Regulatory Sequence Analysis

Regulatory regions and regulatory elements

Jacques.van.Helden@ulb.ac.be
Université Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)
http://www.bigre.ulb.ac.be/

Genomic sequences

- A genome G contains a set of n chromosomes.
 - $G = \{S_1, S_2, ..., S_i, ..., S_n\}$
- Each chromosome is a molecule of dexyribonucleic acid (DNA), a polymer of 4 nucleotides
 - A Adenosine
 - C Cytidine
 - G Guanosine
 - T Thymidine
- Each chromosome is represented as a sequence (S_i) of a text written in a 4-letter alphabet (A)
 - \triangle $A=\{A,C,G,T\}$
 - $Si = (s_{i1}, s_{i2}, ..., s_{ij}, ..., S_{iLi})$
 - ullet L_i is the length of the i^{th} chromosome

The non-coding genome

Organism	rear	Si.s	Genes	genesim	0000	Ponce.	report	Transcribed
		Mb			%	%	%	%
Mycoplasma genitalium	1995	0.6	481	802	90	10		
Haemophilus influenzae	1995	1.8	1 717	954	86	14		
Escherichia coli	1997	4.6	4 289	932	87	13		
Saccharomyces cerevisiae	1996	12	6 286	524	72	28		
Arabidiopsis thaliana	2001	120	27 000	225	30	70		
Caenorhabditis elegans	1998	97	19 000	196	27	73		
Drosophila melanogaster	2000	165	16 000	97	15	85		
Homo sapiens	2001	3 200	31 000	10	3	97	46	28

Genome sizes - some examples

Nom d'espèce	Nom commun	Année de publication	த Taille du génome	Nombre de gènes	X Distance moyenne G entre gènes	Fraction couverte par des gènes codants	% Fraction non-codante	% Fraction répétitive % Fraction transcrite	Remarques
Bactérie		400=							
Mycoplasma genitalium	Mycoplasma	1995	0.6	481	1.2	90	10		Petit génome (intracellulaire)
Haemophilus influenzae	- · · · · · · ·	1995	1.8	1 717	1.0	86	14		Premier génome bactérien séquencé
Escherichia coli	Entérobactérie	1997	4.6	4 289	1.1	87	13		
Levures									
Saccharomyces cerevisiae	Levure du boulanger	1996	12	6 286	1.9	72	28		Premier génome eucaryote
Animaux									
Caenorhabditis elegans	Ver nématode	1998	97	19 000	5	27	73		Premier génome de métazoaire
Drosophila melanogaster	Mouche à vinaigre	2000	165	16 000	10	15	85		
Ciona intestinalia			174	14 180	12				
Danio rerio	Poisson zèbre		1 527	18 957	81				
Xenopus laevis	Xénope (amphibien)		1 511	18 023	84				
Gallus gallus	Poule		2 961	16 736	177				
Ortnithorynchus anatinus	Ornithorynque		1 918	17 951	107				
Mus musculus	Souris	2002	3 421	23 493	146				
Pan troglodytes	Chimpanzé		2 929	20 829	141				
Homo sapiens	Humain	2001	3 200	21 528	149	2	98	46 28	Version "brouillon"
1000 génomes humains		> 2008							Projet annoncé en janvier 2008
Plantes							<u> </u>		
Arabidiopsis thaliana	Arabette	2001	120	27 000	4	30	70		Premier génome de plante
Oryza sativa	Riz		390	37 544	10				
Zea mais	Maïs		2 500	50 000	50			50	Nb de gènes approximatif
Triticum aestivum	Blé		16 000						Génome hexaploïde
Lilium	Lys		120 000						
Psilotum nudum			250 000						

Transcriptional activation

GCN4 (leucine-zipper) binding to DNA

Source: L.Stryer, (1995). Biochemistry. p1003

Transcriptional repression

Prevent RNA polymerase from accessing DNA

Competition for factor binding site

Factor titration

Prevent transcription factor from interacting with RNA-polymerase (bind with activation domain)

Methionine Biosynthesis in S.cerevisiae

Phosphate utilization in yeast

Interface between the yeast Pho4p protein and one of its binding sites

Transcription factor binding site (TFBS)

Gene	Ft_type	Factor	Strand	left	right	Sequence
PHO5	site	Pho4p	D	-370	-347	TAAATTAG CACGTTTT CGCATAGA
PHO5	site	Pho4p	D	-262	-239	TGGCACTCA CACGTGGG ACTAGCA
PHO8	site	Pho4p	R	-540	- 522	ATCGCTG CACGTGGCCCG A
PHO8	site	Pho4p	D	- 736	- 718	ATATTAAGCGTGCGGGTAA
PHO81	site	Pho4p	R	-350	-332	TTATTCG CACGTGCC ATAA
PHO84	site	Pho4p	D	- 592	- 575	TTACG CACGTT GGTGCTG
PHO84	site	Pho4p	D	-421	-403	TTTCCAG CACGTGGGGCGG
PHO84	site	Pho4p	D	-442	-425	TAGTTC CACGTGG ACGTG
PHO84	site	Pho4p	DR	-879	-874	aaaagtg <u>tCACGTGa</u> taaaaat
PHO84	site	Pho4p	D	-267	-250	TAATACG CACGTTTTT AA

- A transcription factor binding site (TFBS) is a location within a sequence, where a transcription factor binds specifically.
- A site can be
 - characterized experimentally (known site)
 - inferred by some algorithm (predicted site)
- Example
 - binding sites for the yeast transcription factor Pho4p. Coordinates are relative to the start codon.

Alignment of transcription factor binding sites

Binding sites for the yeast Pho4p transcription factor

(Source : Oshima et al. Gene 179, 1996; 171-177)

Gene	Site Name	Sequence	Affinity
PHO5	UASp2	aCtCaCA CACGTGGG ACTAGC-	high
PHO84	Site D	TTTCCA GCACGTGGG GCGGA	high
PHO81	UAS	TTATG GCACGTGCG AATAA	high
PHO8	Proximal	GTGATCGCT GCACGTGGC CCGA	high
group 1	consensus	gCACGTGgg	high
PHO5	UASp1	TAAATTA GCACGTTTT CGC	medium
PHO84	Site E	AATAC GCACGTTTT TAATCTA	medium
group 2	consensus	cgCACGTTtt	medium
Degenera	te consensus	GCACGTKKk	high-med

Non-binding sites

PHO5	UASp3	TAATTTG GCA<mark>T</mark>GTGCG ATCTC	No binding
.PHO84	Site C	ACGTC CACGTGG AACTAT	No binding
PHO84	Site A	TTTA <u>T</u> CACGTGACACTTTTT	No binding
PHO84	Site B	TTAC GCACGT<u>T</u>G GTGCTG	No binding
PHO8	Distal	TTACCC GCACG<mark>C</mark>TT AATAT	No binding

IUP	AC ambiguous	nucleotide code
Α	Α	A denine
С	С	C y tosine
G	G	Guanine
Т	T	T hy mine
R	A or G	pu R ine
Υ	C or T	p Y rimidine
W	A or T	Weak hy drogen bonding
S	G or C	Strong hy drogen bonding
M	A or C	a M ino group at common position
K	G or T	Keto group at common position
Н	A, C or T	not G
В	G, C or T	not A
V	G, A, C	not T
D	G , A or T	not C
N	G, A, C or T	a N y

From binding sites to count matrix

- The TRANSFAC database contains 8 binding sites for the yeast transcription factor Pho4p
 - 5/8 contain the core of high-affinity binding sites (CACGTG)
 - 3/8 contain the core of medium-affinity binding sites (CACGTT)

```
R06098 \TCACACGTGGGA\
R06099 \GGCCACGTGCAG\
R06100 \TGACACGTGGGT\
R06102 \CAGCACGTGGGG\
R06103 \TTCCACGTGCGA\
R06104 \ACGCACGTTGGT\
R06097 \CAGCACGTTTTC\
R06101 \TACCACGTTTTC\
```

Count matrix

Alignment of Pho4p binding sites (TRANSFAC annotations)

R06098	T	C	A	C	A	C	G	T	G	G	G	A
R06099	G	G	C	C	A	C	G	T	G	С	А	G
R06100	Т	G	A	C	A	C	G	T	G	G	G	Т
R06102	C	А	G	C	A	C	G	T	G	G	G	G
R06103	Т	Т	C	C	A	C	G	T	G	С	G	A
R06104	А	С	G	C	A	C	G	T	T	G	G	Т
R06097	C	A	G	C	A	C	G	T	T	T	T	С
R06101	Т	A	C	C	A	C	G	T	T	T	T	C

Count matrix (TRANSFAC matrix F\$PHO4_01)

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12
A	1	3	2	0	8	0	0	0	0	0	1	2
С	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
Т	4	1	0	0	0	0	0	8	3	2	2	2
Sum	8	8	8	8	8	8	8	8	8	8	8	8

Tom Schneider's sequence logo

(generated with Web Logo http://weblogo.berkeley.edu/logo.cgi)

Motif / pattern

- We use the term motif (or pattern) in the sense of a model used to represent the specificity of binding for a transcription factor.
- A motif can be described using different formalisms.
 - Consensus string
 - nucleotide alphabet CACGTGGG
 - IUPAC alphabet CACGTGKK
 - regular expressions. **CACGTG[GT][GT]**
 - Position-specific scoring matrix (PSSM)
 - Logo representation (Schneider, 1986)
 - Hidden Markov Models (HMM)

Interface between the yeast Gal4p protein and one of its binding sites

Characteristics of yeast regulatory elements

- Short DNA sequences (5-30 bp)
 - Highly conserved core (5-8 bp), with partly conserved flanking nucleotides
 - Pair of very shot oligonucleotides (3 nt) separated by a non-conserved segment (0-20 bp)
- In the yeast Saccharomyces cerevisiae
 - Located upstream the regulated gene
 - Strand-insensitive
 - Activity does not depend on the strand
 - Wihtin 800 bp from the start codon
 - Activity does not depend on precise position

Cis-regulatory modules (CRM)

- In higher organisms, some non-coding regions (typically 100-200 bp) contain closely packed binding sites for distinct transcription factors.
- These regions are called cis-regulatory modules (CRMs)
- CRMs play the role of integrating devices.
- Depending on the combination of transcription factors present in the cell, they will activate or repress the expression of a target gene.

Regulatory regions

organism	coli	yeast	metazoan
location	upstream	upstream	upstream
	overlap. Initiation		downstream
			within introns
distance range	-400 to +50 bp	-800 to -1 bp	from several Kbs
			to several Mb!
position effect	often essential	often irrelevant	often irrelevant
strand	sensitive or symmetric	insensitive	insensitive
most common	spaced pair of 3nt	~5-8 conserved bp	~5-8 conserved bp
core		-	•
repeated sites	rare	occasional	frequent
cis-regulatory			frequent
modules (CRMs)			

Questions and approaches

Pattern matching

If we know the consensus for a given transcription factor, can we predict its binding sites in a DNA sequence?

Matching a library of patterns

Can we scan a sequence for matches with the consensus of all he currently known transcription factor?

Pattern discovery

Starting from a set of co-regulated genes, can we predict cis-acting elements involved in their transcriptional regulation?

Phylogenetic footprinting

Can we detect regulatory signals by searching conserved elements in non-coding sequences of orthologous genes?

Network inference

Can we infer groups networks of regulation from cis-regulatory elements?

Gene classification on the basis of pattern scores

- Can we classify genes on the basis of the presence of regulatory motifs in their regulatory regions?
- Unsupervised classification (clustering): regroup elements (genes) in clusters without a priori knowledge about these clusters. The clusters are "discoverd" during the clustering process.
- Supervised classification: use pre-defined groups of genes (training sets) to train a program, and then use this programs to assign new elements (genes) to one of the predefined groups.

Molecular networks (shamefully simplified)

Regulatory Sequence Analysis

Supplementary material

Jacques.van.Helden@ulb.ac.be
Université Libre de Bruxelles, Belgique
Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)
http://www.bigre.ulb.ac.be/

Distribution of upstream sequence lengths Saccharomyces cerevisiae

Distribution of upstream sequence lengths Escherichia coli K12

Pattern matching vs pattern discovery

Other examples of sequence logos

A ATGTATGG Rap1 **GGTGGCAAA** Rpn4 **SAATGASTCA** Gcn4 GAA TTC AGAA HSE zG_GGGLA_GG Mig1 EAT TCACGTG Met4/Cbf1

Typical situations : pattern discovery

- Selected sequence set
 - e.g. family of 20 co-regulated genes, obtained from DNA chip experiment
 → identify putative regulatory sites
- Genome-scale pattern discovery
 - e.g. all upstream sequences
 - → identify transcription initiation signals
 - e.g. all downstream sequences
 - → identify 3' maturation signals

Typical situations : pattern matching

- Selected genes, selected patterns
 - e.g. 10 genes known to be regulated by a factor
 - → search matching positions
- Selected genes, library of patterns
 - □ → infer putative action of any previously known transcription factor
- All genes, selected patterns
 - □ → classify all the genes of a genome according to putative regulatory properties

Met4p binding sites

gene	start	end	seau	ence				
MET3	-367	-349	GAAA		GTG TA	ATTT		
MET3	-384	-366	AAAA	GTCAC	GTGAC	CAGA		
MET14	-235	-217	CTAAT	TTCAC	GTGAT(CAAT		
MET16	-185	-167	ATCAT	TTCAC	GTG GC'	TAGT		
ECM17	-311	-293	ATTTC	CATCAC	GTG CG'	TATT		
ECM17	-339	-321	.TTTC	GTCCAC	GTGA T	ATTTC		
MET10	-255	-237	.CCAC	CACCAC	GTGA G	CTTAT		
MET10	-237	-219	.TAGA	AAGCAC	GTGA C	CACAA		
MET2	-360	-342	GTATI	TTCAC	GTGA T	GCGC		
MET2	-554	-536	TAATA	ATCAC	GTGA T	ATTT		
MET17	-306	-288	.AAA	GGCAC	GTGA A	GCTGT		
MET17	-332	-314	TTGAC	GTCAC	A TGA T	CGCA		
MET6	-540	-522	GCCAC	CATCAC	GTGCA	CATT		
MET6	-502	-484	AATAI	TTCAC	GTGAC	TTAC		
SAM2	-329	-311	.TCTA	ACCCAC	GTGA C'	TATAA		
SAM2	-381	-363	.TCTT	CACAT	GTGA T'	TCATC		
111	2	2	2	$\overline{}$	1.0	\cap	1	

Α	13	11	3	3	2	0	16	0	1	0	0	12
С	1	0	0	3	0	16	0	15	0	0	0	0
G	1	1	4	4	4	0	0	0	15	0	16	4
T	1	4	9	6	10	0	0	1	0	16	0	0

Met31p binding sites

gene	start	end	sequence
MET14	-202	-182	CCTC AAAAA A TGTGG CAATGG
MET2	-313	-293	TGC aaaaa t tgtgg atgcac
MET17	-227	-207	TCATG AAAACTGTG TAACATA
MET6	-313	-293	GTCGC AAAACTGTGG TAGTCA
SAM2	-306	-286	GCTTG AAAACTGTGG CGTTTT
SAM1	-283	-263	ACAGG AAAACTGTGG TGGCGC
MET19	-173	-153	ATAAGC AAACTGTGG TTCAT
MUP3	-188	-168	CGG AAAAACTGTGG CGTCGC
MET8	-184	-164	GG AAAAAA A TGTG AAAATCG
MET1	-232	-212	CATAAT AAACTGTG AACGGAC
MET3	-259	-239	ACAAAG CCACAGTTTT ACAAC
MET28	-159	-139	CTAACA CCACAGTTTT GGGCG
MET8	-434	-414	TCTTGT CCGCAGTTTT ATCTG
MET30	-168	-148	GGGAAG CCACAGTTT GCGCGG
МЕТ6	-405	-385	CTATCGAA CTCGTTT AGTCGC

Α	5	11	14	14	14	2	0	0	0	0	2	5
С	2	2	0	0	0	11	0	0	1	0	0	5
G	5	0	0	0	0	0	0	14	0	14	11	1
Т	2	1	0	0	0	1	14	0	13	0	1	3

Pho4p binding sites

gene	start	end	sequence
PHO5	-260	-242	GCACTCA CACGTGGG ACTA
PHO5	-260	-245	GCACTCA CACGTGGG A
PHO5	-262	-239	TGGCACTCA CACGTGGG ACTAGCA
PHO8	-540	-522	TCGGGC CACGTGC AGCGAT
PHO8	-736	-718	ttacccg CACG<u>C</u>TT aatat
PHO81	-350	-332	TTATGG CACGTGCG AATAA
PHO84	-421	-403	TTTCCAG CACGTGGG GCGG
PHO84	-442	-425	TAGTTC CACGTGG ACGTG
PHO84	-879	-874	.aaaagtgt CACGTG ataaaaat
PHO84	-267	-250	taatacg CACGTTTTT aa
PHO84	-592	-575	TTACG CACGTT GGTGCTG
PHO5	-368	-349	AATTAG CACGTTTT CGCATA
PHO5	-369	-354	AAATTAG CACGTTT CTC
PHO5	-370	-347	. TAAATTAG CACGTTTT CGCATAGA

IUPAC ambiguous nucleotide code

Α	A	Adenine
С	C	Cytosine
G	G	Guanine
T	T	T hymine
R	A or G	pu R ine
Y	C or T	p Y rimidine
W	A or T	W eak hydrogen bonding
S	G or C	Strong hydrogen bonding
M	A or C	aMino group at common position
K	G or T	Keto group at common position
Н	A, C or T	not G
В	G, C or T	not A
V	G , A , C	not T
D	G, A or T	not C
N	G, A, C or T	a N y

Pho4p binding specificity - matrix descriptions

_(<u> </u>	Pho4p												
	Α	14	0	5	7	6	0	26	0	0	0	0	3	
	С	2	8	5	16	6	26	0	26	0	1	0	4	
	G	4	2	1	1	12	0	0	0	26	0	16	12	
	Т	6	16	15	2	2	0	0	0	0	25	10	7	

ש	Pno4p.cacgtg												
Α	2	17	0	0	0	0	2	1	8	5	5	13	
С	16	0	18	0	0	0	6	3	4	5	0	1	
G	0	1	0	18	0	18	9	12	2	5	2	1	
T	0	0	0	0	18	0	1	2	4	3	11	3	

<u>E</u>	Pho4p.cacgtt											
Α	7	0	2	5	1	0	8	0	0	0	0	1
С	0	1	1	თ	3	8	0	8	0	0	0	0
G	0	0	0	0	4	0	0	0	8	0	0	2
T	1	7	5	0	0	0	0	0	0	8	8	5

Regulatory sites: matrix description

Position-specific scoring matrix (PSSM)

Pos	1	2	3	4	5	6	7	8	9	10
Α	3	2	0	12	0	0	0	0	1	3
T	1	1	0	0	0	0	11	5	4	4
G	3	/	0	0	0	12	0	/	5	4
C	5	2	12	0	12	0	1	0	2	1

Binding motif for the yeast Pho4p transcription factor Source : SCPD

http://rulai.cshl.edu/cgi-bin/SCPD/getfactor?PHO4

Methionine repressor

- Crystal structure of the methionine repressor from Escherichia coli.
- In green: the MetJ protein forms a homodimer which is able to bind DNA.
- Nucleotide structure is coloured by type of nucleotide (A,C,G,T).
- In grey: the repressor is activated by binding of methionine molecules

 $\underline{http://www.ebi.ac.uk/msd-srv/msdlite/apps/query?id_type=swissProtId\&id_value=P0A8U6}$

Transcription factor-DNA interfaces

The genome challenge

RNA polymerase

