STAT 3690 Lecture Note

Week Three (Jan 23, 25, & 27, 2023)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

Statistical modelling (con'd)

Transformation of random vectors

- Derive the pdf of continuous $oldsymbol{Y} = oldsymbol{g}(oldsymbol{X})$ from the pdf of continuous $oldsymbol{X}$
- Prerequisite
 - $-\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and $\boldsymbol{Y} = [Y_1, \dots, Y_p]^{\top}$ $-\boldsymbol{g} = (g_1, \dots, g_p) \colon \mathbb{R}^p \to \mathbb{R}^p$ is a continuous one-to-one map with inverse $\boldsymbol{g}^{-1} = (h_1, \dots, h_p)$, i.e., $Y_i = g_i(\boldsymbol{X})$ and $X_i = h_i(\boldsymbol{Y})$
- Elaborate supp $(Y) = \{[y_1, ..., y_p]^\top : [h_1(y_1, ..., y_p), ..., h_p(y_1, ..., y_p)]^\top \in \text{supp}(X)\}$
- Jacobian matrix of \mathbf{g}^{-1} is $\mathbf{J}_{\mathbf{g}^{-1}} = [\partial x_i/\partial y_j]_{p\times p} = [\partial h_i(y_1,\ldots,y_p)/\partial y_j]_{p\times p}$ - Also, $|\det(\mathbf{J}_{\mathbf{g}^{-1}})| = |\det([\partial y_i/\partial x_j]_{p\times p})|^{-1} = |\det([\partial g_i(x_1,\ldots,x_p)/\partial x_j]_{p\times p})|^{-1}$
- Then

$$f_{\boldsymbol{Y}}(y_1,\ldots,y_p) = f_{\boldsymbol{X}}(h_1(y_1,\ldots,y_p),\ldots,h_p(y_1,\ldots,y_p))|\det(\mathbf{J}_{\boldsymbol{g}^{-1}})|\mathbf{1}_{\operatorname{supp}(\boldsymbol{Y})}(y_1,\ldots,y_p)$$

• Exercise: Let $X = [X_1, X_2]^{\top}$ follow the standard bivariate normal, i.e., its pdf is

$$f_{\mathbf{X}}(x_1, x_2) = (2\pi)^{-1} \exp\{-(x_1^2 + x_2^2)/2\} \mathbf{1}_{\mathbb{R}^2}(x_1, x_2).$$

Find out the joint pdf of $Y = [Y_1, Y_2]^{\top}$, where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $0 \le Y_2 < 2\pi$ is the angle from the positive x-axis to the ray from the origin to the point (X_1, X_2) , that is, Y is X in the polar coordinate.

• Exercise: Given positive α , β and θ , $\boldsymbol{X} = [X_1, X_2]^{\top}$ follow

$$f_{\mathbf{X}}(x_1, x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)\theta^{\alpha+\beta}} x_1^{\alpha-1} x_2^{\beta-1} \exp\left(-\frac{x_1 + x_2}{\theta}\right) \mathbf{1}_{\mathbb{R}^+ \times \mathbb{R}^+}(x_1, x_2).$$

Find out the joint pdf of $Y = [Y_1, Y_2]^{\top}$, where $Y_1 = X_1/(X_1 + X_2)$ and $Y_2 = X_1 + X_2$.

Expectation of random matrix

- $E(\boldsymbol{X}) = [E(X_{ij})]_{n \times p}$, where
 - Random $n \times p$ matrix $\boldsymbol{X} = [X_{ij}]_{n \times p}$
- (Linearity) $E(\mathbf{A}X + \mathbf{B}Y) = \mathbf{A}E(X) + \mathbf{B}E(Y)$, where
 - Fixed $\mathbf{A} \in \mathbb{R}^{\ell \times n}$ and $\mathbf{B} \in \mathbb{R}^{\ell \times m}$
 - Random matrices $\mathbf{X} = [X_{ij}]_{n \times p}$ and $\mathbf{Y} = [Y_{ij}]_{m \times p}$

Covariance matrix

- Random p-vector $\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and random q-vector $\boldsymbol{Y} = [Y_1, \dots, Y_q]^{\top}$
- Covariance matrix (defined via expectation) $\Sigma_{XY} = \text{cov}(X, Y) = \text{E}[\{X \text{E}(X)\}\{Y \text{E}(Y)\}^{\top}]$
 - Also, $\Sigma_{\boldsymbol{X}\boldsymbol{Y}} = \mathrm{E}(\boldsymbol{X}\boldsymbol{Y}^{\top}) \mathrm{E}(\boldsymbol{X})\mathrm{E}(\boldsymbol{Y}^{\top})$
 - The (i, j)-entry of Σ_{XY} is $cov(X_i, Y_j)$
- $\Sigma_{\mathbf{A}X+\boldsymbol{a},\mathbf{B}Y+\boldsymbol{b}} = \mathbf{A}\Sigma_{XY}\mathbf{B}^{\top}$ for fixed $\mathbf{A} \in \mathbb{R}^{m \times p}$, $\boldsymbol{a} \in \mathbb{R}^{m}$, $\mathbf{B} \in \mathbb{R}^{\ell \times q}$ and $\boldsymbol{b} \in \mathbb{R}^{\ell}$
- $\Sigma_{X} \geq 0$, where $\Sigma_{X} = \text{cov}(X)$ is short for $\Sigma_{XX} = \text{cov}(X, X)$
- Exercise: Verify the following properties of covariance matrix
 - 1. $\Sigma_{\mathbf{A}X+a,\mathbf{B}Y+b} = \mathbf{A}\Sigma_{XY}\mathbf{B}^{\top}$
 - 2. $\Sigma_X \geq 0$

Sample covariance matrix

- Samples $\boldsymbol{X}_k = [X_{k1}, \dots, X_{kp}]^\top$ and $\boldsymbol{Y}_k = [Y_{k1}, \dots, Y_{kq}]^\top$, $k = 1, \dots, n$
- $(\boldsymbol{X}_k, \boldsymbol{Y}_k) \stackrel{\text{iid}}{\sim} (\boldsymbol{X}, \boldsymbol{Y})$, where $\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and $\boldsymbol{Y} = [Y_1, \dots, Y_q]^{\top}$
- Sample means

$$- \bar{\mathbf{X}} = n^{-1} \sum_{k=1}^{n} \mathbf{X}_{k} = [\bar{X}_{.1}, \cdots, \bar{X}_{.p}]^{\top} - \bar{\mathbf{Y}} = n^{-1} \sum_{k=1}^{n} \mathbf{Y}_{k} = [\bar{Y}_{.1}, \cdots, \bar{Y}_{.q}]^{\top}$$

• Sample covariance matrix:

$$\mathbf{S}_{\boldsymbol{X}\boldsymbol{Y}} = \frac{1}{n-1} \sum_{k=1}^{n} \{ (\boldsymbol{X}_k - \bar{\boldsymbol{X}}) (\boldsymbol{Y}_k - \bar{\boldsymbol{Y}})^{\top} \}$$

- The (i, j)-entry of \mathbf{S}_{XY} is $(n-1)^{-1} \sum_{k=1}^{n} (X_{ki} \bar{X}_{\cdot i}) (Y_{kj} \bar{Y}_{\cdot j})$, i.e., the sample covariance between X_i and Y_j
- Unbiasedness: $E(\mathbf{S}_{XY}) = \mathbf{\Sigma}_{XY}$
- $-\mathbf{S}_{\mathbf{A}\boldsymbol{X}+\boldsymbol{a},\mathbf{B}\boldsymbol{Y}+\boldsymbol{b}} = \mathbf{A}\mathbf{S}_{\boldsymbol{X}\boldsymbol{Y}}\mathbf{B}^{\top} \text{ for } \mathbf{A} \in \mathbb{R}^{m \times p}, \, \boldsymbol{a} \in \mathbb{R}^{m}, \, \mathbf{B} \in \mathbb{R}^{\ell \times q} \text{ and } \boldsymbol{b} \in \mathbb{R}^{\ell}$
- $-\mathbf{S}_{\boldsymbol{X}} \geq 0$
- Implementation in R: cov() (or var() if X = Y)
- Exercise: Verify the following properties of sample covariance matrix
 - 1. $E(S_{XY}) = \Sigma_{XY}$
 - 2. $\mathbf{S}_{\mathbf{A}X+a,\mathbf{B}Y+b} = \mathbf{A}\mathbf{S}_{XY}\mathbf{B}^{\top}$
 - 3. $\mathbf{S}_{X} \geq 0$

Computing mean vectors and covariance matrices via R