Tuesday, March 27, 2018 8:44 AM

	Theory Theorem
	- Idea / belief - not - More substantial than a
	recessarily proven -equations used to help prove other things
	- A model prave other things
	Elimination Heory - Broad area of Multematics
	'
	Theory of evolution Theory of gravity - a Statement / result that can be
	Theory of evolution Theory of gravity - a statement /result that can be Quantum / String theory Best explanation for observed/ Previous results
_	Best explanation for observed/
- 1	Best explanation for observed/ experimental results. May not be possible to prove Conclusively true.
	Proof - an argument based on logic which conclusively demonstrate the truth (or falsehood) of a statement.
	- In principle, all proofs of theorems emerge from
	fundamental axions that are accepted to be true.

Mar27-18 Page 1

-axiàns -definitions

-logic

To prove something we need to wolk with.

- mathematical concepts such as numbers, sets, relations & tunctions
Some important sets (collections) of numbers include:
i) Natural numbers N = \frac{21,2,3,4,5,\frac{5}{2}}
ii) Integers #= \frac{1}{2} = \frac{2}{3}, -2, -1, 0, 1, 2, 3, \frac{3}{2}
iii) Rationals Q = \{ x x = P/q, p, q \in \mathcal{H}, q \neq 0 \}
iii) Rationals $Q = \{ \{ \{ \} \} \} \times \{ \{ \} \} = \{ \{ \} \} \times \{ \} = \{ \} \} $ "Such that" "is an element of the set"
iv) Real R = points on the line from - co to as
you have the continue to the
= numbers with a (possibly infinite) decimal expansion = union of the rational & irrational numbers
= union of the rational & irrational numbers
v) Complex C= {= 1 = a+bi, a,b ETR, i2=-1 }
A basic building of any proof is the statement (proposition).
A statement is a claim that is objectively true or false.
Examples:
i) If m and n are odd integers, then mn is also odd.
ii) If n' is an even integer, then n must also be even (whenever n EZE)
iii) let $n \in \mathbb{N}$. Then $\sum_{i=1}^{\infty} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
iv) There are infinitely many prime numbers in N.
iv) There are infinitely many prime numbers in N. v) Let a,b,c, n EN. Then, the equation 2 Fermat's Last
N 17 N 1

u) Let 9,6,c, n E/V. 14th, the equation { terming Last an + b" = c" has no solutions if n > 2.) Theorem ui) Every even integer larger than 2 can be expressed as the?
n n n n n n n n n n
a"+b"=c" has no solutions it n>C.) Theorem
vi) Firece as interest larger H. 7 co. 1 gransed on the
vi) Every even integer larger than Z can be expressed as the? Sum of two prime numbers e.g. 100: 97+3:11+89. Conjecture
Sum of two prime numbers
eg. (00 = 97 + 3 = 11 + 89.) Conjective
Trocisa Dan alland (i) has if made and
Exercise Prove Statement (i) above; if m and n are odd,
then my is also odd.
Answer 1: $\frac{M}{Z}$ and $\frac{n}{Z}$ are not integers if $m & n$ are odd.
ar odd
Arswer 2, When you multiply by an even number, you always
Arswer 2, When you multiply by an even number, you always
get an even number. By multiplying two odd integers, we'll get an odd ansner since neither is
integers, we'll get an odd answer since neither is
ever.
Answer 3: When multiplying m & n, and dividing by two,
if the coult is up along 11
if the result is not an integer, then mun must be odd.
I WON! YOU COUL!
What do we need?
· ·
- Definitions: add, even, prime, etc.

- Axious: What is already known to be true?

- Methods; what kind of argument is actually valid?

Basic Number Theory Axions - we accept (w/o proof) the following statements: Let a, b, c EZ. Then: (associativity) 6) (a+b)+c = a+(b+c) 1) atb EZ 7) O+a = a 2) -a EZ 3) ab EZ 8) a+(-a) = 0 q) a(b+c) = ab+ac (distributivity) 4) atb = b+a2 commutativity
5) ab = ba Other well-known facts can be derived from these. e.g. a-b EZ follows from 1) & Z) abc Ett follows from 3) (applied twice) $a \cdot 0 = 0$ follows from 8) & 9) $a \cdot 0 = a(b-b) = ab + (-ab) = 0$ We also introduce the following definitions: i) An integer, n, is even if there exists an integer, r, such that n=2r. ii) Similarly, n is odd if there exists rEZ such that n=2r+1. iii) Let a, b E 7, with a +0. We say that a divides b, written alb, if ther exists qEH such that

```
aq = b. "a is a factor of b"
                         "b is a multiple of a".
        13/52 is true since 13.4=52, but
Q,g.
        3/52 is not true since there is no integer q
such that 3-q=52
       we write 3/52
Note: 13/52 is not the same as 13/52 or 13
  statement. number in Q
We can now prave statement (i) from before:
Let m and n be odd.
Then m=2r+1 for some rEH, and
        n = 2s+1 for some SEH.
 So, mn = (2r+1)(2s+1)
           = 4rs + 2s + 2r + 1
       = 2(2rs+s+r) + 1
   Since 2rs+s+r Ett, mn is odd.
                                    Q.E.D.
This is an example of direct proof.
  - Begin with the hypothesis: (m and n are odd).
  - Apply definitions, axions & proviously proven results in sequence
```