Python I - Group Assignment

IE MBD - Group B

Alan Haro, Jesús Fuster, Joao Ferris, Marilyn González, Muriel Vergara, Sergio Ospina, Vignesh Viswanathan, Zara Amer

Assignment Objectives

#01 /Concepts

Review and understand
the pandas concepts

#03 /Group Work

Strengthen abilities
to work in group in
a coding context

#02 /Exercise

Practice our pandas
> coding skills through
a practical exercise

104 /Presentation Skills

> Reinforce our coding
presentation skills

We are working with an energy dataset

Q1 – Assigning strings to keys

ASK

Convert the weekday column in from a number to a string

Logic of approach

- assigning day name to corresponding integer type key
- 2) Map the dictionary
 to get the weekday
 names

Conclusions

- 0 ----> Monday
- 1 ----> Tuesday
- 2 ----> Wednesday
- 3 ----> Thursday
- 4 ----> Friday
- 5 ----> Saturday
- 6 ----> Sunday

0

energy_n["weekday"] = energy_n["weekday"].map(lambda x: weekday_name[x])

Q2 – Assigning strings to keys (2)

ASK

Convert month column from a number to a string

Logic of approach

- 1) Create dictionary assigning month name to corresponding integer type key
- 2) Map the dictionary
 to get the month
 names

Conclusions

```
0 ----> January
1 ----> February
2 ----> March
3 ----> April
4 ----> May
5 ----> June
6 ----> July
7 ----> August
8 ----> September
9 ----> October
10 ----> November
11 ----> December
```

0

In [2]

energy_n["month"] = energy_n["month"].map(lambda x: month_name[x])

Q3 – % unique days with at least 1 hr with P < € 10

ASK

Find percentage
of unique days in the
total period in which
at least one hour with
a price < €10

Logic of approach

- 1) Extract unique dates that meet condition
- 2) Find total unique
 days, then required
 %

Conclusions

- 1) 16 days with at
 least 1 hr with
 stock price < €10</pre>
- 2) % of unique days
 that meet
 condition: 4.38%

0

In [3]

print ('percentage of unique days was', unique_days / total_days * 100, '%')

Q4 - # hours/month with P (<) & (>) Monthly P Avg

ASK

How many hours per month, in average, do we have a price above the monthly average? And below?

Logic of approach

- 1) Group by month to
 compute monthly avg
 price
- 2) Find for how many hours in each month the spot price is above (below) monthly price avg.

Conclusions

- 1) 11 / 12 months: more
 hours with P above
 than with P below
 monthly avg
- 2) Month with:
 - highest # hours
 above -Mar (66%)
 - highest # hours
 below Sep (50%)

0

In [4]

energy_final = pd.merge (energy_hours_above_avg, energy_hours_below_avg, left_on = 'month_year', right_on = 'month_year')

Q4 – # hours/month with P (<) & (>) Monthly P Avg

total hours above & below monthly price avg

	count_hours_above_avg	count_hours_below_avg
month_year		
2019-01	464	280
2019-02	384	288
2019-03	490	254
2019-04	469	251
2019-05	438	306
2019-06	367	353
2019-07	420	324
2019-08	401	343
2019-09	358	362
2019-10	393	351
2019-11	382	338
2019-12	415	305

Q5.1 – Gas generation vs Wind Generation

ASK

Is gas generation higher or lower that its hr avg when wind generation > its hr avg.

Logic of approach

- 1) Find **hr** avg. of wind and gas production
- 2) Filter using data
 points were wind
 production > hr avg
- 3) Find data points: gas production higher / lower than hr avg.

Conclusions

Higher 748 hrs

Lower 2864 hrs

% of higher 20.7 % gas generation

0

In [5]

energy_new.loc[:, 'H/L'] = np.where(energy_new.loc[:, 'gas'] > energy_new["gas_avg"], 'Higher',
'Lower')

Q5.2 – Spot Price vs Solar generation

ASK

Is the spot_price higher or lower than its hr avg. when solar generation is above its hr avg?

Logic of approach

- 1) Find hr avg. of solar production and of spot_price
- 2) Filter using data
 points were solar
 production > hr avg
- 3) Find data points:
 spot_price higher /
 lower than hr avg.

Conclusions

Higher 1497 hrs

Lower 1502 hrs

% of higher spot_price vs. 49.9 % hr mean

0

In [5]

energy_new.loc[:, 'H/L'] = np.where(energy_new.loc[:, 'spot_price'] > energy_new ["spot_price_avg"], 'Higher', 'Lower')

Q5.3 – Gas generation vs Wind Generation

ASK

Is the spot_price higher or lower than its monthly avg. when power_demand is above its monthly avg?

Logic of approach

- Find monthly avg. of: power and spot_price
- 2) Filter using data
 points were power
 demands > monthly avg
- 3) Find data points:
 spot_price higher /
 lower than hr avg.

Conclusions

Higher

3521 hrs

Lower

988 hrs

% of higher
spot_price vs.
monthly mean

78.1 %

0

In [5]

energy_new.loc[:, 'H/L'] = np.where(energy_new.loc[:, 'spot_price'] > energy_new ["spot_price_avg"], 'Higher', 'Lower')

Q6.1 – Avg. Contribution of each energy type

ASK

Finding the average contribution of each energy type during the whole period?

Logic of approach

- 1) Sum the mean of each energy type
- 2) Divide energy sums by whole energy mean

0

In [6]

energy_mean_per = energy_sums/sum_energy_mean

Q6.2 - Avg. Contribution of each energy type in \$ month

ASK

Finding the % average contribution of each energy type in most expensive month?

Logic of approach

- 1) We index the month column to find the most expensive month
- 2) Find average usage
 of energy type
 within given month

0

In [6]

max_energy_sum =((energy_sum.groupby(["month_year"])["power_demand"].sum())).idxmax()

Q6.3 – Avg. Contribution of each energy type in $_{\mbox{\scriptsize S}}$ month

ASK

Finding the % average contribution of each energy type in cheapest month?

Logic of approach

- We index the month column to find the cheapest month
- 2) Find average usage
 of energy type
 within given month

0

In [6]

min_energy_sum =((energy_sum.groupby(["month_year"])["power_demand"].sum())).idxmin()

Q8 – Weekend vs. Weekdays

ASK

How much expensive in average is a weekend day compared to a weekday?

Logic of approach

- 1) Categorize data as weekday or weekend
- **2) Filter** and **sum means** of weekdays
 and weekends
- 3) Find difference between both means

Conclusions

\$ Weekdays

€ 49.17

\$ Weekends

€ 44.04

Cost difference €-5.13

0

In [8]

cost_difference = energy_weekend_filter_mean - energy_weekday_filter_mean

Q7.1 — Hydro Power vs Electricity Price

Q7.2 — Wind Power vs Electricity Price

Q7.3 – Solar Power vs Electricity Price

Q7.4 – Nuclear Power vs Electricity Price

0

Q7.5 – Gas Power vs Electricity Price

Q7.6 – Coal Power vs Electricity Price

Print ("WHOA! What a great presentation from group B")

