Variance, Standard Deviation of Discrete and Continuous Random Variables

•••

Lesson 5

Contents

- Discrete Random Variables
 - Expected Value
 - ☐ Variance
 - ☐ Standard Deviation
- ☐ Continuous Random Variable
 - ☐ Expected Value
 - ☐ Variance
 - ☐ Standard Deviation

DISCRETE

Expected Value

Definition: Suppose X is a discrete random variable that takes values $x_1, x_2, ..., x_n$ with probabilities $p(x_1), p(x_2), ..., p(x_n)$.

The expected value of X is denoted E(X) and defined by:

$$E(X) = p(x_1) \cdot x_1 + p(x_2) \cdot x_2 + ... + p(x_n) \cdot x_n$$

Properties of Expected Value

1. If X and Y are random variables on a sample space Ω then:

$$E(X + Y) = E(X) + E(Y)$$

2. If **a** and **b** are constants then:

$$E(a X + b) = a E(X) + b$$

Example 1: Roll two dice and let X be the sum. Find E(X).

Properties of Expected Value

Example 2: (For infinite random variables the "mean" (expected value) does not always exist.) Suppose X has an infinite number of values according to the following table.

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3		$\mathbf{x}_{\mathbf{k}}$	
values x:	2	2^2	2^3		2 ^k	
pmf p(x):	1/2	1/2 ²	1/23	•••	1/2 ^k	•••

Expected values of functions

If X is a discrete random variable taking values x_1 , x_2 , ... and h is a function the h(X) is a new random variable. Its expected value is

$$E(h(X)) = \sum (h(x_i) \cdot p(x_i))$$

Example 3: Let X be the value of a roll of one die and let $Y = X^2$. Find E(Y).

Example 4: Roll two dice and let X be the sum. Suppose the payoff function is given by $Y = X^2 - 6X + 1$.

Variance

Definition: If X is a discrete random variable with mean $E(X) = \mu$, then the variance of X is defined by:

$$Var(X) = E((X - \mu)^2)$$

And is denoted by σ^{2} .

"Is a measure of how much the probability mass is spread out around this center."

Standard Deviation

Definition: If X is a discrete random variable, then the standard deviation of X is defined by:

$$\sigma = (Var(X))^{\frac{1}{2}}$$

Example 5: Compute the mean (expected), variance and standard deviation of the random variable X with the following table of values and probabilities.

value x	1	3	5
pmf $p(x)$	1/4	1/4	1/2

Example 6: For each random variable X, Y, Z, and W plot the pmf and compute the mean (expected value) and variance.

٠,	value x	1		2		3	4	5	
	pmf $p(x)$	1/	Ď	1/5	1	/5	1/5	1/5	
	value y	1		2		3		4	5
	pmf $p(y)$	1/1	10	2/	10	4/	10 2	2/10	1/10
١	value z	1		2	3	4	5		
	pmf p(z)	5/1	10	0	0	0	5/10	0	
	value w	1	2	3	4	5			
	pmf $p(w)$	0	n	1	n	0	150		

- Var(X) = 2
- Var(Y) = 1.2
- Var(Z) = 4
- Var(W) = 0

Properties of Variance

- If X and Y are independent then Var(X + Y) = Var(X) + Var(Y)
- For constans a and b, then: $Var(a \cdot X + b) = a^2 Var(X)$
- $Var(X) = E(X^2) E(X)^2$

Example 7: Suppose X and Y are independent and Var(X) = 3 and Var(Y) = 5. Find:

(i)
$$Var(X + Y)$$
 (ii) $Var(3X + 4)$

(iii)
$$Var(X + X)^*$$
 (iv) $Var(X + 3Y)$

Summary

Expected Value:		Variance:
Synonyms:	mean, average	
Notation:	$E(X), \mu$	$Var(X)$, σ^2
Definition:	$E(X) = \sum_{j} p(x_j)x_j$	$E((X - \mu)^2) = \sum_{j} p(x_j)(x_j - \mu)^2$
Scale and shift:	E(aX + b) = aE(X) + b	$Var(aX + b) = a^{2}Var(X)$
Linearity:	(for any X, Y) E(X + Y) = E(X) + E(Y)	(for X , Y independent) Var(X + Y) = Var(X) + Var(Y)
Functions of X :	$E(h(X)) = \sum p(x_j) h(x_j)$	
Alternative formula:		$Var(X) = E(X^{2}) - E(X)^{2} = E(X^{2}) - \mu^{2}$

CONTINUOUS

Expected Value

Definition: Let X be a continuous random variable with range [a, b] and probability density function f(x). The expected value of X is defined by:

$$E(X) = \int_a^b x f(x) dx$$

Example 8: Let X have range [0, 2] and density $f(x) = 3x^2/8$. Find E(X).

Example 9: The range of X is $[0, \infty)$ and its pdf is $f(x) = \lambda e^{-\lambda x}$

Example 10: The range of Z is $(-\infty, \infty)$ and its pdf is $f(x) = e^{Z^2/2}/\sqrt{2\pi}$

Expected Value

Example 8

Example 9

Example 10

Properties of Expected Value

The properties of E(X) for continuous random variables are the same as for discrete ones:

1. If X and Y are random variables on a sample space Ω then:

$$E(X + Y) = E(X) + E(Y)$$

2. If **a** and **b** are constants then:

$$E(a . X + b) = a . E(X) + b$$

Expectation of Functions of X

This works exactly the same as the discrete case. If h(x) is a function then Y = h(X) is a random variable and

$$E(Y) = E(h(X)) = \int h(x) \cdot f(x) dx$$

Example 11: Find E(X²) if the range of X is $[0, \infty)$ and its pdf is $f(x) = \lambda e^{-\lambda x}$

Variance

Definition: Let X be a continuous random variable with mean. The variance of X is:

$$Var(X) = E((X - \mu)^2)$$

Properties:

- If X and Y are independent then: Var(X+Y) = Var(X) + Var(Y)
- For constants **a** and **b**: $Var(aX + b) = a^2 Var(X)$
- $Var(X) = E(X^2) E(X)^2$

Example 12: Find Var(X). X has range [0, 1] and density f(x) = 1.

Dessert

We roll two standard 6-sided dice. You win \$1000 if the sum is 2 and lose \$100 otherwise. How much do you expect to win on average per trial?

Math Team

Christian Córdova

Bachelor in Mathematics

José Castro

Bachelor in Computer Science

