Clustering

Unsupervised Learning

- No response variable, y
 - Just based on predictors, X₁, X₂, X₃, ..., X_p
- A fuzzy endeavor...
 - Not cross-validating to choose best "model" in usual sense
 - Not cross-validating to know how well you're doing
- Can be useful as
 - √ preprocessing step for supervised learning
 - ✓ better understand features

Unsupervised Learning

Two most common and contrasting techniques

PCA

Low-dim representation of data that explains good fraction of variance

Clustering

Find homogenous subgroups among data

Supervised Learning

The label is the supervisor!

No label ⇔ Not supervised

- K-means and hierarchical clustering are not supervised learning techniques
- PCA is not supervised learning
- ⇒Though both can be used in supervised learning!
- Supervised Learning
 - Linear, Logistic, Lasso, Ridge
 - Decision Trees, Bagging, Random Forest, Boosting
 - SVM
 - kNN

What is clustering?

Divide data into distinct subgroups such that observations within each group are quite similar

What is clustering?

Divide data into distinct subgroups such that observations within each group are quite similar

K-means

Idea: Want "within-cluster variation" to be small

<u>Suppose</u>: A fixed K, say K=3. Want to assign each of *n* data point to one of 3 clusters, such that "within-cluster variation" is smallest

- There are K^n possible choices! Pretty unwieldy

K-means

- Again, want to partition data into K subgroups while minimizing within-cluster variation
- More formally....

$$\underset{C_1, \dots, C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \underline{\text{WCV}(C_k)} \right\}$$

where WCV for k-th cluster is the sum of all the pairwise Euclidean distances

$$\mathrm{WCV}(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$
 $|C_k|$ is number of observations in k-th cluster

K-means

Altogether, we're picking C₁, ... C_K such that

$$\underset{C_1, \dots, C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i, i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

But again the problem is that there are $\,K^n\,$ ways. Too many!

K-means algorithm

For K=3...

K-means algorithm

- (1) Randomly assign number, from 1 to K, to each data point.
- (2) Repeat until cluster assignments stop changing
 - a. For each of K clusters, compute cluster **centroid** by taking vector of p feature means

b. Assign data point to cluster for which centroid is closest (Euclidean)

Data

Step 1

Iteration 1, Step 2a

K-means algorithm

Finds local optimum!
Results depend on random initialization

Try multiple initializations and pick one with lowest

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

^{*} Also could consider smarter initializations such as kmeans++ http://en.wikipedia.org/wiki/K-means%2B%2B

Choosing K

- No easy answer
- A fuzzy endeavor
 - May just want K similar groups
 - But more often, want something useful or interpretable that exposes some interesting aspect of data
 - Presence/absence of natural distinct groups
 - Descriptive statistics about groups
 - Ex. Are there certain segments of my market that tend to be alike?
 - Ex. middle-aged living in suburbs who log-in infrequently

Choosing K

- Fuzziness aside, many methods!
- Three popular methods:
 - "Elbow" method
 - GAP statistic
 - Silhouette Coefficient

Choosing K - Elbow Method

Same Idea: Choose a number of clusters so that adding another cluster doesn't give us that much more

Choosing K - Elbow method

Within Group Sum of Squares

A natural loss function is the sum of pairwise distances of the points within each cluster, summed over all clusters.

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} ||x_i - x_{i'}||^2$$

- Distance models (kNN, k-means, hierarchical clustering) are problematic in high-dimensionality spaces
- Counterintuitive geometry of hyperspace!
- Sparsity of sample points!
- Nearest neighbors can be "far" in high dimensions

Distance between nearest neighbors is very large!

When the dimensionality d increases, the volume of the space increases so fast that the available data becomes sparse.

Consider uniformly distributed data points. N = 1000

Fraction of data points captured:

2D: 3.1%

3D: 0.5%

- Hyper-cubical neighborhood about target point to capture fraction v of the the unit volume
- Expected edge length will be: $e_p(v) = v^{1/p}$

$$e_p(v) = v^{1/p}$$

Can you work out out the 10% neighborhood for the unit cube case?

How much more data do we need to compensate for increasing dimensions (p)?

Expected edge length

$$e_p(v) = v^{1/p}$$

Sampling density proportional to

$$N^{1/p}$$
 p is dimensions of input space N is number of points

Edge length example: Suppose interested in a v = 10% neighborhood

$$p = 1 \rightarrow edge = (0.1)^1 = 0.1$$

 $p = 10 \rightarrow edge = (0.1)^(1/10) = 0.794$

Sampling density example: Getting equivalent density in higher dimensions

If $N_1 = 100$ represents dense sample for a single dim feature space To achieve same density for 10 inputs, we need $N_{10} = 100^{10}$ points

Curse of Dimensionality - Takeaways

- kNN, or any method involving this sort of distancing, suffers majorly from curse of dimensionality
 - Nearest neighbors "far" in high dimensions (even for p = "
 - As we'll see, k-means and hierarchical clustering fall prey
- We can mathematically think of idea of sparsity of points in high dimensions using a hypercube
- It takes a lot of data to make up for increase in dimensions

Expected edge length

$$e_p(v) = v^{1/p}$$

Sampling density \propto to

$$N^{1/p}$$

Dendrogram

<u>Algorithm</u>

- (1) Each point as its own cluster
- (2) Merge closest clusters
- (3) End when all points in single cluster

Notice

- Skipped over the notion of "distance" between clusters
- Height of fusion tells you how close clusters are!
 - A and C are pretty close, at around 1.2
 - Red and Green are not that close, fusing at around 4.1

Varying K

- In contrast to K-means, don't have to choose K from the start!
 - Depending on where precisely we cut, we have anywhere from 1 to n clusters
- Choosing K: Can use Elbow Method, Gap Statistic, Silhouette
 - But notice the heights give you sense of separation of clusters depending on cut.

Cluster distance measures

• Single link:
$$D(c_1,c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1,x_2)$$

- distance between closest elements in clusters
- produces long chains a→b→c→...→z

• Complete link:
$$D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

- distance between farthest elements in clusters
- forces "spherical" clusters with consistent "diameter"

• Average link:
$$D(c_1, c_2) = \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$$

- average of all pairwise distances
- less affected by outliers

• Centroids:
$$D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|} \sum_{x \in c_1} \vec{x}\right), \left(\frac{1}{|c_2|} \sum_{x \in c_2} \vec{x}\right)\right)$$

distance between centroids (means) of two clusters

Most commonly used: Complete and Average

Appendix

Choosing K - GAP Statistic

- Arguably best method!
- <u>Idea</u>: Compare within-cluster scatter W₁, ..., W_k to uniformly distributed rectangle containing data. Find largest gap.
 - Notice as number of clusters increase, within cluster scatter decreases

What happens when number of clusters is number of points?

- (1) Observed vs. Expected value of log(Wk) over 20 simulations from uniform data
- (2) Translate curves so that log(Wk)= 0 for k=1
- (3) Gap statistic K* is smallest K producing gap within one standard

deviation of gap at K+1

Choosing K - Silhouette Coefficient

General method for interpreting and validating clusters of data

For each observation i:

- a(i) = average dissimilarity of i with all other data points within same cluster
 - A measure of how well i is assigned to the cluster
 - The smaller a(i) is, the better the assignment
- b(i) = lowest average dissimilarity of i to any other cluster, of which i is not member.
 - Other cluster can be thought of as a "neighboring cluster"

```
silhouette(i) = [b(i) - a(i)] / max{a(i), b(i)}
```

-1 < silhouete(i) < 1

Want a(i) small, b(i) large \rightarrow Want silhouette large

- near 1, dense and well separated
- near 0, overlapping clusters; could well belong to another cluster
- near -1, misclustered

Silhouette Coefficient

```
silhouette(i) = [b(i) - a(i)] / max{a(i), b(i)}
```

-1 < silhouete(i) < 1

Want a(i) small, b(i) large \rightarrow Want silhouette large

- near 1, dense and well separated
- near 0, overlapping clusters; could well belong to another cluster
- · near -1, misclustered

38 data points 3 clusters

- 1st cluster has 8 data points and average silhouette of 0.78
- 2nd cluster has 19 points, 0.64
- 3rd cluster has 11 points, 0.51
- Overall average silhouette 0.63

<u>Guidelines for Overall Avg Silhouette</u>

Range	Interpretation
0.71 - 1.0	Strong structure found
0.51 - 0.7	Reasonable structure
0.26 - 0.5	Structure weak/
< 0.25	No substantial

Some Additional Considerations

- Standardize features?
 - Yes, probably.
 - How to deal with categorical?
- Outliers can be problematic
 - Especially using squared Euclidean as a distance metric
 - What if small subset of observations quite different from all others?
 - Kmeans and hierarchical clustering FORCES every data-point into clusters, potentially distorting clusters
 - Mixture models ('soft clustering') are attractive alternative as they accommodate outliers
- Generally not very robust
 - Can test by clustering subsets of data

K-means - a few more notes

Simple, elegant method, but can be problematic in a lot of ways

 Only intended for quantitative features (think centroid calculation for categorical data) and squared Euclidean distance (which is not robust to outliers)

One alternative is K-medoids

- Worth reading up a bit more about http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf page 515
- Computationally more intensive (requires large proximity matrix computation)
- But, handles categorical features more naturally (though still must define distance metric for mixed data rather carefully), and more robust to outliers.

Within Cluster Point Scatter

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} d(x_i, x_{i'})$$

Within Cluster Point Scatter

A natural loss function is the sum pairwise distances of the points within each cluster, summed over all clusters. In particular, we could specify d(xi, xi') to be Euclidean

Let
$$d_{ii'} = d(x_i, x_{i'})$$

$$T = \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} d_{ii'} = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \left(\sum_{C(i')=k} d_{ii'} + \sum_{C(i')\neq k} d_{ii'} \right) \quad \text{Total Point Scatter}$$

$$T = W(C) + B(C)$$

$$B(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')\neq k} d_{ii'}$$
 Between Cluster Point Scatter

Within Cluster Point Scatter

It can be shown that

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} ||x_i - x_{i'}||^2$$
$$= \sum_{k=1}^{K} N_k \sum_{C(i)=k} ||x_i - \bar{x}_k||^2,$$

where

 $\bar{x}_k = (\bar{x}_{1k}, \dots, \bar{x}_{pk})$ is mean vector associated with k-th cluster $N_k = \sum_{i=1}^N I(C(i) = k)$