Introduction to Machine Learning (67577) Lecture 7

School of CS and Engineering, The Hebrew University of Jerusalem

Heuristics: Neural Networks, Decision Trees and Nearest Neighbour

- Neural Networks
 - Sample Complexity
 - Expressiveness of neural networks
 - How to train neural networks ?
 - Summary

- 2 Decision Trees
- Nearest Neighbor

A Single Artificial Neuron

- **Neuron:** Computational device for computing functions $\mathbb{R}^n \to \mathbb{R}$.
- Composed of
 - *n* input nodes.
 - Output node.
 - "Wires" from the input to the output node.
 - Activation function $\sigma : \mathbb{R} \to \mathbb{R}$. E.g.:

A Single Artificial Neuron

• Given weights $\mathbf{w} \in \mathbb{R}^n$, computes the function $\mathbf{x} \mapsto \sigma(\langle \mathbf{w}, \mathbf{x} \rangle)$.

Neural Networks

- A neural network is obtained by connecting many neurons together
- We focus on layered feedforward networks with single output

Neural Networks – Definitions

- **Neural Net:** A pair $\mathcal{N} = (G, \sigma)$ where
 - ullet $\sigma:\mathbb{R} o \mathbb{R}$ is a function called the activation function
 - G = (V, E) is a depth d layered directed graph with single output. I.e.:
 - $\bullet V = \cup_{t=0}^{d} V_t$
 - ullet All edges are from V_{t-1} to V_t
 - A single output node: $|V_d| = 1$
- Terminology:
 - The size of the net is $|\mathcal{N}| := |E|$
 - ullet The inputs nodes are V_0
 - The inputs size is $n = |V_0|$

Example - Fully Connected Neural Net

- Fully connected net with input size n, width l, depth d, and activation function σ is the net $\mathcal{N}_{l,d,\sigma} = (G,\sigma)$ where
 - $V = \bigcup_{t=0}^{d} V_t$
 - $|V_t| = l$, for all 1 < t < d 1
 - $|V_0| = n$
 - E consists of all edges from V_{t-1} to V_t .
- $\mathcal{N}_{3,3,\sigma}$:

- ullet Fix a net ${\mathcal N}$ with input size n
- Given weights $w: E \to \mathbb{R}$, the net computes $h_{\mathcal{N},w}: \mathbb{R}^n \to \mathbb{R}$
- $h_{\mathcal{N},w}(x)$ is the value obtained by propagating x thru the net (in the following example $\sigma = \mathrm{sign}$)

Learning with Neural Networks

- Fix a neural network \mathcal{N}
- Learning algorithms try to find a good hypothesis $h_{\mathcal{N},w}$.
- To analyse such algorithms we let

$$\mathcal{H}_{\mathcal{N}} = \{h_{\mathcal{N},w} : w : E \to \mathbb{R}\}\ .$$

- We can now study
 - Estimation error (sample complexity)
 - Approximation error (expressivenss)
 - Optimization error (computational complexity)

- Neural Networks
 - Sample Complexity
 - Expressiveness of neural networks
 - How to train neural networks?
 - Summary

- 2 Decision Trees
- Nearest Neighbor

Sample Complexity

- Fix a net $\mathcal{N} = (G, \sigma)$.
- Each $h_{\mathcal{N},w}$ is specified by $|\mathcal{N}|$ parameters
- Corollary: If weights are represented using k bits, $VC(\mathcal{H}_{\mathcal{N}}) \leq k \cdot |\mathcal{N}|$
- Theorem: For $\sigma = \text{sign}$, $VC(\mathcal{H}_{\mathcal{N}}) \leq C \cdot |\mathcal{N}| \cdot \log(|\mathcal{N}|)$
- Theorem: For $\sigma = \text{SIGMOID}$, $\text{VC}(\mathcal{H}_{\mathcal{N}}) \leq C \cdot |\mathcal{N}|^2$
- Sample complexity decreases when using various regularizations

- Neural Networks
 - Sample Complexity
 - Expressiveness of neural networks
 - How to train neural networks ?
 - Summary

- 2 Decision Trees
- Nearest Neighbor

What can be expressed with neural networks?

- For simplicity, focus on boolean inputs and $\sigma = \text{sign}$.
- What functions from $\{\pm 1\}^n$ to $\{\pm 1\}$ are in $\mathcal{H}_{\mathcal{N}}$?
- Theorem: $\mathcal{H}_{\mathcal{N}_{2^{n},2,\mathrm{sign}}}$ contains all functions from $\{\pm 1\}^{n}$ to $\{\pm 1\}!$
- Theorem: If $\mathcal{H}_{\mathcal{N}}$ contains all functions from $\{\pm 1\}^n$ to $\{\pm 1\}$ then $|\mathcal{N}|$ is exponential in n
- What functions can be implemented by small \mathcal{N} ?
- Theorem: $\mathcal{H}_{\mathcal{N}_{T,T,\mathrm{sign}}}$ contains all functions computed in time T!

The ultimate hypothesis class! (ignoring training time)

If we only care about functions computed in time T, we can use size T^3 neural network, and the sample complexity is also bounded by T^3 !

Geometric Intuition

• 2 layer networks can express intersection of halfspaces

Geometric Intuition

• 3 layer networks can express unions of intersection of halfspaces

- Neural Networks
 - Sample Complexity
 - Expressiveness of neural networks
 - How to train neural networks?
 - Summary

- 2 Decision Trees
- Nearest Neighbor

Runtime of learning neural networks

ERM problem:

$$ERM(S) = \underset{h \in \mathcal{H}_{\mathcal{N}}}{\operatorname{argmin}} L_{S}(h) = \underset{w}{\operatorname{argmin}} L_{S}(h_{\mathcal{N},w})$$

- Theorem: NP hard to implement ERM already for $\mathcal{N}_{2,2,\mathrm{sign}}$.
- Maybe some other algorithm?
- Theorem: Probably hard to return h with $L^{0-1}_{\mathcal{D}}(h) \leq \frac{1}{2} \frac{1}{n^{20}}$ even when $L^{0-1}_{\mathcal{D}}(\mathcal{H}_{\mathcal{N}_{\log^2(n),2,\mathrm{sign}}}) = 0$

How to train neural network?

- So, neural networks can form an excellent hypothesis class, but it is intractable to train it.
- Can be still trained using heuristics

The basic heuristic

- f 0 Start with random weights w
- f 2 At each step, change w a bit, in a direction that decreases the loss.
 - Not convex! No guarantees! Can take a long time!
 - But, often still works fine!
 - Many ways to implement the basic heuristic.
 - We will see a few popular ones next.

Step I: Initializing the weight

• Fix neuron v with incoming weights $w_{1,v},\ldots,w_{k,v}$

• Rule of thumb: Chose the weights independently in a way that

$$E\left[\sum_{i=1}^k w_{i,v}^2\right] = 1$$

E.g.,
$$w_{i,v} \sim U\left[-\sqrt{\frac{3}{k}},\sqrt{\frac{3}{k}}\right]$$

Step II: Locally improving w – SGD for Neural Networks

- Fix a loss $l: \mathbb{R} \times Y \to \mathbb{R}_+$ (say, the hinge loss)
- For $(x,y) \in X \times Y$, let $l_{(x,y)}(w) = l(h_{\mathcal{N},w}(x),y))$
- \bullet For a sub-sample $S'\subset S$ let $L_{S'}(w)=\frac{1}{|S'|}\sum_{(x,y)\in S'}l_{(x,y)}(w)$
- Update rule:

$$w_{t+1} = w_t - \eta_t \nabla L_{S'}(w)$$

where:

- η_t is learning rate (e.g. $\eta_t = 0.01$ for all t)
- S' is a random subset of the training examples (called a "minibatch")
 - GD: S' = S
 - SGD: |S'| = 1
- ullet It is left to show how to calculate the gradient $abla l_{(x,y)}(w)$

Back-Propagation

- Recall that $\nabla l_{(x,y)}(w) = \left(\frac{\partial l_{(x,y)}}{\partial w_e}(w)\right)_{e \in E}$
- Let $e \in E$ be an edge whose output neuron is in the i'th layer.
- Fix (x,y) and all weights but w_e
- Let $l_e(t) = l_{(x,y)}(w^e|t)$, where $w^e|t$ is obtained by changing w_e to t.
- ullet We have $rac{\partial l_{(x,y)}}{\partial w_e}(w)=l_e'(w_e).$ Moreover

$$l_e(t) = l_y \circ h_d \circ \dots, h_{i+1} \circ h_i(t)$$

Where

- $h_i(t)$ is the vector with the values of the neurons in the i'th layer.
- For j > i, h_j computes the j'th layer given the (j-1)'th layer.
- $\bullet \ l_y(\hat{y}) = l(\hat{y}, y)$
- Hence, $\frac{\partial l_{(x,y)}}{\partial w_e}(w)$ can be calculated using the (multivariate) chain rule:

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

- The back-propagation algorithm is an efficient way to do that.
- Details in the Tirgul

Neural Networks: Current Trends

- Design Issues:
 - Deep nets
 - ReLU activation: $\sigma(a) = \max\{0, a\}$
 - Very large networks: More parameters than examples!
 - May cause overfitting. Partially avoided by various regularizations
- Algorithmic Issues:
 - Dropout: Some neurons are "muted" at random during training
 - Training on GPU

- Neural Networks
 - Sample Complexity
 - Expressiveness of neural networks
 - How to train neural networks ?
 - Summary
- Decision Trees

Nearest Neighbor

Summary

- Neural nets can be used to construct the ultimate hypothesis class
- Computationally, it's impossible to train neural networks
- ... but, empirically, it works reasonably well
- Leads to state-of-the-art on many real world problems

Historical Remarks

- 1940s-70s:
 - Inspired by learning/modeling the brain (Pitts, Hebb, and others)
 - Perceptron Rule (Rosenblatt)
 - Backpropagation (Werbos 1975)
- 1980s early 1990s:
 - SGD (Bottou)
 - Initial empirical success
- 1990s-2000s:
 - Lost favor to SVM and Boosting
- 2006 -:
 - Computational advances and several new tricks allow training HUGE networks. Empirical success leads to renewed interest

A fundamental question

When does it work and why?

- Neural Networks
 - Sample Complexity
 - Expressiveness of neural networks
 - How to train neural networks ?
 - Summary
- 2 Decision Trees
- Nearest Neighbor

Learning Decision Trees

- A decision tree over $\{\pm 1\}^n$ is defined by a
 - Rooted binary tree in which every node has 2 or 0 children
 - Internal nodes are labelled by $x_i, 1 \le i \le n$
 - ullet Leafs are labelled by 0 or 1
 - ullet Edges are labelled by -1 or 1
- A decision tree T naturally defines a function $h_T: \{\pm 1\}^n \to \{0,1\}$:
 - To calculate $h_T(x)$, start from the root and traverse the tree according to x until a leaf is reached. $h_T(x)$ is the label of that leaf
- We will study algorithms that learn a decision tree

Sample Complexity

Theorem: Let \mathcal{T}_k be the class of decision trees with $k \leq 2^n$ leaves. Then,

$$k \le VC(\mathcal{T}_k) \le 2k \lceil \log_2(4nk) \rceil$$

Proof:

- $VC(\mathcal{T}_k) \leq 2k\lceil \log_2(4nk) \rceil$:
 - Each decision tree can be described using $2k\lceil \log_2(4nk) \rceil$ bits:
 - A tree with k leaves have 2k-1 nodes (prove it by induction!).
 - Each node can be described by $\lceil \log_2(n+2) + \log_2(2k) \rceil$ bits, encoding
 - A description (node of the form $x_i = 1?'$ / leaf with value 0/1)
 - The identity of its parent
- $VC(\mathcal{T}_k) \geq k$:
 - Every $A \subset \{\pm 1\}^n$ of size k is shattered! (Targil)

Computational Complexity

- NP hard problem ...
- Tree algorithms follow greedy heuristics

The basic heuristic

- Start with a very simple tree (say, a single leaf)
- 2 At each step, improve the tree by a small modification

A Basic Greedy Tree Algorithm

INPUT: training set $S \subset \{\pm 1\}^n \times \{\pm 1\}$

- Start with a single leaf
- At each step, replace one of the leaves by a tree of the form:

for $b_1,b_2\in\{\pm 1\}$ and $j\in[n]$, in a way that minimizes the loss among all such replacements.

• Stop when no improvement is possible

Variants and Extensions

- Algorithms differ by the measures they greedily optimize
 - The presented algorithm uses the empirical loss
 - Other algorithms optimize different measures
- Greedy algorithms might produce large trees. Can be tackled by:
 - Early stopping
 - Pruning
- Extensions to real-valued features and real-valued/multiclass output

- Neural Networks
 - Sample Complexity
 - Expressiveness of neural networks
 - How to train neural networks
 - Summary
- 2 Decision Trees
- Nearest Neighbor

k-Nearest Neighbor

"Things that look alike must be alike"

- Memorize the training set $S = (x_1, y_1), \dots, (x_m, y_m)$
- ullet Given new x, find the k closest points in S and return majority vote among their labels
- Very simple
- ullet Works well when ${\mathcal X}$ is low dimensional.
- Problematic in high dimension.

k-Nearest Neighbor: Bias-Complexity Tradeoff

