Fifth Recitation Class Linear Algebra

YAO Shaoxiong

UM-SJTU Joint Institute

April 16, 2019

Table of contents

Eigenvalue Problem

Find Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors of a Matrix

Algebraic Multiplicity

Eigenspace and Geometric Multiplicity

Eigenbasis and Diagonalizable Matrices

Similar Matrices

Eigenvalue Problem

Motivation

For discrete time dynamic system, if the state between two states have relation

$$\overline{x_{n+1}} = A\overline{x_n}$$

for $n \in \mathbb{N}$. What is $\overline{x_n}$ if we know $\overline{x_0}$?

Solution

If $A\overline{x_0} = \lambda \overline{x_0}$ for $\overline{x_0} \neq \overline{0}$, then

$$\overline{x_n} = \lambda^n \overline{x_0}$$
.

Question:

Is this always possible?

Eigenvalues and Eigenvectors

Definition

For $\overline{v} \neq \overline{0}$ and an $n \times n$ matrix A, if there exists $\lambda \in \mathbb{F}$ such that

$$A\overline{v} = \lambda \overline{v}$$

we call λ an *eigenvalue* and \overline{v} an *eigenvector*.

Question

We assume \overline{v} is an eigenvector for both matrix A and B.

- (i) Can we have $\lambda = 0$? **Yes.** We only need $\overline{v} \neq \overline{0}$.
- (ii) Is \overline{v} an eigenvector for A^2 , A + B, AB? **Yes.**
- (iii) If \overline{u} is an eigenvector of AB and $B\overline{u} \neq \overline{0}$, find an eigenvector for BA.

Find Eigenvalues and Eigenvectors

Theorem

A scalar $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if

$$\det(A - \lambda I_n) = 0.$$

We call $f_A(\lambda) = \det(A - \lambda I_n)$ the *characteristic equation* of the matrix A.

Comment:

If we consider λ as a variable, $f_A(\lambda)$ is a polynomial

$$f_A(\lambda) = (-\lambda)^n + (\operatorname{tr} A)(-\lambda)^{n-1} + \cdots + \operatorname{det} A.$$

Note that $f_A(\lambda)$ always has n roots but may be **repeated** or **complex** value.

Find Eigenvalues and Eigenvectors

We find eigenvalues for some typical matrices.

Example

Find eigenvalues for

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Example

If we have $q \in \mathbb{R}^n$, find an eigenvalue for

$$A = qq^T$$
.

Find Eigenvalues and Eigenvectors

Quesiton:

- (i) If P is projection matrix, what are eigenvalues of P?
- (ii) If Q is an orthogonal matrix, what are eigenvalues of Q?

Example

Find a 2×2 matrix A such that

$$\overline{x}(t) = \begin{bmatrix} 2^t - 6^t \\ 2^t + 6^t \end{bmatrix}$$

is a trajectory of the dynamical system

$$\overline{x}(t+1) = A\overline{x}(t).$$

Eigenvalues and Eigenvectors of a Matrix

Theorem

For an $n \times n$ matrix A, the eigenvectors of different eigenvalues are **independent**.

Proof

We use induction here. We denote eigenvalues $\lambda_1, ..., \lambda_n$ and eigenvectors $v_1, ..., v_n$.

- (i) For n = 1, the statement is true.
- (ii) If we have $v_1, ..., v_n$ are independent, then for

$$\mu_1 v_1 + \dots + \mu_n v_n + \mu_{n+1} v_{n+1} = 0 \quad (\star)$$

we must have $\mu_{n+1} \neq 0$.

Eigenvalues and Eigenvectors of a Matrix

Proof(Contd.)

(ii) We times (\star) by A and we have

$$\mu_{1}Av_{1} + \dots + \mu_{n}Av_{n} + \mu_{n+1}Av_{n+1} = 0$$

$$\Rightarrow \mu_{1}\lambda_{1}v_{1} + \dots + \mu_{n}\lambda_{n}v_{n} + \mu_{n+1}\lambda_{n+1}v_{n+1} = 0.$$

We subtract $(\star) \times \lambda_{n+1}$

$$\mu_1(\lambda_1-\lambda_{n+1})\nu_1+\cdots+\mu_n(\lambda_n-\lambda_{n+1})\nu_n=0.$$

Since $\lambda_1,...,\lambda_{n+1}$ are distinct, we have $\mu_1=\cdots=\mu_n=0$. We then also have $\mu_{n+1}=0$ and have $\nu_1,...,\nu_{n+1}$ are independent.

(iiii) By induction $v_1,...,v_n$ are independent if we have $\lambda_1,...,\lambda_n$ are distinct.

Eigenvalues and Eigenvectors of a Matrix

Exmaple

If A is a symmetric $n \times n$ matrix, show the following results.

(i) If \overline{v} and \overline{w} are two vectors in \mathbb{R}^n , then

$$(A\overline{v},\overline{w})=(\overline{v},A\overline{w}).$$

(ii) If \overline{v} and \overline{w} are two eigenvectors of A, with distinct eigenvalues, then \overline{w} is orthogonal to \overline{v} .

Comment:

The eigenvectors for distinct eigenvalues of a symmetric matrix are not only independent but also **orthogonal**.

Algebraic Multiplicity

Definition

An eigenvalue λ_0 of a square matrix A has **algebraic multiplicity** k if λ_0 appears exactly k times in the roots of $f_A(\lambda)$, i.e.

$$f_A(\lambda) = (\lambda - \lambda_0)^k g(\lambda), g(\lambda_0) \neq 0.$$

Example

Find eigenvalues and their algebraic multiplicity of

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Eigenspace and Geometric Multiplicity

Definition

The kernel of the matrix $A - \lambda I_n$ is called the **eigenspace** E_{λ} associated with λ

$$E_{\lambda} = \ker(A - \lambda I_n) = \{ v \in \mathbb{R}^n : A\overline{v} = \lambda \overline{v}, \ \overline{v} \neq \overline{0} \}.$$

Comment:

If A is an $n \times n$ matrix and $\lambda_1, ..., \lambda_n$ are distinct, then

$$E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_n} = \mathbb{R}^n$$
.

Eigenspace and Geometric Multiplicity

Definition

The dimension of eigenspace E_{λ} is called the **geometric multiplicity** of the eigenvalue λ .

$$G.M. = \dim \ker(A - \lambda I_n) = n - \operatorname{rank}(A - \lambda I_n).$$

Comment:

From previous result, if $\lambda_1,...,\lambda_n$ are distinct, then

$$\dim E_{\lambda_1}+\cdots+\dim E_{\lambda_n}=n.$$

Eigenspace and Geometric Multiplicity

Example

For a rotation $T(\overline{x}) = A\overline{x}$ in \mathbb{R}^3 . (That is, A is an orthogonal matrix and has determinant equal to 1.) Show that T has a nonzero fixed point [i.e., a vector \overline{v} with $T(\overline{v}) = v$]. This result is known as *Euler's theorem*.

Solution

We note that

$$\det(A - I) = \det(A^T) \det(A - I)$$

because we have det(A) = 1, then

$$\det(A^T A - A^T) = \det(I - A^T) = (-1)^3 \det(A - I).$$

So we have det(A - I) = 0 and there is at least one nonzero eigenvector associated with eigenvalue 1.

Eigenbasis

Definition

We call a basis $\overline{v_1},...,\overline{v_n}$ of \mathbb{R}^n an *eigenbasis* if they are eigenvectors of an $n \times n$ matrix A.

Theorem

An $n \times n$ matrix A has an eigenbasis iff

$$\sum_{i=1}^s \dim E_{\lambda_i} = n.$$

Question:

Why we use eigenvectors as basis?

Theorem

Consider a linear transformation $T\overline{x}=A\overline{x}$ and A is an $n\times n$ matrix. Let $\mathcal{D}=\{\overline{v_1},...,\overline{v_n}\}$ be an eigenbasis for $T:A\overline{v_i}=\lambda_i\overline{v_i}$. Then the \mathcal{D} -matrix D of T is

$$D = S^{-1}AS = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}.$$

Comment:

If we find $[\overline{x}]_{\mathcal{D}}$, we have

$$\overline{x} = c_1 \overline{v_1} + \cdots + c_n \overline{v_n},$$

then

$$A\overline{x} = c_1\lambda_1\overline{v_1} + \cdots + c_n\lambda_n\overline{v_n}.$$

Definition

An $n \times n$ matrix A is called **diagonalizable** if A is similar to a diagonal matrix D.

Theorem

An $n \times n$ matrix is diagonalizable if and only if there exists an eigenbasis for A.

Example

Find the eigenvalue decomposition of

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Solution

We have

$$\det(A - \lambda I_4) = (-\lambda)^2 (1 - \lambda)^2,$$

so two eigenvalues are

$$\lambda_1 = 0, \quad \lambda_2 = 1.$$

Then for $\lambda_1 = 0$

$$\overline{v_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \overline{v_2} = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}.$$

Solution(Contd.)

For $\lambda_2 = 1$

$$\overline{v_3} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \overline{v_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

We have the diagonalized matrix

Question:

Why we want $A = SDS^{-1}$?

Solution

We want to calculate A^k for $k \in \mathbb{N} \setminus \{0\}$,

$$A^k = SDS^{-1} \cdots SDS^{-1}$$
$$= SD^k S^{-1}.$$

Comment:

Please note that eigenvalues may be complex. For $k \to \infty$,

- (i) when will we have A^k go to 0?
- (ii) when will we have A^k go to infinity?
- (iii) when will we have A^k diverge?

Example

What is the limit of

$$\begin{bmatrix} 0.4 & 0.3 \\ 0.6 & 0.7 \end{bmatrix}^k \begin{bmatrix} a \\ b \end{bmatrix}$$

when $k \to \infty$?

Comment:

If each column add up to 1 and each entry is greater than 0, we will have convergent result. Why? Hint: Consider $A - I_n$.

Similar Matrices

Motivation

Recall that two matrices are similar if there exist an invertible matrix S such that

$$A = SBS^{-1}$$
.

We notice that

$$\det(A - \lambda I_n) = \det(SBS^{-1} - \lambda SS^{-1}) = \det(B - \lambda I_n),$$

so we have $f_A(\lambda) = f_B(\lambda)$.

Theorem

Let $B = S^{-1}AS$, i.e. A, B be similar matrices. Then they have same

- (i) $f_A(\lambda) = f_B(\lambda)$, AM, GM for same eigenvalue,
- (ii) rank A = rank B, nullity A = nullity B,
- (iii) $\det A = \det B$, $\operatorname{tr} A = \operatorname{tr} B$.

