## Mario Baseball Data Analysis

#### Iszy Hirschtritt Licht

12/1/2020

#### Load Libraries

```
library(tidyverse)
library(dplyr)
library(knitr)
library(weights)
library(scales)
library(gtargazer)
```

#### Load Data

```
#Load Data
mario_data <- read.csv("Mario_Baseball_Data.csv")</pre>
#Clean Data
mario_data <- mario_data %>%
 replace(is.na(.), 0) %>%
 rename(
    date = Date,
    player_name = Player.Name,
    played_game = Games.Played,
    at_bats = AB,
    hits = Hits,
    runs_batted_in = RBI,
    homeruns = HR,
    stolen_bases = SB,
    special_hitting = Special,
    innings_pitched = IP,
    hits_allowed = Hits.1,
    runs_allowed = Runs,
    strikeouts = SO,
    big_plays = Big.Plays,
    special_pitching = Special.1,
    player_type = Player.Type,
    captain = Capitan
    ) %>%
  mutate(date = as.Date(date, "%m.%d.%y")) %>%
  mutate(played_game = as.factor(played_game)) %>%
  mutate(captain = as.factor(captain))
```

## Data Analysis

```
#Add Rate Data to Dataset
mario_data <- mario_data %>%
  group_by(player_name) %>%
  mutate(
    special_use_rate = sum(special_hitting)/sum(at_bats),
    batting_average = sum(hits)/sum(at_bats),
    era = (sum(runs_allowed)/sum(innings_pitched)*9),
    so9 = (sum(strikeouts)/sum(innings_pitched)*9),
    hip = sum(hits_allowed)/sum(innings_pitched))
#By Player Hitting
player_hitting <- mario_data %>%
  group_by(player_name) %>%
  summarise(
    batting_average = sum(hits)/sum(at_bats),
    special_use_rate = sum(special_hitting)/sum(at_bats)
kable(player_hitting, digits = 3)
```

| player_name     | batting_average | special_use_rate |
|-----------------|-----------------|------------------|
| Baby Bowser     | 0.147           | 0.059            |
| Baby Luigi      | 0.176           | 0.059            |
| Baby Mario      | 0.276           | 0.000            |
| Birdo           | 0.343           | 0.260            |
| Boo             | 0.343           | 0.000            |
| Bowser          | 0.332           | 0.035            |
| Daisy           | 0.345           | 0.152            |
| Diddy Kong      | 0.053           | 0.105            |
| DK              | 0.409           | 0.100            |
| Drybones        | 0.286           | 0.006            |
| Flying Goomba   | 0.000           | 0.000            |
| Flying Koopa    | 0.325           | 0.007            |
| Goomba          | 0.316           | 0.000            |
| Grandpapa Toad  | 0.438           | 0.000            |
| Hammer/Etc. Bro | 0.380           | 0.000            |
| King Boo        | 0.209           | 0.015            |
| Koopa           | 0.313           | 0.010            |
| Luigi           | 0.336           | 0.043            |
| Magikoopa       | 0.218           | 0.007            |
| Mario           | 0.454           | 0.430            |
| Monty           | 0.194           | 0.000            |
| Mumbo           | 0.248           | 0.000            |
| Noki            | 0.234           | 0.065            |
| Peach           | 0.254           | 0.099            |
| Petey           | 0.295           | 0.000            |
| Shy Guy         | 0.171           | 0.000            |
| Toad            | 0.391           | 0.000            |
| Toadette        | 0.211           | 0.000            |
| Waluigi         | 0.333           | 0.190            |
| Wario           | 0.182           | 0.091            |
| Yoshi           | 0.346           | 0.132            |

```
#By Player Type Hitting
player_type_hitting <- mario_data %>%
group_by(player_type) %>%
summarise(
   total_ab = sum(at_bats),
   total_hits = sum(hits),
   total_runs_batted_in = sum(runs_batted_in),
   total_hits = sum(hits),
   total_homeruns = sum(homeruns),
   total_sb = sum(stolen_bases),
   batting_average = sum(hits)/sum(at_bats),
   special_use_rate = sum(special_hitting)/sum(at_bats),
   sb_hits = total_sb/total_hits
   )
kable(player_type_hitting, digits = 3)
```

| player_type | total_ab | total_hits | $total\_runs\_batted\_in$ | total_homeruns | $total\_sb$ | batting_average | special_us |
|-------------|----------|------------|---------------------------|----------------|-------------|-----------------|------------|
| Balance     | 1798     | 646        | 195                       | 6              | 61          | 0.359           |            |
| Power       | 1368     | 448        | 181                       | 43             | 29          | 0.327           |            |
| Speed       | 485      | 136        | 36                        | 2              | 17          | 0.280           |            |
| Technique   | 1537     | 504        | 161                       | 4              | 41          | 0.328           |            |

```
#By Y/N Captain Hitting
captain_stats <- mario_data %>%
  group_by(captain) %>%
  summarise(batting_average = sum(hits)/sum(at_bats))
kable(captain_stats, digits = 3)
```

| captain | batting_average |
|---------|-----------------|
| 0       | 0.335           |
| 1       | 0.300           |

```
#Running Batting Averages
mario_data <- mario_data %>%
  mutate(
    cum_at_bats = cumsum(at_bats),
    cum_hits = cumsum(hits),
    running_avg = cum_hits / cum_at_bats) %>%
  replace(is.na(.), 0)

#Plot Running Batting Averages
king_toad <- mario_data %>%
  filter(player_name == "Grandpapa Toad")

waluigi <- mario_data %>%
  filter(player_name == "Waluigi")

peach <- mario_data %>%
  filter(player_name == "Peach")
```

```
toad <- mario_data %>%
  filter(player_name == "Toad")
petey <- mario data %>%
  filter(player_name == "Petey")
mario <- mario_data %>%
 filter(player name == "Mario")
#Plot of 6 Players
ggplot() +
  geom_line(king_toad, mapping = aes(x = cum_at_bats, y = running_avg, color = "King Toad")) +
  geom_line(waluigi, mapping = aes(x = cum_at_bats, y = running_avg, color = "Waluigi")) +
  geom_line(peach, mapping = aes(x = cum_at_bats, y = running_avg, color = "Peach")) +
  geom_line(toad, mapping = aes(x = cum_at_bats, y = running_avg, color = "Toad")) +
  geom_line(petey, mapping = aes(x = cum_at_bats, y = running_avg, color = "Petey")) +
  geom_line(mario, mapping = aes(x = cum_at_bats, y = running_avg, color = "Mario")) +
  scale_x_continuous(breaks = scales::pretty_breaks(n = 20)) +
  scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
  labs(title = "Running Batting Averages for Mario Baseball",
       subtitle = "Running Batting Average Across At Bats", x = "At Bats", y = "Batting Average") +
  scale_colour_discrete("Players") +
  theme_fivethirtyeight()
```



```
ggplot() +
  geom_line(king_toad, mapping = aes(x = cum_at_bats, y = running_avg, color = "King Toad")) +
```

# Running Batting Averages for Mario Baseball Random Set of Player



```
# Plot of all Players
ggplot(mario_data, aes(x=cum_at_bats, y=running_avg, group=player_name, shape=player_name)) +
   geom_line() +
   facet_wrap(~ player_name)
```

## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 31. Consider
## specifying shapes manually if you must have them.



cum\_at\_bats

```
#Leagewide running average
leaguewide_data <- mario_data %>%
  group_by(date) %>%
  summarise(
   total_hits = sum(hits),
   total_at_bats = sum(at_bats),
   total_average = sum(total_hits)/sum(total_at_bats)
   ) %>%
 mutate(
   gameday = row_number(),
    cum_at_bats = cumsum(total_at_bats),
   cum_hits = cumsum(total_hits),
   running_avg = cum_hits / cum_at_bats
 )
#Leaguewide Average Plot
ggplot() +
  geom_line(leaguewide_data, mapping = aes(x=gameday, y=running_avg))
```



```
#Leaguewide Hits plot
ggplot(leaguewide_data, mapping = aes(x=gameday, y=total_hits)) +
  geom_point() +
  geom_smooth(method = "loess")
```



data = mario\_data)

stargazer(batting\_avg\_captain,
 type = "latex", header = FALSE,
 title = "Regression of Batting Average on Player Type with Controls",
 intercept.bottom = FALSE, single.row=TRUE)

Table 4: Regression of Batting Average on Player Type with Controls

|                         | Dependent variable:            |
|-------------------------|--------------------------------|
|                         | batting_average                |
| Constant                | 0.306*** (0.004)               |
| player_typePower        | -0.040***(0.005)               |
| player_typeSpeed        | $-0.131^{***} (0.005)$         |
| player_typeTechnique    | -0.003 (0.005)                 |
| special_use_rate        | $0.253^{***} (0.020)$          |
| captain1                | $-0.011 \ (0.017)$             |
| Observations            | 2,170                          |
| $\mathbb{R}^2$          | 0.354                          |
| Adjusted R <sup>2</sup> | 0.353                          |
| Residual Std. Error     | 0.083  (df = 2164)             |
| F Statistic             | $237.401^{***} (df = 5; 2164)$ |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01    |

```
#Player Pitching
player_era_1 <- mario_data %>%
  filter(sum(innings_pitched) >= 40) %>%
  group_by(player_name) %>%
  summarise(era = (sum(runs_allowed)/sum(innings_pitched)*9))
kable(player_era_1, digits = 3)
```

| player_name  | era   |
|--------------|-------|
| Boo          | 4.388 |
| Flying Koopa | 4.130 |
| Koopa        | 3.207 |
| Waluigi      | 4.750 |

```
player_era_2 <- mario_data %>%
  filter(sum(innings_pitched) >= 10 & sum(innings_pitched) < 40) %>%
  group_by(player_name) %>%
  summarise(era = (sum(runs_allowed)/sum(innings_pitched)*9))
kable(player_era_2, digits = 3)
```

| player_name | era   |
|-------------|-------|
| Baby Luigi  | 3.378 |
| Daisy       | 4.670 |
| Diddy Kong  | 2.544 |
| DK          | 7.200 |
| Peach       | 6.752 |
| Toad        | 4.627 |

```
#Player Type Pitching
player_type_pitching <- mario_data %>%
  group_by(player_type) %>%
  summarise(
    total_innings = sum(innings_pitched),
    era = (sum(runs_allowed)/sum(innings_pitched)*9),
    total_strikeouts = sum(strikeouts),
    total_big_plays = sum(big_plays),
    )
kable(player_type_pitching, digits = 3)
```

```
total_innings
player type
                               era
                                     total strikeouts
                                                      total big plays
Balance
                             3.556
                                                                   146
                   460.597
                                                 407
Power
                                                  25
                                                                    81
                    34.650
                             9.091
                                                  42
                                                                    41
Speed
                    71.600
                             3.142
Technique
                   687.890
                             4.475
                                                 579
                                                                    62
```

```
#Running Pitching Stats
mario_data <- mario_data %>%
  mutate(
    cum_runs_allowed = cumsum(runs_allowed),
    cum_innings = cumsum(innings_pitched),
```

```
running_era = (cum_runs_allowed / cum_innings)*9) %>%
  replace(is.na(.), 0)
waluigi <- mario_data %>%
  filter(player_name == "Waluigi")
flying_koopa <- mario_data %>%
  filter(player name == "Flying Koopa")
koopa <- mario_data %>%
  filter(player_name == "Koopa")
boo <- mario_data %>%
  filter(player_name == "Boo")
#Plot Running Pitching
ggplot() +
  geom_line(koopa, mapping = aes(x = cum_innings, y = running_era, color = "Koopa")) +
  geom_line(boo, mapping = aes(x = cum_innings, y = running_era, color = "Boo")) +
  geom_line(flying_koopa, mapping = aes(x = cum_innings, y = running_era, color = "Flying Koopa")) +
  geom_line(waluigi, mapping = aes(x = cum_innings, y = running_era, color = "Waluigi")) +
  scale_x_continuous(breaks = scales::pretty_breaks(n = 10)) +
  scale_y_continuous(breaks = scales::pretty_breaks(n = 10)) +
  labs(title = "Running ERA for Mario Baseball",
       subtitle = "Players with 40+ Innings Pitched", x = "Innings Pitched", y = "ERA") +
  scale_colour_discrete("Players")
```

### Running ERA for Mario Baseball

#### Players with 40+ Innings Pitched



```
#Leaguewide Pitching
leaguewide_pitching <- mario_data %>%
  group by(date) %>%
  summarise(
   total innings = sum(innings pitched),
   total_hits_allowed = sum(hits_allowed),
   total_runs_allowed = sum(runs_allowed),
   total_strikeouts = sum(strikeouts),
   total_era = ((sum(runs_allowed)/sum(innings_pitched))*9)
   ) %>%
 mutate(
   gameday = row_number(),
   cum_innings = cumsum(total_innings),
    cum_runs_allowed = cumsum(total_runs_allowed),
   cum_strikeouts = cumsum(total_strikeouts),
   running_so_9 = ((cum_strikeouts/cum_innings)*9),
   running_era = ((cum_runs_allowed / cum_innings)*9))
#Leaguewide ERA Plot
ggplot() +
 geom_line(leaguewide_pitching, mapping = aes(x=gameday, y=running_era, color = "Blue")) +
 geom_line(leaguewide_pitching, mapping = aes(x=gameday, y=running_so_9, color = "Red"))+
  scale_y_continuous(
   "running_era",
   sec.axis = sec_axis(~ . * 1, name = "running_so_9")
```



write.csv(mario\_data,'Mario\_Baseball\_Data\_update.csv')
write.csv(leaguewide\_data,'leaguewide\_data.csv')