PRIMJENA VORTEXA KAO POMOĆNOG REKVIZITA PRI OBUČAVANJU TEHNIKE BACANJA KOPLJA KOD STUDENATA KINEZIOLOGIJE

APPLICATION OF VORTEX AS AUXILIARY PROP IN JAVELIN THROW TECHNIQUE TRAINING AT KINESIOLOGY STUDENTS

Vladimir Pokrajčić¹, Ivana Čerkez Zovko¹ i Martina Rezić¹

¹Fakultet prirodoslovno-matematičkih i odgojnih znanosti Sveučilišta u Mostaru, Bosna i Hercegovina

Originalni naučni rad 10.5550/sgia.191501.se.pzr UDK: 796.433.2

Primljeno: 25.10.2019. Odobreno: 05.11.2019.

Korespodencija: Vladimir Pokrajčić Fakultet prirodoslovno-matematičkih i odgojnih znanosti Sveučilišta u Mostaru, Bosna i Hercegovina

Sportlogia 2019, 15 (1), 72-79. E-ISSN 1986-6119

SAŽETAK

Bacanje koplja je složena atletska disciplina koja zahtijeva nekoliko godina treniranja kako bi se ovladalo tehnikom bacanja. Budući da su nastavnici ograničeni vremenom, problem koji se javlja u nastavi jest kako u što kraćem vremenu obučiti studente pravilnoj tehnici bacanja koplja. S obzirom da je kopljem kao rekvizitom teško ovladati, povedeno je istraživanje koje je imalo za cilj utvrditi efikasnost primjene vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja. Ukupan broj ispitanika bio je 30 studenata prve godine preddiplomskog studija Kineziologije Sveučilišta u Mostaru u akademskoj 2016/2017 godini. Na početku nastave odrađeno je inicijalno mjerenje, tijekom nastave koristile su se opće vježbe, kao i primjena vortexa kao pomoćnog rekvizita u obuci tehnike bacanja, a na kraju nastave je odrađeno finalno mjerenje i ocjenjivanje tehnike bacanja koplja od strane 3 suca. Primjenom T-testa dobila se statistički značajna razlika između inicijalnog (31,1m)i finalnog (33,9m) mjerenja.Rezultati pokazuju da su studenti poboljšali prosječan rezultat u finalnom u odnosu na inicijalno mjerenje te se na osnovu dobivenih rezultata može se pretpostaviti da korištenje vortexaima pozitivno djelovanje na obuku bacanja koplja kod početnika i da bi bilo poželjno taj rekvizit uključiti u nastavu prilikom obuke studenata, ali i mlađih uzrasta.

Ključne riječi: bacanje koplja, vortex, studenti, tehnika bacanja, metode za procjenu izvođenja

Pokrajčić, V., Zovko, Č. I., & Rezić, M. Primjena vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja kod studenata kineziologije. *Sportlogia 15*(1), 72-79. doi:10.5550/sgia.191501.se.pzr

UVOD

Bacanja u kineziološkom smislu su elementarni oblici kretanja u kojima se manipulira određeni objekt u prostor. Atletska bacanja su složena kretanja aciklično-cikličnog karaktera obuhvaćaju bacanje diska, koplja, kugle i kladiva (Pavlović, 2015). Bacanje koplja je atletska disciplina u kojoj bacač zaletom i specifičnim kretnjama nastoji postići najveću brzinu u trenutku izbačaja da bi postigao što duži hitac. (Zdravković i Matić, 2012). Kod bacanja koplja mogu se identificirati četiri međusobno povezane strukturalne faze: pripremna faza, faza prestizanja sprave, faza maksimalnog naprezanja i faza održavanja ravnoteže (Bošnjak, Tešanović iJakovljević,2015). U obuci tehnike bacanja koplja sve se više koriste specifični rekviziti koji su manjih dimenzija od koplja. Studentima i mlađim uzrasnim kategorijama teško ovladati kopljem, samim tim, teže je naučiti tehniku bacanja. U tu svrhu pribjeglo se korištenju loptica manjih težina, a u zadnje vrijeme i vortexraketica(Tešanoviæ, 2009). Prema (Atwater, 1979; Menzel, 1987), obrazac kretanja koji se koristi u bacanju koplja slièan je drugim pokretima koji se koriste prilikom udaranja ili bacanja predmeta. Da bacanje loptice i vortex-a ima smisla koristiti u obuci studenata potvrðuju dosadašnja istraživanja. Puklavec (2010) dobiva visoku statistièki znaèainu povezanost izmeðu rezultata u bacanju loptice i bacanju vortex-a (r=0,97), dok Tešanoviæ (2009) u svom istraživanju dobiva visoku meðusobno povezanost kod varijabli bacanje koplja i bacanje vortex-a te semože se pretpostaviti da su za postizanje vrhunskog rezultata u bacanju vortexa presudne one antropomotorièke sposobnosti koje su karakteristiène za koplja.Većina bacaèe istraživanja relacijama motoričkih karakteristika i rezultata u bacačkim atletskim disciplinama potvrdila je informaciju o

vodećem utjecaju faktora eksplozivne snage (Milanović i Hofman, 1986), dok su Žuvela, Borović i Foretić (2011) ukazali kako odabrani set motoričkih sposobnosti (startno ubrzanje i eksplozivna snaga) ima značajan utjecaj na rezultat u atletskoj disciplini bacanja koplja jedino kod studenata koji su imali iznadprosječno znanje bacanja koplja. Ivanović (2009) je proveo istraživanje kako bi utvrdio utjecaj 12 motoričkih testova na rezultat u disciplini bacanja koplja. Rezultati regresijske analize potvrdili su: statistički značajnu pozitivnu linearnu korelaciju između prediktorskih varijabli i kriterijske varijable. Rezultati istraživanja koje su proveli Alujević, Vukušić i Žuvela (2013), konstruiraju mierne instrumente za procjenu stupnja usvojenosti specifičnih motoričkih znanja bacanja kugle kod studenata kineziologije te pretpostavljaju kako novi test koji se temelji na principu prihvaćanja (1-kriterij je prisutan) odbacivanja (0-kriterij nije prisutan) kriterija ima dobru nezavisnost rezultata mjerenja od mjerioca.

Cilj ovog istraživanja je utvrditi efikasnost primjene vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja.

METODE

Istraživanje je provedeno na uzorku od 30 ispitanika, studenata prve godine preddiplomskog studija Kineziologije Sveučilišta u Mostaru u akademskoj 2016/2017 godini. Svi studenti su imali predznanje jer su slušali nastavu iz predmeta Atletika I i Atletika II. Studenti nisu bili uključeni u trenažne procese, ali su bili uključeni u sportske aktivnosti putem nastave. Također su bili dobrog zdravlja te bez povreda lokomotornog sustava.

Pokrajčić, V., Zovko, Č. I., & Rezić, M. Primjena vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja kod studenata kineziologije. *Sportlogia 15*(1), 72-79. doi:10.5550/sgia.191501.se.pzr

Testiranje je provedeno u sklopu nastave iz kolegija Atletika II. Na početku praktične nastave odrađeno je inicijalno mjerenje gdje su studenti imali pravo na tri bacanja, a najbolji hitac svakog studenta je uzet kao njihov rezultat. Nakon 5 tjedana, odnosno 15h vježbi, studenti su pristupili finalnom mjerenju gdje su imali pravo na jedan pokušaj koji je bio izmjeren, a kasnije i ocijenjen od strane tri suca. Tehniku bacanja koplja podijelili smo na 5 faza i to: početni položaj i držanje koplja, prvi dio zaleta, prestizanje koplja, izbačaj koplja, održavanje ravnoteže. Prilikom ocjenjivanja korišten je kvalitativni pristup pri procjeni svake faze i to ocjenama 0, 1 ili 2. Svaki dio suci su procijenili putem video zapisa: ocienu nula (0) bi student dobio ukoliko ne bi zadovoljio kriterij, ocjenu jedan (1) ukoliko bi djelomično zadovoljio kriterij i ocjenu dva (2) ukoliko bi u potpunosti izveo tehniku. Cjelovito izvođenje tehnike bacania koplia ocjenjivalo se zbrojem svih pojedinačnih ocjena (skala od 0 do 10). S obzirom da je bacanje koplja tehnički vrlo zahtjevna disciplina, u obučavanju tehnike bacanja uz opće vježbice naglasak je bio na primjeni pomoćnog rekvizita - vortexa. satima metodike Odmah prvim obučavanja koplja pribjeglo se korištenju vortexaèija težina iznosi 135 grama, dužina 34 cm, a oblik zahtijeva hvat isti kao što je hvat kod koplja te iz tog razloga predstavlja idealnu zamjensku spravu, èija dužina omoguæava lagano manevriranje i fokusiranje na učenje pravilnog izvođenja lanca pokreta. Korištenje vortex-a pri obuèavanju studenata omoguæava maksimalnu posveæenost usvajanja tehnièke vještine i razvoj osjeæaja za spravu, te preciznosti. U ovom istraživanju koristile su se sljedeæe vježbe za obuku studenata primjenomvortexa: 1.Izbaèaj iz miesta sa dvije ruke iznad glave; 2. Izbaèaj iz mjesta jednom rukom iznad glave; 3. Izbaèaj iz mjesta jednom rukom iznad glave sa iskorakom; 4. Izbaèaj iz mjesta jednom rukom iznad glave preko naglašenog bloka; 5. Izbaèaj iz mjesta nakon podvlaèenja; 6.Izbaèaj iz mjesta bokom okrenutim u smjeru bacanja; 7. Izbaèaj iz mjesta bokom okrenutim u smjeru bacanja sa podignutom prednjom nogom; 8. Izbaèaj iz mjesta - gaðanje mete na zidu; 9. Izbaèaj iz mjesta - gaðanje mete na veæoj visini; 10. Izbaèaj iz mjesta kleèeæi na strunjaèi.

Za utvrđivanje metrijskih karakteristika testa, izračunate su sljedeće metrijske karakteristike:

- U svrhu izračunavanja objektivnosti čestica izračunati su: matrica interkorelacija između čestica za svaki test; Inter item korelacija (II r) iCronbachalpha (α)
- U svrhu utvrđivanja homogenosti sudaca izračunata jeprosječna korelacija između čestica testa
- U svrhu analize osjetljivosti varijabli za utvrđivanje osjetljivosti svake pojedine varijable, izračunati su slijedeći parametri:aritmetička sredina (AS); standardna devijacija (SD); minimalni i maksimalni rezultat (MIN i MAX); mjere asimetričnosti (SKE) i izduženosti/spljoštenosti (KURT); normalitet distribucije (KS-test).

Za izračunavanje razlika između inicijalnog i finalnog mjerenja bacanja koplja izračunate su deskriptivna statistika, K-S test i T-test za zavisne uzorke

REZULTATI I DISKUSIJA

U svrhu analiziranja objektivnosti sudaca izračunate su: interkorelacije procjene sudaca, prosječna inter-item korelacija i Cronbachalpha koeficijent te se na osnovu dobivenih rezultata možemo konstatirati da postoji zadovoljavajuća objektivnost.

Tablica 1. Mjere objektivnosti varijabli za procjenu znanja u pojedinim fazama bacanja koplja(S1-S3 – interkorelacije sudaca; II r – inter-item korelacija; α – Cronbachalpha koeficijent)

Varijable	S1	S2	S3	II r	α		
	1,000	0,749	0,599				
PPIDK	0,742	1,000	0,737	0, 697	0.870		
PPIDK	0,599	0,737	1,000	0, 697	0,870		
	1,000	0,709	0,683				
	0,709	1,000	0,558	0,654	0,847		
ZALET1	0,683	0,558	1,000				
	1,000	0,793	0,685	0,752	0,898		
PK	0,793	1,000	0,769	0,732			
PK	0,685	0,769	1,000				
	1,000	0,737	0,613	0,750	0,892		
IK	0,737	1,000	0,853	0,730	0,892		
	0,613	0,853	1,000				
	1,000	0,780	0,555				
OD	0,780	1,000	0,613	0,659	0,843		
OR	0,550	0,613	1,000				

(PPIDK –početni položaj i držanje koplja, ZALET1 – prvi dio zaleta, PK – prestizanje koplja, IK – izbačaj koplja, OR – održavanje ravnoteže)

U *Tablici 1* vidimo da se rezultati kreću na prihvatljivoj razini, tj.pokazuju statistički značajnu povezanost između sudaca kod svih testova procienu stupnja za usvojenosti znanja bacanja koplja kod studenata kineziologije. Vrijednosti interitem korelacije se kreću u rasponu od 0,659 za procjenu znanja u fazi održavanja ravnoteže do 0,752 za procjenu znanja u fazi povlačenja koplja. U skladu s vriiednostima inter-item korelaciie. vrijednosti Cronbachalpha koeficijenta kreću se u rasponu od 0.843 do 0.898 što

se smatra visokom vrijednošću korelativne povezanosti.Božanić (2011) navodi da je premaDizdar (2006) objektivnost najvažnija metrijska karakteristika iz razloga što test može biti upotrebljiv samo u slučaju kada različiti mjeritelji ispitujući istim testom iste ispitanike, dolaze do jednakih, ili vrlo sličnih rezultata. U ovom istraživanju se radi o kvalitativnoj procjeni sudaca, a ne kvantitativnom mjerenju, te je prihvatljivo nešto veće odstupanje u ocjenama.

Tablica 2. Prosječna korelacija između čestica testa za utvrđivanje homogenosti sudaca

Varijable	ZBROJ S1	ZBROJ S2	ZBROJ S3	
ZBROJ S1	1,00	0,86	0,79	
ZBROJ S2	0,86	1,00	0,87	
ZBROJ S3	0,79	0,87	1,00	

(ZBROJ S1-S3 – ukupne ocjene svakog suca)

Pokrajčić, V., Zovko, Č. I., & Rezić, M. Primjena vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja kod studenata kineziologije. *Sportlogia 15*(1), 72-78. doi:10.5550/sgia.191501.se.pzr

Rezultati prosječne korelacije između čestica (*Tablica* 2) se kreću u rasponu 0,79 i 0,86, što ukazuje kako postoji statistički značajna povezanost između svih čestica te da su mjerni instrumenti homogeni.

To možemo pripisati činjenici da su suci upoznati s "idealnom" izvedbom i kriterijima ocjenjivanja pojedine faze bacanja koplja.

Tablica 3. Rezultati osjetljivosti varijabli za procjenu stupnja usvojenosti znanja bacanja koplja (AS – aritmetička sredina; MIN – minimalni rezultat; MAX – maksimalni rezultat; SD – standardna devijacija; SKE – mjera asimetrije; KURT – mjera izduženosti; K-S – test normaliteta distribucije)

Varijable	AS	MIN	MAX	SD	SKE	KURT	K-S
S1	7,70	5,00	10,0	1,44	-0,25	-0,33	0,215
S2	7,73	5,00	10,0	1,46	-0,14	-0,76	0,172
S3	7,80	5,00	10,00	4,45	-0,28	-0,86	0,196

(S1-S3 – Ociene sudaca 1-3)

U *Tablici 3* uočava se da ni jedna distribucija ne odstupa značajno od

normalne, što je provjereno K-S testom što definira dobru osjetljivost.

Tablica 4. Deskriptivni parametri bacanja koplja inicijalnog i finalnog mjerenja(N – broj ispitanika; AS – aritmetička sredina; MED – srednja vrijednost rezultata; MOD – dominantna vrijednost; MIN – minimalni rezultat; MAX – maksimalni rezultat; SD – standardna devijacija; CV – koeficijent varijabilnosti; SKE – mjera asimetrije; KURT – mjera izduženosti; K-S – test normaliteta distribucije)

Varijable	N	AS	MED	MOD	MIN	MAX	SD	CV	SKE	KUR T	max D
BK I	30	31,1	30,7	27,4	23,2	43,4	4,3	13,7	0,6	0,9	0,09
вк п	30	33,9	34,1	38,4	24,6	47,9	4,7	14,6	0,5	1,3	0,07

(BK I – inicijalni rezultati bacanja koplja; BK II – finalni rezultati bacanja koplja)

Iz tablice deskriptivnih podataka (*Tablica 4*) je vidljivo da su obje varijable imale normalnu distribuciju. Prosječan rezultat bacanja koplja iznosi 31,1 m, dok je prosječan rezultat finalnog mjerenja veći za 2,8 m i iznosi 33,9 m. Raspon rezultata se kreće od 23,2 do 43,4 m u inicijalnom, odnosno od 24,6 do 47,9 m u finalnom mjerenju. Razlog tako velikog raspona

nalazimo u utjecaju bavljenja ostalim sportovima na rezultat bacanja koplja. Student koji je postigao visok rezultat bavio se rukometom, u kojem su pokreti (bacanje rukometne lopte) slični pokretima bacanja koplja. Do sličnih rezultata došli su Žuvela, Borović i Foretić (2011) koji su utvrđivali povezanost motoričkih sposobnosti i rezultata bacanja koplja kod

Pokrajčić, V., Zovko, Č. I., & Rezić, M. Primjena vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja kod studenata kineziologije. *Sportlogia 15*(1), 72-79. doi:10.5550/sgia.191501.se.pzr

studenata kineziologije. Prosječan rezultat bacanja koplja u njihovom istraživanju iznosio je 33.53m, dok je najslabiji rezultat iznosio 22.70m, a najbolji 43.20. Znatno slabije rezultate dobivaju Moguš, Jukić i

Šušnjerga (2017) koji su također testirali studente kineziologije. Rezultati bacanja koplja su se kretali u rasponu od 19.00m do 29.95m.

Tablica 5. T-test za zavisne uzorke za utvrđivanje razlike inicijalnog i finalnog stanja bacanja koplja studenata kineziologije (AS – aritmetička sredina; SD – standardna devijacija; p - razina značajnosti)

Varijable	AS	SD	p
BK I	31,180	4,286	0.000
BK II	33,926	4,744	0,000

(BK I – inicijalni rezultati bacanja koplja; BK II – finalni rezultati bacanja koplja)

U Tablici 5 prikazani su rezultati t-testa za zavisne uzorke, kojim su testirane razlike između inicijalnog i finalnog mjerenja rezultata bacanja koplja. Rezultati su pokazali statistički značaine inicijalnog i finalnog mjerenja na nivou značajnosti p<0,05.Mnogi autori se slažu autori s činjenicom da se visoka razina motoričkog učenja može postići samo dugoročnim postupkom prakse (Žuvela i sur., 2011). Čoh, Jovanović-Golubović i Bratić (2004), navode da je potrebno napraviti između 40 000 i 50 000 ponavljanja kako bi se postigla stabilnost i automatizacija jedne pokretne strukture u odgovara višegodišnjem sportu, vremenskom razdoblju. Unatoč tomu, naše istraživanje je pokazalo statistički značajne razlike inicijalnog i finalnog mjerenja, tj. poboljšanje u postignutim rezultatima bacanja koplja, kao i dobru homogenost, objektivnost i osjetljivost testa, možemo pripisati nedovoljnim poznavanjem same tehnike bacanja na nastave iz samom početku kolegija Atletika II, ali isto tako možemo pretpostaviti da je stupanj usvojenosti bacanja koplja uzrokovan korištenjem općih i specifičnih vježbi (bacanje vortexraketice) kroz metodiku obučavanja bacanja koplja.Na osnovu dosadašnjih istraživanja (Tešanović, 2009), kao i našeg

istraživanja, može se zaključiti da bi se bacački rekvizit vortex trebao uključiti u nastavu pri obuci studenata.

ZAKLJUČAK

Bacanje koplja je vrlo kompleksno i mnoga dosadašnja istraživanja su dokazala da tehnički ispravne i daleke hice postižu samo studenti koji imaju iznadprosječno znanje bacanja koplja. Tijekom nastave iz kolegija Atletika II studenti su prošli kroz proces učenja i usvajanja motoričkih znanja, a s obzirom da je početnicima teško ovladati kopljem kao bacačkim rekvizitom zbog oblika samog koplja, u ovom istraživanju se kao specifičan rekvizit u obuci koristilo bacanje vortexraketice koja je spužvastog oblika, težine 135 grama i kojom je početnicima puno lakše rukovati nego samim kopljem. Rezultati finalnog mjerenja i ocjene sudaca pokazali su da su studenti poboljšali tehniku bacanja koplja, kao i svoje rezultate, što možemo djelomično pripisati i korišteniu vortexraketice u obuci. Nedostatak ovog istraživanja nepostojanost kontrolne grupe koja bi izvodila nastavu koristeći samo opće vježbe obuke bacanja koplja te bi na taj način dobili detaljnije informacije o tom koliko je korištenje vortexa pridonijelo poboljšanju tehnike i rezultata bacanja.

Pokrajčić, V., Zovko, Č. I., & Rezić, M. Primjena vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja kod studenata kineziologije. *Sportlogia 15*(1), 72-78. doi:10.5550/sgia.191501.se.pzr

Bez obzira na taj nedostatak, smatramo da korištenje specifičnih rekvizita tipa bacanja vortexa i bacanja loptica manjih težina treba biti sastavni dio obuke bacanja koplja kod studenata, kao i kod mlađih uzrasta, iz razloga što su praktičniji i početnicima je lakše rukovati tim rekvizitima.

LITERATURA

- Alujević, A. K., Vukušić, M., & Žuvela, F. (2013). Metrijske karakteristike testa za procjenu znanja bacanja kugle studenata kineziologije. In 22. ljetna škola kineziologa Republike Hrvatske. 223-228
- Atwater, A. E. (1979). Biomechanics of overarm throwing movements and of throwing injuries. *Exercise and sport sciences reviews*, 7(1), 43-86. https://doi.org/10.1249/00003677-197900070-00004 PMid:399466
- Bošnjak, G., Tešanović, G., Jakovljević, V. (2015). *Atletika metodika obučavanja*. Banja Luka: Univerzitet u Banjoj Luci, Fakultet fizičkog vaspitanja i sporta. 122
- Božanić, A. (2011). Vrednovanje i analiza razvoja motoričkih znanja u ritmičkoj gimnastici. *Doktorska disertacija, Kineziološkifa Fukultet, Sveučilište u Splitu*. 130
- Čoh, M., Jovanović-Golubović, D. & Bratić, M. (2004). Motor learningin sport. Physical Educationand Sport, 2(1), 45–59.
- Dizdar, D. (2006). Kvantitativne metode. Kineziološki fakultet Sveučilišta u Zagrebu, Zagreb.
- Ivanović, M. (2009). Relacije između motoričkih sposobnosti i rezultata bacanja koplja kod adolescenata. *Sport Science*, 2(1), 84-90.
- Menzel, H. J. (1987). Transmissionofpartial momenta injavelinthrow. *Biomechanics X-8, Human Kinetics Publishers, Champaign*, 643-647.
- Milanović, D., & Hofman, E. (1986). Atletika: znanstvene osnove. Fakultet za fizičku kulturu.
- Moguš, D., Jukić, J., &Šunjerga, R. (2017). Povezanost motoričkih sposobnosti i rezultata u atletskim bacačkim disciplinama studenata kineziologije. Međunarodna naučna konferencija Effectsof Applying Physical Activity on Anthropological Status of Children, Adolescents and Adults, 30-37.
- Pavlović, R. (2015). *Analiza tehnike bacanja kugle na SP-u u Berlinu 2009*. Pregledni naučni rad. Fakultet fizičkog vaspitanja i sporta, Pale
- Puklavec, A. (2010). Povezanost rezultata bacanja loptice i bacanja vrtloga. *Zbornik radova*, 19, 288-294.
- Tešanović, G., (2009). Relacije nekih antropomotoričkih sposobnosti sa postignutim rezultatom u bacanju vortex-a. *Magistarski rad. Banjaluka: Fakultet fizičkog vaspitanja i sporta*.
- Tešanović, G., & Bošnjak, G. (2009). Primjena vortexa kao zamjenskog rekvizita u trenažnom procesu mladih bacača koplja. *Sportekspert*, 2(2).
- Zdravković, M., Matić, M. (2012). Uporedna analiza tehnike vrhunskih bacača koplja. *Tematski zbornik radova "Efekti primene fizičke aktivnosti na antropološki status dece, omladine i odraslih"*. Beograd: Univerzitet u Beogradu, Fakultet sporta i fizičkog vaspitanja. 186
- Žuvela, F., Borović, S. i Foretić, N. (2011). The correlation of motor abilities and javelin throwing results depends on the throwing technique. Facta universitatis: Physical Educationand Sport vol.9. 219 227.

Pokrajčić, V., Zovko, Č. I., & Rezić, M. Primjena vortexa kao pomoćnog rekvizita pri obučavanju tehnike bacanja koplja kod studenata kineziologije. *Sportlogia 15*(1), 72-78. doi:10.5550/sgia.191501.se.pzr

ABSTRACT

Javelin throw is a complex athletic discipline that requires several years of training to master a throw technique. Since teachers are time-limited, problem occuring in the teaching is how to train students to proper javelin throw technique as quickly as possible. Given that it is difficult to master a javelin as prop, research has been conducted to determine efficiency of vortex application as auxiliary prop in javelin throw technique training. The total number of respondents were 30 students of the first year of undergraduate Kinesiology study at University of Mostar in academic year 2016/2017. The initial measurement was made at the beginning of the classes. During the classes general exercises were used as well as vortex application as auxiliary prop in throw technique training. The final measurement and evaluation of javelin throw technique was made by three referees at the end of classes. Statistically significant difference between the initial (31,1m) and final (33,9) measurement was obtained by using the T-test . Results show that students have improved an average score in the final comparing to the initial measurement and based on obtained results it can be concluded that use of vortex has a positive effect on javelin throw training for beginners and it would be beneficial to include the prop in teaching when training students as well as younger children.

Keywords: *javelin throw, vortex, students, throwing technique, performance evaluation methods*

Primljeno: 25.10.2019. Odobreno: 05.11.2019.

Korespodencija: Vladimir Pokrajčić E-mail: v.pokrajcic@hotmail.com