Regresión Lineal

Hayde Martínez

La regresión lineal es un modelo matemático que sirve para predecir el valor esperado de una variable digamos a cuando b tiene cierto valor.

$$\hat{X}_t = a + bt$$

$$\hat{X}_t = a + bt$$

Ωt

= Pronóstico del periodo

a

= Intersección de la línea con el eje

b

= Pendiente (positiva o negativa)

t

= Periodo de tiempo

$$a = \bar{X} - b\bar{t}$$

Cálculo de la intersección de la línea con el eje:

(Ventas o demanua,

= Promedio de la variable dependiente

ī

= Promedio de la variable independiente (Tiempo)

dónde b (la pendiente) es iqual a:

$$b = \frac{n \sum_{i=1}^{n} X_i t_i - \sum_{i=1}^{n} X_i \sum_{i=1}^{n} t_i}{n \sum_{i=1}^{n} t_i^2 - \left[\sum_{i=1}^{n} t_i\right]^2}$$

$$b = \frac{n \sum_{i=1}^{n} X_i t_i - \sum_{i=1}^{n} X_i \sum_{i=1}^{n} t_i}{n \sum_{i=1}^{n} t_i^2 - \left[\sum_{i=1}^{n} t_i\right]^2}$$

Cálculo de la pendiente:

b= (número de mediciones * sumatoria de cada variable dependiente por la independiente)

- (suma de las variables dependientes * suma de las variables independientes)

/ (total de mediciones * sumatoria de cada variable independiente elevada al cuadrado) - (la sumatoria de todas las variables independientes al cuadrado)

•		•
		roccion
шісаі		ression
	9	

	Mes	Ventas
1	Enero	7000
2	Febrero	9000
3	Marzo	5000
4	Abril	11000
5	Mayo	10000
6	Junio	13000

Ejemplo:

1. Para determinar el pronóstico de ventas del periodo 7 primero **realizaremos el cálculo de la pendiente b**, ya que este nos servirá para calcular el valor de la intersección a, y finalmente realizaremos el cálculo del pronóstico usando ambas mediciones.

```
 [(7000 * 1) + (9000 * 2) + (5000 * 3) + (11000 * 4) + (10000 * 5) + (13000 * 6)] = 212000 
(7000 + 9000 + 5000 + 11000 + 10000 + 13000) = 55000 
(1 + 2 + 3 + 4 + 5 + 6) = 21 
[(1^2) + (2^2) + (3^2) + (4^2) + (5^2) + (6^2)] = 91 
(1 + 2 + 3 + 4 + 5 + 6)^2 = 441
```

$$b = [6(212000)] - [(55000)*(21)] / [6 * (91)] - (441) = 1114.28$$

•		•
Lineal	RAC	ression
LITICAL	1,09	

	Mes	Ventas
1	Enero	7000
2	Febrero	9000
3	Marzo	5000
4	Abril	11000
5	Mayo	10000
6	Junio	13000

$$a = \bar{X} - b\bar{t}$$

$$b = 1114.28$$

2. Luego, y dado que ya tenemos el valor de la **pendiente b** procedemos a calcular el valor de **la intersección a**, para ello efectuamos los siguientes cálculos:

Promedio de la variable independiente = (1+2+3+4+5+6) / 6 = 3.5

$$\hat{X}_t = a + bt$$
 b = 1114.28 a = 5266.68

3. Por último definiremos el pronóstico del mes 7, entonces haremos lo siguiente:

Pronóstico del mes 7 = 5266.60 + [1114.28 * 7]

Pronóstico del mes 7 = 13067

	J	
	Mes	Ventas
1	Enero	7000
2	Febrero	9000
3	Marzo	5000
4	Abril	11000
5	Mayo	10000
6	Junio	13000
7	Julio	13067