CS 22 -- Example of digital logic design

A digital circuit takes as input a 4-bit representation of a decimal digit (0-9) and then displays the numeral in a familiar form. The 7 outputs correspond to the segments a-g in the display as shown below.

We have 7 Boolean functions, and each has 4 inputs. The truth table for the 7 Boolean functions is as follows:

	(inputs)					(outputs)						
Decimal	W	X	У	Z		а	b	С	d	е	f	g
0	0	0	0	0		1	1	1	1	1	1	0
1	0	0	0	1		0	1	1	0	0	0	0
2	0	0	1	0		1	1	0	1	1	0	1
3	0	0	1	1		1	1	1	1	0	0	1
4	0	1	0	0		0	1	1	0	0	1	1
5	0	1	0	1		1	0	1	1	0	1	1
6	0	1	1	0		1	0	1	1	1	1	1
7	0	1	1	1		1	1	1	0	0	0	0
8	1	0	0	0		1	1	1	1	1	1	1
9	1	0	0	1		1	1	1	1	0	1	1
10	1	0	1	0		0	0	0	0	0	0	0
11	1	0	1	1		0	0	0	0	0	0	0
12	1	1	0	0		0	0	0	0	0	0	0
13	1	1	0	1		0	0	0	0	0	0	0
14	1	1	1	0		0	0	0	0	0	0	0
15	1	1	1	1		0	0	0	0	0	0	0

Note that when the decimal value of the input is greater than 9, this does not represent a digit, so the 7-segment display will be blank.