

División de tareas

Figura 1.1: División de tareas

N^o tarea	Descripción	Recursos
I.1.2	Buscar implementaciones del protocolo I2C, en-	TODOS.
	tenderlo y estudiar su funcionamiento	
I.1.2	Hacer funcionar el analizador lógico y aprender a	M. L.
	utilizar el software correspondiente.	
I.1.3	Diseñar pruebas para la caracterización de los	M. L., M. T.
	ESCs, decodificar el código I2C, entenderlo y	
	aprender a enviar comandos	
I.1.4	Probar si los comandos enviados producen el efec-	
	to deseado sobre los motores. Para ello se de-	
	berá caracterizar los motores y las relaciones códi-	
	go i^2c - velocidad de giro y código i^2c - fuerza	
I.2.1	Investigar en papers u otros documentos si	TODOS
	será necesario incluir algún otro sensor	
I.2.2	Conectar todos los sensores, armar los conver-	M. T.
	sores de niveles lógicos necesarios	

I.2.3	Diseñar pruebas y en función de estas calibrar de	S. P., M. T.
	la mejor forma posible los sensores. Investigar e	
	implementar alguna manera de mejorar la pre-	
	cisión de los sensores	
I.2.4	Identificar las no idealidades de los sensores	S. P., M. T.
I.2.5	Implementar un modelo de ajuste de las medidas	S. P., M. T.
	tomadas por los sensores	
I.3.1	Definir la forma de realizar el switcheo entre el	TODOS
	control remoto y el control automático. Definir el	
	hardware necesario para ello	
II.1.1	Programar el firmware necesario para una buena	M. L.
	comunicación entre los ESC's y los motores, ya	
	sea mediante protocolo I2C o PWM	
II.1.2	Programar el firmware necesario para una buena	R. R.
	comunicación entre la BeagleBoard y la IMU .	
II.1.3	Programar el firmware necesario para una buena	RR
	comunicación entre la BeagleBoard y el GPS .	
II.1.4	Programar el firmware necesario para una buena	M. T.
	comunicación entre la BeagleBoard y el dispos-	
	itivo Wi-Fi .	
III.1.1	Definir criterios para integrar los sensores: algo-	S. P., R. R.
	ritmo base, interrogación periódica a los sensores,	,
	cada cuanto tiempo, en que orden, etc.	
III.1.2	Simular los algoritmos y corroborar el buen fun-	S. P., R. R.
	cionamiento teórico.	,
III.1.3	Programar los algoritmos definitivos y probarlos	S. P., R. R.
III.2.1	Definir la actitud de vuelo del cuadricóptero.	TODOS
III.2.2	Simular vuelo en MatLab.	М. Т.
III.2.3	Programar algoritmos definitivos y testearlos.	R. R.
III.3.1	Definir el esquema general de los algoritmos de	TODOS
	control	
III.3.2	Programar los distintos bloques de control y su	TODOS
	interrelación	
III.3.3	Simular algoritmos de control	TODOS
III.3.4	Testear algoritmos de control	TODOS
III.3.5	Realizar los ajustes necesarios y reprogramar si	TODOS
	es necesario	
III.4.1	Programar el software necesario para la con-	TODOS
	mutación entre el control automático y el remoto.	
III.4.2	Testear el switcheo del mando automático al	TODOS
	manual y realizar los ajustes necesarios.	
IV.1.1	Determinar los parámetros del cuadricóptero con	<u> </u>
1 , .1.1	la mayor exactitud posible, como pueden ser la	
	masa o el tamaño.	
IV.1.2	Desarrollo del modelo físico y contrastación con	S. P.
1 7 .1.2	papers existentes	₩.1.
IV.1.3	Simular el comportamiento del cuadricóptero	S. P.
1 4 .1.9	según el modelo físico.	D. 1.
IV.2.2	Desarrollar el simulador en MatLab	S. P., M. T.
1 V . Z . Z	Desarronar er simulador en Mathan	D. 1., IVI. 1.

Cuadro 1.1: Descripción de las ${}^2\!\!$ tareas y asignación de recursos