Московский физико-технический институт (национальный исследовательский университет)

Лабораторная работа по общему курсу физики

1.1.4. змерение интенсивности радиационного фона

Засимов Георгий Алексеевич Группа Б01-109

Долгопрудный 2021

Теоритическая справка. Если случайные события (регистрация частиц) однородны во времени и каждое последущее событие не зависит от того, когда и как случилось предыдущее, то такой процесс называется пуассоновским, а результататы - количество отсчётов в одном опыте - подчиняются так называемому распределению Пуассона. При больших числах отсчёт это распределение стремится к нулю.

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

В работе используются: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи с счетчиком.

- 1. Включаем питание компьютера и установки. После загрузки компьютера запускаем программу STAT и таким образом начинаем проведение основного эксперимента.
- 2. В результате демонстрационного эксперимента убеждаемся, что при увеличении числа измерений:
 - (а) Измеряемая велечина флуктуирует;
 - (b) Флуктуации среднего значения измеряемой величины уменьшаются, и среднее значение выходит на постоянную величину;
 - (с) Флуктуации велечины погрешности среднего значения уменьшаются, а сама величина убывает;
 - (d) Флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного измерения (погрешность метода) выходит на постоянную величину.
- 3. Переходим к основному эксперименту: измерение плотности потока космического излучения за 20 секунд (результаты набрались с момента включения компьютера). На компьютере проведем обработку, аналогичную сделанной в демонстрационном эксперименте. Результаты приведены в табл. 1.
- 4. Разбиваем результаты из табл. 1 в порядке их получения на группы по 2, что соответствует произведению $N_2=100$ измерений числа частиц за интервал времени, равный 40 с. Результаты приведем в табл. 2.
- 5. Приведем данные ддя построения гистограмм распределения числа срабатываний счетчика за 10 с и 40 с в таблицах табл. 3 и табл. 4 соответственно.

- 6. Так же приведем гистограммы распределений среднего числа отсчетов за 10 и 40 с. (Рис. 1)
- 7. Используя формулы

$$\overline{n}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i$$

$$\overline{n}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i$$

$$\overline{n}_3 = \frac{1}{N_3} \sum_{i=1}^{N_3} n_i$$

- 8. Определим среднее число срабатываний счетчика за 10, 20 и 40 с соответственно.
- 9. Найдем среднеквадратичные ошибки отдельных измерений по формулам по формулам

$$\sigma_1 = \sqrt{\frac{1}{N_1 - 1} \sum_{i=1}^{N_1} (n_i - \overline{n}_1)^2}$$

$$\sigma_2 = \sqrt{\frac{1}{N_2 - 1} \sum_{i=1}^{N_2} (n_i - \overline{n}_2)^2}$$

$$\sigma_3 = \sqrt{\frac{1}{N_3 - 1} \sum_{i=1}^{N_3} (n_i - \overline{n}_3)^2}$$

и убедимся в справедливости формул

$$\sigma_1 \approx \sqrt{\overline{n}_1}$$
 $\sigma_2 \approx \sqrt{\overline{n}_2}$
 $\sigma_3 \approx \sqrt{\overline{n}_3}$

10. найдем ошибки всех измерений по формулам

$$\sigma_1 = \sqrt{\frac{1}{(N_1 - 1)N_1} \sum_{i=1}^{N_1} (n_i - \overline{n}_1)^2}$$

$$\sigma_2 = \sqrt{\frac{1}{(N_2 - 1)N_2} \sum_{i=1}^{N_2} (n_i - \overline{n}_2)^2}$$

$$\sigma_3 = \sqrt{\frac{1}{(N_3 - 1)N_3} \sum_{i=1}^{N_3} (n_i - \overline{n}_3)^2}$$

- 11. Зафикисруем все полученные ошибки и среднии значения срабатываний в табл. 5.
- 12. Определим долю случаев, когда отклонения не превышают σ_i и $2\sigma_i$, и сравним с теоретическими оценками (табл. 6).
- 13. Посчитаем относительную ошибку по формуле

$$\varepsilon_{\overline{n}_1} = \frac{\sigma_{\overline{n}_1}}{\overline{n}_1} 100\%$$

$$\varepsilon_{\overline{n}_2} = \frac{\sigma_{\overline{n}_2}}{\overline{n}_2} 100\%$$

$$\varepsilon_{\overline{n}_3} = \frac{\sigma_{\overline{n}_3}}{\overline{n}_3} 100\%$$

14. из табл. 6 следует, что
$$n_{t=10c}=13,32\pm0,18, \varepsilon_{\overline{n}_1}=1,4\%,\ n_{t=20c}=26,6\pm0,36, \varepsilon_{\overline{n}_1}=1,4\%,\ n_{t=40c}=53,11\pm0,61, \varepsilon_{\overline{n}_1}=1,2\%$$

Таблица 1: Число срабатываний счетчика за 20 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	29	21	33	27	22	26	26	27	28	27
10	26	22	25	22	25	31	24	20	23	31
20	31	31	20	19	29	27	25	31	35	21
30	38	25	27	29	30	31	36	23	28	28
40	25	25	29	20	15	26	24	30	25	23
50	21	29	17	32	32	15	29	29	21	27
60	21	22	35	26	23	26	29	19	18	31
70	25	31	36	22	27	29	23	26	29	25
80	22	25	31	33	19	31	23	28	29	27
90	32	22	23	33	22	25	29	26	23	24
100	21	35	27	35	27	25	18	29	28	32
110	33	39	29	30	25	28	23	30	22	25
120	21	23	34	22	19	29	20	35	17	22
130	21	33	19	31	23	28	44	29	23	24
140	32	25	26	26	27	26	21	24	29	34
150	34	27	24	31	23	39	22	35	23	32
160	29	17	28	27	20	30	27	29	28	19
170	38	25	23	25	25	25	27	23	28	24
180	21	28	27	23	30	19	32	22	21	33
190	26	30	28	29	28	34	22	38	21	29

Таблица 2: **Число срабатываний счетчика за 40 с**

№ опыта	1	2	3	4	5	6	7	8	9	10
0	50	60	48	53	55	48	47	56	44	54
10	62	39	56	56	56	63	56	61	59	56
20	50	49	41	54	48	50	49	47	58	48
30	43	61	49	48	49	56	58	56	49	54
40	47	56	50	51	56	54	56	47	55	47
50	56	62	52	47	60	72	59	53	53	47
60	44	56	48	55	39	54	50	51	73	47
70	57	52	53	45	63	61	55	62	57	55
80	46	55	50	56	47	63	48	50	50	52
90	49	50	49	54	54	56	57	62	60	50

Таблица 3: Данные для построения гистограммы распределения числа срабатываний счетчиков за 10 с

Число импульсов n_i	6	7	8	9	10
Число случаев	4	18	18	24	34
Доля случаев ω_n	0,01	0,045	0,045	0,06	0,085
Число импульсов n_i	16	17	18	19	20
Число случаев	34	31	19	12	8
Доля случаев ω_n	0,085	0,0775	0,0475	0,03	0,02
Число импульсов n_i	21	22	23	24	25
Число случаев	8	1	0	2	0
Доля случаев ω_n	0,02	0,0025	0	0,005	0

Таблица 4: Данные для построения гистограммы распределения числа срабатываний счетчиков за 40 с

Число импульсов n_i	39	40	41	42	43	44	45
Число случаев	2	0	1	0	1	2	1
Доля случаев ω_n	0,02	0	0,01	0	0,01	0,02	0,01
Число импульсов n_i	46	47	48	49	50	51	52
Число случаев	1	9	7	7	10	2	3
Доля случаев ω_n	0,01	0,09	0,07	0,07	0,1	0,02	0,03
Число импульсов n_i	53	54	55	56	57	58	59
Число случаев	4	7	6	15	3	2	2
Доля случаев ω_n	0,04	0,07	0,06	0,15	0,03	0,02	0,02
Число импульсов n_i	60	61	62	63	64	65	66
Число случаев	3	3	4	3	0	0	0
Доля случаев ω_n	0,03	0,03	0,04	0,03	0	0	0
Число импульсов n_i	67	68	69	70	71	72	73
Число случаев	0	0	0	0	0	1	1
Доля случаев ω_n	0	0	0	0	0	0,01	0,01

Таблица 5: Ошибки и средние значения

	\overline{n}	$\sigma_{ m cpeднeksadparuчнas}$	$\sigma_{ m примерная}$	$\sigma_{ m oбщая}$
1	13,32	3,65	3,63	0,18
2	26,6	5,16	5,03	0,36
3	53,11	6,1	7,29	0,61

Таблица 6: **Процент попадания точек в промежуток среднего значения с учетом погрешности**

Значение	Ошибка	Число случаев	Доля случаев,%	Теоретическая оценка,%
$\overline{n}_1 = 13.32$	$\pm \sigma_1 = \pm 3,65$	286	71	68
	$\pm 2\sigma_1 = \pm 7, 3$	389	97	95
$\overline{n}_2 = 13.32$	$\pm \sigma_2 = \pm 5, 16$	138	69	68
	$\pm 2\sigma_2 = \pm 10,32$	192	96	95
$\overline{n}_3 = 13.32$		68	68	68
	$\pm 2\sigma_3 = \pm 12, 2$	96	96	95