Doble Grado en Informática y Matemáticas

Ejercicios de Cálculo I - Relación 4 - Sucesiones de números reales

- 1. Sea I un intervalo y $f:I\to I$ una función verificando que $f(I)\subset I$. Sea $a\in I$ y definamos una sucesión $\{x_n\}$ por $x_1=a$ y $x_{n+1}=f(x_n)$ para todo $n\in\mathbb{N}$.
 - a) Supongamos que f es estrictamente decreciente en I y que $x_1 \neq x_2$. Prueba que $\{x_n\}$ no es monótona y que si $x_1 \neq x_3$ entonces las sucesiones $\{x_{2n-1}\}$ y $\{x_{2n}\}$ son estrictamente monótonas.
 - b) Usa lo visto en a), para estudiar la convergencia de las sucesiones dada para todo $n \in \mathbb{N}$ por:

$$x_1 = 1$$
, $x_{n+1} = \frac{1}{1+x_n}$, $y_1 = 1$, $y_{n+1} = \frac{3y_n + 2}{2y_n + 1}$

2. Estudia la convergencia de las sucesiones $\{x_n\}$ y $\{y_n\}$ dadas para todo $n \in \mathbb{N}$ por:

$$x_1 = 1, \ x_{n+1} = \frac{5x_n + 2}{x_n + 3}; \qquad y_1 = 1, \ y_{n+1} = \frac{2y_n + 3}{5y_n + 2}$$

- 3. Supongamos que $\{x_n\}$ no converge a z. Prueba que existe un número r>0 y una sucesión parcial $\{x_{\sigma(n)}\}$ tal que para todo $n\in\mathbb{N}$ se verifica que $|x_{\sigma}(n)-z|\geqslant r$.
- 4. Sea $f:[a,b] \to \mathbb{R}$ una función creciente verificando que a < f(x) < b para todo $x \in [a,b]$. Definamos $x_1 = a$, y $x_{n+1} = f(x_n)$ para todo $n \in \mathbb{N}$. Prueba que $\{x_n\}$ converge a $\beta \in]a,b]$ tal que $\beta = \sup f([a,\beta])$. Además $\beta \leqslant f(\beta)$.
- 5. Sean $\{x_n\}$ e $\{y_n\}$ sucesiones acotadas. Prueba que:

$$\underline{\lim}\{x_n + y_n\} \leqslant \overline{\lim}\{x_n\} + \underline{\lim}\{y_n\} \leqslant \overline{\lim}\{x_n + y_n\}.$$

Prueba con ejemplos que las desigualdades anteriores pueden ser todas estrictas.

6. Sean $\{x_n\}$ y $\{y_n\}$ successores acotadas tales que $x_n \ge 0$ e $y_n \ge 0$ para todo $n \in \mathbb{N}$. Prueba que

$$\underline{\lim}\{x_n\}\underline{\lim}\{y_n\} \leqslant \underline{\lim}\{x_ny_n\} \leqslant \overline{\lim}\{x_n\}\underline{\lim}\{y_n\} \leqslant \overline{\lim}\{x_ny_n\} \leqslant \overline{\lim}\{x_n\}\overline{\lim}\{y_n\}.$$

Deduce que si $\lim \{x_n\} = x > 0$, entonces

$$\underline{\lim}\{x_ny_n\} = x\underline{\lim}\{y_n\}, \quad \overline{\lim}\{x_ny_n\} = x\overline{\lim}\{y_n\}.$$

Prueba con ejemplos que las desigualdades anteriores pueden ser todas estrictas.

7. Calcula los límites de las sucesiones:

a)
$$x_n = n \left(\sqrt[5]{\frac{3n+12}{3n+7}} - 1 \right)$$
 b) $y_n = \left(\frac{\log(n+5)}{\log(n+1)} \right)^{n \log n}$ c) $z_n = \log\left(1 + \frac{1}{n}\right) \sqrt[n]{n!}$

8. Calcula los límites de las sucesiones:

a)
$$x_n = \frac{1}{n^2} \left(\frac{2}{1} + \frac{3^2}{2} + \frac{4^3}{3^2} + \dots + \frac{(n+1)^n}{n^{n-1}} \right), \quad b) \ x_n = \sqrt[3]{(n+1)(n+2)(n+3)} - n$$

9. Calcula los límites de las sucesiones:

a)
$$x_n = \left(\sqrt[5]{n+1} - \sqrt[5]{n}\right)\sqrt{n}$$
 b) $y_n = \sqrt{n^3}\left(\sqrt[4]{4n^2 + 3} - \sqrt{2n}\right)$ c) $z_n = \sqrt[n]{\frac{(3n)!}{(5n)^{3n}}}$