数字逻辑与微处理器 课程评价

首页 任务 统计 资料 通知 作业 考试

第二章第2次作业

成绩: 100分

		以须: 100分		
	主观成绩	简答题 (100.0分)	主观总分	总得
		100.0	100.0	100

一.简答题 (共6题,100.0分)

1 2.5

- 2-5 已知逻辑函数的真值表分别如表 P2-5(a)、(b)、(c)所示。
- (1) 试分别写出各逻辑函数的最小项之和表达式、最大项之积表达式。
- (2) 分别求出各逻辑函数的最简与或式、最简或与式。

表 P2-5

	(1	0)	
A	В	C	F_2
0	0	0	0
0	0	1 -	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

	()	(2)	
A	В	C	F_3
0	0	0	0
.0	0	1	0
0	1	0	1 0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

正确答案:

解 (1)
$$F_1 = \sum m(0, 1, 2) = \prod M(3, 4, 5, 6, 7)$$

 $F_2 = \sum m(1, 4, 5, 6) = \prod M(0, 2, 3, 7)$
 $F_3 = \sum m(2, 5, 6, 7) = \prod M(0, 1, 3, 4)$
(2) $F_1 = \overline{AB} + \overline{AC} = \overline{A}(\overline{B} + \overline{C})$
 $F_2 = A\overline{C} + \overline{B}C = (A + C)(\overline{B} + \overline{C})$
 $F_3 = B\overline{C} + AC = (B + C)(A + \overline{C})$

2 2.6

- 2-6 对于图 P2-6 所示的每一个电路:
- (1) 试写出未经化简的逻辑函数表达式。
- (2) 写出各函数的最小项之和表达式。

正确答案:

解: (1)

$$F_{3} = \overline{\overline{A+B}} + \overline{\overline{B+C}} + \overline{\overline{A}\overline{C}}$$

$$A+B+B+C+A+C=A+B+C=\sum m(1, 2, 3, 4, 5, 6, 7)$$

(1) F2 = A+B + B+C	+ Ā	· c) = AtB+B+C+A+B=A+B+c
3) 真值意: ABC		
,,	0	: F3= 5m (1,2,3,4,5,6.7)
001	1	
0 1 1	1	
0 11	l	
100	1	
101	١	
() 0	١	
())	1	

3 2.8

2-8 判断图 P2 -8 中各卡诺图的圈法是否正确。如有错请改正,并写出最简与或表达式。

正确答案:

解:错误,正确的为:

我的答案:

4 2.9

2-9 用卡诺图化简法将下列函数化简为最简与或式,并画出全部由与非门组成的逻辑电路图。

(4)
$$F_4(A, B, C, D, E) = \sum m(0, 4, 18, 19, 22, 23, 25, 29)$$

(5)
$$F_5(A, B, C, D) = \prod M(0, 1, 2, 3, 6, 8, 10, 11, 12)$$

正确答案:

解 将各逻辑函数分别填入卡诺图后,圈"1"格化简,求得最简与或式;将最简与或式两次求反,脱内部长非号后可得最简与非一与非式,并画出逻辑图。

(4)
$$F_4 = A\overline{B}D + \overline{A}\overline{B}\overline{D}\overline{E} + AB\overline{D}E$$

(5)
$$F_5 = \overline{A}B\overline{C} + ABC + A\overline{C}D + BD$$

5 2.11

- 2-11 已知 $F_1 = \overline{A}B\overline{D} + \overline{C}$, $F_2 = (B+C)(A+\overline{B}+D)(\overline{C}+D)$, 试求:
- (1) $F_a = F_1 \cdot F_2$ 之最简与或式和最简与非-与非式。
- (2) F_b=F₁+F₂ 之最简或与式和最简或非-或非式。
- (3) F_c=F₁⊕F₂ 之最简与或非式。

正确答案:

解 两函数之间的与、或、异或运算可由两个函数的卡诺图运算(即两个卡诺图中相应的方格作与、或、异或运算)来实现。分别求出 F_a 、 F_b 和 F_c 的卡诺图,如图解 2 - 11 所示。

各函数表达式为

$$F_{a} = F_{1} \cdot F_{2} = \overline{AB\overline{C} \cdot B\overline{C}D}$$

$$F_{b} = F_{1} + F_{2} = \overline{(\overline{A} + \overline{C} + D)} + \overline{(B + \overline{C} + D)}$$

$$F_{c} = F_{1} \oplus F_{2} = \overline{B\overline{C}D + AB\overline{D} + \overline{B}C\overline{D}}$$

我的答案:

(3)
$$f_0 = AB\overline{C} + B\overline{C}D = \overline{ABC} \cdot \overline{BCD}$$

(3) $f_0 = (\overline{A} + \overline{C} + D) \cdot (B + \overline{C} + D) = (\overline{A} + \overline{C} + D) + (\overline{B} + \overline{C} + D)$
(3) $f_0 = \overline{BCD} + AB\overline{D} + \overline{BCD}$

6 2.12

- 2-12 设有 3 个输入变量 A、B、C,试按下述逻辑问题列出真值表,并写出它们各自的最小项积之和式和最大项和之积式。
 - (1) 当 A+B=C 时,输出 F,为 1,其余情况为 0。
 - (2) 当 A⊕B=B⊕C 时, 输出 F_c 为 1, 其余情况为 0。

正确答案:

解 F_b 、 F_c 随 A、B、C 变化的真值表如表解 2-12 所示。

(1)
$$F_b = \sum m(0, 3, 5, 7) = \prod M(1, 2, 4, 6)$$

(2)
$$F_c = \sum m(0, 2, 5, 7) = \prod M(1, 3, 4, 6)$$

表解 2-12

	A	В	C	$F_{\mathfrak{b}}$	$F_{\rm c}$		
-	0	0	0	1	1		
	0	0	1	0	0		
	0	1	0	0	1 -		
	0	1	1	1	0		
	1	0	0	0	0		
	1	0	1	1	1		
	1	1	0	0	0		
	1	1	1	1	1		

11) ABL	Fb	(2)	ABCFC	
000	1	Fb= 2m10,3,5.7)	0 0 0 1	Fc= Em10.2.5,7)
00)	1	=TTM(1.2.4.6)	0 0 0	=TTM(1.3.4.b)
0 1 0	D		0 1 10 1	
0 1)			0 110	
100	0		1010	
(0)	1		1011	
()	б		1 100	
())	1		(1)	