CSSE2010/CSSE7201 Lecture 2

Intro to Logic Gates

School of Information Technology and Electrical Engineering
The University of Queensland

Today...

- Introduction to Logic Gates
- Logic Diagrams
- Boolean Algebra and Logic Expressions
- There will be several polling questions
 - URL: responsewaresg.netSession ID: csse2010s2

Learning Lab Sessions

- Slides used will be made available
 - After the last session that week
- Only attend the session you are signed-up to
- Contact <u>eait.mytimetable@uq.edu.au</u> if you have signon issues
- If specific preparation is required, you'll get told, by default you should review previous lectures
- Make sure you attend and complete the learning labs for each week

Digital Logic

Digital circuits

- Only two logical levels present (i.e. binary)
 - ✓ Logic '0'. 7 usually small voltage (e.g. around 0 volts)
 - Logic '1' > usually larger voltage (e.g. 0.8 to 5 volts, depending on the "logic family", i.e. type/size of transistors)

Logic gates

- are the building blocks of computers;
- Each gate has
 - one or more inputs
 - exactly one output
- perform logic operations (or functions)
 - 7 basic types: NOT, AND, OR, NAND, NOR, XOR, XNOR
 - Inputs & outputs can have only two states, 1 & 0 can be called "true" & "false"
 - Logic symbol, Truth table, Boolean expression, Timing diagram

Recall – Levels of Abstraction

Basic Logic Gates

Basic Logic Gates (cont...)

Output is HIGH when all the inputs are LOW

	Α	В	X	TK
	0	0	0	1)
2	0	(1)	1	~
-	1	0	1	(02)
	1	1	0	

Output is HIGH when exactly one input is HIGH

Basic Logic Gates (cont...)

Logic Symbol

Truth table

NOT

AND

✓ OR

NAND

NOR

XOR

XNOR

Useful to remember:

XOR is the odd function and XNOR is the even function

What's the truth table for a 3-input NAND gate

What's the truth table for a 3-input XOR gate

Boolean Logic Functions

- Logic functions can be expressed as expressions involving:
 - variables (literals), e.g.
 - functions, e.g. + . ⊕
- Rules about how this works, called **Boolean algebra**
- A.B A and B Variables and functions can only take on values 0 or 1

Boolean Algebra conventions

- Conventions we'll use:

 - Inversion: (overline)
 e.g. NOT(A) = (pronounced as A bar)
 - **AND**: dot(.) or implied (by adjacency)
 - e.g. AND(A,B) = AB = A.B
 - OR: plus sign
 - e.g. **OR(A,B,C) = A+B+C**
- Other examples:
 - $XOR(A,B) = A \bigcirc B = \overline{A}B + A\overline{B}$
 - $NAND(A,B,C) = \overline{ABC}$
 - \nearrow NOR(A,B) = $\overline{A + B}$

Summary of Logic Function Representations

- There are four representations of logic functions (assume function of n inputs)
 - **■** Truth table
 - Lists output for all 2ⁿ combinations of inputs
 - Best to list inputs in a systematic way
 - **Boolean function** (or **equation**)
 - Describes the conditions under which the function output is 1
 - **y** Logic Diagram
 - Combination of logic symbols joined by wires
 - Timing Diagram

Logic Diagram Conventions

Gates on Integrated Circuits (ICs)

Short Break

Stand up and stretch

Logic Function Implementation

 Any logic function can be implemented as the OR of AND combinations of the inputs

Called sum of products

• Example:

Consider truth table

For each '1' in the output column, write down the AND combination of inputs that give that 1

OR these together

	Α	В	ပ	M			
	0	0	0	0			
	0	0	1	0			
	0	1	0	0			
•	,0	1.	1.				
	1	0	0	0			
	1-	0,	1,				
	1	1	0				

Logic Function Implementation

Example (cont.) Equivalent Logic Diagram

Equivalent Functions

- Sum of products does not necessarily produce circuit with minimum number of gates
- Can manipulate Boolean function to give an equivalent function
 - Use rules of Boolean algebra (next slide) __
- Example: Z = AB + AC = A(B+C)

Boolean Identities

	Name	AND form	OR form	A: 0
	Identity law	1A = A	0 + A = A	u A
P (0)	Null law	0A = 0	1 + A = 1 🗸	11 Break pe
(120)	Idempotent law	AA = A	A + A = A	chare in
1/1/20	Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$	
	Commutative law	AB = BA	A + B = B + A	V A+B
	Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
R A	Distributative law/	A + BC = (A + B)(A + C)	A(B + C) = AB + AC	V A.B
	Absorption law	A(A + B) = A	A + AB = A	A+B
B	De Morgan's law 🗸	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$	21

Example

• Express $Z = A(B+C(\overline{A} + \overline{B}))$ as a sum of products

$$2 = \overline{A} + \overline{B} + \overline{C} (\overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

$$= \overline{A} + \overline{B} \cdot (\overline{C} + \overline{A} + \overline{B})$$

De Morgan Law/Equivalents

AND/OR can be interchanged if you invert the inputs and outputs

Homework: Use truth tables to convince yourself that these are valid

Equivalent Circuits

- =
- All circuits can be constructed from NAND or NOR gates
 - These are called complete gates
- Examples:

Reason: Easier to build NAND and NOR gates from transistors

Reminders

- Quiz 1 due next week Friday
 - Attend Learning Lab sessions for the
 - /second half of this week
 - Only attend the session you're signed up to
 - Internal (IN) mode students should collect a kit in their face-to-face prac sessions.
 - External (EX) mode students, you do not need your hardware until week 6. But start acquiring your hardware items now.