Name: Shawn Class: Real Analysis

1. Show that if M is the open interval (a,b), and p is in M, then p is a limit point of M.

Solution:

Let M be the open interval (a,b) and $p \in M$, where $a,b \in \mathbb{R}$.

Let $S = (p - \epsilon, p + \epsilon)$, where ϵ is an arbitrary positive real number and $|\epsilon|$ is such that $S \subseteq M$. $(p + \epsilon/2)$, $p \in S$ for any $\epsilon \in \mathbb{R}^+$, and so S is an arbitrary interval that contains p and contains another point of M.

Therefore p is a limit point of M.

2. Show that if M is the closed interval [a,b], and p is not in M, then p is not a limit point of M.

Solution:

Let M be the closed interval [a,b], and p \notin M. Assume, without loss of generality, that p > b. Let $\epsilon = \frac{p-b}{2}$, and let S = $(p-\epsilon, p+\epsilon)$. Hence $S \cap M = \emptyset$.

Since S is an open interval that contains p but doesn't contain any element of M, p cannot be a limit point of M.

3. Show that if M is a point set having a limit point, then M contains 2 points

Solution:

Let M be a point set that contains a limit point p. Let $S_{\epsilon} = (p - \epsilon, p + \epsilon)$, where $\epsilon \in \mathbb{R}^+$. Since p is a limit point there must be exist point in S_{ϵ} (besides p) for every ϵ . Let k be another point in S_{ϵ} , where $k \neq p$. Now let $S_{\epsilon_2} = (p - \epsilon_2, p + \epsilon_2)$ where $\epsilon_2 < |p - k|$. So then $k \notin S_{\epsilon_2}$, but there must exist another point in S_{ϵ_2} that is not p.

Using the Archemedian property and the above argument shows that there are infinite points in M.