Modular Garden Monitoring System Poster Presentation

Team CE12 Sadie Gladden, Eric Krenz, Zuguang Liu, Alan Trester Advisor: Dr. Zachariah Fuchs

March 26, 2021

Problem Statement

- Increasing interest in garden and lawn care among new home owners
- High demand of water for use in lawns and garden

Solution

A modular garden monitoring system that

- Assists people with lawn or garden care
 - Real-time vital statistics
 - User configurable setup
 - Modular to mold to a variety of use-cases
- Alleviates the over-irrigation problem
 - Control system to keep garden soil moisture at healthy levels
 - Predicts weather patterns and conserve total water usage

Design Methodology

Attribute Table								
Characteristic	Objective	Constraint	Function	Means				
Hardware								
Measures Environmental Conditions			✓					
Accurate	√							
Expandable and Modular	√		✓					
Waterproof / Weatherproof		✓						
Inexpensive	√	✓						
Wireless Communication & Power		✓		✓				
Easy to Set Up Outside	√	✓						
Low Power Consumption		✓		✓				
Software								
Easy to Use, Intuitive UI	✓							
Saves Historical Data			✓					
Shows Real-Time Conditions			✓					
Links to Recommended Growing Conditions			✓					
Predicts Weather			✓					
User Configurable	√		✓					

A Strategy of Design Decomposition was used for development

Technology Selection

Wireless Technology: XBee and IEEE 802.15.4

Microcontroller: ATMEGA328p

Programming Language: Embedded C, Python

Soil Sensors: Vegetronix VH400 & THERM200

Environment Sensors: Seedstudio DHT11 & ALS-PT19

 Team CE12
 Poster Presentation
 March 26, 2021
 5 / 14

Wireless Technology

XBee Radios

- Portable and easy to configure
- Automatic network association
- Sleep mode for minimum power usage

IEEE 802.15.4

- Plenty of available channels
- Point-Multipoint and P2P topologies
- Easy-to-manage addressing

Wireless Technology

Sensor Module Hardware Design

- Radio and sensor functions were programmed, prototyped on arduino, and tested individually
- Individual components were brought together to create a complete embedded program and hardware schematic

Sensor Module Hardware Design

Prototype

Final Hardware

Software Design

Implementing the Design Methodology - Decomposition

- Software was broken down into smaller parts that were then blended together.
- Each portion was designed then tested before being combined.
- Software development was broken into these stages
 - Serial Communication and Radio Scanning
 - 2 Raw Data Transmission
 - Oata Parsing
 - Oata Storage
 - Data Graphing
 - Ul Functionality

System Demo

UI Functionality and Typical Workflow

${\sf Budget}$

Prototyping BoM Rev. 10/13/2020							
Description	Mfr. Part Number	Unit Price	Quantity	Notes			
Arduino ATMega328p Prototyping Board	A000066	\$22	3	ATSAMD21G18 or MSP430 are also options			
Temperature/Humidity Sensor	SHT35	\$14.18	1				
Vegetronix Soil Moisture Sensor	VH400	\$39.95	1				
Vegetronix Soil Temperature Sensor	THERM200	\$33.95	1				
I2C Light Sensor	VEML7700	\$10	1	Assess which light sensor will be used in final design			
Analog Light Sensor	ALS-PT19	\$7.95	1				
CO2 Sensor	CCS811	\$20	1	For indoor use but will be assessed in prototyping			
XBEE S1 PRO 802.15.4 Radio	XBP24-AWI-001J	~\$20	2	Obsolete but Already Owned			
Raspberry Pi 3 Model B+	N/A	\$35	1				
	Total:	\$267					

 Team CE12
 Poster Presentation
 March 26, 2021
 12 / 14

Timeline

Conclusion

Challenges

- Building and developing project in home office, not in EECS lab
- Creating a prototype with outdated technology on hand
- Working and collaborating virtually instead of in-person
- For the Future
 - Create features to control watering and predict weather patterns
 - Stress-test and document the limitations of hardware/software
 - Continue adding more features and hardware/software components
- Final Remarks
 - A prototype that solves our problem was successfully created
 - The MGMS helps people conserve water in their gardens
 - There are possibilities to expand and improve the MGMS in the future