Modern Cryptography

January 31, 2019

Solutions to Homework 14

Lecturer: Christoph Striecks, TA: Karen Klein Due: 23.59 CET, Jan 28, 2019

- 1. Naor's Transformation: Signatures from Identity-Based Encryption (IBE)
 - (2 Points) In the lecture, we have sketched the Naor transformation. Provide a formal description of the signature scheme $\Sigma = (\mathsf{Gen}, \mathsf{Sig}, \mathsf{Vrfy})$ with message space \mathcal{M}_{Σ} resulting from applying the Naor transform to an IBE scheme $\Xi = (\mathsf{IBE}.\mathsf{Gen}, \mathsf{IBE}.\mathsf{Ext}, \mathsf{IBE}.\mathsf{Enc}, \mathsf{IBE}.\mathsf{Dec})$ with identity space \mathcal{ID}_{Ξ} and message space \mathcal{M}_{Ξ} . Show the correctness of Σ .

Solution: Set $\mathcal{M}_{\Sigma} := \mathcal{I}\mathcal{D}_{\Xi}$. Further, define

- $\mathsf{Gen}(1^n)$: for security parameter 1^n , return $(pk, sk) \leftarrow \mathsf{IBE}.\mathsf{Gen}(1^n)$.
- $\mathsf{Sig}_{sk}(m)$: for secret key sk, message $m \in \mathcal{M}_{\Sigma}$, return $\sigma \leftarrow \mathsf{IBE}.\mathsf{Ext}(sk,m)$.
- $\mathsf{Vrfy}_{pk}(\sigma, m)$: for public key pk, signature σ , and message $m \in \mathcal{M}_{\Sigma}$, return 1 if $\mathsf{IBE.Dec}(\sigma, c) = R$, for $c \leftarrow \mathsf{IBE.Enc}(pk, m, R)$, for some $R \leftarrow \mathcal{M}_{\Xi}$ and "identity" m, else return 0.

Correctness of Σ follows from the correctness of Ξ : for all integer n, for $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$, for all $m \in \mathcal{M}$, for all $\sigma \leftarrow \mathsf{Sig}_{sk}(m)$, we have that $\mathsf{Vrfy}_{pk}(\sigma, m) = 1$ holds. (Essentially, if σ is a valid signature for m under pk, then $\mathsf{IBE.Dec}(\sigma, \mathsf{IBE.Enc}(pk, m, R)) = R$, for all $R \in \mathcal{M}_\Xi$, where \mathcal{M}_Ξ is defined in pk.)

• (1 Point) Apply the Naor transformation to the explicit Boneh-Franklin IBE scheme Ξ_{BF} with identity and message spaces \mathcal{ID}_{BF} and \mathcal{M}_{BF} , respectively, from the lecture. (Assume that a group generator $g \in \mathcal{G}$ with order p, a random-oracle instantiation $H: \mathcal{ID} \mapsto \mathcal{G}$, and a suitable pairing $e: \mathcal{G} \times \mathcal{G} \mapsto \mathcal{G}_T$ is given as input to all algorithms.)

Solution: Set $\mathcal{M}_{\Sigma} := \mathcal{I}\mathcal{D}_{\Xi}$. Further, define

- $\operatorname{\mathsf{Gen}}(1^n)$: return $(pk, sk) := ((g^x, \mathcal{M}_{\Sigma}, \mathcal{M}_{\Xi}), x)$, for $x \leftarrow \mathbb{Z}_p$.
- $\operatorname{Sig}_{sk}(m)$: return $\sigma := \operatorname{H}(m)^x$.
- $\operatorname{Vrfy}_{pk}(\sigma, m)$: return 1 if $c_2/\mathsf{e}(c_1, \sigma) = R$, for $(c_1, c_2) := (g^y, \mathsf{e}(pk, \mathsf{H}(m))^y \cdot R)$, $y \leftarrow \mathbb{Z}_p$, and some $R \leftarrow \mathcal{M}_\Xi$, else return 0.
- **0.5 bonus points**: define verification algorithm as $\mathsf{Vrfy}_{pk}(\sigma, m)$: return 1 if $\mathsf{e}(g, \sigma) = \mathsf{e}(pk, \mathsf{H}(m))$, else return 0. (In this case, the description of the IBE message space \mathcal{M}_Ξ specified in pk is not needed.)
- 2. Identity-Based Encryption (IBE) from Attribute-Based Encryption (ABE)
 - (2 Points) Formally construct an IBE scheme $\Xi = (\mathsf{IBE.Gen}, \mathsf{IBE.Ext}, \mathsf{IBE.Enc}, \mathsf{IBE.Dec})$ with identity and messages spaces \mathcal{ID}_{Ξ} and \mathcal{M}_{Ξ} , respectively, from a CP-ABE scheme $\Omega = (\mathsf{ABE.Gen}, \mathsf{ABE.Ext}, \mathsf{ABE.Enc}, \mathsf{ABE.Dec})$ with attribute space \mathcal{A}_{Ω} , policy space \mathcal{P}_{Ω} , and message space \mathcal{M}_{Ω} . Show the correctness of Ξ .

Solution: Set $\mathcal{ID}_{\Xi} := \mathcal{A}_{\Omega}$ and $\mathcal{M}_{\Xi} := \mathcal{M}_{\Omega}$. Further, define

- $\operatorname{\mathsf{Gen}}(1^n)$: for security parameter 1^n , return $(pp, sk) \leftarrow \operatorname{\mathsf{ABE.Gen}}(1^n)$.
- $\mathsf{Ext}_{sk}(id)$: for secret key sk, "identity" $id \in \mathcal{ID}_\Xi$, return $usk_{id} \leftarrow \mathsf{ABE}.\mathsf{Ext}(sk,id,m)$.
- $\mathsf{Enc}_{pp}(id, m)$: for public parameters pp, identity $id \in \mathcal{ID}_{\Xi}$, and message $m \in \mathcal{M}_{\Xi}$, return $\mathsf{ABE}.\mathsf{Enc}_{pp}(p, m)$, for policy p := id.
- $\mathsf{Dec}_{usk_{id}}(c)$: for user secret key usk_{id} and ciphertext c, return $m \leftarrow \mathsf{ABE}.\mathsf{Dec}_{usk_{id}}(c)$.

Correctness of Ξ follows from the correctness of Ω in a straightforward way: for all integer n, for all $(pp, sk) \leftarrow \mathsf{Gen}(1^n)$, for all identities $id \in \mathcal{ID}_{\Xi}$, for all $usk_{id} \leftarrow \mathsf{Ext}_{sk}(id)$, for all $m \in \mathcal{M}_{\Xi}$, for all $c \leftarrow \mathsf{Enc}_{pp}(id, m)$, we have that $\mathsf{Dec}_{usk_{id}}(c) = m$ holds. \square