Corrigé exercice 78:

1. Voici le tableau de signes de f:

x	$-\infty$		-4		3		$+\infty$
f(x)		+	0	_	0	+	

2. D'après ce tableau de signes, on peut écrire la forme factorisée de f.

Ainsi:
$$f(x) = a[(x - (-4)](x - 3) = a(x + 4)(x - 3).$$

Par lecture graphique, on a : f(0) = -6.

Donc:
$$a(0+4)(0-3) = -6 \underset{1}{\text{soit}} a \times 4 \times (-3) = -6 \underset{1}{\text{donc}} -12a = -6 \underset{2}{\text{soit}} a = \frac{1}{2}$$

En conclusion, on a :
$$f(x) = \frac{1}{2}(x+4)(x-3)$$
.

Corrigé exercice 79:

D'après le premier point, on dresse le tableau de signes de f:

x	$-\infty$		1		2		$+\infty$
f(x)		+	0	_	0	+	

On peut donc écrire que, pour tout $x \in \mathbb{R}$: f(x) = a(x-1)(x-2).

Le deuxième point permet d'écrire : f(0) = 3.

Donc:
$$a(0-1)(0-2) = 3_{\text{soit}} a \times (-1) \times (-2) = 3_{\text{d'où }} 2a = 3_{\text{donc}} a = \frac{3}{2}$$
.

L'expression de
$$f$$
 est donc $f(x)=\frac{3}{2}(x-1)(x-2)$, pour tout $x\in\mathbb{R}.$

Corrigé exercice 80 :

D'après l'énoncé, on a des informations sur la forme factorisée de f.

Done, pour tout
$$x \in \mathbb{R}$$
 : $f(x) = a[x - (-2)](x - 7) = a(x + 2)(x - 7)$.

De plus, f est d'abord négative, puis positive. On peut donc en conclure que : a < 0.

On peut donc prendre comme exemple : a=-2.

Ainsi une expression possible de f est : f(x) = -2(x+2)(x-7) , pour tout $x \in \mathbb{R}$.

Corrigé exercice 81:

Dans la suite, on considère que les fonctions affines sont de la forme $x \mapsto mx + p$ avec m et p réels.

1. Cette expression est le produit de deux fonctions affines.

On résout donc : x - 2 = 0 si et seulement si x = 2 (m = 1 > 0).

On résout : x + 5 = 0 si et seulement si x = -5 (m = 1 > 0).

On obtient le tableau de signes suivant :

x	$-\infty$		-5		2		$+\infty$
x-2		_		_	0	+	
x + 5		_	0	+		+	
(x-2)(x+5)		+	0	_	0	+	
5(x-2)(x+5)		+	0	_	0	+	

2. Par lecture du tableau de signes précédent, on obtient :

a.
$$S = \{-5, 2\}$$

b.
$$S = [-5; 2]$$

c.
$$S =]-\infty; -5[\cup]2; +\infty[$$

Corrigé exercice 82:

Pour résoudre de telles inéquations, on doit établir les tableaux de signes des fonctions.

Dans la suite, on considère que les fonctions affines sont de la forme $x\mapsto mx+p$ avec m et p réels.

1. Cette expression est le produit de deux fonctions affines.

On résout donc : x + 2 = 0 si et seulement si x = -2 (m = 1 > 0).

On résout : x - 6 = 0 si et seulement si x = 6 (m = 1 > 0).

On obtient le tableau de signes suivant :

x	$-\infty$		-2		6		$+\infty$
x + 2		_	0	+		+	
x-6		-		_	0	+	
(x+2)(x-6)		+	0	_	0	+	
5(x+2)(x-6)		+	0	_	0	+	

Donc :
$$S =]-2;6[$$
.

2. Cette expression est le produit de deux fonctions affines.

On résout donc : x - 5 = 0 si et seulement si x = 5 (m = 1 > 0).

On résout : x + 11 = 0 si et seulement si x = -11 (m = 1 > 0).

On obtient le tableau de signes suivant :

x	$-\infty$		-11		5		$+\infty$
x-5		_		_	0	+	
x + 11		-	0	+		+	
(x-5)(x+11)		+	0	_	0	+	
-(x-5)(x+11)		_	0	+	0	_	

Donc:
$$S = [-11; 5]$$
.

Corrigé exercice 83:

1. Pour déterminer les antécédents de 0 par f, on résout l'équation f(x)=0. Donc : 6(x-3)(x+4)=0 si et seulement si x-3=0 ou x+4=0

si et seulement si x = 3 ou x = -4

Les antécédents de 0 par f sont -4 et 3.

2. Pour déterminer l'ensemble des abscisses des points de \mathcal{C}_f situés au-dessus de l'axe des

abscisses, on doit résoudre :
$$f(x) \ge 0$$
. $6(x-3)(x+4) \ge 0$ si et seulement si $(x-3)(x+4) \ge 0$

On va donc étudier le signe de (x-3)(x+4).

Dans la suite, on considère que les fonctions affines sont de la forme $x \mapsto mx + p$ avec m et p réels. L'expression (x-3)(x+4) est le produit de deux fonctions affines.

On résout donc :
$$x-3=0$$
 si et seulement si $x=3$ ($m=1>0$).
On résout : $x+4=0$ si et seulement si $x=-4$ ($m=1>0$).

On obtient le tableau de signes suivant :

x	$-\infty$		-4		3		$+\infty$
x-3		_		_	0	+	
x+4		_	0	+		+	
(x-3)(x+4)		+	0	_	0	+	

Les solutions de l'inéquation $f(x) \ge 0$ sont donc $: S =]-\infty; -4] \cup [3; +\infty[$

Donc, l'ensemble des abscisses des points de \mathcal{C}_f situés au-dessus de l'axe des abscisses est $]-\infty;-4]\cup[3;+\infty[$

Remarque: L'ensemble des abscisses des points de \mathcal{C}_f situés **strictement** au-dessus de l'axe des abscisses est $]-\infty;-4[\ \cup\]3;+\infty[$.

Corrigé exercice 84:

1.

a. Voici l'écran de la calculatrice obtenu :

b. D'après ce graphique, on peut conjecturer qu'il existe un seul point d'intersection entre \mathcal{C}_f et \mathcal{C}_g de coordonnées (3;9).

- c. D'après ce graphique, on peut conjecturer que la courbe \mathcal{C}_f est au-dessus de \mathcal{C}_g sur \mathbb{R} . Les courbes \mathcal{C}_f et \mathcal{C}_g sont sécantes au point d'abscisse 3.
- 2. Pour tout réel x, on a : $f(x) g(x) = x^2 (6x 9) = x^2 6x + 9 = x^2 2 \times 3 \times x + 3^2 = (x 3)^2.$ Pour démontrer les conjectures précédentes, on étudie le signe de $(x 3)^2$.

On résout :
$$(x-3)^2=0$$
 si et seulement si $x-3=0$ si et seulement si $x=3$. De plus, pour tout réel x , $(x-3)^2\geqslant 0$

On peut donc en conclure que la courbe C_f est au-dessus de C_g sur \mathbb{R} et que les courbes C_f et C_g sont sécantes uniquement au point d'abscisse 3.