

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Aula 3 - Matrizes

Operações Elementares, Matriz Escalonada e

Matriz Linha Reduzida à Forma Escada

Professora: Isamara Alves

09/03/2021

Seja
$$A \in \mathcal{M}_{m \times n}(\mathbb{K})$$
.

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. As "OPERAÇÕES ELEMENTARES" sobre as **Linhas** da matriz A são as seguintes:

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. As "OPERAÇÕES ELEMENTARES" sobre as **Linhas** da matriz A são as seguintes:

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. As "OPERAÇÕES ELEMENTARES" sobre as **Linhas** da matriz A são as seguintes:

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. As "OPERAÇÕES ELEMENTARES" sobre as **Linhas** da matriz A são as seguintes:

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix}$$

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

EXEMPLO:

Definição

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_{1} \longleftrightarrow L_{2}$$

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_1 \longleftrightarrow L_2 \begin{bmatrix} 2 & 4+6i & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_{1} \longleftrightarrow L_{2} \begin{bmatrix} 2 & 4+6i & 0 \\ 3i & 4 & 1 \end{bmatrix}$$

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

EXEMPLO:

Definição

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_{1} \longleftrightarrow L_{2} \begin{bmatrix} 2 & 4+6i & 0 \\ 3i & 4 & 1 \\ 0 & -2 & 14 \end{bmatrix}$$

• PERMUTA da *i*-ésima linha com a *k*-ésima linha; $\forall i, k = 1, \dots, m; i \neq k$.

Notação:
$$L_i \longleftrightarrow L_k$$
 ou $L_k \longleftrightarrow L_i$

EXEMPLO:

Definição

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_{1} \longleftrightarrow L_{2} \begin{bmatrix} 2 & 4+6i & 0 \\ 3i & 4 & 1 \\ 0 & -2 & 14 \end{bmatrix}$$

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação: $L_i \leftarrow \alpha L_i$ ou $\alpha L_i \longrightarrow L_i$

Definição

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

$$A_3 = \left[\begin{array}{ccc} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{array} \right]$$

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_3 \longleftarrow (-\frac{1}{2})L_3$$

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_3 \longleftarrow (-\frac{1}{2})L_3 \begin{bmatrix} 3i & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_3 \longleftarrow (-\frac{1}{2})L_3 \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \end{bmatrix}$$

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_3 \longleftarrow (-\frac{1}{2})L_3 \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & 1 & -7 \end{bmatrix}$$

Definição

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_3 \longleftarrow (-\frac{1}{2})L_3 \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & 1 & -7 \end{bmatrix} L_3 \longleftarrow (-2)L_3$$

Definição

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

EXEMPLO:

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_{3} \longleftarrow (-\frac{1}{2})L_{3} \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & 1 & -7 \end{bmatrix} L_{3} \longleftarrow (-2)L_{3}$$

$$\begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix}$$

$$L_3 \leftarrow (-2)L_3$$

Definição

• MULTIPLICAÇÃO da *i*-ésima linha por um escalar $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i = 1, \dots, m$.

Notação:
$$L_i \longleftarrow \alpha L_i$$
 ou $\alpha L_i \longrightarrow L_i$

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_{3} \leftarrow \left(-\frac{1}{2}\right)L_{3} \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & 1 & -7 \end{bmatrix} L_{3} \leftarrow \left(-2\right)L_{3}$$

$$\begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix}$$

• SUBSTITUIÇÃO da i-ésima linha pela i-ésima linha MAIS α VEZES a k-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

• SUBSTITUIÇÃO da *i*-ésima linha pela *i*-ésima linha MAIS α VEZES a *k*-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \leftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

Definição

• SUBSTITUIÇÃO da i-ésima linha pela i-ésima linha MAIS α VEZES a k-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \leftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

• SUBSTITUIÇÃO da i-ésima linha pela i-ésima linha MAIS α VEZES a k-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \leftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

$$\left[\begin{array}{cccc}
3i & 4 & 1 \\
2 & 4+6i & 0 \\
0 & -2 & 14
\end{array}\right]$$

• SUBSTITUIÇÃO da i-ésima linha pela i-ésima linha MAIS α VEZES a k-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \longleftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

$$\begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_1 \longleftarrow L_1 + (2)L_3$$

• SUBSTITUIÇÃO da *i*-ésima linha pela *i*-ésima linha MAIS α VEZES a *k*-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \longleftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

EXEMPLO:

$$\begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_1 \longleftarrow L_1 + (2)L_3 \begin{bmatrix} 3i & 0 & 29 \\ & & & \\ \end{bmatrix}$$

• SUBSTITUIÇÃO da *i*-ésima linha pela *i*-ésima linha MAIS α VEZES a *k*-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \longleftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

$$\begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_1 \longleftarrow L_1 + (2)L_3 \begin{bmatrix} 3i & 0 & 29 \\ 2 & 4+6i & 0 \end{bmatrix}$$

• SUBSTITUIÇÃO da *i*-ésima linha pela *i*-ésima linha MAIS α VEZES a *k*-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \longleftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

$$\begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_1 \longleftarrow L_1 + (2)L_3 \begin{bmatrix} 3i & 0 & 29 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix}$$

• SUBSTITUIÇÃO da *i*-ésima linha pela *i*-ésima linha MAIS α VEZES a *k*-ésima linha; $\alpha \in \mathbb{K}$; $\alpha \neq 0$; $\forall i, k = 1, \dots, m$; $i \neq k$.

Notação:
$$L_i \longleftarrow L_i + \alpha L_k$$
 ou $L_i + \alpha L_k \longrightarrow L_i$

$$\begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} L_1 \longleftarrow L_1 + (2)L_3 \begin{bmatrix} 3i & 0 & 29 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix}$$

Matrizes - Operações Elementares Observações

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

Observações

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

$$A_{3\times 2} = \left[\begin{array}{ccc} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{array} \right]$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

OBSERVAÇÕES

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad op_1: L_1 \longleftarrow L_1 + (3i)L_3$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

OBSERVAÇÕES

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \end{array}$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3: L_2 \longleftrightarrow L_3 \end{array}$$

Observações

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1 : L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2 : L_2 \longleftarrow (2)L_2 \\ op_3 \longleftarrow L_2 \longleftarrow L_3 \end{bmatrix} \quad \begin{array}{l} 3i & 10 \\ op_3 \longleftarrow L_2 \longleftarrow L_3 \end{array}$$

Observações

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \longleftarrow L_2 \longleftarrow L_3 \end{array} \quad \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \end{bmatrix}$$

Observações

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{c} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3: L_2 \longleftrightarrow L_3 \end{array} \quad \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

OBSERVAÇÃO.1: Não podemos, no mesmo momento, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:
$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3: L_2 \longleftrightarrow L_3 \end{array} \quad \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \rightleftharpoons L_2 \longleftrightarrow L_3 \end{array} \quad \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

$$\begin{bmatrix} 3i & 10 \\ 4 & 8+12i \end{bmatrix}$$

Observações

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \subset L_2 \longleftrightarrow L_3 \end{array} \quad \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

$$\begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

Observações

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \rightleftharpoons L_2 \longleftrightarrow L_3 \end{array} \quad \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$
$$\begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix} \quad op_3: L_2 \longleftrightarrow L_3$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

$$A_{3\times2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \rightleftharpoons L_2 \longleftrightarrow L_3 \\ \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix} \\ op_3: L_2 \longleftrightarrow L_3 \\ \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix} \\ op_3: L_2 \longleftrightarrow L_3 \\ \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \rightleftharpoons L_2 \longleftrightarrow L_3 \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{array} \right]$$

$$\begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix} \quad op_3: L_2 \longleftrightarrow L_3 \quad \begin{bmatrix} 3i & 10 \\ 0 & -2i \\ 0 & -2i \end{bmatrix}$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \rightleftharpoons L_2 \longleftrightarrow L_3 \\ \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

$$\begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix} \quad op_3: L_2 \longleftrightarrow L_3 \quad \begin{bmatrix} 3i & 10 \\ 0 & -2i \\ 4 & 8+12i \end{bmatrix}$$

OBSERVAÇÃO.1: Não podemos, <u>no mesmo momento</u>, efetuar mais de uma operação elementar com uma mesma linha.

EXEMPLO:

$$A_{3\times 2} = \begin{bmatrix} 3i & 4 \\ 2 & 4+6i \\ 0 & -2i \end{bmatrix} \quad \begin{array}{l} op_1: L_1 \longleftarrow L_1 + (3i)L_3 \\ op_2: L_2 \longleftarrow (2)L_2 \\ op_3 \rightleftharpoons L_2 \longleftrightarrow L_3 \\ \begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix}$$

$$\begin{bmatrix} 3i & 10 \\ 4 & 8+12i \\ 0 & -2i \end{bmatrix} \quad op_3: L_2 \longleftrightarrow L_3 \quad \begin{bmatrix} 3i & 10 \\ 0 & -2i \\ 4 & 8+12i \end{bmatrix}$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

Matrizes - Operações Elementares Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \left[\begin{array}{rrr} -3 & i \\ 0 & 6i \\ 2 & 1 \end{array} \right]$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 \pm 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1: L_2 \longleftarrow (2)L_2$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1: L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 1 \end{bmatrix}$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 \pm 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1: L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \end{bmatrix}$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1: L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$

Observações

OBSERVAÇÃO.2: Não podemos alterar as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

EXEMPLO:
$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1: L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1 : L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -3 & i \\ 0 & 12i \end{bmatrix}$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1 : L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

EXEMPLO:

OBSERVAÇÕES

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1 : L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix} \quad op_2 : L_2 \longleftarrow L_2 + (4)L_3$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

EXEMPLO:

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1 : L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix} \quad op_2 : L_2 \longleftarrow L_2 + (4)L_3 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 \pm 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

EXEMPLO:

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1 : L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix} \quad op_2 : L_2 \longleftarrow L_2 + (4)L_3 \quad \begin{bmatrix} -3 & i \\ 8 & 4 + 12i \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1 : L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix} \quad op_2 : L_2 \longleftarrow L_2 + (4)L_3 \quad \begin{bmatrix} -3 & i \\ 8 & 4 + 12i \\ 2 & 1 \end{bmatrix}$$

Observações

OBSERVAÇÃO.2: Não podemos <u>alterar</u> as operações elementares. Por exemplo, seria incorreto a seguinte operação elementar: $L_2 \leftarrow 2L_2 + 4L_3$.

O correto seria efetuar a multiplicação por escalar: $L_2 \leftarrow 2L_2$ e, em seguida, a substituição na matriz resultante: $L_2 \leftarrow L_2 + 4L_3$.

$$A_{3\times 2} = \begin{bmatrix} -3 & i \\ 0 & 6i \\ 2 & 1 \end{bmatrix} \quad op_1 : L_2 \longleftarrow (2)L_2 \quad \begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} -3 & i \\ 0 & 12i \\ 2 & 1 \end{bmatrix} \quad op_2 : L_2 \longleftarrow L_2 + (4)L_3 \quad \begin{bmatrix} -3 & i \\ 8 & 4 + 12i \\ 2 & 1 \end{bmatrix}$$

Matrizes Linhas Equivalentes

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$.

Matrizes Linhas Equivalentes

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é LINHA EQUIVALENTE à matriz B

Matrizes Linhas Equivalentes

Matrizes Linhas Equivalentes

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é LINHA EQUIVALENTE à matriz B se, e somente se, a matriz B é obtida a partir de um NÚMERO FINITO de operações elementares aplicadas sobre as linhas da matriz A.

Notação: $A \sim B$

Matrizes Linhas Equivalentes

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é LINHA EQUIVALENTE à matriz B se, e somente se, a matriz B é obtida a partir de um NÚMERO FINITO de operações elementares aplicadas sobre as linhas da matriz A.

Notação: $A \sim B$

$$A_3 = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix}$$

Matrizes Linhas Equivalentes

Notação:
$$A \sim B$$

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} \underbrace{\begin{array}{c} op_{1} : L_{3} \longleftarrow -\frac{1}{2}L_{3} \\ op_{2} : L_{1} \longleftarrow L_{2} \end{array}}_{\begin{array}{c} 0 : L_{3} \longleftarrow -\frac{1}{2}L_{3} \\ 0 : 1 & -7 \end{bmatrix} = B_{3}$$

Matrizes Linhas Equivalentes

Notação:
$$A \sim B$$

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} \underbrace{\begin{array}{c} op_{1}: L_{3} \longleftarrow -\frac{1}{2}L_{3} \\ op_{2}: L_{1} \longleftarrow L_{2} \end{array}}_{0} \begin{bmatrix} 2 & 4+6i & 0 \\ 3i & 4 & 1 \\ 0 & 1 & -7 \end{bmatrix} = B_{3}$$

$$A_3 \sim B_3$$

Matrizes Linhas Equivalentes

Notação:
$$A \sim B$$

$$A_{3} = \begin{bmatrix} 3i & 4 & 1 \\ 2 & 4+6i & 0 \\ 0 & -2 & 14 \end{bmatrix} \underbrace{\begin{array}{c} op_{1}: L_{3} \longleftarrow -\frac{1}{2}L_{3} \\ op_{2}: L_{1} \longleftarrow L_{2} \end{array}}_{0} \begin{bmatrix} 2 & 4+6i & 0 \\ 3i & 4 & 1 \\ 0 & 1 & -7 \end{bmatrix} = B_{3}$$

$$A_3 \sim B_3$$

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

1. Reflexiva: $A \sim A$.

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

EXEMPLO:

 A_3

Matrizes Linhas Equivalentes

Propriedades:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

$$A_3 \begin{array}{c} op_1 : L_3 \longleftarrow -\frac{1}{2}L_3 \\ op_2 : L_1 \longleftarrow L_1 + 5L_2 \end{array} B_3$$

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

$$A_3 \begin{array}{c} op_1: L_3 \longleftarrow -\frac{1}{2}L_3 \\ op_2: L_1 \longleftarrow L_1 + 5L_2 \end{array} B_3 \begin{array}{c} op_3: L_3 \longleftarrow -2L_3 \end{array}$$

Matrizes Linhas Equivalentes

PROPRIEDADES:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

$$A_3 \begin{array}{c} op_1: L_3 \longleftarrow -\frac{1}{2}L_3 \\ op_2: L_1 \longleftarrow L_1 + 5L_2 \end{array} \quad B_3 \begin{array}{c} op_3: L_3 \longleftarrow -2L_3 \\ op_4: L_1 \longleftarrow L_1 - 5L_2 \end{array}$$

Matrizes Linhas Equivalentes

Propriedades:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

$$A_3 \stackrel{op_1: L_3 \longleftarrow -\frac{1}{2}L_3}{op_2: L_1 \longleftarrow L_1 + 5L_2} B_3 \stackrel{op_3: L_3 \longleftarrow -2L_3}{op_4: L_1 \longleftarrow L_1 - 5L_2} A_5$$

Matrizes Linhas Equivalentes

Propriedades:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

$$\underbrace{A_3 \quad op_1 : L_3 \longleftarrow -\frac{1}{2}L_3}_{op_2 : L_1 \longleftarrow L_1 + 5L_2} \quad B_3 \quad op_3 : L_3 \longleftarrow -2L_3 \\ op_4 : L_1 \longleftarrow L_1 - 5L_2}_{\Downarrow} \quad A_3$$

$$A_3 \sim B_3 \sim A_3$$

Matrizes Linhas Equivalentes

Propriedades:

Sejam $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. Reflexiva: $A \sim A$.
- 2. SIMÉTRICA: Se $A \sim B$ então $B \sim A$.
- 3. Transitiva: Se $(A \sim B)$ e $(B \sim C)$ então $A \sim C$.

$$\underbrace{A_3 \quad op_1 : L_3 \longleftarrow -\frac{1}{2}L_3}_{op_2 : L_1 \longleftarrow L_1 + 5L_2} \quad B_3 \quad op_3 : L_3 \longleftarrow -2L_3 \\ op_4 : L_1 \longleftarrow L_1 - 5L_2}_{\Downarrow} \quad A_3$$

$$A_3 \sim B_3 \sim A_3$$

Matriz na Forma Escada (Escalonada)

Seja
$$A \in \mathcal{M}_{m \times n}(\mathbb{K})$$
.

Matriz na Forma Escada (Escalonada)

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ NA FORMA ESCADA (ESCALONADA) se, e somente se, A satizfaz as seguintes condições:

Matriz na Forma Escada (Escalonada)

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ NA FORMA ESCADA (ESCALONADA) se, e somente se, A satizfaz as seguintes condições:

1. Toda coluna da matriz A que possui o primeiro elemento **não-nulo** de alguma linha, tem os elementos **abaixo** iguais a zero;

Matriz na Forma Escada (Escalonada)

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ NA FORMA ESCADA (ESCALONADA) se, e somente se, A satizfaz as seguintes condições:

1. Toda coluna da matriz A que possui o primeiro elemento **não-nulo** de alguma linha, tem os elementos **abaixo** iguais a zero;

$$A_3 = \left[\begin{array}{rrr} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{array} \right]$$

Matriz na Forma Escada (Escalonada)

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ NA FORMA ESCADA (ESCALONADA) se, e somente se, A satizfaz as seguintes condições:

1. Toda coluna da matriz A que possui o primeiro elemento **não-nulo** de alguma linha, tem os elementos **abaixo** iguais a zero;

$$A_3 = \left[\begin{array}{rrr} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{array} \right]$$

Matriz na Forma Escada (Escalonada)

2. Se A tem linhas nulas e não-nulas então as linhas nulas estão abaixo das linhas não-nulas; e,

Matriz na Forma Escada (Escalonada)

2. Se A tem linhas nulas e não-nulas então as linhas nulas estão abaixo das linhas não-nulas; e,

$$A_3 = \left[\begin{array}{rrr} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{array} \right]$$

Matriz na Forma Escada (Escalonada)

2. Se A tem linhas nulas e não-nulas então as linhas nulas estão abaixo das linhas não-nulas; e,

$$A_3 = \left[\begin{array}{rrr} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{array} \right]$$

Matriz na Forma Escada (Escalonada)

3. Se A tem r, linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

Matriz na Forma Escada (Escalonada)

3. Se A tem r, linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

$$A_3 = \begin{bmatrix} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{bmatrix};$$

Matriz na Forma Escada (Escalonada)

3. Se A tem r, linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

$$A_3 = \begin{bmatrix} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{bmatrix}; \ r = 2 \Rightarrow c_1 = 1;$$

Matriz na Forma Escada (Escalonada)

3. Se A tem r, linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

$$A_3 = \begin{bmatrix} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{bmatrix}; r = 2 \Rightarrow c_1 = 1; c_2 = 0$$

Matriz na Forma Escada (Escalonada)

3. Se A tem r, linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

$$A_3 = \begin{bmatrix} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{bmatrix}; r = 2 \Rightarrow c_1 = 1; c_2 = 3$$

Matriz na Forma Escada (Escalonada)

3. Se A tem r, linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

$$A_3 = \begin{bmatrix} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{bmatrix}; r = 2 \Rightarrow c_1 = 1; c_2 = 3 \Rightarrow c_1 < c_2$$

Matriz na Forma Escada (Escalonada)

3. Se A tem r, linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

$$A_3 = \begin{bmatrix} 1 & -3 & 5 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{bmatrix}; r = 2 \Rightarrow c_1 = 1; c_2 = 3 \Rightarrow c_1 < c_2$$

Matriz na Forma Escada (Escalonada)

Matriz na Forma Escada (Escalonada)

1.
$$A_4 = \begin{bmatrix} -2i & 1 & 4 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix};$$

Matriz na Forma Escada (Escalonada)

1.
$$A_4 = \begin{bmatrix} -2i & 1 & 4 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

Matriz na Forma Escada (Escalonada)

EXEMPLOS:

1.
$$A_4 = \begin{bmatrix} -2i & 1 & 4 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$
2. $A_{3\times4} = \begin{bmatrix} 1 & -6 & 6 & -1 \\ 0 & -1 & 0 & -3i \\ 0 & 0 & 8 & 4 \end{bmatrix}$;

12 MAT A07 - Álgebra Linear A - Semestre - 2021.1

Matriz na Forma Escada (Escalonada)

1.
$$A_4 = \begin{bmatrix} -2l & 1 & 4 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

2.
$$A_{3\times 4} = \begin{bmatrix} 1 & -6 & 6 & -1 \\ 0 & -1 & 0 & -3i \\ 0 & 0 & 8 & 4 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

Matriz na Forma Escada (Escalonada)

EXEMPLOS:

1.
$$A_4 = \begin{bmatrix} -2t & 1 & 4 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

2.
$$A_{3\times 4} = \begin{bmatrix} 1 & -6 & 6 & -1 \\ 0 & -1 & 0 & -3i \\ 0 & 0 & 8 & 4 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

3. $A_{m \times n} = O_{m \times n}$

Matriz na Forma Escada (Escalonada)

1.
$$A_4 = \begin{bmatrix} -2t & 1 & 4 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

2.
$$A_{3\times 4} = \begin{bmatrix} 1 & -6 & 6 & -1 \\ 0 & -1 & 0 & -3i \\ 0 & 0 & 8 & 4 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

- 3. $A_{m \times n} = O_{m \times n}$
- 4. I_n ; r = n; $c_1 = 1 < c_2 = 2 < \cdots < c_n = n$

Matriz na Forma Escada (Escalonada)

1.
$$A_4 = \begin{bmatrix} -2t & 1 & 4 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

2.
$$A_{3\times 4} = \begin{bmatrix} 1 & -6 & 6 & -1 \\ 0 & -1 & 0 & -3i \\ 0 & 0 & 8 & 4 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

- 3. $A_{m \times n} = O_{m \times n}$
- 4. I_n ; r = n; $c_1 = 1 < c_2 = 2 < \cdots < c_n = n$

Matriz Linha Reduzida à Forma Escada

Seja
$$A \in \mathcal{M}_{m \times n}(\mathbb{K})$$
.

Matriz Linha Reduzida à Forma Escada

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ LINHA REDUZIDA À FORMA ESCADA(M.L.R.F.E.) se, e somente se, A satizfaz as seguintes condições:

Matriz Linha Reduzida à Forma Escada

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ LINHA REDUZIDA À FORMA ESCADA (M.L.R.F.E.) se, e somente se, A satizfaz as seguintes condições:

1. Se A tem r linhas não-nulas; $1 \le r \le m$, então o primeiro elemento não-nulo de cada uma destas linhas é igual a 1;

Matriz Linha Reduzida à Forma Escada

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ LINHA REDUZIDA À FORMA ESCADA(M.L.R.F.E.) se, e somente se, A satizfaz as seguintes condições:

- 1. Se A tem r linhas não-nulas; $1 \le r \le m$, então o primeiro elemento não-nulo de cada uma destas linhas é igual a 1;
- 2. Toda coluna da matriz A que possui o primeiro elemento não-nulo de alguma linha, tem os demais elementos iguais a zero;

Matriz Linha Reduzida à Forma Escada

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ LINHA REDUZIDA À FORMA ESCADA (M.L.R.F.E.) se, e somente se, A satizfaz as seguintes condições:

- 1. Se A tem r linhas não-nulas; $1 \le r \le m$, então o primeiro elemento não-nulo de cada uma destas linhas é igual a 1;
- 2. Toda coluna da matriz A que possui o primeiro elemento não-nulo de alguma linha, tem os **demais** elementos iguais a zero:
- 3. Se A tem linhas nulas e não-nulas então as linhas nulas estão abaixo das linhas não-nulas: e.

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ LINHA REDUZIDA À FORMA ESCADA(M.L.R.F.E.) se, e somente se, A satizfaz as seguintes condições:

- 1. Se A tem r linhas não-nulas; $1 \le r \le m$, então o primeiro elemento não-nulo de cada uma destas linhas é igual a 1;
- 2. Toda coluna da matriz A que possui o primeiro elemento não-nulo de alguma linha, tem os **demais** elementos iguais a zero:
- 3. Se A tem linhas nulas e não-nulas então as linhas nulas estão abaixo das linhas não-nulas: e.
- 4. Se A tem r. linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz A é uma MATRIZ LINHA REDUZIDA À FORMA ESCADA(M.L.R.F.E.) se, e somente se, A satizfaz as seguintes condições:

- 1. Se A tem r linhas não-nulas; $1 \le r \le m$, então o primeiro elemento não-nulo de cada uma destas linhas é igual a 1;
- 2. Toda coluna da matriz A que possui o primeiro elemento não-nulo de alguma linha, tem os **demais** elementos iguais a zero:
- 3. Se A tem linhas nulas e não-nulas então as linhas nulas estão abaixo das linhas não-nulas: e.
- 4. Se A tem r. linhas não-nulas e o primeiro elemento não-nulo da i-ésima linha ocorre na coluna c_i ; $\forall i = 1, \dots, r$; 1 < r < m então os escalares c_i respeitam a ordem crescente: $c_1 < c_2 < \cdots < c_r$.

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

1.
$$A_3 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
;

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

1.
$$A_3 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

1.
$$A_3 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$
2. $A_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -3i \\ 0 & 0 & 1 & 4 \end{bmatrix}$;

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

1.
$$A_3 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$
2. $A_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -3i \\ 0 & 0 & 1 & 4 \end{bmatrix}$; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLOS:

1.
$$A_3 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$
2. $A_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -3i \\ 0 & 0 & 1 & 4 \end{bmatrix}$; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

3. $A_{m \times n} = Q_{m \times n}$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

1.
$$A_3 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

2.
$$A_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -3i \\ 0 & 0 & 1 & 4 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

- 3. $A_{m\times n}=O_{m\times n}$
- 4. I_n ; r = n; $c_1 = 1 < c_2 = 2 < \cdots < c_n = n$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

1.
$$A_3 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 3 \Rightarrow c_1 < c_2$

2.
$$A_{3\times 4} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -3i \\ 0 & 0 & 1 & 4 \end{bmatrix}$$
; $c_1 = 1$; $c_2 = 2$; $c_3 = 3 \Rightarrow c_1 < c_2 < c_3$

- 3. $A_{m\times n}=O_{m\times n}$
- 4. I_n ; r = n; $c_1 = 1 < c_2 = 2 < \cdots < c_n = n$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma única Matriz Linha Reduzida à Forma Escada.

Exemplo.1:

$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_1 : L_1 \leftarrow (\frac{1}{2})L_1$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma **única** Matriz Linha Reduzida à Forma Escada.

$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_1 : L_1 \leftarrow (\frac{1}{2})L_1 \quad \begin{bmatrix} 1 & 5 \\ 1 & 1 & 1 \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma única Matriz Linha Reduzida à Forma Escada.

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma única Matriz Linha Reduzida à Forma Escada.

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_2: L_2 \leftarrow L_2 + L_1$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma única Matriz Linha Reduzida à Forma Escada.

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_2: L_2 \leftarrow L_2 + L_1$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma única Matriz Linha Reduzida à Forma Escada.

Exemplo.1:

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 1 & 5 & i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma única Matriz Linha Reduzida à Forma Escada.

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma única Matriz Linha Reduzida à Forma Escada.

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma **única** Matriz Linha Reduzida à Forma Escada.

Exemplo.1:

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

Proposição: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma **única** Matriz Linha Reduzida à Forma Escada.

Exemplo.1:

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.1:
$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 6 - 6i & -6 + 2i \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.1:
$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

PROPOSIÇÃO: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma **única** Matriz Linha Reduzida à Forma Escada.

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & 0 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & 0 -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2}$$

$$\begin{bmatrix} 0 & 1 & \frac{-2 - i}{3} \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & 0 - 2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2} \\ op_{5} : L_{3} \leftarrow L_{3} - (6 - 6i)L_{2}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & 0 - 2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2} \\ op_{5} : L_{3} \leftarrow L_{3} - (6 - 6i)L_{2}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2} \\ op_{5} : L_{3} \leftarrow L_{3} - (6 - 6i)L_{2} \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & 0 -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 6 - 6i^{-0} - 6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2} \\ op_{5} : L_{3} \leftarrow L_{3} - (6 - 6i)L_{2} \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

$$A_{3} = \begin{bmatrix} 2^{i} & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2} \\ op_{5} : L_{3} \leftarrow L_{3} - (6 - 6i)L_{2} \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B_{3}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

PROPOSIÇÃO: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma **única** Matriz Linha Reduzida à Forma Escada.

EXEMPLO.1:
$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2} \\ op_{5} : L_{3} \leftarrow L_{3} - (6 - 6i)L_{2} & \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B_{3} \text{ \'e a matriz}$$

MIRFF de A

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

PROPOSIÇÃO: Toda matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é linha equivalente a uma **única** Matriz Linha Reduzida à Forma Escada.

EXEMPLO.1:
$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix}$$

$$op_{2} : L_{2} \leftarrow L_{2} + L_{1} \quad \begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 6 - 6i & -6 + 2i \end{bmatrix} \quad op_{4} : L_{1} \leftarrow L_{1} - 5L_{2} \\ op_{5} : L_{3} \leftarrow L_{3} - (6 - 6i)L_{2} & \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 0 \end{bmatrix} = B_{3} \text{ \'e a matriz}$$

MIRFF de A

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1: L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 \\ 0 & 4 & 0 \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1: L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$

$$op_2: L_2 \leftarrow L_2 + L_1$$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$

$$op_2: L_2 \leftarrow L_2 + L_1$$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 5 & i \\ 0 & 4 & 0 \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$

$$op_2: L_2 \leftarrow L_2 + L_1$$
 $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$

$$op_2: L_2 \leftarrow L_2 + L_1$$

$$\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$

$$op_4: L_1 \leftarrow L_1 - 5L_2$$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$

$$op_4: L_1 \leftarrow L_1 - 5L_2$$

 $op_5: L_3 \leftarrow L_3 - (4)L_2$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$

$$op_4: L_1 \leftarrow L_1 - 5L_2$$

 $op_5: L_3 \leftarrow L_3 - (4)L_2$

EXEMPLO.2:
$$A_{3} = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1}$ $\begin{bmatrix} 1 & 5 & i \\ -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_{2} : L_{2} \leftarrow L_{2} + L_{1}$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} - 3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_{4} : L_{1} \leftarrow L_{1} - 5L_{2}$ $op_{5} : L_{3} \leftarrow L_{3} - (4)L_{2}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 &$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3 + 4i} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & -2 - i \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$

EXEMPLO.2:
$$A_{3} = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_{2} : L_{2} \leftarrow L_{2} + L_{1} \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2} \begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_{4} : L_{1} \leftarrow L_{1} - 5L_{2}$ $op_{5} : L_{3} \leftarrow L_{3} - (4)L_{2} \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$ $op_{6} : L_{3} \leftarrow (\frac{3}{8 + 4i})L_{3}$

EXEMPLO.2:
$$A_{3} = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1} \begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_{2} : L_{2} \leftarrow L_{2} + L_{1} \begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2} \begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_{4} : L_{1} \leftarrow L_{1} - 5L_{2}$ $op_{5} : L_{3} \leftarrow L_{3} - (4)L_{2} \begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$ $op_{6} : L_{3} \leftarrow (\frac{3}{8 + 4i})L_{3}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3+i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3-3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & \frac{8+4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8+4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 0 & \frac{8+4i}{3} \end{bmatrix}$

EXEMPLO.2:
$$A_{3} = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_{1} : L_{1} \leftarrow (\frac{1}{2})L_{1}$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_{2} : L_{2} \leftarrow L_{2} + L_{1}$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} - 3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_{3} : L_{2} \leftarrow (\frac{1}{3 - 3i})L_{2}$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_{4} : L_{1} \leftarrow L_{1} - 5L_{2}$ $op_{5} : L_{3} \leftarrow L_{3} - (4)L_{2}$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2^{2} - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$ $op_{6} : L_{3} \leftarrow (\frac{3}{8 + 4i})L_{3}$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2^{2} - i}{3} \\ 0 & 0 & \frac{10 + 8i}{3} \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} - 3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8 + 4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 1 \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & 0 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3+i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3-3i})L_2$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & \frac{8+4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8+4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & 1 \end{bmatrix}$

EXEMPLO.2:
$$A_{3} = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_{1}: L_{1} \leftarrow (\frac{1}{2})L_{1}$ $\begin{bmatrix} 1 & 5 & i \\ 1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_{2}: L_{2} \leftarrow L_{2} + L_{1}$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3+i \\ 0 & 4 & 0 \end{bmatrix}$ $op_{3}: L_{2} \leftarrow (\frac{1}{3-3i})L_{2}$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_{4}: L_{1} \leftarrow L_{1} - 5L_{2}$ $op_{5}: L_{3} \leftarrow L_{3} - (4)L_{2}$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & \frac{8+4i}{3} \end{bmatrix}$ $op_{6}: L_{3} \leftarrow (\frac{3}{8+4i})L_{3}$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_{7}: L_{1} \leftarrow L_{1} - \frac{10+8i}{3}L_{3}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} & -3+i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3-3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 1 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & \frac{8+4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8+4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_7 : L_1 \leftarrow L_1 - \frac{10+8i}{3}L_3$ $op_8 : L_2 \leftarrow L_2 - \frac{2-i}{3}L_3$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} - 3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 6 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8 + 4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_7 : L_1 \leftarrow L_1 - \frac{10 + 8i}{3}L_3$ $op_8 : L_2 \leftarrow L_2 - \frac{2 - i}{3}L_3$

16 MAT A07 - Álgebra Linear A - Semestre - 2021.1

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 6 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8 + 4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_7 : L_1 \leftarrow L_1 - \frac{10 + 8i}{3}L_3$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$ $op_8 : L_2 \leftarrow L_2 - \frac{-2 - i}{3}L_3$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i & -3+i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3-3i})L_2$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $0 & 1 & \frac{10+8i}{3} \\ op_5 : L_3 \leftarrow L_3 - (4)L_2$ $0 & 0 & \frac{8+4i}{3} \\ op_6 : L_4 \leftarrow L_1 - \frac{10+8i}{3}L_3$ $0 & 0 & \frac{1}{3} \\ op_8 : L_2 \leftarrow L_2 - \frac{2-i}{3}L_3$ $0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 &$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 1 & 10 & 2i \\ -1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ 1 & -2-3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} & -3+i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3-3i})L_2$ $\begin{bmatrix} 1 & 6 & i \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & \frac{8+4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8+4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10+8i}{3} \\ 0 & 1 & \frac{-2-i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_7 : L_1 \leftarrow L_1 - \frac{10+8i}{3}L_3$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $op_8 : L_2 \leftarrow L_2 - \frac{2-i}{3}L_3$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 & 3i^{-1} - 3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8 + 4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_7 : L_1 \leftarrow L_1 - \frac{10 + 8i}{3}L_3$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$ $op_8 : L_2 \leftarrow L_2 - \frac{10 + 8i}{3}L_3$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.2:
$$A_3 = \begin{bmatrix} 2 & 10 & 2i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$$
 $op_1 : L_1 \leftarrow (\frac{1}{2})L_1$ $\begin{bmatrix} 1 & 5 & i \\ -1 & -2 - 3i & -3 \\ 0 & 4 & 0 \end{bmatrix}$ $op_2 : L_2 \leftarrow L_2 + L_1$ $\begin{bmatrix} 1 & 5 & i \\ 0 & 3 - 3i & -3 + i \\ 0 & 4 & 0 \end{bmatrix}$ $op_3 : L_2 \leftarrow (\frac{1}{3 - 3i})L_2$ $\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 4 & 0 \end{bmatrix}$ $op_4 : L_1 \leftarrow L_1 - 5L_2$ $op_5 : L_3 \leftarrow L_3 - (4)L_2$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & \frac{8 + 4i}{3} \end{bmatrix}$ $op_6 : L_3 \leftarrow (\frac{3}{8 + 4i})L_3$ $\begin{bmatrix} 1 & 0 & \frac{10 + 8i}{3} \\ 0 & 1 & \frac{-2 - i}{3} \\ 0 & 0 & 1 \end{bmatrix}$ $op_7 : L_1 \leftarrow L_1 - \frac{10 + 8i}{3}L_3$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$ é a matriz M.L.R.F.E. de A .

16 MAT A07 - Álgebra Linear A - Semestre - 2021.1

Matrizes - Operações Elementares OBSERVAÇÕES

Observação.3:

Note que, nos dois exemplos acima, foi seguido um padrão nas operações elementares:

Matrizes - Operações Elementares Observações

Observação.3:

Note que, nos dois exemplos acima, foi seguido um padrão nas operações elementares:

1º As operações são efetuadas da esquerda para a direita.

Matrizes - Operações Elementares **OBSERVAÇÕES**

Observação.3:

Note que, nos dois exemplos acima, foi seguido um padrão nas operações elementares:

- As operações são efetuadas da esquerda para a direita.
- Faz-se o primeiro elemento não-nulo da linha principal (pivô) igual a 1 efetuando a operação elementar da multiplicação:

Observação.3:

Note que, nos dois exemplos acima, foi seguido um padrão nas operações elementares:

- As operações são efetuadas da esquerda para a direita.
- Faz-se o primeiro elemento não-nulo da linha principal (pivô) igual a 1 efetuando a operação elementar da multiplicação: sendo que o ESCALAR escolhido é o inverso deste elemento não-nulo (exs. op_1, op_3, op_6)

Observação.3:

Note que, nos dois exemplos acima, foi seguido um padrão nas operações elementares:

- As operações são efetuadas da esquerda para a direita.
- 2° Faz-se o primeiro elemento não-nulo da linha principal (pivô) igual a 1 efetuando a operação elementar da multiplicação: sendo que o ESCALAR escolhido é o inverso deste elemento não-nulo (exs. op_1, op_3, op_6)
- Aplica-se a operação elementar da substituição nas outras linhas não-nulas da matriz, a fim de zerar os elementos da mesma coluna daquele elemento igual a 1 na linha pivô.

Observação.3:

Note que. nos dois exemplos acima, foi seguido um padrão nas operações elementares:

- As operações são efetuadas da esquerda para a direita.
- 2° Faz-se o primeiro elemento não-nulo da linha principal (pivô) igual a 1 efetuando a operação elementar da multiplicação: sendo que o ESCALAR escolhido é o inverso deste elemento não-nulo (exs. op_1, op_3, op_6)
- Aplica-se a operação elementar da substituição nas outras linhas não-nulas da matriz, a fim de zerar os elementos da mesma coluna daquele elemento igual a 1 na linha pivô. O ESCALAR utilizado nesta operação elementar é o oposto do elemento a ser zerado em cada linha e deve ser multipicado pela linha principal (exs: op_2 , op_4 , op_5 , op_7 , op_8).

Observação.3:

Note que. nos dois exemplos acima, foi seguido um padrão nas operações elementares:

- As operações são efetuadas da esquerda para a direita.
- 2° Faz-se o primeiro elemento não-nulo da linha principal (pivô) igual a 1 efetuando a operação elementar da multiplicação: sendo que o ESCALAR escolhido é o inverso deste elemento não-nulo (exs. op_1, op_3, op_6)
- Aplica-se a operação elementar da substituição nas outras linhas não-nulas da matriz, a fim de zerar os elementos da mesma coluna daquele elemento igual a 1 na linha pivô. O ESCALAR utilizado nesta operação elementar é o oposto do elemento a ser zerado em cada linha e deve ser multipicado pela linha principal (exs: op_2 , op_4 , op_5 , op_7 , op_8).

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.3:

Seja a matriz:

$$A=\left[egin{array}{ccc}1&2&1\1&1&a\-3&-5&1\end{array}
ight];a\in\mathbb{R}$$

Efetuando operações elementares sobre as linhas da matriz A, determine para quais valores de $a \in \mathbb{R}$ a matriz A é linha equivalente à matriz I_3 .

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.3:

Seja a matriz:

$$A=\left[egin{array}{ccc}1&2&1\1&1&a\-3&-5&1\end{array}
ight];a\in\mathbb{R}$$

Efetuando operações elementares sobre as linhas da matriz A, determine para quais valores de $a \in \mathbb{R}$ a matriz A é linha equivalente à matriz I_3 . (Dica: Efetue as operações elementares, normalmente. Todavia, não esqueca de impor as condições de existência guando o escalar $a \in \mathbb{R}$ aparecer no denominador.)

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix}$$

EXEMPLO.3:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1$$

EXEMPLO.3:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1$$

EXEMPLO.3:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad \begin{array}{c} op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \end{array} \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad \begin{array}{c} op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \end{array} \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$L_1: L_2 \leftarrow L_2 - L_1 \\ L_2: L_3 \leftarrow L_3 + 3L_1$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a-1 \\ 0 & 1 & 4 \end{bmatrix}$$

$$op_3: L_2 \leftarrow (-1)L_2$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad \begin{array}{c} op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \end{array} \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$L_1: L_2 \leftarrow L_2 - L_1 \\ L_2: L_3 \leftarrow L_3 + 3L_1$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a-1 \\ 0 & 1 & 4 \end{bmatrix}$$

$$op_3: L_2 \leftarrow (-1)L_2$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix}$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \\ op_5 : L_3 \leftarrow L_3 - L_2$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \\ op_5 : L_3 \leftarrow L_3 - L_2$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \\ op_5 : L_3 \leftarrow L_3 - L_2 \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.3:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \\ op_5 : L_3 \leftarrow L_3 - L_2 \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

 $op_6: L_3 \leftarrow \frac{1}{3+3}L_3$; sse $a \neq -3$

Matriz Linha Reduzida à Forma Escada (M.L.R.F.E.)

EXEMPLO.3:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \\ op_2 : L_3 \leftarrow L_3 + 3L_1 \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \\ op_5 : L_3 \leftarrow L_3 - L_2 \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

 $op_6: L_3 \leftarrow \frac{1}{3+3}L_3$; sse $a \neq -3$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

$$op_6 : L_3 \leftarrow \frac{1}{3+a}L_3; \text{ sse } a \neq -3 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 1 \end{bmatrix}$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

$$op_6 : L_3 \leftarrow \frac{1}{3+a}L_3; \text{ sse } a \neq -3 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 1 \end{bmatrix} \quad op_7 : L_1 \leftarrow L_1 - (-1 + 2a)L_3$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

$$op_6 : L_3 \leftarrow \frac{1}{3+a}L_3; \text{ sse } a \neq -3 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 1 \end{bmatrix} \quad op_7 : L_1 \leftarrow L_1 - (-1 + 2a)L_3$$

$$op_8 : L_2 \leftarrow L_2 - (1 - a)L_3$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

$$op_6 : L_3 \leftarrow \frac{1}{3+a}L_3; \text{ sse } a \neq -3 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 1 \end{bmatrix} \quad op_7 : L_1 \leftarrow L_1 - (-1 + 2a)L_3$$

$$op_8 : L_2 \leftarrow L_2 - (1 - a)L_3$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

$$op_6 : L_3 \leftarrow \frac{1}{3+a}L_3; \text{ sse } a \neq -3 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 1 \end{bmatrix} \quad op_7 : L_1 \leftarrow L_1 - (-1 + 2a)L_3$$

$$op_8 : L_2 \leftarrow L_2 - (1 - a)L_3$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

$$op_6 : L_3 \leftarrow \frac{1}{3+a}L_3; \text{ sse } a \neq -3 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 1 \end{bmatrix} \quad op_7 : L_1 \leftarrow L_1 - (-1 + 2a)L_3$$

$$op_8 : L_2 \leftarrow L_2 - (1 - a)L_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow A_3 \sim I_3, \text{ sse, } a \in \mathbb{R} - \{-3\}.$$

EXEMPLO.3:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & a \\ -3 & -5 & 1 \end{bmatrix} \quad op_1 : L_2 \leftarrow L_2 - L_1 \quad \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & a - 1 \\ 0 & 1 & 4 \end{bmatrix} \quad op_3 : L_2 \leftarrow (-1)L_2$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 - a \\ 0 & 1 & 4 \end{bmatrix} \quad op_4 : L_1 \leftarrow L_1 - 2L_2 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 3 + a \end{bmatrix}$$

$$op_6 : L_3 \leftarrow \frac{1}{3+a}L_3; \text{ sse } a \neq -3 \quad \begin{bmatrix} 1 & 0 & -1 + 2a \\ 0 & 1 & 1 - a \\ 0 & 0 & 1 \end{bmatrix} \quad op_7 : L_1 \leftarrow L_1 - (-1 + 2a)L_3$$

$$op_8 : L_2 \leftarrow L_2 - (1 - a)L_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow A_3 \sim I_3, \text{ sse, } a \in \mathbb{R} - \{-3\}.$$

Exercícios

1. Sejam as matrizes:

(a)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 5 \\ 3 & 8 & 7 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2i & 0 \\ 3 & 2 & 5 \\ 3 & 8 & 5i \end{bmatrix}$ Efetue operações elementares

sobre as linhas das matrizes A a fim de obter uma matriz triangular superior.

1. Sejam as matrizes:

(a)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 5 \\ 3 & 8 & 7 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2i & 0 \\ 3 & 2 & 5 \\ 3 & 8 & 5i \end{bmatrix}$ Efetue operações elementares

sobre as linhas das matrizes A a fim de obter uma matriz triangular superior.

2. Sejam as matrizes:

(a)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 5 \\ 3 & 8 & 7 \end{bmatrix}$

Efetue operações elementares sobre as linhas das matrizes acima, a fim de obter, se possível, a matriz identidade I_3 .

1. Sejam as matrizes:

(a)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 5 \\ 3 & 8 & 7 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2i & 0 \\ 3 & 2 & 5 \\ 3 & 8 & 5i \end{bmatrix}$ Efetue operações elementares

sobre as linhas das matrizes A a fim de obter uma matriz triangular superior.

2. Sejam as matrizes:

(a)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 5 \\ 3 & 8 & 7 \end{bmatrix}$

Efetue operações elementares sobre as linhas das matrizes acima, a fim de obter, se possível, a matriz identidade I_3 .

M.L.R.F.E. - EXERCÍCIOS

3. Efetue operações elementares sobre as linhas das matrizes abaixo a fim de obter para cada uma a M.L.R.F.E. .

(a)
$$A = \begin{bmatrix} 2 & 0 & -4 & 6 \\ 3 & 1 & 2 & 4 \\ 1 & 1 & 6 & -2 \end{bmatrix}$$

M.L.R.F.E. - EXERCÍCIOS

3. Efetue operações elementares sobre as linhas das matrizes abaixo a fim de obter para cada uma a M.L.R.F.E. .

(a)
$$A = \begin{bmatrix} 2 & 0 & -4 & 6 \\ 3 & 1 & 2 & 4 \\ 1 & 1 & 6 & -2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -4 \\ 1 & 3 & 1 \end{bmatrix}$

M.L.R.F.E. - EXERCÍCIOS

3. Efetue operações elementares sobre as linhas das matrizes abaixo a fim de obter para cada uma a M.L.R.F.E. .

(a)
$$A = \begin{bmatrix} 2 & 0 & -4 & 6 \\ 3 & 1 & 2 & 4 \\ 1 & 1 & 6 & -2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -4 \\ 1 & 3 & 1 \end{bmatrix}$