ASSIGNMENT-2

AMOGH GARG- 2020ULO1688

[1]
$$u = e^{k \omega S \theta}$$
 $\cos(k \sin \theta) \cdot \frac{\partial u}{\partial k}$ and $\frac{\partial u}{\partial \theta}$
 $\Rightarrow \frac{\partial u}{\partial k} = \cos \theta \cdot e^{k \omega S \theta} \cdot \cos(k \sin \theta) + e^{k \omega S \theta} \cdot (-\sin(k \sin \theta)) \cdot \sin \theta$
 $= \cos \theta \cdot e^{k \omega S \theta} \cdot \cos(k \sin \theta) - e^{k \omega S \theta} \cdot \sin(k \sin \theta) \cdot \sin \theta$
 $\Rightarrow \frac{\partial u}{\partial \theta} = e^{k \omega S \theta} \cdot k(-\sin \theta) \cdot \cos(k \sin \theta) + e^{k \omega S \theta} \cdot (-\sin(k \sin \theta)) \cdot k \cos \theta$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot k \cdot \sin(\theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot k \cdot \sin(\theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot k \cdot \sin(\theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \sin(\theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \cos(k \sin \theta) + (\cos \theta \cdot \sin(k \omega S \theta))$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \sin(\theta) \cdot \sin(\theta) \cdot \sin(\theta)$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \sin(\theta) \cdot \sin(\theta) \cdot \sin(\theta)$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \sin(\theta) \cdot \sin(\theta) \cdot \sin(\theta) \cdot \sin(\theta)$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot \sin(\theta)$
 $= -e^{k \omega S \theta} \cdot k \cdot \sin(\theta) \cdot$

1

(4)
$$u = \sin^{-1} \left[\frac{x + 2y + 32}{x^2 + y^2 + 2^2} \right]$$
; $ST : x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial u}{\partial z}$

$$= \frac{1}{2} + \frac{$$

(8) If 3 is an implicit func. of x and y,

$$\frac{32}{3x} = \frac{38}{\text{Let }} = \frac{\text{Shown in next quection.}}{\text{Similarly}} = \frac{33}{\text{Sy}} = -\frac{\text{Fy}}{\text{Fz}}$$

$$\frac{33}{\text{on}} = -\frac{\text{Fx}}{\text{Fz}}$$

(9)
$$u = n^2y + y^2y + y^2y + y^2y + y^2\frac{\partial y}{\partial n} + y^2\frac{\partial y}{\partial n} + y^2 + u(2y)\frac{\partial y}{\partial n}$$

A150, $n^2 + yy + y^3 = 0$ $\Rightarrow \frac{\partial (x^2 + yy + y^3)}{\partial n} = 0$

$$= 1 \quad 2 \quad n \quad + \quad 4 \frac{\partial 3}{\partial x} \quad + \quad 33^2 \quad \frac{\partial 3}{\partial x} = 0 \quad = \quad \left[\begin{array}{c} \partial 3 \\ \overline{\partial x} \end{array} \right] = -\frac{20}{3}$$

Substituting
$$\frac{\partial g}{\partial x}$$
 in $\frac{\partial u}{\partial x}$

$$\frac{\partial u}{\partial x} = 2xy + (y^2 + 23u)(\frac{-2u}{y+33^2}) + 3^2$$

10)
$$u = \frac{\pi}{y-3}$$
, $v = \frac{4}{3-n}$, $w = \frac{3}{n-4}$

$$\frac{3}{3-n}, \quad \frac{3}{3-n}, \quad \frac{3}{n-y}$$

$$\frac{3}{3-n}, \quad \frac{3}{n-y}$$

$$\frac{3}{(u,v,w)} = \begin{vmatrix} \frac{1}{4-3} & \frac{n}{(4-3)^2} \\ \frac{1}{4-3} & \frac{1}{(4-3)^2} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \\ \frac{1}{4-3} & \frac{1}{4-3} & \frac{1}{4-3} \end{vmatrix} + \frac{1}{4-3} \begin{vmatrix} \frac{1}{4-3} & \frac{1}{4-$$

$$\frac{y}{8-x} = \frac{1}{3-n} = \frac{-\frac{y}{3}}{\frac{1}{3-n}} = \frac{1}{\frac{y}{3-1}} = \frac{1}{\frac{y}{3-1}$$

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} 2x & -2y \\ 2y & 2n \end{vmatrix} = 4x^2 - 4y^2$$

$$\frac{1}{\partial(u,v)} = \frac{1}{4(n^2-y^2)}$$

[12)
$$u^{3}+v^{3}=x+y$$
; $u^{2}+v^{2}=x^{2}+y^{3}$

S.T.: $\frac{\partial(u_{1}v)}{\partial(x_{1}y)} = \frac{1}{2} \left(\frac{(y^{2}-x^{2})}{uv(u-v)} \right) : \frac{\partial(u_{1}v)}{\partial(x_{1}y)} = (-1)^{2} \frac{\partial(f_{1}f_{2})}{\partial(u_{1}y)} \frac{\partial(f_{1}f_{2})}{\partial(u_{1}v)}$

If $\frac{\partial(u_{1}v)}{\partial(x_{1}y)} = \frac{\partial(f_{1}f_{2})}{\partial(x_{1}y)} = \frac{|1|^{8}}{3x^{2}} = \frac{\pi}{3y^{2}} = 3y^{2} - 3x^{2}$
 $\frac{\partial(f_{1}f_{2})}{\partial(u_{1}y)} = \frac{\partial(f_{1}f_{2})}{\partial(u_{1}y)} = \frac{\pi}{2} = \frac$