Algoritmi e Strutture Dati

Scelta della struttura dati

Alberto Montresor

Università di Trento

2020/03/18

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Introduzione
- 2 Cammini minimi, sorgente singola
 - Dijkstra
 - Johnson
 - Fredman-Tarjan
 - Bellman-Ford-Moore
 - Casi speciali DAG
- 3 Cammini minimi, sorgente multipla
 - Floyd-Warshall
 - Chiusura transitiva
- 4 Conclusione

Problema cammini minimi

Input

- Grafo orientato G = (V, E)
- ullet Un nodo sorgente s
- Una funzione di peso $w: E \to R$

Definizione

Dato un cammino $p = \langle v_1, v_2, \dots, v_k \rangle$ con k > 1, il costo del cammino è dato da

$$w(p) = \sum_{i=2}^{k} w(v_{i-1}, v_i)$$

Output

Trovare un cammino da s ad u, per ogni nodo $u \in V$, il cui costo sia minimo, ovvero più piccolo o uguale del costo di qualunque altro cammino da s a u.

Panoramica sul problema

Cammini minimi da sorgente unica

- \bullet Input: Grafo pesato, nodo radice s
- \bullet Output: i cammini minimi che vanno da s a tutti gli altri nodi

Cammino minimo tra una coppia di vertici

- \bullet Input: Grafo pesato, una coppia di vertici s, d
- \bullet Output: un cammino minimo fra $s \in d$
- Si risolve il primo problema e si estrae il cammino richiesto. Non si conoscono algoritmi che abbiano tempo di esecuzione migliore.

Panoramica sul problema

Cammini mimimi tra tutte le coppie di vertici

- Input: Grafo pesato
- Output: i cammini minimi fra tutte le coppie di vertici.
- Soluzione basata su programmazione dinamica

Pesi

Tipologie di pesi

Algoritmi diversi possono funzionare oppure no in caso di alcune categorie speciali di pesi

- Positivi / positivi+negativi
- Reali / interi

Pesi negativi vs grafi con cicli negativi

Esempio: proprietario di un TIR

- Viaggiare scarico: perdita, peso positivo
- Viaggiare carico: profitto, peso negativo

Problema cammini minimi – Sottostruttura ottima

Si noti che due cammini minimi possono avere un tratto in comune $A \leadsto C \dots$

 \dots ma non possono convergere in un nodo comune C dopo aver percorso un tratto distinto

Albero dei cammini minimi

L'albero dei cammini minimi è un albero di copertura radicato in s avente un cammino da s a tutti i nodi raggiungibili da s.

Albero di copertura

Albero di copertura (Spanning tree)

Dato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottografo $T = (V, E_T)$ tale che

- \bullet Tè un albero
- $E_T \subseteq E$
- T contiene tutti i vertici di G

Soluzione ammissibile

Soluzione ammissibile

Una soluzione ammissibile può essere descritta da un albero di copertura T radicato in s e da un vettore di distanza d,

i cui valori d[u] rappresentano il costo del cammino da s a u in T.

Rappresentazione albero

Per rappresentare l'albero, utilizziamo la rappresentazione basata su vettore dei padri, così come abbiamo fatto con le visite in ampiezza/profondità.

```
\begin{array}{l} \operatorname{printPath}(\operatorname{NODE}\,s,\,\operatorname{NODE}\,d,\,\operatorname{NODE}[\,]\,T) \\ \\ \operatorname{if}\,s == d\,\operatorname{then} \\ |\,\operatorname{print}\,s \\ \\ \operatorname{else}\,\operatorname{if}\,p[d] == \operatorname{nil}\,\operatorname{then} \\ |\,\operatorname{print}\,\operatorname{``error''} \\ \\ \operatorname{else} \\ |\,\operatorname{printPath}(s,T[d],T) \\ |\,\operatorname{print}\,d \end{array}
```

Teorema di Bellman

Teorema di Bellman

Una soluzione ammissibile T è ottima se e solo se:

$$d[v] = d[u] + w(u, v)$$

$$d[v] \le d[u] + w(u,v)$$

per ogni arco
$$(u, v) \in T$$

per ogni arco $(u, v) \in E$

$$d[B]=d[A]+w(A,B)\quad d[C]=d[B]+w(B,C)$$

$$d[D] = d[C] + w(C,D) \quad \underline{d[D]} > \underline{d[A]} + \underline{w(A,D)}$$

$$d[B] = d[A] + w(A, B) \quad d[C] = d[B] + w(B, C)$$

$$d[D] = d[A] + w(A, D) \quad d[D] \le d[C] + w(C, D)$$

Teorema di Bellman - Parte 1

Se T è una soluzione ottima, allora valgono le condizioni di Bellman:

$$d[v] = d[u] + w(u, v)$$

$$d[v] \le d[u] + w(u, v)$$

per ogni arco
$$(u, v) \in T$$

per ogni arco $(u, v) \in E$

Sia T una soluzione ottima e sia $(u, v) \in E$.

- Se $(u, v) \in T$, allora d[v] = d[u] + w(u, v)
- Se $(u, v) \notin T$, allora $d[v] \leq d[u] + w(u, v)$, perchè altrimenti esisterebbe nel grafo G un cammino da s a v più corto di quello in T, assurdo.

Teorema di Bellman - Parte 2

Se valgono le condizioni di Bellman:

$$d[v] = d[u] + w(u, v)$$

$$d[v] \le d[u] + w(u, v)$$

per ogni arco
$$(u, v) \in T$$

per ogni arco $(u, v) \in E$

allora T è una soluzione ottima.

- ullet Supponiamo per assurdo che il cammino C da s a u in T non sia ottimo
- \bullet Allora esiste un albero ottimo T',in cui il cammino C' da sa uha distanza d'[u] < d[u]
- Sia d'[] il vettore delle distanze associato a T'

Teorema di Bellman - Parte 2

Se valgono le condizioni di Bellman:

$$d[v] = d[u] + w(u, v)$$
 per ogni arco $(u, v) \in T$
 $d[v] \le d[u] + w(u, v)$ per ogni arco $(u, v) \in E$

allora T è una soluzione ottima.

- Poichè d'[s] = d[s] = 0, ma d'[u] < d[u], esiste un arco (h, k) in C' tale che:
 - $d'[h] \ge d[h]$ e
 - d'[k] < d[k]

Teorema di Bellman - Parte 2

Se valgono le condizioni di Bellman:

$$d[v] = d[u] + w(u, v)$$

$$d[v] \le d[u] + w(u, v)$$

per ogni arco
$$(u, v) \in T$$

per ogni arco $(u, v) \in E$

allora T è una soluzione ottima.

- Per costruzione: $d'[h] \ge d[h]$
- Per costruzione: d'[k] = d'[h] + w(h, k)
- Per ipotesi: $d[k] \le d[h] + w(h, k)$
- Combinando queste due relazioni, si ottiene:

$$d'[k] = d'[h] + w(h, k) \ge d[h] + w(h, k) \ge d[k]$$

Quindi $d'[k] \ge d[k]$, il che contraddice d'[k] < d[k]

Algoritmo prototipo – Rilassamento

```
(\mathbf{int}[], \mathbf{int}[]) prototipoCamminiMinimi(GRAPH G, NODE s)
```

- % Inizializza T ad una foresta di copertura composta da nodi isolati
- % Inizializza d con sovrastima della distanza $(d[s]=0,\,d[x]=+\infty)$

while
$$\exists (u, v) : d[u] + G.w(u, v) < d[v]$$
 do $|d[v]| = d[u] + w(u, v)$

%Sostituisci il padre div in T con u

return (T, d)

Note

- Se al termine dell'esecuzione qualche nodo mantiene una distanza infinita, esso non è raggiungibile
- Come implementare la condizione \exists ?

Algoritmo generico

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
int[] d = new int[1...G.n]
                                                             \% d[u] è la distanza da s a u
int[] T = new int[1...G.n]
                                                     \% T[u] è il padre di u nell'albero T
boolean[] b = \text{new boolean}[1 \dots G.n]
                                                                     \% b[u] è true se u \in S
foreach u \in G.V() - \{s\} do
    T[u] = \mathbf{nil}
   d[u] = +\infty
    b[u] = \mathbf{false}
T[s] = \mathbf{nil}
d[s] = 0
b[s] = \mathbf{true}
```

Algoritmo generico

```
(\mathbf{int}[], \mathbf{int}[]) shortestPath(GRAPH G, NODE s)
(1) DATASTRUCTURE S = \mathsf{DataStructure}(); S.\mathsf{add}(s)
    while not S.isEmpty() do
        int u = S.extract()
(2)
        b[u] = false
        foreach v \in G.adj(u) do
            if d[u] + G.w(u, v) < d[v] then
                 if not b[v] then
                     S.\mathsf{add}(v)
(3)
                     b[v] = \mathbf{true}
                 else
                     \% Azione da svolgere nel caso v sia già presente in S
(4)
                T[v] = u
 d[v] = d[u] + G.w(u, v)
```

Dijkstra, 1959

Storia

- Sviluppato da Edsger W. Dijkstra nel 1956, pubblicato nel 1959
- Nella versione originale:
 - Veniva utilizzata per trovare la distanza minima fra due nodi
 - Utilizzava il concetto di coda con priorità
 - Tenete conto però che gli heap sono stati proposti nel 1964

Note

- Funziona (bene) solo con pesi positivi
- Utilizzato in protocolli di rete come IS-IS e OSPF

Linea (1): Inizializzazione

- \bullet Viene creato un vettore di dimensione n
- ullet L'indice u rappresenta il nodo u-esimo
- \bullet Le priorità vengono inizializzate ad $+\infty$
- ullet La priorità di s è posta uguale a 0
- Costo computazionale: O(n)

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
```

(1) PRIORITYQUEUE Q = PriorityQueue(); Q.insert(s, 0)while not Q.isEmpty() do

```
while not Q.sEmpty() do

(2) \int \mathbf{int} \ u = Q.\text{deleteMin}()
b[u] = \mathbf{false}
\mathbf{foreach} \ v \in G.\text{adj}(u) \ \mathbf{do}
\int \mathbf{if} \ d[u] + G.w(u,v) < d[v] \ \mathbf{then}
```

Linea (2): Estrazione minimo

- Si ricerca il minimo all'interno del vettore
- Una volta trovato, si "cancella" la sua priorità
- Costo computazionale: O(n)

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
```

PRIORITY QUEUE $Q = \mathsf{PriorityQueue}(); Q.\mathsf{insert}(s,0)$ while not $Q.\mathsf{isEmpty}()$ do

Linea (3): Inserimento in coda

- Si registra la priorità nella posizione v-esima
- Costo computazionale: O(1)

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
   if d[u] + G.w(u, v) < d[v] then
       if not b[v] then
           Q.\mathsf{insert}(v,d[u]+G.w(u,v))
(3)
           b[v] = \mathbf{true}
       else
           \%Azione da svolgere nel caso vsia già presente in S
(4)
       T[v] = u
       d[v] = d[u] + G.w(u, v)
```

Linea (4): Aggiornamento priorità

- ullet Si aggiorna la priorità nella posizione v-esima
- Costo computazionale: O(1)

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
   if d[u] + G.w(u, v) < d[v] then
       if not b[v] then
           Q.\mathsf{insert}(v, d[u] + G.w(u, v))
(3)
           b[v] = \mathbf{true}
       else
       Q.\mathsf{decrease}(v,d[u]+G.w(u,v))
(4)
       T[v] = u
       d[v] = d[u] + G.w(u, v)
```


		Α	В	C	E	D	F
Α	0	0	,0/	,0/	Ø/	Ø/	Ø/
В	∞	1	1	/1 /	1/	1/	1/
С	∞	2	2	2	2/	2/	2/
D	∞	∞	6	5	4	4	4
Ε	∞	∞	3	3	3	<i>3</i> /	3/
F	∞	∞	∞	<i>∅ ¼</i> 2 5 3 ∞	6	5	5

Spiegazione

- Ogni colonna contiene lo stato del vettore d all'inizio di ogni ripetizione del ciclo while not Q.isEmpty()
- Ogni riga v rappresenta l'evoluzione dello stato dell'elemento d[v]
- La legenda delle colonne rappresenta il nodo che viene estratto

Dijkstra

Correttezza per pesi positivi

- Ogni nodo viene estratto una e una sola volta
- Al momento dell'estrazione la sua distanza è minima

Per induzione sul numero k di nodi estratti

- \bullet Caso base: vero perchè d[s]=0 e non ci sono lunghezze negative
- Ipotesi induttiva: vero per i primi k-1 nodi
- \bullet Passo induttivo: quando viene estratto il k-esimo nodo u:
 - La sua distanza d[u] dipende dai k-1 nodi già estratti
 - Non può dipendere dai nodi ancora da estrarre, che hanno distanza $\geq d[u]$
 - $\bullet\,$ Quindid[u] è minimo e u non verrà più re-inserito, perchè non ci sono distanze negative

Costo computazionale

Riga	Costo	Ripet.
(1)	O(n)	1
(2)	O(n)	O(n)
(3)	O(1)	O(n)
(4)	O(1)	O(m)

Costo totale: $O(n^2)$

shortestPath(GRAPH G, NODE s)

```
(1) PRIORITYQUEUE Q = PriorityQueue(); Q.insert(s, 0)
    while not Q.isEmpty() do
          u = Q.\mathsf{deleteMin}()
(2)
          b[u] = false
          foreach v \in G.adj(u) do
                if d[u] + G.w(u,v) < d[v] then
                      if not b[v] then
                            Q.\mathsf{insert}(v, d[u] + G.w(u, v))
(3)
                            b[v] = \mathbf{true}
                      else
                            Q.\mathsf{decrease}(v, d[u] + G.w(u, v))
(4)
                      T[v] = u
                      d[v] = d[u] + G.w(u, v)
```

Johnson, 1977 – Coda con priorità basata su heap binario

Costo computazionale

Riga	Costo	Ripet.
(1)	O(n)	1
(2)	$O(\log n)$	O(n)
(3)	$O(\log n)$	O(n)
(4)	$O(\log n)$	O(m)

Costo totale: $O(m \log n)$

Heap binario introdotto nel 1964

$\underline{\mathsf{shortestPath}}(\mathsf{GRAPH}\ G,\ \mathsf{NODE}\ s)$

```
(1) PRIORITYQUEUE Q = PriorityQueue(); Q.insert(s, 0)
    while not Q.isEmpty() do
          u = Q.\mathsf{deleteMin}()
(2)
          b[u] = false
          foreach v \in G.adj(u) do
                if d[u] + G.w(u,v) < d[v] then
                      if not b[v] then
                            Q.\mathsf{insert}(v, d[u] + G.w(u, v))
(3)
                            b[v] = \mathbf{true}
                      else
                            Q.\mathsf{decrease}(v, d[u] + G.w(u, v))
(4)
                      T[v] = u
                      d[v] = d[u] + G.w(u, v)
```

Fredman-Tarjan, 1987 – Heap di Fibonacci

Costo computazionale

Riga	Costo	Ripet.
(1)	O(n)	1
(2)	$O(\log n)$	O(n)
(3)	$O(\log n)$	O(n)
(4)	$O(1)^{(*)}$	O(m)

Costo: $O(m + n \log n)$

(*) Costo ammortizzato

shortestPath(GRAPH G, NODE s) (1) PRIORITYQUEUE Q = PriorityQueue(); Q.insert(s, 0)while not Q.isEmpty() do $u = Q.\mathsf{deleteMin}()$ (2) b[u] = falseforeach $v \in G.adj(u)$ do if d[u] + G.w(u,v) < d[v] then if not b[v] then $Q.\mathsf{insert}(v, d[u] + G.w(u, v))$ (3) $b[v] = \mathbf{true}$ else $Q.\mathsf{decrease}(v, d[u] + G.w(u, v))$ (4) T[v] = ud[v] = d[u] + G.w(u, v)

Storia

- Proposto da Alfonso Shimbel nel 1955
- Pubblicato da Lester Ford, Jr. nel 1956
- Pubblicato da Moore nel 1957
- Pubblicato da Richard Bellman nel 1958
- Noto come Bellman-Ford, o Bellman-Ford-Moore

Note

- Computazionalmente più pesante di Dikstra
- Funziona anche con archi di peso negativo

Linea (1): Inizializzazione

- Viene creata una coda di dimensione n
- Costo computazionale: O(n)

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
```

QUEUE Q = Queue(); Q.enqueue(s)

Linea (2): Estrazione

- Viene estratto il prossimo elemento della coda
- Costo computazionale: O(1)

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
```

```
 \begin{aligned} & \textbf{while not} \ Q. \textbf{isEmpty}() \ \textbf{do} \\ & \textbf{u} = Q. \textbf{dequeue}() \\ & b[u] = \textbf{false} \\ & \textbf{foreach} \ v \in G. \textbf{adj}(u) \ \textbf{do} \\ & | \ \textbf{if} \ d[u] + G. w(u,v) < d[v] \ \textbf{then} \\ & | \ \lfloor \ [...] \end{aligned}
```

QUEUE Q = Queue(); Q.enqueue(s)

Linea (3): Inserimento in coda

- \bullet Si inserisce l'indice v in coda
- Costo computazionale: O(1)

Linea (4): Azione nel caso v sia già presente in S

Sezione non necessaria

```
(\mathbf{int}[],\mathbf{int}[]) \text{ shortestPath}(GRAPH \ G, \ NODE \ s)
[...]
\mathbf{if} \ d[u] + G.w(u,v) < d[v] \ \mathbf{then}
\mathbf{if} \ \mathbf{not} \ b[v] \ \mathbf{then}
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[0.3]
[
```


- La prima riga contiene l'elemento estratto dalla coda
- L'ultima riga contiene lo stato della coda

		A	В	С	D	E	В	F	D	E	D	F
Α	0	0	0	0	0	0	0	0	0	0	0	0
В	∞	1	1	0	0	0	0	0	0	0	0	0
C	∞	2	2	2	2	2	2	2	2	2	2	2
D	∞	∞	5	5	5	3	3	3	3	2	2	2
Ε	∞	∞	4	4	4	4	3	3	3	3	3	3
F	∞	∞	∞	∞	6	6	6	6	4	4	3	3
\overline{S}	A	BC	CDE	DEB	EBF	BFD	FDE	DE	E	D	F	

Passata - definizione ricorsiva

- Per k = 0, la zeresima passata consiste nell'estrazione del nodo s dalla coda S;
- Per k > 0, la k-esima passata consiste nell'estrazione di tutti i nodi presenti in S al termine della passata k-1-esima.

Correttezza – intuizione

- \bullet Al termine della passata k,i vettori Te d descrivono i cammini minimi di lunghezza al più k
- Al termine della passata n-1, i vettori T e d descrivono i cammini minimi (di lunghezza al più n-1)

(2)

Bellman-Ford-Moore, 1958 – Coda

Costo computazionale

Riga	Costo	Ripet.
(1)	O(1)	1
(2)	O(1)	$O(n^2)$
(3)	O(1)	O(nm)

Costo: O(nm)

Ogni nodo può essere inserito ed (3) estratto al massimo n-1 volte

```
(int[], int[]) shortestPath(GRAPH G, NODE s)
(1) QUEUE Q = Queue(); Q.enqueue(s)
    while not Q.isEmpty() do
        u = Q.\mathsf{dequeue}()
        b[u] = false
        foreach v \in G.adj(u) do
            if d[u] + G.w(u, v) < d[v] then
                 if not b[v] then
                     Q.\mathsf{enqueue}(v)
                     b[v] = \mathbf{true}
                d[v] = d[u] + G.w(u, v)
    return (T, d)
```

Cammini minimi su DAG

Osservazione

- I cammini minimi in un DAG sono sempre ben definiti; anche in presenza di pesi negativi, non esistono cicli negativi
- \bullet E' possibile rilassare gli archi in ordine topologico, una volta sola. Non essendoci cicli, non c'è modo di tornare su un nodo già visitato e abbassare il valore del suo campo d

Algoritmo

• Si utilizza l'ordinamento topologico

Cammini minimi su DAG

```
(\mathbf{int}[], \mathbf{int}[]) shortestPath(GRAPH G, NODE s)
int[] d = new int[1 \dots G.n]
                                                         \% d[u] è la distanza da s a u
int[] T = new int[1...G.n]
                                                 \% T[u] è il padre di u nell'albero T
foreach u \in G.V() - \{s\} do
   T[u] = \mathbf{nil}; d[u] = +\infty
T[s] = nil; d[s] = 0
Stack S = \mathsf{topsort}(G)
while not S.isEmpty() do
    u = S.pop()
    foreach v \in G.adj(u) do
       if d[u] + G.w(u, v) < d[v] then
       T[v] = a
d[v] = d[u] + G.w(u, v)
```

return (T, d)

Riassunto

Complessità: quale preferire?

Dijkstra	$O(n^2)$	Pesi positivi, grafi densi
Johnson	$O(m \log n)$	Pesi positivi, grafi sparsi
Fredman-Tarjan	$O(m + n \log n)$	Pesi positivi, grafi densi, dimensioni molto grandi
Bellman-Ford	O(mn)	Pesi negativi
	O(m+n)	DAG
BFS	O(m+n)	Senza pesi

Cammini minimi, sorgente multipla

Possibili soluzioni

Input	Complessità	Approccio
Pesi positivi, grafo denso	$O(n \cdot n^2)$	Applicazione ripetuta dell'algoritmo di Dijkstra
Pesi positivi, grafo sparso	$O(n \cdot (m \log n))$	Applicazione ripetuta dell'algoritmo di Johnson
Pesi negativi	$O(n \cdot nm)$	Applicazione ripetuta di Bellman-Ford, sconsigliata
Pesi negativi, grafo denso	$O(n^3)$	Algoritmo di Floyd e Warshall
Pesi negativi, grafo sparso	$O(nm \log n)$	Algoritmo di Johnson per sorgente multipla

Cammini minimi k-vincolati

Sia k un valore in $\{0, \ldots, n\}$. Diciamo che un cammino p_{xy}^k è un cammino minimo k-vincolato fra x e y se esso ha il costo minimo fra tutti i cammini fra x e y che non passano per nessun vertice in v_{k+1}, \ldots, v_n (x e y sono esclusi dal vincolo).

Note

Assumiamo (come abbiamo sempre fatto) che esista un ordinamento fra i nodi del grafo v_1, v_2, \ldots, v_n .

Domande

- A cosa corrisponde p_{xy}^0 ?
- A cosa corrisponde p_{xy}^n ?

Distanza k-vincolata

Denotiamo con $d^k[x][y]$ il costo totale del cammino minimo k-vincolato fra x e y, se esiste.

$$d^{k}[x][y] = \begin{cases} w(p_{xy}^{k}) & \text{se esiste } p_{xy}^{k} \\ +\infty & \text{altrimenti} \end{cases}$$

Domande

- A cosa corrisponde $d^0[x][y]$?
- A cosa corrisponde $d^n[x][y]$?

Formulazione ricorsiva

$$d^{k}[x][y]) = \begin{cases} w(x,y) \\ \end{cases}$$

$$k = 0$$

Esempio

$$d^0[1][3] =$$

$$d^{1}[1][3] =$$

$$d^2[1][3] =$$

=

Formulazione ricorsiva

$$d^{k}[x][y]) = \begin{cases} w(x,y) & k = 0\\ \min(d^{k-1}[x][y], d^{k-1}[x][k] + d^{k-1}[k][y]) & k > 0 \end{cases}$$

Esempio

$$d^{0}[1][3] = 1$$

$$d^{1}[1][3] = 1$$

$$d^{2}[1][3] = \min(d^{1}[1][3], d^{1}[1][2] + d^{1}[2][3])$$

$$= \min(1, 0) = 0$$

Matrice dei padri

Oltre a definire la matrice d, calcoliamo una matrice T dove T[x][y] rappresenta il predecessore di y nel cammino più breve da x a y.

Esempio

$$T[1][2] = 1$$

$$T[2][3] = 2$$

$$T[1][3] = 2$$

Floyd-Warshall, programmazione dinamica

```
(\mathbf{int}[\,][\,],\mathbf{int}[\,][\,]) floydWarshall(\mathrm{GRAPH}\ G)
int[][] d = new int[1 \dots n][1 \dots n]
int[][] T = new int[1 \dots n][1 \dots n]
foreach u, v \in G.V() do
    d[u][v] = +\infty
    T[u][v] = \mathbf{nil}
foreach u \in G.V() do
     foreach v \in G.adj(u) do
       d[u][v] = G.w(u, v)T[u][v] = u
```

Floyd-Warshall, programmazione dinamica

```
(\mathbf{int}[][], \mathbf{int}[][]) floydWarshall(GRAPH G)
for k = 1 to G.n do
    foreach u \in G.V() do
        foreach v \in G.V() do
            if d[u][k] + d[k][v] < d[u][v] then
             d[u][v] = d[u][k] + d[k][v] 
 T[u][v] = T[k][v] 
return (d,T)
```

Chiusura transitiva (Algoritmo di Warshall)

Chiusura transitiva

La chiusura transitiva $G^* = (V, E^*)$ di un grafo G = (V, E) è il grafo orientato tale che $(u, v) \in E^*$ se e solo esiste un cammino da u a v in G.

Supponendo di avere il grafo G rappresentato da una matrice di adiacenza M, la matrice M^n rappresenta la matrice di adiacenza di G^* .

Formulazione ricorsiva

$$M^{k}[x][y]) = \begin{cases} M[x][y] & k = 0\\ M^{k-1}[x][y] \text{ or } (M^{k-1}[x][k] \text{ and } M^{k-1}[k][y]) & k > 0 \end{cases}$$

Conclusione

- Abbiamo visto una panoramica dei più importanti algoritmi per la ricerca dei cammini minimi
- Ulteriori possibilità:
 - A*, un algoritmo che utilizza euristiche per velocizzare la ricerca
 - Algoritmi specializzati per reti stradali

