Instrumentation and Performance Analysis of Distributed Systems with Freud

Stefano Taillefert

May 2021

Supervised by **Prof. Antonio Carzaniga**

Abstract

Freud [1] is a software performance analysis tool that derives performance annotations from measurements of running systems. The goal of this project is to extend Freud to instrument and collect data from a distributed software system. This means augmenting the existing implementation to be able to link the data collected over distributed components using causal relations.

Contents

Al	bstract	ii
1	formance analysis ject design Freud Requirements and analysis plementation Technologies and tools used Issues 5	
2	Performance analysis	3
3	Project design3.1 Freud3.2 Requirements and analysis	4
4	Implementation4.1 Technologies and tools used4.2 Issues	5 5
5	Evaluation	6
6	Conclusions 6.1 Future work and possible developments	7 7

Introduction

Bla bla intro stuff

Performance analysis

What is it, problem context, existing solutions in general

Project design

3.1 Freud

Brief description, intro to Freud and PIN, what they do and how

3.2 Requirements and analysis

Goals, what I needed to implement, refer to the plan and list of tasks, what's the idea Develop a simple distributed application based on an RPC library to be used as an initial test environment Develop an instrumentation for the client side, server side, and – crucially – the RPC library Devise a method to save and retrieve measurement logs from all the remote components Design an algorithm to merge the logs from all the systems into a single coherent trace Integrate said trace in the existing statistics tool (freud-statistics) to derive the performance annotations Identify some third-party non-trivial distributed applications and analyze them with the created tool Write the report, prepare the poster and presentation Have a pizza

Implementation

4.1 Technologies and tools used

Used gRPC [2] as the RPC library, freud-statistics [1] to analyze the output, bumped compiler to C++17 for filesystem::exists()

4.2 Issues

Made some choices to simplify structure initially, but then had to change it and refactor everything Problems making sense of the numbers returned by freud-statistics and unable to see what was in the binary file to check if I was dumping correctly

Had to develop some particular encodings since passing from data to text and from text to data

Used 10 memory client-side and -20 memory server-side.

FIGURE 4.1: A very peculiar memory usage

Evaluation

Code validation, analysis of results and practical applications, personal experience No coverage/automated tests due to the complexity and erratic nature of the software

Conclusions

Results wrt objectives, limitations Thanks to my advisor, Daniele and everyone that supported me

6.1 Future work and possible developments

Re: what the next guy will have to work on next year Better handling of the data dumping/efficiency (separate thread) Integration with PIN (very hard) Support more complex features (re: freud's CLASS type or something)

Bibliography

- [1] GitHub Inc. usi-systems/freud: Freud, a tool to create performance annotations for c/c++ programs. https://github.com/usi-systems/freud, 2021. Accessed on 15.05.2021.
- [2] gRPC Authors. Documentation | grpc. https://grpc.io/docs/, 2021. Accessed on 27.04.2021.