Matemática Discreta - Grado en Ing. Informática Relación de Ejercicios (Parte I)

- 1. Sean A y B dos conjuntos. Demuestra que $A \subseteq B$ si y sólo si $A \cap B = A$.
- 2. Sea U un conjunto de 12 elementos y $A \subseteq U$ un conjunto que satisface $|\mathcal{P}(A^c)| = 128$. ¿Cuántos subconjuntos tiene el conjunto A?
- 3. 420 personas ven los canales A, B y C. De ellos, 240 no ven el canal A, 180 no ven el canal B, 150 no ven el canal C, y 230 ven por lo menos 2 canales. ¿Cuántas personas ven los 3 canales?
- 4. Un club de deportes tiene 58 jugadores, de los cuales 38 juegan fútbol, 15 hacen atletismo y 20 juegan tenis. Se conoce que solo 3 de ellos practican todos los deportes. ¿Cuántos jugadores practican exactamente un deporte?
- 5. Determina el número de secuencias binarias de longitud 8 que tienen los dos primeros bits diferentes.
- 6. Un conjunto de 100 elementos se distribuye en 14 bloques. Demuestra que hay dos bloques con el mismo número de elementos.
- 7. ¿Cuántas secuencias hay de longitud 6, formadas con los dígitos 0,...,9 y con todos los dígitos diferentes, excepto el dígito 5, el cual se repite tres veces?
- 8. Se dispone de un número ilimitado de bloques de 1cm, 2cm y 3cm de altura. Formular una ecuación recurrente para obtener cuántas torres de altura n se pueden construir combinando estos bloques.

MATEMÁTICA DISCRETA

Ejercicios Resueltos (Parte I)

Ejercicio 1: Sean A y B dos conjuntos. Demuestra que $A \subseteq B$ si y sólo si $A \cap B = A$.

Solución: Supongamos que $A \subseteq B$. Sea $x \in A$. Por hipótesis, $x \in B$. Entonces, $x \in A \cap B$, lo que implica que $A \subseteq A \cap B$. Por otra parte, es evidente que $A \cap B \subseteq A$. Por tanto, $A \cap B = A$.

Ahora, supongamos que $A \cap B = A$. Lo anterior implica que $A \subseteq A \cap B$, y como $A \cap B \subseteq B$ entonces $A \subseteq B$.

Ejercicio 2: Sea U un conjunto de 12 elementos y $A\subseteq U$ un conjunto que satisface $|\mathcal{P}(A^c)|=128$. ¿Cuántos subconjuntos tiene el conjunto A?

Solución: Observa que: $2^7=128=|\mathcal{P}(A^c)|=2^{|A^c|}$. Por tanto, $|A^c|=7$, lo cual conduce a que:

$$|A| = |U \setminus A^c| = |U| - |A^c| = 12 - 7 = 5.$$

Entonces, $|\mathcal{P}(A)| = 2^{|A|} = 2^5 = 32$.

Ejercicio 3: 420 personas ven los canales A, B y C. De ellos, 240 no ven el canal A, 180 no ven el canal B, 150 no ven el canal C, y 230 ven por lo menos 2 canales. ¿Cuántas personas ven los 3 canales? Solución:

- X_i : conjunto de personas que ven el canal i ($i \in \{A, B, C\}$).
- $|X_A \cap X_B \cap X_C|$: número de personas que ven los 3 canales.
- Por el principio de Inclusión-Exclusión:

$$|X_A \cap X_B \cap X_C| = |X_A \cup X_B \cup X_C| - |X_A| - |X_B| - |X_C| + |X_A \cap X_B| + |X_A \cap X_C| + |X_B \cap X_C|.$$

- $\bullet |X_A \cup X_B \cup X_C| = 420.$
- $|X_A| = 420 |X_A^c| = 180$, $|X_B| = 240$, $|X_C| = 270$.
- $|X_A \cap X_B| + |X_A \cap X_C| + |X_B \cap X_C| 2|X_A \cap X_B \cap X_C| = 230.$

Por tanto, $|X_A \cap X_B \cap X_C| = 40$.

Ejercicio 4: Un club de deportes tiene 58 jugadores, de los cuales 38 juegan fútbol, 15 hacen atletismo y 20 juegan tenis. Se conoce que solo 3 de ellos practican todos los deportes. ¿Cuántos jugadores practican exactamente un deporte?

Solución:

- F, A y T: conjunto de futbolistas, atletas y tenistas, resp.
- $|F \cup A \cup T| = 58$, $|F \cap A \cap T| = 3$, |F| = 38, |A| = 15 y |T| = 20.
- $x \rightarrow \#$ jugadores que practican exactamente un deporte.

•
$$x = |F \cup A \cup T| - (|F \cap A| + |F \cap T| + |A \cap T|) + 2|F \cap A \cap T|$$
.

Por el principio de Inclusión-Exclusión:

$$|F\cap A|+|F\cap T|+|A\cap T|=|F|+|A|+|T|+|F\cap A\cap T|-|F\cup A\cup T|.$$

- $|F \cap A| + |F \cap T| + |A \cap T| = 18$.
- x = 46.

Ejercicio 5: Determina el número de secuencias binarias de longitud 8 que tienen los dos primeros bits diferentes.

Solución: Si el primer bit es 1, entonces el segundo es 0 y viceversa. En cualquiera de los dos casos hay 2^6 formas de completar la secuencia de 8 bits. Por lo tanto, la solución es $2 \cdot 2^6 = 128$.

Ejercicio 6: Un conjunto de 100 elementos se distribuye en 14 bloques. Demuestra que hay dos bloques con el mismo número de elementos.

Solución:

- $x_i \to \text{tama\~no}$ del bloque i $(i \in \{1, \dots, 14\})$. $\sum_{i=1}^{14} x_i = 100$.
- Si todos los x_i son distintos, entonces

$$100 = \sum_{i=1}^{14} x_i \ge \sum_{i=1}^{14} i = \frac{14 \cdot 15}{2} = 105,$$

lo cual es una contradicción.

• Por tanto, existen $i, j \in \{1, ..., 14\}$ tal que $x_i = x_j$.

Ejercicio 7: ¿Cuántas secuencias hay de longitud 6, formadas con los dígitos 0,...,9 y con todos los dígitos diferentes, excepto el dígito 5, el cual se repite tres veces?

Solución:

- Hay C(6,3) = 20 formas diferentes de colocar los tres dígitos repetidos.
- Para las tres posiciones restantes se tienen V(9,3) = 504 maneras diferentes.
- Por lo tanto, en total hay $C(6,3)V(9,3) = 20 \cdot 504 = 10080$ secuencias diferentes.

Ejercicio 9: Se dispone de un número ilimitado de bloques de 1cm, 2cm y 3cm de altura. Formular una ecuación recurrente para obtener cuántas torres de altura n se pueden construir combinando estos bloques.

Solución:

- Sea x_n el total de torres de altura n que se pueden construir.
- Observa que x_n se puede descomponer como la suma de tres subtotales:
 - El número de torres, x_{n-1} , que empiezan con un bloque de 1cm de altura.
 - El número de torres, x_{n-2} , que empiezan con un bloque de 2cm de altura.
 - El número de torres, x_{n-3} , que empiezan con un bloque de 3cm de altura.

Por tanto,

$$x_n = x_{n-1} + x_{n-2} + x_{n-3}$$

donde $n \ge 4$ y $x_1 = 1$, $x_2 = 2$ y $x_3 = 4$.

Ejercicio 10: Resolver la siguiente ecuación recurrente.

$$x_n - 5x_{n-1} + 6x_{n-2} = 0;$$
 $x_0 = 1, x_1 = 2$

Solución:

- La ecuación característica es $t^2 5t + 6 = 0$. Por lo tanto, las raíces son t = 3 y t = 2.
- La solución general es de la forma: $x_n = \alpha \cdot 3^n + \beta \cdot 2^n$.
- Teniendo en cuenta las condiciones iniciales, se obtiene el sistema:

$$1 = \alpha + \beta$$
$$2 = 3\alpha + 2\beta$$

• Se obtiene que $\alpha = 0$ y $\beta = 1$. Por tanto, la solución es

$$x_n = 2^n$$

