Trabajo práctico 1 Redes Neuronales y Aprendizaje Profundo

Ignacio Ezequiel Cavicchioli Padrón 109428 icavicchioli@fi.uba.ar

- 1 Ejercicio 1
- 1.1 Introducción
- 1.2 Resultados
- 1.3 Análisis
- 2 Ejercicio 2
- 2.1 Introducción
- 2.2 Resultados
- 2.3 Análisis

3 Conclusiones

Leí tus notebooks y te dejo una devolución organizada: Lo que está bien en tu análisis * **Implementación clara**: programaste la regla de Hebb y la dinámica de actualización de Hopfield de manera correcta y modular. * **Experimentos variados**: probaste con diferentes números de patrones y neuronas, lo que te permitió mostrar la relación entre capacidad y error. * **Visualización**: los gráficos permiten ver cómo evoluciona la red y en qué punto empieza a fallar la memoria. * **Discusión inicial**: mencionás la capacidad límite (aprox. '0.14N') y observás cómo se degrada el rendimiento al aumentar la carga.

Aspectos en los que podrías ahondar

- 1. **Profundizar en la teoría**
- * Explicar mejor por qué la capacidad máxima se aproxima a '0.14N' (derivación a partir de resultados de Amit, Gutfreund y Sompolinsky). * Diferenciar entre *memorizar patrones* y *recuperarlos con ruido* (estabilidad de atractores vs. basins of attraction).
 - 2. **Dinámica de actualización**
- * Comparar **actualización síncrona vs. asíncrona** y sus consecuencias en la convergencia. * Mostrar ejemplos donde la red entra en **ciclos** o estados espurios.

- 3. **Ruido y robustez**
- * Evaluar qué pasa si los patrones iniciales tienen cierto porcentaje de bits cambiados. * Graficar probabilidad de recuperación exitosa vs. nivel de ruido inicial.
 - 4. **Estados espurios**
- * Mencionar y, si podés, mostrar ejemplos de **estados espurios mixtos** (combinaciones lineales de patrones almacenados). * Discutir qué implican para la capacidad real de la red.
 - 5. **Extensiones posibles**
- * Comentar variantes como Hopfield continuo (con funciones sigmoides), o usar matrices de pesos con aprendizaje estocástico. * Mencionar relación con máquinas de Boltzmann y redes modernas de memoria asociativa.

Para tu **documento en LaTeX** te convendría estructurarlo así:

- 1. Introducción breve (qué es una red de Hopfield y para qué sirve). 2. Regla de aprendizaje (con ecuación). 3. Dinámica y convergencia. 4. Experimentos y resultados (capacidad, ruido, errores). 5. Limitaciones y próximos pasos (espurios, generalización).
- ¿Querés que te arme un **esqueleto en LaTeX** con estas secciones, listo para que pegues tus resultados?