DE ONLY

BIOLOGICAL EVALUATION OF SULFUR OXIDE EMISSIONS IN THE WARD CREEK AREA KETCHIKAN, ALASKA

December 1973 by T. H. Laurent Division of Timber Management Alaska Region U.S. Forest Service

During examination of insect-damaged trees in the Ward Creek drainage considerable gaseous emission from the Ketchikan Pulp Company mill was noted. If sultur oxides, ammonia, and ammonium are emitted, physiological damage to the trees could complicate insect damage evaluations. To clarify the picture, foliage samples were collected from near the mill, at Ward Lake, and for background purposes from Gem Cove. These foliage samples were analysed for sulfur and nitrogen content.

The results of the analyses showed significantly higher percentages of sulfur in foliage near the mill and at Ward Lake than were found in the background samples. The percentages of sulfur in the background samples were negligible. A higher nitrogen content was found in foliage near the mill, possibly indicating the emission of ammonia and ammonium.

## I. Technical Information

Causal Agent: Sulfur oxides.

Host Trees: Tsuga heterophylia (Raf.) Sarg., western hemlock; Thuja plicata Donn, western redcedar; and Picea sitchensis (Bong.) Carr., Sitka spruce.

Location: Area adjacent to the Ketchikan Pulp Mill and up the Ward Creek drainage toward Ward Lake.

Type of Damage: Acute and chronic fume injury caused by oxides of sulfur. The injury is expressed as a discoloration of needles (yellowish to reddish-brown), shrinkage of tissues, and defoliation giving the trees a thin, sparse-foliaged, weak appearance.

II. Procedure: Foliage samples were collected adjacent to the mill, at Ward Lake a mile away, and (for a background sample) at Gem Cove nine miles away on the other side of a small mountain range.

The foliage samples were returned to the laboratory and dried. The needles were removed, bagged and labeled according to species and location. The samples were then sent to WARF Institute, Inc. of Madison, Wisconsin for analysis. Analyses were made for percent sulfur, percent sulfate and percent nitrogen.

## III. Results of Analysis

| Tree Species and Sample Location | Date Collected | Foliar Concentrations * |         |            |
|----------------------------------|----------------|-------------------------|---------|------------|
|                                  |                | % Sulfur                |         | % Nitrogen |
| Sitka Spruce                     |                |                         | 150 MAY |            |
| Gem Cove. Background             | 10-26-73       | 0.05                    | 0.15    | 0.79       |
| Sitka Spruce                     |                |                         | 430 Rm  |            |
| Ward Lake                        | 10-23-73       | 0.14                    | 0.42    | 1.05       |
| Cities Courses                   |                |                         |         |            |
| Sitka Spruce<br>KPC Mill         | 10-23-73       | 0.28                    | 0.84    | 0.86       |
| Western Hemlock                  |                |                         |         |            |
| Gem Cove. Background             | 10-26-73       | 0.05                    | 0.15    | 0.87       |
| Western Hemlock                  |                |                         |         |            |
| Ward Lake                        | 10-23-73       | 0.15                    | 0.45    | 0.94       |
| Western Hemlock                  |                |                         |         |            |
| KPC Mill                         | 10-23-73       | 0.41                    | 1.23    | 0.88       |
| Western Redcedar                 |                |                         |         |            |
| Gem Cove. Background             | 10-26-73       | 0.04                    | 0.12    | 0.82       |
| Western Redcedar                 |                |                         |         |            |
| KPC Mill                         | 10-23-73       | 0.12                    | 0.36    | 1.13       |

29,71 (1965)

Nitrogen: A.O.A.C., 16, (1970) 11th Ed.

<sup>\*</sup> Methods of Analysis. Sulfur: Soil Society of American Proceedings,

## IV. Discussion

Sulfur dioxide gas can cause acute and/or chronic injury to trees. Acute injury is observed after exposure to short-term high levels of the gas or when a tree is very sensitive. Acute injury in conifers causes a tan to reddish-brown discoloration indicating death of all or part of the needle. In some instances the needle will have a banded appearance which is more typical of injury occurring in the winter when the trees are relatively dormant.

Chronic  $SO_2$  injury usually produces a general yellowing of the needles before they are shed prematurely. The tree's crown has a sparse thin appearance. In time the tree is greatly weakened and growth is reduced.

There is no clearcut demarcation between acute and chronic injury, but rather an intergradation of symptoms.

The effect of  $SO_2$  on the trees varies based on concentrations, distance from source, length of time of accumulation, and within and among tree species as to susceptibility.

The concentration of  $\mathrm{SO}_2$  to which a tree is exposed depends first on the concentration at the source and then on degree of dilution in transit. The extent of dilution depends on length of time between emission and deposition. Meteorological conditions exert the greatest influence on the dispersal and removal of air pollutants. Winds or vertical turbulence are necessary – without these  $\mathrm{SO}_2$  accumulates in concentrations which may easily become toxic. As  $\mathrm{SO}_2$  readily goes into solution in water, rainwater is very effective in removing it from the atmosphere.

The  $\mathrm{SO}_2$  enters the foliage mainly through stomata. Once within the needles, sulfur is distributed rather uniformly according to the normal distribution of sulfur-bearing proteins. The sulfur content of leaves is useful in obtaining a general idea of  $\mathrm{SO}_2$  concentration increases once normal levels are known and to define the scope of the area which has been exposed.

Levels of  $SO_2$  required to be injurious depend on sensitivity and metabolic activity, time of day, time of year, and rate of absorption. Threshold concentrations of  $SO_2$  can cause some growth reduction with no visible markings. Severely injured trees can gradually recover after cessation of exposure to the  $SO_2$ .

Sensitivity of plant materials to  $SO_2$  is affected significantly by temperature, relative humidity, soil moisture, light intensity, nutrient level, and by sulfate content of the soil. The plant susceptibility increases with temperature (greatest at temperatures over  $40^{\circ}F$ ), with increased relative humidity, increased soil moisture, increased light intensity, and with a decrease in nutrient supply. Young trees are more resistant to  $SO_2$  injury than mature trees with the exception of conifer seedlings which are very susceptible.

Sulfur dioxide is very soluble in water and in the presence of mist and rain is converted to sulfuric acid. This and mist can cause visible injury to moist leaves. In addition to causing visible leaf injury there is the possibility over long periods of time, of changing pH values in the soil.

Point sources of SO2 are normally the major cause of plant damage and almost always the cause of acute injury. Point source examples are smelters, refineries, large coal burning power plants, plants burning high sulfur residual oils, sulfate and sulfite process pulpmills. The point source we are considering in this evaluation is a sulfite process mill which uses an acid-base process for dissolving the lignin bonding material from the wood chips. The cooking liquor is produced by reacting SO<sub>2</sub> with a base (magnesium in this instance) in an absorption device. A bisulfite solution is formed and used as a cooking liquor for the wood chips in a digester. Economical operation of the sulfite process requires efficient recovery of SO<sub>2</sub> from combustion gases as concentrations of over 1 percent SO<sub>2</sub> result from liquor combustion. At a recovery efficiency of 90 percent 20 pounds of SO<sub>2</sub> per ton of pulp is emitted. For a 600 ton per day mill this would mean that 12,000 pounds of  $SO_2$  (664,200 cu. ft.) per day is emitted. A recovery of over 98 percent is possible with three-stage venturi absorption.

Fig. I. A typical magnesium-base chemical pulping recovery process illustrating points of SO<sub>2</sub> loss to the atmosphere. \*



\* From: Control Techniques for Sulfur Oxide Air Pollutants. National Air Pollution Control Administration. Publication No. AP-50. The tree foliage in the lower Ward Creek drainage exhibits typical symptoms of chronic SO<sub>2</sub> exposure - a general yellowing of the needles and premature defoliation giving the tree's crown a sparse, thin appearance. This is further complicated by insect feeding which also results in a sparse weak appearing crown. The combination of insect and SO<sub>2</sub> damage probably puts a great strain on the physiological processes of the trees. Were the symptoms of acute, rather than chronic SO<sub>2</sub> injury, there would be no foliage suitable for insect feeding. The foliage would be dead and of no value as a food source. The fact that the symptoms are of chronic - rather than acute injury can probably be attributed to the high rainfall and normal airflow (few inversions) in the area.

It is possible that a synergistic relationship occurs between pollutants and defoliating insects. This has not been proven but there are indications and coincidences at mills, such as the aluminum plants at Great Falls, Montana and Kittimat, B.C., that seem to indicate it.

A more efficient recovery of  $SO_2$  would reduce damage to trees in the Ward Creek drainage. Recovery of  $SO_2$  also means recovery of  $SO_2$  from steam and power boiler emissions. If residual oils are used to fire the boilers it is possible for more  $SO_2$  to be emitted there than from the pulping process. The reason for this is that in refining high sulfur oils the sulfur is driven toward the residual portion.

Conifers are more susceptible to  $SO_2$  injury than are broad leaved trees. Of the conifers western red cedar and western hemlock are among the most susceptible. Ambient  $SO_2$  levels as low as 0.01 ppm have caused significant damage to conifers. In spite of this susceptibility to  $SO_2$  damage conifers can recover when no longer exposed to the gas.

## References

- Anonymous 1969. Air Quality Criteria for Sultur Oxides
  Environmental Health Service
  National Air Pollution Control Administration
  Publication No. AP-50. 178p.
  - 1969. Control Techniques for Sulfur Oxide Air Pollutants
    Environmental Health Service
    National Air Pollution Control Administration
    Publication No. AP-52. 122p.
    - 1971. Air Pollution and Trees
      U.S. Department of Agriculture Forest Service
      Northeastern Area, State and Private Forestry. 32p.
- Carlson, Clinton E. and Dewey, Jerald E. 1971. Environmental
  Pollution by Fluorides in Flathead National Forest
  and Glacier National Park.
  U.S. Department of Agriculture Forest Service,
  State and Private Forestry, Forest Insect and
  Disease Branch. Missoula, Montana. 57p.
- Gordon, C.C. 1972. Plantations vs: Power Plants.

  American Christmas Tree Journal.

  Vol. XVI, No. 3 p. 5-10.
- Linzon, S.N. 1965. Sulphur Dioxide Injury to Trees in the Vicinity of Petroleum Refineriers.

  The Forestry Chronicle, Vol. 41, No. 2p. 245-250.
- Scheffer, T.C. and Hedgecock, G.G. 1955. Injury to Northwestern Forest Trees by Sulfur Dioxide From Smelters.
  U.S. Department of Agriculture Tech. Bull. 1117. 49p.