THE UNIVERSITY OF AUCKLA

SEMESTER ONE 2017 Campus: City

ELECTRICAL & ELECTRONIC ENGINEERING

Circuits and Systems

(Time Allowed: THREE hours)

Instructions:

- Answer ALL SIX questions.
- All questions are of equal mark value.
- Each script contains **27 pages** including a final page for working. Do **NOT** remove the final page.
- Show ALL working.
- Use the back of the pages for continuation if needed.
- If you believe you need further information than that provided, make some appropriate engineering assumption(s), state them clearly, and continue with your answer.
- This exam is a "Restricted Calculator" exam and bound by the appropriate regulations.
- It is the responsibility of the student to ensure their **ID** are written on each page of the script.
- See the Appendix on Page 26 for a table of formulae

ID:	5	2	9	5	2	l	1	9	0
							l'		

SURNAME: CHOY

FORENAMES: LINCOLN CAM -HANG

Question	Mark
Q1	26
Q2	20
Q3	18.5
Q4	19
Q5	Y
Q6	17.5
Total	110

(5 marks)

ID: 529521190

QUESTION 1 (20 marks)

(a) For the circuit shown in Fig. 1.1, find i_1 , i_2 , i_3 , and i_4 .

Fig. 1.1: Circuit 1-1.

From digram: Simply use Ohm's law	
$\dot{c}_1 = 12 - S = 0.7A$	
10	
$i_2 = 5 - 0 = 0.5A$	/
10	
i3=5-10 = -0.1A	
50	
Applying KCL:	
$i_4 + i_1 = i_2 + i_3$	
i4 + 0.7A = 0.5A / (-0.1A)	
$i_4 = -0.3A$	
	·
$i_1 = 0.7A$ $i_2 = 0.5A$ $i_3 = 70.1A$ $i_4 = 70.1A$	-0.3 A
$i_1 = \underbrace{0.7A} \qquad i_2 = \underbrace{0.5A} \qquad i_3 = \underbrace{-0.1A} \qquad i_4 = \underbrace{-0.1A} \qquad i_4 = \underbrace{-0.1A} \qquad i_4 = \underbrace{-0.1A} \qquad i_5 = \underbrace{-0.1A} \qquad i_6 = \underbrace{-0.1A} \qquad i_8 = \underbrace{-0.1A} \qquad i_9 = $	

(b) For the circuit shown in Fig. 1.2, find the equivalent resistance of the circuit, R_{eq} , as looked between terminals a-b. (5 marks)

Hint: You may find redrawing the circuit is useful to think about a short-cut solution.

For the circuit shown in Fig. 1.3, find the equations relating the mesh currents i_1 , i_2 , and i_3 . (c) Simplify but do not solve. (4 marks)

Fig. 1.3: Circuit 1-3.

Loop in	7	Note
-24 +10(I,-I2) +12(I	(-J2-73) = 0	$I_1 - I_2 = I_0$
101, -1012+121, -127	2-12I3=24	V
22I, -21 ₂ -		
12,-1172-		
Loop iz		
10(12-11)+2412 +4($J_2 - J_3) = 0$	
10]2-10], +24]2 +4	I2 - 4I3=0	
3812-11	01,-413=0	
(Īz ₂ - !	5 I, - 2 I3 = 0	•
Loop iz!		Recall.
4]0+ 12(]3-]1)+4(I3-I2) = 0	$T_0 = T_1 - T_2$
4 I. + 12 I3 - 12 I, + 4'	13-412=0	
71,-41, +1213-121, +a	I3-4I2=0	
-8I,-8I ₂ +		
8 2 °	$I_3 - I_1 - I_2 = 0$	
Loop c.		
$-24 + 10(I_1 - I_2) + 12(I_1 - I_2)$	[,-I3)=0.	
-2 4+10I, -101 2+12:	1, - 1523 = 0	
22J, -107;	2 - 12J3 = 74	
117, -9	Iz -613= 24	- 💉

(d) For the circuit shown in Fig. 1.4, find v_{ab} between terminals a and b.

(6 marks)

Hint: You may think of source transformation approach.

Fig. 1.4: Circuit 1-4.

	(6)
Note VA = Vab	
to solve using rodal analysis!	Node Voc
1x -15 _ 4 + Vx -UA = 0	·
3	
V2-15 -12 + V2-VA=0	
2N2-12-VA 2Vx-27=	= UA
, /	
Node Un	
VA + Va - Voc = 0	
6 3 From earl	ne/
UA + 2 Va - 2 Voc = 0 VA= 2Vx =	t2 UA = 2Uz-87
3 UA = 2 U2	
6 Ugy - 36 = /2V2 /> Vax 9V/	
4027 36 /	
$S_0 \rightarrow V_{A} = Z'(9) - 12 /$	Up ZVate
= 67	
3(7x-77) = 2Vx	
402 = 5 6 Uzc - 8 1 = 202	
キリエ - 8 1	
Vx: 20.2	SU
VA= Z(20.25)-27
= 13.51	J
$v_{ab} = $ 13.5 V	

Question 2 (20 marks)

Fig. 2.1: Circuit 2-1.

(a) Obtain the Thevenin equivalent resistance R_{Th} between terminals a and b. (5 marks)

(b) Find the Thevenin voltage V_{Th} between terminals a and b.

(5 marks)

(c) Find the equivalent Norton circuit from the Thevenin equivalent circuit you found in Q2(a) and Q2(b). (2 marks)

IN = RV71+	V90) = HTV
12TH	RTH= 8-2
IN= 100	
8	
= 12.5 A	RN=LTH
	·
12.54 (1) 18.52	
1034 (1) 11035	
	(2)
$R_N = 8\Omega$	IN= 12-SA

(d) Find the value of the load resistor R_{max} , which when connected between terminals a and b, results in maximum power transfer. Calculate the maximum power transfer P_{max} to that load resistor R_{max} . (8 marks)

Pmax transfer = (VTH)?
4RL
For too max power transfer
RI = RTH = Rmax
PMax = (VTH)2
4 RTH
Pmv= 1002
4 x 8
=/312.SW
(\mathfrak{A})
$R_{max} = 8.0$ $P_{max} = 312.5 \text{ W}$

QUESTION 3 (20 marks)

An RC circuit is shown in Fig. 3.1. Assume that the switch has been closed for a very long time before it is opened at time t = 0.

Fig. 3.1: Circuit 3-1.

(a) At time $t = 0^+$ (i.e., just after the switch is opened), determine the voltage $v_C(0^+)$ across the capacitor. Then, find the voltage across the capacitor after the switch is opened for a very long time $v_C(\infty)$.

ID: 5295 7490

(b) Calculate the time constant of the circuit in Fig. 3.1 after the switch is opened (i.e., for t > 0).

(4 marks)
T=RC Find R
304
b
0.50
1 7
Add so indépendent source
0.5c Vx = 160V
160V \$ 0.50 \$ 80-72
V A = 16 OV
$\dot{c} = \frac{V_A}{80} = 2A$
l
0.5 i = 1A Pin = 160 = 160 D
1 - (90.12
7 = 3x160 = 480 seconds
Second
,
$\tau = 480s$

(c) For time t > 0 seconds (i.e., after the switch is opened), determine expressions (i.e., equations) for the voltage $v_C(t)$ across the capacitor, and the current $i_C(t)$ through the capacitor. (4 marks)

				•	
For	t>0			7 = 480s	
V.C	∞) = 0				
[t	
V.A	+) = U(00)) + [v(0+) + [(12)-	- U(00)7	o T	-;
,	111-0	+ [(12)-	n7 = 40		
······	2.·.)		<u> </u>		
		1= 12e #			
	Vell	126 "	<u> </u>		
	i. Oc		••••		
	Le EVE	NF		·	
		······································	t		
· · · · · · · · · · · · · · · · · · ·	ic= c	x (12e=	480. (1.4)		
			.+		
	i(H)= 3	$X - \frac{1}{40}e$	480		
	ic(+)=	-3 e 480	<u> </u>		
		40			
	***************		******************		
					
				·	
· · · · · · · · · · · · · · · · · · ·					
-					
			•••••		
			•••••		
	•••••				
	<u>.</u>		$i_c(t) = \frac{3}{40} P$	- <u>t</u>	
$ v_n(t) = v_n(t) $	Le 480 V		$i_{-}(t) = \widehat{40} \ \Theta$	*** <i>/</i> \	

(d) For the RLC circuit shown in Fig. 3.2,

Fig. 3.2: Circuit 3-2.

answer the following questions:

(i) Find the voltage across the capacitor just after the switch be in contact with position B; $v(0^+)$. (2 marks)

	ISA D Jan & Nota
V(0+)= v(0-)	
U(0-)= 15 x4=	600 Assuming that
uco1)= 60V	the circuit was
	in steady state
	for t <0
$v(0^+) = \underline{6 \text{ 6V}}$	

(ii) Find the current through the inductor just after the switch be in contact with position B; $i(0^+)$. (2 marks)

	<u> </u>		
$i(0^+)=i(0^-)$	Assuming	steady state	for $t < 0$
A+ i(0-), eapa	citor open	circuited, so	
t<0,	, 	, 	(-
current throu	igh inductor	12 OA	
i(0-)= 0	A		
_'. i	(04) = OA		
	,		
$i(0^+) = $			

1D: 529521190

(iii) Find the characteristic equation of the circuit in Fig. 3.2.

(2 marks)

(iv) What type of damping does the circuit in Fig. 3.2 exhibit? Why?

(2 marks)

20 = 40		Wo ² =	- (00	/W0-1	O
0 = 20			1= b	2-490	
	マ >	wo	Δ	= 1600-4 ntest.	ct, real, roots
ه ک	we	hove	overd	lamping	
`					
				 ,	

QUESTION 4 (20 marks)

In the circuit shown in Fig. 4.1,

Fig. 4.1: Circuit 4-1.

Find the following:

(a) Prove from the first principle that the s-domain mapping of a capacitor having an initial voltage v(0) is represented by Fig. 4.2. (4 marks)

(b) Find the s-mapping of the circuit shown in Fig. 4.1 for t > 0.

(4 marks)

(c) Find the current I(s) at t > 0 of the circuit shown in Fig. 4.1.

(4 marks)

(d) Find the voltage V(s) across the capacitor at t > 0 of the circuit shown in Fig. 4.1. (4 marks)

(e) Find the voltage v(t) across the capacitor at t > 0 of the circuit shown in Fig. 4.1. (4 marks)

QUESTION / ANSWER SHEET

ELECTENG 202

ID: 529321190

QUESTION 5 (20 marks)

- (a) A voltage signal $v(t) = v_1(t) + v_2(t)$ consists of a sinusoidal component $v_1(t) = V_A \cos\left(2\pi \frac{1}{T}t\right)$ and a DC component $v_2(t) = V_B$.
 - (i) State the RMS value of $v_1(t)$ and $v_2(t)$.

(2 mark)

$$V_{1(RMS)} = \frac{V_A}{\sqrt{2}}$$
 (Urms) $V_{2(RMS)} = V_B$ (Urms)

(ii) Apply the definition of RMS to show that the RMS value of v(t) is

$$V_{\rm RMS} = \sqrt{V_{1({\rm RMS})}^2 + V_{2({\rm RMS})}^2}$$
 volts.

where $V_{1(RMS)}$ and $V_{2(RMS)}$ denote the RMS value of $v_1(t)$ and $v_2(t)$ respectively. (3 marks)

Hint: It is not necessary to work out what $V_{1(RMS)}$ and $V_{2(RMS)}$ are.

Urms	1 (3	
·	$= \int \frac{1}{T} \int_0^T (-v_1 + v_2)^2 dt$	
Vrms =	$\frac{1}{T}\int_{0}^{T}\left(U_{ACOS}(^{2}Tt)+V_{B}\right)^{2}dt$	
ļ		_
Vrms =	1 () VA2cos2(27+) dt + (T VB2 dt + 2) (VALB COS(27)) d	<u>,</u> †
	To SMS TO SMS	
Vam> =	Virms + V2 rms + 12 T vavacos (2 17 t) dt	
	T	
Vrms =	V12 cms + V22 mp + 1 (VAVB) 275+7 TS10 (274)	
	V12 cms + V22 mg + 1 (VAVE) 27510 T S10 (276))
	Δπ 1 δ	?
	V_{1}^{2} rms $+V_{2}^{2}$ rms $+\frac{1}{1}(V_{4}V_{8})[2\pi S_{14} + T_{517}(2\pi t)] \frac{2\pi t}{2\pi}$	·
Vrms =	V12 rm > + 1 (VAVE) [TSIN 211 - ISIN 0 211 211	
Vrms =	Δπ 1 δ	
Vrms =)	$V_1^2 rms + V_2^2 rms + \frac{1}{1} (V_4 V_8) \left[\frac{7 s_{12}}{2 \pi} - \frac{7 s_{12}}{2 \pi} \right]$ $V_1^2 rms + V_2^2 rms + 0 + 0$	3
Vrms =)	V12 rm > + 1 (VAVE) [TSIN 211 - ISIN 0 211 211	3
Vrms =)	$V_1^2 rms + V_2^2 rms + \frac{1}{1} (V_4 V_8) \left[\frac{7 s_{12}}{2 \pi} - \frac{7 s_{12}}{2 \pi} \right]$ $V_1^2 rms + V_2^2 rms + 0 + 0$	3
Vrms =)	$V_1^2 rms + V_2^2 rms + \frac{1}{1} (V_4 V_8) \left[\frac{7 s_{12}}{2 \pi} - \frac{7 s_{12}}{2 \pi} \right]$ $V_1^2 rms + V_2^2 rms + 0 + 0$	3
Vrms =)	$V_1^2 rms + V_2^2 rms + \frac{1}{1} (V_4 V_8) \left[\frac{7 s_{12}}{2 \pi} - \frac{7 s_{12}}{2 \pi} \right]$ $V_1^2 rms + V_2^2 rms + 0 + 0$	3

ID: 5295 21190

(iii) If v(t) is applied across a load resistor $R_L = K \Omega$ (K is a real number), apply the definition of average power to prove that the average power dissipated by the resistor is

$$P_{\text{average}} = \frac{V_A^2}{2K} + \frac{V_B^2}{K} \text{ Watts.}$$
 (3 marks)

Hint: You may find Q5(a)(i) and Q5(a)(ii) useful.

(iv) If v(t) is applied across a load of impedance of $Z_L = (K + jK) \Omega$ at the frequency of input (K is a real number), use superposition to show that the steady-state load current $i_L(t)$ is

(b) Fig. 5.1 shows the equivalent circuit of a practical transformer connected in between an AC excitation $\bar{V}_i = 12 \angle 45^\circ \text{ V}(\text{rms})$ with a frequency of $\omega_i = 2 \text{ rad/s}$ and a load with an impedance of $Z_L = 3 + j2 \Omega$ at this particular frequency.

Fig. 5.1: Practical transformer equivalent circuit.

(i) Find and sketch the Thevenin equivalent circuit of the transformer circuit as seen by the load at steady-state. (3 marks)

(ii) Determine the time-domain expression of the steady-state load current $i_L(t)$. (2 marks)

$I_L = V_{IN} = 2.4 < 45^{\circ} = 0.482 - 8.13^{\circ} A_{rms}$ $5 < 253.13^{\circ}$	
1.(t)=0.48 (uit-8.13°) ui is guen to be 2 rads ~	
be 2 rads	
i.(+) = 0.48 (2+ -8.13°) A rms	
	7,5

(iii) Explain what can be done in order to maximise the average power that the load Z_L can receive. (2 marks)

ZTH = 3+4; ZL = 3+2; @ wi=2rads'

To maximise the average power load ZL

receives we must make tZTH = 1ZL, but

Minimise the reactive power. To do this

ZL must be the onjugate of ZTH

Hence ZL should be 3 3-4;

We can add an impedance of -6; IN SERIE

So that ZL -6; = 3+2; -6; = 3-4; = ZTH

Conjugate

THE SHOP Conjugate

THE SHOP Conjugate

Conjugate

(iv) Find the maximum average power that a load connected to this transformer circuit can receive. (2 marks)

QUESTION 6 (20 marks)

(a) Fig. 6.1 shows a simplified model of a power transmission-distribution network containing two loads. It is known that Load 1 has an impedance of $634.4 - j475.8 \,\Omega$, and Load 2 was measured to absorb an average power of 15 W at a lagging power factor of 0.8. The

Fig. 6.1: Power transmission-distribution network.

(i) State whether each load is resistive, capacitive, or inductive.

(2 marks)

Load 1 is: Capacitive Load 2 is: Inductive

(ii) Determine the phasor current \bar{I}_{L2} through Load 2.

(3 marks)

(iii) By means of a phasor diagram, explain why the voltage \bar{V}_{L1} across Load 1 is in phase with the voltage \bar{V}_{L2} across Load 2, **and** find the phasor voltage \bar{V}_{L1} . (4 marks)

(iv) Using your answer from Q6(a)(iii), calculate the complex power of Load 1. (2 marks)

S=.	」 Ū、(重) ^{**}
S =	1 V. (<u>1</u>)*
2	= 123,906 < 0° x (Urms) = 123,906 < 0° x (Urms)
· · · · · · · · · · · · · · · · · · ·	= 123,906 20° x (Urms)"
	2
CØv-Øi= 0.8	5 123.906 => 123.906 Z 8.1562 = 634.9475.87
leading.	S & 193 & W

(v) It is known that the generator in this scenario does not produce any reactive power, what can you say about the equivalent impedance of the network seen by the generator?

(1 marks)

I¢	the	generator	doe	+01	produce	reactive
pow	er, the	equival	ent	impedo	ia of	the
` ne	twork	Seen	by th	e gen	rator	is said
		0				
90.	t this	(.)	purely	14515	five.	,
	, 		, J 			

- (b) A balanced three-phase Y-connected generator with a **negative** (acb) phase sequence has an impedance of $3 + j1.5 \Omega$ and an internal voltage of 230 V(rms) per phase. The generator feeds a balanced three-phase Y-connected load having an impedance of $21.5 j27 \Omega$ per phase via a transmission line with an impedance of $0.5 + j0.5 \Omega$ per phase.
 - (i) Briefly explain what it is meant by a "balanced" three-phase circuit and why it is desirable for a three-phase system to be balanced. (3 marks)

(ii) By taking the *a*-phase internal voltage of the generator as the reference, construct the single-phase equivalent circuit of the system using the *a*-phase. (1 mark)

By using the single-phase equivalent circuit in (ii), ルビムAフェレE SEQUEN Cも

(iii) Find the line-current in a-phase of the system.

(1 mark)

 $I_{IINEA} = V_a = 230 \angle 0^\circ = 230 \angle 0^\circ$ $Z_a = 25-25j = 35.35 \angle -45^\circ$ $I_{IINEA} = 6.505 \angle 45^\circ A_{rms}$

(iv) Determine the phase voltage at the c-phase terminal of the load.

(2 mark)

Same as line to neutral voltage.

Find line to neutral for phase A

Vine to read (A) = 6.505 L 45 x (21.5-27;)

VLN (A) = JLINEA x 21.5-27;

Negative

VINCA) => 224.529 L -6.4698° phase C, - 120°

V phase (C) => 224.53 L -126.47° V rms

(v) Calculate the apparent power drawn by the three-phase load.

(1 mark)

S=apparent power Vrms=line voltage Irms=7/inc current S=3x Vrmsx Irms S=3x 224.53 2-6.46 x 6.505 245° S=3x 1460.65 238.53° S=4381.96 W

APPENDIX

Some Laplace Transform formulae

f(t)	F(s)
$\delta(t)$	1
$\mu(t)$	$\frac{1}{s}$
e ^{-ut}	$\frac{1}{s+a}$
$f(t)e^{-at}$	F(s+a)
$\frac{df(t)}{dt}$	$sF(s)-f(0^-)$
$\frac{t^{n-1}}{(n-1)!}e^{-at}\mu(t)$	$\frac{1}{(s+a)^n}$
sin ωt	$\frac{\omega}{\left(s^2+\omega^2\right)}$
cos wt	$\frac{s}{\left(s^2+\omega^2\right)}$
f(0 ⁺)	$\lim_{s\to\infty} sF(s)$
$f(\infty)$	$\lim_{s\to 0} sF(s)$

ELECTENG 202

ID: 52952490

BLANK PAGE FOR WORKING (WILL NOT BE MARKED)

