

Formation Data scientist Projet n°4

Bayram DONAT

Projet 4 : Anticipez les besoins en cons ommation électrique de bâtiments

Sommaire

- Problématique, interprétation
- Solutions envisagées
- Travaux d'exploration
- Travaux de modélisation
- Modélisation finale optimisée

Problématique

- Contexte
 - Objectif de la ville de Seattle pour 2050:
 - Devenir une ville neutre en émissions CO2
 - Environnement de travail : Service concerné
 - Emissions des bâtiments non destinés à l'habitation.

Seattle Solution envisagée

- Travail demandé:
 - A partir des relevés de 2015 et 2016, prédire :
 - les émissions de CO2
 - la consommation totale d'énergie
 - Evaluer l'intérêt de l'energy star score pour ces prédictions
- Mission
 - Réaliser une courte analyse exploratoire
 - Tester différents modèles de prédiction

Exploration

- Nettoyage : 2015 : 3340 lignes 47 colonnes + 2016 : 3376 lignes 46 colonnes
 - Fusion sur colonnes communes et colonnes similaires
 - Suppression des colonnes non communes
 - Correction des remplissages différents 2015/2016
 - Suppression des colonnes pas assez remplies (+90 % NaN) 50
 - Suppression Outliers (méthode interquartile)
 - Suppression des valeurs négatives
 - Passage au logarithme base 10
 - Remplacement des NaN par KNN imputer
 - 3008 lignes, 31 colonnes

Features engineering

- Suppression des variables non corrélées
- Suppression une des variables dans chaque couple de variables très fortement corrélées
- Suppression des variables catégorielles sauf une

Bayram DONAT

Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Bayram DONAT Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

GFAPerFloor GFAPerFloor PrimaryPropertyType

GFAPerFloor

Ouantitative

0.994786 0.989107

Eta squ

ared

0.232881

0.309613

très forte très forte

forte

forte

GFAPerFloor GFAPerFloor GFAPerFloor

GFAPerFloor

Neighborhood

Neighborhood

Neighborhood

Address

Address

0.201109 0.015269 forte faible

Corrélat

ion

Oualitative 1 PrimaryPropertyType

0.993454 **Oualitative 2**

très forte P-value 0.000000e+00

5.972883e-173 2.637213e-150 3.753193e-168

Neighborhood ComplianceStatus **PropertyName TaxParcelIdentificationNumber**

TaxParcelIdentificationNumber

1.699246e-27

0.000000e+00 0.000000e+00

ComplianceStatus **TaxParcelIdentificationNumber**

5.809822e-66 0.000000e+00

2.034060e-08

0.000000e+00

0.000000e+00

6.702664e-111

Features engineering

- Variables à étudier (targets):
- 'TotalGHGEmissions',
- 'SiteEnergyUse(kBtu)'
- Variables numériques :
- 'PropertyGFATotal': surface de plancher brut total
- 'Electricity(kBtu)', : consommation annuelle d'énergie électrique
- 'NaturalGas(kBtu)', : consommation annuelle de gaz naturel
- 'TotalUseTypeNumber', (variable créée) : Nombre utilisation
- 'BuildingAge', (variable créée) : âge du batiment (à la place de l'année de construction)
- 'GFAPerBuilding', (variable créée) : surface de plancher brute par bâtiment
- 'GFAPerFloor' (variable créée) : surface de plancher brute par bâtiment
- EnergyStarScore
- Variables catégorielles :
- PrimaryPropertyType : type de propriété

Modélisation

- Méthode
 - Création de X(Features) et y (Target)
 - Passage des variables catégorielles en numérique (OneHotEncoder)
 - Normalisation des variables numériques (StandardScaler)
 - Division BDD en entrainement et test
 - Choix des modèles d'entrainement
 - Choix des Hyperparamètres avec GridSearchCV
 - Entrainement des modèles
 - Evaluation des modèles

Modélisation

- 1976 | 19
 - Modèle linéaire
 - ElasticNet : tol=1e-4, alpha=1e-4, L1_ratio=0.9
- Modèle non linéaire Support Vector Machine
 - SVR: 'degree': 2, 'gamma': 'auto', 'kernel': 'poly'

- Modèles ensemblistes
 - Random Forest :
 - 'max_features': 'auto', 'min_samples_leaf': 1, 'n_estimators': 300
 - XGBoost : les mêmes + 'criterion': 'mse', 'loss': 'ls',

Modélisation: évaluation

SiteEnergyUse(kBtu)

Modèle	RMSE	MAE	R²	Time_ms	Cv score (RMSE)
ElasticNet	0.301373	0.223752	0.816534	2.442177	0.280948
SVM SVR	0.301373	0.223752	0.816534	2.460181	0.280948
Random Forest	0.044507	0.016996	0.995999	24.558900	0.039260
XGBoost	0.042505	0.024471	0.996351	4.775324	0.040210

TotalGHGEmissions

Modèle	RMSE	MAE	R ²	Time_ms	Cv score (RMSE)
ElasticNet	0.467245	0.346584	0.820252	2.447647	0.447659
SVM SVR	0.467245	0.346584	0.820252	2.445876	0.447659
Random Forest	0.042613	0.015209	0.998505	71.589479	0.036778
XGBoost	0.034725	0.018566	0.999007	4.913400	0.033907

Modélisation: ajout energy starscore

TotalGHGEmissions

Modèle	RMSE	MAE	R ²	Time_ms	Cv score (RMSE)
ElasticNet	0.458924	0.335618	0.826597	2.443828	0.439601
SVM SVR	0.458924	0.335618	0.826597	2.474696	0.439601
Random Forest	0.042130	0.015228	0.998539	68.779979	0.037028
XGBoost	0.035866	0.018737	0.998941	4.552764	0.034030

Amélioration du modèle

- Choix du modèle : XGBoost
 - Meilleur performance (score)
 - Modèles ensemblistes RandomForest et XGBoost
 - Temps le plus rapide
 - XGBoost
- EnergyStarScore
 - Meilleur performance sur modèles linéaire et SVM
 - Temps plus rapide avec modèles ensemblistes

Conclusion

- Les points importants avant la prédiction
 - La compréhension des variables
 - Le nettoyage des données
 - La standardisation et la normalisation des variables
 - Le choix des variables
- Les points importants dans la prédiction
 - Les hyperparamètres
 - Accepter les erreurs du modèle