

Math 673

Multigrid Methods: A Mostly Matrix-Based Approach

Chapter 01: Classical Iterative Methods

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu — swise1@.utk.edu University of Tennessee

Fall 2024

Chapter 01, Part 2 of 2 Classical Iterative Methods

Splitting Methods

Classical Splitting Methods

In this section we define a couple of the classical iterative methods that one meets in an elementary course on numerical analysis, namely, the Jacobi, Gauss-Seidel, and Richardson's methods. We analyze them using the spectral theory introduced in the last section.

The Jacobi and Gauss-Seidel methods are based on the canonical (diagonal) splitting of A.

Figure: The canonical splitting of A.

Definition

Let $A \in \mathbb{R}^{n \times n}$ be given. Consider

$$A = D - L - U, \tag{1}$$

where $D \in \mathbb{R}^{n \times n}$ is the diagonal of A, $-L \in \mathbb{R}^{n \times n}$ is the strictly lower triangular part of A, and $-U \in \mathbb{R}^{n \times n}$ is the strictly upper triangular part of A, respectively, as illustrated in the figure on the previous slide. The decomposition (1) is called the **canonical splitting of** A or **diagonal splitting of** A.

Canonical/Diagonal Splitting of A

Figure: The canonical splitting of A.

Example

Splitting Methods

Suppose that

$$\mathsf{A} = \begin{bmatrix} 10 & -2 & -10 & 5 & -10 \\ 10 & 9 & 7 & -2 & -5 \\ 0 & 6 & 9 & 3 & -10 \\ 6 & 10 & 4 & -7 & -8 \\ -8 & 3 & 5 & 4 & 7 \end{bmatrix}.$$

Then

$$\mathsf{D} = \begin{bmatrix} 10 & 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 \\ 0 & 0 & 9 & 0 & 0 \\ 0 & 0 & 0 & -7 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix},$$

$$\mathsf{U} = \begin{bmatrix} 0 & 2 & 10 & -5 & 10 \\ 0 & 0 & -7 & 2 & 5 \\ 0 & 0 & 0 & -3 & 10 \\ 0 & 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathsf{and} \quad \mathsf{L} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -10 & 0 & 0 & 0 & 0 \\ 0 & -6 & 0 & 0 & 0 \\ -6 & -10 & -4 & 0 & 0 \\ 8 & -3 & -5 & -4 & 0 \end{bmatrix}.$$

		positior		
\mathbf{P}	ro	nc	vcit	10r
	10	ν	י סונ	IUI

If A is SPD, then D has only positive diagonal elements, and $U = L^{T}$.

Proof.

Exercise.

The Jacobi Iterative Method

Suppose that A = D - L - U is the canonical splitting of A. Assume D is invertible. Then the linear system Au = f can be rewritten as

$$\mathsf{D}\boldsymbol{u}=(\mathsf{U}+\mathsf{L})\boldsymbol{u}+\boldsymbol{f}.$$

Jacobi's method results from the iteration

$$\mathsf{D}\boldsymbol{u}^{k+1} = (\mathsf{U} + \mathsf{L})\boldsymbol{u}^k + \boldsymbol{f}.$$

Put another way, we have the following:

Definition (The Jacobi Method)

Suppose that A=D-L-U is the canonical splitting of $A\in\mathbb{R}^{n\times n}$, where the diagonal matrix D is invertible. **The Jacobi method** is a GLIS with the iterator matrix

$$\mathsf{B}=\mathsf{B}_J:=\mathsf{D}^{-1}$$

and error transfer matrix

$$T = T_J := I - D^{-1}A.$$

The iteration sequence is precisely

$$\boldsymbol{u}^{k+1} = \boldsymbol{u}^k + D^{-1} \left(\boldsymbol{f} - A \boldsymbol{u}^k \right). \tag{2}$$

Remark

The error transfer matrix for the Jacobi method can be expressed as

$$T_{J} = D^{-1}D - D^{-1}A$$

$$= D^{-1}(D - D + U + L)$$

$$= D^{-1}(U + L).$$
(3)

Remark

In component form, the Jacobi method can be written as

$$u_i^{k+1} = \frac{f_i - \sum_{j=1}^{i-1} a_{i,j} u_j^k - \sum_{j=i+1}^n a_{i,j} u_j^k}{a_{i,i}}.$$
 (4)

The order in which we obtain the updated components is completely immaterial.

Definition

We say that a matrix $A \in \mathbb{R}^{n \times n}$ is diagonally dominant or row-wise diagonally dominant iff, for each $i \in \{1, \dots, n\}$,

$$\sum_{\substack{j=1 \\ j \neq i}}^{n} |a_{i,j}| < |a_{i,i}|.$$

Proposition

If $A \in \mathbb{R}^{n \times n}$ is diagonally dominant, then it is invertible and none of its diagonal elements is zero.

Proof.

Exercise

Theorem (Convergence of the Jacobi method)

If $A \in \mathbb{R}^{n \times n}$ is diagonally dominant, then the Jacobi method is well defined and unconditionally convergent.

Proof.

We will show that $\|T_J\|_{\infty} < 1$. Since A is diagonally dominant, its diagonal elements are all non-zero. Thus the method is well defined because D is invertible. Now, observe that

$$\mathsf{T}_{J} = \left[\begin{array}{ccc} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{array} \right] - \left[\begin{array}{ccc} \frac{1}{a_{1,1}} & & 0 \\ & \ddots & \\ 0 & & \frac{1}{a_{n,n}} \end{array} \right] \left[\begin{array}{ccc} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{array} \right].$$

Thus

$$t_{i,j} = \begin{cases} 0, & \text{if } i = j, \\ -\frac{a_{i,j}}{a_{i,i}}, & \text{if } i \neq j. \end{cases}$$

So,

$$\|\mathsf{T}_J\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |t_{i,j}| = \max_{1 \le i \le n} \sum_{\substack{j=1 \ j \ne i}}^n \left| \frac{a_{i,j}}{a_{i,i}} \right|.$$

Since A is diagonally dominant, there is some $\delta > 0$, such that

$$|a_{i,i}| \geq \sum_{\substack{j=1\\j\neq i}}^{n} |a_{i,j}| + \delta,$$

for each $i = 1, \ldots, n$.

Therefore, for each i = 1, ..., n,

$$\sum_{\substack{j=1\\j\neq i}}^n \left|\frac{a_{i,j}}{a_{i,i}}\right| \leq 1 - \frac{\delta}{|a_{i,i}|} \leq 1 - \frac{\delta}{\alpha},$$

where

$$\alpha = \max_{1 \le i \le n} |a_{i,i}|.$$

Hence,

$$\|\mathsf{T}_J\|_{\infty} \leq 1 - \frac{\delta}{\alpha} < 1.$$

Definition (Damped Jacobi Method)

Suppose that A=D-L-U is the canonical splitting of $A\in\mathbb{R}^{n\times n}$ and $\omega\in(0,1]$. Assume D is invertible. The **damped Jacobi method**, or **weighted Jacobi method**, is defined by the iteration

$$\mathbf{z} = \mathbf{u}^k + \mathsf{D}^{-1}(\mathbf{f} - \mathsf{A}\mathbf{u}^k)$$

$$\mathbf{u}^{k+1} = \omega \mathbf{z} + (1 - \omega)\mathbf{u}^k.$$

where the starting value $u^0 \in \mathbb{R}^n$ is given.

Thus the damped Jacobi method can be viewed as doing one step of the Jacobi method, followed by a damping, or weighting, step. We can eliminate z in the second equation to obtain the following.

Proposition

With the same assumptions as in the last definition, the damped Jacobi method is a GLIS with iterator

$$B = B_{J,\omega} := \omega D^{-1}$$

and error transfer matrix

$$T = T_{J,\omega} := I - \omega D^{-1}A.$$

The iteration sequence can be expressed as

$$\boldsymbol{u}^{k+1} = \boldsymbol{u}^k + \omega D^{-1} \left(\boldsymbol{f} - A \boldsymbol{u}^k \right). \tag{5}$$

Proof.

Exercise.

Exercise.

We will come back to the damped Jacobi method in a later chapter.

The Gauss-Seidel Method

Suppose that A=D-L-U is the canonical splitting of $A\in\mathbb{R}^{n\times n}.$ Then

$$(\mathsf{D}-\mathsf{L})\boldsymbol{u}=\mathsf{U}\boldsymbol{u}+\boldsymbol{f}.$$

The Gauss-Seidel method is simply stated as

$$(\mathsf{D}-\mathsf{L})\boldsymbol{u}^{k+1}=\mathsf{U}\boldsymbol{u}^k+\boldsymbol{f}.$$

Assuming $\mathsf{D}-\mathsf{L}$ is invertible, some manipulations give

$$u^{k+1} = (D-L)^{-1}Uu^{k} + (D-L)^{-1}f$$

= $u^{k} - (D-L)^{-1}(D-L)u^{k} + (D-L)^{-1}Uu^{k} + (D-L)^{-1}f$
= $u^{k} + (D-L)^{-1}(f-Au^{k}).$

Definition (Forward Gauss-Seidel Method)

Suppose that A=D-L-U is the canonical splitting of $A\in\mathbb{R}^{n\times n}$ and D-L is invertible. The **Gauss-Seidel method** – also called the **forward Gauss-Seidel method** – is a GLIS with iterator matrix

$$B = B_{GS} := (D - L)^{-1}$$

and error transfer matrix

$$T = T_{GS} := I - (D - L)^{-1}A.$$

The iteration sequence can be expressed as

$$\mathbf{u}^{k+1} = \mathbf{u}^k + (D - L)^{-1} (\mathbf{f} - A \mathbf{u}^k).$$
 (6)

Remark

The error transfer matrix for the Gauss-Seidel method can be expressed equivalently as

$$T_{GS} = I - (D - L)^{-1}A$$

$$= (D - L)^{-1}(D - L) - (D - L)^{-1}(D - L - U)$$

$$= (D - L)^{-1}U.$$
(7)

The Component Form of Gauss-Seidel

The Gauss-Seidel method is simply stated as

$$(\mathsf{D}-\mathsf{L})\boldsymbol{u}^{k+1}-\mathsf{U}\boldsymbol{u}^k=\boldsymbol{f}.$$

In component form, we can express the forward Gauss-Seidel method as

$$\sum_{j=1}^{i} a_{i,j} u_j^{k+1} + \sum_{j=i+1}^{n} a_{i,j} u_j^{k} = f_i, \quad i = 1, \dots, n.$$

The Component Form of Gauss-Seidel

To compute the update u^{k+1} , we proceed from i = 1, in order, to i = n. So, the first equation we solve is

$$u_1^{k+1} = \frac{f_1 - \sum_{j=2}^n a_{1,j} u_j^k}{a_{1,1}}.$$

Next, we have

$$u_2^{k+1} = \frac{f_2 - a_{2,1}u_1^{k+1} - \sum_{j=3}^n a_{2,j}u_j^k}{a_{2,2}},$$

and

$$u_3^{k+1} = \frac{f_3 - \sum_{j=1}^2 a_{3,j} u_j^{k+1} - \sum_{j=4}^n a_{3,j} u_j^k}{a_{3,3}}.$$

We continue, in the same way, with i=4, in order, to i=n-1, and we end with

$$u_n^{k+1} = \frac{f_n - \sum_{j=1}^{n-1} a_{n,j} u_j^{k+1}}{a_{n,n}}.$$

The Component Form of Gauss-Seidel

The idea with the method is simple. Once we obtain an updated component u_i^{k+1} , we immediately use it to obtain u_{i+1}^{k+1} . One full pass, from i=1 to i=n is called a **forward sweep**. The generic i^{th} step is

$$u_i^{k+1} = \frac{f_i - \sum_{j=1}^{i-1} a_{i,j} u_j^{k+1} - \sum_{j=i+1}^{n} a_{i,j} u_j^k}{a_{i,i}}.$$
 (8)

Theorem (Convergence of the forward Gauss-Seidel method)

Suppose that A=D-L-U is the canonical splitting of $A\in\mathbb{R}^{n\times n}$. If A is diagonally dominant, then the forward Gauss-Seidel method is well defined, that is, D-L is invertible, and the method is unconditionally convergent.

Proof.

If A is diagonally dominant, then D has only nonzero diagonal entries. Hence, $\mathsf{D}-\mathsf{L}$ is invertible.

For convergence, we again want to show that, if A is diagonally dominant, then $\|T_{GS}\|_{\infty} < 1$. This will establish the unconditional convergence of the method. Since A is diagonally dominant, it follows that, for some $\delta > 0$,

$$|a_{i,i}| \ge \sum_{\substack{j=1\\i\neq i}}^{n} |a_{i,j}| + \delta = \sum_{j>i} |a_{i,j}| + \sum_{j$$

Thus

$$|a_{i,i}| - \sum_{j < i} |a_{i,j}| \ge \sum_{j > i} |a_{i,j}| + \delta > \sum_{j > i} |a_{i,j}|,$$

which implies

$$\gamma := \max_{1 \leq i \leq n} \left\{ \frac{\sum_{j > i} |a_{i,j}|}{|a_{i,i}| - \sum_{j < i} |a_{i,j}|} \right\} < 1.$$

Now, we will show $\|\mathsf{T}_{\mathit{GS}}\|_{\infty} \leq \gamma$.

Let $x \in \mathbb{R}^{n \times n}$ and $y = \mathsf{T}_{GS} x$, that is,

$$y = \mathsf{T}_{GS} x = (\mathsf{D} - \mathsf{L})^{-1} \mathsf{U} x.$$

Let k be the index such that $\|\mathbf{y}\|_{\infty} = |y_k|$. Then we have

$$|[(D-L)y]_k| = |[Ux]_k| = |\sum_{j>k} a_{k,j}x_j| \le \sum_{j>k} |a_{k,j}||x_j| \le \sum_{j>k} |a_{k,j}| ||x||_{\infty}.$$

Now notice that

$$\begin{aligned} |[(\mathsf{D} - \mathsf{L}) \mathbf{y}]_k| &= |\sum_{j < k} a_{k,j} y_j + a_{k,k} y_j| \\ &\geq |a_{k,k} y_k| - |\sum_{j < k} a_{k,j} y_j| \\ &= |a_{k,k}| \, \|\mathbf{y}\|_{\infty} - |\sum_{j < k} a_{k,j} y_j| \\ &\geq |a_{k,k}| \, \|\mathbf{y}\|_{\infty} - \sum_{i < k} |a_{k,j}| \, \|\mathbf{y}\|_{\infty} \,. \end{aligned}$$

Therefore, we have

$$\left| \left| a_{k,k} \right| \left\| \boldsymbol{y} \right\|_{\infty} - \sum_{j < k} \left| a_{k,j} \right| \left\| \boldsymbol{y} \right\|_{\infty} \leq \sum_{j > k} \left| a_{k,j} \right| \left\| \boldsymbol{x} \right\|_{\infty},$$

which implies

$$\|\mathbf{y}\|_{\infty} \leq \frac{\sum_{j>k} |a_{k,j}|}{|a_{k,k}| - \sum_{j< k} |a_{k,j}|} \|\mathbf{x}\|_{\infty}.$$

So,

$$\|\mathsf{T}_{GS}x\|_{\infty} \leq \gamma \|x\|_{\infty}$$

which implies

$$\left\|\mathsf{T}_{\mathit{GS}}\right\|_{\infty} \leq \gamma < 1.$$

Definition (Backward Gauss-Seidel method)

Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible and A = D - L - U is the canonical splitting of A. Assume D - U is invertible. The **backward Gauss-Seidel method** is a GLIS with iterator matrix

$$B = B_{BGS} := (D - U)^{-1}$$

and error transfer matrix

$$T = T_{BGS} := I - (D - U)^{-1}A.$$

The iteration scheme is precisely

$$u^{k+1} = u^k + (D - U)^{-1} (f - Au^k).$$
 (9)

Remark

The error transfer matrix for the backward Gauss-Seidel method can be re-expressed as

$$T_{BGS} = I - (D - U)^{-1}A$$

$$= I - (D - U)^{-1}(D - L - U)$$

$$= (D - U)^{-1}L.$$
 (10)

It should not be hard to modify the proof of the last theorem to obtain the following:

Theorem (Convergence of the backward Gauss-Seidel method)

Suppose that A = D - L - U is the canonical splitting of $A \in \mathbb{R}^{n \times n}$. If A is diagonally dominant, then the backward Gauss-Seidel method is well defined, that is, D - U is invertible, and it is unconditionally convergent.

Component Form of Backward Gauss-Seidel

The Gauss-Seidel method is simply stated as

$$-\mathsf{L}\boldsymbol{u}^k+(\mathsf{D}-\mathsf{U})\boldsymbol{u}^{k+1}=\boldsymbol{f}.$$

In component form, we can express the backward Gauss-Seidel method as

$$\sum_{j=1}^{i-1} a_{i,j} u_j^k + \sum_{j=i}^n a_{i,j} u_j^{k+1} = f_i, \quad i = 1, \dots, n.$$

Component Form of Backward Gauss-Seidel

To compute the update u^{k+1} , we proceed from i = n, in reverse order, to i = 1. We find the n^{th} component first:

$$u_n^{k+1} = \frac{f_n - \sum_{j=1}^{n-1} a_{n,j} u_j^k}{a_{n,n}}.$$

Next, we have

$$u_{n-1}^{k+1} = \frac{f_{n-1} - \sum_{j=1}^{n-2} a_{n-1,j} u_j^k - a_{n-1,n} u_n^{k+1}}{a_{n-1,n-1}},$$

and then

$$u_{n-2}^{k+1} = \frac{f_{n-2} - \sum_{j=1}^{n-3} a_{n-2,j} u_j^k - \sum_{j=n-1}^n a_{n-2,j} u_j^{k+1}}{a_{n-2,n-2}}.$$

We continue, in the same way, with i = n - 3, in reverse order, to i = 2, and we end with

$$u_1^{k+1} = \frac{f_1 - \sum_{j=1}^{n-1} a_{1,j} u_j^{k+1}}{a_{1,1}}.$$

Component Form of Backward Gauss-Seidel

One full pass, from i=n, proceeding in reverse order, to i=1 is called a **backward sweep**. The generic $i^{\rm th}$ step is

$$u_i^{k+1} = \frac{f_i - \sum_{j=1}^{i-1} a_{i,j} u_j^k - \sum_{j=i+1}^{n} a_{i,j} u_j^{k+1}}{a_{i,i}}.$$
 (11)

Richardson's Method

Suppose $\omega \in \mathbb{R}_{\star} := \mathbb{R} \setminus \{0\}$, and consider the splitting

$$A = \omega^{-1}I + A - \omega^{-1}I.$$

Suppose

$$Au = f$$
.

Then,

$$\omega^{-1}\boldsymbol{u} = (\omega^{-1}\mathsf{I} - \mathsf{A})\boldsymbol{u} + \boldsymbol{f}.$$

Richardson's method is, essentially,

$$\omega^{-1}\boldsymbol{u}^{k+1} = (\omega^{-1}\mathsf{I} - \mathsf{A})\boldsymbol{u}^k + \boldsymbol{f}.$$

Notice that this method is not based on the canonical diagonal splitting, but it is still quite useful and interesting.

Definition (Richardson's Method)

Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible and $\omega \in \mathbb{R}_{\star}$. Richardson's method is a GLIS with iterator matrix

$$B = B_R := \omega I$$

and error transfer matrix

$$\mathsf{T}=\mathsf{T}_R:=\mathsf{I}-\omega\mathsf{A}.$$

The iteration scheme is

$$\boldsymbol{u}^{k+1} = \boldsymbol{u}^k + \omega(\boldsymbol{f} - A\boldsymbol{u}^k). \tag{12}$$

We make a slight departure from the now familiar approach and analyze this method using the 2-norm, $\|\cdot\|_2$, under the assumption that A is SPD.

T

Theorem (Convergence of Richardson's Method)

Let $A \in \mathbb{R}^{n \times n}$ be SPD and $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$, with $0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$. Richardson's method converges unconditionally iff $\omega \in (0, 2/\lambda_n)$. In this case, we have the estimate

$$\|\boldsymbol{e}^{k}\|_{2} \leq \rho^{k} \|\boldsymbol{e}^{0}\|_{2}, \quad \rho = \rho(\omega) = \max\{|1 - \omega \lambda_{n}|, |1 - \omega \lambda_{1}|\}.$$

From this, it follows that setting

$$\omega = \omega_{\text{opt}} := \frac{2}{\lambda_1 + \lambda_n},$$

one obtains the smallest possible value of ρ , ρ_{opt} , and

$$\rho_{\rm opt} := \rho(\omega_{\rm opt}) = \frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} = \frac{\kappa_2(\mathsf{A}) - 1}{\kappa_2(\mathsf{A}) + 1},$$

where

$$\kappa_2(\mathsf{A}) = \frac{\lambda_n}{\lambda_1}.$$

Proof of Convergence of Richardson's Method.

 $(\Leftarrow) :$ Since A is SPD, we know that the eigenvalues of A are positive real numbers and

$$\lambda_n = \|A\|_2.$$

Notice also that $\mathsf{T}_R = \mathsf{I}_n - \omega \mathsf{A} = \mathsf{T}_R^\top$, which implies that the eigenvalues of T_R are real. Observe that $(\lambda_i, \mathbf{w}_i)$ is an eigenpair of A iff $(\nu_i = 1 - \omega \lambda_i, \mathbf{w}_i)$ is an eigenpair of T_R . Assume that $0 < \omega < 2/\lambda_n$. Then

$$0 < \lambda_i \omega < 2 \frac{\lambda_i}{\lambda_n}, \quad i = 1, \ldots, n,$$

which implies

$$1 > 1 - \lambda_i \omega > 1 - 2 \frac{\lambda_i}{\lambda_n} \ge -1, \quad i = 1, \ldots, n.$$

It follows that

$$1 > \nu_1 > \cdots > \nu_n > -1$$
, $\nu_i = 1 - \omega \lambda_i$.

This guarantees that $\|T_R\|_2 = \rho(T_R) < 1$, which implies convergence.

(⇒): Conversely, if $\omega \notin (0, 2/\lambda_n)$, then $\rho(\mathsf{T}_R) \geq 1$, and the method cannot converge unconditionally.

(Error estimate): By consistency,

$$\|\boldsymbol{e}^k\|_2 = \|\mathsf{T}_R^k \boldsymbol{e}^0\|_2 \le \rho^k \|\boldsymbol{e}^0\|_2.$$

Of course, it is easy to see that

$$\rho = \rho(\mathsf{T}_R) = \max\{|\nu_1|, |\nu_n|\} = \max\{|1 - \omega \lambda_n|, |1 - \omega \lambda_1|\}.$$

(Optimality): Finally, showing optimality amounts to minimizing ρ . See the figure on the next slide. From this we see that the minimum of ρ is attained when

$$|1 - \omega \lambda_1| = |1 - \omega \lambda_n|$$

or

$$1 - \omega \lambda_1 = \omega \lambda_n - 1,$$

which implies

$$\omega_{\rm opt} = \frac{2}{\lambda_1 + \lambda_n}.$$

Therefore

$$\rho_{\rm opt} = 1 - \omega_{\rm opt} \lambda_1 = \frac{\lambda_1 + \lambda_n - 2\lambda_1}{\lambda_1 + \lambda_n} = \frac{\lambda_n - \lambda_1}{\lambda_1 + \lambda_n} = \frac{\kappa_2(\mathsf{A}) - 1}{\kappa_2(\mathsf{A}) + 1}.$$

Figure: The curve $\rho(T_R)$ (in solid black) as a function of ω .

Additive, Multiplicative, and Symmetrized GLIS

Making New Methods by Combination

Recall that the iterator matrix defines the GLIS. If one has a collection of iterator matrices available, the analyst can combine them in various ways to create a new GLIS. There are three main flavors:

- Additive combination.
- Multiplicative combination.
- Symmetrization.

Of course, we can make combinations of combinations...

Definition (Additive and Multiplicative GLIS)

Suppose $A \in \mathbb{R}^{n \times n}$ is invertible and $f \in \mathbb{R}^n$ is given. Consider a family of iterator matrices, $B_i \in \mathbb{R}^{n \times n}$, for $i = 1, \ldots, r$. An iterative scheme is called additive with respect to $\{B_i\}_{i=1}^r$ iff

$$z_{1} = u^{k} + B_{1} \left(f - A u^{k} \right),$$

$$z_{2} = z_{1} + B_{2} \left(f - A u^{k} \right),$$

$$z_{3} = z_{2} + B_{3} \left(f - A u^{k} \right),$$

$$\vdots$$

$$z_{r-1} = z_{r-2} + B_{r-1} \left(f - A u^{k} \right),$$

$$u^{k+1} = z_{r-1} + B_{r} \left(f - A u^{k} \right).$$

$$(13)$$

Definition

An iterative scheme is called **multiplicative with respect to** $\{B_i\}_{i=1}^r$ iff

$$z_{1} = u^{k} + B_{1} (f - Au^{k}),$$

$$z_{2} = z_{1} + B_{2} (f - Az_{1}),$$

$$z_{3} = z_{2} + B_{3} (f - Az_{2}),$$

$$\vdots$$

$$z_{r-1} = z_{r-2} + B_{r-1} (f - Az_{r-2}),$$

$$u^{k+1} = z_{r-1} + B_{r} (f - Az_{r-1}).$$
(14)

Suppose $A \in \mathbb{R}^{n \times n}$ is invertible and $\mathbf{f} \in \mathbb{R}^n$ is given. Consider a family of iterator matrices, $B_i \in \mathbb{R}^{n \times n}$, for $i = 1, \ldots, r$. An additive iterative scheme with respect to $\{B_i\}_{i=1}^r$ is a GLIS with iterator

$$B = \sum_{i=1}^{r} B_i.$$

A multiplicative iterative scheme with respect to $\{B_i\}_{i=1}^r$ is a GLIS with the following recursively-defined iterator:

$$B = \tilde{B}_r$$

where $\tilde{B}_1 = B_1$, and, for $2 \le i \le r$,

$$\tilde{\mathsf{B}}_i = \tilde{\mathsf{B}}_{i-1} + \mathsf{B}_i - \mathsf{B}_i \mathsf{A} \tilde{\mathsf{B}}_{i-1}.$$

Proof.

Exercise.

Proposition

Suppose $A \in \mathbb{R}^{n \times n}$ is invertible, $\mathbf{f} \in \mathbb{R}^n$ is given, and $\{B_i\}_{i=1}^r \subset \mathbb{R}^{n \times n}$ is a family of iterator matrices. The error transfer matrix for the additive GLIS with respect to $\{B_i\}_{i=1}^r$ can be expressed as

$$T = I - \left(\sum_{i=1}^r B_i\right) A.$$

The error transfer matrix for the multiplicative GLIS with respect to $\{B_i\}_{i=1}^r$ can be expressed as

$$T = \prod_{i=1}^{r} (I - B_i A).$$

Proof.

Exercise.

Definition (Symmetrized Multiplicative GLIS)

Suppose $A \in \mathbb{R}^{n \times n}$ is invertible and $f \in \mathbb{R}^n$ is given. Consider a generic GLIS with iterator $B \in \mathbb{R}^{n \times n}$. The symmetrized multiplicative GLIS (SMGLIS) with respect to B is defined as follows: given u^0 , find u^1, u^2, \dots via

$$z = u^k + B(f - Au^k), \tag{15}$$

$$\mathbf{z} = \mathbf{u}^k + \mathsf{B}(\mathbf{f} - \mathsf{A}\mathbf{u}^k), \tag{15}$$

$$\mathbf{u}^{k+1} = \mathbf{z} + \mathsf{B}^{\top}(\mathbf{f} - \mathsf{A}\mathbf{z}). \tag{16}$$

Lemma

Suppose $A \in \mathbb{R}^{n \times n}$ is invertible and $\mathbf{f} \in \mathbb{R}^n$ is given. Assume that B is invertible. The SMGLIS with respect to B can be written as

$$\boldsymbol{u}^{k+1} = \boldsymbol{u}^k + \mathsf{B}_{SM}(\boldsymbol{f} - \mathsf{A}\boldsymbol{u}^k), \tag{17}$$

where

$$B_{SM} = B + B^{\top} - B^{\top} AB. \tag{18}$$

In other words, the SMGLIS with respect to B is a GLIS with iterator B_{SM} . If B is invertible, then the iterator may be expressed as

$$B_{SM} = B^{\top} (B^{-\top} + B^{-1} - A)B.$$
 (19)

If A is symmetric, then B_{SM} is as well.

Proof.

Plugging (15) into (16) yields

$$\mathbf{u}^{k+1} = \mathbf{u}^{k} + \mathsf{B}(\mathbf{f} - \mathsf{A}\mathbf{u}^{k}) + \mathsf{B}^{\top} \left(\mathbf{f} - \mathsf{A} \left[\mathbf{u}^{k} + \mathsf{B}(\mathbf{f} - \mathsf{A}\mathbf{u}^{k}) \right] \right)$$

$$= \mathbf{u}^{k} + \mathsf{B}(\mathbf{f} - \mathsf{A}\mathbf{u}^{k}) + \mathsf{B}^{\top} \left(\mathbf{f} - \mathsf{A}\mathbf{u}^{k} - \mathsf{A}\mathsf{B}(\mathbf{f} - \mathsf{A}\mathbf{u}^{k}) \right)$$

$$= \mathbf{u}^{k} + \mathsf{B}(\mathbf{f} - \mathsf{A}\mathbf{u}^{k}) + \mathsf{B}^{\top} \left(\mathbf{f} - \mathsf{A}\mathbf{u}^{k} \right) - \mathsf{B}^{\top}\mathsf{A}\mathsf{B}(\mathbf{f} - \mathsf{A}\mathbf{u}^{k})$$

$$= \mathbf{u}^{k} + \left(\mathsf{B} + \mathsf{B}^{\top} - \mathsf{B}^{\top}\mathsf{A}\mathsf{B} \right) (\mathbf{f} - \mathsf{A}\mathbf{u}^{k}),$$

which shows the SMGLIS with respect to B is a GLIS with iterator

$$B = B_{SM} = B + B^{\top} - B^{\top}AB.$$

If B is invertible, then

$$\begin{split} \mathsf{B}_{\mathit{SM}} &= \mathsf{B} + \mathsf{B}^{\top} - \mathsf{B}^{\top} \mathsf{A} \mathsf{B} \\ &= \left(I + \mathsf{B}^{\top} \mathsf{B}^{-1} - \mathsf{B}^{\top} \mathsf{A} \right) \mathsf{B} \\ &= \left(\mathsf{B}^{\top} B^{-\top} + \mathsf{B}^{\top} \mathsf{B}^{-1} - \mathsf{B}^{\top} \mathsf{A} \right) \mathsf{B} \\ &= \mathsf{B}^{\top} (\mathsf{B}^{-\top} + \mathsf{B}^{-1} - \mathsf{A}) \mathsf{B}. \end{split}$$

If A is symmetric, then B_{SM} is symmetric, since

$$B_{SM}^{\top} = B^{\top} + B - B^{\top} A^{\top} B$$
$$= B^{\top} + B - B^{\top} A B$$
$$= B_{SM}.$$

Remark

We could also consider a symmetrized additive method:

$$z = u^k + B(f - Au^k), (20)$$

$$\boldsymbol{u}^{k+1} = \boldsymbol{z} + \boldsymbol{\mathsf{B}}^{\top} (\boldsymbol{f} - \boldsymbol{\mathsf{A}} \boldsymbol{u}^{k}). \tag{21}$$

This is a GLIS with iterator matrix

$$B = B_{SA} := B + B^{\top}.$$

But this, it turns out, is not as useful to us in the multigrid setting.

The forward Gauss-Seidel method is the best example of a GLIS where the iterator is non-symmetric, even when A is symmetric. However, we can use the methodology presented in the last section to symmetrize it.

Definition (The Symmetric Gauss-Seidel Method)

Suppose that $A\in\mathbb{R}^{n\times n}$ is invertible and A=D-L-U is the canonical splitting of A. Assume D-L is invertible, and consider the Gauss-Seidel method, which is characterized by the iterator

$$\mathsf{B}_{GS} = (\mathsf{D} - \mathsf{L})^{-1}.$$

The symmetric Gauss Seidel method is the SMGLIS with respect to B_{GS} and is, therefore, a GLIS with iterator matrix

$$B_{SGS} = B_{GS} + B_{GS}^{\top} - B_{GS}^{\top} A B_{GS}. \tag{22}$$

Proposition

Suppose that $A \in \mathbb{R}^{n \times n}$ is symmetric and invertible and A = D - L - U is the canonical splitting of A. Assume that D - L is invertible. The iterator for the symmetric Gauss Seidel method can be written as

$$B_{SGS} = (D - U)^{-1}D(D - L)^{-1}, (23)$$

and it is symmetric.

Proof.

Using Equation (18), we find

$$\begin{split} B_{SGS} &= B_{GS}^{\top} (B_{GS}^{-\top} + B_{GS}^{-1} - A) B_{GS} \\ &= (D^{\top} - L^{\top})^{-1} (D^{\top} - L^{\top} + D - L - A) (D - L)^{-1} \\ &= (D - U)^{-1} (D - U + D - L - A) (D - L)^{-1} \\ &= (D - U)^{-1} D(D - L)^{-1}. \end{split}$$

Convergence in the Energy Norm

If the coefficient matrix A is SPD, we can use it to construct a useful norm, one which will be the basis of measuring convergence in a new way.

Definition (Energy Norm)

Suppose that A is SPD. The **energy norm** associated with A is

$$\|\boldsymbol{u}\|_{\mathsf{A}} = \sqrt{(\boldsymbol{u}, \boldsymbol{u})_{\mathsf{A}}}.$$

The energy norm is a natural metric for the convergence of the GLIS, when A is SPD, as the next few results show.

Theorem (Convergence in Energy Norm)

Suppose $A \in \mathbb{R}^{n \times n}$ is SPD and $B \in \mathbb{R}^{n \times n}$ is symmetric and invertible. Define

$$Q:=B^{-1}-\frac{1}{2}A.$$

If Q is SPD, then the GLIS

$$\boldsymbol{u}^{k+1} = \boldsymbol{u}^k + \mathsf{B}(\boldsymbol{f} - \mathsf{A}\boldsymbol{u}^k) \tag{24}$$

is unconditionally convergent with respect to the A-norm, that is,

$$\|e^k\|_{\Lambda} \to 0$$
, as $k \to \infty$.

Moreover, the convergence is always monotonic in the sense that

$$\left\| \boldsymbol{e}^{k+1} \right\|_{\mathbf{A}}^2 \leq \left\| \boldsymbol{e}^k \right\|_{\mathbf{A}}^2, \quad \forall \, k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}.$$

Proof.

Let \pmb{u} be the exact solution and \pmb{u}^k be the GLIS approximation at the k^{th} step. Then

$$e^{k+1} = \mathsf{T}e^k = e^k - \mathsf{BA}e^k$$
.

Set $v^{k+1} := e^{k+1} - e^k$. Then

$$\mathsf{B}^{-1}\mathbf{v}^{k+1} + \mathsf{A}\mathbf{e}^k = \mathbf{0}. \tag{25}$$

Taking the Euclidean inner product of the last equation with v^{k+1} gives

$$\left(\mathsf{B}^{-1}\boldsymbol{v}^{k+1},\boldsymbol{v}^{k+1}\right)+\left(\mathsf{A}\boldsymbol{e}^{k},\boldsymbol{v}^{k+1}\right)=0.$$

Now, observe that

$$\mathbf{e}^k = \frac{1}{2}(\mathbf{e}^{k+1} + \mathbf{e}^k) - \frac{1}{2}(\mathbf{e}^{k+1} - \mathbf{e}^k) = \frac{1}{2}(\mathbf{e}^{k+1} + \mathbf{e}^k) - \frac{1}{2}\mathbf{v}^{k+1}.$$

Then,

$$0 = (B^{-1}v^{k+1}, v^{k+1}) + (Ae^{k}, v^{k+1})$$

$$= (B^{-1}v^{k+1}, v^{k+1}) + \frac{1}{2}(A(e^{k+1} + e^{k}), v^{k+1}) - \frac{1}{2}(Av^{k+1}, v^{k+1})$$

$$= ((B^{-1} - \frac{1}{2}A)v^{k+1}, v^{k+1}) + \frac{1}{2}(A(e^{k+1} + e^{k}), v^{k+1})$$

$$= ((B^{-1} - \frac{1}{2}A)v^{k+1}, v^{k+1}) + \frac{1}{2}(A(e^{k+1} + e^{k}), e^{k+1} - e^{k})$$

$$= ((B^{-1} - \frac{1}{2}A)v^{k+1}, v^{k+1}) + \frac{1}{2}(||e^{k+1}||_{A}^{2} - ||e^{k}||_{A}^{2})$$

$$= ||v^{k+1}||_{Q}^{2} + \frac{1}{2}(||e^{k+1}||_{A}^{2} - ||e^{k}||_{A}^{2}).$$
(26)

By assumption, $Q := B^{-1} - \frac{1}{2}A$ is SPD. Hence

$$\left\| \boldsymbol{e}^{k+1} \right\|_{A}^{2} \leq \left\| \boldsymbol{e}^{k} \right\|_{A}^{2}$$
.

and

$$\left\| \boldsymbol{e}^{k+1} \right\|_{\mathsf{A}} \leq \left\| \boldsymbol{e}^{k} \right\|_{\mathsf{A}}.$$

Thus $\{\|\mathbf{e}^k\|_{\mathbf{A}}\}$ is a decreasing sequence of nonnegative numbers. By the Monotone Convergence Theorem, there is some $\gamma \geq 0$, such that

$$\left\| \boldsymbol{e}^{k} \right\|_{A} o \gamma \geq 0, \quad \text{as} \quad k o \infty.$$

Passing to the limit $k \to \infty$ in (26), we get

$$\lim_{k\to\infty}\left\|\boldsymbol{v}^{k+1}\right\|_{\mathbf{Q}}^2=0.$$

Using (25),

$$\boldsymbol{e}^k = -\mathsf{A}^{-1}\mathsf{B}^{-1}\boldsymbol{v}^{k+1}.$$

we must have $\|\boldsymbol{e}^k\|_{\Lambda} \to 0$.

We can generalize the last result. But first, we need the following:

Lemma

Suppose that $Q \in \mathbb{R}^{n \times n}$ is positive definite in the sense that

$$(Qy, y) > 0, \quad \forall y \in \mathbb{R}^n_{\star},$$

but Q is not necessarily symmetric. Then

$$\|\mathbf{w}\|_{Q} = \sqrt{(Q\mathbf{w}, \mathbf{w})}, \quad \forall \mathbf{w} \in \mathbb{R}^{n},$$

defines a norm.

Proof.

Suppose that Q is not symmetric, to avoid the simple case. Then

$$Q = Q_S + Q_A$$

where

$$\mathsf{Q}_{\mathcal{S}} := \frac{1}{2} \left(\mathsf{Q} + \mathsf{Q}^\top \right), \qquad \mathsf{Q}_{\mathcal{A}} := \frac{1}{2} \left(\mathsf{Q} - \mathsf{Q}^\top \right),$$

are the symmetric and anti-symmetric parts, respectively. Observe that $Q_S^\top = Q_S$ and $Q_A^\top = -Q_A$. It follows that $(Q_A y, y)$ is zero, for any $y \in \mathbb{R}^n$, because

$$(Q_A y, y) = y^\top Q_A y = y^\top Q_A^\top y = -y^\top Q_A y = -(Q_A y, y).$$

Therefore, for all $y \in \mathbb{R}^n_\star$,

$$0 < (Qy, y) = (Q_Sy, y) + (Q_Ay, y) = (Q_Sy, y).$$

Thus, Q_S is SPD. Since

$$\|\mathbf{w}\|_{Q_S} = \sqrt{(Q_S \mathbf{w}, \mathbf{w})}, \quad \forall \ \mathbf{w} \in \mathbb{R}^n,$$

defines a norm, the result follows.

Corollary

Suppose A is SPD and B is invertible. Define

$$Q:=B^{-1}-\frac{1}{2}A, \quad$$

and assume that Q is positive definite in the sense that

$$(Qy, y) > 0, \quad \forall y \in \mathbb{R}^n_{\star},$$

but is not necessarily symmetric. Then the GLIS is convergent with respect to the A-norm, that is,

$$\left\| \boldsymbol{e}^{k} \right\|_{\mathtt{A}} o 0, \quad \text{as} \quad k o \infty.$$

Moreover, the convergence is always monotonic:

$$\left\|\mathbf{e}^{k+1}\right\|_{A}^{2} \leq \left\|\mathbf{e}^{k}\right\|_{A}^{2}, \quad \forall \ k \in \mathbb{N}_{0} := \mathbb{N} \cup \{0\}.$$

Proof.

Exercise.

Theorem (Householder-John)

Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and symmetric and $B \in \mathbb{R}^{n \times n}$ is invertible. Assume that

$$Q = B^{-1} + B^{-\top} - A$$

is SPD. Then the GLIS, with error transfer matrix $T=I_n-BA$, converges unconditionally iff A is SPD. Moreover, if A is SPD, the convergence is always monotonic in the energy norm:

$$\left\|\mathbf{e}^{k+1}\right\|_{A}^{2} \leq \left\|\mathbf{e}^{k}\right\|_{A}^{2}, \quad \forall \ k \in \mathbb{N}_{0} := \mathbb{N} \cup \{0\}.$$

Proof.

(\Leftarrow): Suppose that A is SPD. Recall that $\|\cdot\|_A$ defines a norm on \mathbb{R}^n . The error equation is precisely

$$\boldsymbol{e}^{k+1} = (\mathsf{I} - \mathsf{BA})\,\boldsymbol{e}^k.$$

Then,

$$\begin{aligned} \left\| \mathbf{e}^{k+1} \right\|_{A}^{2} &= \left(\left(\mathsf{I} - \mathsf{BA} \right) \mathbf{e}^{k} \right)^{\mathsf{T}} \mathsf{A} \left(\left(\mathsf{I} - \mathsf{BA} \right) \mathbf{e}^{k} \right) \\ &= \left(\mathbf{e}^{k^{\mathsf{T}}} \left(\mathsf{I} - \mathsf{AB}^{\mathsf{T}} \right) \right) \mathsf{A} \left(\left(\mathsf{I} - \mathsf{BA} \right) \mathbf{e}^{k} \right) \\ &= \left(\mathbf{e}^{k^{\mathsf{T}}} - \mathbf{e}^{k^{\mathsf{T}}} \mathsf{AB}^{\mathsf{T}} \right) \left(\mathsf{A} \mathbf{e}^{k} - \mathsf{AB} \mathsf{A} \mathbf{e}^{k} \right) \\ &= \mathbf{e}^{k^{\mathsf{T}}} \mathsf{A} \mathbf{e}^{k} - \mathbf{e}^{k^{\mathsf{T}}} \mathsf{AB}^{\mathsf{T}} \mathsf{A} \mathbf{e}^{k} - \mathbf{e}^{k^{\mathsf{T}}} \mathsf{AB} \mathsf{A} \mathbf{e}^{k} + \mathbf{e}^{k^{\mathsf{T}}} \mathsf{AB}^{\mathsf{T}} \mathsf{AB} \mathsf{A} \mathbf{e}^{k} \\ &= \left\| \mathbf{e}^{k} \right\|_{\mathsf{A}}^{2} - \mathbf{e}^{k^{\mathsf{T}}} \mathsf{A} \mathsf{B}^{\mathsf{T}} \left(\mathsf{B}^{\mathsf{T}} + \mathsf{B} - \mathsf{B}^{\mathsf{T}} \mathsf{AB} \right) \mathsf{A} \mathbf{e}^{k} \\ &= \left\| \mathbf{e}^{k} \right\|_{\mathsf{A}}^{2} - \mathbf{e}^{k^{\mathsf{T}}} \mathsf{AB}^{\mathsf{T}} \left(\mathsf{B}^{-1} + \mathsf{B}^{-\mathsf{T}} - \mathsf{A} \right) \mathsf{B} \mathsf{A} \mathbf{e}^{k} \\ &= \left\| \mathbf{e}^{k} \right\|_{\mathsf{A}}^{2} - \left(\mathsf{B} \mathsf{A} \mathbf{e}^{k} \right)^{\mathsf{T}} \left(\mathsf{B}^{-1} + \mathsf{B}^{-\mathsf{T}} - \mathsf{A} \right) \mathsf{B} \mathsf{A} \mathbf{e}^{k}. \end{aligned}$$

Since $B^{-1} + B^{-\top} - A$ is SPD and $BAe^k \neq 0$, in general, it follows that

$$\left\|\mathbf{e}^{k+1}\right\|_{A}^{2}+\left\|\mathsf{BA}\mathbf{e}^{k}\right\|_{Q}^{2}=\left\|\mathbf{e}^{k}\right\|_{A}^{2},$$

and $\|\boldsymbol{e}^k\|_{\mathrm{A}}$ is a decreasing sequence. Therefore, by the Monotone Convergence Theorem, $\|\boldsymbol{e}^k\|_{\mathrm{A}}$ converges, that is, there is some $\alpha \in [0,\infty)$, such that

$$\lim_{k \to \infty} \left\| \mathbf{e}^k \right\|_{A} = \alpha = \lim_{k \to \infty} \left\| \mathbf{e}^{k+1} \right\|_{A}.$$

This implies

$$\lim_{k\to\infty}\left\|\mathsf{BA}\boldsymbol{e}^k\right\|_{\mathsf{Q}}=0,$$

which, in turn, implies that $e^k \to 0$ as $k \to \infty$.

 (\Rightarrow) : This direction is left as an exercise.

The energy methods described earlier prove to be a more useful tool for establishing the convergence of the Gauss-Seidel Methods than the spectral approach when the coefficient matrix is SPD.

Theorem (Energy Convergence of Gauss-Seidel)

Suppose that $A \in \mathbb{R}^{n \times n}$ is SPD. Then the forward, backward and symmetric Gauss-Seidel methods are well defined, and the methods converge unconditionally.

Proof.

(Forward): For the forward Gauss-Seidel method, consider

$$\begin{array}{rcl} Q_1 & = & B_{GS}^{-1} + B_{GS}^{-\top} - A \\ & = & D - L + D - U - D + L + U \\ & = & D. \end{array}$$

Since A is SPD, its diagonal elements are positive. Thus, D is SPD. Now we can apply the Householder-John Theorem to see that the Gauss-Seidel method converges unconditionally.

We can also use our previous corollary. For that, set

$$Q_{2} = B_{GS}^{-1} - \frac{1}{2}A.$$

$$= D - L - \frac{1}{2}D + \frac{1}{2}L + \frac{1}{2}U$$

$$= \frac{1}{2}D - \frac{1}{2}L + \frac{1}{2}U.$$

Now, let us consider the symmetric part of Q_2 :

$$\begin{aligned} Q_{2,5} &=& \frac{1}{2} \left(Q_2 + Q_2^\top \right) \\ &=& \frac{1}{2} \left(\frac{1}{2} D - \frac{1}{2} L + \frac{1}{2} U + \frac{1}{2} D - \frac{1}{2} U + \frac{1}{2} L \right) \\ &=& \frac{1}{2} D. \end{aligned}$$

Since $Q_{2,S}$ is SPD, the corollary implies that the Gauss-Seidel method converges.

(Backward): The same techniques show that the backward Gauss-Seidel method converges.

(Symmetric): For the symmetric Gauss-Seidel method, we have

$$B_{SGS} = (D - U)^{-1}D(D - L)^{-1}.$$

Observe that that the matrix

$$Q = B_{\textit{SGS}}^{-1} + B_{\textit{SGS}}^{-\top} - A = A + 2U^{\top}D^{-1}U$$

is SPD, since A is SPD. Now one can apply the Householder-John Theorem to see that the symmetric Gauss-Seidel method converges. $\ \Box$