Universidade Federal do Rio Grande do Sul Instituto de Informática

Organização de Computadores

Aula 9

Avaliação de desempenho

INF01113 - Organização de Computadores

Avaliação de desempenho

- 1. Introdução
- 2. Métricas básicas

Ciclos de clock

Tempo de CPU

Ciclos por instrução

3. Outras métricas e seus problemas

MIPS

MFLOPS

4. Benchmarks

INF01113 - Organização de Computadores

Exemplo				
Avião	Capacidade (passageiros)	Autonomia (milhas)	Velocidade (milhas/hora)	Thoughput Passageiros
Boeing 777	375	4630	610	228.750
Boeing 747	470	4150	610	286.700
Concorde	132	4000	1350	178.200
Douglas	146	8720	544	79.424
- me	•	zeiro (levar 1 unico p	ance segundo sua veloci assageiro mais rapidamo	

Pensando em um usuário no computador..., ele está interessado mais é no tempo de resposta a um certo programa, ou seja, no tempo decorrido do inicio ao final do seu programa.

1. Introdução

- tempo de relógio real necessário para execução de um programa (ou tempo de resposta) inclui ...
 - acessos a disco
 - atividades de I/O
 - overhead do sistema operacional, da rede, ...
- no entanto, seguidamente um sistema executa diversos programas simultonesmento.
- throughput é uma medida do número de tarefas executada por unidade de tempo
- · o que otimizar?
 - tempo de resposta de um programa isolado?
 - throughput do sistema?

INF01113 - Organização de Computadores

Tempo de execução x Throughput

Para um dado sistema de computação:

- 1. Subtituição de um processador por outro mais rapido, diminui o tempo de resposta e quase sempre melhora o throughput.
- 2. Alocação de processadores adicionais a um sistema que utiliza varios processadores para executar programas diferentes, não faz com que as tarefas sejam realizadas mais rapidas pois os processadores são os mesmos, porem aumenta o throughput caso a demanda de processamento anteriormente fosse maior que a possivel.

Primeiramente iremos discutir tempo de resposta:

Performance = 1
Tempo de execução

INF01113 - Organização de Computadores

Introdução

- distinção entre ...
 - tempo de relógio real gasto em um programa, e
 - tempo do processador CPU efetivamente gasto com tarefas específicas do programa
 - não inclui tempo de execução de outros programas, tempo de espera por I/O, ...
- tempo do processador ($\ensuremath{\mathrm{CPU}}$) está dividido em ...
 - tempo de usuário tempo gasto executando instruções do programa do usuário
 - tempo de sistema tempo gasto com tarefas do S.O. necessárias para a execução do programa do usuário

INF01113 - Organização de Computadores

Introdução

• Exemplo no UNIX com o comando time

90.7u 12.9s 2:39 65%

Tempo em segundos e minutos.

(tempo do processador) (tempo do sistema) (tempo decorrido) (percentual do processado pelo decorrido)

- * Note que a maioria do tempo é gasto em entrada e saida e/ou rodando outros programas.
- tendo em vista os objetivos desta disciplina de Organização, desempenho de CPU será medido apenas em função do tempo de CPU do usuário, ou seja, o tempo do processador gasto para a execução das instruções do programa em questão.

Introdução

- desempenho é conseqüência de otimizações feitas em 3 dimensões do hardware
- arquitetura
 - processadores RISC
 - instruções otimizadas
- organização
 - paralelismo
- memória cache
- tecnologia
 - velocidade de chaveamento das portas lógicas
- tempo de acesso à memória
- · desempenho também depende no entanto do compilador
 - geração de código otimizada
 - bom aproveitamento dos recursos da organização

INF01113 - Organização de Computadores

2. Métricas básicas

- <u>ciclos de relógio</u> = intervalos básicos de tempo nos quais são executadas as operações elementares de uma instrução
 - transferências de valores entre registradores
 - operações aritméticas na ALU
- período do relógio T = tempo de duração de um ciclo de clock
 - p.ex. 1 ns
- $\frac{freqüência\ de\ operação}{de\ tempo}$ f = número de ciclos de clock por unidade de tempo

f = 1 / T

se T = 1 ns

então f = 1 / 1.10⁻⁹ = 10⁹ = 1 GHz

INF01113 - Organização de Computadores

Métricas básicas tempo de CPU nº de ciclos de clock x período do clock de um programa tempo de CPU do programa = - programa gasta 10.10⁶ ciclos - período do clock é 1 ns tempo de CPU do programa = 10.10⁶ x 1.10⁻⁹ = 10.10⁻³ = 10 ms alternativamente: nº de ciclos de clock do programa tempo de CPU de um programa freqüência do clock formas de aumento do desempenho: - diminuir o período do clock > tecnologia, organização diminuir nº de ciclos necessários para execução do programa > organização, arquitetura Objetivos muitas vezes conflitantes. INF01113 - Organização de Computadores

Métricas básicas

Exercício

- programa roda em 10 s na máquina A, que tem clock de 1 GHz
- queremos rodá-lo em 6 s numa máquina B com nova tecnologia e nova organização
- a máquina B pode ter um aumento substancial de freqüência de clock
- no entanto, a organização da máquina B exigirá 1.2 vezes mais ciclos de clock para executar instruções do que a máquina A
- qual é a freqüência de clock necessária para a máquina B?

Métricas básicas Solução do exercício tempo de CPU de um programa = \frac{n^0 de ciclos de clock do programa freqüência do clock}{10 s = \frac{n^0 de ciclos de clock em A}{10^0 ciclos / s}} nº de ciclos de clock em A = 10 . 10º ciclos 6 s = \frac{1.2 \times n^0 de ciclos de clock em A}{freqüência do clock em B} = \frac{1.2 \times 10 . 10º}{freqüência do clock em B} freqüência do clock em B = 2 GHz

Métricas básicas

 ${\rm N^0}$ de ciclos de clock de um programa pode ser determinado ...

- pela análise dos diferentes tipos de instruções executados pelo
- programa pelo nº de ciclos de clock necessários para cada tipo de instrução

$$n^{o}$$
 de ciclos de clock do programa = $\sum_{i=1}^{n}$ (CPI_{i} X C_{i})

onde $n=n^0 \ de \ tipos \ de \ instruções \\ CPI_1=ciclos \ de \ clock \ por \ instrução \ do \ tipo \ i$ $C_i=n^0 \ de \ instruções \ do \ tipo \ i$ no programa

INF01113 - Organização de Computadores

Métricas básicas

- o projetista de um compilador deseja decidir entre duas possíveis seqüências de código para a resolução de um problema
- dados os tipos de instruções e o nº de ciclos por instrução de cada tipo, qual seqüência é mais rápida?

tipo de instrução	СРІ
A	1
B	2
C	3

	nº de instruções (x N)		
código	tipo A	tipo B	tipo C
1	2	1	2
2	4	1	1

INF01113 - Organização de Computadores

Métricas básicas

Solução do exercício

O código 1 executa 2+1+2 = 5 instruções O código 2 executa 4+1+1 = 6 instruções

 n^{ν} de ciclos de clock do programa = \sum (CPI_i X C_i)

 N° ciclos de clock para código 1 = (2 x 1) + (1 x 2) + (2 x 3) = 10 ciclos

 N° ciclos de clock para código 2 = (4 x 1) + (1 x 2) + (1 x 3) = 9 ciclos

CPI = ciclos de clock nº de instruções

CPI código 1 = 10 / 5 = 2.0

CPI código 2 = 9 / 6 = 1.5

Código 2 é mais rápido, mesmo que execute uma instrução a mais, pois tem CPI bem mais baixo.

INF01113 - Organização de Computadores

3. Outras métricas: MIPS

nº instruções nº instruções MIPS = tempo de CPU X 106 ciclos X período X 106

nº instruções X freqüência nº instruções X CPI X 10º

freqüência CPI X 10⁶ MIPS = -

Problemas com a medida em MIPS:

- não se pode comparar máquinas com conjuntos de instruções diferentes, pois certamente o nº de instruções será diferente para um mesmo programa
- MIPS varia de um programa para outro na mesma máquina
- MIPS pode variar inversamente ao desempenho

MIPS

Exemplo:

tipo de instrução	СРІ
A B	1 2
С	3

	nº de instruções (x N)		
código	tipo A	tipo B	tipo C
compil. 1	5	1	1
compil. 2	10	1	1

freqüência do clock = 1 GHz

Calcular o desempenho do código gerado por cada compilador:

- em MIPS
- em tempo de CPU

INF01113 - Organização de Computadores

MIPS

tempo₁ =
$$\frac{(5+1+1) \cdot 10^6 \times 1.43}{1 \cdot 10^9}$$
 = 10 ms

tempo₂ =
$$\frac{(10+1+1) \cdot 10^6 \times 1.25}{1 \cdot 10^9}$$
 = 15 ms

O código 2 gasta portanto mais tempo.

Apesar de ter MIPS com maior valor, o código 2 gasta bem mais instruções.

INF01113 - Organização de Computadores

Outras métricas: MFLOPS

nº de operações de ponto flutuante no programa MFLOPS = tempo de CPU x 106

Não se contam <u>instruções</u> de PF e sim <u>operações</u> para evitar comparações injustas entre máquinas com instruções diversas

- somas, subtrações, multiplicações, divisões
 precisão simples, precisão dupla
 instruções mais complexas: seno, raíz quadrada

Problemas na comparação:

- máquinas diferentes têm não apenas conjuntos diferentes de instruções, mas também de operações
 certas operações (p.ex. soma em precisão simples) são muito mais rápidas do que outras (p.ex. divisão em precisão dupla)
 como na medida de MIPS, pode-se ter gasto maior em tempo mesmo tendo mais MFLOPS

A máquina M1 tem um clock de $400 \mathrm{MHz}$ e a M2 tem um clock de $200 \mathrm{MHz}$.

Usando o compilador C1 na maquina M1 e o compilador C2 na máquina M2, qual é a mais rapida e de quando comparado com a outra?

Se tiveres que comprar a máquina M2, qual compilador deverias usar para conseguir uma melhor performance para o programa em questão.

INF01113 - Organização de Computadores

Exercício 2

 Considere duas implementações diferentes M1 e M2 para o mesmo conjunto de instruções. Existem 4 classes de instruções.

Classe	CPI para M1	CPI para M2
A	1	2
В	2	2
C	3	4
D	4	4

- M1 tem um clock de 500MHz e M2 tem um clock de 750MHz.
- Suponha que a performance de pico é definida como a taxa mais elevada que uma máquina possa executar uma sequencia de instruções, escolhida para maximizar essa taxa. Determine a performance de pico para M1 e M2 dada em instruções exexutadas por segundo.
- Se o numero de instruções de um programa for dividido igualmente entre as classes, qual máquina executa o programa mais rapidamente?

INF01113 - Organização de Computadores

Exercício 3

 A tabela a seguir mostra o numero de operações em ponto flutuante executadas por dois programas diferentes alem do tempo de execução em 3 máquinas distintas.

Programa Oper	ações em ponto flutuante	Tempo de execução (s)		
		Computador A	Computador B	Computador C
Programa 1	10.000.000	1	10	20
Programa 2	100.000.000	1.000	100	20

Qual das máquinas é mais rápida considerando o tempo de execução. E quanto mais rápida ela é comparada as outras duas?

INF01113 - Organização de Computadores

4. Benchmarks

- benchmarks são conjuntos de programas representativos da carga de trabalho de uma máquina
 - utilizados para avaliação de desempenho, segundo métricas já discutidas
 - geralmente de domínio público
 - procuram explorar repertório de recursos da arquitetura
- · problemas com benchmarks
 - melhor avaliação seria feita com a carga de trabalho efetivamente utilizada em cada máquina (workload)
 - escolha dos benchmarks e aplicação rigorosa da metodologia de avaliação
 - fabricantes podem tentar otimizar arquitetura e/ou organização e/ou compilador para executar de forma mais eficiente apenas os benchmarks

Tipos de benchmarks

- aplicações reais ou modificadas
 - quais?
 - dados de entrada ?
 - exemplos:

 - empos: programas do SPEC (empresa de padronização de avaliação) iCOMP (benchmarks da Intel, aplicações sob Windows, PC-workload) transações de banco de dados (TPC-A, TPC-B, etc.) simuladores de equações diferenciais (NAS: benchmarks NASA)
- - Linpack: rotinas de resolução de sistema de equações lineares
 - Livermore Loops, NAS kernels (simulação numérica) ...
- benchmarks de "brinquedo"
- Puzzle, Quicksort, Sieve, ...
- benchmarks sintéticos
 - Dhrystone, Whetstone, ...

INF01113 - Organização de Computadores

Exemplos de benchmarks

- Dhrystone
 - desenvolvido em 1984 e escrito em ADA. C ou Pascal
- Whetstone
 - primeiro grande programa de benchmark sintético
 - exemplo de uma tabela de resultados:
 - www.dl.ac.uk/TCSC/disco/Benchmarks/whetstone.html
- SPEC
 - Standard Performance Evaluation Corporation
 - www.spec.org/benchmarks.html
 - SPEC2000
 - CINT2000: 12 programas para cálculos intensivos com inteiros
 - CFP2000: 14 programas para cálculos intensivos de ponto flutuante
 - máquina de referência: SUN Ultra 5_10 com processador SPARC de 300MHz e 256MB de memória

www.specbench.org/cpu2004

INF01113 - Organização de Computadores

What is SPEC?

SPEC is the Systems Performance Evaluation Cooperative.

- The current membership list includes 16 companies: AT&T, Control Data Corp., Data General, Digital Equipment Corp., DuPont, Hewlett-Packard, IBM, Intel, Intergraph, MIPS Computer Systems, Motorola, Multiflow, Solbourne, Stardent, Sun and Unisys.
- The SPEC applications represent a large body of code (over 14 megabytes) which span a range of application arenas.
- The membership to SPEC is open to any interested company.
- SPEC is not devoted to any single architecture nor any particular philosophy of computing systems.
- SPEC has created a framework in which a wide variety of applications can be tested by a very large audience of computer

INF01113 - Organização de Computadores

SPEC95 Programs

	Benchmark	Description
	ao	Artificial intelligence: plays the game of Go
	m88ksim	Motorola 88k chip simulator; runs test program
	qcc	The Gnu C compiler generating SPARC code
T4	compress	Compresses and decompresses file in memory
Integer	li	Lisp interpreter
	ijpeg	Graphic compression and decompression
	perl	Manipulates strings and prime numbers in the special-purpose programming language Perl
	vortex	A database program
	tomcatv	A mesh generation program
	swim	Shallow water model with 513 x 513 grid
	su2cor	quantum physics; Monte Carlo simulation
Floating	hydro2d	Astrophysics; Hydrodynamic Naiver Stokes equations
Point	mgrid	Multigrid solver in 3-D potential field
2 01111	applu	Parabolic/elliptic partial differential equations
	trub3d	Simulates isotropic, homogeneous turbulence in a cube
	apsi	Solves problems regarding temperature, wind velocity, and distribution of pollutant
	fpppp	Quantum chemistry
	wave5	Plasma physics; electromagnetic particle simulation

Medidas de Tempo de Execução no SPEC

- As medidas de tempo de execução são normalizadas por meio da divisão pelo tempo gasto para executar o benchmark na estação de trabalho SUN SPARCstation 10/40, pelo tempo de execução onde a medição esta sendo realizada. = razão SPEC.
- A medida final de performance é medida pela média geométrica das razões SPEC para cada programa do conjunto, por exemplo SPECint95 e SPECfp95.

	0	
Benchmark	Função	Fonte
wupwise	computação da propagação de quarks	Fortran77
swim	modelo da superfície d'água com 513x513 pontos	Fortran77
mgrid	soluções multigrid em campos 3D	Fortran77
apply	equações parciais diferenciais	Fortran77
mesa	biblioteca gráfica 3-D	С
galgel	dinâmica de fluídos	Fortran90
art	reconhecimento de imagens / redes neurais	С
equake	simulação de propagação de ondas sísmicas	С
facerec	processamento de imagens: reconhecimento de faces	Fortran90
ammp	modelo de um grande sistema de moléculas	С
lucas	teoria de números / teste de números primos	Fortran90
fma3d	simulação de ruídos elétricos em elementos finitos	Fortran90
sixtrack	energia nuclear: acelerador de partículas	Fortran77
apsi	problemas com temperatura, vento e poluição	Fortran77

Resumo:

- Qual a métrica mais importante? MIPS? MFLOPS?
- Como escolher uma CPU?

 - Spec int?Spec FP?Média dos dois?Whetstone?
- Que outros fatores impactam a escolha de uma CPU?