Package 'optionval'

January 15, 2021

Type Package

Title Option Valuation Package

Version 0.1.1

Imports pip install git+https://github.com/Option-valuation/Optionval

Description Calculate and visualize option valuation process

URL https://github.com/Option-valuation/Optionval

Author Youji Sung, Kyusun Cho, Youngsin Lee

Date/Publication 2021-01-15 15:52:26 (GMT+9)

Python topics documented:

optionval-package
black_scholes
volatility
d1
d2
call_delta 8
call_gamma
call_vega
call_theta
call_rho
put_delta
put_gamma
put_vega
put_theta
put_rho
BinomialAmerican
BinomialEuropean
BinomialAmerican_graph
BinomialEuropean_graph
BinomialAmerican_tree
BinomialEuropean tree

optionva	l-pac	kage

Option Valuation Framework

Description

Option Value Calculating and Visualizing Package for Python

Download

Optionval can be installed by pip

! pip install git+https://github.com/Option-valuation/Optionval

Modules

optionval.values	Calculate values that are u	useful for option valuation
------------------	-----------------------------	-----------------------------

from optionval.values import black_scholes

black_scholes	call_gamma	put_gamma
volatility	call_vega	put_vega
d1	call_theta	put_theta
d2	call_rho	put_rho
call_delta	put_delta	

optionval.trees Caculate and Visualize Binomial tree mode

from optionval.trees import BinomialAmerican_tree

BinomialAmerican BinomialEuropean

BinomialAmerican_graph BinomialEuropean_graph

BinomialAmerican_tree BinomialEuropean_tree

blackscholes Calculate option value with blackscholes model

Description

Calculate option value through blackscholes model with the arguments

Usage

```
blackscholes(S=50, E=50, T=5/12, r=0.1, sigma=0.4, PutCall='C')
blackscholes(S=50, E=50, T=5/12, r=0.1, sigma=0.4, PutCall='P')
```

Arguments

- S Current value of underlying asset
- E Exercise Price
- Time to expiration date (in years) ex) 5 months = 5/12
- Annual risk-free interest rate over the period from now to expiration date
- sigma Standard deviation (per year) of continuous stock returns

PutCall Whether the option is call or put *default: 'C'

-Call option: PutCall = 'C'

-Put option: PutCall = 'P'

Calculate a volatility of the firm's asset with the arguments assuming that there are only one type of common stock and one type of bond.

Usage

```
volatility(stock_sd=0.3, bond_sd=0.2, stock_weight=0.6,
bond_weight=0.4, corr=0.5)
```

Arguments

stock_sd Standard deviation of stock

bond_sd Standard deviation of bond

stock_weight Weight on stock

bond_weight Weight on bond

*stock_weight + bond_weight = 1

(if either one is not given, the other is automatically calculated)

corr Correlation between stock and bond *default: 0

d1 Calculate d1 value used in blackscholes model

Description

Calculate d1 value used in blackscholes model with the arguments

Usage

$$d1(S=50, E=50, T=5/12, r=0.1, sigma=0.4)$$

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

r Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

$$d_1 = \frac{ln\left(\frac{S}{E}\right) + (r + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$

Calculate d2 value used in blackscholes model with the arguments

Usage

$$d2(S=50, E=50, T=5/12, r=0.1, sigma=0.4)$$

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

r Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

$$d_2 = d_1 - \sigma \sqrt{T}$$

call_delta

Calculate delta in call option

Description

Calculate delta in call option with the arguments

Usage

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Delta measures the rate of change of the theoretical option value with respect to changes in the underlying asset's price.

 $\Delta = \frac{\partial V}{\partial s}$ (V: value of call option, S: value of underlying asset)

call_gamma

Calculate gamma in call option

Description

Calculate gamma in call option with the arguments

Usage

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Gamma measures the rate of change in delta with respect to changes in the underlying asset's price.

 $\Gamma = \frac{\partial \Delta}{\partial S}$ (Δ : delta in call option, S: value of underlying asset)

call_vega

Calculate vega in call option

Description

Calculate vega in call option with the arguments

Usage

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Vega measures the sensitivity to volatility

 $\mathbf{v} = \frac{\partial \mathbf{v}}{\partial \sigma}$ (V: value of call option, σ : volatility of underlying asset)

call_theta

Calculate theta in call option

Description

Calculate theta in call option with the arguments

Usage

call theta(
$$S=50$$
, $E=50$, $T=5/12$, $r=0.1$, $sigma=0.4$)

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Theta measures the sensitivity of the option price with respect to the option's time to maturity

$$\theta = \frac{\partial V}{\partial \tau} = -\frac{S\emptyset(d_1)\sigma}{2\sqrt{t}} - rKe^{-rt}N(d_2)$$

call_rho

Calculate rho in call option

Description

Calculate rho in call option with the arguments

Usage

call_rho(S=50, E=50, T=
$$5/12$$
, r=0.1, sigma=0.4)

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Rho measures the sensitivity to the interest rate

 $\rho = \frac{\partial V}{\partial r}$ (V: value of call option, r: annual risk-free interest rate)

put_delta

Calculate delta in put option

Description

Calculate delta in put option with the arguments

Usage

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Delta measures the rate of change of the theoretical option value with respect to changes in the underlying asset's price.

 $\Delta = \frac{\partial V}{\partial S}$ (V: value of put option, S: value of underlying asset)

put_gamma Calculate gamma in put option

Description

Calculate gamma in put option with the arguments

Usage

put gamma(S=50, E=50, T=5/12,
$$r=0.1$$
, sigma=0.4)

Arguments

- S Current value of underlying asset
- E Exercise Price
- Time to expiration date (in years) ex) 5 months = 5/12
- Annual risk-free interest rate over the period from now to expiration date
- sigma Standard deviation (per year) of continuous stock returns

Details

Gamma measures the rate of change in delta with respect to changes in the underlying asset's price.

$$\Gamma = \frac{\partial \Delta}{\partial S}$$
 (Δ : delta in put option, S: value of underlying asset)

put_vega

Calculate vega in put option

Description

Calculate vega in put option with the arguments

Usage

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Vega measures the sensitivity to volatility

 $\mathbf{v} = \frac{\partial \mathbf{v}}{\partial \sigma}$ (V: value of put option, σ : volatility of underlying asset)

put_theta

Calculate theta in put option

Description

Calculate theta in put option with the arguments

Usage

put theta(
$$S=50$$
, $E=50$, $T=5/12$, $r=0.1$, $sigma=0.4$)

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Theta measures the sensitivity of the option price with respect to the option's time to maturity

$$\theta = \frac{\partial V}{\partial \tau} = -\frac{S\emptyset(d_1)\sigma}{2\sqrt{t}} - rKe^{-rt}N(d_2)$$

put_rho

Calculate rho in put option

Description

Calculate rho in call option with the arguments

Usage

Arguments

S Current value of underlying asset

E Exercise Price

Time to expiration date (in years) ex) 5 months = 5/12

Annual risk-free interest rate over the period from now to expiration date

sigma Standard deviation (per year) of continuous stock returns

Details

Rho measures the sensitivity to the interest rate

 $\rho = \frac{\partial V}{\partial r}$ (V: value of put option, r: annual risk-free interest rate)

Calculate American option value through binomial tree model with the arguments

Usage

```
BinomialAmerican(n=5, S=50, K=50, r=0.1, v=0.4, t=5/12, PutCall ="P") 
BinomialAmerican(n=5, S=50, K=50, r=0.1, v=0.4, t=5/12, PutCall "C")
```

Arguments

- n number of binomial steps
- S initial stock price
- K Strike Price
- Annual risk-free interest rate over the period from now to expiration date
- v Volatility factor
- t Time to expiration date (in years) ex) 5 months = 5/12
- PutCall Whether the option is call or put *default: 'C'
 - -Call option: PutCall = 'C'
 - -Put option: PutCall = 'P'

Calculate European option value through binomial tree model with the arguments

Usage

```
BinomialEuropean(n=5, S=50, K=50, r=0.1, v=0.4, t=5/12, PutCall="P")
BinomialEuropean(n=5, S=50, K=50, r=0.1, v=0.4, t=5/12, PutCall="C")
```

Arguments

- n number of binomial steps
- S initial stock price
- K Strike Price
- Annual risk-free interest rate over the period from now to expiration date
- v Volatility factor
- t Time to expiration date (in years) ex) 5 months = 5/12
- PutCall Whether the option is call or put *default: 'C'
 - -Call option: PutCall = 'C'
 - -Put option: PutCall = 'P'

Visualize American option payoff diagram (Payoff – Value of Underlying asset) through binomial tree model with the given arguments

Usage

 $\label{eq:spinor} Binomial American_graph (n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="C")\\ Binomial American_graph (n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="P")\\$

Arguments

- n number of binomial steps
- S initial stock price
- K Strike Price
- Annual risk-free interest rate over the period from now to expiration date
- V Volatility factor
- t Time to expiration date (in years) ex) 5 months = 5/12
- PutCall Whether the option is call or put *default: 'C'

Visualize European option payoff diagram (Payoff – Value of Underlying asset) through binomial tree model with the given arguments

Usage

BinomialEuropean_graph(n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="C") BinomialEuropean_graph(n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="P")

Arguments

- n number of binomial steps
- S initial stock price
- K Strike Price
- Annual risk-free interest rate over the period from now to expiration date
- V Volatility factor
- t Time to expiration date (in years) ex) 5 months = 5/12
- PutCall Whether the option is call or put *default: 'C'

Visualize American option valuation process through binomial tree model with the given arguments

Usage

```
BinomialAmerican_tree(n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="C") 
BinomialAmerican_tree(n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="P")
```

Arguments

- n number of binomial steps
- S initial stock price
- K Strike Price
- Annual risk-free interest rate over the period from now to expiration date
- V Volatility factor
- t Time to expiration date (in years) ex) 5 months = 5/12
- PutCall Whether the option is call or put *default: 'C'

Visualize European option valuation process through binomial tree model with the given arguments

Usage

```
BinomialEuropean_tree(n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="C") 
BinomialEuropean_tree(n=5,S=50,K=50,r=0.1,v=0.4,t=5/12,PutCall="P")
```

Arguments

- n number of binomial steps
- S initial stock price
- K Strike Price
- Annual risk-free interest rate over the period from now to expiration date
- V Volatility factor
- t Time to expiration date (in years) ex) 5 months = 5/12
- PutCall Whether the option is call or put *default: 'C'

