Image Captioning

Image to Caption + TTS

목차

 1
 타임테이블
 5
 트랜스포머에 사용되는 3가지 어텐션

 2
 CNN과 RNN을 이용한 이미지 캡셔닝
 6
 트랜스포머를 활용한 이미지 캡셔닝

 3
 Attention
 7
 핵심 코드

 4
 트랜스포머
 8
 결과

타임 테이블

활용 데이터

마이크로 소프트 MS COCO

마이크로 소프트에서 만든 이미지 데이터셋으로 디텍션, 이미지 분류, 이미지 캡셔닝 등 다양한 AI분야에서 활용됨 약 12만장의 train 데이터

5000 장의 validation, 약 4만장의 test 데이터

이미지 별로 평균 5개의 캡션

CNN과 RNN을 이용한 이미지 캡셔닝

Attention 메커니즘

The	The
animal	animal
didn't	didn't
cross	cross
the	the
street	street
because	because
it	it
was	was
too	too
tired	tired

어텐션	입력에 대해서 특정 부분에 주의를 기울이는 메커니즘	
Query	다른 모든 단어에 대한 사용되는 현재 단어로, 현재 처리 중인 토큰을 의미	
Key	문장의 모든 단어를 Key로 사용함	
Value	각 단어가 가지고 있는 의미나 정보를 나타냄 이를 통해 단어들 간의 관계를 이해하고 문장을 이해할 수 있게 됨	

어제, 카페, 갔었어, 거기

Source sequence

I, went, to, cafe
Target sequence

좌측 이미지 출처 : https://wikidocs.net/31379

우측 이미지 출처 : https://codingopera.tistory.com/41

Seqence-to-Sequence

Seq2Seq + Attention

Self Attention

(a) Self-Attention

어텐션	이미지나 문장에서 어떤 부분에 집중을 해야 할지	
Q, K, V	각각 Query, Key, Value를 의미	
왜 Self 인가	입력 시퀀스의 각 단어나 토큰이 자신과 다른 단어나 토큰 간의 관계를 계산하는 데 사용됨	
장점	의미파악, 위치정보 포착에 뛰어남	
단점	두가지의 정보를 결합하기 힘듬 ex) 이미지 + 텍스트	
결과	Attention Value Matrics (2차원)	

이미지 출처 : https://www.researchgate.net/figure/Comparison-between-self-attention-mechanism-and-self-attention-with-AWG-The-AWG-module_fig2_350322794

Multi-Head Attention

Scaled Dot-Product Attention

어텐션

이미지나 문장에서 어떤 부분에 집중을 해야 할지

Q, K, V

각각 Query, Key, Value를 의미

Query와 Key의 행렬곱 MatMul 행렬곱 Query가 Key와 얼마나 비슷한지를 나타내는 수치

Mask

사용해선 안될 미래 데이터, 패딩된 부분에 마스크를 시켜 어텐션 가중치를 제거함.

Multi-Head **Attention**

Scaled Dot-Product Attention을 h만큼 병렬 수행

결과

Attention Value Matrics (2차원)

^{*} Scaled Dot-Porduct Attention은 self-attention의 한 종류

Transformer

어텐션 메커니즘을 기반으로한 새로운 Architecture 트랜스 포머 자연어 처리에 뛰어남 어텐션 메커니즘을 기반으로 트랜스포머의 구조 Encoder와 Decoder가 존재 기존 RNN계열의 문제점을 해결하고 장점 훨씬 자연스러운 문장 생성 가능 **Embedding** 이미지, 텍스트 -> 벡터 Skip 어텐션 연산하기 전의 데이터와 후의 데이터를 더함 Connection 결과 Attention기반의 자연스러운 문장 생성

이미지 출처 : Attention Is All You Need 논문 3 페이지

Transformer에 사용되는 3가지 어텐션

이미지 출처: Attention Is All You Need 논문 3 페이지

트랜스포머를 사용한 이미지 캡셔닝

+ 핵심코드

CNN Encoder

이미지 출처: https://cloud.google.com/tpu/docs/inception-v3-advanced?hi=ко

Transformer Encoder

```
class TransformerEncoderLayer(tf.keras.layers.Layer):
   def __init__(self, embed_dim, num_heads):
       super().__init__()
       self.layer_norm_1 = tf.keras.layers.LayerNormalization()
       self.layer_norm_2 = tf.keras.layers.LayerNormalization()
       self.attention = tf.keras.layers.MultiHeadAttention(
           num_heads=num_heads, key_dim=embed_dim)
       self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
   def call(self, x, training):
       x = self.layer norm 1(x)
       x = self.dense(x)
       attn_output = self.attention(
            query=x,
            value=x,
           key=x,
           attention_mask=None,
           training=training
       x = self.layer_norm_2(x + attn_output)
       return x
```


Inputs 이미지 특성맵 벡터

Input Embedding

이미지 특성맵 벡터를 시퀀스와 같은 크기로 변환

Multi-Head Attention

이미지 특성맵 내에서 어디가 중요한지 파악

Feed Forward

Activation에 Relu를 사용한 Dense 레이어

Add & Norm

어텐션 연산하기 전의 데이터와 후의 데이터를 더하고 Normalization

결과

기존 이미지 특성맵 벡터 + 어텐션

이미지 출처 : Attention Is All You Need 논문 3 페이지

Transformer Decoder

```
def call(self, input ids, encoder output, training, mask=None):
   embeddings = self.embedding(input ids)
   combined mask = None
   padding mask = None
   if mask is not None:
       causal mask = self.get causal attention mask(embeddings)
       padding mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
       combined mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
       combined mask = tf.minimum(combined mask, causal mask)
   attn_output_1 = self.attention_1(
       query=embeddings,
       value=embeddings,
       key=embeddings,
       attention mask=combined mask,
       training=training
   out 1 = self.layernorm 1(embeddings + attn output 1)
   attn_output_2 = self.attention_2(
       query=out 1,
       value=encoder output,
       key=encoder output,
       attention mask=padding mask,
       training=training
   out 2 = self.layernorm 2(out 1 + attn output 2)
   ffn out = self.ffn_layer_1(out_2)
   ffn_out = self.dropout_1(ffn_out, training=training)
   ffn out = self.ffn layer 2(ffn out)
   ffn out = self.layernorm 3(ffn out + out 2)
   ffn_out = self.dropout_2(ffn_out, training=training)
   preds = self.out(ffn out)
   return preds
```


이미지 캡셔닝의 구조

이미지 출처 : https://www.tensorflow.org/text/tutorials/image_captioning?hl=en

결과

감사합니다