Generated on 2017-06-02 20:30:26 by gEcon version 1.0.2 (2016-12-05) Model name: rbc_ts

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, L_t^s, I_t} U_t = \beta E_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s t

$$C_t + p_t I_t = \pi_t^{\text{C}} + \pi_t^{\text{I}} + K_{t-1}^{\text{s}} r_t + L_t^{\text{s}} W_t \quad \left(\lambda_t^{\text{CONSUMER}^1}\right)$$
 (1.2)

$$K_t^{\rm s} = I_t + K_{t-1}^{\rm s} (1 - \delta) \quad \left(\lambda_t^{\rm CONSUMER^2}\right)$$

$$\tag{1.3}$$

1.2 Identities

$$Y_t = C_t + p_t I_t \tag{1.4}$$

⊢ 1.3 First order conditions

$$-\lambda_t^{\text{CONSUMER}^2} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} \right] + E_t \left[\lambda_{t+1}^{\text{CONSUMER}^1} r_{t+1} \right] \right) = 0 \quad (K_t^{\text{s}})$$

$$(1.5)$$

$$-\lambda_t^{\text{CONSUMER}^1} + \mu C_t^{-1+\mu} (1 - L_t^{\text{s}})^{1-\mu} \left(C_t^{\mu} (1 - L_t^{\text{s}})^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.6)

$$\lambda_t^{\text{CONSUMER}^1} W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^{\text{s}})^{-\mu} \left(C_t^{\mu} (1 - L_t^{\text{s}})^{1-\mu} \right)^{-\eta} = 0 \quad (L_t^{\text{s}})$$
(1.7)

$$\lambda_t^{\text{CONSUMER}^2} - \lambda_t^{\text{CONSUMER}^1} p_t = 0 \quad (I_t)$$
 (1.8)

2 FIRM C

2.1 Optimisation problem

$$\max_{K_t^{\text{Cd}}, L_t^{\text{Cd}}, C_t^{\text{S}}} \pi_t^{\text{C}} = C_t^{\text{S}} - L_t^{\text{Cd}} W_t - r_t K_t^{\text{Cd}}$$
(2.1)

 $\mathrm{s.t.}$

$$C_t^{\rm s} = Z_t K_t^{\rm C^d} {}^{\alpha} L_t^{\rm C^d} \left(\lambda_t^{\rm FIRM}^{\rm C^1} \right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^{C^1}} Z_t K_t^{\text{C}^{d-1}+\alpha} L_t^{\text{C}^{d-1}-\alpha} = 0 \quad \left(K_t^{\text{C}^d}\right)$$

$$(2.3)$$

$$-W_t + \lambda_t^{\text{FIRM}^{C^1}} Z_t (1 - \alpha) K_t^{C^{d}} L_t^{C^{d}} = 0 \quad \left(L_t^{C^d} \right)$$
(2.4)

$$1 - \lambda_t^{\text{FIRM}^{C^1}} = 0 \quad (C_t^{\text{s}}) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathbf{C}^{\mathbf{d}}^{-1+\alpha}} L_t^{\mathbf{C}^{\mathbf{d}}^{1-\alpha}} = 0 \quad \left(K_t^{\mathbf{C}^{\mathbf{d}}}\right)$$

$$\tag{2.6}$$

$$-W_t + Z_t (1 - \alpha) K_t^{C^{d} \alpha} L_t^{C^{d-\alpha}} = 0 \quad \left(L_t^{C^d}\right)$$

$$(2.7)$$

3 FIRM I

 $^{\circ}$

3.1 Optimisation problem

 $\max_{K_t^{\rm Id}, L_t^{\rm Id}, I_t^{\rm S}} \pi_t^{\rm I} = I_t^{\rm S} - L_t^{\rm Id} W_t - r_t K_t^{\rm Id}$ (3.1)

s.t.:

$$I_t^{\rm s} = Z_t K_t^{\rm I^{\rm d}} {}^{\sigma} L_t^{\rm I^{\rm d}} \left(\lambda_t^{\rm FIRM^{\rm I}} \right) \tag{3.2}$$

3.2 First order conditions

$$-r_t + \sigma \lambda_t^{\text{FIRM}^{\text{I}^1}} Z_t K_t^{\text{I}^{\text{d}}} L_t^{\text{I}^{\text{d}}} = 0 \quad \left(K_t^{\text{I}^{\text{d}}} \right)$$

$$(3.3)$$

$$-W_t + \lambda_t^{\text{FIRM}^{\text{I}^1}} Z_t (1 - \alpha) K_t^{\text{I}^{\text{d}} \sigma} L_t^{\text{I}^{\text{d}} - \alpha} = 0 \quad \left(L_t^{\text{I}^{\text{d}}} \right)$$
(3.4)

$$1 - \lambda_t^{\text{FIRM}^{\text{I}^1}} = 0 \quad (I_t^{\text{s}}) \tag{3.5}$$

3.3 First order conditions after reduction

$$-r_t + \sigma Z_t K_t^{\mathrm{I}^{\mathrm{d}}-1+\sigma} L_t^{\mathrm{I}^{\mathrm{d}}-\alpha} = 0 \quad \left(K_t^{\mathrm{I}^{\mathrm{d}}}\right)$$

$$\tag{3.6}$$

$$-W_t + Z_t (1 - \alpha) K_t^{\mathrm{I}^{\mathrm{d}} \sigma} L_t^{\mathrm{I}^{\mathrm{d}} - \alpha} = 0 \quad \left(L_t^{\mathrm{I}^{\mathrm{d}}} \right)$$

$$(3.7)$$

4 EQUILIBRIUM

4.1 Identities

$$K_t^{\text{I}^d} + K_t^{\text{C}^d} = K_{t-1}^{\text{s}}$$
 (4.1)

$$L_t^{\mathrm{I}^{\mathrm{d}}} + L_t^{\mathrm{C}^{\mathrm{d}}} = L_t^{\mathrm{s}} \tag{4.2}$$

$$C_t = C_t^{\mathbf{s}} \tag{4.3}$$

5 EXOG

5.1 Identities

$$Z_t = e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} \tag{5.1}$$

6 Equilibrium relationships (after reduction)

$$-r_t + \alpha Z_t K_t^{\mathbf{C}^{\mathbf{d}}^{-1+\alpha}} L_t^{\mathbf{C}^{\mathbf{d}}^{1-\alpha}} = 0 \tag{6.1}$$

$$-r_t + \sigma Z_t \left(K_{t-1}^{s} - K_t^{C^d} \right)^{-1+\sigma} \left(L_t^{s} - L_t^{C^d} \right)^{1-\alpha} = 0$$
 (6.2)

$$-C_t + Z_t K_t^{C^{d}} L_t^{C^{d}} = 0 ag{6.3}$$

$$-I_t^{s} + Z_t \left(K_{t-1}^{s} - K_t^{C^{d}} \right)^{\sigma} \left(L_t^{s} - L_t^{C^{d}} \right)^{1-\alpha} = 0$$
(6.4)

$$-W_t + Z_t (1 - \alpha) K_t^{\mathbf{C}^{\mathbf{d}} \alpha} L_t^{\mathbf{C}^{\mathbf{d}} - \alpha} = 0$$

$$(6.5)$$

$$-W_t + Z_t (1 - \alpha) \left(K_{t-1}^{s} - K_t^{C^d} \right)^{\sigma} \left(L_t^{s} - L_t^{C^d} \right)^{-\alpha} = 0$$
 (6.6)

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} = 0 \tag{6.7}$$

$$\beta \left(\mu \mathcal{E}_{t} \left[r_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right] + \mu \left(1 - \delta\right) \mathcal{E}_{t} \left[p_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right]\right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right)\right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right)^{-\eta}\right) - \mu p_{t} C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu}\right) - \mu p_{t} C_{t}^{\mu} \left(1 - L_{t+1}^{s}\right)^{1-\mu} \left(1 - L_{t+1}^{s}\right)^$$

ಬ

$$(-1+\mu)C_t^{\mu}(1-L_t^s)^{-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^s)^{1-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} = 0$$

$$(6.9)$$

$$C_t - Y_t + p_t I_t = 0 (6.10)$$

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (6.11)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(6.12)

$$I_t^{s} + K_{t-1}^{s} r_t - p_t I_t - r_t K_t^{C^d} - r_t \left(K_{t-1}^{s} - K_t^{C^d} \right) + L_t^{s} W_t - L_t^{C^d} W_t - W_t \left(L_t^{s} - L_t^{C^d} \right) = 0$$

$$(6.13)$$

7 Steady state relationships (after reduction)

$$-r_{\rm ss} + \alpha Z_{\rm ss} K_{\rm ss}^{{\rm C}^{\rm d}-1+\alpha} L_{\rm ss}^{{\rm C}^{\rm d}1-\alpha} = 0 \tag{7.1}$$

$$-r_{\rm ss} + \sigma Z_{\rm ss} \left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^{\rm d}} \right)^{-1+\sigma} \left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^{\rm d}} \right)^{1-\alpha} = 0$$
 (7.2)

$$-C_{\rm ss} + Z_{\rm ss} K_{\rm ss}^{{\rm C}^{\rm d} \alpha} L_{\rm ss}^{{\rm C}^{\rm d}^{1-\alpha}} = 0 \tag{7.3}$$

$$-I_{\rm ss}^{\rm s} + Z_{\rm ss} \left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^{\rm d}} \right)^{\sigma} \left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^{\rm d}} \right)^{1-\alpha} = 0 \tag{7.4}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\rm C^{\rm d}} L_{\rm ss}^{\rm C^{\rm d}} = 0$$
 (7.5)

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) \left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^{\rm d}} \right)^{\sigma} \left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^{\rm d}} \right)^{-\alpha} = 0$$
 (7.6)

$$-Z_{\rm ss} + e^{\phi \log Z_{\rm ss}} = 0 \tag{7.7}$$

$$\beta \left(\mu r_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu p_{\rm ss} (1 - \delta) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta}\right) - \mu p_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)\right)\right)\right)\right)\right)$$

$$(-1+\mu)C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_{\rm ss}C_{\rm ss}^{-1+\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0 \tag{7.9}$$

_

$$C_{\rm ss} - Y_{\rm ss} + p_{\rm ss}I_{\rm ss} = 0 (7.10)$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0 \tag{7.11}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{7.12}$$

$$I_{\rm ss}^{\rm s} - p_{\rm ss}I_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} - r_{\rm ss}K_{\rm ss}^{\rm C^{\rm d}} - r_{\rm ss}\left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^{\rm d}}\right) + L_{\rm ss}^{\rm s}W_{\rm ss} - L_{\rm ss}^{\rm C^{\rm d}}W_{\rm ss} - W_{\rm ss}\left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^{\rm d}}\right) = 0$$

$$(7.13)$$

8 Parameter settings

$$\alpha = 0.2 \tag{8.1}$$

$$\beta = 0.99 \tag{8.2}$$

$$\delta = 0.025 \tag{8.3}$$

$$\eta = 2 \tag{8.4}$$

$$\mu = 0.3 \tag{8.5}$$

$$\phi = 0.95 \tag{8.6}$$

$$\sigma = 0.4 \tag{8.7}$$

೮

9 Steady-state values

	Steady-state value
\overline{p}	1.5318
r	0.0538
C	0.3374
I	0.0439
$I^{ m s}$	0.0672
K^{s}	1.7551
$K^{\mathrm{C^d}}$	1.2551
L^{s}	0.2914
$L^{\mathbf{C}^{\mathbf{d}}}$	0.243
U	-176.3002
W	1.111
Y	0.4046
Z	1

10 The solution of the 1st order perturbation

Matrix P

$$\begin{array}{ccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ K_{t}^{\mathrm{s}} & \left(\begin{array}{ccc} 0.9522 & -0.0054 \\ 0 & 0.95 \end{array} \right) \end{array}$$

Matrix Q

$$\begin{array}{c} \epsilon^{\rm Z} \\ K^{\rm s} \left(\begin{array}{c} -0.0056 \\ 1 \end{array} \right) \end{array}$$

Matrix R

Matrix S

$$\begin{array}{c} \epsilon^{\rm Z} \\ p \\ r \\ C \\ I \\ I \\ -0.2258 \\ I^{\rm s} \\ K^{\rm C^d} \\ L^{\rm s} \\ 0 \\ L^{\rm C^d} \\ 0 \\ U \\ V \\ 1 \end{array}$$

11 Model statistics

11.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
\overline{p}	1.5318	0.113	0.0128	Y
r	0.0538	0.0922	0.0085	Y
C	0.3374	0.0922	0.0085	Y
I	0.0439	0.0208	0.0004	Y
$I^{ m s}$	0.0672	0.0922	0.0085	Y
K^{s}	1.7551	0.0018	0	Y
L^{s}	0.2914	0	0	Y
U	-176.3002	0.0044	0	Y
W	1.111	0.0922	0.0085	Y
Y	0.4046	0.0922	0.0085	Y

11.2 Correlation matrix

	p	r	C	I	$I^{ m s}$	K^{s}	U	W	Y
\overline{p}	1	1	1	-0.997	1	-0.309	1	1	1
r		1	1	-0.995	1	-0.327	0.999	1	1
C			1	-0.997	1	-0.3	1	1	1
I				1	-0.995	0.229	-0.998	-0.997	-0.997
$I^{ m s}$					1	-0.327	0.999	1	1
K^{s}						1	-0.296	-0.301	-0.305
U							1	1	1
W								1	1
Y									1

11.3 Cross correlations with the reference variable (Y)

	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
p_t	1.226	-0.019	0.107	0.269	0.469	0.712	1	0.714	0.473	0.273	0.112	-0.014
r_t	1.001	-0.028	0.098	0.26	0.463	0.708	1	0.72	0.482	0.285	0.125	-0.002
C_t	1	-0.014	0.112	0.273	0.472	0.714	1	0.712	0.469	0.268	0.107	-0.02
I_t	0.226	-0.023	-0.148	-0.305	-0.497	-0.727	-0.997	-0.688	-0.432	-0.223	-0.058	0.068
$I_t^{ m s}$	1.001	-0.028	0.098	0.26	0.463	0.708	1	0.72	0.482	0.285	0.125	-0.002
K_t^{s}	0.02	0.491	0.437	0.339	0.19	-0.022	-0.305	-0.493	-0.603	-0.651	-0.652	-0.616
U_t	0.048	-0.012	0.114	0.275	0.474	0.715	1	0.711	0.467	0.266	0.104	-0.022
W_t	1	-0.015	0.111	0.272	0.472	0.714	1	0.712	0.469	0.269	0.107	-0.019
Y_t	1	-0.017	0.11	0.271	0.471	0.713	1	0.713	0.471	0.271	0.11	-0.017

11.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
\overline{p}	0.713	0.471	0.271	0.11	-0.016
r	0.715	0.474	0.275	0.113	-0.013
C	0.713	0.47	0.27	0.109	-0.017
I	0.708	0.463	0.261	0.1	-0.025
$I^{ m s}$	0.715	0.474	0.275	0.113	-0.013
K^{s}	0.959	0.86	0.723	0.565	0.399
U	0.712	0.47	0.269	0.108	0
W	0.713	0.47	0.27	0.109	-0.017
Y	0.713	0.471	0.271	0.11	-0.017

12 Impulse response functions

Figure 1: Impulse responses (C,r,W,I,Y) to $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response (K^{s}) to ϵ^{Z} shock