1. Suppose V, W are vector spaces over F and $T: V \to W$ is a linear transformation.

- (a) We must show that T is 1-1 if and only if T maps linearly independent subsets of V is linearly independent subsets of W.
 - (\Rightarrow). Suppose T is 1-1, and the set $S \subset V$ is linearly independent. We must show that the set $\{T(\vec{s}): \vec{s} \in S\}$ is linearly independent. Suppose for contradiction not. Then by definition there exists $a_1, \ldots, a_n \in F$, and since T is 1-1 $\vec{s}_1, \ldots, \vec{s}_n \in S$ such that $\sum_{i=1}^n a_i T(\vec{s}_i) = 0$, and there exists $a_i \neq 0$. Since T is linear we have that $T(\sum_{i=1}^n a_i \vec{s}_i) = 0$, and therefore since T is linear $\sum_{i=1}^n a_i \vec{s}_i = 0$. This is a contradiction as $\{\vec{s}_1, \ldots, \vec{s}_n\} \subseteq S$, and thus is linearly independent. Therefore $\{T(\vec{s}): \vec{s} \in S\}$ is linearly independent.
 - (\Leftarrow) Suppose for all $S \subset V$ which are linearly independent $\{T(\vec{s}) : \vec{s} \in S\}$ is linearly independent. We must show that T is 1-1. Suppose for contradiction that T is not 1-1. Therefore $ker(T) \neq \{0\}$. Since ker(T) is a subspace of V, then there exists a basis K for ker(T). Since K is a basis, then it is a linearly independent subset of V. Therefore by definition of T, $\{T(\vec{v}) : \vec{v} \in K\}$ is linearly independent. This is a contradiction as every member of $\{T(\vec{v}) : \vec{v} \in K\}$ is $\vec{0}$. Therefore T is 1-1.
- (b) Suppose T is 1-1 and S is a subset of V We must show that S is linearly independent if and only if T(S) is linearly independent.
 - (\Rightarrow) Since T is 1-1 and S is a linearly independent subset then T(S) is linearly independent by the proof of (a) above.
 - (\Leftarrow) Suppose T(S) is linearly independent. We must show that S is linearly dependent. Suppose for contradiction that S is linearly independent. Then there exists $\vec{s}^* \in S$ such that $\vec{s}^* = \sum_{i=1}^n a_i \vec{s}_i$ where $a_1, \ldots, a_n \in F, \vec{s}_1, \ldots, \vec{s}_n \in S$. Therefore $T(\vec{s}^*) = T(\sum_{i=1}^n a_i \vec{s}_i)$. Since T is 1-1 then $\sum_{i=1}^n a_i T(\vec{s}_i) = T(\vec{s}^*)$, $\sum_{i=1}^n a_i T(\vec{s}_i) T(\vec{s}^*) = 0$. Since we have found a linearly dependent subset of T(S), then T(S) is linearly dependent. This is a contradiction. Therefore S is linearly independent.
- (c) Suppose $\beta = \{\vec{v}_1, \dots, \vec{v}_n\}$ is a basis for V and T is 1-1 and onto. Let dim(V) = n. We must show that $T(\beta) = \{T(\vec{v}_1), \dots, T(\vec{v}_n)\}$ is a basis for W. Since T is 1-1 then nullity(T) = 0. Therefore by the rank nullity theorem 0 + rank(T) = dim(V). Therefore rank(T) = dim(V). Since T is onto then range(T) = W, therefore rank(T) = dim(W). Since β is a linearly independent subset of V, then $T(\beta)$ is linearly independent. Since $T(\beta)$ is a linearly independent subset of V with V0 vectors, then V1 is a basis for V2.

2. Let V be the vector space of sequences. Define the function $T, U: V \to V$ by

$$T(a_1, a_2, \ldots) = (a_2, a_3, \ldots)$$
 and $U(a_1, a_2, \ldots) = (0, a_1, a_2, \ldots)$.

- (a) Prove that T and U are linear. Suppose $a=(a_1,a_2,\ldots),b=(b_1,b_2,\ldots)\in V,c\in F$.
 - We must show that T is linear, therefore by algebraic manipulation:

$$T(a+cb) = T((a_1, ...) + c(b_1, ...))$$

$$= T(a_1 + cb_1, a_2 + cb_2, ...)$$

$$= (a_2 + cb_2, ...)$$

$$= (a_2, a_3, ...) + c(b_2, b_3, ...)$$

$$= T(a) + cT(b).$$

• We must show that U is linear, therefore by algebraic manipulation:

$$U(a+cb) = T((a_1, ...) + c(b_1, ...))$$

$$= U(a_1 + cb_1, a_2 + cb_2, ...)$$

$$= (0, a_1 + cb_1, a_2 + cb_2, ...)$$

$$= (0, a_1, a_2, a_3, ...) + c(0, b_1, b_2, b_3, ...)$$

$$= U(a) + cU(b).$$

- (b) We must show that T is onto and not 1-1.
 - We must show that T is onto. Suppose $s = (s_1, s_2, \ldots) \in V$. We must show there exists $a = (a_1, a_2, \ldots) \in V$ such that s = T(a). We claim that $(a_1, a_2, a_3, \ldots) = (0, s_1, s_2, \ldots)$. Therefore we have

$$T(a) = T(0, s_1, s_2, \ldots)$$

= (s_1, s_2, \ldots) .

Therefore T is onto.

- We must show that T is not 1-1. Therefore we must show there exists $a=(a_1,\ldots),b=(b_1,b_2,\ldots)\in V$ such that T(a)=T(b) and $b\neq a$. Suppose $a=(0,s_1,s_2,\ldots)$ and $b=(1,s_1,s_2,\ldots)$. Clearly $a\neq b$, and $T(a)=T(0,s_1,s_2,\ldots)=(s_1,s_2,\ldots)=T(1,s_1,s_2,\ldots)=T(b)$. Therefore T is not 1-1.
- (c) We must show that U is 1-1 and not onto.
 - We must show that U is 1-1. Suppose $a = (a_1, a_2, ...), b = (b_1, b_2, ...) \in V, U(a) = U(b)$. We must show that a = b. Since U(a) = U(b), then by definition $(0, a_1, a_2, ...) = (0, b_1, b_2, ...)$. Therefore by definition of sequence $a_i = b_i$ for all $i \in \mathbb{N}$. Therefore $(a_1, a_2, ...) = (b_1, b_2, ...)$.
 - We must show that U is not onto. We claim that $(1,0,0,\ldots)$ is not in the range of U. Since every sequence in the range of U takes the form $(0,s_1,s_2,\ldots)$, and the sequence $(1,0,\ldots)$ has a 1 in the first position, then $(1,0,0,\ldots)$ is not in the range of U. Therefore U is not onto.

- 3. Prove that the subspaces $\{0\}$, V, R(T), N(T) are T-invariant.
 - (a) Suppose $\vec{x} \in \{0\}$. We must show that $T(x) \in \{0\}$. Since $\vec{x}, \{0\}$ then x = 0 Since T is linear then T(0) = 0. Therefore $T(x) \in \{0\}$.
 - (b) Suppose $\vec{x} \in V$. We must show that $T(\vec{x}) \in V$. Since by definition $range(T) \subseteq V$, therefore V is T-invariant.
 - (c) Suppose $\vec{x} \in range(T)$. We must show that $T(\vec{x}) \in range(T)$. Since by definition of T, $range(T) \subseteq V$. Therefore $\vec{x} \in V$. Therefore by definition of the range $T(\vec{x}) \in range(T)$. Therefore range(T) is T-invariant
 - (d) Suppose $\vec{x} \in ker(T)$. We must show that $T(\vec{x}) \in ker(T)$. Since $\vec{x} \in ker(T)$, then $T(\vec{x}) = \vec{0}$. Since T is linear then $T(\vec{0}) = \vec{0}$. Therefore $\vec{0} \in ker(T)$. Thus $T(\vec{x}) \in ker(T)$. Therefore ker(T) is T-invariant.

4. Let V, W be vector spaces and let $T, U : V \to W$ be non-zero linear transformations. If $range(T) \cap range(U) = \{\vec{0}\}$ then show that T, U form a linearly independent subset of $\mathcal{L}(V, W)$. Suppose for contradiction that $\{T, U\}$ is linearly dependent. Therefore there exists constants $c_1, c_2 \in F$ such that $(c_1T + c_2U)(x) = 0$ for all $x \in V$. Therefore by definition $T(x) = \frac{-c_2}{c_1}U(x)$. Suppose z = T(y), therefore $z = \frac{-c_2}{c_1}U(y) = U(\frac{-c_2}{c_1}y)$. Therefore $z \in range(U) \cap range(T)$. This is a contradiction, therefore $\{T, U\}$ is linearly independent.

5. Let V and W be vector spaces such that dim(V) = dim(W), and let $T: V \to W$ be linear. Show there exists ordered basis β and γ for V and W, respectively, such that $[T]^{\gamma}_{\beta}$ is a diagonal matrix.

Let $\beta = (\vec{v}_1, \dots, \vec{v}_n)$ be the ordered basis such that $\{T(\vec{v}_i) : i \in [m]\}$ is a basis of R(T), and therefore $\{\vec{v}_{i+m} : i \in [n-m]\}$ is a basis for ker(T).