DevOps

Learning Objectives

By the end of the lesson, you will be able to:

- Explain Git and version control system
- Define Git buzzwords
- Create a GitHub repository
- Illustrate Git configuration level and basic commands
- Define web-scale architecture
- Differentiate GitHub, GitLab, and Bitbucket

Overview of Version Control Systems

Version Control Systems: Definition

- Version control is a system that records changes to a set of files over a period of time to recall specific versions.
- Version Control System (VCS) can be used to store every version of an image or layout.

For example:

Centralized Version Control System

- Uses a central server to store all the files
- Performs every operation directly on the repository
- Stores file versions on the central VCS server
- For example: Tortoise SVN

Distributed Version Control System

- Moves from the client-server approach to peer-to-peer approach
- Updates the local repositories with new data from the central server. The changes get reflected to the main repository
- For example: Git

Version Control System: Benefits

Collaboration:

The team can work on any file at any instance and later merge all the changes into a common version

Storage:

Acknowledges that there is only one project whereas all the past versions and variants are neatly packed up inside the VCS

Backup:

Distributed VCS like Git act as a backup

Version Control System: Tools

Some of the preferred open-source version control system tools for easier set up are:

Git: History

Linus Torvalds (Creator of Linux)

Initially, it was developed to manage the Linux development community

Originally, it was written in C language and then reimplemented in other languages

Git: History

Linux code has been managed using:

Importance of Git

Limitations of Existing Version Control Systems

Git: Definition

Git is a Version Control System for tracking changes in computer files. It is generally used for source code management in software development.

Tracks changes in the source code

Uses distributed version control tool for source code management

Allows multiple developers to work together

Supports non-linear development because of its several parallel branches

Git: Features

Git: Life Cycle

Assisted PracticeInstall Git on Linux

Problem Statement: Installation of Git on Linux platform.

Steps to Perform:

- 1. Install Git
- 2. Verify the installation

- It is a default branch.
- It is used by CI tools for build and deployment.
- It is followed by the other repositories.

- It is a light weight working copy.
- It has a staging area.
- It works without impacting the master branch.

- It is a pointer to the latest commit of the working branch.
- It is present on every repository.
- It will point to the latest commit during branch switch.

- It is a git repository on a network outside the local machine.
- It can have more than one remote repositories pointing from the local repository.
- It can be managed and referenced with short names.

- It associates remote repository with names.
- It is a local name set for the default repository.
- It is useful to point the default repository when executing git commands.

- It copies the existing repository from a remote repository.
- It will get the complete repo, whereas checkout will only fetch the working copy.
- It helps to replicate the repo on the local machine.

- It pushes changes from the local to the remote repository.
- It is performed after committing the changes to the local repository.
- It syncs the changes with the local and remote repository.

- It transfers the updates from the local to the remote repository.
- It syncs the changes from remote to the local repository.
- It takes current code from remote repository and merges the change with the local repository.

- It will not merge the changes with a local repository.
- It gives updates from remote to the local repository.
- It syncs the changes from remote to the local repository.

Git Buzzwords

• When the data is flowing between repository A and B, repository A is upstream and B is downstream making B pull data from repository A.

GitHub: Basics

Git vs. GitHub

Git

It is installed and maintained on the local system.

It is a command line tool.

It is a tool to manage different versions of the file in a git repository.

GitHub

It is hosted on the web.

It is a graphical interface.

It is a space to upload a copy of the git repository.

Steps to Create a Git Repository


```
hp@DESKTOP-01792DU MINGW64 /d/dev/lgit/MyRepo (master)
 oit status
On branch master
Initial commit
nothing to commit (create/copy files and use "git add" to track)
```

NOTE

\$ git init command creates a hidden directory that stores all the metadata required for it to function.

Assisted Practice Create a GitHub Repository

Problem Statement: To create a GitHub repository to share the project files with your coworkers.

Steps to Perform:

- 1. Creating a new github repository
- 2. Editing the README file
- 3. Uploading a file to the repository

Git Configuration Level

The git config command allows to configure the Git settings.

NOTE

Local overrides Global and Global overrides System Level.

Assisted Practice

Configure Git

Problem Statement: The configuration created during Git installation was lengthy. Your team wants Git to be configured for ease of use.

Steps to Perform:

- 1. Configure Git with username and email id
- 2. Confirm the username and email id
- 3. Enabling credentials storage globally

Assisted Practice Clone a GitHub Repository

Problem Statement: Clone the GitHub repository shared by your coworker to access the project files.

Steps to Perform:

1. Cloning a github repository

Basic Git Commands

Task	Explanation	Commands
Tell Git who you are	Configure the author's name and email address	git configglobal user.name "Simplilearn" git configglobal user.email simplilearn@example.com
Create a new local repository	Create a repository	git init
Check the repository	Create a working copy of a local repository	git clone /path/to/repository
Check the repository	Use a remote server	git clone username@host:/path/to/repository

Basic Git Commands

Task	Explanation	Commands	
Add files	Add one or more files to staging	git add <filename> git add *</filename>	
Push	Send changes to the master branch	git push origin master	
Commit	Commit changes to the head	git commit -m "Commit message"	
Commit	Commit files added with git add and the files changed	git commit -a	

Basic Git Commands

Task	Explanation	Commands	
Status	List the files that need to be changed, added, or committed	git status	
Connect to a remote repository	Add the server to push for the connection	git remote add origin <server></server>	
Connect to a remote repository	List all currently configured remote repositories	git remote -v	
Search	Search the working directory for foo()	git grep "foo()"	

Basic Git Commands

Task	Explanation	Commands
Branches	Create a new branch and switch	git checkout -b branchname>
Branches	Switch from one branch to another	git checkout branchname>
Branches	List all the branches that tell you what branch you're currently in	git branch
Branches	Delete the feature branch	git branch -d <branchname></branchname>

Basic Git Commands

Task	Explanation	Commands	
Branches	Push the branch to your remote repository	git push origin branchname>	
Branches	Push all branches to your remote repository	git pushall	
Branches	Delete a branch on your remote repository	git push origin : branchname>	

Basic Git Commands

Task	Explanation	Commands	
Update from the remote repository	Fetch and merge changes on the remote server	git pull	
Update from the remote repository	Merge a different branch in an active branch	git merge branchname>	
Update from the remote repository	View all the merge conflicts	git diff	
Update from the remote repository	View the conflicts against the base file	git diffbase <filename></filename>	
Update from the remote repository	Preview changes before merging	git diff <sourcebranch> <targetbranch></targetbranch></sourcebranch>	

Basic Git Commands

Task	Explanation	Commands	
Update from the remote repository	Manually resolve the conflicts and mark the changed file	git add <filename></filename>	
Tags	Use tagging to mark a significant changeset	git tag 1.0.0 <commitid></commitid>	
Tags	Get the ID in use	git log	
Tags	Push all tags to remote repository	git pushtags origin	

Basic Git Commands

Task	Explanation	Commands
Undo the local changes	Replace the changes in your working tree with the last content in head	git checkout <filename></filename>
Undo the local changes	Fetch the latest history from the server and point to the local master branch	git fetch origin git resethard origin/master

Assisted PracticeCreate Git Alias

Problem Statement: You are facing issues with lengthy command lines. So you need to add alias for the commands.

Steps to Perform:

1. Create an Alias

Web Scale Architecture

- Git uses a Directed Acyclic Graph (DAG) to represent history with commits.
- Git stores a snapshot of your repository whenever commit is created.

Difference between GitHub, Bitbucket, and GitLab

GitHub vs. GitLab vs. Bitbucket

	GitHub 💮	GitLab	Bitbucket 😈
Open Source			
CI pipeline			
Own APIs			
Git platform			
Active Bug tracking			
Supports			

Key Takeaways

- Version control is a system that record changes to a set of files.
- Git is a version control system for tracking changes in computer files.
- SVN and Perforce are centralized version control systems.
- The git config command allows you to configure your Git settings.

