7. 设
$$a = 0.1e^{0.1}$$
, $b = \frac{1}{9}$, $c = -\ln 0.9$, 则 A. $a < b < c$ B. $c < b < a$ C. $c < a < b$ D. $a < c < b$

解:本题使用泰勒公式更加方便:

$$f(x) = \sum_{i=0}^{+\infty} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

对于函数 $a(x) = e^x$, 可在 $x_0 = 0$ 处进行展开:

$$a(x) = \sum_{i=0}^{+\infty} \frac{a^{(i)}(0)}{i!} x^{i}$$
$$= 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \cdots$$

不妨计算到 2 次方项:

$$a(0.1) \approx 1 + 10^{-1} + 5 \times 10^{-3} \approx 1.105$$

因此 $a \approx 0.1105$.

对于 b,显然有 b = 0.1.

由于 $\ln x$ 在 $x_0=0$ 处无意义,因此不妨对函数 $c(x)=\ln(1-x)$ 在 $x_0=0$ 处进行展开:

$$c(x) = \sum_{i=1}^{+\infty} \left(-\frac{x^i}{i}\right)$$
$$= -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots\right)$$

不妨计算到 2 次方项:

$$c(0.1) \approx -(10^{-1} + 5 \times 10^{-3}) = -0.105$$

因此 $c \approx 0.105$.

整理得 $a \approx 0.1105$, $b \approx 0.1111$, $c \approx 0.105$.

故 c < a < b, 选 C.

8. 已知正四棱锥的侧棱长为 l,其各顶点都再同一球面上,若该球的体积为 36π ,且 $3 \le l \le 3\sqrt{3}$,则该正四棱锥体积的取值范围是A. $[18, \frac{81}{4}]$ B. $[\frac{27}{4}, \frac{81}{4}]$ C. $[\frac{27}{4}, \frac{64}{3}]$ D. [18, 27]

解:设四棱锥底面边长为 $\sqrt{2}a$,则

$$(3+\sqrt{9-a^2})^2+a^2=l^2$$

化简得

$$a^2 = \frac{36l^2 - l^4}{36}$$

设 $t = l^2$, 棱锥体积为 V(t), 则

$$V(t) = 2a^2 + \frac{2a^2}{3} \times \sqrt{9 - a^2}$$
$$= \frac{t^2}{324}(36 - t) \qquad (t \in [9, 27])$$

对上式求导得

$$V'(t) = \frac{1}{324} \times [2t \times (36 - t) - t^2]$$
$$= \frac{24t - t^2}{108}$$

设能让 V(t) 取极值的自变量为 t_0 ,则

$$24t_0 - t_0^2 = 0 \Rightarrow t_0 = 0$$
(舍)或 $t_0 = 24$

由此可知 V(t) 在 (9,24) 上为增函数,在 (24,27) 上为减函数. 因而

$$V_{\text{max}} = V(24) = \frac{24^2}{324}(36 - 24) = \frac{64}{3}$$

$$V_{\min} = \min\{V(9), V(27)\} = \min\{\frac{9^2}{324}(36 - 9), \frac{27^2}{324}(36 - 27)\} = \frac{27}{4}$$

故选 C.

$$\frac{1+\cos 2B}{1+\cos 2B}$$
.

$$\frac{1+\cos 2B}{1+\cos 2B}.$$
(1) 若 $C=\frac{2\pi}{3}$, 求 B .

(2) 求
$$\frac{a^2 + b^2}{c^2}$$
 的最小值.

解: 化简题中条件

$$\frac{\cos A}{1+\sin A} = \frac{\sin 2B}{1+\cos 2B}$$
$$2\sin B\cos B(1+\sin A) = 2\cos A\cos^2 B$$

这里需讨论 $\cos B$ 是否为 0. 当 $\cos B = 0$ 即 $B = \frac{\pi}{2}$ 时,上述等式成立. 当 $\cos B \neq 0$ 时

$$2\sin B(1 + \sin A) = 2\cos A\cos B$$
$$2(\cos A\cos B - \sin A\sin B) = 2\sin B$$
$$2\cos(A + B) = 2\sin B$$
$$\sin B + \cos C = 0$$

综上, $B = \frac{\pi}{2}$ 或 $\sin B + \cos C = 0$.

(1) 因为
$$C = \frac{2\pi}{3} > \frac{\pi}{2}$$
,所以 $B < \frac{\pi}{2}$,因此只能有 $\sin B = -\cos C = \cos \frac{\pi}{3} = \frac{1}{2}$.

故
$$B = \frac{\pi}{6}$$
.

(2) 分类讨论:

①当
$$B = \frac{\pi}{2}$$
 时,原式 $= \frac{2a^2 + c^2}{c^2} > 1$.

②当
$$B < \frac{\pi}{2}$$
 时:

$$\sin A = \sin(B+C) = \sin B \cos C + \sin C \cos B$$
$$= -\sin^2 B + \sqrt{(1-\cos^2 C)(1-\sin^2 B)}$$
$$= 1 - 2\sin^2 B$$
$$= 1 - 2\cos^2 C$$

因而

$$\frac{a^2 + b^2}{c^2} = \frac{(1 - 2\cos^2 C)^2 + \cos^2 C}{\sin^2 C}$$

$$= \frac{1 - 4\cos^2 C + 4\cos^4 C + \cos^2 C}{\sin^2 C}$$

$$= -4\cos^2 C - 1 + \frac{2}{1 - \cos^2 C}$$

$$= 4 - 4\cos^2 C + \frac{2}{1 - \cos^2 C} - 5$$

$$= 4\sin^2 C + \frac{2}{\sin^2 C} - 5$$

$$\geq 2\sqrt{4 \times 2} - 5$$

$$= 4\sqrt{2} - 5$$

当且仅当 $\sin^4 C = \frac{1}{2}$ 时,上式成立.

则当
$$B<\frac{\pi}{2}$$
 时, $\frac{a^2+b^2}{c^2}$ 的最小值为 $4\sqrt{2}-5$. 因为 $4\sqrt{2}-5<1$,所以 $\frac{a^2+b^2}{c^2}$ 的最小值为 $4\sqrt{2}-5$.

19. 如图, 直三棱柱 $ABC - A_1B_1C_1$ 的体积为 4, $\triangle A_1BC$ 的面积为 $2\sqrt{2}$.

(1) 求 A 到平面 A_1BC 的距离.

(2) 设 D 为 A_1C 的中点, $AA_1=AB$,平面 A_1BC \bot ABB_1A_1 ,求二面角 A-BD-C 的正弦 值.

解: (1)
$$V_{A_1-ABC} = \frac{1}{3} V_{ABC-A_1B_1C_1} = \frac{4}{3}$$
.

则 $h_{A-A_1BC}=rac{3V_{A-A_1BC}}{S_{\triangle A_1BC}}=rac{3V_{A_1-ABC}}{S_{\triangle A_1BC}}=rac{3 imesrac{4}{3}}{2\sqrt{2}}=\sqrt{2}.$ 故 A 到平面 A_1BC 的距离为 $\sqrt{2}.$

(2) 取 A₁B 中点 E.

$$AA_1 = AB \Rightarrow A_1ABB_1$$
 为正方形 $\Rightarrow AE \perp A_1B$ 平面 $A_1BC \cap$ 平面 $ABB_1A_1 = A_1B$ 平面 $A_1BC \perp$ 平面 ABB_1A_1 $\Rightarrow AE \perp$ 平面 A_1BC .

又因为 A 到平面 A_1BC 的距离为 $\sqrt{2}$,所以 $AE = \sqrt{2}$ $\Rightarrow A_1B = 2AE = 2\sqrt{2} \Rightarrow S_{\triangle ABC} = \frac{V_{ABC-A_1B_1C_1}}{AA_1} = \frac{4}{2} = 2 \Rightarrow BC = 2.$ 作 $AF \perp BD$ 于 F. 则 $\cos \angle ABD = \frac{4}{4\sqrt{3}} = \frac{\sqrt{3}}{3} \Rightarrow BF = \frac{2}{3}\sqrt{3}, AF = 2\sqrt{\frac{2}{3}} = \frac{2}{3}\sqrt{6}.$

因为 $\triangle ABD$ 全等于 $\triangle CBD$,所以 $CF \perp BD$. 则 $\sin \angle AFC$ 即为所求.

根据余弦定理

$$\cos \angle AFC = \frac{AF^2 + CF^2 - AC^2}{AC^2} = \frac{\frac{8}{3} + \frac{8}{3} - 8}{2 \times (\frac{2}{6}\sqrt{3})^2} = -\frac{1}{2}$$

故二面角 A - BD - C 的正弦值为 $\sqrt{1 - (-\frac{1}{2})^2} = \frac{\sqrt{3}}{2}$.

