Solutions to Part B of Problem Sheet 8

Solution (8.4) The largest eigenvalue of A can be written as

$$\lambda_{\max}(oldsymbol{A}) = \max_{oldsymbol{v} \in \mathbb{R}^n} rac{oldsymbol{v}^ op oldsymbol{A} oldsymbol{v}}{oldsymbol{v}^ op oldsymbol{v}}.$$

Therefore, $t \ge \lambda_{\max}(A)$ is equivalent to the statement that for all v,

$$t \geq \frac{\boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v}}{\boldsymbol{v}^{\top} \boldsymbol{v}} \iff t \boldsymbol{v}^{\top} \boldsymbol{v} - \boldsymbol{v}^{\top} \boldsymbol{A} \boldsymbol{v} \geq 0.$$

We can write $v^{\top}v = v^{\top}Iv$, with the itendity matrix I, so that the above is equivalent to

$$tI - A \succeq 0$$
.

The following semidefinite programming problem gives the largest eigenvalue:

minimize
$$t$$
 subject to $tI - A \succeq 0$.

Solution (8.5)

- (a) A symmetric matrix can be diagonalized by orthogonal transformations, $\Sigma = \mathbf{Q}^{\top} \mathbf{A} \mathbf{Q}$, with \mathbf{Q} orthogonal, and Σ is diagonal with the eigenvalues of \mathbf{A} in the diagonal. The trace is invariant under similarity transformations, $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{Q}^{\top} \mathbf{A} \mathbf{Q})$, from which we get that the trace equals the sum of the eigenvalues.
- (b) By Part (a), the problem is formally defined as

minimize
$$I \bullet X$$
 subject to $x_{ij} = a_{ij}$ for $(i, j) \in \Omega$, $X \succeq 0$.

We can formulate each of the constraints in the form $A_{ij} \bullet X = a_{ij}$, with A_{ij} the matrix with a 1 in entry (i, j) and 0 elsewhere. The dual problem would be of the form

$$\begin{array}{ll} \text{maximize} & \sum_{(i,j)\in\Omega}y_{ij}a_{ij} \\ \text{subject to} & \sum_{(i,j)\in\Omega}y_{ij}\boldsymbol{A}_{ij}+\boldsymbol{S}=\boldsymbol{I} \\ & \boldsymbol{S}\succeq\boldsymbol{0}. \end{array}$$