Silica glass
Page 1 of 2

Description

Image

Caption

1. Halogen bulb. © Stefan Wernli, stef at en.wikipedia - (CC BY-SA 2.5) 2. Silica glass is used for very high-power lamp envelopes. © Granta Design

The material

Fused silica, a glass of great transparency, is nearly pure SiO2, it has an exceptionally high melting point and is difficult to work, but, more than any other glass, it resists temperature and thermal shock.

Composition (summary)

SiO2

General properties

General properties						
Density	135	-	139	lb/ft^3		
Price	* 2.82	-	4.7	USD/lb		
Date first used	1905					
Mechanical properties						
Young's modulus	9.86	-	10.7	10^6 psi		
Shear modulus	* 4.05	-	4.68	10^6 psi		
Bulk modulus	4.93	-	5.22	10^6 psi		
Poisson's ratio	0.15	-	0.19			
Yield strength (elastic limit)	* 6.53	-	22.5	ksi		
Tensile strength	* 6.53	-	22.5	ksi		
Compressive strength	160	-	232	ksi		
Elongation	0			% strain		
Hardness - Vickers	450	-	950	HV		
Fatigue strength at 10^7 cycles	* 6.24	-	20.7	ksi		
Fracture toughness	0.546	-	0.728	ksi.in^0.5		
Mechanical loss coefficient (tan delta)	8e-6	-	2e-5			
Thermal properties						
Glass temperature	* 1.75e3	-	2.83e3	°F		
Maximum service temperature	1.65e3	-	2.55e3	°F		
Minimum service temperature	-460			°F		
Thermal conductor or insulator?	Poor insulator					
Thermal conductivity	0.809	-	0.867	BTU.ft/h.ft^2.F		
Specific heat capacity	0.162	-	0.174	BTU/lb.°F		
Thermal expansion coefficient						

	0.306	-	0.417	µstrain/°F		
Electrical properties						
Electrical conductor or insulator?	Good insulator					
Electrical resistivity	1e23	-	1e27	µohm.cm		
Dielectric constant (relative permittivity)	3.7	-	3.9			
Dissipation factor (dielectric loss tangent)	2e-5	-	6e-5			
Dielectric strength (dielectric breakdown)	838	-	965	V/mil		
Optical properties						
Transparency	Optical Quality					
Refractive index	1.46					
Processability						
Castability	1	_	2			
Moldability	2	_	3			
Weldability	3	-	4			
Eco properties						
Embodied energy, primary production	* 4.05e3	_	4.49e3	kcal/lb		
CO2 footprint, primary production	* 2.2	_	2.43	lb/lb		
Recycle	<u></u>		2.70	10/10		
Necycle	*					

Supporting information

Design guidelines

Silica glass is exceptionally hard to shape, requiring either very high working temperatures or special process by which it is formed after working. This makes it much more expensive than soda lime or borosilicate glass.

Typical uses

Space vehicle windows, wind tunnel windows, lenses and mirrors, ultrasonic delay lines, crucibles for semiconductor crystal growing, spectrophotometric optical systems; high temperature glass applications; envelopes for high wattage lamps, thermal barrier coatings.

Tradenames

Lucalox

Links

Reference

ProcessUniverse

Producers