RS&NLP选修 Lesson-02

前情提要

- 根据业务场景不同,推荐系统可以演化得差异很大。因此,要注意学习算法背后的思想,做到融会贯通
- · 实例: 视频相关推荐。拆解和抽象为机器学习问题,进而用SGNS的方式去解决
- · NLP和RS是算法的两个重要应用 方向,其背后的思想可以找到很 多相通和借鉴之处
- 理论提升: 和矩阵分解的等价性

回顾: 视频相关推荐

- · 分为3个步骤:
 - · Step1 构建序列: 预处理用户的行为日志, 使之适配算法
 - · Step2 求解相似性: 利用skip-gram with negative sampling计算 item之间的相似性
 - · Step3 Faiss建立索引:利用索引库为item建立索引,供线上推荐使用

了解你的数据

UserId, ProductId, Rating, Timestamp
A39HTATAQ9V7YF,0205616461,5.0,1369699200
A3JM6GV9MN0F9X,0558925278,3.0,1355443200
A1Z513UWSAA00F,0558925278,5.0,1404691200
A1WMRR494NWEWV,0733001998,4.0,1382572800
A3IAAVS479H7M7,0737104473,1.0,1274227200
AKJHHD5VEH7VG,0762451459,5.0,1404518400
A1BG8QW55XHN6U,1304139212,5.0,1371945600
A22VW0P4VZHDE3,1304139220,5.0,1373068800
A3V3RE4132GKR0,130414089X,5.0,1401840000
A327B0I7CYTEJC,130414643X,4.0,1389052800

Description

This dataset contains product reviews and metadata from Amazon, including 142.8 million reviews spanning May 1996 - July 2014.

This dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs).

http://jmcauley.ucsd.edu/data/amazon/

Step1 构建序列

· Input: 曝光/点击日志

UserId, ProductId, Rating, Timestamp A39HTATAQ9V7YF, 0205616461, 5.0, 1369699200 A3JM6GV9MN0F9X, 0558925278, 3.0, 1355443200

B00652DGSK

· Output: 点击序列

3004APTUFM B004APYRKU B00395KAPS B004B4AWH2 3000I10YNK B001EJOPTS B001G7PIJ4 B004NH1380

- · Code: 实操。一行语句生成训练语料。
 - cat ratings_Beauty.csv | grep -v UserId | sort -t',' -nk4 | awk
 'BEGIN{FS=",";OFS="\t"}\$3>2{d[\$1]=d[\$1]\$2";"}END

{for(i in d) print i"\t"substr(d[i],0,length(d[i])-1)}' | awk '{split(\$2,a,";");if(length(a)>3)print \$2}' | awk 'gsub(";","\t",\$0)' > corpus.dat

用Linux shell 命令预处理 代码解读

- 1. cat ratings_Beauty.csv //按行读取文件
- 2. grep -v Userld //去掉标题行
- 3. sort -t',' -nk4 //按时间戳排序
- 4. awk
 'BEGIN{FS=",";OFS="\t"}\$3>2{d[\$1]=d[\$1]\$2";"}EN
 D{for(i in d) print i"\t"substr(d[i],0,length(d[i])-1)}' //
 按UserId聚合
- 5. awk '{split(\$2,a,";");if(length(a)>3)print \$2}' //过滤掉 短session
- 6. awk 'gsub(";","\t",\$0)' //替换分隔符
- 7. > corpus.dat //输出到文件

Step2 求解相似性

Input: 点击序列 B004APTUFM B000I10YNK

B004APYRKU B001EJOPTS B00395KAPS B001G7PIJ4 B004B4AWH2 B004NH1380

B00652DGSK

Output: item -> vector

B0040HQR1Q -0.14790097 -0.88445485 1.7531323 1.3609 B000ZMBSPE 0.5054478 -0.26883852 -0.26304248 0.2367

· Code: 实操。

```
v size = 8
v window = 3
v min count = 2
v workers = 2
corpusFilePath = './data/corpus.dat'
corpusFile = open(corpusFilePath, u'r')
model = Word2Vec(
    LineSentence(corpusFile),
    size=v size,
    window=v window,
    min count=v min count, workers=v workers)
```

Step3-1 建立索引

Input: item -> vector

· Output: 索引文件

· Code: 实操

Step3-2 用索引查找

• Input: 索引文件, key

· Output: key的最近邻

· Code: 实操

Index factory

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhaustive	Comments
Exact Search for L2	IndexFlatL2	Flat	d	4*d	yes	brute-force
Exact Search for Inner Product	IndexFlatIP	Flat	d	4*d	yes	also for cosine (normalize vectors beforehand)
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	'HNSWx,Flat`	d, M	4*d + 8 * M	no	
Inverted file with exact post-verification	IndexIVFFlat	IVFx,Flat	quantizer, d, nlists, metric	4*d	no	Take another index to assign vectors to inverted lists
Locality-Sensitive Hashing (binary flat index)	IndexLSH	-	d, nbits	nbits/8	yes	optimized by using random rotation instead of random projections
Scalar quantizer (SQ) in flat mode	IndexScalarQuantiz er	SQ8	d	d	yes	4 bit per component is also implemented, but the impact on accuracy may be inacceptable
Product quantizer (PQ) in flat mode	IndexPQ	PQx	d, M, nbits	M (if nbits=8)	yes	
IVF and scalar quantizer	IndexIVFScalarQua ntizer	IVFx,SQ4 "IVFx,SQ8"	quantizer, d, nlists, qtype	SQfp16: 2 * d, SQ8: d or SQ4: d/2	no	there are 2 encodings: 4 bit per dimension and 8 bit per dimension
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	IVFx,PQy	quantizer, d, nlists, M, nbits	M+4 or M+8	no	the memory cost depends on the data type used to represent ids (int or long), currently supports only nbits <= 8
IVFADC+R (same as IVFADC with re- ranking based on codes)	IndexIVFPQR	IVFx,PQy+z	quantizer, d, nlists, M, nbits, M_refine, nbits_refine	M+M_refine+4 or M+M_refine+8	no	

根据需求去选择 具体算法

PQ算法

算法解析

可行性分析

- · 通常向量维度不太大, 瓶颈 在样本点的量级
- · 面对千万级甚至亿级的样本 点,运行kmeans不太适合
- · 有一些改进的算法比如 IVFADC,但计算量仍然很大

Annoy算法

- · 利用二叉树的结构对空间进 行随机划分,建索引阶段效 率有所提升
- 二叉树结构在检索时效率也很高
- 构建多棵树形成森林,提高检索的召回率

https://github.com/spotify/annoy

算法解析

循环直至子节点的样本数小于一定阈值:

- 1. 在样本空间中随机选择2个点
- 2. 做垂直平分,将空间一分为二,同时 更新二叉树

算法解析

- 1. 给定一个样本点要查找其最近邻: 从根节点出发,一路找根据二叉树 找到一个最小划分的子空间,再计 算子空间里所有点的距离
- 2. 邻近的子空间里的点,其实也离得很近,做法是建立多棵树(建树过程有随机性),在多棵树同时搜索(可以并行),最后融合结果

实际效果

- 召回率较优,和暴力搜索法相比较基本一致
- 建树的速度
 - · 千万量级的item,时间为若干小时,尚可以忍受
 - · 以100棵树为例,索引文件大约几个G
 - 多核利用支持的不是很好
- 查询的速度很快

HNSW算法

glove-25-angular

算法解析-检索过程

算法解析-跳表结构

算法解析-构建NSW

插入一个全新点时,查找到与这个全新点最近的m个点,连接全新点到m个点的连线。

实际效果

- · 召回率优秀,和暴力搜索基本一致
- 构图的速度很快
 - · 千万量级的item,可在分钟级别完成
 - 多核利用也很优秀, 当心把机器跑挂
- · 查询速度也很优秀

选择索引算法时的一些指导原则

- 有多少向量需要建索引
- ·索引database更新的频率需要如何
- 召回率是否满足需求
- · 索引算法所支持的距离度量是否适配
- 同样一种算法,不同库的实现效果也不一样

Faiss官方的指南

https://github.com/facebookresearch/faiss/wiki/Guidelinesto-choose-an-index

基于SGNS做召回的局限性

- 无监督方式,不是直接优化目标
- · 没法结合side information

深度语义匹配模型DSSM

- 主要贡献
 - 利用点击数据(有监督)
 - 利用深度学习(学习能力强)
 - · Word hashing (解决大词表问题)

纸上得来终觉浅,绝知此事要躬行

TensorFlow还用介绍吗

TensorFlow 是一个端到端开源机器学习平台

用TF实现DSSM都需要做什么

- 设计和定义模型结构
- 构造训练数据
- · 使用GPU进行训练
- 导出训练好的模型
- · 导出embedding向量

设计和定义网络结构

构造训练数据

- 数据下载
- 格式介绍
- 处理成什么样

一些必要的辅助函数(代码)

如何使用GPU (代码)

"关于模型的讨论。"

基于DNN的模型有什么缺点

- 同等看待用户的行为,而没有考虑到上下文
- 无法充分反映用户的兴趣

什么叫卷积

$$(fst g)(n)=\sum_{ au=-\infty}^{\infty}f(au)g(n- au)$$

CNN用于图像

CNN用于NLP

CNN改进后的结构

"在TF里修改模型结构。"

下一步做什么

- · 模型serving
- 确保线上线下数据分布的一致性
- badcase分析
- 调整方案

思考

- 为何深度学习有效
- 如何对行为的时序建模
- 不用深度学习怎么做

总结&回顾

- · 承接上回: 高维空间向量搜索算法 (PQ/Annoy/HNSW)
- · SGNS框架的局限性
- · 用TF实现一个DSSM模型
- · 如何利用CNN结构进行改进
- 理论提升