Data Mining:

3. Klassifikation

D) Alternative Techniques II: Bayes Classifier etc.

- Naive Bayesian Classifier
- Bayesian [Belief] Networks (BBN)
- Artificial Neural Networks (ANN)
- Support Vector Machines (SVM)
- Ensemble Methods

Bayesian Classifiers

- A probabilistic framework for solving classification problems
- Let A, C be random variables.
- Conditional Probability:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes' theorem says:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Bayesian Classifiers

 Consider each input attribute A_i, i=1,...,n, and the class attribute C as random variables

- Given a record with attributes (A₁=a₁,A₂=a₂,...,A_n=a_n)
 - Goal is to predict class C
 - Specifically, we want to find the value c of C that maximizes $P(C=c|A_1=a_1,A_2=a_2,...,A_n=a_n)$
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

Choose value c of C that maximizes

$$P(C=c|A_1=a_1,A_2=a_2,...,A_n=a_n)$$

Equivalent to choosing value c of C that maximizes

$$P(A_1=a_1,A_2=a_2,...,A_n=a_n \mid C=c) P(C=c)$$

• How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

 Assume independence among attributes A_i when class is given:

-
$$P(A_1, A_2, ..., A_n | C) = P(A_1 | C) P(A_2 | C) ... P(A_n | C)$$

- Estimate P(A_i| C) for all values of C and of all A_i from the training data.
- Classify new record $(A_1=a_1,A_2=a_2,...,A_n=a_n)$ as C=c iff $\Pi_i P(A_i=a_i| C=c) \cdot P(C=c)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C=c) = N_c/N$$

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

["C=" omitted here and in the sequel]

For discrete attributes:

$$P(A_i=a|C=c) = N_{ac}/N_c$$

- where N_{ac} is the number of records that have attribute value A_i=a and belong to class C=c
- Examples: ["C=" omitted]

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into intervals
 - introduce one ordinal attribute per interval
 - would violate independence assumption
 - Better: Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(A_i|C)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{-\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- For (Income, No):
 - Check Income values of records with Cheat=No
 - sample mean μ=110
 - sample variance σ^2 =2975
 - sample std.deviation σ=54.54

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier Application

Given a test record:

$$X = (Refund = No, Mar.St. = Married, Income = 120K)$$

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
```

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

(Wantai Status-Divorced) 163)-171

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

Since
$$P(X|No)P(No) > P(X|Yes)P(Yes)$$

Therefore $P(No|X) > P(Yes|X)$
=> Class = No

Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Better use other probability estimations:

• For the example above: same result, but more robust computation; for m=3, p=2/3: P(X|No)=0.0026; for m=3, p=1/3: P(X|Yes)=1.3x10⁻¹⁰

Example of Naïve Bayes Classifier

Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
yes	no	no	yes	no	?

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	non-mammals
salmon	no	yes	no	yes	no	non-mammals
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	non-mammals
komodo	no	yes	no	no	yes	non-mammals
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	non-mammals
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	non-mammals
turtle	no	yes	no	sometimes	yes	non-mammals
penguin	no	yes	no	sometimes	yes	non-mammals
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	non-mammals
salamander	no	yes	no	sometimes	yes	non-mammals
gila monster	no	yes	no	no	yes	non-mammals
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	non-mammals
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	non-mammals

A: given attribute values

M: mammals (7 of 20)

N: non-mammals (13 of 20)

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Note: The attribute "Lay Eggs" is redundant!

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Naïve Bayes: Summary

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes, since uniform distribution does not influence calculational decision.
- Independence assumption may not hold for some attributes, i.e., correlated attributes can degrade classification success
 - Use other techniques such as Bayesian [Belief] Networks (BBN) encoding the dependencies among random variables

Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane that maximizes the margin => B1 is better than B2

© Tan, Steinbach, Kumar

Introduction to Data Mining

if $\vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + \mathbf{b} \leq -1$

- We have to estimate the parameters w and b for the linear classifier f from the training data.
- We want to find a w that maximizes: Margin = $\frac{2}{\|\vec{w}\|^2}$
 - which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - but subjected to the following constraint for the training data x_i :

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - There are numerical approaches to solve it (e.g., quadratic programming).

• What if the problem is linear, but nonseparable?

- What if the problem is linear, but nonseparable?
 - Introduce slack variables (for deviations)
 - Need to minimize: $L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$
 - Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Nonlinear Support Vector Machines

Transform data into higher dimensional space

Ensemble Methods

- Construct a set of classifiers from the training data
 - by varying the training set
 - by varying the input attributes
 - by varying the class labels
 (binary labels built on top of multi-class labels)
 - by varying the classifier algorithm
- Predict class label of previously unseen records by aggregating predictions made by those multiple classifiers, e.g. using majority voting

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:
 - ◆i.e. the majority = 13 or more classifiers are wrong

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06 < 0.35$$

How to generate an ensemble of classifiers? Cross Validation

Since classification labels are needed for training and validation, the training set is often multi-used:

Holdout

- → Reserve 2/3 for training and 1/3 for testing
- But: reduced training set
- Better: Random subsampling
 - → Repeated random holdout
 - But: no control how often a record is used for training

k-Fold Cross validation:

- → Partition data into k disjoint subsets; train on k-1 partitions, test on the remaining one, do this for all partitions and combine the classifiers!
- → Special case "leave-one-out": k=number of training records

How to generate an ensemble of classifiers? Bagging

 Bagging (bootstrap aggregating) repeatedly samples (with replacement) from a training data set according to a uniform distribution:

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability (1 1/n)ⁿ of being selected; converges for large n to 63%.

Bagging Round 1:

х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	x <= 0.35 ==> y = 1
У	1	1	1	1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1

Bagging Round 2:

Х	0.1	0.2	0.3	0.4	0.5	0.8	0.9	1	1	1	x <= 0.65 ==> y = 1
У	1	1	1	-1	-1	1	1	1	1	1	x > 0.65 ==> y = 1

Bagging Round 3:

Х	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	x <= 0.35 ==> y = 1
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.35 ==> y = -1

Bagging Round 4:

х	0.1										x <= 0.3 ==> y = 1
У	1	1	1	-1	-1	-1	-1	-1	1	1	x > 0.3 ==> y = -1

Bagging Round 5:

Х	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	x <= 0.35 ==> y = 1
У	1	1	1	-1	-1	-1	-1	1	1	1	x > 0.35 ==> y = -1

Bagging Round 6:

_												_
	Х	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x \le 0.75 ==> y = -1$
	У	1	-1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 7:

Х	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 ==> y = -1$
у	1	-1	-1	-1	-1	1	1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 8:

Х	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	x <= 0.75 ==> y = -1
у	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 9:

Х	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	x <= 0.75 ==> y = -1
у	1	1	-1	-1	-1	-1	-1	1	1	1	x > 0.75 ==> y = 1

Bagging Round 10:

Daggii	19 11041	IG 10.									0.05
х	0.1	0.1	0.1	0.1	0.3	0.3	0.8	0.8	0.9	0.9	x <= 0.05 ==> y = -1
У	1	1	1	1	1	1	1	1	1	1	x > 0.05 ==> y = 1

> 0.05 ==> y = 1

Bagging (Example)

In this example, one-level decision trees are generated as classifiers.

Bagging (Example)

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

How to generate an ensemble of classifiers? Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round
- Experiments on famous data sets have shown that ensemble classifiers (generated by bagging or boosting) generally outperform a single decision tree wrt accuracy.

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4
1			1			1	'	1		

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds