ABI Summer 2021 Introduction to Statistics

Guest Session 3

Javier Cabrera*, Volha Tryputsen** & Davit Sargsyan**

July 13, 2021

Group Assignment

Group 1	Group 2	Group 3	Group 4	Group 5
Gisane (R)	Arabo (R)	Susie (R)	Tamara (R)	Mher (R)
Arvin	Nerses	Ashkhen	Vardan	Vika
Satenik	Liana	Anush (R)	Hripsime	Nelli

The Royal Guinea Pig Problem

➤ The Guinea pig lost appetite and began losing weight. It even stopped eating its favorite treat - carrot

- Available resources:
- Castle basement full of mice and rats
- 2 types of diet: regular grass or carrot-rich
- 3 natural compounds to use as treatments

- You are commissioned to find a cure for Peppa and get half of the Kingdom
- > Or else...

Peppa's Information

Age: 5 years 2 months; Sex: Female, Skin Color: Pink;

Favorite snack: carrots

	Last Week	This Week
Diet	Grass and Carrots	Grass
Weight	550g	423g
Food Intake	128g/day	105g/day

The Royal Guinea Pig Problem

Compare means: t-Test

- First, we want to make sure that our experimental (animal) model worked: there is a significant difference between the healthy and the sick animals
- Do a t-Test

Comparing 2 Groups' Means: t-Test

$$t = \frac{signal}{noise} = \frac{difference\ between\ two\ means}{pooled\ standard\ error\ of\ the\ means}$$

$$t = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\frac{Var_A}{n_A} + \frac{Var_B}{n_B}}}$$

Median, Mean and Variance

Obs.	Value
2	1
4	2
1	3
5	7
3	12

Mean (or average) = sum of observation values/ number of observations

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Residual (or error) = observation value – mean

$$r_i = x_i - \bar{x}$$

Residual sum of squares:

$$RSS = \sum_{i=1}^{N} r_i^2$$

Standard deviation:

Sample Variance =
$$\frac{RSS}{N-1}$$

Standard Deviation vs. Standard Error

Standard deviationdescribes **variability** in the data

$$SD = \sqrt{Variance}$$

Population mean = 100; SD = 10

Standard error describes statistical **accuracy** of an estimate

$$SE = \sqrt{\frac{Variance}{N}}$$

Standard Deviation vs. Standard Error

Standard deviation describes **variability** in the data

$$SD = \sqrt{Variance}$$

SD does not depend on the number of observations in the sample although it might be smaller in smaller samples because extreme observations are unlikely to be sampled Population mean = 100; SD = 10

	10 samples	100 samples
SD	9.73	10.40
SEM	3.08	1.04

Standard error describes statistical **accuracy** of an estimate

$$SE = \sqrt{\frac{Variance}{N}}$$

SE generally **gets smaller** as sample size increases

NOTE: think about getting more evidence for your guess

Comparing 2 Groups' Means: t-Test

$$t = \frac{signal}{noise} = \frac{difference\ between\ two\ means}{pooled\ standard\ errors\ of\ the\ means}$$

$$t = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\frac{Var_A}{n_A} + \frac{Var_B}{n_B}}}$$

The Royal Guinea Pig Problem


```
# t-Test: controls only
t.test(Weight ~ Treatment,
       data = dt1[Treatment %in% c("Naive",
                                       "Negative Control"), ],
       var.equal = TRUE)
          Two Sample t-test
 data: Weight by Treatment
t = 15.611, df = 22, p-value = 2.195e-13
alternative hypothesis: true difference in means is not equal to 0
 95 percent confidence interval:
 4.721633 6.168367
 sample estimates:
             mean in group Naive mean in group Negative Control
                            20.180
                                                              14.735
```


Two sample t-test assumptions

- Data values must be independent: measurements for one observation do not affect measurements for any other observation.
- Data in each group must be obtained via a random sample from the population.
- Data in each group are normally distributed.
- Data values are continuous.
- The variances for the two independent groups are equal.

Two sample t-test assumptions: check

- Data values must be independent: measurements for one observation do not affect measurements for any other observation.
- Data in each group must be obtained via a random sample from the population.
- Data in each group are normally distributed.
- Data values are continuous.
- The variances for the two independent groups are equal.

Checking t-test assumptions: (1) normality

qq-plot to check for Normality

Checking t-test assumptions: (2) equal variances

- 2 variances are NOT equal!
- Use the unequal variance t- test, also called the Welch t- test.

What if data is not Normally distributed?

Use Wilcoxon test - non-parametric (distribution-free)!

What if data has outliers?

 An outlier is a data point that differs significantly from other observations in a group

Use Wilcoxon test!

 If you can explain the outlier, you can remove it (needs good justification). Can create a problem (Ozone layer data example)

Boxplot

Analysis of Variance (ANOVA)

```
# ANOVA
```{r}
m1 <- aov(Weight ~ Treatment,</pre>
 data = dt1
summary(m1)
 Df Sum Sq Mean Sq F value Pr(>F)
 30.7 1.94e-13 ***
 4 219.12 54.78
Treatment
Residuals 55 98.14 1.78
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



## POST HOC Pairwise Comparison



## POST HOC Pairwise Comparison

Simultaneous Tests for General Linear Hypotheses

```
Multiple Comparisons of Means: Tukey Contrasts
```

```
Fit: aov(formula = Weight ~ Treatment, data = dt1)
```

#### Linear Hypotheses:

```
Estimate Std. Error t value Pr(>|t|)
 -5.4450 0.5453 -9.985 < 1e-04 ***
Negative Control - Naive == 0
 -2.9458 0.5453 -5.402 < 1e-04 ***
Pontikilin - Naive == 0
 -2.5425 0.5453 -4.662 0.000199 ***
Choirídin - Naive == 0
Tipotium - Naive == 0
 -4.7808 0.5453 -8.767 < 1e-04 ***
Pontikilin - Negative Control == 0 2.4992 0.5453 4.583 0.000246 ***
Choirídin - Negative Control == 0 2.9025 0.5453 5.322 < 1e-04 ***
Tipotium - Negative Control == 0 0.6642 0.5453 1.218 0.741052
Choirídin - Pontikilin == 0
 0.4033 0.5453 0.740 0.946183
Tipotium - Pontikilin == 0 -1.8350 0.5453 -3.365 0.011774 *
Tipotium - Choirídin == 0 -2.2383
 0.5453 -4.105 0.001270 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Adjusted p values reported -- single-step method)
```



## What About the Diet?

• Let's do this one together (class exercise)

 Think about how diet affects the outcome (weight)

 How does diet interact with the treatment?

 How can we analyze diet effect?





## What Are Our Recommendations?

 Is there any treatment that might prevent weight loss in the guinea pig?

Are some treatments better than others? Why and why not?

What limitations did your experiment have?

 What would you do differently if you had more time and recourses?



## The Royal Guinea Pig Problem



And they lived happily ever after...

Because You found the cure!





## Case study



♦ Experiment: Compare the gene expression profiles of 3 KO mice vs 3 WT mice using a microarray with 22283 genes.



Hereafter: variables = genes



## Gene expression matrix

## ◆ Data: Expression measures for G genes in N samples:

	C1	C2	C3	T1	Т2	Т3	
G1	83	94	82	111	130	122	
G2	16	14	7	2	11	33	
G3	490	879	193	604	1031	962	
G4	46458	49268	74059	44849	42235	44611	
G5	32	70	185	20	25	19	
G6	1067	891	546	906	1038	1098	
G7	118	111	95	896	536	695	
G8	10	30	25	24	31	28	
G9	166	132	162	27	109	213	
G10	136	139	44	62	23	135	
	• • •	• • •	• • •	• • •	•		



	C1	C2	C3	T1	<b>T2</b>	Т3
G8521	6.89	7.18	6.60	7.40	7.15	7.40
G8522	6.78	6.55	6.37	6.89	6.78	6.92
G8523	6.52	6.61	6.72	6.51	6.59	6.46
G8524	5.67	5.69	5.88	7.43	7.16	7.31
G8525	5.64	5.91	5.61	7.41	7.49	7.41
G8526	4.63	4.85	5.72	5.71	5.47	5.79
G8527	8.28	7.88	7.84	8.12	7.99	7.97
G8528	7.81	7.58	7.24	7.79	7.38	8.60
G8529	4.26	4.20	4.82	3.11	4.94	3.08
G8530	7.36	7.45	7.31	7.46	7.53	7.35
G8531	5.30	5.36	5.70	5.41	5.73	5.77
G8532	5.84	5.48	5.93	5.84	5.73	5.73
G8533	9.45	9.56	9.92	10.15	9.81	9.36
G8534	7.57	7.55	7.30	7.48	7.82	7.46

# Preprocess: normalize and log transform

22283 rows (genes) x 6 columns (samples)



#### Gene Expression Raw scale

#### Gene Expression Log scale



It is better to log transform!

For each row -> Compute t-statistic and p-value

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{(1/n_1) + (1/n_2)}},$$



#### Bonferroni method: Control for multiplicity

Top 10 genes (sorted by *t*-test *p*-value)

Gene	Fold	Dir	р	p(Bonf)
G6546	2.36	D	0.000004	0.0964
G19945	3.25	U	0.000005	0.1102
G21586	1.64	U	0.000008	0.1765
G18970	2.52	U	0.000019	0.4220
G7432	3.70	D	0.000033	0.7248
G19057	1.85	U	0.000046	1.0000
G17361	4.34	D	0.000067	1.0000
G8525	5.57	D	0.000067	1.0000
G425	18.11	D	0.000078	1.0000
G8524	4.74	D	0.000109	1.0000

#### Bonferroni

$$p^{\text{BON}}_{i} \leftarrow \min(\# \text{ of tests} \times p_{i}, 1)$$
  
Or  $\alpha^{\text{BON}} \leftarrow \alpha / \# \text{ of tests}$ 

#### Drawbacks:

- Too restrictive.
- Too many false negatives.

Bonferroni cut off for  $\alpha = 0.05$ :

$$\alpha^{\text{BON}} \leftarrow 0.0000023$$

## How to make improvements

False discoveries correction:

Put p-values in order 0.000004 0.000005 0.000008

Multiply by # of tests up to that one



#### Bonferroni method: Control for multiplicity

#### Bonferroni

$$p^{\text{BON}}_{i} \leftarrow \min(\# of \text{ tests} \times p_{i}, 1)$$
Or  $\alpha^{\text{BON}} \leftarrow \alpha / \# of \text{ tests}$ 

#### Drawbacks:

- Too restrictive.
- Too many false negatives.

Bonferroni cut off for  $\alpha = 0.05$ :  $\alpha^{\text{BON}} \leftarrow 0.0000023$ 

# How to make improvements False discoveries correction:

Put p-values in order 0.000004 0.000005 0.000008

Multiply by # of tests up to that one

#### Top 10 genes (sorted by *t*-test *p*-value)

Gene	Fold	Dir	р	p(Bonf)
G6546	2.36	D	0.000004	0.0964
G19945	3.25	U	0.000005	0.1102
G21586	1.64	U	0.000008	0.1765
G18970	2.52	U	0.000019	0.4220
G7432	3.70	D	0.000033	0.7248
G19057	1.85	U	0.000046	1.0000
G17361	4.34	D	0.000067	1.0000
G8525	5.57	D	0.000067	1.0000
G425	18.11	D	0.000078	1.0000
G8524	4.74	D	0.000109	1.0000



#### T-tests for microarrays or RNAseq

```
find this library at https://sites.rutgers.edu/javier-cabrera/research/
library(DNAMR)
data(mice.A)
par(mfrow=c(1,2))
hist(mice.Ar[,1],100,col=7,xlab="Gene expression",main="Gene Expression Raw scale")
hist(log(mice.Ar[,1]),20,col=7,xlab="Log Gene expression",main="Gene Expression Log scale")
```





```
data(mice.A)
data= as.matrix(mice.A)
tt= rttest(data[,1:3],data[,4:6])
head(round(tt,3))
```

```
T DF PV
[1,] 0.600 3.993 0.581
[2,] -0.412 3.888 0.702
[3,] -1.701 2.685 0.198
[4,] -0.649 3.327 0.559
[5,] -0.120 2.964 0.912
[6,] 1.572 3.969 0.192
```

## Top p-values
head(round(tt[sort.list(tt[,3]),],6))

```
T DF PV
[1,] -34.26634 3.862807 0.000006
[2,] -20.64362 3.870865 0.000042
[3,] -17.22758 3.890077 0.000081
[4,] 33.13688 2.806082 0.000100
[5,] -16.57884 3.748933 0.000120
[6,] -15.19964 3.901898 0.000129
```

#### T-tests p-values vs Conditional test p-values

$$t^* = \frac{\bar{x}_1 - \bar{x}_2}{s_p^* \sqrt{(1/n_1) + (1/n_2)}},$$

```
ctpv= ct2(data[,1:3],data[,4:6])

par(mfrow=c(1,1))
plot(log(ctpv),log(tt[,3]),pch=16,col=2)
abline(0,1,col=3,lwd=2)

sort(ctpv)[1:10]*22211
[1] 0.004233567 0.015955578 0.041185283 0.145401025
0.209298907 0.282893769
[7] 0.357705307 0.420474419 0.428882406 0.466184181
```



Similarly we developed Conditional F test and p-values Amaratunga Cabrera (2004) Amaratunga Cabrera & Shkedy(2014)

```
library(DNAMR)
data(Khan)
names (Khan)
names(Khan)
 [1] "ImageId"
 "TRAIN1.EW"
 "TRAIN2.EW" "TRAIN3.EW" "TRAIN4.EW" "TRAIN5.EW"
 "TRAIN6.EW"
 "TRAIN7.EW" "TRAIN8.EW"
 "TRAIN9.EW"
[11] "TRAIN10.EW" "TRAIN11.EW" "TRAIN12.EW" "TRAIN13.EW" "TRAIN14.EW" "TRAIN15.EW" "TRAIN16.EW" "TRAIN17.EW" "TRAIN18.EW" "TRAIN19.EW"
[21] "TRAIN20.EW" "TRAIN21.EW" "TRAIN22.EW" "TRAIN23.EW" "TRAIN24.BL" "TRAIN25.BL" "TRAIN26.BL" "TRAIN27.BL" "TRAIN28.BL" "TRAIN29.BL"
[31] "TRAIN30.BL" "TRAIN31.BL" "TRAIN32.NB" "TRAIN33.NB" "TRAIN34.NB" "TRAIN35.NB" "TRAIN36.NB" "TRAIN37.NB" "TRAIN38.NB" "TRAIN39.NB"
[41] "TRAIN40.NB" "TRAIN41.NB" "TRAIN42.NB" "TRAIN43.NB" "TRAIN44.RM" "TRAIN45.RM" "TRAIN46.RM" "TRAIN47.RM" "TRAIN48.RM" "TRAIN48.RM" "TRAIN49.RM"
[51] "TRAIN50.RM" "TRAIN51.RM" "TRAIN52.RM" "TRAIN53.RM" "TRAIN54.RM" "TRAIN55.RM" "TRAIN56.RM" "TRAIN57.RM" "TRAIN58.RM" "TRAIN58.RM" "TRAIN59.RM'
[61] "TRAIN60.RM" "TRAIN61.RM" "TRAIN62.RM" "TRAIN63.RM" "TEST64.NB"
 "TEST65.EW"
 "TEST66.NA"
 "TEST67.RM"
 "TEST68.NA"
 "TEST69.EW"
[71] "TEST70.BL" "TEST71.NB" "TEST72.NA" "TEST73.RM" "TEST74.NA" "TEST75.EW"
 "TEST76.NA"
 "TEST77.NB" "TEST78.BL"
 "TEST79.NB"
[81] "TEST80.RM" "TEST81.BL" "TEST82.EW" "TEST83.EW" "TEST84.EW" "TEST85.RM"
 "TEST86.NB"
 "TEST87.RM" "TEST88.NB"
Data = Khan[,2:64]
Y = strsplit(names(Data),"\\.")
Y = unlist(Y)[2*(1:63)]
 "NB" "NB"
\# rF: row F statistics and pvalues. cF: conditional F statistics and pvalues.
pvalF= rF(Data,Y)
head(pvalF)
 5
 pval LogFoldChange
1 15.046814 2.191233e-07
 1.6731984
2 15.014638 2.250736e-07
 0.5511725
3 7.232760 3.261875e-04
 0.9340533
4 4.097402 1.040859e-02
 0.6525674
5 1.884736 1.419950e-01
 0.1345435
 P-value
6 1.303855 2.816766e-01
 1.0010550
set.seed(25437)
pvalCF = cF(Data,Y))
plot(log(pvalCF), log(pvalF[,2]), pch=16, col=2)
abline(0,1,col=3,lwd=2)
 -150
 -100
 -50
```

Log P-value for conditional F-test

# Questions



## References





https://www.statlearning.com/

