WHAT IS CLAIMED IS:

1	1. An in vivo method of affinity maturation by competitive activation to				
2	obtain a binding molecule that has an enhanced affinity for a target binding ensemble				
3	member relative to that of a reference binding molecule, the method comprising:				
4	(a) recombinantly altering a population of host cells by				
5	(i) introducing into the host cells a library of genes encoding candida				
6	binding molecules;				
7	(ii) introducing into the host cells a competitive activation system				
8	comprising a nucleic acid encoding a responder molecule linked to the target binding				
9	ensemble member, and a nucleic acid encoding a competitor binding molecule linked to an				
10	inhibitor of the responder complex;				
11	(b) incubating the host cells under conditions in which the library and				
12	competitive activation system are expressed and where the responder molecule is activated				
13	when a candidate binding molecule binds to the target binding ensemble member; and				
14	(c) detecting cells having a signal from the responder molecule that				
15	corresponds to a candidate binding molecule binding affinity for the target binding ensemble				
16	member that is greater than that of the reference binding molecule, thereby identifying a				
17	candidate binding molecule with an enhanced affinity for the target binding ensemble				
18	member.				
	2. The method of claim 1, wherein the reference binding molecule is a				
1	2. The method of claim 1, wherein the reference binding molecule is a reference antibody and the target binding ensemble member is an antigen to which the				
2					
3	reference antibody specifically binds.				
1	3. The method of claim 2, further wherein the competitor binding				
2	molecule is the reference antibody.				
	an Fah				
1	4. The method of claim 3, wherein the reference antibody is an Fab				
2	fragment.				
1	5. The method of claim 3, wherein the reference antibody is a single				
2	chain Fv.				
1	6. The method of claim 2, further wherein the candidate binding				
2	molecules are single chain Fvs.				

The method of claim 2, further wherein the candidate binding 1 7. 2 molecules are Fab fragments. 1 8. The method of claim 2, further wherein the candidate binding molecules are single V-region domains. 2 The method of claim 1, wherein the candidate binding molecules are 9. 1 2 scaffolded peptides. The method of claim 1, wherein the candidate binding molecules are 1 10. mutagenized natural ligands of the target binding ensemble member. 2 The method of claim 2, further wherein the library of candidate 11. 1 binding molecules comprises hybrid antibodies that have at least one CDR in a V_H or V_L that 2 is different from the reference antibody and is from a natural antibody repertoire. 3 The method of claim 11, wherein the hybrid antibodies have either a 1 12. V_H or V_L from the reference antibody and the corresponding V_H or V_L from a natural 2 antibody repertoire. 3 The method of claim 2, further wherein the competitor binding 1 13. molecule is a nonhuman antibody and the candidate binding molecules are antibodies having 2 at least one human variable region. 3 The method of claim 2, further wherein the competitor binding 1 14. molecule is a natural ligand of the antigen that competes with the reference antibody for 2 3 binding to the antigen. 15. The method of claim 2, wherein the competitor binding molecule is an 1 artificial non-antibody ligand of the antigen that competes with the reference antibody for 2 3 binding to the antigen. The method of claim 1, wherein the responder molecule is an enzyme. 1 16. An in vivo method of affinity maturation by competitive activation to 1 17. obtain a binding molecule that has an enhanced affinity for a target binding ensemble 2 member relative to that of a reference binding molecule, the method comprising: 3

4	(a) recombinantly altering a population of host cells by					
5	(i) introducing into the host cells a library of genes encoding candidate					
6	binding molecules;					
7	(ii) introducing into the host cells a competitive activation system					
8	comprising a nucleic acid encoding a responder molecule linked to a competitor binding					
9	molecule, and a nucleic acid encoding an inhibitor linked to the target binding ensemble					
10	member;					
11	(b) incubating the host cells under conditions in which the library and					
12	competitive activation system are expressed and where the responder molecule is activated					
13	when a candidate binding molecule binds to the target binding ensemble member; and					
14	(c) detecting cells having a signal from the responder molecule that					
15	corresponds to a candidate binding molecule affinity for the target ensemble member that is					
16	greater than that of the reference binding molecule, thereby identifying a candidate binding					
17	molecule with an enhanced affinity for the target binding ensemble member.					
	10 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1	18. The method of claim 17, wherein the reference binding molecule is a					
2	reference antibody and the target binding ensemble member is an antigen to which the					
3	reference antibody specifically binds.					
1	19. The method of claim 18, further wherein the competitor binding					
2	molecule is the reference antibody.					
1	20. The method of claim 19, wherein the reference antibody is an Fab					
2	fragment.					
1	21. The method of claim 19, wherein the reference antibody is a single					
2	chain Fv.					
1	22. The method of claim 18, further wherein the candidate binding					
2	molecules are single chain Fvs.					
1	23. The method of claim 18, further wherein the candidate binding					
2	molecules are Fab fragments.					
-						
1	24. The method of claim 18, further wherein the candidate binding					
2	molecules are single V-region domains.					

1	25. The method of claim 17, further wherein the candidate binding					
2	molecules are scaffolded peptides.					
1	26. The method of claim 17, further wherein the candidate binding					
2	molecules are mutagenized natural ligands of the target binding ensemble member.					
1	27. The method of claim 18, further wherein the library of candidate					
2	binding molecules comprises hybrid antibodies that have at least one CDR in a V _H or V _L th					
3	is different from the reference antibody and is from a natural antibody repertoire.					
1	28. The method of claim 27, wherein the hybrid antibodies have either a					
2	V_H or V_L from the reference antibody and the corresponding V_H or V_L from a natural					
3	antibody repertoire.					
1	29. The method of claim 18, further wherein the competitor binding					
2	molecule is a nonhuman antibody and the candidate binding molecules are antibodies having					
3	at least one human variable region.					
1	30. The method of claim 18, further wherein the competitor binding					
2	molecule is an artificial non antibody ligand of the antigen that competes with the reference					
3	antibody for binding to the antigen.					
1	31. The method of claim 18, wherein the competitor binding molecule is					
2	an artificial non-antibody ligand of the target antigen that competes with the reference					
3	antibody for binding to the target antigen.					
1	32. The method of claim 18, wherein the responder molecule is an					
2	enzyme.					
1	33. An in vivo method of affinity maturation by auto-inhibited reactivation					
2	to obtain a binding molecule that has an enhanced affinity for a target binding ensemble					
3	member relative to a reference binding molecule, the method comprising:					
4	(a) recombinantly altering a population of host cells by					
5	(i) introducing into the host cells a competitor that binds to the target					
6	hinding ensemble member with the same specificity as a reference hinding molecule:					

/	(11) introducing into the nost cents a nucleic acid encounting a reactivator				
8	complex comprising a reactivator molecule linked to the target binding ensemble member;				
9	(iii) introducing into the host cells a library of genes, each of which				
10	encodes an auto-inhibited responder complex comprising a responder molecule linked to an				
11	inhibitor and linked to a candidate binding molecule;				
12	(b) incubating the host cells under conditions in which the competitor, the				
13	reactivator complex, and the auto-inhibited responder library are expressed where the				
14	responder molecule is activated when a candidate binding molecule binds to the target				
15	binding ensemble member; and				
16	(c) detecting cells having a signal from the responder molecule that				
17	corresponds to a candidate binding molecule affinity for the target binding ensemble member				
18	that is greater than that of the reference binding molecule, thereby identifying a candidate				
19	binding molecule with an enhanced affinity for the target binding ensemble member.				
1	34. The method of claim 33, wherein the reference binding molecule is an				
2	antibody and the target binding ensemble member is an antigen to which the reference				
3	antibody specifically binds.				
1	35. The method of claim 34, further wherein the competitor is the				
2	reference antibody.				
1	36. The method of claim 35, further wherein the reference antibody is an				
2	Fab fragment.				
1	37. The method of claim 35, further wherein the reference antibody is a				
2	single chain Fv (scFv).				
1	38. The method of claim 34, further wherein the candidate binding				
2	molecules are single chain Fvs.				
1	39. The method of claim 34, further wherein the candidate binding				
2	molecules are Fab fragments.				
1	40. The method of claim 34, further wherein the candidate binding				
2	molecules are single V-region domains				

1	41. The method of claim 33, wherein the candidate binding molecules are					
2	scaffolded peptides.					
1	42. The method of claim 33, wherein the candidate binding molecules are					
2	mutagenized ligands.					
-						
1	43. The method of claim 34, further wherein the candidate binding					
2	molecules are hybrid antibodies that have at least one CDR in a V _H or V _L that is different					
3	from the reference antibody and is from a natural antibody repertoire.					
1	44. The method of claim 43, wherein the hybrid antibodies have either a					
2	V_{H} or V_{L} from the reference antibody and the corresponding V_{H} or V_{L} from a natural					
3	antibody repertoire.					
	•					
1	45. The method of claim 34, further wherein the competitor is a nonhuman					
2	antibody and the candidate binding molecules comprise antibodies having at least one human					
3	variable region.					
1	46. The method of claim 34, further wherein the competitor is a scaffolded					
2	peptide that competes with the reference antibody for binding to the antigen.					
_						
1	47. The method of claim 34, further wherein the competitor is an artificial					
2	non-antibody ligand of the antigen that competes with the reference antibody for binding to					
3	the antigen.					
1	48. A method of affinity maturation by self-inhibited reactivation to obtain					
2	a binding molecule that has a higher affinity for a target binding ensemble member than that					
3	of a reference binding molecule, the method comprising:					
4	(a) recombinantly altering a population of host cells by					
5	(i) introducing into the host cells a competitor binding molecule that					
6	binds to a target binding ensemble member with the same specificity as the reference binding					
7	molecule,					
8	(ii) introducing into the host cells a nucleic acid encoding an auto-					
9	inhibited responder complex comprising a responder molecule linked to an inhibitor and to					
10	11 1					

11	(iii) introducing into the host cells a library of genes, each encoding a						
12	reactivator complex, wherein each gene encodes a reactivator molecule linked to a candidate						
13	binding molecule;						
14	(b) incubating the host cells under conditions in which the competitor, the						
15	auto-inhibited responder-target binding ensemble member complex, and the reactivator						
16	library complex are expressed and where the responder molecule is activated when a						
17	candidate binding molecule binds to the target binding ensemble member; and						
18	(c) detecting cells having a signal from the responder molecule that						
19	corresponds to a candidate binding molecule affinity for the target binding ensemble member						
20	that is greater than that of the reference binding molecule, thereby identifying a candidate						
21	binding molecule with an enhanced affinity for the target binding ensemble member.						
1	49. The method of claim 47, wherein the reference binding mole						
2	reference antibody and the target binding ensemble member is an antigen to which	the					
3	reference antibody specifically binds.						
1	50. The method of claim 49, further wherein the competitor is the	ne					
2	reference antibody.						
1	51. The method of claim 49, wherein the reference antibody is a	ın Fab					
2	fragment.						
1	52. The method of claim 49, wherein the reference antibody is	a single					
2	chain Fv (scFv).						
1	53. The method of claim 49, further wherein the candidate bind	ing					
2	molecules are single chain Fvs.						
1	54. The method of claim 49, wherein the candidate binding mo	lecules are					
2	Fab fragments.						
1	55. The method of claim 49, wherein the candidate binding mo	lecules are					
2	2 single V-region domains.						
1	56. The method of claim 47, wherein the candidate binding mo	lecules are					
2	2 scaffolded peptides.						

- The method of claim 47, wherein the candidate binding molecules are mutagenized natural ligands that specifically bind the target binding ensemble member.
- 1 58. The method of claim 49, further wherein the candidate binding 2 molecules are hybrid antibodies that have at least one CDR in a V_H or V_L that is different 3 from the reference antibody and is from a natural antibody repertoire.
- The method of claim 58, wherein the hybrid antibodies have either a V_H or V_L from the reference antibody and the corresponding V_H or V_L from a natural antibody repertoire.
- 1 60. The method of claim 49, further wherein the reference antibody is a 2 nonhuman antibody and the candidate binding molecules are antibodies having at least one 3 human variable region.
- 1 61. The method of claim 49, further wherein the competitor is a natural ligand of the target antigen that competes with the reference antibody for binding to the antigen.
- 1 62. The method of claim 49, wherein the competitor is a natural ligand of the antigen that competes with the reference antibody for binding to the antigen.