# MATH 1060: Unit 1 Review Sheet

## Quick Review



## Things to Remember

- $\sqrt[a]{x^b} = x^{b/a}$
- SOHCAHTOA
- Conjugate of  $\sqrt{a} \pm b$  is  $\sqrt{a} \mp b$

## 1.3: Exponential Functions

 $f(x) = b^x$ ;  $b \neq 1$  and b is a positive number

domain:  $(-\infty, \infty)$ 

range:  $(0, \infty)$ 

natural exponential function:  $f(x) = e^x$ Laws of Exponents:

- $\bullet$   $a^{x+y} = a^x a^y$
- $\bullet$   $a^{x-y} = \frac{a^x}{a^y}$
- $\bullet \ (a^x)^y = a^{xy}$
- $\bullet$   $(ab)^x = a^x b^x$

## 1.3: Inverse Functions

**inverse function:** Given a function f, its inverse (if it exists) is a function  $f^{-1}$  such that whenever y = f(x), then  $f^{-1}(y) = x$ 

**Properties of Inverse Functions:** 

- The domains and ranges of f and  $f^{-1}$  are switched.
- The graph of  $f^{-1}$  is the graph of f reflected about the line y = x.
- $f^{-1}(x)$  is the inverse of f(x), but  $(f(x))^{-1}$  is the reciprocal of f(x).

Check for inverse: If the function passes the horizontal line test, the function is one-to-one and has an inverse

#### How to find the inverse:

- 1. Switch x and y.
- 2. Solve for y.
- 3. Substitute  $f^{-1}(x)$  for y.

## 1.3: Logarithmic Functions

$$f(x) = \log_b(x)$$

**Exp/Log:** Exponential and logarithmic functions are inverses

- $b^{\log_b x} = x$  for x > 0
- $\log_b(b^x) = x$  for all x

Natural Logarithmic Function:  $f(x) = \ln(x)$ Laws of Logarithms:

- $\log_b(xy) = \log_b(x) + \log_b(y)$
- $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$
- $\log_b(x^r) = r \log_b(x)$

## Change of Basis Rules:

- $b^x = e^{x \ln(b)}$
- $\log_b(x) = \frac{\ln(x)}{\ln(b)}$  for x > 0

#### 1.4: Trig Functions and Inverses

**Trigonometric Identities:** 

- $\csc(\theta) = \frac{1}{\sin(\theta)}$   $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$
- $\sec(\theta) = \frac{1}{\cos(\theta)}$   $\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$
- $\sin^2(\theta) + \cos^2(\theta) = 1$
- $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$

Inverse trig functions take a *number* as an input and output an angle

Example: For  $\cos^{-1}(\frac{1}{2})$ , Ask yourself, "What angle would give  $cos(\theta) = \frac{1}{2}$ ?

**Important Note:** Be careful that the angle you give is within the domain for the inverse trig function.

| Function           | Range                                                 |
|--------------------|-------------------------------------------------------|
| $y = \sin^{-1}(x)$ | $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$    |
| $y = \cos^{-1}(x)$ | $y \in [0, \pi]$                                      |
| $y = \tan^{-1}(x)$ | $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$    |
| $y = \csc^{-1}(x)$ | $y \in (0, \frac{\pi}{2}] \cup (\pi, \frac{3\pi}{2}]$ |
| $y = \sec^{-1}(x)$ | $y \in [0, \frac{\pi}{2}) \cup [\pi, \frac{3\pi}{3})$ |
| $y = \cot^{-1}(x)$ | $y \in (0,\pi)$                                       |

## 2.1: The Idea of Limits

Average Velocity = 
$$v_{avg} = \frac{s(t_1) - s(t_0)}{t_1 - t_0}$$
  
Secant Line =  $m_{sec} = \frac{s(t_1) - s(t_0)}{t_1 - t_0}$ 

#### Note:

- average velocity  $\rightarrow$  secant line
- instantaneous velocity  $\rightarrow$  tangent line
- secant lines approach the tangent line
- slopes of secant lines approach the slope of the tangent line at the point (a, s(a)).

$$\begin{split} \textbf{Inst Velocity} &= v_{inst} = \lim_{t \to a} v_{avg} = \lim_{t \to a} \frac{s(t) - s(a)}{t - a} \\ \textbf{slope of tangent line} &= m_{tan} = \lim_{t \to a} m_{sec} \\ &= \lim_{t \to a} \frac{s(t) - s(a)}{t - a} \end{split}$$

#### 2.2: Definitions of Limits

$$\lim_{x \to a} f(x) = L$$

If the limit exists, it depends on the value of f near a, not the value of f(a).

**Right-sided limit:**  $\lim_{x \to a} f(x) = L$ 

**Left-sided limit:**  $\lim_{x \to \infty} f(x) = L$ 

**Theorem 2.1:** Assume f is defined for all x near a except possibly at a. Then

$$\lim_{x \to a} f(x) = L$$

if and only if

$$\lim_{x \to a^{+}} f(x) = L = \lim_{x \to a^{-}} f(x).$$

#### 2.3: Computing Limits

**Limit Laws:** Assume  $\lim_{x\to a} f(x)$  and  $\lim_{x\to a} g(x)$  exist. The following properties hold, where c is a real number and n>0 is an integer.

- $\bullet \lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\bullet \lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$
- $\lim_{x \to a} \left( \frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ , provided  $\lim_{x \to a} g(x) \neq 0$
- $\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$
- $\lim_{x \to a} (f(x))^{1/n} = \left(\lim_{x \to a} f(x)\right)^{1/n}$ , provided f(x) > 0, for x near a, if n is even.

Limits of Polynomial and Rational Functions: Assume p and q are polynomials and a is a constant.

- $\lim_{x \to a} p(x) = p(a)$
- $\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$ , provided  $q(a) \neq 0$ .

#### 2.3: Computing Limits Continued

One Sided Limits: You can still use direct substituion!

#### Direct Sub Doesn't Work?

If you get  $\frac{0}{0}$  I.F. by direct substitution, write  $\frac{0}{0}$  I.F. then try the following:

- algebraically manipulate
- factor and cancel out terms
- multiply by the conjugate

The Squeeze Theorem: Assume the functions f,g, and h satisfy  $f(x) \leq g(x) \leq h(x)$  for all values of x near a, except possibly at a. If  $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ , then  $\lim_{x \to a} g(x) = L$ .

## Important Inequalities:

- $-1 \le \sin(\theta) \le 1$
- $-1 \le \cos(\theta) \le 1$

#### How to Use Squeeze Theorem:

- 1. Use one of the two above inequalities
- 2. multiply/divide/subtract/add to all terms in the inequality to get the middle to look like what you want to take the limit of
- 3. Take the limit of the left hand side of the inequality
- 4. Take the limit of the right hand side of the inequality
- 5. If these limits match, then the limit of the middle is also the same

## **Useful Trig Limits:**

- $\lim_{x \to 0} \sin(x) = 0$
- $\lim_{x \to 0} \cos(x) = 1$

#### 2.4: Infinite Limits

$$\lim_{x \to a} f(x) = \infty$$
 OR  $\lim_{x \to a} f(x) = -\infty$ 

## Finding Infinite Limits:

- 1. Try direct substitution first.
- 2. if you get  $\frac{0}{0}$ , see section 2.3.
- 3. if you get  $\frac{\text{nonzero number}}{0}$ ,
  - try plugging in numbers reeeeeeally close to the right and left of a.
  - if  $\lim_{x \to a^{-}} f(x) = \infty = \lim_{x \to a^{+}} f(x)$ , then  $\lim_{x \to a} f(x) = \infty$ . (Same for  $-\infty$ ).

vertical asymptote: if  $\lim_{x\to a} f(x) = \pm \infty$ ,  $\lim_{x\to a^+} f(x) = \pm \infty$ , or  $\lim_{x\to a^-} f(x) = \pm \infty$ , then the line x=a is a vertical asymptote of f.

## Finding Vertical Asymptotes:

- 1. Find the values where the denominator= 0 but the numerator≠ 0. You will usually have to factor.
- 2. Prove that you have a vertical asymptote using limits. Take the limit of the function as x approaches each value from the left and right. At least one limit should be infinite.

#### 2.5 Limits at Infinity

$$\lim_{x \to \infty} f(x) = L$$

**horizontal asymptote:** The line y = b is a *horizontal asymptote* of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \qquad \text{OR} \qquad \lim_{x \to -\infty} f(x) = b$$

**I.F.:**  $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 0^0, 1^{\infty}, \infty^0$ 

Limits at Infinity of Powers and Polynomials:

- $\lim_{x \to \infty} x^n = \infty$  and  $\lim_{x \to -\infty} x^n = \infty$ ; n is even.
- $\lim_{x \to \infty} x^n = \infty$  and  $\lim_{x \to -\infty} x^n = -\infty$ ; *n* is odd.
- $\lim_{x \to \pm \infty} \frac{1}{x^n} = \lim_{x \to \pm \infty} x^{-n} = 0$
- $\lim_{x\to\pm\infty} p(x) = \infty$  or  $-\infty$  depends on the degree of the polynomial and sign of leading coefficient.

## 2.5: Limits at Infinity (Continued)

## **Technique for Rational Functions:**

- 1. Choose the highest power of x in the denominator.
- 2. Divide every term in the numerator and denominator by the highest power of x in the denominator.
- 3. Take the limit of each term. Recall that the limit as  $x \to \pm \infty x^{-n} = 0$

#### **VERY IMPORTANT NOTE:**

- $\sqrt{x^2} = |x| = x \text{ if } x > 0 \text{ (when } x \to \infty)$
- $\sqrt{x^2} = |x| = -x$  if x < 0 (when  $x \to -\infty$ )

**slant asymptote:** When the degree of numerator is *ONE MORE* than degree of denominator.

- 1. Use long division to divide the numerator by the denominator.
- 2. The equation of the line that is the slant asymptote is the quotient from your long division.

#### 2.6: Continuity

continuous at a point: A function f is continuous at a number a if  $\lim_{x\to a} f(x) = f(a)$ .

Conditions for Continuity of f at a:

- f(a) is defined. (a is in the domain of f)
- $\lim_{x \to a} f(x)$  exits
- $\lim_{x \to a} f(x) = f(a)$

## Types of Discontinuities:

- removable
- jump
- infinite
- oscillating

continuous from the right at a number a: A function f is continuous from the right at a number a if

$$\lim_{x \to a^+} f(x) = f(a)$$

continuous from the left at a number b: A function f is continuous from the left at a number b if

$$\lim_{x \to b^{-}} f(x) = f(b)$$

continuous on an interval: A function is continuous on an interval if it is continuous at every number in the interval

**continuous function:** A continuous function is continuous at every point of its domain.

## Continuity Theorems:

- The inverse of a continuous function is continuous.
- The composition of continuous functions is continuous.

#### 2.6: Continuity (Continued)

Functions that are Continuous of their Domains

- polynomials  $(-\infty, \infty)$
- rational functions (everywhere except denominator=0)
- root functions (inside of root  $\geq 0$ )
- $\bullet$  trig functions
- inverse trig functions
- exponential functions  $(-\infty, \infty)$

# The Intermediate Value Theorem (IVT) If

- f continuous on [a, b]
- f(a) < L < f(b)

Then.

- $\bullet$  a < c < b
- f(c) = L

## 2.7: $\delta - \epsilon$ Proof

**limit:** If for every number  $\epsilon > 0$ , there is a number  $\delta > 0$  such that if  $0 < |x - a| < \delta$ , then  $|f(x) - L| < \epsilon$ .

$$\lim_{x \to a} f(x) = L$$

Steps for Proving  $\lim_{x\to a} f(x) = L$ 

- 1. Write down what f(x), L, and a are.
- 2. Find  $\delta$  in your scratch work using  $|f(x)-L| < \epsilon$ . This is not part of your proof and  $\delta$  should be in terms of  $\epsilon$ . We try to algebraically get |f(x)-L| to look like a multiple of |x-a|.
- 3. Write your proof using the following sentences with your values for  $\delta$ , a, and L plugged in:
  - Given  $\epsilon > 0$ , let  $\delta =$
  - If  $0 < |x a| < \delta =$ , then \*SCRATCH WORK to show  $|f(x) = L| < \epsilon^*$ .
  - By the definition of a limit,  $\lim_{x\to a} f(x) = L$ .

#### 3.1: Introducing the Derivative

derivative: the slope of the tangent line How to find equation of tangent line:

1. Find slope of the tangent line using:

$$m_{tan} = \lim_{\substack{x \to a \\ \text{OR}}} \frac{f(x) - f(a)}{x - a}$$
$$m_{tan} = \lim_{\substack{h \to 0}} \frac{f(a + h) - f(a)}{h}$$

2. Use point-slope formula to find equation

$$y - y_1 = m_{tan}(x - x_1)$$

Note that  $y_1 = f(x_1)$  if not given

## How to find equation of normal line:

1. Find slope of the tangent line using:

$$m_{tan} = \lim_{\substack{x \to a \\ \text{OR}}} \frac{f(x) - f(a)}{x - a}$$
$$\text{OR}$$
$$m_{tan} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

2. Find the slope of the normal line using:

$$m_{norm} = -\frac{1}{m_{tan}}$$

3. Use point-slope formula to find equation

$$y - y_1 = m_{norm}(x - x_1)$$

Note that  $y_1 = f(x_1)$  if not given

position: s(t)

velocity: derivative of position

$$v(a) = s'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

#### 3.2: The Derivative as a Function

derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

## How to find equation of tangent line:

- 1. Find derivative of function
- 2. Plug in given  $x_1$  value to derivative to get slope of tangent line

$$m_{tan} = f'(x_1)$$

3. Use point-slope formula to find equation

$$y - y_1 = m_{tan}(x - x_1)$$

Note:  $y_1 = f(x_1)$  if not given

differentiable at a If f'(a) exists differentiable on an open interval if f is differentiable at every number in the interval.

#### Theorem:

- Differentiability  $\implies$  Continuity

## Differentiability Fails:

- discontinuity
- corner
- vertical tangent, cusps

| f(x)               | f'(x)              |
|--------------------|--------------------|
| increasing         | positive           |
| decreasing         | negative           |
| horizontal tangent | zero (root)        |
| not diff at a      | f'(a) is undefined |

**Graph Note:** The derivative of a graph of degree n is a graph of degree n-1. So, the derivative is one degree lower than the original function.

## 3.2: The Derivative as a Function (Continued)

#### Functions and their Derivative Graphs

- Look for horizontal tangent lines first and match these x-coordinates to zeros on the derivative graph.
- Look for *points of discontinuity* and match these to *holes or gaps* in the derivative graph.
- Look for other values of x where the function is not differentiable. The derivative graph will not be defined there.
- Look for the intervals of *increase* on the original graph. This tells you when the derivative graph is *above the x-axis*.
- Look for the intervals of *decrease* on the original graph. This tells you when the derivative graph is *below the x-axis*.