

ECB02C 蓝牙芯片技术手册

版本 V1.0

目录

ECB0	D2C 蓝牙芯片技术手册	
- .	产品概述	g
<u> </u>	应用领域	ફ
三.	引脚定义	§
四.	支持平台	····· [
五.	易加蓝牙助手	Ę
	AT 命令·····	
七.	注意事项	15
八.	参数规格	19
	外形尺寸	
十.	技术支持	21

一. 产品概述

ECB02C 蓝牙芯片是一款支持低功耗蓝牙协议的串口透传芯片;芯片具有小体积、高性能、高性价比、低功耗、平台兼容性强等优点;可以帮助用户快速掌握蓝牙技术,加速产品开发;芯片已兼容的软件平台包括: IOS 应用程序、 Android 应用程序、PC 电脑应用程序、微信支付宝小程序等。MCU通过串口连接芯片,既可与手机、平板、PC 电脑进行数据通讯,轻松实现智能无线控制和数据采集;芯片广泛应用在智能家居、共享售货机等领域。

二. 应用领域

- ❖ 蓝牙无线数据传输
- ❖ 手机、电脑周边设备
- ❖ 智能家居控制
- ❖ 蓝牙遥控玩具
- ❖ 医疗保健设备

- ❖ 蓝牙打印机
- ❖ 可穿戴设备
- ❖ 定位防丢器
- ❖ 自助售货机
- ❖ 共享租赁设备

三. 引脚定义

引脚名称	说明		
	睡眠引脚		
	高电平或悬空: 芯片进入睡眠模式		
SLEEP	低电平: 芯片退出睡眠模式		
SLEEP	如果不需要低功耗,可以直接接地		
	在睡眠模式下,芯片串口只能发数据,不能收数据		
	MCU 可以通过 GPIO 控制芯片进入或退出睡眠模式		
	AT 命令使能引脚		
	当蓝牙已连接时		
AT_EN	高电平或悬空: AT 命令无效,串口所有数据透传		
	低电平: AT 命令有效,非 AT 命令透传		
	当蓝牙未连接时,AT 命令一直有效		
DIS_CON	内部上拉,拉低此引脚,芯片主动断开蓝牙连接		
ROLE	高电平或悬空:从机模式;低电平: 主机模式		
ANT	天线		
GND	地		
VCC	3.3V 电源,需要接 1uF 电源电容		
TXD	串口发送,电源电平		
RXD	串口接收,电源电平		
STA	蓝牙已连接,输出高电平		
SIA	蓝牙未连接,输出低电平		
NC	悬空		
XTAL1、XTAL2	16MHz 10ppm 9pf 无源晶振		

四. 支持平台

平台	是否支持	说明
IOS	支持	App Store 搜索易加蓝牙助手
Android	支持	官网下载安装包
微信小程序	支持	微信小程序搜索易加蓝牙助手
支付宝小程序	支持	支付宝小程序搜索易加蓝牙助手
支付宝 Web App	支持	支付宝扫码进入
Windows	支持	需要 ECB02U USB BLE 适配器
Mac OS	支持	App Store 搜索易加蓝牙助手
Linux	支持	需要 ECB02U USB BLE 适配器

易加蓝牙助手各平台软件均提供源代码,欢迎下载学习。

五. 易加蓝牙助手

平台	二维码		
Ć			

六. AT 命令

注: "\r\n" 代表回车和换行,对应两个字节十六进制数为 0x0D、0x0A,设置命令只需使用一次,配置会存储到 FLASH,重新上电不需要重新配置,配置永久有效。部分 AT 命令只有在特定主从机模式时有效,如果发送 AT 命令没有返回,请检查主从机模式。

命令类型	发送	返回
测试命令	"AT\r\n"	"OK\r\n"

注:测试串口是否正常。

命令类型	发送	返回
查询软件型号	"AT+VER?\r\n"	"+VER:1.0.0\r\nOK\r\n"

命令类型	发送	返回
芯片复位	"AT+RST\r\n"	"OK\r\n"

命令类型	发送	返回
***		"+ECHO:0\r\nOK\r\n"
查询是否回显	"AT+ECHO?\r\n"	或
		"+ECHO:1\r\nOK\r\n"

注: 0: 回显关闭, 1: 回显开启, 默认开启。

命令类型	发送	返回
	"AT+ECHO=0\r\n"	. 0
设置回显	或	"OK\r\n"
	"AT+ECHO=1\r\n"	

命令类型	发送	返回
查询主从机模式	"AT+ROLE?\r\n"	"+ROLE:Central\r\nOK\r\n" 或 "+ROLE:Peripheral\r\nOK\r\n"

注: Central 代表主机模式,Peripheral 代表从机模式。手机与智能硬件进行蓝牙连接,手机为主机,智能硬件为从机。

命令类型	发送	返回
		"+ROLEMODE:0\r\nOK\r\n"
		或
查询主从机配置	"AT+ROLEMODE?\r\n"	"+ROLEMODE:1\r\nOK\r\n"
		或
		"+ROLEMODE:2\r\nOK\r\n"

注: 0: 主从机模式由 ROLE 引脚配置,1: 始终是主机模式,2: 始终是从机模式。默认为 0。

命令类型	发送	返回
设置主从机模式	"AT+ROLE=X\r\n"	"OK\r\n"

注: "AT+ROLE=2\r\n",设置芯片为从机; "AT+ROLE=1\r\n",设置芯片为主机。

"AT+ROLE=0\r\n", 芯片主从机模式通过 ROLE 引脚配置。芯片只在上电初始化时检测 ROLE 引脚电平。

命令类型	发送	返回
		"+MODE:0\r\nOK\r\n"
		或
查询 AT 模式	"AT+MODE?\r\n"	"+MODE:1\r\nOK\r\n"
		或
		"+MODE:2\r\nOK\r\n"

注: +MODE:1, 蓝牙连接时, AT 命令有效, 非 AT 命令透传。

+MODE:2, 蓝牙连接时, AT 命令无效, 所有数据透传。

+MODE:0, 蓝牙连接时, AT 命令是否有效通过 AT EN 引脚配置; 默认为 0。

命令类型	发送	返回
	"AT+MODE=0\r\n"	
	或	
设置 AT 模式	"AT+MODE=1\r\n"	"OK\r\n"
	或	
	"AT+MODE=2\r\n"	

命令类型	发送	返回
		"+SLEEP:0\r\nOK\r\n"
查询睡眠配置	"AT+SLEEP?\r\n"	或
		"+SLEEP:1\r\nOK\r\n"

注: +SLEEP=0, 禁止芯片进入睡眠。+SLEEP=1, 可以通过 SLEEP 引脚控制芯片进入睡眠。默认为 1。

命令类型	发送	返回
	"AT+SLEEP=0\r\n"	
设置睡眠配置	或	"OK\r\n"
	"AT+SLEEP=1\r\n"	

命令类型	发送	返回
查询看门狗状态	"AT+WDG?\r\n"	"+WDG:0\r\nOK\r\n" 或 "+WDG:1\r\nOK\r\n"

注: 0: 看门狗关闭, 1: 开门狗开启; 默认开启, 建议开启。

命令类型	发送	返回
设置看门狗	"AT+WDG=0\r\n" 或 "AT+WDG=1\r\n"	"OK\r\n"

命令类型	发送	返回
*)+)+ + + 10 +) = 4		"+CONNOTIFY:0\r\nOK\r\n"
查询连接状态通知	"AT+CONNOTIFY?\r\n"	或 "+CONNOTIFY:1\r\nOK\r\n"

注: 0: 连接状态通知关闭, 1: 连接状态通知开启; 默认开启。

命令类型	发送	返回
	"AT+CONNOTIFY=0\r\n"	
设置连接状态通知	或	"OK\r\n"
	"AT+CONNOTIFY=1\r\n"	

注: 蓝牙连接状态发送改变时,默认会有提示,包括"CONNECT OK"、"CONNECT FAIL"、"DISCONNECT"和"SCANNING......"; 其中"SCANNING......"只有在主机模式并绑定了从机后才会出现,可以通过"AT+CONNOTIFY=0\r\n"关闭这些提示,通过"AT+CONNOTIFY=1\r\n"再次打开提示。

蓝牙连接成功芯片串口会发送"CONNECT OK\r\n",蓝牙连接失败芯片串口会发送"CONNECT FAIL\r\n",蓝牙被主机断开连接芯片串口会发送"DISCONNECT\r\n"。处于主机模式,并且绑定了从机,处于搜索状态时会发送"SCANNING......"。

命令类型	发送	返回
进入关机模式	"AT+OFF\r\n"	"OK\r\n"

注:可以发送"AT+OFF\r\n"命令让芯片进入关机模式,关机模式芯片功耗可以降低到最低,同时也会关闭所有蓝牙功能。可以通过连续发送"AT\r\n"命令来唤醒芯片,重新开机。

命令类型	发送	返回
恢复出厂设置	"AT+FACTORY\r\n"	"OK\r\n"

注: 通过这个命令可以将芯片的所有参数恢复到出厂的设置。

命令类型	发送	返回
		"+BTAT:0\r\nOK\r\n"
查询蓝牙 AT 状态	"AT+BTAT?\r\n"	或
		"+BTAT:1\r\nOK\r\n"

注: 0: 蓝牙 AT 功能关闭,1: 蓝牙 AT 功能开启。默认蓝牙 AT 功能关闭,开启后可以通过蓝牙对芯片发送 AT 命令,只有从机模式支持。

命令类型	发送	返回
	"AT+BTAT=0\r\n"	
设置蓝牙 AT	或	"OK\r\n"
	"AT+BTAT=1\r\n"	

命令类型	发送	返回
查询串口波特率	"AT+UART?\r\n"	"+UART:X\r\nOK\r\n"

注:波特率默认是 115200。

命令类型	发送	返回
设置串口波特率	"AT+UART=X\r\n"	"OK\r\n"

注:可以通过"AT+UART=X\r\n"来设置芯片的串口波特率。分为快速设置和自定义设置。芯片默认波特率是 115200,我们建议使用 115200,因为这个波特率会让芯片性能更好,如果您修改了芯片的波特率,请记住波特率的数值,如果忘记了,可能会无法再次使用芯片。

快速设置:

- "AT+UART=1\r\n",设置波特率为 2400。
- "AT+UART=2\r\n",设置波特率为9600。
- "AT+UART=3\r\n",设置波特率为 19200。
- "AT+UART=4\r\n",设置波特率为 115200。
- 自定义设置(范围 110-115200):
- "AT+UART=110\r\n",设置波特率为 110。
- "AT+UART=7200\r\n",设置波特率为 7200。
- "AT+UART=9600\r\n",设置波特率为9600。
- "AT+UART=115200\r\n",设置波特率为 115200。

命令类型	发送	返回
查询 MTU 值	"AT+MTU?\r\n"	"+MTU:X\r\nOK\r\n"

注: MTU 值只能查询,不能设置。在蓝牙未连接时,MTU 为 23,这个值没有任何意义,在蓝牙连接时,MTU 值为主机和从机协商后的结果,通常为 247; 这是芯片支持的最大值。可以通过主机来设置 MTU 值。早期的 BLE 协议,MTU 固定为 23(android 5.2 之前)。蓝牙每次传输的数据长度最大为 MTU-3。

命令类型	发送	返回
		"+LINK:OnLine\r\nOK\r\n"
查询蓝牙连接	"AT+LINK?\r\n"	或
•		"+LINK:OffLine\r\nOK\r\n"

注: +LINK:OnLine, 代表蓝牙已连接; +LINK:OffLine, 代表蓝牙未连接。

命令类型	发送	返回
		"+BLENOTIFY:0\r\nOK\r\n"
查询蓝牙订阅	"AT+BLENOTIFY?\r\n"	或
		"+BLENOTIFY:1\r\nOK\r\n"

注: 0: 蓝牙订阅未开启, 1: 蓝牙订阅开启。在从机模式下,只有订阅处于开启状态, 串口收到的数据才会透传给主机。

命令类型	发送	返回
断开蓝牙连接	"AT+DISC\r\n"	"OK\r\n"

命令类型	发送	返回
查询蓝牙功率	"AT+POWE?\r\n"	"+POWE:Xdb\r\nOK\r\n"

注:默认为 3db。

命令类型	发送	返回
设置蓝牙功率	"AT+POWE=X\r\n"	"OK\r\n"

注: 范围 0-9; 默认为 3db。

"AT+POWE=0\r\n",设置蓝牙功率为-20db; "AT+POWE=1\r\n",设置蓝牙功率为-15db; "AT+POWE=2\r\n",设置蓝牙功率为-10db; "AT+POWE=3\r\n",设置蓝牙功率为-6db; "AT+POWE=4\r\n",设置蓝牙功率为-2db;

"AT+POWE=6\r\n",设置蓝牙功率为 0db; "AT+POWE=7\r\n",设置蓝牙功率为 3db; "AT+POWE=8\r\n",设置蓝牙功率为 4db; "AT+POWE=9\r\n",设置蓝牙功率为 5db;

命令类型	发送	返回
读取服务 UUID	"AT+SUUID?\r\n"	"+SUUID:XXXX\r\nOK\r\n"

注:默认是 0xFFF0。这条命令仅从机模式有效。

命令类型	发送	返回
设置服务 UUID	"AT+SUUID=XXXX\r\n"	"OK\r\n"

注: "AT+SUUID=FFE0\r\n",设置蓝牙服务的 UUID 为 0xFFE0。如果您不熟悉这个参数,请不要修改它,如果修改了 UUID,易加蓝牙助手将不能正常工作,但是可以使用 LightBlue或 NRF Connect 继续测试。这条命令仅从机模式有效。

命令类型	发送	返回
读取读特性 UUID	"AT+RUUID?\r\n"	"+RUUID:XXXX\r\nOK\r\n"

注:默认是 0xFFF1。这条命令仅从机模式有效。

命令类型	发送	返回
设置读特性 UUID	"AT+RUUID=XXXX\r\n"	"OK\r\n"

注: 这条命令仅从机模式有效。

命令类型	发送	返回
读取写特性 UUID	"AT+WUUID?\r\n"	"+WUUID:XXXX\r\nOK\r\n"

注:默认是 0xFFF2。这条命令仅从机模式有效。

命令类型	发送	返回
设置写特性 UUID	"AT+WUUID=XXXX\r\n"	"OK\r\n"

注: 这条命令仅从机模式有效。

命令类型	发送	返回
查询蓝牙名字	"AT+NAME?\r\n"	"+NAME:X\r\nOK\r\n"

注: 蓝牙名字最长 20 个字节,每个芯片出厂都会有一个默认的唯一的名字,以字符 @开头,后面加上 10-12 位数组字母组合,如果不需要这个名字可以通过 AT 命令来修改它;这条命令仅从机模式有效。

命令类型	发送	返回
设置蓝牙名字	"AT+NAME=X\r\n"	"OK\r\n"

注: 蓝牙名字最长 20 个字节。如果想设置中文的蓝牙名字,需要使用 URL 编码,一个中文占用 3 个字节,例如修改蓝牙名字为"易加物联",需要发送给芯片的十六进制数据为

41542B4E414D453D E69893 E58AA0 E789A9 E88194 ODOA

第一部分为 AT 命令的头部,中间四个部分为易加物联四个字,最后一部分是 AT 命令的结尾。

这条命令仅从机模式有效。

命令类型	发送	返回
查询 MAC 地址	"AT+MAC?\r\n"	"+MAC:XXXXXXXXXXXX\r\nOK\r\n"

注: 这条命令仅从机模式有效。

命令类型	发送	返回
设置 MAC 地址	"AT+MAC=XXXXXXXXXXXXX\r\n"	"OK\r\n"

注: 这条命令仅从机模式有效。

命令类型	发送	返回
查询广播间隙	"AT+ADVINT?\r\n"	"+ADVINT:Xus\r\nOK\r\n"

注:广播间隙默认 200ms,增加广播间隙,可以降低功耗。这条命令仅从机模式有效。

命令类型	发送	返回
设置广播间隙	"AT+ADVINT=X\r\n"	"OK\r\n"

注:广播间隙默认 200ms,增加广播间隙,可以降低功耗。太长的广播间隙可能会导致搜索和连接的时间变长,一般不建议超过 2 秒。超过 2 秒,苹果手机可能无法和芯片建立连接。设置广播间隙分为快速设置和自定义设置。这条命令仅从机模式有效。

快速设置:

"AT+ADVINT=1\r\n",设置广播间隙为 50 毫秒。

"AT+ADVINT=2\r\n",设置广播间隙为 100 毫秒。

"AT+ADVINT=3\r\n",设置广播间隙为 200 毫秒。

"AT+ADVINT=4\r\n",设置广播间隙为 500 毫秒。

"AT+ADVINT=5\r\n",设置广播间隙为 1000 毫秒。

"AT+ADVINT=6\r\n",设置广播间隙为 2000 毫秒。

自定义设置(数值范围 32-16384, 单位是 625 微秒):

"AT+ADVINT=32\r\n",设置广播间隙为 32*625us=20 毫秒。

"AT+ADVINT=320\r\n",设置广播间隙为 320*625us=200 毫秒。

"AT+ADVINT=16384\r\n",设置广播间隙为 10.24 秒。

命令类型	发送	返回
查询自定义广播数据	"AT+RESE?\r\n"	"+RESE:X\r\nOK\r\n"

注: 自定义广播数据,长度 1-22 个字节。格式是十六进制字符串,自定义广播数据默认关闭,内容为空。这条命令仅从机模式有效。

命令类型	发送	返回
设置自定义广播数据	"AT+RESE=X\r\n"	"OK\r\n"

注:长度 1-22 个字节。

"AT+RESE=F1\r\n",设置自定义广播数据为1个字节,内容是0xF1。

"AT+RESE=F0F1F2F3F4F5F6F7F8F9F0F1F2F3F4F5F6F7F8F9F1F2\r\n",设置自定义广播数据为 0xF0F1F2F3F4F5F6F7F8F9F0F1F2F3F4F5F6F7F8F9F1F2,长度 22 字节。

这条命令仅从机模式有效。

命令类型	发送	返回
关闭自定义广播数据	"AT+RESEOFF\r\n"	"OK\r\n"

注: 默认为关闭状态,如果您需要再次关闭,可以使用这条 AT 命令。这条命令仅从 机模式有效。

命令类型	发送	返回
查询蓝牙连接密码	"AT+PASSWORD?\r\n"	"+PASSWORD:X\r\nOK\r\n"

注: 默认蓝牙密码功能关闭,查询为空;这条命令仅从机模式有效。

命令类型	发送	返回
设置蓝牙连接密码	"AT+PASSWORD=X\r\n"	"OK\r\n"

注:密码的长度最长为 20 字节,如果设置了密码,蓝牙连接后,主机需要首先发送密码,如果未发送密码或密码不正确,5 秒后芯片会主动断开蓝牙连接。默认密码功能关闭,蓝牙连接无需密码。这条命令仅从机模式有效。

命令类型	发送	返回
清除蓝牙连接密码	"AT+PASSWORDC\r\n"	"OK\r\n"

注:这条命令可以清除蓝牙连接密码,再次连接不需要发送密码。这条命令仅从机模式有效。

蓝牙工作在从机模式,存在四个蓝牙连接参数,这些参数决定了蓝牙处于已连接状态时,芯片的功耗和数据传输的性能。四个参数分别为:

连接间隙最小值 (MIN_CONN_INTERVAL): 数值范围 6-3200, 单位 1.25ms 连接间隙最大值 (MAX_CONN_INTERVAL): 数值范围 6-3200, 单位 1.25ms

从机潜伏 (SLAVE LATENCY): 数值范围 0-499

连接超时 (CONN TIMEOUT): 数值范围 1-3200, 单位 10ms

蓝牙连接后,会周期性产生连接事件,连接间隔越小,数据传输延迟越小,功耗越大。连接间隔越大,数据传输延迟越大,功耗越低。从机潜伏是可以忽略掉的连接事件,数值越大,数据传输延迟越大,功耗越低。这些参数的最终值是主机和从机协商后决定的,从机的设置不一定会生效。

为了方便使用,我们提供了简捷的命令来设置这四个参数。

命令类型	发送	返回
	"AT+CONPARAM=0\r\n"	
设置连接参数	或	"OK\r\n"
	"AT+CONPARAM=1\r\n"	

注: "AT+CONPARAM=0\r\n", 四个参数依次为 6,12,0,300。这是一种默认的状态,数据延迟低,功耗略高。

"AT+CONPARAM=1\r\n", 四个参数依次为 160,180,4,600。数据传输延迟大,适用于低功耗场景。

这条命令仅从机模式有效。

如果您熟悉这四个参数,可以使用下面的命令详细配置它们。

命令类型	发送	返回
查询连接间隙最小值	"AT+CONINTMIN?\r\n"	"+CONINTMIN:X\r\nOK\r\n"

注:数值范围 6-3200,单位 1.25ms;默认为 7.5 毫秒;这条命令仅从机模式有效。

命令类型	发送	返回
设置连接间隙最小值	"AT+CONINTMIN=X\r\n"	"OK\r\n"

注:数值范围 6-3200,单位 1.25ms;这条命令仅从机模式有效。

命令类型	发送	返回
查询连接间隙最大值	"AT+CONINTMAX?\r\n"	"+CONINTMAX:X\r\nOK\r\n"

注:数值范围 6-3200,单位 1.25ms;默认为 15 毫秒;这条命令仅从机模式有效。

命令类型	发送	返回
设置连接间隙最大值	"AT+CONINTMAX=X\r\n"	"OK\r\n"

注:数值范围 6-3200,单位 1.25ms;这条命令仅从机模式有效。

命令类型	发送	返回
查询从机潜伏	"AT+LATENCY?\r\n"	"+LATENCY:X\r\nOK\r\n"

注:数值范围 0-499; 默认为 0;这条命令仅从机模式有效。

命令类型	发送	返回
设置从机潜伏	"AT+LATENCY=X\r\n"	"OK\r\n"

注:数值范围 0-499;这条命令仅从机模式有效。

1	命令类型	发送	返回
ı	查询连接超时	"AT+CONTIMEOUT?\r\n"	"+CONTIMEOUT:X\r\nOK\r\n"

注:数值范围 1-3200,单位 10ms;默认为 3 秒;这条命令仅从机模式有效。

命令类型	发送	返回
设置连接超时	"AT+CONTIMEOUT=X\r\n"	"OK\r\n"

注:数值范围 1-3200,单位 10ms;这条命令仅从机模式有效。

命令类型	发送	返回
查询扫描从机最大数	"AT+SCANMAX?\r\n"	"+SCANMAX:X\r\nOK\r\n"

注:范围 10-30; 默认为 10; 这条命令仅主机模式有效。

命令类型	发送	返回
设置扫描从机最大数	"AT+SCANMAX=X\r\n"	"OK\r\n"

注: 范围 10-30,设置芯片作为主机模式时,一次扫描最多能搜索到的从机数量;这条命令仅主机模式有效。

命令类型	发送 返回	
查询扫描时间	"AT+SCANTIME?\r\n"	"+SCANTIME:X\r\nOK\r\n"

注:数值范围 500-10000,单位为毫秒,默认为 500 毫秒;这条命令仅主机模式有效。

命令类型	发送	返回
设置扫描时间	"AT+SCANTIME=X\r\n"	"OK\r\n"

注:数值范围 500-10000,单位为毫秒,如果从机的广播间隙比较大,需要增加扫描时间才能搜索到从机,默认扫描时间是 500 毫秒,这条命令仅主机模式有效。

命令类型	发送	返回
		"OK\r\n"
		"+SCAN:3"
主机开始搜索	"AT+SCAN\r\n"	"0,null,5081E95F09BD,-68\r\n"
土/ル// 知1支系	AI+3CAIN(I (II	"1,ABC,5081E95F09BA,-68\r\n"
		"2,DQD,5081E95F09BE,-68\r\n"
		"\r\n"

注: +SCAN:X, X 是搜索到的设备数量,最大值是 30。"0,null,5081E95F09BD,-68\r\n",第一个参数是序列号,第二个参数是蓝牙的名字,第三个参数是蓝牙的 MAC 地址,第四个参数是蓝牙的信号强度。当蓝牙设备较多时,列表可能会很长,超过了 MCU 的 RAM,这时可以只提取设备数量,通过 AT+LIST 获取设备列表中的一条数据。这条命令仅主机模式

有效。

命令类型	发送	返回
获取设备列表里		"0,null,5081E95F09BD,-68\r\nOK\r\n"
的设备	"AT+LIST=X\r\n"	或
的以笛		"ERROR\r\n"

注: X 是设备在列表中的序列号。这条命令仅主机模式有效。

命令类型	发送	返回
连接设备	"AT+CONNECT=X\r\n"	"OK\r\n" 或
		"ERROR\r\n"

注: X 是设备在列表中的序列号。这条命令仅主机模式有效。

命令类型	发送	返回
		"+BOND:\r\nOK\r\n"
查询从机绑定	"AT+BOND?\r\n"	或 "+BOND:NAME,X\r\nOK\r\n"
		或
		"+BOND:MAC,X\r\nOK\r\n"

注: 芯片工作在主机模式,可以绑定从机的蓝牙名字或 MAC 地址,这样会使芯片工作在自动模式,上电后芯片自动搜索周围的从机,直到搜索到绑定的从机,然后自动进行蓝牙连接,如果蓝牙连接发生断开,芯片会自动重新搜索,重新连接。无需再使用 AT命令去手动操作。 "+BOND:\r\nOK\r\n"表示没有绑定从机,"+BOND:NAME,X\r\nOK\r\n"表示绑定的是从机蓝牙名字,"+BOND:MAC,X\r\nOK\r\n"表示绑定的是从机 MAC 地址;默认没有绑定任何从机;这条命令仅主机模式有效。

命令类型	发送	返回
清除从机绑定	"AT+BONDC\r\n"	"OK\r\n"

注:清除主机所绑定的从机信息,芯片恢复到手动模式;这条命令仅主机模式有效。

命令类型	发送	返回
设置绑定从机蓝牙名字	"AT+BONDNAME=X\r\n"	"OK\r\n"

注:设置绑定从机的蓝牙名字,长度 1-20 字节;这条命令仅主机模式有效。

命令类型	发送	返回
设置绑定从机 MAC 地址	"AT+BONDMAC=X\r\n"	"OK\r\n"

注: "AT+MAC=F1F2F3F4F5F6\r\n",设置绑定的从机 MAC 地址;这条命令仅主机模式有效。

七. 注意事项

每次发送的数据长度要小于 MTU 的限制,根据发送数据的长度,合理控制发送间隔。数据包的最大长度可以通过测试得到,或通过 AT+MTU?命令来查询。天线可以是贴片天线、PCB 天线、FPC 天线、SMA 或 IPEX 接口的外置天线,具体天线设计参考评估板。在睡眠模式,芯片的串口只能向外发送数据,不能接收数据,如需向芯片发送数据,请先确认芯片已退出睡眠模式。请确认芯片电源的质量以便芯片能够正常的工作,芯片电源引脚附近需要放置电容,如果蓝牙芯片断电,请确保所有的引脚也都处于断电状态。

八.参数规格

	最小值	典型值	最大值	单位
工作电压	2.0	3.3	3.6	V
标准模式	-	6	-	mA
低功耗模式		50		uA
关机模式		15		uA
工作温度	-40	-	+80	$^{\circ}$ C
串口波特率	110	115200 (默认)	115200	bit/s
串口校验位		无		
串口数据位		8		bit
串口停止位		1		bit
服务 UUID (默认)	0000FFF0-0000-1000-8000-00805F9B34FB			B34FB
读特性 UUID (默认)	0000FFF1-0000-1000-8000-00805F9B34FB			
写特性 UUID (默认)	0000FFF2-0000-1000-8000-00805F9B34FB			

九. 外形尺寸

十. 技术支持

感谢您使用 ECB02C 蓝牙芯片,如果您在使用过程中遇到技术问题,可以通过以下联系方式获取技术支持。芯片除了实现标准的透传功能,硬件还支持 11 个 GPIO, 2 个 UART, 6 个 PWM, 4 个 ADC, 2 个 I2C, 2 个 SPI 等外设,可以通过定制软件来使用它们,如果有需要也可以和我们联系。

- ❖ 官网 https://eciot.cn
- ❖ 邮箱 sales@eciot.cn
- Q Q 2201920828
- ◆ 电话 0755 23067393