The Effect of Throat Contouring on Two-Dimensional Converging-Diverging Nozzles at Static Conditions

mam, Mary L. Mason, Lawrence E. Putnam, and Richard J. Re

AUGUST 1980

NASA Technical Paper 1704

The Effect of Throat Contouring on Two-Dimensional Converging-Diverging Nozzles at Static Conditions

Mary L. Mason, Lawrence E. Putnam, and Richard J. Re
Langley Research Center
Hampton, Virginia

Scientific and Technical Information Branch

SUMMARY

An experiment has been conducted at static conditions to determine the nozzle internal-performance effect of throat contouring, the result of increasing the circular-arc throat radius. Five nonaxisymmetric converging-diverging nozzles were tested in the static-test facility of the Langley 16-Foot Transonic Internal-performance data were recorded at nozzle pressure ratios up Tunnel. Data are presented as internal thrust ratios, discharge coefficients, Throat contouring resulted in a positive and static-pressure distributions. effect on discharge coefficient but showed no significant improvement in internal thrust ratio except in cases of internal flow separation. As an illustration of the use of the data, a two-dimensional inviscid theory was applied to the five converging-diverging nozzles. The generally good comparisons of data with theoretical results indicate that two-dimensional inviscid theory can be applied successfully to the prediction of two-dimensional converging-diverging nozzle internal flow.

INTRODUCTION

Multiengine, highly maneuverable jet aircraft must operate efficiently over a wide range of power settings and Mach numbers. Such aircraft require a propulsion exhaust-nozzle system with a variable geometry for high performance at different throttle settings. The axisymmetric nozzle has generally been implemented in the conventional multiengine jet configuration. Axisymmetric nozzles are relatively lightweight, have high internal performance, and facilitate integration of the nozzle with the jet engine. However, the application of an axisymmetric nozzle system to a typical multiengine jet configuration produces certain aircraft performance penalties, such as high aft-end drag (refs. 1, 2, and 3). The integration of multiple nozzles with the airframe results in a complex aft-end flow field, a source of considerable external drag. The aft-end drag effect is increased by the boattail "gutter" interfairing, which is generally required between the jet engines or nozzles (ref. 4).

Investigations of the effects of nozzle design on twin-engine jet aircraft performance (refs. 5 to 13) indicate that a high level of nozzle performance, without considerable aft-end drag, results from use of the nonaxisymmetric nozzle concept. The nonaxisymmetric nozzle geometry is more efficiently integrated into the airframe, eliminating the boattail gutter interfairing. Installation of the nonaxisymmetric nozzle allows design options for thrust vectoring and thrust reversing, capabilities which improve the maneuverability and handling of the aircraft.

Most of the experimental investigations of nonaxisymmetric nozzle performance concerned the installed and isolated performance of specific nozzle designs at realistic nozzle power settings. Recent investigations (refs. 14 and 15) provided detailed parametric data on some internal design geometry

variables. Such parametric investigations establish an internal-performance data base for nozzle design optimization.

The parametric analyses included investigation of the two-dimensional converging-diverging (2-D C-D) nozzle geometry, one of the basic nonaxisymmetric nozzle types. However, the current 2-D C-D nozzle data base does not include the performance effect of a systematic variation in nozzle throat contour. Therefore, an experiment has been conducted to determine the effects on internal performance of contouring the nozzle throat by varying throat radius. Two 2-D C-D nozzles having high internal performance (ref. 15) were selected as suitable geometries. Five additional nozzles of similar design were fabricated with different throat radii. These five nozzles, which involved two different throat radius values, were tested in the static-test facility of the Langley 16-Foot Transonic Tunnel. Internal-performance data are presented as discharge coefficients, internal thrust ratios, and static-pressure distributions.

A two-dimensional, inviscid computational model for the calculation of internal nozzle flow (ref. 16) was applied to the five configurations. The computational results are compared with the experimental data at selected experimental conditions.

SYMBOLS

All forces and angles are referenced to the model center line. The center line serves as the body axis. A detailed discussion of the data reduction and calibration is given in reference 14. Extensive definitions of forces, angles, and propulsion relationships used in this report are also discussed in reference 14.

A_e nozzle-exit area, cm²

A_t nozzle-throat area, cm²

 A_e/A_t nozzle expansion ratio

 F_i ideal isentopic gross thrust, $w_p \sqrt{RT_{t,j} \left(\frac{2\gamma}{\gamma-1}\right)} \left[1 - \left(\frac{p_{\infty}}{p_{t,j}}\right)^{\frac{\gamma-1}{\gamma}}\right]$, N

h_e half-height at nozzle exit, cm

h; half-height at nozzle-connect station, cm

 $h_{\mbox{\scriptsize t}}$ half-height at nozzle throat, cm

 h_1 height from nozzle center line to beginning of throat-contour section, cm

```
height from nozzle center line to end of throat-contour section, cm
h<sub>2</sub>
          length from nozzle-connect station to nozzle-exit station, cm
2
          length from nozzle-throat station to nozzle-exit station, cm
le
           length from nozzle-connect station to nozzle-throat station, cm
lt
           length from nozzle-connect station to beginning of throat-contour
11
             section, cm
           length from beginning of throat-contour section to nozzle-throat
12
             station, cm
           length from nozzle-throat station to end of throat-contour section, cm
13
           length from end of throat-contour section to nozzle-exit station, cm
14
           design Mach number
M_{d}
           design nozzle pressure ratio p_t, i/p_{\infty}
NPR<sub>d</sub>
           local static pressure, Pa
р
           jet total pressure, Pa
Pt, j
           ambient pressure, Pa
p_{\infty}
           gas constant (for \gamma = 1.3997), 287.3 J/kg-K
R
           nozzle circular-arc throat radius, cm
 r_c
            jet total temperature, K
 Tt,j
            ideal mass-flow rate, kg/sec
 Wi
            measured mass-flow rate, kg/sec
 \mathbf{w}_{\mathbf{p}}
            nozzle-throat width, 10.157 cm
 Wt
            axial distance measured from nozzle throat, positive downstream, cm
 X
            lateral distance from model center line, positive to left looking
 У
              upstream, cm
            vertical distance measured from model center line, positive up, cm
 Z
            ratio of specific heats, 1.3997 for air
 Υ
            nozzle divergence angle, deg
  ε
            nozzle convergence angle, deg
```

Configuration designations:

2-D C-D two-dimensional converging-diverging

Al, A2 low-divergence-angle 2-D C-D nozzle configurations

Bl,B2,B3 high-divergence-angle 2-D C-D nozzle configurations

APPARATUS AND METHODS

Static-Test Facility

The experimental investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel. The test area is located in a room with a high ceiling and a large, open doorway. Pressurized air is directed into and through the nozzle model, and the resulting jet exhausts to atmospheric conditions through the doorway.

The static-test facility uses the same clean, dry-air supply as that used in the 16-Foot Transonic Tunnel (ref. 17). The air-control system, also similar to that of the 16-Foot Tunnel, includes valving, filters, and a heat exchanger for maintaining a constant stagnation temperature in the exhaust jet. During the experiment, data were recorded on a 96-channel magnetic-tape data-acquisition system.

Single-Engine Propulsion Simulation System

The experimental nozzles were mounted on a single-engine air-powered nacelle model. A sketch of the nacelle model, with a typical converging-diverging nozzle installed, is given in figure 1. For this experiment, the body shell of the model was removed from station 0.0 to station 52.07.

An external high-pressure air system provided a continuous flow of clean, dry air which was kept at a controlled temperature of 300 K and pressurized up to 1013 kPa. The airflow entered a high-pressure plenum chamber through six supply lines in the nozzle support system (see fig. 1). The airflow direction was perpendicular to the model axis. The flow then discharged into a low-pressure plenum through eight multiholed sonic nozzles, spaced equally around the high-pressure plenum. The low-pressure plenum, which had a circular cross section, was mounted to a force balance. This procedure minimizes forces which result from the transfer of axial momentum as the air passes from a high-pressure region to a low-pressure region. Two flexible metal bellows seal the system and compensate for axial forces due to the pressurization.

The air flowed from the low-pressure plenum through a transition section, a choke plate, and an instrumentation section to simulate exhaust-jet flow from the nozzle exit. The same transition and instrumentation sections were used for all five nozzle configurations tested in this investigation. The transition section provided a regular flow path from the circular low-pressure plenum to the rectangular choke plate and instrumentation section, illustrated in

figure 1. The instrumentation section had a constant cross-sectional area of 35.75 cm² with a width-to-height ratio of 1.437. The geometry of the instrumentation region was identical to the nozzle airflow entrance. All five nozzle configurations were attached to the instrumentation section at model station 104.47.

Nozzle Design

Five two-dimensional converging-diverging (2-D C-D) nozzles were investigated in this experiment. Each nozzle consisted of four basic parts designed to define the internal flow-field geometry. A typical 2-D C-D nozzle is shown as part of the experimental apparatus in figure 1. The two upper and lower components are designated as flaps in this report, since these components are used to vary the nozzle geometry in realistic nozzle configurations. Two sidewalls, which are also shown in figure 1, complete the nozzle internal geometry. For all configurations in this experiment, fixed flaps and sidewalls were used. The sidewall length was always equal to the total nozzle length.

Two converging-diverging nozzles, Al and Bl, were used as the baseline nozzle geometries in this experiment. Three nozzles, A2, B2, and B3, which were modified from the baseline designs, were also tested. Sketches of the baseline nozzles, photographs of all five configurations, and tables defining internal and external geometries are given in figure 2. Both baseline configurations had the same throat area, circular-arc throat radius, convergence angle θ , and total nozzle length.

The baseline configurations were modified by increasing the circular-arc throat radius while keeping all geometric parameters constant except for θ and ϵ . Increasing the circular-arc radius from 0.68 cm to 2.74 cm contours the nozzle throat region and increases both θ and ϵ . For both modified configurations A2 and B2, the circular-arc radius was increased to 2.74. B3, the fifth nozzle for this investigation, was generated from B1 by increasing the circular-arc radius to 2.74 while keeping ϵ fixed. In this case, rounding the throat decreases θ and increases the total nozzle length. The design parameters which varied in this experiment are presented in the following table for the five configurations:

Parameter	Al	A2	ві	В2	В3
A _e /A _t l, cm M _d NPR _d r _C , cm θ, deg ε, deg	1.09	1.09	1.80	1.80	1.80
	11.56	11.56	11.56	11.56	12.25
	1.35	1.35	2.08	2.08	2.08
	2.97	2.97	8.81	8.81	8.81
	.68	2.74	.68	2.74	2.74
	20.84	22.33	20.84	22.33	20.42
	1.21	1.21	10.85	11.24	10.85

Instrumentation

A sketch of the nozzle instrumentation section is included in figure 1. A three-component strain-gage balance was used to measure the forces and moments on the nacelle model and nozzle downstream of station 52.07 cm. Three rakes of total-pressure probes were used to measure the jet total pressure at a fixed station in the instrumentation section. A four-probe rake through the upper surface of the instrumentation section recorded the jet total pressure; a three-probe rake was used on the side; and a three-probe rake was used in the corner. The jet total temperature was measured by a thermocouple which was also located in the instrumentation section.

Internal static-pressure orifices were located on both the upper and lower flaps and on the sidewalls for all five nozzle configurations. Three rows of orifices were placed longitudinally along the upper and lower flaps. On both the right and left sidewalls, a single row of orifices ran along the horizontal center line. Sketches of the nozzle components with the pressure orifice rows are presented in figure 3. Tables defining the locations of the orifices for each configuration are included in the figure.

Data Reduction

Data were recorded at intervals of increasing jet total pressure. Several repeat points were taken as the jet total pressure was decreased from the maximum level. At each data point, all data values were recorded simultaneously on magnetic tape. Approximately 11 frames of data, taken at a rate of 2 frames per second, were recorded for each data point. The averaged value of these 11 frames of data was used in subsequent computations.

The internal thrust ratio F/F_i , defined as the ratio of the actual nozzle thrust to the computed ideal nozzle thrust, and the discharge coefficient w_p/w_i , the ratio of the measured mass-flow rate to ideal mass-flow rate, are the basic nozzle performance parameters. The nozzle thrust parameter F represents the measured balance axial force corrected for weight tares and balance interactions. However, small bellows tares on axial, normal, and pitch balance components result from a small pressure gradient between the ends of the bellows when internal velocities are high. Bellows tares on the three balance components also result from minor differences in the forward and aft bellows spring constants when the bellows are pressurized. The magnitudes of these bellows tares were calculated by testing calibration nozzles with known performance over a range of normal forces and pitching moments. This procedure is described in detail in reference 14. The balance data were then corrected using an algorithm similar to the balance correction procedure discussed in reference 14.

Several measurements were used in calculating the nozzle mass flow w_p . The pressure and temperature in the high-pressure plenum of the propulsion simulation system were measured before the airflow was discharged through the eight sonic nozzles into the low-pressure plenum (see fig. 1). The discharge coefficients of the sonic nozzles were determined by testing circular calibration nozzles with known flow characteristics. The sonic-nozzle discharge coefficients

were combined with the temperatures and pressures measured in the high-pressure plenum to determine the mass flow.

RESULTS AND DISCUSSION

Basic Data

Basic data for each of the five nozzle configurations are presented as nozzle internal thrust ratio F/F_i and discharge coefficient w_p/w_i . The data for nozzles Al and A2, which have small divergence angles and low expansion ratios, are given in figure 4. The data for nozzles Bl, B2, and B3, which have large divergence angles and large expansion ratios, are given in figure 5. The internal-thrust-ratio data and discharge-coefficient data are presented as functions of nozzle pressure ratio.

The discharge-coefficient data in figures 4 and 5 show some variation with nozzle geometry. However, as should be expected, w_p/w_i is independent of nozzle divergence angle and nozzle pressure ratio since the nozzles were choked for all experimental data. Contouring at the nozzle throat by increasing the circular-arc radius has a positive effect on the discharge coefficient. This positive effect is apparent in the comparison of A2 discharge coefficients with A1 values in figure 4 and in the comparison of B2 w_p/w_i values with B1 values in figure 5. Comparing B3 w_p/w_i values with B1 values shows a less significant increase in discharge coefficient. Although B3 and B2 have the same value of throat radius, the w_p/w_i levels for B3 are lower than for B2. This inconsistency in the effect of throat radius on discharge coefficient is not fully understood.

The internal-thrust-ratio data show more variation with nozzle pressure ratio than the discharge-coefficient data. Therefore, thrust ratio as a function of nozzle pressure ratio is used to evaluate the isolated static performance of each nozzle. In figure 4, the profiles of F/F_i as a function of nozzle pressure ratio show little difference in internal performance between nozzles Al and A2. Both configurations have thrust-ratio data profiles which peak near the design nozzle pressure ratio of 2.97 and gradually decrease as nozzle pressure ratio increases. The similarity of the F/F_i profiles indicates that contouring the nozzle throat by increasing the throat radius has little effect on the nozzle internal thrust ratio for the 2-D C-D nozzle with low divergence angle.

In figure 5, the F/F_i plots for the nozzles with high divergence angle show definite variation with throat contouring below the design nozzle pressure ratio. The thrust-ratio data have basically the same behavior for all three nozzles Bl, B2, and B3. For each configuration, the value of F/F_i increases from a minimum at the lowest nozzle pressure ratios to a peak level near the design nozzle pressure ratio of 8.81. Each of the three configurations has the same maximum thrust ratio. However, the level of the minimum thrust ratio at the lower nozzle-pressure-ratio settings depends on the nozzle geometry. A comparison of nozzles B2 and B1 shows that the minimum F/F_i for nozzle B2 is greater than the minimum value for nozzle B1. This increase in minimum thrust ratio from B1 to B2 is a major effect of throat contouring. A comparison of B3

with B2 shows an increase in minimum F/F_i from B2 to B3. For nozzle B3, increasing the total nozzle length in addition to increasing the nozzle throat radius results in the optimal minimum F/F_i for all three high-divergence-angle nozzles. In general, throat contouring has a favorable effect on F/F_i for the nozzles with high divergence angles at the lower nozzle pressure ratios. At higher nozzle pressure ratios near design, throat contouring has no significant effect on thrust ratio.

Internal Static-Pressure Distributions

The effects of throat contouring are also evident in plots of internal local static pressure. Detailed listings of internal static-pressure data for all five configurations are presented in tables I to V. Data are given at each of the pressure orifice locations shown in figure 3 and span the full range of experimental nozzle-pressure-ratio settings.

Comparisons of internal static-pressure distributions along the upperflap axial center line are presented in figure 6 for nozzles Al and A2, in figure 7 for Bl and B2, and in figure 8 for Bl and B3. The data are presented as local static pressure normalized by jet total pressure, $p/p_{t,j}$, and are plotted as a function of x normalized by l_e , the distance from the nozzle throat to nozzle exit. Only the static pressures on the upper-flap center line are considered in this comparison, since the center-line pressures generally reflect the basic flow trends for the five configurations. For Al and A2, the p/pt.j profiles vary little with nozzle pressure ratio. As a result, only the comparison of Al and A2 at a nozzle pressure ratio of approximately 6.0 is presented in figure 6. However, for Bl, B2, and B3, the nozzles with high divergence angles, the internal flow separates at the lower nozzle pressure ratios. The separation from the nozzle wall is indicated by a sharp rise in p/pt, j just downstream of the nozzle throat. As a result, two cases of pressure distributions are presented in figure 7, comparing B1 and B2, and in figure 8, comparing B1 and B3. The lower nozzle pressure ratio case, near 2.0, illustrates $p/p_{t,i}$ behavior when internal flow separation occurs. The higher nozzle pressure ratio case, near 6.0, illustrates the pressure distribution profile without separation.

When the nozzle internal flow is separated, contouring at the nozzle throat increases the magnitude of the pressures on the divergent flap. Contouring also affects the separation location. The flow for the contoured nozzle separates upstream of the separation point for the sharper nozzle with a small throat radius. The integrated effect of the differences in the magnitude of the separation pressure gradient and in the separation location results in a slight improvement in the nozzle internal performance for the contoured nozzles B2 and B3 at low nozzle pressure ratios. This improvement for the nozzles with separated flow was evident in the F/F_1 data plots in figure 5.

When the internal flow does not separate, illustrated by the $p/p_{t,j}$ plots at a nozzle pressure ratio of approximately 6.0 in figures 6, 7, and 8, there are no large differences in the compared pressure profiles. At higher nozzle pressure ratios, the effects of contouring occur upstream of the nozzle throat and in the vicinity of the throat. Static pressures near the throat

are generally higher for the contoured nozzles than for the baseline nozzles. However, when there is no internal flow separation, the average effect of throat contouring on the internal static pressures is negligible. This lack of significant effect of throat contouring for the unseparated internal flow cases at higher nozzle pressure ratios was also evident in the F/F_i profiles in figures 4 and 5.

Static-pressure data were recorded on the flaps at three different spanwise locations and on both the right and left sidewalls, as shown in figure 3. On the flaps, each row of static pressures corresponded to a different value of $y/w_t/2.0.$ On the sidewalls, the row of static pressures ran along the horizontal center line. Comparing the three rows of static-pressure data for each flap and the right and left center-line data for the sidewalls may indicate dominant three-dimensional effects in the internal flow. Selected plots of pressure distributions along the upper and lower flaps and on the right and left sidewalls are presented in figures 9 to 13. In each figure, p/p_t , j along each row is plotted as a function of x/l_e . Results for the low-divergence-angle nozzles are given in figure 9 for Al and in figure 10 for A2. Plots for the high-divergence-angle nozzles are presented in two cases to show static-pressure behavior with and without the occurrence of internal flow separation. Data for Bl are given in figure 11; B2 data are given in figure 12; and B3 data are given in figure 13.

At a nozzle pressure ratio near 6.0, nozzles A1 and A2 show almost no variation in $p/p_{t,j}$ across the flaps or along the sidewalls. The staticpressure distributions are independent of spanwise location, which indicates that the flow is essentially two-dimensional for the low-divergence-angle nozzles. The most pronounced three-dimensional effect in the static-pressure profiles is evident in figure 11 for the high-divergence-angle nozzle B1. When the internal flow is separated at a nozzle pressure ratio near 2.0, the combination of the sharp nozzle throat and the high divergence angle results in considerable variation in $p/p_{t,\,j}$ across the flaps. This variation in static pressure with spanwise location is not apparent in the high nozzle-pressureratio unseparated case in figure 11. Nozzles B2 and B3 show a similar threedimensional effect for the separated cases, although the magnitude of the spanwise variation in $p/p_{t,j}$ are smaller than for configuration B1. As discussed for Bl, the three-dimensional effect in B2 and B3 is no longer evident when the internal flow remains attached. Thus, the internal flow for all five 2-D C-D nozzles is predominantly two-dimensional, with three-dimensional effects apparent in the static-pressure data only in the case of internal flow separation at low nozzle pressure ratios.

Comparison of Experimental Data With Two-Dimensional

Inviscid Theory

A two-dimensional inviscid computational model was applied to each of the five 2-D C-D nozzle configurations. The theoretical results, in the form of internal thrust ratios and static-pressure distributions, were then compared with the experimental data. The comparisons of theory and experimental data give insight into the internal flow-field behavior and illustrate both the

application of the experimental data to theory evaluation and the application of computational models in assessing the internal performance of nozzle designs.

Since the experimental data exhibit essentially two-dimensional behavior, the two-dimensional, inviscid, time-dependent theory of Cline (ref. 16) was used for nozzle performance predictions. The theory applies the two-dimensional, inviscid Euler equations to the calculation of internal nozzle flow and exhaust jet for converging, converging-diverging, and wedge-plug nozzle geometries. Shock effects are modeled using a "shock-smearing" technique which incorporates an explicit artificial viscosity. Earlier application of the inviscid theory to a nonaxisymmetric wedge nozzle showed good agreement of data and theory in internal flow regions (ref. 18).

Comparisons of theoretical internal thrust ratio with the experimental F/F_i results are given in figure 14 for nozzles Al and A2 and in figure 15 for Bl, B2, and B3. The theoretical thrust ratio was calculated from the two-dimensional inviscid gross thrust normalized by a theoretical ideal gross thrust. The theoretical ideal thrust was computed from the geometric ideal mass flow necessary for complete expansion to ambient pressure. No experimental data were used in the computation of the theoretical ideal thrust ratio. (Note that the experimental values of F/F_i can be referred to the theoretical ideal thrust by multiplying the theoretical result by the experimental discharge coefficient.)

The theoretical results were calculated for nozzle pressure ratios of 2.97 to 9.0. The theory was not applied to lower nozzle pressure ratios with known internal flow separation since the inviscid theory is inadequate for modeling the viscous effects of separated flow regions. The comparison of theoretical internal thrust ratio with the F/F_i data is optimal near design conditions. The theory matches the F/F_i data peaks except for nozzles A2 and B2; in these cases, the theoretical results are higher than the data values.

To assess the general effect of throat contouring on internal thrust ratio, the theoretical analysis was expanded to include two additional values of throat radius, 1.37 cm and 2.05 cm. The inviscid theory was applied to four additional nozzle geometries which incorporated the new throat radii. Two of the modified geometries were based on the low-divergence-angle baseline nozzle Al; the other two were based on the high-divergence-angle baseline nozzle Bl.

The effect of throat contouring on internal thrust ratio is presented in figure 16. Experimental and theoretical internal thrust ratios are presented as a function of the nozzle throat radius. Results are presented in separate cases for the low-divergence-angle nozzles and for the high-divergence-angle nozzles. In each case, theoretical results are presented for throat radii of 0.68, 1.37, 2.05, and 2.74. The theory was applied only at the design nozzle pressure ratio of 2.97 for the low-divergence-angle nozzles and 8.81 for the high-divergence-angle nozzles. These F/F₁ data are presented only for the experimental throat radii of 0.68 and 2.74. Results are presented for both nozzles B2 and B3 in the high-divergence-angle case.

The experimental data show almost no variation in ${\it F/F}_i$ with throat radius. The theoretical results, however, show some changes in thrust ratio

as throat radius increases. As discussed previously and shown in figures 14 and 15, thrust ratios for the contoured nozzles A2 and B2 were generally higher than the data over the full nozzle-pressure-ratio range. Thus, variations observed at design conditions in figure 16 are probably due to inviscid limitations of the theory. Small changes in the theoretical internal thrust ratio with throat radius may be attributed to the theory rather than to the effect of throat radius. In general, both the experimental and theoretical results indicate that throat radius, and therefore throat contouring, has no significant effect on internal thrust ratio.

Figures 17 and 18 present comparisons of experimental and theoretical P/Pt,j along the upper-flap center line for Al and A2. Figures 19, 20, and 21 present the same data-theory comparisons for Bl, B2, and B3. The theory was applied only at design conditions, when the internal flow was not separated, while the data represented four cases of nozzle-pressure-ratio settings. The theoretical static-pressure distributions follow the basic flow trends in the data, matching the static-pressure highs and lows. Poor data-theory agreement generally occurs in the vicinity of the nozzle throat and is due to the inviscid limitations of the theory.

In figures 22 to 26, for each of the five configurations, the theoretical static pressures along the center line of the nozzle interior are compared with the data on the left sidewall center line. The theory was again applied at design conditions; the experimental data are shown at four values of nozzle pressure ratio. The data-theory agreement is generally good, with poorest comparisons downstream of the nozzle throat, as discussed previously. The good agreement of theoretical p/pt,j profiles along the interior center line with sidewall data emphasizes the predominantly two-dimensional nature of the nozzle internal flow for all five configurations. The overall good agreement between theory and experimental data in regions without separated flow indicates that the two-dimensional, inviscid, time-dependent theory may be successfully applied to the 2-D C-D nozzle geometry for internal flow prediction.

CONCLUDING REMARKS

An experiment has been conducted to determine the internal-performance effect of throat contouring by increasing the circular-arc throat radius of nonaxisymmetric converging-diverging nozzles. Five two-dimensional converging-diverging nozzles were tested at static conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel. Internal-performance data were recorded for a range of nozzle pressure ratios up to 9.0. Data are presented as internal thrust ratios, discharge coefficients, and static-pressure distributions. Comparing internal-performance data for the five nozzles shows that throat contouring results in improved values of discharge coefficient but has no significant advantage in internal thrust ratio except at nozzle operating conditions where internal flow separation occurs.

The internal flow for each of the nozzle geometries is predominantly two-dimensional, except in regions of separated flow. As a result, a two-dimensional, inviscid, time-dependent computational model was applied to each

configuration. The favorable comparison of the theoretical results with the static-test data illustrates the successful application of two-dimensional inviscid theory to the prediction of internal flow characteristics of two-dimensional converging-diverging nozzles.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 July 2, 1980

REFERENCES

- Schmeer, James W.; Lauer, Rodney F., Jr.; and Berrier, Bobby L.: Performance of Blow-in-Door Ejector Nozzles Installed on a Twin-Jet Variable-Wing-Sweep Fighter Airplane Model. NASA TM X-1383, 1967.
- Reubush, David E.; and Mercer, Charles E.: Effects of Nozzle Interfairing Modifications on Longitudinal Aerodynamic Characteristics of a Twin-Jet, Variable-Wing-Sweep Fighter Model. NASA TN D-7817, 1975.
- 3. Maiden, Donald L.; and Berrier, Bobby L.: Effect of Airframe Modifications on Longitudinal Aerodynamic Characteristics of a Fixed-Wing, Twin-Jet Fighter Airplane Model. NASA TM X-2523, 1972.
- 4. Maiden, Donald L.; and Petit, John E.: Investigation of Two-Dimensional Wedge Exhaust Nozzles for Advanced Aircraft. J. Aircr., vol. 13, no. 10, Oct. 1976, pp. 809-816.
- Martens, Richard E.: F-15 Nozzle/Afterbody Integration. J. Aircr., vol. 13, no. 5, May 1976, pp. 327-333.
- 6. Capone, Francis J.: Summary of Propulsive-Lift Research in the Langley 16-Ft Transonic Tunnel. J. Aircr., vol. 13, no. 10, Oct. 1976, pp. 803-808.
- 7. Hiley, P. E.; Wallace, H. W.; and Booz, D. E.: Nonaxisymmetric Nozzles Installed in Advanced Fighter Aircraft. J. Aircr., vol. 13, no. 12, Dec. 1976, pp. 1000-1006.
- 8. Sedgwick, T. E.: Investigation Nonaxisymmetric Two-Dimensional Nozzles Installed in Twin-Engine Tactical Aircraft. AIAA Paper No. 75-1319, Sept.-Oct. 1975.
- 9. Berrier, Bobby L.; Palcza, J. Lawrence; and Richey, G. Keith: Nonaxisymmetric Nozzle Technology Program An Overview. AIAA Paper 77-1225, Aug. 1977.
- 10. F-15 2-D Nozzle System Integration Study. Volume I Technical Report.
 NASA CR-145295, 1978.
- 11. Stevens, H. L.: F-15/Nonaxisymmetric Nozzle System Integration Study Support Program. NASA CR-135252, 1978.
- 12. Bergman, D.; Mace, J. L.; and Thayer, E. B.: Non-Axisymmetric Nozzle Concepts for an F-111 Test Bed. AIAA Paper No. 77-841, July 1977.
- 13. Wasson, H. R.; Hall, G. R.; and Palcza, J. L.: Results of a Feasibility Study to Add Canards and ADEN Nozzle to the YF-17. AIAA Paper 77-1227, Aug. 1977.

- 14. Capone, Francis J.: Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles With Vectoring and Reversing Capability. NASA TP-1224, 1978.
- 15. Berrier, Bobby L.; and Re, Richard J.: Effect of Several Geometric Parameters on the Static Internal Performance of Three Nonaxisymmetric Nozzle Concepts. NASA TP-1468, 1979.
- 16. Cline, Michael C.: NAP: A Computer Program for the Computation of Two-Dimensional, Time-Dependent, Inviscid Nozzle Flow. LA-5984 (Contract W-7405-ENG. 36), Los Alamos Sci. Lab., Univ. of California, Jan. 1977.
- 17. Corson, Blake W., Jr.; Runckel, Jack F.; and Igoe, William, B.: Calibration of the Langley 16-Foot Transonic Tunnel With Test Section Air Removal.

 NASA TR R-423, 1974.
- 18. Carson, George T., Jr.; and Mason, Mary L.: Experimental and Analytical Investigation of a Nonaxisymmetric Wedge Nozzle at Static Conditions. NASA TP-1188, 1978.

TABLE I.- RATIO OF INTERNAL STATIC PRESSURE TO JET TOTAL PRESSURE FOR NOZZLE Al

(a) Upper-flap static pressure P/Pt,j

		.890	374	974	242	372	.371	. 371	124	175	1/5	17.	1/1	7	1 / 7 *	
		.736	342	, 4 ,	1 1 5	340	340	340	075.	0 7 7 1	0 1 1	075	0 10	07.0	7 7 7	1 74 1
		.540	391	196	0 · C	, 40 , 40 , 40	300	005	0 4 7	9	0 4 6	0	() () ()		0	.360
		. 429	407	417	~ 1 p •		717	7 7 7	413	413	413	717	717	413	N 17 4	. 413
	a	.286	.418	3 . 0 !	417	4 4	416	416	.416	. 416	417	417	417	. 417	417	.417
0.0 = 0.	x/1 ^e	.143	485	488	107	. a	£ 0.7	. 482	. 482	787	462	.482	. 482	. 482	482	.481
$y/w\sqrt{2.0} = 0$.077	421	419	418	E 10	1 CO	. 422	421	420	027	419	419	017	. 419	418
		.011	346	775	 	7 2 4 2	1 PO	77	345	346	347	347	346	346	346	346
	} 	660.	.755	756	756	486	756	756	.755	. 755	, 755	7.55	. 755	, 75 <i>u</i>	754	.754
		-,209	.845	643	778	7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 00	778	7778	570	643	643	843	643	843	. 48 to 1
		pt,j/p	00	5	3.03	E 6	77.77	10.17	5.47	76.8	6.45	80.0	7.44	7.95	8.42	4.24
		Point p		- N	•	41	r 4	0.	<	σ	9		: ^		77	. T

27.7.2.		1			y/wt/2,0	.0 = 0.450	0				
243 286 220 210 240 240 240 240 240 240 240 240 240 24						x/1	ຸຍ				
400 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 209 011	•	.011		.077	. 143	.286	429	.540	.736	.890
200 1 100 1	150		757		427	007	027	414	. 303	340	.366
200 1 000 1		•			0.7	487	421	429	00	342	.367
200 200 200 200 200 200 200 200 200 200	7 15	-	. F		007	486	027	0.57	102	. 341	.367
203 203 203 203 203 203 203 203 203 203		<u>-</u> -			20.0	8 7	419	0.5	301	, 339	.367
283 - 100 -		F 50			200	587	419	429	301	.337	.367
000 000 000 000 000 000 000 000 000 00		484			80	597	410	428	390	334	. 366
283 419 429 489 489 489 489 489 489 489 489 489 48	PRINCE NO.	1-15	-		200	4.85	027	. 428	.390	. 332	.366
283 220 283 283 283 283 283 283 283 283 283 283	7.1		7.47		100	100	419	427	390	.330	365
283 . 084 .				•	427	287	419	. 426	9.89	.329	. 365
485 420 420 489 4890 4870 4870 4870 4870 4870 4870 4870 487	- SE				427	7.85	420	750	045	. 328	. 365
485 420 424 287 487 887 887 887 887 887 887 887 887 8	757	444		•	200	188	419	425	3.89	. 327	365
485 420 420 487 587 827 488 489 489 886 886 886 886 886 886 886				•	707	26.05	027	424	3.0	. 327	.365
250 . 050 .				•	100	10.0	0 6 7	423	0 W P	. 327	364
9000 BEEN 0007 0007 7007) i i) () () (•) ·		0.6			126	. 364
. 626. 1842. 554. 054. 1844.	. 751		900		077	1 ·) (7 6			177
	.751	_	.356		424	787	0 27 7	777	E E	. 580	. 200

•						x/l _e	o)				
Point	Pt,j/P.	•.209	660.	.011	.077	.143	.286	, 429	042.	.736	.890
	90	V 7 4	184	171	077	506	.417	418	386	374	.35
- •		9 00		9	0 77	705	418	617	E. E.	373	. 359
		1 7	457	5	4.0	501	417	. 417	7A7	371	356
^ =) d	770	657		45.2	500	416	416	3A7	370	35
3 •	9 6		7.0		55.7	400	416	010	386	.368	33
r 4		1 7 7	154	-	456	867	416	414	386	.367	35
D- 11	0 1	278	751	356	454	497	416	414	386	.366	10
	7	278	751	155	456	496	416	413	. 386	365	10
c c		678	7.5	55	457	700	416	412	3.86	, 364	
	4	5778	751	355	457	967	. 417	. 412	386	364	5
): -		2 4 5	751	355	457	495	417	411	386	.362	35
: :	7 77	178	751	10	457	495	416	410	3.86	. 362	3.5
		90	752	55.5	487	767	416	410	. 3A6	.361	35
n =	07	9 6	45.0	100	457	767	417	607	. 3A7	.361	50
: L	200	778		2	420	707	417	607	7.8.7	.360	35

TABLE I.- Continued

(b) Lower-flap static pressure p/pt,j

		069.	.372	371	370	369	369	369	169	168	368	1668	368	368	168	16.0	.367
		.736	.360	357	10 S	360	360	986	.357	356	.355	354	354	1553	353	100	352
		.560	189	0 4		V 65 %	F 46 F	1 1 1 6 C	SEE	200	786	\$6. 6.	7.87	78.	, M. W.	, a	. U.S. S.
		627.	417	414	412	410	607	807	407	907	406	507	405	707	707	707	403
	6	.286	807	410	804	807	407	407	407	407	407	407	407	407	408	.408	807
0.0 = 0	7/x	.143	.472	476	478	476	476	475	. 475	. 475	474	474	747	474	473	473	.473
y/w ₄ /2.0		.077	. 433	0.57	0.57	433	767	757	£87°	664.	6.633	432	432	432	431	, 431	. 431
		.011	392	301	391	.391	393	705	395	396	306	396	396	395	308	368	395
		660	.755	. 755	.754	. 754	,754	. 753	. 752	.751	.751	751	.750	. 750	.750	. 750	.750
		- 209	1847	845	578.	945	776	778.	776.	100 °	. 043	. 443	. 84.2	. de 4.	278	.842	.842
	- a/	,t,j.,∞	1.99	2.40	3.03	E T	3.98	7.7.7	t 0 1	5.47	2.07	6.45	. O. O.	7.44	7.95	27.0	9.54
	Point		-	~	m	7	L r	•	•	40	0	<u>.</u>	-	~	# <u></u>	7.	15

		9.890	'	•	•	•	•	•	•		•		•	•	•	•	. 361	
		. 736		_		•											333	
		048.	10	0	0		0.5	P	ď		0	0	10	10	10	0	106	
		627	9.438	436	435	435	434	757	433	433	433	432	432	431	431	431	430	
	x/1/e	.286	402	403	402	207	402	. 402	401	.401	401	401	107	401	401	401	. 401	
	/×	.143	470	470	0470	469	. 467	7,466	. 465	797.	797	797.	797	797	797	797	.465	
h		.077	434	429	. 428	. 428	027.	. 428	. 428	427	427	. 427	427	927	426	426	. 425	
		.011	.388	. 387	.387	. 387	1388	3.888 1.4888	387	387	.387	387	.387	187	386	.386	.386	
		660	.755	124	733	. 753	. 752	. 752	.751	. 751	.751	. 750	. 750	. 750	. 750	.750	.750	
		209	.847	. 84.5 10.1	20. 10.	. 00 to	S 2 0	5 7 6	945	778.	778	778.	778.	778.	. 843	. 843	.843	
	a/. a	t, j. ∞	1.99	5.49	3.03	3,48	60 P	47.7	46.7	5.47	5.97	5.4.6	6.95	7.44	7.95	6.47	9.74	
	Point		- 🛶	v.	•	7	* ^	•	_	€ C	σ	c •		~	P 1	1 4	.	

Point	, -					x/l _e	9,				
	^r t,j' ^r ∞	209	660	.011	.077	. 143	. 286	, 429	044.	.736	.890
-	1.99	.841	.755	.379	426	1885	707	410	0 8 1	200	145
~	5.49	078.	.754	376	422	10.00	607	6.7	C C		7 7 7
₽	3.03	.839	.753	375	421	787	807	417	o d	100	95
7	3.09	8.8	.753	374	777	481	407	416	C C	357	355
r	3.08	. 838	. 751	375	. 425	.480	407	415	e ec	356	155
•	4.47	837	.751	.377	425	847	407	414	6C	354	153
•	70.7	. 836	. 751	.378	425	477	907	414	BC 80	50	153
Œ	5.47	.836	. 750	378	927	476	707	413	er er	351	155
o	5.07	936	.750	379	426	477	907	413	787	075	5.52
0	6.45	.837	.750	379	420	474	907	. 412	, E.	348	155
Ξ	50.9	.836	.740	.379	. 426	475	907	412	74.7	975	350
_	7.44	.837	674	370	426	475	907	412		77	0
-	7.95	.837	. 749	379	426	475	907	411	40.7	171	
7 [8.42	.837	440	379	927	475	907	777	4.0	4 4 5	7 7
ŗ	9.24	.837	444	379	927	475	907	117	, a ,	177	077

TABLE I.- Concluded

(c) Sidewall static pressure P/Pt,j

Right sidewall, z = 0.0

						x/1 ^e	a)				
Point	Pt,j/Pm	000	000	011	.077	143	.286	627.	.360	.736	068.
							7 4 7	100	187	374	345
-	1.90	. 823	. 739	. 611		1 :	7 7 7		-	375	343
٠,	07.6	. 824	738	.611	5.50	6449	7 :	1 -	d .	17.7	775
u •		823	738	,610	519	777.	4.54	j :	C (74.1	242
•		100	4 4 8	610	519	2445	464	707	E 10 1		777
7	0.40	0 0			0	500	767.	£07.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2/2	7 7
v	2.03	200	D I			9 17 17	717	402	3.8.8	.372	9
•	74.0	. 822	. 7.57	9	n (401	40	372	. 342
ı P	16.7	. 822	. 737	610		n :) P		40.	371	342
- 4	77 7	. 821	737	.610	.519	7 7 7	7 .	1 .		7.40	342
C I			717	61.0	819	777	. U 3 C	101	E 6 4.		677
0			. 1		9	777	4.32	007	3.86	7 7 6	
10	6.45	. 821	727	0	1 6		717	400	386	. 369	. 342
=	9	. 821	. 737	613	. 50	n :		0	487	369	345
	707	. 821	737	613	523	t t t t .	7 :	h 6		041	342
		850	737	. 613	. 523	777	435	7 6	D E		671
				77	523	777	433	666	e i		177
7 E	0 0	0 0	1 M 1	613	52.5	447	. 432	399		001.	

Left sidewall, z = 0.0

				x/1,			
oint pt,j/	/p	660	.011	.077	.143	,286	429
	;		117	u	7		
	20	1 ·	- C	١ u	7		
5.49			9 .		1 7 7	0 77	4
3.0	20.		0	1			7
7.6	N4 .	1 7 6		١ ٧			07
3.9	20.	1 7 4 1	2				07
7.7	- 8	. 741	3	n t		1 7	0
7	26	174.	9	016			
	·	7	4	.5			
ň			1	·			
'n			,		7		3
•) ; ;		, ш		3	3
•	- 6		0	1 7 7 8			7
_	8.	144	019.	.11			
- 1		174	c	512			
_			4	2			07.
nco	è -						0.7
0		. 741	.610	د ا د			•

(a) Upper-flap static pressure p/Pt,j

	.736 ,890	. •	-	•	•	•	•	•	•	•	•	_	_	•	•	,366 ,357
	.560	391	6 8 P	5 S. B. P.	386	10°	97) 60) 1 97)	, 18 K	3.82	# C	1 A A 1	0 6	0 6 6	64.5	479	.379
	, 429	426	727	. 423	40.3	422	422	422	421	421	. 421	. 421	421	027	420	420
٠	.286	435	. 441	687	68.7	7 E 17	437	927	4.36	5.435	757	757	433	433	433	. 432
1/x	.143	7/7	473	472	471	471	471	471	472	471	472	472	472	472	472	.472
7	.077	144	473	4	472	14.	47.	470	470	0.47	0 0 7	047	0.41	847	897	468
	.011	.443	07	777	777	077	0 7 7	827	C 1	437	927	45.0	W 17	7 7	777	. 433
	660	572	. P. P.	7.5	47.	27.2	7	47.4	1	7.7	27.2	A7A	7.7	17.7	574	.575
	-,209	70.	790	790	100	100	789	789	780	489	60.0	4.80	4.00	788	7.88	.788
	Pt,j ^{/p}	1.07	7	0			0	18.7		77				11	, Q	8.49
├	Point		- ^	u P	n =	, 6	n 4	> •	•	. 0	•	· •	- 0	V #	7 7	- u n

	068. 91	13 .367	•		•		_	_	_	_	_	_	_			
	.736	.38	.38	382	3.5	,	3.8	37	37	.37	.37	.37	. 37	. 37	. 3.	
	.560	- 3A7		9 M M	a. w.	.386	386	5 K M	744		96 96 9	582	5 K 5 C	3.81	. U. A. S.	380
	, 429	.418	418	416	416	415	414	.414	414	414	414	4113	413	413	413	413
41	.286	777	443	. 442	077	077	439	687	438	438	437	437	436	41.16	436	635
x/1 _e	.143	787	183	787	481	481	481	187	087	087	0.60	479	479	479	479	410
	740.	087	483	16.0	482	482	481	1480	087	479	479	478	478	477	477	477
	.011	. 453	5.00	757	484	454	453	453	453	. 453	5.00	457	6.87	451	. 451	. 451
	660	878.	578	177	577	.577	577	.577	577	576	576	.577	477	577	577	.577
	209	.793	793	793	793	794	793	793	. 793	793	793	793	793	792	. 793	793
,	۲, ۱, ۲ هـ ٔ ٔ ٔ ۲ هـ ٔ ٔ ٔ ۲ هـ ٔ ٔ ٔ ۲	1.97	77.	00.0	7	20.1	0	78.7	5	3		6	7.27	7.76		67.8
4 1 1 1		-	٠ ٨	-و ن	7 2		· •		•	. 0	-				. 7	,

\$77										-
427 . 507 . 143 . 286 . 429 . 540 . 736 . 429 . 431 . 413 . 507 . 498 . 433 . 413 . 594 . 981 . 420 . 434 . 413 . 507 . 498 . 423 . 413 . 430 . 438 . 410 . 507 . 498 . 429 . 410 . 591 . 598 . 429 . 410 . 591 . 598 . 429 . 410 . 591 . 598 . 429 . 410 . 591 . 591 . 591 . 591 . 591 . 591 . 591 . 591 . 591 . 591 . 591 . 493 . 429 . 409 . 591 .					x/1,	Q)				
4027 4068 407 4089 4081	0	•	011	.077	.143	.286	. 429	.560	.736	068.
222 200 200 200 200 200 200 200 200 200	S.		427	.507	498	750.	413	701	.381	607
413		. •	422	510	767	435	413	396	.383	351
411			421	805	7.05	. 433	412	100	.383	351
418 . 506 . 404 . 423 . 410 . 501 . 406 . 408 . 400 . 408 . 400 . 408 . 400 . 408 . 400 . 408 . 400 . 408 . 400 . 408 . 400 . 408 . 408 . 400 . 408 . 401 . 501 . 402 . 402 . 403 . 408 . 407 . 408 .			020	507	767	4 3 3	.411	704	.384	.350
415 505 404 429 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 4040 410 41			418	506	767	431	.410	101	384	.350
415 504 409 429 409 409 409 409 409 409 409 409 409 40			417	505	767	429	410	390	782	,350
414 504 403 428 409 509 508 509 509 509 509 509 509 509 509 509 509		•	416	1005	493	429	607.	PAN.	785	351
414 \$03 449 427 409 7387 583 413 \$03 449 7387 583 413 503 449 7487 608 7489 7487 6183 7412 502 4493 425 408 7484 7883 7411 501 402 425 404 7483 7883 7411 501 402 425 7404 7483 7883 7410 501 402 425 7404 7483 7883		. •	415	504	103	8 Z 77 *	400	. J. B. B.	384	.351
413 .803 .4043 .427 .408 .446 .383 .411 .802 .403 .426 .408 .3843 .403 .411 .802 .403 .425 .404 .3843 .883 .411 .802 .402 .425 .404 .3843 .8843 .401 .801 .402 .426 .404 .3843 .8843 .404 .404 .3843 .8843			414	503	103	427	607	387	. 383	, 352
411 .502 .409 .426 .409 .345 .363 .411 .501 .409 .426 .409 .441 .484 .484 .407 .425 .407 .484 .484 .401 .401 .501 .402 .426 .407 .484 .484 .401 .402 .402 .404 .404 .484		•	413	1000	103	.427	408	. 186	. 383	.351
411 502 493 426 408 7484 383 411 501 492 425 407 383 383 411 502 492 425 407 745 384 384 411 501 492 424 407 383			412	505	167	426	607.	50 K S	.383	.351
441 502 492 425 407 585 583 11 502 492 425 407 585 584 11 502 492 424 407 585 583		_	411	505	1693	426	607	78 F	.383	,351
. 411 . 502 . 492 . 425 . 407 . 1443 . 384		· •	411	501	492	425	407	10 K 10 K	. 383	350
. 410 .501 .492 .424 .407 .3A3 .383		. •	411	502	492	. 425	407	. 3A3	.384	.350
		_	410	501	267	#2ħ	407	197 197 197 1	.383	351

TABLE II. - Continued

(b) Lower-flap static pressure p/Pt,j

						x/1 _e	, a				
Point pt,	Pt,j/P.	602	660	.011	. 077	.145	.286	027	.540	.736	.890
\downarrow						4.4	210	421	305	391	,356
_	. 97	192	. 578	465	0.00					. 389	31
	5 7	701	.580	466	487	0 I		1 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.5
		101	570	697	. t. 8 5	. t 1 S	027.) (, a		
N 1				4	7 4 7	475	817.	9.79	404	0	
7	. 4	***		2) d	474	717	416	1000	. 386	
.	20.	100	205	0 0) = P	•	4.7	402	386	30
7	0.7	764	285	0 0 7	1691	3 :) = 4.		186	38
· ·		704	481	697	087	747	n :	n :	7 1	400	2
# I		-		847	087	474	717.	717.	7 K &		1 7
er\ 	2 3 3					777	777	413	C C C	V E 4 .	•
•	78.5	100		1				412	7.87	3.85	5
- 40		. 193	585	100	, t	7 1		: F	402	2.85	.38
_	G	106	198	467	6.43	473	4 7		C 4	4 4 7	-
_			4	1.67	0.18	473	411		CHC	1	
n	7.67	? .	2	. !			0 1 7	0.7	7 4 7	795	י פ
	7.76	. 793	. 58.	407		n :	•			785	38
٠,٠		101	K82	797	. 477	473		3	1	-	-
- a	10	703		466	477	. 473	. 410	017.	.343	100	•

						x/1 ^e	a				
oint	Pt,j/Pw	606	060-1	.011	.077	.143	,286	. 429	. 540	.736	.890
1								8	6.617	183	359
_	. 07	.789	1985	486	487	087	n •	n L → f			651
- 1		9	4 4 4	pr 60 17	600	6 4 7	7	467	2 4	1	4
~					F & 7	477	442	431	007	100	
••	20.2	101	- 0 - 0 - 0		1 4	7.47	617	25.4	007	. 160	.338
7	3.41	186	. 500	7 7	0 0		4	Ø 17	400	379	.357
v	4.02	. 789	. 580	471	287.	O () H		40	1379	357
. ,		789	0.00	097	481	. 477	7 1) () () () () () () () () () (456
0.1		0		0.00	187	6.478	431				1 4
_	0 .			6.4	1 4 7	0.47	627	7777	101	010	9 1
Œ		1780	0.0	1	• •	4.0	0.00	277	396	. 377	
0	5.84	. 789		0 0				400	902	.377	355
-	6.31	789	. 50	. 49.2	9	D (117	. 355
		4 8 0	6	797	087	9.47.9	377.	3			7 4
		0	0	797	087	478	027	877	29.5	2 1	
~	7.87		- C			1 7 R	017	877	. 0.5	. 373	
<u></u>	7.76	\ 0\.		200	•	- 1		0 7 7	702	7.75	
		180	403	165	064	6.70	7	7			1
7 (0	0	0	47	0.4.1	470	0.17	077.	705	C/C.	

-						e _{7/x}	ø				
Point P	Pt,j/Pm	506	660.	.011	.077	.143	.286	454	.560	,736	.890
+			•				0.5	667	101	100 100 100	398
_	-	1774	580	e 1.0	967	797		u (1 4	4
_			e a		767	797		. 423		100	1 1
~	2.43		0 0				617	777	007	. 380	. 33
	20.	172	.561	.514	•			: F : F		C	
·-	-	121	A 8 4	ر ا	207	197	27.	*	. 24.4		
7		- 1			007	. 461	957	421	000	7/7.	9 1
r	3.92	2 .	0	11.	3 6 1 -		51.	400	40.5	379	
_	01.0	. 766		513	V 7 7 .	0				4.4	15.
C I		446	7 6 6		207	097	707.	127.	0	1	1 1
_	0				007	097	757	027	101	6/5.	-
ac	5.05	. 750	. 00	n i) () :		72.7	700	101	. 378	75.
	7	766	505	512	267	9	3	; (4.40	77
,				2	607	097	432	D.	0		•
0	6.31	0	0.0			4.	C P =	0.1	406	.377	37.
, ,	4	767	506	515	¥ * * *	0	3 6			4.7.7	77
_		676	4	, L	C 6 7	450	43.5	\$ T 7 .	9	- 1	1 *
•	120		•	1 (2)		a ti	CET	0 7		376	1
•	41.	. 766	586	516			1 1			175	7
<u> </u>	- (7 7	48.		107	4.50	257	917			•
7	2.0			1			2 2	α -	50	375	
	67.8	. 765	586	511		, to	,	•		ĮI	

TABLE II.- Concluded

(c) Sidewall static pressure p/pt,j

Left sidewall, z = 0.0

Point						x/l _e	, e				
	't,j''∞	-,209	660	.011	.077	.143	.286	. 429	.540	.736	.890
	1.97	.781	089.	.558	867.	797.	.437	413	1997	.386	.366
n:	2.45	.781	.680	7. 80 10 40	005	466	. 437	415	100	. 387	364
M	26.5	.782	089.	50.03	. 500	997.	567.	413	E 0 10	385	.363
7	3,41	. 483	681	. 558	005	466	787	412	. 397	385	.361
r	3,92	. 782	.681	557	.500	465	. 433	411	905	384	360
•	4.39	.782	.681	.557	005	. 465	257.	. 410	396	.383	360
•	4.87	.782	089.	,558	.500	797	. 432	607	305	. 382	359
•	5,35	. 782	.681	989	005	797.	. 431	607	395	.382	1558
•	79.8	.782	.681	.558	007	797	431	807	705	. 382	358
0	6.31	. 782	089.	557	667	. 463	430	407	701	380	.357
-	6.80	.781	089.	.557	667	.463	0.57	407	701	.378	356
-	7.27	.781	089.	557	007	462	0.67	907	303	377	355
<u>.</u>	7.76	.778	089.	.557	667	. 461	0.50	907	00	376	354
14	8.23	1774	.681	. 557	067.	461	0.77	405	305	.376	752
<u>.</u>	67.8	.771	.681	. 557	007.	. 461	. 429	. 405	. 392	.375	353

Light sidewall, z = 0.0

	0	•	•	•	₩.	.	M	7	7	3	~	~	-	~	101	~
	627.		-	77	7	-	1	7	1 1	7	41	4	-	7	-	77
	.286	544.	3	3	1	3	1	~	1	1	11	435	2	3	M	₩.
	. 143	482	. 483	.481	0.67	479	479	478	.477	477	477	476	476	475	475	475
x/1 _e	.077	506	505	204	503	508	502	501	501	500	667	667	007	667	007	667
	.011	196	. 366	•	•	595	S	-	¥	-	565	565	10		8	N.
	660	∞	ø	90	œ	80	ø	40	80	œ	æ	.683	8	90	90	e €
	60₹	777.	. 178	780	.779	. 780	. 780	. 780	. 780	.780	. 780	. 780	.780	. 780	. 780	.780
a/ a	, t, j	1.97	•			•	•					6.80		•		•
Point		-	N	P	7	a n	4 C	•	•••	0	10	11	~	*1	7 [

(a) Upper-flap static pressure P/Pt,j

		068.	475	9 9 9	, 567		100	10.	7.	21.	112	112	112	112	112	. 112			
		,736	412	.375	325	1 7 4 1	071	0 7 1	140	. 141	.141	141	. 141	. 141	141	171	•		
		.560	. 388	371	. 188	. 188	881.	188	187	187	181	187	187	187	187		c .	- 81	
		. 429	,239	234	.234	234	. 235	. 235	. 234	234	234	234	234	234	25.6	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	. 0.0	. 234	
		.286	.276	276	276	.276	,276	.276	276	275	275	274	274	274	274		574	.273	
0.0	x/1,	143	782	288	288	288	.287	287	288	288	800	288	288	8 8	. at	000	288	882.	
$y/w_t/2.0 = 0.0$		077	258	259	258	258	257	256	25.6	, in (- - - - -	71.0		410	2000	672	.256	.256	
		011	295	263	260	291	20	200	000	000	- o	700	704	1 0	1 5	7.0	295	.295	
		660	746	177	7.50	746	745	144	100		1 7 7	1 5	1 - 1	1 - 1	3 1	. 745	.743	.743	
		502		7 7 7	1 2 2	778	0.70	100	10	10.0		u n		1 to 0		2 7 8 4 5	5845	842	
		Pt,j/Pm		4 5 6	200	110		0 0		0 0	2.0	201	5.5	16.0	7.30	7,79	3	9.91	
,		Point p		t	N P	n =	3 1		c i		œ ·	0	c	-	~			15	

		560 ,736 ,890	ľ	, 355	, 323	. 229	. 142	188 .142 .117	142	142	142	142	271.	142	142	142	.142	
		, 429						235										
	, o	.286	274	274	274	275	275	275	274	. 273	. 273	.275	. 273	572	£75*	575	.272	
$1/w_{t}/2.0 = 0.450$	1/x	.143	285	900	286	286	285	285	.286	287	.287	287	287	287	287	782	287	
$y/w\sqrt{2}$.		.077	249	770		100	77.	200	200	243	243	243	243	243	242	747	242	
		.011	200	9 00	0000	000	000	000	000	000	200	000	10.5	401	401		3.01	•
		660	157	75	5 C C C	7 7 7	r (r	17.0		4.50	149	7.49	140	071	7 U.R	7.47	747	•
		602	61.0	- 0 - 0 - 0	0 0	G 0	0 0	0 0	, d	0 7	678	0 7 0	0 7 8	0	070	0	0.40	•
		Pt,j/Pm			 	· ·	2 4 4		7 0	0 0 0 4 0 4	, a	0 4	0 1	0 10 10 10 10 10 10 10 10 10 10 10 10 10	9 6	- 1	c a	
		Point		-	N	•	3 1	ın ·	e i	` (r		0 :	- :	\ !	· .	7	<u>.</u>

	068.	.487	.375	321	27.4		4 4	113	114		. 115	u	1	• 115		116	4:-	•	• •	
	.736	.481	.384	717		r: 0	971	139	071	071	171	 	1 7 1	777	246.	777		J .	, 14c	
	550	470	126	, n	- 1	T .	, A 7	α. α.	αα.	88		C C .	ac ac	187	187	7 0 -		, 1 A 7	- A -	ı,
	. 429	448	217			252	.234	. 235	234	720		, v	. 234	233	.234	220	0 1	. 233	233	
	.286	610	a(000	.00	, C. C.	0 6 Z •	682.	289	300		602	288	885.	.288	300	0	2885	288	:
x/1 _e	.143	28.7		100	· ·	.287	982.	286	286	440		/82.	.287	286	. 285	4 0 0	00.	-286	400	
	770.	34.4	0.0	000	. 558	. 257	256	. 255	750		602	25.4	553	. 253	2,7,3		ر در.	552.		
	110.	111	- L	د75,	574	.272	.271	270	040	: C	, co.	592.	596	6.00	267		, dc.	266	440	
	660	12.	[] ·	051.	. 150	749	749	749	077	- 1		4149	749	24.9	740	. 1	. 750	750	\ U	
	602*-		0.70	. 841	078.	838	8.38	000		0.0	150.	. 8.57	8.55	3	4		836	8.6		000
	Pt,j/P~		1.97	2,46	76.2	77.7	000	0.0		c .	5.39	7.84	62.4	,	- 6	10.	7.79	2	•	0
	Point	1		٨	,,,	` =	t u	n ·	c I	_	σc	o		2;	- :	~	2 ,		3	<u>.</u>

TABLE III. - Continued

(b) Lower-flap static pressure p/pt,j

		.560 ,736 ,890	, 429	382	323	, 232	.186 .141 .235	141	141	.141	. 141	.141	.141	. 141	. 141	.141	.140
		454	412	. 229	. 229	.229	, 229	. 229	.229	. 229	.228	. 228	.228	. 228	. 228	.228	.228
	, e	982	575,	.273	.276	.277	.277	.277	.276	.276	.276	.276	.276	,276	,276	.276	.276
0.0 = 0	x/1 _e	.143	575.	273	. 273	.272	.272	.273	.274	.273	. 273	.273	.273	.273	.273	.273	.272
$y/w_{t}/2.0 =$.077	.243	777.	777	544	.244	. 244	, 244	244	244	.244	244	545	. 243	.243	.243
		,011	. 295	562.	500.	562	762	762*	. 295	566.	962.	962.	. 296	. 297	.297	962.	962.
		660	157.	.757	,757	.758	.757	.757	,757	151	757	.757	157	, 758	,75A	.757	.757
		602"-	678	878	878.	848	.847	.847	4847	9446	978	978	978	978	9718.	. 845	845
	d/. d	, t, j .	1.97	2.46	76.2	3.43	3,92	4.39	98.7	5.39	5,84	6.32	6.81	7.30	7.79	8,53	8.91
	Point		•	٨	k	7	r	•	^	αc	0	10	=	~	13	77	15

272 273 274 275 275 275 275 277 277 277 277
286 275 277 277 277 277 277 276 276 276 276 276
271 272 273 273 274 273 274 277 277 277 276 276 277 276 277 277 276 277 276 277 276 277 276 277 277
272 273 273 274 275 277 276 277 276 276 277 276 277 277 276 277 276 277 276 277 277
273 273 273 273 273 275 275 276 276 277 276 277 277 277 277 277 276 277 277
273 273 273 273 272 272 275 275 275 275 276 277 277 271 271 276 276 234 271 276 276 277 276 277 276 277 276 277 276 277 276 277 276 277 277
273 273 272 272 272 272 272 272 274 275 276 276 277 277 271 271 271 275 276 277 277 277 277 277 277 277 277 277
273 275 276 276 277 276 276 276 276 276 276 276
273 272 272 275 275 276 277 277 276 276 271 271 276 271 276 276 277 271 276 276 277 276 277
272 272 272 275 276 276 277 271 271 270 271 270 271 270 271 270 270 271 270 270 270 270 270 270 270 270 270 270
272 272 272 273 274 271 271 276 271 270 271 270 270 271 270 271 270 270 270 270 270 270 270 270 270 270
272 236 272 276 239 271 276 2241 271 276 241 271 276 241
275 . 276 . 239 .271 . 276 . 241 .271 . 276 . 241 .771 . 276 . 243
271 .276 .241 .271 .270 .241 .270 .243
. 271 . 276 . 241 . 271 276 . 243
271 276 243
, HIC 940
CTU. 0/U. 0/U.

			_	•	~	=		_	_	<u>~</u>			•	40	~	~	٦
	068*	987	.386	319	. 27	.23	126			. 118	11.	11.	11.	118	11.	. 118	
	.736	479	388	317	. 221	138	138	138	138	.138	138	138	138	138	138	138	
	.560	040	340	184	184	1,184	184	787	184	7 A L	78.	184	184	184	185	. 185	
	627	.453	.228	8228	, 22.8	.228	2.2.8	.228	822	855	228	228	855.	.228	825	.228	
	.286	1317	672	.281	282	, 281	.281	082	.279	.279	.278	278	278	.277	772	.277	
x/1 _e	,143	284	283	. 283	. 283	, 283	284	284	. 284	,284	.284	284	283	.283	.282	-282	
	110	. 251	.250	052.	. 250	.250	545	672	6772	672.	672	549	549	672	672	672.	
	.011	304	300	x 6 0.	200	. 295	562	762	562.	200	766.	762	762	766.	562	36¢.	
	660.	.760	.758	159	.759	.75A	.75A	.757	,757	. 757	756	,756	.756	,756	, 756	.756	
	209	842	C778.	. 941	. 841	078.	078.	.838	.839	4 3 9	98.39	078°	076.	.839	0 78 4	. x 3¢	-
d/ d	, t, j	1.97	2,46	76.2	3,43	3.92	62.7	48.7	5.39	5.84	6,32	6.A1	7.30	7.79	8.53	16.8	~
Point		-	٨	~	77	ir.	c	7	αc	0	10	=	۲2	13	14	<u>.</u>	

TABLE III. - Concluded

(c) Sidewall static pressure P/Pt,j

0
0
Ħ
N
sidewall,
ų
jet
-

	990	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	.736	4 W W W W W W W W W W W W W W W W W W W
	.560	N 00 N 80 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0
	. 429	2463 2463 2463 2463 247 247 247 247 247 247 247 247 247 247
	.286	20000000000000000000000000000000000000
x/1 ^e	.143	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	740.	0.000 0.000
	.011	24444444444444444444444444444444444444
	660	MWHWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
	- 209	
	Pt, 1/P.	
	Point	WARR OF BOC UNAR

Right sidewall, z = 0.0

1	,				x/1 _e			
FOLINE	Pt,j'P~	-,209	660**	.011	.077	.143	,286	, 429
			740	114	0.5	415	401	.468
,			17.		805	415	.250	.368
r _o i			174		507	415	.251	. 166
- C:			177		60.0	413	251	166
7				9 4		414	.251	. 166
S	26.6		17.		, u	413	251	166
•						413	. 251	167
•				600	- - - - - -	7.17	. 251	167
ac			. i		ייני פיני	7 7	251	1167
o			1 1 1	000	n u		100	167
10			741		n :	1 .		-
-			. 741	¥09.	ر ٥٠ د			
- (742	609	505	413	162.	
- 1			174	407	505	413	. 251	.167
13			1 2		. C	7.17	251	167
7 7		200	0 7 7	. 60 4	1 M	7	255	.167
.5		.821	. 742	109.	c0c.	•		

TABLE IV.- RATIO OF INTERNAL STATIC PRESSURE TO JET TOTAL PRESSURE FOR NOZZLE B2

(a) Upper-flap static pressure p/pt,j

$y/w_{t}/2.0 =$	- 0.0
-----------------	-------

Point	 	1				x / <i>î</i>	e				
	p _{t,j} /p _∞	209	099	.011	.077	.143	.286	.429	.560	.736	.890
1	1,96	.784	,578	430	319	, 289	.317	,452	.463	.471	,482
ź	2.47	781	574	424	319	289	266	.225	,3A1	.386	, 388
2 3	2.95	783	.577	.424	.320	290	266	225	189	.319	, 323
4	3,42	,783	577	424	319	.290	.267	.225	188	.149	,275
5	3.94	.783	578	424	.318	.290	.266	.223	188	.147	.214
6	4.40	.783	577	.424	318	290	265	. 223	.188	147	, 126
7	4.88	783	.578	.424	.318	288	265	.223	្ត៌ 188	. 147	.126
8	5.38	783	578	.423	318	.288	265	,223	188	.147	,126
9	5,88	783	.577	423	317	.288	265	. 222	187	.147	,126
1.0	6.35	783	.577	.423	.318	.288	265	.223	.187	.148	,126
11	6.83	784	577	424	.318	.288	265	. 223	.187	148	126
12	7.31	782	578	424	318	.288	265	.222	, 187	148	127
13	7.79	783	.578	424	318	.288	265	.222	187	147	127
14	8.54	783	578	.424	317	288	265	. 222	186	147	126
15	8.73	.783	.578	423	.317	.288	265	555	.186	147	126

 $y/w_t/2.0 = 0.450$

Point	ln /n					x/	l _e				
TOTIL	p _{t,j} /p _∞	209	099	.011	.077	. 143	.286	.429	.560	.736	.890
1	1.96	.787	.568	420	.326	.290	.286	.448	.460	.469	.482
2	2.47	.784	.568	.422	327	291	.258	. 226	380	.385	388
2	2.95	786	.569	422	.327	292	258	, 226	,188	318	322
4	3.42	787	.568	.420	.327	292	258	.225	, 1A8	.147	.275
5	3.94	.786	.568	.420	.325	.291	258	.225	187	.146	.211
	4.40	787	.568	.420	.326	.291	.257	. 225	187	.146	.123
6 7	4.88	785	568	420	326	291	.257	225	, 187	.146	,123
В	5.38	786	568	420	.326	291	256	224	187	.146	123
9	5.88	786	566	.420	326	.291	255	.224	.187	.146	.124
10	6.35	786	566	.420	326	. 291	255	.224	.187	.146	.124
11	6.83	.786	.566	.420	326	.291	255	.224	.187	.146	.124
1 2	7.31	787	567	.420	326	292	255	. 224	187	.146	.124
13	7.79	787	566	420	326	. 291	255	. 223	187	.146	.124
14	8.54	788	.567	421	326	292	255	.223	.187	.146	.124
15	8.73	788	567	. 421	326	. 292	.255	.223	.187	.146	.124

 $y/w_t/2.0 = 0.875$

Point	 					x/ 2	e e				
202110	^p t,j ^{/p} ∞	209	-,099	.011	.077	. 143	.286	.429	.560	.736	.890
. 1	1.96	788	.583	407	. 333	.302	.269	.439	,453	.468	,482
2	2.47	.788	583	406	. 331	.302	. 269	.224	370	.374	.381
2	2,95	.790	.583	403	. 531	.301	.269	. 225	, 189	.306	.314
4	3.42	.790	.583	403	329	301	.269	.225	189	.145	.270
5	3.94	.787	.582	403	328	.301	.269	.225	. 190	.146	.187
6	4.40	787	582	403	.328	.300	270	225	190	147	.124
7	4.88	787	.582	403	329	299	865	.225	.190	147	,124
8	5.3A	.788	.582	403	.329	.299	. 269	.224	190	148	.125
9	5.88	787	.582	402	329	298	568	.224	189	.148	.125
1.0	6.35	788	.583	.402	329	. 299	.268	224	189	149	.125
1.1	6.83	787	583	402	329	299	268	155	189	149	,125
12	7.31	787	.584	402	.329	299	.268	.224	.189	149	.125
13	7.79	787	.582	402	329	.298	.268	.224	189	149	126
14	8,54	788	.583	402	.329	.298	269	224	.188	149	.125
15	8.73	788	.583	403	329	298	268	224	188	149	125

TABLE IV. - Continued

(b) Lower-flap static pressure p/pt,j

		068.	697	,386	, 323	575	,217	.118	118	118	118	119	119	119	119	1119	.118
		.736	. 443	385	318	148	.147	.147	147	. 147	147	.147	. 147	. 147	147	. 147	.147
		.560	767	178	187	187	188	188	188	06.	188	188	138	. 188	68.	881	. 188
		, 429	398	.227	. 227	.228	. 227	.228	.227	227	.226	.226	.226	.226	.226	.226	.226
	a)	,286	.270	271	.273	.273	.273	. 273	.273	.273	272	.271	.271	572	575	.272	272
0.0 = 0	x/1e	.143	300	301	300	300	662.	599	662	662.	862	298	. 299	862.	862.	298	.298
$y/w_t/2.0 = 0.0$.077	,322	325	326	326	325	325	.325	. 323	. 323	. 523	323	323	. 323	324	324
		.011	408	607	407	408	408	409	400	410	410	410	410	410	410	411	411
		660	.563	565	566	.566	.566	566	567	.566	595	565	. 566	.566	566	.567	292
		-,209	790	190	787	788	. 788	787	788	788	787	787	787	787	787	788	.786
	۵/ ۵	,t,j''	1.96	2.47	2,95	3.42	3.94	07 7	4.88	5.38	5.88	6.35	6,83	7.31	7.79	8.54	8,73
	Point		-	٨	1 10	7	'n	•	•	0 0	٥	- 0	-	~	, to	7	5.

		.890	597	. 386	, 322	, 274	.216	121	, 121	122	, 122	. 122	. 122	. 122	122	. 122	,122
		.736	277	383	,316	. 149	149	.149	149	, 149	.149	149	149	149	149	149	.149
		.560	433	376	061	190	.190		10	161.	190	190	190	190	190	190	.190
		.429	419	207	.214	.219	. 223	.226	.228	. 230	. 231	. 232	, 233	.234	.235	.236	.236
		•286	692.	.270	.271	.271	.270	.270	270	.270	270	.270	.270	.270	270	. 271	.271
= 0.450	x/1 _e	.143	962.	568	300	.301	300	298	868	862	862	862.	862.	862	862.	862	868.
y/wt/2.0		.077	,333	333	333	330	329	329	, 329	329	328	. 528	328	328	328	328	,328
		.011	416	413	411	607	407	407	405	404	403	402	402	402	402	402	207.
		660	175	.571	.570	.571	.571	.57!	575	571	.571	572	572	571	572	.573	,573
		602° -	.785	184	784	784	. 783	, 784	184	. 782	. 782	. 782	783	184	784	784	,783
		, t, j''' s	1.96	2,47	2.95	3,42	3,94	07.7	88.4	5,38	5,88	6.35	6.83	7.31	7.79	9,54	R.73
-	Potnt		-	٨	₩1	7	БŲ	•	_	αc	0	10	11	7		7	75

		. 890	471	,378	, 313	, 268	. 203	.166	157	.127	128	. 128	. 127	. 128	, 128	.128	128
		.736	447	. 372	305	, 154	154	.154	154	155	154	154	154	154	154	154	,154
		.560	2625	368	101	194	761.	7.01.	.195	. 0.5	195	195	. 195	195		. 0.5	201.
		627.	907	.226	.226	.227	227	.227	22.7	755	922.	.227	,226	.227	.227	.227	. 727
		.286	472.	.275	.277	276	276	275	275	274	274	274	722	.273	273	.273	,273
= 0.875	x/1 _e	.143	300	301	302	300	560	300	300	300	599	500	566	599	662.	662.	\$62.
$y/w_t/2.0 =$.077	328	.328	328	328	328	326	. 326	727	326	326	327	. 327	. 327	. 327	.327
		.011	607	408	405	405	404	404	404	403	403	405	200	403	20p	402	. 402
		660	592	593	595	595	565	965	597	597	595	965	965	264	165	598	, 59R
		•.20g	,783	781	781	.781	.780	179	779	777	1777	.777	,778	• 179	.779	621	.780
	٤,	rt,j'r	1.96	2.47	2.95	3,42	3.94	4.40	88.	5.38	5.88	6.35	6.83	7,31	7.79	8,54	8,73
	100		-	~	þr	77	r	40	_	oc	0	0	-	~ ~ ~	1	77	7.

TABLE IV. - Concluded

(c) Sidewall static pressure p/Pt,j

Left sidewall, z = 0.0

_	_				_	~-			_	_		-	_	_	_	$\overline{}$		_
		.890	.510	390	\$ 309	592	.136	136	136	.136	. 136	.136.	136	136	136	136	136	,
-		,736	267	. 323	297	153	154	.154	.154	154	154	. 154	154	154	154	154	154	•
		.560	.318	153	2.4	156	. 165	163	178	171	181	174	179	175	182	187	5 8 5	.
		424	702	205	506	206	902	206	506	902	205	205	205	205	502	702	700	
		.286	.281	281	281	281	280	278	772	276	.276	.276	276	276	276	276	276	
17	x/1 ^e	.143	407	407	907	407	407	407	407	407	407	407	407	407	. 407	407	407	
		.077	1.87	7 6 7	2 2 4	100	483	482	1687	4.83	483	483	483	4.0	10.0	187	2 4 4	
		.011	55.0	. R.	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	15.57	556	556	55.6	555	55.5	556	556	20.00	1.56			
		660*-	474	8,4	679	089	089	089	66.	.681	681	680	189	60	604	6	1 6 4	3
		-,209	783	0.00	1 20 %	784	783	782	782	782	782	782	. 783	7.81	7.80	775	7.7.7	
		Pt,j'Pw	40		100	7 7	70	0 7 7	1 00	100	, c		1 00	7			9 0	• • •
		Point	-	- 1	u M	n =	T U	٠,	9 10	- α	. 0		-		u P			<u>ר</u>

Right sidewall, z = 0.0

oint	u/				x/l _e			
	rt,j'r	602.	66U • •	.011	.077	.143	,286	627.
-	9	۱ ۸	189.	l in	~	_	a 0	₩
۰ ،	7		99	10	-	77	28	0
) pe	0		οc	M	-	4	8	0
1 =	. 7	77	£	56	~	40	28	0
ru		-	8	5.5	-	0 7	æ	0
Դ -4	7	7	90	1	47	•	Œ	0
•			68		475	408	282	508
α		7.7	•	S	-	0	28	0
a	9	7.7	÷	S	-	0	80	2
		7	•	'n	-	O	ø	20
-		77	•	S	-	0	00	2
	. ~	77	£	S	-	C	8	2
		77	•	s	7	c	80	2
7 =		77	1991	ະທ	~	0	Œ	0
· •	8 73	.777	681	555	475	408	6	0

TABLE V.- RATIO OF INTERNAL STATIC PRESSURE TO JET TOTAL PRESSURE FOR NOZZLE B3

(a) Upper-flap static pressure P/Pt,j

					$y/w_{\psi}/2.0 = 0$	0.0 = 0.0					
	,					9 _{7/×}	9				
Point	Pt,j'P.	199	093	.013	740.	.141	.279	.417	585.	.715	.864
	40	704	404	175	175	901	280	977	. 453	454	469
- n		107	100	272	275	308	.280	. 238	, 372	. 383	181
	9 0	0	0	-	17.5	308	082	.239	199	313	, 321
กร	7	705	004	691	17	308	. 281	.240	002	. 156	. 269
*		100	009	80	175	308	.280	072	002	.157	132
n 4	777	106	009	10	778	307	280	072	200	.157	133
D- P -	7	196	009	167	S 7 F	307	.280	0 7 0 7	102	157	133
- •		796	009	99	775	306	. 280	072	100	187	
0 0	. 0	106	009	165	344	307	.260	. 240	100	151	.133
	-	106	04	7.65	775	306	082.	072	102,	. 157	133
) u		101	404	797	5.45	306	.280	240	. 201	. 58	133
		-		74	4 4 5	306	280	072	201	157	133
2 :		-		4	4 4	405	280	072	201	. 158	. 133
1		101		, M	47	401	280	240	002	.158	133
	7 4	101	0.4	1 pr	17	306	280	072.	202	158	133
<u> </u>											

		.864	4466	382	310	. 268	. 139	140	140	140	. 141	. 141	. 141	. 141	. 141	.141	. 141
		.715	. 451	.381	. 310	. 173	174	.174	.175	175	175	.176	.176	.176	.176	.176	.176
		585.	777	110	200	702	500	205	205	N. O. V.	902	900	206	902	902	902	306.
		417	431	272	777	7772	. 245	. 245	. 245	577	. 245	. 245	777	. 245	. 245	245	545
		.279	782.	285	782	.287	287	.288	.288	.288	. 288	. 288	882.	288	. 288	. 268	. 288
= 0.450	x/1 _e	.141	.310	312	313	313	313	31.5	313	313	.313	. 313	313	313	313	.313	.313
y/w ₄ /2.0		.077	129	80.00	327	.327	326	325	325	324	324	323	1223	322	225	200	122
		.013	007	007	398	1397	396	80	394	394	100	202	265	192	201	0	391
		093	101	0	5.6	565	0	565	50.5	50.5	205	265	66.5	, O. M.	0		
		-,199	. 707	196	196	196	196	796	196	796	795	796	196	705	705	704	795
	,	Pt,j/Pc	40	7	40	44		77.7	70	C 7 . C		7 7	9	4			n ⊶ 1 ¥0 • •
		Point	•	- 6	V P	0.77	, ,	r 4	*				::	::	V .	• • • •	ī

						x/1 ^e	້,ຄ			
Foint	Pt,j'P~		.013	7.00	.141	.279	.417	.545	-715	,864
	0	04	170	430	320	275.	.397	438	25.07	. 472
- •	4 7		177	0	321	276	231	352	370	377
V P	0		474	40	0 6 7	276	. 232	187	300	311
9 =	7		7.1	101	0	276	233	187	146	.262
.			, A.	10	319	276	231	187	146	. 128
n 4	777		47.	1 C	6 0	275	231	188	146	. 128
D · P	0	000	171	725	317	275	. 231	188	146	. 128
•		000	170	12.5	316	274	230	188	106	. 128
C C		008	170	225	316	274	.229	187	146	128
•	7 7 7	199	170	200	316	.274	622.	.187	146	127
-		100	169	325	315	274	622	.186	. 146	127
- •	4	100	160	125	313	273	229	186	146	. 127
V P		100	46.8	125	315	273	. 228	186	971	127
		100	468	125	315	273	.228	1.85	971.	. 127
	9.81	100	368	320	315	.273	.228	. 185	146	. 127

TABLE V.- Continued

(b) Lower-flap static pressure p/pt,j

Point P _{E,j} /P _∞	1444									
	444				x/1e	(a)				
JAIR M.W.	744	093	.013	.077	.141	.279	.417	545	.715	.864
WW JW W	792	.615	199	.333	.301	.275	5 77 7	877	452	466
Mark NWW 646		.615	400	336	303	.275	.231	, P.	381	382
J. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	791	.615	007	337	303	.276	.231	101	.313	320
50.05		.614	401	.338	304	.276	232	 R. O	151	. 269
	.791	.614	401	.338	303	.276	. 232	195	152	127
77.7 9	.791	.614	. 401	338	303	.275	. 233	196	. 152	127
4 4.03	.791	.613	007	.338	.303	275	, 233	101	. 152	127
8 5,42	.791	613	401	.338	303	275	- 232	197	152	128
9 5,92	. 790	.613	401	.338	303	.275	. 232	197	153	. 128
10 6.41	. 790	.613	007	.338	.303	. 275	. 232	197	. 153	. 128
11 6.89	.790	.613	007	338	303	.274	. 232	197	. 153	. 128
12 7.38	.790	.613	007	338	303	.274	232	101	153	128
13 7.67	. 790	.613	007	338	303	274	232	101	153	128
14 8.35	. 790	.612	007	338	303	.274	. 232	. 197	152	128
15 6.81	. 790	.612	399	.338	305	.274	. 232	101	152	128

		.864	997.	. 381	.318	.267	127	. 127	127	. 128	. 128	. 129	. 129	. 129	. 129	, 129	. 129
		.715	677.	.380	.311	. 151	151	151	. 152	. 152	152	. 152	. 152	. 152	. 152	152	. 152
		.545	478	371	S	. 196	961.	101	101	101	197	101	197	197	197	197	101
		.417	. 423	. 232	, 232	. 233	233	. 233	. 233	.233	. 232	. 232	. 232	232	. 232	. 232	.232
		.279	.278	,280	, 281	. 281	.281	. 281	.281	.281	.282	. 282	.282	. 282	.282	.282	282
= 0.450	x/1 _e	.141	.307	.309	.310	,310	308	.307	306	.306	308	305	305	305	305	308	.305
y/w_2.0		.077	.336	335	334	.333	. 332	. 332	, 332	.331	331	.330	.330	.330	.330	. 329	329
		.013	.401	401	402	Z 0 7	. 402	401	107	. 401	401	.401	401	401	104.	401	.401
		003	.616	.619	.621	.621	.621	. 682	.621	.621	.621	.621	.621	.621	. 622	.621	.623
		i 99	.788	.787	.788	. 789	. 788	. 789	789	.788	. 788	. 188	.788	. 788	. 788	, 788	788
	d/' d	. L,J	1,98	2.48	96.2	3,46	3,95	77.7	20.7	27.5	5,92	6.41	6.89	7.38	7.87	8,35	
	Point			~	* 1	7	ĸ	•	^	•	0	0		~	<u> </u>	14	<u>.</u>

					$y/w_{t}/2.0 =$	0 = 0.875					
Point	a/ . a					x/1 _e	u				
	, £, 3	-,199	£60°-	.013	.077	.141	.279	.417	505	.715	198.
2 🖛	1.98	.790	592,	007	.348	.316	.278	1394	210	057.	470
N	2.48	. 789	593	400	344	.319	280	.238	72.5	369	376
P.	2.96	.789	.593	401	.339	320	. 282	. 239	195	560	310
7	3.46	. 789	593	401	333	.320	. 283	240	195	.160	.260
₩.	3.05	. 788	563.	401	.335	.319	. 282	.240	195	.160	137
S	77.7	. 788	593	401	.334	.319	.282	241	195	.161	137
•	4.93	. 788	765	401	334	319	.281	. 241		. 161	137
≪	. t.	.788	565	401	334	.318	. 281	. 241	100	.161	138
0	5,92	.788	: 593	401	334	.318	. 281	. 241		. 161	138
0.	6.41	. 788	100.	401	334	318	.280	. 241	195	. 161	138
=	6.89	. 789	500	401	334	.318	.280	. 241	501	.161	.138
~	7.38	. 789	.593	401	725	.318	082.	. 241	201.	162	138
	7.87	.789	765.	401	334	318	.280	. 241	. 195	161	138
7	5.15	.789	.593	007.	334	.318	.280	. 241	. 198	.161	138
<u>.</u>	8.81	.790	268.	400	334	.318	.280	.241		.161	138
				į							

TABLE V. - Concluded

(c) Sidewall static pressure P/Pt,j

Left sidewall, z = 0.0

1 2 2	,					x/l _e	a)				
FOTHE	μ _{t,j} ' Ρ _ω	199	093	.013	.077	.141	.279	.417	.545	.715	198.
,		:			041	10.4	200	234	. 4.0	457	200
(0 =				1 3	0	295	236	00-	.324	.379
~ •	40	110			0 4	001	.297	.237	200	.174	. 405
n =					047	300	762	.237	201	160	150
J. 1		44.0			0.97	007	762	238	100	160	271.
۲ ۱	777	110	678		097	400	.296	. 238	202.	.161	143
	0	779	67.9	100	469	400	962.	.237	200	.161	143
		770	678	123	469	004	295	, 237	202	.161	571
D 0		779	979	585	469	007	. 295	. 237	. 202	.161	.143
•	4 4	779	678	535	469	007	295	. 237	202	161	143
); •	4	779	678	452	697	007	295	.237	202	.161	5 7 7
		770	7.4	100	697	007	. 295	. 236	202	.161	577
4 .		770	678	200	097	400	562	. 236	200	. 161	. 143
7 -	¥	778	67.9	10	469	400	295	.236	400	.160	. 143
. E.	80	179	.678	5.00	468	007	762	. 236	202.	.160	. 143
. ,		_									

Ight sidewall, z = 0.0

8 000	0					
77.	681	. 013	.077	.141	.279	.417
7.4		R.	12	_	-	2
60		2	-	07	~	~
			47	⋾	~	
	-		47	9	2	2
	- 60	, R	-	_	2	n.
-	an)	3	4	3	2	2
94	00	Š	47	9	28	22
	89	5	47	9	80	22
	9		7	07	28	Č
_	9		17	0	8	22
	9		7	007	28	22
_	4		7	0	2	22
_	4			0	28	N
_	× 00			0	2	2
· ·	90	, R		0	8	22
	888888888			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 781	7481 .6882 .858 .474 .401 .6882 .8583 .474 .401 .6882 .8583 .474 .400 .401 .401 .401 .401 .401 .401 .40

Figure 1.- Sketch of air-powered nacelle model with typical nozzle configuration installed. All dimensions are in centimeters unless otherwise noted.

Configuration A1

Parameter	Al	A 2	Parameter	Al	A2
A _e ,cm ²	30.29	30.29	Ц	5.78	5.78
At, cm ²	27.81	27.81	ι_1	5.54	4.74
A _e /A _t	1.09	1.09	l ₂	.24	1.04
h _e	1.49	1.49	13	.01	.06
h _i	3.52	3.52	14	5.76	5.72
h _t	1.37	1.37	M _d	1.35	1.35
h	1.41	1.57	NPR _d	2.97	2.97
h ₂	1.37	1.37	r _c	.68	2.74
ι	11.56	11.56	heta , deg	20. 84	22.33
ι _e	5.78	5.78	ε,deg	1.21	1.21

Configuration A2

L-80-174

(a) Configurations Al and A2.

Figure 2.- Sketches of nonaxisymmetric converging-diverging nozzle configurations showing important parameters. All dimensions are in centimeters unless otherwise noted.

i		1
B1	B2	В3
5.78	5.78	6.27
5.54	4.74	5.32
.24	1.04	.96
.13	.53	.52
5.65	5.25	5.46
2.08	2.08	2.08
d 8.81	8.81	8. 81
.68	2.74	2.74
g 20.84	22.33	20.42
10.85	11.24	10.85
	5.78 5.54 .24 .13 5.65 2.08 8.81 .68 20.84	5.78 5.78 5.54 4.74 .24 1.04 .13 .53 5.65 5.25 2.08 2.08 8.81 8.81 .68 2.74 20.84 22.33

Configuration B1

Configuration B2

Configuration B3

L-80-175

(b) Configurations B1, B2, and B3.

Figure 2.- Concluded.

(a) Flap static-pressure instrumentation.

Figure 3.- Sketches of 2-D C-D nozzle components showing internal static-pressure orifice locations. All dimensions are in centimeters unless otherwise noted.

_	urations , B1, B2	Configu B:	
Left	Right	Left	Right
x/l _e	x/l _e	x/l _e	x/l _e
-0, 209	-0.209	-0.199	-0.199
099	099	093	093
.011	.011	.013	.013
.077	.077	.077	.077
.143	.143	.141	.141
.286	.286	.279	.279
. 429	. 429	.417	.417
.560		.545	
.736		.715	
. 890		. 864	

(b) Sidewall static-pressure instrumentation.

Figure 3.- Concluded.

Figure 4.- Variation of nozzle internal thrust ratio and discharge coefficient with nozzle pressure ratio for 2-D C-D nozzles with low divergence angle.

Figure 5.- Variation of internal thrust ratio and discharge coefficient with nozzle pressure ratio for 2-D C-D nozzles with high divergence angle.

Figure 6.- Comparison of internal static-pressure distributions along upper-flap center line for nozzles Al and A2.

Figure 7.- Comparison of internal static-pressure distributions along upper-flap center line for nozzles B1 and B2.

Figure 8.- Comparison of internal static-pressure distributions along the upper-flap center line for nozzles B1 and B3.

Figure 9.- Internal static-pressure distributions for nozzle A1 at $p_{t,j}/p_{\infty}$ = 5.97.

(b) Lower flap.

Figure 9.- Continued.

(c) Sidewalls.

Figure 9.- Concluded.

Figure 10.- Internal static-pressure distributions for nozzle A2 at $p_{t,j}/p_{\infty} = 5.84$.

Figure 10.- Continued.

(c) Sidewalls.

Figure 10.- Concluded.

(a) Upper flap.

Figure 11.- Internal static-pressure distributions for nozzle B1 at $p_{t,j}/p_{\infty}$ = 1.98 and $p_{t,j}/p_{\infty}$ = 5.84.

(b) Lower flap.

Figure 11.- Continued.

(c) Sidewalls.

Figure 11.- Concluded.

Figure 12.- Internal static-pressure distributions for nozzle B2 at $p_{t,j}/p_{\infty}$ = 1.96 and $p_{t,j}/p_{\infty}$ = 5.88.

0

(c) Sidewalls.

Figure 12.- Concluded.

Figure 13.- Internal static-pressure distributions for nozzle B3 at $p_{t,j}/p_{\infty}$ = 1.98 and $p_{t,j}/p_{\infty}$ = 5.92.

(b) Lower flap.

Figure 13.- Continued.

(c) Sidewalls.

Figure 13.- Concluded.

Figure 14.- Comparison of theoretical and experimental internal thrust ratios for nozzles with low divergence angles.

Figure 15.- Comparison of theoretical and experimental internal thrust ratios for nozzles with high divergence angles.

Nozzles with high divergence angle

Figure 16.- Effect of throat radius on experimental and theoretical internal thrust ratio.

Figure 17.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle A1.

Figure 18.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle A2.

Figure 19.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle B1.

Figure 20.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle B2.

Figure 21.- Comparison of theoretical and experimental static-pressure distributions on upper-flap center line for nozzle B3.

Figure 22.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle A1.

Figure 23.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle A2.

Figure 24.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle B1.

Figure 25.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle B2.

Figure 26.- Comparison of theoretical center-line static-pressure distributions with experimental static-pressure distributions on left sidewall center line for nozzle B3.

1. Report No. NASA TP-1704	2. Government Access	ion No.	No. 3. Recipient's Catalog No.						
4. Title and Subtitle		5. Ren	ort Date						
THE EFFECT OF THROAT CO									
CONVERGING-DIVERGING NOZZLES AT STATIC O				orming Organization Code					
7. Author(s)		8. Perf	orming Organization Report No.						
Mary L. Mason, Lawrence E. Putnam, and R		chard J	• VG	-13591					
9. Performing Organization Name and Addre			k Unit No.						
		5	505-32-13-01						
NASA Langley Research C Hampton, VA 23665		11. Con	tract or Grant No.						
			13. Typ	e of Report and Period Covered					
12. Sponsoring Agency Name and Address	Technical Paper								
National Aeronautics an Washington, DC 20546	14. Sponsoring Agency Code								
15. Supplementary Notes									
16. Abstract									
An experiment has been	conducted at stati	c condi	tions to deter	mine the internal					
performance effects of	nozzle throat cont	couring,	the result of	increasing the					
circular-arc throat radius. Five nonaxisymmetric converging-diverging nozzles were tested at nozzle pressure ratios up to 9.0. Data are presented as internal thrust ratios, discharge coefficients, and static-pressure distributions. Comparisons of internal performance data for the five nozzles show that throat con-									
					touring increases the v				
					on internal thrust ratio except in cases of internal flow separation. To illus-				
trate the use of the tw									
base, a two-dimensional									
The generally good agre									
dimensional inviscid theory can be successfully applied to the prediction of 2-D C-D nozzle internal flow.									
17. Key Words (Suggested by Author(s))		10.01							
		18. Distribution Statement							
Nonaxisymmetric nozzles Internal performance		Unc	lassified - Un	limited					
Static performance									
NAP				Subject Category 02					
19. Security Classif. (of this report)	20. Security Classif. (of this p	age)	21. No. of Pages	22. Price					
Unclassified	Unclassified		67	A04					