Práctica II: Corrente alterna. Frecuencia de corte, constante de tempo e impedancia.

I. Obxectivos

Esta segunda parte da práctica constará nun circuíto de corrente alterna formado por unha resistencia e un condensador (circuíto RC) do que deberemos obter os seus parámetros característicos de resposta. Concretamente, deberemos calcular de forma teórica a frecuencia de corte, a constante de tempo e a impedancia, ademais de facer unha análise gráfica (polo método de mínimos cadrados) no que se comparará o módulo da impedancia e a frecuencia.

A continuación procederemos a tratar os datos e a relacionalos coas súas respectivas ecuacións.

II. Materiais e metodoloxía.

Para construír o circuíto precisaremos:

- Unha placa base na que disporemos os elementos necesarios para construír o circuíto.
- Unha resistencia (cuxo valor é de 10kΩ)
- Un condensador de 12000*10-12 F
- Un xerador de sinais (isto é, unha fonte de f.e.m. senoidal).
- Un osciloscopio dixital

Así, o noso circuíto constará dunha resistencia unida a un condensador en serie, ao que estará conectado o xerador de sinais, que subministrará corrente ao circuíto.

Comezaremos por medir o valor da resistencia. Empregando o código de cores da práctica anterior (Táboa 2) obtemos que o valor teórico da resistencia é de 10000Ω e que ten unha tolerancia do 5%, polo tanto, o valor da resistencia atoparase no intervalo [R-s(R),R+s(R)]=[9500,10500] sendo s(R) o valor nominal da resistencia multiplicado pola tolerancia. Tamén medimos o valor experimental para comprobar que se atopa dentro deste intervalo. Na seguinte táboa dispoñemos os datos teóricos e experimentais:

Comparación valores resistencia

	$R(\Omega)$	$s(R)(\Omega)$
Estimación teórica	1,00E+04	0.05E+04
Medida directa	1,001E+04	0,001E+04

Táboa 7: Resistencia teórica e experimental

Cómpre engadir tamén que este é o código de cores da resistencia a través da cal obtemos este valor:

Figura 4: Resistencia práctica alterna

III. Procedemento experimental e análise de datos

Co valor da resistencia e do condensador, podemos comezar a facer os cálculos previos que necesitamos para realizar o experimento. O primeiro que faremos será calcular a frecuencia de corte. Esta frecuencia caracterízase porque nela, a reactancia capacitiva é igual ao valor da resistencia. O cálculo é o seguinte:

$$f_c = \frac{1}{2\pi RC} = 1324,97 \text{ Hz}$$
 (10)

onde T = RC (sendo R o valor da resistencia e C a capacidade do condensador) é a constante de tempo, parámetro que tamén se nos pide calcular. Polo tanto:

$$T = RC = 1,20 * 10^{-4} s \tag{11}$$

Antes de continuar, é importante salientar que debido a que non contamos coa incerteza do condensador nin a da fonte de f.e.m. non podemos calcular todas as incertezas das nosas operacións. Polo tanto, tampouco haberá unha cantidade adecuada de decimais nas magnitudes.

Para comezar a medir os valores necesarios, primeiramente necesitaremos configurar o osciloscopio e o xerador de sinais, e conectar ambos os dous aparatos ao circuíto.

Para conectar o osciloscopio ao circuíto, deberemos conectar unha canle á fonte de f.e.m. e a outra ao elemento onde queiramos medir a voltaxe: manteremos a CH1 conectada sempre ao xerador de sinais. Cando queiramos medir a voltaxe en bornes de resistencia manteremos a CH2 conectada en paralelo a este elemento, facendo ademais que pase a corrente primeiramente polo elemento resistivo. Procederemos de forma análoga para medir o potencial nos extremos do condensador.

Tamén se necesitará configurar o xerador de sinais en modo sinusoidal cunha voltaxe de 10 Vpico-pico. A fonte de f.e.m. conta cunha definición diferente da Vpp á estándar: determina como voltaxe pico-pico á diferencza entre o pico máximo de amplitude e o 0. Na definición estándar, o que indica Vpp é a variación de voltaxe entre o valor mínimo e o máximo de amplitude (en realidade co valor de 10Vpp o que representamos son 20Vpp na nomenclatura estándar).

Xa tendo os instrumentos de medida configurados, disporémonos a variar a frecuencia para obter os diferentes datos. Tomaremos 10 datos por debaixo da

frecuencia de corte e 10 datos por enriba desta, ademais de tomar valores neste valor de frecuencia.

Unha vez conectado todo, mediremos a voltaxe total e a voltaxe da resistencia. Despois, cambiaremos a disposición do circuíto, sen variar a frecuencia, para medir a voltaxe do condensador. Repetindo este procedemento para cada unha das frecuencias e obtivemos estes resultados:

Datos circuíto RC							
f (Hz)	log f	$V_{m}(V)$	$s(V_m)(V)$	$V_{mR}(V)$	$S(V_{mR})(V)$	$V_{mC}(V)$	$s(V_{mC})(V)$
200	2,30103	20,04	0,01	3,14	0,02	19,9	0,1
300	2,47712125	20,04	0,01	4,60	0,04	19,6	0,1
400	2,60205999	20,04	0,01	5,96	0,04	19,3	0,1
500	2,69897	20,04	0,01	7,32	0,04	18,8	0,1
600	2,77815125	20,04	0,01	8,50	0,10	18,2	0,1
700	2,84509804	20,04	0,01	9,60	0,01	17,6	0,1
800	2,90308999	20,04	0,01	10,6	0,1	17,1	0,1
900	2,95424251	20,04	0,01	11,5	0,1	16,4	0,1
1000	3	20,04	0,01	12,3	0,1	16,0	0,1
1100	3,04139269	20,04	0,01	12,9	0,1	15,2	0,1
1325	3,12220481	20,04	0,01	14,3	0,1	14,0	0,1
1500	3,17609126	20,04	0,01	15,2	0,1	13,2	0,1
1800	3,25527251	20,04	0,01	16,3	0,1	11,8	0,2
2100	3,32221929	20,04	0,01	17,0	0,1	10,6	0,1
2400	3,38021124	20,04	0,01	17,6	0,1	9,60	0,01
2700	3,43136376	20,04	0,01	18,1	0,1	8,70	0,20
3000	3,47712125	20,90	0,01	19,3	0,1	8,70	0,10
3300	3,51851394	21,00	0,01	19,7	0,1	8,10	0,10
3700	3,56820172	21,00	0,01	19,9	0,1	7,08	0,04
4100	3,61278386	21,00	0,01	20,2	0,2	6,44	0,04
4500	3,65321251	21,00	0,01	20,1	0,1	5,96	0,04
4700	3,67209786	21,10	0,01	20,5	0,1	5,72	0,04

Táboa 7: Datos circuíto corrente alterna

Debemos especificar que os valores recollidos na táboa foron calculados a partir da media de todos os valores que nos deron os instrumentos de medida. Polo tanto, a incerteza de cada medida será o valor absoluto da diferenza entre a media e os puntos experimentais. Poñamos por caso $V_{mR1}=3,14~V$: os datos tomados no laboratorio deste valor oscilaban entre 3,12 e 3,16. Ao facer a media dános $\overline{V}_{mR1}=3,14~P$ olo tanto, a incerteza será s $(\overline{V}_{mR1})=|V_{mR1}-\overline{V}_{mR1}|=|3,16-3,14|=0,02$. Dá igual que valor tomemos no valor absoluto, xa que ao facer a media de dous valores, estes dous atoparánse á mesma distancia da media.

Nesta práctica, o noso obxectivo é calcular a frecuencia de corte analizando a gráfica RC. Esta gráfica é a representación da impedancia fronte á frecuencia (ambas en escalas logarítmicas). A gráfica consta dunha curva e dúas asíntotas, que son:

- A curva RC: é a representación do módulo da impedancia (12)
- A recta R: é a asíntota horizontal da curva RC, é dicir, é unha recta horizontal de altura R. Calcularase co primeiro sumando do módulo da impedancia.

• A recta C: é unha asíntota oblicua da curva RC. Obterémola co segundo sumando do módulo da impedancia (X_c) (13)

$$Z = \sqrt{R^2 + X_c^2} \tag{12}$$

$$X_{c} = \frac{1}{2\pi f C} \tag{13}$$

Con estas ecuacións, podemos calcular os datos da seguinte táboa:

Datos para representación gráfica

Duest para representation granted							
f (Hz)	log f	$Z(\Omega)$	$s(Z)(\Omega)$	20logZ	s(20logZ)	$X_{c}(\Omega)$	$20\log X_c$
200	2,30103	6,382E+04	4,1E+02	9,6099E+01	5,5E-02	66314,56	96,4321778
300	2,47712	4,357E+04	3,8E+02	9,2783E+01	7,6E-02	44209,706	92,9103526
400	2,60206	3,362E+04	2,3E+02	9,0533E+01	5,8E-02	33157,28	90,4115779
500	2,69897	2,738E+04	1,5E+02	8,8748E+01	4,8E-02	26525,824	88,4733776
600	2,77815	2,358E+04	2,8E+02	8,745E+01	1,0E-01	22104,853	86,8897527
700	2,8451	2,0875E+04	2,4E+01	8,6393E+01	1,0E-02	18947,017	85,5508169
800	2,90309	1,891E+04	1,8E+02	8,5532E+01	8,2E-02	16578,64	84,390978
900	2,95424	1,743E+04	1,5E+02	8,4824E+01	7,6E-02	14736,569	83,3679275
1000	3	1,629E+04	1,3E+02	8,4240E+01	7,1E-02	13262,912	82,4527777
1100	3,04139	1,553E+04	1,2E+02	8,3826E+01	6,7E-02	12057,193	81,624924
1325	3,1222	1,4014E+04	9,8E+01	8,2931E+01	6,1E-02	10010	80,0086816
1500	3,17609	1,3184E+04	8,7E+01	8,2401E+01	5,7E-02	8841,9413	78,9309525
1800	3,25527	1,2294E+04	7,6E+01	8,1794E+01	5,3E-02	7368,2844	77,3473276
2100	3,32222	1,1788E+04	7,0E+01	8,1429E+01	5,1E-02	6315,6723	76,0083918
2400	3,38021	1,1386E+04	6,5E+01	8,1128E+01	5,0E-02	5526,2133	74,8485529
2700	3,43136	1,1072E+04	6,1E+01	8,0884E+01	4,8E-02	4912,1896	73,8255024
3000	3,47712	1,0829E+04	5,6E+01	8,0692E+01	4,5E-02	4420,9706	72,9103526
3300	3,51851	1,0660E+04	5,4E+01	8,0555E+01	4,4E-02	4019,0642	72,0824989
3700	3,5682	1,0553E+04	5,3E+01	8,0467E+01	4,4E-02	3584,5708	71,0887432
4100	3,61278	1,034E+04	1,0E+02	8,0337E+01	8,6E-02	3234,8566	70,1971006
4500	3,65321	1,0448E+04	5,2E+01	8,0380E+01	4,3E-02	2947,3138	69,3885274
4700	3,6721	1,0293E+04	5,0E+01	8,0251E+01	4,3E-02	2821,8962	69,0108206

Táboa 8: Datos gráfica RC

Non poderemos calcular as incertezas asociadas a Z e X_c , xa que, como mencionamos antes, descoñecemos a incerteza asociada á capacidade do condensador.

Para a recta R, temos que calcular 20log(R). Deste xeito, o resultado da operación será a altura á que representaremos a recta na nosa gráfica. Calculando:

$$20Log(R) = 20Log(10000) = 80,000 \tag{14}$$

Neste caso, si que podemos obter a incerteza utilizando a fórmula de propagación de incertezas:

$$s(y) = s(20log(R)) = \sqrt{\sum_{i} \left(\frac{\partial y}{\partial R}\right)^{2}} s^{2}(R) =$$

$$= \sqrt{\left(\frac{\partial (20log(R))}{\partial R}\right)^{2}} s(R)^{2}$$

$$= \left(\frac{20}{R}\right) s(R) = 0,020$$
(15)

Xunto a estes datos e o logaritmo da resistencia (14) poderase debuxar a gráfica RC:

Figura 5: Gráfica RC (cálculo frecuencia de corte)

O noso obxectivo, unha vez representada a gráfica anterior (figura 5), é calcular a frecuencia de corte. Para obter o valor desta, temos que analizar o punto de corte das asíntotas. Para isto, necesitamos coñecer as dúas rectas. A asíntota horizontal é fácil de obter, xa que ten sempre unha altura idéntica ó logaritmo da resistencia; xa que logo, a súa ecuación é y=80.

No caso da asíntota oblicua é máis complicado, para ela teremos que facer unha regresión lineal simple cos datos, para aproximar os puntos experimentais a unha recta. Antes de facer a regresión, necesitamos uns cálculos previos que se expresarán na seguinte táboa (9):

Datos axuste (asíntota oblicua)

Medidas	log f	(log f) ²	20logX _c	$(20\log X_c)^2$	log f *
	J	, ,		, , ,	(20logX _c)
1	2,30103	5,29473904	9,6432E+01	9,2992E+03	2,2189E+02
2	2,47712125	6,13612971	9,2910E+01	8,6323E+03	2,3015E+02
3	2,60205999	6,7707162	9,0412E+01	8,1743E+03	2,3526E+02
4	2,69897	7,28443908	8,8473E+01	7,8275E+03	2,3879E+02
5	2,77815125	7,71812437	8,689E+01	7,5498E+03	2,4139E+02
6	2,84509804	8,09458286	8,5551E+01	7,3189E+03	2,4340E+02
7	2,90308999	8,42793147	8,4391E+01	7,1218E+03	2,4499E+02
8	2,95424251	8,7275488	8,3368E+01	6,9502E+03	2,4629E+02
9	3	9	8,2453E+01	6,7985E+03	2,4736E+02
10	3,04139269	9,25006947	8,1625E+01	6,6626E+03	2,4825E+02
11	3,12220481	9,74816286	8,0009E+01	6,4014E+03	2,4980E+02
12	3,17609126	10,0875557	7,8931E+01	6,2301E+03	2,5069E+02
13	3,25527251	10,5967991	7,7347E+01	5,9826E+03	2,5179E+02
14	3,32221929	11,037141	7,6008E+01	5,7773E+03	2,5252E+02
15	3,38021124	11,425828	7,4849E+01	5,6023E+03	2,5300E+02
16	3,43136376	11,7742573	7,3826E+01	5,4502E+03	2,5332E+02
17	3,47712125	12,0903722	7,2910E+01	5,3159E+03	2,5352E+02
18	3,51851394	12,3799403	7,2082E+01	5,1959E+03	2,5362E+02
19	3,56820172	12,7320635	7,1089E+01	5,0536E+03	2,5366E+02
20	3,61278386	13,0522072	7,0197E+01	4,9276E+03	2,5361E+02
21	3,65321251	13,3459617	6,9389E+01	4,8148E+03	2,5349E+02
22	3,67209786	13,4843027	6,9011E+01	4,7625E+03	2,5341E+02
Sumatorios	68,7904497	218,458873	1,7582E+03	1,4185E+05	5,4302E+03

Táboa 9: Datos regresión lineal (a. oblicua)

Con estes datos, substituíndo nas ecuacións que atopamos a continuación, e tendo en conta que á regresión é da forma y = bx + a, onde x é logf e y é $20\log X_c$, obtemos a ecuación da asíntota oblicua:

$$20logX_c = b * logf + a \tag{16}$$

$$a = \frac{(\sum_{i} y_{i})(\sum_{i} x_{i}^{2}) - (\sum_{i} x_{i})(\sum_{i} x_{i} y_{i})}{n(\sum_{i} x_{i}^{2}) - (\sum_{i} x_{i})^{2}} = 142,452777704$$
(17)

$$s = \sqrt{\frac{\sum_{i} (y_i - a - bx_i)^2}{n - 2}} = 0.0003220156047376$$
 (19)

$$s(a) = s \sqrt{\frac{\sum_{i} x_{i}^{2}}{n(\sum_{i} x_{i}^{2}) - (\sum_{i} x_{i})^{2}}} = 1.1 * 10^{-8}$$
 (20)

$$s(b) = s \sqrt{\frac{n}{n(\sum_{i} x_{i}^{2}) - (\sum_{i} x_{i})^{2}}} = 3.4 * 10^{-9}$$
 (21)

Antes de continuar, cómpre mencionar que o coeficiente de regresión lineal é negativo porque a frecuencia e a impedancia son inversamente proporcionais.

Con todos estes datos calculados, podemos expresar matematicamente a ecuación da recta oblicua e calcular o punto de corte. Concretamente, a ecuación é :

$$y = -19,9999999975x + 142,4527777043 (23)$$

Igualando as dúas rectas e despexando obtemos:

$$80 = -19,999999975x + 142,4527777043 \Longrightarrow$$

$$\Rightarrow x = \frac{142,4527777043 - 80}{19,9999999975} = 3,122638885613083$$
(24)

Como o eixo x da gráfica está nunha escala logarítmica de base 10, temos que realizar a operación contraria, é dicir, elevar 10 ao valor de x. Concretamente:

$$f_c = 10^{3.122638885613083} = 1326.2911924899447 \text{ Hz}$$
 (25)

Como podemos observar, a frecuencia de corte obtida das asíntotas é moi similar (quitando desviacións polas incertezas) á frecuencia calculada teoricamente.

IV. Conclusións

Para rematar, faremos unha recapitulación dos obxectivos da práctica. Primeiramente, pídese calcular a frecuencia de corte, tanto analítica coma teoricamente. Aquí comparamos os dous resultados:

Comparación frecuencia de corte			
Teórico 1324,87 Hz			
Axuste 1326,2912 Hz			
Táboa 10: Comparación f. corte			

Como podemos ver na táboa 10, os resultados varían un pouco máis dunha unidade, polo cal podemos inferir que tanto os datos tomados coma o axuste realizado son correctos.

Ademais de chegar aos obxectivos propostos, esta práctica tamén foi proveitosa no senso de que permitiunos coñecer como funciona un circuíto RC de corrente alterna, así como o uso do osciloscopio.