

경남대학교 컴퓨터공학부 DCT 강동우, 박미르, 김정현, 김원재, 김영준

목차

O1 개발 배경 **03** 전체 시스템

05 자체 개발 부분

07 기대효과 및 활용

02 목표 시스템

04 개발 세부 내용

06 구현 결과 및 동영상 시연

01 개발 배경

기존 농업 방식의 한계

- 전통적인 농업 방식 -> 자원의 비효율적 사용과 낮은 생산성 문제 & 최적의 재배 환경을 유지하기 어려워 자원의 낭비와 환경 오염이 발생
- 이러한 한계를 극복하기위해선 새로운 기술과 접근법이 필요하다고 생각

스마트팜의 필요성

- AI와 IoT 기술을 활용하여 데이터를 실시간으로 모니터링
- 최적의 재배 환경을 유지 하고 이를 통해 자원의 사용을 최소화
- 지속가능한 농업 실현 가능

생산성과 품질 향상 기대

- 병충해 조기 예방 및 높은 재배 효율성
- 생산성과 품질 저하 문제를 해결하고 농업의 경쟁력을 기대
- 데이터 기반 의사결정을 통해 최적의 재배 방법을 도출

02 목표 시스템

자동화 제어 시스템

식물의 환경 조건을 사용자의 개 입없이 자동으로 제어

Al 기반 분석

인공지능을 활용한 병충해 탐지 및 생산 수율 계산

데이터 시각화

사용자가 직관적으로 데이터를 이해하고 분석할 수 있도록 시각화

실시간 모니터링 시스템

다양한 환경 데이터를 실시간으로 수집하여 데이터 전달

04 개발 세부 내용

서버

Node.js

- IoT 센서에서 실시간으로 센 서 데이터를 수집하고 데이터 베이스에 저장
- 토큰 발급 및 인증을 통한 컨 텐츠 접근
- 알림을 비롯하여 데이터 이상 치 관리

소켓 및 API 요청 시, 액세스 토큰 검증을 위한 미들웨어를 구축하여 접근 권한 제어, 소켓 통 신을 통해 안정적인 실시간 데이터 수신

- MJPEG 이미지소스를 분석 하여 객체 검출 및 실시간 스 트리밍 구현
- 검출된 객체 데이터를 반환

Fast API

OpenCV를 이용하여 프레임 단위로 이미지 분석 및 YOLOv8을 이용한 객체 탐지 수행, 검출된 데이터는 소켓통신을 통해 전송

클라이언트

사용자가 시스템 상태를 실시간으로 확인하고, 필요 시 수동 제어를 할 수 있도록 웹 개발

React

Rest API 및 소켓 통신을 통해 백엔드 서 <mark>버와 연</mark>동하여, 사용자에게 직관적인 UI/UX를 제공

데이터베이스

 스키마 정의 및 설계
 CRUD를 이용한
 센서 데이터 저장 및 관리

Node.js

알림 및 스케쥴 저장 및 관리

하드웨어

소켓 서버를 열어 MJPEG 스트리밍 이미지를 전송

R-pi

센서 및 구동기 설치 시리얼통신을 통해 백엔드로부터의 요청 이벤트 처리

Arduino

Node.js

05 자체 개발 내용

1. 실시간 스트림 수신 및 처리 모듈 개발

- OpenCV를 이용하여 MJPG 스트림 데이터를 수신 하도록 구현
 - 얼티스레딩을 활용하여 스트림 데이터를 안정적으로 수신하고 처리하도록 구현
 - 락 매커니즘을 사용하여 데이터 동기화 보장

2. 객체 검출 알고리즘 구현

- PyTorch와 YOLOv8 모델을 사용한 실시간 객체 검출 알고리즘을 구현
- 검출 결과를 시각적으로 표시하는 기능을 추가

3. 실시간 스트리밍 결과 전송 시스템 구축

- FastAPI & StreamingResponse를 활용한 검출 결과를 클라이언트에 전송
- 스트리밍 성능 최적화를 위해 JPEG 인코딩

4. RESTful API 개발

• 검출된 객체정보를 HTTP API를 통해 제공하는 RESTful API를 개발

5. Websocket을 통한 데이터 전송

• WebSocket을 사용하여 실시간 검출 결과를 전송하는 기능 구현 클라이언트는 웹소켓을 통해 객체 검출 결과를 수신 가능 06

C

07 기대효과 및 활용

기대효과

1. 생산성 및 효율성 향상

스마트팜 시스템을 통해 최적 의 재배 환경을 유지하여 방울 토마토의 생산성과 효율성을 크게 향상

2. 데이터 기반 의사결정

실시간 데이터 분석을 통해 방울토마토 재배에서 효율 적인 의사 결정을 지원

활용

1. 다양한 작물로 확장

다른 작물에도 적용 가능 하며, 맞춤형 모델 개발이 가능

2. AI 분석 적용

AI를 통해 병해충 조기 탐지 및 대응 전략을 제공하여 안정 적인 농업을 실현

3. 교육 및 연구

스마트팜 데이터를 활용해 농업 교육과 연구에 기여

Thank

You.