A strongly polynomial algorithm for payoff games

Bruno Scherrer

March 25, 2022

Abstract

...

Solve the n-horizon problem

$$T_{\vec{u},\vec{v}}v = T^n v.$$

Lemma 1. For any policy μ , for any x, there exist y, $v \le i < i + c \le n$, such that

$$v_{\mu}(x) - T^{n}v \le \frac{\gamma^{i+c}}{1 - \gamma^{c}} \mathbb{1}_{y}(T^{n-i}v - T^{n-i-c}v).$$

Proof. μ_* play against $\vec{\nu}$. Once a cycle is found, one loops.

$$M_{x,y,i,c} = \{ \mu \; ; \; \}$$

Lemma 2. For any policy ν , for any x, there exist y, $v \leq i < i + c \leq n$, such that

$$v_{\vec{\mu}_{1}^{i}(\vec{\mu}_{i+1}^{i+c})^{\infty},\nu^{\infty}}(x) - T^{n}v \ge \frac{\gamma^{i}}{1 - \gamma^{c}} \mathbb{1}_{y}(T^{n-i}v - T^{n-i-c}v).$$

Proof. $\vec{\mu}$ plays against ν . Once a cycle is found, one loops.

Algorithm: compute a policy μ' that is better than $(\vec{\mu}_{i+1}^{i+c})^{\infty}$ for all i and c. From any x, μ' will end up cycling in y.

Warm-up: write the proof for the 1-player problem.