Package 'pacta.loanbook'

March 17, 2025

Title Easily Install and Load PACTA for Banks Packages

Version 0.1.0

Encoding UTF-8 Language en-US RoxygenNote 7.3.2

Config/testthat/edition 3 VignetteBuilder knitr NeedsCompilation no

Description PACTA (Paris Agreement Capital Transition Assessment) for Banks is a tool that allows banks to calculate the climate alignment of their corporate lending portfolios. This package is designed to make it easy to install and load multiple PACTA for Banks packages in a single step. It also provides thorough documentation - the PACTA for Banks cookbook at <https://rmi-pacta.github.io/pacta.loanbook/articles/cookbook_overview.html>on how to run a PACTA for Banks analysis. This covers prerequisites for the analysis, the separate steps of running the analysis, the interpretation of PACTA for Banks results, and advanced use cases. License MIT + file LICENSE URL https://rmi-pacta.github.io/pacta.loanbook/, https://github.com/RMI-PACTA/pacta.loanbook BugReports https://github.com/RMI-PACTA/pacta.loanbook/issues **Depends** R (>= 4.0.0) **Imports** cli, dplyr, ggrepel, magrittr, purrr, r2dii.analysis (>= 0.5.1), r2dii.data (>= 0.6.0), r2dii.match (>= 0.4.0), r2dii.plot (>= 0.5.1), rlang, rstudioapi, scales, tibble, tidyselect Suggests covr, DiagrammeR, ggplot2, gt (>= 0.11.0), knitr (>= 1.42), readr, readxl, rmarkdown (>= 2.19), spelling, testthat (>= 3.2.2), tidyr, writexl

Config/Needs/website rmi-pacta/pacta.pkgdown.rmitemplate, rmarkdown

2 Contents

Author Jacob Kastl [aut, cre, ctr] (https://orcid.org/0009-0000-8281-8129),
Jackson Hoffart [aut, ctr] (https://orcid.org/0000-0001-5099-9500),
CJ Yetman [aut, ctr] (https://orcid.org/0000-0001-5099-9500),
RMI [cph, fnd]

Maintainer Jacob Kastl < jacob.kastl@gmail.com>

Repository CRAN

Date/Publication 2025-03-17 20:50:02 UTC

Contents

abcd_demo
co2_intensity_scenario_demo
crucial_lbk
data_dictionary
gics_classification
increasing_or_decreasing
isic_classification
iso_codes
loanbook_demo
market_share
match_name
nace_classification
naics_classification
overwrite_demo
pacta_loanbook_conflicts
pacta_loanbook_deps
pacta_loanbook_logo
pacta_loanbook_packages
pacta_loanbook_sitrep
pacta_loanbook_update
palette_colours
plot_emission_intensity
plot_techmix
plot_trajectory
prep_emission_intensity
prep_techmix
prep_trajectory
prioritize
prioritize_level
psic_classification
qplot_emission_intensity
qplot_techmix
qplot_trajectory
recode_metric_techmix
recode_metric_trajectory
region_isos
region_isos_demo

abcd_demo 3

	scale_colour_r2dii	37
	scale_colour_r2dii_sector	38
	scale_colour_r2dii_tech	39
	scale_fill_r2dii	40
	scale_fill_r2dii_sector	41
	scale_fill_r2dii_tech	42
	scenario_colours	43
	scenario_demo_2020	44
	sda	45
	sector_classifications	45
	sector_colours	46
	sic_classification	47
	spell_out_technology	48
	target_market_share	49
	target_sda	50
	technology_colours	52
	theme_2dii	
	to_title	54
Index		55
abcd _.	_demo An asset-based company dataset for demonstration	

Description

Fake data about physical assets (e.g. wind turbine power plant capacities), aggregated to company-level. These data are used to assess the climate alignment of financial portfolios. It imitates data from market-intelligence databases.

Demo datasets are synthetic because most financial data is strictly private; they help to demonstrate and test the implementation in R of 'PACTA' (https://www.transitionmonitor.com/).

Usage

abcd_demo

Format

An object of class tbl_df (inherits from tbl, data.frame) with 4972 rows and 12 columns.

Definitions

• company_id (character): The id of the company owning the asset created by the data provider.,

* emission_factor (double): Company level emission factor of the technology., * emission_factor_unit
(character): The units that the emission factor is measured in., * is_ultimate_owner (logical): Flag if company is the ultimate parent in our database., * lei (character): The legal entity identifier of the company owning the asset., * name_company (character): The name of the company owning the asset., * plant_location (character): Country where asset is located.,

* production (double): Company level production of the technology, * production_unit (character): The units that production is measured in., * sector (character): Sector to which the asset belongs., * technology (character): Technology implemented by the asset., * year (integer): Year at which the production value is predicted.

See Also

Other demo data: co2_intensity_scenario_demo, loanbook_demo, market_share, overwrite_demo, region_isos_demo, scenario_demo_2020, sda

Examples

head(abcd_demo)

co2_intensity_scenario_demo

A prepared co2 intensity climate scenario dataset for demonstration

Description

Fake co2 intensity climate scenario dataset, prepared for the software PACTA (Paris Agreement Capital Transition Assessment). It imitates climate scenario data (e.g. from the International Energy Agency (IEA)) including the change through time in production across industrial sectors.

Demo datasets are synthetic because most financial data is strictly private; they help to demonstrate and test the implementation in R of 'PACTA' (https://www.transitionmonitor.com/).

Usage

co2_intensity_scenario_demo

Format

An object of class tbl_df (inherits from tbl, data.frame) with 22 rows and 7 columns.

Definitions

• emission_factor (double): The target sector level emissions factor that the scenario prescribes., * emission_factor_unit (character): The units that the emissions factor is measured in., * region (character): The region to which the pathway is relevant., * scenario (character): The name of the scenario., * scenario_source (character): The source publication from which the scenario was taken., * sector (character): The sector to which the scenario prescribes a pathway., * year (integer): The year at which the pathway value is prescribed.

See Also

Other demo data: abcd_demo, loanbook_demo, market_share, overwrite_demo, region_isos_demo, scenario_demo_2020, sda

crucial_lbk 5

Examples

```
head(co2_intensity_scenario_demo)
```

crucial_lbk

Crucial loanbook columns for match_name()

Description

This is a helper to select the minimum loanbook columns you need to run match_name(). Using more columns may use too much time and memory.

Usage

```
crucial_lbk()
```

Value

A character vector.

See Also

```
Other matching functions: match_name(), prioritize(), prioritize_level()
```

Examples

```
crucial_lbk()
```

data_dictionary

Data Dictionary

Description

A table of column names and descriptions of data frames used or exported by the functions in this package.

Usage

```
data_dictionary
```

Format

```
data_dictionary:
```

dataset Name of the dataset column Name of the column typeof Type of the column definition Definition of the column

6 gics_classification

Examples

data_dictionary

gics_classification

Dataset to bridge (translate) common sector-classification codes

Description

This dataset serves as a translation key between common sector-classification systems and sectors relevant to the 'PACTA' tool (https://www.transitionmonitor.com/).

Usage

gics_classification

Format

An object of class tbl_df (inherits from tbl, data.frame) with 282 rows and 5 columns.

Definitions

• borderline (logical): Flag indicating if PACTA sector and classification code are a borderline match. The value TRUE indicates that the match is uncertain between the PACTA sector and the classification. The value FALSE indicates that the match is certainly perfect or the classification is certainly out of PACTA's scope.., * code (character): Original GICS code., * description (character): Original GICS description., * sector (character): Associated PACTA sector., * version (character): Column identifying to which GICS version the code belongs.

Details

Classification datasets help to standardize sector classification codes from the wild to a relevant subset including 'power', 'oil and gas', 'coal', 'automotive', 'aviation', 'concrete', 'steel', and 'shipping'.

See Also

Other datasets: increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(gics_classification)

increasing_or_decreasing

Determine if a technology is increasing or decreasing

Description

This dataset provides a simple lookup table to determine if a technology is meant to increase or decrease to align with a scenario that predicts a less than 2 degree temperature rise.

Usage

increasing_or_decreasing

Format

An object of class tbl_df (inherits from tbl, data.frame) with 20 rows and 3 columns.

Definitions

• increasing_or_decreasing (character): If the technology is increasing or decreasing, as defined by the Paris-aligned IEA scenarios., * sector (character): The sector to which the technology belongs., * technology (character): The technology sub-category within the sector.

See Also

Other datasets: gics_classification, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(increasing_or_decreasing)

isic_classification

Dataset to bridge (translate) common sector-classification codes

Description

This dataset serves as a translation key between common sector-classification systems and sectors relevant to the 'PACTA' tool (https://www.transitionmonitor.com/).

Usage

isic_classification

8 iso_codes

Format

An object of class tbl_df (inherits from tbl, data.frame) with 830 rows and 6 columns.

Definitions

• borderline (logical): Flag indicating if PACTA sector and classification code are a borderline match. The value TRUE indicates that the match is uncertain between the PACTA sector and the classification. The value FALSE indicates that the match is certainly perfect or the classification is certainly out of PACTA's scope..., * code (character): ISIC Rev 5 code with top-level letter prepended., * description (character): Original ISIC Rev 5 title., * original_code (character): Original ISIC Rev 5 code., * revision (character): Column identifying to which ISIC revision the code belongs..., * sector (character): Associated PACTA sector.

Details

Classification datasets help to standardize sector classification codes from the wild to a relevant subset including 'power', 'oil and gas', 'coal', 'automotive', 'aviation', 'concrete', 'steel', and 'shipping'.

See Also

Other datasets: gics_classification, increasing_or_decreasing, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(isic_classification)

iso_codes

Countries and codes

Description

This dataset maps countries to codes.

For information about the ISO standard for country codes see https://www.iso.org/iso-3166-country-codes. html.

Usage

iso_codes

Format

An object of class tbl_df (inherits from tbl, data.frame) with 286 rows and 2 columns.

loanbook_demo 9

Definitions

country (character): Country name., * country_iso (character): Corresponding ISO code.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(iso_codes)

loanbook_demo

A loanbook dataset for demonstration

Description

Fake financial portfolio.

Demo datasets are synthetic because most financial data is strictly private; they help to demonstrate and test the implementation in R of 'PACTA' (https://www.transitionmonitor.com/).

Usage

loanbook_demo

Format

An object of class tbl_df (inherits from tbl, data.frame) with 283 rows and 13 columns.

Definitions

• id_direct_loantaker (character): Borrower identifier unique to each borrower/sector combination in loanbook., * id_loan (character): Unique loan identifier., * id_ultimate_parent (character): Ultimate parent identifier unique to each ultimate parent/sector combination., * isin_direct_loantaker (logical): Optional input: providing the isin identifier of the direct loan taker to improve the matching coverage., * lei_direct_loantaker (logical): Optional input: providing the lei (legal entity identifier) of the direct loan taker to improve the matching coverage., * loan_size_credit_limit (double): Total credit limit or exposure at default., * loan_size_outstanding (double): Amount drawn by borrower from total credit limit., * loan_size_outstanding_currency (character): Currency corresponding to outstandings., * name_direct_loantaker (character): Name of the company directly taking the loan., * name_ultimate_parent (character): Name of the ultimate parent company to which the borrower belongs. Can be the same as borrower., * sector_classification_direct_loantaker (double): Sector classification code of the direct loantaker., * sector_classification_system (character): Name of the sector classification standard being used.

10 match_name

See Also

Other demo data: abcd_demo, co2_intensity_scenario_demo, market_share, overwrite_demo, region_isos_demo, scenario_demo_2020, sda

Examples

head(loanbook_demo)

market_share

An example of a market_share-like dataset

Description

Dataset imitating the output of r2dii.analysis::target_market_share().

Usage

market_share

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 802 rows and 10 columns.

See Also

Other demo data: abcd_demo, co2_intensity_scenario_demo, loanbook_demo, overwrite_demo, region_isos_demo, scenario_demo_2020, sda

Examples

market_share

match_name

Match a loanbook to asset-based company data (abcd) by the name_* columns

Description

match_name() scores the match between names in a loanbook dataset (columns can be name_direct_loantaker, name_intermediate_parent* and name_ultimate_parent) with names in an asset-based company data (column name_company). The raw names are first internally transformed, and aliases are assigned. The similarity between aliases in each of the loanbook and abcd is scored using stringdist::stringsim().

match_name 11

Usage

```
match_name(
  loanbook,
  abcd,
  by_sector = TRUE,
  min_score = 0.8,
  method = "jw",
  p = 0.1,
  overwrite = NULL,
  join_id = NULL,
  sector_classification = default_sector_classification(),
  ...
)
```

Arguments

loanbook, abcd	data frames structured like r2dii.data::loanbook_demo and r2dii.data::abcd_demo.			
by_sector	Should names only be compared if companies belong to the same sector?			
min_score	A number between 0-1, to set the minimum score threshold. A score of 1 is a perfect match.			
method	Method for distance calculation. One of c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw", "soundex"). See stringdist::stringdist-metrics.			
p	Prefix factor for Jaro-Winkler distance. The valid range for p is $\emptyset \le p \le \emptyset$. If p=0 (default), the Jaro-distance is returned. Applies only to method='jw'.			
overwrite	A data frame used to overwrite the sector and/or name columns of a particular direct loantaker or ultimate parent. To overwrite only sector, the value in the name column should be NA and vice-versa. This file can be used to manually match loanbook companies to abcd.			
join_id	A join specification passed to dplyr::inner_join(). If a character string, it assumes identical join columns between loanbook and abcd. If a named character vector, it uses the name as the join column of loanbook and the value as the join column of abcd.			
sector_classification				
	A data frame containing sector classifications in the same format as r2dii.data::sector_classificati The default value is r2dii.data::sector_classifications.			
	Arguments passed on to stringdist::stringsim().			

Value

A data frame with the same groups (if any) and columns as loanbook, and the additional columns:

- id_2dii an id used internally by match_name() to distinguish companies
- level the level of granularity that the loan was matched at (e.g direct_loantaker or ultimate_parent)
- sector the sector of the loanbook company

12 match_name

- sector_abcd the sector of the abcd company
- name the name of the loanbook company
- name_abcd the name of the abcd company
- score the score of the match (manually set this to 1 prior to calling prioritize() to validate the match)
- source determines the source of the match. (equal to loanbook unless the match is from overwrite

The returned rows depend on the argument min_value and the result of the column score for each loan: * If any row has score equal to 1, match_name() returns all rows where score equals 1, dropping all other rows. * If no row has score equal to 1,match_name() returns all rows where score is equal to or greater than min_score. * If there is no match the output is a 0-row tibble with the expected column names – for type stability.

Assigning aliases

The transformation process used to compare names between loanbook and abcd datasets applies best practices commonly used in name matching algorithms:

- Remove special characters.
- Replace language specific characters.
- Abbreviate certain names to reduce their importance in the matching.
- Spell out numbers to increase their importance.

Handling grouped data

This function ignores but preserves existing groups.

See Also

```
Other matching functions: crucial_lbk(), prioritize(), prioritize_level()
```

```
library(r2dii.data)
library(tibble)

# Small data for examples
loanbook <- head(loanbook_demo, 50)
abcd <- head(abcd_demo, 50)

match_name(loanbook, abcd)

match_name(loanbook, abcd, min_score = 0.9)

# match on LEI
loanbook <- tibble(
    sector_classification_system = "NACE",
    sector_classification_direct_loantaker = "D35.11",</pre>
```

nace_classification 13

```
id_ultimate_parent = "UP15",
  name_ultimate_parent = "Won't fuzzy match",
  id_direct_loantaker = "C294",
  name_direct_loantaker = "Won't fuzzy match",
  lei_direct_loantaker = "LEI123"
)
abcd <- tibble(</pre>
  name_company = "alpine knits india pvt. limited",
  sector = "power",
  lei = "LEI123"
match_name(loanbook, abcd, join_id = c(lei_direct_loantaker = "lei"))
# Use your own `sector_classifications`
your_classifications <- tibble(</pre>
  sector = "power",
  borderline = FALSE,
  code = "D35.11",
  code_system = "XYZ"
)
loanbook <- tibble(</pre>
  sector_classification_system = "XYZ",
  sector_classification_direct_loantaker = "D35.11",
  id_ultimate_parent = "UP15",
  name_ultimate_parent = "Alpine Knits India Pvt. Limited",
  id_direct_loantaker = "C294",
  name_direct_loantaker = "Yuamen Xinneng Thermal Power Co Ltd"
)
abcd <- tibble(</pre>
  name_company = "alpine knits india pvt. limited",
  sector = "power"
)
match_name(loanbook, abcd, sector_classification = your_classifications)
```

nace_classification Dataset to bridge (translate) common sector-classification codes

Description

This dataset serves as a translation key between common sector-classification systems and sectors relevant to the 'PACTA' tool (https://www.transitionmonitor.com/).

Usage

```
nace_classification
```

14 naics_classification

Format

An object of class tbl_df (inherits from tbl, data.frame) with 1047 rows and 6 columns.

Definitions

• borderline (logical): Flag indicating if PACTA sector and classification code are a borderline match. The value TRUE indicates that the match is uncertain between the PACTA sector and the classification. The value FALSE indicates that the match is certainly perfect or the classification is certainly out of PACTA's scope., * code (character): NACE version 2.1 code with top-level letter prepended., * description (character): Original NACE version 2.1 description., * original_code (character): Original NACE version 2.1 code., * sector (character): Associated PACTA sector., * version (character): Column identifying to which NACE version the code belongs.

Details

Classification datasets help to standardize sector classification codes from the wild to a relevant subset including 'power', 'oil and gas', 'coal', 'automotive', 'aviation', 'concrete', 'steel', and 'shipping'.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(nace_classification)

Description

This dataset serves as a translation key between common sector-classification systems and sectors relevant to the 'PACTA' tool (https://www.transitionmonitor.com/).

Usage

naics_classification

Format

An object of class tbl_df (inherits from tbl, data.frame) with 2125 rows and 5 columns.

overwrite_demo 15

Definitions

• borderline (logical): Flag indicating if PACTA sector and classification code are a borderline match. The value TRUE indicates that the match is uncertain between the PACTA sector and the classification. The value FALSE indicates that the match is certainly perfect or the classification is certainly out of PACTA's scope.., * code (character): Six-digit NAICS code., * description (character): Original NAICS sector title., * sector (character): Associated PACTA sector., * version (character): Column identifying which year the classification was published in..

Details

Classification datasets help to standardize sector classification codes from the wild to a relevant subset including 'power', 'oil and gas', 'coal', 'automotive', 'aviation', 'concrete', 'steel', and 'shipping'.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(naics_classification)

overwrite_demo	A demonstration dataset used to overwrite specific entity names or
	sectors

Description

Fake dataset used to manually link loanbook entities to mismatched asset level entities.

Demo datasets are synthetic because most financial data is strictly private; they help to demonstrate and test the implementation in R of 'PACTA' (https://www.transitionmonitor.com/).

Usage

overwrite_demo

Format

An object of class tbl_df (inherits from tbl, data.frame) with 2 rows and 5 columns.

Definitions

• id_2dii (character): IDs of the entities to overwrite., * level (character): Which level should be overwritten (e.g. direct_loantaker or ultimate_parent)., * name (character): Overwrite name (if only overwriting sector, type NA)., * sector (character): Overwrite sector (if only overwriting name, type NA)., * source (character): What is the source of this information (leave as "manual" for now, may remove this flag later).

See Also

Other demo data: abcd_demo, co2_intensity_scenario_demo, loanbook_demo, market_share, region_isos_demo, scenario_demo_2020, sda

Examples

```
head(overwrite_demo)
```

pacta_loanbook_conflicts

Conflicts between the {pacta.loanbook} and other packages

Description

This function lists all the conflicts between packages in the {pacta.loanbook} and other packages that you have loaded.

Usage

```
pacta_loanbook_conflicts(only = NULL)
```

Arguments

only

Set this to a character vector to restrict to conflicts only with these packages.

Details

There are four conflicts that are deliberately ignored: intersect, union, setequal, and setdiff from dplyr. These functions make the base equivalents generic, so shouldn't negatively affect any existing code.

Value

a pacta_loanbook_conflicts classed list which will print a list of conflicts to the console in interactive sessions, or NULL if no conflicts are found.

See Also

Other utility functions: pacta_loanbook_deps(), pacta_loanbook_logo(), pacta_loanbook_packages(), pacta_loanbook_sitrep(), pacta_loanbook_update()

pacta_loanbook_deps 17

Examples

```
pacta_loanbook_conflicts()
```

pacta_loanbook_deps

List all {pacta.loanbook} *dependencies*

Description

```
List all {pacta.loanbook} dependencies
```

Usage

```
pacta_loanbook_deps(recursive = FALSE, repos = getOption("repos"))
```

Arguments

recursive

If TRUE, will also list all dependencies of {pacta.loanbook} packages.

repos

The repositories to use to check for updates. Defaults to getOption("repos").

Value

a tibble containing the local and CRAN versions of dependent packages.

See Also

```
Other utility functions: pacta_loanbook_conflicts(), pacta_loanbook_logo(), pacta_loanbook_packages(), pacta_loanbook_sitrep(), pacta_loanbook_update()
```

Examples

```
pacta_loanbook_deps(repos = "https://cran.r-project.org")
```

pacta_loanbook_logo

The {pacta.loanbook} logo, using ASCII or Unicode characters

Description

```
Use cli::ansi_strip() to get rid of the colors.
```

Usage

```
pacta_loanbook_logo(unicode = cli::is_utf8_output())
```

Arguments

unicode

Whether to use Unicode symbols. Default is TRUE on UTF-8 platforms.

Value

a pacta_loanbook_logo classed cli_ansi_string which will print the PACTA logo in the console in interactive sessions.

See Also

Other utility functions: pacta_loanbook_conflicts(), pacta_loanbook_deps(), pacta_loanbook_packages(), pacta_loanbook_sitrep(), pacta_loanbook_update()

Examples

```
pacta_loanbook_logo()
```

pacta_loanbook_packages

List all packages in {pacta.loanbook}

Description

```
List all packages in {pacta.loanbook}
```

Usage

```
pacta_loanbook_packages(include_self = TRUE)
```

Arguments

```
include_self Include {pacta.loanbook} in the list?
```

Value

a character vector containing the names of packages imported by {pacta.loanbook}.

See Also

```
Other utility functions: pacta_loanbook_conflicts(), pacta_loanbook_deps(), pacta_loanbook_logo(), pacta_loanbook_sitrep(), pacta_loanbook_update()
```

```
pacta_loanbook_packages()
```

pacta_loanbook_sitrep 19

pacta_loanbook_sitrep Get a situation report on {pacta.loanbook}

Description

This function gives a quick overview of the versions of R and RStudio as well as the {pacta.loanbook} package. It's primarily designed to help you get a quick idea of what's going on when you're helping someone else debug a problem.

Usage

```
pacta_loanbook_sitrep(repos = getOption("repos"))
```

Arguments

repos

The repositories to use to check for updates. Defaults to getOption("repos").

Value

returns NULL invisibly. The function is called for its side effect of printing a situation report of {pacta.loanbook} and its core packages.

See Also

Other utility functions: pacta_loanbook_conflicts(), pacta_loanbook_deps(), pacta_loanbook_logo(), pacta_loanbook_packages(), pacta_loanbook_update()

Examples

```
pacta_loanbook_sitrep(repos = "https://cran.r-project.org")
```

pacta_loanbook_update Update {pacta.loanbook} packages

Description

This will check to see if all {pacta.loanbook} packages (and optionally, their dependencies) are up-to-date, and will install after an interactive confirmation.

Usage

```
pacta_loanbook_update(recursive = FALSE, repos = getOption("repos"))
```

Arguments

recursive If TRUE, will also list all dependencies of {pacta.loanbook} packages.

repos The repositories to use to check for updates. Defaults to getOption("repos").

20 palette_colours

Value

returns NULL invisibly. The function is called for its side effect of printing the status of locally installed, relevant packages.

See Also

```
Other utility functions: pacta_loanbook_conflicts(), pacta_loanbook_deps(), pacta_loanbook_logo(), pacta_loanbook_packages(), pacta_loanbook_sitrep()
```

Examples

```
pacta_loanbook_update(repos = "https://cran.r-project.org")
```

palette_colours

Colour datasets

Description

All datasets have at least two columns:

- label: Text label of the colour.
- hex: Hex code of the colour.

Usage

```
palette_colours
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 9 rows and 2 columns.

Details

In scenario_colours, colours are ordered from red to green to be used in trajectory charts.

See Also

```
Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours
```

```
palette_colours
scenario_colours
sector_colours
technology_colours
```

```
plot_emission_intensity
```

Create an emission intensity plot

Description

Create an emission intensity plot

Usage

```
plot_emission_intensity(data)
```

Arguments

data

A data frame like the output of prep_emission_intensity().

Value

An object of class "ggplot".

See Also

```
Other plotting functions: plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_techmix(), prep_techmix(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

Examples

```
# plot with `qplot_emission_intensity()` parameters
data <- subset(sda, sector == "cement" & region == "global")
data <- prep_emission_intensity(data, span_5yr = TRUE, convert_label = to_title)
plot_emission_intensity(data)</pre>
```

plot_techmix

Create a technix plot

Description

Create a technix plot

Usage

```
plot_techmix(data)
```

22 plot_trajectory

Arguments

data

A data frame like the output of prep_techmix().

Value

An object of class "ggplot".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_trajectory(), prep_emission_intensity(), prep_techmix(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

Examples

```
# plot with `qplot_techmix()` parameters
data <- subset(
    market_share,
    scenario_source == "demo_2020" &
        sector == "power" &
        region == "global" &
        metric %in% c("projected", "corporate_economy", "target_sds")
)
data <- prep_techmix(
    data,
    span_5yr = TRUE,
    convert_label = recode_metric_techmix,
    convert_tech_label = spell_out_technology
)
plot_techmix(data)</pre>
```

plot_trajectory

Create a trajectory plot

Description

Create a trajectory plot

Usage

```
plot_trajectory(data, center_y = FALSE, perc_y_scale = FALSE)
```

Arguments

data A data frame like the outputs of prep_trajectory().

• (Optional) If present, the column label is used for data labels.

center_y Logical. Use TRUE to center the y-axis around start value (the default behavior

of qplot_trajectory()), or use FALSE to not center.

labels on y-axis to percentage using scales::percent (the default behavior of

qplot_trajectory()).

Value

An object of class "ggplot".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), prep_emission_intensity(), prep_techmix(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

Examples

```
# plot with `qplot_trajectory()` parameters
data <- subset(
   market_share,
   sector == "power" &
     technology == "renewablescap" &
     region == "global" &
     scenario_source == "demo_2020"
)
data <- prep_trajectory(data)

plot_trajectory(
   data,
     center_y = TRUE,
   perc_y_scale = TRUE
)</pre>
```

prep_emission_intensity

Prepare data for a emission intensity plot

Description

Prepare data for a emission intensity plot

24 prep_techmix

Usage

```
prep_emission_intensity(data, convert_label = identity, span_5yr = FALSE)
```

Arguments

data

A data frame. Requirements:

- The structure must be like sda.
- The column sector must have a single value (e.g. "cement").
- (Optional) If present, the column label is used for data labels.

convert_label

A symbol. The unquoted name of a function to apply to y-axis labels. For example:

- To convert labels to uppercase use convert_label = toupper.
- To get the default behavior of qplot_emission_intensity() use convert_label = to_title.

span_5yr

Logical. Use TRUE to restrict the time span to 5 years from the start year (the default behavior of qplot_emission_intensity()), or use FALSE to impose no restriction.

Value

A data-frame ready to be plotted using plot_emission_intensity().

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_techmix(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

Examples

```
# `data` must meet documented "Requirements"
data <- subset(sda, sector == "cement" & region == "global")
prep_emission_intensity(data)</pre>
```

prep_techmix

Prepare data for plotting technology mix

Description

Prepare data for plotting technology mix

prep_techmix 25

Usage

```
prep_techmix(
  data,
  convert_label = identity,
  span_5yr = FALSE,
  convert_tech_label = identity
)
```

Arguments

data

A data frame. Requirements:

- The structure must be like market_share.
- The following columns must have a single value: sector, region, scenario_source.
- The column metric must have a portfolio (e.g. "projected"), a benchmark (e.g. "corporate_economy"), and a single scenario (e.g. "target_sds").
- (Optional) If present, the column label is used for data labels.
- (Optional) If present, the column label_tech is used for technology labels.

convert_label

A symbol. The unquoted name of a function to apply to y-axis labels. For example:

- To convert labels to uppercase use convert_label = toupper.
- To get the default behavior of qplot_techmix() use convert_label = recode_metric_techmix.

span_5yr

Logical. Use TRUE to restrict the time span to 5 years from the start year (the default behavior of qplot_techmix()), or use FALSE to impose no restriction.

convert_tech_label

A symbol. The unquoted name of a function to apply to technology legend labels. For example, to convert labels to uppercase use convert_tech_label = toupper. To get the default behavior of qplot_techmix() use convert_tech_label = spell_out_technology.

Value

A data-frame ready to be plotted using plot_techmix().

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

```
# `data` must meet documented "Requirements"
data <- subset(
  market_share,</pre>
```

26 prep_trajectory

```
scenario_source == "demo_2020" &
  sector == "power" &
  region == "global" &
  metric %in% c("projected", "corporate_economy", "target_sds")
)
prep_techmix(data)
```

prep_trajectory

Prepare data for a trajectory plot

Description

Prepare data for a trajectory plot

Usage

```
prep_trajectory(
  data,
  convert_label = identity,
  span_5yr = FALSE,
  value_col = "percentage_of_initial_production_by_scope"
)
```

Arguments

data

A data frame. Requirements:

- The structure must be like market_share.
- The following columns must have a single value: sector, technology, region, scenario_source.
- (Optional) If present, the column label is used for data labels.

convert_label

A symbol. The unquoted name of a function to apply to y-axis labels. For example:

- To convert labels to uppercase use convert_label = toupper.
- To get the default behavior of qplot_trajectory() use convert_label = recode_metric_trajectory.

span_5yr

Logical. Use TRUE to restrict the time span to 5 years from the start year (the default behavior of qplot_trajectory()), or use FALSE to impose no restriction.

value_col

Character. Name of the column to be used as a value to be plotted.

Value

A data-frame ready to be plotted using plot_trajectory().

27 prioritize

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(),
prep_emission_intensity(), prep_techmix(), qplot_emission_intensity(), qplot_techmix(),
qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(),
scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(),
scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

Examples

```
# `data` must meet documented "Requirements"
data <- subset(</pre>
 market_share,
 sector == "power" &
    technology == "renewablescap" &
    region == "global" &
    scenario_source == "demo_2020"
)
prep_trajectory(data)
```

prioritize

Pick rows where score is 1 and level per loan is of highest priority

Description

When multiple perfect matches are found per loan (e.g. a match at direct_loantaker level and ultimate_parent level), we must prioritize the desired match. By default, the highest priority is the most granular match (i.e. direct_loantaker).

Usage

```
prioritize(data, priority = NULL)
```

Arguments

data

A data frame like the validated output of match_name(). See *Details* on how to validate data.

priority

- One of:
 - NULL: defaults to the default level priority as returned by prioritize_level().
 - A character vector giving a custom priority.
 - A function to apply to the output of prioritize_level(), e.g. rev.
 - A quosure-style lambda function, e.g. ~ rev(.x).

28 prioritize

Details

How to validate data Write the output of match_name() into a .csv file with:

```
# Writting to current working directory
matched %>%
  readr::write_csv("matched.csv")
```

Compare, edit, and save the data manually:

- Open *matched.csv* with any spreadsheet editor (Excel, Google Sheets, etc.).
- Compare the columns name and name_abcd manually to determine if the match is valid. Other information can be used in conjunction with just the names to ensure the two entities match (sector, internal information on the company structure, etc.)
- Edit the data:
 - If you are happy with the match, set the score value to 1.
 - Otherwise set or leave the score value to anything other than 1.
- Save the edited file as, say, valid_matches.csv.

Re-read the edited file (validated) with:

```
# Reading from current working directory
valid_matches <- readr::read_csv("valid_matches.csv")</pre>
```

Value

A data frame with a single row per loan, where score is 1 and priority level is highest.

Handling grouped data

This function ignores but preserves existing groups.

See Also

```
Other matching functions: crucial_lbk(), match_name(), prioritize_level()
```

prioritize_level 29

```
prioritize_level(matched)

# Using default priority
prioritize(matched)

# Using the reverse of the default priority
prioritize(matched, priority = rev)

# Same
prioritize(matched, priority = ~ rev(.x))

# Using a custom priority
bad_idea <- c("intermediate_parent", "ultimate_parent", "direct_loantaker")
prioritize(matched, priority = bad_idea)</pre>
```

prioritize_level

Arrange unique level values in default order of priority

Description

Arrange unique level values in default order of priority

Usage

```
prioritize_level(data)
```

Arguments

data

A data frame, commonly the output of match_name().

Value

A character vector of the default level priority per loan.

See Also

```
Other matching functions: crucial_lbk(), match_name(), prioritize()
```

```
matched <- tibble::tibble(
  level = c(
    "intermediate_parent_1",
    "direct_loantaker",
    "direct_loantaker",
    "direct_loantaker",
    "ultimate_parent",
    "intermediate_parent_2"
)</pre>
```

30 psic_classification

```
)
prioritize_level(matched)
```

psic_classification

Dataset to bridge (translate) common sector-classification codes

Description

This dataset serves as a translation key between common sector-classification systems and sectors relevant to the 'PACTA' tool (https://www.transitionmonitor.com/).

Usage

```
psic_classification
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 1271 rows and 5 columns.

Definitions

• borderline (logical): Flag indicating if PACTA sector and classification code are a borderline match. The value TRUE indicates that the match is uncertain between the PACTA sector and the classification. The value FALSE indicates that the match is certainly perfect or the classification is certainly out of PACTA's scope..., * code (character): Formatted PSIC classification code., * description (character): Original PSIC classification sector name., * sector (character): Associated PACTA sector., * version (character): Column identifying which year the classification was published in..

Details

Classification datasets help to standardize sector classification codes from the wild to a relevant subset including 'power', 'oil and gas', 'coal', 'automotive', 'aviation', 'concrete', 'steel', and 'shipping'.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(psic_classification)

```
qplot_emission_intensity
```

Create a quick emission intensity plot

Description

Compared to plot_emission_intensity() this function:

- is restricted to plotting future as 5 years from the start year,
- outputs formatted labels, based on emission metric column,
- outputs a title,
- outputs formatted axis labels.

Usage

```
qplot_emission_intensity(data)
```

Arguments

data

A data frame like the output of prep_emission_intensity().

Value

An object of class "ggplot".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_techmix(), prep_trajectory(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

```
# `data` must meet documented "Requirements"
data <- subset(sda, sector == "cement" & region == "global")
qplot_emission_intensity(data)</pre>
```

32 qplot_techmix

qplot_techmix

Create a quick technix plot

Description

Compared to plot_techmix() this function:

- is restricted to plotting future as 5 years from the start year,
- outputs pretty bar labels, based on metric column,
- outputs pretty legend labels, based on technology column,
- outputs a title.

Usage

```
qplot_techmix(data)
```

Arguments

data

A data frame like the output of prep_techmix().

Value

An object of class "ggplot".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), scale_fill_
```

```
# `data` must meet documented "Requirements"
data <- subset(
    market_share,
    sector == "power" &
        region == "global" &
        scenario_source == "demo_2020" &
        metric %in% c("projected", "corporate_economy", "target_sds")
)

qplot_techmix(data)</pre>
```

qplot_trajectory 33

qplot_trajectory

Create a quick trajectory plot

Description

Compared to plot_trajectory() this function:

- is restricted to plotting only 5 years from the start year,
- outputs pretty legend labels, based on the column holding metrics,
- outputs a title,
- outputs a subtitle,
- outputs informative axis labels in sentence case.

Usage

```
qplot_trajectory(data)
```

Arguments

data

A data frame like the outputs of prep_trajectory().

• (Optional) If present, the column label is used for data labels.

Value

An object of class "ggplot".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), scale_fill_r2d
```

```
# `data` must meet documented "Requirements"
data <- subset(
   market_share,
   sector == "power" &
     technology == "renewablescap" &
     region == "global" &
     scenario_source == "demo_2020"
)

qplot_trajectory(data)</pre>
```

recode_metric_techmix Replicate labels produced with qplot_*() functions

Description

- to_title() converts labels like qplot_emission_intensity().
- recode_metric_trajectory() converts labels like qplot_trajectory().
- recode_metric_techmix() converts labels like qplot_techmix().
- spell_out_technology() converts technology labels like qplot_techmix().

Usage

```
recode_metric_techmix(x)
```

Arguments

Х

A character vector.

Value

A character vector.

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), scale_fill_r2dii_te
```

```
to_title(c("a.string", "another_STRING"))
metric <- c("projected", "corporate_economy", "target_xyz", "else")
recode_metric_trajectory(metric)
recode_metric_techmix(metric)
spell_out_technology(c("gas", "ice", "coalcap", "hdv"))</pre>
```

```
recode_metric_trajectory
```

Replicate labels produced with qplot_*() functions

Description

- to_title() converts labels like qplot_emission_intensity().
- recode_metric_trajectory() converts labels like qplot_trajectory().
- recode_metric_techmix() converts labels like qplot_techmix().
- spell_out_technology() converts technology labels like qplot_techmix().

Usage

```
recode_metric_trajectory(x)
```

Arguments

Х

A character vector.

Value

A character vector.

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

```
to_title(c("a.string", "another_STRING"))

metric <- c("projected", "corporate_economy", "target_xyz", "else")
recode_metric_trajectory(metric)

recode_metric_techmix(metric)

spell_out_technology(c("gas", "ice", "coalcap", "hdv"))</pre>
```

36 region_isos_demo

region_isos

A dataset outlining various region definitions

Description

This dataset maps codes representing countries to regions.

For information about the ISO standard for country codes see https://www.iso.org/iso-3166-country-codes.html.

Usage

region_isos

Format

An object of class tbl_df (inherits from tbl, data.frame) with 9262 rows and 3 columns.

Definitions

• isos (character): Countries in region, defined by iso code., * region (character): Benchmark region name., * source (character): Source publication from which the regions are defined.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, scenario_colours, sector_classifications, sector_colours, sic_classification, technology_colours

Examples

head(region_isos)

region_isos_demo

A dataset outlining various region definitions

Description

This dataset maps codes representing countries to regions. It is similar to but smaller than region_isos.

Demo datasets are synthetic because most financial data is strictly private; they help to demonstrate and test the implementation in R of 'PACTA' (https://www.transitionmonitor.com/).

For information about the ISO standard for country codes see https://www.iso.org/iso-3166-country-codes. https://www.iso.org/iso-3166-country-codes. https://www.iso.org/iso-3166-country-codes.

scale_colour_r2dii 37

Usage

```
region_isos_demo
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 358 rows and 3 columns.

Definitions

• isos (character): Countries in region, defined by iso code., * region (character): Benchmark region name., * source (character): Source publication from which the regions are defined.

See Also

```
Other demo data: abcd_demo, co2_intensity_scenario_demo, loanbook_demo, market_share, overwrite_demo, scenario_demo_2020, sda
```

Examples

```
region_isos_demo
```

scale_colour_r2dii

Custom 2DII colour and fill scales

Description

A custom discrete colour and fill scales with colours from 2DII palette.

Usage

```
scale_colour_r2dii(colour_labels = NULL, ...)
```

Arguments

```
colour_labels A character vector. Specifies colour labels to use and their order. Run unique(r2dii.plot:::palette_c to see available colours. Similar to value parameter in ggplot2::scale_colour_manual().

Other parameters passed on to ggplot2::discrete_scale().
```

Value

An object of class "ScaleDiscrete".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

Examples

Description

A custom discrete colour and fill scales with colours from 2DII sector palette.

Usage

```
scale_colour_r2dii_sector(sectors = NULL, ...)
```

Arguments

A character vector. Specifies sector colours to use and their order. Run unique(r2dii.plot:::sector_c to see available labels. Similar to value parameter in ggplot2::scale_colour_manual().

Other parameters passed on to ggplot2::discrete_scale().

Value

An object of class "ScaleDiscrete".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

```
library(ggplot2, warn.conflicts = FALSE)
ggplot(mpg) +
  geom_point(aes(displ, hwy, color = class)) +
  scale_colour_r2dii_sector()
```

Description

A custom discrete colour and fill scales with colours from 2DII technology palette.

Usage

```
scale_colour_r2dii_tech(sector, technologies = NULL, ...)
```

Arguments

A string. Sector name specifying a colour palette. Run unique(r2dii.plot:::technology_colours\$set to see available sectors.

technologies A character vector. Specifies technologies to use as colours and their order. Run unique(r2dii.plot:::technology_colours\$technology) to see available technologies (pay attention if they match the sector). Similar to value parameter in ggplot2::scale_colour_manual().

Other parameters passed on to ggplot2::discrete_scale().

Value

An object of class "ScaleDiscrete".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_fill_r2dii(), scale_fill_r2dii_sector(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

```
library(ggplot2, warn.conflicts = FALSE)
ggplot(mpg) +
  geom_point(aes(displ, hwy, color = class)) +
  scale_colour_r2dii_tech("automotive")

ggplot(mpg) +
  geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
  scale_fill_r2dii_tech("automotive")
```

40 scale_fill_r2dii

scale_fill_r2dii

Custom 2DII colour and fill scales

Description

A custom discrete colour and fill scales with colours from 2DII palette.

Usage

```
scale_fill_r2dii(colour_labels = NULL, ...)
```

Arguments

```
colour_labels A character vector. Specifies colour labels to use and their order. Run unique(r2dii.plot:::palette_c to see available colours. Similar to value parameter in ggplot2::scale_colour_manual().

... Other parameters passed on to ggplot2::discrete_scale().
```

Value

An object of class "ScaleDiscrete".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_techmix(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_sector(), scale_colour_r2dii_tech(), scale_fill_r2dii_sector() scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii(), to_title()
```

```
library(ggplot2, warn.conflicts = FALSE)

ggplot(mpg) +
   geom_point(aes(displ, hwy, color = class)) +
   scale_colour_r2dii()

ggplot(mpg) +
   geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
   scale_fill_r2dii()
```

scale_fill_r2dii_sector 41

```
scale_fill_r2dii_sector
```

Custom 2DII sector colour and fill scales

Description

A custom discrete colour and fill scales with colours from 2DII sector palette.

Usage

```
scale_fill_r2dii_sector(sectors = NULL, ...)
```

Arguments

```
sectors A character vector. Specifies sector colours to use and their order. Run unique(r2dii.plot:::sector_c to see available labels. Similar to value parameter in ggplot2::scale_colour_manual().

Other parameters passed on to ggplot2::discrete_scale().
```

Value

An object of class "ScaleDiscrete".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii(), scale_fill_r2dii(), to_title()
```

```
library(ggplot2, warn.conflicts = FALSE)
ggplot(mpg) +
  geom_point(aes(displ, hwy, color = class)) +
  scale_colour_r2dii_sector()
ggplot(mpg) +
  geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
  scale_fill_r2dii_sector()
```

42 scale_fill_r2dii_tech

```
scale_fill_r2dii_tech Custom 2DII technology colour and fill scales
```

Description

A custom discrete colour and fill scales with colours from 2DII technology palette.

Usage

```
scale_fill_r2dii_tech(sector, technologies = NULL, ...)
```

Arguments

A string. Sector name specifying a colour palette. Run unique(r2dii.plot:::technology_colours\$so to see available sectors.

technologies

A character vector. Specifies technologies to use as colours and their order. Run unique(r2dii.plot:::technology_colours\$technology) to see available technologies (pay attention if they match the sector). Similar to value parameter in ggplot2::scale_colour_manual().

Other parameters passed on to ggplot2::discrete_scale().

Value

An object of class "ScaleDiscrete".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii(), scale_fill_r2dii(), to_title()
```

```
library(ggplot2, warn.conflicts = FALSE)

ggplot(mpg) +
   geom_point(aes(displ, hwy, color = class)) +
   scale_colour_r2dii_tech("automotive")

ggplot(mpg) +
   geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
   scale_fill_r2dii_tech("automotive")
```

scenario_colours 43

scenario_colours

Colour datasets

Description

All datasets have at least two columns:

• label: Text label of the colour.

• hex: Hex code of the colour.

Usage

```
scenario_colours
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 5 rows and 2 columns.

Details

In scenario_colours, colours are ordered from red to green to be used in trajectory charts.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, sector_classifications, sector_colours, sic_classification, technology_colours

```
palette_colours
scenario_colours
sector_colours
technology_colours
```

scenario_demo_2020

scenario_demo_2020

A prepared climate scenario dataset for demonstration

Description

Fake climate scenario dataset, prepared for the software PACTA (Paris Agreement Capital Transition Assessment). It imitates climate scenario data (e.g. from the International Energy Agency (IEA)) including the change through time in production across industrial sectors.

Demo datasets are synthetic because most financial data is strictly private; they help to demonstrate and test the implementation in R of 'PACTA' (https://www.transitionmonitor.com/).

Usage

scenario_demo_2020

Format

An object of class tbl_df (inherits from tbl, data.frame) with 1512 rows and 8 columns.

Definitions

• region (character): The region to which the pathway is relevant., * scenario (character): The name of the scenario., * scenario_source (character): The source publication from which the scenario was taken., * sector (character): The sector to which the scenario prescribes a pathway., * smsp (double): Sector market share percentage of the pathway calculated in 2020., * technology (character): The technology within the sector to which the scenario prescribes a pathway., * tmsr (double): Technology market share ratio of the pathway calculated in 2020., * year (integer): The year at which the pathway value is prescribed.

See Also

Other demo data: abcd_demo, co2_intensity_scenario_demo, loanbook_demo, market_share, overwrite_demo, region_isos_demo, sda

Examples

head(scenario_demo_2020)

sda 45

sda

An example of an sda-like dataset

Description

Dataset imitating the output of r2dii.analysis::target_sda().

Usage

sda

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 110 rows and 6 columns.

Source

```
https://github.com/RMI-PACTA/r2dii.plot/issues/55.
```

See Also

Other demo data: abcd_demo, co2_intensity_scenario_demo, loanbook_demo, market_share, overwrite_demo, region_isos_demo, scenario_demo_2020

Examples

sda

sector_classifications

A view of available sector classification datasets

Description

This dataset lists all sector classification code standards used by 'PACTA' (https://www.transitionmonitor.com/).

Usage

```
sector_classifications
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 6559 rows and 4 columns.

46 sector_colours

Definitions

• borderline (character): Flag indicating if 2dii sector and classification code are a borderline match. The value TRUE indicates that the match is uncertain between the 2dii sector and the classification. The value FALSE indicates that the match is certainly perfect or the classification is certainly out of 2dii's scope.., * code (character): Formatted code., * code_system (character): Code system., * sector (character): Associated 2dii sector.

Details

Classification datasets help to standardize sector classification codes from the wild to a relevant subset including 'power', 'oil and gas', 'coal', 'automotive', 'aviation', 'concrete', 'steel', and 'shipping'.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_colours, sic_classification, technology_colours

Examples

head(sector_classifications)

sector_colours

Colour datasets

Description

All datasets have at least two columns:

• label: Text label of the colour.

• hex: Hex code of the colour.

Usage

sector_colours

Format

An object of class tbl_df (inherits from tbl, data.frame) with 8 rows and 2 columns.

Details

In scenario_colours, colours are ordered from red to green to be used in trajectory charts.

sic_classification 47

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sic_classification, technology_colours

Examples

```
palette_colours
scenario_colours
sector_colours
technology_colours
```

sic_classification

Dataset to bridge (translate) common sector-classification codes

Description

This dataset serves as a translation key between common sector-classification systems and sectors relevant to the 'PACTA' tool (https://www.transitionmonitor.com/).

Usage

sic_classification

Format

An object of class tbl_df (inherits from tbl, data.frame) with 1005 rows and 5 columns.

Definitions

borderline (character): Flag indicating if PACTA sector and classification code are a borderline match. The value TRUE indicates that the match is uncertain between the PACTA sector and the classification. The value FALSE indicates that the match is certainly perfect or the classification is certainly out of PACTA's scope..., * code (character): Original SIC code., * description (character): Original SIC description., * sector (character): Associated PACTA sector., * version (character): Column identifying to which SIC version the code belongs.

Details

Classification datasets help to standardize sector classification codes from the wild to a relevant subset including 'power', 'oil and gas', 'coal', 'automotive', 'aviation', 'concrete', 'steel', and 'shipping'.

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, technology_colours

Examples

```
head(sic_classification)
```

```
spell_out_technology Replicate labels produced with qplot_*() functions
```

Description

- to_title() converts labels like qplot_emission_intensity().
- recode_metric_trajectory() converts labels like qplot_trajectory().
- recode_metric_techmix() converts labels like qplot_techmix().
- spell_out_technology() converts technology labels like qplot_techmix().

Usage

```
spell_out_technology(x)
```

Arguments

Х

A character vector.

Value

A character vector.

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii(), to_title()
```

```
to_title(c("a.string", "another_STRING"))
metric <- c("projected", "corporate_economy", "target_xyz", "else")
recode_metric_trajectory(metric)
recode_metric_techmix(metric)
spell_out_technology(c("gas", "ice", "coalcap", "hdv"))</pre>
```

target_market_share 49

target_market_share

Add targets for production, using the market share approach

Description

This function calculates the portfolio-level production targets, as calculated using the market share approach applied to each relevant climate production forecast.

Usage

```
target_market_share(
  data,
  abcd,
  scenario,
  region_isos = r2dii.data::region_isos,
  use_credit_limit = FALSE,
  by_company = FALSE,
  weight_production = TRUE,
  increasing_or_decreasing = r2dii.data::increasing_or_decreasing)
```

Arguments

data A "data.frame" like the output of r2dii.match::prioritize. abcd An asset level data frame like r2dii.data::abcd_demo. A scenario data frame like r2dii.data::scenario_demo_2020. scenario A data frame like r2dii.data::region_isos (default). region_isos use_credit_limit Logical vector of length 1. FALSE defaults to using the column loan_size_outstanding. Set to TRUE to use the column loan_size_credit_limit instead. by_company Logical vector of length 1. FALSE defaults to outputting production_value at the portfolio-level. Set to TRUE to output production_value at the companylevel. weight_production Logical vector of length 1. TRUE defaults to outputting production, weighted by relative loan-size. Set to FALSE to output the unweighted production values. increasing_or_decreasing

A data frame like r2dii.data::increasing_or_decreasing.

Value

A tibble including the summarized columns metric, production, technology_share, percentage_of_initial_production and scope. If by_company = TRUE, the output will also have the column name_abcd.

Handling grouped data

This function ignores existing groups and outputs ungrouped data.

50 target_sda

See Also

Other analysis functions: target_sda()

Examples

```
library(r2dii.data)
library(r2dii.match)
loanbook <- head(loanbook_demo, 100)</pre>
abcd <- head(abcd_demo, 100)</pre>
matched <- loanbook %>%
  match_name(abcd) %>%
  prioritize()
# Calculate targets at portfolio level
matched %>%
  target_market_share(
    abcd = abcd,
    scenario = scenario_demo_2020,
    region_isos = region_isos_demo
    )
# Calculate targets at company level
matched %>%
  target_market_share(
  abcd = abcd,
  scenario = scenario_demo_2020,
  region_isos = region_isos_demo,
  by_company = TRUE
matched %>%
  target_market_share(
   abcd = abcd,
   scenario = scenario_demo_2020,
   region_isos = region_isos_demo,
    # Calculate unweighted targets
   weight_production = FALSE
```

Add targets for CO_2 emissions per unit production at the portfolio level, using the SDA approach

target_sda 51

Description

This function calculates targets of CO_2 emissions per unit production at the portfolio-level, otherwise referred to as "emissions factors". It uses the sectoral-decarbonization approach (SDA) to calculate these targets.

Usage

```
target_sda(
  data,
  abcd,
  co2_intensity_scenario,
  use_credit_limit = FALSE,
  by_company = FALSE,
  region_isos = r2dii.data::region_isos
)
```

Arguments

data A dataframe like the output of r2dii.match::prioritize().

abcd An asset-level data frame like r2dii.data::abcd_demo.

co2_intensity_scenario

A scenario data frame like r2dii.data::co2_intensity_scenario_demo.

use_credit_limit

Logical vector of length 1. FALSE defaults to using the column loan_size_outstanding.

Set to TRUE to instead use the column loan_size_credit_limit.

by_company Logical vector of length 1. FALSE defaults to outputting weighted_production_value

at the portfolio-level. Set to TRUE to output weighted_production_value at the

company-level.

region_isos A data frame like r2dii.data::region_isos (default).

Value

A tibble including the summarized columns emission_factor_metric and emission_factor_value. If by_company = TRUE, the output will also have the column name_abcd.

Handling grouped data

This function ignores existing groups and outputs ungrouped data.

See Also

```
Other analysis functions: target_market_share()
```

```
library(r2dii.match)
library(r2dii.data)
```

52 technology_colours

```
loanbook <- head(loanbook_demo, 150)</pre>
abcd <- head(abcd_demo, 100)</pre>
matched <- loanbook %>%
  match_name(abcd) %>%
  prioritize()
# Calculate targets at portfolio level
matched %>%
  target_sda(
  abcd = abcd,
   co2_intensity_scenario = co2_intensity_scenario_demo,
   region_isos = region_isos_demo
  )
# Calculate targets at company level
matched %>%
  target_sda(
   abcd = abcd,
   co2_intensity_scenario = co2_intensity_scenario_demo,
   region_isos = region_isos_demo,
   by_company = TRUE
  )
```

technology_colours

Colour datasets

Description

All datasets have at least two columns:

- label: Text label of the colour.
- hex: Hex code of the colour.

Usage

```
technology_colours
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 18 rows and 3 columns.

Details

In scenario_colours, colours are ordered from red to green to be used in trajectory charts.

theme_2dii 53

See Also

Other datasets: gics_classification, increasing_or_decreasing, isic_classification, iso_codes, nace_classification, naics_classification, palette_colours, psic_classification, region_isos, scenario_colours, sector_classifications, sector_colours, sic_classification

Examples

```
palette_colours
scenario_colours
sector_colours
technology_colours
```

theme_2dii

Complete theme

Description

A ggplot theme which can be applied to all graphs to appear according to 2DII plotting aesthetics.

Usage

```
theme_2dii(
  base_size = 12,
  base_family = "Helvetica",
  base_line_size = base_size/22,
  base_rect_size = base_size/22
)
```

Arguments

```
base_size base font size, given in pts.
base_family base font family
base_line_size base size for line elements
base_rect_size base size for rect elements
```

Value

An object of class "theme", "gg".

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_tech(), scale_colour_r2dii(), scale_fill_r2dii(), scale_fill_r2dii_tech(), spell_out_technology(), to_title()
```

54 to_title

Examples

```
library(ggplot2, warn.conflicts = FALSE)
ggplot(mtcars) +
  geom_histogram(aes(mpg), bins = 10) +
  theme_2dii()
```

to_title

Replicate labels produced with qplot_*() *functions*

Description

- to_title() converts labels like qplot_emission_intensity().
- recode_metric_trajectory() converts labels like qplot_trajectory().
- recode_metric_techmix() converts labels like qplot_techmix().
- spell_out_technology() converts technology labels like qplot_techmix().

Usage

```
to_title(x)
```

Arguments

Х

A character vector.

Value

A character vector.

See Also

```
Other plotting functions: plot_emission_intensity(), plot_techmix(), plot_trajectory(), prep_emission_intensity(), prep_trajectory(), qplot_emission_intensity(), qplot_techmix(), qplot_trajectory(), recode_metric_techmix(), recode_metric_trajectory(), scale_colour_r2dii(), scale_colour_r2dii_tech(), scale_fill_r2dii(), scale_fill_r2dii(), scale_fill_r2dii_tech(), spell_out_technology(), theme_2dii()
```

```
to_title(c("a.string", "another_STRING"))
metric <- c("projected", "corporate_economy", "target_xyz", "else")
recode_metric_trajectory(metric)
recode_metric_techmix(metric)
spell_out_technology(c("gas", "ice", "coalcap", "hdv"))</pre>
```

Index

* analysis functions	crucial_lbk,5
target_market_share, 49	match_name, 10
target_sda, 50	prioritize, 27
* data dictionary	prioritize_level, 29
data_dictionary, 5	* plotting functions
* datasets	<pre>plot_emission_intensity, 21</pre>
abcd_demo, 3	<pre>plot_techmix, 21</pre>
<pre>co2_intensity_scenario_demo, 4</pre>	plot_trajectory, 22
data_dictionary,5	<pre>prep_emission_intensity, 23</pre>
gics_classification, 6	<pre>prep_techmix, 24</pre>
<pre>increasing_or_decreasing, 7</pre>	prep_trajectory, 26
isic_classification, 7	<pre>qplot_emission_intensity, 31</pre>
iso_codes, 8	<pre>qplot_techmix, 32</pre>
loanbook_demo, 9	<pre>qplot_trajectory, 33</pre>
market_share, 10	<pre>recode_metric_techmix, 34</pre>
<pre>nace_classification, 13</pre>	<pre>recode_metric_trajectory, 35</pre>
naics_classification, 14	scale_colour_r2dii,37
overwrite_demo, 15	scale_colour_r2dii_sector, 38
palette_colours, 20	scale_colour_r2dii_tech, 39
$psic_classification, 30$	scale_fill_r2dii,40
region_isos,36	scale_fill_r2dii_sector,41
region_isos_demo,36	scale_fill_r2dii_tech,42
scenario_colours,43	<pre>spell_out_technology, 48</pre>
scenario_demo_2020,44	theme_2dii, 53
sda, 45	to_title, 54
sector_classifications, 45	* utility functions
sector_colours, 46	<pre>pacta_loanbook_conflicts, 16</pre>
sic_classification, 47	<pre>pacta_loanbook_deps, 17</pre>
technology_colours,52	pacta_loanbook_logo, 17
* demo data	pacta_loanbook_packages, 18
abcd_demo, 3	<pre>pacta_loanbook_sitrep, 19</pre>
<pre>co2_intensity_scenario_demo, 4</pre>	<pre>pacta_loanbook_update, 19</pre>
loanbook_demo, 9	
market_share, 10	abcd_demo, 3, 4, 10, 16, 37, 44, 45
overwrite_demo, 15	
region_isos_demo, 36	cli::ansi_strip(), 17
scenario_demo_2020,44	co2_intensity_scenario_demo, 4, 4, 10, 16
sda, 45	37, 44, 45
* matching functions	crucial 1bk. 5. 12. 28. 29

56 INDEX

data_dictionary, 5	prep_trajectory, 21-25, 26, 31-35, 37-42,
<pre>dplyr::inner_join(), 11</pre>	48, 53, 54
1	prioritize, <i>5</i> , <i>12</i> , 27, 29
ggplot2::discrete_scale(), 37–42	prioritize_level, <i>5</i> , <i>12</i> , <i>28</i> , 29
ggplot2::scale_colour_manual(), 37–42	<pre>prioritize_level(), 27</pre>
gics_classification, 6, 7–9, 14, 15, 20, 30,	psic_classification, 6–9, 14, 15, 20, 30,
36, 43, 46–48, 53	36, 43, 46–48, 53
increasing_or_decreasing, 6, 7, 8, 9, 14,	anlet emission intensity 21 25 27 21
15, 20, 30, 36, 43, 46–48, 53	qplot_emission_intensity, 21–25, 27, 31, 32–35, 37–42, 48, 53, 54
isic_classification, 6, 7, 7, 9, 14, 15, 20,	qplot_emission_intensity(), 34, 35, 48,
30, 36, 43, 46–48, 53	54
iso_codes, 6–8, 8, 14, 15, 20, 30, 36, 43,	qplot_techmix, 21–25, 27, 31, 32, 33–35,
46–48, 53	37–42, 48, 53, 54
loanbook_demo, 4, 9, 10, 16, 37, 44, 45	<pre>qplot_techmix(), 34, 35, 48, 54</pre>
Tourison(_acino, 7, 2, 10, 10, 37, 77, 75	<pre>qplot_trajectory, 21-25, 27, 31, 32, 33, 34,</pre>
market_share, 4, 10, 10, 16, 25, 26, 37, 44, 45	35, 37–42, 48, 53, 54
match_name, 5, 10, 28, 29	<pre>qplot_trajectory(), 34, 35, 48, 54</pre>
match_name(), 27, 29	
	r2dii.analysis::target_market_share(),
nace_classification, $6-9$, 13 , 15 , 20 , 30 ,	10
36, 43, 46–48, 53	r2dii.analysis::target_sda(),45
naics_classification, $6-9$, 14 , 14 , 20 , 30 ,	r2dii.data::abcd_demo, 11, 49, 51
36, 43, 46–48, 53	r2dii.data::co2_intensity_scenario_demo,
avanumita dama 4 10 15 27 44 45	51
overwrite_demo, 4, 10, 15, 37, 44, 45	r2dii.data::increasing_or_decreasing,
pacta_loanbook_conflicts, 16, 17-20	49
pacta_loanbook_deps, 16, 17, 18–20	r2dii.data::loanbook_demo, <i>ll</i>
pacta_loanbook_logo, 16, 17, 17, 18–20	r2dii.data::region_isos,49,51
pacta_loanbook_packages, <i>16–18</i> , 18, <i>19</i> ,	r2dii.data::scenario_demo_2020,49
20	recode_metric_techmix, 21-25, 27, 31-33,
pacta_loanbook_sitrep, <i>16–18</i> , 19, <i>20</i>	34, 35, 37–42, 48, 53, 54
pacta_loanbook_update, 16-19, 19	recode_metric_trajectory, 21-25, 27,
palette_colours, 6-9, 14, 15, 20, 30, 36, 43,	31–34, 35, 37–42, 48, 53, 54
46–48, 53	region_isos, 6-9, 14, 15, 20, 30, 36, 36, 43,
plot_emission_intensity, 21, 22-25, 27,	46–48, 53
31–35, 37–42, 48, 53, 54	region_isos_demo, 4, 10, 16, 36, 44, 45
<pre>plot_emission_intensity(), 31</pre>	
plot_techmix, 21, 21, 23-25, 27, 31-35,	scale_colour_r2dii, 21-25, 27, 31-35, 37,
37–42, 48, 53, 54	38–42, 48, 53, 54
plot_techmix(), 32	scale_colour_r2dii_sector, 21-25, 27,
plot_trajectory, 21, 22, 22, 24, 25, 27,	31–35, 37, 38, 39–42, 48, 53, 54
31–35, 37–42, 48, 53, 54	scale_colour_r2dii_tech, 21-25, 27,
plot_trajectory(), 33	31–35, 37, 38, 39, 40–42, 48, 53, 54
prep_emission_intensity, 21-23, 23, 25,	scale_fill_r2dii, 21-25, 27, 31-35, 37-39,
27, 31–35, 37–42, 48, 53, 54	40, 41, 42, 48, 53, 54
prep_techmix, 21-24, 24, 27, 31-35, 37-42,	scale_fill_r2dii_sector, 21–25, 27,
48, 53, 54	<i>31–35</i> , <i>37–40</i> , 41, <i>42</i> , <i>48</i> , <i>53</i> , <i>54</i>

INDEX 57

```
scale_fill_r2dii_tech, 21-25, 27, 31-35,
         37–41, 42, 48, 53, 54
scenario_colours, 6-9, 14, 15, 20, 30, 36,
         43, 46–48, 53
scenario_demo_2020, 4, 10, 16, 37, 44, 45
sda, 4, 10, 16, 24, 37, 44, 45
sector_classifications, 6-9, 14, 15, 20,
         30, 36, 43, 45, 47, 48, 53
sector_colours, 6-9, 14, 15, 20, 30, 36, 43,
         46, 46, 48, 53
sic_classification, 6-9, 14, 15, 20, 30, 36,
         43, 46, 47, 47, 53
spell_out_technology, 21-25, 27, 31-35,
         37–42, 48, 53, 54
stringdist::stringdist-metrics, 11
stringdist::stringsim(), 10, 11
target_market_share, 49, 51
target_sda, 50, 50
technology_colours, 6-9, 14, 15, 20, 30, 36,
         43, 46–48, 52
theme_2dii, 21-25, 27, 31-35, 37-42, 48, 53,
         54
to_title, 21-25, 27, 31-35, 37-42, 48, 53, 54
```