Computational problems in magnetic resonance imaging

Tuomo Valkonen, University of Cambridge

Joint work with M. Benning, L. Gladden, D. Holland, C.-B. Schönlieb (Cambridge), K. Bredies, M. Liebmann (Uni-Graz), and F. Knoll (TU Graz).

Diffusion tensor imaging [7, 8]

- ightharpoonup Diffusion-weighted MRI measures diffusion of water molecules along gradient b_i .
- ▶ The DWI images s_i are connected by the Stejskal-Tanner equation

$$s_i(x) = s_0(x) \exp(-\langle b_i \otimes b_i, u(x) \rangle) \tag{1}$$

to a diffusion tensor field u, describing a pointwise Gaussian PDF.

ightharpoonup Applications include discovery of neural pathways by tractography on u, useful for detecting pathologies.

Figure: Illustration of the DTI process. Left-to-right: 1. DWI images, 2. colour-coded tensors, 3. zoom into corpus callosum, 4. tractography.

Denoising DTI volumes

- ightharpoonup The DWI process is inherently noisy. We therefore seek to denoise u using a variational regularisation approach.
- ▶ Options include (A) reconstruct u first from (1), then denoise, and (B) reconstruct simultaneously, incorporating \log of (1) into the fidelity term.
- ▶ Both options yield for some (Au)(x) = A(u(x)) and f problems of the form

$$\min_{u>0} \frac{1}{2} ||f - Au||_2^2 + R(u), \tag{2}$$

with R the regulariser. We stress the pointwise positivity contraint. Non-positive diffusions tensors are non-physical.

Second-order Total Generalised Variation (TGV²)

- ightharpoonup Regularisation by TGV² [1] avoids the stair-casing effect of Total Variation (TV), while preserving edges – important on white/grey matter boundary.
- ► Can be formulated as the differentiation cascade [2]

$$\mathsf{TGV}^2_{(\beta,\alpha)}(u) := \min_{w} \alpha \|Du - w\|_{\mathcal{M}(\Omega;\mathbb{R}^m)} + \beta \|Ew\|_{\mathcal{M}(\Omega;\mathbb{R}^{m\times m})}.$$

Here Ew is the symmetrised differential, roughly $(Dw + Dw^T)/2$.

 \triangleright Balances between first and second-order features through w.

Big data, small problems

- ▶ We apply the Chambolle-Pock (PDHGM) method [3] to (2).
- In doing so, we have to calculate the resolvent $(I + \tau \partial G)^{-1}(v)$ of $G(u) := \|f - Au\|_2^2/2$. This involves solving pointwise u(x) from

$$(I + \tau A^*A)u(x) + N_{>0}(v(x)) \ni v(x) + \tau A^*f(x).$$

- ▶ Potentially millions of small but expensive parallel problems.
- ▶ Typical low-resolution DTI volume in the range $128 \times 128 \times 64 \approx 1$ megavoxels. ▶ In approach (A), A = I, so a projection to the positive definite cone with the QR algorithm.
- ▶ In approach (B), $A \neq I$, but interior point methods for quadratic SDP [6] applicable.
- Also possible to reformulate **(B)** as $||f Au||^2/2 = \sup_{\lambda} \langle \lambda, f Au \rangle ||\lambda||^2/2$ and use QR. PDHGM converges slower for this formulation, but can be faster in practise; see [8].

Results, including GPU performance

Table: Computations on a 128×128 slice. Parameter α with smallest Frobenius 2-norm error; $\beta = \alpha$. Decrease of pseudo-duality gap to 0.1% from zero initialisation. [8]

Model	α	Error	lts.
Noisy data		0.03195	
(A), unconstr.	0.00030	0.02480	69
(B), unconstr.	0.00024	0.02554	58
(A), constr.	0.00024	0.02183	63
(B), constr.	0.00018	0.02159	51

Figure: Visualisation of results. Arrows indicate areas where an approach performs clearly worse than the other.

Table: GPU performance advantage over $1 \times \text{CPU}$ core (of Intel Xeon X5650) full 3D data $(128 \times 128 \times 60)$, approach (A). Left: advantage, right: computational times. [9]

Hardware	double	single	Hardware	One iteration	Full run
	precision	precision		(double prec.)	(1178 its.)
GeForce GTX 480	\sim 64 \times	\sim 108 \times	1× CPU core	9s	3h
Tesla C2070	\sim 45 \times	\sim 72 \times	1 imes Tesla	0.2s	3m50s

MRI phase reconstruction for velocity imaging

- ▶ We are given sub-sampled k-space measurements f. Task: find a "good-quality" image u with $||f - S\mathcal{F}u||_2^2$ small. Here S denotes a sub-sampling operator and ${\mathcal F}$ the Fourier transform.
- We are mostly interested in the phase ϕ of $u = \rho \exp(i\phi)$: The phase difference $\phi_1 - \phi_2$ of images u_1 and u_2 is related to the velocity of a fluid.
- \blacktriangleright Incorporating a-priori information in terms of a regulariser R, we solve

$$\min_{u} ||f - S\mathcal{F}u||_2^2 + \alpha R(u).$$

Compare [4] for a wavelet approach. Here we concentrate on TV and TGV^2 .

Bregman iteration

- ▶ The above minimisation scheme suffers from loss of contrast.
- \triangleright For homogeneous R this can be compensated by considering [5]

$$u_k \in \underset{u}{\operatorname{arg\,min}} \left\{ ||f - S\mathcal{F}u||_2^2 + \alpha D_R^{p_{k-1}}(u, u_{k-1}) \right\}$$

with

$$D_R^{p_{k-1}}(u, u_{k-1}) = R(u) - R(u_{k-1}) - \langle p_{k-1}, u - u_{k-1} \rangle.$$

- ► Computationally challenging, inner (PDHGM) + outer iterations.
- ► We use the discrepancy principle

$$||f - S\mathcal{F}u_k||_2 \leq \delta$$

to stop the Bregman iterations, knowing noise level δ . Its applicability is verified in the Figure, comparing against optimal PSNR.

Computational results

Figure: Bregmanised TV and TGV^2 reconstruction from noisy sub-sampled data at violation of the discrepancy principle. Arrows indicate the stair-casing of TV, avoided by TGV^2 .

References

- [1] K. Bredies, K. Kunisch and T. Pock, *Total generalized variation*, SIAM J. Imaging Sci. **3** (2011), 492–526.
- [2] K. Bredies and T. Valkonen, *Inverse problems with second-order total generalized variation* constraints, in: Proceedings of SampTA 2011, Singapore, 2011.
- [3] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision 40 (2011), 120–145.
- [4] D. Holland, D. Malioutov, A. Blake, A. Sederman and L. Gladden, Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing, Journal of Magnetic Resonance **203** (2010), 236–246.
- [5] S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, SIAM Multiscale Model. Simul. 4 (2005), 460–489.
- [6] T. Valkonen, A method for weighted projections to the positive definite cone, SFB-Report 2012-016, Karl-Franzens University of Graz (2012).
- [7] T. Valkonen, K. Bredies and F. Knoll, Total generalised variation in diffusion tensor imaging, SIAM J. Imaging Sci. **6** (2013), 487–525.
- [8] T. Valkonen, F. Knoll and K. Bredies, TGV for diffusion tensors: A comparison of fidelity functions, in: Journal of Inverse and III-posed problems special issue for IP:M&S 2012, Antalya, Turkey, 2012. Published online.
- [9] T. Valkonen and M. Liebmann, GPU-accelerated regularisation of large diffusion-tensor volumes, in: Computing special issue for ESCO 2012, Pilsen, Czech Republic, 2012. To appear.

Acknowledgements

This work has been supported by King Abdullah University of Science and Technology (KAUST) Award No. KUK-I1-007-43, EPSRC / Isaac Newton Trust Small Grant "Non-smooth geometric reconstruction for high resolution MRI imaging of fluid transport in bed reactors", and Austrian Science Fund (FWF) grant SFB F32 "Mathematical Optimization in Biomedical Sciences".