Parámetro	media	varianza	estadístico	Intervalo de confianza
μ con σ conocida	μ	σ_1^2	$rac{ar{x}-\mu}{\sigma/\sqrt{n}}$	$\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
μ con σ desconocida	μ	s_1^2	$\frac{\bar{x} - \mu}{s / \sqrt{n}}$	$\bar{x} \pm t_{\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}}$
Proporción	np	npq	$\frac{x - \mu}{\sigma/\sqrt{n}}$ $\frac{\bar{x} - \mu}{s/\sqrt{n}}$ $z = \frac{\hat{p} - P}{\sqrt{\frac{Pq}{n}}}$	$\hat{p} \pm Z_{lpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$
Varianza			$\chi^2_{(n-1)} \sim \frac{(n-1)S^2}{\sigma^2}$	$\frac{(n-1)s^2}{x_{\frac{\alpha}{2},n-1}^2} < \sigma^2 < \frac{(n-1)s^2}{x_{1-\frac{\alpha}{2},n-1}^2}$
$\mu_1 - \mu_2$ con $\sigma_1^2 \ y \ \sigma_2^2$ conocidas	$\mu_1 - \mu_2$	$\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)$	$Z = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}}$	$(\bar{X}_1 - \bar{X}_2) \pm Z_{\frac{\alpha}{2}} \sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}$
$\mu_1 - \mu_2$ con $\sigma_1^2 \ y \ \sigma_2^2$ Desconocidas pero iguales	$\mu_1 - \mu_2$	$s_{p}^{2} = \left[\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{2} + n_{1} - 2} \right]$	$t_{(n_1+n_2-2)} = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{s_p \sqrt{\left(\frac{1}{n_1}\right) + \left(\frac{1}{n_2}\right)}}$	$(\bar{X}_1 - \bar{X}_2) \pm t_{\frac{\alpha}{2}, v} S_p \sqrt{\left(\frac{1}{n_1}\right) + \left(\frac{1}{n_2}\right)}$
$\mu_1-\mu_2$ con $\sigma_1^2\ y\ \sigma_2^2$ Desconocidas y diferentes	$\mu_1 - \mu_2$	$\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)$	$Z = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}}$	$(\bar{X}_1 - \bar{X}_2) \pm t_{\frac{\alpha}{2}, v} \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}$ $v = \frac{\left(\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_1}\right)^2}$ $\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_1}\right)^2}{n_2 - 1}$
Diferencias pareadas μ_d	$ar{d}$		$t_{(n-1)} = \frac{\overline{d} - \mu_d}{sd/\sqrt{n}}$ $Z = \frac{(\widehat{p_x} - \widehat{p_y}) - (p_x - p_y)}{\sqrt{n}}$	$\bar{d} \pm t_{\frac{\alpha}{2},n-1} \frac{s_d}{\sqrt{n}}$
Diferencia de proporciones	$p_x - p_y$	$\left(\frac{p_x q_x}{n_x}\right) + \left(\frac{p_y q_y}{n_y}\right)$	$\sqrt{\left(\frac{p_x q_x}{n_x}\right) + \left(\frac{p_y q_y}{n_y}\right)}$	$\left(\widehat{p_x} - \widehat{p_y}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\left(\frac{\widehat{p_x}\widehat{q_x}}{n_x}\right) + \left(\frac{\widehat{p_y}\widehat{q_y}}{n_y}\right)}$
Razón de varianzas			$F = \frac{S_1^2}{S_2^2}$	$\frac{S_1^2}{S_2^2} * \frac{1}{f_{\frac{\alpha}{2}, n_1 - 1, n_2 - 1}^2} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} * f_{\frac{\alpha}{2}, n_2 - 1, n_1 - 1}^{\alpha}$

Tamaños de muestra

Tamaño de muestra	finita	infinita
media	$Z^2\sigma^2$	$NZ^2\sigma^2$
	$n = \frac{1}{e^2}$	$n = \frac{1}{(N-1)e^2 + Z^2\sigma^2}$
Proporción	$n = \frac{Z^2 pq}{2}$	$n = \frac{NZ^2pq}{}$
	$n = \frac{n^2}{e^2}$	$n - \frac{(N-1)e^2 + Z^2pq}{(N-1)e^2 + Z^2pq}$

Funciones de distribución de probabilidad en software

Distribución	Forma	Excel	R
t	P(x > c)	=pt(cuantil;gl,lower.tail = F)	DISTR.T.CD(cuantil;gl)
F	P(x > c)	=DISTR.F.CD(cuantil;gl1;gl2)	pf(q=2.73, df1=15,df2=17, lower.tail=FALSE)
Normal	$P(x \le c)$	=DISTR.NORM.ESTAND.N(C;VERDADERO)	pnorm(c,mean=0,sd=1)
Chi ²	P(x > c)	=DISTR.CHICUAD.CD(c;gl)	pchisq(C,GL, lower.tail = FALSE)