TOPOLOGÍA. Examen del Tema 5

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11 Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. Probar que si en un espacio topológico todo punto tiene una base de entornos cerrados, entonces es regular.
- 2. En \mathbb{R}^2 se considera la topología τ que tiene por base $\beta=\{B_a;a\in\mathbb{R}\}$ y $B_a=\{(x,y)\in\mathbb{R}^2;x\geq a\}$. Estudiar si (X,τ) es normal.
- 3. Estudiar los axiomas de numerabilidad en $\mathbb R$ con la topología $\tau = \{O \subset \mathbb R; \mathbb Q \subset O\} \cup \{\emptyset\}$.
- 4. Estudiar la propiedad Haussdorf y regular en $(X,\tau),~X=(0,1),~\tau=\{(0,1-\frac{1}{n});n\in\mathbb{N}\}\cup\{\emptyset,X\}.$

- 1. Probar que si en un espacio topológico todo punto tiene una base de entornos cerrados, entonces es regular.
 - Solución. Sea F un cerrado y $x \notin F$. Entonces X F es un abierto que contiene a x y por tanto, existe un entorno cerrado U de x tal que $U \subset X F$. Tomamos O = X U. Entonces O es abierto que contiene a F y U es un entorno de x con $U \cap O = \emptyset$.
- 2. En \mathbb{R}^2 se considera la topología τ que tiene por base $\beta = \{B_a; a \in \mathbb{R}\}$ y $B_a = \{(x,y) \in \mathbb{R}^2; x \geq a\}$. Estudiar si (X,τ) es normal.

Solución. La familia de abiertos es

$$\tau = \{\emptyset, \mathbb{R}^2\} \cup \beta \cup \{(a, \infty) \times \mathbb{R}; a \in \mathbb{R}\}.$$

La familia de cerrados está constituida por los conjuntos complementarios de los anteriores, es decir,

$$\mathcal{F} = \{\emptyset, \mathbb{R}^2\} \cup \{(-\infty, a) \times \mathbb{R}; a \in \mathbb{R}\} \cup \{(-\infty, a] \times \mathbb{R}; a \in \mathbb{R}\}.$$

Por tanto, dos cerrados distintos del vacío siempre se intersecan, demostrando que el espacio es normal.

3. Estudiar los axiomas de numerabilidad en $\mathbb R$ con la topología $\tau = \{O \subset \mathbb R; \mathbb Q \subset O\} \cup \{\emptyset\}$. Solución. Una base de entornos de x es $\beta_x = \{\mathbb Q \cup \{x\}\}$. Al haber en β_x un elemento, el espacio satisface el primer axioma de numerabilidad.

La familia $\beta = \{\mathbb{Q}, \mathbb{Q} \cup \{x\}; x \in \mathbb{R} - \mathbb{Q}\}$ es una base de abiertos de la topología. Si el espacio satisface el segundo axioma de numerabilidad, entonces existe una base numerable $\beta' \subset \beta$. Sea $\beta' = \{\mathbb{Q}, \mathbb{Q} \cup \{x_n\}; n \in \mathbb{N}, x_n \in \mathbb{R} - \mathbb{Q}\}$. Sea x un número irracional tal que $x \neq x_n \forall n \in \mathbb{N}$. Ya que $x \in \mathbb{Q} \cup \{x\}$, por ser β' una base de abiertos, existirá $m \in \mathbb{N}$ tal que $x \in \mathbb{Q} \cup \{x\}$. Ya que x_m y x son irracionales, entonces $x = x_m$: contradicción. Esto prueba que el espacio no satisface el segundo axioma de numerabilidad.

4. Estudiar la propiedad Haussdorf y regular en $(X,\tau),\ X=(0,1),\ \tau=\{(0,1-\frac{1}{n});n\in\mathbb{N}\}\cup\{\emptyset,X\}.$

Solución. El espacio no es Hausdorff ya que dos abiertos siempre se intersecan. El espacio no es regular ya que $1/4 \notin [\frac{1}{2}, 1)$ y $[\frac{1}{2}, 1) \in \mathcal{F}$ y el único abierto que contiene a este cerrado es el espacio total (0, 1).