Improving the Correctness of Medical Diagnostics Based on Machine Learning with Coloured Petri Nets

Irene Dovichi

Computational Models for Complex Systems presentation a.y. 22/23

Introduction to the topic

- Breast cancer: most common cancer in women
- Importance of early detection of cancer
- Conventional methods of diagnosis
 - lab tests 💧
 - imaging tests
 - biopsy **

are exposed to human error, long-lasting, painful

- Alternative: Machine Learning based diagnosis
- Formal verification of the prognostic process

Presentation scheme

- Data collection
- 2 Formation of the decision tree
- 3 Transformation into an equivalent CP-Net
- 4 Incorporation in a Hierarchical CP-Net model
 - for correcting the rules
 - for proving the correctness of the model
- 5 Performance metrics

Dataset

Breast Cancer Wisconsin Diagnostic (WDBC)

- From the UCI Machine Learning Repository
- Digitized images of a FNA of a breast mass *
- 569 instances:
 - 212 malignant cases M X
 - 357 benign cases B ✓
- The dataset was split in 2 groups:
 - training set 400 instances
 - testing set 169 instances
- 32 features: describe the cell nuclei present in the image

Dataset

Breast Cancer Wisconsin Diagnostic (WDBC): 32 features

- ID number
- Diagnosis (M/B)
- 10 real-valued features (Radius, Texture,...), for each of them:
 - mean value
 - standard error
 - worst value

Feature	Description	Mean	Standard error	Worst/largest value
Radius	Mean of the distances between the center and the points	6.98-28.11	0.11-2.87	7.93-36.04
	of the perimeter			
Texture	Standard deviation of gray level values	9.71 - 39.28	0.36 - 4.89	12.02-49.54
Perimeter	The total distance between the snake points constitutes	43.79-188.50	0.76-21.98	50.41-251.20
	the nuclear perimeter			
Area	Measured simply by counting the number of pixels on	143.5-2501.00	6.80-542.20	185.20-4254.00
	the interior of the snake			
Smoothness	Local variation in radius lengths	0.05 - 0.16	0.00 - 0.03	0.07 - 0.22
Compactness	Perimeter ² /area - 1	0.02 - 0.35	0.00-0.14	0.03 - 1.06
Concavity	Severity of concave portions of the contour	0.00 - 0.43	0.00 - 0.40	0.00-1.25
Concave points	Number of concave portions of the contour	0.00 - 0.20	0.00 - 0.05	0.00-0.29
Symmetry	The major axis or longest chord through the center	0.11 - 0.30	0.01 - 0.08	0.16-0.66
Fractal	Coastline approximation - 1	0.05 - 0.10	0.00 - 0.03	0.06-0.21
dimension	**			

Machine learning algorithm

- \bullet We are interested in binary classification: M/B
- Methods:
 - decision trees
 - support vector machine
 - K-nearest neighbour
 - Naive Bayes
 - ...

Machine learning algorithm

- We are interested in binary classification: M/B
- Methods:
 - decision trees
 - support vector machine
 - K-nearest neighbour
 - Naive Bayes
 - ...

C4.5 algorithm (J48) decision tree

- Classification algorithm that produces decision trees based on information theory
- Best feature to split on: the one with greatest information gain

Information gain

$$\{A_1,\ldots,A_n\}=$$
 set of features, $\{C_1,\ldots,C_k\}=$ set of classes, $T=$ set of training examples

• Entropy of the training set

$$E(T) = -\sum_{i=1}^{k} \frac{|C_i|}{|T|} \cdot log_2 \frac{|C_i|}{|T|}$$

Information gain

$$\{A_1,\ldots,A_n\}=$$
 set of features, $\{C_1,\ldots,C_k\}=$ set of classes, $T=$ set of training examples

• Entropy of the training set

$$E(T) = -\sum_{i=1}^{\kappa} \frac{|C_i|}{|T|} \cdot log_2 \frac{|C_i|}{|T|}$$

ullet Conditional entropy of T given A_j

$$E(T|A_j) = \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot E(T_i)$$

where $\{T_1, \dots, T_m\}$ are partitions of T derived from a certain condition on A_j

Information gain

Entropy of the training set

$$E(T) = -\sum_{i=1}^{k} \frac{|C_i|}{|T|} \cdot log_2 \frac{|C_i|}{|T|}$$

• Conditional entropy of T given A_j

$$E(T|A_j) = \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot E(T_i)$$

where $\{T_1, \dots, T_m\}$ are partitions of T derived from a certain condition on A_j

• Information gain of A_j

$$IG(T|A_j) = E(T) - E(T|A_j)$$

Decision tree trained on WDBC dataset

Prognostic rule extraction

7 leaf nodes $\psi \rightarrow$ 7 prognostic rules 📜

No	Label	Extracted rules	Rule	Rule	Rule
No Label		Extracted rules		support	accuracy
R1	В	Worst Perimeter(WP) ≤ 105 AND Worst Concave Points(WCP) ≤ 0.1329	2	209	98.08
R2	В	Worst Perimeter(WP) \leq 105 AND Worst Concave Points(WCP) $>$ 0.1329 AND Worst Texture(WT) \leq 23.41	3	5	100
R3	M	Worst Perimeter(WP) ≤ 105 AND Worst Concave Points(WCP) >0.1329 AND Worst Texture(WT) >23.41	3	11	90.90
R4	M	Worst Perimeter(WP) \leq 114.3 AND Mean Texture(MT) \leq 19.67 AND Mean Radius(MR) \leq 14.11	3	173	5.20
R5	В	Worst Perimeter(WP) \leq 114.3 AND Mean Texture(MT) \leq 19.67 AND Mean Radius(MR) > 14.11	3	19	100
R6	M	Worst Perimeter(WP) ≤ 114.3 AND Mean Texture(MT) > 19.67	2	68	38.23
R7	M	Worst Perimeter(WP) >114.3	1	140	98.57

- Rule support: number of instances that comply with rule conditions
 - \hookrightarrow threshold value: 5
- Rule accuracy: ratio of correctly classified instances

CP-Net transformation

Coloured Petri Nets - Intuition

- Adding colours to the <u>tokens</u>
 - to distinguish between different types of tokens
 - to attach a data value to them
- Each <u>place</u> is associated with a set of colours
- Transitions are aware of the colours 👀
 - tokens may change colour when a transition fires

 → arc expressions
- Generalize Petri nets
 - from CP-Nets to PT-Nets uniquely
 - from PT-Nets to CP-Nets in many ways

Coloured Petri Nets - Formal definition

A Coloured Petri Net (CP-Net) is a tuple

$$N = (PI, Tr, F, \Sigma, C, g, f, M_0)$$

where:

- PI non-empty finite set of places
- Tr non-empty finite set of transitions
- F finite set of arcs
- ullet Σ finite set of non-empty colour sets
- $C: PI \to \Sigma$ colour function
- $g: Tr \rightarrow EXP$ guard function
- $f: F \to EXP$ arc expression function
- $M_0: PI \rightarrow EXP$ initialization function

and:
$$PI \cap Tr = PI \cap F = Tr \cap F = \emptyset$$

Coloured Petri Nets - Behaviour

Dynamic behaviour of CP-Nets is observed by firing transitions (4)

- A transition can be fired only if it is enabled
- The firing of a transition creates a new marking

Example

Initial marking

$$m(p_i) = 2'W + 1'B + 1'G$$

 $m(p_j) = 2'W + 2'B + 2'G$

Possible bindings for m

$$b_1 = \langle x = W, y = B, z = G \rangle$$

 $b_2 = \langle x = W, y = G, z = B \rangle$

New marking

$$m_1(p_k) = 1'W + 1'G$$

 $m_2(p_k) = 1'W + 1'B$

Hierarchical CP-Nets

A Hierarchical Coloured Petri Net (HCP-Net) is a finite set of nets

$$HCPN = \{S_1, S_2, \dots\}$$

and each S_i is a tuple

$$S_i = (PI, Tr, F, \Sigma, C, g, f, M_0, h)$$

where:

- F, Σ, C, g, f, M_0 defined as in CP-Nets
- PI = ODP ∪ INP set of ordinary places (as in CP-Nets) and interface places
- $Tr = ODT \cup HPT$ set of ordinary transitions (as in CP-Nets) and hyper-transitions
- h function that maps each hyper-transition to a net

CPN Tools

- CPN Tools is a computer tool for editing, simulating, and analyzing high-level Petri nets
- Two main components
 - graphical editor 🕆
 - backend simulator (CPN ML)

- It supports basic, timed, and coloured Petri nets
- Advantages
 - better results for both graphics and calculations
 - faster results
 - interactive presentations

Hierarchical CP-Net for medical diagnostics

Color Set Definition	Description		
colset NO = INT;	Specifies the serial number for pa-		
	tient record.		
colset WP = REAL;	Specifies the Worst Perimeter.		
colset WCP = REAL;	Specifies the Worst Concave		
	Points.		
colset WT = REAL;	Specifies the Worst Texture.		
colset MT = REAL;	Specifies the Mean Texture.		
colset MR = REAL;	Specifies the Mean Radius.		
colset L = string;	Specifies the patient record classi-		
	fication label.		
colset P = product	Cartesian product specifies the pa-		
NO*WP*WCP*WT*MT*MR;	tient record attributes present in		
	feature list.		
colset P_LAB = product	Cartesian product specifies the pa-		
NO*WP*WCP*WT*MT*MR*L;	tient record with class label at-		
	tribute.		
colset P_ACL_PRL = product	Cartesian product specifies the pa-		
NO*WP*WCP*WT*MT*MR*L*L;	tient record with actual and pre-		
	dicted class label attributes.		
colset ACTUAL_LAB = product	Cartesian product specifies the ac-		
NO*L;	tual label for a patient record.		

Figure: Declaration of colour sets

Hierarchical CP-Net for medical diagnostics

```
Algorithm 1 Decision Rules to CP-Nets

Input: Rule Set and Class Label
Output: CP-Net Submodule
1 for decision rule in Rule Set do
2 | Create CP-Net Transition
3 | for rule.attributes in rule do
4 | Add transition guard for rule.attribute
5 | end
6 end
```

Figure: Pseudocode for creating submodules

Hierarchical CP-Net for medical diagnostics

Diagnosis M submodule

Diagnosis B submodule

Verifier submodule

State spaces

- Useful tool to study the structural and dynamic properties of a CP-Net
- Calculate all reachable states (markings) and state changes (occurring binding elements) of the CP-Net
- Represent them in a directed graph
 - the nodes are the reachable markings
 - the arcs correspond to occurring binding elements
- State space explosion 1

Correctness algorithm

- The positions of the tokens representing patients are analysed in the state space generated by the CPN Tools
- Checking the place *Compare_Actual_Predicted_Labels* we can find the patients that have been misclassified
- In case of misclassification rules are revised or possibly a new rule is created so that this instance is correctly classified
- The process continues until all rules are adjusted to pass the maximum number of tokens

Correctness algorithm

Algorithm 2: Decision Rule Correctness Process

```
Input: CP-Nets Model and Token Set
   Output: Formally Verified CP-Nets Model
1 for Token in TokenSet do
      for Rules in CP-NetsModel do
          if State.M \leftarrow Token then
              if Token.label == M then
                 Rules \leftarrow Verified
             else
                 Rules \leftarrow ReviseRule(Rules, Token)
             end
          else
              if Token\ label == B\ then
10
                 Rules ← Verified
11
             else
12
                 Rules \leftarrow ReviseRule(Rules, Token)
13
             end
14
          end
15
      end
16
```

```
1 Function ReviseRule(RuleSet, Token)
2 for Rule in RuleSet do
3 | for Attributes in Rule do
4 | Mathematical adjustments
5 end
6 if Token is simulated successfully then
7 | return true
8 else
9 | Add new Rule into RuleSet
10 | end
11 end
```

Figure: ReviseRule subroutine

Figure: Pseudocode to correct the model

17 end

Revised rules

🞉 Decision rules after implementing Algorithm 2 🎉

No	Label	Extracted rules	Remarks	Rule	Rule
No Laber			Itemarks	support	accuracy
R1	В	Worst Perimeter(WP) ≤ 105 AND Worst Concave Points(WCP) ≤ 0.129	Rule Revised	105	100
R2	\mathbf{B}	Worst Perimeter(WP) ≤ 105 AND Worst Concave Points(WCP) > 0.129	Rule Revised	/	/
		AND Worst Texture(WT) ≤ 23.41			
R3	\mathbf{M}	Worst Perimeter(WP) ≥ 90 AND Worst Concave Points(WCP) > 0.1329	Rule Revised	43	83.72
		AND Worst Texture(WT)> 20			
R4	\mathbf{M}	Worst Perimeter(WP) ≥ 105 AND Mean Texture(MT) ≥ 20.5 AND Mean	Rule Revised	33	84.84
		$Radius(MR) \ge 13$			
R_5	В	Worst Perimeter(WP)≤ 114.3 AND Mean Texture(MT)≤ 19.67 AND Mean	No Changes	13	92.30
		Radius(MR) > 14.11			
R6	\mathbf{M}	Worst Perimeter(WP)≥ 110 AND Mean Texture(MT)≥ 20.5	Rule Revised	30	90
R7	\mathbf{M}	Worst Perimeter(WP)> 114.3	No Changes	36	91.66
R8	\mathbf{M}	Worst Perimeter(WP) < 90 AND Worst Texture(WT)≥ 30.4	New Rule	/	/

Revised rules

Decision rules after implementing Algorithm 2

No	Label	Extracted rules	Remarks	Rule support	Rule accuracy
R1	В	Worst Perimeter(WP) ≤ 105 AND Worst Concave Points(WCP) ≤ 0.129	Rule Revised	105	100
R2	\mathbf{B}	Worst Perimeter(WP) ≤ 105 AND Worst Concave Points(WCP) > 0.129	Rule Revised	/	/
		AND Worst Texture(WT) ≤ 23.41			
R3	\mathbf{M}	Worst Perimeter(WP) ≥ 90 AND Worst Concave Points(WCP) > 0.1329	Rule Revised	43	83.72
		AND Worst Texture(WT)> 20			
R4	\mathbf{M}	Worst Perimeter(WP) ≥ 105 AND Mean Texture(MT) ≥ 20.5 AND Mean	Rule Revised	33	84.84
		$Radius(MR) \ge 13$			
R5	В	Worst Perimeter(WP)≤ 114.3 AND Mean Texture(MT)≤ 19.67 AND Mean	No Changes	13	92.30
		Radius(MR) > 14.11			
R6	\mathbf{M}	Worst Perimeter(WP) ≥ 110 AND Mean Texture(MT) ≥ 20.5	Rule Revised	30	90
R7	\mathbf{M}	Worst Perimeter(WP)> 114.3	No Changes	36	91.66
R8	\mathbf{M}	Worst Perimeter(WP) < 90 AND Worst Texture(WT)≥ 30.4	New Rule	/	/

- They correspond to the guards that appeared in the M and B submodules
- Rules 2 and 8 are discarded since they have support < 5

Accuracy comparison

No	Before	After
R1	98.08	100
R3	90.90	83.72
R4	5.20	84.84
R5	100	92.30
R6	38.23	90
R7	98.57	91.66
verage	71.83	90.42

Figure: Rule accuracy before and after Algorithm 2

State space report

CPN Tools allows you to save state space analysis calculations

• Strongly-connected-component graph (SCC graph)

- the nodes are subgraphs of the state space
- state space nodes n_1 and n_2 are in the same subgraph iff they are mutually reachable
- Home marking can be reached from any reachable marking

Dead marking when no transition is enabled

State space report of our model

Statistics

Scc Graph

```
Home Properties
                               Home Markings
                                   None
                              Liveness Properties
State Space
  Nodes: 28501
                               Dead Markings
  Arcs: 138718
                                   16964 [28501,28500,28499,28498,28497,...]
  Secs: 300
  Status: Partial
                               Dead Transition Instances
                                   Diagnosis B Labeller'Rule2 1
                                   Diagnosis B Labeller'Rule6 1
  Nodes: 28501
                                   Diagnosis M Labeller'Rule8 1
  Arcs: 138718
  Secs: 1
                                Live Transition Instances
                                   None
                              Fairness Properties
                                   No infinite occurrence sequences.
```

Recap

Formal Verification of Medical Diagnostic Prognostic Rules

Confusion matrix

Performance metrics

Accuracy (ACC)

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

- Sensitivity (TPR)
- Specificity (TNR)

$$TPR = \frac{TP}{TP + FN}$$

$$TNR = \frac{TN}{TN + FP}$$

Comparison with other methods

	Breast Cancer Wisconsin Diagnostics (WDBC)			
Method	Sensitivity	Specificity	Accuracy	
ANN	97.25	97.31	97.14	
SVM	95.98	94.44	96.82	
K-NN	95.21	95.86	94.02	
RF	95.73	97.84	92.64	
NB	92.39	93.51	90.47	
Proposed approach	91.71	85.20	88.46	

Figure: Comparison with other supervised ML methods

	Breast Cancer Wisconsin Diagnostics (WDBC)				
Method	Rules	Sensitivity	Specificity	Accuracy	
Decision Tables	27	93.75	89.59	96.91	
OneR	1	88.5	87.28	89.42	
PART	6	91.75	89.59	93.39	
RIPPER	3	92.5	91.32	93.39	
Proposed approach	6	91.71	85.20	88.46	

Figure: Comparison with other rule extraction methods

References

- [1] G. Geeraerts. An Introduction to Petri nets and how to analyse them... URL: https://verif.ulb.ac.be//ggeeraer/Tutorial-Perti-Nets-Geeraerts.pdf.
- [2] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 1. Berlin: Springer-Verlag, 1992.
- [3] K. Jensen and Lars M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concurrent Systems. Berlin: Springer-Verlag, 2009.
- [4] M. Nauman et al. "Guaranteeing Correctness of Machine Learning Based Decision Making at Higher Educational Institutions". In: IEEE Access 9 (2021), pp. 92864–92880. DOI: 10.1109/ACCESS.2021.3088901.
- [5] M. Nauman et al. "Improving the Correctness of Medical Diagnostics Based on Machine Learning With Coloured Petri Nets". In: IEEE Access 9 (2021), pp. 143434–143447. DOI: 10.1109/ACCESS.2021.3121092.