

REPORT NO. 1164 MARCH 1962

CONICAL FLOW PARAMETERS FOR AIR AND NITROGEN IN VIBRATIONAL EQUILIBRIUM

Paul D. Kelly CEDMANOE ORDER TO ORDER TE

1164 1164

Department of the Army Project No. 503-03-001 Ordnance Management Structure Code No. 5010.11.814 BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1164

MARCH 1962

CONICAL FLOW PARAMETERS FOR AIR AND NITROGEN IN VIBRATIONAL EQUILIBRIUM

Paul D. Kelly

Exterior Ballistics Laboratory

Department of the Army Project No. 503-03-001 Ordnance Management Structure Code No. 5010.11.814

ABERDEEN PROVING GROUND, MARYLAND

TEOHNICAL LIBRARY
U. S. ARMY ORDNANCE
ABERDEEN PROVING GROUND, MD.
ORDFO TI.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1164

PDKelly/ah Aberdeen Proving Ground, Md. March 1962

CONICAL FLOW PARAMETERS FOR AIR AND NITROGEN IN VIBRATIONAL EQUILIBRIUM

ABSTRACT

The Taylor-Maccoll equation for supersonic flow about cones has been integrated numerically for air and nitrogen in instantaneous vibrational equilibrium (chemical reactions are assumed to be frozen). Free stream Mach numbers from 8 to 20 were used for 300 °K free stream temperature.

The values of the flow quantities (i.e. velocity components, polar angle, temperature, pressure and density) are given through the shock layer for different values of M and flow deflection angle at the shock.

It was found that by non-dimensionalizing some of the flow quantities (temperature, pressure and density) with respect to the changes in their values across the shock layer and by plotting them as functions of the non-dimensional shock layer thickness, that the points for different values of M_{∞} and cone angle lie along the same curves. This gives an approximate method of obtaining other solutions.

The results presented here are shown to lie between those of Kopal (translation and rotational degrees of freedom only) and Romig (dissociation and ionization included) as is expected.

TABLE OF CONTENTS

	PAGE
LIST OF SYMBOLS	6
INTRODUCTION	. 9
CONICAL FLOW OF VIBRATIONALLY EXCITED GASES	. 11
1. Thermodynamics of Gases Studied	. 11
2. Conical Flow Conservation Equations	. 11
3. Method of Solution	. 16
4. Oblique Shock Equations - Initial Conditions for Conical Flow Equations	. 18
5. Numerical Solution of Complete Conical Flow Problem	. 20
RESULTS	21
1. Presentation of Results	. 21
2. Discussion of Results	. 23
. 3. Comparison with Other Work	. 23
REFERENCES	• 30
TABLES	. 31
Table I - AIR	. 31
Table II - NITROCEN	41

LIST OF SYMBOLS

<u> Latin</u>		
a	=	speed of sound
$\mathtt{c}_{\mathtt{p}}$	=	specific heat at constant pressure
Cv	=	specific heat at constant volume
Evis	=	vibrational energy
M	=	Mach number
p	=	static pressure
q	=	total stream velocity
r	=	radial distance from cone apex
R	=	gas constant per unit mass
T	=	static temperature
u	=	radial velocity component
v	=	velocity component normal to r
Greek		
β	=	angular distance from cone axis
γ	=	ratio of specific heats
ਰ,	=	characteristic vibrational temperature of gas, ${}^{\circ}K$
Өүів	=	$\overline{\theta}_v / \overline{T}_\infty$, non-dimensional characteristic vibrational temperature of gas
Θ ₩	=	flow deflection angle at shock wave
Ŝ	=	function defined by equation 24
ρ	=	mass density
Ψ	=	function defined by equation 25

LIST OF SYMBOLS (Continued)

Subscript

c = cone surface

f = translational and rotational degrees of freedom only

s = constant entropy

w = immediately behind the shock wave

= free stream

Special

Quantities with bars over them have dimensions.

INTRODUCTION

One of the well-known problems of gasdynamics is that of describing the flow field surrounding a cone moving at supersonic speeds in a gas. In their most general form, the conservation equations (i.e., mass, momentum and energy) governing this problem are functions of three independent geometric variables. These variables define a polar spherical coordinate system (See Figure 1) which is appropriate to the cone geometry. If it is assumed that: 1) the cone axis is aligned with the free stream velocity direction; 2) the flow properties are constant along rays originating at the cone apex and 3) the flow field is isentropic throughout, then these conservation equations become functions of one geometric variable (namely, the polar angle measured from the cone axis) only. Furthermore, they may be combined to form a single second-order ordinary differential equation whose solution yields the velocity components as functions of the polar angle. This simplified flow field, called conical flow, was first considered by Taylor and Maccoll 1.*

Extensive tables of conical flow data are given by Kopal². In these tables, it is assumed that the medium behaves as a perfect gas with the ratio of specific heats $\gamma = 1.405$.

^{*}Superscript numbers indicate references at the end of the paper.

Data for conical flow in air at high temperature are given by Romig³. In these results effects of vibrational degrees of freedom and chemical reactions between the components of air were incorporated. The assumption of constant entropy implies that thermal and chemical equilibrium must exist. Some approximate results were also given by Zienkiewicz⁴.

In this report the equations are set up for a diatomic gas where the vibrational degrees of freedom only are incorporated. Results are given for pure N_2 and also for air using the approximation for specific heat variation given in Reference 5.

CONICAL FLOW OF VIBRATIONALLY EXCITED GASES

1. Thermodynamics of Gases Studied:

It is assumed that the medium is a pure diatomic gas whose molecules vibrate with a quantized simple harmonic motion. It is further assumed that the mechanical (i.e., translational, rotational and vibrational) degrees of freedom are in thermal equilibrium with each other at all times and that chemical reactions do not take place among the gas molecules.

2. Conical Flow Conservation Equations:

The conservation equations (i.e., mass, momentum and energy) describing the flow of a gas around a cone are written with reference to a polar spherical coordinate system (see Fig. 1). Consider cases where the free stream flow direction is aligned with the cone axis. The problem is thereby reduced to an axisymmetric one with r, the linear distance from the cone apex, and β , the angular distance from the cone axis, as the independent variables. If it is further assumed that:

1) the flow properties are constants along rays originating at the cone apex; and 2) that the flow field is isentropic (and hence, inviscid) throughout, then the conservation equations become ordinary non-linear differential equations with β as the independent variable. The flow field is then said to be conical. In order for the flow properties to be constant along rays when the gas molecules possess various mechanical degrees of freedom it is necessary to assume that these various degrees

FIG. I. GEOMETRY OF CONICAL FLOW PROBLEM

٦.

of freedom are in thermal equilibrium with each other at all times.

Under these assumptions the conical flow equations for the conservation of mass and momentum for a pure diatomic gas may be written as:

Conservation of mass

$$\frac{\mathrm{d}}{\mathrm{d}\beta} \left(\overline{\rho} \, \overline{\mathbf{v}} \, \sin \beta \right) + 2 \, \overline{\rho} \, \overline{\mathbf{u}} \, \sin \beta = 0 \quad , \tag{1}$$

Conservation of momentum in β and \overline{r} directions, respectively

$$\overline{v} \frac{d\overline{v}}{d\beta} + \overline{u} \overline{v} + \frac{1}{\overline{\rho}} \frac{d\overline{\rho}}{d\beta} = 0 , \qquad (2)$$

$$\frac{d\overline{u}}{d\beta} = \overline{v} , \qquad (3)$$

where the barred quantities have dimensions. The speed of sound is defined by

$$\overline{a}^2 = (\partial \overline{p} / \partial \overline{p})_s , \qquad (4)$$

where the subscript's indicates differentiation at constant entropy. Equations 1, 2, and 4 may be combined to give the Taylor-Maccoll equation.

$$\frac{d^{2}\overline{u}}{d\beta^{2}} + \overline{u} = -\frac{\overline{u} + \overline{v} \cot \beta}{1 - (\overline{v}/\overline{a})^{2}}, \qquad (5)$$

If \overline{a} were known as a function of \overline{u} and \overline{v} , then equations 3 and 5 could be solved for \overline{u} and \overline{v} . To find \overline{a} , it is necessary to obtain $\overline{q}^2(=\overline{u}^2+\overline{v}^2)$ as a function of \overline{T} from the energy equation:

$$C_{pf} \overline{T} + \overline{E}_{vi} (\overline{T}) + \frac{\overline{q}^{2}}{2} = C_{pf} \overline{T}_{\infty} + \frac{\overline{q}^{2}}{2} , \qquad (6)$$

where the subscript f means that the gas molecules possess only translational and rotational degrees of freedom. The term $\overline{E}_{V|B}(\overline{T})$ is the vibrational energy of the molecules. It is assumed that the vibrational energy is negligible in the free stream. With the assumption of quantized simple harmonic oscillators the vibrational energy term may be written as

$$\overline{E}_{V1B}(\overline{T}) = \frac{R \overline{\theta}_{V}}{e^{\overline{\theta}_{V}/\overline{T}} - 1} , \qquad (7)$$

where $\overline{\theta}_v$ is the characteristic vibrational temperature of the gas. For the gases considered here the speed of sound may be written as a function of \overline{T} , and hence of \overline{q}^2 (= \overline{u}^2 + \overline{v}^2), as follows:

$$\overline{a}^{2} = \left\{ \frac{C_{pf}/R + C_{ViB}(\overline{T})/R}{C_{Vf}/R + C_{ViB}(\overline{T})/R} \right\} R \overline{T} , \qquad (8)$$

where

$$\frac{C_{VIB}(\overline{T})}{R} = \frac{1}{R} \frac{d \overline{E}_{VIB}}{d \overline{T}} = \left[\frac{\overline{\theta}_{V} / 2\overline{T}}{\sinh (\overline{\theta}_{V} / 2\overline{T})} \right]^{2}. \tag{9}$$

A simultaneous solution of equations 3, 5, 6, 7, 8, and 9 yields \overline{u} , \overline{v} and \overline{T} as functions of β .

The pressure and density may then be found as functions of β by solving equation 2 and the equation of state of the gas, which is given as:

$$\overline{p} = \overline{\rho} R \overline{T}$$
 (10)

$$\frac{dp}{d\theta} = -\gamma_f M_{\infty} \frac{p v}{T} \left[\frac{dv}{d\theta} + u \right]$$
 (11)

$$\frac{d\mathbf{u}}{d\beta} = \mathbf{v} \tag{12}$$

$$\frac{d^2u}{d\beta^2} + u = -\frac{u + v \cot \beta}{1 - (v/a)^2}$$
 (13)

$$T + E_{V+B}(T) + \left(\frac{\gamma_{f-1}}{2}\right) M_{\infty}^{2} q^{2} = 1 + \left(\frac{\gamma_{f-1}}{2}\right) M_{\infty}^{2}$$
 (14)

$$E_{VIB}(T) = \frac{R \theta_{VIB}}{\text{cpf}} \frac{1}{(e^{\theta_{VIB}/T} - 1)}$$
 (15)

$$a^{2} = \left[\frac{C_{pf} / R + C_{VIB} (T) / R}{C_{Vf} / R + C_{VIB} (T) / R}\right] \frac{T}{\gamma_{f} M_{\infty}^{2}}$$
(16)

$$\frac{C_{VIB}(T)}{R} = \left[\frac{\theta_{VIB}/2T}{\sinh(\theta_{VIB}/2T)}\right]^{2} \tag{17}$$

and

$$p = \rho T \tag{18}$$

A solution of equations 11 - 18 with the appropriate initial conditions, which will be given in a later section, is sufficient to describe the conical flow field completely.

3. Method of Solution:

Since the flow variables can easily be found on a conical shock wave, it is convenient from a computational standpoint to specify the shock wave angle and integrate equations 11-18 from the shock wave to the body. By using this method of solving the equations integral values for the free stream Mach number and shock wave angle may be used, but the cone angles are determined by the solution and are not known beforehand.

When starting at the shock and integrating towards the body the terminal boundary condition is the vanishing of the v component of velocity (i.e., v = 0) on the cone. In order to make it easy for the digital computer to decide when v is zero the independent variable is chosen to be v rather

than β . Also for ease of computation the differential form of the energy equation (equation 14) is used. By incorporating these simplifications* into equations 11 - 18, the final form of these equations is:

$$\frac{\mathrm{d}p}{\mathrm{d}v} = -\gamma_{\mathrm{f}} M_{\infty} \left[\frac{p \ v}{\mathrm{T}} \right] \left[u \frac{\mathrm{d}\beta}{\mathrm{d}v} + 1 \right] \tag{19}$$

$$\frac{du}{dv} = -v \xi \tag{20}$$

$$\frac{\mathrm{d}\beta}{\mathrm{d}\mathbf{v}} = -\xi \tag{21}$$

$$\frac{\mathrm{dT}}{\mathrm{dv}} = -\frac{(\gamma_{\mathrm{f}} - 1) \, \mathrm{M}_{\infty}^{2} \, \mathrm{v} \, (1 - \mathrm{u} \, \xi)}{(1 + \psi)} \tag{22}$$

$$\rho = p/T \tag{23}$$

where

$$\xi \equiv \frac{1}{u + \frac{u + v \cot \beta}{1 - \gamma_f M_{\infty}^2 \overline{T}} \left(\frac{1/\gamma_f + \psi}{1 + \psi}\right)}$$
(24)

$$\psi = \frac{\gamma_{f} - 1}{\gamma_{f}} \left[\frac{\theta_{VIB}/2T}{\sinh(\theta_{VIB}/2T)} \right]^{2}$$
 (25)

^{*}These simplifications were suggested by Mr. R. Makino.

and

$$\gamma_{f} \equiv C_{pf} / C_{vf}$$

This set of equations (19 - 25) has been programmed for the BRL ORDVAC digital computer. If the machine is given M_{∞} , γ_{f} , θ_{VIB} (initial constants) and v_{W} , u_{W} , β_{W} , T_{W} , p_{W} (values of flow quantities immediately behind the shock wave), it computes v, u, β , T, p and p through the conical shock layer and stops on the cone surface when v equals zero.

4. Oblique Shock Equations - Initial Conditions for Conical Flow Equations:

The initial conditions which are necessary to solve equations

19 - 25 are the flow quantities just behind the conical shock wave attached to the cone. To obtain these initial conditions the oblique shock equations for a pure diatomic gas in thermal equilibrium (whose molecules have their vibrational degrees of freedom excited) must be solved.

In non-dimensional form, these equations are 5:

$$q_{M}^{2} = \frac{2}{\gamma_{f}^{M_{\infty}^{2}}} \left[\frac{\gamma_{f}^{M_{\infty}^{2}}}{2} - \left(\frac{\gamma_{f}}{\gamma_{f}-1} \right) (T_{M}-1) + \theta_{VIB} \left(\frac{1}{e^{\theta_{VIB}}-1} + \frac{1}{e^{\theta_{VIB}}} \right) \right]$$

$$-\frac{1}{e^{\theta_{VIB}/T_W}-1})] \qquad (26)$$

$$p_{W} = 2 \left\{ \left(1 + \gamma_{f} M_{\infty}^{2} \frac{q_{W}^{2}}{T_{W}} \right) - \frac{1}{T_{W}} \left(1 + \gamma_{f} M_{\infty}^{2} \right) + \sqrt{\left[\left(1 + \gamma_{f} M_{\infty}^{2} \frac{q_{W}^{2}}{T_{W}} \right) - \frac{1}{T_{W}} \left(1 + \gamma_{f} M_{\infty}^{2} \right) \right]^{2} + \frac{1}{T_{W}}} \right\}^{-1}, \quad (27)$$

$$\sin^2 \beta_W = \frac{q_W^2 - 1}{(T_W/p_W)^2 - 1} , \qquad (28)$$

$$\sin^{2}\theta_{M} = \frac{1 - \sin^{2}\beta_{M}}{1 - \sin^{2}\beta_{M} \left[1 - \left(\frac{\gamma_{f} M_{\infty}^{2}}{p_{M} - 1} - 1\right)^{2}\right]},$$
 (29)

$$u_{W} = q_{W} \cos \left(\beta_{H} - \theta_{H}\right) \qquad , \qquad (30)$$

$$\mathbf{v}_{\mathbf{w}} = -\mathbf{q}_{\mathbf{w}} \sin \left(\beta_{\mathbf{w}} - \theta_{\mathbf{w}} \right) \tag{31}$$

where θ is the flow deflection angle and the subscript w indicates quantities immediately behind the shock wave.

Equations 26 - 31 have been programmed* for the ORDVAC. If the machine is given M_{∞} , γ_{f} , θ_{VIB} and θ_{H} , it will compute v_{H} , u_{H} , β_{W} , T_{W} , and p_{H} , using an iterative method. These are the initial conditions for the set of equations 19 - 25.

^{*}This program was initiated by Mr. J. South.

The computer program which solves the oblique shock equations (26 - 31) has been combined with the one which solves the conical shock layer equations (19 - 25), so that if the machine is given M_{∞} , γ_{f} , θ_{v+8} , and θ_{w} it will solve the conical flow problem completely.

5. Numerical Solution of Complete Conical Flow Problem:

The computer program which solves equations 19 - 31 has been run for a number of cases, i.e., combinations of the parameters M_{∞} and $\theta_{\rm W}$. Two pure diatomic gases have been considered here. The first is air, using the approximation of Reference 5. Accordingly, air is approximated by a fictitious diatomic gas whose characteristic vibrational temperature is a mass weighted average of the characteristic vibrational temperatures of O_2 and N_2 . The second gas considered is pure nitrogen. For all cases considered $\gamma_{\rm f}$ = 1.40.

The following table shows the range of parameters covered and indicates the cases (marked by X) which have been computed.

$M_{\infty} \theta_{W}$	10°	20°	30°	35°	40°	41°	1414°
8	•	•	Х	X	X	-	X
10	Х	х	X	Х	Х	_	X
12	x	X	Х	X	X	_	X
14	х	X	X	X	X	X	
16	х	X	X	х			
18	Х	X	X				
20	х	X					

(The cases marked by dots were omitted because they differed inappreciably from frozen Taylor-Maccoll Flow.)

RESULTS

1. Presentation of Results:

The results of solving equations 19 - 31 are presented in numerical form in Tables I and II for air and N2, respectively. The calculations are grouped according to increasing M_{∞} ; for each M_{∞} the cases are given in order of decreasing cone angle. The variables which are solved for are: v, u, β , T, p and ρ . The first line of each case is the set of flow quantities just behind the conical shock wave; the last line is the set of flow quantities on the cone surface. The lines lying between these two are the flow quantities for equal increments in v.* The results of the numerical integration are presented to six figures. This solution is accurate to at least four significant figures. When the cone surface pressures for the air computations are plotted against M_m sin β _o, the "hypersonic similarity parameter" used by Romig³, all the points lie essentially on one smooth curve. This result occurs also for surface temperatures and densities. In addition, for all the nitrogen cases these flow variables exhibit the same surface behavior, and the curves obtained are practically identical with those for air. Plots of surface pressure, temperature, and density are given in Fig. 2.

The "similarity" behavior is also found at the shock wave in that certain variables can be plotted as functions of M $_\infty$ sin β_c alone.

^{*}The integration was carried out in thirty steps, but only every fifth one was printed.

FIG. 2. CONE SURFACE PRESSURE, TEMPERATURE, AND DENSITY Vs. M_{∞} SIN β_{C} FOR AIR AND NITROGEN.

Fig. 3 gives curves for $M_{\infty} \sin \beta_{W}$, p_{W} , and T_{W} ; again the curves for nitrogen and air are nearly coincident.

2. Discussion of Results:

In plotting the results against a non-dimensional shock layer thickness (i. e., $[\beta - \beta_c] / [\beta_w - \beta_c]$) it was noticed that the profiles of variation of flow variables were similar for different cases (i. e., different values of M_{∞} and β_c). Pressure, temperature, and density were then non-dimensionalized with respect to their changes in value across the shock layer (e. g., $[p - p_c] / [p_w - p_c]$) and plotted against $(\beta - \beta_c) / (\beta_w - \beta_c)$. It was found that the points from all the cases lay along one smooth curve for each flow variable. Furthermore, the three curves for p, T, and ρ were practically identical (both for air and nitrogen). The "universal" curve for these three quantities is shown in Fig. 4.

As a result of the similarity phenomena exhibited above one can determine p, T, and ρ (to about two digit accuracy) over the entire vibrational equilibrium conical flow field for any given case in a wide range of M_{∞} and β_{c} by using Figs. 2, 3, and 4. One must be certain beforehand that a conical flow exists, however. To the accuracy of the graphs the results for air and nitrogen are the same.

Tables I and II have another possible application, in that the values of the flow variables at the shock wave can furnish initial data for calculation of non-equilibrium flows with dissociation.

3. Comparison with Other Work:

In Figs. 5 and 6 the cone surface temperature and density, respectively, are compared with those obtained by Kopal² (translational

FIG. 3. SHOCK WAVE ANGLE, PRESSURE, AND TEMPERATURE Vs. $M_{\infty}SIN$ β_{C} FOR AIR AND NITROGEN.

FIG. 4. VARIATION OF PRESSURE, TEMPERATURE, AND DENSITY ACROSS THE SHOCK LAYER FOR AIR AND NITROGEN.

and rotational degrees of freedom only) and Romig³ (dissociation and ionization included) by plotting them all against the parameter M_{∞} sin β_{C} . The results presented here are seen to lie between those presented by Kopal and Romig; this is an expected result.

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Dr. R. Sedney for his help and guidance throughout the writing of this report. He also would like to thank Mr. P. Schlegel and Mrs. G. Beck for programming and performing the calculations on the ORDVAC, and Mr. N. Gerber for preparing the manuscript for publication.

PAUL D. KELLY

REFERENCES

- 1. TAYLOR, G. I., and MACCOLL, J. W., "The Air Pressure on a Cone Moving at High Speeds", Proc. Royal Soc. A, Vol. 139, p. 278, 1933.
- KOPAL, Z, et. al., "Tables of Supersonic Flow Around Cones", Mass. Inst. of Tech. Rpt. No. 1, 1947.
- 3. ROMIG, M. F., "Conical Flow Parameters for Air in Dissociation Equilibrium", Convair Sci. Res. Lab. Res. Rept. No. 7, 1960.
- 4. ZIENKIEWICZ, H. K., "Flow About Cones at Very High Speeds", Aeronaut. Quart. Vol. 8, p. 384, 1957.
- 5. AMES RESEARCH STAFF, "Equations, Tables and Charts for Compressible Flow", NACA Rpt. 1135, p. 17, 1953.

VIPRATIONAL EQUILIBRIUM CONICAL FLOW

TABLE I AIR

T _w = 3	300°K• γ _α	=1.4,	$\overline{\theta}_{\mathbf{v}} = 3101.60$ K		
M _∞ = 8.0000)000 θ _w =	= 440	$\beta_c = 50.88^\circ$		
v 133366 111138 088910 066683 044455 022227 000000	u •526889 •529503 •531651 •533322 •534510 •535217 •535450	β° 58.2043 56.9794 55.7486 54.5182 53.2935 52.0795 50.8810	T 8.71942 8.74670 8.76880 8.78593 8.79819 8.80559 8.80809	p 55.5696 56.3372 56.9651 57.4554 57.8083 58.0223 58.0946	p 6.3730 6.4409 6.4963 6.5394 6.5704 6.5892 6.5955
M _∞ = 8.0000	0000 θ _w =	= 400	$\beta_{c} = 45.60^{\circ}$		
v 126794 105662 084529 063397 042264 021132 000000	u .622286 .624288 .625936 .627219 .628132 .628675 .628854	β° 51.5167 50.5296 49.5366 48.5429 47.5529 46.5710 45.6010	T 7.61461 7.63944 7.65956 7.67516 7.68632 7.69307 7.69534	p 47.0101 47.6822 48.2324 48.6622 48.9716 49.1593 49.2227	p 6.1736 6.2415 6.2970 6.3402 6.3712 6.3900 6.3964
$M_{\infty} = 8.0000$	0000 e _w =	= 35°	$\beta_{c} = 39.61^{\circ}$		
119069 099224 079379 059534 039690 019845 000000	14 •713577 •715119 •716389 •717378 •718083 •718502 •718641	β° 44.4732 43.6639 42.8490 42.0328 41.2194 40.4124 39.6152	T 6.37397 6.37612 6.41407 6.42798 6.43794 6.44396 6.44598	p 37.5019 38.0665 38.5289 38.8903 39.1506 39.3086 39.3619	p 5.8836 5.9515 6.0069 6.0501 6.0812 6.1000 6.1064
M _∞ = 8.0000	2000 θ _w =	= 300	$\beta_{e} = 33.93^{\circ}$		
v 111632 093027 074421 055816 037210 018605 000000	u .787249 .788479 .789493 .790284 .790847 .791182 .791293	β° 38.0707 37.3820 36.6877 35.9921 35.2988 34.6111 33.9321	5.28050	P 28.9015 29.3671 29.7484 30.0466 39.2615 30.3919 30.4360	p 5.5237 5.5915 5.6469 5.6901 5.7211 5.7399 5.7463

VIRRATIONAL EQUILIBRIUM CONICAL FLOW

TABLE I AIR

	00°K• γ	_∞ = 1.4,	$\overline{\theta}_{\mathbf{v}} = 3101.6$ °K		
M _∞ = 10•0000	000 e) _W = 44°	β _c = 50.09°		
v 122585 102154 081723 061292 040861 020430 000000	u .551461 .553569 .555302 .556650 .557610 .558181 .558370	β° 56.5326 55.4576 54.3774 53.2970 52.2208 51.1529 59.0973	T 12.35949 12.39512 12.42402 12.44643 12.46246 12.47214 12.47540	p 84.1083 85.1912 86.0775 86.7696 87.2674 87.5691 87.6708	p 6.8051 6.8729 6.9283 6.9714 7.0024 7.0211 7.0274
$M_{\infty} = 10 \cdot 0000$	000 B _w	= 40°	$\beta_c = 45 \cdot 00^\circ$		
v 115735 096446 077157 057867 038578 019289 000000	u .639282 .640904 .642239 .643278 .644018 .644459 .644605	β° 50.2616 49.3855 48.5043 47.6223 46.7432 45.8704 45.0073	T 10.73492 10.76680 10.79267 10.81273 10.82708 10.83574 10.83866	p 71.3248 72.2674 73.0391 73.6420 74.0757 74.3386 74.4271	p 6.6441 6.7120 6.7674 6.8106 6.8417 6.8604 6.8668
M _m = 10.0000	იიი	, = 350	$\beta_c = 39 \cdot 11^\circ$		
v107416089513071610053708035805017902000000	u .726440 .727670 .728684 .729473 .730036 .730371 .730482	β° 43.4111 42.6950 41.9741 41.2521 40.5323 39.8175 39.1105	T 8.87563 8.90328 8.92571 8.94311 8.95556 8.96307 8.96560	P 56.7851 57.5667 58.2070 58.7072 59.0673 59.2855 59.3591	P 6.3978 6.4657 6.5212 6.5645 6.5956 6.6144 6.6207
M _∞ = 10•0000	000 e	w = 30°	$\beta_{c} = 33.46^{\circ}$		
v 099226 082688 066150 049613 033075 016537 000000	u .797680 .798638 .799427 .800042 .800480 .800741	β° 37.0907 36.4876 35.8801 35.2715 34.6645 34.0619 33.4661	T 7.16391 7.18776 7.20711 7.22211 7.23284 7.23932 7.24151	P 43.5409 44.1742 44.6930 45.0986 45.3906 45.5676 45.6274	P 6.0778 6.1457 6.2012 6.2445 6.2756 6.2756 6.3008

TABLE I AIR

M _∞ =10.0000) <u>000</u>	= 200	$\beta_c = 22.590$		
v	u	β°	Т	p	ρ
083914	.904060	25.3029	4.23167	21.5532	5.0933
069928	.904667	24.8511	4.24958	21.9317	5.1609
055942	•905168	24.3950	4.26407	22.2418	5.2161
041957	•905558	23.9377	4.27529	22.4845	5.2591
027971	•905836	23.4819	4.28333	22.6595	5.2901
013985	•906002	23.0299	4.28819	22.7659	5.3089
000000	•906057	22.5840	4.28983	22.8018	5.3153
M _w = 10 • 0000	0000	= 10°	$\beta_{\mathbf{c}} = 12.09^{\circ}$		
v	u	β ^{°}	_		
		•	${f T}$	р	ρ
-•073930	•968736	14.3641	2.10010	7.0494	3.3567
061608	•969183	13.9867	2.11542	7.2405	3.4227
049286	•969553	13.6036	2.12772	7.3969	3.4764
036965	•969843	13.2192	2.13724	7.5197	3.5184
024643	.970048	12.8369	2.14408	7.6088	3.5487
012321	•970170	12.4600	2.14824	7.6635	3.5673
000000	•970210	12.0913	2.14966	7.6821	3.5736

VIRRATIONAL EQUILIBRIUM CONICAL FLOW

TABLE I AIR

$\frac{-}{T_{\infty}} = 3$	on°κ, γ _∞	= 1.4,	$\overline{\theta}_{\mathbf{v}} = 3101.6^{\circ}$	K	
M _∞ = 12 •0000	000	= 44°	$\beta_{c} = 49.67^{\circ}$		
v116330096941077553058165038776019388000000	u •564257 •566112 •567637 •568823 •569668 •570171 •570337	β° 55.6491 54.6525 53.6511 52.6494 51.6512 50.6602 49.6799	T 16.77433 16.82031 16.85763 16.88656 16.90727 16.91976	p 119.0516 120.5169 121.7164 122.6529 123.3265 123.7344 123.8718	ρ 7.0972 7.1649 7.2202 7.2633 7.2942 7.3130 7.3193
$M_{\infty} = 12.0000$	000 6 _	= 400	$\beta_{c} = 44.670$		
v 109238 091032 072825 054619 036412 018206 000000	u .648661 .650085 .651256 .652167 .652817 .653204 .653332	β° 49.5592 48.7447 47.9256 47.1058 46.2884 45.4765 44.6730	T 14.49885 14.53949 14.57248 14.59806 14.61637 14.62741 14.63113	P 101.0134 102.2819 103.3207 104.1321 104.7156 105.0691 105.1881	P 6.9669 7.0347 7.0901 7.1332 7.1642 7.1830 7.1893
M _w = 12.0000	000 მ _w =	: 35°	$\beta_{\mathbf{c}} = 38.81^{\circ}$		
v 100486 083738 066990 050243 033495 016747 000000	u .733752 .734818 .735695 .736378 .736865 .737155 .737251	β° 42.7980 42.1352 41.4683 40.8004 40.1343 39.4725 38.8176	T 11.87580 11.91033 11.93836 11.96010 11.97565 11.98504 11.98820	P 80.2964 81.3380 82.1913 82.8579 83.3374 83.6279 83.7258	6.7613 6.8292 6.8846 6.9278 6.9589 6.9776 6.9840
M _w = 12.0000	000 9 _w =	: 30°	$\beta_c = 33.18^{\circ}$		
v 091754 076461 061169 045877 030584 015292 000000	u .803724 .804536 .805204 .805725 .806096 .806318 .806391	β° 36.5127 35.9598 35.4031 34.8454 34.2891 33.7364 33.1895	T 9.46309 9.49208 9.51560 9.53385 9.54690 9.55478 9.55743	p 61.3657 62.1983 62.8805 63.4136 63.7973 64.0297 64.1081	P 6.4847 6.5526 6.6081 6.6514 6.6825 6.7013 6.7076

TABLE I AIR

$M_{\infty} = 12.000$	0000 e _w	= 20°	$\beta_c = 22.30^\circ$		
v	u	β°	T	p	ρ
075030	.908347	24.7220	5.37070	29.9344	5.5736
062525	.908829	24.3207	5.39079	30.4120	5.6414
050020	.909226	23.9161	5.40706	30.8034	5.6968
037515	•909536	23.5104	5.41967	31.1095	5.7401
025010	•909757	23.1058	5.42870	31.3301	5.7712
012505	•909889	22.7043	5.43415	31.4640	5.7900
000000	•909932	22.3076	5.43599	31.5092	5.7964
$M_{\infty} = 12.000$	0000 e _w	=10°	$\beta_c = 11.77^\circ$		
v	u	β°	${f r}$	р	ρ
062409	.971651	13.6750	2.45329	9.2933	3.7881
052008	.971967	13.3592	2.46872	9.5157	3.8545
041606	•972228	13.0391	2.48114	9.6978	3.9086
031204	.972432	12.7180	2.49076	9.8406	3.9508
020803	•972577	12.3984	2.49766	9.9441	3.9813
010401	•972663	12.0825	2.50184	10.0073	3.9999
000000	•972692	11.7726	2.50326	10.0288	4.0062

VIRRATIONAL EQUILIBRIUM CONICAL FLOW

TABLE I AIR

$$\overline{T}_{\infty} = 300 \, \text{cm}$$
, $\gamma_{\infty} = 1.4$, $\overline{\theta}_{v} = 3101.6 \, \text{cm}$

$M_{\infty} = 14.0000000$	θ _w = 41°	$\beta_{\mathbf{c}} = 45.67^{\circ}$		
v u	β°	T	p	ρ
106929 .63536	1 50.5531	19.65876	141.9712	7.2217
089107 .63675			143.6866	7.2894
071286 .63789			145.0914	7.3447
053464 .63878	9 48.1029		146.1883	7.3878
035643 .63942	4 47.2867	19.81150	146.9772	7.4187
017821 .63980			147.4547	7.4374
-•00000n •63992	7 45.6730	19.83068	147.6155	7.4437
M _m = 14.0000000	0 _w = 400	$\beta_{\mathbf{c}} = 44.46^{\circ}$		
w u	w β°	T	p	0
	•			ρ
-•105120 •65440 -•087600 •65570			136.0799	7.1931
-•070080 •65678		19.01040	137.7311 139.0835	7.2608 7.3161
052560 .65761		19.04256	140.1396	7.3592
035040 .65821		19.06557	140.8991	7.3902
017520 .65856			141.3589	7.4089
-•0000n •65868		19.08412	141.5137	7.4152
$M_{\infty} = 14.0000000$	θ _w = 35°	$\beta_{c} = 38.63^{\circ}$		
,,	° β°		5	
v u -•096047 •73831		T 15•38681	P 108•0467	ρ 7.0220
-•080039 •73928		15.42954	109.3924	7.0898
064031 .74007		15.46424	110.4948	7.1451
048023 .74069		15.49116	111.3559	7.1883
032015 .74113		15.51042	111.9752	7.2193
016007 .74140		15.52204	112.3503	7.2381
-•000000 •74148	9 38.6325	15.52594	112.4765	7.2444
M = 14.000000	e_ = 30°	33.010		
a	W	c = 33 • 01		
v u	β ^{°}	T	p	ρ
-•086917 •80754		12 • 14134	82.3886	6.7857
-•072431 •80826		=	83.4533	6.8536
057945 .80886 043458 .80933		17 3/45/2		
		12.20503	84.3257	6.9090
028972 80966	1 34.5726	12.22717	85.0073	6.9523
028972 .80966 014486 .80986	1 34.5726 2 34.0485	12.22717 12.24301		

TABLE I AIR

$M_{\infty} = 14.0000$	$\theta_{\mathbf{w}} =$	20° £	$B_{e} = 22.12^{\circ}$		
v	u	β ^o	T	p	ρ
069130	.911123	24.3389	6.67419	39.7901	5.9617
057608	•911530	23.9708	6.69699	40.3810	6.0297
046086	•911866	23.5998	6.71548	40.8653	6.0852
034565	•912127	23.2280	6.72982	41.2439	6.1285
023043	.912314	22.8570	6.74008	41.5165	6.1596
011521	.912425	22.4886	6.74628	41.6819	6.1785
000000	•912462	22.1243	6.74836	41.7377	6.1848
M 14 0000	2000	100 6	s = 11.55°		
$M_{\infty} = 14 \cdot 0000$	$\theta_{\mathbf{w}} =$	10° £	$c = 11.55^{\circ}$		
٧	u	β ^{°}	T	p	ρ
054738	.973505	13.2182	2.85146	11.9131	4.1779
045615	•973746	12.9427	2.86726	12.1707	4.2447
036492	•973946	12.6640	2.88001	12.3818	4.2992
027369	•974102	12.3843	2.88988	12.5472	4.3417
018246	•974213	12.1058	2.89696	12•6668	4.3724
009123	•974279	11.8302	2.90125	12.7397	4.3911
000000	•974300	11.5592	2.90270	12.7645	4.3974

VIBRATIONAL EQUILIBRIUM CONICAL FLOW

TABLE I AIR

 $\overline{T}_{\infty} = 300 \text{ °K}, \qquad \gamma_{\infty} = 1.4, \qquad \overline{\theta}_{V} = 3101.6 \text{ °K}$

M _w = 16.0000	000	35°	$\beta_c = 38.50^\circ$		
v	u	β °	T	p	ρ
093048	.741343	42.1539	19.41664	140.0456	7.2126
077540	.742247	41.5469	19.46888	141.74C4	7.2803
062032	.742990	40.9365	19.51132	143.1288	7.3356
046524	•743570	40.3251	19.54425	144.2132	7.3788
031016	.743982	39.7152	19.56780	144.9931	7.4097
015508 000000	•744229 •744310	39 • 1090 38 • 5085	19•58201 19•58679	145•4651 145•6240	7.4285 7.4348
-•000000	• 744310	30 • 5005	19.00013	145.6240	1.4348
M = 16.0000	000	30°	$\beta_{c} = 32.89^{\circ}$		
w	W	- 0	•		
Ψ	u	β ⁰	T	p	ρ
083617 069681	.810112	35.8930	15.20658	106.6185	7.0113
-•055745	.810780 .811330	35.3936 34.8911	15.24889 15.28326	107.9487 109.0387	7.0791 7.1345
041808	.811759	34.3877	15.30992	109.8902	7.1777
027872	.812064	33.8855	15.32900	110.5026	7.2087
013936	.812246	33.3863	15.34051	110.8734	7.2274
-•000000	.812307	32.8918	15.34437	110.9983	7.2338
$M_{\infty} = 16.0000$	000	200	$\beta_c = 21.99^\circ$		
v	u	β °	${f T}$	p	ρ
064996	•913034	24.0718	8.14680	51.1246	6.2754
054163	•913393	23.7268	8.17283	51.8432	6.3433
043330	•913689	23.3792	8.19395	52.4322	6.3988
032498	•913919	23.0308	8.21033	52.8925	6.4421
021665 010832	•914084 •914181	22.6832 22.3378	8.22205 8.22913	53.2239 53.4248	6.4733 6.4921
010032	•914214	21.9961	8.23151	53.4925	6.4985
-•100000	• >14214	21.7701	0.29191) J • + J & J	0.4707
$M_{\infty} = 16.0000$	000	100	$\beta_{c} = 11.40^{\circ}$		
v	u u	β°	T	n	•
-•049276	•974785	12.8939	3.29170	p 14•9050	ρ 4∙5280
049276	•974979	12.6469	3.30807	15.2013	4.5952
032851	975140	12.3972	3.32130	15.4440	4.6500
024638	•975266	12.1468	3.33154	15.6341	4.6927
016425	.975355	11.8972	3.33888	15.7714	4.7235
008212	•975408	11.6500	3.34332	15.8551	4.7423
-•000000	•975426	11.4065	3.34482	15.8834	4.7486

TABLE I AIR

$$\overline{T}_{\infty} = 300 \, \text{°K}, \quad \gamma_{\infty} = 1.4, \quad \overline{\theta}_{V} = 3101.6 \, \text{°K}$$

$M_{\infty} = 18 \cdot 00000$	οοο θ _w =	30°	$\beta_c =$	32.800		
y 081272 067726 054181 040636 027090 013545 000000	u .811918 .812547 .813066 .813469 .813757 .813929 .813986	β° 35.7162 35.2320 34.7449 34.2570 33.7701 33.2861 32.8066	18. 18. 18. 18.	T .66392 .71438 .75538 .78719 .80995 .82368	p 134.0608 135.6906 137.0259 138.0690 138.8191 139.2732	P 7.1828 7.2506 7.3059 7.3491 7.3800 7.3988 7.4051
M _m = 18.00000	000 ê _w =	200	β _c =	21.900		
v	u	β ^o	_	T	p	0
061994	•914405	23.8785	9,	79312	63.9449	ρ 6•5295
051662	914730	23.5501		82286	64.8063	6.5974
041329	•914999	23.2194		84701	65.5122	6.6530
030997	•915208	22.8880		86574	66.0639	6.6962
020664	.915357	22.5572		87914	66.4609	6.7274
010332	•915446	22 • 2285	9	83723	66.7014	6.7462
-•000000	•915475	21.9031	9.	88995	66.7825	6.7525
$M_{\infty} = 18.00000$	000 e _w	= 10°	β _c =	11.290		
v	u	β ^ο		T	p	ρ
045234	•975709	12.6543	3	77341	18.2738	4.8427
037695	.975872	12,4283	3.	79053	18.6122	4.9102
030156	•976008	12.2000	3.	80437	18.8896	4.9652
022617	•976113	11.9710	3.	81510	19.1068	5.0082
015078	•976188	11.7427	3.	82278	19.2635	5.0391
007539	•976233	11.5163	3.	82742	19.3588	5.0579
000000	•976247	11.2932	3.	82899	19.3910	5.0642

TABLE I AIR

$$\overline{T}_{\infty} = 300 \, \text{cK}$$
, $\gamma_{\infty} = 1.4$, $\overline{\theta}_{V} = 3101.6 \, \text{cK}$

M _∞ = 20.000	0000	20°	$\beta_{c} = 21.83^{\circ}$		
v	u	β ^o	${f T}$	р	ρ
059748	•915421	23.7343	11.61648	78.2546	6.7365
049790	.915723	23.4183	11.65041	79.2740	6.8043
039832	.915972	23.1001	11.67797	80.1094	6.8598
029874	•916166	22.7813	11.69935	80.7622	6.9031
019916	•916304	22.4631	11.71465	81.2318	6.9342
009958	•916387	22.1468	11.72388	81.5163	6.9530
000000	•916414	21.8336	11.72698	81.6121	6.9593
M _m = 20.000	0000 9 _w =	10°	$\beta_c = 11.20^{\circ}$		
v	u	β°	${f T}$	p	ρ
042132	•976406	12.4707	4.29597	22.0183	5.1253
035110	.976547	12.2607	4.31399	22.4024	5.1929
028088	.976664	12.0486	4.32858	22.7173	5.2482
021066	•976755	11.8360	4.33989	22.9636	5.2912
014044	.976820	11.6239	4.34798	23.1413	5.3223
007022	•976859	11.4135	4.35288	23.2493	5.3411
00000n	•976872	11.2059	4.35453	23.2858	5.3474

TABLE II NITROGEN

$$\overline{T}_{\infty}$$
 = 300 °K, γ_{∞} = 1.4, $\overline{\theta}_{v}$ = 3336 °K

M _m = 8.0000	000 0 _w =	= 44° β _c	= 50.97°		
α,	w			_	
V	u	β°	T	P	ρ
134510	•524049	50.3956	8.80121	55.7289	6.3319
112092 089673	•526722 •528919	57•1534 55•9053	8.02905 8.85160	56.5046 57.1391	6.3998
067255	•530628	54.6576	8.86907	57.6345	6.4552 6.4983
044836	•531843	53.4159	8.88157	57.9912	6.5293
022418	•532566	52.1851	8.88913	58.2075	6.5481
000000	•532804	50.9702	8.89167	58.2805	6.5545
	• 552001	J 0 • 7 · 0 L	3,312,	3042003	000010
M _∞ = 8.0000	000 e _w	= 40° β _c	= 45 _• 66°		
v	u	β ^o	${f T}$	q	ρ
127914	.620483	51.6485	7.68508	47.1159	6.1308
106595	•622527	50.6477	7.71045	47.7951	6.1987
085276	•624209	49.6449	7.73100	48.3511	6.2541
063957	.625519	46.6374	7.74693	48.7855	6.2973
042638	•626451	47.6378	7.75834	49.0982	6.3284
021319	•627005	46.6443	7.76522	49.2879	6.3472
000000	•627188	45.6651	7.76754	49.3519	6.3536
			=.		
$M_{\infty} = 8.0000$	000 e _w	= 35° B	= 39.660		
v	u	β°	T	p	ρ
	•				
120170	•712323	44.5757	6.43432	37.5795	5.8404
120170 100142		•	6•43432 6•45700	38.1504	5 • 8404 5 • 90 83
100142 080113	•712323 •713896 •715192	44•5757 43•7574 42•9333	6•45700 6•47537	38.1504 38.6178	5.9083 5.9638
100142 080113 060085	712323713896715192716202	44.5757 43.7574 42.9333 42.1000	6•45700 6•47537 6•48961	38.1504 38.6178 38.9832	5.90 83 5.9638 6.0070
100142 080113 060085 040056	•712323 •713896 •715192 •716202 •716920	44.5757 43.7574 42.9333 42.1000 41.2855	6.45700 6.47537 6.48961 6.49980	38.1504 38.6178 38.9832 39.2464	5.9083 5.9638 6.0070 6.0380
100142 080113 060085 040056 020028	•712323 •713896 •715192 •716202 •716920 •717349	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696	6.45700 6.47537 6.48961 6.49980 6.50596	38.1504 38.6178 38.9832 39.2464 39.4061	5.90 83 5.9638 6.0070 6.0380 6.0569
100142 080113 060085 040056	•712323 •713896 •715192 •716202 •716920	44.5757 43.7574 42.9333 42.1000 41.2855	6.45700 6.47537 6.48961 6.49980	38.1504 38.6178 38.9832 39.2464	5.9083 5.9638 6.0070 6.0380
100142 080113 060085 040056 020028	•712323 •713896 •715192 •716202 •716920 •717349 •717490	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803	38.1504 38.6178 38.9832 39.2464 39.4061	5.90 83 5.9638 6.0070 6.0380 6.0569
100142 080113 060085 040056 020028 000000 $M_{\infty} = 8.0000$	•712323 •713896 •715192 •716202 •716920 •717349 •717490	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803	38.1504 38.6178 38.9832 39.2464 39.4061 39.4600	5.90 d3 5.9638 6.0070 6.0380 6.0569 6.0632
100142 080113 060085 040056 020028 0000000	•712323 •713896 •715192 •716202 •716920 •717349 •717490	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637 $= 30° \beta_{c}$	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803	38.1504 38.6178 38.9832 39.2464 39.4061	5.9083 5.9638 6.0070 6.0380 6.0569 6.0632
100142 080113 060085 040056 020028 000000 $M_{\infty} = 8.0000$	•712323 •713896 •715192 •716202 •716920 •717349 •717490	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803	38.1504 38.6178 38.9832 39.2464 39.4061 39.4600	5.90 d3 5.9638 6.0070 6.0380 6.0569 6.0632
100142 080113 060085 040056 020028 0000000	.712323 .713896 .715192 .716202 .716920 .717349 .717490	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637 $= 30° \beta_{c}$ β^{o} 38.1547	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803 = 33.97° T 5.28208	38.1504 38.6178 38.9832 39.2464 39.4061 39.4600	5.9083 5.9638 6.0070 6.0380 6.0569 6.0632
100142 080113 060085 040056 020028 0000000 M _w = 8.0000 v 112680 093900 075120 056340	.712323 .713896 .715192 .716202 .716920 .717349 .717490	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637 = 30° β _c β ^o 38.1547 37.4506 36.7568 36.0537	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803 = 33.97° T 5.28208 5.30239	38.1504 38.6178 38.9832 39.2464 39.4061 39.4600 p 28.9595 29.4303 29.8158 30.1173	5.9083 5.9638 6.0070 6.0380 6.0569 6.0632
100142 080113 060085 040056 020028 0000000 M _w = 8.0000 v 112680 093900 075120 056340 037560	.712323 .713896 .715192 .716202 .716920 .717349 .717490 .717490 .786344 .787599 .788634 .787599 .788634 .787599	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637 = 30° β _c β ^o 38.1547 37.4506 36.7508 36.0537 35.3530	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803 = 33.97° T 5.28208 5.30239 5.31883 5.33158 5.34070	38.1504 38.6178 38.9832 39.2464 39.4061 39.4600 p 28.9595 29.4303 29.8158 30.1173 30.3346	5.9083 5.9638 6.0070 6.0380 6.0569 6.0632 p 5.4826 5.5503 5.6057 5.6488 5.6798
100142 080113 060085 040056 020028 0000000 W112680 093900 075120 056340 037560 018780	.712323 .713896 .715192 .716202 .716920 .717349 .717490 .717490 .786344 .787599 .788634 .789441 .790015 .790357	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637 = 30° β _c β ⁰ 38.1547 37.4506 36.7568 36.0537 35.3530 34.6500	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803 = 33.97° T 5.28208 5.30239 5.31883 5.33158 5.34070 5.34622	38.1504 38.6178 38.9832 39.2464 39.4061 39.4600 P 28.9595 29.4303 29.8158 30.1173 30.3346 30.4666	5.9083 5.9638 6.0070 6.0380 6.0569 6.0632 5.4826 5.5503 5.6057 5.6488 5.6798 5.6987
100142 080113 060085 040056 020028 0000000 M _w = 8.0000 v 112680 093900 075120 056340 037560	.712323 .713896 .715192 .716202 .716920 .717349 .717490 .717490 .786344 .787599 .788634 .787599 .788634 .787599	44.5757 43.7574 42.9333 42.1000 41.2855 40.4696 39.6637 = 30° β _c β ^o 38.1547 37.4506 36.7508 36.0537 35.3530	6.45700 6.47537 6.48961 6.49980 6.50596 6.50803 = 33.97° T 5.28208 5.30239 5.31883 5.33158 5.34070 5.34622 5.34808	38.1504 38.6178 38.9832 39.2464 39.4061 39.4600 p 28.9595 29.4303 29.8158 30.1173 30.3346	5.9083 5.9638 6.0070 6.0380 6.0569 6.0632 5.4826 5.5503 5.6057 5.6488 5.6798 5.6987 5.7050

41

TECHNICAL LIBRARY
U. S. ARMY ORDNANOB
ABERDEEN PROVING GROUND, MD.
ORDBG-TL

TABLE II NITROGEN

_				_		
T =	300°K,	$\gamma =$	1.4.	A	=	3336°K
œ	200	′ ∞	_ , , ,	ິ∨		

$M_{\infty} = 10.0000$	$\theta_{w} =$	44° E	c = 50.15°		
v	u	β°	T	n	0
123436	•549646	56.6571	12.45089	p 84•2682	ρ 6•7680
102063	.551790	55.5710	12.48708	85.3601	6.8358
082291	•553554	54.4797	12.51643	86.2538	6.8912
061718	.554925	53.3882	12.53918	86.9516	6.9343
041145	• 555901	52.3010	12.55546	87.4537	6.9653
020572	•556483	51.2223	12.56529	87.7579	6.9841
000000	• 556675	50.1560	12.56859	87.8604	6.9904
$M_{\infty} = 10.3000$	000	400	$\beta_c = 45.05^{\circ}$		
v	u	3°	T	p	ρ
116592	.638014	50.3561	10.81734	71.4423	6.6044
097160	.539663	49.4716	10.84977	72.3930	6.6723
077728	•641021	48.5821	10.87607	73.1715	6.7277
058296	.642078	47.6917	10.89647	73.7796	6.7709
038864	.642830	46.0043	10.91106	74.2171	6.8020
019432	.643278	45.9233	10.91987	74.4823	6.8208
000000	•643427	45.0542	10.92284	74.5717	6.8271
M _m = 10.0000	000 A =	= 350	B = 14 1/0		
m _m = 10.0000	ooo ow	- 5 5 -	$\beta_c = 39.14^\circ$		
ν	u	β°	${f T}$	p	ρ
108288	.725502	43.4892	8.94925	56.8767	6.3554
090240	.726755	42.7662	8.97744	57.6658	6.4234
072192	.727786	42.0305	9.00030	58.3121	6.4789
054144	.728590	41.3076	9.01803	58.8171	6.5221
036096	.729162	40.5849	9.03072	59.1806	6.5532
018048	• 729503	39.8614	9.03838	59.4010	6.5720
000000	.729616	39.1478	9.04095	59.4752	6.5784
M _m = 10.0000	000 A =	= 300	$\beta_{c} = 33.49^{\circ}$		
ω	w		c		
v	u	β°	T	P	ρ
100103	. 796959	37.1592	7.22803	43.6144	6.0340
083419	.797935	36.5501	7.25242	44.2543	6.1020
066735	•798739	35.9366	7.27219	44.7785	6.1575
050051	• 799365	35.3219	7.28751	45.1882	6.2007
033367	•799811	34.7009	7.29848	45.4833	6.2318
016683	.800077	34.1004	7.30511	45.6622	6.2507
000000	.800165	33.4907	7.30734	45.7226	6.2570

TABLE II NITROGEN

$M_{\infty} = 10.0000$	$\theta_{\mathbf{w}} =$	200	$\beta_c = 22.60^{\circ}$		
ν	u	β°	T	.p	ρ
084672	•903688	25.3547	4.26986	21.5927	5.0570
070560	•904306	24.8965	4.28825	21.9752	5.1245
056448	.904816	24.4360	4.30313	22.2886	5.1796
042336	•905214	23.9743	4.31466	22.5339	5.2226
028224	905498	23.5140	4.32291	22.7108	5.2535
014112	.905667	23.0577	4.32790	22.8183	5.2723
000000	.905722	22.6075	4.32959	22.8547	5.2787
10.000	2000	100	12.000		
$M_{\infty} = 10.0000$	$\mathbf{w} = \mathbf{w}$	10°	$\beta_c = 12.09^{\circ}$		
v	u	ع°	T	р	ρ
074151	•9 68 682	14.3773	2.10686	7.0536	3.3479
061792	.969131	13.9987	2.12241	7.2452	3.4136
049434	•969504	13.6142	2.13491	7.4021	3.4671
037075	•969795	13.2285	2.14458	7.5252	3.5089
024717	.970002	12.8450	2.15153	7.6146	3.5392
012358	•970125	12.4669	2.15575	7.6695	3.5576
000000	970165	12.0970	2.15719	7.6881	3.5639

TABLE II NITROGEN

T _w = 30	00°K• γ _∞	= 1.4,	θ _v =3336°K		
$M_{\infty} = 12.00000$	$\theta_{\mathbf{w}} =$	440	$\beta_c = 49.72^{\circ}$		
v	u	β°	T	p	ρ
116974	•562981	55.7377	16.87248	119.2137	7.0655
097478	•564861	54.7332	16.91901	120.6886	7.1333
077982	•566406	53.7239	16.95677	121.8960	7.1886
058487 038991	•567608	52.7144 51.7084	16.98605	122.8387 123.5166	7.2317
019495	•568464 •568974	50.7097	17.00700 17.01965	123.9272	7.2626 7.2814
000000	•569143	49.7218	17.02390	124.0656	7.2877
$M_{\infty} = 12.00000$	000 e _w =	400	β _c = 44.70°		
v	u	β°	T	p	ρ
109901	•647722	49.6299	14.58957	101.1396	6.9323
091584	•649165	48.8091	14.63075	102.4171	7.0001
073267	.650352	47.9839	14.66418	103.4633	7.0555
054950	•651276	47.1578	14.69010	104.2804	7.0986
036634	•651934	46.3342	14.70865	104.8682	7.1296
018317 000000	•652327 •652457	45.5162 44.7067	14.71985 14.72361	105.2241 105.3440	7.1484 7.1547
	•072471	44.7007	144/2301	107.5440	1 4 1 3 7 1
M_ = 12.00000	000 9	= 35° £	3 _c = 38.84°		
∞	W		•		
v	u	β°	T	p	ρ
101175	.733035	42.8584	11.95884	80.3982	6.7229
084313 067450	.734116 .735007	42.1904 41.5102	11.99391 12.02237	81•4481 82•3081	6.7907 6.8462
050587	•735700	40.8450	12.04445	82.9800	6.8894
033725	.736194	40.1706	12.06024	83.4634	6.9205
016862	.736489	39.5066	12.06978	83.7563	6.9393
000000	•736586	38.8465	12.07298	83.8549	6.9456
M = 12.00000	000 4	= 30° β _ε	= 33 210		
, i = 12,0000		`	= 33.21°		
v	u	β°	T	p	ρ
092470	.803152	36.5677	9.53780	61.4506	6.4428
077058	•803977	46.0100 3 5.4 465	9.56732 9.59127	62.2908	6.5107
061646 046235	•804657 •805186	34.8860	9.60985	62•9792 63•5171	6 • 5 6 6 3 6 • 6 0 9 5
030023	805564	34.3249	9.62314	63.9043	6.6406
015411	.805789	33.7675	9.63117	64.1389	6.6595
000000	•805863	33.2159	9.63387	64.2179	6.6658

TABLE II NITROGEN

$M_{\infty} = 12.000$	0000 e _w =	200	$\beta_c = 22.32^{\circ}$		
v	u	β ^o	T	p	ρ
075730	.908015	24.7675	5.42080	29.9862	5.5316
108 6 6 0 • -	•908506	24.3623	5.44139	30.4691	5.5995
050486	.908911	23.9536	5.45807	30.8647	5.6548
037865	•909227	23.5439	5.47100	31.1742	5.6980
025243	•909452	23.1353	5.48026	31.3972	5.7291
012621	.909586	22.7298	5.48585	31.5326	5.7479
000000	•909630	22.3293	5.48774	31.5783	5.7543
$M_{\infty} = 12.0000$	0000 9 w =	100	$\beta_c = 11.78^\circ$		
v	u	3°	${f T}$	р	ρ
062727	•971573	13.6940	2.46547	9.3047	3.7740
052472	.971892	13.3763	2.48122	9.5284	3.8402
041818	•972156	13.0545	2.49391	9.7116	3.8941
031363	•972363	12.7316	2.50373	9.8553	3.9362
020909	.972509	12.4102	2.51078	9.9594	3.9666
010454	•972596	12.0927	2.51505	10.0230	3.9852
000000	•972625	11.7812	2.51650	10.0446	3.9915

TABLE II NITROGEN

7∞ =	300°K,	$\gamma_{\infty} = 1.4$	θ _v = 3336°K		
			•		
$M_{\infty} = 14.000$	00000) _w = 41°	$\beta_c = 45.70^{\circ}$		
v	u	്	T	р	ρ
107444	•634600	50.6096	19.75656	p 142•1089	7.1930
089536	•636007	49.7910	19.80991	143.8339	7.2607
071629	•637164	40.9601	19.85323	145.2465	7.3160
053722	.638065	48.1445	19.88683	146.3497	7.3591
035814	•638707	47.3233	19.91087	147.1429	7.3900
017907	•639090	46.5076	19.92538	147.6232	7 • 4088
000000	•639216	45.7000	19.93025	147.7849	7.4151
$M_{\infty} = 14.000$	00000) _w = 40°	$\beta_{c} = 44.49^{\circ}$		
m = 14.000		w	Pc - 44.47		
v	u	β°	${f T}$	p	ρ
105640	•653683	49.1800	19.01428	136.2113	7.1636
088033	•655004	46.3986	19.06588	137.8721	7.2313
070427	•656390	47.6130	19.10777	139.2323	7.28 6 6
052820	•656936	46.8266	19.14027	140.2945	7.3298
035213	•657538	46.0444	19.16353	141.0583	7.3607
017606	•657898	45.2633	19.17756	141.5208	7.3795
000000	•658016	44.4919	19.18227	141.6765	7.3858
M = 14.000)0000 6) _w = 35°	$\beta_c = 38.65^{\circ}$		
΄ω		์ ₩	C		
v	u	β°	\mathbf{T}_{-}	p	ρ
096600	•737750	42 • 4548	15.47668	108.1565	6.9883
080500	• 738729	41.6264	15.51995	109.5112	7.0561
064400	•739534	41.1891	15.55509	110.6210	7.1115
048300	•740162	40.5509	15.58235	111.4879	7.1547
032200	•740609	39.9144	15.60185	112.1114	7.1857
016100	•740876	39.2818	15.61362	112.4889	7.2045
000000	•740964	38.6525	15.61757	112.6160	7.2108
M_ = 14.000	00000) _w = 30°	$\beta_c = 33.03^{\circ}$		
w.		β°	T	n	^
v 087502	น •8070ธ7	9 36•1⊌76	12.22386	p 82•4819	ρ 6•7476
072918	•807821	35.6648	12.25955	83.5549	6.8155
058334	•807621 •808426	35.1346	12.48852	84.4341	6.8709
038334 043751	•808878	34.6054	12.31099	85.1210	6.9142
029167	•809234	34.0715	12.32707	85.6151	6.9452
014583	.809434	33.5529	12.33677	85.9144	6.9640
000000	809500	33.0335	12.34004	86.0152	6.9704

TABLE II NITROGEN

$M_{\infty} = 14.0000$	οοοο θ _w	= 20°	$\beta_c = 22.14^{\circ}$		
v	u	β°	T	р	ρ
069750	•910834	24.3790	6.73422	39.8521	5.9178
058125	•911249	24.0075	6.75754	40.4492	5.9857
046500	•911590	23.6330	6.77646	40.9385	6.0412
034875	•911857	23.2576	6.79112	41.3211	6.0845
023250	•912047	22.8831	6.80161	41.5966	6.1157
011625	•912160	22.5113	6.80795	41.7637	6.1345
•000000	•912198	22.1436	6.81009	41.8201	6.1409
M _∞ = 14.0000)000	=10°	$\beta_c = 11.56^{\circ}$		
v	u	β°	T	q	ρ
055077	•973426	13.2384	2.86951	11.9285	4.1570
045898	•973670	12.9611	2.88569	12.1879	4.2235
036718	.973872	12.6804	2.89874	12.4005	4.2778
027538	.974030	12.3990	2.90885	12.5670	4.3202
018359	.974142	12.1186	2.91610	12.6875	4.3508
009179	.974209	11.8412	2.92049	12.7610	4.3694
000000	.974231	11.5684	2.92197	12.7859	4.3757

TABLE II NITROGEN

ī =	300°K•	$\gamma_{\infty} = 1.4$	θ _v =3336°K		
$M_{\infty} = 16.000$	00000	0 _w = 35°	β _c =38.52°		
v 093495 077912 062330 046747 031165 015582 000000	u •740895 •741808 •742559 •743144 •743561 •743810 •743892	β° 42.1922 41.5819 40.9681 40.3534 39.7401 39.1306 38.5269	T 19.51130 19.56408 19.60696 19.64022 19.66401 19.67837 19.68320	p 140.1599 141.8640 143.2601 144.3505 145.1347 145.6094 145.7691	p 7.1835 7.2512 7.3065 7.3497 7.3807 7.3994 7.4057
$M_{\infty} = 16.000$	00000	θ _w = 30°	$\beta_c = 32.90^{\circ}$		
v 084098 070082 056065 042049 028032 014016 000000	.809740 .810416 .810973 .811406 .811716 .811900 .811961	β° 35.9294 35.4268 34.9212 34.4146 33.9092 33.4068 32.9093	T 15.29490 15.33775 15.37255 15.39955 15.41887 15.43052 15.43444	p 106.7180 108.0570 109.1542 110.0113 110.6278 111.0011 111.1268	p 6.9773 7.0451 7.1005 7.1438 7.1748 7.1936 7.1999
$M_{\infty} = 16.000$	00000	θ _w = 20°	β _c =22.01°		
v 065539 054615 043692 032769 021846 010923 000000	u •912785 •913150 •913450 •913685 •913852 •913985	β° 24.1068 23.7588 23.4081 23.0567 22.7060 22.3576 22.0130	T 8.21499 8.24154 8.26309 8.27980 8.29175 8.29897 8.30140	p 51.1953 51.9209 52.5156 52.9804 53.3150 53.5178 53.5862	6.2319 6.2999 6.3554 6.3987 6.4298 6.4487 6.4550
$M_{\infty} = 16.000$	00000	θ _w = 10°	$\beta_c = 11.41^{\circ}$		
v 049658 041381 033105 024829 016552 008276 000000	u 974696 974894 975058 975185 975276 975330	β° 12.9165 12.6675 12.4158 12.1633 11.9117 11.6625 11.4171	T 3.31684 3.33364 3.34721 3.35772 3.36526 3.36982 3.37136	p 14.9293 15.2283 15.4732 15.6651 15.8037 15.8881 15.9167	ρ 4.5010 4.5680 4.6227 4.6653 4.6961 4.7148 4.7211

TABLE II NITROGEN

T _{\infty} =	300°K, γ _∞	= 1.4.	θ _v =3336°K		
M _m = 18.000)0000 θ _w	00د = .	$\beta_c = 32.82^{\circ}$		
v	u	β°	T	р	ρ
081672	.811611	35.7462	18.75663	134.1650	7.1529
068060	.812247	35.2545	18.80764	135.8039	7.2206
054448	•812771	34.7698	18.84907	137.1468	7.2760
040836	.813179	34.2792	18.88122	138.1958	7.3192
027224	.813469	33.7848	18.90422	138.9502	7.3502
013612	.813643	33.3031	18.91809	139.4068	7.3689
000000	.813700	32.8211	18.92275	139.5605	7.3752
M - 12 000	20000	-200	0 - 21 010		
$M_{\infty} = 18.000$,0000 e ^m	= 20°	$\beta_{c} = 21.91^{\circ}$		
v	u	β°	T	р	ρ
062467	.914190	23.9089	9.86789	64.0226	6.4879
052055	.914521	23.5779	9.89817	64.8915	6.5559
041644	•914793	23.2445	9.92274	65.6036	6.6114
031233	.915006	22.9104	9.94181	66.1602	6.6547
020822	.915157	22.5770	9.95545	66.5607	6.6858
010411	•915248	22.2457	9.96368	66.8033	6.7046
000000	•915277	21.91/8	9.96645	66.8851	6.7110
M _m = 18.000	0000 0	=10°	$\beta_{c} = 11.30^{\circ}$		
ν	u	β°	T	p	ρ
045622	•975621	12.6773	3.80540	18.3049	4.8102
80180	.975787	12.4492	3.82298	18.6468	4.8775
030414	.975925	12.2158	3.83720	18.9270	4.9325
022811	.976032	11.98/8	3.84821	19.1463	4.9753
015207	.976109	11.75/4	3.85610	19.3046	5.0062
007603	•976154	11.5291	3.86087	19.4009	5.0250
000000	•976169	11.3040	3.86248	19.4335	5.0313

-.014171

-.007085

-.000000

TABLE II NITROGEN

4.38799

4.39302

4.39471

23.1911

23.3002

23.3371

5.2851

5.3039

5.3102

11.6385

11.4261

11.2166

•976743

.976782

.976795

No. of Copies	Organization	No. of Copies	Organization
			
10	Commander Armed Services Technical Information Agency ATTN: TIPCR	l	Commander U.S. Naval Ordnance Test Station ATTN: Technical Library China Lake, California
	Arlington Hall Station Arlington 12, Virginia	1	Superintendent U.S. Naval Postgraduate School
1	Chief of Ordnance ATTN: ORDTB - Bal Sec		Monterey, California
	Department of the Army Washington 25, D.C.	2	Commander U.S. Naval Weapons Laboratory Dahlgren, Virginia
1	Commanding Officer Diamond Ordnance Fuze Laboratories ATTN: Technical Information Office,	. 4	Commander Air Force Systems Command
	Branch 012 Washington 25, D.C.		Andrews Air Force Base Washington 25, D.C.
2	Commanding General U.S. Army Ordnance Missile Command ATTN: Major D.H. Steininger Technical Library	1	Commander Air Force Cambridge Research Laboratories (CRRELA) .ATTN: Arnold M. McCalmont -
	Redstone Arsenal, Alabama	•	Chief, Research Information Division
1	Commanding General White Sands Missile Range, New Mexic ATTN: ORDBS-TS-TIB	20	L.G. Hanscom Field Bedford, Massachusetts .
		1	Commander
1	Army Research Office		Air University Library
	ATTN: Lt Col J.T. Brown Arlington Hall Station Arlington, Virginia		ATTN: AUL (3T-AUL-60 118) Maxwell Air Force Base, Alabama
	<i>o</i> , <i>o</i>	1	Director
3	Chief, Bureau of Naval Weapons ATTN: DIS-33		National Aeronautics and Space Administration
	Department of the Navy Washington 25, D.C.		ATTN: Division of Research Information 1520 H Street, N.W. Washington 25, D.C.
2	Commander Naval Ordnance Laboratory ATTN: Library	1	Director National Aeronautics and Space
	White Oak Silver Spring 19, Maryland		Administration Ames Research Center Moffett Field, California

No. of Copies	Organization	No. of Copies	Organization
1	Director National Aeronautics and Space Administration ATTN: Mr. G. P. Wood	1	Cornell Aeronautical Laboratory, Inc. ATTN: Dr. F. K. Moore Buffalo 5, New York
	Langley Research Center Langley Field, Virginia	1	Douglas Aircraft Company ATTN: Mr. R. J. Hakkinen 3000 Ocean Park Boulevard
1	Director National Aeronautics and Space	_	Santa Monica, California
	Administration Lewis Research Center Cleveland Airport Cleveland, Ohio	1	Firestone Tire and Rubber Company Defense Research Division 1200 Firestone Parkway Akron 17, Ohio
1	U.S. Atomic Energy Commission Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, New Mexico	:	General Electric Research Laboratory ATTN: Dr. H. T. Nagamatsu Dr. D. R. White P. O. Box 1088 Schenectady 5, New York
1	Arthur D. Little, Inc. 30 Memorial Drive Cambridge 42, Mausachusetts	1	General Electric Company Missile and Space Vehicle
13	AVCO Manufacturing Corporation Advance Development Division Research Laboratory 2385 Revere Beach Parkway		Department ATTN: Dr. F. G. Gravalos 3198 Chestnut Street Philadelphia, Pennsylvania
	Everett 49, Massachusetts	1	Institute of Aerospace Sciences ATTN: J. J. Giennon - Librarian
(2	Boeing Airplane Company ATTN: F.E. Ehlers Seattle 14, Washington		2 East 64th Street New York 21, New York
3.	CONVAIR, A Division of General Dyna Corporation Ordnance Aerophysics Laboratory Daingerfield, Texas	l mics	Lockheed Missiles and Space Division ATTN: Dr. D. Bershader 3251 Hanover Street Palo Alto, California
1	CONVAIR, A Division of General Dyna Corporation ATTN: R. D. Linnell	l mics	The Martin Company ATTN: S. C. Traugott Baltimore 3, Maryland
	P. O. Box 1950 San Diego, California	1	North American Aviation, Inc. ATTN: Aerophysics Laboratory 12214 Lakewood Boulevard Downey, California

No. of Copies	Organization	No. of Copies	Organization_
L	Space Technology Laboratories, Inc. P. O. Box 95001 Los Angeles 45, California	1	Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena 3, California
1	Ramo-Wooldridge Corporation 5730 Arbor Vitae Street Los Angeles 45, California	2	Rensselaer Polytechnic Institute ATTN: Professor T. Y. Li Professor G. H. Handelman Troy, New York
1	Brown University ATTN: Dr. R. Probstein Division of Applied Mathematics Providence 12, Rhode Island	1	University of Illinois Aeronautical Institute Urbana, Illinois
1	Cornell University ATTN: Professor W.R. Sears Graduate School of Aeronautical Engineering Ithaca, New York	1	University of Maryland ATTN: Mr. S. I. Pai Institute for Fluid Dynamics and Applied Mathematics College Park, Maryland
1	Duke University ATTN: Dr. R. J. Duffin Box CM, Duke Station Durham, North Carolina	1	University of Southern California Engineering Center Los Angeles 7, California
2	Princeton University ATTN: Professor W. Hayes Professor J. Bogdonoff Department of Aeronautical Engineer Princeton, New Jersey	l ing	Professor G. F. Carrier Division of Engineering and Applied Physics Harvard University Cambridge 38, Massachusetts
2	Stanford University ATTN: Dr. M. D. Van Dyke Mr. John Richardson - Division of Chemical Engin Stanford, California	l eering l	Professor F. H. Clauser, Jr. The Johns Hopkins University Department of Aeronautics Baltimore 18, Maryland Professor H. W. Emmons Harvard University
2	California Institute of Technology ATTN: Professor L. Lees Professor H. W. Leipmann Guggenheim Aeronautical Laboratory Pasadena 4, California	1	Cambridge 38, Massachusetts Dr. Robert Goulard Purdue University School of Aeronautical and Engineering Sciences
1	Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland	t; 2	West Lafayette, Indiana

No. of Copies	Organization
1	William J. Guman Republic Aviation Corporation Plasma Propulsion Laboratory Farmingdale, Long Island, New York
1	Dr. A. E. Puckett Hughes Aircraft Company Systems Development Laboratories Florence Avenue at Teal Street Culver City, California
1	Miss Mary F. Romig The Rand Corporation Aero-Astronautics Department Santa Monica, California
1	Mr. H. Sludd General Electric Company 3750 D. Street Philadelphia 24, Pennsylvania
1	Dr. L. H. Thomas Watson Scientific Computing Laboratory 612 West 116th Street New York 25, New York
1	Mr. Thomas E. Widmer Northwestern University Mechanical Engineering Department Evanston, Illinois
10	The Scientific Information Officer Defence Research Staff British Embassy 3100 Massachusetts Avenue, N.W. Washington 8, D.C.
4	Defence Research Member Canadian Joint Staff 2450 Massachusetts Avenue, N.W. Washington 8, D.C.

Accession No. Ballistic Research Laboratories, APG CONICAL FLOW PARAMETERS FOR AIR AND NITROGEN IN VIERATIONAL EQUILIERIUM

Gas flow - Analysis Supersonic flow - Tables

UNCLASSIFIED

Paul D. Kelly

BRL Report 1164 March 1962

DA Proj 503-03-001, OMSC 5010.11.814 UNCLASSIFIED Report

The Taylor-Maccoll equation for supersonic flow about cones has been integrated numerically for air and nitrogen in instantaneous vibrational equilibrium (chemical reactions are assumed to be frozen). Free stream Mach numbers from 8 to 20 were used for 300° K free stream temperature.

The values of the flow quantities (i.e. velocity components, polar angle, temperature, pressure and density) are given through the shock layer for different values of M and flow deflection angle at the shock.

It was found that by non-dimensionalizing some of the flow quantities (temperature, pressure and density) with respect to the changes in their values across the shock layer and by plotting them as functions of the non-dimensional shock layer thickness, that the points for different values of Mm and cone angle lie along the same curves. This gives an approximate method of obtaining other solutions.

The results presented here are shown to lie between those of Kopal (translation and rotational degrees of freedom only) and Romig (dissociation and ionization included) as is expected.

Accession No. Ballistic Research Laboratories, APG CONICAL FLOW PARAMETERS FOR AIR AND NITROGEN IN VIRRATIONAL EQUILIBRIUM Paul D. Kelly

Gas flow - Analysis Supersonic flow - Tables

UNCLASSIFIED

BRL Report 1164 March 1962

DA Proj 503-03-001, OMSC 5010.11.814 UNCLASSIFIED Report

The Taylor-Maccoll equation for supersonic flow about cones has been integrated numerically for air and nitrogen in instantaneous vibrational equilibrium (chemical reactions are assumed to be frozen). Free stream Mach numbers from 8 to 20 were used for 300° K free stream temperature.

The values of the flow quantities (i.e. velocity components, polar angle, temperature, pressure and density) are given through the shock layer for different values of Mar and flow deflection angle at the shock.

It was found that by non-dimensionalizing some of the flow quantities (temperature, pressure and density) with respect to the changes in their values across the shock layer and by plotting them as functions of the non-dimensional shock layer thickness, that the points for different values of M_{∞} and cone angle lie along the same curves. This gives an approximate method of obtaining other solutions.

The results presented here are shown to lie between those of Kopal (translation and rotational degrees of freedom only) and Romig (dissociation and ionization included) as is expected.

Accession No. Ballistic Research Laboratories, APG CONICAL FLOW PARAMETERS FOR AIR AND NITROGEN IN VIERATIONAL EQUILIERIUM Paul D. Kelly

Gas flow - Analysis Supersonic flow - Tables

UNCLASSIFIED

BRL Report 1164 March 1962

DA Proj 503-03-001, OMSC 5010.11.814 UNCLASSIFIED Report

The Taylor-Maccoll equation for supersonic flow about cones has been integrated numerically for air and nitrogen in instantaneous vibrational equilibrium (chemical reactions are assumed to be frozen). Free stream Mach numbers from 8 to 20 were used for 300° K free stream temperature.

The values of the flow quantities (i.e. velocity components, polar angle, temperature, pressure and density) are given through the shock layer for different values of M_{∞} and flow deflection angle at the shock.

It was found that by non-dimensionalizing some of the flow quantities (temperature, pressure and density) with respect to the changes in their values across the shock layer and by plotting them as functions of the non-dimensional shock layer thickness, that the points for different values of M_{α} and cone angle lie along the same curves. This gives an approximate method of obtaining other solutions.

The results presented here are shown to lie between those of Kopal (translation and rotational degrees of freedom only) and Romig (dissociation and ionization included) as is expected.

Accession No. Ballistic Research Laboratories, APG CONICAL FLOW PARAMETERS FOR AIR AND NITROGEN IN VIBRATIONAL EQUILIBRIUM Paul D. Kelly

Gas flow - Analysis Supersonic flow - Tables

UNCLASSIFIED

BRL Report 1164 March 1962

DA Proj 503-03-001, OMSC 5010.11.814 UNCLASSIFIED Report

The Taylor-Maccoll equation for supersonic flow about cones has been integrated numerically for air and nitrogen in instantaneous vibrational equilibrium (chemical reactions are assumed to be frozen). Free stream Mach numbers from 8 to 20 were used for 300° K free stream temperature.

The values of the flow quantities (i.e. velocity components, polar angle, temperature, pressure and density) are given through the shock layer for different values of Mg and flow deflection angle at the shock.

It was found that by non-dimensionalizing some of the flow quantities (temperature, pressure and density) with respect to the changes in their values across the shock layer and by plotting them as functions of the non-dimensional shock layer thickness, that the points for different values of Mc and cone angle lie along the same curves. This gives an approximate method of obtaining other solutions.

The results presented here are shown to lie between those of Kopal (translation and rotational degrees of freedom only) and Romig (dissociation and ionization included as is expected.