© 2009 Adis Data Information BV. All rights reserved

Cost-Effectiveness Evaluation of a Quadrivalent Human Papillomavirus Vaccine in Belgium

We read with interest the paper by Annemans et al.^[1] describing a Markov model to estimate the cost effectiveness of a quadrivalent human papillomavirus (HPV) vaccine in Belgium.

The base-case model assumed that the vaccine would prevent 55% of cervical intraepithelial neoplasia (CIN)-2/3 lesions or all CIN-2/3 lesions caused by HPV-6, -11, -16 and -18. However, the most reliable estimate available for overall CIN-2/3 reduction after vaccination is 46% (95% CI 24, 62), as presented by the company that developed the quadrivalent HPV vaccine Gardasil®. This estimate was based on a pooled analysis after 3 years of follow-up of all subjects who tested negative at baseline for 14 high-risk HPV types and who were randomly assigned to receive Gardasil® or placebo.^[2] We used this estimate in our own pharmacoeconomic model for Belgium^[3] and found estimates for the ICER of €32665 per QALY gained in the base-case scenario with a 95% credibility interval between €17 447 and €68 078 per QALY gained, which is clearly superior to the estimates resulting from the model of Annemans et al.[1] Although the differences between the results of the two models are not only attributable to the difference in the assumed effectiveness of the quadrivalent vaccine against CIN-2/3 lesions, we believe that data obtained in the context of randomized clinical trials provide the best currently available estimate of the population impact of the studied quadrivalent HPV vaccine Gardasil® in a truly susceptible population, rather than estimates based on theoretical projections. Therefore, we argue that the cost per QALY gained of HPV 6/11/16/18 vaccination is underestimated in this paper.

Irina Cleemput and Nancy Thiry Belgian Health Care Knowledge Centre (KCE), Brussels, Belgium

Acknowledgement

Irina Cleemput is the Senior Health Economist at the Belgian Health Care Knowledge Centre (KCE); Nancy Thiry is a Health Economist at KCE.

References

- Annemans L, Rémy V, Oyee J, et al. Cost-effectiveness evaluation of a quadrivalent human papillomavirus vaccine in Belgium. Pharmacoeconomics 2009; 27 (3): 231-45
- Merck Research Laboratories. Updated efficacy data: Gardasil[®]. Presentation to the American Advisory Committee on Immunization Practices (ACIP), National Immunisation Program (NIP), from the Centre for Diseases Control (CDC) (Slide show by E. Barr, MD). Feb 22, 2007
- Thiry N, De Laet C, Hulstaert F, et al. Cost-effectiveness of human papillomavirus vaccination in Belgium: do not forget about cervical cancer screening. Int J Technol Assess Health Care 2009; 25 (2): 161-70

The Author's Reply

We thank Cleemput and Thiry^[1] for their interest in our research^[2] and are grateful for the opportunity to respond.

Since Gardasil® is a prophylactic quadrivalent vaccine that targets four human papillomavirus (HPV) types (6/11/16/18), the per protocol population (PPE) was used as the primary analysis population to evaluate the prophylactic efficacy of Gardasil® on the incidence of diseases caused by vaccine HPV types (PPE: received all three doses of vaccine, naive to the relevant HPV vaccine type at baseline and 1 month after complete vaccination). The measured prophylactic efficacy against cervical intraepithelial neoplasia (CIN)-2/3 related to HPV vaccine types 6/11/16/18 was almost 100% in the PPE population.

The figures reported by Cleemput and Thiry^[1] correspond to another population (restricted, modified intent-to-treat-2 population: received at least one dose of vaccine, generally naive to all 14 HPV types tested and with negative Pap test at baseline) used in the clinical trials to evaluate the