خدمتكم طريق خضناه لرضي الله

2021

أسئلة سنوات فاينال كالكولاس 101

سنافر البوليتكنك

بسم الله الرحمن الرحيم

نقدم لكم نحن أسرة فريق (لجنة السنافر)

مجموعة أسئلة اختبارات إلكترونية تم تجميعها خلال الفصول الماضية سائلين المولى أن يوفقنا وإياكم لكل خير

تنویه

يوجد بعض الأسئلة عليها إجابات قد تحتمل الصواب وقد تحتمل الخطأ فالمنطأ في فإن أصبنا فما هو إلا توفيق من الله وإن أخطأنا فمن أنفسنا

#خدمتكم طريق خضناه لرضى الله #الإتجاه الاسلامي #بسواعدنا نبنيها #لجنة السنافر

#هي لله

Compute the following integral:

$$\int \cos 3x \tan 3x \, dx =$$

od.
$$\cos 3x + c$$

Evaluate the following integral:

$$\int \frac{dx}{9x^2+12x+4}$$
Select one:

O a. $\frac{1}{9x+6}$
O b. $\frac{1}{3x+2}$
O c. $\frac{-1}{3x+2}$

$$old d = \frac{-1}{9x+6} + c$$

Evaluate the following limit.

- c. ∞
- Od. 2

If
$$y=f(x+y)$$
 and $f^{\prime}(2)=4$ then

$$\frac{dy}{dx}\big|_{x=1}$$
 is equal to:

$$y=1$$

$$\bigcirc$$
 a. $-\frac{9}{4}$

O b.
$$-\frac{4}{3}$$

$$\bigcirc$$
 c. $-\frac{7}{6}$

$$\bigcirc$$
 d. $-\frac{6}{5}$

The area of the surface generated by revolving the line segment $y=\sqrt{3}\;x+4\;$, $\;0\leq x\leq 2\;$ about the x-axis is given by :

Select one:

O a.
$$4\pi \int_{0}^{2} (\sqrt{3}x + 3) dx$$

O b.
$$2\pi \int_{0}^{2} (\sqrt{3}x + 3) dx$$

o c.
$$4\pi \int_{0}^{2} (\sqrt{3} x + 4) dx$$

$$0 \text{ d. } 2\pi \int_{0}^{x} (\sqrt{3} x + 4) dx$$

If f is a continuous function then:

O d. 3

Evaluate the following integral:

$$\int 3x^2 \sec^2 x^3 dx =$$
Select one

O a. $\tan x^3 + c$

O c. $-3 \tan x^3 + c$

O d. $-\tan x^3 + c$

Using the cylindrical shells method, the volume of the solid generated when the region bounded by

$$x=y^2-3y\,$$
 and the y-axis

if it is revolved about the x-axis, is given by

Select one:

Ob.
$$\pi\int\limits_0^3 (3y^2-y^3)\,dy$$

$$0 c 2\pi \int_{0}^{3} (y^3 - 3y^2) dy$$

$$\bigcirc$$
 d. $\pi\int\limits_0^3 \left(y^3-3y^2\right)dy$

Given that
$$f(x) = \frac{x}{x}$$
 is a 1-1 function then $f^{-1}(x) = 0$. Select one:

O a. $\frac{4x}{x-1}$

O b. $\frac{x}{x+4}$

O d. $\frac{4x}{x+1}$

$$f''(x) = If f(x) = \sqrt[3]{(x-4)^2}$$
 then

اخترأحد الخيارات

$$\frac{1}{9\sqrt[3]{(x-4)^4}}$$
 .d

Given that, $\lim_{x o 1^+} f(x) = 10$, $\lim_{x o 1^-} f(x) = 16$ and f(1) = 4

- b. 8
- c. 16
- d. does not exist

If
$$y = f(x + y)$$
 and $f'(2) = 6$ then

:is equal to
$$\frac{dy}{dx} |_{x=1}$$

$$-\frac{4}{3}$$
 .c

If $y = \cos^4 3x - \sin^4 3x$ then اخترأحد الخيارات 6 sin 6x .a — $6\sin 6x$.b $-\sin 6x$.c $\sin 6x$ d

Achieve the following integral:

$$\int \csc^2 x \, dx =$$
Selectione:

a. $\tan x + c$

b. $-\tan x + c$

- $-\cot x + c$
- olumber d. $\cot x + c$

Given that,
$$\lim_{x \to 1^+} f(x) = 5$$
, $f(1) = 4$ $\lim_{x \to 1^-} f(x) = 8$ and then

b. 8

d. 4 🔵

The area of the surface generated by revolving the line segment

$$y = \sqrt{3}x + 1$$
 , $0 \le x \le 2$

: about the x-axis is given by

$$2\pi \int_{0}^{2} (\sqrt{3}x + 2) dx$$
 .d \bigcirc

Compute the following integral:

$$\int \sin 5x \cot 5x \, dx =$$

- a.
- b.
- o. $-\frac{1}{5}\sin 5x + c$
- olumber d. $-\sin 5x + c$

Using the cylindrical shells method, the volume of the solid generated when the region bounded by

and the y-axis
$$x = y^2 - 6y$$

:if it is revolved about the x-axis, is given by

$$2\pi \int_{0}^{6} (6y^{2} - y^{3}) dy$$
 .a
$$\pi \int_{0}^{6} (y^{3} - 6y^{2}) dy$$
 .b
$$\pi \int_{0}^{6} (6y^{2} - y^{3}) dy$$
 .c

$$2\pi \int_{0}^{6} (y^3 - 6y^2) dy$$
 .d

If f is concave up on $\mathbb R$ then one of the following statements must be true

:statements must be true اخترأحد الخيارات (1) < f'(2) .a f'(0) < f'(-1)f'(3) < f'(2) .d \bigcirc

Achieve the following integral:

 \bigcirc d. $\cot x + c$

Compute the following integral:

$$\int \sin 5x \cot 5x \, dx =$$

$$= c. - \frac{1}{5}\sin 5x + c$$

$$olumber = 0$$
 d. $-\sin 5x + c$

The absolute maximum of the function

Given that $f(x) = x^4 + 16x + 1$ then

c. 30 (

d. 12 🧼

$[x] \leftrightarrow greates integer \leq x$

:Evaluate the following limit

b. 0

∞ .c (

d. 1 🔵