Base-quality trimming

Concepts and tools

15/12/2016

J. Walshaw, GH7S, 77R

Recap

- A data set of sequence reads needs quality-control
- There are various types of quality issues to consider
- Base-quality is just one of them
- Others include chimaeras, artefactual duplicates etc
- O See earlier slideshows for a reminder of:
 - what base-quality is
 - how it is determined what those <u>quality scores</u> mean
 - considerations of some basic statistics of base-quality
 - some tools for viewing these statistics (e.g. FASTQC)

Quality scores in context (1)

- Remember that a quality score (phred score) indicates the probability of the base-call being correct
- It is useful to consider how quality scores relate to the type of sequencing performed
- Some benchmarking exercises assessing various trimming tools may consider them in one context
 - o e.g. effect on RNA-seq mapping efficacy

Quality scores in context (2)

- How damaging would miscalled bases be:
 - at either end of RNA-seq reads?
 - o affects whether (or where) the read is mapped
 - In genome sequencing with very high coverage?
 - At the ends of 16S amplicons?
 - i.e. in non-variable regions
 - In the middle of 16S amplicons?
 - In shotgun metagenomic reads?

Example – a single (very short) sequence read

Quality scores (phred scores) look like this:

quality scores $(-10 * \log(p))$

- o it's really not a very good read
- how might it best be quality-trimmed?

Approaches to qualitytrimming

- Broadly there are two types of approach
 - 1. Window-based
 - 2. Running sum-based
 - 3. Other rule-based
- In types 1 and 2, the basic approach may be supplemented with other rules, such as:
 - the permitted minimum length of read, after trimming
- Also, trimming might be applied to:
 - the 3'-end only
 - the 5'-end only
 - o both

Window-based qualitytrimming

- O The "sliding window" a simple concept, used a lot in many types of sequence analysis
- O E.g. a window of 15bp:

Window-based quality-trimming

- O Calculate a property of each window, e.g. mean quality score
- Out when the property fails to meet a quality criterion
 - o e.g. mean quality score must be ≥ 25

mean quality score (window of 15 bp)

"Running-sum" methods

- Example modified Mott algorithm, as used in Phred/Phrap and CLC Workbench
 - Note that this does <u>not</u> use the phred quality-scores (Q scores)
 - It uses the underlying phred error probability values
 - Some of the literature on this is very confusing!

Using the same example read:

quality scores $(-10 * \log(p))$

error probabilities (p)

15/12/2016

J. Walshaw, GH7S, 17R

O Subtract the p values from a threshold value, e.g. 0.05

error probabilities (p)

0.05 - p

15/12/2016

J. Walshaw, G7775, 77R

- ODetermine the subsequence with the maximum sum
- Remove everything else (i.e. to the left and right)

• For 3'-trimming only, this is equivalent to summing from left to right, and trimming after the maximum is reached

cumulative sum from bp 1 to $N \Sigma (0.05 - p)$

Example tools

- Some examples of window based:
 - PRINSEQ, PRINSEQ-LITE
 - FASTQ/FASTA trimmer of the FASTX* toolkit
 - Sickle
 - O Trimmomatic
 - ConDeTri
 - FASTA+QUAL-format demultiplexer of Qiime
- Some examples of running sum-based:
 - phred program of PhredPhrap package
 - ERNE-FILTER
 - Cutadapt
- *not to be confused with the sequence similarity search program of the same name

Alternative rule-based methods

- E.g. consecutive bad scores
 - E.g. working from 5' to 3', trim (remove everything 3') when 3 consecutive Q values of < 20 occur
 - The qiime script for demultiplexing FASTQ format data sets uses this approach (c.f. the qiime script for demultiplexing FASTA+QUAL format data)