Physik Cheatsheet

Physik Cheatsheet

```
Wärme
```

Wärme aus Reibung

Mechanik

Kräfte

Kräftegleichgewicht

Drehmoment

Reibung

Abhang & Reibung

Geschwindigkeit

Beschleunigung

Strecke

Zeit

2. Newtonsches Axiom

Arbeit

Leistung

Wirkungsgrad

Hubarbeit/Potentielle Energie

Spannarbeit/Federenergie

Beschleunigungsarbeit/Kinetische Energie

Horizontaler Wurf

Bezugssystem nach unten

Bezugssystem nach oben

Kreisbewegung

Schwingungen

Harmonische Schwingung

Lineare Welle

Federpendel

Acknowledgements

Wärme

Q: Wärmeenergie [J]

$$\Delta Q = mc \cdot \Delta T$$

Wärme aus Reibung

$$F_R \cdot s = mc \cdot \Delta T$$

Mechanik

Kräfte

Einheit: [N]

Formelzeichen: F

Kräftegleichgewicht

$$ec{F}_{res} = \overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 = 0$$

Drehmoment

Einheit: [Nm] Formelzeichen: M

 M_r = Drehmoment nach rechts

 M_l = Drehmoment nach links

$$M_r = M_l \ M_r = F_1 * l_1 + F_2 * l_2 \cdots \ M_l = F_3 * l_3 + F_4 * l_4 \cdots$$

Reibung

 F_R : (maximal mögliche) Reibungskraft [N]

 F_N : Normalkraft [N] (Reaktionskraft)

 μ : Reibungskoeffizient

Solange keine Kraft auf den Körper drückt, gilt ${\cal F}_N={\cal F}_G$

$$\mu = \frac{F_R}{F}$$

$$F_R = \mu \cdot F_N$$

Abhang & Reibung

 F_H : Hangabtriebskraft [N]

 $F_{G\perp}$: Kraft senkrecht zur Ablage [N]

$$egin{aligned} F_H &= F_G \cdot \sin(lpha) \ F_N &= F_{G \perp} = F_G \cdot \cos(lpha) \ F_R &= \mu \cdot F_N \ F_R &= \mu \cdot F_G \cdot \cos(lpha) \end{aligned}$$

Wenn $F_h=F_R$ gilt, gilt auch

$$FG \cdot \sin(\alpha) = \mu \cdot F_G \cdot \cos(\alpha)$$
$$\sin(\alpha) = \mu \cdot \cos(\alpha)$$
$$\mu = \frac{\sin(\alpha)}{\cos(\alpha)}$$
$$\mu = \tan(\alpha)$$

Geschwindigkeit

- a: Beschleunigung $\left[\frac{m}{s^2}\right]$
- v: Geschwindigkeit $\left[\frac{m}{s}\right]$
- *t*: Zeit [*s*]
- s: Strecke [m]

Mit Anfangsgeschwindigkeit

 v_0 : Anfangsgeschwindigkeit $[\frac{m}{s}]$

$$v=\sqrt{v_0^2+2as} \ v(t)=at+v_0$$

Ohne Anfangsgeschwindigkeit

$$egin{aligned} v &= at \ v &= \sqrt{2as} \ v &= \sqrt{v_0^2 + 2as} \ v &= at \end{aligned}$$

Beschleunigung

$$a = \frac{\Delta v}{\Delta t}$$

Strecke

$$s=v\cdot t \ s=rac{1}{2}at^2 \ s(t)=s_0+v_0\cdot t+rac{1}{2}at^2$$

Zeit

$$t = \frac{s}{v}$$

$$t = \frac{s}{\overline{v}} = \frac{2s}{v1 + v2}$$

2. Newtonsches Axiom

$$F_{Res} = ma$$

Arbeit

W: Arbeit/Energie [Nm/J/Ws]

Arbeit = Kraft (in Wegrichtung) * Strecke

$$W = F \cdot s$$

Leistung

P: Leistung [W]

Leistung = Kraft (in Wegrichtung) * Geschwindigkeit (* Reibungskoeffizient) pro Zeit

$$P = rac{\Delta E}{t}$$
 $P = F \cdot v$
 $P = F \cdot v \cdot \mu$

Wirkungsgrad

Der Wirkungsgrad stellt die Übersetzung von aufgewandter Energie zu gebrauchter Energie dar. Er ist ein Mass der Effizienz.

$$\eta = rac{E_{Nutzen}}{E_{Aufwand}}$$

Hubarbeit/Potentielle Energie

$$W_H = F \cdot s = m \cdot g \cdot s = E_{pot}$$

Spannarbeit/Federenergie

D: Federkonstante $\left[\frac{N}{m}\right]$

$$F_F = D \cdot \Delta x$$
 $W_S = rac{1}{2} D \cdot \Delta x^2 = E_F$

Beschleunigungsarbeit/Kinetische Energie

$$W_B = rac{1}{2} m \cdot v^2 = E_{kin}$$

Horizontaler Wurf

OHNE Berücksichtigung des Luftwiderstandes.

 t_F : Fallzeit [s]

$$h=rac{1}{2}g\cdot t^2=>t_F=\sqrt{rac{2h}{g}}$$
 $x_W=v_0\cdot t_F$ $v=\sqrt{v_0^2+v_Z^2}$ $\phi=tan^{-1}(rac{v_z}{v_0})$

Bezugssystem nach unten

Kann *generell* angewendet werden wenn Objekte *keine* Anfangsposition haben und nach *unten* fallen

$$h(t)=rac{1}{2}gt^2 \ h(t)=v_0t+rac{1}{2}gt^2 \ v=\sqrt{2gh} \ v=\sqrt{v_0^2+2gh}$$

$$h=\overline{v}t \ t_F=\sqrt{rac{2h}{g}}$$

Bezugssystem nach oben

Kann *generell* angewendet werden wenn Objekte *eine* Anfangsposition haben und nach *unten* fallen.

z': Position eines Objekts nach einer bestimmten Fallzeit.

z'': Position eines Objekts nach einer bestimmten Fallzeit, das eine Startgeschwindigkeit hat.

$$z(t)' = z_0 - \frac{1}{2}gt^2$$

 $z(t)'' = z_0 + v_0t - \frac{1}{2}gt^2$
 $v = \sqrt{2gh}$
 $v = \sqrt{v_0^2 - 2gh}$

$$v(t) = -gt$$
$$v(t) = v_0 - gt$$

Kreisbewegung

 ω : Winkelgeschwindigkeit/Kreisfrequenz $[\frac{1}{s}]$

v: Bahngeschwindigkeit [$\frac{m}{s}$]

r: Bahnradius

U: Umfang [m]

f: Frequenz der Umdrehung $\left[\frac{1}{s}/Hz\right]$

$$\omega = \frac{\Delta \phi}{\Delta t} = \frac{2\pi}{T} = 2\pi \cdot f$$

$$v = \frac{U}{T} = \frac{2\pi \cdot r}{T} = \omega \cdot r$$

$$T = \frac{1}{f} \Rightarrow f = \frac{1}{T}$$

 a_z : Anzugsbeschleunigung zum Zentrum [m/s]

 F_z : Anzugskraft zum Zentrum (= F_R) [N]

$$a_z = rac{2\pi \cdot v}{T} = \omega \cdot v = \omega^2 \cdot r = rac{v^2}{r}$$
 $\phi = \omega \cdot t$ $F_z = m \cdot a_z$

Schwingungen

Welle	Stehende Welle	
Wasserwelle Elektromagnetische Welle (Licht)	Wasserwelle in Resonator Licht in Laserresonator feste Seilwelle	transversal
Schallwelle	Schallwelle in Resonator	longitudinal

Harmonische Schwingung ist gegeben wenn $F=-D\cdot y$.

Harmonische Schwingung

 \hat{y} / \hat{x} : Amplitude [m]

y / x: (momentane) Auslenkung [m]

$$y = \hat{y} \cdot sin(\omega \cdot t)\hat{v} = \omega \cdot \hat{y}$$
 $\hat{a} = \omega \cdot \hat{v} = \omega^2 \cdot \hat{y}$

Lineare Welle

k: Wellenzahl $\left[\frac{1}{m}\right]$

v / c: Ausbreitungsgeschwindigkeit [$\frac{m}{s}$]

 λ : Wellenlänge [m]

$$egin{aligned} k &= rac{2 \cdot \pi}{\lambda} \ y &= \hat{y} \cdot sin(\omega \cdot t \pm k \cdot x) \ c &= rac{\lambda}{T} = \lambda \cdot f \end{aligned}$$

Der Operand $\pm\,$ kann geändert werden je nachdem in welche Richtung sich die Welle im Koordinatensystem ausbreitet. - für rechts oder ins positive x und + für links oder ins negative x

Federpendel

m: Masse des schwingenden Körpers [kg]

D: Federkonstante $\left[\frac{N}{m}\right]$

l: Pendellänge [m]

$$T=2\pi\sqrt{rac{m}{D}}$$
 $T=2\pi\sqrt{rac{l}{g}}$

$$T=2\pi\sqrt{rac{l}{g}}$$

Acknowledgements

Author(s): d20cay

Last updated: See changelog