

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12Q 1/00, G01N 27/327, C12Q 1/34, 1/48, 1/26		A1	(11) International Publication Number: WO 99/07877 (43) International Publication Date: 18 February 1999 (18.02.99)
(21) International Application Number: PCT/GB98/02239		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 5 August 1998 (05.08.98)			
(30) Priority Data: 9716453.7 5 August 1997 (05.08.97) GB 9725231.6 29 November 1997 (29.11.97) GB			
(71) Applicant (for all designated States except US): THE UNIVERSITY COURT OF THE UNIVERSITY OF ST. ANDREWS [GB/GB]; College Gate, North Street, St. Andrews KY16 9AJ (GB).			
(72) Inventor; and			
(75) Inventor/Applicant (for US only): DALE, Nicholas, Egerton [GB/GB]; 38 Markegate S, Crail KY10 3TL (GB).			
(74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).			

(54) Title: BIOSENSOR FOR DETECTING ADENOSINE

(57) Abstract

A biosensor to detect adenosine which comprises the enzymes adenosine deaminase, nucleoside phosphorylase and xanthine oxidase, or functional equivalents thereof, immobilized on a support and means to detect hydrogen peroxide like an electrolytic cell. Detection of adenosine level can be particularly useful, for example, in the treatment of narcolepsy, heart surgery and to improve the effect of some medications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

1

2 BIOSENSOR FOR DETECTING ADENOSINE

3

4 The present invention relates to a biosensor and assay
5 for detecting adenosine.

6

7 Adenosine is an important and near universal
8 neuromodulator in the peripheral and central nervous
9 systems. In the brain adenosine functions to protect
10 cells against ischaemic damage. Additionally,
11 adenosine has been implicated in the regulation of pain
12 pathways, the control of REM sleep, regulation of
13 spinal motor patterns and synaptic plasticity
14 underlying memory. Peripherally adenosine is
15 powerfully regulated in blood plasma and may be
16 involved in regulation of blood pressure and other
17 autonomic functions.

18

19 To facilitate study of adenosine various sensitive
20 methods have been developed for measuring adenosine
21 levels. However, such methods ultimately require
22 running a sample through a High Performance Liquid
23 Chromatography (HPLC) machine. Consequently, current
24 methods suffer from the disadvantages due to the
25 absolute requirement for such expensive machinery,

1 including lack of portability, the necessity of a
2 skilled operator and the time required to perform a
3 measurement. Methodologies reliant upon HPLC
4 techniques also exhibit limited time resolution.

5
6 There thus exists a need to develop techniques enabling
7 rapid time resolution of adenosine content in a sample.
8 Desirably, such techniques would involve only portable,
9 inexpensive equipment capable of providing rapid
10 measurements by relatively unskilled operators.

11
12 Monitoring of adenosine presence and/or content may be
13 of particular utility in the following situations:

14
15 Narcolepsy: is a disorder of REM sleep where the
16 affected individual will experience irresistible
17 sleep attacks of 5 to 30 minutes throughout the
18 day. The incidence of narcolepsy is 0.04 to 0.09%
19 of the population and very often its sufferers go
20 undiagnosed and suffer unwarranted social stigma
21 for apparent laziness. Since adenosine may be
22 involved in turning on REM sleep, it is possible
23 that inadequate regulation of adenosine release
24 could be a contributing factor. This in turn
25 suggests that measurement of adenosine levels in
26 narcoleptics could have diagnostic value.

27

28 Effective Medication: many drugs are often only
29 effective if their levels in plasma (and CSF) are
30 kept at therapeutic levels. Elevation of
31 adenosine may be desirable to protect neural
32 damage following stroke, and a suitable
33 measurement method would allow a drug treatment
34 regime to be tailored to achieve the correct
35 levels of adenosine.

36

1 Heart Surgery: Adenosine protects the heart during
2 transient oxygen deprivation, by increasing the
3 supply of blood to the heart, and reducing the
4 work performed by the heart. Clinically,
5 adenosine and drugs which target either adenosine
6 degradation or reuptake are used to treat a
7 variety of conditions. Abnormal heart rhythms can
8 be terminated by transient application of
9 adenosine. During heart surgery, the blood supply
10 to the heart muscle is stopped. When the surgery
11 is complete, reperfusion of the heart with blood
12 causes damage to the muscle which can be greatly
13 reduced by treatment with adenosine. However the
14 problem with using adenosine as a treatment is
15 that its actions depend upon the mode and locus of
16 application as well the dose. To compound these
17 problems even further, adenosine has a very short
18 half life in blood (seconds to minutes).
19 Furthermore, if the patients are already on drugs
20 which modify adenosine uptake or degradation there
21 is even further uncertainty over dosage.

22

23 The ability to determine adenosine levels in the
24 blood rapidly on-site (e.g. in an operating
25 theatre during surgery or in an Outpatient
26 Department) would remove uncertainty about dosage
27 and would allow optimal treatment with adenosine
28 and thus greatly improve the efficiency of
29 treatment.

30

31 EP-A-0184909 to Alberry describes an enzymically based
32 probe which may include the enzyme xanthine oxidase.
33 However, there is no description of a probe capable of
34 monitoring or detecting adenosine.

35

36 The present invention provides a bio-sensor comprising

1 the enzymes adenosine deaminase, nucleoside
2 phosphorylase and xanthine oxidase (or functional
3 equivalents thereof) and means to detect hydrogen
4 peroxide. Desirably, the enzymes are in an aqueous
5 environment, for example, are in aqueous solution.

6
7 Generally, the enzymes will be entrapped by a suitable
8 means, for example, a semi-porous membrane, although
9 any means which enables the enzymes to interact with
10 substrates in an aqueous phase whilst retaining the
11 enzymes in a particular locality will be suitable.

12 Suitable semi-porous membranes include semi-permeable
13 glass membranes, for example of the type made by
14 Sycopel International. One convenient form of hydrogen
15 peroxide detecting means to be used in the biosensor is
16 an electrolytic cell. It may comprise a single or a
17 dual-barrelled probe each consisting of a 230 μ m
18 diameter semipermeable cylindrical glass membrane, a
19 working electrode (eg. Pt electrode), a counter
20 electrode (eg. Ag electrode) and a reference electrode
21 (eg. Ag-AgCl electrode). The dual-barrelled probes
22 could be used as a quasi-differential device, in that
23 enzymes can be loaded into only one barrel and the
24 difference signal between the two barrels measured.

25
26 When placed into a sample containing adenosine the
27 three enzymes will act in series to convert adenosine
28 to uric acid with the evolution of hydrogen peroxide as
29 a by-product. The rate of production of hydrogen
30 peroxide is therefore proportional to the concentration
31 of adenosine. The hydrogen peroxide can then be
32 detected, for example, by using a platinum electrode.
33 Our experiments have shown that adenosine
34 concentrations as low as 10nM can be detected in this
35 way. One advantage of the bio-sensor of the present
36 invention is that it enables adenosine concentration to

1 be monitored in real time.

2

3 The sequential action of the enzymes involved in the
4 present invention can be described by the following
5 equations which illustrate the order of action of the
6 enzymes:

12

13

14

15

16 The relative concentrations of neighbouring enzymes (ie
17 adenosine deaminase: nucleoside phosphorylase and
18 nucleoside phosphorylase: xanthine oxidase) will affect
19 the efficiency of the bio-sensor since product
20 inhibition may cause a decay in the response observed.
21 Ratios of adenine deaminase: nucleoside phosphorylase
22 of from 1:100 to 1:1 (especially 1:10 to 1:1) and
23 ratios of nucleoside phosphorylase: xanthine oxidase of
24 from 1:100 to 1:10 (especially 1:50 to 1:10) are
25 satisfactory. In general a relative increase in the
26 concentrations of enzymes used (in the order adenine
27 deaminase: nucleoside phosphorylase: xanthine oxidase)
28 is required. Examples of suitable such ratios are
29 1:200:500 which has an efficiency of approximately 50%
30 and 1:2:100 which has an efficiency of approximately
31 80%. A ratio of adenine deaminase: nucleoside
32 phosphorylase: xanthine oxidase in the range 1:1:50 to
33 1:5:200 is preferred and a ratio of approximately
34 1:2:100 is especially preferred.

35

36 In a further aspect, the present invention provides a

1 method of detecting adenosine in a sample, said method
2 comprising exposing the sample to the enzymes adenosine
3 deaminase, nucleoside phosphorylase and xanthine
4 oxidase (or functional equivalents thereof) such that
5 the enzymes can act sequentially on the sample, and
6 measuring the production of hydrogen peroxide. The
7 amount of hydrogen peroxide provided is directly
8 proportional to the amount of adenosine in the sample.
9 If required, the evolution of hydrogen peroxide can be
10 measured over time to enable adenosine content to be
11 monitored, for example, in real time.

12
13 In yet a further aspect, the present invention provides
14 a method of diagnosis and treatment of pathological
15 conditions that result from faulty regulation of
16 adenosine, said method comprising detecting the levels
17 of adenosine in a patient in the manner described
18 above. For example the method of the invention can be
19 used in diagnosing sleep disorders (such as
20 narcolepsy).

21
22 In still a further aspect, the present invention
23 provides a method of monitoring drug requirements in a
24 patient, wherein said drug affects the *in vivo* levels
25 of free adenosine in a body fluid or an organ of said
26 patient, said method comprising detecting the level of
27 adenosine in said fluid or organ in the manner
28 described above.

29
30 In a yet further aspect, the present invention provides
31 a method of monitoring adenosine levels in a patient
32 before, during and/or after surgery, wherein the
33 adenosine levels are detected in the manner described
34 above. A particular example is the monitoring of
35 adenosine levels in the blood supply to the heart at
36 least during part of a cardiac surgical procedure in

1 order to ensure that, if necessary, adenosine levels
2 are boosted to the levels required to combat damage to
3 the cardiac muscle following reperfusion of the heart.
4 Conveniently the adenosine levels are monitored
5 continuously or intermittently at appropriate time
6 intervals by use of the bio-sensor of the present
7 invention.

8
9 In certain samples there may be electro-active species
10 which are also present. These electro-active species
11 could interact non-specifically with the platinum
12 electrode of the bio-sensor and influence the accuracy
13 of the result obtained. Such non-specific interactions
14 should desirably be filtered out from the final reading
15 in order to obtain accurate correlation of hydrogen
16 peroxide production with adenosine content.

17
18 In a modification of the method described above, it is
19 envisioned that the biosensor is placed into the sample
20 of interest and a stable reading obtained, this reading
21 being the sum of the interaction at the electrode due
22 to evolution of hydrogen peroxide and also the activity
23 arising from any non-specific electro-active species
24 present. In the modification a specific inhibitor to
25 adenosine deaminase is then introduced. The inhibitor
26 would block the first reaction of the series,
27 preventing hydrogen peroxide production. Consequently,
28 the portion of the final signal due to adenosine
29 presence obtained after inhibitor introduction would
30 cease. In other words, the reduced signal will be due
31 solely to the presence of electro-active species
32 interacting non-specifically with the platinum
33 electrode. This reduced reading would then be
34 subtracted from the initial reading to produce the
35 signal due only to adenosine presence. Suitable
36 inhibitors for adenosine deaminase include EHNA

1 (erythro-9-(2-hydroxy-3-nonyl)adenine) and coformycin.
2 Further information regarding adenosine uptake systems
3 may be obtained by using a blocker of adenosine uptake,
4 for example NBTG (S-(4-nitrobenzyl)-6-thioguanosine).

5 The platinum electrode used for hydrogen peroxide
6 detection in the present invention may be connected to
7 a potentiostat which holds the voltage of the electrode
8 constant at +650mV. Suitable equipment is manufactured
9 by Sycopel. It is possible for a reference electrode
10 to be included in the bio-sensor, although this is not
11 essential. A suitable reference electrode could
12 consist of the last two enzymes placed into a buffer
13 solution.

15 In a further aspect, the present invention provides the
16 sequential use of the enzymes adenosine deaminase,
17 nucleoside phosphorylase and xanthine oxidase in a bio-
18 sensor. Generally, the bio-sensor will be adapted to
19 monitor adenosine and will be used in conjunction with
20 a means for detecting hydrogen peroxide.

22 The technique described above has been used to measure
23 the release of adenosine from *Xenopus* embryo spinal
24 cord during swimming. Adenosine is produced from the
25 ventral part of the spinal cord and builds up slowly
26 during swimming episodes before decaying back to
27 baseline levels once the activity has finished. Our
28 experiments provide the first demonstration that
29 adenosine is released by the spinal cord during motor
30 activity. This is also the first time that adenosine
31 production has been monitored in real time during
32 neural activity.

34 The invention is further illustrated by the following,
35 non-limiting, examples and drawings:

1 **BRIEF DESCRIPTION OF THE DRAWINGS**

2 Figure 1. shows the detection of adenosine
3 concentration *in vitro* by enzyme microprobe obtained
4 with a biosensor of the invention.

5 Figure 2. shows the detection of adenosine-release
6 during swimming activity in a *Xenopus* embryo.

7 Figure 3. shows a schematic representation of the way a
8 biosensor of the invention is working and the
9 biochemical principle behind enzymatic-electrochemical
10 detection of adenosine.

11 Figure 4. shows an *in vitro* calibration and
12 characterization of an adenosine biosensor of the
13 invention.

14 Figure 5. shows how a biosensor probe of the invention
15 can detect adenosine released from the spinal cord
16 during fictive locomotion.

17 Figure 6. shows how blockers of adenosine uptake
18 greatly enhanced the release of adenosine from the
19 spinal cord.

20

21 **Example 1**

22

23 Loading biosensor probes with enzyme solutions

24

25 0.001U of adenosine deaminase (type VII, SIGMA), 0.2U
26 of nucleoside phosphorylase (from calf spleen, SIGMA),
27 and 5U of xanthine oxidase (from micro-organism, SIGMA)
28 were dissolved in 40 μ l of a saline consisting of
29 115mM NaCl, 1mM NaPi, 10mM HEPES, pH 7.4. 10 μ l of this
30 solution was then introduced into a biosensor probe
31 (SYCOPEL) at a flow rate of 60 μ l/hour.

32

33 In vitro calibration

34

35 A Biosensor Driver (SYCOPEL) was used to hold the probe
36 at +650mV and recorded any current signals generated.

1 When dual probes were used in a differential mode (with
2 enzymes being present only in one barrel) two Biosensor
3 Drivers were used (one for each probe) and the
4 difference signal between the two was obtained by a
5 differential amplifier. Probes were calibrated by
6 placing them in a continuously stirred bath with a
7 volume of 7ml. Concentrated aliquots of adenosine were
8 successively added to give the desired bath
9 concentration of adenosine. Greatest stability was
10 achieved when the probe and bath were shielded from all
11 air currents. The results are given in Figure 1.

12

13 Example 2

14

15 Recording adenosine release during swimming in *Xenopus*
16 embryos

17

18 Stage 37/38 *Xenopus* embryos were paralysed with α -
19 bungarotoxin and prepared for physiological recordings
20 using well established techniques (eg Dale, N. 1995
21 "Experimentally derived model for the locomotor pattern
22 generator in the *Xenopus* embryo" J. Physiol. (Lond.)
23 489: 489-510). To increase the stability of the
24 recordings, the head and trunk skin of the embryo
25 (which is ciliated and thus causes strong water
26 currents in the bath) was completely removed. The
27 embryos were bathed in a physiological saline that
28 contained 115mM NaCl, 3mM KCl, 2mM CaCl₂, 1mM MgCl₂, 1mM
29 NaPi, 2.4mM NaHCO₃, 10mM HEPES, Ph 7.4. The muscles
30 overlying the spinal cord were removed and the animal
31 then immobilized in a small recording chamber (0.5ml
32 volume). Extracellular ventral root recordings were
33 made to allow swimming activity to be monitored. The
34 adenosine-sensing probe was carefully aligned with -
35 and gently pressed onto - the lateral side of the
36 spinal cord. There was no fluid flow within the

1 recording chamber and the chamber and probe were
2 carefully shielded from external air currents. Once a
3 stable background signal had been obtained from the
4 probe, swimming was evoked by brief (0.5ms) electrical
5 stimuli to the tail skin of the embryo. The results
6 are given in Figure 2.

7

8 Example 3

9

10 Adenosine biosensor probes

11 Single and dual-barrelled biosensor probes were
12 obtained from Sycopel International. Each barrel
13 consisted of a 230 μ m diameter semipermeable glass
14 membrane, a Pt working electrode, an Ag counter
15 electrode and an Ag-AgCl reference electrode. They
16 were also fabricated with a 30° bend that allowed the
17 probe to be placed parallel to the embryo spinal cord
18 (see Example 4 below). The dual-barrelled probes could
19 be used as a quasi-differential device, in that enzymes
20 were loaded into only one barrel and the difference
21 signal between the two barrels was measured. In this
22 case the reference and counter electrodes of one barrel
23 were connected to the equivalent electrodes in the
24 other barrel.

25

26 0.05U of adenosine deaminase, 0.1U nucleoside
27 phosphorylase (both from calf spleen, SIGMA) and 5U of
28 xanthine oxidase (bacterial, SIGMA) were dissolved in
29 40 μ l of saline (115mM NaCl, 1mM NaPi, 10mM HEPES, Ph
30 7.4). 10 μ l of the enzyme mixture was then loaded, at a
31 rate of 30 μ l/hour, into the probe (one barrel for the
32 dual probes). The probes were controlled by a
33 potentiostat (Biosensor Driver, Sycopel International;
34 one for each barrel for the dual probes) that held the
35 working electrode at +650mV to detect H₂O₂.

36

1 For the dual probes the output of the two controlling
2 biosensors was fed into simple differential amplifier
3 to provide a signal that was proportional to the
4 difference between the two probes.

5

6 ***In vitro measurements***

7 Calibration and testing of the probe took place in a
8 vessel (7ml volume). The probe was immersed in saline
9 that was constantly stirred. To ensure maximum
10 stability of measurement, care was taken to shield the
11 vessel and probe from drafts. The adenosine
12 concentration in the vessel was changed by adding
13 concentrated aliquots to raise the overall
14 concentration to known levels. Successive amounts of
15 adenosine were added to give a calibration curve (Fig.
16 4). Other agents (eg coformycin and inosine were added
17 in this way too).

18

19 When loaded into a semipermeable glass microprobe, the
20 three enzymes completed a biosensor (Fig. 3) that was
21 very sensitive to adenosine and showed linear responses
22 from 10nM upwards (Fig. 4a,c,d). In a volume of only a
23 few hundred μ l, this is equivalent to a lower limit of
24 detection for adenosine of a few pmol. With complete
25 efficiency in the enzyme cascade, the response to a
26 given dose of adenosine would be identical to that
27 resulting from the same dose of inosine. It was found,
28 by comparing the responses to adenosine and inosine,
29 that the efficiency was around 80% (Fig. 4b). The
30 initial enzyme, adenosine deaminase, can be
31 specifically blocked by coformycin (see Agarwal et al
32 (1978) Methods in Enzymology 51:502-507). Therefore
33 50-500nM coformycin was added to the bathing medium.
34 This blocked the response to adenosine but crucially
35 had no effect on the response to inosine (Fig. 4b).
36 Coformycin can therefore be used to block only the

1 first step of the cascade and demonstrate that any
2 responses rely specifically on the activity of
3 adenosine deaminase.

4

5 **Example 4**

6

7 The biosensor was next used to monitor the production
8 of adenosine during locomotor activity in the *Xenopus*
9 embryo spinal cord. ATP and adenosine have important
10 actions function on the spinal circuitry (see Dale et
11 al, (1996) *Nature* 383:259-263) and the changing balance
12 between these two modulators mediates the run-down and
13 spontaneous termination of locomotor activity (see Dale
14 et al (1996) *supra*). This proposed control system
15 relies on adenosine being produced with a delay from
16 synaptically released ATP so that its build-up
17 throughout motor activity is slow. However direct
18 evidence for the production of adenosine is lacking; it
19 remains unclear whether it is produced from the
20 extracellular breakdown of ATP or is released
21 synaptically; and no information is available about the
22 time course of its production.

23

24 **Measurements of adenosine release from embryo spinal**
25 **cord**

26

27 Stage 37/38 *Xenopus* embryos were prepared for recording
28 by means of well established techniques (Kahn et al
29 (1982) *Journal of Experimental Biology* 99:185-196). In
30 brief, in accordance with the UK Animals (Scientific
31 Procedures) Act (1986) embryos were anaesthetized in
32 MS222 and the dorsal fin slit. They were then treated
33 with α -bungarotoxin (0.077mg/ml) until they were
34 immobilised. The trunk skin was then removed and the
35 muscles overlying one side of the spinal cord from the
36 hindbrain to the obex were removed to expose the spinal

1 cord. The animal was pinned in a small chamber (0.5ml
2 volume) so that the lateral side of the exposed cord
3 was uppermost. Ventral root recordings were made from
4 the intermyotome clefts and the biosensor probe was
5 laid along the length of the exposed cord. For dual
6 probes the barrel with enzymes was in contact with the
7 cord, while the reference barrel was necessarily
8 further away (due to the size of the probe relative to
9 the spinal cord, Fig. 3). Thus the dual probe
10 recordings were not true differential recordings.
11 Nevertheless the difference signal was more stable and
12 less prone to drift and environmental disturbance. The
13 ventral root recording and output from the biosensor
14 drivers was plotted on a thermal array recorder
15 (Graftek). Unlike the *in vitro* measurements, the fluid
16 in the recording chamber was kept stationary except
17 during solution changes. The saline for physiological
18 recordings contained 115mM NaCl, 2.4mM NaHCO₃, 3mM KCl,
19 2mM CaCl₂, 1mM MgCl₂, 1 or 2mM NaPi, 10mM HEPES, pH 7.4.
20
21 When the probe was aligned with the ventral portion of
22 the spinal cord clear responses occurred during motor
23 activity (Fig. 5). The ventral cord also contains the
24 densest staining for 5'-nucleotidase activity. The
25 probe current slowly rose during swimming, and then
26 after the activity had ceased gradually fell back to
27 baseline over a period of several minutes (Table 1).
28 This current was due to release of adenosine from the
29 spinal cord, since block of adenosine deaminase by 50nM
30 coformycin greatly reduced the signal from the probe
31 (n=6). The signals recorded from the probe were
32 variable depending upon the placement of the probe
33 relative to the spinal cord. They corresponded to
34 increases in adenosine concentration ranging from 10nM
35 to 100nM with a mean change of 58nM (n=13, Fig. 5a,
36 Table 1). In 4 additional experiments the change in

1 adenosine levels was much larger and ranged from 150 to
 2 nearly 650nM (mean change 377nM, Fig. 5b, Table 1).
 3 These large signals could also be blocked with
 4 coformycin (Fig. 5b) and were presumably recorded
 5 because the probe was fortuitously placed very close to
 6 the source of adenosine production. In these 4 cases,
 7 the levels of adenosine continued to rise for 15-72s
 8 beyond the end of the episode before falling back to
 9 baseline (Table 1). This behaviour may be expected if
 10 adenosine is produced from a pool of AMP that
 11 accumulates in the extracellular space and persists
 12 after neural activity has finished.
 13

Table 1

Type	Change in [Adenosine] (Nm)	Half decay time (sec)	Delay to peak (sec) (peak-end)	Ratio (peak/end)
Small (n=13)	58 \pm 6	90 \pm 19.3	6.5 \pm 4.8	1.1 \pm 0.1
Large (n=4)	377 \pm 106	104 \pm 16.8	49 \pm 12.3	2.0 \pm 0.4

18 Magnitude and time course of adenosine-production
 19 during swimming. The data are divided into two groups
 20 dependent upon size of adenosine response (see text).
 21 The "half decay time" is the time for the adenosine
 22 level to fall to half its peak value; the "delay to
 23 peak" refers to the delay between the end of a swimming
 24 episode and the peak of the adenosine response; and the
 25 "ratio" is the peak concentration of adenosine divided
 26 by that achieved at the end of the episode of swimming.
 27 All values expressed as a mean \pm sem. The n numbers
 28 refer to the number of preparations.
 29
 30

31 Example 5

32 To test whether adenosine uptake systems could play a
 33 role in limiting the rise of adenosine during locomotor

1 activity, the effects of NBTG a blocker of adenosine
2 uptake, were studied. At 1 μ M, NBTG had two effects
3 (Fig. 6): it greatly enhanced the magnitude (means 60
4 \pm 9 and 175 \pm 44 Nm in control and NBTG respectively,
5 n=5) and rate of the rise in adenosine concentration
6 (means 37 \pm 7 and 101 \pm 34 Nm.min $^{-1}$ in control and NBTG
7 respectively, n=5); and it slowed the recovery after
8 the cessation of motor activity (in 3 of 5 preparations
9 the probe signal did not decay to half peak within 5
10 minutes). This result suggests that adenosine uptake
11 plays an important role in slowing and limiting the
12 rise in adenosine concentrations during activity.

13

14 That levels of adenosine can continue to rise even
15 after locomotor has ceased, effectively rules out the
16 possibility that adenosine is released from neurons as
17 a transmitter. Instead, it strongly suggests that it
18 is produced from the breakdown of synaptically released
19 ATP via an extracellular intermediate. The possible
20 time course of ATP catabolism was analysed by modifying
21 a model for ectonucleotidase action that was originally
22 proposed for endothelial cells (see Gordon et al.
23 (1986) Journal of Biological Chemistry 261: 15496-
24 15504). This earlier work used Michaelis-Menten
25 kinetics to describe the actions of each enzyme, and
26 incorporated feed-forward inhibition by ADP of the
27 conversion of AMP to adenosine as described below.

28

29 Simulation of breakdown of ATP

30 The methods and equations of Slakey (1986) Journal of
31 Biological Chemistry 261: 15505-15507 were adapted. In
32 brief, the breakdown of ATP was considered as 4 coupled
33 irreversible reactions (through ADP, AMP and finally
34 adenosine). The velocity of each reaction (without
35 feed-forward inhibition) was described by the following
36 equation:

17

$$\frac{1}{2} \quad v = \frac{V_{max}[S]}{K_m + [S]} \quad (1)$$

4 The four coupled reactions were:

$$\frac{d[\text{ATP}]}{dt} = -v_{\text{ATP}} + k_r \quad (2)$$

$$\frac{d[ADP]}{dt} = v_{ATP} - v_{ADP} \quad (3)$$

$$\frac{d[\text{AMP}]}{dt} = v_{\text{ADP}} - v_{\text{AMP}} \quad (4)$$

$$\frac{dI_{ADOL}}{dt} = v_{AMP} - v_U \quad (5)$$

where k_R is the rate of release of ATP (and was set to 3 during swimming and 0 at other times); v_{ATP} , v_{ADP} and v_{AMP} are the velocities of breakdown of ATP, ADP and AMP and v_U is the velocity of adenosine-uptake. The velocities v_{ATP} , v_{ADP} and v_U were calculated according to equation (1). However, to incorporate competitive inhibition by ADP of the breakdown of AMP, v_{AMP} was described by the following equation:

$$V_{AMP} = \frac{V_{max}[S]}{K_m(1+\frac{[ADP]}{K_i})+[S]} \quad (6)$$

32 where K_i is the equilibrium constant of inhibition. The
 33 parameters used are taken from Slakey et al and are
 34 summarized in Table 1. The four differential equations
 35 (2-5) were integrated numerically using a Runge-Kutta
 36 fourth order algorithm with adaptive step size control
 37 (see Press et al (1988) Numerical recipes in C. The
 38 art of Scientific computing Cambridge University
 39 Press). Simulations were run on a Sun Ultra 170E.

Without feed-forward inhibition of the breakdown of AMP, the peak of adenosine concentration occurred close to the end of the episode of activity (Fig. 6b).

1 However when feed-forward inhibition was introduced,
2 AMP accumulated during the activity and the build-up of
3 adenosine was slowed and its peak concentration was
4 delayed until well after the end of activity (Fig. 6c,
5 compare to Fig. 4b). These new observations directly
6 demonstrate that adenosine is produced from ATP in the
7 extracellular space and strongly support the existence
8 of feed-forward inhibition to slow the build-up of
9 adenosine. This suggests, in turn, that the run-down
10 of motor activity depends very strongly on the nature
11 of the feed-forward inhibition of the 5'-nucleotidase.
12

13 A period of relative refractoriness for motor activity
14 follows swimming episodes in the *Xenopus* embryo. To
15 reliably elicit episodes of consistent length, a gap of
16 at least 3 minutes must elapse between the end of one
17 episode and the onset of the next (see Wall and Dale
18 (1995) Journal of Physiology 487: 557-572). As this
19 period correlates well with the elevated levels of
20 adenosine that follow an episode of swimming, the
21 persistence of adenosine in the extracellular space may
22 contribute to the transient refractoriness of spinal
23 circuits following motor activity.
24

25 This new method could be adapted to allow real-time
26 measurement of adenosine production both in brain
27 slices and freely behaving animals. In both cases the
28 ability to perform rapid determination of adenosine
29 levels and specifically relate any changes to neural
30 activity should greatly enhance our understanding of
31 the functional roles of adenosine. This technique
32 could be used in a device capable of the rapid
33 determination of adenosine in human blood and CSF which
34 may be of value in the diagnosis and treatment of
35 disorders of the heart and circulation, asthma and
36 neurological deficits resulting from faulty regulation

1 of adenosine.

2

3 **Table 2**

	ATP	ADP	AMP	Adenosine uptake
v_{max}	22	3.2	3.0	1
K_m	333	95	9.4	10
K_i	-	3.3	-	-

8

9 Kinetic parameters used in model for simulation of
10 breakdown of ATP. Units for v_{max} are arbitrary while
11 those for K_m and K_i are in μM .

12

13 **FIGURE LEGENDS**

14

15 **Figure 1 - Detection of adenosine *in vitro* by enzyme**
16 **microprobe**

17 A A dual probe was run in quasi-differential mode
18 with enzymes present in only one barrel. The
19 difference signal between the two probes is
20 plotted against time as successive additions to
21 adenosine raise the bath concentration of
22 adenosine to 10, 20, 40, 80 and 160nM.
23

24 B Plot of the peak current response versus
25 concentration of added adenosine. The response is
26 linear and has a slope of 3.6 nM/pA.
27

28 **Figure 2 - Detection of adenosine-release during**
29 **swimming activity in a *Xenopus* embryo**

30 A Top trace (probe) is the signal from the dual
31 probe in differential mode. The bottom trace
32 (v.r.) is the ventral root activity recorded from
33 a paralysed embryo. Although the embryo is
34 paralysed it can still produce the appropriate
35 neural commands to control swimming and these are
36 monitored by the ventral root electrode. Swimming

1 activity was elicited by an electrical stimulus to
2 the skin at *. The episode lasts nearly 3 minutes
3 before spontaneously stopping. During swimming
4 the signal from the adenosine probe gradually
5 rises. Once the episode of swimming finishes, the
6 signal from the probe falls back to baseline.
7

8 B The specific signal related to adenosine can be
9 blocked by EHNA, an inhibitor of adenosine
10 deaminase. In the same preparation as (A) EHNA
11 was added to the bath and swimming evoked. Only a
12 much smaller, non-specific signal is seen.
13

14 **Figure 3.** The principle behind the enzymatic-
15 electrochemical detection of adenosine.

16 Schematic of a dual biosensor probe 20 lying parallel
17 to the spinal cord 18 (drawn roughly to scale, Top).
18 Inside one barrel 16, the three enzymes of the cascade
19 are present. Inside the other barrel 14, no enzymes
20 are present. Adenosine diffuses from myomers 22
21 through the semipermeable glass membrane 10 and is
22 successively metabolized to uric acid with the
23 liberation of H₂O₂ which then donates electrons to the
24 Pt working electrode 12 at which is applied a voltage
25 of +650mV. The current detected is thus proportional
26 to the amount of adenosine present.
27

28 **Figure 4.** *In vitro* calibration and characterization of
29 the adenosine biosensor.

30 (a) Successive amounts of adenosine were added to the
31 bath at each arrow to raise the concentration of
32 adenosine in the bath by the amount indicated under
33 each arrow. The change in probe current resulting from
34 each application of adenosine is plotted in (c). This
35 shows that probe responds in a linear fashion.
36

1 (b) In the same experiment 80nM inosine was added
2 (immediately after the 80nM adenosine). The response
3 to inosine (substrate for the second enzyme in the
4 cascade) was about 25% bigger than the response to the
5 same amount of adenosine, indicating some loss of
6 efficiency in the probe. 500nM coformycin, a specific
7 blocker of adenosine deaminase was added. This rapidly
8 reduced the probe current (due to the continued
9 presence of adenosine in the bath) and greatly
10 attenuated the response to subsequent addition of
11 adenosine. However the response to inosine was
12 unaffected. Thus coformycin only disables the first
13 part of the cascade but leaves the rest intact making
14 it a good test for the specificity of the device.

15

16 (d) After the coformycin had been washed out, the
17 sensitivity of the probe to adenosine recovered
18 (although it was still slightly lower than in c). This
19 calibration shows that the response to adenosine was
20 linear from 10nM to 2 μ M.

21

22 Figure 5. The biosensor probe can detect adenosine
23 released from the spinal cord during fictive
24 locomotion.

25 (a) Production of adenosine during two consecutive
26 episodes of swimming monitored by a ventral root
27 recording (v.r.). Note the slow rise in the probe
28 current and the slow decay after the end of swimming
29 episode. The increases in probe current are equivalent
30 to a change in adenosine concentration of about 60nM.
31 The record at the right shows that application of 50nM
32 coformycin blocks most of the probe current indicating
33 that the signal is largely due to the release of
34 adenosine.

35

36 (b) Example (from another preparation) where favourable

1 placement of the probe relative to the spinal cord
2 resulted in a massive signal equivalent to a change in
3 adenosine concentration of about 370nM. In this case
4 there is a fast component to the probe current (arrow)
5 seen at the beginning of the swimming activity. Note
6 that the probe signal continues to rise for about 50s
7 after the end of the swimming episode. Application of
8 50nM coformycin blocked the probe current, but left a
9 small fast component. The large slowly developing
10 component of the probe current was thus specifically
11 due to the release of adenosine.
12

13 **Figure 6.** Blockers of adenosine uptake greatly
14 enhanced the release of adenosine from the spinal cord.
15 (a) In the control (left) the probe current involved
16 both fast (arrow) and slow components, the slow
17 component being equivalent to a rise in adenosine
18 concentration of around 64nM. After application of 1 μ M
19 NBTG (right) to block adenosine-uptake, the fast
20 component (arrow) was unchanged, but the slow component
21 was greatly increased in amplitude and rate of rise
22 (equivalent to a change of about 150nM).
23

24 (b) Simulation of the breakdown of ATP without feed-
25 forward inhibition by ADP. The peak of adenosine
26 concentration is only lightly delayed relative to the
27 end of a swimming episode (shown by bar).
28

29 (c) When feed-forward inhibition is incorporated, AMP
30 accumulates and the peak of adenosine concentration
31 occurs well after the cessation of activity. The trace
32 for ATP is unmarked in both panels. Both the
33 concentration and time scales are in arbitrary units.
34

1

2 CLAIMS

3

4 1. A biosensor to detect adenosine which
5 comprises the enzymes adenosine deaminase,
6 nucleoside phosphorylase and xanthine
7 oxidase, or functional equivalents thereof,
8 immobilized on a support and means to detect
9 hydrogen peroxide.

10

11 2. A biosensor as claimed in Claim 1, wherein
12 said detection means comprises an
13 electrolytic probe.

14

15 3. A biosensor as claimed in Claim 1 or 2,
16 wherein said enzymes are in an aqueous
17 environment.

18

19 4. A biosensor as claimed in any of Claims 1 to
20 3, wherein said enzymes are immobilised on a
21 semi-porous membrane.

22

23 5. A biosensor as claimed in Claim 4, wherein
24 said semi-porous membrane is a semi-permeable
25 glass membrane.

26

27 6. A biosensor as claimed in any of Claims 1 to
28 6, which comprises a single or a dual-
29 barrelled probe, said probe consisting of a
30 glass membrane, an electrolytic cell which
31 comprises a working electrode, a counter
32 electrode and a reference electrode and
33 wherein the said enzymes are immobilized onto
34 said glass membrane.

35

36 7. A biosensor as claimed in Claim 6, wherein

1 said working electrode is platinum, said
2 counter electrode is silver and said
3 reference electrode is a silver/silver
4 chloride type electrode.

5

6 8. A biosensor as claimed in either of Claims 6
7 and 7, wherein said glass membrane is
8 cylindrical in shape and has a diameter
9 ranging from about 200 and 300 μ m.

10

11 9. A biosensor as claimed in any of Claims 6 to
12 8, wherein said probe is a dual-barrelled
13 probe which is used as a quasi-differential
14 device and wherein said enzymes are
15 immobilized on only one of the barrels and
16 the difference signal between the two barrels
17 measured.

18

19 10. A biosensor as claimed in any of Claims 1 to
20 9, wherein the ratio of adenosine deaminase:
21 nucleoside phosphorylase is in a range from
22 1:100 to 1:1, especially 1:10 to 1:1, and
23 wherein ratios of nucleoside phosphorylase:
24 xanthine oxidase is in a range from 1:100 to
25 1:10, especially 1:50 to 1:10.

26

27 11. A biosensor as claimed in Claim 10, wherein
28 the ratio of adenosine deaminase:nucleoside
29 phosphorylase:xanthine oxidase is in a range
30 from 1:1:50 to 1:5:200.

31

32 12. A biosensor as claimed in Claim 11, wherein
33 the ratio of adenosine deaminase:nucleoside
34 phosphorylase:xanthine oxidase is
35 approximately 1:2:100.

36

- 1 13. A method of detecting adenosine in a sample,
2 said method comprising exposing the sample to
3 the enzymes adenosine deaminase, nucleoside
4 phosphorylase and xanthine oxidase, or
5 functional equivalents thereof, such that the
6 enzymes can act sequentially on the sample,
7 and measuring the production of hydrogen
8 peroxide there from.
9
- 10 14. A method of monitoring the amount of
11 adenosine in an patient which comprises
12 repeatedly measuring the amount of hydrogen
13 peroxide in a patient over time according to
14 the method as claimed in Claim 13.
15
- 16 15. A method of diagnosis and treatment of
17 pathological conditions that result from
18 faulty regulation of adenosine, said method
19 comprising detecting the levels of adenosine
20 in a patient by exposing at least one sample
21 of said patient to the enzymes adenosine
22 deaminase, nucleoside phosphorylase and
23 xanthine oxidase, or functional equivalents
24 thereof; such that the enzymes can act
25 sequentially on the sample; and measuring the
26 production of hydrogen peroxide there from.
27
- 28 16. A method of monitoring drug requirements in a
29 patient, wherein said drug affects the *in*
30 *vivo* levels of free adenosine in a body fluid
31 or an organ of said patient, said method
32 comprising detecting the level of adenosine
33 as described in Claim 13.
34
- 35 17. A method of monitoring adenosine levels in a
36 patient before, during and/or after surgery,

1 wherein the adenosine levels are detected
2 according to the method described in Claim
3 14.
4

1 / 7

Fig. 1A

Fig. 1B

2 / 7

Fig. 2A

Fig. 2B

3 / 7

Fig. 3

4 / 7

*Fig. 4c**Fig. 4d*

Fig. 5a

Fig. 5b

6 / 7

Fig. 6a

7 / 7

Fig. 6b

Fig. 6c

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/GB 98/02239

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12Q1/00 G01N27/327 C12Q1/34 C12Q1/48 C12Q1/26				
According to International Patent Classification(IPC) or to both national classification and IPC				
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12Q G01N				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category	Citation of document, with indication, where appropriate, of the relevant passages			Relevant to claim No.
X	US 5 288 613 A (LUONG JOHN H T ET AL) 22 February 1994 see column 3, line 56 - column 4, line 60; claim 10 see abstract			1-13
X	PATENT ABSTRACTS OF JAPAN vol. 096, no. 012, 26 December 1996 & JP 08 205891 A (NEW JAPAN RADIO CO LTD), 13 August 1996 see abstract			1-5
				-/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.		
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed				
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention				
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone				
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.				
"Z" document member of the same patent family				
Date of the actual completion of the international search		Date of mailing of the international search report		
22 October 1998		05/11/1998		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016		Authorized officer Moreno, C		

INTERNATIONAL SEARCH REPORT

Int'l Application No.

PCT/GB 98/02239

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE WPI Section Ch, Week 8808 Derwent Publications Ltd., London, GB; Class B04, AN 88-054472 XP002081753 & JP 63 011848 A (ORIENTAL ELECTRIC CO LTD), 19 January 1988 see abstract ---	1-5
X	Y. HAYASHI ET AL.: "Flow-injection determination of adenosine and inosine in blood plasma with immobilized enzyme columns connected in series and fluorimetric detection." ANALYTICA CHIMICA ACTA, vol. 186, 1986, pages 131-137, XP002081750 see the whole document ---	1,13
P,X	C. D. T. BRATTEN ET AL.: "Single-cell measurements of purine release using a micromachined electroanalytical sensor." ANALYTICAL CHEMISTRY, vol. 70, no. 6, 15 March 1998, pages 1164-1170, XP002081751 COLUMBUS US see abstract ---	1,13
A	US 5 534 504 A (SOLLEVI ALF) 9 July 1996 see the whole document ---	15
A	H. KATHER ET AL: "Chemiluminescent determination of adenosine, inosine, and hypoxanthine/xanthine." ANALYTICAL BIOCHEMISTRY, vol. 163, no. 1, 1987, pages 45-51, XP002081752 see the whole document -----	1,13

INTERNATIONAL SEARCH REPORT

International application No.

PCT/GB 98/02239

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 14-17
because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims 14-17
are directed to a method of treatment of the human/animal
body, the search has been carried out and based on the alleged
effects of the compound/composition.
2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such
an extent that no meaningful International Search can be carried out. specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 98/02239

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5288613	A 22-02-1994	CA	1312117 A	29-12-1992
		JP	2010155 A	12-01-1990
-----	-----	-----	-----	-----
US 5534504	A 09-07-1996	US	5449665 A	12-09-1995
		US	5731296 A	24-03-1998
		US	5231086 A	27-07-1993
		US	5104859 A	14-04-1992
		AU	613304 B	01-08-1991
		AU	5065585 A	07-04-1987
		CA	1301652 A	26-05-1992
		DE	3586993 A	25-02-1993
		DE	3586993 T	19-03-1998
		DE	3590855 T	25-08-1988
		DK	253187 A	19-05-1987
		EP	0275249 A	27-07-1988
		EP	0506205 A	30-09-1992
		JP	2535504 B	18-09-1996
		JP	63501497 T	09-06-1988
		WO	8701593 A	26-03-1987
-----	-----	-----	-----	-----