15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$ $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

ALL UNDECIDABLE

Use Reductions to Prove

Which are SEMI-DECIDABLE?

THE POST CORRESPONDENCE PROBLEM

TUESDAY FEB 26

THE PCP GAME

baabbaabbcba

THE PCP GAME

a ba a

GENERAL RULE #1

If every top string is longer than the corresponding bottom one, there can't be a match

GENERAL RULE #2

If there is a domino with the same string on the top and on the bottom, there is a match

POST CORRESPONDENCE PROBLEM

Given a collection of dominos, is there a match?

PCP = { P | P is a set of dominos with a match }

PCP is undecidable!

THE FPCP GAME

... is just like the PCP game except that a match has to start with the first domino

FPCP

FPCP

baabbaabbcba

Theorem: FPCP is undecidable

Proof: Assume machine C decides FPCP

We will show how to use C to decide A_{TM}

Given (M,w)

we will construct a set of dominos $P_{M,w}$ where a match is an accepting computation history for M on w

Given (M,w), we will construct an instance P of FPCP in 7 steps

Assume M on w never attempts to move off left hand edge of tape

STEP 1

Put $\#q_0w_1w_2...w_n\#$

For start configuration

into P

START

STEP 2

If $\delta(q,a) = (p,b,R)$ then add

qa bp

STEP 3

If $\delta(q,a) = (p,b,L)$ then add

cqa pcb

for all $c \in \Gamma$

RULES

For configuration separator

To simulate the blanks on the right hand side of tape

CONTINUE

Given (M,w), we can construct an instance of FPCP that has a match if and only if M accepts w

Can convert an instance of FPCP into one of PCP:

Let $u = u_1u_2...u_n$, define:

$$\star u = * u_1 * u_2 * u_3 * \dots * u_n$$

$$u \star = u_1 * u_2 * u_3 * \dots * u_n *$$

$$\star u \star = * u_1 * u_2 * u_3 * \dots * u_n *$$

FPCP:

PCP:

*t₁

...

 $\frac{\star t_k}{b_k \star}$

Given (M,w), we can construct an instance of PCP that has a match if and only if M accepts w

WWW.FLAC.WS

Read Chapters 5.2 and 5.3 of the book for next time