HW Problems for Assignment 1 - Lecture 2 Due 6:30 PM Tuesday, September 21, 2021 SOLUTIONS

1. Loss Distributions for a Hedged Put Option. As in the Black-Scholes model, assume the stock price has dynamics

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t,$$

where $W = \{W_t\}_{t \leq T}$ is a Brownian motion under the physical measure \mathbb{P} . The interest rate is r > 0. Let T be the maturity and K the strike of a put option, and set $P^{BS}(t,x)$ as the price of the call given $S_t = x$. I.e.

(0.1)
$$P^{BS}(t,x) = \mathbb{E}^{\mathbb{Q}} \left[e^{-r(T-t)} (K - S_T)^+ \middle| S_t = x \right].$$

where \mathbb{Q} is the risk neutral measure under which S has drift r. The Black-Scholes formula states (you DO NOT have to prove this)

$$P^{BS}(t,x) = x(N(d_1(T-t,x)) - 2) + Ke^{-r(T-t)}(1 - N(d_2(T-t,x))),$$

where N is the standard normal cdf and

$$d_1(\tau, x) = \frac{1}{\sigma\sqrt{\tau}} \left(\log\left(\frac{x}{K}\right) + \left(r + \frac{1}{2}\sigma^2\right)(\tau) \right),$$

$$d_2(\tau, x) = d_1 - \sigma\sqrt{\tau}.$$

Furthermore, with ϕ denoting the standard normal pdf we have

$$\delta(t,x) = \partial_x P^{BS}(t,x) = N(d_1) - 1,$$

$$\gamma(t,x) = \partial_{xx} P^{BS}(t,x) = \frac{\phi(d_1(T-t,x))}{x\sigma\sqrt{T-t}},$$

$$\theta(t,x) = \partial_t P^{BS}(t,x) = -\frac{\sigma}{2\sqrt{T-t}} x\phi(d_1(T-t,x))$$

$$+ Kre^{-r(T-t)} (1 - N(d_2(T-t,x))).$$

These are the "delta", "gamma" and "theta" respectively for the option.

At time t we are short M put options and long $M\delta(t, S_t)$ shares of S. Over the period $[t, t + \Delta]$ we hold the share position constant, writing $\lambda = \delta(t, S_t)$ to reinforce this fact. With this notation, the values of our portfolio at t and $t + \Delta$ are

$$V_t = M \left(\lambda S_t - P^{BS}(t, S_t) \right),$$

$$V_{t+\Delta} = M \left(\lambda S_{t+\Delta} - P^{BS}(t + \Delta, S_{t+\Delta}) \right).$$

- (a) (15 Points) With $z_t = \ln(S_t)$, identify the full, linearized, and second order loss operators over $[t, t + \Delta]$ as a function of the log return $x = X_{t+\Delta}$. Notes:
 - (i) Make sure to fully evaluate the linearized loss operator there is a cool answer!.
 - (ii) For the second order loss operator, only include the second derivative with respect to x: i.e. ignore the second order time derivative and second order time-space derivative.
- (b) **(15 Points)** Write a simulation which identifies the loss distribution for the portfolio using the full, linearized and second order (with the adjustments in note (ii)) loss operators. As in class, produce a histogram approximation of the probability density functions. How well do the approximations work?

For parameters use $\mu = 0.16905$, $\sigma = 0.4907$, r = 0.0011888, t = 0, T = .291667, $\Delta = 10/252$ (ten day horizon), $S_0 = 152.51$, K = 170 and M = 100 options. Run N = 100,000 trials in your simulation.

Solution

(a) We have

$$V_t = M \left(\lambda e^{Z_t} - P^{BS}(t, e^{Z_t}) \right) = f(t, Z_t).$$

From here, we immediately obtain the full loss operator

$$l_{[t]}(x) = -M\lambda e^{z_t} (e^x - 1) + M (P^{BS}(t + \Delta, e^{z_t + x}) - P^{BS}(t, e^{z_t})).$$

As for the linearized loss operator, we first have

$$\partial_z f(t,z) = M \left(\lambda e^z - \partial_z P^{BS}(t,e^z) \right) = M \left(\lambda e^z - \delta(t,e^z) e^z \right),$$

$$\partial_t f(t,z) = -M \partial_t P^{BS}(t,e^z) = -M \theta(t,e^z).$$

This gives the linearized loss operator

$$l_{[t]}^{lin}(x) = M\theta(t, e^{z_t})\Delta - Me^{z_t} \left(\lambda - \delta(t, e^{z_t})\right) x.$$

We can simplify this by recalling that $\lambda = \delta(t, S_t) = \delta(t, e^{z_t})$. Therefore,

$$l_{[t]}^{lin}(x) = l_{[t]}^{lin} = M\theta(t, e^z)\Delta,$$

which corresponds to the fact we are delta hedged and is not even a function of x! As for the second order loss operator, as per the note, we only keep the second order spatial derivative, which is

$$\partial_z^2 f(t,z) = Me^z \left(\lambda - \delta(t,e^z)\right) - M\gamma(t,e^z)e^{2z}.$$

As $\lambda = \delta(t, e^{z_t})$ we have

$$\begin{split} l^{quad}_{[t]}(x) &= l^{lin}_{[t]}(x) + \frac{1}{2}M\gamma(t,e^{z_t})e^{2z_t}x^2, \\ &= M\theta(t,e^z)\Delta + \frac{1}{2}M\gamma(t,e^{z_t})e^{2z_t}x^2. \end{split}$$

- (b) See the Matlab file "Put_Option_Dist.m". We see that the second order approximation distribution almost exactly coincides with the full loss distribution.
- **2. Practice with VaR.** Explicitly compute $VaR_{\alpha}(L)$ assuming L has the following distributions/probability distribution functions (pdfs).
- (a) (7 Points) L is a "double-sided" exponential with threshold l_0 in that L has pdf

$$f(l) = \frac{ab}{ae^{-bl_0} + be^{al_0}} \left(e^{al} 1_{l \le l_0} + e^{-bl} 1_{l > l_0} \right); \qquad l \in \mathbb{R},$$

where a, b > 0. Here, you may assume $\alpha \ge b/(b + ae^{-(a+b)l_0})$.

- (b) (6 Points) L is a binomial random variable with n number of trials and p probability of success on any given trial. Give an explicit answer when n = 6, p = 1/2 and $\alpha = .9$.
- (c) (7 Points) L = Y/Z where Y and Z are independent exponential random variables with means $1/\lambda$ (for Y) and $1/\theta$ (for Z).

Solution:

(a) Note that $F(l_0) = b/(b + a^{-(a+b)l_0})$ so $\alpha \ge F(l_0)$ and hence $\operatorname{VaR}_{\alpha}(L) \ge l_0$. Thus, for $l \ge l_0$

$$F(l) = \frac{b + ae^{-(a+b)l_0} \left(1 - e^{-b(l-l_0)}\right)}{b + ae^{-(a+b)l_0}}.$$

Solving $F(l) = \alpha$ yields, for $\alpha \geq F(l_0)$,

$$\operatorname{VaR}_{\alpha}(L) = -\frac{1}{b} \log \left(\frac{1}{a} e^{al_0} \left(b + a e^{-(a+b)l_0} \right) (1 - \alpha) \right).$$

(b) Recall the characterization from class of $\operatorname{VaR}_{\alpha}(L) = x_0$ if and only if $F(x_0) \geq \alpha$ and $F(x) < \alpha$ for $x < x_0$, where F is the cdf of L. Therefore, we have

$$\operatorname{VaR}_{\alpha}(L) = \min \left\{ k \mid \sum_{j=0}^{k} {n \choose k} p^{k} (1-p)^{n-k} \ge \alpha \right\}.$$

For the specification, we can explicitly compute the cdf which takes the values

$$\sum_{i=0}^{k} \binom{n}{k} p^k (1-p)^{n-k}$$

at k = 0, 1, ..., n. Here, we obtain

$$F(0) = \frac{1}{64}, F(1) = \frac{7}{64}, F(2) = \frac{22}{64}, F(3) = \frac{42}{64};$$

$$F(4) = \frac{57}{64}, F(5) = \frac{63}{64}, F(6) = 1.$$

Since $63/64 \approx 0.984$ and $57/64 \approx 0.891$ we see that $VaR_{\alpha}(L) = 5$.

(c) For a fixed Z=z, L has cdf $1-e^{-\lambda \tau z}$ for $\tau \geq 0$. Using this and conditioning we see that

$$\begin{split} \mathbb{P}\left[L \leq \tau\right] &= \mathbb{E}\left[1_{L \leq \tau}\right] = \mathbb{E}\left[\mathbb{E}\left[1_{L \leq \tau} \middle| Z\right]\right] = \mathbb{E}\left[1 - e^{-\lambda \tau Z}\right]; \\ &= 1 - \int_0^\infty \theta e^{-\theta z - \lambda \tau z} dz = 1 - \frac{\theta}{\theta + \lambda \tau}. \end{split}$$

We thus see that $\operatorname{VaR}_{\alpha}(L) = \frac{\alpha\theta}{\lambda(1-\alpha)}$.