

Centro Universitário da FEI

Mudança de Base

RESUMO TEÓRICO E EXERCÍCIOS

Baseado na bibliografia básica Equipe de MAG-110

Agosto - 2020

Mudança de Base Livro texto págs. 66-68

Dado um vetor $\vec{u}=(x,y,z)$ em uma base $E=(\vec{e_1},\vec{e_2},\vec{e_3})$ e são conhecidos os vetores de outra base $F=(\vec{f_1},\vec{f_2},\vec{f_3})$, pelo sistema de equações:

$$\begin{cases} \overrightarrow{f_1} = a_{11}\overrightarrow{e_1} + a_{21}\overrightarrow{e_2} + a_{31}\overrightarrow{e_3} \\ \overrightarrow{f_2} = a_{12}\overrightarrow{e_1} + a_{22}\overrightarrow{e_2} + a_{32}\overrightarrow{e_3} \\ \overrightarrow{f_3} = a_{13}\overrightarrow{e_1} + a_{23}\overrightarrow{e_2} + a_{33}\overrightarrow{e_3} \end{cases}$$

Pretende-se as coordenadas de (x_F, y_F, z_F) , do vetor $\vec{u} = (x_E, y_E, z_E)$ na nova base F.

O vetor $\vec{u} = x_E \vec{e_1} + y_E \vec{e_2} + z_E \vec{e_3} = x_F \vec{f_1} + y_F \vec{f_2} + z_F \vec{f_3}$ tem coordenadas, simultaneamente nas duas bases, vamos utilizar as expressões dos vetores $\vec{f_1}$, $\vec{f_2}$ e $\vec{f_3}$:

$$\vec{u} = x_F (a_{11}\vec{e_1} + a_{21}\vec{e_2} + a_{31}\vec{e_3}) + y_F (a_{12}\vec{e_1} + a_{22}\vec{e_2} + a_{32}\vec{e_3}) + z_F (a_{13}\vec{e_1} + a_{23}\vec{e_2} + a_{33}\vec{e_3})$$

$$\vec{u} = (a_{11}x_F + a_{12}y_F + a_{13}z_F)\vec{e_1} + (a_{21}x_F + a_{22}y_F + a_{23}z_F)\vec{e_2} + (a_{31}x_F + a_{32}y_F + a_{33}z_F)\vec{e_3}$$

$$\vec{v_E}$$

Mudança de Base

Comparando a expressão acima com as coordenadas de \vec{u} na base E, que devem ser únicas tem-se:

$$\begin{cases} x_E = a_{11}x_F + a_{12}y_F + a_{13}z_F \\ y_E = a_{21}x_F + a_{22}y_F + a_{23}z_F \\ z_E = a_{31}x_F + a_{32}y_F + a_{33}z_F \end{cases}$$

Essas expressões podem ser escritas, usando a notação matricial como segue:

$$\begin{bmatrix} x_E \\ y_E \\ z_E \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_F \\ y_F \\ z_F \end{bmatrix} = M_{E \to F} \begin{bmatrix} x_F \\ y_F \\ z_F \end{bmatrix}$$

$$E \qquad M_{E \to F} \qquad F$$

Para calcularmos $\overrightarrow{u_F}$, basta multiplicarmos os dois membros por $M_{E\to F}^{-1}=M_{F\to E}$

Lembrando que
$$M_{E \to F}^{-1}.M_{E \to F} = I_n$$

Mudança de Base

Equação mudança de base:

$$\begin{bmatrix} x_F \\ y_F \\ z_F \end{bmatrix} = M_{E \to F}^{-1} \begin{bmatrix} x_E \\ y_E \\ z_E \end{bmatrix} \qquad \qquad \qquad \begin{bmatrix} x_F \\ y_F \\ z_F \end{bmatrix} = M_{F \to E} \begin{bmatrix} x_E \\ y_E \\ z_E \end{bmatrix}$$

 $\overrightarrow{u_F}$

 $\overrightarrow{u_E}$

 $\overrightarrow{u_F}$

 $\overrightarrow{u_E}$

$$\vec{u}_F = M_{F \to E} \vec{u}_E$$

$$\vec{u}_E = M_{E \to F} \vec{u}_F$$

Exemplo: Determine as coordenadas do vetor $\vec{u}=3\vec{e_1}$ - $2\vec{e_2}$ + $2\vec{e_3}$

na base F, sabendo que:
$$\begin{cases} \overrightarrow{f_1} = 2\overrightarrow{e}_1 - \overrightarrow{e}_2 + 3\overrightarrow{e}_3 \\ \overrightarrow{f_2} = \overrightarrow{e}_1 + 3\overrightarrow{e}_2 - \overrightarrow{e}_3 \\ \overrightarrow{f_3} = \overrightarrow{e}_1 + \overrightarrow{e}_2 + \overrightarrow{e}_3 \end{cases}$$

A matriz de mudança de base de E para base F é :
$$M_{E \to F} = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 3 & 1 \\ 3 & -1 & 1 \end{bmatrix}$$

Como o exercício pede \vec{u}_F então lembrar que: $\vec{u}_F = \mathbf{M}_{F \to E} \vec{u}_E$

Para calcular $M_{F \to E} = M_{E \to F}^{-1}$, siga os passos:

a)
$$M_{E \to F} = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 3 & 1 \\ 3 & -1 & 1 \end{bmatrix}$$
 b) $\det(M)=4$ c) $Cof(M) = \begin{bmatrix} 4 & 4 & -8 \\ -2 & -1 & 5 \\ -2 & -3 & 7 \end{bmatrix}$

d)
$$Adj(M) = [Cof(M)]^T = \begin{bmatrix} 4 & -2 & -2 \\ 4 & -1 & -3 \\ -8 & 5 & 7 \end{bmatrix}$$
 e) $M_{E \to F}^{-1} = \frac{1}{4} \begin{bmatrix} 4 & -2 & -2 \\ 4 & -1 & -3 \\ -8 & 5 & 7 \end{bmatrix}$

Exemplo(continuação):

Usando a equação de mudança: $\vec{u}_F = \mathbf{M}_{F \to E} \vec{u}_E$

$$M_{E \to F}^{-1} = \frac{1}{4} \begin{bmatrix} 4 & -2 & -2 \\ 4 & -1 & -3 \\ -8 & 5 & 7 \end{bmatrix} = M_{F \to E}$$

Logo:
$$\vec{u}_F = \frac{1}{4} \begin{bmatrix} 4 & -2 & -2 \\ 4 & -1 & -3 \\ -8 & 5 & 7 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 12 \\ 8 \\ -20 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$$

Então o vetor u na base F é: $\vec{u}_F = 3\vec{f}_1 + 2\vec{f}_2 - 5\vec{f}_3$

Para treinar:

Determine as coordenadas dos vetores $\vec{u}=2\vec{e_1}$ - $\vec{e_2}$ + $3\vec{e_3}$ na base F e

$$\vec{v} = 3\vec{f_1} + 3\vec{f_2} + 2\vec{f_3}$$
 na base E, sabendo que:
$$\begin{cases} \vec{e_1} = 2\vec{f_1} + 1\vec{f_3} \\ \vec{e_2} = 1\vec{f_1} - \vec{f_2} \\ \vec{e_3} = 1\vec{f_1} + 2\vec{f_2} + \vec{f_3} \end{cases}$$

Respostas

$$\vec{u} = 6\vec{f_1} + 7 \vec{f_2} + 5\vec{f_3}$$

$$\vec{v} = 0\vec{e_1} + 1 \vec{e_2} + 2\vec{e_3}$$

Bibliografia:

- 1) Loreto, A. C. C.; Junior, A. P. L. VETORES E GEOMETRIA ANALÍTICA Teoria e Exercícios. 4° Ed. LCTE Editora. 2014. São Paulo.
- 2) Watanabe, R. G., Mello, D. A. VETORES E UMA INICIAÇÃO A GEOMETRIA ANALÍTICA. 2° Ed. LF Editorial. 2011. São Paulo.