

Forecasting

U. DINESH KUMAR

Those who have knowledge don't predict.

Those who predict don't have knowledge.

- Lao Tzu

I think there is a world market for may be 5 computers

- Thomas Watson, Chairman of IBM 1943

Computers in future weigh no more than 1.5 tons

- Popular Mechanics, 1949

640K ought to be enough for everybody

- Bill Gates, 1981???

Forecasting

- Forecasting is a process of estimation of an unknown event/parameter such as demand for a product.
- Forecasting is commonly used to refer time series data.
- Time series is a sequence of data points measured at successive time intervals.

Forecasting methods

- Qualitative Techniques.
 - Expert opinion (or Astrologers)
- Quantitative Techniques.
 - Time series techniques such as exponential smoothing
- Casual Models.
 - Uses information about relationship between system elements (e.g regression).

Time Series Analysis

U. DINESH KUMAR

Why Time Series Analysis?

• Time series analysis helps to identify and explain:

- Any systemic variation in the series of data which is due to seasonality.
- Cyclical pattern that repeat.
- Trends in the data.
- Growth rates in the trends.

Time Series Components

Trend Component

Persistent upward or downward pattern

• Due to consumer behaviour, population, economy, technology etc.

Cyclical Component

Repeating up and down movements.

• Due to interaction of factors influencing economy such as recession.

• Usually 2-10 years duration.

Seasonal Component

Regular pattern of up and down movements.

• Due to weather, customs, festivals etc.

• Occurs within one year.

Seasonal Vs Cyclical

• When a cyclical pattern in the data has a period of less than one year, it is referred as seasonal variation.

• When the cyclical pattern has a period of more than one year we refer to it as cyclical variation.

Irregular Component

• Erratic fluctuations

• Due to random variation or unforeseen events

• White Noise

Time Series Techniques for Forecasting

U. DINESH KUMAR

<u>Time Series Data – Additive and Multiplicative Models</u>

1. Additive Forecasting Model

$$\mathbf{Y}_{\mathrm{t}} = \overset{Trend}{T_{t}} + \overset{Seasonality}{S_{t}} + \overset{Cyclical}{C_{t}} + \overset{Random}{R_{t}}$$

2. Multiplicative Forecasting Model

Time Series Data Decomposition

Multiplicative Forecasting Model

$$\mathbf{Y}_{\mathsf{t}} = \overbrace{T_{t}}^{\mathit{Trend}} \times \overbrace{S_{t}}^{\mathit{Seasonality}}$$

$$S_t = \frac{Y_t}{T_t}$$

$$Y_t / T_t \text{ is called deseasonalized data}$$

Time Series Techniques

Moving Average.

• Exponential Smoothing.

• Auto-regression Models (AR Models).

• ARIMA (Auto-regressive Integrated Moving Average) Models.

Moving Average Method

Moving Average (Rolling Average)

- Simple moving average.
 - Used mainly to capture trend and smooth short term fluctuations.
 - Most recent data are given equal weights.

- Weighted moving average
 - Uses unequal weights for data

<u>Data</u>

• Demand for continental breakfast at the Die Another Day Hospital.

• Daily data between 1 October 2014 – 23 January 2015 (115 days)

Simple moving average

• The forecast for period t+1 (F_{t+1}) is given by the average of the 'n' most recent data.

$$F_{t+1} = \frac{1}{n} \sum_{i=t-n+1}^{t} Y_{i}$$

 F_{t+1} = Forecast for period t + 1

 Y_i = Data corresponding to time period i

Simple moving average

• The forecast for period t+1 (F_{t+1}) is given by the average of the 'n' most recent data.

$$F_{t+1} = \frac{1}{n} \sum_{i=t-n+1}^{t} Y_{i}$$

 F_{t+1} = Forecast for period t + 1

 Y_i = Data corresponding to time period i

Demand for Continental Breakfast at DAD Hospi traditive Analytics: QM901.1x

Moving Average

$$F_{t+1} = \frac{1}{7} \sum_{i=t-7+1}^{t} Y_i$$

Measures of aggregate error

Mean absolute error MAE	$MAE = \frac{1}{n} \sum_{t=1}^{n} E_t $
Mean absolute percentage error MAPE	$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left \frac{E_t}{Y_t} \right $
Mean squared error MSE	$MSE = \frac{1}{n} \sum_{t=1}^{n} E_t^2$
Root mean squared error RMSE	$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} E_t^2}$

DAD Forecasting – MAPE and RMSE

Mean absolute percentage error MAPE	0.1068 or 10.68%
Root mean squared error RMSE	5.8199

Exponential Smoothing

U. DINESH KUMAR

Exponential Smoothing

- Form of Weighted Moving Average
 - Weights decline exponentially.
 - Largest weight is given to the present observation, less weight to immediately preceding observation and so on.

- Requires smoothing constant (α)
 - Ranges from 0 to 1

Exponential Smoothing

Next forecast = $\alpha \times$ (present actual value) + $(1-\alpha) \times$ present forecast

Simple Exponential Smoothing Equations

Smoothing Equations

$$F_{t+1} = \alpha * Y_t + (1-\alpha) * F_t$$

$$F_1 = Y_1$$

 F_{t+1} is the forecasted value at time t+1

Simple Exponential Smoothing Equations

Smoothing Equations

$$F_t = \alpha Y_{t-1} + \alpha (1-\alpha) Y_{t-2} + \alpha (1-\alpha)^2 Y_{t-3} + \dots$$

Exponential Smoothing Forecast

DAD Forecasting – MAPE and RMSE Exponential Smoothing

Mean absolute percentage error MAPE	0.0906 or 9.06%
Root mean squared error RMSE	5.3806

 $\alpha = 0.8098$

Choice of α

For "smooth" data, try a high value of a α , forecast responsive to most current data.

For "noisy" data try low a α forecast more stable—less responsive

Optimal α

$$\min_{\alpha} \left[\sqrt{\sum_{t=1}^{n} (Y_t - F_t)^2 / n} \right]$$

$$F_{t} = \alpha Y_{t-1} + (1-\alpha)F_{t-1}$$

Double Exponential Smoothing

U. DINESH KUMAR

Double exponential Smoothing - Holt's model

Simple exponential smoothing may produce consistently biased forecasts in the presence of a trend.

Holt's method (double exponential smoothing) is appropriate when demand has a trend but no seasonality.

Systematic component of demand = Level + Trend

Holt's method

• Holt's method can be used to forecast when there is a linear trend present in the data.

• The method requires separate smoothing constants for slope and intercept.

Holt's Method

Equation for intercept or level

Holt's Equations

(*i*)
$$L_t = \alpha \times Y_t + (1 - \alpha) \times (L_{t-1} + T_{t-1})$$

(ii)
$$T_t = \beta \times (L_t - L_{t-1}) + (1 - \beta) \times T_{t-1}$$

Equation for Slope (Trend)

Forecast Equation

$$\overset{\wedge}{F_{t+1}} = L_t + T_t$$

Initial values of L_t and T_t

- L_1 is in general set to Y_1 .
- T_1 can be set to any one of the following values (or use regression to get initial values):

$$T_{1} = (Y_{2} - Y_{1})$$

$$T_{1} = [(Y_{2} - Y_{1}) + (Y_{3} - Y_{2}) + (Y_{4} - Y_{3})]/3$$

$$T_{1} = (Y_{n} - Y_{1})/(n-1)$$

$$\alpha$$
 = 0.8098; β = 0.05

<u>DAD Forecasting – MAPE and RMSE</u> <u>Double Exponential Smoothing</u>

Mean absolute percentage error MAPE	0.0930 or 9.3%
Root mean squared error RMSE	5.5052

 α = 0.8098; β = 0.05

Forecasting Accuracy

U. DINESH KUMAR

Forecasting Accuracy

• The forecast error is the difference between the forecast value and the actual value for the corresponding period.

$$\mathbf{E}_{\mathbf{t}} = \mathbf{Y}_{\mathbf{t}} - \mathbf{F}_{\mathbf{t}}$$

 E_t = Forecasterror at period t

 Y_t = Actual value at time period t

 F_t = Forecast for time period t

Measures of aggregate error

Mean absolute error MAE	$MAE = \frac{1}{n} \sum_{t=1}^{n} E_t $
Mean absolute percentage error MAPE	$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left \frac{E_t}{Y_t} \right $
Mean squared error MSE	$MSE = \frac{1}{n} \sum_{t=1}^{n} E_t^2$
Root mean squared error RMSE	$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} E_t^2}$

Forecasting Power of a Model

Theil's coefficient (U Statistic)

$$U = \frac{\sum_{t=1}^{n} (Y_{t+1} - F_{t+1})^{2}}{\sum_{t=1}^{n} (Y_{t+1} - Y_{t})^{2}}$$

The value U is the relative forecasting power of the method against naïve technique. If U < 1, the technique is better than naïve forecast If U > 1, the technique is no better than the naïve forecast.

Theil's coefficient for DAD Hospital

Method	U
Moving Average with 7 periods	1.221
Exponential Smoothing	1.704
Double exponential Smoothing	1.0310

Theil's Coefficient

$$U1 = \frac{\sqrt{\sum_{t=1}^{n} (Y_t - F_t)^2}}{\sqrt{\sum_{t=1}^{n} Y_t^2} + \sqrt{\sum_{t=1}^{n} F_t^2}}, \qquad U2 = \sqrt{\frac{\sum_{t=1}^{n-1} \left(\frac{F_{t+1} - Y_{t+1}}{Y_t}\right)^2}{\sum_{t=1}^{n-1} \left(\frac{Y_{t+1} - Y_t}{Y_t}\right)^2}}$$

U1 is bounded between 0 and 1, with values closure to zero indicating greater accuracy.

If U2 = 1, there is no difference between naïve forecast and the forecasting technique

If U2 < 1, the technique is better than naïve forecast

If U2 > 1, the technique is no better than the naïve forecast.

Time Series Data with Seasonality

U. DINESH KUMAR

Seasonal Effect

• Seasonal effect is defined as the repetitive and predictable pattern of data behaviour in a time-series around the trend line.

• In seasonal effect the time period must be less than one year, such as, days, weeks, months or quarters.

Seasonal effect

• Identification of seasonal effect provides better understanding of the time series data.

• Seasonal effect can be eliminated from the time-series. This process is called deseasonalization or seasonal adjusting.

Seasonal Adjusting

Seasonal adjustment in multiplicative model

Seasonal effect =
$$\frac{T_t S_t}{T_t} = \frac{Y_t}{T_t} \times 100$$

Seasonal adjustment in additive model

$$\mathbf{Y_t} - S_t = \mathbf{T_t} + \mathbf{S_t} - S_t = \mathbf{T_t}$$

Seasonal Index

• Method of simple averages

Ratio-to-moving average method

Method of simple averages

- Average the unadjusted data by period (for example daily or monthly).
- Calculate the average of daily (or monthly) averages.
- Seasonal index for day i (or month i) is the ratio of daily average of day i (or month i) to the average of daily (or monthly) averages times 100.

Example: DAD Example - Demand for Continental Breakfast

<u>5 October – 1 November 2014 Data</u>

DAY	Week (5-11 October)	Week 2 (12-18 October)	Week 3 (19-25 OCT)	Week 4 (26 OCT - 1 NOV)	
DAI	(3 II October)	(12 13 300000)	(13 23 331)	(20001-1100)	
Sunday	41.00	40.00	40.00	41.00	
Monday	30.00	44.00	43.00	41.00	
Tuesday	40.00	49.00	41.00	40.00	
Wednesday	40.00	50.00	46.00	43.00	
Thursday	40.00	45.00	41.00	46.00	
Friday	40.00	40.00	40.00	45.00	
Saturday	40.00	42.00	32.00	45.00	
IIWRX				Е ІІМВ	

तेजस्वि नावधीतमस्त

Seasonality Index

	Week1	Week 2	Week 3	Week 4	Daily	Seasonality
DAY	(5-11 October)	(12-18 October)	(19-25 OCT)	(26 Oct-1 Nov)	Average	Index
Sunday	41.00	40.00	40.00	41.00	40.50	97.34%
Monday	30.00	44.00	43.00	41.00	39.50	94.94%
Tuesday	40.00	49.00	41.00	40.00	42.50	102.15%
Wednesday	40.00	50.00	46.00	43.00	44.75	107.55%
Thursday	40.00	45.00	41.00	46.00	43.00	103.34%
Friday	40.00	40.00	40.00	45.00	41.25	99.14%
Saturday	40.00	42.00	32.00	45.00	39.75	95.54%
					41.61	700

Average of daily averages

Total = Number of seasons x 100

Deseasonalized Data

Date	Demand	Seasonal Index	De-seasonalized Data
10/5/2014	41	97.34%	42.12
10/6/2014	30	94.94%	31.60
10/7/2014	40	102.15%	39.16
10/8/2014	40	107.55%	37.19
10/9/2014	40	103.34%	38.70
10/10/2014	40	99.14%	40.35
10/11/2014	40	95.54%	41.87

Trend

• Trend is calculated using regression on deseasonalized data.

• Deseasonalized data is obtained by dividing the actual data with its seasonality index.

SUMMARY O	UTPUT					
Regression S	tatistics					
Multiple R	0.268288					
R Square	0.071978					
Adjusted R Square	0.036285					
Standard Error	3.715395					
Observations	28					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	27.83729	27.83729	2.016587	0.167469	
Residual	26	358.9082	13.80416			
Total	27	386.7455				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	39.81731	1.442768	27.59786	8.7E-21	36.85166	42.78296
Day	0.123437	0.086923	1.420066	0.167469	-0.05524	0.30211

Forecast

$$F_t = T_t \times S_t$$

$$F_{29} = T_{29} \times S_{29}$$

$$F_{29} = (39.81 + 0.1234 \times 29) \times 0.9733 = 42.2372$$

$$Y_{29} = 46$$

Forecasting using method of averages in the presence of seasonality

Auto-regressive and Moving Average models

U. DINESH KUMAR

Auto-correlation

• Auto correlation is a correlation of a variable observed at two time points (e.g. Y_t and Y_{t-1} or Y_t and Y_{t-3}).

• Auto-correlation of lag k, ρ_k , is given by:

$$\rho_{k} = \frac{\sum_{t=k+1}^{n} \left(Y_{t-k} - Y \right) \left(Y_{t} - Y \right)}{\sum_{t=1}^{n} (Y_{t} - Y)^{2}}$$

n = total number of observations

Auto-correlation Function (ACF)

• A k-period plot of autocorrelations is called autocorrelation function (ACF) or a correlogram.

Auto-Correlation

- Auto-correlation of lag k is auto-correlation between Y_t and Y_{t+k} .
- To test whether the autocorrelation at lag k is significantly different from 0, the following hypothesis test is used:

$$H_0$$
: $\rho_k = 0$
 H_A : $\rho_k \neq 0$

• For any k, reject H_0 if $|\rho_k| > 1.96/\sqrt{n}$. Where n is the number of observations.

ACF for Demand for Continental Breakfast

Partial Auto-correlation

Partial auto correlation of lag k is an auto correlation between Y_t and Y_{t-k} with linear dependence between the intermedia values $(Y_{t-k+1}, Y_{t-k+2}, ..., Y_{t-1})$ removed.

Partial Auto-correlation Function

A k-period plot of partial autocorrelations is called partial autocorrelation function (PACF).

Partial Auto-Correlation

- Partial auto-correlation of lag k is auto-correlation between Y_t and Y_{t+k} after the removal of linear dependence of Y_{t+1} to Y_{t+k-1} .
- To test whether the partial autocorrelation at lag k is significantly different from 0, the following hypothesis test is used:

$$H_0$$
: $\rho_{pk} = 0$
 H_A : $\rho_{pk} \neq 0$

• For any k, reject H_0 if $|\rho_{pk}| > 1.96/\sqrt{n}$. Where n is the number of observations.

<u>PACF – Demand for Continental Breakfast at</u> <u>DAD hospital</u>

Stationarity

• A time series is stationary, if:

- Mean (μ) is constant over time.
- Variance (σ) is constant over time.
- The covariance between two time periods (Y_t) and (Y_{t+k}) depends only on the lag k not on the time t.

We assume that the time series is stationary before applying forecasting models

ACF Plot of non-stationary and stationary process

Non-stationary

Stationary

White Noise

• White noise is a data uncorrelated across time that follow normal distribution with mean 0 and constant standard deviation σ .

• In forecasting we assume that the residuals are white Noise.

Residual White Noise

Auto regressive models

U. DINESH KUMAR

Auto-Regression

• Auto-regression is a regression of Y on itself observed at different time points.

• That is, we use Y_t as the response variable and Y_{t-1} , Y_{t-2} etc. as explanatory variables.

AR(1) Parameter Estimation

$$Y_{t} = \phi Y_{t-1} + \varepsilon_{t}$$

$$\sum_{t=2}^{n} \varepsilon_{t}^{2} = \sum_{t=2}^{n} (Y_{t} - \phi Y_{t-1})^{2}$$

$$t = 2$$

$$\uparrow \phi = \frac{\sum_{t=2}^{n} Y_{t} Y_{t-1}}{\sum_{t=2}^{n} Y_{t-1}^{2}}$$
OLS Estimate

AR(1) Process

$$Y_t = \phi Y_{t-1} + \varepsilon_t$$

$$Y_{t} = \phi (\phi Y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

.....

$$Y_{t} = \phi^{t} X_{0} + \phi^{t-1} \varepsilon_{1} + \phi^{t-2} \varepsilon_{2} + ... + \phi^{1} \varepsilon_{t-1} + \varepsilon_{t}$$

$$Y_t = \phi^t X_0 + \sum_{i=0}^{t-1} \phi^i \varepsilon_{t-i}$$

Auto-regressive process (AR(p))

• Assume $\{Y_t\}$ is purely random with mean zero and constant standard deviation σ (White Noise).

• Then the autoregressive process of order p or AR(p) process is

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \varepsilon_t$$

AR(p) process models each future observation as a function "p" previous observations.

Model Identification in AR(p) Process

Pure AR Model Identification

Model	ACF	PACF
AR(1)	Exponential Decay: Positive side if Ø1 > 0 and alternating in sign starting on negative side if Ø1 < 0.	Spike at lag 1, then cuts off to zero. Spike positive if $\emptyset 1 > 0$ and negative side if $\emptyset 1 < 0$.
AR(p)	Exponential decay: pattern depends on signs of ø1, ø2, etc	Spikes at lags 1 to p, then cuts of to zero.

$$Y_{t} = \phi_{0} + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + \varepsilon_{t}$$

Partial Auto-Correlation

- Partial auto-correlation of lag k is auto-correlation between Y_t and Y_{t+k} after the removal of linear dependence of Y_{t+1} to Y_{t+k-1} .
- To test whether the autocorrelation at lag k is significantly different from 0, the following hypothesis test is used:

$$H_0$$
: $\rho_k = 0$

$$H_A: \rho_k \neq 0$$

• For any k, reject H0 if $|\rho_k| > 1.96/\sqrt{n}$. Where n is the number of observations.

PACF Function – DAD Continental Predictive Analytics: QM901.1x Prof U Dinesh Kumar, IIMB

Breakfast

ACF Function - DAD Continental Breakfast

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Actual Vs Fit- Continental Breakfast Data

AR(2) Model

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Continental B/F-Model_1	Continental B/F	No Transformation	Const	ant	41.252	.824	50.056	.000
			AR	Lag 1	.663	.093	7.117	.000
				Lag 2	204	.093	-2.200	.030

Model Fit

								Percentile			
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.302		.302	.302	.302	.302	.302	.302	.302	.302	.302
R-squared	.302		.302	.302	.302	.302	.302	.302	.302	.302	.302
RMSE	4.882		4.882	4.882	4.882	4.882	4.882	4.882	4.882	4.882	4.882
MAPE	8.812		8.812	8.812	8.812	8.812	8.812	8.812	8.812	8.812	8.812
MaxAPE	65.010		65.010	65.010	65.010	65.010	65.010	65.010	65.010	65.010	65.010
MAE	3.486		3.486	3.486	3.486	3.486	3.486	3.486	3.486	3.486	3.486
MaxAE	16.252		16.252	16.252	16.252	16.252	16.252	16.252	16.252	16.252	16.252
Normalized BIC	3.295		3.295	3.295	3.295	3.295	3.295	3.295	3.295	3.295	3.295

MAPE = 8.8%

Residual White Noise

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Continental B/F-Model_1	Continental B/F	No Transformation	Const	ant	41.252	.824	50.056	.000
			AR	Lag 1	.663	.093	7.117	.000
				Lag 2	204	.093	-2.200	.030

$$(Y_t - 41.252) = 0.663 (Y_{t-1} - 41.252) - 0.204 (Y_{t-2} - 41.252)$$

$$Y_t = (X_t - \mu)$$

Moving average models

U. DINESH KUMAR

Moving Average Process

• A moving average process is a time series regression model in which the value at time t, Y_t , is a linear function of past errors.

• First order moving average, MA(1), is given by:

$$Y_{t} = \beta_{0} + \beta_{1} \varepsilon_{t-1} + \varepsilon_{t}$$

Moving Average Process MA(q)

 $\{Yt\}$ is a moving average process of order q (written MA(q)) if for some constants $\beta 0, \beta 1, \dots \beta q$

We have.,

$$Y_{t} = \beta_{0} + \beta_{1} \varepsilon_{t} + \beta_{2} \varepsilon_{t-2} + \dots + \beta_{q} \varepsilon_{t-q} + \varepsilon_{t}$$

MA(q) models each future observation as a function of "q" previous errors

Pure MA Model Identification

Model	ACF	PACF
MA(1)	Spike at lag 1 then cuts of to zero. Spike positive if $\beta 1 > 0$ and negative side if $\beta 1 < 0$.	Exponential decay. On negative side if β 1> 0 on positive side if β 1< 0.
MA(q)	Spikes at lags 1 to q, then cuts off to zero.	Exponential decay or sine wave. Exact pattern depends on signs of $\beta 1$, $\beta 2$ etc.

ACF Function - DAD Continental Breakfast

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

SPSS Output

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Continental B/F-Model_1	Continental B/F	No Transformation	Const	tant	41.240	.812	50.813	.000
			MA	Lag 1	651	.094	-6.940	.000
				Lag 2	164	.094	-1.751	.083

Model Fit

								Percentile			
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.298		.298	.298	.298	.298	.298	.298	.298	.298	.298
R-squared	.298		.298	.298	.298	.298	.298	.298	.298	.298	.298
RMSE	4.896		4.896	4.896	4.896	4.896	4.896	4.896	4.896	4.896	4.896
MAPE	8.897		8.897	8.897	8.897	8.897	8.897	8.897	8.897	8.897	8.897
MaxAPE	64.960		64.960	64.960	64.960	64.960	64.960	64.960	64.960	64.960	64.960
MAE	3.518		3.518	3.518	3.518	3.518	3.518	3.518	3.518	3.518	3.518
MaxAE	16.240		16.240	16.240	16.240	16.240	16.240	16.240	16.240	16.240	16.240
Normalized BIC	3.301		3.301	3.301	3.301	3.301	3.301	3.301	3.301	3.301	3.301

Actual Vs Fitted Value

Residual Plot

ARMA Models

U. DINESH KUMAR

ARMA(p,q) Model

ARMA(p,q) Model Identification

• ARMA(p,q) models are not easy to identify. We usually start with pure AR and MA process. The following thump rule may be used.

Process	ACF	PACF
ARMA(p,q)	Tails off after q lags	Tails off to zero after p lags

• The final ARMA model may be selected based on parameters such as RMSE, MAPE, AIC and BIC.

ACF

PACF

ARMA(2,1) Model Output

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Continental B/F-Model_1	Continental B/F	No Transformation	Const	tant	41.302	.742	55.698	.000
			AR	Lag 1	.983	.361	2.720	.008
				Lag 2	383	.193	-1.988	.049
			MA	Lag 1	.338	.385	.879	.381

Model Fit

								Percentile			
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.304		.304	.304	.304	.304	.304	.304	.304	.304	.304
R-squared	.304		.304	.304	.304	.304	.304	.304	.304	.304	.304
RMSE	4.899		4.899	4.899	4.899	4.899	4.899	4.899	4.899	4.899	4.899
MAPE	8.768		8.768	8.768	8.768	8.768	8.768	8.768	8.768	8.768	8.768
MaxAPE	65.207		65.207	65.207	65.207	65.207	65.207	65.207	65.207	65.207	65.207
MAE	3.464		3.464	3.464	3.464	3.464	3.464	3.464	3.464	3.464	3.464
MaxAE	16.302		16.302	16.302	16.302	16.302	16.302	16.302	16.302	16.302	16.302
Normalized BIC	3.343		3.343	3.343	3.343	3.343	3.343	3.343	3.343	3.343	3.343

AR(2) Model

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

ARIMA Model Parameters

					Estimate	SE	t	Sig.
Continental B/F-Model_1	Continental B/F	No Transformation	Const	ant	41.252	.824	50.056	.000
			AR	Lag 1	.663	.093	7.117	.000
				Lag 2	204	.093	-2.200	.030

Model Fit

								Percentile			
Fit Statistic	Mean	SE	Minimum	Maximum	5	10	25	50	75	90	95
Stationary R-squared	.302		.302	.302	.302	.302	.302	.302	.302	.302	.302
R-squared	.302		.302	.302	.302	.302	.302	.302	.302	.302	.302
RMSE	4.882		4.882	4.882	4.882	4.882	4.882	4.882	4.882	4.882	4.882
MAPE	8.812		8.812	8.812	8.812	8.812	8.812	8.812	8.812	8.812	8.812
MaxAPE	65.010		65.010	65.010	65.010	65.010	65.010	65.010	65.010	65.010	65.010
MAE	3.486		3.486	3.486	3.486	3.486	3.486	3.486	3.486	3.486	3.486
MaxAE	16.252		16.252	16.252	16.252	16.252	16.252	16.252	16.252	16.252	16.252
Normalized BIC	3.295		3.295	3.295	3.295	3.295	3.295	3.295	3.295	3.295	3.295

MAPE = 8.8%

Residual White Noise

Forecasting Model Evaluation

Akaike's information criteria

$$AIC = -2LL + 2m$$

Where m is the number of variables estimated in the model

Bayesian Information Criteria

$$BIC = -2LL + m ln(n)$$

AIC and BIC can be interpreted as distance from true model

Where m is the number of variables estimated in the model and n is the number of observations

Final Model Selection

	Model	AR(2)	MA(1)	ARMA(2,1)					
	BIC	3.295	3.301	3.343					
	AR(2) has the least BIC								
	least BIC								

ARIMA Models

U. DINESH KUMAR

<u>ARIMA</u>

ARIMA has the following three components:

- Auto-regressive component: Function of past values of the time series.
- Integration Component: Differencing the time series to make it a stationary process.
- Moving Average Component: Function of past error values.

Integration (d)

- Used when the process is non-stationary.
- Instead of observed values, differences between observed values are considered.
- When d=0, the observations are modelled directly. If d=1, the differences between consecutive observations are modelled. If d=2, the differences of the differences are modelled.

ARIMA (p, d, q)

• The q and p values are identified using auto-correlation function (ACF) and Partial auto-correlation function (PACF) respectively. The value d identifies the level of differencing.

• Usually $p+q \le 4$ and $d \le 2$.

Differencing

• Differencing is a process of making a non-stationary process into stationary process.

• In differencing, we create a new process X_t , where $X_t = Y_t - Y_{t-1}$.

ARIMA(p,1,q) Process

$$X_{t} = \alpha_{0} + \alpha_{1}X_{t-1} + \alpha_{2}X_{t-2} + \dots + \alpha_{p}X_{t-p} +$$

$$+ \beta_{0} + \beta_{1}\varepsilon_{t-1} + \beta_{2}\varepsilon_{t-2} + \dots + \beta_{q}\varepsilon_{t-q} + \varepsilon_{t}$$

Where
$$X_t = Y_t - Y_{t-1}$$

$$\alpha_0 + \beta_0 = C \text{ (Constant)}$$

Ljung-Box Test

Ljung-Box is a test on the autocorrelations of residuals. The test statistic is:

$$Q_m = n(n+2) \sum_{k=1}^{m} \frac{r_k^2}{n-k}$$

n = number of observations in the time series.

k = particular time lag checked

m = the number of time lags to be tested

 r_k = sample autocorrelation function of the k^{th} residual term.

H0: The model does not exhibit lack of fit

HA: The model exhibits lack of fit

Q statistic is approximate chi-square distribution with m-p-q degrees of freedom if ARMA graduate correctly specified.

AR(2) Ljung-Box Test

Model Statistics

		Model Fit statistics	Ljung-Box Q(18)			
Model	Number of Predictors	Stationary R- squared	Statistics	DF	Sig.	Number of Outliers
Continental B/F-Model_1	0	.302	12.061	16	.740	0

P-value is 0.740, thus the model doesn't show lack of fit

Box-Jenkins Methodology

- Identification: Identify the ARIMA model using ACF & PACF plots. This would give the values of p, q and d.
- Estimation: Estimate the model parameters (using maximum likelihood)

• Diagnostics: Check the residual for any issue such as not providing White Noise.

