

Al-Starter User Guide

Issue: V1.1.0

Date: 2019-01-07

Copyright © ShenZhen Yuejiang Technology Co., Ltd. 2018. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Yuejiang Technology Co., Ltd.

Disclaimer

To the maximum extent permitted by applicable law, the products described (including its hardware, software and firmware, etc.) in this document are provided **AS IS**, which may have flaws, errors or faults. Yuejiang makes no warranties of any kind, express or implied, including but not limited to, merchantability, satisfaction of quality, fitness for a particular purpose and non-infringement of third party rights. In no event will Yuejiang be liable for any special, incidental, consequential or indirect damages resulting from the use of our products and documents.

Before using our product, please thoroughly read and understand the contents of this document and related technical documents that are published online, to ensure that the robotic arm is used on the premise of fully understanding the robotic arm and related knowledge. Please use this document with technical guidance from professionals. Even if follow this document or any other related instructions, Damages or losses will be happen in the using process, Dobot shall not be considered as a guarantee regarding to all security information contained in this document.

The user has the responsibility to make sure following the relevant practical laws and regulations of the country, in order that there is no significant danger in the use of the robotic arm.

ShenZhen Yuejiang Technology Co., Ltd.

Address: 3F, Building NO.3, Tongfuyu Industrial Town, Nanshan District, Shenzhen, China

Website: https://www.dobot.cc/

Preface

Purpose

This manual describes the functions of the AI-Starter, how to use the car and its API functions to help users quickly understand and use the car.

Intended Audience

This document is intended for:

- Customer Engineer
- Sales Engineer
- Installation and Commissioning Engineer
- Technical Support Engineer

Change History

Date	Change Description	
2019/01/07	71.1.0 Add demo and update API	
2018/04/27	7 V1.0.0 The first release	

Symbol Conventions

The symbols that may be founded in this document are defined as follows.

Symbol	Description
<u> </u>	Indicates a hazard with a high level of risk which, if not avoided, could result in death or serious injury
≜ WARNING	Indicates a hazard with a medium level or low level of risk which, if not avoided, could result in minor or moderate injury, robotic arm damage
NOTICE	Indicates a potentially hazardous situation which, if not avoided, can result in robotic arm damage, data loss, or unanticipated result
ANOTE	Provides additional information to emphasize or supplement important points in the main text

Contents

1. Safe	ty Preca	autions	l	
1.1	Service Security			
1.2	After-sales Service Terms			
	1.2.1 Warranty Regulation			
2. Intro	duction	n	3	
2.1	Features			
2.2	Parts L	ist	3	
2.3	Techni	cal Parameters	4	
3. Feat	ure Des	scription	6	
3.1	AI-Sta	rter Controller	6	
	3.1.1	Overview	6	
	3.1.2	AT Mega2560 Processor	6	
	3.1.3	Button	6	
	3.1.4	LED	7	
	3.1.5	USB	7	
	3.1.6	Interface Description	8	
3.2	Infrare	d Sensor	9	
3.3	Ultrasc	onic Sensor	9	
3.4	Color S	Sensor	9	
4. Insta	llation		10	
4.1	Mixly	Installation	.10	
4.2	Arduin	o IDE	.10	
5. User	Opera	tion	11	
5.1	Mixly	Introduction	.11	
5.2	Arduin	o IDE Introduction	.11	
6. AI-S	tarter l	Demo	13	
6.1	Line Ti	racking Demo	.13	
	6.1.1	Description	.13	
	6.1.2	Procedure	.13	
	6.1.3	Code Description	.13	
6.2	Obstac	le Avoiding Demo	.15	
	6.2.1	Description	.15	
	6.2.2	Procedure	.15	
	6.2.3	Code Description	.15	
6.3	White	Balance Calibration Demo	.17	
	6.3.1	Description	.18	
	6.3.2	Procedure	.18	
	6.3.3	Code Description	.18	
6.4	Color I	Recogition and Line Tracking Demo	.18	
	6.4.1	Description	.18	
	6.4.2	Procedure	.18	
	6.4.3	Code Description	.18	
		2019-01-07) AI-Starter User Guide Copyright © Yuejiang Technology Co.,		

	6.5	Cooperation Demo		
		6.5.1	Description	.19
		6.5.2	Procedure	.20
		6.5.3	Code Description	.20
	6.6	Servo D	Prive Demo	.22
		6.6.1	Introduction	.23
		6.6.2	Procedure	.23
		6.6.3	Code Description	.23
	6.7	Xbee Co	ommunication Demo	.23
		6.7.1	Introduction	.23
		6.7.2	Procedure	.23
		6.7.3	Code Description	.24
7. <i>A</i>	API I	Functio	n	25
	7.1	Initializ	ing AI-Starter	.25
	7.2	Setting	Direction and Speed	.25
	7.3	Setting	Direction\Speed\Time	.25
	7.4	Setting	Motor Speed	.26
	7.5	Setting	Motor Parameter	.26
	7.6	Getting	Motor Pose	.26
	7.7	Initializ	ing Ultrasonic Sensor	.27
	7.8	Getting	the Detection Distance of Ultrasonic Sensor	.27
	7.9	Detection	ng obstacle	.27
	7.10	Getting	Infrared Sensor Data	.28
	7.11	Getting	Geomagnetic Angle	.28
	7.12	Geomag	gnetic Calibration	.29
	7.13	Setting	White Balance	.29
	7.14	Setting	Color Sensor Status	.29
	7.15	Detection	ng Color	.30
	7.16	Getting	RGB Value	.30
	7.17	' Initializ	ing Switch	.31
	7.18	Getting	Switch Status	.31
	7.19	Setting	LED Status	.31
	7.20	Getting	Photosensitive Value	.32
	7.21	Setting	Ultrasonic Threshold	.32
	7.22	Connec	ting Servo	.32
	7.23	Setting	Servo Angle	.33
	7.24	Disconr	necting Servo	.33
	7.25	Turning	on Timer Task	.33
	7.26	Turning	off Timer Task	.33
	7.27	Reading	g Xbee Data	.34
	7.28	Writing	Xbee Data	.34
	7.29	Compar	ing Xbee Data	.34
	7.30	Clearing	g Xbee data	.34
		•		

1. Safety Precautions

1.1 Service Security

- Users need to assemble the AI-Starter by themselves. Please do not tighten screws hard when install to avoid the treads stripping.
- When put the batteries inside, please make sure that the polarity is not reversed. Only
 the Li-ion rechargeable battery of 18650 type is supported.
- Please keep an eye on the AI-Starter when AI-Starter works, to avoid motor stalling for a long time, which could damage the control board and motor of the AI-Starter.

1.2 After-sales Service Terms

1.2.1 Warranty Regulation

- The warranty period of machine body shall be 6 months.
- The battery is not included in warranty service. Only replacement of damage by default is provided.
- The battery does not enjoy the warranty service, only the factory damage replacement
- The vulnerable parts such as package, giveaway, USB, screws, wrench, structure parts, etc. shall be not covered by the warranty service. However, if there is any non-artificial performance failure at the first time using after purchase
- Please confirm the integrity of the package at the time of signing for acceptance of the goods. Within 7 days upon purchase of the goods (inclusive, calculated from the date of receipt of the goods), if the goods are found to be missing or damaged due to transportation, or a non-artificial performance failure occurs to the goods or accessories, please immediately contact the local after-sales service department for supplement or replacement; any application for supplement or replacement beyond this time limit shall be considered invalid.
- During the validity period of three guarantees (for repair, replacement or compensation of faulty products), where a product is in compliance with the replacement conditions but the seller has no product of the same time or specification, and the customer requires the return of goods as he or she is not willing to replace it with the product of a different type or specification, the customer may return the goods.
- The maintenance period of replacement parts within the warranty period is 2 months. The detective parts replaced shall be owned by DOBOT.

The freight for any replacement or return that meets the above conditions shall be borne by DOBOT officially, while the tariff at the destination which is required to be paid due to its policy shall be borne by the customer.

To provide the free maintenance service, the following conditions shall be met:

- The product is normal used within the specified warranty period and has any non-artificial performance failure.
- The valid purchase certificate, receipt and the number thereof are provided.
- If additional package, accessories or translation are needed, our company will charge a certain cost.

The free product maintenance service shall not be provided under any of the following circumstances:

- Damage caused by unauthorized maintenance, alteration and other acts.
- Damage caused by non-standard operating environment, such as overload, high voltage, high current, high temperature, etc
- Appearance and function abnormality caused by man-made collision and dropping.
- The abnormal function caused by wet environment, soak or burn.
- Damage caused by improper use, installation and operation that are not in accordance with the official instructions.
- Damage caused by circuit redesign, improper installation of the battery, overcharge, improper installation and connection, and improper use of the charger that are not in accordance with the official instructions.
- Damage caused by reliability and compatibility problems arising from simultaneous use
 of third-party parts that are not certified by our company.

Spacial instructions

- The related after-sales service is proved by the local agent
- If you have questions about the related after-sale service, please contact the official after-sales service department. We will help you to solve your problem without delay

2. Introduction

2.1 Features

AI-Starter is a smart car aimed to education and competition. It is designed with no-soldering assembly technique, using brass stubs to fix control board, and ribbon cables to connect each board, of which the layer is clear. The control board is designed based on Arduino Mega2560, compatible with Arduino, which is very easy to get started

Function features:

- Intelligent obstacle avoidance
- Automatic tracking
- Identify scenes based on color and perform different tasks
- Graphical programming, user can program by building blocks to control AI-Starter

2.2 Parts List

Table 2.1 Parts List

Part	Number
Chassis	1
Shell	1
Control Board	1
Ultrasonic Sensor	3
Infrared Sensor	1
Color Sensor	2
DC Gear Motor (with Encoder)	2
Universal Wheel	1
Coupling	2
Tire	2
18650 Li-ion Battery	2
18650 Battery Holder	1
Brass Stud M3*32+4	4
R2048 Nylon Rivet	10
M3*5 Cross Round Head Screw	30
M3*5 Cross Countersunk Screw	4
M3*6 Cross Round Head Screw	6

Part	Number
M4*6 Cross Round Head Screw	3
4PIN Ultrasonic Sensor Cable	3
6PIN Color Sensor Cable	2
8PIN Tracking Module Cable	1
6PIN Motor Cable	2
USB Cable	1
Acrylic Plate A	1
Acrylic Plate B	1
Cross Screwdriver	1
User Guide	1

2.3 Technical Parameters

Table 2.2 Technical Parameters

Parameters	Description
Operating Voltage	7.4V
Control Board	DuDuino Mega (compatible with Arduino Mega 2560)
MPU	ATmega2560
Battery	18650 Li-ion rechargeable battery
Ultrasonic Measurement Range	3mm~500mm
VTBOT Size	195mm*172mm*79mm
VRBOT Weight	810g
Maximum Load	500g
Tire Diameter	67mm
Operating Environment	0° C~40° C
Control Software	Arduino IDE or Mixly
Communication Interface	USB communication, Serial communication
Expansion Interface	4PIN general I/O interface *2
Sensor	Ultrasonic sensor *3
	Color sensor*2
	Infrared tracking model*1

IssueV1.1.0 (2019-01-07) AI-Starter User Guide

Parameters	Description	
	Geomagnetic sensor*1	
	Light sensor *1	
Motor Parameters	Reduction ratio: 48 : 1	
	Voltage: 7V	
	No-load current: 150mA	
	Stall current: 700mA	
	Maximum rotate speed: 100r/m	
	Encoder resolution ratio: 585pulse/r	

3. Feature Description

3.1 Al-Starter Controller

3.1.1 Overview

AI-Starter control board is designed based on Arduino Mega2560, compatible with Arduino, not only integrate motor drive, geomagnetic sensor, light sensor, button module, LED module and so on, but also integrate infrared tracking interface, ultrasonic sensor interface, USB, Xbee, bluetooth, serial port and so on. The main control board of AI-Starter, which is shown in Figure 3.1 presets two servo signal interfaces for user expansion.

Figure 3.1 Al-Starter control board description

3.1.2 AT Mega2560 Processor

AI-Starter processor is atmega2560, which compatible with arduino2560, you can develop by arduinoIDE. Meanwhile we provide Mixly graphical programming environment.

3.1.3 **Button**

The end of AI-Starter controller integrates four independence buttons, as shown in Figure 3.1, the detail descriptions are shown in Table 3.1.

Table 3.1 Button description

No.	Description	
1	AI-Starter Switch button, start or stop AI-Starter When you stop AI-Starter, you need to press and hold this button for about 3 seconds.	
2	User-defined User can set function in Mixly or Arduino IDE environment	

No.	Description	
3	User-defined	
	User can set function in Mixly or Arduino IDE environment	
4	User-defined	
	User can set function in Mixly or Arduino IDE environment	

3.1.4 LED

The end of AI-Starter controller integrates four LED indicators, as shown in Figure 3.1, the detail descriptions are shown in Table 3.2.

Table 3.2 LED indicators description

No.	Color	description
A	Blue	User-defined
		User can set function in Mixly or Arduino IDE environment
В	Red	Off: Indicate that the AI-Starter is uncharged.
		Steady Red is always on: Indicates that the AI-Starter is charging.
С	Red	Off: Indicates that the AI-Starter battery voltage is normal.
		Steady Red: Indicates that the AI-Starter battery has a low voltage
D	Blue	User-defined
		User can set function in Mixly or Arduino IDE environment

3.1.5 USB

AI-Starter intergrates USB download function, you can download program to AI-Starter by USB, and make AI-Starter run by program. Meanwhile, USB charging function are supported by AI-Starter, you can charge AI-Starter by connecting AI-Starter to computer with USB cable when AI-Starter battery has a low voltage.

Operating systems are supported by USB driver:

- Win7
- Win8
- Win10

When you install Mixly or Arduino IDE, the Arduino USB drive will be installed automatically. After connecting AI-Starter to computer by USB cable and starting computer, you can find the corresponding COM port on device manager, as shown in Figure 3.2. If the corresponding COM port is not found, you need to install Arduino

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

USB drive again in *Arduino-X*/drivers path, X is the Arduino version, please replace it according to the actual situation.

Figure 3.2 USB drive

3.1.6 Interface Description

Figure 3.3 Al-Starter main control board interface description

Table 3.3 Interface description

No.	Description		
1	Encoder interface, connect to the right motor on the AI-Starter chassis		
2	Motor interface, connect to the right motor on the AI-Starter chassis		
3	Motor interface, connect to the left motor on the AI-Starter chassis		
4	Encoder interface, connect to the left motor on the AI-Starter chassis		
5	infrared sensor interface, connect to AI-Starter infrared tracking sensor		
6	Color sensor interface, connect to the right color sensor on the AI-Starter chassis		
7	The left color sensor interface, connect to the left color sensor on the AI-Starter chassis		
8	Ultrasonic sensor interface, connect to the ultrasonic sensor on the right side of AI-Starter		
9	Ultrasonic sensor interface, connect to the ultrasonic sensor on the front of AI-Starter		
10	Ultrasonic sensor interface, connect to the ultrasonic sensor on the left side of AI-Starter		
11	Xbee interface,		
12	Reserved servo interface		
13	Bluetooth interface, which is UART interface.		
14	Reserved servo interface		
15	Reserved serial interface, which is UART interface		
16	Wifi interface, which is UART interface		
17	USB interface, which is standard Micro-USB interface		
18	Power interface, connected to battery on the AI-Starter chassis		

3.2 Infrared Sensor

An infrared sensor is built into the bottom of AI-Starter, which can recognize black line by judging ground color for automatic patrol. 6-channel high-precision infrared pair tubes and 6 adjustable potentiometers are built into infrared sensor, which are used to adjust the distance detected by infrared pair tube. Infrared sensor can detect track black line accurately, the detection range is 3cm, and the accuracy is 0.1cm.

3.3 Ultrasonic Sensor

Three ultrasonic sensors are built into the head of AI-Starter, which can detect obstacle distance in the range of 3mm to 500mm in front of AI-Starter.

3.4 Color Sensor

Two color sensors are built into the bottom of AI-Starter, which can recognize the color on the ground to execute different task according to different color.

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

4. Installation

4.1 Mixly Installation

Mixly is an open Arduino graphical programming software based on Google Blockly graphical programming frame. AI-Starter adds wrapper function on Mixly, user can call wrapper function by building blocks and upload it to AI-Starter to control AI-Starter.

You can use Mixly directly after download without complicated installation. The download path is http://mixly.org/explore/software/mixly-arduino

□NOTE

At present, AI-Starter only support Mixly 0.995, the other versions are not supported.

4.2 Arduino IDE

AI-Starter supports Arduino C programming language. Arduino is a convenient and flexible open source electronic platform, which includes Arduino develop tools Arduino IDE and core library.

The Arduino IDE package is nested in the Mixly package and can be used directly after extracting the Mixly installation package. The Arduino IDE software path is *Installation* path/Dobot_Mixly/arduino-XXX. XXX is Arduino version, please replace it according to the actual situation.

5. User Operation

5.1 Mixly Introduction

Mixly page is shown in Figure 5.1. When you use Mixly, you need to select **Arduino\Genuino Mega or Mega 2560[atmega2560]** Development board and choose the corresponding serial port, as shown in Figure 5.1.

User can drag the programming blocks on the left of Mixly page, and upload program to AI-Starter after compiling, AI-Starter will work according to the program. For the API function details, please see API Function.

Figure 5.1 The page of Mixly

If you can not get the corresponding serial port of AI-Starter when you open Mixly, please ensure the Arduino USB drive has been installed. If you still can not get serial port information after installing, please open Mixly as an administrator.

Mixly instructions are not described in detail in this manual. For the detail about Mixly, please see the related manual on Mixly official website.

5.2 Arduino IDE Introduction

The page of Arduino IDE is shown in Figure 5.2.

Figure 5.2 The page of Arduino IDE

After opening Arduino IDE, select **Arduino/Genuino Mega or Mega 2560** on the **Tools > Borad** page, select **ATmega2560** (**Mega 2560**) in **Tools > Processor** path, select the corresponding serial port in **Tools > Port** path.

User can select example on the **File > Examples > AiStarter** page, click to upload example to AI-Starter, which will make AI-Starter work according to the example. You can also refer to API Function to upload program to AI-Starter by calling API function, which will make AI-Starter work according to the program.

6. Al-Starter Demo

6.1 Line Tracking Demo

6.1.1 Description

This demo shows that AI-Starter tracks line automatically on testing map.

6.1.2 Procedure

- **Step 1** Turn on AI-Starter.
- **Step 2** Press down the key **start**|**stop**, AI-Starter starts tracking line after buzzer beeps one time.
- **Step 3** Press down the key **start**|**stop** once agian, AI-Starter stops tracking line after the buzzer beeps one time.

6.1.3 Code Description

1) Get the current infrared sensor value.

Program 6.1 Get infrared sensor value

```
void getCurrentIRState(int *irstate)
{
    *irstate = 0;
    for (int i = 0; i < IR_NUM; i++) {
        *irstate |= AIStarter_SmartBotGetIRModuleValue(i) << i;
    }
}</pre>
```

2) Get AI-Starter pose.

Program 6.2 Get Al-Starter pose

```
float getCurrentPos(const int irstate)
{
    const float coeff = 0.7;
    const int irPos[] = {-30, -18, -6, 6, 18, 30};
    static float lastPos;
    float curPos;
    float readPos;
    int total = 0;
    int irOffCnt = 0;
```

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide


```
//calculate the car position offset

for (int i = 0; i < IR_NUM; i++) {

    if (irstate & (1 << i)) {

        total += irPos[i];

        irOffCnt++;

    }

}

if (irOffCnt) {

    readPos = total / irOffCnt;
}

else {

    readPos = lastPos;
}

//calculate the current position

    curPos = (1 - coeff) * lastPos + coeff * readPos;

lastPos = curPos;

return curPos;
}
```

3) Set AI-Starter speed.

Program 6.3 Set Al-Starter speed

```
void setCarSpeed(const float curPos)
{
    const int baseSpeed = 50; //rpm
    const float kp = 1;
    const float ki = 0.06;
    const float kd = 0.0;
    const float errorsumLimit = 50;

    float error = curPos;
    static float lastError;
    static float errorsum;
    float errorChange;
    int speedLeftWheel;
    int speedRightWheel;
```



```
int speedOffset;
//pid
errorsum += error;
if (errorsum > errorsumLimit) {
     errorsum = errorsumLimit;
else if (errorsum < -errorsumLimit){</pre>
     errorsum = -errorsumLimit;
errorChange = error - lastError;
speedOffset = kp * error + ki * errorsum + kd * errorChange;
lastError = error;
//calculate the wheel speed
speedLeftWheel = baseSpeed + speedOffset;
speedRightWheel = baseSpeed - speedOffset;
AIS tarter\_SmartBotSetMotor(MOTORL, speedLeftWheel);\\
AIS tarter\_SmartBotSetMotor(MOTORR, speedRightWheel);\\
Serial.println("go ahead");
```

6.2 Obstacle Avoiding Demo

6.2.1 Description

This demo shows that AI_Starter avoids obstacle automatically.

6.2.2 Procedure

- **Step 1** The motors stop running after turning on AI-Starter.
- **Step 2** Press down the key **start|stop**, AI-Starter starts avoiding obstacle.
- **Step 3** AI-Starter moves back for a certain distance after detecting obstacle, and turn left or right according to the ultrasonic sensors.
- **Step 4** Press down the key **start**|**stop** once agian, AI-Starter stops tracking line after the buzzer beeps one time.

6.2.3 Code Description

1) Initialize AI-Starter.

 $IssueV1.1.0\ (2019\text{-}01\text{-}07)$

AI-Starter User Guide

Program 6.4 Initialize AI-Starter

AIStarter_SmartBotInit();

2) Put the ultrasonic sensor values into the array dis.

Program 6.5 Save ultrasonic sensor values

```
dis[0] = AIStarter_SmartBotGetSonar(SONAR1);
dis[1] = AIStarter_SmartBotGetSonar(SONAR2);
dis[2] = AIStarter_SmartBotGetSonar(SONAR3);
```

3) Set turning mode according to the distance between obstacle and AI-Starter.

Program 6.6 Set turning mode

```
if(dis[0] > 2*DIS){
                                                                                            motorStatus = AHEAD;
                                               }else if(dis[0] > DIS && dis[0] < 2*DIS){
                                                                                            motorStatus = motorStatus;
                                                 else if(dis[0] > 0 & dis[0] < DIS)
                                                                                            motorStatus = BACKRIGHT;
                                                                                            break;
                                               if(dis[1] > 2*DIS){
                                                                                            motorStatus = AHEAD;
                                               ellet = \frac{1}{2} = \frac{1}{2
                                                                                            motorStatus = motorStatus;
                                               ellet elle
                                                                                            motorStatus = BACKRIGHT;
                                                                                            break;
if(dis[2] > 2*DIS){
                                                                                          motorStatus = AHEAD;
                                               motorStatus = motorStatus;
                                               ellet = \inf(dis[2] > 0 \&\& dis[2] < DIS \}
                                                                                            motorStatus = BACKLEFT;
                                                                                            break;
```


- 4) AI-Starter turns around according to obstacle position.
- BACKRIGHT: turn right
- BACKLEFT: turn left
- AHEAD: go straight.

Program 6.7 Turns around according to obstacle position

```
switch(motorStatus){
    case BACKRIGHT:
        AIStarter_SmartBotSetMotor(MOTORR,BACKSPEED);
        AIS tarter\_SmartBotSetMotor(MOTORL,BACKSPEED);
        delay(BACKTIME);
        AIS tarter\_SmartBotSetMotor(MOTORR, DIFSPEED);\\
        AIS tarter\_SmartBotSetMotor(MOTORL,FRONTSPEED);
        delay(SWERVETIME);
    break;
    case BACKLEFT:
        AIStarter_SmartBotSetMotor(MOTORR,BACKSPEED);
        AIS tarter\_SmartBotSetMotor(MOTORL, BACKSPEED);
        delay(BACKTIME);
        AIStarter_SmartBotSetMotor(MOTORR,FRONTSPEED);
        AIStarter_SmartBotSetMotor(MOTORL,DIFSPEED);
        delay(SWERVETIME);
    break;
    case AHEAD:
        AIS tarter\_SmartBotSetMotor(MOTORR,FRONTSPEED);
        AIS tarter\_SmartBotSetMotor(MOTORL,FRONTSPEED);
    break;
    default:
    break;
```

6.3 White Balance Calibration Demo

6.3.1 Description

This demo shows white balance calibration.

6.3.2 Procedure

- **Step 1** Put AI-Starter on a piece of A4 paper.
- **Step 2** Put down the key **start**|**stop** to calibrate white balance.

6.3.3 Code Description

1) Initialize AI-Starter.

Program 6.8 Initialize AI-Starter

AIStarter_SmartBotInit();

2) Calibrate white balance.

Program 6.9 Calibrate white balance

AIStarter_SmartBotSetColorWB(COLORSENOR1);

AIStarter_SmartBotSetColorWB(COLORSENOR2);

6.4 Color Recogition and Line Tracking Demo

6.4.1 Description

This demo shows how combine color recognition with line tracking.

6.4.2 Procedure

- **Step 1** Press down the key **start**|**stop**, AI-Starter starts tracking line after buzzer beeps one time.
- **Step 2** In tracking line process, when detecting black line, AI-Starter stops moving, and begins to detect color.
- **Step 3** When the recognized color is red, AI-Starter stops moving for 3s, and the buzzer beeps three times.
- **Step 4** When the recognized color is red, AI-Starter stops moving for 3s, and the buzzer makes a long call for 3s.
- **Step 5** AI-Starter goes ahead after finishing the above steps
- **Step 6** Press down the key **start**|**stop** once agian, AI-Starter stops tracking line after the buzzer beeps one time.

6.4.3 Code Description

1) Initialize AI-Starter.

Program 6.10 Initialize AI-Starter

AIStarter_SmartBotInit();

2) Detect color.

Program 6.11 Detect color

3) AI-Starter executes different action according to different color status.

Program 6.12 Execute action

```
switch(colorState) {
    case OTHERLINE:
         //colorRec = false;
         lineState = LINEPATROL;
    break;
    case RLINE:
         delay(3000);
         //colorRec = false;
         lineState = LINEPATROL;
    break;
    case GLINE:
         delay(3000);
         //colorRec = false;
         lineState = LINEPATROL;
    break;
    default:
    break;
```

6.5 Cooperation Demo

6.5.1 Description

This demo shows the coorperation of AI-Starter and Magician.

1) AI-Starter moves to the green line and then stops moving for one minute.

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

- 2) Magician Detects AI-Starter moves to the carring position by Pixy.
- 3) Magician starts to grab cubes to AI-Starter.
- 4) After one minute, AI-Starter finishes carrying, and then starts line tracking function.

6.5.2 Procedure

AI-Starter

- **Step 1** Press down the key **start**|**stop**, AI-Starter starts tracking line after the buzzer beeps one time.
- **Step 2** In tracking line process, when detects black stoping line, AI-Starter stops moving, and begins to detect color.
- **Step 3** When the recognized color is red, AI-Starter stops moving for 3s, and the buzzer beeps three times.
- **Step 4** When the recognized color is green, AI-Starter stops moving for 1 minute, and the buzzer beeps one time.
- **Step 5** AI-Starter keeps tracking line.
- **Step 6** Press down the key **start**|**stop** once agian, AI-Starter stops tracking line after the buzzer beeps one time.

Magician

- **Step 1** Open Magician file in the Magician Coorperation file folder to upload Magician firmware to Arduino expansion board.
- **Step 2** When detecting that AI-Starter moves to the carrying position, Magician begins to grab cubes to AI-Starter.
- **Step 3** AI-Starter keeps tracking line.

6.5.3 Code Description

AI-Starter

1) Initialize AI-Starter.

Program 6.13 Initialize AI-Starter

AIStarter_SmartBotInit();

2) Detect color.

Program 6.14 Detect color

 $if (AIS tarter_SmartBotGetColorSenor(COLORSENOR1, RCOLOR)$

 $-AIStarter_SmartBotGetColorSenor(COLORSENOR1,GCOLOR) > 30 \ \&\& \\$

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide


```
AIStarter_SmartBotGetColorSenor(COLORSENOR1,RCOLOR)
-AIStarter_SmartBotGetColorSenor(COLORSENOR1,BCOLOR) > 30)
{
    colorState = RLINE;
}
```

3) AI-Starter executes different action according to different color status.

Program 6.15 Execute action

```
switch(colorState) {
    case OTHERLINE:
         //colorRec = false;
         lineState = LINEPATROL;
    break;
    case RLINE:
         delay(3000);
         //colorRec = false;
         lineState = LINEPATROL;
    break;
    case GLINE:
         delay(3000);
         //colorRec = false;
         lineState = LINEPATROL;
    break;
    default:
    break;
```

Magician

1) Set cube position.

Program 6.16 Set cube position

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

};

2) Set AI-Starter carrying position.

Program 6.17 Set carring position

```
float trayPoint[4][3] = {

{308.12, 25.92, 28},

{308.12, -15.92, 28},

{258.12, 25.92, 28},

{258.12, -15.92, 28}
};
```

3) Magician grabs cubes to AI-Starter.

Program 6.18 Grab cude

```
void AreaToAIStarter()
{
    for(uint8_t i=0; i<4; i++){
        Dobot_SetPTPCmdEx(JUMP_XYZ, AreaPoint[i][0], AreaPoint[i][1], AreaPoint[i][2], 0);
        Dobot_SetEndEffectorSuctionCupEx(true);
        Dobot_SetPTPCmdEx(MOVL_XYZ, AreaPoint[i][0], AreaPoint[i][1], AreaPoint[i][2]+70, 0);
        Dobot_SetPTPCmdEx(JUMP_XYZ, trayPoint[i][0], trayPoint[i][1], trayPoint[i][2], 0);
        Dobot_SetEndEffectorSuctionCupEx(false);
        Dobot_SetPTPCmdEx(MOVL_XYZ, trayPoint[i][0], trayPoint[i][1], trayPoint[i][2]+30, 0);
}
Dobot_SetPTPCmdEx(MOVJ_XYZ, InitPositionX, InitPositionY, InitPositionZ, InitPositionR);
}</pre>
```

4) Initialize Pixy and Magician.

Program 6.19 Initialize Pixy and Magician

```
pixy.init();
Dobot_Init();
```

5) Detect cube number.

Program 6.20 Detect cube number

pixy.ccc.getBlocks();

6.6 Servo Drive Demo

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

6.6.1 Introduction

This demo shows how AI-Starter drives servo rotate from 0° to 180° .

6.6.2 Procedure

- **Step 1** Connect servo to digital I/O 7. For I/O 7 description details please refer to Chapter 3.1.1 Overview.
- **Step 2** Press down the button **start|stop**. Servo rotates from 0° to 180° repeatedly.

6.6.3 Code Description

1) Initialize AI-Starter.

Program 6.21 Initialize Al-Starter

```
AIStarter_SmartBotInit();
AIStarter_SmartBotServoAttach(SERVO1);
```

2) Servo rotates from 0° to 180° repeatedly.

Program 6.22 Servo rotates 180°

```
for (pmwServo = 0; pmwServo <= 180; pmwServo += 1) {
    AIStarter_Servo.write(pmwServo);
    delay(15);
}
for (pmwServo = 180; pmwServo >= 0; pmwServo -= 1) {
    AIStarter_Servo.write(pmwServo);
    delay(15);
}
```

6.7 Xbee Communication Demo

6.7.1 Introduction

This demo shows show AI-Starter communicates with PC by Xbee.

6.7.2 Procedure

- **Step 1** Download XCTU software on XCTU official website: https://www.digi.com/support/productdetail?pid=3352&type=utilities.
- **Step 2** Load XbeeMatch.xpro firmware by XCTU.
- **Step 3** After finishing loading the firmware, please connect Xbee to serial port 2 on AI-Starter. For serial port 2 details, please refer to Chapter 3.1.1 Overview.
- **Step 4** Press down the button **start**|**stop**, and send a control command to AI-Starter.

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

Step 5 AI-Starter would execute the corresponding actions according to the command sent by PC.

6.7.3 Code Description

1) Initialize AI-Starter.

Program 6.23 Initialize AI-Starter

AIStarter_SmartBotInit();

2) Read Xbee data.

Program 6.24 Read Xbee data

strCommand = AIStarter_SmartBotXbeeRead();

3) Execute the corresponding actions according to Xbee data.

Program 6.25 Execute corresponding action

```
if(!AIStarter_SmartBotXbeeCompare(strCommand, "Ahead")) {
    rOffSet = 1;
    lOffSet = 1;
} else if(!AIStarter_SmartBotXbeeCompare(strCommand, "Back")) {
    rOffSet = -1;
    lOffSet = -1;
} else if(!AIStarter_SmartBotXbeeCompare(strCommand, "TurnLeft")) {
    rOffSet = 1;
    lOffSet = 0.5;
} else if(!AIStarter_SmartBotXbeeCompare(strCommand, "TurnRight")) {
    rOffSet = 0.5;
    lOffSet = 1;
} else if(!AIStarter_SmartBotXbeeCompare(strCommand, "TurnRight")) {
    rOffSet = 0;
    lOffSet = 0;
    lOffSet = 0;
}
```

4) Clear Xbee data.

Program 6.26 Clear Xbee data

7. API Function

7.1 Initializing Al-Starter

Table 7.1 Initialize AI-Starter

Function	int AIStarter_SmartBotInit ();
Description	Initialization
Paramater	None
Return	None

7.2 Setting Direction and Speed

Table 7.2 Set direction and speed

Function	int AIStarter_SmartBotSetMovment (int dir, int speed)
Description	Set direction and speed
Paramater	dir: Set direction
	enum{
	FRONT,
	BACK,
	RIGHT,
	LEFT
	};
	speed: Set Duty Ratio, Value range: 0 – 255
Return	None

7.3 Setting Direction\Speed\Time

Table 7.3 Set direction\speed\time

Function	int AIStarter_SmartBotSetMovmentTime (int dir, int speed, float time)
Description	Set direction, speed and time
Paramater	dir: Set direction
	enum{
	FRONT,
	BACK,
	RIGHT,

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

	LEFT
	} ;
	speed: Set Duty Ratio. Value range: 0 – 255
	time: Set running time (unit: s)
Return	None

7.4 Setting Motor Speed

Table 7.4 Set motor speed

Function	int AIStarter_SmartBotSetMotor (int port,int speed)
Description	Set motor speed
Paramater	port: Select motor enum{ MOTORR, MOTORL }; speed: Set speed. Value range: 0 – 200rpm
Return	None

7.5 **Setting Motor Parameter**

Table 7.5 Set motor parameter

Function	int AIStarter_SmartBotSetMotorPI (float KP, float KI)
Description	Set motor parameter
Paramater	KP: Proportion factor. Value range: 0.5~2.5
	KI: Integral factor. Value range: 0.05~0.5
Return	None

7.6 **Getting Motor Pose**

Table 7.6 Get motor pose

Function	float AIStarter_SmartBotGetMotorPose (int port)
Description	Get motor pose
Paramater	port: Select motor
	enum{

IssueV1.1.0 (2019-01-07) AI-Starter User Guide Copyright © Yuejiang Technology Co., Ltd

	MOTORR,
	MOTORL
	} ;
Return	Return motor value

7.7 Initializing Ultrasonic Sensor

Table 7.7 Initialize ultrasonic sensor

Initialize ultrasonic sensor
port: Select ultrasonic sensor enum { SONAR1, SONAR2, SONAR3
}; None
p e

7.8 Getting the Detection Distance of Ultrasonic Sensor

Table 7.8 Get the detection distance of ultrasonic sensor

Function	float AIStarter_SmartBotGetSonar (int port)
Description	Get the detection distance of ultrasonic sensor
Paramater	port: Select ultrasonic sensor enum { SONAR1, SONAR2, SONAR3 };
Return	Return detection distance (Unit: cm)

7.9 Detecting obstacle

Table 7.9 Detect obstacle

Function	bool AIStarter_SmartBotGetBarrier (int port)
----------	--

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

Description	Detect obstacle
Paramater	port: Select ultrasonic sensor
	enum {
	SONAR1,
	SONAR2,
	SONAR3
	<pre>};</pre>
Return	1: Obstacle detected
	0: No obstacles detected

7.10 Getting Infrared Sensor Data

Table 7.10 Get infrared sensor data

Function	int AIStarter_SmartBotGetIRModuleValue (int port)
Description	Get infrared sensor data
Paramater	port: Select infrared sensor ports
	enum {
	IR1,
	IR2,
	IR3,
	IR4,
	IR5,
	IR6
	};
Return	Return 1: Black line detected
	Return 0: No black line detected

7.11 Getting Geomagnetic Angle

Table 7.11 Get geomagnetic angle

Function	float AIStarter_SmartBotGetCompass ()
Description	Get geomagnetic angle
Paramater	None
Return	Return geomagnetic angle

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

7.12 Geomagnetic Calibration

Table 7.12 Geomagnetic calibration

Function	void AIStarter_SmartBotSetCompassCalibration()
Description	Calibration method: Press down the left-most key after starting up, make AI-Starter rotate 360° around space axes X, Y, Z respectively, press down the left-most key once again to finish calibration
Paramater	None
Return	None

7.13 Setting White Balance

Table 7.13 Set white balance

Function	int AIStarter_SmartBotSetColorWB(int port)
Description	Set white balance
Paramater	port: Color sensor enum{ COLORSENOR1, COLORSENOR2 };
Return	None

7.14 Setting Color Sensor Status

Table 7.14 Set color sensor status

Function	int AIStarter_SmartBotSetColorSenor (int port,bool ison)
Description	Set color sensor status
Paramater	port: Color sensor enum{ COLORSENOR1, COLORSENOR2 };
	Ison: True: open, False: close
Return	None

7.15 **Detecting Color**

Table 7.15 Detect color

Function	bool AIStarter_SmartBotDetColorSenor (int port, int color)
Description	Detect color
Paramater	port:Color sensor enum{ COLORSENOR1, COLORSENOR2 }; color: Detect color enum{ RCOLOR,
	GCOLOR, BCOLOR, }; Return 1: Color detected Return 0: No color detected

7.16 **Getting RGB Value**

Table 7.16 Get RGB value

Function	int AIStarter_SmartBotGetColorSenor (int port,int color)
Description	Get RGB value
Paramater	port: Color sensor enum{
	COLORSENOR1, COLORSENOR2
	}; color: Get color enum{
	RCOLOR, GCOLOR, BCOLOR, };
Return	Return color value

 $IssueV1.1.0\ (2019\text{-}01\text{-}07)$

AI-Starter User Guide

7.17 Initializing Switch

Table 7.17 Initialize switch

Function	int MobilePlatform_SmartBotSetKeyInit ()
Description	Initiallize switch
Paramater	None
Return	None

7.18 Getting Switch Status

Table 7.18 Get switch status

Function	int AIStarter_SmartBotGetKeyValue (int key)
Description	Get switch status
Paramater	key: Select switch
	enum{
	SW1,
	SW2,
	SW3
	} ;
Return	Return 1: Press down
	Return 0: Release

7.19 Setting LED Status

Table 7.19 Get switch status

Function	int AIStarter _SmartBotSetLED(int port,int state)
Description	Set LED
Paramater	port: Select LED
	enum{
	LEDI
	LED2
	}
	state: Set status
	enum{

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

	ON,
	OFF,
	BLINK
	};
Return	None

7.20 Getting Photosensitive Value

Table 7.20 Get photosensitive value

Function	int AIStarter_SmartBotGetLightAnalog ()
Description	Get photosensitive value
Paramater	None
Return	Return photosensitive value

7.21 Setting Ultrasonic Threshold

Table 7.21 Set ultrasonic threshold

Function	int AIStarter_SmartBotSetSonarThreshold (int dis)
Description	Set ultrasonic threshold
Paramater	dis: Set threshold(Unit: cm)
Return	None

7.22 Connecting Servo

Table 7.22 Connect servo

Function	int AIStarter_SmartBotServoAttach(int servo)
Description	Connect servo
Paramater	servo: select servo
	enum{
	SERVO1,
	SERVO2
	};
Return	None

7.23 Setting Servo Angle

Table 7.23 Set servo angle

Al-Starter User Guide

Function	int AIStarter_SmartBotServoWrite(int servo, int value)
Description	Set servo angle
Paramater	servo: Select servo
	enum{
	SERVO1,
	SERVO2
	} ;
	value: Set servo angle. Value range: 0° ~180°
Return	None

7.24 Disconnecting Servo

Table 7.24 Disconnect servo

Function	int AIStarter_SmartBotServoDetach(int servo)
Description	Disconnect servo
Paramater	servo: Select servo enum{ SERVO1, SERVO2 };
Return	None

7.25 Turning on Timer Task

Table 7.25 Turn on timer task

Function	int AIStarter_SmartBotTimerTaskAttach()
Description	Turn on timer task
Paramater	None
Return	None

7.26 Turning off Timer Task

Table 7.26 Turn off timer task

Function	int AIStarter_SmartBotTimerTaskDetach()
Description	Turn off timer task
Paramater	None
Return	None

7.27 Reading Xbee Data

Table 7.27 Read Xbee data

Function	String& AIStarter_SmartBotXbeeRead()
Description	Read Xbee data
Paramater	None
Return	None

7.28 Writing Xbee Data

Table 7.28 Write Xbee data

Function	String& AIStarter_SmartBotXbeeWrite()
Description	Write Xbee data
Paramater	None
Return	None

7.29 Comparing Xbee Data

Table 7.29 Compare Xbee data

Function	int AIStarter_SmartBotXbeeCompare(const String &str1, const String &str2)
Description	Compare two strings
Paramater	None
Return	Return zero: Strings are same
	Return nonzero: Strings are different

7.30 Clearing Xbee data

IssueV1.1.0 (2019-01-07)

AI-Starter User Guide

Table 7.30 Clear Xbee data

Function	int AIStarter_SmartBotXbeeClear()
Description	Clear Xbee data
Paramater	None
Return	None