# **TEST REPORT**

| S18S0199980W |
|--------------|
| ١            |

FCC ID..... : W6RRNX-AC1200PCE2

Applicant ...... Rosewill Inc.

Address ...... 17708 Rowland St. City of Industry, CA 91748,USA

Manufaturer ..... The same as above

Address ...... The same as above

Product : AC1200 wifi PCIE lan card

Model(s) ..... : RNX-AC1200PCEv2

Standards FCC CFR47 Part 15 C Section 15.407:2016

Date of Receipt sample..... : 2018-01-10

**Date of Test**...... : 2018-01-11 to 2018-01-19

Date of Issue ..... : 2018-01-20

Test Result .....: Pass

#### Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

#### Prepared By:

#### Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Jack Wen / Test Engineer

Philo Zhong / Manager

lo zhous

#### 1 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.



Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

# 1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

| Country/Region | Accreditation Body         | Scope              | Note |
|----------------|----------------------------|--------------------|------|
| USA            |                            | FCC ID \ DOC \ VOC | 1    |
| Canada         |                            | IC ID \ VOC        | 2    |
| Japan          | 401.4                      | MIC-T \ MIC-R      | -    |
| Europe         | A2LA                       | EMCD \ RED         | -    |
| Taiwan         | (Certificate No.: 4243.01) | NCC                | -    |
| Hong Kong      |                            | OFCA               | -    |
| Australia      |                            | RCM                | -    |
| India          |                            | WPC                | -    |
| Thailand       | International Services     | NTC                | -    |
| Singapore      |                            | IDA                | -    |

### Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

### **B.TCBs and Notify Bodies Recognized Testing Laboratory.**

| Recognized Testing Laboratory of         | Notify body number |
|------------------------------------------|--------------------|
| TUV Rheinland                            |                    |
| Intertek                                 |                    |
| TUV SUD                                  | Optional.          |
| SGS                                      |                    |
| Phoenix Testlab GmbH                     | 0700               |
| Element Materials Technology Warwick Ltd | 0891               |
| Timco Engineering, Inc.                  | 1177               |
| Eurofins Product Service GmbH            | 0681               |

Reference No.: WTS18S0199980W Page 4 of 62

2 Revision History

| Test report #  | Date of<br>Receipt<br>sample | Date of<br>Test                  | Date of<br>Issue | Purpose  | Comment | Approved |
|----------------|------------------------------|----------------------------------|------------------|----------|---------|----------|
| WTS18S0199980W | 2018-<br>01-10               | 2018-01-<br>11 to 2018-<br>01-19 | 2018-01-<br>20   | original | -       | Valid    |

Reference No.: WTS18S0199980W Page 5 of 62

# 2 Test Summary

| Test Items                                                     | Test Requirement                    | Result |
|----------------------------------------------------------------|-------------------------------------|--------|
| Conducted Emissions                                            | 15.207(a)                           | PASS   |
| Radiated Emissions                                             | 15.407(a)<br>15.205(a)<br>15.209(a) | PASS   |
| Duty Cycle                                                     | KDB 789033                          | PASS   |
| 6dB Bandwidth                                                  | 15.407(a)                           | PASS   |
| 26 dB Emission Bandwidth & 99% Occupied Bandwidth              | 15.407(a)                           | PASS   |
| Maximum Conducted Output Power                                 | 15.407(a)                           | PASS   |
| Power Spectral Density                                         | 15.407(a)                           | PASS   |
| Restricted bands around fundamental frequency                  | 15.407(a)                           | PASS   |
| Antenna Requirement                                            | 15.203                              | PASS   |
| Maximum Permissible Exposure (Exposure of Humans to RF Fields) | 1.1307(b)(1)                        | PASS   |

# 3 Contents

|    |                                              | Page |
|----|----------------------------------------------|------|
|    | COVER PAGE                                   |      |
| 1  | LABORATORIES INTRODUCTION                    |      |
|    | 1.1 TEST FACILITY                            |      |
| 2  | REVISION HISTORY                             | 4    |
| 2  | TEST SUMMARY                                 | 5    |
| 3  | CONTENTS                                     |      |
| 4  | GENERAL INFORMATION                          |      |
|    | 4.1 GENERAL DESCRIPTION OF E.U.T             |      |
|    | 4.2 DETAILS OF E.U.T                         |      |
| 5  | EQUIPMENT USED DURING TEST                   |      |
| 3  | 5.1 EQUIPMENTS LIST                          |      |
|    | 5.2 DESCRIPTION OF SUPPORT UNITS             |      |
|    | 5.3 MEASUREMENT UNCERTAINTY                  | 12   |
|    | 5.4 TEST EQUIPMENT CALIBRATION               |      |
| 6  | CONDUCTED EMISSION                           |      |
|    | 6.1 E.U.T. OPERATION                         |      |
|    | 6.2 EUT SETUP                                |      |
|    | 6.4 CONDUCTED EMISSION TEST RESULT           | -    |
| 7  | RADIATED EMISSIONS                           | 16   |
|    | 7.1 EUT OPERATION                            | 16   |
|    | 7.2 TEST SETUP                               |      |
|    | 7.3 SPECTRUM ANALYZER SETUP                  |      |
|    | 7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION | 19   |
|    | 7.6 SUMMARY OF TEST RESULTS                  | 20   |
| 8  | DUTY CYCLE                                   | 25   |
|    | 8.1 SUMMARY OF TEST RESULTS                  | 25   |
| 9  | BAND EDGE                                    | 27   |
|    | 9.1 Test Produce                             | 27   |
|    | 9.2 TEST RESULT                              |      |
| 10 | 6 DB BANDWIDTH                               |      |
|    | 10.1 TEST PROCEDURE:                         |      |
| 11 | 10.2 TEST RESULT:                            |      |
| 11 |                                              |      |
|    | 11.1 TEST PROCEDURE:                         |      |
| 12 | CONDUCTED OUTPUT POWER                       |      |
| 12 | 12.1 Test Procedure:                         |      |
|    | 12.2 TEST RESULT:                            |      |
| 13 | POWER SPECTRAL DENSITY                       | 45   |
|    | 13.1 Test Procedure:                         | 45   |
|    | 13.2 TEST RESULT:                            | 46   |
| 14 | FREQUENCY STABILITY                          | 50   |

# Reference No.: WTS18S0199980W Page 7 of 62

|    | 14.1         | Test Procedure:                           | 50 |
|----|--------------|-------------------------------------------|----|
|    | 14.2         | TEST RESULT:                              | 51 |
| 15 | ANTE         | ENNA REQUIREMENT                          | 52 |
| 16 | RF EX        | XPOSURE                                   | 53 |
|    | 16.1<br>16.2 | REQUIREMENTSEVALUATION RESULT             |    |
| 17 | PHOT         | TOGRAPHS -TEST SETUP PHOTOS               | 55 |
|    | 17.1<br>17.2 | PHOTOGRAPH-CONDUCTED EMISSIONS TEST SETUP |    |
| 18 | PHOT         | TOGRAPHS – CONSTRUCTIONAL DETAILS         | 59 |
|    | 18.1         | EXTERNAL PHOTOS                           | 59 |
|    | 18.2         | INTERNAL PHOTOS                           | 61 |

Reference No.: WTS18S0199980W Page 8 of 62

### 4 General Information

# 4.1 General Description of E.U.T

Product: AC1200 wifi PCIE lan card

Model(s): RNX-AC1200PCEv2

Model Description: N/A

Operation Frequency: IEEE 802.11a/ n(HT20): 5150MHz to 5250MHz(20MHz bandwidth

only)

Type of modulation: IEEE for 802.11n : OFDM(BPSK/QPSK/16QAM/64QAM)

The Lowest Oscillator: 32.768kHz

Antenna installation: External antenna with RP-SMA connector

Antenna Gain: 2dBi

### 4.2 Details of E.U.T

Ratings: N/A

Reference No.: WTS18S0199980W Page 9 of 62

### 4.3 Channel List

| U-NII-1 (5.15-5.25GHz) |                |  |  |  |
|------------------------|----------------|--|--|--|
| channel                | Frequency(MHz) |  |  |  |
| 36                     | 5180           |  |  |  |
| 40                     | 5200           |  |  |  |
| 44                     | 5220           |  |  |  |
| 48                     | 5240           |  |  |  |

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n(HT20):

| channel | Frequency(MHz) |
|---------|----------------|
| 36      | 5180           |
| 40      | 5200           |
| 48      | 5240           |

#### Test Mode Description:

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Transmitting duty cycle is no less 98%.

The software is installed in operation system, named "Rosewill Inc".

| Test Items                      | Mode          | Data Rate | Channel          | TX/RX |
|---------------------------------|---------------|-----------|------------------|-------|
| Dedicted Emissions              | 802.11n(HT20) | MCS0      | U-NII-1 36/40/48 | TX    |
| Radiated Emissions              | 802.11a       | MCS0      | U-NII-1 36/40/48 | TX    |
| Duty Cycle                      | 802.11n(HT20) | MCS0      | U-NII-1 36/40/48 | TX    |
| Duty Cycle                      | 802.11a       | MCS0      | U-NII-1 36/40/48 | TX    |
| Dond Edge                       | 802.11n(HT20) | MCS0      | U-NII-1 36/40/48 | TX    |
| Band Edge                       | 802.11a       | MCS0      | U-NII-1 36/40/48 | TX    |
| CdD Dondwidth                   | 802.11n(HT20) | MCS0      | U-NII-1 36/40/48 | TX    |
| 6dB Bandwidth                   | 802.11a       | MCS0      | U-NII-1 36/40/48 | TX    |
| 26dB Bandwidth and 99% Occupied | 802.11n(HT20) | MCS0      | U-NII-1 36/40/48 | TX    |
| Bandwidth                       | 802.11a       | MCS0      | U-NII-1 36/40/48 | TX    |
| Conducted Output Douge          | 802.11n(HT20) | MCS0      | U-NII-1 36/40/48 | TX    |
| Conducted Output Power          | 802.11a       | MCS0      | U-NII-1 36/40/48 | TX    |
| Douter Spectral Density         | 802.11n(HT20) | MCS0      | U-NII-1 36/40/48 | TX    |
| Power Spectral Density          | 802.11a       | MCS0      | U-NII-1 36/40/48 | TX    |
| Frequency Stability             | Un-modulation | 1         | U-NII-1 36/40/48 | TX    |

# 5 Equipment Used during Test

# 5.1 Equipments List

Reference No.: WTS18S0199980W

|        | cted Emissions Test           |                                  |                  |                     | Last                        |                         |
|--------|-------------------------------|----------------------------------|------------------|---------------------|-----------------------------|-------------------------|
| Item   | Equipment                     | Manufaturer                      | Model No.        | Serial No.          | Calibration<br>Date         | Calibration<br>Due Date |
| 1.     | EMI Test Receiver             | R&S                              | ESCI             | 100947              | 2017-09-12                  | 2018-09-11              |
| 2.     | LISN                          | R&S                              | ENV216           | 101215              | 2017-09-12                  | 2018-09-11              |
| 3.     | Cable                         | Тор                              | TYPE16(3.5M)     | -                   | 2017-09-12                  | 2018-09-11              |
| Condu  | cted Emissions Test           | Site 2#                          |                  |                     |                             |                         |
| Item   | Equipment                     | Manufaturer                      | Model No.        | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1.     | EMI Test Receiver             | R&S                              | ESCI             | 101155              | 2017-09-12                  | 2018-09-11              |
| 2.     | LISN                          | SCHWARZBECK                      | NSLK 8128        | 8128-289            | 2017-09-12                  | 2018-09-11              |
| 3.     | Limiter                       | York                             | MTS-IMP-136      | 261115-001-<br>0024 | 2017-09-12                  | 2018-09-11              |
| 4.     | Cable                         | LARGE                            | RF300            | -                   | 2017-09-12                  | 2018-09-11              |
| 3m Ser | mi-anechoic Chamber           | for Radiation Emis               | sions Test site  | 1#                  |                             |                         |
| Item   | Equipment                     | Manufaturer                      | Model No.        | Serial No.          | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1      | EMC Analyzer                  | Agilent                          | E7405A           | MY45114943          | 2017-09-14                  | 2018-09-13              |
| 2      | Ative Loop Antenna            | Beijing Dazhi                    | ZN30900A         | -                   | 2016-10-17                  | 2017-10-16              |
| 3      | Trilog Broadband<br>Antenna   | SCHWARZBECK                      | VULB9163         | 336                 | 2017-04-09                  | 2018-04-08              |
| 4      | Coaxial Cable<br>(below 1GHz) | Тор                              | TYPE16(13M)      | -                   | 2017-09-12                  | 2018-09-11              |
| 5      | Broad-band Horn<br>Antenna    | SCHWARZBECK                      | BBHA 9120 D      | 667                 | 2017-04-09                  | 2018-04-08              |
| 6      | Broad-band Horn Antenna       | SCHWARZBECK                      | BBHA 9170        | 335                 | 2017-09-14                  | 2018-09-13              |
| 7      | Broadband<br>Preamplifier     | COMPLIANCE<br>DIRECTION          | PAP-1G18         | 2004                | 2017-04-13                  | 2018-04-12              |
| 8      | Coaxial Cable (above 1GHz)    | Тор                              | 1GHz-25GHz       | EW02014-7           | 2017-04-13                  | 2018-04-12              |
| 3m Ser | mi-anechoic Chamber           | for Radiation Emis               | ssions Test site | 2#                  |                             |                         |
| Item   | Equipment                     | Manufaturer                      | Model No.        | Serial No           | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1      | Test Receiver                 | R&S                              | ESCI             | 101296              | 2017-04-13                  | 2018-04-12              |
| 2      | Trilog Broadband<br>Antenna   | SCHWARZBECK                      | VULB9160         | 9160-3325           | 2017-04-08                  | 2018-04-07              |
| 3      | Amplifier                     | Compliance pirection systems inc | PAP-0203         | 22024               | 2017-04-13                  | 2018-04-12              |
| 4      | Cable                         | HUBER+SUHNER                     | CBL2             | 525178              | 2017-04-13                  | 2018-04-12              |

| Item | Equipment                       | Manufaturer | Model No. | Serial No. | Last<br>Calibration<br>Date | Calibration<br>Due Date |
|------|---------------------------------|-------------|-----------|------------|-----------------------------|-------------------------|
| 1.   | EMC Analyzer<br>(9k~26.5GHz)    | Agilent     | E7405A    | MY45114943 | 2017-09-14                  | 2018-09-13              |
| 2.   | Spectrum Analyzer (9k-6GHz)     | R&S         | FSL6      | 100959     | 2017-09-12                  | 2018-09-11              |
| 3.   | Signal Analyzer<br>(9k~26.5GHz) | Agilent     | N9010A    | MY50520207 | 2017-09-12                  | 2018-09-11              |

### 5.2 Description of Support Units

| Equipment | Manufaturer | Model No. | Series No. |
|-----------|-------------|-----------|------------|
| 1         | 1           | 1         | 1          |

### 5.3 Measurement Uncertainty

| Parameter                             | Uncertainty                      |
|---------------------------------------|----------------------------------|
| Radio Frequency                       | ± 1 x 10 <sup>-6</sup>           |
| RF Power                              | ± 1.0 dB                         |
| RF Power Density                      | ± 2.2 dB                         |
| De dieta de Occasiona Francisco de de | ± 5.03 dB (30M~1000MHz)          |
| Radiated Spurious Emissions test      | ± 5.47 dB (1000M~25000MHz)       |
| Conducted Spurious Emissions test     | ± 3.64 dB (A mains 150KHz~30MHz) |

# 5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS18S0199980W Page 13 of 62

#### 6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB<sub>µ</sub>V between 0.15MHz & 0.5MHz

 $56~dB\mu V$  between 0.5MHz & 5MHz  $60~dB\mu V$  between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

### 6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

**EUT Operation:** 

The test was performed in transmitting mode, the test data were shown in the report.

### 6.2 EUT Setup

The conducted emission tests were performed using the setup acordance with the ANSI C63.10:2013.



### **6.3** Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

#### 6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:



Reference No.: WTS18S0199980W Page 15 of 62

#### Neutral line:



Reference No.: WTS18S0199980W Page 16 of 62

### 7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.407

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

| LIIIII.            |              |              |                                                 |                                      |  |  |
|--------------------|--------------|--------------|-------------------------------------------------|--------------------------------------|--|--|
| _                  | Field Strei  | ngth         | Field Strength Limit at 3m Measurement Distance |                                      |  |  |
| Frequency<br>(MHz) | uV/m         | Distance (m) | uV/m                                            | dBuV/m                               |  |  |
| 0.009 ~ 0.490      | 2400/F(kHz)  | 300          | 10000 * 2400/F(kHz)                             | 20log <sup>(2400/F(kHz))</sup> + 80  |  |  |
| 0.490 ~ 1.705      | 24000/F(kHz) | 30           | 100 * 24000/F(kHz)                              | 20log <sup>(24000/F(kHz))</sup> + 40 |  |  |
| 1.705 ~ 30         | 30           | 30           | 100 * 30                                        | 20log <sup>(30)</sup> + 40           |  |  |
| 30 ~ 88            | 100          | 3            | 100                                             | 20log <sup>(100)</sup>               |  |  |
| 88 ~ 216           | 150          | 3            | 150                                             | 20log <sup>(150)</sup>               |  |  |
| 216 ~ 960          | 200          | 3            | 200                                             | 20log <sup>(200)</sup>               |  |  |
| Above 960          | 500          | 3            | 500                                             | 20log <sup>(500)</sup>               |  |  |

# 7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

### 7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup acordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.



Reference No.: WTS18S0199980W Page 18 of 62



The test setup for emission measurement above 1 GHz.

# 7.3 Spectrum Analyzer Setup

| Below 30MHz  |                      |         |
|--------------|----------------------|---------|
|              | Sweep Speed          | . Auto  |
|              | IF Bandwidth         | .10kHz  |
|              | Video Bandwidth      | .10kHz  |
|              | Resolution Bandwidth | .10kHz  |
| 30MHz ~ 1GHz | z                    |         |
|              | Sweep Speed          | . Auto  |
|              | Detector             | .PK     |
|              | Resolution Bandwidth | .100kHz |
|              | Video Bandwidth      | .300kHz |
| Above 1GHz   |                      |         |
|              | Sweep Speed          | . Auto  |
|              | Detector             | .PK     |
|              | Resolution Bandwidth | .1MHz   |
|              | Video Bandwidth      | .3MHz   |
|              | Detector             | .Ave.   |
|              | Resolution Bandwidth | .1MHz   |
|              | Video Bandwidth      | .10Hz   |

Reference No.: WTS18S0199980W Page 19 of 62

#### 7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level

- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, eah emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

## 7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Fator and Cable Fator, and subtrating the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Fator + Cable Fator - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

### 7.6 Summary of Test Results

FCC Part15.33: For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph: If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Test Frequency: 9kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

# Test Frequency : 30MHz ~ 18GHz

| _                                         | Receiver | <b>D</b> 4 4 | Turn           | RX An     | tenna    | Corrected   |                        | FCC F<br>15.407/2 |        |  |  |
|-------------------------------------------|----------|--------------|----------------|-----------|----------|-------------|------------------------|-------------------|--------|--|--|
| Frequency                                 | Reading  | Detector     | table<br>Angle | Height    | Polar    | Fator       | Corrected<br>Amplitude | Limit             | Margin |  |  |
| (MHz)                                     | (dBµV)   | (PK/QP/Ave)  | Degree         | (m)       | (H/V)    | (dB)        | (dBµV/m)               | (dBµV/m)          | (dB)   |  |  |
| 802.11n(HT20) U-NII-1 low Channel 5180MHz |          |              |                |           |          |             |                        |                   |        |  |  |
| 226.40                                    | 40.22    | QP           | 304            | 1.7       | Н        | -11.26      | 28.96                  | 46                | -18.13 |  |  |
| 226.40                                    | 29.55    | QP           | 31             | 1.7       | V        | -11.26      | 18.29                  | 46                | -28.29 |  |  |
| 4512.59                                   | 48.46    | PK           | 24             | 1.2       | Н        | -1.80       | 46.66                  | 74                | -27.97 |  |  |
| 4512.59                                   | 48.18    | Ave          | 34             | 1.0       | Н        | -1.80       | 46.38                  | 54                | -8.06  |  |  |
| 5138.04                                   | 46.81    | PK           | 264            | 1.6       | Н        | -1.01       | 45.80                  | 74                | -28.27 |  |  |
| 5138.04                                   | 40.15    | Ave          | 16             | 1.0       | Н        | -1.01       | 39.14                  | 54                | -15.87 |  |  |
| 10360.00                                  | 40.20    | PK           | 293            | 1.1       | Н        | 5.47        | 45.67                  | 74                | -28.33 |  |  |
| 10360.00                                  | 23.04    | Ave          | 313            | 1.8       | Н        | 5.47        | 28.51                  | 54                | -25.49 |  |  |
| 15540.00                                  | 39.70    | PK           | 55             | 1.3       | Н        | 5.28        | 44.98                  | 74                | -29.02 |  |  |
| 15540.00                                  | 31.77    | Ave          | 65             | 1.6       | Н        | 5.28        | 37.05                  | 54                | -16.95 |  |  |
|                                           |          | 802.11n(     | (HT20) U-      | NII-1 mid | dle char | nnel 5200MF | lz                     |                   |        |  |  |
| 226.38                                    | 40.01    | QP           | 315            | 1.0       | Н        | -11.48      | 28.54                  | 46                | -18.13 |  |  |
| 226.38                                    | 30.19    | QP           | 220            | 1.6       | V        | -11.48      | 18.72                  | 46                | -28.29 |  |  |
| 4513.13                                   | 48.96    | PK           | 241            | 1.5       | Н        | -1.72       | 47.24                  | 74                | -27.97 |  |  |
| 4513.13                                   | 48.96    | Ave          | 343            | 1.2       | Н        | -1.72       | 47.24                  | 54                | -8.06  |  |  |
| 5138.04                                   | 47.74    | PK           | 357            | 1.4       | Н        | -0.64       | 47.10                  | 74                | -28.27 |  |  |
| 5138.04                                   | 39.32    | Ave          | 197            | 1.7       | Н        | -0.64       | 38.68                  | 54                | -15.87 |  |  |
| 10400.00                                  | 40.22    | PK           | 293            | 1.1       | Н        | 5.49        | 45.71                  | 74                | -28.29 |  |  |
| 10400.00                                  | 23.26    | Ave          | 313            | 1.8       | Н        | 5.49        | 28.75                  | 54                | -25.25 |  |  |
| 15600.00                                  | 40.55    | PK           | 55             | 1.3       | Н        | 5.26        | 45.81                  | 74                | -28.19 |  |  |
| 15600.00                                  | 31.80    | Ave          | 65             | 1.6       | Н        | 5.26        | 37.06                  | 54                | -16.94 |  |  |

| Fraguanay | Receiver                                   | Receiver Detector | Turn<br>table |        |       | Corrected | Compated               | FCC Part<br>15.407/209/205 |        |  |
|-----------|--------------------------------------------|-------------------|---------------|--------|-------|-----------|------------------------|----------------------------|--------|--|
| Frequency | Reading                                    | Detector          | Angle         | Height | Polar | Fator     | Corrected<br>Amplitude | Limit                      | Margin |  |
| (MHz)     | (dBµV)                                     | (PK/QP/Ave)       | Degree        | (m)    | (H/V) | (dB)      | (dBµV/m)               | (dBµV/m)                   | (dB)   |  |
|           | 802.11n(HT20) U-NII-1 High channel 5240MHz |                   |               |        |       |           |                        |                            |        |  |
| 226.73    | 39.99                                      | QP                | 284           | 1.9    | Н     | -11.41    | 28.58                  | 46                         | -18.13 |  |
| 226.73    | 29.55                                      | QP                | 3             | 1.6    | V     | -11.41    | 18.14                  | 46                         | -28.29 |  |
| 4513.22   | 48.36                                      | PK                | 33            | 1.6    | Н     | -1.70     | 46.65                  | 74                         | -27.97 |  |
| 4513.22   | 48.52                                      | Ave               | 92            | 1.4    | Н     | -1.70     | 46.81                  | 54                         | -8.06  |  |
| 5138.16   | 47.20                                      | PK                | 118           | 1.4    | Н     | -0.60     | 46.60                  | 74                         | -28.27 |  |
| 5138.16   | 39.93                                      | Ave               | 343           | 1.6    | Н     | -0.60     | 39.33                  | 54                         | -15.87 |  |
| 10480.00  | 40.30                                      | PK                | 293           | 1.1    | Н     | 4.15      | 44.45                  | 74                         | -29.55 |  |
| 10480.00  | 22.59                                      | Ave               | 313           | 1.8    | Н     | 4.15      | 26.74                  | 54                         | -27.26 |  |
| 15720.00  | 39.69                                      | PK                | 55            | 1.3    | Н     | 5.15      | 44.84                  | 74                         | -29.16 |  |
| 15720.00  | 31.44                                      | Ave               | 65            | 1.6    | Н     | 5.15      | 36.59                  | 54                         | -17.41 |  |

| Frequenc                            | Receiver | <b>D</b> 4 4 | Turn           | RX An     | tenna  | Corrected  |                        | FCC F<br>15.407/2 |        |  |
|-------------------------------------|----------|--------------|----------------|-----------|--------|------------|------------------------|-------------------|--------|--|
| y                                   | Reading  | Detector     | table<br>Angle | Height    | Polar  | Fator      | Corrected<br>Amplitude | Limit             | Margin |  |
| (MHz)                               | (dBµV)   | (PK/QP/Ave)  | Degree         | (m)       | (H/V)  | (dB)       | (dBµV/m)               | (dBµV/m)          | (dB)   |  |
| 802.11a U-NII-1 low Channel 5180MHz |          |              |                |           |        |            |                        |                   |        |  |
| 226.44                              | 40.21    | QP           | 350            | 1.2       | Н      | -11.20     | 29.01                  | 46                | -18.13 |  |
| 226.44                              | 29.39    | QP           | 152            | 1.2       | V      | -11.20     | 18.19                  | 46                | -28.29 |  |
| 4512.60                             | 48.67    | PK           | 52             | 1.3       | Н      | -1.86      | 46.81                  | 74                | -27.97 |  |
| 4512.60                             | 48.78    | Ave          | 47             | 1.7       | Н      | -1.86      | 46.92                  | 54                | -8.06  |  |
| 5137.99                             | 47.07    | PK           | 221            | 1.5       | Н      | -0.85      | 46.22                  | 74                | -28.27 |  |
| 5137.99                             | 40.16    | Ave          | 292            | 1.0       | Н      | -0.85      | 39.31                  | 54                | -15.87 |  |
| 10360.00                            | 40.47    | PK           | 293            | 1.1       | Н      | 5.47       | 45.94                  | 74                | -28.06 |  |
| 10360.00                            | 23.18    | Ave          | 313            | 1.8       | Н      | 5.47       | 28.65                  | 54                | -25.35 |  |
| 15540.00                            | 40.10    | PK           | 55             | 1.3       | Н      | 5.28       | 45.38                  | 74                | -28.62 |  |
| 15540.00                            | 31.82    | Ave          | 65             | 1.6       | Н      | 5.28       | 37.10                  | 54                | -16.90 |  |
|                                     | ,        | 802.         | 11a U-NII      | -1 middle | channe | el 5200MHz |                        |                   |        |  |
| 226.52                              | 40.49    | QP           | 330            | 1.5       | Н      | -11.44     | 29.05                  | 46                | -18.13 |  |
| 226.52                              | 29.66    | QP           | 344            | 1.7       | V      | -11.44     | 18.22                  | 46                | -28.29 |  |
| 4512.87                             | 48.88    | PK           | 342            | 1.4       | Н      | -1.73      | 47.15                  | 74                | -27.97 |  |
| 4512.87                             | 48.27    | Ave          | 315            | 1.3       | Н      | -1.73      | 46.55                  | 54                | -8.06  |  |
| 5138.17                             | 47.79    | PK           | 274            | 1.7       | Н      | -0.82      | 46.97                  | 74                | -28.27 |  |
| 5138.17                             | 39.33    | Ave          | 37             | 1.1       | Н      | -0.82      | 38.51                  | 54                | -15.87 |  |
| 10400.00                            | 40.76    | PK           | 293            | 1.1       | Н      | 5.49       | 46.25                  | 74                | -27.75 |  |
| 10400.00                            | 22.41    | Ave          | 313            | 1.8       | Н      | 5.49       | 27.90                  | 54                | -26.10 |  |
| 15600.00                            | 40.20    | PK           | 55             | 1.3       | Н      | 5.26       | 45.46                  | 74                | -28.54 |  |
| 15600.00                            | 31.56    | Ave          | 65             | 1.6       | Н      | 5.26       | 36.82                  | 54                | -17.18 |  |

| Eroguopoy | Receiver                             | Detector    | Turn           | RX An  | tenna | Corrected<br>Fator | Corrected              | FCC Part<br>15.407/209/205 |        |  |
|-----------|--------------------------------------|-------------|----------------|--------|-------|--------------------|------------------------|----------------------------|--------|--|
| Frequency | Reading                              |             | table<br>Angle | Height | Polar |                    | Corrected<br>Amplitude | Limit                      | Margin |  |
| (MHz)     | (dBµV)                               | (PK/QP/Ave) | Degree         | (m)    | (H/V) | (dB)               | (dBµV/m)               | (dBµV/m)                   | (dB)   |  |
|           | 802.11a U-NII-1 High channel 5240MHz |             |                |        |       |                    |                        |                            |        |  |
| 226.71    | 39.71                                | QP          | 317            | 1.1    | Н     | -11.56             | 28.15                  | 46                         | -18.13 |  |
| 226.71    | 29.77                                | QP          | 117            | 2.0    | V     | -11.56             | 18.21                  | 46                         | -28.29 |  |
| 4512.97   | 49.15                                | PK          | 301            | 1.3    | Н     | -1.82              | 47.34                  | 74                         | -27.97 |  |
| 4512.97   | 49.00                                | Ave         | 228            | 1.9    | Н     | -1.82              | 47.18                  | 54                         | -8.06  |  |
| 5137.65   | 47.19                                | PK          | 263            | 1.5    | Н     | -0.88              | 46.31                  | 74                         | -28.27 |  |
| 5137.65   | 39.83                                | Ave         | 251            | 1.4    | Н     | -0.88              | 38.94                  | 54                         | -15.87 |  |
| 10480.00  | 40.29                                | PK          | 293            | 1.1    | Н     | 4.15               | 44.44                  | 74                         | -29.56 |  |
| 10480.00  | 22.46                                | Ave         | 313            | 1.8    | Н     | 4.15               | 26.61                  | 54                         | -27.39 |  |
| 15720.00  | 39.90                                | PK          | 55             | 1.3    | Н     | 5.15               | 45.05                  | 74                         | -28.95 |  |
| 15720.00  | 31.65                                | Ave         | 65             | 1.6    | Н     | 5.15               | 36.80                  | 54                         | -17.20 |  |

Test Frequency: 18GHz~40GHz

The measurements were more than 20 dB below the limit and not recorded.

Reference No.: WTS18S0199980W Page 25 of 62

#### **Duty cycle** 8

47 CFR Part 15C 15.407 and 789033 D02 General UNII Test

Test Requirement: Procedures New Rules v02r01, Section (B)

Test Method: ANSI C63.10: 2013

N/A Test Limit:

Test Result: **PASS** 

Through Pre-scan, and found 802.11a at lowest channel is the worst Remark:

case. Only the worst case is recorded in the report.

# 8.1 Summary of Test Results

| 802.11n(HT20) mode                        |              |            |               |  |  |  |  |  |  |  |  |
|-------------------------------------------|--------------|------------|---------------|--|--|--|--|--|--|--|--|
| channel On time(ms) Period(ms) Duty Cycle |              |            |               |  |  |  |  |  |  |  |  |
| 36                                        | 100          | 100        | 100           |  |  |  |  |  |  |  |  |
|                                           | 802.11a mode |            |               |  |  |  |  |  |  |  |  |
| channel                                   | On time(ms)  | Period(ms) | Duty Cycle(%) |  |  |  |  |  |  |  |  |
| 36                                        | 100          | 100        | 100           |  |  |  |  |  |  |  |  |

Test result plots shown as follows:





#### 802.11a U-NII-1 Low channel



Reference No.: WTS18S0199980W Page 27 of 62

## 9 Band Edge

Test Requirement: FCC CFR47 Part 15 Section 15.407

Test Method: ANSI C63.10 2013

Test Limit: For transmitters operating in the 5.15-5.25 GHz band: All emissions

outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of

-27dBm/MHz.

Test Result: PASS

#### 9.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 1MHz and VBW of spectrum analyzer to 3MHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

### 9.2 Test Result

Test result plots shown as follows:

802.11n(HT20) U-NII-1 Band edge-left side







#VBW 3.0 MHz



Reference No.: WTS18S0199980W Page 30 of 62

### 10 6 dB Bandwidth

Test Requirement: FCC CFR47 Part 15 Section 15.407(e)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01

Section C

Test Limit: ≥ 500 kHz

Test Result: PASS

#### 10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

#### 10.2 Test Result:

|         | Operation     | 6 dB Bandwidth (MHz) |        |        |  |  |  |
|---------|---------------|----------------------|--------|--------|--|--|--|
| Band    | mode          | Low                  | Middle | High   |  |  |  |
|         | 802.11n(HT20) | 17.770               | 17.785 | 17.723 |  |  |  |
| U-NII-1 | 802.11a       | 16.603               | 16.555 | 16.587 |  |  |  |

Test result plots shown as follows:

802.11n(HT20) U-NII-1 Low channel



802.11n(HT20) U-NII-1 Middle channel









Occupied Bandwidth

Transmit Freq Error x dB Bandwidth

16.4627 MHz

–32.803 kHz 16.555 MHz



Occ BW % Pwr

x dB

99.00 %

-6.00 dB

Signal Track

<u>0ff</u>

802.11a U-NII-1 High channel



Reference No.: WTS18S0199980W Page 34 of 62

# 11 26 dB Bandwidth and 99% Occupied Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.407 (a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01

Section C

Test Limit: No restriction limits

Test Result: PASS

#### 11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 300kHz, VBW = 1MHz

Reference No.: WTS18S0199980W Page 35 of 62

### 11.2 Test Result:

|         | Operation     | 26 di | Bandwidth | (MHz) | 99% Bandwidth (MHz) |        |       |  |
|---------|---------------|-------|-----------|-------|---------------------|--------|-------|--|
| Band    | mode          | Low   | Middle    | High  | Low                 | Middle | High  |  |
| U-NII-1 | 802.11n(HT20) | 22.28 | 22.10     | 22.25 | 17.88               | 17.93  | 17.89 |  |
|         | 802.11a       | 21.55 | 21.54     | 21.55 | 16.91               | 16.91  | 16.85 |  |

Test result plots shown as follows:









#### 802.11a U-NII-1 Low channel



802.11a U-NII-1 Middle channel



802.11a U-NII-1 High channel



Reference No.: WTS18S0199980W Page 39 of 62

# 12 Conducted Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01

Section E

Test Limit: U-NII-1 250mW(24dBm)

Test Result: PASS

Conducted output power= measurement power+ $10\log(1/x)$ 

X is duty cycle=1, so  $10\log(1/1)=0$ 

Conducted output power= measurement power

#### 12.1 Test Procedure:

Remark:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Reference No.: WTS18S0199980W Page 40 of 62

#### 12.2 Test Result:

| D 1    | Operation     | channel | Conducted Output Power (dBm) |   |   |
|--------|---------------|---------|------------------------------|---|---|
| Band   | mode          |         | ANT0                         | 1 | 1 |
| U-NII- |               | Low     | 7.33                         | 1 | 1 |
| 1      | 802.11n(HT20) | Middle  | 7.57                         | 1 | 1 |
|        |               | High    | 7.59                         | 1 | 1 |
|        |               | Low     | 7.18                         | 1 | 1 |
|        | 802.11a       | Middle  | 7.45                         | / | / |
|        |               | High    | 7.47                         | / | / |

<sup>\*</sup> All transmit signals are completely uncorrelated with each other, Directional gain =  $G_{ANT}$  which is less than 6dBi. So the limit does not be reduced.

Test result plots shown as follows:













Reference No.: WTS18S0199980W Page 45 of 62

## 13 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB662911 D01 Multiple Transmitter Output v02r01

Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01,

Section F

Test Limit: ≤11.00dBm/MHz for Operation in the U-NII-1(5150MHz-5250MHz)of

mobile device

Test Result: PASS

#### 13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer:

U-NII-1

RBW = 1MHz, VBW ≥3\* RBW Sweep = auto; Detector Function = Peak. Trae = Max hold.

U-NII-3

RBW = 510KHz, VBW ≥3\* RBW Sweep = auto; Detector Function = Peak. Trae = Max hold.

3. Allow the trae to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjaent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

#### 13.2 Test Result:

| Rand Operation mad |                | CII    | Power Spectral Density (dBm/MHz) |   |   |  |
|--------------------|----------------|--------|----------------------------------|---|---|--|
| Band               | Operation mode | CH     | ANT0                             | 1 | 1 |  |
| U-NII-             |                | Low    | 7.221                            | 1 | 1 |  |
| 1                  | 802.11n(HT20)  | Middle | 7.993                            | 1 | 1 |  |
|                    |                | High   | 7.672                            | 1 | 1 |  |
|                    | 802.11a        | Low    | 7.943                            | 1 | 1 |  |
|                    |                | Middle | 8.274                            | 1 | 1 |  |
|                    |                | High   | 8.509                            | 1 | 1 |  |
|                    | Limit          |        | ≤11.00dBm/MHz                    |   |   |  |

<sup>\*</sup> All transmit signals are completely uncorrelated with eah other, Directional gain = G<sub>ANT</sub> which is less than 6dBi. So the limit does not be reduced.

Test result plots shown as follows:













Reference No.: WTS18S0199980W Page 50 of 62

## 14 Frequency Stability

Test Requirement: FCC CFR47 Part 15 Section 15.407(g)

Test Method: ANSI C63.10:2013

Test Limit:

Manufaturers of U-NII devices are responsible for ensuring frequency

stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the

users manual or 20ppm.

Test Result: PASS

#### 14.1 Test Procedure:

1. The transmitter output (antenna port) was connected to the spectrum analyzer. EUT have transmitted absence of unmodulation signal and fixed channelise. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 ppm and the limit is less than ±20ppm The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

2. Extreme temperature rule is 0°C~ 35°C.

Reference No.: WTS18S0199980W Page 51 of 62

### 14.2 Test Result:

| U-NII-1 Test Frequency:5180MHz |                   |                         |                       |                |  |  |
|--------------------------------|-------------------|-------------------------|-----------------------|----------------|--|--|
| Temperature<br>(°C)            | Power Supply (VA) | Frequency Error<br>(Hz) | Frequency Error (ppm) | Limit<br>(ppm) |  |  |
| 35                             |                   | 8.36                    | 0.161                 | 20             |  |  |
| 20                             |                   | 8.25                    | 0.159                 | 20             |  |  |
| 10                             | 120               | 8.24                    | 0.159                 | 20             |  |  |
| 0                              |                   | 8.35                    | 0.161                 | 20             |  |  |
| 20                             | 108               | 8.24                    | 0.159                 | 20             |  |  |
| 20                             | 132               | 8.28                    | 0.160                 | 20             |  |  |

Reference No.: WTS18S0199980W Page 52 of 62

### 15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attahed antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufaturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jak or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in acordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device have two External antenna with RP-SMA connector complied with the requirement.



Reference No.: WTS18S0199980W Page 53 of 62

### 16 RF Exposure

Test Requirement: FCC Part 1.1307
Test Method: FCC Part 2.1091

#### 16.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

Limits for Occupational / Controlled Exposure

| Frequency   | Electric Field | Magnetic | Power Density | Averaging |
|-------------|----------------|----------|---------------|-----------|
| Range (MHz) | Strength (E)   | Field    | (S) (mW/      | Time      |
| 0.3-3.0     | 614            | 1.63     | (100)*        | 6         |
| 3.0-30      | 1842 / f       | 4.89 / f | (900 / f)*    | 6         |
| 30-300      | 61.4           | 0.163    | 1.0           | 6         |
| 300-1500    |                |          | F/300         | 6         |
| 1500-       |                |          | 5             | 6         |

Limits for General Population / Uncontrolled Exposure

| Frequency   | Electric Field | Magnetic | Power Density | Averaging |
|-------------|----------------|----------|---------------|-----------|
| Range (MHz) | Strength (E)   | Field    | (S) (mW/      | Time      |
| 0.3-1.34    | 614            | 1.63     | (100)*        | 30        |
| 1.34-30     | 824/f          | 2.19/f   | (180/f)*      | 30        |
| 30-300      | 27.5           | 0.073    | 0.2           | 30        |
| 300-1500    |                |          | F/1500        | 30        |
| 1500-       |                |          | 1.0           | 30        |

Note: f = frequency in MHz; \*Plane-wave equivalent power density

Reference No.: WTS18S0199980W Page 54 of 62

#### 16.2 Evaluation Result

$$\mathsf{E} \, (\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d} \qquad \qquad \mathsf{Power \, Density:} \, \, \mathit{Pd} \, (\mathsf{W/m^2}) = \frac{E^2}{377}$$

**E** = Electric field (V/m)

**P** = Peak RF output power (W)

**G** = EUT Antenna numeric gain (numeric)

**d** = Separation distance between radiator and human body (m)

The formula can be changed to

$$\textit{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

| Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Max. Peak<br>Output Power<br>(dBm) | Peak Output<br>Power (mW) | Power Density<br>(mW/cm2) | Limit of Power<br>Density<br>(mW/cm2) |
|-----------------------|---------------------------|------------------------------------|---------------------------|---------------------------|---------------------------------------|
| 2                     | 1.585                     | 7.59                               | 5.74                      | 0.0018                    | 1                                     |

Result: Compliance

No SAR measurement is required.

# 17 Photographs -Test Setup Photos

# 17.1 Photograph-Conducted Emissions Test Setup





# 17.2 Photograph-Radiated Emissions

Below 30MHz





Test Frequency 30MHz to 1000MHz





Test Frequency Above 1GHz





# 18 Photographs – Constructional Details

### 18.1 External Photos





Reference No.: WTS18S0199980W Page 60 of 62





## 18.2 Internal Photos





Reference No.: WTS18S0199980W Page 62 of 62





=====End of Report=====