考研高数

枫聆

2021年6月7日

目录

1	经典	证明	2
2	数列极限		
	2.1	数列极限的定义	5
	2.2	数列极限的几何意义	5
	2.3	数列左右极限	5
	2.4	数列极限的基本性质	5
	2.5	数列无穷小和无穷大	5
	2.6	数列极限运算	5
	2.7	不定式	6
	2.8	单调数列的极限	6
	2.9	收敛原理	7
	2.10	上下极限	8
3	函数	极限	9
	3.1	函数极限的定义	9
	3.2	函数左右极限	9
	3.3	两个重要极限	9
	3.4	函数极限的基本性质	9
	3.5	函数极限运算	9
	3.6	洛心达法则	C

经典证明

Theorem 1.1. (连续函数在闭区间上有界) 若 real-valued 函数 f 在闭区间 [a,b] 上连续,那么它在其上有界 (上下界).

证明. (方法 1: 构造 f(x) 非空子区间 [a,x], 求其上确界) 假设 B 是使得 f(x) 在形如闭区间 [a,x] 上有界的 $x \in [a,b]$ 集合,显然 $a \in B$,所以 B 非空。若 $e \in B$ 且 e > a,那么 a 和 e 之间的点都是在 B 里面的,所以 实际上 B 是一个闭区间.我们再考虑 B 的上确界,根据 x 的取法,有 $x \le b$,如果我们能证明它的上确界在 b 出取得,那么整个命题就得证.现在假设 $\sup(B) < b$,由于 B 是一个闭区间,所以 $\sup(B) \in B$. 由于 f 是连续的,那么足够靠近 $\sup(B)$ 的地方,即 $s - \sup(B) < \delta$ 且 $s > \sup(B)$,有 $|f(s) - f(\sup(B))| < \varepsilon$,那么 f(x), $x \in [\sup(B), s]$ 也是有界,这是和 $\sup B$ 是 B 的上确界矛盾的.

(方法 2: 构造一个严格递增的数列, 其子列收敛造矛盾).

Theorem 1.2. (确界原理) 任一有上界的非空实数集必有上确界,同理任一有下界的非空实数集必有下确界.

证明. (构造一个实数划分,用戴德金分割定理说明界数就是确界)假设非空实数集 S 有上界 M,取 S 所有上界 为集合 B. 因为 $M \in B$ 所以 B 非空,取 $A = \mathbb{R} \setminus B$,要证明 A 是非空是 trivial 的,取 $x = x_0 - 1$, $x_0 \in S$,那 么 $x \in A$. 显然地 A 里面所有的元素都小于 B 里面的元素(若是大于 B 里面某个元素,那么它就是 S 的一个上界了,这是矛盾的),这样我们就可以得到一个实数上的划分,根据<mark>戴德金实数分割定理</mark>,存在一个 β ,它要 么是 A 里面最大值或者要么 B 里面的最小值。假设它是 A 里面的最大值,根据 A 的定义,对于任意 $a \in A$ 都存在一个 $x_0 \in S$ 使得 $a < x_0$,将其作用到 β 上,我们得到某个 $x_0' \in S$ 使得 $\beta < x_0'$ 。我们考虑 $\frac{x_0' + \beta}{2}$,有

$$\beta < \frac{x_0' + \beta}{2} < x_0'$$

所以 $\frac{x_0'+\beta}{2}\in A$, 这和 β 是 A 里面最大值是矛盾的,所以 $\beta\in B$,即这个 β 就是 S 的上确界.

Theorem 1.3. (极值定理) 若 real-valued 函数 f 在闭区间 [a,b] 连续, 那们存在 $c,d \in [a,b]$ 使得

$$f(c) \le f(x) \le f(d), x \in [a, b].$$

证明. (构造一个特殊连续函数说明原函数可以取到确界) f 在闭区间 [a,b] 上连续 (连续闭有界),那么马上可以得到 f 在 [a,b] 上有界. 取集合 $Y = \{f(x) \mid x \in [a,b]\}$,即 Y 有界,根据确界原理Y 有确界,那么我们下面证明思路,就是看 f(x) 是不是能取到这个确界. 取其上确界为 m,假设不存在 $d \in [a,b]$ 使得 f(d) = m,那么我们考虑函数 $g(x) = \frac{1}{m-f(x)}$,由于 m > f(x), $x \in [a,b]$,所以 g(x) 在 [a,b] 上是连续的,又因为 f 在 [a,b] 是上有界的,那么 g 在其上也是有界的. 由于 m 是上确界,所以对任意的正实数 ε ,都有 $m - f(x) \le \varepsilon$,那么 $g(x) \ge \frac{1}{\varepsilon}$,这说明 g(x) 是发散的,造成了矛盾. 所以 f 是可以取到上确界的.

Theorem 1.4. (罗尔定理)如果 real-valued 函数 f 在闭区间 [a,b] 上连续,且在开区间 (a,b) 内可导,若有 f(a) = f(b),那么存在至少一个 $c \in (a,b)$ 使得

$$f'(c) = 0.$$

证明. (确界处导数存在的充分必要条件) f 在 [a,b] 上连续,那么根据极值定理其在 [a,b] 是可以取到极值的,分两种情况讨论: (1 如果其最大值和最小值同时在 a,b 取得,那么 f 就是常函数,对任意的 $x \in [a,b]$ 都有 f'(x) = 0. (2 不失一般性,我们假设 f 在一点 $c \in (a,b)$ 处 f(c) 为最大值 (若是最小值,考虑 -f 即可),我们来考虑 c 的一个邻域 $(c-\varepsilon,c+\varepsilon)$ 两边,其中 $c-\varepsilon$ 和 $c+\varepsilon$ 均在 [a,b] 里面.对任意的 $h \in (c-\varepsilon,c)$ 都有

$$f'(c^{-}) = \lim_{h \to c^{-}} \frac{f(c) - f(h)}{c - h} \le 0.$$

同理对任意的 $t \in (c, c + \varepsilon)$ 都有

$$f'(c^+) = \lim_{t \to c^+} \frac{f(t) - f(c)}{t - c} \ge 0.$$

由于 f 在 c 点可导, 那么 $f'(c) = f'(c^{-}) = f'(c^{+}) = 0$.

Theorem 1.5. (中值定理) 若 real-valued 函数 f 在闭区间 [a,b](a < b) 上连续,且在 (a,b) 上可导,那么存在一个实数 $c \in (a,b)$ 使得

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

证明. (中值定理是罗尔定理的推广) 构造函数 g(x) = f(x) - rx, 通过选择合适的 r, 使得 g(a) = g(b), 即

$$g(a) = g(b) \Leftrightarrow f(a) - ra = f(b) - rb$$

$$\Leftrightarrow r = \frac{f(b) - f(a)}{b - a}.$$

那么根据<mark>罗尔定理</mark>,我们知道存在一点 $c \in (a,b)$,使得 g'(c) = 0,

$$g'(x) = f'(x) - r$$

$$g'(c) = f'(c) - r = 0$$

$$f'(c) = r = \frac{f(b) - f(a)}{b - a}.$$

证毕.

Theorem 1.6. (柯西中值定理) 若两个 real-valued 函数 f 和 g 都在闭区间 [a,b](a < b) 上连续,且都在 (a,b) 上可导. 那么存在一点 $c \in (a,b)$,使得

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

特别地, 若 $g(b) \neq g(a)$ 且 $g'(c) \neq 0$, 等价于

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

证明. (柯西中值定理是中值定理的扩展) 构造函数 h(x)=f(x)-rg(x),选择合适 r 使得 h(a)=h(b),若 $g(b)\neq g(a)$ 即 $r=\frac{f(b)-f(a)}{g(b)-g(a)}$,那么根据<mark>罗尔定理</mark>可以得到 h'(c)=0,即

$$0 = g'(c) - rf'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x).$$

若 g(a) = g(b),同样根据<mark>罗尔定理</mark>有 g'(c) = 0,这个条件显然是使得前面第一个等式成立的.

Theorem 1.7. (夹逼准则) 若函数 f,g,h 均在以点 a 为聚点的区间 I 上定义着,且对任意的 $x \in I$,其中 $x \neq a$ 都有

$$g(x) \le f(x) \le h(x),$$

并且同时满足

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L.$$

那么 $\lim_{x \to a} f(x) = L$.

证明. (经典两边夹) 取任意的正实数 $\varepsilon>0$,根据极限地定义对 g(x) 和 h(x) 我们可以分别找到 $|x|<\delta_1$ 和 $|x|<\delta_2$,使得

$$L - \varepsilon < g(x) < L + \varepsilon$$
 和 $L - \varepsilon < h(x) < L + \varepsilon$

成立, 我们取 $\delta = \min(\delta_1, \delta_2)$, 那么当 $|x| < \delta$ 时有

$$L - \varepsilon < g(x) \le f(x) \le h(x) < L + \varepsilon$$
.

由于 ε 的任意性,所以有 $\lim_{x\to a} f(x) = L$.

数列极限

数列极限的定义

Definition 2.1. 若对于每一整数 ε , 不论它怎样小, 恒有序号 N, 使在 n > N 时, 一切 x_n 满足不等式

$$|x_n - a| < \varepsilon$$

,则称常数 a 为数列 (x_n) 当 n 趋向于无穷时的<mark>极限</mark>,记为 $\lim_{n\to\infty}=a$. 也可以说这个序列收敛于 a.

数列极限的几何意义

数列左右极限

数列极限的基本性质

Proposition 2.2. 若 $\lim x_n = a$,又 a > p,那么存在某个正整数 N,当 n > N 时,一切 x_n 都满足 $x_n > p$.

Proposition 2.3. 若 $\lim x_n = a$,有 a > 0,那么存在某个正整数 N,当 n > N 时,一切 x_n 都满足 $x_n > 0$.

Proposition 2.4. 若 $\lim x_n = a$,且 $a \neq 0$,则必有充分远的 x_n 值,其绝对值大于某个正数 r:

$$|x_n| > r > 0 \ (n > N).$$

性质1的推论.

Proposition 2.5. 若 $\lim x_n = a$, 则 (x_n) 必有界.

证明. 我们知道任意给定一个 $\varepsilon > 0$,可以找到正整数 N,使得当 n > N 时的一切 x_n 都满足 $a - \varepsilon < x_n < a + \varepsilon$,因此当 n > N 是存在一个界数使得 $|x_n| < M$. 接着再考虑 $n \leq N$ 时,注意这时候只有有限个 x_n ,我们把 M和它们放在一起,取它们里面绝对值最大的数 M',即有 $|x_n| \leq M'$.

Proposition 2.6. 若同时有 $\lim x_n = a$, $\lim x_n = b$, 则 a = b.

数列无穷小和无穷大

数列极限运算

Proposition 2.7. 若 $x_n = y_n$, 则 $\lim x_n = \lim y_n$.

Proposition 2.8. 若恒有 $x_n \leq y_n$, 且各自趋于有限极限,则 $\lim x_n \leq \lim y_n$.

Proposition 2.9. 夹闭准则 见经典证明.

Proposition 2.10. 任意有限个无穷小的和亦是无穷小.

Proposition 2.11. 有界数列 (x_n) 与无穷小 α_n 的乘积仍是无穷小.

Proposition 2.12. 若 $\lim x_n = a$, $\lim y_n = b$, 则 $\lim (x_n \pm y_n) = a \pm b$. 考虑两个极限的尾巴

$$\lim(x_n \pm y_n) = a + b + \alpha + \beta.$$

Proposition 2.13. 若 $\lim x_n = a$, $\lim y_n = b$, 则 $\lim (x_n y_n) = ab$. 考虑两个极限的尾巴

$$\lim x_n y_n = ab + a\beta + b\alpha + \alpha\beta.$$

Proposition 2.14. 若 $\lim x_n = a$, $\lim y_n = b$, 且 $b \neq 0$, 则 $\lim \frac{x_n}{y_n} = \frac{a}{b}$. 考虑两个极限的尾巴

$$\lim \frac{x_n}{y_n} = \frac{a+\alpha}{b+\beta}.$$

不定式

Annotation 2.15.

$$\frac{x_n}{y_n} \sim \frac{0}{0}$$

Annotation 2.16.

$$\frac{x_n}{y_n} \sim \frac{\infty}{\infty}$$

Annotation 2.17.

$$x_n y_n \sim 0 \cdot \infty$$

Annotation 2.18.

$$x_n - y_n \sim \infty - \infty$$

单调数列的极限

Theorem 2.19. 给定单调增加的数列 (x_n) , 若它有上界

$$x_n < M, \ n = 1, 2, \cdots$$

则它必有一有限极限,此极限为上确界.同理单调减少的数理 (x_n) ,若它有下界

$$x_n \geq M, \ n = 1, 2, \cdots$$

则它必有一有限极限, 此极限为下确界.

收敛原理

Theorem 2.20. (柯西收敛原理)数列 (x_n) 有有限极限的必要且充分条件是: 对于任意的数 $\varepsilon > 0$,总存在着整数 N,使得当 n > N 和 n' > N 时有下面不等式成立

$$|x_n - x_{n'}| < \varepsilon$$
.

证明. (必要性) 若 $\lim x_n = a$, 即对任意的 ξ , 能找到一个整数 N, 使得 n, n' > N 时有

$$|x_n - a| < \frac{\varepsilon}{2}, |x_{n'} - a| < \frac{\varepsilon}{2}$$

成立. 那么

$$|x_n - x_{n'}| = |(x_n - a) + (a - x_{n'})| \le |x_n - a| + |x_{n'} - a| < \varepsilon$$

(充分性) 若满足上述定理中的条件,我们要证明 $\lim x_n = a$,我们得想办法把这个 a 表示出来,这里手法将会用戴德金实数划分的结论来把这个 a 弄出来.

在全体实数域下构造一个划分. 对于任何实数 α , 若 x_n 从某项其满足不等式

$$x_n > \alpha$$
,

则取这种实数 α 归入下组 A, 其余的 (即不落在 A 里面的) 一起实数归入上组 A'.

首先我们来说明这样确实产生了一个实数上的划分. 由前提条件, 对于任意数 $\varepsilon > 0$ 及其对应的 N. 若 n > N 及 n' > N, 则下面不等式成立

$$x_{n'} - \varepsilon < x_n < x_{n'} + \varepsilon$$
.

现在我们可以看到每一个数 $x_{n'}-\varepsilon$ 都是小于 x_n 的,所以它归入下组 A. 另一方面 $x_{n'}+\varepsilon$ 都大于 x_n ,所以 $x_{n'}+\varepsilon$ 放不进去 A,那它只能归入 A' 了,所以 A 和 A' 都是非空的. 我们的划分方式对于每一个数 α 和确定序列 x_n ,要么它属于 A 或者属于 A'. 同时 A 中实数都小于 A' 的实数. 如果 $\alpha>\alpha', \alpha\in A, \alpha'\in A'$,则 x_n 从某一项其也都大于 a',这样就产生矛盾了. 因此的确产生了一个实数上的划分.

根据戴德金基本定理,有实数 a 存在它是 A 和 A' 的界数,即

$$\alpha < a < \alpha', \ \alpha \in A, \alpha' \in A'.$$

我们注意到当 n > N 时, $x_{n'} - \varepsilon$ 是一个 α , 而 $x_{n'} + \varepsilon$ 是一个 α' . 所以我们有

$$x_{n'} - \varepsilon \le a \le x_{n'} + \varepsilon$$
.

即 $|x_{n'} - a| \le \varepsilon$,所以 $\lim x_n = a$.

若是不用实数划分的手法,也可以构造 $a_n=\inf_{k\geq n}x_k$ 和 $b_n=\sup_{k\geq n}$,证明 $\lim a_n=\lim b_n=c$,再用一下夹逼 准则 $a_n\leq x_n\leq b_n$.

上下极限

Definition 2.21. 序列 (x_n) 的部分极限的最大值和最小值,称为 x_n 的上极限和下极限,各记为 $\overline{\lim} x_n \ \mathcal{D} \ \underline{\lim} x_n.$

函数极限

函数极限的定义

函数左右极限

两个重要极限

Proposition 3.1.

$$\lim_{x \to 0} \frac{\sin x}{x}.$$

证明. 几何证明的手法,或者直接上洛必达.

Proposition 3.2.

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x.$$

证明. 单调有界.

函数极限的基本性质

Proposition 3.3. 若 $\lim_{x\to a}=A$,则对于充分接近 a 的 x 的函数值是有界的

$$|f(x)| \le M, |x-a| < \delta.$$

注意这里和 $\lim x_n = b$,而导致整个 (x_n) 有界是区别的,因为这里当 $x - a < -\delta$ 或者 $x - a > \delta$ 可能是有无限 多个函数值的,它们是否有界是无法确定的.

函数极限运算

洛必达法则

Definition 3.4. 若 real-value 函数 f 和 g 都在去心邻域 $\tilde{U}(c,\delta)$ 可导,有

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \text{ gdd } \lim_{x \to c} g(x) = \infty,$$

且对任意 $x \in \tilde{U}$ 都有 $g'(x) \neq 0$,同时有 $\lim_{x \to c} \frac{f'(x)}{g'(x)}$ 存在,那么

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

证明. 首先来看一个比较特殊的情况,除满足上述条件之外,若还满足 f(c) = g(c) = 0,并且 $g'(c) \neq 0$,那么

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x \to c} \frac{\frac{f(x) - f(c)}{x - c}}{\frac{g(x) - g(c)}{x - c}} = \frac{f'(c)}{g'(c)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

下面来严格证明分两种情况来证明,由于 \tilde{U} 在 c 这里间断,后面需要频繁使用到柯西中值定理,所以自然地在 U 的两端来分析,取开区间 \mathcal{I} 以 c 点为端点,且 $\mathcal{I} \subset \tilde{U}$. 注意到条件满足对任意的 $x \in \mathcal{I}$ 有 $g'(x) \neq 0$,并且 g 在 \mathcal{I} 上是连续的,那么是可以在 \mathcal{I} 里面找到一个足够小的区间使得 $g(x) \neq 0$,那这个小区间代替 \mathcal{I} .

我们定义 $m(x) = \inf \frac{f'(\alpha)}{g'(\alpha)}$ 和 $M(x) = \sup \frac{f'(\alpha)}{g'(\alpha)}$ 其中 $x \in \mathcal{I}$, α 取遍 x 和 c 之间的数 (为什么确保可以取到确界?任意 α 处 f 和 g 导数均有意义). 在确定 x 之后,我们再取定 x 和 c 之间一点 y,结合柯西中值定理可以保证在它们之间找到一个 c 使得

$$m(x) \le \frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(\alpha)}{g'(\alpha)} \le M(x).$$

注意为什么这里可以保证 $g(x)-g(y)\neq 0$? 假设存在 g(x)=g(y), 那么根据罗尔定理,就存在一点 p 使得 g'(p)=0,这是和前提条件 $\forall x\in \bar{U},\ g'(x)\neq 0$ 矛盾的.

情况一: $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0.$

对任意的 $x \in \mathcal{I}$, 取 y 位于 x 和 c 之间, 为了得到 $\frac{f(x)}{g(x)}$, 我们让

$$m(x) \le \frac{f(x) - f(y)}{g(x) - g(y)} = \frac{\frac{f(x)}{g(x)} - \frac{f(y)}{g(x)}}{1 - \frac{g(y)}{g(x)}} \le M(x).$$

当 $y \to c$ 时, $\frac{f(y)}{g(x)}$ 和 $\frac{g(y)}{g(x)}$ 都趋向于 0, 所以

$$m(x) \le \frac{f(x)}{g(x)} \le M(x).$$

情况二: $\lim_{x \to c} g(x) = \infty$.

对任意的 $x \in \mathcal{I}$, 取 y 位于 x 和 c 之间. 如果我们还是用上面的分式,直接尝试把 $\frac{f(x)}{g(x)}$ 构造出来,尝试分式 对 $y \to c$ 取极限的时候,显然是无法处理的. 同时你注意到在当前条件下是对 $\lim_{x \to c} f(x)$ 是没有特别说明的,言下之意它不会对我们的证明产生影响. 现在我们考虑把前面分式上下都除以 g(y),同时上下取负,即

$$m(x) \le \frac{f(y) - f(x)}{g(y) - g(x)} = \frac{\frac{f(y)}{g(y)} - \frac{f(x)}{g(y)}}{1 - \frac{g(x)}{g(y)}} \le M(x).$$

那么当 $y \to c$ 时, $\frac{f(x)}{g(y)}$ 和 $\frac{g(x)}{g(y)}$ 都是趋于 0,那么此刻关键是我们如何需要考虑 $\lim_{y \to c} \frac{f(y)}{g(y)}$? 让 $S_x = \{y \mid y \text{ 位于 x 和 c 之间}\}$,我们取遍 $y \in S_x$,我们可以得到得到一个有界数列 $\{\frac{f(y)}{g(y)}\}$ (为什么有界? f 和 g 在 [x,c]上连续),我们考虑其上下极限

$$m(x) \le \lim_{y \to c} \inf \frac{f(y)}{g(y)} \le \lim_{y \to c} \sup \frac{f(y)}{g(y)} \le M(x).$$

当对 m(x) 和 M(x) 也取极限 $x \to c$ 时,有

$$\lim_{x \to c} m(x) = \lim_{x \to c} M(x) = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

对情况一使用<mark>夹逼准则</mark>,可以很快得到 $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$. 对情况二也同样使用<mark>夹逼准则</mark>,可以得到

$$\lim_{y \to c} \inf \frac{f(y)}{g(y)} = \lim_{y \to c} \sup \frac{f(y)}{g(y)} = \lim_{x \to c} \frac{f'(x)}{g'(x)},$$

上下极限相等可以马上得到 $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$. 最终证毕.