Proyecto ZEBRA

Tectronix SpA Clean Voltage

Problemas Detectados

Contexto

- El sistema presenta problemas de desempeño.
- 2. El sistema presenta fallas en los leds.
- 3. El sistema tiene injertos.

Hardware

- Arduino pro mini cuenta con escasos recursos.
- El circuito de potencia tiene un 40% de eficiencia.
- 3. Existen cables soldados a la placa y módulos no integrados en la PCB.

Software

El programa presenta falta de estructura y orden, además está repartido en 3 uC, lo que hace necesario un protocolo de comunicación que reletiza el tiempo de respuesta.

Desafios del Rediseño

Primer Desafío

Rediseñar Circuito de Potencia.

Es tremendamente necesario rediseñar el circuito de potencia debido a su ineficiencia, problemas térmicos y ancho de pistas.

Segundo Desafío

Rediseñar Circuito de Control.

Para agregar las nuevas funcionalidades requeridas por el sistema y ausencia de circuitos de protección contra las perturbaciones.

Tercer Desafío

Rediseñar el Firmware

Es indispensable rediseñar el firmware, para asegurar estabilidad y confiabilidad al nuevo sistema que además incluye nuevas funcionalidades.

Solución

Circuito de Potencia

- 1. Se reemplazan los reguladores lineales por reguladores switching con 80% de eficiencia.
- 2. Se distribuyen las fuentes de calor para evitar focos de alta temperatura.
- 3. Se recalcula el ancho de las pistas para la potencia manejada.
- 4. Se agregan Filtros de Ripple
- 5. Se agrega sensor de temperatura.
- 6. Se separa de placa de control.

Solución

Circuito de Control

- Se cambia el sistema de 3
 Arduino Pro Mini por 1 solo μC
 Teensy 3.5 basado en un μP
 Cortex ARM.
- 2. Se agregan filtros para interferencia E.M.
- 3. Se agrega un método de programación inalámbrica.
- 4. Se agrega módulo 3G.
- 5. Se optoacoplan las señales de control hacia la placa de potencia.
- Se separa de la placa de potencia

Solución

Firmware.

- Se crean máquinas de estado que coordinan el funcionamiento del sistema y mejora desempeño.
- Se crea un protocolo de comunicación robusto para la sincronización de los ZEBRA.
- 3. Se implementan interrupciones por hardware.
- Comunicación por hardware con los demás módulos.

Implementación y avances

Avances

Esquemáticos

Potencia

Esquemáticos

Control

PCB

PCB

PCB

Gracias por su atención