

Sayaka Eguchi

TRAFFIC JAM / CONGESTION... DEFINITION?

Slower than 40km/h
(East Japan Highway co.)
Slower than 20km/h
(Capital Highway co.)
Slower than 10km/h in
normal roads (PSC)

YES!!!

By using mathematical method called "Cellular Automata"

BUT BEFORE THAT... LET'S SIMPLIFY CONGESTION

Please think:

What are the essential features of traffic jam?

How can we model traffic?

Can you guess?

ESSENTIAL FEATURES NEEDED FOR ANALYSIS

- Cars move forward if the road in the front is open (not congested)
- 2. Cars don't move forward if there is no space in front of them (if they get stuck).
- 3. (Cars run on consistent speed/ no radical speeding up or slowing down)

Please keep them in mind!! We will use them from now on.

WHAT IS CELLULAR AUTOMATA?

Use "O and 1" and a "rule" to change/replace/move "O and 1" (rule is arbitrary!)

→Can be used to represent phenomena in the world (eg. Choosing the best places to build radio transmitting tower, simulating the best routes for airplanes)

LET'S APPLY CONGESTION TO CELLULAR AUTOMATA

Remember the essential features?

We will set

"cell" = every 7m of highway (because approximately 1 car is 7m long"

"O"= No car is in the cell

"1" = A car is in the cell

"Rule" = If a car is in the front cell, then the following car cannot move forward.

 \leftarrow front

1) When traffic is few

A BLUE cell(=1) stands for a car

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	0	1	1	0	0	0	1	0	1	1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0	1	1	0	1	0	0	1	0	1	1	0
	0	1	0	0	1	0	1	0	1	0	1	1	0	0	1	0	1	0	1	0
	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	0

 \leftarrow front

A BLUE cell(=1) stands for a car

2) When traffic is crowded

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	1	1	1	0	0	1	1	0	1	1	1	1	0	0	1	0	1	1
1	1	0	1	1	0	1	0	1	1	0	1	1	1	0	1	0	1	0	1
0	1	1	0	1	1	0	1	0	1	1	0	1	1	1	0	1	0	1	1
1	0	1	1	0	1	1	0	1	0	1	1	0	1	1	1	0	1	0	1

3) When cars do not keep distance

 \leftarrow front

A BLUE cell(=1) stands for a car

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	1	0	1	1
1	0	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	1	0	1
0	1	0	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1
1	0	1	0	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	1

Congestion still remains...

 \leftarrow front

4) When cars keep distance

A BLUE cell(=1) stands for a car

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	1	1	1	0	0	0	0	0	1	1	1	1	0	0	0	1	1	0	1
1	0	1	1	0	0	0	0	1	0	1	1	1	0	0	1	0	1	1	1
0	1	0	1	0	0	0	1	0	1	0	1	1	0	1	0	1	0	1	1
1	0	1	0	0	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1

TRAFFIC JAM DISSOLVED!!!

Traffic jam can be solved by individual efforts!

If we use mathematics, we can simplify the real life problem and find solutions!

REFERENCE

https://apec.aichi-c.ed.jp/kyouka/jouho/contents/2018/jissyuu/071/automaton.htm

file:///C:/Users/my_sh/Downloads/dgrad_7_td_ide%20(1).pdf

http://yana.xii.jp/CV/Papers/JSIAM.22.002.2012_160217.pdf

http://mt-soft.sakura.ne.jp/kyozai/excel_vba/310_vba_chu/51_cell_automaton/index.ht

m

Nishinari, K. (2016). *Tomdemonaku yaku ni tatsu sugaku* [Very Helpful Mathematics]. Tokyo, Japan: Kadokawa

And special thanks to Toma Miyakoshi...