Formal Language Selected Homework Chapter 4.1

2. Use the construction in Theorem 4.1 to find nfa's that accept

(a)
$$L((a+b)a^*) \cap L(baa^*)$$
.

7. The nor of two languages is

$$nor(L_1, L_2) = \{w : w \notin L_1 \text{ and } w \notin L_2\}.$$

Show that the family of regular languages is closed under the nor operation.

- **★12.** Suppose we know that $L_1 \cup L_2$ is regular and that L_1 is finite. Can we conclude from this that L_2 is regular?
- 14. If L is a regular language, prove that the language $\{uv : u \in L, v \in L^R\}$ is also regular.
- 16. Show that if the statement "If L_1 is regular and $L_1 \cup L_2$ is also regular, then L_2 must be regular" were true for all L_1 and L_2 , then all languages would be regular.
- 18. The head of a language is the set of all prefixes of its strings, that is,

$$head(L) = \{x : xy \in L \text{ for some } y \in \Sigma^*\}.$$

Show that the family of regular languages is closed under this operation.

- 26. Let G_1 and G_2 be two regular grammars. Show how one can derive regular grammars for the languages
 - (a) $L(G_1) \cup L(G_2)$.
 - (b) $L(G_1)L(G_2)$.
 - (c) $L(G_1)^*$.