Chương 2 Thiết Bị Mạng và Môi Trường Truyền Dẫn

□ GV : ThS.Nguyễn Duy

□ Email : duyn@uit.edu.vn

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Bridge
- □ Switch
- □ Router
- Modem
- □ Gateway
- Patch Panel
- □ Môi trường truyền dẫn

Thiết Bị Mạng

- ☐ Thiết bị mạng là những thành phần được sử dụng để kết nối các máy tính và các thiết bị điện tử khác lại với nhau
- Mục đích : chia sẻ tài nguyên
 - □ Files
 - Printers
 - □ Fax Machines
 -

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Bridge
- □ Switch
- Router
- Modem
- □ Gateway
- Patch Panel
- Môi trường truyền dẫn

Card Mang (Network Interface)

- Là một thành phần của phần cứng máy tính được sử dụng để kết nối các máy tính vào môi trường mạng.
- Mỗi card mạng có 1 địa chỉ vật lý duy nhất là MAC Address
 - □ MAC address : Media Access Control address
 - □ Địa chỉ này được "**build-in**" trong quá trình sản xuất
- □ Cấu trúc của MAC Address bao gồm 48 bits :
 - □ 24 bits đầu : đại diện cho nhà sản xuất
 - □ 24 bits cuối : ID của card mạng

Organisationally Unique Identifier (OUI)

Network Interface Controller (NIC) Specific

Card Mang (Network Interface)

- ☐ Card mạng có 2 loại : wired và wireless
- Card mạng hoạt động ở Layer 1 và Layer 2
 - □ Layer 1 : cung cấp khả năng truy cập vào kênh truyền
 - □ Layer 2 : cung cấp địa chỉ MAC Address cho Frame
- Mainboard theo chuẩn :
 - Integrated
 - □ PCI Connector
 - □ ISA Connector
 - □ PCI-E
 - □ Firewire
 - □ USB

Card Mang (Network Interface)

Network theo chuẩn :

□ Tốc độ:

□ Fast Ethernet

□ 10 Mbit/s

□ Gigabit Ethernet

□ 100 Mbit/s

Optical Fiber

□ 1000 Mbit/s

□ Token Ring

□ up to 10 Gbit/s

- Nhà sản xuất chính :
 - Novell
 - □ Intel
 - □ Realtek
 - □ Other

Nội Dung

- □ Card Mang (Network Interface)
- □ Repeater
- □ Hub
- □ Switch
- □ Router
- Modem
- □ Gateway
- Patch Panel
- □ Môi trường truyền dẫn

Repeater

- □ Là thiết bị được sử dụng để khuếch đại tín hiệu
- Hoạt động ở Layer 1

Repeater

- Sử dụng Repeater sẽ giúp khoảng cách của mạng có thế được mở rộng
- □ Ví dụ: Chuẩn 10Base-T cho phép khoảng cách tối đa giữa 2 Host là 100m. Nhưng với Repeater thì khoảng cách đó có thể mở rộng hơn

Repeater

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Switch
- □ Router
- Modem
- □ Gateway
- Patch Panel
- □ Môi trường truyền dẫn

- □ Là thiết bị giống như Repeater nhưng nhiều Port hơn, cho phép kết nối nhiều máy tính với nhau
- Hoạt động ở Layer 1
- Phân loại Hub :
 - Passive Hub
 - Active Hub
 - □ Intelligent Hub

Passive Hub

- □ Là thiết bị đấu nối cáp dùng để chuyển tiếp tín hiệu từ cổng giao tiếp này sang các cổng giao tiếp khác
- ☐ Không có chức năng khuyếch đại tín hiệu, xử lý tín hiệu vì không có các linh kiện điện tử và nguồn điện riêng

Active Hub

- Là thiết bị đấu nối cáp dùng để chuyển tiếp tín hiệu từ cổng giao tiếp này sang các cổng giao tiếp khác với chất lượng cao hơn
- ☐ Thiết bị này có sử dụng các linh kiện điện tử, và nguồn riêng để khuyếch đại, xử lý tín hiệu

Intelligent Hub

- □ Là 1 Active Hub nhưng nó có thêm các tính năng vượt trội như:
 - □ Cho phép quản lý từ các máy tính
 - □ Sử dụng cơ chế chuyển mạch (switching)
 - □ Cho phép chuyển đến đúng port cần nhận

- □ Cơ chế hoạt động của Hub :
 - ☐ Khi nhận traffic từ 1 port (Incomming traffic) nó sẽ forward đến tất cả những port còn lại

- Node 1111 gởi dữ liệu đếnNode 3333
- □ Traffic đến Hub và Flood ra tất cả các port ngoại trừ incomming port
- □ Tất cả những Node đều nhận được traffic nhưng chỉ có Node 3333 xử lý dữ liệu
- □ Có bao nhiêu Collision

 Domain trong mô hình trên?

Collision Domain: Chia se truy cập

- Một nhóm các Host kết nối vào Repeaters/Hubs
 - ☐ Trong collision domain, chỉ có 1 Host có thể gởi dữ liệu và tất cả các Hosts còn lại sẽ lắng nghe để tránh xảy ra collision khi gởi dữ liệu ra kênh truyền.

Half duplex Full duplex

- □ Half duplex : tại 1 thời điểm, Node chỉ có thể gởi hoặc nhận traffic
- □ Full duplex : tại 1 thời điểm, Node có thể gởi và nhận traffic
- □ Tất cả các port trên Hub hoạt động ở chế độ Half duplex

□ Khi các Hosts kết nối tới Hub, tại 1 thời điểm chỉ có 1 Host có thể gởi

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Switch
- → Router
- Modem
- □ Gateway
- Patch Panel
- □ Môi trường truyền dẫn

Switch

- Switch là thiết bị mạng được sử dụng để nối các phân đoạn mạng lại với nhau.
- □ Switch hoạt động ở Layer 2
- □ Các port trên Switch hoạt động ở chế độ Full duplex
- □ 10/100 Mbps ports are the most commom, 1000 Mbps also are also common, usually connecting to another switch or router.

Switch

□ Các tính năng cơ bản của Switch:

Store and Forward

- Là tính năng lưu dữ liệu trong bộ đệm trước khi truyền sang các port khác để tránh đụng độ
- Với kỹ thuật này tất cả gói tin phải được nhận đủ trước khi Switch chuyển Frame này đi do đó độ trễ phụ thuộc vào chiều dài của Frame

Cut Through

- Switch sẽ chuyển gói tin ngay lập tức một khi nó biết được địa chỉ đích của gói tin
- Kỹ thuật này có độ trễ thấp hơn so với kỹ thuật Store and Forward

Learning Switches: Learns Source MAC Address

Switch

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111

2222

Preamble Destination Source Address Address	Туре	Data	Pad	CRC
---	------	------	-----	-----

3333 1111

- Source MAC Address của Switch khởi tạo là trống.
- ☐ Khi Switch nhận Frame nó sẽ kiểm tra Source Address của Frame
 - Nếu như kiểm tra thấy trong Source Address Table thì nó sẽ khởi tạo lại Timer
 - Ngược lại, thì sẽ thêm Source
 Address vào Source Address
 Table

Switch

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111

1111

Abbreviated

addresses

MAC

3333 1111

- Switch sẽ kiểm tra Destination
 Address trong bảng Source
 Address Table

 Nếu có, Switch sẽ forward Frame
 - Nếu có, Switch sẽ forward Frame tới đúng port tương ứng với Destination Address (Filter)
 - □ Ngược lại, Switch sẽ gởi frame ra tất cả các port (Flood)

Switch

Source Address Table

Port Source MAC Add. Port Source MAC Add.

- Bây giờ Host 3333 gởi dữ liệu tới Node 1111 và Switch sẽ
 - □ Học Source Address của Node 3333
 - □ Chuyển tiếp Frame tới Port 1111 (Filter)

Switch

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111

- □ Bây giờ Host 3333 gởi dữ liệu tới Node 1111 và Switch sẽ
 - □ Hoc Source Address của Node 3333
 - □ Chuyển tiếp Frame tới Port 1111 (Filter)

Switch

Source Address Table

Port Source MAC Add. Port Source MAC Add.

1 1111 6 3333

Switch

Switch

- □ Qui trình xử lý Frame của Switch. Khi nhận Frame, Switch sẽ thực hiện 2 thao tác cơ bản :
 - □ Learning (thêm mới hay cập nhật) : kiểm tra Source MAC Address
 - N\u00e9u Source MAC Address c\u00f3 trong b\u00e3ng Source Address Table th\u00ed s\u00e9 c\u00e3p nh\u00e3t Timer
 - Ngược lại sẽ thêm vào Source Address Table 1 entry : Source MAC Address và Port tương ứng
 - □ Forwarding (Filter hay Flood) : kiểm tra Destination MAC Address
 - N\u00e9u Destination MAC Address c\u00f3 trong b\u00e3ng Source Address Table th\u00e0
 Switch s\u00e9 chuy\u00e9n ti\u00e9p g\u00f3i tin t\u00f3i d\u00e4ng port c\u00e3n nh\u00e4n
 - Ngược lại. Switch sẽ gởi frame ra tất cả các port

Có bao nhiêu Collision Domain ? Half-duplex được thiết lập ở những port nào ?

Half-duplex Port?

Có bao nhiêu Collision Domain ? Half-duplex được thiết lập ở những port nào ?

Collision Domain

Half-duplex port?

Có bao nhiêu Collision Domain ? Half-duplex được thiết lập ở những port nào ?

Collison Domain?

Half-duplex port?

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Switch
- □ Router
- Modem
- □ Gateway
- Patch Panel
- □ Môi trường truyền dẫn

Router

- Router là thiết bị dùng để định tuyến gói tin trong mạng truyền thông
- Router là thiết bị dùng để kết nối hai hay nhiều mạng lại với nhau.
- Qui trình xử lý gói tin của Router :
 - □ Tiếp nhận gói tin
 - Lấy Destination Network trong gói tin và dựa vào Routing Table để lựa chọn đường đi tốt nhất cho gói tin tại thời điểm đó.
 - □ Chuyển tiếp gói tin đến port tương ứng với đường đi tốt nhất

Router

Broadcast Domain

Collision Domains:

1 4 4

Broadcast Domains:

1 1 4

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Switch
- □ Router
- □ Modem
- □ Gateway
- Patch Panel
- Môi trường truyền dẫn

Modem

Modem là thiết bị sử dụng để modulate tín hiệu từ digital sang analog và demodulate tín hiệu từ analog sang digital

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Switch
- □ Router
- Modem
- □ Gateway
- Patch Panel
- □ Môi trường truyền dẫn

Gateway

- ☐ Gateway là thiết bị dùng để kiểm xoát luồng traffic đi ra vào hệ thống :
 - □ Cho phép hay cấm IP nào đó trong mạng LAN ra mạng internet
 - □ Cho phép hay cấm User nào đó trong mạng LAN truy cập dịch vụ nào đó ngoài internet
 - □ Quét virus : HTTP, Mail, FTP,...
 - □ Cân bằng tải
 - Bandwidth Control
 - **-**
- ☐ Thông thường Gateway được đặt ngay phía sau Modem

Local Area Network

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Switch
- □ Router
- Modem
- □ Gateway
- Patch Panel
- □ Môi trường truyền dẫn

Nội Dung

- □ Card Mang (Network Interface)
- Repeater
- □ Hub
- □ Switch
- □ Router
- Modem
- □ Gateway
- Patch Panel
- Môi trường truyền dẫn

- Môi trường truyền dẫn là gì ?
- Phân loại môi trường truyền dẫn
- □ Băng thông là gì ?
- □ Các đặc tả về cáp
- □ Phân loại cáp

- Môi trường truyền dẫn là nơi mà thông điệp được truyền từ người gởi tới người nhận.
- □ Ví dụ:
 - Người A nói chuyện với Người B, Người B có thế nghe những gì người A nói. Vậy môi trường truyền dẫn trong trường hợp này là không khí.
- Trong mạng máy tính, môi trường truyền dẫn là cáp mạng và "free space"

Phân Ioại

Băng Thông

- Băng thông là bit rate. Bit rate là số lượng bit được xử lý tại network interface trong 1 giây
- □ Throughput là giá trị trung bình số lượng bit được xử lý thành công tại network interface trong
 1 giây

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = \sim 1,000 bps = 10^3 bps
Megabits per second	Mbps	1 Mbps = ~1,000,000 bps = 10 ⁶ bps
Gigabits per second	Gbps	1 Gbps = ~1,000,000,000 bps = 10 ⁹ bps
Terabits per second	Tbps	1 Tbps = ~1,000,000,000,000 bps = 10 ¹² bps

56 kbit/s	Modem / Dialup
1.5 Mbit/s	ADSL Lite
1.544 Mbit/s	T1/DS1
10 Mbit/s	Ethernet
11 Mbit/s	Wireless 802.11b
44.736 Mbit/s	T3/DS3
54 Mbit/s	Wireless 802.11g
100 Mbit/s	Fast Ethernet
155 Mbit/s	OC3
600 Mbit/s	Wireless 802.11n
622 Mbit/s	OC12
1 Gbit/s	Gigabit Ethernet
2.5 Gbit/s	OC48
9.6 Gbit/s	OC192
10 Gbit/s	10 Gigabit Ethernet
100 Gbit/s	100 Gigabit Ethernet

Các đặc tả về cáp

- □ Phẩm chất cáp
 - □ Tốc độ truyền số liệu
 - □ Truyền dẫn băng cơ bản (Baseband) và băng rộng (Broadband)
 - □ Truyền dẫn digital và analog
 - Khoảng cách truyền dẫn và sự suy giảm của tín hiệu
- □ Các đặc tả:
 - □ Ethernet: 10BASE-T, 10BASE5, 10BASE2
 - □ Fast Ethernet: 100BASE-T

Twisted pair

Môi trường truyền dẫn

a. UTP

UTP:

- □ Tốc độ: 10 100 1000 Mbps
- □ Giá: rẻ
- □ Chiều dài cáp tối đa: 100m
- Chống nhiễu kém
- □ Dễ lắp đặt
- Dùng cho mạng có kích thước nhỏ

b. STP

STP

- ☐ Tốc độ: 10 100Mbps
- □ Giá: vừa phải
- □ Chiều dài cáp tối đa: 100m
- □ Chống nhiễu tốt
- Dùng cho mạng có kích thước trung bình và lớn

Connector

Môi trường truyền dẫn / Twisted pair

Coaxial

Môi trường truyền dẫn

Thinnet

- □ Có đường kính khoảng 6mm
- ☐ Thuộc họ RG-58
- chiều dài tối đa là 185m.
- □ Chi phí : khá rẻ
- □ Tốc độ: 10 Mbps

Thicknet

- Có đường kính khoảng 13mm
- Thuộc họ RG-58
- Chiều dài tối đa là 500m
- □ Chi phí: đắt hơn
- □ Tốc độ: 10 Mbps

Connector

Môi trường truyền dẫn / Coaxial

Fiber-optics

- □ Dây dẫn trung tâm là sợi thủy tinh hoặc plastic
- Sợi quang được tráng một lớp nhằm phản chiếu các tín hiệu
- □ Băng thông cho phép đến2Gbps/10Gbps
- Nhưng cáp quang có khuyết điểm là giá thành cao và khó lắp đặt.

Fiber-optics

Môi trường truyền dẫn

Optical fiber

Propagation modes

Fiber-optics

Môi trường truyền dẫn

Modes:

a. Multimode, step index

b. Multimode, graded index

c. Single mode

Connector

Môi trường truyền dẫn / Fiber-optics

Môi trường truyền dẫn không dây

Câu hỏi ôn tập

- MAC Address là gì ? Làm sao biết được MAC Address của Network Interfaca trên máy của Bạn ? MAC Address có thể thay đổi được không ?
- 2) Card mạng, Hub, Switch, Router hoạt động ở tầng thứ mấy trong mô hình OSI?
- 3) Mô tả quá trình xử lý gói tin của Hub, Switch và Router
- 4) Thiết bị nào sau đâu có khả năng phá vỡ Collision Domain : Hub, Switch và Router?
- 5) Thiết bị nào sau đâu có khả năng phá vỡ Broadcast Domain : Hub, Switch và Router?
- 6) Môi trường truyền dẫn có mấy loại?
- 7) So sánh STP/UTP
- 8) So sánh Thinnet/Thicknet