Studying the effects of competition on adaptive therapy Mid Year Presentation

Harshavardhan BV (20161100) 5th Year BS-MS

Under the guidance of Prof. Sutirth Dey, IISER Pune

January 2021

Adaptive Therapy

- ightharpoonup Conventional therapy @ MTD ightharpoonup min tumour burden
- ightharpoonup Heterogenous sensitivity ightharpoonup sensitive eliminated ightharpoonup resistant population (Scott et al. 2017)
- ightharpoonup AT = lower, fluctuating dose ightarrow sensitive preserved

mCRPC

- ► System of study: Metastatic Castration-Resistant Prostate Cancer
- ► History of Adaptive therapy work (Cunningham et al. 2018)
- ► Therapy: ADT + abiraterone

Cell type	Test. dependent	Test. Producing	Mechanism
T^+	Yes	No	N/A
T^p	Yes	Yes	Cholestrol $\xrightarrow{CYP17\alpha}$ Testosterone
T-	No	No	Androgen receptor mutations

Competition between cells

- ightharpoonup AT outcome \sim competition b/w sensitive and resistant
- ► Competitive strategies through traits from cancer progression (Hanahan et al. 2011)
 - ► Higher proliferation rate
 - ► Better survival @ sub-optimal conditions
 - Lower death rate

ODE Model

- Starting point: forming expectations, parameterization for ABM
- Computationally cheap but can't capture complex behaviour
- ▶ Logistic framework with dynamic carrying capacity ~ environmental conditions
- Environment = resource = {oxygen, testosterone}

$$\frac{dy_i}{dt} = r_i y_i \left(1 - \frac{\sum_j y_j}{1 + K_{i,max} f_i(O_2) f_i(test)}\right) - \delta_i y_i \qquad (1)$$

$$\frac{dO_2}{dt} = p_{O_2} - \sum_{i} \mu_{O_2, i} y_i - \lambda_{O_2} O_2$$
 (2)

$$\frac{dtest}{dt} = p_{test} y_{TP} - \sum_{i} \mu_{test,i} y_i - \lambda_{test} test$$
 (3)

$$f_i(res) = \begin{cases} 1 & \text{if } uI_{res,i} \leq res \\ \frac{res - II_{res,i}}{uI_{res,i} - II_{res,i}} & \text{if } II_{res,i} < res < uI_{res,i} \\ 0 & \text{if } res \leq II_{res,i} \end{cases}$$
(4

$$i \in \{T^+, T^p, T^-\}$$
 and $res \in \{O_2, test\}$.

Parameters & Standardization

Some parameters directly from literature

- δ_i : Death rate (Jain et al. 2011) T^+ 2.5 × 10⁻³ min⁻¹
 - T^p 2.5 × 10⁻³ min⁻¹
 - T^- 1.6 × 10⁻⁴ min⁻¹
- $ightharpoonup \mu_{O_2,i}$: Oxygen uptake (Hail et al. 2010)
 - T^+ 1.63 × 10⁻⁶ min⁻¹cell⁻¹
 - $T^p = 1.63 \times 10^{-6} \text{ min}^{-1} \text{cell}^{-1}$
 - T^- 1.04 × 10⁻⁶ min⁻¹cell⁻¹
- $ightharpoonup \lambda_{res}$: Decay rate (Jain et al. 2011)
 - O_2 0.100 min⁻¹
 - test 0.004 min^{-1}

Parameters & Standardization

Some additional supplementary parameters

- ightharpoonup T_d: Doubling time (ATCC: The Global Bioresource Center n.d.)
 - *T*⁺ 34 hr
 - *T^p* 40 hr
 - T^- 25 hr
- ▶ y_i*: Equilibrium cell number (assumed) 10000
- ► res*: Equilibrium/Tissue resource levels (Stewart et al. 2010, Titus et al. 2005)
 - *O*₂ 2.5 mmHg
 - test 3.74 pmol/g tissue

Parameters & Standardization

Some parameters from assumptions & constraints

- r_i: Growth rate (Eq 5) T^+ 2.84 × 10⁻³ min⁻¹ T^p 2.79 × 10⁻³ min⁻¹ T^- 6.23 × 10⁻⁴ min⁻¹
- $igwedge K_{i,max}$: Maximum Carrying capacity (Eq 6) $T^+ 8.35 \times 10^4$ $T^p 9.62 \times 10^4$ $T^- 1.34 \times 10^4$
- ▶ p_{res} : Production rate (Eq 7,8) O_2 0.11 min⁻¹ test 5 × 10⁻⁷ min⁻¹cell⁻¹
- $\mu_{test,i}$: Testosterone uptake (Eq 8) T^+ 2.34 × 10⁻⁸ min⁻¹cell⁻¹ T^p 6.00 × 10⁻⁸ min⁻¹cell⁻¹ T^- 0 min⁻¹cell⁻¹
- ▶ $II_{res,i}$: Lower limit/threshold level $\in [0,1]$
- $ightharpoonup ul_{res,i}$: Upper limit/saturation level $\in [0,1]$

$$r_i = \frac{\ln(2)}{\tau_{d,i}} + \delta_i \tag{5}$$

$$K_{i,max} = \frac{r_i}{r_i - \delta_i} y_i^* \tag{6}$$

$$\rho_{O_2} = \lambda_{O_2} O_2^* + y_i^* \mu_i \tag{7}$$

$$p_{test} - \mu_{test,TP} = \frac{test^* \lambda_{test}}{y_{TP}^*} = 4 \times 10^{-4} \quad (8)$$

- 1. T^p test & O_2 limited. T^- only O_2 limited
 - ► Testosterone limitation $\sim II_{test,TP}$ and $uI_{test,TP}$

Figure: Pairwise T^p-T^- timeseries, when T^p is testosterone limited and not testosterone limited (colums) and at different initial proportions of T^p (rows)

- 1. T^p test & O_2 limited. T^- only O_2 limited
 - ► Testosterone limitation $\sim II_{test,T^p}$ and uI_{test,T^p}
- 2. $ul_{test,TP}$ low
 - T^p not severely testosterone limited
 - ightharpoonup T^p coexist or outcompete T^-
 - ► T⁻ Outcompetes in other cases

Figure: Pairwise T^p-T^- timeseries, when T^p is testosterone limited and not testosterone limited (colums) and at different initial proportions of T^p (rows)

- 1. T^p test & O_2 limited. T^- only O_2 limited
 - ► Testosterone limitation $\sim II_{test,T^p}$ and uI_{test,T^p}
- 2. $ul_{test,TP}$ low
 - Tp not severely testosterone limited
 - ightharpoonup T^p coexist or outcompete T^-
 - ► T⁻ Outcompetes in other cases
- 3. $II_{O_2,T}$ large
 - ► T⁻ strongly oxygen limited
 - ► T^p still testosterone limited
 - ► T⁻ wins eventually
 - Oxygen levels rise faster than testosterone

Figure: Pairwise T^p-T^- timeseries, when T^p is testosterone limited and not testosterone limited (colums) and at different initial proportions of T^p (rows)

- 1. T^p test & O_2 limited. T^- only O_2 limited
 - ► Testosterone limitation $\sim II_{test,T^p}$ and uI_{test,T^p}
- 2. $ul_{test,TP}$ low
 - T^p not severely testosterone limited
 - $ightharpoonup T^p$ coexist or outcompete T^-
 - ► T⁻ Outcompetes in other cases
- 3. $II_{O_2,T}$ large
 - ► T⁻ strongly oxygen limited
 - ► T^p still testosterone limited
 - $ightharpoonup T^-$ wins eventually
 - ► Oxygen levels rise faster than testosterone
- 4. Outcomes dependent on the initial proportion of T^p

Figure: Pairwise $T^p - T^-$ timeseries, when T^p is testosterone limited and not testosterone limited (colums) and at different initial proportions of T^p (rows)

1. Both cell type limited by both resource & strength of limitation of resource through limits

Figure: Pairwise T^+-T^p timeseries, when both cell types are testosterone limited and not oxygen limited and when T^+ is severly oxygen limited

Figure: Pairwise T^+-T^p timeseries, when both cell types are testosterone limited and when T^+ is limited more than T^p

- Both cell type limited by both resource & strength of limitation of resource through limits
- 2. Both severly testosterone limited
 - ► T⁺ consume & grows on limited testosterone
 - ► Density-dependent competition drive *T^p* extinct
 - No $T^p = \text{No testosterone} \rightarrow T^+ \text{ extinct}$

Figure: Pairwise T^+-T^p timeseries, when both cell types are testosterone limited and not oxygen limited and when T^+ is severly oxygen limited

Figure: Pairwise $T^+ - T^p$ timeseries, when both cell types are testosterone limited and when T^+ is limited more than T^p

- Both cell type limited by both resource & strength of limitation of resource through limits
- 2. Both severly testosterone limited
 - ► T⁺ consume & grows on limited testosterone
 - ► Density-dependent competition drive *T^p* extinct
 - No $T^p = \text{No testosterone} \rightarrow T^+ \text{ extinct}$
- 3. II_{O_2,T^p} large
 - ► *T*⁺ severly oxygen limited
 - Tp grow initially & secrete testosterone
 - ► Sustain small *T*⁺ if not extinct

Figure: Pairwise T^+-T^p timeseries, when both cell types are testosterone limited and not oxygen limited and when T^+ is severly oxygen limited

Figure: Pairwise $T^+ - T^p$ timeseries, when both cell types are testosterone limited and when T^+ is limited more than T^p

- Both cell type limited by both resource & strength of limitation of resource through limits
- 2. Both severly testosterone limited
 - T⁺ consume & grows on limited testosterone
 - ► Density-dependent competition drive *T^p* extinct
 - ▶ No T^p = No testosterone $\rightarrow T^+$ extinct
- 3. II_{O_2,T^p} large
 - ► T⁺ severly oxygen limited
 - T^p grow initially & secrete testosterone
 - ightharpoonup Sustain small T^+ if not extinct
- 4. $ul_{test,T^p} \leq ul_{test,T^+}$
 - $ightharpoonup T^p$ is weakly limited by testosterone relative to T^+
 - Both coexist
 - $ightharpoonup T^p$ grow initially & not affected by T^+

Figure: Pairwise T^+-T^p timeseries, when both cell types are testosterone limited and not oxygen limited and when T^+ is severly oxygen limited

Figure: Pairwise $T^+ - T^p$ timeseries, when both cell types are testosterone limited and when T^+ is limited more than T^p

Future Plans

- ► Testosterone limitation relaxed
- ► Oxygen limit exploration with lower ul_{test,i}
- ► Make oxygen more limiting than testosterone via production rates
- ► 3 cell-type competition
- ▶ Simulate AT regimens with therapy as $p_{test} = f(dose)$
- Replicate in ABM & Compare

References I

- [1] ATCC: The Global Bioresource Center.
- [2] Jessica J. Cunningham, Joel S. Brown, Robert A. Gatenby, and Kateřina Staňková. "Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer". In: *Journal of Theoretical Biology* 459 (2018), pp. 67–78.
- [3] Numsen Hail, Ping Chen, and Lane R. Bushman. "Teriflunomide (Leflunomide) Promotes Cytostatic, Antioxidant, and Apoptotic Effects in Transformed Prostate Epithelial Cells: Evidence Supporting a Role for Teriflunomide in Prostate Cancer Chemoprevention". In: *Neoplasia* 12.6 (2010), pp. 464–475.
- [4] Douglas Hanahan and Robert A Weinberg. "Hallmarks of cancer: the next generation". In: cell 144.5 (2011), pp. 646–674.
- [5] Harsh Vardhan Jain, Steven K. Clinton, Arvinder Bhinder, and Avner Friedman. "Mathematical modeling of prostate cancer progression in response to androgen ablation therapy". In: Proceedings of the National Academy of Sciences 108.49 (2011), pp. 19701–19706.
- [6] Jacob Scott and Andriy Marusyk. "Somatic clonal evolution: A selection-centric perspective". In: Biochimica et Biophysica Acta (BBA) Reviews on Cancer 1867.2 (2017). Evolutionary principles heterogeneity in cancer?, pp. 139–150.

References II

- [7] Grant D. Stewart, James A. Ross, Duncan B. McLaren, Christopher C. Parker, Fouad K. Habib, and Antony C.P. Riddick. "The relevance of a hypoxic tumour microenvironment in prostate cancer". In: *BJU International* 105.1 (2010), pp. 8–13.
- [8] Mark A. Titus, Michael J. Schell, Fred B. Lih, Kenneth B. Tomer, and James L. Mohler. "Testosterone and Dihydrotestosterone Tissue Levels in Recurrent Prostate Cancer". In: Clinical Cancer Research 11.13 (2005), pp. 4653–4657.