ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ (Queuing Systems)

Συστήματα Γεννήσεων – Θανάτων:

- Σφαιρικές & Λεπτομερείς Εξισώσεις Ισορροπίας
- Ουρές Markov M/M/1, M/M/1/N

Εβδομάδα 23 Μαρτίου, 2020

ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ – ΘΑΝΑΤΩΝ (1/3)

- Παραδοχές: Birth Death Processes (επανάληψη)
 - ο Ανεξαρτησία γεννήσεων-θανάτων
 - \circ Εξέλιξη της κατάστασης πληθυσμού n(t) βασισμένη μόνο στο παρόν (Ιδιότητα Markov)
- Σύστημα Διαφορικών εξισώσεων Διαφορών
 - Κατάσταση ισορροπίας (steady state)
 - Την χρονική στιγμή t το σύστημα καταλήγει σε πληθυσμό n(t)=k
 - Μπορεί να έχουν προηγηθεί οι ακόλουθες μεταβάσεις από την χρονική στιγμή $t-\Delta t, \Delta t \to 0$:
 - ightharpoonup Μία άφιξη στο διάστημα Δt , με πιθανότητα $\lambda_{k-1}\Delta t$ αν k>0
 - $ightharpoonup Μια αναχώρηση, με πιθανότητα <math>\mu_{k+1} \Delta t$ αν υπάρχει η k+1 (σε περίπτωση περιορισμού μέγιστου πληθυσμού K μπορούμε να θεωρήσουμε $\mu_{k+1}=0$)
 - ightharpoonup Τίποτα από τα δύο, με πιθανότητα $1-(\lambda_k+\mu_k)\Delta t$ αν k>0 ή $1-\lambda_0\Delta t$ αν k=0
- Οι εξισώσεις μετάβασης (*Chapman Kolmogorov*) προκύπτουν από τον τύπο συνολικής πιθανότητας:

$$P_k(t) = \lambda_{k-1} \Delta t P_{k-1}(t - \Delta t) + \mu_{k+1} \Delta t P_{k+1}(t - \Delta t) + [1 - (\lambda_k + \mu_k) \Delta t] P_k(t - \Delta t)$$

$$P_0(t) = \mu_1 \Delta t P_1(t - \Delta t) + (1 - \lambda_0 \Delta t) P_0(t - \Delta t)$$

ightharpoonup με αρχικές συνθήκες $P_{\nu}(0)$ και οριακές συνθήκες $\sum_k P_k(t)=1$, $\forall t$

ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ – ΘΑΝΑΤΩΝ (2/3)

Birth – Death Processes (επανάληψη)

Στο όριο, $\Delta t \approx dt \to 0$, $\frac{P_k(t) - P_k(t - \Delta t)}{\Delta t} \to \frac{dP_k(t)}{dt}$ και προκύπτει το γραμμικό σύστημα διαφορικών εξισώσεων διαφορών:

$$\qquad \frac{dP_0(t)}{dt} = \mu_1 P_1(t) - \lambda_0 P_0(t)$$

ightarrow με αρχικές συνθήκες $P_k(0)$ και οριακές συνθήκες $\sum_k P_k(t) = 1$, $\forall t$

Όταν $t \to \infty$ και υπό ορισμένες συνθήκες το σύστημα συγκλίνει σε σταθερή κατάσταση. Το μεταβατικό φαινόμενο παρέρχεται για απείρως επισκέψιμες καταστάσεις n(t) = k (επαναληπτικές, positive recurrent), ξεχνιέται η αρχική συνθήκη $P_k(0)$ και οι $P_k(t)$ συγκλίνουν στις οριακές πιθανότητες $P_k > 0$:

Για
$$t \to \infty$$
, $\frac{dP_k(t)}{dt} = 0$, $P_k(t) \to P_k > 0$: Εργοδικές Οριακές Πιθανότητες

Σημείωση: Ισχύει η *εργοδική* ιδιότητα και οι οριακές πιθανότητες μπορούν να προσεγγισθούν σαν

 $P_k = \lim_{T o \infty} \{ rac{T_k}{T} \}$ όπου T_k είναι το σχετικό συνολικό χρονικό διάστημα T_k όταν n(t) = k σε μεγάλο χρονικό

ορίζοντα T μιας καταγραφής της ανέλιξης n(t) σε ισορροπία.

Οι εργοδικές οριακές πιθανότητες προκύπτουν από τις γραμμικά ανεξάρτητες *Εξισώσεις Ισορροπίας*:

$$(\lambda_k + \mu_k)P_k = \lambda_{k-1}P_{k-1} + \mu_{k+1}P_{k+1}, \ k > 1$$

$$\triangleright \quad \lambda_0 P_0 = \mu_1 P_1$$

$$P_0 + P_1 + \cdots + P_k + \cdots = 1$$

ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ – ΘΑΝΑΤΩΝ (3/3)

Birth – Death Processes (επανάληψη)

Εφαρμογή σε Απλή Ουρά Μ/Μ/1

- Αφίξεις Poisson με μέσο ρυθμό λ αφίξεις/sec: $\lambda_k=\lambda$, k=0,1,2,3, \cdots
- Χρόνοι εξυπηρέτησης εκθετικοί με μέση τιμή $\mathrm{E}(s)=\frac{1}{\mu}\mathrm{sec}$: $\mu_k=\mu$, $k=1,2,3,\cdots$
- $\rho = \frac{\lambda}{u} < 1$ Erlang (συνθήκη για οριακή ισορροπία εργοδικότητα)
- Η εξέλιξη των πιθανοτήτων $P[n(t) = k] = P_k(t)$ προκύπτει από το σύστημα διαφορικών εξισώσεων:

$$\frac{dP_0(t)}{dt} = \mu P_1(t) - \lambda P_0(t)$$

- ightarrow με αρχικές συνθήκες $\mathbf{P}_k(0)$ και οριακές συνθήκες $\sum_{k=0}^{\infty}\mathbf{P}_k(t)=1 \ \ \forall t\geq 0$
- Στο όριο $t \to \infty$, $\frac{dP_k(t)}{dt} = 0$, $P_k(t) \to P_k > 0$, τις **εργοδικές πιθανότητες** που προκύπτουν από τις εξισώσεις ισορροπίας:

$$\triangleright$$
 $\lambda P_0 = \mu P_1 \dot{\eta} P_1 = \left(\frac{\lambda}{\mu}\right) P_0 = \rho P_0$

$$ightarrow$$
 $(\lambda + \mu)P_1 = \lambda P_0 + \mu P_2$ ή $P_2 = \rho^2 P_0$ και γενικά $P_k = \rho^k P_0$, $k>0$

$$P_0 + P_1 + \dots + P_k + \dots = 1 = P_0(1 + \rho + \rho^2 + \rho^3 + \dots)$$

Εφόσον $0<\rho<1$ η άπειρη δυναμοσειρά $(1+\rho+\rho^2+\rho^3+\cdots) o rac{1}{1-\rho} o P_0(rac{1}{1-\rho})=1$ και

$$P_0 = (1 - \rho), P_k = (1 - \rho)\rho^k, k > 0$$

Μέσο μήκος ουράς Μ/Μ/1 σε ισορροπία: $E[n(t)] \triangleq \sum_{k=1}^{\infty} k P_k = \frac{\rho}{1-\rho}$

ΕΞΙΣΩΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ (1/2)

• Birth-Death Process: Διάγραμμα Πιθανοτήτων Μεταβάσεων σε χρόνο $\Delta t \to 0$ προς n(t) = k $1 - (\lambda_k + \mu_k) \Delta t$

Εξισώσεις Μετάβασης (*Chapman - Kolmogorov*):

$$P_{k}(t) = \lambda_{k-1} \Delta t P_{k-1}(t - \Delta t) + \mu_{k+1} \Delta t P_{k+1}(t - \Delta t) + [1 - (\lambda_{k} + \mu_{k}) \Delta t] P_{k}(t - \Delta t), \qquad k \ge 1$$

$$P_{0}(t) = \mu_{1} \Delta t P_{1}(t - \Delta t) + (1 - \lambda_{0} \Delta t) P_{0}(t - \Delta t)$$

• Birth-Death Process: Διάγραμμα *Ρυθμών Μεταβάσεων* μεταξύ *Εργοδικών* Καταστάσεων

Εξισώσεις Ισορροπίας:

$$(\lambda_k + \mu_k)P_k = \lambda_{k-1}P_{k-1} + \mu_{k+1}P_{k+1}$$
 για $k \ge 1$ και $\lambda_0 P_0 = \mu_1 P_1$

Σχετικές Πιθανότητες Μεταβάσεων $k \to (k+1)$, $k \to (k-1)$:

$$P[k \to (k+1)/\mu$$
ετάβαση] = $\lambda_k/(\lambda_k + \mu_k)$, $P[k \to (k-1)/\mu$ ετάβαση] = $\mu_k/(\lambda_k + \mu_k)$

Dwell Time - Χρόνος Παραμονής στην n(t)=k μέχρι την επόμενη μετάβαση

Εκθετική τυχαία μεταβλητή d_k **με μέσο** $1/(\lambda_k + \mu_k)$: Η μικρότερη δύο ανεξάρτητων εκθετικών τυχαίων μεταβλητών μέχρι (1) την επόμενη άφιξη με μέσο $1/\lambda_k$ ή (2) την ολοκλήρωση εξυπηρέτησης με μέσο $1/\mu_k$

$$\begin{aligned} d_k &= \min(x,y) \text{ , } F_{d_k}(\tau) = \text{P}\{d_k \leq \tau\} = 1 - \text{P}\{d_k > \tau\} = 1 - e^{-(\lambda_k + \mu_k)\tau} \text{ διότι} \\ \text{P}\{d_k > \tau\} &= \text{P}\{x > \tau, y > \tau\} = \text{P}\{x > \tau\} \text{P}\{y > \tau\} = e^{-\lambda_k \tau} e^{-\mu_k \tau} = e^{-(\lambda_k + \mu_k)\tau} \end{aligned}$$

EΞΙΣΩΣΕΙΣ ΙΣΟΡΡΟΠΙΑΣ (2/2)

- Απείρως επισκέψιμες επαναληπτικές καταστάσεις $\mathbf{s}=n(t)$ positive recurrent states: Με μη μηδενικές εργοδικές πιθανότητες $P\{n(t)=k\}=P_k(t)\to P_k>0,\ k=0,1,2,...$
- Σε μεγάλο χρονικό διάστημα παρατήρησης Τ ισορροπούν οι αριθμοί μεταβάσεων από και προς την κατάσταση **s** :

#{ΜΕΤΑΒΑΣΕΩΝ ΠΡΟΣ ΤΗΝ ΚΑΤΑΣΤΑΣΗ s} = #{ΕΚΤΟΣ ΤΗΣ s} Εξισώσεις Σφαιρικής Ισορροπίας, Global Balance Equations

- Υπό συγκεκριμένες συνθήκες (ισχύουν για διαδικασίες birth-death) οι Εξισώσεις Σφαιρικής Ισορροπίας μπορεί να αντικαταστθούν από απλούστερες Εξισώσεις Λεπτομερούς (Ακριβούς) Ισορροπίας, Detailed Balance Equations ως εξής:
 - Σε μεγάλο χρονικό διάστημα παρατήρησης \mathbf{T} αν ισχύουν οι συνθήκες $\mathbf{\Lambda}$ επτομερούς \mathbf{I} σορροπίας ισορροπούν οι αριθμοί μεταβάσεων μεταξύ δύο αμφίδρομα γειτονικών καταστάσεων \mathbf{s}_1 και \mathbf{s}_2 :

$$\#\{\text{METABASE}\Omega \mid s_1 \rightarrow s_2\} = \#\{\text{METABASE}\Omega \mid s_2 \rightarrow s_1\}$$

- Λόγω εργοδικότητας σε μεγάλο χρονικό διάστημα παρατήρησης T, με T_1 και T_2 τους συνολικούς χρόνους παραμονής στις \mathbf{s}_1 , \mathbf{s}_2 :
 - (1) $\#\{\text{METABA}\Sigma E\Omega N \mathbf{s}_1 \rightarrow \mathbf{s}_2\} = T_1 \times T_{1,2}$
 - (2) $\#\{\text{METABA}\Sigma E\Omega N \mathbf{s}_2 \rightarrow \mathbf{s}_1\} = \overline{T_2} \times r_{2,1}$

όπου $r_{1,2}, r_{2,1}$ οι μέσοι ρυθμοί μεταβάσεων μεταξύ των ${m s}_1$ και ${m s}_2$

(1) = (2)
$$\ker r_{1,2} \lim_{T\to\infty} \frac{T_1}{T} = r_{2,1} \lim_{T\to\infty} \frac{T_2}{T} \dot{\eta}$$

 $r_{1,2}P_1 = r_{2,1}P_2$ Detailed Balance Equations

ΟΥΡΑ MARKOV M/M/1 (απείρου μεγέθους)

- Αφίξεις Poisson με μέσο ρυθμό λ αφίξεις/sec: $\lambda_k = \lambda = \gamma$, $k = 0,1,2,3,\cdots$
- Χρόνοι εξυπηρέτησης εκθετικοί με μέση τιμή $\mathrm{E}(s)=\frac{1}{\mu}\mathrm{sec}$: $\mu_k=\mu$, $k=1,2,3,\cdots$
- $\rho = u = \frac{\lambda}{u} < 1$ Erlang (συνθήκη για οριακή ισορροπία εργοδικότητα)
- Οι εργοδίκές πιθανότητες προκύπτουν από τις εξισώσεις ισορροπίας:

$$ightharpoonup \lambda P_0 = \mu P_1 \dot{\eta} P_1 = \left(\frac{\lambda}{\mu}\right) P_0 = \rho P_0$$

$$ho$$
 $(\lambda + \mu)P_1 = \lambda P_0 + \mu P_2$ ή $P_2 = \rho^2 P_0$ και $P_k = \rho^k P_0$, $k > 0$

$$P_0 + P_1 + \cdots + P_k + \cdots = 1 = P_0(1 + \rho + \rho^2 + \rho^3 + \cdots)$$

Με $0<\rho<1$ η άπειρη δυναμοσειρά συγκλίνει, $P_0\left(\frac{1}{1-\rho}\right)=1\Rightarrow$

$$P_0 = (1 - \rho), \ P_k = (1 - \rho)\rho^k, k > 0 \text{ Kal } P\{n(t) > 0\} = 1 - P_0 = \rho$$

• Μέση κατάσταση συστήματος Μ/Μ/1 σε ισορροπία:

$$E[n(t)] = \sum_{k=1}^{\infty} kP_k = \frac{\rho}{1-\rho}$$

• **Μέσος χρόνος καθυστέρησης**: Τύπος Little

$$E(T) = \frac{E[n(t)]}{\gamma} = \frac{E[n(t)]}{\lambda} = \frac{1/\mu}{1-\rho}$$

• Μέσο μήκος ουράς & μέσος χρόνος αναμονής Μ/Μ/1:

$$E[n_q(t)] = E[n(t)] - \rho, \qquad E(W) = E(T) - 1/\mu$$

7

Ουρές M/M/1 – Ρυθμοί εξαρτώμενοι από παρούσα κατάσταση (state dependent)

• Συστήματα M/M/1 με ρυθμούς άφιξης και ρυθμούς εξυπηρέτησης εξαρτώμενους από τον αριθμό των πελατών στο σύστημα (από την παρούσα κατάσταση του συστήματος)

(State Dependent M/M/1 Queues)

Local Balance Equation

$$\lambda_0 P_0 = \mu_1 P_1$$

 $\lambda_{i-1} P_{i-1} = \mu_i P_i$, $i = 1, 2, ...N$

 $(\lambda_i + \mu_i)P_i = \lambda_{i-1}P_{i-1} + \mu_{i+1}P_{i+1}$, i = 0, 1, ..., N

Κανονικοποίηση Εργοδικών Πιθανοτήτων $P_0 + ... + P_N = 1$

OYPA M/M/1/N (1/2)

Συστήματα Μ/Μ/1/Ν με ρυθμούς άφιξης και ρυθμούς εξυπηρέτησης εξαρτώμενους από τον αριθμό των πελατών στο σύστημα (από την παρούσα κατάσταση του συστήματος)

(State Dependent M/M/1/N Queues)

Detailed Balance Equations

$$\lambda_0 P_0 = \mu_1 P_1$$

 $\lambda_{k-1} P_{k-1} = \mu_k P_k \quad k = 1, 2, ... N$

Global Balance Equations

$$\lambda_0 P_0 = \mu_1 P_1 \lambda_{k-1} P_{k-1} = \mu_k P_k \quad k = 1, 2, \dots N$$

$$(\lambda_k + \mu_k) P_k = \lambda_{k-1} P_{k-1} + \mu_{k+1} P_{k+1} \quad k = 1, \dots, N$$

Κανονικοποίηση Εργοδικών Πιθανοτήτων

$$P_0 + \cdots + P_N = 1$$

OYPA M/M/1/N (2/2)

Σταθεροί μέσοι ρυθμοί αφίξεων (γεννήσεων)

$$\lambda_k = \lambda$$
, Poisson, $k = 1, 2, ..., N$

Σταθεροί μέσοι ρυθμοί εξυπηρέτησης (θανάτων)

$$\mu_k = \mu, k = 1, 2, ..., N$$

Εκθετικοί ανεξάρτητοι χρόνοι εξυπηρέτησης $s, E(s) = 1/\mu$

Εργοδικές πιθανότητες καταστάσεων

$$P_k = \rho^k P_0, \quad k = 0,1,2,...,N$$

$$P_0 + P_1 + \dots + P_{N-1} + P_N = 1$$

 $\rho = \lambda/\mu$ Erlangs (η M/M/1/N είναι πάντα ευσταθής γιατί υπερβολικό φορτίο δεν προωθείται)

• Αντικαθιστώντας με τον τύπο πεπερασμένου αθροίσματος γεωμετρικής προόδου:

$$P_0 = \frac{1 - \rho}{1 - \rho^{N+1}}, \qquad \rho \neq 1$$

$$P_0 = \frac{1}{N+1}, \qquad \rho = 1$$

- Χρησιμοποίηση Εξυπηρετητή (Server Utilization) $U=1-P_0$
- Ρυθμαπόδοση (throughput) $\gamma = \lambda(1 P_N) = \mu(1 P_0) = \mu U$
- Πιθανότητα απώλειας $P_{blocking} = P_N$
- Στάσιμος Εργοδικός μέσος όρος πληθυσμού κατάστασης

$$E[n(t)] \to E(k) = \sum_{k=1}^{N} kP_k = \rho \frac{1 - (N+1)\rho^N + N\rho^{N+1}}{(1-\rho)(1-\rho^{N+1})}$$

• Νόμος του Little: $E(T) = E(k)/\gamma = E(k)/[\lambda(1-P_N)]$