CHEM 22100 (Organic Chemistry II) Notes

Steven Labalme

January 22, 2022

Weeks

T	Rev	view and Intro to NMR	1						
	1.1	Introduction and Review	1						
	1.2	Office Hours (Snyder)	3						
	1.3	NMR	3						
	1.4	Chapter 9: Nuclear Magnetic Resonance and Mass Spectroscopy	5						
2	Spe	pectrometry							
	2.1	Office Hours (Snyder)	Ĝ						
		NMR							
	2.3	Mass / IR Spectrometry	11						
	2.4	Chapter 9: Nuclear Magnetic Resonance and Mass Spectroscopy	13						
\mathbf{R}	efere	nces	17						

List of Figures

1.1	Mirror plane in hexane.
1.2	$\mathrm{H_3O^+}$ workup
	•
2.1	Benzenes in ¹ H NMR spectroscopy
2.2	Pascal approach
2.3	The mass spectrum of propane
2.4	Molecular ions
2.5	Resonance fragmentation: Alkenes
2.6	Resonance fragmentation: Lone pairs
2.7	Resonance fragmentation: Carbonyls
2.8	Resonance fragmentation: Alkyl-substituted benzene rings
2.9	Resonance fragmentation: Monosubstituted benzene rings with nonalkyl groups
2.10	Fragmentation: Loss of H_2O
2.11	Fragmentation: McLafferty rearrangement

List of Tables

1.1	Approximate proton chemical shifts	į
1.2	Approximate carbon-13 chemical shifts	8

Week 1

Review and Intro to NMR

1.1 Introduction and Review

- 1/11: We're skipping alcohols and ethers and coming back later because that's what third quarter really focuses on.
 - What you need to worry about is class content if he doesn't mention it, even if it's in the book, we won't be responsible for it on exams.
 - Natural products inspire new drugs.
 - Salicylic acid mediates pain, but it will erode the lining of your stomach.
 - Hoffmann functionalizes the alcohol to an ester, removing the negative effects and creating aspirin.
 - Sucrose (table sugar) is glucose plus fructose. Glucose tastes slightly less sweet, and fructose tastes a whole lot sweeter.
 - We now consume 120 pounds of sugar per person per year, different from 20 pounds per person per year in 1976 and 1 pound per person per year in older times.
 - So we have developed artificial sweeteners that cut calories, such as saccharin, aspartame, and sucralose.
 - Sucralose is thermally stable (you can bake with it), has no chloric content, and is made from sugar by protecting some alcohols and replacing others with chlorines.
 - Capsaicin (spiciness) evolved to prevent bugs from biting their host plants.
 - Both capsaicin and resiniferatoxin have the same vanillin group; thus, this group is probably important for reacting with pain receptors.
 - Compactin from mushrooms lowers cholesterol.
 - Zocor and lipitol are derived from it!
 - Taxol (breast cancer treatment) accumulates slowly in rare trees.
 - We can derive from the needles (a renewable resource), however, a compound that is easily functionalized to taxol.
 - It is essential to understand the mechanisms in this course!
 - We won't have to worry much about competing reactivity, but we do need to know how reactivity can change in different situations.
 - Quinine treats malaria.

- Quinine is what makes fizzy water taste bitter.
- In trying to fabricate Quinine, Perkin discovers a compound that dyes fabric purple. Never gets his PhD but makes millions off of this invention. Before, only royals could wear purple (the sole source was mediterranean sea slugs).
- \bullet Identify S_N1 by the fact that all chiral information in the reactant will be lost.
- Identify $S_N 2$ by the inversion of stereochemistry.
- We won't worry much about E1 this quarter.
- We'll see a lot of E2 this quarter.
- We'll look into radical and pericyclic (Diels-Alder) reactions this quarter.
- Molecules that may look similar can actually be quite different.
- Color is related to the number of double bonds in a molecule.
- Blue lobsters are blue because they have enough of an enzyme to sequester all of the colorant in the shells of the lobsters.
 - Would you pay more for it because of its rare color? Probably shouldn't because cooking it will still make it red. It won't taste any better.
- Fleming and penicillin.
 - Initially we have no idea what its structure is.
 - It's hard to synthesize something if we have no idea what it is.
 - During WWII, American and Britain embark on a campaign to synthesize penicillin equal in scope to the Manhatten project, but it wasn't successful.
 - Eventually, Dorthy Crowfoot Hodgkin gets its structure with x-ray crystallography, after wrong attempts from R. B. Woodward and Sir Robert Robinson (future Nobel laureates who hated each other).
 - The moldy cantaloupe.
 - In 1955, John Sheehan at MIT comes up with the first chemical reagent capable of synthesizing penicillin's 4-membered ring.
 - But we made too many antibiotics and antibiotic resistance developed.
 - MRSA is only killed by vancomycin, but they're even developing resistance to that.
 - Thinking chemically to get off the pesticide treadmill.
 - We need the sophistication of nature to build molecules more complex than we can build en masse pharmaceutically.
 - As species go extinct, though, we are losing potential weapons.
- X-ray crystallography pinpoints the location of all atoms other than hydrogen in a molecule.
- Line-angle is gonna be big this quarter.
- We will not be tested on IUPAC nomenclature, but we should know it just to be able to communicate.
- Talks about resonance and induction.
- The IR spectroscopic signal of a carbonyl is 1700 cm⁻¹.
- Resonance affects acidity and IR spectroscopy bonds that resonate (have less double bond character) will have lower IR frequencies.
- A lot of reactions are quenched by an H₃O⁺ workup just enough to quench, not enough to react.

1.2 Office Hours (Snyder)

- Reviews degrees of unsaturation.
- Talks about resonance, too.
- Make sure you know your functional groups!
- Alkene-based reactions are the most important to review.
- Glucose and mannose are diastereomers.
- Global vs. local symmetry.
 - Helps you determine how many signals you will see in a ¹³C NMR spectrum.
 - Acetone only has 2 ¹³C NMR signals (the methyl and the carbonyl one).
 - The ability to draw a mirror plane tells you that certain signals are equivalent.
 - You can rotate hexane into a conformation in which it will have a mirror plane.

Figure 1.1: Mirror plane in hexane.

- No symmetry, such as in 1-bromo-2,5-dichloro-3,4,6-trimethylbenzene, means all (nine) distinct signals.
- Local symmetry (think an isopropyl group).
 - Look for branch points.
 - You must have consistency of structure for the entirety of branches.
- para-dibromobenzene has only 2 signals since it has two mirror planes.

1.3 NMR

- 1/13: He is going to try and present a different perspective from the book because otherwise, why take the class.
 - There is no preset curve for this class everyone can get an A.
 - The right and left boards will be there for the whole class, every class.
 - H₃O⁺ workup.

Figure 1.2: H_3O^+ workup.

Don't think acid-catalyzed hydration. Acid-catalyzed hydration is a very specific reaction. Organic chemists don't really use it because those conditions are so acidic that no other functional groups survive it.

- An H₃O⁺ workup is adding H₃O⁺ at the end of a reaction to neutralize the structure and excess nucleophile in solution without affecting other groups.
- Next three lectures: Tools for characterizing molecules, e.g., determining what we have in solution.
- It could take decades or even centuries to determine the structure of molecules in the early days of chemistry.
 - It would also take large quantities for experiments.
 - Now we can determine the structures of quantities we can only isolate milligrams of.
- IR can only identify the presence of some functional groups and maybe the identity of a compound that's already been determined (i.e., from the fingerprint region and an online database).

• NMR.

- Such machines exist in hospitals as MRI.
- We have dropped the "N" in NMRI because of nuclear's negative connotation, even though MRI
 machines have nothing to do with radioactivity.
- Any nucleus that has an odd atomic number will have a dipole moment.
 - The four most significant ones for organic chemistry are ¹H, ¹³C, ¹⁵N, and ¹⁷O.
 - The last three are all not commonly occurring isotopes. Oxygen, especially, can barely be measured. Hydrogen will be the most useful because ¹H is the most commonly occurring isotope.
 - For ¹³C, we will need a longer experiment since only 1/1000 carbon atoms is ¹³C.
- Theory-lite for NMR.
 - Parallel spins are lower energy, but the difference in energy from anti-parallel is very small (approximately $5 \times 10^{-6} \, \text{kcal/mol}$).
 - $-1-20\,\mathrm{mg}$ of compound is needed in $0.75\,\mathrm{mL}$ of solvent.
 - This is a non-destructive process we can recover our compound after running the experiment.
 - We typically use CDCl₃ as our solvent.
 - A part per million (ppm) is a Hz/MHz.
- George Van Dyke Tiers, a grad student at UChicago, determined in 1958 that TMS might be the best standard (low chemical shift, chemically inert, easily removed, etc.).
- Goes over examples from office hours.
- DEPT: Changes the angle of the magnetic field to distinguish CH, CH₂, and CH₃ groups.
 - DEPT 90 changes the angle by 90° ; DEPT 135 by 135°.
 - In DEPT 90, we'll only see CH carbons.
 - In DEPT 135, CH and CH₃ groups will peak in the positive direction, and CH₂ groups will peak
 in the negative direction.
 - Neither experiment will show carbons that aren't bonded to any hydrogens.
 - Note that DEPT works for any type of carbon of any hybridization; it only discriminates based on the number of ¹H's attached.

1.4 Chapter 9: Nuclear Magnetic Resonance and Mass Spectroscopy

From Solomons et al. (2016).

- 1/11: Nuclear magnetic resonance spectrum: A graph that shows the characteristic energy absorption frequencies and intensities for a sample in a magnetic field. Also known as NMR spectrum.
 - The chemical shift of a signal gives important clues about molecular structure (see Table 1.1).

Type of Proton	Chemical Shift (δ, ppm)	Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RCH₃	0.8 - 1.2	Alkyl bromide, RCH ₂ Br	3.4-3.6
2° Alkyl, RCH₂R	1.2 - 1.5	Alkyl chloride, RCH ₂ Cl	3.6-3.8
3° Alkyl, R₃CH	1.4-1.8	Vinylic, $R_2C = CH_2$	4.6-5.0
Allylic, $R_2C=CR-CH_3$	1.6-1.9	Vinylic, R ₂ C=CRH	5.2-5.7
Ketone, RCOCH ₃	2.1-2.6	Aromatic, ArH	6.0-8.5
Benzylic, ArCH ₃	2.2 - 2.5	Aldehyde, RCOH	9.5-10.5
Acetylenic, RC≡CH	2.5 - 3.1	Alcohol hydroxyl, ROH	$0.5 \text{-} 6.0^*$
Alkyl iodide, RCH ₂ I	3.1-3.3	Amino, R-NH ₂	1.0-5.0*
Ether, ROCH ₂ R	3.3-3.9	Phenolic, ArOH	$4.5 - 7.7^*$
Alcohol, HOCH ₂ R	3.3-4.0	Carboxylic, RCOOH	10-13*

^{*}The chemical shifts of these protons vary in different solvents and with temperature and concentration.

Table 1.1: Approximate proton chemical shifts.

- "In ¹³C NMR spectroscopy, signal area is not relevant in routine analyses" (Solomons et al., 2016, p. 396).
- Coupling: The magnetic effect of nonequivalent hydrogen atoms that are within 2 or 3 bonds of the hydrogens producing the signal that splits individual signals into multiple peaks. Also known as signal splitting, signal multiplicity.
- Vicinal (hydrogens): Hydrogens on adjacent carbons.
- **Geminal** (hydrogens): Hydrogens bonded to the same carbon.
 - Coupling occurs between geminal hydrogens in chiral/conformationally restricted molecules, specifically diastereotopic hydrogens.
- Interpreting NMR spectra:
 - 1. Count the number of signals in the spectrum to determine how many distinct proton environments there are in the molecule.
 - 2. Use chemical shift tables (such as Table 1.1) to correlate the chemical shifts of the signals with possible structural environments.
 - 3. Determine the relative area of each signal, as compared with the area of other signals, as an indication of the relative number of protons producing the signal.
 - 4. Interpret the splitting pattern for each signal to determine how many hydrogen atoms are present on carbon atoms adjacent to those producing the signal and sketch possible molecular fragments.
 - 5. Join the fragments to make a molecule in a fashion that is consistent with the data.

- The external magnetic field causes the σ (and π , if applicable) electrons in the viscinity of each proton to circulate, producing a small local magnetic field that can serve to either increase or decrease the external magnetic field experienced by the proton.
 - Increasing the effective field causes a larger chemical shift (it takes a higher energy photon/less magnetic field to induce a spin flip).
 - Decreasing the effective field causes a smaller chemical shift (it takes less energy/more magnetic field to induce a spin flip).
- **Shielded** (proton): A proton for which the induced local magnetic field opposes the external magnetic field to a relatively large degree.
- **Deshielded** (proton): A proton for which the induced local magnetic field opposes the external magnetic field to a relatively small degree (or even reinforces the external magnetic field).
 - For example, the π electrons of benzene circulate in such a way that the external magnetic field at the aromatic hydrogens is *augmented*.
- "Chemically equivalent protons are chemical shift equivalent in ¹H NMR spectra" (Solomons et al., 2016, p. 403).
- **Homotopic** (atoms): A set of atoms on some molecule such that replacing different ones with the same group gives the same compound.
 - For example, the six hydrogens of ethane are homotopic since replacing any of them with chlorine (for instance) gives the same compound: chloroethane.
 - Homotopic hydrogens are chemical shift equivalent.
- **Heterotopic** (atoms): A set of atoms on some molecule such that replacing different ones with the same group gives different compounds.
 - For example, in chloroethane, the CH₂ hydrogens are heterotopic to the CH₃ hydrogens since replacing the former yields 1,1-dichloroethane and replacing the latter yields 1,2-dichloroethane.
 - Heterotopic atoms are *not* chemical shift equivalent.
- **Enantiotopic** (atoms): Two atoms on some molecule such that replacing different atoms with the same group gives enantiomers.
 - Example: The CH₂ hydrogens of bromoethane.
 - Enantiotopic atoms are chemical shift equivalent, except possibly when the compound in question is dissolved in a chiral solvent.
- **Diastereotopic** (atoms): Two atoms on some molecule such that replacing different atoms with the same group gives diastereomers.
 - Example: The CH₂ hydrogens of 2-butanol.
 - Diastereotopic atoms are *not* chemical shift equivalent (the asymmetry of the chirality center ensures this), except possibly by coincidence.
- ullet Coupling constant: The separation in hertz between each peak of a signal. Denoted by $oldsymbol{J}$.
 - On the order of 6 8 Hz.
- The reciprocity of coupling constants: The coupling constants of coupled atoms are the same.
 - In more complicated molecules, noting that two signals have the same coupling constant means the protons to which they correspond are likely coupled.

- **Dihedral angle** (between vicinal groups): The angle between viscinal groups as seen on the Newman projection through the bond connecting their parent atoms. *Denoted by* ϕ .
- Karplus correlation: The dependence of the coupling constant on dihedral angles.
 - Discovered by Martin Karplus of Harvard.
 - Useful for identifying cyclohexane conformations, and thus for determining which conformation is lower energy.
- An NMR spectrometer is a camera with a relatively slow shutter speed, in that it blurs pictures of rapidly occurring molecular processes.
- Examples of rapid processes that occur in organic molecules.
 - Chemical exchanges cause spin decoupling.
 - Consider ethanol.
 - Based on its structure, we'd predict that the signal corresponding to the hydroxyl proton would be a triplet.
 - However, it only appears as a triplet in very pure ethanol, where **chemical exchange** is slower due to the reduction in impurity-assisted chemical exchange catalysis common in normal ethanol.
 - Rapid chemical exchange means that neighboring protons don't have enough time to couple; thus, the hydroxyl proton appears as a singlet in relatively impure ethanol.
 - Occurs in the ¹H NMR spectra of alcohols, amines, and carboxylic acids; the signals of OH and NH protons are normally unsplit and broad.
 - "Protons that undergo rapid chemical exchange...can be easily detected by placing the compound in D₂O. The protons are rapidly replaced by deuterons, and the proton signal disappears from the spectrum" (Solomons et al., 2016, p. 413).
 - Conformational changes.
 - If, for example, we could isolate staggered bromoethane, the CH₃ hydrogens would be split into two signals, as the one anti-periplanar hydrogen is in a different chemical environment from its two geminal neighbors.
 - But we can't, so all three CH₃ hydrogens contribute to one peak.
- Chemical exchange: The swapping of identical atoms between molecules.
- Exchangeable proton: A proton that can engage in rapid chemical exchange.
- We now switch gears to ¹³C NMR spectroscopy.
- Although ¹³C does not occur naturally with nearly the same frequency as ¹²C, it is important for its application to NMR spectroscopy.
- Simplifications from ¹H NMR spectroscopy.
 - Each distinct carbon produces one signal in a ¹³C NMR spectrum.
 - Splitting of ¹³C signals into multiple peaks is not observed in routine ¹³C NMR spectra.
- No (technically just very little) carbon-carbon coupling since coupling only occurs for adjacent carbons and only 1 in 100 carbon atoms is 13 C (1.1% natural abundance).
- Carbon-proton coupling can occur, however, splitting ¹³C signals into multiplets.
- **Broadband proton decoupled** (spectrum): A ¹³C NMR spectrum in which ¹H-¹³C coupling is eliminated by choosing instrumental parameters to decouple the proton-carbon interactions. *Also known as* **BB proton decoupled**.

• Shielding and deshielding works the same way (see Table 1.2).

Type of Carbon	Chemical Shift (δ, ppm)
1° Alkyl, RCH₃	0-40
2° Alkyl, RCH ₂ R	10-50
3° Alkyl, RCHR ₂	15-50
Alkyl halide or amine, R_3CX (X = Cl, Br, NR'_2)	10-65
Alcohol or ether, R₃COR′	50-90
Alkyne, RC≡R′	60-90
Alkene, $R_2C=R'$	100-170
C - R	
Aryl,	100-170
Nitrile, RC≡N	120-130
Amide, RCONR'2	150-180
Carboxylic acid or ester, RCOOR'	160-185
Aldehyde or ketone, RCOR'	182-215

Table 1.2: Approximate carbon-13 chemical shifts.

- In addition to the TMS peak, $^{13}\mathrm{C}$ spectra have a CDCl₃ solvent peak at δ 77.
- **DEPT** ¹³C **NMR spectrum**: A ¹³C NMR spectrum that indicates how many hydrogen atoms are bonded to each carbon, while also providing the chemical shift information contained in a broadband proton-decoupled ¹³C NMR spectrum. *Also known as* **distortionless enhancement by polarization transfer**.

Week 2

Spectrometry

2.1 Office Hours (Snyder)

1/17: • Does cyclohexane only have one ¹³C NMR signal, and only one ¹H NMR signal?

- -1 singlet for 13 C.
- − 1 singlet for ¹H.
- We don't integrate carbon.
- We only integrate to compare things.
- We won't have to deal with cyclohexane conformations wrt. NMR on any test.
- What do we need to know about the Karplus correlation?
 - We won't need it for problems.
 - It's useful, but we've got other things to worry about.
- Do chemists/when do chemists run ¹³C NMR experiments with all carbons isotopically carbon-13?
- Is the reason we don't integrate carbon because the placing of the carbon-13s is random? Would the proportions not still be representative?
- For ¹H NMR, feel free to draw in the hydrogen atoms on the line-angle structure.
- Multiplying n + 1 of different types of neighbors (e.g., if a hydrogen has 3 neighboring hydrogens to one side and 2 neighboring hydrogens to the other side, it has a maximum of (3+1)(2+1) = 12 peaks in its signal).
 - The multiplication analysis applies only to chains that are completely different.

2.2 NMR

- 1/18: With a 1400 MHz NMR spectrometer, we can see 3D structure.
 - Goes over an example of sketching a ¹³C spectrum, DEPT 90, and DEPT 135 spectrum for a given molecule.
 - You can flip groups in a problem, but you have to be consistent.
 - If you have closely spaced peaks in a sketch, be consistent with identifying a certain peak as CH, CH₂, or CH₃. But it doesn't matter which of the peaks you identify which way.
 - There can be variation in signal height, but we won't discuss this.

- Transition to ¹H NMR spectroscopy.
- A typical ¹³C NMR experiment takes 1-2 hours (for about 5 mg of material) to build appropriate peaks since there are so few ¹³C atoms interspersed.
 - On a strong field machine, though, a ¹H spectrum can be done in seconds.
- ¹H NMR offers better resolution with respect to some functional groups than ¹³C NMR.
 - Aldehydes and carboxylic acids will be clearly resolved.
 - Benzenes and alkenes will be better separated, too.
- Goes over typical chemical shifts (see Table 1.1).
- \bullet Goes over an example of sketching a $^1{\rm H}$ spectrum.
- Neighboring spins parallel to the magnetic field increase ppm (deshielding).
- Introduces the coupling constant J.
- Splitting can happen in ¹³C spectra, but it can't be observed on the time scale on which we measure.
- Terminology: Singlet, doublet, triplet, quartet, pentet, and sextet.
- Multiple neighbors? Multiply!
 - If you have 3 neighbors on one side and 2 on the other, for instance, you will have (3+1)(2+1) = 12 peaks.
 - Note that this is our predicted value due to overlap, we may see fewer, but we will always go
 with the predicted value in this class.
- Count neighbors even on non-carbon atoms.
- Hybridization.
 - Don't get bothered by the hybridization of parent carbons if it doesn't restrict conformations. For example, the sp^2 carbon in an aldehyde behaves the same as any other parent carbon.
 - Do worry about hybridization if it makes hydrogens nonequivalent. In 1-butene for example, the two terminal hydrogens on the alkene are nonequivalent.
 - We will not worry about multiplicity due to this effect, though the rules are similar to what we've seen.
- Benzenes.

Figure 2.1: Benzenes in ¹H NMR spectroscopy.

1/20:

- We can predict a bunch of splitting and peaks, but often there is so much overlap that we more just get a jagged blob (see Figures 2.1a and 2.1b).
- If you can find a clear singlet, perhaps separated a bit from the rest, integration can tell you how many substituents you have (see Figure 2.1c).
- The pattern in Figure 2.1d is a dead giveaway for para substituents.
- Alkene coupling constants.
 - cis-alkenes typically have $J = 6 10 \,\mathrm{Hz}$.
 - trans-alkenes typically have $J = 12 18 \,\mathrm{Hz}$.
 - These are identifiable, diagnostic signals.
- Enantiomers are identical in NMR experiments.
 - Remember that all of their physical properties are the same (including the various forms of spectroscopy) except optical rotation.

2.3 Mass / IR Spectrometry

- Solomons et al. (2016) says to add (not multiply) in the n+1 rule for multiple types of neighboring hydrogens.
 - What accounts for this inconsistency is the **Pascal approach**.
 - Solomons et al. (2016) assumes that the coupling constants in the NMR instruments we use will be equal for both neighboring groups. This leads to overlap in the second splitting.
 - This is often a good assumption, but not always.
 - The multiplicative approach gives you the maximum number of signals you might see.
 - You will often see more signals on better machines, i.e., ones that can distinguish coupling constants to decimal places instead of just whole numbers.
- Pascal approach: A mode of analysis in which we explicitly draw splitting of NMR peaks.

Figure 2.2: Pascal approach.

- The analyses in Figure 2.2 refer to a hydrogen with three neighbors to one side and one to the other (thus we split into 3 + 1 = 4 peaks and then again into 1 + 1 = 2 subpeaks per peak).
- Notice how in Figure 2.2a, a less sensitive instrument displays peak overlapping and thus an additive rule works, while in Figure 2.2b, a more sensitive instrument resolves individual peaks.
- Dr. Snyder always wants us to use the multiplicative rule on homeworks and tests.
- Reconstructs meta-bromomethylbenzene from its NMR spectrum.
- How spectroscopy is used in modern research.

- X-ray crystallography was the first type of spectroscopy on the scene, being able to identify the position of every atom save hydrogen. Yet it was restricted to crystalline solids.
- NMR is kind of the holy grail of today.
- How we extract chemicals from natural materials: We look for things that are stationary (because they have to be able to repel things through chemical means). Then we dry them, grind them down, and add an organic solvent.
- We then rotavap and use column chromatography.
- Mass spectrometry is a destructive process, but you only need a very tiny amount.
- Goes over theory of EI and hexane as an example.
 - Note that after EI, ions are accelerated around a corner where they bend in proportion to their mass to charge ratio (heavier ions bend less; ions with more charge bend more).
- We want to train our eyes to pick out the most dominant signals in a mass spectrum.
- A pattern of -14, -14, -14 is indicative of a linear alkane that's losing a CH₂ group each time.
- Alcohols will either have α -cleavage or dehydration.
- We should be able to detect bromine and chlorine.
- m/z = 77 is a dead giveaway for a phenyl cation.
- Now IR spectroscopy.
- Misc. IR notes.
 - Tighter bonds vibrate faster (e.g., $C \equiv C > C = C > C C$).
 - Bonds that are more polar also have higher wave numbers.
 - Esters usually have higher carbonyl stretches than ketones.
 - Putting a double bond next to a ketone lowers it's stretching frequency due to resonance detracting from the double bond character of the C=O bond.
 - Sometimes you can tell benzene because it has a smaller C-H peak.
 - Hydroxyl groups in alcohols, carboxylic acids, and phenols have different peaks, properties, and reactivity.
- IR summary.
 - A great tool to determine functional groups on small molecules.
 - Non-destructive.
 - You should be able to understand why each bond is positioned at a specific wavenumber range, learn that range, and then be able to identify all of the following functional groups from an individual IR spectrum.
 - Carbonyls (aldehydes, ketones, esters, carboxylic acids).
 - Alkynes.
 - Nitriles/cyanides.
 - Alcohols.
 - Primary and secondary amines.

2.4 Chapter 9: Nuclear Magnetic Resonance and Mass Spectroscopy

From Solomons et al. (2016).

110111 Dolo1110113 Ct al. (2010)

1/18:

- Mass spectrometry: The formation of ions in a mass spectrometer followed by separation and detection of the ions according to mass and charge.
- Mass spectrum: A graph that on the x-axis represents the formula weights of the detected ions, and on the y-axis represents the abundance of each detected ion.

Figure 2.3: The mass spectrum of propane.

- The x-axis is labeled m/z where m is mass and z is charge.
- The examples Solomons et al. (2016) consider all have z = +1, so the x-axis in them effectively represents the formula weight of each detected ion.
- Base peak: The tallest peak in a mass spectrum.
 - Usually caused by an easily formed fragment of the original compound.
 - Relative ion abundance on the y-axis is either expressed as a percentage of the base peak or directly as the number of detected ions.
 - The base peak in Figure 2.3 corresponds to the $C_2H_5^+$ ion, $m/z = 29 = 2 \cdot 12 + 5 \cdot 1$.
- Molecular ion: The ion with the formula weight of the original compound.
 - One of the higher value m/z peaks.
 - Usually not the base peak.
- Small peaks having m/z values 1 or 2 higher than the formula weight of the compound are due to 13 C and other isotopes.
- Electron impact: A method for ionizing molecules in a mass spectrometer by placing the sample under high vacuum and bombarding it with a beam of high-energy electrons. Also known as EI.
 - The energy of the electrons is in the range of $70 \,\mathrm{eV}$ or $6.7 \times 10^3 \,\mathrm{kJ/mol}$.
 - The incoming electrons ionize the molecules to molecular ions, which are radical cations since they have a +1 charge and an unshared electron.
- Note that there are ionization methods other than EI, but it is the most common.

• Localizing the radical and charge along the structure.

Figure 2.4: Molecular ions.

- The choice of where we localize the radical/charge is often arbitrary (esp. with hydrocarbons).
- However, "as we might expect, ionization potentials indicate that in [the] formation of radical cations, the nonbonding electrons of nitrogen, oxygen, and halogen atoms, and the π electrons of alkenes and aromatic molecules, are held more loosely than the electrons of carbon-carbon and carbon-hydrogen σ bonds" (Solomons et al., 2016, p. 425).
- Thus, "when a molecule contains oxygen, nitrogen, or a π bond, we place the odd electron and charge at a nitrogen, oxygen, halogen, or π bond. If resonance is possible, the radical cation may be delocalized" (Solomons et al., 2016, p. 425).
- Three important principles.
 - 1. The reactions that take place are all unimolecular since the pressure is kept so low.
 - 2. Single-barbed arrows denote the movement of single electrons.
 - 3. The relative ion abundances give key information about the structures of the fragments produced and their original locations in the molecule.
- Fragmentation by cleavage at a single bond.
 - When such a process happens in a molecular ion, a cation and a radical are produced, although
 only the cation will be detected by the positive ion mass spectrometers we're considering.
 - Each cleavage can happen in two ways (since one fragment will take the radical and the other will take the positive charge).
 - The path that produces the more stable carbocation will occur more rapidly.
 - Notice the difference in relative ion abundance between the secondary $\mathrm{CH_3CH_2}^+$ (m/z=29) and the primary $\mathrm{CH_3}^+$ (m/z=15) in Figure 2.3.
- When drawing cleavage reactions, use brackets and delocalization; when drawing cleavage mechanisms, use localization.
- Chain branching increases the likelihood of cleavage at a branch point because a more stable carbocation can result.
- Examples of fragmentation to form resonance-stabilized cations.
 - 1. Alkenes ionize and frequently undergo fragmentations that yield resonance-stabilized allylic cations.

$$CH_{2} = CH - CH_{2} - R \xrightarrow{\text{ionization}} CH_{2} \xrightarrow{\text{CH}} CH_{2} \xrightarrow{\text{CH}} R \xrightarrow{\text{fragmentation}} \begin{bmatrix} \overset{\dagger}{\text{C}}H_{2} - CH = CH_{2} \\ & \downarrow \\ CH_{2} = CH - \overset{\dagger}{\text{C}}H_{2} \end{bmatrix} + \cdot R$$

Figure 2.5: Resonance fragmentation: Alkenes.

2. Carbon-carbon bonds next to an atom with a lone pair usually break readily because the resulting carbocation is resonance stabilized.

$$R - \ddot{Z} - CH_2 - CH_3 \xrightarrow{\text{ionization}} R - \ddot{Z} - CH_2 \xrightarrow{\text{CH}_2} CH_3 \xrightarrow{\text{fragmentation}} \begin{bmatrix} R - Z = CH_2 \\ \downarrow \\ R - \ddot{Z} - \dot{C}H_2 \end{bmatrix} + \cdot CH_3$$

Figure 2.6: Resonance fragmentation: Lone pairs.

3. Carbon-carbon bonds next to the carbonyl group of an aldehyde or ketone break readily because resonance-stabilized ions called **acylium ions** are produced.

Figure 2.7: Resonance fragmentation: Carbonyls.

- Note that either the C-R or the C-R' bond could break.
- 4. Alkyl substituted benzenes ionize by loss of a π electron and undergo loss of a hydrogen atom or methyl group to yield the relatively stable **tropylium ion**. This fragmentation gives a prominent peak (sometimes the base peak) at m/z = 91.

$$\begin{array}{c|c} CH_3 & \text{fragmentation and} \\ \hline & -e^- & + \cdot & -H \cdot \\ \hline & & Tropylium ion \\ \end{array}$$

(a) Losing a hydrogen radical.

$$\operatorname{CH_3}$$
 fragmentation and rearrangement $\operatorname{-CH_3}$ \cdot

(b) Losing a methyl radical.

Figure 2.8: Resonance fragmentation: Alkyl-substituted benzene rings.

5. Monosubstituted benzenes with other than alkyl groups also ionize by loss of a π electron and then lose their substituent to yield a phenyl cation with m/z = 77.

$$\begin{array}{c|c} & & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array}$$

Figure 2.9: Resonance fragmentation: Monosubstituted benzene rings with nonalkyl groups.

- Y is a halogen, nitro group, acyl group, nitrile group, etc.

- Fragmentation by cleavage of two bonds leads to a new radical cation and a neutral molecule.
 - 1. Alcohols frequently show a peak at M⁺. 18. This corresponds to the loss of a molecule of water.

Figure 2.10: Fragmentation: Loss of H₂O.

2. Carbonyl compounds with a hydrogen on their γ carbon undergo a fragmentation called the McLafferty rearrangement.

Figure 2.11: Fragmentation: McLafferty rearrangement.

- Y may be an alkyl, hydride, ether, hydroxyl, etc.
- 3. There are also often peaks corresponding to the elimination of other small molecules.
- Isotope effects:
 - The presence of 13 C will provide a small peak at $M^+_{\cdot}+1$.
 - "In the mass spectrum for a sample containing chlorine, we would expect to find peaks separated by two mass units, in an approximately 3:1 (75.5%: 24.5%) ratio for the molecular ion or any fragments that contain chlorine" (Solomons et al., 2016, p. 432).
 - "In the mass spectrum for a sample containing bromine, we would expect to find peaks separated by two mass units in an approximately 1:1 ratio (50.5%:49.5% ⁷⁹Br to ⁸¹Br)" (Solomons et al., 2016, p. 433).
 - In a molecule containing two bromine atoms, for example, we'll see peaks at M^+ , M^+ + 2, and M^+ + 4 in a 1 : 2 : 1 ratio.

References

Solomons, T. W. G., Fryhle, C. B., & Snyder, S. A. (2016). Organic chemistry (12th). John Wiley & Sons.