Team #2021155 Page 1 of 30

In this paper, we present a dynamic model that is used in the policy creation, implementation and economic evaluation of relocating people of small island-nations who are at risk of losing their homes to rising sea levels in the coming decades. We utilize actuarial and statistical techniques to forecast future sea levels. Then, a 3-D simulated island submersion model is used to evaluate how rising sea levels will impact different island-nations under multiple climate change projection scenarios over the coming decades. We then rely on developmental, micro and macro economic theory to develop policy that is beneficial to both Environmentally Displaced Peoples (EDPs) and the host countries while preserving the cultural heritage of the island-nation people.

A low error culture survival model is employed and illustrates that our model successfully protects and preserves the unique and distinct culture of EDPs. Our model is then simulated for four at-risk island-nations and is shown to produce a desirable projected social internal rate of return (IRR) of around ten percent for each separate simulation.

Team #2021155 Page 1 of 30

Protect and Preserve:

Protecting and Preserving the Culture of Environmentally Displaced Island-Nation People $$\operatorname{MCM}\xspace{2020}$$

Contents

1								
2								
3	Mod	odel and Justification						
	3.1	Climate Change and Sea Level Increase	4					
	3.2	Island Change Model	4					
	3.3	Timeline	5					
	3.4	Selecting New Homes	6					
	3.5	Economics	6					
		3.5.1 Developmental	6					
		3.5.2 Micro	6					
		3.5.3 Macro	7					
	3.6	Financial Costs of Building Communities	7					
		3.6.1 Residential	7					
		3.6.2 Medical	7					
		3.6.3 Educational	8					
		3.6.4 Commercial	8					
		3.6.5 Cultural Preservation	8					
		3.6.6 Infrastructure	8					
	3.7	Culture Risk	8					
4	Mod	del Implementation and Results	9					
	4.1	Climate Change Data and Results	9					
	4.2	Island Change Results	9					
		4.2.1 Maldives	10					
		4.2.2 Tuvalu	11					
		4.2.3 Kiribati	12					
		4.2.4 Marshall Islands	12					
	4.3	Selecting Homes	13					
		4.3.1 Maldives	13					
		4.3.2 Tuvalu	14					
		4.3.3 Kiribati	14					
		4.3.4 Marshall Islands	14					
	4.4	Financial Impact	15					

Team #2021155 Page 2 of 30

	4.4.1 Cash Outflow	15
	4.4.2 Cash Inflows	15
	4.5 Culture Risk, Maintenance, and Results	17
5	Sensitivity Analysis	18
	5.1 RCP Selection	18
6	Culture Model Error	18
7	Strengths and Weaknesses	19
		19
		19
8	Conclusion	19
A	Appendix	22
	A.1 GMSL Forecast	22
	A.2 Island Submersion Model Results	23
	A.3 Alternative Island Submersion Results	

1 Introduction

Global warming has been an alarming concern of the international scientific community for decades, and has been largely under prepared for by current and past policy makers across the world. Ravaging fire seasons like those of California, Australia, and The Amazon, colder winters, and rising sea levels are all serious consequences of global warming that will devastate many people, especially without proper planning and preparation from the international community. Some of the people who will be impacted the most have been identified as the those who those who live on several small island-nations that are at risk of completely losing their islands due to rising sea levels. These environmentally displaced persons (EDPs) are put at an even greater risk if more countries and leaders continue to embrace nationalism and ignore or deny global warming and it's consequences in the coming decades. In this paper, we present a model to relocate EDPs focusing on these points:

- 1. Assess the scope and urgency of island-nation people at risk.
- 2. Invest in the long term development of EDP's human capital and create economic incentives for host countries to welcome EDPs through a cooperative international policy approach.
- 3. Over 10 years, hold countries temporarily financially responsible for their share of global C02 emission.
- 4. Preserve the rich and distinct cultures of EDPs.
- 5. Evaluate the long term economic impact of proposed policy under different climate change scenarios.

We use a combination of actuarial and statistical techniques to forecast yearly sea levels through 2090. We then utilize those predictions in an island change model that maps the island being observed and calculates the percentage of land lost each year as the sea level rises. Then, our international policy proposal is described with emphasis on the economic theory that guides the policy.

Team #2021155 Page 3 of 30

Furthermore, an exponential population model is used to evaluate the risk to an island's cultural heritage once they are established within a host country and simulate the decay over time. Finally, the economic impact of our policy is analyzed and shown to provide a desirable anticipated social IRR of roughly ten percent. The strengths and weaknesses of our model are then discussed and concluding remarks are given.

2 Assumptions

In order to create a model for a problem this complex, we had to make assumptions to justify our logic and work.

- 1. International cooperation assumption: This model assumes that nations of the world will comply to pay the green house gas financial responsibility.
- 2. Currency assumption: For ease of interpretation, all currency is expressed in 2020 USD and no inflation occurs.
- 3. Natural disaster assumption: Islands that have been effected by rising sea levels are at higher risk for tsunamis and hurricanes. Therefore, evacuation is preferred sooner rather than later.
- 4. Mode of evacuation assumption: Due to desire of minimal travel time and potential need of far travel, all travel will be made by a Boeing 737-700 plane, capable of transporting 149 passengers.
- 5. Evacuation deadline assumption: Islands that will be completely submerged need to be evacuated before their means of exit is submerged (i.e. airports).
- 6. Uniformly distributed population assumption: Population of the islands will be considered uniformly distributed across the given land. Similarly stated, the population density will be constant throughout the island.
- 7. Basic infrastructure assumption: In countries hosting the new culture, there will be basic infrastructure (sewage, water, electricity, etc.) that is easily expandable to the new community.
- 8. Non-corrupt government assumption: Any country hosting the new community will be assumed to have no corruption in their government that will impact the new community. Meaning all money allocated to this community will be used properly for the community.
- 9. Host country government assumption: All EDP's that have moved to the new community in a host country, will from then on be subject to the laws of the host country; thus not governed by their home country.
- 10. Building size and cost assumption: All costs and sizes of buildings will be based off of United States standards.
- 11. Hospital bed count assumption: The amount of hospital beds per 1000 people will be based on a world average, in order to optimize the amount of hospitals needed to build.

Team #2021155 Page 4 of 30

12. Return to education assumption: For simplicity, students are assumed to begin accumulating their returns to education immediately once they begin school in the host country and every student realizes the average returns to education per year. This shifts cash flow timings, but does not impact IRR results or aggregate returns.

13. Storm surge estimate: Storm surges vary in sizes depending on storms and many other factors. When looking at storm surge danger zones, we will use 30cm storm surge maximum, which is an acceptable maximum for the area [6].

3 Model and Justification

3.1 Climate Change and Sea Level Increase

In order to forecast yearly sea levels through 2090 predicted rates of Global Mean Seal Level (GMSL) rise under six different climate damage severity pathways ranging from low to extreme were considered [20]. Expected yearly rates of GMSL were computed for the years 2030, 2050 and 2090 were calculated under the conditional framework:

$$E(X_{ij}) = E(X_{ij}|\theta) \cdot f(\theta) \tag{1}$$

where

$$\theta = \begin{cases} \text{low severity} \\ \text{low-intermediate severity} \\ \vdots \\ \text{extreme severity} \end{cases}$$

and $E(X_{ij}|\theta)$ is the predicted GMSL rate of change conditional on severity θ , $f(\theta)$ is the probability distribution function of θ and $E(X_{ij})$ is the expected average rate of GMSL change through year i = (2030, 2050, 2090) and RCP pathway j = (RCP 2.6, RCP 4.5, RCP 8.5). Once expected yearly average rate of change through each year i was computed, the mean sea levels

$$y(X_i, n_i)_j = \sum E(X_{ij}) \cdot n_i \tag{2}$$

where

$$n_i = \begin{cases} 10 \text{ when } i = 2030\\ 30 \text{ when } i = 2050\\ 70 \text{ when } i = 2090 \end{cases}$$

were computed for each j. Then, linear interpolation was utilized to estimate the average returns for each year between points y_{ij} and those estimated average returns were used to calculate yearly GMSLs through 2090. For forecasted values refer to appendix A.1

3.2 Island Change Model

Once the data for predicting sea level rise over time has been calculated, it is now possible to model the submersion of an island. Using gathered height map data of an island, we can make a scale model of an island, compared to the sea level, and show the process of an island being submerged.

Team #2021155 Page 5 of 30

This process will provide the percent land submerged per year and percent remaining land in a "danger zone" of storm surge. The percent land submerged then correlates to the amount of people displaced (due to assumption 6).

The algorithm begins by obtaining an $n \times n$ height map, M, of the island. M is a grid of z values, which associates to the elevation of an island. The value n is defined by some mileage value such that n^2 creates M, where the entire island is represented by a point on the grid. Using the given yearly estimates of sea level changes, S, the model produces a yearly change in land mass percentage. This is done by taking $s_t \in S$, starting with $t = 0, 1, 2, ..., t_{max}$. To simulate sea levels rising, for all x, y < n, set $z_{x,y} = z_{x,y} - s_t$, which sets the height of the land section to be with respect to the year's new sea level. Once the model hits defined stopping points, all the citizens must be removed from the island or else they are at risk. These stopping points are defined as when the sea level reaches the same elevation as the local airport or when the entire country is at risk of storm surge. Using the produced data, we are able to see what percentage of land is submerged, land percentages at high risk to tsunamis and hurricanes, and the approximate amount of people that need to be displaced each year.

3.3 Timeline

Our model calls for a collaborative, intergovernmental multi-phase approach (figure 1) to be overseen by the United Nations in which every country is financially responsible for their share of global C02 emissions through 2030.

Master Phasing Plan of Operation: Homeward Bound							
Phase	Phase 1: Create Settlement Skeletons for New Communities	Phase 2: Create Living Areas for Upcoming EDP Arrivals	Phase 3: Execute Transportaion of Displaced Peoples to New Living Communites and Monitor Results				
Year	2020 - 2024	2025 - 2029	2030-2091				
Investment Strategy		Construct Essential Parts of Cummunities (Clinics, Schools, Cultural Centers, etc.) Construct Living Areas for first arriving EDPs within the Newly Established Communities	Maintain Timely Construction of New Living Areas for the Continually Arriving EDPs				
Funding Strategy	Accumulate Finances based on Greenhouse Gas Emissions for littal Investment	Accumulate Financial Responsibility based on Greenhouse Gas Emissions for Later Costs					
R&D	Determine Settlement Locations for EDPs and Construction Partners	Monitor Transition into New Communities and Financial, Social, and Political Impact of the Displaced Peoples in the Host Country					

Figure 1: Master Phasing Plan

The years 2020-2025 will be used as a research and development period in which administrative and logistical objectives are met. During this period, the first host countries are determined and the majority of the money will be collected from countries to fund all initial investment costs of building EDP communities and administrative costs. Then, from 2025-2030, the first EDP communities will be built with schools, hospitals, apartments and a cultural center, that will be built with the help of a local expert from the island-nation that understands their culture well. One goal of building these EDP communities, is to replicate the success that "China Towns" across America have had in preserving their culture for decades or longer, such as San Francisco's "China Town".

Starting in 2030, EDPs will start relocating to host countries and this continues on through 2090. During the last 60 years from 2030-2090, more apartments will be built inside existing communities to house the new arrival of EDPs each year. For simplicity, our model assumes that the infrastructure for all communities is completed by 2030 and the only new construction will be apartment buildings.

Team #2021155 Page 6 of 30

3.4 Selecting New Homes

Once a person is displaced from their home, there needs to be somewhere for them to go. This section is the process taken to determine what countries an EDP can be relocated to. When determining the potential host countries for a group of EDP's, we consider looking at climate, primary religion, acceptance of immigrants/refugees, current population size/density, and whether its on the coast.

To begin, the host country must have the same climate as the island in order to maintain the same lifestyle and feel of their home. Placing an EDP in a country with a different climate would result in a loss of weather based customs such as clothing, outdoor activities, etc. Another consideration to make, is the primary type of religion in the host country. Placing the EDP's into a country with the same religion would increase acceptance into an area as well as maintain the religion the EDP's follow. After that, we look at the general acceptance of immigrants and refugees in the host country. If the host country is generally accepting of people in these circumstances, then EDP's will be able to join an accepting culture. If the EDP's are sent to a nation experiencing rising nationalism, there may be more backlash, but in section 3.5, the proposal introduces incentives for countries to take in these EDP's. The next thing to consider, is the current population size and population density. When picking a county, we look at the current values, see what they would be with the addition of the new EDP's. If the new population and density is significantly changed, or if the current population density is too high, we move on to a different country. Lastly, we look specifically for larger island countries or countries that are on the coast. This way, the people can still practice their customs that pertain to being a coastal nation (such as Marshall Island's fishing techniques).

For countries that have larger populations on the island, it may be necessary to split the community into g groups. In this case, we look for at least g potential hosts, provide the EDP's the choice from the options, then build the new communities in the g countries selected.

3.5 Economics

3.5.1 Developmental

It is extremely important for both the host country economy and EDPs that EDPs receive meaningful investments into their human capital development by the international community, especially in the form of healthcare and education [14]. Investments into basic healthcare needs, namely access to routine appointments for medicine, family planning and mental health services are very important and have high anticipated returns on investment.[18] In addition, investments into schools and education produce highly positive externalities in communities, due primarily to reductions in special education costs, healthcare costs, teenage pregnancies, crime and increased future tax revenues [17].

3.5.2 Micro

As an incentive to accept EDPs, host countries will receive a stipend per EDP. The stipend for our analysis is intended to offset any perceived negative externalities of refugees by the people or the government of the host country [14]. In addition, EDPs will be paid an amount equal to the median salary of the host country for the first year they arrive in the host country. This will allow EDPs to have financial independence so they can feed themselves and their families while they look for work

Team #2021155 Page 7 of 30

and get settled into their new home. This benefits the EDPs by reducing the risk of malnutrition, allowing some parents to stay home and raise their kids, allowing them a chance to find meaningful work that is fit to their skill level, and introducing them into the economy.

3.5.3 Macro

All of these benefits of paying EDPs and investing in their human capital are also realized to a certain extent by the host country's economy. With the new community members, the host country has more activity and money flowing through it, more diversity and ideas shared in the community, and more skilled labor.

In order to carryout the analysis presented in 4.4 estimates from [17] were used for the rate of return to education and estimates from [14] were used to estimate the investment multiplier that was used to calculate how the income given to the EDPs would impact the host county's economy.

3.6 Financial Costs of Building Communities

Building an entire new community is very expensive, but a necessary expenditure to facilitate the EDP population. We identified six categories of a community that needed to be built. When deciding and calculating the cost of building, we used prices and sizes (square footage) representative of the United States for the sake of simplicity. Additionally, to reduce cost and increase build speed all construction is assumed to be modular, meaning the construction company builds pieces of the structure in a factory, then ships and assembles the pieces on site. We chose modular construction because not only does it reduce cost and build times, but being able to build structures in possibly more remote areas is much easier if you can ship the whole structure there rather than all of the pieces and the people.

3.6.1 Residential

The first building requirement for a new community was living spaces. To calculate the building cost of new apartments we calculated the cost of an apartment per square foot to be \$106.25 [3], the average 2 bedroom apartment to be 941 square feet [15], and the average amount of people living in each apartment 2 bedroom apartment to be 3. Taking the product of the first two values and multiplying it by the total population of the EDPs over 3, gives us the cost of residential construction per person which we can scale up to as many people as we need to. It is important that EDPs get permanent structures that they can safely live comfortably in, because that will be their home. For this reason, we did not minimize costs by putting in tents or other temporary or undesirable housing structures.

3.6.2 Medical

There will always be a need for hospitals and medical assistance in any nation, especially, like in our model, if people are coming from a different environment with different exposures and risks. To best calculate the cost of building clinics in the new communities we took the product of the world average number of hospital beds per 1000 people (5.4) [5], the average square footage of space per hospital bed (1750 ft^2) [9], and the cost per square foot of constructing hospitals (\$204) [1] to get cost per 1000 people. Using this number, we could scale the cost to any number of people entering a host nation.

Team #2021155 Page 8 of 30

3.6.3 Educational

Similar to Residential and Medical services, education is vital to a healthy society. As previously stated, and increase in education results in increased tax revenue and leads to declines in undesirable areas, such as teen pregnancies, crime, and healthcare costs. When calculating the costs of constructing schools in the new communities we followed a similar procedure to both Medical and Residential calculations. We found the product of the average number of schools per 1000 people (0.4) [4], the average square footage per school (101600) [13], and the average cost per square foot to build education centers (\$179.35) [13], so we could easily scale the result up to any number of incoming EDPs.

3.6.4 Commercial

An important aspect of creating these new communities is to give EDPs a financially stable future. For this reason, commercial zones will be built within the communities for businesses both small and large to provide economic stimulus to the area. To calculate the cost of these zones we took the average commercial area per person in the US $(6.82ft^2)$ [19], and multiplied that number with the cost per square foot of a commercial structure (\$85) [12], to be able to scale up with any population.

3.6.5 Cultural Preservation

One of the most important aspects of this problem was preserving the cultural heritage of the displaced people within their new nation homes. Through research we saw how effective it was in places like Chinatown, San Francisco to have buildings and monuments dedicated to honoring the history and culture of a people in preserving the culture of that people within the community. To calculate the funding required for this we took product of the average acreage of community centers or parks per 1000 people in the US converted to square feet $(442,569.6ft^2)$ [7], and the cost per square foot of community centers (\$110.50) [2] to get a number that could be scaled up with the population of EDPs. This number accounted for the highest building cost.

3.6.6 Infrastructure

Every new city needs infrastructure (sewage, electrical, roads) to operate. To calculate the cost of infrastructure we took the total amount the US spends on infrastructure per year (\$2.1B) [21] and divided that by the total population of the US (327.2M) to get the amount it spends per person. We then scale this number to the population of displaced peoples. This was our lowest building cost.

With the implementation of these six important characteristics of a community, the newly built communities will provide EDPs with the opportunity to thrive in their new homes.

3.7 Culture Risk

To model the risk of culture loss of the when EDP's are placed into their new home, we define a function C(t) which returns the number of people practicing the culture. To achieve this, first we define the function P(t), which calculates the growth of the new population over time:

$$P(t) = [P_0e^{rt} + P_n(t)e^{rt}]$$

Where P_0 is the initial population of the new community, $P_n(t)$ is the total amount EDP's moved in after t years, and r is the population growth rate.

Team #2021155 Page 9 of 30

Next, we define the function $C_L(t)$, which is the number of people in the current population who do not practice the communities culture. This is shown as:

$$C_L(t) = (P_0 e^{rt} + P_n(t)e^{rt})C$$

Where C is the culture loss per year. Using P(t) and $C_L(t)$, we can define C(t) as:

$$C(t) = P(t) - C_L(t) \tag{3}$$

4 Model Implementation and Results

4.1 Climate Change Data and Results

For this analysis, GMSL was forecasted out through 2090 under the three seperate RCP scenarios.

Figure 2: Global Mean Sea Level Rise

Clearly, the amount of GMSL rise varies significantly depending on which RCP takes place over the next 70 years. It is unlikely that we will experience a situation as drastic as RCP 4.5 or RCP 8.5. [20]

4.2 Island Change Results

For all islands, we have decided to model the sea level change based on the RCP 2.6 path. This is the path of choice because, as seen in the previous section, it is the most likely. Additionally, in the Paris climate agreement, the goal is to reach RCP 1.5; thus modeling based on the closest path will provide results closer to what may be in the future.

Using height map data collected online [10], then adjusted to fit the shape and scale of the island, we produce 4 initial island plots for Maldives, Tuvalu, Kiribati, and the Marshall islands, as

Team #2021155 Page 10 of 30

seen in figure 3.

Figure 3: 2020 models of each island

In figure 4, a comparison of the landmass loss over time is made between each RCP value for every island. Refer to appendix A.2 for exact values of land mass percentages for all RCP values and appendix A.3.

Figure 4: Plots of land loss over time comparison of RCP

4.2.1 Maldives

For the RCP 2.6 path of the Maldives, the results show that the island will start submersion by 2033, losing its first percent of land; which is equal to 1.2 square miles of land. The island then proceeds to lose about 1% of land every year, displacing a total average amount of 2059 people. By the year 2090, 40% of the island will be submerged, creating a total of 350,052 EDP's. Additionally, with the rising sea levels, comes rising risk of tsunamis and storm surge affecting the island. From

Team #2021155 Page 11 of 30

2020 through 2090, an average of 41% of the remaining island will be at high risk of storm surge and tsunamis. Based on assumption 6, this means 41% of the remaining population in 2090 will be at risk. This equates to, out of the remaining 525,078 people not displaced, 215,282 people are at high risk of tsunami and storm surges. The process of the sea level rising can be seen in figure 5.

Figure 5: Models of the Maldives every 30 years for RCP 2.6

4.2.2 Tuvalu

For the RCP 2.6 path of Tuvalu, the results show that the island will start submersion by 2033, losing 0.67% of land; this is 0.067 square miles of land, and will displace an estimated 83 people. The island will then lose about 0.67% of land every year, displacing an average amount of 83 more people yearly. By the year 2090, 24.23% of the island will be submerged, displacing a total of 3030 people. Additionally, from 2020 through 2090, an average of 25% of the island that year will be at high risk of storm surges and tsunamis. Based on assumption 6, this means 25% of the remaining population in 2090 will be at risk. This equates to, out of the remaining 14,825 people not displaced, 3706 people that are at high risk. The process of the sea level rising can be seen in figure 6.

Figure 6: Models of Tuvalu every 30 years for RCP 2.6

Team #2021155 Page 12 of 30

4.2.3 Kiribati

For the RCP 2.6 path of Kiribati, the results show that the island will start submersion by 2035, losing 0.17% of land; this is effectively 0.53 square miles of land, displacing 222 people. Due to the shape of the island, it then proceeds to rapidly lose land each year. By the year 2090, 90.77% of the island will be submerged, displacing a total of 198,137 people. Additionally, from 2020 through 2090, an average of 93% of the island in that year will be at high risk of storm surge and tsunamis. This means 93% of the remaining population in 2090 will be at risk. This equates to, out of the remaining 19877 people not displaced, there are 18,486 people that are at high risk. The process of the sea level rising can be seen in figure 7.

Figure 7: Models of Kiribati every 30 years for RCP 2.6

4.2.4 Marshall Islands

For the RCP 2.6 path of the Marshall Islands, the results show that the island will start submersion by 2045, losing 2% of land; this is 1.4 square miles of land, which will displace 1558 people. Each following year, the Marshall islands lose around 1% of land, displacing 897 people on average yearly. By the year 2090, 54.35% of the island will be submerged, displacing a total of 95,533 people. Additionally, from 2020 through 2090, an average of 54% of the island in that year will be at high risk of storm surges and tsunamis. This means 54% of the remaining population in 2090 will be at risk. This equates to, out of the remaining 80,761 people not displaced, 43,611 people that are at high risk of storm surges and tsunamis. The process of the sea level rising can be seen in figure 8.

Team #2021155 Page 13 of 30

Figure 8: Models of the Marshall Islands every 30 years for RCP 2.6

4.3 Selecting Homes

For the 4 islands, careful consideration went into making sure that the final location of these cultures would preserve their people's customs and lively-hoods. This includes similar religions, climate, population density, and estimated willingness of the host country's population to welcome and assimilate the incoming displaced peoples. in figure 9, a visual of the potential host location can be seen.

Figure 9: Options of tropical locations as host countries [11]

4.3.1 Maldives

The Maldives is a hot, tropical island country that, by law, practices Islam. So the host(s) that take in these people must be in the same climate and have a large practicing Muslim population. Due to the high population of the Maldives (472,639 people by 2033), the population will be split among two host countries, Malaysia and Indonesia.

Malaysia is the first choice as it satisfies both the climate requirement, and has a 61% Muslim population (as well as being the official religion). Malaysia's population density is 238 people per

Team #2021155 Page 14 of 30

square mile, which is far lower than the current population density of the Maldives at 2,855. This means that the Maldivian people will experience far less overcrowding issues, such as traffic, as a result.

The second country is Indonesia. Indonesia is also a hot, tropical country and the primary religion of the area is Islam, with 87.2% of the population practicing the religion. Similarly to Malaysia, the population density of Indonesia is small, compared to the rest of the world, at 357 people per square mile; However, due to the Maldivian population density, this is an improvement from their current living space.

Both host countries selected would be a good fit for the Maldivian people as they are also in the same area of the world. There is plenty of coastal area, and there wont be any large cultural barriers that may create problems between the native people and the Maldivians. Additionally, all three countries are part of the Organisation of Islamic Cooperation, which is an organization dedicated to "safeguard and protect the interests of the Muslim world in the spirit of promoting international peace and harmony among various people of the world." We believe this will greatly influence Malaysia and Indonesia when taking in and supporting the Maldivians. [8]

4.3.2 Tuvalu

The host country selected to take in Tuvalu will be the French Guiana. The French Guiana is a department of France that is located on the north eastern coast of South America. Tuvalu is a part of a group called the South Pacific Community (SPC), which serves as a support group for South Pacific countries, similar to the aforementioned Organisation of Islamic Cooperation. This support group also covers assistance due to environmental disasters. Because of this, any country in the SPC can be a good potential host. France is a member of the SPC, thus having the French Guiana hosting Tuvalu is a great match. The French Guiana is located in a tropical area on the coast, which will allow for the Tuvalu people to maintain customs and lifestyles similar to what they had on their home island. French Guiana's top two religious beliefs are Christian and no-religious, which is perfect for Tuvalu, as its people primarily practice Christianity.

4.3.3 Kiribati

The host country selected to take in Kiribati will be Papua New Guinea (PNG). PNG is a close island neighbor to Kiribati, so they both share similar tropical climates. PNG is also extremely diverse with many different cultures, so it is expected that the people will have no problem accepting one more. Since PNG is a large island country, there is abundant coastline to help maintain the island culture and customs of the Kiribati people. Like Tuvalu, Kiribati is a part of the SPC and since PNG is also a part of the SPC, there is added incentive for the PNG government to accept the Kiribati people. PNG's top two religious beliefs are Roman Catholic or different forms of Christianity, which will not have any compatibility issues with Kiribati's Christian beliefs.

4.3.4 Marshall Islands

The last nation to place into a host nation are the Marshall Islands. The Marshall Islands are in the same tropical region as Kiribati and Tuvalu, but has a past of business with the United States. The Marshall Islands declared Independence from the US in 1976, but remained an associated state that has access to services provided by the US. In addition, both the US and the Marshall Islands

Team #2021155 Page 15 of 30

are a part of the SPC as well. All of these reasons mean that the US is a great fit to host the Marshallese people.

The Marshall Islands is also primarily Christian, which the United States shares as a primary religion. In regards to which state the Marshallese should be sent to, Florida has a similar climate and plenty of coastal areas to allow for the people of the Marshall Islands to continue their island customs. Lastly, the land size of the US can support the size of the Marshall Island people, as it is no larger than the size of many American cities.

4.4 Financial Impact

4.4.1 Cash Outflow

It is estimated that in order to relocate all the people of Tuvalu, Kiribati, The Marshall Islands and The Maldives would cost approximately \$138B in total. While this is a very large amount, it is roughly twenty percent of the US Defense budget this year. The largest CO2 emitter is China, who will have to pay just over \$20B over the first 10 years, or roughly \$3B per year for the first three years and \$2B per year in the second five years. On average, a country will owe approximately \$330M over the ten years, which results in roughly \$47.5M payments for the first five years and \$19.1M payments for the second five years.

4.4.2 Cash Inflows

For this framework, the outflows the countries paid in the beginning is recognized as cash inflows:

- 1. To host countries when EDP communities are built.
- 2. To host countries when the host government receives their stipend.
- 3. To EDPs when they are supplied the host country's minimum wage.

The amount of money that goes to schools is considered the investment into education that produces the return on investment. Money that goes towards construction or directly to the EDPs is multiplied by the investment multiplier 3.6.4 to calculate the economic return to the economy as a whole.

As can be seen in the figures below, investments into education had the greatest returns.

Team #2021155 Page 16 of 30

Figure 10: Tuvalu

Figure 11: Maldives

Figure 12: Marshall Islands

Team #2021155 Page 17 of 30

Figure 13: Kiribati

Also, it is clear that for every country net profits are positive, which is of high importance because if this endeavour was not profitable it would likely not occur and thousands of EDPs and society would lose all the potential economic gains these EDPs have to offer society. Also, it can be seen on each graph that by 2090, the profits from this model are well into the tens of billions of dollars, some countries into the hundred of billions. This highlights the importance of well thought out planning and execution of those plans so that this economic benefit shown in these graphs is realized in the future, not wasted away because world leaders failed to appropriately plan ahead.

More importantly, each of the four countries showed to have positive and very desirable IRRs that would be attractive for any investor.

IRR by Country					
Maldives	Kiribati	Tuvalu	Marshall Island		
0.11	0.1	0.1	0.09		

Figure 14: IRR

4.5 Culture Risk, Maintenance, and Results

Once the people of the islands are moved to their new homes, there is the risk of culture loss in the community. The model shown in section 3.7 was able to provide total population of people who still practice the culture. The culture loss value, C, (defined in section 3.7) will be 1.5%. Culture loss or "assimilation" is said to happen after 3 to 4 generations after a family immigrates to a new culture [16]. Since this community will have the goal of preserving the culture, the rate of culture loss should be much lower.

To begin, the Maldives will be relocated to Malaysia and Indonesia, and the model predicted that by 2090 the total population practicing their original culture (culture population) will be 1,478,390. This number makes sense, since as the people move to areas with a smaller population density, the population capacity becomes much higher. The predicted population of Maldivian people in the new community grew to 1,499,381 people. Therefore, there was a total of 20,991 people who have assimilated into the culture of their host country.

Team #2021155 Page 18 of 30

For the Tuvalu community in French Guiana, the model predicted that by 2090 the total culture population will be 20,394. The population from Tuvalu is relatively small compared to the Maldives, so smaller growth makes sense. The predicted population of the Tuvalu people in the new community grew to 20,705 people. Therefore, there was a total of 311 people who have adopted the French Guiana culture.

For the Kiribati community in Papua New Guinea, the model predicted that by 2090 the total culture population will be 228,018. The predicted population of the Kiribati people in the new community grew to 231,491 people. Therefore, there was a total of 3473 people who have adopted the culture of PNG.

For the last island community, the Marshall island people in the United States, the model predicted that by 2090 the total culture population will be 171,962. The predicted population of the Kiribati people in the new community grew to 174,580 people. Therefore, there was a total of 2618 people who have adopted the culture of the US.

5 Sensitivity Analysis

5.1 RCP Selection

In order to analyze the sensitivity of our model, the most conservative and most extreme possible climate scenarios plausible [20] were tested and the internal rate of return was computed for each island-nation under the extreme situations.

IRR by Country and Extreme Climate Scenario							
Maldives Kiribati Tuvalu Marshall Islan							
Low	9%	9%	12%	10%			
High	10%	14%	12%	10%			

Figure 15: IRR 2

As can be seen in 15, the IRR generated from this model under extreme climate conditions are very similar for all four island-nations tested in our analysis. This is important, because it indicates that this is a profitable model to follow whether global warming increases or decreases in the coming decades.

6 Culture Model Error

In order to test and see if the Culture population model yields useful results, we chose to apply the model to a similar situation in the past. Since the model is predicting the growth of a groups culture when placed in a community that promotes the continuation of culture, we chose to model the culture growth of the Navajo Native American tribe. Making the assumption that people who live on a reservation practices the culture of their people, we are able to get the actual population of people who practice native culture after a defined amount of time. Team #2021155 Page 19 of 30

In the 1890's the population of the Navajo reservation was counted to be 250,000 people, after 60 years in the 1950's, the population grew to 380,000 people. Using the same culture loss rate of 1.5% as the island communities, with the initial population of 250,000, over 60 years, the culture model results in 375,163 people living on the reservation. This result is a 1.273% error from the actual value after 60 years, which is the same time interval used when calculating the island communities cultural population.

7 Strengths and Weaknesses

7.1 Strengths

- 1. Our model establishes an an economic framework that incentivizes host countries to accept EDPs and provides desirable returns to both the host country and the EDPs across a wide range of potential climate change scenarios.
- 2. We fully simulate a 3-D model of all 4 islands that use forecasted rising sea level data to simulate the land submerged per year.
- 3. Our culture survival model simulates the loss of culture of an EDP population over time based on similar phenomena in history with a calculated accuracy of 98.727%.

7.2 Weaknesses

- 1. As is expected with extended forecasts, the credibility of our sea level rise estimates accuracy is low. We cannot know what future events will occur that will potentially change GMSL trajectory over the coming decades.
- 2. Normally investment in education doesn't show a return until about 10 years in the future as it takes time to go through the system; however, to simplify our model we assumed the return would start immediately which offsets cash flow timings, but not IRRs or aggregate totals.

8 Conclusion

There is no question that there will be many people in the coming decades who are displaced due to Global Warming. This paper focuses on the relocation of island-nation people who are at risk of losing their island, but there are many millions of more people who are also at risk of becoming EDPs due to desertification and other consequences of Global Warming. Although it is too late stop that, policy makers around the globe do have the chance to plan for it so that the ramifications are not as devastating when they occur. Our model gives sound framework for how policy might be crafted, implemented and evaluated to help ease the burden EDPs from shrinking island-nations will face in the coming decades and highlights the very desirable economic return of such policy.

Team #2021155 Page 20 of 30

References

[1] 4 ways to mitigate costs when developing medical offices: Hospital executives who plan to build medical office facilities know that construction costs can steepen quickly, but there are some steps they can take to mitigate burdensome expenses. Becker's Hospital Review.

- [2] Construction cost estimates for community center in national, us. Community Center Commercial Construction Costs Per Square Foot.
- [3] Cost to build an apartment estimates and prices at fixr. Fixr.com.
- [4] Elementary secondary total number of schools (per capita) statistics states compared education data on statemaster. RSS Stats.
- [5] Hospital beds per capita. Peterson-Kaiser Health System Tracker.
- [6] impacts of sea level rise and what to do now. More Sea Level Rise Reports.
- [7] Nrpa 2019 performance review.
- [8] Organisation of islamic cooperation. *History*.
- [9] Research and theory. HCD Magazine 8 Considerations For Benchmarking Comments.
- [10] terrain.party. terrain.party.
- [11] Tropical countries. World Population Review.
- [12] Commercial construction costs per square foot 2018: Proest. ProEst Estimating Software, Jul 2018.
- [13] 07/01/15. School costs: Did you know... Spaces4Learning.
- [14] Sevda Akar and M. Mustafa Erdogdu. Education and health externalities of syrian refugees in turkey: threats and opportunities. *ICE*, Revista de EconomÃa, (900), 2018.
- [15] Nadia Balint and Nadia BalintNadia Balint. Average apartment size in the us: Seattle has the smallest rentals. RENTCafé rental blog, Nov 2019.
- [16] Susan K. Brown and Frank D. Bean. Assimilation models, old and new: Explaining a long-term process. *migration policy.org*, Jul 2019.
- [17] James Heckman, Seong Hyeok Moon, Rodrigo Pinto, Peter Savelyev, and Adam Yavitz. Analyzing social experiments as implemented: A reexamination of the evidence from the highscope perry preschool program. 2010.
- [18] Rebecca Masters, Elspeth Anwar, Brendan Collins, Richard Cookson, and Simon Capewell. Return on investment of public health interventions: a systematic review. *Journal of Epidemiology and Community Health*, 71(8):827â834, 2017.
- [19] Jennifer Rudden. Retail space per person globally 2018. Statista, Oct 2019.
- [20] Usgcrp. Climate science special report: Sea level rise. Sea Level Rise Climate Science Special Report.

Team #2021155 Page 21 of 30

[21] T. Wang. Average annual infrastructure spending as percent of gdp globally by country 2015. Statista, Aug 2019. Team #2021155 Page 22 of 30

A Appendix

A.1 GMSL Forecast

Year	RCP2.6	RCP4.5	RCP8.5
2020	3.4734	4.0353	4.7992
2025	20.8404	24.2118	28.7952
2030	38.2074	44.3883	52.7912
2035	63.412	74.148	98.04
2040	83.22825	97.31925	128.6775
2045	103.0445	120.4905	159.315
2050	122.86075	143.66175	189.9525
2055	149.202	176.184	274.536
2060	169.9245	200.654	312.666
2065	190.647	225.124	350.796
2070	211.3695	249.594	388.926
2075	232.092	274.064	427.056
2080	252.8145	298.534	465.186
2085	273.537	323.004	503.316
2090	294.2595	347.474	541.446

Figure 16: GMSL

Team #2021155 Page 23 of 30

A.2 Island Submersion Model Results

Year	Maldives % land	Tuvalu % land	Kiribati % land	Marshall Islands % land
2030	100	100	100	100
2031	100	100	100	100
2032	100	100	100	100
2033	99.23306159	99.33315654	100	100
2034	98.53226418	98.71437885	100	100
2035	97.84682536	98.10720324	90.83338031	100
2036	97.17600196	97.52765163	82.6232981	100
2037	96.54159328	96.93926034	79.29499865	100
2038	95.90099162	96.3884377	76.26902913	100
2039	95.29209801	95.8586093	73.55073001	100
2040	94.67007528	95.34425034	70.98048058	100
2041	94.05573185	94.83569242	68.37996849	100
2042	93.56995464	94.45337621	66.05478729	100
2043	92.95784068	93.96443133	63.92690677	100
2044	92.36207618	93.50228174	61.93491154	100
2045	91.74476012	93.03156871	60.15445825	98.09796937
2046	91.1395823	92.5768776	58.41821219	96.02806504
2047	90.52523886	92.12052905	56.73329397	94.34125712
2048	89.91907016	91.69650059	55.13174642	92.8583727
2049	89.30026778	91.28241677	53.51625431	91.35880853
2050	88.69682399	90.84540502	51.98175933	90.03196057
2051	88.06860829	90.43325488	50.41729838	88.74654299
2052	86.55479671	89.4716633	46.55109494	85.84157457
2053	85.91419505	89.07802124	44.87418743	84.7251068
2054	85.15022926	88.59708733	43.08364659	83.63554188
2055	84.48188306	88.20620767	41.30794039	82.55512391
2056	83.74739585	87.80179225	39.59186943	81.51882661
2057	83.0032476	87.40455907	37.98053102	80.61758154
2058	82.2598425	87.00235357	36.65698459	79.62486683
2059	81.37969644	86.57086662	35.40642459	78.65152216
2060	80.63455731	86.22501409	34.21906014	77.69593337
2061	79.90329045	85.88330516	33.04148655	76.75164376
2062	79.15121519	85.54325367	31.91820774	75.81757724
2063	78.40458974	85.20182097	30.78691822	74.98789372
2064	77.68892918	84.8639794	29.69182522	74.14314462
2065	76.85287713	84.47088982	28.59287522	73.31184693
2066	76.1867604	84.13581065	27.51825402	72.46064115
2067	75.53947033	83.81122861	26.44808322	71.57984224
2068	74.92116339	83.49714368	25.31174992	70.71303281
2069	74.3060768	83.16151203	24.19796528	69.8795829

Table 1: RCP 2.6 Results for land percentage over time

Team #2021155 Page 24 of 30

Year	Maldives % land	Tuvalu % land	Kiribati % land	Marshall Islands % land
2070	73.57902116	82.77284229	23.06044522	69.02514877
2071	72.96987983	82.45240384	22.00748259	68.15780128
2072	72.36123394	82.13500403	21.03492371	67.30551939
2073	71.76001962	81.81788047	20.11843975	66.40642655
2074	71.16945722	81.47976265	19.18741785	65.58750417
2075	70.5979692	81.16346781	18.33739308	64.85843727
2076	69.9167416	80.76927327	17.47550059	64.06534161
2077	69.36061216	80.43778522	16.66879296	63.32174718
2078	68.83148411	80.11126949	15.95940056	62.57600052
2079	68.28303396	79.77315168	15.27404027	61.85984698
2080	67.73582242	79.43917747	14.6578094	61.18135741
2081	67.07961445	79.01542524	14.05581978	60.51631926
2082	66.50168573	78.67316383	13.50842162	59.92069043
2083	65.94506085	78.35244914	12.9722978	59.27986484
2084	65.4198963	78.02234229	12.47652418	58.64872427
2085	64.89572263	77.6850532	12.00122237	58.02350232
2086	64.39929351	77.36268108	11.50544876	57.41011762
2087	63.83300758	76.98285102	10.9992909	56.7832815
2088	63.35540511	76.67981569	10.52161555	56.24038224
2089	62.92164892	76.37595165	10.0561046	55.59040968
2090	62.45544152	76.07650744	9.664173458	54.97218247

Table 2: RCP 2.6 Results for land percentage over time (cont.)

Team #2021155 Page 25 of 30

Year	Maldives % land	Tuvalu % land	Kiribati % land	Marshall Islands % land
2030	100	100	100	100
2031	98.53226418	98.71437885	100	100
2032	97.70513002	97.98593386	89.89494109	100
2033	96.91540144	97.29864863	81.39350658	100
2034	96.28396539	96.7072187	77.55786251	100
2035	95.53065153	96.06578933	74.34022946	100
2036	94.79269625	95.44507795	71.32523758	100
2037	94.05573185	94.83569242	68.23933612	100
2038	93.31851973	94.26332306	65.54269557	100
2039	92.72225979	93.78238914	63.18161454	100
2040	91.98727715	93.2232793	60.91636528	99.13695697
2041	91.2587352	92.66389322	58.89440408	96.53975701
2042	90.52523886	92.12052905	56.94246237	94.4870705
2043	89.79966954	91.61915338	55.0136627	92.74322856
2044	89.18185804	91.19263876	53.15695937	91.12044939
2045	88.44588452	90.6782798	51.35188059	89.55470423
2046	87.6982682	90.19099236	49.51831929	88.01155746
2047	86.94817468	89.71088717	47.73222885	86.63574634
2048	86.30930706	89.30067071	45.85802064	85.37400325
2049	85.53419391	88.8432172	43.92773751	84.19458284
2050	84.74446534	88.35510105	41.89984246	82.90701303
2051	82.40822626	87.08163446	36.90650321	79.80134945
2052	81.52337354	86.64793759	35.4346104	78.65152216
2053	80.63455731	86.22501409	34.04905518	77.55065804
2054	79.59537558	85.74850002	32.68812547	76.42665748
2055	78.69764147	85.33579739	31.35508487	75.35915288
2056	77.82542242	84.93359189	30.04251607	74.35890538
2057	76.98466371	84.53967359	28.7575397	73.36726678
2058	76.1867604	84.13581065	27.46484932	72.3890796
2059	75.41139954	83.74299731	26.18907043	71.3613912
2060	74.67171023	83.36178606	24.85157944	70.32025138
2061	73.92483706	82.97201136	23.51764877	69.3856468
2062	73.08754642	82.51345289	22.2326724	68.37517621
2063	72.36123394	82.13500403	21.08298793	67.38515179
2064	71.6393804	81.74826797	19.98611478	66.33002249
2065	70.94155563	81.3510348	18.90615311	65.37927621
2066	70.24298769	80.96650866	17.90896873	64.46404167
2067	69.58479797	80.57231412	16.90199348	63.55795409
2068	68.93874649	80.18613054	16.04069438	62.68684021
2069	68.28303396	79.77315168	15.25920563	61.85984698

Table 3: RCP 4.5 Results for land percentage over time

Team #2021155 Page 26 of 30

Year	Maldives % land	Tuvalu % land	Kiribati % land	Marshall Islands % land
2070	67.63103722	79.3662501	14.51866049	61.07051772
2071	66.84750163	78.88034386	13.84279437	60.29087348
2072	66.16726491	78.47813836	13.1936306	59.55427378
2073	65.52369062	78.08477254	12.59846491	58.78431457
2074	64.89572263	77.6850532	12.02673795	58.07784605
2075	64.30218761	77.29665971	11.43869289	57.35954028
2076	63.73813116	76.92787925	10.85658168	56.62724504
2077	63.17506558	76.56517608	10.29019519	55.93046155
2078	62.63801052	76.19584314	9.797091818	55.19278574
2079	62.02441024	75.77098596	9.300131435	54.4567241
2080	61.51980638	75.4201611	8.798720661	53.77339202
2081	61.03898356	75.07099369	8.270014152	53.08091297
2082	60.56584003	74.72072132	7.857611208	52.41641288
2083	60.09244878	74.36381918	7.463603215	51.76213587
2084	59.60865332	74.01299433	7.141691564	51.12023416
2085	59.14517084	73.67432404	6.863097057	50.46595715
2086	58.68540414	73.35167567	6.665499675	49.79231009
2087	58.20458132	73.00941426	6.503802118	49.16655009
2088	57.66059012	72.63041292	6.327566615	48.53540951
2089	57.19388728	72.32433896	6.165572365	47.91180174
2090	56.75393811	72.00224307	6.002688036	47.28496562

Table 4: RCP 4.5 Results for land percentage over time (cont.)

Team #2021155 Page 27 of 30

Year	Maldives % land	Tuvalu % land	Kiribati % land	Marshall Islands % land
2030	99.10449536	99.20083756	100	100
2031	95.65327249	96.17131302	74.76271996	100
2032	94.67007528	95.34425034	70.70633647	100
2033	93.69356649	94.54729782	66.84488012	100
2034	92.84438532	93.88294052	63.53052524	100
2035	91.86440846	93.11996553	60.59386024	98.71512047
2036	90.89037686	92.39980774	57.94380046	95.53628117
2037	90.03896622	91.77771516	55.41419794	93.12686302
2038	89.06146655	91.1108717	52.917825	90.88047607
2039	88.06860829	90.43325488	50.5353821	88.85523045
2040	87.18350785	89.87221136	48.16955398	86.9397484
2041	86.17603417	89.22912454	45.66339019	85.27661498
2042	85.15022926	88.59708733	43.08364659	83.63554188
2043	84.18511555	88.04654092	40.47364033	82.12790685
2044	83.0032476	87.40455907	38.05440752	80.61758154
2045	81.8246	86.78246649	36.07813701	79.20625868
2046	80.78740001	86.29904642	34.29976057	77.77341354
2047	79.59537558	85.74850002	32.60712834	76.42665748
2048	78.40458974	85.20182097	30.95751656	75.05837916
2049	77.40529079	84.72558314	29.30019077	73.84559923
2050	76.32176733	84.20542314	27.69359945	72.60537842
2051	68.28303396	79.77315168	15.35800433	61.99113282
2052	67.30181851	79.15050662	14.2273082	60.73369419
2053	66.16726491	78.47813836	13.20371815	59.55427378
2054	65.21032592	77.89140451	12.27625657	58.38346229
2055	64.21077925	77.2345057	11.37787087	57.24762448
2056	63.35540511	76.67981569	10.48749588	56.18442433
2057	62.45544152	76.07650744	9.700666669	55.0189934
2058	61.6897417	75.5353532	8.913837454	53.92942848
2059	60.87449806	74.94861935	8.132645402	52.83555909
2060	60.16725995	74.42514447	7.510777365	51.81217515
2061	59.36787033	73.84725031	6.998685651	50.83344991
2062	58.68540414	73.35167567	6.661345976	49.79231009
2063	57.89369381	72.78151623	6.396992722	48.7931387
2064	57.19388728	72.32433896	6.145397257	47.81333735
2065	56.43338957	71.80390272	5.894395177	46.90832589
2066	55.68825043	71.27296936	5.633305543	45.961346
2067	55.06176876	70.80916233	5.38734724	45.02405114
2068	54.37236644	70.30419553	5.139905474	44.11419717
2069	53.77115212	69.81193578	4.900474412	43.21725656

Table 5: RCP 8.5 Results for land percentage over time

Team #2021155 Page 28 of 30

Year	Maldives % land	Tuvalu % land	Kiribati % land	Marshall Islands % land
2070	53.09983329	69.2912233	4.660153271	42.40909531
2071	52.50406879	68.79067635	4.420425517	41.571879
2072	51.84587907	68.27106883	4.165566431	40.74434771
2073	51.25903246	67.81803516	3.909223881	39.9345723
2074	50.63428482	67.3202506	3.657331723	39.16730337
2075	50.05982417	66.86113966	3.421757667	38.48773769
2076	49.42566321	66.37523342	3.169272124	37.81086229
2077	48.86185447	65.94954752	2.91352296	37.16465613
2078	48.23240018	65.47579585	2.735210607	36.4969277
2079	47.67354583	65.04127026	2.582710526	35.83511789
2080	47.08397431	64.57912067	2.435847607	35.2427174
2081	46.46665824	64.12304836	2.295808621	34.57391286
2082	45.90458355	63.7225003	2.172384431	33.95299536
2083	45.27958819	63.26477056	2.05756433	33.30571309
2084	44.70933876	62.87471962	1.933843447	32.71976928
2085	44.09573849	62.42389587	1.786980528	32.10961292
2086	43.53366379	62.01312693	1.631513519	31.49891851
2087	42.89207125	61.56893294	1.562384104	30.93342086
2088	42.29804079	61.19518016	1.507495943	30.36899932
2089	41.63167634	60.75789218	1.45142101	29.78359357
2090	41.00469923	60.36314516	1.397126234	29.20948702

Table 6: RCP 8.5 Results for land percentage over time (cont.)

A.3 Alternative Island Submersion Results

Team #2021155 Page 29 of 30

Figure 17: Island submersion results for RCP4.5 $\,$

Team #2021155 Page 30 of 30

Figure 18: Island submersion results for RCP8.5 $\,$