Включить << C:\Users\yura\	Desktop\pacчеты_Lavart_природный_газ\pacчет_энтальпий.mcdx
C)	
включить << С:\Users\yura\	Desktop\pacчеты_Lavart_природный_газ\pacчет_характеристик_дымовы_газов.mcdx
Включить << C:\Users\vura\	Desktop\pacчеты_Lavart_природный_газ\pacчет_начальный.mcdx
$fQ_{m_6}(t_a,t) :=$	$ \begin{vmatrix} I_{a} \leftarrow I_{z}(t_{a}) \\ I^{``}_{m} \leftarrow I_{z}(t^{``}_{m}) \\ Q_{m_\delta} \leftarrow \varphi_{m} \cdot (I_{a} - I^{``}_{m}) \\ \text{return } Q_{m_\delta} \end{vmatrix} $
	$ I\rangle_m \leftarrow I_z(t)_m$
	$Q_{m_{-}\delta} \leftarrow \varphi_m \cdot (I_a - I)_m$
	$\operatorname{return} Q_{m_{-}\delta}$
$fQ_{m \ mmo}\left(t_{a},t\right):=$	"Рассчитаем эффективную температуру топочной среды, К"
- , , ,	$T_{\phi} \leftarrow 0.925 \cdot \sqrt{(t_a + 273.15) \cdot (t) + 273.15}$
	$T_3 \leftarrow \frac{t_1 + t_2}{2} + 273.15$
	"Скорость в жаровой трубе"
	$\omega_m \leftarrow \frac{B_{monnuga} \cdot V_z \cdot T_\phi}{F_{ncc} \cdot 273}$
	$F_{\kappa} \cdot 273$
	"Параметры дымовых газов"
	$t_{\phi} \leftarrow T_{\phi} - 273.15$
	$v_{m_\partial z} \leftarrow v_{\partial z} (t_{\phi})$
	$\lambda_{m_\partial z} \leftarrow \lambda_{\partial z} (t_{\phi})$
	$Pr_{m_\partial z} \leftarrow Pr_{\partial z} \left(t_{\phi}\right)$
	"Коэффициент теплоотдачи конвекцией в топке, Вт/(м2*К)"
	$\alpha_{m\kappa} \leftarrow 0.023 \cdot \frac{\lambda_{m_\partial \varepsilon}}{D_{\mathcal{H}m}} \cdot \left(\frac{\omega_{m} \cdot D_{\mathcal{H}m}}{v_{m_\partial \varepsilon}}\right)^{0.8} \cdot Pr_{m_\partial \varepsilon}^{0.4}$
	$D_{\mathcal{H}m} \left(v_{m_\partial \mathcal{E}} \right) = m_\mathcal{E}$
	"Тепло переданное в жаровой трубе конвекцией"
	$\frac{\alpha_{m\kappa}}{2\pi} \cdot F_{\pi m} \cdot (T_d - T_3)$
	$Q_{m_\kappa} \leftarrow \frac{\frac{\alpha_{m\kappa}}{1000} \cdot F_{n.m} \cdot (T_{\phi} - T_3)}{B_{mon,nusa}}$
	$B_{monлuвa}$
	"Коэффициент ослабления лучей сажистыми частиами"
	T '' _m $\leftarrow t$ '' _m + 273.15
	$\begin{vmatrix} k_{c} \leftarrow \frac{1.2}{1 + \alpha_{s}^{2}} \cdot \left(0.12 \cdot \left(CH_{4} \cdot \frac{1}{4} + C_{2}H_{6} \cdot \frac{2}{6} \right) + C_{3}H_{8} \cdot \frac{3}{8} + C_{4}H_{10} \cdot \frac{4}{10} \right) + C_{5}H_{12} \cdot \frac{5}{12} + C_{6}H_{14} \cdot \frac{6}{14} \end{vmatrix} \right)^{0.4} \cdot \left(1.6 \cdot 10^{-3} \cdot T^{\circ}_{m} - 0.5 \right)$
	$1+\alpha_e$ 3 4
	$+C_3H_8 \cdot \frac{1}{8} + C_4H_{10} \cdot \frac{1}{10}$
	5 6 11 6
	$+ \frac{12^{\bullet} - 12^{\bullet} - 12^{\bullet} - 14^{\bullet}}{12} + \frac{14}{14}$
	"Коэффициент ослабления лучей газовой средой"
	$k \leftarrow (7.8 + 16 \cdot r_{H2O} - 1) \cdot (1 - 0.37 \cdot 10^{-3} \cdot T)$
	$k_{z} \leftarrow \left(\frac{7.8 + 16 \cdot r_{H2O}}{\sqrt{10 \cdot p_{m} \cdot r_{n} \cdot s_{m}}} - 1\right) \cdot \left(1 - 0.37 \cdot 10^{-3} \cdot T\right)_{m}$
	(4)
	(45)
	(62)

