The Reachability Problem For Vector Addition Systems

Jérôme Leroux

LaBRI (CNRS and University of Bordeaux), France.

Vector Addition Systems

Definition

Vector addition system (VAS) : finite set $\mathbf{A} \subseteq \mathbb{Z}^d$.

Actions : $\mathbf{a} \in \mathbf{A}$.

$$\mathbf{A}=\{\mathbf{a}_1,\mathbf{a}_2\}$$
 with $\mathbf{a}_1=$ = $(-1,1)$ and $\mathbf{a}_2=$ = $(2,-1)$

Semantics

Definition

Configurations : $\mathbf{x} \in \mathbb{N}^d$.

Transition relation : $\mathbf{x} \stackrel{\mathbf{a}}{\to} \mathbf{y}$ if $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$, $\mathbf{a} \in \mathbf{A}$ and $\mathbf{y} = \mathbf{x} + \mathbf{a}$.

$$\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$$
 with $\mathbf{a}_1 = (-1, 1)$ and $\mathbf{a}_2 = (2, -1)$.

VAS

$$\mathbf{A} = \{(-1,1), (2,-1)\}$$

VAS with states

$$(-1,1)$$

$$(2,-1)$$

Minsky Machines without zero test

The Reachability Problem

Definition

The Reachability Problem

Definition

Reachability Problem

INPUT: **A**, a VAS

 (c_{init}, c_{final}) , a pair of configurations.

OUTPUT: $\mathbf{c}_{init} \sim \overset{*}{\sim} \mathbf{c}_{final}$?

Central Problem

- Many VAS Problems reduce to the VAS reachability:
 - ▶ Boundedness / Place boundedness.
 - Safety.
 - Reversibility.
 - Coverability.
 - **.**..
- Other problems reduce to the VAS reachability.
 - Satisifiability of some logics on data words [Bojanczyk & David & Muscholl & Schwentick & Segoufin '06 '11]
 - ► Software Model Checking [Heizmann & Hoenicke & Podelski '13]
 - **...**

• Story:

- Story:
 - EXPSPACE-hard [Lipton '76]

"Clearly, lower bounds are a bit more interesting if the problem is decidable. [...] You do what you can." [Lipton's blog, 2009]

- Story :
 - EXPSPACE-hard [Lipton '76]
 - ▶ Partial proof of decidability [Sacerdote and Tenney '77]

- Story :
 - EXPSPACE-hard [Lipton '76]
 - ▶ Partial proof of decidability [Sacerdote and Tenney '77]
 - Decidable [Mayr '81 '84]

- Story :
 - EXPSPACE-hard [Lipton '76]
 - Partial proof of decidability [Sacerdote and Tenney '77]
 - ▶ Decidable [Mayr '81 '84]
 - Simplified proof [Kosaraju '82]

- Story :
 - EXPSPACE-hard [Lipton '76]
 - Partial proof of decidability [Sacerdote and Tenney '77]
 - ▶ Decidable [Mayr '81 '84]
 - Simplified proof [Kosaraju '82]
 - ► A book [Reutenauer '90]

114 pages on the reachability problem, based on the Kosaraju paper.

- Story :
 - EXPSPACE-hard [Lipton '76]
 - Partial proof of decidability [Sacerdote and Tenney '77]
 - ► Decidable [Mayr '81 '84]
 - Simplified proof [Kosaraju '82]
 - A book [Reutenauer '90]
 - Simplified proof [Lambert '92]

- Story :
 - EXPSPACE-hard [Lipton '76]
 - Partial proof of decidability [Sacerdote and Tenney '77]
 - ► Decidable [Mayr '81 '84]
 - Simplified proof [Kosaraju '82]
 - A book [Reutenauer '90]
 - Simplified proof [Lambert '92]
 - Simple algorithm [Leroux '09 '10]

Story :

- EXPSPACE-hard [Lipton '76]
- Partial proof of decidability [Sacerdote and Tenney '77]
- ▶ Decidable [Mayr '81 '84]
- Simplified proof [Kosaraju '82]
- A book [Reutenauer '90]
- Simplified proof [Lambert '92]
- Simple algorithm [Leroux '09 '10]
- Simplified proof [Leroux '11 '12]

- Story :
 - EXPSPACE-hard [Lipton '76]
 - Partial proof of decidability [Sacerdote and Tenney '77]
 - ▶ Decidable [Mayr '81 '84]
 - Simplified proof [Kosaraju '82]
 - ► A book [Reutenauer '90]
 - Simplified proof [Lambert '92]
 - Simple algorithm [Leroux '09 '10]
 - ► Simplified proof [Leroux '11 '12]

- Open problems:
 - Complexity gap.
 - Efficient algorithms.

Variants

Two variants are EXPSPACE-complete:

Reversibility Leroux '11

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

$$\mathbf{A} = \{ \begin{array}{c} \\ \end{array}, \begin{array}{c} \\ \end{array} \}$$

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

$$\mathbf{A} = \{ \begin{array}{c} \\ \end{array}, \begin{array}{c} \\ \end{array} \}$$

Example

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

 $\mathbf{c}_{\mathsf{final}}$ is reachable from $\mathbf{c}_{\mathsf{init}}$.

$$\rho = (0,2) (1,3) (2,4) (3,5) (4,6) (3,4) (2,2) (1,0)$$

Example

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

 $\mathbf{c}_{\mathsf{final}}$ is reachable from $\mathbf{c}_{\mathsf{init}}$.

$$\rho = (0,2) (1,3) (2,4) (3,5) (4,6) (3,4) (2,2) (1,0)$$

Definition

A run is a non-empty word $\rho = \mathbf{c}_0 \dots \mathbf{c}_k$ over \mathbb{N}^d such that:

$$\forall 1 \leq j \leq k \ \mathbf{c}_i - \mathbf{c}_{i-1} \in \mathbf{A}$$

Unreachable Case

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

Unreachable Case

Example

$$\mathbf{A} = \{ \checkmark, \checkmark \}$$

 c_{final} is $\underline{\text{not}}$ in reachable from $c_{\text{init}}.$

Unreachable Case

Example

$$\mathbf{A} = \{ \mathbf{A}, \mathbf{A} \}$$

 $\mathbf{c}_{\text{final}}$ is $\underline{\text{not}}$ in reachable from \mathbf{c}_{init} .

Definition

Inductive invariant : $\mathbf{X} \subseteq \mathbb{N}^d$ such that:

$$x \in X \quad \wedge \quad x \xrightarrow{a} y \quad \Rightarrow \quad y \in X$$

Semilinear Sets

Definition (Ginsburg & Spanier '66)

Linear set : $\mathbf{b} + \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_m$ with $\mathbf{b}, \mathbf{p}_1, \dots, \mathbf{p}_m \in \mathbb{N}^d$.

Semilinear set: finite union of linear sets.

$$(1,1) + \mathbb{N}(1,1) + \mathbb{N}(2,0)$$

Witness of Unreachability

Theorem (Leroux '09 '10 '11 '12)

If \mathbf{c}_{final} is not reachable from \mathbf{c}_{init} there exists a semilinear inductive invariant \mathbf{X} such that $\mathbf{c}_{init} \in \mathbf{X}$ and $\mathbf{c}_{final} \notin \mathbf{X}$.

Simple Algorithm

```
\frac{\mathsf{Reachability} \; \mathsf{Algorithm}}{\mathsf{In} \; //:}
```

```
Enumerate reachable configurations \mathbf{c} from \mathbf{c}_{\mathsf{init}} if \mathbf{c} = \mathbf{c}_{\mathsf{final}} return "reachable" Enumerate semilinear sets \mathbf{X} if \mathbf{X} is an inductive invariant, \mathbf{c}_{\mathsf{init}} \in \mathbf{X}, and \mathbf{c}_{\mathsf{final}} \not \in \mathbf{X} return "unreachable"
```

Table of Contents

- Introduction
- 2 Computing Reachability Sets
- 3 Almost Semilinear Sets
- Decomposing Reachability Sets
- 5 Transformer Relations are Asymptotically Definable
- **6** Semilinear Separators
- Conclusion

Table of Contents

- Introduction
- Computing Reachability Sets
- 3 Almost Semilinear Sets
- 4 Decomposing Reachability Sets
- 5 Transformer Relations are Asymptotically Definable
- 6 Semilinear Separators
- Conclusion

Reachability Sets

Definition

Reachability set from
$$\mathbf{c}_{init} = \left\{ \mathbf{c} \middle| \mathbf{c}_{init} \overset{*}{\sim} \mathbf{c} \right\}$$

Reachability set from \mathbf{c}_{init}

Most precise inductive invariant containing c_{init} .

Monotonicity

Lemma (Monotonicity)

For any configuration **c**:

$$\boldsymbol{x} \xrightarrow{\boldsymbol{a}} \boldsymbol{y}$$

$$\Rightarrow y = x + a$$

$$\Rightarrow$$
 $(y + c) = (x + c) + a$

$$\Rightarrow + \xrightarrow{a} +$$

 $(1,0) \xrightarrow{\mathbf{a}_1} (0,1) \xrightarrow{\mathbf{a}_2} (2,0)$

$$\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$$
 with $\mathbf{a}_1 = (-1, 1)$ and $\mathbf{a}_2 = (2, -1)$. $\mathbf{c}_{\mathsf{init}} = (1, 0)$.

$$\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$$
 with $\mathbf{a}_1 = (-1, 1)$ and $\mathbf{a}_2 = (2, -1)$. $\mathbf{c}_{\mathsf{init}} = (1, 0)$.

$$(1,0) \xrightarrow{\mathbf{a}_1} (0,1) \xrightarrow{\mathbf{a}_2} (2,0)$$

By monotonicity $\forall n \geq 0$:

$$(n+1,0) = {1,0} + {\mathbf{a_1 a_2} \atop (n,0)} + {(2,0) \atop (n,0)} = (n+2,0)$$

$$\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$$
 with $\mathbf{a}_1 = (-1, 1)$ and $\mathbf{a}_2 = (2, -1)$. $\mathbf{c}_{\mathsf{init}} = (1, 0)$.

$$(1,0) \xrightarrow{\mathbf{a}_1} (0,1) \xrightarrow{\mathbf{a}_2} (2,0)$$

By monotonicity $\forall n \geq 0$:

$$(n+1,0) = {1,0} + {\mathbf{a_1 a_2} \atop (n,0)} + {(2,0) \atop (n,0)} = (n+2,0)$$

By induction $\forall n \geq 0$:

$$(1,0)$$
 $(a_1a_2)^n$ $(n+1,0)$.

$$\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$$
 with $\mathbf{a}_1 = (-1, 1)$ and $\mathbf{a}_2 = (2, -1)$. $\mathbf{c}_{\mathsf{init}} = (1, 0)$.

$$(1,0) \xrightarrow{\mathbf{a}_1} (0,1) \xrightarrow{\mathbf{a}_2} (2,0)$$

By monotonicity $\forall n \geq 0$:

$$(n+1,0) = {1,0} + {\mathbf{a_1 a_2}} + {(2,0)} + (n,0)$$

By induction $\forall n \geq 0$:

$$(1,0)$$
 $(a_1a_2)^n$ $(n+1,0)$.

$$c_{\text{init}} \overset{(a_1 a_2)^*}{\longleftrightarrow} c \iff$$

$$\mathbf{c} \in (1,0) + \mathbb{N}(1,0)$$

$$\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2\}$$
 with $\mathbf{a}_1 = (-1, 1)$ and $\mathbf{a}_2 = (2, -1)$. $\mathbf{c}_{\mathsf{init}} = (1, 0)$.

$$(1,0) \xrightarrow{\mathbf{a}_1} (0,1) \xrightarrow{\mathbf{a}_2} (2,0)$$

By monotonicity $\forall n \geq 0$:

$$(n+1,0) = {1,0} + {\mathbf{a}_1 \mathbf{a}_2} + {(2,0)} + (n,0)$$

By induction $\forall n \geq 0$:

$$(1,0)$$
 $(a_1a_2)^n$ $(n+1,0)$.

Flat Initialized VAS

Definition (Flat Initialized VAS)

A VAS **A** equipped with an initial configuration c_{init} such that:

Reachability set from
$$\mathbf{c}_{\mathsf{init}} = \left\{ \mathbf{c} \middle| \mathbf{c}_{\mathsf{init}} & \overset{\sigma_1^* \dots \sigma_k^*}{\leadsto} \mathbf{c} \right\}$$

for some $\sigma_1, \ldots, \sigma_k \in \mathbf{A}^*$.

Acceleration

Acceleration Algorithm:

$$\mathbf{C} \leftarrow \left\{ \mathbf{c}' \mid \exists \mathbf{c} \in \mathbf{C} \ \mathbf{c} \ \checkmark \checkmark \checkmark \checkmark \mathbf{c}' \right\}$$

return **C**

Remarks:

- Sets are effectively semilinear.
- Tools exist: FAST, LASH, TREX, ...
- When the algorithm terminates, it returns the reachability set from
 C_{init}.

Presburger Sets

Definition

A Presburger set is a set $\mathbf{X} \subseteq \mathbb{N}^d$ definable in $\mathsf{FO}(\mathbb{N},+,\leq,0,1)$.

Example

$$(1,1) + \mathbb{N}(1,1) + \mathbb{N}(2,0)$$

Denoted by:

$$\phi(x,y) := \exists n_1 \exists n_2 \ x = 1 + n_1 + 2n_2 \land y = 1 + n_1$$

Presburger Sets = Semilinear Sets

Theorem (Ginsburg & Spanier '66)

Presburger sets = semilinear sets

Corollary

Semilinear sets are closed under union, intersection, complement, projection of components, ...

Minimal Configuration for Executing Words

$$\sigma = \mathbf{a}_1 \dots \mathbf{a}_k$$
:

$$\exists \mathbf{y} \in \mathbb{N}^d \quad \mathbf{x} \quad \stackrel{\sigma}{\longleftrightarrow} \quad \mathbf{y}$$
 $\Leftrightarrow \qquad \qquad \Leftrightarrow$
 $0 \le p \le k \quad \mathbf{x} + \sum_{j=1}^p \mathbf{a}_j \ge \mathbf{0}$
 $\Leftrightarrow \qquad \qquad \mathbf{x} \ge \mathbf{c}_{\sigma}$

where
$$\mathbf{c}_{\sigma}(i) = \max_{0 \leq p \leq k} - \sum_{i=1}^{p} \mathbf{a}_{i}(i)$$
.

Transitive Closure with Presburger Arithmetic

Theorem (Fribourg '00)

Transitive Closure with Presburger Arithmetic

Theorem (Fribourg '00)

$$\sim \stackrel{\sigma^*}{\leadsto}$$
 is effectively Presburger.

$$\sigma = \mathbf{a}_1 \dots \mathbf{a}_k$$
:

$$\mathbf{x} \xrightarrow{\sigma^n} \mathbf{y}$$
 \iff
 $\mathbf{x} + n \sum_{j=1}^k \mathbf{a}_j = \mathbf{y} \text{ and } \forall 0 \leq m < n \ \mathbf{x} + m (\sum_{j=1}^k \mathbf{a}_j) \geq \mathbf{c}_{\sigma}$

Acceleration Algorithm

Acceleration Algorithm:

return C

$$\begin{aligned} \mathbf{C} &\leftarrow \{\mathbf{c}_{\mathsf{init}}\} \\ \mathsf{while} \ \mathbf{C} \ \mathsf{is} \ \mathsf{not} \ \mathsf{inductive} \\ \mathsf{select} \ \mathsf{word} \ \sigma \\ \mathbf{C} &\leftarrow \left\{\mathbf{c'} \ \middle| \ \exists \mathbf{c} \in \mathbf{C} \ \ \mathbf{c} \ \ & \mathbf{c'} \right\} \end{aligned}$$

- In theory: terminate on flat initialized VAS if all the finite sequences of words in \mathbf{A}^* are subsequences of the infinite sequence $\sigma_1, \sigma_2, \ldots$ of selected words.
- In practice : find good heuristics.

Flat Counter Systems Almost Everywhere!

Theorem (Finkel & Leroux '02, Leroux & Sutre '05)

Reachability sets of flat Initialized VAS are effectively semilinear.

"Many known semilinear subclasses of counter automata are flat: reversal bounded counter machines, lossy vector addition systems with states, reversible Petri nets, persistent and conflict-free Petri nets, etc."

[Leroux & Sutre, ATVA 2005]

Theorem (Leroux '13)

An initialized VAS is flat if, and only if, its reachability set is semilinear.

Application:

- Completeness of acceleration techniques.
- Reachability semilinear ⇒ effectively semilinear.

Application: Distance Of Reachability

Corollary

For any flat initialized VAS < **A**, $\mathbf{c}_{init}>$ there exists a constant m such that for every reachable configurations \mathbf{c} from \mathbf{c}_{init} , there exists:

$$c_{init} \sim \sim \sim c$$

with
$$|\sigma| \leq m.||\mathbf{c} - \mathbf{c}_{init}||_{\infty}$$

Application: Distance Of Reachability

Corollary

For any flat initialized VAS < **A**, $\mathbf{c}_{init}>$ there exists a constant m such that for every reachable configurations \mathbf{c} from \mathbf{c}_{init} , there exists:

$$c_{init} \sim \sim \sim c$$

with
$$|\sigma| \leq m.||\mathbf{c} - \mathbf{c}_{init}||_{\infty}$$

There exists $\sigma_1, \ldots, \sigma_k \in \mathbf{A}^*$ such that:

Reachability set from
$$\mathbf{c}_{\mathsf{init}} = \left\{ \mathbf{c} \middle| \mathbf{c}_{\mathsf{init}} & \overset{\sigma_1^* \dots \sigma_k^*}{\leadsto} \mathbf{c} \right\}$$

The Hopcroft-Pansiot 1979 Example

The Hopcroft-Pansiot 1979 Example

$$\mathbf{a}_2 = (0,0,0)$$
 $\mathbf{a}_1 = (-1,1,0)$
 $\mathbf{a}_1 = (0,0,1)$

The Hopcroft-Pansiot 1979 Example

$$\mathbf{a}_2 = (0,0,0)$$
 $\mathbf{a}_1 = (-1,1,0)$
 $\mathbf{a}_1 = (0,0,1)$

Configurations reachable from (1,0,0)

$$\{(x, y, z) \in \mathbb{N}^3 \mid 1 \le x + y \le 2^z\}$$

There exist initialized VAS with non semilinear reachability sets:

- Semilinear inductive invariant proving that c_{final} is not reachable from c_{init} depends on c_{init} and c_{final}.
- Semilinear inductive invariant cannot be as precise as reachability sets.

Equality of Reachability Sets

Definition (Equivalence Problem)

INPUT : Two initialized VAS < $\mathbf{A}_1, \mathbf{c}_1 >$ and < $\mathbf{A}_2, \mathbf{c}_2 >$.

OUTPUT: Decide the equality of the reachability sets.

Equality of Reachability Sets

Definition (Equivalence Problem)

INPUT : Two initialized VAS < $\mathbf{A}_1, \mathbf{c}_1 >$ and < $\mathbf{A}_2, \mathbf{c}_2 >$.

OUTPUT: Decide the equality of the reachability sets.

Theorem (Hack 1976)

The equivalence problem is undecidable.

- No decidable logic for denoting reachability sets.
- Inductive invariant in decidable logics cannot be as precise as reachability sets.

Table of Contents

- Introduction
- 2 Computing Reachability Sets
- 3 Almost Semilinear Sets
- 4 Decomposing Reachability Sets
- 5 Transformer Relations are Asymptotically Definable
- **6** Semilinear Separators
- Conclusion

From Linear Sets To Periodic Sets

From Linear Sets To Periodic Sets

The linear set
$$(1,1) + \underbrace{\mathbb{N}(1,1) + \mathbb{N}(2,0)}_{\text{Periodic Set}}$$

Definition (Periodic Sets)

Sets $\mathbf{P} \subseteq \mathbb{N}^d$ such that:

- $\mathbf{0} \in \mathbf{P}$
- \bullet $P + P \subseteq P$

where $X + Y = \{x + y \mid (x, y) \in X \times Y\}.$

Finitely Generated Periodic Sets

Definition

A Periodic set **P** is said finitely-generated if $\mathbf{P} = \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_k$ for some $\mathbf{p}_1, \dots, \mathbf{p}_k$.

Example

Linear sets are decomposed as $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{N}^d$ and $\mathbf{P} \subseteq \mathbb{N}^d$ is a finitely generated periodic set.

Additive Logic over the non Negative Rational Numbers

Set definable in $FO(\mathbb{Q}_{>0},+,\leq,0)$:

$$\{(x,y)\in\mathbb{Q}^2_{\geq 0}\mid \ x\leq y\ \lor\ y=x+x\}$$

Quantifier Elimination

Theorem

The logic $FO(\mathbb{Q}_{\geq 0},+,\leq,0)$ admits a quantifier elimination algorithm.

Quantifier Elimination

Theorem

The logic $FO(\mathbb{Q}_{\geq 0},+,\leq,0)$ admits a quantifier elimination algorithm.

 \Rightarrow

Sets definable in $FO(\mathbb{Q}_{\geq 0},+,\leq,0)$ are Boolean combinations of:

$$\{(x_1,\ldots,x_d)\in\mathbb{Q}^d_{\geq 0}\mid h_1x_1+\cdots+h_dx_d\leq 0\}$$

where $h_1, \ldots, h_d \in \mathbb{Z}$.

Asymptotically Definable Periodic Sets

Definition

A periodic set **P** is said to be <u>asymptotically definable</u> if

$$\mathbb{Q}_{\geq 0}\textbf{P} = \{\lambda\textbf{p} \mid (\lambda,\textbf{p}) \in \mathbb{Q}_{\geq 0} \times \textbf{P}\}$$

is <u>definable</u> in $FO(\mathbb{Q}_{\geq 0}, +, \leq, 0)$.

Example

$$\mathbb{Q}_{\geq 0}\mathbf{P} = \mathbb{Q}_{\geq 0}(1,1) + \mathbb{Q}_{\geq 0}(2,0)$$

Examples

Lemma

 $\mathbf{P} = \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_k$ is an asymptotically definable periodic set for any $\mathbf{p}_1, \dots, \mathbf{p}_k \in \mathbb{N}^d$.

$$\mathbb{Q}_{\geq 0}\mathbf{P} = \mathbb{Q}_{\geq 0}\mathbf{p}_1 + \cdots + \mathbb{Q}_{\geq 0}\mathbf{p}_k$$
 is denoted by:

$$\phi(x_1,\ldots,x_d) := \exists \lambda_1\ldots\exists \lambda_k \bigwedge_{i=1}^d x_i = \lambda_1\mathbf{p}_1(i) + \cdots + \lambda_k\mathbf{p}_k(i)$$

Another Example

Another Example

Back to the Hopcroft-Pansiot 1979 Example

Configurations reachable from (1,0,0)

$$\{(x,y,z) \in \mathbb{N}^3 \mid 1 \le x + y \le 2^z\}$$

Back to the Hopcroft-Pansiot 1979 Example

Configurations reachable from (1,0,0)

$$\{(x, y, z) \in \mathbb{N}^3 \mid 1 \le x + y \le 2^z\}$$

= \{(1, 0, 0), (0, 1, 0)\} + \{(x, y, z) \in \mathbb{N}^3 \primes x + y \le 2^z - 1\}

Almost Semilinear Sets

Definition

An <u>almost linear set</u> is a set of the form $\mathbf{b} + \mathbf{P}$ where:

- ullet $\mathbf{b} \in \mathbb{N}^d$, and
- ullet $\mathbf{P}\subseteq\mathbb{N}^d$ is an asymptotically definable periodic set.

An <u>almost semilinear set</u> is a finite union of almost linear sets.

Example

Linear sets $\mathbf{b} + \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_k$ are almost linear.

Semilinear sets are almost semilinear.

The reachability set of the Hopcroft-Pansiot example is almost semilinear.

In fact, it is not specific to the Hopcroft-Pansiot example!

Limits

Definition

The <u>limit</u> of a periodic set $\mathbf{P} \subseteq \mathbb{N}^d$:

$$\lim(\mathbf{P}) = \{ \mathbf{v} \in \mathbb{N}^d \mid \exists n \in \mathbb{N} \ (n + \mathbb{N})\mathbf{v} \subseteq \mathbf{P} \}$$

Example

$$\textbf{P}=\mathbb{N}(1,1)+\mathbb{N}(3,0)+\mathbb{N}(5,0)$$

Another Example

Another Example

Over-approximation

Lemma

For every periodic set P:

$$\mathbf{P}\subseteq \mathsf{lim}(\mathbf{P})$$

Proof:

 $\mathbb{N} p \subseteq P$ for every $p \in P$.

Semilinear Characterization

Theorem

 ${\bf P}$ is asymptotically definable if, and only if, $\lim({\bf P})$ is semilinear.

Proof by induction over the dimension.

Simple way for approximating asymptotically definable periodic sets by semilinear sets.

Definition

A <u>linearization</u> of an almost semilinear set $\bigcup_{j=1}^k \mathbf{L}_j$ where $\mathbf{L}_j = \mathbf{b}_j + \mathbf{P}_j$ and \mathbf{P}_j is an asymptotically definable periodic set is the semilinear set:

$$\bigcup_{j=1}^k \mathbf{b}_j + \lim(\mathbf{P}_j)$$

Definition

A <u>linearization</u> of an almost semilinear set $\bigcup_{j=1}^k \mathbf{L}_j$ where $\mathbf{L}_j = \mathbf{b}_j + \mathbf{P}_j$ and \mathbf{P}_j is an asymptotically definable periodic set is the semilinear set:

$$\bigcup_{j=1}^k \mathbf{b}_j + \lim(\mathbf{P}_j)$$

Definition

A <u>linearization</u> of an almost semilinear set $\bigcup_{j=1}^k \mathbf{L}_j$ where $\mathbf{L}_j = \mathbf{b}_j + \mathbf{P}_j$ and \mathbf{P}_j is an asymptotically definable periodic set is the semilinear set:

$$\bigcup_{j=1}^k \mathbf{b}_j + \lim(\mathbf{P}_j)$$

Definition

A <u>linearization</u> of an almost semilinear set $\bigcup_{j=1}^k \mathbf{L}_j$ where $\mathbf{L}_j = \mathbf{b}_j + \mathbf{P}_j$ and \mathbf{P}_j is an asymptotically definable periodic set is the semilinear set:

$$\bigcup_{j=1}^k \mathbf{b}_j + \lim(\mathbf{P}_j)$$

Definition

A <u>linearization</u> of an almost semilinear set $\bigcup_{j=1}^k \mathbf{L}_j$ where $\mathbf{L}_j = \mathbf{b}_j + \mathbf{P}_j$ and \mathbf{P}_j is an asymptotically definable periodic set is the semilinear set:

$$\bigcup_{j=1}^k \mathbf{b}_j + \lim(\mathbf{P}_j)$$

Definition

A <u>linearization</u> of an almost semilinear set $\bigcup_{j=1}^k \mathbf{L}_j$ where $\mathbf{L}_j = \mathbf{b}_j + \mathbf{P}_j$ and \mathbf{P}_j is an asymptotically definable periodic set is the semilinear set:

$$\bigcup_{j=1}^k \mathbf{b}_j + \lim(\mathbf{P}_j)$$

A Simple Observation

Let **S**, **T** be linearizations of almost semilinear sets **X**, **Y** such that:

$$\mathbf{X} \cap \mathbf{Y} = \emptyset$$

In general:

$$\textbf{S}\cap\textbf{T}\neq\emptyset$$

Dimension

Definition

The <u>dimension</u> dim(**X**) of a set **X** $\subseteq \mathbb{N}^d$ is the minimal integer $r \in \{-1, ..., d\}$ such that:

$$\sup_{k\in\mathbb{N}}\frac{|\mathbf{X}\cap\{0,\ldots,k\}^d|}{(k+1)^r}<\infty$$

Example

$$\begin{aligned} &\dim(\emptyset) = -1 \\ &\dim(\mathbb{N}) = 1 \\ &\dim(\{(0,1),(1,0)\}) = 0 \\ &\dim(\{(x,y) \in \mathbb{N}^2 \mid x \le y\}) = 2 \end{aligned}$$

Preciseness

Lemma

Let S, T be linearizations of non-empty almost semilinear sets X, Y with an empty intersection. We have:

$$\dim(\boldsymbol{S}\cap\boldsymbol{T})<\dim(\boldsymbol{X}\cup\boldsymbol{Y})$$

Example

Table of Contents

- Introduction
- 2 Computing Reachability Sets
- Almost Semilinear Sets
- Decomposing Reachability Sets
- 5 Transformer Relations are Asymptotically Definable
- **6** Semilinear Separators
- Conclusion

Back to the Hopcroft-Pansiot 1979 Example

Configurations reachable from (1,0,0)

$$\{(x, y, z) \in \mathbb{N}^3 \mid 1 \le x + y \le 2^z\}$$

= \{(1, 0, 0), (0, 1, 0)\} + \{(x, y, z) \in \mathbb{N}^3 \primes x + y \le 2^z - 1\}

Well Partial Orders

Definition

A partial order \sqsubseteq over a set S is said to be <u>well</u> if for every sequence $(s_n)_{n\in\mathbb{N}}$ of elements $s_n\in S$ there exists i< j such that $s_i\sqsubseteq s_j$.

Example

 (\mathbb{Z}, \leq) is not well, e.g., $0, -1, -2, \ldots$

Example (Pigeon Hole Principle)

(S, =) is well if and only if S is finite.

Example

 (\mathbb{N}, \leq) is well.

Minimal Elements

Definition

 (S, \sqsubseteq) : a partially ordered set.

$$\min_{\sqsubseteq}(S) = \{e \in S \mid \forall s \in S \ s \sqsubseteq e \Rightarrow s = e\}$$

Example

$$\mathbf{S} = \{(1,2), (1,3), (2,1)\}.$$

$$\min_{<}(\mathbf{S}) = \{(1,2), (2,1)\}.$$

Lemma

For every well partially ordered set (S, \sqsubseteq) :

- $E = \min_{\square}(S)$ is finite, and
- for any $s \in S$, there exists $e \in E$ such that $e \sqsubseteq s$.

Dickson's Lemma

Definition

 (S_1,\sqsubseteq_1) and (S_2,\sqsubseteq_2) : partially ordered sets.

 $S_1 \times S_2$ is partially ordered by $\sqsubseteq_1 \times \sqsubseteq_2$ defined by:

$$(s_1,s_2)$$
 $(\sqsubseteq_1 \times \sqsubseteq_2)$ (t_1,t_2) if $s_1 \sqsubseteq_1 t_1$ and $s_2 \sqsubseteq_2 t_2$

Lemma (Dickson's Lemma)

 $(S_1 \times S_2, \sqsubseteq_1 \times \sqsubseteq_2)$ is well if (S_1, \sqsubseteq_1) and (S_2, \sqsubseteq_2) are well.

Example

 (\mathbb{N}^d, \leq) is well.

Definition

P: Periodic set.

$$p \leq_P q \quad \text{if} \quad q \in p + P$$

Lemma

 (P, \leq_P) is well if, and only if, P is finitely-generated.

Definition

P: Periodic set.

$$\textbf{p} \leq_{\textbf{P}} \textbf{q} \quad \text{if} \quad \textbf{q} \in \textbf{p} + \textbf{P}$$

Lemma

 $(\mathbf{P}, \leq_{\mathbf{P}})$ is well if, and only if, \mathbf{P} is finitely-generated.

- (⇒):
- $(\mathbf{P}, \leq_{\mathbf{P}})$ is well
- $\Rightarrow \min_{\leq_{\mathbf{P}}}(\mathbf{P}\setminus\{\mathbf{0}\})$ is a finite set $\{\mathbf{p}_1,\ldots,\mathbf{p}_k\}$.
- $\Rightarrow \mathbf{P} = \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_k.$

Definition

P: Periodic set.

$$p \leq_P q \quad \text{if} \quad q \in p + P$$

Lemma

 $(\mathbf{P}, \leq_{\mathbf{P}})$ is well if, and only if, **P** is finitely-generated.

```
(\Rightarrow):
```

$$(\mathbf{P}, \leq_{\mathbf{P}})$$
 is well

$$\Rightarrow \min_{\leq_{\mathbf{P}}}(\mathbf{P}\setminus\{\mathbf{0}\})$$
 is a finite set $\{\mathbf{p}_1,\ldots,\mathbf{p}_k\}$.

$$\Rightarrow \mathbf{P} = \mathbb{N}\mathbf{p}_1 + \cdots + \mathbb{N}\mathbf{p}_k.$$

$$(\Leftarrow)$$
: (\mathbb{N}^k, \leq) well.

$$\Rightarrow$$
 (**P**, \leq **P**) well.

An application: The Boundedness Problem

Boundedness problem

INPUT : An initialized VAS $(\mathbf{A}, \mathbf{c}_{init})$.

 \mbox{OUTPUT} : The reachability set from $\boldsymbol{c}_{\mbox{\scriptsize init}}$ is finite.

Theorem (Karp & Miller '69)

The boundedness problem is decidable.

Proof.

Unbounded iff there exists $\mathbf{x} < \mathbf{y}$ and $u, v \in \mathbf{A}^*$ such that:

$$c_{init} \sim \sim \sim x \sim \sim y$$

Higman's Lemma

Definition

 (S, \sqsubseteq) : a partially ordered set. (S^*, \sqsubseteq^*) is defined by $u \sqsubseteq^* v$ if:

$$v = w_0 \quad t_1 \quad w_1 \quad \dots \quad t_d \quad w_d$$
 $u = s_1 \quad \dots \quad s_d$

where:

- $s_1, t_1, \dots, s_d, t_d \in S$, and
- $w_0, \ldots, w_d \in S^*$.

Lemma (Higman's Lemma)

 (S^*, \sqsubseteq^*) is well if (S, \sqsubseteq) is well.

Example

With $({a, b, c, d, r}, =)$:

baba = *abracadabra

Example

With (\mathbb{N}, \leq) :

 $1\ 3\ 7 \leq^* 0\ 2\ 2\ 2\ 3\ 5\ 8\ 2\ 4$

Relation On Runs

Remember:

Definition

A run is a non-empty word $\rho = \mathbf{c}_0 \dots \mathbf{c}_k$ over \mathbb{N}^d such that:

$$orall 1 \leq j \leq k \ \mathbf{a}_j = \mathbf{c}_j - \mathbf{c}_{j-1} \in \mathbf{A}$$

 $\operatorname{src}(\rho) = \mathbf{c}_0 \text{ and } \operatorname{tgt}(\rho) = \mathbf{c}_k.$

$$\rho = \mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \xrightarrow{\mathbf{a}_2}$$

$$\xrightarrow{\mathbf{a}_k} \mathbf{c}_k$$

Relation On Runs

Remember:

Definition

A run is a non-empty word $\rho = \mathbf{c}_0 \dots \mathbf{c}_k$ over \mathbb{N}^d such that:

$$\forall 1 \leq j \leq k \ \mathbf{a}_j = \mathbf{c}_j - \mathbf{c}_{j-1} \in \mathbf{A}$$

 $\operatorname{src}(\rho) = \mathbf{c}_0 \text{ and } \operatorname{tgt}(\rho) = \mathbf{c}_k.$

$$(1,0)(2,1) \le (3,3)(2,1)(3,2)(2,0)(3,1)$$

Definition (Transformer Relations for Configurations c)

$$x \stackrel{c}{\smallfrown} y$$
 if $\stackrel{x}{+} \stackrel{*}{\swarrow} \stackrel{y}{\longleftrightarrow} \stackrel{y}{\leftarrow} \stackrel{t}{\leftarrow} \stackrel{t$

Important Observation

Definition

$$\rho = \mathbf{c}_0 \dots \mathbf{c}_k$$

$$\stackrel{\rho}{\curvearrowright} \quad = \quad \stackrel{\mathbf{c}_0}{\curvearrowright} \circ \cdots \circ \stackrel{\mathbf{c}_k}{\curvearrowright}$$

Lemma

$$\rho \unlhd \rho' \quad \Rightarrow \quad \left(\operatorname{src}(\rho') - \operatorname{src}(\rho)\right) \overset{\rho}{\curvearrowright} \left(\operatorname{tgt}(\rho') - \operatorname{tgt}(\rho)\right)$$

Well Partial Order On Runs

Theorem (Jančar '90)

⊴ is a well partial order.

Proof (Leroux '11 '12).

 $\mathbf{A} imes \mathbb{N}^d$ is partially ordered by $(\mathbf{a}, \mathbf{x}) \sqsubseteq (\mathbf{b}, \mathbf{y})$ if $\mathbf{a} = \mathbf{b}$ and $\mathbf{x} \leq \mathbf{y}$.

$$\alpha(\mathbf{c}_0 \xrightarrow{\mathbf{a}_1} \mathbf{c}_1 \dots \xrightarrow{\mathbf{a}_k} \mathbf{c}_k) = (\mathbf{a}_1, \mathbf{c}_1) \dots (\mathbf{a}_k, \mathbf{c}_k)$$

We observe:

$$\rho \unlhd \rho' \quad \Longleftrightarrow \quad \operatorname{src}(\rho) \leq \operatorname{src}(\rho') \ \land \ \operatorname{tgt}(\rho) \leq \operatorname{tgt}(\rho') \ \land \ \alpha(\rho) \sqsubseteq^* \alpha(\rho')$$

Decomposing Reachability Sets

 $\mathbf{X}, \mathbf{Y} \subseteq \mathbb{N}^d$ semilinear sets.

$$\bigcup_{x \in X} \left\{ y \in Y \mid x \quad \text{\star} \quad y \right\}$$

Decomposing Reachability Sets

$$\mathbf{X},\mathbf{Y}\subseteq\mathbb{N}^d$$
 settingly setts $\mathbf{X}=\mathbf{x}+\mathbf{P}$ and $\mathbf{Y}=\mathbf{y}+\mathbf{Q}$.

$$\bigcup_{\mathbf{x}\in\mathbf{X}}\left\{\mathbf{y}\in\mathbf{Y}\ \middle|\ \mathbf{x}\ \leftrightsquigarrow\ \mathbf{y}\right\}$$

$$\mathbf{X},\mathbf{Y}\subseteq\mathbb{N}^d$$
 \$\ship\div{\psi}

$$\bigcup_{\mathbf{x} \in \mathbf{X}} \left\{ \mathbf{y} \in \mathbf{Y} \mid \mathbf{x} \quad \mathbf{x} \quad \mathbf{y} \right\}$$

$$= \bigcup_{\rho \in \Omega} \operatorname{tgt}(\rho)$$

where:

ullet Ω set of runs from ${f X}$ to ${f Y}$

$$\begin{split} & \bigcup_{\mathbf{x} \in \mathbf{X}} \left\{ \mathbf{y} \in \mathbf{Y} \ \middle| \ \mathbf{x} \quad & \overset{*}{\sim} \overset{*}{\sim} \quad \mathbf{y} \right\} \\ & = \bigcup_{\rho \in \min} \underset{\mathbf{p} \in \mathbf{M}}{\mathsf{tgt}}(\rho) \\ & = \bigcup_{\rho \in \min} \{ \mathsf{tgt}(\rho') \mid \rho' \in \Omega \ \land \ \rho \unlhd_{\mathbf{P} \times \mathbf{Q}} \rho' \} \end{split}$$

where:

- Ω set of runs from ${\bf X}$ to ${\bf Y}$
- $\rho \leq_{\mathbf{P} \times \mathbf{Q}} \rho'$ if $\rho \leq \rho' \wedge \operatorname{src}(\rho') \in \operatorname{src}(\rho) + \mathbf{P} \wedge \operatorname{tgt}(\rho') \in \operatorname{tgt}(\rho) + \mathbf{Q}$

$$\begin{split} & \bigcup_{\mathbf{x} \in \mathbf{X}} \left\{ \mathbf{y} \in \mathbf{Y} \ \middle| \ \mathbf{x} \quad \overset{*}{\sim} \overset{*}{\sim} \mathbf{y} \right\} \\ &= \bigcup_{\rho \in \min_{\mathbf{y} \in \mathbf{Y} \setminus \mathbf{Q}}} \operatorname{tgt}(\rho) \\ &= \bigcup_{\rho \in \min_{\mathbf{y} \in \mathbf{Q}} (\Omega)} \left\{ \operatorname{tgt}(\rho') \mid \rho' \in \Omega \ \land \ \rho \unlhd_{\mathbf{P} \times \mathbf{Q}} \rho' \right\} \\ &= \bigcup_{\rho \in \min_{\mathbf{y} \in \mathbf{Q}} (\Omega)} \operatorname{tgt}(\rho) + \left\{ \operatorname{tgt}(\rho') - \operatorname{tgt}(\rho) \mid \rho' \in \Omega \ \land \ \rho \unlhd_{\mathbf{P} \times \mathbf{Q}} \rho' \right\} \end{split}$$

where:

- Ω set of runs from ${\bf X}$ to ${\bf Y}$
- $\rho \leq_{\mathbf{P} \times \mathbf{Q}} \rho'$ if $\rho \leq \rho' \wedge \operatorname{src}(\rho') \in \operatorname{src}(\rho) + \mathbf{P} \wedge \operatorname{tgt}(\rho') \in \operatorname{tgt}(\rho) + \mathbf{Q}$

$$\mathbf{X},\mathbf{Y}\subseteq\mathbb{N}^d$$
 \$\set\nu\lambda\nu\rangle s\set\nu\rangle \nu\rangle \text{Innear sets } \mathbf{X}=\mathbf{x}+\mathbf{P} and $\mathbf{Y}=\mathbf{y}+\mathbf{Q}$.

$$\begin{split} &\bigcup_{\mathbf{x} \in \mathbf{X}} \left\{ \mathbf{y} \in \mathbf{Y} \ \middle| \ \mathbf{x} \quad \overset{*}{\sim} \overset{*}{\sim} \mathbf{y} \right\} \\ &= \bigcup_{\rho \in \mathrm{min}_{\trianglelefteq_{\mathbf{P} \times \mathbf{Q}}}(\Omega)} \mathrm{tgt}(\rho) \\ &= \bigcup_{\rho \in \mathrm{min}_{\trianglelefteq_{\mathbf{P} \times \mathbf{Q}}}(\Omega)} \{ \mathrm{tgt}(\rho') \mid \rho' \in \Omega \ \land \ \rho \trianglelefteq_{\mathbf{P} \times \mathbf{Q}} \rho' \} \\ &= \bigcup_{\rho \in \mathrm{min}_{\trianglelefteq_{\mathbf{P} \times \mathbf{Q}}}(\Omega)} \mathrm{tgt}(\rho) + \{ \mathrm{tgt}(\rho') - \mathrm{tgt}(\rho) \mid \rho' \in \Omega \ \land \ \rho \trianglelefteq_{\mathbf{P} \times \mathbf{Q}} \rho' \} \\ &= \bigcup_{\rho \in \mathrm{min}_{\trianglelefteq_{\mathbf{P} \times \mathbf{Q}}}(\Omega)} \mathrm{tgt}(\rho) + \left\{ \mathbf{q} \in \mathbf{Q} \ \middle| \ \exists \mathbf{p} \in \mathbf{P} \ \mathbf{p} \overset{\rho}{\sim} \mathbf{q} \right\} \end{split}$$

where:

- Ω set of runs from X to Y
- $\rho \unlhd_{\mathbf{P} \times \mathbf{Q}} \rho'$ if $\rho \unlhd \rho' \wedge \operatorname{src}(\rho') \in \operatorname{src}(\rho) + \mathbf{P} \wedge \operatorname{tgt}(\rho') \in \operatorname{tgt}(\rho) + \mathbf{Q}$

Theorem

If the sets

$$\left\{ \mathbf{q} \in \mathbf{Q} \ \middle| \ \exists \mathbf{p} \in \mathbf{P} \ \mathbf{p} \stackrel{\rho}{\sim} \mathbf{q} \right\}$$

$$\left\{ \mathbf{p} \in \mathbf{P} \ \middle| \ \exists \mathbf{q} \in \mathbf{Q} \ \mathbf{p} \stackrel{\rho}{\sim} \mathbf{q} \right\}$$

are asymptotically definable periodic sets for every finitely-generated periodic sets $\mathbf{P}, \mathbf{Q} \subseteq \mathbb{N}^d$ and for every run ρ then for every semilinear sets $\mathbf{X}, \mathbf{Y} \subseteq \mathbb{N}^d$ the sets:

$$\bigcup_{\mathbf{x} \in \mathbf{X}} \left\{ \mathbf{y} \in \mathbf{Y} \mid \mathbf{x} \quad \mathbf{x} \quad \mathbf{y} \right\}$$

$$\bigcup_{\mathbf{y} \in \mathbf{Y}} \left\{ \mathbf{x} \in \mathbf{X} \mid \mathbf{x} \quad \mathbf{x} \quad \mathbf{y} \right\}$$

are almost semilinear.

Stability Properties

Lemma

For every periodic relations $R, R_1, R_2 \subseteq \mathbb{N}^d \times \mathbb{N}^d$, we have:

$$\mathbb{Q}_{\geq 0}(R_1 \cap R_2) = (\mathbb{Q}_{\geq 0}R_1) \cap (\mathbb{Q}_{\geq 0}R_2)$$

$$\mathbb{Q}_{\geq 0}(R_1 \circ R_2) = (\mathbb{Q}_{\geq 0}R_1) \circ (\mathbb{Q}_{\geq 0}R_2)$$

$$\mathbb{Q}_{\geq 0}\{\mathbf{y} \in \mathbb{N}^d \mid (\mathbf{x}, \mathbf{y}) \in R\} = \{\mathbf{y} \in \mathbb{Q}_{\geq 0}^d \mid (\mathbf{x}, \mathbf{y}) \in \mathbb{Q}_{\geq 0}R\}$$

Corollary

With
$$\rho = \mathbf{c}_0 \dots \mathbf{c}_k$$
:
$$\mathbb{Q}_{\geq 0} \left\{ \mathbf{q} \in \mathbf{Q} \mid \exists \mathbf{p} \in \mathbf{P} \ \mathbf{p} \stackrel{\rho}{\sim} \mathbf{q} \right\}$$

$$= \left\{ \mathbf{q} \in \mathbb{Q}_{\geq 0} \mathbf{Q} \mid \exists \mathbf{p} \in \mathbb{Q}_{\geq 0} \mathbf{P} \ (\mathbf{p}, \mathbf{q}) \in (\mathbb{Q}_{\geq 0} \stackrel{\mathbf{c}_0}{\sim}) \circ \dots \circ (\mathbb{Q}_{\geq 0} \stackrel{\mathbf{c}_k}{\sim}) \right\}$$

$$\mathbb{Q}_{\geq 0} \left\{ \mathbf{p} \in \mathbf{P} \mid \exists \mathbf{q} \in \mathbf{Q} \ \mathbf{p} \stackrel{\rho}{\sim} \mathbf{q} \right\}$$

$$= \left\{ \mathbf{p} \in \mathbb{Q}_{\geq 0} \mathbf{P} \mid \exists \mathbf{q} \in \mathbb{Q}_{\geq 0} \mathbf{Q} \ (\mathbf{p}, \mathbf{q}) \in (\mathbb{Q}_{\geq 0} \stackrel{\mathbf{c}_0}{\sim}) \circ \dots \circ (\mathbb{Q}_{\geq 0} \stackrel{\mathbf{c}_k}{\sim}) \right\}$$

Theorem

If transformer relations are asymptotically definable, then:

are almost semilinear for every semilinear sets $X, Y \subseteq \mathbb{N}^d$.

Table of Contents

- Introduction
- 2 Computing Reachability Sets
- 3 Almost Semilinear Sets
- 4 Decomposing Reachability Sets
- 5 Transformer Relations are Asymptotically Definable
- 6 Semilinear Separators
- Conclusion

Recall

Definition (Transformer Relation)

$$x \overset{c}{\curvearrowright} y \quad \text{if} \quad \begin{matrix} x \\ + \\ c \end{matrix} \qquad \begin{matrix} * \\ + \\ c \end{matrix} \qquad \begin{matrix} y \\ + \\ c \end{matrix}$$

Example

$$\stackrel{0}{\sim}$$
 = $\stackrel{*}{\sim}$

 $\stackrel{\mathbf{c}}{\sim}$ is an asymptotically definable periodic relation iff:

- $0 \stackrel{c}{\curvearrowright} 0$, and
- $\mathbf{x}_1 \overset{\mathbf{c}}{\curvearrowright} \mathbf{y}_1 \ \land \ \mathbf{x}_2 \overset{\mathbf{c}}{\curvearrowright} \mathbf{y}_2 \ \Rightarrow \ (\mathbf{x}_1 + \mathbf{x}_2) \overset{\mathbf{c}}{\curvearrowright} (\mathbf{y}_1 + \mathbf{y}_2)$, and
- $\mathbb{Q}_{\geq 0} \stackrel{\mathbf{c}}{\curvearrowleft}$ is definable in $\mathsf{FO}(\mathbb{Q}_{\geq 0},+,\leq,0)$.

Transformer Relations are Periodic

$$\mathbf{x}_{1} \overset{\mathbf{c}}{\curvearrowright} \mathbf{y}_{1} \implies \overset{\mathbf{x}_{1}}{\leftarrow} \overset{*}{\sim} \overset{*}{\sim} \overset{\mathbf{y}_{1}}{\leftarrow} \overset{*}{\sim} \overset{*}{\sim} \overset{\mathbf{y}_{1}}{\leftarrow} \overset{*}{\sim} \overset{*}{\sim} \overset{\mathbf{y}_{1}}{\leftarrow} \overset{*}{\sim} \overset{*}{\sim} \overset{\mathbf{y}_{1}}{\leftarrow} \overset{*}{\sim} \overset{$$

Main Problem

Show that

$$\mathbb{Q}_{\geq 0} \stackrel{\mathbf{c}}{\smallfrown} = \{ \lambda(\mathbf{x}, \mathbf{y}) \mid \lambda \in \mathbb{Q}_{\geq 0} \land \mathbf{x} \stackrel{\mathbf{c}}{\smallfrown} \mathbf{y} \}$$

is definable in $FO(\mathbb{Q}_{\geq 0},+,\leq,0)$.

Main idea:

$$\mathbb{Q}_{\geq 0} \overset{\mathbf{c}}{\sim} = \bigcup_{\substack{\gamma = (\mathbf{x}, \mathbf{c}, \mathbf{y}) \\ \mathbf{x} \overset{\mathbf{c}}{\sim} \mathbf{y}}} R_{\gamma}$$

$$\Omega_{\gamma} = \bigcup_{n \in \mathbb{N}} \{ \text{runs from } \mathbf{c} + n\mathbf{x} \text{ to } \mathbf{c} + n\mathbf{y} \}$$

Example

$$\mathbf{A} = \{\mathbf{a}, \mathbf{b}\}$$
 where $\mathbf{a} = (1, 1, -1)$ and $\mathbf{b} = (-1, 0, 1)$
 $\gamma = (\mathbf{x}, \mathbf{c}, \mathbf{y})$ where $\mathbf{x} = (0, 0, 0)$, $\mathbf{c} = (1, 0, 1)$ and $\mathbf{y} = (0, 1, 0)$

Bounded Components

 $I_{\gamma} = \{\text{bounded components of configurations occurring in runs of } \Omega_{\gamma} \}$

Lemma

$$\mathbf{x}(i) = 0 \land \mathbf{y}(i) = 0$$
 for all $i \in I_{\gamma}$.

Proof.

Unbounded Component Projection

$$\pi_{\gamma}: \mathbb{N}^d
ightarrow \mathbb{N}^{I_{\gamma}} \ \mathbf{x}
ightarrow (\mathbf{x}(i))_{i \in I_{\gamma}}$$

Corollary

For every run ρ in Ω_{γ} :

$$\pi_{\gamma}(\operatorname{src}(
ho)) = \pi_{\gamma}(\mathbf{c}) = \pi_{\gamma}(\operatorname{tgt}(
ho))$$

Example

$$\mathbf{A} = \{\mathbf{a}, \mathbf{b}\}$$
 where $\mathbf{a} = (1, 1, -1)$ and $\mathbf{b} = (-1, 0, 1)$
 $\gamma = (\mathbf{x}, \mathbf{c}, \mathbf{y})$ where $\mathbf{x} = (0, 0, 0)$, $\mathbf{c} = (1, 0, 1)$ and $\mathbf{y} = (0, 1, 0)$

Relation R_{γ}

$$R_{\gamma} = \left\{ (\mathbf{e}, \mathbf{f}) \in \mathbb{Q}^{d}_{\geq 0} \times \mathbb{Q}^{d}_{\geq 0} \middle| \begin{array}{c} \bigwedge_{i \mid \mathbf{x}(i) > 0} \mathbf{e}(i) > 0 \land \\ \bigwedge_{i \mid \mathbf{y}(i) > 0} \mathbf{f}(i) > 0 \land \\ \mathbf{f} - \mathbf{e} \in \mathbb{Q}_{> 0} (\mathbf{a}_{1} + \dots + \mathbf{a}_{k}) \\ \text{where } \mathbf{a}_{1} \dots \mathbf{a}_{k} \text{ label of a total cycle in } G_{\gamma} \end{array} \right\}$$

Example

$$\mathbf{A} = \{\mathbf{a}, \mathbf{b}\}$$
 where $\mathbf{a} = (1, 1, -1)$ and $\mathbf{b} = (-1, 0, 1)$
 $\gamma = (\mathbf{x}, \mathbf{c}, \mathbf{y})$ where $\mathbf{x} = (0, 0, 0)$, $\mathbf{c} = (1, 0, 1)$ and $\mathbf{y} = (0, 1, 0)$

$$\mathit{R}_{\gamma} = \left\{ (\mathbf{e}, \mathbf{e}) + \mathbb{Q}_{>0}(\mathbf{0}, \mathbf{y}) \;\middle|\; \mathbf{e} \in \mathbb{Q}^3_{\geq 0}
ight\}$$

- $\{G_{(\mathbf{x},\mathbf{c},\mathbf{y})} \mid \mathbf{x} \stackrel{\mathbf{c}}{\sim} \mathbf{y}\}$ is finite for all \mathbf{c} .
- $\{R_{(\mathbf{x},\mathbf{c},\mathbf{y})} \mid \mathbf{x} \stackrel{\mathbf{c}}{\curvearrowright} \mathbf{y}\}$ is finite for all \mathbf{c} .
- R_{γ} is definable in $FO(\mathbb{Q}_{>0},+,\leq,0)$.
- $(\mathbf{x}, \mathbf{y}) \in R_{\gamma}$.
- $R_{\gamma} \subseteq \mathbb{Q}_{>0} \stackrel{\mathbf{c}}{\wedge}$

Thus

$$\begin{array}{ccc} \mathbb{Q}_{\geq 0} \overset{\mathbf{c}}{\curvearrowright} & = & \bigcup_{\substack{\gamma = (\mathbf{x}, \mathbf{c}, \mathbf{y}) \\ \mathbf{x} \overset{\mathbf{c}}{\sim} \mathbf{y}}} R_{\gamma} \end{array}$$

is definable in $FO(\mathbb{Q}_{\geq 0}, +, \leq, 0)$.

Theorem

 $\stackrel{\mathbf{c}}{\sim}$ is an asymptotically definable periodic relation.

Main Application

Theorem

If transformer relations are asymptotically definable, then:

are almost semilinear for every semilinear sets $\mathbf{X}, \mathbf{Y} \subseteq \mathbb{N}^d$.

Main Application

Theorem

VF/tv/ahstovnder/relathons/are/ass/m/ptothoaWy/definable//then/

are almost semilinear for every semilinear sets $X, Y \subseteq \mathbb{N}^d$.

Table of Contents

- Introduction
- 2 Computing Reachability Sets
- Almost Semilinear Sets
- 4 Decomposing Reachability Sets
- 5 Transformer Relations are Asymptotically Definable
- **6** Semilinear Separators
- Conclusion

Main Objective

Show the following:

Theorem (Leroux '09 '10 '11 '12)

If \mathbf{c}_{final} is not reachable from \mathbf{c}_{init} there exists a semilinear inductive invariant \mathbf{X} such that $\mathbf{c}_{init} \in \mathbf{X}$ and $\mathbf{c}_{final} \notin \mathbf{X}$.

Forward and Backward Images

$$\mathsf{Forward}(\mathbf{X}) = \bigcup_{\mathbf{x} \in \mathbf{X}} \{ \mathbf{y} \in \mathbb{N}^d \mid \mathbf{x} \quad \overset{*}{\sim} \quad \mathbf{y} \}$$

$$\mathsf{Backward}(\mathbf{Y}) = \bigcup_{\mathbf{y} \in \mathbf{Y}} \{ \mathbf{x} \in \mathbb{N}^d \mid \mathbf{x} \quad \checkmark \checkmark \checkmark \mathbf{y} \}$$

Corollary

For every semilinear sets X, Y:

Forward(X)\X

 $\mathsf{Backward}(\mathbf{Y}) \backslash \mathbf{Y}$

are almost semilinear.

Separators

Definition (Separators)

A pair (X,Y) of subsets of \mathbb{N}^d is called a <u>separator</u> if:

$$\mathsf{Forward}(\mathbf{X}) \cap \mathsf{Backward}(\mathbf{Y}) = \emptyset$$

$$\mathbf{D} = \mathbb{N}^d \setminus (\mathbf{X} \cup \mathbf{Y})$$
: the domain.

$$(X,Y)$$
 not a separator \iff $\exists (x,y) \in X \times Y \quad x \quad \stackrel{*}{\sim} \quad y$

Separators with Empty Domains

$$(X,Y)$$
 separator with empty domain

$$\iff$$

 (\mathbf{X},\mathbf{Y}) partition of \mathbb{N}^d with Forward $(\mathbf{X})=\mathbf{X}$ and Backward $(\mathbf{Y})=\mathbf{Y}.$

Example

Separators (X, Y) are included in separators with empty domains:

$$(\mathsf{Forward}(\mathbf{X}) \;,\; \mathbb{N}^d \backslash \, \mathsf{Forward}(\mathbf{X}))$$

 $(\mathbb{N}^d \setminus \mathsf{Backward}(\mathbf{Y}) \;,\;\; \mathsf{Backward}(\mathbf{Y}))$

Reduce The Domain

with
$$dim(\mathbf{D}_0) > dim(\mathbf{D})$$

ullet $(\mathbf{X}_0,\mathbf{Y}_0)$ semilinear separator

Forward(\mathbf{X}_0)\ \mathbf{X}_0 is an almost semilinear set

Let **S** be a linearization.

- (X_0, Y_0) semilinear separator
- S linearization of Forward(X_0) $\setminus X_0$

 $\mathbf{X}_0 \cup \mathbf{S}$ is an over-approximation of Forward(\mathbf{X}_0).

- (X_0, Y_0) semilinear separator
- **S** linearization of Forward(X_0)\ X_0

$$\mathbf{Y} := \mathbf{Y}_0 \cup (\mathbb{N}^d \setminus (\mathbf{X}_0 \cup \mathbf{S}))$$

- (X_0, Y_0) semilinear separator
- \bullet S linearization of Forward(X0)\X0
- $\bullet \ \mathbf{Y} = \mathbf{Y}_0 \cup (\mathbb{N}^d \backslash (\mathbf{X}_0 \cup \mathbf{S}))$
- (X₀, Y) semilinear separator.

- \bullet (X_0, Y_0) semilinear separator
- S linearization of Forward(X_0) $\setminus X_0$
- $\bullet \ \mathbf{Y} = \mathbf{Y}_0 \cup (\mathbb{N}^d \backslash (\mathbf{X}_0 \cup \mathbf{S}))$
- (X_0, Y) semilinear separator.

Backward(\mathbf{Y})\ \mathbf{Y} is an almost semilinear set

Let **T** be a linearization.

- \bullet (X_0, Y_0) semilinear separator
- **S** linearization of Forward(X_0)\ X_0
- $\bullet \ \mathbf{Y} = \mathbf{Y}_0 \cup (\mathbb{N}^d \backslash (\mathbf{X}_0 \cup \mathbf{S}))$
- \bullet (X_0, Y) semilinear separator.
- T linearization of Backward(Y)\Y

 $Y \cup T$ is an over-approximation of Backward(Y).

- (X_0, Y_0) semilinear separator
- **S** linearization of Forward(X_0)\ X_0
- $\bullet \ \mathbf{Y} = \mathbf{Y}_0 \cup (\mathbb{N}^d \backslash (\mathbf{X}_0 \cup \mathbf{S}))$
- \bullet (X_0, Y) semilinear separator.
- T linearization of Backward(Y)\Y

$$\mathbf{X} := \mathbf{X}_0 \cup (\mathbb{N}^d \setminus (\mathbf{Y} \cup \mathbf{T}))$$

(X,Y) is a semilinear separator such that $X_0 \subseteq X$

- (X_0, Y_0) semilinear separator
- S linearization of Forward(X₀)\X₀
- $\bullet \ \mathbf{Y} = \mathbf{Y}_0 \cup (\mathbb{N}^d \backslash (\mathbf{X}_0 \cup \mathbf{S}))$
- \bullet (X_0, Y) semilinear separator.
- T linearization of Backward(Y)\Y
- $\mathbf{X} = \mathbf{X}_0 \cup (\mathbb{N}^d \setminus (\mathbf{Y} \cup \mathbf{T}))$
- (X, Y) semilinear separator.

Induction

The domain **D** of (X,Y) satisfies $D = D_0 \cap S \cap T$ where:

- **S** is a linearization of Forward(\mathbf{X}_0)\ $\mathbf{X}_0 \subseteq \mathbf{D}_0$.
- **T** is a linearization of Backward(\mathbf{Y})\ $\mathbf{Y} \subseteq \mathbf{D}_0$.

Since (\mathbf{X}, \mathbf{Y}) is a separator we deduce that $(\mathbf{X}_0, \mathbf{Y})$ is also a separator. Hence the sets Forward (\mathbf{X}_0) and Backward (\mathbf{Y}) have an empty intersection.

We get $\dim(\mathbf{S} \cap \mathbf{T}) < \dim(\mathbf{D}_0)$. Hence $\dim(\mathbf{D}) < \dim(\mathbf{D}_0)$.

Theorem

$$\neg(\mathbf{c}_{init} \overset{*}{\sim} \mathbf{c}_{final})$$

There exists a semilinear separator (\mathbf{X}, \mathbf{Y}) with an empty domain such that:

$$c_{\textit{init}} \in X$$
 and $c_{\textit{final}} \in Y$

Proof.

 $(\{c_{init}\}, \{c_{final}\})$ is a semilinear separator.

Main result

Theorem (Leroux '09 '10 '11 '12)

If \mathbf{c}_{final} is not reachable from \mathbf{c}_{init} there exists a semilinear inductive invariant \mathbf{X} such that $\mathbf{c}_{init} \in \mathbf{X}$ and $\mathbf{c}_{final} \notin \mathbf{X}$.

Corollary

The reachability problem for VAS is decidable.

Table of Contents

- Introduction
- 2 Computing Reachability Sets
- 3 Almost Semilinear Sets
- 4 Decomposing Reachability Sets
- 5 Transformer Relations are Asymptotically Definable
- 6 Semilinear Separators
- Conclusion

Sum Up

Recent advances presented:

- Geometrical properties satisfied by VAS reachability sets.
- Presburger arithmetic is sufficient for denoting certificates of non-reachability.
- Reachability problem with a simple algorithm.
- Reachability computation of semilinear Petri nets based on acceleration.
- The well order ≤ over the runs.

Not presented:

- Complexity results for Dickson's/ Higman's lemma (and others...)
- Rackoff's techniques: Regularity, boundedness, place-bounded, context-freeness,...
- Simulation / Bisimulation / Games for Petri nets.
- ullet Extensions : Branching VAS, VAS + 1 zero test, VAS + 1 stack.

Conclusion: Open Problems

- Simple criterion for detecting the initialized VAS not semilinear.
- Improve acceleration techniques with on-demand over-approximations.
- Close the complexity gap.
- At least, provide a clear upper bound (in the fast growing hierarchy).