

LOJIK DEVRE LABORATUVARI DENEY FÖYÜ

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ

İÇİNDEKİLER

Genel Bilgiler Kurallar Temel Bilgiler Deney İçerikleri 0. Deney 1. Deney 2. Deney 3. Deney	. 2
Laboratuvar Çalışma Düzeni	. 2
Genel Bilgiler	. 2
Kurallar	. 3
Temel Bilgiler	. 4
Deney İçerikleri	. 6
0. Deney	. 6
1. Deney	. 6
2. Deney	. 6
3. Deney	. 6
4. Deney	. 6
Malzeme Listesi	. 7
Datasheet Bilgileri	. 8

Lojik Devre Laboratuvarı Deney Föyü İçeriği

Laboratuvar Çalışma Düzeni

Genel Bilgiler

- > Grupların tarih ve saatleri laboratuvar sorumluları tarafından ilan edilecektir.
- Laboratuvardan kalmak dersten kalmayı gerektirmez.
- ➤ Deneyler bireysel olarak yapılacaktır. Hangi öğrenciye hangi sorunun geleceği rastgele belirlenecektir.
- > Deney süresi bir saattir.
- Digital isimli simülasyon programı ortamında deneyleri gerçekleştirebilecek donanıma sahip olmanız beklenmektedir.
- > Öğrencilerin, laboratuvara gelmeden önce,
 - ✓ Entegre tanıtım videolarını ve diğer videoları incelemiş olmaları,
 - ✓ Laboratuvara uygulaması için gerekli ön çalışmayı yapmış olmaları,
 - ✓ Föyde yazılı olan malzeme listesindeki malzemeleri satın almış olmaları,
 - ✓ Deneyde kullanılacak entegrelerin "datasheet"leri araştırarak, nasıl çalıştıklarını öğrenmeleri gerekmektedir.

Kurallar

- > Deneyler, öğrenciye pratik ve teorik bilgilerin verilmesinin yanında çalışma disiplini elde etmesi için de önemlidir.
- ➤ Kişiler kendi aralarında konuşamaz, birbirlerinden yardım isteyemez.
- > Öğrenci çalıştığı ortamı temiz bırakmak zorundadır.
- > Öğrenci malzemesi eksik olarak deneye gelemez.
- > Deney notları, o hafta deneylerin bitiminden sonra laboratuvar sorumluları tarafından ilan edilir.
- ➤ Bu kurallar öğrenciye çalışma disiplini sağlamak içindir. Bu hangi mesleği seçerseniz seçin sizin için deneylerin içeriğinden daha önemli bir konudur.

Temel Bilgiler

Lojik devreler anlatım videolarına aşağıdaki linkten erişilebilir: https://www.youtube.com/user/ytudonanim

Öğrenci her deneyden önce o deney için kullanılacak entegrenin tanıtım videosunu izlemelidir.

İhtiyaç duyabileceğiniz yazılı anlatımlar aşağıdadır.

Deneylerde devreler delikli çalışma panolarında (breadboard) gerçekleştirilecektir. Breadboard'a ilişkin görünüm ve içten kısa devre olan düğümler aşağıdaki şekil ile özetlenmiştir. Dış taraftaki 2'li yolların devrede 5V ve GND dağıtımı için kullanılması uygundur. İç kısımdaki 5'li terminal düğümler ise lojik entegrelerin yerleştirilmesi için uygundur.

Örneğin F=(A'.B')' fonksiyonunu ele alacak olursak F fonksiyonu 2 NOT ve 1 NAND kapısı ile gerçekleştirilebilir. Devreye ilişkin girişler için 8'li lojik anahtarlardan istenen ikisi kullanılabilir. Çıkış için ise yine gösterge LED'lerden istenen kullanılabilir.

Deney seti üzerindeki sabit 5V ve GND düğümlerinden ilgili gerilimler breadboard üzerine teller ile taşınarak istenen devre aşağıdaki şekilde kurulmalıdır. Dikkat edilecek nokta lojik entegrelerin her bir bacağının farklı bir düğüme denk getirilmesidir.

Entegre bacak numaralandırılması entegre üzerindeki çentiğin solu 1 olacak şekilde saat yönünün tersine artan düzende yapılır. Deney sırasında devreye eklenen her bir kapı için çıktı kontrolü yapılarak (kapı çıkışı LED'e bağlanarak) ilerlenmesi hatasız devre kurulum açısından önemlidir ayrıca hatalı sonuç oluşmuşsa önceki kapılara doğru gelerek adım adım hata ayıklaması yapılmalıdır.

Deney İçerikleri

0. Deney

Digital isimli simülasyon programı ve board gibi temel elemanların kullanımına ilişkin genel bilgilendirmeler.

1. Deney

Doğruluk tablosu, lojik kapı dönüşümleri.

2. Deney

Karnaugh haritası, maxterm - minterm.

3. Deney

Mux ile lojik fonksiyon gerçekleştirme.

4. Deney

Durum diyagramlarının flip flop'lar ile gerçeklenmesi.

Malzeme Listesi

- 7400 *3 (4-2 in NAND)
- 7402 *3 (4-2 in NOR)
- 7404 *3 (6 inverter)
- 7410 *3 (3-3 in NAND)
- 7420 *3 (2-4 in NAND)
- 7427 *3 (3-3 in NOR)
- 7432 *3 (4-2 in OR)
- 7408 *3 (4-2 in AND)
- 7474 *3 (2 D flip flop)
- 7483 *3 (4-bit binary adder)
- 7486 *3 (4-2 in XOR)
- 74112 *3 (4 JK flip flop)
- 74139 *3 (2-2 4 decoder)
- 74153 *3(2-4*1 mux)
- 74158 *3(4-2*1 mux)
- 74163 *3 (4-bit counter)
- 74194 *3 (4-bit bidirectional shift register)
- Yan keski
- Penset
- En az 3 metre tek damar kablo (0.5mm kalınlığında) (zil teli deney için uygun değildir)

Malzemeler Karaköy elektronikçiler çarşısı ya da Selanik pasajı, Perpa, Kadıköy Yazıcıoğlu iş hanı gibi çeşitli yerlerden temin edilebilir.

Datasheet Bilgileri

7402 İki girişli 4 NOR kapısı – Quad 2-input NOR gate Sembol Doğruluk Tablosu В A Q 0 0 1 B o 0 1 0 2 girişli NOR kapısı 1 0 0 1 0 Q, A VEYA B'nin DEĞİLİ'dir. Mantıksal İfade $Q = \overline{A+B}$ Pin Diyagramı Vcc Q4 АЗ ВЗ ΑЗ Q3 ВЗ 13 14 12 11 10 В2 Q1 Α1 В1 Q2 A2 GND

7410 Üç girişli 3 NAND kapısı - Triple 3-input NAND gate Sembol Doğruluk Tablosu C В A Q 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 3 girişli NAND kapısı 1 1 0 1 1 0 Q, A VE B VE C'nin DEĞİL'idir. Mantıksal İfade Q = A.B.CPin Diyagramı Vcc C1 Q1 СЗ A3 B3 Q3 13 12 11 10 Α1 В1 C2 A2 B2 Q2 GND

7420 Dört girişli 2 NAND kapısı – Dual 4-input NAND gate Sembol Doğruluk Tablosu В C D A Q \mathbf{X} \mathbf{X} \mathbf{X} 0 1 A Ø-В 🖫 X X 0 X 1 C Ö-X 0 X X 1 4 girişli NAND kapısı X 0 X X 1 1 1 1 0 Q, A VE B VE C VE D'nin DEĞİL'idir. Mantıksal İfade Q = A.B.C.DPin Diyagramı Vcc Α2 В2 Ċ2 D2 Q2 13 _ 12 _ 11 14 10 9 5 6 C1 D1 Q1 GND B1

Sembol		Doğruluk	Tablosu	
	A	В	С	Q
	0	0	0	1
	0	0	1	0
A B Q	0	1	0	0
B Q Q	0	1	1	0
3 girişli NOR kapısı	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	0
Mantıksal İfade Q = A+B+C	YA B VEYA	A C'nin DE	ĞİL'idir.	

7474 D Tipi Flip-Flop

Sembol	Doğruluk Tablosu								
	PR	CLR	Clk	D	Q	Q	Açıklama		
	0	1	X	X	1	0	İlk değer olarak 1 oluşturulur.		
D D-type Clk Flip-flop	1	0	X	X	0	1	İlk değer olarak 0 oluşturulur.		
Clk ← Flip-flop Q	0	0	X	X	1	1	İlk değer için ayar modu.		
D tipi flip-flop	1	1	↓ » 0	X	Q(t-1)	-Q(t-1)	Bellekte değişim yok		
	1	1	↑ » 1	0	0	1	Reset Q » 0		
	1	1	↑ » 1	1	1	0	Set Q » 1		

7483 4-bit binary tam toplayıcı – 4-bit binary full adder

Sembol

Doğruluk Tablosu

C0	A4	A3	A2	A1	B4	В3	B2	B1	C4	Σ4	Σ3	Σ2	Σ1
0	0	0	0	1	0	0	0	1	0	0	0	1	0
0	0	1	0	1	1	0	1	0	0	1	1	1	1
1	0	1	0	1	1	0	1	0	1	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0	1	0

 $C0 + (A1 + B1) + 2(A2 + B2) + 4(A3 + B3) + 8(A4 + B4) = \Sigma 1 + 2\Sigma 2 + 4\Sigma 3 + 8\Sigma 4 + 16C4$ (+) = toplama işlemidir.

7486 İki girişli 4 adet XOR(ÖZEL VEYA) kapısı – Quad 2-input XOR gate

Sembol	Do	ğruluk Tablo	su		
	A	В	Q		
A O	0	0	0		
A O Q	0	1	1		
2 girişli XOR kapısı	1	0	1		
	1	1	0		
Mantıksal İfade Q = A ⊕ B	Q, A VEYA B ancak İKİSİ BİRDEN değil.				

74112 JK Flip-Flop

Sembol	Doğruluk Tablosu										
	CLR	PR	J	K	CLOCK	Q	Q	Açıklama			
	0	1	X	X	X	0	1	Temizle			
J ● J-K Flip-flop	1	0	X	X	X	1	0	Önceden Ayarla			
Clk ● —◆	0	0	X	X	X	1	1	-			
K ○	1	1	0	0	↓	Q(t-1)	$\frac{-}{Q(t-1)}$	Değişim Yok			
	1	1	1	0	↓	1	0	-			
JK flip-flop	1	1	0	1	↓	0	1	-			
	1	1	1	1	↓		Q(t-1)	Geçiş			
	1	1	X	X	1	Q(t-1)	$\frac{-}{Q(t-1)}$	Değişim Yok			

İki 2-4 çözücü - Dual 2-to-4 decoder Sembol Doğruluk Tablosu В A **Q**0 **Q**1 Q2 Q3 2⁰ 2 to 4 Binary Decoder Q_3 2-4 çözücü Pin Diyagramı <u>VCC</u> 2G 2Α <u>2B 2Q0 2Q1</u> 2Q2 2Q3 1Q0 1Q1 1Q2

74153 İki 4-1 çoklayıcı - Dual 4-to-1 multiplexer

MUX

Sembol	Doğruluk Tablosu									
	A	В	C0	C1	C2	C3	G	Y		
Ģ	X	X	X	X	X	X	1	0		
co	0	0	0	X	X	X	0	0		
C1——1	0	0	1	X	X	X	0	1		
Girişler C2 2 Çıkış	1	0	X	0	X	X	0	0		
C3 — 3	1	0	X	1	X	X	0	1		
	0	1	X	X	0	X	0	0		
Seçim	0	1	X	X	1	X	0	1		
4-1 çoklayıcı	1	1	X	X	X	0	0	0		
	1	1	X	X	X	1	0	1		

74158 Dört 2-1 çoklayıcı - Quad 2-to-1 multiplexer

MUX

Sembol	Doğruluk Tablosu						
Ģ	G'	S	A	В	Y'		
C0——0	1	X	X	X	1		
Girişler C1 — 1	0	0	0	X	1		
——▶ Υ Çıkış	0	0	1	X	0		
	0	1	X	0	1		
A Seçim 2-1 çoklayıcı	0	1	X	1	0		

74194

4-bit paralel yüklemeli çift yönlü ötelemeli yazmaç 4-bit bidirectional shift register

Sembol

4-bit çift yönlü kaydırıcı

	Fonksiyon Tablosu													
clear	S 1	S 0	clock	SLI	SRI	A	В	С	D	QA	QB	QC	QD	
0	X	X	X	X	X	X	X	X	X	0	0	0	0	
1	X	X	0	X	X	X	X	X	X	QA0	QB0	QC0	QD0	
1	1	1	1	X	X	a	b	С	d	a	b	С	d	
1	0	1	1	X	1	X	X	X	X	1	QAn	QBn	QCn	
1	0	1	↑	X	0	X	X	X	X	0	QAn	QBn	QCn	
1	1	0	1	1	X	X	X	X	X	QBn	QCn	QDn	1	
1	1	0	1	0	X	X	X	X	X	QBn	QCn	QDn	0	
1	0	0	X	X	X	X	X	X	X	QA0	QB0	QC0	QD0	

a, b, c, d = elle verilen durumlar. QA0,

QB0, QC0, QD0 = ilk durumlar.

QAn, QBn, QCn, QDn = önceki durumlar.