

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-25, 21-03-2018

✓ Symmetrical and asymmetrical electron arrangement in t_{2g} and e_g orbital

√ Tetragonal elongation and compression

If d_z^2 is filled and $d_x^2-_y^2$ is unoccupied (i.e., dz^2 is in lower energy compared to $d_x^2-_y^2$), ligands which are approaching through z direction will be repelled more;

Bond lengths along +z and -z directions increase.

This leads to tetragonal elongation.

Two long bonds

When we say d_z^2 is filled similarly to a smaller extent the d_{xz} and d_{yz} will be lowered compared to d_{xy} .

If d_{x-y}^{2} is filled ligands which are approaching through x, y direction will be repelled more; Bond lengths along +x, +y and -x, -y directions increase.

This leads to <u>tetragonal compression</u>.

When we say is d_{x-y}^2 filled and d_z^2 is unoccupied then it means that d_{x-y}^2 is in lower energy compared to d_z^2

Similarly to a smaller extent the $\underline{d_{xy}}$ will be lowered compared to $\underline{d_{xz}}$ and $\underline{d_{yz}}$.

Symmetrically filled orbitals

The e_g and t_{2g} splitting are similar to octahedral splitting

i.e., Consider the t_{2g} splitting in compression; The d_{xy} orbital is lowered by $2/3\delta_2$ w.r.t. original t_{2g} position and correspondingly the two orbitals d_{yz} and d_{xz} are raised by 1/3 δ_2

Therefore for symmetric distribution no additional stability arises.

Symmetrically filled orbitals

Jahn-Teller theorem

In 1937, Jahn-Teller theorem explain why certain six-coordinated complexes undergo distortion to assume distorted octahedral (i.e., tetragonal) geometry.

This theorem states that "any non-linear molecular system possessing degenerate electronic state will be unstable and will undergo distortion to form a system of lower symmetry and lower energy and thus will remove degeneracy".

NB: Jahn-Teller theorem only predicts the occurrence of a distortion; it does not predict its nature or its magnitude.

Asymmetrically filled orbitals

Unsymmetrical in e_g: Will it be Elongation or Compression

Which orbital will come down and how much will be the splitting is not given by the theorem.

In general electron in d_z^2 has the repulsion only from two ligands whereas d_{x-y}^2 electrons have repulsion from 4 ligands. Hence in many cases d_z^2 is filled and has lower energy than d_{x-y}^2 orbital.

Tetragonal elongation

Distortions are more pronounced if the degeneracy occurs in an \mathbf{e}_{g} orbital

More example

Examples: $[Ni(H_2O)_6]^{2+}$; $[Ni(NH_3)_6]^{2+}$

Regular Octahedron?

Yes; d⁸ No Jahn-Teller distortions

d⁸ configuration in a strong/weak field is t_{2g}⁶e_g²

Another example

Example: $[MnF_6]^{4-}$

Regular Octahedron

Jahn-Teller theorem is more important in $[Cu(H_2O)_6]^{2+}$ than in $[Cu(NH_3)_4(H_2O)_2]^{2+}$

[Cu(NH₃)₄(H₂O)₂]²⁺ has a natural distortion due to different kinds of bondings. (Cu-N and Cu-O)

Another example

Example: $[Cu(H_2O)_6]^{2+}$

Regular Octahedron?

No; d⁹ Jahn-Teller distortion

Tetragonal system

Another example

Natural distortion due to different kinds of bondings: No Jahn-Teller Distortion

Example: $[MnF_2Cl_4]^{4-}$

Example: [MnF₄Cl₂]⁴-

Elongation along z -axis

d⁸ system

Consider back $[Ni(H_2O)_6]^{2+}$

 d^8 system; even assuming the splitting of e_g level, there is no loss or gain of stability; as if e_g is intact or degenerate

This is due to pairing energy $> \delta_1$

d⁸ system

Attempts to make $[Ni(CN)_6]^{4-}$ always yield $[Ni(CN)_4]^{2-}$

Here Δ_o is large and hence δ_1 is large and more than the pairing energy

The e_g orbital which is occupied is d_7^2

d⁸ square planar system

- 1) In this case there is no unpaired electron; diamagnetic.
- 2) d_z^2 orbital is fully occupied whereas d_{x-y}^2 orbital is completely free.
- 3) Ligands approach only through the x,y directions and z direction is free of ligands due to high repulsion.
- 4) This gives rise to Square planar configurations.

d⁸ square planar system

- 5) δ_1 is large in $[Ni(CN)_4]^{2-}$ due to CN^{-}
- 6) δ_1 is large in Pt²⁺, Pd²⁺ (d⁸) systems due to size of metal ion. Most of the complexes of these metal ions are square planar in nature even with weak ligands.
- 7) Square planar complexes can thus be assumed to be the extreme case of tetragonal elongation of octahedron. Two of the octahedral ligands are at infinite distance from the center of the octahedron.

Square planar energy level

Square planar energy level

Square planar energy level

Octahedral coordination

Square planar coordination (xy plane)

d⁸ system

CFSE_{sq. pl.} = 4 electrons (-0.51
$$\triangle_o$$
) + 2 electrons (-0.43 \triangle_o)
+ 2 electrons (+0.23 \triangle_o) + P
= -2.44 \triangle_o + P

- The d_{z2} orbital falls the most, as its electrons are concentrated in lobes along the z-axis.
- \triangleright The d_{xz} and d_{yz} orbitals also drop in energy, but not as much.
- \triangleright Conversely, the d_{x2-y2} and the d_{xy} orbitals increase in energy.

Change in square planar energy level

If the tetragonal distortion (δ_1 , δ_2) is large then d_z^2 orbital can lie very low.

Oh vs. square planar geometry

Oh vs. square planar geometry

Energy levels of the d-orbitals in common stereochemistries

Stereochemistry of complexes

CFSE values also predict why Cu²⁺ ions forms square planar complexes rather than tetrahedral or octahedral complexes in both the fields

Cu²⁺ ion (d⁹ system) has a much higher CFSE value in a square planar configuration (CFSE = 1.22 $\Delta_{\rm O}$) than in octahedral (0.6 $\Delta_{\rm O}$) or tetrahedral configuration (CFSE = 0.18 $\Delta_{\rm O}$)

Discussed topics.....

- ✓ Jahn-Teller distortion
- ✓ Square planar system and energy levels
- ✓ Change in square planar energy level
- ✓ Octahedral vs. square planar geometry

Tetragonal elongation: an example (supporting slide)

Consider CrF₂ solid

Two different types of bond lengths

Cr-F 1.98 Å (4 bonds)

Cr-F 2.43 Å (2 bonds)

Why?

Consider CrCl₂ solid

Two different types of bond lengths

Cr-Cl 2.39 Å (4 bonds)

Cr-Cl 2.89 Å (2 bonds)