Механика 1 курс ИВТ

- 1. Зависимость пройденного телом пути s от времени t дается уравнением $s = At Bt^2 + Ct^3$, где A=2 м/c, B=3 м/c² и C=4 м/c³. Найти: а) зависимость скорости v и ускорения a от времени t; б) расстояние s, пройденное телом, скорость v и ускорение a тела через время t=2c после начала движения. [(a) $v=2-6t-12t^2$ м/c; б) a=-6+24t, м/c²; s=24m; v=38mC; v=42mC; v=42mC?
- 2. Найти угловую скорость ω
 - а) суточного вращения Земли; [**ω**=72.7 10⁻⁶ рад\c]
 - б) часовой стрелки на часах; [**ω**=145.4 10⁻⁶ рад\с]
 - в) минутной стрелки на часах; [ω = 1.74 10⁻⁶ рад\c]
- 3. Камень массой m=1кг брошен вертикально вверх с начальной скоростью V_0 =9.8 м/с. Построить график зависимости от времени кинетической W_{κ} , потенциальной W_{π} и полной W энергий камня для интервала 0-2 сек.
- 4. Камень массой m=1кг брошен вертикально вверх с начальной скоростью V_0 =9.8 м/с. Построить график зависимости от высоты h кинетической W_{κ} , потенциальной W_{π} и полной W энергий камня для интервала 0-2 сек.
- 5. Точка движется по окружности так, что зависимость пути от времени дается уравнением s = A $Bt + Ct^2$, где B=2 м/c, C=1 м/c². Найти линейную скорость v точки, ее тангенциальное a_{τ} , нормальное a_n и полное a ускорение через время t=3c после начала движения, если известно, что при $t^*=2c$ нормальное ускорение точки $a^*_n=0.5$ м/c².
- 6. Два свинцовых шара массами m₁ =2 кг, m₂=3кг подвешены на нитях длиной 1=70см. Первоначально шары соприкасаются между собой, затем меньший шар отклонили на угол 60° и отпустили. Считая удар центральным и неупругим, определить: 1) высоту h, на которую поднимутся шары после удара; 2) энергию ΔТ, израсходованную на деформацию шаров при ударе. (h=5.6 см, ΔT=4.12 Дж)
- 7. На рельсах стоит платформа массой m_1 =10 т. На платформе закреплено орудие массой m_2 =5 т., из которого производится выстрел вдоль рельсов. Масса снаряда m_3 =100 кг; его начальная скорость относительно орудия V_0 =500 м/с.

Найти скорость и платформы в первый момент после выстрела, если:

- а) платформа стоит неподвижно; [u = -12 км/ч]
- б) платформа двигалась со скоростью $v=18\,$ км/ч и выстрел был направлен в направлении противоположном направлению ее движения; [$u=6\,$ км/ч]
- в) платформа двигалась со скоростью v=18 км/ч и выстрел был направлен в направлении ее движения [u=-30 км/ч].

§ 1. Кинематика

Скорость и ускорение прямолинейного движения в общем случае определяются формулами

$$v = \frac{ds}{dt}$$
, $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$.

В случае прямолинейного равномерного движения

$$y = \frac{s}{t} = \text{const}, \quad a = 0.$$

В случае прямолинейного равнопеременного движения

$$s = v_0 t + \frac{at^2}{2}$$
, $v = v_0 + at$, $a = \text{const.}$

В этих уравнениях ускорение α положительно при равиоускоренном движении и отрицательно при равнозамедлениом.

При криволинейном движении подное ускорение

$$a=V\overline{a_{\tau}^2+a_n^2}.$$

Эдесь a_{τ} — тангенциальное (касательное), ускорение и a_{n} — нормальное (центростремительное) ускорение, причем

$$a_{\tau} = \frac{dv}{dt}$$
, $a_n = \frac{v^2}{R}$,

где v — скорость движения и R — раднус кривизны траектории в даниой точке.

При вращательном движении в общем случае угловая скорость и угловое ускорение находятся по формулам

$$\omega = \frac{d\varphi}{dt}$$
, $\varepsilon = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2}$.

В случае равномерного вращательного движения угловая скорость

$$\omega = \frac{\varphi}{t} = \frac{2\pi}{T} = 2\pi n,$$

где T — период вращения, n — частота вращения, τ . е. число оборотов в единицу времени.

. Угловая скорость ω связана с линейной скоростью v соотношением $v = \omega R$.

Тангенциальное и нормальное ускорення при вращательном движении могут быть выражены в виде

$$a_{\tau} = \varepsilon R$$
, $a_n = \omega^2 R$.

В табл. 6 дано сопоставление уравнений поступательного движения с уравнениями вращательного движения.

Таблица 6

Поступательное
движение

Вращательное движение

Равномерное

$$\begin{array}{l}
\mathbf{s} = v\mathbf{t} \\
\mathbf{v} = \text{const} \\
\mathbf{a} = 0
\end{array}$$

$$\varphi = \omega t
\omega = \text{const}
\varepsilon = 0$$

Равнопеременное

$$s = v_0 t + \frac{at^2}{2}$$

$$v = v_0 + at$$

$$a = \text{const}$$

$$\varphi = \omega_0 t + \frac{\varepsilon t^2}{2}$$

$$\omega = \omega_0 + \varepsilon t$$

$$\varepsilon = \text{const}$$

Неравномерное

$$s = f(t)$$

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

$$\varphi = f(t)$$

$$\omega = \frac{d\varphi}{dt}$$

$$\varepsilon = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2}$$

 Найти скорость v относительно берега реки: а) лодки, идущей по течению; б) лодки, идущей против течения; в) лодки, идущей под углом $\alpha = 90^{\circ}$ к течению. Скорость течения реки u = 1 м/c, скорость лодки относительно воды $v_0 = 2 \text{ м/c}$.

Решение:

1.

a) $\vec{v} = \vec{v}_0 + \vec{u}$, или в проекции на ось $x: v = v_0 + (a) \overrightarrow{v_0} + (a$ или в проекции на ось х:

 $v = v_0 - u = 1\,{\rm M/c.}$ в) $\vec{v} = \vec{v}_0 + \vec{u}$, сложив вектора по правилу треугольников, получим: $v = \sqrt{v_0^2 + u^2} = \sqrt{4 + 1} = \sqrt{5} \approx$ ≈ 2,24 m/c.

a) 3м\c; б) 1; в)2.24;

1.8. Тело, брошенное вертикально вверх, вернулось на землю через время t = 3 с. Какова была начальная скорость v_0 тела и на какую высоту h оно поднялось?

Решение.

2.

Запишем уравнения кинематики в проекциях

на ось $y: y(t) = v_0 t - \frac{gt^2}{2}$ и $v(t) = v_0 - gt$. В наивысшей точке подъема имеем $y(t_1) = h$; $v(t_1) = 0$, т. е. $h = v_0 t_1 - q t_1^2 / 2$ и $0 = v_0 - q t_1$, где $t_1 = \frac{t}{2}$ — время подъема. Откуда $v_0 = q t_1$,

 $v_0 = \frac{qt}{2}$, $h = qt_1^2 - \frac{qt_1^2}{2} = \frac{qt_1^2}{2}$; $h = \frac{qt^2}{8}$. Подставляя числовые

данные, получим $v_0 = 14.7 \text{ м/c}$; $h \approx 11 \text{ м}$.

v₀=14.7m\c, h~11m

Зависимость пройденного телом пути s от времени t дается уравнением $s = At - Bt^2 + Ct^3$, где A=2 м/с, 3. $B=3 \text{ м/c}^2 \text{ и C}=4 \text{ м/c}^3$. Найти: а) зависимость скорости v и ускорения а от времени t; б) расстояние s, пройденное телом, скорость v и ускорение а тела через время t=2c после начала движения. [(a) v=2-6t- $12t^2 \text{ m/c}$; 6) a = -6 + 24t, $m \cdot c^2$

Решение:

а) Скорость тела v = dS/dt; $v = A - 2Bt + 3Ct^2$; $v = 2 - 6t + 12t^2$ м/с. Ускорение тела a = dv/dt = -2B + 6Ct; a = -6 + 24t м/с².

б) Расстояние, пройденное телом, $s = 2t - 3t^2 + 4t^3$. Тогда через время t = 2 с имеем s = 24 м; v = 38 м/с; a = 42 м/с².

- 4. Точка движется по окружности так, что зависимость пути от времени дается уравнением s = A $Bt + Ct^2$, где B=2 м/c, C=1 м/c². Найти линейную скорость v точки, ее тангенциальное a_{τ} , нормальное a_n и полное а ускорение через время t=3c после начала движения, если известно, что при $t^*=2c$ нормальное ускорение точки $a^*_n = 0.5$ м/c².
- 5. Два свинцовых шара массами $m_1 = 2$ кг, $m_2 = 3$ кг подвешены на нитях длиной l = 70см. Первоначально шары соприкасаются между собой, затем меньший шар отклонили на угол 60° и отпустили. Считая удар центральным и неупругим, определить: 1) высоту h, на которую поднимутся шары после удара; 2) энергию ΔT , израсходованную на деформацию шаров при ударе. (h=5.6 см, $\Delta T = 4.12$ Дж)
- 6. Камень массой m=1кг брошен вертикально вверх с начальной скоростью V_0 =9.8 м/с. Построить график зависимости от времени кинетической W_{κ} , потенциальной W_{π} и полной W энергий камня для интервала 0-2 сек.

Решение:

$$W_{\kappa} = \frac{mv^2}{2}$$
; $W_{\rm n} = mgh$; $v = v_0 - gt$; $h = \frac{-gt^2}{2} + v_0t$; $W_{\kappa} = \frac{m(v_0 - gt)^2}{2}$; $W_{\rm n} = mg\bigg(v_0t - \frac{gt^2}{2}\bigg)$; $W_{\kappa} = \frac{(9.8 - 9.8t)^2}{2}$; $W = W_{\kappa} + W_{\rm n} = const$; $W_{\rm n} = 9.8 \big(9.8t - 4.9t^2\big) = 96t - 48t^2$. Характер зависимости кинетической, потенциальной и полной энергии камня от времени дан на графике.

t,c	<i>W</i> _к , Дж	W_{n} , Дж
0	48	0
0,2	30,7	17,3
0,4	17,3	30,7
0,6	7,7	40,3
0,8	1,9	46,1
1	0	48
1,2	1,9	46,1
1,4	7,7	40.3
1,6	17,3	30,7
1,8	30,7	17,3
2	48	0

7. Камень массой m=1кг брошен вертикально вверх с начальной скоростью V_0 =9.8 м/с. Построить график зависимости от высоты h кинетической W_{κ} , потенциальной W_{π} и полной W энергий камня для интервала 0-2 сек.

Решение:

Кинетическая энергия, которой обладал камень в момент броска, будет в дальнейшем убывать за счет увеличения

потенциальной энергии. $W_{\rm K}=\frac{mv_0^2}{2}-mgh$; $W_{\rm R}=mgh$. Для построения графика подставим числовые данные: $W_{\rm R}=9.8h$. Максимальную высоту, на которую поднимется камень, найдем из соотношения: $\frac{mv^2}{2}=mgh$, отсюда $h=\frac{v^2}{2\,g}$; $h=4.9\,{\rm M}$. Построим график при $0\leq h\leq 4.9$.

<i>h</i> , м	<i>W</i> _к , Дж	<i>W</i> _п , Дж
0	48	0
2,7	21,6	26,4
4,9	0	48

8. Найти угловую скорость ω

- а) суточного вращения Земли;
- б) часовой стрелки на часах;
- в) минутной стрелки на часах;

Решение:

Угловая скорость $\omega = \frac{2\pi}{T}$, где T — период обращения.

a)
$$T = 24 \text{ u} = 86,4 \cdot 10^3 \text{ c}; \ \omega = 72,7 \cdot 10^{-6} \text{ pag/c};$$

б)
$$T = 12 \text{ ч} = 43,2 \cdot 10^3 \text{ c}; \ \omega = 145,4 \cdot 10^{-6} \text{ рад/c};$$

в)
$$T = 1$$
 ч = 3600 с; $\omega = 1.74 \cdot 10^{-6}$ рад/с;

9. На рельсах стоит платформа массой m_1 =10 т. На платформе закреплено орудие массой m_2 =5 т., из которого производится выстрел вдоль рельсов. Масса снаряда m_3 =100 кг; его начальная скорость относительно орудия V_0 =500 м/с.

Найти скорость и платформы в первый момент после выстрела, если:

- а) платформа стоит неподвижно;
- б) платформа двигалась со скоростью v =18 км/ч и выстрел был направлен в направлении противоположном направлению ее движения.
- в) платформа двигалась со скоростью $v = 18 \,$ км/ч и выстрел был направлен в направлении ее движения.

Решение:

а) При неподвижной платформе начальная скорость снаряда относительно земли равна его скорости v_0 относительно орудия. Систему «платформа — орудие — снаряд» можно

считать замкнутой в проекции на ось x при условии, что силой трения качения платформы можно пренебречь. Тогда в проекции на ось x импульс системы до выстрела $p_x = (m_1 + m_2 + m_3) \cdot v = 0$, т.к. v = 0. Импульс системы после выстрела $p_x' = m_3 v_0 + (m_1 + m_2) \cdot u$. По закону сохранения импульса $p_x = p_x'$ или $0 = m_3 v_0 + (m_1 + m_2) \cdot u$, откуда

$$u = -\frac{m_3 v_0}{m_1 + m_2}$$
; $u = -12$ км/ч. Знак «-» указывает, что плат-

форма стала двигаться в направлении, противоположном направлению движения снаряда.

б) Если выстрел был произведен в направлении движения платформы, то начальная скорость снаряда относительно земли равна $v_0 + v$. На основании закона сохранения импульса имеем: $(m_1 + m_2 + m_3) \cdot v = m_3(v_0 + v) + (m_1 + m_2) \cdot u - (2)$, откуда $u = \frac{(m_1 + m_2 + m_3) \cdot v - m_3(v_0 - v)}{m_1 + m_2}$;

u = 6 км/ч.

u = -30 км/ч.

в) Если выстрел был произведен в направлении, противоположном направлению движения платформы, то при $v_0 > 0$ имеем v < 0. Тогда уравнение (2) имеет вид: $-(m_1 + m_2 + m_3) \cdot v = m_3(v_0 - v) + (m_1 + m_2) \cdot u$, откуда $u = -\frac{(m_1 + m_2 + m_3) \cdot v + m_3(v_0 - v)}{m_1 + m_2};$

§ 2. Динамика

Основной закон динамики (второй закон Ньютона) выражается уравнением

$$F dt = d (mv)$$
.

Если масса т постоянна, то

$$F = m \frac{dv}{dt} = ma$$

где a — ускорение, которое приобретает тело массой m под действием силы F.

Работа силы F при перемещении s может быть выражена формулой

$$A = \int F_s \, ds, \, \cdot$$

где F_s — проекция силы на направление перемещения, ds — длина перемещения. Интегрирование должно быть распространено на все перемещение s. В случае постоянной силы, действующей под углом α к перемещению, имеем

$$A = Fs \cos \alpha$$

где α — угол между силой F и перемещением s.

Мощность определяется формулой

$$N = \frac{dA}{dt}$$
.

В случае постоянной мощности

$$N = \frac{A}{t}$$

где A - работа, совершаемая за время t.

Мощность может быть определена также формулой

$$N = Fv \cos \alpha$$
,

 т. е. произведением скорости движения на проекцию силы на направление движения.

Для кинетической энергии тела массой m, движущегося со скоростью v, имеем

$$W_{*}=\frac{mv^{2}}{2}$$
.

При неупругом центральном ударе двух тел с массами m_1 и m_2 общая скорость движения этих тел после удара может быть найдена по формуле

$$u = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} ,$$

где v₁ — скорость первого тела до удара и v₂ — скорость второго тела

При упругом центральном ударе тела будут двигаться с различными скоростями. Скорость первого тела после удара

$$u_1 = \frac{(m_1 - m_2) v_1 + 2m_2 v_2}{m_1 + m_2};$$

скорость второго тела после удара

$$u_2 = \frac{(m_2 - m_1) v_2 + 2m_1 v_1}{m_1 + m_2} .$$

Сила, вызывающая упругую деформацию x, пропорциональна деформации, т. е.

$$F = kx$$

где k — жесткость (коэффициент, численно равный силе, вызывающей деформацию, равную единице).

Потенциальная энергия упругого тела

$$W_{\rm m} = \frac{kx^2}{2}$$
.