

Q1 Which types of chemical reactions involved Chemical Vapor Deposition processes do you know?

One reactand = precursor

- 1) (thermal decompoition/) pyrolysis (one precursor)
- 2) Disproportionation (e.g. Cu precursor CupraselectTM)

Two reactands (two precursors or one precursor and one co-reactand) or more

- 1) Reduction (W-CVD: precursor WF6, co-reactand: Hydrogen H2)
- 2) Oxidation (formation of an oxide: two precursors)
- Nitridation (TiN deposition using TiCl4 + NH3, two precursors)

Typical reaction types in CVD

1. Dissociation reaction

$$(AB)_{g} \xrightarrow{T} A_s + B_g$$
 (Pyrolytic dissociation) $s = solid$ $g = gaseous$

<u>Pyrolysis:</u> Thermal decomposition of gaseous species (hydrides, carbonyls, metal-organic compounds) on hot substrates

→ Example: LPCVD of polycrystalline or amorphous silicon films

2. Reaction of two gaseous substances on the surface

$$(AB)_g + (CD)_g \longrightarrow (AC)_s + (BD)_g = dominating reaction type$$

Oxidation: CVD of SiO₂ and glasses by reaction of gaseous hydrides or halides of Si and dopants with oxygen or oxygen-containing compounds

→ Example: LPCVD of PSG

$$SiH_4 + O_2 \xrightarrow{450 \text{ °C}} SiO_2 \downarrow + 2 H_2 \uparrow$$

$$4 PH_3 + 5 O_2 \xrightarrow{450 \text{ °C}} 2 P_2 O_5 \downarrow + 6 H_2 \uparrow$$

Nitridation:

→ Examples: <u>LPCVD of silicon nitride</u>

$$3 \operatorname{SiH}_{4} + 4 \operatorname{NH}_{3} \xrightarrow{800 \, ^{\circ} \mathrm{C}} \operatorname{Si}_{3} \mathrm{N}_{4} \downarrow + 12 \operatorname{H}_{2} \uparrow$$

$$3 \operatorname{SiCl}_{2} \mathrm{H}_{2} + 4 \operatorname{NH}_{3} \xrightarrow{700 \, ^{\circ} \mathrm{C}} \operatorname{Si}_{3} \mathrm{N}_{4} \downarrow + 6 \operatorname{H}_{2} \uparrow + 6 \operatorname{HCI} \uparrow$$

Reduction: Reaction of halides or oxygen-containing compounds with hydrogen or hydrogen-containing compounds to generate solid deposits and gaseous byproducts

→ Examples: <u>LPCVD of Tungsten, blanket deposition</u>

Q2 What are requirements for diffusion barriers?

- very thin and very stable
 - thermodynamically stable (no reactions with adjacent films), no diffusion
 - high density
 - defect free (no pinholes)
- low resistivity (some 100 µOhmcm)
- good adhesion to the underground and also of layers on top of the barrier
- low mechanical stress

• ...

Requirements for conducting CVD barriers (in copper interconnects)

- <u>Ultrathin</u>, but nevertheless <u>very stable</u>
 - High density / no or stuffed diffusion paths
 - Low defect level
 - Thermodynamically stable
- Good adhesion to underground and Cu
- Low stress
- Low resistivity
- Conformal or at least uniform sidewall coverage

Q3 Please name the two steps in an MOCVD TiN deposition process using **TDMAT** precursor!

- deposition step: decomposition of TDMAT
- post-treatment step: plasma treatment (N2/H2)

CVD of Copper diffusion barriers: TiN by MOCVD from TDMAT

Multistep process for high quality TiN

Method was introduced by M. Danek and coworkers (Applied Materials), 1995

Q4 What is the purpose of plasma post-treatment of MOCVD deposited TiN diffusion barrier films?

- Film densification
- Lower resistivity (higher density, lower contamination level, lower oxygen uptake during air exposure)
- Amorphous → nanocrystalline film (nanocrystals embedded in an amorphous matrix)
- Decrease the contamination content in the film (C, O)
- Improvement in diffusion barrier properties

<u>CVD of Copper diffusion barriers: TiN by MOCVD from TDMAT - Film properties</u>

	without plasma treatment	multi step process with plasma treatment		
Spec. el. resistivity	≈ 8000 μΩcm	170 μΩcm		
Stability of resistivity if exposed to air	increase ≈ 200%	increase < 2%		
Density (bulk value = 5.2 g/cm³)	2.2 g/cm³	4.8 g/cm³		
Film stress (all compressive)	- 300 MPa (as dep.) - 500 MPa (after air exp.)	- 1400 MPa (as dep.), no change after air exp.		
Microstructure	amorphous like	polycrystalline		
Impurities	pprox 25 at.% C, $pprox$ 25 at.% O if exposed to air	6 at.% C, 5 at.% O if exposed to air		
Barrier stability against copper diffusion (electrically tested with pn-diodes)	fails already at 350°C	stable up to 450°C		

Q5 Please define the term "epitaxy" as a special type of CVD process!

- Deposition (CVD) of a single crystalline film (high dep. T)
- On a single cryst. Substrate

Q6 What is the difference between "homoepitaxy" and "heteroepitaxy"?

Homoepitaxy: identical material of substrate and growing film

Heteroepitaxy: different materials of substrate and film

Epitaxy is the growth of single crystalline films upon the surface of a single crystal substrate.

<u>Homoepitaxy</u> <u>Heteroepitaxy</u>

identical different chemical composition of substrate and deposited film

Examples: Si/Si Ge/Si

SiGe Si/Al₂O₃ (Silicon on Saphire)

GaAlAs/GaAs (HEMT, HFET)

Applications: Bipolar: - Definition of transistor regions by vertical doping

- SiGe structures heterojunction bipolar transistors (HBT)

CMOS: - Minimization of the vertical "latch-up" effect (switching of a parasitic p-n-p-n

thyristor) by deposition of lightly doped epi-Si on heavily doped substrates

- Formation of strained Si on SiGe for higher electron mobility

<u>Techniques:</u> - Vapor-phase epitaxy (VPE, similar to CVD, dominating in Si processing)

special case: Molecular Beam Epitaxy (MBE)

- Liquid-phase epitaxy (LPE, III-V compounds)

- Solid-phase epitaxy (SPE, annealing of amorphous layers)

Q7 What is the motivation to use low-k dielectrics instead of conventional silicon dioxide as insulator/dielectric in on-chip interconnect systems?

Lowering parasitic capacitances, to lower or minimize:

- cross-talk between metal lines
- power consumption
- Signal delays

Interconnect Challenges – Shrinking feature sizes

Crosstalk

$$X_{talk} \propto \frac{C_{IMD}}{C_{inttot}} = \frac{1}{1 + \frac{\varepsilon_{ILD}/\varepsilon_{IMD}}{4R^2}}$$

decrease

Goal: lower parasitic capacitances in the interconnection system by integration of dielectric materials with lower permittivity (k-value) compared to standard SiO₂ (k=3.9...4.3)

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Q8 How can a lower k-value be achieved compared to SiO₂?

(two different systematics: 1+2; A+B)

- 1) lower the material's density
 - Introduce porosity via localized pores (0.5 2 nm size)
 - Increase bond length
 - Terminating groups
- lower the polarizability: no dipoles, low pol. of bonds itself (e.g. Si-F, Si-C)
- A) Change bond properties
 - Higher bond length (→ lower density)
 - Introduce elements (F) or groups (CH3) terminating properties Si-F;
 Si-C(-H)3
 - · low pol. of bonds itself
- B) Localized pores introduce porosity

How to build a low dielectric constant material?

1. Minimize polarizability

- Choose a nonpolar dielectric system: polarity is weak in materials with few polar chemical groups and with symmetry to cancel the dipoles of chemical bonds between dissimilar atoms
- Introduce elements with smaller electronic polarizability, e.g. C, F

Bond	C-C	C-F	C-O	C-H	O–H	C=O	C=C	C≣C	C≣N
Polarizability (Å)	0.53	0.56	0.58	0.65	0.71	1.02	1.64	2.04	2.24

(Source: K.J. Miller et al., Macromolecules, 23, 3855 (1990))

- Minimize the moisture content of the dielectric / design a dielectric with minimum hydrophilicity ($k_{water} \approx 80 \rightarrow$ only small traces of water need to be absorbed before the low-k dielectric loses its permittivity advantage)

How to build a low dielectric constant k material?

- 2. Increase the free volume → reduce N_j
 Microscopic level:
 - \rightarrow increase bonding length, bonding orientation, e.g. partially substitute Si-O (1.5097 Å) by Si-CH₃ (1.857 Å)
 - → discontinue the network by inserting single bond atoms or groups in the backbone structure: adding F or CH₃ into SiO₂ network

Macroscopic level:

→ Add porosity (k_{air} = 1): incorporation of a thermally degradable material

(porogen) within a host matrix

 SiO_2 k ≈ 4.0 CH₃ Si b. O

C-doped oxide $k \approx 3.0$

Dense SiCOH (Precursor TMCTS) k min. 2.6

Porous SiCOH (Precursor TMCTS + Porogen) k≈2.1 - 2.5

- **Q9** Which types of processes can be used for low-k dielectric deposition? Which of those is *most frequently used* in IC production?
 - Spin-on process
 - Plasma-enhanced CVD (PECVD)

Deposition of porous low-k dielectrics by PECVD

PECVD porogen approach: sacrificial process, currently performed in high-volume manufacturing for 32 / 28 nm technology nodes and below

- Deposition from the decomposition of (at least) two precursors in the plasma
 - Pure organic molecule (porogen)
 - Molecule consisting of silicon atoms and organic radicals (matrix percursor)
- Formation of a "hybrid" film composed of organosilicate-based matrix enclosing organic inclusions

Q10 Which type of post-deposition (curing) processes can be used to form porous low-k dielectrics?

What is the purpose of those curing processes and which film properties are affected?

- 1) Thermal annealing (T)
- 2) Thermal annealing (T) + UV radiation
- 3) Thermal annealing (T) + e-beam
- 4) Thermal annealing (T) + Plasma treatment by using H2
- 5) Supercritical CO2 treatment

Purpose/affected properties:

- Removal of porogen (C-organic material)
- Porosity (higher) / density (lower)
- Shrinkage (film thickness reduction, needs to be minimized)
- Permittivity → lower k-value
- Increase of crosslinking im the matrix material → enhance méchanical properties
- Mechanical properties: hardness, Young's/eleastic modulus decrease
- Thermal conductivity is lower

Deposition of porous low-k dielectrics by PECVD

PECVD porogen approach: sacrificial process, currently performed in high-volume manufacturing for 32 / 28 nm technology nodes and below

- Deposition from the decomposition of (at least) two precursors in the plasma
 - Pure organic molecule (porogen)
 - Molecule consisting of silicon atoms and organic radicals (matrix percursor)
- Formation of a "hybrid" film composed of organosilicate-based matrix enclosing organic inclusions

Post-deposition treatment (curing)

-thermal annealing, UV-assisted thermal annealing, e-beam assisted thermal annealing, H2 plasma, supercritical treatment in ${\rm CO_2}$

Purpose:

- removal of the organic phase, mostly consisting of porogen molecule fragments → Film becomes porous and has ultra low-k properties
- Improvement of mechanical properties of matrix network by additional cross-linking

Affected film properties

- porosity/density
- mechanical stability (hardness, Elastic modulus)
- -Thermal conductivity

