SPECTROSCOPIC INVESTIGATIONS ON Eu³⁺ AND Nd³⁺ IN CERTAIN SINGLE CRYSTALS

A Thesis Submitted
in partial Fulfilment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY

By
U. VIGNANESWARA KUMAR

TH Phys 1875/D K968.

to the ,

DEPARTMENT OF PHYSICS

INDIAN INSTITUTE OF TECHNOLOGY KANPUR SEPTEMBER, 1975

PHY-1975-D- KUM-SPE

2 2 SEP 1977

TO
MY PARENTS

This is to certify that the work presented in this thesis is the original work of Mr. U. Vignaneswara Kumar done under my supervision and it is not submitted elsewhere for a degree.

- Putcha Venkahsword

(Putcha Venkateswarlu)
Senior Professor of Physics
Indian Institute of Technology
Kanpur, (U.P.) India

ACKNOWLEDGEMEN (S

I am very grateful to Professor P. Venkateswarlu for introducing me to the field of Optical Spectroscopy and his kind encouragement and guidance. The help and active involvement of Professor D. Ramachandra Rao is gratefully acknowledged. I am very thankful to both of them for their interest in my welfare.

I am much indebted to Professor B.D. Nageswara Rao, who initiated me into research, for his kind guidance during the early part of my graduate career.

I sincerely thank Professor T.M. Srinivasan for his help and co-operation during the experiments done with liquid helium. Thanks are also due, to Dr. K.S. Gandhi of the Chemical Engineering Department for help in the design of the heat exchanger used in the work.

The author is indebted to Professor H.P. Broida of the University of California at Santa Barbara for the loan of the single crystals used in the work through Professor Venkateswarld Some initial experimental work carried out by Dr. Venkateswarld and Dr. J.J. Kim at Santa Barbara was helpful to the author in planning and carrying out further detailed work at Kanpur, and for this the author is thankful to them.

It is a pleasure to thank my many colleagues for the companionship and co-operation they have extended to me. Particular mention is here made of M/s. A. Sivaram,

H. Jagannath and D. Madhavan. I have benifitted highly from my association with Drs. R. Janakiraman and M.D. Sastry. Mr. Bansilal has been a source of help and assistance althrough. His cheerful disposition has gone a long way in solving many of the problems we faced. I am very much thankful to him. To my friends who have helped in the preparation of the thesis I am much thankful.

I am very thankful to the staff of our Spectroscopy laboratories for the assistance they have provided me. My thanks are also due to the staff of the Physics Electronics shop, the Low Temperature laboratory, the Central Glass-shop; Mr. N.V.G. Swamy for help in the laboratory, Mr. K.S. Ubhey for the machanical fabrication, Mr. R.K. Bajpai for the tracings, and Mr. H.K. Panda for the cyclostyling work.

I appreciate Smt. Rukmini Devi for her neat and patient typing of the manuscript.

The financial assistance of the National Bureau of Standards, Washington for the purchase of some equipment used in the work, is gratefully acknowledged.

U. Vignaneswara Kumar

CONTENTS

LIST OF FIGURES	Vll
LIST OF TABLES	хıі
SYNOPSIS	XlV
CHAPTER 1	
INTRODUCTION REFERENCES	1 10
CHAPTER 2	
'EXPERIMENTAL DETAILS'	
ABSTRACT	11
2.1 Spectrophotometer set-up for use with Argon ion laser.	
1. Basic description 2. The Argon ion laser used 3. Cooling unit for the laser 4. Illumination and collection optics 5. Crystal mounting and cooling 6. Polarizers 7. The spectrometer 8. Photomultiplier tubes and cooled housings 9. Electronics 10. Wavelength markers and calibration 11. Sensitivity test	12 14 19 23 22 33 35 35 35
2.2 Spectrophotometer used in Santa Barbara.	35
2.3 Experimental arrangement with the nitrogen laser excitation.	38
2.4 Optical absorption set-up.	39
REFERENCES	41
CHAPTER 3	
'OPTICAL ABSORPTION AND FLUORESCENCE SPECTRA OF Eu ³⁺ :Laf ₃ AT LNT'	
ABSTRACT	43

	3.1	Introduction	44
	3.2	Crystal structure of LaF3	45
	3.3	The absorption and fluorescence spectra at LNT.	
		 General remarks Transitions involving the ⁷F₀ ground 	53 56
		2. Transitions involving the ⁷ F ₀ ground state 3. Fluorescence terminating in ⁷ F ₁ 4. Fluorescence terminating in ⁷ F ₂ 5. Fluorescence terminating in ⁷ F ₃ 6. Fluorescence terminating in ⁷ F ₄ 7. Fluorescence terminating in ⁷ F ₄	67 74 78 80 89
	CONCI	USION	92
	REFEF	ENCES	96
CHAPTER	. 4		
		CAL ABSORPTION AND FLUORESCENCE SPECTRA	
		RACT	98
	4.1		100
	4.2		104
	4.3	* *	116
	4.4	-	152
	4.5	Oscillator strength determination from self-absorption	156
	4.6	_	s170
	4.7	Polarization of the observed lines	175
	REFI	erences	177
CHAPTER	. 5		
	THE AT I	EPR SPECTRUM OF Nd ³⁺ IN LAF ₃ AND PbMoO ₄ LIQUID HELIUM TEMPERATURE'	
	ABS	PRACT	180
	5.1	Introduction	181
	5.2	The spin Hamiltonian	182
	-	Experimental details	183
	5.4	The EPR spectrum of Nd3+:LaF3	186
	5.5	The EPR spectrum of Nd3+:PbMoO4	188
	5.6	Forbidden transitions in the EPR spectrum of Nd ⁵⁺ :PbMoO ₄	196
	र प्राप्ता द्व	TRENCES	201

LIST OF FIGURES

1.1	Two types of ion pair exchange processes	8
2.1	Block diagram of the spectrophotometer set-up used with Argon ion laser excitation.	13
2.2	Block diagram of the cooling unit for the Argon ion laser.	17
2.3	Cross section of the heat exchanger.	18
2.4	Profile of a focussed gaussian laser beam.	20
2.5	Cold finger dewar used for work at 77°K.	22
2.6	Cooled housing for the RCA No. 7102 photomultiplier.	26
2.7	Cooled housing for the ITT No. FW130 photo-multiplier.	30
2.8	Schematic diagram of the wavelength marker circuit.	33
2.9	Raman spectrum of Benzene: 4880A, 20mW.	36
2.10	Raman spectrum of Benzene: 4880Å, 500mW.	37
3.1	Free ion energy levels of Eu ³⁺ below 40,000 cm ⁻¹ (from ref. 2).	46
3.2	Orientation of the ionic co-ordinate axes (XYZ) with respect to the crystalline co-ordinate axes (X'Y'Z').	51
3.3	Eu3+:LaF3 fluorescence at 77 K, 5D1-7F0 group.	63
3.4	Eu3+:LaF3 fluorescence at 77 K, 5D_2 - 7F_0 group.	64
3.5	Eu ³⁺ :LaF ₃ fluorescence at 77 K, ${}^5D_2 - {}^7F_0$ group. Eu ³⁺ :LaF ₃ fluorescence at 77 K ${}^5D_0 - {}^7F_1$, ${}^5D_1 - {}^7F_1$ and ${}^5D_2 - {}^7F_1$ groups.	68
3.6	Partial energy level diagram of Eu ³⁺ :LaF ₃ showing the observed fluorescence transitions at 77°K terminating in 7 _{F1} .	73

3.7	Eu ³⁺ .LaF ₃ fluorescence at 77 K, ${}^{5}D_{1}$ - ${}^{7}F_{2}$ and ${}^{5}D_{1}$ - ${}^{7}F_{3}$ groups.	75
3.8	Partial energy level diagram of Eu 3 !LaF $_2$ showing the observed fluorescence transitions at 77 K terminating in 7 F $_2$.	77
3.9	Eu3+: LaF3 fluorescence at 77 K, 5D2-7F3 group.	81
3.10	Partial energy level diagram of Eu3+:LaF3 showing the observed fluorescence 7 transitions at 77 K terminating in 7F3.	82
3.11	Eu3+:LaF3 fluorescence at 77"K, 5D0-7F4 group.	84
3.12	Eu3+:LaF3 fluorescence at 77 K, 5D1-7F4 group	85
3.13	Partial energy level diagram of Eu3+:LaF3 showing the observed fluorescence 7transitions at 77 K terminating in 7F4.	88
3.14	Eu3+:LaF3 fluorescence at 77 K, 5D1-7F5 group.	90
3.15	Eu3+:LaF3 fluorescence at 77 K, 5D2-7F5 group.	91
4.1	Free ion energy levels of rare earth ions (from Dieke, ref. 2).	102
4.2	Nd ³⁺ :LaF ₃ absorption spectrum at 77°K, 2500-4000Å.	105
4.3	Nd ³⁺ :LaF ₃ absorption spectrum at 77 K, 4100-4700A.	113
4 • 4	Nd ³⁺ :LaF ₃ absorption spectrum at 77 K, 4800-5750A.	114
4.5	Nd ³⁺ :LaF fluorescence at 77 K, 3400-5000A, obtained with 3371A excitation.	117
4.6	Nd ³⁺ :LaF fluorescence at 77'K, 6000-9000\hat{\lambda}, obtained with 3371\hat{\lambda} excitation.	118

4.7 a	E-Z fluorescence at LNT, o polarization.	119
4.7 b	E-Z fluorescence at LNT, π polarization.	120
4.8	Nd ³⁺ :LaF ₃ fluorescence at 77 K, E(⁴ G _{7/2})-Y(⁴ I _{11/2}) group; 5145A excitation.	121
4.9	Nd ³⁺ :LaF ₃ fluorescence at 77 K, D-Z(⁴ I _{9/2}) group; ³ 5145A excitation.	122
4.10	Nd ³⁺ :LaF ₃ fluorescence at 77 K, L-S group; 5145A excitation.	123
4.11	Nd ³⁺ ·LaF ₃ fluorescence at 77 K, E(⁴ G _{7/2})-X(⁴ I _{13/2}) group; 5145A excitation.	124
4.12	Nd ³⁺ ;LaF, fluorescence at 77 K, L-A group; 5145Aexcitation.	125
4.13	Nd3+:LaF fluorescence at 77 K, K-S group, 5145A excitation.	126
4.14	Nd ³⁺ :LaF ₃ fluorescence at 77 K, L-B(⁴ F _{9/2}) group; ³ 5145A excitation.	127
4.15	Nd ³⁺ :LaF ₃ fluorescence at 77°K, part of the R(⁴ F _{3/2})-Z(⁴ I _{9/2}) group in σ polarization, showing self absorption; 5145Å excitation.	128
4.16	The variation of the intensity of K and L fluorescence with power.	153
4.17	Variation of the 'line centre intensities' of the R-Z fluorescence lines with path-length ≠, in σ polarization at 77'K.	164
4.18	Variation of the 'line centre intensities' of the R-Z fluorescence with path-length \mathbf{x} in π polarization at 77°K.	165
4.19	Variation of the hump separation (S) of the self reversed lines of the R-Z group with path-length (x) at 77°K.	166

5.1	Configuration of the magnetic fields in the EPR set-up at 4.2°K.	185
5.2	Nd3+:LaF EPR spectrum at 4.2'K Ho in a direction perpendicular to the caxis.	187
5.3	Unit cell of PbMoO4.	189
5.4	Nd ³⁺ :PbMoO ₄ EPR spectrum at 4.2 K. Ho at 25 from the caxis in an ac plane.	191
5.5	Nd ³⁺ :PbMoO ₄ EPR spectrum at 4.2 K, angular variation in the ac plane.	192
5.6	Allowed and forbidden hyper-fine transitions of a spin $\frac{1}{2}$ system.	198
5.7	EPR spectrum of Nd ³⁺ :PbMoO ₄ at +2 with H _O //c axis showing allowed and forbidden hyperfine transitions.	200

LIST OF TABLES

2.1	The various emmissions available from Spectra-Physics model 165-03 Argon ion laser.	15
3.1	Selection rules for Cov sites in the D6h structure of LaF3 a. Electric dipole b. Magnetic dipole	50
3. 2	Selection rules for C _s sites in the C ₆ ³ structure of LaF ₃ a. Electric dipole b. Magnetic dipole	50
3.3	Correlation table for C_{2v} and $C_{s}(YZ)$ groups.	52
3.4	The fluorescence spectrum of Eu3+:LaF3 at LNT.	57
3.5	The absorption spectrum of Eu3+:LaF3 at LNT.	62
3.6	Splitting of the various J states under c_{2v} and c_{s} symmetries.	66
3.7	Difference matrix for the D ₁ -F ₁ group of fluorescence lines.	70
3.8	Difference matrix for the D ₁ -F ₂ group of fluorescence lines.	76
3.9	Difference matrix for the D ₁ -F ₃ group of fluorescence lines.	79
3.10	Difference matrix for the D ₁ -F ₄ group of fluorescence lines.	86
3.11	The energy levels of Eu3+:LaF3 (0 to 22,000cm-1)	93
4.1	The ultraviolet absorption spectrum of Nd ³⁺ :LaF ₃ at liquid nitrogen temperature.	106
4.2	The energy levels of Nd3+:LaF3	108
4.3	The fluorescence spectrum of Nd ³⁺ :LaF ₃ at LNT obtained with 5145Å (Ar ⁺) excitation.	131
4.4	The 'Sum' matrix for the 7200A group of fluorescence lines and the 'S' group of Stark levels.	139

4.5	The fluorescence spectrum of Nd3+.LaF3 at LNT obtained with 3371A (N2 laser) excitation.	141
4.6	Crystal field splitting of the $^{4}\text{T}_{\text{C}/2}(2)$ level of Nd $^{3+}$:LaF $_{3}$ from the fluorescence data.	ļ47
4.7	Crystal field splitting of the ⁴ I _{1/2} (Y) level of Nd ⁵⁺ :LaF ₃ from the fluorescence data.	148
4.8	Crystal field splitting of the 4I (X) level of Nd3+:LaF3 from the fluorescence data.	149
4.9	Crystal field splitting of the 4I (W) level of Nd :LaF from the fluorescence data.	150
4.10	Crystal field splitting of the 1F3/2, 2H9/2(S) level of Nd3+:LaF3 from the fluorescence data.	151
4.11	Peak absorptivities and oscillator strengths of the transitions between R and Z levels at LNT.	168
4.12	Possible ion pair transitions to populate the 'S' level of Nd ³⁺ at high temperatures.	173
4.13	Possible ion pair transitions to populate the 'A' level of Nd at high temperatures.	174

SYNOPSIS

The work reported in this thesis mainly deals with the optical absorption and Ar⁺ and N₂ laser excited fluorescence spectra of Eu³⁺ and Nd³⁺ in LaF₃ crystals at room and liquid nitrogen temperatures. A chapter of the thesis deals with an investigation of the EPR spectra of Nd³⁺ doped in LaF₃ and PbMoO₄ single crystals at liquid helium temperature. The EPR work was carried out to supplement the optical studies on Nd³⁺.

The first chapter gives a prief introduction to the spectroscopy of Rare Earth ions and an outline of the theoretical framework relevant to the present studies.

The second chapter is devoted to a description of the experimental details, the assembly of a recording spectrophotometer and the fabrication of a heat exchanger. The spectrophotometer is assembled around a 0.75 m Jarrell-Ash grating spectrograph and is used for recording the fluorescence excited by the Argon ion laser. The lines recorded have a minimum half width (at half maximum) of $1\mathring{\Lambda}$ and the wavelengths could be measured to an accuracy of $\pm 1.5\mathring{\Lambda}$. Fluorescence excited by the pulsed nitrogen laser is however recorded only photographically. This chapter also describes the fabrication of a 12kW heat exchanger needed to cool the Argon ion laser used (Spectra Physics Model No. 165-03).

Chapter three presents the work on the absorption and fluorescence spectra of 0.5/Eu $^{3+}$:LaF $_3$. Only three lines due to 5D_2 and three lines due to 5D_1 are observed in absorption (4500-9000Å). The fluorescence excited by the Argon ion laser consists in all of twelve groups of transitions from 5D_0 ,1,2 to the levels 7F_0 ,1,2,3,4,5 of the 7F_0 ground multiplet. No transitions to 7F_6 are found. The availability in the Ar $^+$ laser of several excitation wavelengths was of some help in identifying the upper levels of fluorescence. Using the fluorescence data, positions of all the Stark components of 5D_0 .1.2 and $^7F_{1.4}$ levels

are determined. Only three levels of $^{7}\mathrm{F}_{2}$ (of the expected five) are determined, as fluorescence to other levels is not observed, while the identification of the Stark components of $^{7}\mathrm{F}_{3}$ and $^{7}\mathrm{F}_{5}$ was hampered by a multitude of overlapping transitions. Attempts to determine the positions of levels of $^{7}\mathrm{F}$ multiplet by infrared absorption did not bear fruit. LaF₃ has a hexagonal unit cell and the R.E. ions are known to replace the La ions substitutionally at sites of orthorhombic symmetry. The polarizations of lines indicate a $\mathrm{C}_{2\mathrm{V}}$ site symmetry. Some deviations are however observed which indicate a distortion towards C_{8} . However, a consistant set of symmetry species assignments could be made to all the observed levels under the classification of a $\mathrm{C}_{2\mathrm{V}}$ symmetry.

Exciting this crystal with a nitrogen laser resulted only in continuum fluorescence in the blue, most likely due to ${\rm Eu}^{2+}$.

The work performed on the optical spectra of 2% Nd³⁺:

LaF₃ is described in the fourth chapter. Five groups of lines are observed in the ultraviolet absorption spectrum (2500-4000¼). The SLJ level designations could be assigned to the concerned levels of four of these groups by comparison with the spectrum reported for Nd³⁺:LaCl₃. The absorption spectrum in the region 4000-9000Å conforms with earlier data/for the observation of few sharp extra lines. As a reinvestigation of the EPR spectrum of Nd:LaF₃ did not produce any new lines, these extra absorption

/but

lines are assigned to be vibronic transitions rather than lines from a different Nd3+ centre.

Excitation with the 5145Å (19,430 cm⁻¹) emmission of the Ar⁺ laser, at LNT produced fluciescence from the E (19,300 cm⁻¹), D (17,450 cm⁻¹) and R (11,600 cm⁻¹) levels as well as some other fluorescence lines whose intensity was proportional to P^{1.76} where P is the incident laser power. These are identified as arising from the K (26,400 cm⁻¹) and L (28,350 cm⁻¹) levels of the Nd³⁺. This assignment is confirmed by the fluorescence obtained with N₂ laser excitation (3371Å) which contained transitions from the K and L levels to several lower levels and also from R to the ground state. A sequential two step excitation process is proposed to explain the population of these two high lying levels when excited with the 19,430 cm⁻¹ radiation.

Three lines of the R-Z group showed significant self absorption. The simple geometry of laser excitation permitted an accurate calculation of oscillator strengths of these transitions using this effect.

With the 5145A excitation fluorescence from S and A levels also is observed at room temperature beside the fluorescence observed at LNT. The intensity of these two transitions increases with the temperature above RT. This

is explained as due to an anamolous increase in the populations of S and A levels due to an ion pair relaxation process active at high temperatures.

Several lines, in absorption is well as fluorescence are partially polarized contrary to the expected behaviour of Kramers' ions in orthorhombic sites. Some possible explanations are offered for this behaviour but no firm conclusions could be reached.

Chapter five describes a reinvestigation of the EPR spectra at liquid helium temperatures of $\mathrm{Nd}^{3+}:\mathrm{LaF}_3$ and $\mathrm{Nd}^{3+}:\mathrm{PbMoO}_4$. This is taken up to check whether extra lines found in the respective absorption spectra could be due to the existence of different kinds of Nd centres. No evidence for this was found in LaF_3 . In PbMoO_4 however the EPR spectrum contained a set of lines attributable to Nd^{3+} possibly associated with a next neighbour defect in the [110] plane. The intensity of these lines is less than 1/ of the main lines which are due to Nd^{3+} experiencing a crystal field of S_4 symmetry oriented along the C axis of the crystal.

CHAPTER 1

INTRODUCTION

Europium and Neodymium are the fourth and seventh members respectively of the Lanthanide series of rare earths which is characterized by the progressive filling of the 4f shell of the electronic configuration. The neutral Lanthanides all possess the Xenon structure of electrons (1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶), n 4f electrons (n=0 to 14) and two or three outer electrons (6s² or 5d6s²). All these outer electrons are shed off in the trivalent state which is their most common valence state. In this state they have only 4f electrons beside their Xenon cores. The maxima of the 4f orbitals fall quite within those of 5s and 5p orbitals and move further inside with increasing nuclear charge (Lanthanide

contraction). The shielding thus accorded to the electrons in the 4f shell by the $5s^2$ $5p^6$ electrons is the cause of their distinctive properties. The 4f shell behaves as an 'inner' shell and the interaction with the environment is quite weak. There is very little tendancy for these ions to form bonds. They retain their 'free ion' properties more or less intact even inside, solid lattice. The wavefunctions remain to be almost pure angular momentum eigenfunctions and the energy levels shift very little from lattice to lattice.

The free Hamiltonian of an N electron atom contains three principal parts given by

$$H = \sum_{i=1}^{N} (\frac{x^2}{2m} \nabla i^2 - \frac{ze^2}{r_i}) + \sum_{i>j}^{N} e^2/r_{ij} + \sum_{i=1}^{N} \tilde{\varphi}_{i} \cdot 1_{i} \cdot s_{i}$$

in standard notation. An exact solution of this Hamiltonian has not been possible and one is usually content with a perturbation treatment. The starting point is the zero order approximation in which the outer (4f) electrons are considered to be moving in a central field produced by the nucleus and the 54 electrons of the Xenon core. In this approximation all states of a given configuration have the same energy. The degeneracy of this state for an fⁿ configuration is ¹⁴C_n and is very large. Part of this degeneracy is removed with the inclusion of the interelectronic repulsion and spin orbit

interaction. The effect of these terms is usually calculated by a perturbation treatment in which it is assumed that the energy separation between various configurations is large chough for the effect on each configuration to be calculated separately. That is, the different configurations do not interact with each other. Without this assumption, the number of wavefunctions to be considered becomes enormous. The perturbation calculations are usually done in a set of basis states formed according to LS coupling as this is the most realistic approximation for rare earth ions and taking up both the perturbations simultaneously rather than one by one. This is the so called intermediate coupling calculation.

The electronic repulsion term splits the various terms having different L and S (total orbital and spin angular momenta), and the levels with different J values (J=L+S to L-S) constituting these terms are separated out by the spin-orbit interaction. Also, the off-diagonal matrix elements of the spin orbit interaction cause mixtures of levels having the same J value but differing in L and S by +1 and +1respectively As a result, the levels finally have only one good quantum number J, but L and S are poorly defined. The accepted nomenclature however uses an SLJ designation for these levels. The L and S values refer however to the particular LS state, the eigenstate approaches continuously as & approaches zero.

This may not necessarily be the state which constitutes the major percentage of the perturbed state.

The (2J+1) fold degeneracy of those states is lifted in a crystal by an extent depending upon the symmetry of the crystal field. The centre of gravity of the split components however stays quite close to the free ion value. A more important effect of the crystal field is - unless the ion is situated at an inversion centre, parity is not a good quantum The crystal field brings about a small but finite number. mixture of the wavefunctions belonging to configurations of different parities, and due to this, electric dipole transitions between levels of a given configuration become formally These are called forced electric dipole transitions. Since transitions between levels of a single configuration are almost totally forbidden for the free ions, most of the information about the 'free ion' energy levels is thus obtained in practice from crystal spectra only.

In the intermediate coupling calculations, the energy levels are expressed in terms of the so called Slater integrals F_2 , F_4 and F_6 and the spin orbit coupling constant G_1 . These quantities cannot be calculated ab initio accurately. For this reason, these are treated as parameters and are optimized to obtain the observed energy level structure.

The energy level structure is experimentally determined mainly from the absorption spectrum. But information about levels to which the transition from the ground state is either forbidden or lies in an inaccessible region of the electromagnetic spectrum can often be obtained from the fluorescence spectrum. As a matter of fact, the Stark splitting of the ground state is almost invariably established from the fluorescence acceded at a only. At the low temperatures at which the experiments are done, these higher Stark components are not populated and thus no transitions are observed from them.

The oscillator strengths of these forced electric dipole transitions are very small; of the order of 10^{-6} or less. The allowed magnetic dipole transitions on the other hand have oscillator strengths of about 10^{-8} , and are even weaker. The latter are allowed strictly between states for which Λ L=0, Λ S=0 and Λ J=0, \pm 1. Due to the mixing produced by the spin orbit coupling however, these have a larger occurrence than is obvious from the selection rules. Λ case in point is the magnetic dipole transitions observed in the spectrum of Eu³⁺ between the Stark levels of the 5 D and 7 F multiplets. The large majority of the observed transitions are however of the forced electric dipole type.

Most of the theoretical as well as experimental problems associated with the observation and analysis of the energy level structures of several rare carth ions were satisfactorily solved by the mid 1960s. Figure 4.1 (chapter 4) summarizes the information obtained upto about 1968. The emphasis of the later work was mainly towards an understanding of the energy exchange processes various materials because of their applications as laser hosts and infrared quantum counters (IRQC).

A rare earth ion in an excited electronic level can revert to lower levels in one of several ways: radiative decay, that is fluorescence; energy exchange with other ions in the crystal; or through interaction with lattice phonons. The phonon interaction is very effective when the energy separation of the electronic levels is of the same order as the phonon energies. As a matter of fact, levels which are separated by less than 1000 cm⁻¹ from their next lower levels rarely decay by fluorescence; they are invariably deexcited non-radiatively.

There are three different phonon coupling mechanisms that are usually active. In the direct process, the energy released by a rare earth transition generates a single lattice phonon. In the Raman process the electronic transition is accompanied by the creation and annihilation of two phonons, of different energies. The difference in the energies of the two phonons is equal to the energy of the electronic

transition. The last, the multiphonon process involves the generation of several phonons; not necessarily of the same energy, simultaneous to an electronic transition. The direct process and the Raman process depend on the density of the lattice phonons and their efficiency increases with temperature. The multiphonon process is however essentially temperature independent and is active even at the lowest temperatures (about 2 k) investigated so far. The importance of these processes is demonstrated by the following.

Almost all observed lines of the rare earth spectra show Lorentzian shapes characteristic of lifetime broadening. This broadening completely masks the inhomogeneous broadening caused by strains or other statistical factors except in a few cases. The linewidths are typically of the order of a few/in most cases and reflect non-radiative transition rates in excess of 10¹³ per sec. The observed radiative lifetimes are in the range of a few microseconds to few milliseconds and cannot give rise to such large widths.

Significant energy transfer rates between ions separated by large distances are observed in rare earth spectroscopy. The mechanism responsible for this is the overlap of the electric dipole fields of the ions concerned. The overlap of the wavefunctions as such cannot be effective beyond a short distance. The effects of this interaction

 $/cm^{-1}$

are twofold. Inhomogeneous broadening of the lines due to slight differences in the crystal field experienced by different ions and shortening of lifetimes or concentration quenching of fluorescence due to ionic cross relaxation when the emmission and absorption bands of the ions overlap. The exchange process, also called ion pair exchange is of two types. As shown in the figure below, the exchange process might lead to excitation of ion 1 and a deexcitation of ion.2,

Figure 1.1 Two types of ion pair exchange processes

or a further excitation of ion 2 and a decay of ion 1. The latter process is also called energy up-conversion and is of interest in IRQC applications.

An analysis and understanding of these non-radiative processes is the aim of most of the current studies and a vast amount of literature exists on the subject. Only a cursory review of the salient features necessary for this thesis is presented here. A list of a few general references is attached.

REFERENCES

- 1. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience 1968).
- 2. Optical Properties of Rare Earth Ions in Crystals. ed. H.M. Crosswhite and H.W. Moos (Interscience 1967).
- 3. B.G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience 1965).
- 4. B.R. Judd, Operator Techniques in Atomic Spectroscopy (Mc. Graw Hill, New York 1963).
- 5. R. Orbach, in Fluctuations, Relaxation and Resonance in Magnetic Systems. ed. D. ter Haar (Oliver and Boyd, Edinburgh 1961).
- 6. I. Waller, Zs. f. Physik, 79, 370 (1932).
- 7. J.H. Van Vleck, Phys. Rev. <u>57</u>, 426 (1940).
- 8. W.M. Yen, W.C. Scott and A.L. Schawlow, Phys. Rev. <u>136</u>, A271 (1964).
- 9. Th. P.S. Botden, Phyllips Res. Rept. 6, 425 (1951).
- 10. L.G. Van Uittert and S. Iida, J. Chem. Phys. 37, 986 (1962).

CHAPTER 2

EXPERIMENTAL DETAILS

ABSTRACT

Fluorescence spectra are recorded using Ar^+ and N_2 laser excitations. A spectrophotometer set-up assembled around a Jarrell-Ash 0.75 m. grating spectrograph is used for recording the fluorescence excited by the Argon ion laser. The lines recorded have a minimum half width (at half maximum) of LA and the wavelengths could be measured to an accuracy of \pm 1.5Å. Fluorescence excited by the pulsed nitrogen laser is recorded photographically. A 12kW heat exchanger needed to cool the Argon ion laser used is also fabricated. The optical absorption spectra in the region 2500-9000Å are photographed on a Jarrell-Ash 3.4 m. grating spectrograph in the first order.

2.1 Spectrophotometer set up for use with the Argon ion laser 2.1.1 Basic description

This set-up is built around a Jarrell-Ash 0.75 m. plane grating spectrograph that is converted for photometric recording. The block diagram of the set-up is shown in figure 2.1. The laser beam is made vertical by a right angled prism and enters the bottom face of the crystal under study. The fluorescence emmitted is collected in a direction perpendicular to that of the laser beam, and imaged on to the slit of the spectrometer as a vertical line parallel to it. The diffracted light is detected by a photomultiplier tube placed directly in front of the exit slit and the current produced in it is recorded by an electrometer, strip chart recorder combination.

⁺ This recording spectrophotometer has been jointly planned and assembled by the author and Mr. Bansılal, his colleague in the laboratory.

- 1. Laser
- 2. Crystal
- 3. Polarizer
- 4. Filter
- 5. Monochromator
- 6. Motor

- 7. Cam and microswitch
- 8. Photomultiplier tube
- 9. H V Power supply
- 10. Picoammeter
- 11. Strip chart recorder

Pig. 2.1, Wook diagram of the spectrophotometer set-up wood with Argon Ion large excitation.

Wavelength scanning is accomplished by a variable speed D.C. motor attached to the grating drive shift. A cam and microswitch mounted on this shaft provide markers for wavelength calibration.

2.1.2 The Argon ion laser used

The laser used is a Spectra Physics Model 165-03, equipped with an intra-cavity tuning prism to select the lasing Table 2.1 lists the available wavelengths and wavelength. their maximum powers as per the minufacturers' specifications. The output power can be varied by varying the discharge current of the laser plasma tube between 10 and 35 amperes. An intracavity iris diaphragm is also provided to further reduce the power if needed, to levels below that obtainable with the minimum current. The output power of the laser is monitored by a built-in photo-cell which receives a small part of the light. A provision is available to use the photo-cell voltage in a feed back loop to maintain the output power constant at any desired level, irrespective of changes in the line voltage, plasma tube temperature etc. Most of the recordings made in this work are done in this 'Light control' mode of operation. The values of 'power' quoted throughout this thesis are the values measured by this photo-cell in the laser head itself. The power that actually enters the crystal will be 35 to 40% less than this because of reflection losses suffered by the beam on the way.

Table 2.1

The various emmissions available from Spectra-Physics Model 165-03

Argon ion Laser

Wavelength A	Wavenumber cm -1	Power mw
5145	19431	1400
5017	19927	250
4965	20135	400
4880	20486	1300
4765	20980	500
4727	21149	150
4658	21462	100
4579	21832	250

2.1.3 Cooling unit for the laser

The laser and its power supply together consume maximum of 12kW of electrical power and have to be water cooled to prevent over-heating. The manufacturer recommends cooling with clean dust free water and to this end, a unit has been built to cool the laser unit (laser head and power supply) by circulating distilled water which is in turn cooled by running tap water in a heat exchanger. Figure 2.2 shows the block diagram of the cooling unit.

The heat exchanger is of standard counter current design (figure 2.3) in which the distilled water flows inside a 9/16" inner diameter thin walled copper tube (seamless, coil grade) wound spirally between two concentric steel drums of 12" and 14" diameter. The tap water flows in the remainder of the annular region between the two drums. The flow directions are as shown in figure 2.3. For convenience, the heat exchanger is split up into two such similarly built units connected in series (figure 2.2). Each unit contains 20 turns of copper coil. The drums are fabricated (Silicon bronge welding) with 22SWG mild steel sheet and painted with one coat of lead oxide primer paint and two coats of black bitumen anticorrosive paint to prevent corrosion by the flowing water. The rate of flow of distilled water is 10 lit/min at a pressure of 40-50 psi (values recommended by Spectra

This heat exchanger is designed and fabricated in association with Dr. K.S. Gandhi of the Chemical Engineering Department, IIT Kanpur.

- 1. Distilled water storage tank (50 litres)
- 2. Pump
- 3. Bypass valve to regulate water pressure
- 4. Particle filter
- 5. Laser and power supply
- 6. Heat exchangers

Fig. 2.2 Block diagree of the couling wait for the Argon is liver.

Pig. 2.7 Gross section of the heat exchanger.

Physics) and is obtained by a Beacon (India) No.1-TPS-2M, O.5 H.P. pump. The rate of flow of tap water is 35 lit/min and is obtained from a 1/2" pipe connected to the campus mains (tube well pumped).

2.1.4 Illumination and collection optics

The illuminating optics (for the laser beam) consists of a single plano convex lens of 2" focal length glued on top of the right angle prism that bends the beam upwards. laser beam diameter between 1/e2 points (Gaussian profile) is specified to be 1.5 mm or about 1 mm between 1/e points. The beam 'waist' diameter of a focussed laser beam is given by $d = 2^{\lambda}/\pi \varphi$, where φ is the semi-angle of convergence shown in figure 2.4. For a beam of 5000A, and 1 mm diameter, 'd' would be 14µ between 1/e points with the 2" focal length used. at 100 mw incident power, the average photon flux (5000Å) within this area (of diameter 14 μ) is calculated as 1.25 x 10¹⁶ photons cm⁻² sec⁻¹. Thus for the power range of 60 to 700 mw used in this work, a photon flux of about 1015-1016 photons cm⁻² sec⁻¹ is obtained. The right angle prism, lens assembly used here is taken out of a Carl-Zeiss electrode illuminator lamp and is used as such. The working distance of 2" provided by this is found convenient for working with the crystals mounted inside a low temperature dewar.

Fil. 2.4 Profile of a Pooling oil Coursian Lapor nave.

The collection optics for the fluorescence consists of a single double convex lens of 2" focus and 2" aperture and is so chosen as to 'overfill' the collimating mirror of the f/6.3 spectrometer used. The source of fluorescence being a narrow vertical line, such a system which simply images this 'line' on to the slit is adequate.

2.1.5 Crystal mounting and cooling

Most of the work is done by cooling the crystals to liquid nitrogen temperatures. For this, the crystals are mounted inside a demountable cold finger dewar fabricated in our glass shop. This is of usual design and is illustrated in figure 2.5. The body of the dewar is made from a B55 glass joint. The inner tube of the dewar terminates in a glass to metal (covar) seal and a stout copper cylinder silver soldered to this covar tube provides the cold finger. The crystal is usually fixed with Quickfix TM (Wembley-India) on a 1/2" thick copper block which can be attached to the cold finger by 1/8" The crystal is protected from room temperature BSW screws. radiation by another 1/2" copper block similarly screwed to the cold finger. Thermal contact between the metal surfaces is improved by applying a layer of grease between them. diameter plate glass windows are provided on the 'tail' of the dewar to facilitate the entry and extraction of light. The windows are attached with Torr Seal TM (Varian) or

Pig. 2.5 Gold fineer down wood for work at Mox.

AralditeTM (Ciba) on to window seats ground for the purpose.

A dewar similar in design but equipped with l' diameter
quartz windows is used for work in the ultra violet region.

2.1.6 Polarizers

A Polaroid sheet held between glass plates is found adequate for the region 4000-7000A. It did not work in the infrared region, and a Glan-Thomson polarizer⁺ is used for the region $7000-9000\Lambda$.

2.1.7 The spectrometer

The following easily recognizable criteria are used to select a suitable instrument for the work. (a) constancy of focal plane with wavelength, (b) linear wavelength scanning, (c) high light gathering power, and (d) moderate resolving power. All these criteria are found to be adequately met by a Jarrell Ash 0.75 m. plane grating spectrograph available in the laboratory. It uses an assymmetric Czeny-Turner mounting and has a rather large f/6.3 aperture. Standard accessories are supplied alongwith the instrument to convert it from photographic to photometric (direct reading) mode. However the conversion involves a complete removal of the exit side face plate and necessitates a cumbersome focussing procedure when it has to be equipped again for photography. This being very undesirable in a laboratory where spectrographs

this was kindly loaned to us by Dr. S.C. Sen of our department.

 $^{^\}delta$ This spectrograph is kindly loaned to us by Professor V. Subbarao of the Chemical Engineering Department.

have to be shared between various workers it is decided not to use the J-A accessory. Instead, an 'exit slit mount' is made of exactly the same dimensions as the photographic plate holder and can be clamped to the face of the spectrograph using the same clamping arrangement as for the plate holder. A Jarrell-Ash No. 12-000 precision bilateral slit (10-400 μ) is mounted on this plate. The plate factor of the spectrograph is about 20A/mm with a 15,000 LPI grating. Alternately the scanning speed is 550A per one degree rotation of the grating. The spectrograph comes equipped with an angle drive and a reduction gear train so that, one revolution of the grating drive shaft results in a 0.1 degree rotation of the grating. A four position mechanical counter reads the grating rotation angle to the second decimal place. grating used is blazed at 5000A.

A Bodine No. NSH-12RG reversible D.C motor fed by Minarik electronics No. 1214, 115V regulated D.C. source is used for grating rotation. The speed of the motor can be varied in six steps[†] between 0.8 and 3 RPM by changing the D.C. voltage. This corresponds to wavelength scanning of 45 to 165Å/min. A speed of 100Å/min is generally employed.

The minimum linewidth of the lines recorded and consequently the experimental resolution is limited essentially by the width of slits used: 50 to 150 μ on the input side and 100 μ on the output side. The sharp lines of a Geissler

^{*} The potentiometer provided on the D.C. source, to vary the speed continuously between 0 and 3 RPM is replaced by a bandswitch to get reproducible speeds.

discharge tube are recorded with a full width at half maximum (FWHM) of 2.5Å and this is the lowest achieved. And lines of equal intensity and seperated by about 2Å are just seen as two. At the temperatures at which the experiments are done (LNT,RT) lifetime broadening is the dominant factor determining the line shapes of rare earth spectral lines² and thus all lines are expected to be Lorentzians. No significant deviation from this is observed in the recorded line shapes.

2.1.8 Photomultiplier tubes and cooled housings

The work was initially started using a cooled R.C.A No. 7102 tube. This tube was chosen primarily for its wide Sl spectral response extending into the infrared. At the room temperature this tube has a very large dark current and attendant dark current noise largely of thermionic origion. A liquid nitrogen cooled housing is therefore built to reduce this dark current.

The housing uses what can be called conduction cooling and is illustrated in figure 2.6. In this the PMT is surrounded by a thin walled brass tube to which one end of a stout (3/4" dia) copper rod is soldered. The other end of this rod is lowered into a dewar containing liquid nitrogen. The PMT is thus cooled by conduction along the copper rod. The PMT is plugged into a socket fixed on top of a perspex box which houses the resistors of the potential divider chain.

- 1. PMT
- 2. Inner brass tube
- 3. Insulating foam
- 4. Copper rod (3/4" dia)
- 5. Evacuated glass cell
- 6. Pyrex windows

- 7. Outer Aluminum box
- 8. HV cable
- 9. Signal cable
- 10 Potential divider encased in perspex box
- 11. Liquid nitrogen dewar

Fig. 2.6 Goded housing for the BCA No. 7102 photemultiplier.

The sides of this box are firmly glued together with methylene chloride (which forms a bond by dissolving purspex) rather than screwed together. This is done in order to prevent moisture from entering the box through the joints and shorting the resistors. Moisture would also condense on the cool photocathode surface and reduces the amount of light detected, if the cathode surface is allowed to come into direct contact with the atmospheric air. Several techniques to overcome this problem are reported in literature 3. Here it is achieved by an evacuated (to 10⁻⁵mm of Hg) glass coll with plane parallel quartz windows which is pushed fit (with a few layers of Teflon pipe sealant tape to serve as a gasket) into the brass tube surrounding the PMT (reference to figure). The length of this cell is chosen to be 3" by trial and error. This puts the photocathode at a rather large distance of about 3" from the exit slit but no light is lost because of its large diameter (1.25"). The whole assembly is now placed inside a large Aluminium box and the intervening space is stuffed with Styrofoam TM to provide thermal insulation. The copper rod projects out of a large hole cut in the bottom face of the Aluminum box.

With this arrangement the dark current is reduced from a room temperature value of about 1μ amp(the six tubes tested have dark currents between 1 and 10μ amps) to as low as

1 x 10⁻¹¹ amps with a cathode voltage of -1000V. From this value it is estimated⁴ that the PMT would have reached a temperature of about -160°C. The dark current noise is quite neglizible under these conditions. The initial cool down period of the h using is about 45 minutes after which the operation is quite stable. The liquid nitrogen consumption is about one litre per hour which is rather large.

The dark current noise being thus eliminated the more serious limitation of the tube namely the shot noise has become apparent. This noise is surprisingly so excessive in this tube that even with the strongest signals recorded (eg. I.R. fluorescence of Nd3 LaF3, signal strength about 10-8 amp at 1000V) the signal to noise ratio was only of the order of ten. Also some major difficulties are encountered in the operation of this housing. The Torr seal used for fixing the windows of the vacuum cell does not withstand repeated thermal cycling and it has become necessary to resent and recovacuate the cell after every month or two. It is also found that after prolonged use some moisture does seep into the potential divider box and leads to sparking. A remedy for this latter problem is to pot the divider chain in some foam or epoxy, impervious to moisture. However, there is reason to believe that both these problems are partly due to the very low temperatures that are reached. Unfortunately there is no way in which this can be

avoided and thus the use of this housing is discontinued in latter work. A new housing has been designed partly eliminating the above difficulties.

This housing is made specifically to accommodate the I.T.T. No. FW130 tube and is illustrated in figure 2.7. In this design the tube is sought to be cooled by circulating cold nitrogen gas through an annular brass chamber surrounding it. The gas is obtained by boiling liquid nitrogen with an immersed heater and the temperature of the tube can be controlled by varying the heater current. Polyurchame foam that is polymerized 'in-place' provides the thermal insulation.

The FW130 tube has an S20 response. The particular tube used is a variant of the standard version in that, it has a slit shaped photo cathode. This is especially suited for spectroscopic work where the light to be detected is frequently in the form of a slit shaped beam. This configuration obviates the need for a focussing magnet around the photocathode which is sometimes used to reduce the dark current The magnetic field is used to deflect the 'dark' and noise. electrons emmitted by the unused portion of the photocathode from reaching the first dynode. This tube has a low dark current of about 1×10^{-8} amp at 1800V and room temperature. The dark current noise is small compared to the intensity of even the weakest lines recorded even at room temperature.

The chemicals necessary for this polymerization are kindly provided by the U Foam Co., Hyderabad.

<u>F</u>

- 2. Inner brass tube
- 3, Insulating foam (polymerized in place)
- 4. Cool nitrogen gas inlet 5. Nitrogen gas outlet
- 5. Gas circulation chamber
- 7. Outer brass tube 8. Thermally conducting annular ring
- 9 Bakelite plate
- 10. Adjustable slit
- 11. Potential divider case 12. Signal and HV cables
- 13 Exit slit mounting plate

ne, 2.7 coded having for the IM No. W 130 photomultiplier.

For this reason the tube is operated always at room temperature itself though the housing described is built especially to cool this tube. The shot noise of the tube also is quite small. The signals recorded are usually in the range of 1 n.amp to several microamperes with an applied voltage between 1250 and 1400V.

Because of this exceptional performance, all the subsequent work is done only with this tube. The recordings made with this tube only are reproduced in this thosis as the ones made with the 7102 tube are quite inferior in quality. The sensitivity of the tube falls off steeply after about 8000\AA . Only one group of fluorescence lines is observed in this region namely the R-Z ($^4\text{F}_{3/2}$ - $^4\text{I}_{9/2}$) group of Nd³⁺, but the inherently large intensity of this group compensates somewhat for this poor sensitivity. (The grating efficiency also is small in this region).

The high voltage required for the tubes is obtained either from an ECIL No. HV204 power supply (300 to 1500V variable, positive or negative) or a -1400V to -2000V variable voltage power supply fabricated in our electronics shop. With a negative voltage power supply the anode is at ground potential which is very convenient for subsequent signal processing.

2.1.9 Electronics

The current from the PMT is measured by a Keithley No. 417 Picoammeter (figure 2.1). This is an electrometer amplifier with a full scale range variable between 10⁻⁵ amps and 3 x 10^{-14} amps in a 0.3. 1.3 sequence. A 0 to 3 sec. variable time constant low pass filter usable in the 10-8 amp and lower current ranges provides some noise rejection. There is also a 'current suppress' facility by which the dark current of the tube can be subtracted out. This differs from the ordinary zero suppression in that, it is independent of the current range in which the signal is being measured and is a very convenient feature. The amplifier has a recorder output cf 3 volts full scale swing that can be used to drive potentiometric recorders. A Varian No. G.14 strip chart recorder is used to record this voltage. The chart speed is 10 cm/min giving a dispersion on the chart of about 0.4 to 1.6Å/mm (1A/mm is generally used).

2.1.10 Wavelength markers and calibration

The schematic of the marker circuit is shown in figure 2.8. A cam attached to the grating drive shaft closes the microswitch [KESBO (India) No. MVR6] contact once every cotation and connects a 1.5V dry cell across the recorder terminals through a capacitor. The capacitor allows only a

M = Microswitch-(Kesba No. MVR-6)

NC = Normally closed contact

NO = Normally open contact

R = Recorder

P = Picoammeter

C = ~0.1 MF

R1 = ~10 K Ω

R2 = ~50K A

Fig. 2.8 Schomatic diagram of the wavelength morker circuit.

sharp spike of voltage to go through, essentially at the instant the contact is closed. Without this a broad marker of about 2 to 3 millimetres width would be obtained which is useless. During the off period of the microswitch the capacitor is discharged through the resistor R₁ to make it ready for the next marker. An isolation resistor R₂ inserted in the piccammeter output lead prevents the low output impedance of the piccammeter from shunting off the 1.5V pulse. Since the input impedance of the recorder is as large as one Megohm this series resistance does not reduce the voltage received by the recorder to any significant extent. The values of the capacitor (about 0.1µF) and the series resistor R₂ are chosen by trial and error to get a marker of distinguishable length (about 1 cm) and without overshoot.

The calibration of the spectrometer thus consists of ascertaining the wavelengths corresponding to these marker positions. This is easily done by excording the spectra of some standard sources that are rich in sharp strong lines. Two Geissler discharge tubes, one filled with Argen and one with a Helium-Neon mixture, as well as an Osram Cesium vapour standard lamp are used for this purpose. Put together these lamps contain more than 200 usable lines distributed over the region of interest that is 4500-9000Å. The positions of markers found out in this way are found repeatable to \pm lÅ.

^{*} The markers are numbered by the grating rotation angle in tenths of a degree. These are indicated in the tracings - numbers like 10.6 etc.

The wavelengths measured on the chart have a further measurement error of about \pm 0.5Å (corresponding to 0.5 mm) giving a total inaccuracy of \pm 1.5Å for the wavelengths measured. It needs be pointed out here that relative separations of lines within a single group (cf say 100Å extent) are subject only to this second error of \pm 0.5Å. Usually each spectral line is recorded several times, under different polarizations, crystal orientations, gain etc., and the wavelength is taken as the average of the values measured from all the recordings. It is found that these numbers rarely differ from each other by more than 1Å and the R.M.S. deviation (of 5 to 10 readings) is not more than 0.5Å.

2.1.11 Sensitivity test

The Raman spectrum of Benzene at R.T. is recorded to get an idea of the sensitivity of the spectrometer. Figures 2.9 and 2.10 illustrate this spectrum recorded with 20 mw and 500 mw of laser power (4880Å) respectively. It could be seen from figure 2.9 that the two strong lines of Benzene at 992 and 3062 cm⁻¹ could be recorded with adequate S/N even with 20 mw of power.

2.2 Spectrophotometer used at Santa Barbara

Some preliminary work on the fluorescence spectra of $Nd^{3+}:LaF_3$ and $Eu^{3+}:LaF_3$ in some crystal orientations using

THE FOLIZE 1200V, SILK 100 A, 100 A, SEELTIVITY 1 x 10-3 erg... . The C. 4.084 tament of Jeneman 48004, 20 per

THE rations 1200. Silts 100 M, Samelinging 1 = 10 days. 114. 2.10 Rauen spectrum of Densence 42001, 500 cff.

Arthaser excitation was done by Professor P. Venkateswarlu in association with Dr. J.J. Kim in the University of California at Santa Barbara. These spectra are recorded on a Spex No. 1400 double monochromator using Coherent Radiation No. 52 Argon ion laser. The PMT used is an EMI No. 9558. The spectra recorded by the author here on the set up described compare quite favourably with those spectra in terms of S/N as well as wavelength accuracy. The double monochromator gives superior performance however in case of lines lying close to the exciting laser line because of the much smaller scattering inherent in such a system. The (E-Z) group of Nd³⁺ in the region 5170-5300Å is an example of this. All the recordings reproduced in this thesis except this above mentioned one, are those made by the author on the set-up assembled here.

2.3 Experimental arrangement with the nitrogen laser excitation

The N₂ laser used was built in our laboratory by Mr. H. Jagannath and Dr. G. Chakrapani. The laser operates in a plane wave excited mode, achieved by placing the nitrogen plasma tube across a laminated sheet transmission line etched in a parabolic shape. The exciting voltage pulse of 16 to 20 KV is applied at the focus of the parabola by a spark gap. The laser pulse generated has a width of about 7.5 ns. The peak power-is estimated to be between 100kW and

1 MW. At the time these experiments are made it was operating in a self quench mode, at a frequency of about 20 pulses per sec. A detailed description of the leser is given in a technical report prepared in the laboratory.

The cross section of the laser beam is a rectangle approximately 4 x 10 mm². The beam is bent upwards by a front coated Aluminum mirror and is focussed into the crystal by a quartz lens of 1" focal length. The fluorescence is collected in a horizontal direction by a condensing lens chosen to suit the particular spectrograph used. The Garl-Zeiss Q24 medium quartz spectrograph was used for work in the ultraviolet region and the Garl-Zeiss three prism spectrograph in the visible and infrared. The exposure times ranged between 30 mts and one hour with the Q24 and between 1 hour and 6 hours with the three prism instrument. The plate factor of these plates ranges between 30 and 200Å/mm. The principle inaccuracy in the wavelengths reasured from these plates is due to the 30µ slitwidth used.

2.4 The optical absorption set up

The optical absorption spectra are recorded photographically on a Jarrell-Ash 3.4 metre Ebert grating spectrograph. Interchangeable gratings with 15,000 and 30,000 L.P.I. are used. The first order dispersion of 5A/mm and 2.5Å/mm provided by these gratings respectively proved adequate for

⁺ In press

the spectra recorded. Higher orders are suppressed by the use of various glass filters of the Corning CS series.

A 750W Tungsten (projector) lamp is used in the visible region and a Carl-Zeiss No. H₂-0.3 Hydrogen lamp for work in the ultra violet. The exposure times with the tungten lamp ranged between 30 sec and 5 minutes. The Hydrogen lamp however required exposures of upto 30 minutes duration. The spectra are recorded on Kodak 103a-N,0 and F plates of 25 x 5 cm² dimensions in their respective regions of sensitivity.

Iron are is used as the standard and the plates are mostly measured on Carl-Zeiss Model B. Abbe comparator which has a least count of l μ . Positions of some broad lines whose centres could not be located on the comparator are measured using a Carl-Zeiss Model III microdensitometer. This has a least count of 10μ .

The inaccuracy in the measured wavelengths of sharp lines (Eu³⁺:LaF₃) is mainly due to the slitwidth used. At a dispersion of 2.5Å/mm the used slitwidth of 50µ corresponds to 0.125Å. At 5000Å this is equal to 0.5 cm⁻¹. The absorption spectrum of Nd³⁺:LaF₃ on the other hand consists of many overabsorbed lines and the error in their measurement is due to errors in locating the line centres. Even from microdensitometer traces these could not be located to better than lÅ and this is the limiting error.

REFERENCES

- 1. Amnon Yarıv, Introduction to Quantum Electronics. (Holt, Reinhart and Winston Inc. 1971).
- 2. W.M. Yen, W.C. Scott and A.L. Schawlow, Phys. Rev. <u>136</u>, A271 (1964).
- 3. Sharadanand, Rev. Sci. Instrum. 43, 641 (1972).
 G.W. Carriveau, J. Phys. E. 3, 929 (1970)
 F.L. Lipsett, Rev. Sci. Instrum. 38, 278 (1967); and references given there.
- 4. EMI Photomultiplier tubes brochure reference No. POOl/fP70.

CHAPTER 3

OPTICAL ABSORPTION AND FLUORESCENCE SPECTRA OF Eu³⁺:LaF₃ AT LNT

ABSTRACT

The optical absorption and fluorescence spectra of $0.5\%\,\mathrm{Eu}^{3+}$:LaF₃ are observed in the region $4500-9000\mathring{\Lambda}$. Only three lines due to $^5\mathrm{D}_2$ and three lines due to $^5\mathrm{D}_1$ are observed in absorption. The fluorescence excited by the Argon ion laser consists in all, of twelve groups of transitions from $^5\mathrm{D}_{0,1,2}$ to the levels $^7\mathrm{F}_{0,1,2,3,4,5}$ of the $^7\mathrm{F}$ ground multiplet. No transitions to $^7\mathrm{E}_6$ are found. The availability in the Ar⁺ laser of several excitation wavelengths was of some help in identifying the upper levels of fluorescence. Using the fluorescence data, positions of all the Stark components of $^5\mathrm{D}_{0,1,2}$ and $^7\mathrm{F}_{1,4}$ levels are determined. Only three levels of $^7\mathrm{F}_2$ (of the expected five) are determined, as fluorescence

to other levels is not observed, while the identification of the Stark components of $^{7}\mathrm{F}_{3}$ and $^{7}\mathrm{F}_{5}$ was hampered by a multitude of overlapping transitions. Attempts to determine the positions of levels of $^{7}\mathrm{F}$ multipliet by infrared absorption did not bear fruit. LaF $_{3}$ has a hexagonal unit cell and the R.E. ions are known to replace the La ions substitutionally at sites of orthorhombic symmetry. The polarizations of the lines indicate a $^{C}\mathrm{C}_{2v}$ site symmetry, but with some deviations which indicate a distortion towards $^{C}\mathrm{G}_{8}$ However, a consistant set of symmetry species assignments could be made to all the observed levels under the classification of a $^{C}\mathrm{C}_{2v}$ symmetry.

Exciting this crystal with a nitrogen laser resulted only in continuum fluorescence in the blue, most likely due to ${\tt Eu}^{2+}$.

3.1 Introduction

Europium is the seventh clement in the Lanthanide series and in the trivalent state, has six electrons in the 4f valence shell. The low lying levels of this 4f⁶ configuration have been fairly well established by several past studies¹⁻⁴. The intermediate coupling calculations made by Ofelt² incorporating the septet-quintet-triplet interactions have lead to a positive identification of several levels observed below 40,000 cm⁻¹ in Eu³⁺:LaCl₃. The level structure is particularly simple below 24,000 cm⁻¹. In this region are contained the regular ⁷F ground multiplet (0-5000 cm⁻¹) and four levels ⁵D_{0,1,2,3} of the ⁵D multiplet between 17,000 and 24,000 cm⁻¹. The energy level diagram

is given in figure 3.1. Above 24,000 cm⁻¹ occur several levels belonging to different terms and the region is very crowded. Identification of many of these levels is due to Ofelt².

 ${\rm Eu}^{3+}:{\rm LaF}_3$ was investigated earlier by Weber⁵ who studied the lifetimes of ${}^5{\rm D}_{0,1,2,3}$ levels as functions of Europium concentration and temperature. However only a few details of the spectrum as such were reported, from which it is not possible to establish the energy level structure.

In this work aimed at obtaining this information, the optical absorption spectrum and the laser excited fluorescence spectrum of Eu³⁺:LaF₃ are recorded in the visible. From these spectra most of the Stark components of the levels of ⁵D and ⁷F multiplets below 22,000 cm⁻¹ are determined. A site symmetry of C_{2v} is found to be a fairly good approximation to the site symmetry of the rare earth ion and all the observed Stark components are classified according to the species of this symmetry group.

3.2 Crystal structure of LaF3 and selection rules

The crystal structure of LaF $_3$ has been a subject of discussion for a long time. Neutron scattering studies have determined the unit cell to be hexagonal and hexamolecular, and belonging to the space group ${\rm C_{6v}}^3$. The Lanthanum

Fig 3 1 Free ion energy levels of Eu³⁺ below 40,000 cm⁻¹ (from ref 2)

ions are determined to be lying in two planes, forming equilateral triangles rotated by 60° about the crystalline symmetry axis (c axis) with respect to each other and with a separation of c/2 between them. The E.P.R. measurements⁷ on a number of rare earth ions (Nd, Ce, Er, Dy and Yb) doped in LaF₃ indicate a site symmetry of $C_{\rm s}$ for the rare earth ion, the reflection plane being a plane containing the R.E. ion and the c axis. This is in conformity with a unit cell of $C_{6\rm v}^{3}$ symmetry. However two structures which are more symmetric, viz $D_{6\rm h}^{3}$ and $D_{3\rm d}^{4}$ have been proposed on the basis of X-ray measurements $C_{8\rm h}^{3}$?

Differences of the order of 0.1\AA in the co-ordinates of the various ions distinguish these three structures from each other. The site symmetry of Lanthanum is $C_{2\text{V}}$ and C_{2} respectively in the two latter structures. The C_{2} axis is perpendicular to the c axis and in case of $C_{2\text{V}}$, one of the reflection planes is perpendicular to the c axis, and the other contains it.

The studies on the Raman spectra 10 are consistent with a D_{3d}^4 structure, but only small deviations from the more symmetric D_{6h}^3 structure are observed. The optical spectrum of Pr^{3+} :LaF $_3^{11}$ (exibits) polarization and selection rules compatible with C_{2v} site symmetry with only a few deviations. A site symmetry of C_{2v} was derived for the Gd^{3+} from the E.P.R.

measurements of Gd^{3+} doped in several rare earth trifluorides isomorphous with $\mathrm{LaF_3}^{12}$. It was however considered to be indicative only of local adjustments of the ligands around the spherically symmetric Gd^{3+} rather than a space group higher than $\mathrm{C_{6v}^3}$ for the crystal as a whole. In any case the Raman and optical studies cited above indicate that a site symmetry of $\mathrm{C_{2v}}$ compatible with a $\mathrm{D_{6h}^3}$ structure is not far from the reality and is alleast a very good approximation.

The observations on the optical spectra of Kramers ions doped in the lattice (Nd¹³, Dy¹⁴, Sm¹⁵ and Er¹⁶) present however a more intriguing problem in that, the spectra are partially polarized. None of the orthorhombic (C_{2v} , C_{2} , C_{8}) symmetry groups contain more than one double valued representation. So under any of these symmetries all the Kramers' wavefunctions belong to a single species and no selection rules exist nor should there be any polarization. The polarization of the lines does not conform also to the pattern expected for a D_{3h} site symmetry which the R.E. ions possess in the highly symmetric D_{6h}^4 unit cell proposed by Schlyter¹⁷. Some explanations are offered for this descrepancy by earlier workers¹⁴ but no conclusions could be reached at. This aspect is discussed in a greater detail in section 4.7.

The selection rules for the symmetry groups $\mathbf{C}_{2\mathbf{v}}$ and $\mathbf{C}_{\mathbf{s}}$ are given in Tables 3.1 and 3.2. Since the quantization axis of the R.E. site is perpendicular to the symmetry axis of the crystals a right handed co-ordinate system illustrated in figure 3.2 is used in deriving these tables The ionic coordinate system XYZ is so oriented that the X and Z axis lie in a plane perpendicular to the c axis and the Y axis coincides with it. The horizontal plane being a symmetry plane the X and Z axis are indistinguishable. The only recognizable axis is Y, parallel to the c axis. Thus in Tables 3.1 and 3.2, σ and π refer to the electric vector perpendicular and parallel respectively to the c axis and not to the ionic Z This degeneracy of the X and Z axis leads to an ambiguity in the species assignment (under C_{2v}) of the relevant levels, if based only on the polarization of the transition between them. Specifically it is not possible to distinguish strictly between A_7 and B_7 or between A_2 and B_2 . However in the present case where several transitions involving a particular level are observed, the information from all these are put together and with the a prioriinformation of the kind that J=0 level is an A_{γ} (not a B_{γ}), unique species assignments are arrived at for most of the levels. The next section describes the observed spectrum and its analysis.

Table 3.1 Selection rules for C_{2v} sites in the D_{6h}^3 structure of LaF $_3$

a. Electric Dipole

b. Magnetic Dipole

	Al	^A 2			E'		Al	_	В	^B 2	E'
A	σ		σ	π		A		π	σ	π	
A2		σ	π	σ		A ₂	π		π	σ	
$^{\mathtt{B}}\mathtt{l}$	σ	π	σ			$^{\mathtt{B}}\!\mathtt{_{1}}$	σ	π		π	
^B 2	π	σ		σ		B ₂	π	σ	π		
Ε¹					σπ	\mathbf{E}_{t}					σπ -

E' is the double valued representation

 π Electric vector parallel to C axis

σ Electric vector perpendicular to C axis

Table 3.2

Selection rules for C_s sites in the C_{6v}^3 structure of LaF₃

a. Electric Dipole

b. Magnetic Dipole

	A¹	A ! !	E'		A 1		E'
A'	OT	σ		A'	π	σπ	
A 11	σ	σπ		A **	σπ	π	
E'			σπ	E۱			σπ

 E^{τ} is the double valued representation σ and π have the same meaning as in Table 3.1

Pis. 3.2 Orientation of the loute co-ordinate area (IV2) with respect to the crystalline co-ordinate area (IV2).

CENTER HEREN

Species under C _{2v}	Species under C _s (YZ)
<u> </u>	A,
^A 2	Α"
^B 1	A"
B ₂	A t

3.3 The absorption and fluorescence spectra at LNT

3.3.1 General features

A single crystal of LaF, containing 0.5 % Europium purchased from the Optovac Co. (USA) was kindly loaned to us by Professor H.P. Broida. The crystal is of very good optical quality and measures 10 x 7 x 4 mm³ with the c axis specified to be parallel to the shortest side (4mm). This is checked by viewing it under a polarization microscope. The crystal contains beside Europium, an unknown but small quantity of Praseodymium as an unintentional co-dopant.

The absorption spectrum at LNT recorded in the range $4000-9000\text{\AA}$ consists of only two groups of sharp and weak lines around 4640\AA and 5240\AA . By comparison with the spectra of Eu^{3+} in other lattices $^{1-4}$ these lines are easily identified as due to the $^{7}\text{F}_{0}-^{5}\text{D}_{2}$ and $^{7}\text{F}_{0}-^{5}\text{D}_{1}$ transitions. The $^{7}\text{F}_{0}-^{5}\text{D}_{3}$ (expected at about 4100\AA) is not observed, as well as the $^{7}\text{F}_{0}-^{5}\text{D}_{0}$. The latter is forbidden by both electric dipole and magnitic dipole selection rules but is seen to become allowed due to J mixing. Weber reports observing this transition at 5830\AA in the excitation spectrum of $^{5}\text{D}_{0}$ fluorescence.

Weber also mentions observing the infrared absorption due to the transitions within the ⁷F multiplet but did not give any details. Efforts to observe this here on a Perkin-

^{*} The lines are very weak. No satisfactory print could be obtained and therefore the figure is not presented.

the two namely; ${}^5D_0 - {}^7F_3$, ${}^5D_1 - {}^7F_5$ (6600Å) and ${}^5D_0 - {}^7F_2$, ${}^5D_1 - {}^7F_4$ (6100Å). This is however not possible with the crystal used, as excitations capable of populating 5D_2 also lead to strong fluorescence from the ${\rm Pr}^{3+}$ in both these regions and masks the Europium fluorescence. The observed fluorescence at LNT are listed in Table 3.4. The excitations used are 4580Å (for 5D_2) and 5145Å (for 5D_1 and 5D_0) throughtout, as the other excitations give much weaker fluorescence

In the spectrum recorded at RT the lines show width larger by factors of two or three than at LNT. This is not very large per se but still large enough to obscure several fine details and small splittings, limiting the usefulness of the spectrum Also the intensity is about three times smaller at R.T. The discussion is therefore limited to the spectrum observed at LNT only.

The elucidation of the energy level structure being the main task of the analysis, in what follows, the various transitions terminating in a particular 7F_J level are discussed together. In the discussion the totality of transitions between a particular 5D_J level and a 7F_J level is referred to as a 'group' and the superscripts 5 and 7 are ommitted for brevity. For example the group of six lines identified as transitions between 5D_1 and 7F_1 levels is referred to as the D_1 - F_1 group. The word 'transition' is

Excitation with the 3371Å emission of the nitrogen laser resulted only in some continuum fluorescence in the blue, attributable to Eu. An EPR spectrum characteristic of Eu. is also observed in this crystal.

however used to denote a single transition between any two Stark components. A notation is also introduced to denote the individual Stark components as follows. The Stark levels of say, the 5D_1 are denoted as Dl,1; Dl,2 and Dl,3 in order of increasing energy. In Dieke's notation these would be called B_1 , B_2 and B_3 respectively. This notation would lead to a clash with the C_{2v} species notation (A_1, A_2, B_1, B_2) and for this reason is not used here. Stark components of 7F_4 for example are similarly denoted F4,1; F4, 2; F4, 9. The transition assignments shown in Table 3.4 use this notation only. The word 'level is primarily used to denote an SLJ level $(^5D_1$ say) but it is also sometimes used to denote individual Stark components. Care is however taken to avoid confusion due to this double usage by making the context clear.

3.3.2 Transitions involving the 7F cround state

These are observed in absorption is well as fluorescence. The absorption lines are given in Table 3.5. The fluorescence scence spectrum is illustrated in figures 3.3 and 3.4. The numbers marked in the figures under the various fluorescence lines are the wavelengths in Angstrom units. Three transitions are observed between F_0 and D_1 in both cases. Two of these are π polarized and the other σ . The axial spectrum

Table 3.4

The fluorescence spectrum of Eu3+: LaF3 at LNT

	π	E Vector parallel to C axis.			
and	5	E Vector perpendicular to C axis, direction of viewing perpendicular to C axis			
	а	Observed while viewing along the C axis.			
E,e Strong, weak electric dipole transitions.					
	M,m	Strong, weak magnetic dipole transitions.			
	*	The partial polarization of the line can be explained under C symmetry only			
	+	The partial polarization of the line cannot be explained even under C symmetry.			

Wavelength	Energy	Poları	zation	Transition	Nature
Å	(cm ⁻¹)	Strong	Weak		
4635.8	21565	σa.		D2,5 F0*	E
4641.0	21541	o a		D2,4 — FO	E
4643.0	21532	π		D2,3 — FO	E
4647.7	21509.7	σa.		D2,2 — FO	E
4658.0 4663.0	21462 21439			D2,1 IO Roman, 4580A	excitation
4704.6	21250	πσа		D2,5 F1,1*	E
4711.0	21221	поа		D2,3 - F1,1*	E
4717.8	2119 1 °•5	πσ	а	D2,5 F1,2*	E,m
				D2,1 F1,1	
4724.3	21161	πα		D2,3 — F1,2	M
4 72 7•2	21148	σ		D2,5 - F1,3	M
47 2 9.6	21138	σ		D2,2 — F1,2	M
4731.0	21131	π	a	D2,4 F1,3	E,m
4739.8	21092	σπα		D2,1 F1,3*	M

Table 3.4 (cont.)

Wavelength	Energy	Polar	ızation	Transition	Naturo	
Å	(cm ⁻¹)	Strong	Weak			
5070.5	19716	π	٥	⁵ D ₂ — ⁷ F ₃		
5076.9	19692	π σа.		2 9		
5079•2	19683	πа		11		
5083 • 4	19666	πа	σ	17		
5085.2	19659	πσα		71		
5088.5	19647	σ	πа	11		
5091.0	19637	π σа.		11		
5097•2	19613	σ	πα	n		
5103•1	19591	πσ		rı		
5110.6	19562	σ		11		
5116.7	19538	π		ti		
5124.5	19509	πσα		11		
5222.0	19144			Raman, 5145Å	excitat:	
5227.6	19124			11 17		
5244.0	19063	σ		D1,3 — FO	M	
5246.2	19056	πa		D1,2 FO	M	
5249•7	19043	πα		ν1,1 — FO	M	
5284.0	18920	σa	π	⁵ D ₂ — † _{F4?}	E	
5287.0	18909	σa.	π	2 4	E	
5293.0	18888	π	σ	11 7	E	
5332.8	18747	πσε		D1,3 — F1,1	E	
				D1,2 - F1,1	E	
5337.6	18730	σa		D1,1 - F1,1	E	
5349 • 5	18688	σa		D1,3 - F1,2	E	
5355 • 2	18668	π	₫a.	D1,1 F1,2	E	
5363.2	18640	σа		D1,2 - F1,3	E	
5366.5	18629	σa,		D1,1 F1,3		

Table 3.4 (cont.)

Wavelength	Energy	Polaria	zation	Transition	Nature
Å	(cm ⁻¹)	Strong	Weak		
5523.6	18099	σ	πα	D1,3 F2,1*	M
5529.6	18080	πa	100	D1,1 F2,1	M
5533.2	18068	ď		D1.3 — F2.2	M
5535•5	18060	πa		D1,2 — F2,2	M
5540.3	18045	πa		D1.1 — F2.2	M
5564.2	17967	πa		D1,3 — F2,3	M
5571.6		na. o		D1,1 F2,3*	M
221100	17943	J		ייל פל ביייים ו פוע	TAT.
5619.5	17790	π	σa	${}^{5}_{\mathbb{D}_{2}} - {}^{7}_{\mathbb{F}_{5}}$	E
5627.0	17767	π σα		11	E
5631.0	17754	σa		11	E
5633.2	17747	σa		11	E
5635.0	17741	π		Ħ	E
5640.5	17724	σa,		11	E
5642.0	17779	π		tt	E
5651.0	17691	π σα.		71	E
5675.0	17616	σa	?	11	E
5680.5	17599	σa	9	11	E
5684.0	17588	σa.	n	11	E
5690.5	17568	π-	σa	n	E
5704 • 5	17525	π σα		ff	E
5713.5	17498	π		11	E
5721.5	17473	σa		Ħ	E
5805.8	17219	σa		D1,3 — F3,1	E
5812.5	17200	π		D1,1 F3,1	E
5814.0	17195	σа		D1,3 — F3,2	E
5816.0	17189	π		D1,2 — F3,2	E

Table 3 4 (cont.)

Natur	tion	Transı	zatıon	Poları	Energy	Wavelength
			Weak	Strong	(cm ⁻¹)	Å
E	F3,3	D1,3 —		TE	17178	5819•9
E	F3,4	D1,3 —				
E	F3,3	D1,2		σa	17174	5821.3
E	F3,5	D1,3		π	17155	5827.7
E	F3,4	D1,1		σa		
E	F3,5	D1,2		oa.	17148	5829.7
E	F3,6	D1,2		ďа	17062	5859•3
E	F3,6	D1,1		9	17045	5865 • 1
M	F1,1	DO		πа	16978	5888.0
M	F1,2	DO		πа	16918	5908.8
M	F1,3	ъо —		σ	16881	5922.1
E	F4,1	D1,3		σa.	16447	6078.3
E	F4,1	D1,1 —		π	16428	6085.3
E	F2,1	DO		σa.	16326	6123.5
E	F2,2*	DO		π	1 6291	6136 •5
E	F4,2 ⁺	D1,3		πσα	16273	6143.5
E	F4,3	D1,2		π	16213	6165.9
Ð	F4,5	D1,3		σa.	16189	6175 • 1
E	F4,5 ⁺	D1,1		πσα	16171	6182.1
	F4,6 ⁺	D1 ,3				
E	F4,6	D1,2 —		π	16161	6186 •0
E	F4,7	D1,2 —		σa.	16129	6197•9
E	F4,7	D1,1 —		σa	16121	6201.0
E	F4,8	D1,3		σ ą,	16017	6241.5
E	F4,8	D1,1 —		π	15995	6250.0
	F 4,9	D1,3 —				
E	F4,9	D1,1 —		σα	15975	6257.8

Table 34 (cont.)

elength	Energy	Polaria	zation	Ta	ansition	Nature
Å	(cm ⁻¹)	Strong	Weak			
.82.1	15423			⁵ D ₀	7 _{F3}	
.90•3	15403			Ū	11	
93.6	15395				79	
99•7	15381				11	
43.0	152 7 9			⁵ D ₁	7 _{F5}	
51 • 0	15260			•	"	
61.5	15236				11	E
70.5	15215				11	E
18.6	15104				17	E
41.6	15052				11	E
46.0	15042				11	E
59 • 4	15012				19	E
67•4	14993				ft	B
75•5	14976				19	E
85.5	14953				n	E
09.5	14681	π σa		DO	F4,	* ₽
91•8	14505	σa.		DO	F4,2	e e
19•8	14446	σa		DO	F4,4	ļ E
32.2	14421	π		DO	F4,	5 E
59 •4	14364	π		DO	F4,	7 E
17.6	14246	σa		DO	F4,8	3 E

Table 3.5

The absorption spectrum of Eu3+·LaF3 at LT

Wavelength Å	Energy cm ⁻¹	Polarization
4642.95	21532.0	π
4647.2	21512.3	σa
4648.26	21507.4	σa.
5244 • 36	19062.8	σ
5246 •19	19056 • 1	πа
5249 •69	19043•4	πа

Note: All the six lines are sharp and weak.

Plg. 3.3 By ther, floorescence at 77°E, 50,-70 group.
(The three lines at 5284.0, 5287.0 and 5293.0A

Excilation 4880A,60 mw Input slit width 100 \mu Range 30 n amps

Mg. 3.4 m 11eP, fluorescence et 77°E, D2-7Po cross.

is identical to the π spectrum. Thus these are magnetic dipole (MD) transitions. The ED transitions between these levels are actually forbidden by the zero to odd selection rule given by Ofelt¹⁸. The mixing of ⁷F and ⁵D wavefunctions² by the off-diagnal elements of the spin orbit coupling (chapter 1) is responsible for allowing these MD transitions. The splitting of ⁵D₁ is $A_2 + B_1 + B_2$ under C_{2v} and A' + A'' under C_8 (Table 3.6). From the selection rules of these groups (Tables 3.1b, 3.2b) it is seen that the observed polarizations check only with C_{2v} . The two π lines are due to Stark components of A_2 or B_2 species whereas the σ line is due to a component of B_1 species. Thus the splitting of the 5 D₁ is D1,1-19043.4-cm⁻¹ (A_2), D1,2-19056.1 cm⁻¹ (B_2) and D1,3-19062.8 cm⁻¹ (B_1).

The F_0 - D_2 group contains two σ lines and one π line in absorption (Table 3.5). In fluorescence the two σ lines at 4647.2 $\mathring{\Lambda}$ and 4648.3 $\mathring{\Lambda}$ are not resolved. Also two more weak lines are observed in σ polarization. The axial spectrum is identical to the σ spectrum confirming the electric dipole (ED) nature of the group. Actually $\Delta J = 2$ for this group and no MD transitions are allowed. Under C_{2v} three σ lines and one π line are expected, the ED transition to Δ_2 being forbidden (Table 3.1a). However as the symmetry descends to C_8 this transition (Λ' - Λ'') becomes allowed in

⁺ For all such cases where $\Delta J=2$ or larger, the axial spectrum is invariably found to be similar to the σ spectrum and since there is no possibility of doubt the axial spectrum is not shown in the figures.

J	°2 _v	CB
0	A ,	A¹
1	A ₂ + B ₁ + B ₂	$A^1 + 2A^{11}$
2	$2A_1 + A_2 + B_1 + B_2$	3A1 + 2A"
3	A ₁ +2A ₂ +2B ₁ +2B ₂	$3\Lambda^{1} + 4\Lambda^{11}$
4	34 ₁ +24 ₂ +2B ₁ +2B ₂	5A1 + 4A11
5	2A ₁ +3A ₂ +3B ₁ +3B ₂	5A' + 6A''
6	4 ^A 1 +3 ^A 2 +3 ^B 1 +3 ^B 2	7A! + 6A!

o polarization (Table 3.2a). The weakest of the four olines is therefore attributed to a Stark component of \mathbb{A}_2 species⁺. The other three olines are due to components of \mathbb{A}_1 or \mathbb{B}_1 species, the π line from that of \mathbb{B}_2 species. Thus the splitting of the \mathbb{S}_1 is D2,1-21507.4 cm⁻¹ (\mathbb{A}_1 or \mathbb{B}_1); D2,2-21512.3 cm⁻¹ (\mathbb{A}_1 or \mathbb{B}_1); D2,3-21532(\mathbb{B}_2); D2,4-21541 cm⁻¹ (\mathbb{A}_1 or \mathbb{B}_1) and D2,5-21565 cm⁻¹ (\mathbb{A}_2). These assignments are somewhat tentative at this stage and have to be confirmed by the analysis of other groups.

3.3.3 Fluorescence terminating in $^{7}\mathrm{F}_{1}$

This level is expected around 350 cm⁻¹ and the groups of lines around 5900Å, 5350Å, and 4700Å are easily identified as the D_0 - F_1 , D_1 - F_1 and D_2 - F_1 groups. All these three groups are shown in figure 3.5. MD transitions to F_1 are allowed from all the three fluorescing levels, whereas ED transitions are allowed only from D_2 and D_1 . ED transitions from D_0 are forbidden by the zero to odd selection rule. Figure 3.5 shows that the character of the D_0 - F_1 group however does not show any MD transitions. The reason may very well be the same as advanced by Judd³ to explain their absence in the spectrum of Europium ethyl sulphate, namely the accidental vanishing of the MD matrix element due to the coincidence of the g factors of ${}^{7}F_1$ and ${}^{5}D_1$.

t It is checked that none of these lines is a Raman line.

The position of the D $_0$ level being still unknown, the D $_1$ -F $_1$ group is analysed first. Both these levels split as A_2 +B $_1$ +B $_2$ under C $_{2v}$ and seven FD transitions are allowed in all between them, fire in the σ polarization and two in the π . Under C $_{s}$ symmetry one expects four σ lines and five unpolarized lines. The observed spectrum consists of four σ lines, one π line and one line that is present in both polarizations (5332.8Å). This last line appears with a slightly larger width in the unpolarized spectrum. It is likely that it consists of two lines, one in σ and one in π . Thus a C $_{2v}$ symmetry seems to be a valid approximation here also.

The transition assignments are done with the help of Table 3.7. In this table, the wavelengths, wavenumbers and the polarizations of the six observed lines are written in the first three columns. The energies of the levels of 5D_1 alongwith their species assignments as are determined so far are written on top of the next three columns. The table is now filled as a matrix of the differences of energies of the upper levels $(^5D_1)$ and the observed lines. These differences correspond to possible lower level positions and since particular lower levels are involved in more than one transitions some of these numbers must coincide with each other. The upper level positions are obtained from the absorption plates

Table 3.7 $\label{eq:def_Table_3.7} \mbox{Difference matrix for the (D_1-F_1) group of fluorescence lines}$

C	bserved lin	es	D1,1(A ₂ or B ₂)D1,2(A ₂ or B ₂)D1,3(B ₁)			
Wavelength Å	Energy cm	1 Polerization	19043 cm ⁻¹	19056 cm ⁻¹	19063 om	
5366 •5	18629	a	414 ²	427 ¹	434	
5363.2	18640	σ	403	416 ²	423 ¹	
5355•2	18668	π	375 ³	388	395	
5349•5	18688	σ	355	368	375 ³	
5337.6	18730	σ	313 ⁴	326	333	
5332•8	18747	σπ	296	309 ⁴	316 ⁴	

Note: In this and the succeeding difference matrices, sets of 'matching' numbers are indicated by superscripts 1,2,3 etc.

and are accurate to ± 0.5 cm⁻¹. The fluorescence line positions however are not as accurately measurable. Thus a 'match' or 'coincedence' is taken to occur if any two numbers are within 5 cm⁻¹ of each other. Four such sets of numbers; indicated by superscripts, could be seen in the table.

The match 423 and 427 implies two o transitions from D1.2 and D1.3 to a lower level at that energy. upper levels however belong to(A2 or B2) and B1 species respectively and cannot both have o transitions to a single level (Table 3.1a). This coincidence is thus considered fortuitous The match 414 and 416 is however valid since o transitions from two levels both of A2 or B2 species are possible to a single level also of A2 or B2 species. The match 375 is again valid, and since a π transition is allowed only between A_2 and B_1 this determines the species of D1,1 as A_2 and that of the Stark component at 375 cm⁻¹ as B_1 . D1,3 being already assigned as belonging to B_1 the remaining D1,2 must belong to B₂ species. The match 316, 309, 313 is valid polarizationwise and also determines the 313 cm⁻¹ (average value) component of 7 F₁ as A_{2} , since it is only levels of this species that can have transitions to A_2 , B_1 as well as B_2 levels. identification enables the assignment of the Stark component at 415 cm⁻¹ as a B₂. The splitting of $^{5}D_{1}$ therefore is Dl,1-19043.4 cm⁻¹ (A_2); D1,2-19056.1 cm⁻¹ (B_2) and D1,3-19062.8 cm⁻¹(B_1).

ألملاد

The splitting of the $^{7}F_{1}$ is Fl,1-313 cm⁻¹ (A₂); Fl,2-375 cm⁻¹ (B₁) and Fl,3-415 cm⁻¹ (B₂). Figure 3.6 represents all the transitions terminating in $^{7}F_{1}$ diagramtically.

The magnetic dipole induced D_0 - F_1 group can now be used to fix the position of 5D_0 level. The separations of these three lines (5888, 5908.8, 5922.1Å, Table 3.4) and their polarizations check with what can be expected from the species assignments made above for the 7F_1 . Using these energies of the Stark components of 7F_1 , 5D_0 is determined to lie at 17293 cm⁻¹.

With the splitting of the 7F_1 level thus established it is a rather simple matter to analyse the D_2 - F_1 group (also shown in figure 3.5). The transition assignments made are given in Table 3.4. However the partial polarization of four of these eight lines cannot be explained under C_{2v} but only under C_8 . These are indicated by a * in the transition assignments column in this table. Out of the polarized lines, the MD transition at 4727.2Å (σ) between D2,5 and F1,3 (B_2) determines the species of the former to be. A2 as is tentatively assigned already. Similarly the MD transition (σ) to F1,2 (B_1) at 4729.6Å fixes the species of D2,2 as A1. The 4731.0Å line is present strongly in π and is weak along the axis. That is, it is a strong electric and weak magnetic transition. The lower lovel is F1,3 (B_2) and π polarized

Fig. 3.6 Partial energy level diagram of Mariles, showing the observed fluorescence transitions at 77% terminating in Trans.

ED and MD transitions are allowed to it only from A_1 not B_1 So the upper level D2,4 is an A_1 . The remaining D2,1 then has to be a B_1 So the splitting of 5D_2 is D2,1-21507 4 cm⁻¹ (B_1), D2,2-21512 3 cm⁻¹ (A_1), D2,3-21532 cm⁻¹ (B_2); D2,4-21541 cm⁻¹ (A_1) and D2,5-21565 cm⁻¹ (A_2)

3 3 4 Fluorescence terminating in 7F2

Only the magnetic dipole induced D_1 - F_2 group around 5550Å, shown in figure 3 7 is properly identified in this case The D_2 - F_2 group expected around 4780Å is masked by the \Pr^{3+} fluorescence and D_0 - F_2 lines are mixed up with those of D_1 - F_4 Table 3 8 gives the difference matrix for the D_1 - F_2 , set up similar to Table 3 7 Using appropriate selection rules three coincidences at 964 cm⁻¹ (A_1), 996 cm⁻¹ (A_1) and 1098 cm⁻¹(B_2) are found to be valid and the two at 983 and 976 as invalid Figure 3 8 summarizes the transition assignments. Here the above three levels are denoted as F_2 ,1, F_2 ,2 and F_2 ,3 respectively

Fi

With these assignments the last line at 5571 6Å [Dl,l (A_2)-F2,3 (B_2)] should be σ polarized. Whereas there is significant intensity in the π polarization also. It is likely that this is due to a coincident transition from Dl,2 or Dl,3 to any one of the four Stark components of 7F_2 not determined so far. But the present method of analysis

Excitation 5145 A, 400 mw Input slit width 100 µ Range 10 n amp

Observed lin	. 0 5	D1,1(A ₂)		D1,3(B ₁)
Energy cm ⁻¹	Polarization	19043 cm ⁻¹	19056 cm ⁻¹	19063 cm ⁻¹
17943	σπ	1100 ¹	1113	1120
17967	π	1076	1089	1096 ¹
18045	π	998 ²	1011	1018
18060	4	983	996 ²	1003
18068	σ	975	988	995 ²
18080	π	963 ³	976	983
18099	σ	944	957	964 ³
	Energy cm ⁻¹ 17943 17967 18045 18060 18068 18080	Energy cm ⁻¹ Polarization 17943	Thergy cm ⁻¹ Polarization 19043 cm ⁻¹ 17943 σπ 1100 ¹ 17967 π 1076 18045 π 998 ² 18060 π 983 18068 σ 975 18080 π 963 ³	Energy cm ⁻¹ Polarization 19043 cm ⁻¹ 19056 cm ⁻¹ 17943 σπ 1100 ¹ 1113 17967 π 1076 1089 18045 π 998 ² 1011 18060 π 983 996 ² 18068 σ 975 988 18080 π 963 ³ 976

Note: The superscripts indicate sets of matching numbers.

Fig. J.8 Portial energy level disgram of Bu³⁴: LeP₃ showing the cheerest fluorescence transitions at 77°K terminating in ⁷F₂.

which relies on finding atleast two transitions to a single Stark component to identify it cannot lead to any conclusions of this nature. The partial polarization can however be explained by considering the descent in symmetry to C_s . Only the latter is indicated in Table 3.4 to maintain consistancy.

3.3.5 Fluorescence terminating in ⁷F₃

The ED transitions to this level from the 5D_0 are again forbidden by the zero to odd selection rule. Any weak lines that might have become allowed due to J mixing are mixed up in the D_1 - F_5 group and are not easily separable. The analysis is thus again started with the transitions from D_1 . This group $(D_1$ - F_3) is also illustrated in figure 3.7.

The difference matrix for this group given in Table 3.9 indicates the following seven lower levels, $1867-A_1$; 1843, $1889-B_1$; 1862, 1884, $1908-A_2$ and $1996-A_2$ or B_2 . The numbers written here are the averages of the sets of matching mumbers indicated by superscripts in the table. The expected splitting of the level is $A_1 + 2A_2 + 2B_1 + 2B_2$ (Table 3.6). Thus the one A_1 level and two B_1 levels are accounted for, whereas the A_2 levels are in excess. That means at least one of the coincidences is fortuitous and should be discarded. A choice is made here to drop the 1862 cm⁻¹ coincidence since, dropping any of the other two would leave one line

Table 3.9 $\label{eq:defD1-F3} \mbox{Difference matrix for the } (\mbox{D}_1\mbox{-F}_3) \mbox{ group of fluorescence lines}$

	Observed lin	es	D1,1(A ₂)	D1,2(B ₂)	D1,3(B ₁)
Wavelength Å	Energy cm	Polarization	19043 cm ⁻¹	19056 cm ⁻¹	19063 cm ⁻¹
5805.8	17219	o-	1824	1837	1844
5812.5	17200	π	1843 ¹	1856	1863 ²
5814.0	17195	5	1848	1861 ²	1868 ³
5816,0	17189	π	1854	1867 ³	1874
5819•9	17178	TT	1865	1878	18854
5821 • 3	17174	σ	1869	1882 ⁴	1889 ⁵
5827.7	17155	OT	1888 ⁵	1901	1908 ⁶
5829.7	17,148	5	1895	1908 ⁶	1915
5859•3	17062	5	1981	19947	2001
5865•1	17045	7	1998 ⁷	2011	2018

Note: Superscripts indicate sets of matching numbers.

unassigned (5819.9Å or 5829.7Å). Accepting the remaining two A_2 coincidences as valid, the 1996 is assigned to be a B_2 . Thus only six levels out of the expected seven are determined.

The D_2 - F_3 group around 5100A is illustrated in figure 3.9. There are only 12 lines in the group whereas all 35 possible transitions are allowed either by MD or ED selection rules. The axial spectrum does not clearly resemble either the σ spectrum or the π spectrum and contains both kinds of transitions. Also several lines are partially polarized. Attempts to make transition assignments using a difference matrix did not lead to any conclusive results. The number of coincidences is too large, and it is not possible to check the validity or otherwise of the coincidences because of the partial polarization of most of the lines.

The splitting of the $^{7}F_{3}$ is thus taken as determined from the D_{1} - F_{3} group only and is as follows. F_{3} ,1-1843 (B_{1}); F_{3} ,2-1867 (A_{1}); F_{3} ,3-1884 (A_{2}); F_{3} ,4-1889 (B_{1}); F_{3} ,5-1908 (A_{2}) and F_{3} ,6-1996 (B_{2}). The observed transitions of this group are given in the bar diagram of figure 3.10.

3.3.6 Fluorescence terminating in 7_{F4}

The group of six lines between 6800 and 7020Å (figure 3.11) is in the expected position for the D_0 - F_4 group. All

Pls. 3.9 Marting fluorescence at True De la group.

Mg. 3.10 Pertial energy level diagram of the ilegalowing the discrete concentrations at 77% terminating in Ty.

the lines except the first one at 6809.5Å are polarized and using the energy of 5D_0 level determined already, the following Stark components are obtained for 7F_4 2788, 2847, 3047-A₁ or 8B_1 ; (2612) (A₁, B₁ or B₂); and 2872, (2929-B₂. Out of the nine levels which split as $3A_1 + 2A_2 + 2B_1 + 2B_2$, ED transitions to the two A₂ components are forbidden and cannot be determined from this group. These have to be determined as well as the ambiguity of the above species assignments removed, from the analysis of the D₁-F_A group.

The D_1 - F_4 group is illustrated in figure 3.12.

The difference matrix for this group is given in Table 3.10.

is a group of fourteen lines almost all of which are polarized.

the information obtained from both the groups, one has a total

of 11 levels: 2894-A₁; <u>2614</u>, 2873-B₁; <u>2788,2847</u>, <u>3047-A₁</u> or

transitions from ⁵D_O are underlined. Since only nine levels

 B_1 ; 3068, 2771, 2852- A_2 and 2873, 2926 - B_2 . The numbers

written are 'averages' and the levels determined by the

are expected some of the above must be wrong.

A perusal of this table produces the following eight valid (polarizationwise) coincidences $2894-A_1$; 2616, $2873-B_1$; 3068, 2771, $2852-A_2$; $2873-B_2$ and $2925-A_2$ or B_2 . Some of these agree with the Stark level positions arrived at from the D_0-F_A group within the experimental uncertainty. Combining

Excitation 5145 A,400 mw

Input slit width 150 μ

Mas 3.11 M. Lang Municements at 170% 3.7-12 graps.

Ob:	served lines	3	D1,1(A ₂)	D1,2(B ₂)	D1,3(B ₁)
Wavelength A	Poları- zatıon	Energy_1	19043 cm ⁻¹	19056 cm	-1 ₁₉₀₆₃ em ⁻¹
_		•			1
6078.3	σ	16447	25 96	2609	2616 ¹
6085.3	π	16428	2615 ¹	2628	2635
6123.5	σ	16326	2717	2730	2737
6136.5	πσ	16291	2752	2765	2772
6143•5	σπ	16273	2770	2783	2790
6165•9	π	16213	2830	2843	2850
6175•1	σ	16189	2854	2867	2874 ²
6182•1	σπ	16171	2872 ²	2885	2892 ³
6186.0	π	16161	2882	2895 ³	2902
6197•9	σ	16129	2914	2927 ^A	2934
6201.0	σ	16121	2922 ⁴	2935	2942
624 † 5	σ	16017	3026	3039	3046 ⁵
6250.0	π	15995	3048 ⁵	3061	3068 ⁶
6257.8	σ	15975	3068 ⁶	3081	3088

Note. Superscripts indicate sets of matching numbers.

Out of three A_2 levels, the 2771 is chosen to be dropped, as the two lines which give this coincidence 6136.5Å and 61435Å can be alternatively assigned, the former as a transition from 5D_0 to the component F2,2 of 7F_2 and the latter as a transition from D1,3 to the 2790 cm $^{-1}$ (A_1 or B_1) level determined from the D_0 -F4 group. Out of the two coincidences of the A_1 , B_1 type at 2873 and 2894 obtained only from the D_1 -F4 group, the 2894 is retained, as dropping that Would leave the 6186.0Å line unassigned. In conclusion, the splitting of 7F_4 is F4,1-2614 cm $^{-1}$ (B_1); F4,2-2788 cm $^{-1}$ (A_1 or B_1); . F4,3-2847 cm $^{-1}$ (A_1 or B_1); F4,4-2852 (A_2); F4,5-2873 cm $^{-1}$ (B_2); F4,6-2894 cm $^{-1}$ (A_1); F4,7-2926 cm $^{-1}$ (B_2); F4,8-3047 cm $^{-1}$ (A_1 or B_1) and F4,9-3068 cm $^{-1}$ (A_2). Figure 3.13 summarizes all the transitions observed terminating in 7F_4 .

The line at 6123.5% which is not assigned to any of the D_1-F_4 transitions is probably due to a transition from 5D_0 to F2,1 (964 cm⁻¹).

A group of three well polarized ED induced lines is observed around 5920Å in the spectrum excited with the 4580Å radiation. This is shown in figure 3.3 along with the D_1 - F_0 group. This is the expected region of the D_2 - F_4 group but none of these lines can be understood as due to transitions between the 5D_2 and the Stark components of

Pig. 5.13 Pertial energy level diagram of ho³⁴; leV, showing the charge of fluorescence transitions at 77°K terminating in T₄.

⁷F₄ determined above. They are quite far off (2900 cm⁻¹) from the laser line to be thought of as Raman lines (their intensity also does not show any dependance on the polarization of the incident laser light). They do not also check with the expected positions of electronic Raman lines of wither Eu³⁺ or Pr³⁺ nor with any fluorescence of Pr³⁺:LaF₃. These are left unassigned.

3.3.7 Fluorescence terminating in 7F5

Figures 3.14 and 3.15 illustrate D_1 - F_5 and D_2 - F_5 groups of lines. The D_1 - F_5 group between 6480 and 6700A is very weak (the polarized spectra being more so) resulting in very inaccurate wavelength measurements. The D_2 - F_5 group between 5600 and 5730Å does not suffer from this problem but the analysis is hampered by a multitude of coincedences (in the difference matrix) and occurrence of several partially polarized lines. From this group it could be determined that the Stark components of 7F_5 occur between 3700 and 4100 cm⁻¹. Using these numbers the first four lines of the previous group (that is the one around 6600Å) are assigned as to be due to D_0 - F_3 transitions.

Excitation 5145 A , 400 mw Input slit width 150 μ Range 1 n amp

The selection of the second of the selection of the second

Nice 3.15 And Lies Sincrestance at 77°E, 502-78 group.

Table 3.11

The energy levels of Eu³⁺: LaF₃

(0 to 22,000 cm⁻¹)

SIJ	Sturk lovel Designation	Energy cm ⁻¹	Species (under C _{2v})	Centre of gravity cm
$7_{\mathbf{F}_{O}}$	FO	0	A ₁	
U	F1,1	313	1 A ₂	
7 _F 1	F1,2	375	B ₁	368
,	F1,3	415	B ₂	
7 _{F2}	F2,1	964	A ₁	
2	F2,2	997	A ₁	1020 *
	F2,3	1098	B ₂	
7 _F 3	F3,1	1843	ъ В	
- 3	F3,2	1867	A	1898 ⁺
	F3,3	1884	A ₂	
	F3,4	1889	B ₁	
	F3,5	1908	A 2	
	F3, 6	1996	B ₂	
7 _{F4}	F4,1	2614	^B 1	
4	F4,2	2788	A, or B	
	F4,3	2847	A, or B,	
	F4,4	2852	A ₂	
	F4,5	2873	^B 2	2879
	F4,6	2894	r ^A	
	F4,7	2926	^B 2	
	F4,8	3047	A ₁ or B ₁	
**	F4,9	3068	A 2	
7 _{F5}		3700-4100		
$7_{\mathbf{F}_{\boldsymbol{\varsigma}}}$		Not observed		

Table 3.11 (contd.)

5 _D				
5 _m				
¹ Ο	DO	17293	A ₁	
⁵ D ₀	D1,1	19043•4	A ₂	
1	D1,2	19056.0	^B 2	1 9054
	D1,3	19062.8	В ₁	
⁵ D ₂	D2,1	21507.4	B ₁	
2	D2,2	21512.3	Λ_{1}	
	D2,3	21532.0	В ₂	21532
	D2,4	21541	Λ_{γ}	
	D2,5	21565	∆ 2	

^{*} Average of the three observed levels

⁺ Average of the six observed levels

Table 3.11 lists the determined Stark levels and their symmetry species under C_{2v} . On the whole, the assumption of C_{2v} symmetry for the rare earth site seems to be fairly valid. Almost all the lines and their polarizations are satisfactorily accounted for under this framework. Better assignments of the partially polarized lines and the multiply assigned lines can probably be done only with an order of magnitude improvement in the resolution and wavelength accuracy. This is necessary also to improve the assignments of the lines whose wavelength separations are of the same order as the present inaccuracy. Infrared absorption data when available, would of course be very useful for the assignments.

REFERENCES

- 1. L.G. De Shazer and G.H. Dieke, J. Chem. Phys. 38, 2190 (1963).
- 2. G.S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
- 3. B.R. Judd, Mol. Phys. 2, 407 (1959).
- 4. E.V. Sayre and S. Freed, J. Chem. Phys. <u>24</u>, 1211 and 1213 (1956),
 - C. Brecher, Phys. Rev. <u>155</u>, 178 (1967),
 - N.C. Chang and J.B. Gruber, J. Chem. Phys. 41, 3227 (1964),
 - H.H. Caspers, H.E. Rast and J.L. Fry, J. Chem. Phys.
 - <u>47</u>, 4505 (1967),
 - G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience 1968); and references contained therein,
 - N. Yamada and S. Shiyonoya, J. Phys. Soc. Jap. 31, 847 (1971).
- 5. M.J. Weber, in Optical Properties of Ions in Crystals ed. H.M. Crosswhite and H.W. Moos (Interscience 1967), page 467.
- 6. Collete de Rango, G. Tsoucaris and Ch. Zelwer, C.R. Acad. Sc. Paris, 263, 64 Serie. C (1966).
- 7. J.M. Baker and R.S. Rubins, Proc. Phys. Soc. <u>78</u>, 1353 (1961).
- 8. I. Oftedal, Zs. f. Physik, <u>5</u>, 272 (1929); <u>13</u>, 190 (1931).
- 9. M. Mansman, Z. Anorg Allgem, Chem. 331, 98 (1964).
- R.P. Bauman and S.P.S. Porto, Phys. Rev. <u>161</u>, 842 (1967).

- 11. H.H. Caspers et.al., J. Chem. Phys. 43, 3214 (1965).
- 12. V.K. Sarma, J. Chem. Phys. <u>54</u>, 496 (1971).
- 13. E.Y. Wong, O.M. Stafsudd and D.R. Johnston, Phys. Rev. <u>131</u>, 990 (1963).
- 14. P. Venkateswarlu, unpublished.
- 15. H.E. Rast, J.L. Fry and H.H. Caspers, J. Chem. Phys. 46, 1460 (1967).
- 16. W.F. Krupke and J.B. Gruber, J. Chem. Phys. 39, 1024 (1963).
- 17. K. Schlyter, Arkıv Kemi. 5, 73 (1952).
- 18. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962).
- 19. M.J. Weber and R.F. Schaufele, J. Chem. Phys. 43, 7102 (1965).

CHAPTER 4

OPTICAL ABSORPTION AND FLUORESCENCE SPECTRA OF Nd3+:LaF3

ABSTRACT

The optical absorption spectrum of 2%Nd³⁺:LaF₃ has been observed in the region 0.25 to 0.9 microns whereas published data is available in the range 0.4 to 5 microns. Five groups of lines are observed in the ultraviolet absorption spectrum (2500-4000Å). The SLJ level designations could be assigned to the concerned levels of four of these groups by comparison with the spectrum reported for Nd³⁺:LaCl₃. The absorption spectrum in the region 4000-9000Å conforms with earlier data but for the observation of few shorp extra lines. These extra lines are assigned to be vibronic transitions.

At LNT excitation with the 5145Å (19,131 cm $^{-1}$) emmission of the Ar $^{+}$ laser produced fluorescence from the E (19,300 cm $^{-1}$), D (17,450 cm $^{-1}$) and R (11,600 cm $^{-1}$) levels as well as some other fluorescence lines whose intensity was proportional to P $^{1.76}$ where P is the incident laser power. These are identified as erising from the K (26,400 cm $^{-1}$) and L (28,350 cm $^{-1}$) levels of the Nd $^{3+}$. This assignment is confirmed by the fluorescence obtained with N₂ laser excitation (3371Å) which contained transitions from the K and L levels to several lower levels and also from R to the ground state. A sequential two step excitation process is proposed to explain the population of these two high lying levels when excited with the 19,430 cm $^{-1}$ radiation.

Three lines of the R-Z group showed significant self absorption. The simple geometry of laser excitation permitted an accurate calculation of oscillator strengths of these transitions using this effect.

With the 5145 excitation, fluorescence from S and A levels also is observed at room temperature beside the fluorescence observed at LNT. The intensity of these two transitions increases with temperature above RT. This is explained as due to an anamolous increase in the populations of S and A levels by an ion pair relaxation process active at high temperatures.

Several lines, in absorption as well as fluorescence are partially polarized, contrary to the expected behaviour of Kramers' ions in orthorhombic sites. Some possible explanations are offered for this behaviour.

4.1 Introduction

Studies on the absorption and fluorescence spectra of Nd³⁺ ion in various lattices have been carried out by several workers¹⁻⁴. Satten's work on the absorption spectrum of Nd(BrO₃)₃.9H₂O and that of Dieke and Carlson² on the absorption and fluorescence spectra of Nd:LaCl₃ firmly established the identity of several levels below 30,000 cm⁻¹. Aggarwal et.al⁴ extended the absorption measurements in Nd³⁺:LaCl₃ upto 40,000 cm⁻¹. In their analysis, Carlson and Dieke used free ion energies and wavefunctions calculated by Wybourne⁵ and Carlson and Crosswhite⁶ neglecting configuration interaction. Configuration interaction was later included by Rajnak⁷ to improve the agreement between theoretical and experimental results for Nd³⁺:LaCl₃. A calculation made by Crosswhite et.al⁸

including various magnetic interactions namely spin-spin, spin-other orbit etc. beside configuration interaction, reproduced the observed energy levels in LaUl₃ with an R.M.S. deviation of 9.5 cm⁻¹. The energy levels are shown in figure 4.1.

Wong et.al were the first to report the absorption spectrum of Nd3+:LaF3. By studying the spectrum in the range 5000 to 8600A at liquid helium and liquid nitrogen temperatures, they established the first excited Stark component of the ⁴I_{9/2} ground level to be at 44 cm⁻¹. Complete crystal field splittings of most of the levels in this region (5000 to 8600A) were also obtained. They noticed however that several lines in the spectrum are polarized, contrary to the expected behaviour of a Kramers ion under an orthorhombic field (chapter They opined that this could be due either to a coupling of neighbouring Nd ions or to a hidden selection rule. Caspers et.al 10 (hereafter referred to as CRB) erterded the absorption study to cover the region 0.4 m to 5 m. They also observed infrared fluorescence due to transitions between the 4F3/2(R) level at 11,600 cm⁻¹ and the various levels of the ground multiplet 4I. From this they could deduce the Stark splitting of the $^{4}I_{9/2}$ ground state as 0,45,136,296 and 500 cm⁻¹ (labelled \mathbf{Z}_1 to \mathbf{Z}_5). Using the centres of gravity of eight levels $(^{4}I_{9/2}, 11/2, 13/2, ^{4}F_{3/2}, 9/2, ^{4}G_{7/2}, 9/2 \text{ and } ^{2}P_{1/2})$ for

Fig. 4.1 Free ion energy levels of rare earth ions (from Dieke, ref. 2).

which total Stark splitting is thus established, they calculated the intermediate coupling parametres applicable to Nd:LaF₃ by a variational method given by Wong¹¹. The splitting of the $^4\text{I}_{15/2}$ level which was not completely observed by them was later reported by Voronko et.al¹² from infrared absorption data.

An early investigation of the absorption spectrum of NdF_3 , which is isomorphous with LaF_3 , is due to Chow^{13} . Using Zeeman effect he was able to identify several weak lines in the spectrum as vibronic lines. The electronic level positions (of Nd^{3+} ion) identified by him are in agreement with those determined later^{9,10} in $\operatorname{Nd}^{3+}_{:}\operatorname{LaF}_3$.

In this work the absorption studies on Nd³⁺:LaF₃ are extended upto 40,000 cm⁻¹ resulting in the identification of four levels in the region 28,000 - 40,000 cm⁻¹. Using laser excitations fluorescence is obtained in ultraviolet and visible regions also beside the infrared that is earlier reported. The analysis of this spectrum resulted in a better determination of the Stark components of several levels below 13,000 cm⁻¹, as well as identification of the ²(PD)_{3/2} or K level at 26,400 cm⁻¹ which is not observed in the absorption spectrum. The fluorescence spectrum also revealed a two photon absorption mechanism (under laser excitation) and two ion pair relaxation processes active at high temperatures.

Self absorption shown by some of the lines is used to calculate the oscillator strengths of the transitions involved.

4.2 The Optical Absorption Spectrum at LNT

The single crystal of LaF₃ doped with 2 Nd was also purchased from Optovac Co. and loaned to us by Professor H.P. Broida. This crystal also was a slab of 10 x 7 x 4 mm³ size with the caxis perpendicular to the broadest face. The axis is checked by viewing under a polarization microscope as well as by X-ray Laue pattern. A small piece of this crystal is cut for use in the EPR experiment. The remaining piece was repolished and used for the optical work.

The ultraviolet absorption spectrum (2000 to 4000Å) which is not so far reported, consists of five groups of lines between 2500 and 3600Å. There are several strong overabsorbed lines, as well as some weak lines in the spectrum. Most of the weak lines are seen to occur at energies lower by about 45 and 135 cm⁻¹ from neighbouring strong lines. It is likely that these are due to transitions from the first two excited Stark levels (Z₂ and Z₃) of the ground state at those energies. Table 4.1 lists the observed absorption lines and the transition assignments made with this assumption. It is necessary however to record the spectrum at liquid helium temperature to confirm these assignments. The Stark levels thus determined

t This is shown in figure 4.2.

Fig. 4.2 Nd³⁺:LaF₃, absorption spectrum at 77 K, 2500-4000A.

The two lines at 2907.2 and 2536.6A could not be reproduced in print and hence not shown here.

Table 4.1

The Ultraviolet absorption spectrum of Yi³⁺:LaF₃

at liquid nitrogen temperature

Line	Wavelength Â	Energy -1 cm		Transition	SLJ
L ₁	3533•2	28294	0	^Z 2 ^{-L} 2	
L ₂	3527.6	28339	0		
r ³ ,	3523.7	28371	0		
L ₄	3504.7	28524	w,sh		
L ₅	3502.2	28544	w,sh		
L ₆	3468•4	28823	₩	z ₃ -L ₈	
^L 7	3 455•8	28928	0	z ₂ -L ₈ .	
r ⁸	3450.8	28970	0		
L ₉	3399 .9	29404	vw, sh	^Z 2 ^{-L} 10	
L ₁₀	3383.0	29551			
M ₁	3319.9	30112			
M ₂	3310,0	302 02		^Z 2 ^{-M} 3	² I 13/2
M ₃	3305 •4	30,244			
Q ₁	2978•4	33565	w,d	^Z 2 ^{-Q} 2	•
Q ₂	2974•4	33610	w,sh		² D _{5/2}
Q3	2971.6	33642	w,sh		·
R ₁	2907•2	34387			² H 11/2
υ ₁	2536 •6	39411	vw,sh		² H _{11/2} ² F _{3/2}

Overabsorbed. Line centre located from densitometer trace w,v.w weak, very weak, sh sharp, d diffuse.

are listed in Table 4.2 alongwith the other levels determined from the present fluorescence data. The alphabetical (A-Z) nomenclature used in the table is the same as used by Dieke and co-workers². Table 4.1 also lists the SLJ designations of these various levels, made by a comparison of the spectrum with that obtained in LaCl₃^{2,3,4}. Most levels in the region are well seperated from each other and a reliable one to one comparison is possible except for the L group (28,000 - 30,000 cm⁻¹) where several close lying levels are expected to occur.

The absorption spectrum recorded in the region 4000 - 9000Å consists for the most part of severely overabsorbed lines on which no accurate wavelength measurements are possible. The spectrum however is in substantial agreement with that reported in the two earlier publications 9,10 but for the presence of some extra lines.

The region of the spectrum where the extra lines are found, 4200 - 5800 Å is shown in figures 4.3 and 4.4. There is a group of faint lines around 4600 Å (figure 4.3) which are too weak to be measured on either the Abbe comparator or the microdensitometer. These may be due to the $^4\text{G}_{11/2}$ level predicted to occur at 21700 cm⁻¹. The sharp line at 4696 Å (21,288 cm⁻¹) occuring within the G group (figure 4.3) may be a missing Stark component of either of the two levels $^2\text{K}_{15/2}$ and $^2\text{G}_{9/2}$ constituting this group. Out of the 13 expected Stark levels only 8 are reported so far 9,10 .

Table 4.2

The energy levels of Nd³⁺:LaF₃

	SLJ	Stark level designation	current values	Earlie r values
Z	⁴ 1 _{9/2}	² 1	0	0
		z_2	45	45
		5 3	1 39	136
		z_4	291	296
		^Z 5	500	500
Y	⁴ I _{11/2}	Y ₁	1984	1978
		Y ₂	204 2	2037
		Y ₃	2073	2068
		Y ₄	2095	2091
		<u>Ү</u> 5	2190	2187
		Y ₆	2225	2223
x	⁴ I _{13/2}	\mathbf{x}_{1}	3921	3919
		x_2	398 <u>2</u>	3 979
		x ₃	40 39	4039
		x_4	4078	4078
		^X 5	412 †	4120
		x ₆	4206	4213
		x ₇	4279	4278

Table 4.2 (contd.)

	SLJ	Stark level	current	earlier
		designation	values ⁺	values
W	⁴ I _{15/2} .	w ₁	5816	5817 ¹²
	,	w_2	58 78	5876
		₩ ₃	5990	5989
		w ₄	6140	6142
		₩ ₅	6171	6173
		₩ ₆	6316	6320
		w ₇	6447	6448
		₩8	6552	655 1
R	⁴ F3/2	R ₁		11592
		R ₂		11634
s	⁴ F5/2	s ₁	12596	12596
		s ₂	12615	12613
	•	s ₃	12622	12 621
	² H9 /2	\mathbf{s}_4	12676	12 675
		s ₅	12694	12 693
		s ₆	12753	127 55
		s ₇	12842	
		s _e .	12904	

Table 4.2 (contd.)

	SLJ	Stark level	current	earlier
		designation	values	values
	40.47	Λ		13515
A	⁴ 53/2 ^{;4} F7/2	^A 1		13591
		<u>A</u> 2		
		[≜] 3		13671
		<u> </u>		13677
		^A 5		13710
		^A 6		13714
В	⁴ F9/2	. ^B 1		14835
	71 -	^B 2		14860
		B ₃		14891
		^B 4		14927
		^B 5		14958
O	² H 11/2	*o _j		1 5998
	11/2	C ₂		16033
	•	o ₃		1 6045
		c ₄		16059
		o ₅		16103
, D	⁴ _G _{5/2} ; ² _{G_{7/2}}	D ₁		17304
	J1	D ₂		17315
		D ₃		17364
		. D ₄	•	17512
		т		•

Table 4.2 (contd.)

$^{D}_{5}$ $^{D}_{6}$ $^{D}_{7}$ $^{E}_{1}$ $^{E}_{2}$ $^{E}_{3}$ $^{E}_{4}$ $^{E}_{19322}$	24
5 $^{D_{6}}$ $^{D_{7}}$ E $^{4_{G_{7/2}}}$ $^{E_{1}}$ 19149 $^{E_{2}}$ 19238 $^{E_{3}}$ 19255 $^{E_{4}}$ 19322	values *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17520
$^{\mathrm{D}_{7}}$ $^{\mathrm{E}_{1}}$ $^{\mathrm{19149}}$ $^{\mathrm{E}_{2}}$ $^{\mathrm{19238}}$ $^{\mathrm{E}_{2}}$ $^{\mathrm{19255}}$ $^{\mathrm{E}_{4}}$ $^{\mathrm{19322}}$	17570
E ₂ 19238 E ₃ 19255 E ₄ 19322 ,	17601
E ₂ 19238 E ₃ 19255 E ₄ 19322 ,	19147
E ₃ 19255 E ₄ 19322 ,	19235
E ₄ 19322 ,	19251
	19323
F 4 _G 9/2 F ₁ 19568 ^a	19568
F ₂ 19612	1 9617
F ₃ 19650	19651
F ₄ 19679	19685
F ₅ 19704	19702
F ₆ 19739	19739
F ₇	19801
F ₈ 19831	19839
G 2K 15/2; 2G 1 21156 ²	21158
G ₂ 21176	21176
G ₃ 21202	21201
G ₄ 21232	21234
G ₅ 21252	21254

Table 4.2 (contd.)

	SLJ	Stark level designation	current values [‡]	earlier values
** The state of th		_G 6		₂ 1302
		$^{ m G}7$	21343	21339
		G ₈	21356	21 351
I	² P _{1/2}	^I 1	23470 ^a	23468
	² P _{1/2} ² D _{5/2} ² (P,D) _{3/2}	\mathbf{I}_2		23991
K	² (P,D) _{3/2}	₹1	26364	
	21 **	K ₂	26404	
L		^L 2	28339 ^a	
		L ₃	28370	
		L ₄	28524	
		L ₅	28544	
		r ⁸	28970	
		^L 10	29551	
M	(2 _{13/2}	M	30111 ^a	
,	•	³⁴ 3	30244	
Q.	² D _{5/2}	Q _{.2}	33610 ^a	
	·	Q ₃	33642	
R	² H 11/2	R ₁	34387 ^a	
υ	² H _{11/2} (² F _{3/2})	υ ₁	39411 ^a	

The groups of levels marked 'a' are determined from the absorption spectrum. All other levels are determined from fluorescence.

The group of levels (w) marked '12' are from reference 12. All others from reference 10.

Fig. 4.3 Nd⁵⁺:Lar₃ absorption spectrum at 77 K, 4100-4700A.

The lines marked 'V' are probably vibronic in origin.

See text.

are probably vibronic in origin. Nd³⁺:LaF₃ absorption spectrum at 77°K, 4800-5750A. The lines marked 'V'

See text.

The remaining four extra lines at 4264\AA (23445 cm⁻¹); 5218.8Å (19,156 cm⁻¹); 5750 cm⁻¹ (17,386 cm⁻¹) and 5754.0Å (17,374 cm⁻¹) are however of a different kind. These occur within the I,E and D groups respectively. All the expected numbers of Stark components of the SLJ levels constituting these groups are already observed. So these are not missing Stark components. A possibility is that they belong to Nd3+ which (somehow) experience a slightly different crystal field than the rest. The EPR spectrum of Nd3+ in the crystal (chapter 5) however did not show any lines attributable to such centres. Another possibility is that they are vibronic The 25 cm^{-1} seperation of the 4264Å line from the neighbouring 4259.5 \mathring{A} line of $^{2}P_{1/2}$ (single Stark level expected) is quite close to the phonon frequency of 26 cm⁻¹observed by Yen, Scott and Shawlow in the fluorescence spectrum of Pr3+:LaF3. The other 3 lines however occur in regions where there are several Stark levels close by and it is not possible to tell the possible phonon energy associated with those lines. for lack of any other explanation, those four extra lines are thought of as vibronic in origin.

Most of the lines observed (including the extra lines) are polarized, and the present observations tally with earlier observations of Wong et.al⁹ in the region where the two studies overlap (5000 - 8700Å). Lines due to a Kramers' ion like Nd³⁺ experiencing orthorhombic crystal fields are not expected to be polarized (chapter 3). This point is discussed in a greater detail in section 4.7.

4.3 The Fluorescence Spectrum at LNT

The fluorescence spectrum of Nd3+:LaF3 observed here extends all the way from 3500 to 9100Å. Figures 4.5 and 4.6 illustrate the plates taken with Nitrogen laser (3371A; 29656 cm⁻¹) excitation and figures 4.7 through 4.15 the fluorescence obtained with the Argon ion laser (5145A; 19,431 cm⁻¹) excitation. The numbers marked in the figures are wavelengths in Å. In the various studies made on Nd3+ doped in various lattices4, so far, only the infrared fluorescence due to the R level (${}^{4}F_{3/2}$, 11,600 cm $^{-1}$) is reported, with the single exception of LaCl3 where fluorescence was observed from several levels below 28,000 cm⁻¹. In fact, with the Ar⁺ laser excitation, some initial recordings made here using the cooled 7102 photomultiplier tube showed only the R-Z (8600-9100A) fluorescence with adequate intensity. The visible fluorescence is recorded with such a poor signal to noise ratio that its existence could be just detected. CRB10 who used a high pressure mercury arc for excitation and the cooled 7102 tube for detection, might well have not found it as the fluorescence obtainable with conventional scurces would be usually weaker than with a laser source.

The 5145Å (19,431 cm⁻¹) radiation available from the Ar⁺ laser excites Nd ions primarly into the E levels (figure 4.1). The 5017Å (19,927 cm⁻¹), 4965Å (20,135 cm⁻¹), 4880Å

Nd³⁺:LaF₃ fluorescence at 77 K, 3400-5000Å, obtained with 3371A excitation. #18. 4.5

could not be reproduced in print and hence not shown here. Four weak lines at 4866.25, 4907.9, 4985.7 and 5019.0Å

Fig. 4.6 Nd³⁺:LaF₃ fluorescence at 77 K, 6000-9000A; obtained with 3371A excitation.

Fig. 4.7b The E-Z fluorescence at LNT m polarization.

Excitation 5145 Å, 100 mw

Slit width 100 /u

Range 30 n amp

PMT voltage 1250 V

Fig.4:10 Nd 3. :LaF3 fluorescence at 77°K, L→S group; 5145 Å excitation.

Fig. 4.12 Nd3+:LaF3 fluorescence at 77°K, L-A group; 5145Å excitation.

Excitation 5145 A,500 mw

Slit width 100 从

Range 10 namp

PMT voltage 1260 V

 $a \cdot x = 0.24 \, \text{cm}$

b x = 0.084 cm

Fig. 4.15 Nd $^{3+}$: LaF₃ fluorescence at 77°K, part of the $R(^4F_{3/2}) \rightarrow Z(^4I_{3/2})$ group in σ polarization, showing self-absorption; 5145 Å excitation.

 $(20,486 \text{ cm}^{-1})$ and 4765Å $(20,980 \text{ cm}^{-1})$ all would populate the F level but very likely, ions in F would decay non-radiatively to the E which is only 250 cm⁻¹ below is (chapter 1). No fluorescence is in fact observed from this level. shortest wavelengths available from this laser, namely 4727A $(21,149 \text{ cm}^{-1})$, 4658Å $(21,462 \text{ cm}^{-1})$ and 4580Å $(21,832 \text{ cm}^{-1})$ can be expected to yield fluorescence from the G levels. However in the present case, use of any excitation of shorter wavelength than 4765% at LNT and 4880% at RT resulted in very strong fluorescence from the ${}^{3}P_{\Omega}$ level 15 of Pr^{3+} (which is present in the crystal in small quantities as an unintentional codopant). This completely masked the Nd3+ fluorescence which is much weaker. The presence of Pr3+ is detected as in the earlier case (chapter 3, Eu3+:LaF3) by comparison with the fluorescence spectrum of Pr3+:LaF3 recorded by P. Venkateswarlu at Santa Barbara. All of the present work is thus carried out using the 5145Å excitation as the intensity of fluorescence obtained with this is one or two orders of magnitude larger than with the other excitations and does not contain any interfering lines.

The spectrum obtained (5145Å excitation) is presented in figures 4.7 through 4.15 and contains nine groups of lines. Four of these groups present in charts recorded here as well at Santa Barbara, are easily identified as due to (E-Z), (E-Y),

Table 4.3

The fluorescence spectrum of Nd³⁺:LaF₃ at LNT obtained with 5145Å (Ar) excitation

Wavelength	Energy	Polar	Lzation	Transition
(Å)	(cm ⁻¹)	σ	π	Assignment
5169.0	19341			Raman
5174.0 [*]	19322	W	W	E ₄ — Z ₁
5183.0	19288	w	w	Ram an
5188.0	19270	w	w	Raman
5192.0	19255	w	w	E ₃ — Z ₁
5196.6	19238	w	w	E ₂ — Z ₁
5205.0	19207	w	₩	$E_3 - Z_2$
5208.6	19194	W	w	$\mathbf{z}_2 - \mathbf{z}_2$
5220.7	19149	3.7	3.7	E ₁ — Z ₁
5232.2	19107	10.0	3.0	$E_1 - Z_2$
5242.6	19069			Raman
5249•5	19044			Raman
5259•0	19009	3.0	12.0	E ₁ - Z ₃
5276 •5	18947	0.5	0.5	E ₂ — Z ₄
5301 •6	18857	5.0	9.5	E ₁ — Z ₄
5335•5	18737	0.9	4.0	E ₂ Z ₅
5362.2	18644	1.0	3.0	E ₁ 2 ₅

Table 4.3 (continued)

Wavelength	Energy		ızatıon	Transition
(Å)	(cm ⁻¹)	σ	π	Assignment
5758.0	17362	0.6		^D ₃ — z ₁
5774•3	17313		5•3	$D_2 - Z_1$
5778.0	17302	6.2	3.6	$D_1 - Z_1$
5789•1	17269		7.8	$D_2 - Z_2$
5791.0	17263	5•4	12.0	D ₁ Z ₂ , E ₄
5808.1	17212	2.3	3.1	E ₃ — Y ₂
5813.6	17196	4.1	4•4	$\mathbf{E}_2 - \mathbf{Y}_2$
5820•2	17177	w		$D_2 - Z_3$
5824.2	17165	9.6	4•4	D ₁ — Z ₃ , E ₃ E ₂ — Y ₃ ; E ₁
5831.5	17143	W	W	\mathbb{E}_{2}^{2} $$ \mathbb{Y}_{4}^{1}
5843.2	17109	12.6	2.0	E ₁ - Y ₂
5854 • 5	17076	5•4	3-7	$\mathbf{E}_1 - \mathbf{Y}_3$
5861.3	17056	3•5	3-7	$\mathbf{E}_1 - \mathbf{Y}_4$
5875•3 ,	17016	1.8	2.5	E ₂ - Y ₆ , D ₄
5894•3	16961	5•4	3.0	E ₁ — Y ₅
5907.0	16924	2•9	7.0	E ₁ - Y ₆
5949.0	16805	1.9	3.0	$D_1 - Z_5$
5 95 7 • 7	16780	2•4	3.0	L ₃ — R ₁
5971 •8	16741	5•3	5.0	$L_3 - R_2, L_2$
5983.9	16707	5•1	8•5	$L_2 - R_2$

Table 4.3 (continued)

6348.3 15748 4.2 6.0 $L_3 - S_2$; L_3 6357.0 15726 3.0 6.5 $L_2 - S_2$ 636C.0 15719 2.5 7.1 $L_2 - S_3$ 6371.0 15692 0.6 5.5 $L_3 - S_4$ 6377.8 15675 0.3 0.5 $L_3 - S_5$ 6382.6 15663 1.4 0.3 $L_2 - S_4$ 6388.7 15648 1.7 3.6 $L_2 - S_5$ 6401.2 15618 0.6 0.5 $L_3 - S_6$ 6414.6 15585 0.8 2.5 $L_2 - S_6$ 6647.9 15529 0.3 0.3 $L_3 - S_7$ 6450.2 15499 0.2 0.5 $L_2 - S_7$ 66464.3 15465 0.1 $L_3 - S_8$ 66488.9 15407 1.0 0.5 $E_4 - X_1$ 66498.2 15385 1.6 0.8 e 66538.0 15291 2.5 $E_4 - X_3$	Wavelength	Energy	Polari	zation	Transition
6348.3 15748 4.2 6.0 $L_3 - S_2$; L_3 6357.0 15726 3.0 6.5 $L_2 - S_2$ 636C.0 15719 2.5 7.1 $L_2 - S_3$ 6371.0 15692 0.6 5.5 $L_3 - S_4$ 6377.8 15675 0.3 0.5 $L_3 - S_5$ 6382.6 15663 1.4 0.3 $L_2 - S_4$ 6388.7 15648 1.7 3.6 $L_2 - S_5$ 6401.2 15618 0.6 0.5 $L_3 - S_6$ 6414.6 15585 0.8 2.5 $L_2 - S_6$ 6647.9 15529 0.3 0.3 $L_3 - S_7$ 6450.2 15499 0.2 0.5 $L_2 - S_7$ 66464.3 15465 0.1 $L_3 - S_8$ 66488.9 15407 1.0 0.5 $E_4 - X_1$ 66498.2 15385 1.6 0.8 e 66538.0 15291 2.5 $E_4 - X_3$	(Å)	(cm ⁻¹)	σ	π	Assignment
6357.0 15726 3.0 6.5 $L_2 - S_2$ 6360.0 15719 2.5 7.1 $L_2 - S_3$ 6371.0 15692 0.6 5.5 $L_3 - S_4$ 6377.8 15675 0.3 0.5 $L_3 - S_5$ 6382.6 15663 1.4 0.3 $L_2 - S_5$ 6401.2 15618 0.6 0.5 $L_3 - S_6$ 6414.6 15585 0.8 2.5 $L_2 - S_6$ 6450.2 15499 0.2 0.5 $L_2 - S_7$ 64646.3 15465 0.1 $L_3 - S_8$ 6476.3 15437 0.3 0.5 $L_2 - S_8$ 6488.9 15407 1.0 0.5 $E_4 - X_1$ 6498.2 15334 7.1 1.5 $E_3 - X_1$ 6526.8 15317 3.1 0.6 $E_2 - X_1$ 6538.0 15291 2.5 $E_4 - X_3$	6337.5	15775	4.3	0.8	$r_3 - s_1$
6357.0 15726 3.0 6.5 $L_2 - s_2$ 636C.0 15719 2.5 7.1 $L_2 - s_3$ 6371.0 15692 0.6 5.5 $L_3 - s_4$ 6377.8 15675 0.3 0.5 $L_3 - s_5$ 6382.6 15663 1.4 0.3 $L_2 - s_4$ 6388.7 15648 1.7 3.6 $L_2 - s_5$ 6401.2 15618 0.6 0.5 $L_3 - s_6$ 64414.6 15585 0.8 2.5 $L_2 - s_6$ 6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - X_1$ 6498.2 15385 1.6 0.8 r 6519.8 15317 3.1 0.6 $E_2 - X_1$ 6526.8 15317 3	6348.3	15748	4•2	6.0	L ₃ — S ₂ ; L ₃
6371.0 15692 0.6 5.5 $L_3 - s_4$ 6377.8 15675 0.3 0.5 $L_3 - s_5$ 6382.6 15663 1.4 0.3 $L_2 - s_4$ 6388.7 15648 1.7 3.6 $L_2 - s_5$ 6401.2 15618 0.6 0.5 $L_3 - s_6$ 6414.6 15585 0.8 2.5 $L_2 - s_6$ 6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 ? 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6528.0 15291 2.5 $E_4 - x_3$	6357.0	15726	3.0	6.5	
6377.8 15675 0.3 0.5 $L_3 - s_5$ 6382.6 15663 1.4 0.3 $L_2 - s_4$ 6388.7 15648 1.7 3.6 $L_2 - s_5$ 6401.2 15618 0.6 0.5 $L_3 - s_6$ 6414.6 15585 0.8 2.5 $L_2 - s_6$ 6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 * 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6360.0	15719	2.5	7.1	$L_2 - S_3$
6382.6 15663 1.4 0.3 $L_2 - s_4$ 6388.7 15648 1.7 3.6 $L_2 - s_5$ 6401.2 15618 0.6 0.5 $L_3 - s_6$ 6414.6 15585 0.8 2.5 $L_2 - s_6$ 6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 * 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6371.0	15692	0.6	5•5	$L_3 - S_4$
6388.7 15648 1.7 3.6 $L_2 - s_5$ 6401.2 15618 0.6 0.5 $L_3 - s_6$ 6414.6 15585 0.8 2.5 $L_2 - s_6$ 6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 r 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6377.8	15675	0.3	0.5	$L_3 - s_5$
6401.2 15618 0.6 0.5 $L_3 - s_6$ 6414.6 15585 0.8 2.5 $L_2 - s_6$ 6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - X_1$ 6498.2 15385 1.6 0.8 9 6519.8 15334 7.1 1.5 $E_3 - X_1$ 6526.8 15317 3.1 0.6 $E_2 - X_1$ 6538.0 15291 2.5 $E_4 - X_3$	6382.6	15663	1.4	0.3	$\mathbf{L}_2 - \mathbf{s}_4$
6414.6 15585 0.8 2.5 $L_2 - s_6$ 6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 \circ 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6388.7	15648	1.7	3. 6	L ₂ s ₅
6437.9 15529 0.3 0.3 $L_3 - s_7$ 6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 9 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6401.2	15618	0.6	0.5	$L_3 - S_6$
6450.2 15499 0.2 0.5 $L_2 - s_7$ 6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 r 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6414.6	15585	0.8	2.5	$L_2 - S_6$
6464.3 15465 0.1 $L_3 - s_8$ 6476.3 15437 0.3 0.5 $L_2 - s_8$ 6488.9 15407 1.0 0.5 $E_4 - x_1$ 6498.2 15385 1.6 0.8 \circ 6519.8 15334 7.1 1.5 $E_3 - x_1$ 6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6437.9	15529	0.3	0.3	$\mathbf{r}_3 - \mathbf{s}_7$
6476.3 15437 0.3 0.5 $L_2 - S_8$ 6488.9 15407 1.0 0.5 $E_4 - X_1$ 6498.2 15385 1.6 0.8 ? 6519.8 15334 7.1 1.5 $E_3 - X_1$ 6526.8 15317 3.1 0.6 $E_2 - X_1$ 6538.0 15291 2.5 $E_4 - X_3$	6450•2	15499	0.2	0.5	$\mathbf{r}_2 - \mathbf{s}_7$
6488.9 15407 1.0 0.5 $E_4 - X_1$ 6498.2 15385 1.6 0.8 ? 6519.8 15334 7.1 1.5 $E_3 - X_1$ 6526.8 15317 3.1 0.6 $E_2 - X_1$ 6538.0 15291 2.5 $E_4 - X_3$	6464.3	15465		0.1	$r_3 - s_8$
6498.2 15385 1.6 0.8 $\overset{4}{\circ}$ 6519.8 15334 7.1 1.5 $E_3 - X_1$ 6526.8 15317 3.1 0.6 $E_2 - X_1$ 6538.0 15291 2.5 $E_4 - X_3$	6476.3	15437	0.3	0.5	$r_2 - s_8$
6498.2 15385 1.6 0.8 * 6519.8 15334 7.1 1.5 $E_3 - X_1$ 6526.8 15317 3.1 0.6 $E_2 - X_1$ 6538.0 15291 2.5 $E_4 - X_3$	6488.9	15407	1.0	0.5	E ₄ — x ₁
6526.8 15317 3.1 0.6 $E_2 - x_1$ 6538.0 15291 2.5 $E_4 - x_3$	6498•2	15385	1.6	0.8	•
6526.8 15317 3.1 0.6 $E_2 - X_1$ 6538.0 15291 2.5 $E_4 - X_3$	6519.8	15334	7.1	1•5	E ₃ — X ₁
4)	6526.8	15317	3.1	0.6	-
	6538.0	15291		245	$\mathbf{E}_4 - \mathbf{x}_3$
	6544.1	15277	3 • 7	6.8	$E_3 - X_2$

Table 4.3 (continued)

Wavelength $\overset{\circ}{(\mathbb{A})}$	Energy (cm ⁻¹)	Polar o	ızatıon π	Transition Assignment
6548•4	15267	w	* ***	?
6552.3	15258		8.0	E ₂ - x ₂
6557•4	15246		4.2	E ₄ — x ₄
6564 • 4	15229	3.5	W	E ₁ X ₁
6572.0	15212	2.5	8.0	$E_3 - x_3$
6578•3	15197	1.8	5.0	₂ — х ₃
6590.8	15168	5 • 5	9.0	E ₁ x ₂
6608.6	15128	3.6		E ₃ x ₅
6614.6	15114	4.5		E ₂ x ₅
6634•1	15069	2.4	0.8	E ₁ X ₄
6652.0	15029	2.8	1.8	E ₁ x ₅
6676.0	14975		w	$E_3 - X_7$
6691.0	14941	1.0		$\mathbf{E}_1 - \mathbf{x}_6$
6721 • 9	14873	0.5	0.5	E ₁ x ₇
6730.0	1 4855	0.6	2.9	L ₃ A ₁
6744•7	14822	4•5	1.5	L ₂ - A ₁
6765•1	14778	0.4	0.3	L ₃ — A ₂
6779•1	14747	2.0	12.0	L ₂ — A ₂
6803.0	14695	0.4	0.7	L ₃ — A ₃ ; L ₃ —
6821.6	14655	5.2	6.5	L ₃ - A ₆ , L ₃ -
6835.5	14625	12.5	9•5	L ₂ - A ₆ , L ₂ -
6860.0	14573	W	₩	9
6868.0	1 4556	w	0.5	ኇ

Table 4.3 (continued)

Wavelength	Energy		ızatıon	Transition
(Å)	(cm ⁻¹)	σ 	π	Assignment
7240•1	13808	0.6	4.2	$\kappa_2 - s_1$
7246 •4	13796	2.8	2.8	$\kappa_2 - s_2$
7260.4	13769	1.6	1.5	$\kappa_1 - s_1$
7269.9	13751	8.4	3.1	$\kappa_1 - s_2$
7273 • 4	13745		w	$x_1 - s_3$
7294.0	15706		w	$\mathbf{k}_{2} - \mathbf{s}_{5}$
7302.0	13691	2.5	1.3	k ₁ − s ₄
7312.1	13672	0.4		$\kappa_1 - s_5$
7322.1	13653		1.5	$\kappa_2 - s_6$
7345 •8	13609	1.3	0.6	$\mathbf{x}_1 - \mathbf{s}_6$
7371 •1	13563	0.4	0.7	$\kappa_2 - s_7$
7385.7	13536	1.4	3.8	₂ - ₅
7394.0	13521	w	w	$\kappa_1 - s_7$
7402.3	13505	3•9	3.0	L ₂ — B ₅ ; I
7417.9	13477	6.0	11.0	L ₃ — B ₃ , I
7427.0	13461	w	w	$x_1 - s_8$
7434•7	13447	3.0	6.5	L ₃ — B ₂ I
7454•9	13410	2•9	5•8	L ₃ — B ₅ I
7471 • 9	13380	2.6	2.8	L ₂ - B ₅
7496.6	13336	1.2	2.5	3
7502.0	13326	1,0	2.3	9
7531.0	13275	1.1	1.9	?

Table 4.3 (continued)

	Transitio	ızatıon	Poleri	Energy	Wavelength
ent ——	Assignmen	π	σ	(cm ⁻¹)	(Å)
	R ₂ Z ₁	2.6	11.2	11633	8593 •8
1 ₁ , R ₂ — Z	- ,	17.0	14.4	11591	8624.8
	к ₂ — в ₁	w	₩	11574	8637.5
2	$R_1 - Z_2$	8.2	4.0	11549	8656.0
_	$\mathbf{K_2} - \mathbf{B_2}$	w	₩	11540	8663.3
к ₁ — в	R ₂ Z ₃	1.8	1.0	11496	8696 •0
	R ₁ Z ₃	0.6	1.7	11453	8729.0
4	$R_2 - Z_4$	1.1		11344	8813.0
4	$R_1 - Z_4$	0.2	0.4	11301	8846.0
5	$R_2 - Z_5$	0.3		11135	8978.0
5	$R_1 - Z_5$	0.3	0.4	11092	9013.0

^{*} Wavelengths and intensities of the lines of E-Z group are from recordings made at Santa Barbara.

W Line weak Intensity not measurable either due to poor S/N or overlap.

for larger distances (see section 4.5). This is evident from figures 4.8 and 4.9.

The remaining four groups of lines (figures 4.10,12, 13,14) could not however be identified that easily. Again these are recorded here by the author only. They are not present in the charts recorded at Santa Barbara. At the first instance it is thought that they are due to some unusually strong spontaneous emmission from the Ar^+ laser used $^\phi$. Such spurious emmission as may be present is sought to be eliminated by the introduction of a band pass filter (Corning No. C.S. 4-97) and later a 0.25 m grating monochromator (Jarrell-Ash) in the laser beam. This resulted only in a decrease in their relative intensity in comparison with the other groups (E-X for example). Thus the laser as the origin is ruled out. The above observation however prompted a study of the variation of the intensity with power. Figure 4.16 is a plot of the variation on a log-log scale for two of the lines 5973.3Å and 7270.0Å. These plots show I α P^{1.76}. This means that the fluorescence is originating in levels that are probably populated by a two photon absorption (this is discussed more fully in section 4.4). A search made among the higher energy levels of Nd3+ consequently lead to the identification of the levels at 28,339 and 28371 cm⁻¹ (L_2 and L_3 , Table 4.1) as the originating levels for three of these groups. These are L-S,

It is checked and found that they cannot be due to Pr^{3+} LaF $_3$

L-A and L-B transitions. Also the three lines found on the high wavelength side of the E-Y transition (not found in Santa Barbara recordings) are identified as L-R transitions.

The group identified as due to the L-S transitions; $6330-6480\text{\AA}$, (figure 4.10) actually contains four more lines than can be accounted for by the transitions to the six Stark components of this group determined so far. The two levels $^4\text{F}_{5/2}$, $^2\text{H}_{9/2}$ which make up this group must split however into eight Stark components. The extra four lines can be adequately accounted for if they are understood to be the transitions from L_2 and L_3 to two more Stark components at 12841 and 12904 cm⁻¹.

The remaining group between 7240Å and 7370Å (figure 4.13) however could not be explained as originating in any of the levels of Nd³⁺ that are determined from the absorption spectrum (present as well as earlier work). A procedure similar to the circ adopted to locate the lower levels of Eu³⁺ (chapter 3) is therefore used to find the upper levels. It is however a matrix of the 'sums' of the energies of the possible lower levels and the observed fluorescence lines that is made in this case. A consistantly repeating number in this matrix is a possible upper energy level. Table 4.4 shows such a matrix constructed taking the S group of Stark levels as lower levels. The first column of the table lists the

Table 4.4

The 'Sum' matrix for the 7200A group of fluorescence lines and the 'S' group of Stark levels

Observed lines	⁸ 1 12596	^S 2 12613	s 12621	\$ 12675	8 ₅ 12693	\$ ₆ 12755	(5 7 , 12841	ន ₈ 12904
13808	26404 ¹	26417	26429	26483	26501	26563	26649	26712
795	391	4081	416	470	488	550	636	699
769	365 ²	382	3 90	434	462	524	610	673
751	347	364 ²	* 372	426	444	506	592	655
744)		357	365 ²	419	437	499	585	648
706		319	327	38 1	399 ¹	461	547	610
691		304	312	366 ²	(386)	446	532	595
672		285	293	346	365 ²	327	513	576
653			274	325	3 46	408 ¹	494	557
609			230	284	302	364 ²	450	513
562			183	237	255	317	403 ¹	466
² 520)'			141	195	213	275	3602	424
460			081	135	153	215	- 301	364 ²

Note: The superscripts indicate sets of matching numbers.

energies in cm⁻¹ of the observed transitions. The first rowhas the energies of the Stark manifold S. The repet tion of the two numbers 26404 ± 4 and 26365 ± 1 cm⁻¹ is quite convincing and are thus taken to be the positions of the upper levels responsible for this fluorescence⁺. Those Stark levels most likely belong to the isolated $^2(P,D)_{3/2}$ level expected in this region (figure 4.1). Other such sum tables made using various other levels below 24,000 cm⁻¹ as lower levels did not produce any consistant upper level positions. This group is thus assigned as due to the K — S transitions. It may be noted here that the transitions to the 12841 and 12904 cm⁻¹ levels of S are observed in this group also, confirming the earlier supposition.

Confirmatory evidence for these assignments is obtained from the fluorescence obtained with the nitrogen laser excitation shown in figures 4.5 and 4.6. The spectrum contains many groups of lines all the way from 3500 to 9000Å. Table 4.5 lists the observed lines and their assignments. Transitions from L_2 and L_3 to nine lower levels (Z,Y,X,W...C) of Nd³⁺ are identified in these plates, as well as transitions to the Y,X,W and S levels from the K level whose position is derived from the Λr^+ laser excited fluorescence. Because of the small dispersion available in the spectrographs used (Q24, three prism, chapter 2) the wavelengths measured are

The author has found two isolated lines at 26,311 and 26,356 cm⁻¹ in the absorption spectrum of NdF₃, the study of which is not yet complete.

Table 4.5

The fluorescence spectrum of Nd³⁺:LaF₃ at LNT obtained with 3371Å (N₂ laser) excitation

Wavelength Å	Energy cm ⁻¹		Transition assignment
3523.6	28372	m sh	^L 3 - ^Z 1
3527•9	28337	w sh	^L 2 - ^Z 1
3529•9	28321	m sh	L ₃ - Z ₂
3533•8	28290	st sh	L ₂ - Z ₂
3541 • 5	28228	m sh	L ₃ - Z ₃
3545•6	28193	m ah	^L 2 - ^Z 3
3592•8	27825	st d	?
3650.0	27389	w d.	Hg ?
3770-4	26515	w đ.	9
3788•3	26390	st sh	^L 3 - ^Y 1
3793.2	26355	m sh	L ₂ - Y ₁
3797•7	26324	w sh	L ₃ - Y ₂
3801.6	26297	st sh	$L_2 - Y_2, L_3 - Y_3$
3805.8	26268	w sh	L ₂ - Y ₃
3809.5	26243	w sh	L ₂ - Y ₄
3818•4	26182	m đ	L ₃ - Y ₅
3823.5	26147	st d	L ₂ - Y ₅ ; L ₃ - Y ₆

Table 4.5 (continued)

Wavelength Å	Energy -1 cm		Transition assignment
3866 . 0	25859	w d.	?
3887.8	25714	w d.	9
4066.8	24582	st d	?
4089 •6	24445	m sh	т _з - х ₁
4094•2	24418	m sh	L ₂ - X ₁ , K ₂ - Y ₁
4100.3	24382	m sh	K ₁ - Y ₁
4104•4	24357	w sh	L ₂ - X ₂
4110•2	24373	m sh	к ₁ - ч ₂
4115•3	24293	w sh	L ₃ - X ₄ , K ₁ - Y ₃
4121 • 4	24257	st sh	1 ₃ - X ₅
4132 0	24195	w sh	?
4136 0	24171	w sh	^K 1 - ^Y 5
4142 0	24136	st sh	к ₁ - ч ₆
4358 0	22940		Hg ?
4435•3	22540	w sh	
4437•8	22527	w sh	1 ₂ - W ₁
4444 •6	22493	w đ	1 ₃ - W ₂
4466 •65	22382	m sh	L ₃ - W ₃ ; K ₁ - X ₂
4473.0	22350	w sh	¹ 2 - ₩3
4478.6	22322	m sh	^K 2 - ₩ ₄

Table 4.5 (continued)

Wavelength A	Energy -1 cm		Transition assignment
4486 •0	22285	m sh	к ₂ - х ₅
4503•5	22199	n d	L ₃ - W ₅ , L ₂ K ₂
4518.0	22127	m đ	K ₂ - X ₇
4527.6	22081	m d	K ₁ - X ₇
4540.2	22019	w d	L ₂ - W ₆
4560.3	21921	w d	L ₃ - π_7
4568.3	21883	m d	L ₂ - W ₇
4581.2	21822	w sh	13 - W8
4588 • 2	21789	m sh	1 ₂ - W ₈
4866 •25	20544	v w	K ₁ - W ₁
4907.9	20370	v w	K ₁ - ₩ ₃
4985•7	20052	v v	¹ - ₩ ₆
5019.0	19919	v w	K ₁ - W ₇
5970•3	16745	v w	L ₃ - R ₂ , L ₂
5983.9	16707	v w	L ₂ - R ₂
6010.3	16634	st b	
6034.9	16566	w sh	
6211.9	16094	st b	
6326.7	15802	v w	

Table 4.5 (continued)

Wavelength A	Energy -1 cm		Transition essignment
6337.6	15775	w	^L ₃ - S ₁
6346.8	15752	ďw	L ₃ - S ₂ , L ₃ - S ₃ , L ₂ - S ₁
6358 .8	15722	w sh	L ₂ - S ₃
6369.0	15697	ďw	L ₃ - S ₄
6390.5	15644	m sh	1 ₂ - S ₅
6415.7	15582	n sh	L ₂ - S ₆
6744.1	14824	V W	^L 2 - ^A 1
6778.3	14749	m d	L ₂ - A ₂
6820.7	14657	m đ	L ₃ - A ₅ ; L ₃ - A ₆
6835.65	14625	m d	L ₂ - A ₅ , L ₂ - A ₆
7273.0	13746	st b	K ₂ - S ₂ , K ₂ - S ₃
7371 •8	13562	w sh	K ₁ - S ₇
7385•9	13536	w sh	L ₂ - B ₅
7391 •4	13526	w sh	K ₂ - S ₇
7417.7	13478	w sh	L ₃ - B ₃ , L ₂ - B ₄
7435•6	13445	w sh	L ₃ - B ₂ ; L ₂ - B ₃
7454•5	13411	w sh	L ₃ - B ₁ ; L ₂ - B ₂
7470.6	13382	w sh	L ₂ - B ₁

Table 4.5 (continued)

Wavele A	ength	Energy -1 cm			Transition assignment
8141	.8	12279	v	w	
8171		12235	v	w	
8591	.0	11637	m	ъ	^R 2 ~ ^Z 1
8625.	.9	11590	st	ъ	$R_1 - Z_1, R_2 - Z_1$
8660.	.1	11544	st	ъ	R ₁ - Z ₂
8697	.0	11495	m	ъ	R ₂ - Z ₃
8733	.2	11447	m,	ъ	R ₁ ~ Z ₃
9013.	.1	11092	m	ъ	R ₁ ~ Z ₅
			· · · · · · · · · · · · · · · · · · ·		
st	Strong		\$	sh	Sharp
m	Moderate		(i	Diffuse
w	Teak		VI	W	Veryweak

not very accurate. Also only the strongest of the lines observed with Ar laser are recorded in these plates. There is however enough similarity in the groups observed in both cases.

The observation of as many as 19 groups of fluorescence lines offers a good opportunity of determining the energies of the Stark components of the lower levels with greater accuracy. This is particularly relevant for the ground state which is not directly observed in absorption. Tables 4.6 through 4.10 list these Stark level positions determined from the various observed transitions and the average values. For lines observed with the N_2 laser as well as Λr^+ laser, the values of the lower levels obtained from the latter spectrum are written in these tables as they are more accurate. The present values are seen to agree with earlier values within the experimental uncertainty (\pm 5 cm⁻¹). Table 4.2 summarizes the data thus obtained about the energy level structure of Nd^{3+} : LaF₃ from its absorption and fluorescence spectra.

Crystal field splitting of $^{4}I_{9/2}(Z)$ level of $Nd^{3+}\cdot LaF_{3}$ from the fluorescence data at LNT

Table 4.6

			A							
Upper Levels		Lower Levels								
	z ₁	z ₂	^Z 3	z ₄	z ₅					
R ₁	σ	42 π	137 o	290 თ	499 o					
R ₂	σ		137 π	289 π	498 π					
D ₁	π									
D ₂	π	44 [*] π	136 σ							
D ₃	σ									
E	σπ	42 σ	140 π	292 σ	505 π					
E ₂		44 [*]		291 σπ	501 o					
E 3		48								
L ₂		47	142							
<u>1</u> ,3		50	143							
Average		45	139	291	500					
Reference	10	45	136	296	500					

Almost all lines are partially polarized. Only the polarization in which the line is stronger is given in the table.

Uncertain due to overlaps. Not used for averaging.

Table 4.7

Crystal field splittings of ${}^4\text{I}_{11/2}$ (Y) level of Nd ${}^{3+}$:LaF from the fluorescence data at LNT 3

Uppor	Lower Levels									
Level	Y ₁	Y ₂	Y ₃	Y ₄	^Ү 5	Y ₆				
E		2040 σπ	20 7 3 σ	2093 σπ	2188 [©]	22 26 π				
E ₂		2042 σπ		2095		2222 σπ				
E ₃		2042 σπ								
к ₁	1983	2041	2072		2193	2228				
K ₂	1986									
L ₂	1985	2042*	2072	2097	* 2193					
r3	1982	2047	2074**		2190	2225*				
Average	1984	2042	2073	2095	2190	2225				
Reference	1978	2037	2068	2091	2187	2223				
						1				

Almost all lines are partially polarized. Only the polarization in which the line is stronger is given in the table.

^{*} Uncertain due to overlaps. Fot used for averaging.

Table 4.8

Crystal field splitting of 4 l $_{13/2}$ (X) level of Nd³⁺:LaF₃ from the fluorescence data at LLT

Upper level	Lower Levels						
	x ₁	x ₂	x ₃	x ₄	х ₅	х ₆	^x 7
E ₁	3920 σ	3981 π		4080 o	4120 ơ	4208°	4276 σπ
E ₂	3921 o	3980π	4041 π		4124 o		
E ₃	3921 o	3978π	4043 π		4127 o		4280 ^π
E ₄	3915 o		4031 π	4076 T	41.25m		
^K 1		3982					4284
К ₂				4082	4119	4205	4277
K L ₂	3921	3982					
ь ₃	3926	3989		4078	4113		
Average	3921	3982	4038	4079	4121	4207	4279
Reference 10	3919	3979	4039	4078	4,120	4213	4278

^{*} Almost all lines are partially polarized. Only the polarization in which the line is stronger is given in the table.

Table 4.9

Crystal field splitting of $^4\text{I}_{15/2}$ (W) level of Nd³⁺:LaF₃ from the fluorescence data at LNT

Lower levels	Upper levels				_Average	Reference	Reference
	K ₁	к2	L ²	^L 3		10	12
W ₁	5820		5812		5816	5815	5817
w ₂				5879	5879	5877	5876
W ₃	5994		5989	5989	5990	5990	5989
W ₄			6140 *				6142
₩ ₅				6172*	-		6173
₩6	6312		6320		6316		6320
W ₇	6445			6450	6448		6448
w ₈			6555	6549	6552		6551

^{*} Uncertain due to overlaps. Not used for averaging.

Table 4.10 Crystal field splitting of ${}^4F_{5/2}$, ${}^2H_{9/2}$ (S) levels of Nd $^{3+}$:LaF $_3$ from the fluorescence data at LNT *

Upper levels		Lower 1	Average	Reference		
	K ₁	к ₂	L ₂	L ₃		10
s ₁	12595 σπ	12596 π		12597 o	12596	12596
s ₂	12613 σπ	12609 ơ	12613 σ		12615	12613
s ₃	12620 π		12620 π		12622	12621
s ₄	12673 o		12676 o	12680π	12676	12675
ន ₅	1269 3 o	12698 π	12691 π	12696 σπ	1265_	12693
s ₆	12755 o	12751 π	12754 π	12754 σπ	12753	12755
s ₇	12844	12842 σπ	12840 π	12843 °	12842	
s ₈	12904		12903 σπ	12906 ^π	12904	

^{*} Almost all lines are partially polarized. Only the polarization in which the line is stronger is given in the table.

4.4 Two-photon absorption under laser excitation

The intensity (I) of the K and L fluorescence observed with the 5145Å (Λr^+ laser) excitation is studied as a function of laser power (P) in the range 60 to 700 mw. The laser is used in the 'light control' mode and the power was stable to \pm 10 mw throughout. This power range corresponds to a photon flux density⁺(at the beam waist, see section 2.1) of about 10^{16} - 10^{17} photons cm⁻² sec⁻¹. Figure 4.16 is a log-log plot of I vs P for two representative lines, 5973.3Å (L_3 - R_2) and 7270.0Å (K_2 - S_2). The intensity scale is arbitrary and the intensities of the two lines are also not drawn on the same scale. The two straight lines have slopes of 1.72 \pm 0.08 and 1.75 \pm 0.03 respectively. That is I α P^{1.75}. The intensities of the other lines also show the same behaviour.

The deviation of this exponent from two is indicative of a more complicated process than a straight forward two photon absorption to be responsible for populating the upper fluorescing levels. This is qualitatively similar to the results obtained in other cases (for example reference 17,18). Reference 17 reports the observation of U.V. and visible fluorescence from Nd³⁺:LaCl₃ when excited with the 1.06µ radiation from a Nd:YAlGlaser. This was explained by them as due to a sequential two step excitation process (inset figure 4.16) involving two photon absorption to the

An unfocussed laser beam was used while recording the spectrum at Santa Barbara. The much smaller (by a factor of 100) flux densities thus achieved is almost certainly the reason for not observing these lines in those recordings.

Fig. 4.16 The variation of the intensity of K and L fluorescence lines with power.

E level followed by relaxation to the R level and a subsequent two photon absorption to reach the M level. Fluorescence was observed from most of the levels between L and R (figure 4.1) and intensities of all these lineswere found to vary as the fourth power of the laser power. This fourth power dependance for the fluorescence from even the levels lower than E is a result of a large efficiency for the four photon process.

Such large efficiencies are however not always encountered. Depopulation from the intermediate states (eg. by R - Z, R - Y decay) cause their populations to vary in a sublinear fashion with the laser power and results in a slower rate of increase in the final level population with the laser power, as is being observed in the present case. This was observed in the several multiphoton processes reported in the fluorescence spectra of rare earth ions doped in BaLuF₅ 18. The intensity varies in general as a polynomial of the nth order (for an n photon process) in the power P. Portions of the plot were seen to be approximatable to a P^m but m rarely being an integer.

In view of this, it can be said that the flucrescence from the K and L levels observed with 5145Å excitation is not due to a direct two photon absorption but is a result of a more complicated multistep process. One may in general expect energy exchange with the Pr³⁺ (which is present in the crystal) also to be important. Firm conclusions about the detailed

process can be reached only after a study of the time evolution of the fluorescence (after a pulsed excitation) and the various decay rates. It is also necessary to extend the measurements to cover a larger range of incident powers. Such experiments are currently being planned in the laboratory.

4.5 Oscillator strength determination from self absorption

characteristic of self absorption (see figure 4.15). The phenomenon can be described briefly as follows. When an active medium of finite physical dimensions is excited (by whatever means), the light emmitted in the interior of the medium can get absorbed on its way out. The emmission and absorption being due to atoms or ions of the same kind, the absorption co-efficient has substantially the same frequency dependance as the emmission line shape. (There can ofcourse be small shifts in the peak position as well as changes in width due to different physical conditions existing in different parts of the medium.) This results in more energy being absorbed at the centre than in the wings. The total intensity and the line shape of the emergent radiation are therefore different from the actual. This is called self absorption.

The observations of this phenomenon are legion in the spectra of gas discharges, the most famous being that of the 2538Å line of the mercury arc. There are some instances of observation of this effect in the rare earth spectroscopy also (reference 19 for example).

The first complete theoretical treatment of the phenomenon is due to Cowan and Dieke²⁰ who had dealt with the various possible excitation conditions and the line shapes

expected therein. They showed that in the case if a uniformly excited medium, self absorption leads only to a flattening of the peak of the line and in most cases may not be distinguishable from the unabsorbed lines. More pronounced and easily recognizable effects are priduced when the absorbing and emmitting atoms (or ions) are spatially seperated (in general if the degree of excitation is hot uniform throughout the medium). In this case the absorption can be so strong that the 'peak' of the line becomes darker than the wings. is called 'self reversal'. Such conditions obtain in metal arcs and are extensively dealt with by them. A 'hypothetical' idealization of a metal arc, namely one where all the emmitters are confined within a narrow cylindrical region around an axis, and all the absorbers are outside, was also considered This ideal condition is achieved in the present experiment, all the emmitting ions being within the volume of the narrow laser beam and the rest of the crystal containing the absorbers. The derivation for the line shape under these conditions is outlined here.

In figure 4.15 the laser beam is entering the crystal at a distance 'x' behind its front face, x being measured along the optic axis of the spectrograph. The symmetry of the excitation around the vertical axis permits a one dimensional treatment and x is the only positional variable needed.

The position of the laser beam can be taken as x=0. Then, let

$$I_O(\lambda) = A\varphi(\lambda)$$

describe a fluorescence line emmitted at x=0 with an amplitude Λ . $\varphi(\lambda)$ is a line shape function with the peak at say λ ₀. After traversing a distance x in a medium containing a uniform density of absorbers, the intensity drops to

$$I_{\mathbf{x}}(\lambda) = A\phi(\lambda) \exp(-\alpha, \mathbf{x})$$

The absorption co-efficient α_{λ} has the same shape as the emmission line shape and thus $\alpha_{\lambda} = \alpha \phi(\lambda)$. α is called the peak absorptivity and depends on the number of absorbers present per c.c. and the transition probability.

Thus
$$I_{x}(\lambda) = A\varphi(\lambda) \exp[-\alpha\varphi(\lambda)x]$$

The shape of this function is rather complicated but the positions of its extrema only are of interest for the present. These are at $\frac{d\phi(1)}{d\lambda}=0$

that is, the centre of the line and at

$$[1-\alpha x \varphi(\lambda)] = 0$$

Since $\varphi(\lambda) \le 1$, equation 3 is satisfied only for $\alpha x > 1$. Also $\varphi(\lambda)$ being symmetric around λ_0 , there are two values of λ symmetrically disposed about λ_0 for which this equation is satisfied. A calculation of the second derivative shows that for $\alpha x > 1$, the centre of the line is a minimum, and the two extrema given by equation 3 are maxima.

The line therefore shows a double hump character. The positions and intensities of the humps depend on the exact nature of $\phi()$ but the intensity at the line centre is given by

$$I_{x}(\lambda_{0}) = \exp(-\alpha x)$$

and is valid for any line shape. α is related to the oscillator strength 'f' of the transition by the relation 2l ,

$$N_A f = 8.21 \times 10^{16} \frac{n^2}{(n^2+2)^2} (\alpha(E)) 1E$$

where n is the refractive index at the wavelength of interest, N_A is the number of absorbing ions per c.c., α is measured in cm⁻¹, and E in electron volts. For a Lorentzian shape function $\phi(\lambda) = 1/[1+a^2(\lambda-\lambda_0)^2]$, the value of the integral is $\alpha\pi/a$. The refractive index of LaF₃ at 8600Å is earlier reported 22 to be 1.58. Using this and converting the energy to cm⁻¹ units, one obtains

$$N_{\Lambda}f = 1.249 \times 10^{12} \alpha w$$
 5

where w is the full width at half maximum in cm⁻¹ (of the unabsorbed line shape) equal to 2/a. A neasurement of the line centre intensity as a function if x (varied by moving the laser beam along the length of the crystal) thus yields the value of α and therefore the oscillator strength. However before using equation 5 the following point has to be considered.

The peak position as well as the width of the transition are functions of temperature and any local heating caused by the laser beam can displace as well as broaden the emmission line in relation to the absorption line. The shifts of the R_1-Z_1 and R_2-Z_1 lines are reported 23 as rother small; of the order of 0.1 cm⁻¹ per one degree rise in this temperature The 'dips' of the recorded self absorbed lines are indeed found to be occurring at the same place as the 'peaks' of the unabsorbed (small x) lines to within 0.5 $\mathring{\Lambda}$. No measurements are reported on the variation of the width of these lines with temperature. But if the variation found for the R-Y lines 23 is anything to go by, it is a steeply varying function. If the two widths are not same (absorption and emmission), it is the width w of the absorption line shape that must be used in equation 5, which is not an observable in the emmission experiment.

A simple test is devised to check this. This consists of observing the variation of the hump separation of the self absorbed line shape with αx (or equivalently x) for each line. Substituting the Lorentzian shape function for $\phi(\lambda)$ in equation 3, the humps are seen to be at

$$1 - \frac{\alpha x}{1 + a^2 (\lambda - \lambda_0)^2} = 0$$

$$(\lambda - \lambda_0) = \pm \frac{\sqrt{\alpha x - 1}}{a}$$
6

or at

The hump separation
$$S = \frac{2\sqrt{\alpha x}-1}{a} = w\sqrt{\alpha x}-1$$
 7

This equation is also derived by Cowan and Dieke though the notation used is different. The plot of S^2 vs x for a given line would be a straight line with an intercept on the yaxis equal to $-w^2$.

These equations are no longer value if the absorption line has a width 2/b different from that of the emmission line 2/a. This situation is not treated in reference 20^{ϕ} . Here instead of equation 1 one has,

$$I_{x}(\lambda) = \frac{A}{1+a^{2}(\lambda-\lambda_{0})^{2}} \exp\left[\frac{-\alpha x}{1+b^{2}(\lambda-\lambda_{0})^{2}}\right] = 8$$

The humps of this function are located at λ given by

$$(\lambda - \lambda_0)^2 = \frac{-a^2b^2(2-\alpha x)}{2a^2b^4} \sqrt{a^4b^4\alpha^2 x^2 - 4\alpha x(a^4b^4 - a^2b^6)}$$

A plot of S^2 vs x will be very complicated indeed and will be a straight line only if the term linear in x under the radical is very small compared to the x^2 term which is the same as saying that a is not very much different from b. The test for the equivalence of a and b thus consists in the linearity or otherwise of the S^2 vs x plot.

⁺ For a Gaussian line shape, the relation is $S^2 = \frac{w^2 \ln \alpha x}{\ln 2}$. The plot will not be a straight line.

It may be mentioned here that the entire treatment given in this section has been independently developed by the author before he came across reference 20.

Experimental details: As is apparent from the preceding discussion, the experiment consists of recording the spectrum with the laser beam entering the crystal at different distances x behind the front face of the crystal (the face towards the monochromator).

The crystal is mounted inside the low temperature dewar in such a way as to have the longest side (4.5 mm) along the optic axis of the spectrometer to have the largest path x possible. It is fortunate that this side is not the claxis, for, in that case only the orpart of transition would be observed. To change x, the dewar, containing the crystal is moved along the optical bench. It is more convenient to do this than to shift the position of the laser beam as the latter involves moving the various components used for steering and focussing the beam. The distance is measured using an OSAW (India) horizontal/vertical cathetometer. Its least count is 0.01 mm, but the inaccuracy in the measured values of x is somewhat larger than this because of the finite width of the luminiscence 'streak'.

Three lines identified as the R_2-Z_1 (8593.8), R_1-Z_1 (8624.8) and R_1-Z_2 (8656.0) are seen to be effected, the former two showing self reversal as well. Figure 4.15 shows the lines in the σ polarization. The intensities of these line centres are measured with respect to that of the R_2-Z_3 (8696.0) line

recorded in the same run. The line did not show any self absorption and is thus a good 'internal standard' of intensity. This is considered superior to using the values of signal current as such, for the following reason. The bottom window of the dewar (through which the laser beam enters) as well as the bottom face of the crystal can have small dust particles or irregularities on them, and these will lead to a variation in the laser power that actually enters the crystal, as the dewar is moved. This and the other causes like fluctuations in the laser power, line voltage etc. also effect the signal current measured and make it unreliable.

Figures 4.17 and 18 show the log $I_{\rm x}(\lambda_0)$ vs x plots for these three lines in the σ and π polarizations respectively. The values of α measured from these plots are given in Table 4.11 alongwith their respective widths. Figure 4.19 is a plot of S^2 vs x for the two lines that show self reversal. The variation is linear and the intercepts $64 \mathring{\Lambda}^2$ and $44 \mathring{\Lambda}^2$ conform well with the corresponding values of w^2 measured from the unabsorbed emmission lines. It can therefore be safely concluded that the emmission and absorption line shapes have the same width and the effect of local heating if any is not significant. The lines show significant assymmetry, the reason for which is not understood. However, both sides of the lines independently have Lorentzian shapes and the full widths of the lines are taken 'as measured' without any corrections.

Fig. 4.19 Variation of hump separation (S) of the self reversed lines of the R+Z group with x at 77 °K.

From the reported²⁴ values of the dimensions of the unit cell; a = 7.186 Å and c = 7.352 Å, (volume 328.8Å^3) and the doping percentage (2%,0ptovac data), the number density of Neodymium ions N_A is calculated to be equal to $3.65 \times 10^{20} \text{per}$ c.c. Substituting this value of N_A and the values of αw from Table 4.11 in equation 5 gives the f number of the transitions.

The 'total' f number of all these (R-Z) transitions is $1.72 \pm 0.08 \times 10^{-6}$. This value is different from the value of 1.09×10^{-6} measured by Krupke²⁵ from optical absorption measurements at room temperature. The reason for the descrepancy is the considerably different population distribution among the Stark components of the $^4\text{I}_{9/2}(\text{Z})$ state at the two temperatures. The population in the Z_1 component which accounts for 90% of the absorption at LNT, is only 33% at R.T compared to 61.6% at LNT (~90°K). The population of Z_2 level (45 cm⁻¹) is about 30% in both cases. Using the appropriate weighting factors to reflect these changes, an f number at R.T. of $0.99 \pm 0.05 \times 10^{-6}$ is obtained from the present α values. The current results are therefore in agreement with earlier values.

The (D-Z) group at 5770Å also is severely self absorbed. Comparison of figures 4.8 and 4.9 shows that these lines are almost completely absorbed even for x = 0.024 cm. Varying

Here it is assumed that the intensity of the 8625A line is completely due to the R_1-Z_1 transition. However, part of this (considered to be quite small) is contributed by the R_2-Z_2 transition.

x in steps smaller than this is not possible in the present set up. Also the signal to noise ratio is considerably smaller here than for the (R-Z) group. No measurements are therefore made on these lines. This he vever demonstrates the nice point that though α (i.e essentially the radiative transition probability) is larger, the emmission intensity could still be smaller evidently due to greater depopulation of D level by phonon processes than the R level.

If the fluorescence were excited by conventional means, that is by using a high pressure mercury lamp or a tungsten lamp, essentially the whole bulk of the crystal is illuminated but the degree of excitation varies from point to point and cannot be calculated. Under this conditions, there is no way to relate the 'dip' height (if at all observed) with absorptivity. This may well be the reason why effects of self absorption were sought to be avoided rather than made use of by earlier workers 19.

This method of measuring 'f' numbers from laser excited fluorescence is probably practicable for a values in the range of 1 to 100 cm⁻¹, the limits being set by normally realizable crystal sizes. In this range, this method offers the advantage of not having to use a calibrated double beam spectrometer that is necessary for absorption measurements.

4.6 The fluorescence spectrum at high temperatures

The relative importance of phonon induced depopulation increases rapidly with temperature (chapter 1) resulting in smaller fluorescence intensities and larger linewidths. The utility of the fluorescence spectrum at R.T or higher temperatures is thus generally limited for the elucidation of energy level structure and related properties. There are however two interesting features observed in the spectrum of Nd³⁺:LaF₃ that merit a discussion here.

The first of these is an increase in the total integrated ntensity of the fluorescence in going from LNT to RT though the increased phonon rates are amply evident in the much larger The broadening is actually so large that all linewidths at RT. the lines in a single group coalesce together into a broad band. This increase in intensity has probably a simple explanation. At room temperature as many as 32% of the Nd lons are in the Z_3 and Z_A levels (139 and 291 cm⁻¹) and these ions can resonantly absorb the 19,431 cm⁻¹ (5145Å) photons to reach the F_1 and F_6 levels at 19568 and 19739 cm⁻¹ (Table 4.2) respectively. No such resonant absorption is possible from the \mathbf{Z}_1 and \mathbf{Z}_2 (O and 45 cm⁻¹) levels which together contain about 90% of the ions at LNT. This would surely lead to greater populations in the fluorescing levels at RT than at LNT and explains the increased fluorescence intensity.

Another prominent feature is the occurrence of S-Z (7750-8250Å) and A-Z (7300-7600Å) fluorescence at room temparature. These two broad bands completely disappear even a few minutes after pouring liquid nitrigen into the dewar. Heating the crystal to about 85°C increases their intensity by factors of 1.5 and 2.5 respectively while at the same time, the intensity of other fluorescence cg. from E and R levels decreases by a factor of 1.5.

For this experiment, the crystal is held on a copper block (fixed with Quickfix) and heated by a jet of air from a hot air blower. The temperature is measured by a mercury thermometer placed near the crystal. The temperature attained equilibrium in a few minutes and remained constant for the duration of the experiment, of about one hour.

The intensity of fluorescence from a level can increase either due to an increased rate of population of that level or by a decrease in the rate of depopulation by non-radiative processes. In the present case, greater input into the S and A levels by multiphonon decay from higher levels is expected but the energy gap below these levels is about 1000 cm⁻¹ and is of the same order as between various other levels. Thus the population of these levels also would be depleted fast by non-radiative decay. A net increase in the population is thus not immediately obvious. This must be brought about by a process which leads to a higher rate of population into

these levels without a corresponding increase in the depletion ratu. It must also be more effective at high temperatures A thermally assisted ion pair relaxation process suggests itself as being most likely. Table 4.12 lists various such transition pairs capable of populating the S level. involve the decay of a neodymium ion from C to S level by exchanging the difference of energy with another Nd ion in the Z_5 Stark level (500 cm⁻¹) of the ground state, raising it to either X_1 or X_2 . The population of the Z_5 level is neglizible at LNT but increases with temporature giving greater efficiency to the process at higher temperatures. That the ion pair processes are more efficient than multiphonon depopulation processes is well known. The variation of the lifetime of the R level with temperature in Nd3+:LaF3 is infact attributed to such a process 27. The process responsible for population build up in the A manifold is probably one which involves decay of Nd3+ from D to A, and simultaneous excitation of Pr3+ (which is present in the crystal) from the upper Stark components (136-500 cm⁻¹) of the ${}^{3}\mathrm{H}_{\Lambda}$ ground state into the 3H6 level. Several such transition pairs could be located from the energy level structures of the two ions. These are indicated in Table 4.13. Extensive ion pair energy exchange between Nd3+ and Pr3+ was infact observed earlier26.

Table 4.12

Possible ion pair transitions to populate the S level of Nd³⁺ at high temperatures

Transition (Downward) Nã ³⁺	Energy cm -1	Tronsition (Upward) Nd ³⁻	Energy cm ⁻¹
C ₂ - S ₂ C ₃ - S ₃ C ₅ - S ₄ C ₅ - S ₅	3420 3424 3428 3410	^z ₅ - ^x ₁	3419
o ₅ - s ₂ c ₅ - s ₃	3490 3482	z ₅ - x ₂	3479

Differences in energy of the order of 10 cm⁻¹ are not important because of the large widths of the transitions at high temperatures.

Possibleian pair transitions to populate the the A level of Nd³⁺ at high temperatures

Downward	Energy	Upward transit	100 4	Energy
transition Nd ³⁺	-1 cm	Pr ³⁺		1
		3 _{H4}	3 _{H6}	
D ₇ - A ₁	4086	137	4219	4082
		137	4223	4086
		207	4300	4097) 🛬
		296	4385	4089
		508	4591	4083
^D 6 - ^A 1	4055	203	4266	4063
		330	4385	4055
D ₅ - A ₁	4005	296	4300	4004
$D_4 - A_1$	3997	508	4508	4000
D ₁ - A ₁	3789	508	4300	3792
D ₇ - A ₂	4010	203	4219	4016
		508	4527	4019
D ₁ - A ₂	3713	508	4219	3714
		508	4223	3715
D ₇ - A ₃	3930	296	4219	3923
, ,		296	4223	3927
		508	4440	3932
D ₆ - A ₃	3 899	330	4223	3893
D ₆ - A ₄	3893			

Energy differences of the order of 10 cm⁻¹ are not of importance because of the large vidths of the transitions at high temperatures.

^{*} Pr3+ energy levels are from reference 16.

This explanation has the status of being only plausible at this stage. Looking simply for changes in the intensity of the X-Z fluorescence of Nd³⁺ as the temperature is varied may not lead to conclusive results since there can be various factors effecting this quantity. (An earlier attempt by Asawa and Robinson²⁷ to observe the X-Z and X-Y fluorescence was not successful). Looking for the ³H₆-³H₄ fluorescence from Pr³⁺ also may not be fruitful since transitions between several other levels of Nd³⁺ (X-Z, W-Y, C-R) are also capable of populating the Pr³⁺-³H₄ level by energy exchange. Confirmatory evidence can only be obtained by a detailed investigation of the build up and decay times of the various fluorescence transitions in the temperature range of interest.

4.7 Polarization of the observed lines

In view of what is said in section 72 and reference 9 there is no simple explanation for this feature of the spectrum. Such polarization has been also observed 28 in the spectrum of Neodymium in Lanthanum penta phosphate recently. In this crystal, the site symmetry of Nd $^{3+}$ is C_1 .

One possible explanation is that the lines, atleast some of them, are vibronic in nature. The symmetry does not actually predict polarization in that case also, but it is not unreasonable to expect that the vibronic line would be

stronger in the polarization in which the electric vector is parallel to the direction of oscillation of say the R.E. ion. The two Stark components Z₂ and Z₃ actually occur at almost the same positions as two of the observed phonon frequencies. And it is likely that all transitions identified as involving Z₂ and Z₃ actually involve phonons of those energies. If the above hypothesis were true, then all lines involving say 45 cm⁻¹ as lower level must be similarly polarized. Data presented in Tables 4.6 through 4.10 does not support this. No such uniform polarization is observed in transitions involving either a particular lower level or even a particular upper level. Also, the Zeman study on NdF₃ makes one inclined to believe that the observed levels are in fact electronic levels only.

In the end, it may be just that, while the symmetry allows a transition in both the polarizations, the relative intensities depend on the detailed nature of the wavefunctions and the line can still be partially polarized or even be completely polarized.

REFERENCES

- 1. Robert A. Satten, J. Chem. Phys. 21, 637 (1953).
- 2. G.H. Dicke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience 1968),
 E. Carlson and G.H. Dicke, J. Chem. Phys. 29, 229 (1958); 34, 1602 (1961),
 E.H. Carlson, Johns Hopkins Spectroscopic Report No. 18 (1960).
- J.C. Elsenstein, J. Chem. Phys. 39, 2134 (1963),
 L.F. Johnson, J. Appl. Phys. 34, 897 (1963),
 J.A. Konningstein and J.E. Geusic, 136, Λ711 (1964),
 N.C. Chang, J. Chem. Phys. 44, 4044 (1966),
 P.A. Narayana, Can. J. Phys. 47, 2753 (1969),
 M.J. Weber and T.E. Vartimes, J. Appl. Phys. 42, 4996 (1971),
 Stanely M. Kulpa, J. Chem. Phys. 56, 1198 (1972),
 A.J. Lindop and D.W. Goodwin, J. Phys. C. Solid
 State Phys. 6, 1818 (1973).
- 4. R.M. Aggarwal et.al., Proc. Ind. Acad. Sci. <u>LV</u>, 325 (1962).
- 5. B.G. Wybourne, J. Chem. Phys. <u>32</u>, 639 (1960); <u>34</u>, 279 (1961).
- 6. E.H. Carlson, Johns Hopkins Spectroscopic Report No. 19 (1960).
- 7. K. Rajnak, J. Chem. Phys. 43, 847 (1965).
- 8. H. Crosswhite, H.M. Crosswhite and B.R. Judd, Phys. Rev. <u>174</u>, 89 (1968).
- 9. E.Y. Wong, O.M. Stafsudd, D.R. Johnston, Phys. Rev. <u>131</u>, 990 (1963).

- 10. H.H. Caspers, H.E. Rast, R.A. Buchanan, J. Chem. Phys. 42, 3214 (1965).
- 11. E.Y. Wong, J. Chem. Phys. 35, 544 (1961).
- 12. Yu.K. Voron'ko, V.V. Osiko, N.V. Sarostyanova, V.S. Fedorov and I.A. Scherbakov, Soviet Phys. Solid State 14, 2294 (1973).
- 13. Y.K. Chow, Zs. f. Physik-124, 52 (1948).
- 14. W.M. Yen, W.C. Scott and A.L. Schawlow, Phys. Rev. <u>136</u>, A271 (1964).
- 15. H.H. Caspers, H.E. Rast and R.A. Buchanan, J. Chem. Phys. <u>43</u>, 2124 (1965).
- 16. W. Kalser and C.G.B. Garrett, Phys. Rev. Letters 7, 229 (1961), John F. Porter Jr., Phys. Rev. Letters 7, 414 (1961), Warner L. Petticolas, John. P. Goldsborough and K.E. Reickhoff, Phys. Rev. Letters 10, 43 (1963), M. Ianuzzi and E. Polacco, Phys. Rev. Letters 13, 371 (1964).
- 17. S. Singh and J.E. Geusic, in Optical Properties of Ions in Crystals ed. H.M. Crosswhite and H.W. Moos (Interscience 1967), page 493.
- 18. L.F. Johnson, H.J. Guggenheim, T.C. Rich and F.W. Ostermayer, J. Appl. Phys. 43, 1125 (1972).
- 19. C.K. Asawa, Phys. Rev. <u>155</u>, 188 (1967).
- 20. R.D. Cowan and G.H. Dieke, Rev. Mod. Phys. <u>20</u>, 418 (1948).
- 21. Y.B. Fowler, Physics of Colour Centres (Academic Press 1968) page 72.

- 22. G. Hass, J.B. Ramsey and R. Thun, J. Opt. Soc. Am. 49, 116 (1959).
- 23. S.A. Johnson, H.G. Freie, A.L. Schawlow and W.M. Yen, J. Opt. Soc. Am. <u>57</u>, 734 (1967).
- 24. J.D.H. Donnay and D. Donnay, Crystal data (American Crystallographic Association, 1963)2nd ed.
- 25. William F. Krupke, Phys. Rev. <u>145</u>, 325 (1966).
- 26. D.J. Zalucha, J.A. Sell and F.K. Fong, J Chem. Phys. <u>60</u>, 1660 (1974).
- 27. C.K. Asawa and M. Robinson, Phys. Rev. <u>141</u>, 251 (1966).
- 28. S. Singh, D.C. Miller, J.R. Protopowicz and L.K. Shick, J. Appl. Phys. <u>46</u>, 1191 (1975).

CHAPTER 5

THE EPR SPECTRA OF $\mathrm{Nd}^{3+}\mathrm{IN}$ LaF 3 AND PbMoO_4 AT LIQUID HELIUM TEMPERATURE

ABSTRACT

The EPR spectra at liquid helium temperatures of Nd^{3+} : LaF_3 and Nd^{3+} : PbMoO₄ are reinvestigated to check whether extra lines found in the respective absorption spectra could be due to the existence of different kinds of Nd centres. No evidence for this was found in LaF_3 . In PbMoO₄ however the EPR spectrum contained a set of lines attributable to Nd^{3+} possibly associated with a next neighbour defect in the [110] plane. The intensity of these lines is less than 1% of the main lines which are due to Nd^{3+} experiencing a crystal field of S_4 symmetry oriented along the c axis of the crystal.

5.1 Introduction

Electron paramagnetic resonance is a very powerful tool for studying the local symmetries of paramagnetic ions either in solutions or solid lattices. The specific feature of relevance to the present study is its ability to detect small changes in site symmetry. If a small fraction of the paramagnetic ions present in a crystal experience a slightly different crystal field than the rest of the ions, they would give rise only to weak satellite lines in the optical spectrum. The information obtainable from these satellites is usually very small. The EPR spectrum of these ions could on the other hand differ significantly from the main spectrum and a proper investigation of the anagular variation of the spectrum would yield reliable information about the difference in the site symmetry.

The optical spectra of Nd³⁺:LaF₃¹ and the Nd³⁺:PbMoO₄² contain some weak extra lines which might conceivably belong to Neodymium ions situated at sites that are different from the rest. This chapter describes the work done on the EPR spectra of these crystals to locate any such centres.

5.2 The spin Hamiltonian

The ground state¹ of Nd³⁺ is ⁴I_{9/2}. Because of the large orbital angular momentum (unquenched) of this state, the EPR spectrum is observable only at liquid helium temperatures. At higher temperatures, the spin-lattice relaxation times are very short and the lines become unobservably weak and broad³.

In any crystal field of less than cubic symmetry, (which is unlikely to be encountered in the present case), the $^{4}I_{9/2}$ state splits into five Kramers' doublets and for Nd³⁺ in these two crystals, the splitting is of the order of 50 to 100 cm⁻¹. Thus at LHeT, only the ground state Kramers' doublet is populated. The first excited state is also too far off to be effected by the microwave frequency (less than 1 cm⁻¹) of the EPR experiment. An 'effective spin half' Hamiltonian³ would therefore be appropriate for this two level (Kramers' doublet) system

$$\mathcal{G}_{\mathcal{L}} = \beta \, \underline{\mathbf{H}} \cdot \underline{\mathbf{g}} \cdot \underline{\mathbf{S}} + \underline{\mathbf{I}} \cdot \underline{\mathbf{A}} \cdot \underline{\mathbf{S}}$$

⁺ Liquid helium temperature.

where the symbols have their usual meaning. In case of axial symmetry the Hamiltonian would be

$$f = g_{x} \beta H_{z} S_{z} + g_{z} \beta (H_{x}S_{x} + H_{y}S_{y}) + AI_{z}S_{z} + \frac{B}{2}(S_{+}I_{-}+S_{-}I_{+})$$

Natural Neodymium has several even isotopes (zero nuclear spin) making upto 80% of the total and two odd mass isotopes with mass numbers 143 and 145. The odd mass isotopes have 12.2% and 8.3% natural abundances and both have nuclear spins of 7/2. In cases where the hyperfine structure is large enough to be resolvable, the spectrum would consist of a strong central line due to the even mass isotopes and two sets of eight hyperfine lines each, due to the odd isotopes. The magnetic moment of the lighter isotope (143) being about 1.5 times larger than that of the heavier isotope (145), the hyperfine groups are usually well separated.

5.3 Experimental details

The experiments are done on a Varian No. V4502-12, X-band EPR spectrometer equipped with a V-K3525, superheterodyne adapter and a V4545A, liquid helium accessory. The D.C. field (H_O) is provided by a Varian No. V3400,9" rotatable magnet.

^{*} The author is thankful to Dr. T.M. Srinivasan for his co-operation and help in these experiments.

The following minor modifications are made to the liquid helium accessory to suit the current requirements. For large crystals the fixed (iris) cavity coupler supplied by Varians is found inadequate and a variable coupler similar to the one described by Ramon and Stamires 4 is incorporated. In this the coupling is varied by moving a, 12BA screwacross the coupling hole with a worm and gear combination. It is possible to achieve critical coupling with this arrangement even with a crystal as large as 10 x 7 x 4 mm³ of LaF₃. Another modification is with regard to the field modulation coils. These are mounted on the outside of liquid helium dewar itself (figure 5.1) and are found to be the source of excessive baseline drift twith field (H_O), when it is directed at angles ϕ larger than about 20° from the axis (xx in figure 5.1) of the coils. Also, at large angles the component of the modulation field parallel to the static field (Ho) is greatly reduced and signal intensity is lost. Both these problems are solved by removing these coils and fixing another pair of circular (Helmholtz) coils mounted directly on the magnetic pole pieces. coils are made of 150 turns (each) of 38SWG enamelled copper wire wound on 1/8" thick perespex discs of 5.5 cm radius (equal to the pole gap).

The mechanical vibration of the modulation coils induced by H_O is responsible for this.

Fig. 5.1 Configuration of magnetic fields in the EPR set-up at $4.2\,^{\circ}\text{K}$.

_

The microwave cavity operates in the TE₁₀₂ mode with the microwave field in the form of flat loops in vertical planes as shown in figure 5.1. Both the crystals studied (LaF₃ and PbMoO₄) have their principal axes parallel to their external sides and thus the problems of orientation are minimized by cementing the crystals with quickfix in a corner of the cavity flush to the walls. Due to this, the crystals experience a horizontal as well as a vertical component of the microwave field as can be seen from figure 5.1. When H₀ is oriented along the narrow side of the cavity (xx in the figure), both these components are perpendicular to it. But at other angles the horizontal arm gives rise to a component parallel to H₀. This situation leads to the observation of some interesting forbidden transitions described in section 5.7.

5.4 The EPR spectrum of Nd3+:LaF3

Previous publications on this spectrum reported the observation of a six line spectrum attributed to Neodymium ions substituting Lanthanum ions at sites of $C_{\rm S}$ symmetry. No hyperfine structure was reported.

A re-investigation made here, of the spectrum and its angular variation in a plane containing the c axis as well as in a plane perpendicular to it, has only reproduced the results of the earlier observations. Figure 5.2 shows the spectrum

Fig. 5.2 Nd $^{3+}$:LaF $_{3}$ EPR spectrum at 4.2°K, H $_{o}$ in a direction perpendicular to c axis

obtained with H_O oriented in a direction perpendicular to the caxis. No extra lines that can be attributed to a different kind of Neodymium centre are found

The lines observed have widths varying between 50 and 100 gauss with angle These large widths may be due to unresolved hyperfine structure (no HF lines are observed) Considering the width of the lines to be representing the total spread of a hyperfine spectrum, the hyperfine coupling constant is estimated to be about 10 gauss which is rather low

5 5 EPR spectrum of PbMoO4

Lead Molybdate is a member of the Scheelite (CaWO₄) homolog series. The crystal structure⁶ is tetragonal and the space group is C⁴_{6h} The unit cell is illustrated in figure 5 3 The oxygen ions (not shown in the figure) surrounding the lead ions (larger circles) give them S₄ symmetry Numerous earlier EPR investigations on Nd³⁺ doped in lead molybdate⁷ and other Scheelites⁸ demonstrated that the Nd³⁺ replaces Pb²⁺ substitutionally and the charge compensation is usually far away and does not change the site symmetry. There have been however one or two cases⁹ where effects of nearby defects were observed. The optical absorption study of Minhas et al² on Nd³⁺ PbMoO₄ showed that the spectrum is essentially due to

Fig. 5.3 Unit cell of $PbMoO_4$.

Neodymium ions at undistorted S₄ sites but there exist a few weak lines close to the main lines which do not belong to those ions. They felt that these may be due to a different kind of Nd centres.

Single crystals of Nd³⁺:PbMoO₄ were grown by Minhas and Sarma using the Czochralski technique. A spectroscopic analysis (carried out at the Spectroscopy division, BARC, Bombay) showed that the crystals contain 180 ppm of N.eodymium and a comparable amount of sodium which is added for charge compensation. A thin rectangular plate 1 x 3 x 6 mm³ was cut from one of these crystals for this EPR study. The plane of the plate is parallel to the crystalline ac plane (found by Laue photograph) with the c axis parallel to the 3 mm side. The crystal is mounted in the EPR cavity in cither position 3 or 4 (figure 5.1) depending on the plane (aa or ac) in which the spectrum is to be studied.

Figure 5.4 shows the spectrum obtained with H_O oriented 25° away from the c axis, in the ac plane. The spectrum is dominated by the seventeen line structure of Nd³⁺ at the undistorted sites. In the figure, the spin-less transition is designated as 0, the hyperfine lines of the lighter isotope as a₁-a₈ and those of the heavier isotope as b₁-b₈. Figure 5.5 shows the angular variation of the positions of lines 0 and a₁-a₈. The set 'b' vary in a similar facility.

but are not shown in the figure. The constants of the spectrum are

$$g_{11} = 2.595 \pm 0.02(2.592 \pm 0.005), g_{1} = 1.348 \pm 0.006(1.351 \pm 0.002)$$

$$A^{143} = 24 \pm 2 \times 10^{-4} \text{ cm}^{-1}(128 \pm 1), B^{143} = 267 \pm 4 \times 10^{-4} \text{ cm}^{-1}(269 \pm 1)$$

$$A^{145} = 79 \pm 1 \times 10^{-4} \text{ cm}^{-1}(80 \pm 1), B^{145} = 167 \pm 2 \times 10^{-4} \text{ cm}^{-1}(167 \pm 1)$$

The values in paranthesis are the results of earlier 8,9 determenations.

The spectrum also shows three more lines (marked U_1U_2 and U_3 in figure 5.4) which do not belong to this set. The angular variation in the ac plane of these lines also is shown in figure 5.5. The lines U_1 and U_2 appear to be coelescing into a single line when H_0 is parallel either to the c axis or the a axis. However, there is considerable overlap in these directions with the strong lines of the main spectrum and it is not possible to be sure about this point. The extrema of these lines occur 30° and 60° away from the c axis. This feature sets them apart from the U_3 line which has its extrema on the c and a axes. The g values (in the ac plane) are

$$g_{\min}(U_1) = 1.15 \pm 0.005$$
, $g_{\max}(U_2) = 2.76 \pm 0.02$
 $g_c(U_3) = 2.662 \pm 0.02$, $g_a(U_3) = 1.522 \pm 0.005$

When the magnetic field is varied in the aa plane, the main spectrum remains invariant. The U3 line which does not split in the ac plane and has extrema along the a and c axes must also be angular independent in this plane. Unfortunately in this particular experiment, only in one case namely, H0 oriented 15° away from an a axis, is the spectrum scanned upto the high field (about 4.5 kG) necessary to record this line. And in this, the line is in fact found at the same field value, as on the a axis and so it can be concluded that it is invariant in the plane. The two lines U1 and U2 should show angular variation in this plane also but it is not found possible to locate them almong the strong lines of the main spectrum.

There are several possible locations, a compensating charge (Na⁺ for example) or any other defect can occupy and alter the environment of the paramagnetic ion. The first possiblility to be considered is that the U₃ line is due to Nd ions associated with a defect along the c axis at a distance of one lattice unit (12.1Å), the hyperfine lines which would be two orders of magnitude weaker, being lost in noise. The distance of the defect being rather large, its effect will probably be small. Reference 9 gives the data on the EPR spectra of Nd³⁺ in nine Scheelites with varying c/a ratios. Here it was seen that the value of g₁₁.

The experiment could not be repeated due to the non-availability of liquid helium later on.

varies rather widely between 0.7 and 2.17 but g_1 varies only between 2.535 and 2.58 along the whole series. Thus, varying axial perturbations have little effect on g_1 . Thus U_3 line for which g_1 is 1.522 does not belong to Nd^{3+} . The g values however are close to the values $g_1 = 2.92$, $g_1 = 1.43$ found 10 for Ce^{3+} substituting Calcium in CaWo₄ at S_4 sites. It is therefore likely that this line belongs to Ce^{3+} substituting Pb^{2+} at undistorted S_4 sites.

Ul and U2 as a pair should be due to centres associated with off axis defects. The Pb site along [111] direction (positions 5,6,7,8 in the figure 5.3) is a likely choice. There are four such centres oriented along the four [111] axes. All of these would give rise to a single line along the c axis which splits into two in the ac plane. These two again coalesce into one along the a axis, if one of the g principal axes lies along the [111]. In that case the angular variation can probably show extrema at about 30 and 60 to the c axis, the angle the [111] makes with the c axis being about 33°. The maximum and minimum g values of these lines are in the same range as for Nd³⁺ in Scheelites and so Ul and U2 may be assigned to Nd³⁺ associated with a defect along [111] axis.

Centres associated with defects in the 1,2,3 or 4 kind of (figure 5.3) sites should give three lines in the ac plane.

Centres associated with defects along the a axis would give rise to two lines in the ac plane but, must have one of their g principal axes parallel to the a, the as plane being a symmetry plane. Ions substituting for M_O in the molybdate group will have more or less isotopic g tensors because of their near tetrahedral oxygen co-ordination. None of these three models can thus explain the observed angular variation and are discarded.

In conclusion, it is likely that the U_3 line is due to a Ce^{3+} at undistorted lead sites, the two lines U_1 and U_2 are due to Nd^{3+} associated with a defect along the [111] direction. Thus the conjecture that the extra lines in the optical spectrum are due to a different kind of Nd centre is probably true.

5.6 Forbidden transitions in the EPR spectrum of Nd3+:PbMoO4

The spin Hamiltonian contains terms which are not diagonal in I_z and S_z and which mix together the various electron nuclear product wavefunctions. For the simple case of a spin half Hamiltonian with H_0 parallel to the Z axis,

$$\mathcal{H} = g\beta H_0 S_z + AI_z S_z + \frac{B}{2} (S_1 I_2 + S_1 I_4)$$

the second order energies are given by

$$E_{Mm} = g\beta H_0 M + AmM + O[B^2/20\beta H_0]$$

where M and m are electronic and nuclear magnetic quantum numbers respectively, and the last term on the RHS represents the second order correction of the order of $(B^2/2g\beta H_0)$. The first order wavefunctions are given by

$$|1/2,m\rangle = |1/2,m\rangle + \frac{BI_{m}}{g\beta H_{0}} |-1/2,m+1\rangle$$

$$|-1/2,m\rangle = |1/2,m\rangle + \frac{BI_{m}}{g\beta H_{0}} |1/2,m-1\rangle$$

$$|-1/2,m+1\rangle = |1/2,m+1\rangle + \frac{BI_{m+1}}{g\beta H_{0}} |1/2,m\rangle$$

and so on. Here 1/2,m is an unperturbed wavefunction and 1/2,m is a perturbed wavefunction, and $I_m = (m+1) I_+ m) = [I(I+1)-m(m+1)]^{\frac{1}{2}}$. The ordinary hyperfine transitions are between states described by 1/2,m and 1/2,m (figure 5.6) and do not involve a change in the nuclear magnetic quantum number. These occur at

$$h\gamma = g\beta H + \frac{Am}{2} + O(B^2/2g\beta H)$$

But transition between states like 1/2,m and -1/2,m+1 can also take place because of the mixtures, but only through a M.W. field parallel to H_0 . These are illustrated by dashed lines in figure 5.6. These transitions occur at

$$h\gamma = g\beta H + \frac{A}{2}(m+1/2) + O(B^2/2g\beta H)$$

Fig. 5.6 Allowed and forbidden hyperfine transitions of a spin 1/2 system

¥

that is, exactly midway between the allowed transitions (but for the second order terms). The intensity of these transitions is proportional to the mixture co-efficients and is only a few percent of the allowed lines (0.5 to 1/2 here). Also all the 2I lines do not have the same intensity. They vary as [I(I+1)-m(m+1)] where m is magnetic quantum number of the upper nuclear state.

In the present experimental set up where for angles of $\emptyset \neq 0$, (figure 5.1) the microwave field has a component parallel to H_0 , such transitions are indeed observed. Figure 5.7 illustrates the spectra recorded with H_0 parallel to the c axis but one with H_0 in the XX orientation and the other YY orientation. The forbidden lines $X_1 - X_7$ and $Y_1 - Y_7$ occuring midway between the respective allowed lines can be clearly seen. Their relative intensities also vary as expected. Such forbidden lines were earlier observed in Cobalt, manganese and Vanadyl salts 11 .

REFERENCES

- 1. Ohapter 4 of this thesis.
- 2. I.S. Minhas, A study of the Optical Properties of Nd³⁺:PbMoO₄ system. Thesis submitted to IITK, Kanpur 1972; I.S. Minhas, K.K. Sarma and J.B. Gruber, Phys. Rev. <u>8</u>, B385 (1973).
- 3. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford 1970).
- 4. U. Rannon and D.N. Stammires, Rev. Sci. Instrum 41, 147 (1970).
- J.M. Baker and R.S. Rubins, Proc. Phys. Soc. <u>78</u>,
 1353 (1961); E.Y. Wong, C.M. Stafsudd and D.R. Johnston,
 Phys. Rev. <u>131</u>, 990 (1963).
- 6. R.W.G. Wyckoff, Crystal Structures, Vol. 3 (Interscience 1965).
- 7. I.N. Kurin and L.Ya. Shekun, Soviet Phys. Solid State 6, 1144 (1964).
- 8. I.N. Kurın, 1bid. <u>8</u>, 585 (1966).
- 9. V. Volterra, J. Bronstein and M. Rockni, Appl. Phys. Letters 8, 212 (1966).
- 10. W.B. Mims and R. Gillen, Phys. Rev. 148, 438 (1966).
- 11. C.D. Jeffries, Phys. Rev. 106, 164 (1957),
 M. Abragam, R.W. Kedzie and C.D. Jeffries, Phys.
 Rev. 106, 165 (1957),
 Weston A. Anderson and Lawrence H. Pittie, J. Chem.
 Phys. 30, 591 (1959).

M bilbo

Date Slip 4 51158

This book is to be returned on the date last stamped.

	th the the extension of the tr
	DER OF SERVICE AND SERVICE
*** * * * * *** ***	** *************

	serent municipally an advisable an

*** * ** ** ***	***************************************
*** * ***** * ** ****	1886 1884 488 584 488882486
CD 6 72 9	

PHY-1975- D- KUM-SPE