Mathematical Model for Optimal Production of Spare Parts

Parameters

- ullet K: Number of different spare parts
- S: Number of machines capable of making the spare parts
- $Time_{ks}$: Time taken to make spare part k on machine s for $k=1,2,\ldots,K$ and $s=1,2,\ldots,S$
- $Profit_k$: Profit obtained from making spare part k for k = 1, 2, ..., K
- Capacitys: Capacity of machine s for the spare parts for $s=1,2,\ldots,S$

Decision Variables

• x_k : Quantity of spare part k to produce for k = 1, 2, ..., K

Objective Function

Maximize the total profit from producing the spare parts:

Maximize
$$Z = \sum_{k=1}^{K} Profit_k \cdot x_k$$

Constraints

1. Quantities of each spare part must be non-negative:

$$x_k \ge 0$$
 for $k = 1, 2, \dots, K$

2. Time to produce each spare part must not exceed the available machine time:

$$\sum_{k=1}^{K} Time_{ks} \cdot x_k \le Capacity_s \quad \text{for } s = 1, 2, \dots, S$$