EC1410-Spring 2024 Problem Set 6 solutions

(Updated 12 December 2023)

Matt Turner

- 1. In this problem, we will work through an example of the discrete choice model with heterogeneous agents. Consider a discrete linear city with three neighborhoods $i \in \{1,2,3\}$. Let x_i denote a neighborhood's distance from the CBD, with $x_1 = 1$, $x_2 = 2$, $x_3 = 3$. The cost to commute one unit distance is τ . The city is populated by households indexed by j. Each household chooses a neighborhood i, pays land rent R_i , and commutes to the center, at location o, to earn wage w. A household's utility is $V_{ij} = A_i \cdot c_i z_{ij}$ where $A_i = i$ is the amenity value in location i, c_i is consumption and z_{ij} is the household and location specific valuation. All z_{ij} are drawn from a Frechet distribution, $F(z) = e^{-Tz^{-\epsilon}}$.
 - (a) Let consumption be $c_i = w R_i + i\tau$. Set up the household's problem.

$$V_{ij} = A_i \cdot z_{ij} \cdot c_i$$

Using $c_i = w - R_i + i\tau$ and $A_i = i$,

$$V_{ij} = i \cdot z_{ij} \cdot (w - R_i - i\tau)$$

Therefore, the household's problem is to choose a discrete location i that maximizes its utility.

$$\max\{V_{1j}, V_{2j}, V_{3j}\}$$

(b) Using the big theorem from the lecture, solve for the share of household s_i in each location.

$$s_i = \frac{[i \cdot (w - R_i - i\tau)]^{\epsilon}}{\sum_{1}^{k=3} [k \cdot (w - R_k - k\tau)]^{\epsilon}}$$

(c) Let the share of households in each location $s_1 = s_2 = s_3 = \frac{1}{3}$, wage w = 5 and the price of agricultural land $\bar{R} = 1$. Assume that the land rent at x = 3 is equal to \bar{R} . Solve for R_1 , R_2 and R_3 in terms of τ .

Setting $s_1 = s_2 = s_3 = \frac{1}{3}$ we get the following three equations:

$$s_1 = s_2 \implies w - R_1 - \tau = 2(w - R_2 - 2\tau)$$

 $2R_2 - R_1 = w - 3\tau$

$$s_2 = s_3 \implies 2(w - R_2 - 2\tau) = 3(w - R_3 - 3\tau)$$

 $2R_2 - 3R_3 = 5\tau - w$

1

$$s_1 = s_3 \implies w - R_1 - \tau = 3(w - R_3 - 3\tau)$$

 $3R_3 - R_1 = 2w - 8\tau$

Plugging in w = 5 and $R_3 = \bar{R} = 1$, we get:

$$R_1 = 8\tau - 7$$

 $R_2 = 2.5\tau - 1$
 $R_3 = 1$

(d) Solve for consumption in terms of τ .

Substituting R_i from part c and w in $c_i = w - R_i + i\tau$

$$c_1 = 12 - 9\tau$$

 $c_2 = 6 - 4.5\tau$
 $c_3 = 4 - 3\tau$

(e) Plot land rent and commuting costs as a function of i. How does this compare to the monocentric city model with a continuum of locations?

In a monocentric city model with a continuum of locations, for each unit decrease in commute costs, land rent increases by exactly the same amount. This is not always the case in a discrete space model with heterogeneous agents. Panel A above shows that the land rent declines less than the increase in commuting costs, given $\tau > 1$.

(f) Do all households at location i have the same utility? What does this suggest about the usefulness of R to measure welfare?

All households in location i do not have the same utility since the utility form contains z_{ij} , which is a household and location specific valuation. This makes evaluating welfare much more complicated in these models. Research using these models often disregards land rent altogether in welfare calculations.