About the Data: The stocks we have chosen are from various industries and market caps namely,

• Apple • Google • Microsoft • Amazon

The following tasks are to be performed:

- Read the Data from Yahoo finance website directly.
- · Perform cleaning.
- What was the change in stock price over time?
- Visualize the change in a stock's volume being traded, over time?
- What was the moving average of various stocks?
- What was the daily return average of a stock?
- Add a new column 'Trend' whose values are based on the 'Daily Return'.
- Visualize trend frequency through a Pie Chart.
- What was the correlation between the daily returns of different stocks?

Read the Data from Yahoo finance website directly.

```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import yfinance as yf
        tick1='AMZN'
        tick2='AAPL'
        tick3='GOOG'
        tick4='MSFT'
        amz=yf.download(tick1,start='2020-01-01',end='2023-01-01')
        apl=yf.download(tick2,start='2020-01-01',end='2023-01-01')
        goog=yf.download(tick3,start='2020-01-01',end='2023-01-01')
        msft=yf.download(tick4,start='2020-01-01',end='2023-01-01')
        amz.head()
        [********* 100%*********** 1 of 1 completed
        ********** 100%********************** 1 of 1 completed
        [******** 100%******** 1 of 1 completed
Out[1]:
                    Open
                             High
                                             Close Adj Close
       2020-01-02 93.750000 94.900497 93.207497 94.900497 94.900497 80580000
       2020-01-03 93.224998 94.309998 93.224998 93.748497 93.748497 75288000
       2020-01-06 93.000000 95.184502 93.000000 95.143997 95.143997 81236000
       2020-01-07 95.224998 95.694504 94.601997 95.343002 95.343002 80898000
       2020-01-08 94.902000 95.550003 94.321999 94.598503 94.598503 70160000
```

Perform cleaning.

```
In [2]:
        lst=["Amazon", "Apple", "Google", "Microsoft"]
        ticks=[amz,apl,goog,msft]
In [3]:
        for i in range(4):
            print(lst[i])
            print(ticks[i].head())
            print("****************")
        Amazon
                                                      Close Adj Close
                                  High
                                                                         Volume
       Date
        2020-01-02 93.750000 94.900497 93.207497 94.900497 94.900497 80580000
        2020-01-03 93.224998 94.309998 93.224998 93.748497 93.748497 75288000
        2020-01-06 93.000000 95.184502 93.000000 95.143997 95.143997 81236000
        2020-01-07 95.224998 95.694504 94.601997 95.343002 95.343002 80898000
        2020-01-08 94.902000 95.550003 94.321999 94.598503 94.598503 70160000
        Apple
```

```
Close Adj Close
                       0pen
                                 High
                                            Low
                                                                       Volume
       Date
       2020-01-02 74.059998 75.150002 73.797501 75.087502 73.561539 135480400
       2020-01-03 74.287498 75.144997 74.125000 74.357498 72.846375 146322800
       2020-01-06 73.447502 74.989998 73.187500 74.949997 73.426834 118387200
       2020-01-07 74.959999 75.224998 74.370003 74.597504 73.081490 108872000
       2020-01-08 74.290001 76.110001 74.290001 75.797501 74.257111 132079200
       ********
       Google
                                 High
                                                    Close Adj Close
                       0pen
                                            Low
                                                                       Volume
       Date
       2020-01-02 67.077499 68.406998 67.077499 68.368500 68.368500 28132000
                                                                    23728000
       2020-01-03 67.392998 68.625000 67.277199 68.032997 68.032997
       2020-01-06 67.500000 69.824997 67.500000 69.710503 69.710503 34646000
       2020-01-07 69.897003 70.149498 69.518997 69.667000 69.667000 30054000
       2020-01-08 69.603996 70.579002 69.542000 70.216003 70.216003 30560000
       ********
       Microsoft
                                                               Adj Close \
                        0pen
                                   High
                                               Low
                                                        Close
       Date
       2020-01-02 158.779999 160.729996 158.330002 160.619995 156.151932
       2020-01-03 158.320007 159.949997 158.059998 158.619995 154.207565
       2020-01-06 157.080002 159.100006 156.509995 159.029999 154.606171
       2020-01-07 159.320007 159.669998 157.320007 157.580002 153.196503
       2020-01-08 158.929993 160.800003 157.949997 160.089996 155.636703
                    Volume
       Date
       2020-01-02 22622100
       2020-01-03 21116200
       2020-01-06 20813700
       2020-01-07 21634100
       2020-01-08 27746500
       ********
In [4]:
        for i in range(4):
            print(lst[i])
            print(ticks[i].info())
            print("************")
       Amazon
       <class 'pandas.core.frame.DataFrame'>
       DatetimeIndex: 756 entries, 2020-01-02 to 2022-12-30
       Data columns (total 6 columns):
                      Non-Null Count Dtype
            Column
        #
                      -----
        0
            0pen
                      756 non-null
                                    float64
                      756 non-null
        1
            High
                                    float64
        2
           Low
                      756 non-null
                                     float64
                      756 non-null
        3
            Close
                                     float64
            Adj Close 756 non-null
        4
                                     float64
            Volume
                      756 non-null
                                     int64
       dtypes: float64(5), int64(1)
       memory usage: 41.3 KB
       None
       ******
       Apple
       <class 'pandas.core.frame.DataFrame'>
       DatetimeIndex: 756 entries, 2020-01-02 to 2022-12-30
       Data columns (total 6 columns):
            Column
                      Non-Null Count Dtype
        #
            ----
                      -----
                      756 non-null
                                    float64
        0
            0pen
                      756 non-null
        1
           High
                                    float64
        2
           Low
                      756 non-null
                                    float64
                      756 non-null
        3
           Close
                                    float64
        4
           Adj Close 756 non-null
                                     float64
        5 Volume
                      756 non-null
                                    int64
       dtypes: float64(5), int64(1)
       memory usage: 41.3 KB
       ******
       Google
       <class 'pandas.core.frame.DataFrame'>
       DatetimeIndex: 756 entries, 2020-01-02 to 2022-12-30
       Data columns (total 6 columns):
                      Non-Null Count Dtype
        # Column
           -----
                      _____
       ---
            0pen
        0
                      756 non-null
                                    float64
                      756 non-null
            High
                                    float64
        1
        2
            Low
                      756 non-null
                                    float64
        3
            Close
                      756 non-null
                                     float64
        4
            Adj Close 756 non-null
                                     float64
        5
            Volume
                      756 non-null
                                     int64
       dtypes: float64(5), int64(1)
       memory usage: 41.3 KB
       None
       *******
```

DatetimeIndex: 756 entries, 2020-01-02 to 2022-12-30 Data columns (total 6 columns):

<class 'pandas.core.frame.DataFrame'>

Microsoft

```
Non-Null Count Dtype
     Column
     0pen
                756 non-null
                                float64
                756 non-null
    High
                                float64
                756 non-null
                                float64
    Close
                756 non-null
                                float64
    Adj Close 756 non-null
                                float64
    Volume
                756 non-null
                                int64
dtypes: float64(5), int64(1)
memory usage: 41.3 KB
None
```

• What was the change in stock price over time?

```
for i in range(4):
    plt.figure(figsize=(13,4))
    plt.style.use('seaborn')
    plt.plot(ticks[i]["Open"])
    plt.ylabel(lst[i]+" Open Prize")
    plt.title(lst[i]+" stock price change over time",fontdict={'fontsize': 20})
```


• Visualize the change in a stock's volume being traded, over time?

```
for i in range(4):
    plt.figure(figsize=(13,4))
    plt.style.use('ggplot')
    plt.plot(ticks[i]["Volume"])
    plt.ylabel(lst[i]+"'s Volume")
    plt.title(lst[i]+" stock's volume being traded, over time",fontdict={'fontsize': 20})
```


• What was the moving average of various stocks?

```
plt.figure(figsize=(13,4))
plt.style.use('tableau-colorblind10')
for i in range(4):
    ticks[i]["short_rolling"] = ticks[i]["Open"].rolling(window=20).mean()

plt.plot(ticks[i]["short_rolling"],label=lst[i])
plt.ylabel(" moving average of stocks")
plt.title(" moving average of various stocks[short_rolling]",fontdict={'fontsize': 20})
```



```
plt.figure(figsize=(15,5))
plt.style.use('tableau-colorblind10')

for i in range(4):
    ticks[i]["long_rolling"] = ticks[i]["Open"].rolling(window=100).mean()

    plt.plot(ticks[i]["long_rolling"], label=lst[i])
    plt.ylabel(" moving average of stocks")
    plt.title(" moving average of various stocks[long_rolling]",fontdict={'fontsize': 20})
    plt.legend()

ticks[1].head()
```

Out[8]:		Open	High	Low	Close	Adj Close	Volume	short_rolling	long_rolling
	Date								
	2020-01-02	74.059998	75.150002	73.797501	75.087502	73.561539	135480400	NaN	NaN
	2020-01-03	74.287498	75.144997	74.125000	74.357498	72.846375	146322800	NaN	NaN
	2020-01-06	73.447502	74.989998	73.187500	74.949997	73.426834	118387200	NaN	NaN
	2020-01-07	74.959999	75.224998	74.370003	74.597504	73.081490	108872000	NaN	NaN
	2020-01-08	74.290001	76.110001	74.290001	75.797501	74.257111	132079200	NaN	NaN

What was the daily return average of a stock?

```
daily_return={}
for i in range(4):
    ret = ticks[i]['Adj Close'].pct_change()
    daily_return[lst[i]]=list(ret)
    daily_return=pd.DataFrame(daily_return)
    daily_return.head()
```

Out[9]:		Amazon	Apple	Google	Microsoft
	0	NaN	NaN	NaN	NaN
	1	-0.012139	-0.009722	-0.004907	-0.012452
	2	0.014886	0.007968	0.024657	0.002585
	3	0.002092	-0.004703	-0.000624	-0.009118
	4	-0.007809	0.016086	0.007880	0.015929

```
In [11]: # Filling the Null values with 0
    daily_return=daily_return.fillna(0)
    daily_return.info()

<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 756 entries, 0 to 755 Data columns (total 4 columns): Column Non-Null Count Dtype -----0 Amazon 756 non-null float64 1 Apple 756 non-null Google 756 non-null float64 Microsoft 756 non-null float64 dtypes: float64(4) memory usage: 23.8 KB

```
for i in lst:
    plt.figure(figsize=(13,4))
    plt.style.use('seaborn-whitegrid')
    plt.plot(daily_return[i])

    plt.ylabel(i+"'s Daily return")
    plt.title(i+" stock's Daily return",fontdict={'fontsize': 20})
```


• Add a new column 'Trend' whose values are based on the 'Daily Return'.

```
In [13]:
          def trend(x):
              if x > -0.015 and x <= 0.015:
                  return 'Slight or No change'
              elif x > 0.015 and x <= 0.04:
                  return 'Slight Positive'
              elif x < -0.015 and x >= -0.4:
                  return 'Slight Negative'
              elif x > 0.04 and x <= 0.06:
                  return 'Positive'
              elif x < -0.04 and x >= -0.06:
                  return 'Negative'
              elif x > 0.06 and x <= 0.07:
                  return 'Among top gainers'
              elif x < -0.06 and x >= -0.07:
                 return 'Among top losers'
              elif x > 0.07:
                  return 'Bull run'
              elif x <= -0.07:
                  return 'Bear drop'
          for i in range(4):
              ticks[i]["Trend"] = list(daily_return[lst[i]].apply(lambda x:trend(x)))
          amz.tail(5)
```

Out[13]:		Open	High	Low	Close	Adj Close	Volume	short_rolling	long_rolling	Trend
	Date									
	2022-12-23	83.250000	85.779999	82.930000	85.250000	85.250000	57433700	90.241500	112.6503	Slight Positive
	2022-12-27	84.970001	85.349998	83.000000	83.040001	83.040001	57284000	89.793500	112.0942	Slight Negative
	2022-12-28	82.800003	83.480003	81.690002	81.820000	81.820000	58228600	89.231500	111.5212	Slight or No change
	2022-12-29	82.870003	84.550003	82.550003	84.180000	84.180000	54995900	88.751500	110.9294	Slight Positive

	Date									
	2022-12-30	83.120003	84.050003	82.470001	84.000000	84.000000	62330000	88.058001	110.3801	Slight or No change
L4]:	ticks[2].	ticks[2].tail()								
[14]:		Open	High	Low	Close	Adj Close	Volume	short_rolling	long_rolling	Trend
	Date									
	2022-12-23	87.620003	90.099998	87.620003	89.809998	89.809998	17815000	94.61325	102.03560	Slight Positive

Close Adj Close Volume short_rolling long_rolling

94.21875

93.79375

93.38925

92.68750

101.74570

101.45140

101.13050

Trend

Slight Negative

Slight Negative

Slight Positive

100.82425 Slight or No change

• Visualize trend frequency through a Pie Chart.

Open

High

Low

2022-12-27 89.309998 89.500000 87.535004 87.930000 87.930000 15470900

2022-12-28 87.500000 88.519997 86.370003 86.459999 86.459999 17879600

2022-12-29 87.029999 89.364998 86.989998 88.949997 88.949997 18280700

2022-12-30 87.364998 88.830002 87.029999 88.730003 88.730003 19179300

• What was the correlation between the daily returns of different stocks?

