Inteligência Artificial IA e suas aplicações Sistemas de Comportamento Inteligente Redes Neurais

Redes Neurais Artificiais: conceitos e aplicações

Alexandre Zamberlan

Laboratório de Práticas - UFN

Agenda

- 1 Inteligência Artificial
- 2 IA e suas aplicações
- 3 Sistemas de Comportamento Inteligente
- 4 Redes Neurais

Agenda

- 1 Inteligência Artificial
- 2 IA e suas aplicações
- 3 Sistemas de Comportamento Inteligente
- 4 Redes Neurais

Mapa mental da área

Mapa mental da área: RNA

Agenda

- Inteligência Artificial
- 2 IA e suas aplicações
- 3 Sistemas de Comportamento Inteligente
- 4 Redes Neurais

- Problemas de 'empacotamento'
 - Não se sabe o estado final, muitas restrições, dificuldade de se visualizar os estados produzidos/visitados

- Problemas de 'empacotamento'
 - Não se sabe o estado final, muitas restrições, dificuldade de se visualizar os estados produzidos/visitados
- Problemas de diagnóstico
 - Especialidade como diagnóstico médico, ...

- Problemas de 'empacotamento'
 - Não se sabe o estado final, muitas restrições, dificuldade de se visualizar os estados produzidos/visitados
- Problemas de diagnóstico
 - Especialidade como diagnóstico médico, ...
- Problemas de autonomia
 - Veículos Autônomos Não Tripulados

- Problemas de 'empacotamento'
 - Não se sabe o estado final, muitas restrições, dificuldade de se visualizar os estados produzidos/visitados
- Problemas de diagnóstico
 - Especialidade como diagnóstico médico, ...
- Problemas de autonomia
 - Veículos Autônomos Não Tripulados
- Problemas de Predição e Descoberta de Conhecimento
 - Previsões na bolsa de valores
 - Sistema de recomendação de produtos/serviços
 - Previsões Meteorológicas
 - Reconhecimento de objetos
 - ...

Agenda

- Inteligência Artificial
- 2 IA e suas aplicações
- 3 Sistemas de Comportamento Inteligente
- 4 Redes Neurais

Inteligência Artificial IA e suas aplicações Sistemas de Comportamento Inteligente Redes Neurais

Estrutura de Sistema de Comportamento Inteligente

- Base de Conhecimento
- Raciocínio Automatizado
- Aprendizado de Máquina

- Reconhecimento de Padrões
 - textos, banco de dados, imagens, web, ..
- Treinamento
 - Dados de entrada do problema e seus pesos

- Reconhecimento de Padrões
 - textos, banco de dados, imagens, web, ...
- Treinamento
 - Dados de entrada do problema e seus pesos

Desafio I

Qual o próximo número? 2 10 12 16 17 18 19?

- Reconhecimento de Padrões
 - textos, banco de dados, imagens, web, ...
- Treinamento
 - Dados de entrada do problema e seus pesos

Desafio II

Qual a próxima letra? B C D G?

- Reconhecimento de Padrões
 - textos, banco de dados, imagens, web, ...
- Treinamento
 - Dados de entrada do problema e seus pesos

Desafio

Q__M N__ CH_R_ N_0 M_M_!!

Agenda

- Inteligência Artificial
- 2 IA e suas aplicações
- 3 Sistemas de Comportamento Inteligente
- 4 Redes Neurais

- Entradas ou atributos
- Pesos (importância dos atributos)
- Treinamento ou mecanismos de aprendizagem
 - treinar = aprender
 - supervisionado
 - não supervisionado
 - hibrido
- Arquitetura

Problema imobiliário

X e Y são informados e a camada intermediária/oculta se ajusta

RNA: definição

- processador massivamente paralelo que armazena conhecimento experimental
- modela o cérebro em dois aspectos
 - o conhecimento é adquirido pela rede por processo de aprendizagem/treinamento
 - as conexões entre neurônios são usadas para armazenar conhecimento

RNA: funções de ativação

$$step_{t}(x) = \begin{cases} 1, x \ge t \\ 0, x < t \end{cases}$$

$$t = \lim_{t \to \infty} sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$sign(x) = \begin{cases} +1, x \ge 0 \\ -1, x < 0 \end{cases}$$

RNAs: classificações

- Quanto ao tipo do algoritmo de aprendizagem
 - pesos fixos
 - supervisionado (treinamento por especialista)
 - não supervisionado
- Quanto à arquitetura
 - Feedforward (alimentação à frente)
 - Feedback (recorrente)
 - Multicamada

RNAs: Tipos clássicos

- RNAs Recorrentes
 - Problema imobiliário: preços
 - Propagandas: online
 - Imagens: colocar tag em fotos
 - Áudio: reconhecimento de fala
 - Tradução
- RNAs Convulucionais
 - Vídeos: carros autônomos

іприт (х)	оитрит (у)	APLICAÇÃO
propriedades da casa	Preço	Descobrir o verdadeiro preço
Propaganda mais informações de usuários	Predição se um usuário clicaria em um link	Propaganda online
imagem	objeto(1,,1000)	Tag foto
áudio	transcrição de texto	Reconhecimento de fala
português	inglês	Tradução automática
vídeo	posição de outros carros	Carros autônomos

X e Y são informados e a camada intermediária/oculta se aiusta Laboratório de Práticas UFN

RNA: aprender

- Aprender
 - incrementar o conhecimento
 - adaptar-se ao ambiente
- Como aprender?
 - observando
 - memorizando
 - generalizando
 - especializando

RNA: algoritmo de aprendizagem

- 1. Obter o conjunto de amostras de treinamento $\{x^{(k)}\}$
- 2. Associar o valor desejado {d^(k)} para cada amostra obtida
- 3. Iniciar o vetor de pesos {w} com valores aleatórios pequenos
- 4. Especificar a taxa de aprendizagem {η}
- 5. Iniciar o contador de número de épocas (época = 0)
- 6. Repetir as seguintes instruções até que o erro de saída inexista:
 - 6.1 Inicializa erro (erro = "inexiste")
 - 6.2 Fazer o seguinte loop para todas as amostras de treinamento $\{x^{(k)}, d^{(k)}\}$:
 - $6.2.1 u = w^T.x^{(k)}$

$$6.2.2 y = g(u)$$

- 6.2.3 Se o erro existir (y diferente de d^(k)):
- 6.2.3.1 w = w + η .x^(k).(d^(k)-y)
- 6.2.3.2 Atualiza condição de erro (erro = "existe")
- 6.3 Atualiza contador de épocas (época = época + 1)

RNA: algoritmo para geração de novos valores

- 1. Obter o conjunto de amostras a serem classificadas
- 2. Carregar o vetor de pesos (w) ajustado no treinamento
- 3. Para cada amostra {x}:
 - $3.1 u = w^T.x$
 - 3.2 y = g(u)
 - 3.3 Verificar saída
 - 3.3.1 Se y = -1, amostra {x} pertence à {classe A}
 - 3.3.2 Se y = 1, amostra {x} pertence à {classe B}

Com isso, as novas amostras devem ser classificadas em uma das duas classes com base em classificações realizadas no período de treinamento.

RNA: fases de projeto

- estudar o problema
- escolher uma arquitetura
 - número de entrada e saídas
 - número de camadas
 - recorrente ou n\(\tilde{a}\)o
- definir o algoritmo de aprendizagem
- construir (ou selecionar) o conjunto de treinamento
- realizar treinamento da rede
- testar

Sugestões de leitura

- Wikipedia
 - https://pt.wikipedia.org/wiki/Rede_neural_artificial
- Livros
 - [Russell and Norvig 2016]

Inteligência Artificial IA e suas aplicações Sistemas de Comportamento Inteligente **Redes Neurais**

Referências

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,.