# **Learning Regular Sets**

Meenakshi D'Souza

IIIT-Bangalore.

Term II 2022-'23.

### **Automata and Learning**

- Finite state automata constitute a robust class of models in theory of computation.
- Learning was used in the context of finite state automata in the late 1980s.
- Learning regular languages helps in developing algorithms for learning invariants for programs and software design and verifying them.

## Dana Angluin



Learning Regular Sets from Queries and Counterexamples, in *Information & Computation*, 1987.

## Angluin's L\* algorithm

Teacher has a regular language U in mind.

The Learner can ask two types of queries:

- Is a given string w in U? Teacher answers "Yes" or "No".
- Does a given DFA  $\mathcal{A}$  accept the language U? Teacher answers "Yes" or gives a counterexample x.



Angluin's algorithm for the Learner finds the canonical DFA for U, in a number of steps polynomial in the number of states of the canonical DFA for U and the length of the longest counterexample returned by the teacher.

Suppose the Teacher has in mind the language

 $U = \{w \in \{a, b\}^* \mid \text{ number of } a \text{'s is even and number of } b \text{'s is even}\}$ 

The Learner asks the Teacher if  $\epsilon$ , a, and b belong to U, and obtains the following Observation Table:

$$\begin{array}{c|cccc}
S & \epsilon & 1 \\
\hline
S.\{a,b\} & a & 0 \\
b & 0
\end{array}$$

The set of strings *S* represents the states of the automaton constructed by the Learner.

Entry (s, e) of the table represents the fact that from state s the automaton accepts/rejects the string e.

Suppose the Teacher has in mind the language

$$U = \{w \in \{a, b\}^* \mid \text{ number of } a \text{'s is even and number of } b \text{'s is even}\}$$

The Learner asks the Teacher if  $\epsilon$ , a, and b belong to U, and obtains the following Observation Table:

$$S.\{a,b\} \begin{bmatrix} \epsilon \\ \epsilon \\ 1 \\ a \\ b \end{bmatrix}$$

The set of strings *S* represents the states of the automaton constructed by the Learner.

Entry (s, e) of the table represents the fact that from state s the automaton accepts/rejects the string e.

This table is not "closed" as there are no states (or "rows") corresponding to  $\epsilon \cdot a$  and  $\epsilon \cdot b$ .

Learner closes table by adding string a to S, and asking membership queries for aa and ab.

He now gets the observation table:

|             |            | $\epsilon$ |
|-------------|------------|------------|
| S           | $\epsilon$ | 1          |
|             | a          | 0          |
|             | b          | 0          |
| $S.\{a,b\}$ | aa         | 1          |
|             | ab         | 0          |



This table is closed and consistent, and represents the DFA  $A_1$ .

Learner closes table by adding string a to S, and asking membership queries for aa and ab.

He now gets the observation table:

|             |            | $\epsilon$ |
|-------------|------------|------------|
| S           | $\epsilon$ | 1          |
|             | a          | 0          |
|             | b          | 0          |
| $S.\{a,b\}$ | aa         | 1          |
|             | ab         | 0          |



This table is closed and consistent, and represents the DFA  $A_1$ . Learner now asks the Teacher if  $A_1$  represents the language she has in mind.

Learner closes table by adding string a to S, and asking membership queries for aa and ab.

He now gets the observation table:

|                 |            | $\epsilon$ |
|-----------------|------------|------------|
| 5               | $\epsilon$ | 1          |
|                 | a          | 0          |
|                 | b          | 0          |
| $S$ . $\{a,b\}$ | aa         | 1          |
|                 | ab         | 0          |



This table is closed and consistent, and represents the DFA  $\mathcal{A}_1$ . Learner now asks the Teacher if  $\mathcal{A}_1$  represents the language she has in mind. Teacher replies with counterexample bb which is in U but is not accepted by  $\mathcal{A}_1$ .

Learner adds *bb* and its prefixes to his set *S*, makes membership queries for *ba*, *bba*, and *bbb* to obtain the observation table:



This table is closed but not consistent. The rows for a and b are identical, but aa and ba have different rows.

Learner adds  $\epsilon \cdot a$  (that is, a) and its suffixes to the set E, and makes membership queries to obtain the observation table:

|             |            | $\epsilon$ | а |
|-------------|------------|------------|---|
|             | $\epsilon$ | 1          | 0 |
| S           | а          | 0          | 1 |
|             | Ь          | 0          | 0 |
|             | bb         | 1          | 0 |
|             | aa         | 1          | 0 |
|             | ab         | 0          | 0 |
| $S.\{a,b\}$ | ba         | 0          | 0 |
|             | bba        | 0          | 1 |
|             | bbb        | 0          | 0 |



This table is closed and consistent. So Learner conjectures the automaton  $A_2$ .

Learner adds  $\epsilon \cdot a$  (that is, a) and its suffixes to the set E, and makes membership queries to obtain the observation table:

|            | $\epsilon$                            | a                                                                                                                      |
|------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $\epsilon$ | 1                                     | 0                                                                                                                      |
| а          | 0                                     | 1                                                                                                                      |
| Ь          | 0                                     | 0                                                                                                                      |
| bb         | 1                                     | 0                                                                                                                      |
| aa         | 1                                     | 0                                                                                                                      |
| ab         | 0                                     | 0                                                                                                                      |
| ba         | 0                                     | 0                                                                                                                      |
| bba        | 0                                     | 1                                                                                                                      |
| bbb        | 0                                     | 0                                                                                                                      |
|            | a<br>b<br>bb<br>aa<br>ab<br>ba<br>bba | $\begin{array}{cccc} \epsilon & 1 \\ a & 0 \\ b & 0 \\ bb & 1 \\ aa & 1 \\ ab & 0 \\ ba & 0 \\ bba & 0 \\ \end{array}$ |



This table is closed and consistent. So Learner conjectures the automaton  $A_2$ . Teacher responds with counterexample abb.

Learner adds abb its prefixes to S, makes membership queries to obtain the observation table:

|             |            | $\epsilon$ | a |
|-------------|------------|------------|---|
|             | $\epsilon$ | 1          | 0 |
| S           | a          | 0          | 1 |
|             | Ь          | 0          | 0 |
|             | ab         | 0          | 0 |
|             | bb         | 1          | 0 |
|             | abb        | 0          | 1 |
|             | aa         | 1          | 0 |
| $S.\{a,b\}$ | ba         | 0          | 0 |
|             | aba        | 0          | 0 |
|             | bba        | 0          | 1 |
|             | bbb        | 0          | 0 |
|             | abba       | 1          | 0 |
|             | abbb       | 0          | 0 |



Learner adds b and its suffixes to E, and makes membership queries to obtain the observation table:

|           |            | $\epsilon$ | а | Ь |
|-----------|------------|------------|---|---|
|           | $\epsilon$ | 1          | 0 | 0 |
| 5         | a          | 0          | 1 | 0 |
|           | Ь          | 0          | 0 | 1 |
|           | ab         | 0          | 0 | 0 |
|           | bb         | 1          | 0 | 0 |
|           | abb        | 0          | 1 | 0 |
|           | aa         | 1          | 0 | 0 |
| $S.{a,b}$ | ba         | 0          | 0 | 0 |
|           | aba        | 0          | 0 | 1 |
|           | bba        | 0          | 1 | 0 |
|           | bbb        | 0          | 0 | 1 |
|           | abba       | 1          | 0 | 0 |
|           | abbb       | 0          | 0 | 1 |



Table is closed and consistent, so Learner conjectures DFA  $A_3$ .

Learner adds b and its suffixes to E, and makes membership queries to obtain the observation table:

|             |            | $\epsilon$  | а      | Ь                |  |
|-------------|------------|-------------|--------|------------------|--|
|             | $\epsilon$ | 1           | 0      | 0                |  |
| S           | a          | 1<br>0      | 1      | 0                |  |
|             | Ь          | 0           | 0      | 1                |  |
|             | ab         | 0           | 0      | 1<br>0           |  |
|             | bb         | 1<br>0      | 0      | 0                |  |
|             | abb        | 0           | 1      | 0                |  |
|             | aa         | 1           | 0      | 0                |  |
| $S.\{a,b\}$ | ba         | 1<br>0      | 0      | 0                |  |
|             | aba        | 0           | 0      | 1                |  |
|             | bba        | 0           | 1      | 1<br>0<br>1<br>0 |  |
|             | bbb        | 0           | 1<br>0 | 1                |  |
|             | abba       | 0<br>1<br>0 | 0      | 0                |  |
|             | abbb       | 0           | 0      | 1                |  |



Table is closed and consistent, so Learner conjectures DFA  $A_3$ .

Teacher responds with "Yes!".

## Minimally adequate teacher

A Minimally adequate teacher is supposed to answer correctly two types of queries from the learner on the unknown set U:

- Membership query: Given a string t, answer yes or no depending on whether t is a member of U or not.
- Conjecture: Given a regular set S, the answer is yes if S = U and if not, a string t in the symmetric difference of S and the set U.

#### Observation table

Let A be a fixed, finite alphabet.

Observation table (S, E, T) has three components:

- A non-empty finite prefix-closed set S of strings,
- A non-empty finite suffix-closed set E of strings,
- A finite function  $T: ((S \cup S \cdot A) \times E) \rightarrow \{0,1\}.$
- T(u)=1 iff u belongs to the unknown regular set U. The observation table is used to finally build the finite state automaton for U.

#### Closed, consistent observation tables

- An observation table is closed if for each  $t \in S \cdot A$ ,  $\exists s \in S$ , row(t) = row(s).
- An observation table is consistent if whenever  $s_1$  and  $s_2$  are in S such that  $row(s_1) = row(s_2)$ , then,  $\forall a \in A$ ,  $row(s_1 \cdot a) = row(s_2 \cdot a)$ .

#### Observation tables and DFAs

Closed, consistent observation tables (S, E, T) are used to build the corresponding DFA for the unknown regular language U. The DFA is given by  $M(S, E, T) = (Q, A, \delta, q_0, F)$  where

- $\bullet \ \mathsf{Set} \ \mathsf{of} \ \mathsf{states} \ \mathit{Q} = \{\mathsf{row}(\mathit{s}) \mid \ \mathit{s} \in \mathit{S}\},$
- $q_0 = \text{row}(\epsilon)$ ,
- $F = \{ row(s) \mid s \in S, T(s) = 1 \}$ , and
- $\delta(\text{row}(s), a) = \text{row}(s \cdot a)$ .

*M* is well-defined.

#### Correctness of the acceptor

Theorem: If (S, E, T) is a closed, consistent observation table, then the acceptor M(S, E, T) is consistent with the function T. Any other acceptor consistent with T but inequivalent to M(S, E, T) must have more states.

#### Learner L\*

```
Initialize S and E to empty string.
Ask membership queries for empty string and each letter in alphabet.
Construct the initial observation table (S.E.T).
Repeat:
 While (S.E.T) is not closed or not consistent:
    If (S,E,T) is not consistent:
      Find s1 and s2 in S, a in A and e in E such that
      row(s1) = row(s2) and T(s1.a.e) is not equal to T(s2.a.e)
        add a.e to E, extend T to (S U S.A). E using membership queries
   If (S.E.T) is not closed:
      Find s1 in S and a in A such that
     row(s1.a) is different from row(s) for all s in S.
        add s1.a to S. extend T to (S U S.A). E using membership gueries
 Once (S,E,T) is closed and consistent, let M = M(S,E,T)
 Make the conjecture M.
 If Teacher replies with a counter example t, then
    add t and all its prefixes to S
    and extend T to (S U S.A). E using membership queries
Until the Teacher replies yes to the conjecture M.
Halt and output M.
```

### **Automata learning for invariants**

- Learns the smallest automaton that satisfies given constraints.
- This forces a kind of "generalization".
- Does it efficiently in polynomial time in smallest automaton that satisfies the given constraints.

#### Correctness of L\*

- L\* is correct: If the Teacher is minimally adequate then if L\* ever terminates its output is clearly an acceptor for the unknown regular set U being presented by the Teacher.
- $L^*$  terminates: Lemma: Let (S, E, T) be an observation table. Let n denote the number of different values of row(s) for  $s \in S$ . Any acceptor consistent with T must have at least n states.

#### L\*: Final theorem

Theorem: Given any minimally adequate Teacher presenting an unknown regular set U, the Learner  $L^*$  eventually terminates and outputs an acceptor isomorphic to the minimal DFA accepting U. If n is the number of states of the minimum DFA accepting U and m is an upper bound on the length of any counterexample provided by the Teacher, then the total running time of  $L^*$  is bounded by a polynomial in m and n.

#### Conclusion

- We learnt the basics of finite state automata and a learning algorithm for learning regular languages.
- This algorithm forms the basis for algorithms for learning invariants for programs.