### Capstone Design 1 3<sup>rd</sup> Presentation

Group: JYP

박영진 지도교수님 박연수 Wabi Demeke 조현근 장신원 부준호 김경서 손기영









### Joint Mode 0° ~ 300°



#### Pick-up



#### **Open Storage**







Vehicle Movement

**Ball Detection** 

Performance Management

#### ACCURATE ball detection

#### **Ball Information**



#### **Vehicle Movement**



Pick-up



**Avoid** 



**Park** 



Vibration Control

ACCURATE ball detection

(performance management)



#### **Vibration Control**



**Hardware** 

**Software** 

# **Vibration Control (Hardware) Pitching Vibration**

## **Vibration Control (Hardware) Stabilize**

#### **Vibration Control (Software)**



#### **Ball Detect Mechanism**



Data extraction → Noise filtering



#### **Vibration Control (Software)**



#### **Vibration Control**



**Hardware** 



**Software** 



#### **Ball Information**



#### **Vehicle Movement**



Pick-up



**Avoid** 



**Park** 

#### **ROS** integration



#### **ROS** integration





**Avoid** 





|               | t_1   | t_2   |
|---------------|-------|-------|
| 0cm< d <5cm   | 0.78s | 4.18s |
| 5cm< d <10cm  | 0.65s | 3.95s |
| 10cm< d <15cm | 0.53s | 3.55s |
| 15cm< d <20cm | 0.35s | 3.15s |
| 20cm< d       | 0.15s | 2.59s |

**Park** 

$$aX + bY + cZ$$



**Park** 



**Vision Recognition** 



**Vibration Reduction** 



Pick-up



**Motor Control** 



**ROS** integration

**Heat Management** 

#### **Forced Convection (Laminar Flow)**

$$Nu = \frac{q_{conv}}{q_{cond}} = \frac{hL}{k} = C Re_L^{1/2} Pr^{1/3}$$



$$C = 0.664$$



$$C = 0.931$$

#### **Heat Management**





PMS Fan

#### **Heat Management**



Maximum temperature < 40°C



- 1) low expense
- 2) low power consumption
- 3) pick-up assurance
- 4) compact size
- 5) versatile pick-up system



## Thank You

