Asymptotic analysis

- Asymptotic analysis refers to computing the running time of any operation in mathematical units of computation.
- Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to work in a constant time. Other than the "input" all other factors are considered constant.
- The goal is to determine the best case, worst case and average case time **required** to execute a given task.

Asymptotic notation

- It describes the rate of growth of functions
- It is a way to compare the sizes of functions
- Focus on what is important by abstracting low order terms and constant factors.
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Types of Asymptotic Notation

- 1. Big-O Notation (O) Big O notation describes worst case scenario.
- 2. Omega Notation (Ω) Omega (Ω) notation describes best case scenario.
- 3. Theta **Notation** (θ) This **notation** represents the average complexity of an algorithm.

- **Best case** is the function which performs the minimum number of steps on input data of n elements.
- Worst **case** is the function which performs the maximum number of steps on input data of size n.
- Average case is the function which performs an average number of steps on input data of n elements.

Time Complexities Graph

• O(1) — Excellent/Best

• **O(log n)** — Good

• **O(n)** — Fair

• **O(n log n)** — Bad

• O(n²), O(2^n) and O(n!) — Horrible/Worst

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2n + 10^5$ is a linear function
 - $10^5n^2 + 10^8n$ is a quadratic function

- $10n^2 + 3n + 2 O(n^2)$
- $4n+3 \log n O(n)$
- nlogn+ 3n+logn- O(nlogn)
- $3n^2 + 2n^3 + 8n + 4 O(n^3)$

Growth rates of functions:

- Linear $\approx n$
- Quadratic $\approx n^2$
- Cubic $\approx n^3$

Constant -O(1)

```
int square(int a)
{
    return a*a;
}
```

```
int sum(int a, int b)
{
   return a+b;
}
```

Types of loops

- Linear
- Logarithmic
- Nested loops
 - Quadratic
 - Dependent
 - Linear logarithmic
 - Cubic

Linear

```
i=1
while(i<=N)
-----
i=i+1
```

```
i=1
while(i<=N)
------
i=i+2
```

```
for(i=0; i < N; i++)
{
   statement;
}</pre>
```

```
int sum(int A[], int n)
{
   int sum = 0, i;
   for(i = 0; i < n; i++)
      sum = sum + A[i];
   return sum;
}</pre>
```

Logarithmic

```
i=1
while(i<=100)
-----
i=i*2
```

O(logn)

Quadratic

• O(n²)

```
for(i=0; i < N; i++)
{
  for(j=0; j < N; j++)
  {
    statement;
  }
}</pre>
```

Linear logarithmic

```
i=1
While(i<=N)
  j=1
  while(j<=N)
        j=j*2
   i=i+1
```

O(n logn)

Dependent loop

```
for(i=1; i<=n;i++)
for(j=i+1;j<=n;j++)
----
O(n<sup>2)</sup>
```

cubic

```
for(i=0; i<n;i++)
for(j=0;j<n;j++)
for(k=0;k<n;k++)
----
```

 $O(n^3)$

Properties of Asymptotic Notations

If f(n) = O(g(n)), then there exists positive constants c, n0 such that 0 ≤ f(n) ≤ c.g(n), for all n ≥ n0

If f(n) = Ω(g(n)), then there exists positive constants c, n0 such that 0 ≤ c.g(n) ≤ f(n), for all n ≥ n0

• If $f(n) = \Theta(g(n))$, then there exists positive constants c1, c2, n0 such that $0 \le c1.g(n) \le f(n) \le c2.g(n)$, for all $n \ge n0$

Big O – gives upper bound i.e. max value specify the worst case

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$.

g(n) is an *asymptotic upper bound* for f(n).

Omega – gives lower bound i.e. min value specify the best case

Ω-notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}$.

g(n) is an asymptotic lower bound for f(n).

Theta – gives average value

Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotically tight bound* for f(n).

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

Example: 2n + 3 is O(n) Prove it

$$2n+3 <= c. n$$

$$n=1,$$
 $5 <= c. 1$ $c=5,6,7...$

$$n=2$$
, $7 <= c.2$ $c=4,5,6...$

$$n=3$$
, $9 <= c.3$ $c=3,4,5...$

$$n=4$$
, $11 <= c.4$ $c=3,4,5...$

$$n=5$$
, $13 <= c.5$ $c=3,4,5...$

$$2n+3 \le 3$$
. n for $n \ge 3$

$$2n+3 < =5.n \text{ for } n > =1$$

Given functions f(n) and g(n), we say that f(n) is Ω (g(n)) if there are positive constants c and n_0 such that

$$f(n) > = cg(n)$$
 for $n \ge n_0$

Example: 2n + 3 is $\Omega(n)$ Prove it

$$2n+3>=c.n$$

$$n=1$$
 5>=c.1 c=5,4,3,2,1

$$n=2$$
 $7>=c.2$ $c=3,2,1$

$$n=3$$
 9>=c.3 c=3,2,1

$$n=5$$
 13>=c.5 c=2,1

$$n=10$$
 23>=c.10 c=2,1

$$n=50$$
 $103>=c.50$ $c=2,1$

$$2n+3>=2.n$$
 for $n>=1$

- 7n 3 is O(n) Prove it
- 7n-3 is $\Omega(n)$ prove it

$$7n-3$$
 is $O(n)$

$$f(n) < = c.g(n)$$

$$7n-3 < = c.n$$

$$n=1$$
 4<=c.1 $c=4,5,6...$

$$n=2$$
 $11 < =c.2$ $c=6,7,8...$

$$n=50$$
 347<= $c.50$ $c=7, 8,9$

$$7n-3 <= 7.n \ for \ n >= 1$$

7n-3 is $\Omega(n)$ prove it f(n) >= cg(n) for $n \ge n_0$

7n-3>=c.n

N=1

4>=c.1 , c=4,3,2,1

N=2

11>=c.2, c=5,4,3,2,1

N=3

18>=c.3, c=6,5,4,....

N=5

 $_{32>=c.5}$, c=6,5,4,3...

7n-3>=4n for n>=1
7n-3>=6n for n>=3

- $3n^2+5n+2$ is $O(n^2)$
- $3n^2+5n+2$ is not O(n)

- N=4
- 70<=C. 16, c=5,6 n>=3
- $3n^2+5n+2 <=5n^2$, n>=3

Little oh 'o'

- We formally define o(g(n)) (little-oh of g of n) as the set f(n) = o(g(n)) for any positive constant c > 0 and there exists a value $n_0 > 0$ such that $0 \le f(n) \le c.g(n)$ for all $n > = n_0$.
- Let us consider the function $f(n) = 4 \cdot n^3 + 10 \cdot n^2 + 5 \cdot n + 1$
- $g(n) = n^4$
- Hence, the complexity of f(n) can be represented as o(g(n)) , i.e. $o(n^4)$.

little-omega ' ω '

• We formally define $\omega(g(n))$ (little-oh of g of n) as the set $f(n) = \omega(g(n))$ for any positive constant c > 0 and there exists a value $n_0 > 0$ such that $0 \ge f(n) \ge c$. g(n) for all $n >= n_0$.

- Let us consider the same function $f(n) = 4 \cdot n^3 + 10 \cdot n^2 + 5 \cdot n + 1$
- $g(n) = n^2$
- The complexity of f(n) can be represented as $\omega(\mathsf{g}(\mathsf{n}))$, i.e. $\omega(n^2)$.