Face Comparator

inż. Paweł Tobiszewski, 179169 inż. Marcin Ważeliński, 179151

Wydział Informatyki i Zarządzania, Politechnika Wrocławska

13 czerwca 2013

1 / 16

Przedstawienie problemu

- Problem porównywanie twarzy
- Decyzje zdjęcia twarzy
- Kryteria podawane przez Użytkownika
- Do rozwiązania wykorzystano metodę AHP

Macierze porównań kryteriów

Tabela: Porównanie kryteriów

	K_1	K_2	K_3
K_1	1.0	1.0	7.0
K_2	1.0	1.0	3.0
K_3	0.14	0.33	1.0

Tabela: Kryterium 2

	D_1	D_2	D_3
D_1	1.0	3.0	9.0
D_2	0.33	1.0	3.0
$\overline{D_3}$	0.11	0.33	1.0

Tabela: Kryterium 1

		D_1	D_2	D_3
D	1	1.0	0.2	5.0
D_{i}	2	5.0	1.0	7.0
D:	3	0.2	0.14	1.0

Tabela: Kryterium 3

	D_1	D_2	D_3
D_1	1.0	0.2	0.11
D_2	5.0	1.0	0.14
D_3	9.0	7.0	1.0

Etap 1 — normalizacja macierzy

Aby znormalizować macierze, należy najpierw policzyć sumy w kolumnach, a następnie każdą wartość komórki macierzy podzielić przez sumę z odpowiadającej jej kolumny. Przykład dla macierzy porównań kryteriów:

	D_1	D_2	D_3
D_1	1.0	1.0	7.0
D_2	1.0	1.0	3.0
D_3	0.14	0.33	1.0
<i>c</i> ₀	2.14	2.33	11.0

	D_1	D_2	D_3
$\overline{D_1}$	0.47	0.43	0.64
D_2	0.47	0.43	0.27
D_3	0.07	0.14	0.09

c₀ oznacza wektor sum

- 4 🗆 ト 4 🗗 ト 4 🖹 ト 4 🖹 - 釣 Q (C)

Kryterium 1

	D_1	D_2	D_3
$\overline{D_1}$	1.0	0.2	5.0
$\overline{D_2}$	5.0	1.0	7.0
D_3	0.2	0.14	1.0
<i>c</i> ₁	6.20	1.34	13.0

	D_1	D_2	D_3
D_1	0.16	0.15	0.38
D_2	0.81	0.74	0.54
D_3	0.03	0.11	0.08

Kryterium 2

	D_1	D_2	D_3
D_1	1.0	0.2	5.0
D_2	5.0	1.0	7.0
D_3	0.2	0.14	1.0
<i>c</i> ₂	6.20	1.34	13.0

Kryterium 3

	D_1	D_2	D_3
D_1	1.0	0.2	5.0
D_2	5.0	1.0	7.0
D_3	0.2	0.14	1.0
<i>c</i> ₃	6.20	1.34	13.0

Etap 2 — wyznaczenie wektorów preferencji

Dla każdej ze znormalizowanych macierzy należy wyznaczyć wektor preferencji — wyliczając średnie arytmetyczne wartości w wierszach macierzy.

	D_1	D_2	D_3		<i>s</i> ₀
D_1	0.47	0.43	0.64		0.51
$\overline{D_2}$	0.47	0.43	0.27	,	0.39
$\overline{D_3}$	0.07	0.14	0.09		0.1

7 / 16

K_1	D_1	D_2	D_3
D_1	0.16	0.15	0.38
D_2	0.81	0.74	0.54
$\overline{D_3}$	0.03	0.11	0.08

	<i>S</i> ₀
	0.23
—	0.70
	0.07

K	2	D_1	D_2	D_3
D	1	0.16	0.15	0.38
D	2	0.81	0.74	0.54
\overline{D}	3	0.03	0.11	0.08

$$\begin{array}{c|cccc} K_3 & D_1 & D_2 & D_3 \\ \hline D_1 & 0.16 & 0.15 & 0.38 \\ \hline D_2 & 0.81 & 0.74 & 0.54 \\ \hline D_3 & 0.03 & 0.11 & 0.08 \\ \hline \end{array}$$

$$ightarrow rac{s_0}{0.06} \ 0.19 \ 0.75$$

Etap 3 - wyznaczenie rankingu decyzji I

Aby wyznaczyć ranking decyzji, należy pomnożyć macierz powstałą przez "sklejenie" wektorów preferencji względem każdego z kryteriów przez wektor preferencji kryteriów:

$$R = [c_1c_2c_3] \times [c_0]$$

$$R = \begin{bmatrix} c_1^{(1)} & c_2^{(1)} & c_3^{(1)} \\ c_1^{(2)} & c_2^{(2)} & c_3^{(2)} \\ c_1^{(3)} & c_2^{(3)} & c_3^{(3)} \end{bmatrix} \times \begin{bmatrix} c_0^{(1)} \\ c_0^{(2)} \\ c_0^{(3)} \end{bmatrix}$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

PT MW (PWr)

9 / 16

Etap 3 - wyznaczenie rankingu decyzji II

$$R = \begin{bmatrix} 0.23 & 0.69 & 0.06 \\ 0.70 & 0.23 & 0.19 \\ 0.07 & 0.08 & 0.75 \end{bmatrix} \times \begin{bmatrix} 0.51 \\ 0.39 \\ 0.1 \end{bmatrix} = \begin{bmatrix} 0.39 \\ 0.46 \\ 0.14 \end{bmatrix}$$

W wyniku otrzymujemy wektor rankingu decyzji — każdy wiersz odpowiada kolejnej decyzji. Z wektora tego możemy odczytać, że najbardziej preferowaną twarzą (według zadanych macierzy porównań) jest twarz druga. Kolejną — twarz pierwsza, a najmniej odpowiada nam twarz trzecia.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Etap 4 — test spójności

Aby zapewnić wiarygodność wyniku, wszystkie macierze powinny być spójne (w przeciwnym przypadku wynik nie musi być poprawny).

Spójność macierzy

$$\forall_{i,j,k} (a_{i,j} * a_{j,k} = a_{i,k})$$

Jednak zdefiniowana w ten sposób spójność jest trudna do obliczenia. Dlatego do obliczenia spójności zastosowana została metoda Saaty'ego.

Spójność - metoda Satty'ego

$$CR = \frac{CI}{RI}$$

$$CI = \frac{\lambda - n}{n - 1}$$

 $\lambda = c \times s$, gdzie c — wektor sum, s — wektor preferencji

Macierz jest spójna, jeżeli CR < 0.1. RI jest współczynnikiem, którego wartość zależy od rozmiaru macierzy. Dla macierzy 3×3 , RI wynosi 0.58.

PT MW (PWr)

Face Comparator

Spójność macierzy porównań kryteriów

$$\lambda_0 = \begin{bmatrix} 2.14 & 2.33 & 11.0 \end{bmatrix} \times \begin{bmatrix} 0.51 \\ 0.39 \\ 0.1 \end{bmatrix} = 3.1$$

$$Cl_0 = \frac{\lambda_0 - 3}{2} = \frac{3.1 - 3}{2} = 0.05$$

$$CR_0 = \frac{Cl_0}{Rl_3} = \frac{0.05}{0.58} = 0.09 < 0.1 \rightarrow \text{macierz sp\'ojna}$$

Spójność macierzy porównań pierwszego kryterium

$$\lambda_1 = \begin{bmatrix} 6.2 & 1.34 & 13.0 \end{bmatrix} \times \begin{bmatrix} 0.23 \\ 0.70 \\ 0.07 \end{bmatrix} = 3.31$$

$$Cl_1 = \frac{\lambda_1 - 3}{2} = \frac{3.31 - 3}{2} = 0.15$$

$$CR_1 = \frac{Cl_1}{Rl_2} = \frac{0.15}{0.58} = 0.26 > 0.1 \rightarrow \text{macierz niespójna}$$

Spójność macierzy porównań drugiego kryterium

$$\lambda_2 = \begin{bmatrix} 1.44 & 4.33 & 13.0 \end{bmatrix} \times \begin{bmatrix} 0.69 \\ 0.23 \\ 0.08 \end{bmatrix} = 3.0$$

$$CI_2 = \frac{\lambda_2 - 3}{2} = \frac{3.0 - 3}{2} = 0.0$$

$$CR_2 = \frac{CI_2}{RI_2} = \frac{0.0}{0.58} = 0.0 < 0.1 \rightarrow \text{macierz spójna}$$

Spójność macierzy porównań trzeciego kryterium

$$\lambda_3 = \begin{bmatrix} 15.0 & 8.2 & 1.25 \end{bmatrix} \times \begin{bmatrix} 0.06 \\ 0.19 \\ 0.75 \end{bmatrix} = 3.4$$

$$Cl_3 = \frac{\lambda_3 - 3}{2} = \frac{3.4 - 3}{2} = 0.2$$

$$CR_3 = \frac{Cl_3}{Rl_2} = \frac{0.2}{0.58} = 0.34 > 0.1 \rightarrow \text{macierz niespójna}$$