H.264(一)NALU解析

v noobyard.com/article/p-xcchbqon-rz.html

时间 2021-01-07

原文 https://blog.csdn.net/qq_40732350/article/details/89339242

视频序列

宏块结构

NALU分层

H264的主要目标是为了有高的视频压缩比和良好的网络亲和性,为了达成这两个目标, H264的解决方案是将系统框架分为两个层面,

VCL(视频编码层)和 NAL(网络提取层).

- VCL:包括核心压缩引擎和块,宏块和片的语法级别定义,设计目标是尽可能地独立于网络进行高效的编码。
- NAL:负责将VCL产生的比特字符串**适配到各种各样的网络**和多元环境中,覆盖了所有片级以上的语法级别。

NALU: (Network Abstract Layer Unit) 网络抽象层单元。 RBSP: (Raw Byte Sequence Payload) 原始字节序列载荷。

SODB: String Of Data Bits (原始数据比特流,长度不一定是8的倍数,故需要补齐,

是由VCL产生)。

SODB是以值为1的一个比特结束,如果没有字节对齐,就用0补齐,所以从后往前第一个值为1的位置就为,SODB的最后一个字节。

逻辑关系: RBSP trailing bits 是拖尾字节,用于字节对齐。

其实严格来说,这个等式是不成立的,因为RBSP并不等于NALU刨去NALU Header。严格来说,NALU的组成部分应为:

NALU = NALU Header + EBSP

其中的EBSP为扩展字节序列载荷(Encapsulated Byte Sequence Payload),而RBSP为原始字节序列载荷(Raw Byte Sequence Payload)。那为什么我们上面,没有使用2式而使用了1式呢?那是因为,在h264的文档中,并没有EBSP这一名词出现,但是在h264的官方参考软件JM里,却使用了EBSP。

EBSP相较于RBSP,多了防止竞争的一个字节:0x03。

我们知道,NALU的起始码为0x000001或0x00000001,同时H264规定,当检测到0x000000时,也可以表示当前NALU的结束。那这样就会产生一个问题,就是如果在NALU的内部,出现了0x000001或0x000000时该怎么办?

所以H264就提出了"防止竞争"这样一种机制,当编码器编码完一个NAL时,应该检测NALU内部,是否出现如下左侧的四个序列。当检测到它们存在时,编码器就在最后一个字节前,插入一个新的字节:0x03。

 0x0000000 -> 0x00000300

 0x000001 -> 0x00000301

 0x000002 -> 0x00000302

 0x000003 -> 0x00000303

这样一来,当我们拿到EBSP时,就需要检测EBSP内是否有序列:0x000003,如果有,则去掉其中的0x03。这样一来,我们就能得到原始字节序列载荷:RBSP。

总结: H264的码流结构如下:

NALU分层结构

RTP包的NALU类型介绍

单一类型:一个RTP包只包含一个NALU

组合类型:一个RTP包含多个NALU,类型是24 —— 27 分片类型:一个NALU单元分成多个RTP包,类型是28和29

单一NALU的RTP包

0	1	2 3	
0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5	5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	1
+-+-+-+-+-+-+	-+-+-+-+-+-+-	-+	-+
F NRI type	1		1
+-+	-+		1
1			1
1	Bytes 2n of a	Single NAL unit	1
1			1
1		+-	-+
I		:OPTIONAL RTP padding	1
+-+-+-+-+-+-	-+-+-+-+-+-+-	-+	-+

组合NALU的RTP包

0	0							1									2										3				
0	1	1 2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+-	+-	-+-	+-	+	+-+		+	+-+		+	+	+	+	+-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-+	+-+	-+
1													R	TP	Н	ead	de	r													-
+-	+-	-+-	+-	+	+-+	+	+	+-+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+	+	+-+	+
IS	TZ	AP-	A I	NAI	L	HDI	R	1				1	NA.	LU	1	S	ize	9						1	NA:	LU	1	HI	DR		- 1
+-	+-	-+-	+-	+	+-+	+	+	+-+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-+	+-+	+
E												1	NA.	LU	1	Da	ata	a													- 1
:																															:
+								+-+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-+	+-+	-+
1								l N	IAI	LU	2	S	iz	е										1	NA:	LU	2	HI	DR		-1
+-	+-	-+-	+-	+	+-+		+	+-+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-+	+	+
1												1	NA.	LU	2	Da	ata	a													- 1
:																															:
1																+	+	+	+	+	+	+	+	+	+	+	+	+	+-+	+-+	+
																:	(OP'	ric	N	AL	R'	ΓP	pa	ad	di	ng				- 1
+-	+-	-+-	+-	+	+-+	+	+	+-+		+	+	+	+	+	+	+	+	+	+	+	+	+	14	+	+	4	+	F 4.	-	124	-+

分片NALU的RTP包

FU Header

- ◆ S start bit,用于指明分片的开始
- ◆ E end bit , 用于指明分片的结束
- ◆ R 未使用,设置为0

|0|1|2|3|4|5|6|7| +-+-+-+-+-+-+-+ |S|E|R| Type |

◆ Type 指明分片NAL类型

H264句法元素解析流程

而当我们拿到RBSP或SODB之后,就可以对照各类型的NALU,去解析它们的语法元素,进而再根据语法元素,重建图像。其中解析语法元素的框图如下:

由图可见,解析NALU的各个句法元素并不难,只要根据h264文档对应章节的句法,并配合相应的编解码算法解析即可。而相应的编解码算法如指数哥伦布编码、CAVLC、CABAC、算术编码,我们会一步步涉猎。