Statistics 609 Practice Final

Name:		
-------	--	--

Show sufficient work to make very clear your method of solution.

- 1. Assume $X_1, X_2, X_3, ...$, be a sequence of independent Bernoulli(p) random variables. Let n denote the sample size.
 - (a) (4 points) If $p = \frac{1}{2}$, use Chebyshev's inequality to find a lower bound for $P(0.4 < \frac{1}{100} \sum_{i=1}^{100} X_i < 0.6)$.
 - (b) (4 points) If $p = \frac{1}{2}$, use the normal approximation to approximate the probability $P(0.4 < \frac{1}{100} \sum_{i=1}^{100} X_i < 0.6)$.
 - (c) (4 points) If $p = 10^{-4}$ and $n = 10^4$, use the Poisson approximation to find $P(\sum_{i=1}^{10^4} X_i >= 3)$.
 - (d) (4 points) Show that the PMF for each X_i belongs to an exponential family and find the natural parameter θ in terms of p and the log-partition function $A(\theta)$.
 - (e) (4 points) For a sample size n, find a complete and sufficient statistic with respect to the Bernoulli(p) distribution.
 - (f) (4 points) Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $p = \frac{1}{2}$. Find ν such that $n^{\nu}(2\bar{X} 1)$ converges in distribution to a non-trivial limit. For this value of ν , what distribution does it converge to?
- 2. Assume $X_1, X_2, X_3, ...$, be a sequence of independent $\operatorname{Uniform}(\theta_{\ell}, \theta_u)$ random variables where $\theta_{\ell} < \theta_u$. Let n denote the sample size.
 - (a) (4 points) Assume $\theta_{\ell} = 0$ and $\theta_u > 0$ and sample size n. Find a minimal sufficient statistic.
 - (b) (4 points) Using your answer to part (a), find the PDF for your minimal sufficient statistic.
 - (c) (4 points) Using your answer to part (a) and still assuming $\theta_{\ell} = 0$ and $\theta_u > 0$, is this minimal sufficient statistic complete? Either way, prove your result.
 - (d) (4 points) Assume $\theta_{\ell} = -\frac{\theta}{2}$ and $\theta_{u} = \frac{\theta}{2}$ where $\theta > 0$ and sample size n. Find a minimal sufficient statistic.
 - (e) (4 points) Assume $\theta_{\ell} = 0$ and $\theta_u = 1$ and sample size n. Let $X_{(n)} := \max(X_1, X_2, X_3, ..., X_n)$. Find a ν such that $n^{\nu}(1 X_{(n)})$ converges in distribution to a non-trivial limit. What distribution does it converge to?
- 3. Assume $X_1, X_2, X_3, ...$, be a sequence of independent $MVN(\mu, \Sigma)$ where $\mu \in \mathbb{R}^p$ and $\Sigma \in \mathbb{R}^{p \times p}$ and Σ is symmetric positive definite.
 - (a) (4 points) Show that X_i belongs to an exponential family and state the sufficient statistics, natural parameters in terms of μ and Σ , and log-partition function.
 - (b) (4 points) Find a matrix $A \in \mathbb{R}^{p \times p}$ such that AX_i has mutually independent components. For this choice of A the $E[AX_i]$.
 - (c) (4 points) Consider p=1 and let $\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ and $S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$. Prove that \bar{X} and S^{2} are independent.
 - (d) (4 points) Consider p=1 and let $\mu=1$ and $\sigma^2=1$. Find a ν such that $n^{\nu}(\bar{X}^2-1)$ converges in distribution to a non-trivial limit. What distribution does it converge to?
 - (e) (4 points) Consider p=1 and let $\mu=0$ and $\sigma^2=1$. Find a ν such that $n^{\nu}\bar{X}^2$ converges in distribution to a non-trivial limit. What distribution does it converge to?

Statistics 609 Practice Final

- 4. Let $X_1, X_2, ...$, be independent random variables with $X_i \sim \text{Exponential}(1)$, and let $N \sim \text{Poisson}(\lambda)$. Let $X_{(1)}^N = \min_{1 \le i \le N} X_i$. Let $S_N = \sum_{i=1}^N X_i$.
 - (a) (4 points) Find a transformation g(.) such that $g(X_i) \sim \text{Uniform}(0,1)$.
 - (b) (4 points) Find the conditional PDF for $X_{(1)}^N \mid N = n$.
 - (c) (4 points) Find $P(X_{(1)}^N > x)$.
 - (d) (4 points) Find $E[S_N]$.
 - (e) (4 points) Find $E[e^{tS_N}|N=n]$.
 - (f) (4 points) Find the MGF for S_N .
- 5. Let $X_1, ..., X_n$ be independent random variables having the double-exponential (μ, σ) distribution with PDF

$$f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}, \quad -\infty < x < \infty,$$

where $\mu \in (-\infty, \infty)$ and $\sigma > 0$ are fixed constants. In the following, the limiting process is with respect to $n \to \infty$.

(a) (4 points) Let $T_n = X_1 + \cdots + X_n$. Show that

$$\frac{T_n - n\mu}{\sqrt{2n}\sigma}$$
 converges in distribution to $N(0,1)$

(b) (4 points) If $\mu \neq 0$, show that

$$\sqrt{n} \left[\log(T_n/n)^2 - \log \mu^2 \right]$$
 converges in distribution to $N(0, 8\sigma^2/\mu^2)$

(c) (4 points) If $\mu = 0$, show that

$$\log(T_n^2/n)$$
 converges in distribution to $\log Y + \log(2\sigma^2)$,

where Y is a random variable having the chi-square distribution with one degree of freedom.

- (d) (4 points) Suppose that $\mu = 0$ and $\sigma = 1$. Let $W_n = \min_{i=1,...,n} |X_i|$. Show that W_n converges in probability to 0, but nW_n does not converge in probability to 0.
- (e) (4 points) Assume σ is fixed and μ is unknown. Let $X = (X_1, X_2, ..., X_n)$. Find an ancillary statistic.
- (f) (4 points) Assume both μ and σ are unknown. Let $X = (X_1, X_2, ..., X_n)$. Find an ancillary statistic.