DOMANDE RISPOSTE CHIUSE SECONDA PARTE RICERCA OPERATIVA

GENNAIO 2016:

Per ciascuna delle seguenti affermazioni dire se `e vera o falsa, motivando la risposta:

- tutti i problemi di programmazione convessa ammettono un ottimo globale;
 - FALSO, la funzione obiettivo convessa può non avere un minimo globale
- può accadere che un problema di programmazione non lineare abbia un ottimo globale ma non uno locale;
 - **FALSO**, un ottimo globale è anche un ottimo locale
- può accadere che un problema di programmazione non lineare abbia un ottimo locale ma non globale
 - **VERO**, solo nel caso di un problema di programmazione convessa l'ottimo locale coincide per forza con l'ottimo globale

FEBBRAIO 2016

Per ciascuna delle seguenti affermazioni dire se è vera o falsa motivando la risposta:

- i metodi line search per i problemi non lineari quando convergono, convergono sempre a un minimo locale della funzione;
- nei metodi trust region a ogni iterazione il punto in cui ci si trova cambia;
 - **FALSO,** cambia solo se $f(\bar{x}_k) < f(x_k)$
- la direzione dell'antigradiente è sempre una direzione di discesa.
 - **VERA**, direzione con pendenza massima.

GENNAIO 2017

Sia dato un problema di PLI con regione ammissibile Z_a. Si dica se le seguenti affermazioni sono vere o false, motivando la risposta:

• il taglio di Gomory non è soddisfatto da tutte le soluzioni ottime del rilassamento lineare del problema di PLI;

FALSO, per definizione di taglio valido il taglio di Gomery è soddisfatto da tutti i punti eccetto x* del rilassamento lineare,

 il taglio di Gomory è soddisfatto da tutte le soluzioni ottime del problema di PLI;

VERO, per definizione di taglio valido.

• la regione ammissibile S_a del rilassamento lineare del problema di PLI `e un sott'insieme del semispazio definito dal taglio valido.

FALSO, il semispazio definito dal taglio valido è un sott'insieme del rilassamento lineare del problema di PLI

APRILE 2017

Sia dato un problema di programmazione non lineare con vincoli lineari. Si dica se le seguenti affermazioni sono vere o false, motivando la risposta:

• l'insieme dei minimi locali è un sott'insieme dell'insieme di tutti i punti KKT;

VERO, siccome i vincoli sono lineari non esistono punti che violano le constraint qualification -> i minimi locali sono un sott'insieme dell'insieme di tutti i punti KKT

• il minimo globale appartiene all'insieme dei punti KKT;

VERO se S_a è chiuso e limitato o se f convessa, **FALSO** altrimenti (per teorema di Weistrass)

esiste sempre almeno un punto KKT.

FALSO, non esiste un teorema che garantisca l'esistenza di essi.

GENNAIO 2019

Si consideri una determinata iterazione di un algoritmo di taglio basato sui tagli di Gomory. Per ciascuna delle seguenti affermazioni dire se è vera o falsa motivando la risposta:

• l'andamento dell'algoritmo è indipendente da come si sceglie l'equazione generatrice del taglio;

FALSO, la scelta dell'equazione generatrice del taglio incide sulla profondità.

• il valore ottimo del nuovo rilassamento lineare è certamente strettamente minore del valore ottimo del rilassamento lineare dell'iterazione precedente;

FALSO, può essere ≤

• l'aggiunta del taglio non può rendere vuota la regione ammissibile del nuovo rilassamento lineare.

VERO, se il vincolo aggiunto mediante un taglio rende la regione ammissibile vuota - > STOP

GENNAIO 2020

Si consideri un problema di PLI con regione ammissibile Za ≠ ∅ e il suo rilassamento lineare con regione ammissibile S_a avente come soluzione ottima un vertice v ₹ Za. Per ciascuna delle seguenti affermazioni dire se è vera o falsa motivando la risposta:

• un taglio valido è non soddisfatto solo dal vertice v ma è soddisfatto da tutti gli altri vertici di Sa;

VERO, per definizione di taglio valido

• un taglio valido non esclude mai punti di Sa con valore della funzione obiettivo inferiori rispetto al valore ottimo del problema di PLI;

FALSO, non è detto che un taglio possa escludere un valore inferiore rispetto al valore ottimo del problema di PLI

• per problemi di PLI misti, ovvero con alcune variabili che possono assumere anche valori non interi, non si può garantire che i tagli di Gomory siano validi.

GIUGNO 2021

Si consideri un problema di PLI e il suo rilassamento lineare. Quale delle seguenti affermazioni è **corretta**.

A: L'aggiunta di un taglio valido modifica la regione ammissibile del rilassamento lineare ma non quella del problema di PLI. È CORRETTA

B: L'aggiunta di un taglio valido modifica la regione ammissibile del problema di PLI ma non quella del rilassamento lineare.

C: L'aggiunta di un taglio valido modifica sia la regione ammissibile del problema di PLI che quella del suo rilassamento lineare.

D: L'aggiunta di un taglio valido lascia invariate sia la regione ammissibile del problema di PLI che quella del suo rilassamento lineare.

Si consideri la regione ammissibile $Za \neq \emptyset$ di un problema di PLI. Quale delle seguenti affermazioni è **falsa**.

A: La chiusura convessa conv(Za) è un poliedro. VERA per definizione

B: La chiusura convessa conv(Za) è un insieme finito solo se Z_a contiene un solo punto.

C: La chiusura convessa conv(Za) è sicuramente un sott'insieme della regione ammissibile Sa del rilassamento lineare del problema di PLI.

VERA perché conv(Za) ha vertici con punti interi.

D: Una delle precedenti affermazioni è falsa.

Sia dato un problema di PLI di massimo. Quali delle seguenti affermazioni 'e corretta.

A: Il valore ottimo del problema PLI è sempre uguale a quello del suo rilassamento lineare.

B: Il valore ottimo del problema PLI è sempre maggiore o uguale a quello del suo rilassamento lineare.

"il valore ottimo w* del problema di PLI non può essere superiore al valore ottimo z* del suo rilassamento lineare"

C: Il valore ottimo del problema PLI è uguale a quello del suo rilassamento lineare se quest'ultimo ha una soluzione ottima a coordinate tutte intere. **CORRETTA**

D: Nessuna delle precedenti affermazioni è corretta.

Quale tra seguenti affermazioni sui problemi non lineari è vera:

A: I problemi non lineari ammettono sempre una soluzione ottima.

B: Se i problemi non lineari hanno funzione obiettivo limitata inferiormente, allora hanno sicuramente una soluzione ottima.

C: Nei problemi non lineari gli ottimi locali sono sempre anche ottimi globali.

D: Tutte le altre affermazioni sono false. VERA

Quale tra le seguenti affermazioni sul rilassamento lagrangiano di un problema di PLI di massimo è **falsa**:

A: È un problema di PLI

B: Ha regione ammissibile che contiene quella del problema di PLI

C: Ha la stessa funzione obiettivo del problema di PLI FALSA, l'obiettivo si trasforma in cx-lambda(d-Cx)

D: Ha valore ottimo non inferiore a quello del problema di PLI

Sia dato un problema di PLI con regione ammissibile Za. Sia Sa la regione ammissibile del rilassamento lineare del problema di PLI e conv(Za) la chiusura convessa di Za. Per ciascuna delle seguenti affermazioni dire se `e vera o falsa motivando la risposta:

- conv(Za) può avere vertici a coordinate non intere; FALSO, la regione ammissibile di un problema PLI non può contenere vertici interi quindi neanche la sua chiusura convessa.
- conv(Za) può essere un polidero illimitato; VERO
- esistono punti x tali che x \in conv(Z_a) ma x/ \in Sa. FALSO, conv(Z_a) è un sott'insieme di S_a

GENNAIO 2022

Sia dato un problema di PLI. Si consideri l'applicazione di un algoritmo di taglio. Si dica se le seguenti affermazioni sono vere o false, motivando la risposta:

• la regione ammissibile del rilassamento lineare a un'iterazione dell'algoritmo `e sempre un sottoinsieme stretto della regione ammissibile del rilassamento lineare all'iterazione precedente;

VERO se il taglio generato è valido

- l'insieme delle soluzioni ottime del rilassamento lineare a un'iterazione dell'algoritmo `e sempre un sottoinsieme stretto dell'insieme delle soluzioni ottime del rilassamento lineare all'iterazione precedente; FALSO, non è sempre così
- il valore ottimo del rilassamento lineare a un'iterazione dell'algoritmo `e sempre strettamente minore del valore ottimo del rilassamento lineare all'iterazione precedente. FALSO può essere minore o uguale.

Dato un problema di PLI, dire quale delle seguenti affermazioni è falsa.

A: dopo l'aggiunta di un taglio di Gomory il valore ottimo del rilassamento lineare `e strettamente minore rispetto all'iterazione precedente;

B: dopo l'aggiunta di un taglio di Gomory il modo più efficiente di risolvere il nuovo rilassamento lineare è tramite il simplesso duale;

C: l'aggiunta di un taglio di Gomory non modifica la regione ammissibile del problema di PLI;

VERA, modifica il rilassamento lineare di un problema PLI.

D: Una delle altre affermazioni è falsa. (QUESTA E' FALSA SIGNIFICA DIRE SONO TUTTE VERE)

Sia A una matrice totalmente unimodulare. Dire quale tra le seguenti affermazioni è **falsa**:

A: la matrice $-A^T$ è totalmente unimodulare;

VERA: moltiplicando una matrice TU per -1 si ottiene una matrice TU, se A è TU allora lo è anche la trasposta.

B: A ha al massimo due elementi diversi da zero lungo ogni colonna;

VERA per definizione

C: ogni sua sottomatrice quadrata ha determinante pari a 0, +1 o -1;

VERA: definizione di matrice TU

D: Una delle altre affermazioni `e falsa.

FALSA PER ESCLUSIONE

Si consideri un problema di programmazione non lineare senza vincoli con funzione f convessa. Dire quale delle seguenti affermazioni è vera.

A: Se esistono due punti stazionari distinti, allora sono punti stazionari anche tutti i punti sul segmento che li congiunge;

VERA

B: esiste sempre almeno un punto stazionario;

FALSA

C: se f `e strettamente convessa, allora la sua matrice Hessiana `e definita positiva per tutte le x;

D: Tutte le altre affermazioni sono false.

Sia dato un problema del commesso viaggiatore (TSP) simmetrico. Dire quale delle seguenti affermazioni 'e falsa:

A: il rilassamento 1-tree `e un particolare rilassamento lagrangiano; VERA, i moltiplicatori di lagrange sono pari a 0

B: ogni rilassamento lagrangiano si può risolvere risolvendo un problema 1-tree; **VERA**, i moltiplicatori di lagrange sono pari a 0

C: la soluzione di un problema 1-tree o è un circuito hamiltoniano oppure contiene esattamente un sottocircuito;

VERA

D: Una delle altre affermazioni `e falsa. FALSA

GENNAIO 2022 BIS

Sia dato un problema di PLI. Si consideri l'applicazione di un algoritmo branch-andbound. Si dica se le seguenti affermazioni sono vere o false, motivando la risposta:

• l'upper bound di un nodo figlio è sempre strettamente minore dell'upper bound del nodo padre;

VERA per definizione dell'algoritmo.

• se a una certa iterazione l'upper bound di un nodo `e maggiore dell'attuale lower bound, allora in un'iterazione successiva verrà eseguita l'operazione di branching su quel nodo;

FALSO il branching viene effettuato sul nodo con valore dell'upper bound maggiore tra tutti i nodi non ancora analizzati.

• se un nodo viene cancellato, allora questo sicuramente non contiene soluzioni ottime del problema.

VERA, un nodo viene cancellato se l'upper bound del nodo è minore o uguale al lower bound

Sia dato un problema di programmazione non lineare con due vincoli $c1(x) \ge 0$ e $c2(x) \ge 0$. Sia x* un punto KKT corrispondente a un ottimo globale con moltiplicatori di Lagrange $\mu*2 > \mu*1 > 0$. Dire quale delle seguenti affermazioni è **falsa**:

A: il valore ottimo del problema cambia più rapidamente se si perturba il secondo vincolo;

VERA

B: i due vincoli sono attivi in x*;

VERA

C: oltre a x * ci possono essere altri punti KKT;

VERA

D: una delle altre affermazioni è falsa. FALSA

Sia dato un problema di programmazione non lineare senza vincoli con funzione obiettivo f avente matrice Hessiana definita positiva su tutto lo spazio. Dire quale delle seguenti affermazioni è **vera**:

A: il problema può avere zero, uno oppure infiniti punti stazionari; FALSA perché f è strettamente convessa o 0 oppure 1

B: se si aggiungono dei vincoli lineari in modo tale che la regione ammissibile sia un politopo, allora il problema ammette una sola soluzione ottima; **VERA** per teorema di Weistrass

C: ci sono punti stazionari che soddisfano la condizione necessaria del secondo ordine ma non quella sufficiente;

D: nessuna delle altre affermazioni è vera.

Sia dato un problema di PLI e il suo rilassamento lineare. Dire quale delle seguenti affermazioni è **falsa**:

A: se si trova una soluzione ottima del rilassamento lineare a coordinate non intere, allora il valore ottimo del rilassamento lineare è strettamente maggiore del valore ottimo del problema di PLI;

B: il problema di PLI può avere regione ammissibile vuota anche quando il rilassamento lineare ha obiettivo illimitato; VERA

C: il valore ottimo del rilassamento lineare `e sempre maggiore o uguale del valore ottimo del problema P_conv, ovvero il problema con la stessa funzione obiettivo del problema di PLI e regione ammissibile conv(Za); VERA

D: una delle altre affermazioni è falsa.

Sia dato un problema di PLI e si consideri l'algoritmo di taglio basato sui tagli di Gomory. Dire quale delle seguenti affermazioni è **vera**:

A: il taglio di Gomory non cambia se si cambia l'equazione generatrice del taglio;

B: in un taglio di Gomory, ottenuto dopo avere risolto un rilassamento lineare, compaiono variabili che fanno parte della base ottima del rilassamento lineare;

C: la base iniziale usata per risolvere il nuovo rilassamento lineare, ottenuto dopo l'aggiunta del taglio di Gomory, differisce da quella ottima del rilassamento lineare precedente per una sola variabile; **VERA**, si aggiunge almeno un vincolo (più iterazioni più vincoli)

D: nessuna delle altre affermazioni è vera.

FEBBRAIO 2020

Si consideri un problema di ottimizzazione non lineare senza vincoli con funzione obiettivo f convessa. Per ciascuna delle seguenti affermazioni dire se è vera o falsa motivando la risposta:

- se x1, x2 con x1/= x2, sono minimi globali, allora tutti i punti λ x1 +(1- λ)x2 con $\lambda \in$ [0, 1], ovvero tutti i punti sul segmento che congiunge x1 e x2 sono anch'essi minimi globali; **VERA** per la definizione di convessità
- dati due punti $x1 \neq x2$ tali che $\nabla f(x1) = \nabla f(x2) = 0$, allora $\nabla f(\lambda x1 + (1-\lambda)x2) = 0$ per tutti i $i\lambda \in [0,1]$; **VERA**, sta chiedendo la stessa cosa della prima usando la proprietà dei gradienti.
- se f è strettamente convessa, allora il sistema di equazioni $\nabla f(x) = 0$, o non ha soluzioni o ha un'unica soluzione. **VERA**, perché se esiste un minimo globale è unico.

GENNAIO 2023

Sia f una funzione strettamente convessa che ammette un ottimo globale x*. Dire quale delle seguenti affermazioni `e **vera**.

A: in x * la matrice hessiana `e semidefinita positiva;

B: in x * la matrice hessiana `e definita positiva;

C: in x*il gradiente ha una componente positiva;

D: in x * il gradiente ha una componente negativa.

Si consideri un problema di PLI con regione ammissibile Za e insieme delle soluzioni ottime Z_ott. Si consideri un taglio valido generato in una determinata iterazione di un algoritmo di taglio. Dire quale delle seguenti affermazioni `e vera.

A: il taglio valido non `e soddisfatto da tutte le soluzioni ottime dell'attuale rilassamento lineare;

B: per ognuno dei rilassamenti lineari delle iterazioni precedenti, tra le sue soluzioni ottime ce ne `e sempre almeno una che non `e soddisfatta dal taglio valido;

C: il taglio valido può non essere soddisfatto da punti che stanno in Za ma non in Z_{ott} ;

D: tutte le altre affermazioni sono false.

Si consideri un problema di PLI con regione ammissibile Za. Dire quale delle seguenti affermazioni è **falsa**.

A: il problema ottenuto da quello di PLI rimuovendo alcuni dei suoi vincoli, `e un rilassamento lagrangiano;

B: nel rilassamento lineare si rilassano i vincoli di interezza di tutte le variabili. Se si rilassano i vincoli di interezza di solo alcune delle variabili, si ottiene comunque un rilassamento;

C: se si aggiungono vincoli soddisfatti da tutti i punti in Za, si ottiene un rilassamento che può dare un upper bound migliore rispetto a quello del rilassamento lineare;

D: una delle altre affermazioni `e falsa.

Sia A una matrice totalmente unimodulare (TU) con al massimo due elementi diversi da 0 lungo ogni riga e, dove ve ne siano esattamente due, questi hanno segno opposto. Dire quale delle seguenti affermazioni è **falsa**:

A: la matrice trasposta A^Te TU; proprietà matrice TU

B: se moltiplico per 0 una riga di A, ottengo una matrice che è ancora TU;

C: se moltiplico per 0 una colonna di A, ottengo una matrice che è ancora TU;

D: se aggiungo ad A una colonna con componenti tutte pari a 1, ottengo una matrice che è ancora TU. **FALSA**

Si consideri un problema di PLI con regione ammissibile Za il cui rilassamento lineare ha un'unica soluzione ottima a coordinate non tutte intere. Si dica se le seguenti affermazioni sono vere o false, motivando la risposta:

- l'aggiunta di un taglio di Gomory determina sicuramente un decremento del valore ottimo del nuovo rilassamento lineare;
- il nuovo rilassamento lineare, ottenuto con l'aggiunta di un taglio di Gomory, ha insieme di soluzioni ottime non vuoto;
- la variabile aggiunta al taglio di Gomory per trasformarlo in equazione, pu`o assumere valori frazionari in Za.