Augusto César Muniz Lopes Trabalho 01

Tipo 9 - Classificação não-paramétrica (Estimador de Kernel e K-NN)

 Os dados utilizados em ambos os algoritmos foram do Dataset *Iris* disponível na biblioteca do "sklearn". Para testar utilizei a ideia que vimos em sala de aula de dividir as amostras em 70% treinamento e 30% teste como demonstrado na imagem abaixo.

```
from sklearn import datasets
import math
from sklearn.model_selection import train_test_split # dividir um conjunto de dados em conjuntos de treinamento e teste.
from sklearn import metrics # fornece funções para calcular métricas de avaliação de modelos, como a acurácia, que será usada para avaliar o desempenho do classificador.

# Load data
iris - datasets.load_iris() # 150 amostras
# quatro características (X): comprimento da sépala, langura da sépala, comprimento da pétala e largura da pétala
# classes (espécies) das flores [0 = Setosa, 1 = Versicolor e 2 = Virginica] (Y)

# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=109)
```

- Em ambos os algoritmos utilizei as variáveis globais "X_train", e "y_train" para os pontos de dados observados (amostra) e "X_test" e "y_test" para as observações de teste. No final dos testes, os valores de predição são armazenados em uma lista chamada "predict".
 - Nos estimador de Kernel "h" é minha bandwidth que escolhi testando alguns valores e "d" refere-se dimensionalidade para Multivariate Data, ou seja, as 4 características do meu dataset (comprimento da sépala, largura da sépala, comprimento da pétala e largura da pétala). Além disso, utilizei algumas variáveis auxiliares uma para armazenar a soma de cada classe (sum_c0, sum_c1 e sum_c2) utilizada no cálculo da minha função kernel e outra para armazenar a quantidade de amostras de cada classe (N_c0, N_c1 e N_c2). Por fim, "u" é meu argumento, calculado pela distância normalizada entre minha amostra e minha observação.
 - No classificador K-NN a variável "k" representa o número de vizinhos próximos que vou escolher para avaliar suas classes. A lista "dist" vai servir como auxiliar para descobrir a proximidade dos pontos, enquanto "min" e "index" me auxiliam para descobrir quais são os menores valores presentes na lista de distância. Por fim, "ki_c0", "ki_c1" e "ki_c2" são a quantidade de vezes que cada classe repete.

 Gráficos plotados em função do comprimento e largura da sépala abaixo (Estimador de Kernel e K-NN, respectivamente)

4.5

5.5

6.0

Sepal Length

7.0

7.5

7.0 7.5 8.0

Sepal Length

 Para o estimador de Kernel utilizei como configuração ideal h = 0,5 onde obtive os resultados abaixo

Precision	n: 0.9	1111111111111 2355889724316 921568627452				
F1-Score	-1-Score: p		cision	recall	f1-score	support
	0	1.00	1.00	1.00	12	
	1	0.84	0.94	0.89	17	
	2	0.93	0.81	0.87	16	
accur	racy			0.91	45	
macro	avg	0.92	0.92	0.92	45	
weighted	avg	0.91	0.91	0.91	45	

 Continuando com o estimador de Kernel pude comparar algumas outras configurações como a de h = 1 que obtive os seguintes valores

	,		•		O			
Accuracy: 0.888888888888888888888888888888888888								
Precision	n: 0.9	0769230769	23077					
Recall: 0.8970588235294118								
F1-Score:			precision	recall	f1-score	support		
	0	1.00	1.00	1.00	12			
	1	0.80	0.94	0.86	17			
	2	0.92	0.75	0.83	16			
accuracy				0.89	45			
macro	avg	0.91	0.90	0.90	45			
weighted	avg	0.90	0.89	0.89	45			

• Para o classificador K-NN configurei de forma ideal meu k como 11, onde obtive os valores abaixo

Accuracy: 0.955555555555556 Precision: 0.9595588235294118 Recall: 0.9595588235294118							
F1-Score:	F1-Score: precision		recall	f1-score	support		
0	1.00	1.00	1.00	12			
1	0.94	0.94	0.94	17			
2	0.94	0.94	0.94	16			
accuracy			0.96	45			
macro avg	0.96	0.96	0.96	45			
weighted avg	0.96	0.96	0.96	45			

• Nisso comparei meu K-NN com o valor de k igual a 5, onde a acurácia e precisão foram reduzida, como demonstrado na imagem a seguir

· ·			•	•			
Accuracy: 0.91111111111111							
Precision: 0.9191176470588235							
Recall: 0.9191176470588235							
F1-Score:		precision	recall	f1-score	support		
0	1.00	1.00	1.00	12			
1	0.88	0.88	0.88	17			
2	0.88	0.88	0.88	16			
accuracy			0.91	45			
macro avg	0.92	0.92	0.92	45			
weighted avg	0.91	0.91	0.91	45			

• Observação: os cálculos referentes ao erro quadrático médio e o erro quadrado relativo estão disponíveis no final do código logo antes da matriz de confusão.

Matriz de confusão do estimador de Kernel e K-NN, respectivamente

