

# Механико-математический факультет

#### Алгебра, 3 семестр, 2 поток

Преподаватель: Куликова Ольга Викторовна

Авторы: Соколов Егор

Группа: 208

Контакт: Мой телеграм для связи

# Содержание

| 1 | Группы                            |                                                               |    |  |  |  |  |
|---|-----------------------------------|---------------------------------------------------------------|----|--|--|--|--|
|   | 1.1                               | Основные понятия                                              | 4  |  |  |  |  |
|   | 1.2                               | Циклические группы                                            | (  |  |  |  |  |
|   | 1.3                               | Смежные классы                                                | 1. |  |  |  |  |
|   | 1.4                               | Факторгруппа                                                  | 16 |  |  |  |  |
|   | 1.5                               | Гомоморфизмы групп                                            | 17 |  |  |  |  |
| 2 | Сво                               | ободные группы                                                | 20 |  |  |  |  |
|   | 2.1                               | Задание группы порождающими и определяющими соотношениями     | 23 |  |  |  |  |
| 3 | Пря                               | Прямое произведение групп 2                                   |    |  |  |  |  |
|   | 3.1                               | Внешнее прямое произведение                                   | 27 |  |  |  |  |
|   | 3.2                               | Внутреннее прямое произведение                                | 28 |  |  |  |  |
|   | 3.3                               | Связь между внутренним и внешним прямым произведением         | 31 |  |  |  |  |
| 4 | Конечнопорождённые абелевы группы |                                                               |    |  |  |  |  |
|   | 4.1                               | Связь между базисами свободной абелевой группы                | 37 |  |  |  |  |
|   | 4.2                               | Элементарные преобразования свободных абелевых групп          | 38 |  |  |  |  |
|   | 4.3                               | Согласованные базисы свободной абелевой группы и её подгруппы | 4  |  |  |  |  |
|   | 4.4                               | Основная теорема о конечнопорождённых абелевых группах        | 43 |  |  |  |  |
| 5 | Дей                               | Действия группы на множестве                                  |    |  |  |  |  |
|   | 5.1                               | Орбиты и стабилизаторы                                        | 52 |  |  |  |  |
|   | 5.2                               | Действия группы на себе                                       | 56 |  |  |  |  |
|   | 5.3                               | Классы сопряжённости и централизаторы                         | 58 |  |  |  |  |
| 6 | Теоремы Силова                    |                                                               |    |  |  |  |  |
|   | 6.1                               | I теорема Силова                                              | 62 |  |  |  |  |
|   | 6.2                               | II теорема Силова                                             | 63 |  |  |  |  |
|   | 6.3                               | Нормализатор. III теорема Силова                              | 64 |  |  |  |  |
| 7 | Kon                               | ммутант                                                       | 67 |  |  |  |  |
|   | 7.1                               | Коммутанты некоторых известных групп                          | 68 |  |  |  |  |

## 1 Группы

#### 1.1 Основные понятия

**Определение.** Пусть G - множество. Бинарной операцией на G называется отображение  $*: G \times G \to G$ .

**Определение.** Множество G с бинарной операцией \* называется группой, если выполнены следующие аксиомы:

- 1.  $\forall a, b, c \in G \ \ a * (b * c) = (a * b) * c;$
- 2.  $\exists e \in G : \forall a \in G \ a * e = e * a = a;$
- 3.  $\forall a \in G \ \exists b \in G : a * b = b * a = e$

Различные формы записи группы:

1. Мультипликативная форма (терминология):

Операция - " · " (умножение);

Нейтральный элемент - единичный (1);

Элемент из аксиомы 3 - обратный  $(a^{-1}$  для  $a \in G)$ ;

2. Аддитивная форма (терминология):

Операция - " + " (сложение);

Нейтральный элемент - нулевой (0);

Элемент из аксиомы 3 - противоположный (-a для  $a \in G)$ ;

**Определение.** Если G - группа и  $\forall a,b \in G \ a \cdot b = b \cdot a,$  то G - абелева (коммутативная) группа.

Замечание. Обычно для обозначения абелевых групп будем использовать аддитивную форму записи, для иных - мультипликативную.

Утверждение (Простейшие свойства групп).

- 1. Единичный элемент единственный;
- 2.  $\forall a \in G$  обратный к а элемент единственный;
- $\beta. (ab)^{-1} = b^{-1}a^{-1};$
- 4. Если  $a,b \in G$ , то решение уравнения ax = b (xa = b) единственно.

Доказательство.

- 1. (От противного) Допустим, что  $\exists e_1, e_2 \in A$  единичные. Тогда  $e_1 = e_1 * e_2 = e_2$  по определению единичного элемента.
- 2. Допустим  $\exists b_1, b_2$  обратные к a элементы:  $b_1 \neq b_2$  В силу ассоциативности:

$$b_1 * (a * b_2) = (b_1 * a) * b_2$$
  
 $b_1 * e = e * b_2$   
 $b_1 = b_2$ 

3. 
$$abb^{-1}a^{-1} = aea^{-1} = e;$$
  
 $b^{-1}a^{-1}ab = b^{-1}eb = e \Longrightarrow (ab)^{-1} = b^{-1}a^{-1}$ 

4. 
$$ax = b \iff a^{-1}ax = a^{-1}b \iff x = a^{-1}b;$$
  
 $xa = b \iff xaa^{-1} = ba^{-1} \iff x = ba^{-1};$ 

**Определение.** Мощность множества G называется порядком группы G. Обозначается |G|.

Если  $|G| < \infty$ , то группа называется конечной, иначе бесконечной.

## Примеры.

- 1.  $(\mathbb{Z}, +), (\mathbb{Z}_n, +);$
- 2.  $GL_n(F)$  группа невырожденных матриц порядка n с коэффициентами из поля F:
- 3. Пусть  $\Omega$  множество. Преобразованиями  $\Omega$  назовём биекции  $f:\Omega \to \Omega$ .  $S(\Omega)$  множество всех преобразований  $\Omega$  образует группу относительно композиции.

Если  $\Omega = \{1, ..., n\}$ , то  $S(n) = S_n$  - группа подстановок.

4. Если  $G = \{a_1, ..., a_n\}$  - конечная группа, то её можно задать с помощью таблицы умножения (таблицы Кэли).

Например, для  $Z_2 = \{0, 1\}$ :

|   | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 0 |

5. Группа кватернионов:  $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$  Таблица Кэли для кватернионов:

|   | 1 | i  | j  | k  |
|---|---|----|----|----|
| 1 | 1 | i  | j  | k  |
| i | i | -1 | k  | -j |
| j | j | -k | -1 | i  |
| k | k | j  | -i | -1 |

**Определение.** Подмножество  $H\subseteq G$  называется подгруппой группы G, если:

- 1.  $\forall a, b \in H \ ab \in H$ ;
- 2.  $\forall a \in H \ a^{-1} \in H$ ;
- 3.  $1 \in H$  (можно заменить на  $H \neq \varnothing$ )

Обозначается  $H \leq G$ .

**Утверждение.** Подгруппа H группы G является группой относительно бинарной операции группы G.

#### Примеры.

- 1.  $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C} \ (\mathbb{N} \nleq \mathbb{Z},$ т.к. не группа);
- 2.  $GL_n(F) \geq SL_n(F) = \{A \in GL_n(F) | \det A = 1\}$  унимодулярная группа.
- 3.  $GL_n(F) \ge O_n(F) \ge SO_n(F) \ (O_n(F)$  ортогональная группа,  $SO_n(F)$  специальная ортогональная группа);
- 4.  $GL_n(F) \ge$  группа строго треугольных матриц.

**Определение.** Любая подгруппа группы  $S(\Omega)$  называется группой преобразований множества  $\Omega$ .

## Примеры.

- 1.  $GL(V) \ (\leq S(V))$  группа всех невырожденных линейных операторов векторного пространства V;
- 2.  $Aff(\mathbb{A})$  группа всех невырожденных аффинных преобразований аффинного пространства  $\mathbb{A}$ ;

3.  $\mathcal{E}^2$  - аффинно-евклидово двумерное пространство. Isom  $\mathcal{E}^2$  - группа изометрий (движений) на  $\mathcal{E}^2$ . Isom  $\mathcal{E}^2 \geq O_2 \geq SO_2$ , где  $O_2$  - группа движений, сохраняющих точку O,  $SO_2$  - группа поворотов вокруг точки O.

- 4.  $T\subseteq \mathcal{E}^2$  некоторая фигура. Sym  $T=\{f\in \mathrm{Isom}\ \mathcal{E}^2\mid f(T)=T\}$  - группа симметрий фигуры T.
  - Если T окружность с центром в точке O, то Sym  $T = O_2$ ;
  - Если T правильный n-угольник с центром в точке O, то Sym  $T=D_n$  группа Диэдра.

 $|D_n|=2n$ , т.к. n поворотов и n симметрий.

**Определение.** Пусть  $(G_1,*,e_1),(G_2,\circ,e_2)$  - группы. Отображение  $\varphi:G_1\to G_2$  - изоморфизм, если

- 1.  $\varphi$  биекция;
- 2.  $\forall a, b \in G_1 \ \varphi(a * b) = \varphi(a) * \varphi(b)$

Если между  $G_1$  и  $G_2$  существует изоморфизм, то  $G_1$  и  $G_2$  называются изоморфными. Обозначается  $G_1 \simeq G_2$ .

Пример.  $D_3 \simeq S_3$ .

Доказательство.  $D_3$  - группа движений, переводящая равносторонний треугольник в себя. Если пронумеровать вершины изначального треугольника, то каждый элемент группы  $D_3$  будет соответствовать подстановке, переводящей старый порядок вершин в новый. Определение изоморфизма проверяется очевидно.

**Утверждение.** Изоморфность групп - отношение эквивалентности на множестве групп.

Утверждение (Свойства изоморфизмов).

- 1.  $\varphi(e_1) = e_2;$
- 2.  $\varphi(a^{-1}) = (\varphi(a))^{-1};$
- 3.  $G_1 \simeq G_2 \Longrightarrow |G_1| = |G_2|$ .

3амечание. Обратное утверждение неверно (например,  $S_3 \ncong \mathbb{Z}_6$ ).

Пример.  $SO_2 \simeq (U, \cdot)$ , где  $U = \{z \in \mathbb{C} : |z| = 1\}$ .

**Определение.** Пусть  $(G, \cdot, e)$  - группа,  $k \in \mathbb{Z}, g \in G$ . Мультипликативный термин - элемент g в степени k:

$$g^{k} = \begin{cases} \underbrace{g \cdot g \cdot \dots \cdot g, k > 0}_{k} \\ \underbrace{g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1}}_{-k}, k < 0 \\ \underbrace{e, k = 0} \end{cases}$$

**Определение.** Пусть (G, +, e) - группа,  $k \in \mathbb{Z}, g \in G$ . Аддитивный термин - кратное элемента g:

$$kg = \begin{cases} \underbrace{g + g + \dots + g, k > 0}_{k} \\ \underbrace{(-g) + (-g) + \dots + (-g)}_{-k}, k < 0 \\ e, k = 0 \end{cases}$$

**Утверждение** (Свойства  $(k, m \in \mathbb{Z}, g \in G)$ ).

1. 
$$g^k \cdot g^m = g^{k+m}$$
;

2. 
$$(g^k)^m = g^{km}$$
;

3. 
$$(g^k)^{-1} = g^{-k}$$
.

**Утверждение.** Множество всех элементов  $g^k$ , где  $k \in \mathbb{Z}$ ,  $g \in G$ , образует подгруппу в G. Обозначается  $\langle g \rangle = \{e, g, g^{-1}, g^2, g^{-2}, ...\}$ .

**Определение.**  $\langle g \rangle$  - циклическая подгруппа. порождённая элементом g.

#### Примеры.

1. 
$$G=\mathbb{Z}:\langle 2\rangle=2\mathbb{Z}$$
 - чётные целые числа;

2. 
$$G = \mathbb{Z}_6 : \langle 2 \rangle = \{0, 2, 4\};$$

3. 
$$G = \mathbb{C} : \langle i \rangle = \{\pm 1, \pm i\}$$

Пусть  $(G, \cdot, e)$  - группа,  $g \in G$ . Если  $\forall k, m \in \mathbb{Z} : k \neq m \Longrightarrow g^k \neq g^m$ , то  $\langle g \rangle$  - бесконечная (элемент g имеет бесконечный порядок).

Если  $\exists k, m \in \mathbb{Z} : k \neq m, g^k = g^m \Longrightarrow g^{k-m} = e \Longrightarrow$  существует наименьшее  $n \in \mathbb{N}$  такое, что  $g^n = e$  (элемент g имеет порядок n)

**Определение.** Порядком элемента  $g \in G$  называется наименьшее натуральное число n такое, что  $g^n = e$ , если такое существует. Иначе говорят, что элемент g имеет бесконечный порядок. Обозначается ord g.

#### Примеры.

- 1.  $G = \mathbb{Z}$ : ord  $2 = \infty$ ;
- 2.  $G = \mathbb{Z}_{12}$ : ord 2 = 6;
- 3.  $G = \mathbb{C}^*$  : ord  $2 = \infty$  ( $\mathbb{C}^*$  мультипликативная группа поля,  $\mathbb{C} \setminus \{0\}$  относительно умножения).

Утверждение 1 (Свойства элементов конечного порядка).

- 1.  $q^m = e \iff \text{ord } q \mid m$ ;
- 2.  $g^m = g^l \iff m \equiv l \pmod{g}$

Доказательство.

1. Разделим m на  $n = \operatorname{ord} g$  с остатком: m = nq + r, где  $0 \leqslant r < n$ . Тогда:

$$e = g^m = (g^n)^q \cdot g^r = g^r \Longrightarrow r = 0$$

так как r < n, где n - минимальное натуральное число такое, что  $g^n = 0$ .

2. Следует из 1.

Следствие. ord  $g = |\langle g \rangle|$ 

Доказательство. Если ord  $g=\infty: \forall k\neq l\ g^k\neq g^l\Longrightarrow$  подгруппа  $\langle g\rangle=\{e,g^{\pm 1},g^{\pm 2},...\}$  бесконечна.

Если ord  $g=n:\langle g\rangle=\{e,g^1,...g^{n-1}\}$  - все эти элементы различны из пункта 2 утверждения, а других нет по определению порядка.

## Примеры.

1. 
$$i \in \mathbb{C}^*$$
 - ord  $i = 4$ ;

2.  $\sigma \in S_n$ :

Если 
$$\sigma = (i_1, ..., i_k)$$
 - цикл длины  $k$ , то ord  $\sigma = k$ .

Так как любая подстановка раскладывается в произведение независимых циклов и независимые циклы коммутируют, если  $\sigma = \tau_1...\tau_n$ , где  $\tau_i$  - независимые циклы, то верно: ord  $\sigma = \text{HOK }\{|\tau_1|,...,|\tau_n|\}$ .

Например, 
$$\sigma = (23)(145) \Longrightarrow \text{ ord } \sigma = 6.$$

Утверждение 2. Пусть n = ord g. Тогда ord  $g^k = \frac{n}{HOZ(n,k)}$ .

Доказательство. Пусть ord  $g^k = m$ . Из утверждения 1:  $g^{mk} = e \iff n|mk$ , откуда  $\frac{n}{\text{HOД}(n,k)}|m$ , т.е.  $m \geqslant \frac{n}{\text{HOД}(n,k)}$ . Очевидно, что при  $m = \frac{n}{\text{HOД}(n,k)} \, n|mk$ .  $\square$ 

**Определение.** Множество  $S \subseteq G$  называется порождающим множеством для группы G, если  $\forall g \in G \ \exists s_1,...,s_k \in S : g = s_1^{\varepsilon_1}...s_k^{\varepsilon_k}$ , где  $\varepsilon_i = \pm 1$  ( $s_i$  не обязательно различны).

При этом говорят, что G порождается множеством S.

Если  $\exists$  конечное множество S такое, что S порождает G, то G называется конечно порождённой, и бесконечно порождённой иначе.

Обозначается  $\langle S \rangle = \{s_1^{\varepsilon_1}...s_k^{\varepsilon_k}|\varepsilon_i=\pm 1\}$  - группа, порождённая S.

#### Примеры.

- 1.  $S_n = \langle \text{все транспозиции} \rangle;$
- 2.  $GL_n(F) = \langle \text{все элементарные матрицы} \rangle$
- 3.  $Q_8 = \langle i, j \rangle;$
- 4.  $D_n=\langle \alpha,s \rangle$ , где  $\alpha$  поворот на  $\frac{2\pi}{n}$ , а s любая из симметрий.
- 5. Группа Клейна:  $H = \{ \mathrm{id}, a = (12)(34), b = (13)(24), c = (14)(23) \} \leq S_4$  Это группа симметрий прямоугольника, не являющегося квадратом: a, c симметрии относительно средних линий, b поворот на  $\pi$  вокруг центра. Таблица Кэли для группы Клейна:

|   | e | a | b | $^{\mathrm{c}}$ |
|---|---|---|---|-----------------|
| е | е | a | b | c               |
| a | a | е | c | b               |
| b | b | c | е | a               |
| С | c | b | a | е               |

Отсюда  $\{e,a,b,c\} = \langle a,b \rangle$ .

6. Q - бесконечно порождённая.

## 1.2 Циклические группы

**Определение.** Группа G называется циклической, если G порождается одним элементом, т.е.  $\exists g \in G : \forall h \in G \ \exists k \in \mathbb{Z} : h = g^k$ . Элемент g также называется образующим элементом группы G.

#### Примеры.

- 1.  $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$ ,  $\mathbb{Z}_n = \langle 1 \rangle$ ;
- 2.  $U_n$  множество всех комплексных корней степени n из 1.  $U_n$  группа относительно умножения, причём  $U_n = \langle \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \rangle$ .

**Утверждение 3.** *Если*  $G = \langle g \rangle$ , *mo* |G| = ord g.

Замечание. Для групп конечного порядка, очевидно, выполняется и обратное утверждение: если ord  $g = |G| < \infty$ , то  $G = \langle g \rangle$ .

Далее циклическую группу порядка n будем обозначать  $\langle g \rangle_n$ .

Утверждение 4. Пусть  $G = \langle g \rangle_n$ . Тогда  $G = \langle g^k \rangle \iff \mathrm{HOД}(k,n) = 1$ .

Доказательство. Из утверждения 3 |G| = ord g. Тогда:

$$G = \langle g^k \rangle \iff \text{ord } g^k = \frac{n}{\text{HOД}(n,k)} = n \iff \text{HОД}(n,k) = 1$$

Теорема 1 (Классификация циклических групп).

- 1. Если циклическая группа G бесконечна, то  $G\simeq \mathbb{Z};$
- 2. Если циклическая группа G конечна и имеет порядок n, то  $G \simeq \mathbb{Z}_n$ .

Доказательство.

1. Пусть ord  $g=\infty, \forall h\in G\ \exists k\in\mathbb{Z}: h=g^k$ Рассмотрим отображение  $\varphi:G\to\mathbb{Z}$  такого вида:  $\varphi:g^k\mapsto k$ . Очевидно, что  $\varphi$  - сюръекция (в  $k\in\mathbb{Z}$  перешёл  $g^k\in G$ ).  $\varphi(g^k)=\varphi(g^m)\Longrightarrow k=m\Longrightarrow g^k=g^m$  - отсюда  $\varphi$  - инъекция. Проверим сохранение операции:

$$\varphi(g^k \cdot g^m) = \varphi(g^{k+m}) = k + m = \varphi(g^k) + \varphi(g^m)$$

Отсюда  $\varphi$  - изоморфизм.

2. Пусть ord g=n. Рассмотрим отображение  $\varphi:\mathbb{Z}_n\to G$  такого вида:  $\varphi:k\mapsto g^k$ . Очевидно, что  $\varphi$  - сюръекция (в  $g^k\in G$  перешёл  $k\in\mathbb{Z}_n$ ).

 $k \equiv m (\mathrm{mod}\ n) \Longleftrightarrow g^k = g^m$  - отсюда  $\varphi$  - инъекция.

Сохранение операции - аналогично пункту 1.

Отсюда  $\varphi$  - изоморфизм.

Следствие. Если  $G_1, G_2$  - циклические группы, то  $G_1 \simeq G_2 \Longleftrightarrow |G_1| = |G_2|$ .

Доказательство.

⇒: верно всегда;

 $\longleftarrow$ : из теоремы: если  $G_1$  бесконечна, то  $G_1 \simeq \mathbb{Z} \simeq G_2$ , иначе  $G_1 \simeq \mathbb{Z}_n \simeq G_2$ , где  $n = |G_1| = |G_2|$ .

#### Теорема 2.

- 1. Любая подгруппа циклической группы является циклической.
- 2. Подгруппы циклической группы G порядка n находятся во взаимно однозначном соответствии c делителями n, m.e.

$$\forall H \leq G \ |H| \ | \ n \ u \ \forall d | n \ \exists ! \ H \leq G : |H| = d$$

3. Подгруппы группы  $\mathbb Z$  исчерпываются группами  $k\mathbb Z=\langle k\rangle,\ \epsilon\partial e\ k\in\mathbb N\cup\{0\}.$ 

Доказательство.

1. Пусть  $G = \langle g \rangle, H \leq G$ . Если  $H = \{e\}$ , то  $H = \langle e \rangle$ . При  $H \neq \{e\}: \forall h \in H \; \exists k \in \mathbb{Z}: h = g^k$ . Так как  $g^k \in H \Longrightarrow g^{-k} \in H$  и в H есть элемент, отличный от e,  $\exists$  наименьшее  $k \in \mathbb{N}: g^k \in H$ . Докажем, что  $H = \langle g^k \rangle$ . Рассмотрим произвольный  $g^m \in H$ . Разделим m

на k с остатком:  $m = kq + r, 0 \leqslant r < k$ . Тогда:

$$q^m = (q^k)^q \cdot q^r \Longrightarrow q^r = (q^k)^{-q} \cdot q^m$$

то есть  $g^r \in H$ , а в силу того, что k - наименьшее натуральное число такое, что  $g^k \in H$ , имеем r=0. Значит,  $g^m=(g^k)^q$ , а отсюда  $H=\langle g^k \rangle$ .

2.  $G = \langle g \rangle_n, H \leq G \stackrel{1}{\Longrightarrow} H = \langle g^k \rangle$ .

Так как  $g^n = e \in H$ , то в силу рассуждений пункта 1 при m = n получаем  $k|n \Longrightarrow n = kq$ .

Отсюда  $H = \{e, g^k, g^{2k}, ..., g^{(q-1)k}\} \Longrightarrow |H| = q$ , где q|n.

Обратно,  $\forall d | n \; \exists ! H = \langle g^{\frac{n}{d}} \rangle$  (в силу описания выше других подгрупп такого порядка нет).

3. Из пункта 1 в аддитивной форме получаем, что  $H \leq \mathbb{Z} = \langle 1 \rangle \Longrightarrow H = \langle k \cdot 1 \rangle$ 

**Следствие.** В циклической группе простого порядка существуют ровно две подгруппы - тривиальная и сама группа.

#### Примеры.

- 1.  $H \leq \mathbb{Z}_5 \Longrightarrow H = \{0\}, H = \mathbb{Z}_5;$
- 2.  $H \leq \mathbb{Z}_6 \Longrightarrow H = \{0\}, H = \langle 2 \rangle, H = \langle 3 \rangle, H = \mathbb{Z}_6.$

#### 1.3 Смежные классы

**Определение.** Пусть  $(G, \cdot, e)$  - произвольная группа,  $H \leq G, g \in G$ . Рассмотрим множества:

 $gH = \{gh|h \in H\}$  - левый смежный класс G по H с представителем g  $Hg = \{hg|h \in H\}$  - правый смежный класс G по H с представителем g

**Утверждение** (Свойства смежных классов).

- 1.  $\forall a \in G \ a \in aH$ ;
- 2. если  $a \in bH$ , то bH = aH; в частности, любые два смежных класса либо не пересекаются, либо совпадают.
- 3.  $aH = bH \iff b^{-1}a \in H;$  (Верны аналогичные утверждения для правых смежных классов)

Доказательство.

- 1. Очевидно;
- 2.  $a \in bH \Longrightarrow \exists h \in H: a = bh \Longrightarrow \forall \tilde{h} \in H \ a\tilde{h} = bh\tilde{h} \in bH \Longrightarrow aH \subseteq bH$ . Аналогично  $bH \subseteq aH \Longrightarrow aH = bH$ .

3.  $\Longrightarrow$ :  $aH = bH \Longrightarrow a \in bH (a \in aH) \Longrightarrow \exists h \in H : a = bh \Longrightarrow b^{-1}a = h \in H$  $\Longleftrightarrow$ :  $b^{-1}a = h \in H \Longrightarrow a = bh \Longrightarrow aH = bH$  по пункту 2.

**Утверждение.** Отношение  $a \equiv b \pmod{H} \Leftrightarrow b^{-1}a \in H$  является отношением эквивалентности, причём классы эквивалентности совпадают с левыми смежными классами (аналогично  $ab^{-1} \in H$  для правых).

Доказательство.

- Рефлексивность:  $a^{-1}a = e \in H \Longrightarrow a \equiv a \pmod{H}$ ;
- Симметричность:  $a \equiv b \pmod{H} \Rightarrow b^{-1}a \in H \Rightarrow a^{-1}b = (b^{-1}a)^{-1} \in H \Rightarrow b \equiv a \pmod{H}$ ;
- Транзитивность:  $a \equiv b, b \equiv c \pmod{H} \Longrightarrow c^{-1}b, b^{-1}a \in H \Longrightarrow c^{-1}b \cdot b^{-1}a = c^{-1}a \in H \Longrightarrow a \equiv c \pmod{H}$ .

Совпадение классов эквивалентности с левыми смежными классами следует из пункта 3 предыдущего утверждения.

**Утверждение.** Если G - абелева, то  $\forall a \in G : aH = Ha$ . (В общем случае данное утверждение неверно).

Доказательство.  $\forall a \in G: \{ah: h \in H\} = \{ha: h \in H\} \Longrightarrow aH = Ha.$ 

## Примеры.

- 1.  $H = \langle (12) \rangle \leq S_3$   $(H = \{id, (12)\}), g = (13).$  (13)(12) = (123); (12)(13) = (132). Тогда  $\{(13), (123)\} = gH \neq Hg = \{(13), (132)\}.$
- 2.  $H = 3\mathbb{Z} \leq \mathbb{Z}$ . Смежные классы  $3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}$ .
- 3.  $H = \mathbb{R} \leq \mathbb{C}$ . Смежные классы  $a + bi + \mathbb{R} = bi + \mathbb{R}$ .

**Утверждение.** Множество  $\{aH : a \in G\}$  находится во взаимно однозначном соответствии с множеством  $\{Ha : a \in G\}$ .

Доказательство. 
$$gH \leftrightarrow Hg^{-1}: x = gh \in gH \leftrightarrow x^{-1} = h^{-1}g^{-1} \in Hg^{-1}.$$

Следствие.  $|\{aH : a \in G\}| = |\{Ha : a \in G\}|$ 

**Определение.** Мощность множества левых смежных классов группы G по подгруппе H называется индексом H в G. Обозначение: |G:H|

Пример.  $|\mathbb{Z}: 3\mathbb{Z}| = 3$ , т.к. смежные классы -  $\{3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z}\}$ .

Теорема. (Теорема Лагранжа)

Пусть G - конечная группа,  $H \leq G$ . Тогда  $|G| = |H| \cdot |G:H|$ .

Доказательство. Так как  $|G|<\infty$ , то  $|H|<\infty$ , т.е.  $H=\{h_1,\ldots,h_k\}$ .  $\forall g\in G,\ gH=\{gh_1,\ldots,gh_k\}$ , причем  $gh_i=gh_j\Rightarrow h_i=h_j\Rightarrow |gH|=|H|$ . Отсюда, если |G:H|=n:

$$G = \bigsqcup_{i=1}^{n} a_i H \Longrightarrow |G| = \sum_{i=1}^{n} |a_i H| = |G: H| \cdot |H|$$

**Следствие 1.** Если G - конечная группа,  $H \leq G$ , то  $|H| \mid |G|$ . (Обратное утверждение неверно).

**Упражнение.** Пусть  $G = A_4$  (группа чётных перестановок).  $|A_4| = \frac{4!}{2} = 12$ . Докажем, что в  $A_4$  нет подгруппы порядка 6.

Предположим, что  $H \leq A_4$  и |H| = 6.  $A_4$  состоит из элемента id, 3 элементов вида (ab)(cd) и восьми элементов вида (abc). Значит, H содержит хотя бы один элемент вида (abc) (с точностью до перенумерования - (123)). Тогда H содержит и  $(123)^{-1} = (132)$ . Также знаем, что группа чётного порядка содержит элемент порядка 2 (иначе в группе все элементы, кроме e, разбиваются на пары обратных, и элементов нечётное число), поэтому H содержит  $\sigma = (**)(**)$ .

Рассмотрим  $\omega = \sigma(123)\sigma^{-1} = (\sigma(1), \sigma(2), \sigma(3))$  (это равенство легко проверить, подставив в него  $\sigma(1), ..., \sigma(4)$ ). Очевидно, что это цикл длины 3, не оставляющий на месте 4 (т.к.  $\sigma$  не оставляет на месте 4). Значит,  $\omega$  и  $\omega^{-1}$  принадлежат H и не совпадают с предыдущими элементами (и друг с другом), т.е.

$$H = \{id, (123), (132), \sigma, \omega, \omega^{-1}\}\$$

Осталось перебрать возможные значения  $\sigma$ :

• 
$$\sigma = (12)(34) \Longrightarrow (123)(12)(34)(132) = (14)(23) \notin H$$
;

• 
$$\sigma = (13)(24) \Longrightarrow (123)(13)(24)(132) = (12)(34) \notin H$$
;

• 
$$\sigma = (14)(23) \Longrightarrow (123)(14)(23)(132) = (13)(24) \notin H$$
;

Отсюда таких H не существует.

Ферма.

Следствие 2. Если G - конечная группа, то  $\forall g \in G : \text{ord } g \mid |G|$ 

Доказательство. ord  $g = |\langle g \rangle| \mid |G|$ .

**Следствие 3.** Если G - конечная группа порядка n, то  $\forall g \in G : g^n = e \ \textit{в} \ G$ .

Доказательство. По следствию 2:  $n = \operatorname{ord} g \cdot k \Rightarrow g^n = g^{(\operatorname{ord} g) \cdot k} = e^k = e$ .

**Пример.** Пусть  $G=\mathbb{Z}_p^*,\ p$  - простое,  $|\mathbb{Z}_p^*|=p-1$ . По следствию 3:  $\forall a\in\mathbb{Z}_p^*:a^{p-1}=1$  в  $\mathbb{Z}_p^*,$  отсюда  $\forall a\in\mathbb{Z},\ p\nmid a:a^{p-1}\equiv 1\pmod p$  - малая теорема

Следствие 4. Любая группа G простого порядка p является циклической.

Доказательство. 
$$\forall a \in G, \ a \neq e : \text{ord } a \neq 1, \text{ ord } a \mid |G| = p \Rightarrow \text{ord } a = |G| \Rightarrow G = \langle a \rangle.$$

**Упражнение.** Доказать, что с точностью до изоморфизма существует ровно две группы порядка 4 -  $\mathbb{Z}_4$  и  $V_4$ .

Доказательство. Пусть G - группа порядка 4. Заметим, что по следствию 2 порядок неединичного элемента в G может быть равен либо 2, либо 4. Если в G есть элемент порядка 4, то G циклическая, а тогда по теореме о классификации циклических групп  $G \simeq \mathbb{Z}_4$ .

Пусть  $G = \{e, a, b, c\}$ , ord a = ord b = ord c = 2. Посмотрим, чему может быть равно ab:

- $ab = e \Longrightarrow aab = a \Longrightarrow b = a$  противоречие;
- $ab = a \Longrightarrow aab = aa \Longrightarrow b = e$  противоречие;
- $ab = b \Longrightarrow abb = bb \Longrightarrow a = e$  противоречие.

Отсюда ab=c - аналогично произведение любых двух различных неединичных элементов равно третьему. Отсюда таблица Кэли для G имеет вид

|   | e | a | b | $\mathbf{c}$ |
|---|---|---|---|--------------|
| е | е | a | b | c            |
| a | a | е | c | b            |
| b | b | c | е | a            |
| С | c | b | a | е            |

откуда видно, что  $G \simeq V_4$ .

**Упражнение.** Доказать, что если в группе G все неединичные элементы имеют порядок 2, то G - абелева.

Доказательство. ord 
$$a=2\Longrightarrow a=a^{-1}\Longrightarrow \forall a,b\in G:ab=(ab)^{-1}=b^{-1}a^{-1}=ba.$$

Пример. 
$$H = \langle (12) \rangle \leq S_3, \ g = (13) \Rightarrow gH \neq Hg$$

**Определение.** Подгруппа H группы G называется нормальной, если

$$\forall g \in G : gH = Hg \iff \forall g \in G : gHg^{-1} = H \iff$$
$$\iff \forall g \in G : gHg^{-1} \subseteq H \iff \forall g \in G, \ \forall h \in H : ghg^{-1} \in H$$

Обозначение:  $H \leq G$ .

Эквивалентность определений:

- $1 \iff 2$  очевидно;
- $2 \Longleftrightarrow 3$ :  $\iff gHg^{-1} \subseteq H \Leftrightarrow H \subseteq g^{-1}Hg$  из условия на всевозможные g получаем равенство;

⇒ - очевидно;

•  $3 \iff 4$  - из определения смежного класса.

#### Примеры.

1.  $A_n \subseteq S_n$ , так как  $\forall \sigma \in S_n$ ,  $\forall \tau \in A_n : \sigma \tau \sigma^{-1} \in A_n$ .

2.  $SL_n(\mathbb{R}) \leq GL_N(\mathbb{R})$ , так как  $\forall A \in GL_n(\mathbb{R}), \ \forall B \in SL_n(\mathbb{R}) : \det(ABA^{-1}) = \det B = 1 \Rightarrow ABA^{-1} \in SL_n(\mathbb{R}).$ 

**Утверждение.** В абелевой группе любая подгруппа является нормальной.

**Упражнение.** Докажите, что если |G:H|=2, то  $H \le G$  для произвольной группы G и произвольной подгруппы  $H \le G$ .

Доказательство. Если |G:H|=2, то G разбивается на два непересекающихся левых (правых) смежных класса по H. Очевидно, что один из этих классов в обоих случаях - сама подгруппа H. Тогда  $\forall g \in G \setminus H$  группа G разбивается на левые смежные классы H и gH, а также на правые смежные классы H и Hg, откуда gH=Hg. Также очевидно, что  $\forall h \in H: hH=H=Hh$ . Значит,  $\forall g \in G: gH=Hg \Longrightarrow H \unlhd G$ .

## 1.4 Факторгруппа

**Утверждение.** Пусть G - группа,  $H \leq G$ . Тогда множество всех смежных классов G по  $H: G/H = \{eH, aH, ...\}$  образует группу относительно операции  $aH \cdot bH = abH$ .

Доказательство.

1. Проверим корректность операции, т.е.  $\begin{cases} aH = \tilde{a}H \\ bH = \tilde{b}H \end{cases} \implies abH = \tilde{a}\tilde{b}H.$ 

Действительно, если  $\begin{cases} a = \tilde{a}h_a \\ b = \tilde{b}h_b \end{cases}$  из равенства смежных классов, то:

$$\forall x \in abH \Longrightarrow \exists h \in H : x = abh = \tilde{a}h_a\tilde{b}h_bh = \tilde{a}\tilde{b}h'h_bh \in \tilde{a}\tilde{b}H$$
$$(H \leq G \Longrightarrow Hb = bH \Longrightarrow \exists h' \in H : h_a\tilde{b} = \tilde{b}h')$$

- 2. Проверим, что это группа:
  - Ассоциативность:

$$aH(bH \cdot cH) = aH(bcH) = a(bc)H = (ab)cH = (abH)cH = (aH \cdot bH)cH$$

• Нейтральный элемент:

$$eH = H : aH \cdot eH = aeH = aH = eaH = eH \cdot aH$$

• Обратный элемент:

$$\forall aH \exists a^{-1}H : aH \cdot a^{-1}H = eH = a^{-1}H \cdot aH$$

**Определение.** Группа G/H называется факторгруппой G по H.

 $\it 3a$ мечание. Если  $H \not \supseteq G$ , то операция  $\it aH \cdot \it bH = \it abH$  некорректна:

$$\langle (12) \rangle \le S_3$$
:  $(13)H = (132)H, (23)H = (123)H$ ;  
 $(13)(23)H = (132)H \ne H = (123)(123)H$ 

## Примеры.

- 1.  $\mathbb{Z}/3\mathbb{Z} \simeq \mathbb{Z}_3 = \{0, 1, 2\};$
- 2.  $A_n \leq S_n, S_n/A_n \simeq \mathbb{Z}_2$  (по чётности);
- 3.  $\mathbb{R} \leq \mathbb{C}, \mathbb{C}/\mathbb{R} \simeq \mathbb{R} \ (bi + \mathbb{R} \mapsto b).$

## 1.5 Гомоморфизмы групп

**Определение.** Пусть  $(G,\cdot,e), (\tilde{G},\cdot,\tilde{e})$  - группы. Отображение  $\varphi:G\to \tilde{G}$  называется гомоморфизмом групп G и  $\tilde{G}$ , если  $\forall a,b,\in G$   $\varphi(a\cdot b)=\varphi(a)\cdot\varphi(b)$ .

Замечание. В частности, изоморфизм - биективный гомоморфизм.

Утверждение (Свойства гомоморфизмов).

1. 
$$\varphi(e) = \tilde{e}$$
;

2. 
$$\varphi(a^{-1}) = (\varphi(a))^{-1}$$

**Определение.** Множество Im  $\varphi = \{b \in \tilde{G} \mid \exists a \in G : \varphi(a) = b\}$  - образ гомоморфизма. Множество Ker  $\varphi = \{a \in G \mid \varphi(a) = \tilde{e}\}$  - ядро гомоморфизма.

#### Утверждение 1.

- 1. Im  $\varphi \leq \tilde{G}$ ;
- 2. Ker  $\varphi \leq G$ .

Доказательство.

- 1. Im  $\varphi \subseteq \tilde{G}$ 
  - $x, y \in \text{Im } \varphi \Rightarrow \exists a, b \in G : x = \varphi(a), y = \varphi(b) \Longrightarrow xy = \varphi(a)\varphi(b) = \varphi(ab) \in \text{Im } \varphi;$
  - $\tilde{e} = \varphi(e) \in \text{Im } \varphi$ ;
  - $\forall x \in \text{Im } \varphi \ \exists a \in G : \varphi(a) = x \Longrightarrow x^{-1} = (\varphi(a))^{-1} = \varphi(a^{-1}) \in \text{Im } \varphi$

Отсюда Im  $\varphi \leq \tilde{G}$ .

- 2. Ker  $\varphi \subseteq G$ 
  - $\forall a, b \in \text{Ker } \varphi : \varphi(a) = \varphi(b) = \tilde{e} \Longrightarrow \varphi(ab) = \varphi(a)\varphi(b) = \tilde{e} \Longrightarrow ab \in \text{Ker } \varphi;$
  - $\tilde{e} = \varphi(e) \Longrightarrow e \in \operatorname{Ker} \varphi;$
  - $\forall a \in \text{Ker } \varphi \Rightarrow \varphi(a^{-1}) = (\varphi(a))^{-1} = \tilde{e}^{-1} = \tilde{e} \Longrightarrow a^{-1} \in \text{Ker } \varphi$

Отсюда Ker  $\varphi \leq G$ .

$$\varphi(ghg^{-1}) = \varphi(g)\varphi(h)\varphi(g)^{-1} = \varphi(g)\varphi(g)^{-1} = \tilde{e} \Rightarrow ghg^{-1} \in \operatorname{Ker} \varphi \Longrightarrow \operatorname{Ker} \varphi \trianglelefteq G.$$

Утверждение 2.  $\varphi(a) = \varphi(b) \iff a \operatorname{Ker} \varphi = b \operatorname{Ker} \varphi$ . В частности,  $\varphi$  инъективно  $\iff \operatorname{Ker} \varphi = \{e\}$ .

Доказательство.

$$\varphi(a) = \varphi(b) \Longleftrightarrow \varphi(a)\varphi(b)^{-1} = \tilde{e} \Longleftrightarrow \varphi(ab^{-1}) = \tilde{e} \Longleftrightarrow$$
$$ab^{-1} \in \operatorname{Ker} \varphi \Longleftrightarrow a\operatorname{Ker} \varphi = b\operatorname{Ker} \varphi$$

Пример.  $\varphi: GL_n(\mathbb{R}) \to \mathbb{R}^* : \varphi(A) = \det A.$ Кег  $\varphi = SL_n(\mathbb{R})$ , Іт  $\varphi = \mathbb{R}^* \Longrightarrow R^* \simeq GL_n(\mathbb{R})/SL_n(\mathbb{R}).$ 

**Теорема** (О гомоморфизме). Пусть  $G, \tilde{G}$  - группы,  $\varphi : G \to \tilde{G}$  - гомоморфизм. Тогда  $G/\mathrm{Ker}\ \varphi \simeq \mathrm{Im}\ \varphi$ .

Доказательство. Для начала заметим, что  $\ker \varphi \unlhd G$ , поэтому факторгруппа  $G/\ker \varphi$  определена.

Рассмотрим  $\psi: g \operatorname{Ker} \varphi \mapsto \varphi(g)$ :

- Корректность: По утверждению 2:  $g_1 \text{Ker } \varphi = g_2 \text{Ker } \varphi \Longrightarrow \varphi(g_1) = \varphi(g_2);$
- Биективность:

Сюръективность:  $\forall b \in \text{Im } \varphi \ \exists a \in G : \varphi(a) = b \Longrightarrow \psi(a\text{Ker } \varphi) = b;$ Инъективность: по утверждению 2:  $\psi(a\text{Ker } \varphi) = \psi(b\text{Ker } \varphi) \Longrightarrow \varphi(a) = \varphi(b) \Longrightarrow a\text{Ker } \varphi = b\text{Ker } \varphi;$ 

• Сохранение операции:

$$\psi((g_1 \operatorname{Ker} \varphi)(g_2 \operatorname{Ker} \varphi)) = \psi(g_1 g_2 \operatorname{Ker} \varphi) = \varphi(g_1 g_2) =$$
$$= \varphi(g_1) \varphi(g_2) = \psi(g_1 \operatorname{Ker} \varphi) \psi(g_2 \operatorname{Ker} \varphi)$$

Отсюда  $\psi:G/\mathrm{Ker}\ arphi o\mathrm{Im}\ arphi$  - изоморфизм.

Пример. Пусть  $G = S_n, \tilde{G} = \mathbb{R}^*, \varphi(\sigma) = \operatorname{sgn} \sigma.$ 

Тогда из теоремы о гомоморфизме:

Im 
$$\varphi = \{\pm 1\}$$
, Ker  $\varphi = A_n \Longrightarrow S_n/A_n \simeq \{\pm 1\} \simeq \mathbb{Z}_2$ 



Доказательство.

⇒ - очевидно из биективности;

 $\longleftarrow$  - изоморфизм из теоремы совпадёт с  $\varphi$ .

Следствие 2.  $Ecnu |G| < \infty$ ,  $mo |G| = |Ker \varphi| \cdot |Im \varphi|$ .

Доказательство.  $|G| = |G/\operatorname{Ker} \varphi| \cdot |\operatorname{Ker} \varphi| = |\operatorname{Im} \varphi| \cdot |\operatorname{Ker} \varphi|.$ 

**Утверждение.** Пусть G - группа,  $H \leq G$ . Тогда  $\exists$  такая группа  $\tilde{G}$ , что  $\exists$  сюръективный гомоморфизм  $\pi: G \to \tilde{G}$ , причём  $\ker \pi = H$ .

Доказательство. Подходят  $\tilde{G}=G/H, \pi:g\mapsto gH.$ 

**Определение.** Приведённый выше гомоморфизм  $\pi: G \mapsto G/H$  называется естественным (натуральным) гомоморфизмом из G в G/H.

Определение. Эпиморфизм - сюръективный гомоморфизм.

**Утверждение.** Пусть  $\varphi: G \to \tilde{\tilde{G}}$  - произвольный эпиморфизм с ядром H. Тогда  $\exists$  изоморфизм  $\psi: G/H \to \tilde{\tilde{G}}$  такой, что  $\varphi = \psi \circ \pi$ , где  $\pi$  - натуральный гомоморфизм из G в G/H.

Доказательство. По теореме о гомоморфизме  $G/\mathrm{Ker}\ \varphi \simeq \mathrm{Im}\ \varphi$ .

Так как  $\varphi$  - сюръекция, Im  $\varphi=\tilde{\tilde{G}}$ , также по условию  ${\rm Ker}\ \varphi=H.$  Тогда  $\psi:G/H\to \tilde{\tilde{G}}$  - изоморфизм, заданный в доказательстве теоремы о гомоморфизме:  $\psi:gH\mapsto \varphi(g).$ 

Взяв этот изоморфизм, получим  $\varphi = \psi \circ \pi$  (так как  $g \stackrel{\pi}{\mapsto} gH \stackrel{\psi}{\mapsto} \varphi(g)$ ).

## 2 Свободные группы

Определение. Тривиальные (групповые) соотношения - соотношения, которые выводятся из аксиом группы (и, соответственно, есть в любой группе).

Построим группу, в которой нет других соотношений.

**Определение.** Пусть A - множество символов (букв),  $A^{-1}$  - множество символов (букв)  $a^{-1}$ , где  $a \in A$ .

Условия на эти множества:

- 1.  $\forall a^{-1} \in A^{-1} \Longrightarrow a^{-1} \notin A;$  $\forall a \in A \Longrightarrow a \notin A^{-1};$
- 2.  $(a^{-1})^{-1} = a;$  Буквы  $a, a^{-1}$  назовём взаимно обратными.

Множество  $A^{\pm 1} = A \sqcup A^{-1}$  называется алфавитом.

Слово в алфавите  $A^{\pm 1}$  - конечная последовательность букв  $X=x_1...x_k$ , где  $x_i\in A^{\pm 1}$ .

Длина слова X (обозначается |X|) - количество букв в X.

Пример.  $A = \{a, b\} : X = abaab^{-1} \Rightarrow |X| = 5.$ 

**Определение.** Слово  $X = x_1...x_k$  - сократимое, если  $\exists i \in \overline{1,...,k-1} : x_i = x_{i+1}^{-1}$ . Сокращением взаимно обратных букв назовём вычёркивание пары  $x_i, x_{i+1}$  из X (получим слово длины |X|-2).

За конечное число сокращений получим слово  $\tilde{X}$ , не являющееся сократимым - такое  $\tilde{X}$  называется результатом полного сокращения слова X.

**Определение.** Рассмотрим множество F(A) всех несократимых слов в  $A^{\pm 1}$ .

Введём бинарную операцию на F(A): пусть  $X=x_1...x_k, Y=y_1...y_m$ .

Если  $x_k \neq y_1^{-1}$ , то XY - конкатенация (приписывание) X и Y:

$$XY = x_1...x_k y_1...y_m, |XY| = k + m.$$

Если  $x_k = y_1^{-1}$ , то XY - результат полного сокращения слова  $x_1...x_ky_1...y_m$ .

Пример.  $(abcda^{-1}b)(b^{-1}ad^{-1}aab) = abcaab$ .

**Определение.** Если |X|=0, то X называется пустым словом (обозначим  $\lambda$ ). Пустое слово по определению несократимо и лежит в F(A).

**Теорема.** F(A) с приведённой выше бинарной операцией - группа.

#### Доказательство.

1. Ассоциативность:

Пусть 
$$X = x_1...x_k, Z = z_1...z_m$$
.

Случай 
$$|Y| = 0 \Longrightarrow Y = \lambda$$
 очевиден  $(XZ = XZ)$ ;

Индукция по длине слова Y:

База индукции:  $|Y|=1\Longrightarrow Y=a\in A^{\pm 1}$ . Индукция по |X|+|Z|:

База внутренней индукции:

$$|X| + |Z| = 0$$
 - очевидно  $(a = a)$ ;

$$|X| + |Z| = 1$$
 - очевидно (одно из слов  $X, Z$  пустое);

Шаг внутренней индукции  $(k+m-2 \rightarrow k+m)$  - рассмотрим случаи:

- $a^{-1} \neq x_k, a^{-1} \neq z_1 : X(YZ) = x_1...x_k a z_1...z_m = (XY)Z;$
- $a^{-1} = x_k, a^{-1} \neq z_1 : X(aZ) = X(az_1...z_m) =$ = результат полного сокращения  $x_1...x_{k-1}a^{-1}az_1...z_m =$ = результат полного сокращения  $x_1...x_{k-1}z_1...z_m = (Xa)Z$ ;
- $a^{-1} \neq x_k, a^{-1} = z_1$  аналогично предыдущему;
- $a^{-1} = x_k, a^{-1} = z_1$ : пусть  $X = X'a^{-1}, Z = a^{-1}Z'$ . Тогда:  $X(aZ) = X(a(a^{-1}Z')) = XZ' = (X'a^{-1})Z'$   $(Xa)Z = (X'a^{-1}a)Z = X'Z = X'(a^{-1}Z')$  При этом |X'| + |Y'| = k + m 2, то есть  $X'(a^{-1}Z') = (X'a^{-1})Z'$  по предположению внутренней индукции.

Во всех случаях  $X(aZ) = (Xa)Z \Longrightarrow$  база доказана.

Шаг индукции: Пусть  $Y = y_1...y_l$ . Тогда:

$$X(YZ) = X(y_1...y_l \cdot Z) = X((y_1...y_{l-1} \cdot y_l)Z) \stackrel{1}{=} X((y_1...y_{l-1}) \cdot (y_lZ)) \stackrel{2}{=}$$

$$\stackrel{2}{=} (X \cdot y_1...y_{l-1})(y_lZ) \stackrel{3}{=} (X \cdot y_1...y_l)Z = (XY)Z$$

- 1, 3 из утверждения базы индукции; 2 по предположению индукции.
- 2.  $\lambda$  нейтральный элемент;
- 3. обратный элемент к  $x_1...x_k$  элемент  $x_k^{-1}...x_1^{-1}$ .

**Определение.** Построенная группа F(A) называется свободной группой с базисом A. (A также называется свободной порождающей системой группы). Любая группа, изоморфная F(A), также называется свободной.

Утверждение. Пусть  $H \leq SL_2(\mathbb{Z}): H = \langle \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix} \rangle.$  Тогда  $H \simeq F(A)$  с базисом  $A = \{a,b\}.$ 

Доказательство. Без доказательства.

Утверждение. Все базисы свободной группы равномощны.

Доказательство. Без доказательства.

Определение. Ранг свободной группы - мощность её базиса.

3амечание. Заметим, что в F(A) результат умножения определён однозначно  $\Longrightarrow$  однозначно определён элемент  $x_1 \cdot ... \cdot x_k$ , где  $x_i \in A^{\pm 1}$ .

Тогда если считать слово  $x_1...x_k$  результатом умножения  $x_1 \cdot ... \cdot x_k$ , то можно опускать знак умножения, и в этом смысле работать и с сократимыми словами.

Пример. 
$$abb^{-1}ba^{-1}a = a \cdot b \cdot b^{-1} \cdot b \cdot a^{-1} \cdot a = ab \in F(A)$$
.

Теорема 1 (Универсальное свойство свободной группы).

Пусть G - группа,  $\{g_i \mid i \in I\} \subset G$  - произвольное множество её элементов. Рассмотрим свободную группу F(A) с базисом  $A = \{a_i \mid i \in I\}$ .

Тогда отображение  $\varphi: a_i \mapsto g_i$  продолжается до гомоморфизма  $\varphi: F(A) \to G$ , причём единственным образом.

Доказательство. Пусть  $W = a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k}$  - несократимое слово из F(A), где  $\varepsilon_i = \pm 1, a_{i_j} \in A$ . Зададим  $\varphi: F(A) \to G$  по правилу  $\varphi(W) = g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k}$ .

Проверим, что  $\varphi$  - гомоморфизм  $(W, \tilde{W} \in F(A), W = a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k}, \tilde{\tilde{W}} = a_{j_1}^{\tau_1}...a_{j_m}^{\tau_m})$ :

$$\varphi(W\tilde{W}) = \varphi(a_{i_1}^{\varepsilon_1} ... a_{i_k}^{\varepsilon_k} \cdot a_{j_1}^{\tau_1} ... a_{j_m}^{\tau_m}) = g_{i_1}^{\varepsilon_1} ... g_{i_k}^{\varepsilon_k} \cdot g_{j_1}^{\tau_1} ... g_{j_m}^{\tau_m} = (g_{i_1}^{\varepsilon_1} ... g_{i_k}^{\varepsilon_k}) \cdot (g_{j_1}^{\tau_1} ... g_{j_m}^{\tau_m}) = \varphi(W) \varphi(\tilde{W})$$

Единственность такого гомоморфизма очевидна:

$$\varphi(a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k})=\varphi(a_{i_1})^{\varepsilon_1}...\varphi(a_{i_k})^{\varepsilon_k}=g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k}$$
 - определено однозначно.  $\square$ 

Пример. (несвободной группы)

 $S_3 = \langle (12), (123) \rangle : \forall g \in S_3 \ g^6 = id$ . Попытаемся продолжить до гомоморфизма  $S_3 \to Q_8$  отображение  $\varphi : (12) \mapsto i, (123) \mapsto j$ :

$$-1=i^2=arphi((12))^2=arphi((12)^2)=arphi(id)=1$$
 - противоречие.

**Следствие 1.** Пусть G - группа,  $M = \{g_i \mid i \in I\}$  - порождающее множество G, F(A) - свободная группа c базисом  $A = \{a_i \mid i \in I\}$ .

Тогда  $\exists !$  сюръективный гомоморфизм  $\varphi: F(A) \to G$  такой, что  $\forall i \in I: \varphi(a_i) = g_i.$ 

Доказательства теоремы сюръективен - это следует из того, что множество  $\{g_i \mid i \in I\}$  порождает группу G (каждый элемент представим как  $g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k} = \varphi(a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k})$ ).

Следствие 2. Любая группа G изоморфна факторгруппе некоторой свободной группы по некоторой её нормальной подгруппе.

Доказательство. Пусть  $\varphi: F(A) \to G$  - гомоморфизм из следствия 1. Так как  $\ker \varphi \unlhd F(A)$ , из теоремы о гомоморфизме  $G = \operatorname{Im} \varphi \simeq F(A)/\operatorname{Ker} \varphi$ .  $\square$ 

**Определение.** Сюръективный гомоморфизм  $\varphi: F(A) \to G$  - из следствия 1 называется копредставлением группы G.

3 aмечание. Копредставление зависит от выбора порождающего множества M.

# 2.1 Задание группы порождающими и определяющими соотношениями

По следствию 2:  $G \simeq F(A)/N$ , где  $N \unlhd F(A)$ . Отсюда задание группы G сводится к заданию A и N.

N - нормальная  $\Longrightarrow \forall f \in F(A), \forall h \in N : fhf^{-1} \in N$ .

**Определение.** Пусть  $\mathcal{R} \subseteq F(A)$ . Нормальным замыканием множества  $\mathcal{R}$  в группе F(A) называется наименьшая (по включению) нормальная подгруппа, содержащая  $\mathcal{R}$ . Обозначается  $\langle\langle\mathcal{R}\rangle\rangle^{F(A)}$ 

#### Утверждение.

$$\langle \langle \mathcal{R} \rangle \rangle^{F(A)} = \{ (f_1 r_1^{\varepsilon_1} f_1^{-1}) ... (f_k r_k^{\varepsilon_k} f_k^{-1}) \mid r_i \in \mathcal{R}, f_i \in F(A), \varepsilon_i = \pm 1 \}$$

Доказательство.

Пусть  $\{(f_1r_1^{\varepsilon_1}f_1^{-1})...(f_kr_k^{\varepsilon_k}f_k^{-1}) \mid r_i \in \mathcal{R}, f_i \in F(A), \varepsilon_i = \pm 1\} = H$ . Тогда:  $\langle \langle \mathcal{R} \rangle \rangle^{F(A)} \leq F(A) \Longrightarrow \forall r_i \in \mathcal{R}, f_i \in F(A), \varepsilon_i \in \{\pm 1\} : f_ir_i^{\varepsilon_i}f_i^{-1} \in \langle \langle \mathcal{R} \rangle \rangle^{F(A)} \Longrightarrow H \subseteq \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$ . Осталось показать, что  $H \leq F(A)$ :

$$\forall h \in H, g \in F(A) : ghg^{-1} = g(f_1r_1^{\varepsilon_1}f_1^{-1})...(f_kr_k^{\varepsilon_k}f_k^{-1})g^{-1} =$$

$$= ((gf_1)r_1^{\varepsilon_1}(f_1^{-1}g^{-1}))...((gf_k)r_k^{\varepsilon_k}(f_k^{-1}g^{-1})) =$$

$$= ((gf_1)r_1^{\varepsilon_1}(gf_1)^{-1})...((gf_k)r_k^{\varepsilon_k}(gf_k)^{-1}) \in H$$

Отсюда минимальная группа, содержащая  $\mathcal{R}$ , в точности равна H.

**Утверждение.** Любую нормальную подгруппу  $N \leq F(A)$  можно задать как  $N = \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$  для подходящего  $\mathcal{R} \subset F(A)$ .

Доказательство. Очевидно, подойдёт  $\mathcal{R}=N$ .

## Элементарные преобразования над словами в F(A):

(под словами в F(A) подразумеваются любые произведения букв, а не только элементы F(A))

- ЭП1:  $W=W_1a^{\varepsilon}a^{-\varepsilon}W_2\mapsto \tilde{W}=W_1W_2$ , где  $a\in A, \varepsilon=\pm 1$ ;
- ЭП2:  $W=W_1r^{\varepsilon}W_2\mapsto \tilde{W}=W_1W_2$ , где  $r\in\mathcal{R}, \varepsilon=\pm 1$ ;
- $\Im\Pi1'$  обратное к  $\Im\Pi1$ ;
- $\Theta\Pi2'$  обратное к  $\Theta\Pi2$ ;

**Определение.** Назовём слова W и  $\tilde{W}$   $\mathcal{R}$ -эквивалентными, если от W можно с помощью  $\Im\Pi$  перейти к  $\tilde{W}$ .

**Утверждение.** *R*-эквивалентность - отношение эквивалентности.

Доказательство.

- Рефлексивность очевидно;
- Симметричность следует из обратимости каждого ЭП;
- Транзитивность очевидно;

Теорема 2. Следующие условия эквивалентны:

- 1.  $W \in \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$ ;
- 2. W  $\mathcal{R}$ -эквивалентно пустому слову  $\lambda$ ;
- 3. Если для произвольной группы G с порождающим множеством  $M = \{g_i \mid i \in I\}$  (т.е. заданным копредставлением  $\varphi : F(A) \to G$ ) верно, что  $\forall r \in \mathcal{R} : \varphi(r) = 1$  в G, то  $\varphi(W) = 1$  в G.

Доказательство.

•  $1 \Longrightarrow 2: W \in \langle \langle \mathcal{R} \rangle \rangle^{F(A)} \Longrightarrow W = (f_1 r_1^{\varepsilon_1} f_1^{-1})...(f_k r_k^{\varepsilon_k} f_k^{-1}) \Longrightarrow_{\Im \Pi_2} W \sim \tilde{W} = (f_1 f_1^{-1})...(f_k f_k^{-1}) \Longrightarrow_{\Im \Pi_2} \lambda;$ 

- 2  $\Longrightarrow$  3 Пусть  $\varphi: F(A) \to G$  взят из условия теоремы. Покажем, что при ЭП образ слова не меняется:
  - 1.  $\varphi(W_1 a^{\varepsilon} a^{-\varepsilon} W_2) = \varphi(W_1) \varphi(a)^{\varepsilon} \varphi(a)^{-\varepsilon} \varphi(W_2) = \varphi(W_1) \varphi(W_2) = \varphi(W_1 W_2);$

2. 
$$\varphi(W_1 r^{\varepsilon} W_2) = \varphi(W_1) \varphi(r)^{\varepsilon} \varphi(W_2) = \varphi(W_1) \cdot 1^{\varepsilon} \cdot \varphi(W_2) = \varphi(W_1 W_2);$$

При ЭП, обратных этим, образ слова аналогично не изменяется. Тогда если  $W \underset{\ni\Pi}{\sim} \lambda$ , то  $\varphi(W) = \varphi(\lambda) = 1$ .

• 3  $\Longrightarrow$  1 :  $\forall r \in \mathcal{R} : \varphi(r) = 1 \Longrightarrow r \in \text{Ker } \varphi; \ \varphi(W) = 1 \Longrightarrow W \in \text{Ker } \varphi.$  Рассмотрим в качестве G группу F(A)/N, где  $N = \langle \langle \mathcal{R} \rangle \rangle^{F(A)}$ , а в качестве  $\varphi$  -  $\pi$  (естественный гомоморфизм  $F(A) \to F(A)/N$ ).  $r \in N \Longrightarrow \pi(r) = 1$ . Тогда по условию 3:  $\pi(W) = 1 \Longrightarrow W \in \text{Ker } \varphi = N$ .

**Определение.** Если  $W \in F(A)$  удовлетворяет любому из условий теоремы 2, то говорят, что соотношение W=1 следует из соотношений  $\{r=1 \mid r \in \mathcal{R}\}$  или является следствием соотношений  $\mathcal{R}$ .

**Определение.** Рассмотрим копредставление произвольной группы G, т.е.  $\varphi$ :  $F(A) \to G$ , где  $A = \{a_i \mid i \in I\}$ . Пусть слово  $W \in F(A)(W = a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k})$  такое, что  $\varphi(W) = g_{i_1}^{\varepsilon_1}...g_{i_k}^{\varepsilon_k} = 1$  в G.

Тогда говорят о соотношении W=1.

(Для упрощения записи вместо  $g_i$  пишут  $a_i$ ).

**Определение.** Множество  $\mathcal{R} \subset F(A)$  называется определяющим множеством соотношений группы G, если любое соотношение группы G следует из  $\mathcal{R}$ . При этом элементы  $\mathcal{R}$  называются определяющими соотношениями G. Обозначается  $G = \langle A \mid \mathcal{R} \rangle$  (данная запись также называется копредставлением G).

## Примеры.

- 1.  $\mathbb{Z}_3 = \langle a | a^3 = 1 \rangle; a^{12} = 1$  следствие;
- 2.  $V_4 = \langle a, b | a^2 = b^2 = 1, ab = ba \rangle; (ab)^2 = 1$  следствие.

Теорема (Теорема Дика).

Пусть G - группа, заданная копредставлением  $\langle A \mid R \rangle$ , где  $A = \{a_i \mid i \in I\}$ . Пусть H - произвольная группа,  $\{h_i \mid i \in I\} \subset H$  - произвольное множество её элементов.

Тогда отображение  $\varphi$  на порождающих  $\varphi: a_i \mapsto h_i \ \forall i \in I$  продолжается до

гомоморфизма  $\varphi: G \to H$  тогда и только тогда, когда  $\forall r \in \mathcal{R}: \ \varphi(r) = 1 \ в$  H.

Доказательство. Если  $\varphi: a_i \mapsto h_i$  и  $\varphi$  - гомоморфизм, то должно выполняться  $\varphi(a_{i_1}^{\varepsilon_1}...a_{i_k}^{\varepsilon_k}) = h_{i_1}^{\varepsilon_1}...h_{i_k}^{\varepsilon_k}$ . Если это отображение корректно, то очевидно, что оно является искомым гомоморфизмом. Покажем корректность:

Пусть  $W = \tilde{W}$  в G. Тогда  $\tilde{W}W^{-1} = 1$  в  $G \Longrightarrow \tilde{W}W^{-1} \in \langle\langle\mathcal{R}\rangle\rangle^{F(A)}$  (так как по определению копредставления соотношение  $\tilde{W}^{-1}W = 1$  следует из R).

Отсюда  $\tilde{W}W^{-1} \sim \lambda \Longrightarrow W \sim \tilde{W}W^{-1}W = \tilde{W}$ . Из размышлений доказательства перехода  $2 \Longrightarrow 3$  теоремы 2 видно, что из условия  $\forall r \in \mathcal{R}: \varphi(r) = 1$  в H следует, что образ не изменяется при  $\Im\Pi$ , то есть  $\varphi(W) = \varphi(\tilde{W})$ , т.е. отображение корректно.

# 3 Прямое произведение групп

## 3.1 Внешнее прямое произведение

Пусть  $G_1,...,G_k$  - группы.  $G=G_1\times...\times G_k=\{(g_1,...,g_k)|g_i\in G_i\}.$   $(g_1,...,g_k)\cdot (\tilde{g}_1,...,\tilde{g}_k)=(g_1\tilde{g}_1,...,g_k\tilde{g}_k)$   $(g_i\tilde{g}_i$  перемножаются по правилу бинарной операции на  $G_i$ ).

**Утверждение.**  $(G, \cdot)$  - rpynna.

Доказательство.

- 1.  $(a_1, ..., a_k)((b_1, ..., b_k)(c_1, ..., c_k)) = (a_1(b_1c_1), ..., a_k(b_kc_k)) =$ =  $((a_1b_1)c_1, ..., (a_kb_k)c_k) = ((a_1, ..., a_k)(b_1, ..., b_k))(c_1, ..., c_k)$
- 2. Нейтральный элемент  $(e_1,...,e_k)$   $(e_i$  нейтральный в  $G_i)$
- 3.  $(g_1, ..., g_k)^{-1} = (g_1^{-1}, ..., g_k^{-1})$

**Определение.** Данная группа  $(G, \cdot)$  называется прямым произведением групп  $G_1, ..., G_k$ . Обозначается  $G = G_1 \times ... \times G_k$ ;  $G_i$  называются множителями. В аддитивной терминологии те же рассуждения определяют прямую сумму  $G = G_1 \oplus ... \oplus G_k$ , где  $G_i$  - слагаемые.

## Примеры.

- 1.  $G_1 = \mathbb{Z}_3, G_2 = S_3, G = G_1 \times G_2.$  $(1, (12)) \cdot (2, (13)) = (1 + 2, (12)(13)) = (0, (132)).$
- 2.  $D_n(\mathbb{F}) \simeq \underbrace{\mathbb{F}^* \times ... \times \mathbb{F}^*}_n$  ( $D_n(\mathbb{F})$  группа диагональных матриц порядка n). **Утверждение.** 
  - 1. Если (m,n)=1, то  $\mathbb{Z}_m \times \mathbb{Z}_n \simeq Z_{nm}$  циклическая группа;
  - 2. Если  $(m,n) \neq 1$ , то  $\mathbb{Z}_m \times \mathbb{Z}_n$  не циклическая.

Доказательство.

1. Обозначим за  $[a]_s \in \mathbb{Z}_s$  класс вычетов по модудю s, содержащий a. Рассмотрим отображение  $\varphi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$  такое, что  $\varphi : [a]_{mn} \mapsto ([a]_m, [a]_n)$ . Очевидно, что это гомоморфизм:

$$\varphi([a]_{mn} \cdot [b]_{mn}) = ([ab]_m, [ab]_n) = ([a]_m, [a]_n)([b]_m, [b]_n) = \varphi([a]_{mn})\varphi([b]_{mn})$$

Найдём Ker  $\varphi$ :

$$\varphi([a]_{mn}) = ([0]_m, [0]_n) \Longleftrightarrow \begin{cases} m \mid a \\ n \mid a \end{cases} \xrightarrow{(m,n)=1} mn \mid a \Longrightarrow \operatorname{Ker} \varphi = \{[0]_{mn}\}$$

По теореме о гомоморфизме Im  $\varphi = \mathbb{Z}_{mn}/\mathrm{Ker}\ \varphi = \mathbb{Z}_{mn} \Longrightarrow |\mathrm{Im}\ \varphi| = mn$ . Так как  $|\mathbb{Z}_m \times \mathbb{Z}_n| = mn$  и Im  $\varphi \leq \mathbb{Z}_m \times \mathbb{Z}_n$ , Im  $\varphi = \mathbb{Z}_m \times \mathbb{Z}_n$ . Отсюда  $\varphi$  - биекция (инъекция из  $\mathrm{Ker}\ \varphi = \{e\}$ ), т.е.  $\varphi$  -изоморфизм.

2. Пусть  $(m,n)=d\neq 1$   $(m=dk_1,n=dk_2)$ . Тогда  $\forall g=(g_1,g_2)\in\mathbb{Z}_m\times\mathbb{Z}_n$ :  $(g_1,g_2)^{dk_1k_2}=(g_1^{dk_1k_2},g_2^{dk_1k_2})=(0^{k_2},0^{k_1})=(0,0)$ 

Отсюда ord  $(g_1,g_2)=dk_1k_2=\frac{mn}{d}< mn=|\mathbb{Z}_m\times\mathbb{Z}_n|$ . Значит,  $\mathbb{Z}_m\times\mathbb{Z}_n$  не является циклической.

**Следствие.** Пусть  $n = p_1^{s_1}...p_k^{s_k}$  - разложение на простые множители. Тогда  $\mathbb{Z}_n = \mathbb{Z}_{p_1^{s_1}} \times ... \times \mathbb{Z}_{p_k^{s_k}}.$ 

Доказательство. Очевидно следует из теоремы.

Следствие. (Китайская теорема об остатках) Если числа  $a_1,...,a_n$  попарно взаимно просты, то для любых целых  $r_1,...,r_n$  ( $0 \le r_i < n$ )  $\exists !N$  ( $0 \le N < a_1 \cdot ... \cdot a_n$ ) такой, что  $N \equiv r_i \pmod{a_i}$ 

Доказательство. Из теоремы следует, что  $\mathbb{Z}_{a_1} \times ... \times \mathbb{Z}_{a_n} \simeq \mathbb{Z}_a \ (a = a_1 \cdot ... \cdot a_n).$  Это означает, что набор остатков  $(r_1, ..., r_n) \in \mathbb{Z}_{a_1} \times ... \times \mathbb{Z}_{a_n}$  изоморфизм из теоремы однозначно переводит в элемент  $N \in \mathbb{Z}_a$  такой, что  $r_i = [N]_{a_i}$ , что и требовалось.

## 3.2 Внутреннее прямое произведение

**Определение.** Пусть G - группа,  $H_1, ..., H_k \leq G$ .

G раскладывается в прямое произведение подгрупп  $H_1, ..., H_k$ , если:

- 1.  $\forall g \in G \; \exists ! \; h_i \in H_i : g = h_1...h_k;$
- 2.  $\forall i \neq j : \forall h_i \in H_i, h_j \in H_j, h_i h_j = h_j h_i$ .

Обозначается  $G = H_1 \times ... \times H_k$  ( $G = H_1 \oplus ... \oplus H_k$  в аддитивной терминологии).

Замечание. Из определения следует, что  $(h_1...h_k)(\tilde{h}_1...\tilde{h}_k) = (h_1\tilde{h}_1)...(h_k\tilde{h}_k)$ .

**Определение.** Пусть  $H, N \leq G$ . Обозначим  $NH = \{nh | n \in N, h \in H\}$ 

**Утверждение.** Пусть  $N \unlhd G, H \subseteq G$ . Тогда NH - подгруппа в G, причём NH = HN.

Доказательство. Рассмотрим  $(n_1h_1)(n_2h_2) = \underbrace{n_1(h_1n_2h_1^{-1})h_1h_2}_{=\tilde{n}} = \tilde{n}\tilde{h} \in NH$ .  $e \in N \cap H \Longrightarrow e \cdot e = e \in NH$ .  $= \tilde{n}$ 

Отсюда NH - подгруппа. Покажем, что NH = HN:

$$\forall nh\in NH:\ nh=(hh^{-1})nh=h(h^{-1}nh)\in HN\Longrightarrow NH\subseteq HN$$
 
$$\forall hn\in HN:\ hn=hn(h^{-1}h)=(hnh^{-1})h\in NH\Longrightarrow HN\subseteq NH$$
 Отсюда  $NH=HN$ .

Лемма 1. Пусть  $H, N \subseteq G, H \cap N = \{e\}$ . Тогда  $\forall h \in H, n \in N \ nh = hn$ .

Доказательство. Рассмотрим выражение  $(hn)(nh)^{-1} = hnh^{-1}n^{-1}$ :

$$hnh^{-1}n^{-1} = h(nh^{-1}n^{-1}) \in H; \quad hnh^{-1}n^{-1} = (hnh^{-1})n^{-1} \in N$$

Значит, 
$$hnh^{-1}n^{-1}\in H\cap N=\{e\}\Longrightarrow (hn)(nh)^{-1}=e\Longrightarrow hn=nh$$

Теорема 1. Пусть 
$$H_1, H_2 \leq G$$
. Тогда  $G = H_1 \times H_2 \iff \begin{cases} (1) \ H_1, H_2 \leq G \\ (2) \ H_1 \cap H_2 = \{e\} \end{cases}$  (3)  $G = H_1 H_2$ 

Доказательство.

 $\Longrightarrow$ : Пусть  $G = H_1 \times H_2$ .

(3) - очевидно из пункта 1 определения.

(1): 
$$\forall h_1 \in H_1, g \in G: g = \tilde{h}_1 \tilde{h}_2 \ (\tilde{h}_1 \in H_1, \tilde{h}_2 \in H_2) \Longrightarrow$$

$$gh_1 g^{-1} = \tilde{h}_1 (\tilde{h}_2 h_1 \tilde{h}_2^{-1}) \tilde{h}_1^{-1} = \tilde{h}_1 h_1 \tilde{h}_1^{-1} \in H_1$$

Отсюда  $H_1 \leq G$  (аналогично  $H_2 \leq G$ ).

(2): Пусть  $\exists h \in H_1 \cap H_2$ . Тогда h = he = eh - два разложения на произведение

элементов подгрупп. Они совпадают только в случае h = e, т.е.  $H_1 \cap H_2 = \{e\}$ .  $\iff$ : Пусть даны условия (1) - (3).

По лемме 1 из (1), (2) очевидно следует пункт 2 определения.

Из (3):  $\forall g \in G \ \exists h_i \in H_i : g = h_1 h_2$ .

Допустим, что это разложение не единственно, т.е.  $h_1h_2 = \tilde{h}_1\tilde{h}_2$ .

Тогда 
$$\tilde{h}_1^{-1}h_1=\tilde{h}_2h_2^{-1}$$
, а так как  $H_1\cap H_2=\{e\}$ , имеем  $h_1=\tilde{h}_1,h_2=\tilde{h}_2$ .

**Теорема 2.** Пусть  $H_1, ..., H_k \leq G$ .

Тогда 
$$G = H_1 \times ... \times H_k \iff \begin{cases} (1) \ H_1, ..., H_k \le G \\ (2) \ \forall i \ H_i \cap \langle H_j \mid j \ne i \rangle = \{e\} \end{cases}$$

$$(3) \ G = H_1...H_k$$

Доказательство.

 $\Longrightarrow$ : Пусть  $G = H_1 \times ... \times H_k$ .

(3) - очевидно из пункта 1 определения.

(1):  $\forall h_i \in H_i, g \in G: g = \tilde{h}_1...\tilde{h}_k \ (\tilde{h}_i \in H_i) \Longrightarrow$ 

$$gh_1g^{-1} = (\tilde{h}_1...\tilde{h}_k)h_i(\tilde{h}_k^{-1}...\tilde{h}_1^{-1}) \underset{(2 \text{ M3 off})}{=} \tilde{h}_ih_i\tilde{h}_i^{-1} \in H_i$$

Отсюда  $H_i \subseteq G$ .

(2): Пусть  $\exists h \in H_i \cap \langle H_j \mid j \neq i \rangle$ . Тогда h = he = eh - два разложения на произведение элементов подгрупп. Они совпадают только в случае h = e, т.е.  $H_i \cap \langle H_j \mid j \neq i \rangle = \{e\}$ .

**=**: Пусть даны условия (1) - (3).

По лемме 1 из (1), (2) очевидно следует пункт 2 определения.

Из (3):  $\forall g \in G \ \exists h_i \in H_i : g = h_1...h_k$ .

Допустим, что это разложение не единственно, т.е.  $h_1...h_k = \tilde{h}_1...\tilde{h}_k$ .

Тогда  $\forall i: \tilde{h}_i^{-1}h_i = \prod\limits_{j\neq i} \tilde{h}_j h_j^{-1}$ , а так как  $H_i\cap \langle H_j\mid j\neq i\rangle = \{e\}$ , имеем  $h_i=\tilde{h}_i$ .  $\square$ 

## Примеры.

1. 
$$V_4 = \{e, a, b, c\} = \{e, a\} \times \{e, b\} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2;$$

2. 
$$\mathbb{C}^* = \mathbb{R}_+ \times U \ (z = r \cdot e^{iy}).$$

3.  $\mathbb{Z}$  не раскладывается в произведение нетривиальных подгрупп. Предположим противное, т.е.  $\mathbb{Z} = H_1 \times ... \times H_m$ . Подгруппы  $\mathbb{Z}$  имеют вид  $k\mathbb{Z}$ , т.е.  $\mathbb{Z} = k_1\mathbb{Z} \times ... \times k_m\mathbb{Z}, k_i \neq 0$ . Но тогда  $k_1k_2 \in H_1 \cap H_2$  и  $k_1k_2 \neq 0$ , что противоречит теореме 2.

# 3.3 Связь между внутренним и внешним прямым произведением

#### Теорема 3.

- 1. Если группа G раскладывается в прямое произведение подгрупп  $H_1, ..., H_k$ , то G изоморфна прямому произведению групп  $G_1, ..., G_k$ , где  $\forall i \ G_i \simeq H_i$ ;
- 2. Если группа G изоморфна прямому произведению групп  $G_1, ..., G_k$ , то  $\exists H_i \leq G$  такие, что  $G_i \simeq H_i$  и G раскладывается в прямое произведение  $H_1, ..., H_k$ .

#### Доказательство.

- 1. Имеем:  $H_i \leq G, G = H_1 \times ... \times H_k$ . Рассмотрим отображение  $\varphi: G \to G_1 \times ... \times G_k$ , где  $G_i = H_i$ , такое, что  $\forall g = h_1 ... h_k \in G \ \varphi(h_1 ... h_k) \mapsto (h_1, ..., h_k)$ . Это изоморфизм:
  - Биекция очевидна;
  - Гомоморфизм:

$$\varphi((h_1...h_k) \cdot (h'_1...h'_k)) = \varphi(h_1h'_1...h_kh'_k) = (h_1h'_1, ..., h_kh'_k) =$$

$$= (h_1, ..., h_k) \cdot (h'_1, ..., h'_k) = \varphi(h_1...h_k) \cdot \varphi(h'_1...h'_k)$$

2. Имеем:  $G_1,...,G_k$  - группы,  $G=\{(g_1,...,g_k)\mid g_i\in G_i\}$ . Тогда  $H_i=\{(e,...,e,g_i,e,...,e)\mid g_i\in G_i\}$  очевидно является подгруппой G, изоморфной  $G_i$ .

Покажем, что  $G = H_1 \times ... \times H_k$ :

- $\forall g = (g_1, ..., g_k) \in G \exists ! h_i = (e, ..., e, g_i, e, ..., e) : g = h_1 ... h_k;$
- $\forall i \neq j, h_i = ((e, ..., e, a_i, e, ..., e)) \in H_i, h_j = (e, ..., e, b_j, e, ..., e) \in H_j$ :

$$h_i h_j = (e, ..., e, a_i, e, ..., e, b_j, e, ..., e) = h_j h_i$$

**Теорема 4.** Пусть  $H_i \leq G, G = H_1 \times ... \times H_k, N_i \leq H_i$ . Тогда:

1. 
$$N_1 \times ... \times N_k \leq G$$
;

2. 
$$G/(N_1 \times ... \times N_k) \simeq (H_1/N_1) \times ... \times (H_k/N_k)$$
.

Доказательство.

1. Очевидно, что  $N_1 \times ... \times N_k = N \leq G$ . Покажем нормальность:  $\forall g = h_1 ... h_k \in G, n = n_1 ... n_k \in N$ 

$$gng^{-1} = (h_1...h_k)(n_1...n_k)(h_k^{-1}...h_1^{-1}) \underset{(n_i \in H_i)}{=} (h_1n_1h_1^{-1})...(h_kn_kh_k^{-1}) \in N$$

2. Рассмотрим гомоморфизм  $\varphi: G \to (H_1/N_1) \times ... \times (H_k/N_k)$  такой, что  $\varphi: h_1...h_k \mapsto (h_1N_1,...,h_kN_k)$ . Это сюръективный гомоморфизм, причём  $\operatorname{Ker} \varphi = N_1 \times ... \times N_k$ . Отсюда по теореме о гомоморфизме получаем необходимое утверждение.

Следствие. Если  $G = H_1 \times H_2$ , то  $G/H_1 \simeq H_2, G/H_2 \simeq H_1$ .

# 4 Конечнопорождённые абелевы группы

Замечание. В данном разделе используется аддитивная терминология: (A, +) - абелева группа,  $\forall a \in A, n \in \mathbb{Z}$ :

$$na = \begin{cases} \underbrace{a + \dots + a, \ n > 0;}_{n} \\ 0, \ a = 0; \\ \underbrace{(-a) + \dots + (-a), \ n < 0}_{|n|} \end{cases}$$

Свойства.  $(\forall a,b,\in A,\ n,m,\in\overline{\mathbb{Z})}$ 

1. 
$$(n+m)a = na + ma;$$

2. 
$$n(a+b) = na + nb$$
;

3. 
$$(nm)a = n(ma)$$

Доказательство. Непосредственный разбор случаев - знаков m, n.

**Определение.** (Целочисленнной) линейной комбинацией элементов  $a_1, ..., a_k \in A$  называется выражение  $n_1a_1 + ... + n_ka_k \ (n_i \in \mathbb{Z})$ .

Если элемент  $b \in A$  равен некоторой линейной комбинации  $a_1, ..., a_k \in A$ , то говорят, что b выражается через  $a_1, ..., a_k$ .

**Определение.** Система элементов  $a_1, ..., a_k$  называется линейно зависимой, если  $\exists n_1, ..., n_k \in \mathbb{Z}$ , не все равные 0, такие, что  $n_1a_1 + ... + n_ka_k = 0$ . В противном случае система  $a_1, ..., a_k$  называется линейно независимой.

**Пример.**  $A = \mathbb{Z}_3 \oplus \mathbb{Z}_4$ . Система из одного элемента (1,1) - линейно зависима:  $12 \cdot (1,1) = (0,0)$ 

Определение. Пусть A - абелева группа,  $a_1,...,a_k \in A$ . Будем обозначать  $\langle a_1,...,a_k \rangle = \{n_1a_1+...+n_ka_k \mid n_i \in \mathbb{Z}\}$  (для бесконечного числа  $a_k$  - всевозможные конечные линейные комбинации)

**Утверждение.**  $\langle a_1,...,a_k \rangle$  - наименьшая подгруппа A, содержащая  $a_1,...,a_k$ .

Доказательство. Пусть H - наименьшая подгруппа, содержащая  $a_1,...,a_k$ . Тогда с одной стороны  $\langle a_1,...,a_k \rangle \subseteq H$  по определению подгруппы, а с другой стороны  $\langle a_1,...,a_k \rangle$ , очевидно, подгруппа в A. Значит,  $H = \langle a_1,...,a_k \rangle$ 

**Определение.** Если  $A = \langle a_1, ..., a_k \rangle$ , то говорят, что A порождается  $a_1, ..., a_k$ . Элементы  $a_1, ..., a_k$  называются порождающими (образующими).

**Определение.** Если  $\exists$  конечное множество элементов  $a_1, ..., a_k \in A$ , что  $A = \langle a_1, ..., a_k \rangle$ , то A называется конечнопорождённой.

#### Примеры.

- 1. ℚ не конечнопорождённая;
- 2. U (комплексные корни из 1) не конечнопорождённая;
- 3.  $\mathbb{Z}, \mathbb{Z}_n$  конечнопорождённые (циклические);
- 4.  $\mathbb{Z} \oplus \mathbb{Z}$  конечнопорождённая, не циклическая (примеры систем порождающих (1,0),(0,1) или (3,0),(4,5),(0,1))

**Определение.** Линейно независимая система порождающих группы A называется базисом (или свободной системой порождающих).

Утверждение. (не было в лекции)

 $a_1,...,a_k$  - базис  $\iff$  любой элемент A выражается через  $a_1,...,a_k$  единственным образом.

Доказательство.

⇒: Из определения базиса любой элемент имеет разложение по базису.

$$\alpha_1 e_1 + \dots + \alpha_n e_n = a = \alpha'_1 e_1 + \dots + \alpha'_n e_n \Longrightarrow (\alpha_1 - \alpha'_1) e_1 + \dots + (\alpha_n - \alpha'_n) e_n = 0$$

Отсюда из линейной независимости  $\alpha_i=\alpha_i'\ \forall i,$  т.е. разложение единственно.

 $\iff$ : Любой элемент  $a \in A$  имеет разложение по  $a_1, ..., a_n$  - система  $a_1, ..., a_n$  порождает A. Разложение любого элемента единственно  $\implies 0$  имеет только тривиальное разложение  $\implies a_1, ..., a_n$  линейно независимы.

**Пример.**  $\mathbb{Z}_3 \oplus \mathbb{Z}_4$  - не имеет базиса: любая система элементов в ней линейно зависима  $(12 \cdot a = 0 \ \forall a \in A)$ .

**Определение.** Конечнопорождённая абелева группа, имеющая базис, называется свободной абелевой группой. По определению  $A = \{0\}$  - свободная абелева группа.

**Пример.**  $\mathbb{Z}^n = \underbrace{\mathbb{Z} \oplus ... \oplus \mathbb{Z}}_n$  - свободная абелева группа;

Базис - (1,0,...0),(0,1,...,0),...,(0,0,...,1). Проверим это:

1. Линейная независимость:

$$\alpha_1 e_1 + ... + \alpha_n e_n = 0 \Longrightarrow (\alpha_1, ..., \alpha_n) = (0, ..., 0) \Longrightarrow \alpha_i = 0 \ \forall i$$

2. Порождаемость группы:

$$\forall a \in \mathbb{Z}^n : a = (a_1, ..., a_n) = a_1 e_1 + ... + a_n e_n$$

**Пемма.** (Основная лемма о линейной зависимости для абелевых групп) Если абелева группа A обладает базисом из n элементов, то любая система из m > n элементов линейно зависима.

Доказательство. Пусть  $e_1, ..., e_n$  - базис группы  $A, a_1, ..., a_m \in A$  - произвольные элементы. Тогда из определения базиса:

$$\begin{cases} a_1 = \alpha_{11}e_1 + \dots + \alpha_{1n}e_n \longrightarrow (\alpha_{11}, \dots, \alpha_{1n}) \\ \vdots \\ a_m = \alpha_{m1}e_1 + \dots + \alpha_{mn}e_n \longrightarrow (\alpha_{m1}, \dots, \alpha_{mn}) \end{cases}$$

Строки  $\overline{\alpha}_i = (\alpha_{i1}, ..., \alpha_{in})$  можно рассматривать как векторы из пр-ва  $\mathbb{Q}^n$  над  $\mathbb{Q}$ . Так как m > n, по ОЛЛЗ для векторных пространств система  $\overline{\alpha}_1, ..., \overline{\alpha}_m$  линейно зависима, т.е.  $\exists \lambda_1, ..., \lambda_m \in \mathbb{Q}$ , не все равные нулю, что  $\lambda_1 \overline{\alpha}_1 + ... + \lambda_m \overline{\alpha}_m = 0$ . Тогда если d - НОК знаменателей ненулевых  $\lambda_i$ , то  $(d\lambda_1)\overline{\alpha}_1 + ... + (d\lambda_m)\overline{\alpha}_m = 0$  - нетривиальная целочисленная линейная комбинация, равная нулю.

Тогда 
$$(d\lambda_1)a_1 + ... + (d\lambda_m)a_m = 0$$
, т.е.  $a_1, ..., a_m$  линейно зависимы.

**Теорема 1.** Все базисы свободной абелевой группы A равномощны.

Доказательство. Очевидно следует из ОЛЛЗ для абелевых групп.

**Определение.** Число элементов в базисе свободной абелевой группы A называется рангом группы A. Обозначается  $\mathrm{rk}\ A$ . По определению  $A=\{0\}$   $\Longrightarrow$   $\mathrm{rk}\ A=0$ .

**Теорема 2.** Все свободные абелевы группы ранга n изоморфны между собой (в частности, изоморфны  $\mathbb{Z}^n$ ).

Доказательство.

Пусть A - свободная абелева группа, rk  $A=n,\ e_1,...,e_n$  - базис. Рассмотрим отображение  $\varphi:A\to\mathbb{Z}^n$  такое, что  $\forall a=\alpha_1e_1+...+\alpha_ne_n\in A\ \varphi(a)=(\alpha_1,...,\alpha_n)$ . Покажем, что  $\varphi$  - изоморфизм:

- 1. Биекция следует из единственности разложения по базису;
- 2. Гомоморфизм: пусть  $a = \alpha_1 e_1 + ... + \alpha_n e_n, b = \beta_1 e_1 + ... + \beta_n e_n$ . Тогда:

$$\varphi(a+b) = \varphi((\alpha_1 + \beta_1)e_1 + \dots + (\alpha_n + \beta_n)e_n) = ((\alpha_1 + \beta_1), \dots, (\alpha_n + \beta_n)) =$$

$$= (\alpha_1, \dots, \alpha_n) + (\beta_1, \dots, \beta_n) = \varphi(a) + \varphi(b)$$

Отсюда  $A \simeq \mathbb{Z}^n$ .

Если rk 
$$A = \operatorname{rk} B = n$$
, то  $A \simeq \mathbb{Z}^n \simeq B \Longrightarrow A \simeq B$ .

**Теорема 3.** Любая подгруппа B свободной абелевой группы A ранга n является свободной абелевой, причём rk  $B \leq n$ .

Доказательство. Случай n=0 очевиден. Индукция по n:

База: 
$$n = 1 \Longrightarrow A \simeq \mathbb{Z} \Longrightarrow A = \langle e \rangle$$
.

Знаем, что любая подгруппа циклической группы - циклическая.

Пусть  $B = \langle ke \rangle, k \in \mathbb{N} \cup \{0\}$ . Тогда:

$$k = 0 \Longrightarrow B = \{0\} \Longrightarrow \operatorname{rk} B = 0 < 1 = \operatorname{rk} A$$
  
 $k \neq 0 \Longrightarrow B = \langle ke \rangle \simeq \mathbb{Z} \Longrightarrow \operatorname{rk} B = 1 = \operatorname{rk} A$ 

Шаг: пусть  $e_1, ..., e_n$  - базис свободной абелевой группы A.

Рассмотрим  $\tilde{A} = \langle e_1, ..., e_{n-1} \rangle \leq A$  - свободная абелева ранга n-1.

Рассмотрим  $\tilde{B}=B\cap \tilde{A}$  - подгруппу B, которая содерится в  $\tilde{A}$  (очевидно, что это подгруппа). По предположению индукции  $\tilde{B}$  - свободная абелева, причём rk  $\tilde{B}\leqslant {\rm rk}\ \tilde{A}=n-1.$ 

Если  $B = \tilde{B}$ , то теорема доказана.

Иначе рассмотрим гомоморфизм (проекцию на  $\langle e_n \rangle$ )

$$\pi: A \to \mathbb{Z}: \forall a = \alpha_1 e_1 + ... + \alpha_n e_n \in A \ \pi(a) = \alpha_n \ (\text{Ker } \pi = \tilde{A}, \text{Im } \pi = \mathbb{Z}).$$

Знаем, что  $\pi(B)$  - подгруппа в  $\mathbb{Z} \Longrightarrow \pi(B) = \langle k \rangle \ (k \neq 0 \text{ из } B \neq \tilde{B}).$ 

Рассмотрим  $b_0 \in B$  такой, что  $\pi(b_0) = k$ , т.е.  $b_0 = \beta_1 e_1 + ... + \beta_{n-1} e_{n-1} + ke_n$ . Докажем, что если  $b_1, ..., b_s$  - базис  $\tilde{B}$ , то  $b_0, b_1, ..., b_s$  - базис B (тогда B - свободная абелева, rk  $B \leqslant n$ )

1. Проверим линейную независимость:

$$\lambda_0 b_0 + \dots + \lambda_s b_s = 0 \Rightarrow \pi(\lambda_0 b_0 + \dots + \lambda_s b_s) = 0 \Rightarrow \lambda_0 \pi(b_0) + \dots + \lambda_s \pi(b_s) = 0 \Longrightarrow$$
$$\lambda_0 k = 0 \Rightarrow \lambda_0 = 0$$

Линейная комбинация  $\lambda_1 b_1 + ... + \lambda_s b_s = 0$  тривиальна, так как  $b_1, ..., b_s$  - базис  $\tilde{B}$ . Отсюда  $b_0, b_1, ..., b_s$  линейно независимы.

2. 
$$\langle b_0, b_1, ..., b_s \rangle \stackrel{?}{=} B$$
:

Рассмотрим произвольный  $b \in B$ .  $\pi(b) \in \langle k \rangle \Longrightarrow \pi(b) = tk, \ t \in \mathbb{Z}$ .

Пусть 
$$\tilde{b} = b - tb_0$$
. Тогда  $\pi(\tilde{b}) = \pi(b) - t\pi(b_0) = tk - tk = 0 \Longrightarrow \tilde{b} \in \text{Ker } \pi = \tilde{A} \Longrightarrow \tilde{b} \in \tilde{A} \cap B = \tilde{B} \Longrightarrow \tilde{b} = t_1b_1 + ... + t_sb_s \Longrightarrow b = tb_0 + t_1b_1 + ... + t_sb_s$ .

## 4.1 Связь между базисами свободной абелевой группы

**Определение.** Пусть A - свободная абелева группа,  $\mathcal{E} = \{e_1,...,e_n\},\ \tilde{\mathcal{E}} = \{\tilde{e}_1,...,\tilde{e}_n\}$  - базисы A.

$$\begin{cases} \tilde{e}_{1} = c_{11}e_{1} + \dots + c_{n1}e_{n} \\ \vdots \\ \tilde{e}_{n} = c_{1n}e_{1} + \dots + c_{nn}e_{n} \end{cases} \Longrightarrow (\tilde{e}_{1}, \dots, \tilde{e}_{n}) = (e_{1}, \dots, e_{n})C, \ C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix}$$

Такая  $C \in M_n(\mathbb{Z})$  называется матрицей перехода от  $\mathcal{E}$  к  $\tilde{\mathcal{E}}$ .

#### Утверждение.

Пусть  $C \in M_n(\mathbb{Z})$ . Тогда C - матрица перехода  $\iff$   $\det C = \pm 1$ .

Доказательство.

 $\Longrightarrow$ : Пусть C - матрица перехода от  $\mathcal E$  к  $\widetilde{\mathcal E},\ D$  - от  $\widetilde{\mathcal E}$  к  $\mathcal E.$  Тогда:

$$\begin{cases} (\tilde{e}_1, ..., \tilde{e}_n) = (e_1, ..., e_n)C \\ (e_1, ..., e_n) = (\tilde{e}_1, ..., \tilde{e}_n)D \end{cases} \implies CD = DC = E \implies D = C^{-1}$$

$$\det C \cdot \det D = \det CD = \det E = 1$$

Так как  $C, D \in M_n(\mathbb{Z})$ ,  $\det C, \det D \in \mathbb{Z} \Longrightarrow \det C = \pm 1$ .

 $\iff: C \in M_n(\mathbb{Z}), \det C = \pm 1.$  Рассмотрим некоторый базис  $\mathcal{E} = \{e_1,...,e_n\}$  и докажем, что  $(\tilde{e}_1,...,\tilde{e}_n) = (e_1,...,e_n)C$  - базис.

1. Проверим линейную независимость:

Если  $\lambda_1 \tilde{e}_1 + ... + \lambda_n \tilde{e}_n = 0$ , то линейная комбинация столбцов C с теми же  $\lambda_i$  также равна 0. Из  $\det C \neq 0$  столбцы линейно независимы, т.е.  $\lambda_i = 0 \ \forall i$ .

2.  $\langle \tilde{e}_1..., \tilde{e}_n \rangle \stackrel{?}{=} A$ : Так как  $\det C = \pm 1, \; \exists D = C^{-1} \in M_n(\mathbb{Z})$  (из формулы явного выражения элементов обратной матрицы элементы D целые)  $\Longrightarrow (e_1,...,e_n) = (\tilde{e}_1,...,\tilde{e}_n)D$ .  $\forall a \in A$  целочисленно выражается через  $e_1,...,e_n$ , каждый  $e_i$  целочисленно выражается через  $\tilde{e}_1,...,\tilde{e}_n \Longrightarrow a$  целочисленно выражается через  $\tilde{e}_1,...,\tilde{e}_n$ 

# 4.2 Элементарные преобразования свободных абелевых групп

Определение. (ЭП свободных абелевых групп)

Пусть A - свободная абелева группа,  $e_1,...,e_n$  - базис A.

- $\Im\Pi$ 1:  $\tilde{e}_i = e_i + ke_j, \ i \neq j, k \in \mathbb{Z}; \quad \tilde{e}_s = e_s, \ s \neq i;$
- $\Im \Pi 2$ :  $\tilde{e}_i = e_j$ ;  $\tilde{e}_j = e_i$ ;  $\tilde{e}_s = e_s$ ,  $s \neq i, j \ (i \neq j)$ ;
- $\Im\Pi 3$ :  $\tilde{e}_i = -e_i$ ;  $\tilde{e}_s = e_s$ ,  $s \neq i$ ;

Матрицы перехода при этих ЭП:

ЭП1:



ЭП2:

ЭП3:

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & -1 & & \\ & & & \ddots & \\ & & & 1 \end{pmatrix}$$

называются (целочисленными) элементарными матрицами.

Определение. (ЭП строк целочисленных матриц)

•  $\Im\Pi 1: \overline{a_i} \to \overline{a_i} + \lambda \overline{a_j}, i \neq j, k \in \mathbb{Z};$ 

•  $\Im \Pi 2: \overline{a_i} \leftrightarrow \overline{a_j}, i \neq j;$ 

•  $\Im \Pi 3: \overline{a_i} \to (-1)\overline{a_i};$ 

(Аналогично определены ЭП над столбцами матрицы)

# Приведение целочисленной матрицы с помощью целочисленных ЭП к "диагональному" виду

Пусть  $A = (a_{ij}) \in M_{n \times m}(\mathbb{Z})$ . Будем говорить, что матрица A имеет "диагональный" вид, если либо A = 0, либо  $a_{ii} = \alpha_i \in \mathbb{N}, i = \overline{1,l}$  и  $a_{ij} = 0$  иначе.

$$A = \begin{pmatrix} \alpha_1 & 0 & 0 \\ \vdots & \ddots & 0 \\ 0 & \alpha_l & 0 \end{pmatrix}$$

**Лемма.** Любую матрицу  $M \in M_{n \times m}(\mathbb{Z})$  за конечное число целочисленных  $\Im \Pi$  над строками и столбцами можно привести к "диагональному" виду.

Доказательство. Индукция по n - числу строк матрицы. При фиксированном n индукция по  $\nu(M)$  - наименьшему по модулю ненулевому элементу M.

Если M=0, то утверждение доказано, поэтому далее  $M \neq 0$ .

База индукции:  $n = 1 \Longrightarrow M = (a_{11}, ..., a_{1m}).$ 

База внутренней индукции:  $\nu(M) = 1$  - очевидна (если в строке есть 1, то с помощью неё можно занулить все оставшиеся элементы).

Шаг внутренней индукции: Пусть  $\nu(M)=|a_{1j}|$ . Если  $a_{1j}<0$ , то применим ЭП3 к стоблцу j; если j>1, то применением ЭП2 поменяем 1-й и j-й столбцы местами. После этих операций  $\nu(M)=a_{11}$ .

 $\forall j>1: a_{1j}=a_{11}q_j+r_j$ , где  $0\leqslant r_j< a_{11}$ . Вычитая с помощью ЭП1 из j-го столбца 1-й, умноженный на  $q_j$ , получим строку  $\tilde{M}=(a_{11},r_2,...,r_m)$ .

Если все  $r_j = 0$ , то диагональный вид получен, иначе можно воспользоваться предположением индукции  $(\nu(\tilde{M}) < \nu(M))$ .

Шаг индукции: Пусть  $\nu(M) = |a_{ij}|$ . Сначала сделаем  $a_{ij}$  положительным (ЭП3), затем переставим его в верхний левый угол (ЭП2).

Случай 1: 
$$M = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & C & & \end{pmatrix}$$
 - по предположению индукции приводим

C к диагональному виду;

Случай 2:  $\exists j>1: a_{1j}\neq 0$ . Тогда, аналогично базе индукции, с помощью  $\exists\Pi 1$  приводим верхнюю строчку к виду:  $\forall j>1: a_{1j}=0$ .

Случай 3:  $\exists j>1: a_{j1}\neq 0$  - аналогично случаю 2 ( $\Im\Pi$  строк вместо столбцов).

Упражнение. Доказать, что с помощью конечного числа целочисленных ЭП над строками и столбцами

$$M \sim \begin{pmatrix} \alpha_1 & 0 & 0 \\ \vdots & \ddots & 0 \\ 0 & \alpha_l & 0 \end{pmatrix}$$

где  $\alpha_l \mid \alpha_{l-1}, \alpha_{l-1} \mid \alpha_{l-2}, ..., \alpha_2 \mid \alpha_1$ .

 $\mathcal{A}$ оказательство. По лемме можем с помощью ЭП привести M к диагональному виду. Индукция по l - числу ненулевых  $\alpha$  в диагональном виде:

База: l = 0, 1 - очевидно;

Шаг: Из теории чисел знаем, что для чисел  $\alpha_1, \alpha_i$  существуют  $a, b \in \mathbb{Z}$ , что  $a\alpha_1 + b\alpha_i = d_i = \text{HOД}(\alpha_1, \alpha_i)$ . Значит, с помощью ЭП1 можно сделать  $a_{1i} = d_i$ . Тогда следующими операциями:

$$\begin{pmatrix} \alpha_1 & \cdots & 0 & \cdots & 0 \\ & \ddots & & & & \\ 0 & & \alpha_i & & 0 \\ & & & \ddots & \\ 0 & & & \alpha_l \end{pmatrix} \sim \begin{pmatrix} \alpha_1 & \cdots & d_i & \cdots & 0 \\ & \ddots & & & \\ 0 & & & \alpha_i & & 0 \\ & & & \ddots & \\ 0 & & & & \alpha_l \end{pmatrix} \sim \begin{pmatrix} \alpha_1 & \cdots & d_i & \cdots & 0 \\ & \ddots & & & \\ k\alpha_1 & & 0 & & 0 \\ & \ddots & & & \\ k\alpha_1 & & 0 & & 0 \\ & & \ddots & & \\ 0 & & & & \alpha_l \end{pmatrix} \sim \begin{pmatrix} k\alpha_1 & \cdots & 0 & \cdots & 0 \\ & \ddots & & & \\ 0 & & & d_i & & 0 \\ & & & \ddots & \\ 0 & & & & \alpha_l \end{pmatrix}$$

можем сделать так, чтобы  $\alpha_i \mid \alpha_1$ . Причём  $\alpha_1$  при этих операциях домножается на  $k \in \mathbb{Z}$ , а значит, делимость на все предыдущие  $\alpha_j$  сохраняется. Тогда за l-1 таких наборов операций можно сделать  $\alpha_1$  общим кратным всех  $\alpha$ , а матрица без первой строки и первого столбца приводится к нужному виду по предположению индукции.

Пример.  $(12, 10, 6) \sim (6, 10, 12) \sim (6, 4, 0) \sim (4, 6, 0) \sim (4, 2, 0) \sim (2, 4, 0) \sim (2, 0, 0)$ .

(По сути - обобщённый алгоритм Евклида, остаётся НОД чисел 12, 10 и 6).

# 4.3 Согласованные базисы свободной абелевой группы и её подгруппы

#### Теорема 1.

Пусть A - свободная абелева группа ранга  $n, B \leq A$  - подгруппа ранга m. Тогда  $\exists$  базисы  $\tilde{e}_1, ..., \tilde{e}_n$  группы A и  $\tilde{f}_1, ..., \tilde{f}_m$  подгруппы B такие, что  $\tilde{f}_i = \alpha_i \tilde{e}_i, \ \alpha_i \in \mathbb{N}$ .

Доказательство. Пусть  $e_1,...,e_n$  и  $f_1,...,f_m$  - некоторые базисы A и B соответственно. Так как  $f_i \in A, (f_1,...,f_m) = (e_1,...,e_n)C$ , где  $C \in M_{n \times m}(\mathbb{Z})$ .

Если  $\tilde{f}_1,...,\tilde{f}_m$  - другой базис B, то  $(f_1,...,f_m)=(\tilde{f}_1,...,\tilde{f}_m)T$ , где  $T\in M_{m\times m}(\mathbb{Z})$ Если  $\tilde{e}_1,...,\tilde{e}_n$  - другой базис A, то  $(e_1,...,e_n)=(\tilde{e}_1,...,\tilde{e}_n)S$ , где  $S\in M_{n\times n}(\mathbb{Z})$ ( $\det T,S=\pm 1$ ). Отсюда

$$(\tilde{f}_1,...,\tilde{f}_m)T = (\tilde{e}_1,...,\tilde{e}_n)SC \Longrightarrow (\tilde{f}_1,...,\tilde{f}_m) = (\tilde{e}_1,...,\tilde{e}_n)\tilde{C}, \quad \tilde{C} = SCT^{-1}$$

Тогда если  $S, T^{-1}$  - элементарные матрицы, то SC -  $\Im\Pi$  над строками C, а  $CT^{-1}$  -  $\Im\Pi$  над столбцами C. По лемме 1 C с помощью  $\Im\Pi$  можно привести к виду

$$\tilde{C} = \begin{pmatrix} \alpha_1 & 0 \\ \vdots & \ddots & 0 \\ 0 & 0 \end{pmatrix}$$
 (нулей среди  $\alpha_i$  не будет, т.к. векторы базиса  $f$  ЛНЗ). Отсюда

и получаем требуемое равенство  $\tilde{f}_i = \alpha_i \tilde{e}_i, \ \alpha_i \in \mathbb{N}.$ 

3амечание. Для абелевых групп из теоремы 4 прямого произведения получим следующее утверждение: Пусть  $A=A_1\oplus ...\oplus A_n,\ B=B_1\oplus ...\oplus B_n,$  причём  $B\leq A, B_i\leq A_i$ 

Тогда 
$$A/B = (A_1 \oplus ... \oplus A_n)/(B_1 \oplus ... \oplus B_n) \simeq A_1/B_1 \oplus ... \oplus A_n/B_n$$

Следствие 1. В условиях теоремы 1:

$$A/B \simeq \mathbb{Z}_{\alpha_1} \oplus \ldots \oplus \mathbb{Z}_{\alpha_m} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n-m}$$

Доказательство. По теореме 1:  $\tilde{f}_1 = \alpha_1 \tilde{e}_1, ..., \tilde{f}_m = \alpha_m \tilde{e}_m$ .

$$A = \langle \tilde{e}_1 \rangle \oplus \ldots \oplus \langle \tilde{e}_m \rangle \oplus \langle \tilde{e}_{m+1} \rangle \oplus \ldots \oplus \langle \tilde{e}_n \rangle; \quad B = \langle \alpha_1 \tilde{e}_1 \rangle \oplus \ldots \oplus \langle \alpha_m \tilde{e}_m \rangle \oplus \langle 0 \rangle \oplus \ldots \oplus \langle 0 \rangle$$

Тогда из замечания выше:

$$A/B \simeq \langle \tilde{e}_1 \rangle / \langle \alpha_1 \tilde{e}_1 \rangle \oplus \dots \oplus \langle \tilde{e}_m \rangle / \langle \alpha_m \tilde{e}_m \rangle \oplus \langle \tilde{e}_{m+1} \rangle / \langle 0 \rangle \oplus \dots \oplus \langle \tilde{e}_n \rangle / \langle 0 \rangle \simeq$$

$$\simeq \mathbb{Z}_{\alpha_1} \oplus \dots \oplus \mathbb{Z}_{\alpha_m} \oplus \underbrace{\mathbb{Z} \oplus \dots \oplus \mathbb{Z}}_{n-m}$$

Следствие 2. В условиях теоремы 1:  $\operatorname{rk} A = \operatorname{rk} B \iff |A:B| < \infty$ .

Доказательство. По определению |A:B| = |A/B|.

Из следствия 1 видно, что если  $\operatorname{rk} A = \operatorname{rk} B$ , то  $A/B \simeq \mathbb{Z}_{\alpha_1} \oplus \ldots \oplus \mathbb{Z}_{\alpha_n}$ , и  $|A/B| < \infty$ , а иначе в прямой сумме встретится слагаемое  $\mathbb{Z}$ , то есть найдётся элемент бесконечного порядка.

**Утверждение 1.** (Универсальное свойство абелевой группы) Пусть  $S = \{a_1, ..., a_n\}$  - система порождающих абелевой группы A. Тогда следующие утверждения эквивалентны:

- 1. A свободная с базисом S;
- 2.  $\forall$  абелевой группы D,  $\forall$   $d_1,...,d_n \in D$   $\exists !$  гомоморфизм  $\varphi:A\to D$  m.ч.  $\varphi:a_i\mapsto d_i\;\forall i.$

Доказательство.

$$1 \Longrightarrow 2: S$$
 - базис  $A \Longrightarrow \forall a \in A \; \exists ! \alpha_i \in \mathbb{Z}: a = \alpha_1 a_1 + \ldots + \alpha_n a_n.$ 

Рассмотрим отображение  $\varphi: A \to D$ , заданное как  $a = \alpha_1 a_1 + ... + \alpha_n a_n \mapsto \alpha_1 d_1 + ... + \alpha_n d_n$ . Оно корректно вследствие единственности разложения по базису, а также очевидно является гомоморфизмом с нужным свойством.

 $2 \Longrightarrow 1$ . Рассмотрим свободную группу D ранга n, в ней рассмотрим базис  $d_1,...,d_n$ . По условию  $\exists !$  гомоморфизм  $\varphi:A\to D$ , причём  $a_i\mapsto d_i$ .

Предположим, что  $a_1, ..., a_n$  линейно зависимы. Тогда

$$\lambda_1 a_1 + \ldots + \lambda_n a_n = 0 \Longrightarrow \varphi(\lambda_1 a_1 + \ldots + \lambda_n a_n) = \lambda_1 d_1 + \ldots + \lambda_n d_n = 0$$

Противоречие с линейной независимостью  $d_1,...,d_n$ . Значит,  $a_1,...,a_n$  - базис.  $\ \square$ 

**Следствие 3.** Любая конечнопорождённая абелева группа изоморфна свободной абелевой группе по некоторой её подгруппе B.

Доказательство. Пусть  $D = \langle d_1, ..., d_n \rangle$ . Рассмотрим свободную абелеву группу A ранга n с базисом  $a_1, ..., a_n$ .

По утверждению 1  $\exists$  гомоморфизм  $\varphi: A \to D$  такой, что  $\varphi(a_i) = d_i$ .

Из порождаемости гомоморфизм сюръективен, а значит, по теореме о гомоморфизме  $D={\rm Im}\ \varphi\simeq A/{\rm Ker}\ \varphi,$  где  ${\rm Ker}\ \varphi\leq A.$ 

**Следствие 4.** Любая конечнопорождённая абелева группа раскладывается в сумму циклических подгрупп.

Доказательство. 
$$D \simeq A/B \simeq \mathbb{Z}_{\alpha_1} \oplus ... \oplus \mathbb{Z}_{\alpha_m} \oplus \underbrace{\mathbb{Z} \oplus ... \oplus \mathbb{Z}}_{n-m}$$

Следствие 5. Любая конечнопорождённая абелева группа D раскладывается в прямую сумму конечной абелевой группы и свободной абелевой группы.

Доказательство. 
$$D \simeq (\mathbb{Z}_{\alpha_1} \oplus ... \oplus \mathbb{Z}_{\alpha_m}) \oplus \mathbb{Z}^{n-m}$$

**Определение.** Группа, в которой каждый неединичный элемент имеет бесконечный порядок, называется группой без кручения.

**Упражнение.** Если A - свободная абелева, то A - без кручения.

Доказательство. Предположим, что  $b \in A$  - элемент конечного порядка m. По определению свободной группы  $b = \alpha_1 a_1 + ... + \alpha_n a_n$ , причём не все  $\alpha_i$  равны 0. Тогда  $m\alpha_1 a_1 + ... + m\alpha_n a_n = mb = 0$  - противоречие с линейной независимостью базиса.

**Следствие 6.** Если A - конечнопорождённая абелева группа без кручения, то A - свободная абелева группа.

Доказательство. В обозначениях следствия 5 m = 0.

# 4.4 Основная теорема о конечнопорождённых абелевых группах

**Определение.** Группа G называется периодической, если  $\forall g \in G$  g имеет конечный порядок.

**Определение.** Периодическая группа G называется p-группой, где p - простое, если  $\forall q \in G \ \exists s \in \mathbb{N} : \text{ord } q = p^s.$ 

#### Упражнение.

Доказать, что конечная группа G является p-группой  $\Longleftrightarrow |G| = p^m \ (m \in \mathbb{N}).$ 

Доказательство.

 $\longleftarrow$  - очевидно, т.к.  $\forall g \in G : \text{ ord } g \mid p^m = |G|;$ 

⇒: на будущих лекциях будет доказательство в терминах силовских подгрупп.

**Определение.** Группа G называется примарной, если G является p-группой для некоторого простого p.

**Утверждение.** Существуют конечнопорождённые (не абелевы) бесконечные *p-группы*.

Доказательство. Без доказательства.

**Пример.** Не конечнопорождённая примарная абелева группа:  $\mathbb{C}_{p^{\infty}}$  - группа комплексных корней степеней  $p^m$  из 1.

**Лемма 1.** Пусть A - конечнопорождённая абелева группа,  $B \leq A$  такая, что A/B - свободная абелева группа. Тогда  $\exists \ C \leq A$  - свободная абелева группа такая, что  $A \simeq B \oplus C$ .

Доказательство. Пусть  $\overline{e}_1,...\overline{e}_n$  - базис  $\mathbb{Z}^n \simeq A/B$ , и пусть  $\varphi:A/B \to \mathbb{Z}^n$  - изоморфизм. Тогда  $\varphi^{-1}(\overline{e}_i) = e_i + B$ , где  $e_i \in A$ .

Рассмотрим  $C = \langle e_1, ..., e_n \rangle$ .

Покажем, что  $e_1, ..., e_n$  - базис C, т.е. докажем линейную независимость  $e_1, ..., e_n$ :

$$\lambda_1 e_1 + ... + \lambda_n e_n = 0 \Longrightarrow \lambda_1 e_1 + ... + \lambda_n e_n + B = B \Longrightarrow \varphi(\lambda_1 e_1 + ... + \lambda_n e_n + B) =$$

$$= \lambda_1 \overline{e}_1 + ... + \lambda_n \overline{e}_n = 0 \Longrightarrow \forall i \ \lambda_i = 0 \ \text{т.к. } \overline{e}_1, ... \overline{e}_n \text{ - базис } \mathbb{Z}^n$$

Покажем, что  $A = B \oplus C$ , или, что равносильно, что A = B + C и  $B \cap C = \{0\}$ :

•  $B \cap C = \{0\}$ : Рассмотрим  $b \in B \cap C$ . Тогда:

$$b = \mu_1 e_1 + \dots + \mu_n e_n \Longrightarrow \mu_1 e_1 + \dots + \mu_n e_n + B = b + B = B \Longrightarrow$$
$$\Longrightarrow \varphi(\mu_1 e_1 + \dots + \mu_n e_n + B) = \mu_1 \overline{e}_1 + \dots + \mu_n \overline{e}_n = 0 \Longrightarrow \forall i \ \mu_i = 0$$

• A = B + C: Рассмотрим произвольный  $a \in A$ .  $\varphi(a+B) = \overline{a} \in \mathbb{Z}^n$ , где  $\overline{a} = \mu_1 \overline{e}_1 + ... + \mu_n \overline{e}_n$ . Тогда

$$\varphi(a - \sum_{i} \mu_{i} e_{i} + B) = 0 \Longrightarrow a - \sum_{i} \mu_{i} e_{i} + B = B \Longrightarrow \exists b \in B : a = b + \sum_{i} \mu_{i} e_{i}$$

**Лемма 2.** Все элементы конечного порядка абелевой группы A образуют подгруппу в A.

 $\mathcal{A}$ оказательство. Обозначим за  $\operatorname{Tor} A$  множество всех элементов конечного порядка группы A.

- 1.  $a,b\in {\rm Tor}\ A\Longrightarrow \exists\ n,m\in \mathbb{N}: na=mb=0\Longrightarrow$   $\Longrightarrow (n\cdot m)(a+b)=(n\cdot m)a+(n\cdot m)b=0\Longrightarrow (a+b)$  имеет конечный порядок.
- $2. \ 0 \in \text{Tor } A$  очевидно.

3.  $\forall a \in \text{Tor } A \Longrightarrow -a \in \text{Tor } A$ , t.k. n(-a) = -na = 0.

**Определение.** Подгруппа Tor A ("torsion subgroup") называется подгруппой кручения группы A.

**Упражнение.** Доказать, что в группе  $D_{\infty} = \langle a, b \mid a^2 = 1, aba^{-1} = b^{-1} \rangle$  все элементы конечного порядка не образуют подгруппу.

Замечание. Группа Диэдра  $D_n$  отлична от  $D_{\infty}$  наличием соотношения  $b^n=1$ , (a - любая симметрия правильного n-угольника, b - поворот на  $\frac{2\pi}{n}$ ).

Доказательство. Заметим, что ord ba=2:

$$a = a^{-1} \Longrightarrow baba = b(aba^{-1}) = bb^{-1} = 1$$

Также ord  $a=2:a^2=1$ . При этом ord (ba)a= ord  $b=\infty$ . Значит, произведение элементов конечного порядка может быть элементом бесконечного порядка, т.е. все элементы конечного порядка не образуют подгруппу в  $D_{\infty}$ .

**Лемма 3.** Пусть A - абелева группа. Тогда  $A/\mathrm{Tor}\ A$  - группа без кручения.

Доказательство. От противного: пусть  $\overline{a} \in A/\mathrm{Tor}\ A, \overline{a} \neq 0, \mathrm{ord}\ \overline{a} = n.$  Тогда  $\overline{a} = a + \mathrm{Tor}\ A,\ a \in A.$ 

$$n\overline{a} = 0 \Longrightarrow n(a + \operatorname{Tor} A) = \operatorname{Tor} A \Longrightarrow na \in \operatorname{Tor} A \Longrightarrow$$
  
$$\Longrightarrow \exists \ m \in \mathbb{N} : m(na) = 0 \Longrightarrow (mn)a = 0 \Longrightarrow a \in \operatorname{Tor} A \Longrightarrow \overline{a} = 0$$

- противоречие с  $\overline{a} \neq 0$ . Значит,  $A/{
m Tor}\ A$  - группа без кручения.

**Лемма 4.** Пусть A - конечнопорождённая абелева группа. Тогда  $A = \text{Tor } A \oplus C$ , где  $C \leq A$  - свободная абелева группа, Tor A - конечная.

Доказательство. Пусть  $A = \langle a_1, ..., a_n \rangle$ .

Тогда  $A/{\rm Tor}\ A=\langle a_1+{\rm Tor}\ A,...,a_n+{\rm Tor}\ A\rangle$ . Кроме того, по лемме  $3\ A/{\rm Tor}\ A$  - группа без кручения, а отсюда по следствию 6 из универсального свойства абелевой группы - свободная. Отсюда по лемме  $1\ \exists\ C\leq A$  - свободная абелева группа такая, что  $A\simeq {\rm Tor}\ A\oplus C$ .

Осталось показать, что Тог A - конечная: Тог  $A \simeq A/C = \langle a_1 + C, ..., a_n + C \rangle \Longrightarrow$  Тог  $A = \langle b_1, ..., b_n \rangle$  - конечнопорождённая. Тогда если  $k_i = \text{ord } b_i$ , то  $\forall b \in \text{Tor } A$ 

$$b = \lambda_1 b_1 + ... + \lambda_n b_n, \ \lambda_i \in \mathbb{Z}, 0 \leqslant \lambda_i < k_i \Longrightarrow |\text{Tor } A| \leqslant k_1 ... k_n$$

**Лемма 5.** Пусть A - конечная абелева группа. Тогда A раскладывается в прямую сумму своих p-подгрупп  $A_p$ , причём набор этих подгрупп определён однозначно.

Доказательство.

#### • Существование разложения:

Рассмотрим произвольное простое p и обозначим за  $A_p$  множество всех элементов A порядков  $p^m$ . Проверим, что  $A_p$  - подгруппа A:

- 1.  $a, b \in A_p, p^{m_1}a = p^{m_2}b = 0 \Longrightarrow p^{m_1+m_2}(a+b) = p^{m_2} \cdot p^{m_1}a + p^{m_1} \cdot p^{m_2}b = 0$ Отсюда  $a, b \in A_p \Longrightarrow a+b \in A_p$ ;
- 2.  $0 \in A_p$  очевидно;

3. 
$$p^m a = 0 \Longrightarrow p^m (-a) = -p^m a = 0$$
. Отсюда  $a \in A_p \Longrightarrow -a \in A_p$ .

Докажем, что  $A=A_{p_1}\oplus ... \oplus A_{p_s}$ :

- 1.  $A_{p_1}\oplus ... \oplus A_{p_s}$  прямая сумма. По критерию прямой суммы достаточно показать, что  $A_{p_i}\cap \langle \bigcup_{j\neq i}A_{p_j}\rangle = \{0\}$ . Рассмотрим  $a\in A_{p_i}\cap \langle \bigcup_{j\neq i}A_{p_j}\rangle$ . Так как  $a\in A_{p_i}$ , то  $p_i^{m_i}a=0$ . С другой стороны,  $a=\sum_{j\neq i}a_j$ , то есть  $(\prod_{j\neq i}p_j^{m_j})a=0$ . Так как  $\prod_{i\neq i}p_j^{m_j}$  и  $p_i^{m_i}$  взаимно просты, имеем  $1\cdot a=a=0$ .
- 2.  $A = A_{p_1} \oplus ... \oplus A_{p_s}$ . Рассмотрим произвольный  $a \in A$ . Пусть ord  $a = n = p_1^{\alpha_1}...p_s^{\alpha_s}$ . Обозначим  $n_i = \frac{n}{p_i^{\alpha_i}}$ . Так как  $HOД(n_1,...,n_s) = 1, \exists \ l_i \in \mathbb{Z} : l_1n_1 + ... + l_sn_s = 1$ . Отсюда  $a = l_1n_1a + ... + l_sn_sa$ . Так как  $p_i^{\alpha_i}(l_in_ia) = l_ina = 0$ , имеем  $l_in_ia \in A_{p_i}$ . Значит, a раскладывается в линейную комбинацию элементов  $A_{p_i}$ .
- Единственность разложения от противного: пусть

$$A = \tilde{A}_{\tilde{p}_1} \oplus \ldots \oplus \tilde{A}_{\tilde{p}_s} = A_{p_1} \oplus \ldots \oplus A_{p_s}$$

Очевидно, что (возможно, после переупорядочивания)  $p_i = \tilde{p}_i$ , так как порядок подгруппы конечной группы делит порядок группы. Так как  $A_{p_i}$  - максимальная  $p_i$ -подгруппа в A (содержит все элементы A порядка  $p_i^m$ ),  $\tilde{A}_{p_i} \subseteq A_{p_i}$ .

Предположим, что  $\exists a \in A_{p_i}: a \notin \tilde{A}_{p_i}$ . Так как  $a \in A = \tilde{A}_{p_1} \oplus ... \oplus \tilde{A}_{p_s}$ ,

$$a = \tilde{a}_{p_i} + b$$
, где  $\tilde{a}_{p_i} \in \tilde{A}_{p_i}, b \in \langle \bigcup_{j \neq i} A_{p_j} \rangle$ . Тогда ord  $a = p_i^{m_1}$ , ord  $\tilde{a}_{p_i} = p_i^{m_2} \Longrightarrow$ 

$$p_i^{m_1+m_2}a=p_i^{m_1+m_2}\tilde{a}_{p_i}+p_i^{m_1+m_2}b\Longrightarrow p_i^{m_1+m_2}b=0,$$
а также  $\prod_{j\neq i}p_j^{\alpha_j}b=0$ 

 $\prod_{j \neq i} p_j^{lpha_j}$  и  $p_i^{m_1+m_2}$  взаимно просты  $\Longrightarrow b=0$ , т.е.  $a=\tilde{a}_{p_i} \in \tilde{A}_{p_i}$  - противоречие.

Значит, такого a не существует, то есть  $A_{p_i} \subseteq \tilde{A}_{p_i}$ . Отсюда  $A_{p_i} = \tilde{A}_{p_i}$ .

**Лемма 6.** Пусть A - конечная абелева p-группа. Тогда если  $A = A_1 \oplus ... \oplus A_s = B_1 \oplus ... \oplus B_t$ , где  $A_i, B_i$  - примарные циклические подгруппы, то s = t и набор порядков  $|A_1|, ..., |A_s|$  совпадает с набором порядков  $|B_1|, ..., |B_t|$  (т.е. разложение единственно с точностью до порядка слагаемых).

 $\mathcal{A}$ оказательство. Индукция по |A|:

База:  $|A| = p \Longrightarrow A \simeq \mathbb{Z}_p$  - такое разложение единственно;

Шаг: Пусть  $|A_i| = p^{n_i}, |B_i| = p^{m_i}$ . Упорядочим их: пусть

$$n_1 \geqslant n_2 \geqslant \dots \geqslant n_{\tilde{s}} \geqslant n_{\tilde{s}+1} = \dots = n_s = 1$$

$$m_1 \geqslant m_2 \geqslant ... \geqslant m_{\tilde{t}} \geqslant m_{\tilde{t}+1} = ... = m_t = 1$$

Пусть  $A_i = \langle a_i \rangle_{p^{n_i}}, B_i = \langle b_i \rangle_{p^{m_i}}$ . Рассмотрим множество  $pA = \{pa \mid a \in A\}$ . Очевидно, что  $pA \leq A$ . Тогда:

$$A = \langle a_1 \rangle \oplus \ldots \oplus \langle a_{\tilde{s}} \rangle \oplus \langle a_{\tilde{s}+1} \rangle \oplus \ldots \oplus \langle a_s \rangle$$

 $\forall a \in A: \ a = \alpha_1 a_1 + \ldots + \alpha_{\tilde{s}} a_{\tilde{s}} + \alpha_{\tilde{s}+1} a_{\tilde{s}+1} + \ldots + \alpha_{s} a_s \Longrightarrow pa = \alpha_1 pa_1 + \ldots + \alpha_{\tilde{s}} pa_{\tilde{s}}$ 

 $(A_{\tilde{s}+1},...,A_s$  - циклические порядка p, поэтому  $\alpha_{\tilde{s}+1}pa_{\tilde{s}+1}+...+\alpha_spa_s=0)$ 

Тогда  $pA = \langle pa_1 \rangle \oplus ... \oplus \langle pa_{\tilde{s}} \rangle$ . При этом ord  $(pa_1) = p^{n_1-1}, ...,$  ord  $(pa_{\tilde{s}}) = p^{n_{\tilde{s}}-1}$ . Значит,  $|pA| = p^{n_1 + ... + n_{\tilde{s}} - \tilde{s}} < |A|$ .

Аналогично  $pA = \langle pb_1 \rangle \oplus ... \oplus \langle pb_{\tilde{t}} \rangle, |pA| = p^{m_1 + ... + m_{\tilde{t}} - \tilde{t}} < |A|.$ 

Тогда по предположению индукции разложения pA совпадают (порядок слагаемых одинаковый в силу упорядоченности), то есть

$$\tilde{s} = \tilde{t}; \quad \forall i = \overline{1...\tilde{s}}: n_i - 1 = m_i - 1 \Longrightarrow n_i = m_i$$

При этом  $|A| = |A_1| \cdot ... \cdot |A_{\tilde{s}}| \cdot |A_{\tilde{s}+1}| \cdot ... \cdot |A_s| = p^{n_1 + ... + n_{\tilde{s}} + s - \tilde{s}}$ , а с другой стороны  $|A| = |B_1| \cdot ... \cdot |B_{\tilde{t}}| \cdot |B_{\tilde{t}+1}| \cdot ... \cdot |B_t| = p^{m_1 + ... + m_{\tilde{t}} + t - \tilde{t}}$ . Отсюда

$$n_1 + ... + n_{\tilde{s}} + s - \tilde{s} = m_1 + ... + m_{\tilde{t}} + t - \tilde{t}; \ \tilde{s} = \tilde{t}; \ n_i = m_i \Longrightarrow s = t$$

#### Теорема. (Основная т. о конечнопорождённых абелевых группах)

Пусть A - конечнопорождённая абелева группа. Тогда A изоморфна прямой сумме (конечных) примарных циклических подгрупп и бесконечных циклических подгрупп:

$$A \simeq \mathbb{Z}_{p_1^{s_1}} \oplus \ldots \oplus \mathbb{Z}_{p_k^{s_k}} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{m}$$

 $nричём число \ m \ u \ набор \ p_1^{s_1},...,p_k^{s_k} \ onpedeneны \ однозначно \ для \ группы \ A.$ 

Доказательство.

## • Существование разложения

Из следствия 4 универсального свойства абелевой группы для A имеем:

$$A \simeq A_0/B_0 \simeq \mathbb{Z}_{\alpha_1} \oplus \ldots \oplus \mathbb{Z}_{\alpha_m} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n-m}$$

Также из аналога китайской теоремы об остатках знаем, что если  $\alpha = q_1^{\nu_1}...q_{\mu}^{\nu_{\mu}}$ , где  $q_i$  - различные простые, то  $\mathbb{Z}_{\alpha} = \mathbb{Z}_{q_1^{\nu_1}} \oplus ... \oplus \mathbb{Z}_{q_{\mu}^{\nu_{\mu}}}$ . Отсюда из разложения выше получаем искомое разложение.

#### • Единственность разложения

По лемме 4 для A имеет место разложение  $A={\rm Tor}\ A\oplus C$ , где  ${\rm Tor}\ A$  - конечная, C - свободная. Заметим, что  ${\rm rk}\ C={\rm rk}\ A/{\rm Tor}\ A$ . Так как  ${\rm Tor}\ A$  - инвариант A, то  $A/{\rm Tor}\ A$ , а тогда и  ${\rm rk}\ C$  - инварианты A.

Так как  $C\simeq \mathbb{Z}\oplus ...\oplus \mathbb{Z}$ , а  $\mathbb{Z}_{p_1^{s_1}}\oplus ...\oplus \mathbb{Z}_{p_k^{s_k}}$  - конечная, имеем  $C=\mathbb{Z}\oplus ...\oplus \mathbb{Z}$ , то есть  $m=\operatorname{rk} C$ , а отсюда m однозначно определено для A. Пусть  $B=\operatorname{Tor} A$ . По лемме 5  $B\simeq A_{\tilde{p}_1}\oplus ...\oplus A_{\tilde{p}_l}$ , причём это разложение на примарные подгруппы единственно с точностью до порядка слагаемых. А из леммы 6 каждая  $A_{\tilde{p}_i}$  раскладывается на циклические примарные однозначно с точностью до порядка слагаемых. Значит, набор порядков  $p_1^{s_1}, ..., p_k^{s_k}$  определён однозначно для A.

**Пример.** Все абелевы группы порядка 8 с точностью до изоморфизма:  $8=2^3=2^2\cdot 2=2\cdot 2\cdot 2\Longrightarrow A_1\simeq \mathbb{Z}_8;\ A_2\simeq \mathbb{Z}_4\oplus \mathbb{Z}_2;\ A_3=\mathbb{Z}_2\oplus \mathbb{Z}_2\oplus \mathbb{Z}_2$ 

Пример.  $V_4 = \{e, a, b, c\}$ 

 $V_4=\langle a\rangle_2\oplus\langle b\rangle_2=\langle b\rangle_2\oplus\langle c\rangle_2$ , но разложение из теоремы единственно:  $V=\mathbb{Z}_2\oplus\mathbb{Z}_2$ .

Замечание. Для не конечнопорождённых абелевых групп утверждение теоремы неверно, контрпримером служит следующее упражнение:

**Упражнение.** Доказать, что  $\mathbb{Q}$  не раскладывается в прямую сумму циклических (вообще говоря, произвольных) подгрупп.

Доказательство. Пусть  $H_1, H_2 \leq \mathbb{Q}$  - нетривиальные нормальные подгруппы  $\mathbb{Q}$ . Тогда  $\exists h_1 = \in H_1, h_2 \in H_2 : h_1, h_2 \neq 0$ . Тогда:

$$h_1 = \frac{m_1}{n_1}, h_2 = \frac{m_2}{n_2} \Longrightarrow m_2 n_1 h_1 = m_1 n_2 h_2 \in H_1 \cap H_2$$

то есть  $H_1 \cap H_2 \neq \{0\}$ . Отсюда  $\mathbb Q$  не раскладывается в прямую сумму подгрупп.

**Определение.** Экспонентой (периодом, показателем) конечной группы G называется наименьшее общее кратное порядков элементов группы G. Обозначается  $\exp G$ .

**Утверждение.** Если G конечна, то  $\exp G \mid |G|$ 

Доказательство. Для конечных групп знаем, что порядок группы является общим кратным всех порядков элементов группы. Так как наименьшее общее кратное набора чисел делит любое общее кратное этого набора, получаем необходимое утверждение. □

**Утверждение.** Конечная абелева группа A циклическая  $\iff$   $\exp A = |A|$ .

Доказательство.

 $\Longrightarrow$ :  $A = \langle a \rangle \Longrightarrow$  ord  $a = |A| \Longrightarrow \exp A \geqslant |A| \Longrightarrow \exp A = |A|$  (т.к.  $\exp A \mid |A|$ ).  $\Longleftrightarrow$ : От противного: пусть  $\exp A = |A|$ , но A - не циклическая. По основной теореме о конечнопорождённых абелевых группах  $A \simeq \mathbb{Z}_{p_1^{s_1}} \oplus ... \oplus \mathbb{Z}_{p_m^{s_m}}$ . Если все  $p_1, ..., p_m$  различны, то A циклическая по аналогу китайской теоремы об остатках - противоречие. Если среди них есть совпадающие, то можем без ограничения общности считать, что  $p_1 = p_2, s_1 \leqslant s_2$ . Обозначим  $\mathbb{Z}_{p_i^{s_i}} = \langle a_i \rangle \Longrightarrow \forall a \in A$ :  $a = \sum_{i=1}^m \alpha_i a_i$ . Тогда если в равенстве  $|A| = p_1^{s_1} p_2^{s_2} ... p_m^{s_m}$  обозначить  $t = p_2^{s_2} ... p_m^{s_m}$ , то  $\forall a \in A$ :  $ta = \sum_{i=1}^m \alpha_i t a_i = 0$ .

(очевидно, что  $ta_i=0$  для  $a\neq 1$ , а  $ta_1=0$  в силу  $p_1=p_2, s_1\leqslant s_2$ ) Тогда t - общее кратное всех порядков элементов A, то есть  $\exp A\mid t$ , но  $t< A=\exp A$  - противоречие. Значит, A - циклическая. **Теорема.** Пусть  $\mathbb{F}$  - произвольное поле, A - конечная подгруппа в  $\mathbb{F}^*$ . Тогда A - циклическая.

Доказательство. (мультипликативная терминология)

Из определения поля  $F^*$  - абелева группа, а значит A также абелева.

От противного: пусть A не циклическая, т.е.  $\exp A < |A|$ . Тогда если  $\exp A = n$ , то  $\forall a \in A \ a^n = 1$ . Рассмотрим многочлен  $x^n - 1$  над полем  $\mathbb F$ . Его степень равна n, а число его корней в  $\mathbb F$  хотя бы |A|, что больше n по предположению - противоречие.

**Пример.**  $\mathbb{F} = \mathbb{Z}_p$ :  $A = F^*$  - циклическая. Например,  $\mathbb{Z}_5^* = \langle 3 \rangle_4$ .

**Следствие.** Мультипликативная группа любого конечного поля - циклическая.

# 5 Действия группы на множестве

**Определение.** Пусть X - произвольное множество. Биективное отображение  $f: X \to X$  называется преобразованием множества X. Множество всех преобразований X обозначается S(X).

Утверждение. S(X) - группа относительно композиции.

Доказательство.

- 1. Ассоциативность очевидно;
- 2. Нейтральный элемент тождественное преобразование;
- 3. Обратный элемент обратное преобразование (существует, т.к. биекция)

**Определение.** Группа S(X) называется группой всех преобразований X. Произвольная  $H \leq S(X)$  называется группой преобразований множества X.

**Пример.** GL(V) - группа невырожденных линейных операторов векторного пространства  $V:GL(V)\leq S(V)$ .

**Определение.** Пусть G - произвольная группа, X - произвольное множество. Действием группы G на множестве X называется гомоморфизм  $\alpha: G \to S(X)$ . Обозначается  $G \curvearrowright X$  (или G: H)

Элементы множества X при этом называются точками.

 $\forall g \in G : g \mapsto \alpha(g)$  - преобразование множества X, т.е. биекция  $X \to X$ . Равенство  $\alpha(g)(x) = y \in X$ ) записывают как  $\alpha(g)x = y$  или gx = y.

Так как  $\alpha$  - гомоморфизм, имеем:

$$\forall g_1, g_2 \in G : \alpha(g_1g_2) = \alpha(g_1)\alpha(g_2) \Longrightarrow \alpha(g_1g_2)x = (\alpha(g_1)\alpha(g_2))x = \alpha(g_1)(\alpha(g_2)x)$$

Отсюда  $(g_1g_2)x = g_1(g_2x)$ . Аналогично:

$$\forall g \in G : \alpha(g^{-1}) = (\alpha(g))^{-1} \Longrightarrow \alpha(g^{-1})x = (\alpha(g)x)^{-1}$$

Отсюда  $g^{-1}x = y \iff gy = x$ .

Если  $H \leq S(X)$ , то определено "тавтологическое" действие H на  $X:\alpha(h)=h$  - вложение  $H \to S(X)$ .

Пример.  $GL(V) \curvearrowright V$ :  $\alpha(g)x = x \ \forall g \in G, x \in X$ 

В общем случае:  $\alpha G \to S(X)$  - гомоморфизм, то есть Im  $\alpha \leq S(X)$ , Ker  $\alpha \leq G$ .

**Определение.** Кег  $\alpha$  называется ядром неэффективности действия группы G на X.

Если Ker  $\alpha = \{e\}$ , то действие называется эффективным.

 $\it Замечание.$  Всякое действие группы  $\it G$  на множестве  $\it X$  индуцирует и другие действия. Например:

- 1.  $G \curvearrowright 2^X$ ;
- 2. Если  $Y \subset X$  инвариантное подмножество относительно G, то  $G \curvearrowright Y$ .

**Пример.** Пусть K - равносторонний треугольник,  $G = \mathrm{Sym}\ K \leq S(X)$ , где X - множество точек треугольника.

Тогда если  $Y = \{v_1, v_2, v_3\}$  - вершины треугольника, а  $Z = \{e_1, e_2, e_3\}$  - стороны треугольника, то действие  $G \curvearrowright X$  индуцирует также и действия  $G \curvearrowright Y, G \curvearrowright Z$ 

**Пример.** Пусть задано  $G \curvearrowright X$ ,  $\mathbb{F}$  - поле,  $Y = \{f : X \to \mathbb{F}\}$  - алгебра всех функций  $X \to \mathbb{F}$ . Рассмотрим  $\alpha : G \to S(Y) : \forall g \in G \ \alpha(g)f = \tilde{f}$  такое, что  $\tilde{f}(x) = f(g^{-1}x) \ \forall x \in X$ . Покажем, что  $\alpha$  - гомоморфизм:

$$\forall g_1, g_2 \in G: \ (\alpha(g_1g_2)f)(x) = f((g_1g_2)^{-1}(x)) = f(g_2^{-1}(g_1^{-1}x)) = (\alpha(g_2)f)(g_1^{-1}x) =$$
$$= \alpha(g_1)(\alpha(g_2)f)(x) = (\alpha(g_1)\alpha(g_2)f)(x)$$

3амечание. Если  $G \curvearrowright X, H \le G$ , то определено также действие  $H \curvearrowright X$  - ограничение действия на подгруппу.

**Пример.**  $G=S_3\curvearrowright X$ , где  $X=\{1,2,3\}$  - действуют как подстановки.  $H=\langle (1,2,3)\rangle \leq G$  - определено действие  $H\curvearrowright X$  как ограничение  $G\curvearrowright X$ .

### 5.1 Орбиты и стабилизаторы

**Утверждение.** Отношение, заданное правилом  $x \sim y \iff \exists g \in G : gx = y$ , является отношением эквивалентности.

Доказательство.

- Рефлексивность:  $\forall x \in X : ex = x \Longrightarrow x \sim x;$
- Симметричность:

$$x \sim y \Longrightarrow \exists g \in G : gx = y \Longrightarrow g^{-1}gx = g^{-1}y \Longrightarrow g^{-1}y = x \Longrightarrow y \sim x$$

• Транзитивность:

$$\begin{cases} x \sim y \\ y \sim z \end{cases} \implies \exists g_1, g_2 \in G : \begin{cases} y = g_1 x \\ z = g_2 y \end{cases} \implies z = g_2(g_1 x) = (g_2 g_1) x \implies x \sim z$$

**Определение.** Классы эквивалентности относительно этого отношения называются орбитами относительно действия  $G \curvearrowright X$ .

Обозначается  $Orb(x) = \{y \in X \mid \exists g \in G : y = gx\}$ 

**Пример.** Пусть G - группа поворотов плоскости  $\mathcal{E}^2$  вокруг точки o. Тогда при  $G \curvearrowright E^2$  Orb(x) - окружность с центром в точке o радиуса |ox|.

**Определение.** Если  $Orb(x) = \{x\}$ , то x называется неподвижной точкой.

**Определение.** Если  $\operatorname{Orb}(x) = X$ , то действие называется транзитивным.

3амечание. Это именно характеристка действия, так как  $\exists x: \mathrm{Orb}(x) = X \Rightarrow \forall x \in X \ \mathrm{Orb}(x) = X.$ 

**Пример.** G - группа сдвигов (параллельных переносов)  $\mathcal{E}^2$ .

Тогда  $G \curvearrowright \mathcal{E}^2$  - транзитивное (из любой точки можно получить любую другую сдвигом на вектор, их соединяющий).

**Утверждение.**  $Ecnu\ y \in \mathrm{Orb}(x),\ mo\ \mathrm{Orb}(y) = \mathrm{Orb}(x).$ 

Доказательство. Напрямую следует из определения орбиты.

**Определение.** Стабилизатором (стационарной подгруппой) точки x называется множество  $\mathrm{St}(x) = \{g \in G \mid gx = x\}.$ 

**Утверждение.**  $St(x) \leq G$ .

Доказательство.

- $g_1, g_2 \in St(x) \Longrightarrow g_1x = g_2x = x$  $(g_1g_2)x = g_1(g_2x) = g_1x = x \Longrightarrow g_1g_2 \in St(x);$
- $ex = x \Longrightarrow e \in St(x)$ ;
- Пусть  $g \in St(x)$ . Тогда g(x) = x, а также  $g(g^{-1}x) = ex = x$ . Так как образ g при действии биекция, имеем  $x = g^{-1}x$ , то есть  $g^{-1} \in St(x)$

**Утверждение.** Если y = gx, то множество  $M_y = \{h \in G \mid y = hx\}$  совпадает с множеством gSt(x).

Доказательство. Покажем оба включения:

 $g\mathrm{St}(x)\subset M_y: \ \ \forall \tilde{g}\in\mathrm{St}(x): \ \tilde{g}=g\cdot g',$  где  $g'\in\mathrm{St}(x).$  Тогда:  $\tilde{g}x=(gg')x=g(g'x)=gx=y\Longrightarrow \tilde{g}\in M_y.$  Отсюда  $g\mathrm{St}(x)\subset M_y.$ 

$$M_y\subset g\mathrm{St}(x):\ \, \forall h\in M_y:\ y=hx.$$
 Также  $y=gx\Longrightarrow gx=hx\Longrightarrow (g^{-1}h)x=g^{-1}(hx)=x\Longrightarrow g^{-1}h\in \mathrm{St}(x)\Longrightarrow h\in g\mathrm{St}(x).$  Отсюда  $M_y\subset g\mathrm{St}(x).$ 

**Теорема.** Отображение  $\psi: \operatorname{Orb}(x) \to G/\operatorname{St}(x)$  (множество левых смежных классов, не факторгруппа!) такое, что  $gx \mapsto g\operatorname{St}(x)$ , является биекцией.

Доказательство.

• Корректность: Пусть  $y = g_1 x = g_2 x$ . Тогда:

$$g_1x = g_2x \Longrightarrow g_2^{-1}(g_1x) = (g_2^{-1}g_1)x = x \Longrightarrow g_2^{-1}g_1 \in \operatorname{St}(x) \Longrightarrow$$
  
 $\Longrightarrow g_1 \in g_2\operatorname{St}(x) \Longrightarrow g_1\operatorname{St}(x) = g_2\operatorname{St}(x) \Longrightarrow \psi(g_1x) = \psi(g_2x)$ 

- Сюръективность очевидна ( $\forall g \in G \ g\mathrm{St}(x)$  будет образом точки gx);
- Инъективность: Пусть  $\psi(g_1) = \psi(g_2)$ . Тогда:

$$g_1 \operatorname{St}(x) = g_2 \operatorname{St}(x) \Longrightarrow g_2^{-1} g_1 \in \operatorname{St}(x) \Longrightarrow (g_2^{-1} g_1) x = x \Longrightarrow g_1 x = g_2 x$$

Следствие 1. |Orb(x)| = |G/St(x)| = |G:St(x)|.

Следствие 2. Если G - конечная группа, то  $|\operatorname{Orb}(x)| = \frac{|G|}{|\operatorname{St}(x)|}$ .

**Пример.** Пусть  $K \in \mathcal{E}^3$  - куб,  $G = \operatorname{Sym}^+(K) = \{g \in \operatorname{Isom}^+(\mathcal{E}^3) \mid gK = K\}$  - группа вращений K.

Найдём |G|. Так как  $G \leq S(X)$ , где  $X = \{v_1, ..., v_8\}$  - множество вершин куба,  $|G| < \infty$ . Значит, если рассмотреть индуцированное действие  $G \curvearrowright X$ , то  $|G| = |\operatorname{Orb}(v_1)| \cdot |\operatorname{St}(v_1)|$ .

 $Orb(v_1) = X$  (вершина может перейти в любую)  $\Longrightarrow |Orb(v_1)| = 8$ ;

 $|St(v_1)| = 3$  (id и два поворота вокруг большой диагонали, содержащей  $v_1$ ); Отсюда  $|G| = 8 \cdot 3 = 24$ .

Более того, покажем, что  $G \simeq S_4$ . Рассмотрим множество диагоналей куба  $Y = \{d_1, d_2, d_3, d_4\}$ . Так как при собственном движении диагонали переходят в диагонали, можем рассмотреть действие  $G \curvearrowright Y \Longrightarrow \exists \alpha: G \to S(Y) \simeq S_4$  -

гомоморфизм. Из  $|G| = |S_4| = 24$  для доказательства того, что  $\alpha$  - изоморфизм, достаточно показать сюръективность, а для этого достаточно показать, что все транспозиции диагоналей можно получить вращениями (достаточно, т.к.  $S_4$  порождается транспозициями, а Im  $\alpha \leq S(Y)$ ).

Такая транспозиция - это поворот на  $\pi$  относительно прямой, проходящей через середины двух рёбер, соединяющих концы диагоналей.

**Упражнение.** Доказать, что если L - правильный тетраэдр, то  $\mathrm{Sym}(L) \simeq S_4$ .

Доказательство. Будем действовать аналогично - пусть  $X = \{v_1, ..., v_4\}$  - множество вершин тетраэдра, тогда действие  $\mathrm{Sym}(L) \curvearrowright E^3$  индуцирует действие  $\mathrm{Sym}(L) \curvearrowright X$ , а отсюда  $|\mathrm{Sym}(L)| = |\mathrm{Orb}(v_1)| \cdot |\mathrm{St}(v_1)|$ .

 $\operatorname{Orb}(v_1) = X$  (вершина может перейти в любую)  $\Longrightarrow |\operatorname{Orb}(v_1)| = 4$ ;

 $|St(v_1)| = 6$  (любые перестановки вершин на грани, не содержащей  $v_1$ );

(проверка существования всех этих движений непосредственная)

Отсюда  $|G| = 4 \cdot 6 = 24$ .

Так как  $S(X) \simeq S_4$ , достаточно показать, что гомоморфизм действия - изоморфизм, а из равенства порядков достаточно сюръективности. Транспозиция любых двух вершин может быть получена симметрией относительно плоскости, проходящей через середину ребра, соединяющего вершины, и противоположное ребро.

**Определение.** Элементы  $a,b \in G$  называются сопряжёнными, если  $\exists g \in G$  такой, что  $b = g^{-1}ag$ . Обозначается  $b = a^g$ .

Замечание. Такое обозначение не случайно: многие свойства возведения в степень присущи и оперции сопряжения. Однако в данном курсе эти свойства пока не понадобятся.

**Определение.** Подгруппы  $L, K \leq G$  называются сопряжёнными, если  $\exists g \in G$  такой, что  $K = g^{-1}Lg = \{g^{-1}lg \mid l \in L\}.$ 

Утверждение. Пусть y = qx. Тогда  $qSt(x)q^{-1} = St(y)$ .

Доказательство.

•  $g\operatorname{St}(x)g^{-1} \stackrel{?}{\subseteq} \operatorname{St}(y)$ :  $\forall h \in \operatorname{St}(x) : ghg^{-1}(y) = ghg^{-1}(gx) = gh(g^{-1}g)x = ghx = gx = y \Longrightarrow ghg^{-1} \in \operatorname{St}(y)$ ; •  $\operatorname{St}(y) \stackrel{?}{\subseteq} g\operatorname{St}(x)g^{-1}$ : (аналогичные рассуждения, т.к.  $y = gx \Longleftrightarrow x = g^{-1}y$ )  $\forall h \in \operatorname{St}(y) : g^{-1}hg(x) = g^{-1}hg(g^{-1}y) = g^{-1}h(gg^{-1})y = g^{-1}hy = g^{-1}y = x \Longrightarrow g^{-1}hg \in \operatorname{St}(x) \Longrightarrow h \in g\operatorname{St}(x)g^{-1}$ .

## 5.2 Действия группы на себе

Пусть G - группа, X=G. Рассмотрим основные действия  $G\curvearrowright G$  и покажем некоторые их свойства:

1. Действие  $G \curvearrowright G$  левыми сдвигами:

 $\alpha:G\to S(G)$  такое, что  $\forall g\in G,h\in G:\ \alpha(g)h=gh.$ 

Покажем, что  $\alpha$  - гомоморфизм:

$$\forall g_1, g_2 \in G: \ \alpha(g_1g_2)h = (g_1g_2)h = g_1(g_2h) = \alpha(g_1)(\alpha(g_2)h) = (\alpha(g_1)\alpha(g_2))h$$

 $g\in {
m Ker}\ \alpha\Longrightarrow \forall h\in G:\ gh=h\Longrightarrow g=e\Longrightarrow {
m Ker}\ \alpha=\{e\}$  - действие эффективно.

Значит, по теореме о гомоморфизме  $G \simeq \operatorname{Im} \alpha \leq S(G)$ .

Следствие. (Теорема Кэли)

Пусть |G|=n. Тогда G изоморфна некоторой подгруппе  $S_n$ .

Доказательство. Рассмотрим гомоморфизм  $\alpha: G \to S(G)$ , приведённый выше. Тогда  $G \simeq \operatorname{Im} \alpha \leq S(G) \simeq S_n$ , т.к. |G| = n.

2. Действие  $G \curvearrowright G$  правыми сдвигами:

 $\alpha: G \to S(G)$  такое, что  $\forall g \in G, h \in G: \alpha(g)h = hg^{-1}$ .

Покажем, что  $\alpha$  - гомоморфизм:

$$\forall g_1, g_2 \in G: \ \alpha(g_1g_2)h = hg_2^{-1}g_1^{-1} = \alpha(g_1)(hg_2^{-1}) = (\alpha(g_1)\alpha(g_2))h$$

 $g\in {
m Ker}\ \alpha\Longrightarrow \forall h\in G:\ hg^{-1}=h\Longrightarrow g=e\Longrightarrow {
m Ker}\ \alpha=\{e\}$  - действие эффективно.

3. Действие  $G \curvearrowright G$  сопряжениями:

 $\alpha: G \to S(G)$  takoe, что  $\forall q \in G, h \in G: \alpha(q)h = qhq^{-1}$ .

Покажем, что  $\alpha$  - гомоморфизм:

$$\forall g_1, g_2 \in G: \ \alpha(g_1g_2)h = (g_1g_2)h(g_1g_2)^{-1} = g_1(g_2hg_2^{-1})g_1^{-1} = \alpha(g_1)(\alpha(g_2)h)$$

**Утверждение.**  $\forall g \in G: \ \alpha(g): G \to G$  - автоморфизм, т.е. изоморфизм G на себя.

Доказательство. Биективность  $\alpha(g)$  следует из  $\alpha(g) \in S(G)$ . Докажем, что  $\alpha(g)$  - гомоморфизм:

$$\alpha(g)(h_1h_2) = gh_1h_2g^{-1} = (gh_1g^{-1})(gh_2g^{-1}) = (\alpha(g)h_1)(\alpha(g)h_2)$$

Значит,  $\alpha(g)$  - автоморфизм G.

**Определение.** Такой автоморфизм называется внутренним автоморфизмом группы G (относительно элемента g).

#### Утверждение.

- 1. Множество Aut G всех автоморфизмов группы G группа относительно композиции, причём Aut  $G \leq S(G)$ .
- 2. Множество Int G всех внутренних автоморфизмов группы G группа относительно композиции, причём Int  $G \unlhd \operatorname{Aut} G$ .

#### Доказательство.

- 1. Достаточно проверить, что Aut  $G \leq S(G)$ :
  - $\alpha_1, \alpha_2 \in \text{Aut } G \Longrightarrow (\alpha_1 \alpha_2) \in \text{Aut } G$ ;
  - $id \in Aut G$ :
  - $\alpha \in \text{Aut } G \Longrightarrow \alpha^{-1} \in \text{Aut } G$  (изоморфизм обратим).
- 2. Для определения группы достаточно проверить, что Int  $G \leq \operatorname{Aut} G$ :
  - $\alpha_1, \alpha_2 \in \text{Int } G \Longrightarrow \exists g_1, g_2 \in G : \alpha_i$  сопряжение относительно  $g_i$ . Тогда  $(\alpha_1 \alpha_2)$  сопряжение относительно  $g_1 g_2$ , т.е.  $(\alpha_1 \alpha_2) \in \text{Aut } G$ ;
  - $id \in Int G$  сопряжение относительно e;
  - $\alpha\in {\rm Int}\ G\Longrightarrow \alpha$  сопряжение относительно  $g\in G\Longrightarrow \alpha^{-1}$  сопряжение относительно  $g^{-1}\Longrightarrow \alpha^{-1}\in {\rm Aut}\ G.$

Проверим, что Int  $G \subseteq \text{Aut } G$ , т.е.  $\forall \varphi \in \text{Aut } G$ ,  $g \in G : \varphi \alpha(g) \varphi^{-1} \in \text{Int } G$ :

$$(\varphi \alpha(g)\varphi^{-1})(h) = \varphi(\alpha(g)(\varphi^{-1}(h))) = \varphi(g\varphi^{-1}(h)g^{-1}) = \varphi(g)\varphi(\varphi^{-1}(h))\varphi(g^{-1})$$
$$= \varphi(g)h(\varphi(g))^{-1} = \alpha(\varphi(g))(h) \Longrightarrow \varphi\alpha(g)\varphi^{-1} = \alpha(\varphi(g)) \in \text{Int } G$$

**Определение.** Aut G называется группой аутизмов<sub>1</sub> группы G. Int G называется группой внутренних автоморфизмов группы G.

Пусть  $\alpha$  - действие  $G \curvearrowright G$  сопряжениями. Тогда  $\ker \alpha = \{g \in G \mid \alpha(g)h = h \ \forall h \in G\} = \{g \in G \mid ghg^{-1} = h \ \forall h \in G\} = \{g \in G \mid gh = hg \ \forall h \in G\}, \text{ a Im } \alpha = \operatorname{Int} G.$ 

П

**Определение.** Множество  $Z(G) = \{g \in G \mid gh = hg \ \forall h \in G\}$  называется центром группы G.

#### Свойства.

- 1.  $Z(G)={
  m Ker}\ lpha,\ 
  ho de lpha$  действие  $G \curvearrowright G$  сопряжениями;
- 2.  $Z(G) \leq G$ ;
- 3.  $\forall H \leq Z(G): H \trianglelefteq G;$
- 4.  $Z(G) = G \Longleftrightarrow G$  абелева

Доказательство.

- 1. Доказано выше;
- 2. Следует из (1) (Ker  $\alpha \leq G$  свойство гомоморфизма);
- 3.  $\forall h \in H \leq Z(G), g \in G : ghg^{-1} = gg^{-1}h = h \in H \Longrightarrow H \leq G;$
- 4. Очевидно из определения абелевой группы.

## 5.3 Классы сопряжённости и централизаторы

**Определение.** Пусть  $\alpha$  - действие  $G \curvearrowright G$  сопряжениями.

Классом сопряжённости  $x \in G$  называется орбита x относительно  $\alpha$ .

Централизатором элемента  $x \in G$  называется стабилизатор x относительно  $\alpha$ . Класс сопряжённости обозначается как  $x^G = \{y \in G \mid \exists g \in G : y = gxg^{-1}\}.$ 

Централизатор обозначается как  $C(x) = \{g \in G \mid gxg^{-1} = x\}.$ 

Утверждение 1.  $E c \pi u |G| < \infty, \ mo \ |x^G| = \frac{|G|}{|C(x)|}.$ 

Доказательство. Очевидно следует из утверждения  $|\operatorname{Orb}(x)| = \frac{|G|}{|\operatorname{St}(x)|}$ .

Утверждение 2.  $x^G = \{x\} \iff x \in Z(G)$ .

Доказательство. Очевидно следует из свойства 1 центра группы.

**Определение.** Группа G называется тривиальной, если  $G = \{e\}$ .

**Теорема.** Центр любой конечной нетривиальной p-группы нетривиален (p - npocmoe).

Доказательство. Пусть  $|G|=p^s$ . Рассмотрим случаи:

- 1. G абелева  $\Longrightarrow Z(G) = G$ .
- 2. G неабелева. Тогда G разбивается на несколько непересекающихся классов сопряжённости:  $G = \bigsqcup_{i=1}^k x_i^G$ .

По утверждению  $2 |x_i^G| = 1 \iff x_i \in Z(G)$ , а по утверждению  $1 |x_i^G| = \frac{|G|}{C(x_i)}$  Так как G - p-группа, для  $x_i \notin Z(G)$  :  $|x_i^G| = p^{s_i}$ ,  $s_i \geqslant 1$ .

Без ограничения общности пусть только  $x_1, ..., x_m \in Z(G)$  (всегда будет хотя бы один, так как  $e \in (G)$ ). Тогда:

$$|G| = \underbrace{|x_1^G| + \ldots + |x_m^G|}_{|Z(G)|} + |x_{m+1}^G| + \ldots + |x_k^G| \Longrightarrow p^s = |Z(G)| + p^{s_{m+1}} + \ldots + p^{s_k}$$

Отсюда  $p \mid |Z(G)|$ , а значит,  $|Z(G)| \geqslant p > 1$  - центр нетривиален.

3 a m e v a n u e.  $\exists$  бесконечная (конечнопорождённая) p-группа с тривиальным центром (монстр Тарского).

Следствие.  $Ecnu |G| = p^2$ , где p - npocmoe, то G - abeneba.

Доказательство. G - p-группа  $\Longrightarrow Z(G) \neq \{e\}$ .

Предположим, что G неабелева, т.е. что  $Z(G) \neq G$ .

Тогда, так как  $|Z(G)| \mid |G| = p^2$  и  $|Z(G)| \neq 1, p^2$ , имеем |Z(G)| = p.

Рассмотрим группу G/Z(G). Её порядок равен  $\frac{|G|}{|Z(G)|} = \frac{p^2}{p} = p \Longrightarrow G/Z(G)$  - циклическая, а значит,  $G/Z(G) = \langle aZ(G) \rangle$ . Тогда  $\forall g \in G \; \exists t \in \mathbb{Z} : g \in a^t Z(G)$ .

Рассмотрим два произвольных элемента  $g_1, g_2 \in G$  и докажем, что  $g_1g_2 = g_2g_1$ :

$$\exists t_1, t_2 \in \mathbb{Z} : g_1 = a^{t_1}Z(G), g_2 = a^{t_2}Z(G) \Longrightarrow \exists z_1, z_2 \in Z(G) : g_1 = a^{t_1}z_1, g_2 = a^{t_2}z_2$$

Так как элементы центра коммутируют со всеми элементами G, имеем:

$$g_1g_2 = a^{t_1}z_1a^{t_2}z_2 = a^{t_1+t_2}z_1z_2 = a^{t_2+t_1}z_2z_1 = a^{t_2}z_2a^{t_1}z_1 = g_2g_1$$

а значит, G - абелева, что противоречит предположению.

Отсюда G не может быть неабелевой, т.е. G - абелева.

**Лемма 1.** Пусть X - произвольное множество,  $G \leq S(X)$ . Тогда если  $\varphi \in G$  т.ч.  $\varphi : x \mapsto y$ , то  $\forall \psi \in G : \psi \circ \varphi \circ \psi^{-1} : \psi(x) \mapsto \psi(y)$ .

Доказательство. Применим преобразование  $\psi \circ \varphi \circ \psi^{-1}$ :

$$(\psi \circ \varphi \circ \psi^{-1})(\psi(x)) = \psi(\varphi(\psi^{-1}(\psi(x)))) = \psi(\varphi(x)) = \psi(y)$$

**Утверждение 3.** Пусть  $\sigma, \tilde{\sigma} \in S_n$ . Тогда  $\sigma, \tilde{\sigma}$  сопряжены в  $S_n \iff \sigma, \tilde{\sigma}$  имеют одинаковые цикловые структуры, т.е. наборы длин независимых циклов в разложении  $\sigma, \tilde{\sigma}$  совпадают.

Доказательство.

 $\Longrightarrow$ : Пусть  $\sigma$ ,  $\tilde{\sigma}$  сопряжены в  $S_n \Longrightarrow \exists \tau \in S_n : \tilde{\sigma} = \tau \sigma \tau^{-1}$ .

Пусть  $\sigma = (i_1 i_2 ... i_s)(j_1 j_2 ... j_t)...$  - разложение  $\sigma$  в независимые циклы. Тогда  $\sigma: i_1 \mapsto i_2, i_2 \mapsto i_3, ..., i_s \mapsto i_1$ , а тогда по лемме 1  $\tau \sigma \tau^{-1}: \tau(i_1) \mapsto \tau(i_2), \tau(i_2) \mapsto \tau(i_3), ..., \tau(i_s) \mapsto \tau(i_1)$ . Аналогичное рассуждение можно провести для всех независимых циклов  $\sigma$ , а значит,  $\tau \sigma \tau^{-1} = (\tau(i_1)\tau(i_2)...\tau(i_s))(\tau(j_1)\tau(j_2)...\tau(j_t))...$  - длины циклов сохраняются.

 $\Leftarrow$ : Пусть  $\sigma$ ,  $\tilde{\sigma}$  имеют одинаковые цикловые структуры. Можем поменять порядок циклов так, чтобы длины i-х циклов в  $\sigma$  и  $\tilde{\sigma}$  совпадали, т.е.

$$\sigma = (i_1 i_2 \dots i_s)(j_1 j_2 \dots j_t) \dots; \quad \tilde{\sigma} = (\tilde{i}_1 \tilde{i}_2 \dots \tilde{i}_s)(\tilde{j}_1 \tilde{j}_2 \dots \tilde{j}_t) \dots$$

Тогда если 
$$\tau = \begin{pmatrix} i_1 & i_2 & \dots & i_s & j_1 & j_2 & \dots & j_t & \dots \\ \tilde{i}_1 & \tilde{i}_2 & \dots & \tilde{i}_s & \tilde{j}_1 & \tilde{j}_2 & \dots & \tilde{j}_t & \dots \end{pmatrix}$$
, то по лемме 1  $\tilde{\sigma} = \tau \sigma \tau^{-1}$ .  $\square$ 

Примеры.  $\sigma=(12)(345)(6)(7), \tilde{\sigma}=(15)(243)(6)(7)$  - сопряжены в  $S_7$ :

$$au = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 5 & 2 & 4 & 3 & 6 & 7 \end{pmatrix}$$
 (из построения в теореме);  $\sigma = (123)(45), \tau = (135) \Longrightarrow \tau \sigma \tau^{-1} = (325)(41).$ 

Следствие.  $Z(S_n) = \{ id \} \ npu \ n \leq 3.$ 

Доказательство. Допустим, что в Z(G) есть  $\sigma \neq \mathrm{id}$ . Разложим в независимые циклы:  $\sigma = (ij...)...$  Так как  $n \geqslant 3, \exists k \neq i, j$ . Тогда при  $\tau = (jk)$ :  $\tau \sigma \tau^{-1} = (ik...)...$  - не совпадёт с  $\sigma$   $(\tau \sigma \tau^{-1}(i) \neq \sigma(i))$  - противоречие.

**Упражнение.** Докажите, что  $Z(A_n) = \{ id \}$  при  $n \geqslant 4$ .

Доказательство. Допустим, что в Z(G) есть  $\sigma \neq \mathrm{id}$ . Разложим в независимые циклы:  $\sigma = (ij...)...$  Так как  $n \geqslant 4, \exists k, l: k, l, i, j$  попарно различны. Тогда при  $\tau = (jkl): \ \tau \sigma \tau^{-1} = (ik...)...$  - не совпадёт с  $\sigma \ (\tau \sigma \tau^{-1}(i) \neq \sigma(i))$ - противоречие.

Утверждение.

$$H \unlhd G \Longleftrightarrow egin{cases} H \leq G \\ H \text{ - объединение нескольких классов сопряжённости } G \end{cases}$$

Доказательство.

 $\Longrightarrow$ : Пусть  $H \subseteq G$ . Очевидно, что  $H \subseteq G$ .

Если  $h \in H$ , то  $\forall g \in G \ ghg^{-1} \in H$  - H содержит классы сопряжённости всех её элементов  $\Longrightarrow H = \bigcup h^G$ .

 $\iff$ : Пусть  $H \leq \overset{h \in H}{G}$  и H - объединение классов сопряжённости. Тогда  $\forall h \in H, g \in G: ghg^{-1} \in H$  (H содержит весь класс сопряжённости  $h^G$ )  $\implies H \trianglelefteq G$ .

# 6 Теоремы Силова

Пусть G - конечная группа,  $|G|=p^s\cdot m$ , где p - простое, (p,m)=1.

**Определение.** Подгруппа  $H \leq G$  называется силовской p-подгруппой, если  $|H| = p^s$ .

Замечание. Несложно видеть, что определение корректно: если H - силовская p-подгруппа, то H - p-подгруппа; более того, это доказано в упражнении п. 4.4

**Теорема 1.** (Первая теорема Силова - о существовании) Силовская р-подгруппа существует.

Замечание. Напомним, что более общее утверждение  $k \mid |G| \Longrightarrow \exists H \leq G:$  |H| = k неверно - в  $A_4$  нет подгруппы порядка 6.

**Теорема 2.** (Вторая теорема Силова - о сопряжённости) Любая p-подгруппа лежит в некоторой силовской p-подгруппе. Все силовские p-подгруппы сопряжены.

**Теорема 3.** (Третья теорема Силова - о количестве) Пусть  $N_p$  - число силовских p-подгрупп в G. Тогда  $\begin{cases} N_p \equiv 1 \pmod{p} \\ N_p \mid m \end{cases}$ 

#### Примеры.

- 1.  $G = S_3, |G| = 6 = 2 \cdot 3$ . Силовские 2-подгруппы:  $\langle (12) \rangle, \langle (13) \rangle, \langle (23) \rangle$ .
- 2.  $G = S_4$ ,  $|G| = 24 = 2^3 \cdot 3$ . Найдём силовские 2-подгруппы: Доказывалось, что  $S_4 \simeq \mathrm{Sym}^+ K$  группа вращений куба. Можем рассмотреть сечение куба плоскостью, параллельной некоторой паре противоположных граней вращения, оставляющие квадрат сечения на месте, образуют подгруппу, очевидно изоморфную  $D_4$  (по определению  $D_4$ ). Такая подгруппа будет иметь порядок 8, и таких подгрупп будет 3 столько же, сколько пар противоположных граней по III теореме Силова это все силовские p-подгруппы в G.

## 6.1 І теорема Силова

Пусть G - группа,  $|G|=p^sm$ , где p - простое, (p,m)=1. Тогда  $\exists$  силовская p-подгруппа в G.

Доказательство. Рассмотрим случаи:

- 1. G абелева  $\Longrightarrow G \simeq \langle a_1 \rangle_{p_1^{s_1}} \times ... \times \langle a_k \rangle_{p_k^{s_k}}$ . Без ограничения общности  $p_1 = ... = p_t = p, \ p_{t+1}, ..., p_k \neq p$ . Тогда  $H \simeq \langle a_1 \rangle_{p^{s_1}} \times ... \times \langle a_t \rangle_{p^{s_t}}$  искомая силовская p-подгруппа: очевидно, что H является p-подгруппой, а также  $p^s m = |G| = |H| \cdot |G/H|$ , где  $p \nmid |G/H| \Longrightarrow p^s \mid |H| \Longrightarrow |H| = p^s$ .
- 2. Общий случай (G неабелева). Индукция по |G|:

База: n = 1 - очевидно;

Шаг: Пусть  $G = Z(G) \sqcup x_1^G \sqcup ... \sqcup x_k^G$  - разложение G на классы сопряжённости, где  $x_i \notin Z(G)$ , то есть  $|x_i^G| > 1$ . Вновь рассмотрим случаи:

- (а)  $\exists i = \overline{1,...,k} : p \nmid |x_i^G|$ . Знаем, что  $|C(x_i)| = \frac{|G|}{|x_i^G|}$ . По предположению индукции в  $C(x_i)$   $\exists$  силовская p-подгруппа  $H \Longrightarrow |H| = p^s$  (так как степень вхождения p в порядок группы не уменьшилась), т.е. H силовская p-подгруппа и для G;
- (b)  $\forall i=\overline{1,...,k}: p\mid |x_i^G|$ . Тогда  $p\mid Z(G)\Longrightarrow |Z(G)|=p^{s_0}m_0\;((p,m_0)=1)$ . Так как Z(G) абелева, по 1 случаю  $\exists$  силовская p-подгруппа  $S_0\leq Z(G),\; |S_0|=p^{s_0}$ .

По свойству центра  $S_0 \leq Z(G) \Longrightarrow S_0 \leq G$  - можем рассмотреть  $G/S_0$ . Так как  $|G/S_0| < |G|$ , по предположению индукции  $\exists$  силовская p-подгруппа  $S \leq G/S_0$ .  $|G/S_0| = p^{s-s_0}m \Longrightarrow |S| = p^{s-s_0}$ 

Рассмотрим натуральный гомоморфизм  $\pi: G \to G/S_0$ , и  $\tilde{S} = \pi^{-1}(S)$  - полный прообраз S при этом гомоморфизме.

 $S_0 \subset \tilde{S}$ , так как  $\forall s_0 \in S_0 : \pi(s_0) = eS_0$ , причём  $S_0 \unlhd G \Longrightarrow S_0 \unlhd \tilde{S}$ , т.е. можем рассмотреть ограничение  $\pi|_{\tilde{S}} : \tilde{S} \to \tilde{S}/S_0$ .  $\pi|_{\tilde{S}}$  - натуральный гомоморфизм с ядром  $S_0$  и образом  $\pi(\tilde{S}) = S$ .

Натуральный гомоморфизм сюръективен, а отсюда по теореме о гомоморфизме  $|\tilde{S}|=|S_0|\cdot |S|=p^{s_0}\cdot p^{s-s_0}=p^s\Longrightarrow \tilde{S}$  - искомая силовская p-подгруппа G.

# 6.2 II теорема Силова

Пусть G - группа,  $|G| = p^s m$ , где p - простое, (p, m) = 1.

Тогда любая p-подгруппа группы G лежит в некоторой силовской p-подгруппе. Все силовские p-подгруппы группы G сопряжены.

Доказательство. Пусть  $|G| = p^s m$ , где p - простое, (p, m) = 1.

По I теореме Силова  $\exists$  силовская p-подгруппа  $S \leq G$ . Рассмотрим  $H \leq G$  произвольную нетривиальную p-подгруппу (случай  $H = \{e\}$  очевиден).

Рассмотрим множество  $X = \{g_1S, ..., g_mS\}$  смежных классов G по S и действие  $H \curvearrowright X$ , заданное по правилу  $\alpha(h)g_iS = hg_iS$ .

$$|\operatorname{Orb}(g_i S)| \mid |H| \Longrightarrow \begin{vmatrix} |\operatorname{Orb}(g_i S)| = 1 \\ p \mid |\operatorname{Orb}(g_i S)| \end{vmatrix}$$

 $|\operatorname{Orb}(g_iS)| \mid |H| \Longrightarrow \begin{bmatrix} |\operatorname{Orb}(g_iS)| = 1 \\ p \mid |\operatorname{Orb}(g_iS)| \end{bmatrix}.$  Предположим, что  $\forall i = \overline{1,...,m} : p \mid |\operatorname{Orb}(g_iS)|$ . Тогда  $p \mid \sum_i |\operatorname{Orb}(g_iS)| = |X|$ .

Однако |X| = m - взаимно просто с p. Противоречие.

Отсюда  $\exists i = \overline{1,...,m} : |\operatorname{Orb}(g_i S)| = 1$ , т.е. точка  $g_i S$  неподвижна при  $H \curvearrowright X$ . Значит,  $\forall h \in H \ hg_iS = g_iS \Longrightarrow h \in g_iSg_i^{-1} \Longrightarrow H \leq g_iSg_i^{-1}$ . Так как  $|g_iSg_i^{-1}| =$  $|S|,\ g_i S g_i^{-1}$  - силовская p-подгруппа, т.е. H лежит в силовской p-подгруппе G.

Заметим, что в доказательстве выше подгруппа S зафиксирована.

Если рассмотреть H - произвольную силовскую p-подгруппу G, то  $|H| = p^s$ . Так как  $H \leq g_i S g_i^{-1}, \ |g_i S g_i^{-1}| = p^s \Longrightarrow H = g_i S g_i^{-1}$  - любая силовская p-подгруппа сопряжена с S. Значит, все силовские p-подгруппы сопряжены.

Следствие. Пусть  $|G| < \infty$ . Тогда G - p-группа  $\iff |G| = p^s (s \in \mathbb{N})$ .

Доказательство.

⇐ - доказано ранее;

Пусть  $|G| = p^s m, (p, m) = 1$ . По I теореме Силова  $\exists$  силовская pподгруппа в G (порядка  $p^s$ ), а по II теореме Силова G как своя p-подгруппа содержится в своей силовской p-подгруппе. Значит,  $|G| \mid p^s$ , а отсюда  $|G| = p^s$ .  $\square$ 

#### 6.3 Нормализатор. III теорема Силова

Пусть G - группа,  $H \le G, X = \{gHg^{-1} \mid g \in G\}.$ Рассмотрим действие  $G \curvearrowright X : \alpha(\tilde{g})(gHg^{-1}) = \tilde{g}(gHg^{-1})\tilde{g}^{-1}$ Для точки  $H \in X$ : Orb(H) = X,  $St(H) = \{\tilde{g} \in G \mid \tilde{g}H\tilde{g}^{-1} = H\} \le G$ 

**Определение.** Стабилизатор H относительно этого действия называется нормализатором группы H. Обозначается  $N_G(H)$ .

Утверждение 1. Если  $|G| < \infty$ , то  $|G| = |X| \cdot |N_G(H)|$ , где X - число подгрупп, сопряжённых с H. B частности,  $|X| = |G: N_G(H)|$ .

Доказательство. Очевидно следует из утверждения  $|\operatorname{Orb}(x)| = \frac{|G|}{|\operatorname{St}(x)|}$ .  **Утверждение 2.**  $N_G(H)$  - наибольшая (по включению) подгруппа G, содержащая H как нормальную подгруппу.

Доказательство. Из определения  $N_G(H)$  очевидно, что  $H \leq N_G(H)$ . Пусть  $H \leq K \leq G$ . Тогда  $\forall g \in K \ gHg^{-1} = H \Longrightarrow g \in N_G(H)$ .  $\Box$ 

#### *III* теорема Силова

Пусть G - группа,  $|G|=p^sm$ , где p - простое, (p,m)=1. Пусть  $N_p$  - число силовских p-подгрупп в G. Тогда  $N_p\equiv 1 \pmod p$ ,  $N_p\mid m$ .

Доказательство.

Пусть S - произвольная силовская p-подгруппа G (хотя бы одна существует по III теореме Силова). Рассмотрим  $X = \{gSg^{-1} \mid g \in G\}$ . По II теореме Силова все силовские p-подгруппы G сопряжены, а также порядок любой подгруппы вида  $gSg^{-1}$  равен |S|, т.е.  $gSg^{-1}$  - также силовкая p-подгруппа. Отсюда X - множество всех силовских подгрупп G.

 $|X|=N_p\Longrightarrow$  по утверждению 1 получаем  $N_p\mid |G|$ . Осталось показать, что  $N_p\equiv 1 (\mathrm{mod}\ p)$  (если это так, то  $N_p\mid |G|=p^sm\Longrightarrow N_p\mid m).$ 

Рассмотрим действие  $S \curvearrowright X$  сопряжениями. Очевидно, S - неподвижная точка относительно него. Также  $N_p = |X| = \sum_{i=1}^k |\mathrm{Orb}(x_i)|$ . При этом

$$|\operatorname{Orb}(x_i)| \mid |S| = p^s \Longrightarrow \begin{bmatrix} |\operatorname{Orb}(x_i)| = 1 \\ p \mid |\operatorname{Orb}(x_i)| \end{bmatrix}$$

Значит, достаточно показать, что S - единственная неподвижная точка относительно данного движения (тогда  $|X|=\sum\limits_{i=1}^k|\mathrm{Orb}(x_i)|\equiv|\mathrm{Orb}(S)|=1\pmod{p}$ )

Допустим, что  $\tilde{S}$  - неподвижная точка  $\Longrightarrow \forall g \in S \ g \tilde{S} g^{-1} = \tilde{S}.$ 

Рассмотрим нормализатор  $N_G(\tilde{S})$ . Знаем, что  $\tilde{S}\subseteq N_G(\tilde{S})$ , а из неподвижности точки  $\tilde{S}$  имеем  $S\subseteq N_G(\tilde{S})$ . Также  $N_G(\tilde{S})\leq G$ , то есть степень вхождения p в  $|N_G(\tilde{S})|$  также равна s. Значит,  $S,\tilde{S}$  - силовские p-подгруппы в  $N_G(\tilde{S})$ . Тогда по II теореме Силова S и  $\tilde{S}$  сопряжены в  $N_G(\tilde{S})$ , т.е.  $S=g\tilde{S}g^{-1},g\in N_G(\tilde{S})$ , а тогда по определению нормализатора  $S=\tilde{S}$ . Значит, S - единственная неподвижная точка.

Следствие. Пусть G - группа,  $|G| = p^s m$ , где p - простое, (p, m) = 1. Тогда силовская p-подгруппа в G единственна  $\iff$  эта подгруппа нормальна.

Доказательство.

 $\iff$ : Пусть  $S \unlhd G$  - силовская p-подгруппа. По II теореме Силова все силовские p-подгруппы сопряжены с S, а из нормальности совпадают с S.

$$\Longrightarrow$$
: Если  $S$  - единственная, то  $\forall g \in G : gSg^{-1} = S$  (используется, что из конечности  $G : gSg^{-1} \subseteq S \Rightarrow gSg^{-1} = S$ ).

Упражнение. Доказать, что любая группа порядка 15 циклическая.

$$N_3 \equiv 1 \pmod{3}, \ N_3 \mid 5 \Longrightarrow N_3 = 1$$

$$N_5 \equiv 1 \pmod{5}$$
,  $N_5 \mid 3 \Longrightarrow N_5 = 1$ 

Таким образом, в G есть по одной силовской подгруппе порядка 3 и 5, а по следствию из III теоремы Силова они обе нормальны в G. Так как их порядки простые, обе эти подгруппы циклические, т.е. изоморфны  $\mathbb{Z}_3$  и  $\mathbb{Z}_5$  соответственно.

Остаётся заметить, что эти подгруппы пересекаются тривиально (у остальных элементов разные порядки), т.е. некоторая подгруппа G раскладывается в их прямое произведение, а так как  $15=3\cdot 5$ , эта подгруппа - вся G. Отсюда  $G\simeq \mathbb{Z}_3\times\mathbb{Z}_5\simeq \mathbb{Z}_{15}$  - циклическая.

# 7 Коммутант

**Определение.** Пусть G - произвольная группа,  $x, y \in G$ .

Коммутатором элементов x, y называется элемент  $[x, y] = xyx^{-1}y^{-1}$ .

Свойства.

1. 
$$[x,y] = e \iff xy = yx$$
;

2. 
$$[x,y]^{-1} = [y,x];$$

3. 
$$\forall g \in G \ g[x,y]g^{-1} = [gxg^{-1}, gyg^{-1}].$$

Доказательство. 1, 2 - очевидно;

$$3:[gxg^{-1},gyg^{-1}]=gxg^{-1}gyg^{-1}gx^{-1}g^{-1}gy^{-1}g^{-1}=gxyx^{-1}y^{-1}g^{-1}=g[x,y]g^{-1}$$

**Определение.** Коммутантом группы G называется подгруппа, порождённая всеми коммутаторами элементов группы G. Обозначается [G] или G'.

$$G' = \{ \prod_{i=1}^{k} [x_i, y_i] \mid x_i, y_i \in G \}.$$

Утверждение.  $G' = \{e\} \iff G$  - абелева.

Доказательство. Очевидно из свойства 1 коммутатора.

Утверждение. G' ⊆ G

Доказательство.

$$\forall g \in G, [x, y] \in G' : g[x, y]g^{-1} = [gxg^{-1}, gyg^{-1}] \in G' \Longrightarrow G' \le G$$

Утверждение. Если  $H \leq G$  и  $G' \leq H$ , то  $H \leq G$ .

Доказательство. 
$$\forall g \in G, h \in H: ghg^{-1} = (ghg^{-1}h^{-1})h \in H.$$

**Утверждение.** Пусть  $N \subseteq G$ . Тогда G/N абелева  $\iff G' \subseteq N$ .

Доказательство.

 $\Longrightarrow$ : Пусть G/N абелева. Тогда  $\forall g_1, g_2 \in G(g_1N)(g_2N) = (g_2N)(g_1N) \Longrightarrow g_1g_2N = g_2g_1N \Longrightarrow g_1^{-1}g_2^{-1}g_1g_2 = [g_2, g_1] \in N;$ 

$$\iff$$
: Пусть  $G' \subseteq N$ . Тогда  $\forall g_1, g_2 \in G[g_1, g_2] = g_1g_2g_1^{-1}g_2^{-1} \in N \implies g_1g_2N = g_2g_1N \implies (g_1N)(g_2N) = (g_2N)(g_1N)$ 

# 7.1 Коммутанты некоторых известных групп

#### Лемма 1.

- 1.  $A_n$  порождается циклами длины 3;
- 2. Если  $n \geqslant 5$ , то  $A_n$  порождается произведениями пар независимых транспозиций;

Доказательство.  $\forall \sigma \in A_n \ \sigma = \prod_{i=1}^k \tau_i$ , где  $\tau_i$  - транспозиции, k - чётное, т.е. транспозиции разбиваются на пары - в паре транспозиции могут быть зависимы либо независимы.

Если i, j, k, l - различные (случай  $n \leq 3$  очевиден), то

$$(ij)(jk) = (ijk); (ij)(kl) = (ij)(jk)(jk)(kl) = (ijk)(jkl)$$

то есть  $\sigma$  представима как произведение тройных циклов.

Если  $n \geqslant 5$ , то  $\exists i, j, k, l, m$  - различные, а тогда (ij)(jk) = ((ij)(lm))((lm)(jk)). Таким образом можно избавиться от пар зависимых транспозиций, то есть  $\sigma$  представима как произведение пар независимых транспозиций.

Утверждение.  $S'_n = A_n$ .

Доказательство.  $|S_n/A_n| = 2 \Longrightarrow S_n/A_n$  - абелева  $\Longrightarrow S'_n \subseteq A_n$ . Значит, достаточно доказать (по лемме 1), что  $\forall i, j, k$  (различных)  $(ikj) \in S'_n$ .

$$[(ij), (jk)] = (ij)(jk)(ij)^{-1}(jk)^{-1} = (ik)(kj) = (ikj)$$

Утверждение.

1.  $n = 1, 2, 3 \Longrightarrow A'_n = \{id\};$ 

2.  $n=4 \Longrightarrow A'_n=V_4$ ;

3.  $n \geqslant 5 \Longrightarrow A'_n = A_n$ .

Доказательство.

1. n=1,2,3 -  $A_n'=\{\mathrm{id}\}$ , т.к.  $A_n$  - абелева;

2. n=4:  $V_4 \le A_4, |V_4|=4 \Longrightarrow |A_4/V_4|=3$  - абелева. Значит,  $A_4' \subseteq V_4$ .

$$[(ijk), (ijm)] = (ijk)(ijm)(ijk)^{-1}(ijm)^{-1} = (jkm)(imj) = (ij)(km)$$

3.  $n \geqslant 5$ : По пункту 2 леммы 1  $A_n$  порождается парами независимых транспозиций. Аналогично [(ijk),(ijm)]=(ij)(km), а значит все элементы  $A_n$  принадлежат  $A'_n$ .

Лемма 2. Группа  $SL_n(\mathbb{F})$  порождается элементарными матрицами, соответствующими преобразованиям I типа  $(a_i \mapsto a_i + \lambda a_j)$ .

Доказательство. Покажем, что  $\forall A \in SL_n(\mathbb{F})$  приводится к E за конечное число операций I типа (над строками):

Индукция по n. База n=1 очевидна  $(\det A=a_{11}=1\Longrightarrow A=E)$ 

Шаг: Так как  $\det A \neq 0$ ,  $\exists i : a_{i1} \neq 0$ .

Если  $a_{11}=0$ , то прибавим i-ю строку к первой - сделаем  $a_{11}\neq 0$ . Пусть  $n\geqslant 2$  (случай n=1)

Если  $a_{11} \neq 1$ , то сделаем  $a_{12} \neq 0$  аналогично  $a_{11}$ , а далее прибавим к первой строке вторую, умноженную на  $\frac{1-a_{11}}{a_{12}}$  - сделаем  $a_{11}=1$ . Далее с помощью первой строки сможем занулить оставшиеся элементы первого столбца. По предположению индукции подматрицу полученной матрицы без первой строки и первого столбца можно привести к единичному виду. Сделаем это, а далее с помощью i-й строки занулим  $a_{1i}$ .

Значит,  $\forall A \in SL_n(\mathbb{F})$  приводится к E за конечное число операций I типа над строками, то есть раскладывается в произведение соответствующих элементарных матриц.

Утверждение. Пусть  $|\mathbb{F}| > 3$ . Тогда  $GL_n(\mathbb{F})' = SL_n(\mathbb{F})' = SL_n(\mathbb{F})$ .

Доказательство. Заметим, что  $GL_n(\mathbb{F})/SL_n(\mathbb{F})=\mathbb{F}^*$  из теоремы о гомоморфизме для  $\alpha:GL_n(\mathbb{F})\to F^*$  такого, что  $\alpha(A)=\det A$ . Отсюда  $GL_n(\mathbb{F})/SL_n(\mathbb{F})$  - абелева (как мультипликативная группа поля), т.е.  $GL_n(\mathbb{F})'\subseteq SL_n(\mathbb{F})$ .

Если  $|\mathbb{F}| > 3$ , то  $\exists \lambda \in \mathbb{F} : \lambda \neq 0, 1, -1$ .

$$n = 2: \left[ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \right] = \begin{pmatrix} 1 & (\lambda^2 - 1)a \\ 0 & 1 \end{pmatrix} \ (\lambda \neq 0)$$

Любое ур-е  $(\lambda^2-1)a=\mu$  решается для a, так как  $\lambda\neq\pm 1$  - отсюда все верхнетреугольные элементарные матрицы I типа принадлежат  $GL_n(\mathbb{F})'$ . Аналогично для нижнетреугольных - все элеметарные матрицы I типа, а значит и  $SL_n\mathbb{F}$ , принадлежат  $GL_n(\mathbb{F})'$ .

Случай n>2 аналогичен: необходимо рассмотреть коммутатор

$$[E + (\lambda - 1)E_{ii} + (\lambda^{-1} - 1)E_{jj}, E + aE_{ij}] = E + (\lambda^2 - 1)aE_{ij} \ (i \neq j)$$

Все рассуждения верны и для доказательства  $SL_n(\mathbb{F})\subseteq SL_n(\mathbb{F})'$ , т.к. определители всех рассматриваемых при взятии коммутаторов матриц равны 1.