Semantics

Natural Language Processing

Master in Business Analytics and Big Data

acastellanos@faculty.ie.edu

Word Senses

One lemma "bank" can have many meanings:

- Sense (or word sense)
 - Every aspect of a word's meaning.
- The lemma bank here has two senses

Homonymy

Homonyms: same lemma, distinct meanings

```
bank<sub>1</sub>: financial institution, bank<sub>2</sub>: sloping land bat<sub>1</sub>: club for hitting a ball, bat<sub>2</sub>: nocturnal flying mammal
```

Homographs

```
bank/bank
bat/bat
```

• Homophones:

```
Write/right Piece/peace
```

Polysemy

Bank1: The bank was constructed in 1875 out of local red brick.

Bank2: I withdrew the money from the bank

- Are those the same sense?
 - Sense 2: "A financial institution"
 - Sense 1: "The building belonging to a financial institution"
- A polysemous word has related meanings
 - Most non-rare words have multiple meanings

Metonymy or Systematic Polysemy

- Lots of types of polysemy are systematic
 - IE University

Building

Other such kinds of systematic polysemy:

Author (Jane Austen wrote Emma) Works of Author (I love Jane Austen)

Tree (Plums have beautiful blossoms) Fruit (I ate a preserved plum)

The "zeugma" test

How do we know when a word has more than one sense?

- Two senses of serve?
 - Which flights serve breakfast?
 - Does Lufthansa serve Philadelphia?
- Does Lufthansa serve breakfast and Philadelphia?
 - two different senses of "serve"

Synonyms

- Word that have the same meaning in some or all contexts.
 - big / large
 - automobile / car
- Two lexemes are synonyms iff:
 - Can be substituted for each other in all situations
 - Have the same propositional meaning

Synonyms

There is not perfect synonyms

- Many aspects of meaning are identical
- Notions of politeness, slang, register, genre, etc.

• Example:

- Water/ H_20
- Big/large
- Brave/courageous

Synonymy is a relation between senses rather than words

- Consider the words big and large
- Are they synonyms?
 - How big is that plane?
 - Would I be flying on a large or small plane?
- How about here:
 - Miss Nelson became a kind of big sister to Benjamin.
 - Miss Nelson became a kind of large sister to Benjamin.
- Why?
 - big has a sense that means being older, or grown up
 - large lacks this sense

Antonyms

- Senses that are opposites with respect to one meaning
- Otherwise, they are very similar!

```
dark/light short/long fast/slow rise/fall hot/cold up/down in/out
```

- More formally: antonyms can
 - Define a binary opposition or be at opposite ends of a scale
 - long/short, fast/slow
 - Be reversives:
 - rise/fall, up/down

Hyponymy and Hypernymy

- One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other
- Conversely hypernym/superordinate ("hyper is super")

Hyponyms and Instances

WordNet has both classes and instances.

- An instance is an individual, a proper noun that is a unique entity
 - San Francisco is an instance of city
- But city is a class
 - city is a hyponym of municipality...
 location...

WordNet 3.0

- A hierarchically organized lexical database
 - On-line thesaurus + aspects of a dictionary

Noun

- S: (n) bass (the lowest part of the musical range)
- S: (n) bass, bass part (the lowest part in polyphonic music)
- S: (n) bass, basso (an adult male singer with the lowest voice)
- S: (n) sea bass, bass (the lean flesh of a saltwater fish of the family Serranidae)
- S: (n) freshwater bass, bass (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- S: (n) bass, bass voice, basso (the lowest adult male singing voice)
- S: (n) bass (the member with the lowest range of a family of musical instruments)
- S. (n) bass (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Adjective

S: (adj) bass, deep (having or denoting a low vocal or instrumental range) "a
deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

Senses in WordNet?

 The synset (synonym set), the set of near-synonyms, instantiates a sense or concept, with a gloss

- Example: chump as a noun with the gloss:
 "a person who is gullible and easy to take advantage of"
- This sense of "chump" is shared by 9 words:

```
chump<sup>1</sup>, fool<sup>2</sup>, gull<sup>1</sup>, mark<sup>9</sup>, patsy<sup>1</sup>, fall guy<sup>1</sup>, sucker<sup>1</sup>, soft touch<sup>1</sup>, mug<sup>2</sup>
```

Each of these senses have this same gloss

WordNet Relations

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$breakfast^1 o meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 \rightarrow lunch^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Has-Instance		From concepts to instances of the concept	$composer^1 \rightarrow Bach^1$
Instance		From instances to their concepts	$Austen^1 \rightarrow author^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Antonym		Opposites	$leader^1 \rightarrow follower^1$

Hypernym Hierarchy for "bass"

- S: (n) bass, basso (an adult male singer with the lowest voice)
 - <u>direct hypernym</u> / <u>inherited hypernym</u> / <u>sister term</u>
 - S: (n) singer, vocalist, vocalizer, vocaliser (a person who sings)
 - S: (n) musician, instrumentalist, player (someone who plays a musical instrument (as a profession))
 - S: (n) performer, performing artist (an entertainer who performs a dramatic or musical work for an audience)
 - S: (n) entertainer (a person who tries to please or amuse)
 - S: (n) person, individual, someone, somebody, mortal, soul (a human being) "there was too much for one person to do"
 - <u>S:</u> (n) <u>organism</u>, <u>being</u> (a living thing that has (or can develop) the ability to act or function independently)
 - S: (n) living thing, animate thing (a living (or once living) entity)
 - S: (n) whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"
 - S: (n) object, physical object (a tangible and visible entity; an entity that can cast a shadow) "it was full of rackets, balls and other objects"
 - S: (n) physical entity (an entity that has physical existence)
 - <u>S: (n) entity</u> (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

Word Similarity

- Synonymy: a binary relation
 - Two words are either synonymous or not
- Similarity (or distance): a looser metric
 - Two words are more similar if they share more features of meaning
- Similarity is properly a relation between senses
 - The word "bank" is not similar to the word "slope"
 - Bank¹ is similar to fund³
 - Bank² is similar to slope⁵
- But we'll compute similarity over both words and senses

Word similarity and word relatedness

- We often distinguish word similarity from word relatedness
 - Similar words: near-synonyms
 - Related words: can be related any way
 - car, bicycle: similar
 - car, gasoline: related, not similar

Two classes of similarity algorithms

- Thesaurus-based algorithms
 - Are words "nearby" in hypernym hierarchy?
 - Do words have similar glosses (definitions)?
- Distributional algorithms
 - Do words have similar distributional contexts?

Path based similarity

 Two concepts (senses/synsets) are similar if they are near each other in the thesaurus hierarchy

Problem with basic path-based similarity

- Assumes each link represents a uniform distance
 - But nickel to money seems to us to be closer than nickel to standard
 - Nodes high in the hierarchy are very abstract
- We instead want a metric that
 - Represents the cost of each edge independently
 - Words connected only through abstract nodes are less similar

Information Content Similarity

$$P(c) = \frac{\sum_{w \in words(c)} count(w)}{N}$$

words("geo-formation") = {hill,ridge,grotto,coast,cave,shore,natural elevation}
words("natural elevation") = {hill, ridge}

Resnik 1995. Using information content to evaluate semantic similarity in a taxonomy. IJCAI

Information Content Similarity

WordNet hierarchy augmented with probabilities
 P(c)

Information Content Similarity

• Information content:

$$IC(c) = -\log P(c)$$

Most informative subsume

$$LCS(c_1, c_2)$$

The most informative (lowest) node in the hierarchy subsuming both c_1 and c_2

Using IC for similarity

- The similarity between two words is related to their common information
- Common information:
 - The information content of the most informative (lowest) subsumer (MIS/LCS) of the two nodes

$$sim_{resnik}(c_1, c_2) = -\log P(LCS(c_1, c_2))$$

Philip Resnik. 1995. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. IJCAI 1995. Philip Resnik. 1999. Semantic Similarity in a Taxonomy: An Information-Based Measure and its Applicatio to Problems of Ambiguity in Natural Language. JAIR 11, 95-130.

Dekang Lin similarity theorem

 Ratio between the amount of information needed to state the commonality of A and B and the information needed to fully describe A and B

$$sim_{Lin}(A, B) \propto \frac{IC(common(A, B))}{IC(description(A, B))}$$

Lin defines IC as 2 x information of the LCS

$$sim_{Lin}(c_1, c_2) = \frac{2 \log P(LCS(c_1, c_2))}{\log P(c_1) + \log P(c_2)}$$

Dekang Lin Similarity

$$sim_{Lin}(A, B) = \frac{2 \log P(LCS(c_1, c_2))}{\log P(c_1) + \log P(c_2)}$$

$$sim_{Lin}(hill, coast) = \frac{2 \log P(geological - formation)}{\log P(hill) + \log P(coast)} = \frac{2 \ln 0.00176}{\ln 0.0000189 + \ln 0.0000216} = .59$$

Libraries

NLTK

http://nltk.github.com/api/nltk.corpus.reader.html?highlight=similarity-nltk.corpus.reader.WordNetCorpusReader.res_similarity

WordNet::Similarity

http://wn-similarity.sourceforge.net/

Web-based interface:

http://marimba.d.umn.edu/cgi-bin/similarity/similarity.cgi

Evaluating similarity

- Intrinsic Evaluation:
 - Correlation between algorithm and human word similarity ratings
- Extrinsic (task-based, end-to-end) Evaluation:
 - Malapropism (spelling error) detection
 - WSD
 - Taking TOEFL multiple-choice vocabulary tests

```
Levied is closest in meaning to:

imposed, believed, requested, correlated
```

Two classes of similarity algorithms

Thesaurus-based algorithms

- Are words "nearby" in hypernym hierarchy?
- Do words have similar glosses (definitions)?

Distributional algorithms

Do words have similar distributional contexts?

Problems with thesaurus-based meaning

- We don't have a thesaurus for every language
 - http://globalwordnet.org/resources/wordnets-in-the-world/
- Low-resource settings: problems with recall
 - Missing words
 - Missing connections between senses
 - Thesauri work less well for verbs, adjectives
 - Adjectives and verbs have less structured hyponymy relations

Distributional models of meaning

- Also called vector-space models of meaning
- Offer much higher recall than hand-built thesauri
 - Although they tend to have lower precision
- Zellig Harris (1954):
 - A and B have almost identical environments -> synonyms
- Firth (1957):
 - "You shall know a word by the company it keeps!"

Intuition of distributional word similarity

Nida example:

```
A bottle of tesgüino is on the table Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.
```

- From context words humans can guess tesgüino means
 - an alcoholic beverage like beer

Reminder: Term-document matrix

- Each cell: count of term t in a document d: $tf_{t,d}$:
 - Each document is a count vector: a column below

| | As Tou Like | e I It | Twelfth Night | Julius C aesar | Henry |
|---------|-------------|---------------|---------------|-----------------------|---------------|
| battle | | 1 | 1 | 8 | 15 |
| soldier | | 2 | 2 | 12 | 36 |
| fool | , | 37 | 58 | 1 | 5 |
| clown | | 6 | 117 | 0 | 0 |

Reminder: Term-document matrix

Two documents are similar if their vectors are similar

| | As You Like It | Twelfth Night | Julius T aesar | Hen | ry∄V |
|---------|----------------|---------------|-----------------------|-----|------|
| battle | 1 | 1 | 8 | | 15 |
| soldier | 2 | 2 | 12 | | 36 |
| fool | 37 | 58 | 1 | | 5 |
| clown | 6 | 117 | 0 | | 0 |

The words in a term-document matrix

Each word is a count vector in N^D: a row below

| | As By ou 1 | .ike🛚t | Twelfth Night | Julius © aesar | Henry∄∕ |
|---------|------------|--------|---------------|-----------------------|---------|
| battle | | 1 | 1 | 8 | 15 |
| soldier | | 2 | 2 | 12 | 36 |
| fool | | 37 | 58 | 1 | 5 |
| clown | | 6 | 117 | 0 | 0 |

The words in a term-document matrix

• Two words are similar if their vectors are similar

| | As By ou Like | e 1 It | Twelfth Night | Julius © aesar | Henry ∄ ∕ |
|---------|---------------|---------------|---------------|-----------------------|------------------|
| battle | | 1 | 1 | 8 | 15 |
| soldier | | 2 | 2 | 12 | 36 |
| fool | | 37 | 58 | 1 | 5 |
| clown | | 6 | 117 | 0 | 0 |

The Term-Context matrix

- Instead of using entire documents, use smaller contexts
 - Paragraph
 - Window of words

 A word is now defined by a vector over counts of context words

Sample contexts: 20 words (Brown corpus)

- equal amount of sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of clove and nutmeg,
- on board for their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened to that of
- of a recursive type well suited to programming on the digital computer. In finding the optimal R-stage policy from that of
- substantially affect commerce, for the purpose of gathering data and information necessary for the study authorized in the first section of this

Term-context matrix for word similarity

 Two words are similar in meaning if their context vectors are similar

| | aardvark | computer | data | pinch | result | sugar | |
|-------------|----------|----------|------|-------|--------|-------|--|
| apricot | 0 | 0 | 0 | 1 | 0 | 1 | |
| pineapple | 0 | 0 | 0 | 1 | 0 | 1 | |
| digital | 0 | 2 | 1 | 0 | 1 | 0 | |
| information | 0 | 1 | 6 | 0 | 4 | 0 | |

Should we use raw counts?

- For the term-document matrix
 - We used tf-idf instead of raw term counts

- For the term-context matrix
 - Positive Pointwise Mutual Information (PPMI) is common

Pointwise mutual information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$PMI(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

- PMI between two words: (Church & Hanks 1989)
 - Do words x and y co-occur more than if they were independent?

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

- Positive PMI between two words (Niwa & Nitta 1994)
 - Replace all PMI values less than 0 with zero

- Matrix F with W rows (words) and C columns (contexts)
- f_{ij} is # of times w_i occurs in context c_j

| | aardvark | computer | data | pinch | result | sugar |
|-------------|----------|----------|------|-------|--------|-------|
| apricot | 0 | 0 | 0 | 1 | 0 | 1 |
| pineapple | 0 | 0 | 0 | 1 | 0 | 1 |
| digital | 0 | 2 | 1 | 0 | 1 | 0 |
| information | 0 | 1 | 6 | 0 | 4 | 0 |

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \qquad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \qquad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}} \qquad ppmi_{ij} = \begin{cases} pmi_{ij} & \text{if } pmi_{ij} > 0\\ 0 & \text{otherwise} \end{cases}$$

$$p(w = information, c = data) = 6/19 = 0.32$$

$$p(w = information) = 11 / 19 = 0.58$$

 $p(c = data) = 7/19 = 0.37$

$$p(w = information, c = data) = 6/19 = 0.32$$

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$p(w = information) = 11 / 19 = 0.58$$

$$p(w_i) = \frac{\sum_{j=1}^{C} f_{ij}}{N}$$

$$p(c = \text{data}) = 7/19 = 0.37$$

$$p(c_j) = \frac{\sum_{i=1}^{W} f_{ij}}{N}$$

| | ŗ | o(w,con | text) | | | p(w) |
|-------------|----------|---------|-------|--------|-------|------|
| | computer | data | pinch | result | sugar | |
| apricot | 0.00 | 0.00 | 0.05 | 0.00 | 0.05 | 0.11 |
| pineapple | 0.00 | 0.00 | 0.05 | 0.00 | 0.05 | 0.11 |
| digital | 0.11 | 0.05 | 0.00 | 0.05 | 0.00 | 0.21 |
| information | 0.05 | 0.32 | 0.00 | 0.21 | 0.00 | 0.58 |
| p(context) | 0.16 | 0.37 | 0.11 | 0.26 | 0.11 | |

| | | p(w,context) | | | | | | | |
|---|-------------|--------------|------|-------|--------|-------|------|--|--|
| | | computer | data | pinch | result | sugar | | | |
| | apricot | 0.00 | 0.00 | 0.05 | 0.00 | 0.05 | 0.11 | | |
| n | pineapple | 0.00 | 0.00 | 0.05 | 0.00 | 0.05 | 0.11 | | |
| $pmi_{::} = \log_2 \frac{P_{ij}}{P_{ij}}$ | digital | 0.11 | 0.05 | 0.00 | 0.05 | 0.00 | 0.21 | | |
| $pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}}$ | information | 0.05 | 0.32 | 0.00 | 0.21 | 0.00 | 0.58 | | |
| | p(context) | 0.16 | 0.37 | 0.11 | 0.26 | 0.11 | | | |

 $pmi(information, data) = log_2 (0.32 / (0.37 * 0.58) = 0.57$

PPMI(w,context)

| | computer | data | pinch | result | sugar | | |
|-------------|----------|------|-------|--------|-------|--|--|
| apricot | - | - | 2.25 | - | 2.25 | | |
| pineapple | _ | - | 2.25 | - | 2.25 | | |
| digital | 1.66 | 0.00 | _ | 0.00 | _ | | |
| information | 0.00 | 0.57 | _ | 0.47 | - | | |

Weighing PMI

PMI is biased toward infrequent events

- Various weighting schemes help alleviate this
 - From Frequency to Meaning: Vector Space Models of Semantics (https://www.microsoft.com/en-us/research/wp-content/uploads/2017/07/jair10.pdf)
- Add-one smoothing can also help

Weighing PMI

Add-25moothedCount(w,context

| | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot | 2 | 2 | 3 | 2 | 3 |
| pineapple | 2 | 2 | 3 | 2 | 3 |
| digital | 4 | 3 | 2 | 3 | 2 |
| information | 3 | 8 | 2 | 6 | 2 |

| | p(w) | | | | | |
|-------------|----------|------|-------|--------|-------|------|
| | computer | data | pinch | result | sugar | |
| apricot | 0.03 | 0.03 | 0.05 | 0.03 | 0.05 | 0.20 |
| pineapple | 0.03 | 0.03 | 0.05 | 0.03 | 0.05 | 0.20 |
| digital | 0.07 | 0.05 | 0.03 | 0.05 | 0.03 | 0.24 |
| information | 0.05 | 0.14 | 0.03 | 0.10 | 0.03 | 0.36 |
| p(context) | 0.19 | 0.25 | 0.17 | 0.22 | 0.17 | |

Weighing PMI

PPMI(w,context)

| | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot | - | - | 2.25 | - | 2.25 |
| pineapple | - | - | 2.25 | - | 2.25 |
| digital | 1.66 | 0.00 | - | 0.00 | - |
| information | 0.00 | 0.57 | _ | 0.47 | - |

PPMI(w,context)[add-2]

| | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot | 0.00 | 0.00 | 0.56 | 0.00 | 0.56 |
| pineapple | 0.00 | 0.00 | 0.56 | 0.00 | 0.56 |
| digital | 0.62 | 0.00 | 0.00 | 0.00 | 0.00 |
| information | 0.00 | 0.58 | 0.00 | 0.37 | 0.00 |

Using syntax to define a word's context

Zellig Harris (1968)

"The meaning of entities, and the meaning of grammatical relations among them, is related to the restriction of combinations of these entities relative to other entities"

- Two words are similar if they have similar parse contexts
- Duty and responsibility (Chris Callison-Burch's example)

| Modified by adjectives | additional, administrative, assumed, collective, congressional, constitutional |
|------------------------|--|
| Objects of verbs | assert, assign, assume, attend to, avoid, become, breach |

Co-occurrence vectors based on syntactic dependencies

- The contexts C are different dependency relations
 - Subject-of- "absorb"
 - Prepositional-object of "inside"
- Counts for the word cell:

| | subj-of, absorb | subj-of, adapt | subj-of, behave |
pobj-of, inside | pobj-of, into |
nmod-of, abnormality | nmod-of, anemia | nmod-of, architecture |
obj-of, attack | obj-of, call | obj-of, come from | obj-of, decorate |
nmod, bacteria | nmod, body | nmod, bone marrow | |
|------|-----------------|----------------|-----------------|---------------------|---------------|--------------------------|-----------------|-----------------------|--------------------|--------------|-------------------|------------------|--------------------|------------|-------------------|--|
| cell | 1 | 1 | 1 | 16 | 30 | 3 | 8 | 1 | 6 | 11 | 3 | 2 | 3 | 2 | 2 | |

Dekang Lin, 1998 "Automatic Retrieval and Clustering of Similar Words"

PMI applied to dependency relations

| Object of "drink" | Count | PMI |
|-------------------|-------|------|
| tea | 2 | 11.8 |
| liquid | 2 | 10.5 |
| wine | 2 | 9.3 |
| anything | 3 | 5.2 |
| it | 3 | 1.3 |

- "Drink it" more common than "drink wine"
- But "wine" is a better "drinkable" thing than "it"

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

PMI applied to dependency relations

$$\cos(\vec{v}, \vec{w}) = \frac{\vec{v} \bullet \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\vec{v}}{|\vec{v}|} \bullet \frac{\vec{w}}{|\vec{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

| | large | data | computer |
|-------------|-------|------|----------|
| apricot | 1 | 0 | 0 |
| digital | 0 | 1 | 2 |
| information | 1 | 6 | 1 |

Which pair of words is more similar?

cosine(apricot, information) =
$$\frac{1+0+0}{\sqrt{1+0+0}} = \frac{1}{\sqrt{1+36+1}} = \frac{1}{\sqrt{38}} = .16$$

cosine(digital, information) =
$$\frac{0+6+2}{\sqrt{0+1+4}\sqrt{1+36+1}} = \frac{8}{\sqrt{38}\sqrt{5}} = .58$$

cosine(apricot, digital) =
$$\frac{0+0+0}{\sqrt{1+0+0}} = 0$$

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

- Skip-grams vs CBOW:
 - Skip-grams: p(time -> It is ? to finish)
 - CBOW: P(it is ? to finish -> time)

 The result is a dense vector for each word, good at predicting other words appearing in its context (also represented by vectors)

Source: http://veredshwartz.blogspot.sg.

 The result is a dense vector for each word, good at predicting other words appearing in its context (also represented by vectors)

https://www.tensorflow.org/tutorials/word2vec

Anything2Vec

- Med2vec: embeddings for medical codes
 - https://arxiv.org/abs/1602.05568
- Author2vec: embeddings of authors based on contents and authorships
 - https://researchweb.iiit.ac.in/~soumyajit.ganguly/papers/A2v_1.pdf
- Citation2vec: embedding of papers based on the citations
 - https://arxiv.org/pdf/1703.06587.pdf
- Doc2Vec: embeddings of whole documents
 - https://cs.stanford.edu/~quocle/paragraph_vector.pdf
- Many More:
 - http://nlp.town/blog/anything2vec/

Resources

- Christopher Olah's post on Word Embeddings
 - http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
- Tensorflow tutorial on Word2Vec (with Code):
 - https://www.tensorflow.org/tutorials/word2vec
- GloVe: Global Vectors for Word Representation
 - https://nlp.stanford.edu/projects/glove/
- Word embeddings vs. other distributional semantic models
 - http://blog.aylien.com/overview-word-embeddings-history-word2veccbow-glove/