ORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

US

(51) International Patent Classification 5: C07H 15/12, C12N 15/00

(11) International Publication Number:

WO 92/00986

C12P 21/06

A1

(43) International Publication Date:

23 January 1992 (23.01.92)

(21) International Application Number:

PCT/US91/04858

(22) International Filing Date:

10 July 1991 (10.07.91)

(30) Priority data:

551,448

10 July 1990 (10.07.90)

(72) Inventors; and

(75) Inventors/Applicants (for US only): WEINSHANK, Richard, L. [US/US]; 302 West 87th Street, Apt. 34, New York, NY 10024 (US). HARTIG, Paul, R. [US/US]; 179 Linden Street, Mahwah, NJ 07430 (US).

(74) Agent: WHITE, John, P.; Cooper & Dunham, 30 Rockefeller Plaza, New York, NY 10112 (US).

(60) Parent Application or Grant (63) Related by Continuation US Filed on

551,448 (CIP) 10 July 1990 (10.07.90)

(71) Applicant (for all designated States except US): NEUROG-ENETIC CORPORATION [US/US]; 215 College Road, Paramus, NJ 07652 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

54) Title: NUCLEIC ACID SEQUENCES ENCODING A HUMAN DOPAMINE D1 RECEPTOR

(57) Abstract

This invention provides isolated nucleic acid molecules encoding a human dopamine D1 receptor, isolated proteins which are human dopamine D₁ receptor, vectors comprising isolated nucleic acid molecules encoding a human dopamine D₁ receptor, mammalian cells comprising such vectors, antibodies directed to a human dopamine D1 receptor, nucleic acid probes useful for detecting nucleic acid encoding human dopamine D₁ receptor, antisense oligonucleotides complementary to any sequences of a nucleic acid molecule which encodes a human dopamine D₁ receptor, pharmaceutical compounds related to human dopamine D₁ receptor, and nonhuman transgenic animals which express DNA a normal or a mutant human dopamine D₁ receptor. This invention further provides methods for determining ligand binding, detecting expression, drug screening, and treatment involving a human dopamine D1 receptor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BG BJ BR CA CF CG CH CI CM CS DE	Austria Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon Czechoslovakia Germany	ES FI FR GA GB GN GR HU IT JP KP KR LI LK LW	Spain Finland France Gabon United Kingdom Guinea Greece Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Liechtenstein Sri Lanka Luxembourg Monaco	MG ML MN MR MW NL NO PL RO SD SE SN SU TC US	Madagascar Mali Mongolia Mauritaniu Malawi Netherlands Norway Poland Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America
---	---	--	---	--	---

BNSDOCID: <WO 9200986A1_I_

15

20

25

30

35

"Nucleic Acid Sequences Encoding a Human Dopamine D1 Receptor".

This application is a continuation-in-part of U.S. Serial No. 551,448, filed July 10, 1990, the contents of which are hereby incorporated by reference into the present disclosure.

Throughout this application various publications are referenced by full citations within parentheses. The disclosures of these publications in their entireties are hereby incorporated by reference in this application in order to more fully describe the state of the art to which this invention pertains.

Pharmacological studies, and more recently gene cloning, have established that multiple receptor subtypes exist for most, if not all, neurotransmitters. The existence of multiple receptor subtypes provides one mechanism by which a single neurotransmitter can elicit distinct cellular responses. The variation in cellular response can be achieved by the association of individual receptor subtypes with different G proteins and different signalling systems. Further flexibility is provided by the ability of distinct receptors for the same ligand to activate or inhibit the same second messenger system.

Individual receptor subtypes reveal characteristic differences in their abilities to bind a number of ligands, but the structural basis for the distinct ligand-binding properties is not known. Physiologists and pharmacologists

∩200986A1

5

have attempted to specify particular biological functions or anatomical locations for some receptor subtypes, but this has met with limited success. Similarly, the biochemical mechanisms by which these receptors transduce signals across the cell surface have been difficult to ascertain without having well-defined cell populations which express exclusively one receptor subtype.

Dopamine receptors have been classified into two subtypes, 10 ${\tt D_1}$ and ${\tt D_2}$, based on their differential affinities for dopamine agonists and antagonists, and their stimulation or inhibition of adenylate cyclase (for reviews, see Kebabian, J.W. and Calne, D.B. (1979), Nature 277, 93-96; Creese, I., Sibley, D.R., Hamblin, M.W., Leff, S.E. (1983), Ann. Rev. 15 Neurosci. 6, 43-71; Niznik, H.B. and Jarvie, K.R. (1989), Dopamine receptors. in "Receptor Pharmacology and Function", eds. Williams, M., Glennon, R., and Timmermans, P., Marcel Dekker Inc., New York, pp. 717-768). The D_1 receptor of the central nervous system is defined as an adenylate cyclase 20 stimulatory receptor. The location of the prototypic \mathbf{D}_1 receptor is the bovine parathyroid gland, where dopamine agonists stimulate cAMP synthesis via adenylate cyclase, accompanied by parathyroid hormone release. Dopaminestimulated adenylate cyclase activity and parathyroid hormone release are sensitive to both GTP and cholera toxin. 25 This suggests that the D_1 receptor is associated with a G_{S} The D_2 receptor, in guanine nucleotide binding protein. contrast, inhibits adenylate cyclase activity, and appears to be the primary target of most neuroleptic drugs (Niznik, 30 Dopamine receptors, in H.B. and Jarvie, K.R. (1989). "Receptor Pharmacology and Function", eds. Williams, M., Glennon, R., and Timmermans, P., Marcel Dekker Inc., New

15

20

25

30

York, pp. 717-768). The prototypic D_2 receptor has been characterized in the anterior pituitary where it is associated with the inhibition of release of prolactin and alpha-melanocyte stimulating hormones. Recent we: has shown that several different D_1 and D_2 receptor subtypes may be present in the mammalian nervous system (Andersen, P.H., Gingrich, J.A., Bates, M.D., Dearry, A., Falardeau, P., Senogles, S.E., and Caron, M.G. Trends in Pharmacolog. Sci. 11: 231 (1990)), which would suggest that a family of different proteins with pharmacological properties similar to the classically defined D_1 and D_2 receptors may exist.

Neuroleptics, in addition to their use as drugs to treat severe psychiatric illnesses, are high affinity ligands for dopamine receptors. Butyrophenones such as haloperidol and spiperone are antagonists specific for the D2 receptor, while the recently developed benzazepines such as SCH-23390 and SKF-38393 are selective for the D₁ receptor (Niznik, H.B. and Jarvie, K.R. (1989), Dopamine receptors, in "Receptor Pharmacology and Function", eds. Williams, M., Glennon, R., and Timmermans, P., Marcel Dekker Inc., New York, pp. 717-768). High affinity D_1 and D_2 selective ligands have conclusively distinguished these receptors and made feasible characterization of the receptors in the system and peripheral tissues central nervous radioligand binding techniques. Two types of dopamine receptors, designated D_{A1} and D_{A2} , have been identified in the cardiovascular system and are similar in pharmacological characteristics to the brain D_1 and D_2 receptors (Niznik, H.B. and Jarvie, K.R. (1989), Dopamine receptors, in "Receptor Pharmacology and Function", eds. Williams, M., Glennon, R., and Timmermans, P., Marcel Dekker Inc., New York, pp. 717-768). DA1 receptors have been

described in renal, mesenteric, splenic, coronary, cerebral, and pulmonary arteries and vascular beds, where dopamine elicits relaxation of vascular smooth muscle. Activation of cardiovascular D_{A1} receptors appears to stimulate adenylate cyclase activity. D_{A2} receptors appear to be localized on preganglionic sympathetic nerve terminals that mediate inhibition of norepinephrine release. The molecular relationships among dopamine D_1 , D_{A1} , D_2 , and D_{A2} receptors are unknown.

10

15

5

The need for improved selectivity in the leading D₁ drug class, the benzazepines (e.g. SKF-38393, SCH-23390 and SCH-23982) recently became apparent when the strong cross-reactivity of these drugs with the serotonin 5-HT₂ receptor family was uncovered. The 5-HT₂ and 5-HT_{1C} receptors display affinities ranging from 0.2 to 24 nM for SCH-23390 and SCH-23982 (Nicklaus, K.J., McGonigle, P., and Molinoff, P.B. (1988), J. Pharmacol. Exp. Ther. 247, 343-348; Hoyer, D. and Karpf, A. (1988), Eur. J. Pharmacol. 150, 181-184)), raising the possibility that behavioral and pharmacological effects ascribed to these drugs may, in fact, arise from serotonergic receptor interactions.

20

25

The dopamine D_1 receptors belong to a family of receptors which are distinguished by their seven-transmembrane configuration and their functional linkage to G-proteins. This family includes rhodopsin and related opsins (Nathans, J. and Hogness, D.S., Cell 34:807 (1983)), the α and β adrenergic receptors (Dohlman, H.G., et al., Biochemistry 26:2657 (1987)), the muscarinic cholinergic receptors (Bonner, T.I., et al., Science 237:527 (1987)), the substance K neuropeptide receptor, (Masu, Y., et al., Nature 329:836 (1987)), the yeast mating factor receptors,

30

10

15

20

25

30

(Burkholder, A.C. and Hartwell, L.H., Nucl. Acids Res. 13:8463(1985); Hagan, D.C., et al., Proc. Natl. Acad. Sci. USA 83:1418 (1986)); Nakayama, N. et al., EMBO J. 4:2643 (1985)), and the oncogene c-mas, (Young, et al., Cell 45:711 (1986)). Each of these receptors is thought to transduce extracellular signals by interaction with guanine nucleotide-binding (G) proteins (Dohlman, H.G., et al., Biochemistry 26:2657 (1987); Dohlman, H.G., et al., Biochemistry 27:1813 (1988); O'Dowd, B.F., et al., Ann.Rev. Neurosci., in press).

D₂ receptor was recently cloned by Civelli colleagues (Bunzow, J.R., Van Tol, H.H.M., Grandy, D.K., Albert, P., Salon, J., Christie, M., Machida, C.A., Neve, K.A., and Civelli, O. (1989), Nature 336: 783-87). event was soon followed by the discovery of an alternatively spliced form (termed D_{2A} , D_{2long} , $D-2_{in}$, or $D_{2(444)}$) that contains an additional 29 amino acids in the third extracellular loop of this receptor (Eidne, K.A. et al. (1989), Nature 342: 865; Giros, B. et al. (1989), Nature 342: 923-26; Grandy, D.K. et al. (1989), Proc. Natl. Acad. Sci. USA 86: 9762-66; Monsma, F.J. et al. (1989), Nature 342: 926-29; Chio, C.L. et al. (1990), Nature 343: 266-69; Stormann, T.M. et al. (1990), Mol. Pharmacol. 37: 1-6). A second dopamine receptor has been cloned which exhibits significant homology to the D_2 receptor, both in amino acid (75% transmembrane region identity) sequence pharmacological properties (Sokoloff, P. et al. (1990), This new receptor, termed D_3 , is Nature 347: 146-51). Unlike the D₂ encoded by an intron-containing gene. receptor, however, alternatively spliced isoforms of this receptor have yet to be observed. The D3 receptor has been shown to serve both as an autoreceptor and as a postsynaptic

10

15

20

25

receptor, and has been localized to limbic areas of the brain (Sokoloff, P. et al. (1990), Nature 347: 146-51). Finally, an intronless gene, quite different in sequence and gene structure from the other two dopamine receptor genes, has been isolated and identified as a D_1 dopamine receptor subtype (Sunahara, R.K. et al. (1990), Nature 347: 80-83; Zhou, Q.-Y. et al. (1990), Nature 347: 76-80; Dearry, A. et al. (1990), Nature 347: 72-76; Monsma, F.J. et al. (1990), Proc. Natl. Acad. Sci. USA 87: 6723-27). This D_1 receptor is predominantly expressed in the rat striatum and olfactory tubercles, and has been shown to couple to stimulation of adenylate cyclase activity (Dearry et al. (1990) supra; Monsma et al. (1990) supra; Sunahara et al. (1990) supra; Zhou et al. (1990) supra. Available data on the G proteincoupled receptor superfamily suggests that the D_1 receptor does not exhibit strong sequence homologies to the D_2 receptor or the D_3 receptor. In general, G protein-coupled receptors of the same neurotransmitter family exhibit closest structural homology to other family members that use the same second messenger pathway. For example, examination of the physiological second messenger pathways of the serotonergic, muscarinic and adrenergic receptors has led several researchers to the conclusion that these receptors can be classified into structurally homologous subtypes that parallel their second messenger pathways (Bylund, D.B. (1988), Trends Pharmacol. Sci. 9, 356-361; Peralta, E.G., Ashkenazi, A., Winslow, J.W., Ramachandran, J., and Capon, D.J. (1988), Nature 334, 434-437; Liao, C.-F., Themmen, A.P.N., Joho, R., Barberis, C., Birnbaumer, Birnbaumer, L. (1989), J. Biol. Chem. 264, 7328-7337; Hartig, P.R. (1989), Trends Pharmacol. Sci. 10, 64-69)). Interestingly, those receptors that couple to activation of adenylate cyclase appear quite distinct in structure from those that inhibit this enzyme activity.

35

30

10

15

20

Pharmacological and physiological data have indicating the presence of further diversity within this D₁ receptor that stimulates receptor family. Α phosphoinositide (PI) hydrolysis in rat striatum has been described (Undie, A.S., and Friedman, (1990), E. Pharmacol. Exp. Ther. 253: 987-92) as well as an RNA fraction from the same tissue that causes dopaminestimulated PI hydrolysis and intracellular calcium release when injected into Xenopus occytes (Mahan, L.C. et al. (1990), Proc. Natl. Acad. Sci. USA 87: 2196-2200). addition, two populations of peripheral D₁ receptor have been described based on differential sensitivity to sulpiride and several other compounds (Andersen, P.H. et al. Eur. J. Pharmacol. 137: 291-93). Finally, pharmacological differences exist within different D_1 receptor tissues that couple to adenylate cyclase-coupled D₁ Biochemical and pharmacological data suggest further diversity in both the D_1 and D_2 receptor populations and indicate that additional dopamine receptor clones remain to be discovered (Andersen et al. (1990) supra).

10

15

20

25

Summary of the Invention

This invention provides an isolated nucleic acid molecule encoding a human dopamine \mathbf{D}_1 receptor.

This invention also provides an isolated protein which is a human dopamine D_1 receptor, an isolated protein having substantially the same amino acid sequence as the amino acid sequence shown in Figure 1.

This invention provides a vector comprising an isolated nucleic acid molecule encoding a human dopamine D_1 receptor.

This invention provides a mammalian cell comprising a DNA molecule encoding a human dopamine D_1 receptor.

This invention provides a method for determining whether a ligand not known to be capable of binding to a human dopamine D_1 receptor can bind to a human dopamine D_1 receptor which comprises contacting a mammalian cell comprising a DNA molecule encoding a human dopamine D_1 receptor with the ligand under conditions permitting binding of ligands known to bind to the dopamine D_1 receptor, detecting the presence of any of the ligand bound to the dopamine D_1 receptor, and thereby determining whether the ligand binds to the dopamine D_1 receptor.

This invention also provides a method of screening drugs to identify drugs which specifically interact with, and bind to, the human dopamine D_1 receptor on the surface of a cell which comprises contacting a mammalian cell comprising a DNA molecule encoding a human dopamine D_1 receptor on the surface of a cell with a plurality of drugs, determining those drugs which bind to the mammalian cell, and thereby

15

20

25

30

identifying drugs which specifically interact with, and bind to, the human dopamine \mathbf{D}_1 receptor.

This invention provides a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding a human dopamine D_1 receptor.

This invention provides an antisense oligonucleotide having a sequence capable of binding specifically with any sequences of an mRNA molecule which encodes a human dopamine D_1 receptor so as to prevent translation of the mRNA molecule.

This invention provides an antibody directed to the human dopamine \mathbf{D}_1 receptor.

This invention provides a transgenic nonhuman mammal expressing DNA encoding a human dopamine D_1 receptor. This invention also provides a transgenic nonhuman mammal expressing DNA encoding a human dopamine D_1 receptor so mutated as to be incapable of normal receptor activity, and not expressing native dopamine D_1 receptor. This invention further provides a transgenic nonhuman mammal whose genome comprises antisense DNA complementary to DNA encoding a human dopamine D_1 receptor so placed as to be transcribed into antisense mRNA which is complementary to mRNA encoding a dopamine D_1 receptor and which hybridizes to mRNA encoding a dopamine D_1 receptor thereby reducing its translation.

This invention provides a method of determining the physiological effects of expressing varying levels of human

dopamine D_1 receptors which comprises producing a transgenic nonhuman animal whose levels of human dopamine D_1 receptor expression are varied by use of an inducible promoter which regulates human dopamine D_1 receptor expression.

5

This invention also provides a method of determining the physiological effects of expressing varying levels of human dopamine D_1 receptors which comprises producing a panel of transgenic nonhuman animals each expressing a different amount of human dopamine D_1 receptor.

10

15

20

25

30

This invention provides a method for diagnosing in a subject a predisposition to a disorder associated with expression of a specific human dopamine D_1 receptor allele which comprises a. isolating DNA from victims of the disorder, b. digesting the isolated DNA of step a with at one restriction enzyme, c. electrophoretically separating the resulting DNA fragments on a sizing gel, d. contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing to DNA encoding a human dopamine D_1 receptor and labelled with a detectable marker, e. detecting labelled bands which have hybridized to the DNA encoding a human dopamine D_1 receptor labelled with a detectable marker to create a band pattern specific to the DNA of victims of the disorder, f. preparing the subject's DNA by steps a-e to produce detectable labeled bands on a gel, and g. comparing the band pattern specific to the DNA of victims of the disorder of step e and the subject's DNA of step f to determine whether the patterns are the same or different and thereby to diagnose predisposition to the disorder if the patterns are the same. This method may also be used to diagnose a disorder associated with the expression of a specific human dopamine D_1 receptor allele.

10

This invention provides a method of preparing the isolated dopamine D_1 receptor which comprises inducing cells to express dopamine D_1 receptor, recovering the receptor from the resulting cells, and purifying the receptor so recovered.

This invention provides a method of preparing the isolated dopamine D_1 receptor which comprises inserting nucleic acid encoding dopamine D_1 receptor in a suitable vector, inserting the resulting vector in a suitable host cell, recovering the receptor produced by the resulting cell, and purifying the receptor so recovered.

20

Brief Description of the Figures

Figure 1. Nucleotide and deduced amino acid sequence of the gene GL-30. (Also Seq. ID No. 1).

Numbers above the nucleotide sequence indicate nucleotide position. DNA sequence was determined by the chain termination method of Sanger, et al., on denatured doubled-stranded plasmid templates using the enzyme Sequenase.

Deduced amino acid sequence (single letter code) of a long open reading frame is shown.

Figure 2. Comparison of the Dopamine D_1 (GL-30) receptor primary structure with other G-protein-coupled receptors. Amino acid sequences (single letter code) are aligned to optimize homology. GL-30 is the human dopamine receptor of this invention; GL-39 is the human dopamine pseudogene; and D_1 is the human dopamine D_1 receptor. (Also Seq. ID Nos. 2 to 4, respectively). It should be noted that a clone designated D_5 is the same sequence as that listed as GL-30. (Sunahara, et al. (April 1991) Nature, 350:614-619).

10

15

20

25

30

Detailed Description of the Invention

As used herein, the dopamine receptor family is defined as the group of mammalian proteins that function as receptors for dopamine. A dopamine receptor subfamily is defined as a subset of proteins belonging to the dopamine receptor family which are encoded by genes which exhibit homology of 65% or higher with each other in their deduced amino acid sequences within presumed transmembrane regions (linearly contiguous stretches of hydrophobic amino acids, bordered by charged or polar amino acids, that are long enough to form secondary protein structures that span a lipid bilayer). subfamilies dopamine receptor human distinguished based on the information presently available. The dopamine D2 receptor subfamily contains the dopamine D2 receptor. There are currently two forms of this receptor which are generated by alternative splicing mechanisms (Toso, R.D., Sommer, B, Ewert, M, et al. (1989) EMBO 8:4025-4034; Chio, C.L. et al. (1990) Nature 343:266-269; Monsma, F.J. (1990) Nature 342:926-929). The dopamine D_3 receptor which exhibits significant homology to the D2 receptor both amino acid sequence and pharmacological properties (Sokoloff, P. et al. (1990) supra). The human dopamine D_1 receptor subfamily contains the human dopamine D₁ receptor gene GL-30 which is described herein, and the human dopamine D₁ receptor, not yet cloned or isolated, which represents the human counterpart of the rat D₁ clone (Sunahara R.K. Therefore, the term "human (1990) Nature 347:80-83). dopamine D₁ receptor" as used herein is defined as meaning a member of the dopamine D_1 receptor subfamily described Although this definition differs from above. earlier, there pharmacological definition used significant overlap between the present definition and the pharmacological definition. Members of the human dopamine D_1 receptor subfamily so described include the dopamine D_1 receptor clone known as GL-30 (which is also known as dopamine D_{1B} receptor subtype) and any other receptors which have a 65% or greater transmembrane homology to the DNA and amino acid sequence shown in Figure 1 according to the definition of "subfamily". This invention relates to the discovery of the first member of the human dopamine D_1 receptor subfamily.

10

15

20

25

30

5

This invention provides an isolated nucleic acid molecule such as a DNA molecule encoding a human dopamine D_1 receptor. Such a receptor is by definition a member of the dopamine D_1 receptor subfamily. Therefore, any receptor which meets the defining criteria given above is a human One means of isolating a human dopamine D_1 receptor. dopamine D_1 receptor is to probe a human genomic library with a natural or artificially designed DNA probe, using methods well known in the art. DNA probes derived from the human genes encoding dopamine D_1 receptor, for example clone GL-30 is a particularly useful probe for this purpose. DNA and cDNA molecules which encode human dopamine D_1 receptors may be used to obtain complementary genomic DNA, cDNA or RNA from human, mammalian or other animal sources, or to isolate related cDNA or genomic clones by the screening of cDNA or genomic libraries, by methods described in more detail Transcriptional regulatory elements from the 5' below. untranslated region of the isolated clones, stability, processing, transcription, translation, tissue specificity-determining regions from the 3' and 5' untranslated regions of the isolated genes are thereby Examples of a nucleic acid molecule are an RNA, cDNA, or isolated genomic DNA molecule encoding a human

10

15

20

25

30

dopamine D_1 receptor. Such molecules may have coding sequences substantially the same as the coding sequence shown in Figure 1 or may have coding sequences that are 65% or more homologous to the coding sequence shown in Figure 1. The DNA molecule of Figure 1 encodes a human dopamine D_1 receptor.

This invention further provides a cDNA molecule encoding a human dopamine D_1 receptor having a coding sequence substantially the same as the coding sequence shown in Figure 1. This molecule is obtained by the means described above.

This invention also provides an isolated protein which is a human dopamine D_1 receptor. Examples of such proteins are an isolated protein having substantially the same amino acid sequence as the amino acid sequence shown in Figure 1, which is a human dopamine D_1 receptor. One means for obtaining isolated dopamine D_1 receptor is to express DNA encoding the receptor in a suitable host, such as a bacterial, yeast, or mammalian cell, using methods well known in the art, and recovering the receptor protein after it has been expressed in such a host, again using methods well known in the art. The receptor may also be isolated from cells which express it, in particular from cells which have been transfected with the expression vectors described below in more detail.

This invention provides a vector comprising an isolated nucleic acid molecule such as DNA, RNA, or cDNA encoding a human dopamine D_1 receptor. Examples of vectors are viruses such as bacteriophages (such as phage lambda), cosmids, plasmids (such as pUC18, available from Pharmacia, Piscataway, NJ), and other recombination vectors. Nucleic

acid molecules are inserted into vector genomes by methods well known in the art. For example, insert and vector DNA can both be exposed to a restriction enzyme to create complementary ends on both molecules which base pair with each other and are then ligated together with a ligase. Alternatively, linkers can be ligated to the insert DNA which correspond to a restriction site in the vector DNA, which is then digested with the restriction enzyme which cuts at that site. Other means are also available. An example of a plasmid is a plasmid comprising DNA having a coding sequence substantially the same as the coding sequence shown in Figure 1 and designated clone pdopD1-GL-30, deposited with the American Type Culture Collection under ATCC Accession No. 40839.

15

10

5

This deposit was made pursuant to, and in satisfaction of, the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852.

20

25

.30

This invention also provides vectors comprising a DNA molecule encoding a human dopamine D_1 receptor adapted for expression in a bacterial cell, a yeast cell, or a mammalian cell which additionally comprise the regulatory elements necessary for expression of the DNA in the bacterial, yeast, or mammalian cells so located relative to the DNA encoding a human dopamine D_1 receptor as to permit expression thereof. DNA having coding sequences substantially the same as the coding sequence shown in Figure 1 may usefully be inserted into the vectors to express human dopamine D_1 receptors. Regulatory elements required for expression include promoter sequences to bind RNA polymerase and

10

15

20

25

30

transcription initiation sequences for ribosome binding. For example, a bacterial expression vector includes a promoter such as the lac promoter, and for transcription initiation, the Shine-Dalgarno sequence and the start codon ATG (Maniatis, et al., Molecular Cloning, Cold Spring Harbor Similarly, a eucaryotic expression Laboratory, 1982). vector includes a heterologous or homologous promoter for RNA polymerase II, a downstream polyadenylation signal, the start codon ATG, and a termination codon for detachment of the ribosome. Such vectors may be obtained commercially or assembled from the sequences described by methods well known in the art, for example the methods described above for constructing vectors in general. Expression vectors are useful to produce cells that express the receptor. Certain uses for such cells are described in more detail below.

This invention further provides a plasmid adapted for expression in a bacterial, yeast, or, in particular, a mammalian cell which comprises a DNA molecule encoding a human dopamine D₁ receptor and the regulatory elements necessary for expression of the DNA in the bacterial, yeast, or mammalian cell so located relative to the DNA encoding a human dopamine D₁ receptor as to permit expression thereof. Some plasmids adapted for expression in a mammalian cell are pSVL (available from Pharmacia, Piscataway, NJ) and pcEXV-3 (Miller J. and Germain R.N., J. Exp. Med. 164:1478 (1986)). Specific examples of such plasmids are a plasmid adapted for expression in a mammalian cell comprising cDNA having coding sequences substantially the same as the coding sequence shown in Figure 1 and the regulatory elements necessary for expression of the DNA in the mammalian cell. Those skilled in the art will readily appreciate that numerous plasmids adapted for expression in a mammalian cell which comprise

10

15

20

25

30

DNA encoding human dopamine D_1 receptors and the regulatory elements necessary to express such DNA in the mammalian cell may be constructed utilizing existing plasmids and adapted as appropriate to contain the regulatory elements necessary to express the DNA in the mammalian cell. The plasmids may be constructed by the methods described above for expression vectors and vectors in general, and by other methods well known in the art.

This invention provides a mammalian cell comprising a DNA molecule encoding a human dopamine \mathbf{D}_1 receptor, such as a mammalian cell comprising a plasmid adapted for expression in a mammalian cell, which comprises a DNA molecule encoding a human dopamine D_1 receptor and the regulatory elements necessary for expression of the DNA in the mammalian cell so located relative to the DNA encoding a human dopamine D_1 receptor as to permit expression thereof. Numerous mammalian cells may be used as hosts, including the mouse fibroblast cell NIH3T3, CHO cells, HeLa cells, and Ltk-Expression plasmids such as those described supra may be used to transfect mammalian cells by methods well known in the art such as calcium phosphate precipitation, or DNA encoding these dopamine \mathbf{D}_1 receptors may be otherwise introduced into mammalian cells, e.g., by microinjection, to obtain mammalian cells which comprise DNA, e.g., cDNA or a plasmid, encoding a human dopamine D₁ receptor.

This invention provides a method for determining whether a ligand not known to be capable of binding to a human dopamine D_1 receptor can bind to a human dopamine D_1 receptor which comprises contacting a mammalian cell comprising a DNA molecule encoding a human dopamine D_1 receptor with the ligand under conditions permitting binding

10

15

20

25

30

of ligands known to bind to the dopamine D1 receptor, detecting the presence of any of the ligand bound to the dopamine D₁ receptor, and thereby determining whether the ligand binds to the dopamine D₁ receptor. Methods for performing this technique are well known in the art. DNA in the cell may have a coding sequence substantially the same as the coding sequence shown in Figure 1. Preferably, the mammalian cell is nonneuronal in origin. An example of a nonneuronal mammalian cell is an Ltk-cell. (Stable cell lines can be produced by cotransfection of an expression plasmid such as pSVL or pcEXV, into which the DNA of Figure 1 has been subcloned, with a plasmid containing the bacterial gene aminoglycoside phosphotransferase into Ltkcells (American Type Culture Collection, Rockville, MD, Cell Line CCL 1,3) using the calcium phosphate technique (protocol & kit obtained from Specialty Media, aminoglycoside Clones expressing NJ). Lavallette, transferase can then be selected by the addition of 1 mg/ml G418 (Gibco Laboratories, Grand Island, NY) to the culture The preferred method for determining whether a ligand is capable of nding to the human dopamine D₁ receptors comprises contacting a transfected nonneuronal mammalian cell (i.e. a cell that does not naturally express any type of dopamine or G-protein coupled receptor, thus will only express such a receptor if it is transfected into the cell) expressing a dopamine D_1 receptor on its surface, or contacting a membrane preparation derived from such a transfected cell, with the ligand under conditions which are known to prevail, and thus to be associated with, in vivo binding of the ligands to a dopamine D₁ receptor, detecting the presence of any of the ligand being tested bound to the dopamine D₁ receptor on the surface of the cell, and thereby determining whether the ligand binds to the dopamine ${\tt D}_1$

10

15

20

25

30

receptor. (Methods for so doing are well known in the art, for example a tritiated ligand can be used as a radioligand to detect binding to membrane fractions isolated from either transiently or stably transfected cell lines which express Tritiated SCH-23390 (71.3 human dopamine D_1 receptor. Ci/mMol; Dupont-NEN), which is known in the art to bind with high affinity to the dopamine D_1 receptor, is used as a radioligand to detect the expression of the dopamine \mathbf{D}_1 gene either from isolated product in membrane fractions transiently or stably transfected cell The lines. incubation buffer contains 50 mM Tris-HCl pH 7.4; 120 mM NaCl, 5 mM KCl, 1 mM MgCl2; 2mM CaCl2; 0.1% ascorbic acid; and 1 μ M pargyline, and incubation is initiated by adding cell membranes 10-50 μ g/well to a 96 well microtiter plate containing tritiated SCH-23390 (final concentration 5 nM) in a final volume of 250 μ l. After incubating 20 minutes at 37°C in the dark, incubation is terminated by rapid filtration with a Brandel Model 48R Cell Harvester (Brandel, Gaithersville, MD). The tritiated SCH-23390 that has bound to the dopamine receptors on the cell membrane is retained on the filters, which are placed in scintillation vials with (such as Ready Safe, scintillation fluid Instruments, Fullerton, CA) and counted in a scintillation counter (such as a Beckman LS5000 TA). Specific binding of tritiated SCH-23390 is determined by defining nonspecific binding with 10^{-6} M cis(-) flupentixol. To determine whether a ligand binds to dopamine D_1 receptor, the ligand can be tritiated by methods well known in the art, and the technique described above for SCH-23390 binding performed. But a more efficient method is to perform competition studies. The method described above is performed, however in addition to tritiated SCH-23390, a different unlabeled ligand is added to each well of the incubation except

10

15

20

25

30

Ligands are initially screened at a control wells. concentration of 1-10 times their reported Ki values for dopamine D_1 receptor binding by liquid scintillation spectroscopy in a Beckman LS5000 TA scintillation counter using Ready Safe liquid scintillation cocktail (Beckman Instruments, Fullerton, CA) at an efficiency of 50-55% Whichever ligand reduces the counts of radioactivity over the counts of tritiated SCH-23390 alone has competitively reduced binding of the tritiated SCH-23390 by itself binding to the dopamine receptor). This response system is obtained by transfection of isolated DNA into a suitable host cell containing the desired second messenger system such as phosphoinositide hydrolysis, adenylate cyclase, guanylate cyclase or ion channels. Such a host system is isolated from pre-existing cell lines, or can be generated by inserting appropriate components of second messenger systems into existing cell lines. Such a transfection system provides a complete response system for investigation or assay of the activity of human dopamine D_1 receptors with ligands as described above. Transfection systems are useful as living cell cultures for competitive binding assays between known or candidate drugs and ligands which bind to the receptor and which are labeled by radioactive, spectroscopic or other reagents. Membrane preparations containing the receptor isolated from transfected cells are for these competitive binding assays. Functional assays of second messenger systems or their sequelae in transfection systems act as assays for binding affinity and efficacy in the activation of A transfection system function. constitutes a "drug discovery system" useful for the identification of natural or synthetic compounds with potential for drug development that can be further modified or used directly as therapeutic

compounds to activate or inhibit the natural functions of the human dopamine D_1 receptor. The transfection system is also useful for determining the affinity and efficacy of known drugs at the human dopamine D_1 receptor sites.

5

10

15

20

25

30

This invention also provides a ligand detected by the method described supra.

This invention also provides a method of screening drugs to identify drugs which specifically interact with, and bind to, the human dopamine D₁ receptor on the surface of a cell which comprises contacting a mammalian cell comprising a DNA molecule encoding a human dopamine D₁ receptor on the surface of a cell with a plurality of drugs, determining those drugs which bind to the mammalian cell, and thereby identifying drugs which specifically interact with, and bind to, the human dopamine D₁ receptor. The DNA in the cell may have a coding sequence substantially the same as the coding sequence shown in Figure 1. Preferably, the mammalian cell is nonneuronal in origin, such as an Ltk- cell. Drug candidates are identified by choosing chemical compounds which bind with high affinity to the expressed dopamine D₁ receptor protein in transfected cells, using radioligand binding methods well known in the art and described supra. Drug candidates are also screened for selectivity by identifying compounds which bind with high affinity to one particular dopamine receptor but do not bind with high affinity to any other dopamine receptor subtype or to any other known receptor site. Because selective, high affinity compounds interact primarily with the target dopamine D, receptor site after administration to the patient, the chances of producing a drug with unwanted side effects are minimized by this approach. This invention provides a

10

pharmaceutical composition comprising a drug identified by the method described above and a pharmaceutically acceptable Once the candidate drug has been shown to be carrier. adequately bio-available following a particular route of administration, for example orally or by injection (adequate therapeutic concentrations must be maintained at the site of for an adequate period to gain the desired therapeutic benefit), and has been shown to be non-toxic and therapeutically effective in appropriate disease models, the drug may be administered to patients by that route of administration determined to make the drug bio-available, in an appropriate solid or solution formulation, to gain the desired therapeutic benefit.

This invention provides a nucleic acid probe comprising a 15 nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding a human dopamine D_1 receptor, for example with a coding sequence included within the sequence shown in Figure 1. 20 acid probe technology is well known to those skilled in the art who will readily appreciate that such probes may vary greatly in length and may be labeled with a detectable label, such as a radioisotope or fluorescent dye, 25 facilitate detection of the probe. Detection of nucleic acid encoding human dopamine D_1 receptors is useful as a diagnostic test for any disease process in which levels of expression of the corresponding dopamine D_1 receptor is altered. DNA probe molecules are produced by insertion of a DNA molecule which encodes human dopamine D_1 receptor or 30 fragments thereof into suitable vectors, such as plasmids or bacteriophages, followed by insertion into bacterial host cells and replication and harvesting of the

10

15

20

25

30

DNA probes, all using methods well known in the art. example, the DNA may be extracted from a cell lysate using phenol and ethanol, digested with restriction enzymes corresponding to the insertion sites of the DNA into the vector (discussed above), electrophoresed, and cut out of the resulting gel. Examples of such DNA molecules are shown Figure 1. The probes are useful for hybridization or in order to locate tissues which express this gene family, or for other hybridization assays for the presence of these genes or their mRNA in various biological tissues. In addition, synthesized oligonucleotides (produced by a DNA synthesizer) complementary to the sequence of a DNA molecule which encodes a human dopamine D₁ receptor of are useful as probes for these genes, for their associated mRNA, or for the isolation of related genes by homology screening of genomic or cDNA libraries, or by the use of amplification techniques such as the polymerase chain reaction.

This invention also provides a method of detecting expression of a dopamine D₁ receptor on the surface of a cell by detecting the presence of mRNA coding for a dopamine D₁ receptor which comprises obtaining total mRNA from the cell using methods well known in the art and contacting the mRNA so obtained with a nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding a human dopamine D₁ receptor under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of the dopamine \mathbf{D}_1 receptor by the Hybridization of probes to target nucleic acid molecules such as mRNA molecules employs techniques well.

. 10

15

20

25

30

known in the art. In one possible means of performing this method, nucleic acids are extracted by precipitation from lysed cells and the mRNA is isolated from the extract using a column which binds the poly-A tails of the mRNA molecules. The mRNA is then exposed to radioactively labelled probe on a nitrocellulose membrane, and the probe hybridizes to and thereby labels complementary mRNA sequences. Binding may be detected by autoradiography or scintillation counting. However, other methods for performing these steps are well known to those skilled in the art, and the discussion above is merely an example.

This invention provides an antisense oligonucleotide having a sequence capable of binding specifically with any sequences of an mRNA molecule which encodes a human dopamine D₁ receptor so as to prevent translation of the mRNA molecule. The antisense oligonucleotide may have a sequence capable of binding specifically with any sequences of the DNA molecule whose sequence is shown in Figure 1. A particular example of an antisense oligonucleotide is an antisense oligonucleotide comprising chemical analogues of nucleotides.

This invention also provides a pharmaceutical composition comprising an amount of the oligonucleotide described above effective to reduce expression of a human dopamine D_1 receptor by passing through a cell membrane and binding specifically with mRNA encoding a human dopamine D_1 receptor in the cell so as to prevent its translation and a pharmaceutically acceptable hydrophobic carrier capable of passing through a cell membrane. The oligonucleotide may be coupled to a substance which inactivates mRNA, such as a ribozyme. The pharmaceutically acceptable hydrophobic

carrier capable of passing through cell membranes may also comprise a structure which binds to a receptor specific for a selected cell type and is thereby taken up by cells of the selected cell type. The structure may be part of a protein known to bind a cell-type specific receptor, for example an insulin molecule, which would target pancreatic cells. DNA molecules having coding sequences substantially the same as the coding sequence shown in Figure 1 may be used as the oligonucleotides of the pharmaceutical composition.

10

15

20

25

5

also provides a method of treating invention This which alleviated by reduction of are abnormalities expression of a dopamine D₁ receptor which comprises administering to a subject an amount of the pharmaceutical composition described above effective to reduce expression of the dopamine D_1 receptor by the subject. This invention further provides a method of treating an abnormal condition related to dopamine D₁ receptor activity which comprises administering to a subject an amount of the pharmaceutical composition described above effective to reduce expression of the dopamine D_1 receptor by the subject. dementia, such abnormal conditions are examples Parkinson's disease, abnormal cognitive functioning such as schizophrenia, tardive dyskinesia, renal failure, failure of vascular control, abnormal circadian rhythms, and abnormal visual activity.

30

Antisense oligonucleotide drugs inhibit translation of mRNA encoding these receptors. Synthetic oligonucleotides, or other antisense chemical structures are designed to bind to mRNA encoding the dopamine D_1 receptor and inhibit translation of mRNA and are useful as drugs to inhibit expression of dopamine D_1 receptor genes in patients. This

15

20

25

30

invention provides a means to therapeutically alter levels of expression of human dopamine D_1 receptors by the use of a synthetic antisense oligonucleotide drug (SAOD) which inhibits translation of mRNA encoding these receptors. Synthetic oligonucleotides, or other artisense chemical structures designed to recognize and selectively bind to mRNA, are constructed to be complementary to portions of the nucleotide sequences shown in Figure 1 of DNA, RNA or of chemically modified, artificial nucleic acids. The SAOD is designed to be stable in the blood stream for administration to patients by injection, or in laboratory cell culture conditions, for administration to cells removed from the The SAOD is designed to be capable of passing patient. through cell membranes in order to enter the cytoplasm of the cell by virtue of physical and chemical properties of the SAOD which render it capable of passing through cell membranes by designing small, hydrophobic (e.g. chemical structures) or by virtue of specific transport systems in the cell which recognize and transport the SAOD In addition, the SAOD can be designed for into the cell. administration only to certain selected cell populations by targeting the SAOD to be recognized by specific cellular uptake mechanisms which binds and takes up the SAOD only within certain selected cell populations. For example, the SAOD may be designed to bind to a receptor found only in a certain cell type, as discussed above. The SAOD is also designed to recognize and selectively bind to the target mRNA sequence, which may correspond to a sequence contained within the sequences shown in Figure 1, by virtue of complementary base pairing to the mRNA. Finally, the SAOD is designed to inactivate the target mRNA sequence by any of three mechanisms: 1) by binding to the target mRNA and thus inducing degradation of the mRNA by intrinsic cellular

10

15

20

25

30

mechanisms such as RNAse I digestion, 2) by inhibiting translation of the mRNA target by interfering with the binding of translation-regulating factors or of ribosomes, or 3) by inclusion of other chemical structures, such as ribozyme sequences or reactive chemical groups, which either degrade or chemically modify the target mRNA. antisense oligonucleotide drugs have been shown to capable of the properties described above when directed against mRNA targets (J.S. Cohen, Trends in Pharm. Sci. 10, 435 (1989); H.M. Weintraub, Sci. Am. January (1990) p. 40). ribozymes to addition. coupling of oligonucleotides is a promising strategy for inactivating target mRNA (N. Sarver et al., Science 247, 1222 (1990)). An SAOD serves as an effective therapeutic agent when it is administered to a patient by injection, or when the patient's target cells are removed, treated with the SAOD in the laboratory, and replaced in the patient. manner, an SAOD serves as a therapy to reduce receptor expression in particular target cells of a patient, in any clinical condition which may benefit from reduced expression of dopamine D₁ receptor.

This invention provides an antibody directed to the human dopamine D_1 receptor, for example a monoclonal antibody directed to an epitope of a human dopamine D_1 receptor present on the surface of a cell and having an amino acid sequence substantially the same as an amino acid sequence for a cell surface epitope of the human dopamine D_1 receptor included in the amino acid sequence shown in Figure 1. Amino acid sequences may be analyzed by methods well known in the art to determine whether they produce hydrophobic or hydrophilic regions in the proteins which they build. In the case of cell membrane proteins, hydrophobic regions are

10

15

20

25

30

well known to form the part of the protein that is inserted into the lipid bilayer which forms the cell membrane, while hydrophilic regions are located on the cell surface, in an aqueous environment. Therefore antibodies the hydrophilic amino acid sequences shown in Figure 1 will bind to a surface epitope of a human dopamine D_1 receptor, as Antibodies directed to human dopamine D₁ described. receptor may be serum-derived or monoclonal and are prepared using methods well known in the art. For monoclonal antibodies are prepared using hybridoma technology by fusing antibody producing B cells from immunized animals with myeloma cells and selecting the resulting hybridoma cell line producing the antibody. Cells such as SR3T3 cells or Ltk- cells may be used immunogens to raise such an antibody. Alternatively, synthetic peptides may be prepared using commercially available machines and the amino acid sequences shown in Figure 1. As a still further alternative, DNA, such as a cDNA or a fragment thereof, may be cloned and expressed and the resulting polypeptide recovered and used as an immunogen. These antibodies are useful to detect the presence of human dopamine D_1 receptors encoded by the isolated DNA, or to inhibit the function of the receptors in living animals, in humans, or in biological tissues or fluids isolated from animals or humans.

This invention provides a pharmaceutical composition which comprises an amount of an antibody directed to the human dopamine D_1 receptor effective to block binding of naturally occurring ligands to the dopamine D_1 receptor, and a pharmaceutically acceptable carrier. A monoclonal antibody directed to an epitope of a human dopamine D_1 receptor present on the surface of a cell and having an amino acid

sequence substantially the same as an amino acid sequence for a cell surface epitope of the human dopamine D_1 receptor included in the amino acid sequence shown in Figure 1 are useful for this purpose.

5

10

15.

20

25

a method of treating also provides invention This abnormalities which are alleviated by reduction of expression of a human dopamine \mathbf{D}_1 receptor which comprises administering to a subject an amount of the pharmaceutical composition described above effective to block binding of naturally occurring ligands to the dopamine D_1 receptor and resulting abnormalities alleviate overexpression of a human dopamine D₁ receptor. the antibody to the receptor prevents the receptor from neutralizing the effects of functioning, thereby The monoclonal antibodies described above overexpression. This invention are both useful for this purpose. additionally provides a method of treating an abnormal condition related to an excess of dopamine D_1 receptor activity which comprises administering to a subject an amount of the pharmaceutical composition described above effective to block binding of naturally occurring ligands to the dopamine \mathbf{D}_1 receptor and thereby alleviate the abnormal condition. Several examples of such abnormal conditions are disease, abnormal cognitive Parkinson's dementia, functioning such as schizophrenia, tardive dyskinesia, renal failure, and failure of vascular control, abnormal circadian rhythms, and abnormal visual activity.

30

This invention provides a method of detecting the presence of a human dopamine D_1 receptor on the surface of a cell which comprises contacting the cell with an antibody directed to the human dopamine D_1 receptor, under conditions

10

15

20

25

30

permitting binding of the antibody to the receptor, detecting the presence of the antibody bound to the cell, and thereby the presence of the human dopamine D_1 receptor on the surface of the cell. Such a method is useful for determining whether a given cell is defective in expression of dopamine D_1 receptors on the surface of the cell. Bound antibodies are detected by methods well known in the art, for example by binding fluorescent markers to the antibodies and examining the cell sample under a fluorescence microscope to detect fluorescence on a cell indicative of antibody binding. The monoclonal antibodies described above are useful for this purpose.

This invention provides a transgenic nonhuman expressing DNA encoding a human dopamine D_1 receptor. invention also provides a transgenic nonhuman mammal expressing DNA encoding a human dopamine D1 receptor so mutated as to be incapable of normal receptor activity, and not expressing native dopamine D_1 receptor. This invention also provides a transgenic nonhuman mammal whose genome comprises antisense DNA complementary to DNA encoding a human dopamine D_1 receptor so placed as to be transcribed into antisense mRNA which is complementary to mRNA encoding a dopamine \mathtt{D}_1 receptor and which hybridizes to mRNA encoding a dopamine D_1 receptor thereby reducing its translation. The DNA may additionally comprise an inducible promoter or additionally comprise tissue specific regulatory elements, so that expression can be induced, or restricted to specific cell types. Examples of DNA are DNA or cDNA molecules having a coding sequence substantially the same as the coding sequence shown in Figure 1. An example transgenic animal is a transgenic mouse. Examples of tissue specificity-determining regions are the metallothionein

promotor (Low, M.J., Lechan, R.M., Hammer, R.E. et al. Science 231:1002-1004 (1986)) and the L7 promotor (Oberdick, J., Smeyne, R.J., Mann, J.R., Jackson, S. and Morgan, J.I. Science 248:223-226 (1990)).

5

10

15

20

25

30

Animal model systems which elucidate the physiological and behavioral roles of human dopamine D₁ receptors are produced by creating transgenic animals in which the expression of a dopamine D, receptor is either increased or decreased, or the amino acid sequence of the expressed dopamine D_1 receptor protein is altered, by a variety of techniques. Examples of these techniques include: 1) Insertion of normal or mutant versions of DNA encoding a human dopamine D_1 receptor or homologous animal versions of these genes, by microinjection, retroviral infection or other means well known to those skilled in the art, into appropriate fertilized embryos in order to produce a transgenic animal (Hogan B. et al. Manipulating the Mouse Embryo, A Laboratory Cold Spring Harbor Laboratory (1986)); Homologous recombination (Capecchi M.R. Science 244:1288-1292 (1989); Zimmer, A. and Gruss, P. Nature 338:150-153 (1989)) of mutant or normal, human or animal versions of the gene with the native gene locus in transgenic animals to alter the regulation of expression or the structure of the dopamine D_1 receptor. The technique of homologous recombination is well known in the art. This technique replaces the native gene with the inserted gene and so is useful for producing an animal that cannot express native receptor but does express, for example, an inserted mutant receptor, which has replaced the native receptor in the recombination, resulting by animal's genome underexpression of the receptor (in more detail, mutually homologous regions of the insert DNA and genomic DNA pair

10

15

20

25

30

with each other, resulting in the replacement of the homologous regions of genomic DNA and regions between the homologous regions with the insert). Microinjection adds genes to the genome, but does not remove them, and so is useful for producing an animal which expresses its own and added receptors, resulting in overexpression of One means available for producing a transgenic animal, with a mouse as an example, is as follows: Female mice are mated, and the resulting fertilized eggs are dissected out of their oviducts. The eggs are stored in an appropriate medium such as M2 medium (Hogan B. et al. Manipulating the Mouse Embryo, A Laboratory Manual, Cold Spring Harbor Laboratory (1986)). DNA or cDNA encoding a human dopamine \mathbf{D}_1 receptor is purified from a vector (such as plasmid pdopD1-GL-30 described above) by methods well known in the art. Inducible promoters may be fused with the coding region of the DNA to provide an experimental means to regulate expression of the trans-gene. Alternatively or in addition, tissue specific regulatory elements may be fused with the coding region to permit tissue-specific expression of the trans-gene. The DNA, in an appropriately buffered solution, is put into a microinjection needle (which may be made from capillary tubing using a pipet puller) and the egg to be injected is put in a depression slide. The needle is inserted into the pronucleus of the egg, and the DNA solution is injected. The injected egg is then transferred into the oviduct of a pseudopregnant mouse (a mouse stimulated by the appropriate hormones to maintain pregnancy but which is not actually pregnant), where it proceeds to the uterus, implants, and develops to term. As noted above, microinjection is not the only method for inserting DNA into the egg cell, and is used here only as an example.

10

15

20

25

30

Since the normal action of receptor-specific drugs is to activate or to inhibit the receptor, the transgenic animal model systems described above are useful for testing the biological activity of potential drugs directed against the before dopamine D₁ receptor even such drugs become These animal model systems are useful for predicting or evaluating possible therapeutic applications of drugs which activate or inhibit the dopamine D_1 receptor by inducing or inhibiting expression of the native or transgene and thus increasing or decreasing expression of normal or mutant dopamine D_1 receptors in the living animal. Thus, a model system is produced in which the biological activity of a potential drug directed against the dopamine ${\tt D}_1$ receptor can be evaluated before the actual development of The transgenic animals which over or under such a drug. produce the dopamine D_1 receptor indicate by physiological state whether over or under production of the dopamine D_1 receptor is therapeutically useful. transgenic model system is therefore useful to evaluate potential drug action. For example, it is well known in the art that a drug such as an antidepressant acts by blocking neurotransmitter uptake, and thereby increases the amount of neurotransmitter in the synaptic cleft. The physiological result of this action is to stimulate reduced production of receptor by the affected cells, leading eventually to underexpression. Therefore, an animal which is engineered to underexpress receptor is useful as a test system to investigate whether the action of a drug which results in underexpression is in fact therapeutic. Again, for example, if overexpression is found to lead to abnormalities, then a drug which can down-regulate or act as an antagonist to dopamine D_1 receptor is indicated as worth developing. a promising therapeutic application is uncovered by these

15

20

25

30

animal model systems, activation or inhibition of the dopamine D_1 receptor can be achieved therapeutically either by producing agonist or antagonist drugs directed against the dopamine D_1 receptor, or indeed by any method which increases or decreases the expression of the dopamine D_1 receptor.

This invention provides a method of determining the physiological effects of expressing varying levels of human dopamine D_1 receptors which comprises producing a transgenic nonhuman animal whose levels of human dopamine D_1 receptor expression are varied by use of an inducible promoter which regulates human dopamine D_1 receptor expression. This invention also provides a method of determining the physiological effects of expressing varying levels of human dopamine D_1 receptors which comprises producing a panel of transgenic nonhuman animals each expressing a different amount of human dopamine D_1 receptor. Such animals may be produced by introducing different amounts of DNA encoding a human dopamine D_1 receptor into the oocytes from which the transgenic animals are developed.

This invention also provides a method for identifying a substance capable of alleviating abnormalities resulting from overexpression of a human dopamine D_1 receptor comprising administering the substance to a transgenic nonhuman mammal expressing at least one artificially introduced DNA molecule encoding a human dopamine D_1 receptor and determining whether the substance alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal as a result of overexpression of a human dopamine D_1 receptor. Examples of DNA molecules are DNA or cDNA molecules having a coding sequence substantially

10

15

20

25

30

the same as the coding sequence shown in Figure 1.

This invention provides a pharmaceutical composition comprising an amount of the substance described supra effective to alleviate the abnormalities resulting from overexpression of dopamine D_1 receptor and a pharmaceutically acceptable carrier.

This invention further provides a method for treating the abnormalities resulting from overexpression of a human dopamine D_1 receptor which comprises administering to a subject an amount of the pharmaceutical composition described above effective to alleviate the abnormalities resulting from overexpression of a human dopamine D_1 receptor.

This invention provides a method for identifying a substance capable of alleviating the abnormalities resulting from underexpression of a human dopamine D_1 receptor comprising administering the substance to the transgenic nonhuman mammal described above which expresses only nonfunctional human dopamine D_1 receptor and determining whether the substance alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal as a result of underexpression of a human dopamine D_1 receptor.

This invention also provides a pharmaceutical composition comprising an amount of a substance effective to alleviate abnormalities resulting from underexpression of dopamine D_1 receptor and a pharmaceutically acceptable carrier.

This invention further provides a method for treating the abnormalities resulting from underexpression of a human

10

15

20

25

30

dopamine D_1 receptor which comprises administering to a subject an amount of the pharmaceutical composition described above effective to alleviate the abnormalities resulting from underexpression of a human dopamine D_1 receptor.

This invention provides a method for diagnosing in a subject predisposition to a disorder associated with expression of a specific human dopamine D_1 receptor allele which comprises: a. isolating DNA from victims of the disorder, b. digesting the isolated DNA of step a with at least one restriction enzyme, c. electrophoretically separating the resulting DNA fragments on a sizing gel, d. contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing to DNA encoding a human dopamine D₁ receptor and labelled with a detectable marker, e. detecting labelled bands which have hybridized to the DNA encoding a human dopamine D_1 receptor labelled with a detectable marker to create a band pattern specific to the DNA of victims of the disorder, f. preparing the subject's DNA by steps a-e to produce detectable labeled bands on a gel, and g. comparing the band pattern specific to the DNA of victims of the disorder of step e and the subject's DNA of step f to determine whether the patterns are the same or different and thereby to diagnose predisposition to the disorder if the patterns are the same. This method may also be used to diagnose a disorder associated with expression of a specific human dopamine D₁ receptor allele. This method makes use of restriction fragment polymorphisms in the gene of interest, which may itself encode an abnormal phenotype, or may encode or predispose to an abnormal phenotype in one of its allelic forms, or may encode an abnormal phenotype when present in mutant form.

10

15

20

25

30

A DNA probe is a useful genetic probe for an allelic abnormality. An allele of a gene will have a specific restriction fragment pattern when its isolated DNA is digested with a single restriction enzyme or panel of restriction enzymes, because of polymorphisms in the areas of the gene which have nucleotide sequences that form sites for restriction enzymes. For example, the gene may have the sequence AATTC which forms the site for the enzyme EcoRI. Its allele may have in the same area the sequence AAATC. When the isolated DNA comprising the gene and its allele are digested with EcoRI by methods well known in the art, the gene will be cut at the site described and this cut will create a fragment of a length determined by the location of the next EcoRI site (assuming this is a single-enzyme digest). The allele will not be cut at this site, therefore the fragment generated by the digest will be longer. When the DNA digest is run on an agarose or polyacrylamide sizing gel and hybridized with the detectably labelled DNA probe for the gene, the detectable band visualized on the gel will correspond to the length of the restriction fragments produced. If the fragment is the "long" fragment, then this result indicates that the allele is carried by the DNA If the presence of the allelic form of the gene associated with a predisposition to a phenotypic abnormality, then the predictive power of such an analysis is important. If the abnormality already exists, then this test is useful for diagnosis and differential diagnosis. An allele is given only as an example. This method may be used to detect mutations and polymorphisms of a gene of interest, or the gene itself. Methods for isolating DNA (from a source such as a blood or tissue sample, for example) are well known in the art. Methods of visualizing a labeled nucleic acid probe hybridized to a gel are also

10

15

20

25

well known in the art. For example, the DNA on a gel is denatured with base, incubated with a radioactively labeled probe, and a filter (usually nitrocellulose) is placed over the gel, transferring the fragments on the gel to the filter. A piece of film is laid over the filter. The fragments which have hybridized to the probe will expose the film and leave a band marking their positions in the gel.

This invention provides a method of preparing the isolated dopamine D_1 receptor which comprises inducing cells to express dopamine D_1 receptor, recovering the receptor from resulting cells, and purifying the receptor An example of an isolated dopamine D₁ receptor recovered. is an isolated protein having substantially the same amino acid sequence as the amino acid sequence shown in Figure 1. For example, cells can be induced to express receptors by exposure to substances such as hormones. The cells can then be homogenized and the receptor isolated from the homogenate using an affinity column comprising, for example, dopamine, antibody to the dopamine D₁ receptor, or another substance which is known to bind to the receptor. resulting fractions can then be purified by contacting them with an ion exchange column, and determining which fraction contains receptor activity binds anti-receptor or antibodies. These methods are provided as examples, and do not exclude the use of other methods known in the art for isolating proteins.

This invention provides a method of preparing the isolated dopamine D_1 receptor which comprises inserting nucleic acid encoding dopamine D_1 receptor in a suitable vector, inserting the resulting vector in a suitable host cell, recovering the receptor produced by the resulting cell, and

10.

15

20

25

30

purifying the receptor so recovered. An example of an isolated dopamine D_1 receptor is an isolated protein having substantially the same amino acid sequence as the amino acid sequence shown in Figure 1. This method for preparing dopamine D_1 receptor uses recombinant DNA technology methods well known in the art. For example, isolated nucleic acid encoding dopamine D_1 receptor is inserted in a suitable vector, such as an expression vector. A suitable host cell, such as a bacterial cell, or a eucaryotic cell such as a yeast cell, is transfected with the vector. The dopamine D_1 receptor is isolated from the culture medium by affinity purification or by chromatography or by other methods well known in the art.

Applicants have identified individual receptor subtype proteins and have described methods for the identification of pharmacological compounds for therapeutic treatments. Pharmacological compounds which are directed against specific receptor subtypes provide effective new therapies with minimal side effects.

Disturbances of dopaminergic neurotransmission have been associated with a wide range of neurological, endocrine, and psychiatric disorders, including Parkinson's disease, tardive dyskinesia, and schizophrenia. The neuroleptics, which have highest affinity for D_2 receptors have major side effects involving movement disorders and hypersecretion of prolactin. Drugs used in the treatment of Parkinson's disease cause nausea, vomiting, choreiform movements, psychiatric disturbances including hallucinations, and cardiovascular disorders. Some of these effects are likely to be due to actions on D_1 receptors or to a disruption in the balance of activity between the D_1 and D_2 systems

10

15

(Abbott, A., 1990; TIPS 11: 49-51). In fact some benefit of D_1 antagonists which lack D_2 therapeutic activity may be obtained. (Hess, E.J. and Creese, I., in Neurobiology of Central D_1 Receptors, eds, G.R. Breese and I. Creese pp. 53-72) Drugs selectively targeted to D_1 receptor may be useful neuroleptics without resulting in the tardive dyskinesia thought to be the result of D_2 receptor up-regulation caused by chronic D_2 antagonism (Hess, E.J. and Creese, I., in Neurobiology of Central D_1 Receptors, eds, G.R. Breese and I. Creese pp. 53-72). Furthermore, evidence provided by the anatomical distribution of $\mathtt{D_1}$ receptors in the brain suggest roles for \mathbf{D}_1 selective drugs in cognitive function, control of visual activity and circadian rhythms (Dawson, T., Gelhert, D., McCabe, R., Barnett, A., and Wamsley, J. 1986; J. Neurosci. 6:2352-2365). Finally, the distribution of D_1 receptors on the renal vasculature indicates potential therapeutic value of selective D₁ agents to ameliorate renal failure secondary to heart attack (Missale, C., Castelleti, L., Memo, M., Carruba, M., and Spano, P. 1988; J. Cardiovascular Research 11: 643-650.) Its general action on vascular smooth muscle in other portions of the vascular tree may indicate a general role in cardiovascular control (Missale, as above; Hilditch, A. and Drew, G.M. 1985, TIPS 6:396-400).

25

30

20

In animal models, D_1 -selective benzazepines induce intense grooming (Molloy, A.G. and Waddington, J.L. (1987), Psychopharmacology (Berlin) 92, 164-168), inhibit spontaneous locomotion (Hjorth, S. and Carlsson, A. (1988), J. Neural Transm. 72, 83-97), and generally seem to facilitate D2 receptor activities (Waddington, J.L. (1986), Biochem. Pharmacol. 35, 3661-3667; Hjorth, S. and Carlsson, A. (1988), J. Neural Transm. 72, 83-97). These actions

produce therapeutic applications in enhancing Parkinson's disease or antipsychotic therapies with existing D2 antagonists (Waddington, J.L. (1986), Biochem. Pharmacol. 35, 3661-3667). In human peripheral arteries, Dai receptors mediate vasodilation (Toda, N., Okunishi, H., and Okamura, (1989), Arch Int. Pharmacodyn. Ther. 297, Clinical trials with the selective Dan receptor agonist, fenoldopam, have revealed a potent renal vasodilatory action that could provide an attractive alternative therapy for treating hypertensive and congestive heart failure patients (Carey, R.A. and Jacob, L. (1989), J. Clin Pharmacol. 29, 207-211). Development of more selective D_1 agonists and antagonists will expand existing D_1 therapeutic applications and suggest new ones.

15

20

10

5

This invention identifies for the first time a new human receptor protein, the dopamine D_1 receptor, its amino acid sequences, and its human gene, clone GL-30. The first isolated human cDNA and genomic clone encoding dopamine D_1 receptor are identified and characterized herein. The information and experimental tools provided by this discovery will be useful to generate new therapeutic agents, and new therapeutic or diagnostic assays for the new receptor protein, associated mRNA molecules, or associated genomic DNA.

25

30

The invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only illustrative of the invention as described more fully in the claims which follow thereafter.

10

15

20

25

30

Experimental Details:

Homology Cloning. A human spleen genomic library, provided by Dr. Jeffrey V. Ravetch (Sloan-Kettering Institute, New York, NY), was screened using the 1.6-kilobase (kb) Xbal-BamHI fragment from the human 5-hydroxytryptamine (5-HT1m) receptor gene as a probe. The probe was labeled with 32p by the method of random priming. Hybridization was performed at 40°C in a solution containing 25% formamide, 10% dextran sulfate, 5X SSC (1X SSC is 0.15 M sodium chloride, 0.015 M sodium citrate) 1X Denhardt's (0.02% polyvinyl-pyrrolidone, 0.02% Ficoll, and 0.02% bovine serum albumin), and 200 μ g/ml of sonicated salmon sperm DNA. The filters were washed at 40°C in 0.1% SSC containing 0.1% sodium-dodecyl-sulfate (SDS) and exposed at -70°C to Kodak XAR film in the presence of an intensifying screen. Lambda phage hybridizing to the probe were plaque purified and DNA was prepared for Southern blot analysis (Maniatis et al., Molecular Cloning, Cold Spring Harbor, 1982; E. Southern, J. Mol. Biol. 98:503, 1975). For subcloning and further southern blot analysis DNA was inserted into pUC18 (Pharmacia, Piscataway, N.J.).

DNA Sequencing

Nucleotide sequence analysis was done by the Sanger dideoxy nucleotide chain-termination method (S. Sanger, et al., Proc. Natl. Acad. Sci., 74: 5463-5467, 1977) or lenatured double-stranded plasmid templates (Chen and Seeb. g, DNA 4: 165, 1985) using Sequenase (U.S. Biochemical Corp., Cleveland, Ohio).

Receptor Expression in Transfected Mammalian Cells
To confirm the functional identity of the newly isplated

gene clone GL-30 was expressed in cultured cell lines. The

10

15

20

25

entire coding region of GL-30, including 113 base pairs of 5' untranslated sequence, and approximately 1.3 kb of 3' untranslated sequence, was cloned into the eucaryotic expression vector pcEXV-3 (Miller, J. and Germain, R.N. (1986), J. Exp. Med. 164: 1478-89). The resulting plasmid was transiently transfected into Cos-7 cells using the DEAE-dextran procedure (Cullen, Methods in Enz., 152: 684-704, 1987).

Measurement of cAMP Formation

transiently transfected plates were incubated Dulbecco's modified Eagle's medium (DMEM, Specialty Media, NJ), 5mM theophylline, 10mM Hepes, Lavallette, pargyline, 10 µM propanolol, and/or 10 µM SCH-23390 for 20 In these experiments, the Bminutes at 37°C, 5% CO₂. adrenergic antagonist propanolol was included in the assay to preclude stimulation of the endogenous Cos-7 cell 8adrenergic receptor by dopamine. Dopamine or SKF-38393 was then added to a final concentration of $1\mu M$ and incubated for an additional 10 minutes at 37°C, 5% CO₂. The media was aspirated and the reaction stopped by the addition of 100mM The plates were stored at 4°C for 15 minutes, centrifuged for 5 minutes, 500 x g to pellet cellular debris, and the supernatant aliquotted and stored at -20°C prior to assessment of cAMP formation by radioimmunoassay (cAMP Radioimmunoassay Kit, Advanced Magnetics, Cambridge, MA).

Membrane Preparation

Membranes were harvested from transfected Cos-7 cells which were grown to 100% confluency. The cells were washed twice with phosphate-buffered saline (PBS), scraped into 5 ml of ice-cold PBS and centrifuged at 200 x g for 5 minutes at

10

15

20

25

30

The pellet was resuspended in 2.5 ml ice-cold Tris buffer (20mM Tris HCl, pH 7.4 at 23°C, 5mM EDTA), hand homogenized in a Wheaton tissue grinder and the lysate centrifuged at 200 x g for 5 minutes at 4°C to pellet large The supernatant was then centrifuged at 40,000 x g for 20 minutes at 4°C. The membranes were washed once resuspended in the homogenization buffer. preparations were kept on ice and assays were run on the day which the membranes were collected. concentration was determined by the method of Bradford (Anal. Biochem. 72: 248-54 (1976)) using bovine serum albumin as standard.

Radioligand Binding Studies

Binding assays were performed in triplicate in total volume of 250 μ l containing buffer (50mM Tris HCl, 10mM MgSO₄, 1.5mM EDTA, 150mM NaCl, 0.1% ascorbate, 10 μM pargyline, pH at 4°C), [3H]SCH-23390 (87 Ci/mmol; DuPont-NEN, Wilmington, DE) and tested drugs. In competition binding experiments, 0.5-0.6 nM [3H]SCH-23390 was inhibited by various concentrations of unlabeled drugs. Binding was initiated by the addition of membrane preparation (10-20 μg protein) and carried out at 22°C for 90 minutes. binding was 95% of total binding at 0.5 nM [3H]SCH-23390. For saturation experiments, membranes were incubated with [3H]SCH-23390 over the concentration range of 0.01-6.5 nM. Incubations were allowed to proceed for 150 minutes at 22°C to ensure that equilibrium was achieved at the lowest concentrations of radioligand. Nonspecific binding was defined in the presence of $10\mu M$ (+) butaclamol. The reaction was terminated by rapid filtration through Whatman glass fiber filters (presoaked with 0.5% polyethyleneamine, pH 7.4), using a Brandel 48R

harvester (Brandel; Gaithersburg, MD). Filters were washed for 5 seconds with iced buffer to reduce nonspecific Dried filters were transferred to scintillation radioactivity was determined by liquid and vials (Beckman LS 1701; Beckman scintillation counting Instruments, Fullerton, CA). Ready Safe (Beckman) was used as the scintillant and the counting efficiency was 50%. Analysis of saturation and competition data were performed by computer-assisted nonlinear regression (DeLean et al., 1978; programs Accucomp and Accufit; Lundon Software, Chagrin Falls, OH). IC_{50} values were converted to $K_{\rm i}$ values by the Cheng-Prusoff equation (Cheng and Prusoff, 1973).

Experimental Results:

15

20

10

5

<u>Isolation of a genomic clone encoding a dopamine D_1 receptor.</u>

We have screened human genomic spleen and human genomic placental libraries with the 1.6 kb Xba-1-Bam-H1 restriction fragment derived from the gene for the 5-HT_{1A} receptor. A total of 59 clones were isolated and were characterized by restriction endonuclease mapping. One clone (designated GL-30) was isolated as an approximately 4.0 kb EcoRI-Bgl-II fragment was subcloned into pUC-18 and subject to sequence analysis.

25

30

Predicted Structure of the receptor encoded by GL-30

DNA sequence information obtained from GL-30 is shown in Figure 1. An open reading frame encoding a protein of 477 amino acids in length, having a relative molecular mass (M_r) of approximately 53kD. A comparison of this protein sequence with previously characterized neurotransmitter receptors indicates that clone GL-30 is a new member of a

10

15

20

family of molecules which span the lipid bilayer seven times and couple to guanine nucleotide regulatory proteins (the G protein-coupled receptor family). A variety of structural features which are invariant in the G-protein coupled receptor family, including the aspartic acid residues of transmembrane regions II and III, the DRY sequence at the end of transmembrane region III, and the conserved proline residues of transmembrane regions IV, V, VI and VII were present in clone GL-30. Both the amino terminus and the extracellular loop 2 (located between transmembrane domains IV and V) of GL-30, contain consensus sites for N-linked In addition, this extracellular glycosylation. contains 45 amino acids (as compared to 31 amino acids in the comparable region of the dopamine D_1 receptor) and represents the longest extracellular loop 2 of all the known G-protein coupled receptors. While the carboxy-terminal of the dopamine D_1 receptor and approximately the same size, their amino acid sequences are only 41% identical. When compared to all the known G protein-coupled receptors, the greatest homology was found to be with the dopamine D_1 receptor. While the overall homology between GL-30 and the human dopamine D_1 receptor was 62%, the homology within the seven membrane spanning domains was 83% (Figure 2).

25

30

Discussion

Applicants have cloned and characterized a DNA molecule encoding a new dopamine D_1 receptor by low stringency hybridization to the serotonin 5-HT_{1A} receptor. Although the amino acid sequence homology of clone GL-30 to the 5-HT_{1A} receptor was relatively low (47% transmembrane region identity), comparison of this sequence to previously cloned

10

15

20.

dopamine receptors showed that the closest relationship was to the human dopamine D_1 receptor (83% identity in the transmembrane domains). In contrast, the transmembrane homology to either the dopamine D_2 or dopamine D_3 receptors was only 53% and 48%, respectively.

Clone GL-30 was expressed in Cos-7 cells in order to characterize the pharmacological binding properties of the expressed receptor protein. $[^3H]SCH-23390$, a highly selective D, antagonist in the rat (Billard, W. et al. (1984) Life Sci. 35: 1885-93), non-human primate (Madras, B.K. et al. (1988) J. Neurochem. 51: 934-43) and human brain (DeKeyser, J. et al. (1988) Brain Res. 443: 77-84; Raisman, R. et al. (1985) Eur. J. Pharmacol. 113: 467-68) binds to this receptor with an apparent dissociation constant (K_d) of 0.65 nM, in good agreement with values reported for mammalian brain homogenates (Billard et al. (1984) supra; DeKeyser et al. (1988) supra; Raisman et al. (1985) supra; Reader, T.A. et al. (1989) Naunyn-Schmiedeberg's Arch. Pharmacol. 340: 617-25). This dissociation constant is nearly identical to that previously reported for the cloned D_1 receptor expressed in Cos-7 cells, K_d =0.3-0.6 nM, (Dearry et al. (1990) supra; Sunahara et al. (1990) supra; Zhou et al. (1990) <u>supra</u>).

25

30

Pharmacological characterization of the GL-30 clone showed binding of $[^3H]$ SCH-23390 to a site which clearly exhibited a D_1 -like pharmacology (Table 1). The rank order of potencies of dopaminergic antagonists in displacing the binding shows that the most potent compounds are those previously identified as having the highest affinity for the D_1 site (e.g. SCH-23390, cis-flupenthixol and (+) butaclamol). Among other drugs classified as dopamine

10

15

20

25

30

antagonists, bulbocapnine, haloperidol clozapine yielded Ki values comparable to those reported for the D₁ receptor in native rat and human brain tissues, and for Cos-7 cells transiently transfected with the previously cloned D₁ gene. The largest difference found between the affinities of antagonists for this newly cloned receptor and those reported for the previously cloned D1 receptor was for (+) butaclamol which was 6-18 fold less potent at the dopamine D₁₈ receptor. Antagonist competition curves were of uniformly steep slope (n_H≈1.0) suggesting the presence of a single D₁ dopamine receptor. The low affinity of (-) sulpiride and quinpirole to displace [3H]SCH-23390 binding is congruent with the D2 selectivity of such drugs. amine biogenic neurotransmitters serotonin norepinephrine were inactive in inhibiting the binding of the antagonist radioligand.

In contrast to the data on antagonist binding, the rank order of potencies and apparent dissociation constants obtained for dopaminergic agonists did not display a high degree of correlation with those found in tive brain tissues, in peripheral preparations, or in th previously characterized D₁ receptor clone. Dopamine displaced [3H]SCH-23390 binding with ≈10-20 fold higher affinity (K,=159 nM) than that reported for D, receptors in either the brain or in the periphery under the assay condition The competition curve for dopamine in these experiments had a relatively shallow slope, indicating the existence of both high and low affinity binding components. The assay conditions were chosen to match those used in assays of the previously cloned D₁ receptor, and are expected to promote the low affinity configuration of the receptor. Although this dopamine D₁₈ receptor

10

15

20

25

30

pharmacological and functional properties similar to D_1 receptors previously characterized in the brain and the periphery, its agonist profile makes it a unique receptor.

Cos-7 cells transfected with clone GL-30 exhibited dopamine stimulated cAMP production at a level 13 fold above the basal rate. This effect of dopamine was blocked by the D1 selective antagonist SCH-23390. The D_1 selective partial agonist SKF-38393 stimulated cAMP accumulation to a lesser extent than dopamine itself, consistent with its role as a partial agonist (Andersen et al. (1987) supra). previously cloned D, receptor was also shown to be coupled stimulation of adenylate cyclase activity. observation that the two different D1 receptor genes encode proteins which functionally couple to the same second messenger pathway reinforces the close relationship shown in their amino acid sequences and pharmacological binding profiles. The existence of two separate genes with similar pharmacology and second messenger coupling suggests that their physiological roles may differ in some other aspect, cell-type distribution, synaptic such as tissue or localization (postsynaptic v. presynaptic autoreceptor), or developmental regulation.

Using gene specific primers for PCR amplification of RNA, the distribution of messenger RNA encoding the dopamine D_{1B} receptor was examined. The dopamine D_{1B} receptor was found to be widely distributed in a variety of higher brain centers, including brainstem, choroid plexus and hippocampus, suggesting a diverse role in regulating brain functions.

Clone GL-30 is an example of a G protein-coupled receptor

10

15

whose entire coding region is contained within a single exon, similar to the dopamine D_1 receptor (Dearry et al. (1990) supra; Monsma et al. (1990) supra; Sunahara et al. (1990) supra; Zhou et al. (1990) supra) and many other members of this superfamily. In contrast, the coding regions of the dopamine D_2 and D_3 receptors are interrupted by several introns (Bunzow et al., 1988; Sokoloff et al., 1990). Other subfamilies of G protein-coupled receptors (e.g. α_1 or α_2 adrenergic receptors), which consist of closely related subtypes, also share an intron-containing (α_1) or intronless nature (α_2) (Regan and Cotecchia, in Based upon this similarity in intron-exon press). organization, as well as the close amino acid homology to the previously cloned \mathbf{D}_1 receptor, pharmacological binding properties, and second messenger coupling, clone GL-30 can best be characterized as a dopamine D_1 receptor.

SEQUENCE LISTING

	•
5	(1) GENERAL INFORMATION:
	(i) APPLICANT: Weinshank, Richard L. Hartig, Paul R.
	(ii) TITLE OF INVENTION: DNA Encoding A Human Dopamine D: Receptor And Uses Thereof
10	(iii) NUMBER OF SEQUENCES: 5
10	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Cooper & Dunham (B) STREET: 20 Rockefell
•	(B) STREET: 30 Rockefeller Plaza (C) CITY: New York (D) STATE: New York
	(E) COUNTRY: U.S.A. (F) ZIP: 10112
15	
	(V) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
•	(B) COMPUTER: IBM PC compatible
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.25
	(Vi) CURRENT APPLICATION DATA:
20	(A) APPLICATION NUMBER:
	(B) FILING DATE: 10-JUL-1991
	(C) CLASSIFICATION:
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: ÚS 551,448
	(B) FILING DATE: 10-JUL-1990
25	(Viii) ATTORNEY/AGENT INFORMATION:
	(A) NAME: White, John P.
	(B) REGISTRATION NUMBER: 28,678
	(C) REFERENCE/DOCKET NUMBER: 37526-A-PCT
	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: (212) 977-9550
	(B) TELEFAX: (212) 664-0525
30	(C) TELEX: 422523 COOP UI
	(2) INFORMATION FOR SEQ ID NO:1:
	(1) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1771 base pairs
	(B) TYPE: nucleic acid
35	(C) STRANDEDNESS: single
-	(D) TOPOLOGY: linear

SUBSTITUTE SHEET

		(i	i) M	OLEC	ULE	TYPE	: cD	NA			•							
		(ii	i) H	YPOT	HETI	CAL:	NO											
		(i	v) A	NTI-	SENS	E: N	0		•		•			•				
ţ	5						•											
	•	(vi	•		IATE CLON					•								
		(i)	·		RE: NAME, LOCA?				631		,				·		•	
10		٠.						·.								•		
			·		NCE I				_		•		٠					
																ATCC		60
	GGG	GTGC	CGA	TGGG	GCTG	CC T	GGGG	GTCG	C AG	GGCT	GAAG	TTG	GGAC	CGC	GCAC	AGAC	CG	120
15	ccc	CTGC	AGT	CCAG	CCCA	LAA T	GC T ys C	GC C	GC C	AG G	CA G	CA A	CG G	CA C	CG C	GT Arg 10		170
	ACC	CGG Arg	GGC	AGT Ser	TCG Ser 15	. Len	TAT	ACC Thr	AGC Ser	AGC Ser 20	Tr	CGC Arg	AGG Arg	GGA g Gly	ACG y Thi	Pro	ن	218
20	TGG Trp	GGG Gly	GCT Ala	CGG Arg	Arg	GGG	CAC His	CGC Arg	CAC His	Trp	GGC Gly	CCT Pro	CAC His	AGG Arg	-	TCA Ser		266
	CCG Pro	CCT Pro	GCC Ala 45	Cys	TGA	CCC Pro	TAC	TCA Ser 50	Ser	TCT Ser	GGA Gly	CCC Pro	TGC Cys 55	Tr	GCA D Ala	ACG Thr		314
25	TGC Cys	TGG Trp 60	TGT Cys	GCG Ala	CAG Gln	CCA Pro	TCG Ser 65	TGC Cys	GGA Gly	GCC Ala	GCC Ala	ACC Thr	Cys	GCG Ala	CCA Pro	ACA Thr		362
	TGA * 75	CCA Pro	ACG Thr	TCT Ser	TCA Ser	TCG Ser 80	TGT Cys	CTC Leu	TGG Trp	CCG Pro	TGT Cys 85	Gln	ACC Thr	TTT Phe	TCG Ser	TGG Trp 90		410
30	CGC Arg	TGC Cys	TGG Trp	TCA Ser	TGC Cys 95	CCT Pro	GGA Gly	AGG Arg	CAG Gln	TCG Ser 100	CCG Pro	AGG Arg	TGG Trp	CCG Pro	GTT Val 105	. Thr	. :	458
					Arg										TCA Ser			506
	GCT	CCA	CTG	CCT	CCA	TCC	TGA	ACC	TGT	GCG	TCA	TCA	GCG	TGG	ACC	GCT		554
10																		

SUBSTITUTE SHEET

	Ala	Pro	Leu 125	Pro	Pro	Ser	*	Thr 130		Ala	Ser	Ser	Ala 135		Thr	Ala	
5	ACT Thr	GGG Gly 140	Pro	TCT Ser	CCA Pro	GGC Gly	CCT Pro 145	Ser	GCT Ala	ACA Thr	AGC Ser	GCA Ala 150	Arg	TGA *	CTC Leu	AGC Ser	602
	GCA Ala 155	Trp	CCT Pro	TGG	TCA Ser	TGG Trp 160	Ser	GCC Ala	TGG Trp	CAT His	GGA Gly 165	Pro	TGT Cys	CCA Pro	TCC Ser	TCA Ser 170	650
10	TCT Ser	CCT Pro	TCA Ser	TTC Phe	CGG Arg 175	Ser	AGC Ser	TCA Ser	ACT Thr	GGC Gly 180	Thr	GGG Gly	ACC Thr	AGG Arg	CGG Arg 185	Pro	698
	CTT Leu	GGG Gly	GCG Ala	GGC Gly 190	Trp	ACC Thr	TGC Cys	CAA Gln	ACA Thr 195	ACC Thr	TGG Trp	CCA Pro	ACT Thr	GGA Gly 200	CGC Arg	CCT	746
15	GGG Gly	AGG Arg	AGG Arg 205	ACT	TTT	GGG Gly	AGC Ser	CCG Pro 210	Thr	TGA	ATG Met	CAG Gln	AGA Arg 215	Thr	GTG Val	ACT Thr	794
		GCC Ala 220						Pro							GCT Ala	TCT Ser	842
20															ACC Thr		890
															CCG Pro 265		938
25															ACA Thr	CCA Pro	986
		Cys													CCC Pro		1034
30	_														TCA Ser		1082
															CTC Leu		1130
35															TCT (Ser 345		1178

_		G GC r Al	T GGO a Gly	CTA Y Leu 350	• ••••	CCT Pro	CAC His	TCA Sei	ACC Thi	Pro	TCA Se	TCT Sea	ATG	CCT Pro 360	Se	ACG Thr	1226
5			365	5		, -,-		370)	cys	rri	o GI	37!	a Ala 5	Thi	TCT Ser	
		CCC Pro 380		CGC Arg	CGG Arg	TGG	λGλ Arg 385	nr d	TGA	ACA Thr	TCA Ser	GCA Ala 390	Met	AGC Sex	TCA Sea	TCT Ser	1322
10	CCI		ACC Thr	AAG Lys	ACA Thr	TCG Ser 400	TCT Ser	TCC	ACA Thr	Arg	Lys 405	Ser	CAG Glr	CTG Leu	CCT	ACA Thr 410	1370
	TCC	ACA Thr	TGA	TGC Cys	CCA Pro 415	ACG Thr	CCG Pro	TTA Leu	CCC Pro	CCG Pro 420	GCA Ala	ACC Thr	GGG Gly	AGG Arg	TGG Trp 425	Thr	1418
15	ACG Thr	ACG Thr	AGG Arg	AGG Arg 430	AGG Arg	GTC Val	CTT Leu	TCG Ser	ATC Ile 435	GCA Ala	TGT Cys	TCC Ser	λGλ Arg	TCT Ser 440	ATC Ile	AGA Arg	1466
	CGT Arg	CCC Pro	CAG Gln 445	ATG Met	GTG Val	ACC Thr	CTG Leu	TTG Leu 450	CTG Leu	AGT Ser	CTG Leu	TCT Ser	GGG Gly 455	AGC Ser	TGG Trp	ACT	1514
20	GCG Ala	AGG Arg 460	Gly	AGA Arg	TTT Phe	Leu	TAG . 465	ACA Thr	AAA Lys	TAA *	CAC His	CTT Leu 470	TCA Ser	CCC Pro	CGA Arg	ATG Met	1562
	GAT Asp 475	TCC Ser	ATT Ile	AAA (Lys	Pen	CAT : His 480	TAA (GAA Glu	CCC Pro	TCA '	TGG Trp 485	ATC '	IGC Cys	ATA /	ACC Thr	GCA Ala 490	1610
25	CAG Gln	ACA Thr	CTG . Leu	inr	AGC I	ACG (CAC A	ACAC	ACGC.	AA A	raca [.]	TGCC	T TT	CAGT	GCTG		1661
	CTCC	TTAT	CA TO	GTGT	rcrg:	r gt/	AGTA	CTC	GTG:	rgcti	AGA A	ACTC	ACCA	TG A	rgtc	AGTCG	1721
	AGAT					C TC											1771
0	(2)	INFO	RMAT:	ION I	FOR S	SEQ 1	ED NO	0:2:			•			·			
		(i) Si	(A) (B)	LENC	CHARI TH: E: all LOGY	497 ino	ami	no ad	cids						.·	

SUBSTITUTE SHEET

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

-		(X 1)	SEQU.	LIICL	D L D			. 42,	2		- •				
<i>:</i>	Cys 1	Cys	Arg	Gln	Ala 5	Ala	Thr	Ala	Pro	Arg 10	Thr	Arg	Gly	Ser	Ser 15	Leu
5	Tyr	Thr		Ser 20	Trp	Arg	Arg	Gly	Thr 25		Trp	Gly	A·la	Arg 30	Arg	Gly
	His	Arg	His 35	Trp	Gly	Pro	His	Arg 40	Trp	Ser	Pro	Pro	Ala 45	Cys	*	Pro
	Tyr	Ser 50	Ser	Ser	Gly	Pro	Cys 55	Trp	Ala	Thr	Cys	Trp 60	Cys	Ala	Gln	Pro
10	Ser 65	Cys	Gly	Ala	Ala	Thr 70	Cys	Ala	Pro	Thr	* 75	Pro	Thr	Ser	Ser	Ser 80
•	Cys	Leu	Trp	Pro	Cys 85	Gln	Thr	Phe	Ser	Trp 90	Arg	Cys	Trp	Ser	Cys 95	Pro
·	Gly	Arg	Gln	Ser 100	Pro	Arg	Trp	Pro	Val 105		Gly	Pro	Leu	Glu 110	Arg	Ser
15	Ala	Thr	Ser 115	Gly	Trp	Pro	Ser	Thr 120	Ser	Cys	Ala	Pro	Leu 125	Pro	Pro	Ser
	*	Thr 130	Cys	Ala	Ser	Ser	Ala 135	Trp	Thr	Ala	Thr	Gly 140	Pro	Ser	Pro	Gly
20	Pro 145		Ala	Thr	Ser	Ala 150	Arg	*	Leu	Ser	Ala 155	Trp	Pro	Trp	Ser	Trp 160
20	Ser	Ala	Trp	His	Gly 165	Pro	Cys	Pro	Ser	Ser 170	Ser	Pro	Ser	Phe	Arg 175	Ser
· .	Ser	Ser	Thr	Gly 180	Thr	Gly	Thr	Arg	Arg 185	Pro	Leu	Gly	Ala	Gly 190	Trp	Thr
25	Cys	Gln	Thr 195	Thr	Trp	Pro	Thr	Gly 200	Arg	Pro	Gly	Arg	Arg 205	Thr	Phe	Gly
	Ser	Pro 210	Thr	*	Met	Gln	Arg 215	Thr	Val	Thr	Pro	Ala 220	*	Ile	Glu	Pro
	Thr 225	Pro	Ser	Leu	Pro	Arg 230	Ser	Ser	Ala	Ser	Thr 235	Ser	Pro	Leu	Pro	Ser 240
30	*	Ser	*	Pro	Thr 245	Arg	Ala	Ser	Thr	Ala 250	Ser	Pro	Arg		Arg 255	Ser
	Ala	Gly	Phe	Pro 260	Pro	Trp	Arg	Gly	Pro 265	Gln	Ser	Thr	Arg	Arg 270	Ala	Ala
	Gly	Ala	Ala	Gln	Pro	Ala	Arg	Pro	Thr	Pro	Ala	Cys	Ala	Leu	Pro	Ser

275 280 285 Arg Arg Arg Pro Arg Phe Ser Arg Pro Cys Arg Ser Trp Gly Ser 295 5 Ser Cys Val Ala Gly Cys Pro Ser Ser Ser Leu Thr Ala Trp Ser Leu Ser Ala Val Asp Thr Leu Lys Ala Leu Arg Pro Ala Ser Pro Ala Ser 330 Val Arg Pro Pro Ser Thr Ser Ser Ser Gly Ser Ala Gly Leu Thr Pro 10 His Ser Thr Pro Ser Ser Met Pro Ser Thr Pro Thr Phe Arg Arg Cys 360 Leu Pro Ser Cys Trp Gly Ala Ala Thr Ser Ala Pro Ala Arg Arg Trp 370 Thr Ser Ala Met Ser Ser Ser Pro Thr Thr Lys Thr Ser Arg Arg 15 390 Ser Ser Thr Arg Lys Ser Gln Leu Pro Thr Ser Thr 405 Pro Leu Pro Pro Ala Thr Gly Arg Trp Thr Thr Thr Arg Arg Arg Val 425 20 Leu Ser Ile Ala Cys Ser Arg Ser Ile Arg Arg Pro Gln Met Val Thr 435 Leu Leu Leu Ser Leu Ser Gly Ser Trp Thr Ala Arg Gly Arg Phe Leu 455 Thr Lys His Leu Ser Pro Arg Met Asp Ser Ile Lys Leu His 465 470 25 Glu Pro Ser Trp Ile Cys Ile Thr Ala Gln Thr Leu Thr Ser Thr 490 His

30 (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 480 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

	(xi)	SEQU	JENCI	DES	CRIF	MOIT	ı: SI	Q II	NO:	3:						
5	Met 1	Leu	Pro	Pro	Gly 5	Ser	Asn	Gly	Thr	Ala 10	Tyr	Pro	Gly	Gln	Phe 15	Ala
	Leu	Tyr	Glņ	Gln 20	Leu	Ala	Gln	Gly	Asn 25	Ala	Val	Gly	Gly	Ser 30	Ala	Gly
	Ala	Pro	Pro 35	Leu	Gly	Pro	Ser	Gln 40	Val	Val	Thr	Ala	Cys 45	Leu	Leu	Thr
10	Leu	Leu 50	Ile	Ile	Trp	Thr	Leu 55	Leu	Gly	Asn	Val	Leu 60	Val	Cys	Ala	Ala
	Ile 65	Val	Arg	Ser	Arg	His 70	Leu	Arg	Ala	Asn	Met 75	Thr	Asn	Val	Phe	Ile 80
	Val	Ser	Leu	Ala	Val 85	Ser	Asp	Leu	Phe	Val 90	Ala	Leu	Leu	Val	Met 95	Pŗo
15	Trp	Lys	Ala	Val	Ala	Glu	Val	Ala	Gly 105	Tyr	Trp	Ala	Phe	Gly 110	Ala	Phe
	Gly	Ala	Phe 115	Cys	Asp	Val	Trp	Val 120	Ala	Phe	Asp	Ile	Met 125	Cys	Ser	Thr
20	Ala	Ser 130		Leu	Asn	Leu	Cys 135		Ile	Ser	Val	Asp 140	Arg	Tyr	Trp	Ala
	Ile 145		Arg	Pro	Phe	Arg 150	Tyr	Lys	Arg	Lys	Met 155	Thr	Gln	Arg	Met	Ala 160
	Leu	Val	Met	Val	Gly 165	Leu	Ala	Trp	Thr	Leu 170	Ser	Ile	Leu	Ile	Ser 175	Phe
25	Ile	Pro	Val	Gln 180		Asn	Trp	His	Arg 185	Asp	Ğln	Ala	Ala	Ser 190	Trp	Gly
	Gly	Leu	Asp 195	Leu	Pro	Asn	Asn	Leu 200	Ser	Asn	Glu	Tyr	Pro 205	Glu	Arg	Arg
	Phe	Gly 210		Arg	Pro	Phe	Asx 215	Asn	Ser	Arg	Asn	Val 220	Phe	Asp	Asp	Leu
30	Asn 225		Tyr	Tyr	Ala	Ile 230	Asp) Asp	Asp	Leu	1le 235	Asp	Gly	Tyr	Ile	240
	Asx	Ser	Ile	Met	Ile 245	Asx	Туг	Tyr	Týr	Thr 250	: Ile	Tyr	Thr	Ile	Ser 255	Trp
	Asx	Trp	Ile	Thr 260	Thr	Ile	. Asp) Asp	Leu 265	Arç	j .Thr	Ser	Ser	270	His	Ser

	Trp) Asp	Val 275	Thr	Asp	Asp	Ser	Ser 280	Val	Ser	Pro	Phe	Tyr 285		Leu	Thr
	Ser	Asp 290	Ile	Lys	Lys	Arg	Tyr 295	Lys	Asx	Leu	Lys	Tyr 300	Leu	Asp	Asx	Ile
5	Met 305	His	Asx	Gly	Asx	Val 310	Val	Glu	Leu	Pro	Gly 315	Gly	Ile	Leu	Asn	Val 320
	Met	Asx	Pro	Gly	Val 325	Asp	His	His	Pro	Arg 330	His	Pro	Pro	Ser	His 335	Gly
	Pro	Val	Asx	Asp 340	Arg	Tyr	Tyr	Gly	Phe 345	Asx	Gly	Asx	Glu	Gly 350		Glu
10	Ser	Asn	Asp 355	Asp	Leu	Asn	Pro	Asx 360	Ile	Tyr	Ser	Gly	Asn 365	Ser	Phe	Gly
	Trp	Lys 370	Asx	Gly	Ser	Trp	Leu 375	Leu	His	Val	Asp	His 380	Gly	Val	Asp	Thr
15	Tyr 385	Pro	Asx	Arg	Tyr	Asx 390	Asn	Ile	Asp	Asn	Arg 395	Leu	Ile	Asp	Tyr	Asn 400
	Trp	Phe	Ile	Asx	Gly 405	His	Lys	Arg	Ile	Ser 410	Ser	Ser	Tyr	Ile	His 415	Met
	Met	Pro	Asn	Ser 420	Asx	Tyr	Pro	His	Asn 425	Thr	Arg	Asx	Phe	Asn 430	Phe	Arg
 20	Arg	Arg	His 435	Pro	Gly	Phe	Thr	Met 440	Gly	Trp	Ile	Tyr	Trp 445	Tyr	Asp	Pro
	Phe	His 450	Phe	Pro	Asx	Ser	Arg 455	Asp	Asx	Glu	Arg	Leu 460	Phe	Val	Arg	His
	Arg 465	Ile	Asp	Leu	Phe	Lys 470	Ile.	Tyr	Pro	Gly	Tyr 475	Pro	Asn	His	Gly	His 480

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 484 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: peptide
 - (vii) IMMEDIATE SOURCE: (B) CLONE: GL-39

	(xi)	SEQU	JENCI	E DES	SCRII	PTIO	v: SI	EQ II) NO:	: 4 :		٠.			·	
	Met 1	Leu	Pro	Pro	Arg 5	Ser	Asn	Gly	Thr	Ala 10	Tyr	Pro	Gly	Gln	Leu 15	Ala
_, 5	Leu	Tyr	Gln	Gln 20	Leu	Ala	Gln	Gly	Asn 25	Ala	Val	Gly	Ġly	Ser 30	Ala	Gly
	Ala	Pro	Pro	Leu	Gly	Pro	Val	Gln 40	Val	Val	Thr	Ala	Cys 45	Leu	Leu	Thr
10	Leu	Leu 50	Ile	Ile	Trp	Thr	Leu 55	Leu	Gly	Asn	Val	Leu 60	Met	Ser	Ala	Ala
.0	Ile 65		Arg	Thr	Arg	His 70	Leu	Arg	Ala	Lys	Met 75	Thr	Asn	Val	Phe	Ile 80
	Val	Ser	Leu	Ala	Val 85	Ser	Asp	Leu	Phe	Val 90	Ala	Leu	Leu	Val	Met 95	Pro
15	Trp	Lys	Ala	Val 100		Glu	Val	Ala	Gly 105	Tyr	Trp	Pro	Phe	Glu 110	Ala	Phe
	Cys	Asp	Val 115	Trp	Val	Ala	Phe	Asp 120	Ile	Met	Cys	Ser	Thr 125	Ala	Ser	Ile
	Leu	Asn 130	Leu	Cys	Val	Ser	Val 135	Ile	Ser	Val	Gly	Arg 140	Tyr	Trp	Ala	Ile
20	Ser 145	Arg	Pro	Phe	Arg	Tyr 150	Glu	Arg	Lys	Met	Thr 155	Gln	Arg	Met	Ala	Leu 160
	Val	Met	Val	Gly	Pro 165	Ala	Trp	Thr	Leu	Ser 170	Ser	Leu	Ile	Ser	Phe 175	Ile
	Pro	Val	Gln	Leu 180	Asn	Trp	His	Arg	Asp 185		Ala	Val	Ser	Gly 190	Gly	Leu
25	Asp	Leu	Pro 195	Asn	Asn	Leu	Ser	Asn 200	Glu	Tyr	Pro	Glu	Arg 205	Arg	Ser	Asx
	Glu	Arg 210	Pro	Phe	Asx	Thr	Ser 215	Arg	Asn	Val	Phe	Asp 220	Asp	Leu	Asn	Thr
30	Tyr 225	Tyr	Ser	Ile	Asp	Asp 230	Asp	Leu	Ile	Asn	Gly 235	Tyr	Ile	Pro	Met	Ser 240
	Ile	Met	Ile	Asx	Tyr 245	Tyr	Tyr	Thr	Ile	Tyr 250	Thr	Ile	Ser	Trp	Asx 255	Trp
	Ile	Val	Thr	Ile 260	Asp	Asp	Leu	Arg	Thr 265	Ser	Ser	Arg	His	Asx 270	Trp	Asp
3ა	Val	Thr	Asp	Asp	Ser	His	Val	Tyr	Pro	Thr	Ser	Leu	Arg	Phe	Ser	Ile

			٠	275	5		•		280)				285	i		
5		Lys	290	Arç	Tyr	: Lys	Asx	Leu 295	Lys	Pro	Leu) Asp	Asx 300	: Ile	Met	His	A s:
ອ		Gly 305	KaA' Y	(Val	. Val	Glu	Leu 310	Pro	Gly	Gly	Ile	Leu 315	Asn	Val	Met	Asx	Pro
		Gly	Thr	Asp	His	His 325	Pro	Lys	His	Pro	Pro 330	Ser	Gly	His	Pro	Lys 335	Gly
10		Pro	Pro	Ala	Gly 340	Phe	Pro	Cys	Val	Ser 345	Glu	Thr	Thr	Phe	Asp 350	Val	Phe
		Ile	Trp	Phe 355	Cys	Trp	Ala	Asn	Ser 360	Ser	Leu	Asn	Pro	Val 365	Tyr	Ala	Phe
		Asn	Ala 370	Asp	Phe	Trp	Lys	Val 375	Phe	Ala	Gln	Leu	Leu 380	Gly	Cys	Ser	His
15		Val 385	Cys	Ser	Arg	Thr	Pro 390	Val	Glu	Thr	Val	Asn 395	Ile	Ser	Asn	Glu	Leu 400
		Ile	Ser	Tyr	Asn	Gln 405	Asp	Met	Val	Phe	His 410	Lys	Glu	Ile	Ala	Ala 415	Ala
		Cys	Ile	His	Met 420	Met	Pro	Asn	Ala	Val 425	Pro	Pro	Gly	Asp	Gln 430	Glu	Val
20		Asp	Asn	Asp 435	Glu	Glu	Glu	Glu	Ser 440	Pro	Phe	Asp	Arg	Met 445	Ser	Gln	Ile
		Tyr	Gln 450	Thr	Ser	Pro	Asp	Gly 455	Asp	Pro	Val	Ala	Glu 460	Ser	Val	Glu	Leu
25		Asp 465	Cys	Glu	Gly	Glu	Ile 470	Ser	Leu	Asp	Lys	Ile 475	Thr	Pro	Phe	Thr	Pro 480
		Asn	Gly	Phe	His		•						٠				
•	(2)	INFOR	ITAM	ON F	OR S	EQ I	D NO	:5:	•								
30		(i)	(A)	LEN	GTH:	RACT 446 mino	ami	no a				-					

(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(Vii) IMMEDIATE SOURCE: (B) CLONE: D1

(xi)	SEQUENCE DESCRIPTION:	SEQ	ID	NO:5:
------	-----------------------	-----	----	-------

5	Met 1	Arg	Thr	Leu	Asn 5	Thr	Ser	Ala	Met	Asp 10	Gly	Thr	Gly	Leu	Val 15	Val
	Glu	Arg	Asp	Phe 20	Ser	Val	Arg	Ile	Leu 25	Thr	Ala	Cys	Phe	Leu 30	Ser	Leu
	Leu	Ile	Leu 35	Ser	Thr	Leu	Leu	Gly 40	Asn	Thr	Leu	Val	Cys 45	Ala	Ala	Val
10	Ile	Arg 50	Phe	Arg	His	Leu	Arg 55	Ser	Lys	Val	Thr	Asn 60	Phe	Phe	Val	Ile
	Ser 65	Leu	Ala	Val	Ser	Asp 70	Leu	Leu	Val	Ala	Val 75	Leu	Val	Met	Pro	Trp 80
15	Lys	Ala	Val	Ala	Glu 85	Ile	Ala	Gly	Phe	Trp 90	Pro	Phe	Gly	Şer	Phe 95	Cys
	Asn	Ile	Trp	Val 100	Ala	Phe	Asp	Ile	Met 105	Cys	Ser	Thr	Ala	Ser 110	Ile	Leu
	Asp		Cys 115		Ile	Ser	Val	Asp 120	Arg	Tyr	Trp	Ala	Ile 125	Ser	Ser	Pro
. 20	Phe	Arg 130	Tyr	Glu	Arg	Lys	Met 135	Thr	Pro	Lys	Ala	Ala 140	Phe	Ile	Leu	Ile
•	Ser 145	Val	Ala	Trp	Thr	Leu 150	Ser	Val	Leu	Ile	Ser 155	Phe	Ile	Pro	Val	Gln 160
	Leu	Ser	Trp	His	Lys 165	Ala	Lys	Pro	Thr	Ser 170	Pro	Ser	Asp	Gly	Asn 175	Ala
25	Thr	Ser	Leu	Ala 180	Glu	Thr	Ile	Asp	Asn 185	Cys	Asp	Ser	Ser	Leu 190	Ser	Arg
	Thr	Tyr	Ala 195	Ile	Ser	Ser	Ser	Val 200	Ile	Ser	Phe	Tyr	Ile 205	Pro	Val	Ala
	Ile	Met 210	Ile	Val	Thr	Tyr	Thr 215	Arg	Ile	Tyr	Arg	Ile 220	Ala	Gln	Lys	Gln _.
30	Ile 225	Arg	Arg	Ile	Ala	Ala 230	Leu	Glu	Arg	Ala	Ala 235	Val	His	Ala	Lys	Asn 240
	Cys	Gln	Thr	Thr	Thr 245	Gly	Asn	Gly	Lys	Pro 250	Val	Glu	Cys	Ser	Gln 255	Pro
35	Glu	Ser	Ser	Phe 260	Lys	Met	Ser		Lys 265	Arg	Glu	Thr	Lys	Val 270	Leu	Lys

10					. Ile			200	,				285		•	
•					Cys		290					300				
• .					Asp	310					315					320
15		٠			Ser 325					330					335	
	Phe	Arg	Lys	Ala 340	Phe	Ser	Thr	Leu	Leu 345	Gly	Cys	Tyr	Arg	Leu 350	Cys	Pro
			J J J	•	Ala			360					365	•		
20	Ala	Met 370	Phe	Ser	Ser	His	His 375	Glu	Pro	Arg	Gly	Ser 380	Ile	Ser	Lys	Glu
	Cys 385	Asn	Leu	Val	Tyr	Leu 390	Ile	Pro	His	Ala	Val 395	Gly	Ser	Ser	Glu	Asp 400
25	Leu	Lys	Lys	Glu	Glu 405	Ala	Ala	Gly	Ile	Ala 410	Arg	Pro	Leu	Glu	Lys 415	Leu
25	Ser	Pro	Ala	Leu 420	Ser	Val	Ile	Leu	Asp 425	Tyr	Asp	Thr	Asp	Val 430	Ser	Leu
·. ·	Glu	Lys	Ile 435	Gln	Pro	Ile	Thr	Gln 440	Asn	Gly	Gln		Pro 445	Thr		

.30

15

What is claimed is:

- 1. An isolated nucleic acid molecule encoding a human dopamine D_1 receptor.
- 2. An isolated DNA molecule of claim 1.
- 3. A cDNA molecule of claim 2 encoding a human dopamine D₁
 10 receptor having a coding sequence substantially the same as the coding sequence shown in Figure 1.
 - 4. An isolated protein which is a human dopamine \mathbf{D}_1 receptor.
 - 5. An isolated protein having substantially the same amino acid sequence as the amino acid sequence shown in Figure 1.
- 20 6. A vector comprising the DNA molecule of claim 2.
 - 7. A plasmid of claim 6.
- 8. A plasmid of claim 7 designated pdopD1-GL-30 (ATCC Accession No. 40839).
 - 9. A vector of claim 6 adapted for expression in a bacterial cell which comprises the regulatory elements necessary for expression of the DNA in the bacterial cell so located relative to the DNA encoding the dopamine D_1 receptor as to permit expression thereof.
 - 10. A vector of claim 6 adapted for expression in a yeast

cell which comprises the regulatory elements necessary for expression of the DNA in the yeast cell so located relative to the DNA encoding the dopamine D_1 receptor as to permit expression thereof.

5

11. A vector of claim 6 adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the DNA in the mammalian cell so located relative to the DNA encoding the dopamine D_1 receptor as to permit expression thereof.

10

15

12. A plasmid of claim 7 adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the DNA in the mammalian cell so located relative to the DNA encoding the dopamine D₁ receptor as to permit expression thereof.

20

13. A plasmid comprising the cDNA molecule of claim 3 adapted for expression in a mammalian cell which comprises the regulatory elements necessary for expression of the DNA in the mammalian cell so located relative to the cDNA molecule as to permit expression thereof.

25

- 14. A mammalian cell comprising the plasmid of claim 7.
 - 15. An Ltk- cell comprising the plasmid of claim 7.

30

16. An Ltk- cell comprising the plasmid of claim 13.

17. A method for determining whether a ligand not known to be capable of binding to a human dopamine D_1 receptor can bind to a human dopamine D_1 receptor which

15

20

25

30

comprises contacting a mammalian cell comprising an isolated DNA molecule encoding a human dopamine D_1 receptor with the ligand under conditions permitting binding of ligands known to bind to a dopamine D_1 receptor, detecting the presence of any of the ligand bound to a human dopamine D_1 receptor, and thereby determining whether the ligand binds to a human dopamine D_1 receptor.

- 10 18. The method of claim 17 wherein the mammalian cell is nonneuronal in origin.
 - 19. A method of claim 18, wherein the mammalian cell nonneuronal in origin is an Ltk- cell.
 - 20. A ligand detected by the method of claim 17.
 - 21. A method of screening drugs to identify drugs which specifically interact with, and bind to, the human dopamine D_1 receptor on the surface of a cell which comprises contacting a mammalian cell comprising an isolated DNA molecule encoding a human dopamine D_1 receptor with a plurality of drugs, determining those drugs which bind to the mammalian cell, and thereby identifying drugs which specifically interact with, and bind to, a human dopamine D_1 receptor.
 - 22. The method of claim 21 wherein the mammalian cell is nonneuronal in origin.
 - 23. The method of claim 22 wherein the mammalian cell nonneuronal in origin is an Ltk- cell.

15

20

25

- 24. A pharmaceutical composition comprising a drug identified by the method of claim 21 and a pharmaceutically acceptable carrier.
- 25. A nucleic acid probe comprising a nucleic acid molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence included within the sequence of a nucleic acid molecule encoding a human dopamine D₁ receptor.
 - 26. A DNA probe comprising a DNA molecule of at least 15 nucleotides capable of specifically hybridizing with a sequence included within the sequence shown in Figure 1.
 - 27. A method of detecting expression of a dopamine D_1 receptor on the surface of a cell by detecting the presence of mRNA coding for a dopamine D_1 receptor which comprises obtaining total mRNA from the cell and contacting the mRNA so obtained with the nucleic acid probe of claim 25 under hybridizing conditions, detecting the presence of mRNA hybridized to the probe, and thereby detecting the expression of the dopamine D_1 receptor by the cell.
 - 28. An antisense oligonucleotide having a sequence capable of binding specifically with any sequences of an mRNA molecule which encodes a human dopamine D_1 receptor so as to prevent translation of the mRNA molecule.
 - 29. An antisense oligonucleotide having a sequence capable of binding specifically with any sequences of the cDNA molecule of claim 3.

10

15

- 30. An antisense oligonucleotide of claim 28 comprising chemical analogues of nucleotides.
- 31. A pharmaceutical composition comprising an amount of the oligonucleotide of claim 28 effective to reduce expression of a human dopamine D_1 receptor by passing through a cell membrane and binding specifically with mRNA encoding a human dopamine D_1 receptor in the cell so as to prevent its translation and a pharmaceutically acceptable hydrophobic carrier capable of passing through a cell membrane.
- 32. A pharmaceutical composition of claim 31, wherein the oligonucleotide is coupled to a substance which inactivates mRNA.
- 33. A pharmaceutical composition of claim 32, wherein the substance which inactivates mRNA is a ribozyme.
- 20 34. A pharmaceutical composition of claim 31, wherein the pharmaceutically acceptable hydrophobic carrier capable of passing through a cell membrane comprises a structure which binds to a receptor specific for a selected cell type and is thereby taken up by cells of the selected cell type.
 - 35. A method of treating abnormalities which are alleviated by reduction of expression of a dopamine D_1 receptor which comprises administering to a subject an amount of the pharmaceutical composition of claim 31 effective to reduce expression of the dopamine D_1 receptor by the subject.

10

15

- 36. A method of treating an abnormal condition related to an excess of dopamine D_1 receptor activity which comprises administering to a subject an amount of the pharmaceutical composition of claim 31 effective to reduce expression of the dopamine D_1 receptor by the subject.
- 37. The method of claim 36 wherein the abnormal condition is dementia.
- 38. The method of claim 36 wherein the abnormal condition Parkinson's disease.
- 39. The method of claim 36 wherein the abnormal condition is abnormal cognitive functioning.
 - 40. The method of claim 36 wherein the abnormal condition is schizophrenia.
- 20 41. The method of claim 36 wherein the abnormal condition is tardive dyskinesia.
 - 42. The method of claim 36 wherein the abnormal condition is renal failure.
 - 43. The method of claim 36 wherein the abnormal condition is failure of vascular control.
- 44. The method of claim 36 wherein the abnormal condition is abnormal circadian rhythms.
 - 45. The method of claim 36 wherein the abnormal condition is abnormal visual activity.

- 46. An antibody directed to a human dopamine D₁ receptor.
- 47. A monoclonal antibody directed to an epitope of a human dopamine D_1 receptor present on the surface of a cell and having an amino acid sequence substantially the same as an amino acid sequence for a cell surface epitope of the human dopamine D_1 receptor included in the amino acid sequence shown in Figure 1.
- 10 48. A pharmaceutical composition which comprises an amount of the antibody of claim 46 effective to block binding of naturally occurring ligands to the dopamine D_1 receptor and a pharmaceutically acceptable carrier.
- 15 49. A method of treating abnormalities which are alleviated by reduction of expression of a human dopamine D₁ receptor which comprises administering to a subject an amount of the pharmaceutical composition of claim 48 effective to block binding of naturally occurring ligands to the dopamine D₁ receptor and thereby alleviate abnormalities resulting from overexpression of a human dopamine D₁ receptor.
 - 50. A method of treating an abnormal condition related to an excess of dopamine D₁ receptor activity which comprises administering to a subject an amount of the pharmaceutical composition of claim 48 effective to block binding of naturally occurring ligands to the dopamine D₁ receptor and thereby alleviate the abnormal condition.
 - 51. The method of claim 50 wherein the abnormal condition is dementia.

25

15

- 52. The method of claim 50 wherein the abnormal condition Parkinson's disease.
- 53. The method of claim 50 wherein the abnormal condition is abnormal cognitive functioning.
 - 54. The method of claim 50 wherein the abnormal condition is schizophrenia.
- 10 55. The method of claim 50 wherein the abnormal condition is tardive dyskinesia.
 - 56. The method of claim 50 wherein the abnormal condition is renal failure.
 - 57. The method of claim 50 wherein the abnormal condition is failure of vascular control.
 - 58. The method of claim 50 wherein the abnormal condition is abnormal circadian rhythms.
 - 59. The method of claim 50 wherein the abnormal condition is abnormal visual activity.
- 25 60. A method of detecting the presence of a human dopamine D₁ receptor on the surface of a cell which comprises contacting the cell with the antibody of claim 46 under conditions permitting binding of the antibody to the receptor, detecting the presence of the antibody bound to the cell, and thereby detecting the presence of a human dopamine D₁ receptor on the surface of the cell.
 - 61. A transgenic nonhuman mammal expressing DNA encoding a

10

15

25

human dopamine D₁ receptor.

- 62. A transgenic nonhuman mammal expressing DNA encoding a human dopamine D_1 receptor so mutated as to be incapable of normal receptor activity, and not expressing native dopamine D_1 receptor.
- 63. A transgenic nonhuman mammal whose genome comprises antisense DNA complementary to DNA encoding a human dopamine D_1 receptor so placed as to be transcribed into antisense mRNA which is complementary to mRNA encoding a dopamine D_1 receptor and which hybridizes to mRNA encoding a dopamine D_1 receptor thereby reducing its translation.
- 64. The transgenic nonhuman mammal of any of claims 61, 62, or 63, wherein the DNA encoding a human dopamine D_1 receptor additionally comprises an inducible promoter.
- 20 65. The transgenic nonhuman mammal of any of claims 61, 62, or 63, wherein the DNA encoding a human dopamine D_1 receptor additionally comprises tissue specific regulatory elements.
 - 66. A transgenic mouse of any of claims 61, 62, or 63.
- 67. A method of determining the physiological effects of expressing varying levels of human dopamine D₁ receptors which comprises producing a transgenic nonhuman animal whose levels of human dopamine D₁ receptor expression are varied by use of an inducible promoter which regulates human dopamine D₁ receptor expression.

10

15

20

- 68. A method of determining the physiological effects of expressing varying levels of human dopamine D_1 receptors which comprises producing a panel of transgenic nonhuman animals each expressing a different amount of human dopamine D_1 receptor.
- 69. A method for identifying a substance capable alleviating the abnormalities resulting overexpression of a human dopamine D_1 receptor comprising administering a substance to the transgenic nonhuman mammal of claim 61 and determining whether the substance alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal as a result of overexpression of a human dopamine D_1 receptor.
- 70. A pharmaceutical composition comprising an amount of a substance effective to alleviate the abnormalities resulting from overexpression of a human dopamine D_1 receptor and a pharmaceutically acceptable carrier.
- 71. A method for treating the abnormalities resulting from overexpression of a human dopamine D_1 receptor which comprises administering to a subject an amount of the pharmaceutical composition of claim 70 effective to alleviate the abnormalities resulting from overexpression of a human dopamine D_1 receptor.
- 72. identifying a substance capable of A method for 30 alleviating the abnormalities resulting underexpression of a human dopamine D₁ receptor comprising administering the substance transgenic nonhuman mammal of either of claims 62 or 63

and determining whether the substance alleviates the physical and behavioral abnormalities displayed by the transgenic nonhuman mammal as a result of underexpression of a human dopamine D_1 receptor.

5

73. A pharmaceutical composition comprising an amount of a substance effective to alleviate abnormalities resulting from underexpression of dopamine D_1 receptor and a pharmaceutically acceptable carrier.

10

74. A method for treating the abnormalities resulting from underexpression of a human dopamine D_1 receptor which comprises administering to a subject an amount of the pharmaceutical composition of claim 73 effective to alleviate the abnormalities resulting from underexpression of a human dopamine D_1 receptor.

15

75. A method for diagnosing in a subject a predisposition to a disorder associated with the expression of a specific human dopamine D_1 receptor allele which comprises:

20

a. isolating DNA from victims of the disorder;

25

b. digesting the isolated DNA of step a with at least one restriction enzyme;

c. electrophoretically separating the resulting DNA fragments on a sizing gel;

30

d. contacting the resulting gel with a nucleic acid probe capable of specifically hybridizing to DNA encoding a human dopamine D_1 receptor and labelled

with a detectable marker;

- e. detecting labelled bands on the gel which have hybridized to the DNA encoding a human dopamine D₁ receptor labelled with a detectable marker to create a band pattern specific to the DNA of victims of the disorder;
- f. preparing the subject's DNA by steps a-e to produce detectable labelled bands on a gel; and
- g. comparing the band pattern specific to the DNA of victims of the disorder of step e and the subject's DNA of step f to determine whether the patterns are the same or different and to diagnose thereby predisposition to the disorder if the patterns are the same.
- 76. The method of claim 75 wherein a disorder associated with the expression of a specific human dopamine D_1 receptor allele is diagnosed.
 - 77. A method of preparing the isolated dopamine D_1 receptor of claim 4 which comprises:
 - a. inducing cells to express dopamine D₁ receptor;
 - recovering the receptor from the resulting cells;
 and
 - c. purifying the receptor so recovered.
 - 78. A method of preparing the isolated dopamine D_1 receptor

10

5

15

20

25

of claim 4 which comprises:

- a. inserting nucleic acid encoding dopamine D_1 receptor in a suitable vector;
- b. inserting the resulting vector in a suitable host cell;
- c. recovering the receptor produced by the resulting cell; and
- d. purifying the receptor so recovered.

-130 -110 -90 GCAGCTCATGGTGACCCCCCTCTGGGCTCGAGGGTCCCTTGGCTGAGGGGGGCGCATCCTC -70 -50 -30 GGGGTGCCGATGGGGCTGCCTGGGGGTCGCAGGGCTGAAGTTGGGACCGCGCACAGACCG -10 10 30 CCCCTGCAGTCCAGCCCAAATGCTGCCGCCAGGCAGCAACGGCACCGCGTACCCGGGGCA MLPPGSNGTAYP 50 70 90 GTTCGCTCTATACCAGCAGCTGGCGCAGGGGAACGCCGTGGGGGGCTCGGCGGGGCACC F A L Y Q Q L A Q G N A V G G S A G A 110 130 150 GCCACTGGGGCCCTCACAGGTGGTCACCGCCTGCCTGACCCTACTCATCATCTGGAC P L G P S Q V V T A C L L T L L I I W 170 190 210 CCTGCTGGGCAACGTGCTGGTGTGCGCAGCCATCGTGCGGAGCCGCCACCTGCGCGCCAA LLGNVLVCAAIVRSRHLRA 230 250 270 CATGACCAACGTCTTCATCGTGTCTCTGGCCGTGTCAGACCTTTTCGTGGCGCTGCTGGT M T N V F I V S L A V S D L

FIGURE 1A

SUBSTITUTE SHEET

2/10 290 310 330 CATGCCCTGGAAGGCAGTCGCCGAGGTGGCCGGTTACTGGGGCCTTTGGAGCGTTCTGCGA M P W K A V A E V A G Y W A F G A F C D 350 370 390 CGTCTGGGTGGCCTTCGACATCATGTGCTCCACTGCCTCCATCCTGAACCTGTGCGTCAT V W V A F D I M C S T A S I L N L C V I 410 430 450 CAGCGTGGACCGCTACTGGGCCATCTCCAGGCCCTTCCGCTACAAGCGCAAGATGACTCA S V D R Y W A I S R P F R Y K R K M T Q 470 490 510 GCGCATGGCCTTGGTCATGGCCTGGCATGGACCTTGTCCATCCTCATCTCAT RMALVMVGLAWTLSILISFI 530 550 570 P V Q L N W H R D Q A A S W G G L D 590 610 630 AAACAACCTGGCCAACTGGACGCCCTGGGAGGAGGACTTTTGGGAGCCCGACGTGAATGC NNLANW PWEEDFWEPDVNA

690 .

670

FIGURE 1B

SUBSTITUTE SHEET

ENCDSSLNRTYAISSSLISF 710 .730 750 CTACATCCCCGTTGCCATCATGATCGTGACCTACACGCGCATCTACCGCATCGCCCAGGT Y I P V A I M I V T Y T R I Y R I A Q V 770 790 GCAGATCCGCAGGATTTCCTCCCTGGAGAGGGCCGCAGAGCAGCCGCAGAGCTGCCGGAG Q I R R I S S L E R A A E H A Q S C R S 830 850 870 CAGCGCAGCCTGCGCCCGACACCAGCCTGCGCGCTTCCATCAAGAAGGAGACCAAGGT SAACAPDTSLRASIKKETKV 890 910 930 . LKTLSVIMGVFVCCWLPFFI 950 970 990 L N C M V P F C S G H P E G P P A 1010 1030 1050 CTGCGTCAGTGAGACCACCTTCGACGTCTTCGTCTGGTTCGGCTGGGCTAACTCCTCACT C V S E T T F D V F V W F G W A N S S L 1070 1090 1110

FIGURE 1C

SUBSTITUTE SHEET

CAA		CCGT	CAI	'CTA	TGC	CTI	'CAA	.CGC	CGA	CTT.	TCA	GAA	.GGT	G.11.	TGC	CCA	GCT(GCT(GGG
N	P	, v	I	Y	A	F	N	A	D	F	Q	K	V	F	A	Q	L	L	G
		113	0			-		1	150						11	70			
•					•	•			,•	. •			•						•
GTG	CA	GCCA	CTT	CTG	CTC	CCG	CAC	GCC	GGT	GGA	GAC	GGT	GAA	CAT	CAG	CAA	TGA	GCT	CAT
C	s	Н	F	С	S	R	T	P.	V	E	T	v	N	·ı	s	N	E	L	I,
		119	0					1	210						12	30	•		
	÷		•	•		•			•				•		•	•			•
CTC	CT	ACAA	CCA	AGA	CAT	CGI	CTT	CCA	.CAA	GGA	AAT	CGC	:AGC	TGC	CTA	CAT	CCA	CAT	GAT
s	Y	N	Q	D	I	v	F	H	K	E	I	A	A	A	Y	I	н	M	M
		125	0					. 1	.270						12	90			•
			•			•							•		, -				•
GCC	CAI	ACGC	CGT	TAC	ccc	CGG	CAA	.ccg	GGA	GGT	'GGA	CAA	LCGA	CGA	GGA	.GGA	.GGG	TCC	TTT
P	N		V	т	P	G	N		E				D.		E	É	G	P	F
		131	0					1	.330						13	50			
			_										•			•.			
CGA	ጥርረ	CAT	com.	CCA	CAT	פיזיטי	ጥሮል	.cac	стс	CCC	'AGA	тсс	TGA	ccc	TGI	TGC	TG?	GTC	TGT
D	R	M	F	0	T.	Y	0	T)	s	P	D	G	ם	P	v	A	E	s	v
ט			-	¥	_	•		-	.390	_	,		_	-	•	10			, -
		137	U						.390				•	•				•	•
			•		-	•		63 F	•	mmm		C 2 7	•	73 3 C	`	•	ירא נ		: - C A A
		AGCT																	•
W.	Ε	L			E	G	E				ָט	K	1				1	P	
		143	0	•				1	450				٠.		14	70			
			•			•			•				•			•			•
TGG	AT	rcça	TTA	AAC	TGC	'ATI	AAG	AAC	CCI	CAT	GGZ	YTC:	rgc?	ATA	ACCO	CAC	CAG	ACA	CTGA
G	F	Ħ	*																•
		149	0					1	510)					15	530			
			•					FIG	URE	1D									

CAAGCACGCACACACGCAAATACATGCCTTTCAGTGCTGCTCCTTATCATGTGTTCTG

1550

1570

1590

TGTAGTAGCTCGTGTGCTAGAACTCACCATGATGTCAGTCGAGATGCAGATCAGTGCATA

1610

1630

CTCAGTCAAGTATCAGCTACAGAGATGACAC

FIGURE 1E

6/10 Figure 2	7/10 Figure 2 cont'd 8/10 Figure 2 cont'd	9/10 Figure 2 cont'd 10/10 Figure 2	cont.d	10	
FIGURE 2	MLPPGSNGTAYPGQFALYQQLAQGN 25 MLPPRSNGTAYPGQLALYQQLAQGN 25 MRTLNTSA 8	AVGGSAGAPPLGPSQVVTACLLTLL 50 AVGGSAGAPPLGPVQVVTACLLTLL 50 MDGTGLVVERDFSVRILTACFLSLL 33	I I W T L L G N V L V C A A . I V R S R H L R A R 74 I I W T L L G N V L M S A A . I V R T R H L R A K 74 I L S T L L G M T L V C A A V I . R F R H L R S K 58	MTNVFIVSLAVSDLFVALLVMPWKA 99 WTNVFIVSLAVSDLFVALLVMPWKA 99 VTNFFVISLAVSDLLLVAVLVMPWKA 82	VAEVAGYWAFGAFCDVWVAFDIMCS 124 VAEVAGYWPFEAFCDVWVAFDIMCS 124 VAEIAGFWPFGSFCNIWVAFDIMCS 107
	GL-39 GL-39 D1	GL-30 GL-39 D1	GL-30 GL-39 D1	GL-30 GL-39 D1	GL-30 GL-39 D1

SUBSTITUTE SHEET

147	172	197	222
149	174	199	22 4
130	155	174	191
SILNLCV. ISVORYWAISRPFR 14 SILNLCVSVISVGRYWAISRPFR 14 SILDLCV. ISVORYWAISSPFR 13	77	997	
4 4 4	K K K	fe, fe, fe,	44
GL-30	GL-30	GL-30	GL-30
GL-39	GL-39	GL-39	GL-39
D1	D1	D1	D1

247	271	289	314	337
249	273	291	316	339
216	240	265	290	310
	IYRIAQV.QIRRISSLERAREHVQS IYRIAQV.QICRISSLERAREHVQS IYRIAQK.QIRRIAALERAAVHAKN 2	CRSSAACAPDTSLRASIK CRSSAGCTPDTSLRFSIK CQTTTGNGKPVECSQPESSFKMSFK	V C C W L P F F I V C C W L P F F I V C C W L P F F I	LNCMVPFC. SGHPEGPPAGFPCV.S 3 LNCMVPFCRSGHPKGPPAGFPCV.S 3 LNCILPFCGSG. ETQP. F.CIDS 3
GL-30	GL-30	GL-30	GL-30	GL-30
GL-39	GL-39	GL-39	GL-39	GL-39
D1	D1	D1	D1	D1

•		•	
362	385	410	431
363	386	411	
334	359	380	
			m m 0
GL-30	GL-30	GL-30	GL-30
GL-39	GL-39	GL-39	GL-39
D1	D1	D1	D1

455 457 424	477 480 447
GPFD.RMFQIYQTSPDGDPVAESVWSPFD.RMSQIYQTSPDGDPVAESV*AAGIARPLEKLSPALSVI	ELDCEGEISLDKITPFTPNGFH* ELDCEGEISLDKITPFTPNGFH* -LDYDTDVSLEKIQPITQNGQHPT*
GL-30 GL-39 D1	GL-30 GL-39 D1

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/04858

I. CLASSI	I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 4						
According to International Patent Classification (IPC) or to both National Classification and IPC IPC(5): 007H 15/12; C12N 15/00; C12P 21/06							
U.S. Cl: 536/27; 435/172.1, 172.3, 69.1, 320							
II. FIELDS SEARCHED							
Minimum Documentation Searched 7							
Classification	n System		Classification Symbols				
U.S. CI	:	536/27; 435/69.1, 172.1, 172	.3, and 320				
			r than Minimum Documentation ts are Included in the Fields Searched ⁸				
		nt search; Dialog	··				
	MENTS C	ONSIDERED TO BE RELEVANT	<u> </u>				
Category *	Citati	on of Document, 11 with indication, where ap	propriate, of the relevant passages 12	Relevant to Claim No. 13			
Y,P		, 5,053,337 (WEINSHANK <u>ET AL</u>)	01 October 1991,	1-3,6-9,25-27,77 78			
Y,P		, 5,030,570 (EREAKFIELD <u>ET AL</u>) ntire document.	09 July 1991,	1-3,6-9,25-27,77 78			
		•					
				·			
.							
			 . 9				
*Special categories of cited documents: 10 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "IV. CERTIFICATION "T" later document published after the international filing or priority date and not in conflict with the application cited to understand the principle or theory underly cited to understand the principle or theory underly cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step with document is combined with one or more other such document is combined with one or more other such document published after the international filing or priority date and not in conflict with the application determational filing and cited to understand the principle or theory underly cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step with document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such document member of the same patent family							
09 Octobe	Date of the Actual Completion of the International Search O9 October 1991 Date of Mailing of this International Search Report O 1 NOV 1991						
International	Searching	Authority	Signature of Authorized Officer	ine mossett for			
ISA/US_		·	Bradley L. Sisson				

Form PCT/ISA/210 (second sheet) (Rev.11-87)

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET							
Y	US, A, 4,703,035 (RIVIER <u>ET AL</u>) 27 Cctober 1987, see entire document.	1-3,6-9,25-27 77-78.					
	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1 national search report has not been established in respect of certain claims under Article 17(2) (a) for	or the following reasons:					
_	m numbers , because they relate to subject matter 12 not required to be searched by this Au						
2. Clair men	2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out 13, specifically:						
_	m numbers because they are dependent claims not drafted in accordance with the second a Rule 6.4(a).	nd third sentences of					
VI. X OE	DERVATIONS WHERE UNITY OF INVENTION IS LACKING 2 Institute of the state of the sta						
See	attached sheet.						
of th	all required additional search fees were timely paid by the applicant, this international search report one international application.						
2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:							
3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:							
	1-3, 6-9, 25-27, and 77-78						
— invit	all searchable claims could be searched without effort justifying an additional fee, the International is a payment of any additional fee. In Protest	searching Adminity did not					
Remark on Protest The additional search fees were accompanied by applicant's protest. Solution in the payment of additional search fees.							

Form PCT/ISA/210 (supplemental short (2) (Rev. 11-87

LACK OF UNITY

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-3, 6-19, 25-27, and, drawn to nucleic acid sequences, plasmids, vectors, expression systems, nucleic acid probe sequences, cell lines capable of producing recombinant protein, as well as methods directed to the production of said protein, classified in Class 435, subclasses 172.1, 172.3, 69.1, and 320.

Group II, claims 4, 5, and 20, drawn to protein, classified in class 530, subclasses 350 and 412.

Group III, claims 60, 67-69, 72, 75, and 76, drawn to methods of testing and detection, classified in class 435, subclass 6.

Group IV, claims 21-23, drawn to method of screening drugs, classified in class 435, subclass 6.

Group V, claims 24, 28-45, 48-59, 70, 71, and 73, drawn to antisense oligomers and pharmaceutical compositions, classified in class 514, subclass 44.

Group VI, claims 46 and 47, drawn to antibodies, classified in class 530, subclass 387.

Group VII, claims 61-66, drawn to transgenic animal, classified in class 800, subclass 44.

Group VIII, claim 74, drawn to method of using pharmaceutical of Group V, Class 514, subclass 44.

The inventions listed in Groups I-VIII do not meet the requirements for unity of invention for the following reasons: Each Group is drawn to a

distinct invention having its own classification and/or requiring additional searching.

On September 30, 1991, a telephone call was placed to Debra Dugan who spoke on behalf of Representative John P. White. Ms. Dugan indicated at that no papers had been filed and that applicant did not wish to pay any additional fees.