2024 / 25

School of Science and Computing

+353 (0)51 302037

☑ Eleanor.Reade@setu.ie

www.wit.ie/schools/science_computing

Module Descriptor

Data Structures and Algorithms 1 (Computing and Mathematics)

Data Structures and Algorithms 1 (A13489)

Short Title: Data Structures & Algorithms 1
Department: Computing and Mathematics

Credits: 5 Level: Introductory

Description of Module / Aims

Implement, from first principles, custom and general purpose data structures and algorithms that are efficient, thread safe, and robustly tested and validated.

Programmes

	$\operatorname{stage/seme}$	ester/status
COMP-0602	BSc (Hons) in Applied Computing (International) (WD KACCM BI)	2 / 3 / M
COMP-0602	BSc (Hons) in Applied Computing (WD KACCM B)	2 / 3 / M
COMP-0602	BSc (Hons) in Applied Computing (WD_KCOMP_B)	2 / 3 / M
COMP-0602	BSc (Hons) in Computer Forensics and Security (WD KCOFO B)	2/3/M
COMP-0602	BSc (Hons) in Computer Science (WD KCMSC B)	2/3/M
COMP-0602	BSc (Hons) in Software Engineering (WD KDEVP BI)	2/4/M
COMP-0602	BSc (Hons) in Software Systems Development (WD KDEVP B)	2 / 4 / M
COMP-0602	BSc (Hons) in the Internet of Things (International) (WD KINTT BI)	2/3/M
COMP-0602	BSc in Applied Computing (WD KCOMP D)	2 / 4 / M
	BSc in Software Systems Development (WD_KCOMC_D)	$2\ /\ 4\ /\ { m M}$

Indicative Content

- Implementing Data Structures: Abstract Data Types (ADTs); Lists; Sets; Stacks; Queues; Maps
- Implementing Search Algorithms: Linear; Binary; Hashing; Other
- Implementing Sorting Algorithms: Selection; Bubble; Insertion; Other
- Recursive Algorithms
- Multithreading and Concurrency Issues
- Test-Driven Development for Data Structures and Algorithms

Learning Outcomes

On successful completion of this module, a student will be able to:

- 1. Construct, from first principles, custom and general purpose data structures.
- 2. Construct suitable and efficient search algorithms for different data structures.
- 3. Construct efficient sorting algorithms for different data structures.
- 4. Use recursion in algorithmic implementations.
- 5. Explain the issues surrounding, and be able to implement solutions for, concurrently accessed data structures
- 6. Construct robust data structures and efficient algorithms in a systematic, test-driven fashion.

Learning and Teaching Methods

- This module will be presented by a combination of lectures and computer-based practicals whilst capitalising on a web-enhanced learning environment.
- Students will work on building a portfolio of practical project work.
- Cooperative and peer learning (e.g. pair-programming, teamwork).
- Self-directed learning.

Learning Modes

Learning Type	\mathbf{F}/\mathbf{T} Hours	P/T Hours
Lecture	24	12
Practical	36	12
Independent Learning	75	111

Assessment Methods

	Weighting	Outcomes Assessed
Continuous Assessment	100%	
In-Class Assessment	30%	1,2,3,4,5
Portfolio	70%	1,2,3,6

Assessment Criteria

<40%: Unable to describe or implement basic data structures and algorithms.

40%–49%: Able to describe and implement basic data structures and algorithms.

50%–59%: Able to choose and apply appropriate data structures and algorithms to solve problems.

60%-69%: Able to choose and apply appropriate data structures and algorithms to solve complex problems.

70%–100%: Able to critically choose, analyse and design custom data structures and algorithmic solutions to a high standard for a range of both complex and unforeseen problems.

Supplementary Material(s)

- $\bullet \ \ "Khan\ Academy\ Computer\ science\ alogrithms."\ https://www.khanacademy.org/computing/computer-science/algorithms$
- \bullet Sedgewick, R. and K. Wayne. Algorithms. NY: Addison-Wesley, 2011.

Requested Resources

• Room Type: Computer Lab