CH 5- Set Theory

Luke Lu • 2025-09-22

Empty Set

$$\emptyset = \{\}$$
 but $\{\emptyset\} \neq \emptyset$

Cardinality

The number of elements in a finite set is S called the cardinality of S, denoted by |S|

Set Notation

Set Builder Noataion - Type 1

The notation $\{x \in \mathcal{U} : P(x)\}$

Describes the set consisting of all objects x such that x is an element of \mathcal{U} , and P(x) is true

Example:
$$A = \{n \in \mathbb{N} : n \mid 12\} = \{1, 2, 3, 4, 6, 12\}$$

Set Builder Notation -Type 2

The notation $f(x): x \in \mathcal{U}$

Describes the set consisting of all objects of the form f(x) such that x is an element of \mathcal{U}

Example: $B = \{2k : k \in \mathbb{Z}\}$ = all even numbers

Set Builder Notation - Type 3

The notation $f(x): x \in \mathcal{U}, P(x)$ or $f(x): P(x), x \in \mathcal{U}$ Both describes the set consisting of all objects of the form f(x) such that x is an element \mathcal{U} and P(x) is true

Example:
$$C = \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0 \right\}$$

Practices:

- 1. All multiple of 7: $\{x \in \mathbb{N} : 7 \mid x\}$
- 2. All odd perfect square: $\{(2x+1)^2 : x \in \mathbb{Z}\}$
- 3. All points on a circle of radius 8 centered at origin: $\{(x,y): x,y \in \mathbb{R}, x^2+y^2=64:\}$
- 4. All sets of three integers which are the side lengths of a triangle:

$$\{(x, y, z) : x, y, z \in \mathbb{N}, x < y < z, x + y < z\}$$

Union and Intersection

The **union** of two sets S and T, denoted, $S \cup T$, is the set of all elements belonging to either set S or set T.

The **intersection** of two sets S and T, denoted, $S \cap T$, is the set of all elements belonging to either set S and set T.

Practice:

Let
$$C = \{3, 5, 7, 10\}, D = \{1, 3, 6, 7, 8\}$$

1.
$$C \cup D = \{1, 3, 5, 6, 7, 8, 10\}$$

2.
$$C \cap D = \{3, 7\}$$

Let
$$A = \{ m \in \mathbb{Z} : 2 \mid m \}, B = \{ 2k + 1 : k \in \mathbb{Z} \}$$

1.
$$A \cup B = \mathbb{Z}$$

2.
$$A \cap B = \emptyset$$

For non empty sets A and B

1. If
$$|A| = 12$$
, $|B| = 4$, $|A \cap B| = 2$, $|A \cup B| = 14$

2. If
$$|A| = 10$$
, $|B| = 20$, $|A \cup B| = 25$, $|A \cap B| = 5$

Set Difference

The **set difference** of two sets S and T, written S-T or $S \setminus T$ is the set of all elements belonging to S but not T.

Symbolically:
$$S - T = \{x : (x \in S) \land x \notin \mathbb{T}\}\$$

Complement

The **complement** of a set S whose elements belong to \mathcal{U} , written S, is the set of all elements in \mathcal{U} but not in S.

Symbolically: $\{x \in \mathcal{U} \notin S\}$

Disjoin Set

Two sets S and T are said to be disjoint when $S \cap T = \emptyset$

Practice:

1. Let
$$\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, C = \{3, 5, 7, 10\}, D = \{1, 3, 6, 7, 8\}$$

$$\operatorname{Find}|C-D^\complement|=2$$

2. Let
$$A = \{x : x \in \mathbb{N}, x \text{ is even }\}, B = \{x : x \in \mathbb{N}, x \text{ is not a prime}\}$$

$$A \cup B = \{1, 2, 4, 6, 8, 9, ...\} A \cap B = \{2\}$$

3. If
$$A \cap B = \emptyset$$
 and $B \cap C = \emptyset$, then $A \cap C = \emptyset$: False

4. If
$$|A \cap B| = |A|$$
 and $B \cap C = \emptyset$, then $A \cap C = \emptyset$: True

5. If
$$|A \cap B| = |A|$$
 and $|A \cap C| = |A|$, then $B \cap C = \emptyset$: False

Subsets

A set S is called a **subset** of a set T, denoted $S \subseteq T$ when every element of S belongs to T. T is **superset** of S

A set is called a **proper subset** a set T, denoted $S \subsetneq T$, meaning S is a subset of T and there exissts an element in T which does no thelong to T. T is a **proper superset** of S

Examples:

$$\{5, 15, 25\} \subseteq \{5, 10, 15, 20, 25\}$$

$$\{5, 15, 25\} \subseteq \{5, 10, 15, 20, 25\}$$

2)

$$\{2,4,6\} \not\subseteq \{2025\}$$

$$\{2,4,6\} \nsubseteq \{1,2,3,4,5\}$$

3)

$$\mathbb{N} \subseteq \mathbb{Z}, \mathbb{Z} \subseteq \mathbb{Q}, \mathbb{Q} \subseteq \mathbb{R}$$

4)

$$\emptyset \subseteq S$$
 for all sets S

 $S \subseteq S$ for all sets S, but S is never a proper subset of S

5)

For all sets
$$S$$
 and $T, S \cap T \subseteq T$ and $S \subseteq S \cup T$

IMPORTANT

Subset can be expressed as an implication

To prove $S \subseteq T$, we need to prove the universally quantified implication

$$\forall x \in \mathcal{U}, (x \in S) \Longrightarrow (x \in T)$$

Equal notation:

$$S \subseteq T$$
 and $T \subseteq S \iff S = T$

Example:

1. Let
$$A = \{n \in \mathbb{N} : 4 \mid (n-3)\}$$
 and let $B = \{2k+1 : k \in \mathbb{Z}\}$, prove that $A \subseteq B$

Let
$$n \in \mathbb{Z}$$
, $(n \in A) \Longrightarrow (n \in B)$

 $A \equiv$ a set of natural numbers in form 4q + 3

 $B \equiv$ a set of integers that are odd

Since 4q + 3 = 2(2q + 1) + 1, which is always odd.

 $A \subseteq B$ and also $A \subseteq B$

2. Prove
$$S = T \iff S \cap T = S \cup T$$

$$(S = T \Longrightarrow S \cup T = S \cap T) \land (S \cup T = S \cap T \Longrightarrow S = T)$$

 (\Longrightarrow)

Suppose S = T, we need to show $S \cap T \subseteq S \cup T$ and $S \cup T \subseteq S \cap T$. If $x \in S \cap T$, then $x \in S$, $x \in S \cup T$.

Assume $x \in S \cup T$, then without loss of generality, we may suppose that $x \in S$. Then since S = T, it follows that $x \in T$.

$$\therefore x \in S \land x \in T \Longrightarrow x \in S \cap T$$

 (\longleftarrow)

Suppose $S\cap T=S\cup T,$ we must show $S\subseteq T\wedge T\subseteq S$ If $x \in S$ then $x \in S \cup T$.

Furthermore, $S \cap T = S \cup T \Longrightarrow x \in S \cap T \Longrightarrow x \in S \land x \in T \ x \in T \Longrightarrow S \subseteq$

T. The proof of $T\subseteq S$ is similar and will be omitted