Теория вероятностей и математическая статистика, Коллоквиум III

Версия от 04.04.2021 15:00

Содержание

1.	Неравенство Чебышева и закон больших чисел в слабой форме для общих случайных величин. Уси-			
	ленный закон больших чисел Колмогорова (б/д). Сходимости случайных величин: почти наверное и по			
	вероятности. Взаимосвязь сходимостей по вероятности и почти наверное.			
	1.1. Неравенство Чебышева и закон больших чисел в слабой форме для общих случайных величин.			
	1.2. Усиленный закон больших чисел Колмогорова (б/д)			
	1.3. Сходимости случайных величин: почти наверное и по вероятности			
	1.4. Взаимосвязь сходимостей по вероятности и почти наверное			
2.	Сходимость случайных величин по распределению. Лемма о достаточном условии сходимости ожиданий			
	функций из заданного семейства от последовательности случайных величин (лемма 2 из лекции 2).			
	Эквивалентное описание сходимости по распределению	. 5		
3.	Абсолютная непрерывность математического ожидания. Теорема Лебега о мажорируемой сходимости.			
	Подстановка сходящейся по вероятности последовательности случайных величин в непрерывную функ-			
	цию. Взаимосвязь сходимостей по вероятности и по распределению.	. 5		
4.	Характеристические функции: определение и свойства. Вычисление характеристической функции нор-			
	мальной случайной величины. Производные характеристических функций.	. 5		
	4.1. Характеристические функции: определение и свойства	. 5		
	4.2. Вычисление характеристической функции нормальной случайной величины	. 7		
	4.3. Производные характеристических функций	. 7		
5.	Переформулировка сходимости по распределению в терминах характеристических функций. Однознач-			
	ность задания распределения случайной величины ее характеристической функцией. Центральная пре-			
	дельная теорема.	. 8		
6.	Подстановка сходящейся по распределению последовательности случайных величин в непрерывную			
	функцию. Сходимость суммы и произведения сходящихся по распределению последовательностей слу-			
	чайных величин в случае, когда одна из предельных случайных величин постоянная. Примеры при-			
	менения: выборочная дисперсия и взаимосвязь с ЦПТ. Теорема о сходимости последовательности вида			
	$\frac{f(a+h_nX_n)-f(a)}{h_n}$ для сходящейся по распределению последовательности X_n . Взаимосвязь с ЦПТ	. 8		
	n_n 6.1. Подстановка сходящейся по распределению последовательности случайных величин в непрерыв-			
	ную функцию	. 8		
	6.2. Сходимость суммы и произведения сходящихся по распределению последовательностей случай-			
	ных величин в случае, когда одна из предельных случайных величин постоянная	. 9		
	6.3. Примеры применения: выборочная дисперсия и взаимосвязь с ЦПТ	. 11		
	6.4. Теорема о сходимости последовательности вида $\frac{f(a+h_nX_n)-f(a)}{h_n}$ для сходящейся по распре-			
	h_n делению последовательности X_n	. 12		
	6.5. Взаимосвязь с ЦПТ			
7.	Неравенство типа Хефдинга-Чернова. Пример применения.			
	7.1. Неравенство типа Хедфинга-Чернова			
	7.2. Пример применения			
	·			

8.	Многомерная характеристическая функция. Сходимость по распределению последовательности случай-				
	ных векторов. Эквивалентное описание сходимости по распределению через сходимость характеристиче-				
	ских функций (без доказательства). Независимость случайных величин в терминах характеристической				
	функции совместного распределения. Матрица ковариаций, смысл задаваемой ей билинейной формы,				
	ее изм	иенение при линейных преобразованиях. Многомерная ЦПТ	14		
	8.1.	Многомерная характеристическая функция.	14		
	8.2.	Сходимость по распределению последовательности случайных векторов	14		
	8.3.	Эквивалентное описание сходимости по распределению через сходимость характеристических			
		функций (без доказательства).	14		
	8.4.	Независимость случайных величин в терминах характеристической функции совместного распре-			
		деления.	14		
	8.5.	Матрица ковариаций, смысл задаваемой ей билинейной формы, ее изменение при линейных пре-			
		образованиях	15		
	8.6.	Многомерная ЦПТ	16		
9.	Мног	омерное нормальное распределение. Свойства нормального вектора: линейный образ нормально-			
	го распределения нормален, характеризация через одномерные распределения, значение параметров				
	нормального вектора, равносильность независимости и некоррелированности компонент. Представление				
	норма	ального вектора, как линейный образ стандартного нормального вектора, ортогонализация. Плот-			
	ность нормального вектора				
10.	Условное математическое ожидание в дискретном случае относительно разбиения и относительно слу-				
	чайной величины. Основные свойства: линейность, монотонность, формула полной вероятности, услов-				
	ное о	кидание величины, независимой с разбиением, вынесение случайной величины из под знака услов-			
	НОГО	ожидания. Эквивалентное определение условного математического ожидания и геометрическая			
	интер	претация	17		
	10.1.	Условное математическое ожидание в дискретном случае относительно разбиения и относительно			
		случайной величины	17		
	10.2.	Основные свойства: линейность, монотонность, формула полной вероятности, условное ожидание			
		величины, независимой с разбиением, вынесение случайной величины из под знака условного			
		ожидания.	17		
	10.3.	Эквивалентное определение условного математического ожидания и геометрическая интерпрета-			
		ция	18		
11.	Услов	вное математическое ожидание в общем случае: определение и свойства. Формула для вычисления			
		ного математического ожидания при известной плотности совместного распределения, условная			
	плотн	юсть. Аналог фомрулы Байеса	18		

- 1. Неравенство Чебышева и закон больших чисел в слабой форме для общих случайных величин. Усиленный закон больших чисел Колмогорова (б/д). Сходимости случайных величин: почти наверное и по вероятности. Взаимосвязь сходимостей по вероятности и почти наверное.
- 1.1. Неравенство Чебышева и закон больших чисел в слабой форме для общих случайных величин.

Теорема (Неравенство Маркова). Пусть X это случайная величина и $X\geqslant 0$ почти наверное. Тогда для любого t>0 выполняется

$$P[X \geqslant t] \leqslant \frac{E[X]}{t}$$

почти наверное.

Доказательство. Заметим, что для любого t > 0 выполняется $t \cdot \mathrm{I}[x \geqslant t] \leqslant X$ почти наверное (здесь I это индикатор), так как в левой части будут учтены $t \leqslant X$, с суммарным коэффициентом не больше 1.

Возьмем математическое ожидание от обеих сторон и получим то, что нас просили:

$$t \cdot \mathrm{I}[x \geqslant t] \leqslant X \iff t \cdot \mathrm{P}[x \geqslant t] \leqslant \mathrm{E}[X] \iff \mathrm{P}[x \geqslant t] \leqslant \frac{\mathrm{E}[X]}{t}.$$

Теорема (Неравенство Чебышева). Пусть у случайной величины X конечный второй момент, то есть $\mathrm{E}[X^2] \leqslant \infty.$ Тогда

$$P[|X - E[X]| \ge \varepsilon] \le \frac{D[X]}{\varepsilon^2}.$$

Доказательство. Для доказательства рассмотрим случайную величину $Y = |X - \mathrm{E}[X]|^2$ и применим неравенство Маркова.

Для любого ε выполняется

$$P[Y \geqslant \varepsilon^2] \leqslant \frac{E[Y]}{\varepsilon^2} \iff P[|X - E[X]|^2 \geqslant \varepsilon^2] \leqslant \frac{D[X]}{\varepsilon^2} \iff P[|X - E[X]| \geqslant \varepsilon] \leqslant \frac{D[X]}{\varepsilon^2}.$$

Теорема (Закон Больших Чисел в слабой форме). Рассмотрим последовательность $\{X_n\}_n$ случайных независимых величин, что $\mathrm{E}[X_n^2] < \infty$ для любого n.

Обозначим $\mathrm{E}[X_n]=a_n$ и $\mathrm{D}[X_n]=\sigma_n^2$. Если

$$\lim_{n \to \infty} \frac{\sigma_1^2 + \dots + \sigma_n^2}{n^2} = 0,$$

то для всякого $\varepsilon > 0$ выполняется

$$P\left[\left|\frac{X_1+\cdots+X_n}{n}-\frac{a_1+\cdots+a_n}{n}\right|\geqslant \varepsilon\right]\leqslant \frac{\sigma_1^2+\cdots+\sigma_n^2}{n^2\varepsilon^2}.$$

Доказательство. Рассмотрим случайную величину $X = \frac{X_1 + \dots + X_n}{n}$

По линейности математического ожидания получаем

$$E[X] = \frac{E[X_1] + \dots + E[X_n]}{n} = \frac{a_1 + \dots + a_n}{n}.$$

Теперь необходимо найди дисперсию случайной величины X:

• Константа из дисперсии выносится с возведением в квадрат, поэтому

$$D[X] = D\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{D[X_1 + \dots + X_n]}{n^2}.$$

• Так как $\{X_n\}_n$ это последовательность **независимых** случайных величин, дисперсия суммы может быть раскрыта как сумма дисперсий:

$$D[X] = \frac{D[X_1 + \dots + X_n]}{n^2} = \frac{D[X_1] + \dots + D[X_n]}{n^2} = \frac{\sigma_1^2 + \dots + \sigma_n^2}{n^2}.$$

Воспользуемся неравенством Чебышева для случайной величины X и подставим найденное математическое ожидания и дисперсию:

$$P[|X - E[X]| \geqslant \varepsilon] \leqslant \frac{D[X]}{\varepsilon^2} \iff P\left[\left|\frac{X_1 + \dots + X_n}{n} - \frac{a_1 + \dots + a_n}{n}\right| \geqslant \varepsilon\right] \leqslant \frac{\sigma_1^2 + \dots + \sigma_n^2}{n^2 \varepsilon^2}$$

Закон больших чисел удобно применять, когда X_n это независимые одинаково распределенные случайные величины (с конечным вторым моментом). В частности это означает, что у всех величин одно и то же математическое ожидание и одна и та же математическая дисперсия: $E[X_n] = a$ и $D[X_n] = \sigma^2$.

Тогда дисперсия среднего арифметического $\frac{\mathrm{D}[X_1] + \cdots + \mathrm{D}[X_n]}{n^2} = \frac{\sigma^2}{n}$ стремится к нулю и получаем

$$P\left[\left|\frac{X_1+\cdots+X_n}{n}-a\right|\geqslant \varepsilon\right]\to 0.$$

То есть в каком-то смысле среднее арифметическое приближается к математическому ожиданию.

1.2. Усиленный закон больших чисел Колмогорова (б/д).

Теорема (Усиленный закон больших чисел Колмогорова). Пусть $\{X_n\}_n$ — это последовательность независимых одинаково распределенных случайных величин, у которых есть математическое ожидание и пусть $\mathrm{E}[X_n]=a$. Тогда

$$P\left[\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=a\right]=1.$$

Заметьте, что мы не требуем наличия второго момента, в отличие ЗБЧ в слабой форме. Также, эта сходимость более сильная, так как предел находится внутри условия вероятности, это будет объяснено позже.

1.3. Сходимости случайных величин: почти наверное и по вероятности.

Определение. Последовательность случайных величин X_n сходится к случайной величине X по вероятности, если для любого $\varepsilon > 0$

$$\lim_{n \to \infty} P[|X_n - X| \geqslant \varepsilon] = 0.$$

Записывают в следующем виде: $X_n \xrightarrow{P} X$.

Определение. Последовательность случайных величин X_n сходится к случайной величине X почти наверное, если

$$P[\lim_{n\to\infty} X_n = X] = 1.$$

Записывают в следующем виде: $X_n \xrightarrow{\text{п. н.}} X$.

То есть в законе больших чисел в слабой форме речь идет о сходимости по вероятности, а в усиленном законе больших чисел Колмогорова — о сходимости почти наверное.

Из сходимости почти наверное следует сходимость по вероятности, поэтому усиленный закон больших чисел называется усиленным.

1.4. Взаимосвязь сходимостей по вероятности и почти наверное.

Теорема. Если последовательность случайных величин X_n сходится к X почти наверное, то X_n сходится к X и по вероятности.

Доказательство. Хотим доказать. что $P[|X_n - X| > \varepsilon] \to 0$, что равносильно $P[|X_n - X| < \varepsilon] \to 1$, что мы и будем заказывать.

Переформулируем выражение «множество исходов, что для любого $\varepsilon > 0$ существует N, что для любого n > N выполняется $|X_n - X| < \varepsilon$ » с помощью множеств:

$$\bigcup_{N} \bigcap_{n=N+1}^{\infty} \{w : |X_n - X| < \varepsilon\}.$$

Но это множество включает в себя множество исходов, для которых $\lim X_n = X$:

$$\bigcup_{N} \bigcap_{n=N+1}^{\infty} \{w : |X_n - X| < \varepsilon\} \supseteq \{w : \lim X_n = X\}.$$

Но по условию $P[\lim X_n = X] = 1$, поэтому

$$P\left[\bigcup_{N}\bigcap_{n=N+1}^{\infty} \{w: |X_n - X| < \varepsilon\}\right] = 1.$$

Обозначим
$$B_N = \bigcap_{n=N+1}^{\infty} \{w: |X_n-X|<\varepsilon\}$$
. Тогда

$$B_{N+2} \supseteq B_{N+1} \supseteq B_N \supseteq \cdots \supseteq B_1$$
,

так как чем больше номер множества, тем из меньшего числа пересечения оно состоит.

Из второго модуля про вероятность вложенных событий мы знаем (теорема о непрерывности вероятностных мер), что

$$P\left[\bigcup_{N=1}^{\infty} B_N\right] = \lim_{N \to \infty} P[B_N].$$

Но мы уже доказали, что Р $\left[igcup_{N=1}^{\infty}B_{N}
ight]=1$, тогда

$$P\left[\bigcap_{n=N+1}^{\infty} \{w : |X_n - X| < \varepsilon\}\right] \xrightarrow[N \to \infty]{} 1,$$

Заметим, что вероятность одного множества событий не меньше вероятности пересечения, поэтому о лемме о двух миллиционерах:

$$P[\{w: |X_n - X| < \varepsilon\}] \to 1.$$

- 2. Сходимость случайных величин по распределению. Лемма о достаточном условии сходимости ожиданий функций из заданного семейства от последовательности случайных величин (лемма 2 из лекции 2). Эквивалентное описание сходимости по распределению.
- 3. Абсолютная непрерывность математического ожидания. Теорема Лебега о мажорируемой сходимости. Подстановка сходящейся по вероятности последовательности случайных величин в непрерывную функцию. Взаимосвязь сходимостей по вероятности и по распределению.
- 4. Характеристические функции: определение и свойства. Вычисление характеристической функции нормальной случайной величины. Производные характеристических функций.
- 4.1. Характеристические функции: определение и свойства.

Определение. Пусть X это случайная величина. Тогда характеристическая функция случайной величины X это

$$\varphi_X(t) := \mathbb{E}[e^{itX}] = \mathbb{E}[\cos(t \cdot X)] + i \cdot \mathbb{E}[\sin(t \cdot X)].$$

Теорема (Свойства характеристических функций). У характеристической функции есть следующие свойства:

1. Для любой случайной величины X выполняется $\varphi_X(0)=1$.

- 2. Для любой случайной величины и любого $t \in \mathbb{R}$ выполняется $|\varphi_X(t)| \leqslant 1$.
- 3. Для чисел a и b выполняется

$$\varphi_{aX+b}(t) = e^{itb} \cdot \varphi_X(at).$$

4. Если X_n это последовательность **независимых** случайных величин, то

$$\varphi_{X_1+X_2+\cdots+X_n}(t) = \varphi_{X_1}(t) \cdot \varphi_{X_2}(t) \cdot \cdots \cdot \varphi_{X_n}(t).$$

Доказательство. Для доказательства будем пользоваться следующей формулой:

$$\varphi_X(t) = \mathbb{E}[\cos(t \cdot X)] + i \cdot \mathbb{E}[\sin(t \cdot X)],$$

которая следует из формулы Эйлера $e^{ix} = \cos x + i \cdot \sin x$.

Докажем свойства:

1. Для любой случайной величины X выполняется $\varphi_X(0)=1.$

Проверяется подстановкой:

$$\varphi_X(0) = E[e^{i \cdot 0 \cdot X}] = E[e^0] = E[1] = 1.$$

2. Для любой случайной величины и любого $t \in \mathbb{R}$ выполняется $|\varphi_X(t)| \leqslant 1$.

Рассмотрим случайную величину Y. Знаем, что ее дисперсия неотрицательна, то есть $D[Y] = E[Y^2] - (E[Y])^2 \geqslant 0$, откуда следует, что для любой случайной величины Y справедливо $E[Y^2] \geqslant (E[Y])^2$.

Значение характеристической функции это комплексное число. Квадрат модуля комплексного числа это сумма квадратов его мнимой и действительной частей:

$$|\varphi_X(t)|^2 = (\mathrm{E}[\cos(t \cdot X)])^2 + (\mathrm{E}[\sin(t \cdot X)])^2.$$

С помощью знаний о $E[Y^2] \geqslant (E[Y])^2$ оценим квадрат модуля характеристической функции:

$$|\varphi_X(t)|^2 = (\mathrm{E}[\cos(t \cdot X)])^2 + (\mathrm{E}[\sin(t \cdot X)])^2 \leqslant \mathrm{E}[\cos^2(t \cdot X)] + \mathrm{E}[\sin^2(t \cdot X)] = \mathrm{E}[\cos^2(t \cdot X) + \sin^2(t \cdot X)] = \mathrm{E}[1] = 1.$$

3. Для чисел a и b выполняется

$$\varphi_{aX+b}(t) = e^{itb} \cdot \varphi_X(at).$$

Заметим, что если y это некоторое число, то $\mathrm{E}[y\cdot X]=y\cdot \mathrm{E}[X]$ по линейности математического ожидания.

Запишем по определению:

$$\varphi_{aX+b}(t) = \mathbf{E}[e^{it \cdot aX + it \cdot b}] = \mathbf{E}[e^{it \cdot aX} \cdot e^{it \cdot b}] = e^{it \cdot b} \cdot \mathbf{E}[e^{it \cdot aX}] = e^{it \cdot b} \cdot \varphi_{aX}(t).$$

4. Если X_n это последовательность **независимых** случайных величин, то

$$\varphi_{X_1+X_2+\cdots+X_n}(t) = \varphi_{X_1}(t) \cdot \varphi_{X_2}(t) \cdot \cdots \cdot \varphi_{X_n}(t).$$

Пусть $Y_n = e^{i \cdot t \cdot X_n}$. Тогда $Y_1, \dots Y_n$ это последовательность независимых случайных величин (в силу независимости X_n) и $\mathrm{E}[Y_1 \cdot \dots \cdot Y_n] = \mathrm{E}[Y_1] \cdot \dots \cdot \mathrm{E}[Y_n]$.

Запишем по определению:

$$\varphi_{X_1+X_2+\cdots+X_n}(t) = \mathbb{E}[e^{itX_1+\cdots+itX_n}] = \mathbb{E}[e^{itX_1}\cdots e^{itX_n}] = \mathbb{E}[Y_1+\cdots+Y_n] = \mathbb{E}$$

Вычисление характеристической функции нормальной случайной величины.

Хотим вычислить $\varphi_{\xi}(t)$, где $\xi \sim \mathcal{N}(0,1)$.

Запишем по определению:

$$\varphi_{\xi}(t) = \mathbf{E}[e^{it\xi}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin(tx) \exp\left[-x^2/2\right] dx.$$

Заметим, что второе слагаемое $\frac{i}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}\sin(tx)\exp\left[-x^2/2\right]\mathrm{d}x$ равно нулю, так как это интеграл нечетной функции по симметричному промежутку. Тогда

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx.$$

Возьмем производную по t (считаем, что она берется):

$$\varphi'_{\xi}(t) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \cdot \sin(tx) \exp\left[-x^2/2\right] dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sin(tx) d\left(\exp\left[-x^2/2\right]\right)$$

$$= \frac{1}{\sqrt{2\pi}} \sin(tx) \exp\left[-x^2/2\right] \Big|_{-\infty}^{+\infty} - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx$$

$$= 0 - \frac{t}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \cos(tx) \exp\left[-x^2/2\right] dx = -t \cdot \varphi_{\xi}(t).$$

Пришли к дифференциальному уравнению:

$$\varphi'_{\xi}(t) = -t \cdot \varphi_{\xi}(t) \implies \frac{\varphi'_{\xi}(t)}{\varphi_{\xi}(t)} = -t.$$

Интегрируем обе части:

$$\int \frac{\mathrm{d}(\varphi_{\xi}(t))}{\varphi_{\xi}(t)} = \ln|\varphi_{\xi}(t)| + C = \int -t \mathrm{d}t = -\frac{t^2}{2}.$$

Теперь берем экспоненту от обеих частей:

$$\varphi_{\xi}(t) = C' \cdot \exp\left[-t^2/2\right],$$

где C' это некоторая константа.

Про характеристическую функцию мы знаем, что $\varphi_{\xi}(0) = 1$. Тогда

$$\varphi_{\varepsilon}(0) = 1 = C' \cdot \exp[0] = C',$$

откуда находим C'=1.

Тогда характеристическая функция стандартной нормальной величины имеет следующий вид:

$$\varphi_{\xi}(t) = \exp\left[-t^2/2\right].$$

Производные характеристических функций.

Теорема. Пусть X это случайная величина с конечным k-ым моментом ($\mathrm{E}[|X|^k] < \infty$). Тогда φ_X k раз дифференцируема и

$$\varphi_X^{(k)}(0) = i^k \cdot \mathbf{E}[X^k].$$

Доказательство. Докажем для k = 1, для остальных порядков аналогично.

Мы хотим найти производную:

$$\lim_{h_n \to 0} \frac{\varphi_X(t+h_n) - \varphi_X(t)}{h_n} = \lim_{h_n \to 0} \frac{1}{h_n} \cdot \left(\mathbf{E}[e^{i(t+h_n)X}] - \mathbf{E}[e^{itX}] \right) = \lim_{h_n \to 0} E\left[\frac{e^{i(t+h_n)X} - e^{itX}}{h_n} \right] =: \lim_{h_n \to 0} E[g_n],$$

то есть обозначили $g_n = \frac{e^{i(t+h_n)X} - e^{itX}}{h_n}.$ Поймем, что мы знаем про функцию g_n :

• У нее есть поточечный предел:

$$\lim_{n \to \infty} g_n(X) = \left(e^{itX}\right)_t' = iXe^{itX}.$$

• Надо как-то оценить $|g_n|$.

Знаем, что модуль комплексной экспоненты равен 1, то есть $|e^{itX}|=1$. Тогда

$$|g_n(X)| = \left| \frac{e^{itX} \cdot (e^{ih_nX} - 1)}{h_n} \right| = |e^{itX}| \cdot \left| \frac{e^{ih_nX} - 1}{h_n} \right| = \left| \frac{e^{ih_nX} - 1}{h_n} \right| = \left| \frac{e^{ih_nX} - e^{i \cdot 0 \cdot X}}{h_n} \right| = \left(e^{itX} \right)_t'(\xi) = \left| iXe^{i\xi X} \right|$$

для некоторого $\xi \in (0; h_n)$.

Предпоследний переход выполнен по теореме Лагранжа, которая гласит следующее:

$$\exists \xi \in (a; b) : \frac{f'(b) - f'(a)}{b - a} = f'(\xi).$$

Опять же воспользуемся тем, что модуль комплексной экспоненты равен 1:

$$|g_n(X)| = |iXe^{i\xi X}| = |i| \cdot |X| \cdot |e^{i\xi X}| = 1 \cdot |X| \cdot 1 = |X|.$$

Мы получили, что

- $|g_n(X)| \leq |X|$ и $E[|X|] < \infty$ (для этого и нужна конечность моментов);
- $g_n(X) \xrightarrow{\Pi. H.} i \cdot X \cdot e^{itX}$.

Тогда по теореме Лебега предел ожиданий есть ожидание предела:

$$\lim_{n \to \infty} E[g_n(X)] = E[i \cdot X \cdot e^{itX}].$$

Возвращаемся в самое начало:

$$\varphi_X(t)' = \lim_{n \to \infty} g_n = i \cdot \mathbb{E}[X \cdot e^{itX}].$$

- 5. Переформулировка сходимости по распределению в терминах характеристических функций. Однозначность задания распределения случайной величины ее характеристической функцией. Центральная предельная теорема.
- 6. Подстановка сходящейся по распределению последовательности случайных величин в непрерывную функцию. Сходимость суммы и произведения сходящихся по распределению последовательностей случайных величин в случае, когда одна из предельных случайных величин постоянная. Примеры применения: выборочная дисперсия и взаимосвязь с ЦПТ. Теорема о сходимости последовательности вида $\frac{f(a+h_nX_n)-f(a)}{h_n}$ для сходящейся по распределению последовательности X_n . Взаимосвязь с ЦПТ.
- 6.1. Подстановка сходящейся по распределению последовательности случайных величин в непрерывную функцию.

Теорема. Если последовательность случайных величин X_n сходится по распределению к X, то для всякой непрерывной функции f случайные величины $f(X_n)$ сходятся по распределению к f(X).

Доказательство.

Из лекции 2 мы знаем, что

$$X_n \xrightarrow{d} X \Leftrightarrow \forall g \ \mathbb{E} g(X_n) \xrightarrow[n \to \infty]{} \mathbb{E} g(X)$$
, где g – непрерывная, ограниченная функция

 $g \circ f := h$ – непрерыная функция (т.к. композиция непрерывных функция), ограниченная (т.к. g ограниченная)

$$\mathbb{E}g(f(X_n)) = \mathbb{E}h(X_n), \, \mathbb{E}g(f(X)) = \mathbb{E}h(X)$$

Значит из утверждения выше

$$X_n \xrightarrow{d} X \Rightarrow \mathbb{E}h(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}h(X)$$

Снова применяем утверждение

$$\mathbb{E}g(f(X_n)) \xrightarrow[n \to \infty]{} \mathbb{E}g(f(X)) \Rightarrow f(X_n) \xrightarrow{d} f(X)$$

6.2. Сходимость суммы и произведения сходящихся по распределению последовательностей случайных величин в случае, когда одна из предельных случайных величин постоянная.

Лемма. Пусть X, Y, Z случайные величины. Тогда $\forall t \in \mathbb{R} \ \forall \varepsilon > 0$ выполнено

$$P(X + Z \le t - \varepsilon) - P(|Y - Z| \ge \varepsilon) \le P(X + Y \le t) \le P(X + Z \le t + \varepsilon) + P(|Y - Z| \ge \varepsilon)$$

Доказательство.

$$P(X+Y\leqslant t)\leqslant P(X+Y\leqslant t,|Y-Z|\leqslant \varepsilon)+P(X+Y\leqslant t,|Y-Z|\geqslant \varepsilon)\leqslant P(X+Y\leqslant t,|Y-Z|\leqslant \varepsilon)+P(|Y-Z|\geqslant \varepsilon)$$

Расскроем модуль

$$-\varepsilon \leqslant Y - Z \Rightarrow Z - \varepsilon \leqslant Y$$

Подставим вместо Y $Z-\varepsilon$

Событие $X+Y\leqslant t\cap |Y-Z|\geqslant \varepsilon$ вложено в событие $X+Z-\varepsilon\leqslant t$

$$\leq P(X + Z - \varepsilon \leq t) + P(|Y - Z| \geq \varepsilon)$$

Ищем другую оценку

Заменим в получившемся неравенстве Y на Z, Z на Y

$$P(X + Z \le t) \le P(X + Y - \varepsilon \le t) + P(|Z - Y| \ge \varepsilon) =$$

$$= P(X + Y \le t + \varepsilon) + P(|Y - Z| \ge \varepsilon)$$

Обозначим $t + \varepsilon := t$

$$P(X + Z \le t - \varepsilon) \le P(X + Y \le t) + P(|Y - Z| \ge \varepsilon)$$

$$P(X + Y \leqslant t) \geqslant P(X + Z \leqslant t - \varepsilon) - P(|Y - Z| \geqslant \varepsilon)$$

Теорема. Если $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} C = const$ то

$$X_n + Y_n \xrightarrow{d} X + C$$

$$X_n \cdot Y_n \xrightarrow{d} X \cdot C$$

Доказательство. Вспомним доказательство того что

$$Y_n \xrightarrow{d} C = const \Rightarrow Y_n \xrightarrow{p} C$$

$$\lim_{n \to \infty} P(|X_n - C| \ge \varepsilon) = \lim_{n \to \infty} P(X_n - C \ge \varepsilon \text{ or } -X_n + C \ge \varepsilon) \le$$

$$\lim_{n \to \infty} P(X_n - C \ge \varepsilon) + \lim_{n \to \infty} P(X_n \le C - \varepsilon) =$$

$$= 1 - F_{X_n}(\varepsilon + C) + F_{X_n}(C - \varepsilon) = 0$$

Используем лемму

$$P(X_n + C \leqslant t - \varepsilon) - P(|Y_n - C| \geqslant \varepsilon) \leqslant P(X_n + Y_n \leqslant t) \leqslant P(X_n + C \leqslant t + \varepsilon) + P(|Y_n - C| \geqslant \varepsilon)$$
$$F_{X_n}(t - \varepsilon - C) - P(|Y_n - C| \geqslant \varepsilon) \leqslant F_{X_n + Y_n}(t) \leqslant F_{X_n}(t + \varepsilon - C) + P(|Y_n - C| \geqslant \varepsilon)$$

1) $n \to \infty$

Заметим, что мы всегда можем выбрать точки $t - \varepsilon - C, t + \varepsilon - C$ в которых функция F_X непрерывна, т.к. точек разрыва счетное количество, а ε континуальная переменная.

T.K.
$$Y_n \xrightarrow{p} C \Leftrightarrow_{def} \lim_{n \to \infty} P(|Y_n - C| \geqslant \varepsilon) = 0$$

$$F_X(t-\varepsilon-C) \leqslant \underline{\lim}_{n\to\infty} F_{X_n+Y_n}(t) \leqslant \overline{\lim}_{n\to\infty} F_{X_n+Y_n}(t) \leqslant F_X(t+\varepsilon-C)$$

2) $\varepsilon \to 0$

Заметим, что t - C точка непрерывности функции F_X тогда и только тогда, когда t точка непрерывности функции F_{X+C} .

$$F_X(t-C) \leqslant \underline{\lim}_{n \to \infty} F_{X_n+Y_n}(t) \leqslant \overline{\lim}_{n \to \infty} F_{X_n+Y_n}(t) \leqslant F_X(t-C)$$

Так как слева и справа у нас одно и тоже значение $\Rightarrow \exists \lim_{n \to \infty} F_{X_n + Y_n}(t) = F_X(t - C) = F_{X+C}(t)$

1) C = 0

$$\{|X_n\cdot Y_n|\geqslant\varepsilon\}\subset\{|X_n|>R\}\cup\{|Y_n|\geqslant\frac{\varepsilon}{R}\}$$

$$P(|X_n\cdot Y_n|\geqslant\varepsilon)\leqslant P(|X_n|>R)+P(|Y_n|\geqslant\frac{\varepsilon}{R})$$

$$P(|X_n|\geqslant R)=P(|X_n|\geqslant R)+P|(X_n|\leqslant-R)\leqslant P(|X_n|>\frac{R}{2})+F_{X_n}(-R)=1-F_{X_n}(\frac{R}{2})+F_{X_n}(-R)$$

$$P(|X_n\cdot Y_n|\geqslant\varepsilon)\leqslant P(|X_n|>R)+P(|Y_n|\geqslant\frac{\varepsilon}{R})\leqslant 1-F_{X_n}(\frac{R}{2})+F_{X_n}(-R)+\underbrace{P(|Y_n-C(=0)|\geqslant\frac{\varepsilon}{R})}_{\xrightarrow{n\to\infty}\to 0\text{(t.K. CX-CTL IIO BEP.)}}$$

a) $n \to \infty$

$$\overline{\lim}_{n\to\infty} P(|X_n \cdot Y_n \geqslant \varepsilon) \leqslant 1 - F_X(\frac{R}{2}) + F_X(-R) + 0$$

b) $R \to \infty$

R – точка непрерывности F_X

$$0 \leqslant \underline{\lim}_{n \to \infty} P(|X_n \cdot Y_n| \geqslant \varepsilon) \leqslant \overline{\lim}_{n \to \infty} P(|X_n \cdot Y_n| \geqslant \varepsilon) \leqslant 1 - F_X(\frac{R}{2}) + F_X(-R) \leqslant 0$$

$$\Rightarrow X_n \cdot Y_n \xrightarrow{p} 0 \Rightarrow_{\text{Jekhing 1}} X_n \cdot Y_n \xrightarrow{d} 0$$

2) Общий случай

$$X_n Y_n = X_n (Y_n - C) + X_n C$$
 $X_n (Y_n - C) \xrightarrow{d} 0 \text{ по } 1)$
 $CX_n \xrightarrow{d} CX$

 $CX+0 \xrightarrow{d} CX$ сумму разбирали выше

6.3. Примеры применения: выборочная дисперсия и взаимосвязь с ЦПТ.

Пример 1(Выборочная дисперсия)

Пусть задана последовательность независимых и одинаково распределенных случайных величин X_j , причем $\mathbb{E} X_j = a$ и $\mathbb{D} X_j = \sigma^2$. Тогда последовательность случайных величин

$$s_n^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X_n})^2$$
, где $\overline{X_n} = \frac{X_1 + \dots + X_n}{n}$

Проверим это

$$\overline{X_n} \xrightarrow{p} a(3\mathrm{BH})$$

$$s_n^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \overline{X_n})^2 = \frac{n}{n-1} \frac{1}{n} \sum_{j=1}^n X_j^2 + \frac{1}{n-1} \left(-2 \sum_{j=1}^n X_j \cdot \overline{X_n} + n \overline{X_n}^2 \right) = \frac{n}{n-1} \left(\frac{1}{n} \sum_{j=1}^n X_j^2 - \overline{X_n}^2 \right) (*)$$

$$\frac{1}{n} \sum_{j=1}^n X_j^2 \xrightarrow{p} \mathbb{E} X_1^2 (3\mathrm{BH})$$

$$\overline{X_n}^2 \xrightarrow{p} (\mathbb{E} X_1)^2$$

$$\frac{n}{n-1} \to 1$$

$$(*) \xrightarrow{p} \mathbb{D} X_1 = \sigma^2$$

$$\mathbb{E} s_n^2 = \frac{n}{n-1} \left(\frac{1}{n} \cdot n \cdot \mathbb{E} X_1^2 - \mathbb{E}(\overline{X_n})^2 \right) =$$

$$\mathbb{E}(\overline{X_n})^2 = \mathbb{E}(\overline{X_n} - a + a)^2 = \mathbb{E}(\overline{X_n} - a)^2 + a^2 - 2a \underbrace{\mathbb{E}(\overline{X_n} - a)}_{0} = a^2 + \mathbb{D}\overline{X_n} = a^2 + \frac{1}{n^2} \mathbb{D}(X_1 + \dots + X_n) = a^2 + \frac{\sigma^2}{n}$$

$$= \frac{n}{n-1} (\sigma^2 + a^2 - a^2 - \frac{\sigma^2}{n}) = \sigma^2$$

Пример 2(Взаимосвязь с ЦПТ)

Обозначения сохранятется с прошлого примера

Хотип показать, что

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sqrt{s_n^2}}\to Z\sim\mathcal{N}(0,1)$$

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sqrt{s_n^2}}=\frac{\sqrt{n}(\overline{X_n}-a)}{\sigma}\cdot\sqrt{\frac{\sigma^2}{s_n^2}}$$

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sigma}\to Z\sim\mathcal{N}(0,1)$$
из лекции 4
$$\sqrt{\frac{\sigma^2}{s_n^2}}\xrightarrow{p}\sqrt{\frac{\sigma^2}{\sigma^2}}=1(\text{Обсуждали выше})$$

$$\frac{\sqrt{n}(\overline{X_n}-a)}{\sqrt{s_n^2}}\to Z\cdot 1\xrightarrow{d}Z\sim\mathcal{N}(0,1)$$

Значит

6.4. Теорема о сходимости последовательности вида $\frac{f(a+h_nX_n)-f(a)}{h_n}$ для сходящейся по распределению последовательности X_n .

Теорема. Пусть $a, h_n \in \mathbb{R}, h_n \to 0$ и f непрерывная на \mathbb{R} и дифференцируемая в точке а функция. Если последовательность случайных величин $X_n \stackrel{d}{\to} X$, то

$$\frac{f(a+h_nX_n)-f(a)}{h_n} \xrightarrow{d} f'(a)X$$

Доказательство. Введем функция

$$g(x) = \begin{cases} \frac{f(a+x) - f(a)}{x} & x \neq 0\\ f'(a) & x = 0 \end{cases}$$

g – непрерывная

$$h_n \xrightarrow{d} 0$$
$$X_n \xrightarrow{d} X$$

 $h_n X_n \xrightarrow{d} 0$ (теорема про произведения) \Rightarrow

$$g(h_n X_n) \xrightarrow{d} g(0)$$
(первая теорема в билете
6) = $f^{'}(a)$

$$\frac{f(a+h_nX_n)-f(a)}{h_n}=X_n\cdot g(h_nX_n)=X_n\cdot \frac{f(a+h_nX_n)-f(a)}{h_nX_n}\xrightarrow{d} f^{'}(a)X \text{(теорема про произведения)}$$

6.5. Взаимосвязь с ЦПТ.

Пример

Обозначения сохранятется с прошлого примера

Пусть задана последовательность независимых и одинаково распределенных случайных величин X_j , причем $\mathbb{E} X_j = a$ и $\mathbb{D} X_j = \sigma^2 > 0$. Если f дифференцируемая функция, то

$$\sqrt{n}(f(\overline{X_n}) - f(a)) \xrightarrow{d} Y \sim \mathcal{N}(0, q^2), \ q = \sigma f'(a)$$

Докажем это

Введем

$$Z_n = \frac{\sqrt{n}(\overline{X_n} - a)}{\sigma} \xrightarrow{d} Z \sim \mathcal{N}(0,1)$$

Тогда

$$\frac{\sqrt{n}(f(\overline{X_n}) - f(a))}{\sigma} = \frac{f(a + \frac{\sigma}{\sqrt{n}}Z_n) - f(a)}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{d} f'(a)Z$$

$$\sqrt{n}(f(\overline{X_n}) - f(a)) = \sigma \cdot \frac{\sqrt{n}(f(\overline{X_n}) - f(a))}{\sigma} \xrightarrow{d} \sigma f'(a)Z \sim \mathcal{N}(0, q^2)$$

7. Неравенство типа Хефдинга-Чернова. Пример применения.

7.1. Неравенство типа Хедфинга-Чернова

Теорема (Неравенство Хедфинга-чернова). Пусть случайные величины X_1, \ldots, X_n независимы и $a_j \leqslant X_j \leqslant b_j$. Тогда для случайной величины $S_n := X_1 + \cdots + X_n$ и для каждого t > 0 выполнено

$$P(S_n - \mathbb{E}S_n \geqslant t) \leqslant 2exp(-\frac{t^2}{4\sum_{i=1}^n (b_i - a_i)^2})$$

Доказательство. Пусть $Y_j = X_j - \mathbb{E} X_j$. Тогда $|Y_j| \leqslant b_j - a_j$, т.к. $X_j \in [a_j, b_j]$ и $\mathbb{E} \in [a_j, b_j]$. Заметим, что для каждого $\lambda > 0$

$$P(\sum_{j=1}^{n} Y_{j} \geqslant t) = P(e^{\lambda \sum_{j=1}^{n} Y_{j}} \geqslant e^{\lambda t}) \leqslant e^{-\lambda t} \mathbb{E}e^{\lambda \sum_{j=1}^{n} Y_{j}} = e^{-\lambda t} \prod_{j=1}^{n} \mathbb{E}e^{\lambda Y_{j}}$$

Оценим каждое ожидание из произведения:

$$\mathbb{E}e^{\lambda Y_j} = 1 + \lambda \mathbb{E}Y_j + \frac{1}{2}\lambda^2 \mathbb{E}Y_j^2 + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^k \mathbb{E}Y_j^k \leqslant 1 + \frac{1}{2}\lambda^2 (b_j - a_j)^2 + \sum_{k=3}^{\infty} \frac{1}{k!} \lambda^k (b_j - a_j)^k,$$

здесь мы использовали $\mathbb{E}Y_j=0$. Докажем, что при R>0 выполнена оценка

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \leqslant e^{R^2}$$

Действительно, если R > 1, то

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k = 1 + \frac{1}{2}R^2 + \sum_{m=2}^{\infty} \frac{1}{m!}R^{2m}[\frac{m!}{(2m-1)!}R^{-1} + \frac{m!}{(2m)!}] \leqslant 1 + \frac{1}{2}R^2 + \sum_{m=2}^{\infty} \frac{1}{m!}R^{2m}[\frac{2}{m+1}] \leqslant 1 + R^2 + \sum_{m=2}^{\infty} \frac{1}{m!}R^{2m} = e^{R^2}.$$

если же $R \leqslant 1$, то

$$1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{k!}R^k \leqslant 1 + \frac{1}{2}R^2 + \sum_{k=3}^{\infty} \frac{1}{2^{k-1}}R^2 = 1 + R^2 \leqslant e^{R^2}.$$

Таким образом,

$$P(\sum_{j=1}^{n} Y_j \geqslant t) \leqslant 2exp(-\lambda t + \lambda^2 \sum_{j=1}^{n} (b_j - a_j)^2).$$

Взяв $\lambda = \frac{t}{2\sum_{j=1}^{n}(b_{j}-a_{j})^{2}},$ получим оценку

$$P(S_n - \mathbb{E}S_n \geqslant t) \leqslant exp(-\frac{t^2}{4\sum_{i=1}^n (b_i - a_i)^2}).$$

Аналогично, рассматривая случайные величины $X_j^{'} \coloneq -X_j$ получаем оценку

$$P(-S_n + \mathbb{E}S_n \geqslant t) \leqslant exp(-\frac{t^2}{4\sum_{j=1}^n (b_j - a_j)^2}).$$

объединяя полученные неравенства получаем оценку из формулировки теоремы

Теорема (следствие). Пусть X_j Bern(p)-- набор независимых Бернуллевских случайных величин, $S_n=X_1+\cdots+X_n$, тогда

$$P(|\frac{S_n}{n} - p| \geqslant t) \leqslant 2e^{-\frac{nt^2}{4}}$$

7.2. Пример применения

Пример

Пусть в ящике какое-то кол-во черных и белых шаров. Каким должен быть размер выборки, чтобы оценить долю белых шаров с малой погрешностью? Пусть ξ_j — бернуллевская случайная величина, равная 1, если шар белого цвета и 0, если цвет черный. Мы хотим оценить вероятность успеха р. По нер-ву выше

$$P(|\frac{S_n}{n} - p| \geqslant t) \leqslant 2e^{-\frac{nt^2}{4}} < \varepsilon$$

Тогда при размере выборки $n = O(\frac{log \varepsilon^{-1}}{t^2})$ выборочное среднее приближает реальную долю белых шаров с точностью t с вероятностью более $1 - \varepsilon$.

- 8. Многомерная характеристическая функция. Сходимость по распределению последовательности случайных векторов. Эквивалентное описание сходимости по распределению через сходимость характеристических функций (без доказательства). Независимость случайных величин в терминах характеристической функции совместного распределения. Матрица ковариаций, смысл задаваемой ей билинейной формы, ее изменение при линейных преобразованиях. Многомерная ЦПТ.
- 8.1. Многомерная характеристическая функция.

Обозначение 1.
$$\langle x, y \rangle = x_1 y_1 + \dots + x_m y_m$$
, где $x = (x_1, \dots, x_m) \in \mathbb{R}^m$, $y = (y_1, \dots, y_m) \in \mathbb{R}^m$

Определение 1. Характеристическая функция случайного вектора $X = (X_1, \dots, X_m)$ определяется равенством

$$\varphi_X(t) = \mathbb{E}(e^{i\langle X, t\rangle})$$

8.2. Сходимость по распределению последовательности случайных векторов.

Определение 2. Последовательность случайных векторов $X^n = (X_1^n, \dots, X_m^n)$ сходится по распределению к случайному вектору $X = (X_1, \dots, X_m)$, если для каждой непрерывной, ограниченной функции $g : \mathbb{R}^m \to \mathbb{R}$ выполнено $\mathbb{E}g(X^n) \to \mathbb{E}g(X)$ (обозначение $X^n \xrightarrow{d} X$).

8.3. Эквивалентное описание сходимости по распределению через сходимость характеристических функций (без доказательства).

Теорема 0.1. Без доказательства

Последовательность случайных векторов X^n сходится по распределению к случайному вектору X тогда и только тогда, когда $\varphi_{X^n}(y) \to \varphi_X(y)$ для каждого $y \in \mathbb{R}^m$.

Следствие. Без доказательства

Если $\varphi_X = \varphi_Y$, то векторы X и Y имеют одинаковые распределения.

8.4. Независимость случайных величин в терминах характеристической функции совместного распределения.

Теорема 0.2. Случайные величины X_1, \ldots, X_m независимы тогда и только тогда, когда

$$\varphi_X(y_1,\ldots,y_m) = \varphi_{X_1}(y_1)\cdot\ldots\cdot\varphi_{X_m}(y_m) \ \forall y\in\mathbb{R}^m$$

$$\epsilon \partial e \ X = (X_1, \dots, X_m)$$

Доказательство.

 \Rightarrow

$$\varphi_X(y_1,\ldots,y_m) = \mathbb{E}e^{i(X_1y_1+\ldots+X_my_m)} = \mathbb{E}\prod_{i=1}^m e^{iX_iy_i} \underbrace{=}_{\text{Hesab.}} \prod_{i=1}^m \mathbb{E}e^{iX_iy_i} = \prod_{i=1}^m \varphi_{X_i}(y_i)$$

Зададим случаный вектор Ү

- ullet $Y=(Y_1,\ldots,Y_m)$ независимые компоненты
- ullet $F_Y(x_1,\ldots,x_m):=F_{X_1}(x_1)\cdot\ldots\cdot F_{X_m}(x_m)$, т.е. Y_j имеет такое же распределение как и X_j

Почему мы можем задать такой вектор?

- Произведение функций распределения функция распределения
- По любой функции распределения можно построить случайный вектор

• У этого вектора компоненты независимы, т.к. функция совместного распределения распалась в произведение.

$$\varphi_Y(y) = \varphi_{Y_1}(y_1) \cdot \ldots \cdot \varphi_{Y_m}(y_m) =$$

Т.к. независимость компоненты; но если непонятно, то можно посмотреть выше как это расписывается

$$=\varphi_{X_1}(y_1)\cdot\ldots\cdot\varphi_{X_m}(y_m)=$$

Т.к. Y_j сходится по распределению к X_j , то хар.функии тоже сходятся(Лекция 3, теорема 5)

$$= \varphi_X(y)$$
 (см.условие)

Получили

$$\varphi_X(y)=\varphi_Y(y)\; \forall y\Rightarrow F_x=F_y({
m cm.}$$
 следствие выше)

Если совпадают функции распределения, то и свойства независимости совпадают. Значит компоненты X тоже независимы.

8.5. Матрица ковариаций, смысл задаваемой ей билинейной формы, ее изменение при линейных преобразованиях.

Определение 3. Пусть $X = (X_1, \ldots, X_m)$ случайный вектор. Матрица R_X с компонентами $r_{kj} := cov(X_k, X_j)$ называется ковариационной матрицей вектора X.

Теорема 0.3. Симметричная неотрицательно определенная матрица R является ковариационной матрицей случайного вектора X тогда и только тогда, когда

$$\langle Rx, y \rangle = cov(\langle x, X \rangle, \langle y, X \rangle) = \mathbb{E}(\langle x, X - a \rangle, \langle y, X - a \rangle)$$

, где $a=(a_1,\ldots,a_m)$ вектор средних, т.е. $a=\mathbb{E}X_j$

Доказательство.

$$e_{k} = (0, \dots 0, \underbrace{1}_{k}, \dots 0)$$

$$e_{j} = (0, \dots 0, \underbrace{1}_{j}, \dots 0)$$

$$x = \sum_{k} x_{k} e_{k}; \ y = \sum_{j} j_{j} e_{j}$$

$$\langle \sum_{k} x_{k} R_{x} e_{k}, \sum_{j} y_{j} e_{j} \rangle = \sum_{k} \sum_{j} \underbrace{\langle R_{x} e_{k}, e_{j} \rangle}_{(def)cov(x_{k}, x_{j})} x_{k} y_{j}(*)$$

$$cov(x_{k}, x_{j}) = cov(\langle x, e_{k} \rangle, \langle x, e_{j} \rangle)$$

$$(*) = \sum_{k} \sum_{j} (cov(\langle x, e_{k} \rangle, \langle y, e_{j} \rangle)) x_{k} y_{j} = \sum_{k} \sum_{j} (cov(\langle x, x_{k} e_{k} \rangle, \langle x, y_{j} e_{j} \rangle)) =$$

$$= \sum_{k} (cov(\langle x, x_{k} e_{k} \rangle, \sum_{j} \langle x, y_{j} e_{j} \rangle)) = cov(\langle x, x \rangle, \langle x, y \rangle)$$

Теорема 0.4. Пусть X – случайный вектор c ковариационной матрицей, тогда случайный вектор AX + b имеет ковариационную матрицу ARA^*

Доказательство.

$$Y = AX + b$$

$$\langle R_u u, v \rangle = cov(\langle AX, u \rangle + \langle b, u \rangle, \langle AX, v \rangle + \langle b, v \rangle) =_* cov(\langle AX, u \rangle, \langle AX, v \rangle) = cov(\langle X, A^*u \rangle, \langle X, A^*v \rangle) =_{**}$$

* – сдвиг на константу на ковариацию не влиятет

** – см. теорему выше

$$= \langle R_x A^* u, A^* v \rangle = \langle A R_x A^* u, v \rangle$$
$$R_y = A R_x A^*$$

8.6. Многомерная ЦПТ.

Теорема 0.5. Пусть случайные вектора $X^n = (X_1^n, \dots, X_m^n)$ независимы, одинаково распределены и имеют конечные $a_j = \mathbb{E} X_j^n, r_{k,j} = cov(X_k^1, X_j^1)$

Тогда последовательность случайных векторов $Y^n = (Y_1^n, \dots, Y_m^n)$ с компонентами

$$Y_j^n = \frac{X_j^1 + \ldots + X_j^n - na_j}{\sqrt{n}}$$

cxodumcs по распределению κ вектору Z, характеристическая функция, которого имеет вид

$$\varphi_Z(y) = e^{-\frac{1}{2}\langle R_y, y \rangle}, R = r_{k,j}$$

Доказательство.

Фиксируем $y \in \mathbb{R}^m$

Рассмотри последовательность случайных величин

$$\xi_n := \frac{\langle X^1, y \rangle + \ldots + \langle X^n, y \rangle - n \langle a, y \rangle}{\sqrt{n}} = \langle Y^n, y \rangle$$

- $\{X^i,y\}$ независимы, одинаковы распределенные
- $\mathbb{E}(\langle X^1, y \rangle) = \langle a^1, y \rangle$

Значит по одномерной цпт

$$\xi_n \xrightarrow{d} Z_y \sim \mathcal{N}(0, \mathbb{D}\langle X^1, y \rangle)$$

$$\varphi_{\xi_n}(t) \to \varphi_{Z_y} = e^{-\frac{1}{2}t^2 \mathbb{D}\langle X^1, y \rangle}$$

Заметим что

$$\varphi_{Y^n}(y) = \mathbb{E}e^{i\langle Y^n, y \rangle}$$

$$\varphi_{\langle Y^n, y \rangle}(1) = \mathbb{E}e^{i \cdot 1 \cdot \langle Y^n, y \rangle}$$

$$\Rightarrow \varphi_{Y^n}(y) = \varphi_{\langle Y^n, y \rangle}(1) = \varphi_{\xi_n}(1) \to_* \varphi_{Z_y}(1) = e^{-\frac{1}{2}\mathbb{D}\langle X^1, y \rangle}$$

* – T.K. $\xi_n \xrightarrow{d} Z_y$

$$\mathbb{D}\langle X^1, y \rangle = cov(\langle X^1, y \rangle, \langle X^1, y \rangle) = \langle R_Y, y \rangle$$

Получили

$$\varphi_{Y^n} \to e^{-\frac{1}{2}\langle R_Y, y \rangle} \Rightarrow Y^n \xrightarrow{d} Z$$

- 9. Многомерное нормальное распределение. Свойства нормального вектора: линейный образ нормального распределения нормален, характеризация через одномерные распределения, значение параметров нормального вектора, равносильность независимости и некоррелированности компонент. Представление нормального вектора, как линейный образ стандартного нормального вектора, ортогонализация. Плотность нормального вектора.
- 10. Условное математическое ожидание в дискретном случае относительно разбиения и относительно случайной величины. Основные свойства: линейность, монотонность, формула полной вероятности, условное ожидание величины, независимой с разбиением, вынесение случайной величины из под знака условного ожидания. Эквивалентное определение условного математического ожидания и геометрическая интерпретация.
- 10.1. Условное математическое ожидание в дискретном случае относительно разбиения и относительно случайной величины.

Определение 4. Величину Λ называют условным математическим ожиданием X относительно разбиения β и обозначают через $\mathbb{E}(X|\beta)$.

Определение 5. Рассмотрим случай, когда разбиение β появляется посредством некоторой случайной величины $Y = \sum_{k=1}^n y_k I_{B_k}$, где y_k - различные числа и $P(B_k) > 0$. В этом случае $B_k = \{\omega : Y(\omega) = y_k\}$ и условное математическое ожидание $\mathbb{E}(X|\beta)$ обозначают символом $\mathbb{E}(X|Y)$ и называют условным математическим ожиданием случайной величины X относительно случайной величины Y.

10.2. Основные свойства: линейность, монотонность, формула полной вероятности, условное ожидание величины, независимой с разбиением, вынесение случайной величины из под знака условного ожидания.

Теорема 0.6. Имеют место следующие свойства условного математического ожидания:

- (i) (линейность) $\mathbb{E}(\alpha X + \beta Y | \boldsymbol{\beta}) = \alpha \mathbb{E}(X | \boldsymbol{\beta}) + \beta \mathbb{E}(Y | \boldsymbol{\beta}),$
- (ii) (монотонность) $X \leqslant Y$ п.н. $\Longrightarrow \mathbb{E}(X|\beta) \leqslant \mathbb{E}(Y|\beta)$,
- (iii) (аналог формулы полной вероятности) $\mathbb{E}(\mathbb{E}(X|\boldsymbol{\beta})) = \mathbb{E}X,$
- (iv) (независимость) если случайная величина X не зависит от разбиения β , т.е. случайные величины X и I_{B_k} независимы для каждого k, то $\mathbb{E}(X|\beta) = \mathbb{E}X$.
- (v) для всякой случайной величины $Z=\sum_{k=1}^n c_k I_{B_k}$ выполнено $\mathbb{E}(ZX|\pmb{\beta})=Z\mathbb{E}(X|\pmb{\beta}).$

Доказательство. Доказательство. Свойства (i) и (ii) следуют из того, что они верны для $\mathbb{E}(X|B_k)$ для каждого k (т.к. они верны для математического ожидания относительно произвольной вероятностной меры).

Свойство (iii) проверяется непосредственной подстановкой в определение: $\mathbb{E}(\mathbb{E}(X|\mathcal{B})) = \mathbb{E}\left(\sum_{k=1}^n I_{B_k} \frac{\mathbb{E}(XI_{B_k})}{P(B_k)}\right) = \sum_{k=1}^n \mathbb{E}(XI_{B_k}) = \mathbb{E}X.$

Обоснуем пункт (iv). Так как X и I_{B_k} независимы, то $\mathbb{E}(X|B_k) = \frac{\mathbb{E}(XI_{B_k})}{P(B_k)} = \frac{\mathbb{E}X\mathbb{E}I_{B_k}}{P(B_k)} = \mathbb{E}X$.

Следовательно, $\mathbb{E}(X|\boldsymbol{\beta}) = \sum_{k=1}^n I_{B_k} \mathbb{E}(X|B_k) = \sum_{k=1}^n I_{B_k} \mathbb{E}X = \mathbb{E}X.$

Для обоснования (v) достаточно заметить, что $\mathbb{E}(XZ|B_k) = \frac{\mathbb{E}(XZI_{B_k})}{P(B_k)} = c_k \frac{\mathbb{E}(XI_{B_k})}{P(B_k)} = c_k \mathbb{E}(X|B_k).$ ч.т.д.

Теорема 0.7. В случае, когда мы рассматриваем условное ожидание относительно случайной величины, свойства следует формулировать так:

(i) (линейность) $\mathbb{E}(\alpha X + \beta Y|Z) = \alpha \mathbb{E}(X|Z) + \beta \mathbb{E}(Y|Z)$,

ч.т.д.

- (ii) (монотонность) $X \leqslant Y$ п.н. $\Longrightarrow \mathbb{E}(X|Z) \leqslant \mathbb{E}(Y|Z)$,
- (iii) (аналог формулы полной вероятности) $\mathbb{E}(\mathbb{E}(X|Y)) = \mathbb{E}X$,
- (iv) (независимость) если случайные величины X и Y независимы, то $\mathbb{E}(X|Y) = \mathbb{E}X$.
- (v) для всякой случайной величины Z=q(Y) выполнено $\mathbb{E}(ZX|Y)=Z\mathbb{E}(X|Y)$.

10.3. Эквивалентное определение условного математического ожидания и геометрическая интерпретация.

Для условного математического ожидания выполнено $\mathbb{E}(g(Y)X) = \mathbb{E}(g(Y)\mathbb{E}(X|Y))$ для произвольной функции g. Кроме того, если для какой-то случайной величины вида Z = f(Y) выполнено $\mathbb{E}(g(Y)X) = \mathbb{E}(g(Y)Z)$ для произвольной функции g, то $Z = \mathbb{E}(X|Y)$ п.н.

 \mathcal{A} оказательство. По уже доказанному $\mathbb{E}(g(Y)\mathbb{E}(X|Y)) = \mathbb{E}(\mathbb{E}(g(Y)X|Y)) = \mathbb{E}(g(Y)X)$. Наоборот, если Z = f(Y) и обладает указанным свойством, то $\mathbb{E}(g(Y)\mathbb{E}(X|Y)) = \mathbb{E}(g(Y)Z)$ для произвольной g. Т.к. $\mathbb{E}(X|Y)$ также имеет вид h(Y), то, взяв g = f - h, получаем $\mathbb{E}|\mathbb{E}(X|Y) - Z|^2 = 0$, что даёт равенство $Z = \mathbb{E}(X|Y)$ почти наверное.

Предложение. Условное математическое ожидание $\mathbb{E}(X|Y)$ среди всех случайных величин вида g(Y) является лучшим среднеквадратическим приближением для X, т.е. $\min_{Z:Z=g(Y)} \mathbb{E}|X-Z|^2 = \mathbb{E}|X-\mathbb{E}(X|Y)|^2$.

Доказательство. Пусть Z=g(Y). Так как по предыдущей лемме $\mathbb{E}[(X-\mathbb{E}(X|Y))(\mathbb{E}(X|Y)-Z)=0]$, то $\mathbb{E}|X-Z|^2=\mathbb{E}|(Z-\mathbb{E}(X|Y))+(\mathbb{E}(X|Y)-Z)|^2=\mathbb{E}|X-\mathbb{E}(X|Y)|^2+\mathbb{E}|\mathbb{E}(X|Y)-Z|^2\geqslant \mathbb{E}|X-\mathbb{E}(X|Y)|^2$.

Таким образом, с геометрической точки зрения условное математическое ожидание является проекцией X на пространство случайных величин вида g(Y) и полностью характеризуется тем свойством, что вектор $X - \mathbb{E}(X|Y)$ ортогонален указанному пространству, что записывается с помощью равенства $\mathbb{E}(Xg(Y)) = \mathbb{E}(\mathbb{E}(X|Y)g(Y))$ для произвольной случайной величины g(Y).

11. Условное математическое ожидание в общем случае: определение и свойства. Формула для вычисления условного математического ожидания при известной плотности совместного распределения, условная плотность. Аналог фомрулы Байеса.