Gradual Intersection Types

Pedro Ângelo January 5, 2018

1 Language Definition

Syntax

```
Types \ T ::= Int \mid Bool \mid Dyn \mid T \to T' \mid T \cap \ldots \cap T
           T' ::= Int \mid Bool \mid Dyn \mid T' \rightarrow T'
Expressions e ::= x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false \mid e + e
                             |e:T'\Rightarrow^l T'|e:c\cap\ldots\cap c|blame_T|
Ground Types G ::= Int \mid Bool \mid Dyn \rightarrow Dyn
Casts \ c \ ::= c : T' \Rightarrow^l T' \ ^n \ | \ blame \ T' \ T' \ l^{\ n} \ | \ \varnothing \ T' \ ^n
Values \ v ::= x \mid \lambda x : T \cdot e \mid n \mid true \mid false \mid blame_T \mid l
                    |v:G\Rightarrow^l Dyn
                    v: T_1' \to T_2' \Rightarrow^l T_3' \to T_4'
                     v: cv_1 \cap \ldots \cap cv_n \text{ such that }
                      \neg(\forall_{i\in 1...n} \ . \ cv_i = blame \ T' \ T' \ l^m) \land 
                      \neg(\forall_{i\in 1..n} \ . \ cv_i = \varnothing \ T'^{m})
Cast\ Values\ cv\ ::= cv1\mid cv2
                      cv1 ::= \varnothing T'^n : G \Rightarrow^l Dyn^n
                                 | \varnothing T'^n : T'_1 \to T'_2 \Rightarrow^l T'_3 \to T'_4
                                 | cv1 : G \Rightarrow^l Dyn^n
                                 \mid cv1:T_1'\to T_2'\Rightarrow^l T_3'\to T_4'
                      cv2 ::= blame T' T' l^n
                                 \mid \varnothing T' \mid^n
```

Figure 1: Gradual Intersection System

$$\begin{array}{c|c} \hline \Gamma \vdash_{\cap G} e : T \\ \hline \Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T \\ \hline \Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T \\ \hline \Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T \\ \hline \Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T \\ \hline \Gamma \vdash_{\cap G} e_1 : PM & PM \rhd T_1 \cap \ldots \cap T_n \to T \\ \hline \Gamma \vdash_{\cap G} e_2 : T_1' \cap \ldots \cap T_n' & T_1' \cap \ldots \cap T_n \to T \\ \hline \Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n' & T_1' \cap \ldots \cap T_n \to T \\ \hline \Gamma \vdash_{\cap G} e : T_1 \dots \cap T_n \cap T_n' & T_1' \cap \ldots \cap T_n \in \Gamma \\ \hline \Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & T \\ \hline \Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & T \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & T \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & T \\ \hline T \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n & T \\ \hline T \vdash_{\cap G} x : T_i & T \\ \hline T \vdash_{\cap G}$$

Figure 2: Gradual Intersection Type System $(\vdash_{\cap G})$

$$rules\ in\ Figure\ 2\ and$$

$$rules\ in\ Figure\ 2\ and$$

$$\frac{\Gamma\vdash_{\cap CC}e:T_1}{\Gamma\vdash_{\cap CC}(e:T_1\Rightarrow^lT_2):T_2}\ T\text{-Cast}\qquad \frac{\Gamma\vdash_{\cap CC}blame_T\ l:T}{\Gamma\vdash_{\cap CC}blame_T\ l:T}\ T\text{-Blame}$$

$$\frac{\Gamma\vdash_{\cap CC}e:T_1\Rightarrow^lT_2):T_2}{\Gamma\vdash_{\cap CC}(e:T_1\Rightarrow^lT_2):T_2}\ T\text{-Cast}\qquad \frac{\Gamma\vdash_{\cap CC}blame_T\ l:T}{\Gamma\vdash_{\cap CC}(e:T_1\Rightarrow^lT_1\ldots\cap T_n}\ T\text{-IntersectionCast}$$

$$\frac{initialType(c):T_1\Rightarrow^lT_2^n)=initialType(c)}{initialType(c):T_1\Rightarrow^lT_2^n)=initialType(c)}$$

$$initialType(blame\ T_l\ T_r\ l\ ^n)=T_l$$

$$finalType(c):T_1\Rightarrow^lT_2^n)=T_2$$

$$finalType(blame\ T_l\ T_r\ l\ ^n)=T_r$$

$$finalType(blame\ T_l\ T_r\ l\ ^n)=T_r$$

Figure 3: Intersection Cast Calculus $(\vdash_{\cap CC})$

```
\Gamma \vdash_{\cap CC} e \leadsto e : T \mid \text{Compilation}
                                                             \frac{x: T_1 \cap \ldots \cap T_n \in \Gamma}{\Gamma \vdash_{\cap CC} x \leadsto x: T_i}
 \frac{\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e' : T}{\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e) \leadsto (\lambda x : T_1 \cap \ldots \cap T_n \cdot e') : T_1 \cap \ldots \cap T_n \to T}
getInstances(T) = \{T\}
                                                     qetInstances(Int) = \{Int\}
                                                   qetInstances(Bool) = \{Bool\}
                                                   getInstances(Dyn) = \{Dyn\}
          getInstances(T_1 \to T_2) = \\ let \{T_{11}, \dots, T_{1n}\} = getInstances(T_1) \ in \ \{T_{11} \to T_2, \dots, T_{1n} \to T_2\}
                                                  getInstances(T_1 \cap ... \cap T_n) =
                                         let \{T_{11}, \ldots, T_{1m}\} = getInstances(T_1)
                                         let \{T_{n1}, \dots, T_{nj}\} = getInstances(T_n)
in \{T_{11}, \dots, T_{1m}, \dots, T_{n1}, \dots, T_{nj}\}
     addCasts(\{T\}, \{T\}, e) = e
                                         addCasts(\{T_1\}, \{T_2\}, e) = e : T_1 \Rightarrow^l T_2
                   addCasts(\{T_{11}, \dots, T_{1n}\}, \{T_{21}, \dots, T_{2n}\}, e) = e : (\varnothing T_{11} \circ : T_{11} \Rightarrow^{l} T_{21} \circ) \cap \dots \cap (\varnothing T_{1n} \circ : T_{1n} \Rightarrow^{l} T_{2n} \circ)
                      addCasts(\{T_{11}, \dots, T_{1n}\}, \{T_2\}, e) = e : (\varnothing T_{11} \stackrel{0}{\Rightarrow} t T_{2} \stackrel{0}{\Rightarrow}) \cap \dots \cap (\varnothing T_{1n} \stackrel{0}{\Rightarrow} t T_{2} \stackrel{0}{\Rightarrow})
                        addCasts(\{T_1\}, \{T_{21}, \dots, T_{2n}\}, e) = e : (\varnothing \ T_1 \ ^0 : T_1 \Rightarrow^l T_{21} \ ^0) \cap \dots \cap (\varnothing \ T_1 \ ^0 : T_1 \Rightarrow^l T_{2n} \ ^0)
```

Figure 4: Compilation to the Cast Calculus

```
e \longrightarrow_{\cap CC} e Evaluation
```

Simulate casts on data types

$$isValue \ v_1: cv_1\cap\ldots\cap cv_n \qquad \exists i\in 1..n \ . isArrowCompatible \ cv_i \\ (cv_1',\ldots,cv_m') = filter \ isArrowCompatible \ (cv_1,\ldots,cv_n) \\ \underline{((c_{11},c_{12},r_1),\ldots,(c_{m1},c_{m2},r_m)) = map \ simulateArrow \ (cv_1',\ldots,cv_m')}_{(v_1:cv_1\cap\ldots\cap cv_n) \ v_2\longrightarrow_{\cap CC}}$$
 Simulate \(\begin{aligned} (v_1:r_1\cap\ldots\cap r_m) \ (v_2:c_{11}\cap\ldots\cap c_{m1}):c_{12}\cap\ldots\cap c_{m2} \end{aligned} \]

$Merge\ casts$

$$\frac{isValue\ v: cv_1\cap\ldots\cap cv_n}{v: c'_1\cap\ldots\cap c'_m = mergeIC(v: cv_1\cap\ldots\cap cv_n: T_1\Rightarrow^l T_2)} \underbrace{v: cv_1\cap\ldots\cap cv_n: T_1\Rightarrow^l T_2 \longrightarrow_{\cap CC} v: c'_1\cap\ldots\cap c'_m}_{\text{MERGEIC}\cap}$$

$$isValue\ v: T_1 \Rightarrow^l T_2 \\ \underline{v: c_1' \cap \ldots \cap c_m' = mergeCI(v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n)}_{v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: c_1' \cap \ldots \cap c_m'} \ \text{MergeCI} \cap$$

$$\frac{isValue\ v:cv_1\cap\ldots\cap cv_n}{v:c_1'\cap\ldots\cap c_j'=mergeII(v:cv_1\cap\ldots\cap cv_n:c_1\cap\ldots\cap c_m)}\ \text{MergeII}\cap \\ \frac{v:cv_1\cap\ldots\cap c'_j=mergeII(v:cv_1\cap\ldots\cap cv_n:c_1\cap\ldots\cap c_m)}{v:cv_1\cap\ldots\cap cv_n:c_1\cap\ldots\cap c_m\longrightarrow_{\cap CC} v:c_1'\cap\ldots\cap c_j'}$$

$Evaluate\ intersection\ casts$

Transition from cast values to values

$$\frac{v: blame\ T_1'\ T_1\ l_1\ ^{m_1}\cap\ldots\cap blame\ T_n'\ T_n\ l_n\ ^{m_n}}{\longrightarrow_{\cap CC}\ blame_{(T_1\cap\ldots\cap T_n)}\ l_1} \text{PropagateBlame}\cap \\ \frac{v: \varnothing\ T_1\ ^{m_1}\cap\ldots\cap\varnothing\ T_n\ ^{m_n}\longrightarrow_{\cap CC} v}{\text{RemoveEmpty}\cap}$$

Figure 5: Cast Calculus Semantics $(\longrightarrow_{\cap CC})$

$$\begin{array}{c|c} \hline \vdash_{\cap IC} c:T & \text{Typing} \\ \\ \hline \frac{\vdash_{\cap IG} c:T_1 & T_1 \sim T_2}{\vdash_{\cap IG} (c:T_1 \Rightarrow^l T_2 ^n):T_1} & \text{T-SingleC} & \hline \\ \hline \hline \vdash_{\cap IG} blame \ T_I \ T_F \ l^n:T_F & \text{T-BlameC} \end{array}$$

Figure 6: Intersection Casts Type System $(\vdash_{\cap IC})$

$$c \longrightarrow_{\cap IC} c$$
 Evaluation

Push blame to top level

$$\overline{blame\ T_I\ T_F\ l_1\ ^{n_1}: T_1 \Rightarrow^{l_2} T_2\ ^{n_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{n_1}}\ \mathrm{PushBlameC}$$

 $Evaluate\ inside\ casts$

$$\frac{\neg (isCastValue\ c) \qquad c \longrightarrow_{\cap IC} c'}{c: T_1 \Rightarrow^l T_2 \stackrel{n}{\longrightarrow}_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{n}{\longrightarrow}} \text{ EvaluateC}$$

Detect success or failure of casts

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{c:T\Rightarrow^l T\ ^n\longrightarrow_{\cap IC} c}\ \text{IdentityC}$$

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{c:G\Rightarrow^{l_1}Dyn\xrightarrow{n_1}:Dyn\Rightarrow^{l_2}G\xrightarrow{n_2}{\longrightarrow_{\cap IC}c}} \text{SucceedC}$$

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{\neg(same\ ground\ G_1\ G_2) \quad initialType(c) = T_I}{c:G_1 \Rightarrow^{l_1} Dyn^{\ n_1}:Dyn \Rightarrow^{l_2} G_2^{\ n_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{\ n_1}}\ \text{FailC}$$

Mediate the transition between the two disciplines

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{G\ is\ ground\ type\ of\ T \qquad \neg (ground\ T)} \frac{c:T\Rightarrow^l Dyn\ ^n\longrightarrow_{\cap IC} c:T\Rightarrow^l G\ ^n:G\Rightarrow^l Dyn\ ^n}{c:T\Rightarrow^l Dyn\ ^n\longrightarrow_{\cap IC} c:T\Rightarrow^l G\ ^n:G\Rightarrow^l Dyn\ ^n}$$
 Ground C

$$\frac{isCastValue1\ c \lor isEmptyCast\ c}{G\ is\ ground\ type\ of\ T \qquad \neg (ground\ T)} \frac{c:Dyn \Rightarrow^l T\ ^n \longrightarrow_{\cap IC} c:Dyn \Rightarrow^l G\ ^n:G\Rightarrow^l T\ ^n}{} \ \text{ExpandC}$$

Figure 7: Intersection Casts Semantics $(\longrightarrow_{\cap IC})$

 $[e]_e = e$ Erase identity casts

$$[x]_{e} = x$$

$$[\lambda x : T \cdot e]_{e} = \lambda x : T \cdot [e]_{e}$$

$$[e_{1} \ e_{2}]_{e} = [e_{1}]_{e} \ [e_{2}]_{e}$$

$$[n]_{e} = n$$

$$[true]_{e} = true$$

$$[false]_{e} = false$$

$$[e_{1} + e_{2}]_{e} = [e_{1}]_{e} + [e_{2}]_{e}$$

$$[e : T \Rightarrow^{l} T]_{e} = [e]_{e}$$

$$[e : T_{1} \Rightarrow^{l} T_{2}]_{e} = [e]_{e} : T_{1} \Rightarrow^{l} T_{2}$$

$$[e : T_{1} \Rightarrow^{l} T_{2}]_{e} = [e]_{e} : T_{1} \Rightarrow^{l} T_{2}$$

$$[e : T_{1} \Rightarrow^{l} T_{2}]_{e} = [e]_{e} : T_{1} \Rightarrow^{l} T_{2}$$

$$[e : T_{1} \Rightarrow^{l} T_{2}]_{e} = [e]_{e} : T_{1} \Rightarrow^{l} T_{2}$$

$$[e : T_{1} \Rightarrow^{l} T_{2}]_{e} = [e]_{e} : T_{1} \Rightarrow^{l} T_{2}$$

$$[e : T_{2} \Rightarrow^{l} T_{1} \cdots [c_{n}]_{c} = \emptyset T_{n} \xrightarrow{n_{n}} [e : c_{1} \cap \cdots \cap c_{n}]_{e} = [e]_{e} : C'_{1} \cap \cdots \cap C'_{n}$$

 $c|c|_c = c$ Erase identity casts

$$\begin{split} [c:T\Rightarrow^l T^n]_c &= [c]_c \\ [c:T_1\Rightarrow^l T_2^n]_c &= [c]_c:T_1\Rightarrow^l T_2^n \\ [blame\ T_I\ T_F\ l^n]_c &= blame\ T_I\ T_F\ l^n \\ [\varnothing\ T^n]_c &= \varnothing\ T^n \end{split}$$

Figure 8: Identity Cast Erasure

2 Proofs

Theorem 1 (Conservative Extension). Depends on Lemma 1. If e is fully static and T is a static type, then $\Gamma \vdash_{\cap S} e : T \iff \Gamma \vdash_{\cap G} e : T$.

Proof. First we will prove that if $\vdash_{\cap S} e : T$ then $\vdash_{\cap G} e : T$. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$.

Base case:

• e = x. If $\Gamma \vdash_{\cap S} x : T_i$, then $x : T_1 \cap ... \cap T_n \in \Gamma$ such that $T_i \in \{T_1, ..., T_n\}$. Therefore, by rule $\cap E$ of $\vdash_{\cap G}$, $\Gamma \vdash_{\cap G} e : T_i$.

Induction step:

- $e = \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e'$. There are two possibilities:
 - Using the rule $\to I$. If $\Gamma \vdash_{\cap S} \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e' : T$. Therefore, by rule $\to I$, $\Gamma \vdash_{\cap G} \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$.
 - Using the rule $\to I'$. If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap S} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap G} e' : T$. Therefore, by rule $\to I'$, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$.
- $e = e_1 \ e_2$. If $\Gamma \vdash_{\cap S} e_1 \ e_2 : T$ then $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T \triangleright T_1 \cap \ldots \cap T_n \to T$. By the definition of consistency $(T \sim T), T_1 \cap \ldots \cap T_n \sim T_1 \cap \ldots \cap T_n$. Therefore, by rule $\to E$, $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$.
- e = e. If $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. Therefore, by rule $\cap E$, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$.

Now we will prove that if $\vdash_{\cap G} e : T$ then $\vdash_{\cap S} e : T$. We proceed by induction on the length of the derivation tree of $\vdash_{\cap G}$.

Base case:

• e = x. If $\Gamma \vdash_{\cap G} x : T_i$, then $x : T_1 \cap ... \cap T_n \in \Gamma$ such that $T_i \in \{T_1, ..., T_n\}$. Therefore, by rule $\cap E$ of $\vdash_{\cap S}$, $\Gamma \vdash_{\cap S} e : T_i$.

Induction step:

- $e = \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e'$. There are two possibilities:
 - Using the rule $\to I$. If $\Gamma \vdash_{\cap G} \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e' : T$. Therefore, by rule $\to I$, $\Gamma \vdash_{\cap S} \lambda x \cdot T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$.

- Using the rule $\to I'$. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap G} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap S} e' : T$. Therefore, by rule $\to I'$, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$.
- $e = e_1 \ e_2$. If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the definition of \rhd , $PM = T_1 \cap \ldots \cap T_n \to T$, therefore $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$. By Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$, and therefore $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. Therefore, by rule $\to E$, $\Gamma \vdash_{\cap S} e_1 e_2 : T$.
- e = e. If $\Gamma \vdash_{\cap G} e : T_1 \cap ... \cap T_n$ then $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. Therefore, by rule $\cap E$, $\Gamma \vdash_{\cap S} e : T_1 \cap ... \cap T_n$.

Theorem 2 (Conservative Extension). Depends on Lemmas 5 and 7. If e is fully static, T is a static type and $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, then $e \longrightarrow_{\cap S} v \iff e' \longrightarrow_{\cap CC} v$.

Proof. Since $\Gamma \vdash_{\cap CC} e \leadsto e' : T$ and e is fully static, then by Lemma 5 and by the definition of $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, the expression e equals e', except that e' contains identity casts. Therefore, $[e']_e = e$. Then, by Lemma 7, if $e \longrightarrow v$ and $e' \longrightarrow_{\cap CC} v'$, then v = v'.

Theorem 3 (Monotonicity w.r.t. precision). If $\Gamma \vdash_{\cap G} e : T$ and $e' \sqsubseteq e$ then $\exists T'$. $\Gamma \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base case:

- e = x. If $\Gamma \vdash_{\cap G} x : T_i$ and $x \sqsubseteq x$, then $\Gamma \vdash_{\cap G} x : T_i$ and $T_i \sqsubseteq T_i$.
- e = n. If $\Gamma \vdash_{\cap G} n : Int$ and $n \sqsubseteq n$, then $\Gamma \vdash_{\cap G} n : Int$ and $Int \sqsubseteq Int$.
- e = true. If $\Gamma \vdash_{\cap G} true : Bool$ and $true \sqsubseteq true$, then $\Gamma \vdash_{\cap G} true : Bool$ and $Bool \sqsubseteq Bool$.
- e = false. If $\Gamma \vdash_{\cap G} false : Bool$ and $false \sqsubseteq false$, then $\Gamma \vdash_{\cap G} false : Bool$ and $Bool \sqsubseteq Bool$.

Induction step:

• e = λx : $T_1 \cap \ldots \cap T_n$. e_1 . If $\Gamma \vdash_{\cap G} \lambda x$: T_1 . e_1 : $T_1 \to T_2$ and λx : T_1' . $e_1' \sqsubseteq \lambda x$: T_1 . e_1 , then $\Gamma \vdash_{\cap G} e_1$: T_2 , $T_1' \sqsubseteq T_1$ and $e_1' \sqsubseteq e_1$. By the induction hypothesis, $\exists T_2'$. $\Gamma \vdash_{\cap G} e_1'$: T_2' and $T_2' \sqsubseteq T_2$. As $\Gamma \vdash_{\cap G} \lambda x$: T_1' . e_1' : $T_1' \to T_2'$, and by the definition of \sqsubseteq , $T_1' \to T_2' \sqsubseteq T_1 \to T_2$, then it is proved.

- $\mathbf{e} = e_1 \ e_2$. If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$ and $e'_1 \ e'_2 \sqsubseteq e_1 \ e_2$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_{11} \cap \ldots \cap T_{1n} \to T$, $\Gamma \vdash_{\cap G} e_2 : T_{21} \cap \ldots \cap T_{2n}$, and $T_{21} \cap \ldots \cap T_{2n} \sim T_{11} \cap \ldots \cap T_{1n}$, $e'_1 \sqsubseteq e_1$ and $e'_2 \sqsubseteq e_2$. By the induction hypothesis, $\exists PM' \cdot \Gamma \vdash_{\cap G} e'_1 : PM' \ and \ PM' \sqsubseteq PM \ and \ PM' \rhd T'_{11} \cap \ldots \cap T'_{1n} \to T'$ and $\exists T'_{21}, \ldots, T'_{2n} \cdot \Gamma \vdash_{\cap G} e'_2 : T'_{21} \cap \ldots \cap T'_{2n} \ and \ T'_{21} \cap \ldots \cap T'_{2n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n} \ and \ T'_{21} \cap \ldots \cap T'_{2n} \to T' \subseteq T_{11} \cap \ldots \cap T'_{1n}$. By the definition of \sqsubseteq and \rhd , $T'_{11} \cap \ldots \cap T'_{1n} \to T' \sqsubseteq T_{11} \cap \ldots \cap T_{1n} \to T$, and therefore, $T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} e'_1 e'_2 : T'$, it is proved.
- e = e. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$, then $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\exists T'_1 : \Gamma \vdash_{\cap G} e' : T'_1 \text{ and } T'_1 \sqsubseteq T_1 \text{ and } \ldots$ and $\exists T'_n : \Gamma \vdash_{\cap G} e' : T'_n \text{ and } T'_n \sqsubseteq T_n$. Then, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and by the definition of $\sqsubseteq, T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$, then it is proved.

Theorem 4 (Subject reduction of $\longrightarrow_{\cap CC}$). Depends on Lemmas 2 and 3. If $\Gamma \vdash_{\cap CC} e : T$ and $e \longrightarrow_{\cap CC} e'$ then $\Gamma \vdash_{\cap CC} e' : T$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$.

Base case:

- e = $v: cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2$ and $isValue \ v: cv_1 \cap \ldots \cap cv_n$ and $v: c'_1 \cap \ldots \cap c'_m = mergeIC(v: cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2)$. If $\Gamma \vdash_{\cap CC} v: cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 : T_2$ then $\Gamma \vdash_{\cap CC} v: cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_1$ and $T_1 \cap \ldots \cap T_1 =_{\cap} T_1$ and $\vdash_{\cap IC} cv_1 : T_1$ and $T_1 = initialType(cv_1)$ and $t_1 = initialType(cv_1)$ and $t_2 = initialType(cv_1)$ and $t_3 = initialType(cv_1)$ and $t_4 = initialType(cv_1)$ and $t_5 = initialType(cv_1)$ and $t_7 = initialType(cv$
- $\mathbf{e} = v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n$ and $isValue \ v : T_1 \Rightarrow^l T_2$ and $v : c'_1 \cap \ldots \cap c'_m = mergeCI(v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n)$. If $\Gamma \vdash_{\cap CC} v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n$: If $\Gamma \vdash_{\cap CC} v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n : F_1 \cap \ldots \cap F_n$ then $\Gamma \vdash_{\cap CC} v : T_1 \Rightarrow T_2 : T_2$ and $\Gamma \vdash_{\cap CC} v : T_1$ and $\vdash_{\cap IC} c_1 : F_1$ and $initialType(c_1) : T_2$ and \ldots and $\vdash_{\cap IC} c_n : F_n$ and $initialType(c_n) : T_2$. By the definition of mergeCI, $mergeCI(v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n) = v : c'_1 \cap \ldots \cap c'_n$, such that $\vdash_{\cap IC} c'_1 : F_1$ and $initialType(c'_1) : T_1$ and \ldots and $\vdash_{\cap IC} c'_n : F_n$ and $initialType(c'_n) : T_1$. As $\Gamma \vdash_{\cap CC} v : c'_1 \cap \ldots \cap c'_n : F_1 \cap \ldots \cap F_n$ and by rule $\mathrm{MergeCI} \cap v : T_1 \Rightarrow^l T_2 : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : c'_1 \cap \ldots \cap c'_n$, then it is proved.
- e = $v: c_1 \cap ... \cap c_n$ and $\neg (\forall i \in 1..n . isCastValue c_i)$. If $\Gamma \vdash_{\cap CC} v: c_1 \cap ... \cap c_n : T_1 \cap ... \cap T_n$ then $\vdash_{\cap IC} c_1 : T_1$ and ... and $\vdash_{\cap IC} c_n : T_n$, $\Gamma \vdash_{\cap CC} v: I_1 \cap ... \cap I_n$, with $I_1 = initialType(c_1)$ and ... and $I_n = initialType(c_n)$. By rule Evaluate \cap , $c_1 \longrightarrow_{\cap IC} cv_1$ and ... and $c_n \longrightarrow_{\cap IC} cv_n$. By Lemmas 2 and 3, $\vdash_{\cap IC} cv_1 : T_1$ and ... and $\vdash_{\cap IC} cv_n : T_n$

and $initialType(cv_1) = I_1$ and ... and $initialType(cv_n) = I_n$. Therefore $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$.

- e = v : $blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n}$. If $\Gamma \vdash_{\cap CC} v$: $blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} : T_1 \cap \ldots \cap T_n$ and by rule PropagateBlame $\cap v$: $blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} \longrightarrow_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1$, and $\Gamma \vdash_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1 : T_1 \cap \ldots \cap T_n$, then it is proved.
- e = $v : \varnothing T_1 \stackrel{m_1}{\cap} \ldots \cap \varnothing T_n \stackrel{m_n}{\cap} \ldots$ If $\Gamma \vdash_{\cap CC} v : \varnothing T_1 \stackrel{m_1}{\cap} \ldots \cap \varnothing T_n \stackrel{m_n}{\cap} : T_1 \cap \ldots \cap T_n$, then $\vdash_{\cap IC} \varnothing T_1 \stackrel{m_1}{\cap} : T_1$ and $initialType(\varnothing T_1 \stackrel{m_1}{\cap}) = T_1$ and \ldots and $\vdash_{\cap IC} \varnothing T_n \stackrel{m_n}{\cap} : T_n$ and $initialType(\varnothing T_n \stackrel{m_n}{\cap}) = T_n$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$. By rule RemoveEmpty \cap , $v : \varnothing T_1 \stackrel{m_1}{\cap} \ldots \cap \varnothing T_n \stackrel{m_n}{\longrightarrow} \cap CC v$, therefore it is proved.

Induction step:

• e =

Lemma 1 (Consistency reduces to equality when comparing static types). If T_1 and T_2 are static types then $T_1 = T_2 \iff T_1 \sim T_2$.

Proof. We proceed by structural induction on T.

Base cases:

- $T_1 = Int$.
 - If $T_1 = T_2$, then by the definition of \sim , $T_1 \sim T_2$.
 - If $T_1 \sim T_2$, then by the definition of \sim , $T_1 = T_2$.
- $T_1 = Bool$.
 - If $T_1 = T_2$, then by the definition of \sim , $T_1 \sim T_2$.
 - If $T_1 \sim T_2$, then by the definition of \sim , $T_1 = T_2$.
- $T_1 = Dyn$. This case is not considered due to the assumption that T_1 is a static type.

Induction step:

- $T_1 = T_{11} \to T_{12}$.
 - If $T_1=T_2$, then $\exists T_{21},T_{22}$. $T_2=T_{21}\to T_{22}$ and $T_{11}=T_{21}$ and $T_{12}=T_{22}$. By the induction hypothesis, $T_{11}\sim T_{21}$ and $T_{12}\sim T_{22}$. Therefore, by the definition of \sim , $T_1\sim T_2$.
 - If $T_1 \sim T_2$, then $\exists T_{21}, T_{22}$. $T_2 = T_{21} \to T_{22}$ and $T_{11} = T_{21}$ and $T_{12} = T_{22}$. By the induction hypothesis, $T_{11} = T_{21}$ and $T_{12} = T_{22}$. Therefore, by the definition of $= T_1 = T_2$.
- $\bullet \ T_1 = T_{11} \cap \ldots \cap T_{1n}.$

- If $T_1 = T_2$, then $\exists T_{21}, \ldots, T_{2n}$. $T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. Therefore, by the definition of \sim , $T_1 \sim T_2$.
- If $T_1 \sim T_2$, then $\exists T_{21}, \ldots, T_{2n}$. $T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. By the induction hypothesis, $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. Therefore, by the definition of =, $T_1 = T_2$.

Lemma 2 (Subject reduction of $\longrightarrow_{\cap IC}$). If $\vdash_{\cap IC} c : T$ for some T and $c \longrightarrow_{\cap IC} c'$ then $\vdash_{\cap IC} c' : T$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- c = blame $T_I \ T_F \ l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2}$. $\vdash_{\cap IC}$ blame $T_I \ T_F \ l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2} : T_2$ and by rule PushBlameC, blame $T_I \ T_F \ l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2} \longrightarrow_{\cap IC}$ blame $T_I \ T_2 \ l_1^{n_1}$. As $\vdash_{\cap IC}$ blame $T_I \ T_2 \ l_1^{n_1} : T_2$, then it is proved.
- $c = c' : T \Rightarrow^l T^n$ and $isCastValue1 \ c' \lor isEmptyCast \ c'$. If $\vdash_{\cap IC} c' : T \Rightarrow^l T^n : T$, then $\vdash_{\cap IC} c' : T$. By rule IdentityC, $c' : T \Rightarrow^l T^n \longrightarrow_{\cap IC} c'$. Therefore it is proved.
- c = c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$ and isCastValue1 c' $\vee isEmptyCast$ c'. If $\vdash_{\cap IC} c' : G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2} : G$, then $\vdash_{\cap IC} c' : G$. By rule SucceedC, $c' : G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2} \longrightarrow_{\cap IC} c'$. Therefore it is proved.
- c = c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c' and $\neg(same\ ground\ G_1\ G_2)$ and $initialType(c') = T_I$. If $\vdash_{\cap IC} c' : G_1 \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G_2^{n_2} : G_2$, and by rule FailC, $c' : G_1 \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G_2^{n_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$ and $\vdash_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1} : G_2$, it is proved.
- c = c' : $T \Rightarrow^l Dyn^n$ and isCastValue1 c' \vee isEmptyCast c' and G is ground type of T and $\neg (ground\ T)$. If $\vdash_{\cap IC} c' : T \Rightarrow^l Dyn^n : Dyn$ then $\vdash_{\cap IC} c' : T$. By rule GroundC, $c' : T \Rightarrow^l Dyn^n \longrightarrow_{\cap IC} c' : T \Rightarrow^l G^n : G \Rightarrow^l Dyn^n$. As $\vdash_{\cap IC} c' : T \Rightarrow^l G^n : G \Rightarrow^l Dyn^n : Dyn$, it is proved.
- c = c' : Dyn $\Rightarrow^l T^n$ and is CastValue1 c' \vee is EmptyCast c' and G is ground type of T and \neg (ground T). If $\vdash_{\cap IC} c' : Dyn \Rightarrow^l T^n : T$ then $\vdash_{\cap IC} c' : Dyn$. By rule ExpandC, $c' : Dyn \Rightarrow^l T^n \longrightarrow_{\cap IC} c' : Dyn \Rightarrow^l G^n : G \Rightarrow^l T^n : T$, it is proved.

Induction step:

• $c = c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c)$. If $\vdash_{\cap IC} c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c)$. If $\vdash_{\cap IC} c' : T_1 \Rightarrow^l T_2$ by the induction hypothesis, $\vdash_{\cap IC} c'' : T_1$. By rule EvaluateC, $c' : T_1 \Rightarrow^l T_2$ and $r \mapsto_{\cap IC} c'' : T_1 \Rightarrow^l T_2$ and $r \mapsto_{\cap IC} c'' : T_1 \Rightarrow^l T_2$ and $r \mapsto_{\cap IC} c'' : T_1 \Rightarrow^l T_2$ are in the proved.

Lemma 3 (Initial type preservation of $\longrightarrow_{\cap IC}$). If initial Type(c) = T for some T and $c \longrightarrow_{\cap IC} c'$ then initial Type(c') = T.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- c = blame T_I T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ n_2 . By the definition of initialType, $initialType(blame <math>T_I$ T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ n_2) = T_I . By rule PushBlameC, $blame \ T_I$ T_F l_1 n_1 : $T_1 \Rightarrow^{l_2} T_2$ $^{n_2} \longrightarrow_{\cap IC} blame \ T_I$ T_2 l_1 n_1 . Since $initialType(blame \ T_I$ T_2 l_1 n_1) = T_I , it is proved.
- $c = c' : T \Rightarrow^l T^n$ and $isCastValue1 \ c' \lor isEmptyCast \ c'$. By the definitions of initialType, $initialType(c' : T \Rightarrow^l T^n) = initialType(c')$. By rule IdentityC, $c' : T \Rightarrow^l T^n \longrightarrow_{\bigcap IC} c'$. Therefore it is proved.
- c = c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c'. By the definition of initialType, initialType(c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$) = initialType(c'). By rule SucceedC, c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2} \longrightarrow_{\cap IC} c'$. Therefore it is proved.
- c = c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c' and $\neg(same\ ground\ G_1\ G_2)$ and $initialType(c') = T_I$. By the definition of initialType, $initialType(c': G_1 \Rightarrow^{l_1} Dyn^{n_1}: Dyn \Rightarrow^{l_2} G_2^{n_2}) = T_I$. By rule FailC, $c': G_1 \Rightarrow^{l_1} Dyn^{n_1}: Dyn \Rightarrow^{l_2} G_2^{n_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$. Since $initialType(blame\ T_I\ G_2\ l_2^{n_1}) = T_I$, it is proved.
- c = c' : $T \Rightarrow^l Dyn^n$ and isCastValue1 c' \vee isEmptyCast c' and G is ground type of T and $\neg (ground\ T)$. By the definition of initialType, $initialType(c': T \Rightarrow^l Dyn^n) = initialType(c')$. By rule GroundC, $c': T \Rightarrow^l Dyn^n \longrightarrow_{\cap IC} c': T \Rightarrow^l G^n: G \Rightarrow^l Dyn^n$. Since $initialType(c': T \Rightarrow^l G^n: G \Rightarrow^l Dyn^n) = initialType(c')$, it is proved.
- c = c' : Dyn $\Rightarrow^l T^n$ and isCastValue1 $c' \lor isEmptyCast$ c' and G is ground type of T and $\neg(ground\ T)$. By the definition of initialType, $initialType(c':Dyn \Rightarrow^l T^n) = initialType(c')$. By rule ExpandC, $c':Dyn \Rightarrow^l T^n \longrightarrow_{\cap IC} c':Dyn \Rightarrow^l G^n:G\Rightarrow^l T^n$. Since $initialType(c':Dyn \Rightarrow^l G^n:G\Rightarrow^l T^n) = initialType(c')$, it is proved.

Induction step:

• $c = c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c')$. By the definition of initialType, $initialType(c') : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c')$. By rule EvaluateC, $c' \longrightarrow_{\cap IC} c''$. By the induction hypothesis, initialType(c'') = initialType(c'). By rule EvaluateC, $c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValue\ c') = initialType(c'') = initialType(c')$. Since $initialType(c'') : T_1 \Rightarrow^l T_2$ and $initialType(c'') : T_1 \Rightarrow^l T_2$ and initialType(c'') :

Lemma 4 (Expressions annotated with only static types type with static types). If e is annotated with only static types then:

- 1. $\Gamma \vdash_{\cap G} e : T$, for some static T.
- 2. $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, for some static T.

Proof. (1) We proceed by induction on the length of the derivation tree of $\vdash_{\cap G}$.

Base cases:

• e = x. If $\Gamma \vdash_{\cap G} x : T_i$, then there is a binding $x : T' \in \Gamma$, such that $T_i \subseteq T'$. Therefore, there must have been at some point in the typing derivation, the application of the rules $(\to I)$ or $(\to I')$. If e is annotated with only static types, then both rules introduze the binding x : T' in Γ , such that T' is a static type. Therefore, T_i is also a static type.

Induction step:

- $e = \lambda x : T_1 \cap \ldots \cap T_n \cdot e'$. There are two possibilities:
 - Using the rule $\to I$. If e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By rule $(\to I)$, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, T is a static type. Therefore $T_1 \cap \ldots \cap T_n \to T$ is a static type.
 - Using the rule $\to I'$. If e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By rule $(\to I')$, $\Gamma, x : T_i \vdash_{\cap G} e : T$. Since $T_1 \cap \ldots \cap T_n$ is a static type, then so is T_i . By the induction hypothesis, T is a static type, therefore so is $T_i \to T$.
- $e = e_1 \ e_2$. If e is annotated with only static types, then so are e_1 and e_2 . By the induction hypothesis, PM is a static type. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T$ is also a static type. Therefore, T is a static type.
- e = e. If e annotated with only static types, then by the induction hypothesis, $T_1
 ldots T_n$ are static types. Therefore $T_1
 ldots
 ldots T_n$ is a static type.
- (2) We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e \leadsto e : T$.

Base cases:

• e = x. If $\Gamma \vdash_{\cap CC} x \leadsto x : T_i$, then there is a binding $x : T' \in \Gamma$, such that $T_i \subseteq T'$. Therefore, there must have been at some point in the typing derivation, the application of the rule for the term $\lambda x : T_1 \cap \ldots \cap T_n \cdot e'$. If e is annotated with only static types, then the rule introduzes the binding x : T' in Γ , such that T' is a static type. Therefore, T_i is also a static type.

Induction step:

• $e = \lambda x : T_1 \cap \ldots \cap T_n$. e'. If e is annotated with only static types, then $T_1 \cap \ldots \cap T_n$ is a static type. By the induction hypothesis, T is a static type. Therefore $T_1 \cap \ldots \cap T_n \to T$ is a static type.

• $e = e_1 \ e_2$. If e is annotated with only static types, then so are e_1 and e_2 . By the induction hypothesis, PM is a static type. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T$ is also a static type. Therefore, T is a static type.

Lemma 5 (Static program compilation only adds identity casts). Depends on Lemmas 1 and 4. If e is annotated with only static types and $\Gamma \vdash_{\cap CC} e \leadsto e' : T$, then any casts e' contains are identity casts.

By identity casts, we mean casts of the form $e: T \Rightarrow^l T$ for some T and casts $e: c_1 \cap \ldots \cap c_n$ such that $c_1 = \varnothing \ T_1^{\ 0}: T_1 \Rightarrow T_1^{\ 0}$ and \ldots and $c_n = \varnothing \ T_n^{\ 0}: T_n \Rightarrow T_n^{\ 0}$ for some T_1, \ldots, T_n .

Proof. We proceed by structural induction on e.

Base cases:

• e = x. As $\Gamma \vdash_{\cap CC} x \rightsquigarrow x : T_i$, and x doesn't have any casts, then it is proved.

Induction step:

- $e = \lambda x : T_1 \cap \ldots \cap T_n \cdot e'$. By rule, $\Gamma \vdash_{\cap CC} e' \leadsto e'' : T$. By the induction hypothesis, e'' either doesn't contain casts or contains only identity casts. By rule, $\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e') \leadsto (\lambda x : T_1 \cap \ldots \cap T_n \cdot e'') : T_1 \cap \ldots \cap T_n \rightarrow T$. As the rule doesn't introduze new casts, then it is proved.
- e = e_1 e_2 . By rule, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : PM$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T'_1 \cap \ldots \cap T'_n$. By the induction hypothesis, both e'_1 as well as e'_2 either only have identity casts or no casts at all. By Lemma 4, PM and $T'_1 \cap \ldots \cap T'_n$ are static types. Therefore, by the definition of \rhd , $PM = T'_1 \cap \ldots \cap T'_n \to T$ and by Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$. Therefore by the definition of getInstances and addCasts, only identity casts are introduzed.

Lemma 6 (Elimination of identity casts in c). For any cast c, such that $\vdash_{\cap IC} c: T_F$, $initialType(c) = T_I$ and $c \longrightarrow_{\cap IC} cv:$

- 1. $\vdash_{\cap IC} [c]_c : T_F \text{ and } initialType([c]_c) = T_I.$
- 2. $[c]_c \longrightarrow_{\cap IC} cv$.

Proof. (1) We proceed by structural induction on c.

Base cases:

- $c = \varnothing T^n$. As $\vdash_{\cap IC} \varnothing T^n : T$, $initialType(\varnothing T^n) = T$ and $[c]_c = \varnothing T^n$, then $\vdash_{\cap IC} [c]_c : T$ and $initialType([c]_c) = T$.
- $c = blame T_I T_F l^n$. As $\vdash_{\cap IC} blame T_I T_F l^n : T_F$, $initial Type(blame T_I T_F l^n) = T_I$ and $[c]_c = blame T_I T_F l^n$, then $\vdash_{\cap IC} [c]_c : T_F$ and $initial Type([c]_c) = T_I$.

Induction step:

- $c = c' : T_1 \Rightarrow^l T_2$ ⁿ. There are two cases:
 - $T_1 \neq T_2$. As $\vdash_{\cap IC} c' : T_1 \Rightarrow^l T_2 \cap : T_2$ and $initialType(c' : T_1 \Rightarrow^l T_2 \cap) = initialType(c')$, then $\vdash_{\cap IC} c' : T_1$. By the induction hypothesis, $\vdash_{\cap IC} [c']_c : T_1$ and $initialType([c']_c) = initialType(c')$. With $[c]_c = [c']_c : T_1 \Rightarrow^l T_2 \cap , \vdash_{\cap IC} [c]_c : T_2$ and $initialType([c]_c) = initialType([c']_c) = initialType([c']_c) = initialType(c')$.
 - $-T_1 = T_2. \text{ As } \vdash_{\cap IC} c' : T_1 \Rightarrow^l T_1 \stackrel{n}{:} T_1 \text{ and } initial Type(c' : T_1 \Rightarrow^l T_1 \stackrel{n}{:}) = initial Type(c') \text{ then } \vdash_{\cap IC} c' : T_1. \text{ By the induction hypothesis, } \vdash_{\cap IC} [c']_c : T_1 \text{ and } initial Type([c']_c) = initial Type(c'). \text{ With } [c]_c = [c']_c, \vdash_{\cap IC} [c]_c : T_1 \text{ and } initial Type([c]_c) = initial Type([c']_c) = initial Type(c') = initial Type(c').$
- (2) We proceed by structural induction on c.

Base cases:

- $c = blame T_1 T_F l_1^{n_1} : T_1 \Rightarrow^{l_2} T_2^{n_2}$. There are two cases:
 - $T_1 \neq T_2$. As $[c]_c = blame \, T_I \, T_F \, l_1^{\ n_1} : T_1 \Rightarrow^{l_2} T_2^{\ n_2}$ and by rule Push-BlameC, $blame \, T_I \, T_F \, l_1^{\ n_1} : T_1 \Rightarrow^{l_2} T_2^{\ n_2} \longrightarrow_{\cap IC} blame \, T_I \, T_2^{\ l_1^{\ n_1}}$ it is proved.
 - $T_1 = T_2$. If $T_1 = T_2$, then by rules T-SingleC and T-BlameC, $T_F = T_1$. Therefore, $c = blame \ T_I \ T_1 \ l_1 \ ^{n_1} : T_1 \Rightarrow^{l_2} T_1 \ ^{n_2}$. By rule Push-BlameC, $blame \ T_I \ T_1 \ l_1 \ ^{n_1} : T_1 \Rightarrow^{l_2} T_1 \ ^{n_2} \longrightarrow_{\cap IC} blame \ T_I \ T_1 \ l_1 \ ^{n_1}$. Since $[c]_s = blame \ T_I \ T_1 \ l_1 \ ^{n_1}$, and it is already a value, it is proved.
- c = c' : $T \Rightarrow^l T$ ⁿ and isCastValue1 $c' \lor isEmptyCast$ c'. By rule IdentityC, c' : $T \Rightarrow^l T$ ⁿ $\longrightarrow_{\cap IC} c'$. As c' is a value, it doesn't contain identity casts, therefore $[c]_c = c'$. As $[c]_c$ is already a value, it reduces to itself, therefore it is proved.
- c = c' : $G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$ and isCastValue1 c' $\lor isEmptyCast$ c'. By rule SucceedC, $c' : G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2} \longrightarrow_{\cap IC} c'$. As c' is already a value, then it doesn't contain identity casts, so $[c]_c = c' : G \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G^{n_2}$. Therefore, $[c]_c \longrightarrow_{\cap IC} c'$.
- c = c' : $G_1 \Rightarrow^{l_1} Dyn^{n_1}$: $Dyn \Rightarrow^{l_2} G_2^{n_2}$ and isCastValue1 c' $\vee isEmptyCast$ c' and $\neg (same\ ground\ G_1\ G_2)$ and $initialType(c') = T_I$. By rule FailC, $c' : G_1 \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G_2^{n_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$. As c' is already a value, then it doesn't contain identity casts, so $[c]_c = c' : G_1 \Rightarrow^{l_1} Dyn^{n_1} : Dyn \Rightarrow^{l_2} G_2^{n_2}$. Therefore, $[c]_c \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{n_1}$.
- c = c' : $T \Rightarrow^l Dyn^n$ and isCastValue1 c' \vee isEmptyCast c' and G is ground type of T and $\neg (ground\ T)$. By rule GroundC, c' : $T \Rightarrow^l Dyn^n \longrightarrow_{\cap IC} c'$: $T \Rightarrow^l G$: $G \Rightarrow^l Dyn^n$. As c' is a value, it doesn't contain identity casts, therefore $[c]_c = c'$: $T \Rightarrow^l Dyn^n$. Therefore $[c]_c \longrightarrow_{\cap IC} c'$: $T \Rightarrow^l G$: $G \Rightarrow^l Dyn^n$.

• c = c' : Dyn $\Rightarrow^l T^n$ and isCastValue1 $c' \lor isEmptyCast$ c' and G is ground type of T and $\neg (ground\ T)$. By rule ExpandC, $c' : Dyn \Rightarrow^l T^n \longrightarrow_{\cap IC} c' : Dyn \Rightarrow^l G : G \Rightarrow^l T^n$. As c' is a value, it doesn't contain identity casts, therefore $[c]_c = c' : Dyn \Rightarrow^l T^n$. Therefore $[c]_c \longrightarrow_{\cap IC} c' : Dyn \Rightarrow^l G : G \Rightarrow^l T^n$.

Induction step:

- $c = c' : T_1 \Rightarrow^l T_2$ and $\neg (isCastValuec')$. There are two cases:
 - $-T_1 \neq T_2$. By rule EvaluateC, $c' \longrightarrow_{\cap IC} c''$. By the induction hypothesis, $[c']_c \longrightarrow_{\cap IC} c''$. As $[c]_c$ equals $[c']_c : T_1 \Rightarrow^l T_2$ ⁿ, then by rule EvaluateC, $[c]_c \longrightarrow_{\cap IC} c'' : T_1 \Rightarrow T_2$ ⁿ.
 - $-T_1 = T_2$. By the induction hypothesis, as $c' \longrightarrow_{\cap IC} cv'$, then $[c']_c \longrightarrow_{\cap IC} cv'$. By rule EvaluateC, $c': T_1 \Rightarrow^l T_1 \stackrel{n}{\longrightarrow}_{\cap IC} cv': T_1 \Rightarrow^l T_1 \stackrel{n}{\longrightarrow}_{\cap IC} tv': T_1 \Rightarrow^l T_1 \stackrel{n}{\longrightarrow}_{\cap IC} tv'$. As $[c]_c \longrightarrow_{\cap IC} cv'$, then it is proved.

Lemma 7 (Elimination of identity casts in e). Depends on Lemma 6. For any expression e, such that $\Gamma \vdash_{\cap CC} e : T$, and $e \longrightarrow_{\cap CC} v :$

1. $\Gamma \vdash_{\cap CC} [e]_e : T$.

2. $[e]_e \longrightarrow_{\cap CC} v$.

Proof. (1) We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e : T$.

Base cases:

- e = x. As x doesn't contain casts, then $[e]_e = x$. Therefore it is proved.
- e = n. As n doesn't contain casts, then $[e]_e = n$. Therefore it is proved.
- e = true. As true doesn't contain casts, then $[e]_e = true$. Therefore it is proved.
- e = false. As false doesn't contain casts, then $[e]_e = false$. Therefore it is proved.
- $e = blame_T l$. As blameTl doesn't contain casts, then $[e]_e = blameTl$. Therefore it is proved.

Induction step:

- $e = \lambda x : T_1 \cap \ldots \cap T_n \cdot e'$. There are two possibilities:
 - Using the rule $\to I$. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e' : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} [e']_e : T$. As $[e]_e = \lambda x : T_1 \cap \ldots \cap T_n \cdot [e']_e$, then $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap \ldots \cap T_n \to T$.

- Using the rule $\to I'$. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap CC} e' : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap CC} [e']_e : T$. As $[e]_e = \lambda x : T_1 \cap \ldots \cap T_n \cdot [e']_e$, then $\Gamma \vdash_{\cap CC} [e]_e : T_i \to T$.
- $e = e_1 \ e_2$. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T$, then $\Gamma \vdash_{\cap CC} e_1 : PM, PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap CC} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e_1]_e : PM$ and $\Gamma \vdash_{\cap CC} [e_2]_e : T'_1 \cap \ldots \cap T'_n$. As $[e]_e = [e_1]_e \ [e_2]_e$, therefore $\Gamma \vdash_{\cap CC} [e]_e : T$.
- e = e. If $\Gamma \vdash_{\cap CC} e : T_1 \cap ... \cap T_n$, then $\Gamma \vdash_{\cap CC} e : T_1$ and ... and $\Gamma \vdash_{\cap CC} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e]_e : T_1$ and ... and $\Gamma \vdash_{\cap CC} [e]_e : T_n$. Therefore $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap ... \cap T_n$.
- $e = e' : T_1 \Rightarrow^l T_2$. There are two possibilities:
 - $T_1 \neq T_2$. If $\Gamma \vdash_{\cap CC} e' : T_1 \Rightarrow^l T_2 : T_2$, then $\Gamma \vdash_{\cap CC} e' : T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e']_e : T_1$. As $[e]_e = [e']_e : T_1 \Rightarrow^l T_2$, then $\Gamma \vdash_{\cap CC} [e]_e : T_2$.
 - $T_1 = T_2$. If $\Gamma \vdash_{\cap CC} e' : T_1 \Rightarrow^l T_1 : T_1$, then $\Gamma \vdash_{\cap CC} e' : T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e']_e : T_1$. As $[e]_e = [e']_e : T_1 \Rightarrow^l T_1$, then $\Gamma \vdash_{\cap CC} [e]_e : T_1$.
- $e = e' : c_1 \cap \ldots \cap c_n$. If $\Gamma \vdash_{\cap CC} e' : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$, then $\Gamma \vdash_{\cap CC} e' : T$, $\vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $initialType(c_1) \cap \ldots \cap initialType(c_n) =_{\cap} T$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} [e']_e : T$. We now have 2 possibilities:
 - ¬(∀i ∈ 1..n . isEmptyCast [c_i]_c): For all casts c_i, with i ∈ 1..n, that don't contain identity casts, then [c_i]_c = c_i, therefore ⊢_{∩IC} [c_i]_c : T_i and initialType([c_i]_c) = initialType(c_i). For the remaining casts, by Lemma 6, ⊢_{∩IC} [c_i]_c : T_i and initialType([c_i]_c) = initialType(c_i). Therefore, with [e]_e = [e']_e : [c₁]_c ∩ ... ∩ [c_n]_c, Γ ⊢_{∩CC} [e]_e : T₁ ∩ ... ∩ T_n.
 - − $\forall i \in 1..n$. isEmptyCast $[c_i]_c$: As all casts are empty casts, then for all casts $[c_i]_c$, by Lemma 6 and by rule T-EmptyC, $\vdash_{\cap IC} [c_i]_c : T_i$ and $initialType([c_i]_c) = T_i$. Therefore $[e]_e = [e']_e$. We now have two possibilities:
 - * If T is not an intersection type, then $T_1 = \ldots = T_n = T$ and by idempotence of \cap , we have that $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap \ldots \cap T_n$.
 - * If T is an intersection type, then $T = T_1 \cap ... \cap T_n$. Therefore $\Gamma \vdash_{\cap CC} [e]_e : T_1 \cap ... \cap T_n$.
- (2) We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CC}$.

Base cases:

- $e = (v_1 : cv_1 \cap ... \cap cv_n) \ v_2$ and $isValue((v_1 : cv_1 \cap ... \cap cv_n) \ v_2)$ and $\exists i \in 1..n \ .isArrowCompatible \ cv_i$. As $v_1 : cv_1 \cap ... \cap cv_n$ and v_2 are values, then e doesn't contain identity casts. Therefore $[e]_e = e$.
- $e = v : cv_1 \cap ... \cap cv_n : T_1 \Rightarrow^l T_2$ and $isValue\ v : cv_1 \cap ... \cap cv_n$ and $v : c'_1 \cap ... \cap c'_m = mergeIC(v : cv_1 \cap ... \cap cv_n : T_1 \Rightarrow^l T_2)$. There are 2 possibilities:

- If $T_1 \neq T_2$ and as $v : cv_1 \cap ... \cap cv_n$ doesn't contain identity casts, then $[e]_e = e$, therefore it is proved.
- If $T_1 = T_2$ and as $v : cv_1 \cap \ldots \cap cv_n$ doesn't contain identity casts, then $[e]_e = v : cv_1 \cap \ldots \cap cv_n$. By rule MergeIC \cap , $v : cv_1 \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 \longrightarrow_{\cap CC} v : c'_1 \cap \ldots \cap c'_m$. By rule Evaluate \cap , $v : cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{\dots} \cap \ldots \cap cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{\dots} \cap CC v : cv_1 \cap \ldots \cap cv_n$, with $cv_1 : T_1 \Rightarrow^l T_2 \stackrel{m_1}{\dots} \cap CC v_1$ and ... and $cv_n : T_1 \Rightarrow^l T_2 \stackrel{m_n}{\dots} \cap CC v_n$ by rule Identity C. As $[e]_e$ is already a value, it is proved.
- $e = v : T_1 \Rightarrow^l T_2 : c_1 \cap ... \cap c_n$ and $isValue\ v : T_1 \Rightarrow^l T_2$ and $v : c'_1 \cap ... \cap c'_n = mergeCI(v : T_1 \Rightarrow^l T_2 : c_1 \cap ... \cap c_n)$. There are 2 possibilities:
 - $-v: T_1 \Rightarrow^l T_2: c_1 \cap \ldots \cap c_n$ doesn't contain identity casts, then $[e]_e = e$, therefore it is proved.
 - $-v:T_1\Rightarrow^l T_2:c_1\cap\ldots\cap c_n$ contain identity casts. By rule MergeCI \cap , $v:T_1\Rightarrow^l T_2:c_1\cap\ldots\cap c_n\longrightarrow_{\cap CC}v:c_1'\cap\ldots\cap c_n'$. By rule Evaluate \cap , $v:T_1\Rightarrow^l T_2:c_1'\cap\ldots\cap c_n'\longrightarrow_{\cap CC}v:c_1'\cap\ldots\cap c_n'$. With $c_1'\longrightarrow_{\cap IC}c_1'$ and \ldots and $c_n'\longrightarrow_{\cap IC}c_n'$. For all casts c_i that don't contain identity casts, then $[c_i]_c=c_i$, therefore for those casts, the property is proved. For all casts c_i that contain identity casts, mergeCI will generate casts c_i' that will evaluate to c_i' . By Lemma 6, casts $[c_i]_c$ will generate casts c_i' that will evaluate to c_i' , therefore it is proved.
- $e = v : cv_1 \cap \ldots \cap cv_n : c_1 \cap \ldots \cap c_m$ and $isValue\ v : cv_1 \cap \ldots \cap cv_n$ and $v : c'_1 \cap \ldots \cap c'_j = mergeII(v : cv_1 \cap \ldots \cap cv_n : c_1 \cap \ldots \cap c_m)$. There are 2 possibilities:
 - $-v: cv_1 \cap \ldots \cap cv_n: c_1 \cap \ldots \cap c_m$ doesn't contain identity casts, then $[e]_e = e$, therefore it is proved.
 - $-v: cv_1 \cap \ldots \cap cv_n: c_1 \cap \ldots \cap c_m$ contain identity casts. By rule MergeII \cap , $v: cv_1 \cap \ldots \cap cv_n: c_1 \cap \ldots \cap c_m \longrightarrow_{\cap CC} v: c'_1 \cap \ldots \cap c'_j$. By rule Evaluate \cap , $v: c'_1 \cap \ldots \cap c'_j \longrightarrow_{\cap CC} v': cv'_1 \cap \ldots \cap cv'_j$, with $c'_1 \longrightarrow_{\cap IC} cv'_1$ and \ldots and $c'_j \longrightarrow_{\cap IC} cv'_j$. For all casts cv_i and c_i that will be joined into c'_i by function mergeII, and that don't contain identity casts, then $[c'_i]_c = c'_i$, therefore for those casts, the property is proved. For all casts cv_i and c_i that will be joined into c'_i by function mergeII, and that contain identity casts, $c'_i \longrightarrow_{\cap IC} cv'_i$ and by Lemma 6, $[c'_i]_c \longrightarrow_{\cap IC} cv'_i$, therefore it is proved.
- $\mathbf{e} = v : c_1 \cap \ldots \cap c_n$ and $\neg (\forall i \in 1...n . isCastValue c_i)$. By rule Evaluate \cap , $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$, with $c_1 \longrightarrow_{\cap IC} cv_1$ and \ldots and $c_n \longrightarrow_{\cap IC} cv_n$. With $[e]_e = v : [c_1]_e \cap \ldots \cap [c_n]_e$, by Lemma 6, $[c_1]_c \longrightarrow_{\cap IC} cv_1$ and \ldots and $[c_n]_c \longrightarrow_{\cap IC} cv_n$. Therefore, by rule Evaluate \cap , $v : [c_1]_c \cap \ldots \cap [c_n]_c \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$.
- $e = v : blame \ I_1 \ F_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ I_n \ F_n \ l_n \ ^{m_n}$. As $[e]_e = e$, then it is proved.
- $e = v : \emptyset T_1 \stackrel{m_1}{\sim} \dots \cap \emptyset T_n \stackrel{m_n}{\sim}$. As $[e]_e = e$, then it is proved.

Induction step:

• e =