Class 8 MATHEMATICS

Chapter 1: Rational Numbers

From Notes Book

What Are Rational Numbers?

A **rational number** is any number that can be written in the form of **p/q**, where:

- 1. **p** and **q** are integers.
- 2. $\mathbf{q} \neq \mathbf{0}$ (the denominator cannot be zero).

Examples:

- 3/4, -7, 0.6 (which is 3/5).
- Whole numbers (e.g., 5 can be written as 5/1).
- Integers (e.g. -3 = -3/1).

Key Point: Any number that can't be expressed as p/q (e.g. $\sqrt{2}$, π) is **NOT** a rational number.

Detailed Properties of Rational Numbers

1. Closure Property

- When you add, subtract, or multiply two rational numbers, the result is also a rational number.
- Example:

$$1/2+1/3 = 3/6+2/6 = 5/6$$
 (Result is rational).

2. Commutative Property

 Rational numbers follow this property for addition and multiplication:

$$a+b=b+a$$
 or $a\times b=b\times a$

Example:

3. Associative Property

 Grouping doesn't change the result for addition or multiplication:

$$(a+b)+c = a+(b+c).$$

• Example:

$$(1/4+1/2) + 1/5=1/4+(1/2+1/5).$$

4. Distributive Property

Multiplication over addition or subtraction: $a \times (b+c) = (a \times b) + (a \times c).$

• Example:

$$1/2 \times (2/3+3/4) = (1/2 \times 2/3) + (1/2 \times 3/4)$$
.

5. Identity Property

- $_{\circ}$ For addition: 0 is the additive identity (a+0 = a).
- For multiplication: 1 is the multiplicative identity ($a \times 1 = a$).

6. Inverse Property

- Additive inverse: For a=2/3, the additive inverse is -a=-2/3.
- Multiplicative inverse: For a=2/3, the multiplicative inverse is 3/2.

Representation of Rational Numbers on the Number Line

Step-by-Step Process:

- 1. Draw a straight line and mark 0 in the middle.
- 2. Mark positive integers (1, 2, 3, ...) on the right and negative integers (-1, -2, -3, ...) on the left.
- 3. To mark a fraction 3/4:
 - Divide the space between 0 and 1 into 4 equal parts.
 - Count 3 steps from 0.

Example: Place -5/6 on the number line:

- Divide space between 0 and -1 into 6 parts.
- Move 5 parts left from 0.

Operations on Rational Numbers

1. Addition and Subtraction

- Convert denominators to the same number (find LCM).
- Add or subtract numerators, keeping the denominator the same.
- Simplify if needed.

Example:

2. Multiplication

- Multiply numerators and denominators directly.
- Simplify if possible.

Example:

$$3/4 \times 5/6 = 15/24 = 5/8$$
.

3. Division

Flip the second fraction (reciprocal) and multiply.

Example:

Practice Questions

1. Identify Rational Numbers:

- Is 0.333...0.333... a rational number?
- $_{\circ}$ Is √4 a rational number?

2. Closure Property Questions:

- Show that 1/3+1/6 is a rational number.
- $_{\circ}$ Multiply -2/5×7/9. Is the result rational?

3. Represent on the Number Line:

- Represent 5/8 on the number line.
- ∘ Represent –3/4 on the number line.

4. Addition/Subtraction:

- 。 Solve: (2/5) + (3/7).
- ∘ Solve: (4/9) (2/3).

5. Multiplication/Division:

- 。 3/8×4/5.
- ∘ 7/9÷−2/3.

Key Points to Remember:

- 1. Rational numbers can always be written as p/q with $q \ne 0$.
- 2. Decimal forms of rational numbers can be **terminating** (e.g., 0.5) or **repeating** (e.g., 0.333...).
- 3. Any integer or fraction is a rational number.