Curs 6

Din cursul trecut

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Mulțimea S-sortată a termenilor cu variabile din X, $T_{\Sigma}(X)$, este cea mai mică mulțime de șiruri finite peste alfabetul

$$L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

care verifică:

- $\mathbf{1} X \subseteq T_{\Sigma}(X),$
- 2 Dacă $\sigma : \to s$ în Σ , atunci $\sigma \in T_{\Sigma}(X)_s$,
- 3 Dacă $\sigma: s_1 \dots s_n \to s$ în Σ și $t_i \in T_{\Sigma}(X)_{s_i}$, or. $1 \leq i \leq n$, atunci $\sigma(t_1, \dots, t_n) \in T_{\Sigma}(X)_s$.
- \Box $t \in T_{\Sigma}(X)$ se numește termen (expresie).
- \square Notăm cu Var(t) mulțimea variabilelor care apar în termenul t.
- $\Box T_{\Sigma} = T_{\Sigma}(\emptyset)$

Din cursul trecut

Mulțimea S-sortată a termenilor $T_{\Sigma}(X)$ este o (S, Σ) -algebră, numită algebra termenilor cu variabile din X și notată tot $T_{\Sigma}(X)$, cu operațiile definite astfel:

 \square pt. or. $\sigma : \rightarrow s$ din Σ , operația corespunzătoare este

$$T_{\sigma}:=\sigma\in T_{\Sigma}(X)_{s}$$

 \square pt. or. $\sigma: s_1 \dots s_n \to s$ din Σ , operația corespunzătoare este

$$T_{\sigma}: T_{\Sigma}(X)_{s_1...s_n} \to T_{\Sigma}(X)_s$$

 $T_{\sigma}(t_1,...,t_n) := \sigma(t_1,...,t_n)$

or.
$$t_1 \in T_{\Sigma}(X)_{s_1}, \ldots, t_n \in T_{\Sigma}(X)_{s_n}$$
.

 \Box T_{Σ} algebra termenilor fără variabile $(X = \emptyset)$

Cuprins

1 Algebre iniţiale

2 Algebre libere

Algebre inițiale

Algebră inițială

Fie

- \square (S, Σ) o signatură multisortată,
- $\square \Re$ o clasă de (S, Σ) -algebre.

Definiție

O (S, Σ) -algebră $\mathcal{I} \in \mathfrak{K}$ este inițială în \mathfrak{K} dacă pentru orice $\mathcal{B} \in \mathfrak{K}$ există un unic (S, Σ) -morfism $f: \mathcal{I} \to \mathcal{B}$.

Propoziție

Dacă $\mathcal I$ este inițială în $\mathfrak K$ și $\mathcal A\in\mathfrak K$ astfel încât $\mathcal A\simeq\mathcal I$, atunci $\mathcal A$ este inițială în $\mathfrak K$.

Propoziție

Dacă $\mathcal I$ este inițială în $\mathfrak K$ și $\mathcal A \in \mathfrak K$ astfel încât $\mathcal A \simeq \mathcal I$, atunci $\mathcal A$ este inițială în $\mathfrak K$.

Demonstrație

Cum $A \in \mathfrak{K}$ astfel încât $A \simeq \mathcal{I}$, fie $\iota_A : A \to \mathcal{I}$ un izomorfism.

Fie $\mathcal{B} \in \mathfrak{K}$. Cum \mathcal{I} este inițială, există un unic morfism $f_{\mathcal{B}}: \mathcal{I} \to \mathcal{B}$.

Demonstrăm că există un unic morfism $h: A \rightarrow B$:

- **Existența.** Considerăm $h := \iota_{\mathcal{A}}$; $f_{\mathcal{B}} : \mathcal{A} \to \mathcal{B}$. Deoarece compunerea morfismelor este morfism, obținem că h este morfism.
- □ **Unicitatea.** Presupunem că există un alt morfism $g: \mathcal{A} \to \mathcal{B}$. Atunci $\iota_{\mathcal{A}}^{-1}; g: \mathcal{I} \to \mathcal{B}$ este morfism, deci $\iota_{\mathcal{A}}^{-1}; g = f_{\mathcal{B}}$. Rezultă că $g = \iota_{\mathcal{A}}; f_{\mathcal{B}} = h$.

Propoziție

Dacă \mathcal{A}_1 și \mathcal{A}_2 sunt inițiale în \mathfrak{K} , atunci $\mathcal{A}_1 \simeq \mathcal{A}_2$.

Propoziție

Dacă A_1 și A_2 sunt inițiale în \mathfrak{K} , atunci $A_1 \simeq A_2$.

Demonstrație

Cum A_1 și A_2 sunt inițiale în \Re , există

 \square un unic morfism $f: \mathcal{A}_1 \to \mathcal{A}_2$ și

 \square un unic morfism $g: \mathcal{A}_2 \to \mathcal{A}_1$.

Avem f; $g:\mathcal{A}_1 o \mathcal{A}_1$, $1_{\mathcal{A}_1}:\mathcal{A}_1 o \mathcal{A}_1$ și \mathcal{A}_1 inițială, deci f; $g=1_{\mathcal{A}_1}$.

Similar obţinem g; $f=1_{\mathcal{A}_2}$.

În concluzie $\mathcal{A}_1 \simeq \mathcal{A}_2$.

(S, Σ) -algebra inițială

Fie (S, Σ) o signatură multisortată.

- \square Considerăm \Re clasa tuturor (S, Σ) -algebrelor.
- □ \mathcal{I} este (S, Σ) -algebră inițială dacă pentru orice (S, Σ) -algebră \mathcal{B} există un unic morfism $f: \mathcal{I} \to \mathcal{B}$.

Teoremă

Pentru orice (S,Σ) -algebră \mathcal{B} , există un unic morfism $f:T_{\Sigma}\to\mathcal{B}$.

 \Box f(t) este interpretarea termenului $t \in T_{\Sigma}$ în \mathcal{B} .

Fie $\mathcal B$ o (S,Σ) -algebră.

Demonstrăm că există un unic morfism $f:T_\Sigma \to \mathcal{B}.$

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "f(t))$$
 este definit")

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t) \text{ este definit"})$$

 \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t) \text{ este definit"})$$

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := \mathcal{B}_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t) \text{ este definit"})$$

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t)$$
este definit")

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$. Demonstrăm că f este morfism.

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t)$$
este definit")

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$. Demonstrăm că f este morfism.

 \square dacă $\sigma : \rightarrow s \in \Sigma$, atunci $f_s(T_\sigma) = f_s(\sigma) = B_\sigma$;

Fie \mathcal{B} o (S, Σ) -algebră.

Demonstrăm că există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

Existența. Definim $f: T_{\Sigma} \to \mathcal{B}$ prin inducție pe termeni:

$$(P(t) = "f(t)$$
este definit")

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $f_s(\sigma) := B_{\sigma}$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1} \dots, t_n \in (T_{\Sigma})_{s_n}$ astfel încât $f_{s_1}(t_1), \dots, f_{s_n}(t_n)$ definite, atunci $f_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(f_{s_1}(t_1), \dots, f_{s_n}(t_n))$.

Din principiului inducției pe termeni, f(t) este definită pt. or. $t \in T_{\Sigma}$. Demonstrăm că f este morfism.

- \square dacă $\sigma : \rightarrow s \in \Sigma$, atunci $f_s(T_\sigma) = f_s(\sigma) = B_\sigma$;
- □ dacă $\sigma: s_1 \ldots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1}, \ldots, t_n \in (T_{\Sigma})_{s_n}$, atunci $f_s(T_{\sigma}(t_1, \ldots, t_n)) = f_s(\sigma(t_1, \ldots, t_n)) = B_{\sigma}(f_{s_1}(t_1), \ldots, f_{s_n}(t_n))$.

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

 \square pasul inițial: dacă $\sigma:\to s\in\Sigma$, atunci $g_s(\sigma)=g_s(T_\sigma)=B_\sigma=f_s(\sigma)$.

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $g_s(\sigma) = g_s(T_\sigma) = B_\sigma = f_s(\sigma)$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in (T_{\Sigma})_{s_1}, \dots, t_n \in (T_{\Sigma})_{s_n}$ a. î. $g_{s_1}(t_1) = f_{s_1}(t_1), \dots, g_{s_n}(t_n) = f_{s_n}(t_n)$, atunci

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

- \square pasul inițial: dacă $\sigma : \to s \in \Sigma$, atunci $g_s(\sigma) = g_s(T_\sigma) = B_\sigma = f_s(\sigma)$.

Unicitatea. Fie $g: T_{\Sigma} \to \mathcal{B}$ un morfism.

Demonstrăm că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)")$$

- \square pasul inițial: dacă $\sigma:\to s\in \Sigma$, atunci $g_s(\sigma)=g_s(T_\sigma)=B_\sigma=f_s(\sigma)$.

Conform principiului inducției pe termeni, $g_s(t) = f_s(t)$, oricare $t \in (T_{\Sigma})_s$, deci g = f.

Consecință

Corolar

 T_{Σ} este (S, Σ) -algebra inițială.

Exempli

 \square (S,Σ) signatură multisortată

- \square (S, Σ) signatură multisortată
- \square (S, Σ)-algebra $\mathcal{D} = (D_S, D_{\Sigma})$

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$
 - dacă $\sigma: s_1 \dots s_n \to s$, $k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$
 - dacă $\sigma: s_1 \dots s_n \to s, k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.
- \Box $f: T_{\Sigma} \to \mathcal{D}$ unicul morfism

Exemple

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma:\to s$, atunci $D_{\sigma}:=0$
 - dacă $\sigma: s_1 \dots s_n \to s, \ k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.
- \Box $f: T_{\Sigma} \to \mathcal{D}$ unicul morfism
- \square Ce reprezintă valoarea f(t) pentru un termen t?

Exemple

- \square (S, Σ) signatură multisortată
- \square (S, Σ) -algebra $\mathcal{D} = (D_S, D_{\Sigma})$
 - \square $D_s := \mathbb{N}$, or. $s \in S$,
 - \square dacă $\sigma : \rightarrow s$, atunci $D_{\sigma} := 0$
 - dacă $\sigma: s_1 \dots s_n \to s, k_1, \dots, k_n \in \mathbb{N}$, atunci $D_{\sigma}(k_1, \dots, k_n) := 1 + \max(k_1, \dots, k_n)$.
- \Box $f: T_{\Sigma} \to \mathcal{D}$ unicul morfism
- \square Ce reprezintă valoarea f(t) pentru un termen t?
 - \Box f(t) este adâncimea arborelui arb(t).

Observații

Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe $(\mathcal A,\mathcal B\in\mathfrak C\Rightarrow\mathcal A\simeq\mathcal B.)$

Observații

- Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe $(\mathcal A,\mathcal B\in\mathfrak C\Rightarrow\mathcal A\simeq\mathcal B.)$
- \square Considerăm clasa de (S, Σ) -algebre

$$\mathfrak{I}_{(S,\Sigma)} = \{ \mathcal{I} \mid \mathcal{I} \ (S,\Sigma) \text{-algebră inițială} \}$$

Observații

- Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe $(\mathcal A,\mathcal B\in\mathfrak C\Rightarrow\mathcal A\simeq\mathcal B.)$
- \square Considerăm clasa de (S, Σ) -algebre

$$\mathfrak{I}_{(S,\Sigma)} = \{ \mathcal{I} \mid \mathcal{I} \ (S,\Sigma) \text{-algebră inițială} \}$$

 \square $\mathfrak{I}_{(S,\Sigma)}$ este un tip abstract de date.

Observații

- Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe $(\mathcal A,\mathcal B\in\mathfrak C\Rightarrow\mathcal A\simeq\mathcal B.)$
- \square Considerăm clasa de (S, Σ) -algebre

$$\mathfrak{I}_{(S,\Sigma)} = \{ \mathcal{I} \mid \mathcal{I} \ (S,\Sigma) \text{-algebră inițială} \}$$

- \square $\mathfrak{I}_{(S,\Sigma)}$ este un tip abstract de date.
- $\square \ T_{\Sigma} \in \mathfrak{I}_{(S,\Sigma)}.$

Observații

- Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe $(\mathcal A,\mathcal B\in\mathfrak C\Rightarrow\mathcal A\simeq\mathcal B.)$
- \square Considerăm clasa de (S, Σ) -algebre

$$\mathfrak{I}_{(S,\Sigma)} = \{ \mathcal{I} \mid \mathcal{I} \ (S,\Sigma) \text{-algebră inițială} \}$$

- \square $\mathfrak{I}_{(S,\Sigma)}$ este un tip abstract de date.
- $\square \ T_{\Sigma} \in \mathfrak{I}_{(S,\Sigma)}.$
- Un modul în **Maude** (care conține doar declații de sorturi și operații) definește un astfel de tip abstract de date și construiește efectiv algebra T_{Σ} .

Algebre libere

Algebră liberă

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ este liber generată de X dacă

Algebră liberă

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

- O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ este liber generată de X dacă
 - \square $X \subseteq A_S$, i.e. există funcția S-sortată incluziune a lui X în A_S $i_A: X \hookrightarrow A_S$,

Algebră liberă

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Definiție

- O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ este liber generată de X dacă
 - \square $X \subseteq A_S$, i.e. există funcția S-sortată incluziune a lui X în A_S $i_A: X \hookrightarrow A_S$,
 - □ pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$ și orice funcție S-sortată $f: X \to B_S$, există un unic (S, Σ) -morfism $\tilde{f}: \mathcal{A} \to \mathcal{B}$ astfel încât

$$i_A$$
; $\tilde{f} = f$.

Teoremă

Dacă $\mathcal A$ și $\mathcal B$ sunt liber generate de X, atunci $\mathcal A\simeq \mathcal B.$

Teoremă

Dacă \mathcal{A} și \mathcal{B} sunt liber generate de X, atunci $\mathcal{A} \simeq \mathcal{B}$.

Demonstrație

□ Fie $\mathcal{A} = (A_S, A_Σ)$ și $\mathcal{B} = (B_S, B_Σ)$ două (S, Σ)-algebre liber generate de X.

Teoremă

Dacă A și B sunt liber generate de X, atunci $A \simeq B$.

Demonstrație

- □ Fie $\mathcal{A} = (A_S, A_{\Sigma})$ și $\mathcal{B} = (B_S, B_{\Sigma})$ două (S, Σ) -algebre liber generate de X.
- Notăm cu $i_A: X \hookrightarrow A_S$ și $i_B: X \hookrightarrow B_S$ funcțiile S-sortate incluziune ale lui X în A_S și, respectiv, B_S .

Teoremă

Dacă A și B sunt liber generate de X, atunci $A \simeq B$.

Demonstrație

- □ Fie $\mathcal{A} = (A_S, A_Σ)$ și $\mathcal{B} = (B_S, B_Σ)$ două (S, Σ)-algebre liber generate de X.
- □ Notăm cu $i_A: X \hookrightarrow A_S$ și $i_B: X \hookrightarrow B_S$ funcțiile S-sortate incluziune ale lui X în A_S și, respectiv, B_S .
- Demonstrația are patru pași:

Deoarece \mathcal{A} este liber generată de X, există un unic (S, Σ) -morfism $f: \mathcal{A} \to \mathcal{B}$ astfel încât i_A ; $f = i_B$.

- Deoarece \mathcal{A} este liber generată de X, există un unic (S, Σ) -morfism $f: \mathcal{A} \to \mathcal{B}$ astfel încât i_A ; $f = i_B$.
- 2 Similar, deoarece \mathcal{B} este liber generată de X, există un unic (S, Σ) -morfism $g: \mathcal{B} \to \mathcal{A}$ astfel încât $i_B; g = i_A$.

- Deoarece \mathcal{A} este liber generată de X, există un unic (S, Σ) -morfism $f: \mathcal{A} \to \mathcal{B}$ astfel încât i_A ; $f = i_B$.
- Similar, deoarece $\mathcal B$ este liber generată de X, există un unic (S,Σ) -morfism $g:\mathcal B\to\mathcal A$ astfel încât $i_B;g=i_A$.
- Shew i_A ; $(f;g) = (i_A;f)$; $g = i_B$; $g = i_A$ și i_A ; $1_A = i_A$. Cum A este liber generată de X, morfismele f; g și 1_A sunt unice cu proprietatea de mai sus, deci f; $g = 1_A$.

- Deoarece A este liber generată de X, există un unic (S, Σ) -morfism $f: A \to \mathcal{B}$ astfel încât i_A ; $f = i_B$.
- Similar, deoarece $\mathcal B$ este liber generată de X, există un unic (S,Σ) -morfism $g:\mathcal B\to\mathcal A$ astfel încât $i_B;g=i_A$.
- Avem i_A ; $(f;g) = (i_A;f)$; $g = i_B$; $g = i_A$ și i_A ; $1_A = i_A$. Cum A este liber generată de X, morfismele f; g și 1_A sunt unice cu proprietatea de mai sus, deci f; $g = 1_A$.
- Avem i_B ; $(g; f) = (i_B; g)$; $f = i_A$; $f = i_B$ § i i_B ; $1_B = i_B$. Cum \mathcal{B} este liber generată de X, obținem că g; $f = 1_{\mathcal{B}}$.

- Deoarece A este liber generată de X, există un unic (S, Σ) -morfism $f: A \to \mathcal{B}$ astfel încât i_A ; $f = i_B$.
- Similar, deoarece $\mathcal B$ este liber generată de X, există un unic (S,Σ) -morfism $g:\mathcal B\to\mathcal A$ astfel încât $i_B;g=i_A$.
- Avem i_A ; $(f;g) = (i_A;f)$; $g = i_B$; $g = i_A$ și i_A ; $1_A = i_A$. Cum A este liber generată de X, morfismele f; g și 1_A sunt unice cu proprietatea de mai sus, deci f; $g = 1_A$.
- Avem i_B ; $(g; f) = (i_B; g)$; $f = i_A$; $f = i_B$ \S i i_B ; $1_B = i_B$. Cum \mathcal{B} este liber generată de X, obținem că g; $f = 1_{\mathcal{B}}$.

Din egalitățile obținute la 3 și 4, deducem că f și g sunt izomorfisme.

Evaluarea termenilor în algebre

Fie (S, Σ) o signatură multisortată și X o mulțime de variabile.

Teoremă

Fie $\mathcal{B}=(B_S,B_\Sigma)$ o (S,Σ) -algebră. Orice funcție S-sortată

$$e: X \rightarrow B_S$$

se extinde unic la un (S, Σ) -morfism

$$\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}.$$

- □ e dă interpretarea, evaluarea variabilelor în mulțimi S-sortate.
- □ ẽ dă interpretarea, evaluarea termenilor în algebre.

Fie \mathcal{B} o (S,Σ) -algebră și $e:X\to B_S$ o funcție S-sortată. Demonstrăm că există un unic morfism $\tilde{e}:T_\Sigma(X)\to\mathcal{B}$ astfel încât $\tilde{e}_s(x)=e_s(x)$, or. $x\in X_s$.

Fie \mathcal{B} o (S,Σ) -algebră și $e:X\to B_S$ o funcție S-sortată. Demonstrăm că există un unic morfism $\tilde{e}:T_\Sigma(X)\to\mathcal{B}$ astfel încât $\tilde{e}_s(x)=e_s(x)$, or. $x\in X_s$.

Existența. Definim $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$ prin inducție pe termeni: $(\mathbf{P}(t) = \tilde{e}(t) \text{ este definit"}).$

- Fie \mathcal{B} o (S, Σ) -algebră și $e: X \to B_S$ o funcție S-sortată. Demonstrăm că există un unic morfism $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$ astfel încât $\tilde{e}_s(x) = e_s(x)$, or. $x \in X_s$.
- **Existența.** Definim $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "\tilde{e}(t) \text{ este definit"}).$$

- pasul iniţial:
 - \square dacă $x \in X_s$, atunci $\tilde{e}_s(x) := e_s(x)$,
 - □ dacă $\sigma : \rightarrow s \in \Sigma$, atunci $\tilde{e}_s(\sigma) := B_{\sigma}$.

- Fie \mathcal{B} o (S,Σ) -algebră și $e:X\to B_S$ o funcție S-sortată. Demonstrăm că există un unic morfism $\tilde{e}:T_\Sigma(X)\to\mathcal{B}$ astfel încât $\tilde{e}_s(x)=e_s(x)$, or. $x\in X_s$.
- **Existența.** Definim $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "\tilde{e}(t) \text{ este definit"}).$$

- pasul iniţial:
 - \square dacă $x \in X_s$, atunci $\tilde{e}_s(x) := e_s(x)$,
 - □ dacă σ:→ s ∈ Σ, atunci $\tilde{e}_s(σ) := B_σ$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$ astfel încât $\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n)$ definite, atunci $\tilde{e}_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n))$.

Fie \mathcal{B} o (S,Σ) -algebră și $e:X\to B_S$ o funcție S-sortată. Demonstrăm că există un unic morfism $\tilde{e}:T_\Sigma(X)\to\mathcal{B}$ astfel încât $\tilde{e}_s(x)=e_s(x)$, or. $x\in X_s$.

Existența. Definim $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "\tilde{e}(t) \text{ este definit"}).$$

- pasul inițial:
 - \square dacă $x \in X_s$, atunci $\tilde{e}_s(x) := e_s(x)$,
 - \Box dacă σ :→ s ∈ Σ , atunci $\tilde{e}_s(\sigma)$:= B_{σ} .
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$ astfel încât $\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n)$ definite, atunci $\tilde{e}_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n))$.

Conform principiului inducției pe termeni, $\tilde{e}(t)$ este definit pentru orice $t \in T_{\Sigma}(X)$. Evident, $\tilde{e}_s(x) = e_s(x)$, or. $x \in X_s$.

Fie \mathcal{B} o (S,Σ) -algebră și $e:X\to B_S$ o funcție S-sortată. Demonstrăm că există un unic morfism $\tilde{e}:T_\Sigma(X)\to\mathcal{B}$ astfel încât $\tilde{e}_s(x)=e_s(x)$, or. $x\in X_s$.

Existența. Definim $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "\tilde{e}(t) \text{ este definit"}).$$

- pasul inițial:
 - \square dacă $x \in X_s$, atunci $\tilde{e}_s(x) := e_s(x)$,
 - \Box dacă σ :→ s ∈ Σ , atunci $\tilde{e}_s(\sigma)$:= B_{σ} .
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$ astfel încât $\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n)$ definite, atunci $\tilde{e}_s(\sigma(t_1, \dots, t_n)) := B_{\sigma}(\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n))$.

Conform principiului inducției pe termeni, $\tilde{e}(t)$ este definit pentru orice $t \in T_{\Sigma}(X)$. Evident, $\tilde{e}_s(x) = e_s(x)$, or. $x \in X_s$.

Trebuie arătat că \tilde{e} este morfism - exercițiu!

Unicitatea. Fie $g: T_{\Sigma}(X) \to \mathcal{B}$ un morfism astfel încât $g_s(x) = e_s(x)$, or. $x \in X_s$. Demonstrăm că $g = \tilde{e}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = \tilde{e}_s(t)").$$

Unicitatea. Fie $g: T_{\Sigma}(X) \to \mathcal{B}$ un morfism astfel încât $g_s(x) = e_s(x)$, or. $x \in X_s$. Demonstrăm că $g = \tilde{e}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = \tilde{e}_s(t)").$$

- pasul inițial:
 - \square dacă $x \in X_s$, atunci $g_s(x) = e_s(x) = \tilde{e}_s(x)$,
 - \Box dacă σ :→ s ∈ Σ , atunci $g_s(\sigma) = B_\sigma = \tilde{e}_s(\sigma)$.

Unicitatea. Fie $g: T_{\Sigma}(X) \to \mathcal{B}$ un morfism astfel încât $g_s(x) = e_s(x)$, or. $x \in X_s$. Demonstrăm că $g = \tilde{e}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = \tilde{e}_s(t)").$$

- pasul iniţial:
 - \square dacă $x \in X_s$, atunci $g_s(x) = e_s(x) = \tilde{e}_s(x)$,
 - □ dacă $\sigma : \rightarrow s \in \Sigma$, atunci $g_s(\sigma) = B_\sigma = \tilde{e}_s(\sigma)$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$ astfel încât $g_{s_1}(t_1) = \tilde{e}_{s_1}(t_1), \dots, g_{s_n}(t_n) = \tilde{e}_{s_n}(t_n)$, atunci $g_s(\sigma(t_1, \dots, t_n)) = B_{\sigma}(g_{s_1}(t_1), \dots, g_{s_n}(t_n)) = B_{\sigma}(\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n)) = \tilde{e}_s(\sigma(t_1, \dots, t_n))$.

Unicitatea. Fie $g: T_{\Sigma}(X) \to \mathcal{B}$ un morfism astfel încât $g_s(x) = e_s(x)$, or. $x \in X_s$. Demonstrăm că $g = \tilde{e}$ prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = \tilde{e}_s(t)").$$

- pasul inițial:
 - \square dacă $x \in X_s$, atunci $g_s(x) = e_s(x) = \tilde{e}_s(x)$,
 - □ dacă $\sigma : \rightarrow s \in \Sigma$, atunci $g_s(\sigma) = B_\sigma = \tilde{e}_s(\sigma)$.
- □ pasul de inducție: dacă $\sigma: s_1 \dots s_n \to s \in \Sigma$ și $t_1 \in T_{\Sigma}(X)_{s_1}, \dots, t_n \in T_{\Sigma}(X)_{s_n}$ astfel încât $g_{s_1}(t_1) = \tilde{e}_{s_1}(t_1), \dots, g_{s_n}(t_n) = \tilde{e}_{s_n}(t_n)$, atunci $g_s(\sigma(t_1, \dots, t_n)) = B_{\sigma}(g_{s_1}(t_1), \dots, g_{s_n}(t_n)) = B_{\sigma}(\tilde{e}_{s_1}(t_1), \dots, \tilde{e}_{s_n}(t_n)) = \tilde{e}_s(\sigma(t_1, \dots, t_n))$.

Conform principiului inducției pe termeni, $g_s(t) = \tilde{e}_s(t)$, oricare $t \in T_{\Sigma}(X)_s$, deci $g = \tilde{e}$.

Consecința

Corolar

 $T_{\Sigma}(X)$ este (S, Σ) -algebra liber generată de X.

Consecința

Corolar

 $T_{\Sigma}(X)$ este (S, Σ) -algebra liber generată de X.

□ Pentru a evalua un termen t cu variabile din X într-o (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, este suficient să evaluăm variabilele din X în B_S , i.e. să definim o funcție $e: X \to B_S$.

Exemplu

$$NATEXP = (S = \{nat\}, \Sigma)$$

 $\ \ \, \square \ \, \Sigma = \{0: \rightarrow \textit{nat}, \textit{s}: \textit{nat} \rightarrow \textit{nat}, +: \textit{nat} \ \textit{nat} \rightarrow \textit{nat}, \star: \textit{nat} \ \textit{nat} \rightarrow \textit{nat}\}$

$$X: X_{nat} = \{x, y\}$$

Exemplu

$$\begin{aligned} \textit{NATEXP} &= (S = \{\textit{nat}\}, \Sigma) \\ & \quad \square \ \Sigma = \{0 : \rightarrow \textit{nat}, s : \textit{nat} \rightarrow \textit{nat}, + : \textit{nat} \ \textit{nat} \rightarrow \textit{nat}, \star : \textit{nat} \ \textit{nat} \rightarrow \textit{nat} \} \\ & X \colon X_{\textit{nat}} &= \{x, y\} \\ & T_{\textit{NATEXP}}(X) \colon T_{\textit{NATEXP}}(X)_{\textit{nat}} &= \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, \\ & \quad + (0, 0), + (0, x), + (x, y), \star (0, + (s(0), 0)), \dots \} \end{aligned}$$

Exemplu

NATEXP =
$$(S = \{nat\}, \Sigma)$$

$$\square \Sigma = \{0 :\rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$$
X: $X_{nat} = \{x, y\}$
 $T_{NATEXP}(X): T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0, 0), +(0, x), +(x, y), \star (0, +(s(0), 0)), \dots\}$

NATEXP-algebra A: mulţimea suport $A_{nat} = \mathbb{Z}_4$ și operaţiile obișnuite.

Exempli

$$NATEXP = (S = \{nat\}, \Sigma)$$

$$\square \ \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat \}$$

$$X: \ X_{nat} = \{x, y\}$$

$$T_{NATEXP}(X): \ T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0, 0), +(0, x), +(x, y), \star (0, +(s(0), 0)), \dots\}$$

NATEXP-algebra A: mulțimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.

O interpretare a termenilor din $T_{NATEXP}(X)$ în A

Exempli

$$\begin{split} & NATEXP = (S = \{nat\}, \Sigma) \\ & \square \ \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat \} \\ & X \colon X_{nat} = \{x, y\} \\ & T_{NATEXP}(X) \colon T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, \\ & \quad + (0, 0), + (0, x), + (x, y), \star (0, + (s(0), 0)), \dots \} \\ & NATEXP\text{-algebra } \mathcal{A} \colon \text{multimea suport } A_{nat} = \mathbb{Z}_4 \text{ i operatiile obisnuite.} \\ & \square \ \text{definim } e : X \rightarrow A_{nat}, \ e(x) := 1, \ e(y) := 3 \end{split}$$

Exemple

$$NATEXP = (S = \{nat\}, \Sigma)$$

$$\square \ \Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$$
 $X : \ X_{nat} = \{x, y\}$

$$T_{NATEXP}(X) : \ T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, + (0, 0), + (0, x), + (x, y), \star (0, + (s(0), 0)), \dots\}$$
 $NATEXP$ -algebra \mathcal{A} : multimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.

O interpretare a termenilor din $T_{NATEXP}(X)$ în \mathcal{A}

$$\square$$
 definim $e : X \rightarrow A_{nat}, \ e(x) := 1, \ e(y) := 3$
Exemple de interpretări ale termenilor:

 $\tilde{e}(+(x,y)) = A_+(e(x),e(y)) = 1+3=0 \pmod{4}$

Exempli

NATEXP =
$$(S = \{nat\}, \Sigma)$$

 \square $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, + : nat \ nat \rightarrow nat, \star : nat \ nat \rightarrow nat\}$
X: $X_{nat} = \{x, y\}$
 $T_{NATEXP}(X)$: $T_{NATEXP}(X)_{nat} = \{0, x, y, s(0), s(x), s(y), s(s(0)), \dots, +(0,0), +(0,x), +(x,y), \star(0, +(s(0),0)), \dots\}$
NATEXP-algebra A : multimea suport $A_{nat} = \mathbb{Z}_4$ și operațiile obișnuite.
O interpretare a termenilor din $T_{NATEXP}(X)$ în A
 \square definim $e: X \rightarrow A_{nat}$, $e(x) := 1$, $e(y) := 3$
Exemple de interpretări ale termenilor:
 \square $\tilde{e}(+(x,y)) = A_+(e(x), e(y)) = 1 + 3 = 0 \pmod{4}$
 \square $\tilde{e}(\star(s(x), s(s(0)))) = A_+(A_s(e(x)), A_s(A_s(A_0))) =$

 $(1+1) \star (0+1+1) = 2 \star 2 = 0 \pmod{4}$

Exemple

```
STIVA = (S = \{elem, stiva\}, \Sigma)
  \square \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, push : elem stiva <math>\rightarrow stiva,
               pop : stiva \rightarrow stiva, top : stiva \rightarrow elem
STIVA-algebra A:
  \square Multimea suport: A_{elem} := \mathbb{N}, A_{stiva} := \mathbb{N}^*
  \square Operații: A_0 := 0, A_{emptv} := \lambda, A_{push}(n, n_1 \dots n_k) := nn_1 \dots n_k,
      A_{pop}(\lambda) := \lambda, A_{pop}(n) := \lambda, A_{pop}(n_1 n_2 \dots n_k) := n_2 \dots n_k, pt k \ge 2
      A_{top}(\lambda) := 0, A_{top}(n_1 \dots n_k) := n_1, \text{ pt. } k > 1
STIVA-algebra \mathcal{B}:
  \square Multimea suport: B_{elem} := \{0\}, B_{stiva} := \mathbb{N}
  \square Operații: B_0 := 0, B_{empty} := 0, B_{push}(0, n) := n + 1,
      B_{pop}(0) := 0, B_{pop}(n) := n - 1, pt. n \ge 1, B_{top}(n) := 0
```

Exemplu (Cont.)

$$X: X_{elem} = \{x, y\}, X_{stiva} = \{s\}$$

Fie $t := push(x, push(y, s)) \in T_{STIVA}(X)_{stiva}$.

Exemplu (Cont.)

$$X: X_{elem} = \{x, y\}, X_{stiva} = \{s\}$$

Fie $t := push(x, push(y, s)) \in T_{STIVA}(X)_{stiva}$.

- O interpretare a lui t în A:
 - \Box $e: X \to A, e(x) := 5, e(y) := 3, e(s) := 6.7$
 - $\square \ \tilde{e}(t) = A_{push}(e(x), A_{push}(e(y), e(s))) = 5 \ 3 \ 6 \ 7$

Exemplu (Cont.)

$$X: X_{elem} = \{x, y\}, X_{stiva} = \{s\}$$

Fie $t := push(x, push(y, s)) \in T_{STIVA}(X)_{stiva}$.

- O interpretare a lui t în A:
 - \Box $e: X \to A, e(x) := 5, e(y) := 3, e(s) := 6.7$
 - $\square \ \tilde{e}(t) = A_{push}(e(x), A_{push}(e(y), e(s))) = 5 \ 3 \ 6 \ 7$
- O interpretare a lui t în \mathcal{B} :
 - \Box $e: X \to B, e(x) := 0, e(y) := 0, e(s) := 10$
 - \Box $\tilde{e}(t) = B_{push}(e(x), B_{push}(e(y), e(s))) = (10+1)+1=12$

Propoziție

Fie $h: \mathcal{A} \to \mathcal{B}$ un (S, Σ) -morfism surjectiv și X o mulțime de variabile. Pentru orice (S, Σ) -morfism $f: T_{\Sigma}(X) \to \mathcal{B}$, există un (S, Σ) -morfism $g: T_{\Sigma}(X) \to \mathcal{A}$ astfel încât g; h = f.

- \square Fie $f: T_{\Sigma}(X) \to \mathcal{B}$ un morfism.
- □ Cum h este surjectiv, pt. or. $x \in X_s$, există $a \in A_s$ astfel încât $h_s(a) = f_s(x)$.
- □ Pentru orice $s \in S$ și $x \in X_s$, alegem $a \in A_s$ astfel încât $h_s(a) = f_s(x)$ și definim $e_s(x) := a$.
- \square Deci $e: X \to A$.
- \square Considerăm $\tilde{e}: T_{\Sigma}(X) \to \mathcal{A}$ extensia unică a lui $e: X \to A$.
- □ Cum $T_{\Sigma}(X)$ este algebră liberă și $(\tilde{e}; h)_s(x) = f_s(x)$, or. $x \in X_s$, obținem că $\tilde{e}; h = f$.
- \square Luăm $g := \tilde{e}$.

Notație. Dacă $f: A \to \mathcal{B}$ este un (S, Σ) -morfism și $X \subseteq A_S$, atunci $f \upharpoonright_X$ este restricția lui f la X, i.e. $(f \upharpoonright_X)_s(x) = f_s(x)$, or. $x \in X_s$.

Notație. Dacă $f: A \to B$ este un (S, Σ) -morfism și $X \subseteq A_S$, atunci $f \upharpoonright_X$ este restricția lui f la X, i.e. $(f \upharpoonright_X)_s(x) = f_s(x)$, or. $x \in X_s$.

Propoziție

Fie \mathcal{B} o (S, Σ) -algebră și X o mulțime de variabile. Dacă $f: T_{\Sigma}(X) \to \mathcal{B}$ și $g: T_{\Sigma}(X) \to \mathcal{B}$ sunt morfisme, atunci

$$g = f \Leftrightarrow g \upharpoonright_X = f \upharpoonright_X$$
.

Demonstrație.

Exercițiu! Se demonstrează că g = f prin inducție pe termeni:

$$(\mathbf{P}(t) = "g_s(t) = f_s(t)").$$

Propoziție

Dacă $X \simeq Y$, atunci $T_{\Sigma}(X) \simeq T_{\Sigma}(Y)$.

Demonstrație.

Exercițiu! A se vedea demonstrația pentru:

două algebre liber generate de X sunt izomorfe.

29 / 31

Concluzii

Fie (S, Σ) o signatură multisortată și X mulțime de variabile.

- \square T_{Σ} este (S, Σ) -algebră inițială.
- \Box $T_{\Sigma}(X)$ este (S, Σ) -algebră liber generată de X.
- \Box T_{Σ} este liber generată de \emptyset .

Pe săptămâna viitoare!