Gammakorrektur

Effiziente Erzeugung eines gammakorrigierten Graustufenbildes

1. Umwandlung in Graustufen mit gewichtetem Durchschnitt

2. Gammakorrektur des Graustufenbildes zur Anpassung der Helligkeit des Bildes

1. Umwandlung in Graustufen

Berechnen des Graustufenfilters

• Formel:
$$D = \frac{a \cdot R + b \cdot G + c \cdot B}{a + b + c}$$
 $p_{x,y} = \begin{pmatrix} D \\ D \\ D \end{pmatrix}$

- Vorgabe für Optimierung: a + b + c = 256
- Auge nimmt grün heller war als rot und rot heller als blau
- Optimale Gewichtung: a = 77, b = 151, c = 28

Beispielbilder mit unterschiedlichen Gewichtungen des Graustufenfilters

Farbbild

a=20, b=6, c=230

a = 77, b = 151, c = 28

Optimierung mit SIMD

1. Einlesen aus dem Speicher

Stelle im Xmm-Register:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Byte Werte im Speicher	12	144	222	44	66	124	185	129	244	255	9	37	131	181	179	0

2. Nach Farbwerten in Xmm-Register aufteilen

erstes Xmm-Register		12		44	185		255		131	
zweites Xmm-Register		144		66	129		9		181	
drittes Xmm-Register	·	222		124	244		37		179	

Xmm-Register mit den Koeffizienten

Xmm-Register für a	77	7	7	77		77
Xmm-Register für b	151	15	1	151		151
Xmm-Register für c	28	2	8	28		28

Multiplikation und Speichern des Ergebnisses

3. Multiplikation mit den Koeffizienten

Multiplikation mit a	3	156	13	60	55	165		76	179	39	103	
Multiplikation mit b	84	240	38	238	76	23		5	79	106	195	
Multiplikation mit c	24	72	13	144	26	176		4	12	19	148	

4. Addition der Xmm-Register

Ergebnis der Addition	112	212		65	186	158	108			86	14		165	190	
-----------------------	-----	-----	--	-----------	-----	-----	-----	--	--	----	----	--	-----	-----	--

5. Extrahieren und Duplizieren der Ergebnisse

Ergebnis Xmm-Register	112	112	112	65	65	65	158	158	158	86	86	86	165	165	165	0	
-----------------------	-----	-----	-----	----	----	----	-----	-----	-----	----	----	----	-----	-----	-----	---	--

Performance der SIMD-Optimierung

- Ohne Alignement 48% langsamer als die Standardimplementierung (bei 2000x2000 Pixeln)
- Mit 16 Byte Alignment durch Hinzufügen eines 16. null Bytes 66% schneller als die Standardimplementierung
- Grund: Reduktion von Shiftbefehlen und schnellerer Speicherzugriff

2. Gammakorrektur

- Gezielter Einfluss auf die Helligkeit des Bildes
- Formel: $p_{neu} = \left(\frac{p_{alt}}{255}\right)^{\gamma} \cdot 255$
- Monoton steigend
- Für γ < 1 oberhalb von f(x) = x
 → größere Werte (heller)
- Für γ > 1 unterhalb von f(x) = x
 → kleinere Werte (dunkler)

Bilder mit unterschiedlichen γ-Werten

$$f(x) = \left(\frac{x}{255}\right)^{\gamma} \cdot 255$$

$$f(x) = \left(\frac{x}{255}\right)^{\gamma} \cdot 255$$

"Nur" 65.000 Funktionen

$$f(x) = \left(\frac{x}{255}\right)^{\gamma} \cdot 255$$

"Nur" 65.000 Funktionen

Seitenlänge des quadratischen Testbildes

$$f(x) = \left(\frac{x}{255}\right)^{\gamma} \cdot 255$$

• "Nur" 65.000 Funktionen

Ziel: Schöner und Schneller

$$f(x) = \left(\frac{x}{255}\right)^{\gamma} \cdot 255$$

"Nur" 65.000 Funktionen

Ziel: Schöner und Schneller

Seitenlänge des quadratischen Testbildes

wähle
$$z, n \in \mathbb{N} : \frac{\mathbb{Z}}{\mathbb{n}} = \gamma$$

wähle
$$z, n \in \mathbb{N} : \frac{z}{n} = \gamma$$

$$\left(\frac{x}{255}\right)^{\gamma} = \sqrt[n]{\left(\frac{x}{255}\right)^z}$$

$$f(x) = \left(\frac{x}{255}\right)^{\gamma} \cdot 255$$

"Nur" 65.000 Funktionen

Ziel: Schöner und Schneller

Seitenlänge des quadratischen Testbildes

wähle
$$z, n \in \mathbb{N} : \frac{z}{n} = \gamma$$

$$\left(\frac{x}{255}\right)^{\gamma} = \sqrt[n]{\left(\frac{x}{255}\right)^z}$$

$$\left(\frac{x}{255}\right)^{\gamma} = \sqrt[n]{\left(\frac{x}{255}\right)^z}$$

Auf Exponenten rechnen, sei $l(z) = \ln\left(\frac{z}{255}\right)$:

$$f(x) = \max\{n \in I\!\!N : l(n) \le l(x) \cdot \gamma\}$$

$$f(x) = \max\{n \in \mathbb{N} : l(n) \le l(x) \cdot \gamma\}$$

Seien Werte von l(n) für $0 < n \le 255$ gespeichert.

$$f(x) = \max\{n \in I\!\!N : l(n) \le l(x) \cdot \gamma\}$$

Seien Werte von l(n) für $0 < n \le 255$ gespeichert.

- **1.** Berechne $l(x) \cdot \gamma$
- **2.** Suche binär f(x)

(Max. $log_2(256) = 8$ Vergleiche.)

$$f(x) = \max\{n \in I\!\!N : l(n) \le l(x) \cdot \gamma\}$$

Seien Werte von l(n) für $0 < n \le 255$ gespeichert.

- **1.** Berechne $l(x) \cdot \gamma$
- **2.** Suche binär f(x)

(Max. $log_2(256) = 8$ Vergleiche.)

Schneller: vorher alle Werte für f(x) berechnen.

Schneller: vorher alle Werte für f(x) berechnen.

Wir wissen: f(x) steigt monoton. -> f(x) = f(x - 1) + d

Schneller: vorher alle Werte für f(x) berechnen.

Wir wissen:
$$f(x)$$
 steigt monoton. -> $f(x) = f(x-1) + d$

mit
$$d = |\{n \in \mathbb{N} : n > f(x-1) \land l(n) \le l(x) \cdot \gamma\}|$$

Schneller: vorher alle Werte für f(x) berechnen.

Wir wissen:
$$f(x)$$
 steigt monoton. -> $f(x) = f(x-1) + d$

$$\mathbf{mit} \ d = | \{ n \in \mathbb{N} : n > f(x - 1) \land l(n) \le l(x) \cdot \gamma \} |$$

Beispiel mit
$$\gamma = 0.9$$

Stets gilt
$$f(0) = 0$$

X	l(x)	l(x)*γ	f(0)=0
1	-5.5	-4.9	
2	-4.8	-4.4	
3	-4.4	-4	
4	-4.2	-3.7	
5	-3.9	-3.5	
6	-3.7		
7	-3.6		
	-3.4		
	•••	•••	

X	l(x)	l(x)*γ	f(0)=0
1	-5.5 <	≤ -4.9	$f(1) = f(0) + \{1\} = 1$
2	-4.8	-4.4	
3	-4.4	-4	
4	-4.2	-3.7	
5	-3.9	-3.5	
6	-3.7	•••	
7	-3.6	•••	
	-3.4	•••	
	•••	•••	

X	l(x)	l(x)*γ	f(0)=0
1	-5.5	-4.9	$f(1) = f(0) + \{1\} = 1$
2	-4.8	-4.4	$f(2) = f(1) + \{2,3\} = 3$
3	-4.4	-4	
4	-4.2	-3.7	
5	-3.9	-3.5	
6	-3.7	•••	
7	-3.6	•••	
	-3.4	•••	

X	l(x)	l(x)*γ	f(0)=0
1	-5.5	-4.9	$f(1) = f(0) + \{1\} = 1$
2	-4.8	-4.4	$f(2) = f(1) + \{2,3\} = 3$
3	-4.4	-4	f(3) = f(2) + 4 = 4
4	-4.2	-3.7	
5	-3.9	-3.5	
6	-3.7		
7	-3.6		
	-3.4	•••	
	•••	•••	

X	l(x)	l(x)*γ	f(0)=0
1	-5.5	-4.9	$f(1) = f(0) + \{1\} = 1$
2	-4.8	-4.4	$f(2) = f(1) + \{2,3\} = 3$
3	-4.4	-4	$f(3) = f(2) + \{4\} = 4$
4	-4.2	-3.7	$f(4) = f(3) + {5,6} = 6$
5	-3.9	-3.5	
6	-3.7		
7	-3.6		
	-3.4		
	•••	•••	

X	l(x)	l(x)*γ	f(0)=0
1	-5.5	-4.9	$f(1) = f(0) + \{1\} = 1$
2	-4.8	-4.4	$f(2) = f(1) + \{2,3\} = 3$
3	-4.4	-4	$f(3) = f(2) + \{4\} = 4$
4	-4.2	-3.7	$f(4) = f(3) + \{5,6\} = 6$
5	-3.9	-3.5	$f(5) = f(4) + \left \frac{7}{7} \right = 7$
6	-3.7	•••	••••
7	-3.6		•••
	-3.4	•••	
	•••	•••	•••

Algorithmus:

Spalten als Arrays

Sortiertes Durchlaufen beider Arrays mit Counter für linke Werte

510 Lesezugriffe und Vergleiche 255 Schreibzugriffe und Multiplikationen

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	
-4.8	-4.4	
-4.4	-4	
-4.2	-3.7	
-3.9	-3.5	
-3.7		
-3.6		
-3.4		
•••	•••	

I(x) =	I(x)*γ =	f(0)=0
-5.5	-4.9	
-4.8	-4.4	
-4.4	-4	
-4.2	-3.7	
-3.9	-3.5	
-3.7	•••	
-3.6	•••	
-3.4	•••	

I(x) =	I(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = counter = 1
-4.8	-4.4	
-4.4	-4	
-4.2	-3.7	
-3.9	-3.5	
-3.7	•••	
-3.6	•••	
-3.4		

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	
-4.4	-4	
-4.2	-3.7	
-3.9	-3.5	
-3.7	•••	
-3.6	•••	
-3.4	•••	
•••	•••	

I(x) =	I(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	
-4.4	-4	
-4.2	-3.7	
-3.9	-3.5	
-3.7	•••	
-3.6	•••	
-3.4	•••	
	•••	

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = counter = 3
-4.4	-4	
-4.2	-3.7	
-3.9	-3.5	
-3.7		
-3.6		
-3.4		
	•••	

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = 3
-4.4	-4	
-4.2	-3.7	
-3.9	-3.5	
-3.7		
-3.6	•••	
-3.4		
•••	•••	

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = 3
-4.4	-4	f(3) = counter = 4
-4.2	-3.7	
-3.9	-3.5	
-3.7	•••	
-3.6	•••	
-3.4		
	•••	

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = 3
-4.4	-4	f(3) = 4
-4.2	-3.7	
-3.9	-3.5	
-3.7		
-3.6	•••	
-3.4	•••	
	•••	

I(x) =	I(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = 3
-4.4	-4	f(3) = 4
-4.2	-3.7	
-3.9	-3.5	
-3.7		
-3.6	•••	
-3.4	•••	

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = 3
-4.4	-4	f(3) = 4
-4.2	-3.7	f(4) = counter = 6
-3.9	-3.5	
-3.7	•••	
-3.6	•••	
-3.4	•••	
•••	•••	

I(x) =	l(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = 3
-4.4	-4	f(3) = 4
-4.2	-3.7	f(4) = 6
-3.9	-3.5	
-3.7	•••	
-3.6		
-3.4	•••	
	•••	

I(x) =	I(x)*γ =	f(0)=0
-5.5	-4.9	f(1) = 1
-4.8	-4.4	f(2) = 3
-4.4	-4	f(3) = 4
-4.2	-3.7	f(4) = 6
-3.9	-3.5	f(5) = counter = 7
-3.7	•••	•••
-3.6	•••	•••
-3.4		
	•••	•••

Flaschenhals Hauptspeicher: Funktion in Registern?

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

01001010101...

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

01001010101...

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

$$f(\mathbf{1}) = \mathbf{1}$$

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

$$f(1)=1$$

$$f(2)=3$$

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

$$f(1)=1$$

$$f(2) = 3$$

$$f(3)=4$$

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

$$f(1) = 1$$

$$f(2) = 3$$

$$f(3) = 4$$

$$f(4) = 6$$

Flaschenhals Hauptspeicher: Funktion in Registern?

Kodierung: counter erhöhen -> 0 Funktionswerte speichern -> 1

$$f(1)=1$$

$$f(2) = 3$$

$$f(3) = 4$$

$$f(4) = 6$$

$$f(5) = 7$$

Funktion in 510 Bits darstellbar. Dekodierung?

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD

Durchlaufen der Bits:

- -nCounter zählt Nullen
- -zCounter zählt Einsen

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD Annahme: Byte vor x-Wert = 0

Durchlaufen der Bits: Bei Eins:

-nCounter zählt Nullen Words <= zCounter -> ByteMaske

-zCounter zählt Einsen Verunden mit nCounter*256

Verodern mit SIMD-Register

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD Annahme: Byte vor x-Wert = 0

Durchlaufen der Bits: Bei Eins:

-nCounter zählt Nullen Words <= zCounter -> ByteMaske

-zCounter zählt Einsen Verunden mit nCounter*256

Verodern mit SIMD-Register

	f(x1)	x1	f(x2)	x2	f(x3)	х3	f(x4)	x4
Bytes		1		3		4		5

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD Annahme: Byte vor x-Wert = 0

Durchlaufen der Bits: Bei Eins:

-nCounter zählt Nullen Words <= zCounter -> ByteMaske

-zCounter zählt Einsen Verunden mit nCounter*256

Verodern mit SIMD-Register

	f(x1)	x1	f(x2)	x2	f(x3)	x 3	f(x4)	х4
Bytes	1	1	4	3		4		5
Words	25	57	10	27	4	1	Ę	5

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD Annahme: Byte vor x-Wert = 0

Durchlaufen der Bits: Bei Eins:

-nCounter zählt Nullen Words <= zCounter -> ByteMaske

-zCounter zählt Einsen Verunden mit nCounter*256

Verodern mit SIMD-Register

	f(x1)	x1	f(x2)	x2	f(x3)	х3	f(x4)	х4
Bytes	1	1	4	3		4		5
Words	25	57	10	27	4	4	Į	5
Mask	0	0	0	0	0xFF	0xFF	0	0

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD Annahme: Byte vor x-Wert = 0

Durchlaufen der Bits: Bei Eins:

-nCounter zählt Nullen Words <= zCounter -> ByteMaske

-zCounter zählt Einsen Verunden mit nCounter*256

Verodern mit SIMD-Register

	f(x1)	x1	f(x2)	x2	f(x3)	х3	f(x4)	x4
Bytes	1	1	4	3		4		5
Words	25	57	10	27	4	4	Ļ	5
Mask	0	0	0	0	0xFF	0xFF	0	0
&256*nCounter	0	0	0	0	6	0	0	0

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD Annahme: Byte vor x-Wert = 0

Durchlaufen der Bits: Bei Eins:

-nCounter zählt Nullen Words <= zCounter -> ByteMaske

-zCounter zählt Einsen Verunden mit nCounter*256

Verodern mit SIMD-Register

	f(x1)	x1	f(x2)	x2	f(x3)	х3	f(x4)	x4
Bytes	1	1	4	3		4		5
Words	25	57	10	27	4	4	Į	5
Mask	0	0	0	0	0xFF	0xFF	0	0
&256*nCounter	0	0	0	0	6	0	0	0
Mask Bytes	1	1	4	3	6	4	0	5

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 1: SIMD Annahme: Byte vor x-Wert = 0

Durchlaufen der Bits: Bei Eins:

-nCounter zählt Nullen Words <= zCounter -> ByteMaske

-zCounter zählt Einsen Verunden mit nCounter*256

Verodern mit SIMD-Register

Leider deutlich langsamer als der Cache...

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 2: Binäre Suche

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 2: Binäre Suche

Suche für jeden x-Wert die Position, wo die x-te 1 steht. Zähle Anzahl der Nullen bis zu dieser Position

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 2: Binäre Suche

Suche für jeden x-Wert die Position, wo die x-te 1 steht. Zähle Anzahl der Nullen bis zu dieser Position

Dafür nötig:

Anzahl an Einsen (und Nullen) bis zum x-ten Bit.

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 2: Binäre Suche

Suche für jeden x-Wert die Position, wo die x-te 1 steht. Zähle Anzahl der Nullen bis zu dieser Position

Dafür nötig:

Anzahl an Einsen (und Nullen) bis zum x-ten Bit.

Möglichkeit 1:

Register kopieren, verschieben, popcnt -> Zu langsam

Funktion in 510 Bits darstellbar. Dekodierung?

Ansatz 2: Binäre Suche

Suche für jeden x-Wert die Position, wo die x-te 1 steht. Zähle Anzahl der Nullen bis zu dieser Position

Dafür nötig:

Anzahl an Einsen (und Nullen) bis zum x-ten Bit.

Möglichkeit 1:

Register kopieren, verschieben, popcnt -> Zu langsam

Möglichkeit 2:

Befehl, welcher gesetzte Bits bis zu einer bestimmten Position zählt -> Gibt es (noch) nicht

Funktionen unseres Programms

- Gammakorrektur auf Farbbild anwenden
- Benchmarking mit beliebigem Bild
- Erstellen von Laufzeitdiagramm im CSV-Format
- Tests mit verschiedenen Gamma Werten und Bildern
- Ausführliche Hilfsausgabe

Performance

- Optimierung des Graustufenfilters:
- SIMD Berechnung
- Alignment

Performance

- Optimierung der Gammakorrektur:
- Hardcoded Functions
- Bisection
- Merge

Performance

• Gesamt:

Optimierungsschritte

- Graustufenfilter mit SIMD und Alignment
- Alle Funktionen mit Gamma Intervallen berechnet
- Binäre Suche zum Finden einer Funktion
- Gamma als Bruch -> Newtonverfahren
- Bisektion mit Zähler und Nenner als Exponenten
- Rechnen auf Exponenten
- Berechnen der gesamten Funktion durch Bisektion
- Berechnung durch eine einzige Schleife
- Ausblick: Zugriff auf Kodierte Funktion im Register

Zusammenfassung

- Mathematisch korrekte Berechnung für jeden Gamma-Wert
- Schneller und schöner als hardgecodete Funktionen in C
- 10 mal schneller als C-Standardimplementierung

Effizientes und robustes Programm für die Gammakorrektur mit Graustufenfilter