Intermediate Value Theorem

Bolzano's Theorem

We prove this as a preliminary to proof of the IVT.

If f is continuous on [a, b] and f(a) < 0 < f(b) then there is some x in [a, b] such that f(x) = 0.

Proof

- Let **S** be the set of all $x \in [a, b]$ such that $f(x) \leq 0$.
- S is non-empty $(S \neq \emptyset)$ since $a \in S$.
- Since f(b) > 0, $b \notin \mathbf{S}$, and since the relevant interval is [a, b], b is larger than all members of \mathbf{S} , and so b is an upper bound of \mathbf{S} .

- Therefore, by **completeness**, there exists a least upper bound or supremum of **S**.
- Define c to be that supremum. Since f(x) is continuous, $\lim_{x\to c} f(x) = f(c)$.

One of three things is true: f(c) > 0, f(c) < 0 or f(c) = 0. We claim that f(c) = 0. The proof is by contradiction.

Suppose f(c) > 0.

- We define $\epsilon_1 = f(c)/2$. Then ϵ_1 is positive and $2\epsilon_1 = f(c) > 0$.
- By the definition of the limit, there exists δ_1 , such that for all $0 < |x-c| < \delta_1$ it is true that

$$|f(x) - f(c)| < \epsilon_1$$

• Then (see the triangle inequality write-up)

$$-\epsilon_1 < f(x) - f(c) < \epsilon_1$$
$$-\epsilon_1 < f(x) - 2\epsilon_1 < \epsilon_1$$
$$\epsilon_1 < f(x) < 3\epsilon_1$$

so this implies that f(x) > 0 everywhere in the interval $c - \delta_1 < x < c + \delta_1$.

• It would appear that we have found a smaller upper bound for the set **S** in the interval $[c - \delta_1, c]$. But c is a least upper bound, so this is a contradiction.

We conclude that f(c) > 0 is impossible.

Suppose f(c) < 0.

- We can define $\epsilon_2 = -f(c)/2$. Then $\epsilon_2 > 0$ and $-f(c) = 2\epsilon_2$.
- By the definition of the limit, there exists δ_2 , such that for all $0 < |x-c| < \delta_2$ it is true that

$$|f(x) - f(c)| < \epsilon_2$$

• Then

$$-\epsilon_2 < f(x) - f(c) < \epsilon_2$$

We have $-f(c) = 2\epsilon_2$

$$-\epsilon_2 < f(x) + 2\epsilon_2 < \epsilon_2$$
$$-3\epsilon_2 < f(x) < -\epsilon_2$$

which implies that f(x) < 0 everywhere in the interval $c - \delta_2 < x < c + \delta_2$.

• It would appear that we have found a value for x < 0 in the interval $[c, c + \delta_2]$. But c is a least upper bound for \mathbf{S} , there are not supposed to be any negative values of f(x) to the right of c, so this is a contradiction.

We conclude that f(c) < 0 is impossible.

The last remaining possibility is that f(c) = 0.

Suppose that f(b) < 0 and f(a) > 0. Define g(x) = -f(x). Note that g(x) is continuous on the same interval, and repeat the argument. The conclusion does not depend on this assumption.

This completes the proof of Bolzano's Theorem.