

Steps in developing a machine learning application

- Collect Data
 - Collect samples
- Prepare the input data
 - Make sure the data is in useable format
- Analyze the input data
 - Recognize patterns or similarity

Steps in developing a machine learning application

- Train the algorithm
 - This is where machine learning takes place
 - For supervised learning
 - Feed the algorithm good clean data form the first two steps
 - Extract knowledge and information.
 - For unsupervised learning
 - There's no training step.

Steps in developing a machine learning application

- Test the algorithm
 - Test how well it does or how successful it is
- Use it

Key tasks of machine learning

- Classification
- Regression
- Clustering
- Density estimation

Modelling Terminology

- Features or attributes input representation
- Instance or sample or training set
- Training examples(positive and negative examples)
- Test set
- Hypothesis class and Hypothesis

Learning a Class from Examples

- Class C of a "family car"
 - Prediction: Is car x a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

Training set ${\mathcal X}$

Class C

Hypothesis class ${\mathcal H}$

S, G, and the Version Space

Margin

Choose h with largest margin

Probability and Inference

- Result of tossing a coin is ∈ {Heads,Tails}
- Random var $X \in \{1,0\}$

Bernoulli:
$$P\{X=1\} = p_o^X (1 - p_o)^{(1-X)}$$

- Sample: $X = \{x^t\}_{t=1}^N$
 - Estimation: $p_o = \# \{\text{Heads}\} / \#\{\text{Tosses}\} = \sum_t x^t / N$
- Prediction of next toss:

Heads if $p_o > \frac{1}{2}$, Tails otherwise

Probably Approximately Correct (PAC) Learning

- Given
 - Class C
 - Examples drawn from some unknown but fixed probability distribution p(x)
- To find
 - The number of examples N such that with probability at least 1δ , the hypothesis h has error at most ϵ , for arbitrary $0 < \delta <= \frac{1}{2}$.
- 1δ -> confidence probability and ϵ -> error probability.

Noise

- Noise is any unwanted anomaly in the data.
- Due to this,
 - class may be more difficult to learn
 - Zero error may be infeasible with a simple hypothesis class.
- Reasons for the above
 - Imprecision in recording the input attributes
 - Error in labelling the data points teacher niose
 - Hidden or latent attributes that may be un observeable.

Noise and model complexity

- There is no simple boundary between +ve and –ve instances.
- Simple hypothesis is a rectangle defining the corners.
- But if we take this hypothesis
 we will not get zero
 misclassification error. For this
 some error should be allowed.
- Another option of hypothesis is the arbitrary closed form.

Noise and model complexity

- Simpler hypothesis is better because
 - Simpler to use (lower computational complexity)
 - Easier to train (lower space complexity)
 - Easier to explain (more interpretable)
 - Generalizes better (lower variance)
- Occam's razor Simpler explanations are more plausible and any unnecessary complexity should be shaved off.

Modelling Terminology ctd.

- Ill-posed problem: Data is not sufficient to find a unique solution
- Inductive bias: Extra assumptions that we take to have a unique solution with the data we have.
- Model selection : Choosing the right bias or in other words choosing between different ${\mathcal H}$
- Generalization: How well a model performs on new data

Modelling Terminology ctd.

- For best generalization, match complexity of \mathcal{H} with the complexity of the function f underlying the data.
- Overfitting: \mathcal{H} more complex than \mathcal{C} or f
- Underfitting: \mathcal{H} less complex than \mathcal{C} or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , c (\mathcal{H}),
 - 2. Training set size, N,
 - 3. Generalization error, E, on new data
- As $N \uparrow$, $E \downarrow$
- As $c(\mathcal{H}) \uparrow$, first $E \downarrow$ and then $E \uparrow$

Association Rules

- Association rule: $X \rightarrow Y$
- People who buy/click/visit/enjoy X are also likely to buy/click/visit/enjoy Y.
- A rule implies association, not necessarily causation.

Association measures

• Support $(X \rightarrow Y)$:

$$P(X,Y) = \frac{\#\{\text{customerswho bought } X \text{ and } Y\}}{\#\{\text{customers}\}}$$

• Confidence $(X \rightarrow Y)$:

$$P(Y|X) = \frac{P(X,Y)}{P(X)}$$

$$= \frac{\#\{\text{customerswho bought } X \text{ and } Y\}}{\#\{\text{customerswho bought } X\}}$$

Association measures

• Lift $(X \rightarrow Y)$:

$$=\frac{P(X,Y)}{P(X)P(Y)}=\frac{P(Y\mid X)}{P(Y)}$$

Apriori algorithm (Agrawal et al., 1996)

- For (X,Y,Z), a 3-item set, to be frequent (have enough support), (X,Y), (X,Z), and (Y,Z) should be frequent.
- If (X,Y) is not frequent, none of its supersets can be frequent.
- Once we find the frequent k-item sets, we convert them to rules: $X, Y \rightarrow Z, ...$ and $X \rightarrow Y, Z, ...$

Sample algorithms

Supervised learning tasks	
k-Nearest Neighbors	Linear
Naive Bayes	Locally weighted linear
Support vector machines	Ridge
Decision trees	Lasso
Unsupervised learning tasks	
k-Means	Expectation maximization
DBSCAN	Parzen window

Table 1.2 Common algorithms used to perform classification, regression, clustering, and density estimation tasks