Lecture 11

Shear flow transition – case study

AE209 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline 2/26

- 1. Transition in boundary layer
- 2. Transition in flow over a circular cylinder
- 3. Is transition relevant to turbulence?

Lecture outline 3/26

- 1. Transition in boundary layer
- Transition in flow over a circular cylinder
- 3. Is transition relevant to turbulence?

Boundary layer

General features on instabilities in boundary layer

1. Boundary layer instability (TS wave) is **convectively unstable**.

2. Large transient growth is also possible below critical Reynolds number of TS instability.

3. **Primary instabilities** (either TS wave or transient growth) undergo **secondary instability**, eventually leading to turbulence.

Scenario I: Modal transition via Tollmien-Schlichting wave

Secondary instabilities of Tollmien-Schlichting wave

Scenario I: Modal transition via Tollmien-Schlichting wave

Two types of secondary instabilities of TS wave

K-type transition (Klebanoff 1962)

H-type transition (Herbert 1988)

DNS by Sayadi et al. (2012)

Scenario II: Bypass transition via transient growth

Scenario II: Bypass transition via transient growth

Matsubara & Alfredsson (2001)

Summary

Morkovin (1994)

Beyond nonlinearity – Dynamical system approach (since mid 2000)

Edge state in boundary layer

Lecture outline 12/26

- 1. Transition in boundary layer
- 2. Transition in flow over a circular cylinder
- 3. Is transition relevant to turbulence?

General features on instabilities in bluff-body wake

- 1. Instability (Karman vortex shedding) is **absolutely unstable** and is driven by **inflectional mechanism** (Rayleigh criterion).
- 2. The role of **transient growth** is **not very important** typically because the critical Reynolds number of instability itself is also quite low.
- 3. **Spatial development** is **not of main interest**, as the instability process is often dominated by the near-wake region.

Drag coefficient with Re

$$Re = \frac{\rho U_{\infty} D}{\mu}$$

 $\rho = \text{density of fluid } (M/L^3)$

 U_{∞} = free-stream fluid velocity (L/T)

D = diameter of cylinder (L)

 $\mu = \text{viscosity of fluid } (F \cdot T/L^2)$

Creeping flow (0<Re<5): Hele-Shaw flow

Sketch Schlichting (1979)

Steady symmetric flow (5<Re<47)

Sketch

Coutanceau & Bouard (1977)

Two-dimensional laminar Karman vortex shedding (47<Re<189)

Onset of three-dimensional Karman vortex shedding (189<Re<300) Turbulence appears at far downstream (300<Re<1000)

Mode A $Re_D = 200$

Mode B $Re_D = 270$

Williamson (1996)

 $Re_D = 7000$

Instability in separating shear layer (1000<Re<15000)

 $Re_D = 10000$

Prasad & Williamson (1997)

Transition in boundary layer (15000<Re<10⁶)

Fully turbulent everywhere (Re>10⁶)

Lecture outline 22/26

- 1. Transition in boundary layer
- Transition in flow over a circular cylinder
- 3. Is transition relevant to turbulence?

Transitional and turbulent mixing layers

Brown & Roshko (1974)

Laminar and turbulent vortex shedding in bluff body wakes

Low Re

Boundary layers

Streaks in bypass transition

Matsubara & Alfredsson (2001)

Streaks in buffer layer Kline et al. (1967)

Lecture outline 26/26

- 1. Transition in boundary layer
- 2. Transition in flow over a circular cylinder
- 3. Is transition relevant to turbulence?