ECG Diagnostic Tool: A Machine Learning Approach

Table of contents

- Motivation
- **02** Data
- 03 Modeling
- **04** Experiments
- **05** Conclusions
- 06 Contributions

Motivation

Heart disease is the leading cause of death in America.

Electrocardiography (ECG; Pronounced 'Eee-Kay-Gee') is a painless, non-invasive diagnostic tool.

Al support systems for classifying ECGs could provide significant assistance; however, there are 2 major obstacles:

- The lack of available datasets
- A well trained model

PTB-XL

Data

- → 21,837 records
 - ♦ 18,885 patients
 - ♦ 12 lead
 - ◆ 10 seconds in length
 - 52% male, 48% female
 - ◆ Ages 0 to 95

100hz 500hz

- → 21,837 records
 - ◆ 18,885 patients
 - ◆ 12 lead
 - ♦ 10 seconds in length
 - ◆ 52% male, 48% female
 - ♦ Ages 0 to 95

WFDB data visualization

Preprocessing: Correct the Data Imbalance

Before

Total # of Training Samples: 17,439

After

Total # of Training Samples: 2,800

Preprocessing: Randomize the Split

Preprocessing: Normalize the Data

Modeling: Baseline Models

Predict at Random

~20% Validation Accuracy

Always Predict Normal

~46% Validation Accuracy

Modeling: Comparing Model Types

Random Forest	<u>SVM</u>	<u>NN</u>	
~99% Training Accuracy	100% Training Accuracy	~23% Training Accuracy	
~39% Validation Accuracy	~20% Validation Accuracy	~14% Validation Accuracy	
Overfitting	Overfitting		

Modeling: What We Landed On

Layer (type)	Output Shape	Param #
conv1d_12 (Conv1D)	(None, 998, 64)	2368
<pre>max_pooling1d_12 (MaxPooli ng1D)</pre>	(None, 499, 64)	0
conv1d_13 (Conv1D)	(None, 497, 128)	24704
<pre>max_pooling1d_13 (MaxPooli ng1D)</pre>	(None, 248, 128)	0
conv1d_14 (Conv1D)	(None, 246, 256)	98560
<pre>max_pooling1d_14 (MaxPooli ng1D)</pre>	(None, 123, 256)	0
flatten_4 (Flatten)	(None, 31488)	0
dense_18 (Dense)	(None, 256)	8061184
dropout_10 (Dropout)	(None, 256)	0
dense_19 (Dense)	(None, 128)	32896
dropout_11 (Dropout)	(None, 128)	0
dense_20 (Dense)	(None, 64)	8256
dropout_12 (Dropout)	(None, 64)	0
dense_21 (Dense)	(None, 32)	2080
dropout_13 (Dropout)	(None, 32)	0
dense_22 (Dense)	(None, 16)	528
dropout_14 (Dropout)	(None, 16)	0
dense_23 (Dense)	(None, 12)	204

Total params: 8230780 (31.40 MB)
Trainable params: 8230780 (31.40 MB)
Non-trainable params: 0 (0.00 Byte)

Experiment 1: Meta-data

Experiment 2: Manual Hyperparameter Optimization

43% → 43%
Before Best Observed

# Conv layers	Conv filters	Dense units	Pool Size
1	[64]	[256, 128, 64, 32, 16]	2
2	[64, 64]	[256, 128, 64, 32, 16]	2
3	[64, 64, 64]	[256, 128, 64, 32, 16]	2
4	[64, 64, 64, 64]	[256, 128, 64, 32, 16]	2
5	[64, 64, 64, 64, 64]	[256, 128, 64, 32, 16]	2
3	[64, 128, 256]	[256, 128, 64, 32, 16]	2
3	[128, 128, 128]	[256, 128, 64, 32, 16]	2
3	[256, 256, 256]	[256, 128, 64, 32, 16]	2
3	[256, 128, 64]	[256, 128, 64, 32, 16]	2
3	[128, 128, 128]	[256, 128, 64, 32, 16]	1
3	[256, 256, 256]	[256, 128, 64, 32, 16]	2
3	[256, 128, 64]	[256, 128, 64, 32, 16]	3
3	[256, 256, 256]	[64]	1
3	[256, 256, 256]	[64, 64]	1
3	[256, 256, 256]	[64, 64, 64]	1
3	[256, 256, 256]	[64, 64, 64, 64]	1
3	[256, 256, 256]	[64, 64, 64, 64, 64]	1

Experiment 3: Keras Tuner Optimization

43%

Before

→

47%

Best Model

50%
Test Accuracy

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 1000, 13)]	0
conv1d (Conv1D)	(None, 998, 224)	8960
max_pooling1d (MaxPooling1D)	(None, 499, 224)	0
conv1d_1 (Conv1D)	(None, 497, 224)	150752
max_pooling1d_1 (MaxPooling 1D)	(None, 248, 224)	0
conv1d_2 (Conv1D)	(None, 246, 256)	172288
max_pooling1d_2 (MaxPooling 1D)	(None, 123, 256)	0
conv1d_3 (Conv1D)	(None, 121, 256)	196864
max_pooling1d_3 (MaxPooling 1D)	(None, 60, 256)	0
conv1d_4 (Conv1D)	(None, 58, 256)	196864
max_pooling1d_4 (MaxPooling 1D)	(None, 29, 256)	0
flatten (Flatten)	(None, 7424)	0
dropout (Dropout)	(None, 7424)	0
dropout_1 (Dropout)	(None, 7424)	0
dense (Dense)	(None, 32)	237600
dense_1 (Dense)	(None, 32)	1056
dense_2 (Dense)	(None, 32)	1056
dense_3 (Dense)	(None, 32)	1056
dense_4 (Dense)	(None, 32)	1056
dense_5 (Dense)	(None, 32)	1056
dense_6 (Dense)	(None, 12)	396

Conclusions

Model

Metric	Value	Conclusion
Test Accuracy	50%	X
Validation Accuracy	47%	X
F1	0.59	~
Precision	0.5	~
Recall	0.7	~

Implications

- Without training: medical students have a 42% accuracy while residents have a 55.8% accuracy.⁵
- This implies that this initial model may perform better than your average medical student if you want to get your EKG looked at (not recommended)
- Some potential negative societal impacts include inequity due to biased datasets for certain classes (sex, race, etc.)

Next Steps

- Continue to optimize data pre-processing
- Re-encode using all relevant metadata
- Scope different model types (RNN, MLP, Hybrid)
- Continue to optimize model hyperparameters (try Adamax loss function)

Contributions

	<u>Daniel</u>	<u>Trisha</u>	<u>Zach</u>
Code	Hyperparameter optimization	Data preprocessing, baseline modeling	Data loading, Model development
Slides/Presentation	ExperimentsConclusion	PreprocessingModeling	MotivationData
Research	 Tensorflow hyperparameter optimization automation ECG studies 	 Supervised vs Unsupervised models 	Initial data setECG research

- All members contributed to NeurIPS verification with equal effort.

References

- 1. Wagner, Patrick, et al. "PTB-XL, a large publicly available electrocardiography dataset." Scientific Data, vol. 7, no. 1, 25 May 2020, https://doi.org/10.1038/s41597-020-0495-6.
- 2. Wagner, P., Strodthoff, N., Bousseljot, R., Samek, W., & Schaeffter, T. (2022). PTB-XL, a large publicly available electrocardiography dataset (version 1.0.3). PhysioNet. https://doi.org/10.13026/kfzx-aw45.
- 3. Goldberger, A., et al. "PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220." (2000).
- 4. Wagner, Patrick, et al. "PTB-XL, a Large Publicly Available Electrocardiography Dataset." *Nature News*, Nature Publishing Group, 25 May 2020, www.nature.com/articles/s41597-020-0495-6.
- 5. Cook DA, Oh SY, Pusic MV. Accuracy of Physicians' Electrocardiogram Interpretations: A Systematic Review and Meta-analysis. *JAMA Intern Med.* 2020;180(11):1461-1471. doi:10.1001/jamainternmed.2020.3989

Data License:

https://physionet.org/content/ptb-xl/view-license/1.0.3/

GitHub:

https://github.com/zfenton/UCBMIDS W207 finalProject

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

NeurIPS Checklist

- 1. For all authors...
 - √ (a) Do the main claims made in the abstract and introduction accurately reflect the papers contributions and scope? N/A
 - √ (b) Have you read the ethics review guidelines and ensured that your paper conforms to them? YES
 - √ (c) Did you discuss any potential negative societal impacts of your work? YES
 - √ (d) Did you describe the limitations of your work? YES
- 2. If you are including Theoretical Results...
 - (a) Did you state the full set of assumptions of all theoretical results? N/A
 - √ (b) Did you include complete proofs of all theoretical results? N/A
- 3. If you ran experiments...
 - ✓ (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? YES
 - √ (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? YES
 - ✓ (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? YES in github
 - (d) Did you include the amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? YES
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - √ (a) If your work uses existing assets, did you cite the creators? YES
 - √ (b) Did you mention the license of the assets? YES
 - (c) Did you include any new assets either in the supplemental material or as a URL? YES
 - √ (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? YES
 - (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? YES
- ✓ 5. If you used crowdsourcing or conducted research with human subjects...
 - √ (a) Did you include the full text of instructions given to participants and screenshots, if applicable? N/A
 - ✓ (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? N/A
 - √ (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? N/A