Relation Classification as Two-way Span-Prediction

Authors: Amir DN Cohen, Shachar Rosenman, Yoav Goldberg

00 Background

Relation Extraction

문장(혹은 문서)에서 entity의 관계를 예측하는 task

- Ex. "Barack Obama was born in Honolulu, Hawaii." -> relation classifier는 "born In City"의 관계를 예측
- relation knowledge graphs의 핵심 요소
- 다양한 응용 태스크에 사용(QA, MRC ...)

01 Introduction

Introduction

- relation classification (RC) task는 2개의 엔티티 사이의 binary relation을 중심으로 진행
- Corpus를 읽고 text에 따른 entity pair e1, e2를 return
 - -> sentence와 2개의 entity가 주어지는(각 엔티티는 span over the sentence) RC task 취급
 - -> possible relation R로 분류하거나, 관계 없음" no-relation"
- TACRED 데이터셋
 - 형식 (s, e_1, e_2, r) //s: sentence e1, e2: entity, r: e1과 e2의 semantic relation
 - 한 문장 내에서도 3개 이상 entity 있을 수 있지만 데이터셋에 맞춰 2개의 entity 간의 관계 추출
- 현재의 supervised relation classification(RC) task는 entity pair 사이의 관계를 표현하기 위해 single embedding 사용
- QA model 처럼 relation을 찾는 span prediction 접근법을 사용함

Introduction

- RC dataset을 SP 형식으로 바꾸어 사용
- Entity type에 따른 relation type에 대해 2개의 question 생성
- 2개의 칠문 중 맞게 answer한 것이 두 Entity의 relation

02 Embedding Classification vs Span-Prediction

Embedding Classification vs Span-Prediction

Embedding Classification

$$f_{rc}(c, e_1, e_2) \mapsto r \in R \cup \{\emptyset\}$$

- $(c, e_1, e_{2,r})$
- c: context
- e: spans that correspond to head and tail entities
- r:relation
- 같은 relation을 가진 인스턴스는 비슷한 위치에 임베딩 됨

Span Prediction

$$f_{qa}(c,q) \mapsto e_a \in [1..m] \times [1..m]$$

• $(c, q e_a)$; c: context, q: query, e: answer

$$\arg\max_{e_a} score_{c,q}(e_a)$$

• $score_{c,q}(e_a)$ 를 최댓값으로 만들기 위한 e_a 를 구함

03 Method Comparison

Embedding

- 두 methods는 context, two spans, relation/predicate 포함
- RC models은 2개의 span에서 relation으로 분류
- RC의 임베딩은 context와 entities 에 기초

$$h_{qa} = embed(q, c) = embed(r, e_1, c)$$

- SP model은 span과의 관계에서 다른 span으로 분류
- Context와 Question (interest와 entity 1개와의 관계)를 모두 인코딩
- Relation name과 (r, e_1) 을 둘러싼 template word가 포함
- (본 연구에서는 BERT로 실험했는데 CLS token과 , SEP token으로 문장 시작과 다른 문장과의 구분 표시)

04 Implications

Implication

Relation type indication for the pretrained model.

- Contextualized embedder에 relation을 포함하여 input을 넣으면 embedder가 특정 relation이 specialize 할 수 있음
- Ex. "Martha gave birth to John last February"
 - 엔티티 John은 2가지 "date of birth", "parents of" relation에 해당할 수 있음
- RC 임베딩의 경우 엔티티에 근거하여 relation을 추정하거나 두 relation에 대한 정보를 유지해야함
- Span Prediction의 경우 임베딩은 relation의 argument로서 1개의 entity에 집중
- 임베딩 단계에서 Specific relation에 집중하여 모든 model에 적용할 수 있음

Implication

Sharing of semantic information.

- Span prediction model은 r, e를 인코딩하는 template 통해 중요한 information을 모델에 전달
 - (1) target relation의 semantic information(ex. relation을 나타내는 question)
 - (2) 다른 relation을 일반화하는데 도움이 될 수 있는 information
- Ex. relation: "born in", template question: "Who was born in X?"
 relation: "parent of", template question: "Who is the parent of X?"
 - → Relation은 다르지만 둘 다 엔티티 타입이 "person", "Who"라는 단어가 공통으로 있기 때문에 모델에 유사성이 전달되어 relation type 간의 일반화하는데 도움

Implication

RC sample	Relation candidates	Question (Reverse Question)	Answer
John was born on 1991	"Date of birth"	When was John Born?	1991
	Date of birtin	(Who was born on 1991?)	John
	"Date of death"	When did john die?	N/A
		(Who died on 1991?)	N/A
Mary is John's employer	"employer of"	Who is employed by Mary?	John
		(Who is John employer?)	Mary
	"siblings"	Who is the sibling of Mary?	N/A
		(Who is the sibling of John?)	N/A
	"parents of"	Who is the child of Mary?	N/A
		(Who is the parent of John?)	N/A

- Reverse Question으로 양방향으로 수행하여 한쪽이 틀리거나 양쪽이 틀리면 no relation
- 단점: entity 주어졌을 때 해당하는 모든 relation을 다 해봐야 하므로 시간이 오래 걸림

05 Reducing RC to span-prediction

Reducing RC to span-prediction

```
RC instance (c, e_1, e_2) \mapsto rel
SP instance (q = (e_q, rel_q), c) \mapsto e_a
```

- $T_{rel}(e)$: 엔티티 'e'를 받아 question을 return
- $ex. T_{dob} = "When was __born" \rightarrow T_{dob}(Sam) = "When was Sam born"$

QA1: $(c, When was Sam born?) \mapsto 1991$

QA2: $(c, Who was born in 1991?) \mapsto Sam$

• 양방향으로 질문 생성

05 Result

Result

Model	Acc ₊	Acc_	Acc
RC_{BERT}	70.0	64.8	67.1
$SQuAD_{BERT}$	62.9	70.9	67.4
$SP_{token,BERT}$	55.0	75.5	66.4
${\sf SP}_{relation,BERT}$	66.6	72.1	69.6
$SP_{question,BERT}$	72.5	75.0	73.9
$SQuAD_{ALBERT}$	71.5	78.8	75.3
$\mathrm{SP}_{token,ALBERT}$	80.9	73.2	76.6
${\sf SP}_{relation,ALBERT}$	78.2	79.8	79.1
$\mathrm{SP}_{question,ALBERT}$	81.2	79.5	80.3

Model	P	R	F ₁
$RC_{MTB,BERT}$	-	-	70.1
$\mathrm{SP}_{token,BERT}$	63.3	78.4	70.0
$\mathrm{SP}_{relation,BERT}$	67.0	76.0	71.2
$\mathrm{SP}_{question,BERT}$	71.1	72.6	71.8
KEPLLER _{RoBERTa+KG}	72.8	72.2	72.5
$\mathrm{SP}_{token,ALBERT}$	72.2	74.6	73.4
${ m SP}_{relation,ALBERT}$	74.6	75.2	74.8
$\mathrm{SP}_{question,ALBERT}$	73.3	71.8	72.6

Model	P	R	F_1
$RC_{MTB,BERT}$	-	-	89.2
LiTian (current best)	94.2	88.0	91.0
${\sf SP}_{token,BERT}$	92.8	88.8	90.7
$\operatorname{SP}_{relation,BERT}$	91.9	83.1	87.1
$\mathrm{SP}_{question,BERT}$	90.7	93.2	91.9

- BERT보다 ALBERT의 성능이 더 높음
- RC task를 QA와 유사하게 span-prediction(SP) problem으로 처리하는 것이 더 나은 접근법이라고 주장
- supervised SP objective가 standard classification based objective보다 더 잘 동작한다는 것을 증명