

TD2Antennes et propagation 2017/2018

SMART'Com Jamila Ben Slimane

Exercice 1:

- 1) Calculer la surface équivalente d'une antenne de réception pour que la puissance fournie au récepteur soit de 10⁻¹⁰ W, en sachant que la densité de puissance reçue par cette antenne est de 0,971 . 10⁻¹⁰ W/m².
- 2) En déduire la fréquence théorique utilisée, en sachant que le gain de l'antenne de réception est de 33 dB.

Exercice 2:

Calculer l'atténuation de propagation (pertes dues à la végétation) due à une rangée d'arbres de 7m de large à la fréquence 900MHz, puis aux fréquences 1,8 et 5GHz.

Exercice 3: Soit une liaison entre une station de base BS et un mobile GSM dont les caractéristiques sont :

		Station BS	Terminal MS
Puissance max d'émission	$P_{e \max}(W)$	3 <i>W</i>	1W
Pertes de branchement hyperfréquence à l'émission	$A_{be}(dB)$	3 dB	-
Pertes de branchement hyperfréquence à la réception	$A_{br}(dB)$	3dB	3dB
Pertes de feeders		3dB	-
Pertes dues aux utilisateurs (côté MS)	$A_u(dB)$	-	1dB
Gains d'antennes	G(dBi)	10dBi	0dBi
Puissances seuil des récepteurs	$P_{rs}(dBm)$	-109dBm	-106,3dBm
Marge de réception	$M_r(dB)$	8dB	8dB

La liaison fonctionne à 900MHz. Les hauteurs des antennes de la station de base et celle du mobile sont respectivement $h_b = 30m$ et $h_m = 1,7m$.

- 1. Quelle est la PIRE de chaque émetteur ?
- 2. Établir le bilan de liaison de la voie montante et celui de la voie descendante ? Les deux trajets sont-ils équilibrés ?
- 3. En utilisant le modèle d'Okumura Hata (cas d'une ville moyenne en zone urbaine), quelle est la portée des cellules (rayon de cellule)?

Exercice 4:

La puissance d'alimentation de l'émetteur pour une chaîne de télévision est de 4 kW. Le gain en puissance de son antenne dans la direction d'une ville X, qui se trouve à une distance R = 100 km est de 5 dB.

- 1) Calculer la puissance d'alimentation de la source isotrope équivalente (PIRE).
- 2) En déduire, au niveau de la ville X :
- a) la puissance rayonnée par unité de surface,
- b) le champ électrique rayonné.

Exercice 5:

Soit 2 dipôles électriquement petits séparés comme illustre la figure.

- 1. Déterminer l'expression du champ total E_T rayonné par les deux antennes en un point M de l'espace sachant que les différents dipôles ont subi :
- 2. Cas 1, une même excitation : même amplitude V_0 et sans déphasage
 - a. Pour $d = \lambda/4$, en déduire les valeurs maximale et minimale du champ total E_T .
 - b. Pour $d = \lambda/2$, en déduire les valeurs maximale et minimale du champ total E_T
- 3. Cas 2, une même excitation : même amplitude V_0 et déphasage de 90°
 - a. Pour $d = \lambda/4$, en déduire les valeurs maximale et minimale du champ total E_{T} .
 - b. Pour $d = \lambda/2$, en déduire les valeurs maximale et minimale du champ total E_T

Avec

L'expression du champ électrique en champ lointain d'un dipôle peut s'écrire (sans déphasage)

$$E = E_{\theta} = \frac{\eta \beta^{2} I_{o} h}{4\pi} \sin \theta \frac{j}{\beta r} e^{-j\beta r} = E_{0} \sin \theta \frac{e^{-j\beta r}}{r}$$

Et

$$\cos(2a) = 2\cos(a)^2 - 1$$