Softuniada 2023

Problem 8. Капризни частици

Доктор Sanity експериментира с елементарни частици (протони и електрони), сливайки ги в разни атоми. Има фактор на съвместимост в уравнението. Някои частици са по-съвместимо сливащи се с други. Трябва да помогнете на Доктора да слее най-съвместимите двойки от частици.

Ще получите цяло число – N. Има N протона и N електрона. За да е по-проста работата с тях, индексирайте ги от 0 до N-1.

Всяка частица ще има лист от фактори на съвместимост, сочещи към специфична частица от другия тип (протоните си имат съвместимост с електроните, електроните – с протоните).

Трябва да започнете да сливате протоните, един по един, с електроните. На всяка стъпка трябва да целите най-съвместимата възможна комбинация между протон и електрон.

Съвместимостта не е абсолютна – не може и да бъде в някои случаи. Доктор Sanity понякога ще слива протон и електрон, които не са най-съвместимите, един със друг, за да се увеличи общо-постигнатата съвместимост между всички връзки.

Съвместимостта трябва да бъде приоритет и от 2-те страни (от страната на протона и от страната на електрона). Ако има "конфликт на съвместимости", протоните трябва да са поприоритетни (тоест съвместимостта на протона се цели повече).

Вижте следните конфигурации:

- Р1 (протон 1) се слива пръв, защото е първия протон. Слива се с електрона, който е найсъвместим с него – Е1 (електрон 1).
- P2 е най-съвместим с E1. E1 обаче вече е слят с P1, и неговата съвместимост с P1 е повисока отколкото съвместимостта му с Р2, така че Р1 е по-приоритетен.
- P2 тогава ще се опита да се слее с втория най-съвместим електрон E3. E3 също така има най-висока съвместимост с Р2, и те се сливат.
- Най-съвместимия електрон на протона РЗ е Е2. Най-съвместимия протон на електрона E2 е P3. Тук няма казус – 2-те частици се сливат успешно.

P1 <-> E1
P2 <-> E3
P3 <-> E2

Input

Входа от данни ще получите на няколко реда в конзолата.

- На първия ред ще получите цяло число N броя на частиците (и от 2-та типа)
- На следващите N реда, ще получите листове, съдържащи факторите на съвместимост на всеки протон (спрямо електроните).
- На следващите N реда, ще получите листове, съдържащи факторите на съвместимост на всеки електрон (спрямо протоните).

Output

Като изход, изведете на конзолата всяка формирана двойка протон / електрон — подредени по индекса на протона във възходящ ред (от $\mathbf{0}$ до $\mathbf{N} - \mathbf{1}$).

Двойките трябва да са форматиране в следния вид: {proton} <-> {electron}

Example test cases

Вход	Изход
4	0 <-> 3
3 1 2 0	1 <-> 1
1 0 2 3	2 <-> 0
0 1 2 3	3 <-> 2
0 2 1 3	
0 1 2 3	
0 1 2 3	
0 1 2 3	
3 1 2 0	
5	0 <-> 3
3 2 4	1 <-> 4
4 3 2 1	2 <-> 1
1 2	3 <-> 2
1 2 3	4 <-> 0
0	
0	
1 4	

1	3	2						
2	1							
0	4	3						
8								0 <-> 4
	6	0	1	5	7	3	2	1 <-> 2
	_							1 (-) 2
1	2	6	4	3	0	7	5	2 <-> 7
7	4	0	3	5	1	2	6	3 <-> 5
2	1	6	3	0	5	7	4	4 <-> 6
6	1	4	0	2	5	7	3	5 <-> 0
0	5	6	4	7	3	1	2	
1	4	6	5	2	3	7	0	6 <-> 1
								7 <-> 3
2	7	3	4	6	1	5	0	
4	2	6	5	0	1	7	3	
7	5	2	4	6	1	0	3	
0	4	5	1	3	7	6	2	
7	6	2	1	3	0	4	5	
5	3	6	2	7	0	1	4	
1	7	4	3	5	2	6	0	
6	4	1	0	7	5	3	2	
6	3	0	4	1	2	5	7	
1								1

