2020 级华东师范大学本科生期末考试

《数据科学与工程数学基础》笔试试卷 2022.9

学院:数据科学与工程学院 考试形式:闭卷 所需时间:120分钟

考生姓名: _____ 学号: ____ 专业: ____ 任课教师: 黄定江

题目	_		三	四	五.	六	七	八	总分
满分	14	12	13	13	13	12	12	11	100
得分									
阅卷人									

题 1 (14') 己知矩阵

$$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ -2 & 3 \\ 0 & 1 \end{pmatrix}$$

- (1) 计算矩阵 M 的 1 范数;
- (2) 计算矩阵 M 的 2 范数;
- (3) 证明:对任意 $A \in \mathbb{R}^{m \times n}$,由

$$\|A\|_{m_{\infty}} := \max_{1 \leq i \leq m, 1 \leq j \leq n} |a_{ij}|$$

定义的 $\|\cdot\|_{m_{\infty}}$ 是 $\mathbb{R}^{m \times n}$ 上的(广义)矩阵范数。

题 2 (12') 已知矩阵

$$\mathbf{M} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$

- (1) 求矩阵 M 的零空间;
- (2) 求向量 $x = (1,1,1)^{T}$ 在矩阵 *M* 的列空间上的正交投影;
- (3) 利用 Householder 变换,将非零向量 $\mathbf{x} = (1,1,1)^{\mathsf{T}}$ 变为标准向量 $\mathbf{e}_1 = (0,1,0)^{\mathsf{T}}$ 的 $\sqrt{3}$ 倍,请写出这个 Householder 变换矩阵。

题 3 (13') 矩阵

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$

- (1) 计算矩阵 A 的 SVD 分解;
- (2) 假设 **B** 是一个 $n \times d$ 的矩阵, 矩阵 **M** 是 $(n+d) \times (n+d)$ 定义为

$$M = \begin{pmatrix} O & B^{\top} \\ B & O \end{pmatrix}$$

显然 M 是对称矩阵。请证明矩阵 M 的对角化会产生 B 的奇异值分解所需要的所有信息。

题 4 (13') 完成下列函数求导或梯度:

- (1) 求激活函数 $\sigma(x) = \frac{1}{1+e^{-x}}$ 的导数;
- (2) 求函数 $f(X) = Tr(X^{-1})$ 对 X 的梯度, 其中 $X \in \mathbb{R}^{m \times n}$ 。
- (3) 若非奇异矩阵 $A \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbb{R}^{n \times 1}$, $\mathbf{y} \in \mathbb{R}^{n \times 1}$, 求函数 $f(A) = \mathbf{y}^{\mathsf{T}} A^{-1} \mathbf{x}$ 对 A 的梯度。

题 5 (13') 计算和证明以下问题:

- (1) 同时抛 2 颗骰子,事件 A,B,C 分别表示为
 - (A) 仅有一个骰子是 3
 - (B) 至少一个骰子是 4
 - (C) 骰子上点数总和为7

试计算事件 A, B, C 发生后所提供的信息量;

(2) 证明联合熵和条件熵有如下关系:

$$H(X,Y) = H(X) + H(Y \mid X)$$

题 6 (12') 求解以下问题:

(1) 假设总体 $X \sim N(\mu, \sigma_0^2)$ (σ_0^2 已知), X_1, X_2, \ldots, X_n 为来自总体 X 的样本, 由过去的经验和知识, 我们可以确定 μ 的取值比较集中在 $\hat{\mu}$ 附近, 离 $\hat{\mu}$ 越远, μ 取值的可能性越小, 于是我们假定 μ 的先验分布为正态分布

$$\pi(\mu) = \frac{1}{\sqrt{2\pi\hat{\sigma}^2}} \exp\left[-\frac{1}{2\hat{\sigma}^2} (\mu - \hat{\mu})^2\right] \quad (\hat{\mu}, \hat{\sigma}$$
 呂知)

(2) 假设总体 $X \sim P(\lambda), X_1, X_2, \ldots, X_n$ 为来自总体 X 的样本, 假定 λ 的先验分布为伽玛分布 $\Gamma(\alpha, \beta)$, 求 λ 的后验期望估计 (泊松分布的分布律: $P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$, 泊松分布的期望为 λ ; 伽马分布的概率密度函数: $f(x; \alpha, \beta) = \frac{x^{\alpha-1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)}$, 伽马分布的期望为 α/β)。

题 7 (12') 求证下列与凸集或凸函数相关的问题:

(1) 证明:设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是仿射变换,即 $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$,则凸集在 f 下的像是凸集:

$$S \subseteq \mathbb{R}^n$$
 为凸集 $\Rightarrow f(S) \stackrel{\text{def}}{=} \{f(\boldsymbol{x}) \mid \boldsymbol{x} \in S\}$ 为凸集;

(2) 判定函数 $f(x) = \max(\|\mathbf{A}\mathbf{x} + \mathbf{b}\|_2, \|\mathbf{x}^\top \mathbf{x}\|_1), \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m$ 是否为凸函数,并说明理由。

题 8 (11') 考虑优化问题

$$\min_{\mathbf{x}} \quad \boldsymbol{x}^{\mathsf{T}} \boldsymbol{W} \boldsymbol{x}$$

其中 $W \in S_+^n$ 是对称半正定矩阵。

- (1) 求出在任意点 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^{\mathsf{T}}$ 处沿负梯度方向迭代的最佳步长 α 。
- (2) 若对上述优化问题增加约束条件

$$x_i^2 = 1, \quad i = 1, \cdots, n$$

请写出此时约束优化问题的拉格朗日函数 $L(\mathbf{x}, \boldsymbol{\lambda})$,并计算出约束优化问题的拉格朗日对偶函数。