

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen XVIII

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2016-17.

Grupo A.

Profesor Rafael Ortega Ríos.

Descripción Parcial C.

Fecha 1 de Junio de 2017.

Ejercicio 1. Encuentra la solución del problema

$$x'' + 9x = t^2$$
, $x(0) = 0$, $x'(0) = 0$

Busquemos una solución particular de la forma $x_p(t) = \alpha t^2 + \beta t + \gamma$. Tenemos que:

$$x'_p(t) = 2\alpha t + \beta,$$

$$x''_p(t) = 2\alpha.$$

Por tanto, como buscamos que sea solución, hemos de imponer:

$$2\alpha + 9(\alpha t^2 + \beta t + \gamma) = t^2 \Longrightarrow 9\alpha t^2 + 9\beta t + 9\gamma + 2\alpha = t^2 \Longrightarrow \begin{cases} 9\alpha = 1, \\ 9\beta = 0, \\ 9\gamma + 2\alpha = 0. \end{cases} \Longrightarrow \begin{cases} \alpha = \frac{1}{9}, \\ \beta = 0, \\ \gamma = \frac{-2}{81}. \end{cases}$$

Por tanto, una solución particular del problema es:

$$x_p(t) = \frac{t^2}{9} - \frac{2}{81} \qquad t \in \mathbb{R}.$$

Busquemos ahora la solución de la homogénea. Sus valores propios son:

$$\lambda^2 + 9 = 0 \Longrightarrow \lambda = \pm 3i.$$

Trabajando con el valor propio $\lambda=3i$, tenemos que una solución compleja de la homogénea es:

$$x(t) = e^{3i} = \cos(3t) + i \sin(3t)$$
 $t \in \mathbb{R}$.

Por tanto, la solución general de la homogénea es:

$$x(t) = c_1 \cos(3t) + c_2 \sin(3t) \qquad t \in \mathbb{R}.$$

Por tanto, la solución general del problema es:

$$x(t) = c_1 \cos(3t) + c_2 \sin(3t) + \frac{t^2}{9} - \frac{2}{81}$$
 $t \in \mathbb{R}$.

Imponiendo las condiciones iniciales, tenemos que:

$$x(0) = c_1 - \frac{2}{81} = 0 \Longrightarrow c_1 = \frac{2}{81},$$

$$x'(t) = -3c_1 \sin(3t) + 3c_2 \cos(3t) + \frac{2t}{9},$$

$$x'(0) = 3c_2 = 0 \Longrightarrow c_2 = 0.$$

Por tanto, la solución del problema es:

$$x(t) = \frac{2}{81}\cos(3t) + \frac{t^2}{9} - \frac{2}{81}$$
 $t \in \mathbb{R}$.

Ejercicio 2. Sea Z el espacio de soluciones del sistema x' = Ax donde A es la matriz 2×2

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Consideramos la aplicación lineal $\Psi: Z \to \mathbb{R}^2$, $\Psi(x) = (x_1(0), x_2(1))$. Encuentra $\ker \Psi$.

Tenemos que:

$$\ker \Psi = \{x \in Z : \Psi(x) = 0\} = \{x \in Z : x_1(0) = 0, x_2(1) = 0\}.$$

El sistema podemos escribirlo como:

$$x_1' = x_2,$$

$$x_2' = 0.$$

Por tanto, tenemos que toda solución $x_2(t)$, al ser de clase 1 en \mathbb{R} y tener derivada nula, es constante. Por la condición inicial, tenemos que:

$$x_2(t) = x_2(1) = 0 \qquad t \in \mathbb{R}.$$

De igual forma, tenemos que:

$$x_1' = 0 \Longrightarrow x_1(t) = x_1(0) = 0$$
 $t \in \mathbb{R}$.

Por tanto, tenemos que:

$$\ker \Psi = \{ x \in Z : x_1(t) = 0, x_2(t) = 0 \} = \{ 0 \}.$$

Ejercicio 3. Demuestra que la función

$$\chi(t) = \begin{vmatrix} t^2 + 1 & t^2 + 2 & t^2 + 3 & \dots & t^2 + n \\ t^3 + 1 & t^3 + 2 & t^3 + 3 & \dots & t^3 + n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t^n + 1 & t^n + 2 & t^n + 3 & \dots & t^n + n \\ t^{n+1} + 1 & t^{n+1} + 2 & t^{n+1} + 3 & \dots & t^{n+1} + n \end{vmatrix}$$

es derivable y calcula $\chi'(0)$.

Como cada componente de la matriz es un polinomio en t, cada componente es derivable en todo \mathbb{R} , luego χ es derivable en todo \mathbb{R} , con derivada:

$$\chi'(t) = \begin{vmatrix} 2t & 2t & \dots & 2t \\ t^3 + 1 & t^3 + 2 & \dots & t^3 + n \\ \vdots & \vdots & \ddots & \vdots \\ t^n + 1 & t^n + 2 & \dots & t^n + n \\ t^{n+1} + 1 & t^{n+1} + 2 & \dots & t^{n+1} + n \end{vmatrix} + \begin{vmatrix} t^2 + 1 & t^2 + 2 & \dots & t^2 + n \\ 3t^2 & 3t^2 & \dots & 3t^2 \\ \vdots & \vdots & \ddots & \vdots \\ t^n + 1 & t^n + 2 & \dots & t^n + n \\ t^{n+1} + 1 & t^{n+2} & \dots & t^{n+n} \\ t^{n+1} + 1 & t^{n+2} & \dots & t^{n+n} + n \end{vmatrix} + \dots$$

$$+ \dots + \begin{vmatrix} t^2 + 1 & t^2 + 2 & \dots & t^2 + n \\ t^3 + 1 & t^3 + 2 & \dots & t^3 + n \\ \vdots & \vdots & \ddots & \vdots \\ t^n + 1 & t^n + 2 & \dots & t^n + n \\ (n+1)t^n & (n+1)t^n & \dots & (n+1)t^n \end{vmatrix}$$

Por tanto, evaluando en el punto t=0, tenemos que $\chi'(0)=0$, ya que cada determinante tendrá una fila de ceros.

Ejercicio 4. Demuestra que la sucesión de funciones $\{f_n\}$ converge uniformemente en el intervalo [0,1] si $f_n: \mathbb{R} \to \mathbb{R}$ está definida por las fórmulas recursivas

$$f_0(t) = 7$$
, $f_{n+1}(t) = 7 + \int_0^t \sqrt{s^2 + t^2} f_n(s) ds$.

Para ello, usaremos el Test de Weierstrass. Veamos que:

$$|f_{1}(t) - f_{0}(t)| = \left| \int_{0}^{t} \sqrt{s^{2} + t^{2}} f_{0}(s) ds \right|$$

$$= \left| 7 \int_{0}^{t} \sqrt{s^{2} + t^{2}} ds \right| \leqslant 7 \left| \int_{0}^{t} \sqrt{2t^{2}} ds \right|$$

$$= 7\sqrt{2} \cdot t^{2} \leqslant 7\sqrt{2}.$$

$$|f_{2}(t) - f_{1}(t)| = \left| \int_{0}^{t} \sqrt{s^{2} + t^{2}} (f_{1}(s) - f_{0}(s)) ds \right|$$

$$\leqslant 7\sqrt{2} \left| \int_{0}^{t} \sqrt{s^{2} + t^{2}} ds \right| \leqslant 7(\sqrt{2})^{2} \left| \int_{0}^{t} t ds \right| \leqslant 7(\sqrt{2})^{2} \cdot \left| \int_{0}^{t} ds \right| = 7(\sqrt{2})^{2} t.$$

$$|f_{3}(t) - f_{2}(t)| = \left| \int_{0}^{t} \sqrt{s^{2} + t^{2}} (f_{2}(s) - f_{1}(s)) ds \right|$$

$$\leqslant 7(\sqrt{2})^{2} \left| \int_{0}^{t} \sqrt{s^{2} + t^{2}} s ds \right| \leqslant 7(\sqrt{2})^{3} \cdot \left| \int_{0}^{t} s ds \right| = 7(\sqrt{2})^{3} \frac{t^{2}}{2}.$$

Demostremos por inducción que:

$$|f_{n+1}(t) - f_n(t)| \le 7(\sqrt{2})^{n+1} \frac{t^n}{n!}$$

• Para n = 0, tenemos que:

$$|f_1(t) - f_0(t)| \le 7(\sqrt{2})^1 \frac{t^0}{0!}$$

lacksquare Supongamos cierto para n, y veamos que es cierto para n+1. Tenemos que:

$$|f_{n+2}(t) - f_{n+1}(t)| = \left| \int_0^t \sqrt{s^2 + t^2} (f_{n+1}(s) - f_n(s)) ds \right|$$

$$\leq 7(\sqrt{2})^{n+1} \left| \int_0^t \sqrt{s^2 + t^2} s ds \right| \leq 7(\sqrt{2})^{n+2} \cdot \left| \int_0^t \frac{s^n}{n!} ds \right| =$$

$$= 7(\sqrt{2})^{n+2} \frac{t^{n+1}}{(n+1)!}.$$

Por tanto, tenemos que:

$$|f_{n+1}(t) - f_n(t)| \le 7(\sqrt{2})^{n+1} \frac{t^n}{n!} \le 7\sqrt{2} \cdot \frac{(\sqrt{2})^n}{n!} \qquad t \in [0, 1].$$

Definimos entonces la sucesión de números reales:

$$M_n = 7\sqrt{2} \cdot \frac{(\sqrt{2})^n}{n!} \qquad n \in \mathbb{N}.$$

Veamos ahora que la serie $\sum_{n=0}^{\infty} M_n$ converge. Para ello, usando el desarrollo en serie de Taylor de la función exponencial, tenemos que:

$$\sum_{n=0}^{\infty} M_n = 7\sqrt{2} \sum_{n=0}^{\infty} \frac{(\sqrt{2})^n}{n!} = 7\sqrt{2}e^{\sqrt{2}} < \infty.$$

Por tanto, por el Test de Weierstrass, la sucesión de funciones $\{f_n\}$ converge uniformemente en el intervalo [0,1].

Ejercicio 5. Dado un sistema lineal y homogéneo x' = A(t)x con $A: I \to \mathbb{R}^{N \times N}$ continua, se considera una matriz solución $\Phi: I \to \mathbb{R}^{N \times N}$. Demuestra que el rango de la matriz $\Phi(t)$ es independiente de t.

Sea $\Phi = (\phi_1 \mid \cdots \mid \phi_N)$, con ϕ_i la columna *i*-ésima de Φ una solución del sistema. Veamos que el rango de $\Phi(t)$ es el número de soluciones linealmente independientes de Φ , y que por tanto no depende de t.

Sea Z el espacio de soluciones del sistema. Consideramos el subespacio vectorial de las combinaciones lineales de las columnas de Φ :

$$V = \left\{ \sum_{i=1}^{N} c_i \phi_i \mid c_i \in \mathbb{R} \ \forall i \in 1 = 1, \dots, n \right\}.$$

de esta forma, dim V es el número de soluciones linealmente independientes de Φ .

Fijado $t_0 \in I$, consideramos el isomorfismo dado por:

$$\Phi_{t_0}: \qquad Z \longrightarrow \mathbb{R}^N$$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} \longmapsto x(t_0) = \begin{pmatrix} x_1(t_0) \\ \vdots \\ x_N(t_0) \end{pmatrix}$$

Por ser Φ_{t_0} lineal, tenemos que:

$$\Phi_{t_0}(V) = \left\{ \sum_{i=1}^{N} c_i \Phi_{t_0}(\phi_i) \mid c_i \in \mathbb{R} \ \forall i \in 1 = 1, \dots, n \right\}.$$

De esta forma, tenemos que:

$$\Phi(t_0) = (\Phi_{t_0}(\phi_1) \mid \cdots \mid \Phi_{t_0}(\phi_N)) \Longrightarrow \operatorname{rg}(\Phi(t_0)) = \operatorname{rg}(\Phi_{t_0}(\phi_1) \mid \cdots \mid \Phi_{t_0}(\phi_N))$$

La matriz $(\Phi_{t_0}(\phi_1) \mid \cdots \mid \Phi_{t_0}(\phi_N))$ ya es una matriz en cuyas columnas hay vectores de \mathbb{R}^N , por lo que su rango es el número de columnas linealmente independientes, y como $\Phi_{t_0}(V)$ es el espacio vectorial formado por las combinaciones lineales de los vectores de dicha matriz, tenemos que:

$$\operatorname{rg}(\Phi(t_0)) = \operatorname{rg}(\Phi_{t_0}(\phi_1) \mid \cdots \mid \Phi_{t_0}(\phi_N)) = \dim \Phi_{t_0}(V)$$

No obstante, como Φ_{t_0} es un isomorfismo, tenemos que dim $\Phi_{t_0}(V)=\dim V$, y por tanto:

$$rg(\Phi(t_0)) = \dim V$$

Como t_0 es arbitrario, tenemos que:

$$\operatorname{rg}(\Phi(t)) = \dim V \qquad \forall t \in I.$$

Por lo que hemos demostrado que es independiente de t.