10-38 A steam power plant that operates on a reheat Rankine cycle is considered. The condenser pressure, the net power output, and the thermal efficiency are to be determined.

Assumptions 1 Steady operating conditions exist. **2** Kinetic and potential energy changes are negligible. **Analysis** (a) From the steam tables (Tables A-4, A-5, and A-6),

The pressure at state 6 may be determined by a trial-error approach from the steam tables or by using EES from the above equations:

$$P_6 =$$
9.73 kPa, $h_6 = 2463.3 \text{ kJ/kg}$,

(b) Then,

$$h_{1} = h_{f@9.73 \text{ kPa}} = 189.57 \text{ kJ/kg}$$

$$\mathbf{v}_{1} = \mathbf{v}_{f@10 \text{ kPa}} = 0.001010 \text{ m}^{3}/\text{kg}$$

$$w_{p,\text{in}} = \mathbf{v}_{1}(P_{2} - P_{1})/\eta_{p}$$

$$= (0.00101 \text{ m}^{3}/\text{kg})(12,500 - 9.73 \text{ kPa}) \left(\frac{1 \text{ kJ}}{1 \text{ kPa} \cdot \text{m}^{3}}\right)/(0.90)$$

$$= 14.02 \text{ kJ/kg}$$

$$h_{2} = h_{1} + w_{p,\text{in}} = 189.57 + 14.02 = 203.59 \text{ kJ/kg}$$

Cycle analysis:

$$q_{\text{in}} = (h_3 - h_2) + (h_5 - h_4) = 3476.5 - 3027.3 + 3358.2 - 2463.3 = 3603.8 \text{ kJ/kg}$$

 $q_{\text{out}} = h_6 - h_1 = 3027.3 - 189.57 = 2273.7 \text{ kJ/kg}$
 $\dot{W}_{\text{net}} = \dot{m}(q_{\text{in}} - q_{\text{out}}) = (7.7 \text{ kg/s})(3603.8 - 2273.7)\text{kJ/kg} = \textbf{10,242 kW}$

(c) The thermal efficiency is

$$\eta_{\text{th}} = 1 - \frac{q_{\text{out}}}{q_{\text{in}}} = 1 - \frac{2273.7 \text{ kJ/kg}}{3603.8 \text{ kJ/kg}} = 0.369 =$$
36.9%