

Module 7
Lecture: System level design

Vojkan Vidojkovic

Where innovation starts

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

Learning Objectives

- Understand RF specifications
- Recap gain, noise and linearity
- Understand <u>dynamic range of and amplifier</u>
- Understand wireless system aspects & considerations
 - Wireless standards
 - Modulation schemes
 - Bit error rates BER
 - Receiver sensitivity
 - Link budget

Literature

- David M. Pozar Microwave Engineering
 - Chapter 14 "Introduction to microwave systems"
 - Paragraphs 14.1 and 14.2
 - Chapter 10 "Noise and nonlinear distortion"
- Further reading (not compulsory):
 - Behzad Razavi RF Microelectronics
 - Chapters 1 to 4
 - Chapter 2 RF specifications

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
 - Transceiver functions
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

RF specifications

- Small signal
 - Gain
 - Noise figure (NF)
 - Input third-order intercept point
 - Input second order intercept point
- Large signal
 - 1-dB compression point

Linearity specifications

Why do we need gain?

- Gain is required for signal conditioning
- Module 4 was dedicated to amplifier gain

Why do we need to analyze noise?

- Link budget allows to calculate received signal power S across a wireless link
- To transmit information across a wireless link, the received signal power must be significantly larger than the noise power N.
- The ratio between the signal power and the noise power is called "Signal-to-noise ratio" SNR:

$$SNR = \frac{S}{N}$$

 If we cannot distinguish the signal from the noise we cannot extract the information!

Cascaded NF: Friis' formula

System with cascaded sub-systems with noise figure F_{m} and available gain $G_{a,m}$

$$F_{total} = 1 + (F_1 - 1) + \frac{F_2 - 1}{G_{a,1}} + \dots + \frac{F_m - 1}{G_{a,1}G_{a,2}\dots G_{a,(m-1)}}$$

Why do we need to analyse linearity?

- Typical scenario in wireless communications
- Very weak wanted signal in vicinity of strong interferers

SNR degradation due to nonlinearity

Effect of nonlinear devices on the signal

E.g. transistors, diodes

$$v_{out}(t) = v_{out,DC} + a_1 v_{in}(t) + a_2 v_{in}^2(t) + a_3 v_{in}^3(t) + \dots$$

- Harmonic generation (multiples of a fundamental signal)
- Saturation (gain reduction in an amplifier)
- Intermodulation distortion (products of a two-tone input signal)

1 dB compression point

Second order intercept point: IP2

IIP2: input power where wanted power = second order power (extrapolated point).

Third order intercept point

IIP3: input power where wanted power = the third order power (extrapolated point).

Cascaded IIP3 formula

System with cascaded sub-systems with input IIP3 IIP3_m and available gain G_{a,m}

$$\frac{1}{\text{IIP3}_{\text{total}}} = \frac{1}{\text{IIP3}_{1}} + \frac{G_{a,1}}{\text{IIP3}_{2}} + \dots + \frac{G_{a,1}G_{a,2}...G_{a,(m-1)}}{\text{IIP3}_{m}}$$

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

Dynamic range of an amplifier

Remark:

<u>Gain</u> in RF
is typically
<u>power gain</u>,
not voltage gain.
See also:
lecture week 5

Linear dynamic range (LDR) Spurious free dynamic range (SFDR)

LDR and SFDR equations

 <u>Linear dynamic range</u>: Output power difference between the 1 dB compression point and the output noise power:

$$LDR (dB) = OP_{1dB} - N_o$$

Spurious free dynamic range:

SFDR =
$$\frac{P_{\omega_1}}{P_{2\omega_1 - \omega_2}}\Big|_{P_{2\omega_1 - \omega_2 = N_o}} = \left(\frac{OIP_3}{N_o}\right)^{2/3}$$

SFDR (dB) = $\frac{2}{3}(OIP_3 - N_o)$

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

System aspects & consideration

System aspects & consideration

- Standards in wireless
- Modulation schemes
- Bit error rate
- Receiver sensitivity
- Link budget

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

Frequency Allocation (info only)

Which wireless standards does your smart phone cover?

Connectivity

WIFI: 11b/g; 11ac Bluetooth (BT)

Cellular

2G/3G/4G

GPS

NFC

FM radio

High data rates

Up to 1Gbps Short link (cm – 30m) Quality of Service

Voice / data
Up to few Mbps
large link (km)

Specialties

Which <u>cellular</u> standards does your smart phone cover and why? (info only)

- It all started with GSM900
 - Global System for Mobile Communication
 - 2nd generation of digital cellular networks (2G)
 - Deployed in 1987
 - 900 refers to 900MHz, the operation frequency
- In 1993 GSM900 was expanded to GSM1800
- In 1995 GSM1900 was created to allow fax, data and sms
 - Short messaging service
- In 2000 GPRS was launched
 - <u>General Packet Radio Service</u>
- In 2001 UMTS/W-CDMA was deployed
 - Not part of GSM, <u>Universal Mobile Telecommunication System</u> (3G)

Which <u>cellular</u> standards does your smart phone cover and why? (info only)

- In 2002 MMS became possible
 - <u>Multimedia Messaging Service</u>
 - GSM800 was deployed
- In 2004 EDGE was deployed
 - Enhanced <u>Datarates for GSM Evolution</u>
- In 2005 HDSPA launched to increase data rate further
 - High speed Downlink Packet Access (3.5G)
- In 2007 HSUPA launched to increase data rate further
 - High speed Uplink Packet Access (3.5G)
- In 2009 finally LTE
 - <u>L</u>ong <u>Term Evolution</u> (4G)
 - Combine GSM/EDGE with UMTS/WCDMA
 - 2013: LTE-A (LTE_Advanced)

Which <u>cellular</u> standards does your smart phone cover and why? (info only)

- So, a modern cellular phone covers LTE and to be backwards compatible also GSM
- Why? To enable high data rate in a cellular environment, i.e. large distance and with QoS
- It should be noted that the very first phones were using the 1G standard
 - Started in 1979 (Japan)
 - Analog modulation
 - AMPS (Advanced Mobile Phone System) USA
 - NMT (Nordic Mobile Telephone) Nordic countries, Netherlands

Mobile communication standards

Standard	Downlink Mbps	Uplink Mbps	Range km	Modulation	Access scheme
GSM GPRS	0.08	0.04	~26	GMSK	TDMA, FDD
GSM EDGE	0.47	0.47	~26	8PSK	TDMA, FDD
GSM EDEG Evolution	1.9	0.9	~26	32QAM	TDMA, FDD
UMTS WCDMA HSDPA	14.4	0.38	~200	CDMA	TDD, FDD, TDMA
UMTS WCDMA HSUPA	14.4	5.76	~200	CDMA	TDD, FDD, TDMA
UMTS WCDMA HSPA+	168	22	~200	64QAM,MIMO	TDD, FDD, TDMA
LTE	326	86	N.A.	OFDMA,MIMO	TDD, FDD, TDMA

LTE advanced (4G): 1 Gbps!

Which <u>connectivity</u> standards does your smart phone cover?

- Wireless Local Area Network (WLAN)
 - IEEE 802.11 family
 - Started with 11b in 1999 in 2.4 GHz band
 - Moved to 11a in 2003 in the 5 GHz band with an derivative as 11g in the 2.4 GHz
 - A step up in data rate with 11n in 2009
 - To finally 11ac in 2013 (which is defacto now in the latest phones)

Which connectivity standards does your smart phone cover?

- Wireless Personal Area Network (WPAN)
 - Bluetooth (BT)
 - Invented in 1994
 - IEEE802.15.1

Wireless connectivity standards

Standard	Data rate Mbps	MIMO	Range m	Modulation
802.11b	11	no	~26	GMSK
802.11a/g	54	no	~100	OFDM,64QAM
802.11n	150	4	~200	OFDM,64QAM
802.11ac	860	8	~200	OFDM,256QAM
Bluetooth (BT)	1	no	~100	GFSK
BT-EDR	3	no	~100	8DPSK

Increased data rate!

Which frequencies?

Which frequencies: other standards?

Communication data rates

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

Modulation schemes: general aspects

The information is in the modulation, e.g. amplitude, phase, frequency The carrier frequency does not contain the information

$$x(t) = a(t)\cos[\omega_c t + \theta(t)]$$

Important aspects of modulation:

- 1. <u>Detectability</u> (e.g. it's easier to distinguish between 0 and 1, than to distinguish between 8 different levels)
- **2. Bandwidth efficiency**: How many bits per Hz bandwidth; limits the data rate and number of users
- 3. Power efficiency

Source: Razavi, RF Microelectronics

Digital binary modulation schemes

Higher order modulation schemes

- Use 2^m levels of amplitude or phase of the digital signal to encode multiple bits at the same time Binary modulation: m=1
- Combine phase and amplitude modulation: quadrature modulation schemes, e.g. QAM-64

Bit error rate

- Ideal case: The receiver detects the same bit as was transmitted
- Real case: Noise, interference, fading, multi-path lead to detection errors
- Bit error rate (BER, P_b): Probability of an error in the detection of a singel bit

The BER depends on

- the signal to noise ratio of the received signal
- the modulation scheme

Energy per bit and received noise power

General observation:

The probablity of detecting an error is smaller when the energy per bit E_b is higher and the noise power over the required bandwidth n_0 is lower.

Energy per bit:

$$E_b = S \cdot T_b = \frac{S}{R_b}$$

Received noise power

$$N = n_0 \cdot B_{required} \iff n_0 = \frac{N}{B_{required}}$$

n₀: Noise power spectral density

$$\frac{E_b}{n_0} = \frac{S}{N} \cdot \frac{B_{required}}{R_b} \leftarrow \frac{\text{Required bandwidth}}{\text{of the receiver}}$$

Signal to noise ratio

Data rate

BER as a function of E_b/n₀

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

Receiver sensitivity

- RX sensitivity refers to the minimum received signal the receiver can still decode, i.e. extract error-free the data/voice
- Clearly noise comes into the picture as well as bit-error-rate (BER) and thus signal-to-noise ratio (SNR)

Receiver sensitivity in dBm: graphical representation

Receiver sensitivity: Equation

- The minimum power signal level
- that a system can detect
- with an acceptable SNR/BER:

$$P_{sensitivity} = P_{Rsource} + 10\log(B) + NF + SNR_{\min,out}$$

With:

P_{Rsource}: the noise of the source resistance: -174 dBm/Hz (kT) assuming an input power match.

SNR_{min,out}: the minimum SNR at the output of the front-end (e.g. at the input of the demodulator),

B: effective system bandwidth for integrating noise

Outline

- Recap
 - RF specifications
 - Gain
 - Noise Figure
 - Linearity
- Dynamic range
- System aspects & considerations
 - Standards in wireless communications
 - Modulation schemes
 - BER
 - Receiver sensitivity
 - Link budget

System perspective

Figures from Razavi, RF Transceivers

Atmospheric attenuation

Friis radio link formula

$$P_{Rx} = P_{Tx} \cdot G_{Tx} \cdot G_{Rx} \cdot \left(\frac{\lambda}{4\pi R}\right)^2$$

$$P_{Tx}$$
 - TX output power

$$G_{Tx}$$
 - TX antenna gain

$$G_{Rx}$$
 - RX antenna gain

$$P_{Rx}$$
 - Power at RX input

$$\lambda$$
 - wavelength

SNR and Shannon

 There is an upper limit on data rate (C) set by the signal to noise ration (SNR) and bandwidth (B):

$$C = B*log_2(1+SNR)$$

$$C = BW \times \log_2(1 + \frac{P_{Rx}}{N_{in}})$$

$$P_{Rx} = P_{Tx} \cdot G_{Tx} \cdot G_{Rx} \cdot (\frac{\lambda}{4\pi R})^2$$

$$N_{in} = k_b * BW * T * F$$

Exercise: Calculate the received power

Summary

Noise
$$\longrightarrow$$
 kTB, NF, T_e Limited Receiver sensitivty

Distortion \longrightarrow P_{1dB} , \longrightarrow LDR Limited SNR

 IP_2 , IP_3 \longrightarrow SFDR