	Ex. 6·11
	LX. 6.11
	The Gaussian Mixture Model has the Form:
	$f(x) = \sum_{m=1}^{m} \alpha_m \phi(x; \mu_m, \Sigma_m)$
	Therefore the likelihood is given by:
	$L(\Theta X) = \prod_{i=1}^{N} \sum_{m=1}^{M} c_m N(x_i; \mu_m, \sum_m)$
	4=1
	Now Consider Setting one of the Mixture Models to
	be Centered on one of the observations e.g. $\mu = \chi$
	Where KEI,, M and j EI,, N. Then for that observation
	Mixture combination in the likelihood is given by:
	· •
	$\propto_{\kappa} (277)^{-\frac{1}{2}} det(\Sigma_{\kappa})^{-\frac{1}{2}} exp(-\frac{1}{2}(\Sigma_{j}-\mu_{\kappa}) \Sigma_{\kappa}^{-\frac{1}{2}}(\Sigma_{j}-\mu_{\kappa}))$
	•
	$= \alpha_{\kappa} (277)^{-\frac{k_2}{2}} \det(\Sigma_{\kappa})^{-\frac{k_2}{2}}$
	Then as $\geq_{K} \rightarrow 0$, this component $\rightarrow +\infty$, and therefore
	the entire likelihood $\rightarrow \infty$.
	Therefore the likelihood is maximised -> 00 by setting
	Therefore the likelihood is maximised $\rightarrow \infty$ by setting any μ to an observation X_i and Setting $\Sigma_m \rightarrow 0$.
-	
\dashv	

J. . . .

.