BÀI 3. KHẢO SÁT MẠCH BULK CONVERTER VÀ BOOST CONVERTER

1. Mục tiêu

Sinh viên hiểu và sử dụng transistor BJT trong các mạch đóng cắt và mạch khuyếch đại

- 2. Hướng dẫn thực hành
- 2.1. Úng dụng BJT trong mạch đóng cắt

- Đặt giá trị $R_x = 1K\Omega$ và quan sát kết quả đèn Led khi bật tắt K_A
- Xác định dải giá trị của R_x để Led sáng nhất (I_C lớn nhất) thông qua khảo sát đặc tuyến voltampere của BJT.

Trong BJT, I_C phụ thuộc I_B nên ta cần tính toán dòng I_B để I_C là lớn nhất. I_B có thể khảo sát gián tiếp thông qua việc sử dụng nguồn áp hoặc nguồn dòng.

Từ đồ thị Volt-Ampere tính toán giá trị hiệu điện thế U_{V3} tại đó I_C là lớn nhất ($U_{V3} \ge 11.8V$). Do đó $I_B \ge \frac{11.8}{1000+330} = 8.9 mA$.

Khi $\textbf{\textit{U}}_{V3}$ cố định ta cần thay đổi giá trị trở R_x để đảm bảo $I_B \geq 8.9 mA$.

2.2. Úng dụng BJT trong mạch khuyếch đại

a) Lắp mạch khuyếch đại tín hiệu sử dụng BJT như sau

b) Thay đổi giá trị R_5 và quan sát mối quan hệ V_{PR2}/V_{PR1} với R_5/R_4

Thực hành

- 1, Trong thực tế chúng ta không được nối trực tiếp LED với nguồn mà phải thực hiện hạn dòng thông qua điện trở R_{LED} . Do đó hãy xây dựng lại mạch 2.1 và nối tiếp LED với 1 điện trở $R_{LED} = 330\Omega$ và khảo sát lại giá trị R_X thông qua nguồn dòng.
- 2, Trên mạch 2.2 hãy tính toán giá trị R_5 để mạch đạt giá trị khuyếch đại lớn nhất, và thử nghiệm với giá trị này.

 V_{PR3} thay đổi phụ thuộc vào $Z_C = \frac{1}{2\pi C_2}$. Khảo sát sự phụ thuộc này qua thực nghiệm bằng việc thay đổi giá trị C2 (sử dụng Variable Capacitor trong Multisim)