ECONOMETRIA I O ESTIMADOR DE MÍNIMOS QUADRADOS ORDINÁRIOS

Luis A. F. Alvarez

2 de abril de 2025

Ambiente

- Pesquisador observa n pares (Y_i, X_i) , $i = 1 \dots, n$, para os quais supõe um modelo linear da forma:

$$Y_i = X_i'\beta + \epsilon_i \dots i = 1, \dots n, \qquad (1)$$

onde $\beta \in \mathbb{R}^k$ é um parâmetro desconhecido, e ϵ_i , $i=1,\ldots,n$ são variáveis aleatórias não observadas.

- Recorde-se, da última aula, que cabe ao pesquisador postular o modelo e a interpretação dos coeficientes.
- No caso mais comum, $(Y_i, X_i) \stackrel{d}{=} (Y, X)$ para i = 1, ..., n, onde a distribuição de (Y, X) representa a distribuição das variáveis numa população de interesse.
 - Por exemplo, podemos ter que $\{(Y_i,X_i)\}_{i=1}^n$ é uma amostra aleatória de uma população com distribuição $\mathbb{P}_{Y,X}$, para a qual postulamos um modelo linear.
 - Mas também podemos ter que as observações entre pares apresentem dependência entre si, embora com leis $\mathbb{P}_{(Y_i,X_i)}$ comuns a todo i.
- De modo mais geral, no entanto, pode ser que os (Y_i, X_i) não possuam a mesma distribuição conjunta, mas haja uma relação comum e estável ao longo de i.

Notação matricial

- No que segue, definimos as seguintes matrizes aleatórias:

$$m{y} = egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{bmatrix}, \quad m{X} = egin{bmatrix} X_1' \ X_2' \ dots \ X_n' \end{bmatrix}, \quad m{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{bmatrix}$$

 Com base na notação acima introduzida, podemos reescrever (1) em notação matricial como:

$$\mathbf{y} = \mathbf{X}\beta + \boldsymbol{\epsilon}$$
 (2)

Estimador de mínimos quadrados ordinários

- O estimador de mínimos quadrados ordinários de β , denotado por \hat{b} , consiste em estimar β minimizando a distância, na norma Euclidiana, entre \mathbf{y} e uma combinação linear das colunas de \mathbf{X} , i.e.

$$\hat{b} \in \operatorname{argmin}_{b \in \mathbb{R}^k} \| \boldsymbol{y} - \boldsymbol{X} b \|_2^2 = \operatorname{argmin}_{b \in \mathbb{R}^k} \frac{1}{n} \sum_{i=1}^n (Y_i - X_i' b)^2 \,,$$

- Em outras palavras, encontramos o coeficiente b que maximiza a contribuição dos X_i à explicação de Y_i, tal qual medida pela média da distância ao quadrado entre os Y_i e X_i'b.
- Condições de primeira ordem podem ser escritas como:

$$\mathbf{0}_{k\times 1} = \sum_{i=1}^n X_i(Y_i - X_i'b) = \mathbf{X}'(\mathbf{y} - \mathbf{X}b)$$

Condição de posto e unicidade do mínimo

Sob a condição

HIPÓTESE (H1-POSTO)

A matriz **X** apresenta posto k.

Temos que X'X é invertível (por quê), de modo que existe uma única solução ao problema de otimização, dada por:

$$\hat{b} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{y})$$
.

- Condição de posto requer que nenhuma das colunas seja escrita como combinação linear das demais.
 - Se a primeira entrada dos X_i corresponde a um intercepto (i.e. $X_{i,1}=1$ para todo $i=1,\ldots,n$), nenhuma das colunas pode ser escrita como função afim das demais
- Observe que, como rank $(X) \le \min\{n, k\}$, condição implica que $n \ge k$.

UM CASO SIMPLES

- Considere, para fixar as ideias, o caso em que $X_i = egin{bmatrix} 1 & {\mathcal T}_i \end{bmatrix}'$.
- Nesse caso, a matriz X'X é dada por:

$$\begin{bmatrix} n & \sum_{i=1}^{n} T_i \\ \sum_{i=1}^{n} T_i & \sum_{i=1}^{n} T_i^2 \end{bmatrix}$$
 (3)

de modo que a condição de posto é equivalente a

$$\widehat{V(T)} = \frac{1}{n} \sum_{i=1}^{n} T_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} T_i\right)^2 > 0.$$

Se condição de posto é satisfeita, estimador de MQO é dado por:

$$\hat{b}_2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(T_i - \bar{T})}{\sum_{i=1}^{n} (T_i - \bar{T})^2} = \frac{\widehat{\text{cov}(T, Y)}}{\widehat{V(T)}}$$

MQO: Propriedades Algébricas

Matriz de projeção

- Definimos a matriz de projeção de **X** como:

$$P = \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'$$

- Observe que a matriz de projeção é tal que $X\hat{b} = P\mathbf{y}$.
- Pz é a projeção (em termos de minimização da distância Euclidiana) de $z \in \mathbb{R}^n$ no espaço gerado pelas colunas de X.
- Matriz de projeção tem as seguintes propriedades:
 - Simétrica.
 - Idempotente $(P^2 = P)$.
 - Os autovalores de P são ou 0 ou 1.
 - trace(P) = k = rank(P).

Matriz residualizadora

A matriz residualizadora (residual-maker) de X é dada por:

$$M = (I - P)$$

- Matriz residualizadora tem as seguintes propriedades:
 - Simétrica.
 - Idempotente ($M^2 = M$).
 - Os autovalores de M são ou 0 ou 1.
 - trace(M) = n k = rank(M).
 - X'M = 0, MX = 0, PM = MP = 0.
- Matriz residualizadora devolve o erro de projeção z Pz.
 - Como Pz é o minimizador da distância Euclidiana no espaço gerado pelas colunas de X,temos que:

$$(\mathbf{M}\mathbf{z})\cdot(\mathbf{X}\boldsymbol{\ell})=\mathbf{z}'\mathbf{M}\mathbf{X}\boldsymbol{\ell}=0 \quad \forall \mathbf{z}\in\mathbb{R}^n, \boldsymbol{\ell}\in\mathbb{R}^k.$$

VISUALIZAÇÃO GRÁFICA

FIGURE 3.2 Projection of y into the Column Space of X.

FÓRMULA DA INVERSA PARTICIONADA

- Suponha que particionemos a matriz $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 \end{bmatrix}$ onde \mathbf{X}_1 e \mathbf{X}_2 são matrizes de dimensão $n \times k_1$ e $n \times k_2$.
- Nesse caso, a fórmula da inversa particionada nos indica que:

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} \mathbf{X}_1'\mathbf{X}_1 & \mathbf{X}_1'\mathbf{X}_2 \\ \mathbf{X}_2'\mathbf{X}_1 & \mathbf{X}_2'\mathbf{X}_2 \end{bmatrix}^{-1} =$$

$$\begin{bmatrix} (\mathbf{X}_1'\mathbf{X}_1)^{-1} + (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2\mathbf{F}\mathbf{X}_2'\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1} & -(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2\mathbf{F} \\ -\mathbf{F}\mathbf{X}_2'\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1} & \mathbf{F} \end{bmatrix}$$

onde $\mathbf{F} = (\mathbf{X}_2'\mathbf{X}_2 - \mathbf{X}_2'\mathbf{X}_1(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2)^{-1} = (\mathbf{X}_2'\mathbf{M}_1\mathbf{X}_2)^{-1}$ onde \mathbf{M}_1 é a residualizadora de \mathbf{X}_1 .

- Inversa de $\mathbf{X}_2'\mathbf{M}_1\mathbf{X}_2$ existe pois matriz \mathbf{X} tem posto cheio.

TEOREMA DE FRISCH-WAUGH-LOVELL

- Da propriedade anterior, segue o importante resultado abaixo:

TEOREMA (FRISCH-WAUGH-LOVELL)

Seja
$$\hat{b} = \begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \end{bmatrix}$$
. Então:

$$\hat{b}_2 = (\mathbf{X}_2' M_1 \mathbf{X}_2)^{-1} (\mathbf{X}_2' M_1 \mathbf{y}) = ((M_1 \mathbf{X}_2)' (M_1 \mathbf{X}_2))^{-1} ((M_1 \mathbf{X}_2)' (M_1 \mathbf{y}))$$

- Resultado acima nos mostra que estimadores de MQO associados a X_2 em uma regressão que inclui X_1 e X_2 são idênticos a:
 - Regredir \boldsymbol{y} em \boldsymbol{X}_1 , e guardar os resíduos \boldsymbol{e}_y .
 - Para cada $j=1,\ldots k_2$, regredir a j-ésima coluna de \boldsymbol{X}_2 em \boldsymbol{X}_1 , e guardar os resíduos \boldsymbol{e}_j .
 - Regredir e_v em $e_1, \dots e_{k_2}$ e recuperar os coeficientes.

MQO: Propriedades Estatísticas em Amostras Finitas

Regressores fixos

- Nesta seção, analisaremos as propriedades de risco do estimador de MQO.
- Essas propriedades serão analisadas com respeito à distribuição de y condicionalmente a X.
 - Em outras palavras, estamos pensando nas propriedades do estimador sob amostras repetidas (realizações alternativas da incerteza) em que o valor dos regressores é o mesmo da amostra observada.
 - Ou seja, estamos efetivamente tratando os regressores como fixos sob amostras repetidas.
 - **Exemplo:** se Y_i é a taxa de inflação no período i, e X_i a taxa de desemprego no período i-1, analisaremos as propriedades dos estimadores sob realizações alternativas do cenário econômico em que a taxa de desemprego é igual à observada nos períodos $i=1,\ldots,n$.

Não viés

Sob a restrição de que:

HIPÓTESE (H2-EXOGENEIDADE)

$$\mathbb{E}[\boldsymbol{\epsilon}|\boldsymbol{X}]=0$$

- O estimador de MQO é não viciado para β , isto é, qualquer que seja o valor de $\beta \in \mathbb{R}^k$, temos que:

$$\mathbb{E}[\hat{b}|\mathbf{X}] = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}[\mathbf{y}|\mathbf{X}] = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbb{E}[\boldsymbol{\epsilon}|\mathbf{X}] = \beta$$

- Observe que a condição de exogeneidade implica que:

$$\mathbb{E}[\mathbf{y}|\mathbf{X}] = \mathbf{X}\beta$$

Interpretação da condição de exogeneidade

- Sob amostragem aleatória de uma população, i.e. $(X_i, Y_i) \stackrel{iid}{\sim} (X, Y)$, condição implica $\mathbb{E}[Y_i|X] = \mathbb{E}[Y_i|X_i] = X_i'\beta \implies \mathbb{E}[Y|X] = X'\beta$.
 - A esperança condicional das variáveis (Y, X) que representam a distribuição das características na população de interesse é linear em X, e coincide com o modelo linear de interesse.
 - Se o modelo postulado é preditivo, isso significa que o parâmetro-alvo do melhor preditor linear consiste também no melhor preditor dentro das funções não lineares de X (ou, de modo equivalente, a melhor aproximação linear a $\mathbb{E}[Y|X]$ é exata).
 - Se modelo postulado é causal, isso significa que as causas não observadas ϵ apresentam o mesmo valor médio nas diferentes subpopulações definidas pelos valores de X. Trata-se de condição mais forte que (i.e. que implica) a condição de identificação $\text{cov}(X,\epsilon)=0$.
- Quando as observações (X_i, Y_i) apresentam dependência entre si, esta condição impõe restrições adicionais.
 - Por exemplo, se as observações estão ordenadas no tempo e o modelo postulado é causal, $\mathbb{E}[\epsilon_i|\mathbf{X}]=0$ implica que causas não observadas do fenômeno no período i não exibem associação sistemática com as causas em i e em nenhum outro período.
 - Nesse caso, condição limita retroalimentação entre causas observadas e não observadas no tempo. $^{16/29}$

Viés de variável omitida

- Considere um modelo da forma:

$$\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \boldsymbol{\epsilon} \,,$$

em que $\mathbb{E}[\boldsymbol{\epsilon}|\boldsymbol{X}_1,\boldsymbol{X}_2]=0$.

- Por exemplo, num modelo causal, é suficiente observar as causas X_1 e X_2 para que as causas não observadas restantes estejam balanceadas nas subpopulações definidas pelos valores de (X_1, X_2) .
- Suponha que você não observe ou desconsidere X_2 , e considere o estimador de MQO \tilde{b}_1 de y em X_1 .
 - Sob quais condições esse estimador é não viciado para β_1 ?
- Um cálculo simples nos mostra que:

$$\begin{split} \tilde{b}_1 = (\pmb{X}_1' \pmb{X}_1)^{-1} \pmb{X}_1' \pmb{y} &= \beta_1 + (\pmb{X}_1' \pmb{X}_1)^{-1} \pmb{X}_1' \pmb{X}_2 \beta_2 + (\pmb{X}_1' \pmb{X}_1)^{-1} \pmb{X}_1' \pmb{\epsilon} \\ \tilde{b}_1 &= \beta_1 + \hat{\gamma} \beta_2 + (\pmb{X}_1' \pmb{X}_1)^{-1} \pmb{X}_1' \pmb{\epsilon} \,, \end{split}$$

onde $\hat{\gamma}$ é uma matrix $k_1 \times k_2$ em que cada coluna representa os coeficientes do estimador de MQO da j-ésima coluna de \mathbf{X}_2 em \mathbf{X}_1 .

VIÉS DE VARIÁVEL OMITIDA (CONT.)

- Da propriedade da torre, temos que $\mathbb{E}[\boldsymbol{\epsilon}|\boldsymbol{X}_1] = \mathbb{E}[\mathbb{E}[\boldsymbol{\epsilon}|\boldsymbol{X}_1,\boldsymbol{X}_2]|\boldsymbol{X}_1] = 0. \text{ Portanto, temos que: } \\ \mathbb{E}[\tilde{b}_1|\boldsymbol{X}_1] = \beta_1 + \mathbb{E}[\hat{\gamma}|\boldsymbol{X}_1]\beta_2$
- Se uma das duas condições abaixo for satisfeita, estimador será não viciado para β_1 :
- 1. $\beta_2 = 0$.
 - Se o modelo postulado é causal, essa hipótese significa que as variáveis \mathbf{X}_2 não possuem efeito causal sobre \mathbf{y} .
 - Se o modelo postulado é preditivo, essa hipótese significa que as variáveis \boldsymbol{X}_2 não possuem informação preditiva sobre \boldsymbol{y} , uma vez que usamos \boldsymbol{X}_1 na predição.
 - Nesse caso, estimador de MQO do melhor preditor linear que inclui X₂ produzirá, em média, o mesmo resultado que o estimador que inclui X₁ e X₂.
- 2. $\mathbb{E}[\hat{\gamma}|X_1] = 0$.
 - Essa hipótese é satisfeita se as variáveis em X_1 não possuem capacidade preditiva sobre nenhuma das variáveis em X_2 .

ESTIMADOR LINEAR

- Para obter propriedades de otimalidade para o estimador de MQO, necessitamos introduzir definições adicionais.
- Um estimador do parâmetro β é dito linear (em y) se:

$$\phi(\mathbf{X}, \mathbf{y}) = A(\mathbf{X})\mathbf{y},$$

onde $A: \mathbb{R}^{n \times k} \mapsto \mathbb{R}^{k \times n}$.

- Note que o estimador de MQO é um estimador linear.

HOMOCEDASTICIDADE

 O estimador de MQO terá propriedades de otimalidade se, além de H1-H2 restringirmos que:

HIPÓTESE (H3-HOMOCEDASTICIDADE)

Existe
$$\sigma^2 > 0$$
 tal que $\mathbb{V}[\epsilon | \mathbf{X}] = \sigma^2 \mathbb{I}_{n \times n}$.

- A hipótese de homocedasticidade requer que condicionalmente a \boldsymbol{X} os termos de erro ϵ_i , ϵ_j , $j \neq i$, sejam não correlacionados e exibam variância idêntica e não dependente do valor de \boldsymbol{X} .
 - Sob amostragem aleatória de uma população (X,Y) em que vale para o modelo postulado que $\mathbb{E}[\epsilon|X]=0$ (H2), temos que, para $i\neq j$, $\operatorname{cov}(\epsilon_i,\epsilon_j|\mathbf{X})=\mathbb{E}[\epsilon_i\epsilon_j|\mathbf{X}]=\mathbb{E}[\epsilon_i\epsilon_j|X_i,X_j]=\mathbb{E}[\mathbb{E}[\epsilon_i|\epsilon_j,X_i,X_j]\epsilon_j|X_i,X_j]=\mathbb{E}[\mathbb{E}[\epsilon_i|X_i]\epsilon_j|X_i,X_j]=0$. Portanto, o requerimento de não covariância condicional não impõe restrições adicionais a H2.
 - Por outro lado, nesse caso, a hipótese impõe que $\mathbb{V}[Y|X] = \mathbb{V}[\epsilon|X] = \sigma^2 \text{, i.e. que a dispersão de } Y \text{ nas subpopulações definidas pelos diferentes valores de } X \text{ sejam as mesmas.}$

TEOREMA DE GAUSS-MARKOV

- Defina o seguinte conjunto de distribuições condicionais de ${\it y}$ dado ${\it X}$:

$$\mathcal{F}(\boldsymbol{X}) = \{P_{\boldsymbol{y}|\boldsymbol{X}}: \exists \delta \in \mathbb{R}^k, \mathbb{E}_{P_{\boldsymbol{y}|\boldsymbol{X}}}[\boldsymbol{y}|\boldsymbol{X}] = \boldsymbol{X}\delta, \exists \sigma^2 > 0, \mathbb{V}_{P_{\boldsymbol{y}|\boldsymbol{X}}}[\boldsymbol{y}|\boldsymbol{X}] = \sigma^2 \mathbb{I}_{n \times n}\}$$

- Essa é a classe de distribuições condicionais de y dado X em que a esperança condicional é linear em X e a hipótese de homocedasticidade é satisfeita.
 - Denote, para uma distribuição condicional $F \in \mathcal{F}(\mathbf{X})$, $\delta(F)$ o parâmetro que entra na esperança condicional.
- Com base nas definições acima, temos o seguinte resultado.

TEOREMA (GAUSS-MARKOV)

Sob H1, o estimador de MQO é o estimador linear não viciado para $\delta(F)$ de variância uniformemente mínima na classe $\mathcal{F}(\boldsymbol{X})$, i.e. para qualquer outro estimador linear ψ tal que $\mathbb{E}_F[\psi|\boldsymbol{X}] = \delta(F)$ para todo $F \in \mathcal{F}(\boldsymbol{X})$, temos que, para todo $F \in \mathcal{F}(\boldsymbol{X})$:

$$\mathbb{V}_{F}(\psi|\mathbf{X}) - \mathbb{V}_{F}(\hat{b}|\mathbf{X})$$
 é positiva semidefinida

Etapas da demonstração

- 1. Mostrar que $\{\delta(F): F \in \mathcal{F}(X)\} = \mathbb{R}^k$.
 - Basta considerar, para $\delta \in \mathbb{R}^k$, $\mathbf{y} = \mathbf{X}\delta + \epsilon$, com $\epsilon \sim \mathcal{N}(0, \mathbb{I}_{n \times n})$ e ϵ independente de \mathbf{X} .
- 2. Com base no resultado acima, mostrar que qualquer estimador linear $A(\boldsymbol{X})\boldsymbol{y}$ não viciado em $\mathcal{F}(\boldsymbol{X})$ deve satisfazer

$$A(\mathbf{X})\mathbf{X} = \mathbb{I}_{k\times k}$$

- 3. Mostrar que, para todo $F \in \mathcal{F}(\boldsymbol{X})$, $\operatorname{cov}_F(A(\boldsymbol{X})\boldsymbol{y} \hat{b}, \hat{b}|\boldsymbol{X}) = 0_{k \times k}$
- 4. Concluir que, para todo $F \in \mathcal{F}(\mathbf{X})$:

$$\mathbb{V}_{F}(A(\boldsymbol{X})\boldsymbol{y} - \hat{b}|\boldsymbol{X}) = \mathbb{V}_{F}(A(\boldsymbol{X})\boldsymbol{y}|\boldsymbol{X}) - \mathbb{V}_{F}(\hat{b}|\boldsymbol{X})$$

MQO: Inferência em Amostra Finita

O PROBLEMA DE TESTE DE HIPÓTESES

- Seja (Ω, Σ, P) um experimento estatístico, e P um *modelo*.
- Sejam \mathcal{P}_0 e \mathcal{P}_1 uma partição de \mathcal{P} .
- O problema de decisão estatística conhecido como teste de hipóteses consiste em afirmar se: $P \in \mathcal{P}_0$

ou

$$P \in \mathcal{P}_1$$

- Classe \mathcal{P}_0 é conhecida como hipótese nula (H_0) , e \mathcal{P}_1 é a classe de alternativas ou hipótese alternativa (H_1) .
- Um teste não aleatorizado é uma regra de decisão $\phi: \Omega \mapsto \{0,1\}$ mensurável (i.e. $\phi^{-1}(\{1\}) \in \Sigma$).
 - Se $\omega \in \Omega$ observado é tal que $\phi(\omega) = 1$, afirmamos H_1 (rejeitamos H_0), concluindo por $P \in \mathcal{P}_1$.
 - Por outro lado, se $\phi(\omega) = 0$, afirmamos H_0 (não rejeitamos H_0), concluindo por $P \in \mathcal{P}_0$.
 - Em contraste, em testes aleatorizados, permitimos que a hipótese nula seja rejeitada com uma probabilidade dada por $\phi(\omega) \in [0,1]$.

NÍVEL DE SIGNIFICÂNCIA, TAMANHO E PODER

- A princípio, a definição de teste não restringe o comportamento do procedimento estatístico adotado.
- Entretanto, gostaríamos de procedimentos estatísticos que limitassem o erro tipo 1 de se rejeitar a hipótese nula, caso ela seja verdadeira.
- Especificamente, para um dado nível de significância $\alpha \in [0,1]$, gostaríamos de que o teste satisfizesse:

$$\mathbb{E}_{F}[\phi] \leq \alpha, \quad \forall F \in \mathcal{P}_{0}$$

- Probabilidade ex-ante de rejeição está limitada a uma probabilidade $\alpha.$
- À quantidade $\sup_{F\in\mathcal{P}_0}\mathbb{E}_F[\phi]$ damos o nome de tamanho de um teste.
- Por outro lado, dado um procedimento que controla o nível de significância, gostaríamos de maximizar o poder do teste, i.e., para todo $G \in \mathcal{P}_1$, gostaríamos de tornar:

$$\nu(G) := \mathbb{E}_G[\phi]$$

o mais alto possível.

- Maximizar o poder é equivalente a minimizar erro tipo 2 de se afirmar a hipótese alternativa quando ela é falsa.
- Usualmente, isso requer que $\sup_{F \in \mathcal{P}_0} \mathbb{E}_F[\phi] = \alpha$.

Inferência no modelo linear

- Retomemos o modelo linear visto anteriormente:

$$\mathbf{y} = \mathbf{X}\beta + \boldsymbol{\epsilon}$$
,

onde β é desconhecido.

- Para testes de hipótese em amostras finitas, requeremos:

HIPÓTESE (H5-NORMALIDADE)

$$\epsilon | \mathbf{X} \sim \mathcal{N}(0, \sigma^2 \mathbb{I}_{n \times n})$$

- Hipótese não só requer que erro tenha média condicional zero e matriz de variância homocedástica, mas impõe normalidade da distribuição condicional.
 - Como parâmetros da normal não dependem de ${\pmb X}$, hipótese implica que ${\pmb \epsilon}$ é independente de ${\pmb X}$.
- Classe de distribuições condicionais compatíveis com a hipótese são:

$$\mathcal{F}^{N}(\mathbf{X}) = \{ \mathbf{P}_{\mathbf{y}|\mathbf{X}} : \mathbf{y}|\mathbf{X} \sim N(\mathbf{X}\delta, \sigma^{2}\mathbb{I}_{n \times n}), \quad \delta \in \mathbb{R}^{k}, \sigma^{2} > 0 \}$$

ESTATÍSTICA F

- Suponha que desejássemos testar:

$$H_0: R\beta = c$$

contra a alternativa

$$H_1: R\beta \neq c$$

onde R é uma matriz $q \times k$ de posto q, e c é uma vetor $q \times 1$.

- H_0 e H_1 formam partição de $\mathcal{F}^N(\boldsymbol{X})$
- Considere a seguinte estatística de teste:

$$W_{R,c} = \frac{(R\hat{b} - c)' \left(R\hat{\sigma}^2 (\textbf{\textit{X}}'\textbf{\textit{X}})^{-1} R'\right)^{-1} (R\hat{b} - c)}{k} = \frac{(R\hat{b} - c)' \left(R(\textbf{\textit{X}}'\textbf{\textit{X}})^{-1} R'\right)^{-1} (R\hat{b} - c)}{k\hat{\sigma}^2}$$

- $\hat{\sigma}^2 = \frac{1}{n-k} \sum_{i=1}^n (Y_i X_i' \hat{b})^2$, com $\hat{\sigma}^2 (\boldsymbol{X}' \boldsymbol{X})^{-1}$ é estimador de $\mathbb{V}[\hat{b} | \boldsymbol{X}]$.
- Estatística mede o desvio de $R\hat{b}$ a c, onde a distância é "ponderada" pelo inverso da variância de $R\hat{b}$.
- Valores grandes da estatística formam evidência contra hipótese nula.

DISTRIBUIÇÃO DA ESTATÍSTICA DE TESTE, SOB A HIPÓTESE NULA

Proposição

Suponha válidas as Hipóteses 1 e 4. Se a distribuição $\mathbb P$ satisfaz a hipótese nula, então:

$$W_{R,c}|\mathbf{X}\sim F(k,n-k)$$

- Etapas para demonstração do resultado:
 - 1. Mostrar que, sob a nula, $N := (R\hat{b} c)' (R\sigma^2(\mathbf{X}'\mathbf{X})^{-1}R') (R\hat{b} c) \sim \chi^2(k)$.
 - 2. Mostrar que $(n-k)\hat{\sigma}^2/\sigma^2 \sim \chi^2(n-k)$.
 - 3. Mostrar que N e $\hat{\sigma}^2$ são independentes.

Teste de hipótese

- O resultado anterior sugere considerar a seguinte regra de decisão, para um nível de significância $\alpha \in [0,1]$:

$$\phi \coloneqq \mathbf{1}\{W_{R,c} > q_F(1-\alpha|k,n-k)\}$$

onde $q_F(1-\alpha|k,n-k)$ é o quantil $1-\alpha$ da distribuição F(k,n-k).

- Rejeitamos a nula se $W_{R,q}$ for suficientemente alta.
- Com base no *slide* anterior, se nula for verdadeira, tem-se $\mathbb{E}[\phi|\mathbf{X}] = \alpha$.
- Estatística $W_{r,c}$ pode ser reescrita a partir da diferença relativa entre o R^2 do estimador de MQO irrestrito, relativamente ao estimador de MQO que impõe a hipótese nula.
 - Veja o livro do Greene para detalhes.
- No caso em que q=1, teste é equivalente a rejeitar a nula se:

$$|\hat{t}_{R,q}| > q_t(1 - \alpha/2|n - k)$$

onde $q_t(1-\alpha/2|n-k)$ é o quantil $1-\alpha/2$ de uma t de Student com n-k graus de liberdade, e:

$$\hat{t}_{R,c} = \frac{(R\beta - c)}{R\hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}R'}$$