Permit Numbers 2937 and PSDTX1023M2

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

(See Attachment 1 for Source Name and Emission Point Number Index)

AIR CONTAMINANTS DATA

	Emissio	on Rates *
Pollutant (1)	lb/hr	TPY**
Emission Caps (6)		
SO_2 VOC NO_x CO PM_{10} H_2S HCI Cl_2 Benzene Ammonia	160.8 1,790 218.9 357.5 45.39 2.72 0.21 0.06 37.2 0.17	702.3 1,118 833.9 1,433 173.1 11.91 0.06 0.02 25.15 0.75
Maintenance, Startup, and Shutdown (M	SS) Caps (5)	
CO NO _x VOC SO ₂ H ₂ S PM Sulfuric Acid Ammonia Exempt Solvents	4290.4 149.3 1,713 1087.5 6.45 76.7 10.95 4.41 1.76	52.83 2.03 48.50 37.12 0.19 0.40 0.26 0.09 0.60

AIR CONTAMINANTS DATA

Emission Point No. (3)	Source Name (2)	Air Contaminant Name (1)	<u>Emiss</u> lb/hr	ion Rates * TPY**
REFFUG: Includes NEWBZ-FE, NONENE1-FE, BLRHSE-FE, BTX1-FE, COKER1-FE, CRUVAC4-FE, DEOCT-FE, DIST1-FE, DIST2-FE, DOCK11-FE, DOCK3-FE, DOCK-4FUG, DOCK6-FE, DOCK7-FE, EP-FLR-FE, FCCU1-FE, GOT1-FE, HCU-FE, KER01-FE, LEU1-FE, LEU2-FE, PMA-FE, QBTX-FE, QNAPSPL-FE, QHDS2-FE, QREF2-FE, QSULFO-FE, RAFF1-FE, RAFF2-FE, REF2-FL-FE, REF4-FE, SMR2-FE, SRU1-FE, SRU2-FE, SULFO1-FE, SWS1-FE, SWS2-FE, TKFMEPN-FE, TKFMEPS-FE, TKFMQPN-FE, TKFMWP-FE, TRUCKRK-FE, WP-FLR-FE, SMR-FE, HCU-FLR-FE, MEROXWP-FE, ALKY1-FE	Refinery Fugitives Subcap	VOC	73.73	322.92

EMISSION SOURCES - EMISSIONS CAPS AND INDIVIDUAL EMISSION LIMITATIONS

279.93

TK-100, TK-102, TK-106, TK-110, TK-111, Tanks VOC 416.03 TK-112, TK-113, TK-114, TK-122, TK-128, TK-Subcap 14, TK-142, TK-146, TK-147, TK-15, TK-151, TK-152, TK-153, TK-17, TK-19, TK-20, TK-200, TK-202, TK-203, TK-204, TK-205, TK-206, TK-207, TK-208, TK-21, TK-210, TK-211, TK-212, TK-213, TK-22, TK-320, TK-321, TK-322, TK-323, TK-324, TK-325, TK-326, TK-329, TK-330, TK-331, TK-332, TK-333, TK-334, TK-335, TK-336, TK-350, TK-351, TK-352, TK-353, TK-354, TK-355, TK-356, TK-357, TK-358, TK-359, TK-360, TK-370, TK-371, TK-50, TK-500, TK-502, TK-503, TK-504, TK-505, TK-506, TK-507, TK-509, TK-51, TK-510, TK-52, TK-53, TK-54, TK-55, TK-70, TK-71, TK-72, TK-73, TK-74, TK-76, TK-77, TK-79, TK-80, TK-81, TK-82, TK-83, TK-84, TK-85, TK-86, TK-87, TK-88, TK-89, TK-9, TK-90, TK-91, TK-92, TK-93, TK-94, TK-95, TK-96, TK-97, TK-98, TK-99, TK-104, TK-107, TK-138, TK-209, TK-214, TK-215, TK-310, TK-311. TK-312. TK-327. TK-328. TK-501. TK-508. TK-7, 175-TK-001, 175-TK-002, 175-TK-003, SWS1-T3

AIR CONTAMINANTS DATA

Emission Point No. (3)	Source Name (2)	Air Contaminant Name (1)	<u>Emiss</u> lb/hr	sion Rates * TPY**
EP-B-1	Boiler - C8 Boiler No. 1 (EP-B-1)	NO _x VOC SO ₂	4.81 0.74 3.20	18.05 2.19 5.48
		CO PM/PM ₁₀	11.66 1.02	51.07 3.04
EP-B-2	Boiler - C8 Boiler No. 2 (EP-B-2)	NO_x VOC SO_2 CO PM/PM_{10}	5.22 0.80 3.12 12.65 1.11	18.05 2.02 5.13 51.07 2.79

B-4	Boiler - C6B Boiler No. 4 (West) (169-B-4)	NO_x VOC SO_2 CO PM/PM_{10}	2.70 0.49 2.90 7.39 0.67	11.83 2.13 4.70 25.26 2.94
EP-B-5	Boiler - C8 Boiler No. 5 (EP-B-5)	NO_x VOC SO_2 CO PM/PM_{10}	8.45 1.30 6.29 20.50 1.80	31.73 5.19 10.20 89.78 7.17
B-5	Boiler - C6B Boiler No. 5 (East) (169-B-5)	NO_x VOC SO_2 CO PM/PM_{10}	2.70 0.49 2.90 7.39 0.67	11.83 2.13 4.70 25.26 2.94
QH-125	No. 2 Reformer Heaters	NO_x VOC SO_2 CO PM/PM_{10}	3.60 0.55 3.31 7.58 0.77	15.27 2.35 3.77 10.62 3.25
27-H-1	Heater - C8 BTX Clay Twr (127-H-1)	NO_x VOC SO_2 CO PM/PM_{10}	0.57 0.03 0.15 0.47 0.04	2.15 0.12 0.13 0.41 0.16
44-H-1	Heater - C7 GOT Chrg. (144-H-1)	NO_x VOC SO_2 CO PM/PM_{10}	4.18 0.64 2.79 9.61 0.89	16.10 2.48 3.97 14.24 3.43
37-H-1	Heater - C7 Kero HDS Chrg. (137-H-1)	NO _x VOC SO ₂ CO PM/PM ₁₀	1.98 0.11 0.46 1.06 0.15	8.65 0.47 0.65 1.81 0.64

39-H-1	Heater - C7 No. 4	NO _x VOC SO ₂ CO PM/PM ₁₀	1.25 0.27 1.16 3.72 0.37	5.46 1.04 1.88 6.66 1.45
Q10-H-1	Heater - C6B SMR Heater (129-H-1) Hydrobon Chrg. (139-H- 1)	NO _x VOC SO ₂ CO PM/PM ₁₀	8.28 1.28 7.62 18.48 1.76	36.26 4.88 12.36 34.09 6.74
7-H-2	Heater - C7 Coker Chrg. (107-H-2)	NO _x VOC SO ₂ CO PM/PM ₁₀	5.19 0.80 3.46 11.88 1.11	18.40 2.83 4.54 25.18 3.92
44-H-2	Heater - C7 GOT Frac. Reb. (144-H-2)	NO _x VOC SO ₂ CO PM/PM ₁₀	1.60 0.35 1.49 5.09 0.48	4.58 0.99 1.58 7.51 1.36
37-H-2	Heater - C7 Kero HDS Frac.Reb. (137-H-2)	NO_x VOC SO_2 CO PM/PM_{10}	1.37 0.07 0.32 1.08 0.10	5.34 0.28 0.52 1.74 0.38
39-H-2	Heater - C7 No. 4 Hydrobon Reb. (139-H-2)	NO_x VOC SO_2 CO PM/PM_{10}	3.78 0.20 0.88 3.08 0.28	14.93 0.80 1.29 5.82 1.11

Q11-H-3001	Heater - C6B HCU Deb. Reb. (129-H-3001)	NO_x VOC SO_2 CO PM/PM_{10}	2.69 0.14 0.87 2.16 0.20	11.76 0.59 1.24 2.94 0.81
Q11-H-3002	Heater - C6B HCU Fract.Reb. (129-H-3002)	NO_x VOC SO_2 CO PM/PM_{10}	2.72 0.15 0.87 1.81 0.20	11.90 0.54 1.42 3.57 0.74
Q11-H-301	Heater - C6B HCU R _x Chrg. (129-H-301)	NO_x VOC SO_2 CO PM/PM_{10}	2.29 0.35 2.11 5.34 0.49	9.06 1.40 3.09 11.05 1.93
44-H-3	Heater - C7 GOT Stabilizer (144-H-3)	NO_x VOC SO_2 CO PM/PM_{10}	1.74 0.14 0.62 1.81 0.20	6.28 0.54 0.85 2.32 0.74
Q3-H-3	No. 2 Reformer HDS Heaters	NO_x VOC SO_2 CO PM/PM_{10}	7.30 0.39 2.35 5.31 0.54	25.43 1.37 2.83 7.80 1.89
39-H-3A	Heater - C7 No. 4 Plat. Charge (139-H-3A)	NO_x VOC SO_2 CO PM/PM_{10}	4.09 0.63 2.73 9.34 0.87	10.64 1.64 2.62 14.94 2.26

39-H-3B	Heater - C7 No. 4 Plat. IntHtr. (139-H-3B)	NO_x VOC SO_2 CO PM/PM_{10}	2.62 0.40 1.74 4.62 0.56	11.47 1.49 2.34 6.89 2.44
39-H-3C	C7 No. 4 Plat. IntHtr. (139-H-3C/D)	NO _x VOC SO ₂ CO PM/PM ₁₀	8.90 0.48 2.07 7.10 0.66	21.39 1.15 1.85 10.74 1.59
8-H-3	Heater - C7 No. 4 Vacuum Chrg. (108-H-3)	NO_x VOC SO_2 CO PM/PM_{10}	3.47 0.19 0.82 2.16 0.26	11.99 0.55 1.30 4.04 0.76
8-H-4	Heater - C7 No. 4 Crude Chrg. (108-H-4)	NO_x VOC SO_2 CO PM/PM_{10}	6.72 1.03 4.47 15.54 1.43	19.16 2.95 4.73 28.69 4.08
Q3-H-4A/B	Heater - C6B No. 2 Ref. Split. (116-H-4A/B)	NO_x VOC SO_2 CO PM/PM_{10}	3.99 0.78 1.28 3.68 0.30	17.28 3.41 1.94 5.56 1.30
8-H-5	Heater - C7 No. 4 Vacuum Chrg. (108-H-5)	NO _x VOC SO ₂ CO	1.69 0.36 1.58 5.48	7.00 1.27 2.42 8.81

		PM/PM ₁₀	0.50	1.76
8-H-6	Heater - C7 No. 4 Crude Chrg. (108-H-6)	NO_x VOC SO_2 CO PM/PM_{10}	10.01 1.54 6.67 23.29 2.13	30.66 4.72 7.56 41.00 6.53
39-H-7	Heater - C7 No. 4 Plat.Stab.Reb. (139-H-7)	NO_x VOC SO_2 CO PM/PM_{10}	1.27 0.19 0.84 2.94 0.27	4.55 0.70 1.12 5.30 0.97
H-TK-54	Heater - Tank TK-54 Heater	NO_x VOC SO_2 CO PM/PM_{10}	0.40 0.02 0.05 0.32 0.03	0.86 0.05 0.06 0.73 0.06
H-TK-70	Heater - Tank TK-70 Heater	NO _x VOC SO ₂ CO PM/PM ₁₀	0.40 0.02 0.05 0.32 0.03	0.86 0.05 0.06 0.73 0.06
H-TK-83	Heater - Tank TK-83 Heater	NO_x VOC SO_2 CO PM/PM_{10}	0.40 0.02 0.05 0.32 0.03	0.86 0.05 0.06 0.73 0.06
QL-10	Heater - C6B No. 4 Plat. Spltter (154-H-10)	NO_x VOC SO_2 CO PM/PM_{10}	2.93 1.49 2.70 6.87 0.62	8.13 5.81 2.71 6.20 1.73
148H-01-02	ULSD Heaters	NO_x	4.13	17.48

		VOC SO ₂ CO PM/PM ₁₀	0.64 2.75 7.90 0.88	2.69 4.31 19.90 3.72
SMR2	SMR2 Heater	NO_x VOC SO_2 CO PM/PM_{10}	23.59 3.63 15.71 43.72 5.02	103.32 15.92 25.49 104.71 22.00
83-CT1	Cooling Tower - Complex 8	VOC PM/PM ₁₀	2.52 3.02	7.36 12.24
88-CT7	Cooling Tower - Complex 7	VOC PM/PM ₁₀	2.53 4.78	7.66 19.05
Q-CT4	Cooling Tower - Hydrocracker	VOC PM/PM ₁₀	0.67 1.10	2.76 4.46
Q-CT5	Cooling Tower - No. 2 Reformer	VOC PM/PM ₁₀	0.46 0.77	3.31 3.13
Q-CT8	Cooling Tower - BTX	VOC PM/PM ₁₀	0.50 0.80	1.47 3.26
ASPH-RCLDG	Asphalt	VOC	0.31	0.01
ASPH-TLDG	Asphalt	VOC	0.31	0.01
LATEX-TLDG	Latex	VOC	0.31	0.01
RC-RACK1	Railcar Loading Rack 1	VOC	0.37	0.01
SULF-RCLDG	Sulfur	VOC	0.02	0.01
SULF-TLDG	Sulfur	VOC	0.02	0.01
MARINE-LDG	Marine Loading	VOC	478.01	63.41

PD-6	Loading - Dock 6	VOC	77.50	7.04
TO-3	Dock Combustor TO-3	NO_x VOC SO_2 CO PM/PM_{10}	15.68 69.90 0.06 11.18 0.75	18.29 23.53 0.23 9.75 0.91
PMA-LOAD	Loading - PMA Asphalt	VOC	0.07	0.16
TT-RACK1	Loading - Truck Rack	VOC	4.33	2.01
TO-2	Truck Rack Thermal Oxidizer	NO_x VOC SO_2 CO PM/PM_{10}	3.25 9.69 0.01 1.74 0.16	8.83 7.88 0.04 4.71 0.44
Flare-1, HCU-FL1, REF2-FL1, WP-FLARE1, SRU1-FLARE, SRU2-FLARE, SWS- FLARE	Flares Subcap	NO _x VOC SO ₂ CO	4.48 26.88 1.62 23.17	19.64 117.75 7.09 51.97
SRU1-INCIN, SRU2-INCIN	SRUs Subcap	NO_x VOC SO_2 CO PM/PM_{10}	5.35 0.29 66.77 4.41 0.40	23.44 1.26 292.47 19.30 1.75
FU-1	DCU Coke Handling Fugitives	PM/PM ₁₀	0.62	2.52
2REGENVENT	2REGENVENT	VOC	0.01	0.01
4REGENVENT	4REGENVENT	VOC	0.02	0.07
91-D-1	Slurry Tank (Sludge Conc)	VOC	0.01	0.01

91-D-2	Make-Up Tk (Sludge Conc)	VOC	0.01	0.01
91-D-3	Charge Tank (Sludge Conc)	VOC	0.01	0.01
LS-1	WWTP Lift Station (Covered)	VOC	0.08	0.36
SUMP-1	WWTP Sump	VOC	0.01	0.01
WWS-EP	EP CPI Separator (covered)	VOC	0.13	0.55
91-D-4	WP Sludge Concentration Tank	VOC	0.06	0.28
91-D-5	WP Sludge Concentration Tank	VOC	0.06	0.28
SUMP-2	WWTP DAF Float & Bottoms Collection Pump Sump	VOC	0.01	0.01
SUMP-3	EP CPI Inlet Sump and Excess Inflow Pump	VOC	0.01	0.01
90-TK-61	Sludge Holding Tank	VOC	0.01	0.01
90-TK-65	DAF Tank	VOC	1.09	4.77
90-TK-66	Bioreactor Tank	VOC	2.14	9.37
90-TK-67	Bioreactor Tank	VOC	1.94	8.51
90-TK-68	Clarifier Tank	VOC	0.01	0.03

90-TK-69	Clarifier Tank	VOC	0.01	0.03
90-TK-85	DAF Tank	VOC	1.09	4.77
90-TK-64	WWTP Biosludge Thickener	VOC	0.01	0.01
90-TK-78	WWTP Clarified Activated Biosludge Skimmings Tank	VOC	0.01	0.01
90-TK-60	Aerobic digester	VOC	0.34	1.49
T-109	Tank 109	VOC	0.01	0.01
QP-SUMP1	QP Oily Water System Collection Sump & Pump Out System	VOC	0.01	0.01
SUMP-4	WP Oily Water System Collection Sump and Pump Out System	VOC	0.01	0.01

(1) VOC	-	volatile	organic	compounds	as	defined	in	Title	30	Texas	Administrative
Code § 101.1											

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - particulate matter, suspended in the atmosphere, including PM₁₀ PM₁₀ - particulate matter equal to or less than ₁₀microns in diameter

 $\begin{array}{cccc} \text{CO} & & - & \text{carbon monoxide} \\ \text{H}_2 \text{S} & & - & \text{hydrogen sulfide} \end{array}$

 $\begin{array}{cccc} NH_3 & & - & ammonia \\ CI_2 & & - & chlorine \end{array}$

Exempt Solvent - carbon compounds that are not VOC

- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) Emission point identification either specific equipment designation or emission point number from plot plan per Attachment 1.

EMISSION SOURCES - EMISSIONS CAPS AND INDIVIDUAL EMISSION LIMITATIONS

- (4) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (5) The annual limits (TPY) apply to the period from August 1, 2010 through July 31, 2011 and for each rolling 12-month period thereafter. The maintenance, startup, and shutdown (MSS) emission caps are independent of the routine operating emission caps. Authorized emissions of a pollutant from facilities in this permit are the sum of the emission cap and the MSS emission cap. The emission points and activities authorized under these emission caps are identified in Attachment 4 to this permit.
- (6) These emission caps have been carried forward from the flexible permit and do not include MSS emissions. The only emission cap that is limiting (lower than the sum of the subcaps and individual emission rate limits for that air contaminant) is the hourly cap for CO.
- * Emission rates are based on operating 8,760 hrs/year.
- ** Compliance with annual emission limits is based on a rolling 12-month period.

Dated December 16, 2010

ATTACHMENT 1

Permit Numbers 2937 and PSDTX1023M2

Contaminants, Emission Point Numbers, And Source Names

This table lists the facility identification numbers, emission point numbers, source names, and emission cap contaminants emitted for all emission points on the applicant's property covered by this permit.

Facility	Emission Point	Source Name (2)		Emiss	ion Ca	ıp Cor	ntamina	ants E	mitted	
Identification Number	Number (1)		SO ₂	VOC	NO _x	СО	РМ	H ₂ S	NH ₃	other
B-4A	B-4	COMPLEX 6 WEST BOILER	Χ	X	X	X	X		•	,
B-5A	B-5	COMPLEX 6 EAST BOILER	Х	Х	Х	Х	Х			
B-1	EP-B-1	COMPLEX 8 BOILER No. 1	Х	Χ	Х	Х	Х			
B-2	EP-B-2	COMPLEX 8 BOILER No. 2	Х	Х	Х	Х	Х			
B-5	EP-B-5	COMPLEX 8 BOILER No. 5	Х	Х	Χ	Х	Χ			
CT1	83-CT1	COMPLEX 8MAIN COOLING TOWER		Х			Х			
CT2	84-CT2	ALKY. COOLING TOWER		X		·	Х			•
CT7	_88-CT7	COMPLEX7 MAIN COOLING TOWER		Х		·	X			
CT4	_Q-CT4	H.C.U. COOLING TOWER		X			_ X			
CT5	Q-CT5	No. 2 REFORMER COOLING TOWER		Х	-		Х			
СТ8	_Q-CT8	TBA., SULFO., & BTX. COOLING TOWER		X			X			
BLR-HSE	_BLRHSE-FE	BOILER HOUSE FUGITIVES		X				Х		
BTX1	BTX1-FE	SULFOLANE BTX. UNIT FUGITIVES		X						В
COKER1	_COKER1-FE	DELAYED COKER UNIT FUGITIVES		X				Х	Χ	В
CRU4&VAC4	CRUVAC4-FE	No. 4 CRUDE & VACUUM UNIT FUGITIVES		Х				Х	Х	В
DEOCT	_DEOCT-FE	No. 4 PLAT. SPLT. FUGITIVES		X						В
DIST1	DIST1-FE	KEROSENE HDS FUGITIVES		X				X	Χ	В
DCOK-11	DOCK11-FE	MARINE LOADING (DOCK 11) FUGITIVES		X						В
DOCK-3	_DOCK3-FE	MARINE LOADING (DOCK 3) FUGITIVES		X						В
DOCK-4	DOCK4-FE	MARINE LOADING (DOCK 4) FUGITIVES	-	X	-					В
DOCK-6	DOCK6-FE	MARINE LOADING (DOCK 6) FUGITIVES		Х						
DOCK-7	DOCK7-FE	MARINE LOADING (DOCK 7) FUGITIVES		X						В
EP-FLR-CVS	EP-FLR-FE	COMPLEX 8 FLARE FUGITIVES		Χ	-			Χ		В
FCCU1	FCCU1-FE	F.C.C.U. FUGITIVES		X		_		Χ	Χ	В
GOT1	GOT1-FE	DIESEL HDS FUGITIVES		Х				Χ	Χ	В
HCU	HCU-FE	HYDROCRACKER UNIT FUGITIVES		Х		-		Х	Χ	В

HCUFLR-CVS	HCU-FLR-FE	HYDROCRACKER FLARE HEADER FUGITIVES	Х	X		
KERO1	KERO1-FE	KEROSENE H.D.S. FUGITIVES	Χ	X	Χ	В
LEF1	LEF1-FE	No. 1 L.E.F. @ S.S. (XYLENE TOWER FUGITIVES	Х			
LEU1	_LEU1-FE	No. 1 L.E.U. FUGITIVES	X	X	_ X	В
LEU2	LEU2-FE	No. 2 L.E.U. FUGITIVES	Х	Х	Х	В
MEROX-WP	MEROXWP-FE	F.C.C. GASOLINE MERO _X FUGITIVES	X	X		
NEWBZ-FE	NEWBZ-FE	BENZENE SWS FUGITIVES	X	Х	Χ	В
NEWSWS-FE	_NEWSWS-FE	SOUR WATER STRIPPER FUGITIVES	X	×	_ X	В
NONENE1	NONENE1-FE	NONENE UNIT FUGITIVES	Χ			
PSA-FE	PSA-FE	PRESSURE SWING ABSORBER	X			В
		SULFOLANE & BTX. UNIT				
Q-BTX	_QBTX-FE	FUGITIVES	Χ			В
Q-NAPHDS2	QHDS2-FE	No. 2 NAPHTHA H.D.S. FUGITIVES	X	X		
Q-NAP SPLT	QNAPSPL-FE	No. 2 NAPHTHA (No. 2 REFORMER). SPLITTER FUGITIVES	X	X		
Q-REF2	QREF2-FE	No. 2 REFORMER FUGITIVES	X		_	
Q-KLF2 Q-SULFO	QSULFO-FE	SULFOCANE FUGITIVES	X	· · · · · · · · · · · · · · · · · · ·		В
RAFF1	RAFF1-FE	No. 1 RAFFINATE SPLITTER	X			
		•				
RAFF2	RAFF2-FE	No. 2 RAFFINATE SPLITTER	X			
REF2FL-CVS	REF2-FL-FE	No. 2 REFORMER FLARE HEADER	X	Х		В
REF4	REF4-FE	No. 4 HYDROBON & PLATFORMER FUGITIVES	X	X	Х	В
SMR	SMR-FE	HYDROGEN PRODUCTION (S.M.R.) FUGITIVES	X	X	_ X	В
SRU1	SRU1-FE	SRU No. 1FUGITIVES	Χ	X	Χ	В
SUR2-FE	SRU2-FE	SRU No. 2 FUGITIVES	X	X	_ X	_ B
SULFO1	SULFO1-FE	SULFOLANE FUGITIVES	X			В
SWS1	_SWS1-FE	S.W.S. UNIT FUGITIVES	X	X	_ X	В
SWS2-FE	SWS2-FE	BENZENE S.W.S. FUGITIVES	X	X	X	В
TKFM-EPN	TKFMEPN-FE	COMPLEX 8 NORTH TANK FARM FUGITIVES	X			В
TKFM-EPS	TKFMEPS-FE	COMPLEX 8 SOUTH TANK FARM FUGITIVES	Х			В
TKFM-QPN	TKFMQPN-FE	COMPLEX 6 NORTH TANK FARM FUGITIVES	X			В
TKFM-WP	TKFMWP-FE	COMPLEX 7 TANK FARM FUGITIVES	X			В
TRUCKRK	_TRUCKRK-FE	TRUCK LOADING RACK FUGITIVES	X			
WP-FLR-CVS	WP-FLR-FE	COMPLEX 7 FLARE FUGITIVES	X	Х		
	7				•	,

H-1FCCU1	12-H-1	F.C.C.U. RAW OIL CHARGE	Х	Х	Χ	Х	X
		HEATER					
H-1BTX1	27-H-1	BTX. CLAY TWR. CHARGE HEATER	V	V	V	V	V
H-161X1	37-H-1	KERO. H.D.S. CHARGE HEATER	X	X	X	X	X
		•	X	X	X	X	X
H-2KERO1	_37-H-2	KERO. H.D.S. FRAC. REBOILER	Х	Х	X	Х	Х
H-1REF4	39-H-1	No. 4 HYDROCARBON CHRGE. HEATER	Х	Х	X	Х	Χ
11-11([] 4		No. 4 HYDROBON. STRIPPER					
H-2REF4	39-H-2	REBOILER	Χ	Х	Χ	Х	Χ
	_	No. 4 PLATFORMER CHARGE		•			
H-3REF4A	_39-H-3A	HEATER	X	Χ	Χ	Х	X
		No. 4 PLATFORMER CHARGE					
H-3REF4B	39-H-3B	HEATER	Χ	Χ	Χ	Χ	X
		No. 4 PLATFORMER CHARGE					
H-3REF4C	_39-H-3C	HEATER	Х	Х	X	X	X
LL 2DEE4D	20 11 20	No. 4 PLATFORMER CHARGE	V	V	V	V	V
H-3REF4D	39-H-3C	HEATER	X	X	X	Х	X
H-7REF4	39-H-7	No. 4 PLATFORMER STAB. REBOILER	Х	Х	Х	Х	X
H-1GOT1	44-H-1	DIESEL HDS HEATER	X	X	X	X	X
H-2GOT1	44-H-2	DIESEL HDS HEATER	X	X	X	X	X
H-3GOT1	44-H-3	DIESEL HDS HEATER	X	X	X	X	X
11-30011	_44-11-5	DELAYED COKER CHARGE					
H-2COKE1	7-H-2	HEATER	Χ	Х	Х	Χ	Χ
H-3VAC4	8-H-3	No. 4 VACUUM CHARGE HEATER	Х	Х	Х	Χ	X
H-4CRU4	8-H-4	No. 4 CRUDE CHARGE HEATER	Χ	Х	Х	Х	Х
H-5VAC4	8-H-5	No. 4 VACUUM CHARGE HEATER	Х	Х	Х	Х	X
H-6CRU4	8-H-6	No. 4 CRUDE CHARGE HEATER	Х	Х	Х	Х	Х
H-TK-47	H-TK-47	TANK 47 HEATER	Χ	Х	Χ	Χ	Х
H-TK-48	H-TK-48	TANK 48 HEATER	Χ	Х	Х	Χ	X
H-TK-54	H-TK-54	TANK 54 HEATER	Χ	Χ	Χ	Χ	X
H-TK-70	H-TK-70	TANK 70 HEATER	Х	Х	Х	Х	X
H-TK-83	H-TK-83	TANK 83 HEATER	Х	Χ	Χ	Х	X
H-4QNAPSPL	Q3-H-4A/B	NAPHTHA SPLT. REBOILER	X	X	X	X	X
H-3HDS2A	Q3-H-3	No. 2 NAPHTHA H.D.S. HEATER	X	X	X	X	X
H-3HDS2B	Q3-H-3	S.M.R. HEATER	X	X	X	X	X
H-3HDS2C	Q3-H-3	H.C.U. DEBUT REBOILER	X	X	X	X	X
H-1SMR		S.M.R. HEATER		X	X		X
H-3001HCU	Q10-H-1	H.C.U. DEBUT REBOILER	X	-		X	
<u>-</u>	Q11-H-3001	- .		X	X	X	X
H-3002HCU	Q11-H-3002	H.C.U. FRAC. REBOILER	X	X	X	X	X
H-301HCU	Q11-H-301	H.C.U. RX. CHARGE HEATER	X	X	X	X	X
H-125QREF2A		No. 2 REFORMER HEATER	X	X	X	X	X
H-125QREF2B	QH-125	No. 2 REFORMER HEATER	X	Х	Χ	Х	X

H-									
125QREF2C	QH-125	No. 2 REFORMER HEATER	X	Х	Х	Х	Х		
L-10QHDA	QL-10	No. 4 PLATFORMER SPLITTER HEATER	X	X	X	X	X		
SRU1-INCIN	SRU1-INCIN	SRU No. 1 INCINERATOR	Χ	Χ	Χ	Χ	Χ	Χ	
SRU2-INCIN	SRU2-INCIN	SRU No. 2 INCINERATOR	Χ	Χ	Χ	Χ	Χ	Χ	
ASPH-RCLDG	_ASPH-RCLDG	ASPHALT & LATEX RAILCAR LOADING		Х					
ASPH-TLDG	ASPH-TLDG	ASPHALT TRUCK LOADING		X					
DOCK-6	PD-6	MARINE LOADING (DOCK 6) FUGITIVES		Х					
LATEX-TLDG	LATEX-TLDG	LATEX TRUCK LOADING		Χ					
MARINE-LDG	MARINE-LDG	MARINE LOADING		Χ					В
RC-RACK1	RC-RACK1	RAILCAR LOADING		Х					
SULF-RCLDG	SULF-RCLDG	SULFUR RAILCAR LOADING		Χ					
SULF-TLDG	SULF-TLDG	SULFUR TRUCK LOADING		Χ					
TO2	TO-2	THERMAL OXIDIZER	Χ	X	Χ	Χ	Х		В
TO-3	TO-3	NEW MARINE LOADING THERMAL OXIDIZER	Х	Х	Х	Х	X		В
TT-RACK	TT-RACK1	TRUCK LOADING RACK		X					В
REG+CO+ES	12 COSTV		V		V	V	V		
F	12-COSTK	F.C.C.U. & CO BOILER & E.S.P.	Х	X	X	Х	X		A
REF2-V1	2REGENVENT	•		X					 C C
REF4-V4	4REGENVENT	•		X	•	•		•	
T-123 T-124	TK-123 TK-124	TANK 124		X	•	•		•	
T-124	TK-124 TK-125	TANK 124 TANK 125	-	X					
T-125	TK-125	TANK 125		X					 -
T-131	TK-120	TANK 131		X					 -
T-131	TK-131	TANK 131		X					
T-133	TK-132	TANK 132	-	X		,	-		
T-231	TK-231	TANK 231		X					
T-232	TK-232	TANK 23 ₂		X		•			 -
T-233	TK-233	TANK 233		X					
T-234	TK-234	TANK 234		X					
T-235	TK-235	TANK 235		X		•			
T-380	TK-380	TANK 380		X		•	-		
T-381	TK-381	TANK 381		X			-	•	
T-382	TK-382	TANK 38 ₂		X		•			
T-383	TK-383	TANK 383		X					
T-29-18	29-TK-18	M.D.E.A. TANK		X		•			
-	T	* <u> </u>							
T-10	₽	TANK 10					ļ		
SWS1-T3 T-10	SWS1-T3 TK-10	SOUR WATER SURGE TANK TANK 10		X				<u> </u>	

T-100	TK-100	TANK 100	X	В
T-101	TK-101	TANK 101	X	
T-102	TK-102	TANK 102	X	В
T-104	TK-104	TANK 104	X	
T-106	TK-106	TANK 96-TK-014 ₂	X	
T-107	TK-107	TANK 107	X	В
T-109	TK-109	TANK 109	X	В
T-110	TK-110	TANK 110	X	-
T-11	TK-11	TANK 11	X	
T-111	TK-111	TANK 111	X	В
T-112	TK-112	TANK 112	X	В
T-113	TK-113	TANK 113	X	-
T-114	TK-114	TANK 114	X	
T-115	TK-115	TANK 115	X	
T-116	TK-116	TANK 116	X	
T-118	TK-118	TANK 118	X	•
T-122	TK-122	TANK 122	X	•
T-127	TK-127	TANK 127	X	•
T-128	TK-128	TANK 128	X	В
T-134	TK-134	TANK 134	X	
T-135	TK-135	TANK 135	X	
T-138	TK-138	TANK 138	×	
T-14	TK-14	TANK 14	X	В
T-142	TK-142	TANK 142	X	
T-146	TK-146	TANK 146	X	В
T-147	TK-147	TANK 147	X	В
T-15	TK-15	TANK 15	X	В
T-151	TK-151	TANK 151	X	В
T-152	TK-152	TANK 152	X	В
T-153	TK-153	TANK 153	X	
T-17	TK-17	TANK 17	X	
T-19	TK-19	TANK 19	X	В
T-20	TK-20	TANK 20	X	В
T-200	TK-200	TANK 200	X	В
T-201	TO-2	TANK 201	X X X	В
T-202	TK-202	TANK 202	X	В
T-203	TK-203	TANK 203	X	В
T-204	TK-204	TANK 204	X	В
T-205	_TK-205	TANK 205	X	В
T-206	TK-206	TANK 206	X	
T-207	TK-207	TANK 207	X	В

T-208	TK-208	TANK 208	Х	
T-209	TK-209	TANK 209	X	
T-21	TK-21	TANK 21	Х	В
T-210	TK-210	TANK 210	Х	
T-211	TK-211	TANK 211	Х	
T-212	TK-212	TANK 212	X	
T-213	TK-213	TANK 213	X	
T-214	TK-214	TANK 214	X	
T-215	TK-215	TANK 215	Х	
T-236	TK-236	TANK 236	Х	В
T-237	TK-237	TANK 237	Х	
T-22	TK-22	TANK 22	X	В
T-23	TK-23	TANK 23	Х	
T-25	TK-25	TANK 25	Х	
T-310	TK-310	TANK 310	Х	
T-311	TK-311	TANK 311	X	
T-312	TK-312	TANK 312	Х	
T-320	TK-320	TANK 320	X	
T-321	TK-321	TANK 321	X	
T-322	TK-322	TANK 322	X	
T-323	TK-323	TANK 323	X	В
T-324	TK-324	TANK 324	Х	В
T-325	TK-325	TANK 325	Х	
T-326	TK-326	TANK 326	X	В
T-327	TK-327	TANK 327	Х	
T-328	TK-328	TANK 328	Х	
T-329	TK-329	TANK 329	Х	В
T-330	TK-330	TANK 330	Х	В
T-331	TK-331	TANK 331	Х	В
T-332	TK-332	TANK 332	X	
T-333	TK-333	TANK 333	X	В
T-334	TK-334	TANK 334	X	
T-335	TK-335	TANK 335	X	
T-336	TK-336	TANK 336	Х	
T-350	TK-350	TANK 350	X	В
T-351	TK-351	TANK 351	X	В
T-352	TK-352	TANK 352	X	В
T-353	TK-353	TANK 353	X	
T-354	_TK-354	TANK 354	X	
T-355	TK-355	TANK 355	X	В
T-356	TK-356	TANK 356	X	В
		•		

T-357	TK-357	TANK 357	Х	В
T-358	TK-358	TANK 358	Х	В
T-359	TK-359	TANK 359	X	
T-360	TK-360	TANK 360	X	
T-370	TK-370	TANK 370	X	В
T-371	TK-371	TANK 371	X	В
T-47	TK-47	TANK 47	Х	
T-48	TK-48	TANK 48	Х	
T-50	TK-50	TANK 50	Х	
T-500	TK-500	TANK 500	Х	
T-501	TK-501	TANK 501	Х	
T-502	TK-502	TANK 502	Х	
T-503	TK-503	TANK 503	Х	
T-504	TK-504	TANK 504	Х	
T-505	TK-505	TANK 505	Х	В
T-506	TK-506	TANK 506	Х	В
T-507	TK-507	TANK 507	Х	В
T-508	TK-508	TANK 508	Х	
T-509	TK-509	TANK 509	Х	В
T-51	TK-51	TANK 51	Х	
T-510	TK-510	TANK 510	Х	В
T-52	TK-52	TANK 52	Х	
T-53	TK-53	TANK 53	X	
T-54	TK-54	TANK 54	X	
T-55	TK-55	TANK 55	X	
T-57	TK-57	TANK 57	X	
T-58	TK-58	TANK 58	X	В
T-7	TK-7	TANK 7	X	
T-70	TK-70	TANK 70	X	
T-71	TK-71	TANK 71	X	
T-72	TK-72	TANK 72	X	В
T-73	TK-73	TANK 73	x	В
T-74	TK-74	TANK 74	X	В
T-75	TK-75	TANK 75	X	
T-76	TK-76	TANK 76	X	В
T-77	TK-77	TANK 77	X	
T-79	TK-79	TANK 79	X	В
T-80	TK-80	TANK 80	X	
T-81	TK-81	TANK 81	X	
T-82	TK-82	TANK 82	X	В
T-83	TK-83	TANK 83	X	

-		•		_						
T-84	TK-84	TANK 84		Χ						В
T-85	TK-85	TANK 85		Х						В
T-86	TK-86	TANK 86		Х						
T-87	TK-87	TANK 87		Х						
T-88	_TK-88	TANK 88		Х						В
T-89	TK-89	TANK 89		Χ						В
T-9	TK-9	TANK 9		Χ			,			В
T-90	TK-90	TANK 90		Χ			,			В
T-91	TK-91	TANK 91		Χ			,			В
T-92	TK-92	TANK 92		Χ			,			В
T-93	TK-93	TANK 93		Х						В
T-94	TK-94	TANK 94	-	Х			•			В
T-95	TK-95	TANK 95	-	Х			•			В
T-96	TK-96	TANK 96	-	Х			•			В
T-97	TK-97	TANK 97		Х	•		•	•		В
T-98	TK-98	TANK 98	-	Х			•			В
T-99	TK-99	TANK 99	-	Х			•			В
T-108	TO-2	TANK 108		Х			•			В
T-141	TO-2	TANK 141		Х		•				
T-143	TO-2	TANK 143		Х						В
T-144	TO-2	TANK 144		Х						В
T-145	TO-2	TANK 145		Х			,			В
E.P. FLARE	EP-FLARE1	COMPLEX 8 FLARE	Х	Х	Х	Χ	•	Х		В
ALKY-V1	EP-FLARE1	COMPLEX 8 FLARE		Χ			•			
BTX1-V1	EP-FLARE1	COMPLEX 8 FLARE		Χ	•		•	•		В
PPBBMER-V1	EP-FLARE1	COMPLEX 8 FLARE		Χ	•		•	•		
HCU-FLARE	HCU-FL1	H.C.U. AREA FLARE	Х	Х	Χ	Х	•	•		
REF2-FLARE	REF2-FL1	No. 2 REFORMER AREA FLARE	Х	Χ	Х	Х		Х		В
QBTX-V1	REF2-FL1	No. 2 REFORMER AREA FLARE		Χ						В
QPSULF-V1	REF2-FL1	No. 2 REFORMER AREA FLARE		Χ			,			В
SRU1-FLARE	SRU1-FLARE	SRU No. 1 FLARE	Х	Χ	Х	Х	,	Х		
SRU2-FLARE	SRU2-FLARE	SRU No. 2 FLARE	Х	Х	Х	Х		Х		
SWS-FLARE	SWS-FLARE	SOUR H2O STRIP FLARE	Х	Х	Х	Х		Х		
WP-FLARE	WP-FLARE1	COMPLEX 7 FLARE	Х	Х	Х	Х				
SWS1-V2	WP-FLARE1	COMPLEX 7 FLARE	Х	Χ			•	Х	Χ	
SWS2-V1	WP-FLARE1	COMPLEX 7 FLARE	Х	Χ				Х	Х	В
ARU1-V1	WP-FLARE1	COMPLEX 7 FLARE	Χ	Χ				Х	Х	
ARU2-V1	WP-FLARE1	COMPLEX 7 FLARE	Х	Х				Х	Х	
WP-FLARE2	WP-FLARE2	COMPLEX 7 FLARE	Х	Х	Х	Х				
148-H-01	148-H-01	No. 2 DHT CHARGE HEATER	Х	Х	Х	Х	Х			
148-H-02	148-H-02	No. 2 DHT REBOILER	Х	Х	Х	Х	Х			
			_			_				

SMR2	SMR2	No. 2 SMR HEATERS 1, 2, AND 3	Χ	Х	Χ	Х	Х			
		ASPHALT BLENDING UNIT								
PMA-FE	_PMA-FE	FUGITIVES		Х						
175-TK-001	_175-TK-001	ASPHALT BLENDING UNIT WETTING TANK		Х						
175-TK-002	_175-TK-002	ASPHALT BLENDING UNIT MIXING TANK		X						
175-TK-003	175-TK-003	ASPHALT BLENDING UNIT MIXING TANK		Х			•	•		
PMA-LOAD	PMA-LOAD	ASPHALT BLENDING UNIT LOADING		X				Х		
DIST2-FE	DIST2-FE	DISTILLATE HYDROTREATER FUGITVES		X				Х	Х	В
SMR2-FE	SMR2-FE	SMR ₂ FUGITIVES		Χ		-		Χ	Х	В
WWTP	90-TK-61	SLUDGE HOLDING TANK	•	Х			•		-	В
WWTP	90-TK-65	DAF TANK	•	Х						В
WWTP	90-TK-66	BIOREACTOR TANK		Х						В
WWTP	90-TK-67	BIOREACTOR TANK		Х						В
WWTP	90-TK-68	CLARIFIER TANK	•	Х						В
WWTP	90-TK-69	CLARIFIER TANK		Х						В
WWTP	90-TK-85	DAF TANK		Х						В
WWTP	91-D-1	SLURRY TANK (SLUDGE CONC)		Х						В
WWTP	91-D-2	MAKE-UP TK (SLUDGE CONC)	•	Х						В
WWTP	91-D-3	CHARGE TANK (SLUDGE CONC)	·	Х			•			В
WWTP	LS-1	WWTP LIFT STATION (COVERED)	•	Х			•			В
WWTP	SUMP-1	WWTP SUMP		X						В
WWTP	T-109	TANK 109		X						В
WWTP	WWS-EP	EP CPI SEPARATOR (COVERED)		Χ						В
WWTP	91-D-4	WP SLUDGE CONCENTRATION TANK		Х						В
WWTP	91-D-5	WP SLUDGE CONCENTRATION TANK		Х						В
WWTP	QP-SUMP1	QP OILY WATER SYSTEM COLL. SUMP/PUMP OUT SYS.	•	Х						В
WWTP	_SUMP-2	WWTP DAF FLOAT/BOTTOMS COLL. PUMP SUMP	•	Х						В
WWTP	SUMP-3	EP CPI INLET SUMP AND EXCESS INFLOW PUMP		Х						В
WWTP	SUMP-4	WP OILY WATER SYSTEM COLL. SUMP/PUMP OUT SYS.		Х						В
WWTP	90-TK-64	WWTP BIOSLUDGE THICKENER		Χ						В
WWTP	90-TK-78	WWTP CLARIFIED ACT. BIOSLUDGE SKIM TANK		Х						В
WWTP	90-TK-60	AEROBIC DIGESTER		Х						В
	-									

CH1	CH1	TRUCK DUMP FUG.		•		Χ	•		
CH2	CH2	HOPPER & CONVEYOR FUGITIVES				X			
CH3	CH3	COKE STOCKPILE FUGITIVES				Χ			
NH3REF	NH3REF-FE	AMMONIA FUGITIVES					,	Х	
V116T202	Q3-H-4	VENT/HEATER	Χ				,	,	В
FU-1	FU-1	COKE DRUM & CLAM SHELL FUGITIVES		•	•	Х			
V154T010	QL-10	VENT/HEADEER	Χ						В

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) SO₂ sulfur dioxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - CO carbon monoxide
 - PM particulate matter, suspended in the atmosphere, including PM₁₀
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter
 - NH₃ ammonia
 - H₂S hydrogen sulfide
 - A sulfuric acid
 - B benzene
 - C chlorine and hydrogen chloride