SCIENTIFIC RESEARCH METHODOLOGY:

QUANTITATIVE RESEARCH METHODOLOGY

(Data Collection, Data Analysis, Data Visualization)

WHAT IT IS? QUANTITATIVE METHODOLOGIES

- Quantitative methodology stands for systematic empirical investigation of quantitative phenomenon and properties;
- Numeric analysis and measurement are the key parts of quantitative method that state the fundamental connection between observation and analytical statement;
- Statistics, tables and graphs, are often used to present the results of these methods.
- Unit of analysis in quantitative methodology → quantity:
 - Amounts
 - Frequencies
 - Degrees
 - Values
 - Intensity

COMPARISON

QUALITATIVE

- Understand and interpret human perspective
- Less generalizable to populations
- Rich description
- Depth
- Small sample
- Selection of procedures to establish trust in the findings

QUANTITATIVE

- Comparison or correlations of population attributes
- Generalization to a populations
- Numerical summaries
- Breadth
- Large sample
- Prescribe process to establish reliability and validity

RESEARCH QUESTIONS FOR QUANTITATIVE METHODOLOGY

QUESTIONS:

- DESCRIPTIVE
 - Describe what currently exists → What is happening? How is something happening? Why is something happening?
 - E.g. How common is e-learning and e-portfolio use amongst university students?

RELATIONAL

- Addresses a relationship between the two variables or more
- E.g: What is the relationship between student's study habits to student's achievements?

CAUSAL

- Allow the researcher to draw causal inference (drawing a conclusion about a causal connection based on the conditions of the occurrence of an effect)
- E.g: What fraction of past crimes could have been avoided by a given policy?

Check it out!!!

- How does the patient profile can exhibit the cost effective on patient's treatment?
- What is the effectiveness of analyzing disease patterns and tracking disease outbreaks to improve public health surveillance and speed response?

QUANTITATIVE METHODOLOGIES: TYPES & CAUSALITY

Descriptive Normative Correlation/Association **Impact**

QUANTITATIVE METHODOLOGIES: TYPES& CAUSALITY

DESCRIPTIVE

- Summarize data (describing something (people, program) that involved in the study)
- Statistics: histograms, means, percentages
- E.g Research questions: How common is elearning and e-portfolio use amongst university students?
- can involve a one-time interaction with groups of people (<u>cross-sectional study</u>) or a study which might follow individuals over time (<u>longitudinal study</u>).

QUANTITATIVE METHODOLOGIES: TYPES & CAUSALITY

NORMATIVE

- Normative → expresses a value judgment about whether a situation is subjectively desirable or undesirable
 - · Analysis of decision situation
- How serious is the social media abuse amongst teenager students
 - Score value for each of the decision

rating	males (cm)	females (cm)
excellent	> 70	> 60
very good	61-70	51-60
above average	51-60	41-50
average	41-50	31-40
below average	31-40	21-30
poor	21-30	11-20
very poor	< 21	< 11

QUANTITATIVE METHODOLOGIES: TYPES& CAUSALITY

CORRELATION/ASSOCIATIONAL

- Only to relate variables
- Predictions only made to show that a relationship exists
- This is where test statistics (t, F, Chi-Square, Pearson coefficient) become important, along with the p-value (essentially the probability associated with the statistic)
- Statistics: Correlation Coefficient, Single/ Multiple Regression

QUANTITATIVE METHODOLOGIES: TYPES& CAUSALITY

IMPACT/COMPARATIVE

- Experimental design
- Compares two or more groups
- Looking for difference between groups
- Has the drug awareness campaign had any impact on the level of university student drug use?
- Common Statistics: t-tests, ANOVA (inferential statistics)

Group Statistics

	download3	N	Mean	Std. Deviation	Std. Error Mean
age	.00	3	34.33	5.033	2.906
	1.00	16	28.25	3.317	.829

Independent Samples Test

		Lev ene's Equality of	Test for Variances	t-test for Equality of Means						
							Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Diff erence	Diff erence	Lower	Upper
age	Equal variances assumed	.583	.456	2.715	17	.015	6.083	2.241	1.355	10.811
	Equal variances not assumed			2.013	2.337	.163	6.083	3.022	-5.278	17.445

QUANTITATIVE METHODOLOGIES -VARIABLE-

Variable

- Element that is identified in the hypothesis or research question
- Must be identified as independent or dependent
- Independent Variable
 - Manipulation or variation of this variable is the cause of change in other variables
 - Technically, independent variable is the term reserved for experimental studies
 - Also called antecedent variable, experimental variable, treatment variable, causal variable, predictor variable
- Dependent Variable
 - The variable of primary interest
 - Research question/hypothesis describes, explains, or predicts changes in it
 - The variable that is influenced or changed by the independent variable
 - In non-experimental research, also called criterion variable, outcome variable

Independent variable Dependent

RESEARCH IN QUANTITATIVE METHODOLOGY

- Correlation
- Experimental
- Survey
- Meta-Analysis
- Quantitative Case Study

CORRELATIONAL RESEARCH

- To find if the data has an observable relationship that can be further specified in terms of magnitude and/or an increase or decrease
- Correlation indicates the strength and direction of a linear relationship between variables
- Looking for:
 - Is there a relationship between two variables/data?
 - What is the direction of the relationship?
 - What is the magnitude?

Pearson's product moment coefficient correlation: -1.0 to +1.0

These relationships may show any tendency for the variables to vary consistently.

EXPERIMENTAL RESEARCH

- Research in which the investigator deliberately controls and manipulates the independent variable to observe the effect of that change on another the dependent variable.
- Compare two or more groups that are similar except for one factor or variable
- Statistical analysis of data
- Conditions are highly controlled; variables are manipulated by the researcher: "The effects of" "The influence of..."

Survey Research

- Use set of predetermined questions
- Collect answers from representative sample
- Surveys are not the same thing as Questionnaires!
 - That is, in-depth interviews, observation, content analysis could also be used in survey research.
 - Questionnaires are a specific method for obtaining a structured set of survey data.

Meta-Analysis

- Numerous experimental studies with reported statistical analysis are compared
- Distinguishes trends
- Effect size (the influence of the independent variable on the dependent variable)
 can be compared == Vargha Delaney A Statistics

Meta-Analysis

Effect size → Vargha Delaney A Statistics

Value of A	Implication
A = 0.5	No Effect (no difference in algorithms performance)
A = 0.56	Small Effect (low difference in algorithms perfor-
	mance)
A = 0.64	Medium Effect (medium difference in algorithms per-
	formance)
A = 0.71	Big Effect (big difference in algorithms performance)

Quantitative Case Study

- Also called single case design
- Describes numerically a specific case (can be group or individual)
- May test or generate hypotheses
- Results often presented with tables and graphs

QUANTITATIVE INSTRUMENT VALIDITY & RELIABILITY

Commonly used terms...

"She has a valid point"

"My car is unreliable"

"The conclusion of the study was not valid"

"The findings of the study were not reliable".

QUANTITATIVE INSTRUMENT VALIDITY & RELIABILITY

Construct Validity

Validity: whether the instrument is measuring what it is intended to measure.

Face

Validity

Does the test measure the theoretical construct which is intended to measure

- Factor analysis approach
- Hypothesis method
- Convergent and divergent

Does the test appear at face value where it is suppose to measure

Content

Validity

Whether the individual items of a test represent what you actually want to assess

The extent to which a procedure allows accurate predictions about a subject's future behavior

- the test provides a valid reflection of future performance using a similar test Predictive Validity

Concurrent Validity

VALIDITY

The extent to which a procedure correlates with the current behavior of subjects

- The test produces similar results to a previously validated test

QUANTITATIVE INSTRUMENT VALIDITY & RELIABILITY

RELIABILITY - The consistency of measurements

RELIABLE TEST - Produces similar scores across various conditions and situations, including different evaluators and testing environments

DATA COLLECTION, ANALYSIS & VISUALISATION

DATA COLLECTION

a detailed plan of procedures that aims to gather data for the purpose of answering a research question

process of *gathering* and measuring information on targeted variables in an established systematic fashion, which then enables one to answer relevant questions and evaluate outcomes.

systematic approach to gather information from a variety of sources to get a complete and accurate picture of an area of interest.

COLLECTING DATA INVOLVES:

- 1) Sources where you will get the information; and
- 2) Methods how you will collect /gather the information

SOURCE of information

From where or from whom will you get the information?

- Existing information records, reports, program documents, logs, journals
- People participants, parents, volunteers, teachers

SOURCE of information

Secondary and Primary Data:

- Secondary Data data which someone else has collected
 - Example of sources: County health departments, Vital Statistics birth, death, Hospital, clinic, school nurse records, Private and foundation databases, City and county governments, Surveillance data from state government programs
 - Limitation: what you are looking for is not there. When it is been collected? How long? Is the data set complete? Data consistent? Exists sample selection bias? Data reliable?
 - Advantage: No need to reinvent the wheel (if someone found the data, take advantage of it), save time, save money, it may accurate
- Primary Data data which you collected
 - Example of sources: surveys, experiment, simulation
 - Limitation: Do you have time and money for?, uniqueness (only subject to population studies), researcher error

DATA COLLECTION PROCEDURE & METHOD - QUANTITATIVE

- Quantitative nature:
 - produce numbers
 - more structured and allow for aggregation and generalization.
 - Harder to develop
 - Easier to analyze
- Quantitative data analysis
 - making sense of numbers
 - Using numbers to inform decision-making

QUANTITATIVE DATA TYPE

NOMINAL	 Ordering of the value has no meaning. categories(number as label). Example: Gender -> 1. Female, 2. Male Analysis: frequencies, mean, median, mode
ORDINAL	 Ranked Number allocated to a quantitative scale. Example: examination result Can be used to code answer in questionnaire. Example: 1. Strongly Disagree Analysis: ranked categories (example: satisfaction) → frequencies
INTERVAL	- Include intervals between numbers. Example: year number
RATIO	- Interval data with a true zero point

DATA ANALYSIS: STAGES IN QUANTITATIVE DATA ANALYSIS

QUANTITATIVE DATA ANALYSIS

- Common mistake!!! not everything can be quantified
- Descriptive Statistics describe about group
 - Sum total
 - How?: add all numbers
 - Mean the average of all numbers
 - How?: Add up all of the numbers and divide by total sample size
 - Median The middle number, when all of the numbers are arranged in increasing order
 - How?: Put numbers in order from least to greatest, and find the middle number. If you have an even-sized sample the median is the mean of the two middle numbers.

QUANTITATIVE DATA ANALYSIS

- Range The spread between the smallest and largest number in the sample.
 - How?: Find the smallest and largest numbers. Subtract the smallest from the largest.
- Standard Deviation A commonly used measure of how spread out individual numbers are from the median
 - How?: Take the square root of the variance
- Variance A measure of the variation in the sample, or how spread out it is. How far does each number vary from the mean?

Inferential Statistics:

- Uses methods that take a result from a sample, extend it to the population, and measure the reliability of the result.
- Making estimation & hypothesis testing to help in decision making process
- Include a level of a confidence in the result since sample cannot tells everything about a population.

Quantitative Levels of Analysis

- 1. Univariate simplest form, describe a case in terms of a single variable.
- 2. Bivariate subgroup comparisons, describe a case in terms of two variables simultaneously.
- 3. Multivariate analysis of two or more variables simultaneously.

1. Univariate Analysis

 Describing a case in terms of the distribution of attributes that comprise it.

Example:

- Gender number of women, number of men.
- You should <u>always</u> begin your analysis by running the basic univariate frequencies and checking to be sure data were entered properly

Goals:

- Provide reader with the fullest degree of detail regarding the data.
- Present data in a manageable from.
- Simple and straightforward

- Frequency distributions
- Measures of central tendency
 - Mean, Median, Mode

Descriptive Statistics

					Std.
	N	M inimum	Maximum	M ean	Deviation
Y1	20	125	230	169.45	24.52
Y2	20	10:5	135	120.50	8.92
X1	20	11	64	37.05	14.89
X2	20	11	56	29.10	14.06
Х3	20	17	79	49.35	18.62
X4	20	11	56	32,50	13.00
Valid N (listwise)	20				

2. Bivariate Analysis

- Describe a case in terms of two variables simultaneously.
 - (e.g., the relation between gender and college graduation)
- Presentation: Cross Tabulation or Correlation Coefficient
- It allows to:
 - Look at associations/relationships among two variables. (is there a line?)
 - Look at measures of the strength of the relationship between two variables. (how strong is the line?)
 - Test hypotheses about relationships between two nominal or ordinal level variables.

3. Multivariate Analysis

- Analysis of more than two variables simultaneously.
 - (e.g., the relationship between gender, race, and college graduation)
- Can be used to understand the relationship between multiple variables more fully.
- Most typical: Multiple Regression analysis and many other methods (Clustering, Principal, Discriminant Analysis etc.)

- Statistical Test: Variety of statistical test Chi Square test, T-test, z-test, Regression, ANOVA and etc.
- Significance a concept that measures the degree to which your results can be obtained due to chance.
- Level of Significance
 - expressed in percentage and indicate as p value
 - if we had a result of p = 1.00, then there would be a 100% possibility that the results were all completely by chance.
 - we want our results to be as accurate as possible, so we set our significance levels as low as possible usually at 5% (p = 0.05), or better still, at 1% (p = 0.01)

- Non Parametric Statistical Test:
 - Mann-Whitney U Test: used to test for differences between 2 independent groups on a continuous measure, e.g. do males and females differ in terms of their levels of self-esteem.
 - Spearman Rank Correlation Test: used to demonstrate the relationship between two ranked variables. Frequently used to compare judgements by a group of judges on two objects, or the scores of a group of subjects on two measures.

And others.....

DATA PRESENTATION

SUMMARIZING DATA

- Tables
 - Simplest way to summarize data
 - Data are presented as absolute numbers or percentages
- Charts and graphs
 - Visual representation of numerical data and, if well designed, will convey the general patterns of the data
 - Data are presented as absolute numbers or percentages

BASIC GUIDANCE WHEN SUMMARIZING DATA

- Ensure graphic has a title
- Label the components of your graphic
- Indicate source of data with date
- Provide number of observations (n=xx) as a reference point
- Add footnote if more information is needed

Charts and graphs

- Charts and graphs are used to portray:
 - Trends, relationships, and comparisons
 - Represent many different types of data.
- The most informative are simple and self-explanatory
- Use the right chart!!!!!
 - Bar chart: comparisons, categories of data
 - Line graph: display trends over time
 - Pie chart: show percentages or proportional share

Scatterplot

<u>Definition</u>: graph of two variables with dot to represent each observation

"Comment on the Scatterplot"

Shape: Does relationship look linear?

Outliers: Are there any unusual points?

Direction: Is linear relationship positive or negative?

Strength: Is the line strong?

THE END

Qualitative Methods Only one in 30 take the free ice cream. Interesting.. And why was that? And why was that?

THE NEXT JOURNEY...... QUALITATIVE RESEARCH METHOD