Case Study: Augmented Block Design. Analysis with Fixed Model

Prof L. Gentzbittel Skoltech, Project Center for Agro Technologies * Prof C. Ben, Skoltech, Project Center for Agro Technologies †

Oct. 20th, 2021 - Skoltech

CASE STUDY PRESENTATION

A toy dataset: three blocks, 4 checks and 8 new varieties

PREPARATION OF THE WORKING INTERFACE IN R.

```
### I. Set working directory ####
# On RStudio: tab 'Session'-> Set Working Directory -> Choose Directory.
# Choose the directory containing the Alpha latticefile and the associated R script.
### II. Possibly, installation of new R packages needed for the analysis on RStudio:
# Click on the 'Packages' tab in the bottom-right window of R Studio interface->'Install Packages'
# Comment #1: R package installation requires a connection to internet
# Comment #2: Once packages have been installed,
# no need to re-install them again when you close-open again RStudio.
### III. Initialisation of the working space
# To erase all graphs
graphics.off()
# To erase objects from the working space - Clean up of the memory
rm(list = ls())
# this is a trick to detect which folder contains the R script and the Alpha_lattice
main_dir <- dirname(rstudioapi::getSourceEditorContext()$path)</pre>
setwd(main dir)
```

LOADING REQUIRED METHODS FOR ANALYSIS

```
library(agricolae)
library(emmeans)
library(ggplot2) ; library(gridExtra)

# constraints on effects for ANOVA
options(contrasts=c("contr.sum", "contr.poly"))
```

^{*}l.gentzbittel@skoltech.ru

[†]c.ben@skoltech.ru

ANALYSIS OF THE CASE STUDY

The case study will be analysed using a classical method based on fixed model (GLM)

```
## ### the data, with map of the field
Produc <- read.table("AugmentedBlockDesign1b.csv", sep = ";", dec = ".", header = TRUE)</pre>
str(Produc)
## 'data.frame':
                  20 obs. of 6 variables:
## $ Accession: chr "C1" "C1" "C1" "C2" ...
## $ Type : chr "check" "check" "check" "check" ...
             : chr "B1" "B2" "B3" "B1" ...
## $ Bloc
## $ weight : int 10 8 6 3 5 6 10 9 8 15 ...
## $ x
             : int 2584591784 ...
             : int 2 2 2 2 1 2 1 2 1 1 ...
## $ y
### the trial ?
with(Produc,
table(Accession,Bloc))
##
           Bloc
## Accession B1 B2 B3
##
         C1 1 1 1
##
         C2 1 1 1
        C3 1 1 1
##
##
        C4 1 1 1
        V1 1 0 0
##
##
         V2 0 1 0
        V3 0 1 0
##
##
        V4 1 0 0
        V5 0 0 1
##
##
         V6 0 0 1
##
        V7 0 0 1
         V8 1 0 0
## visualize the field:
library(desplot)
x11(width = 7, height = 5)
desplot(Bloc ~ x + y, Produc,
       col = Type, text = Accession, cex = 1,
       out1 = Bloc, out2 = Accession,
       out2.gpar=list(col = "gray50", lwd = 1, lty = 1),
       main = "Augmented Block Design - Example 1")
```

Augmented Block Design – Example 1

Bloc Accession											
Bloc B1 B2 B3		C1	V8	C2	C1	V2	C3	C1	C2	V5	V6
Type check variety											
Accession											
C1 C1 C2 C2 C3 C3 C4 C4 V1 V1 V2 V2	00	V	V/4	0.1	0	\ (a)	0.1	00	04	VZ	
V3 V3 V4 V4 V5 V5 V6 V6 V7 V7 V8 V8	C3	V1	V4	C4	C2	V3	C4	C3	C4	V7	

```
## type I SS
Anala <- aov(weight ~ Bloc + Accession , data = Produc) # accessions 'corrected for the bloc effect'
summary(Ana1a)
##
          Df Sum Sq Mean Sq F value Pr(>F)
## Bloc
          2 41.8
                  20.89 5.531 0.04349 *
         11 1632.1 148.37 39.275 0.00011 ***
## Accession
## Residuals
         6 22.7
                   3.78
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Ana1b <- aov(weight ~ Accession + Bloc , data = Produc) # blocks 'corrected' for genotype effect
summary(Ana1b)
          Df Sum Sq Mean Sq F value Pr(>F)
          11 1673.2 152.11 40.265 0.000102 ***
## Accession
## Bloc
          2 0.7
                  0.33 0.088 0.916711
         6 22.7
                   3.78
## Residuals
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
## the two ANOVA are different because some combinations are lacking
# this is a simple RCBD
## SS of accessions corrected for block effect
AnaChecks <- aov(weight ~ Bloc + Accession , data = subset(Produc, subset = Type == "check"))
summary(AnaChecks)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## Bloc
               2
                   0.67
                          0.33
                                0.088 0.91671
## Accession
                          63.78 16.882 0.00249 **
               3 191.33
## Residuals
               6 22.67
                           3.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##################### Phenotypic values of new entries, "corrected for the block effect"
the block effect for correction is estimated in the ANOVA of the checks
## What are the block effects ?
model.tables(AnaChecks)
## Tables of effects
##
##
  Bloc
## Bloc
##
       В1
               B2
##
   0.1667 -0.3333 0.1667
##
## Accession
## Accession
##
      C1
             C2
                    C3
                           C4
## -1.333 -4.667 -0.333 6.333
model.tables(AnaChecks)$tables$Bloc
## Bloc
##
                     B2
                                В3
## 0.1666667 -0.3333333 0.1666667
### Syntax to correct the phenotypic values of the 'new entries"
                                                                     ## use of the swith() fnction
Produc$EffetBloc <-sapply(Produc$Bloc, switch,</pre>
                         B1=model.tables(AnaChecks)$tables$Bloc[1],
                                                                     ## the Bi block effect is taken from
                         B2=model.tables(AnaChecks)$tables$Bloc[2],
                                                                     ## the results of ANOVA table
                         B3=model.tables(AnaChecks)$tables$Bloc[3]
## create the vector of all data "corrected for the block effect"
Produc$weightCorr <- Produc$weight - Produc$EffetBloc</pre>
Produc
##
      Accession
                  Type Bloc weight x y EffetBloc weightCorr
## 1
            C1
                                10 2 2 0.1666667
                 check
                         В1
                                                    9.833333
                                8 5 2 -0.3333333
## 2
            C1
                 check
                         B2
                                                    8.333333
## 3
            C1
                 check
                         ВЗ
                                 6 8 2 0.1666667
                                                    5.833333
## 4
            C2
                                3 4 2 0.1666667
                 check
                       B1
                                                    2.833333
            C2
                                5 5 1 -0.3333333
## 5
                 check
                       B2
                                                    5.333333
## 6
            C2
                       B3
                                6 9 2 0.1666667
                                                    5.833333
                 check
```

```
## 7
                СЗ
                     check
                             B1
                                     10 1 1 0.1666667
                                                           9.833333
  ## 8
                СЗ
                     check
                             B2
                                         7 2 -0.3333333
                                                           9.333333
  ## 9
                СЗ
                                                           7.833333
                     check
                             ВЗ
                                         8 1 0.1666667
  ## 10
                C4
                     check
                             B1
                                     15
                                         4 1 0.1666667
                                                          14.833333
  ## 11
                C4
                     check
                             B2
                                         7 1 -0.3333333
                                                          14.333333
  ## 12
                C4
                     check
                             ВЗ
                                     18
                                         9 1
                                              0.1666667
                                                          17.833333
  ## 13
                                         2 1
                V1 variety
                             B1
                                      6
                                              0.1666667
                                                           5.833333
  ## 14
                V2 variety
                                     40
                                         6 2 -0.3333333
                                                          40.333333
                             B2
     15
                V3 variety
                             B2
                                         6 1 -0.3333333
                                                           4.333333
  ## 16
                V4 variety
                                     24
                                         3 1
                                              0.1666667
                                                          23.833333
                             В1
  ##
     17
                V5 variety
                             ВЗ
                                     11 10 2
                                              0.1666667
                                                          10.833333
  ## 18
                V6 variety
                                     18 11 2
                             ВЗ
                                              0.1666667
                                                          17.833333
                                                           7.833333
  ## 19
                V7 variety
                             ВЗ
                                      8 10 1
                                              0.1666667
                                        3 2 0.1666667
  ## 20
                V8 variety
                                                          29.833333
                             В1
                                     30
  x11()
  (gr1 \leftarrow ggplot(Produc) + aes(x = weight, y = weightCorr) +
                   geom_point(color = 'firebrick', cex = 4) +
                   geom_abline(slope = 1, intercept = 0) +
                   theme_classic()
          )
     40
     30
weightCorr
     10
                           10
                                                  20
                                                                         30
                                                                                                 40
                                                    weight
  #########################
                              to verify / validate :
```

```
## CAUTION : This verification works ONLY gor 'checks' beacuse the design is balanced for checks
## so the SS of accessions is independnat from the SS of block: we and do the ANOVA in both direction
## and it shall produce the SAME results
Valid1 <- aov(weightCorr ~ Bloc + Accession, data = subset(Produc, subset = Type == "check"))
summary(Valid1)
##
              Df Sum Sq Mean Sq F value Pr(>F)
## Bloc
               2 0.00
                           0.00
                                   0.00 1.00000
                           63.78
                                  16.88 0.00249 **
## Accession
               3 191.33
## Residuals
               6 22.67
                           3.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Valid2 <- aov(weightCorr ~ Accession + Bloc, data = subset(Produc, subset = Type == "check"))</pre>
summary(Valid2)
##
               Df Sum Sq Mean Sq F value Pr(>F)
## Accession
               3 191.33
                          63.78
                                  16.88 0.00249 **
               2 0.00
## Bloc
                           0.00
                                   0.00 1.00000
## Residuals
               6 22.67
                           3.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Are the results expected?
##################### the above procedure can be simply done by computing "marginal means"
######### also called 'lsmeans'
emmeans(Ana1a, ~ Accession)
                      SE df lower.CL upper.CL
## Accession emmean
                             5.254
## C1
               8.00 1.12 6
               4.67 1.12 6
                               1.921
                                         7.41
## C2
## C3
               9.00 1.12 6
                               6.254
                                        11.75
## C4
              15.67 1.12 6 12.921
                                      18.41
## V1
               5.83 2.10 6 0.696
                                      10.97
## V2
              40.33 2.10 6 35.196
                                        45.47
## V3
               4.33 2.10 6
                             -0.804
                                        9.47
## V4
              23.83 2.10 6 18.696
                                        28.97
## V5
              10.83 2.10 6
                              5.696
                                        15.97
## V6
              17.83 2.10 6
                             12.696
                                        22.97
## V7
               7.83 2.10 6
                               2.696
                                        12.97
## V8
               29.83 2.10 6
                             24.696
                                        34.97
##
## Results are averaged over the levels of: Bloc
## Confidence level used: 0.95
################## whaht accessions differ from checks ?
############################ débobinage : quelles sont les accessions différentes des checks ?
## just use the formulas of the slides:
c <- 4
r < -3
ddl \leftarrow (r-1)*(c-1)
MSE <- summary(Ana1a)[[1]]$'Mean Sq'[3] # 3rd term of 'Mean Sq' column of the summary table of ANOVA
# SE of the difference between 2 adj means of selections in different blocks (cf dias)
Sv \leftarrow sqrt(2*(c+1)*MSE/c)
#vSE of the difference between adjusted selection mean and check. c'est la quantité utile à connaitre!
```

```
Svc \leftarrow  sqrt(((r+1)*(c+1)*MSE)/(r*c)) 
# We are , for example, interested to those corrected vaues that outperform the checks.
## the CI is given following a t distribution
# critical value of t:
qt(0.95,ddl)
## [1] 1.94318
## numerical value of Least Significant Interval:
LSI \leftarrow qt(0.95,ddl) * Svc
LSI
## [1] 4.87591
# so any new entry that outperforms the 'best check' by this quantity is significantly different from it.
Produc
##
     Accession
               Type Bloc weight x y EffetBloc weightCorr
                           10 2 2 0.1666667
## 1
          C1
              check
                     В1
                                            9.833333
                           8 5 2 -0.3333333
## 2
          C1
              check B2
                                            8.333333
## 3
          C1
              check B3
                          6 8 2 0.1666667
                                            5.833333
## 4
          C2
             check B1
                          3 4 2 0.1666667 2.833333
                          5 5 1 -0.3333333 5.333333
             check B2
## 5
          C2
## 6
          C2
             check B3
                           6 9 2 0.1666667 5.833333
## 7
         C3
             check B1 10 1 1 0.1666667 9.833333
## 8
         C3
             check B2
                          9 7 2 -0.3333333 9.333333
         C3
             check B3
                          8 8 1 0.1666667 7.833333
## 9
         C4
## 10
             check B1
                          15 4 1 0.1666667 14.833333
## 11
         C4 check B2
                         14 7 1 -0.3333333 14.333333
## 12
         C4 check B3
                         18 9 1 0.1666667 17.833333
                           6 2 1 0.1666667
## 13
          V1 variety B1
                                           5.833333
## 14
          V2 variety B2
                          40 6 2 -0.3333333 40.333333
## 15
          V3 variety B2
                          4 6 1 -0.3333333
                                           4.333333
                           24 3 1 0.1666667
## 16
          V4 variety
                                           23.833333
                     В1
## 17
          V5 variety
                           11 10 2 0.1666667 10.833333
                     ВЗ
## 18
          V6 variety
                     ВЗ
                           18 11 2 0.1666667 17.833333
## 19
          V7 variety
                     ВЗ
                           8 10 1 0.1666667
                                           7.833333
                           30 3 2 0.1666667
## 20
          V8 variety
                                           29.833333
                     В1
So, what is the list of the new entreis that outperfom the best check?
## another elegant way to see the design:
with (Produc,
by (Accession, Bloc, as.character)
)
## Bloc: B1
## [1] "C1" "C2" "C3" "C4" "V1" "V4" "V8"
## -----
## Bloc: B2
## [1] "C1" "C2" "C3" "C4" "V2" "V3"
## -----
## Bloc: B3
## [1] "C1" "C2" "C3" "C4" "V5" "V6" "V7"
```

```
## the agricolae::DAU() fits augmented design
modelDAU1 <- DAU.test(Produc$Bloc, Produc$Accession, Produc$weight,</pre>
                      method = "lsd", group = TRUE,
                      console = TRUE)
##
## ANALYSIS DAU: Produc$weight
## Class level information
## Block: B1 B2 B3
## Trt : C1 C2 C3 C4 V1 V2 V3 V4 V5 V6 V7 V8
##
## Number of observations: 20
##
## ANOVA, Treatment Adjusted
## Analysis of Variance Table
##
## Response: Produc$weight
##
                            Df Sum Sq Mean Sq F value
                                                          Pr(>F)
## block.unadj
                                 41.79 20.894
                             2
                             11 1632.10 148.372 39.275 0.0001096 ***
## trt.adj
## Control
                             3 191.33 63.778 16.882 0.0024938 **
## Control + control.VS.aug. 8 1440.76 180.095 47.672 7.176e-05 ***
## Residuals
                              6
                                 22.67
                                         3.778
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## ANOVA, Block Adjusted
## Analysis of Variance Table
##
## Response: Produc$weight
##
                        Df Sum Sq Mean Sq F value
                                                     Pr(>F)
## trt.unadj
                       11 1673.22 152.11
## block.adj
                        2
                             0.67
                                    0.33 0.0882 0.9167114
                                   63.78 16.8824 0.0024938 **
## Control
                        3 191.33
                        7 1151.88 164.55 43.5583 0.0001001 ***
## Augmented
## Control vs augmented 1 330.01 330.01 87.3551 8.504e-05 ***
## Residuals
                        6
                            22.67
                                     3.78
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## coefficient of variation: 15.4 %
## Produc$weight Means: 12.65
##
## Critical Differences (Between)
##
                                                 Std Error Diff.
## Two Control Treatments
                                                        1.586984
## Two Augmented Treatments (Same Block)
                                                        2.748737
## Two Augmented Treatments(Different Blocks)
                                                        3.073181
## A Augmented Treatment and A Control Treatment
                                                        2.380476
##
##
## Treatments with the same letter are not significantly different.
##
##
      Produc$weight groups
## V2
        40.333333
## V8
          29.833333
                        b
## V4
          23.833333
                        bc
```

```
## C4
         15.666667
                       de
## V5
         10.833333
                       ef
## C3
          9.000000
                       f
## C1
          8.000000
## V7
          7.833333
                       fg
## V1
          5.833333
                       fg
## C2
          4.666667
                        g
## V3
          4.333333
                        g
##
## Comparison between treatments means
##
## <<< to see the objects: comparison and means >>>
## The table "ANOVA, Treatment Adjusted" is the same as Anala ( Bloc + Accessions)
## the table "ANOVA, Block Adjusted" is the same as Ana1b (Accessions + Bloc)
## il y a une petite diff numérique sur Svc entre agricolae et calculs manuels
options(digits = 2)
modelDAU1$means
     Produc.weight std r Min Max Q25 Q50 Q75 mean.adj SE block
## C1
               8.0 2.0 3
                          6 10 7.0
                                      8 9.0
                                                  8.0 1.1
               4.7 1.5 3
                          3
## C2
                              6 4.0
                                      5 5.5
                                                   4.7 1.1
## C3
                                      9 9.5
               9.0 1.0 3
                         8 10 8.5
                                                   9.0 1.1
## C4
              15.7 2.1 3 14 18 14.5 15 16.5
                                                  15.7 1.1
## V1
               6.0 NA 1
                          6
                              6 6.0
                                       6 6.0
                                                   5.8 1.9
                                                              В1
## V2
              40.0 NA 1 40 40 40.0 40 40.0
                                                   40.3 1.9
                                                              B2
## V3
              4.0 NA 1
                          4
                              4 4.0
                                      4 4.0
                                                   4.3 1.9
                                                              B2
## V4
              24.0 NA 1 24 24 24.0 24 24.0
                                                   23.8 1.9
                                                              B1
## V5
              11.0 NA 1
                          11 11 11.0 11 11.0
                                                   10.8 1.9
                                                              ВЗ
## V6
              18.0 NA 1
                         18 18 18.0 18 18.0
                                                  17.8 1.9
                                                              B3
## V7
               8.0 NA 1
                          8
                              8 8.0
                                      8 8.0
                                                   7.8 1.9
                                                              ВЗ
## V8
              30.0 NA 1 30 30 30.0 30 30.0
                                                   29.8 1.9
                                                              B1
### see 1smeans and weightCorr to compare
## If one wants pairwise comapsrisons détail : si on veut les comparaisons deux à deux, et non pas les gro
modelDAU2 <- DAU.test(Produc$Bloc, Produc$Accession, Produc$weight,</pre>
                     method="lsd", group = FALSE,
                     console = TRUE)
##
## ANALYSIS DAU: Produc$weight
## Class level information
## Block: B1 B2 B3
## Trt : C1 C2 C3 C4 V1 V2 V3 V4 V5 V6 V7 V8
## Number of observations: 20
##
## ANOVA, Treatment Adjusted
## Analysis of Variance Table
##
## Response: Produc$weight
                            Df Sum Sq Mean Sq F value Pr(>F)
##
## block.unadj
                            2
                                  42
                                         20.9
## trt.adj
                            11
                                 1632
                                        148.4
                                                 39.3 0.00011 ***
```

V6

17.833333

cd

```
191
                                         63.8
## Control
                             3
                                              16.9 0.00249 **
                                                47.7 7.2e-05 ***
                                1441
                                        180.1
## Control + control.VS.aug. 8
## Residuals
                             6
                                   23
                                         3.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ANOVA, Block Adjusted
## Analysis of Variance Table
## Response: Produc$weight
##
                       Df Sum Sq Mean Sq F value Pr(>F)
                       11 1673
                                   152
## trt.unadj
## block.adj
                      2
                             1
                                     0 0.09 0.9167
                                    64 16.88 0.0025 **
                       3
## Control
                             191
                                    165 43.56 0.0001 ***
## Augmented
                        7 1152
                             330
                                     330 87.36 8.5e-05 ***
## Control vs augmented 1
## Residuals
                        6
                              23
                                       4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## coefficient of variation: 15 %
## Produc$weight Means: 13
##
## Critical Differences (Between)
##
                                                Std Error Diff.
## Two Control Treatments
                                                           1.6
## Two Augmented Treatments (Same Block)
                                                           2.7
## Two Augmented Treatments(Different Blocks)
                                                           3.1
## A Augmented Treatment and A Control Treatment
                                                           2.4
##
##
## Comparison between treatments means
## <<< to see the objects: comparison and means >>>
head(modelDAU2$comparison, 12)
          Difference pvalue sig.
## C1 - C2
               3.33 0.0804
## C1 - C3
               -1.00 0.5518
## C1 - C4
               -7.67 0.0030
## C1 - V1
               2.17 0.3978
           -32.33 0.0000
## C1 - V2
## C1 - V3
               3.67 0.1744
## C1 - V4
           -15.83 0.0006
## C1 - V5
              -2.83 0.2790
## C1 - V6
               -9.83 0.0062
## C1 - V7
                0.17 0.9464
## C1 - V8
              -21.83 0.0000
## C2 - C3
               -4.33 0.0342
## en conclusion : agricolae est utile et juste pour l'analyse des plans en blocs augmentés.
## Il utilise un modèle fixe d'ANOVA.
## on peut raffiner un peu mieux que agricolae.
####################
#################################### Analysis using plantbreeding
####################
```

```
install.packages("plantbreeding", repos="http://R-Forge.R-project.org") ## unclear if maintained
## requires reshape
library(plantbreeding)
Ana3 <- aug.rcb(dataframe = Produc, genotypes = "Accession", block = "Bloc", yvar = "weight")
## Phenotypes and adjusted values :
##
##
      Accession
                   Type Bloc weight x y EffetBloc weightCorr yvar.adj
## 13
                                  6 2 1
                                              0.17
            V1 variety
                          В1
                                                          5.8
                                                                   5.8
                                                                  40.3
## 14
             V2 variety
                                 40 6 2
                                             -0.33
                                                         40.3
                          B2
                                  4 6 1
                                             -0.33
## 15
            V3 variety
                                                          4.3
                                                                   4.3
                          B2
                                 24 3 1
## 16
            V4 variety
                          В1
                                              0.17
                                                         23.8
                                                                  23.8
## 17
            V5 variety
                          ВЗ
                                 11 10 2
                                              0.17
                                                         10.8
                                                                  10.8
## 18
             V6 variety
                                 18 11 2
                                              0.17
                                                         17.8
                                                                  17.8
                          ВЗ
                                                         7.8
                                                                  7.8
## 19
             V7 variety
                          ВЗ
                                  8 10 1
                                              0.17
## 20
                                 30 3 2
                                              0.17
                                                         29.8
                                                                  29.8
             V8 variety
                          В1
## Standard error of different comparisions
##
## Difference between check means: 1.6
##
## Difference adjusted yield of two varities in same block: 2.7
## Difference between two varieties in different blocks: 3.1
##
## Difference between two varieties and a check mean: 2.5
# analysis of variance
Ana3$anova
             Df Sum Sq Mean Sq F value Pr(>F)
## Genotypes 3 191.3
                          63.8
                                 16.88 0.0025 **
              2
## Block
                   0.7
                           0.3
                                  0.09 0.9167
## Residual
              6
                 22.7
                           3.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## compare with Ana2 and modelDAU1
Ana3$adjusted_values # yield observed and expected value table
                   Type Bloc weight x y EffetBloc weightCorr yvar.adj
##
      Accession
## 13
                                  6 2 1
                                              0.17
             V1 variety
                          В1
                                                          5.8
                                                                   5.8
## 14
             V2 variety
                                 40 6 2
                                             -0.33
                                                         40.3
                                                                  40.3
                          В2
## 15
                                  4 6 1
                                             -0.33
             V3 variety
                          B2
                                                          4.3
                                                                   4.3
## 16
             V4 variety
                                 24 3 1
                                              0.17
                                                         23.8
                                                                  23.8
                          В1
## 17
                                 11 10 2
             V5 variety
                          ВЗ
                                              0.17
                                                         10.8
                                                                  10.8
                                 18 11 2
                                                         17.8
                                                                  17.8
## 18
             V6 variety
                          ВЗ
                                              0.17
                                  8 10 1
                                                          7.8
## 19
             V7 variety
                          ВЗ
                                              0.17
                                                                   7.8
## 20
                                 30 3 2
                                                         29.8
                                                                  29.8
             V8 variety
                          В1
                                              0.17
## same as agricolae. Does not provide for checks.
str(Ana3)
## List of 6
                     :Classes 'anova' and 'data.frame': 3 obs. of 5 variables:
##
   $ anova
##
    ..$ Df
                : int [1:3] 3 2 6
   ..$ Sum Sq : num [1:3] 191.333 0.667 22.667
```

```
## ..$ Mean Sq: num [1:3] 63.778 0.333 3.778
## ..$ F value: num [1:3] 16.8824 0.0882 NA
    ..$ Pr(>F) : num [1:3] 0.00249 0.91671 NA
##
## $ adjusted_values:'data.frame': 8 obs. of 9 variables:
## ..$ Accession : Factor w/ 12 levels "C1", "C2", "C3",...: 5 6 7 8 9 10 11 12
##
    ..$ Type : chr [1:8] "variety" "variety" "variety" "variety" ...
    ..$ Bloc : Factor w/ 3 levels "B1", "B2", "B3": 1 2 2 1 3 3 3 1
##
##
    ..$ weight : int [1:8] 6 40 4 24 11 18 8 30
##
    ..$ x
              : int [1:8] 2 6 6 3 10 11 10 3
##
    ..$у
                : int [1:8] 1 2 1 1 2 2 1 2
##
    ..$ EffetBloc : num [1:8] 0.167 -0.333 -0.333 0.167 0.167 ...
##
    ..$ weightCorr: num [1:8] 5.83 40.33 4.33 23.83 10.83 ...
   ..$ yvar.adj : num [1:8] 5.83 40.33 4.33 23.83 10.83 ...
                : num 1.59
## $ se_check
## $ se_within
                   : num 2.75
## $ se_diff
                  : num 3.07
## $ se_geno
                   : num 2.51
## Ana3$se_geno (Difference between two varieties /entries and a check mean) equates Svc , as expected
## approximation in agricolae ?
```