BEng (Hons) in Building Services Engineering ST125103/ST145103 Programme Title:

Programme Code:

Academic Year: AY2024/25

Semester:

Module Code and Title: SBS4115 Fundamentals of AI & Data Analytics

Question No.		Solutions	Marks
Q.1 (i)		Gather a large, diverse dataset of images relevant to the	2
		recognition task. Ensure images cover various angles, lighting	
		conditions, and scenarios to improve model robustness.	
		Data Preprocessing	
		Resizing and normalization: Convert images to a uniform size	2
		(e.g., 224×224) and normalize pixel values so the model can	
		learn efficiently. Image augmentation (optional): Randomly flip,	
		rotate, or crop images to increase dataset variety and reduce overfitting.	
		Commonly use Convolutional Neural Networks (CNNs) for	2
		image tasks. During training, the CNN learns feature maps	
		(edges, textures) that help classify or detect objects.	
		Model Evaluation	
		Split data into training and test (and possibly validation) sets to	2
		measure performance on unseen images. Key metrics include	
		accuracy, precision, recall, and F1-score. Evaluation highlights	
		strengths and weaknesses, guiding any necessary refinements	
		to the model.	
	(ii)	Systems identify unique facial landmarks (e.g., distance between	3
		eyes, nose shape, jawline). Features are converted into a digital	
		facial "template" for matching.	
		Airports and border checkpoints use face recognition to verify	3
		passenger identities quickly. Smartphones unlock via face ID,	
		providing a convenient and secure authentication method.	
		Cameras at checkpoints scan passengers' faces, instantly	
		matching them against passport or ID photos in a secure	
		database.	

BEng (Hons) in Building Services Engineering ST125103/ST145103 Programme Title:

Programme Code:

Academic Year: AY2024/25

Semester:

Module Code and Title: SBS4115 Fundamentals of AI & Data Analytics

	Benefits: Improved Accuracy: AI can handle large passenger volumes, reducing human error. Operational Efficiency: Faster throughput and shorter queues. Enhanced Security: Rapid detection of unauthorized individuals. Advantages of AI in Facial Recognition	3
(iii)	Rule-Based NLP Central Idea: Uses a set of handcrafted linguistic rules, grammar structures, and pattern-matching. Techniques/Models: Syntax analysis, parsing rules, lexicons.	2
	Machine Learning–Based NLP Central Idea: Trains algorithms on labeled textual data to recognize language patterns (e.g., spam detection).	2
	Techniques/Models: Logistic regression, Naive Bayes, Support Vector Machines (SVMs). Sentiment Analysis in social media monitoring: classifying user comments or tweets as positive, negative, or neutral to gauge public opinion.	2
	Deep Learning–Based NLP Central Idea: Leverages neural network architectures (e.g., RNNs, LSTMs, Transformers) to learn contextual language representations from large datasets. Techniques/Models: CNNs or Transformer-based models like BERT, GPT.	2

BEng (Hons) in Building Services Engineering ST125103/ST145103 Programme Title:

Programme Code:

Academic Year: AY2024/25

Semester:

Module Code and Title: SBS4115 Fundamentals of AI & Data Analytics

Question No.		Solutions	Marks
Q.2	(i)	In domains like healthcare, AI systems often require access to	2
		highly personal data (medical histories, genetic information).	
		Risks: Data breaches, unauthorized access, or misuse can compromise patient confidentiality. Trust erosion and legal ramifications arise if sensitive data is mishandled. Accountability of AI Decisions	2
		In law enforcement or healthcare, Al may recommend arrests or medical treatments that can have life-altering impacts.	2
		Challenges: Determining who is responsible (developers, users, or the AI itself) when errors lead to wrongful arrests or misdiagnoses.	2
		Ensuring clear oversight and liability frameworks is crucial to uphold justice and patient safety.	2
	(ii)	Bias can stem from historical inequalities, incomplete datasets, or skewed labeling.	3
		Results in discriminatory outcomes, reinforcing societal	
		stereotypes or excluding certain groups.	
		Real Example: Recruitment Tool Bias	
		Amazon's Al-based hiring tool was found to favor male candidates for technical roles because it learned from a dataset of mostly male applicants' resumes.	3
		Algorithmic bias can undermine trust in AI, hamper diversity, and exacerbate inequalities. Ensuring equitable representation in training data and monitoring AI decisions are essential for mitigating discriminatory effects.	3

BEng (Hons) in Building Services Engineering ST125103/ST145103 Programme Title:

Programme Code:

Academic Year: AY2024/25

Semester:

SBS4115 Fundamentals of Al & Data Analytics Module Code and Title:

	(iii)	Include data across various demographics to minimize skew and reflect real-world diversity.			
		Regular Auditing and Testing for Bias. Conduct periodic reviews			
		of AI outputs. When biases are found, retrain or adjust the model accordingly.			
		Build interpretable AI systems that allow stakeholders to			
		understand how decisions are reached. Clearly document the			
		model's decision-making criteria and model architecture.			
		Establish clear governance: Identify who is responsible for Al	2		
		outcomes.Define ethical standards (e.g., fairness metrics) and			
		monitor compliance to protect stakeholders.			
Questi	ion No.	Solutions	Marks		
Q.3	(a)(i)	Al-driven systems (e.g., in Los Angeles) analyze real-time traffic	2		
		data to adjust traffic signals, reducing congestion and commute			
	times. Benefits include lower fuel consumption and reduced emissions.				
		Smart grids use AI to monitor energy usage patterns, optimizing	2		
	supply. This reduces wastage, lowers energy costs, and improves grid reliability.				
	Automated Waste Management. Sensors in smart bins or on garbage trucks detect fill levels to optimize collection routes.		2		
		Al tracks city services (e.g., lighting, heating in public buildings) and dynamically adjusts usage to reduce consumption.	2		

BEng (Hons) in Building Services Engineering ST125103/ST145103 Programme Title:

Programme Code:

Academic Year: AY2024/25

Semester:

Module Code and Title: SBS4115 Fundamentals of AI & Data Analytics

(a)(ii)	Al-Assisted Medical Imaging. Al algorithms detect anomalies in	2
(~)(")	X-rays, MRIs, and CT scans that can be overlooked by human	_
	interpretation. Improves early detection of conditions such as	
	cancer or fractures.	
	cancer of fractures.	
	Systems like IBM Watson Health utilize vast datasets to	2
		2
	recommend treatments, supporting personalized care. Faster	
	and more accurate diagnosis aids timely interventions.	
	Early, accurate detection enables targeted treatments, potentially	2
	improving survival rates (e.g., lung cancer). Reduces	_
	, , , ,	
	unnecessary biopsies and lowers healthcare costs.	
	Al highlights suspicious areas for radiologists, reducing false	2
	negatives and helping medical staff focus on critical cases.	_
(b)	Predictive analytics forecast material needs, schedules, and	3
(5)	costs, drawing on historical data to flag potential delays or	J
	overruns. More accurate resource allocation avoids budget	
	inflation and rework.	
	Al optimizes energy usage by monitoring heating, cooling, and	3
	lighting in buildings, leading to significant savings.	o
	Automating repetitive tasks (e.g., ordering materials) cuts labor	
	costs and reduces human error.	
	Predictive Maintenance	
	Al systems analyze equipment usage patterns, detecting	3
	maintenance needs before breakdowns. Minimizes downtime	
	and expensive emergency repairs. Computer vision monitors	
	construction sites, checking for protective gear compliance.	

BEng (Hons) in Building Services Engineering ST125103/ST145103 Programme Title:

Programme Code:

Academic Year: AY2024/25

Semester:

Module Code and Title: SBS4115 Fundamentals of AI & Data Analytics

Q.4 (i) Supervised Learning. Trains on labeled datasets (input-output pairs). Learns to map inputs (e.g., images) to known targets (e.g., class labels). Use Cases: Predictive modeling (forecasting sales), image classification (cat vs. dog). Unsupervised Learning. Works on unlabeled data to identify hidden patterns or groupings. Use Cases: Clustering (customer segmentation), anomaly detection, dimensionality reduction. Key Differences: Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a research goal.	Question No.		Solutions	Marks
(e.g., class labels). Use Cases: Predictive modeling (forecasting sales), image classification (cat vs. dog). Unsupervised Learning. Works on unlabeled data to identify hidden patterns or groupings. Use Cases: Clustering (customer segmentation), anomaly detection, dimensionality reduction. Key Differences: Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a	Q.4 (i)		Supervised Learning. Trains on labeled datasets (input-output	2
Sales), image classification (cat vs. dog). Unsupervised Learning. Works on unlabeled data to identify hidden patterns or groupings. Use Cases: Clustering (customer segmentation), anomaly detection, dimensionality reduction. Key Differences: Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			pairs). Learns to map inputs (e.g., images) to known targets	
Unsupervised Learning. Works on unlabeled data to identify hidden patterns or groupings. Use Cases: Clustering (customer segmentation), anomaly detection, dimensionality reduction. Key Differences: Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			(e.g., class labels). Use Cases: Predictive modeling (forecasting	
hidden patterns or groupings. Use Cases: Clustering (customer segmentation), anomaly detection, dimensionality reduction. Key Differences: Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			sales), image classification (cat vs. dog).	
segmentation), anomaly detection, dimensionality reduction. Key Differences: Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			Unsupervised Learning. Works on unlabeled data to identify	2
Key Differences: Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			hidden patterns or groupings. Use Cases: Clustering (customer	
Data Requirement: Supervised needs labeled data; unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			segmentation), anomaly detection, dimensionality reduction.	
unsupervised does not. Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			Key Differences:	
Output Specificity: Supervised provides more precise predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			Data Requirement: Supervised needs labeled data;	2
predictions; unsupervised offers insights about structure without predefined labels. (ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			unsupervised does not.	
(ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			Output Specificity: Supervised provides more precise	
(ii) Narrow AI (Weak AI). Focused on one specific task (e.g., language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			predictions; unsupervised offers insights about structure without	
language translation, image recognition). Examples: Apple's Siri, Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			predefined labels.	
Google Translate. Excels in specialized areas but lacks adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a		(ii)	Narrow AI (Weak AI). Focused on one specific task (e.g.,	3
adaptability outside its trained domain. Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			language translation, image recognition). Examples: Apple's Siri,	
Artificial General Intelligence (Strong AI). A hypothetical system with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			Google Translate. Excels in specialized areas but lacks	
with human-like adaptability and understanding, capable of performing any intellectual task. Not yet realized in practice but envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			adaptability outside its trained domain.	
envisioned to handle reasoning, creativity, and learning in diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a				3
diverse fields. Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			performing any intellectual task. Not yet realized in practice but	
Key Contrasts. Scope: Narrow AI is domain-specific, while AGI aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			envisioned to handle reasoning, creativity, and learning in	
aims for cross-domain competence. Practical Status: Narrow AI is widely used today; AGI remains a			diverse fields.	
Practical Status: Narrow AI is widely used today; AGI remains a				3
			·	
			research goal.	

Programme Title: BEng (Hons) in Building Services Engineering

Programme Code: ST125103/ST145103

Academic Year: AY2024/25

Semester:

Module Code and Title: SBS4115 Fundamentals of AI & Data Analytics

Module Convenor: Roger NG
Module Lecturer(s): Kelvin SIU
Moderator: Roger NG

(ii	ii)	Narrow AI automates repetitive tasks (e.g., data entry),	2
		increasing speed and reducing errors. AGI could adapt to	
		multiple domains simultaneously, coordinating complex tasks	
		with minimal human intervention.	
		Narrow AI: Self-driving vehicles with specialized obstacle	2
		detection reduce accidents.	
		AGI: Would manage unexpected scenarios and make context-	
		aware decisions, potentially enhancing safety in healthcare,	
		defense, and beyond.	
		Narrow AI fosters innovation in focused applications (e.g.,	2
		personalized medicine, robotics).	
		AGI (if achieved) might revolutionize all aspects of science,	2
		industry, and daily life, driving cross-disciplinary breakthroughs.	
		Conclusion	
		Narrow AI already transforms industries through task-specific	2
		automation. AGI's future potential could disrupt conventional	
		workflows, demanding ethical oversight and robust regulatory	
		frameworks.	

MLO	Question 1	Question 2	Question 3	Question 4
1				V
2	V			
3			V	
4		V		

MLO1: Understand fundamentals concepts of AI and data analytics;

MLO2: Acquire the basic skills in using AI and data analytics technologies and applications;

Programme Title: BEng (Hons) in Building Services Engineering

ST125103/ST145103

Programme Title:
Programme Code:
Academic Year: Academic Year: AY2024/25

Semester:

SBS4115 Fundamentals of Al & Data Analytics

Module Code and Title: Module Convenor: Module Lecturer(s): Roger NG Kelvin SIU Roger NG Moderator:

MLO3: Articulate examples of how the adoption of AI and data analytics enhances the

engineering industries; and

Demonstrate awareness of ethical issues and the impact of the applications of Al MLO4:

and data analytics in daily life.