

درس : متجهات الفضاء

درس رقم

متجهات الفضاء:

... تمدید مفهوم متجهة في المستوى للفضاء:

. مفهوم متجهة في الفضاء:

 $\overline{\mathbf{A}}$ معرفة ب : في المستوى ، متجهة

- (AB) اتجاه \overline{AB} هو المستقيم
- منحى AB هو المنحى من A إلى B
- $\mathbf{A}\mathbf{B}=\|\overline{\mathbf{A}\mathbf{B}}\|$ طول $\overline{\mathbf{A}\mathbf{B}}$ (أو منظم $\overline{\mathbf{A}\mathbf{B}}$) هي المسافة $\mathbf{A}\mathbf{B}$ و نكتب $\overline{\mathbf{A}\mathbf{B}}$ هذا المفهوم نمدده للفضاء (ع) وكذلك جميع خاصيات المتجهات في المستوى

تبقى صالحة في الفضاء (ع).

بعی صانحه کی انعصاء (ع)

- حالة ${f B}={f A}$ المتجهة ${f A}={f O}$ (ليس لها اتجاه ومنظمها منعدم وتسمى المتجهة المنعدمة)
 - نقول إن متجهتين متساويتان إذا كان لهما اتجاهين متوازيين و نفس المنحى و نفس المنظم.
 - $\overrightarrow{AB} = \overrightarrow{DC}$ رباعي في (\mathcal{E}) هو متوازي أضلاع يكافئ ABCD .

. الحساب المتجهي في الفضاء مجموع متجهتين و جداء متجهة في عدد حقيقي :

1. ملحوظة:

مجموع متجهتين وجداء متجهة في عدد حقيقي معرفتين كما عرفا في المستوى و لهما نفس الخاصيات.

.2 مثال:

- $-\overrightarrow{AB} = \overrightarrow{BA}$
- . $\forall A,B,C \in (\mathcal{E}): \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}:$ علاقة شال
- \vec{u} و منحناها عكس منحى المتجهة التي لها نفس اتجاه \vec{u} ونفس منظم \vec{u} و منحناها عكس منحى المتجهة \vec{u} ونرمز لها ب \vec{u}
 - v = ku المتجهة
 - $\mathbf{k} < 0$ و لها عكس منحى المتجهة \mathbf{u} إذا كان $\mathbf{k} > 0$. و لها عكس منحنى المتجهة \mathbf{u}
 - $\|\vec{\mathbf{v}}\| = |\mathbf{k}| \|\vec{\mathbf{u}}\|$ منظم المتجهة $\vec{\mathbf{v}}$ يحقق ما يلي •
 - . \vec{k} نضع \vec{u} نضع \vec{u} نضع \vec{u} نضع \vec{u} نضع الكل عدد حقيقي \vec{u}

1 خاصیات

 $\dot{\mathbf{k}}$ 'و $\dot{\mathbf{v}}$ و لكل عددين حقيقيين $\dot{\mathbf{u}}$ و كل عددين عددين

$$k(\vec{u}+\vec{v}) = k\vec{u}+k\vec{v}$$
 (2 $(k+k').\vec{u} = k\vec{u}+k'\vec{u}$ (1

$$\vec{1.u} = \vec{u} \quad (4 \quad \cdot \quad k(k'.\vec{u}) = k'(k\vec{u}) = (k \times k')\vec{u} \quad (3)$$

$$. \ \mathbf{k}.\vec{\mathbf{u}} = \vec{\mathbf{0}} \Leftrightarrow \mathbf{k} = \mathbf{0} \quad \vec{\mathbf{u}} = \vec{\mathbf{0}} \quad (\mathbf{5}$$

II. استقامية متجهتين - التعريف المتجهى لمستقيم في الفضاء .

10. استقامیة متجهتین – استقامیة 3 نقط:

[. تعریف:

ي و \vec{v} متجهتان مستقيميتان إذا وجد α من \vec{u} حيث \vec{u} حيث \vec{u} او \vec{v} و اي إحداهما تكتب كجداء الأخرى وعدد حقيقي).

الصفحة

درس رقم

درس : متجهات الفضاء

2. ملحوظة

- المتجهة المنعدمة مستقيمية مع جميع متجهات الفضاء.
 - . و $\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{CD}}$ و متجهتان غير منعدمتين $\overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{AB}}$
- (CD) (AB) مستقیمیتان تکافی. $\vec{v} = \overrightarrow{CD}$ و $\vec{u} = \overrightarrow{AB}$
- A و B و C نقط من الفضاء مستقيمية يكافئ $\vec{u} = \overrightarrow{AB}$ و $\vec{u} = \overrightarrow{AB}$ إحداهما تكتب بدلالة الأخرى .

02 التعريف المتجهي لمستقيم في الفضاء:

1. تعریف - خاصیة:

لتكن A و B نقطتين مختلفتين من الفضاء (ع).

- كل متجهة $\dot{\overline{u}}$ غير منعدمة و مستقيمية مع المتجهة \overline{AB} تسمى متجهة موجهة للمستقيم (AB).
- \vec{u} مجموعة النقط M من الفضاء $\Delta \vec{m} = \alpha \vec{u}$ مي تحقق $\Delta \vec{m} = \alpha \vec{u}$ مي المستقيم المار من $\Delta \vec{m} = \alpha \vec{u}$ و الموجه بالمتجهة \vec{m} نرمز له ب: $D(A, \vec{u}) = \{M \in (\mathcal{E}) / \overline{AM} = \alpha \vec{u}; \alpha \in \mathbb{R}\}$ ومنه: $D(A, \vec{u}) = \{M \in (\mathcal{E}) / \overline{AM} = \alpha \vec{u}; \alpha \in \mathbb{R}\}$

2. مثال:

لتكن A نقطة من الفضاء و \widetilde{u} متجهة غير منعدمة. (أنظر الشكل أسفله) أنشئ المستقيم $D\left(A,\widetilde{u}\right)$.

III. المتجهات المستوائية _ تحديد متجهى لمستوى في الفضاء:

10. المتجهات المستوائية:

1 مبرهنة و تعريف:

- نقول إن أربع نقط A و B و C من الفضاء مستوائية إذا كانت تنتمي لنفس المستوى
- نقول إن ثلاث متجهات \vec{u} و \vec{w} من الفضاء \vec{v} مستوانية إذا وفقط إذا وجدت أربع نقط مستوانية \vec{v} و \vec{v} و \vec{v} و \vec{v} = \vec{v} .
 - مثال: ABCDEFGH متوازي المستطيلات أوجد ثلاث متجهات مستوائية ثم أخرى غير مستوانية .

 $\overrightarrow{w} = \overrightarrow{DH}$ و $\overrightarrow{v} = \overrightarrow{DG}$ و $\overrightarrow{u} = \overrightarrow{AB}$: المتجهات

لدينا: $\overrightarrow{\mathbf{w}} = \overrightarrow{\mathbf{DH}} = \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{DG}}$ و $\overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{AB}} = \overrightarrow{\mathbf{DC}}$. ونعلم أن النقط \mathbf{D} و \mathbf{C} و \mathbf{D} مستوانية .

ومنه المتجهات \overrightarrow{u} و \overrightarrow{v} مستوائية .

- 3. ملحوظة:
- $\overline{f v}$ إذا كانت متجهتين من بين f u و f v مستقيميتين فإن المتجهات الثلاث مستوائية
- $\overrightarrow{u} = \overrightarrow{DC}$ و $\overrightarrow{v} = \overrightarrow{DC}$ و $\overrightarrow{v} = \overrightarrow{DC}$ مستوائية لا يعني أن النقط A و B و C و $\overrightarrow{v} = \overrightarrow{DC}$ مستوائية .

درس : متجهات الفضاء درس رقم

4 مثال

المتجهات : $\overrightarrow{u} = \overrightarrow{AB}$ و $\overrightarrow{v} = \overrightarrow{EF}$ هي مستوائية لأن : $\overrightarrow{u} = \overrightarrow{AB}$ و $\overrightarrow{u} = \overrightarrow{AB}$ مستقيمية و لكن النقط A و B و D و $\overrightarrow{v} = \overrightarrow{AD}$ عير مستوائية (لأن النقطة D لا تنتمي إلى المستوى المحدد بالنقط A و B و E و C) .

12. تحديد متجهى لمستوى في الفضاء:

1. مبرهنة و تعريف:

- كل مستوى (P) في الفضاء (\mathfrak{F}) يحدد بنقطة A من (\mathfrak{F}) و متجهتين $\dot{\mathfrak{v}}$ و متجهتين من (\mathfrak{F}) ؛ $\dot{\mathfrak{v}}$ و متجهتان موجهتان للمستوى و نرمز له ب : (\mathfrak{F} (A, $\dot{\mathfrak{v}}$) = P(A, $\dot{\mathfrak{v}}$, $\dot{\mathfrak{v}}$)
- \vec{u} مجموعة النقط M من الفضاء (\mathcal{E}) التي تحقق ما يلي: $\vec{AM} = x\vec{u} + y\vec{v}$ هي المستوى (\mathcal{E}) المار من M والموجه بالمتجهتين \vec{u} . $P(A,\vec{u},\vec{v}) = \{M \in (\mathcal{E}) / \overrightarrow{AM} = x \ \vec{u} + y\vec{v} / x \ , \ y \in \mathbb{R} \}$. ومنه: $P = P(A,\vec{u},\vec{v}) : \vec{v}$

2. ملحوظة:

 $\stackrel{\leftarrow}{u}$ و $\stackrel{\leftarrow}{v}$ و $\stackrel{\leftarrow}{w}$ ثلاث متجهات من الفضاء $\stackrel{\leftarrow}{u}$

• \vec{v} و \vec{v} مستوائية إذا وفقط كتبت إحدى المتجهات الثلاث بدلالة المتجهتين المتبقيتين . $\exists x,v\in\mathbb{R}\ /\ \overrightarrow{w}=x\overrightarrow{u}+v\overrightarrow{v}$

. (\overrightarrow{BD} عتبت بدلالة \overrightarrow{AB} و \overrightarrow{AC} عتبت بدلالة \overrightarrow{AB} و \overrightarrow{AC} مثلا: \overrightarrow{BC} المثلا: \overrightarrow{AB} عتبت بدلالة \overrightarrow{AB} و \overrightarrow{AB} المثلا:

المتجهة المنعدمة مستوائية مع كل متجهتين من الفضاء.

3 تمرین:

. (1) : $2\overrightarrow{EA} + 4\overrightarrow{EB} - 5\overrightarrow{EC} - \overrightarrow{ED} = \overrightarrow{0}$: حيث : (2) حيث : \overrightarrow{C} عن الفضاء (2) حيث : \overrightarrow{C} عن الفضاء (3) حيث : \overrightarrow{C}

1. بين أن: A و B و C و D مستوانية.

لدينا:

(1)
$$\Leftrightarrow 2\overrightarrow{EA} + 4\overrightarrow{EB} - 5\overrightarrow{EC} - \overrightarrow{ED} = \vec{0}$$

 $\Leftrightarrow 2\overrightarrow{EA} + 4(\overrightarrow{EA} + \overrightarrow{AB}) - 5(\overrightarrow{EA} + \overrightarrow{AC}) - (\overrightarrow{EA} + \overrightarrow{AD}) = \vec{0}$
 $\Leftrightarrow 4\overrightarrow{AB} - 5\overrightarrow{AC} - \overrightarrow{AD} = \vec{0}$
 $\Leftrightarrow \overrightarrow{AD} = 4\overrightarrow{AB} - 5\overrightarrow{AC}$

ومنه : $\overrightarrow{AC} = 4\overrightarrow{AB} = 4\overrightarrow{AB} = 4\overrightarrow{AB} = 6$ أي المتجهة \overrightarrow{AD} كتبت بدلالة المتجهتين $\overrightarrow{AD} = 4\overrightarrow{AB} = 6$ و \overrightarrow{AD} مستوائية ومنه : النقط A و B و C مستوائية .

خلاصة : النقط A و B و C و مستوانية .

IV. توازي في الفضاء:

10. المستقيمات المتوازية:

[. تعریف:

. مستقیمان من الفضاء ک $\Delta \left(\mathbf{B}, \overrightarrow{\mathbf{v}}
ight)$ و $\mathbf{D} \left(\mathbf{A}, \overrightarrow{\mathbf{u}}
ight)$

 $\Delta(B,\vec{v}) \| D(A,\vec{u}) \Leftrightarrow (\vec{v} \text{ مستقيميتين})$ و \vec{v}

 $\Delta(\mathbf{B}, \mathbf{v}) \| \mathbf{D}(\mathbf{A}, \mathbf{u}) \Leftrightarrow \mathbf{v} = \alpha \mathbf{u} \; ; \; \mathbf{k} \in \mathbb{R}^* \; :$ أو أيضا

درس : متجهات الفضاء درس ر

120 المستقيمات و المستويات المتوازية:

1. تعریف:

$$P(B,\vec{v},\vec{w})$$
 مستقیم و $P(B,\vec{v},\vec{w})$ مستقیم و $P(B,\vec{v},\vec{w})$ مستقیم $P(B,\vec{v},\vec{w})$ مستقیم $P(B,\vec{v},\vec{w})$ موازیا للمستوی $P(B,\vec{v},\vec{w})$ موازیا للمستوی $P(B,\vec{v},\vec{w})$ مستوانیة . $P(B,\vec{v},\vec{w})$ مستوانیة . $P(B,\vec{v},\vec{w})$ مستوانیة .

1. تعریف

و $Q\left(B,\overrightarrow{u_1},\overrightarrow{v_1}\right)$ مستویان متوازیان من الفضاء $P\left(A,\overrightarrow{u},\overrightarrow{v}\right)$ و \overrightarrow{u} مستویان متوانیة و کذلك \overrightarrow{u} و \overrightarrow{v} و \overrightarrow{u} مستوانیة و کذلك \overrightarrow{u} و \overrightarrow{u} مستوانیة .

أو أيضا:

. 1<u>03</u>تمرین

. $\overrightarrow{\mathrm{FJ}} = \frac{2}{3} \overrightarrow{\mathrm{FI}}$ حيث $[\mathrm{FI}]$ و $[\mathrm{AH}]$ و $[\mathrm{AH}]$ حيث $[\mathrm{ABCDEFGH}]$

- أنشئ الشكل .
- $\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD}$ بين ان
 - $\overrightarrow{EJ} = \frac{1}{3}\overrightarrow{EC}$: بين أن
- 4 ماذا يمكن أن نستنتج بالنسبة للنقط E و J و C .
 - . ننشئ الشكل
 - $\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD}$: نبین أن

دينا:

$$\overrightarrow{EC} = \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC}$$
$$= -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD} ; (\overrightarrow{BC} = \overrightarrow{AD})$$

درس رقم

درس : متجهات الفضاء

 $\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD}$ غلاصة:

$$\overrightarrow{EJ} = \frac{1}{3}\overrightarrow{EC}$$
: نثبت أن

لدينا:

$$\begin{split} \overrightarrow{EJ} &= \overrightarrow{EF} + \overrightarrow{FJ} \\ &= \overrightarrow{AB} + \frac{2}{3} \overrightarrow{FI} \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \overrightarrow{AI} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \frac{1}{2} \overrightarrow{AH} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \frac{1}{2} \overrightarrow{AH} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \frac{1}{2} \overrightarrow{AE} + \overrightarrow{EH} \right) \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \frac{1}{2} \overrightarrow{EA} + \frac{1}{2} \overrightarrow{EH} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \overrightarrow{FE} + \frac{1}{3} \overrightarrow{EA} + \frac{1}{3} \overrightarrow{EH} \\ &= \overrightarrow{AB} - \frac{2}{3} \overrightarrow{AB} - \frac{1}{3} \overrightarrow{AE} + \frac{1}{3} \overrightarrow{AD} \quad \left(\overrightarrow{FE} = \overrightarrow{AB} ; \overrightarrow{EH} = \overrightarrow{AD} \right) \\ &= \frac{1}{3} \overrightarrow{AB} - \frac{1}{3} \overrightarrow{AE} + \frac{1}{3} \overrightarrow{AD} \\ &= \frac{1}{3} \left(\overrightarrow{AB} - \overrightarrow{AE} + \overrightarrow{AD} \right) \\ &= \frac{1}{3} \overrightarrow{EC} ; \left(\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD} \right) \end{split}$$

ومنه : $\overrightarrow{EC} = \frac{1}{3}$ و بالتالي المتجهتين \overrightarrow{EC} و منع يتين .

. $\overrightarrow{EJ} = \frac{1}{3} \overrightarrow{EC}$ غلاصة

. C و J و E استنتاج للنقط

. بما أن : $\overrightarrow{EJ} = \frac{1}{3} \overrightarrow{EC}$ فإن المتجهتين \overrightarrow{EJ} و \overrightarrow{EJ} مستقيميتين و منه النقط $\overrightarrow{EJ} = \frac{1}{3} \overrightarrow{EC}$ بما أن

خلاصة: النقط E و J و مستقيمية.

Michel Chasles (1793 - 1880)