DATA SHEET
22 July 2011
Version 1.0

TABLE OF CONTENTS

1.0	Block Diagram	5
2.0	Electrical Characteristics.	6
3.0	Device Terminal Functions	10
4.0	Example Application Schematic.	12
5.0	Package Dimensions.	13
6.0	Layout Guidelines	14
7.0	Contact Information	15

DESCRIPTION:

BTM-68D is the latest generation of bluetooth Module. It provides highest level of integration

With integrated 2.4GHz radio, DSP, battery Charger, stereo codec, and antenna ready.

Mono and stereo audio applications.

BTM-68D is also ready to support the latest

Bluetooth 2.1 standard and support for secure

Simple pairing.

FEATURES:

Plug n' Play Bluetooth Solution for mono and Stereo Audio Solutions

Integrated DSP, Stereo Codec , and Battery Charger

Integrated Antenna

Bluetooth 2.1+EDR Compliant

Class II Range up to 10 Meters

Temperature range from -30C to +85C

Low Power Consumption

Supported Bluetooth Profiles: A2DP, AVRCP, HFP, HSP

Supported 5-band EQ

High-quality Audio 95dB SNR on DAC Playback

APPLICATIONS:

High quality wireless stereo headsets

Wireless mono headsets

Wireless speakers

Hands-free car kits

REVISION HISTORY

Version	Comment	Custom	Date
1.0	Preliminary Datasheet		07/2011

1.0 Block Diagram

Figure 1: Block diagram of BTM-68D

2.0 Electrical Characteristics

Recommended operating conditions

	Min	Тур	Max	Unit
Operating temperature	-20	20	70	#
VDD_BAT	3.0	3.8	4.2	V
VDD_CHG	4.5	5	6.5	V
VDD_IO	1.7	1.8	1.95	V

 Table 1:Recommended operating conditions

Battery charger

Charger Mode(BAT_P rising	Min	Тур	Max	Unit	
Supply current(a)		4.5	6	mA	
Battery trickle charge current(b)			4		mA
Maximum battery fast charge current (I-CTRL = 15)(c) (d)	Headroom(e) > 0.7V		140		mA
	Headroom = 0.3V	-	120		mA
Minimum battery fast charge	Headroom > 0.7V		40		mA
current $(I-CTRL = 0)(c)(d)$	Headroom = 0.3V		35		mA

Trickle charge voltage threshold		2.9		V
Float voltage (with correct trim value set), VFLOAT (f)	4.10	4.15	4.2	V
Float voltage trim step size(f)		50		mV
Battery charge termination current, % of fast charge current	5	10	20	%

- (a) Current into VDD_CHG does not include current delivered to battery (IVDD_CHG IBAT_P)
- (b) BAT_P < trickle charge voltage threshold
- (c) Charge current can be set in 16 equally spaced steps
- (d) Trickle charge threshold < BAT_P < Float voltage
- (e) Where headroom = VDD_CHG BAT_P
- (f) Float voltage can be adjusted in 15 steps. Trim setting is determined in production test and must be loaded into the battery charger by firmware during boot-up sequence

Table 2: Battery charger characteristics

Reset

	Min	Тур	Max	Unit
$V_{{\scriptsize TH,res}}$ threshold voltage	0.65	0.85	1.50	V
Rires input resistance		220		Kohm
Cires input capacitance		220		nF

Table 3: Reset terminal characteristics

The RESET pin is an active low reset and is internally filtered using the internal low frequency clock oscillator. A reset will be performed between 1.5 and 4.0ms following RESET being active. It is recommended that RESET be applied for a period greater than 5ms. This module has an internal reset circuitry ,when this module input 5V charging voltage, Module reset once.

The capacitor discharges through 220 k resistor, which eventually deactivates the reset. Time constant of the RC circuitry is set in a way that the supply voltage is safely stabilized before the reset deactivates.

Figure 2: BTM-68D reset circuitry

MUTE

BTM-68D can output a high level to control the amplifier mute. When bluetooth normal working, Module output high level to control the amplifier open. Standby, Module output low level to control the amplifier off.

Figure 3: BTM-68D Mute contorl circuitry

3.0 Device Terminal Functions

Lead	name	Fun ction	Description
1	PIO[0]	PIO port	Programmable input/output line
2	PIO[1]	PIO port	Programmable input/output line
3	PIO[2]	PIO port	Programmable input/output line
4	PIO[3]	PIO port	Programmable input/output line
5	PIO[9]	PIO port	Programmable input/output line
6	PIO[11]	PIO port	Programmable input/output line
7	PIO[12]	PIO port	Programmable input/output line
8	PIO[13]	PIO port	Programmable input/output line
9	PIO[14]	PIO port	Programmable input/output line

2:0:0100	th Audio Module		
10	PIO[5]	PIO port	Programmable input/output line
11	1V8	1.8V POWER	Positive supply for 1.8V regulated output
12	GND	GND	Ground
13	GND	GND	ground
14	PIO[4]	PIO port	Programmable input/output line
15	RST#	Reset	Logic low reset
16	MOSI	SPI interface	SPI data input
17	CLK	SPI interface	SPI Clock
18	CSB	SPI interface	Chip select for SPI
19	MISO	SPI interface	SPI data output
20	GND	GND	Ground
21	LED[0]	Status	LED driver
22	LED[1]	Status	LED driver
23	VREG	POWER ON/OFF	Moudle power on/off active high
24	BAT_IN	Power Input	Lithium ion/polymer battery positive terminal.
25	5V+	5V-charger	Lithium ion/polymer battery charger input
26	MIC_BIAS	MIC power	Microphone bias
27	MIC+	MIC input	Microphone input
28	AGND	AGND	Analogue ground
29	L-	L-	Speaker output, channel L negative
30	L+	L+	Speaker output, channel L positive
31	R-	R-	Speaker output, channel R negative
32	R+	R+	Speaker output, channel R positive

4.0 Example Application Schematic

5.0 Package Dimensions

Unit: mm

6.0 Layout Guidelines

6.0.1 Audio Layout

Route audio lines as differential pairs. The positive and negative signals should run parallel and close to each other until they are converted to single-ended signals. Use dedicated audio ground plane for entire audio section.

6.0.2 Antenna Design

Do not place GND plane or any metal directly under the antenna of module. To avoid any excess parasitic capacitance in the antenna feed line caused by the RF test pin on the bottom side of the module, the area underneath the RF test pin should also be left free from copper. Any metal in close proximity of the antenna will have an effect on the antenna performance. Thus any metal should be placed as far from the antenna as possible. The module should be placed to an edge of the PCB.

