Sources, Datasets, Attributes, BigData

August 23, 2020

[1]: pip install sshtunnel

```
Requirement already satisfied: sshtunnel in /opt/conda/lib/python3.7/site-
packages (0.1.5)
Requirement already satisfied: paramiko>=1.15.2 in
/opt/conda/lib/python3.7/site-packages (from sshtunnel) (2.7.1)
Requirement already satisfied: pynacl>=1.0.1 in /opt/conda/lib/python3.7/site-
packages (from paramiko>=1.15.2->sshtunnel) (1.4.0)
Requirement already satisfied: cryptography>=2.5 in
/opt/conda/lib/python3.7/site-packages (from paramiko>=1.15.2->sshtunnel) (2.7)
Requirement already satisfied: bcrypt>=3.1.3 in /opt/conda/lib/python3.7/site-
packages (from paramiko>=1.15.2->sshtunnel) (3.2.0)
Requirement already satisfied: six in /opt/conda/lib/python3.7/site-packages
(from pynacl>=1.0.1->paramiko>=1.15.2->sshtunnel) (1.12.0)
Requirement already satisfied: cffi>=1.4.1 in /opt/conda/lib/python3.7/site-
packages (from pynacl>=1.0.1->paramiko>=1.15.2->sshtunnel) (1.12.3)
Requirement already satisfied: asn1crypto>=0.21.0 in
/opt/conda/lib/python3.7/site-packages (from
cryptography>=2.5->paramiko>=1.15.2->sshtunnel) (0.24.0)
Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-
packages (from cffi>=1.4.1->pynacl>=1.0.1->paramiko>=1.15.2->sshtunnel) (2.19)
Note: you may need to restart the kernel to use updated packages.
```

0.1 Purpose:

- Demonstrate how to:
 - Get metadata database
 - See dataset sources
 - See current datasets
 - Get attribute look-up table for a specific dataset
 - Get data of a specific dataset from bigdata table
 - Example of how to use data to create graph

Imports / Settings / Connect to Mongodb

[57]: # ------# I M P O R T S

```
from sshtunnel import SSHTunnelForwarder
import pymongo
import pprint
import pandas as pd
  _____
    S E T T I N G S
pd.set_option('max_colwidth', 100)
  M O N G O D B
MONGO_HOST = "128.206.117.150"
MONGO_USER = "haithcoatt"
MONGO_PASS = "KellieJean"
server = SSHTunnelForwarder(
   MONGO_HOST,
   ssh_username=MONGO_USER,
   ssh_password=MONGO_PASS,
   remote_bind_address=('127.0.0.1', 27017)
)
server.start()
client = pymongo.MongoClient('127.0.0.1', server.local_bind_port) # server.
→ local_bind_port is assigned local port
```

0.2 Get metadata database

```
What Collections are in metadata database?**
[59]: db.collection_names()

[59]: ['attributes', 'metadata', 'bigdata', 'sources', 'datasets']
```

0.3 Create dataframes for sources and metadata collections

- The **sources collection** contains the names of all the sources that have datasets in the the bigdata collection.
- The **metadata collection** contains information about each dataset and each dataset object has an "attributes" object that is used as the look-up table for each attribute.

```
[60]: sources = pd.DataFrame(list(db.sources.find()))
metadata= pd.DataFrame(list(db.metadata.find()))
```

0.4 What are the data sources?

```
sources[['originator','originator_prefix']]
[8]:
                                                                originator \
     0
                                                                 USA Facts
       United States Department of Agriculture Economic Research Service
     1
     2
                                          Harvard Global Health Institute
       originator_prefix
               USA_FACTS
     0
                    USDA
     1
     2
                    HGHI
```

0.5 What data sets are available?

```
[11]: metadata[['originator_id','dataset_name','originator']]
[11]:
           originator_id
      0
              USDA_02_01
      1
              USDA_01_01
      2
              USDA_03_01
        USA_FACTS_01_01
      3
      4
         USA_FACTS_02_01
              HGHI_02_01
      5
      6
              HGHI_01_01
                                                                            dataset_name
      0
                                                                  Food Environment Atlas
                                                             Food Access Research Atlas
      1
      2
                                                  Atlas of Rural and Small-Town America
      3
                 Confirmed Covid 19 Cases in US by State and County (Jan-July 21 2020)
                Confirmed Covid 19 Deaths in US by State and County (Jan-July 21 2020)
      4
        Harcard Global Health Institute COVID-19 Hospital Referral Regions (HRR) 2020
```

6 Harvard Global Health Institute COVID-19 Hospital Capacity Estimates 2020

```
originator

USDA

USDA

USDA

USDA

USDA

USDA

USDA

USDA

HGHI

HGHI
```

0.6 What are the attributes for a specific dataset?

• The attr_label is the name of the attribute in the bigdata collection.

```
[26]: # Use the originator_id of the dataset to get attributes object
org_id="HGHI_01_01"

# Create attributes dataframe
attributes=pd.DataFrame(list(metadata.loc[metadata.originator_id==org_id].
→attributes)[0])

#displaying first 5 rows of attributes table
attributes.head(5)
```

```
[26]:
                              _id originator_id start_date
                                                              end_date update_freq
      0 5f3c938b85deac56aac95549
                                     HGHI_01_01
                                                        2020
                                                                  2020
                                                                                NA
      1 5f3c938b85deac56aac9554e
                                     HGHI 01 01
                                                        2020
                                                                  2020
                                                                                NA
      2 5f3c938b85deac56aac9554f
                                     HGHI_01_01
                                                        2020
                                                                  2020
                                                                                NA
      3 5f3c938b85deac56aac95550
                                     HGHI_01_01
                                                        2020
                                                                  2020
                                                                                NA
      4 5f3c938b85deac56aac95551
                                     HGHI_01_01
                                                        2020
                                                                  2020
                                                                                NA
         iso_key iso_key_add
                                 attr_label
                                                                   attr_orig \
      0
               3
                          3b
                              HGHI_01_01_01
                                                                       State
                              HGHI_01_01_02
               9
                                                      20_total_hospital_beds
      1
                          NA
      2
               9
                              HGHI_01_01_03
                          NA
                                                           20_total_icu_beds
      3
               9
                          NA
                              HGHI_01_01_04 20_potentially_avail_icul_beds
                          NA
                              HGHI_01_01_05
                                                         20_icu_bed_occ_rate
                                                        attr_desc attr_data_type
      0
                                                            State
                                                                     SQL VARCHAR
      1
                      20% Hospital Capacity- Total Hospital Beds
                                                                         SQL_INT
                           20% Hospital Capacity- Total ICU Beds
      2
                                                                         SQL INT
      3
         20% Hospital Capacity- Potentially Available ICU Beds*
                                                                         SQL_INT
                  20% Hospital Capacity- ICU Bed Occupancy Rate
                                                                        SQL_REAL
```

	scale	<pre>positional_accuracy</pre>	spatial_rep	datum	<pre>coordinate_system</pre>	<pre>entity_type</pre>
0	NA	NA	POLYGON	NA	NA	STATE
1	NA	NA	POLYGON	NA	NA	STATE
2	NA	NA	POLYGON	NA	NA	STATE
3	NA	NA	POLYGON	NA	NA	STATE
4	NA	NA	POLYGON	NA	NA	STATE

0.7 Get data for specific dataset

- To pull in all the data for a dataset, use the mongodb method "find()" to find all objects that contain one of the fields from the dataset (since each dataset will always have an attribute with the name "[originator_id]-01", I would suggest using that field).
- Use the attributes look up table above, to identify what data each column contains

```
[28]: dataset_data=pd.DataFrame(list(db.bigdata.find({"HGHI_02_01_01":{"$ne":None}})))

#displaying first five rows of data
dataset_data.head(5)
```

	da	dataset_data.head(5)						
[28]:			_id	HGHI	02 01 01	HGHI_02_01_02	HGHI 02 01 0	3 \
2-03	0	5f42f6e34b5458	_					
	1	5f42f6e34b5458				1358.0		
	2	5f42f6e34b5458	63438e776f Al	ameda C	ounty CA	2695.0	293.	0
		5f42f6e34b545863438e7770		Albany GA Albany NY		704.0		0
	4					4804.0	425.	0
		HGHI_02_01_07	HGHI_02_01_09	HGHI_	02_01_04	HGHI_02_01_05	HGHI_02_01_0	6 \
	0	565.0	772.0)	68.0	98.0	226444.	0
	1	518.0	938.0)	94.0	140.0	547990.	0
	2	665.0	1680.0)	139.0	216.0	1310189.	0
	3	221.0	462.0		27.0	43.0	157143.	0
	4	1579.0	3191.0)	193.0	309.0	1477723.	0
		HGHI_02_01_08	HGHI_02_01	_95 HG	HI_02_01_	98 HGHI_02_01	_99 \	
	0	50412.0	4	27	3.	29 209	9.0	
	1	111042.0	7	.09	5.	33 490	6.0	
	2	214991.0				78 1140		
	3	30466.0	6	5.56	4.	70 14:	1.0	
	4	318695.0	8	3.77	6.	37 135	5.0	
		HGHI_02_01_100	HGHI_02_01_1	01 HGH	I_02_01_1	03 HGHI_02_01	_104 \	
	0	3.07	2.	13	1.	65 13	36.0	
	1	5.28	3.	54	2.	67 33	23.0	
	2	8.20	5.	28	3.	89 74	43.0	
	3	5.22	3.	28	2.	35	92.0	

4	7.02	4.39	3.19	883.0
	HGHI_02_01_102	HGHI_02_01_105	HGHI_02_01_106	
0	2.00	1.39	1.07	
1	3.44	2.31	1.74	
2	5.35	3.44	2.54	
3	3.41	2.14	1.53	
4	4.58	2.86	2.08	

[5 rows x 107 columns]

0.8 Use data to create visual

```
[55]: ax= dataset_data.loc[0:5].plot.bar(x='HGHI_02_01_01',y="HGHI_02_01_02",__

title="20% Hospital Capacity", figsize=(10,5),color="orange",ec="black")

ax.get_legend().remove()

ax.set_xlabel("City, State")

ax.set_ylabel("Total Hospital Beds")
```

[55]: Text(0, 0.5, 'Total Hospital Beds')

