HLS for Recognizer Model

Group Number: 3

Group members:

Shantanu Shrivastav 234101063

Shubham Mourya 234101064

Ayush Agarwal 234101060

Pradoom Varma 234101036

Tarun Kumar 210101104

Description of the model

Task of model	Number of layers	Type of Layers	Other details
Face Detection & Recognition	6	Dense Layers	Image Detection

Changes made to keras2c

Converted recognizer.h5 to c files using python -m recognizer.h5 final

Simulation and Synthesis

Linking Header Files

Header files present in keras2c were in .c format. Converted them into .h Added path to these header files in "final.c" source file.

Re-declaration of variables

In the header file there was a re-declaration of the iterator in for loops. Variable renaming was done to remove this error.

Removing STL

Replaced memset with for loop.

```
// memset(output->array,0,output->numel*sizeof(output->array[0]));

for (size_t i = 0; i < output->numel; ++i) {
  output->array[i] = 0;
}
```

Floating point Conversion

In the argument of main function getting pointer to pointer or global pointer error to resolve this changed float *array to float array[17000] in k2c_tensor_include.h, struct k2c tensor.

```
# struct k2c_tensor
{
    /** Pointer to array of tensor values flattened in row major order. */

    //float * array;
    float array[17000];
    /** Rank of the tensor (number of dimensions). */
    size_t ndim;

    /** Number of elements in the tensor. */
    size_t numel;

    /** Array, size of the tensor in each dimension. */
    size_t shape[K2C_MAX_NDIM];
};
```

k2c Tensor Expansion

Due to the above change we were getting error in all k2c tensor declared arrays that value of type "float *" cannot be used to initialize an entity of type "float" to resolve this declare all k2c_tensor array manually.

Dense Layer

• In k2c_dense function, k2c_relu argument was giving error 'k2c_relu' has an unsynthesizable type 'void (float*, i64)P*' so replaced it with it's actual value(2) similarly for k2c_softmax.

No function body

K2c_dense has no function body so declared it in final.c. Along with this declared function body of both activation functions(Relu and Softmax) inside K2c_dense function body.

AbnormalTermination

Segmentation fault: Resolved this by replacing all arrays with size 17000. Since maximum array size in code was of 16512, so to avoid segmentation fault we declared arrays with a size of 17000.

Cleaning

Reduced number of modules to 2, removed many functions and wrote them inline because they were getting called just once, and removed unnecessary switch cases from activator whereas kept a separate module for k2c_dense because it was getting called many times.

In k2c_dense checked input.ndim of k2c_tensor input and removed functions under else statement to reduce unnecessary functions import.

Changes made to generate HLS4ML

Pragmas Removed: None

Pragmas Modified:

While unrolling the layers (Dense layers) of the model, unrolling was leading to large size code which our system due to limited resources was not able to execute.

Hence to overcome this issue following script was executed

```
config = hls4ml.utils.config_from_keras_model(model, granularity='name')

for Layer in config['LayerName'].keys():
    config['LayerName'][Layer]['Precision'] = 'ap_fixed<8,2>' #balancing between accuracy and resource usage
    config['LayerName'][Layer]['Strategy'] = 'resource'
    config['LayerName'][Layer]['ReuseFactor'] = 15
# how many times the resources within a layer can be reused during computation
```

Precision: Setting between accuracy and resource usage

Strategy: Changed from Latency to Resource

Reuse factor: Number of times within a layer a resource can be reused set to 15

These changes were made only for layers. Apart from this no changes have been made.

Dependencies and Versions

```
Tensorflow: 2.13.1
import tensorflow as tf
print(tf.__version__)

To change version: pip install tensorflow==2.13.1

Keras: 2.13.1
import keras
print(keras.__version__)

To change version: pip install keras==2.13.1

Python: 3.10.12

python3 -- version
```

Optimizations

INITIAL LATENCY AND RESOURCE

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	-	-	-
Expression	-	-	0	476
FIFO	-	-	-	-
Instance	-	31	3282	3968
Memory	1200	-	32	3
Multiplexer	-	-	-	2273
Register	-	-	433	-
Total	1200	31	3747	6720
Available	730	740	269200	129000
Utilization (%)	164	4	1	5

			Latency	Interval			
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NΑ	NA
Verilog	Pass	421185	421185	421185	NA	NA	NA

- 1. **Static Arrays** we have to reduce the latency we made all arrays static since our maximum array size was 16512 it did not affect much to the latency.
- 2. **Array partitioning** to reduce latency during k2c_tensor arrays initialization we did cyclic partition with factors 16,8,4 and we tried multiple combination.
- 3. **Pipeline in matmul function** we tried multiple combination of pipeline in matmul function but it didn't affect much to the latency.
- 4. **Removing k2c_tensor arrays** Since we are declaring k2c_tensor arrays of size 16512 everytime ,we removed k2c_tensor arrays and replaced it with original arrays it reduces resources utilization from 164%(BRAM) to 19%(BRAM)
- 5. **Matmul Function Optimization** we applied array partitioning and pipeline in matmul function to improve parallelism but it increased hardware utilization latency reduced to 42000 from 421000.

FINAL LATENCY AND RESOURCE

5	RTL		Status -	Latency				Interval						
3			Scacas	min	ı	avg	I	max	_ mi	.n	avg		max	į
9	VH	DL	NA		NA		NA	NA		NA		NA		NA
L	Veril	og	Pass	42	794	427	794	42794	1	NA		NA		NA

Name	BRAM	_18K	DSP48E	FF	LUT
DSP	-		-	-	-
Expression	-		-	-	-
FIFO	-		-	-	-
Instance		108	247	26351	24059
Memory		40	-	0	0
Multiplexer	-		-	-	1196
Register	-		-	18	-
Total		148	247	26369	25255
Available		730	740	269200	129000
Utilization (%)		20	33	9	19

To make it comparable with HLS4ML which was running on clock 5ns we changed our clock to 5ns after which the latency became 70884.

		L	Interval				
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	70884	70884	70884	NA	NA	NA

Results

Design	LUT FF		DSP	BRAM	Late	Clock period(in	
Design	D	-	DOF	DIVAM	Min	Max	ns)
Unoptimized	6720	3747	31	1200	421185	421185	10
Unoptimized	7294	5539	31	1200	742654	742654	5
Resource	7675	5776	37	73	343424	343424	10

Optimized	25255	26369	247	148	42794	42794	10
Optimized	28275	36195	247	148	70884	70884	5
HLS4ML	468331	31851	1	448	36000	36000	5