#### Today's class schedule

- Recap from last class: disturbance and succession
- Intro question and follow up
- Learning objectives
- Science application: Tracking vegetation disturbance from wildfire
  - Lecture
  - Data exercise
- Discussion

#### Goldfish moment



celestial eye goldfish (Carassius Auratus)

#### Intro Question:

Raise your hand if you (or someone you know) has a houseplant

#### Intro Question:

Raise your hand if you (or someone you know) has killed a houseplant

# The average millennial has killed over 7 houseplants

We (or most of us) have seen healthy and disturbed vegetation

#### Think-pair-share

What do the leaves of a healthy, undisturbed plant look like?

What about a stressed or dying plant?

What about a dead plant?

Color Water content (high, moderate, low)

#### Healthy

#### **Stressed**

**Dead** 

Color

Water content

Spend 1 minute thinking about each answer, then 2 minutes pairing with a partner to discuss

Healthy

**Stressed** 

**Dead** 

Color

Green leaves

Yellow/orange leaves

Brown leaves (or none at all)

Water content

High moisture

Moderate moisture

Low moisture

#### We can often visually detect disturbance





#### We can often visually detect disturbance



Fire

Drought



Insects

Wind

Dye et al. 2024

#### So can satellites!

#### Deforestation

Brazil 2000-2019



NASA



NASA

#### Hurricane Maria

Puerto Rico 2017



1985 2013

NASA



## Wildfire



#### Scientific Application:

Tracking vegetation disturbance from wildfire using remote sensing

## Cameron Peak Fire



#### Cameron Peak Fire

August 13 2020 - December 2 2020

•208,663 acres

#### Learning objectives

- 1. Describe different types of wildfire and burn severity.
- 2. Explain how remote sensing can be used as a useful tool for ecology
- 3. Connect remote sensing and spectral indices to vegetation and burn severity
- Interpret vegetation and disturbance from a wildfire using NBR

## Types of wildfire



#### This leads to different burn severity levels

## **Burn severity**

the degree of short-term ecological change caused by fire, typically measured by biomass lost or vegetation killed by fire

(Keeley 2009, Morgan et al. 2014).



## Burn severity examples

Moderate



CA



MT







Lentile et al. (2006)

AK

## Types of wildfire



## We can measure burn severity across landscapes using remote sensing

#### Remote sensing:

the acquiring of information from a distance (NASA)

#### We use remote sensing every day

Our eyes!



Satellites "see" ecosystems using light



Satellites "see" ecosystems using reflections of light from the earth's surface



#### How (on earth) does this relate to plants?

## Photosynthesis

What is light?



#### LIGHT = ELECTROMAGNETIC RADIATION

#### Electromagnetic spectrum



#### Photosynthesis

**Chloroplast**: specialized organelle, the site of photosynthesis



## Photosynthesis Leaf cross section:





# Cameron Peak fire area This is what our eyes would see

Red = red Green = green Blue = blue





### Electromagnetic spectrum



### Reflectance of healthy plants











### Satellites measure across this



## Cameron Peak fire area Satellites see this

Red = red Green = green Blue = blue



## Cameron Peak fire area Satellite ALSO see this

Red = red
Green = near infrared
Blue = blue



### **Vegetation index:**

a formula using remote sensing measurements to estimate the amount of green vegetation over a given area

### **Example of a vegetation index: Normalized Burn Ratio (NBR)**

used to identify burned areas and provide a measure of burn severity

NBR = (NIR - SWIR) / (NIR + SWIR)

NIR = Near Infrared

SWIR = Shortwave Infrared





### Normalized Burn Ratio (NBR)

Range from -1 to 1

High NBR → Healthy vegetation **3** (closer to 1)

Low NBR → Burned or disturbed areas (closer to 0 or slightly below)

### Disturbance changed NBR

We can quantify disturbance by measuring the change in NBR values

Change in NBR (dNBR)
R pre – NBR post NBR pre **dNBR** 8.0 -0.1 0.4 0.3 0.7 0.7

### **Activity**

### jazlynnhall.com/teachingdemo

- Where do you think the fire was?
- Can you identify areas with high, moderate, and low burn severity?
- What type of fire may have occurred in each area?
- Did you notice anything else on the landscape?







https://storymaps.arcgis.com/stories/9c5cb69ee85e47b9a4368259e4b60ea0



