NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA-MSFC CONTRACT NAS8-32988 JULY 26, 1979

(NASA-CR-161467) STUDY OF MULTI-KW SOLAR ARRAYS FOR EARTH ORBIT APPLICATIONS: MIDTERM PERFORMANCE REVIEW (ROCKWell International Corp., Huntsville, Ala.) 98 p HC A05/MF A01

N80-24798

Unclas 22523

> Satellite Systems Division Space Systems Group

Rockwell International

79SSD03730

STUDY OF MULTI-KW SOLAR ARRAYS FOR EARTH ORBIT APPLICATIONS PERFORMANCE REVIEW MIDTERM

NASA-MSFC CONTRACT NAS8-32988 JULY 26, 1979

Satellite Systems Division Space Systems Group

79SSD03875-1

The state of the s

- INVESTIGATE PLANAR AND CONCENTRATOR ARRAY CONCEPTS
- EVALUATE SILICON AND GALLIUM ARSENIDE SOLAR CELL APPLICABILITY
- ASSESS ON-ORBIT MAINTENANCE BY SHUTTLE AND EVA REPLACEMENT OF LIFE-LIMITING COMPONENTS

79SSD03924X

SPACE SHUTTLE PAYLOAD ACCOMMODATIONS (JSC-07700, VOL, XIV, REV, F)

SHUTTLE EVA DESCRIPTION AND DESIGN CRITERIA (JSC-10615)

SPECIFIC POWER GOAL GOVERNED BY TRANSPORTATION COST PENALTIES AND REASONABLE EXTENSION OF STATE OF ART

■ ALL COSTS ADJUSTED FOR 1979 DOLLARS

SHUTTLE TRANSPORTATION SYSTEM REIMBURSEMENT GUIDE (JSC-11802)

RECURRING SYSTEM COSTS DO NOT INCLUDE DESIGN, GROUND SUPPORT OPERATIONS, AND INITIAL LAUNCH COSTS MISSION REQUIREMENT TYPIFIED BY LARGE EARTH ORBITING SPACE PLATFORM (POST 1987)

LOW EARTH ORBITS (~300 KM TO 600 KM)

■ RADIATION

OR IENTATION

TEMPERATURE

ON-ORBIT MAINTAINABILITY

RECOVERY/DISPOSAL

Satellite Systems Division Space Systems Group

Rockwell International

7%SD03753

Rockwell International

SOLAR ARRAY WEIGHT AND COSTING ELEMENTS

*FOR CONCENTRATING ARRAYS ONLY **WEIGHT & COST OF THESE ITEMS ARE NOT CHARGEABLE IN DETERMINING SPECIFIC POWER & COST OF ARRAY

SOLAR ARRAY NOMENCLATURE

Satellite Systems Division Space Systems Group

| Rockwell | International

655SD03562

- \$30 PER WATT OR LESS GOAL FOR SYSTEM RECURRING COST 300 KW TO 1000 KW ARRAY SYSTEM
- LIFETIME DETERMINED BY TECHNOLOGY OBSOLESCENCE
- APPLICATION IN LOW EARTH ORBIT
- RADIATION LEVELS
- TEMPERATURE PROFILE
- DEGRADATION EFFECTS
- RANDOM FAILURE EFFECTS
- MAINTENANCE COST
- MANNED VERSUS UNMANNED
- DEGRADATION EFFECT (UNIFORM OVER ENTIRE SOLAR CELL PANEL)
- MAINTENANCE DESIGN COMPLEXITY
- SHUTTLE TRANSPORTATION & ON-ORBIT OPERATIONS (MINIMUM CHARGE)
- LIFE CYCLE ENERGY COST

Satellite Systems Division
Space Systems Group

795SD03875-2

SOLAR CELL TECHNOLOGY

<u></u>							ı —						γ	7			
RELATIVE	CELL POWER	15		19-45 25 16	4-7	*		5-120		· —	0.5-5						
POIEWIIAL FITTIPE	AVAILABILITY	SFECTRALAB, OCLI	SOLAREX	SPECTRALAB, OCLI	OCLI	1700	SPECTROLAB	SPECTROLAB	ROCKAELL	ROCKYELL	ROCKHELL		RCA, ECD	ROCKWELL, RESEARCH TRIANGLE INST.			
CTATIK OF	×	PRODUCTION	mollymined and	MADE IN RED MADE IN RED PPODICTION	PROJECTION	PREMICTION	FRE-PRODUCTION	DEVELOPMENT GOAL	NADE IN R&D	HADE IN R&D	DEVELOPMENT GOAL	MADE IN RED	HADE IN R&D	PROOF OF PRINCIPLE			
Y AI 1 AU .	PROJECTIC:	41	12.5	to to the	ក្	1	18	82	20		<u>2)</u>	10	15	25-30		E COATING	**BASED ON \$8/W FOR SPACE QUALITY TERRESTRIAL TYPE CELL.
FFFICIENCY AT 23°C AMO (PRESERIT	12-15	,	\$ 00 mm	2	,	16	ı	17.3	12.3*	1	4.8 (AIII)	5.5 (AHI)		1987 PBO1ECTION	* NO AUTI-PEFLECTIVE COATING	ON SU/W FOR IY TERRESTRI
THICKNESS	(ta)	200-300	20	75 125 200	50-350	375	300	150	250	250	25		1 ,11 61 SUBSTRATE	:	1937	* 110 AU	**BASED QUALT
SIZE	(B)	2.2 10 2.5	2-2	2.4	rů řů	7.6 DIA.	2,2	2,4	1 DIA.	0.29 cm-	2×4					POSITION	
	TYPE	SPACE PROVER	HIN	THIR KPAP-ARGAID	LARGE AREA	TERRESTRIAL	HUGHES-LPE	IIUGHES-LPE	POCRTELL-LPE	ROCKWELL-CVD	RGCMIELL CVD	Cu _x S/CdS	SCHOTTKY BARRIER	ТАЙБЕМ		LFE - LIQUID FRASE EFITAKIAL CVD - CHEMICAL VAPOR DEPOSITION LSS - AMORRAMIS STATEM	onrnous silitum
	MATERIAL	.s			·		GāAs					cds	a-Si	MULTIPLE	NOTES:	CVD - CHE	

Rockwell International

Satellite Systems Division Space Systems Group

CONCENTRATING SOLAR CELL PERFORMANCE

Satellite Systems Division Space Systems Group

ИА	MATERIAL	AVAILABILITY	ILLITY	DEVEL OPMENT			
COVER	ADHES IVE	STATUS	FUTURE	PROBLEMS	ADVANTAGE	DISADVANTAGE	COMMENTS
FS	00-93500	DC-93500 PRODUCTION	NO RISK	NONE	SPACE PROVEN, STABLE	EXPENSIVE, BRITTLE	THICKNESS LIMITA-
FS	FEP	PRODUCTION	LOW RISK	DELAMINAT 10N	LOWER COSTS, NO NEED FOR UV FILTER	DEVELOPMENT PROB- LEM, FEP	TION MINIMUM 150 pm FOR FS AND 25-50 pm FOR ADHESIVE
СИЅ	DC-93500	DC-93500 PRODUCT 1 ON	NO RISK	КОИЕ	SPACE PROVEN, STABLE, NO UV FILTER REQ'D. LOWER COST, HIGHER STRENGTH THAN FS.	SLIGHTLY LOWER RESISTANCE TO HIGH LEVELS OF PARTICLE RADIATION THAN FS	5% CERIA PROVIDES UV PROTECTION FOR ADHESIVE & IMPROVES RESISTANCE TO DARK- ENING DUE TO PARTICLE RADIATION. THICKNESS LIMIT MIN. 75 µm FOR CMS
ИЅ	00-93500	DC-93500 PRODUCTION	NO RISK	ноие	SPACE PRJVEN, LOWEST COST OF DISCRETE INORGANIC COVERS	LESS STABLE THAN THE ABOVE	THICKNESS LIMIT MIN. 75 рт FOR MS
NOTE:			·				
FS	FUSED SI	FS - FUSED SILICA, CORNING GLASS 7940	IG GLASS 75	046			
CMS -	CERIUM-D CERIA-ST	CMS - CERIUM-DOPED MICROSHEET, CORNING C CERIA-STABILIZED MICROSHEET, PILKI	HEET, CORNI	ING GLASS 0212 PILKINGTON PERKIN-ELMER	IN-ELMER		
MS -	MICROSHE	MICROSHEET, CORNING GLASS 0211	GLASS 021	_			

Satellite Systems Division Space Systems Group

795SD03927X

S. T.

RTV 655 - SILICONE ELASTOMER, GE; SPRAYLON - LMSC NAME FOR ESSENTIALLY FEP THAT IS APPLIED BY SPRAYING; FEP - FEP TEFLON, FLUORINATED ETHYLENE PROPYLENE, DUPONT. NOTE:

*SERIOUS DEGRADATION (>402) WAS FOUND AFTER HIGH PARTICLE RADIATION EXPOSURE (>2 YR AT SYNCHRONOUS ORBIT) BUT PRIOR TO REACHING THIS DOSAGE APPEARED ACCEPTABLE.

| Rockwell | International

Control of the Contro

SELECTED DESIGN FACTORS

PARAMEIEK	PLANAR	CONCENTRATOR
SOLAR INPUT ON CELLS CONCENTRATION RATIO (CR)	1353 W/m² 1	1353 W/m ² × REFLECTOR XCR ≤ 5
REFLECTOR EFFICIENCY SOLAR CELL EFF. (AMO, 28°C)	-	0.87 PER REFLECTION
n – SILICON	SPACE, 0.15; TERRESTRIAL, 0.14	0,15
	0,98 0,98	0.18
ARRAY VOLTAGE	200 V - 300 V	200 V - 300 V
	96.0	96.0
FAB & ASSEMBLY	0.97	0.97
PACKING FACTOR CELLS	0.85 - 0.98	96.0 - 6.0
PACKING FACTOR CELL GROUPS	6.0	6.0
ORIENTATION (+1 DEG) (MINIMUM	شنو	0.98 (CR-2) - 0.85 (CR-5)
REFLECTOR SIZE) TEMPERATURE > 0°C		
AX. POWER EFFICIENCY)	-0.0006 PER °C	-0,0006 PER OC
GaAs (MAX, POWER EFFICIENCY)	-0.00043 PER OC	-0.00043 PER °C
RADIATION (10 YEARS)		
CONVENTIONAL	0.75	0.75
	0.85	0.85
	6.0	6.0

Satellite Systems Division Space Systems Group

79SSD03915

SOLAR CELL SELECTED CHARACTERISTICS

MATERIAL	CHARACTERISTICS	SIZE (CM)	THICKNESS (µM)	EFFICIENCY (%)	COVER	STACK WEIGHT (KG/M²)	RELATIVE COST
SILICON	LARGE AREA	5 X 5	200	51	RTV 655	8*0	Ť
SILICON	IMPROVED TERRESTRI AL	7.6 DIA	375	41	RTV 655		<u>}</u>
GaAs	LIQUID PHASE EPITAXIAL METHOD	2 X 4	150	81	RTV 655	1.2	75
GaAs	"I'NVERTED" GaAs/SAPPHIRE CHEMICAL VAPOR DEPOSITION METHOD METHOD	11 × 100	25	18	Al ₂ O ₃	0.3	-

*ASSUMED CELL COST IS \$8/W

SOLAR ARRAY HARNESS WEIGHT VERSUS ASPECT RATIO (VOLTAGE SELECTION)

79SSD03870

Satellite Systems Division Space Systems Group

Rockwell

ă

CONCENTRATION RATIO IMPACT ON SOLAR ARRAY ORIENTATION REQUIREMENTS

		POWER
		LOSS
ర	POINTING ERRÖR (DEG)	(%)
_	4.0	0.2
7	0.	1.6
	(MIN REFLECTOR)	
7	0.1	0
	(8% INCREASE IN REFLECTOR SIZE)	
5	0.065	0.1
5	1.0	15.0
5	1.0	0
	(43% INCREASE IN REFLECTOR SIZE)	

- IN 100% COLLECTOR EFFICIENCY WITHOUT • CR = 2, 8% INCREASE IN REFLECTOR SIZE RESULTS ACTIVE FIGURE CONTROL
- CR = 5, 43% INCREASE IN REFLECTOR SIZE RESULTS IN 100% COLLECTOR EFFICIENCY WITHOUT ACTIVE FIGURE CONTROL

10 20 30

SUN POINTING ERROR (DEG)

7955503757

Satellite Systems Division Space Systems Group

Rockwell International

69SSD03565

Satellite Systems Division Space Systems Group

Sion Rockwell International

695SD03656

150-KW SOLAR ARRAY WING PLANAR DESIGN

								DESIGN FACTORS	FACTO	IRS		4R	ARRAY BLANKET	NKET	ALLOWABLE
S	LAR	SOLAR CELL ASSUMPTIONS	IMPTIONS		SOLAR CELL	ЪĽ		FAB						DOLLARS	
MATERIAL	FF %	SIZE (CM)	THICKNESS COST (µM) S/M ²	COST S/M ²	ASSEMBLY COST (S/M ²)*	CELL	PF & CELLS ASSY		<u> </u>	HARNESS	TEMP**	AREA C	COST S X 10 ⁶	PER WATT	S30/W GOAL S/M ²
SILICON	15	5 X S	200	4,500	002'9	6:0	96.0	0.97	0.98	96'0	0.87	0,00,1	6.7	2	NEGATIVE
SILICON	14	7.6 (DIA)	375	006	1,900	6.0	0.85	0.97	6.98	96'0	0.87	1,300	2.5	7	1,500
GaAs (LPE)	85	2 X 4	150	21,000	24,000	6.0	0.94	0.97	0.98	96.0	0.94	840	22.6	151	NEGATIVE
GaAs (CVD) 18	82	11 X 100	25	1,400	2,000	0.9	86.0	6 97	0.98	96'0	0.94	840	7.1	=	3,300

LPE = LIOUID PHASE EPITAXIAL CVD = CHEMICAL VAPOR DEPOSITION

. . .

*INCLUDES CELL COST **ASSUMES 60°C FOR SILICON SOLAR ARRAY, 55°C FOR GaAs

Rockwell International

79SSD03875-5

OBJECTIVE

• TRADE LESS-EXPENSIVE REFLECTING STRUCTURE FOR SOLAR PANELS

CONCENTRATOR DRAWBACKS

- CELL OUTPUT DROPS DUE TO HIGHER TEMPERATURES
 REQUIRED POINTING ACCURACY INCREASES
 OPTICAL SYSTEM LOSES ENERGY
 SYSTEM HAS INCREASED COMPLEXITY

SPECIAL TOPICS

STACK STRUCTURE; SPECTRAL SELECTIVITY

IDEAL CONCENTRATOR PERFORMANCE

- "REAL" SOLAR CELLS
 IDEAL OPTICS AND RADIATOR

PERFORMANCE OF CONCENTRATOR FAMILIES

- "W" TROUGH
- SAWTOOTH TROUGHHEXAGONAL CONE
- PARABOLIC DISH • CASSEGRAIN
 - SLAT

COST TRENDS

CONCLUSIONS

79SSD03929X

7%SD03761

USE OF SPECTRAL SELECTIVITY IN CONCENTRATORS

- SPECTRALLY SELECTIVE REFLECTIVE COATINGS
- ON FRONT SURFACE OF PRIMARY REFLECTOR
- ON FRONT SURFACE OF CELL
- ON BACK SURFACE OF CELL
- MULTIPLE CELLS WITH DIFFERENT SPECTRAL RESPONSE
- CASCADED CELLS
- BEAM SPLITTING

79SSD03917

ASSUMPTIONS

CELL, RADIATOR SURFACE PROPERTIES: $\alpha = \epsilon = 1.0$

RADIATOR VIEW FACTOR TO SPACE: F = 2 (TWO SIDES)

CONCENTRATOR OPTICAL EFFICIENCY: η_{OPT} = 1.0

RADIATOR EFFICIENCY: $\eta_{RAD} = 1.0$

CELL PACKING FACTOR: f = 0.92 - 0.015 in (CR)

CR = GEOMETRIC CONCENTRATION RATIO --APERTURE AREA ÷ GROSS CELL AREA

CELL CONVERSION EFFICIENCY

(Si) $\eta_{\rm C} = 0.167 - 0.0006 \,{\rm T}$ (C) + 0.0052 In (CR) (GaAs) $\eta_{\rm C} = 0.187 - 0.00043 \,{\rm T}$ (C) + 0.0083 In (CR)

SPECIFIC MASSES (KG/M²)

Si CELLS: 0.4 STRUCTURE/OPTICS: 0.6

GaAs CELLS: 0.25

0.6 RADIATOR: 2.50

69SSD 03552

Satellite Systems Division 'Angelens Space Systems Group

Rockwell International

"W" TROUGH PERFORMANCE (C R = 1.4)

REFLECTOR CELL BLANKET

ASSUMPTIONS:

REFLECTIVITY 0.87 50% SINGLE REFLECTION 50% DIRECT (45° INCIDENCE)

TOP AND BOTTOM VIEW FACTORS $\left(\frac{1+.87}{2}\right) = 0.935$

CELL MATERIAL

CELL TEMP. (C)

WATTS/SQ M

WATTS/KG

228

188

59

SILICON

GaAs

63

150

164

Satellite Systems Division Space Systems Group

SAWTOOTH/TROUGH PERFORMANCE (C.R. = 4.0)

SAWTOOTH REFLECTOR CELL BLANKETS TROUGH REFLECTOR~

ASSUMPTIONS:

REFLECTIVITY 0.87
50% DOUBLE REFLECTIONS
25% SINGLE REFLECTIONS
25% DIRECT REFLECTIONS

TOPSIDE VIEW FACTOR 0.85

WATTS/SQ M	137	81
CELL TEMP. (C)	151	159
CELL MATERIAL	GaAs	SILICON

WATTS/KG

166

8

TRUNCATED HEXAGONAL CONE (GALLIUM ARSENIDE)

Satellite Systems Division Space Systems Group International

7

PARABOLIC CONCENTRATOR PERFORMANCE (GALLIUM ARSENIDE)

Rockweil International

69SSD03557

Rockwell International

Satellite Systems Division Space Systems Group

69SSD03558

CASSEGRAIN CONCENTRATOR PERFORMANCE (GALLIUM ARSENIDE)

Satellite Systems Division Space Systems Group

.

69SSD03559

37

Rockwell International Satellile Systems Division Space Systems Group

69SSD03560

- Rockwell International

*ASSUMES FINNED TUBE RADIATOR

Saleliile Systems Division Space Systems Group

Rockweil International

79SSD03874

CONCENTRATOR STUDY CONCLUSIONS

- SOLAR PANELS FOR CONCENTRATORS MUST HAVE GOOD THERMAL BONDING THROUGHOUT STACK
- CONCENTRATORS MUST USE ADDITIONAL RADIATING SURFACES ABOUT CR ≈ 6
- PERFORMANCE ON A WATT/M² OR WATT/KG BASIS IS NOT IMPROVED SIGNIFICANTLY BY LARGE CR VALUES
- ▶ PERFORMANCE ALONE DOES NOT PERMIT SELECTION OF A SINGLE CONCENTRATOR CONCEPT
- ON IDEAL BASIS, BOTH GAAS & SILICON APPEAR CAPABLE OF GIVING ~ \$30/WATT AT MODERATE CR

79SSD03916

BRIEFING OUTLINE

Satellite Systems Division Space Systems Group

Rockwell International

79SSD03875-6

STRUCTURAL/MECHANICAL DESIGN STUDY FOR 300 TO 1000KW

• OBJECTIVE

\$30.00/WATT RECURRING SYSTEM COST

BACKGROUND

STATE OF THE ART EXAMINED TO UTILIZE PRESENT-DAY TECHNOLOGY REQUIRED TO MEET EXTREMELY LIGHTWEIGHT/LOW-COST AUTONOMOUSLY DEPLOYED STRUCTURES WITH NEXT-GENERATION IMPROVEMENTS

APPROACH

COMPARATIVE TRADE EVALUATION OF CR MIRRORS MADE TO DETERMINE IMPACTS INVOLVED (E.G., WEIGHT, COSTS, DEPLOYMENT, STOWAGE, & PERFORMANCE CHARACTERISTICS)

SUMMARY

STRUCTURAL/MECHANICAL SYSTEMS IN 100- TO 300-KW MODULES APPEAR TO BE IN AN OPTIMUM SIZE RANGE FOR A FULLY AUTONOMOUSLY DEPLOYED!
HIGH-DENSITY STOWED SYSTEM, THEREBY REDUCING STS ON-ORBIT
OPERATIONAL COSTS & LINEAR PAYLOAD BAY LENGTH 79SSD03879

CONCENTRATOR DEPLOYMENT EVALUATION

CANDIDATES (CR 1 THROUGH 10)

- 1. PLANAR
- 2. TROUGH/SAWTOOTH
- 3. "W"
- 4. PARABOLIC TROUGH
- 5. PARABOLOIDAL

DESIGN TRADES

- ROLLUP
- FOLDUP
- AUTONOMY
- SIZE LIMITATIONS
- INFLATABLES
- SPRING LOADED

- 6. TRUNCATED HEX
- 7. FRESNEL MIRROR
- 8. FRESNEL MIRROR CASSEGRAIN
- 9. CASSEGRAIN
- STOWAGE FACTOR
- PACKAGING FACTOR (CELL-TO-MIRROR AREA)
- COMPLEXITY
- RELIABILITY
- WEIGHT
- . CR OPTIMUM

Rockwell International

Satellite Systems Division Space Systems Group

795SD03881X

URIGINAL PAGE IS OF POOR QUALITY 47

Rockwell International

Satellite Systems Division Space Systems Group

79SSD03882X

ARRAY BLANKET ASSEMBLY SHOWN IN PLANAR CONFIGURATION

Rockwell International

79SSD03884X

Rockwell International

Satellite Systems Division Space Systems Group

7%SD03885X

Rockwell International

Satellite Systems Division Space Systems Group

79SSD03886X

Rockwell International

Rockweil International

79SSD03388X

PARABOLIC TROUGH WITH LIGHTCONE

Rockwell International Salellite Systems Division Space Systems Group

79SSD03890X

SECONDARY STRUCTURAL SYSTEM CANDIDATE COMPARISONS (CONCENTRATOR REFLECTORS)

			STOW	STOWAGE 🛆		DE	DEPLOYMENT	
CONCEPT	CR	REFLECTOR/ARRAY WEIGHT (KG/M²)	W3	PAYLOAD LENGTH M 🖎	ROLLUP	FOLDUP	ERECTABLE AIDS	GRADING 1-10 10 = BEST COMPLEXITY
PLANAR		0 (INCLUDED IN ARRAY BLANKET	2	0.4		×		10
"W" TROUGH	1.4	0.14	6.5	9*0		×		8
60-DEG FLAT TROUGH	2	0.21	8	<i>L</i> *0		X		8
SAWTOOTH TROUGH	4	0.24	13	0.1		X	×	9
PARABOLIC TROUGH	01-9	0.22	12	8.0		×	**************************************	7
CONIC-HEX	01-9	0.20	12	6.0		X		8
FRESNEL MIRROR	9-10	0.28	22	2.0		×	×	4
CASSEGRAIN	10	0:30	28	2.3		×		5
PARABOLOIDAL	01	0.32	30	2.6		X		4
WHIRL CONCENTRATOR	10	0.10	16	5*0	×		×	3

 \triangle STOWAGE BASED ON AREA OF 600 M², & 3.2 X 3.2 METER FOLDS

2∆DEDUCT 0.7 METER OF STOWED LENGTH WHEN STOWING WITHIN ASTRO STRUCTURE

Rockwell International

> Satellite Systems Division Space Systems Group

795SD03892X

ASTROSTRUCTURE SQUARE TRUSS CONCEPT (WITH CATENARY BLANKET)

Satellite Systems Division
Space Systems Group

79SSD03893X

795SD03896X

INFLATABLE/RIGID LOC SYSTEM

Satellite Systems Division Space Systems Group

79SSD03897X

(SHOWN ON CATENARY PERIMETER TRUSS FRAME) FRESNEL SLAT MIRROR CONCEPT

Satellite Systems Division Space Systems Group

Rockwell International

STOWAGE OF SPIN STRUCTURES CONCEPT

folding of reflector into double roll.

Folding of reflector into toroidal package.

79SSD03895X

79SSD03898X

SOLAR CONCENTRATION DESIGN STUDIES

HIGH CONCENTRATOR PARABOLOIDAL

CONTAINER ASSY. CELL SUPT. ASSY. REFLECT. SUPT. DEPLOY MECH! REFLECTOR STRUCT:

OF 4 MODULE CLUSTER

ORIGINAL PAGE IS OF POOR QUALITY

Rockwell International

Satellite Systems Division Space Systems Group

795SD03899X

Rockwell International

79SSD03900X

Rockwell International Satellite Systems Division Space Systems Group

79SSD03902X

TETRAHEDRAL STRUCTURE (ERECTABLE)

ORIGINAL PAGE IS
OF POOR QUALITY

Satellite Systems Division Space Systems Group

Rockwell International

89

ORIGINAL PAGE IS
OF POOR QUALITY

5

Satellite Systems Division Space Systems Group

79SSD03905X

DEPLOYABLE BOOM MASTS

25-M LENGTH BOOMS (DIMS IN METERS)

MAST	COMPRESSIVE STRENGTH	WEI	EIGHT (KG)	HEIGHT MAST	CANISTER EST HEIGHT	CANISTER	CANISTER COST IN \$K
DIA	(NEWTONS)	MAST	MAST CANISTER	COLLAPSED	2.5 RATIO	DIA	
0.36 (SEPS)	0.190	3.0	3.5	0.5	1.3	0.45	09
0.52	0.240	5.3	3.3	0.3	1.3	09.0	09
0.65	0.376	8.2	4.1	0.3	1.6	0.75	62
0.78	0.541	11.8	5.9	0.3	2.0	06.00	63
06.0	0.736	16.1	7.6	0.5	2.3	1.05	64

DATA FURNISHED 23 MAY 1979 BY: ASTRO-RESEARCH CORP., CARPINTERIA, CA ABLE ENGINEERING, GOLETA, CA

△ NOTE: PRICING FOR SYSTEM UP TO 3.5-M-DIAMETER NEGLIGIBLE

△ PLUS \$10,000 PER CANISTER AFTER FIRST UNIT; VENDOR EST

PRIMARY STRUCTURE SYSTEM CANDIDATE COMPARISONS (ENVELOPE OF STRUCTURE)

,						
	STS WAIT (HR)	28–48	C/O	C/O ONLY	C/O ONLY	12-24
AËNT	AUTONOMY	ON	YES	YES	YES	YES
DEPLOYMÊNT	ERECTABLE CONST	YES STS HOLD & CREW	REQUIRES SPIN SYS			
	RËQMT AIDS	TRAPEZE FIXTURE				RMS MIN
STOWAGE	PAYLOAD LENGTH (M)	130 ⁺ 10 100-250 KW ALL P/L BAY	0.4	0.5	8*0	6.1
STO	VOLUME (M ³)	130 ⁺ 10 100-250 KW 1/2 ALL P/L BAY		9	ω -	35
/M ²)	1800	0.44 0.38	0.20	0.46 0.50	0.24	0.58
r (KG, HOWI	1200	0.44	0.20	0.46	0.22 0.24	0,60 0,58
STRUCT WEIGHT (KG/ M^2) (FOR AREAS SHOWN)	006	0.46	0.21	0.42	0.21	09.0
UCT W	009	0.60 0.52	0.21	0.38	0.21	09.0 00.00
STR (F	300	09.0	0.22	0.36	0.21	6.70
EW	CONCEPT	TETGANECHAL ERECTABLE CATEMAY FRAME CELLS	SPIN, CENTRIFUSAL, CELLS	INFLATABLE POLYGON CATCHERY FRAME CELLS	CELUS	A Lov.

Rockwell International 72

795SD03907

PRIMARY AND SECONDARY STRUCTURES EVALUATION

5		PREFERENCE																İ
CTIO	$ \mathbb{Q} $	овоев оғ		8	2	9	4	S	7	8	10	6	5	33	2	-	4	
SELECTION		001T800 ROTJAH	10	8	7	ဗ	4	цэ	2	2	2	က		7	9	10	3	
VESS	\triangleleft	K@\W _S 8A81EW	0	.14	.21	.24	.21	.20	.28	.30	.32	.10	.50	.21	.49	.21	.60	
EFFECTIVENESS		CELL REGMT.	01	44	7	4	9	9	2	10	10	2						
EFF		COOLING IMPACT	10	හ	တ	∞	7	9	∞	۵	7	2						
STOWAGE	*	LENGTH P/L BAY	10	œ	လ	4	9	9	ည	2	3	10	V	10	10	တ	က	
STO		۸٥٢'	10	∞	∞	4	ည	5	က	က	3	10	-	10	101	∞	4	
MS		COMPATIBILITY REFLECT/STRUC	10	1	6	5	4	5	က	4	33	4	10	7	10	10	80	
SYSTEMS	RELIABILITY		19	တ	ထ	4	Þ	2	4	4	4	3	8	2	∞	10	7	
S	COMPLEXITY		10	ಹ	ထ	5	ı,	9	5	2	2			33	2	∞	2	
		YMONOTUA	10	6	63	4	5	7	5	5	4	3	0	8	7	10	9	
INT		ERECTABLE										-	×					
DEPLOYMENT		воггль	∞	9	2	-	***	5	33	3	2	52	-	ω	∞.	4	4	
DEPL		Fordup	#	00	ထ	4	4	5	3	3	2	7	-	6	9	æ	4	
		яэ	,	1.4	2	4	10	8	10	10+	10+	10+		:	_			
	-	ARY ES			1	Н91	H9(AL	8		HSIC	RATOR		AL	G TRUSS	NETARY		611 000
		PRIMARY & SECGNDARY SYSTEM CANDIDATES	PLANAR	"W" TROUGH	600 FLAT TROUGH	SAWTOOTH TROUGH	PARABOLIC TROUGH	CONIC/HEXAGONAL	FRESNEL MIRROR	CASSEGRAIN	PARABOLOIDAL DISH	WHIRL CONCENTRATOR	TETRAHEDRAL	SPIN CENTRIFUGAL	INFLATABLE RING TRUSS	ASTRO MAST PLANETARY	UNFURLABLE	C. 000 110 010 0 0 011 1 1 1 1 1 1 1 1 1
		<u> </u>				<u></u>		<u></u>	<u> </u>					<u></u>	<u> </u>			<
			-			SA	010	TEC	BEL					18 U	Tor	IЯТ	S	

VALUES BASED ON 600 M²

ORDER OF PREFERENCE: NO. 1 NUMERICALLY HIGHEST.

ALL OTHER VALUE RATINGS FROM 1-10 INDICATE 10 AS HIGHEST.

PRIMARY STRUCTURE DESIGN SUMMARY

- CONFIGURATION
- CIRCUMFERENTIAL RING & RECTANGULAR PERIMETER TRUSSES CONSIDERED
- CANDIDATES
- ASTROTRUSS/BEAM MACHINE, SPIN/WHIRL, INFLATABLE, UNFURLABLE, & TETRAHEDRAL ERECTABLE
- SELECTION
- SELECTED OVER THE BEAM MACHINE BECAUSE IT PROVIDES DEPLOYMENT AUTONOMY, LEAST STOWAGE, & COSTS • ASTROMAST TRUSS - FOR SIZE & NEAR-TERM REQUIREMENTS OF THIS STUDY, THE ASTROMAST TRUSS WAS
- SPIN/WHIRL IS EXTREMELY ATTRACTIVE FOR WEIGHT, STOWAGE VOLUME, & COSTS--WAS NOT SELECTED BECAUSE MISSION IS UNKNOWN--THIS CONCEPT NOT AS FLEXIBLE AS A STATIONARY MODULE
- INFLATABLES VERY COMPETITIVE SYSTEM IN THE SMALL-TO-MODERATELY SIZED MODULES (300-KW UNITS) FOR AUTONOMOUSLY DEPLOYED STRUCTURES; FOR LARGE SINGLE-CONCENTRATOR DESIGNS REQUIRING AUTONOMY APPEARS TO BE THE BEST CANDIDATE AT PRESENT TIME
- UNFURLABLE HAS GOOD STOWAGE & DEPLOYABLE CHARACTERISTICS WITH GOOD HISTORICAL APPLICATIONS BUT IS HEAVY, COMPLEX, & COSTLY
- TETRAHEDRAL ERECTABLE ERECTABLE-TYPE STRUCTURE REQUIRING LONG ORBITER STAY TIMES--BECOMES ATTRACTIVE IN SIZES BEYOND THIS STUDY
- BEAM MACHINE EXCELENT FOR LARGER STRUCTURES; WAS NOT CONSIDERED FOR THIS STUDY, WHICH REQUIRES MINIMUM STS PAYLOAD VOLUME & ON-ORBIT STAY IMPACTS
- CONCLUSIONS

BASIS FOR SELECTION IS AUTONOMY, MINIMUM STS-VOLUME & STAY TIMES, SIMPLICITY, RELIABILITY, PRODUCIBILITY, WEIGHT, & COSTS

Rockwell International

PLANAR SYSTEMS

 ASTROMAST PERIMTER STRUCTURE CONCEPT BEST IN 100 – 300 KW MODULES (BASED ON SIMPLICITY, WEIGHT, STOWAGE AND COST FACTORS)

CONCENTRATOR SYSTEMS

- 60º FLAT TOUGH CONCEPT BEST FOR LOW CONCENTRATION RATIOS
- CONIC OR PARABOLIC TROUGH BEST FOR INTERMEDIATE CONCENTRATION RATIOS (CR = 2 THROUGH 6)
- CONCEPTS NEED FURTHER EVALUATION FOR HIGH CONCENTRATION PARABOLOIDAL DISH, WHIRL CONCENTRATOR AND CASSEGRAIN RATIOS (CR>6)

79SSD03921

Satellite Systems Division Space Systems Group

Rockwell international

795SD03875-3

MAINTAINABILITY PHILOSOPHY

GENERAL APPROACH

- REMOVE FAULTY LINE REPLACEABLE UNIT (LRU) & REPLACE IN LIEU OF REPAIR
- LRU MINIMUM SIZE
- SOLAR CELL PANELS DEPENDENT ON CONFIGURATION
- OTHER-NOT LOWER THAN COMPONENT LEVEL
- INDIVIDUAL SOLAR CELLS (AND INTERCONNECT) NOT CONSIDERED LRU'S
- FAILURE DETECTION IMPLICATIONS
- DIFFICULTY OF REMOVAL AND REPLACEMENT
- EXCEPTION TO LRU CONCEPT POSSIBLE IN SITU ADJUSTMENT OF FIGURE SHAPING AND TENSIONING RIGS
- REPLACED UNITS AND OTHER MATERIAL RETURNED TO EARTH TO AVOID PROLIFERATION OF SPACE DEBRIS

MAINTAINABILITY CONSIDERATIONS

- MINIMIZE IMPACT
- COST FOR DESIGN AND FABRICATION FOR MAINTAINABILITY
- DOWNTIME DUE TO SHUTDOWN DURING MAINTENANCE
- FREQUENCY OF MAINTENANCE
- UNMANNED SATELLITE
- GENERALLY SCHEDULED, BASED ON OBSERVED DEGRADATION
- UNSCHEDULED IN CASE OF MULTIPLE OR CATASTROPHIC FAILURES
- MANNED SATELLITES
- AS REQUIRED
- RELIABILITY DATA UTILIZATION IN MAINTENANCE PLANNING
- MAINTENANCE OPERATIONS COMPLEXITY
- MAN AND EQUIPMENT LIMITATIONS
- MAN AND EQUIPMENT POTENTIAL HAZARDS
- FAULT DETECTION AND ISOLATION
- COMPATIBLE WITH LRU DEFINITION

79SSD03931X

79SSD03912X

COMPONENTS

DEGRADATION

	,	_
C		,
۲	2	_
5	_	5
ũ	_	
١,		•
٠,	.,	,
L	Ĺ	J
_	_	1
Ĺ	Ī	_
Ĩ.	ĭ	
•	×	۰
-	-	-
	_	
- 4		h
٠,		,

NEGLIGIBLE

SOLAR CELL PANELS

GRADUAL (RADIATION, THERMAL STRESS, ETC.)

• CELLS

COVERS

NEGLIGIBLE

- INTERCONNECTS & HARNESS ■ SUBSTRATE

NEGL IGIBLE

PRIMARY STRUCTUFF

STRUCTURE (DEPLOY/STOW)

RANDOM PLUS WEAR

MECHANISMS & DRIVES

RANDOM

SWITCHES

RANDOM

SENSORS

■ RADIATORS

GRADUAL (COATINGS, FLUID CORROSION, ETC.)

REPLACEMENT OPTIONS

- SOLAR CELL PANEL OR ARRAY WING MODULE
- TOTAL REPLACEMENT AT PREDETERMINED DEGRADATION VALUE
- -- AT PANEL LEVEL
- AT WING MODULE LEVEL BY RETRACTING ARRAY AND REPLACEMENT
- PARTIAL REPLACEMENT
- AT PANEL LEVEL (NOT ANTICIPATED DUE TO OVERALL UNIFORM DEGRADATION)
- NON SOLAR CELL PANEL COMPONENTS
- PREVENTIVE MAINTENANCE NOT CONTEMPLATED
- ONLY IN CONJUNCTION WITH OTHER MAINTENANCE ACTIVITIES WHEN MONITORING INDICATES SIGNS OF INCIPIENT FAILURE

REPLACEMENT HARDWARE LOCATIONS

- UNMANNED SATELLITE EARTH STORAGE PREFERABLE
- MAINTENANCE REQUIRES SHUTTLE VISIT
- REQUIRED SPARES INCLUDED IN SHUTTLE PAYLOAD
- MANNED SATELLITE ON ORBIT STORAGE
- SELECTED SPARES
- BY SATELLITE CREW WITHOUT INCURRING EXPENSE OF RETAIN ON BOARD TO PERMIT PERIODIC MAINTENANCE SHUTTLE VISIT
- ARRAY CHANGEOUT
- UTILIZE SHUTTLE TO DELIVER REPLACEMENT ARRAY

MAINTENANCE TRADEOFF CONSIDERATIONS

- OVER-DESIGN VS MAINTENANCE
- INITIAL ARRAY COSTS
- MAINTENANCE COSTS
- OBSOLESCENCE DUE TO TECHNOLOGY ADVANCEMENT
- INITIAL COSTS
- REPLACEMENT COSTS
- IMPROVED PERFORMANCE
- ACCEPT DEGRADATION
- NO MAINTENANCE

79SSD03913X

RECURRING COSTS

- ARRAY FABRICATION
- ARRAY ACCEPTANCE TESTS
- QUALITY ASSURANCE SUPPORT
- MAINTENANCE
- SHUTTLE USER FEES
- HARDWARE REPLACEMENT COSTS

79S5D03923X

SHUTTLE PAYLOAD ACCOMMODATIONS

• SPACE SHUTTLE SYSTEM PAYLOAD ACCOMMODATIONS (JSC-07700, VOL. XIV) HIGHLIGHTS

• MAXIMUM LAUNCH FOR 296-KM (160 N. MI.) ORBIT

· KSC LAUNCH

- 29484 KG FOR 28.5-DEG ORBIT INCLINATION - 25855 KG FOR 56-DEG ORBIT INCLINATION

•VAFB LAUNCH

- 16783 KG FOR 90-DEG ORBIT INCLINATION

- 13608 KG FOR 104-DEG ORBIT INCLINATION

• MAXIMUM PAYLOAD RETURN WEIGHT (NON-ABORT): 14,515 KG

MAXIMUM PAYLOAD LENGTH: 18,29 METERS

• OMS KITS AVAILABLE FOR ADDITIONAL AV ARE PAYLOAD CHARGEABLE

COSTING HIGHLIGHTS (1975 DOLLARS)*

•MINIMUM PAYLOAD COST: \$1.2 M

• DEPENDENT UPON WEIGHT LOAD OR LENGTH LOAD FACTORS

X \$18M

GOVERNMENT USE COST=

- WEIGHT FACTOR = PAYLOAD WEIGHT DIVIDED BY TOTAL PAYLOAD CAPABILITY

- LENGTH FACTOR = PAYLOAD LENGTH PLUS 15.2 CM DIVIDED BY 1829 CM

• EVA COST FROM \$60,000 - \$100,000 EACH

- 2 SORTIES PER MISSION (6 HOURS MAXIMUM PER 24 HOUR PERIOD) •ORBIT STAY AFTER FIRST DAY: \$300,000 - \$350,000 PER DAY

• PAYLOAD SPECIALIST TRAINING: \$75,000 - \$100,000

*STS REIMBURSEMENT GUIDE (JSC-11802); SHUTTLE EVA, & DESIGN CRITERIA (JSC-10615)

Satellite Systems Division

Rockwell International

ESCALATION FACTORS ASSUMED FOR 1979 DOLLARS

MOST NASA COSTS ARE GIVEN IN 1975 DOLLARS

• NASA REIMBURSEMENT GUIDE* = 1.366 x (1.005654)N

• OTHER COSTS MAY BE GIVEN IN 1976, 1977, OR 1978 DOLLARS

ROCKWELL USING SIMPLIFIED COST FACTORS AS FOLLOWS;

ESCALATION FACTOR	1,4	1,3	1,2	1,1
YEAR	1975	1976	1977	1978

= NUMBER OF MONTHS'FROM OCTOBER 1978 * STS REIMBURSEMENT GUIDE (JSC-11802) z

79SSD03914X

Satellite Systems Division Space Systems Group

Rockwell International

69SSD 03567

MAINTENANCE COSTS (1979 DOLLARS IN MILLIONS)

(TES)
RATES)
AGENCY
(60VT
FEES (
USER
SHUTTLE
•

ENGTH
METER L
ASSUME 1
PORTION -
• P/L

0.49

0.28

UNMANNED SATELLITE

• 1 EVA (P/L TRANSFER)

SHUTTLE P/L

MANNED SATELLITE

7,26

TOTAL

SALVAGE VALUE OF RETURNED HARDWARE NOT CONSIDERED NOTE:

Satellite Systems Division Space Systems Group

Rockwell International

795SD03934X

Satellite Systems Division
Space Systems Group

Rockwell International

Group Rockwell International

Satellite Systems Division Space Systems Group

69SSD03579

Satellite Systems Division Space Systems Group

Rockwell International

995SD03569

6

ON-ORBIT MAINTENANCE CONCLUSIONS

- ATTAINMENT OF \$30/WATT RECURRING COST DUBIOUS IF DEPENDENT ON MAINTENACE BY SHUTTLE VISITATIONS
- MINIMUM CHARGE FOR SHUTTLE USAGE
- MAINTAINABILITY CAPABILITY INCREASES ARRAY COMPLEXITY AND FABRICATION COST
- EXTENSION OF END-OF-LIFE APPEARS MORE COST-EFFECTIVE THAN TOTAL ARRAY
- UNMANNED SATELLITE ARRAY SHOULD INCORPORATE REDUNDANCY AND SWITCHING CAPABILITY TO MINIMIZE SHUTTLE VISITS
- MANNED SATELLITE ARRAY SHOULD INCORPORATE REDUNDANCY WITH SPARES IN SATELLITE TO BE LESS DEPENDENT ON SHUTTLE
- IF FEASIBLE, LOCATE CRITICAL COMPONENTS IN MANNED SATELLITE TO FACILITATE ANY REQUIRED REPLACEMENT
- RANDOM AND PARTIAL REPLACEMENT OF SOLAR ARRAY SECTIONS NOT ANTICIPATED BECAUSE OF EXPECTED OVERALL UNIFORM DEGRADATION CHARACTERISTIC
- DESIGNS SHOULD FEATURE INITIAL EVASION OF FAILURES
- UTILIZE SHUTTLE CAPABILITY FOR BACK-UP TO ATTAIN ARRAY OPERATIONAL STATUS

79SSD03925X

Rockwell International Satellite Systems Division Space Systems Group

79SSD03875-4

PRELIMINARY STUDY CONCLUSION

1

TO MEET \$30 PER WATT SOLAR ARRAY COST GOAL:

PLANAR

- SOLAR CELL COSTS MUST BE \$8 PER WATT OCL1 IS PROJECTING \$30MATT FOR
- INTEGRAL COVER CONCEPT IS NECESSARY ~ \$2 PER WATT
- TODAY'S STATE-OF-ART DEPLOYABLE MAST APPEAR AFFORDABLE AS PRIMARY STRUCTURE ~ \$12 PER WATT
- REMAINDER OF ARRAY (SUBSTRATE) INTERCONNECTS/HARNESS/ETC.) WITHIN STATE-OF-ART ~ \$8 PER WATT

CONCENTRATOR

- "BEST BET" IS LOW CONCENTRATION; CR ≤ 5 FOR GAAS; CR ≤ 2 SILICON (PRIMARY JUSTIFICATION FOR HIGHER CONCENTRATION IS TODAY'S CELL COSTS)
- ABOVE CR = 2, LIGHT PIPE BECOMES A NECESSITY
- GaAs Solar Cell "Best Bet" for Concentration
- 100 300 kW PREFERRED RANGE FOR MODULES
- OVER-DESIGN FOR LONG LIFE RESULTS IN LOWER LIFE CYCLE COSTS THAN SCHEDULED **MAINTENANCE**
- SHUTTLE ORBITER REDUCES RECURRING COSTS WHEN UTILIZED AS BACK-UP IN DEPLOYMENT

PRELIMINARY RECOMMENDATIONS

PLANAR CONFIGURATION

- ASTROMAST PLANETARY DEPLOYMENT FOR PRIMARY STRUCTURE
- FOLD UP DESIGN CONCEPT FOR BLANKET STOWAGE
- REPLACEABLE MODULE DESIGN (~3.2 m X 3.2 m)
- CONCENTRATOR CONFIGURATION
- ASTROMAST PLANETARY DEPLOYMENT FOR PRIMARY STRUCTURE
- FOLD UP DESIGN CONCEPT FOR BLANKET AND REFLECTOR STOWAGE
- LOW CONCENTRATION RATIOS OF 2-5 (TROUGH DESIGN)
- REPLACEABLE MODULE DESIGN
- SOLAR CELL CONFIGURATION
- LARGE AREA SILICON SOLAR CELLS (\geq 25 CM²)
- ADVANCED GaAs THIN FILM (LARGE AREA) SOLAR CELLS FOR CONCENTRATOR CONCEPT
- MAINTENANCE
- DESIGN FOR LONG LIFE AND NO SCHEDULED MAINTENANCE
- SOLAR ARRAY DESIGN FACTORS
- UTILIZE SAME FACTORS AS IN TRADE-OFFS

FUTURE ACTIVITIES PLANNED

- SELECT CONCENTRATOR CONCEPT CONCENTRATION RATIO
- **SOMPLETE SOLAR ARRAY CONFIGURATION DEFINITION FOR PLANAR AND CONCENTRATOR CONCEPTS (∼150 kW MODULES)**
- DETAIL BLÄNKET STACK
- DESIGN ELECTRICAL MODULE
- DESIGN REFLECTOR
- DESIGN MAINTENANCE CONCEPT
- EVALUATE PERFORMANCE AND COST FOR PLANAR AND CONCENTRATOR CONFIGURATIONS
- SELECT PREFERRED CONCEPT
- PROVIDE RATIONALE & RECOMMENDATIONS
- PREPARE FINAL REPORT