

- Homework
 - Video Homework due tonight!
 - Online HW will be due on Wednesday
- Grade reports have been posted!
 - Today is the last day to choose credit/no credit
 - Everything factored in except lab scores
- Lab this week on Magnetic Fields
- Polling: rembold-class.ddns.net

Originally $\Delta \it{V}$ was $-1000\,\rm{V}$. A plastic slab is inserted with a width equal to half the distance between the plates. Now,

$$\Delta V = V_B - V_A$$
 is:

- A. between $-500 \,\mathrm{V}$ to $-1000 \,\mathrm{V}$
- B. between 500 V to 1000 V
- C. -500 V
- D. Not enough information to tell

- Charged particles have two fields associated with them
 - Stationary charges: electric fields
 - Moving charges: electric fields and magnetic fields
- Can quantify with the <u>electron current</u>, the number of electrons per second that enter a conductor
- Magnetic fields create a torque on a compass needle exactly like electric fields create a torque on dipoles.
- Can let us "see" the directions of the fields
- Evidence that moving charges create or interact with magnetic fields:
 - Demos!

Understanding the Magnetic Field

- We deduced the electric field from careful observations near a stationary point charge
- We do similar for the magnetic field near a moving point charge
- We see that magnetic fields point in loops around a moving charge!

- Need a way to quantify the magnetic field created by a moving charge
- Want to account for both a magnitude and a direction

The Biot-Savart Law

The magnetic field for a single moving charge is described by:

$$\vec{\mathbf{B}} = \frac{\mu_0}{4\pi} \frac{q\vec{\mathbf{v}} \times \hat{\mathbf{r}}}{|\vec{\mathbf{r}}|^2}$$

where

$$\frac{\mu_0}{4\pi} = 1 \times 10^{-7} \, \frac{\mathsf{T} \cdot \mathsf{m} \cdot \mathsf{s}}{\mathsf{C}}$$

- Cross products come up a lot in magnetic fields, so worth reviewing!
- Can calculate in two ways:
 - Method 1:

$$\left| \vec{\mathbf{A}} \times \vec{\mathbf{B}} \right| = \left| \vec{\mathbf{A}} \right| \left| \vec{\mathbf{B}} \right| \sin \theta$$

Here the direction must be determined by the right-hand-rule!

- ullet Hand points towards $\vec{\mathbf{A}}$
- Fingers curl towards \vec{B}
- Thumb points towards $\vec{A} \times \vec{B}$
- Method 2:

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \langle A_y B_z - A_z B_y, A_z B_x - A_x B_z, A_x B_y - A_y B_x \rangle$$

A Right Good Example

Given the three vectors below, use the right-hand rule to determine the direction of the resulting cross products:

$$\vec{\mathbf{A}} = \langle 1, 0, 0 \rangle$$

$$ec{\mathbf{B}} = \langle 0, 0, -1 \rangle$$

$$ec{\mathbf{C}} = \langle 1, 1, 0
angle$$

Determine the direction of:

- \bullet $\vec{A} \times \vec{B}$
- \bullet $\vec{B} \times \vec{C}$
- \bullet $\vec{C} \times \vec{A}$

Right Hand Rule and Magnetic Fields

An electron is traveling in the $-\hat{\mathbf{y}}$ direction. Sketch out the direction of the magnetic field lines surrounding it.

Right Hand Rule and Magnetic Fields

An electron is traveling in the $-\hat{\mathbf{y}}$ direction. Sketch out the direction of the magnetic field lines surrounding it.

Understanding Check

What is the direction of the magnetic field at the indicated position? You can assume our usual coordinate system of $\hat{\mathbf{x}}$ to the right, $\hat{\mathbf{y}}$ upward, and $\hat{\mathbf{z}}$ out of the board towards you.

- $A. +\hat{x}$
- B. $-\hat{z}$
- C. +**2**
- $D. -\hat{y}$

• Velocity is a relative measurement. What reference frame to measure it in?

• Moving observers see a mixture of electric magnetic fields!

- Moving observers see a mixture of electric magnetic fields!
- Electric and Magnetic fields must be more closely related than we realize. . .

- We can describe electric fields due to a single charge, but what about distributions?
- Hearken back to our definition of drift speed
 - How fast the electron sea "flows" under an electric field
 - How many electrons in a cross-section of the sea?
- We can derive the electron current in terms of drift speed:

number of electrons
$$= N_e = n \times (\text{volume})$$

 $= n(A\bar{v}\Delta t)$
 $\Rightarrow \frac{N_e}{\Delta t} = nA\bar{v}$
 $i = nA\bar{v}$