Lista 1 - Projeto e Análise de Algoritmos - 2017s2

- 1. Para comparação de problemas com custos conhecidos em função de *n*, pede-se:
 - (a) Suponha que estamos comparando implementações dos algoritmos de ordenação *insertion sort* e *merge sort* em uma mesma máquina. Para entradas de tamanho n, o *insertion sort* executa com custo total de $8n^2$, enquanto o *merge sort* executa com custo $64n \lg n$. Para quais valores de n o *insertion sort* supera o *merge sort*?
 - (b) Qual é o menor valor de n para o qual um algoritmo, cujo tempo de execução é $100n^2$, executa mais rápido que um algoritmo cujo tempo de execução é 2^n ? (revisado em 06-set)
- 2. Em relação a crescimento de funções, pede-se:
 - (a) Para cada função f(n) e tempo t na tabela seguinte, determine o maior tamanho n de um problema que pode ser resolvido no tempo t, assumindo que o algoritmo para resolver o problema leve tempo f(n) nanossegundos (10^{-9} segundos).

f(n)	npo t	1 segundo	1 minuto	1 hora	1 dia	1 mês	1 ano	1 século
nanossegundos								
lg <u>n</u>								
\sqrt{n}								
n								
n lg n								
n^2								
n^3								
2 ⁿ								
n!								

(b) Considerando a seguinte lista de funções, ordene-as (da menor para a maior) em relação a taxa de crescimento, de modo que, se a função g(n) segue imediatamente a função f(n) em sua lista, então deveria ser o caso de $f(n) \in O(g(n))$.

$$f_1(n) = n^{2,5}$$

$$f_2(n) = \sqrt{2n}$$

$$f_3(n) = n + 10$$

$$f_4(n) = 10^n$$

$$f_5(n) = 100^n$$

$$f_6(n) = n^2 \log n$$

(c) Em cada um dos itens abaixo, indique se $f(n) \in O(g(n))$ ou $f(n) \in \Theta(g(n))$ ou $f(n) \in \Omega(g(n))$. (revisado em 19-set)

 $\frac{g(n)}{\frac{n}{\log n}}$ $(\log n)^3$ $5^{\lg n}$ 3^n 2^{n+1} 2^n $2^{(\lg n)^2}$

	f(n)	g(n)		f(n)
(a)	n - 100	n - 200	(i)	$(\log n)^{\log n}$
(b)	$n^{\frac{1}{2}}$	$n^{\frac{2}{3}}$	(j)	\sqrt{n}
(c)	$100n + \log n$	$n + (\log n)^2$	(k)	$n^{\frac{1}{2}}$
(d)	$n \log n$	$10n \log 10n$	(1)	$n2^n$
(e)	log 2n	$\log 3n$	(m)	2^n
(f)	$10\log n$	$\log(n^2)$	(n)	n!
(g)	$\frac{n^2}{\log n}$	$n(\log n)^2$	(o)	$(\log n)^{\log n}$
(h)	$\frac{\log n}{n^{0,1}}$	$(\log n)^{10}$,

- 3. Prove as seguintes séries por indução matemática: (revisado em 11-set)
 - (a) $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
 - (b) $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
 - (c) $\sum_{i=1}^{n} (2i-1) = n^2$
 - (d) $\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$, $n \ge 1$
- 4. Resolva as seguintes recorrências por meio do **método de iteração** ou **expansão telescópica**, e faça a prova, por indução, da fórmula fechada:
 - (a) T(1) = 0 ; T(n) = T(n-1) + c ; c constante e n > 1
 - (b) T(1) = 0 ; $T(n) = T(n-1) + 2^n$
 - (c) T(1) = k ; T(n) = cT(n-1) ; c, k constantes e n > 0
 - (d) T(1) = 1; T(n) = 3T(n/2) + n; para n > 1
 - (e) T(1) = 1 ; $T(n) = T(\sqrt{n}) + \log_2 n$; para $n \ge 1$
 - (f) T(1) = 1 ; T(n) = 8T(n/2) + n
 - (g) T(1) = 1 ; T(n) = T(n/3) + n
 - (h) T(1) = 1 ; T(n) = 7T(n/4) + n
 - (i) T(1) = 1 ; $T(n) = T(n/4) + n^2$
 - (j) T(1) = 1 ; $T(n) = 3T(n/4) + n^2$
 - (k) T(1) = 1 ; $T(n) = 4T(n/2) + n^2 \lg n$
- 5. Use o **teorema mestre** para determinar o tempo de execução dos algoritmos expressos pelas recorrências abaixo:
 - (a) $T(n) = T(n/2) + \Theta(1)$
 - (b) $T(n) = 2T(n/2) + n^3$
 - (c) T(n) = T(9n/10) + n
 - (d) $T(n) = 16T(n/4) + n^2$
 - (e) $T(n) = 7T(n/3) + n^2$
 - (f) $T(n) = 7T(n/2) + n^2$
 - (g) $T(n) = 2T(n/4) + \sqrt{n}$
 - (h) $T(n) = 3T(n/2) + n \log n$
 - (i) $T(n) = 4T(n/2) + n^2\sqrt{n}$
 - (j) $T(n) = 27T(n/3) + n^3$
 - (k) $T(n) = 64T(n/4) + n^2$
 - (1) $T(n) = 4T(n/2) + n^2 \log n$
- 6. Use o **método de árvore de recursão** para determinar o tempo de execução dos algoritmos expressos pelas recorrências abaixo:
 - (a) $T(n) = 2T(n/2) + \Theta(n)$ (merge sort)
- (d) $T(n) = 2T(n/2) + \Theta(n^2)$

- (b) $T(n) = 3T(|n/2|) + \Theta(n)$
- (c) $T(n) = 4T(\lfloor n/2 \rfloor) + \Theta(n)$

(e) $T(n) = 2T(n/3) + \Theta(n)$

- 7. Suponha que, para entradas de tamanho *n*, você tenha que escolher um dentre três algoritmos *A*, *B* e *C*.
 - (a) Algoritmo A resolve problemas dividindo-os em cinco subproblemas de metade do tamanho, recursivamente resolve cada subproblema e então combina as soluções em tempo O(n).
 - (b) Algoritmo B resolve problemas dividindo-os em dois subproblemas de tamanho n-1, recursivamente resolve cada subproblema e então combina as soluções em tempo O(1).
 - (c) Algoritmo C resolve problemas dividindo-os em nove subproblemas de tamanho n/3, recursivamente resolve cada subproblema e então combina as soluções em tempo $O(n^2)$.

Qual o consumo de tempo de cada um desses algoritmos? Expresse as suas respostas em termos da notação *O*, mas procure dar as respostas com funções para limites superiores mais próximos possíveis. Qual algoritmo é assintoticamente mais eficiente no pior caso? Justifique as suas respostas.

- 8. Para os algoritmos abaixo, pede-se:
 - (a) Quantas linhas, em função de n, em forma de $\Theta(\cdot)$, o seguinte programa imprime? Escreva e resolva a recorrência. Considere n como uma potência de 2.

```
FUNÇÃO f(n)

1: se n > 1 então

2: imprime linha ("ainda rodando")

3: f(n/2)

4: f(n/2)
```

(b) Considere dois números inteiros n e r como argumentos, sendo $n \ge 0$ e $r \ge 0$. Qual o número de vezes que a subrotina CAIXA-PRETA é chamada pelo algoritmo ALGO? Expresse esse número como função de n e r e justifique a sua resposta.

```
ALGO(n,r)

1: se n = 0 então

2: CAIXA-PRETA(n,r)

3: devolve 1

4: k \leftarrow r \times \text{ALGO}(n-1,r)

5: para i \leftarrow 1 até k faça

6: CAIXA-PRETA(n,i)

7: devolve k
```

- 9. A MEDIANA(A) é um algoritmo que devolve o i-ésimo menor valor, sendo $i = \lfloor \frac{n+1}{2} \rfloor$ (mediana inferior) ou, se preferir, $i = \lceil \frac{n+1}{2} \rceil$ (mediana superior), de um dado vetor A de n elementos. (revisado em 15-out)
 - (a) Implemente duas versões deste algoritmo em qualquer linguagem de programação:

```
- versão 1: em tempo \Omega(n \log n)
- versão 2: em tempo médio O(n)
```

(b) (OPCIONAL – pontuação extra) Implemente duas versões do filtro de mediana, considerando os dois algoritmos desenvolvidos no item (a), para matrizes bidimensionais $m \times n$ de inteiros $0 \le f(i,j) \le 255$, sendo $0 \le i < m$, $0 \le j < n$, supondo janela de filtro com vizinhança parametrizável de $p \times q$, sendo $0 \le i < m$ e $0 \le j < n$. A técnica, exemplos e código (em C) podem ser consultados no seguinte documento: https://www.ime.usp.br/~reverbel/ccm118-12/eps/ep4.pdf Avalie o tempo de execução real (por exemplo, em segundos) das duas versões implementadas do filtro para uma matriz (imagem) suficientemente grande ($0 \le 640 \times 480$ pixels) e para diferentes escolhas de $0 \ne q$ (por exemplo, $0 \le j \le n$).