BÀI THỰC HÀNH SỐ 7 BÀI TẬP NÂNG CAO – CẦU TRÚC LẶP

Bài 1./ Lập bảng so sánh hai thang đo nhiệt độ Fahrenheit và Celsius trong các đoạn sau:

- Đoạn [0°C, 10°C], bước tăng 1°C.
- Đoạn [32°F, 42°F], bước tăng 1°F.

Công thức chuyển đổi Fahrenheit - Celcius:

5(F - 32) = 9C

Celcius	Fahrenheit	Fahrenheit	Celcius	
0	32.00	32	0.00	
1	33.80	33	0.56	
2	35.60	34	1.11	
3	37.40	35	1.67	
4	39.20	36	2.22	
5	41.00	37	2.78	
6	42.80	38	3.33	
7	44.60	39	3.89	
8	46.40	40	4.44	
9	48.20	41	5.00	
10	50.00	42	5.56	

Bài 2./ Số tự nhiên có n chữ số được gọi là một số Armstrong nếu tổng các lũy thừa bậc n của các chữ số của nó bằng chính nó. Hãy tìm tất cả các số Armstrong có 3 chữ số.

Ví dụ: 153 là số Armstrong có 3 chữ số vì: $1^3 + 5^3 + 3^3 = 153$

So Amstrong co 3 chu so: 153 370 371 407

Bài 3./ Viết chương trình để tìm các số hoàn hảo trong phạm vi nhất định.

Test Data:

Input the starting range or number : 1 Input the ending range of number : 50

Expected Output:

The Perfect numbers within the given range : 6 28

Bài 4./ Nhập một số nguyên dương N. Tính:

$$S1 = \frac{1+2+3+\dots+N}{N}$$

$$S2 = \sqrt{1^2+2^2+\dots+N^2}$$

$$S3 = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \dots \cdot \frac{2n-1}{2n}$$

$$S4 = 1.2.3 + 2.3.4 + 3.4.5 + \dots + n(n+1)(n+2)$$

Bộ dữ liệu test:

Input	Output			
N	S 1	S2	S 3	S4
8	4.5	14.2829	0.196381	1980
5	3	7.4162	0.246094	420
0	Yêu cầu nhập lại			

Bài 5./ Nhập một số nguyên dương N. Tính:

$$S = \begin{cases} 1.3.5.7...N \ khi \ N \ 1e^{\frac{1}{2}} \\ 2.4.6...N \ khi \ N \ chan$$

Bộ dữ liệu test:

Input	Output		
N	S		
8	384		
11	10395		
0	0		
-5	Yêu cầu nhập lại		

Bài 6./ Viết chương trình nhập số nguyên N > 0. Tính:

$$S = \frac{1}{2^2} - \frac{1}{4^2} + \frac{1}{6^2} - \dots + \frac{(-1)^{N-1}}{(2N)^2}$$

Bộ dữ liệu mẫu:

Input	Output	
N	S	
1	0.25	
5	0.209653	
4	0.199653	
0	Yêu cầu nhập lại	

Bài 7./ Viết chương trình nhập số nguyên $N \ge 0$. Tính:

$$S = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \dots + \frac{(-1)^N}{(2N+1)^2}$$

Bộ dữ liệu test:

Input	Output		
N	S		
0	1		
1	0.888889		
2	0.928889		
5	0.920826		

Bài 8./ Nhập số thực A đảm bảo 0 < A< 2, tìm số n
 nhỏ nhất thỏa mãn :

$$1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}>A$$

Bộ dữ liệu mẫu:

Input	Output		
A	N		
1	2		
1.6	3		
5.2	102		
10	12367		
-1	Yêu cầu nhập lại		

Bài 9./ Khai triển Taylor của e^x có thể tính xấp xỉ theo công thức:

$$e^x \approx 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}$$
 với độ chính xác 0.0001. Nghĩa là xác định n sao cho
$$\frac{x^n}{n!} < 0.0001$$

Hãy viết chương trình bằng ngôn ngữ C để tính gần đúng e^x với dữ liệu vào là số thực x thuộc đoạn [-1, 1] $(-1 \le x \le 1)$

Bài 10./ Viết chương trình in bảng cửu chương từ 2 đến 9 ra màn hình.

Bang cuu chuong						
2x 1= 2	3x 1= 3	4x 1= 4	5x 1= 5 6x 1	= 6 7x 1= 7	8x 1= 8 9x 1= 9	
2x 2= 4	3x 2= 6	4x 2= 8	5x 2=10 6x 2	=12 7x 2=14	8x 2=16 9x 2=18	
2x 3= 6	3x 3= 9	4x 3=12	5x 3=15 6x 3	=18 7x 3=21	8x 3=24 9x 3=27	
2x 4= 8	3x 4=12	4x 4=16	5x 4=20 6x 4	=24 7x 4=28	8x 4=32 9x 4=36	
2x 5=10	3x 5=15	4x 5=20	5x 5=25 6x 5	=30 7x 5=35	8x 5=40 9x 5=45	
2x 6=12	3x 6=18	4x 6=24	5x 6=30 6x 6	=36 7x 6=42	8x 6=48 9x 6=54	
2x 7=14	3x 7=21	4x 7=28	5x 7=35 6x 7	=42 7x 7=49	8x 7=56 9x 7=63	
2x 8=16	3x 8=24	4x 8=32	5x 8=40 6x 8	=48 7x 8=56	8x 8=64 9x 8=72	
2x 9=18	3x 9=27	4x 9=36	5x 9=45 6x 9	=54 7x 9=63	8x 9=72 9x 9=81	
2x10=20	3x10=30	4x10=40	5x10=50 6x10	=60 7x10=70	8x10=80 9x10=90	

Hướng dẫn: In từng dòng cho tất cả các bảng cửu chương rồi mới chuyển sang in dòng kế tiếp. Các bảng cửu chương cách nhau bởi ký tự trang trí có mã ASCII 179.