ITSMOre than a UNIVERSITY

Современная теория информации

Лекция 1. Измерение информации. Энтропия.

Содержание лекции

- Историческая заметка.
- Дискретные ансамбли.
- Измерение информации.
- 🐠 Энтропия

К. Шеннон, «отец» Теории информации

Клод Элвуд Шеннон, 1916–2001

Шеннон и информационный век

Мы пишем, чтобы предложить памятную [почтовую] марку в честь столетия со дня рождения Клода Элвуда Шеннона, отца информационного века. Информационные системы, такие как смартфоны, MP3-плееры и Интернет изменяют нашу жизнь. Они хранят наши воспоминания, объдиняют наши сообщества и развлекают. Они облегчают доставку медицинских услуг и обеспечивают основы для наших финансовых, промышленных и правительственные организаций.

Шеннон и информационный век

Подобно тому как Ньютон открыл законы гравитации и движения, Шеннон открыл законы информации. Раскрывая простые законы, лежащие в основе таких чрезвычайно сложных проблем, как связь, вычислительная техника, память и криптография, Шеннон открыл дверь, которая привела нас к информационной эпохе. Его игривый дух и использование науки, технологии, техники и математики для решения реальных проблем, которые меняют мир, будут вдохновлять как молодых, так и старых... Настоящей петицией мы просим USPS [U.S. Postal Service] создать марку в его честь. 1.

¹president of IEEE Mary Sue Coleman, president of Bell Labs Gee Rittenhouse and president of MIT Rafael Reif, 2013.

Реакция на работу Шеннона в 1940-х

Эта статья плохо мотивирована и чрезмерно абстрактна. Неясно, к какой практической проблеме она имеет отношение. Автор утверждает, что «семантические аспекты коммуникации не имеют отношения к инженерным проблемам», что, по-видимому, указывает на то, что его теория подходит в основном для передачи тарабарщины. Увы, люди не платят, чтобы тарабарщина передавалась повсюду.

Реакция на работу Шеннона в 1940-х

Я не понимаю значимости дискретных источников: независимо от того, что делается, в конце концов, сигнал ... всегда будет аналоговым. Автор упоминает вычислительные машины ... дюжины или около того таких машин будет достаточно для всех вычислений, которые нам ... нужны в обозримом будущем... IBM решил не заниматься бизнесом в сфере электронных вычислительных машин и этот журнал, вероятно, должен сделать тоже самое².

 С 1953 года издаётся журнал "IEEE Transactions on Information Theory".

Теория информации в СССР и России

- В 1961 году был создан *Институт проблем передачи информации* (ИППИ) РАН.
 - С 1965 года издаётся журнал "Проблемы передачи информации".
- В 1962 году была образована кафедра технической кибернетики ЛИАП (ныне СПбГУАП).
 - ▶ В 1982 году издан учебник Колесник В.Д., Полтырев Г.Ш., "Курс теории информации".
 - ▶ В 2010 году издан учебник Кудряшов Б.Д., "Теория информации".

Общая схема системы связи 3

- Кодирование дискретных источников: отвечает за представление сообщений источника в наиболее компкатной форме для хранения или передачи.
- Помехоустойчивое кодирование: отвечает за защиту сообщений от помех в канале связи.

³Shannon, C.E. ,"A Mathematical Theory of Communication", Bell System Technical Journal, 1948.

- Архивирование данных (ZIP, RAR, 7-Zip);
- Сжатие речи (CELP);
- Сжатие звука (МРЗ);
- Сжатие изображений (JPEG, JPEG2000, PNG);
- Сжатие видео (MPEG-2, H.264/AVC, H.265/HEVC, H.266/VVC);

- Архивирование данных (ZIP, RAR, 7-Zip);
- Сжатие речи (CELP);
- Сжатие звука (МРЗ);
- Сжатие изображений (JPEG, JPEG2000, PNG);
- Сжатие видео (MPEG-2, H.264/AVC, H.265/HEVC, H.266/VVC);

- Архивирование данных (ZIP, RAR, 7-Zip);
- Сжатие речи (CELP);
- Сжатие звука (MP3);
- Сжатие изображений (JPEG, JPEG2000, PNG);
- Сжатие видео (MPEG-2, H.264/AVC, H.265/HEVC, H.266/VVC);

- Архивирование данных (ZIP, RAR, 7-Zip);
- Сжатие речи (CELP);
- Сжатие звука (MP3);
- Сжатие изображений (JPEG, JPEG2000, PNG);
- Сжатие видео (MPEG-2, H.264/AVC, H.265/HEVC, H.266/VVC);

- Архивирование данных (ZIP, RAR, 7-Zip);
- Сжатие речи (CELP);
- Сжатие звука (MP3);
- Сжатие изображений (JPEG, JPEG2000, PNG);
- Сжатие видео (MPEG-2, H.264/AVC, H.265/HEVC, H.266/VVC);

- Архивирование данных (ZIP, RAR, 7-Zip);
- Сжатие речи (CELP);
- Сжатие звука (MP3);
- Сжатие изображений (JPEG, JPEG2000, PNG);
- Сжатие видео (MPEG-2, H.264/AVC, H.265/HEVC, H.266/VVC);

Global IP Traffic Growth

Global IP traffic will increase 3-fold from 2017 to 2022

26% CAGR 2017-2022

Exabytes per Month

2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

Global IP Traffic by Application Type By 2022, video will account for 82% of global IP traffic

Exabytes per Month

* Figures (n) refer to 2017, 2022 traffic share

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

High Definition Content Impacts IP Video Growth UHD IP video will account for 22% of global IP video traffic by 2022

* Figures (n) refer to 2017, 2022 traffic share

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Global Internet Video Traffic by Type By 2022, live video will increase 15-fold and reach 17% of Internet video traffic

* Figures (n) refer to 2017, 2022 traffic share

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

- $X = \{x\}$ дискретное множество, содержащее конечное число элементов (элементарных событий) $x \in X$.
- ullet Множество чисел $\{p(x)\},\ p(x)\geq 0,\ \sum_{x}p(x)=1$ задаёт *распределение* вероятностей.
- $X = \{x, p(x)\}$ дискретный ансамбль.
- $\Omega = \{A\}$ множество всевозможных подмножеств X.
- Вероятность сложного события А:

$$P(A) = \sum_{x \in A} p(x), A \in \Omega.$$

- ullet Обозначим произведение событий A и B как $AB=A\cap B$.
- ullet Для произвольной пары событий $A,B\subseteq X$ условная вероятность

$$P(A|B)=rac{P(AB)}{P(B)},$$
если $P(B)
eq 0,$ иначе $0.$

• Пусть $X=\{00,01,10,11\}$, где 0 – выпала решка, 1 – орёл. Пусть A означает, что два раза выпал орёл, $A=\{11\}$, B – что из двух раз хотя бы один раз выпал орёл, $B=\{01,10,11\}$.

$$P(A|B) = ?$$

- ullet Обозначим произведение событий A и B как $AB=A\cap B$.
- ullet Для произвольной пары событий $A,B\subseteq X$ условная вероятность

$$P(A|B)=rac{P(AB)}{P(B)},$$
если $P(B)
eq 0,\,$ иначе $0.$

• Пусть $X=\{00,01,10,11\}$, где 0 — выпала решка, 1 — орёл. Пусть A означает, что два раза выпал орёл, $A=\{11\}$, B — что из двух раз хотя бы один раз выпал орёл, $B=\{01,10,11\}$.

$$P(A|B) = \frac{P\{11\}}{P\{01, 10, 11\}} = \frac{1/4}{3/4} = \frac{1}{3}.$$

- ullet Обозначим произведение событий A и B как $AB=A\cap B$.
- ullet Для произвольной пары событий $A,B\subseteq X$ условная вероятность

$$P(A|B)=rac{P(AB)}{P(B)},$$
если $P(B)
eq 0,\,$ иначе $0.$

• Из этого определения следует

$$P(AB) = P(A|B)P(B).$$

В общем случае:

$$P(A_1...A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1}).$$

ullet События $A,B\in\Omega$ независимы, если:

$$P(AB) = P(A)P(B).$$

• $A_1,...,A_n \in \Omega$ совместно независимы, если:

$$P(A_1...A_n) = P(A_1)P(A_2)...P(A_n).$$

• Эквивалентно, $A, B \in \Omega$ независимы, если:

$$P(A|B) = P(A); P(B|A) = P(B).$$

• Вероятность объединения событий:

$$P(A \cup B) = P(A) + P(B) - P(AB);$$

$$P(\bigcup_{m=1}^{M} A_m) \le \sum_{m=1}^{M} P(A_m)$$

Рис.: Пример 1

Рис.: Пример 2

Рис.: Пример 3

Рис.: Пример 4

Рис.: Пример 1

Рис.: Пример 2

Рис.: Пример 3

Рис.: Пример 4

Рис.: Пример 1

Рис.: Пример 2

Рис.: Пример 3

Рис.: Пример 1

Рис.: Пример 2

Рис.: Пример 3

Рис.: Пример 4

• Формула полной вероятности:

Пусть даны M несовместных событий $H_1,...,H_M$ ("гипотез"), таких что $P\left(\bigcup_{m=1}^M H_m\right)=1$. Тогда вероятность произвольного события A

$$P(A) = \sum_{m=1}^{M} P(A|H_m)P(H_m).$$

$$P(AB) = P(A|B)P(B).$$

$$P(H_j|A) = \frac{P(AH_j)}{P(A)} = \frac{P(A|H_j)P(H_j)}{\sum\limits_{m=1}^{M} P(A|H_m)P(H_m)}.$$

⁴пересечение – пустое множество

Дискретные ансамбли _{Пример}

$$P(H_{j}|A) = \frac{P(AH_{j})}{P(A)} = \frac{P(A|H_{j})P(H_{j})}{\sum_{m=1}^{M} P(A|H_{m})P(H_{m})}.$$

- Пусть $p_1=0.9$ вероятность бракованного изделия у первого рабочего, у второго $p_2=0.5$, третьего $p_2=0.2$. Первый изготовил $n_1=800$ деталей, второй $n_2=600$, третий $n_3=900$. Случайная деталь оказалась бракованной. Какова вероятность того, что её изготовил второй рабочий?
 - ▶ H_1, H_2 и H_3 гипотезы, что деталь произвёл первый, второй или третий рабочий, соответственно, $P(H_i) = \frac{n_i}{\sum_{n} n_i}$.
 - lacktriangle A событие, что деталь оказалась бракованной, $P(A|H_i)=p_i$.

$$P(H_2|A) = \frac{P(A|H_2)P(H_2)}{P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + P(A|H_3)P(H_3)} = 0.25.$$

Дискретные ансамбли Пример

$$P(H_j|A) = \frac{P(AH_j)}{P(A)} = \frac{P(A|H_j)P(H_j)}{\sum\limits_{m=1}^{M} P(A|H_m)P(H_m)}.$$

- Пусть $p_1 = 0.9$ вероятность бракованного изделия у первого рабочего, у второго – $p_2 = 0.5$, третьего – $p_2 = 0.2$. Первый изготовил $n_1 = 800$ деталей, второй – $n_2 = 600$, третий – $n_3 = 900$. Случайная деталь оказалась бракованной. Какова вероятность того, что её изготовил второй рабочий?
 - $ightharpoonup H_1, H_2$ и H_3 гипотезы, что деталь произвёл первый, второй или третий рабочий, соответственно, $P(H_i) = \frac{n_i}{\sum n_i}$.
 - ▶ A событие, что деталь оказалась бракованной, $P(A|H_i) = p_i$.

$$P(H_2|A) = \frac{P(A|H_2)P(H_2)}{P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + P(A|H_3)P(H_3)} = 0.25.$$

Дискретные ансамбли Пример

$$P(H_{j}|A) = \frac{P(AH_{j})}{P(A)} = \frac{P(A|H_{j})P(H_{j})}{\sum_{m=1}^{M} P(A|H_{m})P(H_{m})}.$$

- Пусть $p_1 = 0.9$ вероятность бракованного изделия у первого рабочего, у второго – $p_2 = 0.5$, третьего – $p_2 = 0.2$. Первый изготовил $n_1 = 800$ деталей, второй – $n_2 = 600$, третий – $n_3 = 900$. Случайная деталь оказалась бракованной. Какова вероятность того, что её изготовил второй рабочий?
 - $ightharpoonup H_1, H_2$ и H_3 гипотезы, что деталь произвёл первый, второй или третий рабочий, соответственно, $P(H_i) = \frac{n_i}{\sum n_i}$.
 - ▶ A событие, что деталь оказалась бракованной, $P(A|H_i) = p_i$.

$$P(H_2|A) = \frac{P(A|H_2)P(H_2)}{P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + P(A|H_3)P(H_3)} = 0.25.$$

Дискретные ансамбли _{Пример}

$$P(H_{j}|A) = \frac{P(AH_{j})}{P(A)} = \frac{P(A|H_{j})P(H_{j})}{\sum_{m=1}^{M} P(A|H_{m})P(H_{m})}.$$

- Пусть $p_1=0.9$ вероятность бракованного изделия у первого рабочего, у второго $p_2=0.5$, третьего $p_2=0.2$. Первый изготовил $n_1=800$ деталей, второй $n_2=600$, третий $n_3=900$. Случайная деталь оказалась бракованной. Какова вероятность того, что её изготовил второй рабочий?
 - ▶ H_1, H_2 и H_3 гипотезы, что деталь произвёл первый, второй или третий рабочий, соответственно, $P(H_i) = \frac{n_i}{\sum_i n_i}$.
 - lacktriangledown A событие, что деталь оказалась бракованной, $P(A|H_i)=p_i$.

$$P(H_2|A) = \frac{P(A|H_2)P(H_2)}{P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + P(A|H_3)P(H_3)} = 0.25.$$

- Произведение ансамблей $X = \{x, p_X(x)\}$ и $Y = \{y, p_Y(y)\}$ определяется совместным распр. $\{p_{XY}(x,y)\}$, $\{(x,y): x \in X, y \in Y\}$.
- Ансамбль произведений $XY = \{(x, y), p_{XY}(x, y)\}.$
- Условное распределение вероятностей:

$$p(x|y) = \left\{ egin{array}{ll} rac{p(x,y)}{p(y)}, & ext{if } p(y)
eq 0, \ 0 & ext{uhave}, \end{array}
ight. x \in X.$$

Ансамбли X и Y независимы, если

$$p(x,y) = p(x)p(y), \quad x \in X, \quad y \in Y.$$

Измерение информации Интуитивный подход

Количество информации = затратам (во времени или пространстве), необходимым для передачи (хранения) данных.

Данные	Представление
Числа (измерения)	Длина зависит от диапазона
Текст	8 бит (1 байт) на букву
Цифровая речь	13 бит на отсчет
Изображения (bmp)	3 байта на пиксель

Измерение информации

Собственная информация

$$X=\{x, p(x)\}$$
 — ансамбль, $\mu(x)$ — мера (количество) информации в x .

- ullet Неотрицательность: $\mu(x) \geq 0$
- \bullet $\mu(x)$ должна быть функцией от p(x).
- Монотонность: если $x,y \in X$, $p(x) \ge p(y)$, тогда $\mu(x) \le \mu(y)$.
- Аддитивность: Если x и y независимы, тогда $\mu(x,y) = \mu(x) + \mu(y)$.
- $\bullet \ \mu(p(x)^k) = k\mu(p(x)).$

Перечисленные требования приводят к следующему определению:

$$I(x) = -\log p(x) , x \in X$$

Собственная информация

- $X = \{x, p(x)\}$ ансамбль, $\mu(x)$ мера (количество) информации в x.
 - Неотрицательность: $\mu(x) \geq 0$.
 - \bullet $\mu(x)$ должна быть функцией от p(x).
 - Монотонность: если $x,y \in X$, $p(x) \ge p(y)$, тогда $\mu(x) \le \mu(y)$.
 - Аддитивность: Если x и y независимы, тогда $\mu(x,y) = \mu(x) + \mu(y)$.
 - $\bullet \ \mu(p(x)^k) = k\mu(p(x)).$

$$I(x) = -\log p(x) , x \in X$$

Собственная информация

- $X=\{x,p(x)\}$ ансамбль, $\mu(x)$ мера (количество) информации в x.
 - Неотрицательность: $\mu(x) \geq 0$.
 - $\mu(x)$ должна быть функцией от p(x).
 - Монотонность: если $x, y \in X$, $p(x) \ge p(y)$, тогда $\mu(x) \le \mu(y)$.
 - Аддитивность: Если x и y независимы, тогда $\mu(x,y) = \mu(x) + \mu(y).$
 - $\bullet \ \mu(p(x)^k) = k\mu(p(x)).$

$$I(x) = -\log p(x) , x \in X$$

Собственная информация

- $X = \{x, p(x)\}$ ансамбль, $\mu(x)$ мера (количество) информации в x.
 - Неотрицательность: $\mu(x) \geq 0$.
 - $\mu(x)$ должна быть функцией от p(x).
 - ullet Монотонность: если $x,y\in X$, $p(x)\geq p(y)$, тогда $\mu(x)\leq \mu(y)$.
 - Аддитивность: Если x и y независимы, тогда $\mu(x,y) = \mu(x) + \mu(y)$.
 - $\bullet \ \mu(p(x)^k) = k\mu(p(x)).$

$$I(x) = -\log p(x) , x \in X$$

Собственная информация

- $X = \{x, p(x)\}$ ансамбль, $\mu(x)$ мера (количество) информации в x.
 - Неотрицательность: $\mu(x) \geq 0$.
 - $\mu(x)$ должна быть функцией от p(x).
 - ullet Монотонность: если $x,y\in X$, $p(x)\geq p(y)$, тогда $\mu(x)\leq \mu(y)$.
 - Аддитивность: Если x и y независимы, тогда $\mu(x,y) = \mu(x) + \mu(y)$.
 - $\bullet \ \mu(p(x)^k) = k\mu(p(x)).$

$$I(x) = -\log p(x) , x \in X$$

Собственная информация

 $X = \{x, p(x)\}$ — ансамбль, $\mu(x)$ — мера (количество) информации в x.

- Неотрицательность: $\mu(x) \geq 0$.
- $\mu(x)$ должна быть функцией от p(x).
- ullet Монотонность: если $x,y\in X$, $p(x)\geq p(y)$, тогда $\mu(x)\leq \mu(y)$.
- ullet Аддитивность: Если x и y независимы, тогда $\mu(x,y) = \mu(x) + \mu(y).$
- $\bullet \ \mu(p(x)^k) = k\mu(p(x)).$

$$I(x) = -\log p(x) , x \in X.$$

Измерение информации Энтропия

Definition

$$H(X) = E[I(x)].$$

$$H(X) = \sum_{x} p(x)I(x).$$

$$H(X) = \sum_{x} -p(x)\log p(x).$$

Энтропия

Примеры

A:
$$X = \{a, b, c\}$$
; $p(a) = p(b) = p(c) = 1/3$, $I(a) = I(b) = I(c) = H(X) = \log 3 = 1.59$ бит,

В:
$$X = \{a, b, c\}$$
; $p(a) = p(b) = 1/4$, $p(c) = 1/2$ $I(a) = I(b) = 2$, $I(c) = 1$ $H = 1.5$ бита.

C:
$$X = \{0,1\}$$
; $p(0) = 0.9$, $p(1) = 0.1$, $I(0) = 0.152$, $I(1) = 3.322$; $H = 0.469$ бит.

D:
$$X = \{0, 1\}$$
, $p(0) = p(1) = 1/2$
 $I(0) = I(1) = H(X) = 1$ бит.

Энтропия

Свойства энтропии

- 1 $H(X) \ge 0$.
- $2\;H(X) \leq \log |X|$. Равенство, если все элементы X равновероятны.
- 3 Если $X = \{x, p(x)\}$ и $Y = \{y = f(x), p(y)\}$, тогда $H(Y) \le H(X)$ с равенством, если f обратима.
- 4 Если X и Y независимы, тогда

$$H(XY) = H(X) + H(Y).$$

Энтропия

Свойства энтропии

- 5 H(X) выпуклая \cap функция распределения вероятностей на элементах ансамбля X.
- 6 Пусть $X = \{x, p(x)\}$ и $A \subseteq X$. Введем ансамбль $X' = \{x, p'(x)\}$ и p'(x) как:

$$p'(x) = \begin{cases} \frac{P(A)}{|A|}, x \in A, \\ p(x), x \notin A. \end{cases}$$

Тогда $H(X') \geq H(X)$.

7 Если для двух ансамблей X и Y распределения вероятностей отличаются только порядком следования элементов, то H(X) = H(Y).

$$H(X) - \log |X| \stackrel{\text{(a)}}{=} -\sum_{x \in X} p(x) \log p(x) - \sum_{x \in X} p(x) \log |X| =$$

$$\stackrel{\text{(b)}}{=} \sum_{x \in X} p(x) \log \frac{1}{p(x)|X|} \le$$

$$\stackrel{\text{(c)}}{\leq} \log e \left[\sum_{x \in X} p(x) \left(\frac{1}{p(x)|X|} - 1 \right) \right] =$$

$$= \log e \left(\sum_{x \in X} \frac{1}{|X|} - \sum_{x \in X} p(x) \right) = 0 .$$

$$H(X) - \log |X| \stackrel{\text{(a)}}{=} -\sum_{x \in X} p(x) \log p(x) - \sum_{x \in X} p(x) \log |X| =$$

$$\stackrel{\text{(b)}}{=} \sum_{x \in X} p(x) \log \frac{1}{p(x)|X|} \le$$

$$\stackrel{\text{(c)}}{\leq} \log e \left[\sum_{x \in X} p(x) \left(\frac{1}{p(x)|X|} - 1 \right) \right] =$$

$$= \log e \left(\sum_{x \in X} \frac{1}{|X|} - \sum_{x \in X} p(x) \right) = 0 .$$

$$H(X) - \log |X| \stackrel{\text{(a)}}{=} -\sum_{x \in X} p(x) \log p(x) - \sum_{x \in X} p(x) \log |X| =$$

$$\stackrel{\text{(b)}}{=} \sum_{x \in X} p(x) \log \frac{1}{p(x)|X|} \le$$

$$\stackrel{\text{(c)}}{\leq} \log e \left[\sum_{x \in X} p(x) \left(\frac{1}{p(x)|X|} - 1 \right) \right] =$$

$$= \log e \left(\sum_{x \in X} \frac{1}{|X|} - \sum_{x \in X} p(x) \right) = 0 .$$

$$H(X) - \log |X| \stackrel{\text{(a)}}{=} -\sum_{x \in X} p(x) \log p(x) - \sum_{x \in X} p(x) \log |X| =$$

$$\stackrel{\text{(b)}}{=} \sum_{x \in X} p(x) \log \frac{1}{p(x)|X|} \le$$

$$\stackrel{\text{(c)}}{\leq} \log e \left[\sum_{x \in X} p(x) \left(\frac{1}{p(x)|X|} - 1 \right) \right] =$$

$$= \log e \left(\sum_{x \in X} \frac{1}{|X|} - \sum_{x \in X} p(x) \right) = 0 .$$

Доказательство (с)

• $\ln x \le x - 1 \iff \log x \le (x - 1) \log e$.

 Puc .: Графическая интерпретация $\mathsf{In}(x) \leq x-1$