LOAN DEFAULT PREDICTION

Sprint 2

Presented by: **David Clarke**

AGENDA

- 1 Re-intro to Problem
- 2 EDA Insights
- 3 Data Preprocessing
- 4 Baseline Models
- 5 Next Steps

PROJECT OVERVIEW

Subject Area:

Predicting Loan Defaults based on borrower characteristics

Opportunity Identified:

Approx. 2.5% delinquency rate of approx. \$17 trillion consumer debt

Proposed Solution:

Leverage sophisticated ML algorithms to improve accuracy

EDA FINDINGS

Major Concerns:

Significant DATA IMBALANCE in the target variable

EDA FINDINGS

Action Plan:

- Resampling Techniques
- Algorithmic Approaches
- Evaluation Metrics (precision, recall)
- Ensemble Methods (bagging RF, boosting GBM)
- Hyperparameter tuning

EDA FINDINGS

DATA PREPROCESSING

Techniques considered:

- Binning Continuous Variables
 - Age -> "Young", "Middle-aged", "Senior".
 - o Income levels -> "Low", "Medium", "High".
 - CreditScore -> "Poor", "Good", "Excellent".
- One-hot Encoding
- Creating New Features
 - Analyzing interactions between features such as Income and Loan Amount
- Feature Scaling

BASELINE MODELING

Logistic Regression:

• Train acc: 88.5%

• Test acc: 88.5%

		precision	recall	f1–score	support
	0 1	0.89 0.62	1.00 0.05	0.94 0.09	45139 5931
accurad macro av weighted av	vģ	0.75 0.86	0.52 0.89	0.89 0.51 0.84	51070 51070 51070

BASELINE MODELING

Decision Tree:

• Train acc: 100%

• Test acc: 80%

	Г	precision	recall	f1-score	support
	0 1	0.90 0.19	0.88 0.22	0.89 0.21	45139 5931
accura macro a weighted a	vg	0.54 0.81	0.55 0.80	0.80 0.55 0.81	51070 51070 51070

NEXT STEPS:

1) Advanced Modeling techniques:

- Random Forests, Gradient Boosting Machines, SVM's
- Model tuning: Grid search and Hyperparameter optimization
- Reassessing feature selection

2) Evaluation Strategy Enhancement

- K-fold cross validation
- Alternative metrics

3) Model Deployment

AWS/ local server

Thank you