	g data)	: 0 seconds	
		,		·,		
=== Model and evaluation on training set ===						
Clustered Instances						
0 64 (4	-					
1 50 (3	•					
2 36 (2	4%)					
Log likelihood: -2.055						
Log likelinood	2.055					
Class attribut	e: class					
Classes to Clu						
0140000 00 014						
0 1 2 <	assigned	i to clus	ter			
0 50 0 Ir						
50 0 0 Ir						
14 0 36 Ir	is-virgir	nica				
· 						
Cluster 0 <	Iris-vers	sicolor				
Cluster 1 <	Iris-seto	osa				
Cluster 2 <	Iris-virg	ginica				
Incorrectly cl	ustered i	instances	:	14.0	9.3333 %	

Slika 14 - Rezultati klasterizacije EM algoritmom

Domen problema

U okviru ovog dela razmatraće se da li je vreme pogodno za igru ili nije. Vreme je opisano parametrima izgled vremena, temperaturavlažnost i vetar.

Korišćeni podaci

Podaci koji se koriste u ovom primeru nalaze se u weather.numeric.arff fajlu.

Zadatak

- 1. Proučiti set podataka
- 2. Uraditi klasterizaciju za zadate podatke korišćenjem SimpleKMeans i Expectation Maximization algoritama.

Elektronski fakultet Niš | Katedra za računarsto

Normalizacija podataka

Za normalizaciju podataka koristi se filter Normalize koji se nalazi u okviru filtera u Preprocess kartici.

Domen problema

Nad podacima koji se nalaze u iris.arff fajlu isprobati klasifikaciju podataka sa normalizacijom podataka.

- 1. Učitati weather iris.arff fajl.
- 2. U okviru **Preprocess** kartice otvorti filtere.

Slika 15 - Izbor filtera

 Izabrati filter Normalize koji se nalazi u delu weka/filters/unsupervised/attribute/Normalize

Slika 16 - Izbor filtera

4. Nakon selekcije filtera otvoriti podešavanja za filter (Slika 17).

Slika 17 - Podešavanje filtera

Parametar **scale** predstavlja razliku između minimalne i maksimalne vrednosti atributa koju želimo da postavimo. Parametar **translation** označava za koliko želimo da transliramo ovaj opseg u odnosu na 0. Podrazumevana vrednost ovih parametara je 1 za scale i 0 za translate. Ovo znači da će opseg vrednosti atributa biti od 0 do 1. Ukoliko za scale stavimo 2 a translate ostane 1 opseg vrednosti biće od 0 do 2. Ukoliko scale stavimo da bude 2 a translate -1 opseg vrednosti biće od -1 do 1.

- 5. Nakon podešavanja scale i translate parametara izvršiti selektovani filter klikom na dugme **Applv**.
 - Efekat normalizacije videće se u okviru opisa svakog od atributa ili otvaranjem podataka klikom na dugme **Edit**.
- 6. Model sa normalizovanim podacima zapamtiti klikom na dugme Save.
- 7. Nad ovako normalizovanim podacima isprobati IBK za različite vrednosti parametra K i NaiveBayes algoritam.
- 8. Uporediti rezultate.