

APRENDIZAJE Y PREDICCIÓN DE LA CALIDAD DEL AIRE A PARTIR DE DATOS ABIERTOS

Autor: Sergio Sánchez Vallés

Tutor: Holger Billhardt Curso: 2021/2022

Autor

Sergio Sánchez Vallés

Ingeniería del Software (URJC)

TABLA DE CONTENIDOS

Ol Introducción

O4 Experimentos y validación

Objetivos

05 Conclusiones

Descripción informática

O6 Trabajos futuros

La contaminación del aire

La contaminación del aire mata a...

+7.000.000

de personas al año

Precedentes

- + TRÁFICO RODADO
- + INDUSTRIA

¿Se puede predecir la calidad del aire?

Sensores de tráfico

Estaciones de calidad del aire

Estaciones climatológicas

Planteamiento y metodología

Planteamiento del problema

Usamos la ciencia de datos porque queremos responder algunas preguntas que ayudarán a nuestra organización, nuestro entorno y nuestro planeta.

¿CÓMO Y POR QUÉ?

Metodología

Recogida de datos

Limpieza de datos

Análisis Exploratorio de datos (EDA)

Ingeniería de datos

Modelización, entrenamiento, evaluación y predicción

Descripción informática

Tecnologías utilizadas, recogida de datos, limpieza de datos, análisis exploratorio, ingeniería de características, modelización, entrenamientos, evaluaciones y predicciones.

Recogida de datos

 Calidad del aire (API REST del Portal de Datos Abiertos del Ayuntamiento de Madrid) → Formato: CSV

Rango de tiempo: [2001, 2020] diarios

→ Estaciones: 24

→ Contaminantes: 14

Recogida de datos

 Climatología (API REST Agencia Estatal de Meteorología)

→ Formato: CSV

Rango de tiempo: [2001, 2020] diarios

→ Estaciones: 13

→ Magnitudes: 15

```
fecha,indicativo,nombre,provincia,altitud,tmed,prec,tmin,horatmin,tmax,horatmax,velmedia,sol,presMax,horaPresMax,presMin,horaPres 2001-01-01,2462,PUERTO DE NAVACERRADA,MADRID,1894,"0,3","10,1","-1,0",23:30,"1,6",15:00,"7,5","0,0","806,3",00,"800,1",17,,, 2001-01-02,2462,PUERTO DE NAVACERRADA,MADRID,1894,"-1,2","2,1","-2,4",23:59,"0,0",14:15,"5,8","1,6","808,1",24,"800,3",03,,, 2001-01-03,2462,PUERTO DE NAVACERRADA,MADRID,1894,"-1,1","7,5","-2,8",02:00,"0,6",23:59,"4,2","0,0","809,9",11,"806,9",24,,, 2001-01-04,2462,PUERTO DE NAVACERRADA,MADRID,1894,"1,5","0,5","-0,6",08:00,"3,6",18:30,"7,5","5,9","811,1",12,"805,5",02,,, 2001-01-05,2462,PUERTO DE NAVACERRADA,MADRID,1894,"3,3","35,5","1,0",23:59,"5,6",13:00,"7,2","0,0","810,7",00,"800,3",23,,, 2001-01-06,2462,PUERTO DE NAVACERRADA,MADRID,1894,"-1,4","5,1","-4,4",23:59,"1,6",03:00,"1,9","0,0","805,1",24,"798,7",Varias,,, 2001-01-07,2462,PUERTO DE NAVACERRADA,MADRID,1894,"-4,9","0,0","-5,4",Varias,"-4,4",00:00,"1,9","0,0","810,5",24,"805,1",00,,, 2001-01-08,2462,PUERTO DE NAVACERRADA,MADRID,1894,"-4,9","0,0","-5,6",Varias,"-1,6",14:00,"1,7","6,3","811,8",12,"808,5",24,,, 2001-01-09,2462,PUERTO DE NAVACERRADA,MADRID,1894,"-3,6","0,0","-5,6",Varias,"-1,6",14:00,"1,7","6,3","811,8",12,"808,5",24,,, 2001-01-09,2462,PUERTO DE NAVACERRADA,MADRID,1894,"-2,1","0,5","-4,0",12:00,"-0,2",18:00,"8,1","0,0","808,5",00,"802,1",13,,,
```

Limpieza de datos

- Valores nulos
- Formato de fechas
- Pivotar filas y columnas
- Transformación de magnitudes

Magnitud		Abreviatura o fórmula	Unidad medida	2	Técnica de medida
01	Dióxido de Azufre	SO ₂	μg/m ³	38	Fluorescencia ultravioleta
06	Monóxido de Carbono	CO	mg/m³	48	Absorción infrarroja
07	Monóxido de Nitrógeno	NO	μg/m³	08	Quimioluminiscencia
08	Dióxido de Nitrógeno	NO ₂	μg/m ³	08	ld.
09	Partículas < 2.5 µm	PM2.5	μg/m³	47	Microbalanza
10	Partículas < 10 µm	PM10	μg/m³	47	ld.
12	Oxidos de Nitrógeno	NOx	μg/m³	08	Quimioluminiscencia
14	Ozono	O ₃	μg/m ³	06	Absorción ultravioleta
20	Tolueno	TOL	μg/m³	59	Cromatografía de gases
30	Benceno	BEN	μg/m³	59	ld.
35	Etilbenceno	EBE	μg/m³	59	ld.
37	Metaxileno	MXY	μg/m³	59	ld.
38	Paraxileno	PXY	μg/m³	59	ld.
39	Ortoxileno	OXY	μg/m³	59	ld.
42	Hidrocarburos totales (hexano)	тсн	mg/m³	02	Ionización de llama
43	Metano	CH4	mg/m³	02	ld.
44	Hidrocarburos no metánicos (hexano)	NMHC	mg/m³	02	ld.

Limpieza de datos

date	station	SO ₂	со	NO	NO ₂	PM _{2,5}	PM ₁₀	NO _x	O ₃	TOL	BEN	EBE	тсн	CH₄	NMH C
2012-	2807	2	0.2	1	10	6	13	12	64	0.5	0.3	0.5	1.35	1.1	0.25
05-27	9024	2	0.2		10	U	13	12	04	0.5	0.5	0.5	1.55	1.1	0.23
2012-	2807			4	24			30	65				1.23	1.09	0.14
05-27	9027			4	24			30	00				1.23	1.09	0.14
2012-	2807	2	0.2	7	32			43	55						
05-27	9035	2 0.2	0.2	,	32			43	99						
2012-	2807	3	0.2	4	24		10	31							
05-27	9036	3	0.2	4	24		19	31							
2012-	2807	4		40	00		40	44		4.5	0.0	0.5			
05-27	9038	1		10	26	6	13	41		1.5	0.2	0.5			

→ Correlación de los datos

Se puede apreciar una fuerte correlación entre las temperaturas e índice ultravioleta con el Ozono, las altas temperaturas y los rayos del sol propician reacciones químicas del O₃ con el resto de contaminantes.

Correlación de los datos

El proceso químico que hemos descrito anteriormente, la mezcla del ozono troposférico con los óxidos nitrosos, sumado a las altas temperaturas son la combinación ideal para desarrollar más contaminantes.

Existe una correlación entre las velocidades máximas de viento y el dióxido de nitrógeno, el viento toma parte en las capas del aire donde se mezcla el dióxido de nitrógeno, es por eso que palia parcialmente sus efectos.

→ Valores nulos

Para todas las estaciones y para cada fecha comprobamos la falta de datos, los que están marcados en oscuro quiere decir que existe el dato para ese preciso instante, los huecos indican los valores nulos.

Los contaminantes de los que tenemos más datos son los óxidos de nitrógeno, el dióxido de azufre (SO2), monóxido de carbono (CO), partículas finas de menos de 10µm (PM10) y Ozono (O3).

Índices de calidad del aire

Se hace necesaria una medida estandarizada para llevar un control de la contaminación.

Air Quality Index (AQI) de la Agencia de Protección Ambiental de los Estados Unidos de América (EPA), el European Air Quality Index de la Agencia Ambiental Europea (EEA) o el Índice Nacional de Calidad del Aire (ICA) del Ministerio para la Transición Ecológica y el Reto Demográfico español.

Pollutant	Index level (based on pollutant concentrations in µg/m3)								
	Good	Fair	Moderate	Poor	Very poor	Extremely poor			
Particles less than 2.5 µm (PM _{2.5})	0-10	10-20	20-25	25-50	50-75	75-800			
Particles less than 10 µm (PM ₁₀)	0-20	20-40	40-50	50-100	100- 150	150-1200			
Nitrogen dioxide (NO ₂)	0-40	40-90	90-120	120- 230	230- 340	340-1000			
Ozone (O ₃)	0-50	50-100	100-130	130- 240	240- 380	380-800			
Sulphur dioxide (SO ₂)	0-100	100- 200	200-350	350- 500	500- 750	750-1250			

Índices de calidad del aire

Ingeniería de características (o de datos)

Los métodos de interpolación valorados han sido los siguientes: Kriging, **distancia inversa ponderada**, función de base radial (ej. gaussiana, spline) e interpolación polinómica.

$$egin{aligned} u(\mathbf{x}) &= egin{cases} rac{\sum_{i=1}^N w_i(\mathbf{x}) u_i}{\sum_{i=1}^N w_i(\mathbf{x})}, & ext{if } d(\mathbf{x}, \mathbf{x}_i)
eq 0 ext{ for all } i, \ u_i, & ext{if } d(\mathbf{x}, \mathbf{x}_i) = 0 ext{ for some } i, \end{cases} \ w_i(\mathbf{x}) &= rac{1}{d(\mathbf{x}, \mathbf{x}_i)^p} \end{aligned}$$

Ingeniería de características (o de datos)

→ Formato final

station, date, SO_2, CO, NO, NO_2, PM25, PM10, NOx, O_3, TOL, BEN, EBE, TCH, CH4, NMHC, average_temperature, rainfall, minimum_temperature, maximum_temperature, wind_direction, average_wind_speed, maximum_wind_speed, maximum_ultraviolet_index, maximum_pressure, minimum_pressure

Modelización, entrenamientos, evaluaciones y predicciones

Principales ventajas para RNN:

- Aprende patrones complejos en datos de series temporales (no lineales)
- Aprende la dependencia temporal presente en los datos

Desventajas RNN / Mejoras LSTM:

- Gradiente se desvanece/explota
- Memoria débil
- Alto coste computacional

Recurrent Neural Network and it's variants. Shujaat Hasan. (2020) Medium.

Modelización, entrenamientos, evaluaciones y predicciones

 2020 ha sido eliminado de los datos por la pandemia del COVID-19

	le los	datos.
--	--------	--------

- One-hot encoding para las estaciones.
- Generar datos con el método de ventana deslizante, 14 días de datos anteriores, 1 día siguiente a predecir.

id	color		id	color_red	color_blue	color_green
1	red		1	1	Θ	0
2	blue	One Hot Encoding	2	0	1	0
3	green	<u>.</u>	3	0	0	1
4	blue		4	0	1	0

Experimentos y validación

Arquitectura del modelo, capas y optimización de hiperparámetros

Arquitectura del modelo

Optimizador: **adam**

Función de pérdida: mae

Batch size: 32

Entrenamiento del modelo

Early stopping: 10 épocas

El **Early Stopping** es una forma de regularización, con la que se decide en qué época se debe dejar de entrenar el modelo para evitar el **overfitting**.

Cuando el modelo solo mejora en los datos de entrenamiento pero no en los de test, esto significa que está memorizando en vez de generalizar.

Resultados del modelo

→ Errores medios absolutos

•	PM _{2.5} :	9.06	[0-800]
•	PM ₁₀ :	8.48	(0-1200)
•	NO ₂ :	13.74	[0-1000]
•	SO ₂ :	5.98	(0-800)
•	O ₃ :	21.17	(0-1250)

• Media total: 11.68

Pollutant	ri i ri r	T II	Index level					
	(based on pollutant concentrations in µg/m3)							
	Good	Fair	Moderate	Poor	Very poor	Extremely poor		
Particles less than 2.5 µm (PM _{2.5})	0-10	10-20	20-25	25-50	50-75	75-800		
Particles less than 10 µm (PM ₁₀)	0-20	20-40	40-50	50-100	100- 150	150-1200		
Nitrogen dioxide (NO ₂)	0-40	40-90	90-120	120- 230	230- 340	340-1000		
Ozone (O ₃)	0-50	50-100	100-130	130- 240	240- 380	380-800		
Sulphur dioxide (SO ₂)	0-100	100- 200	200-350	350- 500	500- 750	750-1250		

Resultados del modelo

Establecer buenas bases

Utilidad en la prevención de problemas de salud

Conocimientos adquiridos

Capas

Unidades

GRU

Dropout

ReLU

Sets de test

Early Stopping

Bi-Directional

Batch size

Learning rate Inicialización de pesos

Grid Search

Unimportant parameter

Important parameter

Random Search

Important parameter

Otros modelos de machine learning

Más optimización de hiperparámetros

Transformer (Estado del arte)

XGBoost Auto-Sklearn

Muchas gracias

sergio-sanchez-valles

SergioSV96

