Índice general

1.	Res	umen Descriptivo Parte 2	3
	1.1.	RESUMENES DESCRIPTIVOS DE UNA VARIABEL	7
	1.2.	RESUMENES DESCRIPTIVOS PARA TODOS LOS DATOS	8
	1.3.	RESUMEN PARA CRUCE DA VBLES CUANTI CON VBLES CUALI	9
	1.4.	CRUCE DE VBLES CUALITATIVAS (cualixcuali)	11
	1.5.	GRÁFICOS CON GGPLOT2	12
	1.6.	Box_plot	14
	1.7.	Obtención del vector de media muestral	21
	1.8.	obtención de la matriz de covarianza muestral	21
	1.9.	obtención de la matriz de correlación muestral	21
	1.10.	. Gráfica de la matriz de correlación	22
	1.11.	. Gráfico de la MAtriz de Correlación por default	22
		1.11.1. metodo(forma),color-forma,color-etiquetas,inclinación-etiquetas	22
		1.11.2. Con: addCoef.col,order	24
		1.11.3. Con: addCoef.col,order	25
		1.11.4. Con: addCoef.col,order, Gráfica Triagular	26
		1.11.5. Con: addCoef.col,order, Gráfica Triagular	27
		1.11.6. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal	28
		1.11.7. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con cuadrados	29
		1.11.8. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con elipses	30
		1.11.9. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con circulos	31
		1.11.10.Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con torta	32
		1.11.11.Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con cua-	
		$dros(shade) \dots \dots \dots \dots \dots \dots \dots \dots$	33
	1.12.	. Para fundir la matriz de correlación (la matriz de corr en forma de un	
		data.frmae con dos columnas y una tercera con las corrs)	34
Bi	bliog	grafía	36

Capítulo 1

Resumen Descriptivo Parte 2

```
datos <- uno
dim(datos)

[1] 56 6

library(knitr)
library(data.table)
library(pastecs)
kable(head(datos), caption="Emcabezado de Datos")</pre>
```

Tabla 1.1: Emcabezado de Datos

$\overline{V1}$	V2	V3	V4	V5	V6
3.9	51	0.20	7.06	12.19	Wilhelm
2.7	49	0.07	7.14	12.23	Wilhelm
2.8	36	0.30	7.00	11.30	Wilhelm
3.1	45	0.08	7.20	13.01	Wilhelm
3.5	46	0.10	7.81	12.63	Wilhelm
3.9	43	0.07	6.25	10.42	Wilhelm

kable(datos,caption="Datos completos")

Tabla 1.2: Datos completos

V1	V2	V3	V4	V5	V6
3.9	51.0	0.20	7.06	12.19	Wilhelm
2.7	49.0	0.07	7.14	12.23	Wilhelm
2.8	36.0	0.30	7.00	11.30	Wilhelm
3.1	45.0	0.08	7.20	13.01	Wilhelm
3.5	46.0	0.10	7.81	12.63	Wilhelm
3.9	43.0	0.07	6.25	10.42	Wilhelm
2.7	35.0	0.00	5.11	9.00	Wilhelm
5.0	47.0	0.07	7.06	6.10	SubMuli
3.4	32.0	0.20	5.82	4.69	SubMuli
1.2	12.0	0.00	5.54	3.15	SubMuli
8.4	17.0	0.07	6.31	4.55	SubMuli
4.2	36.0	0.50	9.25	4.95	SubMuli
4.2	35.0	0.50	5.69	2.22	SubMuli
3.9	41.0	0.10	5.63	2.94	SubMuli
3.9	36.0	0.07	6.19	2.27	SubMuli
7.3	32.0	0.30	8.02	12.92	SubMuli
4.4	46.0	0.07	7.54	5.76	SubMuli
3.0	30.0	0.00	5.12	10.77	SubMuli
6.3	13.0	0.50	4.24	8.27	Upper
1.7	5.6	1.00	5.69	4.64	Upper
7.3	24.0	0.00	4.34	2.99	Upper
7.8	18.0	0.50	3.92	6.09	Upper
7.8	25.0	0.70	5.39	6.20	Upper
7.8	26.0	1.00	5.02	2.50	Upper
9.5	17.0	0.05	3.52	5.71	Upper
7.7	14.0	0.30	4.65	8.63	Upper
11.0	20.0	0.50	4.27	8.40	Upper
8.0	14.0	0.30	4.32	7.87	Upper
8.4	18.0	0.20	4.38	7.98	Upper
10.0	18.0	0.10	3.06	7.67	Upper
7.3	15.0	0.05	3.76	6.84	Upper
9.5	22.0	0.30	3.98	5.02	Upper
8.4	15.0	0.20	5.02	10.12	Upper
8.4	17.0	0.20	4.42	8.25	Upper
9.5	25.0	0.50	4.44	5.95	Upper
7.2	22.0	1.00	4.70	3.49	Upper
4.0	12.0	0.50	5.71	6.32	Upper
6.7	52.0	0.50	4.80	3.20	Upper
9.0	27.0	0.30	3.69	3.30	Upper
7.8	29.0	1.50	6.72	5.75	Upper
4.5	41.0	0.50	3.33	2.27	Upper
6.2	34.0	0.70	7.56	6.93	Upper

V1	V2	V3	V4	V5	V6
5.6	20.0	0.50	5.07	6.70	Upper
9.0	17.0	0.20	4.39	8.33	Upper
8.4	20.0	0.10	3.74	3.77	Upper
9.5	19.0	0.50	3.72	7.37	Upper
9.0	20.0	0.50	5.97	11.17	Upper
6.2	16.0	0.05	4.23	4.18	Upper
7.3	20.0	0.50	4.39	3.50	Upper
3.6	15.0	0.70	7.00	4.82	Upper
6.2	34.0	0.07	4.84	2.37	Upper
7.3	22.0	0.00	4.13	2.70	Upper
4.1	29.0	0.70	5.78	7.76	Upper
5.4	29.0	0.20	4.64	2.65	Upper
5.0	34.0	0.70	4.21	6.50	Upper
6.2	27.0	0.30	3.97	2.97	Upper

#library(xtable)
#print(xtable(datos[1:28,]))
#print(xtable(datos[29:56,]))

_													
	V1	V2	V3	V4	V5	V6		V1	V2	V3	V4	V5	V6
1	3.90	51.00	0.20	7.06	12.19	Wilhelm	29	8.40	18.00	0.20	4.38	7.98	Upp
2	2.70	49.00	0.07	7.14	12.23	Wilhelm	30	10.00	18.00	0.10	3.06	7.67	Upp
3	2.80	36.00	0.30	7.00	11.30	Wilhelm	31	7.30	15.00	0.05	3.76	6.84	Upp
4	3.10	45.00	0.08	7.20	13.01	Wilhelm	32	9.50	22.00	0.30	3.98	5.02	Upp
5	3.50	46.00	0.10	7.81	12.63	Wilhelm	33	8.40	15.00	0.20	5.02	10.12	Upp
6	3.90	43.00	0.07	6.25	10.42	Wilhelm	34	8.40	17.00	0.20	4.42	8.25	Upp
7	2.70	35.00	0.00	5.11	9.00	Wilhelm	35	9.50	25.00	0.50	4.44	5.95	Upp
8	5.00	47.00	0.07	7.06	6.10	SubMuli	36	7.20	22.00	1.00	4.70	3.49	Upp
9	3.40	32.00	0.20	5.82	4.69	SubMuli	37	4.00	12.00	0.50	5.71	6.32	Upp
10	1.20	12.00	0.00	5.54	3.15	SubMuli	38	6.70	52.00	0.50	4.80	3.20	Upp
11	8.40	17.00	0.07	6.31	4.55	SubMuli	39	9.00	27.00	0.30	3.69	3.30	Upp
12	4.20	36.00	0.50	9.25	4.95	SubMuli	40	7.80	29.00	1.50	6.72	5.75	Upp
13	4.20	35.00	0.50	5.69	2.22	SubMuli	41	4.50	41.00	0.50	3.33	2.27	Upp
14	3.90	41.00	0.10	5.63	2.94	SubMuli	42	6.20	34.00	0.70	7.56	6.93	Upp
15	3.90	36.00	0.07	6.19	2.27	SubMuli	43	5.60	20.00	0.50	5.07	6.70	Upp
16	7.30	32.00	0.30	8.02	12.92	SubMuli	44	9.00	17.00	0.20	4.39	8.33	Upp
17	4.40	46.00	0.07	7.54	5.76	SubMuli	45	8.40	20.00	0.10	3.74	3.77	Upp
18	3.00	30.00	0.00	5.12	10.77	SubMuli	46	9.50	19.00	0.50	3.72	7.37	Upp
19	6.30	13.00	0.50	4.24	8.27	Upper	47	9.00	20.00	0.50	5.97	11.17	Upp
20	1.70	5.60	1.00	5.69	4.64	Upper	48	6.20	16.00	0.05	4.23	4.18	Upp
21	7.30	24.00	0.00	4.34	2.99	Upper	49	7.30	20.00	0.50	4.39	3.50	Upp
22	7.80	18.00	0.50	3.92	6.09	Upper	50	3.60	15.00	0.70	7.00	4.82	Upp
23	7.80	25.00	0.70	5.39	6.20	Upper	51	6.20	34.00	0.07	4.84	2.37	Upp
24	7.80	26.00	1.00	5.02	2.50	Upper	52	7.30	22.00	0.00	4.13	2.70	Upp
25	9.50	17.00	0.05	3.52	5.71	Upper	53	4.10	29.00	0.70	5.78	7.76	Upp
26	7.70	14.00	0.30	4.65	8.63	Upper	54	5.40	29.00	0.20	4.64	2.65	Upp
27	11.00	20.00	0.50	4.27	8.40	Upper	55	5.00	34.00	0.70	4.21	6.50	Upp
_28	8.00	14.00	0.30	4.32	7.87	Upper	_56	6.20	27.00	0.30	3.97	2.97	Upp

1.1. RESUMENES DESCRIPTIVOS DE UNA VA-RIABEL

fivenum(datos[,1]) #estadisticos de tukey:min,q1,median,q3,max

[1] 1.20 3.95 6.25 8.20 11.00

library(Hmisc)
describe(datos[,1]) #fucntion describe de Hmisc

datos[, 1] n missing distinct Info Mean Gmd .05 .10 56 0 31 0.997 6.18 2.799 2.700 3.050 .25 .50 .75 .90 .95 3.975 6.250 8.100 9.250 9.500

lowest: 1.2 1.7 2.7 2.8 3.0, highest: 8.4 9.0 9.5 10.0 11.0

library(pastecs)
stat.desc(datos[,1]) #fucntion stat,desc de pstecs

nbr.val nbr.null nbr.na min max range

 $56.0000000\ 0.0000000\ 0.00000000\ 1.2000000\ 11.0000000\ 9.8000000\ sum$ median mean SE.mean CI.mean. 0.95 var $346.1000000\ 6.2500000\ 6.1803571\ 0.3239611\ 0.6492325\ 5.8772435\ std.dev\ coef.var\ 2.4243027\ 0.3922593$

library(psych)
describe(datos[,1]) #fucntion describe de psych

vars n mean s
d median trimmed mad min max range skew kurtosis se X1 1 56 6.18 2.42 6.25 6.21 3.19 1.2 1
1 9.8 -0.1 -1.14 0.32

1.2. RESUMENES DESCRIPTIVOS PARA TODOS LOS DATOS

library(pastecs)
tablita<-stat.desc(datos[,1:5])
kable(tablita,caption="Resumen de Datos con stat.desc de PASTECS",digits=3)</pre>

Tabla 1.3: Resumen de Datos con stat.desc de PASTECS

	V1	V2	V3	V4	V5
nbr.val	56.000	56.000	56.000	56.000	56.000
nbr.null	0.000	0.000	5.000	0.000	0.000
nbr.na	0.000	0.000	0.000	0.000	0.000
min	1.200	5.600	0.000	3.060	2.220
max	11.000	52.000	1.500	9.250	13.010
range	9.800	46.400	1.500	6.190	10.790
sum	346.100	1514.600	19.120	296.750	360.280
median	6.250	25.000	0.300	5.020	6.095
mean	6.180	27.046	0.341	5.299	6.434
SE.mean	0.324	1.551	0.042	0.185	0.422
CI.mean.0.95	0.649	3.108	0.084	0.372	0.845
var	5.877	134.688	0.099	1.924	9.951
std.dev	2.424	11.606	0.314	1.387	3.155
coef.var	0.392	0.429	0.919	0.262	0.490

library(data.table)
tablita2<-data.table(Estadisticos=rownames(tablita),tablita)
kable(tablita2,caption="Resumen de Datos con data.table de DATA.TABLE",digits=4)</pre>

Tabla 1.4: Resumen de Datos con data.table de DATA.TABLE

Estadisticos	V1	V2	V3	V4	V5
nbr.val	56.0000	56.0000	56.0000	56.0000	56.0000
nbr.null	0.0000	0.0000	5.0000	0.0000	0.0000
nbr.na	0.0000	0.0000	0.0000	0.0000	0.0000
min	1.2000	5.6000	0.0000	3.0600	2.2200
max	11.0000	52.0000	1.5000	9.2500	13.0100
range	9.8000	46.4000	1.5000	6.1900	10.7900
sum	346.1000	1514.6000	19.1200	296.7500	360.2800
median	6.2500	25.0000	0.3000	5.0200	6.0950
mean	6.1804	27.0464	0.3414	5.2991	6.4336
SE.mean	0.3240	1.5509	0.0419	0.1854	0.4215
CI.mean.0.95	0.6492	3.1080	0.0841	0.3715	0.8448
var	5.8772	134.6880	0.0985	1.9244	9.9512
std.dev	2.4243	11.6055	0.3139	1.3872	3.1546

Estadisticos	V1	V2	V3	V4	V5
coef.var	0.3923	0.4291	0.9194	0.2618	0.4903

```
library(stargazer)
stargazer(datos, header=FALSE, title = "Resumen de Datos con stargazer", digits=4)
```

Tabla 1.5: Resumen de Datos con stargazer

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
V1	56	6.1804	2.4243	1.2000	3.9750	8.1000	11.0000
V2	56	27.0464	11.6055	6	17.8	35	52
V3	56	0.3414	0.3139	0.0000	0.0700	0.5000	1.5000
V4	56	5.2991	1.3872	3.0600	4.2625	6.2050	9.2500
V5	56	6.4336	3.1546	2.2200	3.4975	8.2850	13.0100

1.3. RESUMEN PARA CRUCE DA VBLES CUAN-TI CON VBLES CUALI

```
library(reporttools)
                                           #para cruzar continuasxcategoricas
titulo<-"Resumen de los Datos con reporttools (cruce de cuantixcuali)"
vbles<-datos[,1:4]
estadisticas<-list("mean", "s",
                   "c$ {\\mathrm{v}}\\%$"=
                     function(x){
                     return((sd(x)/mean(x))*100)
                   "min", "median", "max", "iqr", "n", "na",
                   "skewness"=function(x) {
                          m3=mean((x-mean(x))^3)
                          skew=m3/(sd(x)^3)
                          return(skew)},
                    "kurtosis"=function(x) {
                          m4=mean((x-mean(x))^4)
                          kurt=m4/(sd(x)^4)
                          return(kurt)}
                     )
#Cruece da vbles_cont con vbles_nominal
tableContinuous(vars = vbles, group = datos[,6], stats = estadisticas, cap=titulo,
                print.pval = "kruskal",longtable=FALSE)
```

% latex table generated in R 4.1.1 by xtable 1.8-4 package % Thu Oct 14 09:42:58 2021

Variable	Levels	$ar{\mathbf{x}}$	\mathbf{s}	$c_{\rm v}\%$	Min	$\widetilde{\mathbf{x}}$	Max	IQR	\mathbf{n}	#NA	skewness	kurtosis
V1	SubMuli	4.4	2.0	44.2	1.2	4.2	8.4	1.1	11	0	0.6	2.6
	Upper	7.2	2.0	27.6	1.7	7.5	11.0	2.2	38	0	-0.6	3.0
	Wilhelm	3.2	0.5	16.7	2.7	3.1	3.9	1.0	7	0	0.2	1.0
p < 0.0001	all	6.2	2.4	39.2	1.2	6.2	11.0	4.1	56	0	-0.1	1.9
V2	SubMuli	33.1	10.8	32.5	12.0	35.0	47.0	7.5	11	0	-0.6	2.3
	Upper	22.3	8.8	39.4	5.6	20.0	52.0	9.8	38	0	1.1	4.9
	Wilhelm	43.6	6.1	14.0	35.0	45.0	51.0	8.0	7	0	-0.3	1.3
p < 0.0001	all	27.0	11.6	42.9	5.6	25.0	52.0	17.2	56	0	0.5	2.2
V3	SubMuli	0.2	0.2	107.6	0.0	0.1	0.5	0.2	11	0	0.9	2.1
	Upper	0.4	0.3	76.4	0.0	0.5	1.5	0.3	38	0	1.0	4.0
	Wilhelm	0.1	0.1	85.5	0.0	0.1	0.3	0.1	7	0	0.7	1.9
p = 0.0039	all	0.3	0.3	91.9	0.0	0.3	1.5	0.4	56	0	1.3	4.8
V4	SubMuli	6.6	1.3	19.3	5.1	6.2	9.2	1.6	11	0	0.8	2.3
	Upper	4.7	1.0	21.3	3.1	4.4	7.6	1.0	38	0	1.1	3.8
	Wilhelm	6.8	0.9	12.8	5.1	7.1	7.8	0.5	7	0	-0.8	2.3
p < 0.0001	all	5.3	1.4	26.2	3.1	5.0	9.2	1.9	56	0	0.7	2.7

Tabla 1.6: Resumen de los Datos con reporttools (cruce de cuantixcuali)

```
library(reporttools)
                                           #para cruzar continuasxcategoricas
titulo<-"Resumen de los Datos con reporttools (cruce de cuantixcuali)"
vbles<-datos[,1:4]
estadisticas<-list("mean", "s",
                   "c$ {\\mathrm{v}}\\%$"=
                     function(x){
                     return((sd(x)/mean(x))*100)
                   "min", "median", "max", "iqr", "n", "na",
                   "skewness"=function(x) {
                          m3=mean((x-mean(x))^3)
                          skew=m3/(sd(x)^3)
                          return(skew)},
                    "kurtosis"=function(x) {
                          m4=mean((x-mean(x))^4)
                          kurt=m4/(sd(x)^4)
                          return(kurt)}
                     )
#Cruece da vbles cont con vbles nominal
tableContinuous(vars = vbles, stats = estadisticas, cap=titulo, longtable=FALSE)
```

% latex table generated in R 4.1.1 by xtable 1.8-4 package % Thu Oct 14 09:42:58 2021

Variable	$ar{\mathbf{x}}$	\mathbf{s}	$c_{\rm v}\%$	\mathbf{Min}	$\widetilde{\mathbf{x}}$	Max	IQR	\mathbf{n}	#NA	skewness	kurtosis
V1	6.2	2.4	39.2	1.2	6.2	11.0	4.1	56	0	-0.1	1.9
V2	27.0	11.6	42.9	5.6	25.0	52.0	17.2	56	0	0.5	2.2
V3	0.3	0.3	91.9	0.0	0.3	1.5	0.4	56	0	1.3	4.8
V4	5.3	1.4	26.2	3.1	5.0	9.2	1.9	56	0	0.7	2.7

Tabla 1.7: Resumen de los Datos con reporttools (cruce de cuantixcuali)

1.4. CRUCE DE VBLES CUALITATIVAS (cualix-cuali)

% latex table generated in R 4.1.1 by xtable 1.8-4 package % Thu Oct 14 09:42:58 2021

Variable	Levels	\mathbf{n}	%	\sum %
V6	SubMuli	11	19.6	19.6
	Upper	38	67.9	87.5
	Wilhelm	7	12.5	100.0
	all	56	100.0	
cate	A	15	26.8	26.8
	В	8	14.3	41.1
	$^{\mathrm{C}}$	15	26.8	67.9
	D	18	32.1	100.0
	all	56	100.0	

Tabla 1.8: Caracteristicas de las variables nominales

1.5. GRÁFICOS CON GGPLOT2

```
library(ggplot2) #para cruzar continuasxcategoricas
ggplot(datos,aes(x=datos[,2]))+geom_histogram()
```



```
library(ggplot2)  #para cruzar continuasxcategoricas
datos3<-data.frame(cbind(rnorm(100,0,1) , rnorm(100,0,1)))
ggplot(datos3,aes(x=datos3[,1])) +
  geom_histogram(aes(y = ..density..) , color="black", fill="white") + geom_density(</pre>
```


1.6. Box_plot

```
library(ggplot2) #para cruzar continuasxcategoricas
ggplot(datos, aes(datos[,6],datos[,1])) +
  geom_boxplot()
```



```
library(ggplot2) #para cruzar continuasxcategoricas
p<-ggplot(datos, aes(datos[,6],datos[,1]))
p+geom_boxplot()+geom_jitter(width = 0.2)</pre>
```


library(ggplot2) #para cruzar continuasxcategoricas
p<-ggplot(datos, aes(datos[,6],datos[,1]))</pre>

p + geom_boxplot(notch = TRUE)


```
library(ggplot2) #para cruzar continuasxcategoricas
p<-ggplot(datos, aes(datos[,6],datos[,1]))
   p + geom_boxplot(varwidth = TRUE)</pre>
```



```
library(ggplot2) #para cruzar continuasxcategoricas
p<-ggplot(datos, aes(datos[,6],datos[,1]))
   p + geom_boxplot(varwidth = FALSE)</pre>
```



```
library(ggplot2) #para cruzar continuasxcategoricas
cate<-factor(rep(c("A","B","C","D"),c(15,8,15,18)))
cate2<-factor(rep(c("SI","NO"),c(28,28)))
data2<-cbind(datos,cate,cate2)
p<-ggplot(data2, aes(data2[,7],datos[,1]))
    p + geom_boxplot(aes(colour = data2[,8]))</pre>
```



```
library(ggplot2)  #para cruzar continuasxcategoricas
cate<-factor(rep(c("A","B","C","D"),c(15,8,15,18)))
cate2<-factor(rep(c("SI","NO"),c(28,28)))
data2<-cbind(datos,cate,cate2)
p<-ggplot(data2, aes(data2[,8],datos[,1]))
    p + geom_boxplot(aes(colour = data2[,7]))</pre>
```


1.7. Obtención del vector de media muestral

```
vector_medias <-apply(datos[,1:5],2,mean);
kable(round(vector_medias,3))</pre>
```

	X
$\overline{V1}$	6.180
V2	27.046
V3	0.341
V4	5.299
V5	6.434

1.8. obtención de la matriz de covarianza muestral

```
var_cov <- cov(datos[,1:5]);
kable(round(var_cov,3))</pre>
```

	V1	V2	V3	V4	V5
V1	5.877	-12.403	0.084	-1.848	-0.621
V2	-12.403	134.688	-0.613	8.318	6.569
V3	0.084	-0.613	0.099	0.031	-0.162
V4	-1.848	8.318	0.031	1.924	1.632
V5	-0.621	6.569	-0.162	1.632	9.951

1.9. obtención de la matriz de correlación muestral

```
corr <- cor(datos[,1:5]);
kable(round(corr,3))</pre>
```

	V1	V2	V3	V4	V5
V1	1.000	-0.441	0.111	-0.549	-0.081
V2	-0.441	1.000	-0.168	0.517	0.179
V3	0.111	-0.168	1.000	0.072	-0.164
V4	-0.549	0.517	0.072	1.000	0.373
V5	-0.081	0.179	-0.164	0.373	1.000

1.10. Gráfica de la matriz de correlación

```
#library(ggplot2)
library(corrplot)
mat.cor<-cor(datos[,1:5],method="pearson")
kable(round(mat.cor,3))</pre>
```

	V1	V2	V3	V4	V5
$\overline{V1}$	1.000	-0.441	0.111	-0.549	-0.081
V2	-0.441	1.000	-0.168	0.517	0.179
V3	0.111	-0.168	1.000	0.072	-0.164
V4	-0.549	0.517	0.072	1.000	0.373
V5	-0.081	0.179	-0.164	0.373	1.000

1.11. Gráfico de la MAtriz de Correlación por default

$1.11.1. \quad metodo(forma), color-forma, color-etiquetas, inclinación-etiquetas$

```
corrplot(mat.cor,method="shade",shade.col=NA,tl.col="black",tl.srt=45 )
```


${\bf 1.11.2.}\quad {\bf Con:\ addCoef.col, order}$

1.11.3. Con: addCoef.col,order

```
datos4 <- read.table(file("datos/T8-6.DAT"),row.names = 1)
mat.cor4<-cor(datos4,method="pearson")
kable(round(mat.cor4,3))</pre>
```

	1.70	1.70	7.7.4	7.7F	I.C.	X 7 17	1.70	170
	V2	V3	V4	V5	V6	V7	V8	V9
V2	1.000	0.915	0.804	0.712	0.766	0.740	0.715	0.676
V3	0.915	1.000	0.845	0.797	0.795	0.761	0.748	0.721
V4	0.804	0.845	1.000	0.768	0.772	0.780	0.766	0.713
V5	0.712	0.797	0.768	1.000	0.896	0.861	0.843	0.807
V6	0.766	0.795	0.772	0.896	1.000	0.917	0.901	0.878
V7	0.740	0.761	0.780	0.861	0.917	1.000	0.988	0.944
V8	0.715	0.748	0.766	0.843	0.901	0.988	1.000	0.954
V9	0.676	0.721	0.713	0.807	0.878	0.944	0.954	1.000

1.11.4. Con: addCoef.col,order, Gráfica Triagular

corrplot(mat.cor4,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="AOE",type="lower")

1.11.5. Con: addCoef.col,order, Gráfica Triagular

corrplot(mat.cor4,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="AOE",type="upper")

1.11.6. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal

corrplot(mat.cor4,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
diag=F,addshade="all")

1.11.7. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con cuadrados

corrplot(mat.cor4,method="square",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="FPC",type="upper",
diag=F,addshade="all")

1.11.8. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con elipses

corrplot(mat.cor4,method="ellipse",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="FPC",type="upper",
diag=F,addshade="all")

1.11.9. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con circulos

corrplot(mat.cor4,method="circle",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="FPC",type="upper",
diag=F,addshade="all")

1.11.10. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con torta

corrplot(mat.cor4,method="pie",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="FPC",type="upper",
diag=F,addshade="all")

1.11.11. Con: addCoef.col,order, Gráfica Triagular, sin Diagonal, con cuadros(shade)

corrplot(mat.cor4,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
addCoef.col="black",addcolorlabel="no",order="FPC",type="upper",
diag=F,addshade="all")

1.12. Para fundir la matriz de correlación (la matriz de corr en forma de un data.frmae con dos columnas y una tercera con las corrs)

```
library(reshape2)
##head(matcorrs.cor)
mat.melt4<-melt(mat.cor4)
kable(head(mat.melt4))</pre>
```

fucnión melt, par afundir la matriz de var-cov

Var1	Var2	value
V2	V2	1.0000000
V3	V2	0.9147554
V4	V2	0.8041147
V5	V2	0.7119388
V6	V2	0.7657919
V7	V2	0.7398803

kable(mat.melt4)

Var1	Var2	value
V2	V2	1.0000000
V3	V2	0.9147554
V4	V2	0.8041147
V5	V2	0.7119388
V6	V2	0.7657919
V7	V2	0.7398803
V8	V2	0.7147921
V9	V2	0.6764873
V2	V3	0.9147554
V3	V3	1.0000000
V4	V3	0.8449159
V5	V3	0.7969162
V6	V3	0.7950871
V7	V3	0.7613028
V8	V3	0.7479519
V9	V3	0.7211157
V2	V4	0.8041147
V3	V4	0.8449159
V4	V4	1.0000000
V5	V4	0.7677488
V6	V4	0.7715522
V7	V4	0.7796929
V8	V4	0.7657481
V9	V4	0.7126823
V2	V5	0.7119388

Var1	Var2	value
$\overline{\text{V3}}$	V5	0.7969162
V4	V_5	0.7677488
V5	V_5	1.0000000
V6	V5	0.8957609
V7	V5	0.8606959
V8	V5	0.8431074
V9	V5	0.8069657
V2	V6	0.7657919
V3	V6	0.7950871
V4	V6	0.7715522
V5	V6	0.8957609
V6	V6	1.0000000
V7	V6	0.9165224
V8	V6	0.9013380
V9	V6	0.8777788
V2	V7	0.7398803
V3	V7	0.7613028
V4	V7	0.7796929
V5	V7	0.8606959
V6	V7	0.9165224
V7	V7	1.0000000
V8	V7	0.9882324
V9	V7	0.9441466
V2	V8	0.7147921
V3	V8	0.7479519
V4	V8	0.7657481
V5	V8	0.8431074
V6	V8	0.9013380
V7	V8	0.9882324
V8	V8	1.0000000
V9	V8	0.9541630
V2	V9	0.6764873
V3	V9	0.7211157
V4	V9	0.7126823
V5	V9	0.8069657
V6	V9	0.8777788
V7	V9	0.9441466
V8	V9	0.9541630
<u>V9</u>	V9	1.0000000

```
# gráfico d ela matriz fundida
ggplot(data=mat.melt4, aes(x=Var1 , y=Var2, fill=value))+
   geom_tile()
```

