Introduction to Number Theory

Prime Numbers

- ★ Prime Numbers: Has exactly two divisors.
- ★ If 'N' is prime, then the divisors are 1 and N.
- * All numbers have prime factors.

Numbers	10	11	100	37	308	14688
Prime Factorization	2 ¹ x 5 ¹	1 ¹ x 11 ¹	2 ² x 5 ²	1 ¹ x 37 ¹	22 x 71 x 111	2 ⁵ x 3 ³ x 17 ¹
Prime Numbers	2, 5	1, 11	2, 5	1, 37	2, 7, 11	2, 3, 17

Prime Numbers - Example

- ★ 2 is a prime number.
- ★ 3 is a prime number.
- ★ 5 is a prime number.
- ★ 7 is a prime number.
- ★ 9 is not a prime number.
- ★ 9 is a composite number.
- ★ 33 is a composite number.

Divisors of 2: 1 and 2

Facts about primes

- ★ Only even prime: 2
- ★ Smallest prime number: 2
- ★ Is 1 a prime number? No.
- ★ Except for 2 and 5, all prime numbers end in the digit 1, 3, 7 or 9.

Why prime numbers in cryptography?

- * Many encryption algorithms are based on prime numbers.
- ★ Very fast to multiply two large prime numbers.
- * Extremely computer-intensive to do the reverse.
- ★ Factoring very large prime numbers is very hard i.e. take computers a long time.

Congruence

★ In cryptography, congruence(=) instead of equality(=).

```
Examples:
15 \equiv 3 \pmod{12}
                                                        12
                                                                       12
                                                                             23
                                                                                      10
                                                                                             33
23 \equiv 11 \pmod{12}
                                                                              12
                                                                                             30
33 \equiv 3 \pmod{10}
10 \equiv -2 \pmod{12}
                                                               0
\therefore a \equiv b \pmod{m}
                                                        12
                                                              10
                                                                       m
                                                                              a
i.e. a = km + b
                                                               0
                                                              10
```

Valid or Invalid

★
$$38 \equiv 2 \pmod{12}$$
 ✓

★
$$38 \equiv 14 \pmod{12}$$
 ✓

★
$$5 \equiv 0 \pmod{5}$$
 ✓

$$\star$$
 2 = -3 (mod 5) \checkmark

Properties of Modular Arithmetic

- 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. [(a mod n) x (b mod n)] mod $n = (a \times b) \mod n$

Example:

- $[(15 \mod 8) + (11 \mod 8)] \mod 8 = (15 + 11) \mod 8$
 - ما ه
 - = 26 mod 8
 - 1

$$[(15 \mod 8) \cdot (11 \mod 8)] \mod 8 = (15 \cdot 11) \mod 8$$

Example:

 $[(15 \mod 8) \times (11 \mod 8)] \mod 8 = (15 \times 11) \mod 8$

Properties of Modular Arithmetic

Property	Expression		
Commutative Laws	$(a + b) \mod n = (b + a) \mod n$ $(a \times b) \mod n = (b \times a) \mod n$		
Associative Laws	[(a + b) + c] mod n = [a + (b + c)] mod n [(a x b) x c] mod n = [a x (b x c)] mod n		
Distributive Laws	[a x (b + c)] mod n = [(a x b) + (a x c)] mod n		
Identities	(0 + a) mod n = a mod n (1 x a) mod n ≛ a mod n		

Modular Exponentiation

- It is a type of exponentiation performed over a modulus.
- ❖ a^b mod m or a^b (mod m).

Solve 233 mod 30.

```
23^3 \mod 30 = -7^3 \mod 30 \parallel 23 \mod 30 can be 23 or -7.
                 = -7^3 \mod 30
                 = -7^2 \times -7 \mod 30
                 = 49 \times -7 \mod 30
                 = -133 \mod 30
                 = -13 \mod 30
                 = 17 \mod 30
```

 $23^3 \mod 30 = 17$

```
Solve 31500 mod 30.
31^{500} \mod 30 = 1^{500} \mod 30
                = 1 \mod 30
```

Example 3

 $31^{500} \mod 30 = 1$

$$242^{329} \mod 243 = -1^{329} \mod 243$$

= $-1^{329} \mod 243 \parallel -1^{328} \times -1^{1}$

 $= -1 \mod 243$

$$= 242$$

$$242^{329} \mod 243 = 242$$

Solve 117 mod 13.

Solve 887 mod 187.

```
88<sup>1</sup> mod 187 = 88

88<sup>2</sup> mod 187 = 88<sup>1</sup> x 88<sup>1</sup> mod 187 = 88 x 88 = 7744 mod 187 = 77

88<sup>4</sup> mod 187 = 88<sup>2</sup> x 88<sup>2</sup> mod 187 = 77 x 77 = 5929 mod 187 = 132

88<sup>7</sup> mod 187 = 88<sup>4</sup> x 88<sup>2</sup> x 88<sup>1</sup> mod 187 = (132 x 77 x 88) mod 187

= 894,432 mod 187
```

 $88^7 \mod 187 =$

Solve 3100 mod 29.

```
3^1 \mod 29 = 3 \mod 29 = 3 \text{ or } -26.
32 mod 29
                   = 3^1 \times 3^1 \mod 29 = 3 \times 3 \mod 29 = 9 \mod 29 = 9 \text{ or } -20.
                 = 3^2 \times 3^2 \mod 29 = 9 \times 9 \mod 29 = 81 \mod 29 = 23 \text{ or } -6
34 mod 29
                   = 3^4 \times 3^4 \mod 29 = -6 \times -6 \mod 29 = 36 \mod 29 = 7 \text{ or } -22.
38 mod 29
316 mod 29
                   = 3^8 \times 3^8 \mod 29 = 7 \times 7 \mod 29 = 49 \mod 29 = 20 \text{ or } -9
3<sup>32</sup> mod 29
                   = 3^{16} \times 3^{16} \mod 29 = -9 \times -9 \mod 29 = 81 \mod 29 = 23 \text{ or } -6
364 mod 29
                   = 3^{32} \times 3^{32} \mod 29 = -6 \times -6 \mod 29 = 36 \mod 29 = 7 \text{ or } -22.
3<sup>100</sup> mod 29
                   = 3^{64} \times 3^{32} \times 3^{4} \mod 29.
                   = 7 \times -6 \times -6 \mod 29
                   = 252 \mod 29
```

Solve 2316 mod 30

23¹⁶ mod 30 =
$$(((23^2)^2)^2)^2 \mod 30$$

= $(((-7^2)^2)^2)^2 \mod 30$
= $((49^2)^2)^2 \mod 30$
= $((-11^2)^2)^2 \mod 30$
= $((-11^2)^2)^2 \mod 30$
= $(121^2)^2 \mod 30$
= $(1^2)^2 \mod 30$
= 1 mod 30

Euclidean Algorithm

- Euclidean Algorithm or Euclid's Algorithm.
- For computing the Greatest Common Divisor (GCD).
- aka Highest Common Factor (HCF).

Understanding GCD - Example 1

	12	33
Divisors	1, 2, 3, 4, 6, 12	1, 3, 11, 33
Common Divisors	1,	3
Greatest Common Divisor (GCD)		3

$$: GCD(12, 33) = 3$$

Understanding GCD - Example 2

	25	150
Divisors	1, 5, 25	1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150
Common Divisors	1, 5, 25	
Greatest Common Divisor (GCD)	25	

:: GCD(25, 150) = 25

Understanding GCD - Example 3

	13	31
Divisors	1, 13	1, 31
Common Divisors		1
Greatest Common Divisor (GCD)		1

$$: GCD(13, 31) = 1$$

GCD(12, 33) = 3.

Q	A	В	R
2	33	12	9
1	12	9	3
3	9	3	0
х	3	0	х

Find the GCD(750, 900).

Q	А	В	R
1	900	750	150
5	750	150	0
Х	150	0	х

GCD(252, 105) = 21.

Q	А	В	R
2	252	105	42
2	105	42	21
2	42	21	0
х	21	0	х

```
Prerequisite: a > b
Euclid_GCD (a, b):
      if b = 0 then
               return a;
      else
               return Euclid_GCD (b, a mod b);
```

Euclid's Algorithm - Example 1

```
Example 1: Find the GCD (50, 12).
```

```
Solution:
```

```
Here a=50, b=12

GCD (a, b) = GCD (b, a mod b)

GCD (50, 12) = GCD (12, 50 mod 12) = GCD(12, 2)
```

GCD (12, 2) = GCD (2, 12 mod 2) = GCD(2, 0) = 2

$$GCD(50, 12) = 2$$

Euclid's Algorithm – Example 2

Example 2: Find the GCD (83, 19).

Solution:

```
Here a=83, b=19
```

$$GCD(a, b) = GCD(b, a mod b)$$

$$GCD(7, 5) = GCD(5, 7 \mod 5) = GCD(5, 2)$$

$$GCD (5, 2) = GCD (2, 5 \mod 2) = GCD(2, 1)$$

$$GCD(2, 1) = GCD(1, 2 \mod 1) = GCD(1, 0) = 1$$

$$GCD(83, 19) = 1$$

Two numbers are said to be relatively prime, if they have no prime factors in common, and their only common factor is 1.

- ❖ If GCD(a, b) = 1 then 'a' and 'b' are relatively prime numbers.
- Co-prime.

Question 1: Are 4 and 13 relatively prime?

Solution:

	4	13
Divisors	1, 2, 4	1, 13
Common Divisors	i	
Greatest Common Divisor (GCD)	1	

$$GCD(4, 13) = 1$$

Yes, 4 and 13 are relatively prime numbers.

Question 2: Are 15 and 21 relatively prime?

Solution:

	15	21
Divisors	1, 3, 5, 15	1, 3, 7, 21
Common Divisors	1,	3
Greatest Common Divisor (GCD)		5

GCD(15, 21) = 3

No, 15 and 21 are not relatively prime numbers.

a	Ь	GCD(a, b)	Relatively Prime?	Remarks
11	17	1	Yes	'a' and 'b' are prime
11	21	1	Yes	'a' is prime and 'b' is composite
12	77	1	Yes	'a' and 'b' are composite

- Denoted as Φ(n).
- Φ(n) = Number of positive integers less than 'n' that are relatively prime to n.

Example 1: Find $\Phi(5)$.

Solution:

Here n=5.

Numbers less than 5 are 1, 2, 3 and 4.

GCD	Relatively Prime?
GCD (1, 5) = 1	✓
GCD (2, 5) = 1	✓
GCD (3, 5) = 1	✓
GCD (4, 5) = 1	

$$: \Phi(5) = 4.$$

Example 2: Find $\Phi(11)$.

Solution:

Here n=11.

Numbers less than 11 are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

GCD	Relatively Prime?
GCD (1, 11) = 1	√.
GCD (2, 11) = 1	✓
GCD (3, 11) = 1	✓
GCD (4, 11) = 1	✓
GCD (5, 11) = 1	√

GCD	Relatively Prime?
GCD (6, 11) = 1	√
GCD (7, 11) = 1	✓
GCD (8, 11) = 1	✓
GCD (9, 11) = 1	
GCD (10, 11) = 1	√

Example 3: Find $\Phi(8)$.

Solution:

Here n=8.

Numbers less than 8 are 1, 2, 3, 4, 5, 6, and 7.

GCD	Relatively Prime?
GCD (1, 8) = 1	✓
GCD (2, 8) = 2	×
GCD (3, 8) = 1	✓
GCD (4, 8) = 4	×

GCD	Relatively Prime?
GCD (5, 8) = 1	*
GCD (6, 8) = 2	*
GCD (7, 8) = 1	✓

 $: \Phi(8) = 4.$

	Criteria of 'n'	Formula
	'n' is prime.	$\Phi(n) = (n-1)$
Φ(n)	n = p x q. 'p' and 'q' are primes.	$\Phi(n) = (p-1) \times (q-1)$
	n = a x b. Either 'a' or 'b' is composite. Both 'a' and 'b' are composite.	$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots$ where p_1, p_2, \dots are distinct primes.

Example 1: Find $\Phi(5)$.

Solution:

Here n=5.

'n' is a prime number.

$$\Phi(n) = (n-1)$$

$$\Phi(5) = (5-1)$$

$$\Phi(5) = 4$$

So, there are 4 numbers that are lesser than 5 and relatively prime to 5.

Example 2: Find $\Phi(31)$.

Solution:

Here n=31.

'n' is a prime number.

$$\Phi(n) = (n-1)$$

$$\Phi(31) = (31-1)$$

$$\Phi(31) = 30$$

So, there are 30 numbers that are lesser than 31 and relatively prime to 31.

Example 3: Find $\Phi(35)$.

Solution:

Here n=35.

'n' is a product of two prime numbers 5 and 7.

Let us assign p=5 and q=7.

$$\Phi(n) = (p-1) \times (q-1)$$

$$\Phi(35) = (5-1) \times (7-1)$$

$$\Phi(35) = 4 \times 6$$

$$\Phi(35) = 24$$

So, there are 24 numbers that are lesser than 35 and relatively prime to 35.

GCD	RP?
GCD(1,35)	1
GCD(2,35)	V
GCD(3,35)	V
GCD(4,35)	V
GCD(5,35)	×
GCD(6,35)	V
GCD(7,35)	×
GCD(8,35)	√
GCD(9,35)	V

GCD	RP?
GCD(10,35)	×
GCD(11,35)	1
GCD(12,35)	V
GCD(13,35)	4
GCD(14,35)	×
GCD(15,35)	×
GCD(16,35)	1
GCD(17,35)	1
GCD(18,35)	1

GCD	RP?
GCD(19,35)	1
GCD(20,35)	×
GCD(21,35)	×
GCD(22,35)	✓
GCD(23,35)	1
GCD(24,35)	V
GCD(25,35)	×
GCD(26,35)	1
GCD(27,35)	V

GCD	RP?
GCD(28,35)	×
GCD(29,35)	1
GCD(30,35)	×
GCD(31,35)	V
GCD(32,35)	√
GCD(33,35)	1
GCD(34,35)	V

24

Example 4: Find Φ(1000).

Solution:

Here
$$n = 1000 = 2^3 \times 5^3$$
.

Distinct prime factors are 2 and 5.

$$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots$$

$$\Phi(1000) = 1000 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right)$$

$$\Phi(1000) = 1000 \times \left(\frac{1}{2}\right) \left(\frac{4}{5}\right)$$

$$\Phi(1000) = 400$$

Example 5: Find $\Phi(7000)$.

Solution:

Here
$$n = 7000 = 2^3 \times 5^3 \times 7^1$$

Distinct prime factors are 2, 5 and 7.

$$\Phi(n) = n \times \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right) \dots$$

$$\Phi(7000) = 7000 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right)$$

$$\Phi(7000) = 7000 \times \left(\frac{1}{2}\right) \left(\frac{4}{5}\right) \left(\frac{6}{7}\right)$$

$$\Phi(7000) = 2400$$

Fermat's Little Theorem

If 'p' is a prime number and 'a' is a positive integer not divisible by 'p' then $a^{p-1} \equiv 1 \pmod{p}$

Example 1: Does Fermat's theorem hold true for p=5 and a=2?

Solution:

Given: p=5 and a=2.

 $a^{p-1} \equiv 1 \pmod{p}$

 $2^{5-1} \equiv 1 \pmod{5}$

 $2^4 \equiv 1 \pmod{5}$

 $16 \equiv 1 \pmod{5}$

Therefore, Fermat's theorem holds true for p=5 and a=2.

Example 3: Prove Fermat's theorem does not hold for p=6 and a=2.

Solution:

```
a^{p-1} \equiv 1 \pmod{p}
```

$$2^{6\cdot 1} \equiv 1 \pmod{6}$$

$$2^5 \equiv 1 \pmod{6}$$

$$32 \equiv 1 \pmod{6}$$

$$32 \equiv 1 \pmod{6}$$

Therefore, Fermat's theorem does not hold true for p=6 and a=2.

For every positive integer 'a' & 'n', which are said to be relatively prime, then $a^{\Phi(n)} \equiv 1 \mod n$.

Example 1: Prove Euler's theorem hold true for a=3 and n=10.

Solution:

```
Given: a=3 and n=10.

a^{\Phi(n)} \equiv 1 \pmod{n}
```

$$3^{\Phi(10)} \equiv 1 \pmod{10}$$

$$\Phi(10) = 4$$

$$3^4 \equiv 1 \pmod{10}$$

$$81 \equiv 1 \pmod{10}$$

Therefore, Euler's theorem holds true for a=3 and n=10.

Example 2: Does Euler's theorem hold true for a=2 and n=10?

Solution:

```
Given: a=2 and n=10.
```

$$a^{\Phi(n)} \equiv 1 \pmod{n}$$

$$2^{\Phi(10)} \equiv 1 \pmod{10}$$

$$\Phi(10) = 4$$

$$2^4 \equiv 1 \pmod{10}$$

$$16 \equiv 1 \pmod{10}$$

Therefore, Euler's theorem does not hold for a=2 and n=10.

Example 3: Does Euler's theorem hold true for a=10 and n=11?

Solution:

```
Given: a=10 and n=11.
α<sup>Φ(n)</sup>
         \equiv 1 \pmod{n}
10^{\Phi(11)} \equiv 1 \pmod{11}
\Phi(11) = 10
1010
         \equiv 1 \pmod{11}
-110
         \equiv 1 \pmod{11}
         \equiv 1 \pmod{11}
```

Therefore, Euler's theorem holds for a=10 and n=11.

A number ' α ' is a primitive root modulo n if every number coprime to n is congruent to a power of ' α ' modulo n.

Definition made easy:

'a' is said to be a primitive root of prime number 'p', if a' mod p, α^2 mod p, α^3 mod p, ..., α^{p-1} mod p are distinct.

Example 1: Is 2 a primitive root of prime number 5?

Solution:

21 mod 5	2 mod 5	2	√
22 mod 5	4 mod 5	4	1
2 ³ mod 5	8 mod 5	3	1
24 mod 5	16 mod 5	1	✓

Yes, 2 is a primitive root of prime number 5.

Example 2: Is 3 a primitive root of prime number 7?

Solution:

31 mod 7	3 mod 7	3	✓
32 mod 7	9 mod 7	2	✓
3 ³ mod 7	6 mod 7	6	✓
3⁴ mod 7	18 mod 7	4	*
35 mod 7	12 mod 7	5	✓
36 mod 7	15 mod 7	1	✓

Yes, 3 is a primitive root of 7.

Example 3: Is 2 a primitive root of prime number 7?

Solution:

21 mod 7	2 mod 7	2	✓
2 ² mod 7	4 mod 7	4	✓
2 ³ mod 7	8 mod 7	1	√
2⁴ mod 7	16 mod 7	2	×
25 mod 7	4 mod 7	4	×
26 mod 7	8 mod 7	1	*

No, 2 is not a primitive root of 7.

Multiplicative Inverse

$$5 \times 5^{-1} = 1$$

$$5 \times \frac{1}{5} = 1$$

$$A \times \frac{1}{A} = 1$$

Multiplicative Inverse

Under mod n

$$A \times A^{-1} \equiv 1 \mod n$$

 $3 \times ? \equiv 1 \mod 5$

$$3 \times 2 \equiv 1 \mod 5$$

 $2 \times ? \equiv 1 \mod 11$

$$2 \times 6 \equiv 1 \mod 11$$

 $4 \times ? \equiv 1 \mod 5$

$$4 \times 4 \equiv 1 \mod 5$$

 $5 \times ? \equiv 1 \mod 10$

Multiplicative Inverse

The M.I. for 2 (mod 5) is 3.

The M.I. for 2 (mod 7) is 4.

Extended Euclidian Algorithm

Example 1: What is the multiplicative inverse of 3 mod 5.

Q	A	В	R	T ₁	T ₂	T
1	5	3	2	0	1	-1

$$T_1 = 0$$
 and $T_2 = 1$
 $T = T_1 - T_2 \times Q$
 $T = 0 - 1 \times 1$
 $T = 0 - 1$

Example 1: What is the multiplicative inverse of 3 mod 5.

1 5 1 3	3 2	2	0	1	_/ -1
1 3	- 9				
	1	1	1	-1	2
2 2	1	0	-1	2	-5
X 1	o '	х	2	-5	Х

 \therefore 2 is the M.I of 3 mod 5.

Example 2: What is the multiplicative inverse of 11 mod 13?

a	Α	В	R	T ₁	T ₂	T
1	13	11	2	0	1	-1
5	11	2	1	1	-1	6
2	2	1	0	-1	6	-13
Х	1	o *	Х	6	-13	Х

∴ 6 is the M.I of 11 mod 13.

Example 3: Find the M.I of 11 mod 26.

Q	Α	В	R	T ₁	T ₂	T
2	26	11	4	0	1	-2
2	11	4	3	1	-2	5
1	4	3	1	-2	5	-7
3	3	1	0	5	-7	26
х	1	o *	Х	19	26	Х

: 19 is the M.I of 11 mod 26.

The Chinese Remainder Theorem (CRT) is used to solve a set of different congruent equations with one variable but different moduli which are relatively prime as shown below:

$$X \equiv a_1 \pmod{m_1}$$

$$X \equiv a_2 \pmod{m_2}$$

$$X \equiv a_n \pmod{m_n}$$

CRT states that the above equations have a unique solution of the moduli are relatively prime.

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + ... + a_nM_nM_n^{-1}) \mod M$$

Example 1: Solve the following equations using CRT

$$X \equiv 2 \pmod{3}$$

$$X \equiv 3 \pmod{5}$$

$$X \equiv 2 \pmod{7}$$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

$$X \equiv a_1 \pmod{m_1}$$
 $X \equiv 2 \pmod{3}$
 $X \equiv a_2 \pmod{m_2}$ $X \equiv 3 \pmod{5}$
 $X \equiv a_3 \pmod{m_3}$ $X \equiv 2 \pmod{7}$

Solution:

 $X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$

Gi	ven		To Find	
a ₁ = 2	$m_1 = 3$	M ₁	M ₁ -1	
a ₂ = 3	m ₂ = 5	M ₂	M ₂ -1	М
a ₃ = 2	m ₃ = 7	M ₃	M ₃ -1	

Solution:

 $M = m_1 \times m_2 \times m_3$ $M = 3 \times 5 \times 7$

M = 105

Given		sindagindagindagindaginda	To Find	
a ₁ = 2	m ₁ = 3	$M_1 = 35$	M ₁ -1	
a ₂ = 3	m ₂ = 5	M ₂ = 21	M ₂ -1	M=105
a ₃ = 2	m ₃ = 7	M ₃ = 15	M ₃ -1	

$$M_{1} = \frac{M}{m_{1}} \qquad M_{2} = \frac{M}{m_{2}} \qquad M_{3} = \frac{M}{m_{3}}$$

$$M_{1} = \frac{105}{3} \qquad M_{2} = \frac{105}{5} \qquad M_{3} = \frac{105}{7}$$

$$M_{1} = 35 \qquad M_{2} = 21 \qquad M_{3} = 15$$

Given		To Find		
a ₁ = 2	$m_1 = 3$	$M_1 = 35$	$M_1^{-1} = 2$	
a ₂ = 3	m ₂ = 5	M ₂ = 21	M ₂ -1=1	M=105
a ₃ = 2	m ₃ = 7	M ₃ = 15	M ₃ ·1=1	

$$M_1 \times M_1^{-1} = 1 \mod m_1$$
 $M_2 \times M_2^{-1} = 1 \mod m_2$
 $35 \times M_1^{-1} = 1 \mod 3$ $21 \times M_2^{-1} = 1 \mod 5$
 $35 \times 2 = 1 \mod 3$ $21 \times 1 = 1 \mod 5$

$$M_1^{-1} = 2$$
 $M_2^{-1} = 1$

 $M_3 \times M_3^{-1} = 1 \mod m_3$ $15 \times M_3^{-1} = 1 \mod 7$ $15 \times 1 = 1 \mod 7$ $M_3^{-1} = 1$ m1,m2,m3 should be relatively prime to each other.

The Chinese Remainder Theorem

Example 1: Solve the following equations using CRT

$$X \equiv 2 \pmod{3}$$

$$X \equiv 3 \pmod{5}$$

$$X \equiv 2 \pmod{7}$$

Solution:

a ₁ = 2	m ₁ = 3	M ₁ = 35	M ₁ -1 = 2	
a ₂ = 3	m ₂ = 5	M ₂ = 21	M ₂ -1= 1	M=105
a ₃ = 2	m ₃ = 7	M ₃ = 15	M ₃ -1= 1	

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1} + a_3M_3M_3^{-1}) \mod M$$

$$= (2x35x2 + 3x21x1 + 2x15x1) \mod 105$$

$$= 233 \mod 105$$

$$X = 23$$

Example 1: Solve the following equations using CRT:

$$4X \equiv 5 \pmod{9}$$

 $2X \equiv 6 \pmod{20}$

Rewrite the question as follows:

 $4X \equiv 5 \pmod{9}$

Multiply by 4-1 on both sides

 $4^{-1} \times 4X \equiv 4^{-1} \times 5 \pmod{9}$

 $X \equiv 4^{-1} \pmod{9} \times 5 \pmod{9}$

 $X \equiv 7 \times 5 \pmod{9}$

 $X \equiv 35 \pmod{9}$

X (= (8 (mod 9)

 $2X \equiv 2x3 \pmod{20}$

 $2X \equiv 6 \pmod{20}$

 $X \equiv 3 \pmod{20}$

Example 1: Solve the following equations using CRT:

$$X \equiv 8 \pmod{9}$$

$$X \equiv 3 \pmod{20}$$

 $X \equiv a_1 \pmod{m_1}$

$$X \equiv a_2 \pmod{m_2}$$

$$X \equiv 8 \pmod{9}$$

$$X \equiv 3 \pmod{20}$$

Solution:

$$X = (a_1M_1 M_1^{-1} + a_2M_2M_2^{-1}) \mod M$$

Solution:

Given		To Find		
a ₁ = 8	m ₁ = 9	M ₁	M ₁ -1	м
a ₂ = 3	m ₂ = 20	M ₂	M ₂ -1	М

 $M = m_1 \times m_2$

 $M = 9 \times 20$

M = 180

$$M_{1} = \frac{M}{m_{1}}$$

$$M_{2} = \frac{M}{m_{2}}$$

$$M_{1} = \frac{180}{9}$$

$$M_{1} = 20$$

$$M_{2} = 9$$

$$M_1 = 20$$
 $M_2 = 9$
 $M_1 \times M_1^{-1} = 1 \mod m_1$ $M_2 \times M_2^{-1} = 1 \mod m_2$
 $20 \times M_1^{-1} = 1 \mod 9$ $9 \times M_2^{-1} = 1 \mod 20$

$$20 \times M_1^{-1} = 1 \mod 9$$

 $20 \times 5 = 1 \mod 9$

Example 1: Solve the following equations using CRT:

$$X \equiv 8 \pmod{9}$$

$$X \equiv 3 \pmod{20}$$

Given		To Find		
a ₁ = 8	m ₁ = 9	M ₁ = 20	$M_1^{-1} = 5$	M=180
a ₂ = 3	m ₂ = 20	M ₂ = 9	M ₂ ·1 = 9	M=160

Solution:

$$X = (a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1}) \mod M$$

$$= (8x20x5 + 3x9x9) \mod 180$$

$$= (800 + 243) \mod 180$$

$$= 1043 \mod 180$$

$$X = 143$$

Fermat's Primality Test

```
ls 'p' prime?
```

Test:

 a^{p} - $a \rightarrow p'$ is prime if this is a multiple of p' for all $1 \le a < p$.

Not Accurate (561)

Example

Question 1: Is 5 prime?

Solution:

 a^{p} - $a \rightarrow p'$ is prime if this is a multiple of p' for all $1 \le a < p$.

$$1^5 - 1 = 1 - 1 = 0$$

$$2^5 - 2 = 32 - 2 = 30$$

$$3^5 - 3 = 243 - 3 = 240$$

$$4^5 - 4 = 1024 - 4 = 1020$$

∴ 5 is prime

Question 2: Is 3753 prime?

Solution:

```
a^p\text{-} \ a \to 'p' is prime if this is a multiple of 'p' for all 1 \le a < p 1^{3753}\text{-}\ 1
```

2³⁷⁵³- 2 3³⁷⁵³- 3

4³⁷⁵³- 4

3752³⁷⁵³- 3752

Miller-Rabin Primality Test

Algorithm

```
Step 1: Find n-1 = 2^k \times m
```

Step 3: Compute
$$b_0 = a^m \pmod{n}, ..., b_i = b_{i-1}^2 \pmod{n}$$

- +1 → Composite
- -1 \rightarrow Probably Prime

Question: Is 561 prime?

Solution:

Given n = 561.

Step 1:

n-1 =
$$2^{k}$$
 x m $\frac{560}{2^{1}}$ = 280 $\frac{560}{2^{2}}$ = 140 $\frac{560}{2^{3}}$ = 70 $\frac{560}{2^{4}}$ = 35 $\frac{560}{2^{5}}$ = 17.

So k = 4, and m = 35

Step 2:

Choosing a = 2; 1 < 2 < 560

Question: Is 561 prime?

Solution:

Given n = 561.

Step 3:

Compute $b_0 = a^m \pmod{n}$ $b_1 = a^m \pmod{n}$

 $b_0 = a^m \pmod{n}$

 $b_0 = 2^{35} \pmod{561} = 263$

Is b₀ = ±1 (mod 561)? NO So calculate b₁

 $b_1 = b_0^2 \pmod{n}$

b₁ = 166

Is $b_1 = \pm 1 \pmod{561}$? NO $b_2 = b_1^2 \pmod{n}$

 $b_2 = b_1 \pmod{n}$ $b_2 = 166^2 \pmod{561}$

 $b_1 = 263^2 \pmod{561}$

 $b_2 = 67$

Is $b_2 = \pm 1 \pmod{561}$? NO

 $b_3 = b_2^2 \pmod{n}$

 $b_3 = 67^2 \pmod{561}$

 $b_3 = 1 \rightarrow Composite$ $\therefore 561$ is composite.

Group

A group G denoted by $\{G, \bullet\}$, is a set under some operations (\bullet) if it satisfies the CAIN properties.

- * C Closure
- * A Associative
- * 1 Identity
- * N iNverse.

Abelian Group

A group is said to be Abelian if it already a group and Commutative property is also satisfied i.e. $(a \bullet b) = (b \bullet a)$ for all a, b in G.

Group and Abelian Group

Property			Explanation		
Abelian Group	Group	Closure	a, b ∈ G, then (a • b) ∈ G.		
		Associative $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in G$			
		Identity element	(a • e) = (e • a) = a for all a, e ∈ G.		
		Inverse element	(a • a') = (a' • a) = e for all a, a' ∈ G.		
	Commutative		(a • b) = (b • a) for all a, b ∈ G.		

Question: Is (Z, +) a group?

Solution:

$$Z = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$$

CAIN Property	Explanation	Satisfied?	
Closure	If a, b ∈ G, then (a • b) ∈ G. If a = 5, b = -2 ∈ Z then (a + b) = -3 ∈ Z	✓	
Associative	$a \bullet (b \bullet c) = (a \bullet b) \bullet c \text{ for all } a, b, c \in G.$ 5 + (3 + 7) = (5 + 3) + 7 \in Z	✓	
Identity element	(a • e) = (e • a) = a for all a ∈ G. (5 + 0) = (0 + 5) = 5 for all a ∈ G.	· ·	
Inverse element	(a • a') = (a' • a) = e for all a, a' ∈ G. (5 + -5) = (-5 + 5) = 0 for all 5, -5 ∈ Z	✓	
Commutative	(a • b) = (b • a) for all a, b ∈ G. (5 + 9) = (9 + 5) for all 9, 5 ∈ Z.	✓	

Notations

 $N \rightarrow Set$ of all natural numbers.

 $W \rightarrow Set$ of all whole numbers.

 $Z \rightarrow Set of all integers.$

 $C \rightarrow Set$ of all complex numbers.

 $Q \rightarrow Set$ of all rational numbers.

 $R \rightarrow Set$ of all real numbers.

 $Z^+ \rightarrow Set$ of all positive integers.

 $Z \rightarrow Set$ of all negative integers.

A group G denoted by $\{G, \bullet\}$, is said to be a cyclic group, if it contains at-least one generator element.

Question 1: Prove that (G, *) is a cyclic group, where $G = \{1, \omega, \omega^2\}$.

Solution:

Composition Table

The generators of (G, *) are ω and ω^2 .

∴ (G, *) is a cyclic group.

Question 2: When does group G with operation 'x', is said to be a cyclic group?

Solution:

Let us take an element χ

G = { ,
$$\chi^{-4}$$
, χ^{-3} , χ^{-2} , χ^{-1} , 1, χ , χ^{2} , χ^{3} , χ^{4} , }

= Group generated by χ

If $G = \langle \chi \rangle$ for some χ , then we call G a cyclic group.

Question 3: When does group G with operation '+', is said to be a cyclic group?

Solution:

Let us take an element y

$$G = \{ \ldots, -4y, -3y, -2y, -y, 0, y, 2y, 3y, 4y, \ldots \}$$

= Group generated by y

If $G = \langle y \rangle$ for some y, then we call G a cyclic group.

Rings

A ring R denoted by {R, +, *}, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c ∈ R the following axioms are obeyed:

- Group (A1-A4), Abelian Group(A5).
- \diamond Closure under multiplication (M1): If a, b \in R then ab \in R
- $Associativity of multiplication (M2): a (bc) = (ab) c for all a, b, c \in R$
- Distributive laws (M3):

$$a(b+c) = ab + ac$$
 for all $a, b, c \in R$

$$(a + b) c = ac + bc$$
 for all $a, b, c \in R$

Note:

Subtraction
$$[a - b = a + (-b)]$$

Commutative Rings

A ring is said to be commutative, if it satisfies the following additional condition:

Commutativity of multiplication (M4): ab = ba for all $a, b \in R$

Integral Domain

An integral domain is a commutative ring that obeys the following axioms:

Multiplicative identity (M5): There is an element $1 \in R$ such that a1 = 1a = a for all $a \in R$.

No zero divisors (M6): If $a, b \in R$ and ab = 0, then either a = 0 or b = 0.

Fields

A field F , sometimes denoted by $\{F, +, *\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, $c \in F$ the following axioms are obeyed:

(A1-M6): F is an integral domain; that is, F satisfies axioms A1 - A5 and M1 - M6.

(M7) Multiplicative inverse: For each a in F, except O, there is an element a-1 in F such that

$$aa^{-1} = (a^{-1})a = 1$$

Note: $a/b = a(b^{-1})$.

Familiar examples of Fields:

- * Rational numbers
- Real numbers
- Complex numbers

Groups, Rings and Fields

A1 - Closure		Π				
A2 - Associative		roup				
A3 - Identity element	Group	Abelian Group		Ę.		
A4 - Inverse element		Abeli	Ring	re Ring	_	
A5 - Commutativity of Addition				utativ	Domain	
M1 - Closure under multiplication				Commutative	al D	Field
M2 – Associativity of multiplication				ŭ	Integral	Ē
M3 - Distributive					_	
M4 - Commutativity of multiplication						
M5 - Multiplicative Identity						
M6 - No Zero Divisors						
M7 - Multiplicative Inverse						

Finite Fields

- A finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.
- * As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.
- The most common examples of finite fields are given by the integers (mod p) when p is a prime number.

Application areas:

Mathematics and computer science - Number theory, Algebraic geometry, Galois theory, Finite geometry, Cryptography and Coding theory.