

VERİ YAPILARILARI VE ALGORİTMALAR

Giriş

Özyineleme Nedir? What is Recursion?

 Kendini çağıran herhangi bir fonskiyon rekürsif (recursive) olarak adlandırılır.

• Özyinelemeli bir yöntem, daha küçük bir sorun üzerinde çalışmak için kendisinin bir kopyasını çağırarak bir sorunu çözer. Bu rekürsif adım (recursion step) olarak tanımlanır.

• Rekürsif adım çok daha fazla rekürsif çağrı ile sonuçlanır.

Durma koşulu olmalıdır.

 Küçük problemlerin daha küçük dizileri temel duruma (base case) yakınsamalıdır.

Özyineleme

 Çoğu zaman iteratif kod yazmaktan daha kısa ve kolaydır.

 Benzer alt görevlerin kullanımında daha kullanışlı olurlar. Sıralama, arama ve gezinme problemleri bu duruma örnek olarak gösterilebilir.

Özyinelemeli Fonksiyonların Formatı

Format of Recursive Function

```
if(test for the base case)
    return some base case value
else if (test for another base case)
    return some another base case
value
else
    return (some work and then a
recursive call)
```

$$n! = \prod_{k=1}^{n} k = 1 * 2 * \dots * (n-1) * n$$

$$n! = \begin{cases} 1 & n \le 1 \\ n. (n-1)! & n > 1 \end{cases}$$

Faktöriyel

Recursion memory visualization

$$F_n = F(n) = \begin{cases} 0 & n = 0\\ 1 & n = 1\\ F(n-1) + F(n-2) & n > 1 \end{cases}$$

Fibonacci

Endeks	0	1	2	3	4	5	6	7	
Değeri	0	1	1	2	3	5	8	13	

Permütasyon

$$P(n,r) = \binom{n}{n-r} = \frac{n!}{(n-r)!}$$

Permütasyon ($\{a, b, c\}$) ise;

- 1. *a Permütasyon*({ *b*, *c* })
 - 1.1. $b \ Perm \ddot{u} tasyon (\{c\}) \rightarrow abc$
 - 1.2. c Permütasyon $(\{b\}) \rightarrow acb$
- 2. $b Permütasyon(\{a,c\})$
 - 2.1. $a Permütasyon(\{c\}) \rightarrow bac$
 - 2.2. $c Permütasyon(\{a\}) \rightarrow bca$
- 3. c Permütasyon($\{a, b\}$)
 - 3.1. $a Permütasyon(\{b\}) \rightarrow cab$
 - 3.2. $b \ Perm \ddot{u}tasyon(\{a\}) \rightarrow cba$

Özyileme ve İterasyon

- Temel durum (base case) ulaşınca durur.
- Her rekürsif çağrı ekstra bellek alanı kullanır.
- Eğer sonsuz rekürsif çağrı yapılırsa; bellek taşma hatası alınır (stack overflow).
- Bazı problemlerin çözümü rekürsif olarak daha kolay ifade edilebilir.

- Bir koşulun yanlış olması durumunda durur.
- Her bir iterasyon ekstra bellek alanı gerektirmez.
- Ekstra bellek alanı gerektirmediğinden sonsuz döngüler sonsuza kadar devam eder.
- İteratif çözümler rekürsif çözümler kadar açık olmayabilir.

Özyineleme için Notlar

- Rekürsif algoritmalar iki durum içermelidir.
 - Rekürsif durumlar ve temel durum.
- Her rekürsif fonksiyon durumu temel durumda durmalıdır.
- Genellikle iteratif çözümler rekürsif çözümlerden daha verimlidir.
 - Çünkü ekstra bellek alanı kullanmazlar.
- Bazı problemler en iyi rekürsif çözümler ile çözülebilirken bazıları için durum tam tersi olabilir.

Özyinelemeli Çağrılar için Örnekler

Example Algorithms of Recursion

Özyinelemeli Çağrılar

- Fibonacci series
- Factorial finding
- Merge sort, quick sort
- Binary search
- Tree traversals and many tree problems: InOrder, PreOrder, PostOrder
- Graph Traversals: DFS, BFS
- Dynamic Programming Examples
- Divide and Conquer Algorithms
- Towers of Hanoi
- Backtracking algorithms

Ornel: $T(n) = T(\frac{n}{2}) + C$, T(1) = 1 ve n, 2 kauluna uygun olcreik ilgli ynelemenn abilimini yenne koymoi (substituation) metodi ile abzniz.

Ornel: $T(n) = T(\frac{n}{2}) + C$, T(1) = 1 ve n), 2 kauluna uygun olcreik ilgli ynelemenn abrimini yerne koymoi (substituation) metodi ile abziniz.

$$T(\Lambda) = T(\frac{\Lambda}{2}) + C$$

$$T(2) = T(1) + C = 1 + C$$

$$T(\Lambda) = T(2) + C = (1+C) + C = 1 + 2C$$

$$T(\Lambda) = T(\Lambda) + C = (1+2C) + C = 1 + 3C$$

$$\vdots$$

$$T(\Lambda) = 1 + k \cdot C$$

$$T(\Lambda) = 1 + \log \Lambda \cdot C$$

$$\log_{\Lambda} \lambda = \log_{\Lambda} \Lambda$$

$$\log_{\Lambda} \lambda = \log_{\Lambda} \Lambda$$

$$\log_{\Lambda} \lambda = \log_{\Lambda} \Lambda$$

Ornek: Hanoi kulesi

$$T(n) = 2T(n-1) + 1$$

netotile attentie.

Ornel: Hanoi kulesi

metodo le adomini.

$$T(0) = 0$$

$$T(1) = 2 T(0) + 1 = 0 + 1 = 1$$

$$T(1) = 2 T(1) + 1 = 2 \cdot 1 + 1$$

$$T(3) = 2 T(2) + 1 = 2 \cdot (2 \cdot 1 + 1) + 1 = 2^{2} + 2 + 1$$

$$T(4) = 2 T(3) + 1 = 2 \cdot (2^{2} + 2 + 1) + 1 = 2^{3} + 2^{4} + 2 + 1$$

$$\vdots$$

$$f(n) = \underbrace{2}_{0 \le 1 \le n} = \underbrace{(2^{n+1} - 1)}_{2-1} = 2^{n+1} - 1 \text{ olun.}$$

Ornel: $T(n) = 2T(\frac{n}{2}) + n$, n > 1, T(1) = 1 icin iterasyon yorkmize ablumit.

Ornel:
$$T(n) = 27 \left(\frac{n}{2}\right) + n$$
,

n>1, T(1)=1 icin iterasyon yorkmize ablumit.

$$T\left(\frac{\Lambda}{2}\right) = 2 T\left(\frac{\Lambda}{L_{1}}\right) + \frac{\Lambda}{2}$$

$$T\left(\Lambda\right) = 2 \left(2T\left(\frac{\Lambda}{L_{1}}\right) + \frac{\Lambda}{2}\right) + \Lambda$$

$$T\left(\Lambda\right) = 2^{2} \cdot T\left(\frac{\Lambda}{L_{1}}\right) + 2\Lambda$$

$$T\left(\frac{\Lambda}{L_{1}}\right) = 2 \cdot T\left(\frac{\Lambda}{L_{1}}\right) + \frac{\Lambda}{L_{1}}$$

$$T\left(\Lambda\right) = 2 \cdot T\left(\frac{\Lambda}{L_{1}}\right) + \frac{\Lambda}{L_{1}} + 2\Lambda$$

$$T\left(\Lambda\right) = 2^{2} \cdot T\left(\frac{\Lambda}{L_{1}}\right) + 3\Lambda$$

$$T\left(\Lambda\right) = 2^{k} \cdot T\left(\frac{\Lambda}{2^{k}}\right) + k \cdot \Lambda$$

$$T\left(\Lambda\right) = 2^{k} \cdot T\left(\frac{\Lambda}{2^{k}}\right) + k \cdot \Lambda$$

$$\frac{n}{2^{k}} = 1 = n = 2^{k}$$

$$\log_{2} n = \log_{2} 2^{k}$$

$$\log_{2} n = k$$

$$T(n) = 2^{k} \cdot T(\frac{n}{2^{k}}) + k \cdot n$$

$$= n \cdot T(1) + \log_{2} n$$

$$= n + n \cdot \log_{2} n$$

$$T(n) = \Theta(n \log_{2} n)$$

Boll ve Yonet (Divide and conquer)

- . Quicle sort
- . Merge sort
- . Bivery search

gibi itadelem by us your algaritment yoklarmını benmser.

Pr Durum 1: Pr jetoma barit hale Pr gerbyse all timb yapılabilir.

> Deleum 1: Jj, P. Gormi Pr Lajouli olmangacak (k7 J) k=1,1...

JS (P,i;)

[P - D[:] - O(n)

[D[:] -> P

Master Theorem for Divide ant Conquer

$$T(n) = 2T\left(\frac{\Lambda}{2}\right) + O(n)$$
duete adthoral
work

for
nergng

of produm

$$T(n) = \alpha \cdot T\left(\frac{n}{6}\right) + \Theta\left(\frac{n^k \log^p n}{6}\right)$$

where a>,1, b>1, k>,0
p -> is a real number

2) If
$$a = b^{k}$$

a. If $p > -1$ $T(n) = \Theta(n^{\log_{k}q} \log^{2^{k+1}} n)$

b. If $p = -1$ $T(n) = \Theta(n^{\log_{k}q} \log \log n)$

c. If $p < -1$ $T(n) = \Theta(n^{\log_{k}q} \log \log n)$

3) If
$$a < b^k$$

a. If $p > 0$ $T(n) = O(n^k \log^p n)$
b. If $p < 0$ $T(n) = O(n^k)$

 $\sqrt[n]{\text{onch}}: T(n) = 9T(\frac{\Lambda}{3}) + \Lambda$

Onele: $T(n) = 9T(\frac{\Lambda}{3}) + \Omega$

$$b = 3$$

$$b = 3$$

$$+(n) = 0$$

$$\log_{3}^{9} = \log_{3}^{3^{2}} = \Theta(n^{2})$$

$$+(n) = 0 (n^{\log_{3}^{9} - t}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{10} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{10} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{10} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{10} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{10} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{10} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{10} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$\log_{3}^{9} = \log_{3}^{9} (n^{2}) \text{ olur } \forall e \in = 1$$

$$f(n) = O(n^{\log_{b} a - t}) \text{ icin}$$

$$T(n) = O(n^{\log_{b} a})$$

$$(620M \rightarrow T(n) = O(n^{2})$$

Ornek: $2T(\frac{0}{2})+0$

Ornek: $2T(\frac{0}{2})+0$

$$\begin{array}{lll}
Q = 2 \\
b = 2 \\
f(n) = 1
\end{array}$$

$$\begin{array}{lll}
\log_b \alpha & \log_2 2 \\
0 & = 1092 2 \\
0 & = 1092 2
\end{array}$$

$$f(n) = O(n^{\log_b \alpha}) \text{ in } T(n) = \Theta(n^{\log_b \alpha} \log n)$$

$$T(n) = \Theta(n^{\log_b \alpha} \log n)$$

$$= \Theta(n^{\log_b \alpha})$$

SABLON > a. T(n)+f(n)

Ornel:
$$T(\Lambda) = 4T(\frac{\Lambda}{2}) + \Lambda^2$$

Onek:
$$T(\Lambda) = 47 \left(\frac{\Lambda}{2}\right) + \Lambda^2$$

SASLON - a. $T\left(\frac{\Lambda}{6}\right) - f(\Lambda)$

$$b = 2$$

$$T(n) = \Theta(n^2 \cdot \log n)$$

$$T(n) = \Theta(n^{\log_b a} \cdot \log n)$$

$$f(n) = \Theta(n \cdot \log_b a)$$

onek: $T(n) = 67 \left(\frac{1}{3}\right) + n^2 \log n$

Onek:
$$T(n) = bT(\frac{1}{3}) + n^2 \log n$$

SARLON => a. $T(\frac{1}{3}) + f(n)$
 $a = b$
 $b = 3$
 $f(n) = n^2 \log n$
 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(n)$

$$f(n) = \Lambda \left(\Lambda^{\log_{1} \alpha + \epsilon} \right)$$

$$\alpha f(\underline{n}) \leq C. f(n)$$

$$\alpha f(\underline{n}) \leq C. f(n)$$

Orde: $T(\Lambda) = 16T \left(\frac{\Lambda}{4}\right) + \Lambda!$

Orde:
$$T(n) = 16T(\frac{n}{4}) + n!$$

SABLOW

$$T(n) = q \cdot T\left(\frac{n}{b}\right) + P(n)$$

$$a=16$$
 $a>1$
 $b=4$ $b>1$
 $f(n)=n!$

$$f(n) = n \left(\frac{\log_b^a + t}{n} \right)$$
 ve $a f\left(\frac{n}{b} \right) < c \cdot f(n)$
 $- \Theta \left(f(n) \right)$

$$T(n) = \Theta(f(n))$$

$$= \Theta(n!)$$

Veri Yapıları ve Algoritmalar

ZAFER CÖMERT

Öğretim Üyesi