

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-174664

(43) Date of publication of application: 02.07.1999

(51)Int.Cl.

G03F 7/00 B41M 1/06

B41N 1/08 G03F 7/004

(21)Application number : 09-348077

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

17.12.1997

(72)Inventor: NAKAYAMA TAKAO

(54) OFFSET PRINTING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an offset printing method needing no alkaline developer, high in a discriminating property between a picture part and a non-picture part, and capable of making a printed picture surface of excellent picture quality.

SOLUTION: In this printing method, printing is performed by forming a printed surface with a picture region having accepted ink, by giving a lipophilic picture to a printing plate having a thin layer of TiO2, RTiO3 (R is an alkaline earth metal atom), AB2-xCxD3-xExO10 (A stands for a hydrogen atom or an alkaline metal atom, B for an alkaline earth metal atom or a lead atom, C for a rare earth atom, D for a metal atom belonging to the fifth A group elements of the periodic system, E for a metal atom belonging to the fourth A group elements thereof, and X for an arbitrary numerical value of 0 to 2), SnO2, Bi2O3, ZnO, or Fe2O3, having nature of their surfaces being changed to have a hydrophilic property by irradiation of active light, and by uniformly irradiating the printing plate with active light.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] a front face -- TiO2, RTiO3 (R is an alkaline-earth-metal atom), and AB2-x Cx D3-x Ex O10 (A -- a hydrogen atom or an alkali-metal atom --) The metal atom with which in B an alkaline-earthmetal atom or a lead atom, and C belong to a rare earth atom, and D belongs to 5A group element of a periodic table, The metal atom with which E similarly belongs to 4A group element, and x express the arbitrary numeric values of 0-2. SnO2, Bi 2O3, and ZnO and Fe 2O3 While giving a lipophilic property picture to the original edition for printing which has the thin layer which makes at least one a principal component The offset-printing method characterized by printing by performing complete irradiation of the non-picture section using activity light, contacting a picture side in the ink for printing, making the printing side in which the picture field received ink form, making the field which has this printing side printed contact, and imprinting ink.

[Claim 2] The printing method according to claim 1 characterized by carrying out washing removal of the picture matter when the ink which remains on the form plate used for printing, and the lipophilic property picture matter also remain, heating the original edition subsequently to more than 80 degreeC, and printing repeatedly using the original edition for printing.

[Claim 3] The thin layer prepared in the front face of the printing version is TiO2. Or the offset-printing method according to claim 1 or 2 characterized by the bird clapper from either of the ZnO(s).

[Claim 4] TiO2 The offset-printing method according to claim 1 to 3 characterized by the bird clapper mainly from an anatase type crystal.

[Claim 5] The offset-printing method according to claim 1 to 4 characterized by preparing a thin layer according to claim 1 in the front face by the side of the printing side of the printing cylinder of the offset press.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[The technical field to which invention belongs] This inventions are especially a general inplant printing field and a thing about offset printing, the new offset-printing method which can manufacture the printing version simply especially, and the printing version. It is related with the offset-printing method which enables repeated-regeneration use of the original edition for printing which is furthermore the concrete mode, and its original edition for printing.

[0002]

[Description of the Prior Art] Since the manufacture process of the printing version is easy also in many printing methods, especially, generally offset printing is used and serves as the main present printing meanses. This printing technology is based on the immiscibility of an oil and water, an oily material, i.e., ink, is held in a picture field, and dampening water is alternatively held in a non-picture field. Therefore, if it is made to contact indirectly through the intermediate field called the field, direct, or the blanket printed, the ink of the picture section will be imprinted and printing will be performed.

[0003] The main methods of offset printing are PS boards which painted the diazo photosensitive layer on it by making an aluminum substrate into a base material. Graining, anodic oxidation, and many other processes are given for the front face by making an aluminum substrate into a base material, the ink resilience of an ink competence and the non-picture section raises strength and print durability, it performs attaining brilliance-ization of a printing side etc., and the picture for printing is made to form in the front face in PS board. Therefore, in addition to simplicity, offset printing is equipped also with properties, such as print durability and the high brilliance nature of a printing side. However, with the spread of printed matter, much more simplification of offset printing is demanded and many simple printing methods are proposed.

[0004] Copyrapid by which the example of representation was marketed from Agfa-Gevaert Since an offset plate is begun, it is the printing method based on the printing version production by the silver salt diffusion transfer process with which U.S. JP,3511656,B and JP,7-56351,A are also indicated, and this method can make a transfer picture from one process, and the picture is lipophilic property and it can consider as the printing version as it is, it uses as the simple printing method. However, this method also needs the diffusion transfer development process by the alkali developer, saying that it is simple. The still simpler printing method which does not need the development process by the developer is demanded.

[0005] Development of the manufacture method of the simple printing version of having skipped the development process by the alkali developer after performing picture exposure has been performed from the above-mentioned background. With the technical field of this simple printing version called non-processed lithographic plate since a development process can be skipped the image formation by the thermal runaway of the irradiation section on the image-recording side according mainly to ** image Mr. exposure until now, the image formation by lipophilic-property-izing (heat mode hardening) of the irradiation section by ** image Mr. exposure, and ** -- the same -- the irradiation section -- lipophilic

property -- although it is-izing, the means based on many principles, such as change of the surface property by the photolysis of the thing and ** diazo compound depended on optical mode hardening and heat mode melting hot printing of ** picture section, is proposed

[0006] On the technology currently indicated as the above-mentioned simple offset-printing method There are the U.S. patent, the Europe patent No. 1068, etc. of U.S. Pat. No. 3,506,779, 3,549,733, 3,574,657, 3,739,033, 3,832,948, 3,945,318, 3,962,513, 3,964,389, 4,034,183, 4,081,572, 4,693,958, 731,317, 5,238,778, 5,353,705, 5,385,092, 5,395,729, etc.

[0007] Although devised as these not needing a developer on the occasion of platemaking The quality of image of a printing picture is [that the difference between a lipophilic property field and a hydrophilic field is inadequate, therefore 1 inferior, The mechanical strength of a picture side is inadequate and it is I that it is hard to obtain the printing screen which whose resolution was inferior and was excellent in the degree of acute,] easy to attach a blemish, Therefore, it being accompanied by any one or more faults, like that simplicity is spoiled on the contrary by preparing a protective coat etc. and the endurance which is equal to prolonged printing is inadequate, and not being accompanied by practicality only by abolishing an alkali development process is shown. Many properties needed on printing are provided, and the strong request to the printing version creation method which can manufacture the printing version simply is not yet filled fully in spite of much above-mentioned improvement. [0008] The printing version production method of having used a zirconia ceramic having hydrophilicproperty-ized by optical irradiation for one of the above-mentioned processing type printing version creation methods of no is indicated by JP,9-169098,A. However, since the photosensitivity of a zirconia is inadequate and, and the optical conversion effect to a hydrophilic property is inadequate, the discernment nature of the picture section and the non-picture section is insufficient. [0009] If there is a means which is reproduced simply and can carry out the reuse of the used original edition for printing with the simple printing method which does not need the above-mentioned developer, it is advantageous from the 2nd page, reduction of cost, and mitigation of waste. Although the simplicity of the reproduction operation influences practical use value in reproduction use of the original edition for printing, simplification of reproduction operation is the technical problem that the degree of difficulty is high, it is almost considered conventionally, and does not come but is slightly

[0010]

mentioned JP,9-169098,A.

[Problem(s) to be Solved by the Invention] The technical problem which this invention is going to solve is offering the simplicity which does not need an alkaline developer, and the offset-printing method of having quality of image with sufficient practical use level. Specifically, an alkali developer is not needed, but the discernment nature of the picture section and the non-picture section is high, and it is offering the offset-printing method which can make the printing screen of the outstanding quality of image from easy operation. The 2nd purpose of this invention is offering the printing method which can repeat and use the printing original edition by easy operation.

[0011]

indicated about a special charge of original edition material called a zirconia ceramic by above-

[Means for Solving the Problem] In order that this invention persons may attain the above-mentioned purpose, wholeheartedly as a result of examination the front face of a certain kind of metallic oxide It admits having the property in which a surface hydrophilic property changes with optical irradiation, and the hydrophilic property which changed returns to a basis with heat treatment. Possibility that the above-mentioned technical problem will be solvable especially by [to which the former is applied to printing] using the latter for reproduction of the printing version is found out, and it came to complete this invention based on this. That is, this invention is as follows.

[0012] On Front Face, 1. TiO2 and RTiO3 (R is Alkaline-Earth-Metal Atom), AB2-x CxD3-x Ex O10 (A -- a hydrogen atom or an alkali-metal atom --) The metal atom with which in B an alkaline-earth-metal atom or a lead atom, and C belong to a rare earth atom, and D belongs to 5A group element of a periodic table, The metal atom with which E similarly belongs to 4A group element, and x express the arbitrary numeric values of 0-2. SnO2, Bi 2O3, and ZnO and Fe 2O3 While giving a lipophilic property

picture to the original edition for printing which has the thin layer which makes at least one a principal component The offset-printing method characterized by printing by performing complete irradiation of the non-picture section using activity light, contacting a picture side in the ink for printing, making the printing side in which the picture field received ink form, making the field which has this printing side printed contact, and imprinting ink.

[0013] 2. Printing method given in the above 1 characterized by carrying out washing removal of the picture matter when ink which remains on form plate used for printing, and lipophilic property picture matter also remain, heating the original edition subsequently to more than 80 degreeC, and printing repeatedly using the original edition for printing.

[0014] 3. The thin layer prepared in the front face of the printing version is TiO2. Or the above 1 characterized by the bird clapper from either of the ZnO(s) or the offset-printing method given in 2. [0015] 4. TiO2 The offset-printing method given in the above 1-3 characterized by the bird clapper mainly from an anatase type crystal.

[0016] 5. Offset-printing method given in the above 1-4 characterized by preparing thin layer according to claim 1 in front face by the side of printing side of printing cylinder of the offset press.

[Embodiments of the Invention] The gestalt of operation of this invention is explained in detail below. It has the property that the above-mentioned specific metallic oxide changes the property of the hydrophilic property/lipophilic property of the front face in response to irradiation of activity light, as for this invention, It is making into the focus to have developed the technology of having applied the former to production of the printing version for offset printing, and applying the latter to reproduction of the used printing version among having discovered the surface property in which it changed having returned to the property of a basis with heat, and those phenomena.

[0018] It was known well that titanium oxide and a zinc oxide have photosensitivity, with the zinc oxide, optical irradiation could especially be performed in the state of electrification or voltage impression, the electrostatic picture could be acquired, and this was used as an electrofax in the electrostatic photograph field. However, the above-mentioned photoelectrical charge generation is the phenomenon newly found out unrelated, and the property that the property of surface hydrophilic property/lipophilic property changes with irradiation of activity light is a phenomenon which has not noticed the photosensitivity of titanium oxide and a zinc oxide at that time by which use in an electrophotography field was studied. Furthermore, the idea of applying property change of this front face to offset printing is new technical thought. The above-mentioned phenomenon found out that not only the thin layer of titanium oxide and a zinc oxide but the metallic-oxide thin layer of other specific structures further described above happened, and this invention person found out that it could use for the charge of a printing plate for these metallic-oxide thin layers also enforcing the method of this invention.

[0019] In the following explanation, the metallic oxide of the above-mentioned titanium oxide used for this invention, a zinc oxide, and specific structure etc. is collectively called "photocatalyst type metallic oxide." If the term used on these specifications with unnecessary addition is described before giving the detail, activity light would be excited when the photocatalyst type metallic oxide absorbed, and it will have pointed out the light which changes the front face to a hydrophilic property, and details, such as the light source, wavelength, etc., will be mentioned later. Moreover, "image Mr. exposure" is exposure for forming the picture modulated so that a light-receiving side illuminance might be distributed in the shape of a picture on a printing plate. In the following explanation, the "thin film" and the "thin layer" are used for homonymy.

[0020] The photocatalyst type metallic oxide used for this invention is explained. First, it explains from titanium oxide and a zinc oxide. Although all can be used as a charge of a printing plate which has the photosensitivity of this invention, especially titanium oxide is desirable in respect of sensitivity (that is, optical change property of front-face nature) etc. What was made by known arbitrary methods, such as sulfuric-acid heating baking of an ilmenite or a titanium slag or formation of an after [heating chlorination] oxygen acid, can be used for titanium oxide. Or the method of making it into an oxide film

with vacuum deposition in the printing version manufacture stage using titanium metal so that it may mention later can also be used.

[0021] In order to prepare the layer containing titanium oxide (or zinc oxide) on the surface of the original edition For example, the method of painting the distributed object of ** titanium oxide microcrystal (or zinc-oxide microcrystal) on the original edition of the printing version, ** The method of calcinating, and decreasing the quantity of or removing a binder after painting, the method of carrying out the vacuum evaporation of the titanium oxide (or zinc oxide) on the original edition of the ** printing version, ** For example, after applying a titanium organic compound like titanium butoxide on the original edition, known arbitrary methods, such as the method of giving baking oxidization and using as a titanium metal layer, can be used. In this invention, especially the titanium oxide layer by vacuum deposition is desirable.

[0022] After specifically applying an amorphous titanium oxide microcrystal distribution object, there is the method of applying the method of calcinating and using as an anatase or rutile type crystal titanium oxide layer, the method of applying titanium oxide and the mixed distribution object of a silicon oxide, and making a surface layer form, titanium oxide, organopolysiloxane, or mixture with the monomer etc. among the methods of painting the titanium oxide microcrystal of the above-mentioned ** or **. Moreover, it can also apply to the made polymer binder which coexists with an oxide in an oxide layer dispersedly. The polymer which has dispersibility to a titanium oxide particle can be widely used for the binder of an oxide particle. As an example of desirable binder polymer, hydrophobic binders, such as polyalkylene polymer, such as polyethylene, a polybutadiene, polyacrylic ester, a polymethacrylic acid ester, polyvinyl acetate, a poly formic acid vinyl, a polyethylene terephthalate, polyethylenenaphthalate, polyvinyl alcohol, partial saponification polyvinyl alcohol, and polystyrene, are desirable, and may mix and use those resins.

[0023] If a titanium metal is evaporated usually putting titanium metal on the heat source of heating for vacuum evaporation in a vacuum evaporation system, and making it the total gas pressure exp (-2--5) and a ******* ratio become 30 - 90% by degree of vacuum exp(-5--8) Torr, in order to perform vacuum deposition of the titanium oxide of the above-mentioned **, the vacuum evaporationo thin film of titanium oxide will be formed in a vacuum evaporationo side.

[0024] On the other hand, when using a zinc-oxide layer for this invention, the zinc-oxide layer can be made by known arbitrary methods. The method of carrying out electrolytic oxidation especially of the front face of a metal zinc plate, and making an oxide film forming, and the method of making a zinc-oxide coat form with vacuum deposition are desirable. The method of carrying out the vacuum evaporation of the metal zinc under oxygen gas existence like the vacuum evaporation of the above-mentioned titanium oxide, and making an oxide film forming, and the method of raising temperature to about 700 degreeC and oxidizing it in air, after making a zinc metal membrane form in the state where there is no oxygen can be used for the vacuum evaporation film of a zinc oxide.

[0025] the thickness of a vacuum evaporation film -- a titanium oxide layer and a zinc-oxide layer -- in any case, 1-100000A is good, and it is 10-10000A preferably It is good to prevent distortion of an optical interference as 3000A or less still more preferably. Moreover, to making a photoactivation operation fully discover, a certain thing has convenient thickness 50A or more.

[0026] Although titanium oxide can use anything of crystal form, its sensitivity is [an anatase type thing] highly desirable especially. Being obtained by choosing the baking conditions of the process which an anatase type crystal calcinates titanium oxide and is acquired is known well. In this case, although amorphous titanium oxide and an amorphous rutile type titanium dioxide may live together, an anatase type crystal is desirable 40% or more from the reason of the above [what is included 60% or more preferably]. The rate of volume of the titanium oxide in the layer which makes titanium oxide or a zinc oxide a principal component, or a zinc oxide is 30 - 100%, respectively, and that of the continuation layer of an oxide, i.e., it is 100% substantially, is [it is at best still more desirable that an oxide occupies 50% or more preferably, and] good. However, since there is no influence by remarkable purity like [in case surface hydrophilic property / lipophilic property change property use a zinc oxide for an electrophotography photosensitive layer], it is not necessary to high-grade-ize further the thing (for

example, 98%) of the purity near 100%. It is being able to understand also from it being property change of the hydrophilic property/lipophilic property on the front face of a film which is not related to conductivity in this invention, and being a dispersed property.

[0027] However, in order to promote the property in which a surface hydrophilic property changes with optical irradiation, it may be effective to dope a metal of a certain kind, doping of a metal with a small ionization tendency is suitable for this purpose, and it is desirable to dope Pt, Pd, Au, Ag, Cu, nickel, Fe, and CO. Moreover, you may dope two or more these desirable metals. When doping, the injection rate is less than [5 mol %] to the metal component in a zinc oxide or titanium oxide.

[0028] On the other hand, the sensitivity of property change of the rate of volume of the hydrophilic property/lipophilic property of the front face of a low and a layer falls. Therefore, as for the rate of volume of the oxide in a layer, it is desirable that it is 30% or more.

[0029] Next, it is RTiO3. The titanic-acid metal salt shown by the general formula is explained. General formula RTiO3 It sets, and R is a metal atom belonging to the alkaline-earth element of periodic tables, such as magnesium, calcium, strontium, barium, and beryllium, and especially its strontium and barium are desirable. Moreover, as long as the sum total adjusts two or more sorts of alkaline-earth-metal atoms in stoichiometry at an above-mentioned ceremony, it can live together.

[0030] In the compound expressed with general formula AB2-x Cx D3-x Ex O10, A is the univalent atom chosen from alkali-metal atoms, such as a hydrogen atom and sodium, a potassium, ruby JUMU, caesium, and a lithium, and as long as the sum total has consistency in stoichiometry at an above-mentioned ceremony, it may live those two or more sorts together. B is the alkaline-earth-metal atom or lead atom of the above-mentioned R and homonymy, and as long as it has consistency in stoichiometry like the above, two or more sorts of atoms may live together. C is a rare earth atom, is an atom belonging to lanthanoids system elements, such as a scandium, an yttrium and a lanthanum, a cerium, plastic SEOJIUMU, neodium, a holmium, a europium, a gadolinium, a terbium, a thulium, an ytterbium, and a lutetium, preferably, and as long as the sum total has consistency in stoichiometry at an above-mentioned ceremony, it may live those two or more sorts together. D is more than a kind chosen from 5A group element of a periodic table, and nitrogen, Lynn, an arsenic, antimony, and a bismuth are mentioned. Moreover, as long as a stoichiometry relation is filled, the metal atom of two or more sorts of 5A group elements may live together. E is a metal atom which similarly belongs to 4A group elements, such as silicon, germanium, tin, and lead, and two or more sorts of 4A groups' metal atom may live together. x expresses the arbitrary numeric values of 0-2.

[0031] In order to prepare the above-mentioned photocatalyst type metallic oxide used for this invention on the surface of the original edition For example, the method of painting the distributed object of the ** above-mentioned oxide particle on the original edition of the printing version, ** The method of calcinating, and decreasing the quantity of or removing a binder after painting, the method of carrying out film formation of the above-mentioned oxide by various kinds of vacuum film methods on the original edition of the ** printing version, ** For example, after applying an organic compound like the alcoholate of a metallic element on the original edition, It can be made to be able to understand an added water part and known arbitrary methods, such as the method of carrying out the heating spray of the solution, such as the method of giving baking oxidization further and making it into the metal thin film of suitable thickness, a hydrochloride containing the ** above-mentioned metal, and a nitrate, can be used. In this invention, especially the titanium oxide layer by vacuum deposition is desirable. [0032] There is the method of applying the method and barium titanate in which apply the mixed distribution object of a barium titanate and silicon to, and a surface layer is made to form, organopolysiloxane, or mixture with the monomer etc. among the methods of painting the bariumtitanate particle of the above-mentioned ** or **. Moreover, it can also apply to the made polymer binder which coexists with an oxide in an oxide layer dispersedly. The polymer which has dispersibility to a barium-titanate particle can be widely used for the binder of an oxide particle. As an example of desirable binder polymer, hydrophobic binders, such as polyalkylene polymer, such as polyethylene, a polybutadiene, polyacrylic ester, a polymethacrylic acid ester, polyvinyl acetate, a poly formic acid vinyl, a polyethylene terephthalate, polyethylenenaphthalate, polyvinyl alcohol, partial saponification

polyvinyl alcohol, and polystyrene, are desirable, and may mix and use those resins. In the case of this method, thin film formation is possible also for titanic-acid magnesium, titanic-acid calcium, a strontium titanate or the compound between those molecules, and mixture similarly in addition to a barium titanate.

[0033] It is also possible to paint 2OCsLa2 NbTi10 particle by the painting method of ** and ** similarly. 2OCsLa2 NbTi10 particle is Cs2 CO3 corresponding to the stoichiometry, La2 O3, and NbO5 and TiO2. It pulverizes with a mortar, puts into a platinum crucible, and is 130degreeC. After calcinating for 5 hours and cooling it, it puts into a mortar and grinds to a particle several microns or less. This 2OCsLa2 NbTi10 particle was distributed and applied into the binder like the aforementioned barium titanate, and the thin film was formed. This method is applied to the above-mentioned AB2-x Cx D3-x Ex O10, such as not only a CsLa2 NbTi 2O10 type particle but HCa1.5 La0.5 Nb2.5Ti 0.5O10, HLa2 NbTi 2O10, etc., and (0<=x<=2).

[0034] Generally as the formation method of the photocatalyst type metallic-oxide layer using the vacuum thin film forming method of the above-mentioned **, the sputtering method or the vacuum thin film forming method is used. By the sputtering method, a simple substance or the oxide target of 2 yuan is prepared beforehand. For example, the temperature of the base material for vacuum evaporationo films is maintained using a barium-titanate target more than 450 degreeC, and a barium-titanate final thin film is obtained by performing RF sputtering in an argon / oxygen mixture atmosphere. What is necessary is just to carry out post annealing to crystalline control by 300-900 degreeC if needed. If this method begins the above-mentioned RTiO3 (R is an alkaline-earth-metal atom) and the optimal substrate temperature for crystal control is adjusted to other aforementioned photocatalyst type metallic oxides, thin film formation is possible for it at the same view. For example, when preparing a tin-oxide thin film, the thin film to which a barium-titanate crystal thin film meets this purpose by the profit ratios 50/50 and RF power 200W is obtained by performing RF sputtering in substrate temperature 120degreeC, and an argon / oxygen mixture atmosphere.

[0035] The method using the metal alcoholate of the above-mentioned ** is also a method in which the target thin film formation is possible without using a binder. For forming the thin film of a barium titanate, it is the mixed alcohol solution of barium ethoxide and titanium butoxide to a front face SiO2 After applying on the silicon substrate which it has and hydrolyzing the front face, it is possible to heat more than 200 degreeC and to form the thin film of a barium titanate. other RTiO3 (R is an alkaline-earth-metal atom) which mentioned this method above, and AB2-x Cx D3-x Ex O10 (A, B, C, D, and E express the contents of the aforementioned definition, respectively), SnO2, and Bi 2O3 And Fe 2O3 It is applicable to thin film formation.

[0036] Formation of the thin film of the system which does not contain a binder is possible also for the method of forming the metallic-oxide thin film which discovers the light catalytic function of the above-mentioned **. SnO2 For forming a thin film, it is SnCl4. The quartz or the crystalline glass front face which heated hydrochloric-acid solution more than 200 degreeC can be sprayed, and a thin film can be generated. This method is SnO2. RTiO3 (R is an alkaline-earth-metal atom) mentioned above besides a thin film, AB2-x Cx D3-x Ex O10 (A, B, C, D, and E express the contents of the aforementioned definition, respectively), and Bi2 O3 And Fe 2O3 It is applicable to any thin film formation. [0037] In above any case, the thickness of a metallic-oxide thin film has good 1-100000A, and it is 10-10000A preferably. It is good to prevent distortion of an optical interference as 3000A or less still more preferably. Moreover, to making a photoactivation operation fully discover, a certain thing has convenient thickness 50A or more.

[0038] In the thin layer of the above-mentioned photocatalyst type metallic oxide at the time of using a binder, the rate of volume of a metallic oxide is 50 - 100%, and that of the continuation layer of an oxide, i.e., it is 100% substantially, is [it is at best still more desirable that an oxide occupies 90% or more preferably, and] good.

[0039] Various forms and material can be used for the printing version concerning this invention. for example, the method of preparing a direct oxide layer for the thin layer of a photocatalyst type metallic oxide in the front face of the printing cylinder of a printing machine by vacuum evaporation and the

method immersed, or applied and etc.-described above and the method of preparing a metallic-oxide layer in the front face of a metal plate, twisting it around a printing cylinder, and using as the printing version -- it can use -- moreover -- as the metal plate -- an aluminum plate, stainless steel, nickel, and a copper plate -- desirable -- moreover -- flexibility (flexible) -- a metal plate Moreover, flexible plastics base materials, such as polyester and cellulose ester, can also be used. An oxide layer may be prepared on base materials, such as waterproofing paper, polyethylene laminating paper, and an impregnated paper, and it may be used as a printing version.

[0040] In this invention, when preparing the layer of a photocatalyst type metallic oxide on a base material, as a base material used It is a tabular object stable in dimension. For example, paper, plastics The paper (which for example, polyethylene, polypropylene, polystyrene, etc. laminated), Metal plates (for example, aluminum, zinc, copper, stainless steel, etc.), plastic film for example, a diacetyl cellulose, a cellulose triacetate, and a cellulose propionate -- A butanoic acid cellulose, a cellulose acetate butyrate, a cellulose nitrate, a polyethylene terephthalate, The metal like the above, such as polyethylene, polystyrene, polypropylene, a polycarbonate, and a polyvinyl acetal, is contained for a lamination, the paper by which vacuum evaporationo was carried out, or plastic film.

[0041] A desirable base material is an SUS board which is hard to corrode on polyester film, aluminum, or the printing version, its dimensional stability is good also in it, and especially a comparatively cheap aluminum plate is desirable. It may be the alloy board which a suitable aluminum plate makes a pure-aluminium board and aluminum a principal component, and contains the different element of a minute amount, and a lamination or the plastic film by which vacuum evaporationo was carried out is further sufficient as aluminum. There are silicon, iron, manganese, copper, magnesium, chromium, zinc, a bismuth, nickel, titanium, etc. in the different element contained in an aluminium alloy. The content of the different element in an alloy is at most 10 or less % of the weight. Although especially suitable aluminum is a pure aluminium in this invention, since manufacture on refinement technology is difficult for completely pure aluminum, you may contain a different element slightly. Thus, the composition is not specified and the aluminum plate of the material of well-known official business can be conventionally used for the aluminum plate applied to this invention suitably. The thickness of the base material used by this invention is 0.2mm - 0.3mm especially preferably 0.15mm - 0.4mm preferably about 0.1mm - about 0.6mm.

[0042] It precedes split-face-izing an aluminum plate, and degreasing processing by the surfactant, the organic solvent, or alkaline solution in order for a request to remove surface rolling oil is performed. Although split-face-ized processing of the front face of an aluminum plate is performed by various methods, it is performed by the method of split-face-izing mechanically, for example, the method of forming a front face into a dissolution split face electrochemically, and the method of carrying out the selective dissolution of the front face chemically. As the mechanical method, well-known methods, such as the ball grinding method, a brushing method, the blast grinding method, and buffing, can be used. Moreover, there is the method of performing by an alternating current or direct current in a hydrochloric acid or the nitric-acid electrolytic solution as an electrochemical split-face-ized method. Moreover, the method which combined both as indicated by JP,54-63902,A can also be used. Thus, anodizing is performed, in order that the split-face-ized aluminum plate may raise surface water retention and abrasion resistance by request, after alkali-etching-processing and neutralization processing if needed. As an electrolyte used for anodizing of an aluminum plate, use of the various electrolytes which form a porosity oxide film is possible, and, generally a sulfuric acid, a hydrochloric acid, oxalic acid, chromic acids, or those mixed acids are used. The concentration of those electrolytes is suitably decided according to an electrolytic kind.

[0043] Since the processing conditions of anodic oxidation change variously with the electrolyte to be used, although it cannot generally specify, if electrolytic concentration is 5-70 degrees C, current density 5 - 60 A/dm2, voltage 1-100V, and a range for 10 seconds - electrolysis time 5 minutes, generally it is suitable for a 1 - 80-% of the weight solution, and solution temperature. If there are few amounts of an anodic oxide film than 1.0 g/m2, its print durability is inadequate, or the so-called "blemish dirt" with which a blemish becomes easy to stick to the non-picture section of the monotonous printing version

with, and ink adheres to the portion of a blemish at the time of printing becomes easy to produce them. [0044] Since the component of the charge of a printing plate used for the printing method of this invention above and the composition of the printing version using it were explained, the manufacture method of the printing version of this invention is described below, this invention -- setting -- TiO2 [more than], RTiO3, and AB2-x Cx D3-x Ex O10, SnO2, ZnO2, and Bi2 </SUB>O3 And Fe 2O3 independent [at least one] or two sorts or more -- combining -- a shell -- it prepares in the original edition front face for printing by making a thin layer into a photosensitive layer Although the printing original edition which has the surface layer of a photocatalyst type metallic oxide is originally lipophilic property, the portion which received irradiation of light becomes hydrophilic and stops receiving ink. Therefore, make the picture section of lipophilic property form on the printing original edition, make the non-picture section into a hydrophilic property by uniform optical irradiation, and the ink for offset printing is made to contact. A non-picture field holds dampening water and the printing side in which the picture field received ink is made to form. It is the printing method of this invention to print by making the field which has this printing side printed contact, and imprinting ink, and it can print very simply combining the simple image formation method. Moreover, if a picture is recorded on the hydrophilic-property-ized metallic-oxide front face, after carrying out complete exposure irradiation of the metallic-oxide front face, you may make a picture form.

[0045] Direct writing and other well-known arbitrary oily image recording meanses according [the image recording to the surface layer of a photocatalyst type metallic oxide] to an electrostatic recording method, the heat dissolution nature ink-jet drawing method, a coloring matter hot printing method, oily paints, and oil paints, such as an electrostatic photographic method, are used. Therefore, it is the feature that the selection range of an applicable image recording means is very wide range. Since uniform irradiation of the activity light by said light source is performed in the surface layer of the photocatalyst type metallic oxide which performed image recording, the non-picture section becomes hydrophilic and the difference of the picture section, ink receptiveness, and the ink resilience arises, dampening water is supplied to the non-picture section, ink is supplied to the picture section, and offset printing is performed.

[0046] As long as there is no trouble in the adhesive property on picture material and the hydrophilicproperty-ized front face of a metallic oxide as another printing version production procedure, you may perform image formation, after performing previously uniform irradiation of the activity light to the surface layer of a photocatalyst type metallic oxide. Moreover, after performing image formation and uniform irradiation of activity light and carrying out washing removal of the picture with an oily solvent, you may print. By this method, when ink receptiveness has the inadequate picture matter, or even when an adhesive property with a surface-of-metal layer is weak, the method of this invention can be applied. [0047] "Change between the lipophilic property by irradiation of light and a hydrophilic property" it is changeless to the foundations of this invention is very remarkable. The discernment effect is so remarkable that the difference of the hydrophilic property of the picture section and the non-picture section and lipophilic property is large, a printing side becomes clear and print durability also becomes large simultaneously. The contact angle to waterdrop can express the scale of a hydrophilic property or lipophilic property. Waterdrop shows a breadth, a contact angle becomes small, and when repelling waterdrop conversely (water repellence, i.e., lipophilic property), a contact angle becomes large, so that a hydrophilic property is large. That is, since the original edition which has the metallic-oxide surface layer of this invention will change to the property in which the contact angle falls rapidly and crawls the ink of lipophilic property if irradiation of activity light is received although it originally has the high contact angle to water, the picture given on the printing plate serves as an ink attaching part, and ink is imprinted by the printed side, when the non-picture section turns into a water attaching part and contacts television sheets, such as paper.

[0048] The above-mentioned metallic oxide is technical thought with the new idea that it applies property change of this front face by activity light to offset printing of a new method by the photocatalysis although the front face of the hydrophilic-property-ized phenomenon is well-known at JP,9-70541,A, 9-77535, etc.

[0049] The activity light which excites the thin layer which makes a photocatalyst type metallic oxide a principal component in this invention is the light of the sensitization region of an oxide. titanium oxide -- since 387nm or less and the other above-mentioned metallic oxides also have a sensitization region in a 250-390nm ultraviolet region, as for 413nm or less and a zinc oxide, an anatase type can use [387nm or less and a rutile type I a mercury-vapor lamp, a tungsten halogen lamp, other metal halide lamps, a xenon LGT, etc. Moreover, if the interval of the beam to scan is fully narrow (nectar) even if it is beam scanning light, since the same effect will be substantially acquired with uniform irradiation, it can also be with laser-beam light. The water-cooled argon laser which has the helium cadmium laser which has oscillation wavelength in 325nm, and oscillation wavelength in 351.1-363.8nm as an excitation light can also be used. Furthermore, the InGaN system quantum well semiconductor laser which can also apply the zinc sulfide / cadmium laser which it has in 330-440nm, and has oscillation wavelength in 360-440nm by the gallium-nitride laser system and the waveguide which has oscillation wavelength in 360-430nm MgO-LiNbO3 Reversal domain wavelength conversion device type laser is also applicable. Although spectral sensitization may be performed by the known method, in the case of a zinc oxide, the above-mentioned light source can be used also in that case, and it can also use tungsten lamps other than the above which has spectral distribution in a spectral sensitization region further. [0050] the field exposure intensity although the desirable irradiation intensity of light changes with properties of the image formation layer of a photocatalyst type metallic oxide and it changes also with the wavelength and spectral distributions of activity light, before usually becoming irregular by the picture for printing -- 0.05 - 100 joule/cm2 -- desirable -- 0.05 - 10 joule/cm2 -- more -- desirable -- 0.05 - 5 joule/cm2 it is . Moreover, in optical irradiation, reciprocity law is materialized mostly, for example, they are 10 mW/cm2. Even if it performs exposure for 100 seconds, it is 1 W/cm2. As long as light is emitted in activity light since the same effect is acquired even if it performs exposure for 1 second, there

[0051] The above-mentioned photosensitivity differs from the photosensitivity of the zirconia ceramic (JP,9-169098,A) by which the property and the mechanism are indicated conventionally. For example, it is [as opposed to / a zirconia ceramic / sensitivity] 2 7W/micrometer. It is described as the laser beam and the pulse duration of a laser beam is made into 100 nanoseconds, and it is 70 joule(s)/cm2, and is lower than the sensitivity of a titanium oxide layer about 1 figure. Although not enough solved in mechanism, it is considered the optical exfoliation reaction of a lipophilic property organic affix, and differs from the optical change mechanism of a zirconia.

are no restrictions in selection of the light source. the scanning method according [this irradiation quantity of light] to laser -- it is the quantity of light of convenient level also especially in the field

[0052] After giving the picture of lipophilic property to the surface layer of a metallic oxide, the printing original edition can be sent to an offset-printing process as it is, without carrying out a development. Therefore, as compared with the usual well-known lithographing method, it has many advantages focusing on simplicity. That is, as described above, the chemical treatment by the alkali developer is unnecessary, operation of wiping accompanying it and brushing is also unnecessary, and it is not further accompanied by the environmental load by discharge of development waste fluid, either. Moreover, the selection range of an image formation means is wide, and it is also an advantage to print easily from a simple image recording means which was described above.

[0053] Although the non-picture section of the lithography version obtained as mentioned above has fully turned hydrophilic, after treatment is carried out with the desensitization liquid which contains the rinse and gum arabic containing rinsing water, a surfactant, etc., and a starch derivative by request. As after treatment in the case of using it as a plate for printing, the image recording material of this invention can be used combining various these processings. The method of immersing for it and applying the printing version as the method into the bat which applied on the lithography version or filled counter etching liquid with sponge and the absorbent cotton into which this counter etching liquid was made to soak, the application by the automatic coating machine, etc. are applied. Moreover, making a squeegee, after applying, and making the coverage uniform with a squeegee roller gives a more desirable result. Generally 0.03 - 0.8 g/m2 (dry weight) is suitable for the coverage of counter etching

exposure method using the emitted type light source [or]

liquid. the lithography version obtained by such processing is covered over the offset press etc. -- having -- many -- it is used for printing of several sheets

[0054] Next, it describes about the reproduction process of the printing version of having finished printing. The printing version after a printing end washes out picture *****, when the ink and the picture matter which have adhered using a hydrophobic petroleum solvent also remain. As a solvent. there are an aromatic hydrocarbon, for example, kerosine, Isopar, etc. as a commercial ink solution for printing, in addition benzole, a toluol, a xylol, an acetone, methyl ethyl ketones, and those partially aromatic solvents may be used. When the picture matter does not dissolve, it wipes off lightly using cloth etc. moreover, toluene/die -- it is sometimes good to use 1/1 clean mixed solvent [0055] When there are ink and picture matter, by next heat-treating for the printing version which carried out washing removal of the picture matter, over the whole printing plate, it becomes homogeneity with lipophilic property, and the optical irradiation sensitivity to uniform lipophilicproperty-izing is recovered. Although heat treatment is preferably performed by below the burning temperature of a photocatalyst type metallic oxide more than 80 degreeC above 100 degreeC, lipophilic property-ized time is as short as an elevated temperature. Although there are some differences according to the kind of metallic oxide, heat treatment of the grade for 10 seconds or more is [in 150 degreeC] more preferably desirable at 1 minutes or more or 250 degreeC in 10 minutes or more or 200 degreeC. Although it is convenient even if it extends heat treatment time, the further advantage is not born, even if it extends time, after surface fresh oil nature is recovered.

[0056] The heat source used for reproduction can use arbitrary meanses, if the conditions of the above-mentioned temperature and time are fulfilled. If the example of a heating means is given, insertion to the indirect infrared irradiation to which heat ray absorption sheets, such as the black carbonic paper, were contacted, and the air thermostat which carried out a temperature setup, contact heating with the hot platen of a hot plate and others, contact on a heating roller, etc. will be mentioned to radiation heating by direct infrared irradiation, and the printing version front face. Thus, the original edition for printing reproduced from the used printing version avoids, is stored, and equips the next printing with exposure to activity light.

[0057] Although it cannot grasp completely, the number of times of repeated-regeneration possible of the printing original edition concerning this invention is at least 15 times or more, and it becomes dirty and it is considered [which probably cannot remove the opposite side] that restoration is restrained by the blemish of **** which is not practical, mechanical deformation (strain) of a plate, etc. [0058]

[Example] Next, although an example explains this invention further, this invention is not limited to this.

The polyethylene-terephthalate (PET) film with an example 1 thickness of 100 microns was heated within the vacuum evaporation system, the piece of a titanium metal was heated under conditions of 70% of oxygen gas partial pressure by total pressure 1.5x10-4Torr, and vacuum evaporation formation of the titanium-dioxide thin film was carried out. The ratio of a non-fixed form / anatase / rutile crystal structure of the crystal component of this thin film was 1.5/6.5/2 by the X-ray-analysis method, and the thickness of TiO2 thin film was 900A. Size was cut into 510x400mm, and was made into the sample. This PET film was set in the electrostatic photographic system instead of the record form, and the toner picture was made to form by the electrostatic recording method, this polyethylene-terephthalate (PET) film -- USIO baking by the USHIO electrical-and-electric-equipment company -- exposure was performed for 2 minutes by the basis of 2 the optical intensity of 9mW/cm using ** light equipment uni-REKKU URM-600 formal GH-60201X When the surface contact angle was measured by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company, the six exposure sections (it is 79 degrees before irradiation) were obtained. [0059] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 500-sheet offset printing was performed, printed matter clear from a start to an end was obtained, and it was not stopped [also saw the injury on the printing version and]

[0060] the front face of the version used for printing of the example 2 above -- ink penetrant remover die clean R for printing (putting on the market on the market agency: -- when immersed in 1/1 mixed solvent of Dainippon Ink Industry and toluene, in about 15 seconds, a picture and ink dissolve and it flowed away) After washing carefully, removing ink and heating this for 10 minutes in the oven of 150 degrees, the contact angle was measured by the same method as a front in the state where it got cold to the room temperature. The contact angle is contained in the range of 78 - 80 degrees, and was recovered in the early state which nothing is completely performing in every part on the front face of a version. Imprint formation of the toner picture which sets in the same electrostatic photographic system as the first time in this state, and changes in the first time with electrostatic recording methods was carried out. Next the same light source (light equipment for baking by the USHIO electrical-and-electric-equipment company) as a front is used for polyester film with a picture, and it is the same optical intensity (exposure was performed for 2 minutes by 9 mw/cm2.). Like the 1st time, when the surface contact angle was measured by the air waterdrop method, the six exposure sections and the 82 non-exposing sections were obtained.

[0061] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 500-sheet offset printing was performed. Printed matter clear from a start to an end was obtained, and the injury on the printing version was not accepted, either. When the above repeat was carried out 15 times, change of the recovery speed of the photosensitivity of a version, a contact angle, and the contact angle by heating etc. was not accepted.

[0062] On the stainless steel board with an example 3 thickness of 100micro, the piece of a titanium metal was heated under conditions of 70% of oxygen gas partial pressure by total pressure 1.5x10-4Torr within the vacuum evaporation system, and vacuum evaporation of the titanium-dioxide thin film was carried out. The ratio of a non-fixed form / anatase / rutile crystal structure of the crystal component of this thin film was 1.5/6.5/2 by the X-ray-analysis method, and the thickness of TiO2 thin film was 900A. Size was cut into 510x400mm, and was made into the sample.

[0063] Ta-SiO2 Using the sensible-heat printer which arranged in 250-micrometer interval the thermal head of 150micromx150micrometer which prepared the wear-proof [sialon] protective layer on the exoergic resistor, the barium-titanate surface layer was made to contact and temperature up printing was performed. By 20msec energization, separately, the used thermal head performed the thermometry and checked reaching 450 degreeC. Recording rate was performed by 400 msec/m. Moreover, the thing of marketing of 62 degrees of melting points C which consist of 10%, such as 20 % of the weight of pigments, 20 % of the weight of carnauba wax, 40 % of the weight of ester waxes, 10 % of the weight of AMANI oils, and a binding resin, was used for the used thermofusion nature ink.

[0064] this -- USIO baking by the USHIO electrical-and-electric-equipment company -- exposure was performed for 2 minutes under optical on-the-strength 9 mW/cm2 using ** light equipment uni-REKKU URM-600 formal GH-60201X When the surface contact angle was measured by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company, the nine non-picture sections were obtained.

[0065] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 300-sheet offset printing was performed. printed matter clear from a start to an end was obtained, and it was not stopped [also saw the injury on the printing version and] [0066] 1/1 mixed liquor of ink penetrant remover die clean R for printing (putting on the market on the market agency; Dainippon Ink & Chemicals, Inc.) and toluene was infiltrated into the waste cloth, the front face of the version used for the example 4 above-mentioned example 3 was washed carefully, and ink and the picture matter were removed. After heating this for 10 minutes in the oven of 150 degrees, the contact angle was measured by the same method as a front in the state where it got cold to the room temperature. The contact angle is contained in the range of 78 - 80 degrees, and was recovered in the early state which nothing is completely performing in every part on the front face of a version. Hot printing baking is performed for a picture which is different from the first [further] time in this state,

the same light source (light equipment for baking by the USHIO electrical-and-electric-equipment company) as a front is used, and it is the same optical intensity (exposure was performed for 2 minutes by 9 mw/cm2.). Like the 1st time, when the surface contact angle was measured by the air waterdrop method, the nine non-picture sections were obtained.

[0067] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 300-sheet offset printing was performed. Printed matter clear from a start to an end was obtained, and damage on the printing version was not accepted, either. When the above repeat was carried out 10 times, change of the recovery speed of the photosensitivity of a version, a contact angle, and the contact angle by heating etc. was not accepted.

[0068] The thickness rolled plate of 0.30mm of the JISA1050 aluminum material which contains titanium for copper 0.01% of the weight, and contains silicon for iron 0.1% of the weight 0.3% of the weight 0.03% of the weight to the 599.5 % of the weight aluminum of examples was often washed with water, after graining the front face using the 20-% of the weight aqueous suspension of PAMISUTON (product made from a joint establishment ceramic industry) of 400 meshes, and a rotation nylon brush (6, 10-nylon), this is immersed in sodium-hydroxide solution (4.5 % of the weight content of aluminum) 15% of the weight, and the amount of dissolutions of aluminum becomes 5 g/m2 -- as -- etching -- it rinsed with the stream the back the bottom Furthermore, the nitric acid neutralized 1% of the weight, next, square wave police box wave voltage (a current ratio r= 0.90, current wave form indicated by the JP,58-5796,B example) with a voltage of 9.3v was used [in 0.7 % of the weight nitric-acid solution (0.5 % of the weight content of aluminum) 1 at the time of the voltage of 10.5v, and cathode at the time of an anode plate, and electrolysis split-face-ized processing was performed with quantity of electricity at the time of 160 clones / anode plate of dm2. It was immersed after rinsing and into 35-degree C 10-% of the weight sodium-hydroxide solution, and it rinsed, after *******ing so that the amount of aluminum dissolutions may be set to 1g/m2. Next, it rinsed, after DESUMATTO [being immersed into 50 degrees C and 30% of the weight of sulfuric-acid solution and].

[0069] Furthermore, porous anodic oxide film formation processing was performed using the direct current in the 35-degree C 20 % of the weight solution (0.8 % of the weight content of aluminum) of sulfuric acids. That is, it electrolyzed by current density 13 A/dm2, and considered as anodic oxide film weight 2.7 g/m² by regulation of electrolysis time. Immersing processing was carried out for 30 seconds after rinsing this base material at the 3-% of the weight solution of a 70-degree C sodium silicate, and rinsing dryness was carried out. The reflection density which measured the aluminum base material obtained as mentioned above with the Macbeth RD920 reflection-density plan was 0.30, and center line average coarseness was 0.58 micrometers. Subsequently, this aluminum base material was put in in the vacuum evaporation system, electric heat heating of the piece of a titanium metal was carried out under the conditions of oxygen gas of 70% of partial pressure so that it might be set to total pressure 1.5x10-4Torr, on the aluminum base material, vacuum evaporationo was carried out and the titanium oxide thin film was formed. The ratio of a non-fixed form / anatase / rutile crystal structure of the crystal component of this thin film was 1.5/6.5/2 by the X-ray-analysis method, and the thickness of TiO2 thin film was 900A. Size was cut into 510x400mm, and was made into the sample. The illustration design was drawn [on this front face / as a coloring agent] using 38 % of the weight of toluene, 10 % of the weight of polyethylene waxes, and the oily ink that consists of 2 % of the weight of manganese driers as 30 % of the weight of AMANI oils, and a solvent as 20 % of the weight of inorganic pigments of a copper-phthalocyanine system, and a vehicle, this -- USIO baking by the USHIO electrical-and-electricequipment company -- exposure was performed for 2 minutes under optical on-the-strength 9 mW/cm2 using ** light equipment uni-REKKU URM-600 formal GH-60201X When the surface contact angle was measured by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company, the eight non-picture sections were obtained. [0070] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, New ChampionF gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 1000-sheet offset printing was performed. the clear printed matter

which does not have dirt in the non-picture section from a start to an end was obtained, and it was not stopped [also saw the injury on the printing version and]

[0071] 1/1 mixed liquor of ink penetrant remover die clean R for printing (putting on the market on the market agency; Dainippon Ink & Chemicals, Inc.) and toluene was infiltrated into the waste cloth, the front face of the version used for the example 6 above-mentioned example 5 was washed carefully, and ink was removed. After heating this for 2 minutes in the oven of 180 degrees, the contact angle was measured by the same method as a front in the state where it got cold to the room temperature. The contact angle is contained in the range of 78 - 80 degrees, and was recovered in the early state which nothing is completely performing in every part on the front face of a version. A picture for illustrations which is different from the first [further] time in this state is drawn, the same light source (light equipment for baking by the USHIO electrical-and-electric-equipment company) as a front is used, and it is the same optical intensity (exposure was performed for 2 minutes by 9 mw/cm2.). Like the 1st time, when the surface contact angle was measured by the air waterdrop method, the eight non-picture sections were obtained.

[0072] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 1000-sheet offset printing was performed. Printed matter clear from a start to an end was obtained, and the injury on the printing version was not accepted, either. When the above repeat was carried out 5 times, change of the recovery speed of the photosensitivity of a version, a contact angle, and the contact angle by heating etc. was not accepted. When the printing original edition which prepared the titanium oxide photosensitive layer on the aluminum base material was used from this result, simple printing was possible and it was shown that the repeated-regeneration use of the printing original edition can moreover be carried out.

[0073] The SUS board of 100-micron thickness was set into the example 7 vacuum evaporation system, and the zinc selenide was deposited in thickness of 1000A under the vacuum of total pressure 5x10-3Torr. This was oxidized by 600 degreein air C for 2 hours, and the thin film of a zinc oxide was made to form in one side of an SUS board.

[0074] Size cut this 100-micron SUS board with a zinc-oxide coat into 510x400mm, and made it the sample. The ink jet printer was equipped with this sheet, and the oily ink picture was recorded on the front face. The oily ink which diluted 10g 50g [of latex distribution objects which distributed vinyl acetate / methacrylic-ester system copolymerization resin 10 weight section in the Isopar H30 weight section], 10g [of dodecyl methacrylate / acrylic-acid (95/5-fold quantitative ratio) copolymers], and alkali-blue 10g, a Shellsol [71 and 30g] distributed object, and tetradecyl alcoholic, and 0.16g of OKUTASEN / maleic-acid octadecyl-alcohol copolymers to Isopar G1 l. was used for oily ink. this -- USIO baking by the USHIO electrical-and-electric-equipment company -- exposure was performed for 20 minutes under optical on-the-strength 9 mW/cm2 using ** light equipment uni-REKKU URM-600 formal GH-60201X When the surface contact angle was measured by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company, the 17 exposure sections and the 68 non-exposing sections were obtained.

[0075] This version is set to the OLIVER 52 one side printing machine made from SAKURAI, and it is New Champion by Dainippon Ink & Chemicals, Inc. about pure water and ink in dampening water. 500-sheet offset printing was performed using F gross 85 Japanese ink. The clear printed matter which does not have dirt in the non-picture section from a start to an end was obtained, and damage on the printing version was not accepted, either.

[0076] 1/1 mixed liquor of ink penetrant remover die clean R for printing (putting on the market on the market agency; Dainippon Ink & Chemicals, Inc.) and toluene was infiltrated into the waste cloth, the front face of the version used for the example 8 above-mentioned example 5 was washed carefully, and ink was removed. After heating this for 15 minutes in the oven of 160 degrees, the contact angle was measured by the same method as a front in the state where it got cold to the room temperature. The contact angle is contained in the range of 51 - 53 degrees, and was recovered in the state before using it as a printing version in every part on the front face of a version. The light source (light equipment for

baking by the USHIO electrical-and-electric-equipment company) same after recording a picture which is different from the first time in this state using an above-mentioned ink jet printer and above-mentioned oily ink on a printing plate as a front is used, and it is the same optical intensity (exposure was performed for 2 minutes by 9 mw/cm2.). Like the 1st time, when the surface contact angle was measured by the air waterdrop method, the 15 exposure sections and the 68 non-exposing sections were obtained.

[0077] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 1000-sheet offset printing was performed. Printed matter clear from a start to an end was obtained, and damage on the printing version was not accepted, either. It was shown that distinction with the ink acceptance section and a dampening water attaching part is maintained, and a zinc-oxide photosensitive layer can also simplify a routing, and can moreover carry out reproduction use of the printing original edition with heat treatment from this result.

[0078] The front face of the SUS board of the 9100 micron thickness of examples was ground mixing an abrasive material (a FUJIMI corporation, FO#4000) with water. When split-face granularity was measured with the three-dimensions surface roughness plan (Kosaka lab three-dimensions surface roughness measuring device model SE-F1, DU-RJ2U, analysis equipment model SPA-11), it was an average of 5 microns. This was rinsed, and it dried and considered as the base material. It air-dried, after flooding with 10% methanol solution of titanium butoxide (product made from Merck) and pulling up this SUS base material. Then, this SUS board was processed with the electric furnace of 600 degreeC for 2 hours. The front face checked that titanium oxide (anatase type) with a thickness of 1500A was generated by the X-ray-analysis method.

[0079] Ta-SiO2 Using the sensible-heat printer which arranged in 250-micrometer interval the thermal head of 150micromx150micrometer which prepared the wear-proof [sialon] protective layer on the exoergic resistor, the titanium oxide surface layer was made to contact and temperature up printing was performed. By 20msec energization, separately, the used thermal head performed the thermometry and checked reaching 450 degreeC. Recording rate was performed by 400 msec/m. Moreover, the thing of marketing of 62 degrees of melting points C which consist of 10%, such as 20 % of the weight of pigments, 20 % of the weight of carnauba wax, 40 % of the weight of ester waxes, 10 % of the weight of linseed oil, and a binding resin, was used for the used thermofusion nature ink.

[0080] this -- USIO baking by the USHIO electrical-and-electric-equipment company -- exposure was performed for 2 minutes under optical on-the-strength 9 mW/cm2 using ** light equipment uni-REKKU URM-600 formal GH-60201X When the surface contact angle was measured by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company, the nine non-picture sections were obtained.

[0081] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 300-sheet offset printing was performed, printed matter clear from a start to an end was obtained, and it was not stopped [also saw the injury on the printing version and] [0082] 1/1 mixed liquor of ink penetrant remover die clean R for printing (putting on the market on the market agency; Dainippon Ink & Chemicals, Inc.) and toluene was infiltrated into the waste cloth, the front face of the version used for the example 10 above-mentioned example 3 was washed carefully, and ink and the picture matter were removed. After heating this for 10 minutes in the oven of 150 degrees, the contact angle was measured by the same method as a front in the state where it got cold to the room temperature. The contact angle is contained in the range of 78 - 80 degrees, and was recovered in the early state which nothing is completely performing in every part on the front face of a version. Hot printing baking is performed for a picture which is different from the first [further] time in this state, the same light source (light equipment for baking by the USHIO electrical-and-electric-equipment company) as a front is used, and it is the same optical intensity (exposure was performed for 2 minutes by 9 mw/cm².). Like the 1st time, when the surface contact angle was measured by the air waterdrop method, the nine non-picture sections were obtained.

[0083] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 300-sheet offset printing was performed. Printed matter clear from a start to an end was obtained, and the injury on the printing version was not accepted, either. When the above repeat was carried out 10 times, change of the recovery speed of the photosensitivity of a version, a contact angle, and the contact angle by heating etc. was not accepted.

[0084] The polyethylene-terephthalate (PET) film with an example 11 thickness of 100 microns was heated within the vacuum evaporation system, the piece of a titanium metal was heated under conditions of 70% of oxygen gas partial pressure by total pressure 1.5x10-4Torr, and vacuum evaporationo formation of the titanium oxide thin film was carried out. The ratio of a non-fixed form / anatase / rutile crystal structure of the crystal component of this thin film was 1.5/6.5/2 by the X-ray-analysis method, and the thickness of TiO2 thin film was 900A. Size was cut into 510x400mm, and was made into the sample. This PET film was set in hot printing equipment instead of the record form.

[0085] Ta-SiO2 Using the sensible-heat printer which arranged in 250-micrometer interval the thermal head of 150micromx150micrometer which prepared the wear-proof [sialon] protective layer on the exoergic resistor, the titanium oxide surface layer was made to contact and temperature up printing was performed. By 20msec energization, separately, the used thermal head performed the thermometry and checked reaching 450 degreeC. Recording rate was performed by 400 msec/m. Moreover, the thing of marketing of 62 degrees of melting points C which consist of 10%, such as 20 % of the weight of pigments, 20 % of the weight of carnauba wax, 40 % of the weight of ester waxes, 10 % of the weight of linseed oil, and a binding resin, was used for the used thermofusion nature ink.

[0086] this -- USIO baking by the USHIO electrical-and-electric-equipment company -- exposure was performed for 2 minutes under optical on-the-strength 9 mW/cm2 using ** light equipment uni-REKKU URM-600 formal GH-60201X When the surface contact angle was measured by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company, the nine non-picture sections were obtained.

[0087] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 300-sheet offset printing was performed, printed matter clear from a start to an end was obtained, and it was not stopped [also saw the injury on the printing version and] [0088] 1/1 mixed liquor of ink penetrant remover die clean R for printing (putting on the market on the market agency; Dainippon Ink & Chemicals, Inc.) and toluene was infiltrated into the waste cloth, the front face of the version used for the example 12 above-mentioned example 3 was washed carefully, and ink and the picture matter were removed. After heating this for 10 minutes in the oven of 150 degrees, the contact angle was measured by the same method as a front in the state where it got cold to the room temperature. The contact angle is contained in the range of 78 - 80 degrees, and was recovered in the early state which nothing is completely performing in every part on the front face of a version. Hot printing baking is performed for a picture which is different from the first [further] time in this state, the same light source (light equipment for baking by the USHIO electrical-and-electric-equipment company) as a front is used, and it is the same optical intensity (exposure was performed for 2 minutes by 9 mw/cm2.). Like the 1st time, when the surface contact angle was measured by the air waterdrop method, the nine non-picture sections were obtained.

[0089] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 300-sheet offset printing was performed. Printed matter clear from a start to an end was obtained, and the injury on the printing version was not accepted, either. When the above repeat was carried out 10 times, change of the recovery speed of the photosensitivity of a version, a contact angle, and the contact angle by heating etc. was not accepted.

[0090] After flooding with 20% of ethanol solution containing the caesium ethoxide which is equivalent to the stoichiometry of CsLa2 NbTi 2O10 in the aluminum base material which carried out anodizing like example 13 example 1, titanium butoxide, ANTAN isobutoxide, and niobium ethoxide and

hydrolyzing a front face, it heated more than 200 degreeC and the thin film with a thickness [of CsLa2 NbTi 2010] of 1000A was made to form in an aluminum support surface.

[0091] Size cut this aluminum base material with a compound metallic-oxide thin film into 510x400mm, and made it the sample. This was set in the electrostatic photographic system instead of the record form, and the toner picture was made to form by the electrostatic recording method. USIO baking by the USHIO electrical-and-electric-equipment company -- exposure was performed for 2 minutes under optical on-the-strength 9 mW/cm2 using ** light equipment uni-REKKU URM-600 formal GH-60201X When the surface contact angle was measured by the air waterdrop method using CONTACT-ANGLEMETER CA-D by consonance interface science incorporated company, the six exposure sections (it is 66 degrees before irradiation) were obtained.

[0092] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 500-sheet offset printing was performed, printed matter clear from a start to an end was obtained, and it was not stopped [also saw the injury on the printing version and] [0093] When the front face of the version used for printing of the example 14 above was immersed in toluene / die clean R (1/1) mixed solvent, in about 15 seconds, a picture and ink dissolve and it flowed away. After washing carefully, removing ink and heating this for 10 minutes in the oven of 150 degrees, the contact angle was measured by the same method as a front in the state where it got cold to the room temperature. The contact angle is contained in the range of 74 - 76 degrees, and was recovered in the state before using it as a printing version in every part on the front face of a version. Imprint formation of the toner picture which sets in the same electrostatic photographic system as the first time in this state, and changes in the first time with electrostatic recording methods was carried out. Next the same light source (light equipment for baking by the USHIO electrical-and-electric-equipment company) as a front is used for polyester film with a picture, and it is the same optical intensity (exposure was performed for 2 minutes by 9 mw/cm2.). Like the 1st time, when the surface contact angle was measured by the air waterdrop method, the six exposure sections (it is 66 degrees before exposure) were obtained.

[0094] This version was set to the OLIVER 52 one side printing machine made from SAKURAI, pure water was used for dampening water, Newchampion F gross by Dainippon Ink & Chemicals, Inc. 85 Japanese ink was used for ink, and 500-sheet offset printing was performed. Printed matter clear from a start to an end was obtained, and the injury on the printing version was not accepted, either. When the above repeat was carried out 15 times, change of the recovery speed of the photosensitivity of a version, a contact angle, and the contact angle by heating etc. was not accepted.

[0095] JIS which contains titanium for copper 0.01% of the weight, and contains silicon for iron 0.1% of the weight 0.3% of the weight 0.03% of the weight to the 1599.5 % of the weight aluminum of examples The thickness rolled plate of 0.30mm of A1050 aluminum material was often washed with water, after graining the front face using the 20-% of the weight aqueous suspension of PAMISUTON (product made from a joint establishment ceramic industry) of 400 meshes, and a rotation nylon brush (6, 10nylon). this is immersed in sodium-hydroxide solution (4.5 % of the weight content of aluminum) 15% of the weight, and the amount of dissolutions of aluminum becomes 5 g/m2 -- as -- etching -- it rinsed with the stream the back the bottom Furthermore, the nitric acid neutralized 1% of the weight, next, square wave police box wave voltage (a current ratio r= 0.90, current wave form indicated by the JP,58-5796,B example) with a voltage of 9.3 volts was used [in 0.7 % of the weight nitric-acid solution (0.5 % of the weight content of aluminum) at the time of the voltage of 10.5 volts, and cathode at the time of an anode plate, and electrolysis split-face-ized processing was performed with quantity of electricity at the time of 160 clones / anode plate of dm2. It was immersed after rinsing and into 35-degree C 10-% of the weight sodium-hydroxide solution, and it rinsed, after *******ing so that the amount of aluminum dissolutions may be set to 1g/m2. Next, it rinsed, after DESUMATTO [being immersed into 50 degrees C and 30% of the weight of sulfuric-acid solution and].

[0096] Furthermore, porous anodic oxide film formation processing was performed using the direct current in the 35-degree C 20 % of the weight solution (0.8 % of the weight content of aluminum) of

sulfuric acids. That is, it electrolyzed by current density 13 A/dm2, and considered as anodic oxide film weight 2.7 g/m2 by regulation of electrolysis time. Immersing processing was carried out for 30 seconds after rinsing this base material at the 3-% of the weight solution of a 70-degree C sodium silicate, and rinsing dryness was carried out. The reflection density which measured the aluminum base material obtained as mentioned above with the Macbeth RD920 reflection-density plan was 0.30, and center line average coarseness was 0.58 micrometers.

[0097] Subsequently, this aluminum base material is set in a sputtering system, and evacuation is carried out to 5.0x10-7Torr. A base material is heated to 500 degreeC and it is Ar/O2. Gas pressure was prepared to 5x10-3Torr so that it might become 60/40 (mole ratio). RF power 200W were supplied to the sintering target of the barium titanate of 6 inch phi, and the barium-titanate thin film of 1000A of film pressure was formed. According to the X-ray-analysis method, this thin film was the polycrystalline substance. Size was cut into 510x400mm, and it considered as the sample. Except using this aluminum base material with a barium-titanate thin film, the printing version which recorded the electrostatic photographic system picture like examples 13 and 14, printed, and was used was washed, the reuse was performed, and it turns out that printing and a reuse are possible. USIO baking by the USHIO electricaland-electric-equipment company -- surface contact angles were the seven exposure sections (it is 55) degrees before irradiation) by the air waterdrop method by CONTACT-ANGLE METER CA-D by consonance interface science incorporated company when performing exposure for 2 minutes by the basis of 2 the optical intensity of 9mW/cm using ** light equipment uni-REKKU URM-600 formal GH-60201X Moreover, after heating for 10 minutes in the oven of 150 degrees at the time of a reuse, the contact angle in the state where it got cold to the room temperature is contained in the range of 53 - 56 degrees in every part on the front face of a version, and was recovered in the state before using it as a printing version.

[0098] The measured value which found the increase speed of the contact angle when adding heat treatment to the sample to which the contact angle fell by change and exposure of the contact angle before and behind exposure using the sample of the example 1 which has an example of experiment 1 titanium-oxide layer by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company is shown in Table 1. It is shown that change to a very remarkable hydrophobic shell hydrophilic property taking place by exposure and it return from this table to the hydrophobic front face that even several minutes are, by 200degreeC for 130degreeC or about 2 hours.

[0099]

[Table 1]

露光前	露光後	加熱時間	1min	5min	10min	15min	1hr	2hr	5hr
77	5	130℃		-	1	-	_	62	77
70	7	200℃	50	53	65	67	_	_	-

[0100] The measured value which found the increase speed of the contact angle when adding heat treatment to the sample to which the contact angle fell by change and exposure of the contact angle before and behind exposure using the sample of the example 15 which has an example of experiment 2 barium-titanate layer by the air waterdrop method using CONTACT-ANGLE METER CA-D by consonance interface science incorporated company is shown in Table 2. It is shown that change to a very remarkable hydrophobic shell hydrophilic property taking place by exposure and it return from this table to the hydrophobic front face that even several minutes are, by 200degreeC for 130degreeC or about 2 hours.

[0101]

[Table 2]

(表2)

蘇光前	蘇光後	加熱時間	1 min	5ain	loain	15min	l hr	2 hr	5 hr
77	5	130 ° C	7	11	22	29	44	50	55
70	7	200 ° C	48	51	50	53	-	-	-
			1						

[0102]

[Effect of the Invention] It is heat treatment about the printing original edition which the printing screen where the picture section receives ink only by performing image Mr. exposure according a lipophilic property picture to activity light was formed after formation ****** on titanium oxide, a zinc oxide, and the other printing negatives of this invention which has the thin layer which makes a principal component the metallic oxide which has said specific structure on a front face, and was unnecessary, and offset printing of at which the clear nature of a printing side was maintained became possible, and used the developer. Periodic duty can be reproduced and carried out.

[Translation done.]

(11)Publication number:

11-174664

(43)Date of publication of application: 02.07.1999

(51)Int.CI.

G03F 7/00 B41M 1/06 B41N 1/08 G03F 7/004

(21)Application number: 09-348077

(71)Applicant : FUJI PHOTO FILM CO LTD

(22)Date of filing:

17.12.1997

(72)Inventor: NAKAYAMA TAKAO

(54) OFFSET PRINTING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an offset printing method needing no alkaline developer, high in a discriminating property between a picture part and a non-picture part, and capable of making a printed picture surface of excellent picture quality.

SOLUTION: In this printing method, printing is performed by forming a printed surface with a picture region having accepted ink, by giving a lipophilic picture to a printing plate having a thin layer of TiO2, RTiO3 (R is an alkaline earth metal atom), AB2-xCxD3-xExO10 (A stands for a hydrogen atom or an alkaline metal atom, B for an alkaline earth metal atom or a lead atom, C for a rare earth atom, D for a metal atom belonging to the fifth A group elements of the periodic system, E for a metal atom belonging to the fourth A group elements thereof, and X for an arbitrary numerical value of 0 to 2), SnO2, Bi2O3, ZnO, or Fe2O3, having nature of their surfaces being changed to have a hydrophilic property by irradiation of active light, and by uniformly irradiating the printing plate with active light.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

no equivalents

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-174664

(43)公開日 平成11年(1999)7月2日

(51) Int.Cl. ⁶		微別記号		FΙ			
G03F	7/00	503		G03F	7/00	503	
B41M	1/06			B41M	1/06		
B41N	1/08			B41N	1/08		
G03F	7/004	5 2 1	v *	G03F	7/004	5 2 1	

審査請求 未請求 請求項の数5 OL (全 13 頁)

(21)出願番号

特願平9-348077

(71)出顧人 000005201

宮士写真フイルム株式会社

神奈川県南足柄市中沼210番地

(22)出願日 平成9年(1997)12月17日

(72)発明者 中山 隆雄

静岡県榛原郡吉田町川尻4000番地 富士写

真フイルム株式会社内

(74)代理人 弁理士 萩野 平 (外3名)

(54) 【発明の名称】 オフセット印刷方法

(57)【要約】

【課題】アルカリ現像液を必要とせず、画像部と非画像部の識別性が高く、優れた画質の印刷画面を作りうるオフセット印刷方法を提供する。

【解決手段】表面が活性光の照射によって親水性に変化する性質を有するTiO,、RTiO, (Rはアルカリ土類金属原子)、AB, C.D. E.O. (Aは水素原子又はアルカリ金属原子、Bはアルカリ土類金属原子又は鉛原子、Cは希土類原子、Dは周期律表の5A族元素に属する金属原子、Eは同じく4A族元素に属する金属原子、xは0~2の任意の数値を表す)、SnO,,Bi,O,,ZnO又はFe,O,の薄層を有する印刷用原版上に親油性画像の付与と、印刷原版へ活性光の一様の照射とを行い、画像領域がインクを受け入れた印刷面を形成させて印刷を行うことを特徴とする印刷方法。

40

【特許請求の範囲】

【請求項1】 表面にTiO, 、RTiO, (Rはアルカリ土類金属原子)、AB, CD, D, E, O, (Aは水素原子又はアルカリ金属原子、Bはアルカリ土類金属原子又は鉛原子、Cは希土類原子、Dは周期律表の5A族元素に属する金属原子、Eは同じく4A族元素に属する金属原子、Eは同じく4A族元素に属する金属原子、Eは同じく4A族元素に属する金属原子、Xは0~2の任意の数値を表す)、SnO, Bi,O, ZnO及びFe,O, の少なくとも一つを主成分とする薄層を有する印刷用原版に親油性画像を付与するとともに、活性光を用いて非画像部の全面照射を行い、画像面を印刷用インクに接触させて、画像領域がインクを受け入れた印刷面を形成させ、該印刷面を印刷される面と接触させてインクを転写することによって印刷を行うことを特徴とするオフセット印刷方法。

1

【請求項2】 印刷に使用した印刷版面上に残存するインクと、親油性画像物質も残存する場合にはその画像物質とを洗浄除去し、次いで原版を80°C以上に加熱して、その印刷用原版を用いて反復して印刷を行うことを特徴とする請求項1に記載の印刷方法。

【請求項3】 印刷版の表面に設けた薄層がTiO,又は2nOのいずれかからなることを特徴とする請求項1 又は2に記載のオフセット印刷方法。

【請求項4】 TiO, が主としてアナターゼ型の結晶 からなることを特徴とする請求項 $1\sim3$ に記載のオフセット印刷方法。

【請求項5】 オフセット印刷機の版胴の印刷面側の表面に請求項1に記載の薄層を設けたことを特徴とする請求項1~4に記載のオフセット印刷方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、一般軽印刷分野、 とりわけオフセット印刷、特に簡易に印刷版を製作でき る新規なオフセット印刷方法及び印刷版に関するもので ある。さらにその具体的な態様である印刷用原版の反復 再生使用を可能にするオフセット印刷方法とその印刷用 原版に関するものである。

[0002]

【従来の技術】オフセット印刷法は、数多くの印刷方法の中でも印刷版の製作工程が簡単であるために、とくに一般的に用いられてきており、現在の主要な印刷手段となっている。この印刷技術は、油と水の不混和性に基づいており、画像領域には油性材料つまりインクが、非画像領域には湿し水が選択的に保持される。したがって印刷される面と直接あるいはプランケットと称する中間体を介して間接的に接触させると画像部のインクが転写されて印刷が行われる。

【0003】オフセット印刷の主な方法は、アルミニウが得にくいこと、画像面の機械的強度が不十分で傷がつム基板を支持体としてその上にジアゾ感光層を塗設したPS板である。PS板においては、アルミニウム基板を 却って簡易性が損なわれること、長時間の印刷に耐える支持体としてその表面を砂目立て、陽極酸化、その他の 50 耐久性が不十分なことなどのいずれか一つ以上の欠点を

諸工程を施してインク受容能と非画像部のインク反発性を強め、耐刷力を向上させ、印刷面の精彩化を図るなどを行い、その表面に印刷用画像を形成させる。したがってオフセット印刷は、簡易性に加えて耐刷力や印刷面の高精彩性などの特性も備わってきている。しかしながら、印刷物の普及に伴って、オフセット印刷法の一層の簡易化が要望され、数多くの簡易印刷方法が提案されている。

【0004】その代表例がAgfa-Gevaert社から市販されたCopyrapid オフセット印刷版をはじめ、米国特許3511656号、特開平7-56351号などでも開示されている銀塩拡散転写法による印刷版作製に基づく印刷方法であって、この方法は、1工程で転写画像を作ることができて、かつその画像が親油性であるために、そのまま印刷版とすることができるので、簡易な印刷方法として実用されている。しかしながら、簡易とはいいながらこの方法もアルカリ現像液による拡散転写現像工程を必要としている。現像液による現像工程を必要としないさらに簡易な印刷方法が要望されている。

【0005】画像露光を行ったのちのアルカリ現像液による現像工程を省略した簡易印刷版の製作方法の開発は上記の背景から行われてきた。現像工程を省略できることから無処理刷版とも呼ばれるこの簡易印刷版の技術分野では、これまでに主として

●像様露光による画像記録面上の照射部の熱破壊による像形成、②像様露光による照射部の親油性化(ヒートモード硬化)による画像形成、③同じく照射部の親油性化であるが、光モード硬化によるもの、④ジアゾ化合物の光分解による表面性質の変化、⑤画像部のヒートモード 溶融熱転写などの諸原理に基づく手段が提案されている。

【0006】上記の簡易オフセット印刷方法として開示されている技術には、米国特許第3,506,779号、同第3,549,733号、同第3,574,657号、同第3,739,033号、同第3,832,948号、同第3,945,318号、同第3,962,513号、同第3,964,389号、同第4,034,183号、同第4,081,572号、同第4,693,958号、同第731,317号、同第5,238,778号、同第5,353,705号、同第5,385,092号、同第5,395,729号等の米国特許及び欧州特許第1068号などがある。

【0007】これらは、製版に際して現像液を必要としないように考案されているが、親油性領域と親水性領域との差異が不十分であること、したがって印刷画像の画質が劣ること、解像力が劣り、先鋭度の優れた印刷画面が得にくいこと、画像面の機械的強度が不十分で傷がつきやすいこと、そのために保護膜を設けるなどによって却って簡易性が損なわれること、長時間の印刷に耐える耐久性が不十分なことなどのいずれか一つ以上の欠点を

3

伴っていて、単にアルカリ現像工程を無くすだけでは実用性は伴わないことを示している。印刷上必要とされる諸特性を具備し、かつ簡易に印刷版を製作できる印刷版作成方法への強い要望は、上記の数々の改良にも係わらず、いまだに十分に満たされていない。

【0008】上記した無処理型印刷版作成方法の一つにジルコニアセラミックが光照射によって親水性化することを利用した印刷版作製方法が特開平9-169098号で開示されている。しかし、ジルコニアの光感度は不十分であり、かつ疎水性から親水性への光変換効果が不10十分のため画像部と非画像部の識別性が不足している。

【0009】上記した現像液を必要としない簡易な印刷方法とともに、使用済みの印刷用原版を簡単に再生して再使用できる手段があれば、コストの低減と廃棄物の軽減の2面から有利である。印刷用原版の再生使用には、その再生操作の簡易性が実用価値を左右するが、再生操作の簡易化は難度の高い課題であり、従来殆ど検討されきておらず、わずかに上記の特開平9-169098号でジルコニアセラミックという特殊な原版用材料について開示されているに過ぎない。

[0010]

【発明が解決しようとする課題】本発明が解決しようとしている課題は、アルカリ性現像液を必要としない簡易性と実用レベルの十分の画質を有するオフセット印刷方法を提供することである。具体的には、アルカリ現像液を必要とせず、画像部と非画像部の識別性が高く、優れた画質の印刷画面を簡単な操作で作りうるオフセット印刷方法を提供することである。本発明の第2の目的は、印刷原版を容易な操作で反復して使用できる印刷方法を提供することである。

[0011]

【課題を解決するための手段】本発明者たちは、上記の目的を達成するために、鋭意検討の結果、ある種の金属酸化物の表面は、光照射によって表面の親水性が変化し、また、変化した親水性が熱処理によってもとに戻る性質を有することを認め、前者を印刷に応用することに、後者を印刷版の再生に利用することによって上記の課題を解決できる可能性を見いだし、これに基づいて本発明を完成するに至った。すなわち、本発明は、下記の通りである。

【0012】1.表面にTiO,、RTiO,(Rはアルカリ土類金属原子)、AB, C,D, E,O
, (Aは水素原子又はアルカリ金属原子、Bはアルカリ土類金属原子又は鉛原子、Cは希土類原子、Dは周期律表の5A族元素に属する金属原子、Eは同じく4A族元素に属する金属原子、xは0~2の任意の数値を表す)、SnO, Bi,O, ZnO及びFe,O,の少なくとも一つを主成分とする薄層を有する印刷用原版に親油性画像を付与するとともに、活性光を用いて非画像部の全面照射を行い、画像面を印刷用インクに接触さ 50

せて、画像領域がインクを受け入れた印刷面を形成させ、該印刷面を印刷される面と接触させてインクを転写することによって印刷を行うことを特徴とするオフセット印刷方法。

【0013】2. 印刷に使用した印刷版面上に残存するインクと、親油性画像物質も残存する場合にはその画像物質とを洗浄除去し、次いで原版を80°C以上に加熱して、その印刷用原版を用いて反復して印刷を行うことを特徴とする上記1に記載の印刷方法。

【0014】3. 印刷版の表面に設けた薄層がTiO. 又はZnOのいずれかからなることを特徴とする上記1 又は2に記載のオフセット印刷方法。

【0015】4. TiO, が主としてアナターゼ型の結晶からなることを特徴とする上記1~3に記載のオフセット印刷方法。

【0016】5. オフセット印刷機の版胴の印刷面側の表面に請求項1に記載の薄層を設けたことを特徴とする上記1~4に記載のオフセット印刷方法。

[0017]

20 【発明の実施の形態】以下に本発明の実施の形態について詳細に説明する。本発明は、上記した特定の金属酸化物が活性光の照射を受けてその表面の親水性/親油性の性質を変えるという特性を有することと、熱によってその変化した表面の性質がもとの性質に戻ることとを発見したこと、及びそれらの現象のうち前者をオフセット印刷用の印刷版の作製に、後者を使用済みの印刷版の再生に応用する技術を開発したことを特徴点としている。

【0018】酸化チタンや酸化亜鉛が感光性を有するこ とはよく知られており、とくに酸化亜鉛では、帯電ある 30 いは電圧印加状態で光照射を行って静電画像を得ること ができ、これが静電写真分野でエレクトロファックスと して実用された。しかしながら、活性光の照射によって 表面の親水性/親油性の性質が変化するという特性は上 記の光電的電荷生成とは関連なくあらたに見いだした現 象であって、酸化チタン及び酸化亜鉛の感光性を電子写 真分野への利用が研究された当時には気づかなかった現 象である。まして、この表面の性質変化をオフセット印 刷法に応用するという着想は、新しい技術思想である。 本発明者は、上記の現象が、酸化チタンと酸化亜鉛の薄 40 層だけでなく、さらに上記した他の特定構造の金属酸化 物薄層でも起こることを見いだして、これらの金属酸化 物薄層も本発明の方法を実施するための印刷版材料に用 いうることを見いだした。

【0019】以下の説明では、本発明に使用する上記した酸化チタン、酸化亜鉛、特定構造の金属酸化物などをまとめて「光触媒型金属酸化物」と呼ぶ。その詳細を述べる前に、蛇足ながら、本明細書で用いている用語について触れておくと、活性光とは、光触媒型金属酸化物が吸収すると励起されて、その表面を親水性に変化させる光を指しており、その光源や波長などの詳細は後述す

る。また、「像様露光」は、受光面照度が画像状に分布 するように変調された画像を版面上に形成するための露 光である。以下の説明では「薄膜」と「薄層」を同義に 用いている。

【0020】本発明に使用する光触媒型金属酸化物について説明する。まず、酸化チタンと酸化亜鉛から説明する。いずれも本発明の感光性を有する印刷版材料として利用できるが、特に酸化チタンが感度(つまり表面性の光変化特性)などの点で好ましい。酸化チタンは、イルメナイトやチタンスラグの硫酸加熱焼成、あるいは加熱 10 塩素化後酸素酸化など既知の任意の方法で作られたものを使用できる。あるいは後述するように金属チタンを用いて印刷版製作段階で真空蒸着によって酸化物皮膜とする方法も用いることができる。

【0021】酸化チタン(又は酸化亜鉛)を含有する層を原版の表面に設けるには、たとえば、①酸化チタン微結晶(又は酸化亜鉛微結晶)の分散物を印刷版の原版上に塗設する方法、②塗設したのち焼成してパインダーを減量或いは除去する方法、③印刷版の原版上に酸化チタン(又は酸化亜鉛)を蒸着する方法、④例えばチタニウムブトキシドのようなチタン有機化合物を原版上に塗布したのち、焼成酸化を施して金属チタン層とする方法など、既知の任意の方法を用いることができる。本発明においては、真空蒸着による酸化チタン層が特に好ましい。

【0022】上記①又は②の酸化チタン微結晶を塗設す る方法には、具体的には無定形酸化チタン微結晶分散物 を塗布したのち、焼成してアナターゼまたはルチル型の 結晶酸化チタン層とする方法、酸化チタンと酸化シリコ ンの混合分散物を塗布して表面層を形成させる方法、酸 化チタンとオルガノポリシロキサンまたはそのモノマー との混合物を塗布する方法などがある。また、酸化物層 の中に酸化物と共存するできるポリマーバインダーに分 散して塗布することもできる。酸化物微粒子のパインダ には、酸化チタン微粒子に対して分散性を有するポリ マーを広く用いることができる。好ましいバインダーポ リマーの例としては、ポリエチレンなどのポリアルキレ ンポリマー、ポリブタジエン、ポリアクリル酸エステ ル、ポリメタクリル酸エステル、ポリ酢酸ビニル、ポリ 蟻酸ピニル、ポリエチレンテレフタレート、ポリエチレ 40 ンナフタレート、ポリビニルアルコール、部分鹸化ポリ ビニルアルコール、ポリスチレンなどの疎水性バインダ ーが好ましく、それらの樹脂を混合して使用してもよ

[0023]上記②の酸化チタンの真空蒸着を行うには、通常真空蒸着装置内の蒸着用加熱の熱源に金属チタンを置き、真空度 $exp(-5\sim-8)$ Torrで全ガス圧 $exp(-2\sim-5)$ 、酸素文圧比が $30\sim90\%$ になるようにしながら、チタン金属を蒸発させると、蒸着面には酸化チタンの蒸着薄膜が形成される。

-【0024】一方、本発明に酸化亜鉛層を使用する場合、その酸化亜鉛層は既知の任意の方法で作ることができる。とくに金属亜鉛板の表面を電解酸化して酸化皮膜を形成させる方法と、真空蒸着によって酸化亜鉛皮膜を形成させる方法が好ましい。酸化亜鉛の蒸着膜は、上記の酸化チタンの蒸着と同様に金属亜鉛を酸素ガス存在下で蒸着して酸化膜を形成させる方法や、酸素のない状態で亜鉛金属膜を形成させたのち、空気中で温度を約700°Cにあげて酸化させる方法を用いることができる。

【0025】蒸着膜の厚みは、酸化チタン層、酸化亜鉛層いずれの場合も1~100000オングストロームがよく、好ましくは10~10000オングストロームである。さらに好ましくは3000オングストローム以下として光干渉の歪みを防ぐのがよい。また、光活性化作用を十分に発現させるには厚みが50オングストローム以上あることが好都合である。

【0026】酸化チタンはいずれの結晶形のものも使用 できるが、とくにアナターゼ型のものが感度が高く好ま しい。アナターゼ型の結晶は、酸化チタンを焼成して得 る過程の焼成条件を選ぶことによって得られることはよ く知られている。その場合に無定形の酸化チタンやルチ ル型酸化チタンが共存してもよいが、アナターゼ型結晶 が40%以上、好ましくは60%以上含むものが上記の 理由から好ましい。酸化チタンあるいは酸化亜鉛を主成 分とする層における酸化チタンあるいは酸化亜鉛の体積 率は、それぞれ30~100%であり、好ましくは50 %以上を酸化物が占めるのがよく、さらに好ましくは酸 化物の連続層つまり実質的に100%であるのがよい。 しかしながら、表面の親水性/親油性変化特性は、酸化 亜鉛を電子写真感光層に用いるときのような著しい純度 による影響はないので、100%に近い純度のもの(例 えば98%)をさらに高純度化する必要はない。それ は、本発明においては導電性とは関係ない膜表面の親水 性/親油性の性質変化であって離散的な性質であること からも理解できることである。

【0027】しかしながら、光照射によって表面の親水性が変化する性質を増進させるためにある種の金属をドーピングすることは有効な場合があり、この目的にはイオン化傾向が小さい金属のドーピングが適しており、Pt,Pd,Au,Ag,Cu,Ni,Fe,COをドーピングするのが好ましい。また、これらの好ましい金属を複数ドーピングしてもよい。ドーピングを行った場合も、その注入量は酸化亜鉛や酸化チタン中の金属成分に対して5モル%以下である。

【0028】一方、体積率が低いと層の表面の親水性/ 親油性の特性変化の敏感度が低下する。したがって、層 中の酸化物の体積率は、30%以上であることが望まし い。

【0029】つぎに、RTiO,の一般式で示したチタン酸金属塩について説明する。一般式RTiO,におい

て、Rはマグネシウム、カルシウム、ストロンチウム、

バリウム、ベリリウムなどの周期律表のアルカリ土類元素に属する金属原子であり、とくにストロンチウムとバリウムが好ましい。また、2種以上のアルカリ土類金属原子をその合計が上記の式に化学量論的に整合する限り共存することができる。

【0030】一般式AB,-, C, D,-, E, O,,で表さ れる化合物において、Aは水素原子及びナトリウム、カ リウム、ルビジューム、セシウム、リチウムなどのアル カリ金属原子から選ばれる1価原子で、その合計が上記 の式に化学量論的に整合する限りそれらの2種以上を共 存してもよい。Bは、上記のRと同義のアルカリ土類金 属原子又は鉛原子であり、上記同様に化学量論的に整合 する限り2種以上の原子が共存してもよい。Cは希土類 原子であり、好ましくは、スカンジウム及びイットリウ ム並びにランタン、セリウム、プラセオジウム、ネオジ ウム、ホルミウム、ユウロピウム、ガドリニウム、テル ビウム、ツリウム、イッテルビウム、ルテチウムなどの ランタノイド系元素に属する原子であり、また、その合 計が上記の式に化学量論的に整合する限りそれらの2種 20 以上を共存してもよい。Dは周期律表の5A族元素から 選ばれた一種以上で、窒素、リン、ヒ素、アンチモン、 ビスマスが挙げられる。また、化学量論関係を満たす限 り、2種以上の5A族元素の金属原子が共存してもよ い。Eは同じくシリコン、ゲルマニウム、錫、鉛などの 4 A族元素に属する金属原子であり、また、2 種以上の 4A族の金属原子が共存してもよい。xは0~2の任意 の数値を表す。

【0031】本発明に使用する上記の光触媒型金属酸化物を原版の表面に設けるには、たとえば、①上記酸化物微粒子の分散物を印刷版の原版上に塗設する方法、②塗設したのち焼成してバインダーを減量或いは除去する方法、③印刷版の原版上に上記酸化物を各種の真空薄膜法で膜形成する方法、④例えば金属元素のアルコレートのような有機化合物を原版上に塗布したのち、加水分解させ、さらに焼成酸化を施して適当な厚みの金属薄膜とする方法、⑤上記金属を含む塩酸塩、硝酸塩などの水溶液を加熱スプレーする方法など、既知の任意の方法を用いることができる。本発明においては、真空蒸着による酸化チタン層が特に好ましい。

【0032】上記①又は②のチタン酸バリウム微粒子を 塗設する方法には、チタン酸バリウムとシリコンの混合 分散物を塗布して表面層を形成させる方法、チタン酸バ リウムとオルガノポリシロキサンまたはそのモノマーと の混合物を塗布する方法などがある。また、酸化物層の 中に酸化物と共存するできるポリマーバインダーに分散 して塗布することもできる。酸化物微粒子のバインダー には、チタン酸バリウム微粒子に対して分散性を有する ポリマーを広く用いることができる。好ましいバインダー ーポリマーの例としては、ポリエチレンなどのポリアル 50

キレンポリマー、ポリブタジエン、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリ酢酸ビニル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリビニルアルコール、部分鹸化ポリビニルアルコール、ポリスチレンなどの疎水性パインダーが好ましく、それらの樹脂を混合して使用してもよい。この方法の場合にはチタン酸バリウム以外にチタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム又はそれらの分子間化合物、混合物も同様に薄膜形成可能である。

【0033】同様にして①、②の塗設方法でCsLa, NbTi, O₁₀微粒子を塗設することも可能である。CsLa, NbTi, O₁₀微粒子は、その化学量論に対応するCs, CO₁, La, O₁, NbO₁, TiO₁ を乳鉢で微粉砕して、白金るつぼに入れ、 130° C で5時間焼成し、それを冷却してから乳鉢に入れて数ミクロン以下の微粒子に粉砕する。このCsLa, NbTi, O₁₀微粒子を前記のチタン酸パリウムと同様にパインダーの中に分散し、塗布して薄膜を形成した。この方法は、CsLa, NbTi, O₁₀型微粒子に限らず、 HCa_{11} , La, NbTi, O₁₀, HLa, NbTi, O₁₀ など前述の AB_{1-1} , C, D_{1-1} , E, O_{10} , ($0 \le x \le 2$) に適用される。

【0034】上記③の真空薄膜形成法を用いた光触媒型 金属酸化物層の形成方法としては、一般的にはスパッタ リング法あるいは真空薄膜形成法が用いられる。スパッ タリング法では、あらかじめ単体もしくは2元の酸化物 ターゲットを準備する。例えば、チタン酸パリウムター ゲットを用いて蒸着膜用の支持体の温度を450°C以 上に保ち、アルゴン/酸素混合雰囲気中でRFスパッタ リングを行うことによりチタン酸パリウム決勝薄膜が得 られる。結晶性の制御には必要に応じてポストアニーリ ングを300~900° Cで行えばよい。本方法は前述 のRTiO, (Rはアルカリ土類金属原子)をはじめ他 の前記光触媒型金属酸化物にも、結晶制御に最適な基板 温度を調整すれば同様の考え方で薄膜形成が可能であ る。例えば酸化錫薄膜を設ける場合には基板温度120 °C、アルゴン/酸素混合雰囲気中でRFスパッタリン グを行うことによりチタン酸バリウム結晶薄膜が得比5 40 0/50、RFパワー200Wで本目的に沿う薄膜が得 られる。

【0035】上記②の金属アルコレートを用いる方法も、バインダーを使用しないで目的の薄膜形成が可能な方法である。チタン酸パリウムの薄膜を形成するにはバリウムエトキシドとチタニウムプトキシドの混合アルコール溶液を表面にSiO。を有するシリコン基板上に塗布し、その表面を加水分解したのち、200°C以上に加熱してチタン酸パリウムの薄膜を形成することが可能である。本方式は前述した他のRTiO。(Rはアルカリ土類金属原子)、AB:--C.D.--E.O.。(A,

B, C, D, Eはそれぞれ前記の定義の内容を表す)、
 SnO, Bi,O, 及びFe, O, の薄膜形成に適用することができる。

【0036】上記⑤の光触媒性機能を発現する金属酸化物薄膜を形成する方法も、バインダーを含まない系の薄膜の形成が可能である。SnО,の薄膜を形成するにはSnCl,の塩酸水溶液を200° С以上に加熱した石英又は結晶性ガラス表面に吹きつけて薄膜を生成することができる。本方式は、SnO,薄膜のほか,前述したRTiO,(Rはアルカリ土類金属原子)、AB.. C,D... E.O.。(A,B,C,D,Eはそれぞれ前記の定義の内容を表す)、Bi,O,及びFe,〇,のいずれの薄膜形成にも適用することができる。

【0037】金属酸化物薄膜の厚みは、上記のいずれの場合も1~100000オングストロームがよく、好ましくは10~10000オングストロームである。さらに好ましくは3000オングストローム以下として光干渉の歪みを防ぐのがよい。また、光活性化作用を十分に発現させるには厚みが50オングストローム以上あることが好都合である。

【0038】バインダーを使用した場合の上記光触媒型 金属酸化物の薄層において、金属酸化物の体積率は50~100%であり、好ましくは90%以上を酸化物が占めるのがよく、さらに好ましくは酸化物の連続層つまり 実質的に100%であるのがよい。

【0039】本発明に係わる印刷版は、いろいろの形態と材料を用いることができる。例えば、印刷機の版胴の表面に光触媒型金属酸化物の薄層を蒸着、浸漬あるいは塗布するなど上記した方法で直接酸化物層を設ける方法、金属板の表面に金属酸化物層を設けてそれを版胴に 30巻き付けて印刷版とする方法を用いることができ、また、その金属板としては、アルミニウム板、ステンレス鋼、ニッケル、銅板が好ましく、また可撓性(フレキシブル)な金属板を用いることが出来る。また、ポリエステル類やセルローズエステルなどのフレキシブルなプラスチック支持体も用いることが出来る。防水加工紙、ポリエチレン積層紙、含浸紙などの支持体上に酸化物層を設けてもよく、それを印刷版として使用してもよい。

【0040】本発明において、光触媒型金属酸化物の層を支持体上に設ける場合、使用される支持体としては、寸度的に安定な板状物であり、例えば、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリステレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅、ステンレス等)、プラスチックフィルム(例えば、二酢酸セルロース、三酢酸セルロース、酢酸セルロース、酢酸セルロース、酢酸セルロース、酢酸セルロース、酢酸セルロース、酢酸セルロース、酢酸・セルロース、ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール等)、上記のごとき金属がラミネート、もしくは蒸着された紙、

もしくはプラスチックフィルム等が含まれる。

【0041】好ましい支持体は、ポリエステルフィル ム、アルミニウム、又は印刷版上で腐食しにくいSUS 板であり、その中でも寸法安定性がよく、比較的安価で あるアルミニウム板は特に好ましい。好適なアルミニウ ム板は、純アルミニウム板およびアルミニウムを主成分 とし、微量の異元素を含む合金板であり、更にアルミニ ウムがラミネートもしくは蒸着されたプラスチックフィ ルムでもよい。アルミニウム合金に含まれる異元素に 10 は、ケイ素、鉄、マンガン、銅、マグネシウム、クロ ム、亜鉛、ピスマス、ニッケル、チタンなどがある。合 金中の異元素の含有量は高々10重量%以下である。本 発明において特に好適なアルミニウムは、純アルミニウ ムであるが、完全に純粋なアルミニウムは精錬技術上製 造が困難であるので、僅かに異元素を含有するものでも よい。このように本発明に適用されるアルミニウム板 は、その組成が特定されるものではなく、従来より公知 公用の素材のアルミニウム板を適宜に利用することがで きる。本発明で用いられる支持体の厚みはおよそ0.1 mm~0.6m程度、好ましくは0.15mm~0.4mm、 特に好ましくは0.2m~0.3mである。

【0042】アルミニウム板を粗面化するに先立ち、所 望により、表面の圧延油を除去するための例えば界面活 性剤、有機溶剤またはアルカリ性水溶液などによる脱脂 処理が行われる。アルミニウム板の表面の粗面化処理 は、種々の方法により行われるが、例えば、機械的に粗 面化する方法、電気化学的に表面を溶解粗面化する方法 および化学的に表面を選択溶解させる方法により行われ る。機械的方法としては、ボール研磨法、ブラシ研磨 法、プラスト研磨法、パフ研磨法などの公知の方法を用 いることができる。また、電気化学的な粗面化法として は塩酸または硝酸電解液中で交流または直流により行う 方法がある。また、特開昭54-63902号に開示さ れているように両者を組み合わせた方法も利用すること ができる。この様に粗面化されたアルミニウム板は、必 要に応じてアルカリエッチング処理および中和処理され た後、所望により表面の保水性や耐摩耗性を高めるため に陽極酸化処理が施される。アルミニウム板の陽極酸化 処理に用いられる電解質としては、多孔質酸化皮膜を形 成する種々の電解質の使用が可能で、一般的には硫酸、 塩酸、蓚酸、クロム酸あるいはそれらの混酸が用いられ る。それらの電解質の濃度は電解質の種類によって適宜 決められる。

【0043】陽極酸化の処理条件は用いる電解質により種々変わるので一概に特定し得ないが一般的には電解質の濃度が $1\sim80$ 重量%溶液、液温は $5\sim70$ ℃、電流密度 $5\sim60$ A/dm²、電圧 $1\sim100$ V、電解時間10秒~5分の範囲であれば適当である。陽極酸化皮膜の量は1.0g/m²より少ないと耐刷性が不十分であったり、平板印刷版の非画像部に傷が付き易くなって、印刷時に

50

12

・ 傷の部分にインキが付着するいわゆる「傷汚れ」が生じ ・ 易くなる。

【0044】以上で本発明の印刷方法に使用する印刷版 材料の構成材料とそれを用いる印刷版の構成について説 明したので、次に本発明の印刷版の製作方法について述 べる。本発明においては、以上のTiO,、RTi O, , AB, , C, D, , E, O, , SnO, , ZnO ,、Bi,O,及びFe,O,の少なくとも一つを単独 あるいは2種以上を組み合わせからなる薄層を感光層と して印刷用原版表面に設ける。光触媒型金属酸化物の表 10 面層を有する印刷原版は、本来親油性であるが、光の照 射を受けた部分は、親水性となり、インクを受け付けな くなる。したがって親油性の画像部を印刷原版上に形成 させておき、非画像部を一様の光照射で親水性にしてオ フセット印刷用インクに接触させ、非画像領域が湿し水 を保持し、画像領域がインクを受け入れた印刷面を形成 させ、該印刷面を印刷される面と接触させてインクを転 写することによって印刷を行うことが本発明の印刷方法 であり、簡易な画像形成方法と組み合わせて極めて簡易 に印刷を行うことができる。また、親水性化した金属酸 20 化物表面に画像が記録されるのであれば金属酸化物表面 を全面露光照射してから画像を形成させてもよい。

【0045】光触媒型金属酸化物の表面層への画像記録は、静電写真法などの静電記録法、熱融解性インクジェット描画法、色素熱転写法、油性絵の具や油性ペイントによる直接描画そのほか公知の任意の油性画像記録手段が用いられる。したがって適用できる画像記録手段の選択範囲が極めて広範囲であることが特徴である。画像記録を行った光触媒型金属酸化物の表面層には、前記した光源による活性光の均一照射が行われ、非画像部が親水 30性となり、画像部とインク受容性、インク反発性の差が生じるので、非画像部に湿し水、画像部にインクを供給してオフセット印刷が行われる。

【0046】別の印刷版作製手順としては、画像材料と 親水性化した金属酸化物表面との接着性に支障がなけれ ば、光触媒型金属酸化物の表面層への活性光の均一照射 を先に行ってから、画像形成を行ってもよい。また、画 像形成と活性光の均一照射を行ったのち、画像を油性溶 剤で洗浄除去してから印刷を行ってもよい。この方法に よって、画像物質がインク受容性が不十分な場合や、金 属表面層との接着性が弱い場合でも本発明の方法を適用 できる。

【0047】本発明の基本となっている「光の照射による親油性と親水性の間の変化」はきわめて顕著である。 画像部と非画像部の親水性と親油性の差が大きいほど識別効果が顕著であり、印刷面が鮮明となり、同時に耐刷性も大きくなる。親水性あるいは親油性の尺度は、水滴に対する接触角によって表すことができる。親水性が大きいほど水滴は広がりをみせて接触角が小さくなり、逆に水滴を反発する(はっ水性つまり親油性)場合は接触50 角が大きくなる。つまり、本発明の金属酸化物表面層を有する原版は、本来水に対して高い接触角を有しているが、活性光の照射を受けるとその接触角が急激に低下し、親油性のインクをはじく性質に変化するので、版面上に付与された画像がインク保持部となり、非画像部が水保持部となって紙などの受像シートと接触することによってその被印刷面にインクが転写される。

【0048】上記の金属酸化物が光触媒反応によってその表面が親水性化する現象は、特開平9-70541号、同9-77535号などで公知であるが、活性光によるこの表面の性質変化を新たな方式のオフセット印刷に応用するという着想は、新しい技術思想である。

【0049】本発明において光触媒型金属酸化物を主成分とする薄層を励起させる活性光は、酸化物の感光域の光である。酸化チタンは、アナターゼ型が387nm以下、ルチル型が413nm以下、酸化亜鉛は387nm以下、またその他の上記金属酸化物も250~390nmの紫外部に感光域を有するので、水銀灯、タングステンハロゲンランプ、その他のメタルハライドランプ、キセノン灯などを用いることが出来る。また、ビーム走査光であっても、走査するビームの間隔が十分に狭い

(蜜)であれば、均一照射と実質的に同じ効果が得られるので、レーザービーム光をもちいることもできる。励起光としては、発振波長を325nmに有するヘリウムカドミウムレーザーや発振波長を351.1~363.8nmに有する水冷アルゴンレーザーも用いることができる。さらに、330~440nmに有する硫化亜鉛/カドミウムレーザーも適用でき、また窒化ガリウムレーザー系では、発振波長を360~440nmに有するInGaN系量子井戸半導体レーザー、及び360~430nmに発振波長を有する導波路MgO-LiNbO。反転ドメイン波長変換デバイス型のレーザーも適用できる。酸化亜鉛の場合は、既知の方法で分光増感を行ってもよいが、その場合も上記の光源を使用でき、さらに分光増感域に分光分布を有する上記以外の例えばタングステンランプを使用することもできる。

【0050】好ましい照射光の強さは、光触媒型金属酸化物の画像形成層の性質によって異なり、また活性光の波長や分光分布によっても異なるが、通常は印刷用画像で変調する前の面露光強度が $0.05\sim10$ joule/cm², 好ましくは $0.05\sim10$ joule/cm², より好ましくは $0.05\sim10$ joule/cm²である。また、光照射には相反則がほぼ成立しており、例えば10mW/cm²で100秒の露光を行っても、同じ効果が得られるので活性光を発光する限り光源の選択には制約はない。この照射光量は、レーザーによるスキャニング方式あるいはな発散型光源を用いる面露光方式でもとくに支障がないレベルの光量である。

【0051】上記の感光性は、性質及び機構共に従来開

14

・ 示されているジルコニアセラミック(特開平9-169 098)の感光性とは異なるものである。たとえば、感度については、ジルコニアセラミックに対しては 7 W/μm'のレーザー光と記されており、レーザー光のパルス持続時間を100ナノ秒として70joule / cm'であって酸化チタン層の感度より約1桁低い。機構的にも、十分解明されてはいないが、親油性有機付着物の光剥離反応と考えられており、ジルコニアの光変化機構とは異なっている。

【0052】金属酸化物の表面層へ親油性の画像を付与したのち、印刷原版は現像処理することなく、そのままオフセット印刷工程に送ることができる。従って通常の公知の平版印刷法に比較して簡易性を中心に多くの利点を有する。すなわち上記したようにアルカリ現像液による化学処理が不要であり、それに伴うワイピング、ブラッシングの操作も不要であり、さらに現像廃液の排出による環境負荷も伴わない。また、画像形成手段の選択範囲が広く、上記したような簡易な画像記録手段から容易に印刷を行うことも利点である。

【0053】以上のようにして得られた平版印刷版の非 20 画像部は十分に親水性化しているが、所望により、水洗 水、界面活性剤等を含有するリンス液、アラビアガムや 澱粉誘導体を含む不感脂化液で後処理される。本発明の 画像記録材料を印刷用版材として使用する場合の後処理 としては、これらの処理を種々組み合わせて用いること ができる。その方法としては、該整面液を浸み込ませた スポンジや脱脂綿にて、平版印刷版上に塗布するか、整 面液を満たしたパット中に印刷版を浸漬して塗布する方 法や、自動コーターによる塗布などが適用される。ま た、塗布した後でスキージー、あるいは、スキージーロ 30 ーラーで、その塗布量を均一にすることは、より好まし い結果を与える。整面液の塗布量は一般に0.03~ 0. 8g/m² (乾燥重量) が適当である。この様な処理に よって得られた平版印刷版はオフセット印刷機等にかけ られ、多数枚の印刷に用いられる。

【0054】次に印刷を終えた印刷版の再生工程について記す。印刷終了後の印刷版は疎水性の石油系溶剤を用いて付着しているインク及び画像物質も残存している場合には画像物質もを洗い落とす。溶剤としては市販の印刷用インキ溶解液として芳香族炭化水素、例えばケロシン、アイソパーなどがあり、そのほかベンゾール、トルオール、キシロール、アセトン、メチルエチルケトン及びそれらの混合溶剤を用いてもよい。画像物質が溶解しない場合には、布などを用いて軽く拭き取る。また、トルエン/ダイクリーンの1/1混合溶媒を用いるとよいこともある。

【0055】インクと画像物質が有る場合は画像物質とを洗浄除去した印刷版につぎに熱処理を施すことによって版面全体にわたって均一に親油性となり、かつ均一の親油性化への光照射感度が回復する。熱処理は、80°

- C以上、好ましくは100° C以上で光触媒型金属酸化物の焼成温度以下で行われるが、高温ほど親油性化時間は短い。金属酸化物の種類によって多少の相違はあるが、より好ましくは150° Cで10分以上又は200° Cで1分以上あるいは250° Cで10秒以上の程度の熱処理が好ましい。熱処理時間を延長しても支障はないが、表面の新油性が回復したのちは時間を延長してもさらなる利点は生まれない。

【0056】再生に用いる熱源は、上記した温度と時間の条件を満たすものであれば任意の手段を利用できる。加熱手段の例をあげると、直接赤外線照射による放射加熱、印刷版表面に黒色カーボン紙などの熱線吸収シートを接触させた間接赤外線照射、温度設定した空気恒温槽への挿入、ホットプレートその他の熱板との接触加熱、加熱ローラーとのコンタクトなどが挙げられる。このようにして使用済みの印刷版から再生された印刷用原版は、活性光への暴露を避けて貯蔵され、次の印刷に備える。

【0057】本発明に係わる印刷原版の反復再生可能回数は、完全に把握できていないが、少なくとも15回以上であり、おそらく反面の除去不能な汚れ、修復が実際的でない刷面の傷や、版材の機械的な変形(ひずみ)などによって制約されるものと思われる。

[0058]

【実施例】次に実施例により本発明をさらに説明する が、本発明はこれに限定されない。

実施例1

厚み100ミクロンのポリエチレンテレフタレート (P ET) フィルムを真空蒸着装置内で全圧1.5x10⁻⁴ Torrで酸素ガス分圧70%の条件下でチタン金属片を加 熱して二酸化チタン薄膜を蒸着形成した。この薄膜の結 晶成分はX線解析法によって無定型/アナターゼ/ルチ ル結晶構造の比が1. 5/6. 5/2であり、TiO 薄膜 の厚さは900オングストロームであった。サイズは5 10×400mにカットしてサンプルとした。このPE Tフィルムを記録用紙の代わりに静電写真装置にセット して静電記録法によってトナー画像を形成させた。この ポリエチレンテレフタレート (PET) フィルムにウシ オ電気社製USIO焼き付け用光源装置ユニレックURM-600形式GH-60201Xを用いて、光強度9mW/c m¹のもとで2分間露光を行った。協和界面科学株式会社 製CONTACT-ANGLE METER CA-Dを用いて空中水滴法で表面 の接触角を測定したところ露光部6度(照射前は79 度)を得た。

【0059】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製Newchampion Fグロス85墨を用いて500枚オフセット印刷を行った。スタートから終了まで 鮮明な印刷物が得られ、印刷版の損傷もみとめられなか った。

【0060】実施例2

上記の印刷に使用した版の表面を印刷用インキ洗浄液ダ イクリーンR (発売元:大日本インキ工業(株)とトル エンの1/1混合溶媒に浸漬すると約15秒で画像とイ ンキが溶解して流れ去った。丁寧に洗浄してインキを除 去したのち、これを150度のオープン中に10分間加 熱した後、室温まで冷えた状態で前と同様の方法で接触 角を測定した。版表面のどの箇所でも接触角は78~8 0度の範囲に入っており、まったくなにも実行していな い初期の状態に回復していた。この状態で一回目と同じ 静電写真装置にセットして静電記録法によって一回目と は異なるトナー画像を転写形成させた。つぎに画像つき ポリエステルフィルムに前と同じ光源(ウシオ電気社製 焼き付け用光源装置)を使い、同じ光強度(9mw/cm²で 2分間露出を行った。1回目同様、空中水滴方法で表面 の接触角を測定したところ露光部6度、非露光部82度 を得た。

【0061】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製Newchampion Fグロス85墨を用いて500枚オフセット印刷を行った。スタートから終了まで 鮮明な印刷物が得られ、印刷版の損傷も認められなかった。以上の繰り返しを15回実施したところ、版の光感 度、接触角および加熱による接触角の回復スピードなど の変化は認められなかった。

[0062] 実施例3

厚さ 100μ のステンレス板上に、真空蒸着装置内で全圧 1.5×10^{-4} Torrで酸素ガス分圧70%の条件下でチタン金属片を加熱して二酸化チタン薄膜を蒸着形成した。この薄膜の結晶成分はX線解析法によって無定型/ 30 アナターゼ/ルチル結晶構造の比が1.5/6.5/2 であり、TiO, 薄膜の厚さは900 オングストロームであった。サイズは 510×400 mmにカットしてサンプルとした。

【0063】 Ta-Si0、発熱抵抗体上にサイアロン耐磨耗保護層を設けた $150\mu mx150\mu m$ のサーマルヘッドを $250\mu m$ 間隔に並べた感熱プリンターを用いて、チタン酸パリウム表面層と接触させて昇温印字を行った。使用したサーマルヘッドは、20msec 通電によって450° Cに達することを別途温度測定を行って確認した。記録速度は、400msec/mで行った。また、使用した熱溶融性インクは、顔料20重量%、カルナウパワックス20重量%、エステルワックス40重量%、アマニ油<math>10重量%、結着樹脂など<math>10%からなる融点62° Cの市販のものを用いた。

【0064】これにウシオ電気社製USIO焼き付け用光源 装置ユニレックURM-600形式GH-60201X を用いて、光強度9mW/cm¹のもとで2分間露光を行っ た。協和界面科学株式会社製CONTACT-ANGLE METER CA-D を用いて空中水滴法で表面の接触角を測定したところ、 非画像部9度を得た。

【0065】この版を、サクライ社製オリバー52片面印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85墨を用いて300枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷もみとめられなかった。

16

【0066】 実施例4

上記実施例3に使用した版の表面を印刷用インキ洗浄液ダイクリーンR(発売元;大日本インキ化学工業社)とトルエンの1/1混合液をウエスにしみ込ませて丁寧に洗浄してインキと画像物質を除去した。これを150度のオープン中に10分間加熱した後、室温まで冷えた状態で前と同様の方法で接触角を測定した。版表面のどの箇所でも接触角は78~80度の範囲に入っており、まったくなにも実行していない初期の状態に回復していた。この状態でさらに一回目と異なる画像を熱転写焼き付けを行い、前と同じ光源(ウシオ電気社製焼き付け用光源装置)を使い、同じ光強度(9mw/cm²で2分間露出を行った。1回目同様、空中水滴方法で表面の接触角を測定したところ、非画像部9度を得た。

【0067】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製Newchampion Fグロス85墨を用いて300枚オフセット印刷を行った。スタートから終了まで 鮮明な印刷物が得られ、印刷版の損傷も認められなかった。以上の繰り返しを10回実施したところ、版の光感 度、接触角および加熱による接触角の回復スピードなどの変化は認められなかった。

0 【0068】実施例5

99. 5重量%アルミニウムに、銅を0. 01重量%、 チタンを0.03重量%、鉄を0.3重量%、ケイ素を 0. 1重量%含有するJISA1050アルミニウム材 の厚み 0.30mm圧延板を、400メッシュのパミスト ン(共立窯業製)の20重量%水性懸濁液と、回転ナイ ロンプラシ(6,10-ナイロン)とを用いてその表面 を砂目立てした後、よく水で洗浄した。これを15重量 %水酸化ナトリウム水溶液(アルミニウム4.5重量% 含有) に浸漬してアルミニウムの溶解量が5g/m²になる ようにエッチングした後、流水で水洗した。更に、1重 量%硝酸で中和し、次に0.7重量%硝酸水溶液(アル ミニウム0.5重量%含有)中で、陽極時電圧10.5 ボルト、陰極時電圧9.3ボルトの矩形波交番波形電圧 (電流比r=0.90、特公昭58-5796号公報実 施例に記載されている電流波形)を用いて160クロー ン/dm¹の陽極時電気量で電解粗面化処理を行った。水 洗後、35℃の10重量%水酸化ナトリウム水溶液中に 浸漬して、アルミニウム溶解量が1g/m²になるようにエ ッチングした後、水洗した。次に、50℃、30重量% 50 の硫酸水溶液中に浸漬し、デスマットした後、水洗し

・・た。

【0069】さらに、35℃の硫酸20重量%水溶液 (アルミニウム0.8重量%含有)中で直流電流を用い て、多孔性陽極酸化皮膜形成処理を行った。即ち電流密 度13A/dm²で電解を行い、電解時間の調節により陽極 酸化皮膜重量2. 7g/m²とした。この支持体を水洗後、 70℃のケイ酸ナトリウムの3重量%水溶液に30秒間 浸漬処理し、水洗乾燥した。以上のようにして得られた アルミニウム支持体は、マクベスRD920反射濃度計 で測定した反射濃度は0.30で、中心線平均粗さは 0. 58μmであった。次いでこのアルミニウム支持体 を真空蒸着装置内に入れて、全圧1.5x10⁻¹Torrに なるように分圧70%の酸素ガスの条件下でチタン金属 片を電熱加熱して、アルミニウム支持体上に蒸着して酸 化チタン薄膜を形成した。この薄膜の結晶成分はX線解 析法によって無定型/アナターゼ/ルチル結晶構造の比 が1. 5/6. 5/2であり、TiO 薄膜の厚さは900 オングストロームであった。サイズは510×400mm にカットしてサンプルとした。この表面に着色剤として 銅フタロシアニン系の無機顔料20重量%、ピヒクルと してアマニ油30重量%、溶剤としてトルエン38重量 %、ポリエチレンワックス10重量%、マンガンドライ ヤー2重量%からなる油性インクを用いてイラストレー ション図案の描画を行った。これにウシオ電気社製USIO 焼き付け用光源装置ユニレックURM-600形式GH -60201Xを用いて、光強度9mW/cm2のもとで2分 間露光を行った。協和界面科学株式会社製CONTACT-ANGL E METER CA-Dを用いて空中水滴法で表面の接触角を測定 したところ、非画像部8度を得た。

【0070】この版を、サクライ社製オリバー52片面 30 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製New Champion Fグロス85 墨を用いて1 000枚オフセット印刷を行った。スタートから終了ま で非画像部に汚れのない鮮明な印刷物が得られ、印刷版 の損傷もみとめられなかった。

【0071】実施例6

上記実施例5に使用した版の表面を印刷用インキ洗浄液 ダイクリーンR (発売元:大日本インキ化学工業社)と トルエンの1/1混合液をウエスにしみ込ませて丁寧に 洗浄してインキを除去した。これを180度のオープン 中に2分間加熱した後、室温まで冷えた状態で前と同様 の方法で接触角を測定した。版表面のどの箇所でも接触 角は78~80度の範囲に入っており、まったくなにも 実行していない初期の状態に回復していた。この状態で さらに一回目と異なるイラストレーション用画像の描画 を行って、前と同じ光源(ウシオ電気社製焼き付け用光 源装置)を使い、同じ光強度 (9mw/cm²で2分間露出を 行った。1回目同様、空中水滴方法で表面の接触角を測 定したところ非画像部8度を得た。

印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製Newchampion Fグロス85 愚を用いて1 000枚オフセット印刷を行った。スタートから終了ま で鮮明な印刷物が得られ、印刷版の損傷も認められなか った。以上の繰り返しを5回実施したところ、版の光感 度、接触角および加熱による接触角の回復スピードなど の変化は認められなかった。この結果から、酸化チタン 感光層をアルミニウム支持体上に設けた印刷原版を使用 した場合も、簡易な印刷が可能でしかも印刷原版を反復 10 再生使用できることが示された。

【0073】 実施例7

真空蒸着装置中に100ミクロン厚みのSUS板をセッ トして全圧5x10⁻³Torrの真空下でセレン化亜鉛を1 000オングストロームの厚みに蒸着した。これを空気 中600°Cで2時間酸化処理してSUS板の片面に酸 化亜鉛の薄膜を形成させた。

【0074】この酸化亜鉛皮膜付き100ミクロンSU S板をサイズは510×400mにカットしてサンプル とした。このシートをインクジェットプリンターに装着 して表面に油性インク画像を記録した。油性インクは、 酢酸ピニル/メタクリル酸エステル系共重合樹脂10重 量部をアイソパーH30重量部に分散したラテックス分 散物50g、ドデシルメタクリレート/アクリル酸(9 5/5重量比) 共重合体10g, アルカリブルー10 g、シェルゾール71、30gの分散物、テトラデシル アルコール10g、オクタセン/マレイン酸オクタデシ ルアルコール共重合体 0. 16gをアイソパーG1リッ トルに希釈した油性インクを用いた。これにウシオ電気 社製USIO焼き付け用光源装置ユニレックURM-600 形式GH-60201Xを用いて、光強度9mW/cm2のも とで20分間露光を行った。協和界面科学株式会社製CO・ NTACT-ANGLE METER CA-Dを用いて空中水滴法で表面の接 触角を測定したところ露光部17度、非露光部68度を 得た。

【0075】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製New Champion Fグロス85墨を用いて 500枚オフセット印刷を行った。スタートから終了ま で非画像部に汚れのない鮮明な印刷物が得られ、印刷版 の損傷も認められなかった。

【0076】実施例8

上記実施例5に使用した版の表面を印刷用インキ洗浄液 ダイクリーンR (発売元;大日本インキ化学工業社)と トルエンの1/1混合液をウエスにしみ込ませて丁寧に 洗浄してインキを除去した。これを160度のオープン 中に15分間加熱した後、室温まで冷えた状態で前と同 様の方法で接触角を測定した。版表面のどの箇所でも接 触角は51~53度の範囲に入っており、印刷版として 使用する前の状態に回復していた。この状態で上記のイ 【0072】この版を、サクライ社製オリパー52片面 50 ンクジェットプリンターと油性インクを使用して一回目 19

- と異なる画像を版面上に記録したのち、前と同じ光源
- ・ (ウシオ電気社製焼き付け用光源装置)を使い、同じ光
- 強度(9mw/cm²で2分間露出を行った。1回目同様、空中水滴方法で表面の接触角を測定したところ露光部15 度、非露光部68度を得た。

【0077】この版を、サクライ社製オリバー52片面印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85墨を用いて1000枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷も認められなか10った。この結果から、酸化亜鉛感光層も、インク受容部と湿し水保持部との区別が保たれて作業工程を簡易化でき、しかも印刷原版を熱処理によって再生使用できることが示された。

【0078】実施例9

100ミクロン厚みのSUS板の表面を研磨剤(フジミコーポレーション、FO#4000)を水と混合しながら研磨した。粗面粗さは三次元表面粗さ計(小坂研究所製三次元表面粗さ測定装置モデルSE-F1, DU-RJ2U, 解析装置モデルSPA-11)で測定したとこ 20ろ、平均5ミクロンであった。これを水洗、乾燥して支持体とした。このSUS支持体をチタニウムプトキシド(Merck社製)の10%メタノール溶液に浸漬して引き上げたのち、自然乾燥した。その後、このSUS板を600°Cの電気炉で2時間処理した。表面は1500オングストロームの厚みの酸化チタン(アナターゼ型)が生成されていることをX線解析法によって確認した。

【0079】 Ta-Si0、発熱抵抗体上にサイアロン耐磨耗保護層を設けた 150μ mx 150μ mのサーマルヘッドを 250μ m間隔に並べた感熱プリンターを用いて、酸化チタン表面層と接触させて昇温印字を行った。使用したサーマルヘッドは、20msec通電によって450° Cに達することを別途温度測定を行って確認した。記録速度は、400msec/mで行った。また、使用した熱溶融性インクは、顔料20重量%、カルナウパワックス20重量%、エステルワックス40重量%、アマニ油10重量%、結着樹脂など10%からなる融点62° Cの市販のものを用いた。

【0080】これにウシオ電気社製USIO焼き付け用光源 装置ユニレックURM-600形式GH-60201X を用いて、光強度9mW/cm¹のもとで2分間露光を行っ た。協和界面科学株式会社製CONTACT-ANGLE METER CA-D を用いて空中水滴法で表面の接触角を測定したところ、 非画像部9度を得た。

【0081】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製Newchampion Fグロス85墨を用いて3 00枚オフセット印刷を行った。スタートから終了まで 鮮明な印刷物が得られ、印刷版の損傷もみとめられなか 50 った。

【0082】実施例10

上記実施例3に使用した版の表面を印刷用インキ洗浄液ダイクリーンR(発売元;大日本インキ化学工業社)とトルエンの1/1混合液をウエスにしみ込ませて丁寧に洗浄してインキと画像物質を除去した。これを150度のオープン中に10分間加熱した後、室温まで冷えた状態で前と同様の方法で接触角を測定した。版表面のどの箇所でも接触角は78~80度の範囲に入っており、まったくなにも実行していない初期の状態に回復していた。この状態でさらに一回目と異なる画像を熱転写焼き付けを行い、前と同じ光源(ウシオ電気社製焼き付け用光源装置)を使い、同じ光強度(9mw/cm²で2分間露出を行った。1回目同様、空中水滴方法で表面の接触角を測定したところ、非画像部9度を得た。

【0083】この版を、サクライ社製オリバー52片面印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85墨を用いて300枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷も認められなかった。以上の繰り返しを10回実施したところ、版の光感度、接触角および加熱による接触角の回復スピードなどの変化は認められなかった。

【0084】実施例11

30

厚み100ミクロンのポリエチレンテレフタレート(PET)フィルムを真空蒸着装置内で全圧 1.5×10^{-4} Torrで酸素ガス分圧70%の条件下でチタン金属片を加熱して酸化チタン薄膜を蒸着形成した。この薄膜の結晶成分はX線解析法によって無定型/アナターゼ/ルチル結晶構造の比が1.5/6.5/2であり、TiO、薄膜の厚さは900オングストロームであった。サイズは510×400mmにカットしてサンプルとした。このPETフィルムを記録用紙の代わりに熱転写装置にセットした。

【0085】 Ta-Si0、発熱抵抗体上にサイアロン耐磨耗保護層を設けた $15.0~\mu\,\mathrm{mx}$ $150~\mu\,\mathrm{m}$ のサーマルヘッドを $250~\mu\,\mathrm{ml}$ 隔に並べた感熱プリンターを用いて、酸化チタン表面層と接触させて昇温印字を行った。使用したサーマルヘッドは、 $20\,\mathrm{ms}$ e c 通電によって $450~\mu\,\mathrm{m}$ Cに達することを別途温度測定を行って確認した。記録速度は、 $400\,\mathrm{ms}$ e c $//\mu\,\mathrm{m}$ で行った。また、使用した熱溶融性インクは、顔料 $20\,\mathrm{mg}$ 量%、カルナウパワックス $20\,\mathrm{mg}$ 量%、エステルワックス $40\,\mathrm{mg}$ 量%、アマニ油 $10\,\mathrm{mg}$ 量%、結着樹脂など $10\,\mathrm{mg}$ %からなる融点 $62\,\mathrm{mg}$ C の市販のものを用いた。

【0086】これにウシオ電気社製USIO焼き付け用光源 装置ユニレックURM-600形式GH-60201X を用いて、光強度9mW/cm²のもとで2分間露光を行っ た。協和界面科学株式会社製CONTACT-ANGLE METER CA-D を用いて空中水滴法で表面の接触角を測定したところ、 21

- 非画像部9度を得た。
- 【0087】この版を、サクライ社製オリバー52片面 印刷機にセットし、湿し水を純水、インキを大日本イン キ化学工業社製Newchampion Fグロス85墨を用いて3 00枚オフセット印刷を行った。スタートから終了まで 鮮明な印刷物が得られ、印刷版の損傷もみとめられなかった。

[0088] 実施例12

上記実施例3に使用した版の表面を印刷用インキ洗浄液 除まずイクリーンR(発売元;大日本インキ化学工業社)と 10 加索トルエンの1/1混合液をウエスにしみ込ませて丁寧に 触り洗浄してインキと画像物質を除去した。これを150度 76のオーブン中に10分間加熱した後、室温まで冷えた状態で前と同様の方法で接触角を測定した。版表面のどの ちゅうだったくなにも実行していない初期の状態に回復していた。この状態でさらに一回目と異なる画像を熱転写焼き 付けを行い、前と同じ光源(ウシオ電気社製焼き付け用 出る で行った。1回目同様、空中水滴方法で表面の接触角を 20 た。測定したところ、非画像部9度を得た。 (()

【0089】この版を、サクライ社製オリバー52片面印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85墨を用いて300枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷も認められなかった。以上の繰り返しを10回実施したところ、版の光感度、接触角および加熱による接触角の回復スピードなどの変化は認められなかった。

【0090】実施例13

実施例1と同様にして陽極酸化処理したアルミニウム支持体をCsLa, NbTi, Oiの化学量論比に相当するセシウムエトキシド、チタンプトキシド、アンタンイソプトキシド、ニオプエトキシドを含む20%のエタノール溶液に浸漬して表面を加水分解したのち200°C以上に加熱してアルミニウム支持体表面にCsLa, NbTi, Oiの厚み1000オングストロームの薄膜を形成させた。

【0091】この複合金属酸化物薄膜付きアルミニウム支持体をサイズは 510×400 mmにカットしてサンプルとした。これを記録用紙の代わりに静電写真装置にセットして静電記録法によってトナー画像を形成させた。ウシオ電気社製USIO焼き付け用光源装置ユニレックURM-600形式GH-60201Xを用いて、光強度9mW/cm²のもとで2分間露光を行った。協和界面科学株式会社製CONTACT-ANGLEMETER CA-Dを用いて空中水滴法で表面の接触角を測定したところ露光部6度(照射前は66度)を得た。

【0092】この版を、サクライ社製オリバー52片面 %の 印刷機にセットし、湿し水を純水、インキを大日本イン 50 た。

キ化学工業社製Newchampion Fグロス85墨を用いて500枚オフセット印刷を行った。スタートから終了まで 鮮明な印刷物が得られ、印刷版の損傷もみとめられなかった。

【0093】実施例14

上記の印刷に使用した版の表面をトルエン/ダイクリーンR (1/1)混合溶媒に浸漬すると約15秒で画像とインキが溶解して流れ去った。丁寧に洗浄してインキを除去したのち、これを150度のオープン中に10分間加熱した後、室温まで冷えた状態で前と同様の方法で接触角を測定した。版表面のどの箇所でも接触角は74~76度の範囲に入っており、印刷版として使用する前の状態に回復していた。この状態で一回目と同じ静電写表を置にセットして静電記録法によって一回目とは異なるトナー画像を転写形成させた。つぎに画像つきポリエステルフィルムに前と同じ光源(ウシオ電気社製焼き付け用光源装置)を使い、同じ光強度(9mw/cm²で2分間露出を行った。1回目同様、空中水滴方法で表面の接触角を測定したところ露光部6度(露光前は66度)を得た。

【0094】この版を、サクライ社製オリバー52片面印刷機にセットし、湿し水を純水、インキを大日本インキ化学工業社製Newchampion Fグロス85墨を用いて500枚オフセット印刷を行った。スタートから終了まで鮮明な印刷物が得られ、印刷版の損傷も認められなかった。以上の繰り返しを15回実施したところ、版の光感度、接触角および加熱による接触角の回復スピードなどの変化は認められなかった。

【0095】実施例15

99. 5重量%アルミニウムに、銅を0. 01重量%、 チタンを 0. 03 重量%、鉄を 0. 3 重量%、ケイ素を 0. 1重量%含有するJIS A1050アルミニウム 材の厚み0.30mm圧延板を、400メッシュのパミス トン(共立窯業製)の20重量%水性懸濁液と、回転ナ イロンプラシ(6,10-ナイロン)とを用いてその表 面を砂目立てした後、よく水で洗浄した。これを15重 量%水酸化ナトリウム水溶液(アルミニウム4.5重量 %含有) に浸漬してアルミニウムの溶解量が5g/m²にな るようにエッチングした後、流水で水洗した。更に、1 重量%硝酸で中和し、次に0.7重量%硝酸水溶液(ア ルミニウム0.5重量%含有)中で、陽極時電圧10. 5ポルト、陰極時電圧9. 3ポルトの矩形波交番波形電 圧(電流比r=0.90、特公昭58-5796号公報 実施例に記載されている電流波形)を用いて160クロ ーン/dml の陽極時電気量で電解粗面化処理を行った。 水洗後、35℃の10重量%水酸化ナトリウム水溶液中 に浸漬して、アルミニウム溶解量が1g/m²になるように エッチングした後、水洗した。次に、50℃、30重量 %の硫酸水溶液中に浸漬し、デスマットした後、水洗し

【0096】さらに、35℃の硫酸20重量%水溶液 (アルミニウム0.8重量%含有)中で直流電流を用い て、多孔性陽極酸化皮膜形成処理を行った。即ち電流密 度13A/dm²で電解を行い、電解時間の調節により陽極 酸化皮膜重量2. 7g/m²とした。この支持体を水洗後、 70℃のケイ酸ナトリウムの3重量%水溶液に30秒間 浸漬処理し、水洗乾燥した。以上のようにして得られた アルミニウム支持体は、マクベスRD920反射濃度計 で測定した反射濃度は0.30で、中心線平均粗さは

【0097】次いでこのアルミニウム支持体をスパッタ リング装置内にセットし、5.0x10⁻¹Torrまで真空 排気する。支持体を500°Cに加熱し、Ar/O,が 60/40 (モル比) となるようにガス圧を5x10⁻¹ Torrに調製した。6インチャのチタン酸パリウムの焼結 ターゲットにRFパワー200Wを投入して膜圧100 0 Aのチタン酸パリウム薄膜を形成した。 X線解析法に よれば、この薄膜は多結晶体であった。サイズを510 ×400mにカットしてサンプルとした。このチタン酸 バリウム薄膜付きアルミニウム支持体を使用する以外 は、実施例13及び14と同様に静電写真装置画像を記 録して印刷を行い、使用した印刷版の洗浄を行って再使

一用を行い、印刷及び再使用が可能なことが判った。ウシ オ電気社製USIO焼き付け用光源装置ユニレックURM-600形式GH-60201Xを用いて、光強度9mW/c m'のもとで2分間露光を行ったときの協和界面科学株式 会社製CONTACT-ANGLE METER CA-Dによる空中水滴法で表 面の接触角は、露光部7度(照射前は55度)であっ た。また、再使用のさい、150度のオーブン中に10 分間加熱した後、室温まで冷えた状態での接触角は、版 表面のどの箇所でも53~56度の範囲に入っており、 10 印刷版として使用する前の状態に回復していた。

【0098】実験例1

酸化チタン層を有する実施例1の試料を用いて露光前後 の接触角の変化及び露光により接触角が低下した試料に 熱処理を加えたときの接触角の増加速度を協和界面科学 株式会社製CONTACT-ANGLE METER CA-Dを用いて空中水滴 法によって求めた測定値を表1に示す。この表から、露 光によって極めて顕著な疎水性から親水性への変化が起 こること及びそれが130°Cでも2時間程度、200 °Cでは数分でもとの疎水性表面に戻ることが示され 20 る。

[0099] 【表1】

(表1) 露光前 露光後 加熱時間 1min 5min 10min 15min 1hr 2hr 5hr 130℃ 62 77

53

65

【0100】実験例2

 0.58μ mであった。

チタン酸パリウム層を有する実施例15の試料を用いて 30 変化が起こること及びそれが130°Cでも2時間程 露光前後の接触角の変化及び露光により接触角が低下し た試料に熱処理を加えたときの接触角の増加速度を協和 界面科学株式会社製CONTACT-ANGLE METER CA-Dを用いて 空中水滴法によって求めた測定値を表2に示す。この表

70

7

200℃

50

から、露光によって極めて顕著な疎水性から親水性への 度、200°Cでは数分でもとの疎水性表面に戻ること が示される。

[0101]

67

【表2】

(表2)

霍光前	露光後	加熱時間	1 min	Sain	10ain	15min	l hr	2 hr	5 hr
77	5	130 ° C	7	11	22	29	44	50	5 5
70	7	200 ° C	48	51	50	53	-	-	-

[0102]

【発明の効果】酸化チタン、酸化亜鉛、その他前記した 特定構造を有する金属酸化物を主成分とする薄層を表面 に有する本発明の印刷原板上に親油性画像を形成指せた のち、活性光による像様露光を行うのみで画像部がイン

クを受容する印刷画面が形成され、現像液を不要で、か つ印刷面の鮮明性が保たれたオフセット印刷が可能とな り、かつ使用した印刷原版を熱処理によって再生し、反 復使用することができる。