PERSONALIZED ALERT SYSTEM

Louie Bafford

PROBLEM CONTEXT

- ► Alert needs to be triggered for a desired event/set of events
- ▶ In this case a dog entering or exiting it's crate should trigger the alert

Personalized Alert System Uses

- ▶ No simple mechanical solutions
- ▶ Situation specific to user

Examples – baby escaping their crate, monitoring a snack self

SOLUTION

Here we will develop only a model to classify desired outcomes

Embed finished model in complete system for a final product

► Leverage Neural Network models

DATA COLLECTION

Step 1

Take separate videos each representing a class

- In crate
- Out of crate
- Being taken out/put in crate

Step 2

- Parse videos into individual images
- Class of image is determined by video it came from

Step 3

Reformat images and save

- Convert to greyscale
- Resize to lower pixel count
- Save to set of CSV files

BENCHMARK MODEL

- Neural Networks usually have great performance for complex tasks such as image classification
- Use a Random Forest Classifier to measure performance of a more standard, lower overhead algorithm

METHOD

- Use PCA to reduce dimensionality to 10
- ► Tune multi-classifier Random Forest model through Grid search methods

Test Accuracy

88%

DENSE NEURAL NETWORKS

- ▶ Began by training Neural Networks with Dense Layers
- Most basic layer nodes are fully connected
- ▶ Updates to model over many iterations of data set
- Performed well above benchmark

Performance on test data

- ► Top Training Performance 98%
- ► Average Converged Performance 93%
- ▶ Inconsistent performance over epochs

ADJUSTMENTS

Data organization changed in an attempt to improve inconsistency

Aggregate data into fewer files and shuffle

- More data per model update
- Multiple classes per model update

Correlated images removed from training and testing data

- Video data in testing removed from training data
- Prevent overfitting during training

DENSE NEURAL NETWORKS II

Experiment with varying DNNs

- ▶ Vary nodes per layer
- Vary number of layers
- ▶ Train each one with new data organization
- ▶ 150 iterations of data

Performance on test data

- ► Top Training Performance 99%
- ► Average Converged Performance 93%

PERFORMANCE COMPARISONS

ORIGINAL MODEL

1.0 0.9 0.8 0.7 0.6

NEW MODELS

- ▶ Graphs display accuracy on test data sample for each epoch of the models
- Models performed comparably

0.3

CONVOLUTIONAL NEURAL NETWORK

More advanced connection method between layers

- Uses small filters to take advantage of local similarities
- ► Treats data as 2D feature space
- ▶ Only one small model created resource limitations
- ▶ Trained over 150 iterations

Performance on test data

- ► Top Training Performance 99%
- ► Average Converged Performance 95%
- ▶ Performance over all data with final model 99%

MODEL EVALUATION

CNN model selected:

- ► Highest overall performance
- ► Fastest convergence
- ► Saved for future use

Confusion Matrix:

- Predicting empty when dog being taken out
- Predicting dog being taken out when in the crate
- Predicting in the crate is most consistent prediction

IMPROVEMENTS

BETTER MODEL

- More data for a more robust system
- ► Better hardware or online training for a more efficient tuning process

COMPLETE SYSTEM

- Embed model in hardware with camera and online connection
- Add logic to continuously monitor and alert users