

PURPOSE

효율적인 식자재 관리 활용

배달 관련 마케팅 활용

DATA STRUCTURE

DATA 구성

기상청 날씨 데이터

서울시 배달 통화건수 데이터

▶ ## #강남구 #치킨

raw_data.head()

	연	월	일	시간대	요일	기온	강수량	풍속	습도	적설량	미세먼지	초미세먼지	공휴일	통화건수
0	2016	10	1	0	토	19.4	0.0	0.8	73.0	0.0	48.0	26.0	0	67.0
1	2016	10	1	1	토	18.8	0.0	1.3	77.0	0.0	48.0	26.0	0	27.0
2	2016	10	1	10	토	20.7	0.0	1.8	72.0	0.0	48.0	26.0	0	10.0
3	2016	10	1	11	토	21.6	0.0	0.6	65.0	0.0	48.0	26.0	0	28.0
4	2016	10	1	12	토	24.0	0.0	1.5	55.0	0.0	48.0	26.0	0	64.0

DATA 구성

▶ ₩

raw_data.describe()

	연	열	일	시간대	기온	강수량	풍속	습도	적설량	미세먼지	초미세먼지	공휴일	통화건수
ount	26280.000000	26280.000000	26280.000000	26280.000000	26280.000000	26280.000000	26280.000000	26280.000000	26280.00000	26280.000000	26280.000000	26280.000000	26280.000000
mean	2017.747945	6.526027	15.720548	11.500000	13.182089	0.129540	1.969376	57.405685	0.05118	40.762988	24.563379	0.014612	45.567352
std	0.924782	3.447917	8.796414	6.922318	11.339561	1.137908	1.131744	20.192473	0.38196	23.644145	16.960574	0.217432	51.339346
min	2016.000000	1.000000	1.000000	0.000000	-17.800000	0.000000	0.000000	7.000000	0.00000	3.000000	1.000000	-1.000000	0.000000
25%	2017.000000	4.000000	8.000000	5.750000	3.700000	0.000000	1.100000	42.000000	0.00000	25.000000	13.000000	0.000000	5.000000
50%	2018.000000	7.000000	16.000000	11.500000	14.300000	0.000000	1.800000	57.000000	0.00000	36.000000	21.000000	0.000000	25.000000
75%	2018.000000	10.000000	23.000000	17.250000	22.800000	0.000000	2.700000	73.000000	0.00000	52.000000	31.000000	0.000000	72.000000
max	2019.000000	12.000000	31.000000	23.000000	39.400000	50.500000	9.100000	100.000000	8.80000	200.000000	151.000000	1.000000	608.000000

REGRESSION FLOW

분석 방법 (구조)

데이터 가공

피처와 타겟 전처리

모델 학습 예측 평가

모델검증

데이터 가공 | 데이터 전처리

```
▶ ■ M↓
   df 2.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 26280 entries, 0 to 26279
Data columns (total 15 columns):
    Column
            Non-Null Count Dtype
    일자
             26280 non-null object
 0
    연
             26280 non-null
                            object
    월
 2
             26280 non-null
                            object
             26280 non-null object
    시간대
              26280 non-null object
    요일
             26280 non-null
                             object
    기온
             26274 non-null float64
    강수량
                            float64
              2573 non-null
    풍속
             26231 non-null float64
    습도
             26275 non-null float64
    적설량
              812 non-null
                              float64
    통하건수
               21805 non-null float64
    미세먼지
               24720 non-null float64
    초미세먼지
                24720 non-null float64
    공휴일
              1248 non-null
                              object
dtypes: float64(8), object(7)
memory usage: 3.2+ MB
```

```
▶ ■ M↓
  df_2["통화건수"].fillna(0, inplace=True)
  df_2["강수량"].fillna(0, inplace=True)
  df 2["적설량"].fillna(0, inplace=True)
▶ ■ M↓
  mise null = list(df 2[df 2['미세먼지'].isnull()].index)
▶ ■ M↓
  for i in mise null:
     idx = munii mean[munii mean['연월'] == df 2.iloc[i. 0][:6]].index
     df_2.iloc[i,12] = munji_mean.iloc[idx, 1][list(idx)[0]]
     df_2.iloc[i,13] = munji_mean.iloc[idx, 2][list(idx)[0]]
```

데이터 가공 데이터 전처리

```
▶ ■ M↓
  df = pd.get dummies(raw data, columns=['연', '월', '일', '시간대', '요일', '공휴일'])
  df.info()
67 시간대 12 26280 non-null uint8
68 시간대_13 26280 non-null
                           uint8
69 시간대 14 26280 non-null
                            uint8
70 시간대 15 26280 non-null
                            uint8
71 시간대 16 26280 non-null
                           uint8
72 시간대 17 26280 non-null
                            uint8
73 시간대 18 26280 non-null
                            uint8
74 시간대 19 26280 non-null
                           uint8
75 시간대 20 26280 non-null
                            uint8
76 시간대 21 26280 non-null
                            uint8
77 시간대 22 26280 non-null
                           uint8
    시간대 23 26280 non-null
                           uint8
    요일 금
             26280 non-null
                            uint8
    요일 목
             26280 non-null
                            uint8
   요일 수
             26280 non-null
                           uint8
82 요일 월
             26280 non-null
                            uint8
    요일 일
             26280 non-null
                            uint8
84 요일 토
             26280 non-null uint8
85 요일 화
             26280 non-null
                           uint8
86 공휴일 -1
            26280 non-null
                           uint8
87 공휴일 0
             26280 non-null
                           uint8
88 공휴일 1
             26280 non-null
                            uint8
dtypes: float64(8), uint8(81)
memory usage: 3.8 MB
```

시간형 values 원핫인코딩으로 처리

피처와 타겟 전처리

```
▶ ■ M↓
  y target = df['통화건수']
  X_features = df.drop('통화건수',axis=1)
▶ ►≡ M↓
  # 데이터 분리
  from sklearn.linear_model import LinearRegression
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import mean squared error
  from sklearn.metrics import mean_absolute_error
  from sklearn.metrics import r2 score
  X train, X test, y train, y test = train_test_split
  (X features, y target, test size= 0.3, random state=13)
  lr reg= LinearRegression()
  lr reg.fit(X train,y train)
```

```
# 모델 예측

pred = lr_reg.predict(X_test)

mse = mean_squared_error(y_test, pred)

rmse = np.sqrt(mse)

mae_val = mean_absolute_error(y_test, pred)

r2 = r2_score(y_test, pred)

print(rmse, mae_val, r2)

17.7789327231529 12.008100810301594 0.8770174841490421
```

전처리 이전 선형회귀 모델 학습 평가

피처와 타겟 전처리

타겟(통화건수)에 대한 왜곡도 낮춤

모델학습 | 예측 | 평가

피처와 타켓 전처리

상위 회귀 계수의 이상치 없음

▶ ■ M¹

sns.regplot(x=X_features['시간대_18'], y=y_target_log, data =df)

회귀계수 상위 5개 이상치 확인되지 않음

<matplotlib.axes._subplots.AxesSubplot at 0x26473c1c100>

모델 학습 | 예측 | 평가

```
# 여러 모델의 성능 확인 함수
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
```

```
X_train, X_test, y_train, y_test =train_test_split
(X_features, y_target_log, test_size=0.3, random_state=13)
```

```
#모델별로 평가 확인

lr_reg = LinearRegression()
ridge_reg = Ridge(alpha=0.1)
lasso_reg = Lasso(alpha=0)
tree_reg = DecisionTreeRegressor(random_state=13)
forest_reg = RandomForestRegressor(n_estimators=100, random_state=13)

for model in [lr_reg, ridge_reg, lasso_reg,tree_reg, forest_reg]:
    get_model_predict(model,X_train, X_test, y_train, y_test, is expm1=True)
```

```
### LinearRegression ###

RMSE: 15.00659 | MAE: 8.61614 | r2: 0.91238

### Ridge ###

RMSE: 15.0076 | MAE: 8.61591 | r2: 0.91237

### Lasso ###

RMSE: 15.00659 | MAE: 8.61614 | r2: 0.91238

### DecisionTreeRegressor ###

RMSE: 16.68572 | MAE: 9.71449 | r2: 0.89168

### RandomForestRegressor ###

RMSE: 12.31447 | MAE: 7.25513 | r2: 0.941
```

모델학습 | 예측 | 평가

```
▶ ■ M↓
  # Ridge 하이퍼파라미터튜닝 alpha값이 클수록(penalty 증가)
  계수의 크기가 줄어듬 -> 영향력이 큰 계수의 영향력을 줄임 /
  from sklearn.model selection import GridSearchCV
  def ridge_grid_search_cv(X_train, y_train):
      param grid = [
          {'alpha': [0, 0.05, 0.1, 0.5, 1, 5]},
      grid search = GridSearchCV(ridge, param grid, cv=5,
                               scoring='r2',
                              return train score=True)
      grid_search.fit(X_train, y_train)
      print ('best_params_: ', grid_search.best_params )
      cvres = grid_search.cv_results_
      for mean test score, params in zip(cvres
  ["mean test score"], cvres["params"]):
         print(mean_test_score, params)
```

```
    ridge_grid_search_cv(X_train, y_train)

best_params_: {'alpha': 0.1}
0.8926994523234925 {'alpha': 0}
0.89365976166098 {'alpha': 0.05}
0.8936598300530756 {'alpha': 0.1}
0.8936597497457823 {'alpha': 0.5}
0.893658091320399 {'alpha': 1}
0.8935845919935612 {'alpha': 5}
```

릿지 모델의 베스트 파라미터 확인

모델 학습 | 예측 | 평가

```
lasso_grid_search_cv(X_train, y_train)

best_params_: {'alpha': 0}
0.8936596757775288 {'alpha': 0}
0.5070852480294363 {'alpha': 0.05}
0.14059739131969196 {'alpha': 0.1}
0.09202316846958503 {'alpha': 0.5}
0.08673239302422908 {'alpha': 1}
```

라쏘 모델의 베스트 파라미터 확인

모델 학습 | 예측 | 평가

```
▶ ■ M↓
   from sklearn.model selection import GridSearchCV
   param_grid = [
       {'n estimators': [30, 50, 70, 100], 'max features': [2,4,
   6,8]},
       {'bootstrap':[False], 'n_estimators': [3, 10],
   'max features':[2,3,4] }
   forest_reg = RandomForestRegressor(random_state=13)
   grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                             scoring='neg mean squared error',
                             return train score=True)
   grid search.fit(X train, y train)
GridSearchCV(cv=5, estimator=RandomForestRegressor(random state=13),
             param_grid=[{'max_features': [2, 4, 6, 8],
                          'n estimators': [30, 50, 70, 100]},
                         {'bootstrap': [False], 'max features': [2,
3, 4],
                          'n_estimators': [3, 10]}],
             return train score=True, scoring='neg mean squared erro
r')
```

```
prid_search.best_params_

{'max_features': 8, 'n_estimators': 100}

prid_search.best_estimator_

RandomForestRegressor(max_features=8, random_state=13)
```

랜덤포레스트 모델의 베스트 파라미터 확인

피처와타켓 스케일링 – 1. 피쳐로그화

강수량 | 적설량 0에 편중되어 로그화 진행

피처와타겟스케일링 -1. 피쳐로그화

X축의 범위가 줄어듬을 확인

모델 학습 | 예측 | 평가

```
### LinearRegression ###

RMSE : 17.78316 | MAE : 12.01545 | r2 : 0.87696

### Ridge ###

RMSE : 17.78291 | MAE : 12.01478 | r2 : 0.87696

### Lasso ###

RMSE : 17.78316 | MAE : 12.01545 | r2 : 0.87696

### DecisionTreeRegressor ###

RMSE : 19.50873 | MAE : 10.54059 | r2 : 0.85192

### RandomForestRegressor ###

RMSE : 13.73436 | MAE : 7.83157 | r2 : 0.92661
```

피처와 타겟 스케일링-2. Standard Scaler

▶ ≢ Wî

```
from sklearn.preprocessing import StandardScaler
# 데이터 분류
scaled_cols = ["기온", "강수량", "풍속", "습도", "적설량",
"미세먼지", "초미세먼지"]

scaler = StandardScaler()
scaler.fit(X_features[scaled_cols])
X_scaled = scaler.transform(X_features[scaled_cols])
X_features[scaled_cols] = X_scaled
```

```
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(20,8))
sns.distplot(X_features["기온"], ax=axes[0, 0], label="기온")
sns.distplot(X_features["강수량"], ax=axes[0, 1],
label="강수량")
sns.distplot(X_features["풍속"], ax=axes[0, 2], label="풍속")
sns.distplot(X_features["급도"], ax=axes[1, 0], label="급도")
sns.distplot(X_features["직설량"], ax=axes[1, 1],
label="직설량")
sns.distplot(X_features["미세먼지"], ax=axes[1, 2],
label="미세먼지")
```

피처와 타켓 스케일링 - 2. Standard Scaler

모델학습 | 예측 | 평가

```
### LinearRegression ###

RMSE : 17.78452 | MAE : 12.01755 | r2 : 0.87694

### Ridge ###

RMSE : 17.78291 | MAE : 12.01478 | r2 : 0.87696

### Lasso ###

RMSE : 17.78316 | MAE : 12.01545 | r2 : 0.87696

### DecisionTreeRegressor ###

RMSE : 19.52474 | MAE : 10.54148 | r2 : 0.85168

### RandomForestRegressor ###

RMSE : 13.73766 | MAE : 7.8293 | r2 : 0.92657
```

피처와 타겟 스케일링 - 3. z-score 이상치 제거

피처와 타겟 전처리 - 3. 이상치 제거

```
▶ ■ MI
  import scipy as sp
  import scipy.stats
  # check Z score
  df_Zscore = pd.DataFrame()
  outlier_dict = {}
  outlier_idx_list = []
  for one_col in df2[scaled_cols]:
      print("Check", one col)
      df Zscore[f'{one col} Zscore'] = sp.stats.zscore(df2
  [one_col])
      outlier_dict[one_col] = df_Zscore[f'{one_col}_Zscore'][
  (df_Zscore[f'{one_col}_Zscore']>2)|(df_Zscore[f'{one_col})
  _Zscore']<-2)]
      outlier_idx_list.append(list(outlier_dict[one_col].index)
      if len(outlier_dict[one_col]):
          print(one_col, 'Has outliers\n', outlier_dict[one_col]
      else:
          print(one col, "Has Not outlier")
      print()
```

```
print("이상치 제거 전", df2.shape)
all_outlier_idx = sum(outlier_idx_list,[])
df2 = df2.drop(all_outlier_idx)
print("이상치 제거 후", df2.shape)
이상치 제거 전 (26280, 89)
이상치 제거 후 (22059, 89)
```

모델학습 | 예측 | 평가

```
### LinearRegression ###

RMSE : 18.52616 | MAE : 12.10483 | r2 : 0.86883

### Ridge ###

RMSE : 18.52565 | MAE : 12.10339 | r2 : 0.86883

### Lasso ###

RMSE : 18.52562 | MAE : 12.1041 | r2 : 0.86883

### DecisionTreeRegressor ###

RMSE : 18.90954 | MAE : 10.41659 | r2 : 0.86334

### RandomForestRegressor ###

RMSE : 14.89225 | MAE : 8.03347 | r2 : 0.91524
```

피처와 타겟 스케일링 -4. Minmax Scaler

```
from sklearn.preprocessing import MinMaxScaler

scaled_cols = ["기온", "강수량", "풍속", "습도", "적설량",
"미세먼지", "초미세먼지"]

scaler = MinMaxScaler()
scaler.fit(X_features[scaled_cols])
X_scaled = scaler.transform(X_features[scaled_cols])
X_features[scaled_cols] = X_scaled

print('feature들의 최소 값')
print(X_features[scaled_cols].min())
print('\nfeature들의 최대 값')
print(X_features[scaled_cols].max())
```

```
feature들의 최소 값
기온
        0.0
강수량
        0.0
풍속
        0.0
습도
        0.0
적설량
        0.0
미세먼지
         0.0
초미세먼지
          0.0
dtype: float64
feature들의 최대 값
기온
        1.0
강수량
        1.0
풍속
        1.0
습도
        1.0
적설량
        1.0
미세먼지
         1.0
초미세먼지
         1.0
dtype: float64
```

피처와 타겟 스케일링 -4. Minmax Scaler

모델 학습 | 예측 | 평가

```
### LinearRegression ###
RMSE : 18.54645 | MAE : 12.14396 | r2 : 0.86854
### Ridge ###
RMSE : 18.52565 | MAE : 12.10338 | r2 : 0.86883
### Lasso ###
RMSE : 18.52562 | MAE : 12.1041 | r2 : 0.86883
### DecisionTreeRegressor ###
RMSE : 18.90604 | MAE : 10.42823 | r2 : 0.86339
### RandomForestRegressor ###
RMSE : 14.89023 | MAE : 8.03255 | r2 : 0.91526
```

```
▶ ■ M↓
```

```
# k-fold 교차검증준비
from sklearn.model_selection import cross_val_score

scores = cross_val_score(tree_reg, X_test, y_test, scoring = "neg_mean_squared_error", cv=5)
tree_rmse_scores = np.sqrt(-scores)
```

▶ ■ M↓

```
def display_socres(model):
    scores = cross_val_score(model, X_test, y_test, scoring =
    "neg_mean_squared_error", cv=5)
    model_rmse_scores =np.sqrt(-scores)
    print('###', model.__class__.__name__,'###')
    print("점수:", model_rmse_scores)
    print("평균:", model_rmse_scores.mean())
    print("표준편차:", model_rmse_scores.std())

for model in [lr_reg, ridge_reg, lasso_reg,tree_reg,forest_reg]:
    display_socres(model)
```

```
### LinearRegression ###
점수: [17.81665894 17.08861769 18.85129292 16.31935925 18.94199735]
평균: 17.80358522983982
표준편차: 1.0107373381159623
### Ridge ###
점수: [17.81541732 17.08799691 18.85066075 16.31967703 18.94384639]
평균: 17.803519679958615
표준편차: 1.0110146210269217
### Lasso ###
점수: [17.81665894 17.08862526 18.85129564 16.31934381 18.94199735]
평균: 17.80358420111108
표준편차: 1.0107413637181468
### DecisionTreeRegressor ###
점수: [20.1471914 19.0110771 18.6654116 18.14714744 18.06279585]
평균: 18.80672467956527
표준편차: 0.7545929477603188
### RandomForestRegressor ###
점수: [14.23753136 14.31239192 15.16196213 12.90057537 14.53227398]
평균: 14.228946953231006
표준편차: 0.7394771683661917
```

```
def display_socres(model):
    scores = cross_val_score(model, X_test, y_test, scoring =
"r2", cv=5)
    print('###', model.__class__.__name__,'###')
    print("점수:", scores)
    print("평균:", scores.mean())
    print("표준편차:", scores.std())

for model in [lr_reg, ridge_reg, lasso_reg,tree_reg,forest_reg]:
    display_socres(model)
```

```
### LinearRegression ###
점수: [0.87519632 0.88097532 0.85790961 0.89568484 0.87160951]
평균: 0.8762751206322978
표준편차: 0.01232114502071359
### Ridge ###
점수: [0.87521371 0.88098397 0.85791914 0.89568078 0.87158444]
평균: 0.8762764089684838
표준편차: 0.01231928647560137
### Lasso ###
점수: [0.87519632 0.88097522 0.85790957 0.89568504 0.87160951]
평균: 0.8762751308026158
표준편차: 0.012321211361901637
### DecisionTreeRegressor ###
점수: [0.84041066 0.85268852 0.86069793 0.87100944 0.88325151]
평균: 0.8616116110900766
표준편차: 0.014741379919141052
### RandomForestRegressor ###
점수: [0.92030258 0.91650748 0.90808355 0.93481324 0.92443017]
평균: 0.9208274038134686
표준편차: 0.008830930500885665
```

GOAL

다양한 전처리

모델 스터디

변수 추가

END OF DOCUMENT