Data Mining

Esercizi di clustering - Soluzioni

L'interfaccia

Modalità di verifica dei risultati: indica il dataset su cui sono calcolati gli indici statistici che può essere diverso da quello in base al quale sono effettivamente costruiti i cluster (es. centroidi di kMeans)

In alternativa è possibile utilizzare un attributo classe per verificare la corrispondenza tra cluster e classe (se questa è nota)

Il data set Iris

- Il data set Iris modella le caratteristiche di una famiglia di piante
 - √ 150 istanze
 - ✓ Nessun dato mancante

Attributo	Descrizione		
SepalLength	Lunghezza del sepalo		
SepalWidth	Larghezza del sepalo		
PetalLength	Lunghezza del petalo		
PetalWidth	Larghezza del petalo		

Pre-processing

- Gli algoritmi di clustering necessitano di una misura di distanza, nei casi che vedremo la distanza euclidea.
- Nel caso in cui gli attributi coinvolti abbiano range di valore diversi è sempre necessario normalizzare tali range in modo che ognuno di essi abbia la stessa influenza nel calcolo del risultato
 - ✓ Normalizzare gli attributi numerici utilizzando il filtro Unsupervised → Attribute→Normalize

Simple K-means: i parametri

- DisplayStdDev: mostra la deviazione standard delle distanze dei singoli punti rispetto al centro del cluster. La misura è riportata separatamente per ogni attributo
 - ✓ Minore la StdDev maggiore la coesione del cluster rispetto all'attributo.
 - ✓ Permette di scegliere quali attributi utilizzare nel calcolo della similarità.
- Distance function: funzione distanza utilizzata nel calcolo
- MaxIteration: numero massimo di iterazioni per ottenere la convergenza
- NumCluster:valore di k
- Seed: valore random per la scelta dei centroidi iniziali
 - ✓ Cambiandolo cambia il loro posizionamento iniziale

Simple K-means: i risultati

Eseguire l'algoritmo ponendo DisplayStdDev=true e NumCluster=3

Simple K-means: i risultati

Rieseguire l'algoritmo selezionando Classes to cluster evaluation

K-means: analisi del risultato

Visualizzare il risultato del clustering per le diverse coppie di attributi e discutere il risultato in base al posizionamento dei centroidi e alla dispersione dei punti. Come è possibile migliorare il risultato?

Risulta evidente che:

- ✓ Il cluster 1 è meglio separato dagli altri visto il posizionamento dei suoi centroidi e i relativi valori di dispersione
- ✓ I cluster 0 e 2 risultano poco separati sugli attributi sepallength e sepalwidth
 - 0.4413+0.1246=0.5659≈0.7073-0.1396=0.5677
 - 0.3074+0.1222=0.4296≈0.4509/0.1166=0.3353
- Per migliorare il risultato si possono eliminare gli attributi scarsamente informativi
 - ✓ Verificare l'efficacia attivando la verifica mediante le classi

- Contiene le informazioni nutrizionali di 25 alimenti
 - ✓ Caricare il file FoodNutrients.arff

Attributo	Descrizione		
EnergyCal	Calorie per 100 gr		
ProteinGram	Proteine per 100 gr		
FatGram	Grassi per 100gr		
CalciumMG	Calcio in milligrammi per 100 gr		
IronMG	Ferro in milligrammi per 100gr		

- Normalizzare i dati e clusterizzarli utilizzando k-means per valori crescenti di k [2,6]
- Analizzare i risultati facendo ipotesi sul significato delle classi in base alle caratteristiche dei centroide e alle StdDev dei cluster

Number of iterations: 2 Within cluster sum of squared errors: 5.069321339929419 Missing values globally replaced with mean/mode

Cluster	centroids:
2	- E-11

	Cluster#			
Attribute	Full Data	0	1	
	(27)	(9)	(18)	
			=======	
EnergyCal	0.4331	0.763	0.2681	
	+/-0.2699	+/-0.1442	+/-0.1233	
ProteinGram	0.6316	0.6316	0.6316	
	+/-0.2238	+/-0.0912	+/-0.2696	
FatGram	0.3285	0.6988	0.1433	
	+/-0.2962	+/-0.1701	+/-0.108	
CalciumMG	0.1076	0.0104	0.1562	
	+/-0.2156	+/-0.0018	+/-0.2521	
IronMG	0.3421	0.3576	0.3343	
	+/-0.2657	+/-0.0386	+/-0.3272	

Number of iterations: 3 Within cluster sum of squared errors: 4.077107847192327 Missing values globally replaced with mean/mode

Cluster centroids:

cluster tentrolus:				
		Cluster#		
Attribute	Full Data	0	1	2
	(27)	(8)	(12)	(7)
	=======			=======
EnergyCal	0.4331	0.7917	0.3367	0.1886
	+/-0.2699	+/-0.1236	+/-0.102	+/-0.1376
l				
ProteinGram	0.6316	0.6184	0.7982	0.3609
	+/-0.2238	+/-0.0878	+/-0.1286	+/-0.1908
l				
FatGram	0.3285	0.7336	0.1908	0.1015
	+/-0.2962	+/-0.1438	+/-0.125	+/-0.1035
l				
CalciumMG	0.1076	0.0104	0.1192	0.1989
	+/-0.2156	+/-0.002	+/-0.2862	+/-0.1691
l				
IronMG	0.3421	0.3523	0.3379	0.3377
	+/-0.2657	+/-0.0376	+/-0.2607	+/-0.4237
I				

- C0 è ben caratterizzato per valori elevati di EnergyCal e FatGram
- Nella soluzione a 3 cluster il C0 rimane invariato mentre la caratterizzazione tra C1 e C2 è rilevante solo per ProteinGram
- In entrambe le soluzioni IronMG è poco caratterizzante

Number of iterations: 3 Within cluster sum of squared errors: 3.229030897655616 Missing values globally replaced with mean/mode					
Cluster centroids:					
Cluster#					
Attribute Full Data 0 1 2	3				
(27) (8) (11) (7)	(1)				
	====				
EnergyCal 0.4331 0.7917 0.3345 0.1886	0.36				
+/-0.2699 +/-0.1236 +/-0.1067 +/-0.1376	+/-0				
ProteinGram 0.6316 0.6184 0.799 0.3609 0.	7895				
+/-0.2238 +/-0.0878 +/-0.1348 +/-0.1908	+/-0				
FatGram 0.3285 0.7336 0.189 0.1015 0.	2105				
+/-0.2962 +/-0.1438 +/-0.131 +/-0.1035	+/-0				
CalciumMG 0.1076 0.0104 0.0392 0.1989	1				
+/-0.2156 +/-0.002 +/-0.0739 +/-0.1691	+/-0				
IronMG 0.3421 0.3523 0.3355 0.3377 0.	3636				
+/-0.2657 +/-0.0376 +/-0.2733 +/-0.4237	+/-0				

- L'aggiunta di C3 permette di caratterizzare meglio la differenza tra C1 e C2 in termini di CalciumMG
- C3 è composto da un solo elemento
- IronMG rimane poco caratterizzante

Number of iterations: 4 Within cluster sum of squared errors: 2.750432407251998 Missing values globally replaced with mean/mode Cluster centroids: Cluster# Attribute Full Data 1 (7)(27)(8) (1)(5)0.821 0.2883 0.1533 0.36 0.472 EnergyCal +/-0.2699 +/-0.0991 +/-0.0781 +/-0.1108 +/-0 +/-0.0831 0.6316 0.7895 ProteinGram 0.609 0.8553 0.3421 0.6211 +/-0.2238 +/-0.0904 +/-0.1043 +/-0.2018 +/-0 +/-0.1012 FatGram 0.3285 0.7669 0.125 0.0746 0.2105 0.3684 +/-0.2962 +/-0.1171 +/-0.0805 +/-0.0822 +/-0 +/-0.093 0.1076 0.0103 0.0518 0.2279 CalciumMG 0.0105 +/-0.2156 +/-0.0021 +/-0.0844 +/-0.1651 +/-0 +/-0.0092 IronMG 0.3421 0.3481 0.3545 0.3636 0.27640.3697 +/-0.2657 +/-0.0385 +/-0.3115 +/-0.4547 +/-0 +/-0.1462

- C4 raccoglie gli alimenti con valori medi di EnergyCal, ProteinGram, FatGram
- Per quanto riguarda CalciumMG C4 è molto simile a C0
- IronMG rimane poco caratterizzante

Number of iterations: 4 Within cluster sum of squared errors: 1.5257151920333285 Missing values globally replaced with mean/mode Cluster centroids: Cluster# Full Data 2 Attribute 1 3 5 (27)(8) EnergyCal 0.4331 0.821 0.2883 0.0333 0.36 0.472 0.2133 +/-0.2699 +/-0.0991 +/-0.0781 +/-0.0471 +/-0 +/-0.0831 +/-0.073 ProteinGram 0.6316 0.609 0.8553 0.1053 0.7895 0.6211 0.4605 +/-0.2238 +/-0.0904 +/-0.1043 +/-0.1489 +/-0 +/-0.1012 +/-0.0662 0.7669 FatGram 0.3285 0.125 0 0.2105 0.3684 0.1118 +/-0.2962 +/-0.1171 +/-0.0805 +/-0 +/-0.093 +/-0.0756 +/-0 0.1076 0.0518 CalciumMG 0.0103 0.2017 0.0105 0.241 +/-0.2156 +/-0.0021 +/-0.0844 +/-0.0156 +/-0 +/-0.0092 +/-0.2113 IronMG 0.3421 0.3481 0.3545 0.9455 0.3636 0.2764 0.0818 +/-0.2657 +/-0.0385 +/-0.3115 -/-0.0771 +/-0 +/-0.1462 +/-0.1055

- Con l'aggiunta del nuovo cluster C0, C1 e C4 rimangono invariati
- Gli elementi di C5 sembrano provenire da C2 che si caratterizza ora per valori bassi per calorie, proteine e grassi e valori alti per il calcio e il ferro e ferro

FoodNutrients: ricapitolando....

Clust	Caratterizzazione
C0	cibi grassi altamente proteici ed energetici
C1	cibi proteici ma con pochi grassi e calorie
C2	cibi leggeri ma ricchi di calcio
C3	un solo elemento
C4	cibi con apporto medio di grassi proteine e calorie
C5	cibi leggeri in termini di calorie e grassi ma ricchi di proteine, calcio e ferro

- Verifichiamo caricando il data set FoodNutrientClassified.arff che contiene la classificazione dei cibi in Tipi e Super tipi
 - ✓ Si attivi Classes to cluster evaluation

FoodNutrients: ricapitolando....

Clust	Caratterizzazione	Super tipo	Tipo
C0	cibi grassi altamente proteici ed energetici	Meat	Pork
C1	cibi proteici ma con pochi grassi e calorie	Meat	Beef
C2	cibi leggeri ma ricchi di calcio	Fish	Clams
C3	un solo elemento	Fish	No class
C4	cibi con apporto medio di grassi proteine e calorie	Meat	Lamb
C5	cibi leggeri in termini di calorie e grassi ma ricchi di proteine, calcio e ferro	Fish	Fish

II Data set Coordinates

- Contiene le coordinate geografiche di 480 punti
 - ✓ Caricare il file Coordinates.arff
- Classificare i dati utilizzando k-means con un numero di cluster compreso tra 2 e 6
 - ✓ Come varia SSE?
 - ✓ A partire da quale valore di k SSE si stabilizza?
 - ✓ K-means è in grado di catturare i cluster naturali?
 - Perche?

Coordinates con K-means

K=2 SSE=29.39

K=3 SSE=19.89

K=4 SSE=12.09

Coordinates con K-means

K=5 SSE=9.54

K=6 SSE=7.87

- SSE si stabilizza con K=5 perché i cluster individuati sono tutte scomposizioni dei singoli cluster naturali
- K-means non è adatto a questo data set poiché la forma allungata dei cluster naturali non può essere catturata

E' preferibile utilizzare DBSCAN

Coordinates con DBSCAN

- Valutare il risultato della classificazione con DBSCAN
- Identificare i corretti valori per epsilon e minpoints

Eps=0.1

MinPts=4

✓ I parametri non catturano correttamente il rumore e le separazioni tra i cluster: tutte le zone risultano dense! E' necessario ricercare aree a maggiore densità

Eps=0.1

MinPts=8

 Aumentare la densità permette di identificare meglio i punti di rumore ma non consente di differenziare i due cluster naturali

Eps=0.05

MinPts=4

✓ Raggio insufficiente

Coordinates con DBSCAN

- Valutare il risultato della classificazione con DBSCAN
- Identificare i corretti valori per epsilon e minpoints

Eps=0.06 MinPts=8

Eps=0.06 MinPts=3

> Incorretta individuazione dei punti di rumore

