BASIC DISTRIBUTIONS, ENTROPY AND PROBABILITIES

Ensembres

X ensemble is a triple system:

$$(x, A_x, P_x)$$
 $P_x = \{P_1/P_1/P_2, \dots, P_x\}$
 \downarrow possible value set

roundom

van:able

 $A_x = \{a_1, a_2, \dots, a_x\}$

$$P(x=a_i)=P_i$$
, $P_i \ge 0$, $\sum_{a_i \in A_x} P(x=a_i)=1$
 $P(a_i)$
 $P(x)$

Example: Frequency of betters of the alpha bet

Sub-ensemble probabilities

If T is a sub ensemble of Ax, then.

JOINT ENSEMBLE

Marginal Probability-

Conditional Probability

$$P(x=a; |y=by) = \frac{P(x=a; y=b_y)}{P(y=b_y)}$$

"Given that $j=b_J$, what is the probability that x=a;?"

i	a_i	p_i		
1	a	0.0575	a	
2	b	0.0128	b	
3	C	0.0263	C	
4	d	0.0285	d	
5	е	0.0913	•	
6	f	0.0173	f	
7	g	0.0133	g	
8	h	0.0313	h	
9	1	0.0599	1	
10	1	0.0006	1	
11	k	0.0084	k	
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	0	
16	P	0.0192	P	
17	q	0.0008	q	
18	r	0.0508	r	
19	8	0.0567	8	-
20	t	0.0706	t	
21	u	0.0334	u	
22	V	0.0069	V	
23	W	0.0119	W	
24	x	0.0073	x	•
25	У	0.0164	У	
26	Z	0.0007	Z	•
27		0.1928	_	

Probability that a render character (a-t & space) will be (Mackey) P(x)

Fig : 2-2: Prob. dist. over the 27x27 possible ligrans xy (Machons)

(b) P(x | y)

For 2-3:

Conditional

And. dist.

Each columns.

Shows the

Conditional

Distributions

of the first letter,

given the second

letter (Mackay)

Multiplication Rule: P(x,y|H) = P(x|y,H)P(y|H) = P(y|x,H)P(x|H)Summpation Rule: $P(x|H) = \sum_{y} P(x,y|H)$ $= \sum_{y} P(x|y,H)P(y|H)$

Bayesian Rule: P(y1x,+1) = P(x1y,+1)P(y,+1)
P(x1+1)

= P(xly,H)P(ylH) \(\sum_{y'}\)
P(xly,H)P(y'lH)

Independency: For x and Y to be considered independent of each other:

X LY \rightarrow P(x,y) = P(x) P(y)

Example Jo takes a medical exam.

Variables are: a=1: Jo is side $a=Jo's \text{ health} \qquad a=\varnothing: \text{ Jo is healthy}$ $b: \text{ Test's result} \qquad b=1: \text{ Test result is true}$ $b=\varnothing: \text{ Test Result is false}$

Data: * Test is 95% reliable

* The probability that somebody at Jo's age, Status and backgrand to be sick is 1%

To takes the test and the result turns out to be positive (indicating that To is sich). What is the probability that To is indeed sich?

Conditional P(b=1|a=1)=0.95 | P(b=1|a=0)=0.05 P(b=0|a=1)=0.05 | P(b=0|a=0)=0.95

marginal (P(a=1)=0.01, P(a=0)=0.99

(Example contid...)

P(a,b) = P(a)P(bla), P(b=1) = P(b=1|a=1)P(a=1)+P(b=1|a=0)P(a=0)

$$P(a=1|b=1) = \frac{P(b=1|a=1) P(a=1)}{P(b=1|a=1) P(a=1) + P(b=1|a=0) P(a=0)}$$

= 0.16 -> 16% probability that Jo Ts indeed sick.

Information content

Suppose that we want to use a coding similar to that of the Morse Coding. Should we assign a single dot to "a" or "z"?

We must assign the shortest symbol (like "." or "-") to the most frequently used letters and long symbols (like "..." or ".-.") to the infrequently used letters to reduce transmission time. This is reflected and calculated by the information content.

h(x) = log 1 p(x) it's measured in units of bits (o or 1)

Entropy

Enterpy, in this context, is defined as the average information content:

-) entropy is maximum when P is uniform (equal probabilities)

Expected (Average) Value:
$$M = \sum_{x_1} x_1 \cdot p(x_1)$$
 (, E(x])

$$\begin{cases}
x = \begin{cases}
3 = \begin{cases}
1, 3, 3, 5, 7, 7, 7, 8, 9, 9
\end{cases}
\end{cases}$$

$$\begin{cases}
x = \begin{cases}
4 + 3 + 3 + 5 + 7 + 7 + 8 + 9 + 9
\end{cases}
\end{cases} = 5.9$$
 (convertional number)

$$\begin{cases}
P(x_1 = 1) = \frac{1}{10} = 0.4 & P(x_1 = 7) = 0.3 \\
P(x_1 = 2) = 0 & P(x_1 = 8) = 0.4
\end{cases}$$

$$P(x_1 = 3) = \frac{2}{10} = 0.2 & P(x_1 = 8) = 0.4
\end{cases}$$

$$P(x_1 = 5) = 0.4$$

$$P(x_1 = 5) = 0.4$$

$$P(x_1 = 5) = 0.4$$

$$P(x_1 = 7) = 0.4$$

$$P(x_1 = 8) = 0.4$$

01, +02