OLASILIK VE ISTATISTIK

Hafta-1

VE ISTALISTIK	H9++9-7
· istatistik: Oproblemin belärlennes: (Basan durimunda ch ② Verilerin toplannas.	siyet ethili mi?)
2 Verilerin toplannas.	
3 Toplanan vertenn dizenlennesi	
(a) Hipotezin belirlennesi _ Ho (NJII)	yolder
6 Analizierin yapılması	vardir
@ Sonualarin bulunmasi ve youmlannasi	
· Anslittle: (Anslittle, Euren) Hallunda borlg; ashibi almak brimlerden dusan toplulgun tamamina densi	istedigimiz
* * Anakitleye vlasanana nedenleri - Gok böyök alma > Kalifiye elemanin	281
-> Maddl inkansial	
Vistatistikte Gogu zaman anslutleye ulazamayız. Bu se verterle analiz yapıp yalılazık sonuglar elde ederiz.	shoji beple elimisdeli
O'rneblem: Anslätley: temst ettigini däsändägämäs anslä olan topluligen tamanina denir.	bledan daha az
o Birin: Örnelden: obstren bireglein her birine birin	den's.
o Nitel Degister: Aldig: degerler sayiyla i fade eddeneyer	
· Nicel Degister: Aldigi degerter sayiyla ifade eddeboten	degislerierdir.

Örn! 884 i cim militær. He boy værne militær.
bæginsiæ
(ethileyen)
(ethileyen)

* 2

Frehans Tablolarinin Olusturilmasi:

* Basit 0:5:

& Sini Clandinilmis Diz:

of Gruplandirilmis Dizi

Basit Dizi: Genellike ze sayıda gözlen değerinin bulunması durumunda ve ayrı değerle sadece bir kez karşılaşılması durumunda basit dizi tercih edelmektedir. Ham verilerin baçakten bayage ya da bayakten karakten bayage ya da bayakten karakten doğru sıralan masıyla basit dizi elde edelmiş olur.

NOTY X: N > Anslide n > Smellen

On: Assgida verter han verter: basit die haline dansstürende. 76,64,59,78,71,68,80,85,82,65

Bosot Diz: -> 59,64,65,68,71,76,78,80,82,85 => X:

Southandirilmis Dizi: Basit dizige gåre daha (azta ve agni sagida gåzlem degernin bulunmasi durmunda teresh edalmelitedir.

den: Assgids 20 ögrencinn ber dersin sinsunden almis aldulisi notler vertnehteder. Siniflandicilmis dizi ve basit dizi halme geteriniz.

45,80,50,95,45,50,80,50,95,80,45,50,80,50,20,95,45,95,80,20

Gruplandirilmis Dizi:

of k= In k: Grup sayisi of c= Kmax-Kmin c: Grup genteligi

NOTO L ve c her zaman tam say, almalidir.

Örni Asagida 50 istinin yasları vertmeldedir.

56,22,35,41,38,21,25,36,55,53,48,36,45,48,20,45,47,53,52,33,46,57,27 34,44,27,30,43,40,42,37,43,44,24,33,42,44,38,32,32,43,43,50,41,40,43

$$k = \sqrt{50}$$
 $c = \frac{Km2K - Km2n}{k} = \frac{59 - 20}{8} = 4,875$ $c = 5$

Glablan	Isci Sayisi
20 - 24	4
25-29	4
30 - 34	6
35 - 39	7
40 - hh	13
45-49	7
50 - 54	S
55 - 59	4

Merluz: Egilim ölciteri

* Ortalanalar:

- O Arthrotik Octolana
- 2 Tartili (Agirlilli) Ortalana

* Medyan (Ortanca):

& Mod (Tepedeger):

Basit Diziterde Act. O. Siniflandinimis Dizilerde Act. O. Graphadinimis Diziterde Act. O.

$$V = M = \sum_{i=1}^{N} X_i$$
 $X_i : Gözlem D$
 $X_i : Gözlem D$
 $X_i : Anahotle P$

K: Gözlen Degeri

N: Analotte Birin Sayisi

$$\mu = \frac{\sum K_i F_i}{N}$$

F: = Frehans Deges:

Ui = Grp orta deges?

= Alt Sunin + Ust Smir

K: : Gözlen Deger:

n: Örnelden Brim Sayısı

VI = Grup orts deger

Drn! Azagida 50 ågrenci arazinda rastgele secilen 9 ågrencinin litap oku.

ma soreleri vertnelstedir.

119, 103, 96, 184, 101, 112, 97, 106, 128 A. O = ?

$$\bar{x} = \frac{\sum k'_{i}}{n} = \frac{102b}{9} = 114$$
 = scritmetile ortslams

Örn! Azzgidz 20 atletin belli bir neszfey: logna söreler santye törön. den verilmister. A.O=?

Kosma Suresi	Atlet Sayisi (E)	X:Fi	
13-0	2	340	M=4360 =218
180	4	720	20 7
200	4	800	
250	10	2500	
		4360	

Orn! NoHar 40-50 51-61 62-72 73-83 84-94	Ögrenci Sayısı 3 6 9	U: 56 67 78	135 336 603 234	$\bar{K} = \frac{\sum u_1 f_1^2}{n} = \frac{1664}{25} = 66,56$
84-94	4	83	356	

· W.

Hafta-L

Merkezi Egilm	Degi Elvenlok Glejoler	ilish Ölesler
o Ortolanalar	okar (Degisim Araligi)	· Korelssyen Andliz:
o Medyan	o Vargans	o Regrasyon Analizi

Tartili Ortalana: Öğrenciterin dönem sonu başarı ortalanalarının hesaplarmasında atitnetik ortalana yerine tartılı ortalana kullanılmahtadır. Bunun nederi öğrencitem stdiller derstern bredderich bribinder Esthli dinssidir.

	\ K_T =	5 x:.41	K; -> Boson vo	12/40	
		54i	ti -> Kredster		
****	Ders A B C D E F G	AKTS 1,5 8 6,5 2 3 5 1,5	Bazari Notu A2 (4) B2 (3.0) C2 (2,3) B1 (3,0) B1 (3,3) D1 (1,7) C2 (2,3)	K:4: 5.5 24 14.95 6 9.9 8.5	80,6 = 2,69 -> XT
	H	2,5	BI (3,3)	3,45 + 8,25	

Mod (Tepedeger): Gözden degerler arasında en cole tehrar eden yar: frekansi en bitjih alan gözlem degeme mad denst. Madu bulmak ichn flekansa bakılır. Hangi sayının frekansı daha büyükse o sayı mod olarak kabul edelir. Modu diger merkezi egitam älgüler olan ortalana ve medjanda farlu bir dialde bir adet aritmetik ortalama ve medjan bulunurken synt dittale briden forte modur bulung bilmestalst.

o Bast Dizterde Mod -> 2,7,3,9,17,2,9,5,3,2,9,3,7,3

K;	C2			
35	4			
39	(0	-3	Mod	Grib
42	7			
45	3			
20	1			

o Gruplandirilmis Diziterde Med

frelizisi Orn! Br Cabiltedeli ögrenesterin boy vanluttarina Highein venter ve-Mmister bu signenatem boy uzualuklarinin moduru bulunuz.

Alt (140-143) 35t 5

$$5m^2$$
 (150-159) 9 $5m^2$ 100
(170-173) 60
 $180-189$ 10 $169-160+1=10$
 $\Delta 1 = 250-100$ $Mod = 160 + \frac{250-100}{250-190+250-60}$ $169-160+1=10$
 $\Delta 2 = 250-60$ $160 + \frac{150}{340} = 164$, $41 \rightarrow Mod$

Sonrales grubun

Hafta-5

Degisberlik Ölgélesi: Gőzlam degerlesmin, hem birbirleshden hem de ortalamadan olan vaahliklasinin behrlennestide degliskenlik ylesikolen yararlander. Degishenleh ölgölerinn aldigi degerler arttiluga, degis-Kenlih setss.

Orn: 7,15,11,21,17 ration bulunus

Din: Asagida iki farlılı sınıfta olenyan Ili öğrenemin bir dersin ara sinsuinden aldibler notter vertmektedt.

SIMF 1 -> 55, 75, 26, 91, 33, 47,88

hangi sineta duyan öğrencilerin Sinf 2 -> 71, 16, 59, 86, 29, 95,66 nother birtime daha yalundu?

Degisim Araligi 2 -> 95-16=79

Analotte =
$$G^2 = \frac{\sum (\kappa_i - \mu)^2}{N}$$
 $\sum \kappa_i$

Arshittle =
$$6^2 = \frac{\text{Efi}(X_i - \mu)^2}{N}$$

Analythe
$$G = \int G^2$$

Sapmass

Andritte =
$$G^2 = \frac{\mathcal{E}G(X; -M)^2}{N}$$
 Andritte = $G^2 = \mathcal{E}G(U; -M)^2$
 $V_{21}y_{2n}g_1$ = $G^2 = \mathcal{E}G(U; -M)^2$
 $X_{21}y_{2n}g_1$ = $X_{21}g_2$ = X

$$\text{Ornellen} = S^2 = \frac{\sum (K_i - K_i)^2}{N - 1}$$

$$\text{Varyons}_i = S^2 = \frac{\sum K_i}{N}$$

Ornollen =
$$S^2 = \frac{\sum (s(x) - \bar{x})^2}{n - 1}$$

Gruplandirilmis

Bizklerde

NOTT Socilarda section believes gerijorsa St He dan formaller (örnelelem formallern) kullan.

Örni Bir dahiliye doldoruna tedaus dan 100 hasta arasından rastgele se-Gilen 10 hastanın nabiz değerleri verilmektedir. Varyansını ve standart sapmasını hesaple.

60,65,66,68,72,82,83,86,88,90

On: 8 dgrenchin 212 sinou notter verdnistr. 55,62,68,72,75,80,83,85 Varyons, standart sopra?

$$M = \frac{55+62+68+72+75+80+83+85}{8} = 72,5$$

$$\frac{\kappa_{1}-M}{55-32,5=-17,5} = \frac{(\kappa_{1}-M)^{2}}{306,25}$$

$$\frac{-10,5}{-10,5}$$

$$\frac{-10,5}{2,5}$$

$$\frac{2}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{6}{306,25}$$

$$\frac{7}{306,25}$$

$$\frac{7}{$$

 $\frac{(U_{1}-M)^{2}}{1289,53} \frac{f_{1}(U_{1}-M)^{2}}{6447,65}$

28484,38

222,31

Haffa-6

<u>u</u>		**			1 torn 1 torn 0
3m1 1	erlen Gzy	Ögrenci	standart sapma	?	
Ċ	,	8	Aritmetile Ort.		Varyans
· Lalmis	2	12		(2)	$s^2 = \sum fi(xi-x)^2$
2 mitlandulund	4	28 32	2 2 41	-	N-1
042	5	16		Ī	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	6	4	(3) S= S	S2 840	ndart sagma
×	X; C;	Kizk	(x: -x)2 f: (KI-K)L	
368 = 3,48	8	1-3,68=-2,68	6.15	9,2	152 91
100	2 L	2-3,48=-1,48		6,44	$\frac{152,36}{99} = 1,54$
actmetil		€ Ã		₹. 	varyans.
	+ 1	!)		
	348	`.	15	2,96	51,54 = 1,24
					standart
Qui Bu	grup bgre	nown per govern	de devan ettilles	: a ders	um estes
Em	al sinavin	dan almis old	the retton include	Imelated	11. Varyons? Standar.S
	arplan	4	(I) T	и . о	
		Ugrenci sayisi	111- Alt SINIC	+ 184 71	HC .
-	0-20	Öğrenci Sayısı	Ui = Alt Sinic	+ 48+ SI	nC.
	The second secon	The state of the s		2	
	0-20	5	2 U = Alt Sinic	2	
	21-61	5 32	2 [H= 4:*fi	$\frac{2}{\left[\begin{array}{c} 3 \\ 6 \end{array} \right]}$	$\sum_{N} \frac{f_{i}(\eta_{i}-\mu)^{2}}{N}$
	0-20 21-61 42-62	5 32 54	2 II = U:*fi N Aritmetik Ori	2	$\sum_{N} \frac{\xi_{i} (u_{i} - \mu)^{2}}{N}$
	0-20 21-41 42-62 63-83 84-104	5 32 54 5	2 II = U:*fi N Aritmetik Ori	$\frac{2}{\left[\begin{array}{c} 3 \\ 6 \end{array} \right]}$	
·Us	0-20 21-41 42-62 63-83 84-104	5 32 54 5	2 $\mathcal{U} = \mathcal{U} : * f$ Aritmetik Ori G	2	N Sti(ui-N) ²
	0-20 21-41 42-62 63-83 84-104 4:4:	5 32 54 5 4	2 $\mathcal{U} = \mathcal{U} : * f$ Aritmetik Ori G	$ \begin{bmatrix} 3 \\ 6^{2} \end{bmatrix} $ $ = \sqrt{6^{2}} $	N √ Sti(√1,-√1) ² N √ Spryans

6 = 28484,38 = 284,84 vergens

G = 5284,84 = 16,88 standart sapma

Mishi Ölgoleri

- 1) Regrasyon Analizi:
- 2) Korelasyon Analizi:

O Regrasyon Analizi

* Gelecelle Agels tohminlerde bulunon analis gesteballs.

$$y=2+bx \Rightarrow \sum y=n.2+b \sum x \qquad (1)$$
beginnli beginnsie
$$\sum xy=a \sum x+b \sum x^{2} \qquad (2)$$
degisteen degisteen
$$Alinan \qquad (Salisma) \qquad b=7$$

$$not \qquad (Salisma) \qquad b=7$$

We retricted elichnestor derklens berster Gåzig a ve b'ys buluyoruz.

* Sur	Aylik Gels	Aylik Et Tokelim Mok.	<u>KY</u>	K ² 640000
Boy	800	5,0 5,5	4950	810000
Secole Gelacole	900	6,0	3,000	100000
Gr	1000	7,0 8,0 6,5	6600	1
	1200	7,5)	
	12000	9,0		+
	, 2000	70	87250	15400000

$$50 = 10000006$$

 $0,00325 = 6$ $y = 3,1+0,00325 K$

2) Aylık gelir: 2000 lirz olan bir adenin haq kg et täletmes: bellenir?

$$y = 3,1+.6,5$$
 $y = 9,6 \text{ kg}$

Uzay Kaya Bejzakayar Uzay Kaya Uzay Kaya Beyza Kegrar Beyza Uzay Kaya

y=2+6x ->

-1887,5/1740=89+151006

3824750 = 151002 + 33395000 b

Bu the derlibent Gozigoruz

540500 = 48937506

[b=0,11] [a=9,875]

y= 9,875+0,11 K

2) Aylılı gelir: 3500 +1 olan bir atlenin aylılı kültürel hacamasının leaci +1 olması bellenir?

2-) Korelasyon Analizi: 2 degister arasında plişti olup olma masının belirlenne sinde, eger aynı yönlü mü yoksa ters yönlü mü, kuvuetli mi, yoksa tayıf mı olduğunun belirlen mesinde korelasyon analizinden yararlanılır. Korelasyon katsayısı "r" simgesi de gösterdir. Bu katsayı -1 ile +1 arasındadır. (-1 Er El)

Sunsay Boyle that of the orange of the orang

r=0,69 -> ili degislen arasında ters yönlü ve orta ddaey bir ilisli vardır.
r=0,19-> 11 /1 /1 aynı /1 /1 20yıf /1 // "

1=0 - ili degisher zeasında yişhi yoldur.

Final sadece "Olasilik"

Orn' 10 öğrencinin matematik ve istatistik nottar, verilmiştir. Korelosyon jorumla.

J. 10 salva	actum way	remater 1	V6 124.74	913 9	
Met	istatistik.	K.y_	KL	· y2	
32	78	5850	5625	6084	663.671
86	82	7052	7396	672h . 4225	44724 - 10
58	65	3770	3361	4900	
46	70	3220	2116		(45143 - (663)2) (43033 - (671)2)
58	44	2552	3364	1936	(45143- 10)
65	60	3900	4225	3600	7
83	70	4760	4624	4900	237
77	40	3080	5929	(600	The Manual Co. 15
70	82	5740	4900	6724	1566
+ 60	\$ 80	+ 4800	+ 3600	6400	· aynı yönlü zayıf Histi
663	671	44724	45143	47093	April 2011

2,0±0,3 11/06/mg Örn: Asagida el isqiain bir rete calisma sèresi ue memnunigeti uerimistir.

Sone	Mennunlyet	E.X	×2	y2	793,3 - 110.62,9
8	5,6	44,8	64	31,36	
4	6,3	25,2	16	30,69	1102 \ (112 62,32)
12	6,8	81,6	144	66,24	$\left(1566 - \frac{110^2}{9}\right) \left(444,31 - \frac{62,3^2}{9}\right)$
9	6,7	60,3	81	44,89	1
16	7,0	112	256	49	
14	7,7	107,8	196	59,29	r=0,73
10	7,0	70	100	49	
15	8	120	225	64	agni yould hoveth
110	£ 7,8 62,9	793,3	1566	460,84	agni yould wivett

	H2412-8
Tecribe Sires Cers Top 2 89 5 65 6 9 11 15 60 24	178 4 325 25 336 36 648 81 550 81 675 121 960 256 1012 ± 576 4304 1324
480 = 83 + 886 / -11 $4704 = 883 + 13246$ $-5280 = -883 - 9686$ $4704 = 883 + 13246$	$480 = 82 + 88(-1,62)$ $480 = 82 - 142,56$ 517246 $622,56 = 82$ $\sqrt{2}$ 317246 $\sqrt{2}$ 317246
5-576=3566 b-) localosyon lost sources Ext. Ey Ext. Ey (Ext. Ext. (Ext.)2) (Ey Sinzudo Var Sinzudo Var	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Varyans Siniflandinilmis Gruplandinilmis	Analiöhle Sinellem (356.1640) 764 ters yönde wuvefli $G^{2} = \sum_{i} (\kappa_{i} - \mu_{i})^{2} $ $S^{1} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{2} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{3} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{3} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{4} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{2} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{2} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{3} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{4} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{2} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{3} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{4} = \sum_{i} (\kappa_{i} - \kappa_{i})^{2} $ $S^{5} = \sum_{i} (\kappa_{i} - \kappa_{i})$
Standard $G = \sqrt{G^2}$ Sapona $S = \sqrt{S^2}$	

Jun Secretar & signerciam by derson prosensurador planor netter 20 agented werd might. Voryons, standart sopma? (14,7,11,4,9,8,1,10)

O'n: Bir läyde yosayan 110 aslenin eletteleten asazi alanlarına göne dağılım verdmişlir. Varyans? Salandart Sapma?

All Arle Sayisi
$$Ui = AS + U.S$$
 $\mu = U:CI$ $U: III$ $U:$

On: Assaguda ber Esberhada Galisan 45 istinan aylılı hasançıları verilmelitedar.

$$\frac{K_{323nG}}{1950-2000}$$
 $\frac{1}{13}$ $\frac{9}{13}$ $\frac{1}{13}$ $\frac{1}$

Sinauda Cultar

Drn: Pamellole Uhr. oluyan ögrencelerin aylılı harcamaları, basan ortalamaları, signes hullsong hullsonsdehler, duduler, billimler ve signeme tilrles halden. do bright soluted almoh tolegen bor orsehirmses war. I shoot be occashirmses Universite always organization tomanina ayrı anda ulagamadığından dolay, by öğrenciler arasında rastgule sechtői 11.80 öğrencite alasıyar. Anslitte: PAU'de duyan ögrencitesin tanamı Öndelen: " " ögreretter zizenden 1450 ögreneinte tement Bresm! 11 " " " " Vers! Birinlerder elde adilen bilgites Degister! Aylik harcans totar, basser ortalaması, sigara leullarip kullarmadılıları. Sinous Nicel Nicel Gilar *Medyon Culezok

* *

Örnek Uzzy: Bir istatistich deneyinde dabilecek tim sonuclain dusturduğu kameya denir.

Bir 221 atms deneyinde Street very => $S = \{0,1,2,3,4,5,6\}$ ill " = $S = \{(1,1),\dots,(1,6)\}$ $\{(2,1),\dots,(1,6)\}$

6 - Strade very and addition

day! Ornek uzzyin "8" in her alt limestre bir day denir.

Drn! This zer agni anda hausys stillyor. Sodece thinking gift gelme dossitigi nedir!

3.3 = 9
36

Jm: Us zar aynı anda ahlıyor. Üstancöde asal sayı gelne dasılığı nedir?

* Olssilletz Toplans Kursli: P(AUB) = P(A) + P(B) - P(AB)

P(A) = A dayinin geraeldesme dasiligi

P(B) = B // //

U -> vey 2

P(ANB) = A ne B olsylseinin birlibbe geraddesne obsiligi

Om! Atilan bir zarın tele gelme veya asal sayı gelme olasılığı

Tele gelme A = § 1, 3, 5} s(A) = 3 Asal gelme B = \$ 2 2 5 3 (2) = 2

Assl gelne $B = \{2,3,5\}$ S(B) = 3 $AB = \{3,5\}$ S(AB) = 2 3 +3 -2 = 4

Kosullu Olssilik (Bilindigi talidirde):

P(A/B) = P(ANB) => Bologi bolondogi tokdorde

P(B/A) - P(ANB) => A day, Wilney takende

U - vey 2 N -> ve / -> bitindizione Jen: Atolan bir zarin gift sayı geldiği bilindiğine göre ün neya ünün hatı gelme dasiliği kacıtır?

Bologi => otalon zorin citt sogi gelmesi = {2, h, b} s(B) = 3 Aologi => // // 3 wyz 3'on look gelmesi = {3, b} s(A) = 2

$$\frac{1}{6} = \frac{1}{3}$$

Smardine

Sinandine

3"

3"

Sinandine

3"

Sinandine

3"

Sinandine

3"

Sinandine

Sin

	Kabul	Kararsia	Red	Top.
A	63	69	76	210
B	95	34	54	183
C	58	34	38	107
Top.	218	114	168	500

2-) Rostgele segilen bar segmenon tossami reddetme olosiligi hogiti?

b-) C partisinden olması vie tasarımı habil et-

C-) A partisinalen olduge latindigine gone hararsia dina dassitigi hacitir?

d-) Anket yppen kistlerin A ve B partisinden dras dasiligi haertir?

$$\frac{210}{500} + \frac{183}{500} - 0 = \frac{393}{500}$$

e-) C partisinden olmasi veya tasami reddetme dasiligi hactir?

$$\frac{107}{500} + \frac{168}{500} - \frac{38}{500} = \frac{237}{500}$$

f-) B partisonden olmana obsiligi kactir?

$$1 - \frac{183}{500} = \frac{317}{500}$$

OLASILIK 000

Rossal Degisten: Rossal br dayin someharini sayisal degerlerle Rode eden degis. kene denar. Sörnele uzayının her bir dayini yalnız 1 gerçege dönüstüren fonksiyondur. Bu fonksiyon örnele uzayda gerçel sayı lümesine örneldir.

iststatale termnelogiande rassal degialen böyül hartle, rassal degialenn aldığı degerler ise wicüle hartle iladı eddir.

Bu deneyde (2852) degistern; K=162 2211 Vzerndeli noldstarin toplami. Buna gåre K 12952t degisterinn aldigi degerter 2829ida göstortmistir.

$$(1,1)$$
 $\rightarrow 2$ $(1,2), (2,1) \rightarrow 3$ $(1,3), (3,1), (2,2) \rightarrow 4$

Bu örnelite Krossl degiskerman aldig deger körnest § 2,3,6,5,6,7,8,9,10,11,12}

Kesteli ve Stradili Dezisteen ...

Kesilli degiskenn alabolecegi degerlere örnelder=5 K = 0,1 K = 0,1,2,3... K = k,k+1...Surduli 11 11 11 => $0 L X L 100 - \infty L X L \infty$

Olosilik Fonksiyonlosi: X kesikli rosal degislennen aldığı değerler ve bu değerlere Kasılık gelen olasılılık ifodelen olosilik fonksiyondur.

X=K	2	3	4	5	6	7	8	9	10	11	12
P(K=K)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Obsille font dastinosi icin

$$\frac{\partial r_1!}{\partial r_2!} P(X=x) = \left(\frac{r_1}{5}\right)^x \left(\frac{1}{5}\right)^{1-x} \qquad K=0,1$$

$$P(X=x) = \left(\frac{r_1}{5}\right)^0 \left(\frac{1}{5}\right)^1 + \left(\frac{r_2}{5}\right)^1 \left(\frac{1}{5}\right)^0 = \frac{1}{5}$$

$$Q(X=x) = \left(\frac{r_1}{5}\right)^0 \left(\frac{1}{5}\right)^1 + \left(\frac{r_2}{5}\right)^1 \left(\frac{1}{5}\right)^0 = \frac{1}{5}$$

$$Q(X=x) = \left(\frac{r_1}{5}\right)^0 \left(\frac{1}{5}\right)^1 + \left(\frac{r_2}{5}\right)^1 \left(\frac{1}{5}\right)^0 = \frac{1}{5}$$

$$\frac{\partial_{rn}}{\partial x} P(x) = \begin{cases} C(x+5) & x=1,2,3 \\ 0 & diger duranlar \end{cases} C=?$$

$$C(1+5)+C(2+5)+C(3+5)=1$$

 $6C+7C+8C=1$ $C=\frac{1}{21}$

Orn: d herbangi bir una act talebi gösteren ve asagidahi fenhsiyona sahop rastigule $f(d) = \begin{cases} \frac{12^{4}}{d!} & d=1,2,3,4\\ 0 & diget desirable \end{cases}$ br døgiskender. Braz gåre le=?

$$\sum f(d_1) = 1$$
 $d=1=3$ $\frac{k2}{1} = 2k$ $d=2=3$ $\frac{k4}{2} = 2k$ $d=1=3=3$ $\frac{8k}{6}$ $d=k=3$ $\frac{16k}{24}$

2h+2h+ hk + 2 k=1 h=1

Olasilik Yoganluk Fonkssyonu: K & (-00,00) araliginda negatit olmayan bir f(x) fork. 12132 by forkstyone obsilite jogunluk forkstyon dent. Olasilik yogunluk fonk. olabitmesi icin

Don't K schell: Lor degiskender flx) assigned shi gibs teninlannessa Elx) in Lor dasille yog-whole fools dobtness igh C=?

$$f(x) = \begin{cases} C(x+1) & 1 \le x \le 3 \\ 0 & \text{diger durumber} \end{cases}$$

$$C(x+1) = 1$$

$$C(\frac{x^2}{2} + x) \Big|_{3}^{3} = 1$$

$$C = \frac{1}{6}$$

Orn: K, ber pilm sort scressi gösteren deger olsun. Olssilde yoguluk konk;

6-) Pilm I souther usur ber strede doldige Litragors bu sirenn 2 saatten vaun olma dosiligi ?

$$S - P(A \cup B) = P(A) + P(B)$$

$$= \int_{0}^{1} e^{-\frac{1}{2}} dx + \int_{0}^{\infty} \frac{1}{2} e^{-\frac{1}{2}} dx = -e^{-\frac{1}{2}} + 1 + (-1)e^{-\frac{1}{2}} + e^{-\frac{3}{2}}$$

$$= 1 - e^{-\frac{1}{2}} + e^{\frac{3}{2}} = 1 - 0, 61 + 0, 22 = 0, 61$$

$$= \int \frac{1}{2} e^{-\frac{1}{2}} dx \qquad e^{-\frac{1}{2}} = \frac{e^{-1}}{e^{-1/2}} = \frac{0.36}{0.61} = 0.61$$

$$\int \frac{1}{2} e^{-\frac{1}{2}} dx \qquad e^{-\frac{1}{2}} = \frac{e^{-1}}{e^{-1/2}} = \frac{0.36}{0.61} = 0.61$$

OLASILIK

07.05.19 Hafta-13

Behlenen Deges: Elxlite göstentir.

Om: Duzgen ber pasa 3 kez atilsin. Bulunan turalarin sayisi Ich bellenen deger neder?

Vrneh Nobbe	Tura Sayidi	Obsilik	
TTT	3	1/8	
TTY	2	1/8	/
777	2	8/1	
777	2	1/8	
TYY	4	1/8	
474	4	1/8	
YYT	1	1/8	
444	0	1/8	

Kesikli Rassal Degishenlerde Behleren Deger

20stmetale

Den: Atilan ber zann sit juze gelen sayılarının bek. leren deger begen?

Olasilik Fenksiyonu

K:	1	2	3	4	5	6
P(K=K:)	1/6	46	1/6	1/6	1/6	1/6

$$E(\kappa) = \sum_{k} P(\kappa) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \cdots + 6 \cdot \frac{1}{6}$$

$$= \frac{21}{6} = \frac{3}{5}$$

Olasilik Fenksiyenu

	and the second property laws are the	STATE OF THE PERSON NAMED IN COLUMN 2 OF THE PERSON NAMED IN C	The state of the s	
K:	0	Ą	2	3
P(Ki)	1/8	3/8	3/8	1/8

$$= 0 + 1\left(\frac{3}{6}\right) + 2\left(\frac{3}{8}\right) + 3\left(\frac{1}{8}\right)$$

drn: K rassal degisters obsilit sont.

			Carry Carry Control Co	A STATE OF THE PARTY OF THE PAR	The control of the control	-		
K:	0	1	2	3	4			
P(x;)	1/2	1/2	1/2	0	0	-	gar	ation/file
	Lancate west page 2 to	anama Seleman engine	margic Sale Art and Commission	Name and Address of the Owner, which the	OWNERS TO A STREET			

$$E(u) = \sum_{k} P(u_k)$$

= $0 + \frac{1}{2} + 2(\frac{1}{2}) = \frac{3}{2}$

Olasilih yogunluk bonh. 18e "Stroke solor" (5)

Kesikli Degishenlesde Varyans & Buradan 1 son gelecele V V(x) = E(x²) - [E(x)]² ** = E(x²) - µx²

Onn: K rassal degisterm dasilit fontisiyonu asagida verilmistir. Varyans?

$$P(x) = \begin{cases} \frac{1}{h} & K = 1 \\ \frac{1}{h} & K = 1 \end{cases}$$

$$E(x) = K \cdot \frac{1}{h} + K \cdot \frac{1}{h} + K \cdot \frac{2}{h} = \frac{1}{h} + \frac{2}{h} + \frac{6}{h} = \frac{9}{h}$$

$$E(x^{2}) = x^{2} \cdot \frac{1}{h} + x^{2} \cdot \frac{1}{h} + x^{2} \cdot \frac{1}{h} = \frac{1}{h} + \frac{18}{h} = \frac{23}{h}$$

$$E(x^{2}) = \left[(E(x))^{2} \right]$$

$$O \text{ diges durinlar}$$

$$= \frac{23}{h} - \left(\frac{9}{h} \right)^{2} = \frac{11}{16h}$$

$$Soglik hiznetler: arastromacis: tarafinalan bor blining at at learn yardiklar.$$

Jrn: Soglik hiznetleri arastırmacısı tarafından bor klange atlelerin yaptıkları
yıllık ziyacıt sayılarının olasılık doğılımları asağıdalır gibi verelmistir.

Ziyard Sayısı	Olasilik [Plx)
0	0, 30
1	0,40
2	0,20
3	0,06
4	0,04

- 2-) Bellenen degens believe.
 - 6-) Vægansini bulunuz.

$$2-) E(x) = \sum_{k} P(x;)$$

$$= 0 + 0, 40 + 2(0,20) + 3(0,06) + 4(0,04)$$

$$= 1, 14$$

$$5-) E(x^2) = 0 + 0, 40 + 4(0,20) + ...$$

$$= 2,38$$

$$G^{2} = E(x^{2}) - [E(x)]^{2}$$

$$= 2.38 - (1.14)^{2} = [1.0804]$$

Strebli Rossel Degislenlerde Bellenen Deger * & L(N) olasilik yogunluk foak. Sahop bir x rassel degislerin bellenen degert E(N) = Sx.fx.dx He hessplanir.

Jen: (W) =
$$\frac{3}{8} \kappa^2$$
 O < κ < 2 Bellenen 7 O doger durumlanda Deger .

$$E(k) = \int_{0}^{2} x \cdot \frac{3}{8} k^{2} \cdot dk = \frac{3}{8} \left(\frac{k^{4}}{n} \right) \Big|_{0}^{2} = \frac{3}{2}$$

Strebli Rassal Degislenlerde Varyans

$$V(x) = E(x-\mu)^2 = \int (x-\mu)^2 f(x) dx = \left[E(x^2) - \left[E(x) \right]^2 \right]$$

Orn! K rassal degisheni belirli bre nerheade A marka deter Janua haltalık talep olup:

$$\begin{cases}
\frac{1}{4} \times 0 \leq \kappa \leq 2 & \text{Varyons?} \\
\frac{1}{2} \quad 2 \leq \kappa \leq 3 & \text{E(\kappa)} = \int_{-1}^{2} \kappa \cdot \frac{1}{4} \kappa \cdot d\kappa + \int_{-1}^{2} \kappa \cdot \frac{1}{2} \cdot d\kappa \\
0 & \text{diger denselve}
\end{cases}$$

$$E(\kappa) = \int_{0}^{2} \kappa \cdot \frac{1}{4} \kappa \cdot d\kappa + \int_{0}^{2} \kappa \cdot \frac{1}{2} \cdot d\kappa$$

$$\frac{1}{4} \left(\frac{\kappa^{3}}{3}\right) \Big|_{0}^{2} + \frac{1}{2} \left(\frac{\kappa^{2}}{2}\right) \Big|_{2}^{3} = \frac{9}{12} + \frac{8}{4} - 1 = \frac{23}{12}$$

$$E(\kappa^{2}) = \int_{0}^{2} \kappa^{2} \frac{1}{4} \cdot \kappa \cdot d\kappa + \int_{2}^{3} \kappa^{2} \cdot \frac{1}{2} \cdot d\kappa$$

$$= \frac{1}{4} \left(\frac{\kappa^{4}}{4}\right) \Big|_{0}^{2} + \frac{1}{4} \left(\frac{\kappa^{3}}{3}\right) \Big|_{2}^{3} = 1 + \frac{19}{6} = \frac{25}{6}$$

Drn! K tessdiff degistern das. lik yogenluk fork. 2) E(n)=?

$$f(x) = \begin{cases} x-1 & 1 \le x \le 2 \\ -x+3 & 2 \le x \le 3 \end{cases}$$
O digger durumber

$$E(\kappa) = \int_{1}^{2} K(\kappa-1) d\kappa + \int_{2}^{3} K(-\kappa+3) d\kappa$$

$$= \left(\frac{\kappa^{3}}{3} - \frac{\kappa^{2}}{2}\right) \Big|_{1}^{2} + \left(-\frac{\kappa^{3}}{3} + \frac{3\kappa^{2}}{2}\right) \Big|_{2}^{2} = \frac{2}{7}$$

$$E(\kappa^{2}) = \int_{1}^{2} \kappa^{2}(\kappa-1) d\kappa + \int_{2}^{3} \kappa^{2}(-\kappa+3) d\kappa$$

$$= \left(\frac{\kappa^{4}}{4} - \frac{\kappa^{3}}{3}\right) \Big|_{1}^{2} + \left(\frac{+\kappa^{4}}{4} + \frac{3\kappa^{3}}{3}\right) \Big|_{2}^{2} = \frac{50}{12}$$

$$V(x) = \frac{50}{12} - (2)^{2} = \frac{1}{6}$$

$$E(3+2x) = 3+2E(3+2x) = 7$$

$$V(3x) = 9V(x)$$

$$V(2x+5) = 4.V(x)$$

$$= \frac{3}{2}$$

$$= \frac{2}{3}$$

MEX.

Halta-1h

Ozel Ozgilimlar

Kesthli Osgilimlar

- 1) Bernoulli Dogilimi
- 2) Brom Dogilini
- 3) Posson Dzgilimi
- 4) Hipergeometrike Dogilin

1-) Bernoull: Doglimi: Bir deneyde 2 sonuela harritasiyarsak, "Bernoulli Dogilim'dir. Derey someunda basari elde etme elasiligi Pise;

Bernoulli Dogisteening;

* Aritmetik Ortalaması => M = P

Orn: A rastgele degisterin olasilile fontistyon P(K) = S(1) K (3) 1-K K=0,1 Varyons? (o diges drimlarda Bellenen?

$$1-p=q=\frac{3}{4}$$
 $E(x)=\mu=p=\frac{1}{4}$ $\rho=\frac{1}{4}$ $\rho=\frac{1}{4}$ $\rho=\frac{1}{4}$ $\rho=\frac{1}{4}$ $\rho=\frac{1}{4}$ $\rho=\frac{1}{4}$ $\rho=\frac{1}{4}$ $\rho=\frac{3}{4}$

Burdan son 2-) Binom Dagilimi: Sadece 2 song veren bor Bernoulli deneginan a kee bribinder baginsiz ve ayrı kozullar altında tehrar edeliyersa, bu dağılıma "Binom Dogilimi" dense. A tolerze sonucunda x kez barzeil. sonug n-x hez barzeisiz some elde eddine dosiligij

$$P(\kappa) = \begin{cases} \binom{n}{k} p^{\kappa} (1-p)^{n-\kappa} & \kappa = 0,1,\dots-n \\ 0 & \text{dight durinfields} \end{cases}$$

Brom Dagisterinin;

- * Aritmetile Ortolanası => M = n.p

Dro: Bir hastalehtan hundulma dasiliginin & olduğu brilinyes. Bir hastaliğa yakalennis 10 hastaden 3000 withing desilor keeti?

$$P(x) = \begin{cases} \binom{10}{3} \left(\frac{1}{3}\right)^3 \left(1 - \frac{1}{3}\right)^{10-3} & x = 3 \\ \frac{10.8. \times 1}{3.2} \cdot \frac{1}{27} \cdot \left(\frac{2}{3}\right)^7 = \frac{5.210}{33} \end{cases}$$

3-) Poisson Dogilimi: Genellthe by dogilim belieft bor arabbbe gargellerme olasiliginin gold high oldige durintanda bullandir. K degislermin olasilik forhstyan;

$$P(x) = \begin{cases} \frac{e^{-\lambda} \cdot \lambda^{k}}{\kappa!} & k = 0,1,2 - - n \\ 0 & diger durinlands \end{cases}$$

Possen Degislennin;

* Arthodik Ortolanosı => / ->[/=n.p]

* Varyansi =>)

drn: Kayithar ber arabanın belle Ler löpruya geresler lastiginin patlama olasılığı 100000 de s olduğunu göstem Bu löp. rüya geren 10000 araba irinde 2'sinin lastiginin patlama olasılığı hartır?

$$\lambda = 0.0$$

= 10000 (0,00005) $\rho(x=2) = \frac{e^{-0.5}(0.5)^2}{2!}$
 $\lambda = 0.5$ $\pi = 2$ = 0,0758

Sin: Caltleren letzplasin %22 sonn cilds bozulez, cilthedigi 400 letzptan 5'mn caldren bozule olma olasiligi hacitur?

$$\lambda = 0.0$$

$$= 400 (0.02) [\lambda = 8]$$

$$P(x=5) = e^{-8.85} = (0.000324) (32768)$$

$$= 0.093$$

4- Hipergeometrik Dzylim:

$$h(\kappa) \wedge, N \wedge M = \frac{M + M}{M + M} = 0, 1, 2 - - \wedge$$

Siglam gilma alasiligi lisertic? Siglam soluman bir yerden 5 mal alinnistir. 3/2/2/2

$$P(k) = \frac{\binom{3}{3}\binom{2}{2}}{\binom{14}{5}} \rightarrow 40012m$$

Om: Bir ise baseveran 120 adaydan yalnız 80': uygun nitelrhitedir. Ayrıntılı bir 9803sına 1911 adaylardan 5'i rassal dash seçilirse yalmız 2'sinin uygun Nitelihte gilma olasılığı kasıtır!

$$P(x) = \frac{\binom{80}{2} \binom{40}{3}}{\binom{120}{5}} = 0,164$$