2020 年北京市西城区高三一模化学考试逐题解析

本试卷共9页,100分。考试时长90分钟。考试时务必将答案写在答题卡上,在试卷上作答无效。考试结束 第一部分 后,将本试卷和答题卡一并交回。

本部分共 14 题,每题 3 分,共 42 分。在每题列出的四个选项中,选出最符合题目要求的一项。

1. 下列防疫物品的主要成分属于无机物的是

【答案】C

【解析】聚丙烯、聚碳酸酯和丁腈橡胶为高分子化合物,而二氧化氯为无机物,故选 C。

- 2. 化学与生产生活密切相关,下列说法不正确的是
 - A. 用食盐、蔗糖等作食品防腐剂
 - B. 用氧化钙作吸氧剂和干燥剂
 - C. 用碳酸钙、碳酸镁和氢氧化铝等作抗酸药
 - D. 用浸泡过高锰酸钾溶液的硅藻土吸收水果产生的乙烯以保鲜

【答案】B

【解析】食盐和蔗糖可用来作防腐剂,故A正确。氧化钙作干燥剂,与水反应原理为: CaO + H₂O == Ca(OH)₂, 但不能作为吸氧剂, 故 B 错误。碳酸钙、碳酸镁和氢氧化铝与 胃酸中的氢离子发生反应,从而可作为抗酸药,故 C 正确。乙烯与高锰酸钾会发生氧 化还原反应,可以用浸泡了高锰酸钾的硅藻土吸收乙烯,故 D 正确。

- 3. 短周期元素 W、X、Y、Z 的原子序数依次增大。W 的气态氢化物遇湿润的红色石 蕊试纸变蓝色, X 是地壳中含量最高的元素, Y 在同周期主族元素中原子半径最大, Z A. W 在元素周期表中的位置是第二周期 VA 族
 B. 同主族中 7 的与土生 与 Y 形成的化合物的化学式为 YZ。下列说法不正确的是

 - C. X 与 Y 形成的两种常见的化合物中,阳离子和阴离子的个数比均为 2:1
 - D. 用电子式表示 YZ 的形成过程为: $Y + Z : \longrightarrow Y : Z : J$

【答案】B

【解析】根据题干信息可知, W 气态的氢化物遇湿润的红色石蕊试纸变蓝, 可知 W 为 氮元素; X 是地壳中含量最高的元素,可知 X 为氧元素; Y 在同周期主族元素中原子半 径最大,可知Y为钠元素: Z与Y形成的化合物化学式为YZ,且W、X、Y、Z原子序数 依次增加,可知 Z 为氯元素。根据原子结构示意图可知氮元素在元素周期表中第二周 期第VA族,故A正确。气态氢化物稳定性与非金属性有关,元素非金属性越强氧化 性越大,气态氢化物稳定性越强,氯元素属于卤族元素,同主族中气态氢化物稳定性 最强的为氟化氢, 故 B 错误。 X 与 Y 形成的两种常见化合物过氧化钠和氧化钠, 阴离子 和阳离子比均为 1:2, 故 C 正确。Y 和 Z 形成的 NaCl 为离子化合物, 其形成过程可用电 4. 下列变化过程不涉及氧化还原反应的是

	А	В	С	D	以数育
	将铁片放入冷	向 FeCl ₂ 溶液中滴加	向 Na₂SO₃	向包有 Na ₂ O ₂ 粉	let a.
	的浓硫酸中无	KSCN 溶液,不变色,滴	固体中加入	末的脱脂棉上滴	
	明显现象	加氯水后溶液显红色	硫酸,生成无	几滴蒸馏水,脱脂	
		数育	色气体	棉燃烧烧	中小
1	(数年門	-		TIII XOF	•

【答案】C

【解析】将铁片放入冷的浓硫酸中发生钝化反应,在铁片表面形成致密的氧化膜,发生氧化还原反应,故 A 错误。向氯化亚铁溶液中加入 KSCN 溶液不变色,滴加氯水后溶液中有 $2Fe^{2+}+Cl_2==2Fe^{3+}+2Cl^-$,三价铁离子遇 KSCN 溶液变红,发生氧化还原反应,故 B 错误。向亚硫酸钠固体中加入硫酸,生成无色气体,发生反应: $SO_3^{2+}+2H^{2}==SO_2 \uparrow +H_2O$,未发生氧化还原反应,故 C 正确。向过氧化钠粉末的脱脂棉上滴加几滴蒸馏水,发生反应: $2Na_2O_2+2H_2O==4NaOH+O_2 \uparrow$,生成氧气且放出大量的热使脱脂棉燃烧,发生氧化还原反应,故 D 错误。

- 海水提溴过程中发生反应: 3Br₂ +6Na₂CO₃ +3H₂O == 5NaBr +NaBrO₃ +6NaHCO₃ , 下列说法正确的是
 - A. 标准状况下 2 mol H₂O 的体积约为44.8 L
 - B. 1 L 0.1 mol·L⁻¹Na₂CO₃ 溶液中 CO₃²-物质的量为0.1 mol
 - C. 反应中消耗 3 mol Br₂ 转移的电子数约为 5×6.02×10²³
 - D. 反应中氧化产物和还原产物的物质的量之比为5:1

【答案】C

【解析】在标准状况下 H_2O 不是气体,不能直接运用公式计算,故 A 错误。 CO_3^2 属于弱酸根离子,在水溶液中会发生水解反应,则其物质的量会小于 0.1mol,故 B 错误。 3mol Br_2 参与反应时,其中有 5molBr 原子由 0 价降到-1 得 5mol 电子,1molBr 原子由 0 价上升到+5 失去 5mol 电子,所以消耗 3mol Br_2 转移电子数约为 5×6.02× 10^{23} ,故 C 正确。 3mol Br_2 参与反应时,其中有 5molBr 原子由 0 价降到-1 得 5mol 电子,被还原,得到 5mol 还原产物 5mol

6. 下列实验现象预测正确的是

А	Billyon	С	D			
NH4Cl和Ca(OH) ₂ 1 mol·L ⁻¹ FeCl ₂ 溶液	稀盐酸 ▼ 苯酚钠溶液	KMnO ₄ 酸性溶液 ▼ T T T	先加入碘水,再加入CCL,振荡后静置			
烧杯中产生白色沉淀,	加盐酸出现白	KMnO4 酸性溶液	液体分层,下层呈			
一段时间后沉淀无明	色浑浊,加热变	在苯和甲苯中均	无色			
显变化	澄清	褪色	anti-			
【答案】B						

【答案】B

【解析】氯化铵和氢氧化钙反应产生氨气,氨气与氯化亚铁溶液反应生成白色沉淀氢 氧化亚铁, 氢氧化亚铁被氧化变成红褐色氢氧化铁, 故 A 错误。稀盐酸与苯酚钠溶液 反应生成苯酚, 苯酚在常温下微溶于水, 加热到 65 摄氏度时会与水以任意比例互溶, 则加热溶液会变澄清,故B正确。苯不能使酸性 KMnO4 溶液褪色,而甲苯可以和酸性 KMnO₄溶液反应生成苯甲酸,使酸性 KMnO₄溶液褪色,故 C 错误。由于 CCl₄溶液密度 比水的密度大, 所以溶于 12的 CCl4溶液在下层为紫红色, 故 D 错误。

- 7. 下列解释事实的方程式不正确的是
 - A. 用 Na₂CO₃溶液将水垢中的 CaSO₄ 转化为 CaCO₃: CO₃²⁻+ Ca²⁺==CaCO₃↓
 - B. 电解饱和食盐水产生黄绿色气体: 2NaCl + 2H₂O =电解= 2NaOH + H₂↑ +Cl₂↑
 - C. 红热木炭遇浓硝酸产生红棕色气体: C+4HNO₃(浓)=加热=CO₂↑+4NO₂↑+2H2O
 - D. 用新制 Cu(OH)2 检验乙醛,产生红色沉淀:

 $CH_3CHO + 2Cu(OH)_2 + NaOH == CH_3COONa + Cu_2O \downarrow + 3H_2O$ 新語

【答案】A

【解析】CaSO4微溶于水,作为反应物,不拆。故A错误。

- 8. 科学家提出由 WO₃ 催化乙烯和 2-丁烯合成丙烯的反应历程如右图(所有碳原子满足最外层八电子结构)。下列说法不正确的是
 - A. 乙烯、丙烯和2-丁烯互为同系物
 - B. 乙烯、丙烯和2-丁烯的沸点依次升高
 - C. III →IV 中加入的2-丁烯具有反式结构
 - D. 碳、钨 (W) 原子间的化学键在III → IV → I 的过程中未发生断裂

【答案】D

【解析】

- A. 乙烯、丙烯、2-丁烯官能团种类和数目相同,分子式相差一个或若干个 -CH₂-,故三者互为同系物,A选项正确。
- B. 乙烯、丙烯、2-丁烯都是烯烃,且分子量逐渐增大,沸点依次升高,故 B 选项正确。

- D. 在Ⅲ →Ⅳ 和Ⅳ → I 的过程中,碳和钨的化学键均发生断裂,故 D 项错误,本题 选 D
- 9. 以富含纤维素的农作物为原料, 合成 PEF 树脂的路线如下:

(图中 ***表示链延长)

下列说法不正确的是

- A. 葡萄糖、果糖均属于多羟基化合物
- B. 5-HMF→FDCA 发生氧化反应
- C. 单体 a 为乙醇
- D. PEF 树脂可降解以减少对环境的危害

【答案】C

【解析】A选项,葡萄糖为多羟基醛,果糖为多羟基酮,故A正确。B选项,5-HMF中 的羟基和醛基均转化为 FDCA 中的羧基,被氧化,发生氧化反应,故 B 正确。C 选项, 从 PEF 的链节上可得出单体 a 为乙二醇, 故 C 错误。D 选项, PEF 树脂是脂肪类聚酯, 可以降解为易溶于水的脂肪酸和醇类小分子,减少对环境危害,故D正确。

10. 向某密闭容器中充入 NO₂, 发生反应: 2NO₂(g) ← N₂O₄(g)。其它条件相同时,不 同温度下平衡体系中各物质的物质的量分数如下表:(己知: N₂O₄ 为无色气体)

	t/℃	27	35	49	70
	NO ₂ %	20	25	40	66
	N ₂ O ₄ %	80	75	60	34
}	ŧ		中小学	生工	

下列说法不正确的是

- A. 27℃时,该平衡体系中 NO₂的转化率为 8/9
- B. 平衡时, NO₂ 的消耗速率为 N₂O₄ 消耗速率的 2 倍
- C. 室温时,将盛有 NO₂ 的密闭玻璃球放入冰水中其颜色会变浅
 - 新短点 中小学全科教育 D. 增大 NO₂ 起始量,可增大相同温度下该反应的化学平衡常数

【答案】D

【解析】A选项,设开始充入1mol NO,由方程式

 $2 \text{ NO}_2 \text{ (g)} \neq \text{N}_2\text{O}_4 \text{ (g)}$

1mol 初始

转化 2x mol x mol

平衡 (1-2x)mol 由题意. 可列计算式: 中小学全科教育

$$\tfrac{1-2x}{1-2x+x} \; = 20\% \qquad \quad x = \tfrac{4}{9}$$

|| 计算得 NO₂ 的转化率= $\frac{2 \times \frac{4}{9}}{1} \times 100\% = \frac{8}{9}$

B 选项, 反应达平衡时, 反应速率之比等于化学计量数之比, 故 B 正确。C 选项, 由题 中表格可知, 在初始二氧化氮投料比相同时, 温度升高, 二氧化氮的物质的量分数增 加,可知平衡逆向移动,故反应为放热反应。放入冷水中,温度下降,平衡正向移动, 二氧化氮(红棕色)减少,四氧化二氮(无色)增加,颜色变浅,故 C 正确。D 选项, 化学平衡常数只与温度有关,温度不变,K不变,故D错误。

- 11. 光电池在光照条件下可产生电压, 如下装置可以实现光能源的充分利用, 双极性膜 可将水解离为 H*和 OHT,并实现其定向通过。下列说法不正确的是
 - A. 该装置将光能转化为化学能并分解水
 - B. 双极性膜可控制其两侧溶液分别为酸性和碱性
 - C. 光照过程中阳极区溶液中的 n(OH-)基本不变
 - D. 再生池中的反应 2V²⁺+2H₂O^{催化剂}2V³⁺+ 2OH + H₂↑

【答案】D

【解析】A 选项, 该装置利用光电池将光能转换为电能, 再利用电解池将电能转化为化 学能,最终达到分解水的目的,故A正确。B选项,由图可知,阳极区为碱性环境,阴 极区为酸性环境,且H*、OH均来自双极性膜上进行的水的解离,故B正确。C选项, 阳极区: $4OH^{-}-4e^{-}=2H_{2}O+O_{2}^{\uparrow}$,阴极区: $V^{3+}+e^{-}=V^{2+}$,双极性膜: $H_{2}O \Longrightarrow H^{+}+OH^{-}$, 再生池中: $2V^{2+} + 2H^{+}$ $\frac{@ \ell \ell}{2}$ $2V^{3+} + H_2 \uparrow$, 联立上述 4 个方程式, 假设此过程转移 4 个电子, 由此建立比例关系, 电解池: 4e-~4OH~4V3+, 再生池: 4V3+~4H+, 阳极区 消耗 4 个 OH的同时,双极性膜上的水会电离出 4 个 OH,故 C 正确。D 选项,

的溶液中含有 V²⁺、H⁺,再生池中的反应: 2V²⁺+2H⁺ 催化剂 2V³⁺+H₂↑,故 D 错误。

- 12. 室温时, 向 20 mL 0.1 mol L⁻¹ 的两种酸 HA、HB 中分别滴加 0.1 mol L⁻¹NaOH 溶液, 其 pH 变化分别对应下图中的 Ⅰ、Ⅱ。下列说法不正确的是
 - A. 向 NaA 溶液中滴加 HB 可产生 HA
 - B. a 点, 溶液中微粒浓度: c(A⁻) > c(Na⁺) > c(HA)
 - C. 滴加 NaOH 溶液至 pH=7 时,两种溶液中 c(A-)=c(B-)
 - D. 滴加 20 mL NaOH 溶液时, I 中 H₂O 的电离程度大于 II 中

【答案】C

【解析】根据滴定之前两种酸的 pH 值可知,HA 为弱酸、HB 为强酸,故 A 正确; a 点溶质为 HA 和 NaA,且两者物质的量之比为 1:1,由 pH<7 可知:HA 电离大于 NaA 水解,故 B 正确;根据电荷守恒, I 中 $c(Na^+)=c(A^-)$ 、 II 中 $c(Na^+)=c(B^-)$,但是 I 、 II 中 $c(Na^+)$ 不同,故 C 错误;滴加 20mL NaOH, I 、 II 中溶质分别为 NaA、NaB, I 中 A 水解促进水的电离,故 D 正确。

13. 我国化学家侯德榜发明的"侯氏制碱法"联合合成氨工业生产纯碱和氮肥,工艺流程图如下。碳酸化塔中的反应: NaCl + NH₃ + CO₂ + H₂O == NaHCO₃ ↓ +NH₄Cl。

- A. 以海水为原料, 经分离、提纯和浓缩后得到饱和氯化钠溶液进入吸氨塔
- B. 碱母液储罐"吸氨"后的溶质是 NH₄Cl 和 NaHCO₃
- C. 经 "冷析"和 "盐析"后的体系中存在平衡 NH₄Cl(s) ≠ NH₄+ (aq) + Cl (aq)
- D. 该工艺的碳原子利用率理论上为 100%

【答案】B

【解析】碱母液储液罐吸收氨气后溶质是碳酸钠与氯化铵,故B错误。

14. 硅酸 (H₂SiO₃) 是一种难溶于水的弱酸,从溶液中析出时常形成凝胶状沉淀。实验室常用 Na₂SiO₃ 溶液制备硅酸。某小组同学进行了如下实验:

编号	Iza教育	II #IIII
实验	石灰石 Ana ₂ SiO ₃ 溶液	1 mol·L ⁻¹ 1 mol·L ⁻¹ Na ₂ CO ₃ 溶液 NaHCO ₃ 溶液 b c
现象	a 中产生凝胶状沉淀	b 中凝胶状沉淀溶解, c 中无明显变化

下列结论不正确的是

- A. Na₂SiO₃溶液一定显碱性
- B. 由I不能说明酸性 H₂CO₃>H₂SiO₃
- C. 由II 可知, 同浓度时 Na₂CO₃ 溶液的碱性强于 NaHCO₃ 溶液
- D. 向 Na₂SiO₃ 溶液中通入过量 CO₂,发生反应: SiO₃²⁻+CO₂+H₂O==CO₃²⁻+H₂SiO₃↓

【答案】D

【解析】SiO₃²+H₂O⇒HSiO₃²+OH, 故 A 正确; I 中盐酸具有挥发性,故 B 正确;由 II 中现象知: H₂SiO₃与 Na₂CO₃溶液反应不与 NaHCO₃溶液反应,说明 Na₂CO₃溶液碱性强,故 C 正确;通入过量 CO₂ 应生成 HCO₃²,故 D 错误。

第二部分

本部分共 5 题, 共 58 分。

15.(15分) 莫西沙星主要用于治疗呼吸道感染, 合成路线如下:

- (1) A 的结构简式是_____。
- (2) A→B 的反应类型是____。
- (3) C中含有的官能团是____。
- (4) 物质 a 的分子式为 C_6H_7N ,其分子中有____种不同化学环境的氢原子。
- (5) I 能与 NaHCO₃ 反应生成 CO₂, D+I→J 的化学方程式是_____。
- (6) 芳香化合物 L 的结构简式是 。 。 。
- (7) 还可用 A 为原料, 经如下间接电化学氧化工艺流程合成 C, 反应器中生成 C 的离子方程式是。

【答案】

- (2) 取代反应
- (3) 醛基
- (4) 4

(6)
$$N-CH_2$$

(7)
$$_{4\text{Ce}^{4+}}$$
 $\overset{\text{CHo}}{\longrightarrow}$ $_{4\text{Ce}^{3+}+4\text{H}^{+}}$ $\overset{\text{CHO}}{\longrightarrow}$

【解析】

ÇH₃ (1) 由 A 的分子式 C7H8 知其不饱和度为 4, 故知其为甲苯,

(3)由 B→C 反应条件可知该过程为卤代烃水解反应得到的分子中含有 2 个-OH 的结构

(4) 物质 a 的分子式为 C₆H₇N, G 的结构简式可知, 物质 a 的结构简式为 分子中含有4种不同化学环境的氢原子。

(5)由 C→D 反应类型及 D 的分子式可知 D 的结构简式为 应且 I 能与 NaHCO₃ 反应生成 CO₂,可知 I 中含有-COOH,结合 I 的分子式知其 、又由J的分子式与 D、I分子式可知反应脱去 2分子 H₂O, 故反应方程式为:

(6) LiAlH₄是一种常用的还原剂,K→L 的反应为还原反应,对比 K、L 分子式差异并结合 M 的结构简式可知 K 中 $_{-}^{\circ}$ 被还原为-CH₂-,故 L 的结构简式为 $_{-}^{\circ}$ $_{-}^{\circ}$ $_{-}^{\circ}$ $_{-}^{\circ}$ $_{-}^{\circ}$ $_{-}^{\circ}$

16.(9) 水合肼($N_2H_4\cdot H_2O$)可用作抗氧剂等,工业上常用尿素[$CO(NH_2)_2$]和 NaClO 溶液反应制备水合肼。

已知: $I. N_2H_4 \cdot H_2O$ 的结构如右图 (...表示氢键)。

$$H$$
 $N-N$
 H
 H
 H

- II. N₂H₄·H₂O 沸点 118℃, 具有强还原性。
- (1) 将Cl₂通入过量 NaOH 溶液中制备 NaClO, 得到溶液X, 离子方程式是_____。
- (2) 制备水合肼: 将溶液 X 滴入尿素水溶液中,控制一定温度,装置如图 a (夹持及控温装置已略) 充分反应后,A 中的溶液经蒸馏获得水合肼粗品后,剩余溶液再进一步处理还可获得副产品 NaCl 和Na₂CO₃·10H₂O。

(1)A 中反应的化学万程式是。
②冷凝管的作用是 。
一个种教育
③若滴加 NaClO 溶液的速度较快时,水合肼的产率会下降,原因是。
④NaCl 和 Na ₂ CO ₃ 的溶解度曲线如图 b。由蒸馏后的剩余溶液获得 NaCl 粗品的操
作是。
(3) 水合肼在溶液中可发生类似 $NH_3 \cdot H_2O$ 的电离,呈弱碱性;其分子中与 N 原
子相连的 H 原子易发生取代反应。
①水合肼和盐酸按物质的量之比1:1 反应的离子方程式是。
②碳酰肼(CH ₆ N ₄ O)是目前去除锅炉水中氧气的最先进材料,由水合肼与 DEC
(C ₂ H ₅ O-C-OC ₂ H ₅) 发生取代反应制得。碳酰肼的结构简式是。
【答案】
(1) $Cl_2 + 2OH^- = Cl^- + ClO^- + H_2O$
(2) Fill Rosen
①NaClO+CO(NH ₂) ₂ +2NaOH=一定温度= N ₂ H ₄ • H ₂ O+ NaCl+Na ₂ CO ₃
②冷凝回流水合肼 ③NaHa•HaO 被 NaCIO 氧化
③N₂H₄ • H₂O 被 NaClO 氧化
④加热至有大量固体析出,趁热过滤
 ③N₂H₄ • H₂O 被 NaClO 氧化 ④加热至有大量固体析出,趁热过滤 (3) ①N₂H₄·H₂O+ H*== N₂H₅*+H₂O ② H₂NHN-C-NHNH₂ 【解析】 (1) 本园老碗 CL 与过量复复化钠滚滴的反应。 化学方程式为
【解析】 (1) 本问考察 Cl ₂ 与过量氢氧化钠溶液的反应,化学方程式为 Cl ₂ +2NaOH — NaCl+NaClO+H ₂ O,离子方程式为 Cl ₂ +2OH ⁻ —Cl ⁻ +ClO ⁻ +H ₂ O。
(1) 本问考察 Cl₂ 与过量氢氧化钠溶液的反应, 化学方程式为
Cl₂+2NaOH —NaCl+NaClO+H₂O,离子方程式为 Cl₂+2OH¯—Cl¯+ClO¯+H₂O。

(2)①本问考察陌生方程式书写,根据题意确定反应物为[CO(NH₂)₂]和 NaClO,生成物除了 N₂H₄ • H₂O 还有副产物 NaCl 和 Na₂CO₃,尿素中氮的化合价为-3 价,水合肼中氮的化合价为-2 价,氯元素的化合价由+1 价变为-1 价,根据得失电子守恒进行配平,又依

据质量守恒和第(1)问中氢氧化钠过量,反应物中需补充氢氧化钠,化学方程式为 $[CO(NH_2)_2] + NaCIO + 2NaOH = NaCI + N_2H_4 \cdot H_2O + Na_2CO_3$

- ②依据题目所给信息 II, 水合肼沸点较低, 加热后容易挥发, 故冷凝管的作用为冷 凝回流。
- ③依据题目所给信息 II, 水合肼有强还原性, 若 NaClO 滴加过快会将水合肼氧化。
- ④依据图 b 碳酸钠的溶解度受温度影响较大, 氯化钠的溶解度受温度影响不大, 故 将剩余溶液进行蒸发结晶,有大量晶体析出时趁热过滤,可得到氯化钠粗品。

(3)

- ①依题意水合肼在溶液中发生类似 NH3 H2O 的电离,呈弱碱性,其电离方程式为 $N_2H_4 \cdot H_2O \rightleftharpoons N_2H_5^+ + OH^-$,所以水合肼与盐酸的离子反应方程式为 $N_2H_4 \cdot H_2O + H^+ = H_2O + N_2H_5^+$
- ②依据碳酰肼的分子式可判断出碳酰肼由 2 mol 水合肼与 1 mol DEC 发生取代反应 制得,依据题意水合肼分子中的 H 原子容易发生取代反应,故水合肼中 N-H 键断裂, DEC 分子中酯基 C-O 键断裂发生取代反应,碳酰肼的结构简式为HoNHN-C-NHNHo。
 - 17.(9分)页岩气中含有较多的乙烷,可将其转化为更有工业价值的乙烯。
 - (1) 二氧化碳氧化乙烷制乙烯。

将 C_2 H_6 和 CO_2 按物质的量之比为 1:1 通入反应器中,发生如下反应: i. C_2 H_6 (g)

面,降低催化剂的活性,适当通入过量 CO2 可以有效缓解积碳,结合方程式解释其

原因:

③二氧化碳氧化乙烷制乙烯的研究热点之一是选择催化剂,相同反应时间, 不同温度、不同催化剂的数据如下表(均未达到平衡状态):

实验	t/°C	催化剂 —	转化率/%		选择性/%	
编号			C ₂ H ₆	CO_2	C ₂ H ₄	СО
I	650	钴盐	19.0	37.6	17.6	78.1
II	650		32.1	23.0	77.3	10.4
III	600	铬盐	21.2	12.4	79.7	9.3
IV	550		12.0	8.6	85.2	5.4

【注】C2H4选择性:转化的乙烷中生成乙烯的百分比。

CO选择性:转化的CO2中生成CO的百分比。

对比Ⅰ和Ⅱ,该反应应该选择的催化剂为___,理由是___。

实验条件下,铬盐作催化剂时,随温度升高, C_2H_6 的转化率升高,但 C_2H_4 的选择性降低,原因是。

(2) 利用质子传导型固体氧化物电解池将乙烷转化为乙烯,

示意图如右图:

- ①电极 a 与电源的____极相连。
- ②电极 b 的电极反应式是。

【答案】

- (1) ①+177.6
- ② 通入 CO_2 发生反应 $C+CO_2==-_{\frac{c}{2}lg}==2CO$,消耗 C,增大 CO_2 的量,反应 iii 的正反应进行程度增加,降低了 C_2H_6 的浓度,反应 iv 进行的程度减小。
 - ③铬盐;相同条件下,选择铬盐时 C2H6的转化率和 C2H4的选择性均比钴盐高;温

反应 iv 增大的更多。 度升高,反应 ii, iii, iv 的反应速率均增大,

- (2) (1)正
- $(2)CO_2 + 2e^- + 2H^+ == CO + H_2O$

【解析】

(1)

- 由盖斯定律可知,△H₃ = △H₁ + △H₂ = +177.6 kJ/mol
- (2)CO2可以与 C 反应生成 CO, 从而清除催化剂表面的积碳, 同时生成 CO2 使反应 iii 平衡右移, C₂H₆浓度降低, 是反应 iv 平衡左移。
- ③由表格可知,650℃时,使用铬盐做催化剂,C2H6的转化率和C2H4的选择性均比 钴盐高, 因此该条件下应该选择铬盐做催化剂。

温度较高时,反应速率均较快,但生产的副产物 CO 和 H 较多,使得 C2H4 的选择性降 **作证**。中小学全科教育 低。

(2)

- (1)电解池中,阳离子移向阴极,因此 a 为阳极,与电源正极相连(或电解池中,阳 极发生氧化反应化合价升高,因此 a 为阳极,与电源正极相连)
- ②由图知 b 极发生的反应是 CO2 转化为 CO, 介质离子为 H*, 所以反应为 中小学全科教育 $CO_2 + 2e^- + 2H^+ == CO + H_2O$
- 18.(11分)生物浸出是用细菌等微生物从固体中浸出金属离子,有速率快、浸出率 高等特点。氧化亚铁硫杆菌是一类在酸性环境中加速 Fe2+氧化的细菌, 培养后能提供 Fe3+,控制反应条件可达细菌的最大活性,其生物浸矿机理如下图。

(1) 氧化亚铁硫杆菌生物浸出 ZnS 矿。

- ①反应 2 中有 S 单质生成,离子方程式是____。
- ②实验表明温度较高或酸性过强时金属离子的浸出率均偏低,原因可能是。
- (2) 氧化亚铁硫杆菌生物浸出废旧锂离子电池中钴酸锂(LiCoO₂)与上述浸出机 理相似,发生反应 1和反应 3: LiCoO₂+3Fe³⁺ = Li⁺+Co²⁺+3Fe²⁺+O₂↑
 - ①在酸性环境中,LiCoO₂ 浸出 Co²⁺的总反应的离子方程式是_____。
- ②研究表明氧化亚铁硫杆菌存在时,Ag*对钴浸出率有影响,实验研究 Ag*的作用。取 LiCoO₂ 粉末和氧化亚铁硫杆菌溶液于锥形瓶中,分别加入不同浓度 Ag*的溶液,钴浸出率(图 1)和溶液 pH(图 2)随时间变化曲线如下:

图1 不同浓度 Ag+作用下钴浸出率变化曲线

图 2 不同浓度 Ag+作用下溶液中 pH 变化曲线

- I. 由图 1 和其他实验可知, Ag+能催化浸出 Co²⁺, 图 1 中的证据是_____。
- II. Ag^{*}是反应 3 的催化剂,催化过程可表示为:

反应 4:
$$Ag^+ + LiCoO_2 == AgCoO_2 + Li^+$$

反应 5: ……

反应 5 的离子方程式是

III. 由图 2 可知,第 3 天至第 7 天,加入 Ag+后的 pH 均比未加时大,结合反应解释其原因:

【答案】

(1)

- 1)2Fe³⁺ + ZnS ===2Fe²⁺ + S +Zn²⁺
- ②细菌的活性降低或失去活性

(2)

- ①12H++4LiCoO2 细菌 4Li+4Co2++O2 ↑+6H2O
- ②I.加入 Ag*明显提高了单位时间内钴浸出率,即提高了钴浸出速率。

II.AgCoO₂+3Fe³⁺ = Ag⁺+Co²⁺+3Fe²⁺+O₂
$$\uparrow$$

III.加入 Ag⁺催化了反应 3, 使 LiCoO₂ 浸出的总反应的化学反应速率加快,相同时间内消耗 H⁺更多,故加入 Ag⁺后的 pH 比未加时大。

【解析】

(1)

- ´ ①由图反应 2 和信息有 S 生成。故答案为; 2Fe³++ZnS === 2Fe²++S+Zn²+
- ②温度较高或酸性较强时,细菌活性会降低甚至会失去活性,导致 Fe²⁺转化为 Fe³⁺的速率慢,金属离子的浸出率低。故答案为:细菌的活性降低或失去活性。

(2)

- ②I.由图 1 可知,相同时间内,加 Ag*时钴的浸出率明显大于不加时的浸出率,即 反应更快。故答案为:加入 Ag*明显提高了单位时间内钴浸出率,即提高了钴浸出速率。

II. Ag*是反应 3 的催化剂,反应前后的量不变;反应 3 减反应 4,得反应 5。故答案为: AgCoO₂+3Fe³⁺ === Ag⁺+Co²⁺+3Fe²⁺+O₂

III.加入 Ag^* 催化了反应 3,使得加入 Ag^* 的 c (Fe^{2+}) 比未加时的大,反应 1 的速率更快,总反应更快。故答案为:加入 Ag^* 催化了反应 3,使 $LiCoO_2$ 浸出的总反应的化学

反应速率加快,相同时间内消耗 H*更多,故加入 Ag*后的 pH 比未加时大。

19. (14 分) 研究不同 pH 时 CuSO4 溶液对 H2O2 分解的催化作用。

资料: a. Cu₂O 为红色固体,难溶于水,能溶于硫酸,生成Cu和Cu²⁺。

- b. CuO,为棕褐色固体,难溶于水,能溶于硫酸,生成Cu²⁺和 H₂O₂。
- c. H₂O₂有弱酸性: H₂O₂ ← H⁺ + HO₂-, HO₂- ← H⁺ + O₂²-。

(c. H ₂ O ₂ 有弱酸性: H ₂ O ₂ ↔ H ⁺ + HO ₂ ⁻ , HO ₂ ⁻ ↔ H ⁺ + O ₂ ²⁻ 。							
	编号	实验	现象					
1	Ι	向 1 mL pH=2 的 1 mol·L ⁻¹ CuSO ₄	出现少量气泡					
		溶液中加入 0.5 mL 30% H ₂ O ₂ 溶液						
	II	向 1 mL pH=3 的 1 mol·L ⁻¹ CuSO ₄	立即产生少量棕黄色沉淀, 出现	中				
		溶液中加入 0.5 mL 30% H ₂ O ₂ 溶液	较明显气泡	XDF,CN				
	III	向 1 mL pH=5 的 1 mol·L ⁻¹ CuSO ₄	立即产生大量棕褐色沉淀,产生					
		溶液中加入 0.5 mL 30% H ₂ O ₂ 溶液	大量气泡					

- (1) 经检验生成的气体均为 O2, I 中 CuSO4 催化分解 H2O2 的化学方程式是。
- (2)对III中棕褐色沉淀的成分提出 2 种假设: i .CuO2, ii .Cu2O 和 CuO2 的混合物。 为检验上述假设, 进行实验Ⅳ: 过滤III中的沉淀, 洗涤, 加入过量硫酸, 沉淀完全 溶解,溶液呈蓝色,并产生少量气泡。
- ①若III中生成的沉淀为 CuO2,其反应的离子方程式是_____。
- ②依据IV中沉淀完全溶解,甲同学认为假设 ii 不成立,乙同学不同意甲同学 的观点,理由是。。
- ③为探究沉淀中是否存在 Cu₂O,设计如下实验:

将III中沉淀洗涤、干燥后,取 ag 固体溶于过量稀硫酸,充分加热。冷却后调节 溶液 pH,以 PAN 为指示剂,向溶液中滴加 cmol·L⁻¹ EDTA 溶液至滴定终点,消耗 EDTA 溶 液 V mL。V=_____, 可知沉淀中不含 Cu₂O, 假设 i 成立。

(己知: Cu^{2+} +EDTA== EDTA- Cu^{2+} , $M(CuO_2)=96$ g·mol $^{-1}$, $M(Cu_2O)=144$ g·mol $^{-1}$)

- (3)结合方程式,运用化学反应原理解释Ⅲ中生成的沉淀多于Ⅱ中的原因;
- (4)研究Ⅰ、Ⅱ、Ⅲ中不同 pH 时 H₂O₂分解速率不同的原因。

实验V: 在试管中分别取 1mLpH=2、3、5 的1mol·L⁻¹ Na₂SO₄ 溶液, 向其中各加入0.5 mL 30% H₂O₂ 溶液,三支试管中均无明显现象。

实验Ⅵ: (填实验操作和现象) 说明 CuO₂能够催化 H₂O₂分解。

(5) 综合上述实验, $I \times II \times III$ 中不同 pH 时 H_2O_2 的分解速率不同的原因是

【答案】

- (1) $2H_2O_2 \stackrel{CuSO_4}{=\!=\!=} 2H_2O + O_2 \uparrow$
- (2) $1H_2O_2+Cu^{2+}==CuO_2 \downarrow +2H^+$
 - ②CuO₂与 H⁺反应产生的 H₂O₂具有强氧化性,在酸性条件下可能会氧化 Cu₂O 或 Cu, 无法观察到红色沉淀 Cu
 - ③ 1000a 或化简为 125a 12c
- (3) 溶液中存在 H₂O₂ H⁺ +HO₂ , HO₂ →H⁺ +O₂ -, 溶液 pH 增大, 两个平衡均正向移 动, O_2^2 ~浓度增大,使得 CuO_2 沉淀量增大
- (4) 将Ⅲ中沉淀过滤,洗涤,干燥,称取少量于试管中,加入30%H₂O₂溶液,立即产 生大量气泡, 反应结束后, 测得干燥后固体的质量不变
 - (5) CuO₂ 的催化能力强于 Cu²⁺; 随 pH 增大, Cu²⁺与 H₂O₂ 反应生成 CuO₂ 增多。 新旗点 中小学全科

【解析】

(1) CuSO₄ 是催化剂,所以 2H₂O₂ = 2H₂O + O₂ ↑

(2)

①CuO₂ 为过氧化铜,H₂O₂和 CuSO₄ 发生复分解生成 CuO₂,离子方程式为:

 $H_2O_2 + Cu^{2+} == CuO_2 + 2H^+$

- ②甲同学认为假设不成立是因为 Cu_2O 溶于 H_2SO_4 生成 Cu_1 、乙同学认为在酸性条件下,Cu 可能被 CuO_2 与 H^* 反应产生的 H_2O_2 氧化为 Cu^{2+} ,无法观察到红色沉淀。所以答案为: CuO_2 与 H^* 反应产生的 H_2O_2 具有强氧化性,在酸性条件下可能会氧化 Cu_2O 或 Cu,无法观察到红色沉淀 Cu。
 - ③无论是 CuO_2 还是 Cu_2O ,Cu 元素守恒,均转化为 Cu^{2+} , $n(Cu^{2+})$: n(EDTA)=1: 1, $n(EDTA)=cv\times10^{-3}$ mol。已知沉淀中不含 Cu_2O ,只有 CuO_2 ,固体质量为 ag,可列出: $a/M(CuO_2)=cv\times10^{-3}$,解得 $v=1000a/96c=\frac{125a}{12c}$
- (3) 由 (2) ③已知沉淀中只有 CuO₂,再结合资料 C 中的 O₂²·的产生,可得出答案: 溶液中存在 H₂O₂⇒H⁺+HO₂⁻,HO₂⁻⇒H⁺+O₂²⁻,溶液 pH 增大,两个平衡均正向移动,O₂² -浓度增大,使得 CuO₂ 沉淀量增大。
- (4) 实验 V 表明溶液 pH 值及 SO₄²·对 H₂O₂ 分解无作用,实验 VI 要说明 CuO₂ 能够催化 H₂O₂ 分解,所以就向 H₂O₂ 溶液中加入 CuO₂ 并证明其在反应前后质量不变,答案如下: 将III中沉淀过滤,洗涤,干燥,称取少量于试管中,加入 30% H₂O₂ 溶液,立即产生大量气泡,反应结束后,测得干燥后固体的质量不变。
- (5) 综合上述实验可知,不同 pH 时,H+、SO₄²⁻对 H₂O₂ 分解无催化作用,Cu²⁺通过形成 CuO₂ 对 H₂O₂ 分解起催化作用,pH 越大,形成 CuO₂ 越多,表面积越大,反应速率越快。答案为: CuO₂ 的催化能力强于 Cu²⁺; 随 pH 增大,Cu²⁺与 H₂O₂ 反应生成 CuO₂ 增多。

