Алгоритм DPLL. Разобраться, запрограммировать и сравнить с другими методами экспериментально.

DPLL

Уточнения: *чистая переменная* - переменная, встречающаяся в наборе дизьюнкт только с отрицанием или без него

Пустой дизьюнкт – дизьюнкт имеющий значение FALSE

Алгоритм DPLL работает по принципу угадывания переменных, он пытается найти такой набор значений переменных, для которого формула будет выполнима. В процессе угадывание происходит ряд упрощений, за счет чего этот алгоритм работает довольно быстро. Есть несколько правил для упрощения:

- 1) Если есть дизьюнкт с одной переменной, то этой переменной во всей формуле присваивается значение TRUE или FALSE в зависимости от отрицания у переменной находящейся в этом дизьюнкте.
- 2) Если есть чистая переменная, то такой переменной присваивается значение в зависимости от отрицания, чтобы значение стало равно истине.

Если эти правила применить нельзя, снова угадывают значение переменной.

Алгоритм выполняется до тех пор, пока мы либо не получим пустой дизъюнкт, либо не найдем набор при котором формула выполнима.

Псевдокод алгоритмов

Псевдокод:

Процедура DPLL //на вход подается значение для заполнения выбранной переменной Начало

Выбираем переменную, которой будем присваивать значение

Если такая переменная есть

Заполняем ее полученным на входе в процедуру значением

Проверяем, не нашли ли мы решение(выполняется ли набор дизъюнкт)

Если да, возвращаем значение TRUE

Проверяем есть ли пустой дизъюнкт в наборе дизъюнкт

Если да, возвращаем значение FALSE

Повторять

Удаляем дизьюнкты со значением TRUE

Если есть дизъюнкт с одной переменной

Заполняем эту переменную значением в зависимости от отрицания

Если был найден дизъюнкт с одной переменной

Удаляем дизъюнкты со значением TRUE

Если существует «чистая» переменная

Заполняем эту переменную значением в зависимости от отрицания

Пока происходят упрощения

Если (DPLL(TRUE))

Возвращаем значение TRUE

Если (DPLL(FALSE))

Возвращаем значение TRUE

Конец

Заканчивает работу при двух ситуациях:

- 1) когда найдет значения всех переменных, при которых формула выполнима
- 2) когда найдет пустой дизъюнкт.

Если после окончания процедуры возвращено значение TRUE, то формула выполнима, если FALSE формула не выполнима.

Метод резолюции

Для сравнения с алгоритмом DPLL я выбрал алгоритм, основанный на методе резолюции.

В основе разработанного алгоритма лежит взятие всех возможных резольвент в поданном наборе дизъюнкт, но с некоторыми модификациями:

- 1) В список не добавляются тождественно истинные дизьюнкты
- 2) Не добавляются дизъюнкты, являющиеся продолжением уже существующих, например:
- (X1 V X2) и (X1 V X2 V not X4) второй дизьюнкт является продолжением первого.

Псевдокод:

```
Процедура Resolution
 Начало
   Упрощаем КНФ
    //Удаляем дизъюнкты со значением TRUE, используем правило поглощения
   Пока мы не прошли по всему набору дизъюнкт включая резольвенты начиная со второго ( і )
    Пока мы не прошли по всему набору дизъюнкт, начиная с первого по і
      Если можем взять резольвенту
      //не является продолжением какого-либо дизъюнкта, не имеет значения TRUE
       Берем резольвенту
       Если резольвента – пустой дизъюнкт
        Возвращаем TRUE
       Пока в наборе есть дизьюнкты с одной переменной
         Берем резольвенты с множеством дизьюнкт содержащих эту переменную
       Если получили пустой дизъюнкт
         Возвращаем TRUE
      КЦ
    КЦ
   КЦ
   Возвращаем FALSE
 Конец
```

Заканчивается:

- 1) Когда найдет пустой дизъюнкт
- 2) При взятии всех возможных резольвент.

Если алгоритм возвращает значение TRUE, то найден пустой дизъюнкт и, следовательно, формула не выполнима. Если функция возвращает значение FALSE, то функция выполнима.

Пример для анализа

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_2 \lor \neg x_3 \lor \neg x_4) \land (x_3 \lor x_4 \lor x_5) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_4 \lor \neg x_5 \lor \neg x_6) \land (x_5 \lor x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (x_6 \lor x_7 \lor x_8) \land (\neg x_6 \lor \neg x_7 \lor \neg x_8) \land (x_7 \lor x_8 \lor x_9) \land (\neg x_7 \lor \neg x_8 \lor \neg x_9) \land (x_1 \lor x_3 \lor x_5) \land (\neg x_1 \lor \neg x_3 \lor \neg x_5) \land (x_2 \lor x_4 \lor x_6) \land (\neg x_2 \lor \neg x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_7) \land (\neg x_3 \lor \neg x_5 \lor \neg x_7) \land (x_4 \lor x_6 \lor x_8) \land (\neg x_4 \lor \neg x_6 \lor \neg x_8) \land (x_5 \lor x_7 \lor x_9) \land (\neg x_5 \lor \neg x_7 \lor \neg x_9) \land (x_1 \lor x_4 \lor x_7) \land (\neg x_1 \lor \neg x_4 \lor \neg x_7) \land (x_2 \lor x_5 \lor x_8) \land (\neg x_2 \lor \neg x_5 \lor \neg x_8) \land (x_3 \lor x_6 \lor x_9) \land (\neg x_3 \lor \neg x_6 \lor \neg x_9) \land (x_1 \lor x_5 \lor x_9) \land (\neg x_1 \lor \neg x_5 \lor \neg x_9)$$

Будем выполнять сравнение экспериментального времени решения задачи SAT(задача выполнимости) алгоритма DPLL и метода резолюции, для различного количества дизъюнкт.

Для каждого случая выполним по три измерения и сосчитаем среднее время выполнения.

Количество	Алгоритм	Метод	Среднее время	Среднее время
дизъюнкт	DPLL B	резолюции в	выполнения	выполнения
	миллисекундах	миллисекундах	DPLL	метод
				резолюции
1	0.8697	0.3710	0.8670	0.3723
	0.8847	0.3742		
	0.8467	0.3718		
	0.8609	0.3773	0.8457	0.3694
2	0.8215	0.3572		
	0.8546	0.3737		
3	0.8365	0.3529	0.8639	0.3609
	0.8896	0.3533		
	0.8656	0.3766		
4	0.8317	0.3771	0.8533	0.3795
	0.8668	0.3885		
	0.8613	0.3730		
5	0.8314	0.3687	0.8937	0.3766
	0.9809	0.3948		
	0.8687	0.3664		
6	0.9233	0.4074	0.8989	0.3924
	0.9127	0.3747		
	0.8608	0.3952		
7	0.8199	0.3939	0.8541	0.3876
	0.8748	0.3845		
	0.8675	0.3844		
8	0.8474	0.4019	0.8616	0.4070
	0.8712	0.4066		
	0.8661	0.4125		
9	0.8352	0.4322	0.8697	0.4419
	0.8506	0.4406		
	0.9233	0.4528		

10	0.9142	0.4835	0.8940	0.4837
	0.8866	0.4981		
	0.8811	0.4694	-	
	0.8807	0.5594	0.8940	0.5549
11	0.8865	0.5459	_	
	0.9149	0.5593	-	
	0.9569	0.6032	0.9158	0.5801
12	0.8965	0.5700	-	
	0.8941	0.5672	_	
	0.9035	0.7140	0.8983	0.7474
13	0.8949	0.7804	1	
	0.8965	0.7480	-	
	0.8938	0.9861	0.9623	0.9452
14	0.9019	0.9162		
	1.0911	0.9332		
	0.9517	1.57	0.9112	1.5533
15	0.8701	1.54	. 0.7112	1,000
	0.9118	1.55		
	0.9355	2.44	0.9451	2.5933
16	0.9186	2.89		
	0.9812	2.45		
	0.9087	4.79	0.9106	4.6133
17	0.9204	4.31		
	0.9028	4.74		
	0.8991	5.71	0.9067	5.6900
18	0.9052	5.61	-	
	0.9159	5.75	-	
	0.9048	7.49	0.9149	7.3500
19	0.9158	7.19		
	0.9241	7.37		
	0.9114	8.89	0.9304	8.9300
20	0.9399	8.98		
	0.9398	8.92	=	
	0.9343	11.3	0.9060	11.5333
21	0.8822	11.6		
	0.9015	11.7	=	
	0.8814	14.7	0.9060	14.8333
22	0.9186	14.9		
	0.9181	14.9	-	
	0.88	21.5	0.9226	21.6333
23	0.9474	21.7	1 2.7.2.20	
	0.9403	21.7	_	
	0.9157	31.1	0.9114	30.5333
24	0.9225	30.2		
- ·	0.896	30.3	1	
	0.9664	283	0.9641	269.3333
	(). 9()()4			
25	0.9379	275	0.5071	20,1000

	0.9628	767	0.9286	773.0000
26	0.923	753		
	0.9001	799		
27	0.9094	3580	0.9536	3583.3333
	0.9055	3581		
	1.046	3589		
28	0.9261	9457	0.9295	9524.0000
	0.9438	9520		
	0.9186	9595		
29	0.9173	18091	0.9274	18088.0000
	0.9142	18222		
	0.9506	17951		
30	0.9277	30266	0.9432	30329.3333
	0.923	30813		
	0.979	29909		
31	Переполнение — стека	56785	Переполнение	57402.0000
		57342	стека	
		58079		
32	Переполнение — стека	94637	Переполнение	95146.0000
		94813	стека	
		95988		

Анализ полученных значений

На графике заметно, что при малом количестве дизъюнкт метод резолюции работает быстрее, но, начиная с 14 дизъюнкта, метод резолюции начинает резко замедляться, что в дальнейшем ставит под вопрос целесообразность его применения. Алгоритм DPLL же, показывает стабильный результат на протяжении всего эксперимента, прирост времени очень мал.

Начиная с 31 дизъюнкта, в алгоритме DPLL возникает переполнение стека (алгоритм разработан с помощью использования рекурсии), метод резолюции продолжает работать при таких условиях, но очень медленно.

DPLL

На графике мы видим, что алгоритм DPLL хоть и работает медленнее при малом количестве дизъюнкт – более стабилен, чем метод резолюции. Скорость возрастания времени работы у алгоритма DPLL схожа с логарифмическим ростом времени работы в среднем. Сложность алгоритма, рассчитать довольно тяжело, так как в его основе лежит рекурсия. Визуализировать его работу можно в виде двоичного дерева. В таком случае, функция сложности содержит логарифм. Если судить по графику, то примерно O(log(n)).

Рост времени работы алгоритма больше связан с количеством переменных в формуле, чем с количеством дизъюнкт.

Метод Резолюции

Рост времени выполнения у метода резолюции — полиномиальный сложность его(грубо) $O(n^2)$ (Относительно количества дизъюнкт). В худшем случае, мы возьмем все возможные резольвенты. Худший случай, когда формула имеет решение, так как алгоритм пытается опровергнуть формулу.

График затрачиваемой памяти для двух методов

Затрачиваемая память измеряется в количестве дизьюнкт, с которым работает программа. Один дизьюнкт: 14 байт, не считая переменных содержащихся в нем.

Алгоритм DPLL не использует дополнительной памяти, он работает с уже имеющимся набором дизъюнкт. Метод резолюции тратит память на хранение полученных в ходе работы метода резольвент, на графике можно увидеть полиномиальный рост затрат памяти.

Вывод:

Метод резолюции, как и любой метод основанный на полном переборе, довольно медленный и неэффективный, алгоритм DPLL намного эффективнее метода резолюции в плане скорости и самого подхода к решению задачи выполнимости. Но в данной работе используется рекурсивная реализация метода DPLL — это значит, что для решения больших задач этот алгоритм не подходит, надо использовать не рекурсивную реализацию, для получения максимального эффекта.

Другой пример и протоколы работы программы к нему

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)

DPLL

Assign a variable X1 the value true (X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(X3)^(X2 V not X3 V X4) Simplify clauses with value true (not X3 V not X4)^(not X2 V X4)^(X3)^(X2 V not X3 V X4) Variable X3 one in clause Assign a variable X3 the value true (not X4)^(not X2 V X4)^(X2 V X4) Variable X4 one in clause Assign a variable X4 the value false (not X2)^(X2) Variable X2 one in clause Assign a variable X2 the value false (false) Take another variable value: (false) The empty clause contained in the formula!

Second Computation

FAILURE

Assign a variable X1 the value false
(X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(X3)^(X2 V not X3 V X4)
Simplify clauses with value true
(X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(X2 V not X3 V X4)
Variable X3 in the whole formula is included with denial
Assign a variable X3 the value false
(X2 V X4)^(not X4)^(not X2 V X4)^(X2 V X4)
Simplify clauses with value true
(X2 V X4)^(not X2 V X4)
Variable X4 in the whole formula is included without denial
Assign a variable X4 the value true
(X2)^(not X2)
Simplify clauses with value true

SUCCESS

runtime: 230.6 ms //много из-за вывода протокола(в программе можно отключить протокол)

X1 = 0; X2 = 0; X4 = 1;X3 = 0;

Дерево обхода значений для этого примера DPLL

 $(\ X1\ V\ X2\ V\ X4\)^{\wedge}(\ not\ X3\ V\ not\ X4\)^{\wedge}(\ not\ X2\ V\ X4\)^{\wedge}(\ not\ X1\ V\ X3\)^{\wedge}(\ X2\ V\ not\ X3\ V\ X4\)$

Для этого примера не важно какое значение примет переменная X2.

Метод Резолюции

Take the resolution of (not X3 V not X4) and (X1 V X2 V X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)

Take the resolution of (not X2 V X4) and (X1 V X2 V X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)

Take the resolution of (not X2 V X4) and (not X3 V not X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)^(not X2 V not X3)

Take the resolution of (not X1 V X3) and (X1 V X2 V X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)^(not X2 V not X3)^(X2 V X3 V X4)

Take the resolution of (not $X1\ V\ X3$) and (not $X3\ V$ not X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)^(not X2 V not X3)^(X2 V X3 V X4)^(not X1 V not X4)

Take the resolution of (X2 V not X3 V X4) and (not X3 V not X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)^(not X2 V not X3)^(X2 V X3 V X4)^(not X1 V not X4)^(X2 V not X3)

Take the resolution of ($X2\ V$ not $X3\ V$ X4) and (not $X2\ V$ X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)^(not X2 V not X3)^(X2 V X3 V X4)^(not X1 V not X4)^(X2 V not X3)^(not X3 V X4)

Take the resolution of (X2 V not X3 V X4) and (not X1 V X3) clauses:

 $(X1 \ V \ X2 \ V \ X4\)^{(} \ not \ X3 \ V \ not \ X3\ V \ not \ X3\ V \ X4\)^{(} \ not \ X1 \ V \ X3\)^{(} \ X2 \ V \ not \ X3\ V \ X4\)^{(} \ (X2 \ V \ not \ X3\ V \ X4\)^{(} \ (X2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x2 \ V \ not \ X3\ V \ X4\)^{(} \ (x3 \ V$

Take the resolution of (X1 V X4) and (not X3 V not X4) clauses:

 $(X1 \ V \ X2 \ V \ X4)^{(} \ not \ X3 \ V \ not \ X4)^{(} \ not \ X2 \ V \ X4)^{(} \ not \ X1 \ V \ X3)^{(} \ X2 \ V \ not \ X3 \ V \ X4)^{(} \ X1 \ V \ X2 \ V \ not \ X3)^{(} \ X2 \ V \ Not \ X3)^{(} \ (X2 \ V \ Not \ X3)^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4))^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4))^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4))^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4)^{(} \ (X3 \ V \ X4)$

Take the resolution of (X1 V X4) and (not X1 V X3) clauses:

 $(X1 \ V \ X2 \ V \ X4)^{(}$ not $X3 \ V$ not $X4)^{(}$ not $X2 \ V \ X4)^{(}$ not $X1 \ V \ X3)^{(}$ $X2 \ V$ not $X3 \ V \ X4)^{(}$ (X1 V X2 V not X3) $(X1 \ V \ X4)^{(}$ not $X2 \ V \ not \ X3)^{(}$ (X2 V Not X3) $(X2 \ V \ X3)^{(}$ not $(X1 \ V \ X2)^{(}$ not $(X1 \ V \ X2)^{(}$ not $(X1 \ V \ X3)^{(}$ Not (X1

Take the resolution of (not $X2\ V$ not X3) and (not $X1\ V$ X3) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)^(not X2 V not X3)^(X2 V X3 V X4)^(not X1 V not X4)^(X2 V not X3)^(not X3 V X4)^(not X1 V X2 V X4)^(X1 V not X3)^(X3 V X4)^(not X1 V not X2)

Take the resolution of (X2 V X3 V X4) and (X2 V not X3 V X4) clauses:

(X1 V X2 V X4)^(not X3 V not X4)^(not X2 V X4)^(not X1 V X3)^(X2 V not X3 V X4)^(X1 V X2 V not X3)^(X1 V X4)^(not X2 V not X3)^(X2 V X3 V X4)^(not X1 V not X4)^(X2 V not X3)^(not X3 V X4)^(not X1 V X2 V X4)^(X1 V not X3)^(X3 V X4)^(not X1 V not X2)^(X2 V X4)

Take the resolution of (X2 V not X3) and (not X1 V X3) clauses:

 $(X1 \ V \ X2 \ V \ X4\)^{(} \ \text{not} \ X3 \ V \ \text{not} \ X4\)^{(} \ \text{not} \ X2 \ V \ X4\)^{(} \ \text{not} \ X1 \ V \ X3\)^{(} \ X2 \ V \ \text{not} \ X3\ V \ X4\)^{(} \ \text{not} \ X1 \ V \ \text{not} \ X3\)^{(} \ X2 \ V \ \text{not} \ X3\)^{(} \ \text{not} \ X1 \ V \ \text{not} \ X3\)^{(} \ \text{not} \ X3\ V \ X4\)^{(} \ \text{not} \ X1 \ V \ \text{not} \ X3\)^{(} \ \text{not} \ X3\ V \ X4\)^{(} \ \text{not} \ X1\ V \ \text{not} \ X2\ V \ X4\)^{(} \ \text{not} \ X1\ V \ X2\ V \ X4\)^{(} \ \text{not} \ X1\ V \ X2\)$

Take the resolution of (X2 V not X3) and (not X2 V not X3) clauses:

 $(X1 \ V \ X2 \ V \ X4)^{(} \ \text{not} \ X3 \ V \ \text{not} \ X4)^{(} \ \text{not} \ X2 \ V \ X4)^{(} \ \text{not} \ X1 \ V \ X3)^{(} \ X2 \ V \ \text{not} \ X3 \ V \ X4)^{(} \ \text{not} \ X1 \ V \ \text{not} \ X3)^{(} \ X2 \ V \ \text{not} \ X3)^{(} \ X2 \ V \ X4)^{(} \ \text{not} \ X1 \ V \ \text{not} \ X3)^{(} \ \text{not} \ X3)^{(} \ \text{not} \ X3)^{(} \ \text{not} \ X1 \ V \ \text{not} \ X2)^{(} \ \text{not} \ X3)^{(} \ \text{not} \ X3)^{(} \ \text{not} \ X3)^{(} \ \text{not} \ X1 \ V \ \text{not} \ X2)^{(} \ \text{not} \ X1)^{(} \ \text{not} \ X3)^{(} \ \text{not} \ X3)^{(}$

Take all resolutions with one-variable clause: (not X3)

 $(X1\ V\ X2\ V\ X4\)^{(}$ not $X2\ V\ X4\)^{(}$ not $X1\ V\ X4\)^{(}$ X1 V X4)^{(} x2 V X4)^{(} not X1 V not X4)^{(} not X1 V X2 V X4)^{(} not X1 V not X2 V X4)^{(} not X1 V x2 V X4)

Take all resolutions with one-variable clause: (not X1)

(X2 V X4)^(not X2 V X4)^(X4)^(X2 V X4)^(X4)^(X2 V X4)

Take all resolutions with one-variable clause: (X4)

SUCCESS

runtime: 1554.87 ms//много из-за вывода протокола(в программе можно отключить протокол)

Программа (графический интерфейс программы)

Ввод производится помощью кнопок справа. В центральном верхнем поле отображается введенное выражение. Выражение вводится в форме КНФ. В левом окне отображается протокол работы выбранного алгоритма, отключить протокол можно убрав флажок с поля «Вывести протокол решения» (по умолчанию отключён), это значительно ускорит работу алгоритмов. Выбрать с помощью какого алгоритма нужно решить задачу выполнимости можно там же, в правом нижнем углу.

Подробнее об этих алгоритмах и самой задаче выполнимости булевых формул я расскажу во время проведения альтернативного экзамена.