Assignment_3

April 1, 2023

0.1 Assignment 3

IMPLEMENTATION ON CLASSIFICATION Using R

Name	USN	Class
Ajay Nagaraj M	2SD19CS008	8TH Sem CSE B Div

```
[]: #Loading library
library(mlbench)
#Using BreastCancer dataset
data(BreastCancer, package = "mlbench")
breast_canc = BreastCancer[complete.cases(BreastCancer),]
#Displaying the information related to dataset with the head() function.
head(breast_canc)
```

		Id	Cl.thickness	Cell.size	Cell.shape	Marg.adhesion	Epith.c.size	Bare.nu
		<chr></chr>	$\langle ord \rangle$	$\langle ord \rangle$	$\langle ord \rangle$	<ord></ord>	$\langle \text{ord} \rangle$	<fct $>$
A data.frame: 6×11	1	1000025	5	1	1	1	2	1
	2	1002945	5	4	4	5	7	10
	3	1015425	3	1	1	1	2	2
	4	1016277	6	8	8	1	3	4
	5	1017023	4	1	1	3	2	1
	6	1017122	8	10	10	8	7	10

[]: library(caret) library(dplyr)

Loading required package: ggplot2

Loading required package: lattice

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':
intersect, setdiff, setequal, union

```
[]: data1 <- select(breast_canc, -Id)

[]: #Dividing dataset into training and test dataset.
set.seed(100)
#Creating partitioning.
Training_Ratio <- createDataPartition(data1$Class, p=0.7, list = F)
#Creating training data.
Training_Data <- data1[Training_Ratio, ]
head(Training_Data)
#Creating test data.
Test_Data <- data1[-Training_Ratio, ]
head(Test_Data)</pre>
```

Cl.th	ickness Cell.size	Cell.shape	Marg.adhesion	Epith.c.size	Bare.nuclei	Bl.cr
<ord< td=""><td><ord></ord></td><td>$\langle ord \rangle$</td><td><ord></ord></td><td>$\langle ord \rangle$</td><td><fct$>$</td><td><fct< td=""></fct<></td></ord<>	<ord></ord>	$\langle ord \rangle$	<ord></ord>	$\langle ord \rangle$	<fct $>$	<fct< td=""></fct<>
1 5	1	1	1	2	1	3
A data.frame: 6×10^{-2}	4	4	5	7	10	3
A data. If affile. 0×10^{-3} 3 3	1	1	1	2	2	3
4 6	8	8	1	3	4	3
6 8	10	10	8	7	10	9
$8 \mid 2$	1	2	1	2	1	3

		Cl.thickness <ord></ord>	Cell.size <ord></ord>	Cell.shape <ord></ord>	Marg.adhesion <ord></ord>	Epith.c.size <ord></ord>	Bare.nuclei <fct></fct>	Bl.
A data.frame: 6×10	5	4	1	1	3	2	1	3
	7	1	1	1	1	2	10	3
	9	2	1	1	1	2	1	1
	10	4	2	1	1	2	1	2
	11	1	1	1	1	1	1	3
	13	5	3	3	3	2	3	4

```
[]: model <- train(Class ~ ., method='knn', data = Training_Data, metric='Accuracy')
```

[]: dim(Test_Data)

1. 204 2. 10

```
[]: predict <- predict(model, Test_Data)
```

```
[]: predict <- as.factor(predict)</pre>
     truth <- as.factor(Test_Data$Class)</pre>
[]: precision <- posPredValue(truth, predict)
     precision
    0.984962406015038
[]: cm <- confusionMatrix(predict, Test_Data$Class)
     cm
    Confusion Matrix and Statistics
               Reference
    Prediction benign malignant
      benign
                   131
                               13
      malignant
                     2
                              58
                   Accuracy: 0.9265
                     95% CI: (0.8816, 0.9583)
        No Information Rate: 0.652
        P-Value [Acc > NIR] : < 2.2e-16
                      Kappa: 0.8319
     Mcnemar's Test P-Value: 0.009823
                Sensitivity: 0.9850
                Specificity: 0.8169
             Pos Pred Value: 0.9097
             Neg Pred Value: 0.9667
                 Prevalence: 0.6520
             Detection Rate: 0.6422
       Detection Prevalence: 0.7059
          Balanced Accuracy: 0.9009
           'Positive' Class : benign
    Testing Sample Data
[]: sample <- Test_Data[1,]
[]: predict(model, sample)
    benign Levels: 1. 'benign' 2. 'malignant'
[]:
```