Suites géométrique

1 Raison, premier terme et expression du terme général

Exemple 1 (Rappels) On considère les trois nombres 4, 12 et 36.

- **1.** On considère que ces trois nombres correspondent au triplet (u_0, u_1, u_2) d'une suite numérique.
 - Comment passe-t-on d'un terme au suivant?
- **2.** On suppose que l'on suite le même procédé pour obtenir les termes suivants. Comment appelle-t-on ce type de suite numérique?
- **3.** Donner la valeur de $\frac{u_{n+1}}{u_n}$.
- **4.** Que peut nous apprendre cette valeur en terme de variation de la suite?

Exemple 2 (Expression du terme général) On place un capitale de 800 euros dont les intérêts annuels s'élèvent à 5% par an.

On note u_n la valeur du capital après n années.

- 1. Quelle est la valeur de u_0 ?
- **2.** Calculer u_2 et u_3 .
- **3.** Quelle est la nature de la suite (u_n) ? On donnera son premier terme et sa raison.
- **4.** Exprimer u_{n+1} en fonction de u_n .
- **5.** Donner la variation de la suite (u_n) .
- **6.** Exprimer u_n en fonction de n.

2 Sommes des termes d'une suite géométrique

Exemple 3 On reprend l'exemple précédent :

	A	B	C
1	Mois(n)	u_n	S_n
2	1	800	800
3	2	840	
4	3	882	
5	4	926.1	
6	5	972.4	
7	6	1021	

- **1.** Quelle formule a-t-on rentrée dans la cellule B3 pour obtenir, par recopie vers le bas, les valeurs dans le reste de la colonne B?
- 2. Dans la quatrième colonne, on cherche à calculer les sommes successives des termes de la colonne 3.

 Remplir cette colonne.
 - nempui cette cotonine.
- 3. On considère l'algorithme suivant :

```
def somme3(n):
    S=800
    for k in range(1,n+1):
        S=S+800*1.05**k
    return S
```

Quelle est sa fonction?

4. Comparer les valeurs de la suite S_n à celle de la suite :

$$g_n = 800 \times \frac{1 - q^{n+1}}{1 - q}$$

3 Comparaison de deux suites

Ulysse, Victor et Walter sont nés tous les trois le 1^{er} janvier 2008.

A leur naissance, leurs pères respectifs ont décidé de leur mettre de l'argent de côté. Le père d'Ulysse dépose 100 euros le 1^{er} janvier 2008 dans son coffre-fort et y ajoutera 200 euros tous les ans;

Le père de Victor place 2 000 euros le 1^{er} janvier 2008 à intérêts composés au taux annuel de 3 %.

Le père de Walter met 1 euro dans une tirelire le 1^{er} janvier 2008 puis y mettra 2 euros en 2009, 4 euros en 2010, 8 euros en 2011, 16 euros en 2012 ...Il déposera donc dans la tirelire chaque année, le double de la somme versée l'année précédente.

On note $U_n,\ V_n,\ W_n$ les capitaux acquis par Ulysse, Victor et Walter à l'année 2008 + n.

On s'intéresse aux suites (U_n) et (V_n) .

On utilise un tableur. Voici un tableau représentant l'écran, les résultats ayant été demandés à 0,1 près.

	A	В	С		
1	n	U_n	V_n		
2	0	100	2 000		
3	1	300	2 060		
4	2	500	2 121,80		
5	3	700	2 185,50		
6	4	900	2 2 5 1		
7	5	1100	2318,50		

- 1. Quelle formule faut-il entrer en B3 pour obtenir par recopie vers le bas, les valeurs des termes de la suite (U_n) ? Quelle formule faut-il entrer en C3 pour obtenir, par recopie vers le bas, les valeurs des termes de la suite la suite (V_n) ?
- **2. a.** Justifier que (U_n) est une suite arithmétique dont on précisera le terme initial et la raison.
 - **b.** Justifier que (V_n) est une suite géométrique dont on précisera le terme initial et la raison.
- **3.** A 5 ans Victor dit à Ulysse « Je suis deux fois plus riche que toi ». Et à 10 ans, est-ce encore vrai? Justifier votre réponse.
- **4. a.** Exprimer U_n et V_n en fonction de n.
 - **b.** A 18 ans, Ulysse et Victor veulent s'acheter chacun une moto qui coûte 3 500 euros. Qui pourra le faire? Justifier.

4 Résumé

Une suite $(u_n)_n$ est géométrique si pour passer de n'importe quel terme u_n au suivant u_{n+1} on multiplie toujours par le même nombre q.

Dans les exercices et les exemples, on prendra toujours q > 0. Dans ce cas, on dit que la raison de cette suite est ce nombre q et le premier terme est u_0 :

$$\Rightarrow u_{n+1} = q \times u_n \Leftrightarrow \frac{u_{n+1}}{u_n} = q$$

$$\Rightarrow u_n = u_0 \times q^n = u_1 \times q^{n-1} = u_q \times q^{n-q}$$

 \implies Si q > 1, la suite est croissante si u_0 est positif sinon elle est décroissante.

TSTMG 2 Novembre 2020

- \implies Si q < 1, la suite est décroissante si u_0 est positif, sinon elle est décroissante
- \implies Si q = 1, alors la suite est constante.
- \blacksquare La somme géométrique de deux nombres positifd a et b est le nombre positif c tel que :

$$\frac{a}{c} = \frac{c}{b}$$

Cela revient à écrire $c = \sqrt{ab}$.

- Pour comparer des suites à la calculatrice :
 - pour les TI:
 - **1.** | *mode*
 - **2.** à la cinquième ligne *SUITE*
 - 3. f(x)
 - **4.** ensuite on remplit les u(n) et les v(n) en se servant de ce qu'on a trouvé dans l'exercice.
 - 5. 2nde graphe
 - 6. pour régler le pas (c'est à dire les sauts d'entiers dans le tableur) 2nde fentre
 - pour les casio :
 - 1. menu RECUR
 - **2.** \boxed{TYPE} avec $\boxed{F4}$
 - **3.** an avec F1
 - 4. on rentre les formules trouvées dans l'exercice.
 - 5. TABL avec F6
 - **6.** on règle la table avec SET avec F5
 - pour les numworks :
 - 1. on va dans le menu Suites, ajouter une suite
 - **2.** on précise l'expression de u_n explicite (la première).
 - 3. on va dans le menu Suites, ajouter une suite
 - **4.** on précise l'expression de v_n explicite (la première).
 - 5. on rentre les expressions trouvées dans l'énoncé.
 - 6. on va ensuite dans le menu tableau.
- Pour calculer la somme des termes consécutifs d'une suite arithmétique à la calculatrice :
 - pour les TI:
 - **1.** | *math*
 - **2.** $0: somme \Sigma$
 - **3.** ensuite on met en bas le terme par lequel commence la somme puis en haut le terme par lequel on la finit. A l'intérieur, on met la formule de u_n en fonction de n.
 - pour les casio :
 - sur une page de calcul, on accède au catalogue en tapant SHIFT puis
 4.

TSTMG 3 Novembre 2020

- **2.** ensuite, on accède aux fonctionnalités où se trouve la somme en appuyant la touche ×.
- **3.** enfin, on descend pour atteindre \sum (et on se refère à ce que j'ai dit pour les TI.
- pour les numworks :
 - 1. on va dans le menu Suites.
 - **2.** on précise l'expression de u_{n+1} en fonction de u_n en précisant le premier terme et la raison. On peut aussi être amené à indiquer qu'au lieu de u_0 , nous connaissons u_1 en indiquant l'indice du premier terme.
 - **3.** on va ensuite sur graphique et on appuie sur OK puis somme des termes : il nous reste à indiquer le premier puis le dernier terme.
- □ la somme de n termes consécutifs :

$$u_k + ... u_n = \sum_{i=k}^n u_i = u_i \times \frac{1 - q^{n-k+1}}{1 - q}$$

$$= \text{premier terme} \times \frac{1 - raison^{nombredetermesdanslasomme}}{1 - raison}$$

5 Exercices

Exercice 1 Soit (u_n) la suite arithmétique de raison r et de premier terme $u_0 = 500$.

- 1. On sait que $u_3 = 864$ en déduire la valeur de r.
- **2.** Exprimer u_n en fonction de n.
- **3.** Calculer u_{10} .

Exercice 2 Le but de cet exercice est de comparer l'évolution de la population de deux quartiers d'une même ville : le quartier Uranus et le quartier Saturne.

En 2010, Uranus compte 2 000 habitants et Saturne en compte 2 700. On fait l'hypothèse que, chaque année, la population d'Uranus augmente de 250 habitants et celle de Saturne augmente de 4 %.

On note u_0 la population d'Uranus en 2010, u_1 sa population en 2011 et plus généra-lement u_n sa population en l'an 2010 + n.

De même, on note s_0 la population de Saturne en 2010, s_1 sa population en 2011 et plus généralement s_n sa population en l'an 2010 + n.

	A	В	C
1	n	u_n	s_n
2	0	2000	2 700
3	1	2250	2808
4	2	2500	2 920
5	3	2 750	3 037
6	4	3 000	3 159
7	5		
8	6		
9	7		
10	8		

- **1.** Quelle est la nature de la suite (u_n) ? Justifier.
- **2.** a. Démontrer que la suite (s_n) est géométrique de raison 1,04.
 - **b.** Exprimer s_n en fonction de n.

3. Afin de prévoir l'évolution de la population de ces deux quartiers, on a réalisé une feuille de calcul. (Les valeurs ont été arrondies à l'unité).

- **a.** Indiquer la formule saisie en C3 qui, recopiée vers le bas, permet d'obtenir les termes consécutifs de la suite (s_n) dans la colonne C.
- b. Compléter les colonnes B et C.
- c. D'après cette feuille de calcul, en quelle année la population d'Uranus dépasserat-elle pour la première fois celle de Saturne?

Exercice 3 On s'intéresse à la population d'une ville et on étudie plusieurs modèles d'évolution de cette population.

En 2013, la population de la ville était de 15 000 habitants.

Partie A - Étude de deux modèles d'évolution

1. Hypothèse 1

En analysant l'évolution récente, on fait d'abord l'hypothèse que le nombre d'habitants augmente de 1 000 habitants par an.

Pour tout entier naturel n, on note u_n le nombre d'habitants pour l'année 2013 + n. On a ainsi $u_0 = 15000$.

- **a.** Que représente u_1 ? Calculer u_1 et u_2 .
- **b.** Quelle est la nature de la suite (u_n) ? Justifier.
- **c.** Exprimer, pour tout entier naturel n, u_n en fonction de n.
- d. Selon ce modèle, quelle devrait être la population en 2018?
- **e.** Selon ce modèle, en quelle année la population devrait-elle atteindre 30 000 habitants?

2. Hypothèse 2

On fait à présent l'hypothèse que le nombre d'habitants augmente de 4,7 % par an

Le nombre d'habitants pour l'année (2013 + n) est modélisé par le terme v_n d'une suite géométrique. Ainsi $v_0 = 15\,000$.

- **a.** Calculer les valeurs des termes v_1 et v_2 arrondies à l'unité.
- **b.** Déterminer la raison de la suite (v_n) ?
- **c.** Exprimer, pour tout entier naturel n, v_n en fonction de n.
- d. Calculer, selon ce modèle, le nombre d'habitants de la ville en 2028.
- e. En examinant l'évolution de villes comparables à celle que l'on étudie ici, des experts ont estimé que sa population allait augmenter de 50% en 15 ans. Le résultat trouvé à la question précédente est-il en accord avec les prévisions des experts? Justifier.

Partie B - Analyse des résultats sur tableur

On utilise un tableur pour comparer l'évolution de la population suivant les deux modèles. Les cellules sont au format « nombre à zéro décimale ».

	A	В	C	D	E	F	G	Н	I
1	AnnÃľe	2013	2014	2015	2016	2017	2018	2019	2020
2	Rang	0	1	2	3	4	5	6	7
3	Population selon l'hypothèse 1	15 00	0						
4	Population selon l'hypothèse 2	15 00	0						

- **1.** Quelle formule peut-on saisir dans la cellule C3, pour obtenir, par recopie vers la droite, les termes successifs de la suite (u_n) pour n variant de 1 à 7?
- **2.** Quelle formule peut-on saisir dans la cellule C4, pour obtenir, par recopie vers la droite, les termes successifs de la suite (v_n) pour n variant de 1 à 7?