Let β_0 be a solution of $A\beta = c$. Then $Y - X\beta_0 = X(\beta - \beta_0) + \epsilon$ or $\tilde{Y} = X\gamma + \epsilon$ with $A\gamma = A(\beta - \beta_0) = 0$. i.e.,

$$\tilde{Y} = \theta + \epsilon, \ \theta \in \mathcal{M}_C(X) = \Omega, \ \text{and}$$

$$A(X'X)^{-1}X'\theta = A(X'X)^{-1}X'X(\beta - \beta_0) = A(\beta - \beta_0) = A\gamma = 0.$$

Set $A_1 = A(X'X)^{-1}X'$ and $\omega = \mathcal{N}(A_1) \cap \Omega$. Then $A_1\theta = A\gamma = 0$ and we want the projection of \tilde{Y} onto ω since we want:

$$\min_{\theta \in \mathcal{M}_C(X)} ||\tilde{Y} - \theta||^2 \text{ subject to } A_1 \theta = 0.$$

We need the following series of results to solve this.

Result A. If $\mathcal{N}(C)$ is the null space of C, then $\mathcal{N}(C) = \mathcal{M}^{\perp}(C')$.

Proof. If $x \in \mathcal{N}(C)$, then Cx = 0 so that x is orthogonal to each row of C. i.e., $x \perp \mathcal{M}(C')$. Conversely, if $x \perp \mathcal{M}(C')$, then x'C' = (Cx)' = 0, or Cx = 0, hence $x \in \mathcal{N}(C)$.

Result B. $(\Omega_1 \cap \Omega_2)^{\perp} = \Omega_1^{\perp} + \Omega_2^{\perp}$.

Proof. Let $\Omega_i = \mathcal{N}(C_i), i = 1, 2$. Then,

$$(\Omega_1 \cap \Omega_2)^{\perp} = \left(\mathcal{N} \left(\begin{array}{c} C_1 \\ C_2 \end{array} \right) \right)^{\perp} = \mathcal{M} \left(C_1' | C_2' \right) = \mathcal{M}(C_1') + \mathcal{M}(C_2') = \Omega_1^{\perp} + \Omega_2^{\perp}.$$

Result C. If $\omega \subset \Omega$, then $P_{\Omega}P_{\omega} = P_{\omega}P_{\Omega} = P_{\omega}$.

Proof. Show that $P_{\Omega}P_{\omega}$ and $P_{\omega}P_{\Omega}$ both satisfy the defining properties of P_{ω} : If $x \in \omega \subset \Omega$, then $P_{\Omega}P_{\omega}x = P_{\Omega}x = x$; if $\xi \in \omega^{\perp}$, $P_{\Omega}P_{\omega}\xi = P_{\Omega}0 = 0$. Similar is the other case.

Result D. If $\omega \subset \Omega$, then $P_{\Omega} - P_{\omega} = P_{\omega^{\perp} \cap \Omega}$.

Proof. $\Omega = \mathcal{M}_C(P_\Omega)$, so each $x \in \Omega$ can be written $x = P_\Omega y$. Consider the decomposition, $P_\Omega y = P_\omega y + (P_\Omega - P_\Omega)y$. Now $P_\omega y \in \omega \subset \Omega$, and already $P_\Omega y \in \Omega$, so $(P_\Omega - P_\Omega)y = P_\Omega y - P_\omega y \in \Omega$. Further, $P_\omega(P_\Omega - P_\omega) = P_\omega P_\Omega - P_\omega = P_\omega - P_\omega = 0$, so that $(P_\omega y)'(P_\Omega - P_\omega)y = y'P_\omega(P_\Omega - P_\omega)y = 0$. Therefore, $P_\Omega y = P_\omega y \oplus (P_\Omega - P_\omega)y$ is the orthogonal decomposition of Ω into $\omega \oplus (\omega^\perp \cap \Omega)$.

Result E. If A_1 is any matrix such that $\omega = \mathcal{N}(A_1) \cap \Omega$, then $\omega^{\perp} \cap \Omega = \mathcal{M}_{\mathcal{C}}(P_{\Omega}A_1')$.

Proof. Note that

$$\omega^{\perp} \cap \Omega = (\Omega \cap \mathcal{N}(A_1))^{\perp} \cap \Omega = (\Omega^{\perp} \oplus \mathcal{N}^{\perp}(A_1)) \cap \Omega = (\Omega^{\perp} \oplus \mathcal{M}_C(A_1)) \cap \Omega.$$

Now, let $x \in \omega^{\perp} \cap \Omega$ (= $(\Omega^{\perp} \oplus \mathcal{M}_C(A_1)) \cap \Omega$.). Then $x \in \Omega$, so $x = P_{\Omega}x$. Also, $x \in \Omega^{\perp} \oplus \mathcal{M}_C(A_1)$, so $x = (I - P_{\Omega})\alpha + A_1'\beta$. Therefore,

$$x = P_{\Omega}x = P_{\Omega}\{(I - P_{\Omega})\alpha + A_1'\beta\} = P_{\Omega}A_1'\beta \in \mathcal{M}_C(A_1').$$

Conversely, if $x \in \mathcal{M}_C(P_{\Omega}A'_1)$, then $x = P_{\Omega}A'_1\beta = P_{\Omega}(A'_1\beta) \in \mathcal{M}_C(P_{\Omega}) = \Omega$. For any $\xi \in \omega(\subset \Omega)$, we have $x'\xi = \beta'A_1P_{\Omega}\xi = \beta'A_1\xi = 0$ since $\omega = \mathcal{N}(A_1) \cap \Omega$. Therefore, $x \in \omega^{\perp}$.

Result F. If A_1 is a $q \times n$ matrix of rank q, then $Rank(P_{\Omega}A'_1) = q$ iff $\mathcal{M}_C(A'_1) \cap \Omega^{\perp} = \{0\}.$

Proof. Rank $(P_{\Omega}A'_1) \leq \operatorname{Rank}(A'_1) = \operatorname{Rank}(A_1) = q$. Suppose Rank $(P_{\Omega}A'_1) < q$. Let the rows of A_1 (i.e., columns of A'_1) be a'_1, \ldots, a'_q . Columns of $P_{\Omega}A'_1$ are linearly dependent, so $\sum_{i=1}^q c_i P_{\Omega} a_i = P_{\Omega}(\sum_{i=1}^q c_i a_i) = 0$ for some $\mathbf{c} \neq \mathbf{0}$. Then there exists a vector $\sum_{i=1}^q c_i a_i \in \mathcal{M}_C(A'_1)$ ($\neq 0$ since rank of A_1 is q) such that $\sum_{i=1}^q c_i a_i \perp \Omega$. i.e., $\mathcal{M}_C(A'_1) \cap \Omega^{\perp} \neq \{0\}$. If $\operatorname{Rank}(P_{\Omega}A'_1) = q = \operatorname{Rank}(A'_1)$ then $\mathcal{M}_C(A'_1) = \mathcal{M}_C(P_{\Omega}A'_1) = \omega^{\perp} \cap \Omega \subset \Omega$.

Now let us return to the problem of finding the projection of \tilde{Y} onto $\omega = \mathcal{N}(A_1) \cap \Omega$ which achieves:

$$\min_{\theta \in \mathcal{M}_C(X)} ||\tilde{Y} - \theta||^2 \text{ subject to } A_1 \theta = 0.$$

From Results A and B, $\omega^{\perp} \cap \Omega = (\mathcal{N}(A_1) \cap \Omega)^{\perp} \cap \Omega = (\mathcal{M}_C(A_1') + \Omega^{\perp}) \cap \Omega$ and from Result E, $\omega^{\perp} \cap \Omega = \mathcal{M}_C(P_{\Omega}A_1')$. Now note that

$$P_{\Omega}A_1' = (X(X'X)^{-1}X')X(X'X)^{-1}A' = X(X'X)^{-1}A' = A_1'.$$

Therefore, $\operatorname{Rank}(P_{\Omega}A'_1) = \operatorname{Rank}(A'_1) \leq q$. However, since $\operatorname{Rank}(P_{\Omega}A'_1) = \operatorname{Rank}(X(X'X)^{-1}A') \geq \operatorname{Rank}(X'X(X'X)^{-1}A') = \operatorname{Rank}(A') = q$, we must have $\operatorname{Rank}(P_{\Omega}A'_1) = q$. Therefore, from Result D,

$$\begin{split} P_{\Omega} - P_{\omega} &= P_{\omega^{\perp} \cap \Omega} = P_{\mathcal{M}_{C}(P_{\Omega}A'_{1})} \\ &= P_{\Omega}A'_{1}(A_{1}P_{\Omega}^{2}A'_{1})^{-1}(P_{\Omega}A'_{1})' \\ &= X(X'X)^{-1}A' \left[A(X'X)^{-1}X'X(X'X)^{-1}A' \right]^{-1}A(X'X)^{-1}X' \\ &= X(X'X)^{-1}A' \left(A(X'X)^{-1}A' \right)^{-1}A(X'X)^{-1}X'. \end{split}$$

Therefore,

$$\begin{split} X\hat{\beta}_{H} - X\beta_{0} &= X\hat{\gamma}_{H} = P_{\omega}\tilde{Y} = P_{\Omega}\tilde{Y} - P_{\omega^{\perp}\cap\Omega}\tilde{Y} \\ &= P_{\Omega}Y - X\beta_{0} - X(X'X)^{-1}A'\left(A(X'X)^{-1}A'\right)^{-1}A(X'X)^{-1}X'(Y - X\beta_{0}) \\ &= P_{\Omega}Y - X\beta_{0} - X(X'X)^{-1}A'\left(A(X'X)^{-1}A'\right)^{-1}A\left((X'X)^{-1}X'Y - \beta_{0}\right) \\ &= P_{\Omega}Y - X\beta_{0} - X(X'X)^{-1}A'\left(A(X'X)^{-1}A'\right)^{-1}\left(A\hat{\beta} - c\right). \end{split}$$

Therefore,

$$X\hat{\beta}_H = X\hat{\beta} - X(X'X)^{-1}A' (A(X'X)^{-1}A')^{-1} (A\hat{\beta} - c).$$

Multiplying by $(X'X)^{-1}X'$ on the left, we get,

$$\hat{\beta}_H = \hat{\beta} - (X'X)^{-1}A' \left(A(X'X)^{-1}A'\right)^{-1} \left(A\hat{\beta} - c\right).$$

This yields the minimum since $||Y - X\hat{\beta}_H||^2 = ||\tilde{Y} - X\hat{\gamma}_H||^2$.