NTRU Lattice-based PKCS

Logan Collins

NTRU Lattice-based PKCS

Logan Collins

April 21, 2015

What Do These Words Mean?

NTRU Lattice-based PKCS

ogan Collin

NTRU

NTRU is officially short for "*N*-th degree *TRU*ncated polynomial ring". However, it is also colloquially called "Number Theorists aRe Us".

PKCS

PKCS stands for Public Key CryptoSystem. These are asymmetric cryptographic schemes where the public key is a published value associated with a user for encryption and where private key is used for decryption for the associated user.

What Do These Words Mean? (cont.)

NTRU Lattice-based PKCS

Logan Collin

Lattice

In Cryptography, a lattice is a vector space generated with linear combinations of its basis with only integer coefficients.

NTRU Lattice-based PKCS

Logan Collin

NTRU Lattice-based PKCS

Logan Collin

Alice chooses a large prime q, which is public.

NTRU Lattice-based PKCS

ogan Collin

Alice chooses a large prime q, which is public. Then, Alice chooses f and g satisfying $f < \sqrt{q/2}$ and $\sqrt{q/4} < g < \sqrt{q/2}$, with f and g coprime.

NTRU Lattice-based PKCS

ogan Collin

Alice chooses a large prime q, which is public. Then, Alice chooses f and g satisfying $f < \sqrt{q/2}$ and $\sqrt{q/4} < g < \sqrt{q/2}$, with f and g coprime. Alice computes $h \equiv f^{-1}g \mod q$ which completes her public key.

NTRU Lattice-based PKCS

_ogan Collin

Alice chooses a large prime q, which is public. Then, Alice chooses f and g satisfying $f < \sqrt{q/2}$ and $\sqrt{q/4} < g < \sqrt{q/2}$, with f and g coprime. Alice computes $h \equiv f^{-1}g \mod q$ which completes her public key. For Bob to send a message to Alice, he sends Alice $c \equiv rh + m \mod q$ with $m < \sqrt{q/4}$ and $r < \sqrt{q/2}$.

NTRU Lattice-based PKCS

ogan Collin

Alice chooses a large prime q, which is public. Then, Alice chooses f and g satisfying $f < \sqrt{q/2}$ and $\sqrt{q/4} < g < \sqrt{q/2}$, with f and g coprime. Alice computes $h \equiv f^{-1}g \mod q$ which completes her public key. For Bob to send a message to Alice, he sends Alice $c \equiv rh + m \mod q$ with $m < \sqrt{q/4}$ and $r < \sqrt{q/2}$. To decrypt, Alice computes $a \equiv fc \mod q$ and then $b \equiv f^{-1}a \mod g$.

NTRU Lattice-based PKCS

ogan Collir

Alice chooses a large prime q, which is public. Then, Alice chooses f and g satisfying $f<\sqrt{q/2}$ and $\sqrt{q/4}< g<\sqrt{q/2}$, with f and g coprime. Alice computes $h\equiv f^{-1}g$ mod q which completes her public key. For Bob to send a message to Alice, he sends Alice $c\equiv rh+m$ mod q with $m<\sqrt{q/4}$ and $r<\sqrt{q/2}$. To decrypt, Alice computes $a\equiv fc$ mod q and then $b\equiv f^{-1}a$ mod q. We claim that $b\equiv m$.

NTRU Lattice-based PKCS

ogan Collin

Alice chooses a large prime q, which is public. Then, Alice chooses f and g satisfying $f < \sqrt{q/2}$ and $\sqrt{q/4} < g < \sqrt{q/2}$, with f and g coprime. Alice computes $h \equiv f^{-1}g \mod q$ which completes her public key. For Bob to send a message to Alice, he sends Alice $c \equiv rh + m \mod q$ with $m < \sqrt{q/4}$ and $r < \sqrt{q/2}$. To decrypt, Alice computes $a \equiv fc \mod q$ and then $b \equiv f^{-1}a \mod g$. We claim that b = m. Notice $a \equiv fc \equiv f(rh + m) \equiv frf^{-1}g + fm \equiv rg + fm \mod q$. Then we compute $b \equiv f^{-1}(rg + fm) \mod g \equiv m \mod g$.

NTRU Lattice-based PKCS

Logan Collin

NTRU Lattice-based PKCS

ogan Collin

The private key in the system is (f,g) and we can verify that two numbers work by computing $f^{-1}g == h$. However, for large primes, this is an impractically large space.

NTRU Lattice-based PKCS

Logan Collir

The private key in the system is (f,g) and we can verify that two numbers work by computing $f^{-1}g == h$. However, for large primes, this is an impractically large space.

Note that we can rewrite this attack as $Fh \equiv G \mod q \rightarrow Fh = G + qR$ and rewrite this as F(1,h) - R(0,q) = (F,G).

NTRU Lattice-based PKCS

Logan Collir

The private key in the system is (f,g) and we can verify that two numbers work by computing $f^{-1}g == h$. However, for large primes, this is an impractically large space.

Note that we can rewrite this attack as $Fh \equiv G \mod q \rightarrow Fh = G + qR$ and rewrite this as F(1,h) - R(0,q) = (F,G).

That is, we are trying to find a short vector in a lattice with basis $\{(1, h), (0, q)\}$, where (h, q) is Alice's public key.

Attacks on this System (cont.)

NTRU Lattice-based PKCS

Logan Collir

Unfortunately, our favorite mathematician, Gauss, figured out how to rapidly solve such systems a long, long time ago.

Attacks on this System (cont.)

NTRU Lattice-based PKCS

Logan Collir

Unfortunately, our favorite mathematician, Gauss, figured out how to rapidly solve such systems a long, long time ago.

To find these short vectors, we first label our basis $\mathbf{v_1}, \mathbf{v_2}$ with $||\mathbf{v_2}|| > ||\mathbf{v_1}||$, swapping if necessary. We compute $m = \left\lfloor \frac{\mathbf{v_1v_2}}{||\mathbf{v_1}||^2} \right\rfloor$. If m = 0, we return $\{\mathbf{v_1}, \mathbf{v_2}\}$ where $\mathbf{v_1}$ is (provably) the shortest vector in the lattice. Otherwise, $\mathbf{v_2} = \mathbf{v_2} - m\mathbf{v_1}$ and we continue.

Now What?

NTRU Lattice-based PKCS

Logan Collin

Now What?

NTRU Lattice-based PKCS

Logan Collir

Gauss's Lattice Reduction algorithm works well in \mathbb{R}^2 , but not well in higher dimensions... so...

Now What?

NTRU Lattice-based PKCS

Logan Collii

Gauss's Lattice Reduction algorithm works well in \mathbb{R}^2 , but not well in higher dimensions... so...

Add more dimensions!

NTRU

NTRU Lattice-based PKCS

Logan Collir

Remember that NTRU stands for the Nth degree truncated polynomial ring?

NTRU

NTRU Lattice-based PKCS

Logan Collir

Remember that NTRU stands for the Nth degree truncated polynomial ring?

Well, that is because NTRU operates in $\frac{\mathbb{Z}[x]}{x^N-1}$, $\frac{\mathbb{Z}_q[x]}{x^N-1}$, and $\frac{\mathbb{Z}_p[x]}{x^N-1}$.

NTRU

NTRU Lattice-based PKCS

Logan Collir

Remember that NTRU stands for the Nth degree truncated polynomial ring?

Well, that is because NTRU operates in $\frac{\mathbb{Z}[x]}{x^N-1}$, $\frac{\mathbb{Z}_q[x]}{x^N-1}$, and $\frac{\mathbb{Z}_p[x]}{x^N-1}$. This forms a lattice in \mathbb{R}^{2N} !

NTRU Lattice-based PKCS

ogan Collin

That is, NTRU operates on convolution polynomial rings $R = \frac{\mathbb{Z}[x]}{x^N-1}$, $R_q = \frac{\mathbb{Z}_q[x]}{x^N-1}$, and $R_p = \frac{\mathbb{Z}_p[x]}{x^N-1}$ which have the form $\mathbf{a}(x) \in \frac{\mathbb{Z}_k[x]}{x^N-1}$, $\mathbf{a}(x) = a_0 + a_1x + \cdots + a_{N-1}a^{N-1}$ with coefficients in \mathbb{Z}_k .

NTRU Lattice-based PKCS

ogan Collin

That is, NTRU operates on convolution polynomial rings $R = \frac{\mathbb{Z}[x]}{x^N-1}$, $R_q = \frac{\mathbb{Z}_q[x]}{x^N-1}$, and $R_p = \frac{\mathbb{Z}_p[x]}{x^N-1}$ which have the form $\mathbf{a}(x) \in \frac{\mathbb{Z}_k[x]}{x^N-1}$, $\mathbf{a}(x) = a_0 + a_1x + \cdots + a_{N-1}a^{N-1}$ with coefficients in \mathbb{Z}_k .

Most significantly, $x^N \equiv 1 \mod (x^N - 1)$.

NTRU Lattice-based PKCS

ogan Collin

That is, NTRU operates on convolution polynomial rings $R = \frac{\mathbb{Z}[x]}{x^N-1}$, $R_q = \frac{\mathbb{Z}_q[x]}{x^N-1}$, and $R_p = \frac{\mathbb{Z}_p[x]}{x^N-1}$ which have the form $\mathbf{a}(x) \in \frac{\mathbb{Z}_k[x]}{x^N-1}$, $\mathbf{a}(x) = a_0 + a_1x + \cdots + a_{N-1}a^{N-1}$ with coefficients in \mathbb{Z}_k .

Most significantly, $x^N \equiv 1 \mod (x^N - 1)$.

Out of convenience, we can write $\mathbf{a}(x) \sim (a_0, \dots, a_{N-1}) \in \mathbb{Z}^N$.

That is, NTRU operates on convolution polynomial rings $R = \frac{\mathbb{Z}[x]}{\sqrt{N-1}}$, $R_q = \frac{\mathbb{Z}_q[x]}{\sqrt{N-1}}$, and $R_p = \frac{\mathbb{Z}_p[x]}{\sqrt{N-1}}$ which have the form $\mathbf{a}(x) \in \frac{\mathbb{Z}_k[x]}{\sqrt{N-1}}, \ \mathbf{a}(x) = a_0 + a_1 x + \dots + a_{N-1} a^{N-1}$ with coefficients in \mathbb{Z}_k .

Most significantly, $x^N \equiv 1 \mod (x^N - 1)$.

Out of convenience, we can write $\mathbf{a}(x) \sim (a_0, \dots, a_{N-1}) \in \mathbb{Z}^N$.

Addition is defined normally with

$$\mathbf{a}(x) + \mathbf{b}(x) = (a_0 + b_0, \cdots, a_{N-1} + b_{N-1}).$$

NTRU Lattice-based PKCS

Logan Collin

That is, NTRU operates on convolution polynomial rings $R = \frac{\mathbb{Z}[x]}{x^N-1}$, $R_q = \frac{\mathbb{Z}_q[x]}{x^N-1}$, and $R_p = \frac{\mathbb{Z}_p[x]}{x^N-1}$ which have the form $\mathbf{a}(x) \in \frac{\mathbb{Z}_k[x]}{x^N-1}$, $\mathbf{a}(x) = a_0 + a_1x + \cdots + a_{N-1}a^{N-1}$ with coefficients in \mathbb{Z}_k .

Most significantly, $x^N \equiv 1 \mod (x^N - 1)$.

Out of convenience, we can write $\mathbf{a}(x) \sim (a_0, \dots, a_{N-1}) \in \mathbb{Z}^N$.

Addition is defined normally with $\mathbf{a}(x) + \mathbf{b}(x) = (a_0 + b_0, \dots, a_{N-1} + b_{N-1}).$

Multiplication is... more complicated...

NTRU Lattice-based PKCS

Logan Collin

Multiplication is the usual but $x^2 * x^2 \mod (x^3 - 1) \equiv x$.

NTRU Lattice-based PKCS

Logan Collin

Multiplication is the usual but $x^2 * x^2 \mod (x^3 - 1) \equiv x$.

We can simplify this by writing this explicitly:

NTRU Lattice-based PKCS

Logan Collir

Multiplication is the usual but $x^2 * x^2 \mod (x^3 - 1) \equiv x$.

We can simplify this by writing this explicitly:

$$\mathbf{a}(x)\star\mathbf{b}(x)=\mathbf{c}(x)$$
 with $c_k=\sum\limits_{i+j\equiv k \bmod N}a_ib_{k-i}$

NTRU Lattice-based PKCS

Logan Collir

Multiplication is the usual but $x^2 * x^2 \mod (x^3 - 1) \equiv x$.

We can simplify this by writing this explicitly:

$$\mathbf{a}(x) \star \mathbf{b}(x) = \mathbf{c}(x)$$
 with $c_k = \sum_{i+j \equiv k \mod N} a_i b_{k-i}$

Example:
$$\mathbf{a}(x) = (1, -2, 0, 4, -1), \ \mathbf{b}(x) = (3, 4, -2, 5, 4).$$

 $\mathbf{a}(x) \star \mathbf{b}(x) = (-13, 20, -7, 19, 5).$

Relationship between R and R_q

NTRU Lattice-based PKCS

Logan Collir

We can define a ring homomorphism from $R \to R_q$ by reducing coefficients in R modulo q.

Relationship between R and R_q

NTRU Lattice-based PKCS

Logan Collii

We can define a ring homomorphism from $R \to R_q$ by reducing coefficients in R modulo q.

We cannot easily do the same for $R_q \to R$. Instead, when $\mathbf{a}(x) \in R_q$, we define the centered lift of $\mathbf{a}(x)$ to R to be the unique polynomial $\mathbf{a}'(x) \in R$ such that $\mathbf{a}'(x) \bmod q = \mathbf{a}(x)$ such that $-\frac{q}{2} < a_i' \leq \frac{q}{2}$ for all i.

One More Thing

NTRU Lattice-based PKCS

Logan Collin

One More Thing

NTRU Lattice-based PKCS

Logan Collir

We need one last bit of notation to describe the NTRU system concisely.

One More Thing

NTRU Lattice-based PKCS

Logan Collir

We need one last bit of notation to describe the NTRU system concisely.

Given d_1, d_2 , positive integers,

$$\tau(d_1, d_2) = \left\{ \begin{aligned} \mathbf{a}(x) \text{ has } d_1 \text{ coefficients equal to } 1\\ \mathbf{a}(x) \in R : \mathbf{a}(x) \text{ has } d_2 \text{ coefficients equal to -1}\\ \mathbf{a}(x) \text{ has all other coefficients } 0 \end{aligned} \right\}$$

NTRU Lattice-based PKCS

NTRU Lattice-based PKCS

Logan Collin

I Alice chooses (N, p, q, d) with N, p prime, gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p.

NTRU Lattice-based PKCS

- Alice chooses (N, p, q, d) with N, p prime, gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p.
- 2 Alice chooses $\mathbf{f} \in \tau(d+1,d)$ and $\mathbf{g} \in \tau(d,d)$.

NTRU Lattice-based PKCS

- Alice chooses (N, p, q, d) with N, p prime, gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p.
- 2 Alice chooses $\mathbf{f} \in \tau(d+1,d)$ and $\mathbf{g} \in \tau(d,d)$.
- 3 Alice computes $\mathbf{F_q} = f^{-1} \in R_q$ and $\mathbf{F_p} = f^{-1} \in R_p$ and publishes her public key (N, p, q, d, h), with $\mathbf{h} = \mathbf{F_q} \star \mathbf{g}$.

NTRU Lattice-based PKCS

- Alice chooses (N, p, q, d) with N, p prime, gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p.
- 2 Alice chooses $\mathbf{f} \in \tau(d+1,d)$ and $\mathbf{g} \in \tau(d,d)$.
- 3 Alice computes $\mathbf{F_q} = f^{-1} \in R_q$ and $\mathbf{F_p} = f^{-1} \in R_p$ and publishes her public key (N, p, q, d, h), with $\mathbf{h} = \mathbf{F_q} \star \mathbf{g}$.
- Bob chooses $\mathbf{m} \in R_p$ and an $\mathbf{r} \in \tau(d, d)$ and sends Alice $\mathbf{c} \equiv p\mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q$.

NTRU Lattice-based PKCS

- Alice chooses (N, p, q, d) with N, p prime, gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p.
- 2 Alice chooses $\mathbf{f} \in \tau(d+1,d)$ and $\mathbf{g} \in \tau(d,d)$.
- 3 Alice computes $\mathbf{F_q} = f^{-1} \in R_q$ and $\mathbf{F_p} = f^{-1} \in R_p$ and publishes her public key (N, p, q, d, h), with $\mathbf{h} = \mathbf{F_q} \star \mathbf{g}$.
- 4 Bob chooses $\mathbf{m} \in R_p$ and an $\mathbf{r} \in \tau(d, d)$ and sends Alice $\mathbf{c} \equiv p\mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q$.
- 5 Alice computes $\mathbf{a} = \mathbf{f} \star \mathbf{c}$ and the centered lift of \mathbf{a} , which is \mathbf{a}' .

NTRU Lattice-based PKCS

- Alice chooses (N, p, q, d) with N, p prime, gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p.
- 2 Alice chooses $\mathbf{f} \in \tau(d+1,d)$ and $\mathbf{g} \in \tau(d,d)$.
- 3 Alice computes $\mathbf{F_q} = f^{-1} \in R_q$ and $\mathbf{F_p} = f^{-1} \in R_p$ and publishes her public key (N, p, q, d, h), with $\mathbf{h} = \mathbf{F_q} \star \mathbf{g}$.
- 4 Bob chooses $\mathbf{m} \in R_p$ and an $\mathbf{r} \in \tau(d, d)$ and sends Alice $\mathbf{c} \equiv p\mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q$.
- Alice computes $\mathbf{a} = \mathbf{f} \star \mathbf{c}$ and the centered lift of \mathbf{a} , which is \mathbf{a}' .
- 6 Alice decrypts the message by computing $\mathbf{m} \equiv \mathbf{F_p} \star \mathbf{a}' \mod p$.

NTRU Lattice-based PKCS

Logan Collin

- Alice chooses (N, p, q, d) with N, p prime, gcd(N, q) = gcd(p, q) = 1, and q > (6d + 1)p.
- 2 Alice chooses $\mathbf{f} \in \tau(d+1,d)$ and $\mathbf{g} \in \tau(d,d)$.
- 3 Alice computes $\mathbf{F_q} = f^{-1} \in R_q$ and $\mathbf{F_p} = f^{-1} \in R_p$ and publishes her public key (N, p, q, d, h), with $\mathbf{h} = \mathbf{F_q} \star \mathbf{g}$.
- 4 Bob chooses $\mathbf{m} \in R_p$ and an $\mathbf{r} \in \tau(d, d)$ and sends Alice $\mathbf{c} \equiv p\mathbf{r} \star \mathbf{h} + \mathbf{m} \mod q$.
- 5 Alice computes $\mathbf{a} = \mathbf{f} \star \mathbf{c}$ and the centered lift of \mathbf{a} , which is \mathbf{a}' .
- 6 Alice decrypts the message by computing $\mathbf{m} \equiv \mathbf{F_p} \star \mathbf{a}' \mod p$.

Example

NTRU Lattice-based PKCS

NTRU Lattice-based PKCS

Logan Collin

The NTRU Lattice is generated by the rows of the block matrix

$$M_{\mathbf{h}}^{NTRU} = \begin{pmatrix} 1 & \mathbf{h} \\ 0 & q \end{pmatrix}$$
 where $\mathbf{h} = \begin{pmatrix} h_0 & h_1 & \cdots & h_{N-1} \\ h_{N-1} & h_0 & \cdots & h_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \cdots & h_0 \end{pmatrix}$.

NTRU Lattice-based PKCS

Logan Collin

The NTRU Lattice is generated by the rows of the block matrix

$$M_{\mathbf{h}}^{NTRU} = \begin{pmatrix} 1 & \mathbf{h} \\ 0 & q \end{pmatrix}$$
 where $\mathbf{h} = \begin{pmatrix} h_0 & h_1 & \cdots & h_{N-1} \\ h_{N-1} & h_0 & \cdots & h_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \cdots & h_0 \end{pmatrix}$.

We can see this because $\mathbf{h} \equiv \mathbf{f}^{-1}\mathbf{g} \mod q \implies \mathbf{f} \star \mathbf{h} = \mathbf{g} + q\mathbf{u}$.

NTRU Lattice-based PKCS

Logan Collin

The NTRU Lattice is generated by the rows of the block matrix

$$M_{\mathbf{h}}^{NTRU} = \begin{pmatrix} 1 & \mathbf{h} \\ 0 & q \end{pmatrix} \text{ where } \mathbf{h} = \begin{pmatrix} h_0 & h_1 & \cdots & h_{N-1} \\ h_{N-1} & h_0 & \cdots & h_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \cdots & h_0 \end{pmatrix}.$$

We can see this because $\mathbf{h} \equiv \mathbf{f}^{-1}\mathbf{g} \mod q \implies \mathbf{f} \star \mathbf{h} = \mathbf{g} + q\mathbf{u}$. Then $(\mathbf{f}, \mathbf{g}) \in L_{\mathbf{h}}^{NTRU}$ because

$$(\mathbf{f}, -\mathbf{u}) \begin{pmatrix} 1 & \mathbf{h} \\ 0 & q \end{pmatrix} = (\mathbf{f}, \mathbf{f} \star \mathbf{h} - q\mathbf{u}) = (\mathbf{f}, \mathbf{g})$$

NTRU Lattice-based PKCS

Logan Collin

The NTRU Lattice is generated by the rows of the block matrix

$$M_{\mathbf{h}}^{NTRU} = \begin{pmatrix} 1 & \mathbf{h} \\ 0 & q \end{pmatrix}$$
 where $\mathbf{h} = \begin{pmatrix} h_0 & h_1 & \cdots & h_{N-1} \\ h_{N-1} & h_0 & \cdots & h_{N-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_1 & h_2 & \cdots & h_0 \end{pmatrix}$.

We can see this because $\mathbf{h} \equiv \mathbf{f}^{-1}\mathbf{g} \mod q \implies \mathbf{f} \star \mathbf{h} = \mathbf{g} + q\mathbf{u}$. Then $(\mathbf{f}, \mathbf{g}) \in L_{\mathbf{h}}^{NTRU}$ because

$$(\mathbf{f}, -\mathbf{u}) \begin{pmatrix} 1 & \mathbf{h} \\ 0 & q \end{pmatrix} = (\mathbf{f}, \mathbf{f} \star \mathbf{h} - q\mathbf{u}) = (\mathbf{f}, \mathbf{g})$$

Moreover, $||(\mathbf{f}, \mathbf{g})|| \approx \sqrt{4d} \approx 1.155 \sqrt{N} < \sigma(L_{\mathbf{h}}^{NTRU}) \approx 0.484 N$.

Logan Collin

The best known attack on **NTRUEncrypt** is a hybrid attack.

NTRU Lattice-based PKCS

Logan Collin

The best known attack on **NTRUEncrypt** is a hybrid attack.

■ Reduce the basis of the lattice for some time as quickly as possible (LLL). (With sufficiently small *N* or enough time, this is enough to solve the system alone.)

NTRU Lattice-based PKCS

Logan Collin

The best known attack on **NTRUEncrypt** is a hybrid attack.

- 1 Reduce the basis of the lattice for some time as quickly as possible (LLL). (With sufficiently small *N* or enough time, this is enough to solve the system alone.)
- 2 We perform a meet-in-the-middle, or collision algorithm, attack on the reduced lattice.

NTRU Lattice-based PKCS

Logan Collin

The best known attack on **NTRUEncrypt** is a hybrid attack.

- Reduce the basis of the lattice for some time as quickly as possible (LLL). (With sufficiently small *N* or enough time, this is enough to solve the system alone.)
- 2 We perform a meet-in-the-middle, or collision algorithm, attack on the reduced lattice.
- 3 Profit.

Example Results:

Using a small example with $N=53, q=36, d_f=d_g=16$, a standard meet-in-the-middle attack should take $2^{20.1}$ steps whereas the hybrid attack used $2^{13.1}$ steps.

That's it for now!

NTRU Lattice-based PKCS

Logan Collir

Explaining LLL and demonstrating an attack on NTRU using LLL is another project entirely. :)

References

NTRU Lattice-based PKCS

Logan Collii

Jeffrey Hoffstein - Jill Catherine Pipher - Joseph H.Silverman - Springer - 2008

N. Howgrave-Graham, *A hybrid meet-in-the-middle and lattice reduction attack on NTRU*, pp.150-169, CRYPTO 2007