CS174A Lecture 8

Announcements & Reminders

- Midterm: Oct 29
- Midterm study guide posted in Piazza
- Team project proposals due: Oct 29
- Project #3 assigned in Piazza/Github

TA Session This Friday

- Team project
 - First draft of proposal due: 10/29/19
 - What's expected in the proposal
 - Still looking for teammates? Resolve this Friday
- Project assignment #3
- Midterm review

Last Lecture Recap

- Spaces:
 - Model space
 - Object/world space
 - Eye/camera space
 - Screen space
- Projections: Parallel and Perspective

Next Up

- Projections: parallel and perspective
 - Orthographic and perspective view volumes.
 - Canonical (normalized) view volume
- Backface Culling
- Hidden Surface Removal
- Flat and Smooth Shading: introduction
- Lighting

Projections

Parallel projection

Perspective projection

Orthographic Projection

Orthographic PM =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{aligned} -\frac{W}{2} &<= X <= \frac{W}{2} \\ -\frac{H}{2} &<= Y <= \frac{H}{2} \\ N &<= Z <= F \end{aligned}$$

View Volume

$$\frac{W}{2} <= X <= \frac{W}{2}$$

 $\frac{H}{2} <= Y <= \frac{H}{2}$
 $N <= Z <= F$

Normalized OPM =
$$\begin{bmatrix} \frac{2}{W} & 0 & 0 & 0 \\ 0 & \frac{2}{H} & 0 & 0 \\ 0 & 0 & \frac{1}{F-N} & -\frac{N}{F-N} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Canonical View Volume of the Volume of Canonical View Vol

Canonical View Volume

Perspective Projection

Perspective Projection

Aspect Ratio
$$(A_r) = \frac{W}{H}$$

Half Angle of View = θ
 Θ is defined wrt to x-axis

Normalized PPM =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & A_r & 0 & 0 \\ 0 & 0 & Atan(\theta) & Btan(\theta) \\ 0 & 0 & \tan(\theta) & 0 \end{bmatrix}$$

Perspective Projection

Normalized PPM =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & A_r & 0 & 0 \\ 0 & 0 & Atan(\theta) & Btan(\theta) \\ 0 & 0 & tan(\theta) & 0 \end{bmatrix} \qquad A = \frac{F}{F - N}$$

$$B = -\frac{F * N}{F - N}$$

Apply Perspective Division

How to handle –ve values of w? What does it mean?

As examples,

- Lower-bottom-near vertex of view volume (in eye space) with coordinates: $(-Ntan(\theta), -Ntan(\theta)/Ar, N)$ will map to (-1,-1,0) after pers div
- Upper-right-far vertex of view volume with coordinates: $(Ftan(\theta), Ftan(\theta)/Ar, F)$ will map to (1,1,1) after pers div

Window-to-Viewport Mapping

Change from normalized volume (xyz) to screen coordinates (XY)

xyz: normalized point after perspective division

XY: screen coordinates

v_I,v_b: lower-left corner of viewport

v_r,v_t: upper-right corner of viewport

$$X = x \frac{v_r - vl}{2} + \frac{v_r + vl}{2}$$

$$Y = y \frac{v_t - vb}{2} + \frac{v_t + vb}{2}$$