

ISS Pointing Approaches and Best Practices

JSC/Andy Lalich June 18, 2014

Agenda

- Possible Targets
- Line of Sight Prediction Effects
 - Trajectory
 - Attitude
 - Time
- Best Practices
 - OPALS
 - HICO
 - ISSAC
- Summary

What Can Be Seen From the ISS?

What Affects an Observation?

Trajectory

- ISS orbit determination performed by processing Global Positioning System (GPS) telemetry
- Atmospheric Drag

$$a_d = -\frac{1}{2} \frac{C_d \cdot A_f}{M} \cdot \rho \cdot |V| \cdot \overline{V}$$

LVLH Reference Frame

Trajectory

- Downtrack position error grows at largest rate
 - Atmospheric drag uncertainties
 - ISS cross sectional area estimate
 - Atmospheric density estimate
 - Solar Flux
 - Geomagnetic Activity
 - Mass estimate
 - − Propagation of a week is off an average of 10 − 30 seconds
 - Trajectory event replanning
 - ISS Debris Avoidance Maneuvers
- Prediction availability (Trajectory Operations Officer)
 - Long term data updated weekly
 - Near term data updated every other day

Attitude

 ISS holds attitude by using CMGs to minimize attitude motion in Yaw, Pitch, and Roll

 Fluctuations about each axis occur based on the momentum management controller loaded

Attitude

- Each of seven +XVV MM controllers are designed to have different steady-state performance features
 - attitude fluctuations
 - momentum (and thus propellent) usage
 - generally experience 1 degree of attitude motion in each axis

Attitude

- Prediction Availability (Attitude Determination and Coordination Officer)
 - Attitude Timeline
 - Future maneuvers for next month
- Additional attitude variation to consider is thermal structural flexure
 - Have no info on this

Time

- A significant factor in line of sight predictions for high resolution instruments is knowledge of exact time.
- The ISS is moving at 7 kilometers per second, so depending on your resolution, being off by half a second may mean completely missing a small target

Time

- GPS Time is official time source for ISS
 - Atomic Time System managed by USNO
 - Broadcast by GPS satellites
 - Kept within 1 microsecond of UTC

Does not adjust for leap seconds

Time

- Two laptop types onboard ISS
 - Portable Computer System (PCS)
 - Command and control
 - Required to be time synced to within 2 seconds of GPS time
 - Can drift at 1 second / day
 - MCC maintains to within 1 second
 - Station Support Computer (SSC)
 - Most payloads use SSCs
 - Non-command and control
 - Synced to GMT Server
 - Can also drift similarly
 - ISS onboard telemetry time will be in GPS (currently a 16 second difference due to leap seconds)

Best Practices

- OPALS: Optical Payload for Lasercomm Science
 - Communication with ground via laser
 - Need considerable accuracy
 - Acquire ground beacon
 - Closed loop

Best Practices

- HICO: Hyperspectral Imager for the Coastal Ocean
 - Goal is to assign geographic coordinates to each image pixel
 - Sensor tilted and skewed relative to ISS reference frame
 - Boresite calibration necessary
 - Took known images and derived true boresite location
 - Compared to trajectory and attitude telemetry
 - Different correction calculated for each of 7 images
 - Largest correction ~1 degree in X axis, much smaller in other axes
 - Geoposition error reduced by an order of magnitude

Best Practices

How to Prepare for Operations

- Can your sensor get Sun in the FOV?
 - Does it matter if the sensor is on or off?
 - How long can it look at the Sun?
 - Is there an additional buffer that needs to be protected?
- Does your payload need concurrent ISS communication with the ground?
 - Sband for telemetry?
 - Kuband for video?
- Can ISS elements block your sensor FOV?
 - Solar arrays?
 - Robotic Elements?
 - Thermal radiators?

Summary

- Now is great time to get involved with ISS
 - Assembly Complete
 - Mature Laboratory
 - Lifetime extended until at least 2024 underway
 - There are groups ready to help integrate your payload

