PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/31, C07K 14/22, 16/12, C12Q 1/68, A61K 39/095, G01N 33/50

A2

(11) International Publication Number:

WO 99/57280

(43) International Publication Date:

11 November 1999 (11.11.99)

(21) International Application Number:

PCT/US99/09346

(22) International Filing Date:

30 April 1999 (30.04,99)

(30) Priority Data:

noning Duna.		
60/083,758	1 May 1998 (01.05.98)	US
60/094,869	31 July 1998 (31.07.98)	US
60/098,994	2 September 1998 (02.09.98)	US
60/099,062	2 September 1998 (02.09.98)	US
60/103,749	9 October 1998 (09.10.98)	US
60/103,794	9 October 1998 (09.10.98)	US
60/103,796	9 October 1998 (09.10.98)	US
60/121,528	25 February 1999 (25.02.99)	US
	= ' ' ' '	

(71) Applicants (for all designated States except US): CHIRON CORPORATION [US/US]; 4560 Horton Street, Emeryville, CA 94608 (US). THE INSTITUTE FOR GENOMIC RE-SEARCH [US/US]; 9212 Medical Center Drive, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; Rockville, MD (US). GALEOTTI, Cesira [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). HICKEY, Erin [US/US]; Gaithersburg, MD (US). MASIGNANI, Vega [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). MORA, Marirosa [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). PETERSEN, Jeremy [US/US]; Arlington, VA (US). PIZZA, Mariagratia [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). RAPPUOLI, Rino [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). RATTI, Giulio [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). SCALATO, Enzo [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). SCARSELLI, Maria [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). TETTELIN, Herve [US/US]; Gaithersburg, MD (US). VENTER, J., Craig [US/US]; Rockville, MD (US).

(74) Agent: HARBIN, Alisa, A.; Chiron Corporation, Intellectual Property - R440, P.O. Box 8097, Emeryville, CA 94662-8097 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

(57) Abstract

The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.

919 (46 kDa)

A) PURIFICATION

M1 919

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia AM Armenia FI Finland LT Lithuania SK Slovakia AT Austria FR France LU Luxembourg SN Senegal AU Australia GA Gabon LV Latvia SZ Swaziland AZ Azerbaijan GB United Kingdom MC Monaco TD Chad BB Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo BB Barbados GH Ghana MG Madagascar TJ Tajikistan BF Belgium GN Guinea MK The former Yugoslav TM Turkmenistan BF Bulgaria HU Hungary ML Mali TT Trinidad and Tobago BR Brazil II Israel MN Mongolia UA Ukraine BY Belarus IS Iceland MN Mongolia UA Ukraine BY Belarus IS Iceland MR Mauritania UG Uganda CA Canada IT Italy MX Melavi US United States of America CF Central African Republic JP Japan NE Niger VN Viet Nam CF Central African Republic KG Kyrgyzstan NO Norway ZW Zimbabwe CM Cameroon CM Camark KR Republic of Korea PL Poland CM Camark CM Camark LK Sri Lanka SE Sweden
LR Liberia SG Singapore

NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

This application is a continuation-in-part of the following U.S. Provisional Patent applications, from each of which priority is claimed, and each of which is incorporated by reference in its entirety: 60/083,758 (filed May 1, 1998); 60/094,869 (filed July 31, 1998); 60/098,994 (filed September 2, 1998); 60/099,062 (filed September 2, 1998); 60/103,749 (filed October 9, 1998); 60/103,794 (filed October 9, 1998); 60/103,796 (filed October 9, 1998); and 60/121,528 (filed February 25, 1999).

This invention relates to antigens from the bacterial species: Neisseria meningitidis and Neisseria gonorrhoeae.

BACKGROUND

Neisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonizes the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N. gonorrhoea, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks. (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

Based on the organism's capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the

United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against *H.influenzae*, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease". In: New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

Meningococcus B (menB) remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28).

.,...

Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonoccocal genes and proteins (e.g. EP-A-0467714, WO96/29412), but this is by no means complete. Other men B proteins may include those listed in WO 97/28273, WO 96/29412, WO 95/03413, US 5,439,808, and US 5,879,686.

The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic *Neisseriae* including *Neisseria meningitidis* or *Neisseria gonorrhoeae*. Those sequences specific to *N. meningitidis* or *N. gonorrhoeae* that are more highly conserved are further preferred sequences.

It is thus an object of the invention is to provide Neisserial DNA sequences which encode proteins that are antigenic or immunogenic.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 illustrates the products of protein expression and purification of the predicted ORF 919 as cloned and expressed in *E. coli*.
- Fig. 2 illustrates the products of protein expression and purification of the predicted ORF 279 as cloned and expressed in *E. coli*.
- Fig. 3 illustrates the products of protein expression and purification of the predicted ORF 576-1 as cloned and expressed in *E. coli*.
- Fig. 4 illustrates the products of protein expression and purification of the predicted ORF 519-1 as cloned and expressed in *E. coli*.
- Fig. 5 illustrates the products of protein expression and purification of the predicted ORF 121-1 as cloned and expressed in *E. coli*.

- Fig. 7 illustrates the products of protein expression and purification of the predicted ORF 206 as cloned and expressed in *E. coli*.
- Fig. 8 illustrates the products of protein expression and purification of the predicted ORF 287 as cloned and expressed in *E. coli*.
- Fig. 9 illustrates the products of protein expression and purification of the predicted ORF 406 as cloned and expressed in *E. coli*.
- Fig. 10 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 919 as cloned and expressed in *E. coli*.
- Fig. 11 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 279 as cloned and expressed in *E. coli*.
- Fig. 12 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 576-1 as cloned and expressed in *E. coli*.
- Fig. 13 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 519-1 as cloned and expressed in *E. coli*.
- Fig. 14 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 121-1 as cloned and expressed in *E. coli*.
- Fig. 15 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 128-1 as cloned and expressed in *E. coli*.
- Fig. 16 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 206 as cloned and expressed in *E. coli*.
- Fig. 17 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 287 as cloned and expressed in *E. coli*.
- Fig. 18 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 406 as cloned and expressed in *E. coli*.
- Fig. 19 shows an alignment comparison of amino acid sequences for ORF 225 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 20 shows an alignment comparison of amino acid sequences for ORF 235 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 21 shows an alignment comparison of amino acid sequences for ORF 287 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 22 shows an alignment comparison of amino acid sequences for ORF 519 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 23 shows an alignment comparison of amino acid sequences for ORF 919 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

THE INVENTION

The invention provides proteins comprising the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (i.e., those having sequence identity) to the *N. meningitidis* amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of homology (sequence identity) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman

homology search algorithm as implemented in MPSRCH program (Oxford Molecular) using an affine gap search with parameters:gap penalty 12, gap extension penalty 1.

The invention further provides proteins comprising fragments of the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (ie. substantially free from other N. meningitidis or N. gonorrhoeae host cell proteins)

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

According to a further aspect, the invention provides nucleic acid comprising the N. meningitidis nucleotide sequences and N. gonorrhoeae nucleotide sequences disclosed in the examples.

According to a further aspect, the invention comprises nucleic acids having sequence identity of greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) to the nucleic acid sequences herein. Sequence identity is determined as above-discussed.

According to a further aspect, the invention comprises nucleic acid that hybridizes to the sequences provided herein. Conditions for hybridization are set forth herein.

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N. meningitidis sequences or N. gonorrhoeae sequences and depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, in part or in whole, from genomic or cDNA libraries, from the

organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also protein nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of (I) a medicament for treating or preventing infection due to Neisserial bacteria (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria or (iii) for raising antibodies. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae) but are preferably N. meningitidis, especially strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of:
(a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Methodology - Summary of standard procedures and techniques. General

This invention provides Neisseria meningitidis menB nucleotide sequences, amino acid sequences encoded therein. With these disclosed sequences, nucleic acid probe assays and expression cassettes and vectors can be produced. The expression vectors can be transformed into host cells to produce proteins. The purified or isolated polypeptides (which may also be chemically synthesized) can be used to produce antibodies to detect menB proteins. Also, the host cells or extracts can be utilized for biological assays to isolate agonists or antagonists. In addition, with these sequences one can search to identify open reading frames and identify amino acid sequences. The proteins may also be used in immunogenic compositions, antigenic compositions and as vaccine components.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g., Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D.M. Weir and C.C. Blackwell eds 1986).

Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated $\underline{\text{in full}}$ by reference.

Expression systems

The Neisseria menB nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, plant cells, baculoviruses, bacteria, and yeast.

i. Mammalian Systems

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation (Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian act in either orientation (Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian act in Molecular Cloning: A Laboratory Manual, 2nd ed.).

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible). Depending on the promoter selected, many promotes may be inducible using known substrates, such as the use of the mouse mammary tumor virus (MMTV) promoter with the glucocorticoid responsive element (GRE) that is induced by glucocorticoid in hormone-responsive transformed cells (see for example, U.S. Patent 5,783,681).

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a

regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter (Maniatis et al. (1987) *Science 236*:1237; Alberts et al. (1989) *Molecular Biology of the Cell*, 2nd ed.). Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer (Dijkema et al (1985) *EMBO J. 4*:761) and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus (Gorman et al. (1982b) *Proc. Natl. Acad. Sci. 79*:6777) and from human cytomegalovirus (Boshart et al. (1985) *Cell 41*:521). Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion (Sassone-Corsi and Borelli (1986) *Trends Genet. 2*:215; Maniatis et al. (1987) Science 236:1237).

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation (Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In Transcription and splicing (ed. B.D. Hames and D.M.

Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105). These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 (Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual).

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 (Gluzman (1981) Cell 23:175) or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replication systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 (Kaufman et al. (1989) Mol. Cell. Biol. 9:946) and pHEBO (Shimizu et al. (1986) Mol. Cell. Biol. 6:1074).

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines.

ii. Plant Cellular Expression Systems

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: U.S. 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology,. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038(1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension.

These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to

those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO

Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human (alpha) α-interferon, Maeda et al., (1985), *Nature 315*:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol. 8*:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene 58*:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature proteins by in vitro incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See

Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays 4*:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 μm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. Current Protocols in Microbiology Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (PCT Pub. No. WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g., Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g., HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g., proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

iv. Bacterial Systems

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps

initiate transcription of the lac operon in Escherichia coli (E. coli) (Raibaud et al. (1984) Annu. Rev. Genet. 18:173). Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) (Chang et al. (1977) Nature 198:1056), and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) (Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; U.S. Patent 4,738,921; EPO Publ. Nos. 036 776 and 121 775). The betalactamase (bla) promoter system (Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)), bacteriophage lambda PL (Shimatake et al. (1981) Nature 292:128) and T5 (U.S. Patent 4,689,406) promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter (U.S. Patent 4,551,433). For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor (Amann *et al.* (1983) *Gene 25*:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci. 80*:21). Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system (Studier *et al.* (1986) *J. Mol. Biol. 189*:113; Tabor *et al.* (1985) *Proc Natl. Acad. Sci. 82*:1074). In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO Publ. No. 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon

(Shine et al. (1975) Nature 254:34). The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' end of E. coli 16S rRNA (Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)). To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site, it is often necessary to optimize the distance between the SD sequence and the ATG of the eukaryotic gene (Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual).

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* or *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO Publ. No. 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene (Nagai et al. (1984) Nature 309:810). Fusion proteins can also be made with sequences from the lacZ (Jia et al. (1987) Gene 60:197), trpE (Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11), and Chey (EPO Publ. No. 324 647) genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated (Miller et al. (1989) Bio/Technology 7:698).

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria (U.S. Patent 4,336,336). The

signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) (Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J.* 3:2437) and the *E. coli* alkaline phosphatase signal sequence (*phoA*) (Oka *et al.* (1985) *Proc. Natl. Acad. Sci. 82*:7212). As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from *B. subtilis* (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79*:5582; EPO Publ. No. 244 042).

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number

vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EPO Publ. No. 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline (Davies et al. (1978) Annu. Rev. Microbiol. 32:469). Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: Bacillus subtilis (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541), Escherichia coli (Shimatake *et al.* (1981) *Nature* 292:128; Amann *et al.* (1985) *Gene* 40:183; Studier *et al.* (1986) *J. Mol. Biol.* 189:113; EPO Publ. Nos. 036 776, 136 829 and 136 907), Streptococcus cremoris (Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655); Streptococcus lividans (Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655), Streptomyces lividans (U.S. Patent 4,745,056).

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by

electroporation. Transformation procedures usually vary with the bacterial species to be transformed. (See e.g., use of Bacillus: Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541; use of Campylobacter: Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; and Wang et al. (1990) J. Bacteriol. 172:949; use of Escherichia coli: Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; use of Lactobacillus: Chassy et al. (1987) FEMS Microbiol. Lett. 44:173; use of Pseudomonas: Fiedler et al. (1988) Anal. Biochem 170:38; use of Staphylococcus: Augustin et al. (1990) FEMS Microbiol. Lett. 66:203; use of Streptococcus: Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology *1*:412.

v. Yeast Expression

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences.

Examples include alcohol dehydrogenase (ADH) (EPO Publ. No. 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO Publ. No. 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences (Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA 80*:1).

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EPO Publ. No. 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, (Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;).

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, plant, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human

superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g., EPO Publ. No. 196056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g., WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EPO Publ. No. 012 873; JPO Publ. No. 62:096,086) and the A-factor gene (U.S. Patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EPO Publ. No. 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Patent Nos. 4,546,083 and 4,870,008; EPO Publ. No. 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (See e.g., PCT Publ. No. WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator

sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 (Botstein et al. (1979) Gene 8:17-24), pCl/1 (Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646), and YRp17 (Stinchcomb et al. (1982) J. Mol. Biol. 158:157). In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g., Brake et al., supra.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome (Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245). An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced (Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750). The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions (Butt et al. (1987) Microbiol, Rev. 51:351).

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors and methods of introducing exogenous DNA into yeast hosts have been developed for, inter alia, the following yeasts: Candida albicans (Kurtz, et al. (1986) Mol. Cell. Biol. 6:142); Candida maltosa (Kunze, et al. (1985) J. Basic Microbiol. 25:141); Hansenula polymorpha (Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302); Kluyveromyces fragilis (Das, et al. (1984) J. Bacteriol. 158:1165); Kluyveromyces lactis (De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135); Pichia guillerimondii (Kunze et al. (1985) J. Basic Microbiol. 25:141); Pichia pastoris (Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Patent Nos. 4,837,148 and 4,929,555); Saccharomyces cerevisiae (Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163); Schizosaccharomyces pombe (Beach and Nurse (1981) Nature 300:706); and Yarrowia lipolytica (Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49).

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g., [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J.

Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; U.S. Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Definitions

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

A "conserved" Neisseria amino acid fragment or protein is one that is present in a particular Neisserial protein in at least x% of Neisseria. The value of x may be 50% or more, e.g., 66%, 75%, 80%, 90%, 95% or even 100% (i.e. the amino acid is found in the protein in question in all Neisseria). In order to determine whether an animo acid is "conserved" in a particular Neisserial protein, it is necessary to compare that amino acid residue in the sequences of the protein in question from a plurality of different Neisseria (a reference population). The reference population may include a number of different serogroups of a particular species or a single serogroup. A preferred reference population consists of the 5 most common Neisseria strains.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell.

"Epitope" means antigenic determinant, and may elicit a cellular and/or humoral response.

Conditions for "high stringency" are 65 degrees C in 0.1 xSSC 0.5% SDS solution.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as a DNA, RNA or amino acid sequence differing from but having homology with the native or disclosed sequence. Depending on the particular sequence, the degree of homology (sequence identity) between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) which is calculated as described above. As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs at essentially the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions. (see, for example, U.S. Patent 5,753,235).

Antibodies

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanized antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisseria menB proteins.

Antibodies elicited against the proteins of the present invention bind to antigenic polypeptides or proteins or protein fragments that are present and specifically associated with strains of *Neisseria meningitidis* menB. In some instances, these antigens may be associated with specific strains, such as those antigens specific for the menB strains. The antibodies of the invention may be immobilized to a matrix and utilized in an immunoassay or on an affinity chromatography column, to enable the detection and/or separation of polypeptides, proteins or protein fragments or cells comprising such polypeptides, proteins or protein fragments. Alternatively, such polypeptides, proteins or protein fragments may be immobilized so as to detect antibodies bindably specific thereto.

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (e.g., 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein (Nature (1975) 256:495-96), or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells that express membrane-bound immunoglobulin specific for the antigen bind to the plate, and

BNSDOCID: <WO___9957280A2_I_>

are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (e.g., hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (e.g., in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125 I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

Antigens, immunogens, polypeptides, proteins or protein fragments of the present invention elicit formation of specific binding partner antibodies. These antigens, immunogens, polypeptides, proteins or protein fragments of the present invention comprise immunogenic compositions of the present invention. Such immunogenic compositions may further comprise or include adjuvants, carriers, or other compositions that promote or enhance

or stabilize the antigens, polypeptides, proteins or protein fragments of the present invention. Such adjuvants and carriers will be readily apparent to those of ordinary skill in the art.

Pharmaceutical Compositions

Pharmaceutical compositions can comprise (include) either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature, when given to a patient that is febrile. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgment of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/ + kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of

organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal and transcutaneous applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (i.e., to prevent infection) or therapeutic (i.e., to treat disease after infection).

Such vaccines comprise immunizing antigen(s) or immunogen(s), immunogenic polypeptide, protein(s) or protein fragments, or nucleic acids (e.g., ribonucleic acid or deoxyribonucleic acid), usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or

liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the immunogen or antigen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59 (PCT Publ. No. WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; (6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129; see, e.g., WO 93/13302 and WO 92/19265; and (7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59 are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The vaccine compositions comprising immunogenic compositions (e.g., which may include the antigen, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Alternatively, vaccine compositions comprising immunogenic compositions may comprise an antigen, polypeptide, protein, protein fragment or nucleic acid in a pharmaceutically acceptable carrier.

More specifically, vaccines comprising immunogenic compositions comprise an immunologically effective amount of the immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g., nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

Typically, the vaccine compositions or immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

The immunogenic compositions are conventionally administered parenterally, e.g., by injection, either subcutaneously or intramuscularly. Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal and transcutaneous applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed (e.g., Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648).

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs, including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

Retroviral vectors are well known in the art, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) J. Virol. 53:160) polytropic retroviruses e.g., MCF and MCF-MLV (see Kelly (1983) J. Virol. 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g., HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) *Biotechniques* 6:616 and Rosenfeld (1991) *Science* 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102,

WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (i.e., there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors comprising sequences of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ

described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Serial No. 08/405,627, filed March 15, 1995,WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. SeeWO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) *J. Biol. Standardization* 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) *J Cell Biochem* L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) *Proc Natl Acad Sci* 86:317; Flexner (1989) *Ann NY Acad Sci* 569:86, Flexner (1990) *Vaccine* 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) *Nature* 277:108 and Madzak (1992) *J Gen Virol* 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) *Proc Natl Acad Sci* 87:3802-3805; Enami & Palese (1991) *J Virol* 65:2711-2713 and Luytjes (1989) *Cell* 59:110, (see also McMichael (1983) *NEJ Med* 309:13, and Yap (1978) *Nature* 273:238 and Nature (1979) 277:108); human

over a gradien datem

immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) *J. Virol.* 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) *Proc Soc Exp Biol Med* 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) Mol Cell Biol 14:2411-2418 and in Woffendin (1994) Proc Natl Acad Sci 91:1581-1585.

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu &

Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.

Naked DNA may also be employed to transform a host cell. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in U.S. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. 5,206,152 and WO92/11033.

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; inWO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF),

granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B. Hormones, Vitamins, Etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides or polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccarides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

The desired polynucleotide or polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide or polypeptide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) Biochim. Biophys. Acta. 1097:1-17; Straubinger (1983) Meth. Enzymol. 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) Proc. Natl. Acad. Sci. USA 84:7413-7416); mRNA (Malone (1989) Proc. Natl. Acad. Sci. USA 86:6077-6081); and purified transcription factors (Debs (1990) J. Biol. Chem. 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and

DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide or polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been

isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750.

Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443.

Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA.

Further description of lipoproteins can be found in Zuckermann et al., PCT. Appln. No. US97/14465.

F.Polycationic Agents

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide or polypeptide to be delivered.

95

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic Polycationic Agents

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin , and lipofectAMINE are monomers that form polycationic complexes when combined with polynucleotides or polypeptides.

Immunodiagnostic Assays

Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are

assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200 □ C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1µg for a plasmid or phage digest to 10^{-9} to 10^{-8} g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy

yeast gene can be detected with an exposure time of only 1 hour starting with 1 μ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10^8 cpm/ μ g. For a single-copy mammalian gene a conservative approach would start with 10 μ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10^8 cpm/ μ g, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

Tm= $81 + 16.6(\log_{10}\text{Ci}) + 0.4[\%(G + C)]-0.6(\%\text{formamide}) - 600/n-1.5(\%\text{mismatch}).$ where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42 \Box C for a probe with is 95% to 100% homologous to the target fragment, 37 \Box C for 90% to 95% homology, and 32 \Box C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be

washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

One example of a nucleotide hybridization assay is described by Urdea *et al.* in international patent application WO92/02526 [see also US patent 5,124,246].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patent 4,683,195; and US patent 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes

containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

EXAMPLES

The examples describe nucleic acid sequences which have been identified in N. meningitidis, and N. gonorrhoeae along with their respective and putative translation products. Not all of the nucleic acid sequences are complete ie. they encode less than the full-length wild-type protein.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in N. meningitidis
- the putative translation product of said N. meningitidis sequence
- a computer analysis of said translation product based on database comparisons
- a corresponding nucleotide sequence identified from N. gonorrhoeae
- the putative translation product of said N. gonorrhoeae sequence
- a comparision of the percentage of identity between the translation product of the N. meningitidis sequence and the N. gonorrhoeae sequence.
- a corresponding nucleotide sequence identified from strain A of N. meningitidis
- the putative translation product of said N. meningitidis strain A sequence
- a comparision of the percentage of identity between the translation product of the N. meningitidis sequence and the N. gonorrhoeae sequence.
- a description of the characteristics of the protein which indicates that it might be suitably antigenic or immunogenic.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLAST1, BLAST2, tBLAST1, tBLAST1, BLAST2, & tBLAST1 [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

Dots within nucleotide sequences represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters represent ambiguities which arose during

124 C 147 LL 19 (1211 2018)

alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti *et al*. [Critical evaluation of the hydropathy of membrane proteins (1990) *Eur J Biochem* 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

For each of the following examples: based on the presence of a putative leader sequence and/or several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from *N. meningitidis* and *N. gonorrhoeae*, and their respective epitopes, could be useful antigens or immunogenic compositions for vaccines or diagnostics.

The standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilize the disclosed sequences for vaccination or diagnostic purposes) were summarized above. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

In particular, the following methods were used to express, purify and biochemically characterize the proteins of the invention.

Chromosomal DNA Preparation

N.meningitidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20%(w/v) Sucrose, 50mM Tris-HCl, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml of lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension incubated at 37°C for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation.

BNSDOCID: <WO___9957280A2_1_>

The pellet was washed once with 70%(v/v) ethanol and redissolved in 4.0ml TE buffer (10mM Tris-HCl, 1mM EDTA, pH 8.0). The DNA concentration was measured by reading the OD at 260 nm.

Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by designing the 5' primers to sequence immediately downstream from the predicted leader sequence.

For most ORFs, the 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, EcoRI-NdeI or EcoRI-NheI), depending on the restriction pattern of the gene of interest. The 3' primers included a XhoI or a HindIII restriction site (table 1). This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using BamHI-XhoI, BamHI-HindIII, EcoRI-XhoI or EcoRI-HindIII), and pET21b+ (using NdeI-XhoI, NheI-XhoI, NdeI-HindIII or NheI-HindIII).

5'-end primer tail:	CGCGGATCCCATATG	(BamHI-NdeI
	CGCGGATCCGCTAGC	(BamHI-NheI)
	CCGGAATTCTACATATG	(EcoRI-NdeI)
	CCGGAATTCTAGCTAGC	(EcoRI-NheI)
3'-end primer tail:	CCCG <u>CTCGAG</u> CCCG <u>CTCGAG</u>	(XhoI) (HindIII)

For cloning ORFs into the pGEX-His vector, the 5' and 3' primers contained only one restriction enzyme site (*EcoRI*, *KpnI* or *SalI* for the 5' primers and *PstI*, *XbaI*, *SphI* or *SalI* for the 3' primers). Again restriction sites were chosen according to the particular restriction pattern of the gene (table 1).

5'-end primer tail:	(AAA) AAAGAATTC	(EcoRI)
3'-end primer tail:	(AAA) AAAGGTACC	(KpnI)
	(AAA) AAA <u>CTGCAG</u>	(PstI)
	(AAA) AAA <u>TCTAGA</u>	(XbaI)

والشائد والزاري تنازين

AAAGCATGC

(SphI)

5' or 3'-end primer tail:

AAAAAAGTCGAC (Salī)

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The melting temperature depended on the number and type of hybridising nucleotides in the whole primer, and was determined for each primer using the formulae:

$$T_m = 4 (G+C)+ 2 (A+T)$$
 (tail excluded)
 $T_m = 64.9 + 0.41 (\% GC) - 600/N$ (whole primer)

The melting temperatures of the selected oligonucleotides were usually 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table 1 shows the forward and reverse primers used for each amplification. In certain cases, the sequence of the primer does not exactly match the sequence of the predicted ORF. This is because when initial amplifications were performed, the complete 5' and/or 3' sequences for some meningococcal B ORFs were not known. However the corresponding sequences had been identified in Gonococcus or in Meningoccus A. Hence, when the Meningoccus B sequence was incomplete or uncertain, Gonococcal or Meningococcal A sequences were used as the basis for primer design. These sequences were altered to take account of codon preference. It can be appreciated that, once the complete sequence is identified, this approach will no longer be necessary.

Oligonucleotides were synthesized using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in either $100\mu l$ or 1.0ml of water. The OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectophotometer and the concentration adjusted to 2-10pmol/ μl .

Amplification

The standard PCR protocol was as follows: 50-200ng of genomic DNA was used as a template in the presence of $20-40\mu M$ of each oligonucletide primer, $400-800\mu M$ dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units TaqI DNA polymerase (using

Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase). In some cases, PCR was optimsed by the addition of $10\mu l$ DMSO or $50\mu l$ 2M Betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a two-step amplification. The first 5 cycles were performed using the hybridization temperature that excluded the restriction enzyme tail of the primer (see above). This was followed by 30 cycles using the hybridization temperature calculated for the whole length oligos. The cycles were completed with a 10 minute extension step at 72°C. The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation
First 5 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	50-55°C	72°C
Last 30 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	65-70°C	72°C

Elongation times varied according to the length of the ORF to be amplified. Amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% (w/v) agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a volume suitable to be loaded on a 1.0% agarose gel. The DNA fragment corresponding to the band of correct size was purified using the Qiagen Gel Extraction Kit, following the manufacturer's protocol. DNA fragments were eluted in a volume of $30\mu l$ or $50\mu l$ with either H2O or 10mM Tris, pH 8.5.

Digestion of PCR fragments

The purified DNA corresponding to the amplified fragment was doubly-digested with the appropriate restriction enzymes for; cloning into pET-21b+ and expressing the protein as a C-terminus His-tagged fusion, for cloning into pGEX-KG and expressing the protein as a N-

terminus GST-fusion, and for cloning into pGEX-His and expressing the protein as a N-terminus GST-His tagged fusion.

Each purified DNA fragment was incubated at 37°C for 3 hours to overnight with 20 units of appropriate restriction enzyme (New England Biolabs) in a volume of either 30 or 40µl in the presence of suitable digestion buffer. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted in a volume of 30µl or 50µl with either H2O or 10mM Tris, pH 8.5. The DNA concentration was determined by quantitative agarose gel electrophoresis (1.0% gel) in the presence of a titrated molecular weight marker.

Digestion of the cloning vectors (pET22B, pGEX-KG, pTRC-His A, pET21b+, pGEX-KG, and pGEX-His)

The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream of the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).10 μ g plasmid was double-digested with 50 units of each restriction enzyme in 200 μ l reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50 μ l of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample, and adjusted to 50 μ g/ μ l. 1 μ l of plasmid was used for each cloning procedure.

 $10\mu g$ of plasmid vector was doubly-digested with 50 units of each restriction enzyme in a volume of $200\mu l$ with the appropriate buffer overnight at $37^{\circ}C$. The digest was loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit. DNA was eluted in $50\mu l$ of 10mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD_{260nm} and the concentration adjusted to $50\mu g/\mu l$. $1\mu l$ of plasmid was used for each cloning procedure.

Cloning

For some ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20 μ l, a molar

ratio of 3:1 fragment/vector was ligated using 0.5 μ l of NEB T4 DNA ligase (400 units/ μ l), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit", following the manufacturer's instructions.

In order to introduce the recombinant plasmid in a suitable strain, $100~\mu l\,E.~coli~DH5$ competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding 800 $\mu l\,LB$ broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200 μl of the supernatant. The suspension was then plated on LB ampicillin (100 mg/ml).

The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37 °C in either 2 ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100 µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30 µl. 5 µl of each individual miniprep (approximately 1g) were digested with either NdeI/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

For other ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated into both pET21b+ and pGEX-KG. A molar ratio of of 3:1 fragment/vector was used in a final volume of 20µl, that included 0.5µl T4 DNA ligase (400 units/µl, NEB) and ligation buffer supplied by the manufacturer. The reaction was performed at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit" and the manufacturer's protocol.

Recombinant plasmid was transformed into 100µl of competent *E. coli* DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice then at 37°C for 3 minutes. This was followed by the addition of 800µl LB broth and incubation at 37°C for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200µl of the supernatant and plated onto LB ampicillin (100mg/ml) agar.

Screening for recombinant clones was performed by growing 5 randomly selected colonies overnight at 37°C in either 2.0ml (pGEX-KG clones) or 5.0ml (pET clones) LB broth + 100µg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1µg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.

ORFs were cloned into PGEX-His, by doubly-digesting the PCR product and ligating into similarly digested vector. After cloning, recombinant plasmids were transformed into the *E.coli* host W3110. Individual clones were grown overnight at 37°C in LB broth with 50µg/ml ampicillin.

Certain ORFs may be cloned into the pGEX-HIS vector using *EcoRI-PstI* cloning sites, or *EcoRI-SalI*, or *SalI-PstI*. After cloning, the recombinant plasmids may be introduced in the *E*.coli host W3110.

Expression

Each ORF cloned into the expression vector may then be transformed into the strain suitable for expression of the recombinant protein product. 1 μl of each construct was used to transform 30 μl of *E.coli* BL21 (pGEX vector), *E.coli* TOP 10 (pTRC vector) or *E.coli* BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same *E.coli* strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100 μg/ml), incubated at 37°C overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addiction of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2 mM. After 3 hours incubation at 30°C, the final concentration of the sample was checked by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet

resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

GST-fusion proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid colture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000 rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4C. The resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD₂₈₀ of 0.02-0.06. The GST-fusion protein was eluted by addition of 700µl cold Glutathione elution buffer 10mM reduced glutathione, 50mM Tris-HCl) and fractions collected until the OD_{280} was 0.1. 21 μl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M") (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

For other ORFs, for each clone to be purified as a GST-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp. (100µg/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 µg/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100µg/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Recombinant protein expression was induced by addition of IPTG (final concentration 0.2mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

, **3**

The bacterial pellet was resuspended in 7.5ml cold PBS. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia), previously equilibrated with PBS, and incubated at room temperature with gentle agitation for 30 min. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batchwise) with 10ml cold PBS for 10 min, resuspended in 1ml cold PBS, and loaded onto a disposable column. The resin continued to be washed with cold PBS, until the OD_{280nm} of the flow-through reached 0.02-0.01. The GST-fusion protein was eluted by addition of $700\mu l$ cold glutathione elution buffer (10mM reduced glutathione, 50mM Tris-HCl pH 8.0) and fractions collected, until the OD_{280nm} of the eluate indicated all the recombinant protein was obtained. 20µl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. The molecular mass of the purified proteins was determined using either the Bio-Rad broad range molecular weight standard (M1) (200, 116, 97.4, 66.2, 45.0, 31.0, 21.5, 14.4, 6.5 kDa) or the Amersham Rainbow Marker (M2) (220, 66.2, 46.0, 30.0, 21.5, 14.3 kDa). The molecular weights of GST-fusion proteins are a combination of the 26 kDa GST protein and its fusion partner. Protein concentrations were estimated using the Bradford assay.

His-fusion soluble proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml cold 10mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with 10mM imidazole buffer) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10 ml cold 10mM imidazole buffer for 10 minutes,

BNSDOCID: <WO__9957280A2_J_>

resuspended in 1ml cold 10mM imidazole buffer and loaded on a disposable column. The resin was washed at 4°C with 2ml cold 10mM imidazole buffer until the flow-through reached the $O.D_{280}$ of 0.02-0.06. The resin was washed with 2ml cold 20mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) until the flow-through reached the $O.D_{280}$ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl cold 250mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) and fractions collected until the $O.D_{280}$ was 0.1. $21\mu l$ of each fraction were loaded on a 12% SDS gel.

His-fusion insoluble proteins large-scale purification.

A single colony was grown overnight at 37 °C on a LB + Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml fresh medium and let to grow at the optimal temperature (37°C) to O.D₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was stored at -20°C, while the pellets were resuspended in 2 ml guanidine buffer (6M guanidine hydrochloride, 100mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes. The supernatant was mixed with $150\mu l$ Ni2+-resin (Pharmacia) (previously washed with buffer B) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4°C. The resin was washed twice with 10 ml buffer B for 10 minutes, resuspended in 1ml buffer B, and loaded on a disposable column. The resin was washed at room temperature with 2ml buffer B until the flow-through reached the OD₂₈₀ of 0.02-0.06. The resin was washed with 2ml buffer C (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl elution buffer (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions collected until the OD_{280} was 0.1. $21\mu l$ of each fraction were loaded on a 12% SDS gel.

Substance of the substa

Purification of His-fusion proteins.

For each clone to be purified as a His-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp (100 μ g/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 μ g/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100 μ g/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

The bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCl, 50mM phosphate buffer, 10mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (8M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCl, pH 7.5) and treated with a Dounce homogenizer for 10 cycles. The homogenate was centrifuged at 13 000xg for 40 min and the supernatant retained.

Supernatants for both soluble and insoluble preparations were mixed with 150µl Ni²⁺resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to manufacturers protocol. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batch-wise) with 10ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4°C or (ii) buffer B at room temperature, until the OD_{280nm} of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300mM NaCl, 50mM phosphate buffer, pH 6.3) until the the OD_{280nm} of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8.0) or (ii) elution buffer B (8 M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions

BNSDOCID: <WO___9957280A2_i_>

collected until the $O.D_{280nm}$ indicated all the recombinant protein was obtained. $20\mu l$ aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. Protein concentrations were estimated using the Bradford assay.

His-fusion proteins renaturation

In the cases where denaturation was required to solubilize proteins, a renaturation step was employed prior to immunization. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10%(v/v). The proteins were diluted to 200µg/ml using dialysis buffer I (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4°C. Further dialysis was performed with buffer II (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C.

Alternatively, 10% glycerol was added to the denatured proteins. The proteins were then diluted to 20µg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C.

Protein concentration was evaluated using the formula:

Protein (mg/ml) =
$$(1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

Purification of proteins

To analyse the solubility, pellets obtained from 3.0ml cultures were resuspended in 500µl buffer M1 (PBS pH 7.2). 25µl of lysozyme (10mg/ml) was added and the bacteria incubated for 15 min at 4°C. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and the pellet resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂PO₄] overnight at 4°C. The

supernatants from all steps were analysed by SDS-PAGE. Some proteins were found to be soluble in PBS, others need urea or guanidium-HCl for solubilization.

For preparative scale purifications, 500ml cultures were induced and fusion proteins solubilized in either buffer M1, M2 or M3 using the procedure described above. Crude extracts were loaded onto a Ni-NTA superflow column (Quiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer employed. Unbound material was eluted by washing the column with the same buffer. The recombinant fusion protein was eluted with the corresponding buffer containing 500mM imidazole then dialysed against the same buffer in the absence of imidazole.

Mice immunisations

20μg of each purified protein are used to immunise mice intraperitoneally. In the case of some ORFs, Balb-C mice were immunised with Al(OH)₃ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For other ORFs, CD1 mice could be immunised using the same protocol. For ORFs 25 and 40, CD1 mice were immunised using Freund's adjuvant, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for still other ORFs, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49. Alternatively, 20μg of each purified protein was mixed with Freund's adjuvant and used to immunise CD1 mice intraperitoneally. For many of the proteins, the immunization was performed on days 1, 21 and 35, and immune response was monitored in samples taken on days 34 and 49. For some proteins, the third immunization was performed on day 28, rather than 35, and the immune response was measured on days 20 and 42, rather than 34 and 49.

ELISA assay (sera analysis)

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated

for 2 hours at room temperature and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200 µl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ ·in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100 µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100 µl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 µl of H₂O) were added to each well and the plates were left at room temperature for 20 minutes. 100 µl H₂SO₄ was added to each well and OD₄₉₀ was followed. The ELISA was considered positive when OD490 was 2.5 times the respective pre-immune sera.

Alternatively, The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10 000rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at $37^{\circ}\mathrm{C}$ and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200 μ l of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-

phenildiamine and $10\mu l$ of H_2O_2) were added to each well and the plates were left at room temperature for 20 minutes. $100\mu l$ of 12.5% H_2SO_4 was added to each well and OD_{490} was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD_{490} value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD_{490} of 0.4 was higher than 1:400.

FACScan bacteria Binding Assay procedure.

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD_{620} . The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD_{620} of 0.07. 100 μ l bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab)₂ goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of $200\mu l$ /well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15mW) setting were: FL2 on; FSC-H threshold:92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.

OMV preparations

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10' on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000g for 10 minutes and the total cell envelope

fraction recovered by centrifugation at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30' minutes.

Western blotting

Purified proteins (500ng/lane), outer membrane vesicles (5μg) and total cell extracts (25μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, using transfer buffer (0.3 % Tris base, 1.44 % glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

Bactericidal assay

MC58 and 2996 strains were grown overnight at 37° C on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7ml Mueller-Hinton broth. The suspension was incubated at 37° C on a nutator and let to grow until OD₆₂₀ was in between 0.5-0.8. The culture was aliquoted into sterile 1.5ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD₆₂₀ of 0.5, diluted 1:20000 in Gey's buffer and stored at 25° C.

فالمنتان المارة أأتري وهوا الجراءي إرا

50µl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25µl of diluted (1:100) mice sera (dilution buffer: Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25µl of the previously described bacterial suspension were added to each well. 25µl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1h were counted.

Gene Variability

The ORF4 and 919 genes were amplified by PCR on chromosomal DNA extracted from various Neisseria strains (see list of strains). The following oligonucleotides used as PCR primers were designed in the upstream and downstream regions of the genes:

orf 4.1	(forward) CGAATCCGGACGCAGGACTC
orf 4.3	(reverse) GGCAGGGAATGGCGGATTAAAG
919.1	(forward) AAAATGCCTCTCCACGGCTG or
	CTGCGCCCTGTGTTAAAATCCCCT
919.6	(reverse) CAAATAAGAAAGGAATTTTG or
	GGTATCGCAAAACTTCGCCTTAATGCG

The PCR cycling conditions were:

1 cycle	2 min. at 94°
30 cycles	30 sec. at 94°
	30 sec. at $\sim 54^{\circ}$ or $\sim 60^{\circ}$ (in according to Tm of the primers)
	40 sec. at 72°
1 cycle	7 min. at 72°

The PCR products were purified from 1 % agarose gel and sequenced using the following primers:

```
orf 4.1 (forward) CGAATCCGGACGCAGGACTC orf 4.2 (forward) CGACCGCGCCTTTGGGACTG orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG orf 4.4 (reverse) TCTTTGAGTTTGATCCAACC
```

919.1	(forward)	AAAATGCCTCTCCACGGCTG or
		CTGCGCCCTGTGTTAAAATCCCCT
919.2	(forward)	ATCCTTCCGCCTCGGCTGCG
919.3	(forward)	AAAACAGCGGCACAATCGAC
919.4	(forward)	ATAAGGGCTACCTCAAACTC
919.5	(forward)	GCGCGTGGATTATTTTTGGG
919.6	(reverse)	CAAATAAGAAAGGAATTTTG or
		GGTATCGCAAAACTTCGCCTTAATGCG
919.7	(reverse)	CCCAAGGTAATGTAGTGCCG
	(reverse)	TAAAAAAAGTTCGACAGGG
919.9	(reverse)	CCGTCCGCCTGTCGTCGCCC
919.10	(reverse)	TCGTTCCGGCGGGGTCGGGG

All documents cited herein are incorporated by reference in their entireties. The following Examples are presented to illustrate, not limit, the invention

EXAMPLE 1

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 1: Oligonucleotides used for PCR for Examples 2-10

ORF	Primer	Sequence	
279	Forward	CCCCATOOOATATO	Restriction sites
2.5	Olwaid	CGCGGATCCCATATG-TTGCCTGCAATCACGATT <seq 3021="" id=""></seq>	BamHI-Ndel
	Reverse	CCCGCTCGAG-TTTAGAAGCGGGCGGCAA <seq 3022="" id=""></seq>	Xhol
519	Forward	CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA	BamHI-Ndel
	Reverse	CCCGCTCGAG-TTTGGCGGTTTTGCTGC <seq 3024="" id=""></seq>	Xhol
576	Forward	CGCGGATCCCATATG-GCCGCCCCCGCATCT	BamHl-Ndel
	Reverse	CCCGCTCGAG-ATTTACTTTTTTGATGTCGAC <seq 3026="" id=""></seq>	Xhol
919	Forward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHl-Ndel
	Reverse	CCCGCTCGAG-CGGGCGGTATTCGGG <seq 3028="" id=""></seq>	Xhol
121	Forward	CGCGGATCCCATATG-GAAACACAGCTTTACAT	BamHI-Ndel

		100000000000000000000000000000000000000	
	Reverse	CCCGCTCGAG-ATAATAATATCCCGCGCCC <seq 3030="" id=""></seq>	Xhol
128	Forward	CGCGGATCCCATATG-ACTGACAACGCACT <seq 3031="" id=""></seq>	BamHI-Ndel
	Reverse	CCCGCTCGAG-GACCGCGTTGTCGAAA <seq 3032="" id=""></seq>	Xhol
206	Forward	CGCGGATCCCATATG-AAACACCGCCAACCGA <seq 3033="" id=""></seq>	BamHI-NdeI
	Reverse	CCCGCTCGAG-TTCTGTAAAAAAAGTATGTGC <seq 3034="" id=""></seq>	Xhol
287	Forward	CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG <seq 3035="" id=""></seq>	EcoRi-Nhel
	Reverse	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC <seq 3036="" id=""></seq>	Xhol
406	Forward	CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -AGGTTGTCCTTGTCTATG <seq 3038="" id=""></seq>	Xhol

Localization of the ORFs

The following DNA and amino acid sequences are identified by titles of the following form: [g, m, or a] [#].[seq or pep], where "g" means a sequence from N. gonorrhoeae, "m" means a sequence from N. meningitidis B, and "a" means a sequence from N. meningitidis A; "#" means the number of the sequence; "seq" means a DNA sequence, and "pep" means an amino acid sequence. For example, "g001.seq" refers to an N. gonorrohoeae DNA sequence, number 1. The presence of the suffix "-1" to these sequences indicates an additional sequence found for the same ORF, thus, data for an ORF having both an unsuffixed and a suffixed sequence designation applies to both such designated sequences. Further, open reading frames are identified as ORF #, where "#" means the number of the ORF, corresponding to the number of the sequence which encodes the ORF, and the ORF designations may be suffixed with ".ng" or ".a", indicating that the ORF corresponds to a N. gonorrhoeae sequence or a N. meningitidis A sequence, respectively. The word "partial" before a sequence indicates that the sequence may be a partial or a complete ORF. Computer analysis was performed for the comparisons that follow between "g", "m", and "a" peptide sequences; and therein the "pep" suffix is implied where not expressly stated. Further, in the event of a conflict between the text immediately preceding and describing which sequences are being compared, and the

designated sequences being compared, the designated sequence controls and is the actual sequence being compared.

ORF:

contig:

279

gnm4.seq

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3039>: m279.seq

```
ATAACGCGGA TTTGCGGCTG CTTGATTTCA ACGGTTTTCA GGGCTTCGGC
  1
 51 AAGTTTGTCG GCGGCGGTT TCATCAGGCT GCAATGGGAA GGTACGGACA
101 CGGGCAGCGG CAGGGCGCGT TTGGCACCGG CTTCTTTGGC GGCAGCCATG
151 GCGCGTCCGA CGGCGGCGGC GTTGCCTGCA ATCACGATTT GTCCGGGTGA
201 GTTGAAGTTG ACGGCTTCGA CCACTTCGCT TTGGGCGGCT TCGGCACAAA
251 TGGCTTTAAC CTGCTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
301 ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA GGCGCACGAG
351 TTTGACCGCG TCGGCAAAAT TCAATGCGCC GGCGGCAACG AGTGCGGTGT
401 ATTCGCCGAG GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
451 TCTAAATAG
```

This corresponds to the amino acid sequence <SEQ ID 3040; ORF 279>: m279.pep

- ITRICGCLIS TVFRASASLS AAGFIRLOWE GTDTGSGRAR LAPASLAAAM ARPTAAALPA ITICPGELKL TASTTSLWAA SAOMALTCSS SKPRIAAIAP
- TPCGTADCIS SARRRTSLTA SAKFNAPAAT SAVYSPRLCP ATAAGVLPPA
- 151 SK*

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3041>: g279.seq

```
atgacgcgga tttgcggctg cttgatttca acggttttga gtgtttcggc
  1
 51 aagtttgtcg gcggcgggtt tcatcaggct gcaatgggaa ggaacggata
101 ccggcagcgg cagggcgcgt ttggctccgg cttctttggc ggcagccatg
151 gtgcgtccga cggcggcggc gttgcctgca atcacgactt gtccgggcga
201 gttgaagttg acggcttcga ccacttcgcc ctgtgcggat tcggcacaaa
251 tetgeetgae etgtteatet tecaaaccea aaatggeege cattgegeet
    acgcettgcg gtacggcgga ctgcatcagt tcggcgcgca ggcggacgag
351
    tttgacggca tcggcaaaat ccaatgcttc ggcggcgaca agcgcggtgt
401
    attcgccgag gctgtgtccg gcaacggcgg caggcgtttt gccgcccact
451 tccaaatag
```

This corresponds to the amino acid sequence <SEQ ID 3042; ORF 279.ng>: g279.pep

- MTRICGCLIS TVLSVSASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM VRPTAAALPA ITTCPGELKL TASTTSPCAD SAQICLTCSS SKPKMAAIAP 51 TPCGTADCIS SARRRTSLTA SAKSNASAAT SAVYSPRLCP ATAAGVLPPT 101

ORF 279 shows 89.5% identity over a 152 aa overlap with a predicted ORF (ORF 279.ng) from N. gonorrhoeae:

```
10
                               30
                                      40
         ITRICGCLISTVFRASASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMARPTAAALPA
                                             50
m279.pep
         MTRICGCLISTVLSVSASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMVRPTAAALPA
g279
               10
                       20
                              30
                                      40
                                             50
```

```
70
                             80
                                      90
                                                        110
                                                                  120
             ITICPGELKLTASTTSLWAASAQMALTCSSSKPRIAAIAPTPCGTADCISSARRRTSLTA
m279.pep
             ITTCPGELKLTASTTSPCADSAQICLTCSSSKPKMAAIAPTPCGTADCISSARRRTSLTA
g279
                    70
                             80
                                      90
                                               100
                   130
                            140
m279.pep
            SAKFNAPAATSAVYSPRLCPATAAGVLPPASKX
             SAKSNASAATSAVYSPRLCPATAAGVLPPTSKX
q279
                   130
                            140
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3043>:
     a279.seq
              ATGACNCNGA TTTGCGGCTG CTTGATTTCA ACGGTTTNNA GGGCTTCGGC
            1
           51
              GAGTTTGTCG GCGGCGGTT TCATGAGGCT GCAATGGGAA GGTACNGACA
              CNGGCAGCGG CAGGGCGCGT TTGGCGCCGG CTTCTTTGGC GGCAAGCATA
              GCGCGCTCGA CGGCGGCGGC ATTGCCTGCA ATCACGACTT GTCCGGGCGA
              GTTGAAGTTG ACGGCTTCAA CCACTTCATC CTGTGCGGAT TCGGCGCAAA
              TTTGTTTTAC CTGTTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
          301
              ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA NGCGCACGAG
          351 TTTGACCGCG TCGGCAAAAT CCAATGCGCC GGCGGCAACN AGTGCGGTGT
          401 ATTCGCCGAN GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
          451 TCCGAATAG
This corresponds to the amino acid sequence <SEQ ID 3044; ORF 279.a>:
     a279.pep
              MTXICGCLIS TVXRASASLS AAGFMRLQWE GTDTGSGRAR LAPASLAASI
              ARSTAAALPA ITTCPGELKL TASTTSSCAD SAQICFTCSS SKPRIAAIAP
           51
              TPCGTADCIS SARXRTSLTA SAKSNAPAAT SAVYSPXLCP ATAAGVLPPA
          151 SE*
          ORFs 279 and 279.a showed a 88.2% identity in 152 aa overlap
m279/a279
                                 20
                                           30
                 ITRICGCLISTVFRASASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMARPTAAALPA
     m279.pep
                 ec{x} mum mummenümmmummeen mun ar{x}
     a279
                 MTXICGCLISTVXRASASLSAAGFMRLQWEGTDTGSGRARLAPASLAASIARSTAAALPA
                        10
                                 20
                                           30
                                                    40
                                                              50
                                                                       60
                        70
                                  80
                                           90
                                                   100
                                                             110
     m279.pep
                 ITICPGELKLTASTTSLWAASAQMALTCSSSKPRIAAIAPTPCGTADCISSARRRTSLTA
                 a279
                 ITTCPGELKLTASTTSSCADSAQICFTCSSSKPRIAAIAPTPCGTADCISSARXRTSLTA
                        70
                                 80
                                           90
                                                   100
                                                             110
                                                                      120
                       130
                                140
                 SAKFNAPAATSAVYSPRLCPATAAGVLPPASKX
     m279.pep
                 111 1111111111 111111111111111111111
     a279
                 SAKSNAPAATSAVYSPXLCPATAAGVLPPASEX
                       130
                                140
                                          150
519 and 519-1
               gnm7.seq
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3045>:
     m519.seq
              (partial)
```

..TCCGTTATCG GGCGTATGGA GTTGGACAAA ACGTTTGAAG AACGCGACGA

AATCAACAGT ACTGTTGTTG CGGCTTTGGA CGAGGCGGCC GGGGCTTGGG

GTGTGAAGGT TTTGCGTTAT GAGATTAAAG ACTTGGTTCC GCCGCAAGAA

ATCCTTCGCT CAATGCAGGC GCAAATTACT GCCGAACGCG AAAAACGCGC

CCGTATCGCC GAATCCGAAG GTCGTAAAAT CGAACAAATC AACCTTGCCA

BNSDOCID: <WO___9957280A2_l_>

1

51 101

151

201

90

```
GTGGTCAGCG CGAAGCCGAA ATCCAACAAT CCGAAGGCGA GGCTCAGGCT
            251
                   GCGGTCAATG CGTCAAATGC CGAGAAAATC GCCCGCATCA ACCGCGCCAA
            301
                   AGGTGAAGCG GAATCCTTGC GCCTTGTTGC CGAAGCCAAT GCCGAAGCCA
            351
                   TCCGTCAAAT TGCCGCCGCC CTTCAAACCC AAGGCGGTGC GGATGCGGTC
            401
                  AATCTGAAGA TTGCGGAACA ATACGTCGCT GCGTTCAACA ATCTTGCCAA
           451
                  AGAAAGCAAT ACGCTGATTA TGCCCGCCAA TGTTGCCGAC ATCGGCAGCC
           501
           551
                  TGATTTCTGC CGGTATGAAA ATTATCGACA GCAGCAAAAC CGCCAAaTAA
 This corresponds to the amino acid sequence <SEQ ID 3046; ORF 519>:
      m519.pep
                  (partial)
                ...SVIGRMELDK TFEERDEINS TVVAALDEAA GAWGVKVLRY EIKDLVPPQE
                  ILRSMQAQIT AEREKRARIA ESEGRKIEQI NLASGQREAE IQQSEGEAQA
            51
                  AVNASNAEKI ARINRAKGEA ESLRLVAEAN AEAIRQIAAA LQTQGGADAV
           101
           151
                  NLKIAEQYVA AFNNLAKESN TLIMPANVAD IGSLISAGMK IIDSSKTAK*
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3047>:
                atggaatttt tcattatctt gttggcagcc gtcgccgttt tcggcttcaa
               atcetttgte gteatecece ageaggaagt ceaegttgte gaaaggeteg
            51
           101 ggcgtttcca tcgcgccctg acggccggtt tgaatatttt gattcccttt
           151 atcgaccgcg tegectaccg ccattcgctg aaagaaatcc ctttagacgt
           201 acccagccag gtctgcatca cgcgcgataa tacgcaattg actgttgacg
           251 gcatcatcta tttccaagta accgatccca aactcgcctc atacggttcg
               agcaactaca ttatggcaat tacccagett geecaaaega egetgegtte
               cgttatcggg cgtatggagt tggacaaaac gtttgaagaa cgcgacgaaa
               tcaacagtac cgtcgtctcc gccctcgatg aagccgccgg ggcttggggt
           401
          451 gtgaaagtcc tccgttacga aatcaaggat ttggttccgc cgcaagaaat
          501 cettegegea atgeaggeac aaattacege egaacgegaa aaacgegeee
          551 gtattgccga atccgaaggc cgtaaaatcg aacaaatcaa ccttgccagt
          601 ggtcagcgtg aagccgaaat ccaacaatcc gaaggcgagg ctcaggctgc
          651 ggtcaatgcg tccaatgccg agaaaatcgc ccgcatcaac cgcgccaaag
          701 gcgaagcgga atccctgcgc cttgttgccg aagccaatgc cgaagccaac
          751 cgtcaaattg ccgccgcct tcaaacccaa agcggggcgg atgcggtcaa
          801 tctgaagatt gcgggacaat acgttaccgc gttcaaaaat cttgccaaag
          851 aagacaatac gcggattaag cccgccaagg ttgccgaaat cgggaaccct
               aattttcggc ggcatgaaaa attttcgcca gaagcaaaaa cggccaaata
          901
          951
This corresponds to the amino acid sequence <SEQ ID 3048; ORF 519.ng>:
     g519.pep
               MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
               IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
           51
              SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
          101
               VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
               GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAN
          251 RQIAAALQTQ SGADAVNLKI AGQYVTAFKN LAKEDNTRIK PAKVAEIGNP
          301 NFRRHEKFSP EAKTAK*
ORF 519 shows 87.5% identity over a 200 aa overlap with a predicted ORF (ORF 519.ng)
from N. gonorrhoeae:
     m519/q519
                                                        10
                                                                  20
                                                                             30
    m519.pep
                                                SVIGRMELDKTFEERDEINSTVVAALDEAA
                                                11111111111111111111111111111111111
                  YFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA
    9519
                    90
                             100
                                       110
                                                 120
                                                           130
                                                                     140
                          40
                                    50
                                              60
                                                        70
                                                                  80
```

GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE

m519.pep

g519		: PQEILRAMQAQI 170			SGQREAE
m519.pep	100 IQQSEGEAQAAVNASNA 	110 12 EKIARINRAKGE	EAESLRLVAEAN	AEAIROIAAALOT	150 QGGADAV
g519	IQQSEGEAQAAVNASNA 210 220	EKIARINRAKGE 230	EAESLRLVAEAN 240		'QSGADAV
m519.pep	NLKIAEQYVAAFNNLAK	170 18 ESNTLIMPANV	DIGSL-ISAGM		
g519	: : NLKIAGQYVTAFKNLAK	EDNTRIKP AKV A	: : : ÆIGNPNFRRHE	: : KFSPEAKTAK	
	270 280	290	300	310	
The following p	partial DNA sequence wa	as identified i	in N. mening	itidis <seq id<="" td=""><td>3049>:</td></seq>	3049>:
1	ATGGAATTTT TCATTATCT	T GCTGGCAGCC	. Сассальства	TCCCCTTTC > >	
51	ATCCTTTGTT GTCATCCCA	C AGCAGGAAGT	CCACGTTGITI	CANACCCTCC	
101	GGCGTTTCCA TCGCGCCCT	G ACGGCCGGTT	י דפאסטון פיתייית מיים מיי	CAMMOGCICG	
151	ATCGACCGCG TCGCCTACC	G CCATTCGCTG	DARIAITII	CTTTACACCT	
201	ACCCAGCCAG GTCTGCATC	A CGCGCGACAA	TACGCAGCTG	ACTETTENCE	
251	GTATCATCTA TTTCCAAGT	A ACCGACCCCA	AACTCGCCTC	ATACCCTTCC	
301	AGCAACTACA TTATGGCGA	T TACCCAGCTT	GCCCDDDCGD	CCCTCCCTTC	
351	CGTTATCGGG CGTATGGAA	T TGGACAAAAC	GTTTGAAGAA	CCCCACCAAA	
401	TCAACAGCAC CGTCGTCTC	C GCCCTCGATG	AAGCCGCCGG	AGCTTGGGGT	
451	GTGAAGGTTT TGCGTTATG	A GATTAAAGAC	TTGGTTCCGC	CGCAAGAAAT	
501	CCTTCGCTCA ATGCAGGCG	C AAATTACTGC	TGAACGCGAA	AAACGCGCCC	
551	GTATCGCCGA ATCCGAAGG	r cgtaaaatcg	AACAAATCAA	CCTTGCCAGT	
601	GGTCAGCGCG AAGCCGAAA	r ccaacaatco	GAAGGCGAGG	CTCAGGCTGC	
651	GGTCAATGCG TCAAATGCC	G AGAAAATCGC	CCGCATCAAC	CGCGCCAAAG	
701	GTGAAGCGGA ATCCTTGCGG	CTTGTTGCCG	AAGCCAATGC	CGAAGCCATC	
751	CGTCAAATTG CCGCCGCCC	T TCAAACCCAA	GGCGGTGCGG	ATGCGGTCAA	
801	TCTGAAGATT GCGGAACAA	r ACGTCGCCGC	GTTCAACAAT	CTTGCCAAAG	
851	AAAGCAATAC GCTGATTATO	G CCCGCCAATG	TTGCCGACAT	CGGCAGCCTG	
901	ATTTCTGCCG GTATGAAAA	TATCGACAGC	AGCAAAACCG	CCAAATAA	
This sames and					
	s to the amino acid sequ	ence <seq i<="" td=""><td>D 3050; OR</td><td>F 519.a>:</td><td></td></seq>	D 3050; OR	F 519.a>:	
a519.pep					
1	MEFFIILLAA VVVFGFKSFV	V VIPQQEVHVV	ERLGRFHRAL	TAGLNILIPF	
51	IDRVAYRHSL KEIPLDVPS	2 VCITRONTQL	TVDGIIYFQV	TDPKLASYGS	
101 151	SNYIMAITQL AQTTLRSVIO	S KMELDKTFEE	RDEINSTVVS	ALDEAAGAWG	
201	VKVLRYEIKD LVPPQEILRS	MOAQITAERE	KRARIAESEG	RKIEQINLAS	
251	GQREAEIQQS EGEAQAAVNI RQIAAALQTQ GGADAVNLK	A SNAEKIAKIN	RAKGEAESLR	LVAEANAEAI	
301	ISAGMKIIDS SKTAK*	L AEQIVAAFNN	LAKESNILIM	PANVADIGSL	
m519/a519		a showed a 9	9.5% identi	ty in 199 aa o	overlap
			10		
m519.pep			10	20	30
mors.pep				TFEERDEINSTVV	
a519	YFQVTDPKLASYGSSNY	ΓΜΆ ΤΤΟΙ.ΔΟΤΤΙ.	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TEEEDDE INCOMA	
	90 100	110	120	130 14(
			_		
-E10	40	50 6		80	90
m519.pep	GAWGVKVLRYEIKDLVP	SOFIFKSWOWOI	TAEREKRARIA	ESEGRKIEQINLAS	3GQREAE
a519	CANCARA BAETADI ABI	OPTIDONO	11111111111	<u> </u>	111111
a313	GAWGVKVLRYEIKDLVPI 150 160	.OEITKSWOYÖI			
	150 160	170	180	190 200)
	100	10 12	0 130	1.40	
	100	12	0 130	140	150

BNSDOCID: <WO___9957280A2_J_>

m519.pep	IQQSEGEA	QAAVNASNA	EKIARINRAK	GEAESLRLVA		AAALQTQGGADAV
a519	IQQSEGEA	QAAVNASNA 220		HIHHHHH SEAESLRLVA 240	 EANAEAIRQI 250	
E10			170 1	180	190 2	200
m519.pep	NTKIWEGA	/AAFNNLAK	ESNTLIMPAN	ADTGSLISA	CMKTTDGGVm	TEV
a519	1111111		1 1 1 1 1 1 1 1	11111111		
a J15	MINIMEQI	AAFNNLAK.	ESNTLIMPAN	ADIGSLISA	GMKIIDSSKTA	KX
	270	280	290	300	310	

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3051>:

```
ATGGAATTTT TCATTATCTT GTTGGTAGCC GTCGCCGTTT TCGGTTTCAA
  1
 51 ATCCTTTGTT GTCATCCCAC AACAGGAAGT CCACGTTGTC GAAAGGCTGG
     GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
251 GCATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
301 AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
351 CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
     TCAACAGTAC TGTTGTTGCG GCTTTGGACG AGGCGGCCGG GGCTTGGGGT
451 GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
501 CCTTCGCTCA ATGCAGGCGC AAATTACTGC CGAACGCGAA AAACGCGCCC
551 GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
601 GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
651 GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
701 GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
751 CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
801 TCTGAAGATT GCGGAACAAT ACGTCGCTGC GTTCAACAAT CTTGCCAAAG
851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
901 ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 3052; ORF 519-1>:

```
1 MEFFIILLVA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
51 IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
101 SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVA ALDEAAGAWG
151 VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
251 RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
301 ISAGMKIIDS SKTAK*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3053>:

1 51 101 151 201 251 301 351 401 451 501 551 601	ACCCAGCCAG GCATCATCTA AGCAACTACA CGTTATCGGG TCAACAGTAC GTGAAAGTCC CCTTCGCGCA GTATTGCCGA	GTCATCCCC TCGCGCCCTG TCGCCTACCG GTCTGCATCA	AGCAGGAAGT ACGACCGGTT CCATTCGCTG CGCGCGATAA ACCGATCCCA TACCCAGCTT TGGACAAAAC GCCCTCGATG AATCAAGGAT AAATTACCGC CGTAAAATCG	TGAATATTTT AAAGAAATCC TACGCAATTG AACTCGCCTC GCCCAAACGA GTTTGAAGAA AAGCCGCCGG TTGGTTCCGC CGAACGCAA AACAAATCAA	GAAAGGCTCG GATTCCCTTT CTTTAGACGT ACTGTTGACG ATACGGTTCG CGCTGCGTTC CGCGACGAAA GGCTTGGGGT CGCAAGAAAT AAACGCGCCC CCTTGCCAGT
501 551	CCTTCGCGCA GTATTGCCGA GGTCAGCGTG GGTCAATGCG	ATGCAGGCAC ATCCGAAGGC AAGCCGAAAT TCCAATGCCG ATCCCTGCGC	AATCAAGGAT AAATTACCGC	TTGGTTCCGC CGAACGCGAA AACAAATCAA GAAGGCGAGG CCGCATCAAC AAGCCAATGC GGCGGGGCGG	CGCAAGAAAT AAACGCGCCC CCTTGCCAGT CTCAGGCTGC

Laboration of the Control

851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG ATTTCTGCCG GCATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA This corresponds to the amino acid sequence <SEQ ID 3054; ORF 519-1.ng>: g519-1.pep MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL 251 301 ISAGMKIIDS SKTAK* m519-1/g519-1 ORFs 519-1 and 519-1.ng showed a 99.0% identity in 315 aa overlap 10 20 30 40 MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL q519-1.pep m519-1MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL 20 30 40 70 80 90 100 110 120 KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG q519-1.pep KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG m519-170 80 90 100 130 140 150 160 170 180 ${\tt RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE}$ g519-1.pep RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE m519-1130 140 150 160 170 200 190 210 220 230 240 q519-1.pep KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR m519-1KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR 190 200 210 220 230 250 260 270 280 LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL g519-1.pep LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL m519-1 250 260 270 280 290 310 ISAGMKIIDSSKTAKX g519-1.pep 111111111111111111 m519-1**ISAGMKIIDSSKTAKX** 310 The following DNA sequence was identified in N. meningitidis <SEQ ID 3055>: a519-1.seq ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA 1 ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG 51 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT 101 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG 201

GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC

CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA

BNSDOCID: <WO___9957280A2_I_>

251

301

351

401	TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT
451	GTGAAGGTTT TCCGTTATC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT
501	GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
551	CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC
601	GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
651	GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
701	
751	TIOCITICOLO CONTROL AND CONTROL CONTRO
	TO COUCCULT TO AMBUTO AMBROOM TO THE TOTAL THE TOTAL TO T
801	TOTOMOGNIT GUGGAACAAT ACCTCCCCC CTTCAACAAM CTTCCCCC
851	PROCESTAC GUIGATTATG CCCCCCAAAA GGGGGAAAAAAAAAAAAAAAA
901	ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
first. :	
inis correspond	s to the amino acid sequence <seq 3056;="" 519-1.a="" id="" orf="">:</seq>
a519-1.pe	p. 1 4 5 2 2 5 5 5 6, Old 519-1.a.
1	MEFFIILLAA VVVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
51	IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
101	SNYIMAITQL AQTILRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
151	VKVLRYEIKD LYPPOFILES MONOTORINE KDEINSTVVS ALDEAAGAWG
201	VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
251	GOREAEIQOS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
301	RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL ISAGMKIIDS SKTAK*
201	ISAGMATIDS SATAK*
m519-1/a51	19-1 OPEC 510.1
overlap	l9-1 ORFs 519-1 and 519-1.a showed a 99.0% identity in 315 aa
Overrap	2 × 325 u u
	10
a519-1.pep	10 20 30 40 50 60
doiy-i.pep	
m519-1	
MOI9-1	TOTAL TOTAL TOTAL TOTAL TOTAL TAGENTAL TAGENTAL TOTAL
	10 20 30 40 50 60
-510 7	70 80 90 100 110 120
a519-1.pep	KEIPLDVPSOVCITRDNTOLTVDGTIVFOVTDBYLAGYGGGWYTY
F10.4	
m519-1	THE TELEVITORIES TO THE TELEVITOR TO THE TOTAL T
	100 110 120
	130 140 150 160 170 180
a519-1.pep	RMELDKTFEERDEINSTVVSALDEAAGAWGVKVI BYETKDI UDDOOT
m519-1	RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
	130 160 170 180
	190 200 210 220 230 240
a519-1.pep	KRARIAESEGRKIEOINLASGORFAFIOOSEGEROADUNA GUARANTA ZAO 240
m519-1	KRARIAESEGRKTEOINIASGOPFAETOOGGOTOOTA
	KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
	200 210 220 230 240
	250 260 270 280 200
a519-1.pep	
- · F ob	LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
m519-1	
	OF O CONTROL OF THE PROPERTY O
	250 260 270 280 290 300
	310
a519-1.pep	
~~~ 1.beb	ISAGMKIIDSSKTAKX
m519-1	
111773-1	ISAGMKIIDSSKTAKX
	310

```
576 and 576-1 gnm22.seq
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3057>:
```

```
m576.seq.. (partial)
          ..ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
       1
      51
            GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
            CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
     101
            GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
     151
           AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
     201
            TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
     301
            CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
     351
            CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
     401
            TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
            GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
     451
           AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
     501
            GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
     551
            AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
     601
     651
            CATCAAAAA GTAAATTAA
```

### This corresponds to the amino acid sequence <SEQ ID 3058; ORF 576>:

```
m576.pep.. (partial)

1 ..MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
51 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
101 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
151 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
201 KIGAPENAPA KQPAQVDIKK VN*
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3059>: g576.seq. (partial)

```
..atgggcgtgg acatcggacg ctccctgaaa caaatgaagg aacagggcgc
       ggaaatcgat ttgaaagtct ttaccgatgc catgcaggca gtgtatgacg
 51
101
       gcaaagaaat caaaatgacc gaagagcagg cccaggaagt gatgatgaaa
       ttcctgcagg agcagcaggc taaagccgta gaaaaacaca aggcggatgc
151
201
       gaaggccaac aaagaaaaag gcgaagcctt cctgaaggaa aatgccgccg
251
       aagacggcgt gaagaccact gcttccggtc tgcagtacaa aatcaccaaa
       cagggtgaag gcaaacagcc gacaaaagac gacatcgtta ccgtggaata
301
351
       cgaaggccgc ctgattgacg gtaccgtatt cgacagcagc aaagccaacg
       gcggcccggc caccttccct ttgagccaag tgattccggg ttggaccgaa
       ggcgtacggc ttctgaaaga aggcggcgaa gccacgttct acatcccgtc
451
501
       caacettgee tacegegaac agggtgeggg egaaaaaate ggteegaacg
551
       ccactttggt atttgacgtg aaactggtca aaatcggcgc acccgaaaac
601
       gcgcccgcca agcagccgga tcaagtcgac atcaaaaaag taaattaa
```

### This corresponds to the amino acid sequence <SEQ ID 3060; ORF 576.ng>:

```
g576.pep.(partial)

1 .MGVDIGRSLK QMKEQGAEID LKVFTDAMQA VYDGKEIKMT EEQAQEVMMK
51 FLQEQQAKAV EKHKADAKAN KEKGEAFLKE NAAEDGVKTT ASGLQYKITK
101 QGEGKQPTKD DIVTVEYEGR LIDGTVFDSS KANGGPATFP LSQVIPGWTE
151 GVRLLKEGGE ATFYIPSNLA YREQGAGEKI GPNATLVFDV KLVKIGAPEN
201 APAKQPDQVD IKKVN*
```

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m576/g576 ORFs 576 and 576.ng showed a 97.2% identity in 215 aa overlap

10 20 30 40 50 60

m576.pep MQQASYAMGVDIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQ
```

BNSDOCID: -WO___9957280A2__>

g576	MGVDIGRSLKQMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQ 10 20 30 40 50
m576.pep	
g576	
m576.pep	130 140 150 160 170 180 TVEYEGRLIDGTVFDSSKANGGPVTFPLSOVIPCWTFCVOLLKROOTE
g576	TVEYEGRLIDGTVFDSSKANGGPATFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYRE  120 130 140 150 160 170
	100 200 200
m576.pep	QGAGDKIGPNATLVFDVKLVKIGAPENAPAKOPAOVDIKKVNV
g576	QGAGEKIGPNATLVFDVKLVKIGAPENAPAKQPDQVDIKKVNX
	180 190 200 210
The following p	partial DNA sequence was identified in N. meningitidis <seq 3061="" id="">:</seq>
4570.5Cq	
1 51	ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
101	ACTITICGCC IGCGCAAAA AAGAAGCCGC CCCCCAACCA COAMCGGA
151	OTOCOGCOGC TICIICCGCG CAGGGCGACA CCTCTTCCAT CCCATCATA
201	ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
251	CONTIGUAGGO AGIGIATGAO GGCAAAGAA TCAAAATCAC CCAACAC
301	GCICAGGAAG ICAIGATGAA ATTCCTTCAG CAACAACACC COAAAAGGGGG
351	HORAMARCAC AAGGCGGACG CGAAGGCCCAA TAAAAAAAAAAAA
401	TICIGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TCCTTTCCCCC
451	CIGCATACA AAATCACCAA ACAGGGCGAA GGCAAACACC GGAGGAAACA
501 551	CGACATUGTT ACCGTGGAAT ACGAAGGCCG CCTCATTCAC CCTACACCTAC
601	1 COACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTTCCC TTTTTCCC
651	GIGALICIGG GIIGGACCGA AGGCGTACAG CTTCTCAAAC AAGGCGGGG
701	AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
751	GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
801	CATCAAAAAA GTAAATTAA
This correspond	s to the amino acid sequence <seq 3062;="" 576.a="" id="" orf="">:</seq>
1	MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
51	TIQQADIANGV DIGKSLKOMK EOGAFIDIKU FTFAMONIUD CURTINITA
101	ADEVITATED EQUALAVERH KADAKANKEK CEAETKENNA KROTTERRA CO
151	DELVITAGE GUOLIKUDIA LAKKEBI'LD CLAKEDGGRAM CODIMED
201	VIDWIEGVQ DEAEGGEATH YIPSNIAYRE OGAGDKIGDN AUTTEDIEVE
251	KIGAPENAPA KOPAQVDIKK VN*
m576/a576	ORFs 576 and 576.a showed a 99.5% identity in 222 aa overlap
m576.pep	10 20 30 MQQASYAMGVDIGRSLKQMKEQGAEIDLKV
a576	
	CGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGVDIGRSLKQMKEQGAEIDLKV 30 40 50 60 70 80
	40 50 60 70
m576.pep	FTEAMQAVYDGKEIKMTEEQAQEVMMKFLOFQQAKAVEKUVADAVAAVE
a576	
	90 100
	100 110 120 130 140

in

m576.pep	100 KDGVKTTASGLQYKI	110 TKQGEGKQ	120 PTKDDIVTVEY	130 EGRLIDGTVF	140 DSSKANGGPV	150 VTFPLSQ
a576	KDGVKTTASGLQYKI	TKOGEGKO			DSSKANGGEN	IIIIIII
	150	160	170	180	190	200
	160	170	180	190	200	210
m576.pep	VIPGWTEGVQLLKEG	GEATFYIP	SNLAYREQGAG			
- 576			1111111111	111111111	1111111111	111111
a576	VILGWTEGVQLLKEG		SNLAYREQGAG	DKIGPNATLV	FDVKLVKIG <i>I</i>	APENAPA
_	210	220	230	240	250	260
-	220					
m576.pep	KOPAOVDIKKVNX					
	111111111111					
a576	KQPAQVDIKKVNX	•				
	270					

### Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3063>:

```
m576-1.seq
       1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
      51 ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
     101 CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
         ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
          GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
     201
     251 CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
     301 GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
     351 AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
     401
          TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
          CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
     451
     501 CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
     551 TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
     601 GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
     651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
     701 GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
         AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
     801 CATCAAAAA GTAAATTAA
```

### This corresponds to the amino acid sequence <SEQ ID 3064; ORF 576-1>:

m576-1.pep

1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
51 MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
201 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
251 KIGAPENAPA KQPAQVDIKK VN*

### The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3065>: g576-1.seq

ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC 51 CTGCCGCCGC TTCTGCCGCG CAGGGCGACA CCTCTTCAAT CGGCAGCACG 101 151 ATGCAGCAGG CAAGCTATGC AATGGGCGTG GACATCGGAC GCTCCCTGAA 201 ACAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGATG CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG 251 301 GCCCAGGAAG TGATGATGAA ATTCCTGCAG GAGCAGCAGG CTAAAGCCGT AGAAAAACAC AAGGCGGATG CGAAGGCCAA CAAAGAAAAA GGCGAAGCCT 351 TCCTGAAGGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGT 401 451 CTGCAGTACA AAATCACCAA ACAGGGTGAA GGCAAACAGC CGACAAAAGA CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACCGTAT 551 TCGACAGCAG CAAAGCCAAC GGCGGCCCGG CCACCTTCCC TTTGAGCCAA 601 GTGATTCCGG GTTGGACCGA AGGCGTACGG CTTCTGAAAG AAGGCGGCGA 651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG

BNSDOCID: <WO___9957280A2_I_>

```
701 GCGAAAAAT CGGTCCGAAC GCCACTTTGG TATTTGACGT GAAACTGGTC
                AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG ATCAAGTCGA
           801
                САТСАААААА СТАААТТАА
 This corresponds to the amino acid sequence <SEQ ID 3066; ORF 576-1.ng>:
      g576-1.pep
               MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASAA QGDTSSIGST
             1
               MQQASYAMGV DIGRSLKOMK EQGAEIDLKV FTDAMQAVYD GKEIKMTEEQ
            51
               AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
           101
               LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPATFPLSQ
               VIPGWTEGVR LLKEGGEATF YIPSNLAYRE QGAGEKIGPN ATLVFDVKLV
           201
           251 KIGAPENAPA KQPDQVDIKK VN*
                       ORFs 576-1 and 576-1.ng showed a 97.8% identity in 272 aa
      g576-1/m576-1
      overlap
                          10
                                   20
                                            30
                                                     40
                  MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASAAQGDTSSIGSTMQQASYAMGV
                                                               50
      q576-1.pep
                  MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
     m576-1
                         10
                                   20
                                            30
                                                     40
                                                               50
                         70
                                   80
                                            90
                                                    100
                  DIGRSLKOMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
     g576-1.pep
                  DIGRSLKOMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
     m576-1
                         70
                                  80
                                            90
                                                    100
                                                             110
                        130
                                  140
                                           150
                                                    160
                 KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
                                                             170
     g576-1.pep
                 oldsymbol{n}
                 KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
     m576-1
                        130
                                 140
                                          150
                                                    160
                                                             170
                        190
                                 200
                                          210
                                                    220
                 GTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYREQGAGEKIGPN
                                                             230
     g576-1.pep
                 រិយិយាយមាននេះ មើលពីលើបានសម្រាយមានសម្រាប់ មើលនេះ មើល
                 GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
     m576-1
                        190
                                 200
                                          210
                                                   220
                                                             230
                                                                      240
                        250
                                 260
     g576-1.pep
                 ATLVFDVKLVKIGAPENAPAKQPDQVDIKKVNX
                 m576-1
                 ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
                       250
                                 260
                                          270
The following DNA sequence was identified in N. meningitidis <SEQ ID 3067>:
     a576-1.seq
             ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
           1
             ACTITICCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
          51
              CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
         101
              ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
         151
              GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
         201
              CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
         251
              GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
         301
              AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
         351
             TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
         401
              CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
         451
         501
             CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
             TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
         551
             GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
         601
```

AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG

651

```
GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
             AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
             CATCAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3068; ORF 576-1.a>:
    a576-1.pep
             MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
           1
         101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
         151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
         201 VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
251 KIGAPENAPA KQPAQVDIKK VN*
                     ORFs 576-1 and 576-1.a showed a 99.6% identity in 272 aa
    a576-1/m576-1
    overlap
                                20
                                         30
                                                  40
                                                                    60
    a576-1.pep
                MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
                MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
    m576-1
                                20
                                                  40
                                                           50
                       70
                                80
                                         90
                                                 100
                                                          110
                DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
    a576-1.pep
                DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
    m576-1
                       70
                                80
                                         90
                                                 100
                                                          110
                      130
                               140
                                        150
                                                 160
                                                          170
    a576-1.pep
               {\tt KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID}
                m576-1
               KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
                      130
                               140
                                        150
                                                 160
                                                          170
                      190
                               200
                                        210
                                                 220
                                                          230
               GTVFDSSKANGGPVTFPLSQVILGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
    a576-1.pep
                m576-1
               GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
                      190
                               200
                                        210
                                                 220
                                                          230
                                                                   240
                      250
                               260
               ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
               ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
   m576-1
                               260
```

#### 919 gnm43.seq

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3069>:

-					
1	ATGAAAAAAT	ACCTATTCCG	CGCCGCCCTG	TACGGCATCG	CCGCCGCCAT
51	CCTCGCCGCC	TGCCAAAGCA	AGAGCATCCA	AACCTTTCCG	CAACCCGACA
101	CATCCGTCAT	CAACGGCCCG	GACCGGCCGG	TCGGCATCCC	CGACCCCGCC
151	GGAACGACGG	TCGGCGGCGG	CGGGGCCGTC	TATACCGTTG	TACCGCACCT
201	GTCCCTGCCC	CACTGGGCGG	CGCAGGATTT	CGCCAAAAGC	CTGCAATCCT
251	TCCGCCTCGG	CTGCGCCAAT	TTGAAAAACC	GCCAAGGCTG	GCAGGATGTG
301	TGCGCCCAAG	CCTTTCAAAC	CCCCGTCCAT	TCCTTTCAGG	CAAAACAGTT
351	TTTTGAACGC	TATTTCACGC	CGTGGCAGGT	TGCAGGCAAC	GGAAGCCTTG
401	CCGGTACGGT	TACCGGCTAT	TACGAACCGG	TGCTGAAGGG	CCACCACACA

BNSDOCID: <WO___9957280A2_j_>



# This corresponds to the amino acid sequence <SEQ ID 3070; ORF 919>:

```
1 MKKYLFRAAL YGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KSYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
```

### The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3071>:

1	ATGAAAAAAC A	ACCTGCTCCG	CTCCGCCCTG	TACGGCatCG	CCCCCCCC
51	ceregees.	IGCCAAAqca	. GGAGCATCCA	ΔΔCCTTTCCC	Chaccons
101	CAICCGTCAT (	CAACGGCCCG	GACCGGCCGG	CCCCCATCCC	CCAGGGGGG
151	GGAACGACGG	TLGCCGGCGG	CGGGGCCGTC	TATACCGTTC	TOCCOORCOM
201	GICCATGCCC (	CACTGGGCGG	- CGCaggATTT	TGCCAAAAGC	CTCCAATCCT
251	TCCGCCTCGG C	CTGCGCCAAT	TTGAAAAACC	GCCAAGGCTC	CCACCATCCT
301	TGCGCCCAAG	CCTTTCAAAC	CCCCGTGCAT	TCCTTTCACC	GCAGGATGTG
351	TTTTGAACGC T	PATTTCACGC	CatGGCaggt	tacacacaa	CAAAGCGGTT
401	Caggtacggt T	PACCGGCTAT	TACGAACCGG	TGCTGAACGG	GGAAGCCTTG
451	CGGACGGAAC G	GGCCCGCTT	CCCGATTTAC	CCTATTCCC	CGACGGCAGG
501	CTCCGTCCCG C	TGCCTGCCG	GTTTGCGGG	CCCAAAAAA	ACGATTTTAT
551	TCAGGCAGac g	GGAAAAAC	AGCGGCACGA	TCCACAAAAAC	CTTGTCCGCA
601	CATACCGCCG A	ACCTCTCCCG	ATTCCCCATC	ACCCCCCCCC	CGGCGGCACG
651	caaaGGCAGG T	TTGAaggAA	GCCGCTTCCT	ACCGCGCGCA	CAACGGcaat
701	AAAtcaacGG C	GGCacacTT	GACGGGAAC	CCCTTACCAC	ACGCGCAACC
751	GAagaccCcG t	COBSCTTT	TTTCATCA	CCCCCATCCT	CggttacgcC
801	GAAAACCCcc t	CCCCCSSS+	111CATGCAC	AcccaaggCT	CGGGCCGCCT
851	GAAAACCCcg t	atttaata	acatccccat	cggaTacgcc	gacAAAAACG
901	AACAtccgTa t	GACCTCCAT	GGACGCTATA	TGGCGGACAA	AGGCTACCTC
951	AAGCtcgggc a	TCCCCCAAC	GCAGGGCatc	aaagcCTATA	TGCGGCAAAA
1001	TCCGCGAGCT T	CCCCCAAG	TTTTGGGTCA	AAACCCCAGC	TATATCTTTT
1051	TCCGCGAGCT T	CCCCCAAGC	GGCAATGAGG	GCCCCGTCGG	CGCACTGGGC
1101	ACGCCACTGA TO	COURTE	CGCCGGCGCA	ATCGACCGGC	ACTACATTAC
1151	CCTCAACCC C	CECATEG	TCGCCACCGC	CCATCCGGTT	ACCCGCAAAG
1201	CCCTCAACCG C	CIGATTATG	GCGCAGGATA	CAGGCAGCGC	GATCAAAGGC
1251	GCGGTGCGCG TO	GGATTATTT	TTGGGGTTAC	GGCGACGAAG	CCGGCGAACT
1301	IGCCGGCAAA C	AGAAAACCA	CGGGATACGT	CTGGCAGCTC	CTGCCCAACG
+301	GCATGAAGCC CO	GAATACCGC	CCGTGA		

This corresponds to the amino acid sequence <SEQ ID 3072; ORF 919.ng>:

pep.					
1	MKKHLLRSAL	YGIAAAILAA	CQSRSIQTFP	QPDTSVINGP	DRPAGIPDPA
51	GTTVAGGGAV	YTVVPHLSMP	HWAAQDFAKS	LOSFRLGCAN	LKNROGWODV
101	CAQAFQTPVH	SFQAKRFFER	YFTPWQVAGN	GSLAGTVTGY	YEPVLKGDGR
151	RTERARFPIY	GIPDDFISVP	LPAGLRGGKN	LVRIRQTGKN	SGTIDNAGGT
201	HTADLSRFPI	TARTTAIKGR	FEGSRFLPYH	TRNQINGGAL	DGKAPILGYA
251	EDPVELFFMH	IQGSGRLKTP	SGKYIRIGYA	DKNEHPYVSI	GRYMADKGYL
301	KLGQTSMQGI	KAYMRQNPQR	LAEVLGONPS	YIFFRELAGS	GNEGPVGALG
351	TPLMGEYAGA	IDRHYITLGA	PLFVATAHPV	TRKALNRLIM	AQDTGSAIKG
401	AVRVDYFWGY	GDEAGELAGK	QKTTGYVWQL	LPNGMKPEYR	P*

ORF 919 shows 95.9 % identity over a 441 aa overlap with a predicted ORF (ORF 919.ng) from N. gonorrhoeae:

m919/g919

	10	20	30	40	50	60
m919.pep	MKKYLFRAALYGIA	AAILAACQSI	KSIQTFPQPDI	SVINGPDRP	GT PDPAGTT	VCCCCAV
	111:1:1:11111		:		:	1.11111
g919	MKKHLLRSALYGIA	aailaacqsi	RSIQTFPQPDT	SVINGPDRPA	GIPDPAGTT	VAGGGAV
	10	20	30	40	50	60
	70	80	90	100	110	120
m919.pep	YTVVPHLSLPHWAA	ODFAKSLOSI	FRLGCANLKNR	QGWQDVCAQ <i>I</i>	AFQTPVHSFQ2	AKQFFER
						11:1111
g919	YTVVPHLSMPHWAA	QDFAKSLQSF	RLGCANLKNR	QGWQDVCAQA	AFQTPVHSFQ	AKRFFER
	70	80	90	100	110	120
	130	140	150	160	170	180
m919.pep	YFTPWQVAGNGSLA	GTVTGYYEPV				
~010		, , , , , , , , , ,	:			:
g919	YFTPWQVAGNGSLA					3LRGGKN 😘
	130	140	150	160	170	180
	190	200	210			
m919.pep			210	220	230	240
	LVRIRQTGKNSGTII	II.IIIIIII	LSREPTIART	TAIKGRFEGS	RFLPYHTRNO	)INGGAL
g919		•                 			111111111	
3	190	200	210			
	250	200	210	220	230	240
	250	260	270	280	290	200
m919.pep	DGKAPILGYAEDPVI			ZOU TDICVANVATE	290 WDW/CTCDVA	300
• •				INIGIADANE	HIIIIIIIII	HADRGYL
g919	DGKAPILGYAEDPVI	ELFFMHIOGS	GRLKTPSGKY	TRIGVANKNE		ANDECT
	250	260	270	280	290	300
			-		250	300
	310	320	330	340	350	360
m919.pep	KLGQTSMQGIKSYMF	RONPORLAEV	LGQNPSYIFF	RELAGSSNDG	PVGALGTPLN	MGEYAGA
			111111		1111111111	
g919	KLGQTSMQGIKAYMF	RONPORLAEV	LGONPSYIFF	RELAGSGNEG	PVGALGTPLN	IGEYAGA
	310	320	330	340	350	360
	370	380	390	400	410	420
m919.pep	VDRHYITLGAPLFVA	TAHPVTRKA	LNRLIMAQDT	GSAI KGAVRV	DYFWGYGDEA	GELAGK
-010	:			11111111	1111111111	111111
g919	IDRHYITLGAPLFVA	TAHPVTRKA			DYFWGYGDEA	GELAGK
	370	380	390	400	410	420

BNSDOCID: <WO___9957280A2_I_>

### The following partial DNA sequence was identified in N.meningitidis <SEQ ID 3073>:

```
a919.seq
         ATGAAAAAAT ACCTATTCCG CGCCGCCCTG TGCGGCATCG CCGCCGCCAT
         CCTCGCCGCC TGCCAAAGCA AGAGCATCCA AACCTTTCCG CAACCCGACA
     51
         CATCCGTCAT CAACGGCCCG GACCGGCCGG TCGGCATCCC CGACCCCGCC
     101
         GGAACGACGG TCGGCGGCGG CGGGGCCGTT TATACCGTTG TGCCGCACCT
    151
         GTCCCTGCCC CACTGGGCGG CGCAGGATTT CGCCAAAAGC CTGCAATCCT
         TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
    251
         TGCGCCCAAG CCTTTCAAAC CCCCGTCCAT TCCGTTCAGG CAAAACAGTT
         TTTTGAACGC TATTTCACGC CGTGGCAGGT TGCAGGCAAC GGAAGCCTTG
    401 CCGGTACGGT TACCGGCTAT TACGAGCCGG TGCTGAAGGG CGACGACAGG
         CGGACGGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
    451
        CTCCGTCCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA
    501
         TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA
    551
    601 CATACCGCCG ACCTCTCCCA ATTCCCCATC ACTGCGCGCA CAACGGCAAT
        CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC
    651
        AAATCAACGG CGGCGCCTT GACGGCAAAG CCCCGATACT CGGTTACGCC
    701
         GAAGACCCCG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT
    751
    801 GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG
    851 AACATCCCTA CGTTTCCATC GGACGCTATA TGGCGGACAA AGGCTACCTC
    901 AAGCTCGGGC AGACCTCGAT GCAGGGCATC AAAGCCTATA TGCAGCAAAA
    951 CCCGCAACGC CTCGCCGAAG TTTTGGGGCA AAACCCCAGC TATATCTTTT
   1001
        TCCGAGAGCT TACCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC
         ACGCCGCTGA TGGGCGAGTA CGCCGGCGCA GTCGACCGGC ACTACATTAC
   1051
   1101
        CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
        CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC
   1151
        GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT
   1201
        TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTT CTGCCCAACG
   1251
        GTATGAAGCC CGAATACCGC CCGTAA
   1301
```

### This corresponds to the amino acid sequence <SEQ ID 3074; ORF 919.a>:

a919.pep

1 MKKYLFRAAL CGIAAAILAA
51 GTTVGGGGAV YTVVPHLSLP
101 CAQAFQTPVH SVQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
201 HTADLSQFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KAYMQQNPQR LAEVLGQNPS YIFFRELTGS SNDGPVGALG
351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR

1 MKKYLFRAAL CGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
1 LKNRQGWQDV
1 YEPVLKGDDR
1 TRNQINGGAL DGKAPILGYA
2 GRYMADKGYL
3 SNDGPVGALG
4 QKTTGYVWQL LPNGMKPEYR
5 CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
1 LKNRQGWQDV
1 YEPVLKGDDR
1 SGRYNTGYT GRYMADKGYL
2 SGRYIRIGYA DKNEHPYVSI GRYMADKGYL
3 SNDGPVGALG
4 QKTTGYVWQL LPNGMKPEYR
5 CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
1 LKNRQGWQDV
1 SGRYNTGYT GRYMADKGYL
2 SGRYIRIGYA DKNEHPYVSI GRYMADKGYL
3 SNDGPVGALG
4 QKTTGYVWQL LPNGMKPEYR
5 CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
1 LKNRQGWQDV
1 SGRYNTGYT GRYMADKGYL
2 SGRYIRIGYA DKNEHPYVSI GRYMADKGYL
3 SNDGPVGALG
4 QKTTGYVWQL LPNGMKPEYR
5 CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
1 LKNRQGWQDV
1 SGRYMADKGYL
2 SGRYIRIGYA DKNEHPYVSI GRYMADKGYL
3 SNDGPVGALG
4 QKTTGYVWQL LPNGMKPEYR
5 CQSKSIQTFP QPDTSVINGP DRPVGAMP LAKONGON
2 SGRYMADKGYL
3 STORMAN CONTRACTOR CONT

m919/a919 ORFs 919 and 919.a showed a 98.6% identity in 441 aa overlap

```
20
                                              30
                                                         40
              MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
m919.pep
              namini didilinga da kalaman da ka
              MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
a 919
                        10
                                   20
                                              30
                                                                     50
                                                                                60
                                   80
                                              90
                                                        100
                                                                    110
              YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
m919.pep
              រណ៍លើ អាមារិយើរបញ្ជាប់អាមារិយាយប្រជាជាមួយប្រជាជាធិបាន
              YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER
a919
                       70
                                  80
                                              90
                                                        100
                                                                   110
```

m919.pep	130 YFTPWQVAGNGSLA            YFTPWQVAGNGSLA 130	111111			1111111111	TITLE
m919.pep	190 LVRIRQTGKNSGTII  !!!!!!!!!!!! LVRIRQTGKNSGTII 190	!		11111111	1111111111	111111
m919.pep	250 DGKAPILGYAEDPVI           DGKAPILGYAEDPVI 250	[				1111111
m919.pep	310 KLGQTSMQGIKSYMF	:		111:11111		LITTI
m919.pep	370 VDRHYITLGAPLFVA	11111111		[	13111111	111111
m919.pep	430 QKTTGYVWQLLPNGM            QKTTGYVWQLLPNGM 430 440	111111				

### 121 and 121-1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3075>: m121.seq

1	ATGGAAACAC	AGCTTTACAT	CGGCATCATG	TCGGGAACCA	GCATGGACGG
51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
101		CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CCAATTGCTG
151	GATTTGCAGG	ACACAGGCGC	AGACGAACTG	CACCGCAGCA	GGATTTTGTC
201	GCAAGAACTC		ATGCGCAAAC		
251	GTCAAAACCT			CCCTCGGCTG	
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTTAC	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGxxxxxxx	xxxxxxxxx	xxxxxxxxx	XXXXXXXXXX
401	xxxxxxxxx				
451	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx		
501	XXXXXXXXX	xxxxxxxxx	xxxxxxxxx		xxxxxxxxx
551	xxxxxxxxx	xxxxxxxxx	XXXXXXXXX		XXXXXXXXXX
601	XXXXXXCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGTCGG	
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACGCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCAT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA		TGCGGACGCT
801	TTCCCGTTTT	ACCGCGCAAA			CACGCAGCGG
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGACG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC		CCCTGCACAG
951	CACCGCCGAC	CTGAACCTCG	ATCCGCAATG	GGTGGAAGCC	GCCGnATTTG
1001	CGTGGTTGGC	GGCGTGTTGG	ATTAATCGCA	TTCCCCCTAC	TCCGCACAAA
				DAIDDOOLL	AAAAAAA

1051 GCAACCGGCG CATCCAAACC GTGTATTCTG AnCGCGGGAT ATTATTATTG

### This corresponds to the amino acid sequence <SEQ ID 3076; ORF 121>: m121.pep

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3077>: g121.seq

```
ATGGAAACAC AGCTTTACAT CGGCATTATG TCGGGAACCA GTATGGACGG
      GGCGGATGCC GTGCTGGTAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
  51
 101 AAGGGCACGC CTTTACCCCC TACCCTGACC GGTTGCGCCG CAAATTGCTG
 151 GATTTGCAGG ACACAGGCAC AGACGAACTG CACCGCAGCA GGATGTTGTC
      GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
     GTCAAAACCT CGCTCCGTGC GACATTACCG CCCTCGGCTG CCACGGGCAA
 251
 301 ACCGTCCGAC ACGCGCCGGA ACACGGTtac AGCATACAGC TTGCCGATTT
     GCCGCTGCTG GCGGAACTGa cgcggatttT TACCGTCggc gacttcCGCA
 401 GCCGCGACCT TGCTGCCGGC GGacaAGGTG CGCCGCTCGT CCCCGCCTTT
 451 CACGAAGCCC TGTTCCGCGA TGACAGGGAA ACACGCGTGG TACTGAACAT
      CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGGCGCA CCCGCCTTCG
 551 GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGAcgcgtg gacgcaggca
 601 cacTGGcagc TGCCTTACGA CAAAAacggt gcAAAGgcgg cacAAGGCAA
651 catatTGCcg cAACTGCTCG gcaggctGCT CGCCcaccCG TATTTCTCAC
 701 AACCCcaccc aaAAAGCACG GGgcGCGaac TgtttgcccT AAattggctc
     gaaacctAcc ttgacggcgg cgaaaaccga tacgacgtat tgcggacgct
      ttcccgattc accgcgcaaA ccgTttggga cgccgtctca CACGCAGCGG
 801
851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
 901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
     CACCGCCGAA CTGAACCTCG ATCCTCAATG GGTGGAGGCG gccgCATTtg
     cgtggttggC GGCGTGTTGG ATTAACCGCA TTCCCGGTAG TCCGCACAAA
      GCGACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
1051
1101
```

# This corresponds to the amino acid sequence <SEQ ID 3078; ORF 121.ng>: g121.pep

```
1 METQLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL
51 DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ
101 TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA
201 HWQLPYDKNG AKAAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV
301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK
351 ATGASKPCIL GAGYYY*
```

# ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae: m121/g121

```
30
                                    40
         {\tt METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL}
m121.pep
         METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAEGHAFTPYPDRLRRKLLDLQDTGTDEL
g121
               10
                      20
                             30
                                    40
                                           50
                      80
                             90
                                   100
                                          110
         \tt HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
m121.pep
```

g121	HRSRMLSQELSRLY	AOTAAELLC:	SONI.APCDITZ	AT.GCHGOTUBU	ADEUCVETO	
-	70	80	90	100		
	130	140	150	160	110	120
m121.pep					170	180
zez.pep	AXXXXXXXXXXXXX	·AAAAAAAAA	<b>******</b>	(XXXXXXXXXX	XXXXXXXXX	XXXXXX
g121	API TRATECTOR	DDI		:		
gizi	AELTRIFTVGDFRS	RDLAAGGQG	APLVPAFHEAI		LNIGGIANI	SVLPPGA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXX	XXXXXXXX	LPYDKNGAKSA	QGNILPQLLD	RLLAHPYFA	ORHPKST
	:	: [	:	11111111	11111111	1 11111
g121	PAFGFDTGPGNMLM	DAWTQAHWQI	LPYDKNGAKAA	OGNILPOLLG	RLLAHPYES	OPHPKST
	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETYL	DGGENRYDVI	RTLSEFTAOT	מממשפטמחטטי	DABOMVICO	CCTRNDU
	311111:11111		111111111	I IIIIIII	DARQMIICD	GGIRNPV
g121	GRELFALNWLETYL	DECENBADAL	יון וווווווווו	ית את מוסינו ארו ווי מאת מוסינו ארו המנוי		111111
<b>,</b>	250	260	270			
	310	320		280	290	300
m121.pep			330	340	350	360
mizi.pep	LMADLAECFGTRVS			WLAACWINRI	PGSPHKATG	ASKPCIL
101			11111111			11111
g121	LMADLAECFGTRVS	LHSTAELNLI	PQWVEAAAFA	WLAACWINRI:	PGSPHKATG	ASKPCIL
	310	320	330	340	350	360
_						
m121.pep	XAGYYYX					
	11111					
g121	GAGYYYX					

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3079>:

```
a121.seq
         ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
     51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
    101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
    151 GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
    201
         GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
         GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
    251
    301 ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
    351 GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
         GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
    401
         CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
    451
         CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
    501
         GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
    551
    601 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
    651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
    701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
    751
         GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
         TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
    801
         CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
    851
         TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
    951
         CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
   1001
         CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
   1051
         GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
   1101
```

### This corresponds to the amino acid sequence <SEQ ID 3080; ORF 121.a>:

al21.pep					
1	METQLYIGIM	SGTSMDGADA	VLIRMDGGKW	LGAEGHAFTP	YPGRURRKIJ.
51	DLQDTGADEL	HRSRMLSQEL	SRLYAQTAAE	LLCSONLAPS	DITALGCHGO
101	TVRHAPEHSY	SVQLADLPLL	AERTQIFTVG	DFRSRDLAAG	GOGAPINPAF
151	HEALFRODRE	TRAVLNIGGI	ANISVLPPDA	PAFGFDTGPG	AUMINDAMMOD
201	HWQLPYDKNG	AKAAQGNILP	OLLDRLLAHP	YFAOPHPKST	GRELEALNWI.
251	ETYLDGGENR	YDVLRTLSRF	TAQTVFDAVS	HAAADARQMY	ICGGGIRNPV

BNSDOCID: <WO___9957280A2_l_>

LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK ATGASKPCIL GAGYYY* ORFs 121 and 121.a showed a 74.0% identity in 366 aa overlap m121/a121 20 30 40 50 60  ${\tt METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL}$ m121.pep METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL a121 10 20 30 40 70 80 90 100 110 HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL m121.pep រពនេះបរិយាយពីអាយាលិយអាយាយលើអាយាននេះវិយ៍អាប HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVQLADLPLL a121 80 90 100 110 130 140 150 160 170 180 m121.pep AERTQIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRAVLNIGGIANISVLPPDA a121 130 140 150 160 170 190 200 210 220 230 XXXXXXXXXXXXXXXXXXXQLPYDKNGAKSAQGNILPQLLDRLLAHPYFAQRHPKST 240 m121.pep PAFGFDTGPGNMLMDAWMQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST a121 190 200 210 220 230 240 260 270 280 290 GRELFAINWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICDGGIRNPV m121.pep inneniminiminiminimin immuniima muu GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV a121 250 260 270 280 290 300 310 320 330 340 350 LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL m121.pep LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL a121 310 320 330 340 350 m121.pep XAGYYYX 111111 a121 GAGYYYX Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3081>: m121-1.seq ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG 1 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG 51 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG 101 GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC 151 GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA 201 GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA 251 ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT 301 GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA 351 GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT 401 CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT 451 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG 501 GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA 551 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA 601 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC 651

AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC

GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT

TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG

701

751

	851	CAGATGCCCG	TCAAATCTA	~ <u> </u>		mccc cxxmc	0.00 mm	
	901	MMA AMCCCCC	TCAAAIGIA	ATTIGUE	SCG GCGGCA	TCCG CAATC	CTGTT	
	201	TTAATGGCGG	ATTTGGCAG	AATGTTTC	GGC ACACGC	GTTT CCCTG	CACAG	
	951	CACCGCCGAC	CTGAACCTC	S ATCCGCA	ATG GGTGGA	AGCC GCCGN	ATTTG	
	1001	CGTGGTTGGC	GGCGTGTTG	G ATTAATCO	GCA TTCCCG	GTAG TCCGC	ACAAA	
	1051	GCAACCGGCG	CATCCAAAC	C GTGTATT	CTG ANCGCG	GGAT ATTAT	TATTG	
		A						
This c	corresponds	to the amin	o acid segu	ence < SE(	U ID 3083.	ODE 121 1	١<.	
	- 101 1	10 1110 4111111	o aora boqu	OHOU ADD.	Q ID 3002,	OICI 121-1	1/.	
	m121-1.pep							
	1 1	METQLYIGIM	SGTSMDGAD	A VLIRMDGO	SKW LGAEGH	AFTP YPGRL	RRQLL	
	51	DLQDTGADEL	HRSRILSQE	SRLYAQTA	AAE LLCSQN	LAPS DITAL	GCHGO	
	101	TVRHAPEHGY	SIQLADLPL	L AERTRIFT	TVG DFRSRD	LAAG GOGAP	LVPAF	
	151	HEALFRONRE	TRAVLNIGG	I ANISVLPI	PDA PAFGFD	TGPG NMLMD	ΔΩΤΏΔ	
	201	HWQLPYDKNG	AKAAOGNILI	OLLDRILL	AHP YFAOPH	PKST GRELE	AT NIGIT	
	251	ETYLDGGENR	YDVLRTLSR	י דבטייטרטי	מחפמפא אמי	POMY TOCCO	TDNDU	
	301	LMADLAECFG	TRUSTHETAI	. INGIVODA	IEN NVENUT	NOMI ICGGG	IKNPV	
	351	ATGASKPCIL	INASTROLM	PIATOS ÓM (	VEW WVIWAT	AACW INRIP	SSPHK	
	331 1	HIGHSKECIL	AAGI <u>II</u>					
	m121-1/g12	1 0000 10	01_1 nmal 11	11				
•	m121-1/g12.	L ORFS 12	i-i and i	ing snov	ved a 95.6	% identity	in 366 aa	overlap
			10	20	30	40	50	60
1	m121-1.pep	METQLYIC	IMSGTSMDG	ADAVLIRMDO	GKWLGAEGH	AFTPYPGRLRI	ROLLDLODTG	ADEL
		1111111	11111111111			111111 111	1:1111111	: 111
	g121	METOLYIC	IMSGTSMDGA	DAVLVRMDO	GKWLGAEGH	AFTPYPDRLRI	KIIDI ODTG	יוי דים חיד
	<b>,</b>		10	20	30	40	50	
				20	30	40	50	60
			70	80	00	100		
_		UDODILO			90	100	110	120
1	m121-1.pep	HKSKILSC	ELSKLIAOTA	AELLCSQNI	APSDITALGO	CHGQTVRHAPI	EHGYSIQLAD	LPLL
		1111:111		11111111		111111111		1111
•	g121	HRSRMLSQ	ELSRLYAQTA	<i>L</i> AELLCSQNI	LAPCDITALGO	CHGQTVRHAP	EHGYSIQLAD	LPLL
			70	80	90	100	110	120
		1	.30 1	40	150	160	170	180
1	m121-1.pep	AERTRIFT	VGDFRSRDL	AGGOGA PT.V		ONRETRAVLN	CCTANTEUT	100
				111111111	1111111111	:         :	regiunto di	PPDA
	g121	AFT.TPT FT	VCDEDSDDI	וווווווווו	יווווווווו מחד השטש המחל	DDRETRVVLN		11 1
,	9							
		_	30 1	.40	150	160	170	180 .
		_						
				200	210	220	230	240
1	m121-1.pep	PAFGFDTG	PGNMLMDAWT	'QAHWQLPYI	KNGAKAAQGI	NILPQLLDRLI	LAHPYFAQPHI	PKST
			111111111		111111111			1111
(	g121	PAFGFDTG	PGNMLMDAWI	'QAHWQLPYE	KNGAKAAQGI	VILPQLLGRLI	LAHPYFSOPHI	PKST
		1	90 2	00	210	220	230	240
		2	50 2	60	270	280	290	300
1	m121-1.pep	GRELFALN	WLETYLDGGF	NRYDVI.RTI		DAVSHAAADAF	OMVTCCCCT	NDU
				111111111			CHITCGGGT	KNPV
	g121	CPFIFAIN	MIETVIDGGE			DAVSHAAADAF		
•	9.2.1	ONLILLINO	WDEIILDGGE	NCO NVIDATKIT				
		2	50 2	:60	270	280	290	300
			10 -					
				20	330	340	350	360
1	m121-1.pep	LMADLAEC	FGTRVSLHST	'ADLNLDPQW	VEAAXFAWL?	ACWINRIPGS	PHKATGASKI	PCIL
				1:111111	1111 1111		1111111111	
Ç	g121	LMADLAEC	<b>FGTRVSLHST</b>	'AELNLDPQW	VEAAAFAWLA	ACWINRIPGS	PHKATGASK	PCIL
		3	10 3	20	330	340	350	360
			_			- <del></del>		
т	m121-1.pep	XAGYYYX						
•		111111						
	-101	111111						

The following DNA sequence was identified in N. meningitidis <SEQ ID 3083>: a121-1.seq

1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG

g121

GAGYYYX

51	GGCGGATGCC	GTACTGATAC	GGATGGACCC	CCCCDDDDCC	CTGGGCGCGG
101	AAGGGCACGC	CTTTACCCC	TACCCCGGCA	CGGCAAATGG	CTGGGCGCGG
151	GATTTGCAGG		-11444444		CAAATTGCTG
201	GCAAGAACTC		ACGCGCAAAC		GGATGTTGTC
251	GTCAAAACCT	*********			CTGCTGTGCA
301	ACCGTCAGAC	9999999166	GACATTACCG		CCACGGGCAA
351	GCCGCTGCTG		ACACAGTTAC		TTGCCGATTT
401	GCCGCGACCT		CTCAGATTTT	TACCGTCGGC	
451	CACGAAGCCC		GGACAAGGCG	CGCCGCTCGT	CCCCGCCTTT
501			CGACAGGGAA		
	CGGCGGGATT		GCGTACTCCC	CCCCGACGCA	CCCGCCTTCG
551	GCTTCGACAC		AATATGCTGA	TGGACGCGTG	GATGCAGGCA
601	CACTGGCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGGCGG	CACAAGGCAA
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACCCCACCC		GGGCGCGAAC	TGTTTGCCCT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
801	TTCCCGATTC	ACCGCGCAAA	CCGTTTTCGA	CGCCGTCTCA	
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGGCG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAA		ATCCGCAATG	GGTAGAAGCC	GCCGCGTTCG
1001	CATGGATGGC	GGCGTGTTGG	GTCAACCGCA	TTCCCGGTAG	TCCGCACAAA
1051	GCAACCGGCG	CATCCAAACC		GGCGCGGGAT	ATTATTATTG
1101	A			CCCCCCGGAI	ATTATTG
espond	s to the amin	o acid seque	nce <seo ii<="" td=""><td>3084. ODE</td><td>121 1 -&gt;.</td></seo>	3084. ODE	121 1 ->.
1-1.pe	n		TOT DEQ II	> 5004, OKT	121-1.a>:
1		SCARMDCVDV	VLIRMDGGKW		
51		SGISMUGADA	VLIKMDGGKW	LGAEGHAFTP	YPGRLRRKLL

#### This correst a121-

51 DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ 101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF 151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA 201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL 251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV 301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK 351 ATGASKPCIL GAGYYY*

m121-1/a121-1 ORFs 121-1 and 121-1.a showed a 96.4% identity in 366 aa overlap

m121-1.pep	10 METQLYIGIMSGTSI             METQLYIGIMSGTSI 10	1 [ ] 1 [ ] 1 ] 1	1 1 1 1 1 1 1 1 1 1 1 1	1111111	1111.11111	
m121-1.pep	70 HRSRILSQELSRLYI     :         HRSRMLSQELSRLYI 70	1 1 1 1 1 1 1 1 1 1		1   1   1   1   1   1		
m121-1.pep	130 AERTRIFTVGDFRSF     :          AERTQIFTVGDFRSF 130	111111111	1111111	111.131.11		
m121-1.pep	190 PAFGFDTGPGNMLME	11 11111	1		4 1 1 4 1 4 1 1 1 1 2	
m121-1.pep	250 GRELFALNWLETYLD	1111111	1111111111	1111111		

Long Bigg of the Europe

```
310
                       320
                               330
                                       340
          LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
m121-1.pep
          LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
a121
                               330
                                       340
                                               350
m121-1.pep
          XAGYYYX
           11111
a121
          GAGYYYX
```

#### 128 and 128-1

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3085>:

```
m128.seq
         (partial)
         ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
      51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
     101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
     151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
    201 GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
    251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
    301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
     351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
         TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
         WGTCAAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
    101 AAMTCAAAAA ACTMTACGGC ATCGGATTTA CCGAAAAAAC YGTCCCCGTC
         TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAMCCAT
    151
    201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
    251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
    301 CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
    351 CAGGGAAGCC CGCYTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
    401 CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
    451 TCCGGCATCA ACGGCGTAKA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
    501 TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
    551 ACGAAGAAAC CGGCGTTCCC YTGCCGAAAG AACTCTTsGA CAAAWTGCTC
    601 GCCGCCAAAA ACTTCCAASG CGGCATGTTC yTsGTCCGGC AAWTGGAGTT
        CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
        AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
         CAGCCGCCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
         AGGCGGCTAT TCCGCAGCTN ATTACAGCTA CGCGTGGGCG GAAGTATTGA
    801
        GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
    851
    901 GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
    951 ngcagaatcc ttcaaagcct tccgcggccg cgaaccgagc atagacgcac
   1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 3086; ORF 128>: m128.pep (partial)

```
1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH

1 YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
51 WHKDVRYXEL QONGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
151 SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
251 QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
301 GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV*
```

BNSDOCID: <WO___9957280A2_I_>



atgattgaca acgCActgct ccacttgggc gaagaaccCC GTTTTaatca 1 51 aatccaaacc gaagACAtca AACCCGCCGT CCAAACCGCC ATCGCCGAAG CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG 101 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG 201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG 251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC 301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC 351 CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC 401 TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA 451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC 701 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA 801 AACCGccaaa cTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA 1001 GCTACGCCGG CGAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC 1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC 1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG 1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC 1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG 1251 CGCGTGGATG AACGACtaca AAGGCCGCCG CCGCTTTGCC GACGGCaCGC TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA 1351 1401 AacCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG TGTCCGGCAT CAACGGCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG 1451 TTTATGGAAA ACTTCGTTTG GGAATACAAT GTATTGGCAC AAATGTCCGC 1501 1551 CCACGAAGAA ACCGGCGAGC CCCTGCCGAA AGAACTCTTC GACAAAATGC Tegecgccaa aaacttccag cgcggtatgt tcctcgtccg gcaaatggag TTCGCCCTCT TCGATATGAT GATTTACAGT GAAAGCGACG AATGCCGTCT GAAAAACTGG CAGCAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCA 1701 TCCAACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCacatctTC 1751 GCcggcGGCT ATTCCGCAGG CTATTACAGC TACGCATGGG CCGAAGTCCL 1801 CAGCACCGAT GCCTACGCCG CCTTTGAAGA AAGCGACGAC gtcGCCGCCA CAGGCAAACG CTTCTGGCAA GAAAtccttg ccgtcggcgg ctCCCGCAGC 1901 gcgGCGGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC 1951 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA 2001

### This corresponds to the amino acid sequence <SEQ ID 3088; ORF 128.ng>: g128.pep

T - T					
1		EEPRFNQIQT		IAEARGQIAA	VKAOTUTCMA
51	NTVERLTGIT	ERVGRIWGVV	SHLNSVVDTP	ELRAVYNELM	DETTURETET
101	GQDIELYNRF	KTIKNSPEFA	TLSPAOKTKL	DHDLRDFVLS	GAEL DDEDON
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201		KIGLQIPHYL	AVIOYAGNRE	LRECIYRAYV	TPACET CAIDO
251	KFDNTANIDR	TLENALKTAK	LLGFKNYAEL	SLATKMADTP	EOVEMENT UTI
301	ARRAKPYAEK	DLAEVKAFAR	EHLGLADPOP	WDLSYAGEKI.	REAKVARGET
351	EVKKYFPVGK	VLAGLFAQIK	KLYGIGFAEK	TVPVWHKDVR	YEELOONGET
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFA	DGTLQLPTAY	LVCNEADDVC
451		ILTLFHETGH	GLHHLLTOVD	ELGVSGINGV	EWDAVEL DOO
501		VLAOMSAHEE	TGEPLPKELF	DKMLAAKNFQ	RCMFLVPOME
551	FALFDMMIYS	ESDECRLKNW	QQVLDSVRKE	VAVIQPPEYN	REANSEGHTE
601	<b>AGGYSAG</b> YYS	YAWAEVLSTD	AYAAFEESDD	VAATGKRFWQ	EILAVGGSPS

#### 651 AAESFKAFRG REPSIDALLR QSGFDNAA*

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng) from N. gonorrhoeae:

m128/q128

BNSDOCID: <WO___9957280A2_j_>

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3089>:

ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG 51 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA 151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC 301 351 CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA 401 GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC 451 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT 551 601 GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC 701 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC 851 901 GCCCGCCGC CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG 951 1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG 1101 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC 1151 1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG 1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC 1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA 1351 1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG 1451 1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC 1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG 1601 1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG 1701 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC 1751 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT 1801 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC 1901 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC 2001 ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA

### This corresponds to the amino acid sequence <SEQ ID 3090; ORF 128.a>:

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME

551 601 651	FALFDMMIYS EDDEG AGGYSAGYYS YAWAE AAESFKAFRG REPSI	VLSAD AYAA	FEESDD VAAT	VRPPEYN RFA	ANSFGHIF LAVGGSRS	
m128/a128 OF	RFs 128 and 128.a	showed a 66	5.0% identit	y in 677 aa	overlan	
	10	20	30	40	50	60
m128.pep	MTDNALLHLGEEF	RFDQIKTEDII	KPALQTAIAE#	AREQIAAIKA(	THTGWANTV	EPLTGIT
a128	MTDNALLHLGEEP	RFDQIKTEDI	KPALQTAIAEA	REQIAAIKA	THTGWANTV	EPLTGIT
	10	20	30	40	50	60
	70	80	90	100	110	120
m128.pep	ERVGRIWGVVSHL	NCVADTPELRA	AVYNELMPEIT	VFFTEIGOD	ELYNRFKTI	KNSPEFD
a128	ERVGRIWGVVSHL	NSVTDT.PELRA	AYNELMPEIT	VFFTEIGOD	ELYNRFKTI	 KNSPEFD
	70	80	90	100	110	120
	130					
m128.pep	TLSPAQKTKLNH-					
a128	TLSHAQKTKLNHD	LRDFVLSGAEI	PPEQOAELAK	LOTEGAOLSA	KFSONVI.DA	TDAFGIV
	130	140	150	160	170	180
m128.pep						
a128	FDDAAPLAGIPED	ALAMFAAAAOS	EGKTGYKTGI.	.ΟΤΡΗΥΙ ΛΩΤΟ	ישת זעמוות גע	TVDAVII
	190	200			230	211KA1V 240
m128.pep						
a128	TPASET SUNCKEN					
		אם זיייפר דא ביויא	NT	ひろいりかたて ウィ カロ		
	250	NTANIDRTLEN 260	ALQTAKLLGF 270	KNYAELSLAT 280	KMADTPEQVI 290	
	250	NTANIDRTLEN 260		280	290	LNFLHDL 300
m128.pep	250	260	270	280	290	300
m128.pep	250	260 	270	280 140 YASEKLREAK	290 150 YAFSETXVKI	300 <pre><pre></pre></pre>
	250	260 	270	280 140 YASEKLREAK	290 150 YAFSETXVKI          YAFSETEVKI	300 KYFPVGX        KYFPVGK
m128.pep	250ARRAKPYAEKDLAI	260  EVKAFARESLG 320	270 	280 140 YASEKLREAK   :       YAGEKLREAK 340	290 150 YAFSETXVKI           YAFSETEVKI 350	300 <pre><pre></pre></pre>
m128.pep	250	260  EVKAFARESLG 320  180 GIGFTEKTVPV	270  LADLQPWDLG 330  190 WHKDVRYXEL	280 140 YASEKLREAK   :       YAGEKLREAK 340 200 QONGEXIGGY	290  150 YAFSETXVKI          YAFSETEVKI 350  210	300  KYFPVGX         KYFPVGK  360
m128.pep a128 m128.pep	250	260  EVKAFARESLG 320  180  GIGFTEKTVPV	270  LADLOPWDLG 330  190  WHKDVRYXEL	280  140  YASEKLREAK   :       YAGEKLREAK 340  200  QQNGEXIGGV	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGE	300  KYFPVGX         KYFPVGK 360
m128.pep a128	250	260  EVKAFARESLG 320  180  GIGFTEKTVPV	270  LADLQPWDLG 330  190  WHKDVRYXEL	280  140  YASEKLREAK   :       YAGEKLREAK 340  200  QQNGEXIGGV     :     QQNGETIGGV	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI	300  KYFPVGX         KYFPVGK 360  KRGGAWM
m128.pep a128 m128.pep	ARRAKPYAEKDLAI 310  160 170  VLNGLFAQXKKLYO	260  EVKAFARESLG 320  180  GIGFTEKTVPV	270  LADLQPWDLG 330  190 WHKDVRYXEL	280  140  YASEKLREAK   :       YAGEKLREAK 340  200  QQNGEXIGGV     :     QQNGETIGGV 400	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGE	300  KYFPVGX         KYFPVGK 360
m128.pep a128 m128.pep	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO                 VLNGLFAQIKKLYO 370  220 230	260  EVKAFARESLG 320  180  GIGFTEKTVPV	270  LADLOPWDLG 330  190 WHKDVRYXEL( IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	280  140  YASEKLREAK   :       YAGEKLREAK 340  200  QQNGEXIGGV     :     QQNGETIGGV 400  260	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI          YMDLYAREGI	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420
m128.pep a128 m128.pep a128	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO	260  EVKAFARESLG 320  180  GIGFTEKTVPV	270  LADLOPWDLG 330  190 WHKDVRYXEL(          WHKDVRYFEL( 390  250 FAPPVGGREAI	280  140  YASEKLREAK   :        YAGEKLREAK 340  200  QQNGEXIGGV      :     QQNGETIGGV 400  260  RLSHDEILIL	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI          YMDLYAREGI 410  270 FHETGHGLHI	300  KYFPVGX         KYFPVGK 360  KRGGAWM         KRGGAWM 420
m128.pep a128 m128.pep a128	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN  LQLPTAYLVCN	270  LADLOPWDLG 330  190 WHKDVRYXEL           WHKDVRYFEL 390  250 FAPPVGGREAI  :    :	280  140  YASEKLREAK   :       YAGEKLREAK 340  200  QQNGEXIGGV     :     QQNGETIGGV 400  260  RLSHDEILIL	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI          YMDLYAREGI 410  270 FHETGHGLHI	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420          KRLTQVD
m128.pep a128 m128.pep a128	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO	260  EVKAFARESLG 320  180  GIGFTEKTVPV	270  LADLOPWDLG 330  190 WHKDVRYXEL(          WHKDVRYFEL( 390  250 FAPPVGGREAI	280  140  YASEKLREAK   :        YAGEKLREAK 340  200  QQNGEXIGGV      :     QQNGETIGGV 400  260  RLSHDEILIL	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI          YMDLYAREGI 410  270 FHETGHGLHI	300  KYFPVGX         KYFPVGK 360  KRGGAWM         KRGGAWM 420
m128.pep a128 m128.pep a128 m128.pep a128	250  ARRAKPYAEKDLAI 310  160 170  VLNGLFAQXKKLYC	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN           LQLPTAYLVCN 440  300	270  LADLQPWDLG 330  190 WHKDVRYXEL           WHKDVRYFEL 390  250 FAPPVGGREAI  :        FTPPVGGKEAI 450	280  140 YASEKLREAK   :       YAGEKLREAK 340  200 QQNGEXIGGV     : :     QQNGETIGGV 400  260 RLSHDEILIL               RLSHDEILTL 460	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI          YMDLYAREGI 410  270 FHETGHGLHI          FHETGHGLHI 470	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420  ILLTQVD        ILLTQVD 480
m128.pep a128 m128.pep a128 m128.pep a128 m128.pep	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN           LQLPTAYLVCN 440  300  AVELPSQFMEN	270  LADLQPWDLG 330  190 WHKDVRYXEL(            WHKDVRYFEL( 390  250 FAPPVGGREAM  :           FTPPVGGKEAM 450  310 FVWEYNVLAQ	280  140  YASEKLREAK   :       YAGEKLREAK 340  200 QQNGEXIGGV     : :    QQNGETIGGV 400  260 RLSHDEILIL            RLSHDEILTL 460  320  XSAHEETGVP	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI          YMDLYAREGI 410  270 FHETGHGLHI           FHETGHGLHI 470  330 LPKELXDKXI	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420  HLLTQVD        HLLTQVD 480
m128.pep a128 m128.pep a128 m128.pep a128	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN 440  300  AVELPSQFMEN  LVELPSQFMEN	270  LADLOPWDLG 330  190 WHKDVRYXEL(           WHKDVRYFEL( 390  250 FAPPVGGREAN  :         FTPPVGGKEAN 450  310 FVWEYNVLAQN	280  140  YASEKLREAK   :        YAGEKLREAK 340  200  QQNGEXIGGV      :     QQNGETIGGV 400  260 RLSHDEILIL            RLSHDEILTL 460  320  XSAHEETGVP:	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI           YMDLYAREGI 410  270 FHETGHGLHI           FHETGHGLHI 470  330 LPKELXDKXI	300  KYFPVGX         KYFPVGK 360  KRGGAWM         KRGGAWM 420  ILLTQVD        ILLTQVD 480  AAKNFQ
m128.pep a128 m128.pep a128 m128.pep a128 m128.pep	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN           LQLPTAYLVCN 440  300  AVELPSQFMEN	270  LADLQPWDLG 330  190 WHKDVRYXEL(            WHKDVRYFEL( 390  250 FAPPVGGREAM  :           FTPPVGGKEAM 450  310 FVWEYNVLAQ	280  140  YASEKLREAK   :       YAGEKLREAK 340  200 QQNGEXIGGV     : :    QQNGETIGGV 400  260 RLSHDEILIL            RLSHDEILTL 460  320  XSAHEETGVP	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI          YMDLYAREGI 410  270 FHETGHGLHI           FHETGHGLHI 470  330 LPKELXDKXI	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420  HLLTQVD        HLLTQVD 480
m128.pep a128 m128.pep a128 m128.pep a128 m128.pep a128	250  ARRAKPYAEKDLAI 310  160 170  VLNGLFAQXKKLYC	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN 440  300  AVELPSQFMEN 111111111111111111111111111111111111	270  LADLQPWDLG 330  190 WHKDVRYXELG            WHKDVRYFELG 390  250 FAPPVGGREAN  :     :   FTPPVGGKEAN 450  310 FVWEYNVLAQN            FVWEYNVLAQN 510	280  140 YASEKLREAK   :        YAGEKLREAK 340  200 QQNGEXIGGV     :     QQNGETIGGV 400  260 RLSHDEILIL           RLSHDEILIL           460  320 XSAHEETGVP: 520	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI           YMDLYAREGI 410  270 FHETGHGLHI            FHETGHGLHI 470  330 LPKELXDKXI           530	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420  ILLTQVD         ILLTQVD 480  AAKNFQ         AAKNFQ 540
m128.pep a128  m128.pep a128  m128.pep a128  m128.pep a128  m128.pep a128	ARRAKPYAEKDLAI 310  160 170 VLNGLFAQXKKLYO 370  220 230 NDYKGRRRFSDGTI               NDYKGRRRFSDGTI               ELGVSGINGVXWDF              ELGVSGINGVEWDF 490  340 350 XGMFXVRQXEFALE	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN 440  300  AVELPSQFMEN           AVELPSQFMEN 500  360  FDMMIYSEDDEC	270  LADLQPWDLG 330  190 WHKDVRYXEL            WHKDVRYFEL 390  250 FAPPVGGREAM  :          FTPPVGGKEAM 450  310 FVWEYNVLAQM 510  370 GRLKNWQQVLI	280  140 YASEKLREAK   :        YAGEKLREAK 340  200 QQNGEXIGGV     :     QQNGETIGGV 400  260 RLSHDEILIL            RLSHDEILIL            SAHEETGVP: 520  380 DSVRKKVAVI	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI           YMDLYAREGI 410  270 FHETGHGLHI           FHETGHGLHI 470  330 LPKELXDKXI           530  390 QPPEYNRFAI	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420  ILLTQVD        ILLTQVD 480  AAKNFQ         AAKNFQ 540
m128.pep a128 m128.pep a128 m128.pep a128 m128.pep a128	250  ARRAKPYAEKDLAI 310  160 170  VLNGLFAQXKKLYC	260  EVKAFARESLG 320  180  GIGFTEKTVPV 380  240  LQLPTAYLVCN 440  300  AVELPSQFMEN           AVELPSQFMEN 500  360  FDMMIYSEDDEC	270  LADLQPWDLG 330  190 WHKDVRYXEL            WHKDVRYFEL 390  250 FAPPVGGREAM  :          FTPPVGGKEAM 450  310 FVWEYNVLAQM 510  370 GRLKNWQQVLI	280  140 YASEKLREAK   :        YAGEKLREAK 340  200 QQNGEXIGGV     :     QQNGETIGGV 400  260 RLSHDEILIL            RLSHDEILIL            SAHEETGVP: 520  380 DSVRKKVAVI	290  150 YAFSETXVKI          YAFSETEVKI 350  210 YMDLYAREGI           YMDLYAREGI 410  270 FHETGHGLHI           FHETGHGLHI 470  330 LPKELXDKXI           530  390 QPPEYNRFAI	300  KYFPVGX         KYFPVGK 360  KRGGAWM        KRGGAWM 420  ILLTQVD        ILLTQVD 480  AAKNFQ         AAKNFQ 540



### Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3091>:

```
m128-1.seq
         ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
         AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
         CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
    101
    151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
    201 GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG
    251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
    301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
         CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC
    351
         TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
    401
        GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
        CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
        CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
    551
        GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC
        ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC
    651
    701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC
    751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA
    801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
        CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
    851
         GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
    901
    951 CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG
   1001 GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC
  1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
  1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
        TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
   1151
        ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
  1201
        CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
  1251
        TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC
  1301
        GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA
  1351
        AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
        TATCCGGCAT CAACGGCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG
  1451
        TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC
        CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
        TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG
  1601
        TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
        GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA
  1701
        TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC
  1751
        GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
        GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
  1851
        CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
  1901
        GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC
  1951
  2001 ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA
```

# This corresponds to the amino acid sequence <SEQ ID 3092; ORF 128-1>: m128-1.pep.

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA 51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI

```
GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
               ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
           151
           201 AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
           251 KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
           301 ARRAKPYAEK DLAEVKAFAR ESLNLADLOP WDLGYASEKL REAKYAFSET
          351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
               IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
               GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
           451
          501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
          551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
          601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
          651 AAESFKAFRG REPSIDALLR HSGFDNAV*
The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3093>:
     q128-1.seq (partial)
            1 ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
              AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
              CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
          151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
          201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
          251
              CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
               GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
              CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
          351
              TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
          401
              CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
          501
               CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
          551
               GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
          601
              GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
          651
          701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
          751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
          801
              AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
              CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
          851
          901
               GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
          951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
         1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
         1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
         1101
               CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
               TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
         1151
               ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
         1201
         1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
         1301 . TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
         1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
               AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
         1401
         1451 TGTCCGGCAT CAACGGCGTA AAA
This corresponds to the amino acid sequence <SEQ ID 3094; ORF 128-1.ng>:
     gl28-1.pep (partial)
            1 MIDNALLHLG EEPRFNQIKT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
              NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
          101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
          151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
              AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
          201
          251 KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
          301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
          351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
          401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
          451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV K
    m128-1/g128-1
                    ORFs 128-1 and 128-1.ng showed a 94.5% identity in 491 aa
    overlap
```

10

20

30

40

50

60

The Control of MALE

BNSDOCID: <WO___9957280A2_I_>

g128-1.pep	MIDNALLHLGEER	PREMOTEURA	VDALLOMA TA			
J - 11 -1	MIDNALLHLGEEF					
m128-1	MTDNALLHLGEEP	RFDQIKTEDI	KPALOTATAR	AREOTAATKA	┊┊┊┆┆┆┆┆ Ѻ┲┢┲с⋈ӽӽѹ	
	10	20	30	40	50	VEPLIGIT 60
					30	80
g128-1.pep	70	80	90	100	110	120
g120-1.pep	ERVGRIWGVVSHL	NSVVDTPELR	AVYNELMPEI	TVFFTEIGQD	IELYNRFKT:	IKNSPEFA
m128-1	ERVGRIWGVVSHL	1 1 1 - 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1	
	70	80	90	TVFFTEIGQD: 100		
			30	100	110	120
100.1	130	140	150	160	170	180
g128-1.pep	TLSPAQKTKLDHD	LRDFVLSGAE	LPPERQAELA	KLQTEGAQLSA	7/7000111	
m128-1						
	TLSPAQKTKLNHD	LKDFVLSGAE. 140	PERFORMETY	KLQTEGAQLS	akfsonvlda	ATDAFGIY
	130	140	150	160	170	180
	190	200	210	220	230	0.40
g128-1.pep	FDDAAPLAGIPEDA	ALAMFAAAAQ	SECKTOVKIC	I OT DUVE BUT		240
100 1						
m128-1		THE PARTY OF	PERMICIKIC	LQIPHYLAVIÇ	YADNRELRE	OIYRAYV
	190	200	210	220	230	240
	250	260	270	22-		
g128-1.pep	TRASELSNDGKFDN	TANIDETLEN	JAI.KTAKI.I.C	280	290	300
	, , , , , , , , , , , , , , , , , , , ,		1 4 * 1 4 6 4 6 1			
m128-1		TANIDRTLAN	ALQTAKLLG	FKNYAELSLAT	KMADTPFOV	INTERBOT
	250	260	270	280	290	300
	210					500
g128-1.pep	310	320	330	340	350	360
gano ripep	ARRAKPYAEKDLAE	VARFAREHLG	LADPOPWDLS	SYAGEKLREAK	YAFSETEVK	KYFPVGK
m128-1	ARRAKPYAEKDLAE	VKAFARESIN	TADIOEWILL	VACENT DEAK		111111
	310	320	330	340	YAFSETEVKI 350	
				310	330	360
~120 1	370	380	390	400	410	420
g128-1.pep	VLAGLFAQIKKLYG	IGFAEKTVPV	WHKDVRYFEI	QQNGKTIGGV	YMDLYAREG	
m128-1		11141111		3 1 1 2 6 1 1 1 1 1		
	VLNGLFAQIKKLYG 370	380	MHKDAKAŁET	QQNGETIGGV:	YMDLYAREGI	KRGGAWM
	370	360	390	400	410	420
	430	440	450	460	470	400
g128-1.pep	NDYKGRRRFADGTL	QLPTAYLVCN	FAPDUCCKEN	DI CUDDIT ME		480
-100 1						
m128-1	THE THOUGHT DEGINE	STEINITIONS.	PAPPVGGREA	RLSHDEILILE	HETGHGLH	ILLTOVD
	430	440	450	460	470	480
	490					
g128-1.pep	ELGVSGINGVK					
	1111111111:					
m128-1	ELGVSGINGVEWDAY	/ELPSQFMENI	VWEYNVLAO	MSAHEETGVPI	PKELFDKMI	. A A KNEO
•	490	500	510	520	530	540
ollowing DNA	Seguenae vice	ا تعاشدها	3.7			
al28-1.seg	sequence was id	entified in	IV. meningi	tidis <seq ]<="" td=""><td>ID 3095&gt;:</td><td></td></seq>	ID 3095>:	
arzo-1.3ed						
51 AA	GACTGACA ACGCACT FCAAAACC GAAGACA	TCA DACCO	GGGC GAAG	AACCCC GTTT	TGATCA	
	Onnonch	** ~ WHUULU	CCCT GCAA	ACCGCC ATTC	CCCAAC	

# The fol

_	AT GACT GACA	ACGUACTGCT	CCATTTGGGC	GAAGAACCCC	CTTTTTCATCA
51	AATCAAAACC	GAAGACATCA	AACCCGCCCT	GCADACCCCC	ATTITIONICA
101	CGCGCGAACA	AATCGCCGCC	ATCANAGCCC	7777777777	ATIGCCGAAG
151	AACACTGTCG	AACCCCTCAC	CCCCARGA	AAACGCACAC	CGGCTGGGCA
201	AACACTGTCG	TCCCT CCTCAC	CGGCATCACC	GAACGCGTCG	GCAGGATTTG
251	GGGCGTGGTG	TCGCACCTCA	ACTCCGTCAC	CGACACGCCC	GAACTGCGCG
	CCGCCTACAA	TGAATTAATG	CCCGAAATTA	CCCTCTTCTT	CROCCARA
301	GGACAAGACA	TCGAGCTGTA	CAACCGCTTC	$\Delta \Delta \Delta \Delta \Delta C C \Delta T C \Delta$	77770000
351	CGAGIICGAC	ACCCTCTCCC	ACGCGCAAAA	<u>አ</u> ልርርአአአለርሞር	***********
401	TGCGCGATTT	CGTCCTCAGC	GGCGCGGAAC	TCCCCCCCC	AACCACGATC
451	GAATTGGCAA	AACTGCAAAC	CONTROCTOR	IGCCGCCCGA	ACAGCAGGCA
		THICLOCHEC	CGAAGGGGGG	$C \Delta \Delta C T T T T C C C$	



```
501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
      CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
     GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
      GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
      AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
      AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
     CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
 851
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
      CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
1001
     GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051
      GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
      CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
      TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
1151
     ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1201
      CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1301
     TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC
1351
     GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
     AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
1401
     TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
1451
     TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
     CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
1551
     TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
     TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
1651
     GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
1701
1751
     TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
     GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
     GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
     GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
2001
     ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 3096; ORF 128-1.a>:

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG 251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL 301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG 401 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ 451 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME 501 551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS 651 AAESFKAFRG REPSIDALLR HSGFDNAA*

### m128-1/a128-1 ORFs 128-1 and 128-1.a showed a 97.8% identity in 677 aa overlap

	10	20	30	40	50	60
<b>a128-1.pe</b> p	MTDNALLHLGEEPF	RFDQIKTEDI	(PALQTAIAE	REQIAAIKA	THTGWANTVE	PLTGIT
		1111111111	1111111111	1111111111		111111
m128-1	MTDNALLHLGEEPF	FDQIKTEDI	(PALQTAIAE	REQIAAIKA	THTGWANTVE	PLTGIT
	10	. 20	30	40	50	60
	70	80	90	100	110	120
a128-1.pep	ERVGRIWGVVSHLN	SVTDTPELRA	AYNELMPEIT	VFFTEIGODI	ELYNRFKTIK	NSPEED
	_	11:111111	:	1111111111		111111
m128-1	ERVGRIWGVVSHLN	SVADTPELRA	VYNELMPEIT	VFFTEIGODI	ELYNRFKTIK	NSPEED
	70	80	90	100	110	120
	130	140	150	160	170	180

a128-1.pep	TLSHAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDA	111111
m128-1	TLSPAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDA 130 140 150 160 170	TDAFGIY 180
a128-1.pep	190 200 210 220 230  FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLRE	240 QIYRAYV
m128-1	FDDAAPLAGIPEDALAMFAAAAQSESKTGYKIGLQIPHYLAVIQYADNRELRE 190 200 210 220 230	QIYRAYV 240
a128-1.pep	250 260 270 280 290 TRASELSDDGKFDNTANI DRTLENALQTAKLLGFKNYAELSLATKMADT PEQV	300 LNFLHDL
m128-1		IIIIIII LNFLHDL 300
a128-1.pep	310 320 330 340 350 ARRAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVK	3'60 KYFPVGK
m128-1		IIIIIII KYFPVGK 360
a128-1.pep	370 380 390 400 410 VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGI	420
m128-1	VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREG	 KRGGAWM
a128-1.pep	430 440 450 460 470  NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHF	420 480
m128-1	NDYKGRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILILFHETGHGLHF	 HLLTQVD
	430 440 450 460 470 490 500 510 520 530	<b>4</b> 80 <b>5</b> 40
a128-1.pep m128-1	ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMI	111111
	490 500 510 520 530 550 560 570 580 590	540
a128-1.pep	RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFAN	NSFGHIF
M120-1	RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFAI 550 560 570 580 590	SFGHIF 600
a128-1.pep	610 620 630 640 650 AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAES	111111
m128-1	AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAES 610 620 630 640 650	FKAFRG 660
a128-1.pep	670 679 REPSIDALLRHSGFDNAAX	
m128-1	REPSIDALLRHSGFDNAVX 670	

206

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3097>: m206.seq

King Strain Control Mail

```
1 ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
51 CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
151 CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
251 TGATTCAATT CGTTTACAAY AACGCCCTCA ACGTCAAGCT GCCGCGCACC
301 GCCCGCGACA TGGCGGCGC AAGCCGSAAA ATCCCCGACA GCCGCYTCAA
351 GGCCGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
401 ACGTCGGACT CTACATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
451 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
501 CTACCTCGGC GCACATACTT TTTTTACAGA ATGA
```

This corresponds to the amino acid sequence <SEQ ID 3098; ORF 206>:

- 1 MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT
  51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
  101 ARDMAASRK IPDSRXKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
- 151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3099>:

```
atgttttccc ccgacaaaac ccttttcctc tgtctcggcg cactgctcct cgcctcatgc ggcacgacct ccggcaacaa ccgccaaccg aaacccaaac cgcctcatgc ggcacgacct ccggcaacaa ccgccaaccg aaacccaaac cgcctcatgc gcaaatccaa gccgtccgca tcagccacat cggccgcaca caggctcgc aggaactcat gctccacagc ctcggactca tcggcacgcc ctacaaatgg ggcggcagca gcaccgcaac cggcttcgac tgcagcggca tgattcaatt ggtttacaaa aacgccctca acgtcaagct gccgcgcacc gccgcgaca tggcggcgca aacgcgcaaa atccccgaca gccgcctcaa aggccgcaca cgctcaca acgtcagca cgctcaca acgtcagac cgctactaca acgtcggact ctacatcggc aacggcgaat tcatccatgc ccccggcagc acgcgcaaaacca tcaaaaccga aaaactctcc acaccgtttt acgccaaaaa ccaccttgga gcgcatacgt tttttacaga atga
```

This corresponds to the amino acid sequence <SEQ ID 3100; ORF 206.ng>: g206.pep

- 1 MFSPDKTLFL CLGALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIGRT 51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQLVYK NALNVKLPRT 101 ARDMAAASRK IPDSRLKAGD IVFFNTGGAH RYSHVGLYIG NGEFIHAPGS
- 151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*

ORF 206 shows 96.0% identity over a 177 aa overlap with a predicted ORF (ORF 206.ng) from N. gonorrhoeae:

m206/g206

	10	20	30	40	50	60
m206.pep	MFPPDKTLFLCLSA	LLLASCGTTS	GKHRQPKPKQ	TVRQIQAVRI	SHIDRTOGSC	ELMLHS
		1111111111	1111111111			
g206	MFSPDKTLFLCLGA	LLLASCGTTS	GKHRQPKPKQ	TVRQIQAVRI	SHIGRTOGSC	ELMLHS
	10	20	30	40	50	60
	70	80	90	100	110	120
m206.pep	LGLIGTPYKWGGSS	TATGFDCSGM	IIQFVYKNALN	VKLPRTARDM	AAASRKIPDS	RXKAGD
			11:111111	1111111111		1 1111
g206	LGLIGTPYKWGGSS	TATGFDCSGM	IOLVYKNALN	VKLPRTARDM	AAASRKTDDS	יוווון (
	70	80	90	100	110	120
				200	110	120
	130	140	150	160	170	
m206.pep	LVFFNTGGAHRYSH	VGLYIGNGER	'IHAPSSGKTT			PROV
	:1111111111		1111.11111		IIIIIIIIII	LIEV
g206	IVFFNTGGAHRYSH	VGLYIGNGEF	'IHAPGSGKTT	TITLE CONTRACTORY		. 1   1
	130 LVFFNTGGAHRYSH :           IVFFNTGGAHRYSH	VGLYIGNGER	THAPSSGKTI			111

BNSDOCID: <WO___9957280A2_I_>

130 140 150 160 170

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3101>:
```

```
1 ATGTTTCCCC CCGACAAAC CCTTTTCTC TGTCTCAGCG CACTGCTCCT
51 CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
151 CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCAC
201 CTACAAATGG GGCGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGCAC
251 TGATTCAATT CGTTTACAAA AACGCCCTCA ACGTCAAGCT GCCGCCACC
301 GCCCGCGACA TGGCGGCGC AAGCCCCTCA ATCCCGACA GCCGCCTTAA
351 GGCCGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
401 ACGTCGGACT CTATATCGC AACGCCGAAT TCATCCATGC CCCCAGCAC
451 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
501 CTACCTCGGC GCACATACTT TCTTTACAGA ATGA
```

### This corresponds to the amino acid sequence <SEQ ID 3102; ORF 206.a>:

. beb					
1	MFPPDKTLFL	CLSALLLASC	GTTSGKHROP	KPKOTVROTO	AUDICUIDOM
JI	OG2 OF TWP 42	TGTIGTPYKW	GGSSTATGFD	CSGMTOFVVK	NAT MUZZI DDm
101	ARDMAAASRK	IPDSRLKAGD	LVFFNTGGAH	RYSHVGLYTG	MCEETUADCO
151	GKTIKTEKLS	TPFYAKNYLG	AHTFFTE*		MODE THAT 35

### m206/a206 ORFs 206 and 206.a showed a 99.4% identity in 177 aa overlap

m206.pep       MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS         iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii					)	Overrap	
### PPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS	<b></b>	10	20	30	40	50	60
######################################	mz06.pep	MEPPDKTLFLCLSA	LLLASCGTT	SGKHROPKPKO	TVROTOAVRT	SHIDDTOGGG	TET MITTE
### ### ##############################			111111111		1111111111	DILIDKI QGSÇ	SETMUN
### ### ##############################	a206	MEPPOKTT FT CT CA	TTTDCCCmm		1111111111	11111111	
### ### ##############################		THE PERMITTED BORDA	TITIMSCGTT	SGKHKÕÞKÞKÖ	TVRQIQAVRI	SHIDRTOGSO	DELMLHS
#206.pep		10	20	30	40		
m206.pep         LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD           a206						30	00
m206.pep         LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD           a206		70	80	0.0	100		
######################################	m206 pep			90	100	110	120
######################################	mz oo.pep	TOTICILIVACCSS.	TATGFDCSG	MIQFVYKNALN	VKLPRTARDM	AAASRKIPDS	RXKAGD
### TOTAL PROOF TO THE PROOF TO		11111111111111	1111111	1	1111111111	1111111111	
### 130	a206	LGLIGTPYKWGGSS'	TATGEDOSCI	MIOFVYKNATA		77777	1 1111
m206.pep LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX		70	00	TAT A TIVIANTIA	VALPRIARDM	AAASRKIPDS	RLKAGD
m206.pep LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX		7.6	80	90	100	110	120
m206.pep LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX							
a206 LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX				150	160	170	
a206 LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX	m206.pep	LVFFNTGGAHRYSH	VGLYTGNGF		ZEDIKI OMBANI	170	
2011W13GAMKISHVGLIIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX			· OLI LUNGUI	TUMESSONIT	KIEKLSTPFY.	AKNYLGAHTF	FTEX
2011W13GAMKISHVGLIIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX	*206				[[[]]]		1111
130 140 150 160 170	a206	LVFFNTGGAHRYSH	VGLYIGNGE	THAPSSGKTI	KTEKLSTPFY:	AKNYI CAHTE	יביייביע
		130	140	150	160	170	LIDA

287

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3103>:

1	ATGTTTAAAC	GCAGCGTAAT	CGCAATGGCT	TGTATTTTC	CCCTTTCACC
51	CIGCGGGGGC	GGCGGTGGCG	GATCGCCCGA	TGTCAAGTCG	CCCCACACCC
101	TGTCAAAACC	TGCCGCCCCT	GTTGTTTCTG	AAAAACACAC	ACACCCARRA
151	GAAGATGCGC	CACAGGCAGG	TTCTCAAGGA	CACCCCCCCC	AGAGGCAAAG
201	AGGCAGTCAA	GATATGGCGG	CGGTTTCGGA	ACAAAAMACA	CATCCGCACA
251	GTGCGGTAAC	AGCGGATAAT	CCCAAAAATG	AACACCACCA	GGCAATGGCG
301	GATATGCCGC	AAAATGCCGC	CCCTACACA	AAGACGAGGT	GGCACAAAAT
351	CCCGGATCCG	AATATGCTTG	CCCCAAADAD	AGTTCGACAC	CGAATCACAC
401	CCGGGGAATC	GTCTCAGCCC	CCGGAAATAT	GGAAAATCAA	GCAACGGATG
451	CCGGGGAATC	ACCCCCACCA	TCCCTCCCC	CGGATATGGC	AAATGCGGCG
501	GACGGAATGC	CNACCTCCNA	TCCGTCGGCA	GGCGGGCAAA	ATGCCGGCAA
551	TACGGCTGCC	CARGGIGCAA	ATCAAGCCGG	AAACAATCAA	GCCGCCGGTT
331	CTTCAGATCC	CATCCCCGCG	TCAAACCCTG	CACCTGCGAA	TGGCGGTAGC

```
601 AATTTTGGAA GGGTTGATTT GGCTAATGGC GTTTTGATTG ACGGGCCGTC
 651 GCAAAATATA ACGTTGACCC ACTGTAAAGG CGATTCTTGT AGTGGCAATA
 701 ATTTCTTGGA TGAAGAAGTA CAGCTAAAAT CAGAATTTGA AAAATTAAGT
     GATGCAGACA AAATAAGTAA TTACAAGAAA GATGGGAAGA ATGATAAATT
 801
     TGTCGGTTTG GTTGCCGATA GTGTGCAGAT GAAGGGAATC AATCAATATA
 851
     TTATCTTTTA TAAACCTAAA CCCACTTCAT TTGCGCGATT TAGGCGTTCT
 901 GCACGGTCGA GGCGGTCGCT TCCGGCCGAG ATGCCGCTGA TTCCCGTCAA
 951 TCAGGCGGAT ACGCTGATTG TCGATGGGGA AGCGGTCAGC CTGACGGGGC
1001 ATTCCGGCAA TATCTTCGCG CCCGAAGGGA ATTACCGGTA TCTGACTTAC
1051
     GGGGCGGAAA AATTGCCCGG CGGATCGTAT GCCCTTCGTG TTCAAGGCGA
     ACCGGCAAAA GGCGAAATGC TTGCGGGCGC GGCCGTGTAC AACGGCGAAG
1101
     TACTGCATTT CCATACGGAA AACGGCCGTC CGTACCCGAC CAGGGGCAGG
1151
     TTTGCCGCAA AAGTCGATTT CGGCAGCAAA TCTGTGGACG GCATTATCGA
1251 CAGCGGCGAT GATTTGCATA TGGGTACGCA AAAATTCAAA GCCGCCATCG
     ATGGAAACGG CTTTAAGGGG ACTTGGACGG AAAATGGCAG CGGGGATGTT
     TCCGGAAAGT TTTACGGCCC GGCCGGCGAG GAAGTGGCGG GAAAATACAG
     CTATCGCCCG ACAGATGCGG AAAAGGGCGG ATTCGGCGTG TTTGCCGGCA
1401
1451
     AAAAAGAGCA GGATTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 3104; ORF 287>:

```
m287.pep

1 MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP VVSEKETEAK
51 EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN PKNEDEVAQN
101 DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP ANQPDMANAA
151 DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA SNPAPANGGS
201 NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV QLKSEFEKLS
251 DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK PTSFARFRRS
301 ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA PEGNYRYLTY
351 GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE NGRPYPTRGR
401 FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG TWTENGSGDV
451 SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3105>: g287.seq

```
atgtttaaac gcagtgtgat tgcaatggct tgtatttttc ccctttcagc
     ctgtggggc ggcggtggcg gatcgcccga tgtcaagtcg gcggacacgc
     cgtcaaaacc ggccgccccc gttgttgctg aaaatgccgg ggaaggggtg
 151 ctgccgaaag aaaagaaaga tgaggaggca gcgggggtg cgccgcaagc
 201 cgatacgcag gacgcaaccg ccggagaagg cagccaagat atggcggcag
 251 tttcggcaga aaatacaggc aatggcggtg cggcaacaac ggacaacccc
     aaaaatgaag acgcgggggc gcaaaatgat atgccgcaaa atgccgccga
 351 atccgcaaat caaacaggga acaaccaacc cgccggttct tcagattccg
 401 cccccgcgtc aaaccctgcc cctgcgaatg gcggtagcga ttttggaagg
 451 acgaacgtgg gcaattctgt tgtgattgac ggaccgtcgc aaaatataac
     gttgacccac tgtaaaggcg attcttgtaa tggtgataat ttattgqatg
     aagaagcacc gtcaaaatca gaatttgaaa aattaagtga tgaagaaaaa
 601 attaagcgat ataaaaaaga cgagcaacgg gagaattttg tcggtttggt
 651 tgctgacagg gtaaaaaagg atggaactaa caaatatatc atcttctata
 701 cggacaaacc acctactcgt tctgcacggt cgaggaggtc gcttccggcc
 751 gagattccgc tgattcccgt caatcaggcc gatacgctga ttgtggatgg
     ggaagcggtc agcctgacgg ggcattccgg caatatcttc gcgcccgaag
     ggaattaccg gtatctgact tacggggcgg aaaaattgcc cggcggatcg
     tatgccctcc gtgtgcaagg cgaaccggca aaaggcgaaa tgcttgttgg
 901
 951 cacggccgtg tacaacggcg aagtgctgca tttccatatg gaaaacggcc
1001 gtccgtaccc gtccggaggc aggtttgccg caaaagtcga tttcggcagc
1051 aaatctgtgg acggcattat cgacagcggc gatgatttgc atatgggtac
1101 gcaaaaattc aaagccgcca tcgatggaaa cggctttaag gggacttgga
1151
     cggaaaatgg cggcggggat gtttccggaa ggttttacgg cccggccggc
     gaggaagtgg cgggaaaata cagctatcgc ccgacagatg ctgaaaaggg
     cggattcggc gtgtttgccg gcaaaaaaga tcgggattga
```

# This corresponds to the amino acid sequence <SEQ ID 3106; ORF 287.ng>: g287.pep

MFKRSVIAMA CIFPLSACGG GGGGSPDVKS ADTPSKPAAP VVAENAGEGV

51	LPKEKKDEEA	AGGAPQADTQ	DATAGEGSOD	MAAVSAENTG	NGGAATTONP
101	VNEDAGAÕND	MPQNAAESAN	OTGNNOPAGS	SDSADASMDA	DANCCCOPECE
151	INVGNSVVID	GPSQNITLTH	CKGDSCNGDN	LIDEEDDGKG	FFFWI CDEEK
201	TVKIKKDEÖK	ENFVGLVADR	VKKDGTNKYT	TFYTOKPOTO	CADCDDCT DA
251	FIRFILANOW	DILIVDGEAV	SLTGHSGNIF	APECNYPYIT	VCARVI DOCC
301	YALKVQGEPA	KGEMLVGTAV	YNGEVLHFHM	ENGRPYPSGG	DENTRUDECO
351	KSVDGIIDSG	DDLHMGTQKF	KAAIDGNGFK	GTWTENGGGD	VSGREYGPAG
401	EEVAGKYSYR	PTDAEKGGFG	VFAGKKDRD*		· DELCE TOTAG

# m287/g287 ORFs 287 and 287.ng showed a 70.1% identity in 499 aa overlap

m287.pep	MFKRSVT	10	2.0	30	40		49
	111111	1	,		KPAAPVVSE- 		
g287	MFKRSVII	AMACIFPL: 10	SACGGGGGS: 20	PDVKSADTPS 30	KPAAPVVAEN		KKDEEA
			20	. 30	40	50	60
m287.pep	50 KEDAPOAC	60 550G0GAB9	70	80	90	100	109
	1111	• 1 .			AVTADNPKNE  : :	1 11111	
g287	AGGAPQAI	TQDATA 70	agegsqdmaa'	<b>JSAENTGNGG</b>	AATTDNPKNE	DAGAQNDMP(	QNAA
		70	80	90	100	110	
m287.pep	110	120	130	140	150	160	169
mzor.pep	DSSIFNAI	PDPNMLAG	NMENQATDAG	SESSQPANQP	DMANAADGMQ	GDDPSAGGQN	NAGNTA
g287							
	170	180	190	200	210	220	229
m287.pep	AQGANQAG	NNQAAGSS	DPIPASNPAP	ANGGSNFGR	VDLANGVLIDO	SPSQNITLTH	ICKGDS
g287	mornio10	MINGEWG99	DSAPASNPAP	'ANGGSDFGR'	PNVGNSVVIDO		ICKGDS
	120	130	140	150	160	170	
007		240	250	260	270	280	289
m287.pep	CSGNNFLD	EEVQLKSE	FEKLSDADKI	SNYKKDGKNI	OKFVGLVADS	'QMKGINQYI	TEVED
g287	CNGDNLLD	PEALOVOF	FEKLSDEEKI	KRYKKDEQRE	::           ENFVGLVADRY	:    :   /KKDGTNKYT	 
	180	190	200	210	220	230	
		300	310	320	330	340	349
m287.pep	KPTSFARF	RRSARSRR	SLPAEMPLIP	VNQADTLIVE	GEAVSITCES	יראזד ביא חביראי	127) 127 m
g287		MACAMONN	SLPAEIPLIP	VNQADTLIVE		GNI FAPECN	 VDVIT
	2	40	250	260	270	280	290
007		360	370	380	390	400	409
m287.pep	YGAEKLPGO	SSYALRVQ(	GE PAKGEMLA	GAAVYNGEVL	HEHTENCODY	DEDCETTARE	
g287	YGAEKLPGO	SSYALRVQ(	GEPAKGEMLV	(:         GTAVYNGEVL	                HFHMENGRPY	PSGGREAAK	IIIII
	30	00	310	320	330	340	350
		120	430	440	450	460	469
m287.pep	KSVDGIIDS	SGDDLHMGT	OKFKAAIDGI	NGFKGTWTEN	GSGDUSGKEV	CDACDETTAC	
g287							
	36	50	370	380	390	400	410
		180	489	-			
m287.pep	PTDAEKGGE	GVFAGKKE	QDX				

q287



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3107>: a287.seq

```
ATGTTTAAAC GCAGTGTGAT TGCAATGGCT TGTATTGTTG CCCTTTCAGC
      CTGTGGGGGC GGCGGTGGCG GATCGCCCGA TGTTAAGTCG GCGGACACGC
  51
      TGTCAAAACC TGCCGCCCCT GTTGTTACTG AAGATGTCGG GGAAGAGGTG
      CTGCCGAAAG AAAAGAAAGA TGAGGAGGCG GTGAGTGGTG CGCCGCAAGC
      CGATACGCAG GACGCAACCG CCGGAAAAGG CGGTCAAGAT ATGGCGGCAG
      TTTCGGCAGA AAATACAGGC AATGGCGGTG CGGCAACAAC GGATAATCCC
 251
      GAAAATAAAG ACGAGGGACC GCAAAATGAT ATGCCGCAAA ATGCCGCCGA
      TACAGATAGT TCGACACCGA ATCACACCCC TGCACCGAAT ATGCCAACCA
      GAGATATGGG AAACCAAGCA CCGGATGCCG GGGAATCGGC ACAACCGGCA
 401
 451
      AACCAACCGG ATATGGCAAA TGCGGCGGAC GGAATGCAGG GGGACGATCC
      GTCGGCAGGG GAAAATGCCG GCAATACGGC AGATCAAGCT GCAAATCAAG
 501
      CTGAAAACAA TCAAGTCGGC GGCTCTCAAA ATCCTGCCTC TTCAACCAAT
 551
 601 CCTAACGCCA CGAATGGCGG CAGCGATTTT GGAAGGATAA ATGTAGCTAA
 651
      TGGCATCAAG CTTGACAGCG GTTCGGAAAA TGTAACGTTG ACACATTGTA
 701
      AAGACAAAGT ATGCGATAGA GATTTCTTAG ATGAAGAAGC ACCACCAAAA
      TCAGAATTTG AAAAATTAAG TGATGAAGAA AAAATTAATA AATATAAAAA
 751
      AGACGAGCAA CGAGAGAATT TTGTCGGTTT GGTTGCTGAC AGGGTAGAAA
 801
 851 AGAATGGAAC TAACAAATAT GTCATCATTT ATAAAGACAA GTCCGCTTCA
 901 TCTTCATCTG CGCGATTCAG GCGTTCTGCA CGGTCGAGGC GGTCGCTTCC
 951 GGCCGAGATG CCGCTGATTC CCGTCAATCA GGCGGATACG CTGATTGTCG
1001 ATGGGGAAGC GGTCAGCCTG ACGGGGCATT CCGGCAATAT CTTCGCGCCC
      GAAGGGAATT ACCGGTATCT GACTTACGGG GCGGAAAAAT TGTCCGGCGG
1101 ATCGTATGCC CTCAGTGTGC AAGGCGAACC GGCAAAAGGC GAAATGCTTG
1151 CGGGCACGGC CGTGTACAAC GGCGAAGTGC TGCATTTCCA TATGGAAAAC
1201 GGCCGTCCGT CCCCGTCCGG AGGCAGGTTT GCCGCAAAAG TCGATTTCGG
1251 CAGCAAATCT GTGGACGGCA TTATCGACAG CGGCGATGAT TTGCATATGG
1301 GTACGCAAAA ATTCAAAGCC GTTATCGATG GAAACGGCTT TAAGGGGACT
      TGGACGGAAA ATGGCGGCGG GGATGTTTCC GGAAGGTTTT ACGGCCCGGC
1401
      CGGCGAAGAA GTGGCGGGAA AATACAGCTA TCGCCCGACA GATGCGGAAA
1451 AGGGCGGATT CGGCGTGTTT GCCGGCAAAA AAGAGCAGGA TTGA
```

# This corresponds to the amino acid sequence <SEQ ID 3108; ORF 287.a>:

```
a287.pep
          MFKRSVIAMA CIVALSACGG GGGGSPDVKS ADTLSKPAAP VVTEDVGEEV
         LPKEKKDEEA VSGAPQADTQ DATAGKGGQD MAAVSAENTG NGGAATTDNP
         ENKDEGPOND MPONAADTDS STPNHTPAPN MPTRDMGNQA PDAGESAQPA
     101
         NQPDMANAAD GMQGDDPSAG ENAGNTADQA ANQAENNQVG GSQNPASSTN
     201
         PNATNGGSDF GRINVANGIK LDSGSENVTL THCKDKVCDR DFLDEEAPPK
         SEFEKLSDEE KINKYKKDEQ RENFVGLVAD RVEKNGTNKY VIIYKDKSAS
     251
         SSSARFRRSA RSRRSLPAEM PLIPVNQADT LIVDGEAVSL TGHSGNIFAP
     351 EGNYRYLTYG AEKLSGGSYA LSVQGEPAKG EMLAGTAVYN GEVLHFHMEN
     401 GRPSPSGGRF AAKVDFGSKS VDGIIDSGDD LHMGTQKFKA VIDGNGFKGT
         WTENGGGDVS GRFYGPAGEE VAGKYSYRPT DAEKGGFGVF AGKKEQD*
     451
m287/a287
             ORFs 287 and 287.a showed a 77.2% identity in 501 aa overlap
```

BNSDOCID: <WO___9957280A2_I_>

gar keer in New York saalaa

m287.pep					150 DMANAADGMQ           DMANAADGMQ 160		
m287.pep					210 VDLANGVLID :::   : :  INVANGIKLD 220		
m287.pep		, , , , , , , ,			270 DKFVGLVADS ::       CNFVGLVADR 280	1	: :   VIIYKD
m287.pep					330 VDGEAVSLTO           VDGEAVSLTO 340		
m287.pep					390 VLHFHTENGR            VLHFHMENGR 400	1 1	
m287.pep a287			11111111111	1 1 1 1 1 1 1 1 1	450 ENGSGDVSGK    :    : ENGGGDVSGR 460		
m287.pep a287	1111111	480 GGFGVFAGK          GGFGVFAGK 490	1111				

406

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3109>:

1	ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC
51	CGCCTGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	CCTAAACCCT
101	TTGCGGTCGA	ACAAGAACTT	GTGGCCGCTT		TGCCGTTAAA
151	GACATGGATT	TACAGGCATT	ACACGGACGA	AAAGTTGCAT	TOTACATTOC
201	CACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGGT	CCCTACTICC
251	TTGATGCACT	GATTCGTGGC	GAATACATAA	ACAGCCCTCC	CGCTACTCCA
301	GATTACACCT	ATCCACGTTA	CGAAACCACC	GCTGAAACAA	CGTCCGTACC
351	TTTGACAGGT	TTAACCACTT	CTTTATCTAC	ACTTAATCCC	CATCAGGCGG
401	CTCGCACCCA	ATCAGACGGT	AGCGGAAGTA	ACTIANTOCC	CCTGCACTCT
451	ATTGGCGGGA	TGGGGGATTA	TCGAAATGAA	ACCUMULA	GGGCTTAAAT
501	CGACACTGCC	TTTCTTTCCC	ACTTGGTACA	CACCATTGACGA	
551	GCATAGACGT				
601	ATCGACGTAT			ATACAGATGT	GTTTATTAAC
651	TGCCGAAACA	CTGAAAGCCC	ALGUMACAGA	ACCGAAATGC	ACCTATACAA
			WWWCWWWWCI.	GGAATATTTC	CCACTACACA



This corresponds to the amino acid sequence <SEQ ID 3110; ORF 406>: m406.pep

```
1 MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG NSAPSVEADN
301 SHEGYGYSDE VVRQHRQGOP *
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3111>: g406.seq

```
ATGCGGGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
  1
 51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGCAAACGCT
    TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
    GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
    AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
    TTGATGCACT GATTCGCGGC GAATACATAA ACAGCCCTGC CGTCCGCACC
301 GATTACACCT ATCCGCGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
351 TTTGACGGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
401 CGCGCACCCA ATCAGACGGT AGCGGAAGTA GGAGCAGTCT GGGCTTAAAT
451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CCAACCCGCG
501 CGACACTGCC TTTCTTTCCC ACTTGGTGCA GACCGTATTT TTCCTGCGCG
551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
651 TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
701 GAACCAATAA AAAATTGCTC ATCAAACCCA AAACCAATGC GTTTGAAGCT
751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
801 AGGAATCAAA CCGACGGAAG GATTGATGGT CGATTTCTCC GATATCCAAC
851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC AACATAGACA
951 AGGGCAACCT TGA
```

This corresponds to the amino acid sequence <SEQ ID 3112; ORF 406>: g406.pep

```
1 MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSRSLGLN
151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG NSAPSVEADN
301 SHEGYGYSDE AVRQHRQGQP *
```

ORF 406 shows 98.8% identity over a 320 aa overlap with a predicted ORF (ORF406.a) from N. gonorrhoeae:

BNSDOCID: <WO___9957280A2_J_>

and the second

	10	20	30	40	50	60
g406.pep	70 KVALYIATMGDQG	80 SGSLTGGRYSI	90 DALIRGEYI	100 NSPAVRTDYTY	110 YPRYETTAETT	120 TSGGLTG
m406	KVALYIATMGDQG	SGSLTGGRYS1				SGGLTG
g406.pep	130 LTTSLSTLNAPALS	140 SRTOSDGSGSR	150	160	170	100
m406	LTTSLSTLNAPALS		 SSLGLNIGGN	MGDYRNETLTI            MGDYRNETLTT	1111111111	ILVQTVF       ILVOTVF
	130 190	140 200	150 210	160 220	170	180
g406.pep	FLRGIDVVSPANAI		GTIRNRTEM	LYNAETLKAQ	230 TKLEYFAVDR 	240 TNKKLL
m406	FLRGIDVVSP <b>ANA</b> L 190	TDVFINIDVF 200	GTIRNRTEME 210	ILYNAETLKAQ 220	TKLEYFAVDR 230	TNKKLL 240
g406.pep	250 IKPKTNAFEAAYKE	260 NYALWMGPYK	270 VSKGIKPTEG	280 LMVDFSDIOP	290 YGNHTGNSAP:	300 SVEADN
m406				:  LMVDFSDIRP:	 YGNHTGNSAP:	 SVEADN
	310	320	270	280	290	300
g406.pep m406	SHEGYGYSDEAVRQ	111111				

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3113>:

0.364					
_1	ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC
51	CGCCTGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	
101	TCGCGGTCGA	ACAAGAACTT	GTGGCCGCTT	CTGCCAGAGC	TGCCGTTAAA
151	GACATGGATT	TACAGGCATT	ACACGGACGA		TGTACATTGC
201	AACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGGT	CGCTACTCCA
251	TTGATGCACT	GATTCGTGGC	GAATACATAA	ACAGCCCTGC	
301	GATTACACCT	ATCCACGTTA		GCTGAAACAA	CGTCCGTACC
351	TTTGACAGGT	TTAACCACTT	CTTTATCTAC	ACTTAATGCC	CATCAGGCGG
401	CGCGCACCCA	ATCAGACGGT	AGCGGAAGTA		CCTGCACTCT
451	ATTGGCGGGA	TGGGGGATTA	TCGAAATGAA	ACCTTGACGA	GGGCTTAAAT
501	CGACACTGCC	TTTCTTTCCC	ACTTGGTACA	GACCGTATTT	CTAACCCGCG
551	GCATAGACGT	TGTTTCTCCT	GCCAATGCCG	ATACGGATGT	TTCCTGCGCG
601	ATCGACGTAT	TCGGAACGAT	ACGCAACAGA	ACCGAAATGC	GTTTATTAAC
651	TGCCGAAACA	CTGAAAGCCC	AAACAAAACT	GGAATATTTC	ACCTATACAA
701	GAACCAATAA	AAAATTGCTC	ATCAAACCAA		GCAGTAGACA
751	GCCTATAAAG	AAAATTACGC	ATTGTGGATG	AAACCAATGC	GTTTGAAGCT
801	AGGAATTAAA	CCGACAGAAG	GATTAATGGT	GGACCGTATA	AAGTAAGCAA
851	CATACGGCAA	TCATATGGGT	AACTCTGCCC	CGATTTCTCC	GATATCCAAC
901	AGTCATGAGG	GGTATGGATA			GGCTGATAAC
951	AGGGCAACCT	TGA	CAGCGATGAA	GCAGTGCGAC	GACATAGACA
	,				

# This corresponds to the amino acid sequence <SEQ ID 3114; ORF 406.a>:

1	MOARLLIPIL	FSVFILSACG	TLTGIPSHGG	GKREAVEOUT	VAASARAAVK
51	DMDIOALUCE	T/712 7 115 -		CKKEWAFOFF	VAASARAAVK
JΙ	DMDTOATHGK	KVALYIATMG	DOGSGSLTGG	RYSTDATTEC	EYINSPAVRT
101	DVTVDDVDTT	7 Emmocores		TAT DE DE LE LA COMPANSION DE LA COMPANS	SGSKSSLGLN
101	DITTERTETT	ALITSGGLIG	LTTSLSTLNA	PALSETOSOC	SCSECT OT M
151	TECMEDVENE	THE THE PARTY OF THE		21120111 0000	ANADTOVFIN
	TOGMODIKNE	TTTTMPROTA	FLSHLVOTVF	FLRGIDWIGD	ANDUDUCTA
201	TOURCETOND	TEMUL WILDE		TELOIDAADE	WINNDIDALIN
	TOALGITUM	TEMULTINAEL	LKAOTKLEYF	AVDRTNEELL	IKPKTNAFEA

251 301	AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHMG NSAPSVEADN SHEGYGYSDE AVRRHRQGQP *
m406/a406	ORFs 406 and 406.a showed a 98.8% identity in 320 aa overlap
m406.pep	10 20 30 40 50 60 MQARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQALHGR
a406	
	10 20 30 40 50 60
m406.pep	70 80 90 100 110 120 KVALYIATMGDQGGGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGLTG
a406	
m406.pep	130 140 150 160 170 180 LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQTVF
a <b>4</b> 06	LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQTVF 130 140 150 160 170 180
m406.pep	190 200 210 220 230 240 FLRGIDVVSPANADTDVFINIDVFGTIRNRTEMHLYNAETLKAQTKLEYFAVDRTNKKLL
a406	
	190 200 210 220 230 240
m406.pep	250 260 270 280 290 300 IKPKTNAFEAAYKENYALWMGPYKVSKGIKPTEGLMVDFSDIRPYGNHTGNSAPSVEADN
a406	
	310 320
m406.pep	SHEGYGYSDEVVRQHRQGQPX 
a406	SHEGYGYSDEAVRRHRQGQPX 310 320

# **EXAMPLE 2**

# Expression of ORF 919

The primer described in Table 1 for ORF 919 was used to locate and clone ORF 919. The predicted gene 919 was cloned in pET vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 919-His fusion protein purification. Mice were immunized with the purified 919-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; PP, purified protein, TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm

 that 919 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 919 are provided in Figure 10. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, *J. Immunol* 143:3007; Roberts et al. 1996, *AIDS Res Human Retroviruses* 12:593; Quakyi et al. 1992, *Scand J Immunol Suppl* 11:9). The nucleic acid sequence of ORF 919 and the amino acid sequence encoded thereby is provided in Example 1.

#### **EXAMPLE 3**

# Expression of ORF 279

The primer described in Table 1 for ORF 279 was used to locate and clone ORF 279. The predicted gene 279 was cloned in pGex vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 279-GST purification. Mice were immunized with the purified 279-GST and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 279 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 279 are provided in Figure 11. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 279 and the amino acid sequence encoded thereby is provided in Example 1.

#### **EXAMPLE 4**

# Expression of ORF 576 and 576-1

The primer described in Table 1 for ORF 576 was used to locate and clone ORF 576. The predicted gene 576 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 576-GST fusion protein purification. Mice were immunized with the purified 576-GST and sera

3. 1. 69. 1. 3 1.2.3

were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).. These experiments confirm that ORF 576 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 576 are provided in Figure 12. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 576 and the amino acid sequence encoded thereby is provided in Example 1.

# **EXAMPLE 5**

# Expression of ORF 519 and 519-1

The primer described in Table 1 for ORF 519 was used to locate and clone ORF 519. The predicted gene 519 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 519-His fusion protein purification. Mice were immunized with the purified 519-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 519 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 13. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 519 and the amino acid sequence encoded thereby is provided in Example 1.

#### EXAMPLE 6

# Expression of ORF 121 and 121-1

The primer described in Table 1 for ORF 121 was used to locate and clone ORF 121. The predicted gene 121 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 121-His fusion protein purification. Mice were immunized with the purified 121-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 121 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 121 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 121 are provided in Figure 14. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 121 and the amino acid sequence encoded thereby is provided in Example 1.

# EXAMPLE 7

# Expression of ORF 128 and 128-1

The primer described in Table 1 for ORF 128 was used to locate and clone ORF 128. The predicted gene 128 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 128-His purification. Mice were immunized with the purified 128-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D) and ELISA assay (panel E). Results show that 128 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 128 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 128 are provided in Figure 15. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J.

Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 128 and the amino acid sequence encoded thereby is provided in Example 1.

#### **EXAMPLE 8**

# Expression of ORF 206

The primer described in Table 1 for ORF 206 was used to locate and clone ORF 206. The predicted gene 206 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 206-His purification. Mice were immunized with the purified 206-His and sera were used for Western blot analysis (panel B). It is worthnoting that the immunoreactive band in protein extracts from meningococcus is 38 kDa instead of 17 kDa (panel A). To gain information on the nature of this antibody staining we expressed ORF 206 in E. coli without the His-tag and including the predicted leader peptide. Western blot analysis on total protein extracts from E. coli expressing this native form of the 206 protein showed a recative band at a position of 38 kDa, as observed in meningococcus. We conclude that the 38 kDa band in panel B) is specific and that anti-206 antibodies, likely recognize a multimeric protein complex. In panel C is shown the FACS analysis, in panel D the bactericidal assay, and in panel E) the ELISA assay. Results show that 206 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 206 is a surfaceexposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 16. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 206 and the amino acid sequence encoded thereby is provided in Example 1.

# **EXAMPLE 9**

# Expression of ORF 287

The primer described in Table 1 for ORF 287 was used to locate and clone ORF 287. The predicted gene 287 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 287-GST fusion protein purification. Mice were immunized with the purified 287-GST and sera were used for FACS analysis (panel B), bactericidal assay (panel C), and ELISA assay (panel D). Results show that 287 is a surface-exposed protein. Symbols: M1, molecular weight marker. Arrow indicates the position of the main recombinant protein product (A). These experiments confirm that 287 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 287 are provided in Figure 17. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 287 and the amino acid sequence encoded thereby is provided in Example 1.

# **EXAMPLE 10**

# Expression of ORF 406

The primer described in Table 1 for ORF 406 was used to locate and clone ORF 406. The predicted gene 406 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 406-His fusion protein purification. Mice were immunized with the purified 406-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 406 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 406 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 406 are provided in Figure 18. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al.

1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 406 and the amino acid sequence encoded thereby is provided in Example 1.

# **EXAMPLE 11**

Table 2 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 225 among different strains.

Table 2

225 gene variability	: List of used Neisseria strains
	or about voissella strains
Identification Strains	Source / reference
number	
Group B	
zo01_225 NG6/88	R. Moxon / Seiler et al., 1996
zo02_225 BZ198	R. Moxon / Seiler et al., 1996
zo03_225 NG3/88	R. Moxon / Seiler et al., 1996
zo04_225 297-0	R. Moxon / Seiler et al., 1996
zo05_225 1000	R. Moxon / Seiler et al., 1996
zo06_225 BZ147	R. Moxon / Seiler et al., 1996
zo07_225 BZ169	R. Moxon / Seiler et al., 1996
zo08_225 528	R. Moxon / Seiler et al., 1996
zo09_225 NGP165	R. Moxon / Seiler et al., 1996
zo10_225 BZ133	R. Moxon / Seiler et al., 1996
zo11_225 NGE31	R. Moxon / Seiler et al., 1996
zo12_225 NGF26	R. Moxon / Seiler et al., 1996
zo13_225 NGE28	R. Moxon / Seiler et al., 1996
zo14_225 NGH38	R. Moxon / Seiler et al., 1996
zo15_225 SWZ107	R. Moxon / Seiler et al., 1996
zo16_225 NGH15	R. Moxon / Seiler et al., 1996
zo17_225 NGH36	R. Moxon / Seiler et al., 1996
zo18_225 BZ232	R. Moxon / Seiler et al., 1996
zo19_225 BZ83	R. Moxon / Seiler et al., 1996
zo20_225 44/76	R. Moxon / Seiler et al., 1996
zo21_225 MC58	R. Moxon
zo96_225 2996	Our collection
Croup A	
Group A zo22 225 205900	R. Moxon
zo23 225 F6124	R. Moxon
z2491 Z2491	
66771 66 <b>7</b> 71	R. Moxon / Maiden et al., 1998
Group C	
zo24_225 90/18311	R. Moxon
zo25_225 93/4286	R. Moxon

BNSDOCID: <WO___9957280A2_I_>

#### **Others**

zo26_225 A22 (group W) R. Moxon / Maiden et al., 1998

zo27_225 E26 (group X) R. Moxon / Maiden et al., 1998

zo28_225 860800 (group Y) R. Moxon / Maiden et al., 1998

zo29_225 E32 (group Z) R. Moxon / Maiden et al., 1998

# Gonococcus

zo32_225 Ng F62

R. Moxon / Maiden et al., 1998

zo33_225 Ng SN4

R. Moxon

fa1090

FA1090

R. Moxon

# References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

# The amino acid sequences for each listed strain are as follows:

## >FA1090 <SEQ ID 3115>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

# Z2491 <SEQ ID 3116>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSISTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

# ZO01_225 <SEQ ID 3117>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

# ZO02_225 <SEQ ID 3118>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO03_225 <SEQ ID 3119>

MDSFFKPAVWAVLWLMFAVRLALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLIGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

25 No. 27 House Laborator 4 224 4

ZO04 225 <SEQ ID 3120>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO05 225 <SEQ ID 3121>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO06_225 <SEQ ID 3122>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO07 225 <SEQ ID 3123>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO08 225 <SEQ ID 3124>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

# ZO09_225 <SEQ ID 3125>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO10 225 <SEQ ID 3126>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO11_225 <SEQ ID 3127>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

## ZO12_225 <SEQ ID 3128>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO13 225 <SEQ ID 3129>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFIQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO14 225 <SEQ ID 3130>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

# ZO15_225 <SEQ ID 3131>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGTPVARSELQFGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

# ZO16_225 <SEQ ID 3132>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO17 225 <SEQ ID 3133>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

# ZO18 225 <SEQ ID 3134>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

# ZO19_225 <SEQ ID 3135>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

# ZO20 225 <SEQ ID 3136>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPINRAPARRAGNADELIGSAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

# ZO21_225 <SEQ ID 3137>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO22_225 <SEQ ID 3138>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR

4 .-

1 . . . . . . . . . . E

 ${\tt SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR} \\ {\tt VKKNDPSRFLN*}$ 

#### ZO23 225 <SEQ ID 3139>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO24 225 <SEQ ID 3140>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO25 225 <SEQ ID 3141>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO26 225 <SEQ ID 3142>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO27_225 <SEQ ID 3143>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

# ZO28_225 <SEQ ID 3144>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO29 225 <SEQ ID 3145>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

#### ZO32 225 <SEQ ID 3146>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

#### ZO33_225 <SEQ ID 3147>

MDSFFKPAVWAVLWLMFAVRSALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRIKKNDPSRFLN*

ZO96 225 <SEQ ID 3148>

BNSDOCID: <WO 9957280A2 1 >

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

Figure 19 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.

# **EXAMPLE 12**

Table 3 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 235 among different strains.

Table 3

235 ger	ie variabilit	y: List of used Neisseria strains
	•	y and the control of
Identific	ation Strains	Reference
number		
G	roup B	
gnmzq01	NG6/88	Seiler et al., 1996
gnmzq02	BZ198	Seiler et al., 1996
gnmzq03	NG3/88	Seiler et al., 1996
gnmzq04	1000	Seiler et al., 1996
gnmzq05	1000	Seiler et al., 1996
gnmzq07	BZ169	Seiler et al., 1996
gnmzq08	528	Seiler et al., 1996
gnmzq09	NGP165	Seiler et al., 1996
gnmzq10	BZ133	Seiler et al., 1996
gnmzq11	NGE31	Seiler et al., 1996
gnmzq13		Seiler et al., 1996
gnmzq14		Seiler et al., 1996
	SWZ107	Seiler et al., 1996
gnmzq16		Seiler et al., 1996
gnmzq17		Seiler et al., 1996
gnmzq18	BZ232	Seiler et al., 1996
gnmzq19	BZ83	Seiler et al., 1996
gnmzq21	MC58	Virji et al., 1992
Gr	oup A	
gnmzq22	205900	Our collection

gnmzq23 F6124 Our collection z2491 Z2491 Maiden *et al.*, 1998

Group C

gnmzq24 90/18311 Our collection gnmzq25 93/4286 Our collection

Others

gnmzq26 A22 (group W) Maiden et al., 1998 gnmzq27 E26 (group X) Maiden et al., 1998 gnmzq28 860800 (group Y) Maiden et al., 1998 gnmzq29 E32 (group Z) Maiden et al., 1998 gnmzq31 N. lactamica Our collection

Gonococcus

gnmzq32 Ng F62 Maiden et al., 1998 gnmzq33 Ng SN4 Our collection

fa1090 FA1090 Dempsey et al. 1991

# References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145. Virji M. et al., Mol. Microbiol., 1992, 6:1271-1279 Dempsey J.F. et al., J. Bacteriol., 1991, 173:5476-5486

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3149>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*

GNMZQ01 <SEQ ID 3150>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ02 <SEQ ID 3151>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ03 <SEQ ID 3152> MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST



#### GNMZQ04 <SEQ ID 3153>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

#### GNMZQ05 <SEQ ID 3154>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

#### GNMZQ07 <SEQ ID 3155>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

# GNMZQ08 <SEQ ID 3156>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

#### GNMZQ09 <SEQ ID 3157>

MKPLILGLAAALVLSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVQPEKLHQIFGNDAVLYITITEYGTS YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

# GNMZQ10 <SEQ ID 3158>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

#### GNMZQ11 <SEQ ID 3159>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

# GNMZQ13 <SEQ ID 3160>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

#### GNMZQ14 <SEQ ID 3161>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

# GNMZQ15 <SEQ ID 3162>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ16 <SEQ ID 3163>

Control Control Control Control

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

## GNMZQ17 <SEQ ID 3164>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

# GNMZQ18 <SEQ ID 3165>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

#### GNMZQ19 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

# GNMZQ21 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

#### GNM2Q22 <SEQ ID 3167>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

#### GNMZQ23 <SEQ ID 3168>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

# GNMZQ24 <SEQ ID 3169>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

#### GNMZQ25 <SEO ID 3170>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

#### GNMZQ26 <SEQ ID 3171>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

# GNMZQ27 <SEQ ID 3172>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

BNSDOCID: <WO___9957280A2_I_>

GNMZQ28 <SEQ ID 3173>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ29 <SEQ ID 3174>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ31 <SEQ ID 3175>

MKPLILGLAAVLALSACQVQKAPDFDYTAFKESKPASILVVPPLNESPDVNGTWGMLAST AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITITEYGTS YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKAAAYDLLSPYSHNGILKGPRFVEEQPK*

GNMZQ32 <SEQ ID 3176>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*

GNMZQ33 <SEQ ID 3177>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*

Z2491 <SEQ ID 3178>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

Figure 20 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 235, further confirming its utility as an antigen for both vaccines and diagnostics.

# **EXAMPLE 13**

Table 4 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 287 among different strains.

Table 4

287 gene variability: List of used Neisseria strains

**Identification Strains** 

Reference

number

G	roup B	
287_2	BZ198	Seiler et al., 1996
287_9	NGP165	Seiler et al., 1996
287_14	NGH38	Seiler et al., 1996
287_21	MC58	Virji <i>et al.</i> , 1992
G	roup A	
z2491	<b>Z249</b> 1	Maiden et al., 1998
G	onococcus	
fa1090	FA1090	Dempsey et al. 1991

## References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145. Virji M. et al., Mol. Microbiol., 1992, 6:1271-1279 Dempsey J.F. et al., J. Bacteriol., 1991, 173:5476-5486

The amino acid sequences for each listed strain are as follows:

#### 287 14 <SEQ ID 3179>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR FRRSARSRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG

#### 287 2 <SEQ ID 3180>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG

# 287 21. <SEQ ID 3181>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS



287_9 <SEQ ID 3182>

MFKRSVIAMACIVALSACGGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA VSGAPQADTQDATAGKGGQDMAAVSAENTGNGGAATTDNPENKDEGPQNDMPQNAADTDS STPNHTPAPNMPTRDMGNQAPDAGESAQPANQPDMANAADGMQGDDPSAGENAGNTADQA ANQAENNQVGGSQNPASSTNPNATNGGSDFGRINVANGIKLDSGSENVTLTHCKDKVCDR DFLDEEAPPKSEFEKLSDEEKINKYKKDEQRENFVGLVADRVEKNGTNKYVIIYKDKSAS SSSARFRRSARSRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYG AEKLSGGSYALSVQGEPAKGEMLAGTAVYNGEVLHFHMENGRPSPSGGRFAAKVDFGSKS VDGIIDSGDDLHMGTQKFKAVIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPT DAEKGGFGVFAGKKEQD*

FA1090 <SEQ ID 3183>

MFKRSVIAMACIFPLSACGGGGGGSPDVKSADTPSKPAAPVVAENAGEGVLPKEKKDEEA AGGAPQADTQDATAGEGSQDMAAVSAENTGNGGAATTDNPKNEDAGAQNDMPQNAAESAN QTGNNQPAGSSDSAPASNPAPANGGSDFGRTNVGNSVVIDGPSQNITLTHCKGDSCNGDN LLDEEAPSKSEFEKLSDEEKIKRYKKDEQRENFVGLVADRVKKDGTNKYIIFYTDKPPTR SARSRRSLPAEIPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGS YALRVQGEPAKGEMLVGTAVYNGEVLHFHMENGRPYPSGGRFAAKVDFGSKSVDGIIDSG DDLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPTDAEKGGFG VFAGKKDRD*

Z2491 <SEQ ID 3184>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG
QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDD
NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ
AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV
QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS
ARSRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY
ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD
DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV
FAGKKEQD*

Figure 21 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 287, further confirming its utility as an antigen for both vaccines and diagnostics.

# **EXAMPLE 14**

Table 5 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 519 among different strains.

Table 5

519 gene variability: List of used Neisseria strains

**Identification Strains** 

Source / reference

number		
	- D	
Group	=	D M. (0.1)
zv01_519	NG6/88	R. Moxon / Seiler et al., 1996
zv02_519	BZ198	R. Moxon / Seiler et al., 1996
zv03_519ass		R. Moxon / Seiler et al., 1996
zv04_519	297-0	R. Moxon / Seiler et al., 1996
zv05_519	1000	R. Moxon / Seiler et al., 1996
zv06_519ass	BZ147	R. Moxon / Seiler et al., 1996
zv07_519	BZ169	R. Moxon / Seiler et al., 1996
zv11_519	NGE31	R. Moxon / Seiler et al., 1996
zv12_519	NGF26	R. Moxon / Seiler et al., 1996
zv18_519	BZ232	R. Moxon / Seiler et al., 1996
zv19_519	BZ83	R. Moxon / Seiler et al., 1996
zv20_519ass	44/76	R. Moxon / Seiler et al., 1996
zv21_519ass	MC58	R. Moxon
zv96_519	2996	Our collection
<b>C</b>	- <b>A</b>	
Group		D 14
zv22_519ass	205900	R. Moxon
z2491_519	Z2491	R. Moxon / Maiden et al., 1998
Other	s	
zv26 519	A22 (group	W) R. Moxon / Maiden et al., 1998
zv27_519		X) R. Moxon / Maiden et al., 1998
zv28_519		roup Y) R. Moxon / Maiden et al., 1998
zv29 519ass	ν.	roup Z) R. Moxon / Maiden et al., 1998
<del>-</del> '		
Gonoc	eoccus	
zv32_519	Ng F62	R. Moxon / Maiden et al., 1998
fa1090_519	FA1090	R. Moxon

# References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090_519 <SEQ ID 3185>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*



MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

#### ZV01 519 <SEQ ID 3187>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

# ZV02 519 <SEQ ID 3188>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

# ZV03_519 <SEQ ID 3189>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

#### ZV04_519 <SEQ ID 3190>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

# ZV05_519 <SEQ ID 3191>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

#### ZV06_519ASS <SEQ ID 3192>

MEFFIILLVAVAVFGKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVFSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERK KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

# ZV07_519 <SEQ ID 3193>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*



MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

#### ZV12 519 <SEQ ID 3195>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

#### ZV18 519 <SEQ ID 3196>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

# ZV19 519 <SEQ ID 3197>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

#### ZV20 519ASS <SEQ ID 3198>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSM ISAGMKIIDSSKTAK*

#### ZV21 519ASS <SEQ ID 3199>

MEFFTILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

#### ZV22_519ASS <SEQ ID 3200>

MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAKIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

## ZV26_519 <SEQ ID 3201>

MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV27_519 <SEQ ID 3202>

1

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV28_519 <SEQ ID 3203>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV29_519ASS <SEQ ID 3204>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSIVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREPEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSNKTAK*

ZV32_519 <SEQ ID 3205>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV96_519 <SEQ ID 3206>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

Figure 22 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 519, further confirming its utility as an antigen for both vaccines and diagnostics.

# **EXAMPLE 15**

Table 6 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 919 among different strains.

Table 6

919 gene variability: List of used Neisseria strains

**Identification Strains** 

Source / reference

numb		
	Group B	
zm01	NG6/88	R. Moxon / Seiler et al., 1996
zm02	BZ198	R. Moxon / Seiler et al., 1996
zm03	NG3/88	R. Moxon / Seiler et al., 1996
zm04	297-0	R. Moxon / Seiler et al., 1996
<b>zm</b> 05	1000	R. Moxon / Seiler et al., 1996
	BZ147	R. Moxon / Seiler et al., 1996
zm07	BZ169	R. Moxon / Seiler et al., 1996
zm08n	ı <b>52</b> 8	R. Moxon / Seiler et al., 1996
zm09	NGP165	R. Moxon / Seiler et al., 1996
zm10	BZ133	R. Moxon / Seiler et al., 1996
zm11a	sbc NGE31	R. Moxon / Seiler et al., 1996
zm12	NGF26	R. Moxon / Seiler et al., 1996
zm13	NGE28	R. Moxon / Seiler et al., 1996
zm14	NGH38	R. Moxon / Seiler et al., 1996
	SWZ107	R. Moxon / Seiler et al., 1996
	NGH15	R. Moxon / Seiler et al., 1996
	NGH36	R. Moxon / Seiler et al., 1996
	BZ232	R. Moxon / Seiler et al., 1996
zm19		R. Moxon / Seiler et al., 1996
	44/76	R. Moxon / Seiler et al., 1996
zm21	MC58	R. Moxon
zm96	2996	Our collection
	2770	Our concensii
	Group A	
zm22	205900	R. Moxon
	sbc F6124	R. Moxon
z2491	Z2491	R. Moxon / Maiden et al., 1998
LL-T/1	ELT/1	R. Moxon / Maiden et al., 1996
	Group C	
zm24	90/18311	R. Moxon
	93/4286	R. Moxon
211125	)J/4200	K. MOXOII
	Others	
zm26		W) R. Moxon / Maiden et al., 1998
zm27b	(C 1	
		(group X) R. Moxon / Maiden et al., 1998
	\υ-	oup Y) R. Moxon / Maiden et al., 1998
zm31as		oup Z) R. Moxon / Maiden et al., 1998
ZIIISTA	soc w. taci	amica R. Moxon
	Concessor	
m 22 oc	Gonococcus	D 34- /3511 1 1000
	sbc Ng F62	R. Moxon / Maiden et al., 1998
zmssas	sbc Ng SN4	R. Moxon
fo1000	E 4 1000	D. M
fa1090	FA1090	R. Moxon

# References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3207>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### Z2491 <SEQ ID 3208>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM01 <SEQ ID 3209>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM02 <SEQ ID 3210>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM03 <SEQ ID 3211>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZMO4 <SEQ ID 3212>

a agai

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM05 <SEQ ID 3213>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLSCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM06 <SEQ ID 3214>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM07 <SEQ ID 3215>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWOLLPNGMKPEYRP*

#### ZM08N <SEQ ID 3216>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM09 <SEQ ID 3217>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM10 <SEQ ID 3218>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL



#### ZM11ASBC <SEQ ID 3219>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM12 <SEQ ID 3220>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM13 <SEQ ID 3221>

MKKYLFRAALYGIAAAILAACOSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAEQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM14 <SEQ ID 3222>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSRNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM15 <SEQ ID 3223>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDLAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNHQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

## ZM16 <SEQ ID 3224>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPGRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM17 <SEQ ID 3225>

. .

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM18 <SEQ ID 3226>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM19 <SEQ ID 3227>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM20 <SEQ ID 3228>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

## ZM21 <SEQ ID 3229>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM22 <SEQ ID 3230>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

## ZM23ASBC <SEQ ID 3231>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTSKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK MKEPGYVWQLLPNGMKPEYRP*

# ZM24 <SEQ ID 3232>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM25 <SEQ ID 3233>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

#### ZM26 <SEQ ID 3234>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

# ZM27BC <SEQ ID 3235>

MKKYLFRAALYGISAAILAACQSKSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK
MKEPGYVWQLLPNGMKPEYRP*

#### ZM28 <SEQ ID 3236>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

# ZM29ASBC <SEQ ID 3237>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATTHPITRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM31ASBC <SEQ ID 3238>

QKTTGYVWQLLPNGMKPEYRP*

MKKHLFRAALYGIAAAILAACQSKSIQTFPQPDTSIIKGPDRPAGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYVFFRELAGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM32ASBC <SEQ ID 3239>
MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKA
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGGDGPVGALGTPLMGGYAGA
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK

ZM33ASBC <SEQ ID 3240>
MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPIHSFQAKRFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKSYMRQNPHKLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM96 <SEQ ID 3241>
MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

Figure 23 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 919, further confirming its utility as an antigen for both vaccines and diagnostics.

# **EXAMPLE 16**

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 7: Oligonucleotides used for PCR to amplify complete or partial ORFs

Reverse	CGCGGATCCCATATG-TGGATGGTGCTGGTCAT	Restriction sites  BamHI-
Reverse		
Reverse Forward		
Forward	CCCCCTCCACTCCCCCCCCCCCCCCCCCCCCCCCCCCCC	NdeI
rorward	CCCGCTCGAG-TGCCGTCTTGTCCCAC	XhoI
	CGCGGATCCCATATG-GTCGTATTCGTGGC	BamHI-
Reverse	CCCCCTCGAC AAATCATCAACACCCC	NdeI
Forward	CGCGGATCCCATATC CAGAATATTTCA CAGATTATTTCA CAGATTATTCA CAGATTATTATTCA CAGATTATTATTCA CAGATTATTATTCA CAGATTATTATTCA CAGATTATTATTCA CAGATTATTATTATTCA CAGATTATTATTATTATTATTATTATTATTATTATTATTAT	XhoI
orward	CGCGGATCCCATATG-GACAATATTGACATGT	BamHI-
Reverse	CCCGCTCGAG-CATCACATCCGCCCC	NdeI
Forward	CGCGGATCCCATATG-CTGCTCCTCC	XhoI
	ooo <u>oomeeemme</u> -endendangengg	BamHI-
Reverse	CCCGCTCGAG-AGTTCCGGCTTTGATGT	NdeI
orward	CGCGGATCCCATATG-GCCGACACACACCATCAT	XhoI
	COOLING MENGCATCAT	BamHI- NdeI
Reverse	CCCGCTCGAG-AAGGCGTTCATGATATAAG	XhoI
forward	CGCGGATCCCATATG-AACAACAGACATTTTG	BamHI-
		NdeI
		XhoI
orward (	CGCGGATCCCATATG-CCCCGCGCTGCT	BamHI-
		NdeI
		XhoI
orward (	CGCGGATCCCATATG-AAGACACACCGCAAG	BamHI-
Peverce (		NdeI
		XhoI
Orward (	CGCGGATCCCATATG-CTCGCCCGTTGCC	BamHI-
Reverse (	CCCGCTCGAG-AGCGCGGAAGACCCAC	NdeI
orward (	CGCGGATCCCATATG-CCTTTGACCATCCT	XhoI
	-cerridaccarder	BamHI-
leverse (	CCCGCTCGAG-CTGATTCGGCAAAAAAAATCT	NdeI
orward (	CGCGGATCCCATATG-CAGCAGAGGCAGTT	XhoI
		BamHI- NdeI
leverse (	CCCGCTCGAG-GACGAGGCGAACGCC	XhoI
		Eco RI
everse A	AACTGCAG-TCAGCGGGGGGGGACAATGCCCAT	Pst I
orward A	AAGAATTC-AAAGAATATTCGGCATGGCAGGC	Eco RI
everse A	AACTGCAG-TTACCCCCAAATCACTTTAACTGA	Pst I
orward A	AAGAATTC-TGCGCCACCCAACAGCCTGCTCC	Eco RI
everse A	AACTGCAG-TCAGAACGCGATATAGCTGTTCGG	Pst I
orward C	GCGGATCCCATATG-GTCTCCCTTCGCTT	BamHI-
		NdeI
everse C	CCGCTCGAG-ATGTAAGACGGGGACAAC	XhoI
orward C	GCGGATCCCATATG-CGGCGAAACGTGC	BamHI-
	Reverse Corward Ceverse Aceverse Acev	Reverse CCCGCTCGAG-AAAATCATGAACACGCGC Forward CGCGGATCCCATATG-GACAATATTGACATGT  Reverse CCCGCTCGAG-CATCACATCCGCCCG Forward CGCGGATCCCATATG-CTGCTGGTGCTGG  Reverse CCCGCTCGAG-AGTTCCGGCTTTGATGT  Reverse CCCGCTCGAG-AGGCGTTCATGATATAAG  Reverse CCCGCTCGAG-AAGGCGTTCATGATATAAG  Reverse CCCGCTCGAG-AAGGCGTTCATGATATAAG  Reverse CCCGCTCGAG-CCTGTCCGGTAAAAGAC  Reverse CCCGCTCGAG-CCTGTCCGGTAAAAGAC  Reverse CCCGCTCGAG-CCTGTCCGGTAAAAGAC  Reverse CCCGCTCGAG-TGGCTTTTGCCACGTTTT  Reverse CCCGCTCGAG-TGGCTTTTGCCACGTTTT  Reverse CCCGCTCGAG-GGCGGTCAGTACGGT  Reverse CCCGCTCGAG-GGCGGTCAGTACGGT  Reverse CCCGCTCGAG-AGCGGGGAAGACCACCGCAAG  Reverse CCCGCTCGAG-AGCGGGGAAGAGCAC  Reverse CCCGCTCGAG-AGCGGGGAAGAGGCAC  Reverse CCCGCTCGAG-CTGATTCGCCAGTTGCC  Reverse CCCGCTCGAG-CTGATTCGCCAAAAAAAATCT  Reverse CCCGCTCGAG-CTGATTCGGCAAAAAAAATCT  Reverse CCCGCTCGAG-GACGAGGCGAAAAAAAATCT  Reverse CCCGCTCGAG-GACGAGGCGAAAAAAAATCT  Reverse CCCGCTCGAG-TCAGCGGGGAAACGCC  Reverse CCCGCTCGAG-TCAGCGGGCGAAACGCC  Reverse CCCGCTCGAG-TCAGCGGGCGAAACGCC  Reverse AAACTGCAG-TCAGCGGGCGAAACCCCCGGC  Reverse AAACTGCAG-TTACCCCCAAATCACTTTAACTGA  Reverse AAACTGCAG-TTACCCCCAAATCACTTTAACTGA  Reverse AAACTGCAG-TCAGAACGCGATATAGCTGTTCCG  Reverse CCCGCTCGAG-TCAGAACGCGATATAGCTGTTCCG  Reverse CCCGCTCGAG-TCAGAACGCGAAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGAAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGAAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGAAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGAAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGGAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGGAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGGAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGGAAACCGTGC  Reverse CCCGCTCGAG-TCAGAACGCGGAAACCGTGC  Reverse CCCGCTCGAG-TC

<u> </u>			
	Darroman		Ndel
022		CCCGCTCGAG-CTGGTTTTTTGATATTTGTG	XhoI
033	Forward	CGCGGATCCCATATG-GCGGCGGCAGACA	BamHI-
1	Dovorso	CCCCCTCC A C ATTTCCCCC A TCCCC A TCCCC	NdeI
024		CCCGCTCGAG-ATTTGCCGCATCCCGAT	XhoI
034	Forward	CGCGGATCCCATATG-GCCGAAAACAGCTACGG	BamHI-
	Doverso		NdeI
026		CCCGCTCGAG-TTTGACGATTTGGTTCAATT	XhoI
036	rorwara	CGCGGATCCCATATG-CTGAAGCCGTGCG	BamHI-
1	Davaraa	CCCCCTCCAC CCCCACTCCCTATACCC	NdeI
020		CCCGCTCGAG-CCGGACTGCGTATCGG	XhoI
038	rorward	CGCGGATCCCATATG-ACCGATTTCCGCCA	BamHI-
	Томото	CCCGCTCGAG-TTCTACGCCGTACTGCC	NdeI
020			Xhol
039	rorward	CGCGGATCCCATATG-CCGTCCGAACCGC	BamHI-
ĺ	Deverse	CCCGCTCGAG-TAGGATGACGAGGTAGG	NdeI
041			XhoI
041	rorwaiu	CGCGGATCCCATATG-TTCGTGCGCGAACCGC	BamHI-
	Paverce	CCCGCTCGAG-GCCCAAAAACTCTTTCAAA	Ndel
042		CGCGGATCCCATATG-ACGATGATTTGCTTGC	XhoI
042	roiwaid	COCOGATCCCATATO-ACGATGATTTGCTTGC	BamHI-
	Reverse	CCCGCTCGAG-TTTGCAGCCTGCATTTGAC	Ndel
043		AAAAAAGGTACC-ATGGTTGTTTCAAATCAAAATATC	XhoI
043		AAACTGCAG-TTATTGCGCTTCACCTTCCGCCGC	Kpn I
0432	Forward	AAAAAAAGGTACC GCAAAACTCGATGGGGGTTGGAGGGTTGGA	Pst I
043a	Deverse	AAAAAAGGTACC-GCAAAAGTGCATGGCGGCTTGGACGGTGCAAAAAACTGCAG-	
	Keveise	TTAATCCTGCAACACGAATTCGCCCGTCCG	Pst I
044	Forward	CGCGGATCCCATATG-CCGTCCGACTAGAG	~ ~~
044	1 OI Walt	ede <u>deateceatato</u> -ecotecoactagag	BamHI-
	Reverse	CCCGCTCGAG-ATGCGCTACGGTAGCCA	NdeI
046		AAAGAATTC-ATGTCGGCAATGCTCCCGACAAG	XhoI
0.0		AAACTGCAG-TCACTCGGCGACCCACACCGTGAA	Eco RI
047	Forward	CGCGGATCCCATATG-GTCATCATACAGGCG	Pst I
047	Torward	COCOGNICATIO-OTCATCATACAGGCG	BamHI-
	Reverse	CCCGCTCGAG-TCCGAAAAAGCCCATTTTG	NdeI
048		AAAGAATTC-ATGCTCAACAAAGGCGAAGAATTGCC	XhoI
0.0		AAACTGCAG-TCAAGATTCGACGGGGATGATGCC	Eco RI
Ω4Q		AAAGAATTC-ATGCGGGCGCAGGCGTTTGATCAGCC	Pst I
045			Eco RI
050		AAACTGCAG-AAGGCGTATCTGAAAAAATGGCAG	Pst I
020	T.OI MAIG	CGCGGATCCCATATG-GGCGCGGGCTGG	BamHI-
	Reverse	CCCGCTCGAG-AATCGGGCCATCTTCGA	NdeI
052		A A A A A A C A A TITIC A TICCOTTON	XhoI
032			Eco RI
0522	Forward	AAAAAAGAATTC GTGGGGGAAAAGGAAAGGAAATTC GTGGGGGAAAGGAAA	Sal I
JJLa	TOIWAIU	AAAAAAGAATTC-GTGGCGGAGGAAACGGAAATATCCGC	Eco RI

Reverse
Reverse CCCGCTCGAG-CACCGGATTGTCCGAC  O75 Forward CGCGGATCCCATATG-CCGTCTTACTTCATC  Reverse CCCGCTCGAG-ATCACCAATGCCGATTATTT  Ndel Xhol  Reverse CCCGCTCGAG-ATCACCAATGCCGATTATTT  Ndel Xhol  O77a Forward AAAAAAGAATTC-GGCGGCATTTTCATCGACACCTTCCT Reverse AAAAAACTGCAG-TCAGACGAAACTCTGCACAAACGCAAT  Reverse AAACTGCAG-CAGACGAACATCTGCACAAACGCAAT  Reverse AAACTGCAG-CCAGTCCTGGGTTTGGTTTACAATTC Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTCGGG Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTCATCGA  Reverse AAACTGCAG-TCACTTACTCCCAATGCCTC  Reverse AAACTGCAG-TCACTTACCTCCAATGCCTC Reverse AAACTGCAG-TTACGCGGATTCGTGCAGTTGG Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA  Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA  Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  Reverse AAACTGCAG-TTATCTCCACCCGATAACGCGG Reverse AAACTGCAG-TTACTCCACCCGATAACGCGG Reverse AAACTGCAG-TTACTCCACCCGATAACGCGG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC Reverse AAACTGCAG-TTACGCCGCACACGCCAATCGC Reverse AAACTGCAG-TTACGCCGCACACGCCAATCGC Reverse AAACTGCAG-TTACGCCGCACACGCCAATCGC Reverse AAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC Reverse AAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCA Reverse AAAAAACTGCAG-TCAGCCGCACATTTCAG Reverse AAAAAACTGCAG-TCAGCCAAACCCA Reverse AAAAAACTGCAG-TCAGCCCACACTTTCAG Reverse AAAAAACTGCAG-TCAGCCCAAATCAC Reverse CCCGCTCGAG-TCAGCGCATTTTTATGGCTCGCACATTTCAG Reverse CCCGCTCGAG-TCAGCCAAAACCCA Reverse CCCGCTCGAG-TCAGCCAAAACCCA Reverse CCCGCTCGAG-TCAGCCAAAACCCA Reverse CCCGCTCGAG-TCAGCCAAAACCCA Reverse CCCGCTCGAG-TCAGCAAAACCCAAACCA Reverse CCCGCTCGAG-TCAGCCAAAACCCA Reverse CCCGCTCGAG-TCAGCCAAAACCAAACCA Reverse CCCGCTCGAG-TCAGCCAAAAACCGCGAAAACCAAACCAA
Reverse CCCGCTCGAG-CACCGGATTGTCCGAC  The sum of the sum
Reverse CCCGCTCGAG-ATCACCAATGCCGATTATTT  Reverse CCCGCTCGAG-ATCACCAATGCCGATTATTT  Reverse CCCGCTCGAG-ATCACCAATGCCGATTATTT  Reverse AAAAAACTGCAG-TCAGACGAACACTCCTCT Reverse AAAAAACTGCAG-TCAGACGAACACTTCCTCTCACCACAACGCAAT  Reverse AAACTGCAG-TCAGACGAACACTCGCACAAACGCAAT  Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTCAGGTCCCCCCCCCAAACTCCCCCCCC
Reverse CCCGCTCGAG-ATCACCAATGCCGATTATTT  Ndel Xhol  777a Forward AAAAAAGAATTC-GGCGGCATTTTCATCGACACCTTCCT Reverse AAAAAACTGCAG-TCAGACGAACACTCGCACAAACGCAAT  8 Forward AAAGAATTC-GCGTCCGGGCTGGTTTGGTTTTACAATTC Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTTCGGG Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTTCAGGT  8 Forward AAAGAATTC-ATGAAACCACTGGACCTAAATTTCATCTG Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC  8 Forward AAAGAATTC-ATGAAACCACTGGACCTAAATTTCATCTG Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC  9
Reverse CCCGCTCGAG-ATCACCAATGCCGATTATTT  Khol  777a Forward AAAAAAGAGTTC-GCGGCATTTTCATCGACACCCTTCCT Reverse AAAAAACTGCAG-TCAGACGAACATCTGCACAAACGCAAT  8
O77a   Forward AAAAAAGAATTC-GGCGGCATTTTCATCGACACCTTCCT   Reverse   AAAAAACTGCAG-TCAGACGAACATCTGCACAAAACGCAAT   Pst   Pst   Reverse   AAAAAACTGCAG-TCAGACGAACATCTGCACAAACGCAAT   Pst   Reverse   AAACTGCAG-TCAGACGACTTCTTTTTCGGG   Pst   Reverse   AAACTGCAG-CATTCTTCGGATTCTTTTCGGG   Pst   Reverse   AAACTGCAG-TCACTTATCCTCCAATGCCTC   Pst   Reverse   AAACTGCAG-TCACTTATCCTCCAATGCCTC   Pst   Reverse   AAACTGCAG-TCACTTATCCTCCAATGCCTC   Pst   Reverse   AAACTGCAG-TTACGCGGATTCGG   Pst   Reverse   AAACTGCAG-TTACGCCGGATTCGG   Pst   Reverse   AAACTGCAG-TTACCCCAGAATATGAATACGGCTACCG   Pst   Reverse   AAACTGCAG-TTACCTCGAGATTAGATACGGCTACCG   Pst   Reverse   AAACTGCAG-TTACTCTGGGCGCAACATGA   Pst   Ndel
Reverse AAAAAACTGCAG-TCAGACGAACATCTGCACAAACGCAAT  Reverse AAACTGCAG-TCAGACGACTTTTTTTCAGATTC Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTTCAGATTC Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTCAGATC Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG Reverse AAACTGCAG-TTACCCCAGAATATGAATACGGCTACCG Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA Reverse CCCGCTCGAG-CAAAGCCTTAAACGGCTACCG Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG Reverse AAACTGCAG-TTACTCCACCCGATAACGCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACGCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACGCCGCACACCGCATTGCC Reverse AAACTGCAG-TTACGCCGCACACCCCATTCGC Reverse AAACTGCAG-TTACGCCGCACACCCCATTCGC Reverse AAACTGCAG-TTACGCCGCACACCCCATTTCAG Reverse AAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTTCC Reverse AAAAAACTGCAG-TTACGCCTGCAAGATCCCCAGCTTTCAG Reverse AAAAAACTGCAG-TCAGCGGATTTTTATGCCCACCATTTCAG Reverse CCCGCTCGAG-TCAGCGGATTTTTATGGCTCCACCATTTCAG Reverse CCCGCTCGAG-TCAGCGGATTTTTATGGCTCCACCATTTCAG Reverse CCCGCTCGAG-TCAGCGCATTTTAGAGGTACCCAAACCC Reverse CCCGCTCGAG-TCAGCGCATTTTAGCCACCAAATCAC Reverse CCCGCTCGAG-TCAGCGCATTTTAGCCACCAAAACCAAACC
Reverse AAACTGCAG-CAAAACCTTAAACGCTTCG Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTCGGG Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTCAAATTC Reverse AAACTGCAG-TCACTATCCTCCAATGCCTC Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC Reverse AAACTGCAG-TACGCGGATTCGCAGTTGG Reverse AAACTGCAG-TTACGCGGATTCGCAGTTGG Reverse AAACTGCAG-TTACGCCGGATTCGCAGTTAGATACCGCTACCG Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA Reverse CCCGCTCGAG-CAAAGCCTTAAACGGCTACCG Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACGCCGCACACACCAATCGC Reverse AAACTGCAG-TTACGCCTGCAAGATCGC Reverse AAAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTTCTGATTCA Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTTCAG Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTTCACGCCGACACTTTCAG Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATCCCCACTTTCAG Reverse CCCGCTCGAG-TCACGCGGATTTTTATGGCTCCACCATTTCAG Reverse CCCGCTCGAG-TCACGCGGATTTTTATGGCTCCACATTTCAG Reverse CCCGCTCGAG-TCACGCGATTTTCAGCTTCAAACCC Reverse CCCGCTCGAG-TCACGCGATTTTCAGCCTTCAAACCC Reverse CCCGCTCGAG-TCACGCGATTTTCAGCCTTCAAACCC Reverse CCCGCTCGAG-TCACGCGATTTTCAGCCTTCAAACCC Reverse CCCGCTCGAG-TCACGCGATTTTCAGCCTTCAAACCC Reverse CCCGCTCGAG-TCACGCGATTTTCAGCCTTCAAACCC Reverse CCCGCTCGAG-TCACGCAAAACCCAAATCAC Reverse CCCGCTCGAG-TCACGCAAAACCCAAACCAAACCCAAATCAC Reverse CCCGCTCGAG-TCACGCAAAACCCAAAACCCAAAACCCAAAACCCAAAACCCAAAA
Reverse AAACTGCAG-CTATTCTTCGGATTCTTTTCGGG Pst I  Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC Pst I  Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC Pst I  Reverse AAACTGCAG-TTACGCGGATTTGGCAGTTGGG Pst I  Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG Pst I  Reverse AAACTGCAG-TTACCCCAGAATATGAATACGGCTACCG Eco RI  Reverse AAACTGCAG-TTATCACCCAGAATATGAATACGGCTACCG Eco RI  Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA Pst I  Reverse CCCGCTCGAG-CAAAGCCTTAAACGGCTACG Ndel  Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG Ndel  Reverse AAACTGCAG-TTACTCCACCCGATAACGGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Pst I  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Pst I  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC Pst I  Reverse AAACTGCAG-TTACGCCGCACACGCATTGTGATTCA Reverse AAAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA Eco RI  Reverse AAAAAAAGAATTC-AAGCTATTATGGCTCGCACATTTCAG Eco RI  Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTTCCC Pst I  Reverse CCCGCTCGAG-TCAGCGGATTTTTAGGGTACCCACATTTCAG Eco RI  Reverse CCCGCTCGAG-TCAGCGGATTTTTAGGGTACCCACATTTCAG Pst I  Reverse CCCGCTCGAG-TCAGCGGATTTTTAGGGTACCCACATTTCAG Eco RI  Reverse CCCGCTCGAG-TCAGCGGATTTTGAGGGTACTCAAACC Pst I  Reverse CCCGCTCGAG-TCAGCGGATTTTGAGCACATTTCAG Eco RI  Reverse CCCGCTCGAG-TCAGCGCATACCAAAACCA BamHI-  Ndel  Reverse CCCGCTCGAG-TCAGCAAAACGGCACGCAATCGA BamHI-  Ndel  Reverse CCCGCTCGAG-AGCAAAACGGCACGCAATCGAACCA BamHI-  Ndel
081         Forward AAAGAATTC-ATGAAACCACTGGACCTAAATTTCATCTG         Eco RI           Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC         Pst I           082         Forward AAAGAATTC-ATGTGGTTGTTGAAGTTGCCTGC         Eco RI           Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG         Pst I           084         Forward AAAGAATTC-TATCACCCAGAATATGAATACGGCTACCG         Eco RI           Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA         Pst I           085         Forward CGCGGATCCCATATG-GGTAAAGGGCAGGACT         BamHI-Ndel           Ndel         XhoI           Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG         XhoI           086         Forward AAAAAAGGTACC-TATTTGGCATCAAAAGAAGGCGG         Rpn I           Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG         Pst I           087         Forward AAAGAATTC-ATGGGCGGTAAAACCTTATGC         Eco RI           Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC         Pst I           087         Forward AAAAAAGAATTC-ATGTTTTTATGGCTGCCAGATTGTGATTCA         Eco RI           Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC         Pst I           088         Forward AAAAAACTGCAG-TCAGCGGGATTTTTATGGCTCGCACATTTCAG         Eco RI           Reverse AAAAAAACTGCAG-TCAGCGGATTTTTATGGCTCGCACATTTCAG         Eco RI           Reverse CCCGCTCGAG-TCAGCGCAAAACCAAACCAAACCA         Ndel           Noel
Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC  Fet I  Reverse AAACTGCAG-TCACTTATCCTCCAATGCCTC  Reverse AAACTGCAG-TTACGCGGATTCGCAGTTGG  Reverse AAACTGCAG-TTACGCCGGATTCGGCAGTTGG  Reverse AAACTGCAG-TTATCACCCAGAATATGAATACGGCTACCG  Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA  Reverse CCCGGGATCCCATATG-GGTAAAGGGCAGGACT  Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  Reverse AAACTGCAG-TTACTCCACCCGATAACGCGG  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  Reverse AAAAAACTGCAG-TCAGCCTGCAAGATGCCCAGCTTGCC  Pst I  Reverse AAAAAACTGCAG-TCAGCGGATTTTCAG  Reverse AAAAAACTGCAG-TCAGCGGATTTTCAG  Reverse AAAAAACTGCAG-TCAGCGGATTTTCAGCCTCCACATTTCAG  Reverse CCCGCTCGAG-TCAGCGGATTTTTAGGGTACCAAACC  Pst I  Reverse CCCGCTCGAG-TCAGCGCATACCAAACCA  Reverse CCCGCTCGAG-TCAGCGCATACCAAACCA  Reverse CCCGCTCGAG-TGCGCATACCAAAACCAAACCA  Reverse CCCGCTCGAG-TGCGCATACCAAAACCAAACCAAACCAAA
Reverse   AAAGAATTC-ATGTGGTTGTTGAAGTTGCCTGC   Eco RI
Reverse AAACTGCAG-TTACGCGGATTCGGCAGTTGG  Reverse AAACTGCAG-TTACACCCAGAATATGAATACGGCTACCG Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA  085 Forward CGCGGATCCCATATG-GGTAAAGGGCAGGACT  Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  086 Forward AAAAAAGGTACC-TATTTGGCATCAAAAGAAGGCGG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  087 Forward AAAAAAGGATTC-ATGGGCGGTAAAACCTTTATGC Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  087 Forward AAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA Reverse AAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  088 Forward AAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAG Reverse AAAAAAACTGCAG-TCAGCGGATTTTAGGCTCGCACATTTCAG Reverse AAAAAAACTGCAG-TCAGCGGATTTTTAGGGTACCAAACC  089 Forward CGCGGATCCCATATG-CCGCCCAAAATCAC  090 Forward CGCGGATCCCATATG-CGCCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAACCCAAAACCCAAAACCCAAAACCCAAAACCCAAAA
Reverse AAACTGCAG-TTACCCCAGAATATGAATACGGCTACCG Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA  Reverse CCCGCTCGAG-CAAAGCCTTAAACGGCTCG  Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  Reverse AAACTGCAG-TTACTCCACCCGATAACGCG  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTTCCC  Reverse AAAAAACTGCAG-TCAGCGGATTTTATGGCTCGCACATTTCAG  Reverse CCCGCTCGAG-TCCCCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAACCAAACCACA  Reverse CCCGCTCGAG-TGCGCATACCAAAACCACAAACCACAAACCACAAAACCACACAAAACCACA
Reverse AAACTGCAG-TTATACTTGGGCGCAACATGA  Pst I  Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  Reverse AAACTGCAG-TTACTCCACCCGATAACGCGG  Reverse AAACTGCAG-TTACTCCACCCGATAACGCG  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA  Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  Reverse AAAAAAACTGCAG-TCAGCCGGATTTTATGGCTCGCACATTTCAG  Reverse CCCGGTCGAG-TCCGCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAAACCA  Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  Reverse CCCGCTCGAG-TGCGCATAACCAAAGCCA  Reverse CCCGCTCGAG-AGCAAAACGCGCGTA-GG  Reverse CCCGCTCGAG-AGCAAAACGCGCGTA-GG  Reverse CCCGCTCGAG-AGCAAAACGCGCGCTA-GG  Reverse CCCGCTCGAG-TGCGCATAACCAAACGCGCGCTA-GG  Reverse CCCGCTCGAG-TGCGCATAACCAAACGCCGCGTA-GG  Reverse CCCGCTCGAG-TGCGCATAACCAAACGCCGCTA-GG  Reverse CCCGCTCGAG-TGCGCATAACCAAACGCCGCGTA-GG  Reverse CCCGCTCGAG-TGCGCATAACCAAACGCCGCTA-GG  Reverse CCCGCTCGAG-TGCGCATAACCAAACGCCGCGTA-GG  Reverse CCCGCTCGAG-TACCAAAACGCCACTA-GG  Reverse CCCGCTCGAG-TACCAAAACGCCACTA-GG  Reverse CCCGCTCGAG-TACCAAAACGCCACTA-GG  Reverse CCCGCTCGAG-TACCAAAACGCCACTA-GG  Reverse CCCCCTCAGAG-TACCAAAACGCCACTA-GG  Reverse CCCGCTCGAG-TACCAAAACGCCACTA-GCCACTA-GCCACTA-GCCACTA-GCCACTA-GCCACTA-GCCACTA-GCCACTA-GCCACTA-GCCACTA-CCCACTA-CCACTA-CCACTA-CCACTA-CCACTA-CCACTA-CCACTA-CCACT
Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTCG  8amHI- Ndel Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  8amHI- Ndel XhoI  8amHI- Ndel Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Pst I  8amHI- Ndel
Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  Reverse AAACTGCAG-TATTTGGCATCAAAAGAAGGCGG Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  87 Forward AAAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA Reverse AAACTGCAG-TTACGCCGCACAAGATGCCCAGCTTGCC Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC Reverse AAAAAAACTGCAG-TCAGCGGATTTTATGGCTCGCACATTTCAG Reverse AAAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACC Reverse CCCGCTCGAG-TCCGCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAAACCA  Reverse CCCGCTCGAG-AGCAAAACGCGAGCTAGCA  Reverse CCCGCTCGAG-AGCAAAACGCGAGCTAGCACCTAGCAGCAGCAGCACACCACCTAGCCAGCTAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA
Reverse CCCGCTCGAG-CAAAGCCTTAAACGCTTCG  Note: Reverse AAACTGCAG-TATTTGGCATCAAAAGAAGGCGG
086Forward AAAAAAGGTACC-TATTTGGCATCAAAAGAAGAGGCGGKpn IReverse AAACTGCAG-TTACTCCACCCGATAACCGCGPst I087Forward AAAGAATTC-ATGGGCGGTAAAACCTTTATGCEco RIReverse AAACTGCAG-TTACGCCGCACACGCAATCGCPst I087aForward AAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCAEco RIReverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCCPst I088Forward AAAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAGEco RIReverse AAAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACCPst I089Forward CGCGGATCCCATATG-CCGCCCAAAATCACBamHI-NdeINdeIReverse CCCGCTCGAG-AGCAAAAGCCABamHI-NdeINdeI
Reverse AAACTGCAG-TTACTCCACCCGATAACCGCG  Pst I  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  Reverse AAAAAAAGAATTC-AAGCTATTAGGCCGTGCCGATTGTGATTCA  Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  Pst I  Reverse AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Forward AAAGAATTC-ATGGGCGGTAAAACCTTTATGC Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  087a Forward AAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  088 Forward AAAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAG Reverse AAAAAAACTGCAG-TCAGCGGATTTTAGGGTACTCAAACC  089 Forward CGCGGATCCCATATG-CCGCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAAACCCA  090 Forward CGCGGATCCCATATG-CGCATACCAAAGCCA  Reverse CCCGCTCGAG-AGCAAAACCGCAGCTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCCAGCTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGCACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCAAAACGCCAGCTAGGACAAAACGCCAGCTAGGACAAAACGCAAAACGCAGCAGCAAAAACGCAGCAGCTAGCAAAAACGCAAAACGCAAAAACGCAGCAGCTAGGACAAAACGCAAAAACGCAAAAACGCAAAAACGCAAAAACGCAAAAACGCAAAAACAAACAAAACAAAACAAAACAAAACAAAAACAAAA
Reverse AAACTGCAG-TTACGCCGCACACGCAATCGC  087a Forward AAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA Eco RI Reverse AAAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  088 Forward AAAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAG Eco RI Reverse AAAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACC  089 Forward CGCGGATCCCATATG-CCGCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  090 Forward CGCGGATCCCATATG-CGCATAGTCGAGCA  Reverse CCCGCTCGAG-AGCAAAACGCGAGTAGG  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGAGAACGAGAGAGAGAACGAGAGAGA
Forward AAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA  Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  Pst I  Reverse AAAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAG  Reverse AAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACC  Pst I  Reverse CCCGGATCCCATATG-CCGCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGAGAGAGAGAGAGAGAGAGAGAGA
Reverse AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC  088 Forward AAAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAG  Reverse AAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACC  089 Forward CGCGGATCCCATATG-CCGCCCAAAATCAC  Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  090 Forward CGCGGATCCCATATG-CGCATAGTCGAGCA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGG  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGAGAACGAGAGAGAGAGAGAACGAGAGAGA
Pst I Reverse CCCGCTCGAG AGGAAAACGCGCGTAGG Reverse CCCGCTCGAG AGGAAAACGCGCGGTAGGA
Reverse AAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACC  Pst I  BamHI-  Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGA  Reverse CCCGCTCGAG-AGCAAAACGCGGGTAGGAGAAACGCGGGTAGGAGAGAGAG
Reverse CCCGCTCGAG AGGAAAACGCGCTAGG  Reverse CCCGCTCGAG AGGAAAACGCGCGTAGG  Reverse CCCGCTCGAG AGGAAAACGCGCGTAGG  Reverse CCCGCTCGAG AGGAAAACGCGCGTAGG
Reverse CCCGCTCGAG AGGAAAACGCGCTAGG  Reverse CCCGCTCGAG AGGAAAACGCGCGTAGG  Reverse CCCGCTCGAG AGGAAAACGCGCGTAGG  NdeI  NdeI  NdeI
Reverse CCCGCTCGAG-TGCGCATACCAAAGCCA  ShoI  O90 Forward CGCGGATCCCATATG-CGCATAGTCGAGCA  Reverse CCCGCTCGAG AGGAAAACGCGGGTAGG  NdeI
090 Forward CGCGGATCCCATATG-CGCATAGTCGAGCA  BamHI- NdeI
Reverse CCCGCTCGAG AGGAAAAGGGGGGTAGG
Reverse CCCCCACACACCAAAACCCCCCCCCCCCCCCCCCCCC
091 Forward AAAGAATTC ATGCAAATACCCCTAGGGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
Reverse AAACTGCAG TCACCCCACCCCTACCCCTACCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCTACCCCCC
002 Forward AAAGAATTC ATCTTTTTT ATTTCA
Reverse AAACTGCAG TCAAATGTCTTTTCGAGAGAATGC
003 Forward AAACAATTC ATCCACAATTTTTTTTTTTTTTTTTTTT
Reverse AAACTGCAG CTATCCCTCCTCATA GGGGGC Eco RI
Reverse AAACTGCAG-CTATGGCTCATACCGGGC  Pst I
Fco RI
Reverse AAACTGCAG-TTATCCCGGCCATACCGCCGAACA  Pst I  O95 Forward AAAGAATTC-ATGTCCTTTCATTTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACATTCAACAA
Foo Di
Reverse AAACTGCAG-TCAACGCCGCAGGCACTAACGCCC  Pst I
096 Forward AAAGAATTC-ATGGCTCGTCATACCGGGCAGGG Eco RI

in the angle of the day

	Derionae	A A A CTC C A C T C A A A C C A A A A C C C C	
097	Farmend	AAACTGCAG-TCAAAGGAAAAGGCCGTCTGAAAAGCG	Pst I
097	rorward	AAAGAATTC-ATGGACACTTCAAAACAAACACTGTTG	Eco RI
		AAACTGCAG-TCAGCCCAAATACCAGAATTTCAG	Pst I
098		AAAGAATTC-GATGAACGCAGCCCAGCATGGATACG	Eco RI
		AAACTGCAG-TTACGACATTCTGATTTGGCA	Pst I
102	Forward	AAAAAAGAATTC-GGCCTGATGATTTTGGAAGTCAACAC	Eco RI
	Reverse	AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC	Pst I
105	Forward	CGCGGATCCCATATG-TCCGCAAACGAATACG	BamHI-
1	_		NdeI
1.0-		CCCGCTCGAG-GTGTTCTGCCAGTTTCAG	XhoI
107	Forward	AAAAAAGAATTC-	Eco RI
	D	CTGATGATTTTGGAAGTCAACACCCATTATCC	
1071	Reverse	AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC	Pst I
10/6	rorward	AAAAAAGAATTC-	Eco RI
	Daverce	GATACCCAAGCCCCCGCCGGCACAAACTACTG AAAAAACTGCAG-	
	Reverse	TTACGCGTCGCCTTTAAAGTATTTGAGCAGGCTGGAGAC	Pst I
108	Forward	AAAGAATTC-ATGTTGCCGGGCTTCAACCG	E DI
		AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	Eco RI
108a	Forward	AAAAAAGAATTC-GGTAACACATTCGGCAGCTTAGACGGTGG	Pst I
	Reverse	AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	
109		AAAGAATTC-ATGTATTATCGCCGGGTTATGGG	Pst I
		AAACTGCAG-CTAGCCCAAAGATTTGAAGTGTTC	Eco RI
111		CGCGGATCCCATATG-TGTTCGGAACAACCGC	Pst I
		TOTAL	BamHI- NdeI
	Reverse	CCCGCTCGAG-GCGGAGCAGTTTTTCAAA	XhoI
114		CGCGGATCCCATATG-GCTTCCATCACTTCGC	Anoi BamHI⇒
			NdeI
	Reverse	CCCG <u>CTCGAG</u> -CATCCGCGAAATCGTC	XhoI
117	Forward	AAAAAAGGTACC-ATGGTCGAAGAACTGGAACTGCTG	Kpn I
	Reverse	AAACTGCAG-TTAAAGCCGGGTAACGCTCAATAC	Pst I
118	Forward	AAAGTCGACATGTGTGAGTTCAAGGATATTATAAG	Sal I
	Reverse	AAAGCATGC-CTATTTTTGTTGTAATAATCAAATC	Sph I
121		CGCGGATCCCATATG-GAAACACAGCTTTACAT	BamHI-
			NdeI
		CCCGCTCGAG-ATAATAATATCCCGCGCCC	XhoI
122	Forward	CGC <u>GGATCCCATATG</u> -GTCATGATTAAAATCCGCA	BamHI-
	_		NdeI
100		CCCGCTCGAG-AATCTTGGTAGATTGGATTT	XhoI
125	Forward .	AAAGAATTC-ATGTCGGGCAATGCCTCCTCCC	Eco RI
10-	Reverse .	AAACTGCAG-TCACGCCGTTTCAAGACG	Pst I
125a	Forward .	AAAAAAGAATTC-ACGGCAGGCAGCACCGCCGCACAGGTTTC	Eco RI
	Reverse .	AAAAACTGCAG-	Pst I
126	. Towns	TTATTTTGCCACGTCGGTTTCTCCGGTGAACAACGC	ļ
126	rorward	CGCGGATCCCATATG-CCGTCTGAAACCC	BamHI-

Reverse CCCGCTCGAG-ATATTCCGCCGAATGCC  127 Forward AAAGAATTC-ATGGAAATATGGAATATGTTGGAA Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC  127a Forward AAAAAAGAATTC-AAGGAACTGATTATGTGTCT Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC  128 Forward CGCGGATCCCATATG-ACTGACAACGCACT  Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA  130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA  Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	Pst I FGTCGGG Eco RI Pst I BamHI- NdeI XhoI BamHI- NdeI YhoI
127 Forward AAAGAATTC-ATGGAAATATGGAATATGTTGGA Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC 127a Forward AAAAAAGAATTC-AAGGAACTGATTATGTGTCT Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC 128 Forward CGCGGATCCCATATG-ACTGACAACGCACT Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA 130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG 132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	ACACTTG Eco RI Pst I FGTCGGG Eco RI Pst I BamHI- NdeI XhoI BamHI- NdeI XhoI
Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC  127a Forward AAAAAAGAATTC-AAGGAACTGATTATGTGTCT Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC  128 Forward CGCGGATCCCATATG-ACTGACAACGCACT  Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA  130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA  Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	Pst I EGTCGGG Eco RI Pst I BamHI- NdeI XhoI BamHI- NdeI XhoI
127a Forward AAAAAAGAATTC-AAGGAACTGATTATGTGTCT Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC 128 Forward CGCGGATCCCATATG-ACTGACAACGCACT Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA 130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG 132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	FGTCGGG Eco RI Pst I BamHI- NdeI XhoI BamHI- NdeI XhoI
Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC  128 Forward CGCGGATCCCATATG-ACTGACAACGCACT  Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA  130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA  Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	Pst I BamHI- NdeI XhoI BamHI- NdeI XhoI
128 Forward CGCGGATCCCATATG-ACTGACAACGCACT  Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA  130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA  Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	BamHI- NdeI XhoI BamHI- NdeI XhoI
Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA  130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA  Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	NdeI XhoI BamHI- NdeI XhoI
130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA  Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	XhoI BamHI- NdeI XhoI
130 Forward CGCGGATCCCATATG-AAACAACTCCGCGA  Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	BamHI- NdeI XhoI
Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG  132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	NdeI XhoI
132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	XhoI
132 Forward AAAGAATTC-ATGGAACCCTTCAAAACCTTAAT	
100 TOTAL TELEVISION AND THE TELEVISION OF THE T	TTG Dan Dr
Reverse AAAAACTGCAGTCAGGATGTGGGGATTTTGG	Eco Ri
Reverse AAAAAACTGCAG-TCACCATGTCGGCATTTGAA  134 Forward CGCGGATCCCATATG-TCCCAAGAAATCCTC	AAAC Pst I
134 Tolward COCGOATCCCATATG-TCCCAAGAAATCCTC	BamHI-
Reverse CCCGCTCGAG-CAGTTTGACCGAATGTTC	NdeI
135 Forward CGCGGATCCCATATG-AAATACAAAAGAATCGT	XhoI
Reverse CCCGCTCGAG-AAATTCGGTCAGAAGCAGG	Ndel
137 Forward AAAAAAGGTACC-ATGATTACCCATCCCCAATTO	XhoI
Reverse AAAAAACTGCAG-TCAGTGCTGTTTTTTCATGCC	<b>-</b>
137a Forward AAAAAAGAATTC-GGCCGCAAACACGGCATCGG	
Reverse AAAAAACTGCAG-TTAAGCGGGATGACGCGGCA	CCATACC BALL
138 Forward AAAAAAGAATTC-AACTCAGGCGAAGGAGTGCT	
Reverse AAAAAATCTAGA-TCAGTTTAGGGATAGCAGGC	
141 Forward AAAGAATTC-ATGAGCTTCAAAACCGATGCCGAA	
Reverse AAACTGCAG-TCAGAACAAGCCGTGAATCACGCG	
142 Forward CGCGGATCCCATATG-CGTGCCGATTTCATG	1001
edidecoaliteato	BamHI-
Reverse CCCGCTCGAG-AAACTGCTGCACATGGG	NdeI
143 Forward AAAAAAGAATTC-	XhoI
ATGCTCAGTTTCGGCCTTTCTCGGCGTTCAGAC	Eco RI
Reverse AAAAAACTGCAG-TCAAACCCCGCCGTGTGTTTC	CTTTAAT Pst I
144 Forward AAAAAAGAATTC-GGTCTGATCGACGGGCGTGCG	CGTAAC Foo DI
Reverse AAAAAATCTAGA-TCGGCATCGGCCGGCATATGT	TCCG Xba I
146 Forward AAAAAAGAATTC-	Eco RI
CGCCAAGTCGTCATTGACCACGACAAAGTC	- <del>-</del> -
Reverse AAAAAACTGCAG-TTAGGCATCGGCAAATAGGA	AACTGGG Pst I
147 Forward AAAAAAGAATTC-ACTGAGCAATCGGTGGATTTC	GGAAAC Foo DI
Reverse AAAAAATCTAGA-TTAGGTAAAGCTGCGGCCCAT	TTTGCGG Xba I
148 Forward AAAAAAGAATTC-	Eco RI
ATGGCGTTAAAAACATCAAACTTGGAACACGC	
Reverse AAAAAATCTAGA-TCAGCCCTTCATACAGCCTTC	GTTTTG Xba I
149 Forward CGCGGATCCCATATG-CTGCTTGACAACAAGT	BamHI-

r			
	Darroma		NdeI
1.50		CCCGCTCGAG-AAACTTCACGTTCACGCC	XhoI
150	Forward	CGCGGATCCCATATG-CAGAACACAAATCCG	BamHI-
1	Doverso	CCCGCTCGAG-ATAAACATCACGCTGATAGC	NdeI
161			XhoI
151	rorward	AAAAAAGAATTC- ATGAAACAAATCCGCAACATCGCCATCATCGC	Eco RI
	Deverse	AAAAACTGCAG-TCAATCCAGCTTTTTAAAGTGGCGGCG	
152		AAAAAGAATTC-	Pst I
132	roiwaid	ATGAAAAACAAAACCAAAGTCTGGGACCTCCC	Eco RI
	Reverse	AAAAACTGCAG-TCAGGACAGGAGCAGGATGGCGGC	Det I
153		AAAAAGAATTC-ATGGCGTTTGCTTACGGTATGAC	Pst I
133		AAAAACTGCAG-TCAGTCATGTTTTTCCGTTTCATT	Eco RI
1532		AAAAAAGAATTC-CGGACTTCGGTATCGCTTCCCCAGCATTG	Pst I
1334		AAAAACTGCAG-	Eco RI
	Reverse	TTACGCCGACGAAATACTCAGACTTTTCGG	Pst I
154	Forward	CGCGGATCCCATATG-ACTGACAACAGCCC	BamHI-
		TOTOMOMICAGO	NdeI
ĺ	Reverse	CCCGCTCGAG-TCGGCTTCCTTTCGGG	XhoI
155		AAAAAAGAATTC-ATGAAAATCGGTATCCCACGCGAGTC	Eco RI
•		AAAAAACTGCAG-TTACCCTTTCTTAAACATATTCAGCAT	Pst I
156		AAAAAGAATTC-GCACAGCAAAACGGTTTTGAAGC	Eco RI
		AAAAACTGCAG-TCAAGCAGCCGCGACAAACAGCCC	Pst I
157		CGCGGATCCCATATG-AGGAACGAGGAAAAAC	BamHI-
1			Ndel
	Reverse	CCCGCTCGAG-AAAACACAATATCCCCGC	XhoI
158	Forward	AAAAAAGAATTC-GCGGAGCAGTTGGCGATGGCAAATTCTGC	
	Reverse	AAAAAATCTAGA-TTATCCACAGAGATTGTTTCCCAGTTC	Xba Ï
160	Forward	CGCGGATCCCATATG-GACATTCTGGACAAAC	BamHI-
			NdeI
1		CCCGCTCGAG-TTTTTGCCCGCCTTCTTT	XhoI
163	Forward	AAAAAAGGTACC-ACCGTGCCGGATCAGGTGCAGATGTG	Kpn I
		AAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTG	Xba I
163a		AAAAAAGAATTC-CGGCTGGTGCAGATAATGAGCCAGAC	Eco RI
		AAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTG	Xba I
164	Forward	CGCGGATCCCATATG-AACCGGACTTATGCC	BamHI-
	_		NdeI
		CCCGCTCGAG-TTTGTTTCCGTCAAACTGC	XhoI
165	Forward	CGCGGATCCGCTAGC-GCTGAAGCGACAGACG	BamHI-
	Deverse	CCCGCTCGAG-AATATCCAATACTTTCGCG	NheI
206			XhoI
200	1 OI WAILU	CGCGGATCCCATATG-AAACACCGCCAACCGA	BamHI-
	Reverse	CCCGCTCGAG-TTCTGTAAAAAAAGTATGTGC	NdeI
209		CGCGGATCCCATATG-CTGCGGCATTTAGGA	XhoI
			BamHI- NdeI
<u> </u>			TAGET

	Parama CCCCCTCC 10 Th CCCCT	
211	Reverse CCCGCTCGAG-TACCCCTGAAGGCAAC	XhoI
211	Toward 12 22 22 25 25 11 COOOT I GCI GCI GC	Eco RI
	Reverse AAAAAACTGCAG-CTATCCTGCGGATTGGCATTGAAA	Pst I
212	Forward CGCGGATCCCATATG-GACAATCTCGTATGG	BamHI-
-		NdeI
1	Reverse CCCGCTCGAG-AGGGGTTAGATCCTTCC	XhoI
215	Forward CGCGGATCCCATATG-GCATGGTTGGGTCGT	BamHI-
	200000000000000000000000000000000000000	NdeI
	Reverse CCCGCTCGAG-CATATCTTTTGTATCATAAATC	XhoI
216	Forward CGCGGATCCCATATG-GCAATGGCAGAAAACG	BamHI-
	D. COCCOTTON OF THE	NdeI
	Reverse CCCGCTCGAG-TACAATCCGTGCCGCC	XhoI
217	Forward CGCGGATCCCATATG-GCGGATGACGGTGTG	BamHI-
	The Concentration of the Conce	NdeI
210	Reverse CCCGCTCGAG-ACCCCGAATATCGAATCC	XhoI
218	Forward CGCGGATCCCATATG-GTCGCGGTCGATC	BamHI-
-	D	NdeI
210	Reverse CCCGCTCGAG-TAACTCATAGAATCCTGC	$\mathbf{X}$ ho $\mathbf{I}$
219	Forward CGCGGATCCGCTAGC-ACGGCAAGGTTAAG	BamHI-
	Parione CCCCCTCCAC TTTA A A CC A TOTA	NheI
222	Reverse CCCGCTCGAG-TTTAAACCATCTCCTCAAAAC	XhoI
223	Forward CGCGGATCCCATATG-GAATTCAGGCACCAAGTA	BamHI-
	Reverse CCCGCTCGAG CCCTTCGGGGGGTGTG	NdeI
225	Reverse CCCGCTCGAG-GGCTTCCCGCGTGTC	$\mathbf{X}$ ho $\mathbf{I}$
223	Forward CGCGGATCCCATATG-GACGAGTTGACCAACC	BamHI-
	Reverse CCCGCTCGAG-GTTCAGAAAGCGGGAC	NdeI
226	Forward AAAGAATTC-CTTGCGATTATCGTGCGCACGCG	XhoI
220	Peverse AAACTCCAC TCAAAATCCGCACACCCC	Eco RI
228	Reverse AAACTGCAG-TCAAAATCCCAAAACGGGGAT	Pst I
220	Forward CGCGGATCCCATATG-TCGCAAGAAGCCAAACAG	BamHI-
	Reverse CCCGCTCGAG-TTTGGCGGCATCTTTCAT	Ndel
229	Forward CGCGGATCCCATATC CAACACCTTTTCAT	XhoI
22)	Forward CGCGGATCCCATATG-CAAGAGGTTTTGCCC	BamHI-
	Reverse CCCGCTCGAG-ACACAATATAGCGGATGAAC	NdeI
230	Forward CGCGGATCCCATATG-CATCCGGGTGCCGAC	XhoI
	Torward CocoddAteceAtAto-CAtecoggigCegAe	BamHI-
	Reverse CCCGCTCGAG-AAGTTTGGCGGCTTCGG	Ndel
232	Forward AAAAAAGAATTC-ATGTACGCTAAAAAAGGCGGTTTGGG	XhoI
	Reverse AAAAAACTGCAG-TCAAGGTTTTTCCTGATTGCCGCCGC	Eco RI
232a	Forward AAAAAAGAATTC-GCCAAGGCTGCCGATACACAAATTGA	Pst I
	Reverse AAAAAACTGCAGTTAAACATTCTCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCTTCCTTCCTTCCTTTCCTTCCTTCCTTCCTTCCTTCCTTTCCTTCCTTCCTTCCTTCCTTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTTCTC	Eco RI
233	Reverse AAAAAACTGCAG-TTAAACATTGTCGTTGCCGCCCAGATG Forward CGCGGATCCCATATG CCCCAGAAACGCAAA	Pst I
	Forward CGCGGATCCCATATG-GCGGACAAACCCAAG	BamHI-
	Reverse CCCGCTCGAG-GACGGCATTGAGCAG	NdeI
234	Forward CGCGGATCCCATATG-GCCGTTTCACTGACCG	XhoI
	TOWARD COOL OF THE CONTROL OF THE CO	BamHI-

Reverse CCCGCTCGAG-ATGGGCTGCCAAGTTCAAA  Reverse CCCGCTCGAG-TTTGGGCTGCTCTTC  236 Forward CGCGGATCCCATATG-GCGCGTTTCGCCTT  Reverse CCCGCTCGAG-ATGGGTCGCGCGCGCT  238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  Reverse CCCGCTCGAG-AACGCCTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  240 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  241 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	d III nHI- el bl
Reverse CCCGCTCGAG-ATGGCCTGCCAAGTTCAAA  Reverse CCCGCTCGAG-TTTGGGCTGCTCTTC  236 Forward CGCGGATCCCATATG-GCGCGTTTCGCCTT  Reverse CCCGCTCGAG-ATGGGTCGCGCGCGT  238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  Reverse CCCGCTCGAG-AACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	nHI- eI oI
Reverse CCCGCTCGAG-TTTGGGCTGCTCTTC  236 Forward CGCGGATCCCATATG-GCGCGTTTCGCCTT  Reverse CCCGCTCGAG-ATGGGTCGCGCGCCGT  238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	el ol oHI- el oHI- el ol
Reverse CCCGCTCGAG-TTTGGGCTGCTCTTC  236 Forward CGCGGATCCCATATG-GCGCGTTTCGCCTT  Reverse CCCGCTCGAG-ATGGGTCGCGCGCGCGT  238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-GAATGCCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGCCAGG  Reverse GCCCAAGCTT-ACCGATACGCCAGG  Reverse GCCCAAGCTT-ACCGATACGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	ol nHI- el ol nHI- el ol RI- el ol nHI- el el
236 Forward CGCGGATCCCATATG-GCGCGTTTCGCCTT  Reverse CCCGCTCGAG-ATGGGTCGCGCGCGT  238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  241 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	nHI- EI OI nHI- EI OI RI- EI EI EI EI
Reverse CCCGCTCGAG-ATGGGTCGCGCGCGT  238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  243 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  244 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	el ol oHI- el ol RI- el ol ol ol ol ol ol ol ol ol ol ol ol ol
Reverse CCCGCTCGAG-ATGGGTCGCGCGCGCGT  238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  About CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  Acelerate CCCGCTCGAG-CAACGCCCTGTAATTAATC  Acelerate CCCGCTCGAG-GAATGCGCCTGTAATTAATC  Acelerate CCCGCTCGAG-GAATGCGCCTGTAATGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGCGGTCGGTCGGTCGGTCGGTCGGTCGGGTCGGTCGGGT	ol nHI- ol RI- ol ol nHI- ol I RI-
238 Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG  Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  243 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  AND Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  AND Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	nHI- sI RI- sI sI nHI- I I RI- I
Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	ol RI- ol ol ol ol ol ol ol ol ol ol ol ol ol
Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG  239 Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  About 1985  About 1985  Bam Ndel Ndel Ndel Ndel Ndel Ndel Ndel Ndel	oI RI- oI oHI- oI oI oI oI
Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG  Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  Reverse CCCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  Aho  Reverse CCCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  Aho  Reverse CCCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	RI- I I nHI- I I RI- I
Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  Nde Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	il ol oHI- il il RI- I
Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG  240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	ol nHI- I I RI- I
240 Forward CGCGGATCCCATATG-GACGTTGGACGATTTC  Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  And Company of the Company of t	nHI- I I I RI- I
Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Ndel Ndel Ndel Ndel Ndel Ndel Ndel	I I RI- I
Reverse CCCGCTCGAG-AAACGCCATTACCCGATG  241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	oI RI- I
241 Forward CCGGAATTCTACATATG-CCAACACGTCCAACT  Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  State of the control of the co	RI- I
Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	Ι
Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC  242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Show the company of the c	
242 Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG  Bam Ndel Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Hind	\
Reverse GCCCAAGCTT-ACCGATACGGTCGCAG  Ndel	
Reverse GCCCAAGCTT-ACCGATACGGTCGCAG Hind	
243 Forward CGCGGATCCCATATG-ACGATTTTTTCGATGCTGC Bam	
Ndel	
Reverse CCCGCTCGAG-CGACTTGGTTACCGCG Xhol	
244 Forward CGCGGATCCCATATG-CCGTCTGAAGCCC Bam	
Ndel	
Reverse CCCGCTCGAG-TTTTTCGGTAGGGGATTT Xhol	
246 Forward CGCGGATCCCATATG-GACATCGGCAGTGC Bam	
Ndel	
Reverse CCCGCTCGAG-CCCGCGCTGCTGGAG Xhol	I
247 Forward CGCGGATCCCATATG-GTCGGATCGAGTTAC Bam	HI-
Ndel	]
Reverse CCCGCTCGAG-AAGTGTTCTGTTTGCGCA Xhol	I
248 Forward CGCGGATCCCATATG-CGCAAACAGAACACT Bam	HI-
NdeI	]
Reverse CCCGCTCGAG-CTCATCATTATTGCTAACA Xhol	[
249 Forward CGCGGATCCCATATG-AAGAATAATGATTGCTTC Bam	HI-
NdeI	[
Reverse CCCGCTCGAG-TTCCCGACCTCCGAC XhoI	[
251 Forward CGCGGATCCCATATG-CGTGCTGCGGTAGT Bami	
Ndel Reverse CCCGCTCGAG-TACGAAAGCCGGTCGTG Yhol	
253 Forward AAAAAAAATTC ATCATTCACACAAAAAAAAAAAATTC	
Powers AAAAAACTCCAC TTATTCCTCTTTTCALLACTATGCTGCTG	- 1
Reverse AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG Pst I	

253	Forward AAAAAAAAATTC AAAATTCCTTTTTC	
255	Forward AAAAAAGAATTC-AAAATCCTTTTGAAAACAAGCGAAAACGG	G Eco RI
254	Reverse AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG	Pst I
234	Torward Turburi Graffic ATGIATACAGGCGAACGCTTCAATAC	Eco RI
055	Reverse AAAAAATCTAGA-TCAGATTACGTAACCGTACACGCTGAC	Xba I
255	Forward CGCGGATCCCATATG-GCCGCGTTGCGTTAC	BamHI-
	Description of the control of the co	NdeI
250	Reverse CCCGCTCGAG-ATCCGCAATACCGACCAG	XhoI
256	Forward CGCGGATCCGCTAGC-TTTTAACACCGCCGGAC	BamHI-
1	Payarea CCCCCTCCAC ACCCCTCTTTTTTTTTTTTTTTTTTTT	NheI
257	Reverse CCCGCTCGAG-ACGCCTGTTTGTGCGG	XhoI
237	Forward CGCGGATCCCATATG-GCGGTTTCTTTCCTG	BamHI-
	Reverse CCCGCTCGAG-GCGCGTGAATATCGCG	NdeI
258		XhoI
238	Forward AAAAAAGAATTC-GATTATTTCTGGTGGATTGTTGCGTTCAG	Eco RI
2580	Reverse AAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
2304	Forward AAAAAAGAATTC-GCGAAGGCGGTGGCGCAAGGCGA	Eco RI
250	Reverse AAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
235	Forward CGCGGATCCCATATG-GAAGAGCTGCCTCCG	BamHI-
	Reverse CCCGCTCGAG-GGCTTTTCCGGCGTTT	NdeI
260		XhoI
-00	Total Coconteccatato-odiocoodiatogi	BamHI-
	Reverse CCCGCTCGAG-AACAGGGCGACACCCT	NdeI
261		XhoI
	Reverse AAAAAACTGCAG-TCAAACCAACAAGCCTTGGTCACT	Eco RI
263	Forward CGCGGATCCCATATG-GCACGTTTAACCGTA	Pst I
	COLLOGITIMECOTA	BamHI- NdeI
	Reverse CCCGCTCGAG-GGCGTAAGCCTGCAATT	XhoI
264		Kpn I
	Reverse AAACTGCAG-TCAGCCGGCGGTCAATACCGCCCG	Pst I
265		Eco RI
	Reverse AAAAAACTGCAG-TTACGAATACGTCGTCAAAATGGG	Pst I
266	Forward AAAGAATTC-CTCATCTTTGCCAACGCCCCCTTC	Eco RI
	Reverse AAACTGCAG-CTATTCCCTGTTGCGCGTGTGCCA	Pst I
267	Forward AAAGAATTC-TTCTTCCGATTCGATGTTAATCG	Eco RI
ļ	Reverse AAACTGCAG-TTAGTAAAAACCTTTCTGCTTGGC	Pst I
269	Forward AAAGAATTC-TGCAAACCTTGCGCCACGTGCCC	Eco RI
	Reverse AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
269a	Forward AAAAAAGAATTC-GACTTTATCCAAAACACGGCTTCGCC	Eco RI
	Reverse AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
270	Forward AAAGAATTC-GCCGTCAAGCTCGTTTTGTTGCAATG	Eco RI
	Reverse AAACTGCAG-TTATTCGGCGGTAAATGCCGTCTG	Pst I
271	Forward CGCGGATCCCATATG-CCTGTGTGCAGCTCGAC	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TCCCAGCCCCGTGGAG	XhoI

272	Engreed	AAAGAATTC-ATGACCGCAAAGGAAGAACTGTTCGC	
2/2			Eco RI
0.70		AAACTGCAG-TCAGAGCAGTTCCAAATCGGGGCT	Pst I
273		AAAGAATTC-ATGAGTCTTCAGGCGGTATTTATATACCC	Eco RI
		AAACTGCAG-TTACGCGTAAGAAAAACTGC	Pst I
274	Forward	CGCGGATCCCATATG-ACAGATTTGGTTACGGAC	BamHI-
	D	CCCCTCC A C TTTCCTTTC A CT A TTT A TTTC A CT	NdeI
276		CCCGCTCGAG-TTTGCTTTCAGTATTATTGAA	XhoI
276	rorward	AAAAAAGAATTC-	Eco RI
	Deverse	ATGATTTTGCCGTCGTCCATCACGATGATGCG	
277	Forward	AAAAAACTGCAG-CTACACCACCATCGGCGAATTTATGGC	Pst I
2//	Deriona	AAAAAAGAATTC-ATGCCCCGCTTTGAGGACAAGCTCGTAGG	Eco RI
2770		AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
211a	Porvena	AAAAAAGAATTC-GGGGCGGCGGCTGGGTTGGACGTAGG	Eco RI
270	Forward	AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
2/0	Poverso	AAAAAAGGTACC-GTCAAAGTTGTATTAATCGGGCCTTTGCC	Kpn I
2790		AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
2/04	Portogge	AAAAAAGAATTC-AAAACTCTCCTAATTCGTCATAGTCG	Eco RI
270		AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
219	Forward	CGCGGATCCCATATG-TTGCCTGCAATCACGATT	BamHI-
	Reverse	CCCGCTCGAG-TTTAGAAGCGGGCGGCAA	NdeI
280		AAAAAAGGTACC-GCCCCCTGCCGGTTGTAACCAG	XhoI
200	Reverse	AAAAAACTGCAG-TTATTGCTTCATCGCGTTGGTCAAGGC	Kpn I
281	Forward	AAAAAAGAATTC-GCACCCGTCGGCGTATTCCTCGTCATGCG	Pst I
201	Reverse	AAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAG	Eco RI
281a	Forward	AAAAAAGAATTC-TCCTACCACATCGAAATTCCTTCCGG	Xba I
		AAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAG	Eco RI
282	Forward	AAAAAAGAATTC-CTTTACCTTGACCTGACCAACGGGCACAG	Xba I
202	Reverse	AAAAAACTGCAG-TCAACCTGCCAGTTGCGGGAATATCGT	Eco RI
283		CGCGGATCCCATATG-GCCGTCTTTACTTGGAAG	Pst I
	1 01	-decertification	BamHI- NdeI
	Reverse	CCCGCTCGAG-ACGGCAGTATTTGTTTACG	XhoI
284		CGCGGATCCCATATG-TTTGCCTGCAAAAGAATCG	BamHI-
			NdeI
		CCCG <u>CTCGAG</u> -CCGACTTTGCAAAAACTG	XhoI
286	Forward	CGCGGATCCCATATG-GCCGACCTTTCCGAAAA	BamHI-
	_		NdeI
		CCCGCTCGAG-GAAGCGCGTTCCCAAG	XhoI
287	Forward	CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG	EcoRI-
	D	CCCCCTCC A C. A TCCCTCC CTCCTCC	NheI
200		CCCGCTCGAG-ATCCTGCTCTTTTTTGCC	XhoI
288	rorward	CGC <u>GGATCCCATATG</u> -CACACCGGACAGG	BamHI-
	Reverse	CCCGCTCGAG-CGTATCAAAGACTTGCGT	NdeI
290		CGCGGATCCCATATG-GCGGTTTGGGGCGGA	XhoI
	10144110	OCCUSATION OF THE OCCUSATION O	BamHI-

	Reverse CCCGCTCGAG-TCGGCGCGGCGGCC	NdeI
292		$\mathbf{X}$ ho $\mathbf{I}$
	Tornald Cocadantecentary-rocodocaaacoccc	BamHI-
	Reverse CCCGCTCGAG-TTGATTTTTGCGGATGATTT	Ndel
294		XhoI
	Reverse AAAAAACTGCAG-TTACCAGCTGATATAAAACATCGCTTT	Eco RI
295	Forward CGCGGATCCCATATG-AACCGGCCGGCCTCC	Pst I
	121000000000000000000000000000000000000	BamHI- NdeI
	Reverse CCCGCTCGAG-CGATATTTGATTCCGTTGC	XhoI
297		Eco RI
1	Reverse AAAAAACTGCAG-TCAATCCGATTGCGACACGGT	Pst I
298	Forward AAAAAAGAATTC-CTGATTGCCGTGTGGTTCAGCCAAAACCC	Eco RI
	Reverse AAAAAACTGCAG-TCATGGCTGTGTACTTGATGGTTGCGT	Pst I
299	Forward CGCGGATCCGCTAGC-CTACCTGTCGCCTCCG	BamHI-
		NheI
	Reverse CCCGCTCGAG-TTGCCTGATTGCAGCGG	XhoI
302	TOTALE TERRETION TO ATTOM TO A A COCCA	Eco RI
	Reverse AAAAAACTGCAG-TTAAGGTGCGGGATAGAATGTGGGCGC	Pst I
305	Forward AAAAAAGGTACC-GAATTTTTACCGATTTCCAGCACCGGA	Kpn I
	Reverse AAAAAACTGCAG-TCATTCCCAACTTATCCAGCCTGACAG	Pst I
305a	Forward AAAAAAGGTACC-TCCCGTTCGGGCAGTACGATTATGGG	Kpn I
205	Reverse AAAAAACTGCAG-TTACAAACCGACATCATGCAGGGTGAA	Pst I
306	Forward CGCGGATCCCATATG-TTTATGAACAAATTTTCCC	BamHI-
	Parama CCCCCTCCAC CCCCATTCCCAC	Ndel
308	Reverse CCCGCTCGAG-CCGCATCGGCAGAC	XhoI
300	Forward CGCGGATCCCATATG-TTAAATCGGGTATTTTATC	BamHI-
	Reverse CCCGCTCGAG-ATCCGCCATTCCCTGC	NdeI
311	Forward AAAAAAGGTACC-ATGTTCAGTTTTGGCTGGGTGTTT	XhoI
	Reverse AAACTGCAG-ATGTTCATATTCCCTGCCTTCGGC	Kpn I
312	Forward AAAAAAGGTACC-ATGAGTATCCCATCCGGCGAAATT	Pst I
	Reverse AAACTGCAG-TCAGTTTTCATCGATTGAACCGG	Kpn I
313	Forward AAAAAAGAATTC-ATGGACGACCCGCGCACCTACGGATC	Pst I
	Reverse AAAAAACTGCAG-TCAGCGGCTGCCGCCGATTTTGCT	Eco RI
401	Forward CGCGGATCCCATATG-AAGGCGGCAACACAGC	Pst I
	THE THE SECOND PRODUCTION OF THE SECOND PRODUC	BamHI-
	Reverse CCCGCTCGAG-CCTTACGTTTTTCAAAGCC	NdeI XhoI
402	Forward AAAAAAAATTC CTCCCTCA CCCA TTTTTTTTTTTT	Eco RI
	Reverse AAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
402a	Forward AAAAAAGAATTC-AGGCTGATTGAAAACAAACACGG	Eco RI
	Reverse AAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
406	Forward CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-AGGTTGTCCTTGTCTATG	XhoI

501	Forward CGCGGATCCCATATG-GCAGGCGGAGATGGC	
301	Tolward Cocooxiccexixio-ocxoocooxigatogc	BamHI-
	Reverse CCCGCTCGAG-GGTGTGATGTTCACCC	NdeI
502	Forward CGCGGATCCCATATG-GTAGACGCGCTTAAGCA	XhoI
302	Folward COCOGATCCCATATO-GTAGACGCGCTTAAGCA	BamHI-
1	Reverse CCCGCTCGAG-AGCTGCATGGCGGCG	NdeI
503		XhoI
303	Forward CGCGGATCCCATATG-TGTTCGGGGAAAGGCG	BamHI-
	Reverse CCCGCTCGAG-CCGCGCATTCCTCGCA	NdeI
504		XhoI
304	Forward CGCGGATCCCATATG-AGCGATATTGAAGTGACG	BamHI-
	Reverse GCCCAAGCTT-TGATTCAAGTCCTTGCCG	NdeI
505		HindIII
303	Forward CGCGGATCCCATATG-TTTCGTTTACAATTCAGG	BamHI-
	Reverse CCCGCTCGAG-CGGCGTTTTATAGCGG	NdeI
510		$\mathbf{X}$ ho $\mathbf{I}$
310	Forward CGCGGATCCCATATG-CCTTCGCGGACAC	BamHI-
	Reverse CCCGCTCGAG-GCGCACTGGCAGCG	NdeI
512		XhoI
312	Forward CGCGGATCCCATATG-GGACATGAAGTAACGGT	BamHI-
	Reverse CCCGCTCGAG-AGGAATAGCCTTTGACG	Ndel
515		XhoI
313	Forward CGCGGATCCCATATG-GAGGAAATAGCCTTCGA	BamHI-
	Reverse CCCGCTCGAG-AAATGCCGCAAAGCATC	NdeI
516		XhoI
310	Forward CGCGGATCCCATATG-TGTACGTTGATGTTGTGG	BamHI-
	Reverse CCCGCTCGAG-TTTGCGGGCGGCATC	NdeI
517		XhoI
517	Forward CGCGGATCCCATATG-GGTAAAGGTGTGGAAATA	BamHI-
	Reverse CCCGCTCGAG-GTGCGCCCAGCCGT	NdeI
512	Forward AAAGAATTC-GCTTTTTTACTGCTCCGACCGGAAGG	XhoI
310	Reverse AAACTGCAG-TCAAATTTCAGACTCTGCCAC	Eco RI
510		Pst I
319	Forward CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA	BamHI-
	Reverse CCCGCTCGAG-TTTGGCGGTTTTGCTGC	NdeI
520		XhoI
320	Forward CGCGGATCCCATATG-CCTGCGCTTCTTTCA	BamHI-
	Reverse CCCGCTCGAG-ATATTTACATTTCAGTCGGC	NdeI
521		XhoI
321	Forward CGCGGATCCCATATG-GCCAAAATCTATACCTGC	BamHI-
	Reverse CCCGCTCGAG-CATACGCCCCAGTTCC	NdeI
522		XhoI
244	Forward CGCGGATCCCATATG-ACTGAGCCGAAACAC	BamHI-
	Reverse GCCCAAGCTT-TTCTGATTTCAAATCGGCA	NdeI
523	Forward CGCGGATCCCATATG-GCTCTGCTTTCCGCG	HindIII
J 4 J	Toward Cocooniccentato-deferrence CTTTCCGCG	BamHI-
		NdeI

	Payaras CCCCCTCCAC ACCCTOTOTOTO ATTACK	
525	Reverse CCCGCTCGAG-AGGGTGTGTGATAATAAGAAG	XhoI
323	Forward CGCGGATCCCATATG-GCCGAAATGGTTCAAATC	BamHI-
	Reverse CCCGCTCGAG-GCCCGTGCATATCATAAA	NdeI
527	Forward AAAGAATTC TTCCCTCAAATCATAAA	XhoI
321	Torward TEER GIEFFICE CICAATOT IGCCGTTTCG	Eco RI
520	Reverse AAACTGCAG-TTATGCTAAACTCGAAACAAATTC	Pst I
529	Forward CGCGGATCCGCTAGC-TGCTCCGGCAGCAAAAC	BamHI-
	Peyerce GCCCAAGCTT ACCCAGTTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCCAATTCCCAATTCCCCAATTCCCCAATTCCCAATTCCCCAATTCCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCCAATTCCAATTCCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTCCAATTC	NheI
530	Reverse GCCCAAGCTT-ACGCAGTTCGGAATGGAG	HindIII
330	Forward CGCGGATCCCATATG-AGTGCGAGCGCGG	BamHI-
	Reverse CCCGCTCGAG-ACGACCGACTGATTCCG	NdeI
531		XhoI
	THE PROPERTY OF THE CONTROL OF THE C	Eco RI
532	Reverse AAAAAACTGCAG-TTAAAACAGCGCCGTGCCGACGACAAG	Pst I
332	TO WARE THE HELD IN CONTINUE OF THE CONTINUE O	Eco RI
5329	Reverse AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
) J J Z a	Forward AAAAAAGAATTC-TTGGGTGTCGCGTTTGAGCCGGAAGT	Eco RI
535	Reverse AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
	1 STWARD THE STREET THE COURT TO CAGAC	Eco RI
537	Reverse AAACTGCAG-TCAGACGACCCCGCCTTCCCC	Pst I
337	Forward CGCGGATCCCATATG-CATACCCAAAACCAATCC	BamHI-
	Reverse CCCGCTCGAG-ATCCTGCAAATAAAGGGTT	NdeI
538	Forward CGCGGATCCCATATG-GTCGAGCTGGTCAAAGC	XhoI
	Tornua GGGGGTCCCATATG-GTCGAGCTGGTCAAAGC	BamHI-
	Reverse CCCGCTCGAG-TGGCATTTCGGTTTCGTC	NdeI
539	Forward CGCGGATCCGCTAGC-GAGGATTTGCAGGAAA	XhoI
	SINGLITI TOCHOGAAA	BamHI- NheI
	Reverse CCCGCTCGAG-TACCAATGTCGGCAAATC	XhoI
542	Forward AAAGAATTC-ATGCCGTCTGAAACCGTGTC	Eco RI
	Reverse AAACTGCAG-TTACCGCGAACCGGTCAGGAT	Pst I
543	Forward AAAAAAGAATTC-GCCTTCGATGGCGACGTTGTAGGTAC	Eco RI
	Reverse AAAAAATCTAGA-	Xba I
	TTAATGAAGAAGAACATATTGGAATTTTGG	Abal
543a	Forward AAAAAAGAATTC-GGCAAAACTCGTCATGAATTTGC	Eco RI
	Reverse AAAAAATCTAGA-	Xba I
	TTAATGAAGAACATATTGGAATTTTGG	7104 1
544	Forward AAAGAATTC-GCGCCCGCCTTCTCCCTGCCCGACCTGCACGG	Eco RI
	Reverse AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT	Pst I
544a	Forward AAAAAGAATTC-	Eco RI
	GCAAATGACTATAAAAACAAAAACTTCCAAGTACTTGC	<b></b>
5 A T	Reverse AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT	Pst I
34/	Forward AAAGAATTC-ATGTTCGTAGATAACGGATTTAATAAAAC	Eco RI
<i>5 4</i> 0	Reverse AAACTGCAG-TTAACAACAAAAAAAAAACGCTT	Pst I
348	Forward AAAGAATTC-GCCTGCAAACCTCAAGACAACAGTGCGGC	1
340	FORWARD AAAGAATTC-GCCTGCAAACCTCAAGACAACAGTGCGGC	Eco RI

	Reverse	AAACTGCAG-TCAGAGCAGGGTCCTTACATCGGC	Pst I
550		AAAAAGTCGAC-	Sal I
		ATGATAACGGACAGGTTTCATCTCTTTCATTTTCC	Saii
	Reverse	AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
550a		AAAAAGAATTC-GTAAATCACGCCTTTGGAGTCGCAAACGG	Foo DI
	Reverse	AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
552		AAAAAGAATTC-TTGGCGCGTTGGCTGGATAC	
		AAACTGCAG-TTATTTCTGATGCCTTTTCCCAAC	Eco RI
554		CGCGGATCCCATATG-TCGCCCGCGCCCAAC	Pst I
334	TOTWING	- COCCOCCAAC	BamHI-
	Reverse	CCCGCTCGAG-CTGCCCTGTCAGACAC	NdeI
556		AAAGAATTC-GCGGGCGGTTTTGTTTGGACATCCCG	XhoI
		AAACTGCAG-TTAACGGTGCGGACGTTTCTGACC	Eco RI
557		CGCGGATCCCATATG-TGCGGTTTCCACCTGAA	Pst I
33 /	1 of ward	ede <u>ddateeeatatu</u> -tdeddiffeeaccigaa	BamHI-
	Reverse	CCCGCTCGAG-TTCCGCCTTCAGAAAGG	Ndel
558		AAAGAATTC-GAGCTTTATATGTTTCAACAGGGGACGGC	XhoI
		AAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	Eco RI
558a		AAAAAAGAATTC-ATTAGATTCTATCGCCATAAACAGACGGG	Pst I
Jour	Reverse	AAAAAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	
560		AAAAAAGAATTC-	Pst I
300	1 of ward	TCGCCTTTCCGGGACGGGGCGCACAAGATGGC	Eco RI
	Reverse	AAAAAACTGCAG-TCATGCGGTTTCAGACGGCATTTTGGC	Pst I
561	Forward	CCGGAATTCTACATATG-ATACTGCCAGCCCGT	EcoRI-
		mordeendeed1	NdeI
	Reverse	CCCGCTCGAG-TTTCAAGCTTTCTTCAGATG	XhoI:
562		CGCGGATCCCATATG-GCAAGCCCGTCGAG	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AGACCAACTCCAACTCGT	XhoI
565	Forward	CGCGGATCCCATATG-AAGTCGAGCGCGAAATAC	BamHI-
			NdeI
		CCCGCTCGAG-GGCATTGATCGGCGGC	XhoI
566	Forward	CGC <u>GGATCCCATATG</u> -GTCGGTGGCGAAGAGG	BamHI-
	<b>D</b>	CCCCCTTCC + C CCC + T T T T T T T T T T	NdeI
		CCCGCTCGAG-CGCATGGGCGAAGTCA	XhoI
567	Forward	CCGGAATTCTACATATG-AGTGCGAACATCCTTG	EcoRI-
	D	CCCCCTCC A C TTTTCCCCCC A C C C C C C C	NdeI
540		CCCGCTCGAG-TTTCCCCGACACCCTCG	XhoI
568	rorward	CGC <u>GGATCCCATATG</u> -CTCAGGGTCAGACC	BamHI-
	Reverse	CCCGCTCGAG-CGGCGCGCGTTCAG	NdeI
569		AAAAAAGAATTC-CTGATTGCCTTGTGGGAATATGCCCG	XhoI
	Reverse	AAAAAACTGCAG-TTATGCATAGACGCTGATAACGGCAAT	Eco RI
570	Forward	CGCGGATCCCATATG GACACCTTCCAAAAAAATCC	Pst I
210	Loiward	,	BamHI-
	Reverse	CCCGCTCGAG-GCGGGCGTTCATTTCTTT	NdeI
			XhoI

571	Forward AAAAAAGAATTC-	
	ATGGGTATTGCCGGCGCCGTAAATGTTTTGAACCC	Eco RI
	Reverse AAAAAACTGCAG-TTATGGCCGACGCGCGCTACCTGACG	
572	Forward CGCGGATCCCATATG-GCGCAAAAAGGCAAAACC	Pst I
	TOWARD OGO <u>GGATECCATATO</u> -OCGCAAAAGGCAAAACC	BamHI-
	Reverse CCCGCTCGAG-GCGCAGTGTGCCGATA	Ndel
573		XhoI
	Total Total Transfer College Transfer Co	BamHI-
	Reverse CCCGCTCGAG-GACGGTGTCATTTCGCC	NdeI
574		XhoI
	- Total and the state of the st	BamHI-
1	Reverse CCCGCTCGAG-AACTTCGATTTTATTCGGG	NdeI
575		XhoI
	<u> </u>	BamHI-
	Reverse CCCGCTCGAG-CATTCCGAATCTGAACAG	NdeI
576	Forward CGCGGATCCCATATG-GCCGCCCCGCATCT	XhoI
		BamHI-
İ	Reverse CCCGCTCGAG-ATTTACTTTTTTGATGTCGAC	NdeI XhoI
577		BamHI-
		NdeI
	Reverse CCCGCTCGAG-AGGCTGTTTGGTAGATTCG	XhoI
578	Forward CGCGGATCCCATATG-AGAAGGTTCGTACAG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-GCCAACGCCTCCACG	XhoI
579	Forward CGCGGATCCCATATG-AGATTGGGCGTTTCCAC	BamHI-
		Ndel
500	Reverse CCCGCTCGAG-AGAATTGATGATGTTATGT	XhoI
580	Forward CGCGGATCCCATATG-AGGCAGACTTCGCCGA	BamHI-
	Perverse CCCCCTCCAC CACTTTCCCCCC	NdeI
581	Reverse CCCGCTCGAG-CACTTCCCCCGAAGTG	XhoI
361	Forward CGCGGATCCCATATG-CACTTCGCCCAGC	BamHI-
	Reverse CCCGCTCGAG-CGCCGTTTGGCTTTGG	NdeI
582	Forward AAAAAAAATTC TTTCCAAAAATTC	XhoI
302	Forward AAAAAAGAATTC-TTTGGAGAGACCGCGCTGCAATGCGC	Eco RI
583	Reverse AAAAAATCTAGA-TCAGATGCCGTCCCAGTCGTTGAA Forward AAAAAAAGAATTC ACTCGGGGGAATTGAGATGCCGTCGTTGAA	Xba I
203	Forward AAAAAAGAATTC-ACTGCCGGCAATCGACTGCATAATCG	Eco RI
584	Reverse AAAAAACTGCAG-TTAACGGAGGTCAATATGATGAAATTG Forward AAAAAAGAATTC-	Pst I
204		Eco RI
	GCGGCTGAAGCATTGAATTACAATATTGTC	
585	Reverse AAAAAACTGCAG-TCAGAACTGAACCGTCCCATTGACGCT	Pst I
200	Forward AAAAAAGGTACC-TCTTTCTGGCTGGTGCAGAACACCCTTGC	Eco RI
586	Reverse AAAAAACTGCAG-TCAGTTCGCACTTTTTTCTGTTTTTGGA	Pst I
200	Forward CGCGGATCCCATATG-GCAGCCCATCTCG	BamHI-
	Reverse CCCGCTCGAG-TTTCAGCGAATCAAGTTTC	NdeI
587	Forward CGCGGATCCCATATG-GACCTGCCCTTGACGA	XhoI
		BamHI-

		CCCCCTCC A C A A ATTOTA TO COMPANY OF COMPANY	NdeI
500		CCCGCTCGAG-AAATGTATGCTGTACGCC	XhoI
588		AAAAAGAATTC-GCCGTCCTGACTTCCTATCAAGAACCAGG	Eco RI
		AAAAAACTGCAG-TTATTTGTTTTTTGGGCAGTTTCACTTC	Pst I
589	Forward	AAAAAGAATTC-	Eco RI
	ъ	ATGCAACAAAAATCCGTTTCCAAATCGAAGG	
		AAAAAACTGCAG-CTAATCGATTTTTACCCGTTTCAGGCG	Pst I
590		AAAAAAGAATTC-ATGAAAAAACCTTTGATTTCAGTTGCGGC	Eco RI
		AAAAAACTGCAG-TTACTGCTGCGGCTCTGAAACCAT	Pst I
591		AAAAAAGAATTC-CACTACATCGTTGCCAGATTGTGCGG	Eco RI
ļ		AAAAAACTGCAG-CTAACCGAGCAGCCGGGTAACGTCGTT	Pst I
592a		AAAAAAGAATTC-CGCGATTACACCGCCAAGCTGAAAATGGG	Eco RI
		AAAAAACTGCAG-TTACCAAACGTCGGATTTGATACG	Pst I
593	Forward	CGCGGATCCGCTAGC-CTTGAACTGAACGGACTC	BamHI-
	_	CCCCCMCC LO CCCC LA CCCC LA CCCC	NheI
504		CCCGCTCGAG-GCGGAAGCGGACGATT	XhoI
594a		AAAAAAGAATTC-GGTAAGTTCGCCGTTCAGGCCTTTCA	Eco RI
		AAAAAACTGCAG-TTACGCCGCCGTTTCCTGACACTCGCG	Pst I
595		AAAAAAGAATTC-TGCCAGCCGCCGGAGGCGGAGAAAGC	Eco RI
		AAAAAACTGCAG-TTATTTCAAGCCGAGTATGCCGCG	Pst I
596	Forward	CGCGGATCCCATATG-TCCCAACAATACGTC	BamHI-
	<b>D</b>	CCCCCTCC A C A CCCCTT A CCCCTTT A CCCCTTT CT	NdeI
507		CCCGCTCGAG-ACGCGTTACCGGTTTGT	XhoI
39/	Forward	CGCGGATCCCATATG-CTGCTTCATGTCAGC	BamHI-
	Reverse	GCCCAAGCTT-ACGTATCCAGCTCGAAG	Ndel
601		CGCGGATCCCATATG-ATATGTTCCCAACCGGCAAT	HindIII
001	1 OI Wald	COCOCATOCCATATO ATATOTTCCCAACCGGCAAT	BamHI-
	Reverse	CCCGCTCGAG-AAAACAATCCTCAGGCAC	NdeI XhoI
602		CGCGGATCCGCTAGC-TTGCTCCATCAATGC	BamHI-
		1100100M10C	NheI
	Reverse	CCCGCTCGAG-ATGCAGCTGCTAAAAGCG	XhoI
603		AAAAAAGAATTC-CTGTCCTCGCGTAGGCGGGGACGGG	Eco RI
		AAAAAACTGCAG-CTACAAGATGCCGGCAAGTTCGGC	Pst I
604		CGCGGATCCGCTAGC-CCCGAAGCGCACTT	BamHI-
			NheI
	Reverse	CCCGCTCGAG-GACGGCATCTGCACGG	XhoI
606a	Forward	AAAAAAGAATTC-CGCGAATACCGCGCCGATGCGGCGC	Eco RI
		A A A A A CTCCA C MT A A CCCA CTTCA	Pst I
607		A A A A A C A A TTTG A TTGGTTGGTTGGT GGTTGGT G	Eco RI
		A A A A A A COCCA C MCA CA COCCACTO A TOTAL TOTA	Pst I
608		A A A A A C A A TTC A TCTCCCCCCCCCCCCCC	Eco RI
	Reverse	AAAAAACTGCAG-TTAGTCTATCCAAATGTCGCGTTC	Pst I
609	Forward	CCCCCATATC CTTCTCCATACACTCC	BamHI-
			Ndel
			Indel

	Reverse CCCGCTCGAG-CTGGATTATGATGTCTGTC	
610	Forward CCCCGATCCCATATC ATTCCA CCCCTT - TO CA	XhoI
010	Forward CGCGGATCCCATATG-ATTGGAGGGCTTATGCA	BamHI-
	Powers CCCCCTCCAC ACCCTTTCA ACATTTCA	NdeI
611	Reverse CCCGCTCGAG-ACGCTTCAACATCTTTGCC	XhoI
011	Forward CGCGGATCCCATATG-CCGTCTCAAAACGGG	BamHI-
	Payers CCCCCTCCAC AACCACTTTTCA	NdeI
613	Reverse CCCGCTCGAG-AACGACTTTGAACGCGCAA	XhoI
013	Forward CGCGGATCCCATATG-TCGCGTTCGAGCCG3	BamHI-
}	Possesso CCCCCTCCAC ACCCTCT	NdeI
614	Reverse CCCGCTCGAG-AGCCTGTAAAATAAGCGGC	XhoI
014	Forward CGCGGATCCCATATG-TCCGTCGTGAGCGGC	BamHI-
	Payrama CCCCCTCCAC CCATA CTCCCCCCC	NdeI
616	Reverse CCCGCTCGAG-CCATACTGCGGCGTTC	XhoI
616	Forward AAAAAAGAATTC-ATGTCAAACACAATCAAAATGGTTGTCGG	Eco RI
C10	Reverse AAAAAATCTAGA-TTAGTCCGGGCGGCAGGCAGCTCG	Xba I
619a	Forward AAAAAAGAATTC-GGGCTTCTCGCCGCCTCGCTTGC	Eco RI
	Reverse AAAAAACTGCAG-TCATTTTTTGTGTTTTTAAAACGAGATA	Pst I
622	Forward CGCGGATCCCATATG-GCCGCCCTGCCTAAAG	BamHI-
	D	NdeI
	Reverse CCCGCTCGAG-TTTGTCCAAATGATAAATCTG	XhoI
624	Forward CGCGGATCCCATATG-TCCCCGCGCTTTTACCG	BamHI-
	D. COCCOMOCA SALES	NdeI
C05	Reverse CCCGCTCGAG-AGATTCGGGCCTGCGC	XhoI
625	Forward CGCGGATCCCATATG-TTTGCAACCAGGAAAATG	BamHI-
	Parama CCCCCTCCAC CCCCAA A A A A A A A A A A A	NdeI
607-	Reverse CCCGCTCGAG-CGGCAAAATTACCGCCTT	XhoI
02/a	Forward AAAAAGAATTC-AAAGCAGGCGAGGCAGGCGCGCTGGG	Eco RI
	Reverse AAAAACTGCAG-	Pst I
620	TTACGAATGAAACAGGGTACCCGTCATCAAGGC	
028	Forward AAAAAAGGTACC-GCCTTACAAACATGGATTTTGCGTTC	Kpn I
<b>600</b>	Reverse AAAAAACTGCAG-CTACGCACCTGAAGCGCTGGCAAA	Pst I
629a	Forward AAAAAAGAATTC-GCCACCTTTATCGCGTATGAAAACGA	Eco RI
	Reverse AAAAAACTGCAG-TTACAACACCGCCGTCCGGTTCAAACC	Pst I
630a	Forward AAAAAAGAATTC-GCGGCTTTGGGTATTTCTTTCGG	Eco RI
	Reverse AAAAAACTGCAG-TTAGGAGACTTCGCCAATGGAGCCGGG	Pst I
635	Forward AAAAAAGAATTC-	Eco RI
	ATGACCCAGCGACGGGTCGGCAAGCAAAACCG	
	Reverse AAAAAACTGCAG-TTAATCCACTATAATCCTGTTGCT	Pst I
638	Forward AAAAAAGAATTC-ATGATTGGCGAAAAGTTTATCGTAGTTGG	Eco RI
	Reverse AAAAAACTGCAG-TCACGAACCGATTATGCTGATCGG	Pst I
639	Forward CGCGGATCCCATATG-ATGCTTTATTTTGTTCG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-ATCGCGGCTGCCGAC	XhoI
642	Forward CGCGGATCCCATATG-CGGTATCCGCCGCAAT	BamHI-
		NdeI
	Reverse CCCGCTCGAG-AGGATTGCGGGGCATTA	XhoI

643	Forward	CGCGGATCCCATATG-GCTTCGCCGTCGGCAG	BamHI-
043	1 OI Ward	ede <u>dentedentario</u> -del redecoredocad	Ndel
	Reverse	CCCGCTCGAG-AACCGAAAAACAGACCGC	XhoI '
644		AAAAAGAATTC-	Eco RI
		ATGCCGTCTGAAAGGTCGGCGGATTGTTGCCC	ECO KI
	Reverse	AAAAAATCTAGA-CTACCCGCAATATCGGCAGTCCAATAT	Pst I
645		AAAAAGAATTC-GTGGAACAGAGCAACACGTTAAATCG	Eco RI
		AAAAACTGCAG-CTACGAGGAAACCGAAGACCAGGCCGC	Pst I
647		AAAAAGAATTC-ATGCAAAGGCTCGCCGCAGACGG	Eco RI
		AAAAACTGCAG-TTAGATTATCAGGGATATCCGGTAGAA	Pst I
648		AAAAAGAATTC-	Eco RI
		ATGAACAGGCGCGACGCGCGGATCGAACG	LCO KI
	Reverse	AAAAAACTGCAG-TCAAGCTGTGTGCTGATTGAATGCGAC	Pst I
649		AAAAAAGAATTC-GGTACGTCAGAACCCGCCCACCG	Eco RI
		AAAAAACTGCAG-TTAACGGCGGAAACTGCCGCCGTC	Pst I
650		AAAAAGAATTC-ATGTCCAAAACTCAAAACCATCGC	Eco RI
		AAAAACTGCAG-TCAGACGGCATGGCGGTCTGTTTT	Pst I
652		AAAAAAGGTACC-	Kpn I
		GCTGCCGAAGACTCAGGCCTGCCGCTTTACCG	1cpii i
	Reverse	AAAAAACTGCAG-TTATTTGCCCAGTTGGTAGAATGCGGC	Pst I
653	Forward	AAAAAAGAATTC-GCGGCTTTGCCGGTAATTTTCATCGG	Eco RI
	Reverse	AAAAAACTGCAG-CTATGCCGGTCTGGTTGCCGGCGGCGA	Pst I
656a	Forward	AAAAAAGAATTC-CGGCCGACGTCGTTGCGTCCTAAGTC	Eco RI
	Reverse	AAAAAACTGCAG-CTACGATTTCGGCGATTTCCACATCGT	Pst I
657	Forward	AAAAAAGAATTC-GCAGAATTTGCCGACCGCCATTTGTGCGC	Eco RI
	Reverse	AAAAAACTGCAG-TTATAGGGACTGATGCAGTTTTTTTGC	Pst I
658	Forward	CGCGGATCCCATATG-GTGTCCGGAATTGTG	BamHI-
			NdeI
		CCCGCTCGAG-GGCAGAATGTTTACCGTT	XhoI
661		AAAAAAGAATTC-	Eco RI
		ATGCACATCGGCGGCTATTTTATCGACAACCC	
		AAAAAACTGCAG-TCACGACGTGTCTGTTCGCCGTCGGGC	Pst I
663	Forward	CGC <u>GGATCCCATATG</u> -TGTATCGAGATGAAATT	BamHI-
	Dorrago	CCCCCTCC AC CTA A A A TCCCCCCTCC	NdeI
664		CCCGCTCGAG-GTAAAAATCGGGGCTGC	XhoI
004	rorward	CGC <u>GGATCCCATATG</u> -GCGGCTGGCGCGGT	BamHI-
	Reverse	CCCGCTCGAG-AAATCGAGTTTTACACCAC	NdeI
665		AAAAAAGAATTC-ATGAAATGGGACGAAACGCGCTTCGG	XhoI
		AAAAAACTGCAG-TCAATCCAAAATTTTGCCGACGATTTC	Eco RI
666		AAAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGC	Pst I
	Reverse	AAAAAATCTAGA-TCAGGCGAAGGAGTGCTTGTGGC	Eco RI
667		AAAAAAGAATTC-	Xba I
007		CCGCATCCGTTTGATTTCCATTTCGTATTCGTCCG	Eco RI
	Reverse	AAAAAACTGCAG-TTAATGACACAATAGGCGCAAGTC	Dot I
			Pst I

670a	Reverse Forward	AAAAAAGAATTC-ATGCGCCGCATCATTAAAAAACACCAGCCAAAAAAACTGCAG-TTACAGTATCCGTTTGATGTCGGCAAAAAAAAAA	Eco RI Pst I
	Forward	AAAAAAGAATTC-AAAAACGCTTCGGCGTTTCGTCTTC	Pst I
	Reverse	AAAAAAUAATIU-AAAAAUGUTTUGGCGTTTTCGTCTTC	_
ł	Venerge	AAAAAACTGCAG-	Eco RI
671		TTAGGAGCTTTTGGAACGCGTCGGACTGGC	Pst I
	Forward	CGCGGATCCCATATG-ACCAGCAGGGTAAC	_
1	I OI Wale	-ACCAGCAGGTAAC	BamHI-
	Reverse	CCCGCTCGAG-AGCAACTATAAAAACGCAAG	NdeI XhoI
		CGCGGATCCCATATG-AGGAAAATCCGCACC	Anoi BamHI-
			NdeI
		CCCGCTCGAG-ACGGGATAGGCGGTTG	XhoI
673	Forward	AAAAAAGAATTC-ATGGATATTGAAACCTTCCTTGCAGG	Eco RI
	Reverse	AAAAAACTGCAG-CTACAAACCCAGCTCGCGCAGGAA	Pst I
674	Forward	AAAAAAGAATTC-ATGAAAACAGCCCGCCGCCGTTCCCG	Eco RI
	Reverse	AAAAAACTGCAG-TCAACGGCGTTTGGGCTCGTCGGG	Pst I
675 ]	Forward	CGCGGATCCCATATG-AACACCATCGCCCC	BamHI-
	To	000000000 to	NdeI
		CCCGCTCGAG-TTCTTCGTCTTCAAACTGT	XhoI
0//a 1	rorward	AAAAAAGAATTC-AGACGGCATTCCCGATCAGTCGATTTTGA	Eco RI
600 T	Keverse	AAAAAACTGCAG-TTACGTATGCGCGAAATCGACCGCCGC	Pst I
1 080	rorward	CGCGGATCCGCTAGC-ACGAAGGGCAGTTCGG	BamHI-
1	Reverse	CCCG <u>CTCG</u> AG-CATCAAAAACCTGCCGC	NheI
		AAAAAAGAATTC-ATGACGACGCCGATGGCAATCAGTGC	XhoI
JOI I	Reverse	AAAAAACTGCAG-TTACCGTCTTCCGCAAAAAACAGC	Eco RI
683 F	Forward (	CGCGGATCCCATATG-TGCAGCACACCGGACAA	Pst I
		- TOCAGCACACCOGACAA	BamHI-
F	Reverse (	CCCG <u>CTCGAG</u> -GAGTTTTTTCCGCATACG	NdeI XhoI
		CGCGGATCCCATATG-TGCGGTACTGTGCAAAG	BamHI-
			Ndel
		CCCGCTCGAG-CTCGACCATCTGTTGCG	XhoI
685 F	Forward (	CGCGGATCCCATATG-TGTTTGCTTAATAATAAACATT	BamHI-
т	Danama - <i>(</i>		NdeI
		CCCGCTCGAG-CTTTTTCCCCGCCGCA	XhoI
080 F	corward (	CGCGGATCCCATATG-TGCGGCGGTTCGGAAG	BamHI-
F	Reverse (	CCCG <u>CTCGAG</u> -CATTCCGATTCTGATGAAG	NdeI
		CGCGGATCCCATATG-TGCGACAGCAAAGTCCA	XhoI
· · -		- TOCUACAUCAAAGICCA	BamHI-
R	Reverse (	CCCGCTCGAG-CTGCGCGGCTTTTTGTT	Ndel
		CCCGATCCCATATC	XhoI BamHI-
			NdeI
R	Reverse C	CCGCTCGAG-TATTCGCCCCGTGTTTGG	XhoI
691 F	forward C	CGCGGATCCCATATC CCCACCCCTTATATATCCC	BamHI-
~			Ndel
R	ceverse (	TO GO TO GO A GO TO A COMO A COMO A COMO A COMO A COMO A COMO A A COMO A	XhoI

.lot i moul out lich b∈

604	Forward	CCCCCATATC TTCCTTTCCCATATCCC	
094	rorward	CGCGGATCCCATATG-TTGGTTTCCGCATCCGG	BamHI-
j	D	CCCCCTCC A C TOTOCCTCCCTCCCTCCCTCCCTCCCTCCCTCCCTCC	NdeI
1		CCCGCTCGAG-TCTGCGTCGGTGCGGT	XhoI
695	Forward	CGCGGATCCCATATG-TTGCCTCAAACTCGTCCG	BamHI-
	_		NdeI
		CCCGCTCGAG-TCGTTTGCGCACGGCT	XhoI
696	Forward	CGCGGATCCCATATG-TTGGGTTGCCGGCAGG	BamHI-
			NdeI
		CCCGCTCGAG-TTGATTGCCGCAATGATG	XhoI
700a	Forward	AAAAAAGAATTC-GCATCGACAGACGGTGTGTCGTGGAC	Eco RI
1	Reverse	AAAAAACTGCAG-TTACGCTACCGGCACGACTTCCAAACC	Pst I
701	Forward	CGCGGATCCCATATG-AAGACTTGTTTGGATACTTC	BamHI-
İ			NdeI
	Reverse	CCCGCTCGAG-TGCCGACAACAGCCTC	XhoI
702		AAAAAAGAATTC-ATGCCGTGTTCCAAAGCCAGTTGGATTTC	Eco RI
	Reverse	AAAAAACTGCAG-TTAACCCCATTCCACCCGGAGAACCGA	
703	Forward	CGCGGATCCGCTAGC-CAAACGCTGGCAACCG	Pst I
103	1 OI Wald	CGCGGATCCGCTAGC-CAAACGCTGGCAACCG	BamHI-
1	Reverse	CCCGCTCGAG-TTTTGCAGGTTTGATGTTTG	NheI
7042		AAAAAGAATTC-GCTTCTACCGGTACGCTGGCGCG	XhoI
/04a			Eco RI
	Keverse	AAAAAACTGCAG-	Pst I
707	Formund	TTAGTTTTGCCGGATAATATGGCGGGTGCG	
/0/	roiwaiu	CGCGGATCCGCTAGC-GAAATTATTAACGATGCAGA	BamHI-
	Deverse	CCCGCTCGAG-GAAACTGTAATTCAAGTTGA	NheI
700			XhoI
/08	roiwaiu	CGCGGATCCGCTAGC-CCTTTTAAGCCATCCAAAA	BamHI-
	Deverse	CCCGCTCGAG-TTGACCGGTGAGGACG	Nhel
710			XhoI
1 /10	FOIWAIG	CGCGGATCCCATATG-GAAACCCACGAAAAAATC	BamHI-
	Davaraa	CCCGCTCGAG-AACGGTTTCGGTCAG	NdeI
714			XhoI
/14	rorward	CGCGGATCCCATATG-AGCTATCAAGACATCTT	BamHI-
	D	CCCCCTCC A C CCCCT A CCT A A A TOCC A TO	NdeI
<b>—</b>		CCCGCTCGAG-GCGGTAGGTAAATCGGAT	XhoI
716	Forward	CGCGGATCCCATATG-GCCAACAACCGGCAAG	BamHI-
	70	CCCCCCCC A C PPP A CALL TO THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE TANK THE	Ndel
		CCCGCTCGAG-TTTAGAACCGCATTTGCC	XhoI
718	Forward	CGCGGATCCCATATG-GAGCCGATAATGGCAAA	BamHI-
	_		NdeI
		CCCGCTCGAG-GGCGCGGGCATGGTCTTGTCC	XhoI
720	Forward	CGCGGATCCCATATG-AGCGGATGGCATACC	BamHI-
	_		NdeI
		CCCGCTCGAG-TTTTGCATAGCTGTTGACCA	XhoI
723	Forward	CGCGGATCCCATATG-CGACCCAAGCCCC	BamHI-
	_		NdeI
	Reverse	CCCGCTCGAG-AATGCGAATCCGCCGCC	XhoI

Reverse CCCGCTCGAG-TTGCTTATCCTTAAGGGTTA  The forward CGCGGATCCCATATG-ACCATCTATTTCAAAAAC  Reverse CCCGCTCGAG-GCCGATGTTTAGCGTCC  The forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG  Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  The forward CGCGGATCCCATATG-TTTTGGCTGGAACGGG  Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  The forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse CCCGCTCGAG-ACGGGCGCAG  Reverse CCCGCTCGAG-ACGGGCGCAG  Reverse CCCGCTCGAG-ACGGGCGCGCAG  Reverse CCCGCTCGAG-TCTTATCTTTTTATCTTTC  The forward CGCGGATCCCATATG-TCGAAACCTGTTTTTAAGAA  Reverse CCCGCTCGAG-CTTCTTATCTTTTTTATCTTTC  The forward CGCGGATCCCATATG-GCCTGCGGCGGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  The forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTGAGATTTTGAATCAAAGAG  Torward CGCGGATCCCATATG-AGCAGCAGGGGTCA  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  The forward CGCGGATCCCATATG-CACCACGACGGGCACA  Reverse CCCGCTCGAG-TTTCCGTAGCCGAGGG  The forward CGCGGATCCCATATG-CACCACGACGGGACACA  Reverse CCCGCTCGAG-TTTCCGTAGCCGAGGG  The forward CGCGGATCCCATATG-CACCACGACGGACACA  Reverse CCCGCTCGAG-GTCGCTCGCGCGGGAA  Reverse CCCGCTCGAG-GTCGCTCGCGGCGGAA  Reverse CCCGCTCGAG-GTCGCGGCGGAA  Reverse CCCGCTCGAG-GAGAGATTTCCGTAGCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGAGAATT  The forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGCGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGCGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGCGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGCGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGCGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGCGCCGAAGGGGG  Reverse CCCGCTCGAG-AAACGCGCCAAAAAAAACCGAACA  Reverse CCCGCTCGAG-AAACGCGCCAAAAAAAACCGAGGGGGGAGGGAAAACGCGCCAAAAAA	725	Forward CGCGGATCCCATATG-GTGCGCACGGTTAAA	w
Reverse CCCGCTCGAG-TTGCTTATCCTTAAGAGTTA  726 Forward CGCGGATCCCATATG-ACCATCTATTTCAAAAAC  Reverse CCCGCTCGAG-GCCGATGTTTAGCGTCC  728 Forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG  Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  729 Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse CCCGCTCGAG-ACGGGCGGAGG  731 Forward CGCGGATCCCATATG-TCGAAACCTGTTTTTAAGAA  Reverse CCCGCTCGAG-ACGGGCGCGGCAG  732 Forward CGCGGATCCCATATG-TCGAAACCTGTTTTTAAGAA  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  733 Forward CGCGGATCCCATATG-GCCTGCGCGCGCAA  Reverse CCCGCTCGAG-CTCCTTTAC  734 Forward CGCGGATCCCATATG-GCCTCCTTTAC  735 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  736 Forward CGCGGATCCCATATG-AACCAGCAGGGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAA  738 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  739 Forward CGCGGATCCCATATG-CACCACGACGACACA  Reverse CCCGCTCGAG-GTCGTCGCGCGCGGAA  740 Forward CGCGGATCCCATATG-GCCAAAAAAAACCGAACA  Reverse CCCGCTCGAG-AACGCGCCCAAAATAGTG  740 Forward CGCGGATCCCATATG-GCCAAACGCGCCGAAG  Reverse CCCGCTCGAG-AACGCGCCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TCCACCACGACGGAGGG  742 SamHI-Nolel  Reverse CCCGCTCGAG-AACGCGCCCAAAATAGTG  743 Forward CGCGGATCCCATATG-GCCAAACGCGCCGAAG  Reverse CCCGCTCGAG-AACGCGCCCAAAATAGTG  744 Forward CGCGGATCCCATATG-GCCAAACGCGCCGAAGGGGGGGGGG	, 23	Totward CocodATCCCATATO-OTOCGCACGGTTAAA	BamHI-
Reverse CCCGCTCGAG-CCCATATG-CCACCATCTATTTCAAAAAC  Reverse CCCGCTCGAG-GCCGATGTTTAGCGTCC  728 Forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG  Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  729 Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  731 Forward CGCGGATCCCATATG-TCCGTGGGAACGGG  Reverse CCCGCTCGAG-ACGGCCGCGAGG  732 Forward CCGGGATCCCATATG-TCGAAACCTGTTTTAAGAA  Reverse CCCGCTCGAG-ACGGCGCGGCAG  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  733 Forward CGCGGATCCCATATG-GCCTGCGGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCGCGTCA  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  736 Forward CGCGGATCCCATATG-CACCACGACGGCGAA  Rewerse CCCGCTCGAG-TTTGCGTCGCGCGGCAA  Reverse CCCGCTCGAG-TTTGAGATTTTGATCAAAGAG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-TTTCGTACCTGCGCGCGGAA  Reverse CCCGCTCGAG-TTTCGAAACCACGACGGACACG  Reverse CCCGCTCGAG-TTTCGTACCCACACGACGACACG  Reverse CCCGCTCGAG-TTTCGTACCCACACGACGACACA  Reverse CCCGCTCGAG-TTTCCGTACCCACACACACA  Reverse CCCGCTCGAG-TTTCCGTACCCACACACACA  Reverse CCCGCTCGAG-TCGCTCGCGCCGAA  Reverse CCCGCTCGAG-TCGCTCGCGCCGAAAAAAAACCGAACA  Reverse CCCGCTCGAG-AACACACACACACACACACACACACACACACACAC		Reverse CCCGCTCGAG-TTCCTTATCCTTAACCCTTA	
Reverse CCCGCTCGAG-GCCGATGTTTAGCGTCC  728 Forward CGCGGATCCCATATG-TTTTGCTGGGAACGGG  Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  729 Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  731 Forward CGCGGATCCCTTGAG-ACGGGCGAGG  Reverse CCCGCTCGAG-ACGGGCGCGCGAGG  732 Forward CCGCGTCGAG-ACGGGCGCGCGAG  Reverse CCCGCTCGAG-CTCTTATCTTTTTACTTTC  8 Reverse CCCGCTCGAG-CTCTTATCTTTTTACTTTC  734 Forward CGCGGATCCCATATG-GCCTGCGGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  735 Forward CGCGGATCCCATATG-GCCTGCGCGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  736 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  8 Reverse CCCGCTCGAG-TTGAGATTTTGAATCAAAGAG  737 Forward CGCGGATCCCATATG-AAGCAGCAGCGGTCA  Reverse CCCGCTCGAG-ATTCCGTAGCCGAGGG  738 Forward CGCGGATCCCATATG-CACCACGAGGGG  740 Forward CGCGGATCCCATATG-CACCACGACGGAA  751 Forward CGCGGATCCCATATG-CACCACGACGGAA  752 Forward CGCGGATCCCATATG-CACCACGACGGAA  753 Forward CGCGGATCCCATATG-CACCACGACGGAA  754 Forward CGCGGATCCCATATG-CACCACGACGGAAAAAAAACCGAACA  755 Forward CGCGGATCCCATATG-GCAAAAAAAACCGAACA  766 Forward CGCGGATCCCATATG-GCCAAAAAAAACCGAACA  776 Forward CGCGGATCCCATATG-GCCAAACAAAAAACCGAACA  80 Ruhll-Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGCGAGAATT  760 Forward CGCGGATCCCATATG-GCCAAAAAAAACCGAACA  80 Ruhll-Ndel  Ndel  N	726	Forward CCCCCATATC ACCAMENATION	
Feverse CCCGCTCGAG-GCCGATGTTTAGCGTCC  The reverse CCCGGTCGAG-GTGAGAAAGGTCGCGC  Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Forward CGCGGATCCGCTAGC-GCCGTGCCGGAGG  Reverse CCCGCTCGAG-ACGGGCGCGCAG  Reverse CCCGCTCGAG-ACGGGCCGCGCAG  Reverse CCCGCTCGAG-CTCTTATCTTTTTAAGAA  Reverse CCCGCTCGAG-CTCTTATCTTTTTATCTTTC  Xhol  Reverse CCCGCTCGAG-CTCCTTACCTTTATCTTTC  Xhol  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTAC  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTAC  The reverse CCCGCTCGAG-TCGCTTGCCTCCTTAC  Reverse CCCGCTCGAG-TTGAGATTTTGAATCAAAGAG  Torward CGCGGATCCCATATG-GCCGAGGGCGCAA  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  The reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  The reverse CCCGCTCGAG-TTTCCGTAGCCGAGGG  The reverse CCCGCTCGAG-TTTCCGTAGCCGAGGGAACACA  Reverse CCCGCTCGAG-TTTCCGTAGCCGAGGG  The reverse CCCGCTCGAG-TTTCCGTAGCCGAGGGAACACA  Reverse CCCGCTCGAG-TCGTCGCGCGCGGAA  Reverse CCCGCTCGAG-TTTCCGTAGCCGAGAAAAAAACCGAACA  Reverse CCCGCTCGAG-TCGTCGCGCGGGAA  The reverse CCCGCTCGAG-TCGTCGCGCGGGAACACA  Reverse CCCGCTCGAG-TCGTCGCGCGCGGAACACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAAAAAACCCGCCCAAAAAAAACCGAACA  RemHI-  Ndel  Reverse CCCGCTCGAG-AAAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATA	1/20	Torward COCOGATCCCATATG-ACCATCTATTTCAAAAAC	BamHI-
Forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG  Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  729 Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  731 Forward CGCGGATCCGCTAGC-GCCGTGCCGAGG  Reverse CCCGCTCGAG-ACGGGCGCGCAG  732 Forward CCGCGTCGAG-ACGGCGCGCAG  Reverse CCCGCTCGAG-CTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  733 Forward CGCGGATCCCATATG-GCCTGCGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGCGGTCA  Reverse CCCGCTCGAG-ATTCCGTAGCCGAGGG  736 Forward CGCGGATCCCATATG-CACCACGACGGACACA  Reverse CCCGCTCGAG-ATTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAA  Reverse CCCGCTCGAG-TTTCCGTAGCCGAGGAATT  Ndel  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Nhol		Pewerce CCCCTCCAC CCCCATCTTTA CCCTC	NdeI
Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC  729 Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCC_AAGCTT-TTTGTCGGTTTGGGTATC  731 Forward CGCGGATCCGCTAGC-GCCGTGCCGGAGG  Reverse CCCGCTCGAG-ACGGGCGCGCGAG  732 Forward CGCGGAATCTACATATG-TCGAAACCTGTTTTTAAGAA  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  734 Forward CGCGGATCCCATATG-GCCTGCGGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  735 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  736 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACAC  Reverse CCCGCTCGAG-GTCGCTGCGCGGCGGA  738 Forward CGCGGATCCCATATG-CACCACGACGGACAC  Reverse CCCGCTCGAG-GTCGCTGCGCGGCGGA  740 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAACGCGCCCGAAG  741 Forward CGCGGATCCCATATG-TGCAGCCAAAAAAACCGAACG  742 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  743 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  744 Forward CGCGGATCCCATATG-GCCAAACGCGCCCGAAG  745 Forward CGCGGATCCCATATG-GCCAAAAAAACCGAACA  746 Forward CGCGGATCCCATATG-GCCAAAAAAACCGAACA  747 Forward CGCGGATCCCATATG-GCCAAAAAAACCGAACA  748 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  749 Forward CGCGGGATCCCATATG-GCCAAAAAAACCGAACA  740 Forward CGCGGATCCCATATG-GCCAAAAAAACCGAACA  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  746 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  747 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  748 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  748 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  840 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  841 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  841 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  842 FORWARD  844 FORWARD  854 FORWARD  855 FORWARD  856	720		XhoI
Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse CCCGCTCGAG-ACGGCCGCGGAG  Reverse CCCGCTCGAG-ACGGCCGCGCGAG  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-TCGCTGCGGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Torward CGCGGATCCCATATG-GCCTGCGGCGCAA  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Torward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Torward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGCTGCGCGGGGA  Reverse CCCGCTCGAG-GTCGCTGCGCGGGGA  Thol  Reverse CCCGCTCGAG-GTCGCCGAGACACA  Reverse CCCGCTCGAG-GTCGCCGAGACACA  Reverse CCCGCTCGAG-GTCGCCGAGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Thol  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Nde	1/20	Forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG	BamHI-
Reverse GCCGATCCATATG-TGCACCATGATTCCCCA  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse CCCGCTCGAG-ACGGGCGCGCAG  Reverse CCCGCTCGAG-ACGGGCGCGCAG  Reverse CCCGCTCGAG-CTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTCCTTAC  Reverse CCCGCTCGAG-TCGCTCGCGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGCTCGAG-TTGAGATCTTACATTACATATG-AACGCGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGCGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-TCGCTCGCGCGGGAA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-TCGCTCGCGCGGGAA  Reverse CCCGCTCGAG-GTCGTCGCGCGCGGAA  Reverse CCCGCTCGAG-GTCGTCGCGCGCGGAA  Reverse CCCGCTCGAG-GTCGTCGCGCGCGGAA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAAAAAACCGAACA  Reverse CCCGCTCGAG-AAACAGCGCCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCGAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCGAAAATAGTG  Ndel		Payone CCCCTCCAC CTCACAAAACCTTCACAAAACCTTCACAAAACCTTCACAAAAACCTTCACAAAAACCTTCACAAAAACCTTCACAAAAACCTTCACAAAAACCTTCACAAAAAA	NdeI
Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Reverse GCCCGGATCCGCTAGC-GCCGTGCCGAGG  Reverse CCCGCTCGAG-ACGGGCGCGCAG  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTCCTTAGCTTGCTTAC  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Reverse CCCGCTCGAG-ATTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-ATTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Ndel  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  N	720		XhoI
Reverse GCCCAAGCTT-TTTGTCGGTTTGGGTATC  Forward CGCGGATCCGCTAGC-GCCGTGCCGAGG  Reverse CCCGCTCGAG-ACGGGCGCGGCAG  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTCCTTGCCTCCTTAC  Forward CGCGGATCCCATATG-GCCTGCGGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Torward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Torward CGCGGATCCCATATG-AAGCAGCAGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Torward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGCGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGA  Thol  Reverse CCCGCTCGAG-GTCGTCGCGGCGGA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGA  Reverse CCCGCTCGAG-GTCGTCGCGCGCGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Torward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Torward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  RamHI-Nel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Thidli  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATGTG	129	Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA	BamHI-
Forward CGCGGATCCGCTAGC-GCCGTGCCGAGG  Reverse CCCGCTCGAG-ACGGGCGCGGCAG  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCCTATCTTTTTATCTTTC  Thoi  Reverse CCCGCTCGAG-TCGCTCGCGCGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Thoi  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Thoi  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Thoi  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Thoi  Reverse CCCGCTCGAG-TCGCTGCGCGCGCAA  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Thoi  Reverse CCCGCTCGAG-TTTCCGTAGCCGAGGG  Thoi  Reverse CCCGCTCGAG-TTTCCGTAGCCGAGGG  Thoi  Reverse CCCGCTCGAG-TCCCATATG-AAGCAGCAGGGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGCGGGA  Thoi  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGGA  Thoi  Reverse CCCGCTCGAG-GTCGTCGCGGCGGAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Thoi  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Thoi  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Thoi  Reverse CCCGCTCGAG-CTATTGCAGCGCCAAATTGCCGCCGA	1	Poverse CCCCA A CCTT TTTCTCCCCTTTCCCC	NdeI
Reverse CCCGCTCGAG-ACGGGCGCGGCAG  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-CTCCTTATCTTTTTATCTTTC  Reverse CCCGCTCGAG-TCGCTGCGGCGGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Toldel  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGGTCGAG-TCGCTTGCCTCCTTTAC  Reverse CCCGGTCGAG-TTTGAGATTTTGAATCAAAGAG  Reverse CCCGGTCGAG-TTTGAGATTTTGAATCAAAGAG  Toldel  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Toldel  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Thol  Reverse CCCGCTCGAG-GAAAAAAACCGAACA  BamHI-  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Toldel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Toldel  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Toldel  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCGAGGGG  Remill-Nidel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCGAAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCGAAATTCCGCCGCGAGGGG  Remill-Nidel  Reverse CCCGCT	721		HindIII
Reverse CCCGCTCGAG-ACGGCGCGCAG  Toward CCGGAATTCTACATATG-TCGAAACCTGTTTTTAAGAA  Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC  Tholor  Reverse CCCGCTCGAG-CTCCTTATCTTTTTATCTTTC  Tholor  Reverse CCCGCTCGAG-CTCCTTACCTTTAC  Toward CGCGGATCCCATATG-GCCTGCGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  Tholor  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Tholor  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  Tholor  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Tholor  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  Tholor  Reverse CCCGCTCGAG-TCGCTCGCGGGGA  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Tholor  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  Tholor  Reverse CCCGCTCGAG-GTCGTCGCGGGGA  Tholor  Reverse CCCGCTCGAG-GAAAAAAAACCGAACA  RemHI-  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Tholor  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Tholor  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Tholor   /31	Forward CGCGGATCCGCTAGC-GCCGTGCCGGAGG	BamHI-	
Forward CCGGAATTCTACATATG-TCGAAACCTGTTTTTAAGAA  Reverse CCCGCTCGAG-CTTCTTATCTTTTTTATCTTTC  733 Forward CGCGGATCCCATATG-GCCTGCGGCGGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGGGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  736 Forward CGCGGATCCCATATG-CACCACGACGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  738 Reverse CCCGCTCGAG-GTCGTCGCGGCGGGA  739 Forward CGCGGATCCCATATG-CACCACGACGACA  Reverse CCCGCTCGAG-GTCGTCGCGGCGGGA  740 Forward CGCGGATCCCATATG-GCAAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAACACGCGCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGAGGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGAGGGGGGGGGGATCCCATATG-TGCAGCAGAGGGGGGGGGG		Payores CCCCCTCCAC ACCCCCCCCCC	NheI
Reverse CCCGCTCGAG-CTTCTTATCTTTTTTTTTTTCTTC  733 Forward CGCGGATCCCATATG-GCCTGCGGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  Ndel	722	Former CCCCAATTCTACATATATATATATATATATATATATATA	XhoI
Reverse CCCGCTCGAG-CTTCTTATCTTTTTTATCTTTC  733 Forward CGCGGATCCCATATG-GCCTGCGCGCGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  736 Forward CGCGGATCCCATATG-CACCACGACGGACACG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Rewerse CCCGCTCGAG-AAACAGCGCCCAAATTAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  746 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  747 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  748 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  749 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  740 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  740 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG	132	Forward CCGGAATTCTACATATG-TCGAAACCTGTTTTTAAGAA	EcoRI-
Forward CGCGGATCCCATATG-GCCTGCGGCGGCAA  Reverse CCCGCTCGAG-TCGCTTGCCTCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAGAGTTTGTCGAGAATT  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Ndel  Reverse CCCGCTCGAG-AAACGCGCCCAAATTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  Ndel  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  Ndel  Nde		Payers CCCCCTCCAC CTTCTTATCTTATCTT	NdeI
Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAGGGTTGTCGAGAATT  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  746 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  747 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  748 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  749 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  740 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  740 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  741 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG	722	Forward CCCCCATCCCATATC CCCTTTTTTTTTCTCTTC	XhoI
Reverse CCCGCTCGAG-TCGCTTGCCTCTTTAC  734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAATCCGCCCGAAG  741 Forward CGCGGGATCCCATATG-TGCAGCAGAGGG  742 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  754 Forward CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  765 FORWARD CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  766 FORWARD CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  776 FORWARD CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  777 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  779 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  770 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGGAGGATCCCATATG-TGCAGCAGCGGAGGGAGGGAGGGAGGAGGAGGAGGAGGAGG	/33	Forward CGCGGATCCCATATG-GCCTGCGGCGCAA	BamHI-
734 Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT  Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAATTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  738 SamHI-NdeI  749 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  740 Forward CGCGGATCCCATATG-GCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  754 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  765 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  776 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  777 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGGAGGGAGGGAGGGAGGGAGGGAGGAGG		Reverse CCCCCTCCAC TCCCTTCCCTTCCCTTCC	NdeI
Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG Xhol  735 Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA BamHI- Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG Xhol  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG BamHI- Reverse CCCGCTCGAG-GTCGTCGCGGGGGA Xhol  739 Forward CGCGGATCCCATATG-GCAAAAAAAACCGAACA BamHI- Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT Xhol  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG BamHI- Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG Xhol  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG BamHI- NdeI  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG Xhol  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG BamHI- NdaI	734		XhoI
Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG  735 Forward CGCGGATCCCATATG-AAGCAGCAGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAATCGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGAGGG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  754 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  765 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  766 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  776 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  777 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGGG  778 FORWARD CGCGGATCCCATATG-TGCAGCAGCGGAGGGGAGGGAGGGGAG	134	Forward CGCGGATACTTACGGCTAT	BamHI-
Forward CGCGGATCCCATATG-AAGCAGCAGCGGTCA  Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAATAGTG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  746 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  757 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  768 BamHI-Ndel	l	Reverse CCCCCTCGAG TTTGACATTTTCAATGAAAGA	
Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  746 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  747 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  748 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  749 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  740 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG	735	Forward CGCGGATCCCATATC AACCACGAGGGGGGGGGGGGGGG	·
Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG  737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGCGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAATCCGCCCGAAG  741 Forward CGCGGATCCCATATG-TGCAGCAGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  746 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  747 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG	,,,,,	Totward CocodATCCCATATO-AAGCAGCAGCGCGCTCA	· — —
737 Forward CGCGGATCCCATATG-CACCACGACGGACACG  Reverse CCCGCTCGAG-GTCGTCGCGGCGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAACG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  746 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  747 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG		Reverse CCCGCTCGAG-ATTTCCGTAGCCCAGCG	
Reverse CCCGCTCGAG-GTCGTCGCGGCGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  754 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG	737		
Reverse CCCGCTCGAG-GTCGTCGCGGGGGA  739 Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAATCCGCCCGAAG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG	, , , ,	TOWARD COCOMATCCCATATO-CACCACGACGCACACG	
Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA  Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG		Reverse CCCGCTCGAG-GTCGTCGCGCGCGA	
Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  RemHI-Nidel	739	Forward CGCGGATCCCATATG-GCAAAAAAACCCAAAGA	
Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT  740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  742 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  743 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  744 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  745 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG		TOWARD GOOGLATICOCKITATO-GCAAAAAACCGAACA	
740 Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  8amHi-Nidel	Ī	Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT	
Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  Reverse CCCGCTCGAG-AAACGCGCCCAAAATAGTG  XhoI  BamHI- Ndel	740	Forward CGCGGATCCCATATG-GCCAATCCGCCCCAAC	
Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG  741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG  8amHI-		- GCCAATCCCCCCAAG	
741 Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG BamHI-		Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG	
Ndat	741	Forward CGCGGATCCCATATG-TGCAGCAGCGGAGCG	
Ndel		1 GCAGCAGCOGAGGG	
Reverse CCCCCCCCCCCCCAACCC		Reverse CCCGCTCGAG-TTGCTTGGCGGCAAGGC	
743 Forward CGCGGATCCCATATC CACCCTCTTTCTTCCTTCTTCTTCTTCTTCTTCTTCTTCT	743		
		oncodidital decidit	
Reverse CCCGCTCGAG-CTTACGGATCAAATTGACG Yho!		Reverse CCCGCTCGAG-CTTACGGATCAAATTGACG	- ·
745 Forward CGCGGATCCCATATC TTTTCCCA ACTCA CCC	745	Forward CGCGGATCCCATATG-TTTTGGCAACTGACCG	
Dunin			
Reverse CCCGCTCGAG-CAAATCAGATGCCTTTAGG  Ndel Yhol		Reverse CCCGCTCGAG-CAAATCAGATGCCTTTAGG	i
746 Forward CGCGGATCCCATATG TCCCAAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAA	746	Forward CGCGGATCCCATATG-TCCGAAAACAAACAAACAAACAAACAAACAAACAAACAAA	
BamHI-			BamHI-

	Daverce	CCCGCTCGAG-TTCATTCGTTACCTGACC	NdeI
747			XhoI
/4/	rorward	CCGGAATTCTAGCTAGC-CTGACCCCTTGGG	EcoRI-
	Deverse	GCCCAAGCTT-TTTTGATTTTAATTGACTATAGAAC	NheI
740			Hin <b>dI</b> II
749	rorward	CGCGGATCCCATATG-TGCCAGCCGCCG	BamHI-
	Darrama	CCCCCTCC & C TTTC & A CCCC & CT & TCC	NdeI
750		CCCGCTCGAG-TTTCAAGCCGAGTATGC	XhoI
/30	Forward	CGCGGATCCCATATG-TGTTCGCCCGAACCTG	BamHI-
	D	CCCCTCC & C CTTTTTCCCCCCCC	NdeI
750		CCCGCTCGAG-CTTTTTCCCCGCCGCAA	$\mathbf{X}$ ho $\mathbf{I}$
758	Forward	CGCGGATCCCATATG-AACAATCTGACCGTGTT	BamHI-
	D	CCCCCTCC A C TCCCTC A A TCCCTTTTTCTCC	NdeI
750		CCCGCTCGAG-TGGCTCAATCCTTTCTGC	XhoI
/39	Forward	CGCGGATCCGCTAGC-CGCTTCACACACACCAC	BamHI-
	D	CCCCCTCC A C. CC A CTTCT A C.CCT A TTTT	NheI
760		CCCGCTCGAG-CCAGTTGTAGCCTATTTTG	XhoI
/63	rorward	CGCGGATCCCATATG-CTGCCTGAAGCATGGCG	BamHI-
	Darraga	CCCCCTCC & C TTCCCCC & A A T A CCCTTTTCC	NdeI
764		CCCGCTCGAG-TTCCGCAAATACCGTTTCC	XhoI
/04	rorward	CGCGGATCCCATATG-TTTTTCTCCGCCCTGA	BamHI-
	Dovorco		Ndel
765		CCCGCTCGAG-TCGCTCCCTAAAGCTTTC	XhoI
765	rorward	CGCGGATCCCATATG-TTAAGATGCCGTCCG	BamHI-
	Deverse		NdeI
767		CCCGCTCGAG-ACGCCGACGTTTTTTATTAA	XhoI
/0/	rorward	CGCGGATCCCATATG-CTGACGGAAGGGGAAG	BamHI-
	Deverse	CCCGCTCGAG-TTTCTGTACAGCAGGGG	Ndel
769			XhoI
708	Forward	CGCGGATCCCATATG-GCCCCGCAAAAACCCG	BamHI-
	Reverse	CCCGCTCGAG-TTTCATCCCTTTTTTGAGC	Ndel
770			XhoI
770	1 OI Walu	CGCGGATCCCATATG-TGCGGCAGCGGCGAA	BamHI-
	Reverse	CCCGCTCGAG-GCGTTTGTCGAGATTTTC	NdeI
771		CGCGGATCCCATATG-TCCGTATATCGCACCTTC	XhoI
,,,	I OI WAILU	COCGGATCCCATATG-TCCGTATATCGCACCTTC	BamHI-
	Reverse	CCCGCTCGAG-CGGTTCTTTAGGTTTGAG	NdeI
772		CGCGGATCCATATG-TTTGCGGCGTTGGTGG	XhoI
	1 OI WAIL	COCCONTINUE I I I I I I I I I I I I I I I I I I I	BamHI-
	Reverse	CCCGCTCGAG-CAATGCCGACATCAAACG	NdeI
774		CGCGGATCCCATATG-TCCGTTTCACCCGTTCC	XhoI
	7 01 Wald	OGO GOLINGO ANTO TOCOTTICA COCOTTICO	BamHI-
	Reverse	CCCGCTCGAG-TCGTTTGCGCACGGCT	NdeI
790		CGCGGATCCCATATG-GCAAGAAGGTCAAAAAC	XhoI
	7 01 Wald	COCCUTATO-GCAAGAGGTCAAAAAC	BamHI-
			NdeI

	Persone CCCCCCCAC CCCCTTCCTTCC	
900	Reverse CCCGCTCGAG-GGCGTTGTTCGGATTTCG	XhoI
901	Forward CGCGGATCCCATATG-CCGTCTGAAATGCCG	BamHI-
	Devenue CCCCCTCCAC ATTATCC	NdeI
00:	Reverse CCCGCTCGAG-ATATGGAAAAGTCTGTTGTC	XhoI
90	Forward CGCGGATCCCATATG-CCCGATTTTTCGATG	BamHI-
İ	D CCCCCTTCC A C. A A A A A A A A A A A A A A A A	NdeI
000	Reverse CCCGCTCGAG-AAAATGGAACAATACCAGG	XhoI
902	Forward. CCGGAATTCTACATATG-TTGCACTTTCAAAGGATAATC	EcoRI-
	2	NdeI
000	Reverse CCCGCTCGAG-AAAAATGTACAATGGCGTAC	XhoI
903	Forward CCGGAATTCTAGCTAGC-CAGCGTCAGCACAT	EcoRI-
	Parama COCCOTOCA C. C. A. A. C.	NheI
004	Reverse CCCGCTCGAG-GAAACTGTAATTCAAGTTGAA	XhoI
904	- STATE THE HELD CONTROL AND CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL	Kpn I
	Reverse AAACTGCAG-TTAATATCGATAGGTTATATG	Pst I
9048	Forward AAAAAAGAATTC-CGGCTCGGCATTGTGCAGATGTTGCA	Eco RI
	Reverse AAACTGCAG-TTAATATCGATAGGTTATATG	Pst I
905	Forward CGCGGATCCCATATG-AACAAAATATACCGCATC	BamHI-
		Ndel
005	Reverse CCCGCTCGAG-CCACTGATAACCGACAGAT	XhoI
907	Forward CGCGGATCCCATATG-GGCGCGCAACGTGAG	BamHI-
	D. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	NdeI
000	Reverse CCCGCTCGAG-ACGCCACTGCCAGCG	XhoI
908	- 31 Mad 12 H GIZITE GCAGAGITAGIAGGGGGTTAATAAAAATAC	Eco RI
200	Reverse AAACTGCAG-TTAATATGGTTTTGTCGTTCG	Pst I
909	Forward CGCGGATCCCATATG-TGCGCGTGGGAAACTTAT	BamHI-
		NdeI
010	Reverse CCCGCTCGAG-TCGGTTTTGAAACTTTGGTTTT	XhoI
910	Forward AAAGAATTC-GCATTTGCCGGCGACTCTGCCGAGCG	Eco RI
	Reverse AAACTGCAG-TCAGCGATCGAGCTGCTCTTT	Pst I
911		Eco RI
	Reverse AAAAAACTGCAG-GTCGACTTATTCGGCGGCTTTTTCCGC	Pst I
912	Forward AAAAAAGAATTC-	Eco RI
	CAAATCCGTCAAAACGCCACTCAAGTATTGAG	LCO ICI
	Reverse AAAAAACTGCAG-TTACAGTCCGTCCACGCCTTTCGC	Pst I
913	Forward CGCGGATCCCATATG-GAAACCCGCCCCGC	BamHI-
		NdeI
015	Reverse CCCGCTCGAG-AGGTTGTGTCCAGGTTG	XhoI
915	Forward CGCGGATCCCATATG-TGCCGGCAGGCGGAA	BamHI-
	Denvise CCCCCTCC LC Town	NdeI
014	Reverse CCCGCTCGAG-TTTGAAAATATAGGTATCAGG	XhoI
914	Forward AAAGAATTC-GACAGAATCGGCGATTTGGAAGCACG	Eco RI
	Reverse AAACTGCAG-CTATATGCGCGGCAGGACGCTCAACGC	Pst I
916	Forward CGCGGATCCCATATG-GCAATGATGGCGGCTG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTTGGCGGCATCTTTCAT	XhoI
		2 KII () I

015	<del></del>		
917		AAAAAAGAATTC-CCTGCCGAAAAACCGGCACCGGC	Eco RI
		AAAAAACTGCAG-TTATTTCCCCGCCTTCACATCCTG	Pst I
919	Forward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHI-
	D	COCCCTOCAC COCCCCCTATTTTTTTTTTTTTTTTTTTT	NdeI
000		CCCGCTCGAG-CGGGCGGTATTCGGG	XhoI
920	rorward	CGCGGATCCCATATG-CACCGCGTCTGGGTC	BamHI-
	Darraman	CCCCCTCCAC ATCCTCCCA ATCACCA	NdeI
021		CCCGCTCGAG-ATGGTGCGAATGACCGA	XhoI
921		AAAAAGAATTC-TTGACGGAAATCCCCGTGAATCC	Eco RI
000		AAAAAACTGCAG-TCATTTCAAGGGCTGCATCTTCAT	Pst I
922	Forward.	CGCGGATCCGCTAGC-TGTACGGCGATGGAGGC	BamHI-
	Darraga	CCCCCTCCACCAATTCCCCCCCCCCC	NheI
923		CCCGCTCGAG-CAATCCCGGGCCGCC	$\mathbf{X}$ ho $\mathbf{I}$
923	rorward	CGCGGATCCCATATG-TGTTACGCAATATTGTCCC	BamHI-
	Deverse	CCCGCTCGAG-GGACAAGGCGACGAAG	NheI
025			XhoI
1 923	1 OI Walu	CGCGGATCCCATATG-AAACAAATGCTTTTAGCCG	BamHI-
	Reverse	CCCGCTCGAG-GCCGTTGCATTTGATTTC	Ndel
926		CGCGGATCCCATATG-TGCGCGCAATTACCTC	XhoI
720	Torward	COCOGNICCCATATO-TOCOCGCAATTACCTC	BamHI-
	Reverse	CCCGCTCGAG-TCTCGTGCGCGCCG	NdeI
927		CGCGGATCCCATATG-TGCAGCCCCGCAGC	XhoI
		TOO TOO TOO TOO TOO TOO TOO TOO TOO TOO	BamHI- NdeI
	Reverse	CCCGCTCGAG-GTTTTTTGCTGACGTAGT	XhoI
929a		AAAAAAGAATTC-CGCGGTTTGCTCAAAACAGGGCTGGG	Eco RI
		AAAAAATCTAGA-TTAAGAAAGACGGAAACTACTGCC	Xba I
931		AAAAAAGAATTC-GCAACCCATGTTTTGATGGAAAC	Eco RI
	Reverse	AAAAAACTGCAG-TTACTGCCCGACAACAACGCGACG	Pst I
935	Forward	AAAAAGAATTC-	Eco RI
		GCGGATGCGCCCGCGATTTTGGATGACAAGGC	LCO KI
	Reverse	AAAAAACTGCAG-TCAAAACCGCCAATCCGCCGACAC	Pst I
936	Forward	CGCGGATCCCATATG-GCCGCCGTCGGCGC	BamHI-
			NdeI
		CCCGCTCGAG-GCGTTGGACGTAGTTTTG	XhoI
937	Forward	AAAAAAGAATTC-CCGGTTTACATTCAAACCGGCGCAAC	Eco RI
	Reverse	AAAAAACTGCAG-TTAAAATGTATGCTGTACGCCAAA	Pst I
939a	Forward	AAAAAAGAATTC-GGTTCGGCAGCTGTGATGAAACC	Eco RI
	Reverse	AAAAAACTGCAG-TTAACGCAAACCTTGGATAAAGTTGGC	Pst I
950	Forward	CGCGGATCCCATATG-GCCAACAACCGGCAAG	BamHI-
	_		NdeI
0.55		CCCGCTCGAG-TTTAGAACCGCATTTGCC	XhoI
953	Forward	CGCGGATCCCATATG-GCCACCTACAAAGTGGAC	BamHI-
	T)	00000TB00 + 0 TFF0=======	NdeI
067		CCCGCTCGAG-TTGTTTGGCTGCCTCGAT	XhoI
957	rorward	CGC <u>GGATCCCATATG</u> -TTTTGGCTGGGAACGGG	BamHI-

	Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC	Ndel
958	Forward CCCCCATCCCATATIC COSCATATIC	XhoI
330	Forward CGCGGATCCCATATG-GCCGATGCCGTTGCG	BamHI-
	Payerra CCCCAACCTT CCCTCCTTTTTTTTTTTTTTTTTTTTT	NdeI
959	Reverse GCCCAAGCTT-GGGTCGTTTGTTGCGTC	HindIII
939	Forward CGCGGATCCCATATG-CACCACGACGGACACG	BamHI-
	Devene CCCCCTCCAC CTCCTCCAC	NdeI
961	Reverse CCCGCTCGAG-GTCGTCGCGGGGGA	XhoI
901	Forward CGCGGATCCCATATG-GCCACAAGCGACGACG	BamHI-
	Payarra CCCCCTCCAC CCACTCCT	NdeI
072	Reverse CCCGCTCGAG-CCACTCGTAATTGACGC	XhoI
912	Forward AAAAAGAATTC-	Eco RI
	TTGACTAACAGGGGGGGGGGGAAATTAAAAAC	
973	Reverse AAAAAATCTAGA-TTAAAAAATAATCATAATCTACATTTTG	Xba I
213	Forward AAAAAAGAATTC-ATGGACGGCGCACAACCGAAAAC	Eco RI
982	Reverse AAAAAACTGCAG-TTACTTCACGCGGGTCGCCATCAGCGT	Pst I
902	Forward CGCGGATCCCATATG-GCAGCAAAAGACGTAC	BamHI-
	Payaras CCCCCTCCAC CATCATCATCATCATCATCATCATCATCATCATCATCATC	NdeI
983	Reverse CCCGCTCGAG-CATCATGCCGCCCATCC	XhoI
763	Forward CGCGGATCCCATATG-TTAGCTGTTGCAACAACAC	BamHI-
	Reverse CCCGCTCGAG-GAACCGGTAGCCTACG	NdeI
987	Forward CGCGGATCCCATATC CGGGGAGTGGAGTGGAGTGGAGT	XhoI
701	Forward CGCGGATCCCATATG-CCCCCACTGGAAGAAC	BamHI-
	Reverse CCCGCTCGAG-TAATAAACCTTCTATGGGC	NdeI
988	Forward CGCGGATCCCATATG-TCTTTAAATTTACGGGAAAAAG	XhoI
	TO DESTRUCTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	BamHI-
	Reverse GCCCAAGCTT-TGATTTGCCTTTTCCGTTTT	NdeI
989	Forward CCGGAATTCTACATATG-GTCCACGCATCCGGCTA	HindIII
	GIGCHEGEATECGGCIA	EcoRI-
	Reverse CCCGCTCGAG-TTTGAATTTGTAGGTGTATTGC	NdeI XhoI
990	Forward. CGCGGATCCGCTAGC-TTCAGAGCTCAGCTT	BamHI-
	2	Nhel
	Reverse CCCGCTCGAG-AAACAGCCATTTGAGCGA	XhoI
992	Forward CGCGGATCCCATATG-GACGCGCCCGCCCG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-CCAAATGCCCAACCATTC	XhoI
993	Forward CGCGGATCCCATATG-GCAATGCTGATTGAAATCA	BamHI-
		Ndel
	Reverse CCCGCTCGAG-GAACACATCGCGCCCG	XhoI
<b>996</b>	Forward CGCGGATCCCATATG-TGCGGCAGAAAATCCGC	BamHI-
	D COCOCTOC	NdeI
007	Reverse CCCGCTCGAG-TCTAAACCCCTGTTTTCTC	XhoI
997	Forward CCGGAATTCTAGCTAGC-CGGCACGCCGACGTT	EcoRI-
	·	NheI
	Reverse CCCGCTCGAG-GACGGCATCGCTCAGG	XhoI

9.3

Underlined sequences indicate restriction recognition sites.

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1>:
     g001.seq
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG GTGTCGGCGA ACGAGGTGTC
            1
           51 CGGCAGGCT TGCGCCCGGA TGGTGCTGGT CATCTGCCAG ACGCTGCCGA
          101 AACGCGATAC TTTAAACGGC TCGGGTACGC ATACTTTACC GGTTTGGGCG
          151 ATTTTGCCGA GGTCGTTGCG CAGCAAATCG ACAATCATCA CGTTTTCGGC
          201 GCGGTTTTTC GGGTCGGTTT GTAACTCGGC GGCGCGGCGT TCGTCTTGTC
              301
              CCGTCTGAAG CGATGTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
          351 CGCGGATTGC CCGGCTTCAT CGGGCAGGTG GGACAATACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 2; ORF 001.ng>:
     g001.pep
              MLPQGKAARR VSANEVSGRA CARMVLVICQ TLPKRDTLNG SGTHTLPVWA
              ILPRSLRSKS TIITFSARFF GSVCNSAARR SSCPSPKIGA VPFIGSVLMV
          101 PSEAMLRKSS GEKHSVHADC PASSGRWDNT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3>:
     m001.seq
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
              CGGcAssCTT ss.GCTTGGA yGGTGCTGGT CATCTGCCAA ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
151 ATTTTGCCGA GATCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
          201 GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
          CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
              CGCGGATTGC CCCTCCGCAT CGGGCAGGTG GGACAAGACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 4; ORF 001>:
     m001.pep
              MLPQGKAARR MSANEVCGXL XAWXVLVICQ TLPKRDTLNG SGTHTVPVWA
          51
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
          101 PSEPILRKSS GEKHSVHADC PSASGRWDKT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 5>:
     a001.seq
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
          51
              CGGCAAGGCT TGGGCTTGGA TGGTGCTGGT CATCTGCCAA ACGCTGCCGA
              AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
         151 ATTTTGCCGA GGTCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         201 GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
         CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCTTGTGCAT CGGGCAGGTG GGACAAAACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 6; ORF 001.a>:
     a001.pep
              MLPQGKAARR MSANEVCGKA WAWMVLVICQ TLPKRDTLNG SGTHTVPVWA
          51
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
         101 PSEPILRKSS GEKHSVHADC PCASGRWDKT A*
    m001/a001
                 96.2% identity over a 131 aa overlap
                                  20
                                                     40
                                                               50
                 MLPQGKAARRMSANEVCGXLXAWXVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    m001.pep
                                    MLPQGKAARRMSANEVCGKAWAWMVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    a001.pep
```

BNSDOCID: <WO__9957280A2_J_>

	10	20	30	40	50	60
m001.pep	70 TIITFSARFFGSACN            TIITFSARFFGSACN 70	111111	HHHHHH	1111111111	1111111111	11111
m001.pep	130 PSASGRWDKTAX            PCASGRWDKTAX 130			100	110	120

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 001 shows 89.3% identity over a 131 aa overlap with a predicted ORF (ORF 001.ng) from N. gonorrhoeae:

m001/g001

1

```
20
                                 30
                                         40
                                                  50
m001.pep
          MLPQGKAARRMSANEVCGXLXAWXVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
          {\tt MLPQGKAARRVSANEVSGRACARMVLVICQTLPKRDTLNGSGTHTLPVWAILPRSLRSKS}
g001
                 10
                         20
                                 30
                                                 50
                                                          60
                 70
                         80
                                 90
                                        100
                                                 110
          TIITFSARFFGSACNSAARRSSCPSPKIGAVPFIGSVLMVPSEPILRKSSGEKHSVHADC
m001.pep
          g001
          {\tt TIITFSARFFGSVCNSAARRSSCPSPKIGAVPFIGSVLMVPSEAMLRKSSGEKHSVHADC}
                 70
                                 90
                                        100
                130
m001.pep
          PSASGRWDKTAX
          1::11111:111
g001
          PASSGRWDNTAX
                130
```

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 7>:

```
ATGGTCGTAT TCGTGGCTGA AGGCGTATTC GGTCGCGCTG TTTTGGGTCA
    CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
 51
101
     TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGCTTTGGT
151
     TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATGTCGATG TGGCAGTAGC
     CGTTGGGGTT TTTAATCAGG TAGTCCTGAT GGTATTCCTC GGCGTCGTAG
201
251 AAGTTTTCA GCGGTTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
    CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG
301
    TGTAGTACAC GCCGCTGCGG TATTGCGTGC CGGTGTCGTT ACCCTGTTTG
351
401
    TTGAGGCTGG TCGGATCAAC GACGCGGAAA TAATATTGCA GGATGTCGTC
451
     CAGGCTGagt TTGTCGGCAT CGTaggtcac tTTGACGGTC TCGGCATGAC
     CCGTATGGCG GTaggacact tctTCgtanc TcGGGtTTTC CGTGttGCCG
501
551
    TTGGCgttac cGGATACCGC gtcaACCACG CCGTcgatgc gttggaAATa
     ggCTTCCAAg ccccaaaagc agccgccggc gaagtaaatg gtgcccgtgt
601
651 tcatgattGC TGa
```

### This corresponds to the amino acid sequence <SEQ ID 8; ORF 003.ng>: g003.pep

1	MVVFVAEGVF	GRAVIGHT.VT.	LECOCA PE PC	UTDEFTDOM	EAFALRCGFG
51	FARORFVGFA	DVDVAVAVGV	ENOUGH ETG	CIMENEODER	FNNEGQLVFL
.01	LLAFEGGGDD	GFFGGVGVVH	AAAVI DACINI	GVVEVFOREV	FNNEGQLVFL



```
151 QAEFVGIVGH FDGLGMTRMA VGHFFVRVFR VAVGVTGYRV NHAVDALEIG
201 FQAPKAAAGE VNGARVHDC
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 9>:

```
m003.seq
         ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
     51
         CTTGsTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
         TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGGG CGGTCTTGGT
```

TTTGCCCGGC AGCGGTTCGT CAGCKTTGCG GATGTCGATG TGGCAGTAGC CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG AAGTTTTCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG

CTGCTCGCGT TTGAGGGCGk CGGCGATGAC GGCTTTTTCG kCGGGGTCGG 301 351 TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG

TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC 451 CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG

551 TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA 601 GGCTTCCAAG CCCCAGAAGC AGCg.CCGGC GAGGTAAATG GTGCGCGTGT

651 TCATGATTTT TGA

#### This corresponds to the amino acid sequence <SEQ ID 10; ORF 003>:

m003.pep Length: 221

1 MVVFVAEGIF GRAVLGNLXL LFGQGAFEFG VTRFFIRCRV EAFALRGGLG

51 FARQRFVSXA DVDV<u>AVAVGV FNQVVLMVFL</u> GIVEVFQRLV FNNEGQLVFL 101 LLAFEGXGDD GFFXGVG<u>VVH AAAVLRTGVV ALFV</u>EAGRIN DAEEILQDVV

*AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI

GFQAPEAAXG EVNGARVHDF *

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 11>: a003.seq

1 ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA 51 CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT

TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGTCTTGGT TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATATCGATG TGGCAGTAGC 151

201 CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG 251 AAGTTTTTCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG

301 CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG

TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG 351 TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC 401

451 TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC 501 CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG

TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA 551 601 GGCTTCCAAG CCCCAGAAGC AGCCGCCGGC GAGGTAGATG GTGCGCGTGT

651 TCATGATTTT TGA

#### This corresponds to the amino acid sequence <SEQ ID 12; ORF 003.a>: a003.pep

MVVFVAEGIF GRAVLGNLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGLG

51 FARQRFVGFA DIDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL 101 LLAFEGGGDD GFFGGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV

*AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI

201 GFQAPEAAAG EVDGARVHDF *

#### 95.9% identity over a 220 aa overlap m003/a003

	10	20	30	40	50	60
m003.pep	MVVFVAEGIFGRAV	LGNLXLLFGO	SAFEFGVTRF	TRCRUEAEN	T DCCT CENDO	00
				TICKARUEN	PUGGTGLWKÖ	X I V S X A
			[		11 111111	111: 1
a003	MVVFVAEGIFGRAV	LGNLVLLFGQ	GAFEFGVTRF	FIRCRVEAFA	LRCGLGFARO	REVOEA
	10	20				
	10	20	30	40	50	60

m003.pep	.70 DVDVAVAVGVFNQVII:	1 [ 1 ] [ ] [ ] [ ]	1   1   1   1   1   1   1			111111
	DIDVAVAVGVFNQVV	O C C C C C C C C C C C C C C C C C C C	PALOKTALUME		EGGGDDGFF	GGVGVVH
	70	80	90	100	110	120
m003.pep	130	140	150	160	170	180
moos.pep	AAAVLRTGVVALFVI	LAGRINDAEI	EILQDVVXAEF	VGIVGHFDGE	'GVARMAVGH'	VFIARIF
a003	AAAVLRTGVVALFV		1   1   1   1   1   1   1	111111111	111111111	111111
	130	140	150	160	170	180
	190	200	210	220		
m003.pep	RVAVGVAGYRVNHAV	DALEIGFQ	APEAAXGEVNG	ARVHDFX		
a003			:  APEAAAGEVDG 210	 ARVHDFX 220		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 003 shows 88.6% identity over a 219 aa overlap with a predicted ORF (ORF 003.ng) from N. gonorrhoeae:

m003/g003

m003.pep	10 MVVFVAEGIFGRAVL	20 GNLXLLFGQO	30 SAFEFGVTRFI	40 FIRCRVEAFAI		60 RFVSXA		
g003	MVVFVAEGVFGRAVL		AFFECUTO FI		1:11111	11: 1		
	10	20	30	40	50	REVGEA 60		
	70	80	90	100	110	120		
m003.pep	DVDVAVAVGVFNQVV	LMVFLGIVEV	FORLVFNNE	GOLVFLLLAFE	GXGDDGFFXG	VGVVH		
~003		!           :	111:11111		1 111111 1	11111		
g003	DVDVAVAVGVFNQVV	LMVFLGVVEV	FQRFVFNNEC	GQLVFLLLAFE	GGGDDGFFGG	VGVVH		
	70	80	90	100	110	120		
m003.pep	130	140	150	160	170	180		
moos.pep	AAAVLRTGVVALFVEAGRINDAEEILODVVXAEFVGIVGHFDGFGVARMAVGHVFIARIF							
g003	AAAVLRAGVVTLFVE	AGRINDAEII		 GIVGHFDGLG	::         MTRMAVGHFF	:  :  V-RVF		
	130	140	150	160	170	180		
	190	200	210	220				
m003.pep	RVAVGVAGYRVNHAVI	DALEIGFQAP	EAAXGEVNGA	RVHDFX				
g003		DALEIGFQAP 200	:          KAAAGEVNGA 210	RVHDC				

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 13>:

_	AIGGLAGAAC	GGCATATCCA	GCATTTGCGG	AACGGTCATC	TTCATTTGAT
51	GCGCCCATGC	CAACAagtga	gccaAAtgtT	CGGCGGCAGG	GCCTaccatT
101	TCCGCGCCGA	TAAagcggcc	aGTGactTTT	tcgGCataca	gagaga@at-
151	$\alpha$ CCTTTTCTTT	ACCAGGGGG	gorogottii	cogocacaca	ggcgcaratg
	9001116111	ACCAGCALCA	cgcggctgcg	accttgaTTT	TTGAACGATA
201	CTTCGCCgaT	GACAAATTCG	TCGGCTTGGT	ATTGCGCGGC	AACCTCCCCC
251	TATTTCAAAC	CGACAAAGCC	CATTTCCC	ctggtaaACA	AACCIGCGCG
301	CCTT	-00777000	GATTIGUGGA	CtggtaaACA	CCACGCCAAT
	GGIGCEGCGG	CGCAAACCGC	TGCCGATATt	cgGgtagcgg	ccccacatta
351	ttgcccggca	atcttacctt	gatcaacaac	ttcatGCAGC	700000
401	aattaasaa	## = = = = = = = = = = = = = = = = = =	990099090	LLCALGCAGC	AGGGGCagtt
	ggicggacgc	gregeeegea	ataAAGATAT	GCGGAATgct	ggtCTGCATg
451	gtCAGCGGAT	CGGCAACGGG	tacgccgcgc	gcgtctttgT	CCAMAMMCAM
501	<b>CTTTTTCCAAA</b>	CCCATATE ~T	Charges	ACGGCGACCT	CGATATTGAT
	CTTTCCAAA	CCGATATEGT	CAACGTTCGG	ACGGCGACCT	ACCCCTCCCA



#### This corresponds to the amino acid sequence <SEQ ID 14; ORF 004.ng>: g004.pep

- MVERHIQHLR NGHLHLMRPC QQVSQMFGGR AYDFRADKAA GGFFGIQAHM
  51 AFVYQHHAAA TLIFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAN
  601 GAAAQTAADI RVAAPRYCPA ILPWSAASCS RGSWLDASPA IKICGMLVCM
  651 VSGSATGTPR ASLSILMFSK PILSTFGRRP TAANIYSATN TPFSPSCSQW
  601 TSTLPSASSL TSVLASRCSF NSSPNTAFAS SETTGSEMPP MIPPKPKIST
- 251 FTPKRCNA*

251 TPKRCNA*

a004.seq

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 15>: m004.seq

ATGGTAGAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT 1 GTGCCCAAGC CAACAGGTGC GCCAAATGTT CGGCGGCAGG GCCTACGATT 51 TCCGCGCCGA TAAAGCGGCC GGTGGCTTTT TCGGCATACA GGCGCATATG 101 151 GCCTTTGTTC ACCAGCATCA CGCGGCTGCG GCCTTGGTTT TTGAACGATA 201 CTTCGCCGAT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG 251 TATTTCAGAC CGACAAAGCC GATTTGCGGA CTGGTAAACA CCACGCCGAT 301 GGTGCTGCGC CGCAAACCGC CGCCGATATT CGGGTAGCGG CCGCGTTATC GCCGGCAATC TTGCCTTGGT CGGCAGCTTC ATGCAGCAGA GGCAGTTGGT TGGACGCATC GCCTGCGATG AAGATATGCG GAATACTGGT CTGCATGGTC 351 401 451 AGCGGGTCGG CAACAGGTAC GCCGCGCGCA TCTTTTTCGA TATTGATATT 501 TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCCACG GCTGCCAGCA 551 TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCATC GAGTTTGACC TCGGTTTTAG CATCCAGATG 651 CAGTTTCAAT TCTTCGCCGA ACACGGCGTT CGCCTCGTCT GAAACGACGG 701 GGTCGGAAAT GCCGCCGATG ATTCCGCCCA AACCGAAAAT TTCAACTTTC 751 ACGCCCAAAC GGTGCAATGC CTGA

#### This corresponds to the amino acid sequence <SEQ ID 16; ORF 004>:

1 MVERHIQHLR NGHLHLMCPS QQVRQMFGGR AYDFRADKAA GGFFGIQAHM
51 AFVHQHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAD
101 GAAPQTAADI RVAAALSPAI LPWSAASCSR GSW<u>LDASPAM KICGILVCMV</u>
151 SGSATGTPRA SFSILIFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT
201 STLPSASSLT SVLASRCSFN SSPNTAFASS ETTGSEMPPM IPPKPKISTF

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>:

ATGGTAGAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT 51 GTGCCCAAGC CAACAGGTGC GCCAAATGTT CGGCGGCCGG ACCTACGATT 101 TCTGCGCCGA TGAAGCGGCC GGTGGCTTTT TCGGCATACA GGCGCATATG 151 GCCTTTGTTT ACCAGCATCA CGCGGCTGCG GCCTTGGTTT TTGAACGATA CTTCGCCGAT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG TATTTCAAAC CGACAAAGCC GATTTGCGGA CTGGTGAACA CTACGCCGAT 251 301 GGTGCTGCGG CGCAAACCGC CGCCGATATT CGGGTAGCGG CCGCGTTATC 351 GCCGGCAATC TTGCCTTGGT CGGCGGCTTC ATGCAGCAGG GGCAGTTGGT 401 TGGACGCGTC GCCCGCAATA AAGATATGCG GAATACTGGT CTGCATAGTC 451 AGCGGATCGG CAACGGGTAC GCCGCGCGCA TCTTTTCGA TATTGATGTT TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCTACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT 551 601 TCTACATTGC CGTCTGCGTC GAGTTTGGCC TCGGTTTTAG CATCCAAATG 651 CAGTTTCAAT TCTTCACCGA ACACGGCTTT CGCCTCGTCT GAAACGACGG 701 GGTCGGAAAT GCCGCCGATG ATGCCACCCA AACCGAAAAT TTCAACTTTC 751 ACGCCCAAAC GGTGCAATGC CTGA This corresponds to the amino acid sequence <SEQ ID 18; ORF 004.a>: a004.pep

MVERHIQHLR NGHLHLMCPS QQVRQMFGGR TYDFCADEAA GGFFGIQAHM 51 AFVYQHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGEHYAD 101 GAAAQTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAI KICGILVCIV 151 SGSATGTPRA SFSILMFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT 201 STLPSASSLA SVLASKCSFN SSPNTAFASS ETTGSEMPPM MPPKPKISTF 251 TPKRCNA*

#### 94.9% identity over a 257 aa overlap m004/a004

	10	20	30	40	50	60
m004.pep	MVERHIQHLRNGHL	HLMCPSQQV	RQMFGGRAYDI	FRADKAAGGFI	GIQAHMAFV	AAAHQH
a004	1111111111111111		11111:11:	:::::::		
a004	MVERHIQHLRNGHL	HLMCPSQQV	RQMFGGRTYDI	FCADEAAGGF	GIQAHMAFV	AAAHAY
•	10	20	30	40	50	60
	70	80	•			
m004.pep			90	100	110	120
moo4.pep	ALVFERYFADDKFV	GTATEGUTEA	VFQTDKADLRT	rgkhhadgaai	'QTAADIRVA	ALSPAI
a004	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1:1:1111	11111111111	TITLE
a004	ALVFERYFADDKFV	GLVLRGNLR	/FQTDKADLRT	GEHYADGAAA	QTAADIRVAA	ALSPAI
	70	80	90	100	110	120
	130	1.40				
m004.pep		140	150	160	170	180
dad.beb	LPWSAASCSRGSWL	DASPAMKICO	SILVCMVSGSA	TGTPRASFSI	LIFSKPILST	FGRRPT
a004	I DISCO A CCCD CONT.				1:1111111	11111
a004	LPWSAASCSRGSWL	DASPAIKICO	SILVCIVSGSA	TGTPRASFSI	LMFSKPILST	FGRRPT
	130	140	150	160	170	180
	190	200	010			
m004.pep			210	220	230	240
moo4.pep	AASIYSATNTPFSP:	SCSOMISITE	SASSLTSVLA	SRCSFNSSPN	TAFASSETTG	SEMPPM
a004			1111:1111		111111111	11111
4004	AASIYSATNTPFSP:	SCSQWTSTLE	SASSLASVLA		TAFASSETTG	SEMPPM
	190	200	210	220	230	240
	250					
m004.pep	IPPKPKISTFTPKR(	ግስተ አ ላሪ				
moo1.pcp	· IIIIIIIIIIIIIIII	LIVAA				
a004	MDDVDVI COEMDVD	77777				
4004	MPPKPKISTFTPKRO	JNAX				
	250					

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 004 shows 93.4% identity over a 258 aa overlap with a predicted ORF (ORF 004.ng) from N. gonorrhoeae:

m004/g004

m004.pep	MVER	10 HIQHLRNGHLI	20 HLMCPSQQVR	30 QMFGGRAYDF	40 RADKAAGGFE	50 FGI <b>QAHMAFV</b> H	60 АААННО
g004	MVER	HIQHLRNGHLE 10	III I III HLMRPCQQVS 20			: FGIQAHMAFVY 50	   AAAHHQ   00
m004.pep	7 T 7/E1	70	80	90	100	110	110
moo4.pep	:1:11	RIFADDKEVO	LVLRGNLRV	FQTDKADLRT( 	GKHHADGAAF	'QTAADIRVAA	A-LSPA
g004	TLIFE	RYFADDKFVO	LVLRGNLRV	FQTDKADLRT(	:    GKHHANGAAA	  ATAADIRVAA	II PRÝCPA
		70	80	90	100	110	120
m004.pep	120 ILPWS	130 AASCSRGSWI	140 DASPAMKIC	150 GILVCMVSGS	160 ATGTPRASFS	170 ILIFSKPILS	179 TFGRRP

g004	   ILPW		:     LDASPAIKIC  140	:	:  ATGTPRASLS 160	:	 TFGRRP 180
	180	190	200	210	220	230	239
m004.pep	TAAS	IYSATNTPFS	PSCSQWTSTL	PSASSLTSVL	ASRCSFNSSP	NTAFASSETT	GSEMPP
	111:	1   1   1   1   1   1   1   1	111111	111111111	1111111111	1111111111	11111
g004	TAAN	IYSATNTPFS	PSCSQWTSTL	PSASSLTSVL	ASRCSFNSSP	NTAFASSETT	GSEMPP
		190	200	210	220	230	240
	240	250					
m004.pep	MIPP	KPKISTFTPK	RCNAX				
	1111	[[[]]]	1111				
g004	MIPP	KPKISTFTPK	RCNA				
		250					

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 19>: g005.seq

```
ATGGGGATGG ACAATATTGA TATGTTCATG CCTGAACAAG AGGAAATCCA
      ATCAATGTGG AAAGAAATTT TACTGAATTA CGGTATTTTC CTGCTCGAAC
  51
      TGCTTACCGT GTTCGGCGCA ATTGCGCTGA TTGTGTTGGC TATCGTACAG
 101
 151
      AGTAAGAAAC AGTCGGAAAG CGGCAGTGTC GTACTGACAG ATTTTTCGGA
 201 AAATTATAAA AAACAGCGGC AATCGTTTGA AACATTCTTT TTAAGCGAGG
 251 AAGAGACAAA ACATCAGGAA AAAAAAGAAA AGAAAAAGGA AAAGGCGGAA
 301 GCCAAAGCAG AGAAAAAGCG TTTGAAGGAG GGCGGGGAGA AATCTGCCGA
 351
     AACGCAAAAA TCCCGCCTTT TTGTGTTGGA TTTTGACGGC GATTTGTATG
      CACACGCCGT AGAATCCTTG CGTCATGAGA TTACGGCGGT GCTTTTGATT
 401
 451 GCCAAGCCTG AAGATGAGGT TCTGCTCAGA TTGGAAAGTC CGGGCGGCGT
 501 GGTTCACGGT TACGGTTTGG CGGCTTCGCA GCTTAGGCGT TTGCGCGAAC
 551 GCAATATTCC GCTGAccgtc gccgTCGATA AGGTCGCGGC AAGCGgcggc
 601 tatatgatgg cgtgtgtgGC GGATAAAATT GTTTCCGCtc cgtttgcggt
 651
     catcggttcg gtgggtgtgg tgGcggaagt gcCGAATATC CAccgCctGT
 701 TGAAAAAACA TGATATTGAT GTGGATGTGA TGACGGCGGG CGAATTTAAG
 751 CGCACGGTTA CTTTTATGGG TGAAAATACG GAAAAGGGCA AACAGAAATT
 801 CCGGCAGGAA CTGGAGGAAA CGCATCAGTT GTTCAAGCAG TTTGTCAGTG
 851 AAAACCGCCC CGGGTTGGAT ATTGAAAAAA TAGCGACGGG CGAGCATTGG
     TTCGGCCGGC AGGCGTTGGC GTTGAACTTG ATTGACGAGA TTTCGACCAG
 901
     TGATGATTTG TTGTTGAAAA CGTTTGAAAA CAAACAGGtt aTCGAAGTGA
 951
1001 AATATCAGGA GAAGCGAAGC CTGATCCAGC GCATTGGTTT GCAGGCGGAA
     GCTTCCGTTG AAAAGTTGTT TGCCAAACTT GTCAACCGGC GAGCGGATGT
1101 GATGTAG
```

#### This corresponds to the amino acid sequence <SEQ ID 20; ORF 005.ng>:

1	MGMDNIDMFM	PEQEEIQSMW	KEILLNYGIF	LLELLTVFGA	IALIVLATVO
51	SKKQSESGSV	VLTDFSENYK	KQRQSFETFF	LSEEETKHOE	KKEKKKEKAE
101	AKAEKKRLKE	GGEKSAETQK	SRLFVLDFDG	DLYAHAVESI	RHETTAVILL
151	AKPEDEVLLR	LESPGGVVHG	YGLAASQLRR	LRERNIPLTV	AVDKVAASCC
201	YMMACVADKI	<b>VSAPFAVIGS</b>	VGVVAEVPNI	HRITKKHULD	VDVMTAGEER
251	RTVTFMGENT	EKGKOKFROE	LEETHOLFKO	FVSENRPGID	TEKIAMCEUM
301	FGROALALNL	IDEISTSDDL	LIKAFENKOV	TEAKAUERDS	ITORICIONE
351	ASVEKLFAKL	VNRRADVM*		12 11.1 QUILLO	TIONIGHT
251 301	RTVTFMGENT FGRQALALNL	EKGKQKFRQE IDEISTSDDL	VGVVAEVPNI LEETHQLFKQ LLKAFENKQV	FVSENRPGLD	IEKTATGEHW

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 21>: m005.seq

1	ATGGACAATA	TTGACATGTT	CATGCCTGAA	CAAGAGGAAA	тесаатеаат
51	GTGGAAAGAA	ATTTTACTGA	ATTACGGTAT	TTTCCTCCTC	CAACTCCTTA
101	CCGTGTTCGG	CGCAATTGCG	СТСАТТСТСТ	TEGETATECET	ACACACTICITA
151	AAACAGTCGG	AWAGCGGCAG	TOTOTTOTOT	ACCCAMMENT	ACAGAGTAAG
201	TAAAAAACAG	CGGCAATCCT	TOICOIACIO	ACGGATTTT	CGGAAAATTA
251	CACAACATCA	CCANANACAC	TIGAAGCATT	CTTTTTAAGC	GGGGAAGAGG
201	CACAACATCA	GGMMMAAGAG	GAAAAGAAAA	AGGAAAAGGC	GGAAGCCAAA



### This corresponds to the amino acid sequence <SEQ ID 22; ORF 005>:

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 23>:

```
ATGGACAATA TTGACATGTT CATGCCTGAA CAAGAGGAAA TCCAATCAAT
   1
      GTGGAAAGAA ATTTTACTGA ATTACGGTAT TTTCCTGCTC GAACTGCTTA
  51
 101
     CCGTGTTCGG CGCAATTGCG CTGATTGTGT TGGCTATCGT ACAGAGTAAG
 151 AAACAGTCGG AAAGCGGCAG TGTCGTACTG ACGGATTTTT CGGAAAATTA
      TAAAAAACAG CGGCAATCGT TTGAAGCATT CTTTTTAAGC GGGGAAGAGG
 201
      CAAAACATCA GGAAAAGAG GAAAAGAAAA AGGAAAAGGC GGAAGCCAAA
 251
      GCAGAGAAAA AGCGTTTGAA GGAGGGTGGG GAGAAATCTT CCGAAACGCA
 301
      AAAATCCCGC CTTTTTGTGT TGGATTTTGA CGGCGATTTG TATGCACACG
 351
      CCGTAGAATC CTTGCGTCAT GAGATTACGG CGGTGCTTTT GATTGCCAAG
 401
      CCTGAAGATG AGGTTCTGCT TAGATTGGAA AGTCCGGGCG GCGTGGTTCA
 451
      CGGTTACGGT TTGGCGGCTT CGCAGCTTAG GCGTTTGCGC GAACGCAATA
 501
 551
      TTCCGCTGAC CGTCGCCGTC GATAAGGTGG CGGCGAGCGG TGGTTATATG
      ATGGCGTGTG TGGCGGATAA AATTGTTTCC GCTCCGTTTG CGATTGTCGG
      TTCGGTGGGT GTTGTAGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
 651
 701 AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
     GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
 801 GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
 851
      GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
      CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
 901
      TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
 951
     AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
      GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGTA
1051
1101 G
```

### This corresponds to the amino acid sequence <SEQ ID 24; ORF 005.a>:

• •					
1	MDNIDMFMPE	<b>QEEIQSMWKE</b>	ILLNYGIFLL	ELLTVFGATA	T.TVILATVOSE
51	KQSESGSVVL	TDFSENYKKQ	ROSFEAFELS	CEEVKHOEKE	TIVELY DAY
101	AEKKRLKEGG	EKSSETQKSR	LEVIDEDCDI	VAUAUECTEU	ELWYFEVARAK
151	PEDEVLLRLE	SPGGVVHGYG	T.AASOT.DDID	PONTOLOGIAN	EITAVLLIAK
201	MACVADKIVS	APPATUGSUG	MACADALIA	EKNIPLIVAV	DKVAASGGYM
251	VTFMGENTEK	CKOKEDOETE	VVAEVENTIK	TTKKHOTDAD	VMTAGEFKRT
	VTFMGENTEK	GUÖULUÖFFF	E LUÖPLKÖF.A	SENRPQLDIE	EVATGEHWFG



#### m005/a005 79.2% identity over a 366 aa overlap

	10	20	30	40	50	60
m005.pep	MDNIDMFMPEQEE	IQSMWKEILL	NYGIFLLELLI	TVFGAIALIV	LAIVQSKKQS	YSCSWI
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1	111111111	111111
a005	MUNIUMIMPEQEE	IQSMWKEILLN	NYGIFLLELLI	VFGAIALIV	LAIVQSKKQS	ESGSVVL
	10	20	30	40	50	. 60
005	70	80	90	100	110	120
m005.pep	TDFSENYKKQRQSI	FEAFFLSGEE <i>I</i>	AQHQEKEEKKK	(EKAEAKAEK	XRLKEGGEKS.	AETXKSR
005			:::::::::::::::::::::::::::::::::::::::	11111111	111111111	• I I   I   I   I
a005	TDESENYKKQRQSI	FEAFFLSGEE	KHQEKEEKKK	(EKAEAKAEK)	KRLKEGGEKS	SETQKSR
	70	80	90	100	110	120
	4.00					
0.05	130	140	150	160	170	180
m005.pep	LFVLXXXXXXXXX	XXXXXXXXXX	XXXXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXXXXXX
. 0.05	1111	:				
a005	LFVLDFDGDLYAH	AVESLRHEITA	VLLIAKPEDE	VLLRLESPG	SVVHGYGLAA:	SQLRRLR
	130	140	150	160	170	180
	100					
	190	200	210	220	230	240
m005.pep	XXXXXXXXXXXXX	(ASGGYMMACV	'ADKIASAPFA	IVGSVGVVA	EVPNIHRLLK	KHDIDVD
- 005	:		1111:1111	111111111		
a005	ERNIPLTVAVDKVA	ASGGYMMACV	'ADKIVSAPFA		EVPNIHRLLKI	KHDIDVD
	190	200	210	220	230	240
	0.50					
	250	260	270	280	290	300
m005.pep	VMTAGEFKRTVTFM	IGENTEKGKOK	FRQELEETHQ	LFKQFVSENF	RPQLDIEEVAT	rgehwfg
a005		1111111111		111111111	111111111	
a005	VMTAGEFKRTVTFM 250	IGENTEKGKQK	FRQELEETHQ	LFKQFVSENF		r <b>GE</b> HWFG
	250	260	270	280	290	300
	310	200				
m005.pep		320	330	340	350	360
moos.pep	RQALALNLIDEIST	SUULLLKAFE	NKOVIEVKYO	EKQSLIQRIG	LQAEASVEKI	FAKLVN :
a005	PONTALNI TRETOR		1	<u>                                     </u>	1111111111	[ ] [ ] [ ] [ San
a003	RQALALNLIDEIST 310	SDDFFFKWEE	NKQVIEVKYQ:	EKQSLIQRIG		
	310	320	330	340	350	360
m005.pep	RRADVMX					
mooo.pep						
a005	RRADVMX					
4000	MADVEN					

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 005 shows 77.0% identity over a 366 aa overlap with a predicted ORF (ORF 005.ng) from N. gonorrhoeae:

m005/g005

		10	20	30	40	50	
m005.pep	MDNI	DMFMPEQEE	IQSMWKEILL	NYGIFLLELL	TVFGAIALIV	LATVOSKKOS	sxsgsv
~005	1111	11111111			111111111	11111111	1 1111
g005	MGMDNI	DMFMPEQEE	IQSMWKEILL	NYGIFLLELL	rvfgaialiv:	LAIVQSKKQS	SESGSV
		10	20	30	40	50	60
	60	70	80	90	100	110	
m005.pep	VLTDFS	ENYKKOROS	FEAFFLSGEE	AQHQEKEEKKI	KEKAEAKAEKI	KRIKEGGEKS	SAETXK
~00E	11111	11111111		::   :			1111 1
g005	VLTDFS	ENYKKQRQS	FETFFLSEEE:	rkhqekkekki	KEKAEAKAEKI	KRLKEGGEKS	SAETOK
		70	80	90	100	110	120

m005.pep	120 130 SRLFVLXXXXXXX	140 XXXXXXXXXX	150 XXXXXXXXX •	160 XXXXXXXXXXX	170 XXXXXXXXX	«xxxxxx
g <b>00</b> 5	SRLFVLDFDGDLYA 130	HAVESLRHEI 140	FAVLLIAKPE 150	DEVLLRLESPO 160	GGVVHGYGL <i>I</i> 170	AASQLRR 180
m005.pep	180 190 XXXXXXXXXXXXXXX : LRERNIPLTVAVDK 190			11::11::11	11111111	3 3 3 3 3 3 3
m005.pep	240 250 VDVMTAGEFKRTVT             VDVMTAGEFKRTVT: 250	1		1111111111	290 RPQLDIEEV	ATGEHW
m005.pep	300 310  FGRQALALNLIDEIS	; ; ; ; ; ; ; ; ; ; ; ;		1111.	I I I I I I I I I I	11111
m005.pep	360 VNRRADVMX          VNRRADVMX					

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 25>: g006.seq

```
1 ATGCTGCTGG TGCTggaatt ttggttCGGc gtGtCGCGG TGGGCatact
51 tgCGTTGTTT TTATGGCttt TGCCACGTTT TGCCGCCATC AGCGAAAACC
101 TGTATTTCCG CCTGAACAAC AGCTTGGAAC gcgACAACCA CTTTATCCGA
151 AAAGGCGACG AGCGCAGCT GTACCGCCAT TACGGACTGG TTTCGCGCCCT
201 GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCG
251 CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
301 GGCTACGGCA GCGCGGGCA TATTTATTCG GTCGGCACTT ATCTGTGGAT
351 GTTTGCCATG AGTTTGGACG ATGTGCCGCG ATTGGTCGAA CAATATTCCA
401 ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
```

# This corresponds to the amino acid sequence <SEQ ID 26; ORF 006.ng>: g006.pep

- 1 MLLVLEFWFG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
  51 KGDERQLYRH YGLVSRLRVL ISNREAFGYL CVGAAMGILF GFAFVMMTLK
  101 GYGSAGHIYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
  151 AGT*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 27>:

201 251	TGCGTTGTTT TGTATTTCCG AAAGGCGACC GCGTGTGCTG CGGCGATGGG	CCTGAACAAC GGCGGCAGCT ATTTCCAACC TATTTTGTTC	TGCCACGTTT AGCTTGGAAC GTACCGCCAT GCGAAGCCTT GGCTTTGCTT	TGCCGCCATC GCGACAACCA TACGGACTGC CGGCTATCTC TTGTGATGAT	AGCGAAAACC CTTTATCCGA TTGCGCGCCT TGCGTCGGCA
301	GGCTACAGCA	GCGCGGGCA	TGTCTATTCG	GTCGGCACTT	ATCTGTGGAT
					************



- 351 GTTTGCCATG AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
- 401 ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
- 451 GCCGGAACTTGA

This corresponds to the amino acid sequence <SEQ ID 28; ORF 006>: m006.pep

- 1 MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
- 51 KGDRRQLYRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
- 101 GYSSAGHVYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
- 151 AGT*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 29>:

#### a006.seq

- ATGCTGCTGG TGCTGGAATT TTGGGTCGGC GTGTCGGCGG TGGGCATACT 1 51
- TGCGTTGTTT TTATGGCTTT TGCCACGTTT TGCCGCCATC AGCGAAAACC
- TGTATTTCCG CCTGAAGAAC AGCTTGGAAC GCGACAACCA CTTTATCCGA 101
- 151 AAAGGCGACG AGCGGCAGCT GGACCGCCAT TACGGACTGC TTGCGCGCCCT 201 GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCA
- 251 CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
- 301 GGCTACAGCA GCGCGGGGCA TGTCTATTCG GTCGGCACTT ATCTGTGGAT
- 351 GTTTGCCATA AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
- ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGAAACG GAACATCAAA
- 451 GCCGGAACTT GA

#### This corresponds to the amino acid sequence <SEO ID 30; ORF 006.a>:

#### a006.pep

- MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLKN SLERDNHFIR
- 51 KGDERQLDRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
- 101 GYSSAGHVYS VGTYLWMFAI SLDDVPRLVE QYSNLKDIGQ RIEWSKRNIK

#### 96.7% identity over a 153 aa overlap m006/a006

	10	20	30	40	50	60
m006.pep	MLLVLEFWVGVSAV	GILALFLWL	LPRFAAISENI	LYFRLNNSLER	DNHFIRKGDE	RROLYRH
	111111111111		[		111111111:	: [
a006	MLLVLEFWVGVSAV	GILALFLWL	LPRFAAISENI	YFRLKNSLER	DNHFIRKGDE	ROLDRH
	10	20	30	40	50	60
	70	80	90	100	110	120
m006.pep	YGLLARLRVLISNR	EAFGYLCVG'	<b>FAMGILFGFA</b>	VMMTLKGYSS	AGHVYSVGTY	LWMFAM
					1111111111	11111:
a006	YGLLARLRVLISNR	EAFGYLCVG	TAMGILFGFA	VMMTLKGYSS	AGHVYSVGTY	LWMFAI
	70	80	90	100	110	120
	130	140	150			
m006.pep	SLDDVPRLVEQYSN	LKDIGQRIE	<b>VSERNIKAGT</b>	ζ		
	[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [		:			

150

Computer analysis of this amino acid sequence gave the following results:

SLDDVPRLVEQYSNLKDIGQRIEWSKRNIKAGTX

140

#### Homology with a predicted ORF from N. gonorrhoeae

130

ORF 006 shows 95.4% identity over a 153 aa overlap with a predicted ORF (ORF 006.ng) from N. gonorrhoeae:

m006/g006

a006

10 20 30 40 60 MLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERDNHFIRKGDRRQLYRH m006.pep



```
g006
          MLLVLEFWFGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERDNHFIRKGDERQLYRH
                         20
                                 30
                                         40
                                                         60
                 70
                         80
                                 90
                                        100
                                                110
                                                        120
          YGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSAGHVYSVGTYLWMFAM
m006.pep
          YGLVSRLRVLISNREAFGYLCVGAAMGILFGFAFVMMTLKGYGSAGHIYSVGTYLWMFAM
g006
                 70
                         80
                                90
                                        100
                                                110
                130
                        140
                                150
m006.pep
          SLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX
          111111111111111111111111111111111111
q118
          SLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGT
                130
                        140
                                150
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 31>:

```
ATGTGGAAAA TGTTGAAACA CATAGCCAAA ACCCACCGCA AGCGATTGAT
  1
     TGGCACATTT TCCCCGGTCG GACTGGAAAA CCTTTTGATG CTGGGGTATC
 51
     CGGTGTTTGG CGGCTGGGCG ATTAATGCCG TGATTGCGGG GAGGGTGTGG
101
     CAGGCGTTGC TGTACGCTTT GGTTGTATTT TTGATGTGGC TGGTCGGTGC
     GGCACGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
201
     TCGCCGTGCC GGTTGTGTTG GAACAACGGC AGCGGCAAGT CCCGCATTCA
251
     GCGGTAACTG CACGGGTTGC CCTGTCGCGT GAATTTGTCA GCTTTTTTGA
301
     AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
351
     GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
    ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
451
501
    AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
     TCCGAAAAGG CGACGAGCGG CAGCTGTACC GCCATTACGG ACTGGTTTCG
551
    CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
601
    CGGCGCGGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
651
    TCAAAGGCTA CGGCAGCGCG GGGCATATTT ATTCGGTCGG CACTTATCTG
701
751
    TGGATGTTTG CCATGAGTTT GGACGATGTG CCGCGATTGG TCGAACAATA
    TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
    TCAAAGCCGG AACTTGA
```

# This corresponds to the amino acid sequence <SEQ ID 32; ORF 006-1.ng>: g006-1.pep

```
1 MWKMLKHIAK THRKRLIGTF SPVGLENLLM LGYPVFGGWA INAVIAGRVW
51 QALLYALVVF LMWLVGAARR IADTRTFTRI YTEIAVPVVL EQRQRQVPHS
101 AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
151 ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDER QLYRHYGLVS
201 RLRVLISNRE AFGYLCVGAA MGILFGFAFV MMTLKGYGSA GHIYSVGTYL
251 WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 33>:

```
ATGTGGAAAA TGTTGAAACA CATAGCCCAA ACCCACCGCA AGCGATTGAT
  1
 51
    TGGCACATTT TCCCTGGTCG GACTGGAAAA CCTTTTGATG CTGGTGTATC
    CGGTGTTTGG CGGCCGGGCG ATCAATGCCG TGATTGCGGG GGAGGTGTGG
     CAGGCGTTGC TGTACGCTTT GGTTGTGCTT TTGATGTGGC TGGTCGGTGC
    GGTGCGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
201
    TCGCCGTGCC GGTCGTGTTG GAACAGCGGC AGCGACAAGT CCCGCATTCG
    GCGGTAACTG CGCGGGTTGC CCTGTCGCGT GAGTTTGTCA GCTTTTTTGA
301
351
    AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
401
    GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
451 ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
501 AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
    TCCGAAAAGG CGACCGGCGG CAGCTGTACC GCCATTACGG ACTGCTTGCG
551
601 CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
```



151 ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDRR QLYRHYGLLA
201 RLRVLISNRE AFGYLCVGTA MGILFGFAFV MMTLKGYSSA GHVYSVGTYL
251 WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*

#### m006-1/g006-1 95.5% identity in 288 aa overlap

m006-1.pep	10 MWKMLKHIAQTHRKF              WKMLKHIAKTHRKF 10	111111111	1111111111	1111 11111	141:1111	111111
m006-1.pep	70 LMWLVGAVRRIADTR        :       LMWLVGAARRIADTR 70	11(11)11	1111111	11111111		
m006-1.pep	130 PIAATSVVSIFGACI           PIAATSVVSIFGACI 130	140 MLLVLEFWV	150 GVSAVGILAL	160 FLWLLPRFAA	170 ISENLYFRLN	180 INSLERD
m006-1.pep	190 NHFIRKGDRRQLYRH          NHFIRKGDERQLYRH 190	111::111	1111111111	1111:1111	11111111	111:11
m006-1.pep	250 GHVYSVGTYLWMFAM   :           GHIYSVGTYLWMFAM 250		1111111111	1111111111		

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 35>:

Just sed	(partial)				
1	AGCCAAAACC	ACCGCAAGCG	ATTGATTGGC	ACATTTTTC	TGGTCGGACT
51	GGAAAACCTT	TTGATGCTGG	TGTATCCGGT	GTTTGGCGGC	TGGGCGATTA
101	ATGCCGTGAT	TGCGGGGCAG	GCGTGGCAGG	CGTTGCTGTA	CGCTTTGGTT
151	GTGCTTTTGA	TGTGGCTGGT	CGGTGCGGCG	CGGCGGATTG	CCGATACGCG
201	CACGTTTACG	CGGATTTATA	CCGAAATCGC	CGTGCCGGTT	GTGTTGGAAC
251	AGCGGCAGCG	GCAAGTCCCG	CATTCGGCGG	TAACTGCGCG	GGTTGCCCTG
301	TCGCGTGAGT	TTGTCAGCTT	TTTTGAAGAA	CACCTGCCGA	TTGCCGCGAC
351	ATCCGTCGTA	TCCATATTCG	GCGCGTGCAT	CATGCTGCTG	GTGCTGGAAT
401	TTTGGGTCGG	CGTGTCGGCG	GTGGGCATAC	TTGCGTTGTT	TTTATGGCTT
451	TTGCCACGTT	TTGCCGCCAT	CAGCGAAAAC	CTGTATTTCC	GCCTGAAGAA
501	CAGCTTGGAA	CGCGACAACC	ACTTTATCCG	AAAAGGCGAC	GAGCGGCAGC
551	TGGACCGCCA	TTACGGACTG	CTTGCGCGCC	TGCGTGTGCT	GATTTCCAAC
601	CGCGAAGCCT	TCGGCTATCT	CTGCGTCGGC	ACGGCGATGG	CTATTTCCAAC
651	CGGCTTTGCT	TTTGTGATGA	TGACGCTCAA	AGGCTACAGC	ACCCCCCCCC





701	ATGTCTATTC GG	TCGGCACT T	PATCTGTGGA	тстттсссат	ስ ስ ርጥ <b>ጥጥ</b> ርር እ ር	,						
751	GACGTGCCGC GA	TTGGTCGA A	ACAATATTCC	AATTTGAAAG	ACATCCCACA	·						
801	ACGGATAGAG TG	GTCGAAAC C	GAACATCAA	AGCCGGAACT	TCAI CGGACE	1						
This corresponds	to the amino acid	d sequence	<seo id<="" td=""><td>36. OPE 004</td><td>(1.5)</td><td></td></seo>	36. OPE 004	(1.5)							
a006-1.pep	(nartial)	a soquonee	OLQ ID.	o, OKI OUC	)-1.a/:							
a000-1.pep 1 .	(barriar)	DT 1101 D111 -										
51	.SQNHRKRLIG TF	ETAGTENT I	LMLVYPVFGG	WAINAVIAGQ	AWQALLYALV	<del>7</del> -						
101	VLLMWLVGAA RR	IADTRIFT F	RIYTEIAVPV	VLEQRQRQVP	HSAVTARVAL	,						
	SREFVSFFEE HL	PIAATSVV S	SIFGACIMLL	VLEFWVGVSA	VGILALFLWI	1						
151	LPRFAAISEN LY	FRLKNSLE F	RDNHFIRKGD	ERQLDRHYGL	LARLRVLISN	Ī						
201	REAFGYLCVG TAI	MGILFGFA F	VMMTLKGYS	SAGHVYSVGT	YLWMFAISLD	)						
251	DVPRLVEQYS NL	KDIGQRIE W	SKRNIKAGT	*								
-006 1/-006 1	05 70 44	, ,										
a006-1/m006-1	95.7% identity											
006.1		10	20	30	40	50						
a006-1.pep	SQNH	RKRLIGTFFL	VGLENLLML	YPVFGGWAINA	VIAGQAWOAL	LYALVVL						
	:   :		111111111		1111111	111111						
m006-1	MMKMTKHTAÖTHI	RKRLIGTFSL	VGLENLLMLV	YPVFGGRAINA	VIAGEVWOAL	LYALVVI.						
	10	20	30	40	50	60						
						•						
	60	70	80	90	100	110						
a006-1.pep	LMWLVGAARRIA	OTRTFTRIYT	EIAVPVVLEC	ROROVPHSAVT	ARVAL SPEEN	CEEFFUT						
			1	1111111111	1111111111	1111111						
m006-1	LMWLVGAVRRIA	TRTFTRIYT	EIAVPVVLEC	ROROVPHSAVT	ʹϪΡͶϪͳͺϤϹͲ·ϲϓ	ililii Quuu uu	70	80	90	100	110	120
				200	110	120						
	120	130	140	150	160	170						
a006-1.pep	PIAATSVVSIFGA	CIMLLVLEF		AT.FT.WI.T.DDFA	ATCENTATEDT:	170						
	DIAMEGNICATION				VIORIATIE VE	UNSTERD						
m006-1	PIAATSVVSIFGA	CIMLLVLEF	WVGVSAVGTI	Δ1.FT.WT.1 DD FA	1111111111 ATCENT VENT	:						
	130	140	150	160								
		-10	130	100	170	180						
	180	190	200	210	220	000						
a006-1.pep	NHFIRKGDERQLE		PVI.T SNIDENE	CVI CUCHANCE	22U	230						
			LILLILLI	GITCAGIUMGI	LEGEAT VMMT	LKGYSSA						
m006-1	NHFIRKGDRRQLY	RHYGT.T.ART.	ין ווווווווון סגים מומסות DVIT	CVICUONACT								
	190	200	210	GITCAGLAMGT								
	150	200	210	220	230	240						
	240	250	260	070								
a006-1.pep			∠0U 	270	280							
acco 1.pep	GHVYSVGTYLWMF	TILLI TILLI	PATOISNTKD	IGORIEWSKRN	IKAGTX							
m006-1	CHYVSVCTVI WME	יייינית ת דטאומי		1	11111							
111000 1	GHVYSVGTYLWMF 250	WASTON LK			IKAGTX							
	250	260	270	280								

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 37>: g007.seq

1	atgaACACAA	CCCGACTGCC	GACCGCCTTC	ATCTTGTGCT	GCCTCTGcaC
51	CGCcGCTTCT	GCCGccgaca	acAGCatcat	gaCaAAAGGG	CAAAAAGTGT
101	ACGAATCcAa	CtGCATCGCC	TGCCACGGCA	AGAAAGGGGA	AGGGCGCGGC
151	ACTGCGtTTC	CTccqctTTT	CCggtcgGac	totattatoa	20000000000000000000000000000000000000
201	cgTCCtgctg	cacagcatgg	tcaaaggcAt	cascadases	ttcaaagtgg
251	agcggcaaaa	cctacgacgg	atttatgCcc	gcaaccgcca	†CaccanTCC
301	GGACATTGCC	GCCGTCGCCA	CTTATATCAT	GAACGCCTTT	CD CD CD

This corresponds to the amino acid sequence <SEQ ID 38; ORF 007.ng>: g007.pep

- 1 MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG 51 TAFPPLFRSD CIMNKPHVLL HSMVKGIDGT FKVERQNLRR IYARNRHQRC
- 101 GHCRRRHLYH ERL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 39>:



			1/9		• •	-
m007.seq						
1	ATGAACACAA	CCCGACTGCC	GACCGCCCTC	GTCTTGGGCT	GCTTCTGCGC	
51	CGCCGCTTCT	GCCGCCGACA	ACAGCATCAT	GACAAAAGGG	CAAAAAGTGT	
101	ACGAATCCAA	CTGCGTCGCC	TGCCACGGCA	AAAAGGGCGA	AGGCCGCGGA	
151	ACCATGTTTC	CGCCGCTCTA	CCGCTCCGAC	TTCATCATGA	AAAAACCGCA	
201	GGTGCTGCTG	CACAGCATGG	TCAAAGGCAT	CAACGGTACA	ATCAAAGTC	
251	AACGGCAAAA	CCTACAACGG	ATTCATGCCC	GCAACCGCCA	TCAGCGATGC	
301	GGACATTGCC	GCCGTCGCCA	CTTATATCAT	GAACGCCTTT	GA	
			•			
This correspond	s to the amin	o acid seque	nce <sfo ii<="" th=""><th>) 40. ORE 0</th><th>07&gt;</th><th></th></sfo>	) 40. ORE 0	07>	
m007.pep		e acre soque	noc obed i	5 40, OICI 0	01	
moor.pep	אאוייים די מיייאו	VICCECARAC	3 3 5310 534 5510			
51	TMEDDI VDCD	VIGCECAAAS	AADNSIMIKG	QKVYESNCVA	CHGKKGEGRG	
101	GHCRRRHLYH	LIMVVLOATT	HSMVKGINGT	IKVXRQNLQR	IHARNRHQRC	
101	GUCKKKULIH	EKT.				
			•			
The following pa	artial DNA s	equence was	identified in	1 N. meningi	tidis <seo 4<="" id="" th=""><th>11&gt;</th></seo>	11>
a007.seq						
1	ATGAACACAA	CCCGACTGCC	GACCGCCCTC	GTCTTGGGCT	GCCTCTGCGC	
51	CGCCGCTTCT	GCCGCCGACA	ACAGCATCAT	GACAAAAGGG	CAAAAACTCT	
101	ACGAATCCAA	CTGCGTCGCC	TGCCACGGCA	AAAAGGGCGA	ACCCCCCCA	
151	ACCATGTTTC	CGCCGCTCTA	CCGCTCCGAC	TTCATCATGA	AAAAACCGCA	
201	GGTGCTGCTG	CACAGCATGG	TCAAAGGCAT	CAACGGTACA	ATCADAGTC	
251	AACGGCAAAA	CCTACAACGG	ATTCATGCCC	GCCACTGCCA	TCAGCGATGC	
301	CCACATTTCCC	CCCCTCCCCA	CHERRANA		TOTOCOMIGC	

301 GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA This corresponds to the amino acid sequence <SEQ ID 42; ORF 007.a>:

- a007.pep MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
  - TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARHCHQRC
  - 101 GHCRRRHLYH ERL*

97.3% identity over a 113 aa overlap m007/a007

	10	20	30	40	50	60
m007.pep	MNTTRLPTALVLGC	FCAAASAADN	SIMTKGQKVY	ESNCVACHGE	KGEGRGTMFP	PLYRSD
		:	1111111111	1111111111	1111111111	11111
a007	MNTTRLPTALVLGC	LCAAASAADN	SIMTKGQKVY	ESNCVACHGE	KGEGRGTMFP	PLYRSD
	10	20	30	40	50	60
	70	80	90	100	110	
m007.pep	FIMKKPQVLLHSMV	KGINGTIKVX	RQNLQRIHAR	NRHQRCGHCF	RRHLYHERLX	
			111111111	: 11111111	1111111111	
a007	FIMKKPQVLLHSMV	KGINGTIKVX	RQNLQRIHAR	HCHQRCGHCR	RRHLYHERLX	
	70	80	90	100	110	

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 007 shows 86.7% identity over a 113 aa overlap with a predicted ORF (ORF 007.ng) from N. gonorrhoeae:

### m007/g007

m007.pep	10 MNTTRLPTALVLGC	20 FCAAASAADN	30	40	50	60
	::	:	TITLITITE OF A T	ESNCVACHGE	KGEGRGTMFP	PLYRSD
g007	MNTTRLPTAFILCC	LCAAASAADN	SIMTKGQKVY	ESNCIACHGE	KGEGRGTAFP	PLFRSD
	10	20	30	40	50	60
	70	80	90	100	110	
m007.pep	FIMKKPQVLLHSMVI	KGINGTIKVX	RQNLQRIHAF	NRHQRCGHCF	RRHLYHERLX	
		111:11:11	VÕNDÕKTUVE	NKHUKCGHCE	CKKHLIHEKLX	



g007 CIMNKPHVLLHSMVKGIDGTFKVERQNLRRIYARNRHQRCGHCRRRHLYHERL 90 100 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 43>: g007-1.seq (partial) ATGAACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGCGC 51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT 101 ACGAATCCAA CTGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC 151 ACTGCGTTTC CTCCGCTTTT CCGGTCGGAC TATATTATGA ACAAACCGCA 201 CGTCCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG 301 351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAGGC AAAAAAAAC. This corresponds to the amino acid sequence <SEQ ID 44; ORF 007-1.ng>: g007-1.pep (partial) 1 MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG 51 TAFPPLFRSD YIMNKPHVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA 101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKG KKN... The following partial DNA sequence was identified in N. meningitidis <SEQ ID 45>: m007-1.seq ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC 1 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT 51 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA 151 ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA 201 ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG 301 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAGC AAAAAAAACT 351 401 AA This corresponds to the amino acid sequence <SEQ ID 46; ORF 007-1> m007-1.pep MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG TMFPPLYRSD FIMKKPOVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA 101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKS KKN* m007-1 / g007-1 91.7% identity in 133 aa overlap 20 30 40  ${\tt MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD}$ m007-1.pep MNTTRLPTAFILCCLCAAASAADNSIMTKGQKVYESNCIACHGKKGEGRGTAFPPLFRSD g007-1 10 20 30 50 70 80 90 100 110 FIMKKPQVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV m007-1.pep 

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 47>: a007-1.seg (partial)

80

70

130 TEKDVKQAKSKKNX

111111111:111

TEKDVKQAKGKKN 130

- ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC
- CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT

YIMNKPHVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV

100

90

101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA

g007-1

q007-1

m007-1.pep

151	ACCATGTTTC	CGCCGCTCTA	CCGCTCCGAC	TTCATCATGA	AAAAACCGCA
201	GGTGCTGCTG	CACAGCATGG	TCAAAGGCAT	CAACGGTACA	ATCAAAGTCA
251	ACGGCAAAAC	CTACAACGGA	TTCATGCCCG	CCACTGCCAT	CAGCGATGCG
301	GACATTGCCG	CCGTCGCCAC	TTATATCATG	AACGCCTTTG	ACAACGGCGG
351	CGGAAGCGTT	ACCGAAAAAG	ACGTAAAACA	GGCAAAAAAC	AAAAAA

## This corresponds to the amino acid sequence <SEQ ID 48; ORF 007-1.a>: a007-1.pep (partial)

- 1 MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
- 51 TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
- 101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKN KK..

### m007-1/a007-1 98.5% identity in 132 aa overlap

	10	20	30	40	50	60
m007-1.pep	MNTTRLPTALVLGCF	CAAASAAD:	NSIMTKGQKVY	ESNCVACHGE	KGEGRGTMF	PPLYRSD
		11111111				
a007-1	MNTTRLPTALVLGCL	CAAASAAD	NSIMTKGQKVY	ESNCVACHGE	KKGEGRGTMF	PPLYRSD
	10	20	30	40	50	60
	70	80	90	100	110	120
m007-1.pep	FIMKKPQVLLHSMVK	GINGTIKV	NGKTYNGFMPA'	TAISDADIA	VATYIMNAFI	ONGGGSV
	111111111111111		HILLIAM	111111111	111111111	
a007-1	FIMKKPQVLLHSMVK	GINGTIKV	NGKTYNGFMPA'	TAISDADIA	VATYIMNAFI	DNGGGSV
	70	80	90	100	110	120
						120
	130					
m007-1.pep	TEKDVKQAKSKKNX					
	1111111111111					
a007-1	TEKDVKQAKNKK					
	130					

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 49>: g008.seq

```
ATGAACAACA GACATTTTGC CGTCAtcgCC TTGGGCAGCA ACCTTGACAA
CCCCGCACAA CAAATacgcg gcgcattaga cgcgctctcg tcccatcctg
acatccggct tgaaCaggtt tcctcactgt aTatgaccgc acctgtcggt
tacgAcaaTC agcccgATTT CATCaatgcc gTCTgcaccg TTTCCACCAC
CtTGGACGGC ATTGcccTGC TTGCCgaACT CAAccgTATC GAAGCCGATT
CTGGACGCGA aCGCAGTTTC CGCAATGCAC CGCGCACATT GGATTTGGAC
ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGCC TTACCCTGCC
GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
CTCCCCTGA TTTTATTTTG GGAAAATACG GAAAGGTTGT CGAATTGTCA
AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGACA GGTAA
```

## This corresponds to the amino acid sequence <SEQ ID 50; ORF 008.ng>: g008.pep

1 MNNRHFAVIA LGSNLDNPAQ QIRGALDALS SHPDIRLEQV SSLYMTAPVG 51 YDNQPDFINA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD 101 IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKYGKVVELS 151 KRLGNQGIRL LPDR*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 51>: m008.seq

1	ATGAACAACA	GACATTTTGC	CGTCATCGCC	CTGGGCAGTA	ATCTTGAAAA
51	CCCTGCTCAA	CAGGTACGCG	CCGCATTGGA	CACGCTGTCG	TCCCATCCTG
101	ACATCCGTCT	TAAACAGGCT	TCCTCACTGT	ATATGACCGC	GCCCGTCGGT
151	TACGACAATC	AGCCCGATTT	TGTCAATGCC	GTCTGCACCG	TTTCCACCAC
201	TCTGGACGGC	ATTGCCyTGC	TTGCCGAACT	CAACCGTATC	GAGGCTGATT
251	TCGGACGCGA	ACGCAGCTTC	CGCAACGCGC	CGCGCACATT	GRATTTGGAC
301	ATTATCGACT	TTGACGGCAT	CTCCAGCGAC	GACACSCGAC	TcACCtTGCC

```
GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATCCGCCCT TTGGCAGAAA
                TCCTCCCTGA TTTTGTTTTA GGAAAACACG GAAAGGTTGC CGAATTGTCA
               AAACGGYTGG GCAATCAAGG TATCCGTCTT TTACCGGACA GGTAATT
 This corresponds to the amino acid sequence <SEQ ID 52; ORF 008>:
      m008.pep
               MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG
               YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLXLD
            51
           101
               IIDFDGISSD DTRLTLPHPR AHERSFVIRP LAEILPDFVL GKHGKVAELS
               KRLGNQGIRL LPDR*
 The following partial DNA sequence was identified in N. meningitidis<SEQ ID 53>:
      a008.seq
               ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA
            1
               CCCTGCCCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG
            51
               ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT
          101
               TACGACAATC AGCCCGATTT CGTCAATGCC GTCTGCACCG TTTCCACCAC
          151
               CTTGGACGGC ATTGCCCTGC TTGCCGAACT CAACCGTATC GAAGCCGATT
          201
               TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GGATTTGGAC
          251
          301 ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGAC TCACCCTGCC
               GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
          351
          401
               TCCTCCCTGA TTTTATTTTG GGAAAACACG GAAAGGTTGC CGAATTGTCA
               AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGATA AGTAA
          451
This corresponds to the amino acid sequence <SEQ ID 54; ORF 008.a>:
     a008.pep
               MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG
            1
           51
               YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
               IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKHGKVAELS
          151 KRLGNQGIRL LPDK*
m008/a008
             97.6% identity over a 164 aa overlap
                                            30
                                                      40
                                                                50
                  MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA
     m008.pep
                  MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA
     a008
                         10
                                   20
                                            30
                                                      40
                         70
                                   80
                                            90
                                                     100
                 VCTVSTTLDGIALLAELNRIEADFGRERSFRNAPRTLXLDIIDFDGISSDDTRLTLPHPR
                                                              110
     m008.pep
                  VCTVSTTLDGIALLAELNRIEADFGRERSFRNAPRTLDLDIIDFDGISSDDFRLTLPHPR
     a008
                         70
                                  80
                                            90
                                                     100
                        130
                                 140
                                           150
                                                     160
                 AHERSFVIRPLAEILPDFVLGKHGKVAELSKRLGNQGIRLLPDRX
     m008.pep
                 a008
                 AHERSFVIRPLAEILPDFILGKHGKVAELSKRLGNQGIRLLPDKX
                                 140
                                           150
                                                    160
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 008 shows 92.7% identity over a 164 aa overlap with a predicted ORF (ORF008.ng)
from N. gonorrhoeae:
    m008/g008
                        10
                                  20
                                            30
                                                     40
                                                               50
                 {\tt MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA}
    m008.pep
```

MNNRHFAVIALGSNLDNPAQQIRGALDALSSHPDIRLEQVSSLYMTAPVGYDNQPDFINA

g008

	10	20	30	40	50	60
m000 man	70	80	90	100	110	120
m008.pep	VCTVSTTLDGIALI				DGISSDDTR	LTLPHPR
			-		1111111111	
g008	VCTVSTTLDGIALI	AELNRIEADE	GRERSFRNAI	PRTLDLDIIDF	DGISSDDPR	LTLPHPR
	70	80	90	100	110	120
	130	140	150	160		
m008.pep	AHERSFVIRPLAEI	LPDFVLGKHG	KVAELSKRLO	NOGIRLLPDR	x	
		1111:111:1	11:111111		 	
g008	AHERSFVIRPLAEI	LPDFILGKYG	KVVELSKRLO	NOGIRLLPDR	x	
_	130	140	150	160	••	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 55>: g009.seq

- 1
- 51 CGAACAAAAT ACCCATCGCC GCGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGAA ACCAGTCCGT AATGGCGGTA
- 151 CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTcg cGTTCCAAGC 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC 251 AaaaGCCATA A

This corresponds to the amino acid sequence <SEQ ID 56; ORF 009.ng>: g009.pep

- MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARNQSVMAV
- 51 QLPLVAFSDK <u>VVVAFQAVVQ</u> AEIQVFADGG KTWQKP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 57>: m009.seq

- 51 CGAACAAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTA
- 151 CAGCTGCCGC CGGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
- 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AAAAGCCATA A

This corresponds to the amino acid sequence <SEQ ID 58; ORF 009>: m009.pep

- MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV
- 51 QLPPVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 009 shows 97.7% identity over a 86 aa overlap with a predicted ORF (ORF 009.ng) from N. gonorrhoeae:

m009/g009

	10	20	30	40	50	60
m009.pep	MPRAAVAFERHHHKS	KAEQNTHRI	RADAEIAEGFA	VGNQHTQARK	QSVMAVQLPP	VAFSDK
				111111111:	111111111	111111
g009	MPRAAVAFERHHHKS	KAEQNTHRE	RADAEIAEGFA	VGNQHTQARN	OSVMAVOLPL	VAFSDK
	10	20	30	40	50	60
	70	80				
m009.pep	VVVAFQAVVQAEIQV	FADGGKTW	OKPX			
	1111111111111111					
g009	VVVAFQAVVQAEIQV					
	70	80				

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 59>:
     a009.seq
```

```
CGAACAAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
 51
101 CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTC
151 CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
201 TGTTCTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
251 AAAAGCCATA A
```

## This corresponds to the amino acid sequence <SEQ ID 60; ORF 009.a>:

a009.pep

MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV 1

QLPLVAFSDK VVVAFQAVLQ AEIQVFADGG KTWQKP* 51

#### m009/a009 97.7% identity over a 86 aa overlap

```
MPRAAVAFERHHHKSKAEQNTHRRADAE IAEGFAVGNQHTQARKQSVMAVQLPPVAFSDK
m009.pep
            înamanandînamanandînînînanîn ma
           MPRAAVAFERHHHKSKAEQNTHRRADAEIAEGFAVGNQHTQARKQSVMAVQLPLVAFSDK
a009
                                     30
                                                        50
                   70
                            80
m009.pep
           VVVAFQAVVQAEIQVFADGGKTWQKPX
           11111111:11111111111111111
a009
           VVVAFQAVLQAEIQVFADGGKTWQKPX
                   70
                            80
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 61>: g010.seq

_					
1	ATGGGTTTTC	CTGTTCGCAA	GTTTGATGCC	GTGATTGTCG	GCGGTGGCGG
51	TGCAGGTTTA	CGTGCAGCCC	TCCAATTATC	CAAATCCGGT	
101	CCGTTTTGTC		CCGACCCGCT		
151	GGCGGTATTT	CCGCCTCTCT	GGGTAATGTG	CAGGAGGACC	
201	GCACATGTAC		AAGGTTCCGA		
251	CGATTGAGTT		GCTGCGCCTG		OLIGOTH CHIC
301	CACATGGGTA	TGCCTTTTGA	CCGCGTTGAA	AGCGGCAAAA	
351	TCCTTTCGGC		CCGAACATGG		
401	CATGTGCGGT				
451	CAACAAAACG	TCCGTGCCAA			
501	AGATTTGATT		ACGGCGATGT		GGACGGCGCA
551	AAATGGAAAC	GGGCGAAGTT	TATATTTTCC		ACCGCCATGG
601	GCTACCGGTG	GCGGCGGTCG	TATTTATGCT		
651	GAATACCGGT	GACGGTTTGG	GCATTTGCGC		ATGCTTATAT
701		ATTCTGGCAA			
751		CCGAAGGCGT		CCGGCGTGGC	GGGTGCGGGC
801		cgcTTTATGG	ACGCGGCGAG	GGCGGTATTC	TGTTGAacgc
851	CTTCTCGCca	cgtGGTTTCA	Canadata	GCcgACCGta	aAagaCTTGG
901	CacaactaTG	GtaaAAAcaA	CgcgcGatgG	CGatggaAAt	ctatgaaggt
951	cggtGCAGAA	AAAAMACAA	agaccacgec	TTACTGAAAA	TCGACcAtAt
1001	TTCagtttgc		AAAAACTGCC		GAGATTTCCA
1051	ACTACCCACT	ATATGATGGG		ACCCGATTCC	ggttgTGCCG
1101	TGTTGTTCCG		CGGCATTCcg		ACGGTGAAGT
1151	CCGCAGGTGA	CMAGGCGACG	AGTACGAAGT		GGCCTGTATG
1201			GCTTCCGTAC		CCGTTTGGGT
	ACGAACTCCC	1 GC1 GGACTT	GGTGGTGTTC	cgcccaaccc	cccggtga
					<del>-</del>

This corresponds to the amino acid sequence <SEQ ID 62; ORF 010.ng>: g010.pep

```
1 MGFPVRKFDA VIVGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>: m010.seq (PARTIAL)

```
..nTCCAATTAT CCAAATCCGG TCTGAATTGT GCCGTTTTGT CTAAAGTGTT
 1
       CCCGACCCGT TCGCATACCG TAGCGGCGCA GGGCGGTATT TCCGCCTCTn
 51
       TGGGTAATGT GCAGGAAGAC CGTTGGGACT GGCACATGTA CGATACCGTG
      AAAGGTTCCG ACTGGTTGGG CGACCAAGAT GCGATTGAGT TTATGTGCCG
      CGCCGCGCCT GAAGCCGTAA TTGAGTTGGA ACACATGGGT ATGCCTTTTG
201
      ACCGTGTGGA AAGCGGTAAA ATTTATCAGC GTCCTTTCGG CGGCCATACT
251
      GCCGAACACG GTAAACGCGC GGTAGAACGC GYCTGTGCGG TTGCCGACCG
301
      TACAGGTCAT GCGATGCTGC ATACTTTGTA CCAACAAAAC GTCCGTGCCA
351
      ATACGCAATT CTTTGTGGAA TGGACGGCAC AAGATTTGAT TCGTGATGAA
401
451
      AACGGCGATG TCGTCGGCGT AACCGCCATG GAAATGGAAA CCGGCGAAGT
      TTATATTTTC CACGCTAAAG CTGTGATGTT TGCTACCGGC GGCGGCGGTC
501
      GTATTTATGC GTCTTCTACC AATGCCTATA TGAATACCGG CGATGGTTTG
551
      GGTATTTGTG CGCGTGCAGG TATCCCGTTG GAAGACATGG AATTCTGGCA
601
      ATTCCAGCCG ACCGGCGTGG CGGGTGCGGG CGTGTTGATT ACCGAA....
```

## This corresponds to the amino acid sequence <SEQ ID 64; ORF 010>: m010.pep (PARTIAL)

```
1 ..XQLSKSGLNC AVLSKVFPTR SHTVAAQGGI SASXGNVQED RWDWHMYDTV
51 KGSDWLGDQD AIEFMCRAAP EAVIELEHMG MPFDRVESGK IYQRPFGGHT
101 AEHGKRAVER XCAVADRTGH AMLHTLYQON VRANTQFFVE WTAQDLIRDE
151 NGDVVGVTAM EMETGEVYIF HAKAVMFATG GGGRIYASST NAYMNTGDGL
201 GICARAGIPL EDMEFWQFQP TGVAGAGVLI TE...
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>:

```
a010.seq
         ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG
      51 TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG
    101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG
    151 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
         GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
     251
         CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
         CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
     301
         TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
     351
         CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
     401
         CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA
         AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
         AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT
     551
         GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT
     601
    651 GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG
    701 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC
    751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC
         CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG
     801
         CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT
         CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT
    901
    951 CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
    1001 TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG
    1051 ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT
         TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG
   1151 CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT
   1201 ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG
   1251 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
```

1301 1351 1401 1451 1501 1551 1601 1651 1701 1751	ATTGCACGCC GAGAAGTCAT AAGAGCAAAG CCTAATTGAA AATCACGCGG AACTGGATGA	ACGTTGATGC GGCGTGTTCC GGCGATTGCC TGTGGAATAC GTGGCGAAAG TGCGCACGCT AACATACGCT CACACCAAGC	ATTGCGCCGC GTACTGATGA GAGCGTGTGA CGCGCGTATC CGACTTTGGT TCAGACGACC GTACCATTCA	AGCGTTTGGA GAACTGCAAC GATTCTGAGC AACGTACCGA GAGGCTTTGG GTCTGCCGAA ATCCTGAGCG GATGCCAATA GGAATACATC	AATCAAAGAC AATTGGATAA GCACGTAAAG CGATGATGAA
------------------------------------------------------------------------------	-------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------	------------------------------------------------------

## This corresponds to the amino acid sequence <SEQ ID 66; ORF 010.a>:

010.pep			•	,	
1	MGFPVRKFDA	VIVGGGGAGL	RAXLOLSKSG	LNCAVLSKVF	DTD CUMUA A O
51	GGISASLGNV	QEDRWDWHMY	DTVKGSDWLG	DQDAIEFMCR	LIKSHIVAAQ
<b>1</b> 01	HMGMPFDRVE	SGKIYORPEG	CHTATHCKDA	VERACAVADR	AAPEAVIELE
151	CONVRANTOF	FVEWTAODIT	DDENCOUNCE	TAMEMETGEV	TGHAMLHTLY
201	ATGGGGRIVA	SCHMANNOTEC	ROENGDVVGV	TAMEMETGEV	YIFHAKAVMF
251	VI TTECUDOR	CCTLINADO	DGLGTCARAG	IPLEDMEFWQ	FHPTGVAGAG
301	DCCCIDITION	GGILLNADGE	RFMERYAPTV	KDLASRDVVS	RAMAMEIYEG
	VGCGVNVDHV	LLKIDHIGAE	KIMEKLPGTR	EISTORNOTE	DIKEBBIRE
351	TIMINGGIP	TNYHGEVVVP	OGDEYEVPVK	CLVAACECAC	701777071
401	TNOTTDLAAF	GKAAGDSMIK	FIKEOSDWKP	I.PANACET TO	OD TERT DATES
451	DGENVDALRR	ELQRSVOLHA	GVFRTDETLS	KGVREVMAIA	CVIEKTDMÖI.
501	KSKVWNTARI	EALELDNLIF	VAKATINSAE	ARKESRGAHA	ERVERTEIRD
551	NWMKHTLYHS	DANTLSYKPV	HAKDI CABAT	MARCORGAHA	SUDHPERDDE
		VINE V	TITETPARIT	KPAKKV <u>Y</u> *	

### m010/a010 98.7% identity over a 231 aa overlap

01 0			10	20	30	
m010.pep		XQ:	LSKSGLNCAV	LSKVFPTRSH	TVAAOGGTS	T CVCNII
		4				
a010	MGFPVRKFDAVIVGG	GGAGLRAXLO	LSKSGLNCAV	LSKVFPTRSH	TUILLILL	757 6777
	10	20	30	40	50	
				40	50	60
	40 <b>50</b>	60	70	80	0.0	
m010.pep	QEDRWDWHMYDTVKG	SDWLGDODATE	FMCRAADEA	OU OTELEUMOND	90	
	OEDBMDMHWADAIRC	11111111		ATETEUMGWE	FURVESGKI	YQRPFG
a010	QEDRWDWHMYDTVKG	SDWIGDODATE	ין וווווון דר הידר אור. ביים האולים לא מים אורים או		<u> </u>	
	70	80 80	90	VIELEHMGMP		YORPFG
		00	90	100	110	120
	100 110	120				
m010.pep		120	130	140	150	
	GHTAEHGKRAVERXC	AVADRIGHAMI	HTLYQQNVR	ANTQFFVEWT:	AQDLIRDEN	<b>GDVVGV</b>
a010			11111111			
4010	GIITAEIIGINAAVERACI	AVADRIGHAMI	HTLYQQNVRA	NTQFFVEWT)	AQDLIRDENC	SDVVGV
	130	140	150	160	170	180
	160					200
m010	160 170	180	190	200	210	
m010.pep	TAMEMETGEVYIFHAF	KAVMFATGGGG	RIYASSTNAY	MNTGDGLGI	CARAGIPLE	OWE EWO
- 01 0			1111111111			
a010	TAMEMETGEVYIFHAP	<b>KAVMFATGGGG</b>	RIYASSTNAY	MNTGDGLGIC	CARACTPIER	ME ETA
	190	200	210	220	230	240
					250	240
	220 230					
m010.pep	FQPTGVAGAGVLITE					
	1:111111111111					
a010	FHPTGVAGAGVLITEG	VRGEGGTLUN	A DOED EMERY	A DIDUTEDE = c=		
	250	260	270	AFTVKULASR		
	300	200	210	280	290	300

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. gonorrhoeae

ORF 010 shows 98.7% identity over a 231 aa overlap with a predicted ORF (ORF 010.ng) from N. gonorrhoeae:

m010.pep/g010.pep

			10	20	30	
m010.pep		XQ1	LSKSGLNCAV	LSKVFPTRSH	TVAAQGGIS	ASXGNV
		1		1111111111	11111111	11 111
g010	MGFPVRKFDAVIVGG	GGAGLRAALQ1	LSKSGLNCAV	LSKVFPTRSH	TVAAQGGIS.	ASLGNV
	10	20	30	40	50	60
	40 50	60	70	80	90	
m010.pep	QEDRWDWHMYDTVKG:	SDWLGDQDAII	EFMCRAAPEA	VIELEHMGMP	FDRVESGKI'	YQRPFG
		1111111111			HILLIEL	11111
g010	QEDRWDWHMYDTVKG:	SDWLGDQDAII	EFMCRAAPEA	VIELEHMGMP	FDRVESGKI	YQRPFG
	70	80	90	100	110	120
	100 110	120	130	140	150	
m010.pep	GHTAEHGKRAVERXC	AVADRTGHAMI	HTLYQQNVR	ANTQFFVEWT	AQDLIRDEN	GDVVGV
		]			111111111	111111
g010	GHTAEHGKRAVERACA	AVADRTGHAMI	HTLYQQNVR	ANTQFFVEWT	AQDLIRDEN	SDVVGV
	130	140	150	160	170	180
	160 170	180	190	200	210	
m010.pep	TAMEMETGEVYIFHA	KAVMFATGGGG	RIYASSTNA	YMNTGDGLGI	CARAGIPLE	OMEFWO
		1   1   1   1   1   1   1   1	111111111			
g010	TAMEMETGEVYIFHA	KAVMFATGGGG	RIYASSTNA	MNTGDGLGI	CARAGIPLE	OMETWO
	190	200	210	220	230	240
	220 230					
m010.pep	FQPTGVAGAGVLITE					
	1:11111111111					
g010	FHPTGVAGAGVLITE	SVRGEGGILLN	ADGERFMERY	(APTVKDLAS)	RDVVSRAMAN	MEIYEG
	250	260	270	280	290	300

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 67>: g010-1.seq..

	•				
1	ATGGGTTTTC	CTGTTCGCAA	GTTTGATGCC	GTGATTGTCG	GCGGTGGCGG
51	TGCAGGTTTA	CGTGCAGCCC	TCCAATTATC	CAAATCCGGT	TTGAATTGTG
101	CCGTTTTGTC	TAAAGTGTTC	CCGACCCGCT	CGCATACCGT	AGCGGCGCAG
151	GGCGGTATTT	CCGCCTCTCT	GGGTAATGTG	CAGGAGGACC	GTTGGGACTG
201	GCACATGTAC	GATACCGTGA	AAGGTTCCGA	CTGGCTGGGC	GACCAAGATG
251	CGATTGAGTT	TATGTGTCGC	GCTGCGCCTG	AAGCGGTGAT	TGAGTTGGAA
301	CACATGGGTA	TGCCTTTTGA	CCGCGTTGAA	AGCGGCAAAA	TTTATCAGCG
351	TCCTTTCGGC	GGACATACTG	CCGAACATGG	TAAACGTGCG	GTAGAACGTG
401	CATGTGCGGT	TGCCGACCGT	ACCGGTCATG	CGATGTTGCA	TACTTTGTAC
451	CAACAAAACG	TCCGTGCCAA	TACACAATTC		GGACGGCGCA
501	AGATTTGATT	CGTGATGAAA	ACGGCGATGT	CGTCGGCGTA	ACCGCCATGG
551		GGGCGAAGTT	TATATTTTCC	ACGCCAAGGC	CGTGATGTTT
601	GCTACCGGTG	GCGGCGGTCG	TATTTATGCT	TCTTCTACCA	ATGCTTATAT
651	GAATACCGGT			CCGTGCGGGC	
701		ATTCTGGCAA		CCGGCGTGGC	GGGTGCGGGC
751		CCGAAGGCGT		GGCGGTATTC	TGTTGAACGC
801		CGCTTTATGG		GCCGACCGTA	AAAGACTTGG
851		CGTGGTTTCA	CGCGCGATGG	CGATGGAAAT	CTATGAAGGT
901	CGCGGCTGTG	GTAAAAACAA	AGACCACGTC	TTACTGAAAA	TCGACCATAT
951	CGGTGCAGAA	AAAATTATGG	AAAAACTGCC	GGGCATCCGC	GAGATTTCCA
1001	TTCAGTTTGC	CGGTATCGAT	CCGATTAAAG	ACCCGATTCC	GGTTGTGCCG
1051	ACTACCCACT	ATATGATGGG	CGGCATTCCG	ACCAATTATC	ACGGTGAAGT
1101	TGTTGTTCCG	CAAGGCGACG	AGTACGAAGT	ACCTGTAAAA	GGCCTGTATG
1151	CCGCAGGTGA	GTGCGCCTGT	GCTTCCGTAC	ACGGTGCGAA	CCGTTTGGGT

WO 99/57280

188

1201 ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga

```
This corresponds to the amino acid sequence <SEQ ID 68; ORF 010-1.ng>:
        g010-1.pep
               1 MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
                  GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
               51
                  HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
                  QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
             201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
             251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
             301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
401 TNSLLDLVVF RPTPR*
 g010-1 / P10444
 sp|P10444|DHSA_ECOLI SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT
 gnl|PID|d1015210 (D90711) Succinate dehydrogenase, flavoprotein [Escherichia coli] gi|1786942
 (AE000175) succinate dehydrogenase flavoprotein subunit [Escherichia coli] Length = 588
  Score = 1073 (495.6 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169
  Identities = 191/303 (63%), Positives = 238/303 (78%)
            1 MGFPVRKFDAVIVXXXXXXXXXXXXXXSKSGLNCAVLSKVFPTRSHTVAAQGGISASLGNV 60
              M PVR+FDAV++
                                        S+SG CA+LSKVFPTRSHTV+AQGGI+ +LGN
            1 MKLPVREFDAVVIGAGGAGMRAALQISQSGQTCALLSKVFPTRSHTVSAQGGITVALGNT 60
 Sbjct:
           61 QEDRWDWHMYDTVKGSDWLGDQDAIEFMCRAAPEAVIELEHMGMPFDRVESGKIYQRPFG 120
 Query:
               ED W+WHMYDTVKGSD++GDQDAIE+MC+ PEA++ELEHMG+PF R++ G+IYQRPFG
           61 HEDNWEWHMYDTVKGSDYIGDQDAIEYMCKTGPEAILELEHMGLPFSRLDDGRIYQRPFG 120
 Sbjct:
          121 GHTAEHGKRAVERACAVADRTGHAMLHTLYQQNVRANTQFFVEWTAQDLIRDENGDVVGV 180
 Ouerv:
                         R A ADRTGHA+LHTLYQQN++ +T F EW A DL+++++G VVG
          121 GQSKNFGGEQAARTAAAADRTGHALLHTLYQQNLKNHTTIFSEWYALDLVKNQDGAVVGC 180
 Sbjct:
         181 TAMEMETGEVYIFHAKAVMFATGGGGRIYASSTNAYMNTGDGLGICARAGIPLEDMEFWQ 240
 Query:
             TA+ +ETGEV F A+A + ATGG GRIY S+TNA++NTGDG+G+ RAG+P++DME WQ
         181 TALCIETGEVVYFKARATVLATGGAGRIYQSTTNAHINTGDGVGMAIRAGVPVQDMEMWQ 240
Sbict:
         241 FHPTGVAGAGVLITEGVRGEGGILLNADGERFMERYAPTVKDLASRDVVSRAMAMEIYEG 300
Query:
             FHPTG+AGAGVL+TEG RGEGG LLN GERFMERYAP KDLA RDVV+R++ +EI EG
         241 FHPTGIAGAGVLVTEGCRGEGGYLLNKHGERFMERYAPNAKDLAGRDVVARSIMIEIREG 300
Sbjct:
Query:
         301 RGC 303
             RGC
Sbict:
         301 RGC 303
 Score = 249 (115.0 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169
 Identities = 53/102 (51%), Positives = 62/102 (60%)
         309 HVLLKIDHIGAEKIMEKLPGIREISIQFAGXXXXXXXXXXXXTTHYMMGGIPTNYHGEVV 368
Ouerv:
             H LK+DH+G E + +LPGI E+S FA
                                                       T HYMMGGIPT G+ +
         310 HAKLKLDHLGKEVLESRLPGILELSRTFAHVDPVKEPIPVIPTCHYMMGGIPTKVTGQAL 369
Sbjct:
         369 VPQGDEYEVPVKGLYAAGECACASVHGANRLGTNSLLDLVVF 410
                    +V V GL+A GE AC SVHGANRLG NSLLDLVVF
         370 TVNEKGEDVVVPGLFAVGEIACVSVHGANRLGGNSLLDLVVF 411
Sbjct:
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 69>:
      m010-1.seq..
                ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG
             1
```

```
TGCAGGTTTA CGCGCAGCCC TCCAATTATC CAAATCCGGT CTGAATTGTG
 51
    CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAg
151 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
    GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
    CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
251
301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
351 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
401 CCTGTGCGGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
```



This corresponds to the amino acid sequence <SEQ ID 70; ORF 010-1>: m010-1.pep..

```
MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
    GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
101
    HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
    QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201
    ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
    VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
251
301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
    TTHYMMGGIP TNYHGEVVVP QGEDYEVPVK GLYAAGECAC ASVHGANRLG
351
    TNSLLDLVVF GKAAGDSMIK FIKEQSDWKP LPANAGELTR QRIERLDNQT
    DGENVDALRR ELQRSVQLHA GVFRTDEILS KGVREVMAIA ERVKRTEIKD
    KSKVWNTARI EALELDNLIE VAKATLVSAE ARKESRGAHA SDDHPERDDE
501
551 NWMKHTLYHS DINTLSYKPV HTKPLSVEYI KPAKRVY*
```

m010-1 / g010-1 99.5% identity in 410 aa overlap

, •						
	10	20	30	40	50	60
m010-1.pep	MGFPVRKFDAVIV	GGGAGLRAAL	OLSKSGLNCA	VLSKVFPTRS	HTVAAOGGIS	AST.CNV
			Ī1111111111	1111111111	1111111111	
g010-1	MGFPVRKFDAVIV	GGGAGLRAAL	OLSKSGING	VI.SKVPPTRS	HTVAACCTS	A ST. CANY
	10	20	30	40	50	60
				40	30	60
	70	80	90	100	110	120
m010-1.pep	QEDRWDWHMYDTVI	KGSDWLGDQDA	IEFMCRAAPE	AVIELEHMON	PFDRVESCKI	YORPEG
	111111111111111		1111111111			111111
g010-1	QEDRWDWHMYDTVI	(GSDWLGDODA	IEFMCRAAPE	AVIELEHMON	PFDBVFGCKI	VODDEC
_	70	80	90	100	110	120
					110	120
	130	140	150	160	170	180
m010-1.pep	GHTAEHGKRAVERA	CAVADRTGHA	MLHTLYOONV	RANTOFFVEW		CDIMICIA
	11111111111111111	11111111111		111111111		
g010-1	GHTAEHGKRAVER	CAVADRTCHA	MT.HTT.YOONS	TO ANTO PER CONTRACTO	1	7 1 1 1 1 1
-	130	140	150	160		
		-40	130	100	170	180
	190	200	210			
m010-1.pep				220	230	240
more r.beb	TAMEMETGEVYIFE	MARATES	CRITASSTN	AXMNTGDGLG	ICARAGIPLE	DMEFWQ
σ010-1		11111111		11111111	1111111111	11111
g010-1	TAMEMETGEVYIFE	iakavmfatgg(	ggriy <b>asst</b> n	AYMNTGDGLG	ICARAGIPLE	DMEFWQ

-

	190	200	210	220	230	240
	250	260	2 <b>7</b> 0	280	290	300
m010-1.pep	FHPTGVAGAGVLIT	EGVRGEGGI:	LLNADGERFME	RYAPTVKDI.	SRDVVSRAM	METVEC
		1111111111				
g010-1	FHPTGVAGAGVLIT	EGVRGEGGT			CDDITTODA	
	250	260	270	280		
	250	200	270	280	290	300
	310	200	200			
m010-1.pep		320	330	340	350	360
moro-r.pep	RGCGKNKDHVLLKI	DHIGAEKIM	EKLPGIREISI	QFAGIDPIKE	PIPVVPTTHY	MMGGIP
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111		1111111111	1111111111	11111
g010-1	RGCGKNKDHVLLKI	DHIGAEKIM	EKLPGIREISI	OFAGIDPIKE	PIPVVPTTHY	MMCCTD
	310	320	330	340	350	360
					550	360
	370	380	390	400	410	
m010-1.pep	TNYHGEVVVPQGED				410	420
- · F - F	IIIIIIIIIIII	LEVEVRGELE	MGECACASVII	GANKLGINSL	LDLVVFGKAA	GDSMIK
g010-1		1111111111	11111111111	1111111111	11111	
g010-1	TNYHGEVVVPQGDE	YEVPVKGLYA		Ganrlginsl	LDLVVFRPTP	RX
	370	380	390	400	410	
	430	440	450	460	470	480
m010-1.pep	FIKEQSDWKPLPAN	AGELTRORIE	RLDNQTDGEN	<b>VDALRRELO</b> R	SVQLHAGVFR	TDEILS

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 71>:

```
1 ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG
      TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG
      CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG
  101
      GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
      GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
  201
  251 CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
      CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
      TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
 351
      CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
      CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA
 451
 501 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
 551 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT
 601 GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT
 651
      GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG
      AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC
 701
 751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC
      CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG
     CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT
 851
     CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT
 901
 951
      CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
1001
     TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG
     ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT
      TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG
1101
1151
      CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT
1201
      ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG
      CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
1251
1301 ATGCCGGCGA ACTGACCCGC CAACGTATCG AGCGTTTGGA CAATCAAACT
      GATGGTGAAA ACGTTGATGC ATTGCGCCGC GAACTGCAAC GCTCCGTACA
1351
1401
      ATTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC
     GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC
1451
     AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA
1501
1551
     CCTAATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG
1601 AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA
1651 AACTGGATGA AACATACGCT GTACCATTCA GATGCCAATA CCTTGTCCTA
     CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA
1751
     AGCGCGTTTA TTGA
```

This corresponds to the amino acid sequence <SEQ ID 72; ORF 010-1.a>: a010-1.pep..

1 MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY

151 201 251 301 351 401 451 501	QQNVRANTQF ATGGGGRIYA VLITEGVRGE RGCGKNKDHV TTHYMMGGIP TNSLLDLVVF DGENVDALRR KSKVWNTARI NWMKHTLYHS	SSTNAYMNTG GGILLNADGE LLKIDHIGAE TNYHGEVVVP GKAAGDSMIK ELQRSVQLHA EALELDNLIE DANTLSYKPV	DGLGICARAG RFMERYAPTV KIMEKLPGIR QGDEYEVPVK FIKEQSDWKP GVFRTDEILS VAKATLVSAE HTKPLSVEYI	FIPLEDME  KDLASRD  EISIQFA  GLYAAGE  LPANAGE  KGVREVM  ARKESRG	FWQ FHPTO VVS RAMAN GID PIKDE CAC ASVHO LTR QRIEF AIA ERVKE AHA SDDHE	EVAGAG MEIYEG PIPVVP BANRLG RLDNQT RTEIKD
m010-1 / a010-1	99.3% identi	ty in 587 aa	overlap			
a010-1.pep	10 MGFPVRKFDAVIV	20 GGGGAGLRAXLO	30 LSKSGLNCAVL	40 SKVFPTRSHT	50 VAAOGGISA:	60 SLGNV
a010-1		111111111			111111111	11111
	10	20	30	40	50	60
a010-1.pep	70 QEDRWDWHMYDTV	80	90	100	110	120
		1111111111			ШШШ	ĬĦĦ
m010-1	QEDRWDWHMYDTV	KGSDWLGDQDAI 80	90	ELEHMGMPF 100	DRVESGKIY( 110	QRPFG 120
	130	140	150	160	170	180
a010-1.pep	GHTAEHGKRAVER	[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]			1111111111	
m010-1	GHTAEHGKRAVERI 130	ACAVADRTGHAM 140	LHTLYQQNVRAN 150	NTQFFVEWTA 160	QDLIRDENGI 170	DVVGV 180
	190	200	210	220	230	240
a010-1.pep	TAMEMETGEVYIFE	HAKAVMFATGGG	GRIYASSTNAYN	ANTGDGLGIC	ARAGIPLEDN	MEFWQ
m010-1	TAMEMETGEVYIF	HAKAVMFATGGG 200	GRIYASSTNAYN 210	INTGDGLGIC	ARAGIPLEDN	ÆFWQ 240
	250	260	270	280	290	300
a010-1.pep	FHPTGVAGAGVLIT	<b>TEGVRGEGGILL</b>	NADGERFMERYA	PTVKDLASR	DVVSRAMAME	IYEG
m010-1	FHPTGVAGAGVLIT	<b>TEGVRGEGGILL</b>	NADGERFMERYA	APTVKDLASRI	DVVSRAMAME	EIYEG
	250	260	270	280	290	300
a010-1.pep	310 RGCGKNKDHVLLKI	320 IDHIGAEKIMEK	330 LPGIREISIQFA	340 GIDPIKDPI	350 PVVPTTHYMM	360 IGGIP
m010-1	RGCGKNKDHVLLK	IDHIGAEKIMEK	 LPGIREISIQFA	 .GIDPIKDPI	 PVVPTTHYMM	  GGIP
	310	320	330	340	350	360
a010-1.pep	370 TNYHGEVVVPQGDE	380 EYEVPVKGLYAA	GECACASVHGAN	400 RLGTNSLLD	410 LVVFGKAAGD	420 SMIK
m010-1	TNYHGEVVVPQGED	:		111111111	1111111111	1111
	370	380	390	400	410	420
a010-1.pep	430 FIKEQSDWKPLPAN	440 JAGELTRORTER	450	460	470	480
m010-1					111111111	1111
	430	440		460	470	480
2010-1	490	500	510	520	530	540
a010-1.pep	KGVREVMAIAERVK			1111111111		1111
m010-1	KGVREVMAIAERVK 490	CRTEIKDKSKVWI 500		LIEVAKATL\ 520	VSAEARKESR 530	GAHA 540
	550	560	570	580		
a010-1.pep	SDDHPERDDENWMK	HTLYHSDANTL:	SYKPVHTKPLSV 	EYIKPAKRV)	rx 	

```
SDDHPERDDENWMKHTLYHSDINTLSYKPVHTKPLSVEYIKPAKRVYX
 m010-1
                      550
                               560
                                                580
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 73>:
      g011.seq
                ATGAAGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
             1
            51
               GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
                GCCTGAAAAC CCGCCTTACC GAAGATATGA AAACCGCGAT GCGCGCCAAA
           101
           151 GATCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAATGCCG CCGTCAAACA
           201 GTTTGAAGTA GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
           251 TCCTGACCAA AATGGTCAAA CAGCGCAAAG ACGGCGCGAA AATCTACACT
           301 GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGACGT
                GCTGCACCGC TACCTGCCGC AAATGCTCTC CGCCGGCGAA ATCCGCACCG
           401 CCGTCGAAGC AGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
           451 GGCAAAGTGA TGGTCGTATT GAAAACCCGC CTCGCCGGCA AAGCCGATAT
           501 GGGCGAAGTC AACAAAATCT TGAAAACCGt aCTGACCGCC tga
 This corresponds to the amino acid sequence <SEQ ID 74; ORF 011.ng>:
      g011.pep
               MKTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKTRLT EDMKTAMRAK
               DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDGAKIYT
            51
               EAGRQDLADK ENAEIDVLHR YLPOMLSAGE IRTAVEAAVA ETGAAGMADM
           101
               GKVMVVLKTR LAGKADMGEV NKILKTVLTA *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 75>:
     m011.seq (partial)
               ATGAGGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
           51 GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
               GCCTGAAAAT CCGCCTTACC GAAGACATGA AAACCGCGAT GCGCGCCAAA
          151 GACCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAACGCCG CCGTCAAACA
               GTTTGAAGTG GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
               TCCTGACCAA AATGGTCAAA CAGCGAAAAG ACAGCGCGAA AATCTACACT
          251
          301 GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGAGGT
          351 ACTGCACCGC TACCTTCCCC AAATGCTTTC CGCCGGCGAA ATCCGTACCG
          401 AGGTCGAAGC TGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
          451 GGTAAAGTCA TGGGGCTGCT GAAAACCCGC CTCGCAGGTA AAGCCGA...
This corresponds to the amino acid sequence <SEQ ID 76; ORF 011>:
     m011.pep (partial)
            1 MRTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKIRLT EDMKTAMRAK
           51 DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDSAKIYT
          101 EAGRQDLADK ENAEIEVLHR YLPOMLSAGE IRTEVEAAVA ETGAAGMADM
              GKVMGLLKTR LAGKA....
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 011 shows 95.8% identity over a 165 aa overlap with a predicted ORF (ORF 011.ng)
from N. gonorrhoeae:
     m011/q011
                                   20
                                            30
                 MRTHRKTCSAVCFAFQTASKPAVSIRHPSEDIMSLKIRLTEDMKTAMRAKDQVSLGTIRL
     m011.pep
                 MKTHRKTCSAVCFAFQTASKPAVSIRHPSEDIMSLKTRLTEDMKTAMRAKDQVSLGTIRL
     g011
                         10
                                            30
                                                      40
                                                                50
                         70
                                   80
                                            90
                                                     100
                                                              110
                 INAAVKQFEVDERTEADDAKITAILTKMVKQRKDSAKIYTEAGRQDLADKENAEIEVLHR
    m011.pep
                 INAAVKQFEVDERTEADDAKITAILTKMVKQRKDGAKIYTEAGRQDLADKENAEIDVLHR
    g011
```

	70	80	90	100	110	120
	130	140	150	160		
m011.pep	YLPQMLSAGEIRTE	EVEAAVAETG	<b>AAGMADMGKVM</b>	<b>IGLLKTRLAGI</b>	ΑΣ	
	111111111111	3 1 1 1 1 1 1 1 1	111111111111	:	1	
g011	YLPQMLSAGEIRTA	VEAAVAETG	AAGMADMGKVM	IVVLKTRLAGE	KADMGEVNKII	KTVLTA
-	130	140	150	160	170	180
g011	×					

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 77>: g012.seq

```
ATGCTCGCCC GTCGCTATTT TTTCAATATC CAACCCGGGG CGGTTTTCAC
  1
51
     TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGCCGGAAT
    TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
101
151
    AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACa
    gGcggTGGAT ATTCGgcact tccgCcacca cacccaccga accgatgacc
     gcaaacggaG CGGAAACAAT TTTATCCGCc acacacgcca tcatatagcc
251
    gcCGCTTGCC GCGACCTTAT CGAcggcgac ggTCAGCGGA ATATTGCGTT
301
    CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
401
    CCGCCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
    CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
451
    ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
501
    GCAGATTTCT CCCCGCCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
551
    CGCCTTTTCC TTTTTCTTTT CTTTTTTTC CTGATGTTTT GTCTCTTCCT
651
    CGCTTAA
```

## This corresponds to the amino acid sequence <SEQ ID 78; ORF 012.ng>: g012.pep

- 1 MLARRYFFNI QPGAVFTDKL LEQLMRFLQF LPEFLFALFR IFTHKSNRAL
  51 KFARRHHIHI NIMFFQQAVD IRHFRHHTHR TDDRKRSGNN FIRHTRHHIA
  101 AACRDLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS EQNLIFRLGN
  151 QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPAL LQTLFLCFGF
  201 RLFLFLFFFF LMFCLFLA*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 79>:

```
m012.seq
      ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
    1
    51
      TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
   101
      TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
      AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
   151
   201
      GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC
   251 GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC
   401
      501
      nnnnnnnn nnnnnnnn AACACAAAAA GGCGTGATTT nTGCGTTTCG
      GCAGATTTCT CCCCACCCTC CTTCAAACGT TTTTCcTCTG CTTTGGCTTC
   551
   601 CGCCTTTCC TTTTCTTTT CCTCTTTTC CTGATGTTGT GCCTCTTCCC
   651 CGCTTAA
```

### This corresponds to the amino acid sequence <SEQ ID 80; ORF 012>:

BNSDOCID: <WO___9957280A2_I_>

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 81>:
       a012.seg
                ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
             1
                TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
            51
                TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
           101
               AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
           151
           201 GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC
               GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
           301 ACCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
               CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
           351
               CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
           401
           451 CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
           501 ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
               GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
               CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
           651
               CGCTTAA
 This corresponds to the amino acid sequence <SEQ ID 82; ORF 012.a>:
      a012.pep
               MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
            1
               KFARRHHIHI NIMFFQQAVD IRYFRYNTHR TDNRKRSGNN FIRHTRHHIT
            51
               TARRHLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS KQNLIFRLGN
           101
               QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF
              RLFLFLFF LMFCLFPA*
             64.2% identity over a 218 aa overlap
 m012/a012
                         10
                                   20
                                            30
                                                     40
                  MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     m012.pep
                  MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     a012
                         10
                                            30
                                                     40
                                                              50
                                  80
                                           90
                                                             110
                 NIMFFQQAVDIRYFRHHTHRTDNRKRSGSNFIRHTRHHITAARXXXXXXXXXXXXXXXXXX
     m012.pep
                  NIMFFQQAVDIRYFRYNTHRTDNRKRSGNNFIRHTRHHITTARRHLIDGDGQRNIAFAQT
     a012
                         70
                                  80
                                           90
                                                   100
                                                             110
                                                                      120
                        130
                                 140
                                          150
                                                   160
                 180
     m012.pep
                 PKLRSRQTVTVNHAARTFQSKQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
     a012
                        130
                                 140
                                          150
                                                   160
                                                             170
                        190
                                 200
                                          210
                                                  219
     m012.pep
                 XRFGRFLPTLLQTFFLCFGFRLFLFLFLFLMLCLFPAX
                  a012
                 LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
                        190
                                 200
                                          210
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
```

ORF 012 shows 58.7% identity over a 218 aa overlap with a predicted ORF (ORF 012.ng) from N. gonorrhoeae:

m012/g012

<b>010</b>	10	20	30	40	50	60
m012.pep	MLARCHFLNIQLR	AVLADKLLEQL	MRFLOFLSEF	LFAI.FRIFTH	とこいい カモ だっっっ	D
	MIARRYFFNIORG	11::11111			MONKALKEAR	KHHTHI
g012	MLARRYFFNIQPG	ΔΛεωυκιτώνι	(DELOE: 51	. <del></del>		11111
-		MALI DYPPEÕPI	MKETÖET PEEJ	LFALFRIFTH	KSNRAI.KFARI	TUTUHS

	10	20	30	40	50	60
	70	80	90	100	110	120
m012.pep					XXXXXXXXX	XXXXX
g012	   NIMFFQQAVDIRH				DLIDGDGQRN	: IAFAQT
	70	80	90	100	110	120
	130	140	150	160	170	180
m012.pep	xxxxxxxxxxxx : :	: :	XXXXXXXXX	: :		
g012	PKLRSRQTVTVNH		I FRLGNQKHF			 HKKAGF
	130	140	150	160	170	180
	190	200	210	219		
m012.pep	XRFGRFLPTLLQTI					
g012	LRFGRFLPALLQT					
	190	200	210			
The Calleryine	antial DNIA accurat		Δ-1:- X7 -	:4: 4:-	<ceo (<="" id="" td=""><td>225</td></ceo>	225
m012-1.se	partial DNA sequenc	e was identi	ned in N. I	neningiiiais	<2EQ ID 8	53>:
1	ATGCTCGCCC GTTGC					
51	TGACAAACTG CTTGAA					
101 151	TTCTGTTTGC CCTTTT					
201	GGCGGTGGAT ATTCG	STACT TCCGC	CACCA CACC	CACCGA ACC	GACAATC	
251 301	GCAAACGGAG CGGAAC GCCGCTCGCC GCCACC					
351	CGCGCAAACG CYTAAC					
401	CCGCCCGGAC TTTCC	AATCT GAGCA	GAACC TCAT	CTTCAG GCT	TGGCAAT	
451 501	CAAAAGCACC GCCGTA					
551						
601	CGCCTTTTCC TTTTTC	CTTTT CCTCT	TTTTC CTGA	TGTTTT GCC	PCTTCCC	
651	CGCTTAA					
This correspond	ls to the amino acid	sequence <s< td=""><td>SEQ ID 84;</td><td>ORF 012-1</td><td>&gt;:</td><td></td></s<>	SEQ ID 84;	ORF 012-1	>:	
m012-1.pe	•	TARKI TROIM	DELOE LOSE			
. 1 51	MLARCHFLNI QLRAVI KFARRHHIHI NIMFF(					
101	AARRHLIDGD GQRNIA	AFAQT XKLRS	RQTVT VNHA	ARTFQS EQN	LIFRLGN	
151 201	QKHRRNLMTQ GFYGVO		KKAGF LRFG	RFLPTL LQT	LFLCFGF	
<b>m012-1/g012</b> 9	1.7% identity in 218	aa overlap				
	10	20	30	40	50	60
m012-1.pe	• -	AVLADKLLEQLI   ::				
g012	MLARRYFFNIQPG#					,
	10	20	30	40	50	60
	70	80	90	100	110	120
m012-1.pe						
g012		!!        :  FRHHTHRTDDRI	:      KRSGNNFIRH		 DI.IDGDGORN	 TAFAOT
-	70	80	90	100	110	120
	130	140	150	160	170	180
m012-1.pe	p XKLRSRQTVTVNHA	AARTFQSEQNL	I FRLGNQKHR	RNLMTQGFYG	CIQIAVKIQ	HKKAGF
g012	    PKLRSRQTVTVNH	APTECE ON		PNI MTOCEVO	IIIIIIIIIIIIII	
9012	TURIONATATAME	THE COUNTY	TTABGNOVAK	TOTALITY OF 16	ACTOTHANTO:	INNAGE

```
130
                                  140
                                           150
                                                    160
                                                              170
                                                                       180
                        190
                                  200
                                           210
                                                   219
                  LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
     m012-1.pep
                  1111111:11:11111111111111111:11111111
                  LRFGRFLPALLQTLFLCFGFRLFLFLFFFFLMFCLFLAX
     g012
                        190
                                  200
                                           210
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 85>:
a012-1.seq
               ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
              TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
              TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
          101
              AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
          151
              GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC
          201
          251
              GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
          301 ACCGCTCGCC GCCACCTTAT CGACGCGAC GGTCAGCGGA ATATTGCGTT
              CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
          351
              CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
          401
              CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
          451
              ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
          501
              GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
              CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
              CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 86; ORF 012-1.a>:
     a012-1.pep
              MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
           1
          51
              KFARRHHIHI NIMFFQQAVD IRYFRYNTHR TDNRKRSGNN FIRHTRHHIT
         101
              TARRHLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS KQNLIFRLGN
              QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF
              RLFLFLFFF LMFCLFPA*
         201
a012-1/m012-1
              97.2% identity in 218 aa overlap
                                           30
                {\tt MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI}
    a012-1.pep
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
    m012-1
                                 20
                                           30
                                                    40
                        70
                                           90
                                                   100
                                                            110
                NIMFFQQAVDIRYFRYNTHRTDNRKRSGNNFIRHTRHHITTARRHLIDGDGQRNIAFAQT
    a012-1.pep
                NIMFFQQAVDIRYFRHHTHRTDNRKRSGSNFIRHTRHHITAARRHLIDGDGQRNIAFAQT
    m012-1
                        70
                                 80
                                          90
                                                   100
                                                            110
                       130
                                140
                                         150
                                                   160
                                                            170
                PKLRSRQTVTVNHAARTFQSKQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
    a012-1.pep
                 XKLRSRQTVTVNHAARTFQSEQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
    m012-1
                       130
                                140
                                         150
                                                   160
                                                            170
                                200
                LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
    a012-1.pep
                m012-1
                LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
                      190
                                200
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 87>:

1 aTgcctttga ccatgctgtg cagcaGGAcg tGCGGTTtgt tcataataca 51 gtCcgaccGG AAAagcggAG GAAaCGCAGT GCCGCCCCT TCCCCTTTCT 101 TGCCGTGGCA GGCGATGCag tTgGATTCGT ACACTTTTTG CCCTTTtGtc

```
151 atgatGCTgt tgtcggCGGC AGAAGCgGCG GcgCAGAGGC AGCACAAGAT
          201 GAAGGCGGTC GGCAGTCGGG TTGTGTtcat tGgcgTTTCC cctaatgttt
               tgaaaccttg ttttttgatt Ttgcctttac ggggtgaaaa gtttttTtgg
          301
               cccaaatccg gaatttag
This corresponds to the amino acid sequence <SEQ ID 88; ORF 013.ng:
     g013.pep
               MPLTMLCSRT CGLFIIQSDR KSGGNAVPRP SPFLPWQAMQ LDSYTFCPFV
            1
           51
               MMLLSAAEAA AQRQHKMKAV GSRVVFIGVS PNVLKPCFLI LPLRGEKFFW
          101
               PKSGI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 89>:
            1
               ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
           51
               GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
          101
               TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
               ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAAGC AGCCCAAGAC
          151
               GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTCATGTTTG
          201
              AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT TTTGCCGAAT
          251
          301
               CAGTAG
This corresponds to the amino acid sequence <SEQ ID 90; ORF 013>:
     m013.pep
               MPLTMLCSST CGFFMMKSER XSGGNMVPRP SPFLPWQATQ LDSYTFCPFV
              MMLLSAAEAA AQKQPKTRAV GSR<u>VVFIGVS FMFETLLLI</u>L RSGXKIFLPN
           51
          101
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 91>:
     a013.seq
               ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
           1
           51
               GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
          101
              TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
          151
              ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAGGC AGCCCAAGAC
          201
               GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTAATGTTTG
          251 AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT CTTGCCGAAT
          301
               CGGTAG
This corresponds to the amino acid sequence <SEQ ID 92; ORF 013.a>:
     a013.pep
              MPLTMLCSST CGFFMMKSER *SGGNMVPRP SPFLPWQATQ LDSYTFCPFV
           51
              MMLLSAAEAA AQRQPKTRAV GSRVVFIGVS LMFETLLLIL RSG*KIFLPN
          101
              R*
            97.0% identity over a 101 aa overlap
m013/a013
                                   20
                                             30
                                                       40
                                                                 50
     m013.pep
                 MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
                  {\tt MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA}
     a013
                         10
                                                       40
                                                                50
                                                                          60
                                   80
                                             90
                 AQKQPKTRAVGSRVVFIGVSFMFETLLLILRSGXKIFLPNQX
     m013.pep
                  a013
                  AQRQPKTRAVGSRVVFIGVSLMFETLLLILRSGXKIFLPNRX
                         70
                                   80
                                             90
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 013 shows 73.3% identity over a 101 aa overlap with a predicted ORF (ORF 013.ng) from N. gonorrhoeae:

BNSDOCID: -WO__9957280A2_L>

```
m013/g013
```

```
20
                                   30
                                            40
           MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
m013.pep
           MPLTMLCSRTCGLF11QSDRKSGGNAVPRPSPFLPWQAMQLDSYTFCPFVMMLLSAAEAA
g013
                                   30
                                           40
                  70
                          80
                                    90
                                            100
           AQKQPKTRAVGSRVVFIGVSF-MFETLLLILR-SGXKIFLPNQX
m013.pep
           11:1 | :111111111111 ::: :111 | 1:1 |:
q013
           AQRQHKMKAVGSRVVFIGVSPNVLKPCFLILPLRGEKFFWPKSGIX
                  70
                          80
                                   90
                                          100
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 93>: g015.seg

```
1 ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
 51 CATTTTGGTA TTCAACATCC GTTTTTTCCT ACTTTGGAAA AATCCAGAAA
101 AGCCCTTGGT CGGCTTTTGG AAAGCACTGC CCCACCTCAA CGACACGATG
151 CTGCTGTTTA CGGGATTGTG GCTGATGAAG ATTACCCATT TCTCCCCGTT
201 CAACGCGCCT TGGCTCGGCA CAAAAATCCT GCTCCTGTTC GCCTACATCG
    CACTGGGCAT GGTAATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
    ACCGTTTACC TGCTCGCTAT GTGTTGCATC GCCTGCATCG TTTACCTTGC
351 CAAAACCAAA GTCCTGCCAT TCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 94; ORF 015.ng>: g015.pep

- 1 MQYLIVKYSH QIFVTITILV FNIRFFLLWK NPEKPLVGFW KALPHLNDTM
  - 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLF AYIALGMVMM RARPRSTKFY 101 TVYLLAMCCI ACIVYLAKTK VLPF*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 95>:

```
m015.seq
           (partial)
          . . AAAATCAGAA AAGCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA
            CGACACCATG CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT
            TCTCCCCGTT CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC
     101
            GCCTATATCG CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC
     151
     201
            CAAGTTCTAC ACCGTTTACC TGCTCGCCAT GTGTTGCGTC GCCTGCATCG
            TTTACCTTGC CAAAACCAAA GTCCTGCCTT TCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 96; ORF 015:

m015.pep (partial)

- 1 ..KIRKALAGFW KALPHLNDTM LLFTGLWLMK ITHFSPFNAP WLGTKILLLL
- AYIALGMMMM RARPRSTKFY TVYLLAMCCV ACIVYLAKTK VLPF*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 97>: a015.seq

```
ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
  1
     CATTTTGGTA TTCAACATCC GTGTTTTCNT ACTTTGGAAA AATCCAGAAA
 51
101 AGCCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA CGACACCATG
151 CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT TCTCCCCGTT
201 CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC GCCTATATCG
251 CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
301 ACCGTTTACC TGCTCGCCAT GTGTTGGCTC ACCGTTCGAC CAAGTTCTAC
     ACCGTTTACC TGCTCGCCAT GTGTTGCCTC ACCTGCATCG TTTACCTTGC
351 CAAAACCAAA GTCCTGCCTT TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 98; ORF 015.a>: a015.pep

عاملت فتاب المهير المرد الاجار

- 1 MQYLIVKYSH QIFVTITILV FNIRVFXLWK NPEKPLAGFW KALPHLNDTM
- 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLL AYIALGMMMM RARPRSTKFY
  101 TVYLLAMCCL TCIVYLAKTK VLPF*

m015/a015 96.7% identity over a 91 aa overlap

-015			VIDV	10	20	30
m015.pep			KIRK	ALAGFWKALPI	TUDLMPPFL	GLWLMKITH
-015	I TURVOUATEM					
a015	LIVKYSHQIFVI					
	10	20	30	40	50	60
	40	50	60	70	80	90
m015.pep	FSPFNAPWLGT	KILLLLAYIAI	GMMMMRARP	RSTKFYTVYLI	AMCCVACIV	YLAKTKVLP
	111111111111	1111111111		11111111111	1111::111	
a015	FSPFNAPWLGTF	(ILLLLAYIAI	LGMMMMRARP	RSTKFYTVYLI	AMCCLTCIV	YLAKTKVLP
	70	80	90	100	110	120
m015.pep	FX					
• •	11					
a015	FX					

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N. gonorrhoeae

ORF 015 shows 94.5% identity over a 91 aa overlap with a predicted ORF (ORF 015.ng) from N. gonorrhoeae:

m015/g015

				10	20	30
m015.pep			KIRK	ALAGFWKALP:	HLNDTMLLFT	GLWLMKITH
			!			
<b>g01</b> 5	LIVKYSHQIFV	TITILVFNIR	FFLLWKNPEK	PLVGFWKALP	HLNDTMLLFT	GLWLMKITH
	10	20	30	40	50	60
	40	50	60	70	80	90
m015.pep	FSPFNAPWLGT		· -			
						IIIIIIIII
<b>g01</b> 5	FSPFNAPWLGT	KILLLFAYIA	LGMVMMRARP	RSTKFYTVYL:		YLAKTKVLP
	70	80	90	100	110	120
m015.pep	FX					
o.ro.pop	11					
q015	FX					
J	= ==					

The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 99>: g018.seq

- atGCAGCAGG GGCagttggt tggacgcgtc gcccgcaata AAGATATGCG 51 GAATgctggt CTGCATggtC AGCGGATCGG CAACGGGtac gccgcgcgc 101 tctttgTCGA TATTGATGTT TTCCAAACCG ATATtgTCAA CGTTCGGACG 151 GCGACCTACG GCTGCCAACA TATATTCGGC AACAAATACG CCTTTTTCGC 201 CATCCTGCTC CCAATGGACT tctACATTGC CGTCTGCGTC GAGTTTGACC 251 TCGGTTTTAG CAT 301 CGCCTCGTCT GA TCGGTTTTAG CATCCAGATG CAGTTTCAAT tctTCTCCGA ACACGGCTTT
- This corresponds to the amino acid sequence <SEQ ID 100; ORF 018.ng>: g018.pep
  - 1 MQQGQLVGRV ARNKDMRNAG LHGQRIGNGY AARVFVDIDV FQTDIVNVRT
  - 51 ATYGCQHIFG NKYAFFAILL PMDFYIAVCV EFDLGFSIQM QFQFFSEHGF

101 RLV*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 101>:

ATGCAGCAGA GGCAGTTGGT TGGACGCATC GCCTGCGATG AAGATATGCG
51 GAATACTGGT CTGCATGGTC AGCGGGTCGG CAACAGGTAC GCCGCGCGCA
101 TCTTTTTCGA TATTGATATT TTCCAAACCG ATATTGTCAA CGTTCGGACG
151 GCGGCCCACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC
201 CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCATC GAGTTTGACC
251 TCGGTTTTAG CATCCAGATG CAGTTTCAAT TCTTCGCCGA ACACGGCGTT
301 CGCCTCGTCT GA

## This corresponds to the amino acid sequence <SEQ ID 102; ORF 018>: m018.pep

1 MQQRQLVGRI ACDEDMRNTG LHGQRVGNRY AARIFFDIDI FQTDIVNVRT 51 AAHGCQHIFG NKYAFFAILL PMDFYIAVCI EFDLGFSIQM QFQFFAEHGV 101 RLV*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 103>:

1 ATGCAGCAGG GGCAGTTGGT TGGACGCGTC GCCCGCAATA AAGATATGCG
51 GAATACTGGT CTGCATAGTC AGCGGATCGG CAACGGGTAC GCCGCGCGCA
101 TCTTTTTCGA TATTGATGTT TTCCAAACCG ATATTGTCAA CGTTCGGACG
151 GCGGCCTACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC
201 CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCGTC GAGTTTGGCC
251 TCGGTTTTAG CATCCAAATG CAGTTTCAAT TCTTCACCGA ACACGGCTTT
301 CGCCTCGTCT GA

## This corresponds to the amino acid sequence <SEQ ID 104; ORF 018.a>:

1 MQQGQLVGRV ARNKDMRNTG LHSQRIGNGY AARIFFDIDV FQTDIVNVRT 51 AAYGCQHIFG NKYAFFAILL PMDFYIAVCV EFGLGFSIQM QFQFFTEHGF 101 RLV*

### m018/a018 86.4% identity over a 103 aa overlap

20 30 40 50  ${\tt MQQRQLVGRIACDEDMRNTGLHGQRVGNRYAARIFFDIDIFQTDIVNVRTAAHGCQHIFG}$ m018.pep MQQGQLVGRVARNKDMRNTGLHSQRIGNGYAARIFFDIDVFQTDIVNVRTAAYGCQHIFG a018 10 20 30 40 70 80 90 100 m018.pep NKYAFFAILLPMDFYIAVCIEFDLGFSIQMQFQFFAEHGVRLVX a018 NKYAFFAILLPMDFYIAVCVEFGLGFSIQMQFQFFTEHGFRLVX 70 80 90 100

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 018 shows 84.5% identity over a 103 aa overlap with a predicted ORF (ORF 018.ng) from N. gonorrhoeae:

m018/g018

and a substitution of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the cont

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 105>: g019.seq (partial)

```
1 ..etgetggegg ceetggtget tgeegegtgt tettegACAA ACAcacTGCC
51 AGCCGGCAAG ACCCCGGCAG ACAATATAGA AActgeegac ctttegaCAA
101 GCGTTCCCAC cegeectgee GAACCGGAAG GAAAAACGET GGCAGATTAC
151 GGCGGCTACC CGTCCGCACT GGATGCAGTG AAACAGAACA ACGATGCGGC
201 AGCCGCCGCC TATTTGGAAA Acgcaggaga cagCGcgatg geGGAAAatg
```

251 tccgcaagga gtgGCTGa

This corresponds to the amino acid sequence <SEQ ID 106; ORF 019.ng>:

g019.pep (partial)

1 ..LLAALVLAAC SSTNTLPAGK TPADNIETAD LSASVPTRPA EPEGKTLADY

51 GGYPSALDAV KQNNDAAAAA YLENAGDSAM AENVRKEWL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 107>:

```
m019.seq (partial)
         ATGTACCTAC CCTCTATGAA GCATTCCCTG CCGCTGCTGG CGGCCCTGGT
      1
      51
         GCTTGCCGCG TGTTCTTCGA CAAACACACT GCCAGCCGGC AAGACCCCGG
    101
         CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCCGCCCT
    151
         GCCGAACCCG AAAGAAAAAC GCTGGCAGAT TACGGCGGCT ACCCGTCCGC
    201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
    251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
    301 AAGTCTTTGG GCGCACGCAG ACAGTGGACG CTGTTTGCAC AGGAATACGC
         CAAACTCGAA CCGGCAGGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
    351
         CGAGCCGCAA CGACTATACG CGTGCCGCTG AACTGGTCAA AAATACGGGC
         AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
    501
         CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
    551 GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
    601 TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
    651 CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
    701 TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
    751 GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
    801 CGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
    851 ACGCCCGCGC CGCCTTGCGC GCCCGACGTT GGGACGAGCT GGCCTCCGTT
    901 ATCTCGCATA TGCCCGAAAA ACTGCAAAAA AGCCCGACCT GGCTCTACTG
    951 GCTGGCACGC AGCCGCGCCG CAACGGGCAA CACGCAAGAG GCGGAAAAAC
   1001 TTTACAAACA GGCGGCAGCG ACGGGCAGGA ATTTTTATGC GGTGCTGGCA
   1051 GGGGAAGAAT TGGGTCGGAA AATCGATACG CGCAACAATG TGCCCGATGC
         CGGCAAAAAC AGCGTCCGCC GCATGGCGGA AGACGGTGCA GTCAAACGCG
         CACTGGTACT GTTCCAAAAC AGCCAATCTG CCGGTGATGC AAAAATGCGC
   1201 CGTCAGGCTC AGGCGGAATG GCGTTTTGCC ACACGCGGCT TTGACGAAGA
   1251 CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA
   1301 TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
   1351 CGCTATATTT CGCCGTTTAA AGACACGGTA ATCCGCCACG CGCAAAATGT
         TAATGTCGAT CCGGCTTGGG TTTATGGGCT GATTCGTCAG GAAAGCCGCT
   1451 TCGTTATAGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
   1501 ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC
   1551 ACAACTTTAC ACCGCCGACG GG...
```

This corresponds to the amino acid sequence <SEQ ID 108; ORF 019>:

m019.pep (partial)

1 MYLPSMKHSL PLLAALVLAA CSSTNTLPAG KTPADNIETA DLSASVPTRP

BNSDOCID: <WO___9957280A2_I_>

```
51 AEPERKTLAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
101 KSLGARRQWT LFAQEYAKLE PAGRAQEVEC YADSSRNDYT RAAELVKNTG
151 KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
201 FDGGTQGSRE YALLNVIGKE ARKSPNAAAL LSEMESGLSL EQRSFAWGVL
251 GHYQSQNLNV PAALDYYGKV ADRRQLTDDQ IEWYARAALR ARRWDELASV
301 ISHMPEKLQK SPTWLYWLAR SRAATGNTQE AEKLYKQAAA TGRNFYAVLA
351 GEELGRKIDT RNNVPDAGKN SVRRMAEDGA VKRALVLFQN SQSAGDAKMR
401 RQAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
451 RYISPFKDTV IRHAQNVNVD PAWVYGLIRQ ESRFVIGAQS RVGAQGLMQV
501 MPATAREIAG KIGMDAAQLY TADG...
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 109>:

```
ATGTACCCAC CCTCTCTGAA GCATTCCCTG CCGCTGCTGG TGGNCCTGGT
   1
      GCTTGCCGCG TGTTCTTNGA CAAACACACT GTCAGCCGAC AAGACCCCGG
   51
  101 CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCNGCCCT
 151 GCCGAACCCG AANGAAAAAC GTNGGCAGAT TACGGCGGCT ACCCGTCCGC
 201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
 251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
      AAGTCTTTGG GCGCGCAG ACAGTGGACG CTGTNTGCAC ANGAATATGC
      NAAACTCGAA CCGGCANGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
  351
      CGAGCCGCAA CGACTATACG CGTGCCGCCG AACTGGTCAA AAATACGGGC
 451 AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
 501
     CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
      GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
 551
 601 TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
 651
     CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
 701 TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
 751
     GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
      NGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
 801
      ACGCCCGCGC CGCNNTNNGC NNNCGNNGTT NGNANGANNT GGCNNCCGNN
 851
 901 ANCNCGNNNN TGCNNGANAA ACNNNNNNAN AGNCNNANNT NGNTNNANTG
      NNTGGCACGC AGCCGCGCCG CNACGGGCAA CACGCAANAN GCGGANAAAC
 951
1001
      TNTACAAACA GGCGGCAGCA NCGGGCANGA ATTTTTATGC NGTGCTGNCN
1051
      GGGGAAGAGT TGGGGCGCAN AATCGATACG CGCAACAATG TGCCCGATGC
1101
      CGGCAAAANC AGCGTCCTCC GTATGGCGGA AGACGGCGCG ATTAAGCGCG
1151
      CGCTGGTGCT GTTCCGAAAC AGCCGAACCG CCGGCGATGC GAAAATGCGC
      CGTCNGGCTC AGGCGGAATG GCGTTTCGCC ACACGCGGCT TCGATGAAGA
1201
1251
      CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA
      TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
1301
      CGCTACATTT CGNNNNNTNA NGACACGGTA ATCCGCCACG CGCAAAATGT
1351
     TAATGTCGAT CCGGCGTGGG TTTACGGGCT GATTCGTCAG GAAAGCCGCT
1401
     TCGTTATGGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
1451
     ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC
1501
     ACAACTTTAC ACCGCCGACG GCAATATCCG TATGGGGACG TGGTATATGG
1551
1601
     CGGACACCAA ACGCCGCCTG CAAAACAACG AAGTCCTCGC CACCGCAGGC
1651
     TATAACGCCG GTCCCGGCAG GGCGCGCCGA TGGCAGGCGG ACACGCCCCT
     CGAAGGCGCG GTATATGCCG AAACCATCCC GTTTTCCGAA ACGCGCGACT
1701
     ATGTCAAAAA AGTGATGGCC AATGCCGCCT ACTACGCCTC CCTCTTCGGC
1751
     GCGCCGCACA TCCCGCTCAA ACAGCGTATG GGCATTGTCC CCGCCCGCTG
1851
```

## This corresponds to the amino acid sequence <SEQ ID 110; ORF 019.a>:

· heb					
1	MYPPSLKHSL	PLLVXLVLAA	CSXTNTLSAD	KTPADNIETA	DI CA CUDTUD
51	AEPEXKTXAD	YGGYPSALDA	VKOKNDAAVA	AYLENAGDSA	MARNIMARRIA
101	V2TCAKKOMI	LXAXEYAKLE	PAXRAOEVEC	YADSSRNDYT	DAARTURAMO
151	KLPSGCTKLL	EQAAASGLLD	GNDAWRRVRG	I.I.ACROTTDA	DMIAAATCCD
201	FDGGTQGSRE	YALLNVIGKE	ARKSPNAAAI.	LSEMESCIST	PODCENMON
251	GHIQSQNLNV	PAALDYXGKV	ADRROLTDDO	TEWYADAAVV	VDVVVVVV
301	XXXXXXXXX	XXXXXXXXAR	SRAATGNTOX	AYKI YKONNN	VOVITOURIE
351	GEFFGKYIDI	RNNVPDAGKX	SVLRMAEDGA	TKRAINI FDM	CDMACDAMAD
401	RXAQAEWRFA	TRGFDEDKLL	TAAQTAFDHG	FYDMAVNSAE	RTDRKI NVTI
					DIVILLE IN 1 1 1 T

451	RYISXXXDTV	TRHAQNVNVD	PAWVYGLIRQ	ESRFVMGAQS	RVGAQGLMQV
501	MPATAREIAG	KIGMDAAQLY	TADGNIRMGT	WYMADTKRRL	ONNEVLATAG

551 YNAGPGRARR WQADTPLEGA VYAETIPFSE TRDYVKKVMA NAAYYASLFG 601 APHIPLKQRM GIVPAR*

#### 88.9% identity over a 524 aa overlap m019/a019

m019.pep	10 MYLPSMKHSLPLLAA      :      : MYPPSLKHSLPLLVX	111111	1111 1 1111	11111111111	1111 1111	1 11 11
m019.pep	70 YGGYPSALDAVKQKI            YGGYPSALDAVKQKI 70		111111111			
m019.pep	130 PAGRAQEVECYADSS               PAXRAQEVECYADSS 130			1111111111	111111111	
m019.pep	190 LLAGRQTTDARNLAA           LLAGRQTTDARNLAA 190			111111111	11111111	
m019.pep	250 EQRSFAWGVLGHYQS             EQRSFAWGVLGHYQS 250	13111111		1111111111	1111 1	1
m019.pep	310 ISHMPEKLQKSPTWI I: XXXXXXKXXXXXXXXXXXXXXXX	11111	11111 1 11	111111:11	11111 111	111 111
m019.pep	370 RNNVPDAGKNSVRRM	41111:111	1111:11::1	111111111111	11111111111	111111
m019.pep	430 TAAQTAFDHGFYDMA           TAAQTAFDHGFYDMA 430	11111111	111111111	1111111		
m019.pep	490 ESRFVIGAQSRVGAQ      :        ESRFVMGAQSRVGAQ 490	11111111	11111111111	1111111111		ADTKRRL 540
a019	QNNEVLATAGYNAGP 550	GRARRWQAD 560	TPLEGAVYAE 570	TIPFSETRDY 580	VKKVMANAA) 590	YASLFG 600

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 019 shows 95.5% identity over a 89 aa overlap with a predicted ORF (ORF 019.ng) from N. gonorrhoeae:

g019/m019

```
20
                                                 40
g019.pep
                   LLAALVLAACSSTNTLPAGKTPADNIETADLSASVPTRPAEPEGKTLAD
                   MYLPSMKHSLPLLAALVLAACSSTNTLPAGKTPADNIETADLSASVPTRPAEPERKTLAD
m019
                        20
                                30
                                        40
                                                50
         50
                 60
                         70
                                80
g019.pep
          YGGYPSALDAVKQNNDAAAAAYLENAGDSAMAENVRKEWL
          YGGYPSALDAVKQKNDAAVAAYLENAGDSAMAENVRNEWLKSLGARRQWTLFAQEYAKLE
m019
                        80
                                90
                                       100
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 111>: g023.seq

- ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT 1
- 51 AATGCAGCGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT
- TAGTGGTTCT ATTTGCCCTG CCTAAAGAAT ATCCGGCATG GCAGGCATTT 101
- TTTAGTCAAG CTTGGGTAAA AGTATTTACC CAAGTGAGCT TTATCGCCGT 201
- ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
- 251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT TGtctGGCTG 301 GTCGGCTGCC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA
- This corresponds to the amino acid sequence <SEQ ID 112; ORF 023.ng>:

g023.pep

- MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFAL PKEYPAWQAF 1 FSQAWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL 51
- 101 VGCLVYSVKV IWG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:

m023.seq

- ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT 1 GATGCAACGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT 51
- 101 TAGTGGTTCT ATTTTCCCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT
- 151 TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT 201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
- 251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTTTGGCTG
- 301 GTCGGCTGTC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 114; ORF 023>:

m023.pep

- MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFSL PKEYSAWQAF 1 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL
- 101 VGCLVYSVKV IWG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>: a023.seq

- ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GGGATTGGGC 1
  - 51 GATGCAACGT GCGACCGCGG TTATTATGTT GATTTATACC GTTGCACTTT 101
  - TAGTGGTTCT ATTTGCTCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT

- 201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATNA
- 251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTCTGGCTG
- 301 GTCGGCTGCT TGGTGTATTC AATTAAAGTA ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 116; ORF 023.a>:

a023.pep

- 1 MVERKLTGAH YGLRDWAMQR ATAVIMLIYT VALLVVLFAL PKEYSAWQAF
- 51 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYXKPFGVRL FLQVATIVWL
- 101 VGCLVYSIKV IWG*

m023/a023 96.5% identity over a 113 aa overlap

	10	20	30	40	50	<b>6</b> 0
m023.pep					PKEYSAWQAFI	
	11111111	11111111111	11111111	111111111111111111111111111111111111111		
a023	MVERKLTGAH:	YGLRDWAMQR	ATAVIMLIY	TVALLVVLFAI	PKEYSAWQAF	SQTWVKVFT
	10	20	3	0 40	50	60
	70	80	9	0 100	110	
m023.pep	QVSFIAVFLH	AWVGIRDLWM	DYIKPFGVR	LFLQVATIVWI	VGCLVYSVKV	IWGX
	1111111111		11 111311	11111111111	11[11]:[1]	1111
a023	QVSFIAVFLH	AWVGIRDLWM	DYXKPFGVR	LFLQVATIVWI	VGCLVYSIKV	IWGX
	70	80	9	0 100	110	

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 023 shows 97.3% identity over a 113 aa overlap with a predicted ORF (ORF 023.ng) from N. gonorrhoeae:

g023/m023

```
20
                               30
                                      40
                                              50
                                                      60
g023.pep
          MVERKLTGAHYGLRDWVMQRATAVIMLIYTVALLVVLFALPKEYPAWQAFFSQAWVKVFT
          MVERKLTGAHYGLRDWVMQRATAVIMLIYTVALLVVLFSLPKEYSAWQAFFSQTWVKVFT
m023
                10
                       20
                               30
                                      40
                                              50
                                                      60
                               90
                                      100
          QVSFIAVFLHAWVGIRDLWMDYIKPFGVRLFLQVATIVWLVGCLVYSVKVIWGX
g023.pep
          QVSFIAVFLHAWVGIRDLWMDYIKPFGVRLFLQVATIVWLVGCLVYSVKVIWGX
m023
                70
                       80
                               90
                                      100
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 117>: g025.seq

```
ATGTTGAAAC AAACGACACT TTTGGCAGCT TGTACCGCCG TTGCCGCTCT
  1
    GTTGGGCGGT TGcgCCACCC AACAGCCTGC TccTGTCATT GCAGGCAATT
 51
    CAGGTATGCA GACCGTATCG TCTGCGCCGG TTTACAATCC TTATGGCGCA
101
    ACGCCGTACA ATGCCGCTCC TGCCGCCAac gatgcGCCgT ATGTGCCGCC
     CGTGCAAact gcgccggttT ATTCGCCTCC TGCTTATGTT CCGCcgtCTG
    CACCTGCCGT TTCGGgtaca tatgtTCCTT CTTACGCACC CgtcgACATC
    aacgCGGCGa cgCataCTAT TGTGCGTGGC GACACGGtgt acaACATTTc
301
    caaAcgCtac CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
401 CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCaggA
    TATGCCGCAC CGAAAACCGC AGCCGTAGAA AGCAGGCCCG CCGTACCGGC
451
501 TGCCGCGCAA ACCCCTGTGA AACCCGCCGC GCAACCGCCC GTTCAGTCCG
551 CGCCGCAACC TGCCGCGCCC GCTGCGGAAA ATAAAGCGGT TCCCGCCCCC
601 GCGCCCGCC CGCAATCTCC TGCCGCTTCG CCTTCCGGCA CGCGTTCGGT
651 CGGCGGCATT GTTTGGCAGC GTCCGACCCA AGGTAAAGTG GTTGCCGATT
```

BNSDOCID: <WO __ 9857280A2 | >

```
701 TCGGCGGCG CAACAAGGGT GTCGATATTG CCGGCAATGC CGGACAACCC
751 GTTTTGGCGG CGGCTGACGG CAAAGTGGTT TATGCCGGTT CAGGTTTGAG
801 GGGATACGGA AACTTGGTCA TCATCCAGCA CAATTCCTCT TTCCTGACCG
851 CGTACGGGCA CAACCAAAAA TTGCTGGTCG GCGAAGGTCA GCAGGTCAAA
901 CGCGGTCAGC AGGTTGCTTT GATGGGTAAT ACCGATGCTT CCAGAACGCA
951 GCTTCATTTC GAGGTGCGTC AAAACGGCAA ACCGGTTAAC CCGAACAGCT
```

## This corresponds to the amino acid sequence <SEQ ID 118; ORF 025.ng>:

```
MLKQTTLLAA CTAVAALLGG CATQQPAPVI AGNSGMQTVS SAPVYNPYGA
51 TPYNAAPAAN DAPYVPPVQT APVYSPPAYV PPSAPAVSGT YVPSYAPVDI
101 NAATHTIVRG DTVYNISKRY HISQDDFRAW NGMTDNTLSI GQIVKVKPAG
151 YAAPKTAAVE SRPAVPAAAQ TPVKPAAQPP VQSAPQPAAP AAENKAVPAP
201 APAPQSPAAS PSGTRSVGGI VWQRPTQGKV VADFGGGNKG VDIAGNAGQP
251 VLAAADGKVV YAGSGLRGYG NLVIIQHNSS FLTAYGHNQK LLVGEGQQVK
301 RGQQVALMGN TDASRTQLHF EVRQNGKPVN PNSYIAF*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:

```
m025.seq
         (partial)
         ..GTGCCGCCGG TGCAAAGCGC GCCGGTTTAT ACGCCTCCTG CTTATGTTCC
      1
     51
            GCCGTCTGCA CCTGCCGTTT CGGGTACATA CGTTCCTTCT TACGCACCCG
           TCGACATCAA CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC
    101
           AACATTTCCA AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA
    151
           CGGCATGACC GACAATACGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC
    201
           CGGCAGGATA TGCCGCACCG AAAGCCGCAG CCGTAAAAAG CAGGCCCGCC
    251
           GTACCGGCTG CCGCGCAACC GCCCGTACAG TCCGCACCCG TCGACATTAA
    301
    351
           CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC AACATTTCCA
           AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA CGGCATGACC
    401
           GACAATATGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC CGGCAGGATA
    451
           TGCCGCACCG AAAACCGCAG CCGTAGAAAG CAGGCCCGCC GTACCGGCTG
    501
           CCGTGCAAAC CCCTGTGAAA CCCGCCGCG AACCGCCTGT GCAGTCCGCG
    551
           CCGCAACCTG CCGCGCCCGC TGCGGAAAAT AAAGCGGTTC CCGCGCCCGC
    651
           CCCGCAATCT CCTGCCGCTT CGCCTTCCGG CACGCGTTCG GTCGGCGGCA
           TTGTTTGGCA GCGTCCGACG CAAGGTAAAG TGGTTGCCGA TTTCGGCGGC
    701
           AACAACAAGG GTGTCGATAT TGCCGGTAAT GCGGGACAGC CCGTTTTGGC
    751
           GGCGGCTGAC GGCAAAGTGG TTTATGCCGG TTCAGGTTTG AGGGGATACG
    801
    851
           GAAACTTGGT CATCATCCAG CATAATTCTT CTTTCCTGAC CGCATACGGG
           CACAACCAAA AATTGCTGGT CGGCGAGGGG CAGCAGGTCA AACGCGGTCA
    901
           GCAGGTTGCT TTGATGGGCA ATACCGATGC TTCCAGAACG CAGCTTCATT
    951
   1001
           TCGAGGTGCG TCAAAACGGC AAACCGGTTA ACCCGAACAG CTATATCGCG
   1051
           TTCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 110; ORF 025>:

```
1 ..VPPVQSAPVY TPPAYVPPSA PAVSGTYVPS YAPVDINAAT HTIVRGDTVY
51 NISKRYHISQ DDFRAWNGMT DNTLSIGQIV KVKPAGYAAP KAAAVKSRPA
101 VPAAAQPPVQ SAPVDINAAT HTIVRGDTVY NISKRYHISQ DDFRAWNGMT
151 DNMLSIGQIV KVKPAGYAAP KTAAVESRPA VPAAVQTPVK PAAQPPVQSA
201 PQPAAPAAEN KAVPAPAPQS PAASPSGTRS VGGIVWQRPT QGKVVADFGG
251 NNKGVDIAGN AGQPVLAAAD GKVVYAGSGL RGYGNLVIIQ HNSSFLTAYG
301 HNQKLLVGEG QQVKRGQQVA LMGNTDASRT QLHFEVRQNG KPVNPNSYIA
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>:

1 ATGTTGACAC CAACAACACT TTAGGTAGCT TGTACCGCCC TTGCCGCTCA
51 GTTGGGCGGA TGCCCCACCC AACACCCTTC TCCTGTCATT GCAGGCAATT
101 CAGGTATGCA GACCGTACCG TCTGCGCCGG TTTACAATCC TTATGGCGCA

151	ACGCCGTACA	ATGCCGCTCC	TGCCGCCAAC	GATGCGCCGT	ATGTGCCGCC
201	GGTGCAAAGC	GCGCCGGTTT	ATANGCCTCC	TGCTTATGTT	CCGCCGTCTG
251	CACCTGCCGT	TTCGGGTACA	TACGTTCCTT	CTTACGCANC	CGTCGACATC
301	AACGCGGCGA	CCCATACTAT	TGTGCGCGGC	GACACCGTGT	ACAAGATTTC
351	CAAATGCTAC	CATATCTCTC	AAGACGATTT	CCGTGCGTGG	AACGGCATGA
401	CCGACAATAC	GTTGAGCATC	GGTCAGATTG	TTAAAGTCAA	ACCGGCAGGA
451	TATGCCGCAC	CGAAAGCCGC	AGCCGTAAAA	AGCAGGCCCG	CCGTACCGGC
501	TGCCGCGCAA	CCGCTCGTAC	AGTCCGCACC	CGTCGACATC	AACGCGGCGA
551	CGCATACTAT	TGTGCGCGGC	GACACGGTGT	ACAACATTTC	CAAACGCTAC
601	CATATCTCTC	AAGACGATTT	CCGTGCGTGG	AACGGCATGA	CCGACAATAC
651	GTTGAGCATC	GGTCAGATTG	TTAAAGTCAA	ACCGGCAGGA	TATGCCGCAC
701	CGAAAGCCGC	AGCCGTAAAA	AGCAGGCCCG	CCGTACCGGC	TGCCGTGCAA
751	ACCCCTGTGA	AACCCGCCGC	GCAACCGCCT	GTGCAGTCCG	CGCCGCAACC
801	TGCCGCGCCC	GCTGCGGAAA	ATAAAGCGGT	TCCCGCGCCC	GCCCCGCAAT
851	CTCCTGCCGC	TTCGCCTTCC	GGCACGCGTT	CGGTCGGCGG	CATTGTTTGG
901	CAGCGTCCGA	CGCAAGGTAA	AGTGGTTGCC	GATTTCGGCG	GCAACAACAA
951	GGGTGTCGAT	ATTGCAGGAA	ATGCGGGACA	GCCCGTTTTG	GCGGCGGCTG
1001	ACGGCAAAGT	GGTTTATGCA	GGTTCCGGTT	TGAGGGGATA	CGGCAATTTG
1051	GTCATCATCC	AGCATAATTC	TTCCTTCCTG	ACCGCATACG	GGCACAACCA
1101	AAAATTGCTG	GTCGGCGAAG	GCCAGCAGGT	CAAACGCGGG	CAGCAGGTCG
1151		CAATACCGAG			
1201	CGGCAAAACG	GCAAACCGGT	TAATCCGAAC	AGCTATATCG	CGTTCTGA
spond	s to the amin	o acid seque	nce <seq ii<="" td=""><td>D 112; ORF</td><td>025.a&gt;:</td></seq>	D 112; ORF	025.a>:
.pep					
1	MLTPTTL*VA	CTALAAQLGG	CPTQHPSPVI	AGNSGMQTVP	SAPVYNPYGA
51	TPYNAAPAAN	DAPYVPPVQS	APVYXPPAYV	PPSAPAVSGT	YVPSYAXVDI
101	113 3 mile Tile O	D	**************		

### This corres

a025 pep					
1	MLTPTTL*VA	CTALAAQLGG	CPTQHPSPVI	AGNSGMQTVP	SAPVYNPYGA
51	TPYNAAPAAN	DAPYVPPVQS	APVYXPPAYV	PPSAPAVSGT	YVPSYAXVDI
101	NAATHTIVRG	DTVYKISKCY	HISQDDFRAW	NGMTDNTLSI	GQIVKVKPAG
151	YAAPKAAAVK	SRPAVPAAAQ	PLVQSAPVDI	NAATHTIVRG	DTVYNISKRY
201	HISQDDFRAW	NGMTDNTLSI	GQIVKVKPAG	YAAPKAAAVK	SRPAVPAAVQ
251	TPVKPAAQPP	VQSAPQPAAP	AAENKAVPAP	APQSPAASPS	GTRSVGGIVW
301	QRPTQGKVVA	DFGGNNKGVD	IAGNAGQPVL	AAADGKVVYA	GSGLRGYGNL
351	VIIQHNSSFL	TAYGHNQKLL	VGEGQQVKRG	QQVALMGNTE	ASRTQLHFEV
401	RQNGKPVNPN	SYIAF*			

### m025/a025 97.4% identity over a 351 aa overlap

m025.pep		_	0 20 30 YTPPAYVPPSAPAVSGTYVPS
mozo.pop			1:1111111111111111111111111111111111111
a025	GMQTVPSAPVYNPYGATPYNA	\PAANDAPYVPPVQSAPV	YXPPAYVPPSAPAVSGTYVPS
	40 50	60 70	80 90
	40 50	60 7	0 00 00
m025.pep	YAPVDINAATHTIVRGDTVYN		
ozo i pop			
a025	YAXVDINAATHTIVRGDTVYK	SKCYHISQDDFRAWNGM	
	100 110	120 130	140 150
	100 110	100 40	
m025.pep	100 110 KAAAVKSRPAVPAAAQPPVQSA	120 13	
mozo.pep			_
a025	KAAAVKSRPAVPAAAQPLVQSA		
	160 170	180 190	200 210
-025	160 170	180 19	
m025.pep	DNMLSIGQIVKVKPAGYAAPKT		
a025	DNTLSIGQIVKVKPAGYAAPK		
	220 230	240 250	260 270
			2.0
	220 230	240 25	
m025.pep	KAVPAPAPQSPAASPSGTRSVO	GIVWQRPTQGKVVADFG	GNNKGVDIAGNAGQPVLAAAD

a025	KAVPAPAPQSPA 280	ASPSGTRSVG 290	GIVWQRPTQ0 300	SKVVADFGGNN 310	IKGVDIAGNAG 320	GOPVLAAAD 330
m025.pep	280	290	300	310	320	330
	GKVVYAGSGLRG	1111111111	1111111		111111111	111.1111
a025	GKVVYAGSGLRG 340	YGNLVIIQHN 350	SSFLTAYGHN 360	QKLLVGEGQQ 370	VKRGQQVALM 380	GNTEASRT 390
	340	350				
m025.pep	QLHFEVRQNGKP					
a025	QLHFEVRQNGKP					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 025 shows 75.6% identity over a 353 aa overlap with a predicted ORF (ORF 025.ng) from N. gonorrhoeae:

m025/g025

m025.pep VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS GMQTVSSAPVYNPYGATPYNAAPAANDAPYVPPVQTAPVYSPPAYVPPSAPAVSGTYVPS g025 YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP m025.pep g025 YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP KAAAVKSRPAVPAAAQPPVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT m025.pep g025  ${\tt DNMLSIGQIVKVKPAGYAAPKTAAVESRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN}$ m025.pep g025 --TAAVESRPAVPAAAQTPVKPAAQPPVQSAPQPAAPAAEN KAVPAPAP--QSPAASPSGTRSVGGIVWQRPTQGKVVADFGGNNKGVDIAGNAGQPVLAA m025.pep KAVPAPAPAPQSPAASPSGTRSVGGIVWQRPTQGKVVADFGGGNKGVDIAGNAGQPVLAA g025  $\verb"ADGKVVYAGSGLRGYGNLVIIQHNSSFLTAYGHNQKLLVGEGQQVKRGQQVALMGNTDAS"$ m025.pep g025 ADGKVVYAGSGLRGYGNLVIIQHNSSFLTAYGHNQKLLVGEGQQVKRGQQVALMGNTDAS RTQLHFEVRQNGKPVNPNSYIAFX m025.pep

g025 RTQLHFEVRQNGKPVNPNSYIAFX
320 330

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 113>: g031.seq

```
ATGGTGTCCC TCCGCTTCAG ATTCGGCAAC CACTTTAAAC GCCGACATTC
  1
 51
     TGACAATTTC CTTTTCCGCC AGCCAAATAT CATGCGTATC TTTCGGTTCG
101 GGCTTGTTGG GCATGGCAAC CTTCAACAGC CGCGCCATCA CAGGAATCGT
151
     CGTTCCCTGA ATCAGCAGCG ACAGCACCAC CACGGCAAAC GCCACATCAA
201
     ACAGCAGGTG CGAATTGGGA ACGCCCATCA CCAGCGGCAT CATCGCCAGC
251 GAAATCGGTA CGGCTCCTCG CAAGCCCAAC CAACTGATAT ACGCCTTTTC
301 ACGCAGGCTG TAATTGAATT TCCACAAACC GCCGAACACT GCCAGCGGAC
     GCGCGACCAG CATCAGGAAC GCCGCAATCG CCAAGGCTTC CGCCGCCCTG
401 TCCAACACGC CGGCGGAGA AACCAGCAGA CCGAGCATGA CGAACAAAGT
451
     TGCCTGCGCC AGCCAAGCCA AACCGTCCAT CACACGCAAA ACGTGTTCCG
     TCGCACGGTT GCGCTGGTTA CCGACAATGA TGCCGGCAAG GTAAACCGCC
    AAAAAGCCGC TGCCGCCTAT GGTATTGGTA AACGCAAACA CAAGCAGCCC
551
601 GCCCGACACA ATCATCAGCG CGTACAGACC TTCCGtacac acctccaatt
651 cccaatcaac gtcatagctg tctcccgtgt taaaatgttc ttcacttcag
701 aatcccccc ttcttcccag cccgaaacct tcatgtgtta naccctgggg
751 tgccccaacg gatttagtaa cctcccaatg actctgcttg tcgccccctt 801 cgcccgcttt ctccttccgg gaaaacttgt tgtccccgtc ttacattaa
```

## This corresponds to the amino acid sequence <SEQ ID 114; ORF 031.ng>: g031.pep

```
1 MVSLRFRFGN HFKRRHSDNF LFRQPNIMRI FRFGLVGHGN LQQPRHHRNR
51 RSLNQQRQHH HGKRHIKQQV RIGNAHHQRH HRQRNRYGSS QAQPTDIRLF
101 TQAVIEFPQT AEHCQRTRDQ HQERRNRQGF RRPVQHAGGR NQQTEHDEQS
151 CLRQPSQTVH HTQNVFRRTV ALVTDNDAGK VNRQKAAAAY GIGKRKHKQP
201 ARHNHQRVQT FRTHLQFPIN VIAVSRVKMF FTSESPPSSQ PETFMCXTLG
251 CPNGFSNLPM TLLVAPFARF LLPGKLVVPV LH*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>: m031.seq (partial)

```
1 ...CGCCTGAAGC ACGGTGTCGG ACTGCATTTC TATTCGGCTA TACGCCTTTT
51 CACGCAGGCT GTAATTGAAT TTCCACAAAC CGCCGAACAC TGCCGACGGA
101 CGCGCGACCA GCATCAGGAA CGCCGCAATC GCCAAGGCTT CCGCCGCCCT
151 GTCCAACACG TTGGCAGGAG AAACCAGCAG CAAAGGCATT CCCAAACGTG
201 CGGACAAAGT GGTCGAAACC ACGCTCAGAA ACAACAGTGC GCCACCCGGC
251 AG....
```

## This corresponds to the amino acid sequence <SEQ ID 116; ORF 031>: m031.pep (partial)

1 ...RLKHGVGLHF YSAIRLFTQA VIEFPQTAEH CRRTRDQHQE RRNRQGFRRP 51 VQHVGRRNQQ QRHSQTCGQS GRNHAQKQQC ATRQ....

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>:

```
a031.seq

1 ATACGCCTTT TCACGCAGGC TGTAATTGAA TTTCCACAAA CCGCCGAACA
51 CTGCCGGCGG ACGCCGCACC AGCATCAGGA ACGCCGCAAT CGCCAAGGCT
101 TCCGCCGCCC CGTCCAACAC GTTGGCAGGA GAAACCAGCA GCAAAGGCAT
151 TCCCAAACGT GCGGACAAAG TGGTCGAAAC CACGCTCAGA AACAACAGTG
201 CGCCACCCGG CAG
```

### This corresponds to the amino acid sequence <SEQ ID 118; ORF 031.a>:

```
a031.pep (partial)

1 IRLFTQAVIE FPQTAEHCRR TRDQHQERRN RQGFRRPVQH VGRRNQQQRH
51 SQTCGQSGRN HAQKQQCATR Q
```

BNSDOCID: <WO__9957280A2 J_>

### m031/a031 100.0% identity over a 71 aa overlap

m031.pep	10	20	30	40	50	60
	RLKHGVGLHFYSA	KLFIQAVIEF	PQTAEHCRRTRD	QHQERRNRQ	GFRRPVQHVG	RRNOO
a031	<u>.</u>		[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]	*		11111
a031	1	RLFTQAVIEF	POTAEHCRRTRD	QHQERRNRQC	FRRPVOHVG	RRNOO
		10	20	30	40	
	70	80				
m031.pep	QRHSQTCGQSGRNH	AOKOOCATRO				
	111111111111111					
a031	QRHSQTCGQSGRNH	AQKQQCATRO				
	50 60	70				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 031 shows 60.0% identity over a 85 aa overlap with a predicted ORF (ORF 031.ng) from N. gonorrhoeae:

m031/g031

m031.pep				10	20	30
mosi.pep			F	RLKHGVGLHFYS	SAIRLFTQAV	'IEFPQTAEH
g031	NQQRQHHHGKRH	IKQQVRIGNA		::1:		11111111
	60	70	80	90	100	110
	40	50	60	70	80	
m031.pep	CRRTRDQHQERR	NRQGFRRPVQ	HVGRRNQQQ	RHS-QTCGQS	RNHAOKOOC	ATRO
g031	1:		1:1	:1: 1:1 ::	: :::	:  :
9031	CORTROQHOERR	NRQGFRRPVQ.	haggr <b>n</b> qqt	EHDEQSCLRQE	SQTVHHTQN	VFRRTVALV
	120	130	140	150	160	170
g031	TDNDAGKVNRQK	AAAAYGIGKR	KHKOPARHN	HORVOTERTHI	OFPINITAL	CDWWW.TER
	180	190	200	210	220	230

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 119>: g032.seq

1	ATGCGGCGAA	ACGTGCCTGC	CGTCGCCGTA	TTGCGCCGCC	CACGATTCGA
51	GGCGTTTTTG	GATTTGGCGT	TGGCTCAGGC	GCGTGCCGTT	CCTGCCGGTA
101	AACAGGGCTT	TGCCGTCCGA	TGCCGTCTGA	CGCAGCGGCA	CATACTTTTT
151	CAAGGCTTCC	ACGCTTTTGC	CGGTCAGCGG	AACCTGACGC	TECTTECCCC
201	CTTTGCCGGT	AACGTGTACC	CACGCTTCGT	CCAAATATAC	ATCATCTCCA
251	TTCAAGCCGT	GTATCTCGCT	CACGCGCAAA	CCGCTGCCGT	ACATCAGCTC
301	GAACAGCGCG	TGGTCGCGCA	CCGCCAGCGG	GTCGCCGCCG	TCCACGGGCA
351	AATCCAACAT	CCGGTTCAGC	CATTCCTGCG	GCAGGGCTTT	GGGTACGCCC
401	TCGGGCTGCT	TCGGCGGTTT	GATGTCGGCG	GTCGGGTCGG	CGCGCATCAC
451	CCCGCGTTTG	ACCAGCCAGG	CGCAATACTG	CCGCCACGCC	GACACCTTCC
501	GCGCCAGCGT	CCGACCGTCC	AAACCGCGCT	GCGACAGCCG	CCGCAACGCC
551	GCCGTAAAAT	CGCGCCGCGA	CAAGTCCTGC	GGCACGCCGC	Ctacamemme
601	AGACGGCATT	TGTGCCAACA	GTGCAAACAG	TTCTTCCAAA	TOGOGOGOGO
651	ATGCCGCAAC	CGTGTGCTCC	GACTTGCCCT	CGCGCACGAT	CTTTTCC
701	TAAGCGTCAA	AATacgccgC	AAACccgTCC	AAAACCATAA	CCGTCCCACA
751	CAAATATCAA	AAAACCAGTG	A		

## This corresponds to the amino acid sequence <SEQ ID 110; ORF 032.ng>: g032.pep

1 MRRNVPAVAV LRRPRFEAFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF 51 QGFHAFAGQR NLTLLAPFAG NVYPRFVQIY IICIQAVYLA HAQTAAVHQL

```
101 EQRVVAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGAHQ
              PAFDQPGAIL PPRRQLARQR PTVQTALRQP PQRRRKIAPR QVLRHAACIF
          201
              RRHLCQQCKQ FFQIAPVCRN RVLRLALAHD VFQISVKIRR KPVQNHNRPT
              QISKNQ*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 111>:
     m032.seq
              (partial)
              ATGCGGCGAA ACGTGCmTGC mGTCGCCGTT kTGCGCCGCC CATTGCGCCA
            1
           51
              AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
          101
              AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
              CAGGGCTTCC ACGCTTTTGC CGACCAGCGG CACCTGCCGC TgTT.GCGCC
          151
              CTTTGCCGAT AACGTGTACC CACGCYTCGT CCAAATAGAC ATCATCTGCA
          251 TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
          301 GAACAGGGCG TGGTCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
              AATCCAGCAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
          351
              401
          451 GCCGCGCTTT ACCAGCCAAA CGCAATACTG CCGCCAAGAC GAAAGCTTGC
          501 GAGCCAGCGT CCGTTCCCCC AAACCGCG...
This corresponds to the amino acid sequence <SEQ ID 112; ORF 032>:
     m032.pep
              (partial)
              MRRNVXAVAV XRRPLRQTFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF
              QGFHAFADQR HLPLXAPFAD NVYPRXVQID IICIQAVYLA HAQTAAVHQF
           51
              EQGVVAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGVHQ
          101
          151 AALYQPNAIL PPRRKLASQR PFPQTA...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:
     a032.seg
              ATGCGGCGAA ACGTGCCTGC CGTCGCCGTT TTGCGCCGCC CATTGCGCCA
              AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
              AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
         151 CAGGGCTTCC ACGCTTTTGC CGGTCAGCGG AACCTGCCGC TGCTTGCGTC
         201 CTTTGCCGGT AACGTGTACC CACGCCTCGT CCAAATATAC ATCATCTGCA
         251
              TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
              GAACAGCGCG TGATCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
         351 AATCCAGCAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
         ACCGCGTTTG ACCAGCCAGG CGCAATACTG CCGCCAAGAC GACAGCTTGC
              GCGCCAGCGT CCGCGCATTC AAACCGCGCT GCGACAGCCG CCGCAACGCC
         501
              GCCGTAAAAT CGCGCTGCGA CAAGCCCTGC GGCACGCCGC CTGCATCTTC
              AGACGGCATT TGTGCCAACA GCGCAAACAG TTCTTCCAAA TCGCGCCGGT
         601
         651 ATGCCGCCAC CGTGTGCTCC GACTTGCCCT CGCGCACGAT GTTTTCCAAA
              TAAGCGTCAA AATGCGCCGC AAACCCGTCC AAAACCATAA CCGCCCCACA
         751 CAAATATCAA AAAAACAGTG A
This corresponds to the amino acid sequence <SEQ ID 114; ORF 032.a>:
     a032.pep
           1
              MRRNVPAVAV LRRPLRQTFL DLALAQARAV PAGKQGFAVR CRLTQROIVF
              QGFHAFAGQR NLPLLASFAG NVYPRLVQIY IICIQAVYLA HAQTAAVHQF
          51
              EQRVIAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGMQQ
         151
              TAFDQPGAIL PPRRQLARQR PRIQTALRQP PQRRRKIALR QALRHAACIF
         201
              RRHLCQQRKQ FFQIAPVCRH RVLRLALAHD VFQISVKMRR KPVQNHNRPT
              QISKKQ*
            88.1% identity over a 176 aa overlap
m032/a032
                 MRRNVXAVAVXRRPLRQTFLDLALAQARAVPAGKQGFAVRCRLTQRQIVFQGFHAFADQR
    m032.pep
                 a032
                 {	t MRRNVPAVAVLRRPLRQTFLDLALAQARAVPAGKQGFAVRCRLTQRQIVFQGFHAFAGQR}
                        10
                                  20
                                           30
                                                     40
```

m032.pep	70 HLPLXAPFADNVYI	80 PRXVQIDIICI	90 QAVYLAHAQI	100 TAAVHQFEQGY	110 JVAHRORVAA	120 VHGOTOH
a032	:              NLPLLASFAGNVYE 70	1 111 111		[	1 • 1 • • • • • •	111111
m032.pep	130 PVQPFLRQGFGYAL	140 GLLRRFDVGG	150 RVGVHQAALY	160 OPNAILPPRE	170 RKLASQRPFP(	QTA
a032		GLLRRFDVGG 140	:: : : RVGMQQTAFD 150	:         QPGAILPPRF 160	:       QLARQRPRI( 170	III TALRQP 180
a032	PQRRRKIALRQALR 190	HAACIFRRHL 200	CQQRKQFFQI 210	APVCRHRVLR 220	LALAHDVFQ1 230	

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 032 shows 86.4% identity over a 176 aa overlap with a predicted ORF (ORF 032.ng) from *N. gonorrhoeae:* 

m032/g032

m032.pep	10 MRRNVXAVAVXRRF	20 LRQTFLDLA	30 LAQARAVPAGK	40 QGFAVRCRL	50 TQRQIVFOGF	60 HAFADOR
g032	MRRNVPAVAVLRRP		1   1   1   1   1   1   1   1	1111111	TITLE CO.	
m032.pep	70 HLPLXAPFADNVYP :	1 1 1 1 1 1 1			11111111111	
m032.pep g032	130 PVQPFLRQGFGYAL(              PVQPFLRQGFGYAL( 130	1		11:11111		1.1
g032	PQRRRKIAPRQVLRI 190	HAACIFRRHI 200	CQQCKQFFQIA 210	APVCRNRVLF 220	RLALAHDVFQI 230	SVKIRR 2 <b>4</b> 0

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 115>:

1	ATGGCGGCGG	CGGACAAACT	CTTGGGCGGC	GACCGCCGCA	GCGTCGCCAT
51	CATCGGAGAC	GGCGCGATGA	CGGCGGGGCA	GGCGTTTGAA	CCCTTCAATC
101	GCGCGGGCGA	TATGGATGTG	GATTTGCTGG	TCGTCCTCAA	CGACAACGAA
151	ATGTCGATTT	CCCCCAACGT	CGGCGCGTTG	CCCAAATATC	TTGCCAGCAA
201	CGTCGTGCGC	GATATGCACG	GACTGTTGAG	TACCGTCAAA	GCGCAAAcgq
251	GCAAGGTATT	AGACAAAATA	CCCGGCGCGA	TGGagtTTCG	CCAAAAAGTC
301	GAACAcaaaA	TCAAAACCCT	TGCCGAAGAA	CCCCAACAC	CCAAACAGTC
351	GCTGTCGCTG	TTTGAAAATT	TCGGCTTCCC	GCCGAACACG	CCAAACAGTC
401	GACACAACGT	CGAGAATCTG	GTCC2 CCT2 T	CTACACCGGC	CCCGTGGACG
451	AAAGGCCCTC	ACTTCCTCCA	GIGGACGTAT	TGAAAGACTT	GCGCAGCCGC
501	AAAGGCCCTC	AGTIGCIGCA	CGTCATCACC	AAAAAGGGCA	ACGGCTACAA
551	ACTCGCCGAA	AACGACCCCG	CCAAATACCA	CGCCGTCGCc	aACCTGCcta
601	AAGAAGGCGG	GGCGCAAATg	CCGTCTGAAA	AAGAACCCAA	GCCCGCCGCC
	aaaccgACCT	ATACCCAAGT	ATTCGGCAAA	TECCTETECE	N CCCCCCCCC
651	GGCAGATTCC	CGACTGGTTG	CGATTACCCC	CGCCATGCGC	GAGGGCAGCG

γ.

```
701 GACTGGTGGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
      ATCGCCGAGC AGCACGCCGT tacCTTTGCC GGCGGTTTGG CGTGCGAAGG
      CATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
 851
     ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
      GTCGACCGTG CGGGCATCGT CGGCGCGGAC GGTCCGACCC ATGCCGGCTT
 901
     GTACGATTTG AGCTTCTTGC GCTGTGTGCC GAACATGATT GTTGCCGCGC
 951
     CGAGCGATGA AAACGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCG
1001
1051 GATGCGCCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCGCC
1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
1151 GCGAAGGTGA GAAAACCGCC TTCatTGCCT TCGGCAGTAT GGTCGCCACC
1201 GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTt
1251 cgtcaaacCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCAcq
1301 accGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCGGC
     GCGGTCTTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTTTTGCT
     TTTGGGCGTT GCCGATACCG TAACCGAACA CGGCGATCCG AAAAAACTTT
      TGGACGATTT GGGTTTGAGT GCCGAAGCGG TGGAACGCCG GGTGCGCGAG
     TGGCTGCCGG ACCGTGATGC GGCAAATTAA
```

## This corresponds to the amino acid sequence <SEQ ID 116; ORF 033.ng>: g033.pep

1 MAAADKLLGG DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKEGGAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAT
401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGG
451 AVLEVLAKHG ICKPVLLLGV ADTVTEHGDP KKLLDDLGLS AEAVERRVRE

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>: m033.seq

ATGGCGGCGG CAGACAAACT CTTGGGCAGC GACCGCCGCA GCGTCGCCAT 1 CATCGGCGAC GGCGCGATGA CGGCGGGGCA GGCGTTTGAA GCCTTGAATT 51 GCGCaG.CGA TATGGATGTr GATTTGCTrG TCGTCCTCAA CGACAACGAA 101 151 ATGTCGATTT CCCCCAACGT CGGCGCGCTG CCGAAATACC TTGCCAGCAA CGTCGTGCGC GATATGCACG GCCTGTTGAG TACCGTCAAA GCGCAAACGG GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC GAACACAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC 351 GCTGTCTTTG TTTGAAAACT TCGGCTTCCG CTACACCGGC CCCGTGGACG GACACAACGT CGAAAATCTG GTGGACGTAT TGAAAGACTT GCGCAGCCGC AAAGGCCCTC AGTTGCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA 451 ACTCGCCGAA AACGACCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG 701 GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTACCCGT TTTGTTTGCC 851 GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTCT 951 GTACGATTTG AGCTTTTTGC GCTGCGTGCC GAACATGATT GTCGCCGCGC 1001 CGAGCGATGA AAACGAATGC CGCCTGTTGC TTTCGACCTG CTATCAGGCA 1051 GACGCGCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCGCC 1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC 1151 GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCC GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT 1251 CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG





1401 TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
1451 TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG

1501 TGGCTGTCGG ATCGGGATGC GGCAAATTAA

## This corresponds to the amino acid sequence <SEQ ID 118; ORF 033>: m033.pep

```
1 MAAADKLLGS DRRSVAIIGD GAMTAGQAFE ALNCAXDMDV DLLVVLNDNE
51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAP
401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGG
451 AVLEVLAKHG ICKPVLLLGV ADTVTGHGDP KKLLDDLGLS AEAVERRVRA
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:

```
a033.seq
          ATGGCGGCGG CGGACAAACA GTTGGGCAGC GACCGCCGCA GCGTCGCCAT
      51
          CATCGGCGAC GGCGCGATGA CGGCGGGTCA GGCGTTTGAA GCCTTGAACT
     101
          GCGCGGCGA TATGGATGTG GATTTGCTGG TCGTCCTCAA CGACAACGAA
         ATGTCGATTT CCCCCAACGT CGGTGCGTTG CCCAAATACC TTGCCAGCAA
          CGTCGTGCGC GATATGCACG GACTGTTGAG TACCGTCAAA GCGCAAACGG
         GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC
          GAACATAAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC
     351 ACTGTCTTTG TTTGAAAACT TCGGCTTCCG CTATACCGGC CCCGTGGACG
     401
         GACACAACGT CGAAAATCTG GTCGATGTAT TGGAAGACCT GCGCGGACGC
         AAAGGCCCGC AGCTTCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA
     451
     501 ACTCGCCGAA AACGATCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA
     551 AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC
     601 AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC
         GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG
          GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
     751 ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG
     801 GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
     851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
     901
         GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTTT
          GTACGATTTA AGCTTTTTGC GCTGCATTCC GAATATGATT GTCGCCGCGC
         CGAGCGATGA AAATGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCA
    1001
    1051 GACGCGCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGTGCC
         GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
    1151 GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCT
    1201
         GCATTGGCGG TCGCCGGAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT
          CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG
    1301 ACCGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCAGC
         GCGGTGCTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTCTTGCT
    1351
          TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
          TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG
    1451
         TGGCTGTCGG ATCGGGATGC GGCAAATTAA
```

#### This corresponds to the amino acid sequence <SEQ ID 120; ORF 033.a>:

```
a033.pep

1 MAAADKQLGS DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLEDLRGR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
```

301	VDRAGIVGAD	GPTHAGLYDL	SFLRCIPNMI	VAAPSDENEC	RLLLSTCYOA
351	DAPAAVRYPR	GTGTGVPVSD	GMETVEIGKG	IIRREGEKTA	FIAFGSMVAP
401	<u>ALAVA</u> GKLNA	TVADMRFVKP	IDEELIVRLA	RSHDRIVTLE	ENAEQGGAGS
451	AVLEVLAKHG	ICKPVLLLGV	ADTVTGHGDP	KKLLDDLGLS	AEAVERRVRA
501	*WAAGAGE.TW				

### m033/a033 98.4% identity over a 509 aa overlap

m033.pep	10 MAAADKLLGSDRRSVA	20 IIGDGAMTAG	30 SOAFEALNCAX	40 KDMDVDLLVVI	50 LNDNEMSTSP	00 VVGAT.
• •	11111 11111	111111111		11111111		
a033	MAAADKQLGSDRRSVA: 10	IIGDGAMTAG 20	SQAFEALNCAG 30	GDMDVDLLVVI 40	LNDNEMSISP1 50	NVGAL 60
	10	20	30	40	30	60
-022	70	80	90	100	110	120
m033.pep	PKYLASNVVRDMHGLL	51VKAQTGKV	LUKIPGAMEP	AQKVEHKIK.	"LAEEAEHAK(	QSLSL
a033	PKYLASNVVRDMHGLL:	STVKAQTGKV	'LDKIPGAME P	AQKVEHKIK:	LAEEAEHAK	SLSL
	70	80	90	100	110	120
	130	140	150	160	170	180
m033.pep	FENFGFRYTGPVDGHN	VENTADATKD	LRSRKGPOLI	HVITKKGNG	KLAENDPVKY	AVAHY
a033		/ENLVDVLED	:	.         .HVITKKGNG	.            /KI.AENDPVK\	 
	130	140	150	160	170	180
	190	200	210	220	230	240
m033.pep	NLPKESAAQMPSEKEPH	KPAAKPTYTQ	VFGKWLCDRA	AADSRLVAIT	PAMREGSGLV	/EFEO
a033	NI DESCRIONDOSERED		111111111	1111111111	1111111111	
a033	NLPKESAAQMPSEKEPP 190	CPAAKPTITQ 200	210	AADSRLVAIT 220	PAMREGSGLV 230	/EFEQ 240
m033.pep	250 RFPDRYFDVGIAEQHAV	260 ZTFAGGLACE	270 GMKPVVATYS	280 TELORAVDOI	290	300
			11111111111	1111111111	1111111111	1111
a033	RFPDRYFDVGIAEQHA\ 250	/TFAGGLACE 260	GMKPVVAIYS 270			
	230	200	270	280	290	300
0.0.0	310	320	330	340	350	360
m033.pep	VDRAGIVGADGPTHAGI	YDLSFLRCV	PNMIVAAPSD	ENECRLLLST	'CYQADAPAAV	RYPR
a033	VDRAGIVGADGPTHAGI	LYDLSFLRCI	PNMIVAAPSD	ENECRLLLST	'CYQADAPAAV	'RYPR
	310	320	330	340	350	360
	370	380	390	400	410	420
m033.pep	GTGTGAPVSDGMETVEI	GKGIIRREG	EKTAFIAFGS	MVAPALAVAE	KLNATVADMR	RFVKP
a033	:	GKGIIRREG	!!!!!!!!!! EKTAFIAFGS		 #MCAVTANAT	 FVKP
	370	380	390	400	410	420
	430	440	450	460	470	480
m033.pep	IDEELIVRLARSHDRIV	TLEENAEQG	GAGGAVLEVL	AKHGICKPVI	LLGVADTVTG	HGDP
a033		TI FENDEOC		THILLIII	111111111	1111
8033	430	440	450	460	LLGVADTVTG	480
	400	500	<b>510</b>		-	
m033.pep	490 KKLLDDLGLSAEAVERF	500 RVRAWLSDRD	510 AANX			
		<b>********</b>	1111			
a033	KKLLDDLGLSAEAVERF 490	RVRAWLSDRD. 500	AANX 510			
	- 20	500	310			

د.

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 033 shows 98.4% identity over a 509 aa overlap with a predicted ORF (ORF 033.ng) from N. gonorrhoeae:

m033/g033

m033.pep	MAAADKI I CODDOGNATI COCAMTA COA FIRMANA	
g033	MAAADKLLGSDRRSVAIIGDGAMTAGQAFEALNCAXDMDVDLLVVLNDNEMSISPNVGAL 	60
		60
m033.pep	PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL	120
g033	PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL	120
m033.pep	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
g033	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
m033.pep	NLPKESAAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ	240
g033	::	240
m033.pep	RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA	300
g033		300
m033.pep	VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR	360
g033		360
m033.pep	GTGTGA DVSDGMETVET GVCT I DDEGEVEN DIA DGGGG	
g033	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVAPALAVAEKLNATVADMRFVKP	420
9033	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVATALAVAEKLNATVADMRFVKP	420
m033.pep	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTGHGDP	480
g033	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTEHGDP	480
m033.pep	KKLLDDLGLSAEAVERRVRAWLSDRDAANX 510	
g033	KKLLDDLGLSAEAVERRVREWLPDRDAANX 510	

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 121>: g034.seq

1	ATGAGCCGTT	TATGGTTTTT	TGCCGTAAAA	AACATTATAA	TCCGCCTTAT
51	TTACCTATTG	CCCAAGGAGA	CACAAATGGC	ACTCGTATCC	ATGCGCCAAC
101	TGCTTGACCA	CGCCGCCGAA	AACAGCTACG	GCCTCCCCC	GTTCAACGTC
151	AACAACCTCG	AACAAATGCG	CCCCATTATC	CAACCCCCCC	ACCAAGTCAA
201	CGCGCCCGTC	ATCCTACACC	CGCCATTAIG	GAAGCCGCCG	ACCAAGTCAA
251	CCCCCTTTTTT	ATCGTACAGG	CGAGCGCAGG	TGCGCGCAAA	TACGCGGGCG
301	CGCCGIIIII	GCGCCACCTG	ATTCTGGCGG	CAGTCGAAGA	ATTTCCGCAC
	ATCCCCGTCG	TGATGCACCA	AGACCACGGC	GCATCGCCCG	ACGTgtgCCA
351	ACGCTCCATC	CAACTGGGCT	TCTCCTCCGT	GATGATGGAC	GGCTCTTTCC
401	TCGAAGACGG	CAAAACCCCT	TCTTCTTACG	AATACAACGT	CAACGCCACC
451	CGTACCGTCG	TCAACTTCTC	CCACGCCTGC	GGCGTGTCCG	TCCAACCCCA
501	AATCGGCGTA	TTGGGCAACC	TCGAAACCGG	CGANCCACCC	CARAGGCGA
551	GAGTGGGCGC	GGCAGGCAAA	CTCTCACACC	ACCA A AMOOM	GAAGAAGACG
601	GAAGATGCCG	TGCGTTTCGT	UNA A CARRA CO	ACCAGATGCT	CACCAGCGTT
651	GAAGATGCCG	ACCACCACA	TAAAGATACC	GGCGTTGACG	CATTGGCGAT
001	TGCCGTCGGC	ACCAGCCACG	GCGCATACAA	ATTCACCCGT	CCGCCCACAG

EAG .

```
701 GCGACGTATT GCGTATCGAC CGCATCAAGG AAATCCACCA AGCCCTGCCC
751 AATACACACA TCGTGATGCA CGGCCCAGC TCCGTTCCGC AAGAAtgGCT
801 GAAAGTCATC AACGAATACG GCGGCAATAT CGGCGAAACC TACGGCGTGC
851 CGGTTGAAGA AATCGTCGAA GGCATCAAAC ACGGCGTGCG CAAAGTCAAC
901 ATCGATACCG ACCTGCGCCT CGCTTCCACC GGCGCGGTAC GCCGCTACCT
951 TGCCGAAAAC CCGTCCGACT TTGATCCGCG CAAATACTTG GGCAAAACCA
1001 TTGAAGCGAT GAAGCAAATC TGCCTCGACC GTTATCTTGC GTTCGGTTGC
1051 GAAGGTCAGG CAGGCAAAAT CAAACCTGTT TCGTTGGAAA AAATGGCAAG
1101 CCGTTATGCC AAGGGCGAAT TGAACCAAAT CGTCAAATAA
```

## This corresponds to the amino acid sequence <SEQ ID 122; ORF 034.ng>: g034.pep

```
1 MSRLWFFAVK NIIIRLIYLL PKETQMALVS MRQLLDHAAE NSYGLPAFNV
51 NNLEQMRAIM EAADQVNAPV IVQASAGARK YAGAPFLRHL ILAAVEEFPH
101 IPVVMHQDHG ASPDVCQRSI QLGFSSVMMD GSLLEDGKTP SSYEYNVNAT
151 RTVVNFSHAC GVSVEGEIGV LGNLETGEAG EEDGVGAAGK LSHDQMLTSV
201 EDAVRFVKDT GVDALAIAVG TSHGAYKFTR PPTGDVLRID RIKEIHQALP
251 NTHIVMHGSS SVPQEWLKVI NEYGGNIGET YGVPVEEIVE GIKHGVRKVN
301 IDTDLRLAST GAVRRYLAEN PSDFDPRKYL GKTIEAMKQI CLDRYLAFGC
351 EGQAGKIKPV SLEKMASRYA KGELNOIVK*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 123>: m034.seq (partial)

```
1 ATGAGCTGTT TATGGTTTTT TGCTGTAAAA AACATTATAA TCCGCCTTAT
51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA WACAGCTACG GCYTGCCGGC GTTCAACGTC
151 AACAACCTCG WACAGATGCG CGCCATCATG GAGGCTGCAG ACCAAGTCGA
201 CGCCCCCGTC ATCGTACAGG CGAGTGCCGG TGCGCGCAAA TATGCGGGTG
251 CGCCGTTTTT ACGCCACCTG ATTTTGGCGG CTGTCGAAGT ATTTCCACAC
301 ATCCCCGTCG TCATGCACCA AGACCACGGC GCATCACCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TCTCCTCTGT AATGATGGAC GGCTCGCTGA
401 TGGAAGACGG CAAAACCCCT TCTTCTTACG AATACAACGT CAACGCCACA
451 CGTACCGTGG TTAACTTCTC CCACGCTTGC GGCGTATCCG TTGAAGGCGA
501 AATCGGCGTA TTGGGCAACC TCGAAACCGG CGATGCAGG GAAGAAGACG
501 AATCGCCGTC AGTGGGCAAA CTTTCCCACG ACCAAATGCT GACCACGCGTC
601 GAAGATGCCG TATGTTTCGT TAAAGATACC GGCGTTGACG CATTGGCTAT
651 TGCCGTCGGC ACCAGCCACG GCGCATACAA ATTCACCCGT CCGCCCACAG
701 GCGATGTATT ACGTATCGAC CGCATCAAAG AAATCCACCA AGCCCTGCC
751 AATACACACA TCGTGATGCA C...
```

### This corresponds to the amino acid sequence <SEQ ID 124; ORF 034>: m034.pep (partial)

```
pep(partial)MSCLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAEXSYGLPAFNV51NNLXQMRAIMEAADQVDAPVIVQASAGARKYAGAPFLRHLILAAVEVFPH101IPVVMHQDHGASPDVCQRSIQLGFSSVMMDGSLMEDGKTPSSYEYNVNAT151RTVVNFSHACGVSVEGEIGVLGNLETGDAGEEDGVGAVGKLSHDQMLTSV201EDAVCFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRIDRIKEIHQALP251NTHIVMH...
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 125>:

```
a034.seq

1 ATGAGCCGTT TATGGTTTTT TGCCGCAAAA AACATTATAA TCCGCCTTAT
51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA AACAGCTACG GCCTGCCCGC GTTCAACGTC
151 AACAACCTCG AACAAATGCG CGCCATTATG GAAGCCGCCG ACCAAGTCAA
201 CGCGCCCGTC ATCGTACAGG CGAGCGCAGG TGCGCGCAAA TACGCGGGCG
251 CGCCGTTTTT GCGCCACCTG ATTTTGGCGG CTGTCGAAGA ATTTCCGCAC
301 ATCCCCGTCG TGATGCACCA AGACCACGGC GCATCGCCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TTTCCTCCGT GATGATGGAC GGCTCGCTGA
401 TGGAAGACGG CAAAACCCCT TCTTCTTATG AATACAACGT CAACGCCACC
```

BNSDOCID: <WO__9957280A2_I_>

451	000000000				
	CGTACCGTGG	TTAATTTCTC	CCACGCCTGC	GGCGTATCCG	TTGAAGGCGA
501	AATCGGCGTA	TTGGGCAACC	TCGAAACTGG	CGAAGCCGGC	GAAGAAGACG
551	GTGTAGGCGC	AGTGGGCAAA	CTTTCCCACG	ACCAAATCCT	CACCAGCGTC
601	GAAGATGCCG	TGCGTTTCGT	TAAACATACC	CCCCMMCACC	CATTGGCGAT
651	MCCCCM accc	1000111001	IMMONIACC	GGCGTTGACG	CATTGGCGAT
	TGCCGTCGGC	ACCAGCCACG	GCGCGTACAA	ATTCACCCGT	CCGCCCACAG
701	GCGACGTGTT	GCGTATCGAC	CGCATCAAAG	AAATCCACCA	AGCCCTCCCC
751	AATACACACA	TCGTGATGCA	CGGCTCCAGC	TCCGTTCCGC	AACAATCCCT
801	GAAAGTCATC	A A C C A A MA C C	CCCCCAAMA	2000110000	AMGMAT GGCT
	G. HILLOT CATC	AACGAATACG	GCGGCAATAT	CGGCGAAACC	TACGGCGTGC
851	CGGTTGAAGA	AATCGTCGAA	GGCATCAAAC	ACGGCGTGCG	TAAAGTCAAC
901	ATCGATACCG	ACTTGCGCCT	TGCTTCCACC	GGCGCGCTAC	CCCCCDACC
951	TECCCANNAC	CCCMCCCACA	TGGT TGGT CG	GGCGCGGTAC	GCCGCTACCT
	IGCCGAMAC	CCGTCCGACT	TCGATCCGCG	CAAATATTTG	AGCAAAACCA
1001	TTGAAGCGAT	GAAGCAAATC	TGCCTCGACC	GCTACCTCGC	GTTCGGTTCC
1051	GAAGGTCAGG	CACCCAAAAT	CAAACCCCC	TO COMPAGE A SE	0110001100
1101	0.2.0010.100	CAGGCAAAA1	CAAACCGGTT	TCCTTGGAAA	AAATGGCAAA
1101	CCGTTATGCC	AAGGGCGAAT	TGAACCAAAT	CGTCAAATAA	

### This corresponds to the amino acid sequence <SEQ ID 126; ORF 034.a>:

### m034/a034 96.9% identity over a 257 aa overlap

	10	20	30	40	50	60
m034.pep	MSCLWFFAVKNII:	IRLIYLLPKE	TQMALVSMRO	LLDHAAEXSY	GI.PA FNIZNNI	OU MT & GMOV
			1 1 1 1 1 1 1 1 1	111111 11	111111111	
a034	MSRLWFFAAKNII	RLIYLLPKE'	TOMALVSMRO	I.I.DHAAENSV	יון ון ון ון ון ון די מוד מוד ב	
	10	20	30	40	50	
			30	40	50	60
	70	80	90	100	110	100
m034.pep	EAADQVDAPVIVQA	SAGARKYAG	APFIRHITIAZ		TIU	120
a034						11111
	EAADQVNAPVIVQA 70	80	45E TKUTITWY	AVEEFPHIPV	/MHQDHGASP	DVCQRSI
	70	80	90	100	110	120
	100					
034	130	140	150	160	170	180
m034.pep	QLGFSSVMMDGSLM	EDGKTPSSYE	YNVNATRTVV	NFSHACGVS	/EGEIGVI.GNI	ETCDAC
		1 1 1 1 1 1 1 1 1			TITE FILLS	
a034	QLGFSSVMMDGSLM	EDGKTPSSYE	YNVNATRTVV	NESHACGVS	RETEVIEN	
	130	140	150	160	170	
				100	170	180
	190	200	210	220	220	
m034.pep	EEDGVGAVGKLSHD	OMITSVEDAV		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	230	240
		1111111111	CIVEDIGVDA	LATAVGISHG	AYKETRPPTO	SDVLRID
a034		OMITE CLIEBAN		1111111111	1111111111	11111
	EEDGVGAVGKLSHD 190	OU O COM	REVEDIGVOA			DVLRID
	190	200	210	220	230	240
	250					
m034.pep	250					
mos4.pep	RIKEIHQALPNTHI					
a034	RIKEIHQALPNTHI	VMHGSSSVPQ	EWLKVINEYG	GNIGETYGVP	VEETVEGTKH	CUDETIN
	250	260	270	280	290	
				-00	200	300

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 034 shows 96.5% identity over a 257 aa overlap with a predicted ORF (ORF 034.ng) from N. gonorrhoeae:

 $\underline{\omega} \approx (\omega_0 + 2\omega_0) \cdot \omega_0 + 2\omega_0 \cdot \omega_0 + 2\omega_0 \cdot \omega_0 \cdot \omega_0 + 2\omega_0 \cdot \omega_0 \cdot \omega_0 \cdot \omega_0 + 2\omega_0 \cdot \omega_0 

m034/g034	i.	
m034.pep	MSCLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAEXSYGLPAFNVNNLXQMRAIM	60
g034		60
m034 mon	ENADOUDA DUTUGA CACABUNAGA DEL DUL TI A AMENERUI DIRRIGIONICA CEDINGODOS	
m034.pep	EAADQVDAPVIVQASAGARKYAGAPFLRHLILAAVEVFPHIPVVMHQDHGASPDVCQRSI	120
g034	EAADQVNAPVIVQASAGARKYAGAPFLRHLILAAVEEFPHIPVVMHQDHGASPDVCQRSI	120
m034.pep	QLGFSSVMMDGSLMEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGDAG 	180
g034	QLGFSSVMMDGSLLEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGEAG	180
m034.pep	EEDGVGAVGKLSHDQMLTSVEDAVCFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
g034	EEDGVGAAGKLSHDQMLTSVEDAVRFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
m034.pep	RIKEIHQALPNTHIVMH	257
g034	RIKEIHQALPNTHIVMHGSSSVPQEWLKVINEYGGNIGETYGVPVEEIVEGIKHGVRKVN	300
The following p	partial DNA sequence was identified in N. gonorrhoeae <seq 127="" id="">:</seq>	
1	ATGCTGAAGC CGTGTTTGGT ATACAGTGCC TGTGCGGCGG cgttgcCTGC	
51	GCGGACTTCG AGCAGCAGGC GTTGCGTGCC TTCGGGCAGA TGTGCGTACC	
101	AATATTCGAG CAGGGCGGAC GCAACGCCCC GTCGGCGGCA TTCGGGCGCG	
151	GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT	
201	AAAGGCGGCA ATCCTGCCGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG	
251	GCGAAACAAG CGCGGACTCA AATTGGCGTT GCGTCCACGC GGACGGGTTG	
301	CAGACGGTAT CGAGCGCGGC CAGTGCGGCG CAGTCGGACG GTGAGGCTGG	
351	GCGGATGTTC ATGTTCGTGC CTTCCGTTCC GCCTGTTCTT TGGCAGTCAG	
401	GGCGATTTTG TTGCGGACGT AGAGCAGTTC GGCGTGTGCC GCGCCAGTTG	
451	CGGGATAGCC GCCGCCGAGG GCGAGCGCGA GAAAATCGGC GGCGGTCGGC	·
501	ATATCGGGTT TGCCTGAGAA GGGCGGACGG TTTTCCAGTG CGAACGCACT	
551	GCCGATGCCG TCTGAAAAGA CGTACCCCTC GGGGAGGGCA ATGTCTGCCG	
601	CCCTACCGAC TTGATAATCG CTCAAACGGC GGCGGTTCAG CGTGTCGAAC	
651	CACGCATAAA ACACTTCGCC CATACGCGCG TCCGCAGCGG CGAGTATGCA	
701	GCTTTGCGGC GGCGGCAGCG AGGCGGCGGC ATCGAGCGTG GGGATGCCGA	
751	TTAAAGGCGT GTCGAACGGC GTTGCCAAAC CTTGCGCCAC GCCGATGCCG	
801	ATACGCAGTC CGGTAA	
	s to the amino acid sequence <seq 036.ng="" 128;="" id="" orf="">:</seq>	
g036. <b>pe</b> p		
1		
51	VAIRCSSDSS GRFCQTIKAA ILPSFSARKT CSDGETSADS NWRCVHADGL	
	QTVSSAASAA QSDGEAGRMF MFVPSVPPVL WQSGRFCCGR RAVRRVPRQL	
151		
	PYRLDNRSNG GGSACRTTHK TLRPYARPQR RVCSFAAAAA RRRHRAWGCR	
251	LKACRTALPN LAPRRCRYAV R*	
	artial DNA sequence was identified in N. meningitidis <seq 129="" id="">:</seq>	
m036.seq	AMCCHCA ACC. CCMCCCCCCM, CMACA CMCCC. TOTALLA CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL	
1	ATGCTGAAGC CGTGCGCCGT GTACAGTGCC TGTGCGGCGG TGTTGCCTGC	
51		
101	AATATTCGAG CAGGGCGGAC GCAATTCCTT GGCGGCGGCA TTCGGGCGCG	
151	GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT	
	AAAGGCGGCA ATCCCg.CGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG	
251		
301	CAGACGGCAT CGAGTGCGGC CAGCTCCTCA CAATCGGCAC AAACGGCACG	

```
351 GCGGATGTTC ACGGGCGCG TCTCCGTTCG GCCTGTTCTT TGGCAGTCAG
401 GGCGATTTTG TTGCGGACGT AGAGCAAACC GGCGTGTGCG GCATGGACGG
451 CAGGATAACC GCCCTTGGCT GCCAATGCGA GAAAGTCGGC GGCAGTCGGC
501 ATATCCGGTC TGCCTGAGAA CGGCGGAGCT TCTTCCAGCG CGAACGCGCT
551 GCCTATGCCG TCTGAAAAGG CGCATCCCTC CGGCAGCCGG ATGTCTGCCG
601 CCCGCCCGAC CTGATAATCG CTCAAACGGT GGCAGTTCAG CGTATCGAAC
651 CATGCATAAA ACACTTCGCC CATACGAGCG TCCGTAGCGG CAAGGATGCA
701 GCTTTGCGGC GGCGGCAGCG AGGCGGCGC ATCGAGCGAG GGTACGCCGA
751 TTAAGGGGGT ATCAAACGGC GTTGCCAAAC CCTGAGCTAC ACCGATGCCG
801 ATACGCAGTC CGGTAA
```

## This corresponds to the amino acid sequence <SEQ ID 130; ORF 036>: m036.pep

```
1 MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
51 VAIRCSSDSS GRFCQTIKAA IPXSFSARKT CSDGETSADS NWRCVHADGL
101 QTASSAASSS QSAQTARRMF TGALSVRPVL WQSGRFCCGR RANRRVRHGR
151 QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
201 PARPDNRSNG GSSAYRTMHK TLRPYERP*R QGCSFAAAAA RRRHRARVRR
251 LRGYQTALPN PELHRCRYAV R*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 131>:

J. J. Q					
1	ATGCTGAAGC	CGTGCGCCGT	GTACAGTGCC	TGTGCGGCGG	ТСТТСССТСС
51	ACGGACTTCG	AGCAGCAGGC	GTTGCGTGTC		TGTGTGAACC
101	AATATTCGAG	CAGGGCGGAC	GCAATTCCTT		TTCGGGCGCG
151	GTGGCAATCA	GGTGCAGTTC	GGATTCGTCG		GCCAAACGAT
201	AAAGGCGGCA	ATCCCGCCGT	CTTTTTCCGC		TGTTCGGACG
251		TGCGGACTCA		GCGTCCACGC	GGACGGGTTG
301		CGAGCGCGGC		CAATCGGCAT	
351		ACAGGCGCGC			TGGCAGTCAA
401	GGCGATTTTG	TTGCGGACGT	AGAGCAGCTC	GGCGTGTGCC	GCAGCGACGG
451	CGGGAAAACC	GCCTTCAGCC	GCCAGATTGA	GGAAGTCGGC	GGCGGTCGGC
501	ATATCGGGTT	TGCCTGAGAA	GGGCGGACGG	TTTTCCAGCG	CGAACGCATT
551	GCCGATGCCG	TCTGAAAAGG	CGCATCCTTC	CGGCAGCCGG	ATGTCTGCCG
601	CCCGACCGAC	CTGATAATCG	CTCAAACGGC	GGCGGTTCAG	CGTGTCGAAC
651	CATGCATAAA	ACACTTCGCC	CATACGTGCG	TCCGCAGCGG	CAAGGATGCA
701	GCTTTGCGGC	GGCGGCAGCG	AGGCGGCGGC	ATCGAGCGAG	GGTACGCCGA
751	TTAAAGGAGT	ATCAAACGGC	GTTGCCAAAC	CTTGCGCCAC	GCCGATGCCG
801	ATACGCAGTC	CCGTAA			

### This corresponds to the amino acid sequence <SEQ ID 132; ORF 036.a>:

a036.pep					
1	MLKPCAVYSA	CAAVLPARTS	SSRRCVSSGR	CVNOYSSRAD	ATPWRRHSGA
51	VAIRCSSDSS	GRFCQTIKAA	IPPSFSARKT	CSDGETSADS	NWRCVHADGT.
101	QTASSAASAA	QSA*TARRMF	TGAPSVPPVL	WOSRRFCCGR	RAARRUPORR
151	RENRLQPPD*	GSRRRSAYRV	CLRRADGFPA	RTHCRCRLKR	RTIPAAGCIP
201	PDRPDNRSNG	GGSACRTMHK	TLRPYVRPQR	QGCSFAAAAA	RRRHRARVRR
251	LKEYQTALPN	LAPRRCRYAV	P*		

### m036/a036 85.6% identity over a 270 aa overlap

026	10	20	30	40	50	60
m036.pep	MLKPCAVYSACAAV	LPARTSSSRF	RCVSSGRCVNC	YSSRADAIPW	RRHSGAVATE	SCGGDGG
	111111111111111	1111111111				
a036	MIKPCAUVSACAAU	TDADTCCCD			111111111	
	MLKPCAVYSACAAV	TIENTISSSKE	CASSCRCANO	YSSRADAIPW	IRRHSGAVAIF	RCSSDSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m036.pep	GRFCQTIKAAIPXS	FSARKTOSDO	FTSADSNINDS	TUD DOT OFF	110	120
		11111110000	PLIONDSIVARC	AUMOGLÖJAS	SAASSSQSAÇ	TARRMF
-026	11111111111	111111111	111111111	111111111	1111::111	111111
a036	GRFCQTIKAAIPPS	FSARKTCSDG	ETSADSNWRC	VHADGLOTAS	SAASAAOSAX	TARRME
	70	80	90	100	110	120

	130	140	150	160	170	180
m036.pep	TGALSVRPVLWQSG	RFCCGRRANI	RVRHGRQDNR	PWLPMRESRR	QSAYPVCLR	
		11111111	11::1::11	1 111	:111 1111	1: :14
a036	TGAPSVPPVLWQSR	RFCCGRRAAF	RVPQRRRENRI	LQPPDXGSRR	RSAYRVCLR	RADGFPA
	130	140	150	160	170	180
	190	200	210	222	• • • •	
224		200	210	220	230	240
m036.pep	RTRCLCRLKRRIPP	AAGCLPPARI	PDNRSNGGSSAY	YRTMHKTLRP	YERPXRQGC:	SFAAAAA
		111111 11	11111111:11	11111111	1 11 1111	111111
a036	RTHCRCRLKRRILP	AAGCLPPDRE	DNRSNGGGSA	CRTMHKTLRP	YVRPOROGC	SFAAAAA
	190	200	210	220	230	240
	250	260	270			
m036.pep	RRRHRARVRRLRGY	OTALPNPELH	IRCRYAVRX			
	111111111111111111111111111111111111111	<del>.</del>	11111			
a036	RRRHRARVRRLKEY					
	250	260	270			

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 036 shows 74.9% identity over a 271 aa overlap with a predicted ORF (ORF 036.ng) from N. gonorrhoeae:

m036/g036

	10	20	30	40	50	60
m036.pep	MLKPCAVYSACAAV	LPARTSSSRR	CVSSGRCVNQ	YSSRADAIP	<i>I</i> RRHSGAVAIF	CSSDSS
		111111111	,, ,,,,,		1111111111	111111
g036	MLKPCLVYSACAAA		CVPSGRCAYQ	YSSRADATPF	RRHSGAVAIF	CSSDSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m036.pep	GRFCQTIKAAIPXSI					TARRMF
					::	1 111
g036	GRFCQTIKAAILPSI					EAGRMF
	70	80	90	100	110	120
	400					
0.2.6	130	140	150	160	170	180
m036.pep	TGALSVRPVLWQSG	RECCGRRANR				AELLPA
02 <i>C</i>	:		11::::	]	:	1: :1:
g036	MFVPSVPPVLWQSGI	RECCGRRAVE				
	130	140	150	160	170	180
	190	200	010			
m036.pep		200	210	220	230	240
mose.pep	RTRCLCRLKRRIPPA			YRTMHKTLRF		
g036			1             :	11 11111	1 11 1: 11	11111
9030	RTHCRCRLKRRTPRO	200				
	190	200	210	220	230	240
	250	260	270			
m036.pep	RRRHRARVRRLRGY					
""ooo'beb	:::		HILLILI			
g036	RRRHRAWGCRLKACE					
9000	250	260	270			
	230	200	270			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 133>: m036-1.seq

1	ATGCTGAAGC	CGTGCGCCGT	GTACAGTGCC	TGTGCGGCGG	TGTTGCCTGC
51	ACGGACTTCG	AGCAGCAGGC	GTTGCGTGTC	TTCGGGCAGA	TGTGTGAACC
101	AATATTCGAG				
151	GTGGCAATCA	GGTGCAGTTC	GGATTCGTCG	GGCAGGTTCT	GCCAAACGAT
201	AAAGGCGGCA	ATCCCGCCGT	CTTTTTCCGC	AAGGAAAACC	TGTTCGGACG
251	GCGAAACCAG	TGCGGACTCA	AATTGGCGTT	GCGTCCATGC	GGACGGGTTG
301	CAGACGGCAT	CGAGTGCGGC	CAGCTCCTCA	CAATCGGCAC	AAACGGCACG

BNSDOCID: <WO___9957280A2_I_>

out our currence of a second

351 401 451	GGCGATTTTG CAGGATAACC	TTGCGGACGT GCCCTTGGCT	AGAGCAAACC GCCAATGCGA	GGCGTGTGCG GAAAGTCGGC	TGGCAGTCAG GCATGGACGG GGCAGTCGGC
501	ATATCCGGTC	TGCCTGAGAA	CGGCGGAGCT	GAAAGTCGGC	GGCAGTCGGC
551	GCCTATGCCG	TCTGAAAAGG	CGCATCCCTC	CGGCAGCCGG	ATCTCTCCCC
601 651	CCCGCCCGAC CATGCATAAA	CTGATAATCG	CTCAAACGGT	GGCAGTTCAG	CGTATCGAAC

### This corresponds to the amino acid sequence <SEQ ID 134; ORF 0036-1>: m036-1.pep

- 1 MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
- 51 VAIRCSSDSS GRFCQTIKAA IPPSFSARKT CSDGETSADS NWRCVHADGL
- 101 QTASSAASSS QSAQTARRMF TGALSVRPVL WQSGRFCCGR RANRRVRHGR 151 QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
- 201 PARPDNRSNG GSSAYRTMHK TLRPYERP*

### m036-1/g036 76.8% identity in 228 aa overlap

m036-1.pep	10	20	30	40	50	60
oso r.pep	MLKPCAVYSACAAVL	PARTSSSRRC	VSSGRCVNQYS	SSRADAIPWRF	RHSGAVAIRCS	SSDSS
g036					11111111	
9000	MLKPCLVYSACAAALI	PARTSSSRRC	/PSGRCAYQYS	SSRADATPRRR	HSGAVAIRCS	SSDSS
	10	20	30	40	50	60
	70	80	90.	100	110	100
m036-1.pep	GRFCQTIKAAIPPSFS	SARKTCSDGET	SADSNWRCVH	IADCIOTACCA	TIU	120
				:	ASSSQSAQTA	
g036	GRFCQTIKAAILPSFS	ARKTCSDGFT	SADSNWRCVH	11111111111111111111111111111111111111	7577000000	111
	70	80	90	100	ASAAQSDGEA 110	
			30	100	110	120
	130	140	150	160	170	180
m036-1.pep	TGALSVRPVLWQSGRF	CCGRRANRRV	RHGRODNRPW	LPMRESEROS	AVDUCT DOAD	100
	• 11 [11][1]	1111111111	: : :	11-11-1	II IIII I.	
g036	MFVPSVPPVLWQSGRF	CCGRRAVRRV	PROLEDSER	GRARENBERS	II IIII II	:  :
	130	140	150	160	170	180
					170	180
	190	200	210	220	229	
m036-1.pep	RTRCLCRLKRRIPPAA	GCLPPARPDN	RSNGGSSAYR'	TMHKTLRPYE	RPX	
			11111:11 1	1 111111	1 1	
g036	RTHCRCRLKRRTPRGG	QCLPPYRLDN	RSNGGGSACR'	TTHKTLRPYA	3 DODDMCGEN.	7 7 7 N
	190	200	210	220	230	240
					230	240
g036	RRRHRAWGCRLKACRT	ALPNLAPRRC	RYAVRX		•	
	250	260	270			

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 135>: g038.seq

·					
1	ATGACTGATT	TCCGCCAAGA	TTTCCTCAAA	TTCTCCCTCC	CCCAAAAmom
51	TTTGAAATTC	GGCGAATTTA	CCACCAAAGC	CGGACGGCGG	TCCCCCCM mm
101	TCTTCAATGC	CGGCCTCTTC	AACGACGGCG	CGTCCACGCT	CCAACECCTATT
151	AAATTCTATG	CACAATCCAT	CATTGAAAGC	CCCATCCCAT	GCAACTGGCA
201	GTTCGGCCCC	GCCTACAAAG	GCATTATTTT	CCCCCCCC	TCGATATGCT
251	TGCTGGCGGA	AAAAGGCGTG	AACGTCCCGT	TTCCCTACA	ACCGCGATGA
301	GCCAAAGACC	GCGGCGAAGG	CGGCGTGTTG	CTCCCCCCCC	CCGCAAAGAA
351	GCGCGTGCTG	ATTATCGACG	ACGTGATTTC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCTTAAAGG
401	AATCAATCAA	ACTGATTGAA	GCGGAGGGTG	CGCCGCACA	TCCGTACGCG
451	ATCGCGCTCG	ACCECATEGA	AAAAGGCACG	CAACCCCCCCC	CGGTGTCGCC
501	GGAAGTGGAA	AAACAATACG	GCCTGCCCGT	GGTAAATTGT	CCGCCGTTCA
551	ACGATTTGTT	TATCCTCTTC	CAAAACAACC	CGCCCCCATC	GCCAGCCTGA
601	GAACCCGTCC	GCACCTACCC	CCGGCAGTAC	CCGAATTCGG	ACAGTTCCTC
			LLINE ALT'	にににに切り できるか	• •

```
This corresponds to the amino acid sequence <SEQ ID 136; ORF 038.ng>:
      g038.pep
                MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGASTLQLA
               KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
           101 AKDRGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
           151 IALDRMEKGT GKLSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
           201 EPVRTYRRQY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 137>:
     m038.seq
                ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
             1
            51
                TTTGAAATTC GGCGAATTTA CCACCAAGGC AGGACGGCGG TCGCCCTATT
                TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
           101
           151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
           201 GTTCGGTCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
           251
               TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
               GCCAAAGACC ACGGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
           351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
           401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCcGC CGGTGTCGCC
           451 ATCGCGCTCG ATCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
           501 GGAAGTGGA: AAACAATACG GKCTGCCCGT CGCCCCCATC GCCAGCCTGA
               ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
               GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 138; ORF 038>:
     m038.pep
            1 MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLOLA
           51 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
           101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
               IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
          201 EPVRAYRRQY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 139>:
     a038.seq
               ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
            1
               TTTGAAATTC GGCGAATTCA CCACCAAAGC CGGACGGCGG TCGCCCTATT
           51
               TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
          151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
          201 GTTCGGCCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
          251 TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
          301 GCCAAAGACC ACGGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
          351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCCGC CGGTGTCGCC
          451 ATCGCGCTCG ACCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
          501 GGAAGTGGAA AAACAATACG GCCTGCCCGT CGCCCCCATC GCCAGCCTGA
               ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
          601 GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 140; ORF 038.a>:
     a038.pep
               MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLQLA
           51 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
          101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
          151 IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
          201 EPVRAYRRQY GVE*
             100.0% identity over a 213 aa overlap
m038/a038
                           10
                                     20
                                               30
                                                          40
                  MTDFRQDFLKFSLAQNVLKFGEFTTKAGRRSPYFFNAGLFNDGLSTLQLAKFYAQSIIES
```

BNSDOCID: -WO__9957280A2_J_>

a038					 LSTLQLAKFY 50	 AQSIIES 60
	70	80	90	100	110	120
m038.pep	GIRFDMLFGPAYK	GIILAAATAMM	ILAEKGVNVPF	'AYNRKEAKDI	HGEGGVLVGA	PLKGRVL
		1111111111	111111111			1111111
a038	GIRFDMLFGPAYK	GIILAAATAMM	LAEKGVNVPF	AYNRKEAKDI	IGEGGVLVGA	PLKGRVI
	70	80	90	100	110	120
						120
	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVR	ESIKLIEAEGA	TPAGVAIALD:	RMEKGTGELS	AVOEVEKOY	SI.PVAPT
		111111111			111111111	111111
a038	IIDDVISAGTSVR	ESIKLIEAEGA	TPAGVAIALD	RMEKGTGELS	AVOEVEROY	21.DV/ADT
	130	140	150	160	170	180
						100
	190	200	210			
m038.pep	ASLNDLFILLQNN	PEFGQFLEPVR	AYRROYGVEX			
	111111111111					
a038	ASLNDLFILLQNN	PEFGQFLEPVR	AYRROYGVEX			
	190	200	210			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 038 shows 98.1% identity over a 213 aa overlap with a predicted ORF (ORF 038.ng) from N. gonorrhoeae:
m038/g038

	10	20	30	40	50	60
m038.pep	MTDFRQDFLKFSLA	QNVLKFGEF	TTKAGRRSPYF	FNAGLFNDG	LSTLQLAKFY	AOSIIES
. 000				11111111	1111111111	111111
g038	MTDFRQDFLKFSLA	QNVLKFGEF'	<b>PTKAGRRSPYF</b>	FNAGLFNDG	ASTLQLAKFY	AOSIIES
	10	20	30	40	50	60
	30					
m020	70	80	90	100	110	120
m038.pep	GIRFDMLFGPAYKO	IILAAATAM	ILAEKGVNVPF.	AYNRKEAKDI	igeggvlvgae	PLKGRVL
~030				11111111:		
g038	GIRFDMLFGPAYKG	IILAAATAM	<i>ILAEKGV</i> NVPF	AYNRKEAKDF	RGEGGVLVGA	LKGRVL
	70	80	90	100	110	120
	100					
<del>-</del> -030	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVRE	SIKLIEAEG	ATPAGVAIALD	RMEKGTGELS	AVQEVEKQYG	LPVAPI
~030	TTDD0000000000000000000000000000000000				1111111111	111111
g038	IIDDVISAGTSVRE	SIKLIEAEGA	TPAGVAIALD	RMEKGTGKLS	AVQEVEKQYG	LPVAPI
	130	140	150	160	170	180
	100					
m030	190	200	210			
m038.pep	ASLNDLFILLQNNP					
~030			: 11111111			
g038	ASLNDLFILLQNNP					
	190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 141>:

1	ATGCCGTCCG	AACCACCTGC	CGCTTCAGAC	GGCATCAAAC	CGACACACAC
51	CGAGAAAACA	TCATGCCCGC	CTGTTTCTGT	CCGCACTGCA	AAACCCCCCT
101	CTGGGTCAAA	GAAAcccaqC	TCAAcat CaC	CCAACGCTTC	GTCCTCT
151	aaAAAtgcga	agGGCTgttt	aaAgccaaaG	accharate	Green - Gaza
201	gaacctatat	tcaacqatto	gcccgaaget	attracest	adGCaCGAAA

```
251 TCcaccgcaT cggcacgcac gccattagca aGAaacagat gtcccgcgac
          301 gaaatCgccg atatcctcaa cggcggtaca acCCTGCACG ATACGCCGCC
          351 CGCAACCGCC GCTGCCGCac ctGCCGCCGC ACCGCaqqTT TCCGTACCGC
          401 CCGCCGTCA GGAAGGGCTC AACTGGACTA TTGCAACCCT GTTCGCACTT
          451 ATCGTCCTCA TTATGCAGCT TTCCTACCTC TTCATCCTAT GA
This corresponds to the amino acid sequence <SEQ ID 142; ORF 039.ng>:
     g039.pep
              MPSEPPAASD GIKPTHTEKT SCPPVSVRTA KPASGSKKPS STSPKASSSA
            1
           51
               KNAKGCLKPK TIWQARKNLY STIGPKLFRD VKLVHRIGTH AISKKQMSRD
          101
               EIADILNGGT TLHDTPPATA AAAPAAAPQV SVPPARQEGL NWTIATLFAL
               IVLIMQLSYL FIL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 143>:
     m039.seg
               ATGCCGTCCG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
            1
              CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
           51
          101 CTGGGTCAAA GAAACCCAAC TCAATGTCGC CGnnnnnnnn nnnnnnnnn
          201 nnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnccc GAGGCTGTTT
          251 CGGATGTCAA ACTCGTTCAC CGTATCGGCA CGCGCGCCAT CGGCAAGAAA
          301 CAGATTTCCC GTGACGAAAT CGCCGGCATC CTCAACGGCG GTACAACCCA
          351 GCCCGATATT CCGCCCGCAA CCGCCGCCAC CCCTGCTGCC GCACCGCAGG
          401 TTACCGTACC GCCCGCCGCG CCCGCCCGTC AGGATGGGTT CAACTGGACG
          451 ATTGCAACCC TGTTTGCCCT TATCGTCCTC ATTATGCAGC TTTCCTACCT
          501 CGTCATCCTA TGA
This corresponds to the amino acid sequence <SEQ ID 144; ORF 039>:
     m039.pep
              MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPXXXXXX
           51
              XXXXXXXXX XXXXXXXXX XXXXXXXXP EAVSDVKLVH RIGTRAIGKK
          101
               QISRDEIAGI LNGGTTQPDI PPATAATPAA APQVTVPPAA PARQDGFNWT
          151 IATLFALIVL IMQLSYLVIL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 145>:
     a039.seq
               ATGCCGTCTG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
           1
           51
              CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
          101
              CTGGGTCAAA GAAACCCAAC TCAATGTCGC CCAAGGCTTC GTCGTCTGCC
              AAAAATGCGA AGGAATGTTT AAAGCCAAAG ACCATCTGGC AAGCACGAAA
          151
          201 GAACCCATAT TCAACGATT. TGCCCGAAGC TGTTTCGGAT GTCAAACTCG
             TTCACCGCAT CGGCACGAGC GCCATCGGCA AGAAACAGAT TTCCCGTGAC
          251
          301 GAAATCGCCG GCATCCTCAA CGGCGGCACA ACCCAGCCCG ATATTCCGCC
          351
              CGCAACCGCC GCCACCCCTG CTGCCGCACC GCAGGTTACC GTACCGCCCG
               CCGCGCCCGC CCGTCAGGAT GGGTTCAACT GGACGATTGC AACCCTGTTT
          451 GCCCTTATCG TCCTCATTAT GCAGCTTTCC TACCTCGTCA TCCTATGA
This corresponds to the amino acid sequence <SEQ ID 146; ORF 039.a>:
     a039.pep
              MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPKASSSA
              KNAKECLKPK TIWQARKNPY STIXPEAVSD VKLVHRIGTS AIGKKQISRD
              EIAGILNGGT TOPDIPPATA ATPAAAPQVT VPPAAPARQD GFNWTIATLF
              ALIVLIMQLS YLVIL*
           79.4% identity over a 170 aa overlap
m039/a039
                                   20
                                             30
                                                      40
                                                                50
                 MPSEPPYASDGIKPDTHEEIPCPPVSAPTAKPVSGSKKPNSMSPXXXXXXXXXXXXXXXXXXXXXXX
     m039.pep
                 MPSEPPYASDGIKPDTHEEIPCPPVSAPTAKPVSGSKKPNSMSPKASSSAKNAKECLKPK
     a039
```

	10	20	30	40	50	60
m039.pep	70 XXXXXXXXXXXXXX : : ! TIWQARKNPYSTIX- 70	11111	DVKLVHRIGT	 SAIGKKQIS	11111111	
m039.pep	130 PPATAATPAAAPQVT              PPATAATPAAAPQVT 120 130	  VPPAAPARQI	  GFNWTIATL		LILLIA	

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 039 shows 60.8% identity over a 171 aa overlap with a predicted ORF (ORF 039.ng) from N. gonorrhoeae:

	_	•					
m0	3	9	/a	n	3	9	

m039.pep	10 MPSEPPYASDGIKPD 	1:	:           :			
g039	MPSEPPAASDGIKPT	HTEKTSCPPVS	VRTAKPASG	SKKPSSTSPI	KASSSAKNAK	מכיז.אטע
	10	20	30	40	50	60 60
m039.pep	70	80	90	100	110	120
oss.pcp	XXXXXXXXXXXXXXX	XXXPEAVSDV	KLVHRIGTRA	LIGKKQISRI	DEIAGILNGG'	TTQPDI
g039	TIWQARKNLYSTIG	:    PKLFRDVI		:   :    AISKKOMSRI	 DEIADILNGG	יזיתנו.זיזיין
	70	80	90	100		
	130	140	150	160	170	
m039.pep	PPATAAT-PAAAPQVT	VPPAAPARODO	FNWTIATLE	ALIVLIMOL	SYLVILX	
g <b>0</b> 39	PPATAAAAPAAAPQVS	:   VPPAROEC	:         LNWTIATLF		 VITELV	
	120 130	14		50	160	

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 147>:

1	ATGAACGCGC	CCCACACCTT	TCTCCCCCA	TTCCGCGAAG	
51	CATCCCCCAA	ATCCCCCCCA	CCRCCCCAC	TTCCGCGAAG	CCGCCCCTA
101	MACCECCAN	ATGCGCGGCA	CGACACTGGT	CGCCGGCATA	GAcggCCGCC
	TGCTCGAAGG	CGGCACCTTA	AATAAGCTCG	CCGCCGACAT	CGGGCTGTTG
151	TCGCAACTGG	GCATCCGACT	CGTCCTCATC	CACGGCGCGT	ACCACTTCCT
201	CGAccgCCTC	GCCGCCGCGC	AAGgccGCAC	GCCGCATTAT	TGCCGgggtt
251	tGCGCGTTAC	CGACGaAACc	tcGctcgGAC		GtttGCCGGC
301	AccgTCCGCA	GCCGTTTTGA	agcCGCATTG		GELEGECEGE
351	cacacecece	CCTTCCGTCC	CCCTCCTAte	rgcggcagcg	tttcaggatt ctgacCGCCC
401	GTCcgatggg	Catasttasa	CGCICGIACC	gggcaacttc	ctgacCGCCC
451	cacaaaaaaa	Porgatigae	ggaACCGata	tggaatacgc	gggggttatc
501	cycaaaaccy	ACACCGCCGC	CCTCCGTTTC	CAACTCGACG	CGGGCAATAT
	CGTCTGGATG	CCGCCGCTCG	GGCATTCCTA	CGGCGGCAAA	A CCMMCA A MC
551	TCGATATGGT	GCAGGCCGCC	GCTTCCGTCG	CCGTCTCGCT	TCACCCCCAA
601	AAACTCGTTT	ACCTGACCCT	TTCAGACGGC	ATTTCCCCCC	CCGACGGCAC
651	GCTCGCCGAA	ACCCTCTCGG	CACAGGAAGC	CCANTCCCTC	
701	CCGCCAGCGA	AACCCGACGA	CTCATTTCCT		GCGGAACACG
751	GGCGGCGTGC	ATCGCGTCCA	DAMCCMCAAC	CCGCCGTTGC	CGCGCTCGAA
801	GCTCCAACAA	CTCCTCCA	AATCCTCAAC	GGGCCGCCG	ACGGCAGCCT
851	GCTGCAAGAA	CICTICACCC	GCAACGGCAT	CGGCACGTCC	ATTGCCAAAG
	AAGCCTTCGT	CTCCATCCGG	CAGGCGCACA	GCGGCGACAT	CCCGCACATC
901	GCCGCCCTCA	TCCGCCCGCT	GGAAGAACAG	GGCGTCCTAT	TGCACCGCAG
951	CCGCGAATAC	CTCGAAAACC	ACATTTCCGA	ATTTTCCATC	CTCGAACACG
					CICGAACACG

```
1001 ACGGCGACCT GTACGGCTGT GCCGCACTCA AAACCTTTGC CGAAGCCGAT
1051 TGCGGCGAAA TCGCCTGCCT TGCCGTCTCG CCGCAGGCAC AGGACGGCGG
1101 CtACGGCGAA CGCCTGCTTG CCCACATTAT CGATAAGGCG CGCGGCATAG
1151 GCATAAGCAG GCTGTTCGCA CTGTCCACAA ATACCGGCGA ATGGTTTGCC
1201 GAACGCGGCT TTCAGACGGC ATCGGAAGAC GAGCTGCCCG AAACGCGGCG
1251 CAAAGACTAC CGCAGCAACG GACGAAACCC GCATATTCTG GTGCGTCGCC
1301 TGCACCGCTG A
```

### This corresponds to the amino acid sequence <SEQ ID 148; ORF 040.ng>:

```
1 MNAPDSFVAH FREAAPYIRQ MRGTTLVAGI DGRLLEGGTL NKLAADIGLL
51 SQLGIRLVLI HGAYHFLDRL AAAQGRTPHY CRGLRVTDET SLGQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPMGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWM PPLGHSYGGK TFNLDMVQAA ASVAVSLQAE
201 KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAASETRR LISSAVAALE
251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
301 AALIRPLEEQ GVLLHRSREY LENHISEFSI LEHDGDLYGC AALKTFAEAD
351 CGEIACLAVS PQAQDGGYGE RLLAHIIDKA RGIGISRLFA LSTNTGEWFA
401 ERGFQTASED ELPETRKDY RSNGRNPHIL VRRLHR*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 149>: m040.seq

```
ATGAGCGCGC CCGACCTCTT TGTCGCCCAC TTCCGCGAAG CCGTCCCCTA
   1
  51
     CATCCGCCAA ATGCGCGGCA AAACGCTGGT CGCCGGCATA GACGACCGCC
      TGCTCGAAGG TGATACCTTA AACAAGCTCG CCGCCGACAT CGGGCTGTTG
 101
 151
     TCGCAACTGG GCATCAGGCT CGTCCTCATC CACGGCGCGC GCCACTTCCT
     CGACCGCCAC GCCGCCGCTC AAGGCCGCAC GCCGCATTAT TGCCGGGGCT
 201
      TGCGCGTTAC CGACGAAACC TCGCTCGAAC AGGCGCAGCA GTTTGCCGGC
 301
     ACCGTCCGCA GCCGTTTTGA AGCCGCATTG TGCGGCAGCG TTTCCGGGTT
 351 CGCGCGCGC CCTTCCGTCC CGCTCGTATC GGGCAACTTC CTGACCGCCC
     GTCCGATAGG TGTGATTGAC GGAACCGATA TGGAATACGC GGGCGTTATC
 401
     CGCAAAACCG ACACCGCCGC CCTCCGTTTC CAACTCGACG CGGGCAATAT
 451
     CGTCTGGCTG CCGCCGCTCG GACATTCCTA CAGCGGCAAG ACCTTCTATC
 501
     TCGATATGCT TCAAACCGCC GCCTCCGCCG CCGTCTCGCT TCAGGCCGAA
 551
 601 AAACTCGTTT ACCTGACCCT TTCAGACGGC ATTTCCCGCC CCGACGGCAC
     GCTCGCCGAA ACCCTCTCGG CACAGGAAGC GCAATCGCTG GCGGAACACG
 701 CCGGCGGGCA AACGCGACGG CTGATTTCGT CCGCCGAACT CTTCACCCGC
 751
     AACGGCATCG GCACGTCCAT TGCCAAAGAA GCCTTCGTCT CCATCCGGCA
     rGCGCAywgG G.CGACATCC CGCACATCGC CGCCCTCATC CGCCCGCTGG
 801
     AAGAACAGGG CATCCTGCTG CACCGCAs.c GCGAATACCT CGAAAACCAC
851
 901 ATTTCCGAAT TTTCCATCCT CGAACACGAC GGCAACCTGT ACGGTTGCGC
 951 CGCCCTGAAA ACCTTTGCCG AAGCCGATTG CGGCGAAATC GCCTGCCTTG
1001
     CCGTCTCGCC GCag.cACAG GACGGCGGCT ACGGCGAACG CnTGCTTGCC
     CACATTATCG ATAAGGCGCG CGGCATAGGC ATAAGCAGGC TGTTCGCACT
1101
     GTCCACAAAT ACCGGCGAAT GGTTTGCCGA ACGCGGCTTT CAGACGGCAT
1151
     CGGAAGACGA GTTGCCCGAA ACGCGGCGCA AAGACTACCG CAGCAACGGA
     CGGAACTCGC ATATTCTGGT ACGTCGCCTG CACCGCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 150; ORF 040>:

```
m040.pep

1 MSAPDLFVAH FREAVPYIRQ MRGKTLVAGI DDRLLEGDTL NKLAADIGLL
51 SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFYLDMLQTA ASAAVSLQAE
201 KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAGGQTRR LISSAELFTR
251 NGIGTSIAKE AFVSIRQAHX XDIPHIAALI RPLEEQGILL HRXREYLENH
301 ISEFSILEHD GNLYGCAALK TFAEADCGEI ACLAVSPQXQ DGGYGERXLA
351 HIIDKARGIG ISRLFALSTN TGEWFAERGF QTASEDELPE TRRKDYRSNG
401 RNSHILVRRL HR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 151>:

BNSDOCID: <WO___9957280A2_I_>



### This corresponds to the amino acid sequence <SEQ ID 152; ORF 040.a>:

```
a040.pep

1 MIVPDLFVAH FREAAPYIRQ MRGKTLVAGI DDRLLEGDTL NKFAADIGLL
51 SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFHLDMLQTA ASVAVSLQAE
201 KLVYLTLSDG ISRPDGTLAV TLSAQEAQSL AEHAGGETRR LISSAVAALE
251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
301 AALIRPLEEQ GILLHRSREY LENHISEFSI LEHDGNLYGC AALKTFAEAD
351 CGEIACLAVS PQAQDGGYGE RLLAHIDKA RGIGISRLFA LSTNTGEWFA
401 ERGFQTASED ELPETRRKDY RSNGRNSHIL VRRLHR*
```

### m040/a040 91.5% identity in 436 aa overlap

m040.pep	MSAPDLFVAHFREAVPYIRQMRGKTLVAGIDDRLLEGDTLNKLAADIGLLSQLGIRLVI   :	
m040.pep	70 80 90 100 110 12  HGARHFLDRHAAAQGRTPHYCRGLRVTDETSLEQAQQFAGTVRSRFEAALCGSVSGFAF	l I RA
m040.pep	130 140 150 160 170 18 PSVPLVSGNFLTARPIGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWLPPLGHSYSG	SK       
m040.pep	190 200 210 220 230 24 TFYLDMLQTAASAAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAGGQTR   :	R

	190	200	210	220	230 240
m040.pep	LISSA	VQILNGAADG	  SLLQELFTRNG	 GIGTSIAKEAF	
	250	260	270	280	290 300
	280 290	300	310	320	330
m040.pep	AALIRPLEEQGILLH		SEFSILEHDGN	ILYGCAALKTF 	AEADCGEIACLAVS
a040	AALIRPLEEQGILLH 310	RSREYLENHI 320	SEFSILEHDGN 330	ILYGCAALKTF 340	AEADCGEIACLAVS 350 360
	340 350	. 360	370	380	390
m040.pep	PQXQDGGYGERXLAH	IIDKARGIGI	SRLFALSTNTG	EWFAERGFQT	ASEDELPETRRKDY
a040	PQAQDGGYGERLLAH 370	IIDKARGIGI 380	SRLFALSTNTG 390	EWFAERGFQT 400	ASEDELPETRRKDY 410 420
	400 410				
m040.pep	RSNGRNSHILVRRLH	RX !!			
a040	RSNGRNSHILVRRLH 430	RX			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 040 shows 88.3% identity over a 436 aa overlap with a predicted ORF (ORF 040.ng) from N. gonorrhoeae:

#### m040/g040

MSAPDLFVAHFREAVPYIRQMRGKTLVAGIDDRLLEGDTLNKLAADIGLLSQLGIRLVLI	60
MNAPDSFVAHFREAAPYIRQMRGTTLVAGIDGRLLEGGTLNKLAADIGLLSQLGIRLVLI	60
HGARHFLDRHAAAQGRTPHYCRGLRVTDETSLEQAQQFAGTVRSRFEAALCGSVSGFARA	120 "
HGAYHFLDRLAAAQGRTPHYCRGLRVTDETSLGQAQQFAGTVRSRFEAALCGSVSGFARA	120
PSVPLVSGNFLTARPIGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWLPPLGHSYSGK	180
PSVPLVSGNFLTARPMGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWMPPLGHSYGGK	180
TFYLDMLQTAASAAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAGGQTRR	240
TFNLDMVQAAASVAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAASETRR	240
LISSAELFTRNGIGTSIAKEAFVSIRQAHXXDIPHI	276
LISSAVAALEGGVHRVQILNGAADGSLLQELFTRNGIGTSIAKEAFVSIRQAHSGDIPHI	300
AALIRPLEEQGILLHRXREYLENHISEFSILEHDGNLYGCAALKTFAEADCGEIACLAVS	336
AALIRPLEEQGVLLHRSREYLENHISEFSILEHDGDLYGCAALKTFAEADCGEIACLAVS	360
PQXQDGGYGERXLAHIIDKARGIGISRLFALSTNTGEWFAERGFQTASEDELPETRRKDY	396
PQAQDGGYGERLLAHIIDKARGIGISRLFALSTNTGEWFAERGFQTASEDELPETRRKDY	420
RSNGRNSHILVRRLHRX 413	
RSNGRNPHILVRRLHRX 437	

BNSDOCID: <WO___9957280A2_I_>

CLUSTER OF COLUMN

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 153>:
```

```
9041.seq

1 ATGAGTTCGC CCAAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGCCT
51 GATTACCGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGTGCGCTGG
101 TGTGCGAAGT ACCGCTGACC GATATGATCC GTTATCCGCT GCTGTCCGCC
151 GGTTCAAGTT GGACGGACGA ATACGGCAAT CCGCAGAAAT ACGAAGCCTG
201 CAAACGCCGG CTGGCCGAAT TGTCGCCGTA TCACAATCTT TCAGACGCCA
251 TCGATTATCC GCCCGCACTC ATTACCACCA GCCTCAGCGA CGACCGCGTC
301 CATCCCGCCC ACGCGCTCAA ATTCTACGCC AAACTGCCC AAACCTCGCC
351 GCAATCTTGG CTCTACTCGC CTGACGCGG CGGCCATACC GGCAACGGCA
401 CCCCAACGCGA ATCCGCCGAC AAACTCGCCT GCGTGTTGCT GTTTTTGAAA
451 GAATTTTTGG GATAA
```

### This corresponds to the amino acid sequence <SEQ ID 154; ORF 041.ng>:

g041.pep

1 MSSPKHIGLO GGSNGGLITA AAFVREPOSI GALVCEVPLT DMIRYPLLSA
51 GSSWTDEYGN POKYEACKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
101 HPAHALKFYA KLRETSPOSW LYSPDGGGHT GNGTORESAD KLACVLLFLK

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 155>:

ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT

51 GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGCGCGCTGG

101 TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC

151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG

201 CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA

251 TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC

301 CATCCCGCCC ACGCGCTCAA GTTCTACCGCC AAACTGCGCG AAACCTCCGC

351 GCAATCTTGG CTCTACTCGC CTGACGGCG CGGCCATACC GGCAACGGCA

401 CCCAACGCGA ATCCGCCGAC GAACTCGCCT GCGTCTTGCT GTTTTTGAAA

451 GAGTTTTTGG GCTAA

### This corresponds to the amino acid sequence <SEQ ID 156; ORF 041>:

m041.pep

1 ISSPEHIGLO GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
51 GSSWTDEYGN PQKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
101 HPAHALKFYA KLRETSAQSW LYSPDGGGHT GNGTQRESAD ELACVLLFLK
151 EFLG*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 157>:

1 ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT
51 GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATA GGCGCGCTGG
101 TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC
151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG
201 CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA
251 TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC
301 CATCCCGCCC ACGCGCTCAA GTTCTACGCC AAACTGCGCG AAACCTCGCC
351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
401 CGCAGCGCGA AGCCGCCGAC GAACTCGCCT GCGTGTTGCT GTTTTTGAAA

## This corresponds to the amino acid sequence <SEQ ID 158; ORF 041.a>:

1 ISSPEHIGLO GGSNGGLITA AAFVREPOSI GALVCEVPLT DMIRYPLLSA
51 GSSWTDEYGN POKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
101 HPAHALKFYA KLRETSPOSW LYSPDGGGHT GNGTOREAAD ELACVLLFLK

151 EFLG*

### m041/a041 98.7% identity over a 154 aa overlap

	10	20	30	40	50	60
m041.pep	ISSPEHIGLQGGSN	GGLITAAAF	VREPQSIGALV	CEVPLTDMIF	RYPLLSAGSSW	TDEYGN
	11111111111111	11111111	11111111111	1111111111	31111111111	111111
a041	ISSPEHIGLQGGSN	GGLITAAAF	VREPQSIGALV			
	10	20	30	40	50	60
	70	80	90	100	110	120
m041.pep	PQKYEVCKRRLGEL:	SPYHNLSDG	IDYPPALITTS	LSDDRVHPAH	ALKFYAKLRE	TSAOSW
			11111111111			$T = \overline{1} + 1$
a041	PQKYEVCKRRLGEL:	SPYHNLSDG	IDYPPALITTS1	LSDDRVHPAH	ALKFYAKLRE	TSPQSW
	70	80	90	100	110	120
	130	140	150			
m041.pep	LYSPDGGGHTGNGT	QRESADELA	CVLLFLKEFLGX	ζ		
		111:1111				
a041	LYSPDGGGHTGNGT	QREAADELA	CVLLFLKEFLG	ζ		
	130	140	150			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 041 shows 96.8% identity over a 154 aa overlap with a predicted ORF (ORF 041.ng) from N. gonorrhoeae:

m041/g041

	10	20	30	40	50	60
m041.pep	ISSPEHIGLQGGSN	GGLITAAAF	VREPQSIGAL\	/CEVPLTDMIF	RYPLLSAGSS	VTDEYGN
	:	11111111	1111111111		111111111	
g041	MSSPKHIGLQGGSN	GGLITAAAF	VREPQSIGAL\	CEVPLTDMIF	RYPLLSAGSSV	VTDEYGN
	10	20	30	.40	50	60
	70	80	90	100	110	120
m041.pep	PQKYEVCKRRLGEL	SPYHNLSDG:	IDYPPALITTS	SLSDDRVHPAH	IALKFYAKLRI	ETSAOSW
			11111111111		1111111111	
g041	PQKYEACKRRLGEL	SPYHNLSDG:	IDYPPALITTS	SLSDDRVHPAH	ALKFYAKLRI	TSPOSW
	70	80	90	100	110	120
	130	140	150			
m041.pep	LYSPDGGGHTGNGT	QRESADELA	CVLLFLKEFLG	ξX		
	<b>*                                    </b>	111111:11	1111111111	1		
g041	LYSPDGGGHTGNGT	QRESADKLA	CVLLFLKEFLG	ΣX		
	130	140	150			

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 159>: g041-1.seq

. ATGAAATCCT	ACCCCGACCC	CTACCGCCAT	TTTGAAAACC	TCGATTCCGC
. CGAAACGCAA	AACTTCGCTG	CTGAAGCGAA	TGCCGAAACG	CGCGCGCGTT
	CGACAAGGCG	CGCGCACTTT	CAGACGGCAT	TTTGAATCAA
. ATGCAGGACA	CGCGGCAGAT	TCCGTTTTGT	CAGGAACACC	GCGCGCGGAT
GTACCATTTC	CATCAGAATG	CGGAATATCC	GAAGGGCGTG	TACCGCATGT
. GTACGGCGGC	GACCTACCGT	TCCGGCTATC	CCGAGTGGAA	AATCCTGTTT
. TCGGTGGCGG	ATTTCGATGA	GTTGCTCGGC	GACGATGTGT	ATTTGGGCGG
. CGTGTCGCAC	TTGGTGGAGC	AGCCCAACCG	CGCGCTGCTG	ACTTTGAACA
AATCGGGCGG	CGATACGGCG	TATACGCTGG	AAGTGGATTT	GGAAGCAGGG
GAATTGGTAG	AGGGCGGTTT	TCACTTTCCG	GCAGGCAAAA	ACCATGTGTC
GTGGCGCGAT	GAAAACAGCG	TGTGGGTGTG	TCCGGCTTGG	GACGAACGCC
AGTTGACCGA	ATCGGGCTAT	CCGCGCGAAG	TGTGGCTGGT	GGAACGCGGC
	CGAAACGCAA TTTTAAACAA TGCAGGACA GTACCATTTC GTACGGCGGC TCGGTGGCGG CGTGTCGCAC AATCGGGCGG GAATTGGTAG GTGGCGCGAT	CGAAACGCAA AACTTCGCTG TTTTAAACAA CGACAAGGCG ATGCAGGACA CGCGGCAGAT GTACCATTTC CATCAGAATG GTACGGCGGC GACCTACCGT TCGGTGGCGG ATTTCGATGA CGTGTCGCAC TTGGTGGAGC AATCGGGCGG CGATACGGCG GAATTGGTAG AGGGCGGTTT GTGGCGCGAT GAAAACAGCG	CGAAACGCAA AACTTCGCTG CTGAAGCGAA TTTTAAACAA CGACAAGGCG CGCGCACTTT ATGCAGGACA CGCGGCAGAT TCCGTTTTGT GTACCATTTC CATCAGAATG CGGAATATCC GTACGGCGGC GACCTACCGT TCCGGCTATC TCGGTGGCGG ATTTCGATGA GTTGCTCGGC CGTGTCGCAC TTGGTGGAGC AGCCCAACCG AATCGGGCGG CGATACGGCG TATACGCTGG GAATTGGTAG AGGGCGGTTT TCACTTTCCG GTGGCGCGAT GAAAACAGCG TGTGGGTGTG	CGAAACGCAA AACTTCGCTG CTGAAGCGAA TGCCGAAACG TTTTAAACAA CGACAAGGCG CGCGCACTTT CAGACGGCAT ATGCAGGACA CGCGCAGAT TCCGTTTTGT CAGGACACC GTACCATTTC CATCAGAATG CGGAATATCC GAAGGGCGTG GTACGGCGG GACCTACCGT TCCGGCTATC CCGAGTGGAA TCGGTGGCGG ATTTCGATGA GTTGCTCGGC GACGATGTGT CGTGTCGCAC TTGGTGGAGC AGCCCAACCG CGCGCTGCTG AATCGGCGG CGATACGGCG TATACGCTGG AAGTGGATTT GAATTGGTAG AGGGCGGTTT TCACTTTCCG GCAGGCAAAA GTGGCGCGAT GAAAACAGCG TGTGGGTGTG TCCGGCTTGG

BNSDOCID: <WO__9957280A2_I_>

```
601 AAGAGTTTCG AGGAAAGCCT GCCGGCGTAC CAAATCGATA AAGGCGCGAT
      GATGGTAAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT
      TGATTGAAGC GTCGGACGGT TTTTACACCA AGACGTATTT GCAGGTGTCG
 751 TCCGAAGGCG GGGCGAAACC GTTGAACCTG CCTAATGATT GCGATGTGGT
 801 CGGCTATCTG GCGGGACATC TTTTGCTGAC GCTGCGCAAG GACTGGCACC
     GCGCGAACCA AAGCTATCCG AGTGGCGCGT TGGTGGCGGT GAAACTGAAT
      CGGGGCGAAC TCGGGGCGGC GCAGCTTTTG TTTGCGCCCG ATGAAACGCA
     GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTGGTG GCAAGCCTGC
 951
     TGGAGAATGT ACAAGGCCGT CTGAAAGCGT GGCGGTTTGC CGACAGCAAA
1051 TGGCAGGAAG CCGAGTTGCC GCACCTGCCC TCGGGCGCGT TGGAAATGAC
1101 CGACCAACCG TGGGGCGGCG ACGTGGTTTA TCTTGCCGCC AGCGATTTCA
     CCACGCCGCT GACGCTGTTT GCGCTGGATT TGAACGTGAT GGAACTGACC
1151
1201 GTCATGCGCC TCCAGCCGCA GCAGTTTGTT TCAGACGGCA TCGAAGTGCG
1251 GCAGTTTTGG GCGGTGTCGT CCGACGGCGA ACGCATTCCT TATTTCCACG
     TCGGCAAAAA CGCCGCGCCC GACACGCCGA CCTTAGTCTA TGCTTACGGA
1301
1351 GGTTTCGGCA TTCCTGAATT GCCGCATTAT CTGGGCAGCG TCGGCAAATA
1401
     TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCAAACATC CGCGGCGGCG
     GAGAATTCGG CCCGCGCTGG CATCAGGCGG CGCAGGGAAT CAGCAAACAC
1451
1501 AAAAGCGTTG ATGATTTGTT GGCAGTCGTG CGTGATTTGT CCGAACGCGG
1551 CATGAGTTCG CCCAAACACA TCGGCTTGCA GGGCGGCAGC AACGGCGGCC
1601 TGATTACCGC CGCCGCCTTC GTGCGCGAAC CGCAAAGCAT CGGTGCGCTG
1651 GTGTGCGAAG TACCGCTGAC CGATATGATC CGTTATCCGC TGCTGTCCGC
1701
     CGGTTCAAGT TGGACGGACG AATACGGCAA TCCGCAGAAA TACGAAGCCT
1751 GCAAACGCCG GCTGGGCGAA TTGTCGCCGT ATCACAATCT TTCAGACGGC
1801 ATCGATTATC CGCCCGCACT CATTACCACC AGCCTCAGCG ACGACCGCGT
1851 CCATCCCGCC CACGCGCTCA AATTCTACGC CAAACTGCGC GAAACCTCGC
     CGCAATCTTG GCTCTACTCG CCTGACGGCG GCGGCCATAC CGGCAACGGC
     ACCCAACGCG AATCCGCCGA CAAACTCGCC TGCGTGTTGC TGTTTTTGAA
1951
2001 AGAATTTTTG GGATAA
```

## This corresponds to the amino acid sequence <SEQ ID 160; ORF 041-1.ng>:

```
1 MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLNNDKA RALSDGILNQ
 51 MQDTRQIPFC QEHRARMYHF HQNAEYPKGV YRMCTAATYR SGYPEWKILF
    SVADFDELLG DDVYLGGVSH LVEQPNRALL TLNKSGGDTA YTLEVDLEAG
151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW DERQLTESGY PREVWLVERG
201 KSFEESLPAY QIDKGAMMVN AWRYLDPQGS PIDLIEASDG FYTKTYLQVS
    SEGGAKPLNL PNDCDVVGYL AGHLLLTLRK DWHRANQSYP SGALVAVKLN
    RGELGAAQLL FAPDETQALE SVETTKRFVV ASLLENVQGR LKAWRFADSK
301
    WQEAELPHLP SGALEMTDQP WGGDVVYLAA SDFTTPLTLF ALDLNVMELT
351
    VMRLQPQQFV SDGIEVRQFW AVSSDGERIP YFHVGKNAAP DTPTLVYAYG
401
451 GFGIPELPHY LGSVGKYWLE EGNAFVLANI RGGGEFGPRW HQAAQGISKH
    KSVDDLLAVV RDLSERGMSS PKHIGLQGGS NGGLITAAAF VREPQSIGAL
551
    VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEACKRRLGE LSPYHNLSDG
    IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSPQSWLYS PDGGGHTGNG
651
    TORESADKLA CVLLFLKEFL G*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 161>:

_1.26	: <b>u</b>				
1	ATGAAATCCT	ACCCCGACCC	CTACCGCCAT	TTTGAAAACC	TCGATTCCGC
51	CGAAACGCAA	AACTTCGCTG	CTGAAGCGAA		CGCGCGCGTT
101	TTTTAGAAAA	CGACAAGGCG	CGCGCGCTTT		TTTGGCGCAG
151	TTGCAGGACA	CGCGGCAGAT	TCCGTTTTGT	CAGGAACACC	GCGCGCGGAT
201	GTACCATTTC	CATCAGGACG	CGGAGTATCC	GAAGGGCGTG	TACCGCGTGT
251			TCCGGCTATC	CCGAGTGGAA	AATCCTGTTT
301	TCGGTGGCGG	ATTTCGACGA	ATTGCTTGGC	GACGATGTGT	ATTTGGGCGG
351	CGTGTCGCAC	TTGGTGGAAC	AGCCCAACCG		
401	AATTGGGCAG	CGATACGGCG	TACACGCTGG	AAGTGGATTT	GGAAGCAGGG
451		AAGGCGGTTT		GCAGGCAAAA	
501	GTGGCGCGAT	GAAAACAGCG	TGTGGGTGTG	TCCGGCTTGG	AACGAACGCC
551	AGTTGACCCA	ATCGGGCTAT	CCGCGCGAAG	TATGGCTGGT	
601		AGGAAAGCCT		CAAATCGGCG	
651	GATGGTGAAC	GCGTGGCGTT	ATCTCGATCC	GCAGGGTTCG	CCGATTGATT
701	TGATTGAAGC	GTCGGACGGT	TTTTACACCA		GCGGGTCTCA

751	GCCGAAGGCG	AGGCGAAACC	GTTAAACCTG	CCCAACGATT	GCGACGTGGT
801	CGGCTATCTG	GCGGGGCATC	TTTTGCTGAC	GCTGCGCAAG	GACTGGAACC
851	GCGCGAACCA	AAGCTATCCG	AGCGGCGCGC	TGGTGGCGGT	GAAGCTGAAT
901	CGGGGCGAAC	TCGGGGCGGC	GCAGCTTTTG	TTTGCGCCCG	ATGAAACGCA
951	GGCATTGGAA	AGCGTGGAAA	CGACCAAGCG	TTTTGTGGTG	GCGAGCCTGT
1001	TGGAGAACGT	ACAAGGCCGT	CTGAAAGCAT	GGCGGTTTGC	CGACGGCAAA
1051	TGGCAGGAAG	TCGAATTGCC	GCGCCTGCCT	TCGGGCGCGT	TGGAAATGAC
1101	CGACCAACCT	TGGGGCGGCG	ACGTGGTTTA	CCTTGCCGCC	AGCGATTTCA
1151	CCACGCCGCT	GACGCTGTTT	GCGCTGGATT	TGAACGTGAT	GGAACTGACC
1201	GTCATGCGCC	GCCAGCCGCA	GCAGTTTGAT	TCAGACGGCA	TTAACGTGCA
1251	GCAGTTTTGG	ACGACTTCGG	CTGACGGCGA	GCGCATTCCT	TATTTCCACG
1301	TCGGCAAAAA	CGCCGCGCCC	GACATGCCGA	CGCTGGTCTA	TGCCTACGGC
1351	GGTTTCGGCA	TTCCCGAATT	GCCGCATTAT	CTGGGCAGCA	TTGGCAAATA
1401	TTGGCTGGAA	GAGGGCAATG	CCTTTGTATT	GGCGAACATC	CGCGGCGGCG
1451	GCGAGTTCGG	CCCGCGCTGG	CATCAGGCGG	CGCAGGGAAT	CAGCAAACAT
1501	AAAAGCGTTG	ATGATTTATT	GGCAGTCGTG	CGCGATTTGT	CCGAACGCGG
1551	TATCAGTTCG	CCCGAACACA	TCGGCTTGCA	GGGCGGCAGC	AACGGCGGAC
1601	TGATTACTGC	CGCCGCCTTC	GTGCGCGAAC	CGCAAAGCAT	CGGCGCGCTG
1651	GTGTGCGAAG	TGCCGCTGAC	CGACATGATC	CGTTATCCGC	TGCTCTCCGC
1701	CGGTTCAAGC	TGGACAGACG	AATACGGCAA	TCCGCAAAAA	TACGAAGTCT
1751	GCAAACGCCG	GTTGGGCGAA	TTGTCGCCGT	ATCACAATCT	TTCAGACGGC
1801	ATCGATTATC	CGCCCGCGCT	CATTACCACC	AGCCTGTCCG	ACGATCGCGT
1851	CCATCCCGCC	CACGCGCTCA	AGTTCTACGC	CAAACTGCGC	GAAACCTCCG
1901	CGCAATCTTG	GCTCTACTCG	CCTGACGGCG	GCGGCCATAC	CGGCAACGGC
1951	ACCCAACGCG	AATCCGCCGA	CGAACTCGCC	TGCGTCTTGC	TGTTTTTGAA
2001	AGAGTTTTTG	GGCTAA			

## This corresponds to the amino acid sequence <SEQ ID 162; ORF 041-1>: m041-1.pep

	7				
1	MKSYPDPYRH	FENLDSAETQ	NFAAEANAET	RARFLENDKA	RALSDGILAQ
51	LQDTRQIPFC	QEHRARMYHF	HQDAEYPKGV	YRVCTAATYR	SGYPEWKILF
101	SVADFDELLG	DDVYLGGVSH	LVEQPNRALL	TLSKLGSDTA	YTLEVDLEAG
151	ELVEGGFHFP	AGKNHVSWRD	ENSVWVCPAW	NERQLTQSGY	PREVWLVERG
201	KSFEESLPVY	QIGEDGMMVN	AWRYLDPQGS	PIDLIEASDG	<b>FYTKTYLRVS</b>
251	AEGEAKPLNL	PNDCDVVGYL	AGHLLLTLRK	DWNRANQSYP	SGALVAVKLN
301	RGELGAAQLL	FAPDETQALE	SVETTKRFVV	ASLLENVQGR	LKAWRFADGK
351	WQEVELPRLP	SGALEMTDQP	WGGDVVYLAA	SDFTTPLTLF	ALDLNVMELT
401	VMRRQPQQFD	SDGINVQQFW	TTSADGERIP	YFHVGKNAAP	DMPTLVYAYG
451	GFGIPELPHY	LGSIGKYWLE	EGNAFVLANI	RGGGEFGPRW	HQAAQGISKH
501	KSVDDLLAVV	RDLSERGISS	PEHIGLQGGS	NGGLITAAAF	VREPQSIGAL
551	VCEVPLTDMI	RYPLLSAGSS	WTDEYGNPQK	YEVCKRRLGE	LSPYHNLSDG
601	IDYPPALITT	SLSDDRVHPA	HALKFYAKLR	ETSAQSWLYS	PDGGGHTGNG
651	TORESADELA	CVLLFLKEFL	G*		

#### m041-1/g041-1 94.6% identity in 671 aa overlap

	10	20	30	40	50	60
m041-1.pep	MKSYPDPYRHFENLI	SAETQNFAA	EANAETRARF	LENDKARALS	DGILAQLQDT	RQIPFC
		11111111	1111111111	1:11111111	1111 1:111	111111
g041-1	MKSYPDPYRHFENLI	SAETQNFAA	EANAETRARF	LNNDKARALS	DGILNQMQDT	ROIPFC
	10	20	30	40	50	60
	70	80	90	100	110	120
m041-1.pep	QEHRARMYHFHQDAI	EYPKGVYRVC	TAATYRSGYP	EWKILFSVA	FDELLGDDVY	LGGVSH
			111111111	1111111111	11111111111	11111
g041-1	QEHRARMYHFHQNAI	EYPKGVYRMC	TAATYRSGYP	EWKILFSVAL	FDELLGDDVY	LGGVSH
	70	80	90	100	110	120
	130	140	150	160	170	180
m041-1.pep	LVEQPNRALLTLSKI	GSDTAYTLE	VDLEAGELVE	GGFHFPAGKN	HVSWRDENSV	WVCPAW
		1:111111	1111111111	111111111	11111111111	11111
g041-1	LVEQPNRALLTLNKS	SGGDTAYTLE	VDLEAGELVE	GGFHFPAGKN	HVSWRDENSV	WVCPAW
	130	140	150	160	170	180
	190	200	210	220	230	240
m041-1.pep	NERQLTQSGYPREVV	ILVERGKSFE	ESLPVYQIGE	DGMMVNAWRY	LDPQGSPIDL	IEASDG
	:	11111111	1111:111:	: [] [] [] []	111111111	

BNSDOCID: <WO__9957280A2_J_>

g041-1	DERQLTESGYPREV	WLVERGKS	EESI.PAYOTO	KCAMMUNAND	VI DDOCGDER	
	190	200	210	220	230	LIEASDG 240
	250	260	270	280		
m041-1.pep	FYTKTYLRVSAEGE	AKPLNLPNI	CDVVGYLAGH	LLLTLRKDWN	290 RANOSYPSCA	300
g041-1	111111111111	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	111111111	I I I I I I I I I I I I I I I I I I I	
9041-1	FYTKTYLQVSSEGG 250	AKPLNLPND 260	CDVVGYLAGH: 270	LLLTLRKDWH 280	RANQSYPSGA	LVAVKLN
	200	200	270	280	290	300
m041 1 max	310	320	330	340	350	360
m041-1.pep	RGELGAAQLLFAPD	ETQALESVE	TTKRFVVASL	LENVQGRLKAI	WRFADGKWQE	VELPRLP
g041-1		ETQALESVE	TTKRFVVASLI	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		:   :
	310	320	3.30	340	350	360
	370	380	200			
m041-1.pep	SGALEMTDQPWGGD		390 זרינבאנית	400 NVMET TVMDE	410	420
					11111	
g041-1	SGALEMTDQPWGGDV	/VYLAASDF	TTPLTLFALDI	NVMELTVMRI	QPQQFVSDG:	IEVRQFW
	370	380	390	400	410	420
	430	440	450	460	470	480
m041-1.pep	TTSADGERIPYFHVO	KNAAPDMP'	TLVYAYGGFGI	PELPHYLGSI	CKVWI EECNI	\ T.71 2T .70 3.7 7
q041-1	:: :            AVSSDGERIPYFHVG	111111		111111111	3 1 1 1 1 1 1 1 1 1	
J	430	440	450	460	GKYWLEEGNA 470	AFVLANI 480
	400			100	470	480
m041-1.pep	490 REGEEFERRINGAAC	500 CTCVUVCUI	510	520	530	540
	RGGGEFGPRWHQAAQ			111.111.11	1111111111	11111
g041-1	VGGGELG LKM LÕAVÕ	GISKHKSVI	DLLAVVRDLS	ERGMSSPKHI	GLQGGSNGGI	ITAAAF
	490	500	510	520	530	540
	550	560	570	580	590	600
m041-1.pep	VREPQSIGALVCEVP	LTDMIRYPL	LSAGSSWTDE	YGNPOKYEVC	KRRICETODY	600 HNLSDG
g041-1	_	1111111		111111111	11111111111	LITTE
90.2 1	VREPQSIGALVCEVP 550	560	LSAGSSWIDE:	YGNPQKYEACI 580	KRRLGELSPY 590	
	_		0.0	300	390	600
m041-1.pep	610	620	630	640	650	660
	IDYPPALITTSLSDD		FYAKLRETSAÇ 111111111	QSWLYSPDGG(	SHTGNGTQRE	SADELA
g041-1	IDIELWITITOTODD	KAHBAHATK	FYAKLRETSP	OSWLYSPDGG	GHTGNGTORE	III:II SADKIA
	610	620	630	640	650	660
	670					
m041-1.pep	CVLLFLKEFLGX					
q041-1						
5 · • • •	670					
1/P55577						
-,						

#### m041-1/P55577

sp|P55577|Y4NA_RHISN PROBABLE PEPTIDASE Y4NA >gi|2182536 (AE000086) Y4nA [Rhizobium sp. NGR234] Length = 726

Score = 370 bits (940), Expect = e-101 Identities = 217/682 (31%), Positives = 331/682 (47%), Gaps = 22/682 (3%)

- Query: 2 KSYPDPYRHFENLDSAETQNFAAEANAETRARFLENDKARALSDGILAQLQDTRQIPFCQ 61 K DP + +D + + N T + ++ + L LQ T +I
- Sbjct: 42 KDASDPRAYLNEIDGDKAMTWVEAHNLSTVDKLSKDPRYSEYQADALTILQATDRIASPS 101
- Query: 62 EHRARMY-HFHQDAEYPKGVYRVCTAATYRSGYPEWKILFSVADFDELLGDDVYLGGVSH 120
- R M +F QD + +G++R T +YRSG P+W+ + V
- Sbjct: 102 FARDGMIDNFWQDGTHVQGLWRRTTWESYRSGNPQWRTILDVDALSKAEGKTWVFEGGDC 161
- Query: 121 LVEQPNRALLTLSKLGSDTAYTLEVDLEAGELVEGGFHFPAGKNHVSWRDENSVWVCPAW 180 L N L+ LS G D E D+ GE V+ GF P GK V+W DEN+++V

```
Sbjct: 162 LPPTSNLCLIRLSDGGKDADVVREFDIAKGEFVKEGFVLPEGKQSVTWVDENTIYVTREW 221
Query: 181 NERQLTQSGYPREVWLVERGKSFEESLPVYQ-----IGEDGMM--VNAWRYLDPQGSPI 232
              ++T SGY
                        +V+RG+S ++++ +++
                                                 E G++ ++
Sbjct: 222 TPGEVTSSGYAYVTKVVKRGQSLDQAVEIFRGQKKDVSAERGVLRDIDGKYVMDTSYRGL 281
Query: 233 DLIEASDGFYTKTYLRVSAEGEAKPLNLPNDCDVVGYLAGHLLLTLRKDWNRANQS-YPS 291
                 FY + + L LP GY G + L+ DW A + + +
Sbjct: 282 DFFNTELAFYPNGH----PDTRKVVLPLPTTAVFSGYYKGQAIYWLKSDWTSAKGTVFHN 337
Query: 292 GALVAVKLNRGELGAAQL----LFAPDETQALESVETTKRFVVASLLENVQGRLKAWRFA 347 GA++A L A++ LF P+E Q++ TK +V S+L NV +++++ F
Sbjct: 338 GAIIAFDLKAALADPARVEPLVLFMPNEHQSVAGTTQTKNRLVLSILSNVTSEVRSFDFG 397
Query: 348 DGKWQEVELPRLPSGALEMTDQPWGGDVVYLAASDFTTPLTLFALDLNVMELTVMRRQPQ 407
                                  D +++ + F P TLF D
           GW +L + L+T
Sbjct: 398 KGGWSSFKLALPENSTLSLTSSDDESDQLFVFSEGFLEPSTLFCADAATGQVEKITSTPA 457
Query: 408 QFDSDGINVQQFWTTSADGERIPYFHVGKNAAP---DMPTLVYAYGGFGIPELPHYLGSI 464
           +FD+ G+ QQFW TS DG ++PYF V + PT++YAYGGF IP P Y
Sbjct: 458 RFDAGGLQAQQFWATSKDGTKVPYFLVARKDVKLDGTNPTILYAYGGFQIPMOPSYSAVL 517
Query: 465 GKYWLEEGNAFVLANIRGGGEFGPRWHQAAQGISKHKSVDDLLAVVRDLSERGISSPEHI 524
           GK WLE+G A+ LANIRGGGEFGP+WH A ++ + DD AV +DL + ++S H+
Sbjct: 518 GKLWLEKGGAYALANIRGGGEFGPKWHDAGLKTNRQRVYDDFQAVAQDLIAKKVTSTPHL 577
Query: 525 GLQGGSNGGLITAAAFVREPQSIGALVCEVPLTDMIRYPLLSAGSSWTDEYGNPQKYEVC 584
           G+ GGSNGGL+
                         ++ P
                                 A+V +VPL DM+ + +SAG+SW EYG+P
Sbjct: 578 GIMGGSNGGLLMGVQMIQRPDLWNAVVIQVPLLDMVNFTRMSAGASWQAEYGSPDD-PVE 636
Query: 585 KRRLGELSPYHNLSDGIDYPPALITTSLSDDRVHPAHALKFYAKLRETSAQSWLYSPDGG 644
             L +SPYHN+ G+ YP TS DDRV P HA K A +
Sbjct: 637 GAFLRSISPYHNVKAGVAYPEPFFETSTKDDRVGPVHARKMAALFEDMGLPFYYYENIEG 696
Query: 645 GHTGNGTQRESADELACVLLFL 666
          GH
                 +E A A +++
Sbjct: 697 GHAAAANLQEHARRYALEYIYM 718
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 163>: a041-1.seq

1 ATGAAATCCT ACCCCGACCC CTACCGCCAT TTTGAAAACC TCGATTCCGC CGAAACGCAA AACTTCGCTG CTGAAGCGAA TGCCGAAACG CGCGCGCGTT 51 TTTTAAACAA CGACAAGGCA CGCGCATTGT CTGACGGCAT TTTGGCGCAG 101 TTGCAGGACA CGCGGCAAAT TCCGTTTTGT CAGGAACACC GCGCGCGGAT 201 GTACCATTTC CATCAAGATG CGGAATATCC GAAAGGCGTG TACCGCGTGT GTACCGCGGC GACTTACCGT TCGGGCTATC CTGAGTGGAA AATCCTGTTT 251 301 TCGGTGGCGG ATTTCGACGA ATTGCTCGGT GACGATGTAT ATCTAGGCGG 351 CGTGTCGCAC CTGGTGGAAC AGCCCAACCG CGCGTTGTTA ACACTGAGCA 401 AATCGGGCGG CGATACCGCG TACACGCTGG AAGTGGATTT GGAAGCAGGG 451 GAGTTGGTAG AAGGCGGTTT TCACTTTCCG GCAGGCAAAA ACCATGTGTC 501 GTGGCGCGAT GAAAACAGCG TGTGGGTGTG TCCGGCTTGG GACGAACGCC AGTTGACCGA ATCGGGCTAT CCGCGCGAGG TGTGGCTGGT GGAACGCGGC 551 601 AAGAGTTTCG AGGAAAGCCT GCCGGTGTAC CAAATTGCTG AAGACGGCAT 651 GATGGTGAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT 701 TGATTGAAGC GTCTGACGGT TTTTACACCA AAACCTATTT GCAGGTCTCA 751 GCCGAAGGCG AAGCGAAACC GTTAAACCTG CCCAACGATT GCGACGTAGT 801 CGGCTATCTG GCCGGACATC TTTTGCTGAC CTTGCGTAAA GACTGGCACC GCGCGAACCA AAGCTATCCG AGTGGCGCAT TGGTAGCAGT AAAATTAAAC 851 901 CGCGGCGAAT TGGGCGCGGC GCAGCTTTTG TTTGCGCCCA ATGAAACGCA 951 GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTCGTG GCGAGCCTGC 1001 TGGAAAACGT ACAGGGTCGT CTGAAAGCGT GGCGTTTTAC TGATGGCAAA 1051 TGGCAGGAAA CCGAGTTGCC GCGCCTGCCT TCGGGCGCGT TGGAAATGAC 1101 CGACCAACCG TGGGGGGGCG ACGTAGTTTA CCTTGCCGCC AGCGATTTCA 1151 CCACGCCGCT GACGCTGTTT GCATTGGATT TGAACGTGAT GGAACTGACC 1201 GTCATGCGCC GCCAGCCGCA GCAGTTTGAT TCAGACGGCA TTAACGTGCA 1251 GCAGTTTTGG ACGACTTCGG CTGACGGCGA GCGCATTCCT TATTTCCACG 1301 TCGGCAAAAA CGCCGCGCCC GACATGCCGA CGCTGGTCTA TGCCTACGGC GGTTTCGGCA TTCCCGAATT GCCGCATTAT CTGGGCAGCA TTGGCAAATA 1351 1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCGAACATC CGCGGCGGCG

BNSDOCID: <WO__9957280A2_L>

## This corresponds to the amino acid sequence <SEQ ID 164; ORF 041-1.a>: a041-1.pep

```
1 MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLNNDKA RALSDGILAQ
51 LQDTRQIPFC QEHRARMYHF HQDAEYPKGV YRVCTAATYR SGYPEWKILF
101 SVADFDELLG DDVYLGGVSH LVEQPNRALL TLSKSGGDTA YTLEVDLEAG
151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW DERQLTESGY PREVWLVERG
201 KSFEESLPVY QIAEDGMMVN AWRYLDPQGS PIDLIEASDG FYTKTYLQVS
251 AEGEAKPLNL PNDCDVVGYL AGHLLLTLRK DWHRANQSYP SGALVAVKLN
      RGELGAAQLL FAPNETQALE SVETTKRFVV ASLLENVQGR LKAWRFTDGK
WQETELPRLP SGALEMTDQP WGGDVVYLAA SDFTTPLTLF ALDLNVMELT
301
351
401
      VMRRQPQQFD SDGINVQQFW TTSADGERIP YFHVGKNAAP DMPTLVYAYG
      GFGIPELPHY LGSIGKYWLE EGNAFVLANI RGGGEFGPRW HQAAQGISKH
451
      KSVDDLLAVV SDLSERGISS PEHIGLOGGS NGGLITAAAF VREPOSIGAL
501
VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEVCKRRLGE LSPYHNLSDG
601 IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSPQSWLYS PDGGGHTGNG
651 TQREAADELA CVLLFLKEFL G*
```

### **a041-1/m041-1** 97.9% identity in 671 aa overlap

2041 1	10	20	30	40	50	60
a041-1.pep	MKSYPDPYRHFEN	LDSAETQNFA	AEANAETRAR:	FLNNDKARAL:	SDGILAOLOD	TROIPEC
044	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	11111111	11.11111	1111111111	
m041-1	MKSYPDPYRHFEN	LDSAETQNFA	AEANAETRAR	FLENDKARAL.	SDGTTAOLOD	TPOIDEC
	10	20	30	40	50	60
					30	80
	70	80	90	100	110	1.00
a041-1.pep	QEHRARMYHFHQD:	AEYPKGVYRV	CTAATYRSGVI	TOO PEWRIT ECUAT	TIU	120
				PMUIDESVAL	) F DE LLGDDV	YLGGVSH
m041-1	QEHRARMYHFHQD	AEYPKGVVDV	, , , , , , , , , , , , , , , , , , ,	DEMARKE TO THE	1111111	
	70	80	90	PEWKILFSVAL		
	. 0	00	90	100	110	120
	130	1.40				
a041-1.pep		140	150	160	170	180
dogr-1.pep	LVEQPNRALLTLS	KSGGDTAYTLE	EVDLEAGELVE	EGGFHFPAGKN	HVSWRDENS	WVCPAW
0 4 1     1						
m041-1	7.75t 14164HH1 H2t	COSDIMITE	EVDLEAGELVE	GGFHFPAGKN	HVSWRDENS	WVCDZW
	130	140	150	160	170	180
					2.0	100
	190	200	210	220	230	240
a041-1.pep	DERQLTESGYPREV	WLVERGKSFE	ESLPVYOTAF	DCMMUNIANDY	T DDOCCDID	T
m041-1	NERQLTQSGYPREV	WLVERCKSEE	FSIDUVOTOR			11111
	190	200	210	DGMMVNAWKY	LDPQGSPIDI	
		200	210	220	230	240
	250	260	070			
a041-1.pep			270	280	290	300
	FYTKTYLQVSAEGE	AKPLNLPNDC	DVVGYLAGHL	LLTLRKDWHR	ANQSYPSGAL	VAVKLN
m041-1				11111111		
MO41-1	T T T T T T T T T T T T T T T T T T T	WELPNT SNDC	DVVGYLAGHL	LLTLRKDWNR	ANOSYPSGAL	VAVKTN
	250	260	270	280	290	300
					230	300
	310	320	330	340	350	2.50
a041-1.pep	RGELGAAQLLFAPN	ETQALESVET'	TKPEWART	CMT700D7 TER CT		360
m041-1	RGELGAAOLLFAPD	ETOALESVET'	TKRFWWerr	IIIIIIIIII	11:11111:	11111
	310	320	330	EN V QGRLKAWI	KEADGKWQEV	
		020	330	340	350	360

a041-1.pep	370 SGALEMTDQPWGGDVV !!!!!!!!!!!!! SGALEMTDQPWGGDVV 370		31111111111	1111111111	1111111111	1111
a041-1.pep m041-1	430 TTSADGERIPYFHVGK              TTSADGERIPYFHVGK 430	11111111111	1111111111	111111111	111111111	HH
a041-1.pep	490 RGGGEFGPRWHQAAQG               RGGGEFGPRWHQAAQG 490	111111111	1111 11111	11111111111	1111111111	1111
a041-1.pep	550 VREPQSIGALVCEVPL 	111111111	111111111	HILLIAM	HHHHH	1111
a041-1.pep	610 IDYPPALITTSLSDDR               IDYPPALITTSLSDDR 610	1111111111	111111111111	1111111111	11111111:1	1111
a041-1.pep m041-1	670 CVLLFLKEFLGX           CVLLFLKEFLGX 670					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 165>: g042.seq

-					
1	ATGACGATGA	TTTGCTTGCG	CTTCCAagcG	TTCGTGCCGC	ATACCAGCGC
51			CAGCCGGCCC		
101	TGCGGTCGAT	GATGAAAATC	CAGCCGGGGT	TTTTCTCTTT	GATGTATTCG
151			CCCTTCGTTG		
201	CGGCAGGCCG	ATGTCGCCGT	GTATCCAACT	TGCCAACCGC	GATTGCGTGC
251			CCTGTAACCG		
301	TTGCCTTTGG	cggCTTCGCG	CTTTTGGGCG	AACAGCGCGT	CAATCTGCGC
351			CTTCCTTACC		
401	CCATCTGCTT	CTCGCCGCTG	GTGCGGATAT	TGCCGTTGTC	CACCGTCAAA
451			CGCCAACTGT		
501	CCCGCCGGTA	ATGACAAACT	GCGGATTGTG	GCGGTGCAGG	GATTCGCAAT
551	CGGGCTCAAA	CAGCGTCCCC	ACCGTTGCCG	CCTTGTCAAA	TGCAGGCTGC
601	ልልስጥል <del>ር</del>				

This corresponds to the amino acid sequence <SEQ ID 166; ORF 042.ng>: g042.pep

. pep					
1	MTMICLRFQA	<b>FVPHTSALSN</b>	TSTAAGPSCP	MAAVRSMMKI	QPGFFSLMYS
51	KETGCPCPSL				
101	LPLAASRFWA	NSASICAFNS	ATRASLPKIR	DRVSICFSPL	VRILPLSTVK
151	SMVVAFFANC	SYASAPGPPV	MTNCGLWRCR	DSQSGSNSVP	TVAALSNAGC
201	K*				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 167>:

BNSDOCID: <WO___9957280A2_j_>

. نوړرا m042.seq

```
ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
                GTTATCCAMT ACTTCGACAG CCGcCGGCCy TTCyTGCCCG ATGGCGGCGG
            51
                TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
           101
           151 AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
                CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
           201
           251
                CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
                TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
           301
                CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
           351
                CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
                TCTATGGTGG TCGCGTTTTT CGCTAACTGT TCATACGCTT CCGCGCCCGG
           4.51
           501
                CCCGCCGGTA ATGACAAGCT GAGGATTGTA GCGGTGCAGG GCTTCGTAAT
                CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC
           551
           601 AAATAA
This corresponds to the amino acid sequence <SEQ ID 168; ORF 042>:
     m042.pep
               MTMICLRFQA FVPRTSALSX TSTAAGXSCP MAAVRSMMKI QSGFFSLMYS
            51
               KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
               LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
           101
           151
               SMVVAFFANC SYASAPGPPV MTSXGLXRCR ASXSGSNSVP TVAALSNAGC
           201
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 169>:
     a042.seq
               ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
           51
               GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG
          101
               TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
               AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
          151
               CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
          201
          251
               CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
               TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
          301
               CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
          351
               CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
          401
               TCTATGGTGG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCGCCCGG
          451
               CCCGCCGGTA ATGACAAGCT GAGGATTGTA GCGGTGCAGG GCTTCGTAAT
               CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC
          551
          601
               AAATAA
This corresponds to the amino acid sequence <SEQ ID 170; ORF 042.a>:
     a042.pep
               MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS
           51
               KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
               LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
               SMVVAFFANC SYASAPGPPV MTS*GL*RCR AS*SGSNSVP TVAALSNAGC
          151
          201
               K*
m042/a042
            99.0% identity over a 201 aa overlap
                                             30
                                                       40
                  MTMICLRFQAFVPRTSALSXTSTAAGXSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
     m042.pep
                  MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
     a042
                         10
                                  . 20
                                             30
                                                       40
                                                                50
                                                                          60
                                   80
                                             90
                                                     100
                                                               110
    m042.pep
                 RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
                  a042
                 RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
                         70
                                   80
                                             90
                                                     100
                                                               110
                                                                         120
                        130
                                  140
                                            150
                                                     160
                                                               170
                                                                         180
                 AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSXGLXRCR
    m042.pep
```

Έ.

AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSXGLXRCR a042 130 140 150 170 190 200 ASXSGSNSVPTVAALSNAGCKX m042.pep a042 ASXSGSNSVPTVAALSNAGCKX 190 200

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 042 shows 93.0% identity over a 201 aa overlap with a predicted ORF (ORF 042.ng) from N. gonorrhoeae:

m042/g042

	10	20	30	40	50	60
m042.pep	MTMICLRFQAFVPRI	SALSXTSTA	AGXSCPMAAV	RSMMKIQSGF	FSLMYSKETG	CPCPSL
	-	1111 1111	11 111111	HILLI II	1111111111	11111
g042	MTMICLRFQAFVPHT	SALSNTSTA	AGPSCPMAAV	RSMMKIQPGF	FSLMYSKETG	CPCPSL
	10	20	30	40	50	60
	70	80	90	100	110	120
m042.pep	RKDSSTGGRPMSPCI	QLANRDCVPI	KADTLLPVTD	STSPRPLPLA	ASRVWANSAS	ICAFNS
				1111111111	H1 111111	11111
g042	RKDSSTGGRPMSPCI	QLANRDCVPI	KADTLLPVTD	STSPRPLPLA	ASRFWANSAS	ICAFNS
	70	80	90	100	110	120
	130	140	150	160	170	180
m042.pep	AARASLPKIRAKVSI	CFSPLVRIL	PLSTVRSMVV	AFFANCSYAS	APGPPVMTSX	GLXRCR
				1131111111	111111111:	11 111
g042	ATRASLPKIRDRVSI			AFFANCSYAS	APGPPVMTNC	GLWRCR
	130	140	150	160	170	180
	100	222				
	190	200				
m042.pep	ASXSGSNSVPTVAAL	SNAGCKX				
0.40		111111				
g042	DSQSGSNSVPTVAAL					
	190	200				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 171>: m042-1.seq

•	1.00	4				
	1	ATGACGATGA	TTTGCTTGCG	CTTCCAAGCG	TTCGTGCCGC	GTACCAGCGC
	51	GTTATCCAAT	ACTTCGACAG	CCGCCGGCCC	TTCCTGCCCG	ATGGCGGCGG
	101	TACGGTCGAT	GATGAAAATC	CAATCGGGGT	TTTTCTCTTT	GATGTATTCG
	151	AAGGAAACAG	GCTGCCCGTG	CCCCTCGTTG	CGTAAAGATT	CGTCTACAGG
	201	CGGTAGGCCG	ATGTCGCCGT	GTATCCAACT	TGCCAACCGC	GACTGCGTGC
	251	CGAAGGCGGA	CACCTTGTTG	CCCGTAACCG	ACAGCACCAG	CCCGCGTCCT
	301	TTGCCTTTGG	CGGCTTCGCG	CGTTTGGGCG	AACAGCGCGT	CAATCTGCGC
	351		GCCGCGCGCG			
	401	CCATCTGCTT	TTCGCCGCTG	GTGCGGATAT	TGCCGTTGTC	CACCGTCAGA
	451	TCTATGGTGG	TCGCGTTTTT	CGCTAACTGT	TCATACGCTT	CCGCGCCCGG
	501	CCCGCCGGTA	A			

This corresponds to the amino acid sequence <SEQ ID 172; ORF 042-1>: m042-1.pep

1 MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS 51 KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP

101 LPLAASRVWA NSASICAFNS AARASLPKIR AK<u>VSICFSPL VRILPLSTV</u>R 151 SMVVAFFANC SYASAPGPPV MTS*

m042-1/g042 95.4% identity in 173 aa overlap

BNSDOCID: <WO___9957280A2_J_>

m042-1.pep	10 MTMICLRFQAFVPRT             MTMICLRFQAFVPHT 10		! <b>!</b> ! ! ! ! ! ! ! ! !		I I I I I I I I I I I I I I I I I I I	1111
m042-1.pep	70 RKDSSTGGRPMSPCI           RKDSSTGGRPMSPCI 70	4   4   1   1   1   1   1   1		4414111111	110 RVWANSASIC	120 AFNS
m042-1.pep g042	130 AARASLPKIRAKVSI  :       :    ATRASLPKIRDRVSI 130		:       TVKSMVVAFF	11111111111	ELIII.	WRCR 180
g042	DSQSGSNSVPTVAALS	SNAGCKX 200				
The following partic	al DNA sequence	was identified	d in <i>N. men</i>	ingitidis <s< td=""><td>SEQ ID 173</td><td>3&gt;:</td></s<>	SEQ ID 173	3>:
1 ATC 51 GT: 101 TAC 201 CGC 251 CGF 301 TTC 351 CTT 401 CCF 451 TCT 501 CCC  This corresponds to a042-1.pep 1 MTM 51 KET 101 LPI	GACGATGA TTTGCTTC TATCCAAT ACTTCGAC CGGTCGAT GATGAAAA GGAAACAG GCTGCCCC GTAGGCCG ATGTCGCC AAGGCGGA CACCTTGT GCCTTTTGG CGCCTCCC TCAATTCC GCCGCCCC ATGTGCCTT TTCGCCGC TATGGTGG TCGCGTTT CGCCGGTA A	GCG CTTCCAAG CAGCCGGC ATC CAATCGGG GTG CCCCTCGT CTG CCCGTAAC GCG CGTTCCTTGG GCG CTTCCTTGG TTG CCCCAACT CTG GTGCGGAT TT CGCCAACT Quence < SEQ AN TSTAAGPS RP MSPCIQLAN NS AARASLPKI	CG TTCGTGC CC TTCCTGC GT TTTTCTC TG CGTAAAG CT TGCCAAC CG ACAGCAC CG GAAAACC AT TGCCGTTC GT TCATACGC  LD 174; OI  CP MAAVRSM	CGC GTACCA CCG ATGGCG ITT GATGTA ATT CGTCTA CGC GACTGC CAG CCCGCG CGT CAATCT CGC GCCAAG GTC CACCGT CTT CCGCGC  RF 042-1.a	GCGC GCGG TTCG CAGG GTGC TCCT GCGC GTCT CAGA CCGG	
m042-1/a042-1			a overlap			
	10 MTMICLRFQAFVPRTS. 	111111111		1111111111		
	70 RKDSSTGGRPMSPCIQI             RKDSSTGGRPMSPCIQI   70	LANRDCVPKADT	LLPVTDSTSP           LLPVTDSTSP	RPLPLAASRV           RPLPLAASRV	WANSASICAE	
	130 AARASLPKIRAKVSICI              AARASLPKIRAKVSICE 130	FSPLVRILPLST            FSPLVRILPLST	VRSMVVAFFA 	NCSYASAPGP            NCSYASAPGP	11111	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 175>:

```
9043.seq
1 ATGGTTGTT CAAATCAAAA TATCTATGCC GTCGGCCCAT CAGCACTTTT
51 TCACATCCGA AGGCAAAAAT CCGTAATGCC GCCTGAACGC TTCGttgaAC
101 CGTCCCGCGT ggcggtagcc gcAAAAGTGC ATCGCGGCTT GGATGGTGCT
151 GCCCGATTCG ATGAGGGcga gcGCGTGTTC CAGCCGCAGG CGGCGCAGGC
201 GTCCGGCGAC GGTTTCGCCG GTTTGCGCTT TGAAATAGCG TTTCAGGTAG
251 CATTCGTTCA GCCCGACGCG GCGGCGATT TCGGCGATGG TCAGCGGGCG
301 GGCGAATTCG CTGTTCAAAA TATCGGCGGC TTCGTCTATG CGCCGGCGGCG
351 GGTAGCCGTT GTCGTGGCGG CGGAAGGTGA AGCGTAA
```

#### This corresponds to the amino acid sequence <SEQ ID 176; ORF 043.ng>:

g043.pep

- 1 MVVSNQNIYA VGPSALFHIR RQKSVMPPER FVEPSRVAVA AKVHRGLDGA
- 51 ARFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQPDA AGDFGDGQRA
- 101 GEFAVQNIGG FVYAPAAVAV VVAAEGEA*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 177>:

m043.seq

1	ATGGTTGTTT	CAAATCAAAA	TATCTATGCC	GCCGGCCCCT	CAGCACTTCT
51	TCACATCCGA	AGGCAAAAAT	CCGTAATGCC	GTCTGAACGC	TTCGTTGAAC
101	CGTCCCGCGT	GGCGGTAGCC	GCAAAAGTGC	ATGGCGGCTT	GGACGGTGCT
151	GCCGGATTCG	ATGAGGGCGA	GCGCGTGTTC	CAGCCGCAGG	CGGCGCAgGC
201	ATCCGGCGAC	GGTTTCGCCG	GTTTGCGCTT	TGAAATAGCG	TTTCAGGTAG
251	CATTCGTTCA	GTCCGACGCG	GCGGGCGATT	TCGGCGATGG	TCAGCGGACG
301	GGCGAATTCG	TGTTGCAGGA	TGTCGGCGGC	TTCGTCTATG	CGCCGACGGC
351	GGTAACCGTT	GTCGTGGCGG	CGGAAGGTGA	AGCGCAATAA	

### This corresponds to the amino acid sequence <SEQ ID 178; ORF 043>:

m043.pep

- 1 MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA
  - 51 AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGQRT
  - 101 GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

## Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB

ORF 043 shows 89.8% identity over a 128 aa overlap with a predicted ORF (ORF043.a) from N. gonorrhoeae:

m043/g043

	10	20	30	40	50	60
m043.pep	MVVSNQNIYAAGPS		VMPSERFVEP	SRVAVAAKVH	GGLDGAAGFD	EGERVF
q043	MVVSNQNIYAVGPS	:			וווווו וו	
9043	10	20	30	40	50	60
	10	2.0	30	40	30	00
	70	80	90	100	110	120
m043.pep	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDF	GDGQRTGEFV	LQDVGGFVYA	PTAVTV
	1111111111111111	1111111111	111 111111	11111:111:	:1::111111	1:11:1
g043	QPQAAQASGDGFAG	LRFEIAFQVA	FVQPDAAGDF	GDGQRAGEFA	VQNIGGFVYA	PAAVAV
	70	80	90	100	110	120
	130					
m043.pep	VVAAEGEAQX					
	1111111					
g043	VVAAEGEAXX					
=	130					

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 179>:

a043.seq

- 1 ATGGTTGTTT CAAATCAAAA TATCTATGCC GCCGGCCCCT CAGCACTTCT
  51 TCACATCCGA AGGCAAAAAT CCGTAATGCC GTCTGAACGC TTCGTTGAAC
- 101 CGTCCCGCGT GGCGGTAGCC GCAAAAGTGC ATGGCGGCTT GGACGGTGCT

BNSDOCID: <WO___9957280A2_l_>

grands of a contract of the parameter



101

1 - 1	~~~~~				
151	GCCGGATTCG	ATGAGGGCGA	GCGCGTGTTC	CAGCCGCAGG	CGGCCCACCC
201	ATTCCCCCCAA	COMMUNICACIO		OF TOCOCOLING	CGGCGCAGGC
201	ATCCGGCGAC	GGTTTCGCCG	GTTTGCGCTT	TGAAATAGCG	TTTCACCTAC
251	Chrrccmrch	CMCCCAACCC			TITCAGGIAG
201	CALICGITCA	GTCCGACGCG	GCGGGCGATT	TCGGCGATGG	TCAGCGGACG
301	GGCGAATTCG	TOTTO	MCECCCCC.		* C110 CGGACG
501	COCGRATICG	TGTTGCAGGA	TGTCGGCGGC	TTCGTCTATG	CGCCGACGGC

351 GGTAACCGTT GTCGTGGCGG CGGAAGGTGA AGCGCAATAA

### This corresponds to the amino acid sequence <SEQ ID 180; ORF 043.a>:

a043.pep MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGQRT 51

m043/a043 100.0% identity in 129 aa overlap

GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

```
20
                                30
                                        40
                                                50
          MVVSNQNIYAAGPSALLHIRRQKSVMPSERFVEPSRVAVAAKVHGGLDGAAGFDEGERVF
m043.pep
          MVVSNQNIYAAGPSALLHIRRQKSVMPSERFVEPSRVAVAAKVHGGLDGAAGFDEGERVF
a043
                10
                                30
                                        40
                                                50
                70
                        80
                                90
                                       100
                                               110
                                                       120
          QPQAAQASGDGFAGLRFEIAFQVAFVQSDAAGDFGDGQRTGEFVLQDVGGFVYAPTAVTV
m043.pep
          QPQAAQASGDGFAGLRFE1AFQVAFVQSDAAGDFGDGQRTGEFVLQDVGGFVYAPTAVTV
a043
                70
                        80
                                90
                                       100
                                               110
                130
m043.pep
          VVAAEGEAQX
          1111111111
a043
          VVAAEGEAOX
```

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 181>: g044.seq

```
ATGCTGCCCG ACCAGAGCGT CGAGTTCTTG CCACAAGTCG TCGTTTTTGA
 51 CGGGCTGTTT GGCGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGCCC TTCGATAACG GCGGTCAGCT
201 CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
251 CGGCTGCCGT AGCGCATTAA
```

#### This corresponds to the amino acid sequence <SEQ ID 182; ORF 044.ng>: g044.pep

MLPDQSVEFL PQVVVFDGLF GGGFPAVALP TVYPVFHAVF DVLRVGADDD GAAAFERFQP FDNGGQLHAV VGGLRFAAEK FFFAAAVAH*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 183>: m044.seq

```
ATGCCGTCCG ACTAGAGCGT CGAGTTCTTT CCAGAAGTCG TCGTTTTTGA
  1
 51 CGGGCTGTTT GGAGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCATTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCAGTCAGTT
    CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
201
    TGGCTACCGT AGCGCAYTAa
```

This corresponds to the amino acid sequence <SEQ ID 184; ORF 044>: m044.pep

- MPSDXSVEFF PEVVVFDGLF GGGFPAVALP TVYPVFHAIF DVLRVGADDD
- 51 GAAAFERFQS FDDGSQFHAV VGGLRFAAEK FFFVATVAH*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 185>:

```
a044.seq

1 GTGCCGTCCG ACCAGCGCGT CGAGTTCTTT CCACAAGTCG TCGTTTTTGA
51 CGGGCTGTTT GGCGGCGGT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCGGTCAGTT
201 CCATACGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
251 TGGCTGCCGT AGCGCATTAA
```

This corresponds to the amino acid sequence <SEQ ID 186; ORF 044.a>:

a044.pep

1 VPSDQRVEFF PQVVVFDGLF GGGFPAVALP TVYPVFHAVF DVLRVGADDD

51 GAAAFERFQS FDDGGQFHTV VGGLRFAAEK FFFVAAVAH*

m044/a044 91.0% identity over a 89 aa overlap

```
30
                                          40
                                                  50
          MPSDXSVEFFPEVVVFDGLFGGGFPAVALPTVYPVFHAIFDVLRVGADDDGAAAFERFQS
m044.pep
               VPSDQRVEFFPQVVVFDGLFGGGFPAVALPTVYPVFHAVFDVLRVGADDDGAAAFERFQS
a044
                 10
                         20
                                 30
                                          40
                 70
                         80
          FDDGSQFHAVVGGLRFAAEKFFFVATVAHX
m044.pep
          111:11:11:11:11
a044
          FDDGGQFHTVVGGLRFAAEKFFFVAAVAHX
                 70
                         80
                                 90
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 044 shows 86.5% identity over a 89 aa overlap with a predicted ORF (ORF 044.ng) from N. gonorrhoeae:

m044/g044

```
30
                                         40
                                                50
                                                        60
m044.pep
          MPSDXSVEFFPEVVVFDGLFGGGFPAVALPTVYPVFHAIFDVLRVGADDDGAAAFERFQS
            {\tt MLPDQSVEFLPQVVVFDGLFGGGFPAVALPTVYPVFHAVFDVLRVGADDDGAAAFERFQP}
q044
                10
                        20
                                30
                                        40
                                                        60
                70
                        80
                                90
m044.pep
          FDDGSQFHAVVGGLRFAAEKFFFVATVAHX
          q044
          FDNGGQLHAVVGGLRFAAEKFFFAAAVAHX
                70
                        80
                                90
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 187>: g046.seq

```
ATGTCGGCAA TGCTGCGTCC GACAAGCAGC CCGCCGCgcc gCGCCTGTAT
 1
 51
    GATGACCATC CGCACGCGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
101
    CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
    CTGATGGTTT CGGTTATGCC gaATATGGAA AGGCTGCCGt TTTcGTTGTT
151
201
    TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TtcgctGGAA CGGACGCGCG
251
    CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
    ATGTTGGTTT CGTCGCTGCG GGagaGCGCG AGcagcaagt cggcatcttC
301
    CgcgccggcG Cgttataatg tgAAGGGGGA TGCGccgttg ccgaAAACGG
351
401
    TTTGGacatc gaggcggctg CCTGTTTCCT GCAATGCTTT TTCGTCGATG
451
    TCGATAAcgg TTACGTCGTT GTTGGTGATG GCGGCAAGGT TTTGCGCGAC
```

BNSDOCID: <WO__9957280A2 __>

WO 99/57280

.501 GGTAGAACCT ACCTGCCCGT TGCCTAAAAT GAGGATTTTC ACGGTATGGG

```
551 TCGCCGGGTG A
 This corresponds to the amino acid sequence <SEQ ID 188; ORF 046.ng>:
      g046.pep
                MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
             1
            51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
           101 MLVSSLRESA SSKSASSAPA RYNVKGDAPL PKTVWTSRRL PVSCNAFSSM
           151 SITVTSLLVM AARFCATVEP TCPLPKMRIF TVWVAG*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 189>:
      m046.seq
             1 ATGTCGGCAA TGCTGCGTCC GACAAGCAST CCGC.r.sGC gCGcCTGTAT
            51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
           101 CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
           151 CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
                TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGCG
           251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
           301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
           351 CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
           401 TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
           451 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
           501 GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
           551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 190; ORF 046>:
      m046.pep
               MSAMLRPTSX PXXRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
            51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
           101 MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
           151 SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 191>:
     a046.seq
               ATGTCGGCAA TGCTGCGTCC GACAAGCAGT CCGCCGCGCC GCGCCTGTAT
            1
               GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
           51
          101
               CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
               CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
          201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGCG
               CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
          301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
          351
               CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
          401
               TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
          451 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
               GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
          551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 192; ORF 046.a>:
     a046.pep
               MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
            1
               LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
              MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
          151 SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
            98.4% identity over a 186 aa overlap
m046/a046
                                                       40
     m046.pep
                 {\tt MSAMLRPTSXPXXRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME}
                  a046
                 {\tt MSAMLRPTSSPPRRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME}
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGL	RYSRYSLERTE	RAMRPGMLNRSA	ATLQATMLV:	SSLRESASSK	SASSAPA
	1111111111111	11111111111		111111111		111111
a046	RLPFSLFSSLGL	RYSRYSLERT	RAMRPGMLNRSA	ATLQATMLVS	SSLRESASSKS	SASSAPA
	70	80	90	100	110	120
	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPK	TVWTSRRLPVS	CNAFSSMSITV	TSLLGMAARI	CATVEPTCPI	LPKMRIF
				11111111		
a046	RSNVKGDAPLPK	TVWTSRRLPVS	CNAFSSMSITV'	TSLLGMAARI	CATVEPTCPI	PKMRIF
	130	140	150	160	170	180
m046.pep	TVWVAEX					
modo.pep	IIIIIII					
a046	TVWVAEX					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 046 shows 97.3% identity over a 185 aa overlap with a predicted ORF (ORF 046.ng) from N. gonorrhoeae:

m046/g046

	10	20	30	40	50	60
m046.pep	MSAMLRPTSXPXX	(RACMMTIRTRS	SAKRKTCNAP	GQSIRPASCS	VTSCSGLMVS	VMPNME
			111111111	111111111	111111111	
g046	MSAMLRPTSSPPF	RRACMMTIRTRS	SAKRKTCNAP	GQSIRPASCS	VTSCSGLMVS	VMPNME
	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGLF	RYSRYSLERTRA	MRPGMLNRSA	ATLOATMLVS	SLRESASSKS	ASSAPA
			1111111111			11111
g046	RLPFSLFSSLGLF				SLRESASSKS	ASSAPA
	70	80	90	100	110	120
	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPKT	TVWTSRRLPVSC	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
- 0.4.5			111111111		111111111	11111
g046	RYNVKGDAPLPKT					PKMRIF
	130	140	150	160	170	180
m046 non	TVWVAEX					
m046.pep	IVWVAEX					
~0.4.6						
g046	TVWVAGX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 193>: g047.seq

1	ATGGTCATCA	TACAGGCGcg	gcGCGGCGGG	CTGCTTGTCG	GACGCAGCAT
51	10000110110				
101		CAACAACCGC	CTCATCGTCC	CCGCGCCGCA	AACCGTCATC
151	ATCGAAGGCG	ACGAAATCCT	GTTTGCCGCC	GCCGCCGAAA	ACATCGGGGC
201					
251	TTGCCGGCGG	CGGCAACATC	tgctACCGCC	TCGCCAAGCA	GCTCGAACAC

BNSDOCID: <WO___9957280A2_l_>



301 GCATAcaacG TCAAAATCAT CGAATGCCGG CCGCGCcgtg ccgaATGGAT 351 AGCCGAAAAC ctcgAcaaCA CCCTCGTCCT GCAAGGTTCG Gcaaccgacg aAaccctgct cgAcaacgaa tacatcgacg aaatcgaCGT ATTCTGCGCC CTGACCAACG ACGACGAAAG CAACATTAtg tCCGCCCTTT TGGCGAAAAA 501 CCTeggegCG AAGCgegtea teggCATCGT CAACCGCTCA AGCTACGTCG 551 ATTTGCTCGA AGGCAACAAA ATCGACATCG TCGTCTCCCC CCACCTCATC 601 ACCATCGGCT CGATACTCGC CCACATCCGG CGCGGCGACA TCGTTGCCGT 651 CCACCCCATC CGGCGCGCA CGGCGGAAGC CATCGAAGTC GTCGCGCACG 701 GCGACAAAAA AACTTCCGCC ATCATCGGCA GGCGCATCAG CGGCATCAAA 751 TGGCCCGAAG GCTGCCACAT TGCCGCCGTC GTCCGCGCCG GAACCGGCGA 801 AACCATTATG GGACACCATA CCGAAACCGT CATCCAAGAC GGTGACCACA 851 TCATCTTTTT CGTCTCGCGC CGGCGCATCC TGAACGAACT GGAGAAACTC 901 ATCCAAGTCA AAATGGGCTT TTTCGGATAA

#### This corresponds to the amino acid sequence <SEQ ID 194; ORF 047.ng>: g047.pep

```
MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI
    IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI CYRLAKQLEH
 51
101 AYNVKIIECR PRRAEWIAEN LDNTLVLOGS ATDETLLDNE YIDEIDVFCA
151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK IDIVVSPHLI
201 TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK
251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL
301 IQVKMGFFG*
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 195>: m047.seq

```
ATGGTCATCA TACAGGCGCG C..syGCGGA sTGCTTGTCG GACGCAGCAT
     TGCCGACATC GCCCAAGATT TGCCCGACGG GGCCGACTGC CAAATCTGCG
     CCGTTTACCG CAACAACCGC CTCATCGTCC CCGCGCCGCA AACCGTCATC
101
151 ATCGAAGGCG ACGAAATCCT ATTTGCCGCC GCCGCCGAAA ACATCGGCGC
201 GGTCATACCC GAATTGCGCC CCAAAGAAAC CCAAAGAAAC CAGCcCmgmm
251 GCATCATGAT TKCCGGCGGC GGCAACATCG GCTACCGTCT CGCCAAGCAG
301 CTCGAACACG CATACAACGT YAAAATCATC GAATGCCGGC CGCGCCGTGC
351 CGAATGGATA GCCGAAAACC TCGACAACAC CCTCGTCYTG CAAGGTTCGG
401 CAACCGACGA AACCCTGCTC GACAACGAAT ACATCGACGA AATCGACGTA
451 TTCTGCGCCC TGACCAACGA CGACGAAAGC AACATTATGT CCGCCCTTTT
501 GGCGAaAAAC CTCGGCGCGA AGCGCGTCAT CGGCATCGTC AACCGCTCAA
551 GCTACGTCGA TTTGCTCGAA GGCAACAAAA TCGACATCGT CGTCTCCCCC
    CACCTCATCA CCATCGGCTC GATACTCGCC CACATCCGGC GCGGCGACAT
601
651 CGTTGCCGTC CACCCCATCC GGCGCGCAC GGCGGAAGCC ATCGAAGTCG
701 TCGCACACGG CGACAAAAAA ACTTCCGCCA TCATCGGCAG GCGCATCAGC
751 GGCATCAAAT GGCCCGAAGG CTGCCACATT GCCGCCGTCG TCCGCGCCGG
801 AACCGGCGAA ACCATTATGG GACACCATAC CGAAACCGTC ATCCAAGACG
851 GCGACCACAT CATCTTTTTC GTCTCGCGCC GGCGCATCCT GAACGAACTG
901 GAAAAACTCA TCCAGGTCAA AATGGGCTTT TTCGGATAA
```

#### This corresponds to the amino acid sequence <SEQ ID 196; ORF 047>: m047.pep

```
1 MVIIQARXXG XLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI
    IEGDEILFAA AAENIGAVIP ELRPKETQRN QPXXIMIXGG GNIGYRLAKQ
    LEHAYNVKII ECRPRRAEWI AENLDNTLVL QGSATDETLL DNEYIDEIDV
     FCALTNDDES NIMSALLAKN LGAKRVIGIV NRSSYVDLLE GNKIDIVVSP
151
    HLITIGSILA HIRRGDIVAV HPIRRGTAEA IEVVAHGDKK TSAIIGRRIS
201
     GIKWPEGCHI AAVVRAGTGE TIMGHHTETV IQDGDHIIFF VSRRRILNEL
251
```

301 EKLIQVKMGF FG*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 197>: a047.seq

ATGGTCATCA TACAGGCGCG GCGCGGCGGA CTGCTTGTCG GACGCAGCAT

51	TGCCGACATC	GCCCAAGATT	TGCCCGACGG	GGCCGACTGC	CAAATCTGCG
101	CCGTTTACCG	CAACAACCGC	CTCATCGTCC	CCGCGCCGCA	AACCGTCATC
151	ATCGAAGGCG	ACGAAATCCT	ATTTGCCGCC	GCCGCCGAAA	ACATCGGCGC
201	GGTCATACCC	GAATTGCGCC	CCAAAGAAAC	CAGCACCCGC	CGCATCATGA
251	TTGCCGGCGG	CGGCAACATC	GGCTACCGTC	TCGCCAAGCA	GCTCGAACAC
301	GCATACAACG	TCAAAATCAT	CGAATGCCGG	CCGCGCCGTG	CCGAATGGAT
351	AGCCGAAAAC	CTCGACAACA	CCCTCGTCCT	GCAAGGTTCG	GCAACCGACG
401	AAACCCTGCT	CGACAACGAA	TACATCGACG	AAATCGACGT	ATTCTGCGCC
451	CTGACCAACG	ACGACGAAAG	CAACATTATG	TCCGCCCTTT	TGGCGAAAAA
501	CCTCGGCGCG	AAGCGCGTCA	TCGGCATCGT	CAACCGCTCA	AGCTACGTCG
551	ATTTGCTCGA	AGGCAACAAA	ATCGACATCG	TCGTCTCCCC	CCACCTCATC
601	ACCATCGGCT	CGATACTCGC	CCACATCCGG	CGCGGCGACA	TCGTTGCCGT
651	CCACCCCATC	CGGCGCGCA	CGGCGGAAGC	CATCGAAGTC	GTCGCACACG
701	GCGACAAAAA	AACTTCCGCC	ATCATCGGCA	GGCGCATCAG	CGGCATCAAA
751	TGGCCCGAAG	GCTGCCACAT	TGCCGCCGTC	GTCCGCGCCG	GAACCGGCGA
801	AACCATTATG	GGACACCATA	CCGAAACCGT	CATCCAAGAC	GGCGACCACA
851	TCATCTTTTT	CGTCTCGCGC	CGGCGCATCC	TGAACGAACT	GGAAAAACTC
901	ATCCAAGTCA	AAATGGGCTT	TTTCGGATAA		

#### This corresponds to the amino acid sequence <SEQ ID 198; ORF 047.a>:

a047.pep

1 MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI

51 IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI GYRLAKQLEH 101 AYNVKIIECR PRRAEWIAEN LDNTLVLQGS ATDETLLDNE YIDEIDVFCA

151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK IDIVVSPHLI

201 TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK 251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL 301 IQVKMGFFG*

#### 96.5% identity over a 312 aa overlap m047/a047

m047.pep	10 MVIIQARXXGXLVGF                MVIIQARRGGLLVGF 10	111111111	[ ] [ ] [ ] [ ] [ ] [ ] [ ]	111111111	11111111	111111
	70	80	90	100	110	120
m047.pep	<b>AA</b> ENIGAVIPELRPK	ETQRNQPXXII	IXGGGNIGY:	RLAKQLEHAY	NVKIIECRP:	RRAEWI
		11: : 11			11111111	
a047	<b>AAENIGAVIPELRPK</b>		/IAGGGNIGY		NVKI IECRP	RRAEWI
	70	80	90	100	110	
	130	140	150	160	170	180
m047.pep	AENLDNTLVLQGSAT	'DETLLDNEYII	DEIDVFCALT	NDDESNIMSA	LLAKNLGAK	RVIGIV
0.45						
a047	AENLDNTLVLQGSAT					RVIGIV
	120 130	140	150	160	170	
	190	200	010	000		
m047.pep		200	210	220	230	240
mo47.pep	NRSSYVDLLEGNKID	TAASSHTITI	SILAHIRRG	DIVAVHPIRR	GTAEALEVV.	AHGDKK
a047	NRSSYVDLLEGNKID					111111
2047	180 190	200	210	220	GTALATEVV. 230	AHGDKK
	180 190	200	210	220	230	
	250	260	270	280	290	300
m047.pep	TSAIIGRRISGIKWP	EGCHIAAVVRA	AGTGETIMGH	HTETVIQDGD	HIIFFVSRR	RILNEL
	111111111111111	1111111111			11111111	
a047	TSAIIGRRISGIKWP	EGCHIAAVVRA	AGTGETIMGH	HTETVIODGD	HIIFFVSRR	RILNEL
	240 250	260	270	280	290	
	21.0					
m047.pep	310 EKLIOVKMGFFGX					

12. 1 10.0 1 12.1 **1** BNSDOCID: <WO___9957280A2_I_>

a047

EKLIQVKMGFFGX 300 310

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 047 shows 96.2% identity over a 312 aa overlap with a predicted ORF (ORF 047.ng) from N. gonorrhoeae:

m047/g045

m047.pep	MVIIQARXXGXLVGRSIADIAQDLPDGADCQICAVYRNNRLIVPAPQTVIIEGDEILFAA	60
g047	MVIIQARRGGLLVGRSIADIAQDLPDGADCQICAVYRNNRLIVPAPQTVIIEGDEILFAA	60
m047.pep	AAENIGAVIPELRPKETQRNQPXXIMIXGGGNIGYRLAKQLEHAYNVKIIECRPRRAEWI	120
g047		117
m047.pep	AENLDNTLVLQGSATDETLLDNEYIDEIDVFCALTNDDESNIMSALLAKNLGAKRVIGIV	180
g047	AENLDNTLVLQGSATDETLLDNEYIDEIDVFCALTNDDESNIMSALLAKNLGAKRVIGIV	177
m047.pep	NRSSYVDLLEGNKIDIVVSPHLITIGSILAHIRRGDIVAVHPIRRGTAEAIEVVAHGDKK	240
g047		237
m047.pep	TSAIIGRRISGIKWPEGCHIAAVVRAGTGETIMGHHTETVIQDGDHIIFFVSRRRILNEL	300
g047	TSAIIGRRISGIKWPEGCHIAAVVRAGTGETIMGHHTETVIQDGDHIIFFVSRRRILNEL	297
m047.pep	EKLIQVKMGFFGX 313	
g047	EKLIQVKMGFFGX 310	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 199>:

g048.seq

1	ATGCTCGACA	AAGGCGAGGA	GTTGCCCGTC	GATTTCACCA	ACCGCCTGAT
51	TTACTACGTC	ggcCCcgTCG	ATCCGGTCGG	CGATGAAGTC	GTCGGTCCCG
101	CAGGTCCGAC	CACAGCCACC	CGCATGGACA	AATTTACCCG	CCAAATGCTC
151	AAACAAACCG	GCCTCTTGGG	CATGATCGGC	AAATCCGagc	acaGcacaac
201	cacctGCGAA	GCcatCGCCG	ACAACAAGGC	CGTGTACCTC	ATGGCAGTCG
251	GCGGCGCGC	ATACCTCGTG	GCAAAAGCCA	TCAAATCTTC	CAAAGTCTTG
301	GCGTTCCCCG	AATTGGGTAT	GGAAGCCGTT	TACGAATTTG	AAGTCAAAGA
351	TATGCCCGTA	ACCGTCGCCG	TGGACAGCAA	AGGCGAATCC	ATCCACGCCA
401	CCGCCCCGCG	CAAATGGCAG	GCGAAAATCG	GCATCATCCC	CGTCGAGTCT
451	TGA				

This corresponds to the amino acid sequence <SEQ ID 200; ORF 048.ng>: g048.pep

1 MLDKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTRQML 51 KQTGLLGMIG KSERGAATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL 101 AFPELGMEAV YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES 151

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 201>: m048.seq

ATGCTCAACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT 1 51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGATGAAGTC GTCGGTCCGG

101	CAGGTCCGAC	CACAGCCACC	CGCATGGACA	AATTCACCCG	CCAAATGCTC
151	GAACAAACCG	ACCTCTTGGG	CATGATCGGC	AAATCCGAGC	GCGGCGTGGC
201	CACCTGCGAA	GCCATCGCCG	ACAACAAAGC	CGTGTACCTC	ATGGCAGTCG
251	GCGGCGCGC	GTATCTCGTG	GCAAAAGCCA	TCAAATCTTC	CAAAGTCTTG
301	GCGTTCCCCG	AATTGGGCAT	GGAAGCCATT	TACGAATTTG	AAGTCAAAGA
351	CATGCCCGTA	ACCGTCGCCG	TAGATAGCAA	AGGCGAATCC	ATCCACGCCA
401	CCGCCCCGCG	CAAATGGCAG	GCGAAAATCG	GCATCATCCC	CGTCGAATCT
451	TGA				

### This corresponds to the amino acid sequence <SEQ ID 202; ORF 048>:

m048.pep

- 1 MLNKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTRQML
- 51 EQTDLLGMIG KSERGVATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL
- 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES
- 151

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 203>:

```
1 ATGCTCGACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT
51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGACGAAATC GTCGGCCCAG
101 CAGGTCCGAC CACCGCCACC CGCATGGACA AATTCACCCG CCAAATGCTC
151 GAACAAACCG ACCTCTTGGG CATGATCGGC AAATCCGAGC GCGCCGGGC
201 CACCTGCGAA GCCATCGCCG ACAACAAAGC CGTGTACCTC ATGGCAGTCG
251 GCGGCGCGGC GTATCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG
301 GCGTTCCCCG AATTGGCCAT GGAAGCCAT TACGAATTTT AAGTCAAAGA
351 CATGCCCGTA ACCGTCGCCG TAGACAGCAA AGGCGAATCC ATCCACGCCA
401 CCGCCCCGCC CCAATGGCAG GCGAAAATCG GCATCATCCC CGTCAAATCT
451 TGA
```

### This corresponds to the amino acid sequence <SEQ ID 204; ORF 048.a>:

a048.pep

- 1 MLDKGEELPV DFTNRLIYYV GPVDPVGDEI VGPAGPTTAT RMDKFTRQML
- 51 EQTDLLGMIG KSERGAATCE AIADNKAYYL MAYGGAAYLV AKAIKSSKVL
- 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPPQWQ AKIGIIPVKS
- 151 4

#### m048/a048 96.0% identity over a 150 aa overlap

	10	20	30	40	50	60
m048.pep	MLNKGEELPVDFTN:	RLIYYVGPVI	)PVGDEVVGPA	GPTTATRMDK	FTROMLEQTE	LLGMIG
	11:111111111		11111:1111	1111111111	111111111111111111111111111111111111111	
a048	MLDKGEELPVDFTN:	RLIYYVGPVI	PVGDEIVGPA	GPT <b>TAT</b> RMDK	FTROMLEOT	LLGMIG
	10	20	30	40	50	60
	70	80	90	100	110	120
m048.pep	KSERGVATCEAIAD	NKAVYLMAV(	GAAYLVAKAI	KSSKVLAFPE	LGMEAIYEFE	VKDMPV
	11111:111111				1111111111	11111
a048	KSERGAATCEAIAD	NKAVYLMAVO	GAAYLVAKAI	KSSKVLAFPE	LGMEAIYEFE	VKDMPV
	70	80	90	100	110	120
	130	140	150			
m048.pep TVAVDSKGESIHATAPRKWQAKIGIIPVESX						
	111111111111	11:11111				
a048	TVAVDSKGESIHAT	APPQWQAKI	SIIPVKSX			
	130	140	150			

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 048 shows 96.4% identity over a 150 aa overlap with a predicted ORF (ORF 048.ng) from N. gonorrhoeae:

BNSDOCID: <WO___9957280A2_I_>

m048/g048 20 30 40 m048.pep  $\verb|MLNKGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIG|$ MLDKGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIG q048 10 20 30 40 70 80 90 100 110 KSERGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPV m048.pep KSERGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPV g048 70 80 90 100 110 120 130 140 150 m048.pep TVAVDSKGESIHATAPRKWQAKIGIIPVESX q048 TVAVDSKGESIHATAPRKWQAKIGIIPVESX 130 140

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 205>:

ATGCGGGCGC AGGCGTTTGA TCAACCGTTC GGTCAGCTCC TGTTCGGACA

51 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT

101 TGGACGGCCA TCAACGCCTC TTCCGCACCG CCTTCGCCGT TTCCGCAACC

151 CCCGTCTGCC GCCGTACCGG ATTCTGCCGC ATCGGCGTTT TCCCCGCCCT

201 CAATCTGTGC GGTTTCAAAT TCGGCACTGT CTTTTTTGGC ATCGAACCGG

251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGGCACGGC TTTCCCGCGCTT

361 AGCCTGGGG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT

351 CGACTTCCTC GCCGCAATCG GCAACGGCGC EGTTGTGTTC TTCCTGCCAT

This corresponds to the amino acid sequence <SEQ ID 206; ORF 049.ng>:

1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ DIDLDGHQRL FRTAFAVFRN 51 PVCRRTGFCR IGVFPALNLC GFKFGTVFFG IEPDSPPRFD VFFRNRHLQG 101 SLRVEPVFLK DDHRVGFDFL AAIGNGAVVF FLPFLQIRL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 207>:

m049.seq (partial)

1 ATGCGGGCGC AGGCGTTTGA TCAGCCGTTC GGTCAGCTCC TGTTCGGACA
51 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT
101 TGGACGGCCA TCAACGTTTC TTCCGCATCG TTTTCCCCGT TTCCGAAAC
151 CGCCGGCTCA TTCGTGCCGG ATTCTGCCTC GTCGGCGTTT TCCCCGCTTT
201 CAATCTGTCC GGTTTCAAAT TCGACACTGT CTTTTTTGGT ATCAAACCGG
251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGACA TTTGCAGGGA
301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
351 CGACTTCCTC GCCGCAATCG GCAACGGCGG CATTGTGTC CTCCTGCCAT

This corresponds to the amino acid sequence <SEQ ID 208; ORF 049>:

m049.pep (partial)

1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ DIDLDGHQRF FRIVFPVFRN
51 RRLIRAGFCL VGVFPAFNLS GFKFDTVFFG IKPDSPPRFD VFFRNRHLQG
101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 209>:

. . . . 17/4

1	ATGCGGGCGC	AGGCGTTTGA	TCAGCCGTTC	GGTCAGCTCC	TGTTCGGACA
51	GGCAGAACAC	TTCGCGCCGG	TTGACGGCTT	TCGGGTTCAG	AATATTGATT
101			TTCCGCACCG		
151	CCCGTCTGCC	GCCGTACCCG	ATTCTGCCGC	ATCGGCGTTT	TCCCCGCCTT
201	CAATCTGTCC	GGTTTCAAAT	TCGGCACTGT	CTTTTTTGGC	ATCAAACCGG
251	ATTCTCCGCC	GCGATTCGAT	GTGTTTTTCC	GAAACCGACA	TTTGCAGGGA
301	AGCCTGCGCG	TTGAGCCAGT	TTTCCTGAAG	GACGATCATC	GGGTCGGTTT
351	CGACTTCCTC	GCCGCAATCG	GCAACGGCGG	CATTGTGTTC	CTCCTGCCAT
401	TTTTTCAGAT	ACGCCTT			

### This corresponds to the amino acid sequence <SEQ ID 210; ORF 049.a>:

a049.pep

1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ NIDLDGHQRF FRTAFAVFRN

51 PVCRRTRFCR IGVFPAFNLS GFKFGTVFFG IKPDSPPRFD VFFRNRHLQG

101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL

### m049/a049 90.6% identity over a 139 aa overlap

	10	20	30	40	50	60
m049.pep	MRÄQAFDQPFGQLL	FGQAEHFAPV	'DGFRVQDIDI	DGHQRFFRI	/FPVFRNRRL	IRAGFCL
	1111111111111	1111111111	111111:111	11111111 :	1111	1: 11
a049	MRAQAFDQPFGQLL	FGQAEHFAPV	DGFRVQNIDI	DGHQRFFRTA	FAVERNEVC	RRTRFCR
	10	20	30	40	50	60
	70	80	90	100	110	120
m049.pep	VGVFPAFNLSGFKF	DTVFFGIKPD	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	RVGFDFL
	: 1   1   1   1   1   1   1   1		111111111	11111111111	11111111	
a049	IGVFPAFNLSGFKF	GTVFFGIKPD	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	RVGFDFL
	70	80	90	100	110	120
	130	139				
m049.pep	AAIGNGGIVFLLPF	FQIRL				
	1111111111111	11111				
a049	AAIGNGGIVFLLPF	FQIRL				
	130					

Computer analysis of this amino acid sequence gave the following results:

## Homology with a predicted ORF from N. gonorrhoeae

ORF 049 shows 86.3% identity over a 139 aa overlap with a predicted ORF (ORF 049.ng) from N. gonorrhoeae:

m049/g049

	10	20	30	40	50	60
m049.pep	MRAQAFDQPFGQLL	FGQAEHFAP'	VDGFRVQDIDL	DGHQRFFRIV	FPVFRNRRL	RAGFCL
					1 111	1:111
g049	MRAQAFDQPFGQLL	FGQAEHFAP	VDGFRVQDIDL	DGHQRLFRTA	FAVERNPVCE	RTGFCR
	10	20	30	40	50	60
	70	80	90	100	110	120
m049.pep	VGVFPAFNLSGFKF	DTVFFGIKP	OSPPRFDVFFR	NRHLQGSLRV	EPVFLKDDHF	NGFDFL
	:     :			111111111	1111111111	
g049	IGVFPALNLCGFKF	GTVFFGIEP	DSPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	VGFDFL
	70	80	90	100	110	120
	130	139				
m049.pep	AAIGNGGIVFLLPF	FQIRL				
		: [ ] [ ]				
g049	AAIGNGAVVFFLPF1	LQIRLX				
	130	140				

BNSDOCID: <WO___9957280A2_l_>



```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 211>:
       g050.seq
                 atgggcgCGG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGg
             51
                cacgcccGAA AAAGccgtgt TGATGGcaaA AGAATCCCTG ATGAGCCACA
                 TCGAcatCca aGaATTGCAG GAAAAAGCCG CGTccggggc ggaattgtcc
            101
                 accaccgaAG ccCTGCGCCT cGAACTCTTT GAAAAGGTCA ACGCGCTGGG
            151
            201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
            251 TCCTCGATTA CCCGACCCAT GCCGCCTCCA AACCGATTGC CATGATTCCC
            301 AACTGTGCcg ccacCCGcca cgtcgAATTT GAATTGGACG GCTCAGGtcc
            351 TGTCGAactc acgccGCcgc gtgtCGAAGA CTGA
 This corresponds to the amino acid sequence <SEQ ID 212; ORF 050.ng>:
      g050.pep
                MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
             1
                TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
             51
            101 NCAATRHVEF ELDGSGPVEL TPPRVED*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 213>:
      m050.seq
                ATGGGCGCG GCTGGTGTCC TCCCGGCATC TTGGGTATCG GCATCGGCGG
             1
                C..agCCgAA AAAGCCGTGC TGATGGCAAA AGAGTCCCTG ATGAGCCACA
            51
           101 TCGACATTCA AGAATTGCAG GAAAAGGCCG CGTCCGGCGC GGAATTGTCC
           151 ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTGGG
           201 CATCGGCGCA CAAGGCTTGG GCGGACTGAC CACCGTGTTG GACGTGAAAA
           251 TCCTCGATTA TCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
           301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
           351 TGTCGAACTC ACGCCGCCGC GCGTCGAAGA TGGCCCGATT TGA
This corresponds to the amino acid sequence <SEQ ID 214; ORF 050>:
      m050.pep
                MGAGWCPPGI LGIGIGGXAE KAVLMAKESL MSHIDIQELQ EKAASGAELS
             1
                TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
            51
           101 NCAATRHVEF ELDGSGPVEL TPPRVEDGPI *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 215>:
      a050.seg
               ATGGGCGCG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGG
               TACGCCCGAA AAAGCCGTGT TGATGGCGAA AGAATCCCTG ATGAGCCACA
            51
               TCGACATCCA AGAATTGCAG GAAAAAGCCG CGTCCGGCGC GGAATTGTCC
          151 ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTAGG
          201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA CCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
          301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
               TGTCGAACTC ACGCCGCCGC GCGTCGAAGA CTGGCCC
This corresponds to the amino acid sequence <SEQ ID 216; ORF 050.a>:
     a050.pep
               MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
            1
               TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
           51
              NCAATRHVEF ELDGSGPVEL TPPRVEDWP
             97.7% identity over a 129 aa overlap
m050/a050
                                    20
                                              30
                                                        40
                  MGAGWCPPGILGIGIGGXAEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF
     m050.pep
```

a050

	10	20	30	40	50	60
	70	80	90	100	110	120
m050.pep	EKVNALGIGAQGL	GGLTTVLDVKI	LDYPTHAASK	PIAMIPNCA	TRHVEFELD	GSGPVEL
			1111111111	11111111111	11111111	HILLIE
a050	EKVNALGIGAQGL	GGLTTVLDVKI	LDYPTHAASK	PIAMIPNCA	TRHVEFELD	GSGPVEL
	70	80	90	100	110	120
	130					
m050.pep	TPPRVEDGPIX					
	1111111					
a050	TPPRVEDWP					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 050 shows 98.4% identity over a 127 as overlap with a predicted ORF (ORF 050.ng) from N. gonorrhoeae:

m050/g050

```
10
                         20
                                 30
                                         40
                                                  50
          {\tt MGAGWCPPGILGIGIGGXAEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF}
m050.pep
           MGAGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF
g050
                 10
                         20
                                         40
                                                 50
                                                          60
                 70
                         80
                                 90
                                        100
                                                 110
                                                         120
m050.pep
          {\tt EKVNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVEL}
           g050
          {\tt EKVNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVEL}
                         80
                                 90
                                        100
                                                110
                                                         120
                130
m050.pep
          TPPRVEDGPIX
          111111
9050
          TPPRVEDX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 217>: g050-1.seq

1	ATGACCGTTA	TCAAGCAAGA	AGACTTTATT	CAAAGTATCT	GCGATGCCTT
51	CCAATTCATC	AGCTACTACC	ATCCAAAAGA	CTACATCGAC	GCGCTTTATA
101	AGGCGTGGCA	GAAGGAAGAA	AATCCCGCCG	CCAAAGACGC	GATGACGCAG
151	ATTTTGGTCA	ACAGCCGTAT	GTGTGCCGAA	AACAACCGCC	CCATCTGCCA
201	AGACACAGGT	ATCGCAACCG	TCTTCCTCAA	AGTCGGTATG	GATGTGCAAT
251	GGGATGCGGA	CATGAGCGTG	GAAAAGATGG	TTAACGAAGG	CGTACGCCGC
301	GCCTACACTT	GGGAAGGCAA	CACCCTGCGC	GCTTCCGTCC	TCGCCGATCC
351	GGCCGGCAAA	CGCCAAAACA	CCAAAGACAA	CACCCCCGCC	GTCATCCACA
401	TGAGCATCGT	GCCGGGCGGT	AAAGTCGAAG	TAACCTGCGC	GGCAAAAGGC
451	GGCGGCTCTG	AAAACAAATC	CAAACTCGCT	ATGCTCAACC	CTTCCGACAA
501			AAACCATCCC	GACGATGGGC	GCGGGCTGGT
551		CATCTTGGGC			CGAAAAAGCC
601			CCTGATGAGC	CACATCGACA	TCCAAGAATT
651	GCAGGAAAAA	GCCGCGTCCG	GCGCGGAATT	GTCCACCACC	GAAGCCCTGC
701	GCCTCGAACT	CTTTGAAAAG	GTCAACGCGC	TGGGCATCGG	CGCGCAAGGC
751	TTGGGCGGTC	TGACCACCGT	GTTGGACGTG	AAAATCCTCG	ATTACCCGAC
801	CCATGCCGCC	TCCAAACCGA	TTGCCATGAT	TCCCAACTGT	GCCGCCACCC
851	GCCACGTCGA	ATTTGAATTG	GACGGCTCAG	GTCCTGTCGA	ACTCACGCCG
901	CCGCGCGTCG	AAGACTGACC	CGATCTGACT	TACAGCCCCG	ACAACGGCAA
951	ACGCGTCGAT	GTCGATAAGC	TGACCAAAGA	AGAAGTGGCA	AGCTGGAAAA
1001			AACGGCAAAA		CCGCGATGCC
1051	GCGCACAAAC	GCCTCGTCAA	TATGCTCGAC	AAAGGCGAGG	AGTTGCCCGT
1101			TTTACTACGT		GATCCGGTCG
1151			GCAGGTCCGA		
1201	AAATTTACCC	GCCAAATGCT	CAAACAAACC	GGCCTCTTGG	GCATGATCGG

```
1251 CAAATCCGAG CGCGGCGCGG CCACCTGCGA AGCCATCGCC GACAACAAGG
1301 CCGTGTACCT CATGGCAGTC GGCGGCGCGG CATACCTCGT GGCAAAAGCC
       1351 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGTA TGGAAGCCGT
      1401 TTACGAATTT GAAGTCAAAG ATATGCCCGT AACCGCCAAATGGCA GGCGAAAATC
1451 AAGGCGAATC CATCCACGCC ACCGCCCCGC GCAAATGGCA GGCGAAAATC
TTGA
 This corresponds to the amino acid sequence <SEQ ID 218; ORF 050-1.ng>:
  g050-1.pep
          1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ
       51 ILVNSRMCAE NNRPICODTG IATVFLKVGM DVQWDADMSV EKMVNEGVRR
101 AYTWEGNTLR ASVLADPAGK RONTKDNTPA VIHMSIVPGG KVEVTCAAKG
       151 GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA
       201 VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG
       251 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP
       301 PRVED*PDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA
351 AHKRLVNMLD KGEELPVDFT NRLIYYVGPV DPVGDEVVGP AGPTTATRMD
       401 KFTRQMLKQT GLLGMIGKSE RGAATCEAIA DNKAVYLMAV GGAAYLVAKA
       451 IKSSKVLAFP ELGMEAVYEF EVKDMPVTVA VDSKGESIHA TAPRKWQAKI
       501 GIIPVES*
 g050-1/p14407
  sp|P14407|FUMB_ECOLI FUMARATE HYDRATASE CLASS I, ANAEROBIC (FUMARASE)
 >gi|280063|pir||B44511 fumarate hydratase (EC 4.2.1.2) fumB, iron-dependent - Escherichia coli
>gi|146048 (M27058) anaerobic class I fumarase (EC 4.2.1.2) [Escherichia coli] Length = 548
  Score = 172 \text{ bits } (432), \text{ Expect} = 4e-42
  Identities = 138/488 (28%), Positives = 216/488 (43%), Gaps = 22/488 (4%)
 Query: 11 QSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAENNRPICQDTG 70
 Q+ DA + H K L+ E + K Q L NS + A+ P CQDTG
Sbjct: 53 QAFHDASFMLRPAHQKQVAAILHDPEASEND---KYVALQFLRNSEIAAKGVLPTCQDTG 109
 Query: 71 IATVFLKVGMDVQWDADMSVEKMVNEGVRRAYTWEGNTLRASVLADPAGKRQNTKDNTPA 130
              A + K G V W E+ +++GV Y E N + A K NT N PA
 Sbjct: 110 TAIIVGKKGQRV-WTGGGD-EETLSKGVYNTYI-EDNLRYSQNAALDMYKEVNTGTNLPA 166
Query: 131 VIHMSIVPGGKVEVTCAAKGGGSENKSKL----AMLNPSDNIVDWVLKTIPTMGAGWCP 185
I + V G + + C AKGGGS NK+ L A+L P + +++++ T+G CP
 Sbjct: 167 QIDLYAVDGDEYKFLCVAKGGGSANKTYLYQETKALLTPG-KLKNFLVEKMRTLGTAACP 225
 Query: 186 PXXXXXXXXXTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEKVNXXX 245
                       T + L + +H EL +
                                                                L EL E+
Sbjct: 226 PYHIAFVIGGTSAETNLKTVKLASAHY-YDELPTEGNEHGQAFRDVQLEQELLEEAQKLG 284
Query: 246 XXXXXXXXXTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSG----PVELTPP 301
                            D++++ P H AS P+ M +C+A R+++ +++ G +E P
Sbjct: 285 LGAQFGGKYFAH-DIRVIRLPRHGASCPVGMGVSCSADRNIKAKINREGIWIEKLEHNPG 343
uery: 302 RVEDXPDLTYSPDNGKRVDVDKLTKE---EVASWKTGDVLLLNGKILTGRDAAHKRLVNM 358
+ +VD+++ KE +++ + L L G I+ GRD AH +L +
                                                       L L G I+ GRD AH +L +
Sbjct: 344 QYIPQELRQAGEGEAVKVDLNRPMKEILAQLSQYPVSTRLSLTGTIIVGRDIAHAKLKEL 403
Query: 359 LDKGEELPVDFTNRLIYYXXXXXXXXXXXXXXXXTTATRMDKFTRQMLKQTGLLGMIGK 418
             +D G+ELP + IYY
                                                     TTA RMD + + G + M+ K
Sbjct: 404 IDAGKELPQYIKDHPIYYAGPAKTPAGYPSGSLGPTTAGRMDSYVDLLQSHGGSMIMLAK 463
Query: 419 SERGAATCEAIADNKAVYLMAVGG-AAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPV 477
                    +A + YL ++GG AA L ++IK + +A+PELGMEA+++ EV+D P
Sbjct: 464 GNRSQQVTDACHKHGGFYLGSIGGPAAVLAQQSIKHLECVAYPELGMEAIWKIEVEDFPA 523
Query: 478 TVAVDSKG 485
              + VD KG
Sbjct: 524 FILVDDKG 531
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 219>:
```

1 ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT 51 CCAATTCATC AGCTACTATC ATCCCAAAGA CTACATCGAC GCGCTTTATA 101 AGGCGTGGCA GAAGGAAGAA AATCCTGCCG CCAAAGACGC GATGACGCAG ATTITGGTCA ACAGCCGTAT GTGTGCGGAA AACAACCGCC CCATCTGCCA
AGACACAGGT ATCGCAACCG TCTTCCTCAA AGTCGGTATG AACGTCCAAT
GGGATGCGGA CATGAGCGTG GAAGAGATGG TTAACGAAGG CGTACGCCGC

m050-1.seq

GCCTACACTT GGGAAGGCAA TACGCTGCGC GCTTCCGTCC TCGCCGATCC GGCCGGCAAA CGCCAAAACA CCAAAGACAA CACCCCCGCC GTCATCCATA 351 TGAGCATCGT GCCGGGCGGT AAAGTCGAAG TAACCTGCGC GGCAAAAGGC 401 451 GGCGGCTCTG AAAACAAATC CAAACTCGCC ATGCTCAATC CTTCCGACAA CATCGTCGAT TGGGTATTGA AAACCATCCC GACCATGGGC GCGGGCTGGT 501 GTCCTCCCGG CATCTTGGGT ATCGGCATCG GCGGCACGCC CGAAAAAGCC 551 GTGCTGATGG CAAAAGAGTC CCTGATGAGC CACATCGACA TTCAAGAATT 601 651 GCAGGAAAAG GCCGCGTCCG GCGCGGAATT GTCCACCACC GAAGCCCTGC 701 GCCTCGAACT CTTTGAAAAA GTCAACGCGC TGGGCATCGG CGCACAAGGC TTGGGCGGAC TGACCACCGT GTTGGACGTG AAAATCCTCG ATTATCCGAC CCACGCCGCC TCCAAACCGA TTGCCATGAT TCCGAACTGC GCCGCCACCC 751 801 851 GCCACGTCGA ATTTGAATTG GACGGCTCAG GCCCTGTCGA ACTCACGCCG CCGCGCGTCG AAGACTGGCC CGATTTGACT TACAGCCCCG ACAACGGCAA 901 ACGCGTCGAT GTCGACAAGC TGACCAAAGA AGAAGTGGCA AGCTGGAAAA 951 1001 CCGGCGACGT ATTGCTGTTG AACGGCAAAA TCCTCACCGG CCGCGATGCC 1051 GCACACAAAC GCCTCGTCGA TATGCTCAAC AAAGGCGAAG AATTGCCCGT 1101 CGATTTCACC AACCGCCTGA TTTACTACGT CGGCCCCGTC GATCCGGTCG GCGATGAAGT CGTCGGTCCG GCAGGTCCGA CCACAGCCAC CCGCATGGAC 1151 AAATTCACCC GCCAAATGCT CGAACAAACC GACCTCTTGG GCATGATCGG 1201 1251 CAAATCCGAG CGCGGCGTGG CCACCTGCGA AGCCATCGCC GACAACAAAG CCGTGTACCT CATGGCAGTC GGCGGCGCGG CGTATCTCGT GGCAAAAGCC 1301 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGCA TGGAAGCCAT 1351 TTACGAATTT GAAGTCAAAG ACATGCCCGT AACCGTCGCC GTAGATAGCA 1401 1451 AAGGCGAATC CATCCACGCC ACCGCCCCGC GCAAATGGCA GGCGAAAATC 1501 GGCATCATCC CCGTCGAATC TTGA

## This corresponds to the amino acid sequence <SEQ ID 220; ORF 050-1>: m050-1.pep

MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ 51 ILVNSRMCAE NNRPICQDTG IATVFLKVGM NVQWDADMSV EEMVNEGVRR 101 AYTWEGNTLR ASVLADPAGK RONTKONTPA VIHMSIVPGG KVEVTCAAKG GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA 151 VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG 201 251 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP PRVEDWPDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA 351 AHKRLVDMLN KGEELPVDFT NRLIYYVGPV DPVGDEVVGP AGPTTATRMD KFTROMLEQT DLLGMIGKSE RGVATCEAIA DNKAVYLMAV GGAAYLVAKA 401 451 IKSSKVLAFP ELGMEAIYEF EVKDMPVTVA VDSKGESIHA TAPRKWQAKI

#### m050-1/g050-1 98.2% identity in 507 aa overlap

250

260

270

280

290

40 MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE m050-1.pep a050 - 1MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE 10 30 40 70 80 90 100 120 110  ${\tt NNRPICQDTGIATVFLKVGMNVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK}$ m050-1.pep q050-1 NNRPICQDTGIATVFLKVGMDVQWDADMSVEKMVNEGVRRAYTWEGNTLRASVLADPAGK 70 80 100 110 120 140 150 160 RONTKONTPAVIHMSIVPGGKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG a050-1  ${\tt RQNTKDNTPAVIHMSIVPGGKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG}$ 130 140 150 160 170 200 210 220 230 AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK m050-1.pep a050-1 **AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK** 200 190 210 220 230 240 250 260 270 280 m050-1.pep VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP q050-1 VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP

BNSDOCID: <WO___9957280A2_I_>

501

GIIPVES*

. His Hall to Hadite

·3



m050-1.pep	310 PRVEDWPDLTYSP             PRVEDXPDLTYSP 310	1111111111	111111111	HILLIAM	111111111	111:11-
m050-1.pep	370 KGEELPVDFTNRL: !!!!!!!!!! !KGEELPVDFTNRL: 370		11111111		111:11 11	111111
m050-1.pep g050-1	430 RGVATCEAIADNKA   :          RGAATCEAIADNKA 430				11:11:11	LETTER.
m050-1.pep	490 VDSKGESIHATAPR             VDSKGESIHATAPR 490	1111111111	1111			

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 221>: a050-1.seq

```
1 ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT
   51 CCAATTCATC AGCTACTACC ATCCCAAAGA CTACATCGAC GCGCTTTATA
 101
      AGGCGTGGCA GAAGGAAGAA AACCCCGCCG CCAAAGACGC GATGACGCAG
      ATTTTGGTCA ACAGCCGCAT GTGTGCCGAA AACAACCGCC CCATCTGCCA
 201 AGATACCGGT ATCGCGACCG TGTTTTTGAA AGTCGGTATG GATGTGCAAT
      GGGATGCAGA CATGAGCGTC GAAGAGATGG TTAACGAAGG CGTGCGCCGC
 251
      GCCTACACTT GGGAAGGCAA TACGCTGCGC GCTTCCGTTC TCGCCGACCC
      CGCCGGCAAA CGCCAAAATA CCAAAGACAA CACGCCCGCC GTCATCCATA
 351
      TGAGCATCGT GCCGGGCGAC AAAGTCGAAG TAACCTGCGC GGCAAAAGGC
 401
      GGCGGTTCTG AAAACAAATC CAAACTCGCC ATGCTCAACC CTTCCGACAA
 451
      CATCGTCGAT TGGGTATTGA AAACCATTCC GACCATGGGC GCGGGCTGGT
 551 GTCCTCCCGG CATCTTGGGC ATCGGCATCG GCGGTACGCC CGAAAAAGCC
 601 GTGTTGATGG CGAAAGAATC CCTGATGAGC CACATCGACA TCCAAGAATT
 651 GCAGGAAAAA GCCGCGTCCG GCGCGGAATT GTCCACCACC GAAGCCCTGC
 701 GCCTCGAACT CTTTGAAAAA GTCAACGCGC TAGGCATCGG CGCGCAAGGC
 751 TTGGGCGGTC TGACCACCGT GTTGGACGTG AAAATCCTCG ATTACCCGAC
801 CCACGCCGCC TCCAAACCGA TTGCCATGAT TCCGAACTGC GCCGCCACCC
      GCCACGTCGA ATTTGAATTG GACGGCTCAG GCCCTGTCGA ACTCACGCCG
 851
      CCGCGCGTCG AAGACTGGCC CGATTTGACT TACAGCCCCG ACAACGGCAA
 901
      ACGCGTCGAT GTCGACAAGC TGACCAAAGA AGAAGTGGCA AGCTGGAAAA
 951
1001
      CCGGCGACGT ATTGCTGTTG AACGGCAAAA TCCTCACCGG CCGCGATGCC
1051
      GCACACAAAC GCCTCGTCGA TATGCTCGAC AAAGGCGAAG AATTGCCCGT
      CGATTTCACC AACCGCCTGA TTTACTACGT CGGCCCCGTC GATCCGGTCG
1101
      GCGACGAAAT CGTCGGCCCA GCAGGTCCGA CCACCGCCAC CCGCATGGAC
1151
1201 AAATTCACCC GCCAAATGCT CGAACAAACC GACCTCTTGG GCATGATCGG
1251 CAAATCCGAG CGCGGCGCGG CCACCTGCGA AGCCATCGCC GACAACAAG
1301 CCGTGTACCT CATGGCAGTC GGCGGCGCGG CGTATCTCGT GGCAAAAGCC
1351 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGCA TGGAAGCCAT
      TTACGAATTT GAAGTCAAAG ACATGCCCGT AACCGTCGCC GTAGACAGCA
1401
1451
     AAGGCGAATC CATCCACGCC ACCGCCCCGC CCCAATGGCA GGCGAAAATC
1501 GGCATCATCC CCGTCAAATC TTGA
```

# This corresponds to the amino acid sequence <SEQ ID 222; ORF 050-1.a>: a050-1.pep

1	MTVIKQEDFI	QSICDAFQFI	SYYHPKDYID	ALYKAWQKEE	NPAAKDAMTO
51	ILVNSRMCAE	NNRPICODTG	IATVFLKVGM	DVQWDADMSV	FEMUNECUED
101	AYTWEGNTLR	ASVLADPAGK	RONTKONTPA	VIHMSIVPGD	PUPUTCANKO
151	GGSENKSKLA	MLNPSDNIVD	WVIKTIPTMG	AGWCPPGILG	TOTOCHDENA
201	VLMAKESLMS	HIDIOELOEK	AASGAELSTT	EALRLELFEK	IGIGGIPEKA
251	LGGLTTVLDV	KILDYPTHAA	SKPTAMTPNC	AATRHVEFEL	VNALGIGAQG
301	PRVEDWPDLT	YSPDNGKRVD	UDKI TKEEUN	SWKTGDVLLL	DGSGPVELTP
351	AHKRLVDMLD	KGEELPVDET	NRITYVVCDV	DEACEDETACE	NGKILTGRDA
401	KFTRQMLEQT	DITCMICKSE	DCDATCEATA	DEAGDETAGE	AGPTTATRMD
451	IKSSKVLAFP	ELGMEATVEE	EUNDMDIMIN	UNCKCROTUS	GGAAYLVAKA
501	GIIPVKS*	DEGREEATIE	EVEDMENTVA	VDSKGESTHA	TAPPQWQAKI

- *X

```
a050-1/m050-1
              98.4% identity in 507 aa overlap
                                30
                                        40
                                                50
         MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE
a050-1.pep
          m050-1
         MTV1KQEDF1QS1CDAFQF1SYYHPKDY1DALYKAWQKEENPAAKDAMTQ1LVNSRMCAE
                10
                        20
                                30
                                        40
                                                50
                70
                        80
                                90
                                       100
                                               110
a050-1.pep
         NNRPICQDTGIATVFLKVGMDVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK
         NNRPICQDTGIATVFLKVGMNVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK
m050-1
                        80
                                90
                                       100
                                               110
               130
                       140
                               150
                                       160
                                               170
                                                       180
         RONTKONTPAVIHMSIVPGDKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG
a050-1.pep
         m050-1
         RQNTKDNTPAVIHMSIVPGGKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG
               130
                       140
                               150
                                       160
                                               170
                                                       180
               190
                       200
                               210
                                       220
                                               230
         AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK
a050-1.pep
         AGWCPPGILGIGGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK
m050-1
                       200
                               210
               190
                                       220
                                               230
               250
                               270
                       260
                                       280
                                               290
a050-1.pep
         VNALGIGAOGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP
         m050 - 1
         VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP
               250
                       260
                               270
                                       280
                                               290
               310
                       320
                               330
                                       340
                                               350
a050-1.pep
         PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLD
         m050-1
         PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLN
               310
                       320
                               330
                                       340
                                               350
                                                       360
               370
                       380
                               390
                                       400
                                               410
                                                       420
         KGEELPVDFTNRLIYYVGPVDPVGDEIVGPAGPTTATRMDKFTROMLEOTDLLGMIGKSE
a050-1.pep
         m050-1
         KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
                       380
                               390
               370
                                       400
                                                       420
               430
                       440
                               450
                                       460
         RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
a050-1.pep
         m050-1
         RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
               430
                       440
                               450
                                       460
                                               470
                                                       480
               490
                       500
a050-1.pep
         VDSKGESIHATAPPQWQAKIGIIPVKSX
         111111111111111111111111111111111
m050-1
         VDSKGESIHATAPRKWQAKIGIIPVESX
               490
                       500
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 223>:

g052.seq ATGGCTTTGG TGGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG CTGCGAGCCG ACGGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCGCCC AAGGGGTTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC GGCGGCTTTC CATTCATTTA TATCAGTCGG CGACACGCGG CTCACTCCGA TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC AGGCTGCGGC TGGAAACCAC ATGGTCGCCC GCCTGCAGGA AGGTGAAAAA CGCCGCCTGA 

This corresponds to the amino acid sequence <SEQ ID 224; ORF 052.ng>: g052.pep



g052 MALVAEETEISAPCFKGCEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVS					GVSKNS	
	10	20	30	40	50	60
	70	80	90	100	110	120
m052.pep	SLVLALTAAFHSFIS	SVGDTWLTSM	PNLATMLLIK	PTVVPNRLRI	EITWSPACK	TVKNAAX
			111:11111	111111111	1 11111:1	111111
g052	SLVLALTAAFHSFIS	SVGDTRLTPM	PNLVTMLLIK	PTVVPNRLRI	ETTWSPACRE	VKNAAX
	70	80	90	100	110	120

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 229>: g073.seq

```
1 ATGTGTATGC CATACGCAAT AAGGGTTTCA GACGGCATCT GCCGCATTTT
```

- 51 TCCGCCGATG CCGTCTGAAA CACGCAATCA GCGCGCGAGT GCCTGTTTCA
- 101 AATCGTCAAT CAAATCGCCA ACATATTCCA AACCGACCGA CAGGCGCACC
- 151 AGTCCGGGGC GGatacCGGC GGCGAGTTTT TCTTCGGGCT GCATCCTGCC
- 201 GTGCGTGGTT GTCCACGGAT TGGTGATGGT CGAGCGCACG TCGCCGAGGT
- 251 TGGCGGTACG GGAAAAGAGT TCCACGACTT TCCACGCGGC TGCTTGGTCG
- 301 GCGACTTCAA AACCGATGAC GATGCCGCCG CCGTTTTGCT GTTTGCGGAT
- 351 AAGCTCCGCC TGCGGATGGT CGGGCAATCC GGTGTAG

This corresponds to the amino acid sequence <SEQ ID 230; ORF 073.ng>: g073.pep

- 1 MCMPYAIRVS DGICRIFPPM PSETRNORAS ACFKSSIKSP TYSKPTDRRT
- 51 SPGRIPAASF SSGCILPCVV VHGLVMVERT SPRLAVREKS STTFHAAAWS
- 101 ATSKPMTMPP PFCCLRISSA CGWSGNPV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 231>:

m073.seq

- 1 ATGTGTATGC CATATAAGAT AAGGGTTTCA GACGGCATCT GCTGTCCAAT
- 51 GCCGTCTGAA ACACGCAATC AGCGTGCGAG TGCCTGTTTC AAATCGTCAA
- 101 TCAAATCGCC AACATATTCC AAACCGACCG ACAGGCGCAC CAATCCGGGG
- 151 CGGATGTTGG CGGCGAGTTT TTCTTCGGGC TGCATCCTGC CGTGCGTGGT
- 201 TGTCCACGGG TGGGTAATGG TCGAGCGCAC GTCACCGAGG TTGGCGGTGC
- 251 GGGAAAAGAG TTCCACGCCG TCCACAACTT TCCACGCCGC TTCTTGATCG
- 301 GCAACTTCAA AGCCGATGAC GATGCCGCCG CCGTTTTGCT GTTTGCGGAT
- 351 AAGCGCCGCC TGAGGATGGT CGGACAATCC GGTGTAG

This corresponds to the amino acid sequence <SEO ID 232; ORF 073>:

m073.pep

- 1 MCMPYKIRVS DGICCPMPSE TRNQRASACF KSSIKSPTYS KPTDRRTNPG
- 51 RMLAASFSSG CILPCVVVHG WVMVERTSPR LAVREKSSTP STTFHAASXS
- 101 ATSKPMTMPP PFCCLRISAA XGWSDNPV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 233>: a073.seq

- 1 ACGTGTATGT CATATAAGAT AAGGGTTTCA GACGGCATTT GCGGTGTTTT
- 51 TCCGCCGATG CCGTCTGAA. CACGCAATCA GCGCGAGT GCCTGTTTCA
- 101 AATCGTCAAT CAAATCGCCA ACATATTCCA AACCGACCGA CAGGCGCACC
- 151 AATCCGGGGC GGATGTTGGC GGCGAGTTTT TCTTCGGGCT GCATCCTGCC
- 201 GTGCGTGGTT GTCCACGGAT GGGTAATGGT CGAGCGCACG TCGCCGAGGT
- 251 TGGCGGTACG GGAGAAAAGT TCGACGCCGT CCACGACTTT CCACGCGGCT
- 301 GCTTGGTCGG CGACTTCAAA GCCGATGACG ATGCCGCCGC CGTTTTGCTG

351 TTTGCGGATA AGCTCCGCCT GAGGATGGTC GGGTAATCCG GTGTAA

This corresponds to the amino acid sequence <SEQ ID 234; ORF 073.a>: a073.pep

- 1 TCMSYKIRVS DGICGVFPPM PSEXRNQRAS ACFKSSIKSP TYSKPTDRRT
- 51 NPGRMLAASF SSGCILPCVV VHGWVMVERT SPRLAVREKS STPSTTFHAA
- 101 AWSATSKPMT MPPPFCCLRI SSA*GWSGNP V*

m073/a073 92.3% identity over a 130 aa overlap



Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 073 shows 87.0% identity over a 131 aa overlap with a predicted ORF (ORF 073.ng) from N. gonorrhoeae:

m073/g073

	10	20	30	40	50
m073.pep	MCMPYKIRVSDGIC	CPMPSETR1	<b>IQRASACFKS</b>	SIKSPTYSKPT	DRRTNPGRMLAASF
					1111:111: 1111
g073	MCMPYAIRVSDGIC	RIFPPMPSETR1	<b>IQRASACFKS</b>	SIKSPTYSKPT	DRRTSPGRIPAASF
	10	20	30	40	50 60
	60 70	80	90	100	
m073.pep				100	110
mo/s.pep	SSGCILPCVVVHGW	VMVERTSPRLAV	REKSSTPST	TFHAASXSATS	KPMTMPPPFCCLRI
	111111111111				1111111111111
g073	SSGCILPCVVVHGL	VMVERTSPRLAV	REKSST	TFHAAAWSATS	KPMTMPPPFCCIRT
	70	80	90	100	110
	120 129				
m073.pep	SAAXGWSDNPVX				
	1:1 111 1111				
q073	SSACGWSGNPVX				
50.5					
	120				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 235>: g075.seq

- 1 ATGCCGCCTT ACTTCATCAC CCTCTTAACG ATGGAAAATA CAAAAAGCGC
  51 GGCGAAAACG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
  101 CGGCTTCCAA AGCGTTTTTT GCCGTTTCGG GCAACGCTGC GTTTGCCTGT
  151 GCCGCCAAAG CCAGCGGGGC GGCTGTTACA ACAGCCAGTT TTGCGCCGTA
  201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTT ACGAAATTTT
  251 TAAAAAAATG TGTTTGCGGG CTTTGTGAAG GTTTTAGAGA CCGCCTGCCG
  301 GGCCTCTTAA ACTTAATCTT CTTTTTCGTA GAATCCGAAA ATTACAAATT
  351 CCCCGCCTAT CTCTTCCAAT GCCGAGCTAA AAGCGTCTTC ATAGCTGTCA
- This corresponds to the amino acid sequence <SEQ ID 236; ORF 075.ng>: g075.pep
  - 1 MPPYFITLLT MENTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNAAFAC 51 AAKASGAAVT TASFAPYLRQ VLINFMIFSF TKFLKKCVCG LCEGFRDRLP
  - 101 GLLNLIFFFV ESENYKFPAY LFQCRAKSVF IAVIFTG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 237>: m075.seq

- 1 ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAATA CAAAAAGCGC
- 51 GGCGAAAATG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
- 101 CGGCTTCCAA AGCGTTTTTT GCCGTATCGG GCAACGTTGC ATTTGCATGT
- 151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
- 201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTC AAAAAGTGTT
- 251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
- 301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT
- 351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA
- 401 TTGGTGATTA A

This corresponds to the amino acid sequence <SEQ ID 238; ORF 075>: m075.pep

- 1 MPSYFITLLT MENTKSAAKM PTTIQPASIP SAFAASKAFF AVSGNVAFAC
- 51 AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
- 101 SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 075 shows 65.7% identity over a 137 aa overlap with a predicted ORF (ORF 075.ng) from N. gonorrhoeae:

m075/g075

	10	20	30	40	50	60
m075.pep	MPSYFITLLTMENT	SAAKMPTT	IQPASIPSAFAA	SKAFFAVSGN	VAFACAAKA	RGAAVT
		1111 111			:	11111
g075	MPPYFITLLTMENT	SAAKTPTT	IQPASIPSAFAA	SKAFFAVSGN	AFACAAKA	SGAAVT
_	10	20	30	40	50	60
	70	80	90	100	110	
m075.pep	TASFAPYLRQVLINE	MIFSF	-KKCLAVMDGAF	FRRPPNIRKS	/FQKSEYDK	FVLVAD
		11111	:   :	:: : :	:   ::	::
g075	TASFAPYLROVLINE	MIFSFTKF	LKKCVCGLCEGF	RDRLPGLLNL	FFFVESEN	YKFPAY
	70	80	90	100	110	120
	120 130					
m075.pep	FFQTCVNRFFEVVEI	IGIGDX				
	:   ::   :  :	1				
g075	LFQCRAKSVFIAVIF	TGX				
	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 239>: a075.seq

1 ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAAGA CAAAAAGCGC
51 GGCGAAAACG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
101 CGGCTTCCAA AGCGTTTTTT GCTGTATCGG GCAACGTTGC ATTTGCATGT
151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTC AAAAAGTGTT
251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT
351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA

This corresponds to the amino acid sequence <SEQ ID 240; ORF 075.a>: a075.pep

- 1 MPSYFITLLT MEKTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNVAFAC
- 51 AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
- 101 SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*



WO 99/57280

```
m075/a075
              98.5% identity over a 136 aa overlap
                                                  40
             MPSYFITLLTMENTKSAAKMPTTIQPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
 m075.pep
              a075
              MPSYFITLLTMEKTKSAAKTPTTIQPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
                               20
                                         30
                                                  40
                                                            50
                     70
                               80
                                         90
                                                 100
                                                           110
             TASFAPYLRQVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFQKSEYDKFVLVADFFQT
 m075.pep
              a075
             {\tt TASFAPYLRQVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFQKSEYDKFVLVADFFQT}
                     70
                               80
                                        90
                                                 100
                    130
m075.pep
             CVNRFFEVVEIIGIGDX
             2075
             CVNRFFEVVEIIGIGDX
                    130
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 241>:
     q080.seq
               ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
            1
               CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
           51
          101 CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
          151
               TCCGATAAGA AGGCATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
          201 TATTTTGAGG ACGGACATCA ATGGCGCACA GGAAGCCTAC CGCCGGTATC
          251 CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA TACGGTTGAG
          301 GTCGTCCTGA CCGAGCGCAA GCCGGTTGCA CGTTGGGGCG ACCATGCCTT
          351 GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
          401 TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
          451 TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
               GATGACCTAT ACGGCACGTT CGGCGTGGAA TGTCGTTTTG GACAACGGCA
               TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
               ACCGAAGCGT GGCAGCATCT GttgcGTAAG AATAAAAATC GGTTATCCTA
          601
               TGTGGATATG Aggtataagg acggatttTC agtccccat gctCCCGACG
          651
          701 GTTTACCCGA AAAAGAATCC GAAGAATatt gggaacaggt ttgggacata
              ttacggcctg gcgtcggaaa cggttcgacg caaatttcaa tcagttatAA
              GGGCAGacga acaatggaac AGcagtaa
This corresponds to the amino acid sequence <SEQ ID 242; ORF 080.ng>:
     g080.pep
              MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
              SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
           51
              VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
          101
         151 YDEFSTVLAK QGLGIKEMTY TARSAWNVVL DNGITVRLGR ENEMKRLRLF
              TEAWQHLLRK NKNRLSYVDM RYKDGFSVPH APDGLPEKES EEYWEQVWDI
          251 LRPGVGNGST QISISYKGRR TMEQQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 243>:
     m080.seq
              ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
           1
              CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
          51
              CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
         101
              TCCGATAAGA AGACATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
         151
              TATTTTGAGG ACGGACATCA ATGGCGCACA GGAGGCCTAC CGCCGGTATC
         201
              CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA CACGGTTGAG
         251
              GTCGTCCTGA CCGAGCGCAA GCCGGTCGCG CGTTGGGGCG ACCATGCCTT
         301
         351
              GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
              TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
         401
              TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
         451
              GATGACCTAT ACGGCACGTT CGGCGTGGAT TGTCGTTTTG GACAACGGCA
         501
         551 TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
```

- 601 ACCGAAGCGT GGCAGCATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA
- 651 TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTTCCGACG 701 GTTTACCCGA AAAAGAATCC GAAGAATAG

This corresponds to the amino acid sequence <SEQ ID 2441; ORF 080>:

- m080.pep
  - MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY 1
  - 51 SDKKTLGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
  - 101 VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
  - 151 YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF 201 TEAWQHLLRK NKNRLSYVDM RYKDGFSVRY ASDGLPEKES EE*

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N. gonorrhoeae

ORF 080 shows 97.9% identity over a 242 aa overlap with a predicted ORF (ORF 080.ng) from *N. gonorrhoeae*:

m080/g080

m080.pep	10 MWDNAEAMERLTRWLI            MWDNAEAMERLTRWLI			ППІПП	50 SNLVYSDKKTL            SNLVYSDKKAL	
080	10	20	30	40	50	60 60
m080.pep		QEAYRRYPWI	ASVMVRRRFF	 DTVEVVLTER	 KPVARWGDHA	 LVDG
m080.pep	70 130 EGNVFEARLDRPGMPV	80 140 VEDGAFGTSAN	90 150	160	110 170	180
080	EGNVFEARLDRYGMPV	11111111111		1111111111		111
m080.pep	190 DNGITVRLGRENEMKR            DNGITVRLGRENEMKR 190			1111111111	11:1111	1111
m080.pep	EEX					
080	 EEYWEQVWDILRPGVG 250	NGSTQISISY 260	KGRRTMEQQX 270			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 245>: pes.080a

1	ATGTGGGATA	ATGCCGAAGC	GATGGAACGG	CTGACGCGCT	GGCTGCTTGT
51	CATGATGGCG	ATGCTGCTTG	CTGCGTCCGG	GCTGGTTTGG	TTTTACAATT
101	CGAATCATCT	GCCCGTCAAG	CAGGTGTCGC	TGAAGGGCAA	CCTAGTTTAT
151	TCCGATAAGA	AAGCATTGGG	CAGTTTGGCG	AAAGAATACA	TCCATGGGAA
201	TATTTTGAGG	ACGGACATCA	ATGGCGCACA	GGAGGCCTAC	CGCCGGTATC
251	CGTGGATTGC	GTCGGTCATG	GTGCGCCGCC	GTTTTCCCGA	CACGGTTGAG
301	GTCGTCCTGA	CCGAGCGCAA	GCCGGTCGCG	CGTTGGGGCG	ACCATGCCTT
351	GGTGGACGGC	GAAGGCAATG	TTTTTGAAGC	CCGTTTGGAC	AGACCCGGAA
401	TGCCGGTATT	CAGAGGCGCG	GAAGGAACGT	CTGCCGAAAT	GCTCCGCCGT
451	TATGACGAAT	TTTCGACTGT	TTTGGCAAAA	CAGGGTTTGG	GCATCAAAGA
501	GATGACCTAT	ACGGCACGTT	CGGCGTGGAT	TGTCGTTTTG	GACAACGGCA

TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT

```
ACCGAAGCGT GGCAACATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA
      601
          TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTCCCGACG
     651
          GTTTACCCGA AAAAGAATCC GAAGAATAG
 This corresponds to the amino acid sequence <SEQ ID 246; ORF 080.a>:
 a080.pep
          MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
          SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
      51
     101
          VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
          YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF
     151
          TEAWQHLLRK NKNRLSYVDM RYKDGFSVRY APDGLPEKES EE*
     201
m080/a080
             99.2% identity over a 242 aa overlap
                    10
                             20
                                       30
                                                40
                                                         50
            MWDNAEAMERLTRWLLVMMAMLLAASGLVWFYNSNHLPVKQVSLKGNLVYSDKKTLGSLA
m080.pep
             a080
            MWDNAEAMERLTRWLLVMMAMLLAASGLVWFYNSNHLPVKQVSLKGNLVYSDKKALGSLA
                             20
                                       30
                                                40
                                                         50
                                                                  60
                    70
                             80
                                       90
                                               100
                                                        110
m080.pep
            KEYIHGNILRTDINGAQEAYRRYPWIASVMVRRRFPDTVEVVLTERKPVARWGDHALVDG
            {	t KEYIHGNILRTDINGAQEAYRRYPWIASVMVRRRFPDTVEVVLTERKPVARWGDHALVDG}
a080
                    70
                             80
                                      90
                                              100
                                                        110
                                                                 120
                   130
                            140
                                     150
                                              160
                                                        170
                                                                 180
            {\tt EGNVFEARLDRPGMPVFRGAEGTSAEMLRRYDEFSTVLAKQGLGIKEMTYTARSAWIVVL}
m080.pep
            EGNVFEARLDRPGMPVFRGAEGTSAEMLRRYDEFSTVLAKQGLGIKEMTYTARSAWIVVL
a080
                   130
                            140
                                     150
                                              160
                                                        170
                                                                 180
                  190
                            200
                                     210
                                              220
                                                        230
                                                                 240
            DNGITVRLGRENEMKRLRLFTEAWQHLLRKNKNRLSYVDMRYKDGFSVRYASDGLPEKES
m080.pep
            a080
            DNGITVRLGRENEMKRLRLFTEAWQHLLRKNKNRLSYVDMRYKDGFSVRYAPDGLPEKES
                   190
                            200
                                     210
                                              220
m080.pep
            EEX
            \Pi\Pi
a080
            EEX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 247>:
    g081.seq
              ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
           1
              GCCGTCTGAA AACAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGATA
          51
         101
              TTCGGGAAGG CGATGTGTT TTCGCATTGG CGGGCGGCG GTTTGACGCG
              CATGATTTTG TTGGAGGCGT ATTGTCTGCG GGCGCGGCGG CGGTTGTGGT
         151
              TTCGCGCGAA GATTGCGCGG CTTTGGGCGG CGCGTTGAAA GTCGATGACA
         201
              CGCTTGCCGC GTTGCAAACG TTGGCGAAGG CGTGGCGCGA TAATGTGAAC
         251
              CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA
         301
              GATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTTTCGG
         351
             CGACGGCAGG CAACTTCAAC AACCACAtcg gaTTGCCGCT GACTTTATTG
         401
             AAATtaaAcg aAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA
         451
             TTTTGGcgaa ctggcggtTt taacgcaaaT CGCCAAACCC GATGCCGCTT
         501
```

TGGtcaACAA CGCCCTGCGC GCCCATGTCG GATGCGGTTt cgacggagtg

GGCGATATTG CCAAAGcgaa aagcGAGATT TatgcagGct tATGTTCAGA

CGGCATGGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA

CGGCAACGTT TAATTTGAAT ACGTGCACTT TCGGCGTCGA TAGCGGCGAT

GTCCGCGCGG AAAATATCGT GCTGAAACCT TTGTCGTGCG AATTTGATTT

551

601

651

701

751

 $-i\bar{x}$ 

```
801 GGTGTGCGGC GACGAGCGCA CTGCCGTGGT GCTGCCTGTT CCCGGCCGCC
               ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCCGGT
               TTGAGTTTGA ACGATGTGGC GGAAGGTTTG CAAGGCTTCA GCAACATCAA
               AGGCCGTCTG AACGTCAAAG CCGGCATCAA GGGCGCAACC CTGATTGACG
         1001 ATACTTATAA TGCGAATCCC GACAGTATGA AAGCCGCGGT TGACGTGTTG
         1051 GCGCGTATGC CTGCGCCGCG CATTTTCGTG ATGGGCGATA TGGGCGAACT
         1101 GGGCGAGGAC gaAGCCGCCG CCATGCACGC CGAagtcgGC GCGTACGCCC
         1151 GCGACCAAGG CATCGAAGCG GCTTATTTTG TCGGCGACAA CAGCGTCGAA
         1201 GCGGcggaAA AATTTGGCGC GGACGGTTTG TGGTTCGCCG CCAAAGACCC
         1251 GTTGATTCAA GTGTTGAGCC ACGATTTGCC CGAACGCGCC ACCGTGTTGG
               TGAAAGGTTC GCGCTTTATG CAGAtggAAG AAGTGGTCGA GGCATTGGAG
               GATAAGTga
This corresponds to the amino acid sequence <SEQ ID 248; ORF 081.ng>:
     g081.pep
               MKPLDLNFIC QALKLPMPSE NKPVSRIVTD SRDIREGDVF FALAGGRFDA
           51 HDFVGGVLSA GAAAVVVSRE DCAALGGALK VDDTLAALQT LAKAWRDNVN
          101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVSATAGNFN NHIGLPLTLL
          151 KLNEKHRYAV IEMGMNHFGE LAVLTQIAKP DAALVNNALR AHVGCGFDGV
          201 GDIAKAKSEI YAGLCSDGMA LIPOEDANMA VFKTATFNLN TCTFGVDSGD
          251 VRAENIVLKP LSCEFDLVCG DERTAVVLPV PGRHNVHNAA AAAALALAAG
          301 LSLNDVAEGL QGFSNIKGRL NVKAGIKGAT LIDDTYNANP DSMKAAVDVL
          351 ARMPAPRIFV MGDMGELGED EAAAMHAEVG AYARDQGIEA AYFVGDNSVE
          401 AAEKFGADGL WFAAKDPLIQ VLSHDLPERA TVLVKGSRFM QMEEVVEALE
          451 DK*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 249>:
     m081.seg
               ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
           51 GCCGTCTGAA AGCAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGACA
          101 TCCGCGCGGG CGATGTGTT TTCGCATTGG CGGGCGAGCG GTTTGACGCG
          151 CATGATTTG TTGAAGACGT ATTGGCTGCT GGTGCGGCGG CGGTTGTGGT
          201 TTCGCGCGAA GATTGTGCTG CAATGGATGG CGCGTTGAAA GTCGATGACA
          251 CGCTTGCCGC ATTGCAAACG CTGGCAAAGG CGTGGCGTGA AAATGTGAAT
               CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA
               AATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTGTTGG
          401
               CGACGGCAGG CAACTTCAAC AACCATATCG GATTGCCGCT GACTTTGTTG
          451 AAGTTAAACG AAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA
               TTTCGGCGAA CTGGCGGTTT TAACGCAMAT CGCCAAACCA AATGCCGCAT
          501
              TGGTCAACAA CGCCATGCGC GCCCATGTCG GCTGCGGTTT CGACGGAGTG
          551
              GGCGATATTG CCAAAGCGAA AAGCGAGATT TACCAAGGTT TATGTTCAGA
              CGGCATTGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
          701 CGGCAACGCT TAATTTGAAT ACGCGCACTT TCGGCATCGA TAGCGGCGAT
          751 GTTCACGCGG AAAATATTGT GCTGAAACCG TTGTCGTGCG AATTTGATTT
          801 GGTGTGCGGC GATGAGCGCG CCGCCGTGGT GCTGCCTGTT CCCGGCCGCC
          851 ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCGGGT
          901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG AAAGGCTTCA GCAATATCAA
          951 AGGCCGTCTG AACGTCAAAT CCGGAATCAA GGGCGCAACC CTGATTGACG
               ATACTTATAA TGCGAACCCT GACAGCATGA AAGCTGCGAT TGACGTGTTG
               GCGCGTATGC CTGCGCCGCG TATTTTCGTG ATGGGCGATA TGGGCGAACT
         1101
               GGGCGAACTG GGCGAGGACG AAGCCGCCGC TATGCACGCC GAAGTCGGCG
         1151
              CGTATGCCCG CGACCAAGGC ATCGAAGCGG CTTATTTTGT CGGCGACAAC
         1201 AGCGTCGAAG CGGCGGAAAA ATTTGGCGCG GACGGTTTGT GGTTCGCCGC
         1251 CAAAGACCCG TTGATTCAAG TGTTGCGCCA CGATTTGCCC GAACGCGCCA
         1301 CCGTGTTGGT GAAAGGTTCG CGCTTTATGC AGATGGAAGA AGTGGTCGAG
         1351 GCATTGGAGG ATAAGTGA
This corresponds to the amino acid sequence <SEQ ID 250; ORF 081>:
     m081.pep
              MKPLDLNFIC QALKLPMPSE SKPVSRIVTD SRDIRAGDVF FALAGERFDA
            1
           51 HDFVEDVLAA GAAAVVVSRE DCAAMDGALK VDDTLAALQT LAKAWRENVN
          101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVLATAGNFN NHIGLPLTLL
          151 KLNEKHRYAV IEMGMNHFGE LAVLTXIAKP NAALVNNAMR AHVGCGFDGV
```

201 GDIAKAKSEI YQGLCSDGIA LIPQEDANMA VFKTATLNLN TRTFGIDSGD 251 VHAENIVLKP LSCEFDLVCG DERAAVVLPV PGRHNVHNAA AAAALALAAG
301 LSLNDVAEGL KGFSNIKGRL NVKSGIKGAT LIDDTYNANP DSMKAAIDVL
351 ARMPAPRIFV MGDMGELGEL GEDEAAAMHA EVGAYARDQG IEAAYFVGDN
401 SVEAAEKFGA DGLWFAAKDP LIQVLRHDLP ERATVLVKGS RFMQMEEVVE
451 ALEDK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 081 shows 94.1% identity over a 455 aa overlap with a predicted ORF (ORF 081.ng) from N. gonorrhoeae: m081/g081

	10	20	30	40	50	60
m081.pep	MKPLDLNFICQAL	KLPMPSESKP\	/SRIVTDSRD	IRAGDVFFALA	GERFDAHDF	VEDVLAA
g081		!	/	TREGOVEENIA		:
	10	20	30	40	50	VGGVLSA 60
m081.pep	70 GAAAVVVSREDCAA	80	90	100	110	120
		:		AWRENVNPFVF	GITGSGGKT'	TVKEMLA
g081	GAAAVVVSREDCAA	ALGGALKVDDT	LAALQTLAK	AWRDNVNPFVF	GITGSGGKT'	TVKEMI.A
	70	80	90	100	110	120
m081.pep	130 AVLRRRFGDDAVLA	140 TAGNENNHIG	150	160	170	180
£ - £					MNHFGELAVI	LTXIAKP
g081	AVLRRRFGDDAVSA	TAGNFNNHIG	LPLTLLKLNE	EKHRYAVIEMG	MNHFGELAVI	LTOIAKP
	130	140	150	160	170	180
	190	200	210	220	230	240
m081.pep	NAALVNNAMRAHVG	CGFDGVGDIA	KAKSEI YQGI	CSDGIALIPO	EDANMAVFKT	CATLNLN
g081	:      :      DAALVNNALRAHVG	  CGEDGVGDTA				:
J	190	200	210	220	EDANMAVFKI 230	TATFNLN 240
					230	240
m081.pep	250	260	270	280	290	300
moor.pep	TRTFGIDSGDVHAE	NIATERE	FDLVCGDERA	AVVLPVPGRHI	VHNAAAAAA	LALAAG
g081	TCTFGVDSGDVRAE	NIVLKPLSCE	FDLVCGDERT		 *************************	1
	250	260	270	280	290	300
	310	320	220			
m081.pep	LSLNDVAEGLKGFS		330 SIKGATIJOO	340 TVNANDDOME	350	360
		1		11111111		111111
g081	LSLNDVAEGLQGFS	NIKGRLNVKAC	31KGATLIDD	TYNANPDSMK	AVDVLARMP	APRIFV
	310	320	330	340	350	360
	370	380	390	400	410	420
m081.pep	MGDMGELGELGEDE	AAAMHAEVGAY	/ARDQGIEAA	YFVGDNSVEAA	EKEGADGI.W	FAAKDD
g081		1   1   1   1   1   1   1			THILL	11111
9001	MGDMGELGEDEA	AAAMHAEVGAY 380	ARDQGIEAA 390	YFVGDNSVEAA 400		FAAKDP
	3.0	300	390	400	410	
m091 max	430	440	450			
m081.pep	LIQVLRHDLPERAT	/LVKGSRFMQM	[EEVVEALED]	KX		
g081	 LIQVLSHDLPERATY	IIIIIIIIIII /LVKGSRFMOM	ור	i i KX		
	420 430	440	450	·u·		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 251>: a081.seq

1	ATGAAACCAC	TGGACCTAAA	TTTCATCTGC	CAAGCCCTCA	AGCTTCCGAT
51	GCCGTCTGAA	AGCAAACCCG	TGTCGCGCAT	CGTAACCGAC	AGCCGCGACA
101	TCCGCGCGGG	CGATGTGTTT	TTCGCATTGG	CGGGCGGGCG	GTTTGATGCG
151	CATGATTTTG	TTGAAGACGT	ATTGGCTGCG	GGTGCGGCGG	CGGTTGTGGT
201	TTCGCGCGAA	GATTGCGTTG	CAATGGATGG	CGCGTTGAAA	GTCGATGACA
251	CGCTTACCGC	GTTGCAAATG	TTGGCGAAGG	CGTGGCGCGA	GAATGTGAAC
301	CCGTTTGTGT	TCGGTATTAC	CGGCTCGGGC	GGCAAGACGA	CGGTGAAGGA
351	AATGTTGGCT	GCGGTATTGC	GCCGCCGTTT	CGGCGATAAT	GCCGTTTTGG
401	CGACGGCAGG	CAACTTCAAC	AACCACATCG	GATTGCCGTT	GACTTTGTTG
451	AAATTAAACG	AAAAACACCG	CTATGCCGTG	ATTGAAATGG	GTATGAACCA
501	TTTTGGCGAA	CTGGCGGTTT	TGACACAAAT	CGCCAAACCC	GATGCCGCAT
551	TGGTCAACAA	CGCCATGCGC	GCCCATGTCG	GCTGCGGTTT	CGACGGAGTG
601	GGCGATATTG	CCAAAGCGAA	AAGCGAGATT	TATCAAGGCT	TATGTTCAGA
651	CGGCATGGCG	CTGATTCCTC	AAGAAGATGC	CAATATGGCT	GTCTTCAAAA
701	CGGCAACGCT	TAATTTGAAT	ACGCGCACTT	TCGGCATCGA	TAGCGGCGAT
751	GTCCACGCGG	AAAATATCGT	GCTGAAACCG	TTGTCGTGCG	AATTTGATTT
801	GGTGTGCGGC	AACGAGTGCG	CAGCCGTGGT	TCTGCCCGTT	CCCGGCCGCC
851	ACAATGTCCA	CAACGCCGCC	GCCGCCGCCG	CGCTGTCTTT	GGCTGCAGGT
901	TTGAGTTTGA	ACGATGTGGC	GGAAGGTTTG	AAAGGCTTCA	GCAATATCAA
951	AGGCCGTCTG	AACGTCAAAT	CCGGAATCAA	GGGCGCAACC	CTGATTGACG
1001	ATACTTATAA	TGCGAACCCT	GACAGCATGA	AAGCTGCGGT	TGACGTGTTG
1051	GCGCGTATGC	CTGCGCCGCG	TATTTTCGTG	ATGGGCGATA	TGGGCGAACT
1101	GGGTGAGGAC	GAAGCCGCCG	CCATGCACGC	CGAAGTCGGC	GCGTACGCCC
1151	GCGACCAAGG	CATCGAAGCG	GCTTATTTTG	TCGGCGACAA	CAGCGTCGAA
1201	GCGGCGGAAA	AATTTGGCGC	GGACGGTTTG	TGGTTCGCCG	CCAAAGACCC
1251	GTTGATTCAA	GTGTTGCGCC	ACGATTTGCC	CGAACGCGCC	ACCGTGTTGG
1301	TGAAAGGTTC	GCGCTTTATG	CAGATGGAAG	AAGTGGTCGA	GGCATTGGAG
1351	GATAAGTGA				

# This corresponds to the amino acid sequence <SEQ ID 252; ORF 081.a>: a081.pep

1	MKPLDLNFIC	QALKLPMPSE	SKPVSRIVTD	SRDIRAGDVF	FALAGGRFDA
51	HDFVEDVLAA	GAAAVVVSRE	DCVAMDGALK	VDDTLTALQM	LAKAWRENVN
101	PFVFGITGSG	GKTTVKEMLA	AVLRRRFGDN	AVLATAGNFN	NHIGLPLTLL
151	KLNEKHRYAV	IEMGMNHFGE	LAVLTQIAKP	DAALVNNAMR	AHVGCGFDGV
201	GDIAKAKSEI	YQGLCSDGMA	LIPQEDANMA	VFKTATLNLN	TRTFGIDSGD
251	VHAENIVLKP	LSCEFDLVCG	NECAAVVLPV	PGRHNVHNAA	AAAALSLAAG
301	LSLNDVAEGL	KGFSNIKGRL	NVKSGIKGAT	LIDDTYNANP	DSMKAAVDVL
351	ARMPAPRIFV	MGDMGELGED	EAAAMHAEVG	AYARDQGIEA	AYFVGDNSVE
401	AAEKFGADGL	WFAAKDPLIQ	VLRHDLPERA	TVLVKGSRFM	QMEEVVEALE
451	DK*				

### m081/a081 96.7% identity over a 455 aa overlap

	10	20	30	40	50	60
m081.pep	MKPLDLNFICQALKI	LPMPSESKPV	SRIVTDSRDI	RAGDVFFALA	GERFDAHDFV	EDVLAA
			111111111	11111111111	1 11111111	111111
a081	MKPLDLNFICQALKI	LPMPSESKPV	'SRIVTDSRDI	RAGDVFFALA	GGRFDAHDFV	EDVLAA
	10	20	30	40	50	60
	70	80	90	100	110	120
m081.pep	GAAAVVVSREDCAAN	1DGALKVDDT	'LAALQTLAKA'	WRENVNPFVF	GITGSGGKTT	VKEMLA
			1:111 1111	1111111111	3111111111	11111
a081	GAAAVVVSREDCVAN	1DGALKVDDT	LTALQMLAKA	WRENVNPFVF	GITGSGGKTT	VKEMLA
	70	80	90	100	110	120
	130	140	150	1.00	170	100
001		140	150	160	170	180
m081.pep	AVLRRRFGDDAVLAT	AGNENNHIG	LPLTLLKLNE	KHRYAVIEMG	MNHFGELAVL	TXIAKP
			11111111	1111111111		1 1111
a081	AVLRRRFGDNAVLAT	TAGNFNNHIG	LPLTLLKLNE	KHRYAVIEMG	MNHFGELAVL	TQIAKP

BNSDOCID: <WO___9957280A2_J_>

268

	130	140	150	160	170	180
	190	200	210	220	220	
m081.pep		AHVGCGFDGVGD		ZZU LCSDGIALIPO	230 EDANMAVEKTA	240 TININ
	: [ ]   [ ]   [ ]   [			11111:1111		1111
a081	DAALVNNAMRA	AHVGCGFDGVGD	IAKAKSEIYQGI	LCSDGMALIPQ1	EDANMAVFKTA:	TLNLN
	190	200	210	220	230	240
	250	260	270	280	290	300
m081.pep	TRTFGIDSGDV	HAENIVLKPLS	CEFDLVCGDERA	AAVVLPVPGRHI	VHNAAAAAAI.	ALAAG
0.01						1111
a081	TRTFGIDSGDV 250	HAENIVLKPLS 260				
	250	260	270	280	290	300
	310	320	. 330	340	350	360
m081.pep	LSLNDVAEGLK	GFSNIKGRLNV	KSGIKGATLIDE	TYNAN PDSMK#	AAIDVLARMPAE	PRIEV
a081				1111111111	1:11111111	1111
a001	310	GFSNIKGRLNVI 320	330	TYNANPDSMKA 340		
	510	320	330	340	350	360
	370	380	390	400	410	420
m081.pep	MGDMGELGELG	EDEAAAMHAEVO	SAYARDQGIEAA	YFVGDNSVEA	EKFGADGLWFA	AKDP
a081	MGDMGELGE			ון ון ון ון ון ון ון ון ו	TYPOT DOT -	1111
4001	3	70 380		400	EKFGADGLWFA 410	AKDP
				100	410	
m081.pep	430	440	450			
mos1.pep	TIONTRHOTER	RATVLVKGSRFN 	QMEEVVEALED	)KX		
a081	LIOVLRHDLPE	RATVLVKGSRFM	IOMEEVVEALED	I I KX		
		30 440				
The following	g partial DNA	sequence wa	s identified i	in N. gonorri	hoeae <seo< td=""><td>ID 253&gt;:</td></seo<>	ID 253>:
g082.se	q				_	
	1 aTGTGGTTG	T TGAAGTTGC	TGCCGTCGCC	GAAACGGCAT	CATCGCCGAA	
5 10	1 ACGGCGGCG	C AATACCGCAC	CCAGCATCTC	CTTCACCGTC	GTCTTGCCGC	!
15:	1 TTCGCCAAC	T AATGCCGAACGC	. ACAAACGGGT	TCACATTATC	GCGCCACGCC	
20.	1 GCCCAAAGC	C GCGCAATCTI	CGCGCGAAAC	' CACAACCGC	TCAACGCGCC	
25	1 CAGACAATA	C GCCTCCAACA	AAATCATGCG	CGTCAAACCG	CCCGCGCCCCG	
30	1 AATGCGAAA	A ACACATCGCC	TTCCCGAATA	TCGCGGCTGT	CGGTTACGAT	
35:	1 GCGCGACAC	G GGTTTGTTT	' CAGACGGCAT	CGGAAGCTTG	AGGGCTTGGC	
40:	1 AGATGAAAT	T TAGGTCCAGT	GGTTTCATAT	TTGCTTTCGT	TAATATTCGG	
45:	1 GCGGCGGAC	A CATCGGTAGO	GGCTGATTTT	TTTATCGCCT	GTTTTGCTGT	
50:	1 GGTAAAACA	C AGATTATTT	CCCATTCTCA	TTCGGCATTT	TTTCTGTACG	
55: 60:	TATCATTT	TAGACGTATT G TCGTCGGACT	TTTAGCCGAT	TIGCCTTTTC	CCGCATACCA	
65:	CGCCCGGGG	C ATCGGGGACA	TTCCCCCAAA	AAAGGCAAGG	TTATTGCCTT	
70:	1 AACTCGTCG	G TTTCGATACC	CGTCCAACTG	CCGAATCCCC	GTCATCGGGC	
This correspon	ids to the ami	no acid seque	ence <seo ii<="" td=""><td>D 254: ORF</td><td>082 ng&gt;</td><td></td></seo>	D 254: ORF	082 ng>	
g082.per	p		ODQ 1.	231, 010	002.ng/.	
	l MWLLKLPAV	A ETASSPKRRR	NTAASISFTV	VLPPEPVMPN	TNGFTLSRHA	
53	l fanvcnaas	/ SSTFNAPPKA	AQSSRETTTA	AAPADNTPPT	KSCASNRPPA	
101	L NAKNTSPSR	SRLSVTMRDT	GLFSDGIGSL	RAWOMKFRSS	GFIFAFVNIR	
151	L AADTSVAADI	FIACFAVVKH	RLFSHSHSAF	FLYVSFFRRI	FSRFAFSRIP	
The following	RKGVVGLSVI	KGKVIAFARH	IGDIPPKIIA	VIGOLVGFDT	RPTAESA*	_
The following	paruai DNA	sequence was	s identified in	n <i>N. meningi</i>	tidis <seq i<="" td=""><td>D 255&gt;:</td></seq>	D 255>:
	<b>-</b>	TGAAGTTGCC	тессотос	7 7 C7 CCC	A3 mc	
	ACGGCGCCG	AATACCGCAG	CCAGCATTTC	AACACGGCAT	CATCGCCGAA	
101	CCGAACCGG	AATGCCGAAC	ACAAACGGAT	TCACATTTT	ACCCCACCCC	
151	TTTGCCAGC	TTTGCAATGC	GGCAAGCGTG	TCATCGACTT	TCAACGCGCC	

201 ATCCATTGCA GCACAATCTT CGCGCGAAAC CACAACCGCC GCCGCACCAG
251 CAGCCAATAC GTCTTCAACA AAATCATGCG CGTCAAACCG CTCGCCCGCC
301 AATGCGAAAA ACACATCGCC CGCGCGGATG TCGCGGCTGT CGGTTACGAT
351 GCGCGACACG GGTTTGCTTT CAGACGGCAT CGGAAGCTTG AGGGCTTGGC
401 AGATGAAATT TAGGTCCAGT GGTTTCATAT TTACTTTCGT TAATATTCGG
451 GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT
501 GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGSATTT TTTCTGTACG
551 TATCATTTTT TAGACGTATT TTTAGTCGAT TTGCCTTTTC CCGCATACCA
601 CGGCGCGGGG TCGTCGGGCA GTCCGTCGAT AAAGGCAAGG TTATTGCCTT
651 CGCCCTGCAC ATCGGGAACA TTCCCCCAAA AATCATAGCC GTCATCGGGC
701 AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAATCCGC GTAA

This corresponds to the amino acid sequence <SEQ ID 256; ORF 082>: m082.pep

- 1 MXLLKLPAVA NTASSPKRRR NTAASISFTV VLPPEPVMPN TNGFTFSRHA
- 51 FASVCNAASV SSTFNAPSIA AOSSRETTTA AAPAANTSST KSCASNRSPA
- 101 NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWOMKFRSS GFIFTFVNIR
- 151 AADTSVAADF FIACFAVVKH RLFSHSHSXF FLYVSFFRRI FSRFAFSRIP
- 201 RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 082 shows 92.7% identity over a 247 aa overlap with a predicted ORF (ORF 082.ng) from N. gonorrhoeae:

m082/g082

	10	20	30	40	50	60
m082.pep	MXLLKLPAVANTASSPK	CRRRNTAASI:	SFTVVLPPEP	VMPNTNGFTF	SRHAFASVCN	AASV
			11111111	1111111:	11111:111	
g082	MWLLKLPAVAETASSPK					
	10	20	30	40	50	60
	70	80	90	100	110	120
m082.pep	SSTFNAPSIAAOSSRET					
moor.pcp					1:1:11111	
g082	SSTFNAPPKAAOSSRET	TTAAAPADN'	TPPTKSCASN			MRDT
3002	70	80	90	100	110	120
	130	140	150	160	170	180
m082.pep	GLLSDGIGSLRAWQMKF	RSSGFIFTF	VNIRAADTSV	AADFFIACFA	VVKHRLFSHS:	HSXF
				1111111111		
g082	GLFSDGIGSLRAWQMKF	FRSSGFIFAF	VNIRAADTSV		VVKHRLFSHSI	HSAF
	130	140	150	160	170	180
	190	200	210	220	230	240
m082.pep	FLYVSFFRRIFSRFAFS	RIPRRGVVG	OSVDKGKVIA		KIIAVIGQLV	GFDT
g082	FLYVSFFRRIFSRFAFS			= '	·	
	190	200	210	220	230	240
m082.pep	RPTAESAX					
mooz.pep						
g082	RPTAESAX					
3002	M IRBOM					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 257>: a082.seq

- 1 ATGTGGTTGT TGAAGTTGCC TGCCGTCGCC AAAACGGCAT TATCGCCGAA
- 51 ACGGCGGCGC AATACCGCAG CCAACATTTC CTTCACCGTC GTCTTGCCGC

BNSDOCID: <WO___9957280A2_I_>

```
CCGAGCCGGT AATACCGAAC ACAAACGGGT TCACATTCTC GCGCCACGCC
          TTCGCCAACA TTTGCAACGC GGTAAGCGTG TCATCGACTT TCAACGCGCC
      151
     201
          ATCCATTGCA ACGCAATCTT CGCGCGAAAC CACAACCGCC GCCGCACCCG
          CAGCCAATAC GTCTTCAACA AAATCATGCG CATCAAACCG CCCGCCCGCC
      251
         AATGCGAAAA ACACATCGCC CGCGCGGATG TCGCGGCTGT CGGTTACGAT
     301
          GCGCGACACG GGTTTGCTTT CAGACGGCAT CGGAAGCTTG AGGGCTTGGC
     351
          AGATGAAATT TAGGTCCAGT GGTTTCATAT TTACTTTCGT TAATATTCGG
     401
          GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT
     451
          GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGCATTT TTTCTGTACG
          TATCATTTTT TAGACGTATT TTTAGTCGAT TTGCCTTTTC CCGCATACCA
     551
     601
          CGGCGCGGGG TCGTCGGCA GTCCGTCGAT AAAGGCAAGG TTATTGCCTT
          CGCCCTGCAC ATCGGGAACA TTCCCCCAAA AATCATAGCC GTCATCGGGC
     651
     701
          AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAATCCGC GTAA
 This corresponds to the amino acid sequence <SEQ ID 258; ORF 082.a>:
 a082.pep
          MWLLKLPAVA KTALSPKRRR NTAANISFTV VLPPEPVIPN TNGFTFSRHA
       1
          FANICNAVSV SSTFNAPSIA TQSSRETTTA AAPAANTSST KSCASNRPPA
      51
         NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWQMKFRSS GFIFTFVNIR
     101
          AADTSVAADF FIACFAVVKH RLFSHSHSAF FLYVSFFRRI FSRFAFSRIP
     151
         RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*
     201
            95.5% identity over a 247 aa overlap
m082/a082
                    10
                             20
                                      30
                                               40
                                                        50
m082.pep
            MXLLKLPAVANTASSPKRRRNTAASISFTVVLPPEPVMPNTNGFTFSRHAFASVCNAASV
            MWLLKLPAVAKTALSPKRRRNTAANISFTVVLPPEPVIPNTNGFTFSRHAFANICNAVSV
a082
                    10
                             20
                                      30
                                               40
                                                        50
                                                                  60
                    70
                             80
                                      90
                                              100
                                                       110
                                                                 120
            SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT
m082.pep
            SSTFNAPSIATQSSRETTTAAAPAANTSSTKSCASNRPPANAKNTSPARMSRLSVTMRDT
a082
                   70
                             80
                                      90
                                              100
                                                       110
                   130
                            140
                                     150
                                              160
                                                       170
                                                                180
            GLLSDGIGSLRAWQMKFRSSGFIFTFVNIRAADTSVAADFFIACFAVVKHRLFSHSHSXF
m082.pep
            a082
            {\tt GLLSDGIGSLRAWQMKFRSSGFIFTFVNIRAADTSVAADFFIACFAVVKHRLFSHSHSAF}
                  130
                            140
                                     150
                                              160
                                                       170
                                                                180
                  190
                           200
                                     210
                                              220
                                                       230
                                                                240
m082.pep
            {\tt FLYVSFFRRIFSRFAFSRIPRRGVVGQSVDKGKVIAFALHIGNIPPKIIAVIGQLVGFDT}
            a082
            FLYVSFFRRIFSRFAFSRIPRRGVVGQSVDKGKVIAFALHIGNIPPKIIAVIGQLVGFDT
                  190
                           200
                                     210
                                              220
m082.pep
            RPTAESAX
            1111111
            RPTAESAX
```

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 259>: g084.seq

1	ATGAAacaAT	CCGcccgaat	aAAAAATATG	GATCAGACAT	TAAAAAATAc
51	attgggcatt	tGCGCGcttt	tagcctTTTG	TTTTaacacG	GCCATCGCAT
101	CAGGTTATCA	CTTGGAATAT	GAATACGGCT	ACCGTTATTC	TGCCGTGGGC
151	GCTTTGGCTT	CGGTTGTATT	TTTATTATTA	TTGGCACGCG	GCTTCCCCCC
201	CGTTTCTTCA	GTTGTTTTAC	TGATTTACGT	CGGCACAACC	GCCCTATATT
251	TGCCGGTCGG	CTGGCTGTAT	GGTGCGCCTT	CTTATCAGAT	AGTCGGTTCG
301	ATATTGGAAA	GCAATCCTGC	CGAGGCGCGT	GAATTTGTCG	GCAATCTTCC
351	CGGGTCGCTT	TATTTTGTGC	AGGCATTATT	TTTCATTTTT	GGCTTGACAG

a082

Ţ.,

```
TTTGGAAATA TTGTGTATCT GTGGGGGTAT TTGCTGACGT AAAAAACTAT
              AAACGTCGCA GCAAAATATG GCTGACCATA TTATTGACTT TGATTTTGTC
          451
         501 CTGCGCGGTG ATGGAGAAAA TCGccggcga taaAGATTGG CGAGaacctg
          551 atgccggcct gttgttgaat ATTTTcgacc tgtattaCga cttggctttc
         601 cqcqccqqca cAATATGCCG CCAAGCGCGC CCAcattttg gaaqCaqcaa
              aaaaagcgtC AACATGGCAt atccgccaac ttgcgcccaa gTAtaa
This corresponds to the amino acid sequence <SEQ ID 260; ORF 084.ng>:
     g084.pep
              MKQSARIKNM DQTLKNTLGI CALLAFCFGA AIASGYHLEY EYGYRYSAVG
              ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYOIVGS
           51
              ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS VGVFADVKNY
         101
              KRRSKIWLTI LLTLILSCAV MEKIAGDKDW REPDAGLLLN IFDLYYDLAF
         151
         201 RAGTICROAR PHFGSSKKSV NMAYPPTCAO V*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 261>:
     m084.seq
              ATGAAACAAT CCGCCCGAAT AAAa.ATATG AATCAGACAT TACTTTATAC
           1
              ATTGGGCATT TGCGCGCTTT TAACCTTTnn nnnnnnnnn nnnnnnnnn
          51
              nnnntatca cccngaatat gaatacggct accgttattc tgccgtgggt
         101
              GCTTTGGCTT CGGTTGTATT TTTATTATTA TTGGCACGCG GTTTCCCGCG
         151
              CGTTTCTTCA GTTGTTTTAC TGATTTACGT CGGCACAACC GCCCTATATT
         201
              TGCCGGTCGG CTGGCTGTAT GGTGCGCCGT CTTATCAGAT AGTCGGTTCG
         251
         301 ATATTGGAAA GCAATCCTGC CGAGGCGCGT GAATTTGTCG GCAATCTTCC
         351 CGGGTCGCTT TATTTTGTGC AGGCATTATT TTTCATTTTT GGCTTGACAG
         401 TTTGGAAATA TTGTGTATCG GGGGGGGTAT TTGCTGACGT AAAAAACTAT
         451 AAACGCCGCA GCAAAATATG GCTGACTATA TTATTGACTT TGATTTTGTC
         501 CTGCGCGGTG ATGGATAAAA TCGCCAGCGA TAAAGATTTG CGAGAACCTG
         551 ATGCCGGCCT GTTGTTGAAT ATTTTCGACC TGTATTACGA TTTGGCT.TC
              CGCGCCGGCA CAATATGCCG CCAAGCGCGC CCACATTTTG GAAGCAGCAA
              AAAAAGCGTC AACATGGCAT ATCCGTCATG TTGCGCCCAA GTATAA
This corresponds to the amino acid sequence <SEQ ID 262; ORF 084>:
     m084.pep
              MKQSARIKXM NQTLLYTLGI CALLTFXXXX XXXXXYHPEY EYGYRYSAVG
           1
              ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYQIVGS
          51
              ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS GGVFADVKNY
         101
              KRRSKIWLTI LLTLILSCAV MDKIASDKDL REPDAGLLLN IFDLYYDLAX
              RAGTICROAR PHFGSSKKSV NMAYPSCCAO V*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 084 shows 90.5% identity over a 231 aa overlap with a predicted ORF (ORF 084.ng)
from N. gonorrhoeae:
    m084/g084
                                  20
                                                    30
                 MKOSARIKXMNQTLLYTLGICALLTF-----YHPEYEYGYRYSAVGALASVVFLLL
     m084.pep
                 g084
                 MKQSARIKNMDQTLKNTLGICALLAFCFGAAIASGYHLEYEYGYRYSAVGALASVVFILL
                         10
                                  20
                                            30
                                                      40
                                                               50
                                                                         60
                        60
                                  70
                                           80
                                                     90
                                                             100
                 {\tt LARGFPRVSSVVLLIYVGTTALYLPVGWLYGAPSYQIVGSILESNPAEAREFVGNLPGSL}
     m084.pep
                 LARGFPRVSSVVLLIYVGTTALYLPVGWLYGAPSYQIVGSILESNPAEAREFVGNLPGSL
     g084
                         70
                                  80
                                            90
                                                     100
                                                              110
                                                                        120
                       120
                                 130
                                          140
                                                    150
                                                                       170
                 YFVQALFFIFGLTVWKYCVSGGVFADVKNYKRRSKIWLTILLTLILSCAVMDKIASDKDL
     m084.pep
                 YFVQALFFIFGLTVWKYCVSVGVFADVKNYKRRSKIWLTILLTLILSCAVMEKIAGDKDW
    g084
```

130

140

150

160

170

180

BNSDOCID: <WO___8957280A2_I_>

	180	190	200	210	220
m084.pep	REPDAGLLLNIFD	LYYDLAXRA	GTICRQARPHFO	SSKKSVNMA	YPSCCAQVX
- 004				111111111	11 11111
g084	REPDAGLLLNIFD	LYYDLAFRA	GTICRQARPHFO	SSKKSVNMA	YPPTCAQVX
	190	200	210	220	230

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 263>: a084.seq

1	ATGAAACAAT	CCGCCCGAAT	AAAAAATATG	GATCAGACAT	TAAAAAATAC
51	ATTGGGCATT	TGCGCGCTTT	TAGCCTTTTG		GCCATCGCAT
101	CAGGTTATCA	CTTGGAATAT	GAATACGGCT		TGCCGTGGGT
151	GCTTTGGCTT	CGGTTGTATT	TTTATTATTA		GTTTCCCGCG
201	CGTTTCTTCA	GTTGTTTTAC	TGATTTACGT		GCCCTATATT
251		CTGGCTGTAT			AGTCGGTTCG
301	ATATTGGAAA	GCAATCCTGC	CGAGGCGCGT		GCAATCTTCC
351		TATTTTGTGC		TTTCATTTTT	GGCTTGACAG
401	TTTGGAGATA		GGGGGGGTAT		
451	AAACGCCGCA	GCAAAATATG	GCTGACTATA	TTATTGACTT	TGATTTTGTC
501			TCGCCAGCGA		CGAGAACCTG
551	ATGCCGGCCT	GTTGTTGAAT	ATTTTCGACC	TGTATTACGA	
601			CCAAGCGCGC		GAAGCAGCAA
651	AAAAAGCGTC	AACATGGCAT	ATCCGTCATG	TTGCGCCCAA	GTATAA

# This corresponds to the amino acid sequence <SEQ ID 264; ORF 084.a>: a084.pep

1	MKQSARIKNM	DOTLKNTLGI	CALLAFCFGA	AIASGYHLEY	EYGYRYSAVG
51	ALASVVFLLL	LARGFPRVSS	VVLLIYVGTT	ALYLPVGWLY	GAPSYOTVGS
TOT	ILESNPAEAR	EFVGNLPGSL	YFVQALFFIF	GLTVWRYCVS	GGVFADVKNY
151	KRRSKIWLTI	LLTLILSCAV	MDKIASDKDL	REPDAGLLLN	I FDLYYDLAS

201 XAGTICRQAR PHFGSSKKSV NMAYPSCCAQ V*

### m084/a084 92.2% identity over a 231 aa overlap

m084.pep	10	20	30	40	50	60
-moor.pcp	MKQSARIKXMNQTL	LILGICALL	TEXXXXXXX	XXYHPEYEYGY	'RYSAVGALAS	SVVFLLL
a084				_ 11 11111		
4001	MKQSARIKNMDQTL	KNILGICALL	AFCFGAAIA:	SGYHLEYEYGY	RYSAVGALAS	SVVFLLL
	10	20	30	40	50	60
	70	80	90	100	110	120
m084.pep	LARGFPRVSSVVLL	IYVGTTALYL	PVGWLYGAPS	SYOIVGSILES	NPAEAREFVO	NT.PGST.
	- 11111111111111	111111111	111111111			I I I I I I I
a084	LARGFPRVSSVVLL	IYVGTTALYL	PVGWLYGAPS	SYNTVESTLES	יון ווווווווו	NIT DOGT
	70	80	90	100		
			30	100	110	120
	130	140	150	1.00	450	
m084.pep				160	170	180
	YFVQALFFIFGLTV	VAICVSGGVE,	ADVKNIKKKS	KIMPLIFFE	ILSCAVMDKI	ASDKDL
a084			1111111111		111111111	11111
4001	YFVQALFFIFGLTV	VRYCVSGGVF	ADVKNYKRRS		ILSCAVMDKI	ASDKDL
	130	140	150	160	170	180
•••	190	200	210	220	230	
m084.pep	REPDAGLLLNIFDLY	YDLAXRAGT:	ICRQARPHFG	SSKKSVNMAY	PSCCAOVX	
	-11111111111111111	1111 111			11111111	
a084	REPDAGLLLNIFDLY	YDLASXAGT	CROARPHEG	SSKKSMMM	DECCAOUV	
	190	200	210	220		
			210	220	230	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 265>:

1 ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGT TGAAAGATAA

```
51 GGCAAAAGGC GTGTTCCTGA TCGGCGTCGA TGCGCCGCAA ATCCGCCGCG
          101 ATTTGGACGG CTGCGGCTTG AACCTGACCG ACTGCGTCAC TTTGGAAGAG
               GCGGTTCAGA CGGCATACGC CCAAGCCGAA GCGGGCGATA TTGTCTTGCT
          151
               CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT
          251
               CGGAAGTGTT tatCGAAGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <SEQ ID 266; ORF 085.ng>:
     g085.pep
               MGKGQDFTPL RDALKDKAKG VFLIGVDAPQ IRRDLDGCGL NLTDCVTLEE
            1
           51
              AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 267>:
     m085.seq
               ATGGGTAAAG GGCAGGACTT CACGCCCCTG CGCGATGCAC TGGTAGGCAA
            1
           51
               GGCAAAAGGC GTGTTCTTGA TTGGTGTCGA TGCGCCGCAA ATCCGCCGCG
          101 ATTTGGACGG CTGCGGCTTG AATATGACCG ACTGCGCCAC TTTGGGAGAA
          151 GCCGTTCAGA CGGCATATGC CCAAGCCGAA GCAGGCGATA TTGTGTTGCT
          201 CAGCCCCGCC TGCGCGAGCT TTGATATGTT CAAAGGCTAC GCGCACCGTT
          251 CGGAAGTGTT TATCGAAGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <SEQ ID 268; ORF 085>:
     m085.pep
               MGKGQDFTPL RDALVGKAKG VFLIGVDAPQ IRRDLDGCGL NMTDCATLGE
              AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 085 shows 94.7% identity over a 94 aa overlap with a predicted ORF (ORF 085.ng)
from N. gonorrhoeae:
     m085/g085
                          10
                                    20
                                              30
                                                       40
                                                                 50
                                                                           60
                  MGKGQDFTPLRDALVGKAKGVFLIGVDAPQIRRDLDGCGLNMTDCATLGEAVOTAYAOAE
     m085.pep
                  g085
                  MGKGQDFTPLRDALKDKAKGVFLIGVDAPQIRRDLDGCGLNLTDCVTLEEAVQTAYAQAE
                          10
                                    20
                                             30
                                                       40
                                                                 50
                                                                           60
                          70
                                    80
                  AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
     m085.pep
                  q085
                  AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
                          70
                                    80
                                             90
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 269>:
a085.seq
         ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGC TTGCCGGCAA
      1
      51
         GGCAAAAGGC GTGTTCCTGA TCGGTGTCGA TGCGCCGCAA ATCCGCCGCG
     101
         ATTTGGACGG CTGCGATCTG AATATGACCG ACTGCGCCAC TTTGGAAGAA
     151 GCGGTTCAGA AGGCATATGC CCAAGCCGAA GCGGGCGATA TCGTGCTGCT
     201 CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT
     251 CGGAAGTGTT TATCGGGGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <SEQ ID 270; ORF 085.a>:
a085.pep
         MGKGQDFTPL RDALAGKAKG VFLIGVDAPQ IRRDLDGCDL NMTDCATLEE
         AVQKAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIGA FKAL*
            94.7% identity over a 94 aa overlap
m085/a085
                               20
                                        30
                                                  40
            MGKGQDFTPLRDALVGKAKGVFLIGVDAPQIRRDLDGCGLNMTDCATLGEAVQTAYAQAE
m085.pep
```

```
a085
              MGKGQDFTPLRDALAGKAKGVFLIGVDAPQIRRDLDGCDLNMTDCATLEEAVQKAYAQAE
                                         30
                      70
                               80
 m085.pep
              AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
              a085
              AGDIVLLSPACASFDMFKGYAHRSEVFIGAFKALX
                     70
                               80
 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 271>:
      g086.seq
                ATGGTGGTGC TGATGACGGC GTTCGGCCTG CTGATGATTT ATTCGGCTTC
             1
               TGTGTATTTG GCATCGAAGG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
            51
               GGCAGGCGGG GTTCGTCGTT GCCGGCCTTA TAGCGAGCGG TTTTTTATGG
           151 TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
           201 CTTATCCGGC CTGTTGCTGG TAGCCGTATT GATTGCCGGG CGCGAAATCA
           251 ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
               GAGCTGTTCA AGCTGGCAGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
               CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
               GGCGGGGGAC GGCCAACCTG ATTATGTCCG CCACCAATCC GCAGGCACGT
               CGTGAAACAT TAGAAATGTA CGGCCGTTTC CGGGCGATCA TCCTGCCGAT
          501 TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
          551 GTTCGTTTGT CGTCATTACC GTCATTACCG TTGGAATGCT GTTTCTGGCA
          601 GGATTGCCGT GGAAATATTT TTTTGTCCTG GTAGGCAGCG TCTTGGGTGG
          651 GATGGTGCTG ATGATTACCG CCGCTCCCTA CCGTGTGCAG CGGGTAGTGG
          701 CATTTTGGA CCCGTGGAAA GACCCGCAGG GTGCCGGCTA CCAGCTTACC
          751 CACTCTCTGA TGGCAATCGG GCGCGGAGAG TGGTTCGGTA TGGGTTTGGG
          801 TGCGAGTTTG AGCAAACGCG GCTTTCTGCC GGAAGCGCAT ACCGATTTTA
               TTTTTGCCAT CATCGCTGAA GAATTCGGCT TCTTCGGGAT GTGCGTGCTG
               ATATTCTGTT ACGGCTGGCT GGTGGTGCGG GCGTTTTCCA TCGGCAAGCA
               GTCGCGCGAT TTGGGtttgA CTTTCAACGC CTATATCGCT TCGGGTATCG
         1001 GCATTTGGAT CGGTATCCAA AGTTTCTTCA ATATCGGTGT GAACATCGGT
         1051 GCTTTGCCGA CCAAAGGTCT GACGCtgCcg tTGATGTCCT ATGGcggTTC
         1101 GTCAGTCTTT TTCATGCTGA TCAGCATGAT GCTGCTGTTG CGTATCGATT
         1151 ATGAAAACCG CCAGAAAATG CGCGGTTACC GGGTGGAGTA AA
This corresponds to the amino acid sequence <SEQ ID 272; ORF 086.ng>:
     g086.pep
               MVVLMTAFGL LMIYSASVYL ASKEGGDQFF YLTRQAGFVV AGLIASGFLW
               FLCRMRTWRR LVPWIFALSG LLLVAVLIAG REINGATRWI PLGPLNFQPT
           51
              ELFKLAVILY LASLFTRREE VLRSMESLGW QSIWRGTANL IMSATNPQAR
          151 RETLEMYGRF RAIILPIMLV AFGLVLIMVQ PDFGSFVVIT VITVGMLFLA
              GLPWKYFFVL VGSVLGGMVL MITAAPYRVQ RVVAFLDPWK DPQGAGYQLT
          251 HSLMAIGRGE WFGMGLGASL SKRGFLPEAH TDFIFAIIAE EFGFFGMCVL
              IFCYGWLVVR AFSIGKQSRD LGLTFNAYIA SGIGIWIGIQ SF<u>FNIGVNIG</u>
          301
              ALPTKGLTLP LMSYGGSSVF FMLISMMLLL RIDYENRQKM RGYRVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 273>:
     m086.seg
              ATGGTGGTGC TGATGACGGC GTTCAGCCTG CTGATGATTT ATTCGGCTTC
              TGTGTATTTG GCATCAAAAG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
           51
          101 GACAGGCGGG GTTCGTCGTT GCCGGCTTGA TAGCGAGCGG TTTGTTATGG
              TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
          151
              CCTATCCGGC CTGTTGCTGG TAGTCGTATT GATTGCCGGG CGCGAAATCA
              ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
          251
              GAGCTGTTCA AGCLGGCGGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
          301
         351
             CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
         401 GGCGGGGGAC GGCCAATCTG ATCATGTCCG CCACCAATCC GCAGrCACGT
         451 CGTGAaACAT TAGAAATGTA CGGCCGTwTC CGGGCGATCA TCCTGCCGAT
         501 TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
```

551	GTTCGTTTGT	CGTCATTACC	GTCATTGCCG	TTGGAATGCT	GTTTTTGGCA
601	GGATTGCCGT	GGAAATATTT	TTTCGTCCTG	GTAGGCAGCG	TCTTGGGCGG
651	GATGGTGCTG	ATGATTACCG	CCGCTCCCTA	CCGTGTGCAG	CGGGTAGTGG
701	CATTTTTGGA	CCCGTGGAAA	GACCCGCAGG	GTGCCGGCTA	CCAGCTTACC
751	CACTCTCTGA	TGGCAATCGG	GCGCGGAGAG	TGGTTCGGTA	TGGGTTTGGG
801	TGCGAGTTTG	AGCAAACGCG	GCTTTCTGCC	GGAAGCGCAT	ACCGATTTTA
851	TTTTTGCCAT	CATCGCCGAA	GAATTCGGTT	TCTTCGGTAT	GTGCGTGCTG
901	ATATTCTGTT	ACGGCTGGCT	GGTGGTGCGG	GCGTTTTCCA	TCGGCAAGCA
951	GTCGCGCGAT	TTGGGTTTGA	CTTTCAACGC	CTATATCGCT	TCGGGTATCG
1001	GCATTTGGAT	CGGKrTCCAA	AGTTTCTTCA	ATATCGGTGT	GAACATCGGT
1051	GCTTTGCCGA	mCAAAgGyCT	GACGCyGCCG	Tg.AtGTCCw	ATGGCGGTTC
1101	GTCAGTCTTT	TTCATGCTGA	TCAGCATGAT	${\tt GCTGCTGTkG}$	CGTATAGATT
1151	ATGAAAACCG	CCGGAAAATG	CGCGGTTATC	GGGTGGAGTA	A

This corresponds to the amino acid sequence <SEQ ID 274; ORF 086>: m086.pep

1 MVVLMTAFSL LMIYSASVYL ASKEGGDQFF YLTRQAGFVV AGLIASGLLW
51 FLCRMRTWRR LVPWIFALSG LLLVVVLIAG REINGATRWI PLGPLNFQPT
101 ELFKLAVILY LASLFTRREE VLRSMESLGW QSIWRGTANL IMSATNPQXR
151 RETLEMYGRX RAIILPIMLV AFGLVLIMVQ PDFGSFVVIT VIAVGMLFLA
201 GLPWKYFFVL VGSVLGGMVL MITAAPYRVQ RVVAFLDPWK DPQGAGYQLT
251 HSLMAIGRGE WFGMGLGASL SKRGFLPEAH TDFIFAIIAE EFGFFGMCVL
301 IFCYGWLVVR AFSIGKQSRD LGLTFNAYIA SGIGIWIGXQ SFFNIGVNIG
351 ALPXKGLTXP XMSXGGSSVF FMLISMMLLX RIDYENRRKM RGYRVE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 086 shows 96.7% identity over a 396 aa overlap with a predicted ORF (ORF 086.ng) from N. gonorrhoeae:

m086/g086

m086.pep	10 MVVLMTAFSLLMIYSA	20 ASVYLASKEG	30 GDQFFYLTRQA	40 AGFVVAGLIAS	50 GLLWFLCRM	60 IRTWRR
g086	MVVLMTAFGLLMIYSA 10	ASVYLASKEG 20	GDQFFYLTRQA	AGFVVAGLIAS 40	GFLWFLCRM 50	RTWRR 60
m086.pep	70 LVPWIFALSGLLLVVV           LVPWIFALSGLLLVAV 70	ШНШП	90 ATRWIPLGPLI         ATRWIPLGPLI 90	ПІШШІ		11111
m086.pep	130 VLRSMESLGWQSIWRO            VLRSMESLGWQSIWRO 130		111 11111			$\Pi\Pi\bar{\Pi}$
m086.pep	190 PDFGSFVVITVIAVGN             PDFGSFVVITVITVGN 190			1111111111	Шіші	11111
m086.pep	250 DPQGAGYQLTHSLMA:           DPQGAGYQLTHSLMA: 250					11111
	310	320	330	340	350	360

BNSDOCID: <WO___9957280A2_I_>

m086.pep	IFCYGWLVVRAFS]	GKQSRDLGL	TFNAYIASGI	GIWIGXQSFF1	NIGVNIGALPX	KKGLTXÞ
g086				<u> </u>		. 1 1 1 1 1
_			TIMILIADGI	JIMIGIOSE EL	MIGANIGALD	CKGLTLP
	310	320	330	340	350	360
	370	380	390			
m086.pep	XMSXGGSSVFFMLI	SMMLT.XRTD	ZENIDD VMD CVI	שמוזוכ		
g086	LMSYGGSSVFFMLI	SMMLLLRIDY	ENROKMRGYF	RVEX		
	370	380	390			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 275>: a086.seq

```
ATGGTGGTGC TGATGACGGC GTTCAGCCTG CTGATGATTT ATTCGGCTTC
   1
      TGTGTATTTG GCATCAAAAG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
   51
      GACAGGCGGG GTTCGTCGTT GCCGGCTTGA TAGCGAGCGG TTTGTTATGG
 101
 151 TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
 201 CCTATCCGGC CTGTTGCTGG TAGTCGTATT GATTGCCGGG CGCGAAATCA
 251 ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
 301 GAGCTGTTCA AGCTGGCGGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
351 CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
 401 GGCGGGGGAC GGCCAATCTG ATCATGTCCG CCACCAATCC GCAGGCACGT
 451 CGTGAAACAT TAGAAATGTA CGGCCGTTTC CGGGCGATCA TCCTGCCGAT
 501 TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
 551
      GTTCGTTTGT CGTCATTACC GTCATTGCCG TTGGAATGCT GTTTTTGGCA
      GGATTGCCGT GGAAATATTT TTTCGTCCTG GTAGGCAGCG TCTTGGGCGG
 651 GATGGTGCTG ATGATTACCG CCGCTCCCTA CCGTGTGCAG CGGGTAGTGG
     CATTTTTGGA CCCGTGGAAA GACCCGCAGG GTGCCGGCTA CCAGCTTACC
     CACTCTCTGA TGGCAATCGG GCGCGGAGAG TGGTTCGGTA TGGGTTTGGG
      TGCGAGTTTG AGCAAACGCG GCTTTCTGCC GGAAGCGCAT ACCGATTTTA
 851
      TTTTTGCCAT CATCGCCGAA GAATTCGGTT TCTTCGGTAT GTGCGTGCTG
 901 ATATTCTGTT ACGGCTGGCT GGTGGTGCGG GCGTTTTCCA TCGGCAAGCA
 951 GTCGCGCGAT TTGGGTTTGA CTTTCAACGC CTATATCGCT TCGGGTATCG
1001
     GCATTTGGAT CGGTATCCAA AGTTTCTTCA ATATCGGTGT GAACATCGGT
      GCTTTGCCGA CCAAAGGTCT GACGCTGCCG TTGATGTCCT ATGGCGGTTC
      GTCAGTCTTT TTCATGCTGA TCAGCATGAT GCTGCTGTTG CGTATAGATT
1101
1151 ATGAAAACCG CCGGAAAATG CGCGGTTACC GGGTGGAGTA A
```

# This corresponds to the amino acid sequence <SEQ ID 276; ORF 086.a>: a086.pep

_					
1	MVVLMTAFSL	LMIYSASVYL	ASKEGGDQFF	YLTROAGEVV	AGLTASGLIM
51	FLCRMRTWRR	LVPWIFALSG	LLLVVVLIAG	REINCATOWI	DICDINEDDM
101	VII PILL BURE		<u> </u>	MITMONIKWI	<b>FUGSTULÖ</b> BI
TOT	FLFKLAVILY	LASLFTRREE	VLRSMESLGW	OSTWRCTANT	TMCAMMIDATE
151	DEET BATTON			SPIMMOTWAN	IMBAINPOAK
121	RETLEMYGRF	RAIILPIMLV	AFGLVLIMVO	PDFGSFVVTT	STENSIONE ET D
201	CT DESIGNATION OF	1100117 001017	*	T D T C D T V V T T	VIAVGNLELA
	GLPWKYFFVL	VGSVLGGMVL	MITAAPYRVO	RVVAFIDPWK	DPOGAGYOTT
251	HELMATCHCH	MEGMOT OF ST		THE EDITOR	DI GOVGI ČTI
201	HSLMAIGRGE	WEGMGLGASL	SKRGFLPEAH	TDFTFATTAE	EFCFFCMCUT
301	<u>IFCYGWLVV</u> R	A EGTGWOODD			DI GIT GINCAT
	TECTGMTAAK	AFSIGKQSRD	LGLTFNAYIA	SGIGIWIGIO	SERNICUNIC
351	AT DEVCT BT D	TMOVOCOGUE			PILLIGAMIC
JJ1	ALPTKGLTLP	TW2 ICC22AL	FMLISMMLLL	RIDYENRRKM	RCYPUE*
					TIGITIAL

### m086/a086 98.0% identity over a 396 aa overlap

m086.pep	10 MVVLMTAFSLLMIY !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1 1 1 1 1 1 1	 GGDQFFYLTR:	 QAGFVVAGLI		
	10	20	30	40	50	60
m086.pep	70	80	90	100	110	120
	LVPWIFALSGLLLV	VVLIAGREIN	GATRWIPLGP	LNFQPTELFK	LAVILYLASL	FTRREE
a086		/VLIAGREIN		 LNFQPTELFK	 LAVILYLASL	 FTRREE

277

	70	80	90	100	110	120
	130	140	150	160	170	180
m086.pep	VLRSMESLGWQSIV	VRGTANLIMS <i>A</i>	TNPQXRRETI	<b>EMYGRXRAII</b>	LPIMLVAFG:	LVLIMVQ
			1111 11111		111111111	111111
a086	VLRSMESLGWQSIV	vrgtanlims <i>a</i>	TNPQARRETI	<b>LEMYGRFRAII</b>	LPIMLVAFG:	LVLIMVQ
	130	140	150	160	170	180
	190	200	210	220	230	240
m086.pep	PDFGSFVVITVIA	/GMLFLAGLPW	KYFFVLVGSV	'LGGMVLMITA	APYRVQRVV	AFLDPWK
			111111111	1111111111	11111111	
a086	PDFGSFVVITVIA	GMLFLAGLPW	KYFFVLVGSV	'LGGMVLMITA	APYRVQRVV	AFLDPWK
	190	200	210	220	230	240
	250	260	. 270	280	290	300
m086.pep	DPQGAGYQLTHSLN	MAIGRGEWFGM	IGLGASLSKRG	FLPEAHTDFI	FAIIAEEFG:	FFGMCVL
						111111
a086	DPQGAGYQLTHSL				FAIIAEEFG:	FFGMCVL
	250	260	270	280	290	300
	310	320	330	340	350	360
m086.pep	IFCYGWLVVRAFS]	GKQSRDLGLT	'FNAYIASGIG	IWIGXQSFFN	IGVNIGALP	XKGLTXP
		1111111				:
a086	IFCYGWLVVRAFSI					
	310	320	330	340	350	360
	270	200	200			
006	370	380	390			•
m086.pep	XMSXGGSSVFFMLI	SMMLLXKIDY	ENKKKMKGYR	VEX		
-006			11111111111	111		
a086	LMSYGGSSVFFMLI			VEX		
	370	380	390			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 277>: g087.seq

```
ATGGGCGGTA AAACCTTTAT GCTGATGGCG GGCGGAACGG GCGGACACAT
  51 TTTCCCAGCT CTGGCTGTGG CGGATTCATT GCGCGTGCGC GGTCATCATG
 101 TAATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGCAT CGTGCCGCAA
 151 TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGAATAC GCGGCAACGG
 201 CATCAAACGC AAGCTGATGC TTCCGTTTAC TCTGTACAAA ACCGTCCGCG
 251 AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC
     GGCGGTTTTG TTACCTTTCC CGGCGGTCTG GCGGCGAAAC TCTTGGGCGT
 351
     GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGCTTG TCCAACCGCC
 401 ACCTGTCGCg ctGGGCGAAA CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC
 451 AGCCACGAAG GCGGTTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA
501 CCTGCCCGTG CCTGCCGAAC GCTTCCAAGG GCGCGAAGGC CGTCTGAAAA
551 TTTTGGTGGT CGGCGGCAGT TTGGGTGCGG ACGTTTTGAA CAAAACCGTA
601 CCGCAGGCGT TGGCACTGCT GCCTGAAGAG GTGCGCCCGC AGATGTACCA
 651 CCAGTCGGGG CGTAACAAGC TGGGCAATCT TCAGGCGGAT TATGACGCGT
 701 TGGGCGTGAA AGCGGAATGC GTGGAATTTA TTACCGACAT GGTGTCCGCC
 751 TACCGTGATG CCGATTTGGT GATTTGCCGT GCCGGCGCGC TGACGATTGC
 801 CGAGTTGACG GCGGCGGGC TGGGCGCGTT GTTAGTGCCG TATCCTCACG
 851 CCGTTGATGA CCATCAAACC GCCAACGCGC GTTTCATGGT GCAGGCAGAA
901 GCGGGGCTGC TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA
951 AATCCTCGGC AGCCTCAACC GCGAAAAATG CCTCAAATGG GCGGAAAACG
     CCCGTACGTT GGCATTGCCG CACAGCGCGG ATGACGTTGC CGAAGCCGCG
1051 ATTGCGTGTG CGGCGTAAA
```

This corresponds to the amino acid sequence <SEQ ID 278; ORF 087.ng>: g087.pep

1 MGGKTFMLMA GGTGGHIFPA LAVADSLRVR GHHVIWLGSK DSMEERIVPQ 51 YGIRLETLAI KGIRGNGIKR KLMLPFTLYK TVREAQRIIR KHRVE<u>CVIGF</u> 101 <u>GGFVTFPGGL AA</u>KLLGVPIV IHEQNAVAGL SNRHLSRWAK RVLYAFPKAF 151 SHEGGLVGNP VRADISNLPV PAERFQGREG RLKILVVGGS LGADVLNKTV



- 201 PQALALLPEE VRPQMYHQSG RNKLGNLQAD YDALGVKAEC VEFITDMVSA 251 YRDADLVICR AG<u>ALTIAELT AAGLGALLV</u>P YPHAVDDHQT ANARFMVQAE 301 AGLLPQTQL TAEKLAEILG SLNREKCLKW AENARTLALP HSADDVAEAA 351 IACAA*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 279>:

```
ATGGGCGGTA AAACCTTTAT GCTGAWKKCG GGCGGAACGG GCGGACATAT
      TTTCCCCGCG CTGGCGGTGG CGGATTCATT GCGCGCGCGC GGCCATCATG
  51
      TGATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGTAT CGTGCCGCAA
 101
      TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGCGTGC GCGGCAACGG
 151
     CATCAAACGC AAACTGATGC TGCCGGTTAC TTTGTATCAA ACCGTCCGCG
 201
 251 AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC
 301 GGCGGCTTCG TTACCTTCCC CGGCGGTTTG GCGGCGAAGC TATTAYGCGT
 351 GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGTTTG TCCAACCGCC
 401 ACCTGTCGCG CTGGGCGAAG CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC
 451 AGCCACGAAG GCGGCTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA
 501 CCTGCCGTG CCTGCCGAAC GCTTCCAAGG GCGTGAAGGC CGTCTGAAAA
 551 TTTTGGTGGT CGGCGGCAGT TTGGGCGCGG ACGTTTTGAA CAAAACCGTA
 601 CCGCATGCAT TGGCTTTGCT GCCCGACAAT GCGCGTCCGC ATATGTACCA
     CCAATCGGGA CGGGGCAAGC TGGGCATCTT GCAGGCGnnn nnnnnnnnn
     701
     nnngcgggat tgggtgcgtt gttagtgccg tatcctcacg cggttgacga
 751
 801 TCACCAAACC GCCAACGCGC GTTTTATGGT GCAGGCGGAG GCGGGATTGC
851 TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA GATTCTCGGC
901 GGCTTAAACC GCGAAAAATG CCTCAAATGG GCAGAAAACG CCCGTACGTT
951 GGCACTGCCG CACAGTGCGG ACGACGTGGC GGAAGCCGCG ATTGCGTGTG
1001 CGGCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 280; ORF 087>:

1 MGGKTFMLXX GGTGGHIFPA LAVADSLRAR GHHVIWLGSK DSMEERIVPQ
51 YGIRLETLAI KGVRGNGIKR KLMLPVTLYQ TVREAQRIIR KHRVECVIGF
101 GGFVTFPGGL AAKLLXVPIV IHEQNAVAGL SNRHLSRWAK RVLYAFPKAF
151 SHEGGLVGNP VRADISNLPV PAERFQGREG RLKILVVGGS LGADVLNKTV
201 PHALALLPDN ARPHMYHQSG RGKLGILQAX XXXXXXXXXX XXXXXXXXXX
251 XAGLGALLVP YPHAVDDHQT ANARFMVQAE AGLLLPQTQL TAEKLAEILG
301 GLNREKCLKW AENARTLALP HSADDVAEAA IACAA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 087 shows 83.9% identity over a 355 aa overlap with a predicted ORF (ORF 087.ng) from N. gonorrhoeae:

m087/g087

m087.pep	10 MGGKTFMLXXGGTG	1   [ 1   1   1   1	111111	1111111	11111111	13 1 1 1 1 1 1
9007	MGGKTFMLMAGGTG	GHIFPALAVI 20	ADSLRVRGHHV 30	IWLGSKDSME 40		
			30	40	50	60
m087.pep	70 KGVRGNGIKRKLML	80 PVTLYOTVRF	90 WGWWGTTGAG	100	110	120
g087	KGIRGNGIKRKLML	1 [ ] [ ] : ] [ ] [	11111111	111111111	1111111111	1 1111
	70	80	90	100	110	120
m087.pep	130 IHEONAVAGLSNRH	140 LSRWAKDVI.V	150	160	170	180
	IHEQNAVAGLSNRHI		11111111111	1	111111111	
g087	IHEQNAVAGLSNRHI	SRWAKRVLY	AFPKAFSHEGO	SLVGNPVRAD:	ISNLPVPAER	FOGREG
	130	140	150	160	170	180

DOMESTIC OF STREET

			-				
		190	200	210	220	229	
· m087	7.pep RL	KILVVGGSLGA	DVLNKTVPHAL	ALLPDNARPHM	YHOSGRGKLGI	LOA	
						_	
9087		KILVVGGSLGA					GUKAEC
900,		190	200	210	220	230	240
		170	200	210	220	230	240
				230	240	250	
005				·	ALLVPYPHAVE		
mus	pep			JUDA		_	<del>.</del>
005			ADT 1/1 (D) A ( A )				
g087	/ VE	FITDMVSAYRD				_	
		250	260	270	280	290	300
	260		280	290	300	310	
m087	pep AG	LLLPOTOLTAE			TLALPHSADDV	'AEAAIACA	LAX
	11			1111111111	1111111111		. 11
g087	, AG	LLLPQTQLTAE	KLAEILGSLNR	EKCLKWAENAR	TLALPHSADDV	'AEAAIACA	XA
		310	320	330	340	350	
The follow	ving partial I	ONA sequence	ce was identi	fied in N. me	eningitidis <	SEO ID	281>:
a087.seq	7 F					<	
1	ATGGGCGGTA	AAACCTTTAT	GCTGATGGCG	GGCGGAACGG	GCGGACATAT		
51		CTGGCGGTGG					
101		GGGCAGCAAG					
151		TGCTCGAAAC					
201		AAGCTGATGC					
251		GATTATCCGC					
301		TTACCTTTCC					
351		ATTCACGAGC					
401		CTCCCCCAAC					

401 ACCTGTCGCG CTGGGCGAAG CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC 451 AGCCACGAAG GCGGCTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA 501 CCTGCCCGTG CCTGCCGAAC GCTTCCAAGG GCGTGAAGGC CGTCTGAAAA 551 TTTTGGTGGT CGGCGGCAGT TTGGGCGCGG ACGTTTTGAA CAAAACCGTA 601 CCGCAGGCAT TGGCTTTGCT GCCCGACAAT GCGCGTCCGC AGATGTACCA CCAATCGGGA CGGGGCAAGC TGGGCAGCTT GCAGGCGGAT TACGACGCGC 651 TGGGCGTGCA AGCGGAATGC GTGGAATTTA TTACCGATAT GGTGTCCGCC 701 751 TACCGCGATG CCGATTTGGT GATTTGCCGT GCCGGCGCG TGACGATTGC 801 CGAGTTGACG GCGGCGGAT TGGGTGCGTT GTTAGTGCCG TATCCTCACG 851 CCGTTGATGA CCATCAAACC GCCAACGCGC GTTTTATGGT GCAGGCGGAG GCGGGATTGC TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA 901 951 GATTCTCGGC GGCTTAAACC GCGAAAAATG CCTCAAATGG GCAGAAAACG CCCGTACGTT GGCACTGCCG CACAGTGCGG ACGACGTTGC CGAAGCCGCG 1051 ATTGCGTGTG CGGCGTAA

This corresponds to the amino acid sequence <SEQ ID 282; ORF 087.a>: a087.pep

1	MGGKTFMLMA	GGTGGHIFPA	LAVADSLRAR	GHHVIWLGSK	DSMEERIVPQ
51	YDILLETLAI	KGVRGNGIKR	KLMLPFTLYQ	TVREAQQIIR	KHRVECVIGF
101	GGFVTFPGGL	<u>AA</u> KLLGVPIV	IHEQNAVAGL	SNRHLSRWAK	RVLYAFPKAF
151	SHEGGLVGNP	VRADISNLPV	PAERFQGREG	RLKILVVGGS	LGADVLNKTV
201	PQALALLPDN	ARPOMYHOSG	RGKLGSLQAD	YDALGVQAEC	VEFITDMVSA
251	YRDADLVICR	AGALTIAELT	AAGLGALLVP	YPHAVDDHQT	ANARFMVQAE
301	AGLLLPQTQL	TAEKLAEILG	GLNREKCLKW	AENARTLALP	<b>HSADDVAEAA</b>
351	IACAA*				

85.4% identity over a 355 aa overlap

```
20
                               30
                                       40
          {\tt MGGKTFMLXXGGTGGHIFPALAVADSLRARGHHVIWLGSKDSMEERIVPQYGIRLETLAI}
m087.pep
          a087
          MGGKTFMLMAGGTGGHIFPALAVADSLRARGHHVIWLGSKDSMEERIVPQYDILLETLAI
                10
                        20
                               30
                                       40
                                               50
```

m087/a087

	70 80 90 100 110 120
m087.per	KGVRGNGIKRKLMLPVTLYOTVREAORIIRKHRVECVIGEGGEVTERGGIAAVILVURTV
0.00	
a087	RGVRGNGIRRKLMLPFTLYQTVREAQQIIRKHRVECVIGFGGFVTFPGGLAAKLLGVPIV
	70 - 80 90 100 110 120
	120
m087.pep	130 140 150 160 170 180
moo7.pep	
a087	THEONAVACI SNOWL SPWANDY VA FRYA DOWNER AND THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CON
	IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG 130 140 150 160 170 190
	130 140 150 160 170 180
	190 200 210 220 230 240
m087.pep	
a087	RLKILVVGGSLGADVLNKTVPQALALLPDNARPQMYHQSGRGKLGSLQADYDALGVQAEC
	190 200 210 220 230 240
	230 240
	250 260 270 280
m087.pep	XXXXXXXXXXXAGLGALLVPYPHAVDDHOTANARFMVOAF
005	: : !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a087	VEFITDMVSAYRDADLVICRAGALTIAELTAAGLGALLVPYPHAVDDHOTANARFMVOAF
	250 260 270 280 290 300
	290 300 310 320 330
m087.pep	
moo/, pep	AGLLLPQTQLTAEKLAEILGGLNREKCLKWAENARTLALPHSADDVAEAAIACAAX
a087	AGLILPOTOLTAFKI AFTI CCI NEFKO MINANA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARIA MARI
400,	AGLLLPQTQLTAEKLAEILGGLNREKCLKWAENARTLALPHSADDVAEAAIACAAX 310 320 330 340 350
	310 320 330 340 350
The feller	wine modical DNIA
The follow	wing partial DNA sequence was identified in N.gonorrhoeae <seq 283="" id="">:</seq>
gooo.seq	
1	ATGTTTTTAT GGCTCGCACA TTTCAGCAAC TGGTTAACCG GTCTGAATAT
51	TTTTCAATAC ACCACATTCC GCGCCGTTAT GGCGGCGTTG ACCGCCTTGG
101	CGTTTTCCCT GATGTTCGGC CCGTGGACGA TACGCAGGCT GACCGCGCTC
151	AAATGCGGGC AGGCAGTGCG TACCGACGGC CCGCAAACCC ACCTCGTGAA
201	AAACGGCACG CCGACGATGG GCGGTTCGCT GATTCTGACC GCCATTACCG
251	TGTCCACCCT GTTGTGGGGC AACTGGGCGA ACCCGTATAT CTGGATTCTC
301	TTGGGCGTAC TGCTTGCCAC CGGTGCGCTC GGTTTTTACG ACGACTGGCG
351	CAAAGTCGTT TATAAAGACC CCAACGGCGT GTCCGCCAAA TTCAAAATCC
401	TGTGGCAGTC AAGCGTTGCC GTTatcgcCG GTttggcaTT GTTTTACatt
451	GCCGCCAATT CCGCCAACAA TATTTTGATT GTCCCGtttT TCAAACAAAT
501	CGCCCTGCCG CTGGGCGTGG TCGGCTTttt aGtattaTCT TACCTGACGA
551	TCGTCGGCAC ATCCAACGCC GTCAACCTCA CcgaCGGCTT GGACGGCCTT
601	GCCGCcttcc cgttcqtcct cqttqccqcc GGGCTCGCCA ++++cqcqTA
651	CGTCAGCGGA CACTACCAAT TTTCCCAATA CCTCCAGCTT CCCTATGTCG
701	CCGGCGCGAA CGAAGTCGCT ATATTCTGCA CCGCCATGTG CGGCGCGTGC
751	CTCGGATTTT TGTGGTTCAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
801	TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGTaccGtt GCCGTactga

1101 ACCTTTCAGA CGGCATTTGA ACGCGCAATA A This corresponds to the amino acid sequence <SEQ ID 284; ORF 088.ng>: g088.pep

MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL

801 TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGTaccGtt gCCGTcaTcg 851 tCCGCCAAGA ATTTGTcctc gtcattaTGG GCGGTCTGTT cgtcgtagaa 901 gccgtgTCCG TTATGCTTCa tgtcggCTGG TACAAGAAAA Ccaaaaaacg 951 CATCTTcCTg acgGcaccga ttcatcacca ttaCCaactt cgatgCTGGa 1001 aagaaacgca agtcgtcgtc CGTTtCTGGA TTALTAccat cgtcgtggtt 1051 tTgataggtt tGagtacccT caAAattcgc ggaaactatg ccgTCCGAAC

- 51 KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL 101 LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA VIAGLALFYL
- 151 AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL

```
201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
        LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
        AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
        LIGLSTLKIR GNYAVRTPFR RHLNAQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 285>:
m088.seq
       ATGTTTTAT GGCTCGCACA TTTCAGCANC TGGTTAACCG GTCTGAATnn
       51
    101
       151
       201
       301
       351
       501 nnnnnnnn nnnGGCGTGG TCGGCTTTTT GGTGTTGTCT TACCTGACCA
    551 TCGTCGGCAC ATCCAATGCC GTCAACCTCA CCGACGGCTT GGACGGCCTT
    601 GCGACCTTCC CCGTCGTCCT CGTTGCCGCC GGCCTCGCCA TCTTCGCCTA
    651 TGCCAGCGGC CACTCACAAT TTGCCCAATA CCTGCAATTA CCTTACGTTG
    701 CCGGCGCAAA CGAAGTGGTG ATTTTCTGTA CCGCCATGTG CGGCGCGTGC
    751 CTCGGTTTCT TGTGGTTTAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
    801 TGTCGGTGCA TTGGCATTGG GTGCCGCGCT CGGTACCGTC GCCGTTATCG
       TCCGCCAAGA GTTTGTCCTC GTCATTATGG GCGGATTATT TGTCGTAGAA
    901
       GCCGTATCCG TTATGCTTCA GGTTGGCTGG TATAAGAAAA CCAAAAAACG
       CATCTTCCTG ATGGCGCCCA TCCATCACCA CTACGAACAA AAAGGCTGGA
       AAGAAACCCA AGTCGTCGTC CGCTTTTGGA TTATTACCAT CGTCTTGGTG
       TTGATCGGTT TGAGTACCCT CAAAATCCGC TGAACCTATG CCGTCTGAAC
   1051
   1101 ATCTTTCAGA CGGCATTTGA ACGCGCAATA A
     1 MFLWLAHFSN WLTGLNIFOY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
    51 KCGOAVRTDG POTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
    101 LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA VIAGLALFYL
    151 AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
    201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
    251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    301 AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
       LIGLSTLKIR GNYAVRTPFR RHLNAQ*
This corresponds to the amino acid sequence <SEQ ID 286; ORF 088>:
m088.pep
       MFLWLAHFSX WLTGLNXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX
    151 XXXXXXXXX XXXXXXXXX XGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
       ATFPVVLVAA GLAIFAYASG HSQFAQYLQL PYVAGANEVV IFCTAMCGAC
       LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
       AVSVMLQVGW YKKTKKRIFL MAPIHHHYEQ KGWKETQVVV RFWIITIVLV
       LIGLSTLKIR XTYAVXTSFR RHLNAQ*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 088 shows 91.7% identity over a 205 aa overlap with a predicted ORF (ORF 088.ng)
from N. gonorrhoeae:
m088/g088
                                        10
                                                20
m088.pep
                                  GVVGFLVLSYLTIVGTSNAVNLTDGLDGLA
                                  1111111111111111111111111111111111
          IAGLALFYLAANSANNILIVPFFKQIALPLGVVGFLVLSYLTIVGTSNAVNLTDGLDGLA
a088
               150
                  160
                              170
                                      180
                                              190
                                                      200
```

BNSDOCID: <WO___9957280A2_I_>



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 287>: a088.seq

```
ATGTTTTAT GGCTCGCACA TTTCAGCAAC TGGTTAACCG GTCTGAATAT
  1
     TTTTCAATAC ACCACATTCC GCGCCGTCAT GGCGGCGTTG ACCGCCTTGG
 51
101 CGTTTCCCT GATGTTCGGC CCGTGGACGA TACGCAGGCT GACCGCGCTC
    AAATGCGGGC AGGCAGTGCG TACCGACGGT CCGCAAACCC ACCTCGTCAA
201 AAACGGCACG CCGACGATGG GCGGTTCGCT GATTCTGACC GCCATTACCG
251 TGTCCACCCT GTTGTGGGGC AACTGGGCAA ACCCGTATAT CTGGATTCTC
301 TTGGGCGTAT TGCTCGCCAC GGGCGCACTC GGTTTTTACG ACGACTGGCG
351 CAAAGTCGTC TATAAAGACC CCAACGGCGT GTCCGCCAAA TTCAAAATGG
     TGTGGCAGTC AAGCGTTGCC ATTATCGCCG GTTTGGCATT GTTTTACCTT
451 GCCGCCAATT CCGCCAACAA TATTTTGATT GTCCCGTTCT TCAAACAAAT
501 CGCCCTGCCG CTGGGCGTGG TCGGCTTTTT GGTGTTGTCT TACCTGACCA
551 TCGTCGGCAC ATCCAATGCC GTCAACCTCA CCGACGGCTT GGACGGCCTT
601 GCGACCTTCC CCGTCGTCCT CGTTGCCGCC GGCCTCGCCA TCTTCGCCTA
     TGCCAGCGGC CACTCACAAT TTGCCCAATA CCTGCAATTA CCTTACGTTG
651
701 CCGGCGCAAA CGAAGTGGTG ATTTTCTGTA CCGCCATGTG CGGCGCGTGC
751 CTCGGTTTCT TGTGGTTTAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
801 TGTCGGTGCA TTGGCATTGG GTGCCGCGCT CGGTACCGTC GCCGTCATCG
    TCCGCCAAGA GTTTGTCCTC GTCATTATGG GCGGATTATT TGTCGTAGAA
851
    GCCGTATCCG TTATGCTTCA GGTCGGCTGG TATAAGAAAA CCAAAAAAACG
901
951 CATCTTCCTG ATGGCGCCCA TCCATCACCA CTACGAACAA AAAGGCTGGA
    AAGAAACCCA AGTCGTCGTC CGCTTTTGGA TTATTACCAT CGTCTTGGTG
    TTGATCGGTT TGAGTACCCT CAAAATCCGC TGAACCTATG CCGTCTGAAC
    ACCTTTCAGA CGGCATTTGA ACGCGCAATA A
```

#### This corresponds to the amino acid sequence <SEQ ID 288; ORF 088.a>: a088.pep 1 MELWIAHESN WITCINIEOV MUEDAINARY DELECTION

_	THE THE DIA	MPIGENIEĞI	TTFRAVMAAL	TALAFSIMFG	PWTTRRI.TAI.
51	KCGQAVRTDG	POTHLVKNGT	PTMGGSTTTT	ATTWENTING	IMPLIANTING
101	LCVIII APCAT	CEADDMDMA	TIMOGODITAL	ATT AST PT MG	NWANPYIWIL
	LGVLLATGAL	GF I DDWRKVV	YKDPNGVSAK	FKMVWQSSVA	IIAGLALFYL
151	AANSANNILI	VPFFKQIALP	LGVVGFLVLS	YLTIVGTSNA	WILL TOCK DOL
201	ATFPVVLVAA	GLATFAYASC	HSOFACYLOL	DVIIACANDINI	ANDIDGEDGE
251	I CEL MENAVO	70111111100	HOOTHOT	PIVAGANEVV	1 FCTAMCGAC
231	LGFLWFNAYP	AQV FMGDVGA	LALGAALGTV	AVIVROEFVL	VIMGGLEVVE
301	AVSVMLQVGW	YKKTKKRIFL	MAPIHHHYEO	KGWKETOWW	DEWLTTELTY
351	I TOT COT WED	+ 1112111		TOME	VEMILITATA

351 LIGLSTLKIR *TYAV*TPFR RHLNAQ*

#### 99.5% identity over a 205 aa overlap m088/a088

m088.pep	150 XXXXXXXXXXXX	160 XXXXXXXXX	170 XXXXXXXXGVV	180 GFLVLSYLT	190 IVGTSNAVNLT	200
	IAGLALFYLAANS		111	11111111		111111

	150	160	170	180	190	200
	210	220	230	240	250	260
m088.pep	TFPVVLVAAGLAIF	AYASGHSQE	`AQYLQLPYVAG	SANEVVIFC	AMCGACLGFI	WFNAYPA
		11111111	1111111111	.	111111111	THEFT
a088	TFPVVLVAAGLAIF	AYASGHSQE	'AQYLQLPYVAG	SANEVVIFC	CAMCGACLGFL	WFNAYPA
	210	220	. 230	240	250	260
	270	280	290	300	310	320
m088.pep	QVFMGDVGALALGA	ALGTVAVIV	RQEFVLVIMGO	SLFVVEAVSV	MLQVGWYKKT	KKRIFLM
		11111111				
a088	QVFMGDVGALALGA			SLFVVEAVSV	MLQVGWYKKT	KKRIFLM
	270	280	290	300	310	320
	330	340	350	360	370	
m088.pep	APIHHHYEQKGWKE	TQVVVRFWI	ITIVLVLIGLS	TLKIRXTY	VXTSFRRHLN	AQX
				11111111	111 11111	111
a088	APIHHHYEQKGWKE					AQX
	330	340	350	360	370	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 289>: g089.seq

- ATGCCGCCCA AAATCACGAA GAGCGGGTTT TGCAAACCGG CAATCGCGGC
  - 51 GGCGGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATG AATACCACGC 101
  - CGTTTTTCTC GCCGATTTTT TCCACACGGT GCGGCAAGCC TTGGAAGGTT
  - TTGACGTGTT CCAGCAATGC TTCGCGCGGC AAACCGACGG CCTCGCACAA
  - 201 AGCCACGGCA GCCATAACGT TGGCGGCGTT GTGCAAACCT TGCAGCGGGA 251 TGTCTTGCGT AGAAATCAAA TCTTCATTGC CTTGTTTTAA ACAGCCCGTC
  - 301 CCGCGTTCCA ACCAAAAATC GGCTTCGTGT TCCAAGGAAA ACCGTTTCAC
  - TTCACGCCCT GCCCGTTTCA TGGCGCGGCA GAACACGTCG TCCGCATTCA 351
  - 401 AAACCTGCAC TCCATCGCCA CGGAAAATCT CGGCTTTGGT ATGCGCGTAG

This corresponds to the amino acid sequence <SEQ ID 290; ORF 089.ng>:

g089.pep

- 1 MPPKITKSGF CKPAIAAAVA PTFVPLLSSM NTTPFFSPIF STRCGKPWKV
- 51 LTCSSNASRG KPTASHKATA AITLAALCKP CSGMSCVEIK SSLPCFKOPV
- 101 PRSNQKSASC SKENRFTSRP ARFMARQNTS SAFKTCTPSP RKISALVCA*

The following partial DNA sequence was identified in N. meningitidis <SEO ID 291>: m089.seq

- ATGCCGCCCA AAATCACkAw GAGCGGATTT TGCAAACCGG CAATCGCGGC
- GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA AACACCACGC
- CGTTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC TTGGAAGGTT 101
- 151 TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG CCTCACACAA
- 201 AGCCACKGCA GCCATGACGT TAGCGGCGTT GTGCAKACCT TGCAACGGWA
- 251 TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG GCGGCCTGTC
- 301 TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA ACCATTTTAC 351 CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG TCCGCATTCA
- 401 AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT ATGCGCATAG
- This corresponds to the amino acid sequence <SEQ ID 292; ORF 089>:

m089.pep

- MPPKITXSGF CKPAIAAAVA PTFVPLLSSI NTTPFFSPIF STRCGRPWKV 1
- LTCSSNASRD KPMASHKATA AMTLAALCXP CNGMSCVTIK SSLPCFRRPV
- SRSNQKSASC SNENHFTSRP ARFIARQNAS SAFKTCTPSP RKILALVCA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 089 shows 88.6% identity over a 149 aa overlap with a predicted ORF (ORF 089.ng) from N. gonorrhoeae:

m089/g089

m089.pep	10 MPPKITXSGFCKPA              MPPKITKSGFCKPA 10	11111111		1111111111	1:111111	HIII
m089.pep	70 KPMASHKATAAMTL           :   KPTASHKATAAITL 70			: :	1111111111	120 HFTSRP
m089.pep	130 ARFIARQNASSAFKT    :    :     ARFMARQNTSSAFKT		111111			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 293>: a089.seq

-					
1	ATGCCGCCTA	AAATCACGAA	GAGCGGATTT	TGCAAACCGG	CAATCGCGGC
51	GGCGGTCGCA	CCGACGTTCG	TGCCTTTGCT	GTCGTCGATG	AACACCACCC
101	CATTTTTCTC	GCCGATTTTT	TCCACGCGGT	GCGGCAGGCC	TTCAAACCTT
151	TTGACGTGTT	CGAGCAATGC	TTCGCGCGCG	77700000	CERCOS
		COMOCHATGO	1100000000	AAACCGACGG	CTTCGCACAA
201	GGCAACGGCA	GCCATCACGT	TAGTGGCGTT	GTGCAAGCCT	TGCAGCGGAA
251	TATCTTGCGT	GGCAATCAAA	TCTTCATTGC	CTTGTTTCAG	GCGACCTGTC
301	TCACGTTCCA	ACCAAAAATC	GGCTTCGTAT	TCCAACGAAA	ACCAMEMCA C
351	CTCCCCCCCC	CCCCCCCCCC		LCCHICGAMA	ACCALLICAC
	CICGCGCCCG	GCGCGCTTCA	TCGCACGACA	GAACGCATCG	TCCGCATTCA
401	AAACCTGCAC	ACCGTCGCCA	CCCNNNNTCT	MCCCMMMccm	37777777
		ccarcacca	COGMANAICI	1GGCTTTGGT	ATGCGCGTAG

### This corresponds to the amino acid sequence <SEQ ID 294; ORF 089.a>: a089.pep

1 MPPKITKSGF CKPAIAAAVA PTFVPLLSSM NTTPFFSPIF STRCGRP*KV 51 LTCSSNASRG KPTASHKATA AITLVALCKP CSGISCVAIK SSLPCFRRPV 101 SRSNQKSASY SNENHFTSRP ARFIARQNAS SAFKTCTPSP RKILALVCA*

#### 91.9% identity over a 149 aa overlap m089/a089

	10	20	30	40	50	60	
m089.pep	MPPKITXSGFCKPA	IAAAVAPTEV	/PLLSSTNTTE	OFFCD1FCMDA	יכם סטעענד שמי	60	
	111111 111111	111111111	11111:111	111111111	GVENTATIO!	SSNASRD	
a089	MPPKITKSGFCKPA	IAAAVAPTFV	PLLSSMNTTE	PFSPTFSTRC	III IIIII		
	10	20	30	40	50	60	
					30	00	
	70	80	90	100	110	120	
m089.pep	KPMASHKATAAMTL	AALCXPCNGM	SCVTIKSSLE	CFRRPVSRSN	OKSASCSNE	JHFTSED	
		: [	111:11:11:	111111111	TITLE INC.		
a089	KPTASHKATAAITLVALCKPCSGISCVAIKSSLPCFRRPVSRSNOKSASYSNENHFTSRP						
	70	80	90	100	110	120	
	130	140	150				
m089.pep							
	ARFIARQNASSAFKTCTPSPRKILALVCAX						
a089	ARFIARQNASSAFK	LITTE SPRKTT.	TITIT!				
	130	140	150				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 295>: g090.seq

ATGCGCGTAG TCGAGCAAAT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA

.. ..

```
51 TGTTCATCAC CGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT
                            TGGAAGCTGG AAAGCTCcca CACCCACACG TCCGCCTTTT TGCCTTCgcg
                   101
                            ctgCAATtct gcctccaaga cgggcgtacc gatATTGCCC GCAATGAcgg
                           tatccagccc gcacttgatg CAGAGatagc ggaccaggct ggttaccgTG
                   251 GTTttgccgt tgctgCcggt aatcgCaatc accttgtcgC CGCGGCGGtt
                   301 cAcaaTGTCc gccaGCAATt ggATGTCGCC TAgCACGCGC .ccgccgTTT
                   351
                             TGCttga
This corresponds to the amino acid sequence <SEQ ID 296; ORF 090.ng>:
         q090.pep
                            MRVVEQIVVA VEMVFGNVHH RRRSRAQAFG VFQLEAGKLP HPHVRLFAFA
                       1
                            LQFCLQDGRT DIARNDGIQP ALDAEIADQA GYRGFAVAAG NRNHLVAAAV
                     51
                            HNVRQQLDVA XHAXRRFA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 297>:
         m090.seq
                            ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
                            TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT
                     51
                   101
                             TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
                             CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG
                             TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG
                   251 GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT
                   301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT .CCGCCGTTT
                             TGCTTGA
                   351
This corresponds to the amino acid sequence <SEQ ID 298; ORF 090>:
         m090.pep
                            MRIVEOVVVA VEMVFGNVOH RRRSRTOAFG VFOLEAGKLO HPHVRLFAFA
                            LPFRLQNRRA DIARDNGIQP ALDTEIADQA RYRGFAVAAG NRNYLVVPAV
                   101 HNVRQQFDVA QHAXRRFA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 090 shows 83.9% identity over a 118 aa overlap with a predicted ORF (ORF 090.ng)
from N. gonorrhoeae:
         m090/g090
                                                                                         30
                                                                                                            40
                                   {\tt MRIVEQVVVAVEMVFGNVQHRRRSRTQAFGVFQLEAGKLQHPHVRLFAFALPFRLQNRRA \@\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterline{\@ifterlin
         m090.pep
                                   MRVVEQIVVAVEMVFGNVHHRRRSRAQAFGVFQLEAGKLPHPHVRLFAFALQFCLQDGRT
          g090
                                                                     20
                                                                                        30
                                                                                                            40
                                                  10
                                                  70
                                                                                         90
                                                                                                          100
                                                                                                                             110
          m090.pep
                                   DIARDNGIQPALDTEIADQARYRGFAVAAGNRNYLVVPAVHNVRQQFDVAQHAXRRFAX
                                   DIARNDGIQPALDAEIADQAGYRGFAVAAGNRNHLVAAAVHNVRQQLDVAXHAXRRFAX
          g090
                                                  70
                                                                     80
                                                                                        90
                                                                                                          100
                                                                                                                             110
The following partial DNA sequence was identified in N. meningitidis <SEO ID 299>:
a090.seq
                   ATGCGCGTAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
             1
```

This corresponds to the amino acid sequence <SEQ ID 300; ORF 090.a>:

51 TGTTCAGCAC TGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT 101 TGGAAACTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG CTGCAATTCC GCCTCCAAAA CCGGCGCGCC GATATTGCCC GCGATAACGG

TATCCAGCCC ACACTTGATG CAGAGATAGC CGACCAGGCT CGTTACCGTG 251 GTTTTGCCGT TGCTGCCGGT AATCGCAATC ACCTTGTCGC CGCGGCGGTT 301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT C.CGCCGTTT

BNSDOCID: <WO ___ 9957280A2 | >

151 201

351 CGCTTAA

```
a090.pep
        MRVVEQVVVA VEMVFGNVQH CRRSRAQAFG VFQLETGKLQ HPHVRLFAFA
        LQFRLQNRRA DIARDNGIQP TLDAEIADQA RYRGFAVAAG NRNHLVAAAV
     51
    101
        HNVRQQFDVA QHAXRRFA*
m09/a090
           91.5% identity over a 117 aa overlap
                          20
                                   30
                                           40
                                                    50
           {\tt MRIVEQVVVAVEMVFGNVQHRRRSRTQAFGVFQLEAGKLQHPHVRLFAFALPFRLQNRRA}
m090.pep
           MRVVEQVVVAVEMVFGNVQHCRRSRAQAFGVFQLETGKLQHPHVRLFAFALQFRLQNRRA
a090
                  10
                          20
                                           40
                                                   50
                  70
                          80
                                   90
                                          100
                                                   110
           DIARDNGIQPALDTEIADQARYRGFAVAAGNRNYLVVPAVHNVRQQFDVAQHAXRRFAX
m090.pep
           a090
           DIARDNGIQPTLDAEIADQARYRGFAVAAGNRNHLVAAAVHNVRQQFDVAQHAXRRFAX
                          80
                                          100
```

The following partial DNA sequence was identified in N. gonorrhoeae g090-1.seq This sequence contains multiple stop codons (not shown)

This corresponds to the amino acid sequence < ORF 090-1.ng>: g090-1.pep (not shown)

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2>: m090-1.seq

```
ATGACGGCGT TTGCATTTCA GACGGCATCA CAAAGCCTTA AACGCTTCGA
      TAAACACTTC CGAACGGTGC GCGTAGCCTT TGAACATATC AAAGCTCGCG
      CAGGCGGGC TGAGCAACAC AATATCGCCT GCTTCGGCTT GGGCATATGC
 101
      CGTCTGAACG GCTTCTCCCA AAGTGGCGCA GTCGGTCATA TTCAAGCCGC
 151
      AGCCGTCCAA ATCGCGGCGG ATTTGCGGCG CATCGACACC AATCAAGAAC
 201
 251
      ACGCCTTTTG CCTTGCCTAC CAGTGCATCG CGCAGGGGCG TGAAGTCCTG
 301
      CCCTTTACCC ATGCCGCCCA AAATCACGAA GAGCGGATTT TGCAAACCGG
 351
      CAATCGCGGC GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA
      AACACCACGC CGTTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC
 401
 451
      TTGGAAGGTT TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG
      CCTCACACAA AGCCACGGCA GCCATGACGT TAGCGGCGTT GTGCAGACCT
 501
 551
      TGCAACGGAA TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG
      GCGGCCTGTC TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA
 601
      ACCATTTAC CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG
 651
      TCCGCATTCA AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT
 701
 751
      ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
 801
      TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT
 851
      TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
      CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG
 901
      TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG
 951
1001
      GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT
1051
     CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT CCGCCGTTTT
     GCTTGAACGC CTCAATATCC GGCTGCCGCT CGCTGATGCC GGGACTGAGA
1101
     GCCAGAATAT CGAAACCGTT GTCCAGCGCA TCTTTCAGAC GGCCCGTGTA
1151
     AAACACCAAC CCGTCAAACA TCTTACCGAT TTGCGACACG CGTTCCGGCT
1201
1251
     TCAGCTCCGC ATCATACGCA GCAACCTCCG CGCCGTTTTT GCGCAGGTAG
     GCAATCATGG AAATACCCGT ACCGCCGAGT CCGGCGACGA GGATTTTTTT
1351
     GTTTTGAAAA GTCATTTTGG TTTGTCCTAA
```

This corresponds to the amino acid sequence <SEQ ID 3; ORF 090-1>: m090-1.pep

1	MTAFAFQTAS	QSLKRFDKHF	RTVRVAFEHI	KARAGGAEOH	NIACEGICIC
51	RLNGFSQSGA	VGHIQAAAVQ	IAADLRRIDT	NOEHAFCLAY	OCTACCPEUT
101	PFTHAAQNHE	ERILOTGNRG	GSRADIRAFA	VVDKHHAVEI.	ADEFUNUDON
151	LEGFDVFEQC	FARQTDGLTQ	SHGSHDVSGV	VOTLORNVI.R	DNOTETALEO
201	AACLAFQPEI	SFVFQRKPFY	LAPGTLHRAA	ERIVATIONAL	AVATENT CEC
251	MRIVEQVVVA	VEMVFGNVQH	RRRSRTOAFG	VFOLEAGKT.O	HPHUDI EN EN
301	LPFRLQNRRA	DIARDNGIQP	ALDTEIADOA	RYRGFAVAAG	NEMVI WORK
351	HNVRQQFDVA	QHASAVLLER	LNIRLPLADA	GTESONIETV	VODTEOTARY
401	KHQPVKHLTD	LRHAFRLQLR	IIRSNLRAVF	AQVGNHGNTR	TAESGDEDFF
451	VLKSHFGLS*				

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 303>:
g091.seq
         ATGGAAATAC CCGTGCCGCC AAGTCCGGCG ACGAGGATTT TTTTGTTTGA
      51 AAGTCATTTT GGTTTTGTCC TAAAACAAAT CATATTGGGC AGGAGACGTC
     101 CGCCCTTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCCG ATTAATAACC
     151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCT GTTTTGGTCT CCGTTTTGAC
     201 AAGCCTTGCC AAGCCATTGT TGAGCGAGCG CAAGGTCTTG GCGCACGCCG
     251 CGTCCATCGT AATACATCAA GCCCAAATTG TATTGGGCTT GGGCATCCCC
     301 TTGTTCTGA
This corresponds to the amino acid sequence <SEQ ID 304; ORF 091.ng>:
g091.pep
         MEIPVPPSPA TRIFLFESHF GFVLKQIILG RRRPPLPKPL SDGIASRLIT
      51 RLQALVIVAA VLVSVLTSLA KPLLSERKVL AHAASIVIHQ AQIVLGLGIP
     101 LF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 305>:
m091.seq
         ATGGAAATAC CCGTACCGCC GAGTCCGGCG ACGAGGATTT TTTTGTTTGA
      1
      51 AAAGTCATTT TGGTTTGTCC TAAAACAAAT CATATTGAGC AGGAGATGTC
     101 CGCCCTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCTG TTCAATAACC
     151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCC GTCTTGGTCT CCGTTTTGAC
     201 AAGCCTTGCC AAACCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG
     251 CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGCTT GGGCTACCCC
     301 CTGCGC...
This corresponds to the amino acid sequence <SEQ ID 306; ORF 091>:
m091.pep
         MEIPVPPSPA TRIFLFEKSF WFVLKQIILS RRCPPLPKPL SDGIASCSIT
      51 RLQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLGLGYP
     101 LR.
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 091 shows 84.2% identity over a 101 aa overlap with a predicted ORF (ORF 091.ng)
from N. gonorrhoeae:
m091/q091
                    10
                             20
                                       30
                                                40
                                                          50
                                                                   60
m091.pep
            MEIPVPPSPATRIFLFEKSFWFVLKQIILSRRCPPLPKPLSDGIASCSITRLOALVIVAA
            g091
            MEIPVPPSPATRIFLFESHFGFVLKQIILGRRRPPLPKPLSDGIASRLITRLQALVIVAA
                    10
                             20
                                       3.0
                                                40
                                                          50
                                                                   60
                    70
                             80
                                       90
m091.pep
            VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLGLGYPLR
            q091
            VLVSVLTSLAKPLLSERKVLAHAASIVIHQAQIVLGLGIPLFX
                    70
                             80
                                       90
                                               100
The following partial DNA sequence was identified in N. meningiditis <SEO ID 307>:
a091.seq
         GAAATCATTT TGGTTTGTCC TAAAACAAAT CATATTGAGC AGGGGATGTC
     51
    101 TGATCCTGCT CAAGCCGCTT TCAGACGGCA TCGCGAGCTG TTCAATAACC
```

151 CGCTTTCAGG CGTTGGTCAT TGTCGCAGCT GTCTTGGTAT CCGTTTTGAC
201 AAGCCTTGCC AAGCCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG

CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGC

BNSDOCID: <WO___9957280A2_i_>

This corresponds to the amino acid sequence <SEQ ID 308; ORF 091.a>: a091.pep

1 MEIPVPPSPA TRIFLFWKSF WFVLKQIILS RGCLILLKPL SDGIASCSIT 51 RFQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLG

m091/a091 93.8% identity over a 96 aa overlap

```
10
                          20
                                   30
                                           40
                                                    50
                                                            60
           MEIPVPPSPATRIFLFEKSFWFVLKQIILSRRCPPLPKPLSDGIASCSITRLQALVIVAA
m091.pep
           a091
           MEIPVPPSPATRIFLFWKSFWFVLKQIILSRGCLILLKPLSDGIASCSITRFQALVIVAA
                 10
                          20
                                   30
                                           40
                                                   50
                 70
                          80
                                  90
                                          100
           VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLGLGYPLR
m091.pep
           ************************
a091
           VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLG
                          80
                                  90
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 309>:

```
ATGTTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGTGCGC
   1
      AAACGGTCAG ACCTTTAAAA TAACGCCTTT ACGCACTAAA AACCAACCGG
   51
      AACGCAACAT TATGATGAAA AATCGAGTAA GCAACATCCA TTTTGTCGGT
  101
      ATCGGCGGCG TCGGCATGAG CGGTATCGCC GAAGTCTTGC ACAATTTGGG
      CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT
      TGAGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC AGAACACGTT
 301 AACGGTGCGG ATGTCGTCGT TGCCTCTACC GCCGTCAAGA AAGAAaatcC
 351 CGAAGTEGEC GCTGCGTTGG AGCGGCAAAT TCCCGTTATT CCGCGCGCCT
 401 TGATGCTGGC AGAGCTGATG CGCTTCCGTG ACGGCatcgc cattgccggT
 451 ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC
 501 GGCAGGACTC GACCCCACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG
 551 GCACCAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC
 601 GAATCCGATG CCTCTTTCCT ACATCTGACC CCGATTATGT CCGTCGTTAC
      CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC
 651
      TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA
 701
 751 GCCTTTTTGT GTGTTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT
 801 GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG
 851 CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT
 901 CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC
 951 CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGC gtggcGCTgg
1001 aagtcGgCGC ATcggttgAA GCGAtcCAAA AaggCTTGCT CGGCTTTGAA
1051 GGCGTCGGCC GCCGCTTCCA AAAATAcggc gacatCAagt tgccaaacgg
     cggGaccgCT TTgctGGTGG ACGATTAcgg ACACCACCCC GTCGAAATGG
1151
      CGGcaaccct tgccgcTGCA CGCGGCGCGT ATCCGGAAAA acgtTTGGTG
     CtcgCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA
      CTTTACCAAA GTACTCAATA CCGTTGatgC GCTGGTACTG ACCGAAGTTT
1251
     AtgccgccgG CGAAGAGCCG GTTGCCGCCG CCGactcCCG CGCCTTGGCG
1301
     CGTGCTATCC GCGTATTGGG CAAACTTGAG CCGATTTACT GCGAAAatgt
1401 CGCCGACCTG CCGCAAATGC TGATGAATGT TTTACAGGAT GGCGatgttg
     tgttgAATAT GggTgcggga agcatcaacc gcgttccttc cgcgctgttg
1501 gaattgtcga AACAGAtttg A
```

This corresponds to the amino acid sequence <SEQ ID 310; ORF 092.ng>:

1	MFFISIRYIF	VRKLWCANGO	TFKITPLRTK	NOPERNIMME	MDMONTHENO
51	IGGVGMSGIA	EVLHNLGFKV	SGSDOARNAA	TEHLSSIGIO	WASHILLAG
101	NGADVVVAST	AVKKENPEVV	AALEROIPVI	PRALMIATIM	PEDDCIATAC
151	THGKTTTTSL	TASILGAAGL	DPTFVIGGKI	NAAGTNAPLG	KERUGIAIAG
201	ESDASFLHLT	PIMSVVTNID	EDHMDTYGHS	VEKLHOAFID	RETURNDENCY

289

```
251 AFLCVDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
          301 QMKGHEQGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIQKGLLGFE
              GVGRRFQKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYPEKRLV
          401 LAFQPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP VAAADSRALA
          451 RAIRVLGKLE PIYCENVADL PQMLMNVLQD GDVVLNMGAG SINRVPSALL
          501 ELSKQI*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 311>:
     m092.seq
               ATGTTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGCGCGC
            1
              AAACGGTCAG CCCTTTAAAA TAACGCCTTT ACGCATCGAA AATCCACCGG
           51
              AACGCAACAT TATGATGAAA AATCGAGTTA CCAACATCCA TTTTGTCGGT
          101
          151
              ATCGGCGGCG TCGGCATGAG CGGCATCGCC GAAGTCTTGC ACAATTTGGG
               CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT
          201
              TGGGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC CGAACACGTT
          301
              AACGGTGCGG ATGTCGTCGT TACCTCTACC GCCGTCAAAA AAGAAAATCC
          351 CGAAGTTGTC GCTGCGTTGG AGCAGCAAAT TCCCGTTATT CCGCGCGCCC
          401 TGATGTTGGC GGAGTTGATG CGCTTCCGTG ACGGCATCGC CATTGCCGGC
          451 ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC
          501 GGCAGGACTT GACCGGACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG
          551 GCACTAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC
          601 GAGTCGGATG CATCCTTTCT GCACCTGACA CCGATTATGT CCGTCGTTAC
          651 CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC
          701 TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA
          751 GCCTTTTGT GTATTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT
          801 GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG
          851
              CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT
              CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC
              CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGC GTGGCGCTGG
         1001 AAGTCGGCGC ATCGGTTGAA GCGATCCAAA AAGGCTTGCT CGGCTTTGAA
         1051 GGCGTCGGCC GCCGCTTCCA AAAATACGGC GACATCAAGT TGCCAAACGG
         1101 CGGGACCGCG CTCTTGGTGG ACGACTACGG ACACCACCCC GTCGAAATGG
         1151 CGGCGACCCT TGCCGCCGCA CGCGGCGCGT ATCTGGAAAA ACGTTTGGTA
         1201 CTCGCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA
         1251 CTTTACCAAA GTCCTCAATA CCGTTGACGC GCTGGTGCTG ACCGAAGTTT
         1301 ATGCCGCCGG TGAAGAGCCG ATTGCCGCCG CCGATTCCCG CGCTCTTGCC
         1351 CGCGCCATCC GCGTGTTGGG CAAACTCGAG CCGATTTACT GCGAAAACGT
         1401 TGCCGATCTG CCCGAAATGC TGTTGAACGT TTTGCAGGAC GGCGACATCG
         1451 TGTTGAATAT GGGCGCGGGA AGCATCAACC GCGTCCCCGC CGCGCTGCTG
              GCATTGTCGA AACAGATTTG A
This corresponds to the amino acid sequence <SEQ ID 312; ORF 092>:
     m092.pep
              MFFISIRYIF VRKLWRANGO PFKITPLRIE NPPERNIMMK NRVTNIHFVG
           51 IGGVGMSGIA EVLHNLGFKV SGSDQARNAA TEHLGSLGIQ VYPGHTAEHV
          101 NGADVVVTST AVKKENPEVV AALEQQIPVI PRALMLAELM RFRDGIAIAG
          151 THGKTTTTSL TASILGAAGL DPTFVIGGKL NAAGTNARLG KGEYIVAEAD
          201 ESDASFLHLT PIMSVVTNID EDHMDTYGHS VEKLHQAFID FIHRMPFYGK
          251 AFLCIDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
               OMKGHEOGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIOKGLLGFE
          301
              GVGRRFOKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYLEKRLV
          401 LAFQPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP IAAADSRALA
              RAIRVLGKLE PIYCENVADL PEMLLNVLQD GDIVLNMGAG SINRVPAALL
          451
          501 ALSKQI*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 092 shows 96.6% identity over a 506 as overlap with a predicted ORF (ORF 092.ng) from N. gonorrhoeae:

m092/g092

10 20 30 40 50 60 m092.pep MFFISIRYIFVRKLWRANGQPFKITPLRIENPPERNIMMKNRVTNIHFVGIGGVGMSGIA

g092	  MFFISIRYIFVRKL	 WCANGOTFKI 20	:     TPLRTKNQPE 30	 RNIMMKNRVS 40	:                   SNIHFVGIGG 50	 VGMSGIA 60
m092.pep g092	70 EVLHNLGFKVSGSD                         EVLHNLGFKVSGSD 70	11111111	:			
m092.pep g092	130 AALEQQIPVIPRALI     :        AALERQIPVIPRALI 130	11111111	111111111			1111111
m092.pep g092	190 NAAGTNARLGKGEY:            NAAGTNARLGKGEY: 190			111111111		
m092.pep	250 FIHRMPFYGKAFLC1          : FIHRMPFYGKAFLC1 250	:			111111111	111111
m092.pep g092	310 QMKGHEQGSFEVVLN            QMKGHEQGSFEVVLN 310				1111111111	
m092.pep g092	370 DIKLPNGGTALLVDE	1111111				111111
m092.pep	430 VLNTVDALVLTEVYA           VLNTVDALVLTEVYA 430	1       :	CERT ARATES	W. CKI EDIYO	470 ENVADLPEML       :   ENVADLPQML 470	:
m092.pep	490 GDIVLNMGAGSINRV   :          GDVVLNMGAGSINRV 490	1:111 1111				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 313>: a092.seq

1	ATGTTTTTTA	TTTCAATCCG	CTATATATTT	GTCAGAAAAC	TATGGCGCGC
51	AAACGGTCAG	CCCTTTAAAA	TAACGCCTTT	ACGCATCGAA	AATCCACCGG
101	AACGCAACAT	TATGATGAAA	AATCGAGTGA	CCAACATCCA	ТТТТСТСССТ
151	ATCGGCGGCG	TCGGCATGAG	CGGTATCGCC	GAAGTCTTGC	ACAATTTGGG
201	TTTTAAAGTT	TCCGGTTCGG	ATCAGGCGCG	AAATGCCGCT	ACCGAGCATT
251	TGGGCAGCCT	GGGCATTCAA	GTTTATCCCG	GCCATACCGC	AGAACACGTT



## This corresponds to the amino acid sequence <SEQ ID 314; ORF 092.a>: a092.pep

* · · · *					
1	MFFISIRYIF	VRKLWRANGQ	PFKITPLRIE	NPPERNIMMK	NRVTNIHFVG
51	IGGVGMSGIA	EVLHNLGFKV	SGSDQARNAA	TEHLGSLGIQ	VYPGHTAEHV
101	NGADVVVTST	AVKKENPEVV	AALEQQIPVI	PRALMLAELM	RFRDGIAIAG
151	THGKTTTTSL	TASILGAAGL	DPTFVIGGKL	NAAGTNARLG	KGEYIVAEAD
201	ESDASFLHLT	PIMSVVTNID	EDHMDTYGHS	VEKLHQAFID	FIHRMPFYGK
251	AFLCIDSEHV	RAILPKVSKP	YATYGLDDTA	DIYATDIENV	GAQMKFTVHV
301	QMKGHEQGSF	EVVLNMPGRH	NVLNALAAIG	VALEVGASVE	AIQKGLLGFE
351	GVGRRFQKYG	DIKLPNGGTA	LLVDDYGHHP	VEMAATLSAA	RGAYPEKRLV
401	LAFQPHRYTR	TRDLFEDFTK	VLNTVDALVL	TEVYAAGEEP	IAAADSRALA
451	RAIRVLGKLE	PIYCENVADL	PEMLLNVLQD	GDIVLNMGAG	SINRVPAALL
501	ELSKOI*				

### m092/a092 99.4% identity over a 506 aa overlap

	10	20	30	40	50	60
m092.pep	MFFISIRYIFVRKL	VRANGQPFKI	TPLRIENPPE	RNIMMKNRVI	NIHFVGIGGV	GMSGIA
			111111111	[[]]]	1111111111	111111
a092	MFFISIRYIFVRKL	VRANGQPFKI	TPLRIENPPE	RNIMMKNRVI	NIHFVGIGGV	GMSGIA
	10	20	30	40	50	60
	70	80	90	100	110	120
m092.pep	EVLHNLGFKVSGSD(	<b>QARNAATEHL</b>	GSLGIQVYPG	HTAEHVNGAD	VVVTSTAVKK	ENPEVV
			1111111111		1111111111	11111
a092	EVLHNLGFKVSGSD(	DARNAATEHL	GSLGIOVYPG	HTAEHVNGAE	VVVTSTAVKK	ENPEVV
	70	80	90	100	110	120
	130	140	150	160	170	180
m092.pep	AALEQQIPVIPRAL	<b>ILAELMRFRD</b>	GIAIAGTHGK	TTTTSLTASI	LGAAGLDPTF	VIGGKL
						11111
a092	AALEQQIPVIPRALM	/LAELMRFRD	GIAIAGTHGK	TTTSLTASI		
	130	140	150	160	170	180
					•	200
	190	200	210	220	230	240
m092.pep	NAAGTNARLGKGEY	VAEADESDA	SFLHLTPIMSV	VVTNIDEDHM	DTYGHSVEKL	HOAFID
			1111111111	HHILLIII		11111
a092	NAAGTNARLGKGEY	VAEADESDA	SFLHLTPIMS	/VTNIDEDHM	DTYGHSVEKL	HQAFID

	190	200	210	220	230	240
m092.pep	250 FIHRMPFYGKAFLC             FIHRMPFYGKAFLC 250	1       1   1   1   1   1		11111111	 ATDIENVGAQ	 MKFTVHV
m092.pep	310 QMKGHEQGSFEVVLI	320 MMPGRHNVLN	330 ALAAIGVALI	340 EVGASVEAIQE	111111111	
a092	QMKGHEQGSFEVVLM 310 370	MPGRHNVLN 320 380	JALAAIGVALE 330 390	EVGASVEAIQF 340	GLLGFEGVGI 350	RRFQKYG 360
m092.pep	DIKLPNGGTALLVDI             DIKLPNGGTALLVDI	YGHHPVEMA          YGHHPVEMA	ATLAAARGAY    :       ATLSAARGAY	 PEKRLVLAFQ	1111111111	
m092.pep	370 430 VLNTVDALVLTEVYA	380 440	390 450	400	410	420
a092		11111111	111111111	1111111111		
m092.pep	490 GDIVLNMGAGSINRV            GDIVLNMGAGSINRV 490	11111 1111	111			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 315>:

```
aTGCAGAATt ttgGCAAAGT ggccgtATTG ATGGGtggtT TTTCCAGCGA
  1
 51 ACGAGAGAEC tegeTGGACA GCGGTACCGC CATTTTGAAC GCCTTAAAAA
     GCAAAGGCAT AGACGCATAC GCCTTCGACC CTAAGGAAAC GCCGTTATCC
151 GAACTGAAGG AGCGGGGCTT TCAGACGGCA TTCAACATCC TTCACGGTAC
201 TTACGGCGAA GACGGGGCTG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
251 CCTATACCGG CAGCGGTGTC GCCGCCTCCG CCATCGGCAT GGACAAATAC
301 CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTACCCGTTC CCGAGTTCGC
351 CGTACTGTAC GATGATACCG ATTTCGATGC CGTCGAAGAA AAATTGGGTC
401 TGCCGATGTT TGTGAAGCCG GCGGCCGAAG GCAGCAGCgt cggcgtggta
451 aAAGTCAAAG AAAaaggccg TCTGAAAAGC GTTtacgaag aatTGAaaCA
501 CCTTcagggg cgaAAtcatt gccgAacgTT TTATCGGCGG CGGCGAATAT
    TCCTGCCCCG TCCTGAACGG CAAAGGGCTG CCCGGCATAC ACATCATCCC
    CGCAACCGAG TTTTACGACt acgaagccaa GtacaaCCGA GACGAcacca
651 tttaTCAATG TCCTTCGGAA GATTTGACCG AAGCCGAAGA AAGCCTGATG
701 CGCGAACTGG CGGTTCGCGG CGCACAGGCA ATCGGTGCGG AAGGCTGCGT
751 GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
    TCAACACCCT GCCCGGTATG ACCGGCCATA G
```

This corresponds to the amino acid sequence <SEQ ID 316; ORF 093.ng>:

1 MQNFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS
51 ELKERGFQTA FNILHGTYGE DGAVQGALEL LGIPYTGSGV AASAIGMDKY
101 RCKLIWQALG LPVPEFAVLY DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV
151 KVKEKGRLKS VYEELKHLQG RNHCRTFYRR RRIFLPRPER QRAARHTHHP
201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RTGNRCGRLR
251 ARRFPQRYRR QTLSVGNQHP ARYDRP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 317>:



This corresponds to the amino acid sequence <SEQ ID 318; ORF 093>: m093.pep

- 1 MONFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS
- 51 ELKAQGFQTA FNILHGTYGX DGAVQGALEL LGIPYTGSGV AASAIGMDKY
- 101 RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV
- 151 KVKGKGRLKS VYEELKHLQX RNHCRTFYRR RRIFLPRPER QRAARHTHHS
- 201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RAGNRCGRLR
- 251 ARRFPQRYRR QTLSVGNQHP ARYDEP*

10

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 093 shows 96.7% identity over a 276 aa overlap with a predicted ORF (ORF 093.ng) from N. gonorrhoeae:

20

20

m093/g093

	10	20	30	40	50	60
m093.pep	MQNFGKVAVLMGGF	SSEREISLDS	GTAILNALKS	KGIDAYAFDI	KETPLSELK	OGFOTA
		1111111111				:
g093	MQNFGKVAVLMGGF					
9093						_
	10	20	30	40	50	60
	70	80	90	100	110	120
m093.pep	FNILHGTYGXDGAV	OGALELLGIE	YTGSGVAASA	TCMDKVRCKT	TWOAT.GT.DVI	ט. זער מים
	111111111111	1111111111			JINQABODE VE	LILLI
		1111111111			1111111111	
g093	FNILHGTYGEDGAV		PYTGSGVAASA	IGMDKYRCKI	JIWQALGLPVI	PEFAVLY
	70	80	90	100	110	120
	130	140	150	160	170	180
m093.pep	DDTDFDAVEEKLGL					
moss.pep	DDIDEDAVEERUGE	PMFVRPAAEC	35VGVVKVKG	NGKLKS VIE	TUNHUQXKNHC	RIFYRR
		1111111				
g093	DDTDFDAVEEKLGL	PMFVKPAAEC	SSSVGVVKVKE	EKGRLKSVYEE	LKHLQGRNHO	RTFYRR
	130	140	150	160	170	180
	190	200	210	220	230	240
m003 mam						240
m093.pep	RRIFLPRPERORAA	RHTHHSRNRV	LKLKSQVQPR	RHHLSMSFGF	REDRSRRKPDA	RTGGSR
			111111111			
g093	RRIFLPRPERQRAA	RHTHHPRNRV	LRLRSQVQPR	RHHLSMSFGF	FDRSRRKPDA	RTGGSR
	190	200	210	220	230	240
					-50	240
	250	260	222			
		260	270			
m093.pep	RAGNRCGRLRARRF	PORYRROTLS	SVGNQHPARYD	EPX		
			111111111	: [ ]		
g093	RTGNRCGRLRARRF	PORYRROTLS	VGNOHPARYD	RPX		
=	250	260	270			
		200	2,0			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 319>: a093.seq

1	ATGCAGAATT	TTGGCAAAGT	GGCCGTATTG	ATGGGCGGTT	TTTCCAGCGA
51	ACGAGAAATC	TCGCTGGACA			
101	GCAAAGGCAT	AGACGCATAC			COLLINATIVE
151	GAATTGAAGG	CACAAGGTTT		I I I I I I I I I I I I I I I I I	00011110101
201	TTACGGCGAA	GACGGGGCTG			-10110001710
251	CCTATACCGG	CAGCGGTGTC			TTGGGCATTC
301		TGATTTGGCA			GGACAAATAC
351	CGTCCTGCAC				CCGAGTTCGC
401	TGCCGATGTT				AAATTGGGCC
451		TGTGAAACCG			AGGCGTGGTA
501	AAAGTCAAAG	GAAAAGGCCG	TCTGAAAAGC	GTTTACGAAG	AATTGAAACA
	CTTTCAGGG.	CGAAATCATT	GCCGAACGGT	TTATCGGCGG	CGGCGAATAT
551	TCCTGCCCTG	TGTTGAACGG	CAAAGGCCTG	CCCGGCATAC	
601	CGCGACCGAG	TTTTATGACT	ACGAAGCCAA	GTACAACCGC	
651	TTTATCAATG	TCCTTCGGAA	GATCTGACCG	AAGCCGAAGA	
701	CGCGAACTGG	CGGTTCGCGG			AAGGCTGCGT
751	GCGCGTCGAT	TTCCTCAAAG		CAAACTCTAT	
801	TCAACACCCT	GCCCGGTATG		G	CIGIIGGAAA
				•	

### This corresponds to the amino acid sequence <SEQ ID 320; ORF 093.a>: a093.pep

- MONFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS 51 ELKAQGFQTA FNILHGTYGE DGAVQGALEL LGIPYTGSGV AASAIGMDKY
- 101 RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV
- 151 KVKGKGRLKS VYEELKHFQX RNHCRTVYRR RRIFLPCVER QRPARHTHHP 201 RDRVL*LRSQ VQPQRHHLSM SFGRSDRSRR KPDARTGGSR RAGNRCGRLR
- 251 ARRFPQRYRR QTLSVGNQHP ARYDRP*

250

260

#### 95.7% identity over a 276 aa overlap m093/a093

m093.pep	10 MQNFGKVAVLMGG	1111111111	1 1 1 1 1 1 1 1 1 1	1111111111		
	MQNFGKVAVLMGG 10	20	30	SKGIDAYAFD) 40	PKETPLSELK 50	AQGFQTA 60
m093.pep	70 FNILHGTYGXDGA	80 VQGALELLGI	90 PYTGSGVAAS	100 AIGMDKYRCKI	110 LIWQALGLPV	120 PEFAVLH
a093	FNILHGTYGEDGAV	VQGALELLGI VQGALELLGI				 PEFAVLH 120
m093.pep	130 DDTDFDAVEEKLGI	140 .PMF7/KDAAD	150	160	170	
a093	DDTDFDAVEEKLGI					
	130	140	150	160	170	180
m093.pep	190 RRIFLPRPERQRAA	200 RHTHHSRNRV	210 LRLRSQVQPR	220 RHHLSMSFGR	230 FDRSRRKPDA	240 ARTGGSR
a093	RRIFLPCVERQRPA	7   1   1   1   1   1   1			 SDRSRRKPDA	 RTGGSR
	250	260	270	•	230	240
m093.pep	RAGNRCGRLRARRF	PQRYRRQTLS	VGNOHPARYD	EPX		
a093		111111111		• 1 1		

270

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 321>:
     g094.seg
            1
               ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT
           51 GCCGCCGATA ACGAAAGTGG GGTCGAGTCC TGCCGCGCCG AGGATGGAGG
          101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTAccggc aatggcgatg
          151 CCGTCACGGA AGCGCATCAG CTCTGCCAGC ATCAAGGCGC GCGGAATAAC
          201 GGGAATTTGC CGCTCCAACG CAgcgacaAC TTCGGgattT TCTTTCTTGA
               CGGCGGTAGA GGCAACGACG ACATCCGCAC CGTTAACGTG TTCTGCGGTA
               TGGCCGGGAT AA
This corresponds to the amino acid sequence <SEQ ID 322; ORF 094.ng>:
     g094.pep
               MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
               PSRKRISSAS IKARGITGIC RSNAATTSGF SFLTAVEATT TSAPLTCSAV
           51
          101
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 323>:
     m094.seq
               ATGTATTCGC CTTTGCCCAA GCGGGCGTTA GTGCCTGCGG CGTTGAGTTT
           51 GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCGCCG AGGATGGAGG
          101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG
          151 CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC
          201 GGGAATTTGC TGCTCCAACG CAGCGACAAC TTCGGGATTT TCTTTTTGA
          251 CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCGGCGGTA
               TGGCCGGGAT AA
This corresponds to the amino acid sequence <SEQ ID 324; ORF 094>:
     m094.pep
               MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
               PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV
           51
          101
               WPG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 094 shows 95.1% identity over a 103 as overlap with a predicted ORF (ORF 094.ng)
from N. gonorrhoeae:
     m094/q094
                                   20
     m094.pep
                  MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN
                  q094
                  MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRISSAS
                                                       40
                                                                50
                         70
                                   80
                                             90
                  IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX
     m094.pep
                  IKARGITGICRSNAATTSGFSFLTAVEATTTSAPLTCSAVWPGX
     g094
                         70
                                   80
                                             90
                                                      100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 325>:
a094.seq
      1
         ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT
         GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCGCCG AGGATGGAGG
     51
    101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG
         CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC
    201
         GGGAATTTGC TGCTCCAACG CAGCGACAAC TTCGGGATTT TCTTTTTGA
         CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCTGCGGTA
     251
         TGGCCGGGAT AA
```

This corresponds to the amino acid sequence <SEQ ID 326; ORF 094.a>:

BNSDOCID: <WO 9957280A2 1 >

a094.pep MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM 1 PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV 51 101 WPG* 100.0% identity over a 103 aa overlap m094/a09420 30 40 50 MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN m094.pep MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN a094 30 40 50 20 10 70 80 90 100 IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX m094.pep IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX a094 80 70 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 327>: q095.seq ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT 1 51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA 101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC 151 AACACACAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA 201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG 251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGGGTCA GTGTAGGAAA GAGGCATCGG ATCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG CGGGCGTTGG TGCCTGCGGC GTTGA 351 This corresponds to the amino acid sequence <SEQ ID 328; ORF 095.ng>: g095.pep MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTOKGFAVEG HTVDEIDKRL MQFFDAVPVG IHMVFVDIGN DGHNRGQCRK 51 EASDRRLROR CIRLCPSGRW CLRR* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 329>: m095.seq ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT 51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA 101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC 151 AATACACAAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA 201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG 251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGTGTCA GTGCAGAAAG GATGCATCCG ACCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG CGGGCGTTAG TGCCTGCGGC GTTGA This corresponds to the amino acid sequence <SEQ ID 330; ORF 095>: m095.pep MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQFFDAVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRX CLRR* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 095 shows 97.6% identity over a 124 aa overlap with a predicted ORF (ORF 095.ng) from *N. gonorrhoeae*: m095/g095 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG m095.pep 

297

g095	MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
2	10 20 30 40 50 60	
m005 mor	70 80 90 100 110 120  httvdeidkrlmoffdavpvgihmvfvdigndghnrcocrkdasdrrlrorcirlcpsgrx	
m095.per		
g095	HTVDEIDKRLMQFFDAVPVGIHMVFVDIGNDGHNRGQCRKEASDRRLRQRCIRLCPSGRW	
3	70 80 90 100 110 120	
m095.pep	CLRRX	
g095	!	
9075	Cana.	
	•	
The following	partial DNA sequence was identified in N. meningitidis <seq 331="" id="">:</seq>	
a095.sec		
i		
51		
101		
151 201		
251		
301		
351	CGGGCGTTGG TGCCTGCGGC GTTGA	
This correspon	nds to the amino acid sequence <seq 095.a="" 332;="" id="" orf="">:</seq>	
This correspond		
a095.pep 1	O L MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV	
a095.per 1 51	O L MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV L NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK	
a095.pep 1	O L MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV L NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK	
a095.per 1 51 101	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*	
a095.per 1 51	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap	
a095.per 1 51 101 m095/a09	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60	
a095.per 1 51 101	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
a095.per 1 51 101 m095/a09 m095.per	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
a095.per 1 51 101 m095/a09	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
a095.per 1 51 101 m095/a09 m095.per	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	- <u> </u>
a095.per 1 51 101 m095/a09 m095.per a095	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
a095.per 1 51 101 m095/a09 m095.per	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	 : <u>@</u> :
a095.per 1 51 101 m095/a09 m095.per a095	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
a095.per 1 51 101 m095/a09 m095.per a095	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
a095.per 1 51 101 m095/a09 m095.per a095	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	
a095.per 1 51 101 m095/a09 m095.per a095	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60  MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	· · · · · · · · · · · · · · · · · · ·
a095.per 1 51 101 m095/a09 m095.per a095	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60  MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	 ( <u>@</u> :
a095.per 1 51 101 m095/a09 m095.per a095	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*  96.0% identity in 124 aa overlap  10 20 30 40 50 60  MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID

333>:

```
g096.seq1ATGGCCGGTCATACCGGGCAGGGTGTTGATTTCCAACAGATAGAGTTTGC51CGTCGGTATCTTTGAGGAAATCGACGCGCACGCAGCCTTCCGCACCGATT101GCCTGTGCGCCGCGAACCGCCAGTTCGCGCATCAGGCTTTCTTCGGCTTC151GGTCAAATCTTCCGAAGGACATTGAtaaatggtgTCGTCTCGGttgtaCt
```

```
201 tggcttcgta gTCGTAAAAC TCGGTTGCGG GGATGATGTG TATGCCGGGC
251 AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
301 AcgtTcggca atgaTTtcgc ccctgAAGGT GttTCAattc ttcgtaAACG
351 CTTTTCAGAC ggccttTTTC TTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 334; ORF 096.ng>: g096.pep

- MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLCAANR QFAHQAFFGF
- GQIFRRTLIN GVVSVVLGFV VVKLGCGDDV YAGQPFAVQD GAGIFAAADK
- 101 TFGNDFAPEG VSILRKRFSD GLFL*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 335>:

```
m096.seq
         ATGGCTCGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
         CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
      51
         GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
     101
    151 GGTCAAATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTCG CGGTTGTACT
    201 TGGCTTCGTA GTCGTAAAAC TCGGTTGCGG GAATGATGTG TATGCCGGGC
    251 AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
    301 ACGTTCGGCA ATGATTTCGC CC.TGAAGGT GTTTCAATTC TTCGTAAACG
    351 CTTTTCAGAC GGCCTTTTCC TTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 336; ORF 096>: m096.pep

- MARHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLRAANR QFAHQAFFGF 1 51
- GQIFRRTLIN GVVAVVLGFV VVKLGCGNDV YAGQPFAVQD GAGIFAAADK
- 101 TFGNDFAXEG VSILRKRFSD GLFL*

### m096/g096 96.0% identity in 124 aa overlap

m096.pep	MARHTGOGVDFOOT	20 FFANCT PPP	30	40	50	60
1 -1	MARHTGQGVDFQQI	.EFAVGIFEE,	DAHAAFRTDO	CLRAANRQFAI	HQAFFGFGQI	FRRTLIN
q096	MAGHTGOGVDEOOT			1 111111		
3	MAGHTGQGVDFQQI	ETAAGILFET	DAHAAFRTDO	CLCAANRQFAI	QAFFGFG011	FRRTLIN
	,10	20	30	40	50	60
-006	70	80	90	100	110	120
m096.pep	GVVAVVLGFVVVKL	GCGNDVYAGO	PFAVODGAGT	FAAADKTECN	!DENVECT!CT!	120
		111:11111	1111111111	111111111	DEAVERANTI	RKRESD
g096	GVVSVVIGEVVVKT		711111111	1111111111	111 11111	11111
-	GVVSVVLGFVVVKL	GCGDDV IAGQ	PFAVQDGAGI	FAAADKTFGN	IDFAPEGVSII	RKRFSD
	70	80	90	100	110	120

m096.pep GLFLX 11111 g096 GLFLX

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 337>:

### a096.seg

```
1 ATGGCCGGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
 51 CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
101 GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
151 GGTCAGATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTTG CGGTTGTACT
     TGGCTTCGTA GTCATAAAAC TCGGTCGCGG GGATGATGTG TATGCCGGGC
     AGGCCTTTGC CGTTCAACAC AGGGCAGGAA TATTCGCCGC CGCCGATAAA
251
301 CCGTTCGGCA ATGATTTCGC CCT.GAAAGT GTTTCAATTC TTCGTAAACG
     CTTTTCAGAC GGCCTTTTCC TTTGA
```

This corresponds to the amino acid sequence <SEQ ID 338; ORF 096.ng>: a096.pep

1 MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLRAANR QFAHQAFFGF

```
GQIFRRTLIN GVVAVVLGFV VIKLGRGDDV YAGQAFAVQH RAGIFAAADK
              PFGNDFAXES VSILRKRFSD GLFL*
          101
              92.7% identity in 124 aa overlap
m096/a096
                                   20
                                             30
                                                      40
                                                                50
                                                                          60
                 MARHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
     m096.pep
                  a096
                 MAGHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
                         10
                                   20
                                            30
                                                      40
                                                                50
                         70
                                   80
                                            90
                                                     100
                                                              110
                 GVVAVVLGFVVVKLGCGNDVYAGQPFAVQDGAGIFAAADKTFGNDFAXEGVSILRKRFSD
    m096.pep
                  a096
                 GVVAVVLGFVVIKLGRGDDVYAGQAFAVQHRAGIFAAADKPFGNDFAXESVSILRKRFSD
                         70
                                            90
                                   80
                                                     100
                                                               110
    m096.pep
                 GLFLX
                  a096
                 GLFLX
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 339>:
     q097.seq
           1
              ATGGATATTT CAAAACAAAC ATTGCTGGAT AGGGTTTTTA ACCTGAAGGC
              AAACGGTACG ACGGTACGTA CCGAGTTGAT GGCGGGTTTG ACGACCTTTT
          51
              TGACGATGTG CTACATCGTT ATCGTCAATC CCCTGATTTT GGGCGAGACC
          101
              GGAATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CATCCGCCAT
         151
         201 CGGCTGTTTT GTCATGGGTT TTATCGGCAA CTATCCGATT GCGCTTGCCC
              CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG
         251
         301 GGCGTGCCTT GGCAGGTGGC GTTGGGTGCG GTGTTCATTT CCGGTCTGAT
         351 TTTCATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC
         401 TGCCTATGGG TTTGAAAATG TCGATTGCCG CCGGTATCGG TTTGTTTTTG
         451 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC
              CTTGGTCGGC TTGGGCGATA TTCATCAGCC CAGCGCACTG TTGGCATTGT
         501
              TCGGTTTTGT CATGGTGGTC GTATTGGGGT ATTTCCGCGT TCAAGGCGCA
         551
              ATCATCATCA CCATTCTGAC GATTACCGTC ATTGCCAGCC TGATGGGTTT
         601
              GAACGAGTTT CACGGCGTGG TCGGCGAAGT ACCGGGCATT GCGCCGACCT
         651
              TTATGCAGAT GGATTTTAAA GGTCTGTTTA CCGTCAGCAT GGTCAGCGTG
         701
              ATTTTCGTCT TCTTCTTGGT CGATTTGTTC GACAGTACCG GAACGCTGGT
         751
         801 CGGCGTATCC CACCGTGCCG GACTGCTGGT GGACGGTAAG CTGCCCCGCC
         851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT
         901 TTGGGTACTT CTTCAACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC
         951 GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC
        1001 TGGCGTGTCT GATGTTCTCC CCATTGGCGA AAAGTGTTCC GGTATTTGCC
        1051 ACCGCGCCG CACTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG
        1101 GGACATTGAT TGGGACGATA TGACTGAAGC CGCGCCCGCG TTCCTGACCA
              TTGTCTTCAT GCCGTTTACC TATTCGATTG CAGACGGCAT CGCCTTCGGC
        1151
        1201
              TTCATCAGCT ATGCCGTGGT CAAACTTTTG TGTCGCCGGA CTGGGGACGT
              GCCGCCTATG GTATGGGTTG TTGCCGTATT GTGGGCATTG AAATTCTGGT
        1251
        1301
              ATTTGGGCTG A
This corresponds to the amino acid sequence <SEQ ID 340; ORF 097.ng>:
    g097.pep
              MDISKQTLLD RVFNLKANGT TVRTELMAGL TTFLTMCYIV IVNPLILGET
           1
              GMDMGAVFVA TCIASAIGCF VMGFIGNYPI ALAPGMGLNA YFTFAVVKGM
          51
         101
              GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL
         151
              ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFVMVV VLGYFRVQGA
              IIITILTITV IASLMGLNEF HGVVGEVPGI APTFMQMDFK GLFTVSMVSV
         201
         251
              IFVFFLVDLF DSTGTLVGVS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA
         301
              LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPVFA
         351 TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 341>:

```
ATGGACACTT CAAAACAAAC ACTGTTGGAC GGGATTTTTA AGCTGAAGGC
    1
      AAACGGTACK ACGGTGCGTA CCGAGTTGAT GGCGGGTTTG ACAACTTTTT
   51
  101
      TGACGATGTG CTACATCGTT ATCGTCAACC CTCyGATTTT GGGCGAGACC
      GGCATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CGTCTGCCAT
 201 CGGCTGTTTT GTTATGGGTT TTGTCGGCAA CTATCCGATT GCACTCGCAC
 251 CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG
 301 GGCGTGCCTT GGCAGGTTGC GTTGGGTGCG GTGTTCATCT CCGGTCTGAT
 351 TTTTATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC
 401 TGCCTATGGG TTTGAAAATG TCGATTGCTG CCGGTATCGG TTTGTTTTTG
 451 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC
 501 CTTGGTCGGT TTGGGCGATA TTCATCAGCC GTCCGCGTTG TTGGCATTGT
 551 TCGGTTTTGC TATGGTGGTC GTATTGGGAC ATTTCCGCGT TCAAGGCGCA
     ATCATCATCA CCATCTTGAC CATTACCGTC ATTGCCAGCC TGATGGGTTT
      GAATGAATTT CACGGCATCA TCGGCGAAGT ACCGAGCATT GCGCCGACTT
      TTATGCAGAT GGATTTTGAA GGCCTGTTTA CCGTCAGCAT GGTCAGTGTG
 701
 751 ATTTTCGTCT TCTTCTTGGT CGATCTATTT GACAGTACCG GAACGCTGGT
 801 CGGCATATCC CACCGTGCCG GGCTGCTGGT GGACGGTAAG CTGCCCCGCC
 851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT
 901 TTGGGTACTT CTTCCACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC
 951 GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC
1001 TCGCCTGCCT GATGTTTTCA CCTTTGGCGA AAAGTGTTCC CGCTTTTGCC
1051 ACCGCGCCCG CCCTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG
1101 GGATATTGAT TGGGACGATA TGACGGAAGC CGCACCTGCG TTCCTGACCA
1151 TTGTTTCAT GCCGTTTACT TATTCGATTG CAGACGGCAT CGCTTTCGGC
     TTCATCAGTT ATGCCGTGGT TAAACTTTTA TGCCGCCGCA CCAAAGACGT
1251 TCCGCCTATG GTATGGATTG TTGCCGTATT GTGGGCACTG AAATTCTGGT
1301 ATTTGGGCTG A
```

This corresponds to the amino acid sequence <SEQ ID 342; ORF 097>:

MDTSKOTLLD GIFKLKANGT TVRTELMAGL TTFLTMCYIV IVNPXILGET
GMDMGAVFVA TCIASAIGCF VMGFVGNYPI ALAPGMGLNA YFTFAVVKGM
GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL
ALISLKGAGI IVANPATLVG LGDIHOPSAL LALFGFAMVV VLGHFRVQGA
IIITLITITV IASLMGLNEF HGIIGEVPSI APTFMQMDFE GLFTVSMVSV
IFVFFLVDLF DSTGTLVGIS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA
GTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPAFA
GTSTAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 097 shows 96.3% identity over a 436 aa overlap with a predicted ORF (ORF 097.ng) from N. gonorrhoeae:

m097/g097

m097.pep	10 MDTSKOTLLDGIF	20	30	40	50	60
q097	MDTSKQTLLDGIFI	:	1	1	11111111	111111
3007	MDISKQTLLDRVFN 10	ATKANGTTVK.		LTMCYIVIVNE	LILGETGMDM	GAVFVA
	10	20	30	40	50	60
m097	70	80	90	100	110	120
m097.pep	TCIASAIGCFVMGF	VGNYPIALAI	PGMGLNAYFTE	TAVVKGMGVPW	QVALGAVFIS	GLIFII.
g097	TCIASAIGCFVMGF	:		11111111	111111111	f f f i i i i
	70	80	90	100		
			20	100	110	120
	130	140	150	160	170	180

m097.pep	FSFFKVREMLVNALPM	IGLKMSIAAGI	GLFLALISLE	GAGIIVANPA	ATLVGLGDIHO	PSAL
g097						וןןן
9097	130	140	150	160	170	180
						-00
	190	200	210	220	230	240
m097.pep	LALFGFAMVVVLGHFR	.VQGAIIITII	TITVIASLMO			MDFE
				111111::11		111:
g097	LALFGFVMVVVLGYFR	-			-	
	190	200	210	220	230	240
	050	260	0.70	222		
-007	250	260	270	280	290	300
m097.pep	GLFTVSMVSVIFVFFL	VULFUSIGII		NDGKTEKTKE	KALLADSTAIV	AGAA
~007	GLFTVSMVSVIFVFFL		VGV6UDAGI I	11111111111		
g097	250	260	270	280	290	AGAA 300
	250	260	270	260	290	300
	310	320	330	340	350	360
m097.pep	LGTSSTTPYVESAAGV					
					1:111111	1111
q097	LGTSSTTPYVESAAGV	SAGGRTGLTA	VTVGVLMLAC	LMFSPLAKSV	PVFATAPALI	YVGT
J	310	320	330	340	350	360
					•	
	370	380	390	400	410	420
m097.pep	QMLRSARDIDWDDMTE	AAPAFLTIVE	MPFTYSIADO	IAFGFISYAV	VKLLCRRTKE	VPPM
						1111
g097	QMLRSARDIDWDDMTE				VKLLCRRTGE	VPPM
	370	380	390	400	410	420
	430					
m007 mom	430 VWIVAVLWALKFWYLG	v				
m097.pep	VWIVAVEWALKFWYLG					
g097	VWVVAVLWALKFWYLG	I V				
gus i	430					
	300					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 343> a097.seq

1	ATGGACACTT	CAAAACAAAC	ACTGTTGGAC	GGGATTTTTA	AGCTGAAGGC
51	AAACGGTACG	ACGGTGCGTA	CCGAGTTGAT	GGCGGGTTTG	ACAACTTTTT
101	TGACGATGTG	CTACATCGTT	ATCGTCAACC	CTCTGATTTT	GGGCGAGACC
151	GGCATGGATA	TGGGGGCGGT	ATTCGTCGCT	ACCTGTATCG	CGTCTGCCAT
201	CGGCTGTTTT	GTTATGGGTT	TTGTCGGCAA	CTATCCGATT	GCACTCGCAC
251	CGGGGATGGG	GCTGAATGCC	TATTTCACCT	TTGCCGTCGT	TAAGGGTATG
301	GGCGTGCCTT	GGCAGGTTGC	GTTGGGTGCG	GTGTTCATCT	CCGGTCTGAT
351	TTTCATCCTG	TTCAGCTTTT	TTAAAGTCAG	GGAAATGCTG	GTCAACGCAC
401	TGCCTATGGG	TTTGAAAATG	TCGATTGCTG	CCGGTATCGG	TTTGTTTTTG
451	GCACTGATTT	CCCTGAAAGG	CGCAGGCATT	ATCGTTGCCA	ATCCGGCAAC
501	CTTGGTCGGC	TTGGGCGATA	TTCATCAGCC	GTCCGCGTTG	TTGGCACTGT
551	TCGGTTTTGC	CATGGTGGTC	GTATTGGGAC	ATTTCCGCGT	TCAAGGCGCA
601	ATCATCATCA	CCATTTTGAC	GATTACCGTC	ATTGCCAGCC	TGATGGGTTT
651	GAACGAATTT	CACGGCATCA	TCGGCGAAGT	GCCGAGCATT	GCGCCGACTT
701	TTATGCAGAT	GGATTTTAAA	GGGTTGTTTA	CCGTCAGCAT	GGTCAGCGTG
751	ATTTTCGTCT	TTTTCCTAGT	CGATCTGTTC	GACAGTACCG	GAACACTGGT
801	CGGTGTATCG	CATCGTGCCG	GACTGCTGGT	GGACGGTAAG	CTGCCCCGCC
851	TGAAACGCGC	ACTGCTTGCA	GACTCTACCG	CTATTGTGGC	AGGTGCGGCT
901	TTGGGTACTT	CTTCAACCAC	GCCTTATGTG	GAAAGTGCGG	CGGGCGTATC
951	GGCAGGCGGG	CGGACAGGTC	TGACGGCGGT	TACCGTCGGC	GTATTGATGC
1001	TCGCCTGCCT	GATGTTTTCA	CCTTTGGCGA	AAAGTGTTCC	CGCTTTTGCC
1051	ACCGCGCCCG	CCCTGCTTTA	TGTCGGCACG	CAGATGCTCC	GCAGTGCGAG
1101	GGACATCGAT	TGGGACGATA	TGACGGAAGC	CGCACCCGCA	TTCCTGACCA
1151	TTGTCTTCAT	GCCGTTTACC	TATTCGATTG	CAGACGGCAT	CGCTTTCGGC
1201	TTCATCAGTT	ATGCCGTGGT	TAAACTTTTA	TGCCGCCGCA	CCAAAGACGT
1251	TCCGCCTATG	GTATGGATTG	TTGCCGTATT	GTGGGCACTG	AAATTCTGGT

BNSDOCID: <WO___9957280A2_J_>

1301 ATTTGGGCTG A

This corresponds to the amino acid sequence <SEQ ID 344; ORF 097.a>: a097.pep

1	MDTSKQTLLD	GIFKLKANGT	TVRTELMAGL	TTFLTMCYTV	IVNPLILGET
51	GMDMGAVEVA	_TCIASAIGCF	VMGFVGNYPI	ALAPGMGINA	VETERMINCM
101	GVPWQVALGA	VFISGLIFIL	FSFFKVREML	VNAT.PMGT.KM	STANCICIES
151	ALISLKGAGI	IVANPATLVG	LGDIHOPSAL	LALFGFAMW	VICHERVOCA
201	<u> IIITILTITV</u>	IASLMGLNEF	HGIIGEVPSI	APTEMOMDEK	CLETUSMUSU
251	IFVFFLVDLF	DSTGTLVGVS	HRAGLLVDGK	LPRIKRAT.T.A	DSTATUACAA
301	LGTSSTTPYV	ESAAGVSAGG	RTGLTAVTVG	VIMLACIMES	DIVERDYEN
351	TAPALLYVGT	OMLRSARDID	WDDMTEAAPA	FLTIVEMPET	VCINDCIADO
401	FISYAVVKLL	CRRTKDVPPM	VWIVAVI.WAT.	KEWYLC*	TOTADGIAFG

### m097/a097 99.3% identity in 436 aa overlap

430

	10	20	30	40	50	<b>CO</b>
m097.pep	MDTSKQTLLDGIFKI	KANGTTV	RTELMAGLTTFI	TMCYTVTVA	IDVII CERCMO	60 AUTUM
- 007		111111	1     1   1   1   1   1   1   1   1   1			
a097	TADIOUĞITENI	KANGTTV.	RTELMAGLTTFI	TMCYIVIVN	PLILGETGMD	MGAVFVA
	10	20	30	40	50	60
	70	80	0.0			
m097.pep			90	100	110	120
	TCIASAIGCFVMGFV	IIIIIII	APGMGLNAYFTE	AVVKGMGVP	WQVALGAVFI	SGLIFIL
a097	TCIASAIGCFVMGFV	GNYPTALI				
	70	80	90	100	WQVALGAVFI 110	
			30	100	110	120
	130	140	150	160	170	180
m097.pep	FSFFKVREMLVNALP	MGLKMSIA	AGIGLFLALIS	LKGAGIIVA	NDAMI UCI CD	
-007		1 1 1 1 1 1 1 1 1		11111111	1111111111	
a097	POPERVREMENNALP	MCTKW2TE	MGIGLFLALIS	LKGAGIIVA	NPATLVGLGD	THOPSAL
	130	140	<b>1</b> 50	160	170	180
	190	200	210			
m097.pep			210	220	230	240
	LALFGFAMVVVLGHF	IIIIIIII	TIPITITATA	MGLNEFHGI:	IGEVPSIAPTE	MOMDFE
a097	LALFGFAMVVVLGHF	RVOGATIT	TTT.TTTTTTTTT		[	11111:
	190	200	210	220	IGEVPSIAPTE 230	
				220	230	240
	250	260	270	280	290	300
m097.pep	GLFTVSMVSVIFVFFI	VDLFDST	GTLVGISHRAGI	LVDGKLPRI	VDALLAROS.	
a097		1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1			
a09/	GDELASMASATEAEF	ADTEDSI	GILVGVSHRAGI	LVDGKLPRI	KRALLADSTA	IVAGAA
	250	260	270	280	290	300
	310	320	330	2.0	_	
m097.pep	LGTSSTTPYVESAAGV	SAGGRTG	טפפ ת זא זאסאידיא ביים.	340 CI MEGDY AV	350	360
		1111111	111111111111	CLMESPLAK	SVPAFATAPA	LLYVGT
a097	LGTSSTTPYVESAAGV	SAGGRIG	LTAVTVGVI.MI.A	וווווווווו		111111
	310	320	330	340	350	360
				0.10	330	360
003	370	380	390	400	410	420
m097.pep	QMLRSARDIDWDDMTE	AAPAFLT:	<b>IVFMPFTYSIAD</b>	GIAFGFISY	AVVKLLCRRT	
a097		111111	! !	111111111	11111111	
4057	QMLRSARDIDWDDMTE	AAPAFLTI	VEMPETYSIAD	GIAFGFISY	AVVKLLCRRTI	KDVPPM
	370	380	390	400	410	420
	430					
m097.pep	VWIVAVLWALKFWYLG:	X				
	11111111111111111	1				
a097	VWIVAVLWALKFWYLG	K				
	430					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 345>: g098.seq ATGACCGCCG ACGGTCTCTT CGTCGCTTTC AACTTCAATA CGTTTGCCGT 1 51 TGTGCGAATA TTGATACCAG TACAGCAGGA TGCTGCCCAG GCTGGCGATC 101 AGTTTGTCGG CGATGTCGCG CGCTTCGCTG TCGGGATGGC TTTCGCGTTC GGGATGAACG CAGCCGAGCA TGGACACGCC GGTACGCATC ACGTCCATCG 151 201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC 251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT 301 GTTGGGCAGA TGGCCGTGAA TCAGCAAGTG TGCGACTTCT TCAAACTCGC 351 ATTTTTGTGC CAAATTAGAA TGTCGTAA This corresponds to the amino acid sequence <SEQ ID 346; ORF 098.ng>: g098.pep MTADGLFVAF NFNTFAVVRI LIPVQQDAAQ AGDQFVGDVA RFAVGMAFAF 51 GMNAAEHGHA GTHHVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF VGQMAVNQQV CDFFKLAFLC QIRMS* 101 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 347>: m098.seq ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT 1 51 TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC 101 AGTTTGTCGG CGATGTCGCG CGCTTCACTT TCCGGATGGC TTTCACGTTC 151 AGGATGAACG CAGCCCAGCA TGGATACGCC GGTACGCATT ACGTCCATCG 201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC 251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT 301 GTTGGGCAGA TGGCCGTGAA TCAGCAGGTG GGCGACTTCT TCAAACTCGC 351 ATTTTGTGC CAAATCAGAA TGTCGTAA This corresponds to the amino acid sequence <SEQ ID 348; ORF 098>: m098.pep MTADGLFVAF NLNAFAVVRI LIPVQEDAAE AGDQFVGDVA RFTFRMAFTF 1 51 RMNAAQHGYA GTHYVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGOLEF VGQMAVNQQV GDFFKLAFLC QIRMS* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 098 shows 89.6% identity over a 125 aa overlap with a predicted ORF (ORF 098.ng) from N. gonorrhoeae: m098/g098 10 20 30 40 m098.pep MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAOHGYA q098 MTADGLFVAFNFNTFAVVRILIPVQQDAAQAGDQFVGDVARFAVGMAFAFGMNAAEHGHA 10 20 30 40 5.0 60 90 100 110 m098.pep GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC q098 GTHHVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVCDFFKLAFLC 70 80 90 100 110 120 m098.pep QIRMSX 

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 349>: a098.seq

- 1 ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT
- 51 TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC

BNSDOCID: <WO 9957280A2 1 >

g098

QIRMSX

- 2



## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 351>:

```
1
       ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTGGA
       GCTGACGGGC AAACGGCAGG CGGGCATTAC TGCCACAGAC ATCGTGTTGG
   51
      CACTGACCGA ATTCTTGCGT AAAGAGCGCG TGGTCGGGGC GTTTGTCGAA
 101
      TTTTTCGGCG AGGGCGCGAG AAGCCTGTCT ATCGGCGACC GCGCGACCAT
 151
      TTCCAACATG ACGCCGGAGT TCGGCGCGAC TGCCGCCATG TTCGCCATCG
 201
      ACGCGCAAAC TATTGATTAT TTGAAACTGA CCGGACGTGA CGACGCGCAG
 251
      GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTAT GGGCAGGTGG
 301
      CTTGAAAACC GCCGTTTATC CGCGCGTTTT GAAATTTGAT TTGAGCAGCG
 351
      TAACGCGCAA TATGGCAGGC CCGAGCAACC CGCACGCGCG TTTTGCCACC
 401
      GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCAGA
 451
      CGGCCAAATG CCTGACGGTG CAGTGATTAT TGCCGCGATT ACTTCGTGTA
      CCAATACTTC CAACCCGCGC AACGTTGTCG CCGCCGCACT GTTGGCACGC
      AATGCCAACC GCCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT
 601
      TGCCCCGGGT TCAAAAGTAG CCGGAATCTA TTTGAAAGAA GCAGGCTTGT
 651
      TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCATGTACC
 701
      ACCTGTAACG GCATGAGGGG CGCGCTcgaC CCGAAAATCC AACAAGAAAT
 751
      CATCGACCGC GAtttgtacg cCACCGCCGT ATTGTCAGGC AACCGCAACT
 801
      TCGACGGCCG TATCCATCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT
 851
      CCTTTGGTCG TTGCCTACGC ATTGGCAGGT AGCATCCGTT TCGATATTGA
 901
      AAACGACGTA CTCGGCGTTG CAGACGGCCG CGAAATCCGC CTGAAAGATA
 951
     TCTGGCCGAC AGACGAAGAA ATCGATGCCA TCGTTGCCGA ATATGTGAAA
1001
     CCGCAACAAT TCCGCGACAT TTATATCCCG ATGTCCGACA CCGGCACAGC
1051
1101 GCAAAAAGCA CCAAGCCCGC TGTACGACTG GCGACCGATG TCCACCTACA
     TCCGCCGTCC GCCCTATTGG GAAGGCGCAC TGGCAGGGGA ACGTACATTA
1151
     AGAGGTATGC GTCCGCCGGC GATTTTGCCC GACAACATCA CCACCGACCA
1201
1251 CATCTCgcca tCCAATGCGA TTTTGGCCGG cagTGCcgca ggtgaATATT
```

```
1301 TGGCGAAAAT GGGTTTGCCT GAAGAagaCT TCAACTCTTA CGCAACCCAC
               CGCGGCGACC ACTTGACCGC CCAACGCGCA ACCTTCGCCA ATCCGAAACT
         1351 CGCGGCGACC ACTTGACCGC CCAACGCGCA ACCTTCGCCA ATCCGAAACT
1401 GTTTAACGAA ATGGTGAGAA ACGAAGACGG CAGCGTACGC CAAGGTtcgt
         1451 tggcacgcgT tgaacCAGAA GGCCAAACCA TGCGCATGTG GGAAGCCATC
         1501 GAAACCTATA TGAACCGCAA ACAGCCGCTT ATCATCATTG CCGGTGCGGA
         1551 CTATGGTCAA GGCTCAAGCC GCGACTGGGC GGCGAAGGGC GTGCGGCTGG
         1601 CGGGTGTGGA AGCCATCGCC GCCGAAGGTT TCGAGCGCAT CCACCGCACC
         1651 AACCTCATCG GCATGGGCGT CTTGCCGCTG CAATTCAAAC CCGGCACCAA
         1701 CCGCCATACC CTGCAACTGG ACGGTACGGA AACCTACGAC GTTGTCGGCG
         1751 AACGCACACC GCGCTGCGGC CTGACCCTCG TGATTCACCG TAAAAACGGA
         1801 GAAACCGTCG AAGTTCCGGT TACCTGCCGC CCCGATACCG CAGAAGAAGC
         1851 ATTGGTATAT GAAGCCGGCG GCGTATTGCA ACGGTTTGCA CAGGACTTTT
         1901 TGGAAGGGAA CGCGGCTTAG
This corresponds to the amino acid sequence <SEQ ID 352; ORF 099.ng>:
     g099.pep
              MLGRASMMRL PDIVGVELTG KROAGITATD IVLALTEFLR KERVVGAFVE
            1
               FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDAOTIDY LKLTGRDDAO
           51
              VKLVETYAKT AGLWAGGLKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT
          151 ADLAAKGLAK PYEEPSDGQM PDGAVIIAAI TSCTNTSNPR NVVAAALLAR
          201 NANRLGLKRK PWVKSSFAPG SKVAGIYLKE AGLLPEMEKL GFGIVAFACT
              TCNGMSGALD PKIQQEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP
               PLVVAYALAG SIRFDIENDV LGVADGREIR LKDIWPTDEE IDAIVAEYVK
          351 PQQFRDIYIP MSDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
          401 RGMRPPAILP DNITTDHISP SNAILAGSAA GEYLAKMGLP EEDFNSYATH
               RGDHLTAORA TFANPKLFNE MVRNEDGSVR QGSLARVEPE GOTMRMWEAI
               ETYMNRKQPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIA AEGFERIHRT
          551 NLIGMGVLPL QFKPGTNRHT LQLDGTETYD VVGERTPRCG LTLVIHRKNG
          601 ETVEVPVTCR PDTAEEALVY EAGGVLQRFA QDFLEGNAA*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 353>:
     m099.seq
               ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTTGA
               GCTGAACGGC AAACGGCAGG CGGGCATTAC GGCGACGGAT ATTGTGTTGG
               CACTGACCGA GTTTCTGCGC AAAGAACGCG TGGTCGGGGC GTTTGTCGAA
               TTCTTCGGCG AGGGCGCGAG AAGCCTGTCT ATCGGCGACC GCGCGACCAT
               TTCCAACATG ACGCCGGAGT TCGGCGCGAC TGCCGCGATG TTCGCTATTG
          201
          251 ATGAGCAAAC CATTGATTAT TTGAAACTGA CCGGACGCGA CGACGCGCAG
                                                                                 ***
          301 GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTGT GGGCAGATGC
          351 CTTGAAAACC GCCGTTTATC CTCGCGTTTT GAAATTTGAT TTGAGCAGCG
          401 TAACGCGCAA TATGGCAGGC CCAAGTAACC CGCATGCCCG TTTTGCGACC
          451 GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCGGA
          501 CGGCCAAATG CCCGACGGCT CGGTCATCAT CGCCGCGATT ACCAGTTGCA
          551 CCAACACTTC CAACCCGCGC AACGTTGTTG CCGCCGCGCT CTTGGCACGC
          601 AATGCCAACC GTCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT
               TGCCCCGGGT TCAAAAGTAG CCGAAATCTA TTTGAAAGAA GCGGGCCTGT
          651
               TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCCTGCACC
               ACCTGCAACG GCATGAGTGG CGCGCTGGAT CCGAAAATCC AGAAAGAAAT
               CATCGACCGC GATTTGTACG CCACCGCCGT ATTATCAGGC AACCGCAACT
          851
               TCGACGGCCG TATCCACCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT
          901 CCGTTGGTCG TTGCCTACGC GCTGGCAGGC AGTATCCGTT TCGATATTGA
          951 AAACGACGTA CTCGGCGTTG CAGACGGCAA GGAAATCCGC CTGAAAGACA
         1001 TTTGGCCTGC CGATGAAGAA ATCGATGCCG TCGTTGCCGA ATATGTGAAA
         1051 CCGCAGCAGT TCCGCGATGT GTATGTACCG ATGTTCGACA CCGGCACAGC
         1101 GCAAAAGCA CCCAGTCCGC TGTACGATTG GCGTCCGATG TCCACCTACA
         1151 TCCGCCGTCC GCCTTACTGG GAAGGCGCGC TGGCAGGGGA ACGCACATTA
         1201 AGAGGTATGC GTCCGCTGGC GATTTTGCCC GACAACATCA CCACCGACCA
         1251 CCTCTCGCCG TCCAATGCGA TTTTGGCCGT CAGTGCCGCA GGCGAGTATT
         1301 TGGCGAAAAT GGGTTTGCCT GAAGAAGACT TCAACTCTTA CGCAACCCAC
         1351 CGCGGCGACC ACTTGACCGC CCAACGCGCT ACCTTCGCCA ATCCGAAACT
               GTTTAACGAA ATGGTGAAAA ACGAAGACGG CAGCGTGCGC CAAGGCTCGT
               TCGCCCGCGT CGAACCCGAA GGCGAAACCA TGCGCATGTG GGAAGCCATC
```

1501 GAAACCTATA TGAACCGCAA ACAGCCGCTC ATCATCATTG CCGGTGCGGA

BNSDOCID: <WO___9957280A2_I_>



This corresponds to the amino acid sequence <SEQ ID 354; ORF 099>:

1 MLGRASMMRL PDIVGVELNG KRQAGITATD IVLALTEFLR KERVVGAFVE
51 FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDEQTIDY LKLTGRDDAQ
101 VKLVETYAKT AGLWADALKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT
151 ADLAAKGLAK PYEEPSDGQM PDGSVIIAAI TSCTNTSNPR NVVAAALLAR
201 NANRLGLKRK PWVKSSFAPG SKVAEIYLKE AGLLPEMEKL GFGIVAFACT
251 TCNGMSGALD PKIQKEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP
301 PLVVAYALAG SIRFDIENDV LGVADGKEIR LKDIWPADEE IDAVVAEYVK
351 PQQFRDVYVP MFDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
401 RGMRPLAILP DNITTDHLSP SNAILAVSAA GEYLAKMGLP EEDFNSYATH
451 RGDHLTAQRA TFANPKLFNE MVKNEDGSVR QGSFARVEPE GETMRMWEAI
501 ETYMNRKQPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIV AEGFERIHRT
551 NLIGMGVLPL QFKPDTNRHT LQLDGTETYD VVGERTPRCD LTLVIHRKNG

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 099 shows 96.2% identity over a 639 aa overlap with a predicted ORF (ORF 099.ng) from N. gonorrhoeae:

m099/g099

	10	20	30	40	50	60
m099.pep	MLGRASMMRLPDI	/GVELNGKRQ	AGITATDIVL	ALTEFLEKER	೧೯೭೩ ಕನ್ನಡಚಿತ್ರಗಳ	ECADOL C
	1		1 1 1 1 1 1 1 1 1	11111111	1111111111	1111111
g099	MLGRASMMRLPDIV	GVELTGKRO	AGITATOTVI	יון ון ון ון ביוון מסשעם מסקם אם או		<u>                                      </u>
	10	20	30	40		
			30	40	50	60
	70	80	90			
m099.pep			90 DEODEDIS 155 -	100	110	120
	IGDRATISNMTPEF	IIIIIIII	DEGLIDATKT.	GRDDAQVKL	/ETYAKTAGL	WADALKT
g099	TGDPATTCNMTDT		!		'	:
<b>J</b>	IGDRATISNMTPEF	GATAAMFAL	DAQTIDYLKL	rgrddaqvkli	/ETYAKTAGL	WAGGLKT
	70	80	90	100	110	120
m000	130	140	150	160	170	180
m099.pep	AVYPRVLKFDLSSV	TRNMAGPSNI	PHARFATADLA	AKGLAKPYEE	PSDGOMPDG	TAATTUS
		1111111111		111111111	11111111	11111
g099	AVYPRVLKFDLSSV	TRNMAGPSNI	HARFATADLA	AKGIAKPYEE	TITLE TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P	7777777
	130	140	150	160	170	
				100	170	180
	190	200	210	220	222	
m099.pep	TSCTNTSNPRNVVA	AALLARNANE	שימות שם א. בב. די.	220	230	240
			LILLLLL	SSFAPGSKVA	EIYLKEAGLL	PEMEKL
g099	TSCTNTSNPRNNAZ	ן ן ן ן ן ן ן ן ן ן ן ן ן ן ן ן ן ן ן		1111111111	11111111	11111
	TSCTNTSNPRNVVA	200	TGTKKKPWAK	SSFAPGSKVA	GIYLKEAGLL	PEMEKL
	130	200	210	220	230	240
	250					
m099.pep		260	270	280	290	300
obb.pep	GFGIVAFACTTCNGM	ISGALDPKIO	KEIIDRDLYA'	TAVLSGNRNFI	OGRIHPYAKO	AFT.ACD
~0.00		1111111	:	1   1   1   1   1   1   1		
g099	GFGIVAFACTTCNGM	ISGALDPKIQ	QEI IDRDLYA	IAVLSGNRNET	COTHUCARO	11111
	250	260	270	280	290	
			•	200	290	300
	310	320	330	240		
			330	340	350	360

m099.pep	PLVVAYALA	GSIRFDIEND	VLGVADGKEII	RLKDIWPADEE	IDAVVAEYVKI	PQQFRDVYVP
		11111111		<u> </u>	111:11111	
g099	PLVVAYALA 31				EIDAIVAEYVKI	
	31	0 32	0 330	340	350	360
	37	0 38	0 390	0 400	410	420
m099.pep	MFDTGTAQK	<b>APSPLYDWRP</b>	MSTYIRRPPY	WEGALAGERTL	RGMRPLAILPI	ONITTOHLSP
		111111111		[		
g099					RGMRPPAILPI	
	37	0 38	0 390	0 400	410	420
	43	0 4.4	0 450	0 460	470	480
m099.pep			-		TFANPKLFNEN	
						1:1111111
g099	SNAILAGSA	AGEYLAKMGL	PEEDFNSYATI	HRGDHLTAORA	TFANPKLFNEN	
	43	0 44	0 450	0 460	470	480
	49					540
m099.pep		EGETMRMWEA   :		LIIIAGADYGQ	GSSRDWAAKGV	
g099		, , , , , , , , ,				:
9000	49					540
	55	0 56	0 570	580	590	600
m099.pep	AEGFERIHR	TNLIGMGVLP	LOFKPDTNRH	FLQLDGTETYD	VVGERTPRCDI	
		1		!		
g099	AEGFERIHR 55				VVGERTPRCGI	• -
	55	0 56	0 570	5 560	590	, 600
	61	0 62	0 630	640		
m099.pep	ETVEVPVTC	CLDTAEEVLV	YEAGGVLQRF <i>i</i>	AQDFLEGNAAX		
- "						
g099			YEAGGVLQRFA	_		
	61	0 62	0 630	640		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 355>: a099.seq

1	ATGCTGGGAC	GCGCGTCCAT	GATGCGCCTG	CCCGATATTG	TCGGCGTTGA
51	GCTGAACGGC	AAACGGAAGG	CGGGCATTAC	GGCGACGGAT	ATTGTGTTGG
101	CACTGACCGA	GTTTCTGCGC	AAAGAACGCG	TGGTCGGGGC	GTTTGTCGAA
151	TTCTTCGGCG	AGGGCGCGAG	AAGCCTGTCT	ATCGGCGACC	GCGCGACCAT
201	TTCCAACATG	ACGCCGGAGT	TCGGCGCGAC	TGCCGCGATG	TTCGCTATTG
251	ATGAGCAAAC	CATTGATTAT	TTGAAACTGA	CCGGACGCGA	CGACGCGCAG
301	GTGAAATTGG	TGGAAACCTA	CGCCAAAACC	GCAGGCTTGT	GGGCAGATGC
351	CTTGAAAACC	GCCGTTTATC	CGCGCGTTTT	GAAATTTGAT	TTGAGCAGCG
401	TAACGCGCAA	TATGGCAGGC	CCGAGCAACC	CGCACGCGCG	TTTTGCGACC
451	GCCGATTTGG	CCGGCAAAGG	CTTGGCTAAA	CCTTACGAAG	AGCCTTCAGA
501	CGGCCAAATG	CCTGACGGTG	CAGTGATTAT	TGCCGCGATT	ACTTCCTGTA
551	CCAATACTTC	CAATCCGCGC	AACGTTGTCG	CCGCCGCGCT	GTTGGCACGC
601	AATGCCAACC	GCCTCGGCTT	GCAACGCAAA	CCTTGGGTGA	AATCTTCGTT
651	TGCCCCGGGT	TCAAAAGTAG	CCGAAATCTA	TTTGAAAGAA	GCAGATCTGC
701	TGCCCGAAAT	GGAAAAACTC	GGCTTCGGTA	TCGTTGCCTT	CGCATGTACC
751	ACCTGTAACG	GCATGAGCGG	CGCGCTGGAT	CCGAAAATCC	AGAAAGAAAT
801	CATCGACCGC	GATTTGTACG	CCACCGCCGT	ATTGTCAGGC	AACCGCAACT
851	TTGACGGCCG	TATCCATCCG	TATGCGAAAC	AGGCTTTCCT	CGCTTCGCCT
901	CCGTTGGTCG	TTGCCTACGC	GCTGGCAGGC	AGCATCCGTT	TCGATATTGA
951	AAACGACGTA	CTCGGCGTTG	CAGACGGCAA	AGAAATCCGC	CTGAAAGACA
1001	TTTGGCCTAC	CGATGAAGAA	ATCGATGCCA	TCGTTGCCGA	ATATGTGAAA
1051	CCGCAGCAAT	TTCGCGACGT	TTATATCCCG	ATGTTCGACA	CCGGCACAGC
1101	GCAAAAAGCA	CCAAGCCCGC	TGTACGACTG	GCGTCCAATG	TCTACCTATA
1151	TCCGCCGCCC	ACCTTACTGG	GAAGGCGCAC	TGGCAGGGGA	ACGCACATTA
1201	AGCGGTATGC	GTCCGCTGGC	GATTTTGCCC	GACAACATCA	CCACCGACCA



a099					EYVKPOOFRD	
	310	320	330	340	350	360
	370	380	390	400	410	420
m099.pep	MFDTGTAQKAPSPLYD	WRPMSTYIRR	PPYWEGALAG	ERTLRGMRPL	AILPDNITTD:	HLSP
	_	1111111111		THE HILL		1111
a099	MFDTGTAQKAPSPLYD	WRPMSTYIRR	PPYWEGALAG	ERTLSGMRPL	AILPDNITTD:	HLSP
	370	380	390	400	410	420
	430	440	450	460	470	480
m099.pep	SNAILAVSAAGEYLAK	MGLPEEDFNS	YATHRGDHLT.	AQRATFANPK	LFNEMVKNED	GSVR
	111111 111111111	1111111111			111111:11	
a099	SNAILASSAAGEYLAK	MGLPEEDFNS	YATHRGDHLT.	AQRATFANPK	LFNEMVRNED	GSVR
	430	440	450	460	470	480
	490	500	510	520	530	540
m099.pep	QGSFARVEPEGETMRM					
	-       :					
a099	QGSLARVEPEGQTMRM		KQPLIIIAGA	DYGQGSSRDW.	<b>AAKG</b> VRLAGV	EAIV
	490	500	510	520	530	540
	550	F.C.O.	570	500		
	550	560	570	580	590	600
m099.pep	AEGFERIHRTNLIGMG					
a099	AECEED TUDENT TOMO				· · · · · · · · · · · ·	1111
a099	AEGFERIHRTNLIGMG 550	560	NKHTLQLDGT 570			
	550	360	570	580	590	600
	610	620	630	640		
m099.pep	ETVEVPVTCCLDTAEE	VLVYEAGGVL	ORFAODFLEG	XAAN		
• •						
a099	ETVEVPITCRLDTAEE	VLVYEAGGVL	ORFAODFLEG	NAAX		
	610	620	630	640		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 357>: g102.seq

1 Atatacaca Adactacata actatacaca against The Transfer of The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 357>:

1			gctcttcggc		
51			tgttccccaa		
101	acgggttaat	aggctcgctg	attgtgctgc	tgtacacctg	gtttccattc
151	tcctccggcg	ccctcatgat	tttggaagtc	aacacccata	acCCccgagg
201		-	tcAAagacct		
251	tcatcaacgg	catcgccgtc	gctttggTCc	tatacggctc	gacctacgcg
301	tacattttag	tcggcggtga	cctGACCGCC	AAAGGCAtcg	GCAgCGCAGT
351			CCGTCGGACA		
401	TCGCCTTTTG	CGTATGGGCA	TCCGCACGCT	TGGTCGACCG	CTTTACCGGC
451			ATTAACCTTT		
501	GGTTGCCGAT	GCCAAACCGT	CCGTCCTCTT	CGACACCCAA	GCCCCCGTCG
551	GCACCGGCTA	CTGGATTTAC	GCCGCCACCG	CCCTGCCCGT	CTGCCTCGCT
601	TCCTTCGGCT	TCCACGGCAA	CGTTTCCAGC	CTGCTCAAAT	ACTTTAAAGG
651	CGACGcgcCc	aaagtGgCGA	aATCcatctg	gGcaggtaca	ttggTTGCCt
701	tggtaattta	cgtccTCTgg	caaaccgcca	tCcaaagcaa	ccTGCcgcgc
751	aacgagttcg	cCCCcgtgat	tgccgccgag	aggcaactCT	CCGTCCTgaa
801	tgaaacccTG	tccaaattcg	cccaaaccgg	cgatatggat	aAaatattgt
851	ccctatttcc	ctacatggca	atcgccacct	cctttttagg	cgTAACctta
901	ggcctgtttg	acaacatcgc	cgacatcttc	aaatggaacg	acagtatgtc
951	cgggcggggc	accaaaaccg	tcgcgctgaa	cttcctgccg	CCCCtgattt
1001	cctggctgct	cctccccacc	ggcttcttta	ccgccattgg	tgcgtccggc
1051	ctggcggcaa	ccgtctggga	ccaagGcatc	atccccgcca	tgctgctcta
1101	cgtttccccc	caaaaaattG	gcGcaggcaa	gacttataAa	gtttaCGGCG
1151	gcttgtggct	gatgttagtc	ttccttttcg	gcatcgccaa	catcgccgca
1201	CAGGTATTGA	GccaAatgGa	ACtcgtCccc	GTATTTAAAG	GATAA

This corresponds to the amino acid sequence <SEQ ID 358; ORF 102.ng>: g102.pep

BNSDOCID: <WO___9957280A2_I_>

```
1 MSAKTPSLFG GAMIIAGKVI GAGMFPNPTA NLGDGLIGSL IVLLYTWFPF
      51
          SSGALMILEV NTHNPRGASF DTMVKDLLGR GWNIINGIAV ALVLYGSTYA
          YILVGGDLTA KGIGSAVGGK ISLTVGQLVF FGILAFCVWA SARLVDRFTG
     101
          VLIGGMVLTF IWATGGLVAD AKPSVLFDTQ APVGTGYWIY AATALPVCLA
     151
          SFGFHGNVSS LLKYFKGDAP KVAKSIWAGT LVALVIYVLW OTAIOSNLPR
     201
          NEFAPVIAAE RQLSVLNETL SKFAQTGDMD KILSLFPYMA IATSFLGVTL
     301 GLFDNIADIF KWNDSMSGRG TKTVALNFLP PLISWLLLPT GFFTAIGASG
     351 LAATVWDQGI IPAMLLYVSP QKIGAGKTYK VYGGLWLMLV FLFGIANIAA
401 QVLSQMELVP VFKG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 359>:
m102.seq
          ATGCCCAACA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
          CACGGTCATC GGCGCAGGCA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
          TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCTATG
```

101 151 CTTTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCATT ATCCGCACGG
201 CGCAAGTTTC GACACGATGG TCAAAGACCT GCTCGGACGC GGCTGGAACA TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT 301 TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC 351 AGGCGGCGAC GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATCC 401 TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG CTTCACCGGC 451 GTCCTTATCG GCGGCATGGT ATTGACCTTT ATTTGGGCGG CCGGCGGGCT

GATTGCCGAT GCCAAGCCGT CCGTCCTCTT CGATACCCAA GCCCCCGCCG 551 GCACAAACTA CTGGATTTAC GCCGCCACCG CCCTGCCCGT CTGCCTCGCT 601 TCCTTCGGCT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG CGACGCGCCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC 651 TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAAGGCAA CCTGCCGCGC 701

751 AACGAGTTCG CCCCCGTCAT CGCCGCCGAA GGGCAAGTCT CCGTCCTCAT 801 CGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT 851 CCCTGTTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC 901 GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCATCTC CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCC CTGATTTCCT 951

1001 GCCTGCTCTT CCCCACCGGC TTCGTTACCG CCATCGGCTA CGTCGGCCTG
1051 GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TCTACCGTTC 1101 GCGCAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCGTCAACAT CGCCGCACAG 1151

1201 GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA

#### This corresponds to the amino acid sequence <SEQ ID 360; ORF 102>: m102.pep..

1 MPNKTPSLFG GAMIIAGTVI GAGMLANPTA TSGVWFTGSL AVLLYTWFSM LSSGLMILEV NTHYPHGASF DTMVKDLLGR GWNIINGIAV AFVLYLLTYA 51 101 YIFVGGDLTA KGLGSAAGGD VSLTVGQLVF FGILAFCVWA SARLVDRFTG VLIGGMVLTF IWAAGGLIAD AKPSVLFDTQ APAGTNYWIY AATALPVCLA 151 SFGFHGNVSS LLKYFKGDAP KVAKSIWTGT LIALVIYVLW QTAIQGNLPR 201 NEFAPVIAAE GQVSVLIETL SKFAQTGNMD KILSLFSYMA IATSFLGVTL 301 GLFDYIADIF KWNDSISGRT KTAALTFLPP LISCLLFPTG FVTAIGYVGL 351 AATVWTGIIP AMLLYRSRKK FGAGKTYKVY GGLWLMVWVF LFGIVNIAAQ 401 VLSQMELVPV FKG*

### ml02/g102 86.0% identity in 415 aa overlap

			Overrap			
m102.pep	10 MPNKTPSLFGGAM	20 IIAGTVIGAG	30 MLANPTATSGV	40 /WFTGSLAVL	50 LYTWFSMLSS	60 GLMILEV
g102	MSAKTPSLFGGAM	1111 [1111	1: 1111: 1		:  : LYTWFPFSSG	:       ALMILEV
		20	30	40	50	60
m102.pep	70 NTHYPHGASFDTM	AKDITEBEMM.	90 TINGTAVA EVIT	100	110	120
-100		1   1   1   1   1   1   1	1   1   1   1   1   2   1	1 1111111	IIIIIII.	
g102	NTHNPRGASFDTM	/KDLLGRGWN: 80	IINGIAVALVL 90	YGSTYAYILV	GGDLTAKGI	SAVGGK
	,,	60	90	100	110	120
m102.pep	130 VSLTVGQLVFFGII	140 AFCVWASARI	150 VDRFTGVI.IC	160	170	180
g102				111111111	111.111111	1 1 1 1 1 1
5202	ISLTVGQLVFFGII 130	AFCVWASARI 140	VDRFTGVLIG 150	GMVLTFIWAT 160	GGLVADAKPS 170	
				100	170	180
m102.pep	190 APAGTNYWIYAATA	200 LPVCLASFGF	210 HGNVSSLLKY	220 FKGDAPKVAK	230 SIWTGTLIAL	240 VIYVLW

2.

7-1

g102	:  :         APVGTGYWIYAAT# 190		  GNVSSLLKY   210		:   :    SIWAGTLVAI   230	
	250	260	270	280	290	300
m102.pep	QTAIQGNLPRNEFA	PVIAAEGQVSV	LIETLSKFA	QTGNMDKILSI	FSYMAIATS	FLGVTL
		111111 1:11		111:111111		HHH
g102	QTAIQSNLPRNEFA	PVIAAERQLSV	LNETLSKFA	QTGDMDKILSI	FPYMAIATS	FLGVTL
	250	260	270	280	290	300
	310	320	330	340	350	
m102.pep	GLFDYIADIFKWNI					ישיר-כד
mroz.pep		1:111 111:1		11:111111		11 11
q102	GLFDNIADIFKWND	SMSGRGTKTVA	LNFLPPLIS	WLLLPTGFFT	IGASGLAAT	VWDQGI
<b>3</b>	310	320	330	340	350	360
	360 370	380	- 390	400	410	
m102.pep	IPAMLLYRSRKKFO	AGKTYKVYGGL	WLMVWVFLF	GIVNIAAQVLS	QMELVPVFK	GX
			111: 1111	11:1111111		11
g102	IPAMLLYVSPQKIG			-	-	.GX
	370	380	390	400	410	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 361>: a102.seq

```
1 ATGCCCACCA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
     CACGNTCATC GGCGCAGGTA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
  51
      TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCCATG
 101
 151 CTCTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCACT ACCCCCACGG
 201 CGCGANCTTC GACACCATGG TTAAAGACCT GCTCGGACGG AGCTGGAACA
 251 TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT
 301 TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC
      AGGCGGCAAT GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATTC
 351
 401 TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG ATTCACCAGC
 451 GTCCTCATCG GCGGCATGGT ATTAACCTTT ATTTGGGCAA CCGGCGGCCT
 501 GATTGCCGAT GCCAAACTGC CCGTCCTCTT CGACACCCAA GCCCCTACCG
 551 GCACCAACTA CTGGATTTAT GTCGCCACCG CCCTGCCCGT CTGCCTTGCG
     TCATTCGGTT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG
 651
     CGACGCGCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC
 701 TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAANGCAA CCTGCCGCGC
 751 AACGAGTTCG CCCCGTGAT TGCCGCCGAA GGGCAAGTCT CCGTCNTGAT
 801 TGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT
851 CCCTGTTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC
901 GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCGTGTC
 951 CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCT NTAATTTCCT
1001 GCCTGCTCTT CCCCACCGC TTTGTTACCG CCATCGGNTA CGTCGGCCTG
1051 GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TNTACCGTTC
1101
     GCGCAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT
     GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCNTCAACAT CGCCGCACAN
1151
     GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA
1201
1202
```

This corresponds to the amino acid sequence <SEQ ID 362; ORF 102.a>: a102.pep

```
1 MPTKTPSLFG GAMIIAGTXI GAGMLANPTA TSGVWFTGSL AVLLYTWFSM
51 LSSGLMILEV NTHYPHGAXF DTMVKDLLGR SWNIINGIAV AFVLYLLTYA
101 YIFVGGDLTA KGLGSAAGGN VSLTVGQLVF FGILAFCVWA SARLVDRFTS
151 VLIGGMVLTF IWATGGLIAD AKLPVLFDTQ APTGTNYWIY VATALPVCLA
201 SFGFHGNVSS LLKYFKGDAP KVAKSIWTGT LIALVIYVLW QTAIQXNLPR
251 NEFAPVIAAE GQVSVXIETL SKFAQTGNMD KILSLFSYMA IATSFLGVTL
301 GLFDYIADIF KWNDSVSGRT KTAALTFLPP XISCLLFPTG FVTAIGYVGL
351 AATVWTGIIP AMLLYRSRKK FGAGKTYKVY GGLWLMVWVF LFGIXNIAAX
401 VLSQMELVPV FKG*
```

m102 / a102 95.9% identity in 413 aa overlap

BNSDOCID: <WO___9957280A2_l_>

	10	20	30	40	50	. 60
m102.pep	MPNKTPSLFGGAM	IAGTVIGAG	MLANPTATSG	WFTGSLAVL	LYTHERMIC	יים דאודה
				111111111	131111111	
a102	MPTKTPSLFGGAMI	IAGTXIGAG	MLANPTATSG	WFTGSLAVI.	Ί.ΥΤ₩ΈςΜΙς Ο	CIMITER
	10	20	30	40	50	60
					50	60
	70	80	90	100	110	120
m102.pep	NTHYPHGASFDTMV	KDLLGRGWN	IINGIAVAFVI	ϓͳͺͳϓϪϒͳͺϜ·	ACCUL MARCE	CCTACCD
		111111111			1111111111	111111
a102	NTHYPHGAXFDTMV	KDLLGRSWN	IINGTAVAFVI	;ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ	!!!!!!!!!!!!	
	70	80	90	100	VGGDLTAKGL 110	
		- •	30	100	110	120
	130	140	150	160	170	100
m102.pep	VSLTVGQLVFFGIL		LVDRETGVLIG	LUU CMUI TETMA	1/0	180
	111111111111	111111111		IIIIIIIII.	AGGLIADAKP	
a102	VSLTVGQLVFFGIL	AFCVWASAR	T.VDPFTTCVTTC		CCTTDDD	11111
	130	140	150	160		
			130	100	170	180
	190	200	210	220	0.00	
m102.pep	APAGTNYWIYAATA		ZIU PUCNIJECT T PV	220	230	240
		TI (CHASEG)	LUGMASSTTVI	FKGDAPKVAK	SIWTGTLIA	LVIYVLW
a102	:      :    APTGTNYWIYVATA			1		111111
	APTGTNYWIYVATA: 190	200	210	FKGDAPKVAK		
	100	200	210	220	230	240
	250	260	270	000		
m102.pep			Z/U	280	290	300
	QTAIQGNLPRNE FAI	.vianegova	OVETETESKEN	DIGNMUKILS	LFSYMAIATS	SFLGVTL
a102	OTATOXNI PRNE EA		YVTEMI OVER	1		
	QTAIQXNLPRNEFAI 250	260	270			FLGVTL
	250	200	270	280	290	300
	310	320	330	240		
m102.pep	GLFDYIADIFKWNDS		JOU IMEI DDI TOCI	340	350	360
	111111111111111	. I I I I I I I I	TILPERTISCI	LIPTGFVTA	IGYVGLAATV	WTGIIP
a102		.                 •     •     •     •       •         •         •       •     •     •     •     •     •     •     •     •       •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •   •     •     •     •     •     •     •     •     •     •     •   •     •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •   •	TERM DOVE GOV		111111111	111111
	GLFDYIADIFKWNDS	320	TIFFEXISCI			WTGIIP
	310	320	330	340	350	360
	370	200	200			
m102.pep		380	390	400	410	
	AMLLYRSRKKFGAGK	TIVIIGELW	LMVWVFLFGIV	NIAAQVLSQI	MELVPVFKGX	:
a102	MII VBSBYVECT CV			1111 1111	1111111111	
370	AMLLYRSRKKFGAGK	TIKVIGGLW	LMVWVFLFGIX	NIAAXVLSQI	MELVPVFKGX	
370	380 390 4	400 41	U			

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 363>: g105.seq

q					
1	Atgtccgcag	aaaCATACAc	acAAAtcggc	tGGqtagqct	taggGcaaat
51	gegtetgeet	atgGTAACGC	GGCTCTTGGA	CGGCGGCATC	GAAGTCGGCG
101	TATACAACCG	CTCGCCCGAC	AAAACTGCCC	CCATCTCccc	CAAAGGAGCA
151	AAAGTTTACG	GCagcACCGC	CGAACTCGTC	CGCGCCTGCC	$CCCTC\Delta$
201	CCTGATGGTT	TCCGACTATG	CCGCCGTGTG	CGACATCCTG	AACGGAGTCC
251	GCGACGGATT	GGCCGGCAAA	ATCATCGTCA	ACATGAGCAC	CATCTCCCCG
301	ACCGAAAACC	TCGCCGTCAA	AGCACTTGTC	GAAGCCGCAG	GCGGACAGTT
351	TGCCGAAGCA	CCCGTTTCCG	GATCGGTCGG	ACCCGCCACC	AACGGCACAC
401	TGCTGATTCT	GTTCGGCGGC	AGCGAAGCCG	TTTTAAACCC	GCTGCAAAAA
451	ATATTTTCCC	TTGTCGGCAA	AAAAACCTTC	CATTTCGGCG	ATGTCGGCAA
501	AGGCTCGGGC	GCGAAACTCG	TCTTGAACTC	GCTCTTAGGC	ATTTTCCCCC
551	AAGCGTACAG	CGAAGCGATG	CTGATGGCGC	GGCAGTTCGG	CATCGATACC
601	GACACCATCG	TCGAAGCCAT	CGGCGGCTCG	GCAATGGACT	CCCCTATICTE
651	TCAAACAAAA	AAATCACTAT	GGGCAAACCG	TGAGTTCCCC	CCTCCCCTTTTC
701	CACTCAAACA	CGCTTCCAAA	GACCETAACC	TCGccatann	ACACCETTIC
751	CAGGCAGGCA	ACACCCTGCC	CGCCGTCGAA	ACCGTTGCTG	AGAGCI I GAA
801	CAAAGCAGTT	GAAGCCGGCT	ACGGCGAACA	GGACGTTTCC	CCAGCTACCG
851	TGAAATTGGC	AGAACACTGA		CONCULTICE	GGCGTTTACC

```
This corresponds to the amino acid sequence <SEQ ID 364; ORF 105.ng>:
     g105.pep
              MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
          51
              KVYGSTAELV RACPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
              TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
          101
          151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
          201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
              QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH
The following partial DNA sequence was identified in N. meningitidis <SEO ID 365>:
     m105.seq
              ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGaTAGGCT TAGGGCAAAT
          51
              GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGCATC GAAGTCGGCG
          101
              TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
         151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
          201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
          251 GCGACGGATT GGCCGGCAAM ATCATCGTCA ACATGAGCAC CATCTCCCCG
          301
              ACCGAAAaGC TCGCCGTCAA AGCACTTGTC GAAGCGCAGm GaCAGTTTGC
              CGAAGCACCC GTTTCCGGAT CGGTCGGGCC CGCCACCAAC GGCACGCTGC
          351
              TGATTCTGTT CGGCGGCAGC GAACCGLTTT AAACCCGCTG CAAAAAATAT
          401
          451
              TTTCCCTCGT CGGCAAAAAA ACCTTCCATT TCGGCGATGT CGGCAAAGGT
              TCGGGCGCGA AACTCGTCTT GAACTCGCTC TTGGGCATTT TCGGCGAaCG
         501
              TACAGCGAAS GmTgCTGATG GCGCGGCAGT TCGGCATCGA TACCGACACC
         551
         601 ATCGTCGAAG CCATCGGSGA CTCGGCAATG GACTCGCCCA TGTTCCAAAC
         651 CAAAAAATCC CTGTGGGCAA ACCGCGAATT CCCGmCCGmC TTCGCCCTCA
          701 AACACGCCTC CAAAGACCTC AACCTCGCCG TCAAAGAGCT TGAACAGGCA
          751 GGCAACACCC TGCCCGCCGT CGAAACCGTT GCTGCCAGCT ACCGCAAAGC
         801 AGTCGAAGCC GGCTACGGGA CACAGGACGT TTCCGGCGTT TACCTGAAAC
              TGGCAGAACA CTGA
         851
This corresponds to the amino acid sequence <SEQ ID 366; ORF 105>:
    m105.pep
              MSANEYAQIG WIGLGOMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
           1
              KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGX IIVNMSTISP
              TEKLAVKALV EAQROFAEAP VSGSVGPATN GTLLILFGGS EPFXTRCKKY
         151 FPSSAKKPSI SAMSAKVRAR NSSXTRSWAF SANVQRXXLM ARQFGIDTDT
             IVEAIGDSAM DSPMFQTKKS LWANREFPXX FALKHASKDL NLAVKELEQA
              GNTLPAVETV AASYRKAVEA GYGTQDVSGV YLKLAEH
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 105 shows 79.9% identity over a 289 as overlap with a predicted ORF (ORF 105.ng)
from N. gonorrhoeae:
    m105/g105
                         10
                                  20
                                            30
                                                      40
    g105.pep
                 MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
                 MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
     m105
                         10
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                         70
                                   80
                                            90
                                                     100
                                                              110
     g105.pep
                 RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGOFAEA
                    RDYPVIFLMVSDYAAVCDILNGVRDGLAGXIIVNMSTISPTEKLAVKALVEAQR-QFAEA
     m105
                         70
                                   80
                                            90
                                                     100
                                                              110
                        130
                                  140
                                           150
                                                     160
                                                              170
                                                                        180
     g105.pep
                 PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
                 :: ::
                                                                  1:
```

PVSGSVGPATNGTLLILFGGSEPFXTRCKKYFPSSAKKP-SISAMSAKVRARNSSXTRSW

160

170

150

BNSDOCID: <WO___9957280A2_I_>

m105

120

130

140

1 14:4

WO 99/57280



```
IFGDV-QRXMLMARQFGIDTDTIVEAIGDSAMDSPMFOTKKSLWANREFPXAFALKHASK
m105.pep
          IFGEAYSEAMLMARQFGIDTDTIVEAIGGSAMDSPMFQTKKSLWANREFPPAFALKHASK
a105
               190
                      200
                              210
                                      220
                                             230
         240
                250
                        260
                               270
                                       280
          DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
m105.pep
          DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
a105
                      260
                              270
                                     280
                                             290
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 369>: g105-1.seq

```
1 ATGTCCGCAG AAACATACAC ACAAATCGGC TGGGTAGGCT TAGGGCAAAT
     GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
 51
     TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGAGCA
101
151 AAAGTTTACG GCAGCACCGC CGAACTCGTC CGCGCCTGCC CCGTCATTTT
    CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
201
251
    GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
     TGCCGAAGCA CCCGTTTCCG GATCGGTCGG ACCCGCCACC AACGGCACAC
351
    TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
401
    ATATTTTCCC TTGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
451
    AGGCTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTAGGC ATTTTCGGCG
    AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
551
    GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCTATGTT
601
    TCAAACAAAA AAATCACTAT GGGCAAACCG TGAGTTCCCC CCTGCCTTTG
651
    CACTCAAACA CGCTTCCAAA GACCTTAACC TCGCCGTCAA AGAGCTTGAA
751
    CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
801 CAAAGCAGTT GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
851 TGAAATTGGC AGAACACTGA
```

## This corresponds to the amino acid sequence <SEQ ID 370; ORF 105-1.ng>: g105-1.pep

```
1 MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
51 KVYGSTAELV RACPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 371>: m105-1.seq

```
1 ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
 51 GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
    TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
101
151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
    GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
    TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
351
    TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
401
    ATATTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501
    AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG
    AAGCGTACAG CGAAnCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
551
601
    GACACCATCG TCGAAGCCAT CGGsGACTCG GCAATGGACT CGCCCATGTT
    CCAAACCAAA AAATCCCTGT GGGCAAACCG CGAATTCCCG CCCGCCTTCG
651
    CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA
    CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
751
801
    CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
851 TGAAACTGGC AGAACACTGA
```

This corresponds to the amino acid sequence <SEQ ID 372; ORF 105-1>: m105-1.pep

- 1 MSANEYAQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
- 51 KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP

```
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLOK
           IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEXM LMARQFGIDT
      151
      201 DTIVEAIGDS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
      251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
 m105-1/g105-1 96.9% identity in 289 aa overlap
                              20
                                                          50
 m105-1.pep
             MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
              m: Eineminamannamannamannam
 q105-1
             MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
                              20
                                       30
                                                40
                     70
                              80
                                       90
                                               100
                                                        110
                                                                  120
             \verb"RDYPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA"
 m105-1.pep
                RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
 q105-1
                                       90
                                               100
                    130
                             140
                                      150
                                               160
                                                        170
 m105-1.pep
             PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
             g105-1
             PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
                    130
                             140
                                      150
                                               160
                                                        170
                             200
                                      210
                                               220
 m105-1.pep
             {\tt IFGEAYSEXMLMARQFGIDTDTIVEAIGDSAMDSPMFQTKKSLWANREFPPAFALKHASK}
             g105-1
             IFGEAYSEAMLMARQFGIDTDTIVEAIGGSAMDSPMFQTKKSLWANREFPPAFALKHASK
                   190
                            200
                                     210
                                               220
                                                        230
                   250
                            260
                                      270
                                               280
 m105-1.pep
             DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
             g105-1
             DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
                            260
                                     270
                                               280
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 373>:
a105-1.seq
       1 ATGTCCGCAA ACGAATACAC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
         GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
      51
     101
         TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
     151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
         CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
     201
         GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
     251
     301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
     351
         TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
         TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
     401
         ATATTTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
     451
         AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG
     501
     551
         AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
         GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCCATGTT
     601
         CCAAACCAAA AAATCCCTGT GGGCAAACCG CGAATTCCCA CCCGCCTTCG
     651
         CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA
     701
         CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
     801
         CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
         TGAAATTGGC AGAACACTGA
This corresponds to the amino acid sequence <SEQ ID 374; ORF 105-1.a>:
a105-1.pep
         MSANEYTQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
         KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
     51
    151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
         DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
     201
     251
         QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
a105-1/m105-1
               99.0% identity in 289 aa overlap
                            20
                                     30
                                               40
                                                        50
           MSANEYTQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
a105-1.pep
```

m105-1	MSANEYAQIGWIGLO	GOMGLPMVT	RLLDGGIEVGV	YNRSPDKTAI	PISAKGAKVYO	SNTAELV
	10	20	30	40	50	60
	70	80	90	100	110	120
a105-1.pep	RDYPVIFLMVSDYA	AVCDILNGV	RDGLAGKIIVN	MSTISPTEN	LAVKALVEAA	GOFAEA
• •	1111111111111111		1111111111		[[[]]]	ПІПП
m105-1	RDYPVIFLMVSDYA	AVCDILNGV	RDGLAGKIIVN	MSTISPTEN	LAVKALVEAA	GOFAEA
	70	80	90	100	110	120
	130	140	150	160	170	180
a105-1.pep	PVSGSVGPATNGTLI	LILFGGSEA	VLNPLOKIFSL	VGKKTFHFGI	OVGKGSGAKLV	LNSLLG
	11111111111111		11111 <u>-</u>	11111111	[]]	
m105-1	PVSGSVGPATNGTLI	LILFGGSEA	VLNPLOKIFSL	VGKKTFHFGI	OVGKGSGAKL	LNSLLG
	130	140	150	160	170	180
	190	200	210	220	230	240
a105-1.pep	IFGEAYSEAMLMAR(	FGIDTDTI	VEAIGGSAMDS	PMFOTKKSL		
4100 1.Pop						
m105~1	I FGEAYSEXMLMARO					
11200 1	190	200	210	220	230	240
	250	260	270	280	290	
a105-1.pep	DLNLAVKELEQAGNT	LPAVETVA	ASYRKAVEAGY	GEQDVSGVYI	LKLAEHX	
• •	111111111111111111111111111111111111111	THEFT	111111111	[[]]	11111	
m105-1	DLNLAVKELEQAGNI	LPAVETVA	ASYRKAVEAGY	GEQDVSGVYI	LKLAEHX	
	250	260	270	280	290	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 375>:

```
g107.seq

1 ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGGTTG CCGATGCCAA
51 ACCGTCCGTC CTCTTCGACA CCCAAGCCCC CGTCGGCACC GGCTACTGGA
101 TTTACGCCGC CACCGCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC
151 GGCAACGTTT CCAGCCTGCT CAAATACTTT AAAGGCGACG cgcCcaaagt
201 GgCGAaATCc atctggGcag gtacattggT TGCCttggta atttacgtcc
251 TCTggcaaac cgccatCcaa agcaaccTGC cgcgcaacga gttcgcCCCc
301 gtgattgccg ccgagaggca actCTCCGTC CTgaatgaaa cccTGtccaa
351 attcgcccaa accggcgata tggataAaat attgtcccta tttccctaca
401 tggcaatcgc cacctcttt ttaggcgTAA Ccttaggcct gtttgacaac
451 atcgccggac atcttcaaat ggaacgacag tatgtccgg cggcaccaaa
501 accgtcgcgc tga
```

This corresponds to the amino acid sequence <SEQ ID 376; ORF 107.ng>:

- 1 MVLTFIWATG GLVADAKPSV LFDTQAPVGT GYWIYAATAL PVCLASFGFH
  51 GNVSSLLKYF KGDAPKVAKS IWAGTLVALV IYVLWQTAIQ SNLPRNEFAP
  - 101 VIAAERQLSV LNETLSKFAQ TGDMDKILSL FPYMAIATSF LGVTLGLFDN
  - 151 IAGHLQMERQ YVRAAPKPSR *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 377>: m107.seq

- 1 ATGGTATTGA CCTTTATTTG GGCGGCCGGC GGGCTGATTG CCGATGCCAA
- 51 GCCGTCCGTC CTCTTCGATA CCCAAGCCCC CGCCGGCACA AACTACTGGA
- 101 TTTACGCCGs CACCGCCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC
- 151 GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT
- 201 GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC
- 251 TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC
- 301 GTCATCGCCG CCGAAGGGCA AGTCTCCGTC CTCATCGAAA CCCTGTCCAA
- 351 ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA
- 401 TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC
- 451 ATCGCCCATC TTCAAATGGA ACGACAGCAT CTCCGGGCCG CACCAAAACC
- 501 GCCGCGCTGA

This corresponds to the amino acid sequence <SEQ ID 378; ORF 107>: m107.pep..

- 1 MVLTFIWAAG GLIADAKPSV LFDTQAPAGT NYWIYAXTAL PVCLASFGFH
- 51 GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP



101 VIAAEGQVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY

IAHLOMEROH LRAAPKPPR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 107 shows 89.4% identity over a 170 aa overlap with a predicted ORF (ORF 107.ng) from N. gonorrhoeae:

m107/g107

m107.pep	10 MVLTFIWAAGGLIA		:     :		11111111	
g107	MVLTFIWATGGLVA	DAKPSVLFD:	rqapvgtgywi	YAATALPVCI	ASFGFHGNV	SSLIKYF
	10	20	30	40	50	60
m107.pep	70 KGDAPKVAKSTWTG	80 TT.TALATVVV	90	100	110	120
* *	KGDAPKVAKSIWTG	11.1111111	:         :	RNEFAPVIAA		LSKFAQ
g107	KGDAPKVAKSIWAG	TLVALVIYVI	:   !   QTAIQSNLP	 RNEFAPVIAA	:      EROLSVLNET	LSKFAO
	70	80	90	100	110	120
m107.pep	130	140	150	160	170	
zo / .pcp	TGNMDKILSLFSYM	ALATSFLGVT	LGLFDYIA-H	LOMEROHLRA	APKPPR	
g107	TGDMDKILSLFPYM			::   LQMERQYVRA	 APKPSR	
	130	140	150	160	170	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 379>: a107.seq

```
ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGATTG CCGATGCCAA
    ACTGCCCGTC CTCTTCGACA CCCAAGCCCC TACCGGCACC AACTACTGGA
 51
     TTTATGTCGC CACCGCCCTG CCCGTCTGCC TTGCGTCATT CGGTTTCCAC
101
151
     GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT
     GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC
    TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC
251
    GTGATTGCCG CCGAAGGGCA AGTCTCCGTC CTGATTGAAA CCCTGTCCAA
301
    ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA
351
    TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC
401
451 ATCGCCGACA TCTTCAAATG GAACGACAGC GTGTCCGGCC GCACCAAAAC
501 CGCCGCGCTG ACCTTCCTGC CGCCTCTAAT TTCCTGCCTG CTCTTCCCCA
    CCGGCTTTGT TACCGCCATC GGCTACGTCG GCCTGGCGGC AACCGTCTGG
551
601
    ACAGGCATCA TCCCCGCCAT GCTGCTCTAC CGTTCGCGCA AAAAATTCGG
651
    CGCAGGCAAA ACCTATAAAG TTTACGGCGG CTTGTGGCTG ATGGTTTGGG
    TCTTCCTTTT CGGCATCGTC AACATCGCCG CACAGGTATT GAGCCAAATG
701
    GAACTCGTCC CCGTATTTAA AGGATAA
```

This corresponds to the amino acid sequence <SEQ ID 380; ORF 107.a>: a107.pep

```
MVLTFIWATG GLIADAKLPV LFDTQAPTGT NYWIYVATAL PVCLASFGFH
    GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP
 51
    VIAAEGQVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY
     IADIFKWNDS VSGRTKTAAL TFLPPLISCL LFPTGFVTAI GYVGLAATVW
151
201
     TGIIPAMLLY RSRKKFGAGK TYKVYGGLWL MVWVFLFGIV NIAAQVLSQM
251
```

ELVPVFKG*

m107/a107 94.8% identity in 154 aa overlap

```
20
                             30
         MVLTFIWAAGGLIADAKPSVLFDTQAPAGTNYWIYAXTALPVCLASFGFHGNVSSLLKYF
m107.pep
         MVLTFIWATGGLIADAKLPVLFDTQAPTGTNYWIYVATALPVCLASFGFHGNVSSLLKYF
a107
                      20
                             30
                                     40
```

and the same of the same

	70	80	90	100	110	120
m107.pep	KGDAPKVAKSIWTG	TLIALVIYVL	WQTAIQGNLP	RNEFAPVIA	AEGQVSVLIE1	LSKFAQ
		1111111111	111111111	111111111		11111
a107	KGDAPKVAKSIWTG	TLIALVIYVL	WQTAIQGNLP	RNEFAPVIA	AEGQVSVLIE1	LSKFAQ
	70	80	90	100	110	120
	130	140	150	160	170	
m107.pep	TGNMDKILSLFSYM	AIATSFLGVT	LGLFDYIAHL	QMERQHLRA <i>I</i>	APKPPRX	
	11111111111	111111111	11111111 :			
a107	TGNMDKILSLFSYM	AIATSFLGVT	LGLFDYIADI	FKWNDSVSGI	RTKTAALTFLE	PPLISCL
	130	140	150	160	170	180
	* DD#077777 * 0.010		DBW TWD 6DW			
a107	LFPTGFVTAIGYVG					
	190	200	210	220	230	240

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 381>: g108.seq

```
1 ATGttgccgg gCTTCAACCG GATATTCAaa cggTTTGCTC CAACACTCGG
```

- 51 AACGGCGCAT AAAACGCCGC CCTTCGCGTT ATCCCGAACG GGGCGGCTAA
- 101 TCAGATCCTA TCGCCATAAA AGGCGGGGTT TCAACCGAAA AGGAATTGAG
- 151 ATGAATAAAA CCTTGTCTAT TTTGCCGGCG GCAATCTTAC TCGGCGGGTG
- 201 CGCCGCCGGC GGCAACACAT TCGGCAGCTT AGACGGCGGC ACGGGTATGG
- 251 GTGGCAGCAT CGTCAAAATG ACGGTAGAAA GCCAATGCCG TGCGGAATTG
  301 GACAGGCGCA GCGAATGGCG TTTGACCGCG CTGGCGATGA GTGCCGAAAA
- 351 ACAGGCGGAA TGGGAAAACA AGATTTGCGG CTGCGCTACC GAAGAAGCAC
- 401 CTAACCAGCT GACCGGCAAC GATGTGATGC AGATGCTGAa ccagtccacG
- 451 CGCaatcagg cacTtgccgc CCtgaccgTC AAAacggtTT CcgcctgcTT
- 501 CAaacgcctg tACCGCTAa

This corresponds to the amino acid sequence <SEQ ID 382; ORF 108.ng>: 9108.pep

- 1 MLPGFNRIFK RFAPTLGTAH KTPPFALSRT GRLIRSYRHK RRGFNRKGIE
- 51 MNKTLSILPA AILLGGCAAG GNTFGSLDGG TGMGGSIVKM TVESQCRAEL
- 101 DRRSEWRLTA LAMSAEKQAE WENKICGCAT EEAPNQLTGN DVMQMLNQST
- 151 RNQALAALTV KTVSACFKRL YR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 383>: m108.seq

- 1 ATGTTGCCGG GCTTCAACCG GATATTCAAA CGGTTTGTTC CAACACTCGG
- 51 AACGGCGCAT AAAACGCCGC CCTTCGCGTT ATCCCGAACG GGGCGGCTAA
- 101 TCAGATTCTA TCGCCATAAA AGGCGGGGTT TCAACCGAAA AGGAATTGAG
- 151 ATGAATAAAA CCTTGTCTAT TTTGCCGGTG GCAATCTTAC TCGGCGGCTG
- 201 CGCCGCCGGA GGCGGTAACA CATTCGGCAG CTTAGACGGT GGCACAGGCA
- 251 TGGGCGCAG CATCGTCAAA ATGGCGGTTG GGAGCCAATG CCGTGCGGAA
- 301 TTGGACAAAC GCAGCGAATG GCGTTTGACC GCGCTGGCGA TGAGTGCCGA
- 351 AAAACAGGCG GAGTGGGAAA ACAAGATTTG CGCTTGCGTC GCCCAAGAAG
- 401 CACCCGAACG GATGACCGGC AACGATGTGA TGCAGATGCT GGCTCCGTCC
- 451 ACGCGCAATC AGGCACTTGC CGCCCTGACC GCCAAAACGG TTTCCGCCTG
- 501 CTTCAAACAC CTGTACCGCT AA

This corresponds to the amino acid sequence <SEQ ID 384; ORF 108>: m108.pep

- 1 MLPGFNRIFK RFVPTLGTAH KTPPFALSRT GRLIRFYRHK RRGFNRKGIE
- 51 MNKTLSILPV AILLGGCAAG GGNTFGSLDG GTGMGGSIVK MAVGSQCRAE
- 101 LDKRSEWRLT ALAMSAEKQA EWENKICACV AQEAPERMTG NDVMQMLAPS
- 151 TRNQALAALT AKTVSACFKH LYR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 108 shows 89.6% identity over a 173 as overlap with a predicted ORF (ORF 108.ng) from N. gonorrhoeae:

m108/g108



The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 387>:

```
g109.seq
         ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC
      1
      51 AGCCGGTATT GATCGTAGGC GTATGCTTAC CGCTTTTGGA AGCGGGCATG
     101 GAAATGACGC GCAAAGGCAA AACCACCCAA TCCGCCGCCA TCGTGGTGTT
     151 CTCTTCCGTC TGGTCAATCC GGTTTTCGGC TGGGCGTTGA CGATGCTGTT
     201 GGATAATTTG GGCTTAATCG GCTGCAAAGA ACGCAGCGCG CAATTAGGTT
     251 TTGTCGGACG AGTATTGATA CCCGCAGTAG GTTTCTTAAT CTTGTGTGTG
     301 GCGATGGGTG CGGTCGGGAT GCTGCCCGGT ATCCCTCCGT TTTTGGAGCA
     351 GTTCAAATCT TTGGGCTAG
This corresponds to the amino acid sequence <SEQ ID 388; ORF 109.ng>:
g109.pep
          MYYRRVVGLS DGLGDLAAGI DRRRMLTAFG SGHGNDAQRQ NHPIRRHRGV
       1
         LFRLVNPVFG WALTMLLDNL GLIGCKERSA QLGFVGRVLI PAVGFLILCV
      51
          AMGAVGMLPG IPPFLEQFKS LG
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 389>:
m109.seq
          ATGTATTATC GCCGGGTTAT GGGGCTATCC GATGGACTTG GCGATTTGGC
       1
      51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG
     101 GAAGCGGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC
     151 CATCGTGGTG TTCTCTTCCG CCTTGTCAAT CCGGTTTTCG GCTGGGCGTT
     201 GACGATGCTG TTGGATAATT TGGGCTTAAT CGGCTGCAAA GAGCGCAGTG
     251 CGCAATTAGG TTTCGCCGGA CGCGTGTTGA TACCCGCAGT AGGTTTCTTG
     301 ATCTTGTGTG TGGCGATGGG TGCGGTCGGG ATGCTGCCCG GTATCCCGCC
     351 GTTTTTGGAA CACTTCAAAT CTTTGGGCTA G
This corresponds to the amino acid sequence <SEQ ID 4; ORF 109>:
m109.pep
          MYYRRVMGLS DGLGDLAAGI ERSLGRRRIL TAFGSGHGND AQRQNHPIRR
      51 HRGVLFRLVN PVFGWALTML LDNLGLIGCK ERSAQLGFAG RVLIPAVGFL
     101 ILCVAMGAVG MLPGIPPFLE HFKSLG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 109 shows 92.9% identity over a 126 aa overlap with a predicted ORF (ORF 109.ng)
from N. gonorrhoeae:
m109/g109
                               20
                                         3.0
                                                   40
             MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
m109.pep
             MYYRRVVGLSDGLGDLAAGIDR----RRMLTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
q109
                               20
                                             30
                                                       40
                                                  100
                                         90
                                                            110
                     70
                               80
             {\tt PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE}
m109.pep
             PVFGWALTMLLDNLGLIGCKERSAQLGFVGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
g109
                         70
                                   80
                                             90
                                                      100
               60
m109.pep
             HFKSLGX
             : | | | | |
             OFKSLGX
g109
              120
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 391>:
a109.seq
           1 ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC
51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG
          101 GAAGCGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC
```

151 CACCGTGGTG TTCTCTTCCG CTTGGTCAAT CCGGTTTTCG GCTGGGCGTT

BNSDOCID: <WO___9957280A2_I_>

201	GACGATGCTG	TTGGATAATT	TGGGCTTAAT	CGGCTGCAAA	GAGCGCACCC
251	CGCAATTAGG	TTTCACCGGA	CGCGTATTGA	TACCCGTAGT	ACCUMUMCUMC
301	ATCTTGTGTG	TGGCGATGGG	TGCGGTCGGG	ATGCTGCCCC	CENTCCCCCC
351	GTTTTTGGAG	CACTTCAAAT	CTTTGGGCTA	G	GIMICCCGCC

### This corresponds to the amino acid sequence <SEQ ID 392; ORF 109>: a109.pep

- MYYRRVVGLS DGLGDLAAGI ERSLGRRRIL TAFGSGHGND AQRQNHPIRR
- HRGVLFRLVN PVFGWALTML LDNLGLIGCK ERSAQLGFTG RVLIPVVGFL
- ILCVAMGAVG MLPGIPPFLE HFKSLG*

#### 97.6% identity in 126 aa overlap m109/a109

```
20
                                        40
                                                50
          MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
m109.pep
          MYYRRVVGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
a109
                10
                        20
                                30
                                        40
                                               50
                70
                        80
                                90
                                       100
                                               110
                                                       120
          PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
m109.pep
          PVFGWALTMLLDNLGLIGCKERSAQLGFTGRVLIPVVGFLILCVAMGAVGMLPGIPPFLE
a109
                70
                        80
                                90
                                       100
                                              110
m109.pep
          HFKSLGX
          111111
a109
          HFKSLGX
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 393>: glll.seq

```
ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
    CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGaacaaacC GCGCAaaccg
 51
101 TTACCCTGCA AGGCGAAACG ATGGGTACGA CCLATACCGT CAAATACCTT
151 TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC AAAAGCGCAT
201 TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGtccaCC TACCAGACCG
251 ATTCCGAAAT CAGCCGGTTt atacagacan atgctggaga gctcttcgcg
301 tntcatgcag nttctataac tgattccgcc gaagactgtc tgcctaatac
351 gcctatctca tcggcgctct ga
```

### This corresponds to the amino acid sequence <SEQ ID 394; ORF 111.ng>: glll.pep

- MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL SNNRDKLPSP AKIQKRIDDA LKEVNROMST YQTDSEISRF IQTAGELFAH
- 101 ASITDSAEDC LPNTPISSAL *

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 395>: mlll.seq

1	ATGCCGTCTG	AAACACGCCT	GCCGAACTTT	ATCCCCCTCT	TC MTM TTTTTC
51	CCTGGGTTTC	ATCTTCCTGA	ACGCCTGTTC	CCAACAAACC	TGATATITGC
101	TTACCCTGCA	AGGCGAAACG	ATGGGCACGA	GGAACAAACC	GCGCAAACCG
151	TCAAATAATC	CCCACAAACE	AIGGGCACGA	CCTATAYCGT	CAAATACCTT
201	CCAMORCOCC	GGGACAAACT	CCCCTCACCT	GCCGAAATAC	AWAAACGCAT
	CGATGACGCG	CTTAAAGAAk	TCAACCGGyA	GATGTCCACC	TATCAGCCCG
251	ACTUUGAAAT	CAGCCGGTTC	AACCAACACA	CAGCCGGCAA	CCCCCTTGGGG
301	ATTTCAAGCG	ACTTCGCACA	CGTTACTGCC	GAAGCCGTCC	CCCTCAAGGG
351	CCTGACACAC	GGCGCGCTGG	ACGTAACCGT	CGGCCCCTTC	CECT GAACCG
401	GGGGATTCGG	CCCCGACAAA	TCCGTTACCC	COGCCCCTIG	GTCAACCTTT
451	ATCANACAGG	CCCCATCTTA	TOCOTIACCC	GIGAACCGTC	GCCGGAACAA
501	ACCCAAACAM	COGCATCITA	TACGGGCATA	GACAAAATCA	TTTTGAAACA
551	AGGCAAAGAT	TACGCTTCCT	TGAGCAAAAC	CCACCCCAAG	GCCTATTTGG
221	ATTTATCTTC	GATTGCCAAA	GGCTTCGGCG	TTGATAAAGT	TGCGGGCGAA
				·	

```
601
     CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
      GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCGTGGCGC ATCGGTATCG
 651
      AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
 701
     AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
 751
 801
     TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
     CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
 851
     ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
 901
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051
     CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 396; ORF 111>:

```
m111.pep
```

- 1 MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYXVKYL
  51 SNNRDKLPSP AEIXKRIDDA LKEXNRXMST YQPDSEISRF NQHTAGKPLR
  101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
  151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
  201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
  251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
  301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
  351 R*
- ORF 111 shows 88.7% identity over a 97 aa overlap with a predicted ORF (ORF 111.ng) from N. gonorrhoeae:

```
m111.pep/g111.pep
```

```
20
                                   30
                                            40
           MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYXVKYLSNNRDKLPSP
mlll.pep
           MPSETRLPNLIRALIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP
g111
                  10
                          20
                                   30
                                           4.0
                                                    50
                                                             60
                  70
                          80
                                   90
                                           100
                                                   110
                                                            120
m111.pep
           AEIXKRIDDALKEXNRXMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVRLNRLTH
           AKIQKRIDDALKEVNRQMSTYQTDSEISRFIQTXAGELFAXHAXSITDSAEDCLPNTPIS
g111
                                           100
                  70
                          80
                                   90
                                                   110
                                                            120
                 130
                          140
                                  150
                                           160
                                                   170
                                                            180
m111.pep
           GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK
q111
           SALX
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 397>: a111.seq

```
ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCACCT TGATATTTGC
51
    CCTGAGTTTT ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
    TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
101
151
    TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAGCGCAT
201
     CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
    ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
251
301
    ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC ACCTGAACCG
351
     CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
401
     GGGGATTCGG CCCCGACAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
451
     ATCAAACAAG CAGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
501
     AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
    ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
551
601
    CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651
     GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCTTGGCGC ATCGGCATCG
    AACAGCCCAA CATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
701
751
    AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
```

801 851 901 951 1001 1051 This correspond	TAAAAGCGGC AAACGCCCATCAGCCA CAACCCACCGGACG GCTTGCCCTAAAAGCTG GCAGACATAAAGGCGG CTACCCCCCCTAA	regee tee recae agg segeg aaa seace gee	ATCAGCG TGG ATTATTC GTA AACTCGC TGT ATGTCTT CCG	STCGCAGA CA STTGGGCG AA STTTCCTG AA SAATTTGA AA	AGTGCGATG AACCGAAGC ITGTCAGGG AAACTGCTC	
alll.pep	s to the amino acid	sequence	<2EQ ID 39	98; ORF 11	1.a>:	
1	MDCFTDIDNE IDELI	77.7.000				
51	MPSETRLPNF IRTLIF SNNRDKLPSP AEIQKR	ALSE IFLE	NACSEQT AQT	VTLQGET MO	STTYTVKYL	
101	ISSDFAHVTA EAVHLN	RITH GALL	MANGEL ANT.	DSEISRF NO	)HTAGKPLR	
151	INDAASYTGI DKIILK	OGKD YAST	SKTHPK AVI	DICCIAV CO	201101212	
201	TENIGIONAL ARIGGE	LHGK GKNA	RGEPWR TCT	FODMITUO CC	TATE TO THE	
251	MMK2PAL2CD AKTEHA	DKSG KRLS	HTTNPN NKR	DIGUNIA CT	CITTIN DONAL	
301	TADGLSTGLF VLGETE	ALKL AERE	KLAVFL IVR	DKGGYRT AM	SSEFEKLL	
351	R*					
<b>ml11/a111</b> 97	.7% identity in	351 aa o	verlap			
	10	20	30	40	50	60
mlll.pep	MPSETRLPNFIRVL	IFALGFIFL	NACSEQTAQT\	TLQGETMGT	TYXVKYLSNN	<b></b>
al11		1 1 1 1 2 1 1 1 1				
	MPSETRLPNFIRTL	20	NACSEQTAQTV 30	TLQGETMGT	TYTVKYLSNN	RDKLPSP
	10	20	30	40	50	60
	70	80	90	100	110	100
m111.pep	AEIXKRIDDALKEXN	NRXMSTYQPI	DSETSRENOHT	ACKDIDICO	DEN 111100 2 11 2 1 2 1 1	120
_ 1 7 7	1 1 2 1 4 5 6 1 1 1 1 1 1				1 1 1 1 1 1 1 2 2 2 2	
a111	TIDE STATE OF AL	ALCHOI I CEI	<b>DOET SKENÖH</b> L	AGKPLRISSI	OFAHVTAEAVI	HLNRLTH
	70	80	90	100	110	120
	130	140	150	1.60		
m111.pep	GALDVTVGPLVNLWG	FGPDKSVTF	EPSPEOTKOD	160	170	180
			111111111			
a111	CLIDALAGEDAMA	FGPDV2ALE	REPSPEQIKQA	ASYTGIDKII	LKOGKDYAST	SKTHDK
	130	140	150	160	170	180
	190	200		-		
mlll.pep		200 Kunceterv	210	220	230	240
* -1	AYLDLSSIAKGFGVD	IIIIIIIII	GIÓNITAETC	SELHGKGKNA	RGEPWRIGIE	QPNIVQ
a111	AYLDLSSIAKGFGVD	KVAGELEKY	GTONYLVETC			11111
	190	200	210	220	RGEPWRIGIE 230	
				-20	230	240
m111 mam	250	260	270	280	290	300
m111.pep	GGNTQIIVPLNNRSL	ATSGDYRIF	HVDKNGKRLSI	HIINPNNKRP	ISHNLASISV	***
a111			111101111			
	GGNTQIIVPLNNRSL	260	HVDKSGKRLSF 270	11TN BNNKKB	ISHNLASISV	
			210	280	290	300
111	310	320	330	340	350	
m111.pep	TADGLSTGLFVLGETI	EALKLAERE	KLAVFLIVRDK	GGYRTAMSSI	FFFKIIDV	
	11111111111111		11111111111	111111111	LILLELLE	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 399>: g111-1.seq

320

TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX

330

340

- 1 ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
  51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAaCCG
  101 TTACCCTGCA AGGCGAAACG ATGGGTACGA CCTATACCGT CAAATACCTT

310

- TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC AAAAGCGCAT
  TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TACCAGACCG

a111

and a second control of the

```
251 ATTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
    ATTTCAAGCG ATTTCGCACA CGTTACCGCC GAAGCCGTCC GCCTGAACCG
301
351
     CCTGACTCAC GGCGCACTGG ACGTAACCGT CGGCCCTTTG GTCAACCTTT
401
     GGGGGTTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
     ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGCAACA
451
     AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCAAA GCCTATTTGG
ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
501
551
     CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCggcGAGTT
     GCACGGCAAA GGCAAAAATG CGCACGGCGA ACCGTGGCGC ATCGGTATAG
651
     AGCAACCCAA TATcatccaa ggcggcaata cgcAGattat cgtcccgctg
701
751
     aaCaaccgtt cgcttgccac ttccggcgAT taccgtaTTT tccacgtcgA
     TAAAAACGGC Aaacgccttt cccacATCAT CAATCCCAAC AACAAACGAC
801
     CCATCAGCCA CAACCTCGCC tcCATCAGCG TGGTCTCAGA CAGTGCAATG
851
901
     ACGGCGGACG GTTTATCCAC AGGATTATTT GTTTTAGGCG AAACCGAAGC
951
     CTTAAGGCTG GCAGAACAAG AAAAACTCGC TGTTTTCCTA ATTGTCCGGG
     ATAAGGACGG CTACCGCACC GCCATGTCTT CCGAATTTGC CAAGCTGCTC
```

### This corresponds to the amino acid sequence <SEQ ID 400; ORF 111-1.ng>: g111-1.pep

```
1 MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AKIQKRIDDA LKEVNRQMST YQTDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILQQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNAHGEPWR IGIEQPNIIQ GGNTQIIVPL
251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVSDSAM
301 TADGLSTGLF VLGETEALRL AEQEKLAVFL IVRDKDGYRT AMSSEFAKLL
351 R*
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 401>: m111-1.seq

```
ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT TGATATTTGC
     CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
 51
101
     TTACCCTGCA AGGCGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
     TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAACGCAT
151
     CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
     ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
251
     ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC GCCTGAACCG
301
     CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
351
401
     GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
     ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
451
     AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
501
551
     ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
     CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
601
651
     GCACGGCAAA GGCAAAAACG CGCGGGGGA ACCGTGGCGC ATCGGTATCG
701
     AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
     AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
751
     TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
801
     CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901
     ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
     CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
951
     ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1001
1051
     CGCTAA
```

### This corresponds to the amino acid sequence <SEQ ID 402; ORF 111-1>: m111-1.pep

```
1 MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
```

ml11-1/g111-1 96.6% identity in 351 aa overlap

BNSDOCID: <WO___9957280A2_j_>

	10	20	30	40	50	60	
	70		90	100	110	120	
m111-1.pep		LKEVNRQMSTYQI					
g111-1		LKEVNRQMSTYQ					
	130		150	160	170	180	
m111-1.pep		VNLWGFGPDKSV					
g111-1		VNLWGFGPDKSV					
	190		210	220	230	240	
m111-1.pep	11111111111	GFGVDKVAGELEI		1111111111	:::::::::::::::::::::::::::::::::::::::	1111:1	
g111-1	AYLDLSSIAK 190	GFGVDKVAGELER 200	KYGIQNYLVEIG 210	GELHGKGKNA 220	AHGEPWRIGIE 230	QPNIIQ 240	
	250		270	280	290	300	
m111-1.pep	-	NNRSLATSGDYRI					
g111-1	GGNTQIIVPL	NNRSLATSGDYR	FHVDKNGKRLS	HIINPNNKR	PISHNLASISV	VSDSAM	
	250	260	270	280	290	300	
m111-1.pep	310 TADGLSTGLF	320 VLGETEALKLAEI	330 REKLAVFLIVRE	340 KGGYRTAMSS	350 SEFEKLLRX		
	1111111111	:   :  VLGETEALRLAE(	:111111111111	1 11111111	H 11111		
g111-1	310		330	340	350	•	
hypothetical lipoprotein, Score = 34	JL_HAEIN HY protein HI putative ( 9 bits (885	POTHETICAL LE 0172 - Haemon Haemonhilus : ), Expect = 2 53%), Positiv	ohilus influ influenzae F 2e-95	enzae (sti kd] Length	rain Rd KW2 = 346	1074292 pir  C6 0) >gi 1573128 8 (1%)	4144 (U32702)
		TLQGETMGTTYXV			DDALKEXNRXM LK+ N M		
		SLSGKTMGTTYH					
		-AGKPLRISSDF					
	DSE+SRFNQ+1 DSELSRFNQN1	QVNTPIEISADE	A V AEA+RLN+ AKVLAEAIRLNF				
Query: 142 V		AASYTGIDKIIL					
Sbjct: 135 P	+ +P+PEQ+ EKQPTPEQLAE	++ GIDKI L RQAWVGIDKITLI	K+ A+LSK OTNKEKATLSK		SIAKGFGVD+V SIAKGFGVD <u>O</u> V		
Query: 202 E	KYGIQNYLVEI	GGELHGKGKNAR	GEPWRIGIEQPN	IVQGGNTQI		SGDY 261	
		GGE+ KGKN ( GGEIRAKGKNIE					
		SHIINPNNKRPI					
		+H I+P PI AHEIDPKTGYPI					
		DKGGYRTAMSSE					
		G+T SS INTONGFVTKSSSAI					
The followi	ng partial I	NA sequenc	ce was iden	tified in N	meningiti	idis <seq 4<="" id="" td=""><td>103&gt;:</td></seq>	103>:

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 403>: all1-1.seq

1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCACCT TGATATTTGC
51 CCTGAGTTTT ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
101 TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAGCGCAT
201 CGATGACGG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
251 ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC ACCTGAACCG

351	CCTGACACAC	GGCGCGCTGG	ACGTAACCGT	CGGCCCCTTG	GTCAACCTTT
401	GGGGATTCGG	CCCCGACAAA	TCCGTTACCC	GTGAACCGTC	GCCGGAACAA
451	ATCAAACAAG	CAGCATCTTA	TACGGGCATA	GACAAAATCA	TTTTGAAACA
501	AGGCAAAGAT	TACGCTTCCT	TGAGCAAAAC	CCACCCCAAG	GCCTATTTGG
551	ATTTATCTTC	GATTGCCAAA	GGCTTCGGCG	TTGATAAAGT	TGCGGGCGAA
601	CTGGAAAAAT	ACGGCATTCA	<b>AAATTATCTG</b>	GTCGAAATCG	GCGGCGAGTT
651	GCACGGCAAA	GGCAAAAACG	CGCGCGGCGA	ACCTTGGCGC	ATCGGCATCG
701	AACAGCCCAA	CATCGTCCAA	GGCGGCAATA	CGCAGATTAT	CGTCCCGCTG
751	AACAACCGTT	CGCTTGCCAC	TTCCGGCGAT	TACCGTATTT	TCCACGTCGA
801	TAAAAGCGGC	AAACGCCTCT	CCCATATCAT	TAATCCGAAC	AACAAACGAC
851	CCATCAGCCA	CAACCTCGCC	TCCATCAGCG	TGGTCGCAGA	CAGTGCGATG
901	ACGGCGGACG	GCTTGTCCAC	AGGATTATTC	GTATTGGGCG	AAACCGAAGC
951	CTTAAAGCTG	GCAGAGCGCG	AAAAACTCGC	TGTTTTCCTG	ATTGTCAGGG
1001	ATAAAGGCGG	CTACCGCACC	GCCATGTCTT	CCGAATTTGA	AAAACTGCTC
1051	CGCTAA				

#### This corresponds to the amino acid sequence <SEQ ID 404; ORF 111-1.a>: a111-1.pep

- 1 MPSETRLPNF IRTLIFALSF IF**LNAC**SEQT AQTVTLQGET MGTTYTVKYL 51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
- 51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR 101 ISSDFAHVTA EAVHLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
- 151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE 201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
- 251 NNRSLATSGD YRIFHVDKSG KRLSHIINPN NKRPISHNLA SISVVADSAM
- 301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
- 351 R*

#### al11-1/ml11-1 98.9% identity in 351 aa overlap

	10	20	30	40	50	60
alll-1.pep	MPSETRLPNFIRTLI			-	-	
m111-1	MPSETRLPNFIRVLI					
	10	20	30	40	50	60
	70	80	90	100	110	120
0111-1 mon	AEIQKRIDDALKEVN					
a111-1.pep	AEIQKKIDDALKEVN					
m111-1	AEIOKRIDDALKEVN					
MIII-I	70	80 80	90	100	110	120
	70	80	30	100	110	120
	130	140	150	160	170	180
a111-1.pep	GALDVTVGPLVNLWG					
ulli lipop						
m111-1	GALDVTVGPLVNLWG			<b></b>		
	130	140	150	160	170	180
	190	200	210	220	230	240
all1-1.pep	AYLDLSSIAKGFGVD	KVAGELEKY	GIQNYLVEIG	GELHGKGKN <i>A</i>	ARGEPWRIGIE	OPNIVO
• -	1111111111111	111111111	111111111	111111111		ÎHHÎ
m111-1	AYLDLSSIAKGFGVD	KVAGELEKY	GIQNYLVEIG	GELHGKGKN/	ARGEPWRIGIE	OPNIVO
	190	200	210	220	230	240
	250	260	270	280	290	300
all1-1.pep	GGNTQIIVPLNNRSL	ATSGDYRIE	HVDKSGKRLSI	HIINPNNKRE	PISHNLASISV	VADSAM
		111111111	1111:1111		11111111111	111111
m111-1	GGNTQIIVPLNNRSL		THVDKNGKRLSI	HIINPNNKRE	PISHNLASISV	VADSAM
	250	260	270	280	290	300
	310	320	330	340	350	
a111-1.pep	TADGLSTGLFVLGET					
				<i>.</i>		
m111-1	TADGLSTGLFVLGET					
	310	320	330	340	350	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 405>: gl14.seq

- 1 ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCAGCAGG AATGCAGCAA
- 51 GACTTTTTA TGTCCGCCGG GCGGGACGAG TATGGGGCGG TCAATGTCGG

حرل BNSDOCID: <WO___9957280A2



```
101 TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTCGAA
          151 TACGGTCAAA GCGGCTATTT TACCAGAGCC GCCGAATGTA AAACAGGGTG
               TCAGGGCATC AGCCCGAGCT GCCTGAACGA ACGGACGGTT TGCGAGGTAA
          201
               CGATAAAATG GTCGAGCAGC GAAACATCAA CCAGCGACAT GGCCTGTGCC
          251
          301 AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAAGGTTCAG GCGAGCCGCC
          351 CGGATGGTTG TGCGCGATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
          401 GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 406; ORF 114.ng>:
     gl14.pep
               MASITSPLHG AQQECSKTFL CPPGGTSMGR SMSVTVGLFC VSINLTISVE
            1
               YGQSGYFTRA AECKTGCQGI SPSCLNERTV CEVTIKWSSS ETSTSDMACA
           51
               SRLVNMMSSC EGSGEPPGWL CAIIRLSAYS SNASLTISRM *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 407>:
     mll4.seq
              ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCACAGAG AATGCAGCAA
              GACTTTTTTA TGTCCACCGG GCGGGACGAG TATAGGGCGG TCAATGTCGG
           51
          101 TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTTGAA
          151 TACGGTTGAA GCGGCTATTT TATCAGAGCC GCCGCATGTA AAACAGAGTG
         201 TCAGGGCATC AACCCGAGCT GTCTGAACGA ACAGACGCTT TGCGAKGTAA
         251 CGATAAAATG GTCGAGCAGC GACACATCGA CCAGCGACAT TGCCTGTGCC
         301 AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAArGTTCsG GCGAGCCGcC
         351 CGGATGGTTG TGCGCAATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
         401 GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 408; ORF 114>:
     m114.pep
              MASITSPLHG AHRECSKTFL CPPGGTSIGR SMSVTVGLFC VSINLTISVE
           1
              YGXSGYFIRA AACKTECQGI NPSCLNEQTL CXVTIKWSSS DTSTSDIACA
          51
         101 SRLVNMMSSC EXSGEPPGWL CAIIRLSAYS SNASLTISRM *
    ml14/g114 90.0% identity over a 140 aa overlap
                        10
                                  20
                                           30
                                                     40
                 MASITSPLHGAHRECSKTFLCPPGGTSIGRSMSVTVGLFCVSINLTISVEYGXSGYFIRA
    ml14.pep
                 MASITSPLHGAQQECSKTFLCPPGGTSMGRSMSVTVGLFCVSINLTISVEYGQSGYFTRA
    g114
                                  20
                                           30
                                                     40
                                                              50
                                                                        60
                        70
                                  80
                                           90
                                                    100
                                                             110
                {\tt AACKTECQGINPSCLNEQTLCXVTIKWSSSDTSTSDIACASRLVNMMSSCEXSGEPPGWL}
    m114.pep
                 AECKTGCQGISPSCLNERTVCEVTIKWSSSETSTSDMACASRLVNMMSSCEGSGEPPGWL
    g114
                        70
                                  80
                                           90
                                                    100
                                                             110
                       130
                                 140
    mll4.pep
                CAIIRLSAYSSNASLTISRMX
                1111111111111111111111111
   g114
                CAIIRLSAYSSNASLTISRMX
                       130
                                 140
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 409>: a114.seq

Ţ	ATGCCGGAGG	CAAGCATCGC	CTCCATCACT	TOGOCGCTGC	ACGGGGCGCA
51	ACAGGAATGC	AGCAAGACTT	ΤΤΤΤΑΤΩΤΩ	GCCGGGCGG	ACCOGGGGGG
101	GGCGGTCAAT	GTCGGTAACC	CHACCERTON	TTTGTGTTTC	ACGAGTATGG
151	ACCAMA TOTAL	MCC22M2	GIAGGITTGT	TTTGTGTTTC	CATTAACTTA
201	ACGATATCTG	TCGAATACGG	TTGAAGCGGC	TATTTTATCA	GAGCCGCCGC
	AIGIAAAACA	GGGTGTCAGG	GCATCAGCCC	GAGCTGCCTC	776677667
251	CGGTTTGCGC	CGTTACGATA	AAATGGTCGA	GCAGCGAGAG	AMOCACCACC
301	GACATTGCCT	GTGCCAGCCG	CCTTCTCAAC	ATCATCTCTC	ATCGACCAGC
351	TTCGGGCGAG	CCGCCCCAM	CCMMCMCCC	AIGAIGICIT	CCTGCGAAGG
401	TTCGGGCGAG	TCGCCCGGA1	GGTTGTGCGC	GATAATCAGG	CTGTCGGCAT
401	ATTCGTCCAA	TGCCAGTTTG	ACAATTTCAC	CCATCTAA	

or all several to the order of

This corresponds to the amino acid sequence <SEQ ID 410; ORF 114.a>: a114.pep

1 MPEASIASIT SPLHGAQQEC SKTFLCPPGG TSMGRSMSVT VGLFCVSINL
51 TISVEYG*SG YFIRAAACKT GCQGISPSCL NERTVCAVTI KWSSSDTSTS
101 DIACASRLVN MMSSCEGSGE PPGWLCAIIR LSAYSSNASL TISRM*

#### m114/a114 92.9% identity in 140 aa overlap

		10	20	30	40	50
m114.pep	MASIT				TVGLFCVSIN	LTISVEYGXSG
	:1111	111111:11			111111111	
a114						LTISVEYGXSG
	10	) 20	30	4	0 5	0 60
						,
	60	70	80	90	100	110
m114.pep	YFIRAAACKI	'ECQGINPSCI	LNEQTLCXVTI	KWSSSDTST	SDIACASRLV	NMMSSCEXSGE
	1111111111		: :		1111111111	1111111
a114	YFIRAAACKT	GCQGISPSCI	NERTVCAVTI	KWSSSDTST	SDIACASRLV	NMMSSCEGSGE
	70	) 80	90	10	0 11	0 120
	120	130	140			
ml14.pep	PPGWLCAIIF	LSAYSSNASI	LTISRMX			
¥ - ¥	111111111	1111111111				
a114	PPGWLCAIIR	LSAYSSNASI	TISRMX			
	130					

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 411>:

```
g117.seq
         atggtcgacg aactcgacCT GCTGCCCGAT GCCGTCGCCG CCACCCTGCT
      1
         TGCCGACATC GGACGCTACG TCCCCGATTG GAACCTATTG GTTTCCGAGC
     51
    101 GCTGCAACAG CACCGTCGCC GAGCTGGTCA AAGGTGtgga CGAAGTGCAG
    151 AAACTTACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG
    201 CGCACAGCAA GCGGAAACCA TGCGGAAAAT GCTGCTGGCg atggttaccg
    251 Acatecgegt egtaTTAATC AAACTGGCGA TGCGTacgeg caceCTGcta
    301 ttTTtaaGCA ACGCCCCGA CAGCCCTGAA AAACgcgccG TCgccaaAga
    351 aacceTCGAC ATCTTCGCCC CGCTCGCCAA CCGCTTGGGC GTGTGGCAGC
    401 TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA
         TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA
    451
         ATACATCGAA AACTTCCTCG ATATCCTGCG TACGGAACTC AAAAAATACA
         ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC
    601 AAAAAATGG TGAAGAAAAA ACTCAGCTTC GACGgccTGT TCGACATCCG
    651 CGCCGTGCGG ATTCTGGTCG ATACCGTCCC CGaGTGTTAC ACCACGCTGG
    701 gcaTCGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGagtt CGAcqactAC
    751 ATCGCCAACC CCAAAGqcaA CGqttATAAA AGtTTGCACA CCGTCATCGT
    801 cggcccGGAa gacaaaggtg tggaaGtgCA AATCCGCACC TTCGAtatGC
    851 accAATTCaa CgaatTcggT gtcgccgCCC ACTGGCGtta caaagaaggc
    901 ggcaaaggcg attccGCCtA cgaacaaAAA ATcgccTggt TGCgccaACT
    951 CTTGGACTGG CGCGAAAATA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG
   1001 CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG
   1051 CACGGCAAAG TCCTCTCTT GCCAACGGGC GCAACCCCCA TCGACTTCGC
   1101 CTACGCCCTG CACAGCAGCA TCGGCGACCG CTGCCGGGGC GCGAAAGTCG
   1151 AaggGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGCGTC
         GAAATCatta CCGCcaaAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA
   1251 AGGCtgGGtc aAATCCGGCA AGGCCATCGG caaAATCCGC GCCTAcatCC
   1301 GCCAGcaaAa cgCcgaCACC GTGCGCGAAG AAGGCCGTGT CCAACTCGAC
   1351 AAGCAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTgccga
   1401 aaATCTCGGC tacaaAAAGC cagaagacct ctacacCGCc gtcggacaaq
   1451 gcgaaatttc caaccgcgcc atCcaaaaag cctgcggcac GCTgaacgaa
   1501 ccgcccCCG TGCCCGTCAG CGCAACCACC ATCGTCAAAC AGTCCAAAAT
```

BNSDOCID: <WO___9957280A2_



```
1551 CAAAAAAGGT GGCAAAACCG GCGTGCTCAT CGACGGCGAA GACGGCTTGA
1601 TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGATATTGCC
1651 GGCTTCGTTA CCCGCGAGCG CGGCATTTCC GTCCACCGCA AAACCTGCCC
1701 CTCTTTCCGA CACCTTGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
1751 GTTGGGCGGC GTTGCAGGAA GGGCAAGTGT TCGCCGTCGA TATCGAAATC
1801 CGCGCCCAAG ACCGCTCCG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
1851 CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
1901 AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGCCAA CGACCTCCCG
1951 CGCGTCCTCG CCGCCTCGA GGCGTATTGA GCGTTACCCG
2001 GCTTTAA
```

# This corresponds to the amino acid sequence <SEQ ID 412; ORF 117.ng>:

```
MVDELDLLPD AVAATLLADI GRYVPDWNLL VSERCNSTVA ELVKGVDEVQ
51 KLTHFARVDS LATPEERAQQ AETMRKMLLA MVTDIRVVLI KLAMRTRTLL
101 FLSNAPDSPE KRAVAKETLD IFAPLANRLG VWQLKWQLED LGFRHQEPEK
151 YREIALLLDE KRTERLEYIE NFLDILRTEL KKYNIHFEVA GRPKHIYSIY
201 KKMVKKLSF DGLFDIRAVR ILVDTVPECY TTLGIVHSLW QPIPGEFDDY
251 IANPKGNGYK SLHTVIVGPE DKGVEVQIRT FDMHQFNEFG VAAHWRYKEG
301 GKGDSAYEQK IAWLRQLLDW RENMAESGKE DLAAAFKTEL FNDTIYVLTP
351 HGKVLSLPTG ATPIDFAYAL HSSIGDRCRG AKVEGQIVPL STPLENGQRV
401 EIITAKEGHP SVNWLYEGWV KSGKAIGKIR AYIRQQNADT VREEGRVQLD
451 KQLAKLTPKP NLQELAENLG YKKPEDLYTA VGQGEISNRA IQKACGTLNE
501 PPPVPVSATT IVKQSKIKKG GKTGVLIDGE DGLMTTLAKC CKPAPPDDIA
551 GFVTRERGIS VHRKTCPSFR HLAEHAPEKV LDASWAALQE GQVFAVDIEI
601 RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVNDLP
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 413>: m117.seq (partial)

```
..GTGAAACTCA AGAAATACAA TGTCCATTTC GAAGTCGCCG GCCGCCCGAA
   7
        ACACATCTAC TCCATTTACA AAAAAATGGT GAAGAAAAA CTCAGCTTCG
        ACGGCCTCTT TGACATCCGC GCCGTGCGAA TTCTGGTTGA TACCGTCCCC
        GAGTGTTACA CCACGCTGGG TATCGTCCAC AGCCTCTGGC AGCCCATTCC
 151
 201
        CGGCGAGTTC GACGACTACA TCGCCAATCC CAAAGGCAAC GGCTATAAAA
 251
        GTTTGCACAC CGTCATCGTC GGCCCGGAAG ACAAAGGCGT GGAAGTACAA
 301
        ATCCGCACCT TCGATATGCA CCAATTCAAC GAATTCGGTG TCGCCGCCCA
        CTGgCGTTAC AAAGAGGGCG GCAAGGGCGA TTCCGCCTAC GAACAGAAAA
 351
        TCGCCTGGTT GCGCCAACTC TTGGACTGGC GCGAAAACAT GGCGGAAAGC
 401
        GGCAAGGAAG ACCTCGCCGC CGCCTTCAAA ACCGAGCTTT TCAACGACAC
 451
 501
        GATTTATGTT TTGACCCCGC ACGGCAAAGT CCTCTCCCTG CCCACGGGCG
        CGACCCCAT CGACTTCGCC TACGCCCTGC ACAGCAGCAT CGGCGACCGT
 551
        TGCCGCGGTG CGAAAGTCGA AGGGCAGATT GTGCCGCTGT CCACCCCGCT
 601
        CGAAAACGGA CAGCGCGTCG AAATCATTAC CGCCAAAGAA GGGCATCCTT
 651
        CCGTCAACTG GCTTTACGAA GGCTGGGTCA AATCCAACAA GGCAATCGGC
 701
 751
        AAAATCCGCG CCTACATCCG CCAGCAAAAC GCCGACACCG TGCGCGAAGA
        AGGCCGCGTC CAACTCGACA AACAGCTTGC CAAACTCACG CCCAAACCCA
 801
 851
        ACCTGCAAGA GCTTGCCGAA AATCTCGGCT ACAAAAAGCC AGAAGACCTC
        TACACCGCCG TCGGACAAGG CGAAATTTCC AACCGCGCCA TCCAAAAAGC
 901
 951
        CTGCGGCACG CTGAACGAAC CGCCGCCCGT ACCCGTCAGC GAAACCACCA
        TCGTCAAACA GTCCAAAATC AAAAAAGGCG GCAAAAACGG CGTGCTCATC
1001
        GACGGCGAAG ACGGTCTGAT GACCACGCTT GCCAAATGCT GCAAACCCGC
1051
        GCCGCCCGAC GATATTATCG GCTTCGTTAC CCGCGAGCGC GgCATTTCAG
1101
        TGCACCGCAA AWYYTKCYCG TCTTTCCAAC ACCTCGCCGA ACACGCGCCC
1151
       GAWAAAGTGC TGGACGCAAG CTGGGCGGCA TTGCAGGAAG GACAAGTATT
1201
       CGCCGTCGAT ATCGAAATCC GCGCCCAAGA CCGCTCCGGG CTTTTGCGCG
1251
       ACGTATCCGA CGCGCTCGCC CGCCACAAAC TCAACGTTAC CGCCGTGCAA
1301
       ACCCAGTCCC GCGACTTGGA AGCCAGCATG AGGTTCACGC TCGAAGTCAA
1351
       ACAAGTCAAC GACCTCCCGC GCGTCCTCGC CAGCCTCGGC GACGTCAAAG
1401
       GCGTATTGAG CGTTACCCGG CTTTAA
1451
```

This corresponds to the amino acid sequence <SEQ ID 414; ORF 117>:

1	.VKLKKYNVHF	EVAGRPKHIY	SIYKKMVKKK	LSFDGLFDIR	AVRILVDTVP
51	ECYTTLGIVH	SLWQPIPGEF	DDYIANPKGN	GYKSLHTVIV	GPEDKGVEVQ
101	IRTFDMHQFN	EFGVAAHWRY	KEGGKGDSAY	EQKIAWLRQL	LDWRENMAES
151	GKEDLAAAFK	TELFNDTIYV	LTPHGKVLSL	PTGATPIDFA	YALHSSIGDR
201	CRGAKVEGQI	VPLSTPLENG	QRVEIITAKE	GHPSVNWLYE	GWVKSNKAIG
251	KIRAYIRQQN	ADTVREEGRV	QLDKQLAKLT	PKPNLQELAE	NLGYKKPEDL
301	YTAVGQGEIS	NRAIQKACGT	LNEPPPVPVS	ETTIVKQSKI	KKGGKNGVLI
351	DGEDGLMTTL	AKCCKPAPPD	DIIGFVTRER	GISVHRKXXX	SFOHLAEHAP
401	XKVLDASWAA	LQEGQVFAVD	IEIRAQDRSG	LLRDVSDALA	RHKLNVTAVQ
451	TOSRDLEASM	RFTLEVKOVN	DLPRVLASLG	DVKGVLSVTR	L*

451 TOSRDLEASM RFTLEVKQVN DLPRVLASLG DVKGVLSVTR L*
Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 117 shows 97.6% identity over a 490 aa overlap with a predicted ORF (ORF 117.ng) from *N. gonorrhoeae:* m117/g117

				10	20	30
m117.pep			VKLKK	YNVHFEVAGR	PKHIYSIYKK	MVKKKL
• -			:111	11:111111		111111
g117	EKYREIALLLDEKI	RTERLEYIENF				
_	150 160	170	180	190	200	
	40	50	60	70	80	90
ml17.pep	SFDGLFDIRAVRI	LVDTVPECYTT	LGIVHSLWOP	IPGEFDDYIA	NPKGNGYKSI	
			HILLIATE	11111111		
g117	SFDGLFDIRAVRI	VDTVPECYTT	GTVHSLWOP	TPGEFDDYTA	NPKGNGYKSI	HTVTVC
5	210 220	230	240	250	260	
	210 210	250	2.10	250	200	
	100	110	120	130	140	150
mll7.pep	PEDKGVEVQIRTF					
mii/.pep						
g117	PEDKGVEVQIRTF					
gii,	270 280	290	300	310	320	MIMESG
	270 280	290	300	310	320	
	160	170	180	190	200	0167
-117						210
m117.pep	KEDLAAAFKTELFI					
g117	KEDLAAAFKTELFI					VEGQIV
	330 340	350	360	370	380	
	222		0.4.0			
	220	230	240	250	260	270
m117.pep	PLSTPLENGQRVE					
				:	<u>                                     </u>	11111
g117	PLSTPLENGQRVE:					EEGRVQ
	390 400	410	420	430	440	
	280	290	300	310	320	330
m117.pep	LDKQLAKLTPKPNI					
g117	LDKQLAKLTPKPNI	_				PVPVSA
	450 460	470	480	490	500	
	340	350	360	370	380	390
m117.pep	TTIVKOSKIKKGG					
					<b>!  </b>	
g117	TTIVKQSKIKKGG	KTGVLIDGEDG	LMTTLAKCCK	PAPPDDIAGF	VTRERGISVH	RKTCPS
	510 520	530	540	550	560	
	400	410	420	430	440	450
m117.pep	FQHLAEHAPXKVLI	DASWAALQEGQ	VFAVDIEIRA	QDRSGLLRDV:	SDALARHKLN	VTAVQT

BNSDOCID: <WO__9957280A2_l_>

WO 99/57280



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 415>: a117.seq

```
ATGGTTCATG AACTCGACCT GCTCCCCGAT GCCGTCGCCG CCACCCTGCT
   51
       TGCCGACATC GGACGCTACG TCCCCGACTG GAACCTATTG GTTTCCGAAC
       GCTGCAACAG TACCGTCGCC GAGCTGGTCA AAGGTGTGGA CGAAGTGCAG
  101
  151
       AAACTCACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG
  201
       CGCCCAGCAG GCAGAAACTA TGCGGAAAAT GCTGCTGGCG ATGGTTACCG
  251
       ACATCCGCGT CGTGTTAATC AAACTGGCGA TGCGTACGCG CACCCTGCAA
       TTTTTAAGCA ACGCCCCGA CAGCCCCGAA AAACGCGCCG TCGCCAAAGA
  301
       AACCCTCGAC ATCTTCGCCC CGCTCGCCAA CCGTTTGGGC GTGTGGCAGC
 351
       TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA
 401
       TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA
 451
      ATACATCGAA AACTTCCTTA ATATCCTGCG TACGGAACTC AAAAAATACA
 501
 551
      ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC
      AAAAAAATGG TGAAGAAAAA ACTCAGCTTC GACGGGTTGT TCGACATCCG
 601
      CGCCGTGCGG ATTCTGGTTG ATACCGTCCC CGAGTGTTAC ACCACACTGG
 651
      GCATTGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGAGTT CGACGACTAC
 701
      ATCGCCAACC CGAAAGGCAA CGGCTATAAA AGTTTGCACA CCGTCATCGT
 751
 801
      CGGCCCGGAA GACAAAGGCG TGGAAGTGCA AATCCGCACC TTCGATATGC
      ACCAATTCAA CGAATTCGGT GTCGCCGCGC ACTGGCGTTA CAAAGAGGGC
 851
 901
      GGCAAAGGCG ATTCCGCCTA CGAACAAAAA ATCGCCTGGT TACGCCAACT
 951
      TTTGGACTGG CGCGAAAACA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG
1001
      CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG
      CACGGCAAAG TCCTCTCCCT GCCCACAGGC GCGACCCCCA TCGACTTCGC
1051
      CTACGCCCTG CACAGCAGCA TCGGCGACCG TTGCCGCGGT GCGAAAGTCG
1101
      AAGGGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGTGTC
1151
      GAAATCATTA CCGCCAAAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA
1201
      AGGCTGGGTC AAATCCAACA AGGCAATCGG CAAAATCCGC GCCTACATCC
1251
1301
      GCCAGCAAAA CGCCGACACC GTGCGCGAAG AAGGCCGCGT CCAACTCGAC
      AAACAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTGCCGA
1351
     AAATCTCGGC TACAAAAAGC CAGAAGACCT CTACACCGCC GTCGGACAAG
1401
      GCGAAATTTC CAACCGCGCC ATCCAAAAAG CCTGCGGCAC GCTGAACGAA
1451
      CCGCCGCCCG TACCCGTCAG CGAAACCACC ATCGTCAAAAC AGTCCAAAAT
1501
     CAAAAAAGGC GGCAAAAACG GCGTGCTCAT CGACGGCGAA GACGGTCTGA
1551
      TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGACATTGTC
1601
1651
      GGCTTCGTTA CCCGCGATCG CGGCATTTCG GTACACCGCA AAACCTGCCC
      CTCTTTCCGA CACCTCGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
1701
      GTTGGGCGGC GTTGCAGGAA GGACAAGTGT TCGCCGTCGA TATCGAAATC
1751
      CGCGCCCAAG ACCGCTCCGG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
1801
      CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
1851
      AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGTTAC CGACCTCCCA
1901
      CGCGTCCTCG CCAGCCTCGG CGACGTCAAA GGCGTATTGA GCGTTACCCG
1951
2001
      GCTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 416; ORF 117.a>: a117.pep

1	MVHELDLLPD	AVAATLLADI	GRYVPDWNLL	VSERCNSTVA	ELVKGVDEVQ
51	KLTHFARVDS	LATPEERAQO	AETMRKMLLA	MUTDIRUULI	KI AMD TO TT
101	FLSNAPDSPE	KRAVAKETLD	IFAPLANRLG	VWOLKWOLED	LGERHOEDER
151	IKETAPPPDE	KRTERLEYIE	NFLNILRTEI	KKYNTHEEVA	CDDVUTVCTV
201	KKMVKKKLSF	DGLFDIRAVR	ILVDTVPECY	TTLGTVHSIW	OPTROFEREN
251	IANPKGNGYK	SLHTVIVGPE	DKGVEVOIRT	FOMHORNERO	MANUMDAREC
301	GREDSAYEOR	IAWLROLLDW	RENMAESCKE	DI.AAAEKTET	EXIDELATION
351	HGKVLSLPTG	ATPIDFAYAL	HSSIGDRCRG	AKVEGOTVPI.	STPLENGORY
351	HGKVLSLPTG	ATPIDFAYAL	HSSIGDRCRG	AKVEGQIVPL	STPLENGORV

401 451 501 551 601 651	KQLAKLTPKP NLQELAENLG YKKPEDLYTA VGQGEISNRA IQKACGTINE PPPVPVSETT IVKQSKIKKG GKNGVLIDGE DGLMTTLAKC CKPAPPDDIV GFVTRDRGIS VHRKTCPSFR HLAEHAPEKV LDASWAALQE GQVFAVDIEI RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVTDLP	
m117/a117	98.0% identity in 490 aa overlap	
ml17.pep	VKLKKYNVHFEVAGRPKHIYSIYKKMVK :    :	111
a117	EKYREIALLLDEKRTERLEYIENFLNILRTELKKYNIHFEVAGRPKHIYSIYKKMVK 150 160 170 180 190 200	KKL
m117.pep		111
all,	210 220 230 240 250 260	140
ml17.pep	PEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMA 	HI
a117	PEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMA 270 280 290 300 310 320	ESG
m117.pep	KEDLAAAFKTELFNDTIYVLTPHGKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEG	ĨН
a117	KEDLAAAFKTELFNDTIYVLTPHGKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEG 330 340 350 360 370 380	QIV
m117.pep	220 230 240 250 260 2 PLSTPLENGQRVEIITAKEGHPSVNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEG 	
a117	PLSTPLENGORVEIITAKEGHPSVNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEG 390 400 410 420 430 440	RVQ
m117.pep	280 290 300 310 320 3:	30
	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVP	VSE 
a117	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVP	VSE 
a117 m117.pep	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVP	VSE     VSE 90 XXS
	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVP	VSE     VSE 90 XXS
m117.pep	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVP	VSE     VSE 90 XXS   CPS
m117.pep a117	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVP	VSE      VSE 90 XXS  CPS 50 VQT
m117.pep a117 m117.pep	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVP	VSE      VSE 90 XXS  CPS 50 VQT



```
ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CCCTGCAAGA
   51 ATTGCGCGAA TGGTTCGACA GCTACTGCGC CGCTCTGCCG GACAACGATA
  101 AAAACCTCAT CGGTACCGCA TGGTCGCTGG CGCAGGAACA TTATCCTGCC
      GATGCCGCCA CGCCGTATGG CGAGCCGCTG CCCGACCACT TCCTCGGCGC
  151
  201 GGCGCAAATG GTCGACGAAC TCGACCTGCT GCCCGATGCC GTCGCCGCCA
       CCCTGCTTGC CGACATCGGA CGCTACGTCC CCGATTGGAA CCTATTGGTT
  251
  301
       TCCGAGCGCT GCAACAGCAC CGTCGCCGAG CTGGTCAAAG GTGTGGACGA
  351
      AGTGCAGAAA CTTACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
      AAGAACGCGC ACAGCAAGCG GAAACCATGC GGAAAATGCT GCTGGCGATG
  401
       GTTACCGACA TCCGCGTCGT ATTAATCAAA CTGGCGATGC GTACGCGCAC
  451
 501 CCTGCAATTT TTAAGCAACG CCCCGACAG CCCTGAAAAA CGCGCCGTCG
551 CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG CTTGGGCGTG
  601 TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAGAACC
  651 CGAAAAATAC CGCGAAATCG CCCTGCTTTT GGACGAAAAA CGCACCGAAC
 701 GCCTCGAATA CATCGAAAAC TTCCTCGATA TCCTGCGTAC GGAACTCAAA
  751
      AAATACAATA TCCACTTTGA AGTCGCCGGC CGTCCGAAAC ACATCTACTC
 801
      CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGCCTGTTCG
 851
      ACATCCGCGC CGTGCGGATT CTGGTCGATA CCGTCCCCGA GTGTTACACC
      ACGCTGGGCA TCGTCCACAG CCTCTGGCAG CCCATTCCCG GCGagttCGA
 901
 951
      CGACTACATC GCCAACCCCA AAGGCAACGG tTATAAAAGT TTGCACACCG
1001
      TCATCGTcgg cccGGAagaa aaaggtgtgg aagtgcAAAT CCGCACCTTC
      GATATGCACC AATTCAACGA ATTCGGTGTC GCCGCCCACT GGCGTTACAA
1051
1101
      AGAAGGCGGC AAAGGCGATT CCGCCTACGA ACAAAAAATC GCCTGGTTGC
      GCCAACTCTT GGACTGGCGC GAAAATATGG CGGAAAGCGG CAAGGAAGAC
1151
      CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1201
      GACCCCGCAC GGCAAAGTCC TCTCTCTGCC AACGGGCGCA ACCCCCATCG
1251
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGCTG CCGGGGCGCG
      AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
1351
      GCGCGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1401
      TTTACGAAGG CTGGGTCAAA TCCGGCAAGG CCATCGGCAA AATCCGCGCC
1451
      TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGTGTCCA
1501
1551
     ACTCGACAAG CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
      TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1601
1651 GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
      GAACGAACCG CCGCCCGTGC CCGTCAGCGC AACCACCATC GTCAAACAGT
1701
1751
      CCAAAATCAA AAAAGGTGGC AAAACCGGCG TGCTCATCGA CGGCGAAGAC
     GGCTTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
     TATTGCCGGC TTCGTTACCC GCGAGCGCGG CATTTCCGTC CACCGCAAAA
1851
     CCTGCCCTC TTTCCGACAC CTTGCCGAAC ACGCGCCCGA AAAAGTACTG
1901
1951
     GACGCAAGTT GGGCGGCGTT GCAGGAAGGG CAAGTGTTCG CCGTCGATAT
     CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2001
     CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
     GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTCAACGA
     CCTCCCGCGC GTCCTCGCCG GCCTCGGCGA TGTCAAAGGC GTATTGAGCG
     TTACCCGGCT TTAA
```

# This corresponds to the amino acid sequence <SEQ ID 418; ORF 117-1.ng>:

```
1 MTAISPIQDT QSATLQELRE WFDSYCAALP DNDKNLIGTA WSLAQEHYPA
 51
     DAATPYGEPL PDHFLGAAQM VDELDLLPDA VAATLLADIG RYVPDWNLLV
    SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM
     VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV
     WQLKWQLEDL GFRHQEPEKY REIALLLDEK RTERLEYIEN FLDILRTELK
201
    KYNIHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT
    TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPEE KGVEVQIRTF
301
    DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED
351
    LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA
401
451
    KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SGKAIGKIRA
    YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV
    GQGEISNRAI QKACGTLNEP PPVPVSATTI VKQSKIKKGG KTGVLIDGED
551
    GLMTTLAKCC KPAPPDDIAG FVTRERGISV HRKTCPSFRH LAEHAPEKVL
    DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR
651
    DLEASMRFTL EVKQVNDLPR VLAGLGDVKG VLSVTRL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 419>:

¹ ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CTCTGCAAGA

```
51 ATTGCGCGAA TGGTTCGACA GCTACTGCGC CGCTCTGCCG GACAACGATA
     AAAACCTCAT CGGTACCGCA TGGTTGCTGG CGCAGGAACA TTACCCCGCC
 101
 151 GATGCCGCCA CGCCGTATGG CGAGCCGCTG CCCGACCACT TCCTCGGCGC
201 GGCGCAAATG GTTCATGAAC TCGACCTGCT CCCCGATGCC GTCGCCGCCA
      CCCTGCTTGC CGACATCGGA CGCTACGTCC CCGACTGGAA CCTATTGGTT
      TCCGAACGCT GCAACAGTAC CGTCGCCGAG CTGGTCAAAG GTGTGGACGA
 301
      AGTGCAGAAA CTCACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
 351
      AAGAACGCGC CCAGCAGGCA GAAACTATGC GGAAAATGCT GCTGGCGATG
 401
      GTTACCGACA TCCGCGTCGT GTTAATCAAA CTGGCGATGC GTACGCGCAC
 451
      CCTGCAATTT TTAAGCAACG CCCCGACAG CCCCGAAAAA CGCGCCGTCG
      CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG TTTGGGCGTG
 551
 601
      TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAAAGCC
      CGAAAAATAC CGCGAAATCG CGCTGCTTTT GGACGAAAAA CGCACCGAAC
      GCCTCGAATA CATCGAAAAC TTCCTCAACA TCCTGCGCGG TGAACTCAAG
 701
      AAATACAATG TCCATTTCGA AGTCGCCGGC CGCCCGAAAC ACATCTACTC
 801
      CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGCCTCTTTG
      ACATCCGCGC CGTGCGAATT CTGGTTGATA CCGTCCCCGA GTGTTACACC
      ACGCTGGGTA TCGTCCACAG CCTCTGGCAG CCCATTCCCG GCGAGTTCGA
 901
      CGACTACATC GCCAATCCCA AAGGCAACGG CTATAAAAGT TTGCACACCG
 951
      TCATCGTCGG CCCGGAAGAC AAAGGCGTGG AAGTACAAAT CCGCACCTTC
1001
      GATATGCACC AATTCAACGA ATTCGGTGTC GCCGCCCACT GGCGTTACAA
1051
      AGAGGGCGC AAGGGCGATT CCGCCTACGA ACAGAAAATC GCCTGGTTGC
1101
      GCCAACTCTT GGACTGGCGC GAAAACATGG CGGAAAGCGG CAAGGAAGAC
1151
1201 CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1251
      GACCCCGCAC GGCAAAGTCC TCTCCCTGCC CACGGGCGCG ACCCCCATCG
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGTTG CCGCGGTGCG
1351 AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
      GCGCGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1401
1451 TTTACGAAGG CTGGGTCAAA TCCAACAAGG CAATCGGCAA AATCCGCGCC
      TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGCGTCCA
1501
1551 ACTCGACAAA CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
      TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1601
1651
      GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
1701 GAACGAACCG CCGCCGTAC CCGTCAGCGA AACCACCATC GTCAAACAGT
1751
     CCAAAATCAA AAAAGGCGGC AAAAACGGCG TGCTCATCGA CGGCGAAGAC
1801 GGTCTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
      TATTATCGGC TTCGTTACCC GCGAGCGCGG CATTTCAGTG CACCGCAAAA
1851
1901
      CCTGCCCGTC TTTCCAACAC CTCGCCGAAC ACGCGCCCGA AAAAGTGCTG
1951 GACGCAAGCT GGGCGGCATT GCAGGAAGGA CAAGTATTCG CCGTCGATAT
2001 CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2051 CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
      GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTCAACGA
      CCTCCCGCGC GTCCTCGCCA GCCTCGGCGA CGTCAAAGGC GTATTGAGCG
2151
2201 TTACCCGGCT TTAA
```

# This corresponds to the amino acid sequence <SEQ ID 420; ORF 117-1>: m117-1.pep

```
1 MTAISPIQDT QSATLQELRE WFDSYCAALP DNDKNLIGTA WLLAQEHYPA
 51 DAATPYGEPL PDHFLGAAQM VHELDLLPDA VAATLLADIG RYVPDWNLLV
    SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM
101
    VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV
201 WQLKWQLEDL GFRHQKPEKY REIALLLDEK RTERLEYIEN FLNILRGELK
    KYNVHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT
    TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPED KGVEVQIRTF
    DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED
351
    LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA
401
451 KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SNKAIGKIRA
501
    YIROQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV
    GQGEISNRAI QKACGTLNEP PPVPVSETTI VKQSKIKKGG KNGVLIDGED
551
    GLMTTLAKCC KPAPPDDIIG FVTRERGISV HRKTCPSFQH LAEHAPEKVL
601
     DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR
701 DLEASMRFTL EVKQVNDLPR VLASLGDVKG VLSVTRL*
```

m117-1/g117-1 98.2% identity in 737 aa overlap

	10	20	30	40	50	60
m117-1.pep	MTAISPIQDTQSAT					
		11111111	1111111111	1111111 11	111111111	111111
g117-1	MTAISPIQDTQSAT	LQELREWFDS	YCAALPDNDK	NLIGTAWSLA	QEHYPADAAT	PYGEPL
	10	20	30	40	50	60
	70	80	90	100	110	120

BNSDOCID: <WO___9957280A2_I_>

m117-1.pep	PDHFLGAAQMVHELDLLPDAVA	ATLLADIGRYVDDWNI I VCED	CNOBULETIMONES
g117-1		1111111111111111111	111111111111111
9	70 80	90 100	CNSTVAELVKGVDEVQK 110 120
3.4 72 - 4	130 140	150 160	170 180
m117-1.pep	1		RTRTLQFLSNAPDSPEK
g117-1	LTHFARVDSLATPEERAQQAETM 130 140	IRKMLLAMVTDIRVVLIKLAMI 150 160	RTRTLQFLSNAPDSPEK
	190 200	210 220	100
m117-1.pep	RAVAKETLDIFAPLANRLGVWOL	KWOLEDIGERHOKPEKVPETI	230 240 ALLLDEKRTERLEYIEN
g117-1		KWQLEDLGFRHQEPEKYRE11	LLLDEKRTERLEYIEN
	190 200	210 220	230 240
m117-1.pep	250 260 FLNILRGELKKYNVHFEVAGRPK	270 280 HIYSIYKKMVKKKLSFDGLFR	290 300
g117-1	:         :	.	113111111111111
	250 260	270 280	290 300
m117-1.pep	310 320	330 340	350 360
g117-1	TLGIVHSLWQPIPGEFDDYIANP	] {	III I I I I I I I I I I I I I I I I I
g117-1	TLGIVHSLWQPIPGEFDDYIANP	KGNGYKSLHTVIVGPEEKGVE 330 340	VQIRTFDMHQFNEFGV 350 360
	370 380	390 400	410 420
m117-1.pep	AAHWRYKEGGKGDSAYEQKIAWLI		FKTELFNDTIYVLTPH
g117-1	AAHWRYKEGGKGDSAYEQKIAWLI 370 380	ROLLDWRENMAESGKEDLAAA 390 400	FKTELFNDTIYVLTPH
	430 440		410 420
m117-1.pep	GKVLSLPTGATPIDFAYALHSSIC	450 460 GDRCRGAKVEGQIVPLSTPLE	470 480 NGQRVEIITAKEGHPS
g117-1		GDRCRGAKVEGQI VPLSTPLE1	
	430 440	450 460	470 480
m117-1.pep	490 500 VNWLYEGWVKSNKAIGKIRAYIRQ	510 520 QNADTVREEGRVOLDKOLAKI	530 540
g117-1	VNWLYEGWVKSGKAIGKIRAYIRQ		
	490 500	510 520	530 540
m117-1.pep	550 560 KKPEDLYTAVGQGEISNRAIQKAC	570 580	590 600
g117-1		111111111111	111111
9 / <b>2</b>	KKPEDLYTAVGQGEISNRAIQKAC 550 560	GTLNEPPPVPVSATTIVKQSK 570 580	IKKGGKTGVLIDGED 590 600
m117-1.pep	610 620	630 640	650 660
	GLMTTLAKCCKPAPPDDIIGFVTR	1 1   1   1   1   1   1   1   1   1   1	111111111111
g117-1	GLMTTLAKCCKPAPPDDIAGFVTRI 610 620	ERGISVHRKTCPSFRHLAEHA 630 640	PEKVLDASWAALQEG 650 660
	670 680	690 700	710 700
m117-1.pep	QVFAVDIEIRAQDRSGLLRDVSDAI	LARHKI NVTAVOTOSPDI ENG	ADELL ELINOTHER DE
g117-1	QVFAVDIEIRAQDRSGLLRDVSDAI 670 680	JARHKLNVTAVQTQSRDLEASI	MRFTLEVKQVNDLPR
	730	690 700	710 720
m117-1.pep	VLASLGDVKGVLSVTRLX		
g117-1	:		
	730		
m117-1/RelA			

```
sp|P55133|RELA_VIBSS GTP PYROPHOSPHOKINASE (ATP:GTP 3'-PYROPHOSPHOTRANSFERASE) (PPGPP
SYNTHETASE I) >gi|537617 (U13769) ppGpp synthetase I [Vibrio sp.] Length = 744
 Score = 536 bits (1366), Expect = e-151
 Identities = 288/685 (42%), Positives = 432/685 (63%), Gaps = 31/685 (4%)
Query: 74 LDLLPDAVAATLLADI---GRYVPDWNLLVSERCNSTVAELVKGVDEVQKLTHFARVDSL 130
L + D + A LL + G Y D + E + T+ LV+GV+++ ++ S
Sbjct: 68 LSMDADTLIAALLYPLVEGGCYSTD---ALKEEYSGTILHLVQGVEQMCAIS---QLKST 121
Query: 131 ATPEERAQQAETMRKMLLAMVTDIRVVLIKLAMRTRTLQFLSNAPDSPEKRAVAKETLDI 190
              +A Q + +R+MLL+MV D R V+IKLA R L+ + + PD +RA A+E +I
Sbjct: 122 AEETAQAAQVDNIRRMLLSMVDDFRCVVIKLAERICNLREVKDQPDEV-RRAAAQECANI 180
Query: 191 FAPLANRLGVWQLKWQLEDLGFRHQKPEKYREIALLLDEKRTERLEYIENFLNILRGELK 250
           +APLANRLG+ QLKW++ED FR+Q P+ Y++IA L E+R +R +YI +F++ L +K
Sbjct: 181 YAPLANRLGIGQLKWEIEDYAFRYQHPDTYKQIAKQLSERRIDREDYITHFVDDLSDAMK 240
Query: 251 KYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQ 310
            N+ EV GRPKHIYSI++KM KK L FD LFD+RAVRI+ + + +CY LG+VH+ ++
Sbjct: 241 ASNIRAEVQGRPKHIYSIWRKMQKKSLEFDELFDVRAVRIVAEELQDCYAALGVVHTKYR 300
Ouery: 311 PIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEG- 369
            +P EFDDY+ANPK NGY+S+HTV++GPE K +E+QIRT MH+ +E GVAAHW+YKEG
Sbjct: 301 HLPKEFDDYVANPKPNGYQSIHTVVLGPEGKTIEIQIRTKQMHEESELGVAAHWKYKEGT 360
Query: 370 --GKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPHGKVLSLP 427
            G SAY++KI WLR+LL W+E M++SG ++ ++++F+D +Y TP G V+ LP
Sbjct: 361 ASGGAQSAYDEKINWLRKLLAWQEEMSDSG--EMLDELRSQVFDDRVYAFTPKGDVVDLP 418
Query: 428 TGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPSVNWLYE- 486
           + ATP+DFAY +HS +G RC GAKVEG+IVP + L+ G +VEIIT KE +PS +WL
Sbjct: 419 SNATPLDFAYHIHSEVGHRCIGAKVEGRIVPFTYHLQMGDQVEIITQKEPNPSRDWLNPN 478
Query: 487 -GWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKL--TPKPNLQELAENLGYKKP 543
           G+V S++A K+ A+ R+Q+ D G+ L+ +L K+ T K
Sbjct: 479 LGFVTSSRARAKVHAWFRKQDRDKNIIAGKEILEAELVKIHATLKDAQYYAAKRFNVKSP 538
Query: 544 EDLYTAVGQGEIS-NRAIQKACGTLNEPPPVPVSETTIVKQSKI-----KKGGKNGV 594
          E+LY +G G++ N+ I
                              +N+P + + K S+
                                                              KK ++ V
Sbjct: 539 EELYAGIGSGDLRINQVINHINALVNKPTAEEEDQQLLEKLSEASNKQATSHKKPQRDAV 598
Query: 595 LIDGEDGLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASW 654
           +++G D LMT LA+CC+P P DDI GFVT+ RGISVHR C + L HAPE+++D W
                                                                                      - 30 G
Sbjct: 599 VVEGVDNLMTHLARCCOPIPGDDIQGFVTQGRGISVHRMDCEQLEELRHHAPERIIDTVW 658
Query: 655 AALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQ--SRDLEASMRFTLEV 712
               G + + + + A +R+GLL+++++ L K+ V ++++ +
                                                            + M F LE+
Sbjct: 659 GGGFVGN-YTITVRVTASERNGLLKELTNTLMNEKVKVAGMKSRVDYKKQMSIMDFELEL 717
Query: 713 KQVNDLPRVLASLGDVKGVLSVTRL 737
             + L RVL + VK V
Sbjct: 718 TDLEVLGRVLKRIEQVKDVAEAKRL 742
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 421>: a117-1.seq

-1.8e	ą				
1	ATGACCGCCA	TCAGCCCGAT	TCAAGACACG	CAAAGCGCGA	CTCTGCAAGA
51	ATTGCGCGAA	TGGTTCGACA	GCTACTGCAC	CGCGCTGCCG	AACAACGATA
101	AAAAACTTGT	CTTAGCCGCC	CGTTCGCTGG	CGGAAGCACA	TTACCCCGCC
151	GATGCCGCCA	CGCCGTATGG	CGAACCGCTG	CCCGACCACT	TCCTCGGCGC
201	GGCGCAAATG	GTTCATGAAC	TCGACCTGCT	CCCCGATGCC	GTCGCCGCCA
251	CCCTGCTTGC	CGACATCGGA	CGCTACGTCC	CCGACTGGAA	CCTATTGGTT
301	TCCGAACGCT	GCAACAGTAC	CGTCGCCGAG	CTGGTCAAAG	GTGTGGACGA
351	AGTGCAGAAA	CTCACCCACT	TCGCCCGGGT	GGACAGCCTC	GCCACGCCGG
401	AAGAACGCGC	CCAGCAGGCA	GAAACTATGC	GGAAAATGCT	GCTGGCGATG
451	GTTACCGACA	TCCGCGTCGT	GTTAATCAAA	CTGGCGATGC	GTACGCGCAC
501	CCTGCAATTT	TTAAGCAACG	CCCCGACAG	CCCCGAAAAA	CGCGCCGTCG
551	CCAAAGAAAC	CCTCGACATC	TTCGCCCCGC	TCGCCAACCG	TTTGGGCGTG
601	TGGCAGCTCA	AATGGCAGCT	CGAAGATTTG	GGCTTCCGCC	ATCAAGAACC
651	CGAAAAATAC	CGCGAAATCG	CCCTGCTTTT	GGACGAAAAA	CGCACCGAAC
701	GCCTCGAATA	CATCGAAAAC	TTCCTTAATA	TCCTGCGTAC	GGAACTCAAA
751	AAATACAATA	TCCACTTTGA	AGTCGCCGGC	CGTCCGAAAC	ACATCTACTC
801	CATTTACAAA	AAAATGGTGA	AGAAAAAACT	CAGCTTCGAC	GGGTTGTTCG

BNSDOCID: <a href="https://doi.org/10.1016/18.2016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.1016-11.

```
851 ACATCCGCGC CGTGCGGATT CTGGTTGATA CCGTCCCCGA GTGTTACACC
 901
      ACACTGGGCA TTGTCCACAG CCTCTGGCAG CCCATTCCCG GCGAGTTCGA
      CGACTACATC GCCAACCCGA AAGGCAACGG CTATAAAAGT TTGCACACCG
1001
      TCATCGTCGG CCCGGAAGAC AAAGGCGTGG AAGTGCAAAT CCGCACCTTC
      GATATGCACC AATTCAACGA ATTCGGTGTC GCCGCGCACT GGCGTTACAA
1051
1101 AGAGGGCGGC AAAGGCGATT CCGCCTACGA ACAAAAATC GCCTGGTTAC
      GCCAACTTTT GGACTGGCGC GAAAACATGG CGGAAAGCGG CAAGGAAGAC
1151
1201 CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1251
      GACCCCGCAC GGCAAAGTCC TCTCCCTGCC CACAGGCGCG ACCCCCATCG
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGTTG CCGCGGTGCG
1351 AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
      GCGTGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1401
1451
      TTTACGAAGG CTGGGTCAAA TCCAACAAGG CAATCGGCAA AATCCGCGCC
      TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGCGTCCA
1501
1551 ACTCGACAAA CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
1601 TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1651 GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
1701 GAACGAACCG CCGCCCGTAC CCGTCAGCGA AACCACCATC GTCAAACAGT
1751 CCAAAATCAA AAAAGGCGGC AAAAACGGCG TGCTCATCGA CGGCGAAGAC
1801 GGTCTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
     CATTGTCGGC TTCGTTACCC GCGATCGCGG CATTTCGGTA CACCGCAAAA
1851
1901
     CCTGCCCCTC TTTCCGACAC CTCGCCGAAC ACGCGCCCGA AAAAGTACTG
1951
     GACGCAAGTT GGGCGGCGTT GCAGGAAGGA CAAGTGTTCG CCGTCGATAT
     CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2001
     CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
2051
     GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTTACCGA
2101
     CCTCCCACGC GTCCTCGCCA GCCTCGGCGA CGTCAAAGGC GTATTGAGCG
2151
2201 TTACCCGGCT TTAA
```

# This corresponds to the amino acid sequence <SEQ ID 422; ORF 117-1.a>:

```
1 MTAISPIQDT QSATLQELRE WFDSYCTALP NNDKKLVLAA RSLAEAHYPA
 51 DAATPYGEPL PDHFLGAAQM VHELDLLPDA VAATLLADIG RYVPDWNLLV
101
    SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM
151 VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV
201 WQLKWQLEDL GFRHQEPEKY REIALLLDEK RTERLEYIEN FLNILRTELK
251 KYNIHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT
301 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPED KGVEVQIRTF
    DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED
351
401
    LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA
    KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SNKAIGKIRA
451
    YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV
501
    GQGEISNRAI QKACGTLNEP PPVPVSETTI VKQSKIKKGG KNGVLIDGED
551
    GLMTTLAKCC KPAPPDDIVG FVTRDRGISV HRKTCPSFRH LAEHAPEKVL
    DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR
651
    DLEASMRFTL EVKQVTDLPR VLASLGDVKG VLSVTRL*
```

#### **a117-1/m117-1** 97.7% identity in 737 aa overlap

	10	20	30	40	50	60
m117-1.pep	MTAISPIQDTQSAT	LQELREWFDS	SYCAALPONDE	KNLIGTAWLL		TOUCHD.
			:       •   1			
a117-1	MTAISPIQDTQSAT	LQELREWFDS	SYCTALPHND	KI,VI,AARSI.		
	10	20	30	40	50	
			•	40	50	60
	70	80	90	100	110	120
m117-1.pep	PDHFLGAAQMVHEI	DLLPDAVAAT	LLADIGRYVE	DWNIIVEED	110 110	120
	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	111111111	1111111111	LILLIAND	NOIVALLVK	VDEVQK
a117-1	PDHFI GAAOMVHET	יין ווויוייי דית מנז מרום. ז. זרו.		111111111		111111
	PDHFLGAAQMVHEL 70	80	PPWDICKIAN			VDEVQK
	70	80	90	100	110	120
	120					
-117 1	130	140	150	160	170	180
m117-1.pep	LTHFARVDSLATPE	eraqqaetmr	KMLLAMVTDI	RVVLIKLAME	RTRTLOFLSNA	DDCDEN
		1 [ ] ] ] ] [ ] [ ] [	111111111	111311111		
a117 <b>-</b> 1	LTHFARVDSLATPE	ERAQQAETMR	KMLLAMVTDT	RVVI.TKT.AME	וווווווווו	111111
	130	140	150	160		
			200	100	170	180
	190	200	210	222		
m117-1.pep			210	220	230	240
	RAVAKETLDIFAPL	HINKTGAMÖTK	WOLEDLGFRH	QKPEKYREIA	LLLDEKRTER	LEYIEN
a117-1		111111111	11111111	1:1111111	HILLIAM	HILL
GIT!-I	MANNETEDIENE	HWKTGAMÖTK	WQLEDLGFRH	QEPEKYREIA	LLLDEKRTER	LEYTEN
	190	200	210	220	230	240

m117-1.pep	250 260 270 280 290 300  FLNILRGELKKYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYT
m117-1.pep	310 320 330 340 350 360 TLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGV
m117-1.pep	370 380 390 400 410 420 AAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPH !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m117-1.pep	430 440 450 460 470 480 GKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPS
m117-1.pep	490 500 510 520 530 540 VNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKLTPKPNLQELAENLGY
ml17-1.pep	550 560 570 580 590 600  KKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSETTIVKQSKIKKGGKNGVLIDGED
m117-1.pep	610 620 630 640 650 660 GLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASWAALQEG
m117-1.pep	670 680 690 700 710 720 QVFAVDIEIRAQDRSGLIRDVSDALARHKLNVTAVQTQSRDLEASMRFTLEVKQVNDLPR
ml17-1.pep	730 VLASLGDVKGVLSVTRLX

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 423>:

g118.seq ATGTGCGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA 51 TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG 101 ATGAAGAATA TTGGAAGCTG GAGAATGATT TAATCGAGGT TAGGAGAAAA
151 TATCCTTATC CGATGGATAT ACCAAGGCAT ATTGCAATGA CAATGATTA TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC 151 201 CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG 251 CTTCCCCTTG GTTGCCTGAT AGCGTGGGAA TTCATGAACG TTATGAAAGA 301 TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT 351 GCGATTTGAT TATTACAaCA AAAAATAG

### This corresponds to the amino acid sequence <SEQ ID 424; ORF 118.ng>:

- 1 MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRRK
- 51 YPYPMDIPRD <u>IVIGIGTIID FLMVPNWE</u>LF EIKASPWLPD SVGIHERYER 101 FTTMLRYIFT <u>EKDIVNVRFD YYNKK*</u>

BNSDOCID: <WO___9957280A2_I_>

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 425>:
      m118.seq
                ATGTGTGAGT TCAAGGATAT TATAAGAAAC GTTCCTTATT TTGAGGGGTA
                TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
            51
           101
                ATGAAGAATA TTGGAAGTTG GAGAATGATT TAATCGAGGT TAGAAAAAAA
           151
                TATCCTTATC CGATGGACAT ACCAAGATAT GTTGTCATTG GAATCGGTAC
               CATTATTGAT TTCTTAATGG TTCCAAATTG GAAACTTTTT GAAATTAAAG
           201
               CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
                TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
           301
           351
                GCGATTTGAT TATTACAACA AAAAATAG
 This corresponds to the amino acid sequence <SEQ ID 426; ORF 118>:
      m118.pep
                MCEFKDIIRN VPYFEGYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
                YPYPMDIPRY <u>VVIGIGTIID FLMVPNW</u>KLF EIKASPWLPD SVGIHERYER FTTMLRYIFT EKDIVNVRFD YYNKK*
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 118 shows 92.8% identity over a 125 aa overlap with a predicted ORF (ORF 118.ng)
 from N. gonorrhoeae:
      m118/g118
                          10
                                    20
                                             30
                                                       40
                                                                 50
                  MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
      m118.pep
                  MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRRKYPYPMDIPRD
      g118
                          10
                                   20
                                             30
                                                       40
                                                                50
                                   80
                                             90
                                                      100
                                                               110
                  VVIGIGTIIDFLMVPNWKLFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     m118.pep
                  q118
                  IVIGIGTIIDFLMVPNWELFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
                          70
                                   80
                                             90
                                                     100
                                                               110
     m118.pep
                  YYNKKX
                  1111111
     g118
                  YYNKKX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 427>:
a118.seq
               ATGTGTGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA
               TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
           51
          101 ATGAAGAATA TTGGAAATTG GAGAATGATT TAATCGAGGT TAGAAAAAAA
               TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC
          201
               CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG
          251
               CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
               TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
          301
               GCGATTTGAT TATTACAACA AAAAATAG
This corresponds to the amino acid sequence <SEQ ID 428; ORF 118.a>:
a118.pep
            1 MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
              YPYPMDIPRD IVIGIGTIID FLMVPNWELF EIKASPWLPD SVGIHERYER
          101 FTTMLRYIFT EKDIVNVRFD YYNKK*
m118/a118
              93.6% identity in 125 aa overlap
                                   20
                                            30
                                                      40
                 MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
     m118.pep
                 MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRD
     a118
                                  20
                                            30
                                                     40
                                                               50
```

90 100 110 120 VVIGIGTIIDFLMVPNWKLFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD m118.pep a118 IVIGIGTIIDFLMVPNWELFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD 70 80 90 100 m118.pep YYNKKX 111111 a118 YYNKKX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 429>:

```
g120.seq
         ATGATGAAGA CTTTTAAAAA TATATTTCC GCCGCCATTT TGTCCGCCGC
      51
         CCTGCCGTGC GCGTATGCGG CAAGGCTACC CCAATCCGCC GTGCTGCACT
         ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
     101
         AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
     201 TTTCGAATCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTGCCTACT
     251 ATAAAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
     301 GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
     351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
     401 CGAAACTCCC CCCGGGTCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
     451 GTCGGCGGCC TGAATAAGGC GGGTACGGGA AAATACAGCA Taggcggcqt
     501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATACGGTAA
     551 CGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
     601 ACCGACGACG GCAAAACCTA TACGCTGAAG CTCAAATCGG TGCAGATCAA
         CGGACAGCC GCCAAACCGT AA
```

This corresponds to the amino acid sequence <SEQ ID 430; ORF 120.ng>: g120.pep

1 MMKTFKNIFS AAILSAALPC AYAARLPQSA VLHYSGSYGI PATMTFERSG 51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PAYYKDIRRG KLYAEAKFAD 101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS 151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DTVTYFFAPS LNNIPAQIGY

201 TDDGKTYTLK LKSVQINGQA AKP*

CGGCCAGGCA GCCAAACCG

201 TDDGKTYTLK LKSVQINGQA AKP

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 431>: m120.seq

1 ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC
51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGMACT
101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT
251 ATAGAGACAT ACGCAGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
301 GGCAGCGTAA CTTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
451 GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA TAGGCGGCGT
501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCAC GATGCGGTAA
551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT

This corresponds to the amino acid sequence <SEQ ID 432; ORF 120>:

m120.pep

1 MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLXYSGSYGI PATMTFERSG
51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD
101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY

BNSDOCID: <WO___9957280A2_1_>

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 120 shows 97.3% identity over a 223 aa overlap with a predicted ORF (ORF 120.ng) from N. gonorrhoeae:

m120/g120

m120.pep	10 MMKTFKNIFSAAII           MMKTFKNIFSAAII 10			40 YSGSYGIPATN                       YSGSYGIPATN 40		111111
m120.pep	70 VPLYNIRFESGGTV           VPLYNIRFESGGTV 70	11111:11	: [ ] ] ] ] ] [ ] [	100 AEAKFADGSVI          LEAKFADGSVT 100		11111
m120.pep	130 DLFTLAWQLAANDA           DLFTLAWQLAANDA 130	11111111	11111111	1111111	111111111	180 RVRRGD       RVRRGD 180
m120.pep	190 DAVMYFFAPSLNNII  :          DTVTYFFAPSLNNII 190	!		11111111		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 433>: a120.seq

```
ATGATGAAGA CTTTTAAAAA TATATTTCC GCCGCCATTT TGTCCGCCGC
     CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGCACT
 51
101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
     AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
     TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT
201
251
    ATAGAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
     GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
301
351
    CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
     CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
401
    GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA TAGGCGGCGT
451
    GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATGCGGTAA
    TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
551
    ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA
601
651
    CGGCCAGGCA GCCAAACCGT AA
```

This corresponds to the amino acid sequence <SEQ ID 434; ORF 120.a>: a120.pep

1 MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLHYSGSYGI PATMTFERSG 51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD 101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS 151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY 201 TDDGKTYTLK LKSVQINGQA AKP*

m120/a120 99.6% identity in 223 aa overlap

m120.pep 10 20 30 40 50 60 mMKTFKNIFSAAILSAALPCAYAAGLPQSAVLXYSGSYGIPATMTFERSGNAYKIVSTIK
a120 MMKTFKNIFSAAILSAALPCAYAAGLPQSAVLHYSGSYGIPATMTFERSGNAYKIVSTIK

,45

	10	20	30	40	50	60
	70	80	90	100	110	120
m120.pep	VPLYNIRFESGG'	<b>FVVGNTLHPTY</b> Y	RDIRRGKLY?	AEAKFADGSVT	YGKAGESKTI	EQSPKAM
		11111111111	1111111111		1111111111	111111
a120	VPLYNIRFESGG'	<b>PVVGNTLHPTY</b> Y	RDIRRGKLY#	AEAKFADGSVT	YGKAGESKTI	EQSPKAM
	70	80	90	100	110	120
	130	140	150	160	170	180
m120.pep	DLFTLAWQLAAN	DAKLPPGLKITN	IGKKLYSVGGI	NKAGTGKYSI	GGVETEVVKY	RVRRGD
			11111111111		111111111	
a120	DLFTLAWQLAAN	DAKLPPGLKITN	GKKLYSVGGI	NKAGTGKYSI	GGVETEVVKY	RVRRGD
	130	140	150	160	170	180
	190	200	210	220		
m120.pep	DAVMYFFAPSLNI	NIPAQIGYTDDG	KTYTLKLKSV	QINGQAAKPX		
			1111111111	Энгінн		
a120	DAVMYFFAPSLNI	NIPAQIGYTDDG	KTYTLKLKSV	QINGQAAKPX		
	190	200	210	220		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 435>: g121.seq

```
ATGGAAACAC AGCTTTACAT CGGCATTATG TCGGGAACCA GTATGGACGG
      GGCGGATGCC GTGCTGGTAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
  51
     AAGGGCACGC CTTTACCCCC TACCCTGACC GGTTGCGCCG CAAATTGCTG
 101
     GATTTGCAGG ACACAGGCAC AGACGAACTG CACCGCAGCA GGATGTTGTC
     GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
     GTCAAAACCT CGCTCCGTGC GACATTACCG CCCTCGGCTG CCACGGGCAA
 251
     ACCGTCCGAC ACGCGCCGGA ACACGGTtac AGCATACAGC TTGCCGATTT
 301
 351
      GCCGCTGCTG GCGGAACTGa cgcggatttT TACCGTCggc gacttcCGCA
     GCCGCGACCT TGCTGCCGGC GGacaAGGTG CGCCGCTCGT CCCCGCCTTT
 401
     CACGAAGCCC TGTTCCGCGA TGACAGGGAA ACACGCGTGG TACTGAACAT
 451
 501
     CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGGCGCA CCCGCCTTCG
     GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGAcgcgtg gacgcaggca
 551
 601
     cacTGGcagc TGCCTTACGA CAAAAacggt gcAAAGgcgg cacAAGGCAA
     catatTGCcg cAACTGCTCG gcaggctGCT CGCCcaccCG TATTTCTCAC
 651
 701 AACCCcaccc aaAAAGCACG GGgcGCGaac TgtttgcccT AAattggctc
     gaaacctAcc ttgacggcgg cgaaaaccga tacgacgtat tgcggacgct
 801
     ttcccgattc accgcgcaaA ccgTttggga cgccgtctca CACGCAGCGG
     CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
 851
901
     TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
     CACCGCCGAA CTGAACCTCG ATCCTCAATG GGTGGAGGCG gccgCATTtg
951
1001
     cgtggttggC GGCGTGTTGG ATTAACCGCA TTCCCGGTAG TCCGCACAAA
1051
     GCGACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
1101 A
```

This corresponds to the amino acid sequence <SEQ ID 436; ORF 121.ng>: g121.pep

1	METQLYIGIM	SGTSMDGADA	VLVRMDGGKW	LGAEGHAFTP	YPDRLRRKLL
51	DLQDTGTDEL	HRSRMLSQEL	SRLYAQTAAE	LLCSQNLAPC	DITALGCHGQ
101	TVRHAPEHGY	SIQLADLPLL	AELTRIFTVG	DFRSRDLAAG	GQGAPLVPAF
151	HEALFRDDRE	TRVVLNIGGI	ANISVLPPGA	PAFGFDTGPG	NMLMDAWTQA
201	HWQLPYDKNG	AKAAQGNILP	QLLGRLLAHP	YFSQPHPKST	GRELFALNWL
251	ETYLDGGENR	YDVLRTLSRF	TAQTVWDAVS	HAAADARQMY	ICGGGIRNPV
301	LMADLAECFG	TRVSLHSTAE	LNLDPQWVEA	AAFAWLAACW	INRIPGSPHK
351	ATGASKPCIL	GAGYYY*			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 437>: m121.seq

- 1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG 51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG 101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG
- BNSDOCID: <WO 9957280A2 1 >



This corresponds to the amino acid sequence <SEQ ID 438; ORF 121>: m121.pep

1	METQLYIGIM	SGTSMDGADA	VLIRMDGGKW	LGAEGHAFTP	YPGRT.PPOTT
51	DLQDTGADEL	HRSRILSQEL	SRLYAQTAAE	LLCSONLAPS	DITALCCUCO
101	TVRHAPEHGY	SIQLADLPLL	Axxxxxxxx	XXXXXXXXXX	DIIMIGCUGO
151	xxxxxxxxx	xxxxxxxxx	XXXXXXXXX	XXXXXXXXXX	VVVVVVVVVV
201	XXQLPYDKNG	AKSAQGNILP	OLLDRLLAHP	YFAORHPKST	CDFIENTNMT
251	ETYLDGGENR	YDVLRTLSRF	TAOTVCDAVS	HAAADAROMY	TCDCCTDNDA
301	LMADLAECFG	TRVSLHSTAD	LNLDPOWVEA	AXFAWI.AACW	TNDTDCCDUV
351	ATGASKPCIL	XAGYYY*		- I I I I I I I I I I I I I I I I I I I	THILLGOLUK

Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae:

m121/g121

	10	20	30	40	50	60
m121.pep	METQLYIGIMSGTS	MDGADAVLI:	RMDGGKWLGA	GHAFTPYPG	RIPPOLIDIO	סט פט
		111111111:				
g121	METQLYIGIMSGTS	MDGADAVIV	RMDGGKWI.GA	יוווווון: ממטבידים מטרי	:	111:111
	10	20	30	40		
	70	80	90		50	60
m121.pep				100	110	120
P-OP	HRSRILSQELSRLY	YOTAKETIC:	PONTAPSOITA	LICCHGOTVR	HAPEHGYSIQI	LADLPLL
g121				11111111	HEHILLE	111111
9121	HRSRMLSQELSRLY	AQTAAELLC	SQNLAPCDITA	LGCHGQTVR	HAPEHGYSIQI	ADLPLL
	70	80	90	100	110	120
m101	130	140	150	160	170	180
m121.pep	AXXXXXXXXXXXXX	XXXXXXXXXX	XXXXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	XXXXXX
	1 : :			•		
g121	AELTRIFTVGDFRS	RDLAAGGQG	APLVPAFHEAL	FRDDRETRV	VINIGGIANTS	WT.DDCA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXXX	XXXXXXXX	PYDKNGAKSA	OGNITAROLL	DDII AUDVENA	240
	:	: 11	1111111:1			
g121	PAFGFDTGPGNMLM	TOWHACTWAC	PYDKNCAKAA	OCNTI DOLL	:	11111
	190	200	210	OGMITE OFF		
	250	260		220	230	240
m121.pep		DCCENDURY	270	280	290	300
рср	GRELFAINWLETYL	DGGENRYDVL	KTLSKFTAQT	VCDAVSHAA <i>i</i>	ADARQMYICDG	GIRNPV
g121	CDELEDING PROCES		1111111111	1 111111		111111
9121	GRELFALNWLETYL	DGGENRYDVI	RTLSRFTAQT	VWDAVSHAAX	ADARQMYICGG	GIRNPV
	250	260	270	280	290	300

	310	320	330	340	350	360
m121.pep	LMADLAECFGTRV	SLHSTADLNL	OPQWVEAAXFA	WLAACWINRI	PGSPHKATG	ASKPCIL
		111:111:11		1111111111		
g121	LMADLAECFGTRV	SLHSTAELNL	OPQWVEAAAFA	WLAACWINRI	PGSPHKATG	ASKPCIL
	310	320	330	340	350	360
m121.pep	XAGYYYX					
	11111					
g121	GAGYYYX					

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 439>:

```
al21.seq
          ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
          GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
      51
         AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
     101
          GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
          GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
     201
     251
          GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
         ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
     301
         GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
     351
          GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
         CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
     451
          CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
     501
     551
          GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
          CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
     601
          CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
     651
          AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
          GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
     751
     801
          TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
     851
          CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
         TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
     901
          CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
     951
    1001
         CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
    1051
         GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
    1101
```

#### This corresponds to the amino acid sequence <SEQ ID 440; ORF 121.a>:

```
a121.pep

1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
51 DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA
201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK
351 ATGASKPCIL GAGYYY*
```

#### m121/a121 74.0% identity in 366 aa overlap

```
10
                       20
                               30
                                       40
                                              50
          METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
m121.pep
          METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL
a121
                10
                        20
                               30
                                       40
                                              50
                                                      60
                        80
                70
                               90
                                      100
                                             110
          HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIOLADLPLL
m121.pep
          a121
          HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVOLADLPLL
                70
                       80
                               90
                                      100
```

BNSDOCID: <WO__9957280A2_l_>



m121.pep	130 AXXXXXXXXXXX   : :	140 XXXXXXXXX	150 XXXXXXXXX	160 XXXXXXXXXXX	170 XXXXXXXXX	180 XXXXXXX
a121	AERTQIFTVGDFR	SRDLAAGGQGA	PLVPAFHEA	LFRDDRETRAV	LNIGGIANI	SVI.PPDA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXXXX	KXXXXXXXQL	PYDKNGAKS	AQGNILPQLLD	RLLAHPYFA	ORHPKST
a121	:	11	1111111:	1111111111	11111111	1 11111
4121	PAFGFDTGPGNML	ADWMQQHMQL	PYDKNGAKA		RLLAHPYFA	QPHPKST
	190	200	210	220	230	240
	250	260	270	280	290	200
m121.pep	GRELFAINWLETYI	DGGENRYDVI.		TUCDAUCUAAA	Z J U	300
			HILLILL	I CDAVSDAAA	DAROMITCO	
a121	GRELFALNWLETYI			1		
	250	260	270	280		
	200	200	270	280	290	300
	310	320	330	340	350	360
m121.pep	LMADLAECFGTRVS	LHSTADLNLD	POWVEAAXF	AWI.AACWTNRTI	PCSDHKVAC.	760 760 760 760
	1111111111111111	11111:1111		11:111:11		SVECIE
a121	LMADLAECFGTRVS	LHSTAELNLD	POWVEAAAF	ι τοιλινώς ΔΑΜ <i></i> ΨΑ	1111111111 20000000000000	CKDGTT
	310	320	330	340	350	360
					000	300
m121.pep	XAGYYYX					
a121	GAGYYYX	•				

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 441>: m121-1.seq

```
1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
  51
      GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
      AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG
 101
      GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC
 151
 201 GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA
251 GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
 301
      ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT
      GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA
 351
      GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT
 401
      CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT
 451
 501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
 551
     GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA
 601 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
 651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
     AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
 701
     GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
 751
 801
     TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG
     CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
851
      TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
901
951
      CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGNATTTG
      CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA
1051
      GCAACCGGCG CATCCAAACC GTGTATTCTG ANCGCGGGAT ATTATTATTG
1101
```

## This corresponds to the amino acid sequence <SEQ ID 442; ORF 121-1>: m121-1.pep

```
1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL
51 DLQDTGADEL HRSRILSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
101 TVRHAPEHGY SIQLADLPLL AERTRIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDNRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWTQA
201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICGGGIRNPV
301 LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK
```

351 ATGASKPCIL XAGYYY*

WO 99/57280

m121-1/g121 95.6% identity in 366 aa overlap

10 20 30 40 50 60

m121-1.pep	METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
g121	METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAEGHAFTPYPDRLRRKLLDLQDTGTDEL  10 20 30 40 50 60
m121-1.pep	70 80 90 100 110 120  HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
m121-1.pep	130 140 150 160 170 180 AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA
m121-1.pep	190 200 210 220 230 240 PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
m121-1.pep	250 260 270 280 290 300  GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV
m121-1.pep	310 320 330 340 350 360  LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
m121-1.pep g121	XAGYYYX       GAGYYYX

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 443>: a121-1.seq

-		1				
	1	ATGGAAACAC	AGCTTTACAT	CGGCATCATG	TCGGGAACCA	GCATGGACGG
	51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
	101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CAAATTGCTG
	151	GATTTGCAGG	ACACAGGCGC	GGACGAACTG	CACCGCAGCA	GGATGTTGTC
	201	GCAAGAACTC	AGCCGCCTGT	ACGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
	251	GTCAAAACCT	CGCGCCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
	301	ACCGTCAGAC	ACGCGCCGGA	ACACAGTTAC	AGCGTACAGC	TTGCCGATTT
	351	GCCGCTGCTG	GCGGAACGGA	CTCAGATTTT	TACCGTCGGC	GACTTCCGCA
	401	GCCGCGACCT	TGCGGCCGGC	GGACAAGGCG	CGCCGCTCGT	CCCCGCCTTT
	451	CACGAAGCCC	TGTTCCGCGA	CGACAGGGAA	ACACGCGCGG	TACTGAACAT
	501	CGGCGGGATT	GCCAACATCA	GCGTACTCCC	CCCCGACGCA	CCCGCCTTCG
	551	GCTTCGACAC	AGGACCGGGC	AATATGCTGA	TGGACGCGTG	GATGCAGGCA
	601	CACTGGCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGGCGG	CACAAGGCAA
	651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
	701	AACCCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCCT	AAATTGGCTC
	751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
	801	TTCCCGATTC	ACCGCGCAAA	CCGTTTTCGA	CGCCGTCTCA	CACGCAGCGG
	851			ATTTGCGGCG		CAATCCTGTT
	901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
	951	CACCGCCGAA	CTGAACCTCG	ATCCGCAATG	GGTAGAAGCC	GCCGCGTTCG
:	1001	CATGGATGGC	GGCGTGTTGG	GTCAACCGCA	TTCCCGGTAG	TCCGCACAAA
:	1051	GCAACCGGCG	CATCCAAACC	GTGTATTCTG	GGCGCGGGAT	ATTATTATTG
:	1101	A				

This corresponds to the amino acid sequence <SEQ ID 444; ORF 121-1.a>: a121-1.pep

- 1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
  51 DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
  101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
  151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA

201

```
HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
         ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
     251
     301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK
     351 ATGASKPCIL GAGYYY*
ml21-1/a121-1 96.4% identity in 366 aa overlap
                          20
                                                  50
           METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
m121-1.pep
           METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL
a121 - 1
                          20
                                  30
                                          40
                  70
                          80
                                  90
                                         100
                                                 110
m121-1.pep
           HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
           a121-1
           HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVQLADLPLL
                          80
                                  90
                                         100
                                                 110
                 130
                         140
                                 150
                                         160
                                                 170
           AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA
m121-1.pep
           a121-1
           AERTQIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRAVLNIGGIANISVLPPDA
                 130
                         140
                                         160
                                                 170
                                 210
                                         220
           PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
m121-1.pep
           a121-1
           {\tt PAFGFDTGPGNMLMDAWMQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST}
                190
                         200
                                210
                                         220
                250
                         260
                                 270
                                         280
                                                 290
                                                         300
           GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV
m121-1.pep
           a121-1
           GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV
                        260
                                270
                                         280
                310
                        320
                                330
                                        340
                                                350
m121-1.pep
          {\tt LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL}
           a121
          LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
                310
                        320
                                330
                                        340
                                                350
                                                        360
m121-1.pep
          XAGYYYX
           111111
a121
          GAGYYYX
```

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 445>: g122.seq

```
ATGGCTTTAC TGAGCATCCG CAAGCTGCAC AAACAATACG GCAGCGTAAC
     CGCCATCCAA TCCTTAGACT TGGACTTGGA AAAAGGCGAA GtcatCGTAC
 51
101
     TGCTGGGCCC gTccggctgc ggCAAATCCA CCCTcctgcg ctgcgtcaaC
     GGTTTGGAGC CGCACCAagg cgGCAGCATC GTGATGGACG GTgtcgGCGA
     ATTCggcAAA GACGTTTCCT GGCAAACCGC CCGGCAAAAa gtcggtatgg
     tetttcaaag taacgAactg Tttgcccaca tgaccgtcat cgAaaacatc
251
     ttcttAggcC CGGTAAagga aCAAAAcCgc gaccgtgccg aagcaGAGGC
301
351
     gCAAGCCGGC AAactGttgg aacgcgTCGG actgctAGAC CGCAAAAACG
401
     CCTATCCGCG CGAACTTTCC GGCGGTCAGA AACAGCGCAT CGCCATTGTC
     CGCGCCCTGT GCCTGAATCC GGAAGTCATC CTGCTGGACG AAATCACCGC
     CGCACTTGAC CCCGAAATGG TGCGCGAAGT CTTGGAAGTG GTTTTGGAAC
501
     TCGCCCGCGA AGGGATGAGT ATGCTCATCG TAACCCACGA AATGGGGTTC
551
     GCACGCAAAG TTGCCGACCG CATCGTCTTT ATGGACAAAG GCGGCATCGT
-601
     CGAATCGTCC GACCCCGAAA CCTTTTTTC CGCACCAAAA AGCGAACGCG
651
     CCCGCCAATT TCTGGCAGGT ATGGACTACT GA
```

This corresponds to the amino acid sequence <SEQ ID 446; ORF 122.ng>:

```
g122.pep
              MALLSIRKLH KQYGSVTAIQ SLDLDLEKGE VIVLLGPSGC GKSTLLRCVN
           1
              GLEPHQGGSI VMDGVGEFGK DVSWQTARQK VGMVFQSNEL FAHMTVIENI
          51
              FLGPVKEQNR DRAEAEAQAG KLLERVGLLD RKNAYPRELS GGQKQRIAIV
         101
              RALCLNPEVI LLDEITAALD PEMVREVLEV VLELAREGMS MLIVTHEMGF
              ARKVADRIVF MDKGGIVESS DPETFFSAPK SERARQFLAG MDY*
         201
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 447>:
     m122.seq
              GTTGTCATGA TTAAAATCCG CAATATCCAT AAGACCTTTG GCGAAAACAC
              TATTTTGCGC GGCATCGATT TGGATGTGTG CAAAGGGCAG GTGGTCGTCA
          51
              TCCTCGGGCC TTCCGGCTCA GGCAAAACGA CGTTTCTGCG ATGCCTAAAC
         101
         151 GCGTTGGAAA TGCCCGAAGA CGGACAAATC GAGTTCGACA ACGAGCGACC
              GCTGAAAATC GATTTTCTA AAAAACCAAG CAAACACGAT ATTTTGGCAC
         201
              TGCGCCGCAA ATCAKGCATG GTGTTTCAAC AATACAAYCT CTTTCCGCAC
         251
         301 AAAACCGCCT TGGAAAACGT AATGGAAGGA CCGGTTGCCG TACAGGGCAA
         351 GCCTGCCGCC CAAGCGCGCG AAGAGGCTCT GAAACTGCTG GAAAAAGTCG
         401 GCTTGGGCGA CAAAGTGGAT TTGTATCCCT ACCAGCTTTC CGGCGGTCAG
         451 CAGCAGCGC TCGGCATTGC CCGCGCATTG GCGATTCAGC CTGAACTGAT
         501 GCTGTTTGAC GAACCGACTT CCGCGCTCGA TCCTGAATTG GTGCAAGATG
         551 TTTTGGATmC CATGAAGGAA TTGGCGCAAG AAGGCTGGAC CATGGTTGTC
         601 GTTACGCATG AAATCAAGTT CGCCTTAGAA GTGGCAACCA CCGwCGTCGT
         651 GATGGACTGC GGCGTTATTG TCGAACAAGG CAGCCCGCAA GATTTGTTCG
         701 ACCACCCCAA ACACGAACGG ACGCGGAGAT TTTTAAGCCA AATCCAATCT
         751 ACCAAGATTT GA
This corresponds to the amino acid sequence <SEQ ID 448; ORF 122>:
     m122.pep
              VVMIKIRNIH KTFGENTILR GIDLDVCKGQ VVVILGPSGS GKTTFLRCLN
           1
             ALEMPEDGQI EFDNERPLKI DFSKKPSKHD ILALRRKSXM VFQQYNLFPH
          51
              KTALENVMEG PVAVQGKPAA QAREEALKLL EKVGLGDKVD LYPYQLSGGQ
         151 OQRVGIARAL AIQPELMLFD EPTSALDPEL VQDVLDXMKE LAQEGWTMVV
         201 VTHEIKFALE VATTXVVMDX GVIVEQGSPQ DLFDHPKHER TRRFLSQIQS
         251
              TKI *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 122 shows 47.2% identity over a 246 aa overlap with a predicted ORF (ORF 122.ng)
from N. gonorrhoeae:
     m122/g122
                                  20
                                           30
                                                     40
                 VVMIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI
     m122.pep
                 MALLSIRKLHKQYGSVTAIQSLDLDLEKGEVIVLLGPSGCGKSTLLRCVNGLEPHQGGSI
     q122
                         10
                                  20
                                           30
                                                     40
                                                              50
                                                                       60
                         70
                                  80
                                           90
                                                   100
                 {\tt EFDNERPLKIDFSKKPSKHDILALRRKSXMVFQQYNLFPHKTALENVMEGPVAVQGKPAA}
     m122.pep
                       : | | : :
                                       VMDGVGEFGKDVSWQTA-----RQKVGMVFQSNELFAHMTVIENIFLGPVKEQNRDRA
     g122
                         70
                                        80
                                                  90
                                                          100
                                                                    110
                                          150
                                                   160
                                                             170
                 QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL
     m122.pep
                 EAEAQAGKLLERVGLLDRKNAYPRELSGGQKQRIAIVRALCLNPEVILLDEITAALDPEM
     g122
                     120
                              130
                                       140
                                                 150
                                                          160
                                                                    170
                                 200
                                          210
                                                   220
                                                             230
     m122.pep
                 VQDVLDXMKELAQEGWTMVVVTHEIKFALEVATTXVVMDXGVIVEQGSPQDLFDHPKHER
                 g122
                 VREVLEVVLELAREGMSMLIVTHEMGFARKVADRIVFMDKGGIVESSDPETFFSAPKSER
```

BNSDOCID: <WO___9957280A2_J_>

350

180 190 200 210 220 230 250 m122.pep TRRFLSQIQSTKIX : | : | | : ARQFLAGMDYX q122 240 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 449>: a122.seg GTTGTCATGA TTAAAATCCG CAATATCCAT AAGACCTTCG GCAAAAATAC 51 CATTTTGCGC GGCATCAATT TGGATGTGTG CAAAGGGCAG GTGGTCGTCA TCCTCGGGCC TTCCGGCTCA GGCAAAACGA CGTTTCTGCG ATGCCTAAAC 101 151 GCGTTGGAAA TGCCCGAAGA CGGACAAATC GAGTTCGACA ACGAGCGACC GCTGAAAATC GATTTTCTA AAAAACCAAG CAAACACGAT ATTTTGGCAC 201 TGCGCCGCAA ATCAGGCATG GTGTTTCAAC AATACAACCT CTTTCCGCAC 251 AAAACCGCCT TGGAAAACGT GATGGAAGGA CCGGTTGCCG TACAGGGCAA 301 GCCTGCCGCC CAAGCGCGCG AAGAGGCTCT GAAACTGCTG GAAAAAGTCG 351 401 GCTTGGGCGA CAAAGTGGAT TTGTATCCCT ACCAGCTTTC CGGCGGTCAG CAGCAGCGCG TCGGCATTGC CCGAGCATTG GCGATTCAGC CCGAGCTGAT GTTGTTTGAC GAACCCACTT CCGCGCTTGA CCCCGAGTTG GTGCAAGACG 451 501 TGTTGAACGC CATGAAGGAA TTGGCGCGGG AAGGTTGGAC GATGGTCGTC 551 GTTACCCACG AAATCAAGTT CGCGCTGGAA GTTGCCACGA CCGTTGTCGT 601 GATGGACGGC GGCGTTATCG TAGAGCAGGG CAGCCCGAAA GAGTTGTTCG 651 ACCACCCCAA ACACGAACGG ACGCGGAGAT TTTTAAGCCA AATCCAATCT 701 751 ACCAAGATTT GA This corresponds to the amino acid sequence <SEQ ID 450; ORF 122.a>: al22.pep VVMIKIRNIH KTFGKNTILR GINLDVCKGQ VVVILGPSGS GKTTFLRCLN 1 ALEMPEDGQI EFDNERPLKI DFSKKPSKHD ILALRRKSGM VFQQYNLFPH 51 101 KTALENVMEG PVAVQGKPAA QAREEALKLL EKVGLGDKVD LYPYQLSGGQ 151 QQRVGIARAL AIQPELMLFD EPTSALDPEL VQDVLNAMKE LAREGWTMVV VTHEIKFALE VATTVVVMDG GVIVEQGSPK ELFDHPKHER TRRFLSQIQS 201 251 TKI* m122/a122 96.0% identity in 253 aa overlap 10 20 30 40 VVMIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI m122.pep VVMIKIRNIHKTFGKNTILRGINLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI a122 10 20 30 40 50 60 80 90 100 110 EFDNERPLKIDFSKKPSKHDILALRRKSXMVFQQYNLFPHKTALENVMEGPVAVQGKPAA m122.pep EFDNERPLKIDFSKKPSKHDILALRRKSGMVFQQYNLFPHKTALENVMEGPVAVQGKPAA a122 70 80 90 100 110 120 130 140 150 160 170 QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL m122.pep QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL a122 130 140 150 160 190 200 210 220 VQDVLDXMKELAQEGWTMVVVTHEIKFALEVATTXVVMDXGVIVEQGSPQDLFDHPKHER m122.pep VQDVLNAMKELAREGWTMVVVTHEIKFALEVATTVVVMDGGVIVEQGSPKELFDHPKHER a122 190 200 210 220 230 250 m122.pep TRRFLSQIQSTKIX

### 1122 | TRRFLSQIQSTKIX | 250

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 451>: g122-1.seq

```
1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACCATTTT
    GCGCGGCATC GATTTGGATG TGGGCAAAGG GCAGGTGGTC GTCATCCTCG
 51
101 GGCCTTCCGG CTCGGGTAAA ACAACATTTC TGCGCTGCCT AAACGCGTTG
151 GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGCGC GGCCGTTACG
201 CATTGATTTT TCCAAAAAAA CAAGCAAACA CGATATTTTG GCACTGCGCC
251 GCAAGTCCGG AATGGTATTC CAACAATACA ACCTCTTCCC GCATAAAACC
    GTGTTGGAAA ACGTGATGGA AGGGCCGGTT GCCGTACAGG GCAAGCCTGC
351 CGCCCAAGCG CGCGAAGAGG CTTTGAAACT GCTGGAAAAA GTCGGCTTGG
    GCGATAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG
401
    CGTGTCGGTA TCGCCCGCGC ACTGGCGATT CAGCCTGAAT TGATGCTGTT
451
501 TGACGAACCC ACTTCCGCGC TGGACCCCGA GTTGGTGCAA GACGTGTTGG
    ACGCCATGAA GGAATTGGCG CGGGAAGGTT GGACGATGGT CGTCGTTACC
601 CACGAAATCA AGTTCACGCT GGAAGTTGCC ACGAACGTCG TCGTGATGGA
651 CGGCGGCGTT ATCGTAGAGC AGGGCAGCCC GAAAGAGTTG TTCGACCACC
701 TCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTGCCAAG
751 ATTTGA
```

This corresponds to the amino acid sequence <SEQ ID 452; ORF 122-1.ng>: g122-1.pep

```
1 MIKIRNIHKT FGENTILRGI DLDVGKGQVV VILGPSGSGK TTFLRCLNAL
51 EMPEDGQIEF DNARPLRIDF SKKTSKHDIL ALRRKSGMVF QQYNLFPHKT
101 VLENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ
151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDAMKELA REGWTMVVVT
201 HEIKFTLEVA TNVVVMDGGV IVEQGSPKEL FDHLKHERTR RFLSQIQSAK
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 453>: m122-1.seq

```
1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACTATTTT
51 GCGCGGCATC GATTTGGATG TGTGCAAAGG GCAGGTGGTC GTCATCCTCG
    GGCCTTCCGG CTCAGGCAAA ACGACGTTTC TGCGATGCCT AAACGCGTTG
151 GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGAGC GACCGCTGAA
201 AATCGATTTT TCTAAAAAAC CAAGCAAACA CGATATTTTG GCACTGCGCC
    GCAAATCAGG CATGGTGTTT CAACAATACA ACCTCTTTCC GCACAAAACC
301 GCCTTGGAAA ACGTAATGGA AGGACCGGTT GCCGTACAGG GCAAGCCTGC
    CGCCCAAGCG CGCGAAGAGG CTCTGAAACT GCTGGAAAAA GTCGGCTTGG
351
401 GCGACAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG
451 CGCGTCGGCA TTGCCCGCGC ATTGGCGATT CAGCCTGAAC TGATGCTGTT
    TGACGAACCG ACTTCCGCGC TCGATCCTGA ATTGGTGCAA GATGTTTTGG
551 ATACCATGAA GGAATTGGCG CAAGAAGGCT GGACCATGGT TGTCGTTACG
    CATGAAATCA AGTTCGCCTT AGAAGTGGCA ACCACCGTCG TCGTGATGGA
    CGGCGGCGTT ATTGTCGAAC AAGGCAGCCC GCAAGATTTG TTCGACCACC
701
    CCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTACCAAG
```

This corresponds to the amino acid sequence <SEQ ID 454; ORF 122-1>: m122-1.pep

```
1 MIKIRNIHKT FGENTILRGI DLDVCKGQVV VILGPSGSGK TTFLRCLNAL
51 EMPEDGQIEF DNERPLKIDF SKKPSKHDIL ALRRKSGMVF QQYNLFPHKT
101 ALENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ
151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDTMKELA QEGWTMVVVT
201 HEIKFALEVA TTVVVMDGGV IVEQGSPQDL FDHPKHERTR RFLSQIQSTK
251 I*
```

m122-1/g122-1 94.8% identity in 251 aa overlap

BNSDOCID: -₩O___9957280A2_]>

	10	20	30	40	50	60
m122-1.pep	70 DNERPLKIDFSKK	80 PSKHDILALR	90 RKSGMVFQQYN	100 LFPHKTALEI	110 VVMEGPVAVQ	120 GKPAAQA
g122-1	:       DNARPLRIDFSKK: 70			:    LFPHKTVLEN		  GKPAAQA   120
m122-1.pep g122-1	130 REEALKLLEKVGLO            REEALKLLEKVGLO			1111111111	1111111111	
	130 190	140 200	150 210	160	170 230	180
m122-1.pep	DVLDTMKELAQEGW	TMVVVTHEIR	FALEVATTVV	VMDGGVIVEC	GSPODLFDHF	KHERTR
g122-1	DVLDAMKELAREGW 190	TMVVVTHEIR 200	FTLEVATNVV	VMDGGVIVEQ 220	GSPKELFDHI 230	KHERTR 240
m122-1.pep	250 RFLSQIQSTKIX					
g122-1	RFLSQIQSAKIX 250					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 455>:

```
1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTCGGCAAAA ATACCATTTT 51 GCGCGGCATC AATTTGGATG TGTGCAAAGG GCAGGTGGTC GTCATCCTCG
101 GGCCTTCCGG CTCAGGCAAA ACGACGTTTC TGCGATGCCT AAACGCGTTG
151 GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGAGC GACCGCTGAA
201 AATCGATTTT TCTAAAAAAC CAAGCAAACA CGATATTTTG GCACTGCGCC
251 GCAAATCAGG CATGGTGTTT CAACAATACA ACCTCTTTCC GCACAAAACC 301 GCCTTGGAAA ACGTGATGGA AGGACCGGTT GCCGTACAGG GCAAGCCTGC
351 CGCCCAAGCG CGCGAAGAGG CTCTGAAACT GCTGGAAAAA GTCGGCTTGG
      GCGACAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG
401
451 CGCGTCGGCA TTGCCCGAGC ATTGGCGATT CAGCCCGAGC TGATGTTGTT
501 TGACGAACCC ACTTCCGCGC TTGACCCCGA GTTGGTGCAA GACGTGTTGA
551 ACGCCATGAA GGAATTGGCG CGGGAAGGTT GGACGATGGT CGTCGTTACC
601 CACGAAATCA AGTTCGCGCT GGAAGTTGCC ACGACCGTTG TCGTGATGGA
651 CGGCGGCGTT ATCGTAGAGC AGGGCAGCCC GAAAGAGTTG TTCGACCACC
701 CCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTACCAAG
751 ATTTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 456; ORF 122-1.a>: a122-1.pep

- 1 MIKIRNIHKT FGKNTILRGI NLDVCKGQVV VILGPSGSGK TTFLRCLNAL 51 EMPEDGQIEF DNERPLKIDF SKKPSKHDIL ALRRKSGMVF QQYNLFPHKT 101 ALENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ 151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLNAMKELA REGWTMVVVT 201 HEIKFALEVA TTVVVMDGGV IVEQGSPKEL FDHPKHERTR RFLSQIQSTK
- a122-1/m122-1 97.2% identity in 251 aa overlap

251 I*

a122-1.pep	TU MIKIDNITUKTECKNI	20 PTI PCINI DU	30	40	50	60
2.pcp	MIKIRNIHKTFGKN	TILKGINLDV	CVGOAAATC	PSGSGKTTFI	RCLNALEMPI	EDGQIEF
m122-1		FILRGIDLDV	CKGQVVVILO		 RCLNALEMPI	 EDGQIEF
	10	20	30	40	50	60
	70	80	90	100	110	120
a122-1.pep	DNERPLKIDFSKKPS	SKHDILALRR	KSGMVFQQYN	LEPHKTALEN	VMEGPVAVOG	KDV VOV
m122-1	DNERPLKIDESKKPS	SKHDILALRR	KSGMVFQQYN			 KPAAOA
	70	80	90	100	110	120
a122-1.pep	130	140	150	160	170	180
<b></b> pop	REEALKLLEKVGLGE	NVDLIPIQL:	SGGQQQRVGI	ARALAIQPEL	MLFDEPTSAL	DPELVQ
m122-1	REEALKLLEKVGLG	KADTABAÖT:		 ARALAIQPEL	 MLFDEPTSAL	 DPELVQ

	130	140	150	160	170	180
a122-1.pep	190 DVLNAMKELAREGW    ::    :				230 QGSPKELFDH:	
m122-1	DVLDTMKELAQEGW 190	TMVVVTHEIK 200	(FALEVATTVV 210	VMDGGVIVE( 220	QGSPQDLFDH: 230	PKHERTR 240
a122-1.pep	250 RFLSQIQSTKIX					
m122-1	RFLSQIQSTKIX 250					

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 457>: g125.seq

```
ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGGT
  1
     TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
 53
101 TCGCCCCTT GGGCTGGCAG CGCGGTCTGG CGGCCCTGCT TTTGGGTCAT
151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
201 CGGACGCAGC TCGATGGAAA GTGTGCGCCT GTCGTTCGGC AAATGCGGTT
251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
301 GTGATGATTT ACGTCGGCGC AacggTCAGC TCCGCTTTGG GCAAAGTGTT
351 GTGGGACggc gaATCCTTTG TCTGGTGGGC ATTGGCAAAC GGCGCACTGA
401 TCGTGCTGTG GCTGGTTTTC GGCGCACGCA GAACGGGCGG GCTGAAAACC
451 GTTTCGATGC TGCTGATGCT GCTTGCCGTG TTGTGGTTGA GCGTCGAAGT
     GTTCGCTTCG TCCGGCACAA ACGCCGCGCC CGCCGTTTCA GACGGCATGA
    CCTTCGGAAC GGCAGTCGAA CTGTCCGCCG TCATGCCGCT TTCCTGGCTG
601
    CCGCTGGCCG CCGACTACAC GCGCCAAGCA CGCCGCCCGT TTGCGGCAAC
651 CCTGACGGCA ACGCTCGCCT ATACGCTGAC GGGCTGCTGG ATGTATGCCT
701 TGGGTTTGGC GGCGGCTCTG TTTACCGGAG AAACCGACGT GGCGAAAATC
751 CTGTTGGGCG CGGGCTTGGG CATAACGGGC ATTCTGGCAG TCGTCCTCTC
801 CACCGTTACC ACAACGTTTC TCGATACCTA TTCCGCCGGC GCGAGTGCGA
851 ACAACATTC CGCGCGTTTT GCGGAAATAC CCGTCGCTGT CGGCGTTACC
901 CTGatccgca ccgtgcttgc cgtcatgctg cccgttaccg aatataaaaa
951 cttcctgctg cttatccgct cggtatttgg gccgatggcg ggtggttttg
1001 attgccgaCT TTTttgtctt AAAACGGCGT GA
```

This corresponds to the amino acid sequence <SEQ ID 458; ORF 125.ng>:

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 459>:

```
m125.sea
         ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCTCCGCCA TCGGGCTGAT
      1
         TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
    101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTACT TTTGGGTCAT
    151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
         CGGACGCAGC TCGATGGAAA GCGTGCGCCT GTCGTTCGGC AAACGCGGTT
         CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
         GTGATGATTT ACGCCGGCGC AACGGTCAGC TCCGCTTTGG GCAAAGTGTT
         GTGGGACGGC GAATCTTTTG TCTGGTGGGC ATTGGCAAAC GGCGCGCTGA
    401
        TTGTGCTGTG GCTGGTTTTC GGCGCACGCA AAACAGGCGG GCTGAAAACC
    451 GTTTCGATGC TGCTGATGCT GTTGGCGGTT CTGTGGCTGA GTGCCGAAGT
    501 CTTTTCCACG GCAGGCAGCA CCGCCGCACA GGTTTCAGAC GGCATGAGTT
    551 TCGGAACGGC AGTCGAGCTG TCCGCCGTGA TGCCGCTTTC CTGGCTGCCG
    601 CTTGCCGCCG ACTACACGCG CCACGCGCGC CGCCCGTTTG CGGCAACCCT
    651 GACGGCAACG CTCGCCTACA CGCTGACCGG CTGCTGGATG TATGCCTTGG
    701 GTTTGGCAGC GGCGTTGTTC ACCGGAGAAA CCGACGTGGC AAAAATCCTG
    751 CTGGGCGCAr GTTTGGGTGC GGCAGGCATT TTGGCGGTCG TCCTCTCCAC
    801 CGTTACCACA ACGTTTCTCG ATGCCTATTC CGCCGGCGCG AGTGCGAACA
```

BNSDOCID: <WO___9957280A2_j_>

```
851 ACATTTCCGC GCGTTTTGCG GAAACACCCG TCGCTGTCrG CGTTACCCTG
           901 ATCGGCACGG TACTTGCCGT CATGCTGCCC GTTACCGAAT ATGAAAACTT
           951 CCTGCTGCTT ATCGGCTCGG TATTTGCGCC GATGGCGGGC GGTTTTGATT
               GCCGACTTTT TCGTCTTGAA ACGGCGTGA
This corresponds to the amino acid sequence <SEQ ID 460; ORF 125>:
     m125.pep
               MSGNASSPSS SSAIGLIWFG AAVSIAEIST GTLLAPLGWQ RGLAALLLGH
           51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KRGSVLFSVA NMLQLAGWTA
               VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF GARKTGGLKT
          101
               VSMLLMLLAV LWLSAEVFST AGSTAAQVSD GMSFGTAVEL SAVMPLSWLP
               LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF TGETDVAKIL
          251 LGAXLGAAGI LAVVLSTVTT TFLDAYSAGA SANNISARFA ETPVAVXVTL
          301
               IGTVLAVMLP VTEYENFLLL IGSVFAPMAG GFDCRLFRLE TA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
```

ORF 125 shows 92.1% identity over a 343 aa overlap with a predicted ORF (ORF 125.ng) from N. gonorrhoeae:

m125/g125

m125.pep	10 MSGNASSPSSSSA	20 IGLIWFGAAV    :	30 SIAEISTGTL	40 LAPLGWQRGL	50 AALLLGHAVG	60 GALFFAA
g125	MSGNASSPSSSAA		!	DI CHODOL		
	10	20	30	40	50	GALFFAA 60
m125.pep	70 AYIGALTGRSSME	80 SVRI.SEGKPG	90	100	110	120
			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ZLAGWTAVMI;	YAGATVSSAL	GKVLWDG
g125	AYIGALTGRSSMES	VRLSFGKCG	SVLFSVANML	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
•	70	80	90	100	110	120
	130	140	150	160	170	179
m125.pep	ESFVWWALANGAL]	VLWLVFGARI	KTGGLKTVSMI	LMLLAVLWLS	SAEVFSTAGS	PAAO~VS
g125		1111111:	:		1111	. 11 - 11 -
9123	ESFVWWALANGALI 130	VLWLVFGARI	RTGGLKTVSML		EVEVFASSGT	<b>IAAPAVS</b>
	130	140	150	160	170	180
	180 190					
	100	200	210	220	220	
m125.pep			210 DYTRHARRPF	220 'AATI,TATI.AV	230	239
	DGMSFGTAVELSAV	MPLSWLPLA?	DYTRHARRPF	AATLTATLAY	TLTGCWMYAI	GLAAAL
m125.pep g125	DGMSFGTAVELSAV    :         DGMTFGTAVELSAV	MPLSWLPLA?	DYTRHARRPF	AATLTATLAY	TLTGCWMYAI	GLAAAL
		MPLSWLPLA?	DYTRHARRPF	AATLTATLAY	TLTGCWMYAI	GLAAAL
	DGMSFGTAVELSAV    :          DGMTFGTAVELSAV 190	MPLSWLPLAA          MPLSWLPLAA 200	ADYTRHARRPF     :      ADYTRQARRPF 210	AATLTATLAY           AATLTATLAY 220	TLTGCWMYAI	GLAAAL        GLAAAL
g125	DGMSFGTAVELSAV    :         DGMTFGTAVELSAV 190 240 250	MPLSWLPLAF                   MPLSWLPLAF 200 260	ADYTRHARRPF     :      ADYTRQARRPF 210 270	AATLTATLAY           AATLTATLAY 220	TLTGCWMYAI	GLAAAL        GLAAAL 240
	DGMSFGTAVELSAV    :          DGMTFGTAVELSAV 190	MPLSWLPLAF                   MPLSWLPLAF 200 260	ADYTRHARRPF     :      ADYTRQARRPF 210 270	AATLTATLAY           AATLTATLAY 220	TLTGCWMYAI	GLAAAL        GLAAAL 240
g125	DGMSFGTAVELSAV    :          DGMTFGTAVELSAV 190  240 250 FTGETDVAKILLGA	MPLSWLPLAF                   MPLSWLPLAF 200 260 XLGAAGILAV     :	ADYTRHARRPF     :      ADYTRQARRPF 210 270 VLSTVTTTFL	AATLTATLAY           AATLTATLAY 220 280 DAYSAGASAN	TLTGCWMYAI                     TLTGCWMYAI 230 290 NISARFAETP	GLAAAL       GLAAAL 240 299 VAVXVT
g125 m125.pep	DGMSFGTAVELSAV    :         DGMTFGTAVELSAV 190 240 250	MPLSWLPLAF                   MPLSWLPLAF 200 260 XLGAAGILAV     :	DYTRHARRPF                   DYTRQARRPF 210 270 VLSTVTTTFL                 VLSTVTTTFL	AATLTATLAY                     AATLTATLAY 220 280 DAYSAGASAN   :               DTYSAGASAN	TLTGCWMYAI                       TLTGCWMYAI 230 290 NISARFAETP               NISARFAEIP	GLAAAL       GLAAAL 240 299 VAVXVT
g125 m125.pep	DGMSFGTAVELSAV    :          DGMTFGTAVELSAV 190  240 250 FTGETDVAKILLGA	MPLSWLPLAF                     MPLSWLPLAF 200  260  XLGAAGILAV     :         GLGITGILAV	ADYTRHARRPF     :      ADYTRQARRPF 210 270 VLSTVTTTFL	AATLTATLAY           AATLTATLAY 220 280 DAYSAGASAN	TLTGCWMYAI                     TLTGCWMYAI 230 290 NISARFAETP	GLAAAL       GLAAAL 240 299 VAVXVT
g125 m125.pep g125	DGMSFGTAVELSAV    :         DGMTFGTAVELSAV 190  240 250 FTGETDVAKILLGA             FTGETDVAKILLGA 250  300 310	MPLSWLPLAF	ADYTRHARRPF	AATLTATLAY          AATLTATLAY 220 280 DAYSAGASAN  :        DTYSAGASAN 280	TLTGCWMYAI                       TLTGCWMYAI 230 290 NISARFAETP               NISARFAEIP	GLAAAL       GLAAAL 240 299 VAVXVT
g125 m125.pep	DGMSFGTAVELSAV    :          DGMTFGTAVELSAV 190  240 250 FTGETDVAKILLGA            FTGETDVAKILLGA	MPLSWLPLAF	ADYTRHARRPF	AATLTATLAY          AATLTATLAY 220 280 DAYSAGASAN  :        DTYSAGASAN 280	TLTGCWMYAI                       TLTGCWMYAI 230 290 NISARFAETP               NISARFAEIP	GLAAAL       GLAAAL 240 299 VAVXVT
g125 m125.pep g125 m125.pep	DGMSFGTAVELSAV    :         DGMTFGTAVELSAV 190  240 250 FTGETDVAKILLGA             FTGETDVAKILLGA 250  300 310 LIGTVLAVMLPVTE	MPLSWLPLAF                       MPLSWLPLAF  200  260  XLGAAGILAV      :            GLGITGILAV  260  320  YENFLLLIGS   :	ADYTRHARRPF	AATLTATLAY                     AATLTATLAY 220  280  DAYSAGASAN  :                 DTYSAGASAN 280  340  CRLFRLETAX	TLTGCWMYAI                       TLTGCWMYAI 230 290 NISARFAETP               NISARFAEIP	GLAAAL       GLAAAL 240 299 VAVXVT
g125 m125.pep g125	DGMSFGTAVELSAV    :         DGMTFGTAVELSAV 190  240 250 FTGETDVAKILLGA             FTGETDVAKILLGA 250  300 310	MPLSWLPLAF                       MPLSWLPLAF  200  260  XLGAAGILAV      :            GLGITGILAV  260  320  YENFLLLIGS   :	ADYTRHARRPF	AATLTATLAY                     AATLTATLAY 220  280  DAYSAGASAN  :                 DTYSAGASAN 280  340  CRLFRLETAX	TLTGCWMYAI                       TLTGCWMYAI 230 290 NISARFAETP               NISARFAEIP	GLAAAL       GLAAAL 240 299 VAVXVT

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 461>:

- 1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGAT 51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACACTGC
  - 101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTGCT TTTGGGTCAT

on the August 1 in the

151	GCCGTCGGCG	GCGCGCTGTT	TTTTGCGGCG	GCGTATATCG	GCGCACTGAC			
201	CGGACGCAGC	TCGATGGAAA	GCGTGCGCCT	GTCGTTCGGC	AAACGCGGTT			
251	CAGTGCTGTT	TTCCGTGGCG	AATATGCTGC	AACTGGCCGG	CTGGACGGCG			
301	GTGATGATTT	ACGCCGGCGC	AACGGTCAGC	TCCGCTTTGG	GCAAAGTGTT			
351	GTGGGACGGC	GAATCTTTTG	TCTGGTGGGC	ATTGGCAAAC	GGCGCGCTGA			
401	TTGTGCTGTG	GCTGGTTTTC	GGCGCACGCA	AAACAGGCGG	GCTGAAAACC			
451	GTTTCGATGC	TGCTGATGCT	GTTGGCGGTT	CTGTGGCTGA	GTGCCGAAGT			
501	CTTTTCCACG	GCAGGCAGCA	CCGCCGCACA	GGTTTCAGAC	GGCATGAGTT			
551	TCGGAACGGC	AGTCGAGCTG	TCCGCCGTGA	TGCCGCTTTC	TTGGCTGCCG			
601	CTGGCCGCCG	ACTACACGCG	CCACGCGCGC	CGCCCGTTTG	CGGCAACCCT			
651	GACGGCAACG	CTCGCCTACA	CGCTGACCGG	CTGCTGGATG	TATGCCTTGG			
701	GTTTGGCAGC	GGCGTTGTTC	ACCGGAGAAA	CCGACGTGGC	AAAAATCCTG			
751	CTGGGCGCAG	GTTTGGGTGC	GGCAGGCATT	TTGGCGGTCG	TCCTGTCGAC			
801	CGTTACCACC	ACTTTTCTCG	ATGCCTACTC	CGCCGGCGTA	AGTGCCAACA			
851	ATATTTCCGC	CAAACTTTCG	GAAATACCCA	TCGCCGTTGC	CGTCGCCGTT			
901	GTCGGCACAC	TGCTTGCCGT	CCTCCTGCCC	GTTACCGAAT	ATGAAAACTT			
951	CCTGCTGCTT	ATCGGCTCGG	TATTTGCGCC	GATGGCG.GC	GGTTTTGATT			
1001	GCCGACTTTT	TCGTCTTGAA	ACGGCGTGA					
spond	sponds to the amino acid sequence <seq 125.a="" 462;="" id="" orf="">:</seq>							
.pep								

#### This corres a125

o.pep					
1	MSGNASSPSS	SAAIGLIWFG	AAVSIAEIST	GTLLAPLGWQ	RGLAALLLGH
51	AVGGALFFAA	AYIGALTGRS	SMESVRLSFG	KRGSVLFSVA	NMLQLAGWTA
101	VMIYAGATVS	SALGKVLWDG	ESFVWWALAN	GALIVLWLVF	GARKTGGLKT
151	VSMLLMLLAV	LWLSAEVFST	AGSTAAQVSD	GMSFGTAVEL	SAVMPLSWLP
201	LAADYTRHAR	RPFAATLTAT	LAYTLTGCWM	YALGLAAALF	TGETDVAKIL
251	LGAGLGAAGI	LAVVLSTVTT	TFLDAYSAGV	SANNISAKLS	EIPIAVAVAV
301	<b>VGTLLAVL</b> LP	VTEYENFLLL	IGSVFAPMAX	GFDCRLFRLE	TA*

# m125/a125 95.6% identity in 342 aa overlap

	10	20	30	40	50	60
m125.pep	MSGNASSPSSSSAI	GLIWFGAAVS	IAEISTGTLI	LAPLGWQRGLA	ALLLGHAVGO	ALFFAA
	1111111111111111	111111111	1111111111		111111111	111111
a125	MSGNASSPSSSAAI	GLIWFGAAVS	IAEISTGTLI	LAPLGWQRGLA	ALLLGHAVGO	ALFFAA
	10	20	30	40	50	60
	70	80	90	100	110	120
m125.pep	AYIGALTGRSSMES	VRLSFGKRGS	VLFSVANMLO	LAGWTAVMIY	AGATVSSALO	KVLWDG!
• •	1111111111111	1111111111	ппппп		1111111111	11111
a125	AYIGALTGRSSMES	VRLSFGKRGS	VLFSVANMLO	LAGWTAVMIY	AGATVSSALO	KVLWDG
	70	80	90	100	110	120
	130	140	150	160	170	180
m125.pep	ESFVWWALANGALI	VLWLVFGARK	TGGLKTVSMI	LMLLAVLWLS	AEVESTAGST	
a125	ESFVWWALANGALI					
	130	140	150	160	170	180
						200
	190	200	210	220	230	240
m125.pep	GMSFGTAVELSAVM	PLSWLPLAAD				
a125	GMSFGTAVELSAVM					
	190	200	210	220	230	240
	250	200		220	230	240
	250	260	270	280	290	300
m125.pep	TGETDVAKILLGAX					
zzo. pop						HILL
a125	TGETDVAKILLGAG					1     • •
UILU	250	260	270	280	290	300
	230	200	2,0	200	2.30	300
	310	320	330	340		
m125.pep	IGTVLAVMLPVTEY					
zo.pcp	- 11 - 11 - 11 - 11 - 11					

VGTLLAVLLPVTEYENFLLLIGSVFAPMAXGFDCRLFRLETAX

a125

310 320

330

340

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 463>:

```
1
     AtgccgtcTG AAaccCcaaa ggcACGCCGC CGGCTTTCAG ACGGCATCGC
     GTCCGACAAC CATACCAAAG AATCCATCAT GCTCACCCtg tacggcGAAA
 51
     CTTTCCCTTC GCGGCTGCTg ctcggcacgG cggcctacCC GACCCCTGAA
101
    ATCCTCAAAC AATCCGTCCG AACCGCCCGG CCCGCGATGA ttaccGTCTC
151
     GCTGCGCCGC ACGGGATGCG GCGGCGAGGC GCACGGTCAG GGGTTTTGGT
201
251
     CGCTGCTTCA AGAAACCGGC GTTCCCGTCC TGCCGAACAC GGCAGGCTGC
     CAAAGCGTGC AGGAAGCGGT. AACGACGGCG CAAATGGCGC GCGAAGTGTT
351 TGAAACCGAT TGGATAAAAT TGGAACTCAT CGGCGACGAC GACACCTTGC
401 AGCCGGACGT GTTCCAACTC GTCGAAGCGG CGGAAATCCT GATTAAAGAC
    GGCTTCAAAG TGCTGCCTTA TTGCACCGAA GACCTGATTG CCTGCCGCCG
451
     CCTGCTCGAT GCGGGCTGTC AGGCGTTGAT GCCGTGGGCG GCTCCCATCG
     GCACGGGTTT GGGGGCGGTT CACGCCTATG CGCTCAAAAT CCTGCGCGAA
     CGCCTGCCCG ACACGCCGCT GATTATCGAC GCGGGCTTGG GTTTGCCTTC
601
    CCAAGCGGCA CAAGTGATGG AATGGGGTTT TGACGGCGTA TTGTTAAACA
651
701 CCGCCGTTTC CCGCAGCGGC GACCCCGTCA ACATGGCGCG CGCCTTCGCA
751 CTCGCCGTCG AATCCGGACG GCTGGCATTT GAAGCCGGGC CGGTCGAAGC
    GCGAACCAAA GCCCAAGCCA GCACGCCGAC AGTCGGACAA CCGTTTTGGC
851 ATTCGGCGGA ATATTGA
```

### This corresponds to the amino acid sequence <SEQ ID 464; ORF 126.ng>:

```
9126.pep

1 MPSETPKARR RLSDGIASDN HTKESIMLTL YGETFPSRLL LGTAAYPTPE
51 ILKQSVRTAR PAMITVSLRR TGCGGEAHGQ GFWSLLQETG VPVLPNTAGC
101 QSVQEAVTTA QMAREVFETD WIKLELIGDD DTLQPDVFQL VEAAEILIKD
151 GFKVLPYCTE DLIACRRLLD AGCQALMPWA APIGTGLGAV HAYALKILRE
201 RLPDTPLIID AGLGLPSQAA QVMEWGFDGV LLNTAVSRSG DPVNMARAFA
```

251 LAVESGRLAF EAGPVEARTK AQASTPTVGQ PFWHSAEY*

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 465>:

```
..CACTATACAA AGGAACCCAT TATGCTCACC CTATACGGCG AAACTTTCCC
  1
       CTCGCGGCTG CTGCTCGGCA CGGCTGCCTA CCCGACCCCC GAAATCCTCA
 51
       AACAATCCAT CCAAACCGCC CAGCCTGCGA TGATTACCGT CTCGCTGCGC
101
       CGCGCGGGAA GCGGCGCGA GGCGCACGGT CAGGGGTTTT GGTCGCTGCT
       TCAAGAAACC GGCGTTCCCG TCCTGCCGAA CACGGCAGGC TGCCAAAGCG
       TGCAGGAAGC GGTAACGACG GCGCAAATGG CGCGCGAAGT GTTTGAAACC
       GATTGGATAA AATTGGAACT CATCGGAGAT GACGACACCT TGCAGCCGGA
301
       TGTGTTCCAG CTTGTCGAAG CGGCGGAAAT CCTGATTAAA GACGGCTTCA
351
       AAGTGCTGCC TTATTGCACC GAAGACCTGA TTGCCTGCCG CCGCCTGCTC
401
       GACGCGGGCT GTCAGGCGTT GATGCCGTGG GCGGCCCCGA TCGGCACGGG
451
501
       TTTGGGCGCG GTTCACGCCT ACGCGTTGAA CGTCCTGCGC GAACGCCTGC
551
       CCGACACGCC GCTGATTATC GACGCGGGCT TGGGTTTGCC CTCACAGGCG
       GCACAAGTGA TGGAATGGGG CTTTGACGGC GTGCTTTTGA ATACTGCCGT
601
       TTCCCGCAGC GGCGATCCGG TCAATATGGC ACGCGCCTTC GCACTCGCCG
651
701
       TCGAATCCGG ACGGCTGGCA TTTGAAGCCG GACCGGTCGA AGCACGCGAC
       AAAGCGCAAG CCAGCACGCC GACAGTCGGA CAACCGTTTT GGCATTCGGC
751
801
       GGAATATTGA
```

### This corresponds to the amino acid sequence <SEQ ID 466; ORF 126>: m126.pep (partial)

1 ..HYTKEPIMLT LYGETFPSRL LLGTAAYPTP EILKQSIQTA QPAMITVSLR 51 RAGSGGEAHG QGFWSLLQET GVPVLPNTAG CQSVQEAVTT AQMAREVFET

101	DWIKLELIGD	DDTLQPDVFQ	LVEAAEILIK	DGFKVLPYCT	EDLIACRRLL
151	DAGCQALMPW	AAPIGTGLGA	VHAYALNVLR	ERLPDTPLII	DAGLGLPSQA
201	AQVMEWGFDG	VLLNTAVSRS	GDPVNMARAF	ALAVESGRLA	FEAGPVEARD
251	KAQASTPTVG	QPFWHSAEY*			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 126 shows 95.9% identity over a 269 aa overlap with a predicted ORF (ORF 126.ng) from N. gonorrhoeae:

m126/g126

m126.pep		НҮТК	10 EPIMLTLYGE	20 TFPSRLLLGT	30 AAYPTPEILK	40 QSIQTAQ
g126	MPSETPKARRRLSI	:: GIASDNHTK		 TFPSRLLLGT	 AAYPTPEILK	::  : :QSVRTAR
	10	20	30	40	50	60
	50	60	70	80	90	100
m126.pep	PAMITVSLRRAGSS	GEAHGOGFW	SLLQETGVPV	LPNTAGCOSV	QEAVTTAQMA	REVFETD
g126		 Geargogew			OFFICE	
9120	70	80	90	100	QEAVITAQMA 110	120
					210	120
	110	120	130	140	150	160
m126.pep	WIKLELIGDDDTLC	PDVFQLVEA	AEILIKDGFK	VLPYCTEDLI.	ACRRLLDAGO	QALMPWA
g126	WIKLELIGDDDTLQ					
9120	130	140	150	160	170	QALMPWA. 180
						100
	170	180	190	200	210	220
m126.pep	APIGTGLGAVHAYA		DTPLIIDAGL	GLPSQAAQVM	EWGFDGVLLN	TAVSRSG
g126	ADICTCI CAMANA	::				
9126	APIGTGLGAVHAYA 190	200	210	зырафадум. 220	230 230	TAVSRSG 240
	250	200	210	220	230	240
	230	240	250	260	270	
m126.pep	DPVNMARAFALAVE	SGRLAFEAG	PVEARDKAOA	STPTVGQPFW	HSAEYX	
~126		HIIIIIII				
g126	DPVNMARAFALAVE 250	260	270	280	HSAEYX	
				200		

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 467>: a126

126.seq					
1	TTGTTAATCC	ACTATACAAA	GGAACCCATT	ATGCTCACCC	TGTACAGCGA
51	AACTTTCCCT	TCGCGGCTGC	TGCTCGGCAC	AGCCGCCTAC	CCGACCCCTG
101	AAATCCTCAA	ACAATCCGTC	CGAACCGCCC	GGCCCGCGAT	GATTACCGTC
151	TCGCTGCGCC	GCGCGGGATG	CGGCGGCGAG	GCGCACGGTC	AGGGGTTTTG
201	GTCGCTGCTT	CAAGAAACCG	GCGTTCCCGT	CCTGCCGAAC	ACGGCAGGCT
251	GCCAAAGCGT	GCAGGAAGCG	GTAACGACGG	CGCAAATGGC	GCGCGAAGTG
301	TTTGAAACCG	ATTGGATTAA	ACTCGAACTC	ATCGGCGACG	ACGACACCTT
351	GCAGCCGGAT	GTGTTCCAAC	TTGTCGAAGC	GGCGGAAATC	CTGATTAAAG
401	ACGGCTTCAA	AGTGCTGCCT	TATTGCACCG	AAGACCTGAT	TGCCTGCCGC
451	CGCCTGCTCG	ACGCGGGCTG	TCAGGCGTTG	ATGCCGTGGG	CGGCCCCGAT
501	CGGCACGGGT	TTGGGCGCGG	TTCACGCCTA	CGCGTTGAAC	GTCCTGCGCG
551	AACGCCTGCC	CGACACGCCG	CTGATTATCG	ACGCGGGCTT	GGGTTTGCCC
601	TCACAGGCGG	CACAAGTGAT	GGAATGGGGC	TTTGACGGCG	TGCTTTTGAA
651	TACTGCCGTT	TCCCGCAGCG	GCGATCCGGT	CAATATGGCA	CGCGCCTTCG
701	CACTCGCCGT	CGAATCCGGA	CGGCTGGCAT	TTGAAGCCGG	ACCGGTCGAA
751	GCACGCGACA	AAGCGCAAGC	CAGCACGCCG	ACAGTCGGAC	AACCGTTTTG
801	GCATTCGGCG	GAATATTGA			

This corresponds to the amino acid sequence <SEQ ID 468; ORF 126.a>: a126.pep LLIHYTKEPI MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV

51 SLRRAGCGGE AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV

101 FETDWIKLEL IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR 151 RLLDAGCQAL MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP

201 SQAAQVMEWG FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE

251 ARDKAQASTP TVGQPFWHSA EY*

#### m126/a126 98.1% identity in 269 aa overlap

20/4120 70.17	o identity in 200 a	a overrap				
	10	20	30	40	50	
m126.pep	HYTKEPIMLTLY	GETFPSRLLLC	GTAAYPTPEI:	LKQSIQTAQP	AMITVSLRRA	AGSGGE
	1111111111	: 11,1111111		1111::11:1	1111111111	11 111
a126	LLIHYTKEPIMLTLY		GTAAYPTPEI:	LKQSVRTARP	AMITVSLRRA	AGCGGE
	10	20	30	40	50	60
	60 70	80	90	100	110	
m126.pep	AHGQGFWSLLQETGV	PVLPNTAGCQS	SVQEAVTTAQI	MAREVFETDW	IKLELIGDDD	DTLQPD
706					111111111	
a126	AHGQGFWSLLQETGV	PVLPNTAGCQS				
	70	80	90	100	110	120
	120 130	140	150			
m126.pep		140	150	160	170	
mrzo.pep	VFQLVEAAEILIKDG			COALMPWAA	PIGTGLGAVE	IAYALN
a126	VFQLVEAAEILIKDG	, , , , , , , , , , ,			!	
a120	130	140	150	160	PIGIGLGAVE 170	
	130	140	150	100	170	180
	180 190	200	210	220	230	
m126.pep	VLRERLPDTPLIIDA					AUESC
						11111
a126	VLRERLPDTPLIIDA					AVESG
	190	200	210	220	230	240
						210
	240 250	260	270			
m126.pep	RLAFEAGPVEARDKA	QASTPTVGQPF	WHSAEYX			
		1111111111	111111			
a126	RLAFEAGPVEARDKA	QASTPTVGQPF	WHSAEYX			
•	250	260	270			

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 469>: g126-1.seq

1	ATGCTCACCC	TGTACGGCGA	AACTTTCCCT	TCGCGGCTGC	TGCTCGGCAC
51	GGCCGCCTAC	CCGACCCCTG	AAATCCTCAA	ACAATCCGTC	CGAACCGCCC
101	GGCCCGCGAT	GATTACCGTC	TCGCTGCGCC	GCACGGGATG	CGGCGGCGAG
151	GCGCACGGTC	AGGGGTTTTG	GTCGCTGCTT	CAAGAAACCG	GCGTTCCCGT
201	CCTGCCGAAC	ACGGCAGGCT	GCCAAAGCGT	GCAGGAAGCG	GTAACGACGG
251	CGCAAATGGC	GCGCGAAGTG	TTTGAAACCG	ATTGGATAAA	ATTGGAACTC
301	ATCGGCGACG	ACGACACCTT	GCAGCCGGAC	GTGTTCCAAC	TCGTCGAAGC
351	GGCGGAAATC	CTGATTAAAG	ACGGCTTCAA	AGTGCTGCCT	TATTGCACCG
401	AAGACCTGAT	TGCCTGCCGC	CGCCTGCTCG	ATGCGGGCTG	TCAGGCGTTG
451		CGGCTCCCAT			
501		ATCCTGCGCG			
551	ACGCGGGCTT	GGGTTTGCCT	TCCCAAGCGG	CACAAGTGAT	GGAATGGGGT
601		TATTGTTAAA			
651		CGCGCCTTCG			
701	TTGAAGCCGG	GCCGGTCGAA	GCGCGAACCA	AAGCCCAAGC	CAGCACGCCG
751	ACAGTCGGAC	AACCGTTTTG	GCATTCGGCG	GAATATTGA	

This corresponds to the amino acid sequence <SEQ ID 470; ORF 126-1.ng>: g126-1.pep

1 MLTLYGETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRTGCGGE

```
51 AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL
101 IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL
151 MPWAAPIGTG LGAVHAYALK ILRERLPDTP LIIDAGLGLP SQAAQVMEWG
201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARTKAQASTP
251 TVGQPFWHSA EY*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 471>: m126-1.seq

```
1 ATGCTCACCC TATACGGCGA AACTTTCCCC TCGCGGCTGC TGCTCGGCAC
     GGCTGCCTAC CCGACCCCCG AAATCCTCAA ACAATCCATC CAAACCGCCC
     AGCCTGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGAAG CGGCGGCGAG
101
     GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT
151
201 CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG
251 CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATAAA ATTGGAACTC
301 ATCGGAGATG ACGACACCTT GCAGCCGGAT GTGTTCCAGC TTGTCGAAGC
351 GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG
401 AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG
    ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA
451
     CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
551 ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC
     TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT
601
    CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT
651
701 TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG
751 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA
```

### This corresponds to the amino acid sequence <SEQ ID 5; ORF 126-1>: m126-1.pep

```
1 MLTLYGETFP SRLLLGTAAY PTPEILKQSI QTAQPAMITV SLRRAGSGGE
51 AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL
101 IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL
151 MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG
201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP
251 TVGQPFWHSA EY*
```

m126-1/g126-1 96.9% identity in 262 aa overlap 20 40 10 30 50 MLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGEAHGQGFWSLL m126-1.pep MLTLYGETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRTGCGGEAHGQGFWSLL g126-1 30 40 10 20 80 110 120 QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI m126-1.pep

g126-1 QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI 70 80 90 100 150 160 170  $\verb|Likdgfkvlpyctedliacrrlldagcqalmpwaapigtglgavhayalnvlrerlpdtp|$ m126-1.pep g126-1 LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALKILRERLPDTP 130 140 150 160 180 190 200 210 220 230 LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE m126-1.pep

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 473>: a126-1.seq

- 1 ATGCTCACCC TGTACAGCGA AACTTTCCCT TCGCGGCTGC TGCTCGGCAC
- 51 AGCCGCCTAC CCGACCCCTG AAATCCTCAA ACAATCCGTC CGAACCGCCC
- 101 GGCCCGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGATG CGGCGGCGAG

BNSDOCID: <WO___9957280A2_j_>

NS PE

```
GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT
201
     CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG
     CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATTAA ACTCGAACTC
251
     ATCGGCGACG ACGACACCTT GCAGCCGGAT GTGTTCCAAC TTGTCGAAGC
301
     GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG
     AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG
401
     ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA
CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
451
501
     ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC
551
     TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT
     CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT
651
     TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG
701
751 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 474; ORF 126-1.a>: a126-1.pep

- MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRAGCGGE 1 51
- AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL 101
- IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG 151
- FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP 201
- TVGOPFWHSA EY*

WO 99/57280

#### a126-1/m126-1 98.1% identity in 262 aa overlap

```
10
                                                                                                                 20
                                                                                                                                                    30
   a126-1.pep
                                                 MLTLYSETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRAGCGGEAHGQGFWSLL
                                                 инизининининий::пзинини ининин
   m126-1
                                                 MLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGEAHGQGFWSLL
                                                                                                                                                   30
                                                                                                                                                                                      40
                                                                                                                                                                                                                         50
                                                                             70
                                                                                                               80
                                                                                                                                                   90
                                                                                                                                                                                 100
                                                                                                                                                                                                                     110
                                                QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI
   a126-1.pep
                                                 \hat{m}_{1}, \hat{m}_{2}, \hat{m}_{3}, \hat{m}_{4}, \hat{m}
  m126-1
                                                 QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI
                                                                            70
                                                                                                               80
                                                                                                                                                  90
                                                                                                                                                                                                                     110
                                                                         130
                                                                                                           140
                                                                                                                                              150
                                                                                                                                                                                 160
 a126-1.pep
                                                {\tt LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP}
                                                LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP
 m126-1
                                                                        130
                                                                                                           140
                                                                                                                                              150
                                                                                                                                                                                160
                                                                                                                                                                                                                   170
                                                                                                                                                                                                                                                      180
                                                                         190
                                                                                                          200
                                                                                                                                              210
                                                                                                                                                                                220
                                                                                                                                                                                                                   230
                                              LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE
 a126-1.pep
                                                m126-1
                                               LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE
                                                                       190
                                                                                                         200
                                                                                                                                             210
                                                                                                                                                                               220
                                                                                                         260
a126-1.pep
                                              ARDKAQASTPTVGQPFWHSAEYX
                                               11111111111111111111111111
m126-1
                                              ARDKAQASTPTVGQPFWHSAEYX
                                                                      250
                                                                                                         260
```

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 475>: g127.seq

1	ATGGAAATAT	GGAATATGTT	GAACACTTGG	CCCGATGCCG	TCCCGATACG
51	CGCGGAGGCG	GCCGAATCCG	TGGCGGCGGT	CGCGGCTTTG	CTGCTGCCCC
101	GCGCCCTTCT	GTTGAATATC	CACTTCAGAC	GGCATCCGGA	TTTCCCCATC
151	GAAAGCAAGC	GGCGGTTTTT	GGTTGCCAGC	CGCAATATAA	CCCTCCTTTTTT
201	GGTGCTGTTT	TCGCTGGCAT	TTATCTGGTC	GGCGCAAATT	CNNNCCCMCC
251	CTTTGTCGAT	GTTTGCGGTG	GCGGCGGCGG	TCGTCGTGGC	CACAAAAAA
301	CIGATIATGT	GTCTGTCGGG	CAGTATTTTA	aggteteck	CCCACCAAMA
 351	CICGGICGGC	GACTATATCG	AAATCAACGG	CCTGCGCGGG	CCCCTCCTCC
401	ACATCAATCT	GTTGAACACG	CTGATGATGC	AGGTCGGTCC	CAACGGGGTCG
451	GTCGGACAGC	TTGCGGGAAC	CACCGTTTCT	TTCCCCAACA	CCCTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
501	GAGCCACCCC	GTGCGCCGCG	ACAATATTTT	GGGCGACTAT	GCCIGITGTT
				CCCCGACIAI	GICATCCATA

```
551 CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
              CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
              TCAGCGGTAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
               CCGCCAGGCC GCGCGTTACC CGCGTACCGT ACGACGACAA GGCATACCGC
          751 ATCATCGTCC GCTTCGCCTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
          801
              GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCATC
          851
               CCGCCGgctc cgAAACACTT TAA
This corresponds to the amino acid sequence <SEQ ID 476; ORF 127.ng>:
     g127.pep
              MEIWNMLNTW PDAVPIRAEA AESVAAVAAL LLARALLLNI HFRRHPDFGI
            1
           51
              ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
              LIMCLSGSIL RSATOOYSVG DYIEINGLRG RVVDINLLNT LMMOVGPNPL
              VGQLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
          201 RLKAVLEPLC APYIPAIQRY LENVQAEKLF ITPAARPRVT RVPYDDKAYR
          251 IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
The following partial DNA sequence was identified in N. meningitidis <SEO ID 477>:
     m127.seq
              ATGGAAATAT GGAATATGTT GGACACTTGG CTCGGTGCCG TCCCGATACG
            1
           51
              TGCGGAGGCG GTCGAATCCG TGGCGGCGGT TGCGGCTTTG CTGCTGGCGC
              GCGCCCTTCT GTTGAATATC CACTTCAAAC GGCATCCGGA TTTCGGCATC
          151 GAAAGCAAGC GGCGGTTTTT GGTTGCCAGC CGCAATATAA CGCTGCTTTT
          201 GGTGCTGTTT TCGCTGGCAT TTATCTGGTC GGCGCAAATC CAAACGCTGG
          251 CTTTGTCGAT GTTTGCGGTG GCGGCGGCGG TCGTCGTGGC GACGAAGGAA
          301 CTGATTATGT GTCTGTCGGG CAGTATTTTA AGGTCTGCCA CCCAGCAATA
          351 CTCGGTCGGC GACTATATCG AAATCAACGG CCTGCGCGGG CGCGTGGTCG
          401 ACATCAACCT GTTGAACACG CTGATGATGC AGGTCGGTCC GAACCCCTTG
          451 GTCGGACAGC TTGCGGGAAC CACCGTTTCT TTCCCCAACA GCCTGTTGTT
          501 GAGCCACCCC GTGCGCCGCG ACAATATTTT GGGCGACTAT GTCATCCATA
          551 CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
          601 CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
          651 CCAACGGSAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
              CCGCCAGACC GCGCGTTACC CGCGTGCCGT ACGATGACAA GGCATACCGC
          751 ATCATCGTCC GCTTCGCTTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
              GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCACC
              CCGCCGGCTC CGAAACACTT TAA
          851
This corresponds to the amino acid sequence <SEQ ID 478; ORF 127>:
     m127.pep
              MEIWNMLDTW LGAVPIRAEA VESVAAVAAL LLARALLLNI HFKRHPDFGI
           51
              ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
              LIMCLSGSIL RSATQQYSVG DYIEINGLRG RVVDINLLNT LMMQVGPNPL
              VGQLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
              RLKAVLEPLC APYIPAIQRX LENVQAEKLF ITPAARPRVT RVPYDDKAYR
              IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 127 shows 97.9% identity over a 290 aa overlap with a predicted ORF (ORF 127.ng)
from N. gonorrhoeae:
     m127/g127
                         10
                                   20
                                             30
                                                      40
                                                                          60
    m127.pep
                 MEIWNMLDTWLGAVPIRAEAVESVAAVAALLLARALLLNIHFKRHPDFGIESKRRFLVAS
                 MEIWNMLNTWPDAVPIRAEAAESVAAVAALLLARALLLNIHFRRHPDFGIESKRRFLVAS
    g127
                         10
                                   20
                                            30
                                                      40
                                   80
                                            90
                                                     100
                                                               110
                                                                         120
    m127.pep
                 RNITLLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQOYSVG
                 g127
                 {\tt RNITLLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQQYSVG}
```

BNSDOCID: <WO___9957280A2_I_>

	70	80	90	100	110	120
	130	140	150	160	1.70	
m127.per		RVVDINLLNTLM	OVGPNPI.VGOT	AGTTVCEDMC	170 LLLSHPVRRD	180
~127	1 1 7 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1			11111111	
g127	DYIEINGLRG	KAADINPT <b>ULFW</b> M	(QVGPNPLVGQI	LAGTTVSFPNS	LLLSHPVRRD	NILGDY
	130	140	150	160	170	180
	190	200	210	220	230	240
m127.pep	VIHTVEIPVP	HLDSDEAVCRLK	AVLEPLCAPYI	PATORYLENG	ONEVI ETMEN	240 ARPRVT
g127			111111111		111111111	111111
9127	190	HLDSDEAVCRLK 200	AVLEPLCAPYI			ARPRVT
	250	200	210	220	230	240
	250	260	270	280	290	
m127.pep	RVPYDDKAYRI	IVRFASPVSKRL	EIQQAVMDEFL	RVQYRLLNHP/	AGSETLX	
g127	RVPYDDKAYRT	IVRFASPVSKRL	FTOOMWORDS:			
-	250	260	270	RVQYRLLNHPA 280	AGSETLX 290	
7501 O 41 1						
The following	partial DNA seque	ence was ident	tified in N. n	neningitidis	<seo 4<="" id="" td=""><td>79&gt;</td></seo>	79>
a127.seq 1						, ,
51	ATGGAAATAT GGA TGCGGAGGCG GTC	ATATGTT GGAC! GAATCCG TGGC	ACTTGG CTCG	STGCCG TCCC	GATACG	
101	GCGCCCTTCT GTT	GAATATO CACTI	CAAAC GGCA1	PCCCCA MMMC	CCCTTC	
151	GAMAGCAAGC GGC	GGTTTTTT GGTTC	CCAGC CGCA7	ነጥአጥአአ ራራራመ	COMMON	
201 251	GGIGCIGITI TCG	CIGGCAT TTATC	TEGETO GGOGO	תתתה השתתתת	CCCMCC	
301	CTTTGTCGAT GTT	TGUGGTG GUGGC	GGCGG TCGTC	CGTGGC GACG	AAGGAA	
351	CICGGTCGGC GAC	LATATEG AAATE	AACGG CCTGC	CCCCC CCCC	mccmcc	•
401	ACAICAACCI GIT(	SAACACG CTGAT	'GATGC AGGTC	CCTCC CNNC	CCCMMC	
<b>45</b> 1 501	GICGGACAGC TIG	JGGGAAC CACCG	ጥጥጥርጥ ጥጥርርር	יראארא ההכתחי	CMM CMM	
551	GAGCCACCC GTGC	GCCGCG ACAAT	ATTTT GGGCG	ACTAC GTCA	ICCATA	
601	CGICIGAAAG CCG	ACTOGA GCCCT	TGTGC GCGCC	CTACA TOCO	2CCC	
651 701	CCAACGGCAT TTGG	BAAAACG TGCAG	GCGGA AAAAC	ערטעע עעערטע	300000	
751	CCGCCAMACC GCGC	GTTACC CGCGT	GCCGT ACGAT	CACAA CCCAC	77000	
801	ATCATCGTCC GCTT GGCGGTTATG GACG	AATTTT TGCGC	TTTCA AAGCG	GCTGG AAAT	CAACA	
851	CCGCCGGCTC CGAA	ACACTT TAA	ormen Arace	GCCIG TTAAL	TTACC	
This correspond	a to the emiliar asi	<b>.</b>				
al27.pep	s to the amino aci	a sequence <s< td=""><td>SEQ ID 480;</td><td>ORF 127.a</td><td>&gt;:</td><td></td></s<>	SEQ ID 480;	ORF 127.a	>:	
1	MEIWNMLDTW LGAV	PIRAFA MECMA				
51	DOLUME DANS VIIIT	TTTATE STAFIA	MSAOT OTTAT	מאוד און אום מאום	77 7 T (F) PP P P P P	
101	TINCTOGOIT KOMI	OUISVG DYIETI	NGT.RG DVVIDTI	TTTNIT TRENCATE	CDiin	
151 201	AGOTHGIIAS END	TTT2H5 AKKDM.	TICDY VITURIX	PERSON THE PA	DD2	
251	RLKAVLEPLC APYI IIVRFASPVS KRLE	PAIQKH LENVQA IOOAVM DEFI.RI	AEKLF ITPAAI MYRL LNYDA	KPRVT RVPYD	DKAYR	
107/ 107 - 00			ATIVE TWIFE	SEIL '		
m127/a127 98.	6% identity in 29	0 aa overlap				
m127.pep	10	20	30	40	50	60
zer.pep	MEIWNMLDTWLGA	AVPIRAEAVESVA	AVAALLLARAI	LLNIHFKRHP	DFGIESKRRF	LVAS
a127	 MEIWNMLDTWLGA	AVPIRAEAVESVA	TARALLLIARVV	TTWIREADED	DECTECKED	
	10	20	30	40	DEGIESKRRE. 50	LVAS 60
	70	80	0.0	100		
m127.pep	RNITLLLVLFSLA	FIWSAOTOTT.AT.	90 SMFAVAAAVVV	100 ATKELIMOLO	110	120
a127						
a121	RNITLLLVLFSLA	TWONGIĞI DAL	SHEAVAAAVVV	ATKELIMCLS(	SSILRSATQO	YSVG
	70	80	90	100	110	120

m127.pep	130 DYIEINGLRGRVVD	140 INLLNTLMMO	150 VGPNPLVGOLA	160 AGTTVSFPNS	170 LLLSHPVRRI	180
						1111111
a127	DYIEINGLRGRVVD	INLLNTLMMÇ	VGPNPLVGQL	AGTTVSFPNS	LLLSHPVRRI	ONILGDY
	130	140	150	160	170	180
	190	200	210	220	230	240
m127.pep	VIHTVEIPVPIHLD:					
• •			1111111111	111ÎL 1111		11:111
a127	VIHTVEIPVPIHLD	SDEAVCRLKA	VLEPLCAPYII	PAIQRHLENV	QAEKLFITP#	AKPRVT
	190	200	210	220	230	240
	250	260	270	280	290	
m127.pep	RVPYDDKAYRIIVR	FASPVSKRLE	IQQAVMDEFL	RVQYRLLNHP		
		111111111	1111111111	1111111:1	111111	
a127	RVPYDDKAYRIIVR	FASPVSKRLE	IQQAVMDEFL	RVQYRLLNYP	AGSETLX	
	250	260	270	280	290	

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 481>: g128.seq

1	atgattgaca	acgCActgct	ccacttgggc	gaagaaccCC	GTTTTaatca
51	aatccaaacc	gaagACAtca	AACCCGCCGT	CCAAACCGCC	ATCGCCGAAG
101	CGCGCGGACA	AATCGCCGCC	GTCAAAGCGC	AAACGCACAC	CGGCTGGGCG
151	AACACCGTCG	AGCGTCTGAC	CGGCATCACC	GAACGCGTCG	GCAGGATTTG
201	GGGCGTCGTG	TCCCATCTCA	ACTCCGTCGT	CGACACGCCC	GAACTGCGCG
251	CCGTCTATAA	CGAACTGATG	CCTGAAATCA	CCGTCTTCTT	CACCGAAATC
301	GGACAAGACA	TCGAACTGTA	CAACCGCTTC	AAAACCATCA	AAAATTCCCC
351	CGAATTTGCA	ACGCTTTCCC	CCGCACAAAA	AACCAAGCTC	GATCACGACC
401	TGCGCGATTT	CGTATTGAGC	GGCGCGGAAC	TGCCGCCCGA	ACGGCAGGCA
451	GAACTGGCAA	AACTGCAAAC	CGAAGGCGCG	CAACTTTCCG	CCAAATTCTC
501	CCAAAACGTC	CTAGACGCGA	CCGACGCGTT	CGGCATTTAC	TTTGACGATG
551	CCGCACCGCT	TGCCGGCATT	CCCGAAGACG	CGCTCGCCAT	GTTTGCCGCC
601	GCCGCGCAAA	GCGAAGGCAA	AACAGGTTAC	AAAATCGGCT	TGCAGATTCC
651	GCACTACCTT	GCCGTTATCC	AATACGCCGG	CAACCGCGAA	CTGCGCGAAC
701	AAATCTACCG	CGCCTACGTT	ACCCGTGCCA	GCGAACTTTC	AAACGACGGC
751	AAATTCGACA	ACACCGCCAA	CATCGACCGC	ACGCTCGAAA	ACGCATTGAA
801	AACCGccaaa	CTGCTCGGCT	TTAAAAATTA	CGCCGAATTG	TCGCTGGCAA
851	•	GGACACGCCC		TAAACTTCCT	GCACGACCTC
901	GCCCGCGCG	CCAAACCCTA	CGCCGAAAAA	GACCTCGCCG	AAGTCAAAGC
951		GAACACCTCG		CCCGCAGCCG	TGGGACTTGA
1001			CGCGAAGCCA		CAGCGAAACC
1051			CGTCGGCAAA		GCCTGTTCGC
1101	CCAAATCAAA	AAACTCTACG	GCATCGGATT	CGCCGAAAAA	ACCGTTCCCG
1151		AGACGTGCGC			CGGCAAAACC
1201			TTTGTACGCA		AACGCGGCGG
1251			AAGGCCGCCG		GACGgcacGC
1301			CTCGTCTGCA		GCCCGTCGGC
1351			CCACGACGAA		TCTTCCACGA
1401			ACCTGCTTAC		
1451			GAATGGGACG		GCCCAGCCAG
1501			GGAATACAAT		AAATGTCCGC
1551		_	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC
1601	_	AAACTTCCAG		TCCTCGTCCG	GCAAATGGAG
1651		TCGATATGAT		GAAAGCGACG	AATGCCGTCT
1701		CAGCAGGTTT			GTcGCCGTCA
1751			CGCTTCGCCA		CCacatctTC
1801		ATTCCGCAGG		TACGCATGGG	
1851	CAGCACCGAT		CCTTTGAAGA	AAGcGACGac	gtcGCCGCCA
1901		CTTCTGGCAA		ccgtcggcgg	ctCCCGCAGC
1951	gcgGCGGAAT	CCTTCAAAGC	CTTCCGCGGA	CGCGAACCGA	GCATAGACGC



WO 99/57280

```
2001 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
  This corresponds to the amino acid sequence <SEQ ID 482; ORF 128.ng>:
       g128.pep
                 MIDNALLHLG EEPRFNQIQT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
                NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
             51
                 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
            101
                 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
                 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
            201
                KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
            251
           301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
           351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
           401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
           451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
           501 FMENFVWEYN VLAQMSAHEE TGEPLPKELF DKMLAAKNFQ RGMFLVRQME
           551 FALFDMMIYS ESDECRLKNW QQVLDSVRKE VAVIQPPEYN RFANSFGHIF
           601 AGGYSAGYYS YAWAEVLSTD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
           651 AAESFKAFRG REPSIDALLR QSGFDNAA*
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 483>:
      m128.seq
                (partial)
                ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
             1
                AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
            51
                CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
           101
                AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
                GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
           201
                CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
           251
                GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
           301
           351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
             1 TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
            51 WGTCAAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
           101 AAMTCAAAAA ACTMTACGGC ATCGGATTTA CCGAAAAAAC YGTCCCCGTC
           151 TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAMCCAT
           201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
           251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
               CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
               CAGGGAAGCC CGCYTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
          351
               CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
          401
               TCCGGCATCA ACGGCGTAKA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
          451
               TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
          551 ACGAAGAAAC CGGCGTTCCC yTGCCGAAAG AACTCTTsGA CAAAwTGCTC
          601 GCCGCCAAAA ACTTCCAASG CGGCATGTTC yTsGTCCGGC AAWTGGAGTT
          651 CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
          701 AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
              CAGCCGCCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
              AGGCGGCTAT TCCGCAGCTn ATTACAGCTA CGCGTGGGCG GAAGTATTGA
               GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
              GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
          901
              NGCAGAATCC TTCAAAGCCT TCCGCGGCCG CGAACCGAGC ATAGACGCAC
         1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
This corresponds to the amino acid sequence <SEQ ID 484; ORF 128>:
     m128.pep
                (partial)
               MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
           51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
          101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH
     //
              YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
          51 WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
          101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
          151 SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
         201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
              QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
```

301 GKRFWOEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng) from N. gonorrhoeae:

m128/g128

	10	20	30	40	50	60
g128.pep	MIDNALLHLGEEPRFNQ					
m128	MTDNALLHLGEEPRFDQ					
	10	20	30	40	50	60
	70	. 80	90	100	110	120
g128.pep	ERVGRIWGVVSHLNSVV					
m128	ERVGRIWGVVSHLNCVA 70	DTPELRAVYN 80	NELMPEITVF 90	FTEIGQDIEI 100	YNRFKTIKNS 110	
	70	00	30	100	110	120
		140	150	160	170	180
g128.pep	TLSPAQKTKLDHDLRDF	VLSGAELPPE	ERQAELAKLQ	TEGAQLSAKF	'SQNVLDATDA	FGIY
m128	TLSPAQKTKLNH					
	130					
	//		340	350	360	`
g128.pep					EVKKYFPVGI	
J			11:11	1111111111		11 1
m128			YASEKL	REAKYAFSET 10	XVKKYFPVG) 20	
				10	20	30
	370 380	390	400	410		
g128.pep	LFAQIKKLYGIGFAEKT	VPVWHKDVRY	FELQQNGKT	IGGVYMDLYA	REGKRGGAWN	INDYK
m128	LFAQXKKLYGIGFTEKT					
	40	50	60	70	80	90
	430 440	450	460	470	480	
g128.pep	GRRRFADGTLQLPTAYL					
		1111111111	:	[	111111111	1111
m128	GRRRFSDGTLQLPTAYL	VCNFAPPVGG 110	REARLSHDE 120	ILILFHETGH 130	GLHHLLTQVI 140	
	100	110	120	130	140	150
	490 500	510	520	530		
g128.pep	SGINGVEWDAVELPSQF					
m128	SGINGVXWDAVELPSQF					
	160	170	180	190	200	210
	550 560	570	580	590	600	,
g128.pep	LVRQMEFALFDMMIYSE					
		:	1111111:	[[]]		1111
m128	XVRQXEFALFDMMIYSE 220	DDEGRLKNW <u>C</u> 230	QVLDSVRKK 240	VAVIQPPEYN 250	RFALSFGHIE 260	
	220	- J V	240	230	200	270
	610 620	630	640	650		
g128.pep	SAGYYSYAWAEVLSTDA	YAAFEESDDV 	/AATGKRFWQ:		:	REPS
m128	SAAXYSYAWAEVLSADA	YAAFEESDDV	/AATGKRFWQ			
		290	300	310	320	330

BNSDOCID: <WO___9957280A2_l_>

STORM STORM STREET

670 679
g128.pep IDALLRQSGFDNAAX
||||||:||||:
m128 IDALLRHSGFDNAVX
340

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 485>:

```
a128.seq
          ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
       1
      51
         AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
     101
          CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
         AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
          GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
    201
    251
         CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
         GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
    301
         CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
    351
    401
         TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
         GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
    451
         CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
    501
         CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
    551
         GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
    601
    651
         GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
         AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
    701
         AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
    751
    801
         AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
         CCAAAATGGC GGACACCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
    901
         GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
         CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
    951
         GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
   1001
   1051
         GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
         CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
         TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
   1151
   1201
         ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
         CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
         TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC
   1301
         GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
   1351
         AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
   1451
         TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
         TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
   1501
   1551
         CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
   1601
         TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
         TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
   1701
         GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
   1751
         TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
         GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
   1801
   1851
         GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
         CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
         GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
   1951
   2001
        ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 486; ORF 128.a>:

				- 100, OIG	120.a.
128.pep			_	ŕ	
1	MTDNALLHLG	EEPRFDQIKT	EDIKPALQTA	IAEAREQIAA	IKAOTHTGWA
51	NTVEPLTGIT	ERVGRIWGVV	SHLNSVTDTP	ELRAAYNELM	PEITVFFTEI
101	GQDIELYNRF	KTIKNSPEFD	TLSHAQKTKL	NHDLRDFVLS	GAELPPEOOA
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201	AAQSEGKTGY	KIGLQIPHYL	AVIQYADNRK	LREOIYRAYV	TRASELSDDG
251	KFDNTANIDR	TLENALQTAK	LLGFKNYAEL	SLATKMADTP	EOVLNFLHDI.
301	ARRAKPYAEK	DLAEVKAFAR	ESLGLADLQP	WDLGYAGEKL	REAKYAFSET
351	EVKKYFPVGK	VLNGLFAQIK	KLYGIGFTEK	TVPVWHKDVR	YFELOONGET
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFS	DGTLOLPTAY	LVCNFTPPVG
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTQVD	ELGVSGINGV	EWDAVELPSO
501	FMENFVWEYN	VLAQMSAHEE	TGVPLPKELF	DKMLAAKNFQ	RGMFLVRQME

- FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
  AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
  AAESFKAFRG REPSIDALLR HSGFDNAA*
- n

m128/a128 66.0		•			•	
m128.pep	10 MTDNALLHLGEEPR	20 FDQIKTEDIK	30 PALQTAIAE	40 AREQIAAIKAÇ	50 THTGWANTVI	60 PLTGIT
a128						
m128.pep	70 ERVGRIWGVVSHLN	1:111111	: 1111111111	1111111111		111111
a128	ERVGRIWGVVSHLN 70	SVTDTPELRA 80	AYNELMPEIT 90	VFFTEIGQDI 100	ELYNRFKTII 110	NSPEFD 120
m128.pep	130 TLSPAQKTKLNH					
a128	TLSHAQKTKLNHDL	RDFVLSGAEL 140	PPEQQAELAK 150	LQTEGAQLSA 160	KFSQNVLDAT 170	DAFGIY 180
m128.pep						
a128	FDDAAPLAGIPEDA 190	LAMFAAAAQS 200	EGKTGYKIGI 210	QIPHYLAVIQ 220	YADNRKLREÇ 230	QIYRAYV 240
m128.pep		<del></del>				
a128	TRASELSDDGKFDN 250	TANIDRTLEN 260	ALQTAKLLGF 270	KNYAELSLAT 280	KMADTPEQVI 290	NFLHDL 300
m128.pep				140 YASEKLREAK		
a128	ARRAKPYAEKDLAE 310	VKAFARESLG 320	LADLQPWDLG 330	:       YAGEKLREAK 340	 YAFSE <b>TE</b> VKK 350	  YFPVGK   360
m128.pep	160 170 VLNGLFAQXKKLYG	111111111	1111111111	11111:111	1111111111	111111
a128	VLNGLFAQIKKLYG 370	IGFTEKTVPV 380	WHKDVRYFEL 390	QQNGETIGGV 400	YMDLYAREGK 410	RGGAWM 420
m128.pep	220 230 NDYKGRRRFSDGTL	240 QLPTAYLVCN	250 FAPPVGGREA	260 RLSHDEILIL	270 FHETGHGLHH	LLTQVD
a128	NDYKGRRRFSDGTL	QLPTAYLVCN 440	FTPPVGGKEA 450	RLSHDEILTL 460	FHETGHGLHH	LLTQVD 480
m128.pep	280 290 ELGVSGINGVXWDA	300 VELPSQFMEN	310 FVWEYNVLAQ	320 XSAHEETGVP	330 LPKELXDKXI	AAKNFQ
a128	ELGVSGINGVEWDA	VELPSQFMEN 500	FVWEYNVLAQ 510	MSAHEETGVP 520	LPKELFDKML 530	AAKNFQ 540
m128.pep	340 350 XGMFXVRQXEFALF	360 DMMIYSEDDE	370 GRLKNWQQVL	380 DSVRKKVAVI	390 QPPEYNRFAL	SFGHIF
a128	 RGMFLVRQMEFALF 550	DMMIYSEDDE 560		:   : DSVRKEVAVV: 580	:        RPPEYNRFAN 590	  SFGHIF  600

m128.pep	400 AGGYS	410 AAXYSYAWA	420 EVLSADAYAA	430 FEESDDVAATGI	440	450	o=
a128	1111		11111111	6			
<b>a12</b> 0	AGGYSA	AGYYSYAWA 610	EVLSADAYAA: 620	FEESDDVAATGE	RFWQEILAV 640	GGSRSAAE	SFKAFRG
	4.60			<b>0</b> 30	040	650	660
	460	470					
m128.pep		DALLRHSGF					
- 1.00							
a128	REPSI	DALLRHSGFI	XAANC				
		670					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 487>:

```
1
       ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
   51 AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
  101 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
  151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
      GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
  201
  251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
  301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
      CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
 351
      TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
 451
      GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
      CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 501
 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
      GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
 651
 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
 751
      AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
      AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
 801
 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
     TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
1301
1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
1401 AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TGTCCGGCAT CAACGGCGTA AAA
```

This corresponds to the amino acid sequence <SEQ ID 488; ORF 128-1.ng>:

```
1 MIDNALLHLG EEPRFNQIKT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYAGRRE LREQIYRAYV TRASELSNDG
251 KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
401 IGGVYMDLYA REGKRGGAWM NDYKGRRFFA DGTLQLPTAY LVCNFAPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV K
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 489>:

```
1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
```

```
201 GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG
     CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
 301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
 351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC
      TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
 451 GAACTGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 551
      CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 601 GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC
 651 ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC
      AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA
 801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG
1001 GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
      CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
1151
     TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1251
      CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC
1351 GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA
1401 AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TATCCGGCAT CAACGCCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG
1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC
1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
     TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG
1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA
1751
     TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC
1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC
2001 ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 490; ORF 128-1>:

```
1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLNLADLOP WDLGYASEKL REAKYAFSET
    EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
351
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
451 GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSO
    FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
501
551
    FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
651 AAESFKAFRG REPSIDALLR HSGFDNAV*
```

#### ml28-1/gl28-1 94.5% identity in 491 aa overlap

	10	20	30	40	50	60
g128-1.pep	MIDNALLHLGEEP					
m128-1	MTDNALLHLGEEPI	RFDQIKTEDIK	PALQTAIAE	AREQIAAIKAÇ	THTGWANTVE	EPLTGIT
	10	20	30	40	50	60
	70	80	90	100	110	120
g128-1.pep	ERVGRIWGVVSHL					
		[]]:[]]	1111111111		1111111111	11111
m128-1	ERVGRIWGVVSHL	NSVADTPELRA	VYNELMPEIT	TVFFTEIGQDI	ELYNRFKTI	ONSPEED
	70	80	90	100	110	120

#100 1 ····	130	140	150	160	170	180
g128-1.pep	TLSPAQKTKLDHD	LRDFVLSGAE	LPPERQAELA	KLQTEGAQLS		
m128-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11111111		1 1 1 2 1 1 1 1 1	
11120-1	TLSPAQKTKLNHD	TIOT VISGAE	TPPEQQAELA	KLQTEGAQLS	AKFSONVLD	ATDAFGIY
	130	140	150	160	170	180
	190	200	212			
g128-1.pep		200 Alameanac	210	220	230	240
	FDDAAPLAGIPED		JEGRIGIKIG.	rolbhar'ani	QYAGNRELRE	QIYRAYV
m128-1	FDDAAPLAGIPED	ALAMFAAAAO	SESKTGYKTG			111111
	190	200	210	220	Q¥ADNRELRE 230	
				220	230	240
	250	260	270	280	290	300
g128-1.pep	TRASELSNDGKFDN	<b>TANIDRTLE</b>	NALKTAKLLGI	KNYAELSLAT	KMADTPEOU	TATEL LIDT
m128-1			1 1 1 : 1 1 1 1 1 1 1			111111
11120-1	TRASELSDDGKFDN	THATTORTHA	VALQTAKLLGE	KNYAELSLAT	KMADTPEOV	LNFLHDI
	250	260	270	280	290 ~	300
	310	220				
g128-1.pep		320 Wararen c	330	340	350	360
	ARRAKPYAEKDLAE	IIIIIII I.	PLADPOPWDLS	YAGEKLREAK	YAFSETEVK	KYFPVGK
m128-1	ARRAKPYAEKDLAE	IIIIII II VKAFADECIN	:		11111111	[
	310	320	330 330	YASEKLREAK 340		
			330	340	350	360
	370	380	390	400	410	
g128-1.pep	VLAGLFAQIKKLYG:	IGFAEKTVPV	WHKDVRYFEL	OMOVETON		420
		1			<b></b>	11111
m128-1	· DICOLL ACTUALITY	LGF IEKTVPV	WHKDVRYFEL(	QNGETIGGV	YMDLYAREGE	RGGAWM
	370	380	390	400	410	420
	430	440				
gl28-1.pep		440	450	460	470	480
J 12-2	NDYKGRRRFADGTLO	ZEPIATEVCN.	FAPPVGGK <u>EA</u> F	LSHDEILTLE	HETGHGLHH	LLTQVD
ml28-1	NDYKGRRRFSDGTLO		:	1111111	111111111	
	430	440	450	LISHDEILILE 460		LLTQVD
			430	460	470	480
	490					
g128-1.pep	ELGVSGINGVK					
	111111111:					
m128-1	ELGVSGINGVEWDAV	ELPSQFMENF	vweynvlaom	SAHEETGVPI.	PKELFDKMT.	A A KNIEG
	490	500	510	520	530	540
					200	340

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 491>:

```
1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
  51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
      CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
  101
 151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
 201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
      CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
 251
      GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
 301
      CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
 401
      TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
      GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
 451
      CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 551
      CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
      GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
 601
     GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
     AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
 701
     AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
 751
 801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
     CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
 851
     GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 901
     CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
     GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
1051
1101
     CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
1151
     TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
     ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1201
```

```
1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC
1351 GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCG AAATGCCG
1551 CCACGAAGAA ACCTGCTTC CCCTGCCGAA AGAACTCTTC GACAAATGC
1601 TCGCCGCCAA AAACTTCCAA CGCGGATGT TCCTGTCCG CCAAATGGAG
1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
1751 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
1851 GAGCGCGGAC GCATACGACG CTTTTGAAAA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCCGCCA
1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
2001 ACTCTTGCGC CACAGCGCT TCGACAACGC GGCTTGA
```

This corresponds to the amino acid sequence <SEQ ID 492; ORF 128-1.a>: a128-1.pep

```
MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
651 AAESFKAFRG REPSIDALLR HSGFDNAA*
```

m128-1/a128-1 97.8% identity in 677 aa overlap

al28-1.pep MTDNALLHLGEEPRFDQIKTEDIKPALQTAIAEAREQIAAIKAQTHTGWANT	PVEPLTGIT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
m128-1 MTDNALLHLGEEPRFDOIKTEDIKPALOTAIAEAREOIAAIKAOTHTGWANT	
10 20 30 40 50	60
20 20 00 00	00
70 80 90 100 110	120
al28-1.pep ERVGRIWGVVSHLNSVTDTPELRAAYNELMPEITVFFTEIGQDIELYNRFKT	TIKNSPEFD
m128-1 ERVGRIWGVVSHLNSVADTPELRAVYNELMPEITVFFTEIGQDIELYNRFKT	
70 80 90 100 110	120
130 140 150 160 170	180
al28-1.pep TLSHAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLI	
ml28-1 TLSPAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLI	DATDAFGIY
130 140 150 160 170	180
190 200 210 220 230	
190 200 210 220 230 al28-1.pep FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLF	240
m128-1 FDDAAPLAGIPEDALAMFAAAAQSESKTGYKIGLQIPHYLAVIQYADNRELF	
190 200 210 220 230	240
250 260 270 280 290	300
al28-1.pep TRASELSDDGKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEC	
ml28-1 TRASELSDDGKFDNTANIDRTLANALOTAKLLGFKNYAFLSLATKMADTDFC	
ml28-1 TRASELSDDGKFDNTANIDRTLANALQTAKLLGFKNYAELSLATKMADTPEQ 250 260 270 280 290	OVLNFLHDL 300
250 260 270 260 290	300
310 320 330 340 350	360
al28-1.pep ARRAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEV	





#### a128-1/ P44573

sp|P44573|OPDA_HAEIN OLIGOPEPTIDASE A >gi|1075082|pir||C64055 oligopeptidase A (prlC) homolog - Haemophilus influenzae (strain Rd KW20)

>gi|1573174 (U32706) oligopeptidase A (prlC) [Haemophilus influenzae Rd] Length = 681 Score = 591 bits (1507), Expect = e-168

Identities = 309/677 (45%), Positives = 415/677 (60%), Gaps = 4/677 (0%)

- NALLHLGEEPRFDQIKTEDIKPALQTXXXXXXXXXXXXXXXTHTGWANTVEPLTGITERV 63 Query: 4 N LL++ P F QIK E I+PA++ H WN + PLT
- NPLLNIQGLPPFSQIKPEHIRPAVEKLIQDCRNTIEQVLKQPHFTWENFILPLTETNDRL 64 Sbjct: 5
- GRIWGVVSHLNSVTDTPELRAAYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFDTLS 123 Query: 64 R W VSHLNSV ++ ELR AY +P ++ + T +GQ
- LYN + +KNS EF Sbjct: 65 NRAWSPVSHLNSVKNSTELREAYQTCLPLLSEYSTWVGQHKGLYNAYLALKNSAEFADYS 124
- Query: 124 HAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGIYFDD 183 AQK + + LRDF LSG L E+Q
- ++ ++L+++FS NVLDAT + Sbjct: 125 IAQKKAIENSLRDFELSGIGLSEEKQQRYGEIVARLSELNSQFSNNVLDATMGWEKLIEN 184
- Query: 184 AAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYVTRA 243 A LAG+PE AL +A+S+G GY+ L+IP YL V+ Y +NR LRE++YRAY TRA
- Sbjct: 185 EAELAGLPESALQAAQQSAESKGLKGYRFTLEIPSYLPVMTYCENRALREEMYRAYATRA 244
- Query: 244 SELSDD-GKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFLHDLAR 302 + GK+DN+ ++ L ++ AKLLGF Y ELSLATKMA+ P+QVL+FL LA SE
- Sbjct: 245 SEQGPNAGKWDNSKVMEEILTLRVELAKLLGFNTYTELSLATKMAENPQQVLDFLDHLAE 304
- Query: 303 RAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVGKVL 362
- RAKP EK+L E+K + + G+ +L PWD+G+ EK ++ YA ++ E++ YFP +V+ Sbjct: 305 RAKPQGEKELQELKGYCEKEFGVTELAPWDIGFYSEKQKQHLYAINDEELRPYFPENRVI 364

```
Query: 363 NGLFAQIKKLYGIGFTE-KTVPVWHKDVRYFEL-QQNGETIGGVYMDLYAREGKRGGAWM 420
          +GLF IK+++ I E K V WHKDVR+F+L +N + G Y+DLYARE KRGGAWM
Sbjct: 365 SGLFELIKRIFNIRAVERKGVDTWHKDVRFFDLIDENDQLRGSFYLDLYAREHKRGGAWM 424
Query: 421 NDYKGRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEIXXXXXXXXXXXXXXXXXXXXXXX 480
          +D GR+R DG+++ P AYL CNF P+G K A +H+E+
Sbjct: 425 DDCIGRKRKLDGSIETPVAYLTCNFNAPIGNKPALFTHNEVTTLFHEFGHGIHHMLTOID 484
Query: 481 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ 540
             V+GINGV WDAVELPSQFMEN+ WE LA +S H ETG PLPKE ++L AKNFQ
Sbjct: 485 VSDVAGINGVPWDAVELPSQFMENWCWEEEALAFISGHYETGEPLPKEKLTOLLKAKNFO 544
Query: 541 RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF 600
            MF++RQ+EF +FD ++ D +
                                        L SV+ +VAV++ ++ R +SF HIF
Sbjct: 545 AAMFILRQLEFGIFDFRLHHTFDAEKTNQILDTLKSVKSQVAVIKGVDWARAPHSFSHIF 604
Query: 601 XXXXXXXXXXXXXAEVLSADAYAAFEESDDV-AATGKRFWQEILAVGGSRSAAESFKAFR 659
                     WAEVLSADAY+ FEE TGK F EIL GGS
Sbjct: 605 AGGYAAGYYSYLWAEVLSADAYSRFEEEGIFNPITGKSFLDEILTRGGSEEPMELFKRFR 664
Query: 660 GREPSIDALLRHSGFDN 676
          GREP +DALLRH G N
Sbjct: 665 GREPQLDALLRHKGIMN 681
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 493>:
     g129.seq
            1 ATGCTTTCAC CTCCTCGGCG TAAAACGGCG GCACATCAAT CAAGCCGTCT
           51 TTCATTTGCG TGCGGAAAAA ATGCGGCGTG TTGCCGTGAT CAAAATCAAT
           101 ATCGTGCAGC ATCCAGCCCA AATCGCGGTT TGCCTCGCTT TCCGATAACG
           151 CCGACGCGG CAGCGGTTCA CCCTTATCCG CGCTTTCGCC ATTTGCCCTT
          201 TCAGGCTGCG GGCATAGGGG CGGAACAGGC GGCGGTCGAA TCCTGTTTCA
          251 TCCGGACAAA CGCGTTGGCA GTCGGAAAAT CCGGCCGGCC GTGTCAAATA
          301 ATGCGTTACT TTGGCCGGGT CTTGTCCTTT GTAAGCGGCG GTCTTTTTT
          351 GCGCGCCATC CGCATCTGTT TGGGCGCATG GCAAACGGCG GCTGCCGTAC
          401 AATCAAAATG TTTGGCGATT TCATGCAGAC AGGCATCCGG ATGCCGCCCG
          451 ACATATCGAG CCGGTTTTTG CCTATCCGAT TTGGCGGCAT TTAGGCCGGT
               AACTTGA
This corresponds to the amino acid sequence <SEQ ID 494; ORF 129.ng>:
     q129.pep
            1 MLSPPRRKTA AHQSSRLSFA CGKNAACCRD QNQYRAASSP NRGLPRFPIT
           51 PTAAAVHPYP RFRHLPFQAA GIGAEQAAVE SCFIRTNALA VGKSGRPCQI
          101 MRYFGRVLSF VSGGLFLRAI RICLGAWQTA AAVQSKCLAI SCRQASGCRP
          151 TYRAGFCLSD LAAFRPVT*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 495>:
     m129.seg (partial)
            1 ..TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA
                 ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG
                 GAAAATTCGG CCGGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG
          101
                 TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG
```

This corresponds to the amino acid sequence <SEQ ID 496; ORF 129>:

TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA

m129.pep (partial)

- 1 ..YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGRLC QIMRYFGRVL
- 51 FFVSGGLFLR VIPICLSAXQ MVAAVQSKCL AISCRXASGC CPTYXAGFCL

TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT GCAGATAGGC ATCCGGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA

101 SDLTAFRPVT *

Computer analysis of this amino acid sequence gave the following results:

BNSDOCID: <WO___9957280A2_I_>

Homology with a predicted ORF from N. gonorrhoeae

ORF 129 shows 79.1% identity over a 110 aa overlap with a predicted ORF (ORF 129.ng) from N. gonorrhoeae:

m129/g129

m129.pep				YLRFH	10 YLPFQAAGIG	20 TEQVAVKSCF	30 TOINT
g129	RDQNQYRA 30	AASSPNRGI 40	PRFPITPTA 50	:: AAAVHPYPRFRI 60	:		1 . 1
m129.pep g129	1 - 1   1   1			60 GLFLRVIPICI      :      GLFLRAIRICL 120	.1 1 .111	1111111111	1111
m129.pep g129	CPTYXAGF	00 CLSDLTAFI     :   CLSDLAAFI 160					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 497>:
a129.seq (partial)

```
1 TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA
51 ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG
101 GAAAATTCGG CCAGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG
151 TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG
201 TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT
251 GCAGATAGGC ATCCTGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA
301 TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA
```

This corresponds to the amino acid sequence <SEQ ID 498; ORF 129.a>:
a129.pep (partial)

```
al29.pep (partial)

1 YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGQLC QIMRYFGRVL
51 FFVSGGLFLR VIPICLSA*Q MVAAVQSKCL AISCR*ASWC CPTY*AGFCL
101 SDLTAFRPVT *
```

m129/a129 98.2% identity in 110 aa overlap

m129.pep	10 YLRFHYLPFQAAGI	20 GTEQVAVKS(	30 CFIQINTLVVO	40 KFGRLCOIMR	50 YFGRVI.FFVS	60 FT F
a129	YLRFHYLPFQAAGI	1 1 1 1 1 1 1 1 1 1	1111111111	111.11111		
	10	20	30	40	50	60
m129.pep	70 VIPICLSAXOMVAA	80 VQSKCLAISO	90 RXASGCCPTY	100 XAGECLSDIT	110	
a129		!	4111 11111	TELLIBER	111111	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 499>:

```
1 ATGAAACAAC TCCGCGACAA CAAAGCCCAA GGCTCTGCAC TGTTTACCCT
51 TGTGAGCGGT ATCGTTATTG TTATTGCAGT CCTTTATTTC CTGATTAAGC
101 TGGCGGGCAG TGGATCGTTC GGCGATGTCG ATGCCACTAC GGAAGCGGCA
151 ACGCAGACCC GCATCCAGCC TGTCGGACAA TTGACGATGG GTGACGGCAT
201 CCCCGTCGGC GAACGCCAAG GCGAACAGAT TTTCGGCAAA ATCTGTATCC
```

```
251 AATGCCACGC GGCGGACAGC AATGTGCCGA ACGCTCCGAA ACTGGAACAC
         301 AACGGCGACT GGGCGCCGCG TATCGCGCAA GGCTTCGATA CCTTGTTCCA
         351 ACACGCGCTG AACGGCTTTA ACGCCATGCC TGCCAAAGGC GGTGCGGCAG
         401 ACCTGACCGA TCAGGAACTC AAACGGGCGA TTACCTACAT GGCGAATAAA
         451 AGCGGCGGTT CTTTCCCGAA TCCTGATGAG GCTGCGCCTG CCGACAATGC
              CGCTTCAGGA ACAGCTTCTG CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG
              CGAAGGCAGA AGACAAGGGT GCGGCAGCCC CTGCGGTCGG CGTTGACGGT
          601 AAAAAAGTCT TCGAAGCAAC CTGTCAGGTG TGCCACGGCG GTTCGATTCC
         651 CGGTATTCCC GGCATAGGCA AAAAAGACGA TTGGGCACCG CGTATCAAAA
         701 AAGGCAAAGA AACCTTGCAC AAACATGCCC TTGAAGGCTT TAACGCGATG
          751 CCGGCCAAAG GCGGCAATGC AGGTTTGAGC GATGACGAAG TCAAAGCGGC
              TGTTGACTAT ATGGCAAACC AATCCGGTGC AAAATTCTAA
This corresponds to the amino acid sequence <SEQ ID 500; ORF 130.ng>:
     g130.pep
              MKQLRDNKAQ GSALFTLVSG IVIVIAVLYF LIKLAGSGSF GDVDATTEAA
              TOTRIOPVGQ LTMGDGIPVG ERQGEQIFGK ICIQCHAADS NVPNAPKLEH
          51
              NGDWAPRIAQ GFDTLFQHAL NGFNAMPAKG GAADLTDQEL KRAITYMANK
          101
          151 SGGSFPNPDE AAPADNAASG TASAPADSAA PAEAKAEDKG AAAPAVGVDG
              KKVFEATCQV CHGGSIPGIP GIGKKDDWAP RIKKGKETLH KHALEGFNAM
         201
          251 PAKGGNAGLS DDEVKAAVDY MANQSGAKF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 501>:
     m130.seq
               (partial)
               ...GGCGAACAGA TTTTCGGCAA AATCTGTATC CAATGCCACG CGGCGGACAG
                 CAATGTGCCG AACGCTCCGA AACTGGAACA CAACGGCGAT TrGGCACCGC
           51
                 GTATCGGCAA GGCTTCGATA CCTTGTTCCA ACACGCGCTG AACGGCTTTA
          101
                 ACGCCATGCC TGCAAAAGGC GGTGCGGCAG ACCTGACCGA TCAGGAACTT
          151
                 AAACGGCGA TTACTTACAT GGCGAACAAA AGCGGCGGTT CTTTCCCGAA
          201
                 TCCTGATGAG GCTGCGCCTG CCGACAATGC CGCTTCAGGA ACAGCTTCTG
          251
                 CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG CGAAGGCAGA AGACAAGGGT
          301
                 GCGGCACCCC TGCGGTCGGC GTTGACGGTA AAAAAGTCTT CGAAGCAACC
                 TGTCAGGTGT GCCACGGCGG TTCGATTCCC GGTATTCCCG GCATAGGCAA
          401
                 AAAAGACGAT TGGGCACCGC GTATCAAAAA AGGCAAAGAA ACCTTGCACA
          451
                 AACACGCCCT TGAAGGCTTT AACGCGATGC CTGCCAAArG CGgCAATGCA
          501
          551
                 GGTTTGAGCG ATGACGAAGT CAAAGCGGCT GTTGACTATA TGGCAAACCA
                 ATCCGGTGCA AAATTCTAA
          601
This corresponds to the amino acid sequence <SEQ ID 502; ORF 130>:
               (partial)
     m130.pep
               ..GEQIFGKICI QCHAADSNVP NAPKLEHNGD XAPRIQGFDT LFQHALNGFN
                 AMPAKGGAAD LTDQELKRAI TYMANKSGGS FPNPDEAAPA DNAASGTASA
           51
                 PADSAAPAEA KAEDKGAAPA VGVDGKKVFE ATCQVCHGGS IPGIPGIGKK
          101
                 DDWAPRIKKG KETLHKHALE GFNAMPAKXG NAGLSDDEVK AAVDYMANQS
          151
                 GAKF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 130 shows 98.1% identity over a 206 aa overlap with a predicted ORF (ORF 130.ng)
from N. gonorrhoeae:
     m130/g130
                                                       10
                                                                 20
                                               GEQIFGKICIQCHAADSNVPNAPKLEHNGD
     m130.pep
                                               {\tt DATTEAATQTRIQPVGQLTMGDGIPVGERQGEQIFGKICIQCHAADSNVPNAPKLEHNGD}
     q130
                       50
                                 60
                                          70
                                                    80
                                                              90
                                                                       100
                                     50
                                              60
                                                        70
                                                                  80
                  XAPRI-QGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAITYMANKSGGSFPNPDEAAP
     m130.pep
                   g130
                  WAPRIAQGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAITYMANKSGGSFPNPDEAAP
```

140

150

110

120

BNSDOCID: <WO___9957280A2_l_>



```
a130
                   KKDDWAPRIKKGKETLHKHALEGFNAMPAKGGNAGLSDDEVKAAVDYMANQSGAKFX
                                           250 260
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 505>:
     g132.seq
             1 ATGGAAGCCT TCAAAACCCT AATTTGGATT ATTAATATTA TTTCCGCTTT
            51 GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
          101 GCGCGACCTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT
          151 GCCGGCAACG CCAACTTCCt CAGCCGCTCG ACCGCCGTTG CAGCAACAtt
          201 tttcttTGca acctgcAtgg gctatggTgt atattcacac CCACACGACA
          251 AAACACGGTT TGGACTtcag caacataCGA CAGACTCAGC AagcACCCAA
301 ACCcgtAAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT
351 AACagtTTTT CAAATgccga caTGgtga
This corresponds to the amino acid sequence <SEQ ID 506; ORF 132.ng>:
     g132.pep
            1 MEAFKTLIWI INIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS
            51 AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLQ QHTTDSASTQ
          101
               TRKQYRTFCP CSSAAEITVF QMPTW*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 507>:
     m132.seq (partial)
            1 ATGGAACCCT TCAAAACCTT AATTTGGATT GTTAATTTAA TTTCCGCTTT
           51 GGCCGTCTTC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
          101 GCGCGACTTT CGGA...
This corresponds to the amino acid sequence <SEQ ID 508; ORF 132>:
     m132.pep
               (partial)
               MEPFKTLIWI VNLISALAVF VLVLLQHGKG ADAGATFG...
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 132 shows 89.5% identity over a 38 aa overlap with a predicted ORF (ORF 132.ng)
from N. gonorrhoeae:
     m132/g132
                           10
                                     20
                                               30
                  MEPFKTLIWIVNLISALAVFVLVLLQHGKGADAGATFG
     m132.pep
                   g132
                  MEAFKTLIWIINIISALAVIVLVLLQHGKGADAGATFGSGSGSAOGVFGSAGNANFLSRS
                                     20
                                               30
                                                         40
The following partial DNA sequence was identified in N. meningitidis <SEO ID 509>:
     a132.seq
            1 ATGGAAGCCT TCAAAACCCT AATTTGGATT GTTAATATAA TTTCCGCTTT
           51 GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
               GCGCGACTTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT
          151 GCCGGCAACG CTAACTTCCT CAGCCGCTCG ACCGCCGTTG CAGCAACATT
          201 TTTCTTTGCA ACCTGCATGG GCTATGGTGT ATATTCACAC CCACACGACA
          251 AAACACGGTT TGGACTTCAG CAACGTACAA CAAACTCAGC AAGCACCCAA
          301 ACCCGTAAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT 351 AACAGTTTTT CAAATGCCGA CATGGTGA
This corresponds to the amino acid sequence <SEQ ID 510; ORF 132.a>:
     a132.pep
               MEAFKTLIWI VNIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS
               AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLQ QRTTNSASTQ
              TRKQYRTFCP CSSAAEITVF QMPTW*
m132/a132 92.1% identity in 38 aa overlap
```

```
10
                                                             20
                                                                             30
          m132.pep
                               MEPFKTLIWIVNLISALAVFVLVLLQHGKGADAGATFG
                               IF IIIIIIII: | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TITLE | TI
                               MEAFKTLIWIVNIISALAVIVLVLLQHGKGADAGATFGSGSGSAQGVFGSAGNANFLSRS
          a132
                                                             20
                                                                             30
                                                                                             40
                                                                                                              50
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 511>:
          g134.seq
                          ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT
                     1
                          CATCTCCCAC CCCGATGCGG GTAAAACCAC GCTGACCGAA AAACTGCTGC
                          TGTTTTCGGG CGCGATTCAA AGCGCAGGCA CGGTGAAAGG TAAGAAAACC
                  101
                  151
                          GGCAAATTCG CCACCTCCGA CTGGATGGAC ATCGAGAAGC AGCGCGGCAT
                          TTCCGTGGCA TCAAGCGTGA TGCAGTTCGA CTACAAAGAC CACACCGTCA
                  201
                         ACCTCTTGGA CACGCCGGGA CACCAAGACT TCTCCGAAGA CACCTACCGC
                  251
                         GTTTTAACCG CAGTGGACAG CGCCTTGATG GTCATCGACG CGGCAAAAGG
                         CGTGGAAGCG CAAACCATCA AACTCTTGAA CGTCTGCCGC CTGCGCGATA
                          CGCCGATTGT TACCTTCATG AACAAATACG ACCGCGAAGT GCGCGATTCT
                         TTGGAACTCT TGGACGAAGT GGAAGACATC CTGCAAATCC GCTGCGCGCC
                 501
                         CGTTACCTGG CCGATCGGTA TGGGCAAAAA CTTCAAGGGC GTGTACCACA
                 551
                         TCCTGAACGA CGAAATCTAT CTCTTTGAAG CGGGCGGCGA ACGCCTGCCG
                 601
                         CACGAGTTCG ACATCATCAA AGGCATAAAC AATCCCGAAT TGGAACAACG
                         CTTTCCGTTG GAAATCCAGC AGTTGCGCGA CGAAATCGAA TTGGTGCAGG
                 651
                         CGGCTTCCAA CGAATTTAAT CTCGacgaAT TTCTCGccgG CGAACTCACG
                  701
                         CCAGTGTTCT TCGGCTCTGC GATTAACAAC TTCGGCATTC AGGAAATCCT
                 751
                         CAATTCATTG ATTGACTGGG CACCCGCACC GAAACCGCGC GACGCGACCA
                 801
                 851
                         TGCGCATGGT CGGGCCGGAC GAGCCGAAAT TTTCCGGATT TATCTTTAAA
                 901 ATCCAAGCCA ATATGGACCC GAAACACCGC GACCGTATCG CCTTCTTGCG
                 951 CGTCTGCTCC GGTAAATTCG AGCGCGGCAT GAAGATGAAA CACCTGCGTA
               1001 TCAACCGCGA AATCGCCGCC TCCAGCGTAG TAACCTTCAT GTCGCACGAC
               1051 CGCGAACTGG CGGAAGAAGC CTACGCCGGC GACATCATCG GCATCCCGAA
               1101 CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGG
               1151 CGTTTACCGG CATCCCATTC TTCGCGCCCG AACTGTTCCG CAGCGTCCGC
               1201 ATCAAAAACC CGCTGAAAAT CAAACAACTG CAAAAAGGTT TGCAACAACT
                        CGGCGAAGAA GGTGCGGTTC AAGTATTCAA ACCGATGAGC GGCGCGGATT
                         TGATTTTGGG TGCGGTCGGC GTGTTGCAGT TTGAAGTCGT AACCTCACGC
                         CTCGCCAACG AATACGGCGT GGAAGCCGTG TTCGACAGCG CATCCATCTG
               1401 GTCGGCGCGC TGGGTATCGT GCGACGACAA GAAAAACTG GCGGAATTTG
               1451 AAAAAGCCAA CGCAGGCAAC CTCGCCATCG ACGCAGGCGG CAACCTCGCC
               1501 TACCTCGCCC CCAACCGCGT GAATTTGGGG TTGACGCAAG AACGCTGGCC
               1551 GGACATCGTG TTCCACGAAA CGCGCGAACA TTCGGTCAAA CTCTAA
This corresponds to the amino acid sequence <SEQ ID 512; ORF 134.ng>:
        g134.pep
                         MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIQ SAGTVKGKKT
                         GKFATSDWMD IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
                  51
                         VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS
                 101
                 151 LELLDEVEDI LQIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
                 201 HEFDIIKGIN NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
                 251 PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATMRMVGPD EPKFSGFIFK
                        IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
                        RELAEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR
                       IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
                451
                        LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
                 501
                        YLAPNRVNLG LTQERWPDIV FHETREHSVK L*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 513>:
        m134.seg
                        ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT
                  51 CATCTCCCAC CCTGACGCAG GTAAAACCAC GTTGACTGAA AAACTCTTGC
                101 TGTTTTCGGG CGCGATTCAG AGCGCGGGTA CGGTAAAAGG CAAGAAAACC
                       GGCAAATTCG CCACTTCCGA CTGGATGGAA ATCGAGAAGC AGCGCGGCAT
```



This corresponds to the amino acid sequence <SEQ ID 514; ORF 134>:

```
m134.pep

1 MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIQ SAGTVKGKKT
51 GKFATSDWME IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
101 VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS
151 LELLDEVENI LKIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
201 HEFDIIKGID NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
251 PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATVRMVEPD EPKFSGFIFK
301 IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
351 RELVEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR
401 IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
451 LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 134 shows 98.7% identity over a 531 aa overlap with a predicted ORF (ORF 134.ng) from N. gonorrhoeae:

m134/g134

	10	20	30	40	50	60
ml34.pep	MSQEILDQVRRRRI	FAIISHPDAG	KTTLTEKLLI	FSGAIQSAGT	VKGKKTGKFA	ATSDWME
			1111111111		1111111111	:
g134	MSQEILDQVRRRRT	FAIISHPDAG	KTTLTEKLLI	FSGAIQSAGT	VKGKKTGKFA	ATSDWMD
	10	20	30	40	50	60
	70	80	90	100	110	120
ml34.pep	IEKQRGISVASSVM	<b>IQFDYKDHTVN</b>	LLDTPGHQDE	SEDTYRVLTA	VDSALMVIDA	AKGVEA
		1111111111	1111111111	1111111111	111111111	
g134	IEKQRGISVASSVM	IQFDYKDHTVN	LLDTPGHQDF	SEDTYRVLTA	VDSALMVIDA	AKGVEA
	70	80	90	100	110	120
	130	140	150	160	170	180



## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 515>:

1	ATGTCCCAAG	AAATCCTCGA	CCAAGTGCGC	CGCCGCCGCA	CGTTTGCCAT
51	CATCTCCCAC	CCTGACGCAG	GTAAAACCAC		
101	TGTTTTCAGG	TGCGATTCAA			
151	GGCAAATTCG	CCACCTCCGA	CTGGATGGAC		
201	TTCCGTGGCA	TCAAGCGTGA	TGCAGTTCGA	ATCGAGAAGC	LICOCOCCAI
251	ACCTTTTGGA		CACCAAGACT		
301	GTTTTGACCG			TCTCCGAAGA	
351	CGTGGAAGCG		TGCCTTGATG	GTCATCGACG	CGGCAAAAGG
401	CGCCGATTGT		AACTCTTGAA	CGTCTGCCGC	CTGCGCAATA
451	CTGGAATTGC		AACAAATACG	ACCGCGAAGT	GCGCGATTCC
501			GGAAAACATC	CTGCAAATCC	GCTGCGCGCC
551	CGTAACCTGG		TGGGCAAAAA	CTTCAAAGGC	GTGTACCACA
601	TCCTGAACGA		CTCTTTGAAG	CGGGCGGCGA	ACGCTTGCCG
	CACGAGTTCG	************	AGGCATCGAT	AATCCCGAAT	TGGAACAACG
651	CTTTCCGTTA	0.111101100	AGTTGCGCGA	CGAAATCGAA	TTGGTGCAGG
701	CGGCTTCCAA	CGAGTTCAAT	CTCGACGAAT	TCCTCGCCGG	CGAACTCACG
751	CCCGTATTCT	TCGGCTCTGC	GATTAACAAC	TTCGGTATTC	AGGAAATCCT
801	CAATTCATTG	ATTGAATGGG	CGCCCGCGCC	GAAACCACGC	
851	TGCGTATGGT	CGAGCCGGAC		TTTCCGGATT	GATGCGACCG
901	ATCCAAGCCA				TATCTTCAAA
				GACCGTATTG	CCTTCTTGCG

951	CGTCTGCTCC	GGCAAATTCG	AGCGCGGCAT	GAAAATGAAA	CACCTGCGTA	
1001					GTCCCACGAC	
1051					GTATCCCAAA	
1101					GAACAACTGA	
1151					CAGCGTTCGC	
1201					TGCAACAGCT	
1251 1301					GGCGCGGATT TACCTCGCGC	
1351					CATCCATCTG	
1401					GCGGAATTTG	
1451	AAAAAGCCAA					
1501					AACGCTGGCC	
1551			CGCGCGAGCA			
This correspond	s to the amin	o acid seque	nce <seq ii<="" td=""><td>D 516; ORF</td><td>134.a&gt;:</td><td></td></seq>	D 516; ORF	134.a>:	
a134.pep						
1	MSQEILDQVR			-		
51					HQDFSEDTYR	
101	VLTAVDSALM					
151	LELLDEVENI					
201	HEFDIIKGID			-		
251					EPKFSGFIFK	
301	-				SSVVTFMSHD	
351 401	RELVEEAYAG					
451					VLQFEVVTSR LAIDAGGNLA	
501			FHETREHSVK		THIDAGGNEA	
301	THATMANDO	DIQDIWI DI V	THEIRBIOTA	n		
m134/a134 98	.9% identity	in 531 aa ov	erlap			
	, , , , , , , , , , , , , , , , , , , ,		20 30	40	50	60
m134.pep	MSOETLDO				SAGTVKGKKTG	
mrspep						
					1   1   1   1   1   1   1   1   1   1	1111111
a134				EKLLLFSGAIO		
a134		OVRRRRTFAII:		EKLLLFSGAIQ	IIIIIIIIII SAGTVKGKKTG 50	
a134		OVRRRRTFAII:	SHPDAGKTTLT	EKLLLFSGAIQ	SAGTVKGKKTG	K <b>FATSDWM</b> D
	MSQEILDÇ	OVRRRRTFAIIS 10 2 70 8	SHPDAGKTTLTE 20 30	EKLLLFSGAIQ 40 100	SAGTVKGKKTG 50 110	K <b>FATSDWM</b> D 60 120
a134 m134.pep	MSQEILDÇ IEKQRGIS	OVRRRRTFAIIS 10 2 70 8 SVASSVMQFDYF	SHPDAGKTTLTE 20 30 30 90 KDHTVNLLDTPO	EKLLLFSGAIQ 40 100 GHQDFSEDTYR	SAGTVKGKKTG 50 110 VLTAVDSALMV	KFATSDWMD 60 120 IDAAKGVEA
m134.pep	MSQEILDQ IEKQRGIS	OVRRRTFAIIS 10 2 70 8 SVASSVMQFDYF	SHPDAGKTTLTE 20 30 30 90 KDHTVNLLDTPO	EKLLLFSGAIQ 0 40 0 100 GHQDFSEDTYR	SAGTVKGKKTG 50 110 VLTAVDSALMV	KFATSDWMD 60 120 IDAAKGVEA
	MSQEILDQ IEKQRGIS	OVRRRRTFAIIS 10 2 70 8 EVASSVMQFDYF	SHPDAGKTTLTE  O 30  O 90  KDHTVNLLDTPO  I                      KDHTVNLLDTPO	EKLLLFSGAIQ  40  100  GHQDFSEDTYR                         GHQDFSEDTYR	SAGTVKGKKTG 50 110 VLTAVDSALMV           VLTAVDSALMV	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA
m134.pep	MSQEILDQ IEKQRGIS	OVRRRRTFAIIS 10 2 70 8 EVASSVMQFDYF	SHPDAGKTTLTE 20 30 30 90 KDHTVNLLDTPO	EKLLLFSGAIQ  40  100  GHQDFSEDTYR                         GHQDFSEDTYR	SAGTVKGKKTG 50 110 VLTAVDSALMV	KFATSDWMD 60 120 IDAAKGVEA
m134.pep	MSQEILDQ IEKQRGIS         IEKQRGIS	OVRRRRTFAIIS 10 2 70 8 EVASSVMQFDYF	SHPDAGKTTLTE  O 30  SO 90  KDHTVNLLDTPO  KDHTVNLLDTPO  KDHTVNLLDTPO  SO 90	EKLLLFSGAIQ  40  100  GHQDFSEDTYR                         GHQDFSEDTYR  0 100	SAGTVKGKKTG 50 110 VLTAVDSALMV           VLTAVDSALMV	KFATSDWMD 60 120 IDAAKGVEA           IDAAKGVEA 120
m134.pep	MSQEILDQ IEKQRGIS         IEKQRGIS	70 & SVASSVMQFDYE 70 & SVASSVMQFDYE 70 & SVASSVMQFDYE 70 & SUASSVMQFDYE 70 & SUASSVM	SHPDAGKTTLTE 20 30 30 90 KDHTVNLLDTPO                         KDHTVNLLDTPO 30 90	EKLLLFSGAIQ  100  SHQDFSEDTYR  HILLIHI HILLIH  SHQDFSEDTYR  100  160	SAGTVKGKKTG 50 110 VLTAVDSALMV                       VLTAVDSALMV 110 170	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120
m134.pep a134	MSQEILDO IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8  50 20  70 8  50 20  70 8  50 20  60 20  70 8  130 14  70 8	######################################	EKLLLFSGAIQ  100  GHQDFSEDTYR  HILLIHIHH  GHQDFSEDTYR  1100  100  160  SLELLDEVENI	SAGTVKGKKTG 50 110 VLTAVDSALMV           VLTAVDSALMV 110	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG
m134.pep a134	MSQEILDQ IEKQRGIS          IEKQRGIS 1 QTIKLLNV	70 8 SVASSVMQFDYE 111111111111111111111111111111111111	SHPDAGKTTLTE 20 30 80 90 KDHTVNLLDTPO                         KDHTVNLLDTPO 80 90 10 150 FMNKYDREVRDS	EKLLLFSGAIQ  100 GHQDFSEDTYR                        GHQDFSEDTYR                      GHQDFSEDTYR  100 100 160 SLELLDEVENI	SAGTVKGKKTG 50 110 VLTAVDSALMV           VLTAVDSALMV 110 170 LKIRCAPVTWP	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG
m134.pep a134 m134.pep	MSQEILDO IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8 SVASSVMQFDYE 111111111111111111111111111111111111	######################################	EKLLLFSGAIQ  100  GHQDFSEDTYR  HILLIHIH  GHQDFSEDTYR  100  160  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI	SAGTVKGKKTG 50 110 VLTAVDSALMV	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG
m134.pep a134 m134.pep	MSQEILDO IEKQRGIS IIIIIIII IEKQRGIS QTIKLLNU	70 8 5VASSVMQFDYE 10 2 5VASSVMQFDYE 10 8 5VASSVMQFDYE 70 8 130 14 7CRLRDTPIVTE 11 11 11 11 11 7CRLRNTPIVTE	######################################	EKLLLFSGAIQ  100 SHQDFSEDTYR SHQDFSEDTYR 111111111 SHQDFSEDTYR 100 160 SLELLDEVENI SLELLDEVENI SLELLDEVENI 160	SAGTVKGKKTG 50  110  VLTAVDSALMV          VLTAVDSALMV 110  170  LKIRCAPVTWP  :        LQIRCAPVTWP	KFATSDWMD 60 120 IDAAKGVEA IIIIIIII IDAAKGVEA 120 180 IGMGKNFKG IIIIIIII
m134.pep a134 m134.pep a134	MSQEILDO IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8 5VASSVMQFDYF                     5VASSVMQFDYF                   5VASSVMQFDYF                   70 8	######################################	EKLLLFSGAIQ  40  100  SHQDFSEDTYR  SHQDFSEDTYR  1111111111  SHQDFSEDTYR  100  160  SLELLDEVENI  111111111  SLELLDEVENI  160  220	SAGTVKGKKTG 50  110 VLTAVDSALMV          VLTAVDSALMV 110  170  LKIRCAPVTWP  :        LQIRCAPVTWP 170  230	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG
m134.pep a134 m134.pep	MSQEILDO IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	OVRRRRTFAIIS 10 2 70 8 SVASSVMQFDYF            SVASSVMQFDYF 70 8 USASSVMQFDYF 10 14 VCRLRDTPIVTF           VCRLRNTPIVTF 130 14	######################################	EKLLLFSGAIQ  100  SHQDFSEDTYR  SHQDFSEDTYR  1111111111  SHQDFSEDTYR  100  160  SLELLDEVENI  111111111  SLELLDEVENI  160  220  DNPELEQRFPLI	SAGTVKGKKTG 50  110  VLTAVDSALMV          VLTAVDSALMV 110  170  LKIRCAPVTWP  :        LQIRCAPVTWP 170  230 EIQQLRDEIEL	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 240 VQAASNEFN
m134.pep a134 m134.pep a134 m134.pep	MSQEILDO  IEKQRGIS  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8 5VASSVMQFDYF                     5VASSVMQFDYF                     5VASSVMQFDYF 70 8	### ### ##############################	EKLLLFSGAIQ  100  SHQDFSEDTYR  SHQDFSEDTYR  11111111111  SHQDFSEDTYR  100  160  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  O  160  220  ONPELEQRFPL	SAGTVKGKKTG 50  110  VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN
m134.pep a134 m134.pep a134	MSQEILDO IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8 5VASSVMQFDYF                     5VASSVMQFDYF                     5VASSVMQFDYF 70 8	######################################	EKLLLFSGAIQ  40  100  SHQDFSEDTYR  SHQDFSEDTYR  1111111111  SHQDFSEDTYR  100  160  SLELLDEVENI  111111111  SLELLDEVENI  100  220  DNPELEQRFPLI  DNPELEQRFPLI  DNPELEQRFPLI	SAGTVKGKKTG 50  110  VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL	KFATSDWMD 60 120 IDAAKGVEA IIIIIIII IDAAKGVEA 120 180 IGMGKNFKG IIIIIIIII IGMGKNFKG 240 VQAASNEFN IIIIIIII
m134.pep a134 m134.pep a134 m134.pep	MSQEILDO IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QVRRRRTFAIIS 10 2 70 8 SVASSVMQFDYF             SVASSVMQFDYF 70 8             VCRLRDTPIVTF           VCRLRNTPIVTF   30 14   90 20 EIYLFEAGGERI	######################################	EKLLLFSGAIQ  40  100  SHQDFSEDTYR  SHQDFSEDTYR  1111111111  SHQDFSEDTYR  100  160  SLELLDEVENI  111111111  SLELLDEVENI  100  220  DNPELEQRFPLI  DNPELEQRFPLI  DNPELEQRFPLI	SAGTVKGKKTG 50  110  VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN
m134.pep a134 m134.pep a134 m134.pep a134	MSQEILDO  IEKQRGIS  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8 5VASSVMQFDYF                     5VASSVMQFDYF                     5VASSVMQFDYF 70 8                     VCRLRDTPIVTF                   VCRLRNTPIVTF	### SHPDAGKTTLTE ### 20 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ### 30 ###	EKLLLFSGAIQ  100  GHQDFSEDTYR	SAGTVKGKKTG 50  110 VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :        LQIRCAPVTWP 170  230 EIQQLRDEIEL           EIQQLRDEIEL 230 290	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN          VQAASNEFN 240 300
m134.pep a134 m134.pep a134 m134.pep	MSQEILDO  IEKQRGIS  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8  50 20  70 8  50 20  70 8  50 20  70 8  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20  60 20	### ### ##############################	EKLLLFSGAIQ  100  GHQDFSEDTYR	SAGTVKGKKTG 50  110 VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :        LQIRCAPVTWP 170  230 EIQQLRDEIEL           EIQQLRDEIEL 230  290 DATVRMVEPDE	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 240 VQAASNEFN          VQAASNEFN 240 300 PKFSGFIFK
m134.pep a134 m134.pep a134 m134.pep a134	MSQEILDO  IEKQRGIS  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200	### ### ##############################	EKLLLFSGAIQ  100  SHQDFSEDTYR  SHQDFSEDTYR  SHQDFSEDTYR  100  160  SLELLDEVENI  SLELLDEVENI  CONPELEQREPL  SUPPLEQREPL  SU	SAGTVKGKKTG 50  110  VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL            EIQQLRDEIEL 230  290 DATVRMVEPDE	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN          VQAASNEFN 240 300 PKFSGFIFK
m134.pep a134 m134.pep a134 m134.pep a134	MSQEILDO  IEKQRGIS  IIIIIIIII  QTIKLLNV  IIIIIIIIII  VYHILNDE  IIIIIIIIII  LDEFLAGE  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	QVRRRRTFAIIS 10 2 70 8 SVASSVMQFDYE                         SVASSVMQFDYE                     SVASSVMQFDYE 70 8 130 14 VCRLRDTPIVTE                   VCRLRNTPIVTE 130 14 EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                     EIYLFEAGGERI                       EIYLFEAGGERI	### ### ##############################	EKLLLFSGAIQ  100  GHQDFSEDTYR  HILLIHIH HILLIH  GHQDFSEDTYR  100  160  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI	SAGTVKGKKTG 50  110  VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL           EIQQLRDEIEL            EIQQLRDEIEL            EIQQLRDEIEL            EIQQLRDEIEL	KFATSDWMD 60 120 IDAAKGVEA           IDAAKGVEA 120 180 IGMGKNFKG           IGMGKNFKG 240 VQAASNEFN          VQAASNEFN 240 300 PKFSGFIFK
m134.pep a134 m134.pep a134 m134.pep a134	MSQEILDO  IEKQRGIS  IIIIIIIII  QTIKLLNV  IIIIIIIIII  VYHILNDE  IIIIIIIIII  LDEFLAGE  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200	### ### ##############################	EKLLLFSGAIQ  100  GHQDFSEDTYR  HILLIHIH HILLIH  GHQDFSEDTYR  100  160  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI  SLELLDEVENI	SAGTVKGKKTG 50  110  VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL            EIQQLRDEIEL 230  290 DATVRMVEPDE	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN          VQAASNEFN 240 300 PKFSGFIFK
m134.pep a134 m134.pep a134 m134.pep a134	MSQEILDO  IEKQRGIS  IIIIIIII IEKQRGIS  1 QTIKLLNV IIIIIIII QTIKLLNV VYHILNDE IIIIIIIII VYHILNDE IIIIIIIIII LDEFLAGE	200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200	### ### ##############################	EKLLLFSGAIQ  A0  HQDFSEDTYR  HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SAGTVKGKKTG 50  110  VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL            EIQQLRDEIEL 230  290 DATVRMVEPDE            DATVRMVEPDE 290	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN           VQAASNEFN 240 300 PKFSGFIFK          PKFSGFIFK 300
m134.pep a134 m134.pep a134 m134.pep a134	MSQEILDO  IEKQRGIS  IIIIIIII IEKQRGIS  QTIKLLNU IIIIIIIII QTIKLLNU VYHILNDE IIIIIIIII VYHILNDE IIIIIIIII LDEFLAGE IIIIIIII LDEFLAGE	70 8 5VASSVMQFDYE                       5VASSVMQFDYE                     5VASSVMQFDYE 70 8 130 14 7CRLRDTPIVTE                   7CRLRNTPIVTE 130 14 150 20 151YLFEAGGERI 161YLFEAGGERI	### ### ##############################	EKLLLFSGAIQ  100  HQDFSEDTYR  HIIIIIIIII  HQDFSEDTYR  HIIIIIIIII  HQDFSEDTYR  100  160  ELELLDEVENI  HIIIIIIIIII  ELELLDEVENI  HIIIIIIIIIIIII  ELELLDEVENI  HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SAGTVKGKKTG 50  110 VLTAVDSALMV           VLTAVDSALMV 110  170  LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL            EIQQLRDEIEL            EIQQLRDEIEL 230  290 DATVRMVEPDE            DATVRMVEPDE 290 350	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN          VQAASNEFN 240 300 PKFSGFIFK          PKFSGFIFK 300
m134.pep a134 m134.pep a134 m134.pep a134	IEKQRGIS                     IEKQRGIS                   IEKQRGIS  QTIKLLNV                   QTIKLLNV                   QTIKLLNV                   VYHILNDE                   VYHILNDE                   VYHILNDE                   LDEFLAGE                     LDEFLAGE   IQANMOPH	200 200 200 200 200 200 200 200 200 200	### ### ### ### ### ### ### ### ### ##	EKLLLFSGAIQ  100  HQDFSEDTYR  HIIIIIIII  HQDFSEDTYR  100  160  ELELDEVENI  HIIIIIIIIII  ELELDEVENI  HIIIIIIIIII  ELELDEVENI  HIIIIIIIIIIIII  ELELDEVENI  HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SAGTVKGKKTG 50  110 VLTAVDSALMV           VLTAVDSALMV 110  170 LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL            EIQQLRDEIEL             EIQQLRDEIEL 230  290 DATVRMVEPDE             DATVRMVEPDE 290 350 SSVVTFMSHDR	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN          VQAASNEFN 240 PKFSGFIFK          PKFSGFIFK 300 360 ELVEEAYAG
m134.pep a134 m134.pep a134 m134.pep a134	MSQEILDO  IEKQRGIS  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8 50 8 50 8 50 8 50 8 50 8 50 8 50 8 5	### ### ### ### ### ### ### ### ### ##	EKLLLFSGAIQ  40  100  GHQDFSEDTYR  HILLIHI   HILLIH  GHQDFSEDTYR  100  160  SLELLDEVENI  HILLIHI   HILLIH  SLELLDEVENI  111   HILLIH  DIPELEQREPLI  DIPELEQREPLI  DIPELEQREPLI  LIEWAPAPKPR  LIEWAPAPKPR  280  CHLRINREIAA	SAGTVKGKKTG 50  110 VLTAVDSALMV           VLTAVDSALMV 110  170 LKIRCAPVTWP  :         LQIRCAPVTWP 170 230 EIQQLRDEIEL            EIQQLRDEIEL             EIQQLRDEIEL 230 290 DATVRMVEPDE              DATVRMVEPDE 290 350 SSVVTFMSHDR	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN          VQAASNEFN 240 PKFSGFIFK 300 360 ELVEEAYAG
m134.pep a134 m134.pep a134 m134.pep a134 m134.pep	MSQEILDO  IEKQRGIS  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	70 8 50 8 50 8 50 8 50 8 50 8 50 8 50 8 60 8 60 8 60 8 60 8 60 8 60 8 60 8 6	### ### ### ### ### ### ### ### ### ##	EKLLLFSGAIQ  40  100  GHQDFSEDTYR  HILLIHIII  GHQDFSEDTYR  100  160  SLELLDEVENI  HILLIHIII  SLELLDEVENI  HILLIHIII  DNPELEQRFPL  HILLIHIII  DNPELEQRFPL  HILLIHIII  DNPELEQRFPL  HILLIHIII  CHERINEIAA	SAGTVKGKKTG 50  110 VLTAVDSALMV           VLTAVDSALMV 110  170 LKIRCAPVTWP  :         LQIRCAPVTWP 170  230 EIQQLRDEIEL            EIQQLRDEIEL             EIQQLRDEIEL 230  290 DATVRMVEPDE             DATVRMVEPDE 290 350 SSVVTFMSHDR	KFATSDWMD 60 120 IDAAKGVEA          IDAAKGVEA 120 180 IGMGKNFKG          IGMGKNFKG 180 240 VQAASNEFN          VQAASNEFN 240 PKFSGFIFK 300 360 ELVEEAYAG

WO 99/57280



```
370
                       380
                               390
                                       400
                                               410
          DIIGIPNHGNIQIGDSFSEGEQLAFTGIPFFAPELFRSVRIKNPLKIKQLQKGLQQLGEE
                                                      420
m134.pep
          a134
          DIIGIPNHGNIQIGDSFSEGEQLTFTGIPFFAPELFRSVRIKNPLKIKQLQKGLQQLGEE
                370
                       380
                               390
                                       400
               430
                       440
                               450
                                       460
                                               470
                                                      480
          GAVQVFKPMSGADLILGAVGVLQFEVVTSRLANEYGVEAVFDSASIWSARWVSCDDKKKL
m134.pep
          GAVQVFKPMSGADLILGAVGVLQFEVVTSRLANEYGVEAVFDNASIWSARWVSCDDKKKL
a134
               430
                       440
                               450
                                      460
               490
                       500
                               510
                                      520
          AE FEKANAGNLAI DAGGNLAYLAPNRVNLGLTQERWPDIVFHETREHSVKLX
m134.pep
          a134
          AEFEKANAGNLAIDAGGNLAYLAPNRVNLGLTQERWPDIVFHETREHSVKLX
                       500
                              510
                                      520
                                              530
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 517>:
```

```
ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCG
  7
     TTCGGACGGC AGCCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC
 51
     TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
101
     GCGGTTGCTG CAGGGTTCGG CGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
     AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
201
     AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC
251
    CTGCTCAGCC GTGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
301
351 CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCGATTCCC ATCATCAATG
401 AAAACGACAC GGTTTCGGTT GAGGAGTTGA AAATCGGCGA CAACGACACA
    TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
451
501 GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG
    CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG
551
    GCGGGCGGCT CGGGTTCGGC AAACGGCACG GGCGGTATGC TGACCAAAAT
    CAAAGCGGCA ACCATCGCCG CCGAATCCGG CGTACCGGTG TATATCTGTT
    CCTCACTCAA ACCCGATTCA TTGGCCGAAG CCGCCGAACA TCAGGCGGAC
701
    GGCTCGTTTT TCGTcccCcg tgCCAAAGGT TTGCGGACAC AGAAGCAATG
751
    GctggCGTTC TATTCcgaaa gcggGGgcag cgttTAtgtg gacgaaagtg
    cggaacacgc tTtgtccgaa caagggaaag cctgCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 518; ORF 135.ng>:

1 MKYKRIVFKV GTSSITRSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG
51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI
101 LLSRADFADK RRYQNAGGAL SVLLQRRAIP IINENDTVSV EELKIGDNDT
151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM
201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDS LAEAAEHQAD
251 GSFFVPRAKG LRTQKQWLAF YSESGGSVYV DESAEHALSE QGKAC*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 519>:

1 ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA
51 TTCGGACGGC AGTCTCTCGC GCGCAAAAT CCAAACCATC ACCTGCCAGC
101 TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
151 GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
201 AATCGCCGAC AAACAGGCTT CCGCCCGCT CGGGCAGGGG CTGCTGATGG
251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCGCAAATC
301 CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
351 CGGCGCACTT TCCGTGCTG TGCAACGCCG CGCCGTCCC ATCATCAATG
401 AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA
451 TTGAGTGCGC AAGTGGCGG GATGATACAG GCAGACCTCT TGGTGCTGCT

501	GACCGACATA	GACGGTCTTT	ACACGGGCAA	CCCGAACAGC	AATCCCGATG
551	CCGTACGGCT	GGACAAAATC	GAACACATCA	ACCATGAAAT	CATCGAAATG
601	GCGGGCGGCT	CGGGTTCGGC	AAACGGCACG	GGCGGTATGC	TGACCAAAAT
651	CAAAGCGGCA	ACCATCGCCG	CCGAATCCGG	CGTACCGGTG	TATATCTGTT
701	CCTCGCTCAA	ACCCGATGCA	CTTGCCGAAG	CTGCCGAACA	TCAGGCGGAC
751	GGCTCGTTTT	TCGTCCCCCG	TGCCAAAGGT	TTGCGGACGC	AGAAGCAATG
801	GCTGGCGTTC	TATTCCGAAA	GCCGGGGCAG	CGTTTATGTG	GACGAAGGTG
851	CGGAACACGC	TTTGTCCGAA	CAGGGGAAAA	GCCTGCTGAT	GTCGGGCATT
901	GCCGGAATCG	AAGGGCATTT	TTCCCGTATG	GACACCGTAA	CCGTGTACAG
951	CAAGGCAACC	AAACAGCCCC	TGGGCAAAGG	GCGCGTCCTG	TTCGGCTCTG
1001	CCGCCGCCGA	AGACCTGCTC	AAATCGCGTA	AGGCGAAAGG	CGTGTTCATC
1051	CATCGGGACG	ACTGGATTTC	CATCACGCCC	GAAATACGCC	TGCTTCTGAC
1101	CGAATTTTAG				

This corresponds to the amino acid sequence <SEQ ID 520; ORF 135>:

m135.pep

- 1 MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TCQLAALHHA GHELVLVSSG 51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI 101 LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT 151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM 201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDA LAEAAEHQAD 251 GSFFVPRAKG LRTQKQWLAF YSESRGSVYV DEGAEHALSE QGKSLLMSGI 301 AGIEGHFSRM DTVTVYSKAT KQPLGKGRVL FGSAAAEDLL KSRKAKGVFI 351 HRDDWISITP EIRLLLTEF*
- Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 135 shows 97.6% identity over a 294 aa overlap with a predicted ORF (ORF 135.ng) from *N. gonorrhoeae*:

m135/g135

m135.pep	10 MKYKRIVFKVGTSSI	20 THSDGSLSR	30 GKIQTITCQL	40 AALHHAGHEL	50 VLVSSGAVAA	60 AGFGALG
g135		1:1111111	GKIQTITRQL			
	10	20	30	40	50	60
	70	80	90	100	110	120
m135.pep	FKKRPVKIADKQAS <i>I</i>	AVGQGLLME	EYTANLSSDG	IVSAQILLSR	ADFADKRRYC	NAGGAL
		11111111	1111111111			111111
g135	FKKRPVKIADKQAS <i>I</i>	AVGQGLLME	EYTANLSSDG	IVSAQILLSR	ADFADKRRYC	NAGGAL
	70	80	90	100	110	120
	130	140	150	160	170	180
m135.pep	SVLLQRRAVPIINEN					
						111111
g135	SVLLQRRAIPIINEN	DTVSVEELK	IGDNDTLSAO	VAAMTOADLI	VLLTDTDGLY	TGNPNS
5	130	140	150	160	170	180
	190	200	210	220	230	240
m135.pep	NPDAVRLDKIEHIN	HEIIEMAGGS	GSANGTGGML	TKIKAATIAA	ESGVPVYICS	SSLKPDA
			1111111111	111111111		11111:
<b>g13</b> 5	NPDAVRLDKIEHIN		GSANGTGGML	TKIKAATIAA	ESGVPVYICS	SLKPDS
	190	200	210	220	230	240
	250	260	270	280	290	300
m135.pep	LAEAAEHQADGSFF	PRAKGLRTQ	KQWLAFYSES	RGSVYVDEGA	EHALSEOGKS	
		111111111	111111111	1111111:1		
g135	LAEAAEHQADGSFFV	PRAKGLRTQ	KQWLAFYSES	GGSVYVDESA		
	250	260	270	280	290	
	310	320	330	340	350	360

WO 99/57280



 ${ t AGIEGHFSRMDTVTVYSKATKQPLGKGRVLFGSAAAEDLLKSRKAKGVFIHRDDWISITP}$ m135.pep

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 521>: a135.seq

```
ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA
       TTCGGACGGC AGTCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC
   51
       TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
  101
      GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
  151
 201 AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
 251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC
 301 CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
      CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCCGTCCCC ATCATCAATG
 351
      AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA
 401
      TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
 451
      GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG
 501
     CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG
 551
     GCGGGCGGCT CGGGTTCGGC AAACGGCACA GGCGGTATGC TGACTAAAAT
 601
      CAAAGCGGCG ACGATTGCGA CCGAGTCCGG CGTACCGGTC TATATCTGTT
 651
 701 CCTCGCTCAA ACCCGATGCA CTTGCCGAAG CGGCAGATAA TCAGGCGGAC
 751 GGCTCGTTTT TCGTCCCCCG TGCCAAAGGT TTGCGGACGC AGAAGCAATG
 801 GCTGGCGTTC TATTCCGAAA GCAGGGGCGG CGTTTATGTG GACGAAGGTG
     CGGAACACGC TTTGTCCGAA CAGGGAAAAA GCCTGCTGAT GTCGGGCATT
 851
 901
      GCCGGAATCG AAGGGCATTT TTCCCGTATG GACACCGTAA CCGTGTACAG
 951 CAAGGCAACC AAACAGCCTT TGGGCAAAGG GCGAGTCCTG TTCGGCTCTG
1001 CCGCCGCCGA AGACCTGCTC AAATTGCGTA AGGCGAAAGG CGTGTTCATC
1051 CATCGGGACG ACTGGATTTC CATCACGCCC GAAATACGCC TGCTTCTGAC
1101 CGAATTTTAG
```

### This corresponds to the amino acid sequence <SEQ ID 522; ORF 135.a>:

a135.pep MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT 101 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM 151 AGGSGSANGT GGMLTKIKAA TIATESGVPV YICSSLKPDA LAEAADNQAD 201 251 GSFFVPRAKG LRTQKQWLAF YSESRGGVYV DEGAEHALSE QGKSLLMSGI AGIEGHFSRM DTVTVYSKAT KOPLGKGRVL FGSAAAEDLL KLRKAKGVFI 351 HRDDWISITP EIRLLLTEF*

### m135/a135 98.4% identity in 369 aa overlap

m135.pep	10 MKYKRIVFKVGTS	20 SITHSDGSLS	30	40	50	60
	111111111111		MGMIQITICQI	LAALHHAGHE)	JVLVSSGAVA	AGFGALG
a135	MKYKRIVFKVGTSS	SITHSDGSLS	PGKTOTTTDAT			111111
	10	20	WONT OI TIMOI	-AALHHAGHEI	JVLVSSGAVA2	AGFGALG
	10	20	30	40	50	60
	70	80	90	100		
m135.pep	FKKRPVKIADKQAS	AAVGOGTIM	FEVERNI CODO	100	110	120
	1111111111111		PETTANDSDE	SIVSAQILLSF	ADFADKRRYÇ	NAGGAL
a135						
4200		титербенны	EEYTANLSSDG	IVSAOILLSR	ADFADERRYC	יייייייייייייייייייייייייייייייייייייי
	70	80	90	100	110	
					110	120
	130	140	150	160		
m135.pep	SVLLQRRAVPIINE	NOTUSVEET	CTCDMDTIT CAG	100	170	180
			TONDITONO	AWWIDADLL	VLLTDIDGLY	TGNPNS
a135						
	2	MDI ADAEETE	(IGDNDTLSAQ	VAAMIQADLL	VLLTDTDGLY	TONDME
	130	140	150	160	170	
					170	180
	190	200	210	222		
m135.pep	NPDAVRLDKTEHTNI	HETTEMACCO	CCANCECON	220	230	240
·	NPDAVRLDKIEHIN	LILLILL	GSANGI GGML	rkikaatiaa:	ESGVPVYICS:	SLKPDA
a135						
	NPDAVRLDKIEHINE	HEIIEMAGGS	GSANGTGGML	rkikaatiati	SCVPVVTCS	
	190	200	210	220	230	
					230	240

240

	250	260	270	280	290	300
m135.pep	LAEAAEHQADGSFI	VPRAKGLRT	QKQWLAFYSE:	SRGSVYVDEGA	AEHALSEQGK	SLLMSGI
			111111111	111:111111		1111111
a135	LAEAADNQADGSFI	VPRAKGLRT	QKQWLAFYSE:	SRGGVYVDEGA	AEHALSEQGK	SLLMSGI
	250	260	270	280	290	300
	310	320	330	340	350	360
m135.pep	AGIEGHFSRMDTV	VYSKATKQP:	LGKGRVLFGS	AAAEDLLKSRI	KAKGVFIHRD	DWISITP
-			111111111		111111111	1111111
a135	AGIEGHFSRMDTV7	VYSKATKQP:	LGKGRVLFGS	AAAEDLLKLRI	CAKGVFIHRD	DWISITP
	310	320	330	340	350	360
	370					
m135.pep	EIRLLTEFX					
	111111111					
.a135	EIRLLTEFX					
	370					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 523>:

```
g136.seq
       1
         ATGGAAATCC GGTTTCAGAC AGCATTTTTA CGTTTGGTTC AGatqaAAAC
         AAACGCTtca aTTCTtaccg caACACGCCT TGTATTTCCT GccgCTGCCG
      51
          CACGGACAGG GATCGTTCCT GCCGqtTTTT TCCCCTTCCC TGCGGACGGT
         TTGCGGTTTG TTGATGACCG CCTGCCAGTA GCGGTAGATG TCtgccagcg
     201 cgTAAGGCag tTCGGAcgca agttccgcca gctcgccttc ggTGAATTGC
     251 AGgeggataa egeegtttTC CTCTTCGTCg taaatgeege ceaetgeeat
     301 CacqGGGTAA AACAGCTCTT CAAACGCTTC ATCATCGGCG GCTTCAAACC
     351 AATCGGTCGG CACAATGTCC AAACCGTAAA GATAGGCGTT GCACCAAGTG
     401 TAAAAATCGC TGCCGCCCTC GCCGTCGTCG TAGAGCCACA AATCGGGCAG
     451 CTTTTATCC GACATCGCGG CGGTTGTTTC CATCGCCATT GCCAAAACCA
     501 GCCGTTCGAT TTCGGAACGT TCGGCGGCGG TAAATTGCGA TTCGTCGCCC
    551 AACACTTCGG GCAGCCAGTC GAGCGGTGCC AATTTGTCCG GCCCGCTCAA
     601 CAGCGCCGTC ATAAAACCTT GAACCTCGTC GCAACGCATC GTGTTGCCTT
         GTTCGCTTTT GGCATCCAAT AA
```

This corresponds to the amino acid sequence <SEQ ID 524; ORF 136.ng>:

```
g136.pep

1 MEIRFQTAFL RLVQMKTNAS ILTATRLVFP AAAARTGIVP AGFFPFPADG
51 LRFVDDRLPV AVDVCQRVRQ FGRKFRQLAF GELQADNAVF LFVVNAAHCH
101 HGVKQLFKRF IIGGFKPIGR HNVQTVKIGV APSVKIAAAL AVVVEPQIGQ
151 LFIRHRGGCF HRHCQNQPFD FGTFGGGKLR FVAQHFGQPV ERCQFVRPAQ
201 QRRHKTLNLV ATHRVALFAF GIQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 525>:

m136.seq

```
ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC
 51 CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG
101 CGGACGGTTT GCGGTTTGTT GATGACTGCC TGCCAGTAGC GGTAGATATC
151 CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG
    TGAATTGCAG ACGGATAGCG CCGTTTTCCT CTTCGTCGTA AATACCGCCC
    AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC
    TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC
351 ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA
    TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC
401
451 CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT
501 CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC
551 CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT
601 GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG
651 ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CAAATGGGTT
    TTGCGCCCTA TTATCGCCGC AATGCCGTCT GA
```

This corresponds to the amino acid sequence <SEQ ID 526; ORF 136>:

WO 99/57280

```
m136.pep
                METNASILTA TRLVFSAAAA RTGIVPACFF AFPADGLRFV DDCLPVAVDI
             1
                RQCIRQLGFQ FRQLAFCELQ TDSAVFLFVV NTAQCHDGIK QLFKRFIIDG
            51
                FKPIGRHNIQ TVKISIAPCV KIAAAVFVFI QPQIGQFFIR HRGGCFHRHC
                QNQPFDFGTF GGGKLRFVAQ HFGQPVERCQ FVRPAQQRRH KTLNLVATHR
                {\tt VALFAFGIQQ} \ {\tt FAQPPFGCFG} \ {\tt KFSGIHHFPF} \ {\tt QMGFAPYYRR} \ {\tt NAV} \star
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N. gonorrhoeae
 ORF 136 shows 85.6% identity over a 209 aa overlap with a predicted ORF (ORF 136.ng)
 from N. gonorrhoeae:
      m136/g136
                                        10
                                                 20
                                                           30
      m136.pep
                                METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRFVDDCLPV
                                {\tt MEIRFOTAFLRLVQMKTNASILTATRLVFPAAAARTGIVPAGFFPFPADGLRFVDDRLPV}
      g136
                          10
                                    20
                                             30
                                                       40
                                                                 50
                              60
                                       70
                                                           90
                  {\tt AVDIRQCIRQLGFQFRQLAFCELQTDSAVFLFVVNTAQCHDGIKQLFKRFIIDGFKPIGR}
      m136.pep
                  AVDVCQRVRQFGRKFRQLAFGELQADNAVFLFVVNAAHCHHGVKQLFKRFIIGGFKPIGR
      g136
                          70
                                   80
                                             90
                                                     100
                                                                         120
                   110
                             120
                                      130
                                                140
                                                         150
                                                                   160
                  {\tt HNIQTVKISIAPCVKIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLR}
     m136.pep
                  HNVQTVKIGVAPSVKIAAALAVVVEPQIGQLFIRHRGGCFHRHCQNQPFDFGTFGGGKLR
     9136
                         130
                                  140
                                            150
                                                     160
                                                               170
                                                                         180
                   170
                            180
                                      190
                                               200
                                                         210
                                                                   220
                  {\tt FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIH}
     m136.pep
                  q136
                  FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQX
                        190
                                  200
                                           210
                   230
                            240
     m136.pep
                 HFPFQMGFAPYYRRNAVX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 527>:
     a136.seq
              ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC
              CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG
          51
              CGGACGCTTT GCGGCTTGTT GATGACCGCC TGCCAGTAGC GGTAGATATC
         101
              CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG
              TGAATTGCAG ACGGATAGTG CCGTTGTCCT CTTCGTCGTA AATACCGCCC
         201
              AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC
         251
              TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC
         301
         351 ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA
              TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC
         401
              CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT
         451
              CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC
         501
             CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT
         551
             GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG
         601
         651 ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CCAATGGGTT
             TTGCGCCCTA TTATAGTGGA TTAAATTTAA ATCAGGACAA GGCGACGAAG
             CCGCAGACAG TACAAATAGT ACGGCAAGGC GAGGCAACGC CGTACTGGTT
         751
```

This corresponds to the amino acid sequence <SEQ ID 528; ORF 136.a>: a136.pep

TAAATTTAAT CCACTATATC GCCGCAATGC CGTCTGA

```
METNASILTA TRLVFSAAAA RTGIVPACFF AFPADGLRLV DDRLPVAVDI
              RQCIRQLGFQ FRQLAFCELQ TDSAVVLFVV NTAQCHDGIK QLFKRFIIDG FKPIGRHNIQ TVK\overline{\text{ISIAPCV}} KIAAAVFVFI QPQIGQFFIR HRGGCFHRHC
          51
         101
              QNQPFDFGTF GGGKLRFVAQ HFGQPVERCQ FVRPAQQRRH KTLNLVATHR
         151
              VALFAFGIQQ FAQPPFGCFG KFSGIHHFPF PMGFAPYYSG LNLNQDKATK
              PQTVQIVRQG EATPYWFKFN PLYRRNAV*
         251
m136/a136 98.3% identity in 238 aa overlap
                                          30
                                                   40
                                                            50
                METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRFVDDCLPVAVDIRQCIRQLGFO
    m136.pep
                 METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRLVDDRLPVAVDIRQCIRQLGFQ
     a136
                        10
                                 20
                                          30
                                                   40
                        70
                               . 80
                                          90
                                                  100
                                                           110
                                                                    120
                FRQLAFCELQTDSAVFLFVVNTAQCHDGIKQLFKRFIIDGFKPIGRHNIQTVKISIAPCV
    m136.pep
                 a136
                 FRQLAFCELQTDSAVVLFVVNTAQCHDGIKQLFKRFIIDGFKPIGRHNIQTVKISIAPCV
                        70
                                 80
                                          90
                                                  100
                                                           110
                       130
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                KIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLRFVAQHFGQPVERCQ
    m136.pep
                KIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLRFVAQHFGQPVERCQ
    a136
                       130
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                       190
                                200
                                         210
                                                  220
                FVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIHHFPFQMGFAPYYRR
    m136.pep
                 a136
                FVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIHHFPFPMGFAPYYSG
                                200
                                         210
                                                  220
                                                           230
                                                                    240
    m136.pep
                NAVX
    a136
                LNLNQDKATKPQTVQIVRQGEATPYWFKFNPLYRRNAVX
                       250
                                260
```

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 529>: g137.seq

```
ATGATTATCC ATCACcaaTT CGATCCCGTC CTCATCAGTA TCGGCCCGCT
  1
     TGCCGTCCGC TGGTATGCCT TAAGCTACAT CCTCGGATTT ATTCTTTTTA
 51
     CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
151
     GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TGATTTTGGG
     CGGACGCTTG GGCTATGTCC TGTTTTACAA ATTCTCCGAC TACCTCGCCC
201
    ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
251
    GGCTTTTTGG GTGTAGTTAT TGCCATATGG TTGTTCAGCC GCAAGCACGG
301
     CATCGGCTTC CTCAAACTGA TGGACACGGT CGCGCCGCTC GTTCCGCTGG
351
     GTCTCGCTTC GGGACGTATC GGCAACTTTA TCAACGGCGA ACTTTGGGGA
401
     CGCATTACCG ACATTAACGC ATTTTGGGCA ATGGGCTTCC CGCAAGCGCA
451
501
     TTACGAAGAT GCCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
551
     TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
601
     GCCCTTGAAG GCATCTGCCT GTTCGCCGTC GTTTGGCTGT TTTCCAAAAA
    ACCGCGCCCG ACCGGGCAGA CTGCCGCGCT TTTTCTCGGC GGCTACGGCG
     TGTTCCGCTT TATTGCCGAA TTTGCGCGCC AACCCGACGA CTATCTCGGG
     CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
801
    TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT
851
```

This corresponds to the amino acid sequence <SEQ ID 530; ORF 137.ng>: g137.pep



g137 AEWLQQYGMLPRHPSQLYQFALEGICLFAVVWLFSKKPRPTGQTAALFLGGYGVFR 190 200 210 220 230	240
250 260 270 280 ml37.pep FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX	
g137 FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX 250 260 270 280	
250 200 270 200	
The following partial DNA sequence was identified in N. meningitidis <seq 53:<="" id="" td=""><td>3&gt;:</td></seq>	3>:
al37.seq	
1 ATGATTACCC ATCCCCAATT CGACCCCGTC CTTATCAGTA TCGGCCCGCT 51 TGCCGTCCGC TGGTATGCCC TAAGCTACAT CCTCGGATTT ATTCTTTTTA	
101 CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA	
151 GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TAATTTTGGG	
201 CGGGCGTTTG GGTTACGTCC TGTTTTACAA GTTTTCCGAC TACCTCGCCC	
251 ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC	
301 GGCTTTTTGG GTGTAGTTAT TGCCATATGG TTGTTCGGTC GCAAACACGG	
351 CATCGGCTTC CTCAAACTGA TGGACACGGT CGCACCGCTC GTTCCACTGG	
401 GTCTCGCTTC GGGACGTATC GGCAACTTCA TCAACGGCGA ACTTTGGGGA	
451 CGCGTTACCG ACATCAACGC ATTTTGGGCA ATGGGCTTCC CGCAGGCGCG	
501 TTACGAAGAC CTCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC 551 TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT	
601 GCACTTGAAG GCATCTGCCT GTTCGCCGTC GTTTGGCTGT TCTCTAAAAA	
651 ACAGCGGCCG ACCGGACAAG TCGCCTCACT CTTCCTCGGC GGCTACGGCA	
***************************************	
701 TATTCCGCTT CATTGCCGAA TTTGCACGCC AACCCGACGA CTATCTCGGG	
701 TATTCCGCTT CATTGCCGAA TTTGCACGCC AACCCGACGA CTATCTCGGG 751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">: a137.pep</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap</seq>	60
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  m137.pep MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF</seq>	
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF</seq>	LTWG
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 11111111111111111111111111111111111</seq>	LTWG      LTWG
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF</seq>	LTWG
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKIMDTVAPL VPLCLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF. 10 10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF. 10 20 30 40 50</seq>	LTWG           LTWG 60
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIATW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 11111111111111111111111111111111111</seq>	LTWG      LTWG 60
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKIMDTVAPL VPLCLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF. 10 10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF. 10 20 30 40 50</seq>	LTWG      LTWG 60 120 GIGF
751 CTGCTGACCT TGGGGCTGTC GATGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap 10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  TO 80 90 100 110  m137.pep ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKH</seq>	LTWG      LTWG 60  120 GIGF
751 CTGCTGACCT TGGGGCTGTC GATGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  10 20 30 40 50  110 110  m137.pep ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKH</seq>	LTWG      LTWG 60  120 GIGF
This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  i Mithpofdpv Lisigplavr Wyalsyilgf Ilftflgrr Iaqglsvftk Si Eslddfly Legrkhgigf Lkimdtvapl Vylglasgri Gnfingelwg Lsprkhgigf Lkimdtvapl Vylglasgri Gnfingelwg Stotion Alegiclfav Vwlfskorp Tgovaslfig Gygifrfiae farqpddylg Legaldfly Vwlfskorp Tgovaslfig Gygifrfiae farqpddylg Ltllglsmg Wisvpmivlg Ivgfvrfcmk KQH*  m137/a137 98.2% identity in 283 aa overlap  a137 MithpofdpvLisigplavrwyalsyilgfilftflgrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftflgrrriagglsvftkeslddflaif MithpofdpvLisigplavrwyalsyilgfilftrykggrrfrykfsdylahpldifkvweggmsfhggflgvViairlfgrkhiiliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</seq>	LTWG      LTWG 60 120 GIGF      GIGF 120
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKIMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap 10 20 30 40 50  m137.pep MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 11</seq>	LTWG      LTWG 60 120 GIGF      GIGF 120
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFTTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFFQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  a137 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  m137.pep MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  m137.pep ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKH 111111111111111111111111111111111111</seq>	LTWG      LTWG 60  120 GIGF      GIGF 120  180 NPLW
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF LLFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAANNPLW AEWLQQYGML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  m137.pep  MITHPQFDFVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  m137.pep  MITHPQFDFVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  70 80 90 100 110  m137.pep  ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKH                                      </seq>	LTWG             LTWG   60  120 SIGF         SIGF 120  180 NPLW
751 CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT 801 TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT 851 GA  This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK 51 ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG 101 GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG 151 RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYCML PRHPSQLYQF 201 ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG 251 LLTLGLSMGQ WLSVPMIVLG IVGFVFFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  a137 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  m137.pep MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDF 10 20 30 40 50  70 80 90 100 110  m137.pep ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKH 111111111111111111111111111111111111</seq>	LTWG             LTWG   60  120 SIGF         SIGF 120  180 NPLW
This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPOFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG IST RAUPING ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG IST RAUPING ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG IST RAUPINAWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF ALEGICLFAV WYLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG ILTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  m137.pep MITHPOFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</seq>	LTWG           LTWG 60  120 GIGF         GIGF 120  180 NPLW         NPLW 180
Total	LTWG           LTWG 60  120 GIGF           GIGF 120  180 NPLW           NPLW 180  240
This corresponds to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:  a137.pep  1 MITHPOFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG IST RAUPING ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG IST RAUPING ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG IST RAUPINAWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF ALEGICLFAV WYLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG ILTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*  m137/a137 98.2% identity in 283 aa overlap  10 20 30 40 50  m137.pep MITHPOFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</seq>	LTWG           LTWG 60  120 GIGF           GIGF 120  180 NPLW           NPLW 180  240 FIAE

BNSDOCID: <WO___9957280A2_i_>

190 200 210 220 230 240 250 260 270 280  ${\tt FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX}$ m137.pep a137 FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX 250 260 270

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 535>:
```

```
ATGGAGTTTG AAAACATTAT TTCCGCCGCc gaCAAGGCGC GTATCCTTGC
  1
     CGAAGCACTG CCTTACAtcc gccgGTTTTC CGGTTCGGTC GCCGTCATCA
 51
101 AGTATGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
151 CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
201 CGGCGGCGGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
251 GCGAATTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGAC GATGGATATT
301 GTCGAAATGG TATTGGGCGG GCACGTCAAC AAGGAAATCG TGTCGATGAT
351 TAACACATAT GGAGGGCACG CGGTCGGCGT GAGCGGCCGC GACGACCATT
     TCATTAAGGC GAAGAAACTT TTGGTCGATA CGCCCGAACA GAATAGCGTG
401
     GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
451
     AGGGCTGATA GAACGCGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
     GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT GGCAGGCAAA
551
601 TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAAtatcgc
651 CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC aCGCCGAAAC
701 GGATTGATGG GCTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
751 AAAATCGCTT CTGCGGTCGA AGCCGCGtc aACGGTGTGA AAGCCACGCA
801 CATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
851 ATGCCGGTAT CGGGTCGATG ATTTTAGGCA GAGGGGAAGA TGCCTGA
```

# This corresponds to the amino acid sequence <SEQ ID 536; ORF 138.ng>:

```
1 MEFENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA
51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKETMDI
101 VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LVDTPEQNSV
151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDGLIA DGTLYGGMLP
251 KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGRGEDA*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 537>:

```
ATGGAGTCTG AAAACATTAT TTCCGCCGCC GACAAGGCGC GTATCCTTGC
  1
    CGAAGCGCTG CCTTACATCC GCCGGTTTTC CGGTTCGGTC GCCGTCATCA
 51
     AATACGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
101
     CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
201 CGGCGGCGGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
251 GTGAGTTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGGC GATGGATATT
301 GTCGAAATGG TGTTGGGCGG GCATGTCAAT AAAGAAATCG TGTCGATGAT
351 TAACACATAT GGCGGACACG CGGTCGGCGT AAGCGGACGC GACGACCATT
401 TCATTAAGGC GAAGAAACTT TTGATCGATA CGCCCGAACA GAATGGCGTG
451 GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
501 AGGGCTGATA GAACGTGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
551 GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT AGCAGGCAAA
    TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAATATCGC
    CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC ACGCCGAAAC
701 GGATTGATGA ACTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
751 AAAATCGCTT CTGCGGTCGA AGCCGCCGTC AACGGTGTGA AAGCCACGCA
   TATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
    ATGCCGGTAT CGGTTCGATG ATTTTGGGCG GTGGGGAAGA TGCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 538; ORF 138>:

1 MESENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA

51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVOGM RVTDKEAMDI VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEQNGV DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDELIA DGTLYGGMLP KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGGGEDA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 138 shows 98.0% identity over a 298 aa overlap with a predicted ORF (ORF 138.ng) from N. gonorrhoeae: m138/g138

```
10
                        20
                                30
                                               50
                                                       60
          MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
m138.pep
          MEFENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
g138
                        20
                                30
                                        40
                                               50
                70
                        80
                                90
                                       100
                                              110
                                                      120
m138.pep
          IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
          IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKETMDIVEMVLGGHVNKEIVSMINTY
g138
                70
                        80
                                90
                                       100
                                              110
               130
                       140
                               150
                                       160
                                              170
                                                      180
m138.pep
          GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
          g138
          GGHAVGVSGRDDHFIKAKKLLVDTPEQNSVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
               130
                       140
                               150
                                       160
                                              170
                                                      180
                       200
                               210
                                       220
                                              230
                                                      240
m138.pep
          VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
          VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDGLIA
g138
               190
                       200
                               210
                                       220
                                              230
               250
                       260
                               270
                                       280
                                              290
                                                     299
          DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRLPNALLLEIFTDAGIGSMILGGGEDAX
ml38.pep
          DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRLPNALLLEIFTDAGIGSMILGRGEDAX
g138
               250
                       260
                               270
                                       280
                                              290
```

The following partial DNA sequence was identified in N. meningitidis <SEO ID 539>:

```
a138.seq
          ATGGAGTCTG AAAACATTAT TTCCGCCGCC GACAAGGCGC GTATCCTTGC
       1
          CGAAGCGCTG CCTTACATCC GCCGGTTTTC CGGTTCGGTC GCCGTCATCA
      51
          AATACGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
     101
          CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
     201
          CGGCGGCGGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
          GTGAGTTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGGC GATGGATATT
     251
     301
          GTCGAAATGG TGTTGGGCGG GCATGTCAAT AAAGAAATCG TGTCGATGAT
          TAACACATAT GGCGGACACG CGGTCGGCGT AAGCGGACGC GACGACCATT
     351
          TCATTAAGGC GAAGAAACTT TTGATCGATA CGCCCGAACA GAATGGCGTG
     401
     451
          GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
     501
          AGGGCTGATA GAACGTGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
     551
          GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT AGCAGGCAAA
          TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAATATCGC
     601
          CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC ACGCCGAAAC
     651
          GGATTGATGA ACTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
     701
     751
          AAAATCGCTT CTGCGGTCGA AGCCGCCGTC AACGGCGTGA AAGCCACGCA
          TATCATCGAC GGCAGGGTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
     801
     851
          ATGCCGGTAT CGGTTCGATG ATTTTGGGCG GTGGGGAAGA TGCCTGA
```

BNSDOCID: <WO 9957280A2 1 3

```
This corresponds to the amino acid sequence <SEQ ID 540; ORF 138.a>:
       a138.pep
                MESENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA
                RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKEAMDI
             51
                VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEQNGV
            101
                DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
            151
                LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDELIA DGTLYGGMLP
            201
                KIASAVEAAV NGVKATHIID GRVPNALLLE IFTDAGIGSM ILGGGEDA*
            251
             99.7% identity in 298 aa overlap
  m138/a138
                          10
                                   20
                                            30
                  MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
                                                     40
                                                              50
      m138.pep
                   MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
      a138
                                   20
                                            30
                                                     40
                                                              50
                                                                       60
                          70
                                   80
                                            90
                                                    100
                  IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
                                                             110
      m138.pep
                                                                      120
                  IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
      a138
                         70
                                  80
                                            90
                                                    100
                                                             110
                                                                      120
                        130
                                  140
                                          150
                                                    160
                  GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
                                                             170
      m138.pep
                  GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
      a138
                                 140
                                          150
                                                   160
                                                            170
                        190
                                 200
                                          210
                                                   220
                  VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
                                                            230
      m138.pep
                  a138
                  VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
                        190
                                 200
                                          210
                                                   220
                                                            230
                                                                     240
                        250
                                 260
                                          270
                                                   280
                                                            290
                 DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRLPNALLLEIFTDAGIGSMILGGGEDAX
     m138.pep
                 DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRVPNALLLEIFTDAGIGSMILGGGEDAX
     a138
                                 260
                                          270
                                                   280
                                                            290
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 541>:
     g139.seq
              ATGCGAACCA CCTCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT
            1
              GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAggc ggcggcggag
           51
              GCGGCACTTC TGCTCCCGAC TTTAATGCAG GCGGCACCGG TATCGGCAGC
          101
              AACAGCAGGG CAACGATAGC GGAATCAGCA GCAGTATCTT ACGCCGGTAT
          151
              AAAAAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG
          201
              ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAAAGCCCC CCGAATCTGC
         251
              ATACCGGAGA CTTTTCAAAC CCAAATGACC AATATTAAGA ATATGATCAA
         301
              CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG
         351
              GTATCGTCGA TACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG
         401
              TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA ACAAATTACA
              AAAACTATAC GGCGTATATG CGGAAGGAAG CGCCTGA
         501
This corresponds to the amino acid sequence <SEQ ID 542; ORF 138.ng>:
    g139.pep
             MRTTSTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS
           1
```

NSRATIAESA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKIKAPRIC

IPETFQTQMT NIKNMINLKP AIEAGYTGRG VEVGIVDTGE SVGSISFPEL

151 YGRKEHGYNE NYKNKLQKLY GVYAEGSA*

51

101

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 543>:
     m139.seq
              ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGACTGCCAT
           1
          51 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG
          101 GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGTACCGG TATCGGCAGC
          151 AACAGCAGAG CAACAACAGC GAAATCAGCA GCAGTATCTT ACGCCGGTAT
          201 CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG
          251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCGAATC
         301 TGCATACCGG AGACTTTCCA AACCCAAATG ACGCATLACA AGAATTTGAT
         351 CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG
         401 TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA
         451 CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTACG AAAAACTATA
          501 CGGCGTATAT GCGGAAGGAA GCGCCTGA
This corresponds to the amino acid sequence <SEQ ID 544; ORF 138>:
     m139.pep
              MRTTPTFPTK TFKPTAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS
          51
              NSRATTAKSA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI
              CIPETFQTQM THYKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE
          151 LYGRKEHGYN ENYEKLYGVY AEGSA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 138 shows 92.2% identity over a 179 aa overlap with a predicted ORF (ORF 138.ng)
from N. gonorrhoeae:
     m139/q139
                         10
                                   20
                                                      40
                                                                50
                                                                         60
     m139.pep
                 MRTTPTFPTKTFKPTAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATTAKSA
                 g139
                 MRTTSTFPTKTFKPAAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATIAESA
                                   20
                                            30
                                                      40
                                                               50
                         70
                                                     100
                                                               110
     m139.pep
                 AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKINAPPRICIPETFQTQMTHYKNLINLK
                 AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKIKAP-RICIPETFQTQMTNIKNMINLK
     g139
                         70
                                   80
                                            90
                                                      100
                        130
                                  140
                                           150
                                                     160
                                                                  170
     m139.pep
                 PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENY----EKLYGVYAEGSAX
                 : | | | | | | | | | | | | | | |
                 PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENYKNKLQKLYGVYAEGSAX
     g139
               120
                         130
                                   140
                                            150
                                                      160
                                                               170
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 545>:
     a139.seq
           1
              ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT
          51
              GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG
         101 GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGCACCGG TATCGGCAGC
              AACAGCAGGG CAACAACAGC GAAATCAGCA GCAATATCTT ACGCCGGTAT
         201
              CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG
         251
              ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCGAATC
         301
              TGCATACCGG AGACTTTACA AACCCAAATG ACGCAT.ACA AGAATTTGAT
              CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG
         351
         401
              TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA
         451
             CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTAC. AAAAACTATA
             CGGCGTATAT GCGGAAGGAA GCGCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 546; ORF 139.a>: a139.pep

¹ MRTTPTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS

- 51 NSRATTAKSA AISYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI CIPETLOTOM THXKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE 101
- 151 LYGRKEHGYN ENYXKLYGVY AEGSA*

### m139/a139 97.1% identity in 175 aa overlap

m139.pep	10 MRTTPTFPTKTFKP	20 TAMALAVATT	30	40	50	60
a139	MRTTPTFPTKTFKP	:				
	10	20	30	40	50	60
m139.pep	70 AVSYAGIKNEMOKO	80 BEMI CA CDDD	90	100	110	120
a139	AVSYAGIKNEMCKD	1 1 1 1 1 1 1 1 1 1	111111111		1.111111	
4133	AISYAGIKNEMCKDI 70	RSMLCAGRDD 80	VAVTDRDAKI	NAPPRICIPE		NLINLK
	. •	00	90	100	110	120
m139.pep	130 PATEAGYTGPGVEV	140	150	160	170	
	PAIEAGYTGRGVEVO	21 A D L G & 2 A G	SISFPELYGR	KEHGYNENYE	KLYGVYAEGS	AX
a139	PAIEAGYTGRGVEVO	SIVDTGESVG:	SISFPELYGR	 KEHGYNENYX		
	130	140	150	160	170	WV

#### The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 547>: g140.seq

```
Atgtcggcac gCGGCAAGGG GGCAGgctat ctcAACAGTA CCGGACGACa
    1
      TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA
 101 AAAATATCAA AACCGACGGC GGTCTGCTGG CTTCCCTCGA CAGCGTCGAA
 151 AAAACAGCGG GCAGTGAAGG CGACACGCCG TCCTATTATG TCCGTCGCGG
 201 CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
      TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
      GAGCTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
      GGTCGCCGAC CGCACAGATA TGCCGGGCAT CCGCCTACGG CGCACAACTT
 351
 401 TCCGCACAGC GGCAGCCGTA CAGCATGCGA ATACCGCCGA CGGCGTACGC
 451 aTCTTcaaCA GTCTCGCCGC TAccgTCTAt GccgACAGTG CCGCCGCCCA
 501 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
 551 ACAACGGTAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
 601 ACGTGGGAAC AGGGCGGTGT CGAAGGCAAA ATGCGCGGCA GTACCCAAAC
 651 TATCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC
 701 TGGGCATAGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC
 751 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGTGG GCGATATCGG
     CTATCTCAAA GGCCTGTTCT CctaCGGACG CTACAAAAAC AGCATCAGCC
 851 GCAGCACCGG TGCGGATGAA TATGCGGAAG GCAGCGTCAA CGGCACGCTG
 901 ATGCAGCTGG GCGCACTGGG TGGTGTCAAC GTTCCGTTTG CCGCAACGGG
 951 AGATTTGACG GTTGAAGGCG GTCTGCGCCA CGACCTGCTC AAACAGGATG
1001 CATTCGCCGA AAAAGGCagt GCTTTGGGCT GGAGCGGCAA CAGCCTCACT
1051 GAAGGCACAC TGGTCGGACT CGCGGGTCTG AAACTGTCGC AACCCTTGAG
1101 CGATAAAGCC GTCCTGTCTG CGACGGCGGG CGTGGAACGC GACCTGAACG
1151 GACGCGACTA CGCGGTAACG GGCGGCTTTA CCGGCGCGGC TGCAGCAACC
1201 GGCAAGACGG GTGCACGCAA TATGCCGCAC ACCCGCCGGG TTGCCGGTCT
     GGGGGTGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
1251
     GCTACACCGG TTCCAAACAG TACGGCAACC ACAGCGGACA AATCGGCGTA
1351
     GGCTACCGGT TCTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 548; ORF 140.ng>: g140.pep

1	MSARGKGAGY	LNSTGRHVPF	LSAAKTGODY	CERVATEURO	<b>GT T 3 GT T T</b>
51	KTAGSEGDTP	SYYVERGNAA	PTACAAAUCA	DAGLIGIA	GLLASLDSVE
101	ELDASESSAT	PETVETAVAD	DUDWDOLDLD	PAGLKHAVEQ	GGSNLENLMV
151	IFNSLAATVY	MUKRYKASUR	CODDITION	RTTFRTAAAV	QHANTADGVR
201	IFNSLAATVY	MDCCMCDTCT	QGRRLKAVSD	GLDHNGTGLR	VIAQTQQDGG
	TWEQGGVEGK	MKGSTQTTGT	AAKTGENTTA	AATLGIGRST	WSENSANAKT

251 DSISLFAGIR HDVGDIGYLK GLFSYGRYKN SISRSTGADE YAEGSVNGTL

```
MQLGALGGVN VPFAATGDLT VEGGLRHDLL KQDAFAEKGS ALGWSGNSLT
               EGTLVGLAGL KLSQPLSDKA VLSATAGVER DLNGRDYAVT GGFTGAAAAT
               GKTGARNMPH TRRVAGLGVD VEFGNGWNGL ARYSYTGSKQ YGNHSGQIGV
          451
               GYRF*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 549>:
     m140.seq
              ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG
            1
           51
              TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA
          101
               CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA
              AAAACAGCGG GCAGTGAAGG CGACACGCTG TCCTATTATG TCCGTCGCGG
               CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
               TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
          301
               GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
               GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT
          401 TCCGCGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC
          451 ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA
          501 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
          551 ACAACGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
          601 ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC
          651 CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC
          701 TGGGCATGGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAAA TGCAAAAACC
          751 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG
          801 CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC
          851 GCAGCACCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA CGGCACGCTG
          901 ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG
          951 AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG
         1001 CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGCGGCAA CAGCCTCACT
         1051 GAAGGCACGC TGGTCGGACT CGCGGGTCTG AAGCTGTCGC AACCCTTGAG
         1101 CGATAAAGCC GTCCTGTTTG CAACGGCGGG CGTGGAACGC GACCTGAACG
         1151 GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC
         1201 GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT
         1251 GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
               GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA
               GGCTACCGGT TCTGA
This corresponds to the amino acid sequence <SEQ ID 550; ORF 140>:
                                                                              λ'n.
     m140.pep
            1 MSARGKGAGY LNSTGRRVPF LSAAKIGQDY SFFTNIETDG GLLASLDSVE
           51 KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
          101 ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR
          151 IFNSLAATVY ADSTAAHADM QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
          201 TWEQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANAKT
          251 DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL
          301 MQLGALGGVN VPFAATGDLT VEGGLRYDLL KODAFAEKGS ALGWSGNSLT
          351 EGTLVGLAGL KLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT
              GKTGARNMPH TRLVAGLGAD VEFGNGWNGL ARYSYAGSKQ YGNHSGRVGV
          451
               GYRF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 140 shows 94.5% identity over a 454 as overlap with a predicted ORF (ORF 140.ng)
from N. gonorrhoeae:
     m140/g140
                                    20
                                              30
                  {\tt MSARGKGAGYLNSTGRRVPFLSAAKIGQDYSFFTNIETDGGLLASLDSVEKTAGSEGDTL}
     m140.pep
                  MSARGKGAGYLNSTGRHVPFLSAAKIGQDYSFFKNIKTDGGLLASLDSVEKTAGSEGDTP
     g140
                                             30
                                                       40
                                                                 50
                                                                           60
                          70
                                    80
                                             90
                                                      100
                                                                110
                                                                          120
```



m140.pep	SYYVRRGNAARTA	ASAAAHSAPA(	GLKHAVEOGGS	NLENI MVET.D	A CECCAMON	
g140						
9140	SIIVRRGNAARTA	SAAAHSAPA(	<b>GLKHAVEQGGS</b>	NLENLMVELD	ASESSATPE	IIIIIIII TVETAVAD
	70	80	90	100	110	120
	130	140				
m140.pep	RTDMPGIRPYGAT	FRAADAVOUZ	150	160	170	180
g140	RTDMPGIRLRRTT	FRTAAAVOHA	NTADGVRIFN	SIAATUVADO	:	
	130	140	150	160	чаннымоды 170	
				200	170	180
m140	190	200	210	220	230	240
m140.pep	GLDHNGTGLRVIA	OTOODGGTWE	QGGVEGKMRG:	STOTVGIAAKT	GENTTAAAT	U#S TOROMONI
g140						
3210	GLDHNGTGLRVIA	QTQQDGGTWE	QGGVEGKMRG	STOTIGIAAKT	GENTTAAAT	LGIGRST
	190	200	210	220	230	240
	250	260	270			
m140.pep	WSENSANAKTOSIS	SLFAGIRHDA	2 / U בחדפעו צפו הנ	280	290	300
g140	WSENSANAKTDSIS	LFAGIRHDV	GDIGYLKG1.FS	NGPVKNCTCD		
	250	260	270	280	290	GSVNGTL 300
				200	250	300
m140.pep	310	320	330	340	350	360
mr40.pep	MQLGALGGVNVPFA	ATGDLTVEGG	LRYDLLKQDA	FAEKGSALGW:	SGNSLTEGT	LVGLAGI
g140						
<b>J</b>	MQLGALGGVNVPFA 310	AIGDLIVEGG	LRHDLLKQDA	FAEKGSALGW	GNSLTEGTI	VGLAGL
	310	320	330	340	350	360
	370	380	390	400		
m140.pep	KLSQPLSDKAVLFA	TAGVERDLNG	RDYTVTGGFT	400 የውጥያንጥለልጥረር	410	420
g140	ASTANGER TODKY (TSA.	PAGVERDLNG	RDYAVTGGFT(	GAAAATGKTGA	 :7 <b>0711HDMR</b>	
	370	380	390	400	410	420
	420					340
m140.pep	430	440	450			
	VEFGNGWNGLARYS)	AGSKQYGNH:	SGRVGVGYRFX	ζ		
g140	VEFGNGWNGLARYSY	TGGYOVOTT	::			
_	430	440		•		
		***	450			

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 551>:

ucq					-
1 51		GCGGTAAGGG		CTCAACCGTA	CCGGACAACG
	TGTTCCCTTC			GCGGGATTAT	
101		AACCGACGGC	GGTCTGCTGG		1 011
151	AAAACAGCGG	GTAGTGAAGG			
201	CAATGCGGCA	CGGACTGCTT		ACATTCCGCG	1000100000
251	TGAAACACGC	CGTAGAACAG	GGCGGCACCA	ATCTGGAAAA	
301	GAACTGGATG	CCTCCGAATC	ATCCCCAACA	ATCTGGAAAA	
351	GGCCGCCGAC	CGCACAGATA	TCCCCCAACA	CCCGAGACGG	
401	TCCGCGCAGC	GGCAGCCGTA		TOOCOINC	
451	ATCTTCAACA	ATCTCCCCCTA	2110 0111 00027	occoccor	
501	TGCCGATATG				CCGCCGCCCA
551		CAGGGACGCC		CGTATCGGAC	GGGTTGGACC
601		GGGTCTGCGC	GTCATCGCGC	AAACCCAACA	GGACGGTGGA
651	TICOLOGGAMC	MGGGCGGLGL.	TGAAGGCAAA	ATGCGCGGCA	CTACCCAAAA
	COLCOCALI	GCCGCGAAAA	CCGGCGAAAA	TACGACAGCA	GCCCCCACAC
701		ACACAGCACA	TGGAGCGAAA	ACAGTGCAAA	TCCAAAAAA
751	GACAGCATTA.	GTCTGTTTGC	AGGCATACGG	CACGATCCCC	GCGATATCGG
801	CTATCTCAAA	GGCCTGTTCT	CCTACGGACG		
851		TGCGGACGAA	<b>~~~~</b>		AGCATCAGCC
901	ATGCAGCTGG	GCGCACTGGG	~~~~	GCAGCGTCAA	
			CGGIGICAAC	GTTCCGTTTG	CCGCAACGGG

951	AGATTTGACG GTCGAA	GGCG GTCTG	CGCTA CGAC	CTGCTC AAA	CAGGATG	
1001	CATTCGCCGA AAAAGG	CAGT GCTTT	GGGCT GGAG	CGGCAA CAG	CATCACT	
1051	GAAGGCACAC TGGTCG	GACT CGCGG	GTCTG AAGC	TGTCGC AAC	CCTTGAG	
1101	CGATAAAGCC GTCCTG	TTTG CAACG	GCGGG CGTG	GAACGC GAC	CTGAACG	
1151	GACGCGACTA CACGGT	AACG GGCGG	CTTTA CCGG	CGCGAC TGC	AGCAACC	
1201	GGCAAGACGG GGGCAC	GCAA TATGC	CGCAC ACCC	GCCTGG TTG	CCGGTCT	
1251	GGGCGCGGAT GTCGAA	TTCG GCAAC	GGCTG GAAC	GGCTTG GCA	CGTTACA	
1301	GCTACGCCGG TTCCAA	ACAG TACGG	CAACC ACAG	CGGACG AGT	CGGCGTA	
1351	GGCTACCGGT TCTGA					
This correspond	s to the amino acid s	eanence <	EO ID 553	ODE 140	•>•	
	s to the annio acid s	sequence \2		., OKF 140.	a-:	
a140.pep 1	MCACCYCACY INDECO	D!!DD				
51	MSAGGKGAGY LNRTGQ KTAGSEGDTL SYYVRR	RVPE LSAAK.	IGRDY SEFT	NIETDG GLL	ASLDSVE	
101	ELDASESSAT PETVET	ANNA RIASA	AAHSA PAGL	KHAVEQ GGSI	NLENLMV	
151	IFNNLAATVY ADSTAA	HAND CODE!	SIRPI GAIT.	KAAAAV QHA Namcid vita	NAADGVK	
201	TWEQGGVEGK MRGSTQ	TVCT DAKTC	RAVSO GLDA	CWCHCL MCL	NICYNYAL SIÖÖDGG	
251	DSISLFAGIR HDAGDI	GYLK GLESY	SBAKN SISB	STCADE HAE	CSUMENT	
301	MQLGALGGVN VPFAAT	GDLT VEGGL	RYDIJ KODA	FAEKGS ALG	WSCNSIT	
351	EGTLVGLAGL KLSQPL	SDKA VLFATA	AGVER DING	RDYTVT GGE	TGATAAT	
401	GKTGARNMPH TRLVAG	LGAD VEFGNO	GWNGI ARYS	YAGSKO YGNI	HSGRVGV	
451	GYRF*		Julion Invito	11.001.0 101.		
m140/a140 98	.2% identity in 454	aa overlap				
	10	20	30	40	50	60
m140.pep	MSARGKGAGYLNST	GRRVPFLSAAI				
	111 11111111	1:1111111	[]]:	111111111		111111
<b>a14</b> 0	MSAGGKGAGYLNRT	GQRVPFLSAAI	KIGRDYSFFT	NIETDGGLLA	SLDSVEKTAC	SEGDTL
	10	20	30	40	50	60
-140	70	80	90	100	110	120
m140.pep	SYYVRRGNAARTAS.	AAAHSAPAGLI	KHAVEQGGSN:	LENLMVELDAS	SESSATPETV	ETAAAD
a140						
altu	SYYVRRGNAARTAS. 70	AAAHSAPAGLI 80	HAVEQGGSN:	LENLMVELDA: 100		
	, 0	80	90	100	110	120
	130	140	150	160	170	180
m140.pep	RTDMPGIRPYGATF					LKAVSD
• •						
a140	RTDMPGIRPYGATF	RAAAAVQHANA	ADGVRIFNN	LAATVYADSTA	AAHADMOGRE	LKAVSD
	130	140	150	160	170	180
	190	200	210	220	230	240
m140.pep	GLDHNGTGLRVIAQ	roodggtweo(	GVEGKMRGS	rotvgiaakt(	JENTTAAATL	GMGRST
-140		1			<u>                                      </u>	111:11
a140	GLDHNATGLRVIAQ 190				<b>-</b>	
	190	200	210	220	230	240
	250	260	270	280	290	300
m140.pep	WSENSANAKTDSIS:					
F-P						111111
a140	WSENSANAKTDSIS	LFAGIRHDAGI	DIGYLKGLFS	GRYKNSISRS	STGADEHAEG	SVNGTL
	250	260	270	280	290	300
	310	320	330	340	350	360
m140.pep	MQLGALGGVNVPFA	ATGDLTVEGGI	RYDLLKODAI	FAEKGSALGWS	GNSLTEGTL	VGLAGL
2140	HILLIH CONTROL				1111:1111	
a140	MQLGALGGVNVPFA					
	310	320	330	340	350	360
	370	380	390	400	410	420
m140.pep	KLSQPLSDKAVLFA			SATAATGKTGZ	TIO VENMPHTRI.U	ACT.CAD
						11111
a140	KLSQPLSDKAVLFA	ragverdlngf	DYTVTGGFT	SATAATGKTG	ARNMPHTRLV	AGLGAD

BNSDOCID: <WO___9957280A2_j_>

398

370 380 390 400 410 420 430 440 450 m140.pep VEFGNGWNGLARYSYAGSKQYGNHSGRVGVGYRFX a140 VEFGNGWNGLARYSYAGSKQYGNHSGRVGVGYRFX 430 440

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 553>:
```

```
atgagettea aAAccgATGC CGAAACCGCC CAATCCTCCA CCATGCGCCC
    1
       GATTGGCGAA ATTGCCGCCA AGCTGGGTTT GAACGTTGAC AACATTGAGC
   51
       CTTACGGTCA TTACAAAGCC AAAATCAATC CTGCCGAAGC GTTCAAGCTG
  101
       CCGCAAAAAC AAGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
      GGCGGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCATTGC
  201
      GCCATATCGG CAAAGACTCT GTGATTGCTT TGCGCGAGCC TTCTTTGGGT
       CCGGTGTTCG GCGTGAAAGG CGGCGCGCA GGCGGCGGCT ACGCGCAAGT
      TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGCGAC TTCCACGCCA
      TCGGTGCGGC GAATAACCTC CTCGCCGCCA TGCTCGACAA CCATATCTAC
 401
      CAAGGTAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT
 451
      GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGTATGGGCA
      AGCCTGTtga cggCGTGATG CGtcccGACG GCTTCGACAT CACCGTCGCC
      TCCGAAGTGa tggcgGTATT CTGCCTTGCC AAAGACATCA GCGATTTGAA
 601
      AGAGCGTTEE GGCAATATTC TCGTCGCCTA CGCCAAAGAC GGCAGCCCCG
 651
      TTTACGCCAA AGATTTGAAG GCACACGGCG CGATGGCGGC ATTGCTAAAA
 701
      GATGCGATTA AGCCCAATTT GGTGCAAACC ATCGAAGGCA CTCCGGCCTT
      TGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTTA
 801
      CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA
 851
      GGCTTCGGCG CGGACTTGGG TGCGGAAAAA TTCTGCGACA TCAAATGCCG
 901
      CCTTGCCGGT TTGAAACCTG ATGCGGCAGT CGTCGTGGCG ACTGTCCGCG
 951
      CCCTGAAATA CAACGGCGGC GTGGAACGCG CCAACCTTGG TGAAGAAAAC
1001
      CTCGAAGCCT TGGCAAAAGG TTTGCCCAAC CTGTTGAAAC ACATTTCCAA
     CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG
1101
     TGTCCGACTC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA
1151
1201 CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GCGGCGCGGG
1251 CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA TGCCATCGAC AACCAACCTA
1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
1351 CGTGCGATTG CCCAAAAAGT GTACGGCGCG GAAGATGTCG ATTTCAGCGC
1401 GGAAGCGTCT GCCGAAATCG CCTCGCTGGA AAAACTGGGC TTGGACAAAA
     TGCCGATCTG CATGGCGAAA ACCCAATATT CATTGAGCGA CAACGCCAAA
     CTCTTGGGCT GCCCCGAAGG CTTCCGCATC GCCGTACGCG GTATCACTGT
     TTCCGCCGGC GCGGGCTTCA TCGTTGCGTT GTGCGGCAAT ATGATGAAAA
     TGCCGGGCCT GCCGAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGAA
     CACGGCGTGA TTCACGGCTT GTTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 554; ORF 141.ng>:

```
1 MSFKTDAETA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL
51 PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG
101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
151 QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
201 SEVMAVFCLA KDISDLKERF GNILVAYAKD GSPVYAKDLK AHGAMAALLK
251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
301 GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
351 LEALAKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDSDAE LAMIEKACAE
401 HGVEVSLTEV WGKGGAGGAD LARKVVNAID NQPNNFGFAY DVELGIKDKI
451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
501 LLGCPEGFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDE
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 555>:

```
m141.seq
       1
         ATGAGCTTCA AAACCGATGC CGAAATCGCC CAATCCTCCA CCATGCGCCC
         GATTGGCGAA ATTGCCGCCA AGCTTGGTCT GAATGCCGAC AACATTGAGC
      51
          CTTACGGTCA TTACAAGGCG AAAATCAATC CTGCCGAAGC GTTCAAACTG
     101
          CCGCAAAAAC AGGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
          GGCGGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCGTTGC
          GCCACATCGG CAAAGATGCC GTGATTGCCC TGCGCGAACC TTCTCTGGGG
          CCGGTGTTCG GCGTGAAAGG CGGCGCGGCA GGCGGCGGCT ATGCCCAAGT
          TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGAGAT TTTCACGCCA
     351
          TCGGTGCGGC AAATAATCTG CTTGCCGCGA TGCTCGACAA CCATATCTAC
     401
          CAAGGCAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT
     451
         GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGCATGGGTA
     501
     551 AACCCGTTGA CGGCGTGATG CGTCCTGACG GTTTCGATAT TACCGTTGCT
          TCCGAAGTGA TGGCGGTATT CTGTCTTGCC AAAGACATCA GCGATTTGAA
     651 AGAGCGTTTG GGCAACATCC TTGTCGCCTA CGCCAAAGAC GGCAGCCCCG
     701 TTTACGCCAA AGATTTGAAA GCGAATGGCG CGATGGCGGC ATTGCTTAAA
     751 GATGCGATTA AGCCCAACTT GGTGCAAACC ATCGAAGGCA CGCCCGCCTT
     801 CGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTAA
     851 CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA
     901 GGCTTCGGCG CGGACTTGGG CGCGGAAAAA TTCTGCGACA TCAAATGCCG
     951 CCTTGCCGGT TTGAAACCTG ATGCGGCTGT TGTCGTGGCG ACTGTCCGCG
          CGTTGAAATA TAACGGCGGC GTGGAACGCG CCAACCTCGG CGAAGAAAAT
          TTAGACGCTT TGGAAAAAGG TTTGCCCAAC CTGCTGAAAC ACATTTCCAA
    1051
          CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG
    1101
    1151
          TGTCCGACGC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA
    1201 CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GTGGTGCGGG
    1251 CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA CGCCATTGAA AGTCAAACCA
    1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
    1351 CGTGCGATTG CCCAAAAAGT GTACGGCGCG GAAGATGTTG ATTTCAGCGC
    1401 GGAAGCGTCT GCCGAAATCG CTTCACTGGA AAAACTGGGC TTGGACAAAA
    1451 TGCCGATCTG CATGGCGAAA ACCCAATACT CTTTGAGCGA CAACGCCAAA
    1501 CTGTTGGGCT GCCCGAAGA CTTCCGCATC GCCGTGCGCG GCATCACCGT
    1551 TTCCGCAGGC GCAGGTTTCA TCGTCGCCCT GTGCGGCAAC ATGATGAAAA
         TGCCCGGCCT GCCCAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGCA
          GAAGGCGTGA TTCACGGCTT GTTCTGA
This corresponds to the amino acid sequence <SEQ ID 556; ORF 141>:
m141.pep
        MSFKTDAEIA QSSTMRPIGE IAAKLGLNAD NIEPYGHYKA KINPAEAFKL
      51
         PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDA VIALREPSLG
     101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
     151 QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
          SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
         DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
         GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
         LDALEKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDADAE LAMIEKACAE
     351
         HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
     451
         RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
         LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA
         EGVIHGLF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 141 shows 97.5% identity over a 558 aa overlap with a predicted ORF (ORF 141.ng)
from N. gonorrhoeae:
m141/g141
                     10
                              20
                                        30
                                                  40
m141.pep
            MSFKTDAEIAQSSTMRPIGEIAAKLGLNADNIEPYGHYKAKINPAEAFKLPQKQGRLILV
             MSFKTDAETAQSSTMRPIGEIAAKLGLNVDNIEPYGHYKAKINPAEAFKLPQKQGRLILV
g141
                    10
                              20
                                        30
                                                  40
                                                            50
                                                                      60
```

BNSDOCID: <WO___9957280A2_I_>

LA KIND LA DE BAS



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 557>:

101	ATGAGTTTCA GATTGGCGAA CTTACGGTCA CCGCAAAAAC	TTACAAAGCC	AGCTGGGTTT	GAACGTTGAC	AACATTGAGC
-----	------------------------------------------------------	------------	------------	------------	------------



#### This corresponds to the amino acid sequence <SEQ ID 558; ORF 141.a>:

```
al41.pep
         MSFKTDAEIA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL
      51
         PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG
         PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
    101
          QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
    201
         SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
         DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
    301
         GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
    351
         LDALEKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDSDAE LAMIEKACAE
         HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
    451
         RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
         LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA
         EGVIHGLF*
```

#### m141/a141 99.5% identity in 558 aa overlap

	10	20	30	40	50	60
m141.pep	MSFKTDAE IAQSST	MRPIGEIAA	KLGLNADNIEP	YGHYKAKINF	AEAFKLPQKQ	GRLILV
		111111111		1111111111	11111111111	111111
a141	MSFKTDAEIAQSST	MRPIGEIAA	KLGLNVDNIEP	YGHYKAKINF	AEAFKLPQKQ	GRLILV
	10	20	30	40	50	60
	70	80	90	100	110	120
m141.pep	TAINPTPAGEGKTT	VTIGLADALF	RHIGKDAVIAL	REPSLGPVFG	VKGGAAGGGY	AQVLPM
	1111111111111	[	1111:111	1111111111	1111111111	11111
a141	TAINPTPAGEGKTT	VTIGLADALF	RHIGKDSVIAL	REPSLGPVFG	VKGGAAGGGY	AQVLPM
	70	80	90	100	110	120
	130	140	150	160	170	180
m141.pep	EDINLHFTGDFHAI	GAANNLLAAN	ILDNHIYQGNE:	LNIDPKRVLW	RRVVDMNDRO	
	11111111111111	11111111	411 H I I I I I I I	111111111	111111111	
a141	EDINLHFTGDFHAI	GAANNLLAAN	ILDNHIYQGNE:	LNIDPKRVLW	RRVVDMNDRC	LRNIID
	130	140	150	160	170	180

BNSDOCID: <WO___9957280A2_I_>

াছ এই চুল্ল চিত্ৰ কৰে

402

	190	200				
m141.pep	GMGKPVDGVMRPD		210	220	230	240
		11111111				
a141	GMGKPVDGVMRPD	GFDITVASEV	MAVFCLAKDI	SDLKERLONTI		
	190	200	210	220	230	240
	250	2.50				210
m141.pep		260	270	280	290	300
	ANGAMAALLKDAI	KENTAÕITEG	TPAFVHGGPF	ANIAHGCNSVT	ATRLAKHLA	DYAVTEA
a141	ANGAMAALLKDAIR	(PNLVOTIEG	TPAFVHCCDE	NT NHC CHOIM		111111
	250	260	270	280	ATKLAKHLA 290	
				200	290	300
m141.pep	310	320	330	340	350	360
mrar.pep	GFGADLGAEKFCDI	KCRLAGLKPI	DAAVVVATVR	ALKYNGGVERA	NLGEENLDA	
a141						
	GFGADLGAEKFCDI 310	320	DAAVVVATVRA	ALKYNGGVERAI	NLGEENLDA	LEKGLPN
	020	320	330	340	350	360
	370	380	390	400	410	
m141.pep	LLKHISNLKNVFGL	PVVVALNRFV	SDADAETAM	FEACAETICTE	***	420
a141		1 1 1 1 1 1 1 1 1 1	11 • 1 1 1 1 1 1			
4141	LLKHISNLKNVFGL 370	r a a a WTHAKE A	POPDARLAMI	EKACAEHGVE	SLTEVWGK	GAGGAD
	370	380	390	400	410	420
	430	440	450	4.50		
ml41.pep	LARKVVNAIESQTN	NEGEAYDVET.	CTKOKTONTN	460	470	480
- 3 44						
a141		ALGENIDAFF	GIKDKIRAIA	QKVYGAEDVDF	SAEASAETA	SIFKIC
	430	440	450	460	470	480
	490	500				
m141.pep			510	520	530	540
- <del>-</del>	LDKMPICMAKTQYSI	IIIIIIIIIIII	PEDERTAVEG	1TVSAGAGFIV	ALCGNMMKM	PGLPKV
a141	LDKMPICMAKTQYSI	SDNAKLLGC	PEDFRIAVRG		1	
	490	500	510	520	530	540
	EEO				350	240
m141.pep	550 PAAEKIDVDAEGVIH	559				
. r r.		GLFX IIII				
a141	PAAEKIDVDAEGVIH	GLFX				
	550					

#### The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 559>: g142.seq

1	ATGCGTGCCG	ATTTCATGTT	TGCCGACAAT	ATCCCCCTCC	AGGTGCGCCA
51	ACGCGCCTTC	TATTTCAAGT	TGTCCCGTTT	TCCCCCCATC	AGGTGCGCCA
101	TAGGCAAACC	GCTCTTCGGG	CGACAGGCCC	CTCACCCCATG	CCAAATATGG
151	GGCAACATCC	TGATGTTCGT	CCCCCACCAM	ATTENDED TO	CAAAATGTTC
201	TTTCCGACAG	GATcggaATG	Attacage a	ATTGATGCAG	AGGCTGCCGT
251	ACGGTCGGCG	GCTCGTCCCT	ALTEGEGEAC	TCCGGTTTAT	GCACAGCATC
301	GTAACGCCCT	GCCCCACCCT	AACCGGCGCA	ACCGCCGTCA	TTGTAATGCC
351	AGGATGCCAT	GCCGCACCGT	CTGTCGTGAT	GACATGAACG	CCTGCCGCAC
401	CCCATTTTTT	CGCATCACGG	AACGAAGTTT	GAAAAGTTTT	CTGCAAATCC
451	CCATTOTO	CCCTTTAAAC	CGTCCCCTAT	ATAAGAATGC	TGCACACAAG
	GCATCCCCC	ATGTGCAGCA	GTTCTGA		

This corresponds to the amino acid sequence <SEQ ID 560; ORF 142.ng>: g142.pep

- 1 MRADFMFADN MPVQVRQRAF YFKLSRFAAM PNMVGKPLFG RQAGQPGKMF 51 GNILMFVRQH IDAEAAVFRQ DRNDSRTPVY AQHHGRRLVG NRRNRRHCNA
- 101 VTPCRTVCRD DMNACRTGCH RITERSLKSF LQIRHFSPLN RPLYKNAAHK 151 ASPHVQQF*

WO 99/57280

```
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 561>:
     m142.seq
               ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
            1
              ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
           51
              TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
          101
              GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
          151
          201 TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
          251 ACGGTCGGCG GCTCGTCGGT AACCGGCGGCG ACCGCCGTCA TTGTAATGCC
          301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCGC
          351 AAGATGCCAT CGCATCACGG AACGAAGTTT GAAAATTTTT CTGCAAATCC
          401 GCCATTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG
              GCATCCCCC ATGTGCAGCA GTTTTGA
This corresponds to the amino acid sequence <SEQ ID 562; ORF 142>:
     m142.pep
              MRADFMFADN MPVQVRQRAL YFKLSRFAAM PDVVGKPLFG RQAGQPGKMF
              GNILMFVRQR IDAEAAVFRQ DRNDSRTPVD AQHHGRRLVG NRRDRRHCNA
          101 VTPCRTVCRD DMNACRARCH RITERSLKIF LQIRHFSPLN CPLYKNAAHK
          151 ASPHVQQF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 142 shows 93.7% identity over a 158 aa overlap with a predicted ORF (ORF 142.ng)
from N. gonorrhoeae:
     m142/g142
                         10
                                   20
                                            30
                                                      40
                                                                50
                 {\tt MRADFMFADNMPVQVRQRALYFKLSRFAAMPDVVGKPLFGRQAGQPGKMFGNILMFVRQR}
     m142.pep
                 g142
                 MRADFMFADNMPVQVRQRAFYFKLSRFAAMPNMVGKPLFGRQAGQPGKMFGNILMFVRQH
                         10
                                   20
                                            30
                                                      40
                                                                50
                                   80
                                            90
                                                     100
                 {\tt IDAEAAVFRQDRNDSRTPVDAQHHGRRLVGNRRDRRHCNAVTPCRTVCRDDMNACRARCH}
    m142.pep
                 g142
                 IDAEAAVFRQDRNDSRTPVYAQHHGRRLVGNRRNRRHCNAVTPCRTVCRDDMNACRTGCH
                         70
                                   80
                                            90
                                                     100
                                                               110
                                                                        120.
                        130
                                  140
                                           150
                 RITERSLKIFLQIRHFSPLNCPLYKNAAHKASPHVQQFX
    m142.pep
                 RITERSLKSFLQIRHFSPLNRPLYKNAAHKASPHVQQFX
    g142
                        130
                                  140
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 563>:
    a142.seq
              ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
              ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
          51
              TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
          101
              GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
          201
              TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
          251
              ACGGTCGGCG GCTCGTCCGT AACCGGCGCA ACCGCCGTCA TTGTAATGCC
              GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCAC
          301
         351 AGGATGCCAT CGCATCACGG AACGAAGTTT GAAAAGTTTT CTGCAAATCC
              GCCATTTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG
          401
          451
              GCACCCCCA TGTGCAGCAG TTCTGATTCA AAAAGCCGTC GGTCGGACAT
         501
              TTCCGCGCGT TACGGCGTAT TACGAGTTCA ACGCATCCTC GATTTTGGCA
         551
              AGTTCTGCCA ACAGGTCTTT AAGCAGCAGC ATTTTCTCGC GGCCCAGCAC
         601
              TTCCTCGATA GCGTCGTAAC GCTCGTCCAC TTCTTCGCCG ATTTCCTCAT
             ACAGCTTCTC GCCCTCGGCA GTCAGCTTCA GAAAAACACG TCGTTGGTCG
              TTGGAAGGTT TCAGGCGGAC AACCAAACCC GCTTTTTCAA GGCGGGTCAG
         701
             GATACCGGTC AGGCTGGGGC GCAAAATGCA CGCCTGATTC GCCAAATCTT
```

BNSDOCID: <WO__9957280A2_J>

WO 99/57280



80	O1 GAAAGTCCAG CGTGCCGTTT TCCCCCAAAA	
85	O1 GAAAGTCCAG CGTGCCGTTT TCCGCCAAAA GACGGATAAT CCGCCATTGC TGATCGGTAA TATTCGCCTG ATTGACAAAA GACGGATAAT CCGCCATTGC	
90		
	GATAGACGCA TGTTTTGA	
This correspon	ands to the amino acid sequence <seo 140<="" 564,="" id="" ore="" td=""><td></td></seo>	
a142.pe	<del></del>	
,	1 MRADFMFADN MPVQVRQRAL YFKLSRFAAM PDVVGKPLFG RQAGQPGKMF 1 GNILMFVROR IDAEAAVFRO DRNDGRADVR	
5.	1 GNILMFVROR IDAEAAVFRO DRNDSRTPVD AOHHGRRLVR NRRNRRHCNA 1 VTPCRTVCRD DMNACPTGCL BURDSRTPVD AOHHGRRLVR NRRNRRHCNA	
10:		
15:	1 APPMCSSSDS KSRRSDISAR YGVLRVQRIL DFGKFCQQVF KQQHFLAAQH 1 FLDSVVTLVH FFADFLIQLL DLCSOLOND DFGKFCQQVF KQQHFLAAQH	
201	1 FLDSVVTLVH FFADFLIQLL ALGSQLQKNT SLVVGRFQAD NQTRFFKAGQ 1 DTGQAGAONA RLIBOILKVO BAYEROVENIN SLVVGRFQAD NQTRFFKAGQ	
251	1 DTGQAGAQNA RLIRQILKVQ RAVFRQKTDN PPLLIGNIRL IQNRPELGHQ 1 GFPCLYOTDI DRRMF*	
301	1 GFPCLYQTDI DRRMF*	
m142/a142 9	96.1% identity in 153 aa overlap	
	10	
m142.pep	10 20 30 40 50	60
• •		IFVROR
a142		11111
	10	IFVROR
	10 20 30 40 50	60
	70 80 90 100	•
m142.pep		120
	IDAEAAVFRODRNDSRTPVDAQHHGRRLVGNRDRRHCNAVTPCRTVCRDDMNAC	RARCH
a142		1: 11
	70 20 20 TANKRINKHCNAVTPCRTVCRDDMNAC	RTGCH
	70 80 90 100 110	120
• • •	130 140 150 159	
m142.pep	RITERSLKIFLQIRHFSPLNCPLYKNAAHKASPUNGOTV	
4.4		
a142	RITERSLKSFLQIRHFSPLNCPLYKNAAHKAPPMCSSSDSKSRRSDISARYGVLRV	
	130 140 150 160 170	
-140	170	180
a142	DFGKFCQQVFKQQHFLAAQHFLDSVVTLVHFFADFLIQLLALGSQLQKNTSLVVGF	
	190 200 210 220 230	
	210 220 230	240

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 565>:

J = 1 D G 9					•
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901	CTCGCAGATG TGGGCTGGTT ATAGTGGGCT CCGCCTGCCG TTTTGATGCC GCCTTGTCGT TATGGCGATG AGCAGAAAAG GCGGTTGTGG GAACACTGCC ATGTGGGTGC GTCAAAGAAT CGCCGCGAAT CTAAAGTGTT TTCCGGTATA GCACACTACC ACGGCGTTTT ATTCTGGCAA	TTTCATCCTC ACTACTCAGA TATCTGCTTT GAACTCGGCC TCGGCGCGCTTC CAGCCGTTTA CTACGCCTAC CAGCGATTCT GAGAAAGGCG GCGTTACTG ACGACCCGGA TTGGACCGGA TTGGACGGTT TGTGGACGTT GATGCGTCTT GATGCGTCTT GACGCGCGTG AAGTACCGAA	TTCAAACGCT CCGCCGCTGCACCTTGCACCTTGCACCCCCACCTGCTTGCCACCCCCCCC	AGGCGCAGAC CGGGGATGCT AAGCCGCGCT CGATTGCGGTC CTGTTGGACG CGGCGATATG CTTCTTAGC TTCGCGTATAGC TTCGCGTATAGC CGTTTCTAGC CGTTTCAC CGTTACAC CGTTACCACG CGAACTCTTA AGTTTTTCTG GCGATTGCAG CCGATTGCAG CCGATTGCAG CCGATTGCAG CCGATTGCAG CCGCGTGAT AAGGCGGGTGAT AAGGCGGGTTT AAGGCGGGTT	GGTTCAGCCG TGGGCGGCCG ATCGTGATGA GTCGTCGAA GTCAACGAGG GAATACGGAC TCGGTTTGGC GTAGCATTCT AATCTCCAAA GCATCGATGT AAAACCGCGC CTGGTTCGCC AAAACGTCTG GGCAACCGGT TTGTTCGTTT ATTTCGGCTG
801 851 901	GCACACTACC ACGGCGTTTT ATTCTGGCAA TTTGGCTTTG AATACGCACT ATTATCACTT	GATGCGTCTT GGCGGCGGTG AAGTACCGAA GGCGCGCTCG CATCCTGTCT ATCCGCTGAC TATTTGGGCC	CTCGGCAGGC CCGTAGGCCA TAGTCGGTTG TAAATACCAT GTTTCTTCTC TATATCTTAA GATTGTGGCC TGTttaacgg	GCGATTGCAG TCAGGAGGCG CGGCGGTGAT AAGGCGGGTT TATCTTCTTC TCGGCATCGC AACGCTTTGT CtctgtCTGT	AAAACGTCTG GGCAACCGGT TTGTTCGTTT

```
CAGGCAACCA TGTTCTTGGT TGCAGGCGCA GTCTTGCTGC TGGGAGCCTT
CTCAGTCTGT CTGATTAAAG AGATCCACGG CGGGGTTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 566; ORF 143.ng>:

```
g143.pep
      51
```

```
MLSFGYLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVQP
     IVGYYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA
     ALSFGALMIA LLDVSSNMAM QPFKMMVGDM VNEEQKSYAY GIQSFLANTD
101
     AVVAAILPFV FAYIGLANTA EKGVVPQTVV VAFYVGAALL IITSAFTISK
    VKEYDPETYA RYHGIDVAAN QEKANWFELL KTAPKVFWTV TPVQFFCWFA
    FRYMWTYSAG AIAENVWHTT DASSVGHQEA GNRYGVLAAV *SVAAVICSF
     ILAKVPNKYH KAGYFGCLAL GALGFFSIFF IYNQYALILS YILIGIAWAG
351
     IITYPLTIVA NALSGKHMDT YLGLFNGSVC MPQIVASLLS FVLFPMLGGH
```

401 QATMFLVAGA VLLLGAFSVC LIKEIHGGV*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 567>:

```
m143.seq
          ATGCTCAGTT TCGGCTTTCT CGGCGTTCAG ACGGCCTTTA CCCTGCAAAG
      51
         CTCGCAAATG AGCCGCATTT TTCAAACGCT AGGCGCAGAC CCGCACAATT
          TGGGCTGGTT TTTCATCCTG CCGCCGCTGG CGGGGATGCT GGTGCAGCCG
     101
     151 ATTGTCGGCC ATTACTCCGA CCGCACTTGG AAGCCGCGTT TGGGCGGCCG
     201 CCGTCTGCCG TATCTGCTTT ATGGCACGCT GATTGCGGTT ATTGTGATGA
     251 TTTTGATGCC GAACTCGGGC AGCTTCGGTT TCGGCTATGC GTCGCTGGCG
     301 GCTTTGTCGT TCGGCGCGCT GATGATTGCG CTGTTAGACG TGTCGTCAAA
         TATGGCGATG CAGCCGTTTA AGATGATGGT CGGCGACATG GTCAACGAGG
     401 AGCAGAAAGG CTACGCCTAC GGGATTCAAA GTTTCTTAGC AAATACGGGC
     451 GCGGTCGTGG CGGCGATTCT GCCGTTTGTG TTTGCGTATA TCGGTTTGGC
    501 GAACACCGCC GAGAAAGGCG TTGTGCCGCA GACCGTGGTC GTGGCGTTTT
    551 ATGTGGGTGC GGCGTTGCTG GTGATTACCA GCGCGTTCAC GATTTTCAAA
         GTGAAGGAAT ACGATCCGGA AACCTACGCC CGTTACCACG GCATCGATGT
    651 CGCCGCGAAT CAGGAAAAAG CCAACTGGAT CGAACTCTTG AAAACCGCGC
    701 CTAAGGCGTT TTGGACGGTT ACTTTGGTGC AATTCTTCTG CTGGTTCGCC
    751 TTCCAATATA TGTGGACTTA CTCGGCAGGC GCGATTGCGG AAAACGTCTG
    801 GCACACCACC GATGCGTCTT CCGTAGGTTA TCAGGAGGCG GGTAACTGGT
    851 ACGGCGTTTT GGCGGCGGTG CAGTCGGTTG CGGCGGTGAT TTGTTCGTTT
         GTATTGGCGA AAGTGCCGAA TAAATACCAT AAGGCGGGTT ATTTCGGCTG
    901
    951 TTTGGCTTTG GGCGCGCTCG GCTTTTTCTC CGTTTTCTTC ATCGGCAACC
   1001 AATACGCGCT GGTGTTGTCT TATACCTTAA TCGGCATCGC TTGGGCGGGC
   1051 ATTATCACTT ATCCGCTGAC GATTGTGACC AACGCCTTGT CGGGCAAGCA
   1101 TATGGGCACT TACTTGGGCT TGTTTAACGG CTCTATCTGT ATGCCTCAAA
         TCGTCGCTTC GCTGTTGAGT TTCGTGCTTT TCCCTATGCT GGGCGGCTTG
   1151
   1201
         CAGGCCACTA TGTTCTTGGT AGGGGGCGTC GTCCTGCTGC TGGGCGCGTT
   1251 TTCCGTGTTC CTGATTAAAG AAACACACGG CGGGGTTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 568; ORF 143>:

m143.pep

```
MLSFGFLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVQP
  1
     IVGHYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA
 51
101
     ALSFGALMIA LLDVSSNMAM OPFKMMVGDM VNEEQKGYAY GIQSFLANTG
     AVVAAILPFV FAYIGLANTA EKGVVPQTVV VAFYVGAALL VITSAFTIFK
     VKEYDPETYA RYHGIDVAAN QEKANWIELL KTAPKAFWTV TLVQFFCWFA
201
    FQYMWTYSAG AIAENVWHTT DASSVGYQEA GNWYGVLAAV QSVAAVICSF
VLAKVPNKYH KAGYFGCLAL GALGFFSVFF IGNQYALVLS YTLIGIAWAG
251
     IITYPLTIVT NALSGKHMGT YLGLFNGSIC MPQIVASLLS FVLFPMLGGL
351
     QATMFLVGGV VLLLGAFSVF LIKETHGGV*
```

#### Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m143 / g143 93.9% identity in 429 aa overlap

10 20 30 40 50 60

m143.pep	MLSFGFLGVQTAF	TLQSSQMSR	FOTLGADPHI	NLGWFFILPPL	AGMLVOPIV	GHYSDRTW
g143		3 1 1 1 1 1 1 1 1 1				
9110	MLSFGYLGVQTAF	THOSPONDKI	.FQTLGADPHI	NEGWEEILPPL	AGMLVQPIV	SYYSDRTW
	10	20	30	40	50	60
	70	80	90	100	110	
m143.pep	KPRLGGRRLPYLL	YGTLIAVIVM	TIMPNEGSEC	ECVACIANT C	110	120
g143		YGTLIAVIVM	ILMPNSGSFG	FGYASLAAT.S	FGAT.MTAT.T.	MAMASSA
	70	80	90	100	110	120
	100					120
m143.pep	130	140	150	160	170	180
mr 10. pep	QPFKMMVGDMVNEI	UKGYAYGIQ	SFLANTGAVV	AAILPFVFAY:	IGLANTAEKG	VVPQTVV
g143			11111   111	111111		
_	QPFKMMVGDMVNEE	140	SELANTDAVV 150	AAILPFVFAY]	IGLANTAEKG	VVPQTVV
	250	140	150	160	170	180
	190	200	210	220	220	
m143.pep	VAFYVGAALLVITS	AFTIFKVKE	YDPETVADVU	CTDUA A MORKA	230	240
		111111	1 1 1 1 1 1 1 1 1 1		11.11111	
g143		AFTISKVKE	DPETYARYH	GIDVAANOEKA	NWFF.T.T.KTD	PKWEWTY
	190	200	210	220	230	240
	250					
m143.pep		260	270	280	290	300
	TLVQFFCWFAFQYM	WIISAGALAE	NVWHTTDAS	SVGYQEAGNWY	GVLAAVQSV	AAVICSF
g143	TPVOFFCWFAFRYM	IIIIIIIII Taladapytw				
	TPVQFFCWFAFRYM 250	260	NVWHTTDASS	OVGHQEAGNRY	GVLAAVXSV	
		200	270	280	290	300
	310	320	330	340	350	360
m143.pep	VLAKVPNKYHKAGY:	FGCLALGALG	FFSVFFIGNO	YAI.VI.SVTI.T	CTAWACTTES	/DI marro
q143		1	111:11			
9143	TEMINITUME!	E GCTATGATG	FFSIFFIYNÇ	YALILSYILI	GIAWAGIITY	PLTIVA
	310	320	330	340	350	360
	370	380				
m143.pep			390	400	410	420
1	NALSGKHMGTYLGLI	INGSICMPQI	VASLLSFVLF	PMLGGLQATM	FLVGGVVLLI	GAFSVF
g143		ENGSVCMPOT	11111111111 VAST.T.SEVITE	HIIII IIII	]     :   :	
	370	380	390	400	TUAGAVLLL 410	
			250	400	410	420
m142	430					
m143.pep	LIKETHGGVX					
g143						
9113	LIKEIHGGVX					
	430					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 569>: a143.seq

ar43.seq				_	•
1	ATGCTCAGTT	TCGGCTTTCT	CGGCGTTCAG	ACGGCCTTTA	CCCTGCAAAG
51	CTCGCAGATG	AGCCGCATCT	TCCAGACGCT	CGGTGCCGAT	
101	TCGGCTGGTT				
151	ATTGTCGGCC				
201	CCGTCTGCCG				TGGGCGGCCG
251					ATTGTGATGA
	TTTTGATGCC		AGCTTCGGTT	TCGGCTATGC	GTCGCTGGCG
301	GCTTTGTCGT	TCGGCGCGCT	GATGATTGCG		TGTCGTCAAA
351	TATGGCGATG	CAGCCGTTTA	AGATGATGGT		GTCAACGAGG
401	AGCAGAAAGG	CTACGCCTAC		GTTTCTTAGC	CARCGAGG
451	GCGGTCGTGG	CGGCGATTCT	CCCCTTCAAA		
501	GAACACCGCC	GAGAAAGGCC	TTCTCTCTC	TTTGCGTATA	TCGGTTTGGC
551	ATGTGGGTGC	GAGAAAGGCG	TTGTGCCGCA	GACCGTGGTC	GTGGCGTTTT
601	GTGAAGGAAT	GGCGTTGCTG	GTGATTACCA	GCGCGTTCAC	GATTTTCAAA
651		ACAATCCGGA	AACCTACGCC	CGTTACCACG	GCATCGATGT
	CGCCGCGAAT	CAGGAAAAAG	CCAACTGGAT	CGAACTCTTG	AAAACCGCGC
701	CTAAGGCGTT	TTGGACGGTT	ACTTTGGTGC	AATTCTTCTG	
					CIGGITCGCC

	751 801 851 901 951 1001 1051 1101 1151 1201 1251	TTCCAATATA GCACACCACC ACGGCGTTTT GTATTGGCGA TTTGGCTTTG AATACGCGCT ATTATCACTT TATGGCACT TCGTCGCTTC CAGGCCACTA TTCCGTGTTC	GATGCGTCTT GGCGGCGCTCG GGCGCGCTCCG GGTGTTGTCT ATCCGCTGAC TACTTGGGCC GCTGTTGACT TGTTCTTGGT	CCGTAGGTT CAGTCGGTTA TAAATACCA GCTTTTTCT TATACCTTA CGATTGTGAC TTCGTGCTT AGGGGGCGT	TA TCAGGAGG TG CGGCGGTG AT AAGGCGGG TC CGTTTTCT AA TCGGCATC TC AACGCCTT TG CTCTATCT TT TCCCTATGT TC GTCCTGCT	CG GGTAACT ATTGTTCG TT ATTTCGC TC ATCGGCA GC TTGGGCA GT CGGGCAA GT ATGCCGC CT GGGCGGC CT GGGCGGC	rggt Sttt Sctg Aacc Sggc Agca Caaa	
This	correspond	s to the amin	o acid segu	ence <seo< td=""><td>ID 570: OR</td><td>EF 143.a&gt;:</td><td></td><td></td></seo<>	ID 570: OR	EF 143.a>:		
	al43.pep		•	`	,			
	1 51 101 151 201 251 301 351 401	MLSFGFLGVQ IVGHYSDRTW ALSFGALMIA AVVAAILPFV VKEYNPETYA FQYMWTYSAG VLAKVPNKYH IITYPLTIVT QATMFLVGGV	KPRLGGRRLE LLDVSSNMAM FAYIGLANTA RYHGIDVAAN AIAENVWHTT KAGYFGCLAI NALSGKHMGT	YLLYGTLIA OPFKMMVGE A EKGVVPQTV OPKANWIEI DASSVGYQE GALGFFSVE YLGLFNGSI	V IVMILMEN  VNEEQKGY  V VAFYVGAA  L KTAPKAFW  A GNWYGVLA  F IGNQYALV  C MPQIVASL	SG SFGFGYF AY GIQSFLF LL VITSAFT TV TLVQFFC AV QSVAAVI LS YTLIGIF	ASLA ANTG FIFK CWFA LCSF AWAG	
	m143/a143	99.5% i	dentity in	429 aa ove	erlap			
		22.00						
	m143.pep				ADPHNLGWFF:		50 ( OPIVGHYSDR 	
	a143	MLSFGFL					/QPIVGHYSDR	
			10	20	30	40	50	50
	m143.pep	1111111	70 RLPYLLYGTLI		SGSFGFGYAS:	LAALSFGALN	4IALLDVSSNM2	
	a143	KPRLGGRI	RLPYLLYGTLI	AVIVMILMPN	SGSFGFGYAS:	LAALSFGALM	MIALLDVSSNM	
	<b>a1</b> 43	KPRLGGRI			SGSFGFGYAS:	LAALSFGALM	MIALLDVSSNM	MA 2 0.
	m143.pep	QPFKMMV( 	RLPYLLYGTLI 70 130 1 GDMVNEEQKGY	XAVIVMILMPN 80 140 1 YAYGIQSFLAN	SGSFGFGYAS: 90 1 .50 1 STGAVVAAILP	LAALSFGALM 00 1 60 1 FVFAYIGLAM	AIALLDVSSNM 110 12 170 18 NTAEKGVVPQTV	20. 30 <del>°</del> 7V 1
		QPFKMMVO         QPFKMMVO	RLPYLLYGTLI 70 130 1 GDMVNEEQKGY            GDMVNEEQKGY	AVIVMILMPN 80 40 1 AYGIQSFLAN          AYGIQSFLAN	SGSFGFGYAS: 90 1  50 1  TGAVVAAILP  ITGAVVAAILP	LAALSFGALM 00 1 60 1 FVFAYIGLAM                     FVFAYIGLAM	4TALLDVSSNM 110 12 170 18 VTAEKGVVPQTV 	20. 30 <del>°</del> 7V 1
	m143.pep	QPFKMMVC         QPFKMMVC : : VAFYVGA	RLPYLLYGTLI 70 130 1 GDMVNEEQKGY            GDMVNEEQKGY 130 1 190 2 ALLVITSAFTI	AVIVMILMPN 80 140 1 YAYGIQSFLAN           YAYGIQSFLAN 140 1	SGSFGFGYAS: 90 1 STGAVVAAILP: STGAVVAAILP: 50 1 STGAVVAAILP: 50 1	LAALSFGALM 00 1 FVFAYIGLAM                   FVFAYIGLAM 60 1 20 2 ANQEKANWIE	######################################	20. 30 ² 7V 11 7V 30 10
	m143.pep a143 m143.pep	QPFKMMVO           QPFKMMVO     VAFYVGAI	RLPYLLYGTLI 70 130 1 GDMVNEEQKGY             GDMVNEEQKGY 130 1 190 2 ALLVITSAFTI	AVIVMILMPN 80 140 1 YAYGIQSFLAN           YAYGIQSFLAN 140 1 200 2 IFKVKEYDPET	SGSFGFGYAS: 90 1 STGAVVAAILP: STGAVVAAILP: 50 1 STGAVVAAILP: 50 1 STARYHGIDVA	LAALSFGALM 00 1 FVFAYIGLAM                     FVFAYIGLAM 60 1 20 2 ANQEKANWIE	#IALLDVSSNM#110 12 ####################################	20. 30°- 7V 1   7V 30 10 1V
	m143.pep	QPFKMMVO	RLPYLLYGTLI 70 130 1 GDMVNEEQKGY            GDMVNEEQKGY 130 1 190 2 ALLVITSAFTI	AVIVMILMPN 80 140 1 YAYGIQSFLAN           YAYGIQSFLAN 140 1 200 2 IFKVKEYDPET	SGSFGFGYAS: 90 1 STGAVVAAILP: STGAVVAAILP: 50 1 STGAVVAAILP: 50 2 SYARYHGIDVA	LAALSFGALM 00 1 FVFAYIGLAM                   FVFAYIGLAM 60 1 20 2 ANQEKANWIE	######################################	20. 30° 7V 11 7V 30 110 11V 11V
	m143.pep a143 m143.pep a143	QPFKMMV()           QPFKMMV()	RLPYLLYGTLI 70  130 1  GDMVNEEQKGY            GDMVNEEQKGY 130 1  190 2  ALLVITSAFTI ALLVITSAFTI 191 2  250 2	AVIVMILMPN 80  140 1 YAYGIQSFLAN           YAYGIQSFLAN 140 1 200 2 IFKVKEYDPET           IFKVKEYNPET 200 2	SGSFGFGYAS: 90 1  50 1  TGAVVAAILP: HIGHIIII TGAVVAAILP: 50 1  YARYHGIDVA: HIGHIIIII TYARYHGIDVA: 210 2:	LAALSFGALM 00 1 60 1 FVFAYIGLAM                     FVFAYIGLAM 60 1 20 2 ANQEKANWIE                   ANQEKANWIE 20 2	#IALLDVSSNM   10	20. 30° to to to to to to to to to to to to to
	m143.pep a143 m143.pep	QPFKMMV()	RLPYLLYGTLI 70  130 1  GDMVNEEQKGY            GDMVNEEQKGY 130 1  190 2  ALLVITSAFTI ALLVITSAFTI ALLVITSAFTI 190 2  250 2 WFAFQYMWTYS	AVIVMILMPN 80  140 1 YAYGIQSFLAN           YAYGIQSFLAN 140 1 200 2 IFKVKEYDPET           IFKVKEYNPET 200 2 260 2 SAGAIAENVWH	SGSFGFGYAS: 90 1  50 1  TGAVVAAILP: HIGHIIII  TGAVVAAILP: 50 1  YARYHGIDVA  HIGHIIII  YARYHGIDVA  210 2: 70 2: 770 2:	LAALSFGALM 00 1 60 1 FVFAYIGLAM                   FVFAYIGLAM 60 1 20 2 ANQEKANWIE                   ANQEKANWIE 20 2 80 2 EAGNWYGVLAM	#IALLDVSSNM   10	20. 30° 110 70 110 110 110 110 110 110 110 110
	m143.pep a143 m143.pep a143	QPFKMMV()	RLPYLLYGTLI 70  130 1  GDMVNEEQKGY              GDMVNEEQKGY 130 1  190 2  ALLVITSAFTI            ALLVITSAFTI 190 2  WFAFQYMWTYS            WFAFQYMWTYS 250 2	AVIVMILMPN 80  140 1 YAYGIQSFLAN            YAYGIQSFLAN 140 1 PKVKEYDPET            PKVKEYNPET 200 2 PKVKEYNPET 200 2 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PKON 200 PK	SGSFGFGYAS: 90 1  50 1  TGAVVAAILP: HIGHIIII TGAVVAAILP: 50 1  YARYHGIDVA HIGHIIII TYARYHGIDVA 21  270 2: TTDASSVGYQ	LAALSFGALM 00 1 60 1 FVFAYIGLAM                     FVFAYIGLAM 60 1 20 2 ANQEKANWIE                   ANQEKANWIE 20 2 80 2 EAGNWYGVLAM EAGNWYGVLAM EAGNWYGVLAM EAGNWYGVLAM	#IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALLDVSSNM# #IALL	20. 30° 7V 11 7V 30 10 11 1V 10 10 11 10 10 11 11 11 11 11
	m143.pep a143 m143.pep a143 m143.pep a143	QPFKMMV()	RLPYLLYGTLI 70  130 1  GDMVNEEQKGY             GDMVNEEQKGY 130 1  190 2  ALLVITSAFTI           ALLVITSAFTI 190 2  WFAFQYMWTYS            WFAFQYMWTYS 250 2	AVIVMILMPN 80  140 1 YAYGIQSFLAN            YAYGIQSFLAN            YAYGIQSFLAN   40 1  200 2 FKVKEYDPET           FKVKEYNPET 200 2 SAGAIAENVWH SAGAIAENVWH 260 2	SGSFGFGYAS: 90	LAALSFGALM 00 1 60 1 FVFAYIGLAM 1                   FVFAYIGLAM 60 1 20 2 ANQEKANWIE 1                   ANQEKANWIE 20 2 80 2 EAGNWYGVLAM                     EAGNWYGVLAM 80 2	######################################	20. 30. 30. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1
	m143.pep a143 m143.pep a143 m143.pep	QPFKMMV()	RLPYLLYGTLI 70  130 1  GDMVNEEQKGY             GDMVNEEQKGY 130 1  190 2  ALLVITSAFTI           ALLVITSAFTI 190 2  WFAFQYMWTYS             WFAFQYMWTYS 250 2  WFAFQYMWTYS             WFAFQYMWTYS 310 3  KYHKAGYFGCI	AVIVMILMPN 80  140 1 YAYGIQSFLAN 11         YAYGIQSFLAN 140 1  200 2 FKVKEYDPET 11        FKVKEYNPET 200 2 SAGAIAENVWH SAGAIAENVWH 260 2 320 3 LALGALGFFSV	SGSFGFGYAS: 90 1  50 1  TGAVVAAILP:             TGAVVAAILP: 50 1  210 2:  YARYHGIDVA:             YARYHGIDVA:             TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:             TTDASSVGYQ:             TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:              TTDASSVGYQ:	LAALSFGALM 00 1 60 1 FVFAYIGLAM 1                   FVFAYIGLAM 60 1 20 2 ANQEKANWIE 1                 ANQEKANWIE 20 2 80 2 EAGNWYGVLAM EAGNWYGVLAM 80 2 LSYTLIGIAM	######################################	20. 30. 30. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1
	m143.pep a143 m143.pep a143 m143.pep a143	QPFKMMV()	RLPYLLYGTLI 70  130 1  GDMVNEEQKGY             GDMVNEEQKGY 130 1  190 2  ALLVITSAFTI            ALLVITSAFTI 190 2  WFAFQYMWTYS             WFAFQYMWTYS 250 2  WFAFQYMWTYS             WFAFQYMWTYS 1           WFAFQYMWTYS 250 2  XYHKAGYFGCI	AVIVMILMPN 80  140 1 YAYGIQSFLAN 1         YAYGIQSFLAN 140 1 200 20 FKVKEYDPET 1        FKVKEYNPET 200 2 5AGAIAENVWH 3AGAIAENVWH 260 2 320 320 34141        LALGALGFFSV	SGSFGFGYAS: 90	LAALSFGALM 00 1 60 1 FVFAYIGLAM                       FVFAYIGLAM 60 1 20 2 ANQEKANWIE                     ANQEKANWIE 20 2 80 2 EAGNWYGVLAM                     EAGNWYGVLAM 80 2 LSYTLIGIAW LSYTLIGIAW LSYTLIGIAW	######################################	20. 30° 7V   V 10 V 10 V 11 V 10 V 11 V 10 V 11 V 10 V 10 V 11 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V 10 V

BNSDOCID: <WO__9957280A2_J_>

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 571>:

```
g144.seq
         ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGGGC
      1
     51
         CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGTGC GTCTTCGTGC
    101
         TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
         CGCGAAAACC CCGTGGTGTC GTTCGACGAT GCGGCTTCCT ATGCGGACAA
    151
    201 TCCGTTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
    251 GTGCGGCGTT CGACATCAAC GGTAGGACTT ACCGCGTGGA GGCCAACGAA
    301
         GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCcgtTT
         CAACGCGGTG GCGGCAGACG GccgacggTt atCCCAACGA TTTGGatatT
    351
         TCctaccgCT TGGACGAGGA CGGCCGGCTT ACCGTtaccT ATCGCGCCAC
    401
         CGCgctCGGC GACACGGTGT TCGACCCGAC GCTGCACATT TACTGGCGGC
    451
         TGGACGCGGG CCTGCACGAT GCGGTTCTGC ATATTCCGCA GGGCGGACAT
    501
    551
         ATTCCGGCCG ATGCCGAAAA ACTGCCCGTC TTAACGGTTT CAGACGGCCT
    601
         CGAAGTATTT GA
```

### This corresponds to the amino acid sequence <SEQ ID 572; ORF 144.ng>:

```
g144.pep

1 MSDTPATRDF GLIDGRAVTG YVLSNRRGTC VFVLDLGGIV QEFSVLADGV
51 RENPVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
101 GRNALHGGSH GLAVTRFNAV AADGRRLSQR FGYFLPLGRG RPAYRYLSRH
151 RARRHGVRPD AAHLLAAGRG PARCGSAYSA GRTYSGRCRK TARLNGFRRP
201 RSI*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 573>: m144.seq

```
ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGTCTGATCG ACGGGCGTGC
  1
     CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC
    TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
101
151
    CGCGAAAACC TCGTGGTGTC GTTCGATGAT GCGGCTTCCT ATGCGGACAA
     TCCGTTTCAG ATTAACAAAC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
201
    GTGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA
251
    GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT
301
351 CAACGCGGTG GCGGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTGg
401
    CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA
451
    CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC
    TCGGCGACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC
501
    GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATGCC
    GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG
601
    TATTTGA
```

### This corresponds to the amino acid sequence <SEQ ID 574; ORF 144>:

```
m144.pep

1 MSDTPATRDF GLIDGRAVTG YVLSNRRGTR VCVLDLGGIV QEFSVLADGV
51 RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
101 GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLATVGRRL SQRFGFGYFL
151 PLGRGRPAYR YLSRHRARRH GVRPDAAHLL AAGRGPARCG SAYSAGRTYA
201 GRCRKTARLN GFRRPRSI*
```

Computer analysis of this amino acid sequence gave the following results:

Commence of the second

#### Homology with a predicted ORF from N. gonorrhoeae

m144 / g144 91.3% identity in 218 aa overlap 10 20 40 30 50 m144.pep MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD MSDTPATRDFGLIDGRAVTGYVLSNRRGTCVFVLDLGGIVQEFSVLADGVRENPVVSFDD g144 30 40 50 60 70 80 90 100 110 120 AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV m144.pep AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV q144 70 80 90 100 110 130 140 150 160 170 180 m144.pep AADGRSVVLRSRLATVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL ----GRRLSQRFG--YFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL q144 130 140 150 160 190 200 210 m144.pep AAGRGPARCGSAYSAGRTYAGRCRKTARLNGFRRPRSIX g144 AAGRGPARCGSAYSAGRTYSGRCRKTARLNGFRRPRSIX 180 190 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 575>: al44.seg ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGTGC 51 CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG 101 CGCGAAAACC TCGTGGTGTC GTTCGACGAT GCGGCTTCCT ATGCGGACAA 151 201 TCCGTTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG 251 GTGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT ÷2. 351 CAACGCGGTG GCGGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTG. CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA 401 CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC TCGGCGACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC 551 GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATTCC GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG 601 651 TATTTGA This corresponds to the amino acid sequence <SEQ ID 576; ORF 144.a>: al44.pep MSDTPATRDF GLIDGRAVTG YVLSNRRGTR VCVLDLGGIV QEFSVLADGV 1 RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE 101 GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLXTVGRRL SQRFGFGYFL PLGRGRPAYR YLSRHRARRH GVRPDAAHLL AAGRGPARCG SAYSAGRTYS 151 201 GRCRKTARLN GFRRPRSI* m144/a144 99.1% identity in 218 aa overlap 10 20 30 40 MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD m144.pep a144 MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD 10 20 30 40 50 60 70 80 90 100 AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV m144.pep

BNSDOCID: <WO___9957280A2_I_>

			•			
a144	 AASYADNPF 7	STMV STGK!	AGRIRGAAFD.			
m144 man	130		.40 15	50 16	170	180
m144.pep		RSRLATVGR	RLSQRFGFGYE	LPLGRGRPAY	סטממגמטמס זעכ	****
a144						
a144		YOUTVI AGE	RLSQRFGFGYE	LPLGRGRPAY	RYLSRHRARRHG	VPDDINIT
	130	) 1	40 15	0 160	170	180
						100
m 1 4 4	190		00 21	.0 219		
m144.pep	AAGRGPARCO	SSAYSAGRT	YAGRCRKTARL	NGFRRPRSIX		
-144	111111111		1:11111111	111111111		
a144	AAGRGPARCO	SAYSAGRT	YSGRCRKTARL	NGFRRPRSIX		
	190	2	00 21			
701 ( 11 )			•			
The following p	partial DNA sequ	uence was	identified i	n N gonorri	hoppe <seo< td=""><td>ID 577</td></seo<>	ID 577
g146.seq	-				DECE SEQ.	D 3//>:
1	ATGAAGCAAA TC	CCCCTCCG	ССТТСТССАС	СТССТСТВТ	3.003.003.00	
51	AGTCGAACAA TA	CGGACTGT	TCGATTTCAT	CCCTTCCCTT	ACCACGACAA	
101	CTTTGGATAa ct	TCCCGACT	GTCCGTCCCC	CCCcatmmen	CGACAGCCTC	
151	AAGCACGTCG AA	AGAAGGCG	GCAGGATAAA	CGCCCCTTGA	GGCGCGCGC	
201	GCGCGTTGCG AA	CCTGCGCC	GCGCCCTGAA	CCTCCAMM	GCTTCCGGCA	
251	TCATAGCCTG CC	GCCGCCAA	CGCATTCACG	CCCTCCCTCC	CAAAATCACG	
301	ATAGTTGCCG AA	TACGTCTG	CGTATTCCAA	AAAACCCTCC	TIGIGCCGTA	
351	GCGATTCAAA CT	CTTCTTTG	GAAACAAAGT	CATABUCTUC	TGCGCGATAA	
401	TOGCCTTCAC GC	GCGGGCG	CGTCGTATGC	CACACCCAAA	CCCCCTTTTCC	
451	GITHIGGITT GC	JAACAGCC	GCGACACCAC	CCTCCTTTTTC	CCCCTCCCC	
501	AMGCGGCCGA AA	rgaraaag	ATGTTGCCTT	<b>平中ではカヤカカぐぐ</b>	CCACAMAM	
551	TTTACCTGTA TAT	TTTTCCAA	CCGATTGTAT	CACAACCCAC	ACCOMMENT	
601	ATATTTGCCG ATO	CCCATAT	TTTCCCCCTA	TTCTTTTTTT	ACCUTATTTC	

## This corresponds to the amino acid sequence <SEQ ID 578; ORF 146.ng>:

601 ATATTTGCCG ATGCCCATAT TTTGCCGCTA TTGTTTTGA

g146.pep

MKQIPLRLLQ VVIDHDKVEQ YGLFDFMPCL RQPPLDNFPT VRPAPFEARG KHVERRRODK DTDSFRORVA NLRRALNVDF ONHVIACRRO RIHALRACAV 51

IVAEYVCVFQ KSLLRDKRFK LFFGNKVIMY AVCFAFTRRA RRMRHGNAQT VMVCQQPRHQ RGFARAGSGR NDKDVAFSIS GHIFYLYIFQ PIVSQRTPYF

IFADAHILPL LF*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 579>: m146.seq

ATGGCGCAAA TCCTCCTCCG CTCGCGCCAA GTCGTCATTG ACCACGACAA 101 CTTTGGATAA CTTCCCGACT GTCCGTCCCG CGTCCGTTGA GGCGCGCGGC 151 AAGTACGTCG AAAGAAGGCG GCAGGATAAA GATGCCGACG GCTTCGGGCA 201 GCGCGTCGCG AACCTGCGCC GCGCCCTGAA CGTCGATTTC CAAAATCACG TCATAGCCTG CCGCCGCCAA CGCATTCACA CCCTCCGCGC CTGTGCCGTA 251 301 ATAGTTGCCA AATACGTCGG CGTATTCCAA AAAAGCTTCC TGCGCGATAA 351 GCGACTCAAA CTCTTCTTTG GAAACAAAGT GATAATGTAC GCCGTTTGCT TCGCCTTCAC GCGGCGGCG CGTCGTGTGC GACACGGAAA CGCGCAAACC 401 GTTATGGTTT GCCAACAGCC GCGACACCAG CGTGGTTTTG CCCGTGCCGG 451 AAGCGGCCGA AATGATAAAG ATGTTGCCTT TTCGATAAGC GGACATATTT TTTACCTGTA TATTTTCCAG CCGATTGTAT CACAATGGAC ACCCAGTTTC 551 601 CTATTTGCCG ATGCCCATAT TTTGCCGCTA TTGTTTTGA

## This corresponds to the amino acid sequence <SEQ ID 580; ORF 146>:

m146.pep MAQILLRSRQ VVIDHDKVKQ YGLLDFMPCL RQPPLDNFPT VRPASVEARG 51 KYVERRRODK DADGFGORVA NLRRALNVDF ONHVIACRRO RIHTLRACAV IVAKYVGVFQ KSFLRDKRLK LFFGNKVIMY AVCFAFTRRA RRVRHGNAQT 101 VMVCQQPRHQ RGFARAGSGR NDKDVAFSIS GHIFYLYIFQ PIVSQWTPSF 151 201 LFADAHILPL LF*

BNSDOCID: <WO__9957280A2_1_>

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m146 / gl	46 90.1% identity in	n 212 aa o	verlap		
	10	20	30	40 5	0 60
m146.pep	MAQILLRSRQVVIDHD	KVKQYGLLDF	MPCLRQPPLDNI	PTVRPASVEAR	GKYVERRRQDK
			1111111111111		11:1111111
g146	MKQIPLRLLQVVIDHD				
	10	20	30	40 5	0 60
	70	80	90 1	100 11	0 120
m146.pep	DADGFGQRVANLRRALN				
	1:1:1	11111111	1111111:111	111111:11 11	111:1111:1
g146	DTDSFRQRVANLRRALN				
	70	80	90 1	100 11	0 120
	130	140	150 1	160 17	0 180
m146.pep	LFFGNKVIMYAVCFAFT				
	f		11111111111		
g146	LFFGNKVIMYAVCFAFT	rrarrmrhgi	NAQTVMVCQQPF	RHORGFARAGSG	RNDKDVAFSIS
	130	140	150	.60 17	0 180
	190	200	210		
m146.pep	GHIFYLYIFQPIVSQWT				
	[] [] [] [] [] [] [] [] [] [] [] [] [] [				
g146	GHIFYLYIFQPIVSQRT				
	190	200	210		
The fellowing me	ential DNIA gaguenas es		. 4 ! 37	::: 1: -cm/	. ID. 601.
	artial DNA sequence w	as identifie	ed in IV. meni	ngiliais <5E0	5 m 281>:
a146.seq 1	ATGGCGCAAA TCCTCCTCC		CAA CMCAMCAM	WC DCCDCCDC	
51	AATCGAACAA TACGGACTG	T TCGATTT	CAA GICAICAI	TG ACCACGAC	AA TC
101	CTTTGGATAA CTTCCCGAC	T GTCCGTC	CCG CGTCCGTT	GA GACGCGCA	rc sc
151	AAGCACATCG AAAGACGGC	G GCAGGATA	AAA GATGCCGA	CG GCTTCGGG	CA
201	GCGCATCTCG AACCTGAGC	CC GCGCCCT	GAA CGTCGATI	TC CAAAATCA	CG 🌣
251	TCATAACCTG CCGCCGCCA	A CGCATTC	ACA CCCTCCGC	GC TTGTGCCG	TA
301 351	ATAGTTGCCG AACACGTCC	G CGTATTC	CAA AAAAGCCI	CC TGCGCGAT	AA 
401	GCGACTCAAA CTCTTCTTT TCGCCTTCAC GCGGCGGAC	G GAAACAAA	AGT GATAATGI	AC GCCGTTTG	CT CC
451	GTTATGGTTT GCCAACAGC	C GCGACAC	CAG CGTGGTTT	TG CCCGCAAA	CC 3G
501	AAGCGGCCGA AATGATAAA	G ATGTTGC	CTT TTCGATAA	GC GGACATAT	rt
551	TTTACCTGTA TATTTTCCA	G CCGATTG	TAT CACAACGO	AC ACCCGGTT	rc
601	CTATTTGCCG ATGCCCATA	TTTGCCG	CTA TTGTTTTG	A	
This corresponds	to the emine said security		O TD 600. OI	DT 146 ->	
a146.pep	s to the amino acid sequ		Q ID 382; OI	KF 140.a>:	
a146.pep 1	MAQILLRPRQ VIIDHDKIE	O VOI EDEMI	DCT DADDIDNE	יחשונס מת מנו שמי	0.0
51	KHIERRRQDK DADGFGQRI	S NLSRALN	VOF ONHVITCE	RO RIHTIRAC	KS NV
101	IVAEHVRVFQ KSLLRDKRL	K LFFGNKV	IMY AVCFAFTR	RT RRVRHGNA	OT
151	VMVCQQPRHQ RGFARAGSG	R NDKDVAF	SIS GHIFYLYI	FQ PIVSQRTP	GF
201	LFADAHILPL LF*				
m146/a146	90 68 idontitu i-	212	1		
m140/d140	90.6% identity in	1 212 aa o	verlap		
	10	20	30	40 50	0 60
m146.pep	MAQILLRSRQVVIDHDK	VKQYGLLDF1	MPCLRQPPLDNF	PTVRPASVEAR	SKYVERRRODK
	[	::[]]:[]	1111111111	11111111:1	:1::111111
a146	MAQILLRPRQVIIDHDK				_
	10	20	30	40 50	0 60
	70	80	90 1	00 110	120
			•		

m146.pep	DADGFGQRVANLRRAI	NVDFQN	HVIACRRQRIHTL	RACAVIVA	KYVGVFQKSFL	RDKRLK
a146	::       DADGFGQRISNLSRAI	11111	111:11111111	111111:	::	11111
	70	80	90	100	110	120
	130	140	150	160	170	180
m146.pep	LFFGNKVIMYAVCFAF	TRRARR	VRHGNAQTVMVCQ(	PRHQRGFA	ARAGSGRNDKD	VAFSIS
	11111111111111111	111:11	1111111111111			111111
a146	LFFGNKVIMYAVCFAF	TRRTRR	VRHGNAQTVMVCQQ	PRHORGE	RAGSGRNDKD	VAFSIS
	130	140	150	160	170	180
	190	200	210			
m146.pep	GHIFYLYIFQPIVSQW	TPSFLF	ADAHILPLLFX		•	
a146		:    TPGFLF2	 ADAHILPLLFX			
	190	200	210			

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 583>:

```
gl47.seq (partial)
          ..ATGCGACGAG AAGCCAAAAT GGCACAAATC ACACTCAAAC CCATTGTTTT
      1
            ATCAATTCTT TTAATCAACA CACCCCTCCT CGCCCAAGCG CATGAAACTG
      51
     101
            AGCAATCGGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG
     151
            CGCGCGACTT CGGGGCTGCT GCACACTTCG ACCGCCTCCG ACAAAATCAT
     201
            CTCCGGCGAT ACTTTGCGCC AAAAAGCCGT CAACTTGGGC GACGCTTTGG
            ACGGCGTACC GGGCATCCAC GCTTCGCAAT ACGGCGGCGG CGCATCCGCT
     251
            CCCGTTATTC GCGGTCAAAC GGGCAGACGG ATTAAAGTAT TGAACCATCA
     301
            CGGCGAAACG GGCGATATGG CGGACTTTTC TCCCGATCAC GCCATTATGG
     351
     401
            TAGATACCGC CTTGTCGCAA CAGGTTGAAA TCCTGCGCGG GCCGGTTACG
     451
            CTCTTGTACA GCTCGGgcaa tgtggccgGG GCTGGtcaat gttgccgatg
           gAAAAAtccc ccaaaaAAtg cc..
```

### This corresponds to the amino acid sequence <SEQ ID 584; ORF 147.ng>:

```
g147.pep (partial)

1 ..MRREAKMAQI TLKPIVLSIL LINTPLLAQA HETEQSVGLE TVSVVGKSRP
51 RATSGLLHTS TASDKIISGD TLRQKAVNLG DALDGVPGIH ASQYGGGASA
101 PVIRGQTGRR IKVLNHHGET GDMADFSPDH AIMVDTALSQ QVEILRGPVT
151 LLYSSGNVAG AGQCCRWKNP PKNA..
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 585>: m147.seq (partial)

	(Partrar)				
1	CCGCATAAAA	CTGAGCAATC	GGTGGATTTG	GAAACGGTCA	GCGTCGTCGG
51	CAAAAGCCGT	CCGCGCGCCA			
101	CCGACAAAAT	CATCTCCGGC	GATACCTTGC	GCCAAAAAGC	CGTCAACTTG
151	GGCGACGCTT	TAGACGGCGT	ACCGGGCATC	CACGCTTCGC	AATACGGCGG
201	CGGCGCGTCT	GCTCCCGTCA	TTCGCGGTCA	AACAGGCAGG	
251	TGTTGAACCA	TCACGGCGAA	ACAGGCGATA	TGGCGGATTT	TTCGCCCGAT
301	CACGCCATTA	TGGTAGATAC	CGCCTTGTCG	CAACAGGTCG	AAATCCTGCG
351	CGGGCCGGTT	ACGCTCTTGT	ACAGCTCGGG		
401	ATGTTGCCGA	TGGCAAAATC	CCCGAAAAAA	TGCCTGAAAA	CGGCGTATCG
451	GGCGAACTCG	GATTGCGTTT	GAGCAGCGGC		AACTCACGTC
501	CGGCGGCATC	AATATCGGTT	TGGGCAAAAA	CTTTGTATTG	CACACGGAAG
551	GGCTGTACCG	CAAATCGGGG	GATTACGCCG		CCGCAATCTG
601	AAACGCCTGC	CCGACAGCCA	CGCCGATTCG	CAAACGGGCA	GCATCGGGCT
651	GTCTTGGGTT	GGCGAAAAAG	GTTTTATCGG		AGCGACCGTC
701	GCGACCAATA	TGGTCTGCCT	GCCCACAGCC	ACGAATACGA	
751	GCCGACATCA	TCTGGCAAAA		AACAAACGCT	
801	TTATCCGCAC	CTGTTGACCG	AAGAAGACAT		
851	TGAGCTGCGG	CTTCCACGAC	GACGATAATG		CACCCACAGC
901	GGCAGACCGT	GGATAGACCT	GCGCAACAAA		
951	ATGGAAGCAA	CCGTTCCCCG	GTTTTGAAGC		
1001		CCGCCACGAC		GCGATGCAGT	CGAAAACTTT
1051	TTTAACAACC	AAACGCAAAA	CGCCCGCATC	GAGTTGCGCC	ACCAACCCAT

1101	AGGTCGTCTG	AAAGGCAGCT	GGGGCGTGCA	ATATTTACAA	CAAAAATCCA
1151	GTGCTTTATC	TGCCATATCC	GAAGCGGTTA		GCTGCTTGAC
1201	AACAAAGTGC	AACATTACAG	CTTTTTCGGT	GTAGAACAGG	CAAACTGGGA
1251	CAACTTCACG	CTTGAAGGAG	GCGTACGCGT	GGAAAAACAA	AAAGCCTCCA
1301	TTCAGTACGA	CAAAGCATTG	ATTGATCGGG	AAAACTACTA	CAACCACCCC
1351	CTGCCCGACC	TCGGCGCGCA	CCGCCAAACC	GCCCGCTCAT	TCGCACTTTC
1401	GGGCAACTGG	TATTTCACGC	CACAACACAA	ACTCAGCCTG	ACCGCCTCCC
1451	ATCAGGAACG	CCTGCCGTCA	ACGCAAGAGC	TGTACGCACA	
1501	GTCGCCACCA	ACACCTTTGA	AGTCGGCAAC	AAACACCTCA	
1551	TTCCAACAAT	ATCGAACTCG	CGCTGGGCTA		CGCTGGCAAT
1601	ACAATCTGGC	ACTCTACCGC	AACCGCTTCG	GTAACTACAT	TTACGCCCAA
1651	ACCTTAAACG	ACGGACGCGG	CCCCAAATCC	ATCGAAGACG	ACAGCGAAAT
1701	GAAGCTCGTG	CGCTACAACC	AATCCGGCGC	CGACTTCTAC	GGCGCGGAAG
1751	GCGAAATCTA	CTTCAAACCG	ACACCGCGCT	ACCGCATCGG	CGTTTCCGGC
1801	GACTATGTAC	GAGGCCGTCT	GAAAAACCTG	CCTTCCCTAC	CCGGCAGAGA
1851	AGATGCCTAC	GGCAACCGTC	CTTTCATCGC	ACAGGACGAC	CAAAATGCCC
1901	CCCGTGTTCC	GGCTGCGCGC	CTCGGCTTCC	ACCTGAAAGC	CTCGCTGACC
1951	GACCGTATCG	ATGCCAATTT	GGACTACTAC	CGCGTGTTCG	CCCAAAACAA
2001	ACTCGCCCGC	TACGAAACGC	GCACGCCCGG	ACACCATATG	CTCAACCTCG
2051	GCGCAAACTA	CCGCCGCAAT	ACGCGCTATG	GCGAGTGGAA	TTGGTACGTC
2101	AAAGCCGACA	ACCTGCTCAA	CCAATCCGTT	TACGCCCACA	GCAGCTTTCT
2151	CTCTGATACG	CCGCAAATGG	GCCGCAGCTT		
2201	AGTTTTAA				

## This corresponds to the amino acid sequence <SEQ ID 586; ORF 147>: m147.pep (partial)

m147.pep	(partial)				
1	PHKTEQSVDL	ETVSVVGKSR	PRATSGLLHT	STASDKIISG	DTLROKAVNL
51	GDALDGVPGI	HASQYGGGAS	APVIRGQTGR	RIKVLNHHGE	TGDMADFSPD
101	HAIMVDTALS	QQVEILRGPV	TLLYSSGNVA	GLVDVADGKI	PEKMPENGVS
151	GELGLRLSSG	NLEKLTSGGI		HTEGLYRKSG	
201	KRLPDSHADS	QTGSIGLSWV	GEKGFIGVAY	SDRRDOYGLP	AHSHEYDDCH
251	ADIIWQKSLI	NKRYLQLYPH	LLTEEDIDYD	NPGLSCGFHD	DDNAHAHTHS
301	GRPWIDLRNK	RYELRAEWKQ	PFPGFEALRV	HLNRNDYRHD	EKAGDAVENE
351	FNNQTQNARI	ELRHQPIGRL	KGSWGVQYLQ	OKSSALSAIS	EAVKOPMLLD
401	NKVQHYSFFG	VEQANWDNFT	LEGGVRVEKQ	KASIOYDKAL	IDRENYYNHP
451	LPDLGAHRQT	ARSFALSGNW	YFTPQHKLSL	TASHOERLPS	TOELYAHGKH
501	VATNTFEVGN	KHLNKERSNN		RWQYNLALYR	
551	TLNDGRGPKS	IEDDSEMKLV		GAEGEIYFKP	
601	DYVRGRLKNL	PSLPGREDAY	GNRPFIAQDD		
651	DRIDANLDYY	RVFAQNKLAR	YETRTPGHHM	LNIGANYRRN	TRYGEWNWYV
701	KADNLLNQSV	YAHSSFLSDT	POMGRSFTGG	VNVKF*	1IODMINITY
				_	

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m147 / g147 92.3% identity in 142 aa overlap

m147.pep			PHKTI	10 EOSVDLETVS	20 VVGKSRPRAT:	30 SGLLHTS
- 1 47			1:1			111111
g147	MRREAKMAQITLKI	PIVLSILLIN'	TPLLAQAHETI	EQSVGLETVS	VVGKSRPRAT:	SGLLHTS
	10	20	30	40	50	60
	40	50	60	70	80	90
m147.pep	TASDKIISGDTLR	KAVNLGDALI	DGVPGIHASO	(GGGASAPVT)	RGOTGRRIKV	Г.МННСЕТ
	1111111111111					IIIIIII
g147	TASDKIISGDTLR	KAVNLGDALI	DGVPGIHASO	GGGASAPVII	RGQTGRRIKV!	LNHHGET
	70	80	90	100	110	120
	100	110	120	130	140	150
m147.pep	GDMADFSPDHAIM	DTALSQQVE	LRGPVTLLYS	SSGNVAGT.VDV	JADGKTPFKMI	PENCYSC
	[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [	111111111	[][[]		1 1 1	ENGVOG
g147	GDMADFSPDHAIM	DTALSQQVE	LRGPVTLLYS	SGNVAGAGQ	CCRWKNPPKNZ	



ATGCGACGAG AAGCCAAAAT GGCACAAACT ACACTCAAAC CCATTGTTTT ATCAATTCTT TTAATCAACA CACCCCTCCT CTCCCAAGCG CATGGAACTG 51 101 AGCAATCAGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG CGCGCCACTT CGGGGCTGCT GCACACTTCT ACCGCCTCCG ACAAAATCAT CAGCGGCGAC ACCTTGCGAC AAAAAGCCGT CAACTTGGGT GATGCTTTAG 201 ACGGCGTACC GGGCATTCAT GCCTCGCAAT ACGGCGGCGG CGCATCCGCT CCCGTTATTC GCGGTCAAAC AGGCAGACGG ATTAAAGTGT TGAACCATCA 301 CGGCGAAACG GGCGACATGG CGGACTTCTC TCCAGACCAT GCAATCATGG 351 TGGACAGCGC CTTGTCGCAA CAGGTCGAAA TCCTGCGCGG TCCGGTTACG 401 CTCTTGTACA GCTCGGGCAA TGTGGCGGGG CTGGTCGATG TTGCCGATGG 451 CAAAATCCCC GAAAAAATGC CTGAAAACGG CGTATCGGGC GAACTCGGAT 501 TGCGTTTGAG CAGCGGCAAT CTGGAAAAAC TCACGTCCGG CGGCATCAAT 551 ATCGGTTTGG GCAAAAACTT TGTATTGCAC ACGGAAGGGC TGTACCGCAA 601 ATCGGGGGAT TACGCCGTAC CGCGTTACCG CAATCTGAAA CGCCTGCCCG 651 701 ACAGCCACGC CGATTCGCAA ACGGGCAGCA TCGGGCTGTC TTGGGTTGGC GAAAAAGGCT TTATCGGCGC AGCATACAGC GACCGTCGCG ACCAATATGG TCTGCCTGCC CACAGCCACG AATACGATGA TTGCCACGCC GACATCATCT 801 GGCAAAAGAG TTTGATTAAC AAACGCTATT TGCAGCTTTA TCCGCACCTG 851 TTGACCGAAG AAGACATCGA TTACGACAAT CCGGGCTTGA GCTGCGGCTT TCACGACGAC GATGATGCAC ACGCCCATGC CCACAACGGC AAACCTTGGA 951 TAGACCTGCG CAACAAACGC TACGAACTCC GCGCCGAATG GAAGCAACCG 1001 TTCCCCGGTT TTGAAGCCCT GCGCGTACAC CTGAACCGCA ACGACTACCG 1051 CCACGACGAA AAAGCAGGCG ATGCAGTAGA AAACTTTTTT AACAACCAAA 1101 CGCAAAACGC CCGTATCGAG TTGCGCCACC AACCCATAGG CCGTCTGAAA 1151 GGCAGCTGGG GCGTGCAATA TTTGGGACAA AAATCCAGTG CTTTATCTGC 1201 CACATCCGAA GCGGTCAAAC AACCGATGCT GCTTGACAAT AAAGTGCAAC ATTACAGCTT TTTCGGTGTA GAACAGGCAA ACTGGGACAA CTTCACGCTT 1301 GAAGGCGGCG TACGCGTGGA AAAACAAAAA GCCTCCATCC GCTACGACAA 1351 AGCATTGATT GATCGGGAAA ACTACTACAA CCATCCCCTG CCCGACCTCG 1401 GCGCGCACCG CCAAACCGCC CGCTCATTCG CACTTTCGGG CAACTGGTAT 1451 1501 TTCACGCCAC AACACAAACT CAGCCTGACC GCCTCCCATC AGGAACGCCT 1551 GCCGTCAACG CAAGAGCTGT ACGCACACGG CAAACACGTC GCCACCAACA CCTTTGAAGT CGGCAACAAA CACCTCAACA AAGAGCGTTC CAACAATATC 1601 GAACTCGCGC TGGGCTACGA AGGCGACCGC TGGCAATACA ATCTGGCACT 1651 CTACCGCAAC CGCTTCGGCA ACTACATTTA CGCCCAAACC TTAAACGACG 1701 GACGCGGCCC CAAATCCATC GAAGACGACA GCGAAATGAA GCTCGTGCGC TACAACCAAT CCGGTGCGGA CTTCTACGGC GCGGAAGGCG AAATCTACTT 1801 CAAACCGACA CCGCGCTACC GCATCGGCGT TTCCGGCGAC TATGTACGAG 1851 GCCGTCTGAA AAACCTGCCT TCCCTACCCG GCAGGGAAGA CGCCTACGGC 1901 1951 AACCGCCCAC TCATTGCCCA AGCCGACCAA AACGCCCCTC GCGTTCCGGC TGCGCGCCTC GGCGTCCACC TGAAAGCCTC GCTGACCGAC CGCATCGATG 2001 CCAATTTGGA CTACTACCGC GTGTTCGCCC AAAACAAACT CGCCCGCTAC 2051 2101 GAAACGCGCA CGCCCGGACA CCATATGCTC AACCTCGGCG CAAACTACCG CCGCAATACG CGCTATGGCG AGTGGAATTG GTACGTCAAA GCCGACAACC 2151 TGCTCAACCA ATCCGTTTAC GCCCACAGCA GCTTCCTCTC TGATACGCCG 2201 CAAATGGGCC GCAGCTTTAC CGGCGGCGTG AACGTGAAGT TTTAA

## This corresponds to the amino acid sequence <SEQ ID 588; ORF 147.a>:

7.pep		-		,	- · · · · · ·
1	MRREAKMAQT	TLKPIVLSIL	LINTPLLSQA	HGTEOSVGI E	TUCUTORD
51	RATSGLLHTS	TASDKIISGD	TLRQKAVNLG	DALDGURGIL	1 V D V V G C D C D
101	PVIRGQTGRR	IKVLNHHGET	GDMADFSPDH	ATMUDENTED	ADDIGGEASA OVERTARENIE
151	LLYSSGNVAG	LVDVADGKTP	EKMPENGVSG	FICIDIOCO	OVETERGEVI
201	IGLGKNFVLH	TEGLYRKSGD	YAVPRYRNLK	ELGLKLSSGN	LEKLTSGGIN
251	EKGFIGAAYS	DREDOVCI DA	HSHEYDDCHA	REPUSHADSQ	TGSIGLSWVG
301	LTEEDIDYDN	DCI CCCEUDD	DDAWA	DIIMOKSTIN	KRYLQLYPHL
351	FOCEPAIDUM	TADADADADA	DDAHAHAHNG	KPWIDLRNKR	YELRAEWKQP
401	CEMCROATES	THRINDIRHDE	KAGDAVENFF	NNQTQNARIE	LRHQPIGRLK
451	GOMGAĞITGĞ	KSSALSATSE	AVKOPMITON	KNOHASEECA	E O NATED AS FORDS
	FGGAKAFVÕV	ASIRYDKALI	DRENYYNHPI.	PDICARROTA	DODAT COMM
501	FIPUNLSLT	ASHQERLPST	OELYAHGKHV	ATNITERVENIE	UTNICEDONIST
551	ELALGYEGDR	WQYNLALYRN	RFGNYIYAOT	LNDGRGPKST	FUNCEMETAN
					PPSSTUVIAK

601 651 701 751	YNQSGADFYG AEGEIYFKPT PRYRIGVSGD YVRGRLKNLP SLPGREDAYG NRPLIAQADQ NAPRVPAARL GVHLKASLTD RIDANLDYYR VFAQNKLARY ETRTPGHHML NLGANYRRNT RYGEWNWYVK ADNLLNQSVY AHSSFLSDTP QMGRSFTGGV NVK <u>F</u> *
m147/a147	98.1% identity in 734 aa overlap
m147.pep	10 20 30 PHKTEQSVDLETVSVVGKSRPRATSGLLHTS !
	10 20 30 40 50 60
m147.pep	40 50 60 70 80 90 TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET
a147	TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET 70 80 90 100 110 120
m147.pep	100 110 120 130 140 150 GDMADFSPDHAIMVDTALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG
a147	GDMADFSPDHAIMVDSALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG 130 140 150 160 170 180
m147.pep	160 170 180 190 200 210 ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ
a147	ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ 190 200 210 220 230 240
m147.pep	220 230 240 250 260 270 TGSIGLSWVGEKGFIGVAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL
a147	TGSIGLSWVGEKGFIGAAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL 250 260 270 280 290 300
m147.pep	280 290 300 310 320 330 LTEEDIDYDNPGLSCGFHDDDNAHAHTHSGRPWIDLRNKRYELRAEWKQPFPGFEALRVH
a147	LTEEDIDYDNPGLSCGFHDDDDAHAHAHNGKPWIDLRNKRYELRAEWKQPFPGFEALRVH 310 320 330 340 350 360
m147.pep	340 350 360 370 380 390 LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLQQKSSALSAISE
a147	LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLGQKSSALSATSE 370 380 390 400 410 420
m147.pep	400 410 420 430 440 450 AVKQPMLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPL
a147	
m147.pep	460 470 480 490 500 510 PDLGAHRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNK
a147	
m147.pep	520 530 540 550 560 570 HLNKERSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVR
a147	

•	550	560	570	580	590	600
m147.pep	580 YNQSGADFYGAEGE	590	600	610	620	630
	1111111111111	111111111	111111111	3KLKNLPSLP(		FIAQDDQ:
a147	YNQSGADFYGAEGE	IYFKPTPRY	RIGVSGDYVRO	GRLKNLPSLP	GREDAYGNRP	LIAOADO
	610	620	630	640	<b>6</b> 50	660
	640	650	660	670	680	690
m147.pep	NAPRVPAARLGFHL	KASLTDRID	ANLDYYRVFAÇ	NKLARYETRI	PGHHMLNLG	ANYRRNT
a147	NAPRVPAARLGVHL	1111111	111111111			111111
	670	680	690	700	710	720
	700	710	720	730		
m147.pep	RYGEWNWYVKADNL			SFTGGVNVKE	×	
a147	RYGEWNWYVKADNL	 LNOSVYAHS!		SETGGUNUKE	   <b> </b>	
	730	740	750	760	Λ	

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 589>:

```
g148.seq
         ATGGCGTTAA AAACATCAAA CTTGGAACAC GCAATGCtgg ttcaTCCCGA
         AgctATgagt gtcggcgCGC TTGccgAcaa AATCCGCAAA AtcgaAAact
         gGCCGCAAAA AGgcaTCTTA TTCCACGACA TCACGCCCGT CCTGCAAAGT
    101
         GCGGAATACT TCCGCCTTTT GGTCGATTTG CTGGTTTACC GCTATATGGA
         TCAGAAAATC GACATCGTTG CCGGCTTGGA CGCGCGCGC TTCATTATCG
        GCGCGGCACT CGCCTACCAG CTCAaCGtcg gctTCGTCCC CATCCGCAAA
    251
    301 AAAGGCAAGC TGCCTTTTGA AACCGTATCG CAAAGCTACG CGCTCGAATA
    351 CGGGGAAGCT GCGGTGGAAA TCCACACCGa tgccgTCAAA CCCGGTTCGC
    401 GCGTCCTGCT GGTCGATGAT TTGGTTGCCA CGGGCGGCAC AATGCTTGCC
         GGGCTGGAAC TGATCCGCAA ACTCGGCGGG GAAATTGTCG AAgccgccgC
        CATTTTGGAA TTTACCGACC TTCAAGGCGG CAAGAATATC CGCGCAAGTG
    501
    551 GCGCGCCCTT ATTTACCCTG CTTCAAAACG AAGGCTGCAT GAAAGGCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 590; ORF 148.ng>: g148.pep

1 MALKTSNLEH AMLVHPEAMS VGALADKIRK IENWPQKGIL FHDITPVLQS 51 AEYFRLLVDL LVYRYMDQKI DIVAGLDARG FIIGAALAYQ LNVGFVPIRK 101 KGKLPFETVS QSYALEYGEA AVEIHTDAVK PGSRVLLVDD LVATGGTMLA 151 GLELIRKLGG EIVEAAAILE FTDLQGGKNI RASGAPLFTL LQNEGCMKG*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 591>:

ATGGCGTTAA AAACATCAAA CTTGGAACAC GCAATGCTGG TTCATCCCGA 1 AGCTATGAGT GTCGGCGCC TTGCCGACAA AATCCGCAAA ATCGAAAACT 101 GGCCGCAAAA AGGCATCTTA TTCCACGACA TCACGCCCGT CCTTCAAAGC 151 GCGGAATACT TCCGCCTTTT GGTTGATTTA TTGGTTTACC GCTATATGGA 201 TCAGAAAATC GACATCGTTG CCGGTTTGGA CGCGCGGGC TTCATTATCG 251 GCGCGGCACT CGCCTACCAG CTCAACGTCG GTTTCGTCCC CATCCGCAAA 301 AAAGGCAAGC TGCCTTTTGA AACCGTATCG CAAAGCTACG CGCTCGAATA 351 CGGGGAAGCT GCGGTGGAAA TCCACACCGA TGCCGTCAAA CTCGGTTCGC GCGTGCTGCT GGTCGATGAT TTGATTGCCA CGGGCGGCAC GATGCTTGCC 401 451 GGACTGGAAC TGATCCGCAA ACTCGGCGGA GAAATTGTCG AAGCCGCCGC 501 CATTTTGGAA TTTACCGACC TTCAAGGCGG CAAGAATATC CGTGCAAGCG 551 GCGCGCCCTT ATTTACCCTG CTTCAAAACG AAGGCTGTAT GAAGGGCTGA

## This corresponds to the amino acid sequence <SEQ ID 592; ORF 148>:

1 MALKTSNIEH AMLVHPEAMS VGALADKIRK IENWPOKGIL FHDITPVLQS 51 AEYFRLLVDL LVYRYMDOKI DIVAGLDARG FIIGAALAYO LNVGFVPIRK 417

101 KGKLPFETVS QSYALEYGEA AVEIHTDAVK LGSRVLLVDD LIATGGTMLA 151 GLELIRKLGG EIVEAAAILE FTDLQGGKNI RASGAPLFTL LQNEGCMKG*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m148 / g1	<b>18</b> 99.0% identity in	n 199 aa over	lap		
m148.pep	10 MALKTSNLEHAMLVHPE	EAMSVGALADKIF			
~1.40					11111111
g1 <b>4</b> 8	MALKISNLEHAMLVHPE 10		REIENWPORGILI	FHDITPVLQSAE 50	4 F.K.L.VDL
				30	•
140	70		100	110	120
m148.pep	LVYRYMDQKIDIVAGLE				
g148	LVYRYMDQKIDIVAGLE				
-	70		100	110	120
	130	140 15	1.00	170	400
m148.pep	AVEIHTDAVKLGSRVLI	140 15 VDDLTATGGTMI		170 TVFAAATIFFT	180
10. pcp			1111111111		1111111
g148	AVEIHTDAVKPGSRVLI				
	130	140 15	160	170	180
	190	200			
m148.pep	RASGAPLFTLLQNEGCM				
g148	RASGAPLFTLLQNEGCM				•
	190	200			
The following p	artial DNA sequence w	as identified i	in N. maninai	tidic ∠SEO II	⊃ 503>·
a148.seg	anai DNA sequence w	as identified i	m Iv. meningi	nais ~SEQ II	J J93~.
ar40.3eq 1	ATGGCGTTAA AAACATCAA	A CTTGGAACAC	GCAATGCTGG	TTCATCCCGA	
51	AGCTATGAGT GTCGGTGCG				
101	GGCCGCAAAA AGGCATCTT				ž.
151	GCGGAATACT TCCGACTTT				FP
201	TCAGAAAATC GACATCGTT				
251 301	GCGCGGCACT CGCCTACCA AAAGGCAAGC TGCCTTTTG	AG CTCAACGTCG	CANACCTACC	CATCCGCAAA	
351	CGGGGAAGCT GCGGTGGAA				
401	GCGTGCTGCT GGTCGATGA				
451	GGACTGGAGC TGATCCGCA	AA ACTCGGCGG	GAAATTGTCG	AAGCCGCCGC	
501	CATTTTGGAA TTTACCGAC	CC TTCAAGGCGG	CAAGAATATC	CGTGCAAGCG	
551	GCGCGCCCTT ATTTACCCT	G CTTCAAAACG	AAGGCTGTAT	GAAGGGCTGA	
This correspond	s to the amino acid seq	uence <seq ]<="" td=""><td>D 594; ORF</td><td>148.a&gt;:</td><td></td></seq>	D 594; ORF	148.a>:	
a148.pep		_			
1	MALKTSNLEH AMLVHPEAN				
51	AEYFRLLVDL LVYRYMDQR				
101 151	KGKLPFETVS QSYALEYGE GLELIRKLGG EIVEAAAII	EA AVEIHTDAVE	LGSRVLLVDD	LVATGGTMLA	
131	GLEDIKKLGG EIVEAAAII	PE LIDEOGCKNI	. KASGAPLEIL	TÖMEGCMKG.	
m148/a148	99.5% identity in	199 aa over	lap		
	10		30 40	50	60
m148.pep	MALKTSNLEHAMLVHPE	EAMSVGALADKIF	KIENWPQKGIL:	FHDITPVLQSAE	YFRLLVDL
01.40	MAI PERMI PUAMI VILDE	11111111111111111111111111111111111111		1111111111	1111111
a148	MALKTSNLEHAMLVHPE 10		RKIENWPQKGIL: 30 40	FHDITPVLQSAE 50	
	10		40	30	60
	70	80 9	100	110	120



m148.pep	LVYRYMDQKIDIVAGLDARGFIIGAALAYQLNVGFVPIRKKGKLPFETVSQSYALEYGEA
a148	
m148.pep	130 140 150 160 170 180 AVEIHTDAVKLGSRVLLVDDLIATGGTMLAGLELIRKLGGEIVEAAAILEFTDLQGGKNI
a148	AVEIHTDAVKLGSRVLLVDDLVATGGTMLAGLELIRKLGGEIVEAAAILEFTDLQGGKNI 130 140 150 160 170 180
m148.pep	190 200 RASGAPLFTLLQNEGCMKGX
a148	

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 595>:

```
1 ATGTTGATTG ACAACAATGT CCGCCATTAC AGCTTTTTCG GTGTAGAACA
  51 GGCAAATTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC
 101 AAAAAGCCTC CATCCGGTAC GACAAAGCAT TGATTGATCG AGAAAACTAC
 151 TACAACCAGC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
 201 GTTCGCACTT TCGGGCAACT GGTATTTCAC GCCACACCAC AAACTCAGCC
      TGACCGCCTC CCATCAGGAa cgCCTGCCGT CAACGCaagA actGtACgca
 301 cacggcAAGC ACGtcgccac CAACACCTTT GAagtcggca acaaACACCT
 351 CAACAAAGaG CgttccaacA atatcgaACT CGCGCTGGgc tAcaaaggcg
 401 accGCTGGCA ATACAATCTG GCAGCCTACC GCAACCGALT CGGCAACTAC
 451 ATTTACGCCC AAACCTTAaa cgacggacgC GGCCCCAAAT CCATCgaaga
 501 CGacagcgaA ATGaagcTCG TGCGCTACAA CCAATCCGGT GCCGACTTCT
 551 ACGGCGCGA aggcGaaatc tACTTcaaaC CGAcACCGCG CTACCGCATC
 601 GGTGTTTCCG GCGACTatgt acgaggecgT CTGAAAAACC TGCCGTCCCT
 651 ACCCGGCAGG gaagatccCT AcggcAAACG TCccttcaTC GCACAAGCCG
 701 ACCAAAACGC CCCCCGCATT CCGGCCGCCC GCCCCGCCT CCACCTGAAA
751 ACCTCGCTAA CCGACCGTAT CCATCGCCAA
     ACCTCGCTAA CCGACCGTAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
801 CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGTACGCCC GGACACCATA
851 TGCTCAACCT CGGTGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
901 AATTGGTACG TCAAAGCCGA CAACCTGCtc aACcaatCcg tTTACGCCCa
951 CAGCAGCTTC CTCTCTGATA CGCCGCAAAt gGGCCGCAGC TTtgccgGCg
1001 gcgtaAACGT GaAGTTttaA
```

This corresponds to the amino acid sequence <SEQ ID 596; ORF 149.ng>: g149.pep

```
1 MLIDNNVRHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY
 51 YNOPLPDLGA HRQTARSFAL SGNWYFTPHH KLSLTASHQE RLPSTQELYA
101 HGKHVATNTF EVGNKHLNKE RSNNIELALG YKGDRWQYNL AAYRNRFGNY
151 IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI
201 GVSGDYVRGR LKNLPSLPGR EDPYGKRPFI AQADQNAPRI PAARLGFHLK
251 TSLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
301 NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FAGGVNVKF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 597>: m149.seq

```
1 ATGCTGCTTG ACAACAAGT GCAACATTAC AGCTTTTTCG GTGTAGAACA
 51 GGCAAACTGG GACAACTTCA CGCTTGAAGG AGGCGTACGC GTGGAAAAAC
101 AAAAAGCCTC CATTCAGTAC GACAAAGCAT TGATTGATCG GGAAAACTAC
     TACAACCACC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
    ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC
201
     TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA
251
301 CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAAACACCT
351 CAACAAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG
401 ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGTAACTAC
```

ATTTACGCCC AAACCTTAAA CGACGGACGC GGCCCCAAAT CCATCGAAGA

```
CGACAGCGAA ATGAAGCTCG TGCGCTACAA CCAATCCGGC GCCGACTTCT
     551
         ACGGCGCGGA AGGCGAAATC TACTTCAAAC CGACACCGCG CTACCGCATC
         GGCGTTTCCG GCGACTATGT ACGAGGCCGT CTGAAAAACC TGCCTTCCCT
         ACCCGGCAGA GAAGATGCCT ACGGCAACCG TCCTTTCATC GCACAGGACG
         ACCAAAATGC CCCCCGTGTT CCGGCTGCGC GCCTCGGCTT CCACCTGAAA
         GCCTCGCTGA CCGACCGTAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
         CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGCACGCCC GGACACCATA
     801
     851
         TGCTCAACCT CGGCGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
         AATTGGTACG TCAAAGCCGA CAACCTGCTC AACCAATCCG TTTACGCCCA
     901
         CAGCAGCTTT CTCTCTGATA CGCCGCAAAT GGGCCGCAGC TTTACCGGCG
     951
         GCGTGAACGT GAAGTTTTAA
This corresponds to the amino acid sequence <SEQ ID 598; ORF 149>:
m149.pep
         MLLDNKVQHY SFFGVEQANW DNFTLEGGVR VEKQKASIQY DKALIDRENY
      1
         YNHPLPDLGA HRQTARSFAL SGNWYFTPQH KLSLTASHQE RLPSTQELYA
         HGKHVATNTF EVGNKHLNKE RSNNIELALG YEGDRWQYNL ALYRNRFGNY
         IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI
    151
    201 GVSGDYVRGR LKNLPSLPGR EDAYGNRPFI AQDDQNAPRV PAARLGFHLK
    251 ASLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
    301 NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FTGGVNVKF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 149 shows 95.9% identity over a 339 aa overlap with a predicted ORF (ORF 149.ng)
from N. gonorrhoeae:
m149/g149
                    10
                             20
                                      30
                                                40
                                                         50
                                                                  60
            MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPLPDLGA
m149.pep
            MLIDNNVRHYSFFGVEQANWDNFTLEGGVRVEKQKASIRYDKALIDRENYYNQPLPDLGA
g149
                    10
                             20
                                      30
                                               40
                                                         50
                                                                  60
                    70
                             80
                                      90
                                               100
                                                        110
                                                                 120
            HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
m149.pep
                                                                          ·;
            HRQTARSFALSGNWYFTPHHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
g149
                    70
                             80
                                      90
                                              100
                                                        110
                                                                 120
                  130
                            140
                                     150
                                              160
                                                                 180
m149.pep
            RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNOSG
            g149
            RSNNIELALGYKGDRWQYNLAAYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG
                  130
                            140
                                     150
                                              160
                                                        170
                                                                 180
```

190

250

250

310

200

200

260

260

320

NWYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX

210

210

270

270

330

PAARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW

PAARLGFHLKTSLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW

220

220

280

280

230

230

290

240

240

300

m149.pep.

m149.pep

m149.pep

g149

g149

```
g149
              NWYVKADNLLNQSVYAHSSFLSDTPQMGRSFAGGVNVKFX
                    310
                              320
                                       330
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 599>:
      al49.seg
               ATGCTGCTTG ACAATAAAGT GCAACATTAC AGCTTTTTCG GTGTAGAACA
             1
               GGCAAACTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC
            51
               AAAAAGCCTC CATCCGCTAC GACAAAGCAT TGATTGATCG GGAAAACTAC
           101
               TACAACCATC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
           151
               ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC
           201
               TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA
           251
               CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAAACACCT
           301
               CAACAAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG
           351
               ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGCAACTAC
           401
               ATTTACGCCC AAACCTTAAA CGACGGACGC GGCCCCAAAT CCATCGAAGA
           451
               CGACAGCGAA ATGAAGCTCG TGCGCTACAA CCAATCCGGT GCGGACTTCT
           501
          551 ACGGCGCGGA AGGCGAAATC TACTTCAAAC CGACACCGCG CTACCGCATC
              GGCGTTTCCG GCGACTATGT ACGAGGCCGT CTGAAAAACC TGCCTTCCCT
           601
               ACCCGGCAGG GAAGACGCCT ACGGCAACCG CCCACTCATT GCCCAAGCCG
          651
               ACCAAAACGC CCCTCGCGTT CCGGCTGCGC GCCTCGGCGT CCACCTGAAA
          701
              GCCTCGCTGA CCGACCGCAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
          751
               CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGCACGCCC GGACACCATA
              TGCTCAACCT CGGCGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
          901 AATTGGTACG TCAAAGCCGA CAACCTGCTC AACCAATCCG TTTACGCCCA
               CAGCAGCTTC CTCTCTGATA CGCCGCAAAT GGGCCGCAGC TTTACCGGCG
         1001
              GCGTGAACGT GAAGTTTTAA
This corresponds to the amino acid sequence <SEQ ID 600; ORF 149.a>:
     a149.pep
              MLLDNKVQHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY
              YNHPLPDLGA HRQTARSFAL SGNWYFTPQH KLSLTASHQE RLPSTQELYA
           51
              HGKHVATNTF EVGNKHLNKE RSNNIELALG YEGDRWQYNL ALYRNRFGNY
          101
              IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI
          201 GVSGDYVRGR LKNLPSLPGR EDAYGNRPLI AQADQNAPRV PAARLGVHLK
              ASLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
              NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FTGGVNVKF*
m149/a149 98.8% identity in 339 aa overlap
                         10
                                  20
                                           30
                                                    40
                 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPLPDLGA
     m149.pep
                 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIRYDKALIDRENYYNHPLPDLGA
     a149
                        10
                                  20
                                           30
                                                    40
                                                              50
                        70
                                  80
                                           90
                                                   100
                HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
                                                             110
    m149.pep
                 HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
    a149
                        70
                                 80
                                           90
                                                   100
                                                                      120
                       130
                                140
                                          150
                                                   160
                                                            170
                RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG
    m149.pep
                RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG
    a149
                       130
                                140
                                          150
                                                            170
                                                                      180
                       190
                                200
                                          210
                                                   220
                                                            230
                ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRV
    m149.pep
                ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRV
    a149
                       190
                                200
                                         210
                                                   220
                                                            230
                                                                     240
                                260
                                         270
                                                  280
                                                            290
                PAARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW
    m149.pep
```



The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 601>: g149-1.seq

```
1 ATGGCACAAA TCACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
  51
      CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGGCTTGG
      AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCGAC TTCGGGGCTG
 101
      CTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACTTTGCG
 151
      CCAAAAAGCC GTCAACTTGG GCGACGCTTT GGACGGCGTA CCGGGCATCC
 201
 251
      ACGCTTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
      ACGGGCAGAC GGATTAAAGT ATTGAACCAT CACGGCGAAA CGGGCGATAT
 301
      GGCGGACTTT TCTCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
 351
 401
      AACAGGTTGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
      AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGAAAAATCC CCGAAAAAAT
 451
      GCCTGAAAAC GGCGTATCGG GCGaagccgG ATTGCGTTTG AGCAGCGGCA
 501
      ATTTAGAAAA ACTGACATCC GCAGGCATCA ATATCGGACT GGGCAAAAAC
 551
      TTCGTGCTGC ATACCGAAGG CTTGTACCGC AAATCGGGCG ATTACGCCGT
 601
 651
      ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAT GCCGATTCGC
      AAACGGGCAG CATCGGGCTG TCTTGGGTGG GCGAAAAAGG CTTTATCGGC
 701
      GCAGCATACA GCGACCGTCG CGACCGCTAC GGCCTGCCTG CCCACAGCCA
 751
      CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATCA
 801
 851
      ACAAACGCTA TTTGCAGCTT TATCCGCACT TGTTGACCGA AGAAGACATC
      GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG GCGACGGTGC
 901
      ACACGCACAC ACCCACAACG GCAAACCGTG GATAGACCTG CGCAACAAAC
 951
      GCTACGAACT CCGCGCCGAA TGGAAGCAGC CATTCCCCGG TTTTGAAGCC
1001
      CTGCGCGTAC ATCTGAACCG CAATGACTAC CACCACGACG AAAAAGCAGG
1051
      CGATGCAGTA GAAAACTTCT TCAACAACAA AACACACAAC GCCCGTATCG
1101
1151
      AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
1201
      TATTTGGGAC AAAAATCCAG CGCGCTTTCC GCCATTCCCG AAACCGTCCA
      ACAACCGATG TTGATTGACA ACAATGTCCG CCATTACAGC TTTTTCGGTG
1251
1301
      TAGAACAGGC AAATTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
      GAAAAACAAA AAGCCTCCAT CCGGTACGAC AAAGCATTGA TTGATCGAGA
1351
      AAACTACTAC AACCAGCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1401
      CCCGCTCGTT CGCACTTCG GGCAACTGGT ATTTCACGCC ACACCACAAA
1451
1501
      CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAACT
      GTACGCACAC GGCAAGCACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1551
      AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
1601
      GAAGGCGACC GCTGGCAATA CAATCTGGCA GCCTACCGCA ACCGATTCGG
1651
1701
      CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
      TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCC
1751
      GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
      CCGCATCGGT GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1851
      CGTCCCTACC CGGCAGGGAA GATCCCTACG GCAAACGTCC CTTCATCGCA
1901
1951
      CAAGCCGACC AAAACGCCCC CCGCATTCCG GCTGCGCGCC TCGGCTTCCA
      CCTGAAAACC TCGCTAACCG ACCGTATCGA TGCCAATTTG GACTACTACC
2001
      GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG TACGCCCGGA
2051
2101
      CACCATATGC TCAACCTCGG TGCAAACTAC CGCCGCAATA CGCGCTATGG
      CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
      ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
      ACCGGCGGCG TAAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 602; ORF 149-1.ng>: g149-1.pep

1	MAQITLKPIV	LSILLINTPL	LAQAHETEQS	VGLETVSVVG	KSRPRATSGL
51	LHTSTASDKI	ISGDTLRQKA	VNLGDALDGV	PGIHASOYGG	GASAPVIRGO
101	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDT	ALSOOVEILR	GPVTLLYSSG
151	NVAGLVDVAD	GKIPEKMPEN	GVSGEAGLRL	SSGNLEKLTS	AGINIGLGKN
201	<b>FVLHTEGLYR</b>	KSGDYAVPRY	RNLKRLPDSH	ADSOTGSIGL	SWVGEKGFIG
251	AAYSDRRDRY	GLPAHSHEYD	DCHADIIWOK	SLINKRYLOL	YPHLLTEEDI
301	DYDNPGLSCG	FHDGDGAHAH	THNGKPWIDT.	BUKBYELDAF	MKODEDGEEN

BNSDOCID: <WO___9957280A2_l_>

resident survey

. ...



# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 603>:

```
1 ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
1 CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGATTTGG
    51
   101
        AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCCAC GTCGGGGCTG
        TTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACCTTGCG
        CCAAAAAGCC GTCAACTTGG GCGACGCTTT AGACGGCGTA CCGGGCATCC
  251 ACGCTTCGCA ATACGGCGGC GGCGCGTCTG CTCCCGTCAT TCGCGGTCAA
  301 ACAGGCAGGC GGATTAAAGT GTTGAACCAT CACGGCGAAA CAGGCGATAT
  351 GGCGGATTTT TCGCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
       AACAGGTCGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
       AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
  451
  501
       GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
       ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
  551
       TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
  601
       ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
  651
       AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG TTTTATCGGC
  701
       GTAGCGTACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
  751
       CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGCTTGATTA
  801
       ACAAACGCTA TTTACAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
  851
       GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG ACGATAATGC
  901
       ACACGCACAC ACCCACAGCG GCAGACCGTG GATAGACCTG CGCAACAAC
  951
       GCTACGAACT CCGTGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
 1051
       CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
1101
       CGATGCAGTC GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGCATCG
       AGTTGCGCCA CCAACCCATA GGTCGTCTGA AAGGCAGCTG GGGCGTGCAA
1151
       TATTTACAAC AAAAATCCAG TGCTTTATCT GCCATATCCG AAGCGGTTAA
1201
       ACAACCGATG CTGCTTGACA ACAAAGTGCA ACATTACAGC TTTTTCGGTG
1251
1301
       TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGAGG CGTACGCGTG
       GAAAAACAAA AAGCCTCCAT TCAGTACGAC AAAGCATTGA TTGATCGGGA
AAACTACTAC AACCACCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1351
1401
       CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1451
      CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1501
       GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1551
1601
      AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
      GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
1651
      TAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1701
      TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGCGCC
1751
      GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1801
      CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1851
      CTTCCCTACC CGGCAGAGAA GATGCCTACG GCAACCGTCC TTTCATCGCA
1901
      CAGGACGACC AAAATGCCCC CCGTGTTCCG GCTGCGCGCC TCGGCTTCCA
CCTGAAAGCC TCGCTGACCG ACCGTATCGA TGCCAATTTG GACTACTACC
1951
2001
      GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
2051
2101
      CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
      CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
      ACGCCCACAG CAGCTTTCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2201
2251 ACCGGCGGCG TGAACGTGAA GTTTTAA
```

# This corresponds to the amino acid sequence <SEQ ID 604; ORF 149-1>:

	E-				
1	MAQTTLKPIV	LSILLINTPL	LAQAHETEQS	VDI.ETUSUUC	VCDDD3 Back
51	TUTSIASDVI	ISGDTLROKA	VNI.GDAI.DGV	DCTUREOVCO	G3 G3 T1177
101	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDT	PICOUNTELLE	GASAPVIRGQ
151	NVAGLVDVAD	GKIPEKMPEN	GVSGELGLRL	YPOOGAFITK	GPVTLLYSSG
201	FVLHTEGLYR	KSGDYAVPRY	RNLKRLPDSH	3 DOOR COLOR	GGINIGLGKN
251	VAYSDRRDOY	GLPAHSHEYD	DCHADITMON	ADSOTGSIGL	SWVGEKGFIG
301	DYDNPGLSCG	FHDDDDNAHAH	THSGRPWIDL	SLINKRYLQL	YPHLLTEEDI
351	LRVHLNRNDY	RHDEKAGDAV	ENEENMOTON	RNKRYELRAE	WKQPFPGFEA
401		AISEAVKOPM		ARIELRHOPI	GRLKGSWGVQ
451	EKOKASIOYD	KAT.TDRENVY	LLDNKVQHYS NHPLPDLGAH	FIGVEQANWD	NFTLEGGVRV
501	LSLTASHOER	LPSTOFLYAU	GKHVATNTFE	ROTARSFALS	GNWYFTPQHK
		~. O. Seniwu	GARVATNTEE	VGNKHLNKER	SNNIELALGY

601 651 701 751	DFYGAEGEIY QDDQNAPRVP HHMLNLGANY TGGVNVKF*	FKPTPRYR:	IG VSGDYVR KA SLTDRID	GRL KNLPSL ANL DYYRVF.	PGRE DAYGN AONK LARYE	RPFIA TRTPG	
m149-1/g14	<b>9-1</b> 96.3	2% identit	y in 758	aa overlap			
m149-1.pep	MAQTTLK	10 PIVLSILLIN	20 NTPLLAQAHE	30 TEQSVDLETV	40 SVVGKSRPRA	50 TSGLLHTSTA:	60 SDKI
g149-1	MAQITLK	PIVLSILLIN 10	TPLLAQAHE	reosvgletv 30	SVVGKSRPRA 40	TSGLLHTSTA: 50	SDKI 60
m149-1.pep	111111	111111111			1111111111	110 VLNHHGETGDI	1111
g149-1	ISGDTLR(	OKAVNLGDAI 70	DGVPGIHAS 80	90	IRGOTGRRIK 100	VLNHHGETGDI 110	MADF 120
m149-1.pep	SPDHAIM\	[]]]]]	111111111		111111111	170 MPENGVSGELO	1111
g149-1	1	130	140	150	DVADGKIPEK 160	MPENGVSGEAG 170	GLRL 180
m149-1.pep	SSGNLEKI 	11:11111				230 PDSHADSQTGS	1111
g149-1	1	190	200	210	220	PDSHADSQTGS 230	SIGL 240
m149-1.pep	SWVGEKGE		1:1111111			290 YLQLYPHLLTI 	1111
g149-1	2	250	260	270	280	YLQLYPHLLTE 290	300
m149-1.pep	DYDNPGLS	11111 1:1	11111:1:11			350 GFEALRVHLNE 	1111
g149-1	3	110	320	330	340	GFEALRVHLNE 350	360
m149-1.pep	RHDEKAGI :	11111111:	1:11111111	111111111	111111111	410 SALSAISEAVE	: 111
g149-1	3	370	380	390	400	SALSAIPETVO	420
m149-1.pep	LLDNKVQH	YSFFGVEQA	440 NWDNFTLEGO	450 SVRVEKQKASI	460 QYDKALIDRI	470 ENYYNHPLPDI 	480 LGAH
g149-1	LIDNNVRH	IYSFFGVEQA	NWDNFTLEGO 440	VRVEKQKASI 450	RYDKALIDRI 460	ENYYNQPLPDI 470	LGAH 480
m149-1.pep	RQTARSFA	LSGNWYFTP	500 QHKLSLTASI	510 IQERLPSTQEI	520 YAHGKHVATI	530 NTFEVGNKHLN	540 NKER
g149-1	RQTARSFA	LSGNWYFTP	:		JIIIIIIII YAHGKHVATI 520		           
m149-1.pep	SNNIELAL	GYEGDRWQY				590 DSEMKLVRYNG	
g149-1	SNNIELAL	GYEGDRWQY	 NLAAYRNRFO 560				IIII 2SGA 600
m149-1.pep	DFYGAEGE	IYFKPTPRY	620 RIGVSGDYVF	630 GRLKNLPSLE	640 GREDAYGNRI	650 PFIAQDDQNAE	660 RVP
g149-1	 DFYGAEGE	  YFKPTPRY	1111111111	1111111111	1111 11:11	 PFIAQADQNAE 650	1:1

551 EGDRWQYNLA LYRNRFGNYI YAQTLNDGRG PKSIEDDSEM KLVRYNQSGA

BNSDOCID: <WO___9957280A2_I_>

m149-1.pep	670 AARLGFHLKASLTD	680 RIDANIDVV	690	700	710	720
	1111111111111	11111111	VALUONVUMK	ILTRIPGHHM	LNLGANYRRNT	RYGEWN
g149-1	AARLGFHLKTSLTD	RIDANI.DYY	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1111111111	$\Pi\Pi\Pi\Pi$
	670	680	690	I ETRIPGHHM		
			050	700	710	720
-140 1	730	740	750	759		
m149-1.pep	WYVKADNLLNQSVY	AHSSFLSDTI	POMGRSFTGGV	NVKFX		
q149-1		1111111		11111		
9149-1	WIVKADNLLNQSVY	AHSSFLSDTI	POMGRSFTGGV	NVKFX		
	730	740	750			

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 605>:

```
1 ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
       CACACCCCTC CTCTCCCAAG CGCATGGAAC TGAGCAATCA GTGGGCTTGG
   51
       ANACGGTCAG CGTCGTCGGC ANANGCCGTC CGCGCGCCAC TTCGGGGCTG
  101
       CTGCACACTT CTACCGCCTC CGACAAAATC ATCAGCGGCG ACACCTTGCG
       ACAAAAAGCC GTCAACTTGG GTGATGCTTT AGACGGCGTA CCGGGCATTC
       ATGCCTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
  251
       ACAGGCAGAC GGATTAAAGT GTTGAACCAT CACGGCGAAA CGGGCGACAT
  301
       GGCGGACTTC TCTCCAGACC ATGCAATCAT GGTGGACAGC GCCTTGTCGC
  351
  401
       AACAGGTCGA AATCCTGCGC GGTCCGGTTA CGCTCTTGTA CAGCTCGGGC
  451
       AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
       GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
  501
  551
      ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
       TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
  601
      ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
  651
      AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG CTTTATCGGC
  701
      GCAGCATACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
  751
      CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATTA
  801
      ACAAACGCTA TTTGCAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
  851
      GATTACGACA ATCCGGGCTT GAGCTGCGGC TTTCACGACG ACGATGATGC
  901
  951
      ACACGCCCAT GCCCACAACG GCAAACCTTG GATAGACCTG CGCAACAAAC
      GCTACGAACT CCGCGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
1001
      CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
1051
      CGATGCAGTA GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGTATCG
1101
      AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
1201
      TATTTGGGAC AAAAATCCAG TGCTTTATCT GCCACATCCG AAGCGGTCAA
      ACAACCGATG CTGCTTGACA ATAAAGTGCA ACATTACAGC TTTTTCGGTG
1251
      TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
1301
      GAAAACAAA AAGCCTCCAT CCGCTACGAC AAAGCATTGA TTGATCGGGA
1351
      AAACTACTAC AACCATCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1401
      CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1451
      CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1501
1551 GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
     GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
      CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1701
     TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCG
1751
     GACTICTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1801
     CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1851
     CTTCCCTACC CGGCAGGGAA GACGCCTACG GCAACCGCCC ACTCATTGCC
1901
     CAAGCCGACC AAAACGCCCC TCGCGTTCCG GCTGCGCGCC TCGGCGTCCA
1951
2001 CCTGAAAGCC TCGCTGACCG ACCGCATCGA TGCCAATTTG GACTACTACC
     GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
     CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
2101
     CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
     ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2201
     ACCGGCGGCG TGAACGTGAA GTTTTAA
```

## This corresponds to the amino acid sequence <SEQ ID 606; ORF 149-1.a>:

1	MAQTTLKPIV	LSILLINTPL	LSOAHGTEOS	VCI Emircinio	20000000
	TITLETATION	TOGUTURUKA	VNILCONT DCtt	DOTTITOON	
101	TGRRIKVLNH NVAGLVDVAD	HGETGDMADE	SDUMIKANDS	PGIHASQYGG	GASAPVIRGQ
151	NVAGLVDVAD FVLHTEGLVB	GKIPEKMPEN	GASCELCIPT	ALSQQVEILR	GPVTLLYSSG
201	FVLHTEGLYR	KSGDYAVDDY	GARGETGTET	SSGNLEKLTS	GGINIGLGKN
251	AAYSDRRDOY	GLPAHCUEVO	DCHARTEDSH	ADSQTGSIGL	SWVGEKGFIG
301	AAYSDRRDQY DYDNPGLSCG	EMUDDOUGIE	DCHADITMOK	SLINKRYLQL	YPHLLTEEDI
	DYDNPGLSCG	PHANAGOGGANA	AHNGKPWIDL	RNKRYELRAE	WKQPFPGFEA

401 YI 451 EI 501 L: 551 E0 601 DI 651 QI 701 HI 751 TO	LGQKSSALS KQKASIRYD SLTASHQER GDRWQYNLA FYGAEGEIY ADQNAPRVP HMLNLGANY GGVNVKF*	ATSEAVKQ KALIDREN LPSTQELY LYRNRFGN FKPTPRYR AARLGVHL	PM LLDNKVQ YY NHPLPDL AH GKHVATN YI YAQTLND IG VSGDYVR KA SLTDRID	TON ARIELR HYS FFGVE GAH ROTARS TFE VGNKHL GRG PKSIED GRL KNLPSL ANL DYYRVF LLN QSVYAH	ANWD NFTLE FALS GNWYE NKER SNNIE DSEM KLVRY PGRE DAYGN AONK LARYE	EGGVRV FTPQHK ELALGY YNQSGA IRPLIA ETRTPG	
a149-1/m149-	-1 98.0	% identi	ty in 758	aa overlap			
a149-1.pep	MAQTTLKP	10 IVLSILLI	20 NTPLLSQAHG	30 TEQSVGLETV	40 SVVGKSRPRA	50 TSGLLHTSTA	60 SDKI
m149-1	11111111	111111	11111111	11111 1111	1111111111		1111
a149-1.pep		70	80 .DGVDGTHAS	90	100	110 VLNHHGETGD	120
m149-1	  SGDTLRQ				1111111111	VLNHHGETGD VLNHHGETGD 110	LIII
	1	30	140	150	160	170	180
a149-1.pep		1:11111	!	YSSGNVAGLV	DVADGKIPEK	MPENGVSGEL	GLRL
m149-1	SPDHAIMV	DTALSQQVI 30	EILRGPVTLL: 140	YSSGNVAGLV	DVADGKIPEK 160	MPENGVSGEL 170	GLRL 180
		90	200	210	220	230	240
a149-1.pep		1111111				PDSHADSQTG	1111
m149-1	SSGNLEKL'	TSGGINIGI 90	CGKNFVLHTEC 200	GLYRKSGDYA' 210	VPRYRNLKRL 220	PDSHADSQTG 230	SIGL 240
a149-1.pep		50 IGAAYSDRI	260 RDOYGI.PAHSI	270	280	290 YLQLYPHLLT	300
m149-1		11:11111			111111111	YLQLYPHLLT	1111
	2	50	260	270	280	290	300
a149-1.pep	DYDNPGLS	10 CGFHDDDD <i>F</i>	320 MAHAHNGKPV	330 NIDLRNKRYEI	340 CRAEWKQPFP	350 GFEALRVHLNI	360 RNDY
m149-1	DYDNPGLS	CGFHDDDNA	HAHTHSGRPV	<b>VIDLRNKRYE</b> 1			RNDY
		10	320	330	340	350	360
a149-1.pep	RHDEKAGD	70 AVENFFNNO	380 TONARIELRH	390 ROPIGRLKGSV	400 GVQYLGQKS:	410 SALSATSEAVI	420 KQPM
m149-1	RHDEKAGD	IIIIIIIII AVENFFNNO 70		<b>IQPIGRLKGS</b> V	GVQYLQQKS:	 SALSAISEAVI	KQPM
		30	440	390 450	460	410 470	420
a149-1.pep	LLDNKVQHY	YSFFGVEQA	NWDNFTLEGG	VRVEKOKASI	RYDKALIDR	470 Enyynhplpdi 	480 GAH
m149-1	LLDNKVQH	/SFFGVEQA	NWDNFTLEGG	VRVEKOKASI 450	QYDKALIDRI 460	ENYYNHPLPDI 470	GAH 480
			500	510	520	530	540
a149-1.pep	_ [			111111111	1111111111	NTFEVGNKHLN	TEL
m149-1	RQTARSFAI 49	LSGNWYFTP	QHKLSLTASH	QERLPSTQEI 510	YAHGKHVATI 520	NTFEVGNKHLN 530	KER 540
2149-1	55		560	570	580	590	600
a149-1.pep m149-1	_		1111111111	11111111111	THEFT	SEMKLVRYNÇ	111
T. 3 - T	5NNIELALG 55	0 Pregnkwôl		NYIYAQTLND 570	GRGPKSIEDI 580	SEMKLVRYNO 590	SGA 600
	61	.0	620	630	640	650	660





```
a149-1.pep
              \tt DFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRVP
              DFYGAEGEIYFKPTFRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRVP
  m149-1
                    610
                             620
                                     630
                                              640
                    670
                             680
                                     690
             AARLGVHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
  a149-1.pep
              AARLGFHLKASLTDRIDANLDYYRVFAONKLARYETRTPGHHMLNLGANYRRNTRYGEWN
  m149-1
                            680
                                     690
                                              700
                   730
                            740
                                     750
 a149-1.pep
             WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
             m149-1
             WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
                   730
                            740
                                     750
 The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 607>:
 g150.seq
           (partial)
           ..TACTGCAAGG CAGACCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT
        1
             CACCGCCCGC CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA
       51
             GCGGTTCGGA TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT
      101
             GACAACGATC CGGCACTGGT CGGGGAAATC CTAGACCTGC TCGGCATCAA
      151
             TCCGGCAACG GAAATACAGG CGGGCGGAAA AACCCTGCCG GTTGCCTCCG
      201
             CACTGTTATC CCATTTCGAA CTCACGCAAA ACACCCCCGC CTTTGTCAAA
      251
             GGCTATGCCA CGTTCGCCGA TAATGACGAA CTCGACCGTA TTGCTGCCGA
      301
             CAACGCCGTT TTGCAAGGCT TTGTGCAAAG CACGCCGATT GCCGGTGTGC
      351
             TGCACCGCTT CCCGGCAAAA CTGACGGCGG AACAATTCGC CGGCCTGCTG
      401
             CGCCCGCTTG CGCCGCGCT GTATTCGATT TCCTCGTCGC AGGCGGAAGC
      451
             GGGGGACGAA GTGCACCTGA CCGTCGGCGC AGTGCGTTTC GAACACGAAG
      501
             GGCGCGCCAG GGCGGGCGGC GCATCGGGTT TCTTTGCCGA CCGGCTGGAA
      551
             GAGGACGGCA CGGTGCGCGT GTTTGCGGAA CGCAACGACG GCTTCAGGCT
      601
            GCCCGAAGAC AGCCGCAAGC CGATTGTGAT GATCGGCTCC GGTACCGGCG
     651
            TCGCACCGTT CCGCGCCTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA
     701
            GGCAGAAACT GGCTGATTTT CGGCAATCCG CATTTTGCCG CCGACTTCCT
     751
            CTATCAGACC GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGAT
     801
            ATGACTTCGC CTGGTCGCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC
     851
            AAAATCCGCG AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC
     901
            GCATATCTAT GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GAAGTGGAAG
     951
            CCGCCTTGCT GGATGTGATT ATCGGGGCAG GGCATTCGGA CGAAGACGGC
    1001
            GCAGAAGGAT ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA
    1051
    1101
            TGTTTATTGA
This corresponds to the amino acid sequence <SEQ ID 608; ORF 150.ng>:
g150.pep
          (partial)
          ..YCKADPFPAA LLANQKITAR QSDKDVRHIE IDLSGSDLHY LPGDALGVWF
       1
            DNDPALVGEI LDLLGINPAT EIQAGGKTLP VASALLSHFE LTQNTPAFVK
      51
            GYATFADNDE LDRIAADNAV LQGFVQSTPI AGVLHRFPAK LTAEQFAGLL
     101
            RPLAPRLYSI SSSQAEAGDE VHLTVGAVRF EHEGRARAGG ASGFFADRLE
     1.51
            EDGTVRVFAE RNDGFRLPED SRKPIVMIGS GTGVAPFRAF VQQRAAENAE
     201
            GRNWLIFGNP HFAADFLYQT EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD
     251
            KIREQAEGLW OWLQEGAHIY VCGDAAKMAK EVEAALLDVI IGAGHSDEDG
     301
     351
            AEGYLDMLRE EKRYQRDVY*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 609>:
      1
```

m150.seq

```
ATGCAGAACA CAAATCCGCC ATTACCGCCT CTGCCGCCCG AAATCACGCA
    GCTCCTGTCG GGGCTGGACG CGGCACAATG GGCGTGGCTG TCCGGCTACG
 51
    CTTGGGCAAA AGCAGGAAAC GGGGCATCTG CAGGACTGCC CGCGCTTCAG
151 ACGGCATTGC CGGCGGCAGA ACCTTTTTCC GTAACCGTCC TTTCCGCCTC
201 GCAAACCGGC AATGCGAAAT CCGTTGCCGA CAAAGCGGCG GACAGCCTGG
    AAGCCGCCGG CATCCAAGTC AGTCGCGCCG AACTGAAAGA CTATAAGGCG
    AAAAACATCG CCGGCGAACG CCGCCTGCTG CTGGTTACCT CCACCCAAGG
    CGAAGGCGAA CCGCCGAAAG AAGCCGTCGT GCTGCACAAA CTGCTGAACG
351
    GCAAAAAAGC CCCGAAATTG GACAAACTCC AATTTGCCGT ACTGGGTTTG
401
```

7

A territor in Table 5 in table

```
451 GGCGACAGTT CCTATCCGAA TTTCTGTCAG GCAGGTAAAG ATTTCGACCG
     501 GCGTTTTGAA GAATTGGGCG CAAAACGGCT GCTCGAACGC GTTGATGCGG
          ATTTGGACTT TACCGCCTCC GCAAACGCCT GGACAGATAA TATCGCCGCA
     551
          CTCTTAAAAG AAGAAGCCGC AAAAAACCGG GCAACGCCCG CGCCGCAGAC
          AACGCCCCCC GCCGGCCTTC AGACGGCACC GGATGGCAGG TACTGCAAGG
          CAGCCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT CACCGCCCGC
     751
          CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA GCGGTTCGGA
     801
          TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT GACAACGATC
          CGGCACTGGT CAGGGAAATC CTAGACCTGC TCGGCATCGA TCCGGCAACG
     851
          GAAATACAGG CGGGCGGAAA GATGATGCCG GTTGCGCGCG CACTTTCATC
     901
          TCATTTCGAA CTCACGCAAA ACACTCCGGC TTTCGTCAAA GGCTATGCCG
     951
          CGTTCGCCCA TTATGAAGAA CTCGATAAAA TCATTGCCGA TAACGCCGTT
    1051 TTGCAGGATT TCGTGCAAAA CACGCCTATT GTCGATGTGC TGCACCGCTT
    1101 CCCGGCAAGC CTGACGGCAG AACAATTCAT CCGTTTACTG CGTCCGCTTG
    1151 CACCCCGTTT GTATTCGATT TCTTCAGCAC AGGCGGAAGT GGGCGATGAA
    1201 GTGCATTTAA CTGTCGGCGT GGTTCGTTTT GAACACGAAG GCCGCGCCAG
    1251 AACGGGCGC GCATCGGGTT TCCTTGCCGA CCGGCTGGAA GAGGACGGCA
    1301 CGGTGCGCGT GTTTGTGGAA CGCAACGACG GCTTCAGGCT GCCCGAAGAC
    1351 AGCCGCAAGC CGATTGTGAT GATCGGCTCG GGCACCGGCG TCGCACCGTT
    1401 CCGCGCTTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA GGCAAAAACT
1451 GGCTGATTTT CGGCAATCCG CATTTTGCCC GTGATTTTCT CTATCAAACC
         GGCTGATTTT CGGCAATCCG CATTTTGCCC GTGATTTTCT CTATCAAACC
    1501 GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGGT ACGATTTCGC
    1551 CTGGTCCCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC AAAATCCGCG
    1601 AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC GCATATCTAT
    1651 GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GACGTGGAAG CCGCCTTGCT
    1701 GGATGTGATT ATCGGGGCAG GACATTTGGA CGAAGAGGGC GCAGAAGAAT
    1751 ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA TGTTTATTGA
This corresponds to the amino acid sequence <SEQ ID 610; ORF 150>:
m150.pep
          MQNTNPPLPP LPPEITQLLS GLDAAQWAWL SGYAWAKAGN GASAGLPALQ
         TALPAAEPFS VTVLSASQTG NAKSVADKAA DSLEAAGIQV SRAELKDYKA
     101 KNIAGERRLL LVTSTQGEGE PPKEAVVLHK LLNGKKAPKL DKLQFAVLGL
    151 GDSSYPNFCQ AGKDFDRRFE ELGAKRLLER VDADLDFTAS ANAWTDNIAA
    201 LLKEEAAKNR ATPAPQTTPP AGLQTAPDGR YCKAAPFPAA LLANQKITAR
    251 QSDKDVRHIE IDLSGSDLHY LPGDALGVWF DNDPALVREI LDLLGIDPAT
    301 EIQAGGKMMP VARALSSHFE LTQNTPAFVK GYAAFAHYEE LDKIIADNAV
    351 LQDFVQNTPI VDVLHRFPAS LTAEQFIRLL RPLAPRLYSI SSAQAEVGDE
    401 VHLTVGVVRF EHEGRARTGG ASGFLADRLE EDGTVRVFVE RNDGFRLPED
    451 SRKPIVMIGS GTGVAPFRAF VQQRAAENAE GKNWLIFGNP HFARDFLYQT
```

551 VCGDAAKMAK DVEAALLDVI IGAGHLDEEG AEEYLDMLRE EKRYQRDVY* Computer analysis of this amino acid sequence gave the following results:

EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD KIREQAEGLW QWLQEGAHIY

Homology with a predicted ORF from N.gonorrhoeae

ORF 150 shows 91.3% identity over a 369 aa overlap with a predicted ORF (ORF 150.ng) from N. gonorrhoeae:

m150/g150

	210	220	230	240	250	260
m150.pep	LLKEEAAKNRATPA	APQTTPPAGL(	QTAPDGRYCK!	APFPAALLAN	QKITARQSDI	KDVRHIE
4			1111	[	111111111	
g150			YCK	ADPFPAALLAN	IQKITARQSDI	KDVRHIE
				10	20	30
	270	280	290	300	310	320
m150.pep	IDLSGSDLHYLPGD	ALGVWFDND				
		111111111				11 1111
g150	IDLSGSDLHYLPGD	ALGVWFDNDI	PALVGEILDLI	GINPATEIQA	GGKTLPVASA	LLSHFE
	40	50	60	70	80	90
	330	340	350	360	370	380
m150.pep	LTQNTPAFVKGYAA	FAHYEELDK				EQFIRLL

BNSDOCID: <WO ... 9957280A2 1 >

g150			  IAADNAVLQG   120	:   :    FVQSTPIAGV   130	:    LHRFPAKLTA 140	 EQFAGLL 150
m150.pep g150	390 RPLAPRLYSISSA(              RPLAPRLYSISSS( 160			1111.1.1		
m150.pep g150	450 RNDGFRLPEDSRKE            RNDGFRLPEDSRKE 220				, , , , , , , , , , , , , , , , , , ,	
m150.pep	510 EWQQFAKDGFLHRY            EWQQFAKDGFLHRY 280					
m150.pep	570 DVEAALLDVIIGAG: :            EVEAALLDVIIGAGI 340	:	1111111111	111111		

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 611>:

1	ATGCAGAACA	CAAATCCGC	ATTACCGCC	r Areccecce	AAATCACGCA
51	GCTCCTGTCG				TCCGGCTACG
101	CTTGGGCAAA	AGCAGGAAAC	GGGGCATCT		
151	ACGGCATTGC				
201	GCAAACCGGC		CCGTTGCCG		
251	AAGCCGCCGG		AGTCGCGCC		
301	AAAAACATCG		CCGCCTGCTG		
351	CGAAGGCGAA	CCGCCGGAAG	AAGCCGTCGT		
401	GCAAAAAAGC	CCCGAAATTG	GACAAACTCC		
451	GGCGACAGCT	CCTATCCGAA			
501	ACGTTTTGAA	GAATTGGGCG			
551	ATTTGGACTT	TGCCGCCGCC			
601	CTCTTAAAAG	AAGAAGCCGC		GCAACGCCCG	
651	AACGCCCCCC	GCCGGCCTTC		GGATGGCAGG	TACTGCAAGG
701	CAGACCCCTT	TCCCGCCGCC		ATCAGAAAAT	CACCGCCCGC
751 801	CAATCCGATA	AAGACGTGCG		ATCGATTTGA	GCGGTTCGGA
	TTTGCACTAC	CTCCCGGGCG	ACGCGCTCGG	CGTTTGGTTT	GACAACGATC
851	CGGCACTGGT	CAGGGAAATC	CTAGACCTGC	TCGGCATCGA	TCAGGCAACG
901 951	GAAATACAGG	CGGGCGGAAA	AACCCTGCCG	GTTGCCTCCG	CACTGTTATC
1001	CCATTTTGAA	CTCACGCAAA	ACACCCCCGC		GGCTATGCCC
1051	CGTTCGCCGA	TGATGACGAA	CTCGACCGTA	TTGCTGCCGA	CAACGCCGTT
1101	TTGCAAGGCT	TTGTGCAAAG	CACGCCGATT	GCCGATGTGC	TGCACCGCTT
1151	CCCGGCAAAA	CTGACAGCGG	AACAATTCGC	CGGCCTACTG	CGCCCGCTTG
1201	CGCCGCGCCT	GTATTCGATT	TCCTCGTCGC	AGGCGGAAGT	GGGGGACGAA
1251		CCGTCGGCGC	GGTGCGTTTC	GAACACGAAG	GGCGCGCCAG
1301		GCATCGGGTT	TCCTTGCCGA	CCGGCTGGAA	GAGGACGGCA
1351		GTTTGTGGAA	CGCAACGACG	GCTTCAGGCT	GCCCGAAGAC
1401		CGATTGTGAT	GATCGGCTCG	GGCACCGGCG	TCGCACCGTT
1451		GTCCAACAAC		AAATGCGGAA	GGCAAAAACT
1501		CGGCAATCCG	CATTTTGCCC	GTGATTTTCT	CTATCAAACC
1551		AGTTTGCCAA	AGACGGCTTC		ACGATTTCGC
1601			AAAAAATCTA		AAAATCCGCG
1651		AGGACTTTGG	CAATGGCTGC	AGGAAGGCGC	GCATATCTAT
		A L G C G G C A A A	AATGGCAAAA	GACGTGGAAG	CCGCCTTGCT

1701	GGATGTGATT	ATCGGGGCAG	GACATTTGGA	CGAAGAGGGC	GCAGAAGAAT
1751	ATTTGGATAT	GCTGCGCGAA	GAAAAACGCT	ATCAGCGTGA	TGTTTATTGA
This correspond	s to the omin	o opid some	man CEO II	D (10, ODE	160 ->
This correspond	s to the anni	io acid seque	ince <2EQ II	D 612; OKF	150.a>:
a150.pep	MONIMINE DE	MDDDTTOTTO			
51	MONINEPER	MPPEITQLLS	GLDAAQWAWL	SGYAWAKAGN	GASAGLPALQ
101	KNIAGERRII	VTVLSASQTG LVTSTQGEGE	PRESVAUKAA	DSLEAAGIQV	SRAELKDYKA
151	GDSSYPNECE	AGKDFDKRFE	FICARDITED	TRUCKKAPKT	DKLQFAVLGL
201	LLKEEAAKNR	ATPAPQTTPP	AGIOTAPDOR	VCKADDEDAA	ADGMIDNIAA
251	OSDKDVRHIE	IDLSGSDLHY	LPGDALGVWF	DNDPALVRET	LDLLGTDOAT
301	EIQAGGKTLP	VASALLSHFE	LTONTPAFVK	GYAPFADDDE	LDRIAADNAV
351	LQGFVQSTPI	ADVLHRFPAK	LTAEQFAGLL	RPLAPRLYSI	SSSQAEVGDE
401	VHLTVGAVRF	EHEGRARAGG	ASGFLADRLE	EDGTVRVFVE	RNDGFRLPED
451	SRKPIVMIGS	GTGVAPFRAF	VQQRAAENAE	GKNWLFFGNP	HFARDFLYQT
501	EWQQFAKDGF	LHRYDFAWSR	DOEEKIYVQD	KIREQAEGLW	QWLQEGAHIY
551	VCGDAAKMAK	DVEAALLDVI	IGAGHLDEEG	AEEYLDMLRE	EKRYQRDV <u>Y</u> *
m150/a150 94.8% iden	ation in 500 as area	-1			
111130/a130 94.8% luci	10 au 10 au 10 au 10		30	40	50 50
m150.pep				4U IAKAGNGASAGI.D	50 60 ALQTALPAAEPFS
	1	:		1111111111111	1111111:1111
a150	MQNTNPPLPP	MPPEITQLLSGLI	DAAQWAWLSGYAW	AKAGNGASAGLP	ALQTALPTAEPFS
	10	20	30	40	50 60
	70	80	90	100	110 120
m150.pep	VTVLSASQTG	NAKSVADKAADSI	LEAAGIQVSRAEL	KDYKAKNIAGER	RLLLVTSTOGEGE
	1111111111	<u> </u>		111111111111	111111111111
a150	VTVLSASQTG	naksvadkaadsi	LEAAGIQVSRAEL	KDYKAKNIAGER	RLLLVTSTQGEGE
	70	80	90	100	110 120
	130		150	160	170 180
m150.pep	PPKEÄVVLHK	LLNGKKAPKLDKI	QFAVLGLGDSSY	PNFCQAGKDFDR	RFEELGAKRLLER
0150	11:111111	111111111111	11111111111	1111:11111:	1111111111111
a150	PPEEAVVLHK.	LLNGKKAPKLDKI 140	.QFAVLGLGDSSY 150		RFEELGAKRLLER
	250	140	130	100	170 180
	190	200	210	220	230 240
m150.pep	VDADLDFTAS	ANAWTONIAALLK	EEAAKNRATPAP	QTTPPAGLQTAP	DGRYCKAAPFPAA
a150	VDADLDFAAA	::            ADGWTDNITAAI.T.K			
	190	200	210		230 240
				,	
m150.pep	250	260	270	280	290 300
m150.pep	LLANQKITAK		SGSDLHYLPGDA	LGVWFDNDPALV)	REILDLLGIDPAT
a150	LLANQKITAR	OSDKDVRHIEIDL	SGSDLHYLPGDA	LGVWFDNDPALVI	REILDLLGIDQAT
	250	260	270		290 300
	210	200			
m150.pep	310 ETOAGGKMMP	320 VARALSSHEELTC	330 NTD2 EVECVA 2 E	340	350 360 NAVLQDFVQNTPI
	111111111111111111111111111111111111111			i :      :	NAVEQUE VQNTPI
a150	EIQAGGKTLP	VASALLSHFELTQ	NTPAFVKGYAPF	ADDDELDRIAAD	NAVLQGFVQSTPI
	310	320	330		350 360
	370	380	390	400	410 420
m150.pep			APRLYSISSAOA	EVGDEVHLTVGV	VRFEHEGRARTGG
	:		111111111111111	11111111111:	111111111111
a150	ADVLHRFPAKI	LTAEQFAGLLRPL	APRLYSISSSQA:	EVGDEVHLTVGA	VRFEHEGRARAGG
	370	380	390	400	410 420
	430	440	450	460	470 480
m150.pep	ASGFLADRLE	EDGTVRVFVERND	GFRLPEDSRKPI'	VMIGSGTGVAPF	RAFVOORAAENAE
a150			11111111111		[[[]]]
a130	ASGFLADRLEI 430	EDGTVRVFVERND 440	GFRLPEDSRKPI 450		RAFVQQRAAENAE
	420	340	400	400 4	170 480
485	490	500	510	520 5	530 540
m150.pep	GKNWLIFGNP	FARDFLYQTEWQ	QFAKDGFLHRYD	FAWSRDQEEKIY	/QDKIREQAEGLW
	11111111111				

560

550



a150

a150

m150.pep

GKNWLFFGNPHFARDFLYQTEWQQFAKDGFLHRYDFAWSRDQEEKIYVQDKIREQAEGLW 490 500 510 560 570 580 590 QWLQEGAHIYVCGDAAKMAKDVEAALLDVIIGAGHLDEEGAEEYLDMLREEKRYQRDVYX QWLQEGAHIYVCGDAAKMAKDVEAALLDVIIGAGHLDEEGAEEYLDMLREEKRYQRDVYX

570

580

590

430

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 613>:
g151.seq
```

```
ATGAAACAAA TCCGCAACAT CGCCATCATC GCACACGTCG ACCACGGCAA
    1
       AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
   51
       ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
  101
       CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTG
  201
       CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
       TGGAGCGCGT TTTGGGGATG GTGGATTGCG TCGTCTTGTT GGTGGACGCA
  251
       CAGGAAGGTC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
  301
       TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAACCGTCCG
  351
      CCCGTCCGAG CTGGGTTATC GACCAGACTT TCGAGTTGTT CGACAACTTG
  401
      GGTGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGTTT
      GAGCGGCTTT GCCAAGCTGG AAGAAACCGA CGAGAGCAGC GATATGCGCC
  501
      CGCtgttcgA CACCATCCTA AAATACAcgc ctgCACCGAG CGGCAGCGCG
 551
      GACGAGCCGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
  601
      CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
  651
      AAACCGTTGC CGTGATGAAC CACGAGCAGC AAATCGCCCA AGGCCGCATC
  701
      AACCAGCTTT TGGGTTTCAA AGGCTTGGAA CGCGTGCCGC TTGAAGAAGC
  751
      CGAAGCCGGC GACATTGTGA TTATTTCCGG TATCGAAGAC ATCGGCATCG
 801
 851
      GCGTAACCAT CACCGACAAA GACAACCCCA AAGGCCTGCC GATGTTGAGC
      GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTAAACA CCAGCCCGCT
 901
      CGCAGGTACA GAAGGCAAAT TCGTGACCAG CCGCCAAATC CGCGACCGCC
      TGCAAAAAGA ATTGCTGACC AACGTTGCCC TGCGCGTGGA AGACACCGCC
1001
      GatgCCGACG TGTTCCGCGT ATCCGGGCGC GGCGAACTGC ACCTGACGAT
1051
      TTTGCTGGAA AATATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAGC
1101
      CGCGCGTCGT GTACCGAGAC ATCGACGGTC AAAAATGCGA ACCTTATGAA
1151
      AACCTGACTG TGGACGTACC CGaCGaCAAC CAAGGCGCGG TAATGGAAGA
1201
      ACTCGGCCGC CGCCGTGGCG AACTGACCAA TATGGAAAGC GACGGCAACG
1251
      GacgCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
1301
      CAAGGCGAAT TCATGACCCT GACGCGCGGC GTCGGGCTGA TGAGCCaCGT
1351
1401 GTTcgacgac tacgcgcccg tcaAACCCGA TATGCCCGGC CGCCACAACG
     GCGTactggt GtcccaAGAG CAGGGCGAGG CGGTTGCTTA CGCCTTGTGG
1501 AATCTTGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
1551 CGAAGGTATG ATTATCGGCA TCCACAGCCG CGACAACGAT TTGGTGGTCA
1601 ACCCGCTCAA AGGCAAAAAA CTCACCAATA TCCGTGCCAG CGGTACCGAC
1651 GAAGCGGTGC GCCTGACCAC GCCGATCAAA CTGACGCTGG AAGGCGCGGT
     CGAGTTTATC GACGATGACG AGCTGGTGGA AATCACGCCG CAAtccatcc
     gcctgcgcat gcgttacctG AGCGaattgg aacgccgccg tcaTTTTAAA
1801
      AagctgGATT AA
```

#### This corresponds to the amino acid sequence <SEQ ID 614; ORF 151.ng>: g151.pep

1	MKQIRNIAII	AHVDHGKTTL	VDQLLRQSGT	FRANOOVDER	VMDSND1.EKE
51	RGITILAKNT	AIDYEGCHIN	IVDTPGHADF	GGEVERVI.CM	MONTH THAN
101	QEGPMPQTRF	VTKKALALGL	KPIVVINKID	KPSARPSWVT	DOTERT POM
151	GATDEQLDFP	IVYASGLSGF	AKLEETDESS	DMRPLEDTI.	KYTDADCCCA
201	DELLÖLÖISÖ	LDYDNYTGRL	GIGRILNGRT	KPGOTVAVMN	MECOTAGGET
251	NOTICEKCIE	RVPLEEAEAG	DIVIISGIED	IGTGVTTTDK	DMDKCI DMT C
301	ADELLLIMDE	MVNTSPLAGT	EGKFVTSROI	RDRLOKELLT	MILLY DIVERSES
351	DADVFRVSGR	GELHLTILLE	NMRREGYELA	VGKPRVVVPD	IDCONCEDVE
401	NPLADABDDN	QGAVMEELGR	RRGELTNMES	DGNGRTRI.EV	WIDARCI TOR
451	QGEFMTLTRG	VGLMSHVFDD	YAPVKPDMPG	PHNCVINCE	OCEANAMA
				TOTAL ON TANGE	OGEAVAYALW

그러면 1951년 · 1 시 1일 월

```
501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
         EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRMRYL SELERRRHFK
     551
     601 KLD*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 615>:
m151.seq
         ATGAAACAAA TCCGCAACAT CGCCATCATC GCCCACGTCG ACCACGGCAA
      1
         AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
      51
         ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
     151 CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTA
     201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
     251 TAGAGCGCGT TTTGGGGATG GTGGACTGCG TCGTCTTGTT GGTGGACGCG
     301 CAGGAAGGCC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
     351 TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAGCCGTCCG
     401 CTCGTCCGAG CTGGGTTATC GACCAAACTT TCGAGCTGTT CGACAACTTG
     451 GGCGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGGTT
     501 GAGCGGTTTC GCCAAATTGG AAGAAACCGA CGAGAGCAAC GACATGCGTC
     551 CGCTGTTCGA TACTATCTTA AAATATACGC CTGCACCGAG CGGCAGCGCG
     601 GACGAAACGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
     651 CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
     701 AAACCGTTGC CGTCATGAAC CACGATCAGC AAATCGCCCA AGGCCGCATC
     751 AACCAGCTTT TGGGTTTCAA AGGTTTGGAA CGCGTGCCGC TTGAAGAAGC
         CGAAGCCGGC GACATCGTGA TTATTTCCGG TATCGAAGAC ATCGGTATCG
         GCGTAACCAT CACCGACAAA GACAATCCCA AAGGCCTACC GATGTTGAGC
          GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTCAACA CCAGCCCGCT
         GGCGGGTACG GAAGGCAAAT TCGTAACCAG CCGCCAAATC CGCGACCGCC
          TGCAAAAAGA ATTGCTGACC AACGTCGCCC TGCGCGTGGA AGATACCGCC
    1001
    1051 GATGCCGACG TGTTCCGCGT ATCCGGGCGC GGCGAGCTGC ACCTGACCAT
    1101 TTTGCTGGAA AACATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAAC
    1151 CGCGCGTCGT GTACCGCGAC ATCGACGGTC AAAAATGCGA ACCGTATGAA
    1201 AACCTGACCG TGGATGTACC CGACGACAAC CAAGGCGCGG TAATGGAAGA
    1251 ACTCGGCCGC CGCCGTGGCG AACTGACTAA TATGGAAAGC GACGGCAACG
    1301 GACGCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
    1351 CAAGGCGAAT TTATGACCCT GACGCGGGG GTCGGGCTGA TGAGCCACGT
    1401 GTTCGACGAT TACGCGCCCG TCAAACCCGA TATGCCCGGC CGCCACAACG
    1451 GCGTGCTGGT GTCCCAAGAG CAGGGCGAGG CAGTCGCTTA CGCCTTGTGG
    1501 AATCTGGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
         CGAAGGCATG ATTATCGGCA TCCACAGTCG CGACAACGAT TTGGTGGTCA
    1551
    1601 ACCCGCTCAA AGGCAAAAA CTTACCAACA TCCGTGCCAG CGGTACCGAC
    1651 GAAGCCGTTC GCCTGACCAC GCCAATCAAG CTGACGCTGG AAGGTGCGGT
    1701 TGAGTTTATC GACGATGACG AACTCGTTGA AATCACGCCG CAATCCATCC
    1751 GTCTGCGCAA GCGTTACTTG AGCGAATTGG AACGCCGCCG CCACTTTAAA
    1801 AAGCTGGATT GA
This corresponds to the amino acid sequence <SEQ ID 616; ORF 151>:
m151.pep
         MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE
      51 RGITILAKNT AIDYEGYHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA
     101 QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL
     151 GATDEQLDFP IVYASGLSGF AKLEETDESN DMRPLFDTIL KYTPAPSGSA
     201 DETLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQTVAVMN HDQQIAQGRI
     251 NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS
     301 VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA
     351 DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE
     401 NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF
     451 QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSQE QGEAVAYALW
     501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
          EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRKRYL SELERRRHFK
     601
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae
ORF 151 shows 99.2% identity over a 603 aa overlap with a predicted ORF (ORF 151.ng) from N. gonorrhoeae:

		, .	
$m_{\perp}$	21	/q1	51

m151.pep	10 MKOTRNTATTAN	20	30	40	50	60
	MKQIRNIAIIAHV               MKOIRNIATTAHV					
g151	MKQIRNIAIIAHV	DHGKTTLVDO	LLROSGTFR	TITTTITT	SNDI EKEDO	
	10	20	30	40	50 50	TTTLAKNT
	7.0				30	00
m151.pep	70	80	90	100	110	120
	AIDYEGYHINIVD	TEGRADEGGE.	VERVLGMVD(	CVVLLVDAQEG	PMPQTRFVTI	KKALALGL
g151	AIDYEGCHINIVD	TPGHADFGGE	VERVLGMVDO	:		
	70	80	90	100	110	KALALGL 120
	120					120
m151.pep	130 KPIVVINKIDKDG	140	150	160	170	180
	KPIVVINKIDKPS	ARPSWVIDQTI	ELFONLGAT	DEQLDFPIVY	ASGLSGFAKI	EETDESN
g151	KPIVVINKIDKPS	ARPSWVIDOTE	ELFONIGAT		SCI CCENTE	111111:
	130	140	150	160	170	EETDESS 180
	• • • •				170	160
m151.pep	DMRDI FOTTI KVT	200	210	220	230	240
	DMRPLFDTILKYT	FAFSGSAUETI	GLGISGLDA	DNYTGRLGIGF	ILNGRIKPG	QTVAVMN
g151	 DMRPLFDTILKYTI 190	PAPSGSADEPL	OLOTSOLDY		TINCRING	
	190	200	210	220	230	QTVAVMN 240
	050				200	240
m151.pep	250	260	270	280	290	300
· I - I	HDQQIAQGRINQLI  :          HEOQIAGGRINGLI	HILLILL	EEAEAGDIV:	IISGIEDIGIG	VTITDKDNP!	KGLPMLS
g151	HEQQIAQGRINQLI	GFKGLERVPL	EEAEAGDIV	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
	250	260	270	280	290	300
	310	200				300
m151.pep		320	330	340	<b>3</b> 50	360
	VDEPTLTMDFMVNT	IIIIIIIII	A L SKÖTKDKI	LQKELLTNVAL:	RVEDTADADI	/FRVSGR
g151	VDEPTLTMDFMVNT	SPLAGTEGKE	VTSROIRDRI	OKELT.TNVAT.		I I I I I I I
	310	320	330	340	350	360
	370	380				
m151.pep	GELHLTILLENMRR	SOU EGYELAVGKDI	390	400	410	420
g151		EGYELAVGKP	VVYRDIDGO	KCEPYENLTVI	. I I I I I I I I I I I I I I I I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	370	380	390	400	410	420
	430	440	450			
m151.pep	RRGELTNMESDGNG	RTRLEYHTPAR	450	460	470	480
g151		VIIVED THIT EWE	GLIGFQGEF	MTLTRGVGLMS	HVFDDYAPV	KPDMPG
	430	440	450	460	470	480
	490	500	510			
m151.pep	RHNGVLVSQEOGEAV	AYALWNLEDR	CRMEVEDND	520	530	540
			1			
g151		TITUDAMETEDE	GRMFVSPNDI	KIYEGMIIGIH	SRDNDLVVN	PLKGKK
	490	500	510	520	530	540
	550	560	570	500		
m151.pep	LTNIRASGTDEAVRI	TTPIKLTLEG	570 AVEFIDDDE:	.580 WEITERSTER	590	600
-151						
g151			AVEFIDDDEI	VEITPOSIRL	RMRYLSELET	IIIIII
	550	560	570	580	590	600

433

m151.pep KLDX  $\Pi\Pi\Pi$ g151 KLDX The following partial DNA sequence was identified in N. meningitidis <SEQ ID 617>: al51.seq ATGAAACAAA TCCGCAACAT CGCCATCATC GCCCACGTCG ACCACGGCAA 1 51 AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA 101 ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTA 201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG 251 TAGAGCGAGT TTTGGGGATG GTGGACTGCG TCGTCTTGTT GGTGGACGCG 301 CAGGAAGGCC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC TTTGGGGCTG AAACCGATTG TCGTCATCAA TAAAATCGAC AAACCGTCCG 401 CCCGTCCGAG CTGGGTCATC GACCAAACTT TCGAGCTGTT CGACAACTTG 451 GGCGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTATG CTTCCGGTCT 501 GTCCGGTTTC GCCAAATTGG AAGAAACCGA CGAGAGCAAC GACATGCGTC 551 CGCTGTTCGA TACTATCTTA AAATATACGC CTGCACCGAG CGGCAGCGCG 601 GACGAAACGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC 651 CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGTATC AAGCCCGGTC 701 AAGTTGTTGC CGTCATGAAC CACGATCAAC AAATCGCCCA AGGCCGCATC 751 AACCAGCTTT TGGGTTTCAA AGGTTTAGAA CGCGTGCCGC TTGAAGAAGC 801 CGAAGCCGGC GACATCGTGA TTATTTCCGG TATTGAAGAC ATCGGCATCG 851 GCGTAACCAT CACCGACAAA GACAACCCCA AAGGCCTGCC GATGTTGAGC GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTCAACA CCAGCCCGTT 951 GGCAGGTACG GAAGGCAAAT TCGTAACCAG CCGCCAAATC CGCGACCGCC 1001 TGCAAAAAGA ATTGCTGACC AACGTCGCCC TGCGCGTGGA AGATACCGCC 1051 GATGCCGACG TGTTCCGCGT ATCCGGGCGC GGCGAGCTGC ACCTGACCAT 1101 TTTGCTGGAA AACATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAAC 1151 CGCGCGTCGT GTACCGCGAC ATCGACGGTC AAAAATGCGA ACCGTATGAA 1201 AACCTGACCG TGGACGTACC CGACGACAAC CAAGGCGCGG TAATGGAAGA 1251 ACTCGGCCGC CGCCGTGGCG AACTGACTAA TATGGAAAGC GACGGCAACG 1301 GACGCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGCTTC CAAGGCGAAT TTATGACCCT GACGCGCGGG GTCGGGCTGA TGAGCCACGT GTTCGACGAT TACGCGCCCG TCAAACCCGA TATGCCTGGC CGCCACAACG 1401 1451 GCGTGCTGGT GTCCCAAGAG CAGGGCGAGG CAGTCGCTTA CGCCTTGTGG 1501 AATCTGGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA CGAAGGTATG ATTATCGGCA TCCACAGTCG CGACAACGAT TTGGTGGTCA 1551 ACCCGCTCAA AGGCAAAAAA CTTACCAACA TCCGTGCCAG CGGTACCGAC 1651 GAAGCCGTTC GCCTGACCAC GCCGATTAAG CTGACGCTGG AAGGTGCGGT CGAGTTTATC GACGATGATG AGCTGGTAGA AATCACGCCG CAATCCATCC 1701 GTCTGCGCAA GCGTTACTTG AGCGAATTGG AACGCCGCCG CCATTTCAAA 1801 AAGCTAGATT GA This corresponds to the amino acid sequence <SEQ ID 618; ORF 151.a>: a151.pep MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE RGITILAKNT AIDYEGYHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL 101 GATDEQLDFP IVYASGLSGF AKLEETDESN DMRPLFDTIL KYTPAPSGSA DETLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQVVAVMN HDQQIAQGRI 251 NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA 301 351 DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE 401 NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSQE QGEAVAYALW NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD 551 EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRKRYL SELERRRHFK 601 KLD*

20

30

40

50

60

BNSDOCID: <WO___9957280A2_I_>

m151/a151 99.8% identity in 603 aa overlap

Light Color of ASAB

m151.pep	MUOTONTATA					
mioi.pep	MKQIRNIAIIAHV              MKOIRNIAIIAHV					
a151		DUGKTIPADÕ	LLROSGTFRA	MQQVDERVMD:	SNDLEKERG1	
	10	20	30	40	50	60
m1E1	70	80	90	100	110	120
m151.pep	AIDYEGYHINIVD	PGHADFGGE'	VERVLGMVDC	VVLLVDAQEGI		
a151		PGHADFGGE	VERVLGMVDC	TIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1111111
	70	80	90	100	110	120
	130	140	150	160	170	100
m151.pep	KPIVVINKIDKPSA	RPSWVIDQT	TELEDNICAT	DEOI DEDITOR		180 EETDESN
<b>a1</b> 51						
	130	1.40	150	160	ISGLSGFAKL 170	EETDESN 180
	190	200	210	222		
m151.pep	DMRPLFDTILKYTP	APSGSADETT	OT OT TOP TO TO.	220 DNYTGRLGIGR	230	240
a151						
	DMRPLFDTILKYTP 190	APSGSADETL 200	QLQISQLDYI 210	ONYTGRLGIGR 220	ILNGRIKPG( 230	QVVAVMN
	250			220	230	240
m151.pep	HDQQIAQGRINQLL	260 GFKGLERVPT	270 FEAFACDIVI	280	290	300
a151						
<b>a</b> 151	HDQQIAQGRINQLLO	GFKGLERVPL 260	EEAEAGDIVI	ISGIEDIGIG	VTITDKDNP	KGLPMLS
	200	200	270	280	290	300
m151.pep	310	320	330	340	350	360
	VDEPTLTMDFMVNTS					
a151		THG! EGKE	VTSRQIRDRL	QKELLTNVALF	.!!!!!!!!! ?VEDTADADV	  FRVSGR
	310	320	330	340	350	360
m151.pep	370	380	390	400	410	420
miji.pep	GELHLTILLENMRRE	GYELAVGKP	RVVYRDIDGQ:	KCEPYENLTVD	VPDDNQGAV	
a151		GIELHAGVAL	RVVYRDIDGQ	KCEPYENLTVD		HIIII MEELGR
	370	380	390	400	410	420
-151	430	440	450	460	470	480
m151.pep	RRGELTNMESDGNGR	TRLEYHIPAR	GLIGFOGEF	MTLTRGVGLMS	******	
a151		TRLEYHIPAR	GLIGFOGEF			111111
	430	440	450	460	470	480
	490	500	510	520	530	T 40
m151.pep	RHNGVLVSQEQGEAV	AYALWNLEDR	GRMFUSDADA	TVECMTTCTIL	annin	540 PLKGKK
a151						
	490	500	510	520	SKUNDLVVNI 530	FLKGKK 540
	550	560	570			
m151.pep	LTNIRASGTDEAVRL	TPIKLTLEG	AVEETDODET	580 VEITPQSIRLE	590 RKRYLSELER	600 RRHFK
a151						
	LTNIRASGTDEAVRL	560	570	VEITPOSIRLE 580	RKRYLSELER 590	RRHFK 600
				===	550	000
m151.pep	KLDX					
a151	 KLDX					

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 619>: g152.seq

- 1 ATGAAAAaca aAACCaaagt ctgGGacttc cCcacccgcc ttTTCCactG
- 51 GctgcttgCC gCATCCctgc CCTTTATGTG gtatagCGCA AAAGCCGGCG
- 101 GCGataTGCT GCaatgGCAC ACGCGCGTCG GGCTGCTCGT CCTTTTCCTG

```
151 CTCGTATTCC GCCTCTGCTG GGGCATTTGG GGCAGCGATA CCGCCCGTTT
     201 CTCccgTtTC GTCCGAGGTT GGGCAGGTAT ACGCGGCTAT CTGAAAAAcg
     251 gCATTCCCGA ACAtatcCAG CCCGGACACA ACCCCTTGGG CGCACTgatg
         gtcGTTGCGC TTTTGgccgc cgtcTCATTT CAagtcggcA CGGGGCTTTT
          Tgccgccaat gaaaacacct tcagcaCCAa cggctacctc aaccatttgg
     351
          tttccgaaca tacgGGCAGC CTTATACGGA AAATCCACCT CAACTTTTTC
     451
          AAGCTGCTCG CCGTTTTTTC CGCAGTCCAC ATCGCCGCCG TCGCCGCATA
     501 CCGCATATTC AAAAAGAAAA ACCTCGTCCG CCCGATGATA ACCGGCTTCA
     551 AATACATCGA AGGCAAAACC TCAATCCGCT TTGCCGGCAA AGCCGCGCTT
         GCCGCCGCAT TATCGGTTGC CGCGCTTGCC GCAGCCGCCA TCCTGCTCCT
     601
          GTCCTGA
This corresponds to the amino acid sequence <SEQ ID 620; ORF 152.ng>:
q152.pep
          MKNKTKVWDF PTRLFHWLLA ASLPFMWYSA KAGGDMLQWH TRVGLLVLFL
      51
          LVFRLCWGIW GSDTARFSRF VRGWAGIRGY LKNGIPEHIQ PGHNPLGALM
     101
          VVALLAAVSF QVGTGLFAAN ENTFSTNGYL NHLVSEHTGS LIRKIHLNFF
          KLLAVFSAVH IAAVAAYRIF KKKNLVRPMI TGFKYIEGKT SIRFAGKAAL
     151
          AAALSVAALA AAAILLLS*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 621>:
m152.seg
      1
         ATGAAAAACA AAACCAAAGT CTGGGACCTC CCCACCCGCC TTTTCCACTG
         GCTGCTTGCC GCGTCCCTGC CCTTTATGTG GTATAGCGCG AAAGCCGGCG
      51
         GCGATATGCT GCAATGGCAC ACGCGCGTCG GGCTGTTCGT CCTTTTCCTG
         CTCGTATTTC GCCTCTGCTG GGGCATTTGG GGCAGCGATA CCGCCCGTTT
     201 TTCCCGTTTC GTCCAAGGCT GGGCAGGCAT ACGCGGCTAT CTGAAAAACG
     251 GTATTCCCGA ACACATCCAG CCCGGACACA ACCCCTTGGG CGCACTGATG
     301 GTCGTTGCGC TTTTGGCCGC CGTGTCCTTC CAAGTCGGCA CCGGGCTTTT
     351 TGCCGCCGAT GAAAACACCT TCAGCACCAA CGGCTACCTC AACCATTTGG
     401 TTTCCGAACA TACGGGCAGC CTTATGCGGA AAATCCACCT CAACTTTTTC
     451 AAGCTGCTCG CCGTTTTTTC TGCAATCCAC ATCGCCGCCG TCGCCGCATA
     501 CCGCGTATTC AAAAAGAAAA ACCTCATCCT CCCGATGATA ACCGGCTTCA
     551 AATACATCGA AGGCAAAACC TCAATCCGCT TTGCAGGCAA AGCCGCGCTT
     601 GCCGCCGCAT TATCGGTTGC CTCGCTTGCC GCAGCCGCCA TCCTGCTCCT
     651 GTCCTGA
This corresponds to the amino acid sequence <SEQ ID 622; ORF 152>:
m152.pep
         MKNKTKVWDL PTRLFHWLLA ASLPFMWYSA KAGGDMLOWH TRVGLFVLFL
      1
      51
         LVFRLCWGIW GSDTARFSRF VQGWAGIRGY LKNGIPEHIQ PGHNPLGALM
     101
         VVALLAAVSF OVGTGLFAAD ENTFSTNGYL NHLVSEHTGS LMRKIHLNFF
         KLLAVFSAIH IAAVAAYRVF KKKNLILPMI TGFKYIEGKT SIRFAGKAAL
         AAALSVASLA AAAILLLS*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 152 shows 95.4% identity over a 218 aa overlap with a predicted ORF (ORF 152.ng)
from N. gonorrhoeae:
m152/g152
                    10
                              20
                                        30
                                                  40
m152.pep
            {\tt MKNKTKVWDLPTRLFHWLLAASLPFMWYSAKAGGDMLQWHTRVGLFVLFLLVFRLCWGIW}
            g152
            MKNKTKVWDFPTRLFHWLLAASLPFMWYSAKAGGDMLQWHTRVGLLVLFLLVFRLCWGIW
                    10
                                        30
                                                 40
                                                           50
                                                                     60
                    70
                              80
                                        90
                                                100
m152.pep
            {\tt GSDTARFSRFVQGWAGIRGYLKNGIPEHIQPGHNPLGALMVVALLAAVSFQVGTGLFAAD}
            g152
            GSDTARFSRFVRGWAGIRGYLKNGIPEHIQPGHNPLGALMVVALLAAVSFQVGTGLFAAN
                    70
                              80
                                        90
```

100

110

BNSDOCID: <WO___9957280A2_|_>



m152.pep	130	140	150	160	170	180
g152	ENTFSTNGYLNHL	1	1 [ ] ] ] ] [ ] [ ] [ ] [			111
9152	ENTFSTNGYLNHL 130	VSEHTGSLIR 140	KIHLNFFKLLA 150	VFSAVHIAAVA 160	AYRIFKKKNLV 170	RPMI 180
	190	200	210	219		
m152.pep	TGFKYIEGKTSIR:					
g152	TGFKYIEGKTSIR	FAGKAALAAAI 200	LSVAALAAAAI 210	LLLSX		
The following			•	. 37		
a152.se						Ш 623>:
5	1 ATGAAAAACA :	AAACCAAAGT	CTGGGACTTC	CCCACCCGCC GTATAGCGCG	TTTTCCACTG	
10	1 GCGATATGCT	GCAATGGCAC	ACGCGCGTCG	GGCTGTTTAT	CCTTTTCCTG	
15	1 CTCGTATTCC	GCCTCTGCTG	GGGCATTTGG	GGCAGCGATA	CCGCCCGTTT	
20. 25.		GTCCGCGGAT	GGTCGGGTAT	CAGAGAGTAT	ATGAAAAACG	
30:		TTTTGGCCGC	CCCGGACACA	ACCCCTTGGG	CGCACTGATG	
35:	1 TGCCGCCGAT (	GTAAACACCT	TCAGCACCAA	CGGCTACCTC	AACCATTTCC	
40:	1 TTTCCGAACA ?	TACGGGCAGC	CTTATGCGGA	AAATCCATCT	CAACTTTTTC	
45: 50:		CCGTTTTTTC	CGCAGTCCAC	ATCGCCGNCG	TCGCCGCATA	
55:		MAAAAGAAAA AGGCAAAAA	TCAATCCCCT	CCCGATGATA	ACCGGCTTCA	
60:	1 GCCGCCGCAT	FATCGGTTGC	CGCGCTTGCC	GCAGCCGCCA	TCCTGCTCCT	
65:	1 GTCCTGA					
This correspon	ads to the emino	soid soons	<ceo 1<="" td=""><td>D (04 ODE</td><td>150</td><td></td></ceo>	D (04 ODE	150	
a152.pep	nds to the amino	acid seque	nce <seq 1<="" td=""><td>D 624; ORF</td><td>152.a&gt;:</td><td></td></seq>	D 624; ORF	152.a>:	
	MKNKTKVWDF	Z.T.TWH#.T.T	AST DEMMIYOR	PECCOMI ONI	MDUCT ETT ET	
51	LVFRLCWGIW (	SSDTARFSRF	VRGWSGIREY	MKNGIPEHVO	PGHNPI GALM	
101	VVALLAAVSF (	QVGTGLFAAD	VNTFSTNGYL	NHLVSEHTGS	LMRKTHINFF	
151		AXVAAYRVF	KKKNLVLPMI	TGFKYIEGKT	SIRFAGKAAL	
201	AAALSVAALA A	MAILLLS*				
m152/a152	94.0% identity in	n 218 aa ov	erlap			
	1	.0 2	:0 3	0 40	50	60
m152.per	MKNKTKVWI	DLPTRLFHWLI	AASLPFMWYS	AKAGGDMLQWH:	TRVGLFVLFLL\	FRLCWGIW
a152		:	111111111	:		11111111
u152	PARTACONE 1	.0 2	AASLPEMWYS	AKTGGDMLQWH	TRVGLFILFLLV 50	FRLCWGIW/ 60
		_		· 40	30	60
-150			0 9		110	120
m152.pep		REVOGWAGIRG	YLKNGIPEHI	QPGHNPLGALM\	<b>VALLAAVSFQ</b> V	GTGLFAAD
a152	GSDTARFSR	:  :     FVRGWSGTRE	:       :			
	7	0 8	0 9	0 100	VALLAAVSFQV 110	GIGLFAAD 120
			_			
m152.pep	13 ENTESTNOV			0 160 FKLLAVFSAIH]	170	180
		IIIIIIIIIII	THE THENE		.AAVAAYRVEKK	KNLILPMI
a152	VNTFSTNGY	LNHLVSEHTG	SLMRKIHLNF:	FKLLAVFSAVHI	AXVAAYRVFKK	KNLVLPMI
	13	0 14	0 150		170	180
	19	0 20	0 210	n 210		
m152.pep			LAAALSVASL	0 219 AAAAILLLSX		
- •	111111	1111111111	11111111:1			
a152	TGFKYIEGK	TSIRFAGKAA	LAAALSVAAL	AAAAILLLSX		
	19	0 20	0 210	0		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 625>: g153.seq

```
1
     atggggtttg cttaCAgtat gacgtatatc gaggtCGGGa taccggaggc
     ggcatccgtc ctttCgctGC CCGAGATgat gcgcctgatG GTGTTtCagg
 51
 101
     attATGGTTT TttggcCGAA GTGATGTTTG TGctgaCTTT cGGCGcgcCG
 151 GTTCTGTTtC TGCTGCTGTG CCTGTATGTC TATGCCGCGC TGATACGGAA
 201 ACAGGCGTAT CCTGCGCTGC GTTTGGCAAC GCGTGTGATG GTGCGCTTGA
 251 GGCAGGCGAT GATGGTGGAT GTGTTTTTTG TTTCCACTCT GGTGGCGTAT
 301 ATCAAGCTCT CGTCTGTGGC AAAGGTTCGC TTCGGGCCGG CGTTTTATCT
 351 GATGTTCGCG CTGTCGGTTA TGCTGATTCG GACTTCGGTA TCGGTTCCCC
 401 AGCATTGGGT GTATTTCCAA ATCGGGCGGC TGACGGGGAA TAATGCGGTT
 451 CAGACGGCAT CGGAAGGCAA AACCTGTTGC AGCCGCTGCC TGTATTTccg
 501 cgacAGTgcc gaatccCCCT GCGGGGTGTg cgGCGcggaA CTgtacggcg
 551 gacggccgaa aagtCTGAGt atttCgtCGG CGTTTCTgac ggcggcggTT
     GTTTTGTATT TCCctgCcaa TATCctgccg attaTGAttt cgtccAATCc
 651 tgccgccacg GAGGcCAACA CCATCTTTAG CGGCATCGCT TATATGTGGG
 701 ACGAGGGGA CAGGCTGATT GCGGCGGTTA TTTTCAGCGC GAGTATTTTG
 751 GTGCCGGTGC TGAAGATTGC GGCAATGTCG GTTTTGATTG CGGCGGCACG
 801 GTTCGCTTTG CCGGCGGGCG CAAAGAAATT GTCGCACCTC tacCGCATCA
 851 CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT
 901 TTGATGTGTT CGTTCCacaC TTATGCCGCG CGCGTCATTC CGGGCAGTGC
 951 GGCAGTCTAT TTCTGCCTGG TCGTGATTTT GACGATGCTG TCCGCCTATT
1001 ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGGCATTGCT
1051 TTCAACGAAA CGGAAAAATA TGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 626; ORF 153.ng>: g153.pep

```
1 MGFAYSMTYI EVGIPEAASV LSLPEMMRLM VFQDYGFLAE VMFVLTFGAP
51 VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY
101 IKLSVAKVR FGPAFYLMFA LSVMLIRTSV SVPQHWVYFQ IGRLTGNNAV
151 QTASEGKTCC SRCLYFRDSA ESPCGVCGAE LYGGRPKSLS ISSAFLTAAV
201 VLYFPANILP IMISSNPAAT EANTIFSGIA YMWDEGDRLI AAVIFSASIL
251 VPVLKIAAMS VLIAAARFAL PAGAKKLSHL YRITEAVGRW SMIDIFVIII
301 LMCSFHTYAA RVIPGSAAVY FCLVVILTML SAYYFDPRLL WDKRASDGIA
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 627>: m153.seq

```
ATGGCGTTTG CTTACGGTAT GACGTATATC GAGGTCGGGA TACCGGGTGC
  1
 51 GGCATCCGTC CTTTCGCTGC CCGAGATGAT GCGCCTGATG GTGTTTCAGG
101 ATTATGGTTT TTTGGCCGAA GTGATGTTTG TGCTGACTTT CGGCGCGCCG
151 GTTCTGTTTC TGCTGCTGTG CCTGTATGTC TATGCCGCGC TGATACGGAA
201 ACAGGCGTAT CCTGCGCTGC GTTTGGCAAC GCGTGTGATG GTGCGCTTGA
251 GACAGGCGAT GATGGTGGAT GTGTTTTTTG TTTCCACTTT GGTGGCGTAT
301 ATCAAGCTCT CGTCTGTGGC AGAGGTTCGC TTCGGGCCGG CGTTTTATCT
351 GATGTTCGCG CTGTCAGTTA TGCTGATTCG GACTTCGGTA TCGGTTCCCC
401 AGCATTGGGT GTATTTTCAA ATCGGGCGGC TGACGGGGGA TAATGCGGTT
451 CAGACGGCAT CGGAAGGTAA AACCTGTTGC AGCCGCTGCC TGTATTTCCG
501 CGACAGTGCC GAATCCCCCT GCGGCGTGTG CGGTGCGGAA CTGTACCGCC
551 GACGGCCGAA AAGTCTGAGT ATTTCGTCGG CGTTTCTGAC GGCGGCGGTT
601 ATTTTGTATT TCCCTGCCAA TATCCTGCCG ATTATGATTT CGTCCAATCC
651
     TGCCGCCACG GAGGTCAATA CCATCCTTAA CGGCATCGCT TATATGTGGG
701 ACGAGGCGA CAGGCTGATT GCGGCGGTTA TTTTCAGCGC GAGTATTTTG
751 GTGCCGGTAC TGAAGATTGC GGCAATGTCG GTTTTGATTG CGTCCGCCCG
801 CTTCGCTTTG CCAACGGGTG CAAAGAAATT GTCGCACCTC TACCGCATCA
851 CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT
901 TTGATGTGTT CGTTCCACAC TTATGCCGCG CGCGTCATTC CGGGCAGTGC
951 GGCAGTCTAT TTCTGCCTGG TCGTGATTCT GACGATGCTG TCCGCCTATT
1001 ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGGCATTGCT
1051 TTCAATGAAA CGGAAAAACA TGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 628; ORF 153>: m153.pep

- 1 MAFAYGMTYI EVGIPGAASV LSLPEMMRLM VFQDYGFLAE VMFVLTFGAP
- 51 VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY

BNSDOCID: <WO___9957280A2_I_>

1.44

101	IKLSSVAEVR FGPAFY	LMFA LSVI	ILIRTSV SVPC	HWVYFQ 1	GRLTGDNAV	
151	QTASEGRICC SRCLYF	RDSA ESPO	CGVCGAE LYRE	RPKSLS T	SSAFITANTI	
201	TLYFPANILP IMISSN	IPAAT EVN	TILNGIA YMWr	ECDRIT A	AUTECACTE	
251	VPVLKIAAMS VLIASA	RFAL PTG	KKLSHL VRTT	EAVCEDW C	MIDIENTET	
301	LMCSFHIYAA RVIPGS	AAVY FCL	VILTML SAYY	FDPRLL W	DKRASDGIA	
351	FNETEKHD*					
m153 / g15	3 06 38 43					
mr22 / GT2	3 96.1% identity	in 358 a	a overlap			
	10	20	30			
m153.pep	MAFAYGMTYIEVGI	PGAAGUT.CT	DEMMOINTEON	40	50	60
	1:111:1111111		:	YGFLAEVM	FVLTFGAPVLF:	LLLCLYV
g153	:   :       MGFAYSMTYTEVGT	I IIIIIIII	DEMOTIVATE OF	11111111		1111111
5	MGFAYSMTYIEVGI	20	- SEMMKTWALOD			
	10	20	30	40	50	60
	70	80	90	100		
m153.pep	YAALIRKQAYPALR		DOMMSTOTTOTT	100	110	120
• •			KQAMIVDVFFV;	STLVAYIK.	LSSVAEVRFGP?	AFYLMFA
g153	YAALIRKQAYPALR	יז כת לאת לפידי ב. היו בת לאת לפידי ב.		]	<u>                                     </u>	
•	70	80	90			
	. •	00	90	100	110	120
	130	140	150	7.50		
m153.pep	LSVMLIRTSVSVPQF		13U	160	170	180
• •			III. IIIIIIII	GRICCSR	LYFRDSAESPO	GVCGAE
g153	LSVMLTRTSVSVPOL	HIIIIIIII WWYECTCE				
<b>5</b>	LSVMLIRTSVSVPQF	140	150			
	150	140	150	160	170	180
	190	200	210	220		
m153.pep	LYRRRPKSLSISSAF		ZIU PDANTI DIMIGO	220	230	240
				NPAATEVN	TILNGIAYMWD	EGDRLI
g153	LYGGRPKSLSISSAF	ין נייוייי גע. דעזע בבידי זי		:	11::111111	11111
_	190	200	210	220		
			210	220	230	240
	250	260	270	280	290	200
m153.pep	AAVIFSASILVPVLK		SARFALDTCAK	ZOU VI.CUI VDT	ZYU TEAUGDUGUTD	300
				IIIIIIII	IBAVGRWSMID	TEVILL
g153	AAVIFSASILVPVLK	IAAMSVI.TA				111111
	250	260	270	280	290	
			270	260	290	300
	310	320	330	340	350	350
m153.pep	LMCSFHTYAARVIPG	SAAVYFCLV	VILTMLSAYYF	DPRI.IWDK	DA CDCT A ENTERS	359
		11111111			WOODGTALMEL	
g153	LMCSFHTYAARVIPG	SAAVYFCLV	VILTMLSAVVE	יווווון!		:
	310	320	330	340	RASDGIAFNETI 350	FVIDX
				340	330	

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 629>:

a153. <b>se</b> q				Ŭ	
1	ATGGCGTTTG	CTTACGGTAT	GACGTATATC	GAGGTCGGGA	TACCGGGTGC
51	GGCATCCGTC	CTTTCGCTGC	CCGAGATGAT	GCGCCTGATG	GTGTTTCAGG
101	ATTATGGTTT	TTTGGCCGAA	GTGATGTTTG	TGCTGACCTT	CGGCGCGCCG
151	GTTCTGTTTC	TGCTGCTGTG	CCTGTATGTC		TGATACGGAA
201	ACAGGCGTAT	CCTGCGCTGC	GTTTGGCAAC		GTGCGCTTGA
251	GACAGGCGAT	GATGGTGGAT	GTGTTTTTTG	TTTCCACTTT	GGTGGCGTAT
301	ATCAAGCTCT	CGTCTGTGGC		TTCGGATCGG	
351	GATGTTCGCG	CTGTCGGTTA	TGCTGATTCG		CGTTTTATCT
401	AGCATTGGGT	GTATTTTCAA		TGACGGGGGA	TCGGTTCCCC
451	CAGACGGCAT	CGGAAGGTAA		AGCCGCTGCC	TAATGCGGTT
501	CGACAGTGCC			CGGTGCGGAA	TGTATTTCCG
551	GACGGCCGAA				CTGTACCGCC
601				CGTTTCTGAC	GGCGGCGGTT
651			TATCCTGCCG	ATTATGATTT	CGTCCAATCC
701	ACGAGGGCGA			CGGCATCGCT	TATATGTGGG
751			GCGGCGGTTA	TTTTCAGCGC	GAGTATTTTG
801	GTGCCGGTAC		GGCAATGTCG	GTTTTGATTG	CGTCCGCCCG
801	CTTCGCTTTG	CCAACGGGTG	CAAAGAAATT	GTCGCACCTC	TACCGCATCA

851 901 951 1001 1051	CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT TTGATGTGTT CGTTCCACAC TTATGCCGCG CGCGTCATTC CGGGCAGTGC GGCAGTCTAT TTCTGCCTGG TCGTGATTCT GACGATGCTG TCCGCCTATT ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGCCATTGCT TTCAATGAAA CGGAAAAACA TGACTGA	
	is to the amino acid sequence <seq 153.a="" 630;="" id="" orf="">:</seq>	
a153.pep 1 51 101 151 201 251 301	MAFAYGMTYI EVGIPGAASV LSLPEMMRLM VFQDYGFLAE VMFVLTFGAP VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY IKLSSVAEVR FGSAFYLMFA LSVMLIRTSV SVPQHWVYFQ IGRLTGDNAV QTASEGKTCC SRCLYFRDSA ESPCGVCGAE LYRRRPKSLS ISSAFLTAAV ILYFPANILP IMISSNPAAT EVNTILNGIA YMWDEGDRLI AAVIFSASIL VPVLKIAAMS VLIASARFAL PTGAKKLSHL YRITEAVGRW SMIDIFVIII LMCSFHTYAA RVIPGSAAVY FCLVVILTML SAYYFDPRLL WDKRASDGIA	
m153/a153 99	2.7% identity in 358 aa overlap	
m153.pep	10 20 30 40 50 MAFAYGMTYIEVGIPGAASVLSLPEMMRLMVFQDYGFLAEVMFVLTFGAPVL	60 FLLLCLYV
a153		IIIIIIII FLLLCLYV 60
m153.pep	70 80 90 100 110 YAALIRKQAYPALRLATRVMVRLRQAMMVDVFFVSTLVAYIKLSSVAEVRFGI	111111
a153	YAALIRKQAYPALRLATRVMVRLRQAMMVDVFFVSTLVAYIKLSSVAEVRFG 70 80 90 100 110	SAFYLMFA 120
m153.pep	130 140 150 160 170 LSVMLIRTSVSVPQHWVYFQIGRLTGDNAVQTASEGKTCCSRCLYFRDSAESI	180 PCGVCGAE
a153		 PCGVCGAE 180
m153.pep	190 200 210 220 230 LYRRPKSLSISSAFLTAAVILYFPANILPIMISSNPAATEVNTILNGIAYMV	240 WDEGDRLE
a153	LYRRRPKSLSISSAFLTAAVILYFPANILPIMISSNPAATEVNTILNGIAYMV 190 200 210 220 230	WDEGDRLI 240
m153.pep	250 260 270 280 290  AAVIFSASILVPVLKIAAMSVLIASARFALPTGAKKLSHLYRITEAVGRWSMI	300 IDIFVIII
a153	AAVIFSASILVPVLKIAAMSVLIASARFALPTGAKKLSHLYRITEAVGRWSMI 250 260 270 280 290	
m153.pep	310 320 330 340 350 LMCSFHTYAARVIPGSAAVYFCLVVILTMLSAYYFDPRLLWDKRASDGIAFNE	359 ETEKHDX
a153		TEKHDX
The following page 154.seq	artial DNA sequence was identified in N. gonorrhoeae <seq ii<="" td=""><td>O 631&gt;:</td></seq>	O 631>:

1	ATGACTGACA	ACAGCCCTCC	TCCAAACGGA	CACGCTCAAG	CACGCGTCCG
51	CAAAAACAAC	accttcctCT	CCGCCGTCTG	GCTGGTCCCG	CTGATCGCGC
101	TGATTGCCGG	CGGCTGGCTT	TGGGTTAAGG	AAATCCGCAA	CAGGGGGCCT
151	GTGGTTACGC	TCTTGATGGA	CAGCGCGGAA	GGCATCGAAG	TCAACAATAC
201	GGTCATTAAG	GTATTGAGCA	TCGATGTCGG	ACGCGTTACC	CGAATCAAAC
251	TGCGCGACGA	CCAAAAAGGC	GTGGAAGTTA	CTGCCCAACT	CAATGCGGAC
301	GTATCCGGCC	TCATCCGCAG	CGATACCCAG	TTTTGGGTGG	TCAAGCCGCG
351	TATCCACCAA	ACCCCCCCTAA	CCCCTTTTCCC	ma coomoomm	maaaamma

BNSDOCID: <WO___9957280A2_l_>



# This corresponds to the amino acid sequence <SEQ ID 632; ORF 154.ng>:

```
MTDNSPPPNG HAQARVRKNN TFLSAVWLVP LIALIAGGWL WVKEIRNRGP
     VVTLLMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDQKG VEVTAQLNAD
 51
     VSGLIRSDTQ FWVVKPRIDQ SGVTGLGTLL SGSYIAFTPG KSGEAKDVFQ
101
     VQDIPPVTAI GQSGLRLNLI GKNDRILNVN SPVLYENFMV GQIESAHFDP
201
     SDQSVHYTIF IQSPNDKLIH SASRFWLESG INIETTGSGI KLNSAPLPAL
     LSGAISFDSP KTKNSKNVKS EDSFTLYDSR SEIANLPDDR SLYYTAFFKQ
251
301 SVRGLTVGSP VEYKGLNVGM VSDVPYFDRN DSLHLFENGW IPVRIRIEPS
351 RLEINADEQS KEHWKQQFQT ALNKGLTATI SSNNLLTGGK MIELNDQPSA
     SPKLRPHTVY AGDTVIATRG GGLDDLQVKL ADLLDKFNNL PLDKTVAELN
401
451 GSLAELKSAL KSANAALSSI DKLVGNPQTQ NIPNELNQTL KELRITLQGV
    SPQSPIYGDV QNTLQSLDKT LKDVQPVINT LKEKPNALIF NNSSKDPIPK
501
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 633>: m154.seq

	1 ma1 aman an				
1		ACAGCCCTCC		CACGCCCAAG	CACGCGTCCG
51		ACCTTCCTCT	CTGCCGTCTG	GCTGGTTCCG	
101	TGATTGCCGG		TGGGTTAAGG	AAATCCGCAA	CAGGGGGCCT
151	GTGGTTACGC				
201	GGTCATCAAA	GTATTGAGCA	TCGATGTCGG		
251	TGCGCGACGA	CCAAAAAGGC	GTGGAAGTAA	CCGCCCAACT	CAATGCGGAC
301	GTATCCGGCC			TTTTGGGTGG	TCAAGCCGCG
351	TATCGACCAA	AGCGGCGTAA	CCGGTTTGGG	TACGCTGCTT	
401	ACATCGCCTT	TACACCCGGC	AAAAGCGACG		CGTGTTCCAA
451	GTGCAGGACA	TTCCGCCCGT	TACCGCCATC		
501	GAATTTGATT	GGTAAAAACG	ACCGCATCCT		AGCCCTGTTT
551	TGTATGAAAA	TTTTATGGTC	GGGCAAGTCG	AAAGCGCGCA	
601	TCCGACCAAA	GCGTGCATTA	CACCATCTTC		
651	ACTGATTCAT	TCCGCCAGCC			ATCAATATCG
701	AAACCACAGG	CAGCGGCATC		CCGCCCCTCT	CCCTCCCCCC
751	CTGTCGGGCG	CGATTTCATT	TGATTCGCCG	AAAACCAAAA	accidentia
801	CGTCAAAAGC	GAAGACAGCT	TCACGCTTTA		
851	CCAACCTGCC	TGACGACCGC	TCGCTGTACT	ACACCGCGTT	
901	TCCGTGCGCG	GCCTGACCGT	CGGTTCGCCC		TTTCAAACAA
951	TGTCGGCGTG	GTTTCCGACG	TTCCTTATTT		
1001	ACCTGTTTGA		ATACCCGTAC	CGACCGCAAC	
1051	CGTTTGGAAA	TCAATGCCGA	CGAACAAAGC		TGAACCTTCC
1101			AAGGCCTGAC		GGAAACAACA
1151		CGGAAGCAAA	ATCATTCACE	CGCCACCATC	TCCAGCAACA
			ATGATTGAGT	TGAACGATCA	GCCTTCCGCA

1201 1251 1301 1351 1401 1451 1501	TCACCTAAGC TGCGACCGCA TACCGTTTAT GCAGGCGATA CCGTTATCGC GACCCAGGCC GGCGGTTTGG ACGATTTGCA GGTCAAATTG GCGGATTTGC TGGACAAGTT CGACAAACTG CCTTTAGATA AGACGGTTGC CGAATTGAAC GGTTCGCTTG CCGAGCTCAA ATCCACACTC AAATCTGCCA ATGCCGCCCT AAGCTCCATC GACAAACTGG TCGGCAAACC GCAGACACAA AACATTCCGA ACGAACTGAA CCAAACCTG AAAGAGTTGC GCACAACCCT GCAAAGCGTA TCGCCGCAAT CGCCTATCTA CGGCGACGTA CAAAATACGC TGCAAAGTTT
1551 1601 1651	GGACAAAACT TTAAAAGACG TTCAACCCGT GATTAATACT TTGAAAGAAA AACCCAACGC GCTGATTTTC AACAGCAGCA GCAAAGACCC TATCCCGAAA GGAAGCCGAT AA
	responds to the amino acid sequence <seq 154.a="" 634="" id="" orf="">:</seq>
<b>m154.pep</b>	MTDNSPPPNG HAQARVRKNN TFLSAVWLVP LIALIAGGWL WVKEIRNRGP
51	VVTLLMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDQKG VEVTAQLNAD
101	VSGLIRSDTQ FWVVKPRIDQ SGVTGLGTLL SGSYIAFTPG KSDEAKDVFO
151	VQDIPPVTAI GQSGLRLNLI GKNDRILNVN SPVLYENFMV GQVESAHFDP
201 251	SDQSVHYTIF IQSPNDKLIH SASRFWLESG INIETTGSGI KLNSAPLPAL LSGAISFDSP KTKNSKNVKS EDSFTLYDSR SEVANLPDDR SLYYTAFFKQ
301	SVRGLTVGSP VEYKGLNVGV VSDVPYFDRN DSLHLFENGW IPVRIRIEPS
351	RLEINADBOS KEHWKQQFQT ALNKGLTATI SSNNLLTGSK MIELNDQPSA
401	SPKLRPHTVY AGDTVIATQG GGLDDLQVKL ADLLDKFDKL PLDKTVAELN
451	GSLAELKSTL KSANAALSSI DKLVGKPQTQ NIPNELNQTL KELRTTLQGV
501 551	SPQSPIYGDV QNTLQSLDKT LKDVQPVINT LKEKPNALIF NSSSKDPIPK GSR*
m154 / g1	97.8% identity in 553 aa overlap
	10 20 30 40 50 60
m154.pep	MTDNSPPPNGHAQARVRKNNTFLSAVWLVPLIALIAGGWLWVKEIRNRGPVVTLLMDSAE
g154	
3101	10 20 30 40 50 60
	70 80 90 100 110 120
m154.pep	GIEVNNTVIKVLSIDVGRVTRIKLRDDQKGVEVTAQLNADVSGLIRSDTQFWVVKPRIDQ
g154	
9234	70 80 90 100 110 120
	120
	130 140 150 160 170 180
m154.pep	SGVTGLGTLLSGSYIAFTPGKSDEAKDVFQVQDIPPVTAIGQSGLRLNLIGKNDRILNVN
q154	
9134	130 140 150 160 170 180
	190 200 210 220 230 240
m154.pep	SPVLYENFMVGQVESAHFDPSDQSVHYTIFIQSPNDKLIHSASRFWLESGINIETTGSGI
g154	
<b>3</b> .	190 200 210 220 230 240
m154 man	250 260 270 280 290 300
m154.pep	KLNSAPLPALLSGAISFDSPKTKNSKNVKSEDSFTLYDSRSEVANLPDDRSLYYTAFFKQ
g154	KLNSAPLPALLSGAISFDSPKTKNSKNVKSEDSFTLYDSRSEIANLPDDRSLYYTAFFKQ
_	250 260 270 280 290 300
m154.pep	310 320 330 340 350 360
штэ4.рер	SVRGLTVGSPVEYKGLNVGVVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS
g154	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS
÷	310 320 330 340 350 360
m154	370 380 390 400 410 420
m154.pep	KEHWKQQFQTALNKGLTATISSNNLLTGSKMIELNDQPSASPKLRPHTVYAGDTVIATQG
g154	KEHWKQQFQTALNKGLTATISSNNLLTGGKMIELNDQPSASPKLRPHTVYAGDTVIATRG
	THE VICENTAL AND A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE

BNSDOCID: <WO___9957280A2_I_>

	370	380	390	400	410	420
m154.pep	430 GGLDDLQVKLADLLD	440 KFDKLPLD	450 KTVAELNGSLA	460 ELKSTLKSAN	470 WAALSSIDKL	480 JGKPOTO
g154	GGLDDLQVKLADLLD 430	11::111		:     ELKSALKSAN		H. 1111
			450	460	470	480
m154.pep	490 NIPNELNQTLKELRT	500 TLQGVSPQS	510 SPIYGDVQNTL	520 QSLDKTLKDV	530 QPVINTLKER	540 PNALIF
g154	NIPNELNQTLKELRI	TLQGVSPQS			111111111	111111
	490	500	510	520	530	540
m154.pep	550 NSSSKDPIPKGSRX					
g154	:					

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 635>:

```
ATGACTGACA ACAGCCCTCC TCCAAACGGA CACGCCCAAG CACGCGTCCG
       CAAAAACAAC ACCTTCCTCT CTGCCGTCTG GCTGGTTCCG CTGATCGCGC
   51
      TGATTGCCGG CGGCTGGCTT TGGGTTAAGG AAATCCGCAA CAGGGGGCCT
  101
       GTGGTTACGC TCTTGATGGA CAGCGCGGAA GGCATTGAGG TCAACAATAC
  151
      GGTCATCAAA GTATTGAGCA TCGATGTCGG ACGCGTTACC CGAATCAAAC
 201
      TGCGCGACGA CCAAAAAGGC GTGGAAGTAA CCGCCCAACT CAATGCGGAC
 251
      GTATCCGGCC TCATCCGCAG CGATACCCAG TTTTGGGTGG TCAAGCCGCG
 301
      TATCGACCAA AGCGGCGTAA CCGGTTTGGG TACGCTGCTT TCGGGTTCGT
 351
      ACATCGCCTT TACACCCGGC AAAAGCGACG AGGCAAAAGA CGTGTTCCAA
 401
      GTGCAGGACA TTCCGCCCGT TACCGCCATC GGGCAAAGCG GGCTGCGCTT
 451
      GAATTTGATT GGTAAAAACG ACCGCATCCT CAACGTCAAC AGCCCTGTTT
 501
      TGTATGAAAA CTTTATGGTC GGGCAAGTCG AAAGCGCGCA TTTCGACCCG
 551
 601
      TCCGACCAAA GCGTGCATTA CACCATCTTC ATCCAAAGCC CCAACGACAA
      ACTGATTCAT TCCGCCAGCC GTTTCTGGCT GGAAAGCGGC ATCAATATCG
 651
      AAACCACAGG CAGCGGCATC AAACTCAATT CCGCCCCTCT GCCTGCCCTG
 701
      CTGTCGGGCG CGATTTCATT TGATTCGCCG AAAACCAAAA ACAGTAAAAA
 751
      CGTCAAAAGC GAAGACAGCT TCACGCTTTA CGACAGCCGC AGCGAAGTCG
 801
      CCAACCTGCC TGATGACCGT TCGCTGTACT ACACCGCGTT TTTCAAACAA
 851
      TCCGTGCGCG GACTGACCGT CGGTTCGCCT GTCGAGTACA AAGGGCTGAA
 901
      TGTCGGCGTG GTTTCCGATG TTCCTTATTT CGACCGCAAC GACAGCCTGC
 951
     ACCTGTTTGA AAACGGCTGG ATTCCCGTAC GCATCCGTAT TGAGCCTTCC
      CGTTTGGAAA TCAATGCCGA CGAACAAGC AAAGAACATT GGAAACAACA
1051
     ATTTCAGACG GCCTTAAACA AAGGCCTGAC CGCCACCATC TCCAGCAACA
1101
      ACCTGCTGAC CGGCAGCAAA ATGATTGAGT TGAACGATCA GCCTTCCGCC
1151
      TCGCCCAAGC TGCGACCGCA TACCGTTTAT GCAGGCGATA CCGTTATCGC
1201
      GACCCAGGGC GGCGGTTTGG ACGATTTGCA GGTCAAATTG GCGGATTTGC
     TGGACAAGTT CGACAAACTG CCTTTAGATA AGACGGTTGC CGAATTGAAC
1301
     GGTTCGCTTG CCGAGCTCAA ATCCACACTC AAATCTGCCA ATGCCGCCCT
1351
     AAGCTCCATC GACAAACTGG TCGGCAAACC GCAGACACAA AACATTCCGA
1401
     ACGAACTGAA CCAAACCCTG AAAGAGTTGC GCACAACCCT GCAAGGCGTA
1451
     TCGCCTCAAT CGCCTATCTA CGGCGACGTA CAAAATACGC TGCAAAGTTT
     GGACAAAACC TTAAAAGACG TTCAACCCGT CATTAACACT TTGAAAGAAA
1551
1601
     AACCCAACGC GCTGATTTTC AACAGCAGCA GCAAAGACCC TATCCCGAAA
1651
     GGAAGCCGAT AA
```

### This corresponds to the amino acid sequence <SEQ ID 636; ORF 154.a>:

a154.pep

1 MTDNSPPPNG HAQARVRKNN TFLSAVWLVP LIALIAGGWL WVKEIRNRGP
51 VVTLLMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDQKG VEVTAQLNAD

151	VQDIPPVTAI	GQSGLRLNLI	GKNDRILNVN	SPVLYENFMV	GOVESAHFDP
201	SDQSVHYTIF	IQSPNDKLIH	SASRFWLESG	INIETTGSGI	KLNSAPLPAL
251	LSGAISFDSP	KTKNSKNVKS	EDSFTLYDSR	SEVANLPDDR	SLYYTAFFKO
301	SVRGLTVGSP	VEYKGLNVGV	VSDVPYFDRN	DSLHLFENGW	IPVRIRIEPS
351	RLEINADEQS	KEHWKQQFQT	ALNKGLTATI	SSNNLLTGSK	MIELNDOPSA
401	SPKLRPHTVY	AGDTVIATQG	GGLDDLQVKL	ADLLDKFDKL	PLDKTVAELN
451	GSLAELKSTL	KSANAALSSI	DKLVGKPQTQ	NIPNELNOTL	KELRTTLOGV
501	SPQSPIYGDV	QNTLQSLDKT	LKDVQPVINT	LKEKPNALIF	NSSSKDPIPK
551	GSR*				

### m154/a154 100.0% identity in 553 aa overlap

J-7/415- 1(	70.070 Identity III 333	-	,			
m154.pep	10 MTDNSPPPNGHAQAR	20 VRKNNTFI.S	30	40	50	60
• •	111111111111111	1111111	11111111	111111111		
a154	MTDNSPPPNGHAQAR 10	VRKNNTFLS	AVWLVPLIA	LIAGGWLWVK	EIRNRGPVVT	LLMDSAE
	10	20	30	40	50	60
	70	80	90	100	110	120
m154.pep	GIEVNNTVIKVLSID	VGRVTRIKL	RDDQKGVEV:	raqlnadvsg1	IRSDTOFWV	VKPRIDQ
a154		VGRVTRIKL	RDDOKGVEV"	[AOLNADVSGI	LIBERTOFWY	/KPRIDO
	70	80	90	100	110	120
	130	140	150	160	170	180
m154.pep	SGVTGLGTLLSGSYI	AFT PGKSDE.	AKDVFQVQD	[PPVTAIGOS	LRLNLIGKN	DRILNVN
a154					111111111	
8134	SGVTGLGTLLSGSYI 130	140	AKDVEQVQDI 150	160	ELRLNLIGKNI 170	DRILNVN 180
				200	170	100
m154.pep	190 SPVLYENFMVGQVES	200	210	220	230	240
mzopcp	1   1   1   1   1   1   1   1   1   1	11111111			11111111111	
a154	SPVLYENFMVGQVES.	AHFDPSDQS'	VHYTIFIQSE	PNDKLIHSASF	FWLESGINIE	ETTGSGI
	190	200	210	220	230	240
	250	260	270	280	290	300
m154.pep	KLNSAPLPALLSGAI 	SFDSPKTKN:	SKNVKSEDSE	TLYDSRSEVA	NLPDDRSLYY	TAFFKO
a154	KLNSAPLPALLSGAI	SFDSPKTKN:	SKNVKSEDSE	TLYDSRSEVA	!!!!!!!!!!! NLPDDRSLYY	TAFFKO.
	<b>2</b> 50	260	270	280	290	300
	310	320	330	340	350	360
m154.pep	SVRGLTVGSPVEYKG	LNVGVVSDV	PYFDRNDSLH	ILFENGWIPVR	IRIEPSRLEI	NADEOS
a154						
	310	320	330	340	350	.NADEQS 360
	370	380	200	400	44.0	
m154.pep	KEHWKQQFQTALNKG		390 LLTGSKMIEL	400 NDOPSASPKI	410 RPHTVYAGDT	420 VIATOG
- 1 5 4		11111111		111111111	11111111111	111111
a154	KEHWKQQFQTALNKG	LTATISSNNI 380	LLTGSKMIEL 390	NDQPSASPKL 400	RPHTVYAGDT 410	VIATQG 420
			350	400	410	420
m154.pep	430	440	450	460	470	480
mro4.pep	GGLDDLQVKLADLLDI		LANGRE	ELKSTLKSAN 	AALSSIDKLV 	GKPQTQ
a154	GGLDDLQVKLADLLDI	KFDKLPLDKI	<b>TVAELNGSLA</b>	ELKSTLKSAN	AALSSIDKLV	GKPQTQ
	430	440	450	460	470	480
	490	500	510	520	530	540
m154.pep	NIPNELNQTLKELRT	rlogvsposi	PIYGDVQNTL	QSLDKTLKDV	OPVINTLKEK	PNALIF
a154			PIYGDVONTI.	USLDKTI.KDV		PNALTE
	490	500	510	520	530	540

444

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 637>:

```
atGAAaatcg GtatcCCACG CGAGTCAtta tcCGGCGAAA cccgcgtagc
   51
       ctgcAcgccc gCCACCGTTG CCctgctggg caAactAGGC TTTGAAACCG
       TTGtcgaAAG CGGTGCAggt TTGGCGGCAA GTTTggaCGA TGCCGCTTAC
       CAAACAGCAG GCGCAACCGT TGCCGACAAA GCGGCGGTTT GGGCCTGCCC
      TTTAATTTAT AAGGTCAACG CGCCGTCCGA AGGCGAGCTG CCGCTGCTCA
      AAGAAGGTCA AACCATCGTC AGCTTCCTGT GGCCGCGCCA AAACGAGGCT
      TTGGTCGAGG CCTTGCGCGC CAAGAAAGTC AACGCGCTGG CGATGGACAT
 301
      GGTTCCCCGC ATTTCCCGCG CTCAGGCCTT GGACGCTTTG TCTTCAATGG
 351
      CAAACATCAG CGGCTACCGC GCCGTGATTG AAGCCGCCAA CGCCTTCGGC
 401
      CGTTTCTTCA CCGGTCAAAT CACTGCCGCC GGCAAAGTGC CGCCTGCGCA
 451
      GGTTTTGGTG ATTGGCGCCG GTGTGGCGGG TTTGGCGGCA ATCGGTACGG
      CAAATTCGCT CGGCGCAGTG GTGCGCGCGT TCGATACCCG CTTGGAAGTG
 551
      GCGGAACAAA TCGAATCGAT GGGCGGTAAG TTCCLGAAAC TCGACTTCCT
      GCAAGAATCG GGCGCCAGCG GAGACGGCTA CGCCAAAGTG ATGAGCGACG
      AATTTATCGC CGCCGAAATG AAGCTCTTTG CCGAACAGGC GAAAGAAGTG
 701
      GACATCATCA TCACCACCGC CGCCATTCCG GGCAAACCCG CTCCCAAGCT
      GATTACCAAA GAAATGGTGG AAAGCATGAA ATCCGGATCC GTCATCGTCG
 801
 851
      ATTTGGCGGC GACGGGCGGC AACTGCGAAC TCACCCGACC GGGCGAATTG
      TCCGTAACCG GCAACGGCGT GAAAATCATC GGCTACACCG ACATGGCAAA
 951 CCGCCTTGCC GGACAGTCTT CCCAGCTTTA CGCCACCAAC TTGGTGAACC
1001
      TGACCAAGCT GTTAAGCCCG AACAAAGAcg gcgaAATCAC GCTGGACTTC
      GAAGacgtGA TTATCCGCAA TATGACCGTT ACCCGcgacg gcgaaATCAC
1051
     CTTCCCGCCT CCGccgaTTc aggtTTCcgc ccggccgCAG CAAAcgccgt
1101
     ctgaAAAagc cgcGCCTGCC GCCAagcccg AgccGaaacc tgttCCcctg
     tggaAAAaac tcgCGCCCGC CGCcatcgCC GCCGTATTGG tgctgtgGgt
1201
     cggCgcggtc gcacccgcag CATTCTTGAA CCACTTTATC GTCTTCGTCC
1251
      TCGCCTGCGT CATCGGCTAC CATGTCGTTT GgaacgTCAG CCACTCGCTG
1301
1351
     CACACACCGC TGAtgtcggt aaccaaCgcc atctccGGCA tcatggtcgt
     CGGCGCGCTG CTGCAAATCG GTCAGGGCaa CGGCttcgtT TCgctGCTGT
      CGTTTGTTGC CATCCTGATT GCCGGCATCA ATATCTTCGG CGGCTTTGCG
1501 GTTACACGGC GTATGCTGAA TATGTTTAAG AAAGGGTAA
```

### This corresponds to the amino acid sequence <SEQ ID 638; ORF 155.ng>:

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 639>:

```
ATGAAAATCG GTATCCCACG CGAGTCATTA TCCGGCGAAA CCCGCGTCGC

TTGACACCG GCCACCGTCG CCCTGCTGGG CAAACTGGGC TTTGAAACCG

TTGTCGAAAG CGGTGCAGGT TTGGCGGCAA GTTTGGACGA TGCCGCTTAC

CAAACAGCAG GCGCAACCGT TGCCGACAAA GCGGCGGTTT GGGTCTGCCC

TTTGATTTAT AAGGTCAACG CGCCGTCCGA ACAGGAACTG CCGCTTTTGA

ACGAAGGTCA AACCATCGTC AGCTTCCTGT GGCCGCCCCA AAACGAGGCT
```

301	TTGGTCGAAG	CCTTGCGCGC	CAAGAAAGTG	AACGCGCTGG	CGATGGATAT
351	GGTGCCCCGC	ATTTCGCGCG	CGCAGGCTTT	GGACGCTTTG	TCTTCGATGG
401	CAAACATCAG	CGGCTACCGC	GCCGTAATTG	AAGCCGCCAA	CGCCTTCGGC
451	CGTTTCTTCA	CCGGTCAAAT	TACCGCCGCC	GGCAAAGTGC	CGCCCGCGCA
501	GGTTTTGGTG	ATTGGTGCAG	GTGTGGCAGG	TTTGGCGGCG	ATCGGTACGG
551	CAAACTCGCT	CGGCGCAGTG	GTACGCGCGT	TCGATACCCG	CTTGGAAGTG
601	GCGGAACAAA	TCGAATCGAT	GGGCGGCAAG	TTCCTGAAAC	TCGACTTCCC
651	ACAAGAATCG	GGCGGCAGCG	GAGACGGCTA	CGCCAAAGTG	ATGAGCGACG
701	AATTTATCGC	AGCCGAGATG	AAGCTCTTTG	CCGAGCAGGC	GAAAGAAGTG
751	GACATCATCA	TCACCACCGC	CGCCATTCCG	GGCAAACCCG	CGCCCAAGCT
801	GATTACCAAA	GAAATGGTGG	AAAGCATGAA	ATCCGGCTCC	GTCATCGTCG
851	ATTTGGCGGC	GGCGACGGGC	GGCAACTGCG	AACTCACCCG	CCCGGGCGAA
901	TTGTCCGTAA	CCGGCAACGG	CGTGAAAATC	ATCGGCTACA	CCGACATGGC
951	AAACCGCCTT	GCCGGACAGT	CTTCCCAGCT	TTACGCCACC	AACTTGGTCA
1001	ACCTGACCAA			ACGGCGAAAT	CACGTTGGAC
1051	TTCGAAGACG	TGATTATCCG	CAACATGACC	GTTACCCACG	ACGGCGAAAT
1101	CACCTTCCCG	CCTCCGCCGA	TTCAAGTTTC	CGCCCAGCCG	CAGCAAACGC
1151	CGTCTGAAAA	AGCCGTGCCT	GCCGCCAAGC	CCGAGCCAAA	ACCCGTTCCC
1201	CTGTGGAAAA	AACTCGCGCC	CGCCGTCATC	GCCGCCGTCT	TGGTACTGTG
1251	GGTCGGCGCG	GTCGCACCCG	CAGCATTCCT	GAACCACTTT	ATCGTGTTCG
1301	TTCTCGCCTG	CGTCATCGGC	TACTACGTCG	TCTGGAACGT	CAGCCACTCG
1351	CTGCACACAC	CGCTGATGTC	GGTAACCAAC	GCCATCTCCG	GCATCATCGT
1401	CGTCGGCGCG	CTGCTGCAAA	TCGGTCAGGG	CAACGGCTTC	GTTTCGCTGC
1451	TGTCGTTTGT	TGCCATCCTG	ATTGCCGGCA	TCAACATCTT	CGGCGGCTTT
1501	GCGGTAACAC	GGCGTATGCT	GAATATGTTT	AAGAAAGGGT	AA

#### This corresponds to the amino acid sequence <SEQ ID 640; ORF 155>:

		- · · · <b>I</b> - · ·		,	
m155.pep					
1	MKIGIPRESL	SGETRVACTP	ATVALLGKLG	FETVVESGAG	LAASLDDAAY
51	QTAGATVADK	AAVWVCPLIY	KVNAPSEQEL	PLLNEGQTIV	SFLWPRQNEA
101			ISRAQALDAL		
151	RFFTGQITAA	GKVPPAQVLV	IGAGVAGLAA	<b>IGTANSLGAV</b>	VRAFDTRLEV
201	AEQIESMGGK	FLKLDFPQES	GGSGDGYAKV	MSDEFIAAEM	KLFAEQAKEV
251	DIIITTAAIP	GKPAPKLITK	<b>EMVESMKSGS</b>	VIVDLAAATG	GNCELTRPGE
301	LSVTGNGVKI	IGYTDMANRL	AGQSSQLYAT	NLVNLTKLLS	PNKDGEITLD
351	FEDVIIRNMT	VTHDGEITFP	PPPIQVSAQP	QQTPSEKAVP	AAKPEPKPVP
401	LWKKLAPAVI	AAVLVLWVGA	VAPAAFLNHF	IVFVLACVIG	YYVVWNVSHS
451	LHTPLMSVTN	AISGIIVVGA	LLQIGQGNGF	VSLLSFVAIL	IAGINIFGGF
501	AUTRRMINME				<del></del>

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 155 shows 97.9% identity over a 513 aa overlap with a predicted ORF (ORF 155.ng) from N. gonorrhoeae:

m155 / g155	97.9% identity	in 513 aa	overlap			
	10	20	30	40	50	60
m155.pep	MKIGIPRESLSGET	RVACTPATVA	ALLGKLGFETV	VESGAGLAAS:	LDDAAYQTAC	ATVADK
	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111		1111111111	1111111111	
g155	MKIGIPRESLSGET	RVACTPATVA	ALLGKLGFETV	VESGAGLAAS	LDDAAYQTAC	ATVADK
	10	20	30	40	50	60
	70	80	90	100	110	120
m155.pep	<b>AAVW</b> VCPLIYKVNA	PSEQELPLLN	NEGQTIVSFLW	PRQNEALVEA:	LRAKKVNALA	MDMVPR
		111 11111:		1111111111	1111111111	111111
g155	<b>AAVW</b> ACPLIYKVNA	PSEGELPLLE	ŒGQTIVSFLW	PRQNEALVEA	LRAKKVNALA	MDMVPR
	70	80	90	100	110	120
	130	140	150	1.60	170	
m166 mam				160	170	180
m155.pep	ISRAQALDALSSMA	NISGYRAVIE	CAANAFGREET	'GQITAAGKVP	PAQVLVIGAG	VAGLAA
			11111111111		1111111	
g155	ISRAQALDALSSMA	NISGYRAVIE	CAANAFGRFFT	'GQITAAGKVP	PAQVLVIGAG	VAGLAA

		130	140	150	160	170	180
m155.pep	IGT	190 ANSLGAVVRA	200 FDTRLEVAEQ	210 IESMGGKFLK	220 LDFPQESGGS0	230 EDGYAKVMSDE	240
g155	, , ,				LDFLQESGGSG	DGYAKVMSDE	
		190	200	210	220	230	240
m155.pep	KLFA	250 EQAKEVDIII	260 TTAAIPGKPA	270 APKLITKEMVE	280 ESMKSGSVIVD	290	300
g155	, , , ,	EQAKEVDIII	TTAAIPGKPA	APKLITKEMVE	SMKSGSVIVD		
		250	260	270	280	290	
m155.pep	LSVT	310 GNGVKIIGYT	320 DMANRLAGOS	330 SQLYATNLVN	340 LTKLLSPNKD	350 GETTI DEEDV	360
g155	LSVT	GNGVKIIGYT	DMANRLAGOS				
	300	310	320	330	340	350	
m155.pep	VTHD	370 GEITFPPPPI	380 QVSAQPQQTP	390 SEKAVPAAKP	400 EPKPVPLWKKI	410	420
g155	, , , ,	GEITFPPPPI	OVSARPQOTP.		EPKPVPLWKKI		
	360	370	380	390	400	410	, <b>21. V</b> GA
m155.pep	VAPA	430 AFLNHFIVFVI	440 ACVIGYYVV	450 WNVSHSLHTP	460 LMSVTNAISGI	470.	480 FOGNOE
g155	, , , , ,	, , , , , , , , , , , , , , , , , , ,	ACVIGYHVVI	(		_ 1   1   1   1   1   1   1   1   1   1	
	420	430	440	450	460	470	
m155.pep	VSLLS	490 FVAILIAGIN	500 IFGGFAVTRE	510 MLNMFKKGX			
g155	VSLLS		111111111	111111111			
	480	490	500	510			

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 641>:

```
ATGAAAATCG GTATCCCACG TGAGTCATTA TCCGGCGAAA CCCGCGTCGC
      CTGTACGCCC GCCACCGTCG CCCTGCTGGG CAAACTGGGC TTTGAAACCG
  51
      TTGTCGAAAG CGGCGCAGGT TTGGCGGCAA GTTTGGACGA TGCCGCTTAC
 101
     CAAGCAGCAG GCGCAACCGT TGCCGACAAA GCAGCGGTTT GGGCATACCC
 151
 201 TTTAATTTAT AAGGTTAACG CGCCGTCCGA AGACGAGCTG CCGCTGCTCA
 251 AAGAAGGACA GACCATCGTC AGCTTCCTGT GGCCGCGCCA AAACGAGGCT
      TTGGTCGAAG CCTTGCGCGC CAAGAAAGTG AACGCGCTGG CAATGGACAT
 301
      GGTGCCCCGC ATTTCGCGCG CGCAGGCTTT GGACGNTTTG TCTTNGATGG
 351
     CAAACATCAG CGGCTACCGC GCCGTGATTG AAGCCGCCAA CGCCTTCGGC
 401
     CGTTTNTTCA CCGGCCAAAT TACTGCCGCA GGCAAAGTGC CGCCCGCGCA
 501 GGTTTTGGTG ATTGGTGCAG GTGTGGCAGG TTTGGCGGCG ATCGGTACGG
     CAAACTCGCT CGGCGCAGTG GTACGCGTGT TCGATACCCG CCTG.AAGTG
 551
     GCGGAACAAT TAGAATCGAT GGGCGGCAAG TTCCTGAAAC TCGACTTCCC
 601
 651 GCAAGAATCG GGCGGCAGCG GCGACGGCTA CGCCAAAGTG ATGAGCGACG
 701 AATTTATCGC CGCCGAGATG AAGCTTTTTG CCGAGCAGGC GAAAGAAGTG
     GACATCATCA TCACCACCGC CGCCATTCCG GGCAAACCCG CGCCCAAGCN
     NNTNANCAAA GAAATGGTCG AAAGCATGAA ACCCGGCTCC GTCATCGTCG
 801
     ATTTGGCGGC GGCGACGGCC GGCAACTGCG AACTCACCAA ACAGGGCGAA
 851
     TTGTTCGTAA CCGGCAACGG CGTGAAAATC ATCGGCTACA CCGACATGGC
 901
     AAACCGCCTT GCCGGACAGT CTTCGCAGCT TTACGCCACC AACTTGGTCA
 951
1001
     ACCTGACCAA GCTGTTAAGC CCGAACAAAG ACGGCGAAAT CACGCTGGAC
     TTCGAAGACG TGATTATCCG CAACATGACC GTTACCCGCG ACGGCGAAAT
1051
     CACCTTCCCG CCTCCGCCGA TTCAAGTTTC CGCCCAACCG CAGCAAACGC
1101
     1151
```

Later training the Court of

1201 1251 1301 1351 1401 1451 1501 This correspond	GGTCGGCGCG GTCGCACCCG CAGCATTCCT GAACCACTTT ATCGTCTTCG TCCTCGCCTG CGTCATCGGC TACTATGTCG TTTGGAACGT CAGCCACTCG CTGCACACAC CGCTGATGTC GGTGACCAAC GCCATTTCCG GCATCATCGT CGTCGGCGCG CTGCTGCAAA TCGGTCAGGG CAACGGCTTC GTTTCGCTGC TGTCGTTTGT TGCCATCCTG ATTGCCAGCA TCAACATCTT CGGCGGCTTC	
a155.pep		
1 51		
101		
151	RXFTGQITAA GKVPPAQVLV_IGAGVAGLAA IGTANSLGAV VRVFDTRLXV	
201		
251 301	DIIITTAAIP GKPAPKXXXK EMVESMKPGS VIVDLAAATG GNCELTKQGE LFVTGNGVKI IGYTDMANRL AGQSSQLYAT NLVNLTKLLS PNKDGEITLD	
351	FEDVIIRNMT VTRDGEITFP PPPIQVSAQP QQTPSEKAAP AAKPEPKPVP	
401	LWKKLAPAXI AAVLVLWVGA VAPAAFLNHF IVFVLACVIG YYVVWNVSHS	
451 501	LHTPLMSVTN AISGIIVVGA LLQIGQGNGF VSLLSFVAIL IASINIFGGF FVTRRMLNMF RKG*	
m155/a155	95.3% identity in 513 aa overlap	
	Jorda Ladinerey III 515 an overlap	
		50
m155.pep	MKIGIPRESLSGETRVACTPATVALLGKLGFETVVESGAGLAASLDDAAYQTAGATVAI	ΣK
a155	MKIGIPRESLSGETRVACTPATVALLGKLGFETVVESGAGLAASLDDAAYQAAGATVAL	; I DK
		50
	70 00 00 100	
m155.pep	70 80 90 100 110 12 AAVWVCPLIYKVNAPSEQELPLLNEGQTIVSFLWPRQNEALVEALRAKKVNALAMDMVF	0.9
		i I
a155	AAVWAYPLIYKVNAPSEDELPLLKEGQTIVSFLWPRQNEALVEALRAKKVNALAMDMVE	
	70 80 90 100 110 12	20
	130 140 150 160 170 18	30
m155.pep	ISRAQALDALSSMANISGYRAVIEAANAFGRFFTGQITAAGKVPPAQVLVIGAGVAGLA	<b>LA</b>
a155	I SPACAL DVI SVMANI SCVPAVITA ANA ECOVETCO ITRA CAMPRA CAM	
aijj	ISRAQALDXLSXMANISGYRAVIEAANAFGRXFTGQITAAGKVPPAQVLVIGAGVAGLF 130 140 150 160 170 18	
		, ,
m155 non	190 200 210 220 230 24	
m155.pep	IGTANSLGAVVRAFDTRLEVAEQIESMGGKFLKLDFPQESGGSGDGYAKVMSDEFIAAE 	JM I
a155	IGTANSLGAVVRVFDTRLXVAEQLESMGGKFLKLDFPQESGGSGDGYAKVMSDEFIAAE	M
	190 200 210 220 230 24	0
	250 260 270 280 290 30	0 (
m155.pep	KLFAEQAKEVDIIITTAAIPGKPAPKLITKEMVESMKSGSVIVDLAAATGGNCELTRPG	ΞE
a155		1
a133	KLFAEQAKEVDIIITTAAIPGKPAPKXXXKEMVESMKPGSVIVDLAAATGGNCELTKQG 250 260 270 280 290 30	
		, 0
155	310 320 330 340 350 36	
m155.pep	LSVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNM 	IT
a155	LFVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNM	1 1T
	310 320 330 340 350 36	
	370 380 390 400 410 42	
m155.pep	370 380 390 400 410 42 VTHDGEITFPPPPIQVSAQPQQTPSEKAVPAAKPEPKPVPLWKKLAPAVIAAVLVLWVG	:U
	11:111111111111111111111111111111111111	1
a155	VTRDGEITFPPPPIQVSAQPQQTPSEKAAPAAKPEPKPVPLWKKLAPAXIAAVLVLWVC	
	370 380 390 400 410 42	:0

BNSDOCID: <WO___9957280A2_l_>

m155.pep	430 VAPAAFLNHFIVF	440 LACVIGYYV	450 VWNVSHST.HTI	460 PLMSVTNA TSC	470	480
	111111111111111	11111111		HILLILLI	TITAACHTTO	TGGGNGE
a155	VAPAAFLNHFIVFV	LACVIGYYV	VWNVSHSLHTI	PLMSVTNATSC	TTVVGALLO	IGOGNOF
	430	440	450	460	470	480
	490	500	510			
m155.pep	VSLLSFVAILIAGI	NIFGGFAVTI		3		
-155	111111111111111111111111111111111111111	111111 11	[[[]]]			
a155	VSLLSFVAILIASI	NIFGGFFVTE	RRMLNMFRKGX	ζ		
	490	. 500	510	,		

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 643>:
```

```
g156.seq
               ATGACTTTCG CCTATTGGTG CATTCTGATT GCCTGCCTAT TGCCGCTTTT
           51
               TTGTGCGGCG TATGCCAAAA AAGCGGGCGG ATTCCGGTTT AAAGACAACC
          101 ACAATCCTCG CGGTTTTCTG GCACATACGC AAGGCGCAGC CGCCCGTGCC
          151 CACGCCGCG AGCAAAACGG TTTTGAAGCC TTTGCACCGT TTGCCGCCGC
          201 CGTTTTGACG GCACACGCAA CCGGCAATGC CGGACAAGCA ACCGTCAACA
              CGCTTGCCGG ATTGTTCATC CTGTTCCGCC TCGCCTTTAT-CTGGTGCTAC
          301 ATCGCAGACA AAGCAGCATT GCGCTCGCTG ATGTGGGCGG GCGGATTTGC
          351 CTGCACCGTC GGACTGTTTG TCGCGGCTGC TTGA
This corresponds to the amino acid sequence <SEQ ID 644; ORF 156.ng>:
     g156.pep
```

MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA HAAQQNGFEA FAPFAAAVLT AHATGNAGQA TVNTLAGLFI LFRLAFIWCY 1

IADKAALRSL MWAGGFACTV GLFVAAA*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 645>: m156.seq

1 ATGACTTTCG CCTATTGGTG TATTCTGATT GCCTGCCTAT TGCCGCTTTT TTGTGCGGCG TATGCCAAAA AAGCGGGCGG ATTCCGGTTT AAAGACAACC 51 101 ACAATCCGCG CGGTTTTCTA GCGCACACGC AAGGCGCAGC CGCCCGTGCC 151 CACGCCGCAC AGCAAAACGG TTTTGAAGCC TTTGCACCGT TTGCCGCCGC 201 CGTTTTGACG GCACACGCAA CCGGCAATGC GGCGCAATCG ACCATCAACA 251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTTAT CTGGTGCTAT
301 ATCGCCGACA AAGCCGCTAT GCGCTCACTG ATGTGGGCAG GCGGATTTGC 351 CTGCACCGTC GGGCTGTTTG TCGCGGCTGC TTGA

### This corresponds to the amino acid sequence <SEQ ID 646; ORF 156>:

m156.pep

MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA 1 HAAQQNGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY 51

IADKAAMRSL MWAGGFACTV GLFVAAA*

#### Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m156 / g156 96.1% identity in 127 aa overlap

m156.pep	10	20	30	40	50	60
mrso.pep	MTFAYWCILIACLLE	LFCAAYAKI	(AGGFRFKDNI	INPRGFLAHT	GAAARAHAAC	ONGERA
g156		1111111111	111111111		1111111111	
-	MTFAYWCILIACLLE	DICAMIANT	MGGFRFKDNF	INPRGFLAHTÇ	GAAARAHAAC	QNGFEA
	10	20	30	40	50	60
m156.pep	70	80	90	100	110	120
zov.pcp	FAPFAAAVLTAHATG	NAAQSTINI	'LACLFILFRI	AFIWCYIADK	AAMRSLMWAG	GFACTV
	1111111111111111	11:1:1:11	11 111111	1111111111	11:111111	111111