MACHINE LEARNING

Postgraduate Course Project

"Machine Learning Applications for Face Detection"

Kalodimas Panagiotis

Winter Semester 2015-6

Goals

- Detect faces in into the wild images
- Avoid fake face detection created by noisy image areas
- Create a generative model that has the maximum ratio between real and fake detections

Means

- Filters detecting human face parts
- Training sets of images with faces
- Data analysis for human face modeling
- Machine Learning methods for classification and regression

Solutions

- Neural Net (2 kernel functions) for classification and certainty prediction of landmark detection using linear regression (return the possibility of an input to be a landmark)
- Data Analysis and SVM/K-Nearest Neighbor for landmark combination and face parts detection (analysis of the distances between the landmarks that are parts of a human face part (eyes, jaws, mouth, nose, eyebrows)
- Linear regression for choosing W vector on face predictive function using face parts as variables (use large w_i values for more critical parts in order to have more better detection performance)
- Linear regression for classification function using the certainty variable (A function that returns the possibility of a detection to be a human face)

Neural Network

- Regression for possibility prediction
- One hidden neural for minimum value
- One hidden neural for possibility prediction

Data Analysis – SVM/K-Nearest

- Analyze parts locality relations
- Add parts responses to detect face
- Create filters for combining them

Face Detection Function

- Face Detection function $f(face) = \sum_{i=1}^{7} w_i \times f(x)_i$
- Regression for finding the most critical parts (define W)

Regression Results		
Face Parts	W Values	
Jaws	4,625	
Eyebrow (L)	0	
Eyebrow (R)	0	
Nose	2,625	
Eye (L)	0,375	
Eye (R)	0	
Mouth	4,125	

Face Detection Classification/Prediction

 Create a function that predict the possibility of face existence according to the algorithm result

Test Results

• Finally use a testing set of image to verify our model

Testing results			
Indexes	Test	Training	
Reliability	0,9022	0,8959	
Detection Efficiency	0,8450	0,8168	
Certainty	0,9484	0,9518	