ĐỀ KHỞI ĐỘNG 14

Câu 1: Tập xác định D của hàm số $y = (x-1)^{\pi}$ là:

$$\mathbf{A.}\,D = \mathbb{R}\setminus\{1\}.$$

$$\mathbf{B}.D = \mathbb{R}.$$

C.
$$D = [1; +\infty)$$
. **D.** $D = (1; +\infty)$.

D.
$$D = (1; +\infty)$$
.

Câu 2: Khẳng định nào sau đây đúng?

$$\mathbf{A.} \int \frac{1}{\cos^2 x} dx = -\tan x + C.$$

$$\mathbf{B.} \int \frac{1}{\cos^2 x} dx = \tan x + C.$$

$$\mathbf{C.} \int \frac{1}{\cos^2 x} dx = \cot x + C.$$

D.
$$\int \frac{1}{\cos^2 x} dx = -\cot x + C.$$

Câu 3: Tập nghiệm của bất phương trình $(0,5)^x < (0,5)^3$ là

$$\mathbf{A.}(-\infty;3)$$

B.(3;+
$$\infty$$
)

$$\mathbf{D} \cdot \left(\frac{1}{3}; +\infty\right)$$

Câu 4: Trong không gian Oxyz, cho hai điểm A(0;1;-1) và B(2;3;-1). Tọa độ trung điểm của đoạn thẳng AB là

$$A.(1;2;-1)$$

$$B.(2;4;-2)$$

$$\mathbf{D}.(2;2;0)$$

Câu 5: Cho hàm số y = f(x) có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng

$$A.-2$$

Câu 6: Tìm tập xác định D của hàm số $y = (4 - x^2)^{-\sqrt{3}}$

A.
$$D = (-2; 2)$$

$$\mathbf{B.}\,D = \mathbb{R}\setminus\{-2;2\}$$

$$\mathbf{C.}D = (-\infty; -2) \cup (2; +\infty)$$

$$\mathbf{D}.D = \mathbb{R}$$

Câu 7: Hàm số nào dưới đây có bảng biến thiên như sau?

	•							
\boldsymbol{x}	-∞	-1		0		1		$+\infty$
f'(x)	+	0	_	0	+	0	_	
f(x)	-8	1 ³		1		, 3_	\	<u>√</u> -∞

A.
$$f(x) = -2x^4 + 4x^2 + 1$$

B.
$$f(x) = -x^4 + 2x^2 + 1$$

C.
$$f(x) = x^4 - 2x^2 + 1$$

D.
$$f(x) = -2x^3 + 4x^2 + 1$$

Câu 8: Trong không gian Oxyz, cho mặt cầu (S) có tâm là I(1;1;1) và bán kính bằng $\sqrt{3}$. Phương trình của (S) là

A.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 1$$

B.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 3$$

$$\mathbf{C.}(x+1)^2 + (y+1)^2 + (z+1)^2 = 3$$

$$\mathbf{D.} \, x^2 + y^2 + z^2 = 3$$

Câu 9: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ bên.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

B.
$$(-1;1)$$

$$\mathbf{D}.(-\infty;-1)$$

Câu 24: Giá trị lớn nhất của hàm số $f(x) = \sqrt{x+1} + \sqrt{5-x}$ bằng

$$A.\sqrt{6}$$

B.
$$3\sqrt{3}$$

C.
$$2\sqrt{3}$$

D.1 +
$$\sqrt{5}$$

Câu 25: Trong không gian Oxyz, cho điểm A(2;3;-4). Điểm nào dưới đây là hình chiếu vuông góc của điểm A trên mặt phẳng (Oyz)?

B.
$$N(0;3;-4)$$

$$\mathbf{C}.P(2:3:0)$$

B.
$$N(0;3;-4)$$
 C. $P(2;3;0)$ **D.** $Q(2;0;-4)$

Câu 26: Cho f(x) liên tục trên \mathbb{R} và $\int_{0}^{1} f(x)dx = 3$, $\int_{1}^{3} f(x)dx = 6$. Giá trị của $\int_{0}^{3} f(x)dx$ bằng

$$\mathbf{C}_{\bullet}$$

Câu 27: Cho hình nón có chiều cao bằng h, bán kính đáy bằng r và độ dài đường sinh bằng l. Khẳng định nào dưới đây đúng?

$$\mathbf{A.}\,h = \sqrt{l-r}$$

B.
$$h = \sqrt{l^2 - r^2}$$
 C. $h = l$

$$\mathbf{C} \cdot h = l$$

D.
$$h = \sqrt{l^2 + r^2}$$

Câu 28: Với a,b là các số thực dương tùy ý và a khác 1, $\log_a(ab^2) + \log_{\sqrt{a}}(a^2b)$ bằng

$$\mathbf{A.5} + 4\log_a b$$

A.
$$5 + 4\log_a b$$
 B. $2 + \frac{5}{2}\log_a b$ **C.** $\frac{3}{2}\log_a b$

$$\mathbf{C} \cdot \frac{3}{2} \log_a b$$

$$\mathbf{D.3} + 3\log_a b$$

Câu 29: Trong không gian Oxyz, cho mặt phẳng (P): x+2y-2z+3=0. Mặt cầu có tâm I(3;1;1) và tiếp xúc với mặt phẳng (P) có phương trình là

A.
$$(x+3)^2 + (y+1)^2 + (z+1)^2 = 4$$

B.
$$(x-3)^2 + (y-1)^2 + (z-1)^2 = 4$$

$$\mathbf{C.}(x-3)^2 + (y-1)^2 + (z-1)^2 = \frac{4}{9}$$

$$\mathbf{D.}(x-3)^2 + (y-1)^2 + (z-1)^2 = 2$$

D.
$$(x-3)^2 + (y-1)^2 + (z-1)^2 = 2$$

Câu 30: Trong không gian Oxyz, cho hình bình hành ABCD có A(0;1;-2), B(3;-2;1) và C(1;5;-1). Viết phương trình tham số của đường thẳng *CD*

$$\mathbf{A.} \begin{cases} x = 1 - t \\ y = 5 - t \end{cases}$$

A.
$$\begin{cases} x = 1 - t \\ y = 5 - t \end{cases}$$
 B. $\begin{cases} x = 1 + 3t \\ y = 5 + 3t \end{cases}$ **C.** $\begin{cases} x = -1 + t \\ y = -5 - t \end{cases}$ **D.** $\begin{cases} x = 1 + t \\ y = 5 - t \end{cases}$ $z = -1 + t$

$$\mathbf{C.} \begin{cases} x = -1 + t \\ y = -5 - t \\ z = 1 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 1 + t \\ y = 5 - t \end{cases}$$

$$\begin{vmatrix} z = -1 + t \end{vmatrix}$$

Câu 31: Gọi S là tập hợp tất cả các số tự nhiên n thỏa mãn đồng thời các điều kiện: Biểu diễn thập phân của n có đúng 5 chữ số, các chữ số đó của n đôi một phân biệt và thuộc tập $\{1,2,3,4,5\}$. Tính số phần tử của S

$$C.5^{5}$$

Câu 32: Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} , f(2)=3 và $\int_{0}^{2} xf'(x)dx=1$. Tính $\int_{0}^{2} f(x)dx$.

A.5

B.-5

D.1

Câu 33: Cho hình lăng trụ đứng ABC.A'B'C' có cạnh bên bằng a. Đáy ABC là tam giác vuông tại B, AB = a, AC = 2a (tham khảo hình vẽ bên). Góc giữa hai đường thẳng AA' và BC' bằng

Câu 34: Tổng tất cả các nghiệm của phương trình $\ln(x^3+1) = \ln(4x+1)$ là

$$\mathbf{A.0}$$

Câu 35: Cho hàm số $f(x) = (x^2 + 1)^2$, $\forall x \in \mathbb{R}$. Khẳng định nào dưới đây đúng?

$$\mathbf{A.} \int f(x) dx = \frac{\left(x^2 + 1\right)^3}{3} + C$$

B.
$$\int f(x) dx = 2x(x^2 + 1) + C$$

C.
$$\int f(x)dx = \frac{x^5}{5} + \frac{2x^3}{3} + x + C$$

D.
$$\int f(x) dx = \frac{x^5}{5} + \frac{2x^3}{3} + C$$

Câu 36: Một hộp chứa 10 viên bi có cùng kích thước bao gồm 6 viên bi màu đỏ được đánh số khác nhau từ 1 đến 6 và 4 viên bi màu xanh được đánh số khác nhau từ 1 đến 4. Lấy ngẫu nhiên đồng thời từ hộp đó ra 2 viên bi. Hãy tính xác suất để 2 viên bi lấy ra khác màu và khác số.

$$A.\frac{4}{9}$$

B.
$$\frac{2}{5}$$

$$C.\frac{8}{15}$$

D.
$$\frac{2}{9}$$

Câu 37: Cho hình chóp S.ABCD có SA = 1 và $SA \perp (ABCD)$.

Đáy ABCD là hình chữ nhật với AB = 1, BC = 2, M là trung điểm của cạnh BC (tham khảo hình vẽ bên). Khoảng cách giữa SB và DM bằng

B.
$$\frac{1}{3}$$

C.
$$\frac{2}{3}$$

D.
$$\frac{\sqrt{3}}{3}$$

Câu 38: Cho a,b là hai số thực dương khác 1 và thỏa mãn $\log_a^2(b^2) = 34\log_b\left(\frac{a}{b}\right) + 33$. Giá trị của $\log_a b$ bằng

$$\mathbf{C} \cdot \frac{5}{2}$$

Câu 39: Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [-10;10] sao cho ứng với mỗi m hàm

số $y = \frac{e^{x-2} - 1}{x+m}$ đồng biến trên khoảng (1;3) ?

Câu 40: Xét hàm số $f(x) = ax^3 + bx^2 + cx + d$ (với $a,b,c,d \in \mathbb{R}$ và $a \neq 0$) có đồ thị là đường cong (C)

. Biết rằng trục hoành tiếp xúc với (C) tại điểm có hoành độ là 1 và cắt (C) tại điểm nữa có hoành độ là

-2. Khi hình phẳng giới hạn bởi (C) và trục hoành có diện tích bằng $\frac{27}{4}$, tích phân $\int_{0}^{1} |f(x)| dx$ bằng

$$\mathbf{A} \cdot \frac{1}{4}$$

B.
$$\frac{5}{4}$$

$$C.\frac{3}{4}$$

Câu 41: Trong không gian cho hai điểm I_1, I_2 với $I_1I_2 = 6$. Gọi (S_1) là mặt cầu tâm I_1 , có bán kính bằng 13, (S_2) là mặt cầu tâm I_2 , có bán kính bằng 17. Hai mặt cầu $(S_1), (S_2)$ cắt nhau theo giao tuyến là một đường tròn có bán kính bằng

A.
$$4\sqrt{10}$$

B.
$$2\sqrt{30}$$

Câu 42: Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} thoả mãn $f'(x) + 2xf(x) = x, \forall x \in \mathbb{R}$.

Biết $f(0) = \frac{3}{2} \text{và} \int_{0}^{1} (2f(x)-1)x dx = a + \frac{b}{e} \text{với } a, b \text{ là các số hữu tỷ. Khi đó } a + b \text{ bằng}$

$$A.-1$$

$$\mathbf{C} \cdot \frac{1}{2}$$

Câu 43: Cho hàm số f(x) có đạo hàm là $f'(x) = x^2 + 3x - 4$, $\forall x \in \mathbb{R}$. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn $\begin{bmatrix} -20;20 \end{bmatrix}$ sao cho ứng với mỗi m đó, xét trên khoảng $\begin{pmatrix} -4;-1 \end{pmatrix}$ thì hàm số $g(x) = f(x^3 + 3x^2 - m)$ có đúng 1 điểm cực trị?

A.13

C.17

D.16

Câu 44: Xét các số thực x, y thỏa mãn $x > \frac{1}{2}$, $0 < y < 2\sqrt{2}$ và

của biểu thức 12y-4x thuộc khoảng nào sau đây?

- A.(20;30)
- **B.**(0;10)
- C.(10;20)
- **D.**(-10;0)

Câu 45: Cho khối lăng trụ tam giác ABC.A'B'C' có các đáy là các tam giác đều, AB' = BB' = CB' = a. Biết rằng góc giữa mặt phẳng (ACC'A') và mặt phẳng (ABC) bằng 45°, tính thể tích của khối lăng trụ đã cho.

- **A.** $\frac{\sqrt{6}a^3}{16}$ **B.** $\frac{3\sqrt{6}a^3}{6}$ **C.** $\frac{3\sqrt{6}a^3}{16}$ **D.** $\frac{3\sqrt{6}a^3}{8}$

Câu 46: Cho hàm số $f(x) = ax^4 + bx^3 + cx^2 + dx - \frac{4}{3} (a,b,c,d \in \mathbb{R})$ và $g(x) = mx^3 + nx^2 + px$

 $(m,n,p\in\mathbb{R})$. Đồ thị hai hàm số f'(x) và g'(x) được cho ở hình vẽ bên dưới.

Tính diện tích hình phẳng giới hạn bởi hai đường y = f(x) và $y = g(x) + \frac{1}{3}(x-2)^2$, biết rằng AB = 4.

- A. $\frac{175}{45}$
- **B.** $\frac{14848}{1215}$
- C. $\frac{14336}{1215}$ D. $\frac{512}{45}$

Câu 47: Trong không gian Oxyz, cho hai đường thẳng $d_1: \frac{x-1}{2} = \frac{y}{1} = \frac{z+2}{-1}$ và $d_2: \frac{x-1}{1} = \frac{y+2}{3} = \frac{z-2}{-2}$.

Gọi Δ là đường thẳng song song với mặt phẳng (P): x+y+z-7=0 và cắt d_1,d_2 lần lượt tại A,B sao cho AB ngắn nhất . Phương trình đường thẳng Δ là

$$\mathbf{A.} \begin{cases} x = 6 \\ y = \frac{5}{2} - t \\ z = -\frac{9}{2} + t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 6 - 2t \\ y = \frac{5}{2} + t \\ z = -\frac{9}{2} + t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 12 - t \\ y = 5 \\ z = -9 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 6 - t \\ y = \frac{5}{2} \\ z = -\frac{9}{2} + t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 6 - 2t \\ y = \frac{5}{2} + t \end{cases}$$

$$\mathbf{C} \cdot \begin{cases} x = 12 - t \\ y = 5 \\ z = -9 + t \end{cases}$$

$$\mathbf{D} \cdot \begin{cases} x = 6 - t \\ y = \frac{5}{2} \\ z = -\frac{9}{2} + t \end{cases}$$

Câu 48: Có bao nhiều cặp số nguyên dương (x; y) thỏa mãn điều kiện $x \le 2022$ và $3(9^y + 2y) + 2 \le x + \log_3(x+1)^3$?

A.6

B. 2

C.3776

D.3778

Câu 49: Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2(x+1)(x^2+2mx-2m-1)$. Có bao nhiều giá trị nguyên của m không vượt quá 2019 để hàm số $y = f(x^2+1)$ có đúng 1 điểm cực trị?

A. 2

B. 2021

C.2022

D.1

Câu 50: Trong không gian với hệ tọa độ Oxyz cho hai mặt cầu $(S_1):(x-2)^2+(y+3)^2+(z-1)^2=4$ và $(S_2):(x-3)^2+(y+1)^2+(z+1)^2=1$. Gọi M là điểm thay đổi, thuộc mặt cầu (S_2) sao cho tồn tại ba mặt phẳng đi qua M, đôi một vuông góc với nhau và lần lượt cắt mặt cầu (S_1) theo ba đường tròn. Giá trị lớn nhất của tổng chu vi ba đường tròn đó là

 $\mathbf{A.8}\pi$

B. $4\sqrt{6}\pi$

C. $2\sqrt{30}\pi$

D. 4π

-----HÉT-----

Tài Liệu Ôn Thi Group

BẢNG ĐÁP ÁN

1.D	2.B	3.B	4.A	5.C	6.A	7.A	8.B	9.B	10.C
11.C	12.A	13.A	14.D	15.A	16.A	17.D	18.D	19.A	20.A
21.B	22.B	23.C	24.C	25.B	26.D	27.B	28.A	29.B	30.D
31.A	32.A	33.C	34.C	35.C	36.A	37.D	38.D	39.B	40.C
41.B	42.D	43.C	44.A	45.C	46.B	47.D	48.D	49.B	50.B