Registration No: -

2 2 0 1 2 0 2 4 5 5

Total Number of Pages: 02

B.Tech / 22IT4PC03T

4th Semester Regular Examination: 2023-24 DESIGN AND ANALYSIS OF ALGORITHMS

> BRANCH: IT Time: 3 Hours Max Marks: 100 Q Code: Q122

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-III and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q No.		CO	Level		
Q1	a)	1	2	Short Answer Type Questions (Answer All-10) Sort the following expressions in ascending order of their value:	(02x10) 2
	a) b)	1	2	nlogn, n^2 , nl, 2n, logn, n^3 , $\log_2\log_2$ n, 200 State a situation when insertion sort is performed with time	2
	c)	2	2	complexity O(n). Justify your answer. Explain the greedy approach to solve knapsack problem.	2
	d)	2	2	What is the time complexity of deletion procedure in a heap. Justify your answer.	2
	e)	3	2	Out of Prim's and Kruskal's algorithm, which one performs better in minimum cost spanning tree construction?	2
	Ŋ	3	2	Which of the two searching algorithms BFS and DFS, is able find the shortest path solution? Justify your answer.	2
	g)	3	2	Define number of phases required to find shortest path using Bellman-Ford algorithm having graph of n vertices	2
	h)	4	2	Write the advantages of Rabin-Karp String matching algorithm over naïve string-matching algorithm.	2
	i)	1	2	What is an algorithm?	2
	j)	1	2	What do you mean by Max-Heap?	2
				Part-II	
Q No.		CO	Level		(0.4.00)
Q2				Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)	(80x60)
	a)/	1	3	Solve the following recurrence	6
	J			$T(n) = \begin{cases} 2 T\left(\frac{n}{2}\right) + n & if \ n > 1 \\ 0 & otherwise \end{cases}$	
	-/		_		
	》 /	3	3	What do you mean by minimal spanning tree? Write Prim's algorithm to find the minimum cost spanning tree from a weighted graph.	6
	S	3	3	Explain the different asymptotic notations with example.	6 °
	d)	3	3	Given a sequence of binary digits (0's and 1's). Write a sorting algorithm to sort the numbers in $O(n)$ time.	6 6 6

	e)	1	2	What is convex hull problem? Design an algorithm to construct a	6
	,0	3	3	convex hull for a given set of points. Find the longest common subsequence of the following two sequences using dynamic programming approach.	6
	5 \<	4	3	X = "INSTITUTE" Y="NIST" Design an algorithm to search a string in a text.	6
	g)	3	2	Explain the dynamic programming approach to obtain the optimal	6
	h)			solution of 0/1 knapsack problem?	
	,i)	3	3	Explain the basic operations performed on disjoint sets. Illustrate the operations using linked list representations of disjoint operations.	6
	j)	4	2	Differentiate between backtracking and branch and bound technique with suitable example.	6
	k)	1	3	Prove that $2n^2 + 4n + 5 = O(n^2)$.	6
	l)	4	3	Given a graph G=(V,E) and a cycle. Design a polynomial time algorithm to verify the given cycle is Hamiltonian or not. Part-III	6
Q No.		СО	Level	Fait-III	
				Long Answer Type Questions (Answer Any Two out of Four)	(02x16)
Q3	a)	1	3	If $f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$, $a_m > 0$ then Prove that $f(n) = \Omega(n^m)$	8
	b)	1,	3	Compute the worst case and average case time complexity of quick sort. State the situations with example where quick sort performs the	8
Q4	a)	3	3	worst. Construct the decode tree for the given set of characters and their probability of occurrence in a text.	8
	b)	3	3	(a, b, c, d, e, f, g) = {5/64, 1/16, 7/64, 1/8, 13/64, 7/32, 3/8} Find the minimum number of scalar multiplications required to	8
	,		·	multiply the matrices for the given order	
Q5	a)	3	3	$M_1(5X10)$, $M_2(10x5)$, $M_3(5X50)$, $M_4(50X10)$, $M_5(10X20)$ Find the shortest paths from source vertex 'S' to all other vertices in the following graph using Bellman-Ford Algorithm.	8
				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	b)	3	2	Write the pseudo code of Floyd-Warshall algorithm with time complexity. Explain how it is different from Dijkstra's algorithm	8
Q6	a)	4	2	Define Class P, NP, NP-C. Prove that the class P language is closed under Intersection and Complementation.	8

Explain Merge sort algorithm with suitable example and derive the time complexity.

b)

2

3

8 🕻