

Partha Pratim Das

Week Recar

Objectives & Outline

D. J. C. . . .

Algebra

Select

Project

Union

Difference

Intersection

Cartesian Produ

Divisio

Module Summary

Database Management Systems

Module 16: Formal Relational Query Languages/1

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

Partha Pratin Das

Week Recap

Objectives Outline

Relationa Algebra Select Project

Union
Difference
Intersection

Cartesian Product Rename Division

- SQL Examples have been practiced for basic query structures
- Nested Subquery in SQL
- Data Modification
- SQL expressions for Join and Views
- Transactions
- Integrity Constraints
- More data types in SQL
- Authorization in SQL
- Functions and Procedures in SQL
- Triggers

Module Objectives

Module 16

Objectives & Outline

• To understand formal query language through relational algebra

Module Outline

Module 16

Objectives & Outline

• Relational Algebra

Formal Relational Query Language

Module 16

Partha Pratin Das

Week Reca

Objectives & Outline

Outline

Algebra Select

Select Project

Union

Intersection

Cartesian Produc Rename

- Relational Algebra
 - o Procedural and Algebra based
- Tuple Relational Calculus
 - o Non-Procedural and Predicate Calculus based
- Domain Relational Calculus
 - o Non-Procedural and Predicate Calculus based

Partha Pratim Das

Week Recap

Objectives Outline

Relational Algebra

Select

Project

Differenc

Intersection

Cartesian Produc

Divisio

Module Summar

Relational Algebra

Database Management Systems Partha Pratim Das 16.6

Partha Pratin Das

Week Reca

Objectives &

Relational

Algebra

Select

Projec

Difference

Intersection Cartesian Produ

Division

- Created by Edgar F Codd at IBM in 1970
- Procedural language
- Six basic operators
 - \circ select: σ
 - o project: Π
 - \circ union: \cup
 - o set difference: -
 - Cartesian product: x
 - \circ rename: ho
- The operators take one or two relations as inputs and produce a new relation as a result

Partha Pratii Das

Week Reca

Objectives &

Algebra
Select
Project

Union
Difference
Intersection
Cartesian Produc
Rename
Division

Module Summa

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t | t \in r \text{ and } p(t)\}$$

where p is a formula in propositional calculus consisting of terms connected by : \land (and), \lor (or), \neg (not) Each terms is one of:

$$<$$
 attribute $>$ op $<$ attribute $>$ or $<$ constant $>$

where op is one of: $=, \neq, >, \geq$. < . \leq

• Example of selection:

$$\sigma_{dept_name = 'Physics'}(instructor)$$

4	В	C	D
χ	α	1	7
χ	β	5	7
3	β	12	3
3	β	23	10

$$\sigma_{A=B^{\wedge}D>5}(r)$$

Partha Pratin

Week Reca

Objectives Outline

Relation: Algebra Select Project

Union
Difference
Intersection
Cartesian Pro

Rename Division

- Notation: $\Pi_{A_1,A_2,...A_k}$ (r) where A_1 , A_2 are attribute names and r is a relation
- The result is defined as the relation of *k* columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the dept_name attribute of instructor

$$\Pi_{ID,name,salary}(instructor)$$

- Notation: $r \cup s$
- Defined as: $r \cup s = \{t | t \in r \text{ or } t \in s\}$
- For $r \cup s$ to be valid.
 - a) r, s must have the same arity (same number of attributes)
 - b) The attribute domains must be compatible (example: 2nd column of r deals with the same type of values as does the 2nd column of s)
 - c) Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

\boldsymbol{A}	В			A	В
α	1	1	Γ	α	2
α α β	2		L	β	3
β	1			- 1	S
1	1	-			
		A	В		
		α	1		
		α	2		
		β	1		
		β	3		
		ru	s	•	

 $\Pi_{course_id}(\sigma_{semester="Fall" \land vear=2009}(section)) \cup \Pi_{course_id}(\sigma_{semester="Spring" \land vear=2010}(section))$

Partha Pratio

Week Recap

Relationa Algebra Select

Union

Intersection
Cartesian Product
Rename

- Notation r-s
- Defined as: $r s = \{t | t \in r \text{ and } t \notin s\}$
- Set differences must be taken between compatible relations
 - o r and s must have the same arity
 - o attribute domains of r and s must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$\Pi_{course_id}(\sigma_{semester="Fall" \land year=2009}(section)) - \Pi_{course_id}(\sigma_{semester="Spring" \land year=2010}(section))$$

Intersection Operation

Module 16

Partha Pratin Das

Week Reca

Objectives Outline

Relationa

Select

Project Union Difference

Intersection

Cartesian Produc Rename Division

Module Summa

• Notation: $r \cap s$

• Defined as:

$$r \cap s = \{t | t \in r \text{ and } t \in s\}$$

- Assume:
 - o r, s have the same arity
 - \circ attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

4	В]	A
χ	1]	α
χ	2		β
3	1		
1			

$$r \cap s$$

Partha Pratin Das

Week Reca

Objectives &

Relation

Algebra Select

Union Difference

Cartesian Product
Rename

Module Summar

- Notation $r \times s$
- Defined as:

$$r \times s = \{t \ q | t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \phi$)
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used

 $r \times s$

Rename Operation

Module 16

Partha Pratim Das

Week Reca

Objectives Outline

Relational Algebra Select Project

Union
Difference
Intersection

Cartesian Produ Rename

Module Summai

• Allows us to name, and therefore to refer to, the results of relational-algebra expressions.

- Allows us to refer to a relation by more than one name.
- Example:

$$\rho_x(E)$$

returns the expression E under the name X

• If a relational-algebra expression E has arity n, then

$$\rho_{\times(A_1,A_2,\cdots,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to

$$A_1, A_2, \ldots, A_n$$

Partha Pratir Das

Week Reca

Objectives

Relational Algebra Select Project Union Difference Intersection Cartesian Produ

Rename
Division

- The division operation is applied to two relations
- $R(Z) \div S(X)$, where X subset Z. Let Y = Z X (and hence $Z = X \cup Y$); that is, let Y be the set of attributes of R that are not attributes of S
- The result of DIVISION is a relation T(Y) that includes a tuple t if tuples t_R appear in R with $t_R[Y] = t$, and with
 - o $t_R[X] = t_s$ for every tuple t_s in S.
- For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with every tuple in S
- Division is a derived operation and can be expressed in terms of other operations
- $r \div s \equiv \Pi_{R-S}(r) \Pi_{R-S}(r)((\Pi_{R-S}(r) \times s) \Pi_{R-S,S}(r))$

Division

R

Module Lecturer Brown Compilers Brown Databases Prolog Green Databases Green Lewis Prolog Smith Databases

S

Subject Prolog

RIS

Lecturer Green Lewis

Division Examples (2)

Module 16

Partha Pratin Das

Week Reca

Objectives Outline

Relation

Colore

Project

Union

Intersection

Cartesian Proj

Rename

Division

Module Summary

• R

R

Lecturer	Module	
Brown	Compilers	
Brown	Databases	
Green	Prolog	
Green	Databases	
Lewis	Prolog	
Smith	Databases	

S

Subject

Databases

Prolog

RIS

Lecturer

Partha Pratii Das

Week Reca

Objectives Outline

Algebr

Select

Projec

Union

Interestion

Cartesian Produ

Rename

sno	pno
s1	pl
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

Partha Pratio

Week Reca

Outline

Relational

Algebra

Select

Project

Onion

Intersection

Cartesian Prod

District

Module Summary

• Relations *r*, *s*:

Α	В	
а	1	
а	2	
а	3	
β	1	
γ	1	
δ	1	
δ	3	
δ	4	
€	6	
€	1	
β	2	

1 2 s

 $\begin{array}{c|c}
A \\
\hline
a \\
\beta
\end{array}$

e.g. A is customer name B is branch-name 1 and 2 here show two specific branch-names (Find customers who have an account in all branches of the bank)

Division Example (5)

Module 16

Partha Pratio

Week Reca

Objective:

D 1 ...

Relation

Aigebra

. .

Projec

Union

Carterian Prod

Cartesian Prod

Rename

Module Summary

• Relations r, s:

Α	В	С	D	E
а	а	а	а	1
а	а	γ	а	1
а	а	γ	b	1
β	а	γ	а	1
α β β γ	а	γ	b	3
γ	а	γ	а	1
γ	а	γ	b	1
γ	а	β	b	1

Α	В	С
а	а	γ
ν	а	ν

r ÷ s:

D	Ε
a b	1 1
8	6

e.g. Students who have taken both "a" and "b" courses, with instructor "1"

(Find students who have taken all courses given by instructor 1)

Source: db.fcngroup.nl/silberslides/Divsion Database Management Systems

Module Summary

Module 16

Module Summary

• Discussed relational algebra with examples

Slides used in this presentation are borrowed from http://db-book.com/ with kind permission of the authors.

Edited and new slides are marked with "PPD".