Introdução à Análise de dados em FAE

(05/09/2024)

Exercicios de estatística para análise de dados em HEP

Professores: Eliza Melo, Dilson Damião e Mauricio Thiel Name: Jorge Júlio Barreiros Venuto de Siqueira

Leitura dos arquivos

A primeira tarefa que foi pedida foi usar os dados do CMS opendata distribuidas anteriormente, utilizei o Python com auxílio do ROOT para ler os arquivos e selecionar as informações relativísticas das partículas.

```
Lendo o arquivo
diretorios = [
    "/opendata/eos/opendata/cms/Run2016G/DoubleEG/NANOAOD/UL2016_MiniAODv2_
    NanoAODv9-v1/100000/*.root",
    "/opendata/eos/opendata/cms/Run2016G/DoubleEG/NANOAOD/UL2016_MiniAODv2_
    NanoAODv9-v1/1010000/*.root",
    "/opendata/eos/opendata/cms/Run2016G/DoubleEG/NANOAOD/UL2016_MiniAODv2_
    NanoAODv9-v1/250000/*.root"
]
# Expandir caminhos com glob e carregar arquivos
arquivos = glob.glob(diretorios[0]) + glob.glob(diretorios[1]) + glob.glob(diretorios[2])
#print(arquivos)
file_1 = uproot.open(arquivos[0])
file_2 = uproot.open(arquivos[1])
file_3 = uproot.open(arquivos[2])
nElectron_1 = tree_1["nElectron"].array()
eletron_pt_1 = tree_1["Electron_pt"].array()
eletron_eta_1 = tree_1["Electron_eta"].array()
eletron_phi_1 = tree_1["Electron_phi"].array()
eletron_mass_1 = tree_1["Electron_mass"].array()
eletron_charge_1 = tree_1["Electron_charge"].array()
nElectron_2 = tree_2["nElectron"].array()
eletron_pt_2 = tree_2["Electron_pt"].array()
eletron_eta_2 = tree_2["Electron_eta"].array()
eletron_phi_2 = tree_2["Electron_phi"].array()
eletron_mass_2 = tree_2["Electron_mass"].array()
eletron_charge_2 = tree_2["Electron_charge"].array()
nElectron_3 = tree_3["nElectron"].array()
eletron_pt_3 = tree_3["Electron_pt"].array()
eletron_eta_3 = tree_3["Electron_eta"].array()
eletron_phi_3 = tree_3["Electron_phi"].array()
eletron_mass_3 = tree_3["Electron_mass"].array()
eletron_charge_3 = tree_3["Electron_charge"].array()
# Combinar os arrays
Neletron = np.concatenate([nElectron_1, nElectron_2, nElectron_3])
eletron_pt = np.concatenate([eletron_pt_1, eletron_pt_2, eletron_pt_3])
eletron_eta = np.concatenate([eletron_eta_1, eletron_eta_2, eletron_eta_3])
eletron_phi = np.concatenate([eletron_phi_1, eletron_phi_2, eletron_phi_3])
eletron_mass = np.concatenate([eletron_mass_1, eletron_mass_2, eletron_mass_3])
eletron_charge = np.concatenate([eletron_charge_1, eletron_charge_2, eletron_charge_3])
```

Para a análise dos dados, foram adotadas as seguintes estratégias de seleção e cortes nos eventos:

- Seleção de eventos com dois elétrons de cargas opostas: Apenas eventos contendo dois elétrons de cargas opostas foram considerados, garantindo que os pares de partículas relevantes fossem analisados.
- Corte no momento transverso (P_T) : Foi aplicado um corte no momento transverso (P_T) de 20 GeV. Esse corte visa excluir partículas com baixo P_T , que frequentemente não contribuem de maneira significativa para os processos físicos de interesse ou são difíceis de detectar. Dessa forma, é possível reduzir o fundo de eventos irrelevantes, concentrando a análise em partículas de maior energia, mais associadas a eventos físicos relevantes.
- Corte na pseudo-rapidez (η): Foi aplicado um corte na pseudo-rapidez dos elétrons, restringindo o intervalo de η entre -2.4 e 2.4. Esse intervalo corresponde à região de aceitação do detector, onde a eficiência de detecção é máxima. Partículas fora dessa faixa têm menor probabilidade de serem detectadas corretamente, o que pode comprometer a precisão da análise. A exclusão dessas partículas melhora a eficiência da análise, garantindo que apenas eventos com partículas detectáveis sejam considerados.

Esses cortes são fundamentais para refinar a seleção dos dados, eliminando eventos irrelevantes e garantindo que a análise se concentre em regiões do espaço de fase com maior relevância física e precisão para realizar o calculo da massa invariante dos di-elétrons.

Gráfico da massa invariante dos elétrons

 (\mbox{a}) Distribuição da Massa invariante dos di-elétrons sem os cortes

(b) Distribuição da Massa invariante dos di-elétrons com os cortes de P_T e η

Fica evidente a queda no número de eventos e uma melhora aparente na região de sinal em torno de 90 GeV após aplicar os cortes de P_T e η .

A fim de estudar essa ressonância, será dada uma atenção especial a essa região, focando uma análise mais detalhada.

Figura 2: Massa invariante dos di-elétrons em torno de 90GeV

Com o objetivo de estudar essa ressonância, foram realizados diferentes ajustes de funções sobre os dados, a fim de determinar seus parâmetros físicos.

Com os ajustes realizados, observou-se que as funções ajustadas não conseguem representar de maneira completa a distribuição da região analisada. Os valores obtidos para χ^2/ndf para os ajustes (a) e (b) são 15,026 e 13,309, respectivamente, ambos significativamente superiores ao valor esperado de 1. Contudo, os valores determinados para o centro da ressonância e sua largura estão em boa concordância com o valor da massa invariante do bóson Z, conforme ilustrado na figura. Segundo o Particle Data Group (PDG), a massa do bóson Z é dada por $M_Z = 91,1880\pm0,0020$ GeV e sua largura de decaimento é $\Gamma_Z = 2,4955\pm0,0023$ GeV. A fim de avaliar a compatibilidade entre os parâmetros determinados e os valores de referência fornecidos pelo PDG, será realizada uma análise de compatibilidade entre os parâmetros ajustados e os valores de referência.

$$C_a^M = \frac{\left| M_Z^{\rm PDG} - M_Z^a \right|}{\sqrt{\sigma_{\rm PDG}^2 + \sigma_a^2}} = 9,65\sigma \qquad C_b^M = \frac{\left| M_Z^{\rm PDG} - M_Z^b \right|}{\sqrt{\sigma_{\rm PDG}^2 + \sigma_b^2}} = 18,35\sigma$$

$$C_a^{\Gamma} = \frac{\left|\Gamma_Z^{\text{PDG}} - \Gamma_Z^a\right|}{\sqrt{\sigma_{\text{PDG}}^2 + \sigma_a^2}} = 2,15\sigma \qquad C_b^{\Gamma} = \frac{\left|\Gamma_Z^{\text{PDG}} - \Gamma_Z^a\right|}{\sqrt{\sigma_{\text{PDG}}^2 + \sigma_a^2}} = 1,01\sigma$$

Compatibilidade	Valor
C_a^M	$9,65\sigma$
C_a^{Γ}	$2,15\sigma$
C_b^M	$18,35\sigma$
C_b^{Γ}	$1,01\sigma$

Observa-se que os valores dos parâmetros obtidos pelos ajustes realizados em (a) não são compatíveis com os valores de referência do PDG, uma vez que a análise de compatibilidade revelou um desvio superior a 3σ para a massa invariante, e um desvio próximo de 2σ para a largura de decaimento Γ , o que sugere inconclusividade. Por outro lado, os parâmetros do ajuste (b) apresentaram resultados mais distintos: enquanto a massa invariante se mostrou incompatível, com um erro associado superior a 3σ , a largura parcial de decaimento exibiu uma compatibilidade aceitável, com o desvio resultante sendo inferior a 2σ . Com base nesses resultados, conclui-se que os ajustes realizados não oferecem resultados satisfatórios.

Afim de buscar mais resultados, foi realizado ajuste de novas funções sobre os dados, como nas figuras abaixo.

(c) CrystalBall + Polinômio de grau 2

(d) CrystalBall + Polinômio de grau 3

Novamente, observa-se que o valor de χ^2/ndf em ambos os ajustes não é próximo de 1, porém, apresentam resultados melhores em comparação aos casos anteriores de (a) e (b). Além disso, é possível concluir que os resultados de (c) e (d) estão muito próximos entre si. A fim de determinar o melhor ajuste entre eles, será realizado novamente o cálculo da compatibilidade entre os parâmetros determinados e os valores de referência do PDG.

Compatibilidade	Valor
C_c^M	$17,78\sigma$
C_c^{Γ}	$3,83\sigma$
C_d^M	$17,83\sigma$
C_d^{Γ}	$3,88\sigma$

Os resultados das análises de compatibilidade ainda indicam uma incompatibilidade entre os parâmetros do PDG e os valores determinados. No entanto, observa-se também que, ao alterar o grau do polinômio, os valores obtidos não apresentaram uma grande variação, o que sugere a necessidade de uma investigação mais aprofundada sobre o conjunto de dados ou os ajustes realizados.

A figura a seguir apresenta os parâmetros determinados, juntamente com suas incertezas associadas, para os ajustes das figuras (a), (b), (c) e (d), respectivamente.

*******	*******	*****			
Minimizer	is Minuit2 / Migra	d			
Chi2	=	330.563			
NDf	=	22			
Edm	=	7.33343e-07			
NCalls	=	1217			
p0	=	9530.54	+/-	144.023	
p1	=	88.7357	+/-	0.0395081	
p2	=	6.71738	+/-	0.0723128	
р3	=	408054	+/-	0.25	
p4	=	1.05895	+/-	2.23607	
p5	=	19472.1	+/-	142.257	
p6	=	90.5123	+/-	0.0103987	
p7	=	2.17156	+/-	0.0158591	

(a) CrystalBall + Gaussiana

*********	*****	******		
Minimizer is Minuit2	/ Migra	d		
Chi2	=	130.791		
NDf	=	22		
Edm	=	3.73691e-06		
NCalls	=	1217		
p0	=	23422.7	+/-	82.754
p1	=	90.4761	+/-	0.0106632
p2	=	2.34208	+/-	0.0113115
p3	=	0.891706	+/-	0.0120504
p4	=	1.51941e+06	+/-	224350
p5	=	- 172325	+/-	163.182
p6	=	3987.83	+/-	2.12353
p7	=	-22.3742	+/-	0.0187332

(c) CrystalBall + Polinômio de grau 2

*********	*******	*******		
Minimizer is Min	uit2 / Migra	d		
Chi2	=	306.106		
NDf	=	23		
Edm	=	1.89156e-07		
NCalls	=	1266		
p0	=	25094.7	+/-	82.1739
p1	=	90.4526	+/-	0.0101598
p2	=	2.53634	+/-	0.0112235
p3	=	0.824661	+/-	0.0124043
p4	=	4.49378e+06	+/-	259053
p5	=	3507.5	+/-	455.169
n6	_	-2.69059	+/-	4.69932

(b) CrystalBall + Polinômio de grau 1

Minimizer is Min	uit2 / Migra			
Chi2	=	125.415		
NDf	=	21		
Edm	=	1.02603e-06		
NCalls	=	852		
p0	=	23469.3	+/-	136.428
p1	=	90.4744	+/-	0.0109544
p2	=	2.33956	+/-	0.0170722
p3	=	0.879594	+/-	0.0154861
p4	=	1068.11	+/-	72.9181
p5	=	-83121.1	+/-	5970.07
p6	=	1010.93	+/-	69.6444
p7	=	10.5942	+/-	0.727171
p8	=	-0.121216	+/-	0.00830888

(d) CrystalBall + Polinômio de grau 3