1. Import Necessary Libraries

In [1]:

```
# Import necessary libraries
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.tree import export_graphviz
```

- pandas is used for data manipulation and analysis.
- RandomForestClassifier from sklearn.ensemble is an ensemble learning method that uses multiple decision trees to make more accurate and robust predictions.
- LabelEncoder is used to convert categorical data into numeric format.
- accuracy_score, classification_report, and confusion_matrix are metrics used for model evaluation.
- export graphviz helps visualize the decision trees within the random forest.

2. Load the Training Dataset

In [2]:

```
# Load the training dataset
train_file_path = '../train.csv'
train_data = pd.read_csv(train_file_path)
```

• The train.csv file is read into a DataFrame named train_data. This dataset contains features and a target variable (Survived) used to train the model.

3. Load the Testing Dataset

In [3]:

```
# Load the testing dataset (without target column) and actual results
test_file_path = '../test.csv' # Replace with the correct path if needed
test_data = pd.read_csv(test_file_path)
```

• The test.csv file is read into a DataFrame named test_data. This dataset includes features but not the Survived column, which the model predicts.

4. Load the Actual Results

In [4]:

```
# Load the actual results for the test data
gender_submission_file_path = '../gender_submission.csv' # Replace with the correct path if needed
actual_results = pd.read_csv(gender_submission_file_path)
```

• gender_submission.csv contains the actual Survived values for the test set, used for model evaluation.

5. Preprocess the Training Data

In [5]:

```
# Preprocess the training data
train_data['Age'].fillna(train_data['Age'].median(), inplace=True)
train_data['Cabin'].fillna('Unknown', inplace=True)
train_data['Embarked'].fillna(train_data['Embarked'].mode()[0], inplace=True)
```

- Missing value handling:
 - Age : Missing values are replaced with the median age.
 - Cabin: Missing cabin values are filled with 'Unknown'.
 - Embarked: Missing embarked values are filled with the most common port (mode).

6. Label Encoding for Categorical Variables

```
In [6]:
```

```
# Initialize and fit LabelEncoders for each column needing encoding
label_encoders = {}
for column in ['Sex', 'Cabin', 'Embarked', 'Name', 'Ticket']:
    le = LabelEncoder()
    train_data[column] = le.fit_transform(train_data[column])
    label_encoders[column] = le
```

- Categorical columns (Sex , Cabin , Embarked , Name , Ticket) are converted to numeric using LabelEncoder .
- A dictionary (label_encoders) stores the encoders for later use on the test data.

7. Select Features and Target Variable for Training

```
In [7]:
```

```
# Select features and target variable for training
X_train = train_data[['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin',
'Embarked']]
y_train = train_data['Survived']
```

- X_train: Features used to train the model.
- y train: The target variable indicating survival (1 for survived, 0 for not).

8. Train the Random Forest Classifier

In [8]:

```
# Train the Random Forest Classifier
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train, y_train)
```

Out[8]:

```
RandomForestClassifier

RandomForestClassifier(random_state=42)

RandomForestClassifier(random_state=42)
```

- A Random Forest Classifier with 100 decision trees (n estimators=100) is created and trained using fit().
- random_state=42 ensures reproducibility by initializing the random number generator.

9. Preprocess the Test Data

```
In [9]:
```

```
# Preprocess the test data (similar preprocessing steps as training data)
test_data['Age'].fillna(test_data['Age'].median(), inplace=True)
test_data['Cabin'].fillna('Unknown', inplace=True)
test_data['Embarked'].fillna(test_data['Embarked'].mode()[0], inplace=True)
```

• The same preprocessing steps applied to train data are applied to test data to handle missing values.

10. Transform Test Data Using LabelEncoders

```
In [10]:
```

```
# Transform the test data using the fitted LabelEncoders
for column in ['Sex', 'Cabin', 'Embarked', 'Name', 'Ticket']:
   if column in label_encoders:
        le = label_encoders[column]
        # Use .fit_transform on training and .transform on test, handling unseen labels safely
        test_data[column] = test_data[column].apply(lambda x: le.transform([x])[0] if x in le.classes_ else -1)
```

• The test data columns are transformed using the LabelEncoders created earlier. If a value is not seen during training, it is encoded as -1.

11. Select Features for Test Data

```
In [11]:
```

```
X_test = test_data[['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', '
Embarked']]
```

• X_test contains the features to be used for predictions.

12. Make Predictions on Test Data

In [12]:

```
# Make predictions on the test data
y_pred = rf_classifier.predict(X_test)
```

 $\bullet\,$ The trained model makes predictions on $\,X_test$.

13. Evaluate the Model

In [13]:

```
# Evaluate the model using the actual results
y_test = actual_results['Survived']
```

In [14]:

```
# Print evaluation metrics
print("Accuracy Score:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))
```

Accuracy Score: 0.8325358851674641

```
Classification Report:
```

	precision	recall	f1-score	support
0 1	0.95 0.71	0.78 0.92	0.86 0.80	266 152
accuracy macro avg weighted avg	0.83 0.86	0.85 0.83	0.83 0.83 0.84	418 418 418

Confusion Matrix:

```
[[208 58]
[ 12 140]]
```

- $\bullet \quad \textbf{y_test} \ \ \text{contains the actual Survived values from gender_submission.csv} \ .$
- The model's accuracy, precision, recall, F1-score, and confusion matrix are printed.

14. Export Decision Trees for Visualization

In [15]:

In [16]:

- Two trees from the Random Forest (0 and 99) are exported as .dot files for visualization.
- **feature_names** specify the feature labels for the nodes.
- **filled=True** colors the nodes based on the class they represent.

Explanation of Random Forest Algorithm

- A **Random Forest** is an ensemble method that builds multiple decision trees using different subsets of the training data and features. The final output is the mode (classification) or average (regression) of all tree predictions.
- The main benefits include **reduced risk of overfitting** and **higher accuracy** due to aggregation.
- Randomness during training (sampling and feature selection) ensures diverse trees, which improves generalization.

Why Random Forest?

- Resistant to overfitting compared to individual decision trees.
- Works well with large datasets and can handle both numerical and categorical data.
- Feature importance is inherently available for model insights.