Reg. No.						ويلع	um l	L ULS						
----------	--	--	--	--	--	------	------	-------	--	--	--	--	--	--

MINOR CERTIFICATION EXAMINATION, MAY 2024

Third Semester

18CSC003J - COMPUTER ORGANIZATION AND ARCHITECTURE

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

7	V.	_	4.	
	ч	0.0		

Page 1 of 4

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to (i) hall invigilator at the end of 40th minute.

(ii)	Pai	rt - B & Part - C should be answered in	n ansv	wer booklet.				
Time:	3 hour	S S S S S S S S S S S S S S S S S S S		Max.	Mark	s: 1	00	
		and abatement on heaving memory or		_ interesting or leavest in the early interest.	Marks	BL	CO	PC
		PART – A (20 × 1				n		
	3371	Answer ALL	_		. 1	1	1	1
1	is	en the ARM processor is running i	n ini	amb state, the size of the instructions		1		•
	(A)	32 bit	(B)	16 bit				
	(C)	24 bit	(D)	12 bit				
	` '		ning ¹					
2	. The	first phase of an interrupt phase is			1	1	1	1
	(A)	PC ← ISR address	(B)	POP the return address from the stack				
	(C)	CPU execute the instructions in	(D)	Save the value of PC in a stack				
	()	ISR and the return						
3	. In E	Big Endian format, of 64-bit data,	wha	at is the starting byte address of the	1	1	1	1
		ned words?		eT				
	_	0, 8, 16	(B)	0, 2, 4				
	(C)	0, 4, 8	(D)	2, 4, 6				
4	. Low	ver byte addresses are used for the	e mo	st significant bytes of the word are	1	1	1	1
	usec	I in which technique						
	(A)	Big Endian	(B)	Little Endian				
	(C)	Addressing mode	(D)	Location register				
5		en we perform subtraction on -7 ar	nd –5	the answer in 2's complement form	1	2	1	1
	is	11110	(D)	1110				
	(A)	11110	(B)	1110				
	(C)	1010	(D)	0010				
6		most efficient method followed abers is	by c	omputers to multiple two unsigned	1	1	2	1
		Booth algorithm	(B)	Bit pair recording of multipliers				
		Restoring algorithm	(D)	Non restring algorithm				
7	. In t	he implementation of a multiplier	r circ	cuit in the system we make use of	1	1	2	1
	(A)	Countan	(D)	Elin flom				
	\ /	Counter Shift register	, ,	Flip flop Push down stack				

17MF3-18CSC003J

8.	Con	vert hexa decimal number (A2) ₁₆ to	o bina	ary and identify it.	1	1	2	1
	(A)	$(1010\ 0010)_2$	(B)	$(1001 \ 0001)_2$				
	(C)	$(1000\ 0010)_2$	(D)	$(1010\ 0001)_2$				
9.	The	disadvantages of the hardwired ap	proac	ch is .	1	1	3	1
		It is less flexible		It cannot be used for complex				
	(0)	T4 : 45	(D)	instructions				
	(C)	It is costly	(ט)	Less flexible and cannot be used for complete instructions				
10	2021				1	2	3	1
10.		situation wherein the data of opera			1	2	3	1
	'	Data hazard Dead lock	, ,	Stock Structural hazard				
	(C)	Deau lock	(D)	Suuciuiai nazaiu				
11.			ions	and are known as control hazards in	1	1	3	1
		puter architecture. Data hazard	(B)	Branch hazard				
	` /	Structural hazard		Information hazard				
	(0)	Structural nazaru	(D)	momation nazard				
12.			supp	lied by the instruction fetch unit is	1	1	3	1
		rupted, the pipeline	(200.)	-				
		Stalls	` /	Activated				
	(C)	Triggered	(D)	Starts				
13.		do not have parallel processing	g capa	abilities.	1	1	4	1
	(A)	Single instruction stream, single	(B)	Single instruction stream, multiple				
		data stream		data stream				
	(C)	, -	(D)	Multiple instruction stream, single				
		multiple data stream		data stream				
14.	The	decision on when to execute on op	erati	on depend largely on the	1	1	4	1
		Compiler		Hardware				
		Software		os				
15.	In M	IIMD, each processor has a	p	rogram and an instruction stream in	1	1	4	1
		erated from program.						
	_	Same, same	(B)	Separate, each				
	(C)	Same, each	(D)	Separate, separate				
16.	Inst	uctions level parallelism achieve	s mo	ore than one instructions at a time	1	1	4	1
	thro	ugh						
	(A)	Dynamic scheduling	(B)	Priority scheduling				
	(C)	Time-slot scheduling	(D)	Double scheduling				
17.	PCI	stands for			1	1	5	1
	(A)	Peripheral computer internet	(B)	Peripheral component interconnect				
	(C)	Processor computer interconnect	(D)	Processor cable interconnect				
18.	Тос	overcome the lag in the operating s	peed	s of the I/O device and processor we	1	1	5	1
	use		i II					
		Buffer spaces		Status flags				
	(C)	Interrupt signals	(D)	Exceptions				

19	bits of each block to the cache to see if des (A) Direct mapping (B)		1125	•	3	
	11 0) Indirect mapping				
20	The device that is allowed to initiate data is called	transfer on the bus at any given time	1	1	5	1
) DMA controller				
	(C) Bus master (D) Bus granter				
			و ولي			
	PART – B (5 × 4 Answer ANY FI		Marks	BL	co	PO
21	. Draw and illustrate the connections between	en the processor and memory.	4	2	1	1
22	. Write down the steps for restoring and nor	n-restoring division.	4	2	2	1
23	Give the bit pair recoding for the following	g binary numbers	4	2	2	1
	(i) 1101101110 (ii) 1111101110					
24	. Summarize the steps involved to proc	ess each instruction in a pipelined	4	2	3	1
	processors.					
25	Write down the control sequence for Move	$e(R_1), R_2.$	4	2	4	1
26	Elaborate on software parallelism and its t	ypes.	4	2	4	1
27	Write short note on DMA data transfer.		4	3	5	1
	$PART - C (5 \times 12 = 6)$	0 Marks)	Marks	BL	СО	PO
	Answer ALL Que					
28. a	a. List and explain various addressing modes	s, with its formats and example.	12	3	1	1
	(OR)					
b	b. Represented the arithmetic statement F formats.	= (A-B)/(C+D*E) in instruction	12	3	1	1
29. a	a. Write Booth's algorithm and perform Boo	oth multiplication of -23×-19.	12	3	2	1
	(OR)	0.10.0	12	3	2	1
t	b. Write restoring division algorithm and per	form restoring division of 10/3.	12	,		
30. a	a. What is meant by pipeline hazard? Discus	s in detail about the types of hazards.	12	3	3	1
	(OR)		12	3	3	1
ł	o. Describe the generation of control signal	us using nardwires control unit, with	12	J	J	

* * * * *