

What Is Cluster Analysis?

- What is a cluster?
 - A cluster is a collection of data objects which are
 - □ Similar (or related) to one another within the same group (i.e., cluster)
 - □ Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- □ Cluster analysis (or *clustering*, *data segmentation*, ...)
 - Given a set of data points, partition them into a set of groups (i.e., clusters) which are as similar as possible
- Cluster analysis is unsupervised learning (i.e., no predefined classes)
 - This contrasts with classification (i.e., supervised learning)
- Typical ways to use/apply cluster analysis
 - As a stand-alone tool to get insight into data distribution, or
 - As a preprocessing (or intermediate) step for other algorithms

Cluster Analysis: Applications

- □ A key intermediate step for other data mining tasks
 - Generating a compact summary of data for classification, pattern discovery, hypothesis generation and testing, etc.
 - Outlier detection: Outliers—those "far away" from any cluster
- □ Data summarization, compression, and reduction
 - Ex. Image processing: Vector quantization
- Collaborative filtering, recommendation systems, or customer segmentation
 - ☐ Find like-minded users or similar products
- Dynamic trend detection
 - Clustering stream data and detecting trends and patterns
- □ Multimedia data analysis, biological data analysis and social network analysis
 - Ex. Clustering images or video/audio clips, gene/protein sequences, etc.

Considerations for Cluster Analysis

Partitioning criteria

 Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable, e.g., grouping topical terms)

Separation of clusters

■ Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one document may belong to more than one class)

■ Similarity measure

Distance-based (e.g., Euclidean, road network, vector) vs. connectivitybased (e.g., density or contiguity)

Clustering space

□ Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Requirements and Challenges

Quality

- Ability to deal with different types of attributes: Numerical, categorical, text, multimedia, networks, and mixture of multiple types
- Discovery of clusters with arbitrary shape
- Ability to deal with noisy data

Scalability

- Clustering all the data instead of only on samples
- High dimensionality
- Incremental or stream clustering and insensitivity to input order

Constraint-based clustering

- □ User-given preferences or constraints; domain knowledge; user queries
- Interpretability and usability

Cluster Analysis: A Multi-Dimensional Categorization

□ Technique-Centered

- Distance-based methods
- Density-based and grid-based methods
- Probabilistic and generative models
- Leveraging dimensionality reduction methods
- High-dimensional clustering
- Scalable techniques for cluster analysis

Data Type-Centered

 Clustering numerical data, categorical data, text data, multimedia data, timeseries data, sequences, stream data, networked data, uncertain data

Additional Insight-Centered

Visual insights, semi-supervised, ensemble-based, validation-based

Typical Clustering Methodologies (I)

- Distance-based methods
 - □ Partitioning algorithms: K-Means, K-Medians, K-Medoids
 - ☐ Hierarchical algorithms: Agglomerative vs. divisive methods
- Density-based and grid-based methods
 - □ Density-based: Data space is explored at a high-level of granularity and then post-processing to put together dense regions into an arbitrary shape
 - ☐ Grid-based: Individual regions of the data space are formed into a grid-like structure
- □ Probabilistic and generative models: Modeling data from a generative process
 - ☐ Assume a specific form of the generative model (e.g., mixture of Gaussians)
 - Model parameters are estimated with the Expectation-Maximization (EM) algorithm (using the available dataset, for a maximum likelihood fit)
 - ☐ Then estimate the generative probability of the underlying data points

Typical Clustering Methodologies (II)

☐ High-dimensional clustering

- Subspace clustering: Find clusters on various subspaces
 - \square Bottom-up, top-down, correlation-based methods vs. δ -cluster methods
- □ Dimensionality reduction: A vertical form (i.e., columns) of clustering
 - Columns are clustered; may cluster rows and columns together (co-clustering)
 - □ Probabilistic latent semantic indexing (PLSI) then LDA: Topic modeling of text data
 - □ A cluster (i.e., topic) is associated with a set of words (i.e., dimensions) and a set of documents (i.e., rows) simultaneously
 - Nonnegative matrix factorization (NMF) (as one kind of co-clustering)
 - □ A nonnegative matrix A (e.g., word frequencies in documents) can be approximately factorized two non-negative low rank matrices U and V
 - □ Spectral clustering: Use the *spectrum* of the similarity matrix of the data to perform dimensionality reduction for clustering in fewer dimensions

Clustering Different Types of Data (I)

■ Numerical data

- Most earliest clustering algorithms were designed for numerical data
- □ Categorical data (including binary data)
 - □ Discrete data, no natural order (e.g., sex, race, zip-code, and market-basket)
- ☐ **Text data**: Popular in social media, Web, and social networks
 - ☐ Features: High-dimensional, sparse, value corresponding to word frequencies
 - Methods: Combination of k-means and agglomerative; topic modeling; co-clustering
- □ Multimedia data: Image, audio, video (e.g., on Flickr, YouTube)
 - Multi-modal (often combined with text data)
 - Contextual: Containing both behavioral and contextual attributes
 - ☐ Images: Position of a pixel represents its context, value represents its behavior
 - □ Video and music data: Temporal ordering of records represents its meaning

Clustering Different Types of Data (II)

- □ **Time-series data**: Sensor data, stock markets, temporal tracking, forecasting, etc.
 - Data are temporally dependent
 - ☐ Time: contextual attribute; data value: behavioral attribute
 - Correlation-based online analysis (e.g., online clustering of stock to find stock tickers)
 - Shape-based offline analysis (e.g., cluster ECG based on overall shapes)
- □ **Sequence data**: Weblogs, biological sequences, system command sequences
 - Contextual attribute: Placement (rather than time)
 - □ Similarity functions: Hamming distance, edit distance, longest common subsequence
 - □ Sequence clustering: Suffix tree; generative model (e.g., Hidden Markov Model)
- Stream data:
 - Real-time, evolution and concept drift, single pass algorithm
 - ☐ Create efficient intermediate representation, e.g., micro-clustering

Clustering Different Types of Data (III)

□ Graphs and homogeneous networks

- Every kind of data can be represented as a graph with similarity values as edges
- Methods: Generative models; combinatorial algorithms (graph cuts); spectral methods; non-negative matrix factorization methods

Heterogeneous networks

- □ A network consists of multiple typed nodes and edges (e.g., bibliographical data)
- Clustering different typed nodes/links together (e.g., NetClus)
- ☐ Uncertain data: Noise, approximate values, multiple possible values
 - Incorporation of probabilistic information will improve the quality of clustering
- □ **Big data**: Model systems may store and process very big data (e.g., weblogs)
 - Ex. Google's MapReduce framework
 - ☐ Use *Map* function to distribute the computation across different machines
 - ☐ Use Reduce function to aggregate results obtained from the Map step

User Insights and Interactions in Clustering

- □ Visual insights: One picture is worth a thousand words
 - Human eyes: High-speed processor linking with a rich knowledge-base
 - A human can provide intuitive insights; HD-eye: visualizing HD clusters
- □ **Semi-supervised insights**: Passing user's insights or intention to system
 - User-seeding: A user provides a number of labeled examples, approximately representing categories of interest
- Multi-view and ensemble-based insights
 - Multi-view clustering: Multiple clusterings represent different perspectives
 - ☐ Multiple clustering results can be ensembled to provide a more robust solution
- □ Validation-based insights: Evaluation of the quality of clusters generated
 - May use case studies, specific measures, or pre-existing labels

Recommended Readings

- Major Reference Books on Cluster Analysis
 - □ Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011 (Chapters 10 & 11)
 - Charu Aggarwal and Chandran K. Reddy (eds.). Data Clustering: Algorithms and Applications. CRC Press, 2014
 - Mohammed J. Zaki and Wagner Meira, Jr.. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- □ Reference paper for this lecture
 - □ Charu Aggarwal. An Introduction to Clustering Analysis. *in* Aggarwal and Reddy (eds.). Data Clustering: Algorithms and Applications (Chapter 1). CRC Press, 2014

What Is Good Clustering?

- ☐ A good clustering method will produce high quality clusters which should have
 - ☐ **High intra-class similarity: Cohesive** within clusters
 - □ Low inter-class similarity: Distinctive between clusters
- Quality function
 - There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective
- □ There exist many similarity measures and/or functions for different applications
- Similarity measure is critical for cluster analysis

Similarity, Dissimilarity, and Proximity

- □ Similarity measure or similarity function
 - □ A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - □ Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- ☐ **Dissimilarity** (or **distance**) measure
 - Numerical measure of how different two data objects are
 - ☐ In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar)
 - □ Range [0, 1] or $[0, \infty)$, depending on the definition
- □ **Proximity** usually refers to either similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

- Data matrix
 - ☐ A data matrix of n data points with / dimensions

- \square n data points, but registers only the distance d(i, j) (typically metric)
- Usually symmetric, thus a triangular matrix

 Weights can be associated with different variables based on applications and data semantics

$$D = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1l} \\ x_{21} & x_{22} & \dots & x_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nl} \end{pmatrix}$$

$$\begin{pmatrix} 0 & & & & \\ d(2,1) & 0 & & \\ \vdots & \vdots & \ddots & \\ d(n,1) & d(n,2) & \dots & 0 \end{pmatrix}$$

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x2</i>	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix (by Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x3</i>	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}$$

where $i = (x_{i1}, x_{i2}, ..., x_{il})$ and $j = (x_{j1}, x_{j2}, ..., x_{jl})$ are two l-dimensional data objects, and p is the order (the distance so defined is also called L-p norm)

- Properties
 - \Box d(i, j) > 0 if i \neq j, and d(i, i) = 0 (Positivity)
 - \Box d(i, j) = d(j, i) (Symmetry)
 - \Box d(i, j) \leq d(i, k) + d(k, j) (Triangle Inequality)
- A distance that satisfies these properties is a metric
- □ Note: There are nonmetric dissimilarities, e.g., set differences

Special Cases of Minkowski Distance

- \square p = 1: (L₁ norm) Manhattan (or city block) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors $d(i,j) = |x_{i1} x_{i1}| + |x_{i2} x_{i2}| + \dots + |x_{il} x_{il}|$
- \square p = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{il} - x_{jl}|^2}$$

- $\square p \rightarrow \infty$: (L_{max} norm, L_{\infty} norm) "supremum" distance
 - □ The maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{p \to \infty} \sqrt[p]{|x_{i1} - x_{j1}|^p + |x_{i2} - x_{j2}|^p + \dots + |x_{il} - x_{jl}|^p}} = \max_{f=1}^l |x_{if} - x_{jf}|$$

Example: Minkowski Distance at Special Cases

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	x 3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum (L_{∞})

${ m L}_{\infty}$	x1	x2	x 3	x4
x1	0			
x2	3	0		
x 3	2	5	0	
x4	3	1	5	0

Proximity Measure for Binary Attributes

A contingency table for binary data

		Ob	iect <i>j</i>	
		1	0	sum
Object i	1	q	r	q+r
	0	s	t	s+t
	sum	q + s	r+t	p

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

☐ Distance measure for symmetric binary variables:

□ Distance measure for asymmetric binary variables:

$$d(i,j) = \frac{r+s}{q+r+s}$$

☐ Jaccard coefficient (*similarity* measure for *asymmetric*

binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

□ Note: Jaccard coefficient is the same as "coherence": (a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- ☐ Gender is a symmetric attribute (not counted in)
- ☐ The remaining attributes are asymmetric binary
- ☐ Let the values Y and P be 1, and the value N be 0

Distance:
$$d(i, j) = \frac{r+s}{q+r+s}$$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

				N	/lar	У	
			1		0		\sum_{row}
la	ck	1	2		0		2
Ju	Jack	0	1		3		4
	\sum_{col}	3		3		6	

		Jin	1	
		1	0	Σ_{row}
	1	1	1	2
Jack	0	1	3	4
	\sum_{col}	2	4	6

		ary		
		1	0	Σ_{row}
	1	1	1	2
Jim	0	2	2	4
	\sum_{col}	3	3	6

Proximity Measure for Categorical Attributes

- □ Categorical data, also called nominal attributes
 - Example: Color (red, yellow, blue, green), profession, etc.
- ☐ Method 1: Simple matching
 - □ *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- ☐ Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- □ Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior)
- Can be treated like interval-scaled
 - □ Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

- □ Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - \Box Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
- Compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A dataset may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, and ordinal
- ☐ One may use a weighted formula to combine their effects:

$$d(i,j) = \frac{\sum_{f=1}^{p} w_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} w_{ij}^{(f)}}$$

- $lue{}$ If f is numeric: Use the normalized distance
- □ If f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; or $d_{ij}^{(f)} = 1$ otherwise
- \Box If f is ordinal

 - ☐ Treat z_{if} as interval-scaled

Cosine Similarity of Two Vectors

□ A document can be represented by a bag of terms or a long vector, with each attribute recording the frequency of a particular term (such as word, keyword, or phrase) in the document

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: Gene features in micro-arrays
- □ Applications: Information retrieval, biologic taxonomy, gene feature mapping, etc.
- \square Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Calculating Cosine Similarity

Calculating Cosine Similarity: $d_1 \bullet d_2$ $cos(d_1, d_2) = \frac{d_1 \bullet d_2}{\|d_1\| \times \|d_2\|}$

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

- where \bullet indicates vector dot product, ||d||: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$
 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

☐ First, calculate vector dot product

$$d_1 \bullet d_2 = 5 \times 3 + 0 \times 0 + 3 \times 2 + 0 \times 0 + 2 \times 1 + 0 \times 1 + 0 \times 1 + 2 \times 1 + 0 \times 0 + 0 \times 1 = 25$$

■ Then, calculate $||d_1||$ and $||d_2||$

$$||d_1|| = \sqrt{5 \times 5 + 0 \times 0 + 3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 0 \times 0} = 6.481$$

$$||d_2|| = \sqrt{3 \times 3 + 0 \times 0 + 2 \times 2 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1} = 4.12$$

Calculate cosine similarity: $\cos(d_1, d_2) = 26/(6.481 \times 4.12) = 0.94$

Variance for Single Variable

 \square The variance of a random variable X provides a measure of how much the value of X deviates from the mean or expected value of X:

$$\sigma^{2} = \operatorname{var}(X) = E[(X - \mu)^{2}] = \begin{cases} \sum_{x} (x - \mu)^{2} f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

- where σ^2 is the variance of X, σ is called *standard deviation* μ is the mean, and μ = E[X] is the expected value of X
- ☐ That is, variance is the expected value of the square deviation from the mean
- □ It can also be written as: $\sigma^2 = \text{var}(X) = E[(X \mu)^2] = E[X^2] \mu^2 = E[X^2] [E(x)]^2$
- □ Sample variance is the average squared deviation of the data value x_i from the sample mean $\hat{\mu}$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \hat{\mu})^2$

Covariance for Two Variables

 \square Covariance between two variables X_1 and X_2

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1] E[X_2]$$

where $\mu_1 = E[X_1]$ is the respective mean or **expected value** of X_1 ; similarly for μ_2

- □ Sample covariance between X₁ and X₂: $\hat{\sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} \hat{\mu}_1)(x_{i2} \hat{\mu}_2)$
- □ Sample covariance is a generalization of the sample variance:

$$\hat{\sigma}_{11} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)(x_{i1} - \hat{\mu}_1) = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)^2 = \hat{\sigma}_1^2$$

- □ Positive covariance: If $\sigma_{12} > 0$
- **□** Negative covariance: If $\sigma_{12} < 0$
- □ Independence: If X_1 and X_2 are independent, $\sigma_{12} = 0$ but the reverse is not true
 - □ Some pairs of random variables may have a covariance 0 but are not independent
 - Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Example: Calculation of Covariance

- \square Suppose two stocks X_1 and X_2 have the following values in one week:
 - \square (2, 5), (3, 8), (5, 10), (4, 11), (6, 14)
- □ Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
- Covariance formula

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1] E[X_2]$$

- □ Its computation can be simplified as: $\sigma_{12} = E[X_1X_2] E[X_1]E[X_2]$
 - \blacksquare E(X₁) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4
 - \blacksquare E(X₂) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6
 - $\sigma_{12} = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- □ Thus, X_1 and X_2 rise together since $\sigma_{12} > 0$

Correlation between Two Numerical Variables

 \square Correlation between two variables X_1 and X_2 is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

$$\square \text{ Sample correlation for two attributes } X_1 \text{ and } X_2 \text{:} \quad \hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)}{\sqrt{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)^2 \sum_{i=1}^n (x_{i2} - \hat{\mu}_2)^2}}$$

where n is the number of tuples, μ_1 and μ_2 are the respective means of X_1 and X_2 , σ_1 and σ_2 are the respective standard deviation of X_1 and X_2

- \square If $\rho_{12} > 0$: A and B are positively correlated (X_1 's values increase as X_2 's)
 - The higher, the stronger correlation
- \square If ρ_{12} = 0: independent (under the same assumption as discussed in co-variance)
- \square If ρ_{12} < 0: negatively correlated

Visualizing Changes of Correlation Coefficient

- □ Correlation coefficient value range:[-1, 1]
- □ A set of scatter plots shows sets of points and their correlation coefficients changing from −1 to 1

Covariance Matrix

The variance and covariance information for the two variables X₁ and X₂ can be summarized as 2 X 2 covariance matrix as

$$\Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^{T}] = E[(\frac{X_{1} - \mu_{1}}{X_{2} - \mu_{2}})(X_{1} - \mu_{1} \quad X_{2} - \mu_{2})]$$

$$= \begin{pmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})] \\ E[(X_{2} - \mu_{2})(X_{1} - \mu_{1})] & E[(X_{2} - \mu_{2})(X_{2} - \mu_{2})] \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{21} & \sigma_{2}^{2} \end{pmatrix}$$

Generalizing it to d dimensions, we have,

$$D = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \cdots & x_{dd} \end{pmatrix} \quad \mathbf{\Sigma} = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix}$$

Recommended Readings

- L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, 1990
- Mohammed J. Zaki and Wagner Meira, Jr.. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- □ Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.

 Morgan Kaufmann, 3rd ed., 2011
- □ Charu Aggarwal and Chandran K. Reddy (eds.). Data Clustering: Algorithms and Applications. CRC Press, 2014