→ Swarm Plot

Swarm plot is a categorical scatterplot with non-overlapping points

```
# Recover default matplotlib settings
mpl.rcParams.update(mpl.rcParamsDefault)
%matplotlib inline
sns.set_style("white")
```

insurance = pd.read_csv('/content/drive/My Drive/Python DataScience/Visualization/Seabo
insurance.head(10)

₽		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520
	5	31	female	25.740	0	no	southeast	3756.62160
	6	46	female	33.440	1	no	southeast	8240.58960
	7	37	female	27.740	3	no	northwest	7281.50560
	8	37	male	29.830	2	no	northeast	6406.41070
	9	60	female	25.840	0	no	northwest	28923.13692

```
#Simple Swarm plot
plt.figure(figsize=(7,7))
sns.swarmplot(x=insurance.smoker, y=insurance.charges)
plt.show()
```

 \Box

sns.scatterplot(x=insurance.smoker, y=insurance.charges)

C < matplotlib.axes._subplots.AxesSubplot at 0x7f4c994fe358>


```
# Draw horizontal swarm plot
plt.figure(figsize=(7,7))
sns.swarmplot(x=insurance.charges , y=insurance.smoker)
plt.show()
```



```
iris = sns.load_dataset("iris")
plt.figure(figsize=(7,7))
sns.swarmplot(x="species" , y = "petal_width" ,data=iris , size=6)
plt.show()
```



```
# Displaying multiple swarmplots using subplot function.
fig1 , axes = plt.subplots(nrows=2,ncols=2 , figsize = (20,20))
sns.swarmplot(x="species" , y = "petal_width" , ax = axes[0,0] ,data=iris , size=8)
sns.swarmplot(x="species" , y = "petal_length" ,ax = axes[0,1] , data=iris , size=8)
sns.swarmplot(x="species" , y = "sepal_width" ,ax = axes[1,0] ,data=iris ,size=8)
sns.swarmplot(x="species" ,y = "sepal_length" ,ax = axes[1,1] ,data=iris ,size=8)
plt.show()
```

C→

exercise = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seabor
exercise.head()

₽		id	diet	pulse	time	kind
	0	1	low fat	85	1 min	rest
	1	1	low fat	85	15 min	rest
	2	1	low fat	88	30 min	rest
	3	2	low fat	90	1 min	rest
	4	2	low fat	92	15 min	rest

```
plt.figure(figsize=(7,7))
sns.swarmplot(x= "kind", y = "pulse", data = exercise)

□
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f4c99801be0>


```
# Changing size of data points using "size"parameter
plt.figure(figsize=(7,7))
sns.swarmplot(x= "kind", y = "pulse", size = 9, data = exercise)
```

 \Box

<matplotlib.axes._subplots.AxesSubplot at 0x7f4c997d1550>

#Changing edge color , size and linewidth of data points
plt.figure(figsize=(7,7))

sns.swarmplot(x= "kind", y = "pulse", size = 9 , linewidth= 2 , edgecolor="black" , da

<matplotlib.axes._subplots.AxesSubplot at 0x7f4c996621d0>

Show groups with different colors using "hue"
plt.figure(figsize=(7,7))

sns.swarmnlot(x= "kind". v = "nulse". hue="diet". size = 8 . data = exercise)

employment = pd.read_excel("/content/drive/My Drive/Python DataScience/Visualization/Se
employment.head()

C→

Age Gender Period Unemployed

plt.figure(figsize=(11,8))
sns.swarmplot(x=employment.Age ,palette="Set1", y = employment.Unemployed)
plt.show()

Facet along the columns to show a categorical variable using "col" parameter
sns.set(rc={'xtick.labelsize':10,'ytick.labelsize':10,'axes.labelsize':14})
sns.set_style("white")

sns.catplot(x="Age" , y = "Unemployed" , col= "Gender" , data=employment, kind="swarm"
plt.show()

pokemon = pd.read_csv("/content/drive/My Drive/Python DataScience/Visualization/Seaborn
pokemon.head()

С→ Sp. Sp. **HP Attack Defense** Speed Generation Legendary Total # Name Atk Def Bulbasaur Grass Poison 45 0 1 49 49 65 65 45 False 318 2 Ivysaur Grass Poison 60 80 1 62 63 80 60 False 405 Venusaur Grass Poison 80 2 3 82 100 525 83 100 80 False VenusaurMega Grass Poison 80 100 123 122 120 80 1 False 625 Venusaur

pokemon.columns

pokemon1 = pokemon[['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed']]
pokemon1.head()

₽		НР	Attack	Defense	Sp. Atk	Sp. Def	Speed
	0	45	49	49	65	65	45
	1	60	62	63	80	80	60
	2	80	82	83	100	100	80
	3	80	100	123	122	120	80
	4	39	52	43	60	50	65

```
plt.figure(figsize=(14,12))
sns.swarmplot(data=pokemon1,size=6)
plt.show()
```

С→

