

Gerak Lurus

Pendahuluan

Benda dikatakan bergerak lurus bila lintasannya merupaka garis lurus. Pada gerak ini lintasannya boleh dianggap berada pada sumbu x dan posisi benda dinyatakan dalam koordinat x, sehingga untuk mudahnya notasi vektor diabaikan.

4.1 Gerak Lurus Beraturan (GLB)

Benda dikatakan mengalami gerak lurus beraturan bila dalam selang waktu Δt yang sama perpindahan benda Δx tetap. Perhatikan perjalanan mobil pada Gambar 2-2.

Gambar 4-1: Dalam selang waktu $\Delta t=2$ s, perpindahan mobil $\Delta x=6$ m

Kecepatan mobil = kemiringan kurva =
$$\frac{\Delta x}{\Delta t} = \frac{6}{2} = 3 \text{ m/s}$$

Persamaan Gerak

Ciri gerak Lurus Beraturan adalah kecepatan partikel konstan. Perhatikan Gambar 4-2.

Gambar 4-2: Partikel bergerak dengan kecepatan konstan,

$$v = konstan$$

$$\frac{dx}{dt} = v$$

$$\int_{x_0}^x dx = \int_0^t v dt$$

$$x - x_o = vt$$

$$x = vt + x_o$$

4-1

Keterangan:

xo adalah posisi partikel saat 0 detik

x adalah posisi partikel saat t detik

 $\Delta x = x - xo$ adalah perubahan posisi partikel atau jarak yang ditempuh

Contoh 4-1

Sebuah mobil bergerak lurus dengan kecepatan tetap 4 m/s. Semula posisinya berada 10m terhadap acuan, kemudian ia berjalan selama 2 detik. Tentukan :

- a) Posisi mobil sekarang
- b) Jarak yang ditempuh
- c) Gambarkan grafik x vs t dan v vs t

Jawab

a)
$$x_0 = 10m$$
; $v = 4 \text{ m/s}$; $t = 2 \text{ detik}$

$$x = vt + x_0$$

$$= 4.2 + 10$$

= 18 m (posisi mobil sekarang 18m diukur dari acuan)

b) Jarak yang ditempuh

$$\Delta x = x - x_0$$
 atau $\Delta x = vt$

$$= 18 - 10$$

$$= 8 \text{ meter}$$

$$= 4.2$$

$$= 8 \text{ m}$$

c) Grafik x vs t dan v vs t

Contoh 4-2

Diketahui dua buah mobil A dan B bergerak dengan kecepatan tetap dan perjalanannya digambarkan oleh grafik dibawah ini. Kedudukan awal mobil B 10 m terhadap acuan. Tentukan:

- a) Kecepatan mobil A, jarak yang ditempuh, kedudukan dan grafik v vs t selama 2 detik tersebut.
- b) Kecepatan mobil B, jarak yang ditempuh, kedudukan dan grafik x vs t selama 2 detik tersebut.

Jawab:

a)
$$v_A = \tan\alpha = (18 - 4)/(2 - 0) = 7 \text{ m/s}$$

 $\Delta x = x - x_0 = 18 - 4 = 14 \text{ m}$
 $x = 18 \text{ m}$

b)
$$v_B = 4 \text{ m/s}$$

 $\Delta x = v_B t = 4.2 = 8 \text{ m}$
 $x = \Delta x + x_0 = 8 + 10 = 18 \text{ m}$

Contoh 4-4

Dua benda A dan B mula-mula berjarak 140 m satu sama lain. Benda A dan B masing-masing bergerak dengan kecepatan tetap 8 m/s dan 6 m/s. Jika mereka bergerak saling berhadapan dan A berangkat 5 detik lebih dahulu, tentukan:

- a) Setelah berapa detik mereka bertemu?
- b) Dimana mereka bertemu?

Jawab:

a)
$$A \leftarrow 140m$$

$$V_A = 8m/s$$

$$P \qquad V_B = -6m/s$$

$$A = I_B + 5$$
 (A berangkat 5 detik lebih dahulu)

Misalkan mereka bertemu di titik P; syarat bertemu :

$$x_A = x_B$$

$$x_{OA} + v_A t_A = x_{OB} + v_B t_B$$

$$0 + 8(t_B + 5) = 140 - 6 t_B$$

$$t_B = 50/7 \text{ detik}$$

$$t_A = 50/7 + 5 = 85/7 \text{ detik}$$

Mereka bertemu setelah B berangkat selama 50/7 detik atau

Mereka bertemu setelah A berangkat selama 85/7 detik

b)
$$x_A = x_{0A} + v_A t_A = 0 + 8.85/7 = 97 1/7 \text{ m}$$

Mereka bertemu di titik P berjarak 97 1/7 m dari A atau berjarak (140 - 97 1/7) = 42 6/7 m dari B

Contoh 4-5

Sebuah partikel bergerak lurus dan menempuh lintasan 50 cm dalam detik pertama, 30 cm dalam detik kedua, 40 cm dalam detik ketiga dan 40 cm dalam detik keempat. Hitunglah:

- a) v_{rata} dalam 3 detik pertama
- b) v_{rata} dalam 3 detik terakhir
- c) v_{rata} selama seluruh gerakan

Jawab

a) 3 detik pertama:
$$v_{\text{rata}} = (I + II + III)/3 = (50 + 30 + 40)/3 = 40 \text{ cm/s}$$

b) 3 detik terakhir :
$$v_{\text{rata}} = (II+III+IV)/3 = (30+40+40)/3 = 36 2/3 \text{ cm/s}$$

c) Seluruh gerakan :
$$v_{\text{rata}} = (1+11+111+1V)/4 = (50+30+40+40)/3 = 40 \text{ cm/s}$$

4.2 Gerak Lurus Berubah Beraturan (GLBB)

Benda dikatakan mengalami gerak lurus berubah beraturan bila dalam selang waktu Δt yang sama perubahan kecepatan benda Δv tetap. Ini berarti ada suatu percepatan. Perhatikan perjalanan mobil pada Gambar 4-3.

Gambar 4-3: Dalam selang waktu ∆t=1 s, perpindahan posisi mobil tidak tetap

Kecepatan: v(m/s) 2 4 6 8 10 Waktu : t(s) 0 1 2 3 4

Grafik: $x \vee s t$; $v \vee s t$ dan $a \vee s t$

Percepatan mobil = kemiringan kurva kecepatan = $\frac{\Delta v}{\Delta t} = \frac{2}{1} = 2 \text{ m/s}^2$

Persamaan Gerak

Ciri GLBB adalah percepatan partikel konstan. Perhatikan gambar (4-4).

Gambar 4-4: Partikel bergerak dengan percepatan konstan,

Menghitung persamaan kecepatan.

a = konstan

$$\frac{dv}{dt} = a$$

$$\int_{v_o}^{v} dv = \int_{0}^{t} adt$$

$$v = v_o + at$$
4-2

Menghitung persamaan posisi

$$\int_{x_o}^{x} dx = \int_{0}^{t} v dt$$

$$\int_{x_o}^{x} dx = \int_{0}^{t} (v_o + at) dt$$

$$x = v_o t + \frac{1}{2} a t^2 + x_o$$
4-3

Eleminasi t dari persamaan (4-2) kemudian dimasukkan ke persamaan (4-3) diperoleh

$$v^2 = v_o^2 + 2a\Delta x$$

Menghitung kecepatan rata-rata.

$$v_{rata} = \frac{\Delta x}{\Delta t} = \frac{x - x_o}{t - 0}$$

$$v_{rata} = \frac{v_o t + \frac{1}{2} at2}{t} = v_o + \frac{1}{2} at = v_o + \frac{1}{2} \left(\frac{v - v_o}{t} \right) t = \frac{1}{2} \left(v + v_o \right)$$
4-5

Menghitung perpindahan

$$\Delta x = v_{rata}t \tag{4-6}$$

Contoh 4-6

Sebuah benda bergerak dengan kecepatan awal 10 m/s dan posisi awalnya 20m disebelah kanan acuan. Selama gerakya benda dipercepat dengan percepatan 4 m/s². Tentukan:

- a) Persamaan gerak benda (x, v dan a sebagai fungsi waktu)
- b) Gambarlah grafik x vs t, v vs t, dan a vs t
- c) Posisi, perpindahan dan kecepatannya saat t=5 detik
- d) Posisi dan jarak yang ditempuh benda saat kecepatannya 50 m/s
- e) Kecepatan rata-rata selama 2 detik pertama
- f) Kecepatan rata-rata selama 3 detik kedua Jawab:

a)
$$x = x_o + v_o t + \frac{1}{2} a t^2$$
 $v = v_o + a t$ $a = 4$
 $x = 20 + 10t + \frac{1}{2} 4 t^2$ $v = 10 + 4 t$
 $x = 20 + 10t + 2 t^2$

c)
$$x = 20 + 10(5) + 2(5)^2 = 120m$$

 $\Delta x = x - x_o = 120 - 20 = 100m$
 $v = 10 + 4(5) = 30m/s$

d)

$$v = 10 + 4t$$
 $Posisi$ $x = 20 + 10(10) + 2(10)^2 = 320 m$
 $50 = 10 + 4t$ $Jarak$ $\Delta x = 320 - 20 = 300 m$
 $t = 10 \det ik$

e) 2 detik pertama : t₁=0 detik dan t₂=2 detik

$$x = 20 + 10(10) + 2(10)^2 = 320m$$

 $\Delta x = x - x_0 = 320 - 20 = 300m$

$$v_{rata} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{48 - 20}{2 - 0} = 14m/s$$

 $x(0) = 20 \text{ m dan } x_2(2) = 48\text{ m}$

f) 3 detik kedua : t_1 =3 detik dan t_2 =6 detik

$$x_1(3) = 68 \text{ m} \operatorname{dan} x_2(6) = 152 \text{m}$$

$$v_{rata} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{152 - 68}{6 - 3} = 84m/s$$

Parsomoan Gerale GLBB

- 1) per samaan Kecepatan V = Vo + at (1)
- 2) per Samoan posis; $x = V_0 t + \frac{1}{2} \alpha t^2 + x_0 \cdot \dots \cdot (2)$
- 3) Eleminasi/menghilangkan waktu (t)

 persamaan $1 v = \frac{v v_0}{a}$

Masukan persamaan 1 Ke 2

$$\Delta x = V_0 \cdot \left(\frac{V - V_0}{a}\right) + \frac{1}{2} \cdot a \left(\frac{V - V_0}{a}\right)^2$$

$$\Delta X = \frac{V_0 \cdot V}{a} - \frac{V_0^2}{a} + \frac{1}{2} a \left(\frac{V^2 - 2V_0 \cdot V + V_0^2}{a^2} \right)$$

$$\Delta \times = \frac{\sqrt{0.0}}{a} - \frac{\sqrt{0}^2}{a} + \frac{1}{2} \frac{\sqrt{2}}{a} - \frac{\sqrt{0.0}}{a} + \frac{1}{2} \frac{\sqrt{0}^2}{a}$$

$$\Delta X = -\frac{V_0^2}{\alpha} + \frac{1}{2} \frac{V_0^2}{\alpha} + \frac{1}{2} \frac{V^2}{\alpha}$$

$$\Delta X = -\frac{1}{2} \frac{Vo^2}{a} + \frac{1}{2} \frac{V^2}{a}$$

$$\Delta X = \frac{1}{2a} \left(V^2 - V_0^2 \right)$$

$$\sqrt{V^2 = Vo^2 + 2a\Delta X}$$