.explain_predict(X)

The Objective

A machine learning model:

```
- model = ... \rightarrow fit(X,y)
```

A prediction:

```
model.predict(X)→ "Iris-virginica"
```

A prediction that explains itself:

```
    model.predict_explain(X) → "The prediction is Iris-
virginica, because …"
```

Start with KNeighborsClassifier

- A personalized machine learning model:
 - model = my_KneighborsClassifier.fit(X,y)

- Get prediction that explains itself:
 - model.predict_explain(X) → PredictionConfidence
 - Explanation
 - Features_Distribution

• Prediction: "Iris-versicolor"

• Confidence: False

- Explanation:
 - "The prediction 'Iris-virginica' is rather unsure:

- Explanation:
 - "The prediction 'Iris-virginica' is rather unsure:
 - On the one hand the 5 nearest neighbours have diverse target values (2x value 'Iris-versicolor', 3x value 'Iris-virginica').

• Explanation:

- "The prediction 'Iris-virginica' is rather unsure:
- On the one hand the 5 nearest neighbours have diverse target values (2x value 'Iris-versicolor', 3x value 'Iris-virginica').
- But on the other hand the nearest neighbour has the same target value too."

- Features_Distribution:
 - The features given for predicting the target value are rather far from any other observations already known.

- Features_Distribution:
 - The features given for predicting the target value are rather far from any other observations already known.
 - No feature has the exact same values in the range of the 5 nearest neighbours.

- Features_Distribution:
 - The features given for predicting the target value are rather far from any other observations already known.
 - No feature has the exact same values in the range of the 5 nearest neighbours.
 - However, the feature 'sepal_length' differs remarkably ('5.6' vs. '6.0') throughout the inspected 5 nearest neighbours.

- Features_Distribution:
 - The features given for predicting the target value are rather far from any other observations already known.
 - No feature has the exact same values in the range of the 5 nearest neighbours.
 - However, the feature 'sepal_length' differs remarkably ('5.6' vs. '6.0') throughout the inspected 5 nearest neighbours.
 - There seems to be an intersection of the target values {'Iris-versicolor', 'Iris-virginica'}."

Visualization

Interactive

Dimensionality reduction for y_predict_explain: PCA visualization

Visualization

from eli5.sklearn import PermutationImportance

		Weight	Feature
0.6316	±	0.2183	petal_length
0.1000	±	0.0394	petal_width
0.0158	\pm	0.0537	sepal_width
-0.0000	\pm	0.0744	sepal_length

PDP for feature "petal_length"

Number of unique grid points: 10

0.5 -

petal_length (class 2)

from pdpbox import pdp

import shap

import lime, lime.lime_tabular

Näxt steps (?)

- Rollout .predict_explain(X) on RandomForestClassifier
- Dive into explainability models in more detail
- Try it out on a data set
 - Get one from the other groups
 - Get a new one

Merci!