Recall that an element x in a (commutative) ring A is called *irreducible* if $x \notin A^{\times}, x \neq 0$, and for all $a, b \in A$

$$x = ab \implies a \in A^{\times} \text{ or } b \in A^{\times}.$$

Exercise 1. When A is a (commutative) ring, we say that an element $p \in A$ is *prime* if pA is a nonzero prime ideal of A.

- (i) Assume that A is a domain. Show that every prime element of A is irreducible.
- (ii) Assume that A is a principal ideal domain. Show that every irreducible element of A is prime. (Hint: Show that the ideal generated by an irreducible is maximal.)

Exercise 2. Let A be a principal ideal domain. Let $a \in A$ be such that $a \neq 0$ and $a \notin A^{\times}$.

(i) Show that there exist irreducible elements p_1, \ldots, p_n in A such that

$$a=p_1\ldots p_n$$
.

(Hint: Consider the set of ideals generated by elements $a \notin A^{\times} \cup \{0\}$ which admit no such decomposition, and use the fact that A is noetherian.)

(ii) Show that the elements p_1, \ldots, p_n are uniquely determined by a, up to their ordering and multiplication by units of A.

Exercise 3. We are going to solve the equation

$$y^3 = x^2 + 1$$
, with $x, y \in \mathbb{Z}$.

We consider the ring of Gaussian integers $\mathbb{Z}[i]$.

- (i) Show that the element 1 + i is prime in $\mathbb{Z}[i]$.
- (ii) Let $x \in \mathbb{Z}$. Let us pick $d \in \mathbb{Z}[i]$ such that $d\mathbb{Z}[i]$ is the ideal generated by x i and x + i. Show that $d = u(1 + i)^n$, where $u \in \mathbb{Z}[i]^{\times}$, and $n \in \{0, 1, 2\}$.
- (iii) Assume that $x, y \in \mathbb{Z}$ are such that $x^2 + 1 = y^3$. Show that the ideal generated by x + i and x i in $\mathbb{Z}[i]$ is the whole ring $\mathbb{Z}[i]$.
- (iv) Find all solutions to the equation

$$y^3 = x^2 + 1$$
, with $x, y \in \mathbb{Z}$.

Exercise 4. Let $\pi \in \mathbb{Z}[i]$ be a prime element. Show that there exists a prime number $p \in \mathbb{N}$ such that $N(\pi) = p$ or $N(\pi) = p^2$. (Here $N : \mathbb{Z}[i] \to \mathbb{Z}$ is the norm function defined in the lectures.)

Exercise 5. Consider an integer $x \in \mathbb{N}$, and its prime decomposition in \mathbb{Z}

$$n = \prod_{n} p^{v_p(n)},$$

where p runs over the prime numbers, and $v_p(n) \in \mathbb{N}$.

Show that the following conditions are equivalent:

- (a) there exist $a, b \in \mathbb{N}$ such that $n = a^2 + b^2$,
- (b) for each prime number p congruent to 3 modulo 4, the integer $v_p(n)$ is even.

(Hint: Use the previous exercise.)

Exercise 6. Let $p \in \mathbb{N}$ be a prime number.

- (i) If p = 2, show that $p \in \mathbb{Z}[i]$ can be written as p = ab where $a, b \in \mathbb{Z}[i]$ are prime elements generating the same ideal in $\mathbb{Z}[i]$.
- (ii) If $p=3 \mod 4$, then $p\in \mathbb{Z}[i]$ is a prime element. (Hint: Use the results from the lectures.)
- (iii) If $p = 1 \mod 4$, then $p \in \mathbb{Z}[i]$ can be written as p = ab, where $a, b \in \mathbb{Z}[i]$ are prime elements generating different ideals in $\mathbb{Z}[i]$.