Tutorial 3. Plane Frame Analysis

Problem: Determine the displacements and rotations of the nodes, the reaction forces and moments at nodes 1 and 4, and the location and magnitude of the maximum bending stress for the frame shown below (ref. "A First Course in the Finite Element Method, 5th edition, Daryl L. Logan, 2012, problem 5.10, p. 302). Assume that the members have a rectangular cross-section of depth, b=.0204 m, and height h=0.4899 m such that $A = bh = 1e^{-2}$ m² and $I_x = bh^3/12 = 2e^{-4}$ m⁴ as specified in the problem. Note that $I_y = b^3h/12 = 3.47e^{-7}$ m⁴ must be input but, since there is no out of plane bending, does not influence the results. Compare the finite element solution to the text solution given by:

$$u_2=0, v_2=-0.1423e-2 \text{ m}, \phi_2=-0.5917e-3 \text{ radians}$$

$$u_3=0, v_3=-0.1423e-2 \text{ m}, \phi_3=0.5917e-3 \text{ radians}$$

$$F_x^{(1)}=F_x^{(4)}=0, F_y^{(1)}=F_y^{(4)}=10,028 \text{ N}, M_1=23,276 \text{ N}-\text{m}, M_2=-23,276 \text{ N}-\text{m}$$

$$\sigma_{max}=\frac{Mc}{I}=\frac{(23,276 \text{ N}-\text{m})(.2450 \text{ m})}{2e^{-4} \text{ m}^4}=28.5 \text{ MPa}$$

Figure P5-10

Finite Element solution

Start => All Programs => Dassault Systems SIMULIA Abaqus => Abaqus CAE => Create Model Database With Standard/Explicit Model

File => Set Working Directory => Browse to find desired directory => OK

File => Save As => save frame_tutorial.cae file in Work Directory

Module: Sketch

Sketch => Create => continue

Add => Line => Connected Line => enter coordinates (0,0), (3,0), (6,-3), (9,-3) right click => Cancel Procedure => Done

Module: Part

Part => Create => select 2D Planar, Deformable, Wire, Approx size 200 => Continue Add => Sketch => select 'Sketch-1' => Done => Done

Module: Property

Material => Create => Name: Material-1, Mechanical, Elasticity, Elastic => set Young's modulus = 210e9, Poisson's ratio = 0.3 => OK

Profile => Create => Generalized => A=1e-2, $I_1 = 2e-4$, $I_{12}=0$, $I_2=3.47e-7$, J=0 => OK

Section => Create => Name: Section-1, Beam, Beam => Continue => Section Integration –
Before Analysis => Profile Name: Profile-1 => Linear Properties => E=210e9, $G=80.8e9 => Output Points => enter(x_1, x_2) = (0,-.245) and(x_1, x_2) = (0,.245) => OK$

Assign Section => select all elements by dragging mouse => Done => Section-1 => Done => OK

Assign Beam Section Orientation => select full model => Done => n_1 direction = 0.0,0.0,-1.0 => OK =>Done

Module: Assembly

Instance => Create => Create instances from: Parts => Part-1 => Dependent (mesh on part) => OK

Module: Step

Step => Create => Name: Step-1, Initial, Static, General => Continue => accept default settings => OK

Module: Load

Load => Create => Name: Step-1, Step: Step 1, Mechanical, Concentrated Force => Continue => select point at (3,0) and (6,-3) => Done => set CF2=-10000 => OK

Load => Create => Name: Step-1, Step: Step 1, Mechanical, Moment => Continue => select point at (3,0) => Done => set CM3= -5000 => OK

Load => Create => Name: Step-1, Step: Step 1, Mechanical, Moment => Continue => select point at (3,0) => Done => set CM3= 5000 => OK

BC => Create => Name: BC-1, Step: Step-1, Mechanical, Displacement/Rotation => Continue => select points at (0,0) and (9,-3)=> Done => U1=U2=UR3=0 => OK

Module: Mesh

Set Model: Model-1, Object => Part: Part-1

Seed => Edges => select entire beam by dragging mouse => Done => Method: By number, Bias: None, Sizing Controls, Number of elements=10 => OK => Done

Mesh => Element Type => select entire truss by dragging mouse => Done => Element Library: Standard, Geometric Order: Linear: Family: Beam, Cubic interpolation (B23)=> OK => Done

Mesh => Part => OK to mesh the part: Yes

Module: Job

Job => Create => Name: Job-1, Model: Model-1 => Continue => Job Type: Full analysis, Run Mode: Background, Submit Time: Immediately => OK

Job => Manager => Submit => Job-1

Job => Manager => Results (transfers to Visualization Module)

Module: Visualization

Viewport => Viewport Annotation Options => Legend => Text => Set Font => Size=14, Apply to: Legend, Title Block and State Block => OK => OK

View => Graphics Options => Viewport Background = Solid=> Color => White (click on black tile to change background color)

Options => Common => Labels => select 'Show node labels: Black' => OK

Plot => Deformed Shape

Ctrl-C to copy viewport to clipboard => Open MS Word Document => Ctrl-V to paste image

Result => Field Output => select S, Component: S11 => Section Points => Top and Bottom => OK

Plot=> Contours => On Deformed Shape

Report => Field Output => Variable => Position: Unique Nodal => select Spatial displacement: U2: Spatial Displacements, Rotational displacement: UR3 => OK

Report => Field Output => Variable => Position: Unique Nodal => select Stress components: S11, Section points - All => OK

Report => Field Output => Variable => Position: Unique Nodal => select Reaction Force: RF, and Reaction Moment: RM3, Section points - All => OK

Cut and paste tabulated results from 'Abaqus.rpt' file to MS Word document.

Results:

Deformed Shape (node labels turned on)

Contour plot of bending stress

Nodal displacements and rotations

Node	U.U1	U.U2	UR3
Label	@Loc 1	@Loc 1	@Loc 1
1	568.801E-42	_10_0000E_33	-23 28/13E-33
2	812.574E-15	-1.42331E-03	-591.734E-06
3	-812.576E-15	-1.42331E-03	591.734E-06
4	-568.804E-42	-10.00000E-33	23.2843E-33
5	81.2574E-15	-23.8760E-06	-155.602E-06
6	162.515E-15	-91.2183E-06	-289.775E-06
7	243.772E-15	-195.598E-06	-402.520E-06
8	325.030E-15	-330.588E-06	-493.836E-06
9	406.287E-15	-489.757E-06	-563.724E-06
10	487.544E-15	-666.679E-06	-612.183E-06
11	568.802E-15	-854.924E-06	-639.214E-06
12	650.059E-15	-1.04806E-03	-644.816E-06
13	731.317E-15	-1.23967E-03	-628.989E-06
14	-159.768E-06	-1.58308E-03	-473.387E-06
15	-284.032E-06	-1.70735E-03	-355.040E-06
16	-372.792E-06	-1.79611E-03	-236.693E-06
17	-426.048E-06	-1.84936E-03	-118.347E-06
18	-443.800E-06	-1.86712E-03	9.13088E-12
19	-426.048E-06	-1.84936E-03	118.347E-06
20	-372.792E-06	-1.79611E-03	236.693E-06
21	-284.032E-06	-1.70735E-03	355.040E-06
22	-159.768E-06	-1.58308E-03	473.387E-06
23	-731.318E-15	-1.23967E-03	628.989E-06
24	-650.061E-15	-1.04806E-03	644.816E-06
25	-568.803E-15	-854.924E-06	639.214E-06
26	-487.546E-15	-666.679E-06	612.183E-06
27	-406.288E-15	-489.757E-06	563.724E-06
28	-325.030E-15	-330.587E-06	493.836E-06
29	-243.773E-15	-195.598E-06	402.520E-06

Reaction forces and moments at nodes 1 and 4

Node Label	RF.Magnitude @Loc 1	RF.RF1 @Loc 1	RF.RF2 @Loc 1	RM3 @Loc 1
1	10.E+03	-568.802E-06	10.E+03	23.2843E+03
2	0.	0.	0.	
3	0.	0.	0.	0.
4	10.E+03	568.803E-06	10.E+03	-23.2843E+03
5	0.	0.	0.	0.