# Internet traffic optimization using Reinforcement Learning

### DSR Batch 29 Portfolio Project

Special thanks to:
Adam Green,
Tristan Behrens, and
The Data Science Retreat

Github Repo available at: <a href="https://github.com/khuss/RL">https://github.com/khuss/RL</a> Network Routing.git

Karim Hussami Naveen Korra



## Current state of internet





Year

# What is the internet



# Analogy with regular traffic



## Reinforcement Learning

#### Components:

- The environment
- Traffic generation
- Agent
- Neural Network

## The Environment

Type of network: LAN vs WAN?

Communication Links: one way vs two way?

Network topology: Mesh, Tree, Ring, Star?



Communication Links





Tree



Star

## Network used

#### Queues:

Each NQ, contain packets/ messages with NX Where node NX, corresponds to the destination of the packets.

#### **Available Actions:**

N1: 1: Route to N2, 2: Route to N2

N2: 1: Route to N4, 2: Route to N3, 3: Route to N1

N3: 1: Route to N2, 2: Route to N4, 3: Route to N5

N4: 1: Route to N2, 2: Route to N3, 3: Route to N5

N5: 1: Route to N1, 2: Route to N3, 3: Route to N4

N1 N3 ...

For all Nodes: 0: Do nothing

#### **Reward System:**

- Message Routed to destination: +20
- Message routed somewhere else: next\_Q\_Occupancy
- Action 0 taken while Queue is not empty: -10



## **Environment Representation**

- MultiDiscrete Action Space: [ActionN1, ActionN2, ActionN3, ActionN4, ActionN5] 5x1 array
- MultiDiscrete State Space: 10x5 array



**Previous State** 

New State