

Model: F906i

## **TEST REPORT**

For

#### **Mobile Phone**

In conformity with

FCC Part24 (Oct 01,2007) FCC Part15 (Oct 01,2007) IC RSS-133 Issue4

**Model:** 

**Test Item: Mobile Phone** 

Report No: RY0804P03R1

**Issue Date: Feb. 29, 2008** 

Prepared for

Fujitsu Limited.

1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588,

Japan

Prepared by

RF Technologies Ltd.

472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

Telephone: +81+(0)45- 534-0645 FAX: +81+(0)45- 534-0646

This report shall not be reproduced, except in full, without the written permission of RF Technologies Ltd. The test results relate only to the item(s) tested. RF Technologies Ltd. is managed to ISO17025 and has the necessary knowledge and test facilities for testing according to the referenced standards.

RF Technologies Ltd. Page 1 of 47



Date: Apr 03, 2008 Report No.: RY0804P03R1 Model: F906i

## **Table of Contents**

| 1 Gene | eral information                                       | 3    |
|--------|--------------------------------------------------------|------|
| 1.1 P  | roduct description                                     | 3    |
|        | est(s) performed/ Summary of test result               |      |
|        | est facility                                           |      |
|        | leasurement uncertainty                                |      |
| 1.5 D  | Description of essencial requirements and test results | 5    |
| 1.5.1  | <u>.</u>                                               |      |
| 1.5.2  |                                                        |      |
| 1.5.3  | AC Power Line Parameters                               | 5    |
| 1.5.4  | Normal test conditions                                 | 5    |
| 1.5.5  | Extreme test conditions                                | 5    |
| 1.6 S  | etup of equipment under test (EUT)                     | 6    |
| 1.6.1  | Test configuration of EUT                              | 6    |
| 1.6.2  | Operating condition:                                   | 6    |
| 1.6.3  | Setup diagram of tested system:                        | 7    |
|        | quipment modifications                                 |      |
| 1.8 D  | Deviation from the standard                            | 7    |
| 2 Test | procedure and result                                   | 8    |
| 2.1 T  | ransmitter requirements                                | 8    |
| 2.1.1  | Carrier Output Power (Conducted)                       | 8    |
| 2.1.2  | Carrier Output Power (Radiated)                        | 10   |
| 2.1.3  | Frequency Stability (Temperature)                      | 13   |
| 2.1.4  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                |      |
| 2.1.5  | 1                                                      |      |
| 2.1.6  | 1 /                                                    |      |
| 2.1.7  | Transmitter Out of Band Spurious Emissions (Radiated)  | 28   |
| 2.1.8  | Band Edge Emissions                                    | 32   |
| 2.1.9  | Transmitter AC Line Conducted Emission requirement     | 35   |
| 2.2 R  | Leceiver requirement                                   |      |
| 2.2.1  | Receiver Spurious Emissions (Radiated)                 | 37   |
| 2.2.2  | Receiver AC Line Conducted Emission requirement        | 40   |
| 3 Test | setup photographs                                      | . 42 |



Report No.: RY0804P03R1

### General information

## 1.1 Product description

Test item : Mobile phone Manufacturer : Fujitsu Limited

Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki

211-8588, Japan

Model : F906i

FCC ID : VQK-FOMA-F906I

IC Certification No. : 337E-F906I

Operating frequency range : TX 1850.2-1909.8 MHz (PCS1900)

: RX 1930.2-1989.8 MHz (PCS1900)

Type of Modulation : GMSK Receipt date of EUT : Feb 05 2008

Nominal power voltages : 3.7VDC (Lithium-ion battery)

Power Class : 1 (Maximum power 30dBm nominal)

Antenna Type : integral antenna Serial numbers : 357016010005192

## 1.2 Test(s) performed/ Summary of test result

Applicable Standard(s) : FCC Part24(Oct 01,2007), Part15(Oct 01,2007)

RSS-133 Issue4

Test(s) started : Feb 07, 2008 Test(s) completed : Feb 12, 2008

Purpose of test(s) : Grant for Certification of FCC / IC

Summary of test result : Complied

> Note: The above judgment is only based on the measurement data and it does not include the measurement uncertainty. Accordingly, the statement below is applied to the test result. The EUT complies with the limit required in the standard in case that the margin is not less than the measurement uncertainty in the Laboratory.

Compliance of the EUT is more probable than non-compliance is case that the margin is less than the measurement uncertainty in the Laboratory.

Test engineer

Reviewer



Model: F906i

## 1.3 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at RF Technologies Ltd., located in 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per October 01, 2007.

The description of the test facilities has been filed under registration number 879401 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

Registered by Voluntary Control Council for Interference by Information Technology Equipment (VCCI).

Each registered facility number is as follows; Test site (Semi-anechoic chamber 3m) R-2393 Test site (Shielded room) C-2617

Registered by Industry Canada (IC). The registered facility number is as follows; Test site No.1(Semi-anechoic chamber 3m): 6974A-1

## 1.4 Measurement uncertainty

The treatment of uncertainty is based on the general matters on the definition of uncertainty in "Guide to the expression of uncertainty in measurement (GUM)" published by ISO. The Lab's uncertainty is determined by referring UKAS Publication LAB34: 2002 "The Expression of Uncertainty in EMC Testing" and CISPR16-4-2: 2003 "Uncertainty in EMC Measurements". The uncertainty of the measurement result in the level of confidence of approximately 95% (k=2) is as follows;

RF frequency:  $\pm 1 \times 10^{-7}$ RF power conducted:  $\pm 1.0 \text{ dB}$ 

Conducted emission of receivers:  $\pm$  1.0 dB Radiated emission (9kHz - 30MHz):  $\pm$  3.2 dB Radiated emission (30MHz - 1000MHz):  $\pm$  4.6 dB

Radiated emission (1GHz - GHz):  $\pm$  4.6 dB

Temperature:  $\pm 1$  degree

Humidity:  $\pm$  5 %

RF Technologies Ltd. Page 4 of 47



Model: F906i

## 1.5 Description of essencial requirements and test results

An overview of radio requirements, as laid out in FCC Part24/15, RSS-133 is given below.

### 1.5.1 Transmitter requirements

| <b>Test Description</b>                     | Section in this report | Applicable | Result |
|---------------------------------------------|------------------------|------------|--------|
| Carrier Output Power (Conducted)            | 2.1.1                  | Yes        | Passed |
| Carrier Output Power (Radiated)             | 2.1.2                  | Yes        | Passed |
| Frequency Stability (Temperature Variation) | 2.1.3                  | Yes        | Passed |
| Frequency Stability (Voltage Variation)     | 2.1.4                  | Yes        | Passed |
| Occupied Bandwidth                          | 2.1.5                  | Yes        | Passed |
| Out of Band Emissions (Conducted)           | 2.1.6                  | Yes        | Passed |
| Out of Band Emissions (Radiated)            | 2.1.7                  | Yes        | Passed |
| Band Edge Emissions                         | 2.1.8                  | Yes        | Passed |

### 1.5.2 Receiver requirements

| Test Description            | Section in this report | Applicable | Result |
|-----------------------------|------------------------|------------|--------|
| Spurious Radiated Emissions | 2.2.1                  | Yes        | Passed |

#### 1.5.3 AC Power Line Parameters

| Test Description                            | Section in this report | Applicable | Result |
|---------------------------------------------|------------------------|------------|--------|
| Conducted Spurious Emissions (Idle mode)    | 2.3.1                  | Yes        | Passed |
| Conducted Spurious Emissions (Traffic mode) | 2.3.2                  | Yes        | Passed |

#### 1.5.4 Normal test conditions

Temperature(\*) : +15°C to +35°C
Relative humidity(\*) : 20 % to 75 %
Supply voltage : 3.7 VDC (Nominal)

Measurement Frequency : 1850.2MHz(512ch),1880.0MHz(661ch),1909.8MHz(810ch)

#### 1.5.5 Extreme test conditions

Temperature : -30°C (min) to +50°C (max) Supply voltage : 3.4 VDC (min) to 4.2 VDC (max)

The equipment has a function that it is automatically turned off when min battery voltage (3.4V) is detected.

RF Technologies Ltd. Page 5 of 47

<sup>\*</sup> When it is impracticable to carry out tests under these conditions, a note to this effect, stating the ambient temperature and relative humidity during the tests, must be stated separately.



Model: F906i

# 1.6 Setup of equipment under test (EUT)

# 1.6.1 Test configuration of EUT

**Equipment(s) under test:** 

|   | Item         | Manufacturer    | Model No.       | Serial No.      | FCC ID/<br>IC Certification<br>No. |
|---|--------------|-----------------|-----------------|-----------------|------------------------------------|
| A | Mobile phone | Fujitsu Limited | F906i           | 357016010005192 | VQK-FOMA-F906I /<br>337E-F906I     |
| В | Battery pack | Fujitsu Limited | CA54310-0006    | None            | N/A                                |
| C | AC Adaptor   | NEC Corp.       | MAS-BH0008-A002 | None            | N/A                                |
| D | Ear Phone    | NTT DoCoMo      | P02             | None            | N/A                                |

#### **Connected cable(s):**

| No. | Item            | Identification<br>(Manu.e.t.c) | Shielded<br>YES / NO | Ferrite<br>Core<br>YES /<br>NO | Connector<br>Type<br>Shielded<br>YES / NO | Length<br>(m) |
|-----|-----------------|--------------------------------|----------------------|--------------------------------|-------------------------------------------|---------------|
| 1   | DC power cable  | -                              | No                   | No                             | No                                        | 1.5           |
| 2   | AC power cable  | HEWTECH                        | No                   | No                             | No                                        | 0.6           |
| 3   | Ear phone cable | -                              | No                   | No                             | No                                        | 1.4           |

## 1.6.2 Operating condition:

Traffic mode : EUT is connected with RF tester in Max power level (PL0). Idle mode : EUT is under idle mode, no output power is transmitted.

RF Technologies Ltd. Page 6 of 47



Model: F906i

## 1.6.3 Setup diagram of tested system:



## 1.7 Equipment modifications

No modifications have been made to the equipment in order to achieve compliance with the applicable standards described in clause 1.2.

### 1.8 Deviation from the standard

No deviations from the standards described in clause 1.2.

RF Technologies Ltd. Page 7 of 47



Model: F906i

## 2 Test procedure and result

## 2.1 Transmitter requirements

## 2.1.1 Carrier Output Power (Conducted)

#### **Reference Standard**

FCC: Part24.232, 2.0146

IC: RSS133 Issue4 Sec6.4, SRSP-510 Issue4 Sec5.1.2

### **Test Conditions**

Date: 2008/02/12
Ambient Temperature: 18degC
Relative humidity: 37%
Test Voltage: 3.7V

#### **Test Method**

- a) EUT is connected to RF tester with pseudo random data modulation and set to maximum output power level.
- b) The output power is measured with RF tester (CMU200 etc.).

### **Test Setup**



RF Technologies Ltd. Page 8 of 47



Model: F906i

#### **Test Results**

| Channel        | Frequency (MHz) | Output Power (dBm) | Limit<br>(dBm) | Result |
|----------------|-----------------|--------------------|----------------|--------|
| Bottom (512ch) | 1850.2          | 29.8               | 33.0           | Pass   |
| Middle (661ch) | 1880.0          | 30.4               | 33.0           | Pass   |
| Top (810ch)    | 1909.8          | 29.9               | 33.0           | Pass   |

**Test Equipment Used** 

| Equipment name | RFT ID No. |
|----------------|------------|
| RF tester      | RC02       |

#### **Final Result**

The EUT met the requirements of the standard for this test.

EUT can employ a power control function that output power can be controlled from +30dBm to +0dBm (nominal) by 2dB step. So EUT meet the requirement of Part24.232(c).



Model: F906i

### 2.1.2 Carrier Output Power (Radiated)

#### **Reference Standard**

FCC: Part24.232, 2.0146

IC: RSS133 Issue4 Sec6.4, SRSP-510 Issue4 Sec5.1.2

#### **Test Conditions**

Date: 2008/02/07 Ambient Temperature: 18degC Relative humidity: 38% Test Voltage: 3.7V

#### **Test Method**

Substitution method is used for this test.

- a) EUT is set on non-conducting turntable and the output power is set to the maximum level. The height of turntable is 100cm.
- b) As a receive antenna, Horn antenna is used for high frequency range (above 1GHz), and Bilogical antenna is used for low frequency range (30MHz to 1GHz).
- c) Maximum power is measured by a spectrum analyzer(SA) in below conditions.

Turntable is rotated 360 degrees.

The height of receive antenna is changed from 1m to 4m.

Receive antenna polarization is set to vertical and horizontal.

This maximum power is recorded.

- d) Reference antenna is replaced with EUT, and connected with signal generator(SG). SG output power is adjusted to get same level as the recorded maximum radiated EUT power by SA.
- e) Radiated output power (Pout) is calculated with adjusted SG output (Psg) [dBm], reference antenna gain (Gref) [dBi] and cable loss between SG and reference antenna (Lcab) [dB].

Pout [dBm e.i.r.p] = Psg - Gref + Lcab

RF Technologies Ltd. Page 10 of 47



Model: F906i

### **Test Setup**

## [Measurement]



## [Substitution]



### **Test Results**

| Channel        | Frequency (MHz) | Output Power (dBm e.i.r.p) | Limit (dBm e.i.r.p) | Result |
|----------------|-----------------|----------------------------|---------------------|--------|
| Bottom (512ch) | 1850.2          | 31.2                       | 33.0                | Pass   |
| Middle (661ch) | 1880.0          | 29.4                       | 33.0                | Pass   |
| Top (810ch)    | 1909.8          | 30.5                       | 33.0                | Pass   |

RF Technologies Ltd. Page 11 of 47



Model: F906i

### **Test Equipment Used**

| Equipment name    | RFT ID No. |
|-------------------|------------|
| Spectrum Analyzer | SA06       |
| Receive Antenna   | DH01       |
| Reference Antenna | DH02       |
| Signal Generator  | SG05       |
| Power Meter       | PM01       |
| RF tester         | RC03       |

### **Final Result**

The EUT met the requirements of the standard for this test.



Model: F906i

### 2.1.3 Frequency Stability (Temperature)

#### **Reference Standard**

FCC: Part24.235, 2.1055 IC: RSS133 Issue4 Sec6.3

#### **Test Conditions**

Date: 2008/02/12
Ambient Temperature: 18degC
Relative humidity: 37%
Test Voltage: 3.7V

#### **Test Method**

To measure the carrier frequency, "Frequency error measurement" function of RF tester is used.

- a) EUT is hold about 30 minutes under measurement temperature condition.
- b) EUT is powered on with nominal voltage.
- c) EUT is connected to RF tester with Max transmit power level.
- d) Frequency error is measured by RF tester.

  Process h) to d) must be finished within 2 minutes to n
  - Process b) to d) must be finished within 2 minutes to prevent EUT warming.
- e) Process a) to d) is repeated at 10deg increments from -30 to +50degC.

#### **Test Setup**



RF Technologies Ltd. Page 13 of 47



Model: F906i

#### **Test Results**

**Bottom Channel (512ch, Nominal Freq.:1850.2MHz)** 

| Dottom Chan | Dottom Channel (312ch, 110hhnai F1cq.:1030.211112) |                 |             |        |  |
|-------------|----------------------------------------------------|-----------------|-------------|--------|--|
| Temperature | Frequency Error                                    | Frequency Error | Limit (ppm) | Result |  |
| (deg C)     | (Hz)                                               | (ppm)           |             |        |  |
| -30         | 21                                                 | 0.01            | ± 2.5       | Passed |  |
| -20         | 19                                                 | 0.01            | ± 2.5       | Passed |  |
| -10         | 23                                                 | 0.01            | ± 2.5       | Passed |  |
| 0           | 18                                                 | 0.01            | ± 2.5       | Passed |  |
| 10          | 26                                                 | 0.01            | ± 2.5       | Passed |  |
| 20          | 23                                                 | 0.01            | ± 2.5       | Passed |  |
| 30          | 18                                                 | 0.01            | ± 2.5       | Passed |  |
| 40          | 20                                                 | 0.01            | ± 2.5       | Passed |  |
| 50          | 21                                                 | 0.01            | ± 2.5       | Passed |  |

**Test Equipment Used** 

| Equipment name | RFT ID No. |
|----------------|------------|
| RF tester      | RC02       |

#### **Final Result**

The EUT met the requirements of the standard for this test



Model: F906i

### 2.1.4 Frequency Stability (Voltage)

#### **Reference Standard**

FCC: Part24.235, 2.1055 IC: RSS133 Issue4 Sec6.3

#### **Test Conditions**

Date: 2008/02/12 Ambient Temperature: 18degC Relative humidity: 37%

Test Voltage: 3.4 to 4.1V

#### **Test Method**

To measure the carrier frequency, "Frequency error measurement" function of RF tester is used.

- a) EUT is powered on with nominal voltage. Temperature is 20degC.
- b) EUT is connected to RF tester with Max transmitter power level.
- c) Frequency error is measured by RF tester.
- d) Process a) to c) is repeated at minimum and maximum voltage condition.

#### **Test Setup**



RF Technologies Ltd. Page 15 of 47



Model: F906i

#### **Test Results**

Bottom Channel (512ch, Nominal Freq.:1850.2MHz)

| Bottom Chamier (C12ch) i (Chamier 11ce (C10c C121/1112) |                 |                 |             |        |  |
|---------------------------------------------------------|-----------------|-----------------|-------------|--------|--|
| Voltage                                                 | Frequency Error | Frequency Error | Limit (ppm) | Result |  |
| (V)                                                     | (Hz)            | (ppm)           |             |        |  |
| 3.4                                                     | 22              | 0.01            | ± 2.5       | Passed |  |
| 3.7                                                     | 23              | 0.01            | ± 2.5       | Passed |  |
| 4.1                                                     | 26              | 0.01            | ± 2.5       | Passed |  |

**Test Equipment Used** 

| Equipment name | RFT ID No. |
|----------------|------------|
| RF tester      | RC02       |

#### **Final Result**

The EUT met the requirements of the standard for this test



Model: F906i

### 2.1.5 Occupied Bandwidth

#### **Reference Standard**

FCC: Part24.238

IC: RSS-Gen Issue2 Sec4.6.1

#### **Test Conditions**

Date: 2008/02/12
Ambient Temperature: 18degC
Relative humidity: 37%
Test Voltage: 3.7V

#### **Test Method**

- a) EUT is connected to RF tester with Max transmitter power level.
- b) 26dB bandwidth is measured by Spectrum Analyzer.
- c) 99% occupied bandwidth of transmitter spectrum is measured by Spectrum Analyzer.

### **Test Setup**



#### **Test Results**

| Channel        | Frequency | Resolution | Video     | Occupied  | 26dB      |
|----------------|-----------|------------|-----------|-----------|-----------|
|                | (MHz)     | Bandwidth  | Bandwidth | Bandwidth | Bandwidth |
|                |           | (kHz)      | (kHz)     | (kHz)     | (kHz)     |
| Bottom (512ch) | 1850.2    | 3kHz       | 10kHz     | 242       | 311       |
| Middle (661ch) | 1880.0    | 3kHz       | 10kHz     | 240       | 300       |
| Top (810ch)    | 1909.8    | 3kHz       | 10kHz     | 242       | 301       |

RF Technologies Ltd. Page 17 of 47

Model: F906i

### **Graphical Data**



## 512ch Occupied Bandwidth



## 661ch Occupied Bandwidth

Model: F906i



810ch Occupied Bandwidth

Model: F906i



#### 512ch 26dB Bandwidth



661ch 26dB Bandwidth

Model: F906i



810ch 26dB Bandwidth

**Test Equipment Used** 

| Equipment name    | RFT ID No. |
|-------------------|------------|
| Spectrum Analyzer | TR06       |
| RF tester         | RC02       |



Model: F906i

### 2.1.6 Transmitter Out of Band Spurious Emissions (Conducted)

#### **Reference Standard**

FCC: Part24.238

IC: RSS133 Issue4 Sec6.5

#### **Test Conditions**

Date: 2008/02/12
Ambient Temperature: 18degC
Relative humidity: 37%
Test Voltage: 3.7V

#### **Test Method**

- a) EUT is connected to RF tester with Max transmitter power level.
- b) Out of band Spurious is measured by Spectrum Analyzer.
- c) Resolution band width of spectrum analyzer is set to 1MHz (above 1GHz) or 100kHz (below1GHz).

#### **Test Setup**

#### 30MHz to 3500MHz



#### above 3500MHz



RF Technologies Ltd. Page 22 of 47



Model: F906i

#### **Test Results**

Bottom Channel (512ch, Nominal Freq.:1850.2MHz)

| Measurement | Measurement | Emission | Limit | Result    |
|-------------|-------------|----------|-------|-----------|
| Frequency   | Bandwidth   | Level    | (dBm) | Pass/Fail |
| (MHz)       | (MHz)       | (dBm)    |       |           |
| 3700.4      | 1           | -45.3    | -13.0 | Pass      |
| 5550.6      | 1           | -49.6    | -13.0 | Pass      |
| 7400.8      | 1           | -57.4    | -13.0 | Pass      |
| 9251.0      | 1           | -50.0    | -13.0 | Pass      |
| 11101.2     | 1           | -54.6    | -13.0 | Pass      |
| 12951.4     | 1           | -62.3    | -13.0 | Pass      |
| 14801.6     | 1           | -        | -13.0 | Pass      |
| 16651.8     | 1           | -        | -13.0 | Pass      |
| 18502.0     | 1           | -        | -13.0 | Pass      |
| others      |             | -        | -13.0 | Pass      |

Middle Channel (661ch, Nominal Freq.:1880.0MHz)

| Measurement | Measurement | Emission | Limit | Result    |
|-------------|-------------|----------|-------|-----------|
| Frequency   | Bandwidth   | Level    | (dBm) | Pass/Fail |
| (MHz)       | (MHz)       | (dBm)    |       |           |
| 3760.0      | 1           | -42.5    | -13.0 | Pass      |
| 5640.0      | 1           | -49.0    | -13.0 | Pass      |
| 7520.0      | 1           | -56.2    | -13.0 | Pass      |
| 9400.0      | 1           | -52.5    | -13.0 | Pass      |
| 11280.0     | 1           | -56.9    | -13.0 | Pass      |
| 13160.0     | 1           | -60.6    | -13.0 | Pass      |
| 15040.0     | 1           | ı        | -13.0 | Pass      |
| 16920.0     | 1           | -        | -13.0 | Pass      |
| 18800.0     | 1           | -        | -13.0 | Pass      |
| others      |             | -        | -13.0 | Pass      |



Model: F906i

Top Channel (810ch, Nominal Freq.:1909.8MHz)

| Measurement Measurement Emission Limit Result |             |          |       |           |  |
|-----------------------------------------------|-------------|----------|-------|-----------|--|
| Measurement                                   | Measurement | Emission | -     | Result    |  |
| Frequency                                     | Bandwidth   | Level    | (dBm) | Pass/Fail |  |
| (MHz)                                         | (MHz)       | (dBm)    |       |           |  |
| 3819.6                                        | 1           | -40.4    | -13.0 | Pass      |  |
| 5729.4                                        | 1           | -49.4    | -13.0 | Pass      |  |
| 7639.2                                        | 1           | -55.3    | -13.0 | Pass      |  |
| 9549.0                                        | 1           | -51.5    | -13.0 | Pass      |  |
| 11458.8                                       | 1           | -58.3    | -13.0 | Pass      |  |
| 13368.6                                       | 1           | -58.9    | -13.0 | Pass      |  |
| 15278.4                                       | 1           | -        | -13.0 | Pass      |  |
| 17188.2                                       | 1           | -        | -13.0 | Pass      |  |
| 19098.0                                       | 1           | -        | -13.0 | Pass      |  |
| others                                        |             | -        | -13.0 | Pass      |  |

## **Graphical Data (661ch)**





Model: F906i







Model: F906i







Model: F906i

## **Test Equipment Used**

| Equipment name    | RFT ID No. |
|-------------------|------------|
| Spectrum Analyzer | TR06       |
| RF tester         | RC02       |

### **Final Result**

The EUT met the requirements of the standard for this test.



Model: F906i

### 2.1.7 Transmitter Out of Band Spurious Emissions (Radiated)

#### **Reference Standard**

FCC: Part24.238

IC: RSS133 Issue4 Sec6.5

#### **Test Conditions**

Date: 2008/02/07 Ambient Temperature: 18degC Relative humidity: 38% Test Voltage: 3.7V

#### **Test Method**

Substitution method is used for this test.

- a) EUT is set on non-conducting turntable and the output power is set to the maximum level. The height of turntable is 100cm.
- b) As a receive antenna, Horn antenna is used for high frequency range (above 1GHz), and Bilogical antenna is used for low frequency range (30MHz to 1GHz).
- c) The maximum level of each spurious emission is measured by a spectrum analyzer(SA) in below conditions.

Turntable is rotated 360 degrees.

The height of receive antenna is changed from 1m to 4m.

Receive antenna polarization is set to vertical and horizontal.

EUT was placed at three different orientations (X, Y and Z axis) in order to find the worst orientation.

- This emission level is recorded.
- d) Reference antenna is replaced with EUT, and connected with signal generator(SG). SG output power is adjusted to get same level as the recorded maximum radiated EUT power by SA.
- e) Radiated output power (Pout) is calculated with adjusted SG output (Psg) [dBm], reference antenna gain (Gref) [dBi] and cable loss between SG and reference antenna (Lcab) [dB].

Pout [dBm e.r.p] = Psg - (Gref - 2.15) + Lcab

RF Technologies Ltd. Page 28 of 47



Model: F906i

### **Test Setup**

## [Measurement]



## [Substitution]





Model: F906i

#### **Test Results**

**Bottom Channel (512ch, Nominal Freq.:1850.2MHz)** 

| Measurement<br>Frequency | Measurement Bandwidth | Emission<br>Level(dBm) |          | Limit<br>(dBm) | Result<br>Pass/Fail |
|--------------------------|-----------------------|------------------------|----------|----------------|---------------------|
| (MHz)                    | (MHz)                 | Horizontal             | Vertical |                |                     |
| 3700.4                   | 1                     | -36.5                  | -34.6    | -13.0          | Pass                |
| 5550.6                   | 1                     | -34.7                  | -34.1    | -13.0          | Pass                |
| 7400.8                   | 1                     | < -37.4                | < -37.1  | -13.0          | Pass                |
| 9251.0                   | 1                     | -32.7                  | -33.0    | -13.0          | Pass                |
| 11101.2                  | 1                     | -28.3                  | -27.0    | -13.0          | Pass                |
| 12951.4                  | 1                     | -32.5                  | -31.9    | -13.0          | Pass                |
| 14801.6                  | 1                     | < -30.9                | < -30.6  | -13.0          | Pass                |
| 16651.8                  | 1                     | < -27.9                | < -28.0  | -13.0          | Pass                |
| 18502.0                  | 1                     | < -29.4                | < -29.3  | -13.0          | Pass                |
| others                   |                       | -                      | -        | -13.0          | Pass                |

## Middle Channel (661ch, Nominal Freq.:1880.0MHz)

| Measurement | Measurement | Emi        | ssion    | Limit | Result    |
|-------------|-------------|------------|----------|-------|-----------|
| Frequency   | Bandwidth   | Level      | (dBm)    | (dBm) | Pass/Fail |
| (MHz)       | (MHz)       | Horizontal | Vertical |       |           |
| 3760.0      | 1           | -36.8      | -37.4    | -13.0 | Pass      |
| 5640.0      | 1           | -31.6      | -33.2    | -13.0 | Pass      |
| 7520.0      | 1           | <-38.1     | <-38.1   | -13.0 | Pass      |
| 9400.0      | 1           | -29.2      | -30.9    | -13.0 | Pass      |
| 11280.0     | 1           | -27.7      | -26.6    | -13.0 | Pass      |
| 13160.0     | 1           | -33.0      | -31.7    | -13.0 | Pass      |
| 15040.0     | 1           | < -29.0    | < -29.7  | -13.0 | Pass      |
| 16920.0     | 1           | < -28.9    | < -28.4  | -13.0 | Pass      |
| 18800.0     | 1           | < -29.1    | < -29.1  | -13.0 | Pass      |
| others      |             | -          | -        | -13.0 | Pass      |



Model: F906i

Top Channel (810ch, Nominal Freq.:1909.8MHz)

| Measurement | Measurement |            | Emission |       | Result    |
|-------------|-------------|------------|----------|-------|-----------|
| Frequency   | Bandwidth   | Level      | (dBm)    | (dBm) | Pass/Fail |
| (MHz)       | (MHz)       | Horizontal | Vertical |       |           |
| 3819.6      | 1           | -34.7      | -35.4    | -13.0 | Pass      |
| 5729.4      | 1           | -30.1      | -32.7    | -13.0 | Pass      |
| 7639.2      | 1           | < -37.7    | < -37.5  | -13.0 | Pass      |
| 9549.0      | 1           | -26.1      | -27.9    | -13.0 | Pass      |
| 11458.8     | 1           | -26.7      | -27.5    | -13.0 | Pass      |
| 13368.6     | 1           | -31.1      | -29.2    | -13.0 | Pass      |
| 15278.4     | 1           | < -29.6    | < -30.7  | -13.0 | Pass      |
| 17188.2     | 1           | < -25.8    | < -25.1  | -13.0 | Pass      |
| 19098.0     | 1           | < -26.5    | < -26.7  | -13.0 | Pass      |
| others      |             | -          | -        | -13.0 | Pass      |

**Test Equipment Used** 

| 1 000 = quipinoni 0 000 |            |
|-------------------------|------------|
| Equipment name          | RFT ID No. |
| Spectrum Analyzer       | SA06       |
| Receive Antenna         | DH01       |
| Reference Antenna       | DH02       |
| Signal Generator        | SG05       |
| Power Meter             | PM01       |
| RF tester               | RC03       |

### **Final Result**

The EUT met the requirements of the standard for this test.



Model: F906i

### 2.1.8 Band Edge Emissions

#### **Reference Standard**

FCC: Part24.238

IC: RSS133 Issue4 Sec6.5

#### **Test Conditions**

Date: 2008/02/12
Ambient Temperature: 18degC
Relative humidity: 37%
Test Voltage: 3.7V

#### **Test Method**

- a) EUT is connected to RF tester with Max transmitter power level.
- b) Lower band edge level is measured in bottom channel transmission.
- c) Higher band edge level is measured in top channel transmission.
- d) 1% of band width is used for resolution band width for spectrum analyzer.

#### **Test Setup**



#### **Test Results**

#### **Bottom Band Edge**

| Measured Frequency (MHz) | Peak Level<br>(dBm) | Limit (dBm) | Result |
|--------------------------|---------------------|-------------|--------|
| 1850.0                   | -15.3               | -13         | Passed |

## **Top Band Edge**

| Measured Frequency (MHz) | Peak Level | Limit | Result |
|--------------------------|------------|-------|--------|
| 1910.0                   | -14.7      | -13   | Passed |

RF Technologies Ltd. Page 32 of 47

Model: F906i

## **Graphical Data**



## Bottom band edge



Top band edge



Model: F906i

## **Test Equipment Used**

| Equipment name    | RFT ID No. |
|-------------------|------------|
| Spectrum Analyzer | TR06       |
| RF tester         | RC02       |

## **Final Result**

The EUT met the requirements of the standard for this test.



Model: F906i

### 2.1.9 Transmitter AC Line Conducted Emission requirement

#### **Reference Standard**

FCC: Part15.207

IC: RSS-Gen Issue2 Sec7.2.2

#### **Test Conditions**

Date: 2008/02/08 Ambient Temperature: 19degC Relative humidity: 30% Test Voltage: 3.7V

#### **Test Method**

- a) EUT is connected to RF tester with Max transmitter power level.
- b) AC power is supplied to AC charger through LISN.
- c) AC charger is connected to EUT.
- d) AC Line conducted emission is measured by EMI receiver. Both Live/Neutral is measured emission level.

#### **Test Setup**



#### Limit

| Frequency  | Limit QP | Limit AV |
|------------|----------|----------|
| (MHz)      | (dBuV)   | (dBuV)   |
| 0.15 - 0.5 | 66 - 56  | 56 - 46  |
| 0.5 - 5    | 56       | 46       |
| 5 - 30     | 60       | 50       |

RF Technologies Ltd. Page 35 of 47



Model: F906i

#### **Test Results**

| Frequency | Line           | QP Level | AVE Level | QP Limit | AVE    | Result |
|-----------|----------------|----------|-----------|----------|--------|--------|
| (MHz)     | (Live/Neutral) | (dBuV)   | (dBuV)    | (dBuV)   | Limit  |        |
|           |                |          |           |          | (dBuV) |        |
| 0.15      | Live           | 46.1     | 24.7      | 66       | 56     | Passed |
| 1.504     | Live           | 33.4     | 22.8      | 56       | 46     | Passed |
| 1.738     | Live           | 32.5     | 19.1      | 56       | 46     | Passed |
| 4.04      | Live           | 28.6     | 20.2      | 56       | 46     | Passed |
| 0.15      | Neutral        | 44.4     | 22.7      | 66       | 56     | Passed |
| 1.522     | Neutral        | 33.6     | 20.4      | 56       | 46     | Passed |
| 4.078     | Neutral        | 25.3     | 16.9      | 56       | 46     | Passed |

## **Graphical Data**



## **Test Equipment Used**

| Equipment name | RFT ID No. |
|----------------|------------|
| EMI Receiver   | TR04       |
| LISN           | LN05       |
| RF tester      | RC03       |

#### **Final Result**

The EUT met the requirements of the standard for this test



Model: F906i

## 2.2 Receiver requirement

### 2.2.1 Receiver Spurious Emissions (Radiated)

#### **Reference Standard**

FCC: Part15.109

IC: RSS133 Issue4 Sec6.6

#### **Test Conditions**

Date: 2008/02/07 Ambient Temperature: 18degC Relative humidity: 38% Test Voltage: 3.7V

#### **Test Method**

- a) EUT is connected to RF tester with idle mode.
- b) Radiated receiver spurious emission is received by receive antenna.
- c) Turn table is rotated 360deg.
- d) Maximum level of each spurious is measured by spectrum analyzer.
- e) RBW of spectrum analyzer is set to 100kHz for 30 1000MHz, 1MHz for above 1GHz.
- f) Level is measured with QP detect for 30 1000MHz, Average detect for above 1GHz.
- g) EUT was placed at three different orientations (X, Y and Z axis) in order to find the worst orientation.

#### **Test Setup**



RF Technologies Ltd. Page 37 of 47



Model: F906i

#### Limit

| Frequency | Distance | Field strength | Field strength |
|-----------|----------|----------------|----------------|
| (MHz)     | (m)      | (uV/m)         | (dBuV/m)       |
| 30 - 88   | 3        | 100            | 40             |
| 88 - 216  | 3        | 150            | 43.5           |
| 216 - 960 | 3        | 200            | 46             |
| above 960 | 3        | 500            | 54             |

#### **Test Results**

| Frequency (MHz) | Antenna | Field strength (dBuV/m) | Limit<br>(dBuV/m) | Result |
|-----------------|---------|-------------------------|-------------------|--------|
| 52.96           | Hori.   | 10.0                    | 40.0              | Passed |
| 51.96           | Vert.   | 13.5                    | 40.0              | Passed |
| 178.94          | Vert.   | 17.9                    | 43.5              | Passed |
| 260             | Vert.   | 15.0                    | 46.0              | Passed |

The EUT could not achieved receiving mode only therefore the measurement was carried out under idle mode. The EUT is registered to the RF tester.

## **Graphical Data**



Model: F906i



## **Test Equipment Used**

| Equipment name    | RFT ID No. |
|-------------------|------------|
| Spectrum Analyzer | SA06, TR04 |
| Receive Antenna   | DH01, BA03 |
| Pre-AMP           | PR04, PR03 |
| RF tester         | RC03       |

#### **Final Result**

The EUT met the requirements of the standard for this test.



Model: F906i

## 2.2.2 Receiver AC Line Conducted Emission requirement

#### **Reference Standard**

FCC: Part15.107

IC: RSS-Gen Issue2 Sec7.2.2

#### **Test Conditions**

Date: 2008/02/08
Ambient Temperature: 19degC
Relative humidity: 30%
Test Voltage: 3.7V

#### **Test Method**

- a) EUT is connected to RF tester with idle mode.
- b) AC power is supplied to AC charger through LISN.
- c) AC charger is connected to EUT.
- d) AC Line conducted emission is measured by EMI receiver. Both Live/Neutral is measured emission level.

### **Test Setup**



#### Limit

| Frequency  | Limit QP | Limit AV |
|------------|----------|----------|
| (MHz)      | (dBuV)   | (dBuV)   |
| 0.15 - 0.5 | 66 - 56  | 56 - 46  |
| 0.5 - 5    | 56       | 46       |
| 5 - 30     | 60       | 50       |

RF Technologies Ltd. Page 40 of 47

Model: F906i

#### **Test Results**

The EUT could not achieved receiving mode only therefore the measurement was carried out under idle mode. The EUT is registered to the RF tester.

| moue. The | DO I IS TOGISTOTOUT | e the re teste | ,         |          |        |        |
|-----------|---------------------|----------------|-----------|----------|--------|--------|
| Frequency | Line                | QP Level       | AVE Level | QP Limit | AVE    | Result |
| (MHz)     | (Live/Neutral)      | (dBuV)         | (dBuV)    | (dBuV)   | Limit  |        |
|           |                     |                |           |          | (dBuV) |        |
| 0.15      | Live                | 44.8           | 28.7      | 66.0     | 56.0   | Passed |
| 0.28      | Live                | 29.6           | 9.7       | 60.8     | 50.8   | Passed |
| 1.144     | Live                | 25.9           | 17.6      | 56.0     | 46.0   | Passed |
| 1.648     | Live                | 32.7           | 24.1      | 56.0     | 46.0   | Passed |
| 4.04      | Live                | 25.7           | 18.9      | 56.0     | 46.0   | Passed |
| 0.15      | Neutral             | 43.8           | 19.8      | 66.0     | 56.0   | Passed |
| 0.3       | Neutral             | 25.4           | 6.7       | 60.2     | 50.2   | Passed |
| 1.63      | Neutral             | 32.7           | 23.6      | 56.0     | 46.0   | Passed |
| 3.88      | Neutral             | 25.5           | 16.3      | 56.0     | 46.0   | Passed |

### **Graphical Data**



### **Test Equipment Used**

| Equipment name | RFT ID No. |
|----------------|------------|
| EMI Receiver   | TR04       |
| LISN           | LN05       |
| RF tester      | RC03       |

### **Final Result**

The EUT met the requirements of the standard for this test



Date: Apr 03, 2008 Report No.: RY0804P03R1 Model: F906i

## List of utilized test equipment/ calibration

| RFT<br>ID No. | Kind of Equipment and Precision  | Manufacturer         | Model No.        | Serial Number | Calibration<br>Date | Calibrated until |
|---------------|----------------------------------|----------------------|------------------|---------------|---------------------|------------------|
| AC01          | Anechoic Chamber                 | Japan Shiled Closure | 203397C          |               | 2007/5/8            | 2008/5/6         |
| BA03          | Bilogical Antenna                | CHASE                | CBL6111          | 1309          | 2007/5/14           | 2008/5/12        |
| BA04          | Bilogical Antenna                | SCHAFFNER            | CA2855           | 2903          | 2008/1/4            | 2009/1/2         |
| BI01          | Biconical Antenna                | SCHWARZBECK          | VHA9103          | 2359          | 2007/5/21           | 2008/5/19        |
| BRF1          | Band Reject Filter (WCDMA2000)   |                      | BRF2000-06       | VT0001        | 2007/4/24           | 2008/4/22        |
| BRF2          | Band Reject Filter (Bluetooth)   | MICRO TRONICS        | BRM50701         | 024           | 2007/4/26           | 2008/4/24        |
| CL11          | Antenna Cable                    | RFT                  | -                |               | 2007/6/12           | 2008/6/10        |
| CL21          | RF Cable 0.5m                    | SUCOFLEX             | SF104PE          | 48772/4PE     | 2007/5/25           | 2008/5/23        |
| CL22          | RF Cable 2.0m                    | SUCOFLEX             | SF104            | 274755/4      | 2007/5/25           | 2008/5/23        |
| CL23          | RF Cable 0.5m                    | SUCOFLEX             | SF104PE          | 48773/4PE     | 2007/6/8            | 2008/6/6         |
| CL24          | RF Cable 5.0m                    | SUCOFLEX             | SF104PE          | 48775/4PE     | 2007/6/8            | 2008/6/6         |
| DC01          | Directional Coupler              | KRYTAR               | 1850             | 77202         | 2007/4/24           | 2008/4/22        |
| HC01          | Harmonic Current Analysis system | NF                   | ES4153           | 9075640       | 2007/3/1            | 2008/2/28        |
| HPF1          | High Pass Filter (3500MHz)       | TOKIMEC              | TF323DCA         | 603           | 2007/6/8            | 2008/6/6         |
| HPF2          | High Pass Filter (900MHz)        | M-City               | HPF0900-01       | RF0003-01     | 2007/6/1            | 2008/5/30        |
| LA01          | Logperiodic Antenna              | SCHWARZBECK          | USLP 9143        | 338           | 2007/5/21           | 2008/5/19        |
| LN02          | LISN (3ph 32A)                   | SCHWARZBECK          | NSLK8128         | 8128-212      | 2008/1/29           | 2009/1/27        |
| LN05          | LISN                             | Kyoritsu             | KNW-407          | 8-1773-2      | 2007/5/14           | 2008/5/12        |
| LN06          | LISN                             | Kyoritsu             | KNW-407          | 8-1773-3      | 2007/5/14           | 2008/5/12        |
| LN08          | LISN (5uF)                       | SCHWARZBECK          | NNBM8125         | 8126A-9262    | 2007/9/10           | 2008/9/8         |
| LN11          | LISN (for communication line)    | FCC                  | FCC-TLISN-T4-02  | 20330         | 2008/1/10           | 2009/1/8         |
| LN12          | LISN (for PLC)                   | FCC                  | FCC-TLISN-T2-PLC | 20428         | 2007/8/17           | 2008/8/15        |
| LP01          | Loop Antenna                     | EMCO                 | 6502             | 3436          | 2007/6/8            | 2008/6/6         |
| PL01          | Pulse Limiter                    | PMM                  | PL-01            | 0000J10109    | 2008/1/17           | 2009/1/15        |
| PM03          | Power Meter                      | Anritsu              | ML2438A          | 99070001      | 2007/8/7            | 2008/8/5         |
| PR03          | Pre. Amplifier                   | Anritsu              | HM648A           | M41984        | 2007/5/14           | 2008/5/12        |
| PR04          | Pre. Amplifier (1-26G)           | RFT                  | LNP126           | 060208-01     | 2007/6/8            | 2008/6/6         |
| PR08          | Pre. Amplifier                   | Sonoma Instrument    | 315              | 263504        | 2008/1/10           | 2009/1/9         |



Date: Apr 03, 2008 Report No.: RY0804P03R1 Model: F906i

| RFT<br>ID No. | Kind of Equipment and Precision      | Manufacturer         | Model No.       | Serial Number | Calibration<br>Date | Calibrated until |
|---------------|--------------------------------------|----------------------|-----------------|---------------|---------------------|------------------|
| PR09          | Pre. Amplifier (1-13G)               | RFT                  | AMF4D           | 001           | 2007/9/18           | 2008/9/16        |
| PU03          | Power Sensor                         | Anritsu              | MA2472A         | 990103        | 2007/8/7            | 2008/8/5         |
| SA06          | Spectrum Analyzer<br>(F/W: 3.60 SP1) | Rohde & Schwarz      | FSP40           | 100071        | 2007/10/25          | 2008/10/23       |
| SH01          | Standard Horn Antenna (18-26G)       | A.H. Systems         | SAS-572         | 208           | 2006/5/3            | 2008/5/1         |
| SH02          | Standard Horn Antenna (18-26G)       | A.H. Systems         | SAS-572         | 209           | 2006/5/3            | 2008/5/1         |
| SH03          | Standard Horn Antenna (26-40G)       | A.H. Systems         | SAS-573         | 150           | 2006/5/3            | 2008/5/1         |
| SH04          | Standard Horn Antenna (26-40G)       | A.H. Systems         | SAS-573         | 151           | 2006/5/3            | 2008/5/1         |
| SH05          | Standard Horn Antenna (40-60G)       | CTEC                 | 261U/383        | 001           | 2007/9/1            | 2009/8/30        |
| SH06          | Standard Horn Antenna (40-60G)       | CTEC                 | 261U/383        | 002           | 2007/9/1            | 2009/8/30        |
| SH07          | Standard Horn Antenna (60-90G)       | Custom Microwave     | HO12R           | 001           | 2007/9/1            | 2009/8/30        |
| SH08          | Standard Horn Antenna (60-90G)       | Custom Microwave     | HO12R           | 002           | 2007/9/1            | 2009/8/30        |
| TL01          | Transient Limiter                    | Agilent Technologies | 11947A          | 3107A04000    | 2007/11/21          | 2008/11/19       |
| TR04          | Test Receiver<br>(F/W: 3.82 SP1)     | Rohde & Schwarz      | ESCI            | 100447        | 2007/9/19           | 2008/9/17        |
| TR06          | Test Receiver<br>(F/W: 3.93 SP2)     | Rohde & Schwarz      | ESU26           | 100002        | 2007/8/15           | 2008/8/13        |
| AA01          | Audio Analyzer                       | Rohde & Schwarz      | UPA             | 841451/0011   | 2007/9/20           | 2008/9/18        |
| AA02          | Audio Analyzer                       | Rohde & Schwarz      | UPL16           | 100140        | 2007/5/11           | 2008/5/9         |
| CD01          | CDN                                  | FCC                  | TSCDN-M2-16-25A | 03015-CDN     | 2008/1/7            | 2009/1/5         |
| CD02          | CDN                                  | FCC                  | TSCDN-M3-16-25A | 03017-CDN     | 2008/1/7            | 2009/1/5         |
| CD04          | CDN (Surge Burst)                    | EMC Partner          | CDN2000-06-32   | 120           | 2007/11/8           | 2008/11/6        |
| CD05          | CDN                                  | FCC                  | TSCDN-M1-16A    | 07013         | 2007/5/1            | 2008/4/29        |
| CD06          | CDN (Surge Burst, Comm Line)         | EMC Partner          | CDN-UTP         | 054           | 2007/12/14          | 2008/12/12       |
| CP01          | Current Probe                        | FCC                  | TSMC-42         | 202           | 2008/1/8            | 2009/1/6         |
| CP02          | Current Probe                        | EMCO                 | 94111-1         | 00077330      | 2007/6/28           | 2008/6/26        |
| CI02          | Current Injection Probe              | FCC                  | TSBC-120-9      | 171           | 2008/1/11           | 2009/1/10        |
| CI04          | Current Injection Probe              | FCC                  | TSBC-140        | 642           | 2007/5/3            | 2008/5/1         |
| CL12          | Antenna Cable                        | RFT                  | _               | _             | 2007/4/2            | 2008/3/31        |
| EA01          | EM Field Analyzer                    | narda                | EFA-200         | D-0050        | 2008/1/7            | 2009/1/5         |
| EC02          | EM Injection Clamp                   | FCC                  | TSCI-32         | 503           | 2007/6/13           | 2008/6/11        |



Model: F906i

| RFT<br>ID No. | Kind of Equipment and Precision                 | Manufacturer         | Model No.         | Serial Number | Calibration<br>Date | Calibrated until |
|---------------|-------------------------------------------------|----------------------|-------------------|---------------|---------------------|------------------|
| EM02          | EM Probe/Monitor                                | narda                | EMC-300           | B-0066        | 2007/3/8            | 2008/3/6         |
| EM03          | EM Probe/Monitor                                | narda                | EMC-300           | C-0032        | 2007/3/8            | 2008/3/6         |
| HB01          | High Power Biconical Antenna                    | SCHWARZBECK          | VHBD 9134         | 014           | 2007/2/20           | 2008/2/19        |
| IM01          | EMC Immunity Tester                             | EMC-PARTNER          | TRANSIENT<br>1000 | 176-V2.15     | 2007/11/8           | 2008/11/6        |
| LA03          | Logperiodic Antenna (High Power)                | SCHWARZBECK          | VULP9118-D        | 613           | 2007/4/2            | 2008/3/31        |
| NC74          | Sound Calibrator                                | RION                 | NC-74             | 34851836      | 2007/4/16           | 2008/4/14        |
| RP01          | RF Power Amplifier                              | ifi                  | CMX50             | E190-1101     | 2007/7/31           | 2008/7/29        |
| RP02          | RF Power Amplifier                              | PST(1-2G 10W)        | AR1929-10         | M2P3A00-095   | 2008/1/18           | 2009/1/16        |
| RP05          | RF Power Amplifier                              | ifi                  | M75               | K215-0306     | 2007/3/26           | 2008/3/24        |
| RP06          | RF Power Amplifier 2.5G 1W                      | Stealth Microwave    | SL0825-40         | 12611         | 2007/4/13           | 2008/4/11        |
| RP07          | RF Power Amplifier 350W                         | PRANA                | AP32LT235         | 0604-740      | 2007/7/31           | 2008/7/29        |
| RP08          | RF Power Amplifier 1W                           | RF Technologies      | M5D               | 0611R01       | 2007/12/26          | 2008/12/24       |
| RP13          | RF Power AMP 0.8-4.2GHz 50W                     | AR                   | 50S1G4A           | 0326341       | 2007/10/12          | 2008/10/10       |
| RP14          | RF Power AMP 150W                               | PRANA                | TLT215            | 0801-838      | 2007/12/12          | 2008/12/10       |
| DH01          | DRG Horn Antenna                                | A.H. Systems         | SAS-571           | 785           | 2008/1/31           | 2010/1/29        |
| DH02          | DRG Horn Antenna                                | A.H. Systems         | SAS-200/571       | 239           | 2007/4/20           | 2009/4/18        |
| DH04          | DRB Horn Antenna                                | Schwarzbeck          | BBHA9120B         | 2C-005        | 2008/2/13           | 2010/2/11        |
| PM01          | Power Meter                                     | Rohde & Schwarz      | NRVS              | 100055        | 2008/1/30           | 2009/1/28        |
| PU01          | Power Meter Insertion Unit                      | Rohde & Schwarz      | URV5-Z4           | 100055        | 2008/1/30           | 2009/1/28        |
| RC02          | Radio communication tester<br>(F/W: V4.10)      | Rohde & Schwarz      | CMU200            | 105097        | 2007/9/19           | 2008/9/17        |
| RC03          | Radio communication tester<br>(F/W: 10.20 #005) | Anritsu              | MT8820B           | 6200636657    | 2007/5/24           | 2008/5/22        |
| SG04          | Signal Generator                                | Rohde & Schwarz      | SMG               | 51400285      | 2007/4/6            | 2008/4/4         |
| SG05          | Signal Generator                                | Rohde & Schwarz      | SMR20             | 100905        | 2007/6/12           | 2008/6/10        |
| SG07          | Signal Generator                                | Agilent Technologies | N5181A            | MY47070251    | 2007/5/11           | 2008/5/9         |
| TC01          | Temperature Chamber                             | ESPEC                | SH-641            | 92000964      | 2007/4/23           | 2008/4/21        |

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.