

Automating Verification and Validation in the EXCALIBUR Pipeline for the Atmospheric Analysis of Exoplanets

Subhash Kantamneni, Massachusetts Institute of Technology Under the direction of Virisha Timmaraju, Jet Propulsion Laboratory

EXCALIBUR Pipeline

- Scrapes telescopic data on exoplanets from archival sources
 - HST-WFC3-IR-G141-SCAN, HST-STIS-CCD-G430L-STARE, HST-STIS-CCD-G750L-STARE
 - Ex. HAT-P-11b, 55 Cnc e, WASP-17b
- Applies algorithms to scraped data to model it
- Performs atmospheric analysis based on the model/raw data qualities

Transit Whitelight Curve Ex.

Bad Transit Whitelight Curve Ex.

Instruments

Verification & Validation

Project Goal

Improving automatic Verification and Validation of targets in EXCALIBUR

Two sided improvements

- Generate more training data for the ML model to learn better
- Develop features rigorously for the ML model to use data better

Steps

- Data simulation
- Feature development
- ML model exploration
- Feature selection
- Model selection

Data Simulation

Approach to data simulation

- Simulate residuals for each target
- Add simulated residuals to model data points to create synthetic raw data
- 3. Repeat n times for each target

Gaussian Kernel Density Estimate (KDE)

Feature Extraction

Qualities of a poorly modeled lightcurve

- Incorrect estimation of
 - Transit depth
 - Transit duration (Spitzer)
 - Transit time (Spitzer)
- Not enough points in transit
- Spectrum is too high variance

Transit Depth

Number of in-transit points

ML Model Development

ML Model Development

Imbalanced Classes (80% of examples are plausible)

- Random Forest Classifier
- Support Vector Machine
- Logistic Regression

How do you decide which model works best?

relevant elements false negatives true negatives 0 0 true positives false positives 0

selected elements

Model should maximize F1 Score

Occurs when precision = recall = 1

Feature Selection

Feature Selection

Narrows down the 30+ features created. Also selects the best model

2 Step Selection Process

- Iterative feature removal
- Subset feature selection

Features Chosen

Random Forest Model was chosen

Scale Height

 Standard Deviation vs Scale Height: Ratio of the standard deviation of a target's spectrum to its scale height

Raw Residuals

 Average Absolute Residual: The average value of the absolute value of the residuals for a target

Residual Z-Scores

- Absolute median residual z-score: The absolute value of the median of the z-scores for the residuals
- Median absolute residual z-score
- Median residual z-score

Model Performance

Model Performance on Simulated Training Data

F1 Score = 0.76

	Predicted Plausible	Predicted Implausible
Actually Plausible	1497	223
Actually Implausible	129	571

Model Performance on Real Test Data

F1 Score = 0.38

	Predicted Plausible	Predicted Implausible
Actually Plausible	118	161
Actually Implausible	45	64

Error Analysis

Feature Analysis

Future Steps

Improving the quality of data simulation

Varying bw_adjust

Project Accomplishments

Principal Achievements

- Laid the groundwork for future data simulation efforts
- Developed a larger set of potential features
- Created a robust and hands-off method for feature selection
- Maintained a modular codebase that can be easily altered/updated

Acknowledgements

- Virisha Timmaraju
- Dr. Mark Swain
- Dr. Gael Roudier
- JPL's Exoplanet Discovery Research Group
- JPL and Caltech's Summer Intern Program

Subhash Kantamneni

A little about me

- Freshman at MIT studying Physics and Computer Science
- Originally from Jupiter, Florida
- Hobbies include reading, whistling, hiking, ultimate frisbee, and basketball
- Member of JPL's Exoplanet Discovery Research Group this summer

