

$EA4-\acute{E}l\acute{e}ments~d'algorithmique $$TD~n^o~2: notations~de~Landau~et~complexit\acute{e}$$

Les questions facultatives, pour aller plus loin, sont marquées (*).

Exercice 1 : notations O et Θ

- 1. Montrer que $3n^2 + 5n + 12 \in O(n^2)$.
- **2.** Montrer que $5n^3 n^2 \in O(n^4)$.
- **3.** Comparer n! à n^n .
- **4.** Montrer que $n^2 + n \log n \in \Theta(n^2)$.
- **5.** Montrer que $8\sqrt{n} \notin \Theta(n)$.
- **6.** (*) Montrer que $\log(n!) \in \Theta(n \log n)$.
- 7. (*) Montrer que pour tout a, b > 1, $\log_a(n) \in \Theta(\log_b(n))$.

Exercice 2 : propriétés de Θ

Dans la suite, f et g désignent des fonctions à valeurs dans \mathbb{N}^* .

- **1.** Montrer que $\forall f, g, f \in \Theta(g) \iff g \in \Theta(f)$.
- **2.** Montrer que $\forall f, g, \max(f, g) \in \Theta(f + g)$.
- **3.** Qu'en est-il de min(f, g)?

Exercice 3 : complexité des boucles

Exprimer le plus simplement possible l'ordre de grandeur du nombre d'additions effectuées par les algorithmes suivants :

```
1. for i in range(n):
    for j in range(n):
        for k in range(n):
        val1 = val1 + 1
2. for i in range(n):
        for j in range(i):
        val1 = val1 + 1
```

On considère maintenant des algorithmes prenant un paramètre entier \mathbf{n} , et deux fonctions de \mathbf{n} notées f et g.

- 3. On suppose que l'algorithme A(n) se décompose en deux parties consécutives, de complexité (en temps) respective $\Theta(f(n))$ et $\Theta(g(n))$. Quel est l'ordre de grandeur de sa complexité?
- **4.** On suppose que l'algorithme A(n) fait $\Theta(f(n))$ tours de boucle, chacun ayant une complexité $\Theta(g(n))$. Quel est l'ordre de grandeur de sa complexité?

Exercice 4 : un algorithme récursif

On considère l'algorithme suivant :

def F(n):

if n < 3: return 1

else : return 2 * F(n - 1) + F(n - 3)

Soit A(n) le nombre d'additions effectuées lors de l'exécution de F(n).

- 1. Donner une définition de A(n) par récurrence. En déduire que A est croissante.
- **2.** Montrer que $A(n) \in \Omega(2^{n/3})$ où / est la division euclidienne.
- 3. Proposer un algorithme qui fait un nombre linéaire d'additions pour calculer les mêmes valeurs que F(n).
- 4. Quel est la complexité de cet algorithme?
- 5. Existe-t-il un algorithme de complexité inférieure?

Exercice 5: classement

Classer les fonctions suivantes en fonction de leur ordre de grandeur dans les classes Θ_1 à Θ_7 en respectant les conditions suivantes :

– deux fonctions appartiennent à la même classe Θ_i si et seulement si elles sont du même ordre de grandeur :

$$\forall f, g, f \in \Theta(g) \iff \exists i, f, g \in \Theta_i$$

– les classes Θ_i sont rangées en ordre de grandeur croissant :

$$\forall i, \forall f, q, f \in \Theta_i \text{ et } q \in \Theta_{i+1} \implies f \in O(q)$$

Liste des fonctions à traiter :

$$n^2 - 5n, \quad n + 2n^3 \log n, \quad n^2 + n \log n, \quad n^2 \sqrt{n}, \quad \sqrt{n}, \quad 2^n, \quad e^n, \quad 2^{n+4}, \quad \log n, \quad \log(n^4)$$

Θ_1	Θ_2	Θ_3	Θ_4	Θ_5	Θ_6	Θ_7