## **Circuitos Electricos II**

#### Roberto Sanchez Figueroa

### brrsanchezfi@unal.edu.co

# Soluciones propuestas para los ejercicios del taller 11

1

## **Problema 1**

### Problema

Considere el circuito RLCM,



Memristor y variables de estado,

$$M(q) = m_0 + m_1 q$$
;  $x_1 = q$ ,  $x_2 = i$ 

1 Muestre que el circuito obedece las ecuaciones de estado,

$$\dot{x}_1 = x_2 
\dot{x}_2 = \frac{1}{L}v_s - \frac{1}{LC}x_1 - \frac{m_0 + R}{L}x_2 - \frac{m_1}{L}x_1x_2 
y = x_2.$$

Parámetros,

(a) 
$$R = 2\Omega$$
;  $L = 0.5H$ ;  $C = 0.25$ ;  $m_0 = 0.5\Omega$ ;  $m_1 = 0.1\frac{\Omega}{C}$   
(b)  $R = 2\Omega$ ;  $L = 0.5H$ ;  $C = 0.25$ ;  $m_0 = 0.5\Omega$ ;  $m_1 = 1.0\frac{\Omega}{C}$ 

Los valores de  $\{m_0, m_1\}$  se proponen para la simulación y no corresponden a un dispositivo real.

2 Dibujar la salida y(t) para la entrada senoidal,

$$u(t) = 2. \sin \omega . t$$
,  $\omega = [0.1, 1.0, 5.0] r/s$ 

Condiciones iniciales cero.

#### Ecuacion de malla

$$V_{s} = L\dot{x_{2}} + \frac{1}{C}x_{1} + Rx_{2} + (m_{0} + m_{1}x_{1})x_{2}$$

$$-L\dot{x_{2}} = -V_{s} + \frac{1}{C}x_{1} + Rx_{2} + (m_{0} + m_{1}x_{1})$$

$$-L\dot{x_{2}} = -V_{s} + \frac{1}{C}x_{1} + Rx_{2} + (m_{0} + m_{1}x_{1})$$

$$\dot{x_{2}} = \frac{V_{s}}{L} - \frac{1}{LC}x_{1} - \frac{Rm_{2}}{L}x_{2} - \frac{m_{1}}{L}x_{1}x_{2}$$

## **Simulacion**



$$m_0 = 5$$

$$m_1 = 1$$



Offset=0

m\_0 = 5

m\_1 = 0.1

