

III. Multiple Choice Questions

Question 1. Among the following molecules, in which does bromine show the maximum oxidation number?

- (a) $Hg_2(BrO_3)_2$
- (b) Br Cl
- (c) KBrO₄
- (d) Br₂

Question 2. Which of the following halogens do not exhibit a positive oxidation number in their compounds?

(a) F (b) Br (c) I (d) Cl

Question 3. Which of the following is most powerful oxidizing agent in the following.

- (a) O₃
- (b) KMnO₄
- (c) H_2O_2
- (d) $K_2Cr_2O_7$

Question 4. On the reaction

 $2Ag + 2H_2SO_4 \rightarrow Ag_2SO_4 + 2H_2O + SO_2$

sulphuric'acid acts as

- (a) an oxidizing agent
- (b) a reducing agent
- (c) a catalyst
- (d) an acid as well as an oxidant

Question 5. The oxidation number of the carboxylic carbon atom in CH_3COOH is

(a)
$$+2$$
 (b) $+4$ (c) $+1$ (d) $+3$

Question 6. When methane is burnt in oxygen to produce

CO₂ and H₂O the oxidation number of carbon changes by

(a) -8 (b) zero (c) +8 (d) +4

Question 7. The oxidation number of carbon is zero in

- (a) HCHO
- (b) CH₂Cl₂
- (c) $C_{12}H_{22}O_{21}$
- (d) $C_6H_{12}O$

Question 8. Which of the following are not redox reactions?

- (a) $Mg + N_2 \longrightarrow Mg_3N_2$
- (b) $K_4[Fe (CN)_6] + H_2SO_4 + H_2O \longrightarrow K_2SO_4 + CO + FeSO_4 + (NH_4)_2 SO_4$
- (c) $I_2 + 3Cl_2 \longrightarrow ICl_3$
- (d) $CuSO_4 + NH_3 \longrightarrow [Cu (NH_3)_4] SO_4$

Question 9. Which one among the following is not example of autoredox reaction?

- (a) $P_4 + OH^- \longrightarrow H_2 PO_4^- + PH_3$
- $(b) \ \, \mathrm{H_2O_2} {\longrightarrow} \ \, \mathrm{H_2O} + \mathrm{O_2}$
- (c) $S_2 O_3^{2-} \longrightarrow SO_4^{2-} + S$
- (d) $AgC\bar{l} + NH_3 \longrightarrow [Ag (NH_3)_2] Cl$

Question 10. In the ethylene molecule the two carbon atoms have the oxidation numbers.

- (a) -1, -1 (b) -2, -2
- (c) -1, -2 (d) +2, -2

Answer:

- 1. (c)
- 2. (a)
- 3. (a)
- 4. (d)

- 5. (d)
- 6. (d)
- 7. (e)
- 8. (b) and (d)
- 9. (d)
- 10. (b)

IV. Hots Questions

Question 1. (a) Formulate possible compounds of C1 in its O.S. is: 0, -1, +1, +3, +5, +7.

- (b) List three measures used to prevent rusting of iron. Answer:
- (a) Cl₂, HCl, HOCl, HOClO, HOClO₂, HOClO₃ respectively.
- (b) (i) galvanization (coating iron by a more reactive metal)
- (ii) greasing/oiling
- (iii) painting

Question 2. Account for the following:

- (a) While $\rm H_2O_2$ can act as oxidising as well as reducing agent in their reactions, $\rm O_3$ and HNO $_3$ acts as oxidants only.
- (b) When cone. $\rm H_2SO_4$ is added to an inorganic mixture containing chloride, HCl is produced but if a mixture contains bromide, then we get red vapours of bromine.

Answer:

- (a) In H_2O_2 oxidation number of O = -1 and can vary from 0 to -2 (+2 is possible in OF_2). The oxidation number can decrease or increase, because of this H_2O_2 can act both oxidising and reducing agent.
- (b) HCl is a weak reducing agent and can reduce $\rm H_2SO_4$ to $\rm SO_2$ and hence HCl is not oxidised to $\rm Cl_2$. When $\rm NaB_r$ is heated $\rm Br_2$ is produced, which is a strong reducing agent and itself oxidised to red vapour of $\rm Br_2$.

Question 3. Account for the following:

- (a) ${\rm HNO_3}$ acts only as an oxidising agent while ${\rm HNO_3}$ can act both as reducing and oxidising agent.
- (b) ClO₄⁻ does not show disproportionation reaction.
- (c) Ozone acts as an oxidising agent. Answer:
- (a) The oxidation number of nitrogen in ${\rm HNO_3}$ is +5 thus increase in oxidation number +5 does not occur hence ${\rm HNO_3}$ cannot act as reducing agent but acts as an oxidising agent. In ${\rm HNO_2}$ oxidation number of nitrogen is +3, it can decrease or increase with range of 3 to +5, hence it can act as both oxidising and reducing agent.
- (b) Chlorine is in maximum oxidation state +7 in CIO_4 so it does not show the disproportionation reaction.
- (c) Because it decomposes to give nascent oxygen.

