FTP_Alg_Week 6: Exercises

jungkyu.canci@hslu.ch

21 October 2024

Exercise 1 The transpose of a directed graph G = (V, E) is the graph $G^T = (V, E^T)$, where $E^T = \{(v, u) \mid (u, v) \in E\}$. Describe efficient algorithms for computing G^T from G, for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.

A possible answer. Let |V| = n. If M_G is the adjacency-matrix of G, then the transpose M_G^T is the adjacency-matrix of G^T .

Recall that if

$$M = \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1n} \\ m_{21} & m_{22} & \dots & m_{2n} \\ \vdots & \vdots & & \vdots \\ m_{n1} & m_{n2} & \dots & m_{nn} \end{pmatrix}$$

then the transpose matrix is the following one:

$$M^{T} = \begin{pmatrix} m_{11} & m_{21} & \dots & m_{n1} \\ m_{12} & m_{22} & \dots & m_{n2} \\ \vdots & \vdots & & \vdots \\ m_{1n} & m_{2n} & \dots & m_{nn} \end{pmatrix}$$

E.g.

$$M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} , M^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

So we have to swap all pairs of entries outside the main diagonal and symmetric with respect it, which are $n^2 - n$, thus it costs $\Theta(n^2)$.

For the adjacency list of G^T , create a "vertical list" with all vertices V of G^T (that is the same of G). This costs $\Theta(n)$. Now consider the adjacency list of G. If a vertex w is in the adjacency list of v with respect G, put v in the adjacency of w with respect G^T . This operation costs $\Theta(|E|)$. Therefore we have that the running time of the whole operation is O(|V| + |E|).

Exercise 2 (Optional) Give an example of a directed graph G = (V, E), a source vertex $s \in V$, and a set of tree edges $E_{\pi} \subset E$ such that for each vertex $v \in V$, the unique simple path in the graph (V, E_{π}) from s to v is a shortest path in G, yet the set of edges E_{π} cannot be produced by running BFS on G, no matter how the vertices are ordered in each adjacency list.

A possible answer. Consider the undirected graph G given by

Consider the subgraph G' given by

G' is a shortest path from the vertex a to any other node. One can see that BFS does never produce G' as output.

Exercise 3 Give a simple example of a directed graph with some negativeweight edges for which Dijkstra's algorithm produces incorrect answers.

A possible answer Any directed graph containing a cycle with a (total) negative weight produce incorrect answer. For example consider the graph:

Exercise 4 We apply DIJKSTRA (Lecture 13 and Lecture 14) to the graph (G, V) represented in the following picture:

Dijkstra is an iterative procedure, which update at each step the value v.d, that is the distance of the node v to the root a. After INITIAL-SINGLE-SOURCE(G,a) we have a.d=0 and $v.d=\infty$ for each vertex $v\neq a$. We consider the situation after two iterations (line 4 to line 8) of Dijkstra with starting node a(Look out! We consider only two iterations and not the whole Dijkstra's procedure).

What is c.d? 5 What is $f.d? \infty$

What is d.d? 4