Diffusion Model

•••

Kayo Christian, Vallaeys Théophane, Wemaere Maximilien

Working principle of the diffusion model

- Inspired by thermodynamics
- Based on learning how to noise to be able to denoise
- The concept is also borrowed from Markov Chains
- Originally proposed by Solh-Dickstein in 2015

U-net vs Autoencoder vs VAE

Different schedulers

FID:

Linear: 41.43

Quadratic: 85.88

Cosine: 215.80

Sigmoid: 95.74

Embedding of the number to generate / Discriminator

Faster image sampling

DDIM

Idea : instead of sampling using $q(x_{t-1}|x_t)$

we will predict x_0 and arepsilon ($q(x_0|x_t)$) and then $q(x_{t'}|x_0,arepsilon)$

Reducing T

Training with $\overline{T_{large}}$ Only predicting T_{small} steps

Adding variance to the sampling process

$$\mu_{t-1} = \mu_{pred}(\mu_t) + \sigma_t \varepsilon_t'$$

$$\sigma_t = \sqrt{ ilde{eta}_t}$$
 | O | 1 | 2 | 3 | 4 | O | FID:17.46

Conclusion and further research

Using the FID with a pre-trained InceptionV3 network was not reflective on sample quality on MNIST: **should be fine-tuned**.

Variance was not taken into account: may be learned.

Unstable results between two experiments, with large differences in the results: **should be investigated further**.

Denoising result was basically settled from the first step. Should use a better noise scheduling, or another noising method (gaussian blur, or noise inside a VAE latent space).