D207 Data Exploration: Performance Assessment

Arjun Gupta

Student ID: 012296064

MSDA, Western Governors University

A. Question

- 1. Since I used the same data set from the previous class, I will also use a similar question. The question that I will be asking in this PA is, "Is there a relationship between Diabetes and consuming over three or more sodas a day?".
- 2. This is an important question to ask due to the magnitude of people affected by diabetes. This would allow doctors to find preventative measures to reduce the risk of diabetes and educate patients on the dangers of consuming that much soda a day. I want to see the relationship between these two variables and see if they are that similar to each other or not.
- 3. I will be using the medical_clean.csv file provided to me for the PA and within this data set, I will be using the Diabetes and the Soft_drink variables to answer this question.

B. Describe the data

1. I will be using the chi-square technique.

```
In [18]: #import the libraries
import numpy as np
import pandas as pd
from scipy import stats
from scipy.stats import chi2_contingency
import plotnine as p9
In [2]: #Importing the medical data file
df = pd.read_csv(r"C:\Users\arjun\OneDrive\Desktop\WGU\D207\medical_clean.csv")
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

Data	columns (total 50 co	olumns):	
#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	Marital	10000 non-null	object
18	Gender	10000 non-null	object
19	ReAdmis	10000 non-null	object
20	VitD_levels	10000 non-null	float64
21	Doc_visits	10000 non-null	
22	Full_meals_eaten	10000 non-null	
23	vitD_supp	10000 non-null	
24	Soft_drink	10000 non-null	object
25	Initial_admin	10000 non-null	object
26	HighBlood	10000 non-null	object
27	Stroke	10000 non-null	object
28	Complication_risk	10000 non-null	object
29	Overweight	10000 non-null	object
30	Arthritis	10000 non-null	object
31	Diabetes	10000 non-null	object
32	Hyperlipidemia	10000 non-null	object
33	BackPain	10000 non-null	object
34	Anxiety	10000 non-null	object
35	Allergic_rhinitis	10000 non-null	object
36	Reflux_esophagitis	10000 non-null	object
37	Asthma	10000 non-null	object
38	Services	10000 non-null	object
39	<pre>Initial_days</pre>	10000 non-null	float64
40	TotalCharge	10000 non-null	float64
41	Additional_charges	10000 non-null	float64
42	Item1	10000 non-null	int64
43	Item2	10000 non-null	int64
44	Item3	10000 non-null	int64
45	Item4	10000 non-null	int64
46	Item5	10000 non-null	int64
47	Item6	10000 non-null	int64
48	Item7	10000 non-null	int64
49	Item8	10000 non-null	int64

```
dtypes: float64(7), int64(16), object(27)
       memory usage: 3.8+ MB
In [3]: #creating the contingency table
        cont_tbl = pd.crosstab(df['Diabetes'], df['Soft_drink'])
        print(cont_tbl)
       Soft_drink
                          Yes
       Diabetes
                   5425 1837
       No
       Yes
                   2000 738
In [4]: #Perform the chi-squared test (values are in order- chi-squared statistic, p-value,
        chi_stat, p_val, deg_free, expect = chi2_contingency(cont_tbl)
In [5]: #printing the results of the Chi-squared test
        print("Chi-squared test statistic:", chi_stat)
        print("p-value:", p_val)
        print("Degrees of freedom:", deg_free)
        print("Expected frequencies: \n", expect)
       Chi-squared test statistic: 2.7724736974606583
       p-value: 0.09589785708737551
       Degrees of freedom: 1
       Expected frequencies:
        [[5392.035 1869.965]
        [2032.965 705.035]]
```

2. The results of the analysis performed are:

- The chi-squared test statistic: 2.7724736974606583
- p-value: 0.09589785708737551
- Degrees of freedom: 1
- Expected frequencies:
 - [[5392.035 1869.965][2032.965 705.035]]
- I chose this technique because the chi-squared test of independence is used to find the relationship between two categorical variables (Soft_drinks and Diabetes).

C. Distribution of 2 continuous and 2 categorical variables (Univariate)

The variables that I will be using are-

- Continuous
 - Initial_days. This variable will be represented using a Histogram.

- TotalCharge. This variable will be represented using a Histogram.
- Categorical
 - Initial_admin. This variable will be represented using a bar chart.
 - Area. This variable will be represented using a bar chart

1. I will be representing Initial_days and TotalCharge on a histogram using Excel.

Histogram for Initial Days

Number of Initial Days

In [10]: #Initial days univariate statistics df.Initial_days.describe()

Out[10]:	count	10000.000000
	mean	34.455299
	std	26.309341
	min	1.001981
	25%	7.896215
	50%	35.836244
	75%	61.161020
	max	71.981490

Name: Initial_days, dtype: float64

Amount Charged to Patient Daily

In [11]:	#TotalCharge univariate statistics	
<pre>df.TotalCharge.describe()</pre>		

Out[11]:	count	10000.000000
	mean	5312.172769
	std	2180.393838
	min	1938.312067
	25%	3179.374015
	50%	5213.952000
	75%	7459.699750
	max	9180.728000

Name: TotalCharge, dtype: float64

I will be representing Initial_admin and Area on a Bar Chart using Excel.

Bar Chart for Initial_admin

In [14]: #Initial_admin univariate statistics
 df.Initial_admin.value_counts()

Out[14]: Initial_admin

Emergency Admission 5060 Elective Admission 2504 Observation Admission 2436 Name: count, dtype: int64

Bar Chart for Area

In [15]: #Area univariate statistics
 df.Area.value_counts()

Out[15]: Area

 Rural
 3369

 Suburban
 3328

 Urban
 3303

Name: count, dtype: int64

D. Distribution of 2 continuous and 2 categorical variables (Bivariate)

The variables that I will be using are-

- Continuous
 - Initial_days.
 - TotalCharge. These variables will be represented using a scatter plot.
- Categorical
 - Initial_admin.
 - Area. These variables will be represented using a stacked bar chart

1. I will be representing Initial_days and TotalCharge on a Scatter Plot using Excel.

Scatter plot Initial_days vs. TotalCharge


```
In [19]: #linear regression on Initial_days vs TotalCharge
    slope, intercept, r_value, p_value, std_err = stats.linregress(df['Initial_days'],
    print(f'Slope: {slope}')
    print(f'Intercept: {intercept}')
    print(f'R-squared: {r_value**2}')
    print(f'P-value: {p_value}')
    print(f'Standard error: {std_err}')
```

Slope: 81.85095641319026 Intercept: 2491.973570329295 R-squared: 0.97543329411556

P-value: 0.0

Standard error: 0.12990978615408147

I will be representing Initial_admin and Area on a Bar Chart using plotnine.


```
In [43]: #Creating a contingency table for Bivariate Statistics
    contingency_table = pd.crosstab(df['Initial_admin'], df['Area'])
    print("Contingency Table:\n", contingency_table)
    print('')
    #Chi-squared statistics
    chi2, p, dof, expected = chi2_contingency(contingency_table)
    print(f"Chi-square statistic: {chi2}")
    print(f"P-value: {p}")
    print(f"Degrees of freedom: {dof}")
    print("Expected frequencies:\n", expected)
```

Contingency Table:

Area	Rural	Suburban	Urban
<pre>Initial_admin</pre>			
Elective Admission	877	830	797
Emergency Admission	1682	1692	1686
Observation Admission	810	806	820

Chi-square statistic: 3.35997005945306

P-value: 0.4994869431163934

Degrees of freedom: 4 Expected frequencies:

[[843.5976 833.3312 827.0712] [1704.714 1683.968 1671.318] [820.6884 810.7008 804.6108]]

E. Implications of the analysis

1. Hypothesis test

- H₀ = Diabetes and Soft_drinks are independent on each other
- H₁ = Diabetes and Soft_drinks are dependent on each other

Since I am using the chi-squared test for independence, I will use $\alpha=0.05$. This means that if the p-value is lower than this alpha variable, it would mean that there is a statistically significant difference between the relationship between Diabetes and Soft_drinks. I calculated a p-value of 0.0959, higher than the alpha value. This means that we fail to reject the null hypothesis. There is no relationship between Diabetes and Soft_drinks, and the two variables are independent. This is useful for the hospital as now they would not tell the patients who drink a lot of sodas to avoid it to help prevent Diabetes. This also allows doctors not to spread misinformation as most people believe that soda is a leading cause of Diabetes.

2. Limitations

One limitation that should be taken into account is that although the data set provided to me was already cleaned, I did not look into it myself and cleaned it how I deemed to be appropriate, so there may be some duplicates, outliers, or even other issues that have not been addressed in the data set provided to me.

This is also the only method for checking the relationship between categorical variables, so it may not be the best model. Still, regarding my knowledge of the material and the instructions on the PA mention, the chi-squared test is the best method for finding the answer to my question initially stated at the start.

There may also be other hidden/ latent variables which may be influencing the results which are not provided to us such as amount of sugar or the size of each soda being drank.

3. Recommendations

It can be concluded that there is no relationship between Diabetes and consuming 3 or more soft drinks a day.

My recommendation to the hospital is to correctly educate their patients on the matter. Make sure you mention that there is no relationship found between Diabetes and consuming over 3 sodas a day. I would also reeducate the doctors on the relationship between the two variables and how they can teach their patients the truth found in the data.

I also recommend running the test using the data through another test for categorical data to see if there are any discrepancies between the two tests.

G. Web references

- 1. NovoStats. "Chi Squared Test in Python." YouTube, YouTube, 19 Dec. 2021, www.youtube.com/watch?v=VqopW3zfquA&ab_channel=NovoStats.
- 2. Kibirige, Hassan. "A Grammar of Graphics for Python." Plotnine 0.13.6, MIT, plotnine.org/. Accessed 1 Aug. 2024.

H. No sources used