The Modern Periodic Table of the Elements

1																		18
Hydrogen 1 H 1.01	•		are 2001	relative m values, ro ecimal pla	unded	Ele	ement na	ame	→ Mer	cury 0 ←	- Atomic	:#	13	44	45	16	17	Helium 2 He 4.00
2.1	Beryllium		be treate	age masse ed as meas es, and sub	ured		Syn	nbol —	\rightarrow H	g			Boron 5	Carbon 6	15 Nitrogen	Oxygen 8	Fluorine	Neon 10
Li 6.94 1.0	Be 9.01 1.5		not roun	nt figure rand them fur erforming ions.		El	ectrone	gativity_	200.59 ← Avg. Mass → 1.9				B 10.81 2.0	C 12.01 2.5	N 14.01 3.0	0 16.00 3.5	F 19.00 4.0	Ne 20.18
Sodium 11 Na 22.99	Magnesium 12 Mg 24.31												Aluminum 13 Al 26.98	Silicon 14 Si 28.09	Phosphorus 15 P 30.97	Sulfur 16 S 32.07	Chlorine 17 CI 35.45	Argon 18 Ar 39.95
0.9	1.2		3	4	5	6	7	8	9	10	11	12	1.5	1.8	2.1	2.5	3.0	
Potassium 19	Calcium 20		Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
K 39.10 0.8	Ca 40.08 1.0		Sc 44.96 1.3	Ti 47.88 1.5	V 50.94 1.6	Cr 52.00	Mn 54.94 1.5	Fe 55.85 1.8	Co 58.93 1.8	Ni 58.69 1.8	Cu 63.55 1.9	Zn 65.39 1.6	Ga 69.72 1.6	Ge 72.61 1.8	As 74.92 2.0	Se 78.96 2.4	Br 79.90 2.8	Kr 83.80 3.0
Rubidium 37 Rb 85.47 0.8	Strontium 38 Sr 87.62 1.0		Yttrium 39 Y 88.91 1.2	Zirconium 40 Zr 91.22 1.4	Niobium 41 Nb 92.91 1.6	Molybdenum 42 Mo 95.94 1.8	Technetium 43 TC (98) 1.9	Ruthenium 44 Ru 101.07 2.2	Rhodium 45 Rh 102.91 2.2	Palladium 46 Pd 106.42 2.2	Silver 47 Ag 107.87 1.9	Cadmium 48 Cd 112.41 1.7	Indium 49 In 114.82 1.7	50 Sn 118.71 1.8	Antimony 51 Sb 121.76 1.9	Tellurium 52 Te 127.60 2.1	126.90 2.5	Xenon 54 Xe 131.29 2.6
Cesium 55 Cs 132.91 0.7	Barium 56 Ba 137.33 0.9	57-70 *	Lutetium 71 Lu 174.97 1.1	Hafnium 72 Hf 178.49 1.3	Tantalum 73 Ta 180.95 1.5	Tungsten 74 W 183.84 1.7	Rhenium 75 Re 186.21 1.9	Osmium 76 Os 190.23 2.2	1ridium 77 Ir 192.22 2.2	Platinum 78 Pt 195.08 2.2	Gold 79 Au 196.97 2.4	Mercury 80 Hg 200.59 1.9	Thallium 81 TI 204.38 1.8	Pb 207.20 1.8	83 Bi 208.98 1.9	Polonium 84 Po (209) 2.0	Astatine 85 At (210) 2.2	Radon 86 Rn (222) 2.4
Francium 87 Fr (223) 0.7	Radium 88 Ra (226) 0.9	89-102 **	Lawrencium 103 Lr (262)	Rutherfordium 104 Rf (261)	Dubnium 105 Db (262)	Seaborgium 106 Sg (263)	Bohrium 107 Bh (262)	Hassium 108 HS (265)	Meitnerium 109 Mt (266)	Ununnilum 110 Uun (271)	Unununium 111 Uuu (272)	Ununbium 112 Uub (277)	Ununtrium 113 Uut (284)	Ununquadium 114 Uuq (289)	Ununpentium 115 Uup (288)	Ununhexium 116 Uuh (291)		Ununoctium 118 Uuo (294)

*lanthanides

**a	ctir	nide	es

	Lanthanum 57	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
s	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	1.1	1.1	1.1	1.1	1.1	1.2	1.1	1.2	1.1	1.2	1.2	1.2	1.3	1.1
	Actinium 89	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102
s	Ac	Th	Pa	Ü	Np	Pu	Am	Сm	Bk	Cf	Ës	Fm	Md	No
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)
	1.1	1.3	1.5	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3

Solubility Table for Ionic Compounds in Water

	NH4 ⁺	Na ⁺	K ⁺	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Cr ³⁺	Mn ²⁺	Fe ²⁺	Fe ³⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Ag ^{l+}	Zn ²⁺	Cd ²⁺	Hg ¹⁺	Hg ²⁺	Al ³⁺	Sn ²⁺	Sn ⁴⁺	Pb ²⁺
\mathbf{F}^{-}	S	s	S	I	I	I	*	I	*	*	*	S	S	s	s	s	s	X	X	*	s	s	I
Cl -	s	s	s	S	S	S	S	S	S	S	S	S	S	S	I	s	S	I	S	S	S	S	*
Br -	s	s	s	s	S	S	s	s	s	S	s	S	s	s	I	s	s	I	*	S	S	S	*
I -	s	s	s	S	S	s	s	X	s	S	X	S	s	X	I	s	s	I	I	s	S	s	I
NO3 ¹⁻	s	s	s	s	S	s	S	S	s	s	s	S	S	S	s	s	S	X	S	s	X	X	s
ClO3 1-	S	S	S	S	S	S	S	X	X	X	X	S	S	S	S	S	S	S	S	S	X	X	S
CH3COO	S	s	S	S	S	S	S	S	S	S	X	S	S	S	ī	S	S	*	S	X	X	X	S
ОН ¹⁻	S	s	S	ī	*	*	S	X	ī	ī	X	ī	ī	ī	X	ī	ī	X	X	ī	X	X	ī
S 2-	s	s	S	X	ī	*	*	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	X	ī	ī	ī
SO4 ²⁻	s	s	s	S	*	ī	ī	S	s	*	*	S	S	S	*	s	S	ī	X	S	S	s	ī
CO3 2-	s	s	S	ī	ī	ī	ī	X	1	ī	X	1	1	X	ī	1	1	ī	X	X	X	X	ī
PO4 ³⁻	s	s	s	I	I	I	I	X	X	I	I	I	I	I	I	I	I	X	X	I	I	X	I

S = soluble

* = slightly soluble

I = insoluble

X = No Data Available

	Table 7-4a Vapor Pressure of Water												
Temperature °C	Pressure kPa		Temperature °C	Pressure kPa		Temperature °C	Pressure kPa						
0	0.6		20	2.3		30	4.2						
3	0.8		21	2.5		32	4.8						
5	0.9		22	2.6		35	5.6						
8	1.1		23	2.8		40	7.4						
10	1.2		24	3.0		50	12.3						
12	1.4		25	3.2		60	19.9						
14	1.6		26	3.4		70	31.2						
16	1.8		27	3.6		80	47.3						
18	2.1		28	3.8		90	70.1						
19	2.2		29	4.0		100	101.3						

ACTIVITY SERIES FOR METALS

(Increasing Reactivity)

F Cl

Rb K

Br I S

Sr Ba

Na

Li

Ca

Mg Al

Mn

Zn Cr

Fe

Cd

Co Ni

Sn

Sn Pb

H

Sb Bi

As

Cu

Hg Ag

Pt Au