Bab Harper (Lecture 3) [2018/07/18] (1)
REVIEW
So for we've been developing computational type theory
computational type theory
Types are behavioral specifications
2 Panciple Forms of Judgment:
(exact) type equality $A = A'$ (Atype means $A = A$)
(exact) member equality $M = M' \in A$ ($M \in A$ means $M = M \in A$)
possible notation : M = AM'.
passing values of the same
-Zevensking of the town Miles in the
-> expressions do not intrinsically have a type!
the same program can satisfy many spees!
eg. M ∈ Not → Not M ∈ Primes → Primes
eg 2×.×=2×. x ∈ Nat → Nat
$\lambda \times . \times \neq \lambda \times . \times \mid \in Int \rightarrow Int$
Definitions of Types
Nut } indutive types
Not S
1 aka Unit (exercise) (> val
A, A, product 7 in terms of A, A,
A, A, product 3 in terms of A,
Oaka Void (exercise) case { } (M)
A+A2 ('exercise) 1.M, 2.M, case {a, M, a, M, 3(M)
a.A. * A.(a) dep. product (Z-type)
a: A, -> A(a) dep for (TI-type)
and the second
horizontal
Bool true, labre induction
Nat o, succeo, successor),
Bosl x Nat
Boxl -> Nat
Not -> Not
To define a. A. × A2
smot \ must already have types deld A, Az[M./a] for
deld A. Az[M./a] for
every $M \in A$,
A. type a: A, >> A2 type
A.
$A_{2}[M.1]$ $A_{2}[M.1]$
1.54.07 b.50.
It's all about how programs are run."
2 cs an and von (notames are tout

Bob Harper (Lecture 3) [2618/07/18] 2 Interesting types don't always correspond in a natural way to things in logic." Type theory - a theory of competation (program specification Brower as a means to give a notion of touth for logical propositions. Popositions -as-types " aka senoutic correspondence Capsule Sunnary How to (A Pop (Specification or problem)
explain? (A True (solution or satisfier) Specification: Q^* type Q^* and more extensive solution: Q^* is inhabited i.e. $\exists M \in Q^*$ than more logic Typically we have the following T* the trivally true type 1 ako unit Equality of types $Q^* = \psi^* (?)$ when are two specifications of a problem the same (or at least spee. the same problem) 1 (aka unit) O (ako void) (A, A (12)* $Q^* \times Q_2^*$ $Q^* + Q_2^*$ (N.B. problematic) $Q^* \rightarrow Q_2^*$ /controvertical (D, V P2) $(q, > q_2)^T$ $a: A \rightarrow Q^*$ $a: A \times Q^+$ (NB "constructive")

existence" (∀ a: A. Pa)* (7 a: A. O.) The Fact of (hoice L (Va: A] b: B R (a, b)) "R is total" > 3 P: A → B. Va. A. R (a, fra) tre (choice fr.") $(at F: (a.A \rightarrow (b:B \times R(a,b)))$ $\longrightarrow (f:A \rightarrow B \times (a:A \rightarrow R(a,to)))$ $then <math>f \triangleq \lambda a.(F(a)\cdot 1)$

Bob Hasper [2018/07/18] 3
Bob Heaper [2018/07/18] 3 What should we do about $(M = M^1)^{\frac{1}{2}}$?
In the semantic setting
In the semantic setting How do we interpret the proposition of equality as a type.
Equality Types
- (1) - T (11) 10') - (h) 0
$E_{A}(M, M_{2}) \stackrel{\circ}{=} E_{A}(M, M_{2}) \stackrel{\circ}{:} H \stackrel{\circ}{A} \stackrel{\circ}{=} A \stackrel{\circ}{:} A \stackrel{\circ}{=} A \stackrel{\circ}{:} A M_{2} \stackrel{\circ}{:} A$
$M_1 = M_1 = A$ $M_2 = M_2 = M_2 \in A$
MEEg_(M, Mz); iff My + and M,=Mz & A.
"Subsingleton" Egypt (2,3) is uninhabited. Egypt (2, 1+1) in habited.
Equat (2, 1+1) in habited.
$M \in E_{A}(M_{1}, M_{2})$ iff $M_{1} = M_{2} \in A$. $(M_{1} = A M_{2})^{*} = E_{A}(M_{1}, M_{2})$ "works"
$(M_1 = A M_2)^* = E_{A}(M_1, M_2) "works"$
EXERCISE
Show that Egg (_,_) is the least reflexive
relation on A such that
1) & Egg(M, M) whenever MEA) " according
1) $ \# \in \mathbb{E}_{q_A}(M, M) $ whenever $M \in A$ 2) To show $\mathbb{E}_{q_A}(M, N) \longrightarrow \mathbb{R}(M, N)$ it show \mathbb{R} is reflexive
a: A >> _ ∈ R(a,c).

Bob Hurger ((eet 3) [2018/07/18] 4 Formalism formal type theory is industriely defined by a collection of rules for deriving:

T + A + ype T + A = A' definitional equality:

T + M: A T + M = M': A (p for grados) Typical axioms L+W: V, T + A, type T + Az type

T + A, * Az type T + M: A, × Az (i = 1,2) $\frac{\Gamma + M_1 \cdot A_2}{\Gamma + (M_1, M_2) \cdot A_2} = \frac{\Gamma + M_2 \cdot A_2}{\Gamma + (M_1, M_2) \cdot A_1 \times A_2}$ M+ M: A. *A2 T+ (M11, M-2> = M: A, XA2 Derivation in herently computatohy P + A = A' Design Requirements · All judgments should be decidable; eg - type checking

- definitional equivalence (for some chare of

111...t · strictural properties of entailment - critical point of view: the formalism is a useful appoximation to the touth. Via formal corresp. w/ formal logic
type-checking proof-checking (derivation-checking) The formal corresp. is borning (obrious) The semantic corresp. is interesting (nonobvious)

Bob Horper (Lect 3) [2018/07/18] (5) I tow to formalize equality?

15 (ut: "equality reflection" (ER) T - M : Ega(M, M2) (ER) [???] P + M = M2 : A TI-M.=Mz: Az mechanically that

T+ *; Eq. (M, Mz) M, = Mz ?

Rell_A(M,) Proof search: find an M that inhabits the type Egr(M, M2) .???