12. Régression linéaire simple

MTH2302D

S. Le Digabel, École Polytechnique de Montréal

A2017

(v2)

Plan

- 1. Introduction
- 2. Régression linéaire simple
- 3. Estimation des paramètres
- 4. Intervalles de confiance et tests
- 5. Analyse des résidus
- 6. Corrélation

1/6

4/6

3/6

1. Introduction

2/6

2 Régression linéaire simpl

- J. Estillation des parametres
- 4. Intervalles de confiance et tests
- 5. Analyse des résidus
- 6. Corrélation

6/6

Régression linéaire : introduction

 ${\bf But}$: établir un lien entre une variable dépendante Y et une variable indépendante X pour pouvoir ensuite faire des prévisions sur Y lorsque X est mesurée.

Exemple 1

L'analyse de la température de fonctionnement d'un procédé chimique sur le rendement du produit a donné les valeurs suivantes pour la température X_i et le rendement correspondant Y_i :

Température $^{\circ}C$	Rendement %	Température °C	Rendement %
100	45	150	70
110	51	160	74
120	54	170	78
130	61	180	85
140	66	190	89

MTH2302D: régression 4/46

Exemple 1 (suite)

Le graphe ci-dessous représente les points (X_i,Y_i) pour ces données et suggère une relation linéaire entre X et Y.

MTH2302D: régression 5/46

- 1. Introductio
- 2. Régression linéaire simple
- 3. Estimation des paramètres
- 4. Intervalles de confiance et tests
- 5. Analyse des résidus
- 6. Corrélation

Modèle linéaire

Définition

Un modèle de régression linéaire simple est de la forme

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

οù

- ▶ Y est la variable dépendante (une v.a.).
- \triangleright β_0 et β_1 sont les *coefficients* (ordonnée à l'origine et pente).
- X est la variable indépendante (variable explicative).
- \triangleright ε est une *erreur* aléatoire.

Modèle linéaire (suite)

L'espérance de Y pour chaque X est le point sur la droite d'équation $\mathsf{E}(Y|X)=\beta_0+\beta_1 X.$

On suppose que

- ▶ Pour chaque valeur de X, $\mathsf{E}(\varepsilon) = 0$ et $\mathsf{V}(\varepsilon) = \sigma^2$.
- $\triangleright \varepsilon \sim \mathsf{N}(0,\sigma^2).$
- Les erreurs ε sont indépendantes (non corrélées).

On cherche à

- ▶ Estimer les paramètres β_0 , β_1 et σ^2 .
- ▶ Vérifier si le modèle est adéquat.

4/6

5/6

3/6

1. Introduction

2/6

1/6

- 2. Régression linéaire simpl
- 3. Estimation des paramètres
- 4. Intervalles de confiance et tests
- 5. Analyse des résidus
- 6 Corrélation

6/6

Paramètres β_0 et β_1

Supposons que n paires d'observations (X_1,Y_1) , (X_2,Y_2) , ..., (X_n,Y_n) ont été faites. Substituant dans le modèle linéaire, on obtient

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \quad \Rightarrow \quad \varepsilon_i = Y_i - \beta_0 - \beta_1 X_i.$$

Les coefficients sont déterminés par la méthode des moindres carrés qui minimise la somme des carrés des erreurs :

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2.$$

On résout le système de deux équations à deux inconnues $\nabla L(\hat{\beta}_0,\hat{\beta}_1)=0.$

Paramètres β_0 et β_1 (suite)

$$\nabla L(\hat{\beta}_0, \hat{\beta}_1) = 0 \Rightarrow \begin{cases} \hat{\beta}_0 & = & \overline{Y} - \hat{\beta}_1 \overline{X} \\ \\ \hat{\beta}_1 & = & \frac{\sum_{i=1}^n X_i Y_i - n \ \overline{X} \ \overline{Y}}{\sum_{i=1}^n X_i^2 - n \overline{X}^2} = \frac{S_{XY}}{S_{XX}} \end{cases}$$

avec

$$ightharpoonup \overline{X} = rac{1}{n} \sum_{i=1}^n X_i \text{ et } \overline{Y} = rac{1}{n} \sum_{i=1}^n Y_i.$$

$$S_{XX} = \sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - n \overline{X}^2 = (n-1)S^2.$$

$$S_{YY} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n \overline{Y}^2.$$

Exemple 2: retrouver ces formules.

Droite de régression pour l'exemple 1

Voir fichier Excel.

Point de vue algébrique

- Étant donnés n points de données $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$ de \mathbb{R}^2 , on essaie de trouver l'équation d'une droite qui passe par les n points.
- ▶ Cette équation est $Y = \beta_0 + \beta_1 X$ avec $\beta_0, \beta_1 \in \mathbb{R}$.
- $ightharpoonup eta_0$ et eta_1 devraient être les solutions du système $A\mathbf{x}=\mathbf{b}$ avec

$$A = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}.$$

Résolution au sens des moindres carrés :

$$(\hat{\beta}_0, \hat{\beta}_1) = \left(A^{\top}A\right)^{-1}A^{\top}\mathbf{b}$$
.

6/6

Propriétés de β_0 et β_1

La droite de régression estimée est $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$.

Les variables aléatoires $\hat{\beta}_0$ et $\hat{\beta}_1$ sont des estimateurs de l'ordonnée à l'origine β_0 et de la pente β_1 .

Théorème

1. $E(\hat{\beta}_0) = \beta_0$ et $E(\hat{\beta}_1) = \beta_1$ (estimateurs non biaisés).

2.
$$V(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}} \right]$$
 et $V(\hat{\beta}_1) = \frac{\sigma^2}{S_{XX}}$.

3. $\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\sigma^2 \overline{X}}{S_{XX}}.$

Paramètre σ^2

Rappel : le modèle de régression est $Y=\beta_0+\beta_1X+\varepsilon$ avec $\varepsilon\sim {\sf N}(0,\sigma^2).$

La différence entre la valeur estimée $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ et la valeur observée Y_i est appelée *résidu* et est dénotée $E_i = \hat{Y}_i - Y_i$.

On définit

La somme des carrés dûe à l'erreur par

$$SS_E = \sum_{i=1}^{n} E_i^2 = \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2.$$

La somme des carrés dûe à la régression par

$$SS_R = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 = \hat{\beta}_1^2 S_{XX} = \frac{S_{XY}^2}{S_{XX}}.$$

Paramètre σ^2 (suite)

La quantité S_{YY} représente la variabilité totale des $Y_i.$ On peut la décomposer par

$$S_{YY} = SS_T = SS_E + SS_R .$$

Théorème

- **1.** $E(SS_E) = (n-2)\sigma^2$.
- 2. $\hat{\sigma}^2 = \frac{SS_E}{n-2} \equiv MS_E$ est donc un estimateur sans biais de σ^2 .

Exemple 1 (suite)

L'analyse de la température de fonctionnement d'un procédé chimique sur le rendement du produit a donné les valeurs suivantes pour la température X_i et le rendement correspondant Y_i :

Température $^{\circ}C$	Rendement %	Température °C	Rendement %	
100	45	150	70	
110	51	160	74	
120	54	170	78	
130	61	180	85	
140	66	190	89	

Voir fichier Excel.

4/6

5/6

3/6

- 3. Estimation des paramètres
- 4. Intervalles de confiance et tests
- 5. Analyse des résidus

2/6

6. Corrélation

1/6

6/6

Distributions pour $\hat{\beta}_0$ et $\hat{\beta}_1$

Théorème

La statistique

$$\frac{\hat{\beta}_0 - \beta_0}{\sqrt{MS_E \left[\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}}\right]}}$$

suit une loi de Student à n-2 degrés de liberté.

Théorème

La statistique

$$\frac{\beta_1 - \beta_1}{\sqrt{MS_E/S_{XX}}}$$

suit une loi de Student à n-2 degrés de liberté.

Intervalles de confiance pour β_0 et β_1

Théorème

Intervalles de confiance bilatéraux au niveau de confiance $1-\alpha$ pour β_0 et β_1 :

$$\beta_0 = \hat{\beta}_0 \pm t_{\alpha/2;n-2} \sqrt{MS_E \left[\frac{1}{n} + \frac{\overline{X}^2}{S_{XX}} \right]}$$

$$\beta_1 = \hat{\beta}_1 \pm t_{\alpha/2;n-2} \sqrt{\frac{MS_E}{S_{XX}}} .$$

Voir fichier Excel.

Intervalles de confiance pour la droite de régression

Il s'agit d'un intervalle de confiance pour $\mathrm{E}(Y_0|x_0)$, la réponse moyenne à la valeur x_0 .

Pour x_0 donné soit $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ l'estimateur de $\mathsf{E}(Y_0|x_0)$.

Théorème

Intervalle de confiance pour $\mathrm{E}(Y_0|x_0)$ au niveau de confiance $1-\alpha$:

$$\mathsf{E}(Y_0|x_0) = \hat{Y}_0 \pm t_{\alpha/2;n-2} \sqrt{MS_E \left[\frac{1}{n} + \frac{(\overline{X} - x_0)^2}{S_{XX}} \right]}$$

Exemple 1 (suite)

Le calcul de l'intervalle de confiance à 95% en chaque point $x_0 = X_i$, i = 1, 2, ..., 10 donne le tableau suivant :

x_0	100	110	120	130	140
\hat{y}_0	45.56	50.39	55.22	60.05	64.88
limites	± 1.30	± 1.10	± 0.93	± 0.79	± 0.71
x_0	150	160	170	180	190
\hat{y}_0	69.72	74.55	79.38	84.21	89.04
limites	± 0.71	± 0.79	0.93	±1.10	± 1.30

Voir fichier Excel.

Exemple 1 (suite)

à partir des données du tableau précédent, on a tracé l'intervalle de confiance pour la droite de régression :

MTH2302D: régression 23/46

Intervalles de prévision

Soit x_0 une valeur quelconque. La valeur correspondante de Y est $Y_0=Y|x_0=\beta_0+\beta_1x_0+\varepsilon_0$. On estime ponctuellement Y_0 par $\hat{Y}_0=\hat{\beta}_0^-+\hat{\beta}_1x_0$.

La statistique

$$\frac{Y_0 - \hat{Y}_0}{\sqrt{MS_E \left[1 + \frac{1}{n} + \frac{(\overline{X} - x_0)^2}{S_{XX}}\right]}}$$

suit une loi de Student à n-2 degrés de liberté.

Théorème

Intervalle de prévision pour la valeur de Y en x_0 :

$$Y_0 = \hat{Y}_0 \pm t_{\alpha/2;n-2} \sqrt{MS_E \left[1 + \frac{1}{n} + \frac{(\overline{X} - x_0)^2}{S_{XX}} \right]}.$$

Remarques: IC vs IP

- Les longueurs des deux types d'intervalles croissent lorsque x_0 s'éloigne de \overline{X} .
- L'IC de la droite de régression ne convient pas pour effectuer des prévisions puisqu'il concerne la vraie réponse moyenne au point $X=x_0$, soit un paramètre de la population, et non une nouvelle observation, i.e. une nouvelle valeur pour la v.a. Y.
- ▶ L'IP en x₀ est toujours plus grand que l'IC en x₀ car il dépend de l'erreur associée aux futures observations.
- ▶ L'IP prend en compte une nouvelle observation, d'où une augmentation de $\sigma^2 \simeq MS_E$ de la variance.
- ▶ L'IP n'est valide que pour **une** nouvelle observation à la fois. Pour une série de nouvelles observations, il faut mettre à jour le modèle au fur et à mesure.
- Voir fichier Excel.

MTH2302D: régression 25/46

Exemple 1 (suite)

à partir des données du tableau précédent, on a tracé l'intervalle de prévision pour $\alpha=5\%$:

MTH2302D: régression 26/46

Tests d'hypothèses pour β_0

La distribution

$$t_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{MS_E \left[\frac{1}{n} + \frac{\bar{X}^2}{S_{XX}}\right]}} \sim T_{n-2}$$

permet de tester des hypothèses du type

$$H_0: \beta_0 = \beta_{0,0}$$

 $H_1: \beta_0 \neq \beta_{0,0}$

On rejette H_0 au seuil α si $|t_0| > t_{\alpha/2:n-2}$.

Tests d'hypothèses pour β_1

La distribution

$$t_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{MS_E/S_{XX}}} \sim T_{n-2}$$

permet de tester des hypothèses du type

$$H_0: \beta_1 = \beta_{1,0}$$

 $H_1: \beta_1 \neq \beta_{1,0}$

On rejette H_0 au seuil α si $|t_0| > t_{\alpha/2;n-2}$.

Tableau d'analyse de la variance

L'information donnée par les valeurs S_{YY} , SS_E et SS_R est présentée dans un tableau d'analyse de la variance :

Source de variation	Somme des carrés	Nombre de d.d.l.	Moyenne des carrés	F_0
Régression	SS_R	1	$MS_R = \frac{SS_R}{1}$	$rac{MS_R}{MS_E}$
Résidus	SS_E	n-2	$MS_E = \frac{SS_E}{n-2}$	
Total	$SS_T = S_{YY}$	n-1		

4/6

6/6

Signification de la régression

Il s'agit de tester les hypothèses

$$H_0: \quad \beta_1 = 0$$

$$H_1: \quad \beta_1 \neq 0$$

Accepter H_0 implique que l'on conclut qu'il n'y a pas de relation linéaire entre X et Y. Ceci peut signifier que

- La relation entre X et Y n'est pas linéaire.
- lacktriangle La variation de X influe peu ou pas sur la variation de Y.

Au contraire, rejeter H_0 implique que l'on conclut que la variation de X influe sur la variation de Y.

Le critère est : rejeter H_0 au seuil α si $F_0 > F_{\alpha;1,n-2}$, ou encore si la valeur-P calculée est petite, avec valeur- $P = P(F_{1,n-2} \ge F_0)$.

Exemple 1 : tableau d'analyse de la variance

Source de variation	Somme des carrés	Nombre de d.d.l.	Moyenne des carrés	F_0
Régression	$SS_R = 1924.88$	1	$MS_R = 1924.88$	2131.57
Résidus	$SS_E = 7.22$	8	$MS_E = 0.90$	
Total	$SS_T = 1932.10$	9		

P-val. : $P(F_{1.8} \ge F_0) \simeq 5.35 \times 10^{-11} < \alpha = 5\% \Rightarrow$ on rejette H_0 .

Signification de la régression (suite)

On ne rejette pas H_0 :

Signification de la régression (suite)

On rejette H_0 :

4/6

5/6

3/6

1. Introduction

2/6

1/6

2. Régression linéaire simpl

- o. Louisia deo parametros
- 4. Intervalles de confiance et tests
- 5. Analyse des résidus
- 6. Corrélation

6/6

Rappel des hypothèses pour la régression linéaire

Tout ce qui a été fait jusqu'ici suppose que

- ▶ Pour chaque X, $\mathsf{E}(\varepsilon) = 0$ et $\mathsf{V}(\varepsilon) = \sigma^2$ est constante.
- ightharpoonup Les erreurs ε sont non corrélées.
- Les erreurs ε sont distribuées normalement.

On veut vérifier, après que les observations soient faites, si ces hypothèses sont satisfaites.

Analyse graphique des résidus

Pour vérifier l'hypothèse sur σ^2 , on peut tracer le graphe des points (\hat{Y}_i, E_i) ou (X_i, E_i) . Les situations possibles sont illustrées ci-dessous.

Situation a) Convenable :

Analyse graphique des résidus (suite)

Situation b) La variance augmente avec la valeur de \hat{Y}_i (ou X_i), donc σ^2 n'est pas constante :

Analyse graphique des résidus (suite)

Situation c) La variance σ^2 n'est pas constante :

Analyse graphique des résidus (suite)

Situation d) Le modèle linéaire n'est pas approprié :

Test de la normalité des résidus

Si les résidus E_i sont normalement distribués alors les erreurs ε_i le sont aussi.

On peut tester si les résidus suivent une loi normale avec :

- ▶ Un histogramme.
- Un test de normalité (par ex. Shapiro-Wilk).
- ▶ Un graphique de probabilité normal des E_i .

Exemple 1 (suite)

Graphe des points (\hat{Y}_i, E_i) :

Exemple 1 (suite)

Graphe de probabilité normale des E_i :

Coefficient de détermination

Le coefficient de détermination du modèle de régression linéaire est

$$R^2 = \frac{SS_R}{S_{YY}} = \frac{\hat{\beta}_1^2 S_{XX}}{S_{YY}} = 1 - \frac{SS_E}{S_{YY}} \ .$$

Le coefficient R^2 mesure le pourcentage de la variabilité totale S_{YY} qui est expliquée par le modèle.

Si \mathbb{R}^2 est proche de 1, alors le modèle semble adéquat.

Exemple 1 : $R^2 \simeq 99.63\%$.

4/6

5/6

3/6

2/6

- 3. Estimation des parametres
- 4. Intervalles de confiance et tests
- 5. Analyse des résidus
- 6. Corrélation

1/6

6/6

Coefficient de corrélation

 $\mbox{\bf Rappel: La corrélation entre deux variables aléatoires X et Y est mesurée par le coefficient}$

$$\rho = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{V}(X)\mathsf{V}(Y)}} \; .$$

Définition

Le coefficient de corrélation échantillonnal est

$$r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}} \ .$$

Le coefficient de corrélation ρ est estimé ponctuellement par r.

Exemple 1 : $r \simeq 99.81\%$.

Interprétation du coefficient de corrélation

On peut montrer que $-1 \le r \le 1$.

- ▶ Si r = -1 ou r = 1 alors il y a corrélation parfaite entre X et Y et les points (X_i, Y_i) sont tous sur la droite de régression.
- ▶ Si r = 0 alors il n'y a pas de corrélation entre X et Y et les points (X_i, Y_i) sont dispersés au hasard.
- Si 0 < r < 1 alors il y a corrélation positive faible, moyenne ou forte entre X et Y. Dans ce cas, une augmentation de X entraîne une augmentation de Y.
- ▶ Si -1 < r < 0 alors il y a corrélation négative faible, moyenne ou forte entre X et Y. Dans ce cas, une augmentation de X entraîne une diminution de Y.

MTH2302D: régression 46/46