

Using Optical Measurements to Characterize the Orbital Debris Environment in GEO

Dr. Alyssa Manis Radar and Optical Measurements Lead NASA Orbital Debris Program Office 9 February 2023

Agenda

- Orbital Debris Engineering Model (ORDEM)
 Background
- Building/Validating the GEO Population for ORDEM 3.1
- Eugene Stansbery Meter-Class Autonomous Telescope (ES-MCAT) Overview

ORDEM – An Engineering Model

- An engineering model is a tool used primarily by satellite designers and operators in order to compute the mission risk to their vehicles from orbital debris impacts
 - NASA's Orbital Debris Engineering Model (ORDEM) provides information on debris impact rate as a function of size, material density, and impact speed and direction
 - Latest version is ORDEM 3.2, released in March 2022
 - The orbital debris risk computed by an engineering model is different than the risk computed for a satellite conjunction
 - ORDEM computes long-term impact risk as probabilities
 - ORDEM covers debris sizes too small to be tracked
 - > Mission-ending risk is dominated by small, untracked debris
- Since the orbital debris environment is dynamic, ORDEM must be updated periodically to better reflect reality

Optical Data Sources for ORDEM

SSN catalog

Nearly complete for objects down to approximately 10 cm in LEO and 1 m in GEO

Michigan Orbital DEbris Survey Telescope (MODEST)

- Provides statistical GEO population for ORDEM below 1 m
- 0.6 m telescope located at Cerro Tololo Inter-American Observatory
- Primary optical source for NASA from 2001-2014
- Data is correlated with SSN catalog
 - Correlated Targets (CTs) and Uncorrelated Targets (UCTs)
- Assumed circular orbits (eccentricity = 0, circular mean motion)
- Datasets covering 2004-2006 and 2007-2009 were used for building the ORDEM 3.1 GEO population
- Dataset covering 2013-2014 was used for ORDEM 3.1 validation

Data Coverage

MODEST Magnitude Distribution

GEO Debris Ring Filter (1/2)

GEO debris ring used to filter data for fragmentation debris

- Non-GEO objects may be misclassified as GEO objects due to the shorttime arc for GEO observations and the circular orbit assumption
- Uncontrolled objects in GEO naturally precess in inclination / right ascension space, follow a loop in Cartesian coordinates of

```
(INC \cdot \cos(RAAN), INC \cdot \sin(RAAN))
```

INC = inclination
RAAN = right ascension of the ascending node

- Controlled, intact objects tend to clump near (0°,0°) while derelict intact satellites and debris tend to spread out
- Orbit angle = angle between object's orbit and stable Laplace plane used to identify objects within the debris ring

GEO Debris Ring Filter (2/2)

Assigning Non-Circular Orbital Elements

- Circular orbit assumption is made for MODEST UCTs
- Non-circular orbital elements (eccentricity and mean motion) sought to obtain a more realistic orbit
 - Based on modeled breakup events using NASA SSBM

National Aeronautics and Space Administration **GEO Population Validation: Clock Angle Distribution**

Clock angle defined as angle in $(INC \cdot \cos(RAAN), INC \cdot \sin(RAAN))$

Initial comparisons showed more objects in MODEST dataset in clock angle range 0-60° and 240-300° → added simulated breakups to represent unconfirmed GEO breakups

New Assets: ES-MCAT Overview

- Eugene Stansbery Meter-Class Autonomous Telescope (ES-MCAT)
 - 1.3-m, f/4, DFM Engineering fast-tracking optical telescope paired with an ObservaDome fast-tracking dome to accommodate tracking debris at all orbital altitudes
 - Field of View: 0.68 degrees x 0.68 degrees, 0.96 degrees diagonal
 - Limiting Magnitude: 19.48 ± 0.18 (estimated from data for primary mirror in good condition in r')
 - Current limiting magnitude: 16.63 ± 0.285 (g' prime, current condition 01/01/2022 and 03/14/2022)
 - Deployed on Ascension Island (7° 58' S, 14° 4' W, 350' El)
 - Joint NASA-Air Force Research Labs (AFRL) project, located on the U.S. Space Force base (45th Space Wing, Detachment 2 near the Ascension Auxiliary Air Field)
 - Its near equatorial latitude ensures that low-inclination LEO, GEO, and GEO transfer orbit (GTO) target orbits pass overhead (less atmosphere to see through and ability to view all orbit inclinations)

ES-MCAT Milestones

Milestones

- Concept development (2000 2003)
- Groundbreaking on Ascension (2014)
- First-light (2015)
- URR (2017)
- IOC (2019)
- FOC (7 September 2021)
 - Proven autonomous capability to safely acquire/process GEO survey data
 - Characterized astrometric and photometric uncertainties using the GAIA catalog
 - Transmit results to NASA/JSC
- First GEO survey completed (2022)

GEO Survey Approach

Survey Method

- Avoid week around full moon
- Otherwise point anti-solar, to maximize illumination
 - 1-h in HA/RA leading/trailing the Earth's shadow
 - Declination decreases by -0.5 degrees each night until minimum Declination is hit (5 deg below GEO belt)
 - Results in a diagonal path
- Daily motion for GEO Belt objects at Ascension

A "Complete GEO survey"

- Region of Interest a "donut" area with a diameter between 7.5 and 15 centered at 7.5 INC*sin(RAAN) and 7.5 INC*cos(RAAN)
- Produces images that can provide an expectation value (EVAL) above threshold (0.3 or 0.2) coverage in the INC/RAAN space of interest.

INC = orbit inclination; RAAN = Right ascension ascending node

ES-MCAT's First GEO Survey

Thank you!

Any questions?

