Effective qubit mapping, routing and scheduling

Vima Gupta, Austin Adams, Elton Pinto, Dr. Jeffrey Young, Dr. Tom Conte SCS, Georgia Institute of Technology, Atlanta

Qubit Mapping and Routing

Quantum hardware suffers from low physical connectivity between qubits, calling for optimal mapping of logical qubits to physical qubits followed by swap insertion.

Trapped-ion shuttling based architectures

- Linear tape of ions with a moveable head of lasers allows for scaling of trapped-ion architectures through shuttling[1].
- This leads to a dynamically evolving physical connectivity graph that requires scheduling the noisy tape movement.

Max-SAT based encoding for tape scheduling

- Prior work has used SAT based solvers for qubit mapping and routing on static circuits [2].
- We can extend this formulation to a dynamically evolving connectivity for shuttling architecture.

Shuttling sequence generation between our approach and SOTA

Insertion of a swap gate can increase circuit depth by the equivalent of three CNOTs.

- · Tape movement introduces noise to the system causing degradation to the circuit fidelity
- MALT tries to find a near optimal solution and provides lower cost in terms of swaps.

Performance Analysis

Future Work

- Scalability for longer tape length.
- Noise modelling for cost of swaps and tape movement
- Experiments across algorithms and solvers

