# Interval Probability for Fuzzy Quantum Theories

May 12, 2016

### 1 Introduction

Fuzzy quantum mechanics:

- http://cds.cern.ch/record/518511/files/0107054.pdf
- http://link.springer.com/chapter/10.1007%2F978-3-642-35644-5\_18#page-1
- http://link.springer.com/chapter/10.1007%2F978-3-540-93802-6\_20#page-1
- http://www.du.edu/nsm/departments/mathematics/media/documents/preprints/m0412.pdf
- http://www.space-lab.ru/files/pages/PIRT\_VII-XII/pages/text/PIRT\_X/Bobola.pdf
- http://www.vub.ac.be/CLEA/aerts/publications/1993LiptovskyJan.pdf

#### Pseudo-randomness:

- https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Pseudo%20Randomness/How\_To\_Generate\_Cryptographically\_Strong\_Sequences\_Of\_Pseudo-Random\_Bits.pdf: "the randomness of an event is relative to a specific model of computation with a specified amount of computing resources."
- Another version https://pdfs.semanticscholar.org/3e9c/5f6f48d9ef426655dc799e9b287d754e86c1.pdf

## 2 Classical Probability Spaces

A probability space specifies the necessary conditions for reasoning coherently about collections of uncertain events. We review the conventional presentation of probability spaces and then discuss the hidden issue of computational and experimental resources.

### 2.1 Real-Valued Probability Spaces

The conventional definition of a probability space [1, 2, 3] builds upon the real numbers. In more detail, a probability space consists of a sample space  $\Omega$ , a space of events  $\mathcal{E}$ , and a probability measure  $\mu$  mapping events in  $\mathcal{E}$  to the real interval [0, 1]. In this paper, we will only consider finite sets of events: we therefore restrict our attention to non-empty finite sets  $\Omega$  as the sample space. The space of events  $\mathcal{E}$  includes every possible subset of  $\Omega$ : it is the powerset  $2^{\Omega}$ . Given the set of events  $\mathcal{E}$ , a probability measure is a function  $\mu: \mathcal{E} \to [0, 1]$  such that:

- $\mu(\Omega) = 1$ , and
- for a collection  $E_i$  of pairwise disjoint events,  $\mu(\bigcup_i E_i) = \sum_i \mu(E_i)$ .

Example 1 (Two-coins experiment). Consider an experiment that tosses two coins. We have four possible outcomes that constitute the sample space  $\Omega = \{HH, HT, TH, TT\}$ . There are 16 total events including for example the event  $\{HH, HT\}$  that the first coin lands heads up, the event  $\{HT, TH\}$  that the two coins land on opposite sides, and the event  $\{HT, TH, TT\}$  that at least one coin lands tails up. Here is a possible probability measure for these events:

```
\mu(\{HT,TH\})
    \mu(\{HH\})
                                             \mu(\{HT,TT\})
                                                                 0
                                             \mu(\{TH, TT\})
    \mu(\{HT\})
    \mu(\{TH\})
                    2/3
                                        \mu(\{HH, HT, TH\})
                                                                 1
     \mu(\{TT\})
                                        \mu(\{HH, HT, TT\})
\mu(\{HH, HT\})
                    1/3
                                        \mu(\{HH,TH,TT\})
                                                            = 1
                                        \mu(\{HT, TH, TT\}) =
\mu(\{HH,TH\})
\mu(\{HH,TT\}) =
                                   \mu(\{HH, HT, TH, TT\}) =
                    1/3
```

The assignment satisfies the two constraints for probability measures: the probability of the entire sample space is 1, and the probability of every collection of disjoint events (e.g.,  $\{HT\} \cup \{TH\} = \{HT, TH\}$ ) is the sum of the individual probabilities. The probability of collections of non-disjoint events (e.g.,  $\{HT, TH\} \cup \{TH, TT\} = \{HT, TH, TT\}$ ) may add to something different than the probabilities of the individual events. It is useful to think that this probability measure is completely induced by the two coins in question and their characteristics in the sense that each pair of coins induces a measure, and each measure must correspond to some pair of coins. The measure above is induced by two coins such that the first coin is twice as likely to land tails up than heads up and the second coin is double-headed.

In a strict computational or experimental setting, one may question the reliance of the definition of probability space on the uncountable and uncomputable real interval [0, 1]. This interval includes numbers like  $0.h_1h_2h_3...$  where  $h_i$  is 1 or 0 depending on whether Turing machine  $M_i$  halts or not. Such numbers cannot be computed. This interval also includes numbers like  $\frac{\pi}{4}$  which can only be computed with increasingly large resources as the precision increases. Therefore, in a resource-aware computational or experimental setting, it is more appropriate to consider probability measures that map events to a finite set of elements computable with a fixed set of resources. We expand on this observation and then consider interval-valued probability measures [4, 5, 6, 7].

#### 2.2 Buffon's Needle Problem

Suppose we drop a needle of length  $\ell$  onto a floor made of equally spaced parallel lines a distance h apart. It is a known fact that the probability of the needle crossing a line is  $\frac{2\ell}{\pi h}$  [8, 9, 10, 11]. We analyze this situation in the mathematical framework of probability spaces paying special attention to the resources needed to estimate the probability computationally or experimentally.

To formalize the experiment, we consider an experimental setup consisting of a collection of N identical needles of length  $\ell$ . We throw the N needles one needle at a time, and observe the number X of needles that cross a line. The sample space can be expressed as the set  $\{X,-\}^N$  of sequences of characters of length N where each character is either X to indicate a needle crossing a line or - to indicate a needle not crossing a line. If N=3, the probability of the event that exactly 2 needles cross lines  $\{-XX, X-X, XX-\}$  can be estimated by the relative frequency  $\frac{2}{3}$ . Generally, the probability of the event that exactly M needles out of the N total needles cross lines can be estimated by  $\frac{M}{N}$ .

In an actual experiment with 500 needles and the ratio  $\frac{\ell}{h} = 0.75$  [10], it was found that 236 crossed a line so the relative frequency is 0.472 comparing the values to the idealized mathematical probability 0.4774.... In a larger experiment with 5000 needles and the ratio  $\frac{\ell}{h} = 0.8$  [11], the relative frequency was calculated to be 0.5064 comparing the values to the idealized mathematical probability 0.5092.... We see that the observed probability approaches  $\frac{2\ell}{\pi h}$  but only if larger and larger resources are expended.

These resource considerations thus lead us to replace the real interval [0,1] with rational numbers up to a certain precision. The intuition is that the precision depends on the amount of resources allocated for

the measurement process. There is clearly a connection between the number of needles and the achievable precision: in the hypothetical experiment with 3 needles, it is not sensible to retain 100 digits in the expansion of  $\frac{2\ell}{\pi h}$ .

There is however another more subtle source of unbounded computational power in the experiment. We are assuming that we can always determine with certainty whether a needle is crossing a line. But "lines" on the the floor have thickness, their distance apart is not exactly h. and the needles lengths are not all equal and are not all absolutely equal to  $\ell$ . These perturbations make the events "fuzzy." For example, instead of talking about the idealized event that exactly M needles cross lines which would require the most expensive needles built to the most precise accuracy, laser precision for drawing lines on the floor, and the most powerful microscopes to determine if a needle does cross a line, we might instead talk about the event that  $M-\delta$  needles evidently cross lines and  $M+\delta'$  needles plausibly cross lines for some acceptable approximations  $\delta$  and  $\delta'$ . This fuzzy notion of events leads us to consider intervals of probability reflecting the certainty of the event and its plausibility. In another experiment with 3204 needles and the ratio  $\frac{\ell}{\hbar}=0.6$  [9], there are 1213 needles clearly crossed a line and 11 ones was close enough to plausibly be considered as crossing the line: we would express the probability in this case as the interval  $\left[\frac{1213}{3204}, \frac{1224}{3204}\right]$  expressing that we are certain that the event has probability at least  $\frac{1213}{3204}$  but it is possible that it would have probability  $\frac{1224}{3204}$ .

### 2.3 Interval-valued probability measures

We begin with an analysis explaining how to combine intervals of probability. Specifically if we have an event  $E_1$  with an interval of probability  $[l_1, r_1]$  and another disjoint event  $E_2$  with an interval of probability  $[l_2, r_2]$ , what is the interval probability of the event  $E_1 \cup E_2$ . The answer is somewhat subtle: although it is possible to use the sum of the intervals  $[l_1 + l_2, r_1 + r_2]$  as the combined probability, one can do find a much tighter interval if information against the event (i.e., information about the complement event) is also taken into consideration.

For a general event E with probability [l,r], the strength of evidence that contradicts E is evidence supporting the complement of E. The complement of E must therefore have probability [1-r,1-l] which we abbreviate 1-[l,r]. Given a collection of intervals  $\mathscr{I}$ , an  $\mathscr{I}$ -interval-valued probability measure is a function  $\mu: \mathcal{E} \to \mathscr{I}$  such that:

- $\mu(\emptyset) = [0, 0],$
- $\mu(\Omega) = [1, 1],$
- $\mu(\Omega \backslash E) = 1 \mu(E)$ , and
- for a collection  $E_i$  of pairwise disjoint events, we have  $\mu(\bigcup_i E_i) \subseteq \sum_i \mu(E_i)$  where the summation on the right is the summation of intervals that sums the endpoints.

The reason the last condition is expressed using  $\subseteq$  is best explained using a small example.

Example 2 (Two-coin experiment with interval probability). We split the unit interval [0,1] in the following four closed sub-intervals: [0,0] which we call impossible,  $[0,\frac{1}{2}]$  which we call unlikely,  $[\frac{1}{2},1]$  which we call likely, and [1,1] which we call certain. Using these new values, we can modify the probability measure of Ex. 1 by mapping each numeric value to the smallest sub-interval containing it to get the following:

```
= imnossible
                                                 \mu(\{HT, TH\}) = likely
    \mu(\{HH\}) = \text{unlikely}
                                                  \mu(\{HT,TT\}) =
                                                                     impossible
    \mu(\{HT\}) = impossible
                                                  \mu(\{TH, TT\}) =
    \mu(\{TH\}) = likely
                                            \mu(\{HH, HT, TH\}) = \text{certain}
     \mu(\{TT\}) = impossible
                                            \mu(\{HH, HT, TT\}) =
\mu(\{HH, HT\}) = unlikely
                                            \mu(\{HH, TH, TT\}) =
\mu(\{HH,TH\}) = certain
                                             \mu(\{HT, TH, TT\}) =
\mu(\{HH,TT\}) = \text{unlikely}
                                        \mu(\{HH, HT, TH, TT\}) =
```

Despite the absence of any numeric information, the probability measure is quite informative: it reveals that the second coin is double-headed and that the first coin is biased. To understand the  $\subseteq$ -condition, consider the following calculation:

$$\mu(\{HH\}) + \mu(\{HT\}) + \mu(\{TH\}) + \mu(\{TT\})$$
= impossible + unlikely + impossible + likely
$$= [0,0] + \left[0,\frac{1}{2}\right] + [0,0] + \left[\frac{1}{2},1\right] = \left[\frac{1}{2},\frac{3}{2}\right]$$

If we were to equate  $\mu(\Omega)$  with the sum of the individual probabilities we would get that  $\mu(\Omega) = \left[\frac{1}{2}, \frac{3}{2}\right]$ . However, using the fact that  $\mu(\emptyset) = \text{impossible}$ , we have  $\mu(\Omega) = 1 - \mu(\emptyset) = \text{certain} = [1, 1]$ . This interval is tighter and a better estimate for the probability of the event  $\Omega$  and of course it is contained in  $\left[\frac{1}{2}, \frac{3}{2}\right]$ . However it is only possible to exploit the information about the complement when all four events are combined. Thus the  $\subseteq$ -condition allows us to get an estimate for the combined event from each of its constituents and then gather more evidence knowing the aggregate event.

Gerardo says: Set-valued is a particular case?

Yu-Tsung says: Set-valued is not a particular case of interval-valued probability because their rules are different. A set-valued probability measure should satisfy:

- 1.  $1 \in \mu(\Omega)$ , and
- 2. for a collection  $E_i$  of pairwise disjoint events,  $\mu(\bigcup_i E_i) = \sum_i \mu(E_i)$ .

which are completely opposite to the interval-valued probability measures.

It seems hard to make a consistent story with the general set-valued probability measure framework (maybe except possible/impossible?), so we just comment out set-valued probability measure here...

### 3 Quantum Probability Spaces

Amr says: The idea will be the following. First describe quantum probability spaces conventionally. Then talk about the following:

- the dimension of the Hilbert space is a parameter that is like the number of needles; it gives an upper bound on the accuracy of the numbers that are relevant in expressing probabilities
- the intervals will come from two things: the fact that states can only be prepared to a certain accuracy so when we say the state is  $|\psi\rangle$  we really mean a neighborhood of states close to  $|\psi\rangle$
- similarly when we do an experiment with  $|\phi\rangle\langle\phi|$  we are really testing a family of projections that are near  $|\phi\rangle\langle\phi|$ ; this fuziness will cause the probability to only be specifiable as intervals

Amr says: We can use DQC if we have some kind of topology (distances). The idea will be that we want to prepare state PSI but because of errors etc we prepare a close state. Well the next closest state will be the next state in our discrete grid. I am sure that a state that's very close to PSI can involve some wrapping around.

The mathematical framework above assumes that one has complete knowledge of the events and their relationships, and moreover, there exists a predetermined set of properties. However, in many practical situations, the structure of the event space is only partially known and the precise dependence of two events on each other cannot, a priori, be determined with certainty. In the quantum framework, this partial knowledge is compounded by the fact that there exist non-commuting events which cannot happen simultaneously. To accommodate these more complex situations, we abandon the sample space  $\Omega$  and reason directly about

events. A quantum probability space therefore consists of just two components: a set of events  $\mathcal{E}$  and a probability measure  $\mu: \mathcal{E} \to [0, 1]$ . We give an example before giving the formal definition.

Example 3 (One-qubit quantum probability space). Consider a one-qubit Hilbert space with states  $\alpha|0\rangle + \beta|1\rangle$  such that  $|\alpha|^2 + |\beta|^2 = 1$ ,  $\alpha, \beta \in \mathbb{C}$ . The set of events associated with this Hilbert space consists of all projection operators. Each event is interpreted as a possible post-measurement state of a quantum system in current state  $|\phi\rangle$ . For example, the event  $|0\rangle\langle 0|$  indicates that the post-measurement state will be  $|0\rangle$ ; the event  $|1\rangle\langle 1|$  indicates that the post-measurement state will be  $|1\rangle$ ; the event  $|+\rangle\langle +|$  where  $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle\rangle$  indicates that the post-measurement state will be  $|+\rangle$ ; the event  $1 = |0\rangle\langle 0| + |1\rangle\langle 1|$  indicates that the post-measurement state will be a linear combination of  $|0\rangle$  and  $|1\rangle$ ; and the empty event 0 states that the post-measurement state will be the empty state. As in the classical case, a probability measure is a function that maps events to [0, 1]: here is a partial specification of a possible probability measure:

$$\mu\left(\mathbb{0}\right)=0,\quad \mu\left(\mathbb{1}\right)=1,\quad \mu\left(|0\rangle\langle 0|\right)=1,\quad \mu\left(|1\rangle\langle 1|\right)=0,\quad \mu\left(|+\rangle\langle +|\right)=1/2,\quad \ldots$$

Note that, similarly to the classical case, the probability of 1 is 1 and the probability of collections of orthogonal events (e.g.,  $|0\rangle\langle 0| + |1\rangle\langle 1|$ ) is the sum of the individual probabilities. In contrast, a collection of non-orthogonal events (e.g.,  $|0\rangle\langle 0|$  and  $|+\rangle\langle +|$ ) is not itself an event. In the classical example, we argued that each probability measure is uniquely determined by two actual coins. A similar (but much more subtle) argument is valid also in the quantum case. By postulates of quantum mechanics and Gleason's theorem, it turns out that for large enough quantum systems, each probability measure is uniquely determined by an actual quantum state.

To properly explain the previous example and generalize to arbitrary quantum systems, we formally discuss projection operators and then define a quantum probability space.

Definition 1 (Projection Operators; Orthogonality [12, 13, 14, 15]). Given a Hilbert space  $\mathcal{H}$ , an event, formally called elementary quantum test [14], can be represented as a projection operator  $P: \mathcal{H} \to \mathcal{H}$  onto a linear subspace S of  $\mathcal{H}$ . The set of all events can be defined recursively as follow: <sup>1</sup>

- $\mathbb{O}$  is a projection.
- For any vector  $|\psi\rangle \in \mathcal{H}$ ,  $\frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$  is a projection.
- Projection operators  $P_1$  and  $P_2$  are orthogonal if  $P_1P_2 = P_2P_1 = \emptyset$ . The sum of two orthogonal projections  $P_1 + P_2$  is also a projection. Moreover, if  $P_1$  and  $P_2$  project onto subspaces  $S_1$  and  $S_2$  respectively, then  $P_1 + P_2$  will project onto the linear span of  $S_1$  and  $S_2$ , i.e.,  $\{|\psi_1\rangle + |\psi_2\rangle||\psi_1\rangle \in S_1$  and  $|\psi_2\rangle \in S_2\}$ .

Notice that the preceding definition exhaust all possible projection operators. Because every linear subspace S has an orthonormal basis  $\{|\psi_j\rangle\}$ , the projection onto S can always expressed as  $\sum_j |\psi_j\rangle\langle\psi_j|$ . As operators, we can also multiply projections together.

Definition 2 (Commutativity [12, 13, 14, 15]). Projection operators  $P_1$  and  $P_2$  commute if  $P_1P_2 = P_2P_1$ ; If the projections  $P_1$  and  $P_2$  commute then  $P_1P_2$  is also a projection. Moreover, if  $P_1$  and  $P_2$  project onto subspaces  $S_1$  and  $S_2$  respectively, then  $P_1P_2$  will project onto the intersection of  $S_1$  and  $S_2$ , i.e.,  $S_1 \cap S_2$ .

Definition 3 (Quantum Probability Space [17, 18, 13, 19, 16]). Given a Hilbert space  $\mathcal{H}$ , a quantum probability space consists of a set of events  $\mathcal{E}$  and a probability measure  $\mu: \mathcal{E} \to [0, 1]$  such that:<sup>2</sup>

• The set of events consists of all projections. This set includes the empty projection, projection operators  $|\psi\rangle\langle\psi|$  for each state  $|\psi\rangle$ , sums of *orthogonal* projections, and products of *commuting* projections;

- $\mu(1) = 1$ , and
- for mutually orthogonal projections  $E_i$ , we have  $\mu\left(\sum_i E_i\right) = \sum_i \mu\left(E_i\right)$ .

<sup>&</sup>lt;sup>1</sup>"Projection" is sometimes called "orthogonal projection" or "self-adjoint projection" to emphasize  $P^{\dagger} = P$  [16].

<sup>&</sup>lt;sup>2</sup>It is possible to define a more general space of events consisting of all operators  $\mathcal{A}$  on  $\mathcal{H}$  and consider  $\mu: \mathcal{A} \to \mathbb{C}$  [16, 15]. When an operator  $A \in \mathcal{A}$  is Hermitian,  $\mu(A)$  is the expectation value of A. We does not take this approach because we want to focus only on probability.

### 3.1 Quantum Probability Measures

For a given set of events  $\mathcal{E}$ , there are many possible probability measures  $\mu: \mathcal{E} \to [0,1]$ . The Born rule, a postulate of quantum mechanics, states that each quantum state  $|\phi\rangle$  induces a probability measure  $\mu_{\phi}$  as follows:

$$\mu_{\phi}(E) = \langle \phi | E \phi \rangle$$

Conversely, Gleason's theorem states that given a probability measure  $\mu$ , there exist a quantum state  $|\phi\rangle$  that induces such a measure using the Born rule. The theorem is only valid in Hilbert spaces with dimension  $d \geq 3$ . It is instructive to study counterexamples in d = 2, i.e., the case of a one-qubit system. Consider five states  $|\psi_0\rangle$  to  $|\psi_4\rangle$  that form five orthogonal bases  $\{|\psi_0\rangle, |\psi_1\rangle\}$ ,  $\{|\psi_1\rangle, |\psi_2\rangle\}$ ,  $\{|\psi_2\rangle, |\psi_3\rangle\}$ ,  $\{|\psi_3\rangle, |\psi_4\rangle\}$ , and  $\{|\psi_4\rangle, |\psi_0\rangle\}$  and consider the probability measure defined as follows. For all  $i \in \{0, 1, 2, 3, 4\}$ , we have  $\mu_X(|\psi_i\rangle\langle\psi_i|) = 1/2$ . For each orthogonal basis, the probability is 1 as desired and yet it is impossible to find a single quantum state that realizes such a probability measure (see http://tph.tuwien.ac.at/~svozil/publ/2006-gleason.pdf)

Amr says: the rest needs cleaning up and perhaps does not even belong in this section

Although it seems that we need an infinite long table to specify the quantum probability measure  $\mu$ , our  $\mu$  is actually given by a simple formula  $\langle 0|E|0\rangle$ . In general, Born discovered each quantum state  $|\psi\rangle \in \mathcal{H}\setminus\{0\}$  induces a probability measure  $\tilde{\mu}_{\psi}: \mathcal{E} \to [0,1]$  on the space of events defined for any event  $E \in \mathcal{E}$  as follows [20, 21]:

$$\tilde{\mu}_{\psi}(E) = \frac{\langle \psi | E | \psi \rangle}{\langle \psi | \psi \rangle} \tag{1}$$

The Born rule satisfies the following properties:

• It can be extend to mixed states. Given a mixed state represented by a density matrix  $\rho = \sum_{j=1}^{N} q_j \frac{|\psi_j\rangle\langle\psi_j|}{\langle\psi_j|\psi_j\rangle}$ , where  $\sum_{j=1}^{N} q_j = 1$ , i.e.,  $\operatorname{Tr}(\rho) = 1$ , then the Born rule can be extended to  $\rho$  by

$$\tilde{\mu}_{\rho}(E) = \operatorname{Tr}(\rho E) = \sum_{j=1}^{N} q_{j} \tilde{\mu}_{\Psi_{j}}(E) . \tag{2}$$

Notice that  $(\{1,\ldots,N\},2^{\{1,\ldots,N\}},\mu(J)=\sum_{j\in J}q_j)$  is a classical probability space. Therefore, when we discretize the Hilbert space later, we may need to discretize this probability space as well.

- $\tilde{\mu}_{\rho}$  is a probability measure for all mixed state  $\rho$ .
- $\langle \psi | \phi \rangle = 0 \Leftrightarrow \tilde{\mu}_{\psi} (|\phi\rangle \langle \phi|) = 0.$
- $\tilde{\mu}_{\psi}(E) = \tilde{\mu}_{\mathbf{U}|\psi\rangle}(\mathbf{U}E\mathbf{U}^{\dagger})$ , where **U** is any unitary map, i.e.,  $\mathbf{U}^{\dagger}\mathbf{U} = \mathbb{1}$ .

Naturally, we may ask: is every probability measure induced from a state by the Born rule? The answer is yes by Gleason's theorem when the dimension  $\geq 3$  [18, 14, 13]. Furthermore, a simple corollary of Gleason's theorem can show the Born rule is the unique function satisfying conditions 1. to 3.

Corollary 1. The Born rule is the unique function satisfying conditions 1. to 3.

*Proof.* Assume there is another function  $\tilde{\mu}'$  such that  $\tilde{\mu}'_{\rho}$  is a quantum probability measure for all mixed state  $\rho$ . We are going to prove  $\tilde{\mu}' = \tilde{\mu}$ .

Fix a pure normalized state  $\phi$ ,  $\tilde{\mu}'_{\phi}$  is a quantum probability measure by condition 2. By Gleason's theorem, there is a mixed state  $\rho'$ , such that  $\tilde{\mu}'_{\phi}(E) = \text{Tr}(\rho' E) = \sum_{j=1}^{N} q_{j} \tilde{\mu}_{\psi_{j}}(E)$  for all event E.

Consider the event  $E' = 1 - |\phi\rangle\langle\phi|$ , we have

$$0 \stackrel{\text{Condition } 3}{=} \tilde{\mu}_{\phi} (E')$$

$$= \sum_{j=1}^{N} q_{j} \tilde{\mu}_{\psi_{j}} (E')$$

Because  $q_j > 0$ , we have  $\tilde{\mu}_{\psi_j}(E) = 0$ , i.e.,  $\psi_j$  is orthogonal to a co-dimension-1 subspace E'. However, the only subspace orthogonal to E' is span by  $|\phi\rangle$ . Hence,  $\tilde{\mu}'_{\phi} = \tilde{\mu}_{\phi}$ .

#### 3.2 Plan

In the remainder of the paper, we consider variations of quantum probability spaces motivated by computation of numerical quantities in a world with limited resources:

- Instead of the Hilbert space  $\mathcal{H}$  (constructed over the uncountable and uncomputable complex numbers  $\mathbb{C}$ ), we will consider variants constructed over finite fields [22, 23, 24].
- Instead of real-valued probability measures producing results in the uncountable and uncomputable interval [0, 1], we will consider finite set-valued probability measures [25, 26].

We will then ask if it is possible to construct variants of quantum probability spaces under these conditions. The main question is related to the definition of probability measures: is it possible to still define a probability measure as a function that depends on a single state? Specifically,

- given a state  $|\psi\rangle$ , is there a probability measure mapping events to probabilities that only depends on  $|\psi\rangle$ ? In the conventional quantum probability space, the answer is yes by the Born rule [20, 21] and the map is given by:  $E \mapsto \langle \psi | E \psi \rangle$ .
- given a probability measure  $\mu$  mapping each event E to a probability, is there a unique state  $\psi$  such that  $\mu(E) = \langle \psi | E \psi \rangle$ ? In the conventional case, the answer is yes by Gleason's theorem [18, 14, 13].

### 4 All Continuous or All Discrete

Before we turn to the main part of the paper, we quickly dismiss the possibility of having one but not the other of the discrete variations. Specifically, it is impossible to maintain the Hilbert space and have a finite set-valued probability measure and it is also impossible to have a vector space constructed over a finite field with a real-valued probability measure.

### 4.1 Hilbert Space with Finite Set-Valued Probability Measure

However, there is a  $\mathcal{L}_2$ -valued probability measure

$$\hat{\mu}_{1}\left(E\right) = \begin{cases} \text{impossible} & \text{, if } E = |+\rangle\langle+|; \\ \bar{\mu}(E) & \text{, otherwise.} \end{cases}$$

such that  $\hat{\mu}_1 \neq \bar{\mu}_{\psi}$  for all mixed state  $|\psi\rangle$ .

### 4.2 Discrete Vector Space with Real-Valued Probability Measure

### References

- [1] William G. Faris. Appendix: Probability in quantum mechanics. In *The infamous boundary : seven decades of controversy in quantum physics*. Boston : Birkhauser, 1995.
- [2] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, 1994.
- [3] V.K. Rohatgi and A.K.M.E. Saleh. An Introduction to Probability and Statistics. Wiley Series in Probability and Statistics. Wiley, 2011.
- [4] Arthur P Dempster. Upper and lower probabilities induced by a multivalued mapping. *The annals of mathematical statistics*, pages 325–339, 1967.
- [5] Lotfi A Zadeh. A simple view of the dempster-shafer theory of evidence and its implication for the rule of combination. *AI magazine*, 7(2):85, 1986.
- [6] Kurt Weichselberger. The theory of interval-probability as a unifying concept for uncertainty. *International Journal of Approximate Reasoning*, 24(2):149–170, 2000.
- [7] Kenneth David Jamison and Weldon A Lodwick. *Interval-Valued Probability Measures*, volume 213 of *Center for Computational Mathematics Reports Series*. Department of Mathematics, University of Colorado at Denver, 2004.
- [8] G Buffon. Essai d'arithmétique morale. In *Histoire naturelle*, générale et particulière, Supplément, volume 4, pages 46–109. 1777.

- [9] Augustus De Morgan. A Budget of Paradoxes. Longmans, Green, and Co., 1872.
- [10] Asaph Hall. On an experimental determination of  $\pi$ . Messeng. Math, 2:113–114, 1873.
- [11] James Victor Uspensky. Introduction to mathematical probability. McGraw-Hill Book Co., Inc., 1937.
- [12] George W. Mackey. Quantum mechanics and hilbert space. The American Mathematical Monthly, 64(8):45–57, 1957.
- [13] Michael Redhead. Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics. Oxford University Press, 1987.
- [14] A. Peres. Quantum Theory: Concepts and Methods. Fundamental Theories of Physics. Springer, 1995.
- [15] Jan Swart. Introduction to quantum probability. Lecture Notes, 2013.
- [16] Hans Maassen. Quantum probability and quantum information theory. In *Quantum information*, computation and cryptography, pages 65–108. Springer, 2010.
- [17] Garrett Birkhoff and John Von Neumann. The logic of quantum mechanics. *Annals of mathematics*, pages 823–843, 1936.
- [18] Andrew Gleason. Measures on the closed subspaces of a hilbert space. *Indiana Univ. Math. J.*, 6:885–893, 1957.
- [19] Samson Abramsky. Big toy models: Representing physical systems as Chu spaces. CoRR, abs/0910.2393, 2009
- [20] Max Born. Zur quantenmechanik der stoßvorgänge (1926). In *Die Deutungen der Quantentheorie*, pages 48–52. Springer, 1984.
- [21] N. D. Mermin. Quantum Computer Science. Cambridge University Press, 2007.
- [22] Andrew J Hanson, Gerardo Ortiz, Amr Sabry, and Yu-Tsung Tai. Corrigendum: Geometry of discrete quantum computing. *Journal of Physics A: Mathematical and Theoretical*, 49(3):039501, 2015.
- [23] Andrew J Hanson, Gerardo Ortiz, Amr Sabry, and Yu-Tsung Tai. Discrete quantum theories. *Journal of Physics A: Mathematical and Theoretical*, 47(11):115305, 2014.
- [24] Andrew J Hanson, Gerardo Ortiz, Amr Sabry, and Yu-Tsung Tai. Geometry of discrete quantum computing. *Journal of Physics A: Mathematical and Theoretical*, 46(18):185301, 2013.
- [25] Zvi Artstein. Set-valued measures. Transactions of the American Mathematical Society, 165:103–125, 1972.
- [26] Madan L Puri and Dan A Ralescu. Strong law of large numbers with respect to a set-valued probability measure. *The Annals of Probability*, pages 1051–1054, 1983.