Seminár 4

Téma

Algebraické výrazy, rovnice a nerovnosti I – úprava výrazov

Úlohy a riešenia

Úloha 4.1. [65-I-3-N1] Pre ľubovoľné reálne čísla x,y a z dokážte nezápornosť hodnoty každého z výrazov

$$x^2z^2 + y^2 - 2xyz$$
, $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 13$, $2x^2 + 4y^2 + z^2 - 4xy - 2xz$

a zistite tiež, kedy je dotyčná hodnota rovná nule.

Úloha 4.2. [63-I-1-N1-N4] a) Určte najmenšiu hodnotu výrazu $V = 5 + (x-2)^2$, $x \in \mathbb{R}$. Pre ktoré x ju výraz nadobúda?

- b) Určte najmenšiu možnú hodnotu výrazu W = 9 ab, kde a, b sú reálne čísla spĺňajúce podmienku a + b = 6. Pre ktoré hodnoty a, b je W minimálne?
- c) Určte najmenšiu možnú hodnotu výrazu Y = 12-ab, kde a,b sú reálne čísla spĺňajúce podmienku a+b=6. Pre ktoré hodnoty a,b je Y minimálne?
- d) Určte najväčšiu možnú hodnotu výrazu K=5+ab, kde a,b sú reálne čísla spĺňajúce podmienku a+b=8. Pre ktoré hodnoty a,b je K maximálne?

Úloha 4.3. [63-I-1] Určte, akú najmenšiu hodnotu môže nadobúdať výraz $V = (a-b)^2 + (b-c)^2 + (c-a)^2$, ak reálne čísla a, b, c spĺňajú dvojicu podmienok

$$a + 3b + c = 6,$$

 $-a + b - c = 2.$

Úloha 4.4. [63-S-1] Určte, aké hodnoty môže nadobúdať výraz V = ab + bc + cd + da, ak reálne čísla a, b, c, d spĺňajú dvojicu podmienok

$$2a - 5b + 2c - 5d = 4,$$
$$3a + 4b + 3c + 4d = 6.$$

Úloha 4.5. [65-I-3]

- a) Nájdite všetky reálne čísla x a y, pre ktoré daný výraz nadobúda svoju najmenšiu hodnotu.
- b) Určte všetky dvojice celých nezáporných čísel x a y, pre ktoré je hodnota daného výrazu rovná číslu 16.

Domáca práca

Úloha 4.6. [65-II-1] Nájdite najmenšiu možnú hodnotu výrazu

$$3x^2 - 12xy + y^4$$

v ktorom x a y sú ľubovoľné celé nezáporné čísla.

Úloha 4.7. [65-I-3-D1] resp. 61-B-S-1 V obore celých čísel vyriešte rovnicu $x^2 + y^2 + x + y = 4$.