

STATISTICAL LEARNING FINAL PROJECT

Employee Attrition Classification

AUTHORS

Zeynep TUTAR - 2106038 Aysenur Oya ÖZEN - 0000000

SUPERVISOR

Prof. Alberto ROVERATO

Academic Year: 2023/2024

Contents

Introduction to Dataset	2
Description of the Features	2
Data Analysis	3
Data Preprocessing	5
Categorical Features	6
Target Values	10
Numeric Features	11
Outliers	13
Features vs. Target	16
Categorical Features vs. Target	16
Numerical Features vs. Target	16
Correlation Matrix	16
Partial Correlation Matrices	18
Data Preparation	18
Handling Categorical Features	18
Normalization	19
Train-Test-Split	19
Predictive Classification Models	20
Logistic Regression	21
Basic Logistic Classifier	21
Logistic Regression with Backward Stepwise Search	23
Logistic Regression with Shrinkage Method	25
Comparison of Logistic Classifiers	
Another Classification Model	
Model Results	29
Performance Metrics and Confusion Matrix	29

Introduction to Dataset

The aim of this project is to develop two predictive models to determine employee attrition of a company. The dataset used for this project is a simulated dataset designed for the analysis and prediction of employee attrition. It contains detailed information about various aspects of an employee's profile, including demographics, job-related features, and personal circumstances. The dataset contains 74,498 samples. Each record includes a unique Employee ID and features that influence employee attrition. The goal is to understand the factors contributing to attrition and develop predictive models to identify at-risk employees.

The dataset is already split into train and test but in order to better understand the data, it is crucial to analyse the dataset as a whole.

```
# import the train and test datasets
data_train <- read.csv("data/train.csv", stringsAsFactors = TRUE)
data_test <- read.csv("data/test.csv", stringsAsFactors = TRUE)

# merge the datasets
data <- rbind(data_train, data_test)
attach(data)</pre>
```

Description of the Features

The features of the dataset are presented below:

- Employee ID: A unique identifier assigned to each employee.
- Age: The age of the employee, ranging from 18 to 60 years.
- Gender: The gender of the employee
- Years at Company: The number of years the employee has been working at the company.
- Monthly Income: The monthly salary of the employee, in dollars.
- **Job Role:** The department or role the employee works in, encoded into categories such as Finance, Healthcare, Technology, Education, and Media.
- Work-Life Balance: The employee's perceived balance between work and personal life, (Poor, Below Average, Good, Excellent)
- Job Satisfaction: The employee's satisfaction with their job: (Very Low, Low, Medium, High)
- Performance Rating: The employee's performance rating: (Low, Below Average, Average, High)
- Number of Promotions: The total number of promotions the employee has received.
- **Distance from Home:** The distance between the employee's home and workplace, in miles.
- **Education Level:** The highest education level attained by the employee: (High School, Associate Degree, Bachelor's Degree, Master's Degree, PhD)
- Marital Status: The marital status of the employee: (Divorced, Married, Single)

¹https://www.kaggle.com/datasets/stealthtechnologies/employee-attrition-dataset/data

- Job Level: The job level of the employee: (Entry, Mid, Senior)
- Company Size: The size of the company the employee works for: (Small, Medium, Large)
- Company Tenure: The total number of years the employee has been working in the industry.
- **Remote Work:** Whether the employee works remotely: (Yes or No)
- Leadership Opportunities: Whether the employee has leadership opportunities: (Yes or No)
- Innovation Opportunities: Whether the employee has opportunities for innovation: (Yes or No)
- **Company Reputation:** The employee's perception of the company's reputation: (Very Poor, Poor, Good, Excellent)
- Employee Recognition: The level of recognition the employee receives:(Very Low, Low, Medium, High)
- Attrition: Whether the employee has left the company, encoded as 0 (stayed) and 1 (Left).

Data Analysis

In order to develop predictive models, first it is necessary to perform exploratory data analysis (EDA) and modify the format of the data if necessary.

```
# installing required libraries
library(class)
library(e1071)
library(car)
library(corrplot)
library(glmnet)
library(glmnet)
library(dplyr)
library(pROC)
library(knitr)
library(leaps)
```

```
# Descriptive statistics of DataFrame
summary(data)
```

```
Gender
Employee.ID
                   Age
                                          Years.at.Company
             Min. :18.00
                             Female:33672
                                               : 1.00
Min. :
         1
                                          Min.
1st Qu.:18625
              1st Qu.:28.00
                            Male :40826
                                          1st Qu.: 7.00
Median :37250
              Median :39.00
                                           Median:13.00
              Mean :38.53
Mean
      :37250
                                          Mean
                                                 :15.72
3rd Qu.:55874
              3rd Qu.:49.00
                                           3rd Qu.:23.00
     :74498
                                                 :51.00
Max.
              Max. :59.00
                                          Max.
     Job.Role
               Monthly.Income Work.Life.Balance Job.Satisfaction
Education: 15658 Min.
                      : 1226
                                Excellent:13432
                                                High
                                                        :37245
Finance :10448
                 1st Qu.: 5652
                                Fair
                                       :22529
                                                Low
                                                        : 7457
Healthcare: 17074
                 Median: 7348
                                Good
                                        :28158
                                                Medium
                                                        :14717
Media
       :11996
                 Mean : 7299
                                Poor
                                       :10379
                                                Very High: 15079
```

Technology:19322 3rd Qu.: 8876 Max. :16149 Performance.Rating Number.of.Promotions Overtime Distance.from.Home :44719 Min. :0.0000 No :50157 Min. : 1.00 Average Below Average:11139 1st Qu.:0.0000 1st Qu.:25.00 Yes:24341 High Median:50.00 :14910 Median :1.0000 Low : 3730 Mean :0.8329 Mean :49.99 3rd Qu.:2.0000 3rd Qu.:75.00 Max. :4.0000 Max. :99.00 Education.Level Marital.Status Number.of.Dependents Job.Level Associate Degree :18649 Divorced:11078 Min. :0.00 Entry :29780 Bachelor's Degree:22331 Married: 37419 1st Qu.:0.00 Mid :29678 High School Single :26001 Median :1.00 Senior:15040 :14680 Master's Degree :15021 Mean :1.65 PhD : 3817 3rd Qu.:3.00 :6.00 Max. Company.Size Company.Tenure Remote.Work Leadership.Opportunities Large :14912 Min. : 2.00 No :70845 No :60300 Medium:37231 1st Qu.: 36.00 Yes:14198 Yes: 3653 Small :22355 Median : 56.00 Mean : 55.73 3rd Qu.: 76.00 Max. :128.00 Innovation.Opportunities Company.Reputation Employee.Recognition No :62394 Excellent: 7414 High :18550 Yes:12104 Fair :14786 Low :29620 Good :37182 Medium :22657 Poor :15116 Very High: 3671

Attrition Left :35370 Stayed:39128

Data types of columns str(data)

```
'data.frame':
                74498 obs. of 24 variables:
                        : int 8410 64756 30257 65791 65026 24368 64970 36999 32714 15944 ...
$ Employee.ID
$ Age
                           : int 31 59 24 36 56 38 47 48 57 24 ...
$ Gender
                           : Factor w/ 2 levels "Female", "Male": 2 1 1 1 2 1 2 2 2 1 ...
$ Years.at.Company
                           : int 19 4 10 7 41 3 23 16 44 1 ...
                       : Factor w/ 5 levels "Education", "Finance", ...: 1 4 3 1 1 5 1 2 1 3 ...
$ Job.Role
$ Monthly.Income
                           : int 5390 5534 8159 3989 4821 9977 3681 11223 3773 7319 ...
$ Work.Life.Balance
                          : Factor w/ 4 levels "Excellent", "Fair", ...: 1 4 3 3 2 2 2 1 3 4 ...
```

```
$ Job.Satisfaction
                        : Factor w/ 4 levels "High", "Low", "Medium", ...: 3 1 1 1 4 1 1 4 3 1 ...
                        : Factor w/ 4 levels "Average", "Below Average", ...: 1 4 4 3 1 2 3 3 3 1 ...
$ Performance.Rating
$ Number.of.Promotions
                           : int 2301031211...
$ Overtime
                           : Factor w/ 2 levels "No", "Yes": 1 1 1 1 2 1 2 1 2 2 ...
$ Distance.from.Home
                           : int 22 21 11 27 71 37 75 5 39 57 ...
                         : Factor w/ 5 levels "Associate Degree",..: 1 4 2 3 3 2 3 4 3 5 ...
$ Education.Level
                        : Factor w/ 3 levels "Divorced", "Married", ...: 2 1 2 3 1 2 1 2 2 3 ...
$ Marital.Status
$ Number.of.Dependents
                          : int 0 3 3 2 0 0 3 4 4 4 ...
                           : Factor w/ 3 levels "Entry", "Mid", ...: 2 2 2 2 3 2 1 1 1 1 ...
$ Job.Level
                         : Factor w/ 3 levels "Large", "Medium", ...: 2 2 2 3 2 2 3 2 2 1 ...
$ Company.Size
                          : int 89 21 74 50 68 47 93 88 75 45 ...
$ Company.Tenure
                           : Factor w/ 2 levels "No", "Yes": 1 1 1 2 1 1 1 1 1 1 ...
$ Remote.Work
$ Leadership.Opportunities: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 1 1 1 1 ...
$ Innovation.Opportunities: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 2 1 1 1 2 ...
$ Company.Reputation
                         : Factor w/ 4 levels "Excellent", "Fair", ...: 1 2 4 3 2 2 3 1 2 3 ...
$ Employee.Recognition : Factor w/ 4 levels "High", "Low", "Medium", ...: 3 2 2 3 3 1 3 2 3 2 ...
$ Attrition
                           : Factor w/ 2 levels "Left", "Stayed": 2 2 2 2 1 1 2 2 1 ...
```

Data Preprocessing

To prepare the dataset for further analysis, several data preprocessing steps are performed:

1. Removing features

2. Numeric and categorical value separation

```
numeric_vars <- sapply(data, is.numeric)
categoric_vars <- sapply(data, function(x) is.factor(x) || is.character(x))</pre>
```

3. Handling missing values

```
# Missing Values --- No null Values
sapply(data, function(x) sum(is.na(x)))
```

```
Gender
                                                    Years.at.Company
             Age
               0
        Job.Role
                            Monthly.Income
                                                   Work.Life.Balance
                                                Number.of.Promotions
Job.Satisfaction
                        Performance.Rating
        Overtime
                        Distance.from.Home
                                                     Education.Level
               0
                                          0
                                                                    0
```

```
Marital.Status Number.of.Dependents Job.Level
0 0 0

Company.Size Remote.Work Leadership.Opportunities
0 0 0

Innovation.Opportunities Company.Reputation Employee.Recognition
0 0

Attrition
0
```

Categorical Features

```
# Categorical feature names
categoric_var_names <- names(data)[categoric_vars]

# Categorical value distributions
for (var in categoric_var_names) {
    cat("\nDistribution of", var, ":\n")
    print(table(data[[var]]))
}</pre>
```

```
Distribution of Gender:
```

Female Male 33672 40826

Distribution of Job.Role:

Education Finance Healthcare Media Technology 15658 10448 17074 11996 19322

Distribution of Work.Life.Balance :

Excellent Fair Good Poor 13432 22529 28158 10379

Distribution of Job.Satisfaction:

High Low Medium Very High 37245 7457 14717 15079

Distribution of Performance.Rating :

Average Below Average High Low 44719 11139 14910 3730

Distribution of Overtime:

No Yes 50157 24341

Distribution of Education.Level:

Associate Degree Bachelor's Degree High School Master's Degree

18649 22331 14680 15021

PhD 3817

Distribution of Marital.Status:

Divorced Married Single 11078 37419 26001

Distribution of Job.Level:

Entry Mid Senior 29780 29678 15040

Distribution of Company.Size:

Large Medium Small 14912 37231 22355

Distribution of Remote.Work:

No Yes 60300 14198

Distribution of Leadership.Opportunities:

No Yes 70845 3653

Distribution of Innovation.Opportunities:

No Yes 62394 12104

 ${\tt Distribution\ of\ Company. Reputation\ :}$

Excellent Fair Good Poor 7414 14786 37182 15116

Distribution of Employee.Recognition:

High Low Medium Very High

```
29620
18550
                     22657
                                 3671
```

Distribution of Attrition:

Left Stayed 35370 39128

```
# Categorical value distribution -- barplot
par(mfrow = c(2, 3))
for (cat_var in categoric_var_names) {
    barplot(table(data[[cat_var]]), main = paste(cat_var, "Distribution"),
        xlab = cat_var, col = "firebrick4")
}
```

Gender Distribution 40000 20000 Female Male Gender

Overtime Distribution

Yes

Job.Satisfaction Distribution

Performance.Rating Distributic

20000 40000 Average High Low No Performance.Rating Overtime

Education.Level Distribution

Marital.Status Distribution

Job.Level Distribution

Company.Size Distribution

Education.Level

Remote.Work Distribution _eadership.Opportunities Distribu

Innovation.Opportunities Distribu Company.Reputation Distributic Employee.Recognition Distribut

Attrition Distribution

Target Values

```
# Target value distribution
par(mfrow = c(1, 2))
barplot(table(data$Attrition), main = "Attrition Count", xlab = "Attrition",
    ylab = "Count", col = c("firebrick4", "rosybrown2"))

# Target value distribution -- Pie chart
attrition_table <- table(data$Attrition)
attrition_df <- as.data.frame(attrition_table)
colnames(attrition_df) <- c("Attrition", "Count")
attrition_df$Percentage <- round(100 * attrition_df$Count/sum(attrition_df$Count),
    1)

pie(attrition_df$Percentage,
    "%"), col = c("firebrick4", "rosybrown2"), main = "Attrition Distribution",
    cex = 1.2, radius = 0.8)</pre>
```


Attrition Distribution

Numeric Features

```
numeric_var_names <- names(data)[numeric_vars]</pre>
# Copy Data
data_detailed <- data
# Define bins for numeric values
data_detailed$Age_Cat <- cut(data_detailed$Age, breaks = c(18, 25, 35, 45,
         55, 60), labels = c("18-25", "25-35", "35-45", "45-55", "55-60"), right = FALSE)
data_detailed$MonthlyIncome_Cat <- cut(data_detailed$Monthly.Income, breaks = c(0,</pre>
         3000, 6000, 9000, 12000, 15000, 18000), labels = c("0-3000", "3000-6000",
         "6000-9000", "9000-12000", "12000-15000", "15000+"), right = FALSE)
data_detailed$DistanceFromHome_Cat <- cut(data_detailed$Distance.from.Home,</pre>
         breaks = c(0, 20, 40, 60, 80, 100), labels = c("0-20", "20-40", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60", "40-60"
                  "60-80", "80-100"), right = FALSE)
data_detailed$YearsAtCompany_Cat <- cut(data_detailed$Years.at.Company, breaks = c(0,</pre>
         10, 20, 30, 40, 50, 60), labels = c("0-10", "10-20", "20-30", "30-40",
         "40-50", "50-60"), right = FALSE)
exclude_columns <- c("Age", "Monthly.Income", "Distance.from.Home", "Years.at.Company",
         "Attrition")
data_corr <- data_detailed[, !names(data_detailed) %in% exclude_columns]</pre>
data_corr <- data_corr[, c(setdiff(names(data_corr), "Attrition"))]</pre>
# Plotting with target feature after transform numeric features into
# categorical
par(mfrow = c(3, 4))
for (col in setdiff(names(data_detailed), exclude_columns)) {
         table_left <- table(data_detailed[data_detailed$Attrition == "Left",
         table_stayed <- table(data_detailed[data_detailed$Attrition == "Stayed",</pre>
                  col])
         barplot(rbind(table_left, table_stayed), beside = TRUE, main = paste(col,
                  "Distribution by Attrition"), xlab = col, col = c("firebrick4", "rosybrown2"))
}
```

ender Distribution by Attb.Role Distribution by Atife.Balance Distribution bistribution b

lance.Rating Distribution f.Promotions Distributiorertime Distribution by Attion.Level Distribution by

tal.Status Distribution by f.Dependents Distributiob.Level Distribution by Apany.Size Distribution by

ote. Work Distribution by). Opportunities Distributi. Opportunities Distribution Distribution

e.Recognition Distributione Cat Distribution by Atlncome Cat Distribution romHome Cat Distribution

Company_Cat Distribution

YearsAtCompany_Cat

Outliers

```
# Target Visualization with Numeric features Outlier Check -- boxplot
cat_var <- "Attrition"</pre>
plots_per_page <- 6</pre>
num_plots <- length(numeric_var_names)</pre>
num_pages <- ceiling(num_plots/plots_per_page)</pre>
plot_index <- 1</pre>
for (page in 1:num_pages) {
    par(mfrow = c(2, 3))
    for (i in 1:plots_per_page) {
        if (plot_index > num_plots)
             break
        num_var <- numeric_var_names[plot_index]</pre>
        boxplot(data[[num_var]] ~ data[[cat_var]], main = paste(num_var,
             "\nby", cat_var), xlab = cat_var, ylab = num_var, col = c("firebrick4",
             "rosybrown2"))
        plot_index <- plot_index + 1</pre>
    }
}
```



```
# Function to identify outliers using IQR
identify_outliers <- function(x) {</pre>
    Q1 <- quantile(x, 0.25, na.rm = TRUE)
    Q3 <- quantile(x, 0.75, na.rm = TRUE)
    IQR <- Q3 - Q1
    outliers \leftarrow x[x < (Q1 - 1.5 * IQR) | x > (Q3 + 1.5 * IQR)]
    return(outliers)
}
# Identify and show outliers for each numeric variable
outliers_list <- list()</pre>
for (var in numeric_var_names) {
    outliers <- identify_outliers(data[[var]])</pre>
    outliers_list[[var]] <- outliers</pre>
    cat("\nOutlier values in", var, "are between:\n")
    print(sort(unique(outliers)))
}
Outlier values in Age are between:
integer(0)
Outlier values in Years.at.Company are between:
[1] 48 49 50 51
Outlier values in Monthly. Income are between:
 [1] 13713 13715 13722 13728 13739 13747 13764 13768 13793 13800 13830 13833
[13] 13840 13859 13875 13876 13877 13893 13896 13959 13961 13962 13988 14002
[25] 14014 14016 14021 14028 14066 14067 14076 14103 14110 14127 14137 14147
[37] 14163 14176 14181 14185 14210 14226 14235 14271 14276 14286 14292 14396
[49] 14398 14405 14406 14412 14421 14433 14547 14622 14707 14839 14885 14924
[61] 15063 15464 15495 15552 16149
Outlier values in Number.of.Promotions are between:
integer(0)
Outlier values in Distance.from.Home are between:
integer(0)
Outlier values in Number.of.Dependents are between:
integer(0)
# Plot histograms and highlight outliers
plot_index <- 1</pre>
for (page in 1:num_pages) {
    par(mfrow = c(2, 3))
    for (i in 1:plots_per_page) {
```

```
if (plot_index > num_plots)
             break
        num_var <- numeric_var_names[plot_index]</pre>
        hist(data[[num_var]], main = paste(num_var, "Distribution"), xlab = num_var,
             col = "firebrick4", breaks = 30)
        outliers <- outliers_list[[num_var]]</pre>
        if (length(outliers) > 0) {
             points(outliers, rep(0, length(outliers)), col = "rosybrown2",
                 pch = 16)
        }
        plot_index <- plot_index + 1</pre>
    }
}
```

2500 Frequency 1000 20 30 50 60 40 Age

Age Distribution

Years.at.Company Distribution

Monthly.Income Distribution

Number.of.Promotions Distribut Distance.from.Home Distributic Number.of.Dependents Distribut

As a result of the analysis, the following observations were made regarding the characteristics of the data:

Features vs. Target

Categorical Features vs. Target

Numerical Features vs. Target

Correlation Matrix

```
# Cor. and Cov.
cov_matrix <- cov(data[, numeric_var_names])
cor_matrix <- cor(data[, numeric_var_names])
print("Covariance Matrix:")</pre>
```

[1] "Covariance Matrix:"

```
print(cov_matrix)
```

```
Age Years.at.Company Monthly.Income
                     146.009914270
                                        72.87199387
                                                         -45.51579
Age
Years.at.Company
                      72.871993868
                                       125.97242911
                                                        -144.24846
Monthly.Income
                     -45.515785898
                                      -144.24846489 4633293.12554
Number.of.Promotions
                       0.008083759
                                         0.01048464
                                                          12.14436
Distance.from.Home
                      -1.579927372
                                        -1.54734492
                                                        -117.21026
Number.of.Dependents
                       0.069262885
                                         0.07649657
                                                           5.04010
                     Number.of.Promotions Distance.from.Home
Age
                              0.008083759
                                                 -1.57992737
Years.at.Company
                              0.010484640
                                                 -1.54734492
Monthly.Income
                             12.144360519
                                               -117.21026410
Number.of.Promotions
                              0.990599761
                                                 -0.19392391
Distance.from.Home
                             -0.193923912
                                                813.02599733
Number.of.Dependents
                             -0.002255666
                                                 -0.04226003
                     Number.of.Dependents
                              0.069262885
Age
                              0.076496571
Years.at.Company
Monthly.Income
                              5.040099975
Number.of.Promotions
                             -0.002255666
Distance.from.Home
                             -0.042260030
Number.of.Dependents
                              2.413775012
```

print("Correlation Matrix:")

[1] "Correlation Matrix:"

print(cor_matrix)

```
Age Years.at.Company Monthly.Income
Age
                      1.0000000000
                                        0.537318418
                                                       -0.001749951
                                        1.000000000
                                                      -0.005970745
Years.at.Company
                      0.5373184182
Monthly.Income
                     -0.0017499514
                                       -0.005970745
                                                        1.000000000
Number.of.Promotions 0.0006721606
                                        0.000938570
                                                        0.005668663
Distance.from.Home
                     -0.0045855743
                                       -0.004835008
                                                      -0.001909715
Number.of.Dependents 0.0036894448
                                        0.004386881
                                                        0.001507113
                     Number.of.Promotions Distance.from.Home
Age
                             0.0006721606
                                               -0.0045855743
                             0.0009385700
                                               -0.0048350077
Years.at.Company
Monthly.Income
                             0.0056686632
                                               -0.0019097149
Number.of.Promotions
                             1.0000000000
                                               -0.0068332929
Distance.from.Home
                            -0.0068332929
                                                1.0000000000
Number.of.Dependents
                            -0.0014587377
                                               -0.0009539579
                     Number.of.Dependents
                             0.0036894448
Age
                             0.0043868807
Years.at.Company
Monthly.Income
                             0.0015071132
Number.of.Promotions
                            -0.0014587377
Distance.from.Home
                            -0.0009539579
Number.of.Dependents
                             1.0000000000
corrplot(cor_matrix, method = "number", type = "upper", tl.col = "black",
    tl.srt = 45)
```


Partial Correlation Matrices

Data Preparation

After completing the data analysis steps, it is necessary to prepare the data for model development.

Handling Categorical Features

In order to use the categorical features in the model, we need to convert categorical features to numeric (ordinal or nominal) representations.

```
# Ordinal mappings:
balance.map <- c(Poor = 1, Fair = 2, Good = 3, Excellent = 4)
data$Work.Life.Balance <- balance.map[as.numeric(data$Work.Life.Balance)]
satisfaction.map <- c(Low = 1, Medium = 2, High = 3, `Very High` = 4)
data$Job.Satisfaction <- satisfaction.map[as.numeric(data$Job.Satisfaction)]
performance.map <- c(Low = 1, `Below Average` = 2, Average = 3, High = 4)
data$Performance.Rating <- performance.map[as.numeric(data$Performance.Rating)]</pre>
```

```
level.map <- c(Entry = 1, Mid = 2, Senior = 3)</pre>
data$Job.Level <- level.map[as.numeric(data$Job.Level)]</pre>
# education.map <- c('High School'= 1, 'Associate Degree'= 2,</pre>
# 'Bachelor's Degree'= 3, 'Master's Degree'= 4, 'PhD'= 5)
# data$Education.Level <-</pre>
# education.map[as.numeric(data$Education.Level)]
reputation.map <- c(Poor = 1, Fair = 2, Good = 3, Excellent = 4)</pre>
data$Company.Reputation <- reputation.map[as.numeric(data$Company.Reputation)]</pre>
recognition.map <- c(Low = 1, Medium = 2, High = 3, `Very High` = 4)</pre>
data$Employee.Recognition <- recognition.map[as.numeric(data$Employee.Recognition)]</pre>
size.map <- c(Small = 1, Medium = 2, Large = 3)</pre>
data$Company.Size <- size.map[as.numeric(data$Company.Size)]</pre>
# Nominal mappings: Create dummy variables for nominal data
data_numeric <- model.matrix(~., data = data)</pre>
# Convert the resulting matrix back to a data frame
data_numeric <- as.data.frame(data_numeric)[, -1] # -1 to remove the intercept column
```

Normalization

```
normalize <- function(x) {
    return((x - min(x))/(max(x) - min(x)))
}
data_normalized <- as.data.frame(lapply(data_numeric, normalize))</pre>
```

Train-Test-Split

Before splitting the data into training and test, first features and target should be defined.

Now, we can split the dataset for modelling.

```
set.seed(123)

trainIndex <- sample(1:nrow(X), 0.8 * nrow(X))

# 80% of data is used for training
X.train <- X[trainIndex, ]
y.train <- y[trainIndex]

# 20% of data is used for testing
X.test <- X[-trainIndex, ]
y.test <- y[-trainIndex]</pre>
```

Before moving to modelling step, it is beneficial to check the dimensions and balance of the datasets.

- Number of samples in train data: 59598
 - Proportion of stayed employees for train data:

```
kable(prop.table(table(y.train)))
```

y.train	Freq
0	0.4733213
1	0.5266787

- Number of samples in test data: 14900
 - Proportion of stayed employees for test data:

```
prop.table(table(y.test))
```

```
y.test
     0      1
0.480604 0.519396
```

We can observe that the train and test datasets are balanced within themselves. Also the train data is representative of test data.

Predictive Classification Models

Predictive classification models are a type of machine learning algorithm used to predict the category or class label of new, unseen instances based on historical data. These models are trained using a labelled dataset where the input features (independent variables) are associated with known class labels (dependent variable). The goal of the model is to learn the relationship between the features and the class labels so that it can accurately classify new data points into one of the predefined categories.

In this project we aim to find the risk of an employee leaving the company (class 0) and the factors affecting employee retention. So we will develop several classification models and examine their performances.

Logistic Regression

The logistic regression model estimates the odds of the dependent variable occurring and applies the logit (log-odds) transformation to express this relationship.

Basic Logistic Classifier

```
# First of all we check the model statistics with all the features
glm.FULL <- glm(y.train ~ ., data = X.train, family = binomial)</pre>
summary(glm.FULL)
```

```
Call:
glm(formula = y.train ~ ., family = binomial, data = X.train)
Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)
                                            0.064437 -8.593 < 2e-16 ***
(Intercept)
                                -0.553730
Age
                                 0.229757
                                            0.039315
                                                      5.844 5.10e-09 ***
GenderMale
                                            0.019788 27.476 < 2e-16 ***
                                 0.543694
Years.at.Company
                                 0.654574
                                            0.051922 12.607 < 2e-16 ***
Job.RoleFinance
                                 0.109910
                                            0.046309
                                                     2.373 0.017625 *
Job.RoleHealthcare
                                 0.061875
                                            0.040506 1.528 0.126628
Job.RoleMedia
                                            0.034483 3.075 0.002107 **
                                 0.106027
Job.RoleTechnology
                                 0.098439
                                            0.046401
                                                      2.121 0.033880 *
Monthly.Income
                                 0.018438
                                            0.117791
                                                     0.157 0.875614
Work.Life.Balance
                                            0.031321 -18.052 < 2e-16 ***
                                -0.565409
Job.Satisfaction
                                            0.024033 -15.213 < 2e-16 ***
                                -0.365624
Performance.Rating
                                -0.289214
                                            0.030814 -9.386 < 2e-16 ***
Number.of.Promotions
                                 0.928255
                                            0.039924 23.250 < 2e-16 ***
OvertimeYes
                                -0.336407
                                            0.020902 -16.095 < 2e-16 ***
Distance.from.Home
                                -0.886487
                                            0.033969 -26.097 < 2e-16 ***
Education.LevelBachelor.s.Degree -0.035818
                                            0.026276 -1.363 0.172835
Education.LevelHigh.School
                                 0.001582
                                            0.029370
                                                     0.054 0.957050
Education.LevelMaster.s.Degree
                                -0.006862
                                            0.029087 -0.236 0.813509
                                            0.053149 28.354 < 2e-16 ***
Education.LevelPhD
                                 1.506973
Marital.StatusMarried
                                 0.257001
                                            0.028268
                                                     9.092 < 2e-16 ***
Marital.StatusSingle
                                -1.409863
                                            0.030515 -46.203 < 2e-16 ***
Number.of.Dependents
                                            0.038204 22.060 < 2e-16 ***
                                 0.842765
                                            0.028636 80.056 < 2e-16 ***
Job.Level
                                 2.292477
Company.Size
                                -0.193325
                                            0.027989 -6.907 4.94e-12 ***
                                            0.027848 58.726 < 2e-16 ***
Remote.WorkYes
                                 1.635385
                                            0.045057 3.614 0.000302 ***
Leadership.OpportunitiesYes
                                 0.162824
Innovation.OpportunitiesYes
                                 0.127904
                                            0.026574
                                                     4.813 1.49e-06 ***
Company.Reputation
                                -0.342783
                                            0.033757 -10.154 < 2e-16 ***
Employee.Recognition
                                -0.003910
                                            0.034468 -0.113 0.909677
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Page 21

(Dispersion parameter for binomial family taken to be 1)

```
Null deviance: 82451 on 59597 degrees of freedom
Residual deviance: 62455 on 59569 degrees of freedom
```

AIC: 62513

Number of Fisher Scoring iterations: 4

The above model statistics indicate that p-value of Employee Recognition is above 0.5 indicating that this feature is insignificant to the results. Additionally, some Job.Roles and Monthly. Income also have high p-values indicating that their effect on Attrition is less significant compared to other features. However, for now we would like to keep all the features in the model and apply feature selection later.

In order to understand how well the model fits the data we can make use of \mathbb{R}^2 statistics. \mathbb{R}^2 provides an indication of how well the independent variables in the model explain the variability of the dependent variable. A higher \mathbb{R}^2 value indicates a better fit of the model to the data. The formula for \mathbb{R}^2 is:

$$R^2 = 1 - \frac{RSS}{ESS}$$

Where:

- ullet RSS is the sum of squares of the residuals (the differences between observed and predicted values), i.e. the deviance of the fitted model
- ESS is the total sum of squares due to regression (the differences between the observed values and the mean of the observed values)

```
R2 <- 1 - (summary(glm.FULL)$deviance/summary(glm.FULL)$null.deviance)
R2
```

[1] 0.2352223

With the full model the value of R^2 0.2352223 indicates that approximately 23.5222337% of the variance in the target can be explained by the features in the model. Since 23.5222337% is relatively low, it suggests that the model is not capturing much of the underlying pattern in the data.

Multicollinearity can be a reason for a low \mathbb{R}^2 value, as it can make it difficult to determine the individual effect of each predictor on the target. Calculating the Variance Inflation Factor (VIF) can help to check for multicollinearity among the features.

```
vif.FULL <- data.frame(features = names(vif(glm.FULL)), VIF = vif(glm.FULL),
    row.names = NULL)
vif.FULL[order(-vif.FULL$VIF), ]</pre>
```

```
features VIF
Job.RoleTechnology 4.303457
Job.RoleHealthcare 3.012165
Monthly.Income 2.998615
Job.RoleFinance 2.698510
```

```
17
          Marital.StatusSingle 2.158750
16
         Marital.StatusMarried 2.081797
6
                 Job.RoleMedia 1.678546
              Years.at.Company 1.404475
3
1
                           Age 1.401725
19
                      Job.Level 1.093697
21
                Remote.WorkYes 1.058167
2
                    GenderMale 1.013838
14
            Distance.from.Home 1.009712
          Number.of.Promotions 1.009666
12
18
          Number.of.Dependents 1.008320
             Work.Life.Balance 1.006144
9
                   OvertimeYes 1.005366
13
              Job.Satisfaction 1.004918
10
15
               Education.Level 1.004629
24
            Company.Reputation 1.002553
11
            Performance.Rating 1.001966
20
                  Company.Size 1.001456
22 Leadership.OpportunitiesYes 1.000757
23 Innovation.OpportunitiesYes 1.000466
25
          Employee.Recognition 1.000405
```

A VIF value of 1 indicates no correlation, values between 1 and 5 indicate moderate correlation and values above 5 suggest significant multicollinearity, which can lead to unreliable coefficient estimates. Most variables have VIF values close to 1, indicating very low or no multicollinearity. A few variables have VIF values between 1 and 5, suggesting moderate multicollinearity, which may not pose serious issues but should be monitored. These variables include Job.RoleTechnology, Job.RoleHealthcare, Monthly.Income, Job.RoleFinance, Marital.StatusSingle and Marital.StatusMarried. These are mostly dummy features of nominal variables and dummy variables are often correlated because they represent categories of the same nominal variable.

Logistic Regression with Backward Stepwise Search

Backward variable selection is a greedy search algorithm used to develop a predictive model by iteratively removing the least significant features. The goal is to find the best subset of features that contribute to the model while eliminating those that do not improve its performance.

We can use the step() function to perform backward stepwise search. As a regularization criteria we can either use BIC or AIC. But BIC statistic generally places a heavier penalty on models with many variables, and hence results in the selection of smaller models than AIC.

```
Call:
glm(formula = y.train ~ Age + GenderMale + Years.at.Company +
```

12

11

3

1

```
Work.Life.Balance + Job.Satisfaction + Performance.Rating +
    Number.of.Promotions + OvertimeYes + Distance.from.Home +
    Education.LevelPhD + Marital.StatusMarried + Marital.StatusSingle +
    Number.of.Dependents + Job.Level + Company.Size + Remote.WorkYes +
    Leadership.OpportunitiesYes + Innovation.OpportunitiesYes +
    Company.Reputation, family = binomial, data = X.train)
Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
(Intercept)
                            -0.48883
                                       0.05177 -9.442 < 2e-16 ***
Age
                             0.22990
                                       0.03930
                                                5.849 4.94e-09 ***
GenderMale
                             0.54243
                                        0.01978 27.423 < 2e-16 ***
                                        0.05191 12.599 < 2e-16 ***
Years.at.Company
                             0.65402
Work.Life.Balance
                                        0.03131 -18.022 < 2e-16 ***
                            -0.56426
Job.Satisfaction
                            -0.36546
                                        0.02403 -15.210 < 2e-16 ***
Performance.Rating
                                        0.03080 -9.409 < 2e-16 ***
                            -0.28983
Number.of.Promotions
                             0.92821
                                       0.03991 23.256 < 2e-16 ***
                                        0.02089 -16.068 < 2e-16 ***
OvertimeYes
                            -0.33570
Distance.from.Home
                            -0.88551
                                        0.03396 -26.076 < 2e-16 ***
Education.LevelPhD
                             1.51895
                                        0.05049 30.086 < 2e-16 ***
Marital.StatusMarried
                             0.25788
                                        0.02826
                                                 9.126 < 2e-16 ***
Marital.StatusSingle
                            -1.40864
                                        0.03050 -46.183 < 2e-16 ***
Number.of.Dependents
                             0.84234
                                        0.03820 22.052 < 2e-16 ***
Job.Level
                             2.29026
                                        0.02862 80.023
                                                        < 2e-16 ***
Company.Size
                            -0.19248
                                        0.02798 -6.879 6.02e-12 ***
                                        0.02784 58.729 < 2e-16 ***
Remote.WorkYes
                             1.63481
Leadership.OpportunitiesYes 0.16201
                                        0.04504
                                                3.597 0.000322 ***
Innovation.OpportunitiesYes 0.12815
                                        0.02657
                                                4.823 1.41e-06 ***
Company.Reputation
                                        0.03374 -10.149 < 2e-16 ***
                            -0.34247
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 82451 on 59597 degrees of freedom
Residual deviance: 62476 on 59578 degrees of freedom
AIC: 62516
Number of Fisher Scoring iterations: 4
vif.BACKWARD <- data.frame(features = names(vif(glm.BACKWARD)), VIF = vif(glm.BACKWARD),</pre>
    row.names = NULL)
vif.BACKWARD[order(-vif.BACKWARD$VIF), ]
                      features
                                    VIF
          Marital.StatusSingle 2.163022
         Marital.StatusMarried 2.085498
```

Years.at.Company 1.405299

Age 1.402928

```
14
                     Job.Level 1.097342
16
                Remote.WorkYes 1.060083
10
            Education.LevelPhD 1.015134
                    GenderMale 1.012783
2
9
            Distance.from.Home 1.011547
7
          Number.of.Promotions 1.009742
13
          Number.of.Dependents 1.009113
4
             Work.Life.Balance 1.006760
5
              Job.Satisfaction 1.005193
                   OvertimeYes 1.004790
8
19
            Company.Reputation 1.002462
            Performance.Rating 1.001593
6
15
                  Company.Size 1.001324
17 Leadership.OpportunitiesYes 1.000616
18 Innovation.OpportunitiesYes 1.000482
```

It looks like backward stepwise search dropped "Job.RoleFinance", "Job.RoleHealthcare", "Job.RoleTechnology" and "Employee.Recognition" from the model. These features were also the ones with highest p-values so it seems logical. But oddly the model kept the "Job.RoleMedia" feature so this tells us that having a job role in Media may be more significant to employee Attrition than other job roles for this dataset.

With backward feature selection we were able to decrease the VIF scores, p-values and AIC score. Although \mathbb{R}^2 slightly decreased to 0.2422558, this is expectable since the number of features in the model decreased. But most importantly we decreased the variance inflation factor of the model so the model is more stable.

Logistic Regression with Shrinkage Method

Shrinkage methods are techniques used in regression analysis to prevent overfitting by introducing a penalty for large coefficients. These methods "shrink" the coefficients towards zero, effectively reducing their variance and, in turn, enhancing the model's generalizability. Two most used shrinkage methods are Ridge Regression and Lasso Regression.

- Ridge Regression adds a penalty to the regression model that shrinks all the coefficients, and is useful when we want to keep all features in the model.
- Lasso Regression introduces a penalty that can shrink some coefficients to zero. This method is useful for feature selection, yielding sparse models by retaining only the most important features.
- Elastic Net is a hybrid regularization technique that includes both the Ridge and Lasso penalties, allowing for variable selection (like Lasso) and handling multicollinearity (like Ridge). It aims to incorporate the strengths of both methods, providing a more flexible approach.

Choosing the value of lambda (the tuning parameter) is crucial because it determines the strength of the penalty applied to the coefficients. We can choose the best value of lambda using k-fold cross-validation method.

Comparison of Logistic Classifiers

For Logistic Regression we defined 3 Logistic classifiers. In order to identify the best model we can compare their performance on the test sets to see how well they captured the underlying pattern of the data and their ability to generalize to new data.

We can use ROC curve and AUC values to compare the models. The ROC curve is a tool for assessing the performance of binary classification models, plotting true positive rate against false positive rate at various thresholds. The Area Under the Curve (AUC) provides a measure of the model's ability to predict the target values, with higher values indicating better performance.

Although the AUC values are same, to better analyse the difference between the model performances we can calculate and compare the evaluation metrics.

```
# Function to evaluate prediction models at different thresholds
evaluate.model.performance <- function(predictions, y.test, thresholds, title) {
    output.list <- list()</pre>
    # Looping through each threshold to generate predictions and store
    # in output.list
    for (threshold in thresholds) {
        output <- ifelse(predictions > threshold, 1, 0)
        output.list[[as.character(threshold)]] <- output</pre>
    }
    # Initialize a data frame to store the evaluation metrics for each
    # threshold
    results <- data.frame(Threshold = numeric(length(thresholds)), Accuracy =</pre>
    numeric(length(thresholds)),
        F1.Score = numeric(length(thresholds)), Precision = numeric(length(thresholds)),
        Recall = numeric(length(thresholds)))
    # Compute evaluation metrics for each threshold
    for (i in 1:length(thresholds)) {
        threshold <- thresholds[i]</pre>
```

```
predict.output <- output.list[[as.character(threshold)]]</pre>
        # Store results in the results dataframe
        results[i, "Threshold"] = threshold
        results[i, "Accuracy"] = mean(predict.output == y.test)
        results[i, "F1.Score"] = (2 * sum((predict.output == 1 & y.test ==
            1))/(2 * sum((predict.output == 1 & y.test == 1)) + sum(predict.output ==
            1 & y.test == 0) + sum(predict.output == 0 & y.test == 1)))
        results[i, "Precision"] = sum(predict.output == 1 & y.test ==
 → 1)/sum(predict.output ==
            1)
        results[i, "Recall"] = sum(predict.output == 1 & y.test == 1)/sum(y.test ==
    }
    # Rounding results
    results[, c("Accuracy", "F1.Score", "Precision", "Recall")] <- round(results[,</pre>
        c("Accuracy", "F1.Score", "Precision", "Recall")], 4)
    # Return the results table
    kable(results, align = "c", caption = c("Performance Metrics", title))
}
```

```
thresholds <- c(0.2, 0.3, 0.4, 0.5, 0.6)
# 1. Basic Logistic Classifier
evaluate.model.performance(glm.FULL.predict, y.test, thresholds, "glm.FULL")</pre>
```

Table 2: Performance Metrics Table: glm.FULL

Threshold	Accuracy	F1.Score	Precision	Recall
0.2	0.5168	0.6477	0.5213	0.8551
0.3	0.5135	0.6149	0.5221	0.7479
0.4	0.5085	0.5749	0.5219	0.6399
0.5	0.5033	0.5256	0.5215	0.5298
0.6	0.5009	0.4682	0.5243	0.4229

```
# 2. Feature Selection with Backward Stepwise Search
evaluate.model.performance(glm.BACKWARD.predict, y.test, thresholds, "glm.BACKWARD")
```

Table 3: Performance Metrics Table: glm.BACKWARD

Threshold	Accuracy	F1.Score	Precision	Recall
0.2	0.5169	0.6477	0.5213	0.8549
0.3	0.5134	0.6151	0.5220	0.7487
0.4	0.5091	0.5753	0.5224	0.6401
0.5	0.5036	0.5259	0.5218	0.5300
0.6	0.5005	0.4677	0.5238	0.4225

3. Elastic Net Shrinkage Method

evaluate.model.performance(glm.ELNET.predict, y.test, thresholds, "glm.ELNET")

Table 4: Performance Metrics Table: glm.ELNET

Threshold	Accuracy	F1.Score	Precision	Recall
0.2	0.5185	0.6549	0.5217	0.8794
0.3	0.5134	0.6222	0.5213	0.7714
0.4	0.5109	0.5822	0.5232	0.6562
0.5	0.5023	0.5253	0.5205	0.5303
0.6	0.5003	0.4612	0.5242	0.4118

All of the models have the highest F1 score at threshold level 0.4. And F1 score with 0.4 threshold for glm.ELNET is higher than other models on the test set. These results indicate that the model with Elastic Net regularization is better in generalization. Therefore we can select the glm.ELNET.predict as the best prediction for logistic regression model.

Another Classification Model

Model Results

Performance Metrics and Confusion Matrix