轨道交通图

MAP:

1,1,1,1,1,1,1,1

1,1,1,p,q,r,1,1,1

1,1,1,o,1,1,s,1,1

1,a,c,d,1,i, j,1,1

1,b,t,n,e,v,k,u,1

1,1,1,1,f,m,l,1,1

1,1,1,1,g,1,1,1,1

1,1,1,1,h,1,1,1,1

1,1,1,1,1,1,1,1

注: 图中 w 改成 v 和代码一致

图为北京市城市轨道交通的部分网络,图中只列举了主要的车站和换乘站。线路上的数字表示的是在该区间的运行时分,下表为在换乘站换乘时的换乘时间。

换乘站	换乘起	、止线路	换乘走行时间(min)		
d	4 号线	13 号线	8 (14.25)		
	4 号线	2 号线	4 (7.5)		
	13 号线	2 号线	9 (15)		
	13 号线	4 号线	7 (12.75)		
	2 号线	4 号线	4 (8.25)		
	2 号线	13 号线	8 (14.25)		
f	4 号线	2 号线	4 (7.5)		
	2 号线	4 号线	5 (9.75)		
j	13 号线	2 号线	5 (9)		
	2 号线	13 号线	6 (11.25)		
n	2 号线	1 号线	4(7.5)		
	1 号线	2 号线	4(7.5)		
e	4 号线	1 号线	3(6)		
	1 号线	4 号线	4(7.5)		
k	1 号线	2 号线	5(9)		
	2 号线	1 号线	4(7.5)		

求出 O (起点站) -D (终点站)的 K 短路 (花费时间最少),就是从起点站到终到站的花费时间最少的路径、第二短路径、……第 k 短路径。(限制条件是换乘不能超过三次,直到第 k 短路所花费的时间多于最小花费时间的 10min(包括等于 10min)时为止)

O-D 如下图 (只需求对角线的右边部分)

	车站 a	车站 d	车站 g	车站1	车站j	车站 p	车站 r
车站 a							
车站 d							
车站 g							
车站1							
车站j							
车站 p							
车站 r							

即是车站a到达车站d的k短路: a-b-c-d

车站 a 到达车站 g 的 k 短路:

依次类推

算法

算法第一部分: 计算网络上任意两点间的 K 条渐短路

Step1: 初始化。给相关变量赋初值,建立空列表H用来存放每次迭代求得的最短路,空集合F用来存放各OD对及其对应的K短路;

Step2: 取网络图上任意 OD 对 $(v_i, v_i), v_i, v_i \in N$, 设最大迭代次数 NC ;

Step3: 迭代。利用蚁群算法求解 (v_i,v_j) 间最短路 $d(v_i,v_j)$,在路径搜索过程中同时验证是否满足有效路径判断原则,若满足算法继续并将此次迭代得到的最后结果添加到列表H中,否则放弃此路径重新搜索。如果算法收敛或达到最大迭代次数,算法停止。在列表H中取出最短的K条渐短路,与OD对相对应存入F。此时这K条渐短路皆为有效路径,可将其作为下一阶段回溯验证的基础和标准:

Step4: 重复 Step2、Step3,直到所有的 OD 对均计算完毕。此时 F 中存在 着所有 OD 对及其对应的 K 条渐短路。

算法第二部分:回溯验证寻找 K 短路

Step1: 取 OD 对 $(v_i, v_j), v_i, v_j \in N$,在 OD 对中 v_i 为起点, v_j 为终点。初始化两个空集合 $R^{(\alpha)}, S$, $\alpha = 0$,并将节点 v_i 放入集合 $R^{(\alpha)}$ 中;

Step2: 从集合 $R^{(\alpha)}$ 中逐个取节点,设节点变量 x_m ,令 x_m 表示从集合 $R^{(\alpha)}$ 中取出的当前节点;

Step3: 从 x_m 的第一个前驱节点开始,每个前驱节点都代表一条到达 x_m 的路径。设变量 $l(x_i,x_j)$ 表示从 x_j 到 x_i 回溯过程中所经过的路段的长度和,初始化时令 $l(x_i,x_i)=0$, $l(x_m^{(\eta)},x_j)=l(x_m^{(\eta)},x_m)+l(x_m,x_j)$,其中 $x_m^{(\eta)}$ 表示 x_m 的第 η 个前驱节点,且 $x_m^{(\eta)} \in N$ 。则在回溯过程中第 η 个前驱节点所在的路径的长度 $d^{(\eta)}(v_i,v_j)=d(v_i,x_m^{(\eta)})+l(x_m^{(\eta)},v_j)$ 。 检验该路径是否为有效路径,若 $d^{r-1}(v_i,v_j)< d^{r}(v_i,v_j)< d^r(v_i,v_j)$, $r\in (2,3,...,k)$,则将 $d^{(\eta)}(v_i,v_j)$ 插入到第 r 和第 r+1 个短路之间并将最后一个短路删除,同时将 $x_m^{(\eta)}$ 存入集合 S 。否则,维持原 K 条短路不变。令 $\eta=\eta+1$,重复 S Step3,直到 η 达到 x_m 的前驱节点的最大个数。

算法停止,现存的 K 条路径即为 OD 对 (v_i, v_i) 间的 K 条短路。

Step5: 重复 Step2、Step3、Step4, 直到所有的 OD 对均计算完毕。最终得到网络图中任意 OD 对间需参与客流分配的 K 短路。

配流

1. 已知现在所有 OD 之间的 K 短路和人数,求断面流量,所谓的断面流量就是一个小时内 经过该路段的人数总和。

分两种情况:假如只有一条路径,就是所有的人都只有走这条路加入有 K 条路径,就按照比例把人数分配到各条路径上,分配比例是这样计算的,

$$S(x) = e^{-2(C_k - C_{\min})^2 / 25} = e^{-2(5-3)^2 / 25}$$

$$P_k = \frac{S_k}{\sum S_i}$$

 C_{\min} 最小阻抗值,是指时间,

 C_{ι} -是 K 条路径的所用的时间,

假如,a-d 之间有 180 人,有两条 k 短路,分别是 a-b-d ,a-c-d 时间分别是 5,3 分钟,那么 就按照比例进行计算:

a-b-d:

$$S(x)_{a-b-d} = e^{-2(C_k - C_{\min})^2/25} = e^{-2(5-3)^2/25} =$$

a-b-c:
$$S(x)_{a-c-d} = e^0 = 1$$

分配比例是:

a-b-d:
$$P_k = \frac{S_k}{\sum S_i} = \frac{s(x)_{a-b-d}}{s(x)_{a-b-d} + s(x)a - c - d}$$
 如此这样分配各个 od 之间的人数比例,

最后计算出 od 之间的断面流量,就是所有走过这段路径的人数之和。

The 1 K-path for OD: ad->a-c-d time:25 min(304)

The 1 K-path for OD: ae->a-c-d-e time:35 min(213)

那么经过 a-c、c-d、d-e 的人数分别是: 304+213、304+213、213