OPERAÇÕES UNITÁRIAS I

PROFª KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 14

5.3 Peneiradores Industriais

PENEIRAMENTO

Operação de separação de uma população de partículas em duas ou mais frações de tamanhos diferentes, mediante a comparação de seu tamanho com um gabarito de abertura fixa e prédeterminada.

Processo probabilístico. Cada partícula tem apenas as possibilidades de passar ou de ficar retida.

PENEIRAMENTO

PRINCIPAIS OBJETIVOS:

- □ Evitar a entrada de partículas finas (undersize) em um dado equipamento como por exemplo um britador, aumentando sua eficiência e/ou capacidade;
- □ Evitar que o material retido (oversize) passe para os estágios subseqüentes, como por exemplo em britadores em circuito fechado e em operações de moagem;
- □ Preparar um produto final com o tamanho de partícula definido pela especificação como por exemplo produtos de pedreiras.

OPERAÇÃO:

- ☐ A seco: quando é feito com o material na sua umidade natural (que não pode, entretanto, ser muito elevada)
- □ A úmido: quando o material é alimentado na forma de uma polpa ou recebe água adicional através de sprays.
- A faixa de tamanhos submetidos ao peneiramento vai desde 18" (0,46 m) a 37 μm.

PENEIRAMENTO

Eficiente se:

Transportar partículas de uma extremidade à outra

Promover a estratificação

Fazer a seleção por tamanho de acordo com o gabarito

Área suficiente para o leito permanecer na tela até que todas as partículas tenham chance de serem comparadas com o gabarito.

O transporte depende do movimento da peneira: promover um impulso a cada partícula, capaz de levantá-la e lançá-la 1 a 1½ aberturas a frente.

Fatores que afetam a estratificação:

- Espessura da camada;
- ☐ Tipo de vibração da peneira;
- Inclinação da peneira;
- Frequência e amplitude do movimento da peneira;
- Umidade superficial das partículas.

Variáveis que afetam o Peneiramento

Área, forma da malha e Inclinação (horizontal ou inclinada)

Ângulo de incidência na alimentação

Vibração: intensidade e frequência

Tipo: estacionário ou móvel

Propriedades: ρ , ϵ , ϕ , abrasividade, potencial elétrico, umidade, %argila

% sólidos com dp próximo da abertura da malha

Fluxo de alimentação e espessura da camada

Tipos de Peneiradores

VELOCIDADE DE TRANSPORTE DE MATERIAL

Tipo de peneira	Velocidade m/min.
Peneira horizontal de movimento linear	12 - 15
Peneira inclinada a 20 graus, de movimento circular (classificação graúda)	30 - 35
Peneira inclinada a 20 graus, de movimento circular (classificação final)	25 - 30
Peneira banana CBS de inclinação variável com movimento circular	Início: 45 — Descarga: 25
Peneira banana de alta inclinação e movimento circular	Início: 60 — Descarga: 20-30
Peneira F - para finos, de alta freqüência e movimento linear	9 - 10

GUIA DE SELEÇÃO DE PENEIRAS EM FUNÇÃO DA APLICAÇÃO

Serviço	Tamanho máx. de alimentação mm (pol.)	Separação mm (pol.)	Tipo de peneira aplicável	Faixa de capacidade m³/h
Pré classificação	1200 (48")	100 a 300 (4" - 12")	Grelhas inclinadas de movimento circular (Grelhas M)	150 - 3000
Classificação graúda intermediária	400 (16")	50 - 200 (2" - 8")	Peneiras inclinadas de movimento circular (Peneiras M e XH)	300 - 1500
Classificação média	250 (10")	3 - 100 (1/8" - 4")	Peneiras inclinadas e banana de movimento circular ou linear (Incl. SH - Banana CBS; modular MSH - Banana BS)	100 - 800
Classificação fina	eão 200 (8") 3 - 50 (1/8" - 2")		Peneiras inclinadas e banana de movimento circular ou linear (Incl. SH - Banana CBS; Horizontal LH - Modular MLH)	50 - 400
Classificação extra fina			Peneiras horizontais de movimento linear (Peneiras Horizontais F)	10 - 40
Desaguamento	13 (1/2")	N.A. malha inicial 0,5 mm	Peneiras com inclinação ascendente de movimento linear (Desaguadora D - Modular MLH)	100 - 250

Grelhas

- ☐ Conjunto de barras metálicas justapostas uma às outras: inclinadas ou horizontais, vibratórias ou estacionárias
- ☐ Abertura: entre 10 e 50 mm.
- Inclinação das grelhas (α) situa-se entre 0 e 50°
- ☐ Fator de projeto da ordem de 2 t/h.m2
- ☐ Adequada amplitude e freqüência de vibração,
- □ proporcionam alta capacidade de produção e evitam o entupimento dos trilhos;
- ☐ Grelhas e peneiras fixas tem eficiência <50%

Grelhas fixas

- ☐ inclinadas 35° a 45° na direção de fluxo
- ☐ Usadas em circuitos de britagem para separação de blocos de 7,5 a 0,2 cm
- ☐ Separação a seco
- ☐ Eficiência ~ 60% não há estratificação

Grelhas vibratórias

- ☐ Sua superfície está sujeita a vibração.
- ☐ São utilizadas antes da britagem primária quando, no escalpe da alimentação do britador (fração de finos maior que 30%).

Peneiras Vibratórias Horizontais

Fixas (estacionárias) ou Móveis (Vibratórias ou rotativas)

Horizontais (0,2 a 0,3 m/s) ou Inclinadas (0,3 a 0,6 m/s)

Via seca (até 1,7 mm) ou via úmida (até 250μm)

Movimento vibratório praticamente retilíneo, num plano inclinado em relação à superfície de peneiramento Capacidade 40% da peneira vibratória inclinada.

Faixa de operação:

Seco: 2½ a 1/8 polegadas Úmido: 2½ a 48 # (296 µm) Menor entupimento das telas.

Velocidade de transporte: 12 m/min.

Limites práticos de operação:

A eficiência é tão baixa que têm sido frequentemente utilizadas como desaguadoras. As peneiras desaguadoras são utilizadas na saída de classificadores espirais e pós-estágios terciário e quaternário de peneiramento, onde houver adição de água. A função básica é recuperar os finos de produtos presentes na polpa.

Peneiras Vibratórias Inclinadas

Movimento vibratório circular ou elíptico neste mesmo plano. Caracterizado por impulsos rápidos, normais à superfície, pequena amplitude (1,5 a 25 mm) e de alta frequência (600 a 3600 movimentos por minuto), sendo produzidos por mecanismos mecânicos ou elétricos.

Faixa de operação:

- ☐ Capacidade: 50 a 200 t/m²/mm de abertura/24h
- movimento alternado no mesmo plano da tela
- ☐ Inclinação de 15 a 35°
- ☐ Velocidade de transporte de 0,3 a 0,6 m/s

Inclinação pode ser variada (tipo banana):

A inclinação inicial de 25 a 30°, diminui na parte central para 10 a 15°, chegando a valores entre 0 e 5°.

A mudança de inclinação diminui a velocidade de transporte e a quantidade sobre a tela, mantendo a camada de material em nível otimizado.

Peneiras Rotativas (Trommel)

Superfície de peneiramento cilíndrica ou ligeiramente Alimentação

cônica, que gira em torno do eixo longitudinal.

O eixo possui uma inclinação que varia entre 4° e 10°, zero Podem ser operadas a úmido (adicionando água) ou em umidade natural ("a seco").

A velocidade de rotação fica entre 35 - 40%VC

Vantagens: De simples construção e operação, baixo custo de aquisição e durabilidade.

Aplicações: Lavagem e classificação de cascalhos e areias; peneiras de proteção para os separadores e concentradores magnéticos, evitando entupimentos

Eficiência (η):

↑η ↓inclinação ↑tempo residência ↓ P [t/h]

†η †Área perfurada †Comprimento L †Diâmetro

Peneiras Fixas DSM (Dutch State Mines)

Equipamentos de alta capacidade

Superfície côncava formada por barras na forma de cunha.

A concavidade da tela cria forças centrífugas que facilitam o contato da suspensão contra a sua superfície.

As telas possuem barras com ranhuras orientadas perpendicularmente a passagem de material.

Camadas sucessivas e adjacentes de líquido passam entre as ranhuras arrastando as partículas pequenas para o compartimento undersize.

Operação e Aplicações:

- ☐ desaguamento de suspensões;
- ☐ circuito fechado de moagem quando a granulometria do produto é grossa;
- peneiramento a úmido de materiais finos até 50 μm;
- ☐ diâmetro de corte depende da % de sólido da polpa;
- □ elevada capacidade (100 m3/h por metro de largura de leito para abertura de 1,0 a 1,5 mm).

QUANTIFICAÇÃO DO PROCESSO

Eficiência (η):

$$\eta = \frac{t / h \text{ no } undersize}{t / h \text{ de passante em A}} \cdot 100$$

$$\eta = \frac{64,5}{40 + 20 + 20 + 10} \cdot 100 = 71,7\%$$

É o que deveria passar e não passou. Por faixa de tamanho

Exemplo: Seja o peneiramento de A=200 t/h na tela de 2" com a seguinte distribuição de tamanho na alimentação (% retida):

malha	4"	2"	1"	0,5"	1/4"	<1/4"	Total
%	25	30	20	10	10	5	100
A [t/h]	50	60	40	20	20	10	200
retido	4"	2"	1"	0,5"	1/4"	<1/4"	Total
%	36,9	44,3	3 14	4,4	0	0,4	100
O [t/h]	50	60	19	6	0	0,5	135,5
passante	4"	2"	1"	0,5"	1/4"	<1/4"	Total
%	0	0	32,6	21,7	31	14,7	100
U [t/h]	0	0	21	14	20	9,5	64,5

Imperfeição (I)

Param.	4"	2"	1"	0,5"	1/4"	<1/4"
(I)	100	100	47,5	30	0	5

DIMENSIONAMENTO

Em uma operação de classificação e peneiramento, de malha ou abertura "a", dizemos que só irão passar partículas "K.a", sendo K um fator de redução, tal que:

- \square Se 0 < K < 0,5, as partículas passam livremente;
- ☐ Se 0,5<K<0,85, as partículas passam com dificuldade
- ☐ Se 0,85<K<1,00, o material praticamente não passa pela abertura (fração crítica de separação).

Considerações importantes e independentes a serem atendidas:

- 1- Área necessária para a passagem do *undersize* deve ser provida;
- 2- Para haver estratificação satisfatória do leito é necessário assegurar que, na descarga, altura do leito seja no máximo quatro vezes a abertura da tela (na realidade esta altura máxima varia em função da densidade do minério).

DIMENSIONAMENTO DE GRELHAS VIBRATÓRIAS

Segundo Catálogo da Faço, a área S [m²] da grelha necessária para a separação é :

$$S = \frac{P}{A \cdot B \cdot C}$$

P= quantidade de material passante pela grelha [m³/h];

A= capacidade básica [(m³/h)/m²], função da abertura entre os trilhos:

B= fator de correção para a porcentagem de material maior que a abertura da grelha:

material que não passa (%)	20	30	40	50	60	70	80	
В	1,2	1,1	1,0	0,90	0,85	0,80	0,75	-

C= Fator de correção para a eficiência desejada, conforme:

Para grelhas estacionárias:

$$A[m^{2}] = \frac{t/h}{1,5 \cdot abertura[mm]}$$

DIMENSIONAMENTO DE PENEIRAS

Fórmula de Bauman:

$$S = \frac{V}{V_1 \cdot k_1 \cdot k_2 \cdot k_3 \cdot k_4} \begin{tabular}{l} S= \'area [m^2], \\ \lor= vaz\~ao de alimentaç\~ao [m^3/h]; \\ \lor_{1} = capacidade unit\'aria [(m^3/h)/m^2], funç\~ao da abertura da malha: abertura da abertura da$$

abertura da malha (mm)	2	3	5	7,5	10	15	20	25	30	40	50	75	100
V ₁	5,5	7	11	16	19	24	28	31	34	38	42	53	64

k₁= coeficiente relativo à proporção de passante na alimentação:

% passante	30	40	50	60	70	80	90
k ₁	0,75	0,80	0,90	1,00	1,15	1,30	1,50

k₂= Coeficiente proporcional à umidade da alimentação (material seco (1,0), e material úmido (0,45 a 0,5)

k₃= Coeficiente para peneiramento via úmida (1,5 a 1,6) ou via seca (1,0)

 k_{\perp} = Coeficiente de forma da partícula (1 para redondas e 0,8 para cubos e lamelas)

DIMENSIONAMENTO DE PENEIRAS

Fórmula de Westerfield: Para peneiras usadas na britagem primária

$$C = \frac{c}{M \cdot K \cdot Q}$$

C= Capacidade, t/ft2;

c= capacidade unitária [st/ft²], função da abertura da malha:

malha (")	1 1/2	2	2 1/2	3	4	5	6	7	8
С	6,2	7,1	8,0	9,2	11,0	13,0	14,8	16,6	17,6

M= fator proporcional à quantidade de oversize na alimentação:

% oversize10	20	30	40	50	60	70	80	90
M	0,94	0,97	1,03	1,09	1,18	1,32	1,55	2,00 3,36

K= fator relativo à proporção de passante na meia malha, na alimentação:

Q= Densidade aparente da alimentação (lb/ft³)

Fórmula Da Smith Engineering Works: Para peneiras inclinadas

$$S = \frac{P}{A \cdot B \cdot C \cdot D \cdot E \cdot F}$$

S= área da tela [m2]

P= quantidade de material passante pela tela [t/h];

A= capacidade básica [(t/h)/m²]

B= fator relativo à quantidade de material retido na tela:

%	10	20	30	40	50	60	70	80	85	90	92	94	96	98	100
В	1,05	1,01	0,98	0,95	0,90	0,86	0,80	0,70	0,64	0,55	0,50	0,44	0,34	0,30	_

C= Fator relativo à eficiência desejada no peneiramento

eficiência (%)	60	70	75	80	85	90	92	94	96	98	
C ·	2,1	1,7	1,55	1,40	1,25	1,10	1,05	1,00	0,95	0,90	

D= Fator relativo à % de material menor que a meia malha

E= Fator relativo à umidade do material

F= Fator relativo ao deck em consideração

OBSERVAÇÃO: Para peneiras horizontais, deve-se aumentar a capacidade unitária em 40%.

Fator A - capacidade da tela, [(t/h)/m²] - para material com den sidade aparente 1,6 t/m³ e telas com 60% de área livre

abertura # ou "	mm	areia natural e pedregulho	pó e pedra britada	carvão
40#	0,297	1,4	1,2	0,9
35#	0,420	1,8	1,5	1,1
28#	0,595	2,3	1,9	1,4
20#	0,841	2,8	2,3	1,8
14#	1,19	3,6	3,0	2,3
10#	1,68	4,5	3,7	2,8
8#	2,38	5,7	4,7	3,6
1/8"	2,94	6,9	5,6	4,3
6#	3,36	7,3	5,9	4,5
4#	4,76	9,0	7,5	5,7
1/4"	6,68	10,8	8,8	6,8
3/8"	9,42	14,0	11,9	8,8
1/2"	13,33	16,8	14,0	10,4
5/8"	15,85	19,4	16,0	12,1
3/4"	18,85	21,6	18,0	13,6
7/8"	22,43	23,6	19,6	14,8
1"	26,64	25,6	21,2	16,0
1 1/4"	32,0	29,0	24,0	18,3
1 1/2"	38,1	32,0	26,8	20,0
2"	50,8	37,0	31,0	23,1
2 1/2"	64,0	40,5	33,8	25,3
3"	76,1	43,0	36,0	26,9
4"	101,6	46,5	38,6	29,1
5"	128,2	49,0	40,7	30,6

Fator D x % material menor que a metade da tela										
% < meia malha	10	20	30	40	50	60	70	80	90	100
D	0,55	0,70	0,80	1,0	1,2	1,4	1,8	2,2	3,0	-

Fator E x malha da tela para materiais molhados (umidade superior a 10%)

malha -20# +20#-1/32" +1/32-1/16" +1/16-1/8" +1/8-3/16" +3/16-5/16" +5/16-3/8" +3/8-1/2"

malha (mm) 0,8 0,8-1,6 1,6-3,2 3,2-4,8 4,8-7,9 7,9-9,5 9,5-12,7

1,75

1,90

2,10

2,5

1,50

Fator F	x deck d	e peneiramen	to		
	nível	superior	2⁰	3⁰	40
	F	1,0	0,9	0,75	0,6

Fórmula Manual Faço:

$$S = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{Q = \text{quantidade de material na alimentação}} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_4 \cdot f_5} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_4 \cdot f_5} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_4 \cdot f_5} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_5} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_5} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_5} \\ = \frac{Q}{A \cdot f_1 \cdot f_3 \cdot f_5} \\ = \frac{Q}{A \cdot f_1 \cdot f_3} \\ = \frac{Q}{A \cdot f_1 \cdot f_3} \\ = \frac{Q}{A \cdot f_3} \\ = \frac{Q}{A \cdot f_1 \cdot f_$$

f1= Fator relativo à % de material na alimentação, maior que a malha de peneiramento.

f2= Fator relativo à % de material na alimentação, menor que a meia malha de peneiramento.

f3= Fator relativo ao tipo de abertura da tela;

f4= Fator relativo ao formato das partículas;

f5= Fator relativo malha do peneiramento via úmida;

f6= Fator relativo umidade da alimentação no peneiramento a seco;

f7= Fator relativo ao deck (superior, 2º deck ou inferior)

f8= Fator relativo % de área aberta da tela.

Fórmula Manual Faço (pg 5-17):

Capacidade unitária [(m³/h)/m²]

Fórmula Manual Faço:

	TABELA 7 - Fatores f3 a f8											
fatores	f3	f4	f5	f6	f7	f8						
Fator de correção	Tipo de abertura da tela	Formato da partícula	Peneiramento via úmida (abertura pol.)	% de umidade superfície (peneiram. seco)	Área efetiva de peneiramento	% da área aberta da tela						
1,40			nº 35 1/4"			70						
1,30			1/4" - 1/2"			65						
1,25	Ret. 4 x 1		1/2" - 1"			62,5						
1,20	Ret. 3 x 1		1" - 1 1/2"			60						
1,15	Ret. 2 x 1		1 1/2" - 2"			57,5						
1,10			2" - 3"			55						
1,00	Quadrada	Cúbica	Peneiramento seco ou > 3"	Menos que 3% ou via úmida	Deck superior	50						
0,90		Lamelar			Segundo deck	45						
0,85				3% a 6%	Terceiro deck	42,5						
0,80	Redonda					40						
0,75				6% a 9%		37,5						
0,70						35						
0,60						30						
0,50						25						

TABELA 8 - área livre e outras características das telas

		Telas Leves			Telas Standard			Telas Pesadas	
Malha (pol)	Fio pol.	Peso da tela kg/m²	Abert. livre %	Fio pol.	Peso da tela kg/m²	Abert. livre %	Fio pol.	Peso da tela kg/m²	Abert. livre %
1/8	0,054	6,0	45	0,072	8,9	40	0,092	15,1	29
3/16	0,080	7,6	51	0,092	10,2	45	0,120	16	38
1 /4	0,105	9,8	49	0,120	13,1	46	0,135	16,4	40
5/16	0,120	11,4	52	0,135	13,5	49	0,148	16,4	46
3/8	0,135	12,5	53	0,148	14,0	51	0,162	15,8	47
7/16	0,148	13,2	55	0,162	14,6	53	0,177	17,8	50
1/2	0,162	13,9	57	0,177	15,4	54	0,192	18,6	52
5/8	0,177	12,5	62	0,192	14,8	58	0,225	20	56
3/4	0,192	13,2	64	0,207	14,7	61	0,250	26	56
7/8	0,207	13,0	65	0,225	15,3	63	0,250	18,6	59
1	0,225	14,8	66	0,250	16,4	64	0,3125	26,5	57
1 1/8	0,225	13,6	69	0,250	14,9	67	0,3125	24	61
1 1/4	0,250	13,4	70	0,3125	20,5	64	0,375	30	60
13/8	0,250	12,6	72	0,3125	18,9	66	0,375	29	62
1 1/2	0,250	12,0	73	0,3125	17,6	68	0,375	28	63
1 3/4	0,3125	16,7	73	0,375	21,6	68	0,4375	28	64
2	0,3125	15,2	74	0,375	18,8	70	0,4375	25	67
21/4	0,375	17,5	74	0,4375	23,2	70	0,500	28	68
21/2	0,375	16,8	76	0,4375	21,2	72	0,500	27	70
23/4	0,375	16,8	78	0,4375	19,5	74	0,500	24	72
3	0,4375	20	76	0,500	23,2	73	0,625	33	68

Verificação da altura do leito do oversize

Após determinar a área da peneira, faz-se a escolha do modelo.

É necessário verificar se o equipamento escolhido atende à condição de altura do leito no ponto de descarga.

$$D = \frac{100T_f}{6 \cdot s \cdot (W - 0.15)}$$

D= espessura da camada [mm]

Tf= vazão volumétrica de oversize (m³/h)

W= largura da tela

s= velocidade de escoamento do *oversize*, que depende do material da peneira

Essa espessura D deve ser menor que 4*abertura da tela

equipamento		inclinad	а	horizontal		
modelo	XH	SH	SH	LH	LH	
abertura (")	> 1	<1	>1	>1	<1	
rpm	750	800	800	800	800	
S (m/min)	38	30	38	30	12	
o (m/mm)	30	30	38	30	ı	

DIMENSIONAMENTO DE PENEIRAS ROTATIVAS

$$S = \frac{Q}{0, 4 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot K_5}$$

S= área da tela $[m^2]=\pi DL$

Q= quantidade de material passante pela tela [m³/h];

K1= capacidade unitária [(m³/h)/m²]

K2= Fator relativo à % de material retido na alimentação.

K3= Fator relativo à eficiência de separação;

K4= Fator relativo à inclinação do trommel;

K5= Fator relativo ao tipo de furo da tela e se o peneiramento é a úmido ou a seco.

Os valores destes parâmetros são os seguintes:

K,:abertura (*)	1/8	3/16	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2
K, m³/(m²/h)	0,7	0,9	1,45	1,7	2,0	2,6	3,0	3,1	3,2	3,5
K ₂ :% retida	10	20	30	40	50	60	70	80	90	95
K ₂	1,1	1,05	1,01	1,0	1,0	0,90	0,75	0,6	0,4	0,2
K ₃ :eficiência (%)	50	60	70	80	85	90	95			
K ₃	2,1	1,6	1,3	1	0,85	0,7	0,3			

K ₄ :inclinação (º)	4	5	6	7	8	9	10
K_4	1,25	1	0,83	0,7	0,6	0,56	0,5

K _s :	furo redondo	furo quadrado
peneiramento a seco	1	1,2
peneiramento úmido	1,6	1,9

ASSISTA AGORA A A AULA DE EXERCÍCIOS!!!

AULA 15

5.3 Exercícios de Peneiradores Industriais

EX24: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex1, pg 548): Uma grelha vibratória de 6" recebe o ROM e procedi ao escaple dos finos antes da britagem primária. Estabelecer o balanço de massas do escaple, sabendo que a distribuição granulométrica do ROM é: malha 16" 12" 8" 4" 2" 1" <1"

do ROM é:	malha	16"	12"	8"	4"	2"	1"	<1"
	%retida	0	40	30	15	5	5	5

1º- Calcular a fração retida acumulada

malha	16"	12"	8"	4"	2"	1"	<1"
%retida	0	40	30	15	5	5	5
% acum	0	40	70	85	90	95	100

Em 6"m a porcentagem retida estaria entre 70 e 85% (interpolando na tebela):

77,5% retido de sólidos e 22,5% passante

2º- Eficiência da grelha é entre 60 e 70% Admitindo 60% e A=100t/h

$$\eta = \frac{U[t / h \text{ no } undersize]}{t / h \text{ de passante em A}} \cdot 100$$

$$0,6 = \frac{U[t/h \text{ no } undersize]}{(22,5)}$$

$$U = 13,5t/h$$

EX25: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex2, pg 549): **Escolher a** grelha vibratória adequada ao exercício anterior, sabendo que ela deve atender às seguintes condições: Produção anual= 8100000t/ano; Horas efetivas= 4331,5 h/ano e Denisdade do minério= 3 t/m3

1º- Calcular a capacidade nominal da grelha:

13,5% = 380 t/h

2º- Cálculo da área da grelha: S

$$S = \frac{P}{A \cdot B \cdot C}$$

P= passante pela grelha [m³/h]:

$$P = \frac{380t / h}{3t / m^3} = 210,4 \frac{m^3}{h}$$

A= capacidade básica $[(m^3/h)/m^2]$: A=40

abertura entre os trilhos (")	2	3	4	5	6	8
A [m³/(m²/h)]	20	26	29	34	40	43

B= % > que a abertura da grelha: B=0,75

material que não passa (%)	20	30	40	50	60	70	80
В	1,2	1,1	1,0	0,90	0,85	0,80	0.75

C= eficiência desejada (60%): C=1,3

eficiência (%)	40	50	60	70	80	
С	2,6	1,5	1,3	1,1	1,0	

$$S = \frac{210,4}{40 \cdot 0,75 \cdot 1,3} = 5,4m^2$$

Catálogo Faço: M401 **EX25**: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex2, pg 549): **Escolher a** grelha vibratória adequada ao exercício anterior, sabendo que ela deve atender às seguintes condições: Produção anual= 8100000t/ano; Horas efetivas= 4331,5 h/ano e Denisdade do minério= 3 t/m3

Catálogo de Grelhas Vibratórias da IMIC

(www.imic.com.br)
Para 210,4 m³/h
Abertura de 6"
Modelo GV25012

MODELO ABERTURA	CAPACIDADE PROD.		DESO (ka)	MO	TOR		DIMENSĈ	ÉS (mm)	
МОРЕСО	GRELHAS	(m³/h)	PESO (kg)	POT. (cv)	PÓLOS	С	А	L1	L2
GV 25012	2" a 6"	120 a 300	3528	20	8	2579	1797	1805	1247
GV 30015	4" a 8"	200 a 500	7559	30	8	3130	2985	2123	1300
GV 40015	6" a 12"	400 a 800	9853	50	8	3943	3657	2240	1300

EX26: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03, Ex3, pg 550): Considere o peneiramento de 200 t/h de em peneira de 2" dando 136,5 t/h no oversize, com as distribuições granulométricas a seguir. Qual a eficiência do peneiramento? Quais as imperfeições do peneiramento por faixa?

malha	4"	2"	1"	1/2"	1/4"	<1/4"	total
A (%)	25	30	20	10	10	5	100
O (%)	36,6	44	14,6	4,4	0	0,4	100
U (%)	0	0	31,5	22	31,5	15	100

1°- Eficiência:
$$\eta = \frac{200 - 136,5t/h}{200t/h \cdot 0,45} \cdot 100 = 70,6\%$$

Eficiência muito baixa, fora padrão (90 a 95%)

2º- Cálculo das Imperfeições:

malha	4"	2"	1"	1/2"	2	<1/4"	total
A (t/h)	50	60	40	20	20	10	200
O (t/h)	50	60	19,9	6	0	0,5	136,5
U (t/h)	0	0	20	14	20	9,5	63,5
I	100	100	49,7	30	0	5	

Alta imperfeição explica a baixa eficiência

$$I_{i} = \frac{O \cdot \Delta x_{i}^{o}[t/h]}{A \cdot \Delta x_{i}^{A}[t/h]} \cdot 100$$

Provavelmente a peneira não tem área suficiente ou é muito curta, não permitindo a estratificação completa do leito

EX27: (Chaves Pinto, Teoria e Prática do Tratamento de minérios, V043, Ex4, pg 551): Um fosfato é peneirado a seco em ½". As imperfeições são: meia malha (20%), finos (14%) e demais malhas (0%). Dada a distribuição granulométrica da alimentação, simular o peneiramento e escolher a peneira adequada para este serviço. A vazão de alimentação de 150 t/h e a densidade aparente do minério de 1,7 t/m3. As partículas são cúbicas e a umidade do minério é de 2,5%.

malha	1"	1/2"	1/4"	6#	10#	20#	35#	65#	<65#	Total
A (%)	16,1	11,2	12	7,8	8,7	1,7	3,0	4,2	35,3	100

1º- Calculando as vazões mássicas considerando as imperfeições:

malha	1"	1/2"	1/4"	6#	10#	20#	35#	65#	<65#	Total
A (%)	16,1	11,2	12	7,8	8,7	1,7	3,0	4,2	35,3	100
A(t/h)	24,1	16,8	18	11,7	13	2,6	4,5	6,3	53	150
- 1	100	100	20	0	0	0	0	0	14	
O [t/h]	24,1	16,8	3,6	0	0	0	0	0	7,4	51,9
U [t/h]	0	0	14,4	11,7	13	2,6	4,5	6,3	45,6	98,2
O [%]	46,5	32,4	7	0	0	0	0	0	14,1	100
U [%]	0	0	14,7	11,9	13,2	2,7	4,5	6,5	46,5	100

2º- Calculando a eficiência do peneiramento:

$$\eta = \frac{98,2t/h}{150t/h \cdot 0,727} \cdot 100 = 90\%$$

3º- Calcular a área de peneiramento S (Fórmula da Faço):

$$S = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8}$$

Q= material na alimentação [m³/h];

$$Q = \frac{150t / h}{1,7t / m^3} = 88,2 \frac{m^3}{h}$$

A= Capacidade unitária: 23,5 [m³/h]/ m²

3º- Calcular a área:

f1= Fator relativo à % de material na alimentação, maior que a malha de peneiramento.

Há 27,3% de sólidos >1/2" na alimentação:

f1=1,01

3º- Calcular a área de peneiramento S (Fórmula da Faço):

f2= Fator relativo à % de material na alimentação, menor que a meia malha de peneiramento. (60,7% dp<1/4")

malha	1"	1/2"	1/4"	6#	10 #	20#	35#	65#	<65 #
A (%)	16,1	11,2	12	7,8	8,7	1,7	3,0	4,2	35,3

f2 = 1,4

Porcentagem de material menor que a metade da abertura nominal na alimentação

Figura 12 - fator f2

3º- Calcular a área de peneiramento S (Fórmula da Faço):

		TABE	LA 7 - Fato	res f3 a f8		
fatores	f3	f4	f5	f6	f7	f8
Fator de correção	Tipo de abertura da tela	Formato da partícula	Peneiramento via úmida (abertura pol.)	% de umidade superfície (peneiram. seco)	Área efetiva de peneiramento	% da área aberta o da tela
1,40			nº 35 1/4"			70
1,30			1/4" - 1/2"			65
1,25	Ret. 4 x 1		1/2" - 1"			62,5
1,20	Ret. 3 x 1		1" - 1 1/2"			60
1,15	Ret. 2 x 1		1 1/2" - 2"			57,5
1,10			2" - 3"			55
1,00	Quadrada	Cúbica	Peneiramento seco ou > 3"	Menos que 3% ou via úmida	Deck superior	50
0,90		Lamelar			Segundo deck	45
0,85				3% a 6%	Terceiro deck	42,5
0,80	Redonda					40
0,75				6% a 9%		37,5
0,70						35
0,60	f3= 1	f4= 1	f5= 1	f6= 1	f7= 1	f8= 1,1 ³⁰
0,50	.0	1-7 1	10- 1	10- 1		25

f3= Fator relativo ao tipo de abertura da tela;

f4= Fator relativo ao formato das partículas;

f5= Fator relativo malha do peneiramento via úmida;

f6= Fator relativo umidade da alimentação no peneiramento a seco;

f7= Fator relativo ao deck (superior, 2º deck ou inferior)

f8= Fator relativo % de área aberta da tela.

TABELA 8 - área livre e outras características das telas

	<u> </u>	Telas Leves			Telas Standard			Telas Pesadas	
Malha (pol)	Fio pol.	Peso da tela kg/m²	Abert, livre %	Fio pol.	Peso da tela kg/m²	Abert. livre %	Fio pol.	Peso da tela kg/m²	Abert. livre %
1/8	0,054	6,0	45	0,072	8,9	40	0,092	15,1	29
3/16	0,080	7,6	51	0,092	10,2	45	0,120	16	38
1 /4	0,105	9,8	49	0,120	13,1	46	0,135	16,4	40
5/16	0,120	11,4	52	0,135	13,5	49	0,148	16,4	46
3/8	0,135	12,5	53	0,148	14,0	51	0,162	15,8	47
7/16	0,148	13,2	55	0,162	14,6	53	0,177	17,8	50
1/2	0,162	13,9	57	0,177	15,4	54	0,192	18,6	52
5/8	0,177	12,5	62	0,192	14,8	58	0,225	20	56
3/4	0,192	13,2	64	0,207	14,7	61	0,250	26	56
7/8	0,207	13,0	65	0,225	15,3	63	0,250	18,6	59
1	0,225	14,8	66	0,250	16,4	64	0,3125	26,5	57
1 1/8	0,225	13,6	69	0,250	14,9	67	0,3125	24	61
1 1/4	0,250	13,4	70	0,3125	20,5	64	0,375	30	60
13/8	0,250	12,6	72	0,3125	18,9	66	0,375	29	62
1 1/2	0,250	12,0	73	0,3125	17,6	68	0,375	28	63
1 3/4	0,3125	16,7	73	0,375	21,6	68	0,4375	28	64
2	0,3125	15,2	74	0,375	18,8	70	0,4375	25	67
21/4	0,375	17,5	74	0,4375	23,2	70	0,500	28	68
21/2	0,375	16,8	76	0,4375	21,2	72	0,500	27	70
23/4	0,375	16,8	78	0,4375	19,5	74	0,500	24	72
3	0,4375	20	76	0,500	23,2	73	0,625	33	68

(Chaves Pinto, Teoria e Prática do Tratamento de minérios, V03

3º- Calcular a área de peneiramento S (Fórmula da Faço):

$$S = \frac{Q}{A \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6 \cdot f_7 \cdot f_8} = \frac{88,2}{23,5 \cdot 1,01 \cdot 1,4 \cdot 1,1} = 2,41m^2$$

Modelo 25010 com 1Deck

ESPECIFICAÇÕES TÉCNICAS

Peneira M	N.º de decks	Dimensões do quadro (mm)	Peso	(kg)	Área do deck	Motor (hp)	Compr.	Altura (mm)	Largura* (mm)
	GOORO	quadro (mm)	s/base	c/base	(m²)	(116)	(11111)	(11111)	(11111)
20008 / 1A	1	2000 x 1800	500	700	1,6	4	2100	1150	1216
25010 / 1A	1	2500 x 1050	1050	1240	2,5	5	2600	1400	1410
30012 / 1A	1	3000 x 1200	1650	1990	3,6	12,5	3853	2039	1715
30012 / 2A	2	3000 x 1200	1750	2090	3,6	12,5	3400	1770	1715
30012 / 3A	3	3000 x 1200	1750	2090	3,6	12,5	3378	2340	1600

4º- Verificar a condição de descarga do oversize na extremidade da peneira:

$$D[mm] = \frac{100T_f}{6 \cdot s \cdot (W - 0.15)}$$

$$D[mm] = \frac{100T_f}{6 \cdot s \cdot (W - 0.15)} \qquad D[mm] = \frac{100 \cdot 30.5}{6 \cdot 30 \cdot (1 - 0.15)} = 19.9mm$$

Tf= vazão volumétrica de oversize (m³/h):

$$T_f = \frac{51,9t/h}{1,7t/m^3} = 30,5\frac{m^3}{h}$$

D<4*abertura da tela 19,9mm<50,8mm (4*1/2") Condição atendida!!!!

W= largura da tela = 1 m

s= velocidade de escoamento do *oversize*: Escolhendo modelo SH: s=30 m/min

equipamento		inclinad	la	horizontal			
modelo	XH	SH	SH	LH	LH		
abertura (")	> 1	<1	>1	>1	<1		
rpm	750	800	800	800	800		
S (m/min)	38	30	38	30	12		

Atividades da Aula 15

Individual:

- ☐ Refaça os exercícios.
- ☐ Faça outros exercícios resolvidos do livro.
- □ Faça o exemplo de seleção do manual de Britagem da Faço, pg 5-23 do arquivo anexo a esta aula

Empresa

- ☐ Baixar catálogos de moinhos e peneiradores industriais
- ☐ Finalizar o Projeto Orientado de Cominuição