

Hierarchical Structure Sharing Empowers Multi-task **Heterogeneous GNNs for Customer Expansion**

Xinyue Feng, Shuxin Zhong, Jinquan Hang, Wenjun Lyv, Yuequn Zhang, Guang Yang, Haotian Wang, Desheng Zhang, Guang Wang

Problem Definition

Customer Expansion

To ensure stable revenue streams -> Seek **high-value customers** willing to **sign long-term contracts** with our logistics company.

State-of-the-Arts Customer Expansion Methods

Learn complex structural patterns surrounding a customer by heterogeneous graph learning. [KDD22, CIKM23]

State-of-the-Arts Methods

Limitation

When positive label (i.e., the number of contracted customers) is extremely sparse

Limit models' ability to learn meaningful structural patterns.

Challenge

The most polular MTL framework results in performance degradation

Shared-backbone Framework [KDD21, SIGIR22, KDD23]

Logistics	AUC			
Logistics	Task 1	Task 2		
Single-task Learning	61.56	58.91		
Shared-backbone MTL	60.38	56.46		

E.g. Customer-ship-Customer (C-C)

Reason: Some learned structural patterns benefit for all tasks,

while others are task-specific. E.g. C-A, C-CP, C-S-C

Visualization of the Learned Structural Pattern Importance

Structure patterns with significant importance difference across tasks

However, such shared-backbone design indiscriminately shares all structural patterns.

Challenge

State-of-the-Art MTL framework still struggle to solve the issue

Mixture-of-Experts(MoE)-based MTL Framework [KDD18, SIGIR23]

Lagistica	AUC		
Logistics	Task 1	Task 2	
Single-task Learning	61.56	58.91	
MoE-based MTL	60.74	57.36	

Method: employ multiple backbones to **implicitly** learn task-specific or task-shared patterns separately.

Ideally,

E1/E3: learn task-specific

structural pattern

E2: learn shared structural pattern

Reality:

E1/E2/E3 learn similar structural patterns.

Though it is effective for non-graph scenarios, these **implicit** discrimination methods struggle with structural patterns in heterogeneous graph, which involves multilayer aggregation of multi-type relations.

Our Method: Structure-Aware Hierarchical Information Sharing Framework (SrucHIS)

SoA MTL Framework

Shared-backbone

Indiscriminately shares all structural patterns

MoE-based

Implicitly regulate structure sharing

Our StrucHIS

Explicitly regulate structure sharing

- Hierarchically decomposes the structure learning process into distinct stages (relation-wise & layer-wise).
- Selective share structural patterns at each stage.

3 StrucHIS Framework

Logistics Graph Construction

Nodes: customer, company, account, and station.

Edges: relations between entities. Each node and edge is enriched with unique **feature** representations.

Feature Pre-processing

Project all types of features into the **identical** embedding length.

Structure Sharing

The core of our framework

Prediction

Task-specific prediction after L layers of structural learning and selective sharing.

3 Structure Sharing within a Single Layer

Motivation

Consider a single-layer HGNN where a customer node aggregate information only from it 1-hop neighbors

Its 1-hop structural patterns may hold different importance for different tasks.

E.g.1 Customer-(ship)-Customer (C-C) Share Important for both tasks.

E.g.2 Customer -(relate)-Account(C-A)

Important for task 1.

Do not
Share

Less important for task2.

It is impratical to **maunally** decide what to share. How to **automatically** control it?

Structure patterns with significant importance difference across tasks

3 Structure Sharing within a Single Layer

• Step1: Relation-wise Information Aggregation Goal: extracts and aggregates structural features from neighboring nodes based on their specific relations.

• Step2: Selective Information Sharing Goal: selectively share structural features across tasks.

We introduce **Structure Aware Gates** G
The gate can automatically learn to decide the contribution of structural features from other tasks for the target task.

3 Structure Sharing within a Single Layer

Step2: Selective Information Sharing

Each gate is executed in three steps:

- Inputs: gather structural features from other tasks
- ➤ Weight Generation: Generate different weights for these features.
- Combination: Fuse these features based on different weights.
- Step3: Aggregation Across Relations

Aggreagte structural features experienced information sharing into the central node.

3 Apply Structure Sharing at Each Layer

Motivation

Given a central customer node, rather than its **1-hop** structural patterns, its **n-hop** structural patterns may also hold different importance for different tasks.

E.g. Customer-(Locate)-Station-(Locate)-Customer Important for task 2.

Less important for task 1.

n-hop structural pattern is learned at the n^{th} layer.

Thus, we apply Step1/2/3 not only at the first HGNN layer, but also at each HGNN layers,

Datasets:

- (Private) Logistic Dataset
 - task1: High-interest Customer prediction
 - task2: Contract-Signing Customer prediction
- (Public) **Aminer** Citation dataset
 - task1: Author research areas classification
 - task2: Paper research fileds classification
- (Public) **DBLP** Citation dataset
 - task1: Author research areas classification
 - task2: Paper publication venue prediction

Evaluation Metric

- Micro F1 & Macro F1: for DBLP and Aminer. (follow previous works)
- AUC (area under ROC curve) & AP (Average Precision): for Logistic Datset

Dataset	# Nodes	# Node Types	# Edge	# Edge Types	# Task
DBLP	26,108	3	223,978	6	2
Aminer	28,253	2	139,831	4	2
Logistic	6,142,839	4	11,592,443	5	2

Baselines:

- Single-Task Learning (STL) Methods
 - STL-HGT [WWW20], STL-HGB [KDD21]: select two widely-known **Heterogeneous Graph Neural Networks (HGNN)** models as our base models.
 - Setting: each task is independently trained.

Shared-Backbone MTL Methods

- MTL-HGT, MTL-HGB
- Setting: A shared HGNN backbone for all tasks + Separate prediction heads for each task

MoE-based MTL Methods:

- MMoE [KDD18], PLE [RecSys20], MultiSFS [SIGIR23].
- Setting: We implement their experts using same HGNN to ensure an equitable comparison with other methods.

Our experiments focuses on answer 4 research questions:

- RQ1: Does StrucHIS solve the Structural Interference Issue in Logistics Dataset?
- RQ2: Can StrucHIS generalize to other public graph datasets?
- RQ3: Are every modules in StrucHIS effective?
- RQ4: How does the model perform in Real-world Deployment?

RQ1: Does StrucHIS solve the Structural Interference Issue in Logistics Dataset?

Poor performance due to positive label sparsity

StrucHIS achieve a **51.41%** improvement in Average Precision on Contract-Signing Prediction Task.

(AP is a very important metric in real industry scenarios.)

RQ2: Can StrucHIS generalize to other public graph datasets?

- > Our visulization shows that, Structural Interference not only exists in our Logistics Dataset, but also exists in two widely-used public graph datasets DBLP and Aminer.
- On public datases, SoA MTL methods still struggle to solve the issue.

(a) STL Method on Aminer

(b) MoE MTL Method on Aminer

RQ2: Can StrucHIS **generalize** to other **public** graph datasets?

	Dataset	Aminer			DBLP					
	Tasks	tas	k1	tas	k2	tas	sk1	tas	k2	
	Metric	micro F1	macro F1	micro F1	macro F1	micro F1	macro F1	micro F1	macro F1	
	STL-HGT STL-HGB	$90.03_{\pm 0.50} \\ 91.16_{\pm 0.19}$	$90.05_{\pm 0.49} \\ 91.64_{\pm 0.19}$	$92.51_{\pm 0.17} \\ 92.58_{\pm 0.22}$	$92.57_{\pm 0.21} \\ 92.62_{\pm 0.24}$	$\begin{array}{ c c c c c }\hline 82.67_{\pm 0.76} \\ 85.51_{\pm 0.74} \\ \hline \end{array}$		$35.39_{\pm 0.47}$ $37.39_{\pm 0.20}$	$ \begin{array}{c c} 18.63_{\pm 1.07} \\ \hline 19.10_{\pm 1.60} \end{array} $	7
Multi-task learning methods	Shared-HGT Shared-HGB MMOE PLE MultiSFS	$93.35_{\pm 0.47}$ $93.89_{\pm 0.28}$ $93.63_{\pm 0.66}$ $93.72_{\pm 0.13}$ $93.47_{\pm 0.30}$	$93.78_{\pm 0.44} \\ 94.28_{\pm 0.25} \\ 93.86_{\pm 0.64} \\ 94.13_{\pm 0.14} \\ 94.17_{\pm 0.28}$	$93.38_{\pm 0.24}$ $93.41_{\pm 0.18}$ $93.20_{\pm 0.28}$ $92.96_{\pm 0,33}$ $93.19_{\pm 0.38}$	$93.41_{\pm 0.23} \\ 93.48_{\pm 0.16} \\ 93.24_{\pm 0.28} \\ 93.07_{\pm 0.35} \\ 93.16_{\pm 0.35}$	$\begin{array}{c} 91.02_{\pm 0.36} \\ 91.01_{\pm 0.23} \\ 91.22_{\pm 0.30} \end{array}$	$83.59_{\pm 0.46}$ $90.34_{\pm 0.27}$ $90.29_{\pm 0.25}$ $90.38_{\pm 0.33}$ $90.47_{\pm 0.14}$	$32.90_{\pm 0.51}$ $36.34_{\pm 0.98}$ $35.18_{\pm 0.57}$ $35.59_{\pm 0.98}$ $36.14_{\pm 0.69}$	$12.86_{\pm 1.02}$ $14.21_{\pm 1.87}$ $13.12_{\pm 0.75}$ $14.23_{\pm 1.29}$ $14.56_{\pm 0.99}$	perform drop solv
	StrucHIS	95.01 _{±0.41}					90.56 _{±0.39}		20.92 _{±1.14}	

further Improvement

StrucHIS significantly alleviate the performance drop caused by structural interference, achieving a 10.52% macro F1 gain on public dataset DBLP.

RQ3: Is every modules in StrucHIS effective?

Tasks use separate HGNN backbones with information sharing only at the final output embedding.

> (w/o R) Without Relation-wise Sharing, Only use Layer-wise sharing

Selective Information Sharing is applied only at layer-level.

Layer-wise sharing alone is insufficient and necessitates relation-wise sharing to mitigate structural interference.

Dataset	Log	istic	DE	BLP	Am	iner
Task	Task1	Task2	Task1	Task2	Task1	Task2
w/o R&L	60.43	56.82	91.11	35.76	93.64	93.01
w/o R	60.58	57.31	91.25	36.21	93.78	93.16
StrucHIS	65.21	63.44	91.43	38.25	95.01	93.52

RQ3: Is **every modules** in StrucHIS effective?

> The necessity of Layer-wise sharing (applying relation-wise sharing at each layer)

RQ4: How does the model perform in Real-world Deployment?

Deployment System

Online A/B Testing

Group	Method	# High-Interest	# Contract-Signing
('ontrol	JD's Method	254	12
	STL-HGB	272 (+7.1%)	13 (+8.3%)
Treatment	StrucHIS	336 (+32.3%)	17 (+41.7%)

StrucHIS demonstrates a 41.67% improvement in the success contract-signing rate over existing strategies, generating over 453K new orders within just two months..

5 Contribution

Conceptually:

We observe and analyze a critical yet previously under-researched issue based on our large-scale industry data: **cross-task structural interference** in multi-task heterogeneous graph neural network. We highlight that SoA MTL approaches struggle with such interference.

Technically:

We introduce SrucHIS, a heterogeneous graph-based MTL framework that **explicitly regulates structural knowledge sharing** to mitigate cross-task interference..

Experimentally:

- > JD Logistics (one of the largest logistics companies in China): Average Precision 51.41%
- > Two public datasets: Macro F1 scores 10.52%
- > Real-world Deployment: Success Contract-signing Rate 41.67% . New orders 453K

I'm looking for 2025/2026
Full-time Internship!
LLM | GNN | Data Mining
fengxy26@gmail.com

For more about me, Linked in 1

THANK YOU!

