

SÍLABO HIDRÁULICA

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: IX SEMESTRE ACADÉMICO: 2018-II

I. CÓDIGO DEL CURSO : 09030909040

II. CRÉDITOS : 04

III. REQUISITOS : 09059608030 Hidrología

IV. CONDICIÓN DE CURSO : Obligatorio

V. SUMILLA

El curso está ubicado en el IX Ciclo, es de naturaleza teórica y práctica. Su propósito es brindar al estudiante los conceptos teórico – prácticos para diseñar soluciones de ingeniería a los problemas de los recursos hídricos superficiales, subterráneos y marítimos que se presentan cuando se quiere: captar, conducir, proteger o regular dichos recurso mediante obras de infraestructura hidráulica.

La asignatura comprende las siguientes unidades de aprendizaje: I. Obras de Arte en canales. II. Obras de captación – Diseño de Bocatoma. III. Diseño de Centrales Hidroeléctricas. IV. Diseño de Sistema de Riego.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Autoridad Nacional del Agua. (2014). Manual: *Criterios de Diseño de Obras Hidráulicas para la Formulación de Proyectos Hidráulicos Multisectoriales y de Afianzamiento Hídrico*. Min. Agricultura, Lima- Perú.
- French, R. (2013). Hidráulica de Canales Abiertos. Mc Graw Hill, México.
- Juárez, B. (2010). *Mecánica de Suelos*. Tomo III. Ed. México: ISBN 9681801288. Novak (2014). *Estructuras Hidráulicas*. 4ta edición, México.
- USBR. (2010). *Diseño de Presas pequeñas*. Traducción 3ra edición, Madrid: España, actualizado.
- Villón, M. (2013). Diseño de Estructuras Hidráulicas. Editorial Villón. Costa Rica.
- Ven Te Chow. (2012). *Hidráulica de los canales abiertos*. Editorial: Mc Graw Hill, Santa Fe Colombia.

Electrónicas

 Santos S. (2013). Hidráulica. Aula Virtual, Perú: Facultad de Ingeniería y Arquitectura, Universidad de San Martín de Porres. http://campusvirtual.usmp.edu.pe/

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: OBRAS DE ARTE EN CANALES

OBJETIVOS DE APRENDIZAJE:

• Diseñar canal y principales obras de arte de conducción, captación y protección, que se requieren en el mismo.

• Realizar proyecto de Trazo de un canal con obras de arte.

PRIMERA SEMANA

Primera sesión:

Clasificación de las Obras Hidráulicas de acuerdo a su propósito y función.

Obra de conducción: Trazo de Canales, radios mínimos, elementos de curva, rasante de canal. Diseño de Sección hidráulica óptima, criterios de espesor de revestimiento. Perfil longitudinal, pendiente del canal, velocidades permisibles.

Segunda sesión:

Canales: diseño de Sección hidráulica óptima, criterios de espesor de revestimiento. Ejemplos de aplicación: Máxima eficiencia, mínima infiltración, Elementos de curva

SEGUNDA SEMANA

Primera sesión:

Obras de protección: transiciones, Obras de conducción: caídas y rápidas

Segunda sesión:

Ejemplos de aplicación: Transición de entrada, sección de control, cuerpo, transición de salida.

Trabajo #1: Trazo de Canal con obras de arte.

TERCERA SEMANA

Primera sesión:

Obras de conducción: Alcantarillas, Tipos de alcantarilla por el flujo a la entrada y a la salida, criterios de diseño, Tipos de alcantarilla por su capacidad.

Segunda sesión:

Ejemplos de aplicación: diseño de alcantarilla con flujo ahogado y con flujo libre.

CUARTA SEMANA

Primera sesión:

Diseño de Sifón invertido, cálculo hidráulico: entrada y salida de sifón, diámetro de tubería, pérdidas hidráulicas.

Segunda sesión:

Ejemplo de aplicación: diseño de Sifón invertido.

QUINTA SEMANA

Primera sesión:

Práctica Calificada #1 – Obras de Arte en Canales.

UNIDAD II: OBRAS DE CAPTACIÓN - DISEÑO DE BOCATOMA

OBJETIVOS DE APRENDIZAJE:

- Diseñar las principales estructuras de conducción, captación y protección, que se requieren en una Bocatoma.
- Realizar proyecto de Diseño de Bocatoma.

QUINTA SEMANA

Segunda sesión:

Introducción, Clasificación, Generalidades sobre ríos, Clases y partes que componen el Barraje, Avenida y Caudal de diseño, Características hidráulicas del río. Obras de desvío, Ubicación óptima, Ancho de encauzamiento.

SEXTA SEMANA

Primera sesión:

Ventana de captación: dimensionamiento, enrejado, perdidas de carga.

Barraje: Determinación del azud, altura, carga hidráulica, clases de cimacios de cresta libre, longitud efectiva de la cresta.

Segunda sesión:

Ejemplo de aplicación: diseño de Ventana de captación, perdida de carga en enrejado.

Calculo de distribución de caudal máximo de avenida en: Barraje, Ventana de captación y

Aliviadero de Demasías.

SÉPTIMA SEMANA

Primera sesión:

Práctica Calificada # 2 - Barraje tipo Creager, perfil del cimacio,

Segunda sesión:

Ejemplo de aplicación: Diseño de Barraje tipo Creager, Calculo de distribución de caudal máximo de avenida en: Barraje, Compuerta de limpia y Aliviadero de Demasías.

OCTAVA SEMANA

Examen Parcial

Entrega de Trabajo # 1 – Trazo de Canales

NOVENA SEMANA

Primera sesión:

Canal de limpia, pendiente crítica, Velocidad de arrastre, criterio de decisión de poza o Canal de Limpia. Colchón disipador.

Segunda sesión:

Ejemplo de aplicación: Diseño de Canal de limpia y Colchón disipador.

DÉCIMA SEMANA

Primera sesión:

Fuerzas de Subpresión, diámetro de enrocamiento, Socavación del cauce del río. Estabilidad del barraje.

Segunda sesión:

Ejemplo de aplicación: Cálculo de fuerzas de Subpresión, diámetro de enrocamiento, Socavación del cauce del río. Estabilidad del barraje.

Diseño de Bocatoma.

UNDÉCIMA SEMANA

Primera sesión:

Desarenador: Función, clases y partes que componen el Desarenador – Partículas que se van a sedimentar – Determinación de naves, longitud y sección del desarenador.

Purga: volumen y operación – canal de purga – compuerta de purga – Umbral de salida. Transiciones de entrada y de salida.

Segunda sesión:

Ejemplo de aplicación: Diseño de desarenador.

UNIDAD III: DISEÑO DE CENTRALES HIDROELÉCTRICAS

OBJETIVOS DE APRENDIZAJE:

• Diseñar las principales estructuras de captación, conducción, conducto forzado y seleccionar turbina que se requiere en una Central Hidroeléctrica.

DUODÉCIMA SEMANA

Primera sesión:

Clasificación, Obras y Equipos requeridos. Potencia instalada, Caudal de instalación, Energía Firme, Energía Secundaria, Tipos de Centrales Hidroeléctricas.

Segunda sesión:

Práctica Calificada #3 – Bocatomas y Desarenador.

DECIMOTERCERA SEMANA

Primera sesión:

Dimensionamiento de reservorios en ríos regulados y determinación de Caudal de Diseño en ríos no regulados con fines de generar energía eléctrica.

Aplicación de Software HIDROESTA. Calculo de Aliviadero de demasías.

Segunda sesión:

Aplicación de Software HIDROESTA. Para dimensionar reservorios regulados y Caudal de Diseño en ríos no regulados y Calculo de Aliviadero de demasías.

DECIMOCUARTA SEMANA

Primera sesión:

Calculo del espesor del conducto forzado, influencia del golpe de ariete, cálculo de tramos de tubería forzada.

Dimensionamiento de Cámara de carga. Selección de turbinas, tipos de turbinas.

UNIDAD IV. DISEÑO DE SISTEMA DE RIEGO

OBJETIVOS DE APRENDIZAJE

 Diseñar las principales estructuras de captación, conducción y distribución que se requiere en un Sistema de riego

DECIMOCUARTA SEMANA

Segunda sesión:

Generalidades, factores de la producción agrícola: suelo, clima, agua.

DECIMOQUINTA SEMANA

Primera sesión:

El riego: clases, eficiencia, cálculo de demandas.

Segunda sesión:

Método de Hargraves, demandas finales.

Práctica Calificada #4 – C.H.

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a) Matemática y Ciencias Básicas
b) Tópicos de Ingeniería
c) Educación General
0

IX. PROCEDIM1ENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y para cada alumno, ecran, proyector de multimedia y una impresora.

Materiales: Aula Virtual del curso, Programas: HCanales, Hec Ras, HIDROESTA y aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene con la siguiente fórmula:

PF = (2*PE + EP + EF) / 4 PE = ((P1 + P2 + P3 + P4 - MN) /3 + W1 + PL)/3. PL = (Lb1 + Lb2 + Lb3 + Lb4)/4

Donde:

PF = Promedio final. P3 = Práctica calificada 3 EP = Examen Parcial P4 = Práctica calificada 4

EF = Examen Final MN = Menor nota de Prácticas calificadas

PE = Promedio de Evaluaciones W1 = Trabajo 1

P1 = Práctica calificada 1 PL = Promedio de laboratorios P2 = Práctica calificada 2 Lb1...Lb4: Notas de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave

R = relacionado

Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería.	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.	R
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas.	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario.	K
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería.	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional.	
(g)	Habilidad para comunicarse con efectividad.	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global.	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida.	
(j)	Conocimiento de los principales temas contemporáneos.	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería.	К

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
3	0	2

b) Sesiones por semana: Dos sesiones.

c) Duración: 5 horas académicas de 45 minutos.

XIV. DOCENTE DEL CURSO

Ing. Fernando Paz Zagazeta Ing. Gonzalo Fano Miranda

XV. FECHA:

La Molina, julio de 2018.