Alignment IV BLOSUM Matrices

BLOSUM matrices

- Blocks Substitution Matrix. Scores for each position are obtained frequencies of substitutions in blocks of local alignments of protein sequences [Henikoff & Henikoff92].
- For example BLOSUM62 is derived from sequence alignments with no more than 62% identity.

BLOSUM Scoring Matrices

- BLOck SUbstitution Matrix
- Based on comparisons of blocks of sequences derived from the Blocks database
- The Blocks database contains multiply aligned ungapped segments corresponding to the most highly conserved regions of proteins (local alignment versus global alignment)
- BLOSUM matrices are derived from blocks whose alignment corresponds to the BLOSUM-, matrix number

Conserved blocks in alignments

```
AABCDA...BBCDA
DABCDA.A.BBCBB
BBBCDABA.BCCAA
AAACDAC.DCBCDB
CCBADAB.DBBDCC
AAACAA...BBCCC
```

Constructing BLOSUM r

- To avoid bias in favor of a certain protein, first eliminate sequences that are more than r% identical
- The elimination is done by either
 - removing sequences from the block, or
 - finding a cluster of similar sequences and replacing it by a new sequence that represents the cluster.
- BLOSUM r is the matrix built from blocks with no more the r% of similarity
 - E.g., BLOSUM62 is the matrix built using sequences with no more than 62% similarity.
 - Note: BLOSUM 62 is the default matrix for protein BLAST

Collecting substitution statistics

1. Count amino acids pairs in each column; e.g., 6 AA pairs, 4 AB pairs, 4 AC, 1 BC, 0 BB, 0 CC. - Total = 6+4+4+1=151. Normalize results to obtain probabilities (p_x 's and q_{xy} 's) 2. Compute log-odds score matrix from probabilities: $s(X,Y) = \log (q_{XY}/(p_X p_Y))$

Computing probabilities

Sum the scores for each columns across columns:

$$c_{ij} = \sum_{k} c_{ij}^{(k)}$$

Normalize the pair frequencies so they will sum to 1:

$$T = \sum_{i=1}^{n} c_{ij} = w \frac{n(n-1)}{2}$$
 where $w = \text{number of columns}$ $n = \text{number of sequences}$

$$q_{ij} = \frac{c_{ij}}{T}$$

From http://www.csit.fsu.edu/~swofford/bioinformatics_spring05/lectures/lecture03-blosum.pdf

7

Computing probabilities

Calculate the expected probability of occurrence of the *i*th residue in an (i,j) pair:

$$p_i = q_{ii} + \sum_{j \neq i} \frac{q_{ij}}{2}$$

The desired denominator is the expected frequency for each pair (assuming independence):

$$e_{ii} = p_i^2$$

$$e_{ij} = 2p_i p_j \qquad (i \neq j)$$

Computing probabilities

Each entry for (i,j) in the log odds matrix is then equal to q_{ij}/e_{ij}

Log odds ratio:
$$S_{ij} = \log_2 \frac{q_{ij}}{e_{ij}}$$

Value stored for BLOSUM = $2 s_{ij}$ rounded to nearest integer ("half bit" units)

Example

Matrix of c_{ij} values:

sequence 1	Α	Α	Ι
sequence 2	S	A	\mathbf{L}
sequence 3	T	Α	\mathbf{L}
sequence 4	T	Α	V
sequence 5	Α	Α	\mathbf{L}

	A	I	L	S	T	V
A	1+10					
I		0				
L		3	3			
S	2		0			
T	4			2	1	
V		1	3			0

$$T = \sum_{i \ge j} c_{ij} = 3 \left[\frac{(5)(4)}{2} \right] = 30$$

Example

Matrix of q_{ij} values:

Vector of p_i values:

$$p_{A} = \left(11 + \frac{6}{2}\right) / 30 = 14/30 = 0.46\overline{6}$$

$$p_{I} = \left(0 + \frac{4}{2}\right) / 30 = 2/30 = 0.06\overline{6}$$

$$p_{L} = \left(3 + \frac{6}{2}\right) / 30 = 6/30 = 0.2$$

$$p_{S} = \left(0 + \frac{4}{2}\right) / 30 = 2/30 = 0.06\overline{6}$$

$$p_{T} = \left(1 + \frac{6}{2}\right) / 30 = 4/30 = 0.13\overline{3}$$

$$p_{V} = \left(0 + \frac{4}{2}\right) / 30 = 2/30 = 0.06\overline{6}$$

Example

Matrix of e_{ij} values:

Log odds ratio:

e.g.,
$$s_{AA} = \log_2 \frac{0.36\overline{6}}{\left(\frac{14}{30}\right)^2} = \log_2 1.6837 = 0.7516$$

BLOSUM value for AA = $round(2 \cdot 0.7516) = 2$

Full matrix:

Note: undefined values result from unobserved pairs (would ordinarily not happen with real data)

Comparison

- PAM is based on an evolutionary model using phylogenetic trees
- BLOSUM assumes no evolutionary model, but rather conserved "blocks" of proteins

Relative Entropy

$$H = \sum_{i=1}^{20} \sum_{j=1}^{i} p_{i} p_{j} s(i,j)$$

- Indicates power of scoring scheme to distinguish from "background noise" (i.e., randomness)
- Relative entropy of a random alignment should be negative
- Can use H to compare different scoring matrices

Equivalent PAM and Blossum matrices (according to *H*)

- PAM100 ==> Blosum90
- PAM120 ==> Blosum80
- PAM160 ==> Blosum60
- PAM200 ==> Blosum52
- PAM250 ==> Blosum45

PAM versus Blosum

Below diagonal: BLOSUM 62 Above diagonal: BLOSUM 62 - PAM 160

2 11

Superiority of BLOSUM for database searches (according to Henikoff and Henikoff)

