Metareasoning about Security Protocols using Distributed Temporal Logic

Carlos Caleiro

Dep. Mathematics, IST, TU Lisbon, Portugal

Luca Viganò David Basin

Dep. Computer Science, ETH Zurich, Switzerland

ARSPA WS at IJCAR'04, Cork, Ireland July 4, 2004

Motivation

- Formal methods for security protocol analysis
- Most problems due to communication and distribution, rather than cryptography
- Many models, many simplifications, many assumptions

Motivation

- Formal methods for security protocol analysis
- Most problems due to communication and distribution, rather than cryptography
- Many models, many simplifications, many assumptions

Goal

- Use a protocol independent distributed temporal logic
- Formalize different models, protocols and security goals
- Prove the correctness of modeling and reasoning simplification techniques

Plan

- Overview of distributed temporal logic
- A simple network model
- Protocol modeling and security goals
- Metareasoning examples
 - Secrecy lemma
 - One intruder is enough
 - The predatory intruder

K. Lodaya, R. Parikh, R. Ramanujam, and P.S. Thiagarajan.

A logical study of distributed transition systems. *Information and Computation*, 119(1):91-118, 1995.

H.-D. Ehrich, C. Caleiro, A. Sernadas, and G. Denker.

Logics for specifying concurrent information systems. In *Logic for Databases and Information Systems*, pages 167–198. Kluwer, 1998.

H.-D. Ehrich and C. Caleiro.

Specifying communication in distributed information systems. *Acta Informatica*, 36:591-616, 2000.

K. Lodaya, R. Parikh, R. Ramanujam, and P.S. Thiagarajan.

A logical study of distributed transition systems. *Information and Computation*, 119(1):91-118, 1995.

H.-D. Ehrich, C. Caleiro, A. Sernadas, and G. Denker.

Logics for specifying concurrent information systems. In *Logic for Databases and Information Systems*, pages 167–198. Kluwer, 1998.

H.-D. Ehrich and C. Caleiro.

Specifying communication in distributed information systems. Acta Informatica, 36:591-616, 2000.

$$@_i[X @_j[F @_u[athome]]]$$

$$@_i[X @_j[F @_u[athome]]]$$

$$@_i[\hspace{.1cm} \mathsf{X} \hspace{.1cm} @_j[\hspace{.1cm} \mathsf{F} \hspace{.1cm} @_u[\hspace{.1cm} athome \hspace{.1cm}]]]$$

$$@_i[\hspace{.1cm} \mathsf{X} \hspace{.1cm} @_j[\hspace{.1cm} \mathsf{F} \hspace{.1cm} @_u[\hspace{.1cm} athome \hspace{.1cm}]]]$$

$$@_i[\hspace{.1cm} \mathsf{X} \hspace{.1cm} @_j[\hspace{.1cm} \mathsf{F} \hspace{.1cm} @_u[\hspace{.1cm} athome \hspace{.1cm}]]]$$

$$@_i[\hspace{.1cm} \mathsf{X} \hspace{.1cm} @_j[\hspace{.1cm} \mathsf{F} \hspace{.1cm} @_u[\hspace{.1cm} athome \hspace{.1cm}]]]$$

Syntax

Distributed signature $\Sigma = \langle Id, \{Act_i\}_{i \in Id}, \{Prop_i\}_{i \in Id} \rangle$

Id finite set of agent identifiers each Act_i is a set of local action symbols each $Prop_i$ is a set of local state propositions

$$\mathcal{L} ::= @_{i}[\mathcal{L}_{i}] \mid \bot \mid \mathcal{L} \Rightarrow \mathcal{L}$$

$$\mathcal{L}_{i} ::= Act_{i} \mid Prop_{i} \mid \bot \mid \mathcal{L}_{i} \Rightarrow \mathcal{L}_{i} \mid \mathcal{L}_{i} \cup \mathcal{L}_{i} \mid \mathcal{L}_{i} \cup \mathcal{L}_{i} \mid @_{j}[\mathcal{L}_{j}]$$

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

Global configurations Ξ

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

Global configurations Ξ

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

Ø

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

$$\emptyset$$
 — $\{e_1\}$

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

$$\emptyset$$
 — $\{e_1\}$ — $\{e_1, e_4\}$

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

$$\emptyset - \{e_1\} - \{e_1, e_4\} - \{e_1, e_4, e_5\}$$

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

$$\emptyset - \{e_1\} - \{e_1, e_4\} - \{e_1, e_4, e_5\} - \{e_1, e_4, e_5, e_8\} -$$

$$\mu = \langle \lambda, \alpha, \pi \rangle$$

$$\lambda$$

$$i \qquad e_1 \longrightarrow e_4 \longrightarrow e_5 \longrightarrow e_8 \longrightarrow \cdots$$

$$j \qquad e_2 \longrightarrow e_4 \longrightarrow e_7 \longrightarrow e_8 \longrightarrow \cdots$$

$$k \qquad e_3 \longrightarrow e_4 \longrightarrow e_6 \longrightarrow e_7 \longrightarrow e_9 \longrightarrow \cdots$$

$$\alpha = {\alpha_i}_{i \in Id}, \text{ each } \alpha_i : Ev_i \to Act_i$$

$$\pi = {\pi_i}_{i \in Id}, \text{ each } \pi_i : \Xi_i \to 2^{Prop_i}$$

$$\pi_i(\emptyset) \xrightarrow{\alpha_i(e_1)} \pi_i(\{e_1\}) \xrightarrow{\alpha_i(e_4)} \pi_i(\{e_1, e_4\}) \xrightarrow{\alpha_i(e_5)} \pi_i(\{e_1, e_4, e_5\}) \xrightarrow{\alpha_i(e_8)} \cdots$$

Satisfaction

The global satisfaction relation at a given global configuration ξ of μ is:

- $\mu, \xi \Vdash @_i[\varphi]$ if $\mu, \xi|_i \Vdash_i \varphi$;
- $\mu, \xi \not\models \bot$; and $\mu, \xi \vdash \gamma \Rightarrow \delta$ if $\mu, \xi \not\models \gamma$ or $\mu, \xi \vdash \delta$, where

the local satisfaction relations at given local configurations are:

- $\mu, \xi_i \Vdash_i act \text{ if } \xi_i \neq \emptyset \text{ and } \alpha_i(last(\xi_i)) = act;$
- $\mu, \xi_i \Vdash_i p$ if $p \in \sigma_i(\xi_i)$;
- $\mu, \xi_i \not\Vdash_i \bot$; and $\mu, \xi_i \Vdash_i \varphi \Rightarrow \psi$ if $\mu, \xi_i \not\Vdash_i \varphi$ or $\mu, \xi_i \Vdash_i \psi$;
- $\mu, \xi_i \Vdash_i \varphi \cup \psi$ if there exists $\xi_i'' \in \Xi_i$ with $\xi_i \subsetneq \xi_i''$ such that $\mu, \xi_i'' \Vdash_i \psi$, and $\mu, \xi_i' \Vdash_i \varphi$ for every $\xi_i' \in \Xi_i$ with $\xi_i \subsetneq \xi_i' \subsetneq \xi_i''$;
- $\mu, \xi_i \Vdash_i \varphi \mathsf{S} \psi$ if there exists $\xi_i'' \in \Xi_i$ with $\xi_i'' \subsetneq \xi_i$ such that $\mu, \xi_i'' \Vdash_i \psi$, and $\mu, \xi_i' \Vdash_i \varphi$ for every $\xi_i' \in \Xi_i$ with $\xi_i'' \subsetneq \xi_i' \subsetneq \xi_i$; and
- $\mu, \xi_i \Vdash_i @_j[\varphi]$ if $\xi_i \neq \emptyset$, $last(\xi_i) \in Ev_j$ and $\mu, (last(\xi_i) \downarrow)|_j \Vdash_j \varphi$.

As usual $\mu \Vdash \gamma$ if $\mu, \xi \Vdash \gamma$ for every global configuration ξ .

A simple network model

```
Princ set of principals Name = \{Name_A\}_{A \in Princ} pairwise disjoint sets of names Id = Princ \uplus \{Ch\}
```

Msg build by composition and encryption, from Name, Nonce and Key

```
For A \in Princ
```

```
Act_A: send(M, B'), rec(M), spy(M), and nonce(N) Prop_A: knows(M)
```

For the channel

 Act_{Ch} : in(M, A'), out(M, A'), and leak

 $Prop_{\mathit{Ch}}$: none

Network axioms

Knowledge axioms for principals

- **(K1)** $@_A[knows(M_1; M_2) \Leftrightarrow (knows(M_1) \land knows(M_2))];$
- **(K2)** $@_A[(knows(M) \land knows(K)) \Rightarrow knows(\{M\}_K)];$
- $\textbf{(K3)} \ @_A[(\mathit{knows}(\{M\}_K) \land \mathit{knows}(K^{-1})) \Rightarrow \mathit{knows}(M)];$
- **(K4)** $@_A[knows(M) \Rightarrow G_o knows(M)];$
- **(K5)** $@_A[rec(M) \Rightarrow knows(M)];$
- (K6) $@_A[spy(M) \Rightarrow knows(M)]$; and
- **(K7)** $@_A[nonce(N) \Rightarrow knows(N)].$

Fresh nonce generation

- (N1) $@_A[nonce(N) \Rightarrow Y \neg knows(M_N)];$ and
- (N2) $@_A[nonce(N)] \Rightarrow \bigwedge_{B \in Princ \setminus \{A\}} @_B[\neg knows(M_N)].$

Network axioms

Behaviour and communication axioms for the channel

(C1)
$$@_{Ch}[in(M, A') \Rightarrow \bigvee_{B \in Princ} @_B[send(M, A')]];$$

(C2)
$$@_{\mathit{Ch}}[\mathit{out}(M,A') \Rightarrow \mathsf{P} \; \mathit{in}(M,A')]];$$
 and

(C3)
$$@_{Ch}[out(M, A') \Rightarrow @_A[rec(M)]].$$

Behaviour and communication axioms for principals

(P1)
$$@_A[send(M, B') \Rightarrow Y(knows(M) \land knows(B'))];$$

(P2)
$$@_A[send(M, B') \Rightarrow @_{Ch}[in(M, B')]];$$

(P3)
$$@_A[rec(M) \Rightarrow @_{Ch}[\bigvee_{A' \in Name_A} out(M, A')]];$$

$$(\mathbf{P4}) @_{A}[\mathit{spy}(M) \Rightarrow @_{Ch}[leak \land \mathsf{P} \bigvee_{B' \in Name} \mathit{in}(M, B')]];$$

$$(\mathbf{P5}) \ @_{A}[\bigwedge_{B \in Princ \setminus \{A\}} \neg @_{B}[\top]];$$
 and

(P6)
$$@_A[nonce(N) \Rightarrow \neg @_{Ch}[\top]].$$

Protocol modeling

Protocols described as a series of steps of the form

$$(\text{step}_q)$$
 $x_s \to x_r : (n_{q_1}, \dots, n_{q_t}). M$

Hon - honest principals follow the rules of the protocol and use only one name Intr - dishonest principals are potential "intruders"

Given a protocol with j distinct roles, and an instantiation with names A'_1, \ldots, A'_j of principals A_1, \ldots, A_j

$$\operatorname{step}_q^i = \left\{ \begin{array}{l} \langle \mathit{nonce}(N_{q_1}) \ldots \mathit{nonce}(N_{q_t}).\mathit{send}(M,A'_r) \rangle & \text{if } i = s \\ \langle \mathit{rec}(M) \rangle & \text{if } i = r \\ \langle \rangle & \text{otherwise} \end{array} \right.$$

Each $\operatorname{run}_A^i = \langle \mathit{act}_1 \ldots \mathit{act}_n
angle$ is characterized by

$$\operatorname{role}_A^i = \operatorname{\textit{act}}_n \wedge \mathsf{P}(\operatorname{\textit{act}}_{n-1} \wedge \mathsf{P}(\ldots \wedge \mathsf{P}\operatorname{\textit{act}}_1)\ldots)$$
.

Security goals

$$\operatorname{secr}_S(A_1,\ldots,A_j)$$

secrecy goal for S among honest participants A_1, \ldots, A_j

$$\bigwedge_{i=1}^{j} @_{A_{i}}[\mathsf{P}_{\circ} \ \mathrm{role}_{A_{i}}^{i}] \Rightarrow \bigwedge_{B \in Princ \setminus \{A_{1},...,A_{j}\}} \bigwedge_{M \in S} @_{B}[\neg \mathit{knows}(M)]$$

 $\operatorname{auth}_{A,B}^{i,j,q}$

authentication goal for honest \boldsymbol{A} in role i wrt some \boldsymbol{B} in role j

assuming that step_q requires x_j to send message M to x_i

Metareasoning: secret data lemma

Given $S \subseteq Msg$, Msg_S are the S-secure messages, that is, messages where items from S can only appear under the scope of an encryption with a key whose inverse is also in S

Protocol independent secret data lemma

 $G \subseteq Princ$, μ network model such that

$$\mu \Vdash \bigwedge_{A \in G} @_A[\neg \operatorname{send}(M,C')] \text{ for every } M \notin \operatorname{Msg}_S \text{ and every name } C', \text{ and}$$

$$\mu \Vdash \bigvee_{A \in G} @_A[* \Rightarrow \operatorname{F} \operatorname{nonce}(N)] \text{ for every nonce } N \in S.$$

If it is the case that

• $\mu, \xi \Vdash \bigwedge_{B \in Princ \backslash G} @_B[\neg \mathit{knows}(M)]$ for every $M \notin \mathit{Msg}_S$,

then also

• $\mu, \xi \Vdash \bigwedge_{B \in Princ \backslash G} @_B[G_\circ \neg \mathit{knows}(M)]$ for every $M \notin \mathit{Msg}_S$.

Metareasoning: secrecy lemma

$$\mathrm{secr}_F = \bigwedge_{i=1}^j @_{A_i}[\mathsf{P}_\circ \ \mathrm{role}_{A_i}^i] \Rightarrow \bigwedge_{B \in \mathit{Princ} \backslash \{A_1, \dots, A_j\}} \bigwedge_{M \in F} @_B[\neg \, \mathit{knows}(M)].$$

Secrecy lemma

A protocol guarantees secr_F for a protocol instantiation with honest participants A_1,\ldots,A_j , provided that all the messages ever sent by A_1,\ldots,A_j in any protocol run are $(\{K_{A_1}^{-1},\ldots,K_{A_j}^{-1}\}\cup F)$ -secure.

Metareasoning: secrecy lemma

$$\mathrm{secr}_F = \bigwedge_{i=1}^j @_{A_i}[\mathsf{P}_\circ \ \mathrm{role}_{A_i}^i] \Rightarrow \bigwedge_{B \in \mathit{Princ} \backslash \{A_1, \dots, A_j\}} \bigwedge_{M \in F} @_B[\neg \, \mathit{knows}(M)].$$

Secrecy lemma

A protocol guarantees secr_F for a protocol instantiation with honest participants A_1,\ldots,A_j , provided that all the messages ever sent by A_1,\ldots,A_j in any protocol run are $(\{K_{A_1}^{-1},\ldots,K_{A_j}^{-1}\}\cup F)$ -secure.

J.Millen, H.Ruess - Protocol independent secrecy, 2000 Discreeteness

Avoiding artificial notions like spells

Metareasoning: one intruder is enough

can be reduced to

Metareasoning: one intruder is enough

can be reduced to

 $\mu, \xi \Vdash @_A[\varphi] \text{ iff } \mu', \xi \Vdash @_A[\varphi] \text{ for } A \in Hon, \ \varphi \in \mathcal{L}_A \text{ without } @$

$$\mu, \xi \Vdash \bigvee_{A \in Intr} @_A[P_\circ \ act] \text{ iff } \mu', \xi \Vdash @_Z[P_\circ \ act]$$

if $\mu, \xi \Vdash \bigvee_{A \in h} @_A[\mathit{knows}(M)]$ then $\mu', \xi \Vdash @_Z[\mathit{knows}(M)]$

Metareasoning: one intruder is enough

can be reduced to

H. Comon-Lundh, V.Cortier - Security properties: two agents are sufficient, 2003 Intruders part of the model

Metareasoning: the predatory intruder

ullet z spies every message sent by an honest principal immediately after it arrives to the channel, and that is all the spying he does

$$@_{\mathit{Ch}}[@_{\mathit{Z}}[\mathit{spy}(M)] \Leftrightarrow \mathsf{Y} \bigvee_{A \in \mathit{Hon}} @_{A}[\bigvee_{B' \in \mathit{Name}} \mathit{send}(M, B')]]$$

 \bullet Z never bothers receiving messages (he has already spied them)

$$@_Z[\neg \mathit{rec}(M)]$$

ullet Z only sends messages to honest principals, and just immediately before the honest principal gets them

$$@_Z[\neg send(M, Z')]$$
 and $@_Z[send(M, A) \Rightarrow @_{Ch}[X @_A[rec(M)]]]$

Metareasoning: the predatory intruder

can be reduced to

Metareasoning: the predatory intruder

can be reduced to

Towards justifiying the linearization of distributed communication in trace models Corollary: the intruder only needs to send messages according to the protocol

Conclusion and further work

- Distributed temporal logic as a tool for security protocol model analysis
- A few of its potentialities
- Further work
 - Other widely used reductions: bounds on the number of honest principals, step compression
 - Nicer conditions for secrecy, and its relationship to authentication
 - New meaningful partial order reductions
 - Protocol compositionality

Conclusion and further work

- Distributed temporal logic as a tool for security protocol model analysis
- A few of its potentialities
- Further work
 - Other widely used reductions: bounds on the number of honest principals, step compression
 - Nicer conditions for secrecy, and its relationship to authentication
 - New meaningful partial order reductions
 - Protocol compositionality

Thank you!