House prices data

Bruna Wundervald October, 2018

```
# Packages and models import
from sklearn.model_selection import train_test_split
from sklearn import linear_model
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.svm import SVR
from pandas.api.types import is_object_dtype
import csv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Reading data
da = pd.read_csv('data/house-prices/train.csv')
da.iloc[0]
# Replacing NaNs with O
## Id
                          1
## MSSubClass
                         60
## MSZoning
                         RL
## LotFrontage
                         65
## LotArea
                       8450
## Street
                       Pave
## Alley
                        {\tt NaN}
## LotShape
                        Reg
## LandContour
                        Lvl
## Utilities
                     AllPub
## LotConfig
                     Inside
## LandSlope
                        Gtl
## Neighborhood
                    CollgCr
## Condition1
                       Norm
## Condition2
                       Norm
## BldgType
                       1Fam
                     2Story
## HouseStyle
## OverallQual
                          7
## OverallCond
                          5
## YearBuilt
                       2003
## YearRemodAdd
                       2003
## RoofStyle
                      Gable
## RoofMatl
                    CompShg
## Exterior1st
                    VinylSd
                    VinylSd
## Exterior2nd
## MasVnrType
                    BrkFace
## MasVnrArea
                        196
```

ExterQual

Gd

```
## ExterCond
                         TA
## Foundation
                      PConc
##
## BedroomAbvGr
                          3
## KitchenAbvGr
                          1
## KitchenQual
                         Gd
## TotRmsAbvGrd
                        8
## Functional
                        Тур
## Fireplaces
                         0
## FireplaceQu
                        NaN
## GarageType
                    Attchd
                       2003
## GarageYrBlt
## GarageFinish
                        RFn
                          2
## GarageCars
## GarageArea
                        548
## GarageQual
                        TA
                         TA
## GarageCond
## PavedDrive
                         Y
## WoodDeckSF
                          0
## OpenPorchSF
                         61
## EnclosedPorch
                          0
## 3SsnPorch
                          0
## ScreenPorch
                          0
## PoolArea
                          0
## PoolQC
                        {\tt NaN}
## Fence
                        NaN
## MiscFeature
                        NaN
## MiscVal
                          0
                          2
## MoSold
## YrSold
                       2008
## SaleType
                         WD
## SaleCondition
                     Normal
                     208500
## SalePrice
## Name: 0, Length: 81, dtype: object
da.fillna(0, inplace = True)
da.shape
## (1460, 81)
# Converting factor variables
# Selecting interesting variables
X = da.drop('SalePrice', axis = 1)
y = da['SalePrice']
y = np.log(y)
# Density plot of y in log scale --
plt.clf() # clean plot environment
plt.figure(figsize = (14, 10))
## <Figure size 1400x1000 with 0 Axes>
sns.distplot(y, bins = 30, kde = True, color = 'tomato', rug = True)
## <matplotlib.axes._subplots.AxesSubplot object at 0x1a1de56c18>
##
```

'house-prices_files/figure-latex/unnamed-chunk-3-1.pdf'


```
def dummy(var):
    X[var] = X[var].astype('category')
    X[var] = X[var].cat.codes
    return X

columns = X.columns

for index in range(0, len(columns)):
    if is_object_dtype(X[columns[index]]) == True:
        X = dummy(columns[index])
    else:
```

X = X

X.dtypes # All ok

Train and test split (automatic function)

	T 1	
##	Id	int64
##	MSSubClass	int64
##	MSZoning	int8
##	LotFrontage	float64
##	LotArea	int64
##	Street	int8
##	Alley	int8
##	LotShape	int8
##	LandContour	int8
##	Utilities	int8
##	LotConfig	int8
##	LandSlope	int8
##	Neighborhood	int8
##	Condition1	int8
##	Condition2	int8
##	BldgType	int8
##	HouseStyle	int8
##	OverallQual	int64
##	OverallCond	int64
##	YearBuilt	int64
##	${\tt YearRemodAdd}$	int64
##	RoofStyle	int8
##	RoofMatl	int8
##	Exterior1st	int8
##	Exterior2nd	int8
##	${ t MasVnrType}$	int8
##	MasVnrArea	float64
##	ExterQual	int8
##	ExterCond	int8
##	Foundation	int8
##		
##	HalfBath	int64
##	${\tt BedroomAbvGr}$	int64
##	${\tt KitchenAbvGr}$	int64
##	KitchenQual	int8
##	${\tt TotRmsAbvGrd}$	int64
##	Functional	int8
##	Fireplaces	int64
##	FireplaceQu	int8
##	${\tt GarageType}$	int8
##	${\tt GarageYrBlt}$	float64
##	${\tt GarageFinish}$	int8
##	GarageCars	int64
##	GarageArea	int64
##	GarageQual	int8
##	GarageCond	int8
##	PavedDrive	int8
##	WoodDeckSF	int64

```
## OpenPorchSF
                     int64
                    int64
## EnclosedPorch
                    int64
## 3SsnPorch
## ScreenPorch
                    int64
                    int64
## PoolArea
## PoolQC
                     int8
## Fence
                     int8
## MiscFeature
                     int8
## MiscVal
                    int64
                    int64
## MoSold
## YrSold
                    int64
## SaleType
                     int8
## SaleCondition
                      int8
## Length: 80, dtype: object
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=4)
# Setting the model(s)
# -----
# Linear regression
# Random forests
# SVM
# -----
model_lm = linear_model.LinearRegression()
model_lm.fit(X_train, y_train)
## LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
model rf = RandomForestRegressor()
model_rf.fit(X_train, y_train)
## RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
             max_features='auto', max_leaf_nodes=None,
##
##
             min_impurity_decrease=0.0, min_impurity_split=None,
##
             min_samples_leaf=1, min_samples_split=2,
             min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
             oob_score=False, random_state=None, verbose=0, warm_start=False)
model svm = SVR()
model_svm.fit(X_train, y_train)
# Predictions
## SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='auto',
   kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
y_pred_lm = model_lm.predict(X_test)
y_pred_rf = model_rf.predict(X_test)
y_pred_svm = model_svm.predict(X_test)
# LM - Mean squared error:
mean_squared_error(y_test, y_pred_lm)
# RF - Mean squared error:
```

0.017330143259086012

mean_squared_error(y_test, y_pred_rf)
SVM - Mean squared error:

0.017591142923888286

mean_squared_error(y_test, y_pred_svm)

0.14626955290505497