metabox 2.0: A toolbox for thorough metabolomic data analysis, integration and interpretation

Kwanjeera W (kwanjeera.wan@mahidol.ac.th)

2023-03-16

1 INSTALLATION

Install metabox2 and required packages using the following commands:

```
##Install metabox2 ##
if (!require("devtools"))
  install.packages("devtools")
devtools::install_github("kwanjeeraw/metabox2")
library(metabox2)

##(Optional) Using graphical user interface (GUI) version ##
install.packages("shiny") #Skip this step, if shiny package is alreay installed
launch_gui()
```

2 DATA PROCESSING

Example commands for Data processing module:

Loading input data

```
input_dat = read_input_data('GCGC_DM_Samples.csv') #load input file
input_obj = set_input_obj(input_dat,idCol=1,classCol=3,xCol=6) #setup metabox object
head(input_obj$X) #preview input data
```

Missing value imputation

```
output_imputed = impute_missing_data(input_obj, method="rf")
head(output_imputed$X) #preview imputed data
```

CCMN Normalization

```
output_norm = normalize_input_data_byqc(output_imputed, method="ccmn", istd=1:2, factorCol=3)
head(output_norm$X) #preview normalized data
```

Square root transformation

```
output_sqrt = transform_input_data(output_norm, method="sqrt")
head(output_sqrt$X) #preview transformed data
```

Pareto scaling

```
output_pareto = scale_input_data(output_norm, method="pareto")
head(output_pareto$X) #preview scaled data
```

Observing data with different plots

```
pcaplot_overview(output_sqrt, classCol=3) #PCA plot
```

rlaplot_overview(output_sqrt, classCol=3, dolog = FALSE) #RLA plot
densityplot_overview(output_sqrt\$X, plotvar=TRUE) #Variable density plot
densityplot_overview(output_sqrt\$X, plotvar=FALSE) #Sample density plot
boxplot_overview(output_sqrt, plotvar=TRUE) #Variable boxplot
boxplot_overview(output_sqrt, plotvar=FALSE) #Sample boxplot

Figure 1: RLA plot

3 STATISTICAL ANALYSIS

Example commands for Statistical analysis module:

${\bf Univariate\ analysis}$

output_univ= univ_analyze(output_sqrt, var.equal = FALSE, ispara = FALSE, doposthoc = FALSE)
str(output_univ) #preview statistical result
boxplot_byF1(output_sqrt,xCol = 3,factorLv1 = output_sqrt\$Y) #boxplot by a fator
boxplot_byF1F2(output_sqrt,xCol = 3,factorLv1 = output_sqrt\$Y,factorLv2=output_sqrt\$inputdata\$Batch) #b
interactionplot_byF1F2(output_sqrt\$X,xCol = 3,factorLv1 = output_sqrt\$Y,factorLv2 = output_sqrt\$inputdata\$

Correlation analysis

output_corr= correlation_analyze(output_sqrt, method="pearson")

Figure 2: Interaction plot

str(output_corr) #preview statistical result
corrplot_heatmap(data.frame(output_corr\$corr_data)) #correlation heatmap

PCA analysis

output_pca= multiv_analyze(output_sqrt, method="pca", scale="center") #PCA
str(output_pca) #preview statistical result
multiv_scoreplot(output_sqrt,score_data = output_pca\$score_val,pcx = output_pca\$model_summary\$R2X[1],pc
multiv_loadingplot(output_pca\$loading_val) #Loading plot
multiv_loadingplot_bypc(output_pca\$loading_val,pc = 1) #Loding plot of PC1

PLS-DA analysis

output_plsda= multiv_analyze(output_sqrt, method="pls", scale="center") #PLS-DA
str(output_plsda) #preview statistical result
multiv_scoreplot(output_sqrt,score_data = output_plsda\$score_val,pcx = output_plsda\$model_summary\$R2X[1
multiv_loadingplot(output_plsda\$loading_val) #Loading plot
multiv_loadingplot_bypc(output_plsda\$loading_val,pc = 1) #Loding plot of PC1
multiv_vipplot(output_plsda\$vip_val) #VIP plot

OPLS-DA analysis

```
input_dat = read_input_data('LC_LN_Samples.csv') #load input file
input_obj = set_input_obj(input_dat,idCol=1,classCol=2,xCol=3) #setup metabox object
head(input_obj$X) #preview input data
output_oplsda= multiv_analyze(input_obj, method="opls", scale="pareto") #OPLS-DA
str(output_oplsda) #preview statistical result
multiv_scoreplot(input_obj,score_data = output_oplsda$score_val,oscore_data = output_oplsda$oscore_val,
```


Figure 3: PCA score plot

multiv_loadingplot(loading_data = output_oplsda\$loading_val,oloading_data = output_oplsda\$oloading_val)
multiv_loadingplot_bypc(output_oplsda\$loading_val,pc = 1) #Loding plot of PC1
multiv_vipplot(output_oplsda\$vip_val) #VIP plot

Figure 4: VIP plot

4 BIOMARKER ANALYSIS

Example commands for Biomarker analysis module:

```
input_dat = read_input_data('LC_LN_Samples.csv') #load input file
input_obj = set_input_obj(input_dat,idCol=1,classCol=2,xCol=3) #setup metabox object
head(input_obj$X) #preview input data
output_muvr = run_muvr(input_obj, scale = FALSE, method="PLS") #biomarker analysis using PLS model
MUVR_getvip(output_muvr) #Get VIP ranks
MUVR_plotvip(output_muvr) #VIP rank plot
MUVR_plotval(output_muvr) #Validation plot
```

5 INTEGRATIVE ANALYSIS

Example commands for Integrative analysis module:

```
input_dat1 = read_input_data('LC_Fat_Tissue.csv') #load input file1
input_obj1 = set_input_obj(input_dat1,idCol=1,classCol=3,xCol=4) #setup metabox object
input_dat2 = read_input_data('GC_Fat_Tissue.csv') #load input file2
input_obj2 = set_input_obj(input_dat2,idCol=1,classCol=3,xCol=4) #setup metabox object
output_mbpls = mbplsda_analyze(data.frame(input_obj1$Y), list(lc = input_obj1$X,gc = input_obj2$X),nrep
mbplsda_plottestdim(output_mbpls$result$res_optimal) #Prediction error rate plot
mbplsda_plotpermut(output_mbpls$result$res_permut) #Permutation testing plot
```


Figure 5: VIP rank plot

mbplsda_screeplot(output_mbpls\$result\$base_model\$eig) #Scree plot
mbplsda_plotboot_vipc(output_mbpls\$result\$res_boot) #Variable importance plot
mbplsda_plotboot_bipc(output_mbpls\$result\$res_boot) #Block importance plot

6 DATA INTERPRETATION

Example commands for Data interpretation module:

Overrepresentation analysis

output_ora1=overrep_analyze(fnanal_data\$compound_data\$kegg, nodetype="compound", size=5) #pathway, metahead(output_ora1\$enrichment) #preview result

output_ora2=overrep_analyze(fnanal_data\$combined_data\$id[1:9], nodetype="protein", size=3) #pathway, pr head(output_ora2\$enrichment) #preview result

output_ora3=overrep_analyze(fnanal_data\$compound_data\$hmdb, settype="chemicalclass") #chemical class OR
head(output_ora3\$enrichment) #preview result

Pathway enrichment analysis

output_enr=enrichment_analyze(fnanal_data\$compound_data, pcol=5, fccol=6, method="reporter", nodetype="
head(output_enr\$enrichment) #preview result

piano::networkPlot2(output_enr\$network,class="distinct",direction = "down",significance=0.1,lay = 5) #e.

Integrated pathway overrepresentation analysis

output_ora = comb_overrep_analyze(fnanal_data\$combined_data, organism = "hsa", size = 3) #integrated pa
head(output_ora\$enrichment) #preview result

Figure 6: Block importance plot

Figure 7: Enrichment network plot by piano package