

Anticipez les besoins en consommation de bâtiments

Armand FAUGERE Linked in armand-faugere@live.fr

Sommaire

- I) Cadrage du projet et données d'entrée
- II) Traitement et analyse des données
- III) Modélisations et Prédictions
- IV) Choix de l'algorithme
- V) Interprétation
- VI) Conclusion

I) Cadrage du projet et données d'entrée

Contexte : Projet de prédiction des émissions de CO2 et de
consommation totale d'énergie des bâtiments non destinés à l'habitation
de la ville de Seattle.

Relevés minutieux par des agents en 2016, très couteux et fastidieux à réaliser.

ENERGY STAR Score fastidieux à calculer.

ENERGY STAR

☐ But:

- Créer un système de prédiction des émissions de CO2 et de consommation totale d'énergie des bâtiments non destinés à l'habitation de la ville de Seattle en se basant sur les données structurelles des bâtiments.

□ Objectifs :

- Traiter et explorer le jeu de donnée
- Réaliser des modélisations prédictives
- Evaluer les modèles
- Se passer des relevés de consommation annuels et futurs
- Eviter le Data leakage

- □ Le jeu de données https://data.seattle.gov/dataset/2016-
 Building-Energy-Benchmarking/2bpz-gwpy
- Relevé détaillé des consommations des bâtiments pour l'année 2016
- 3376 bâtiments, 46 colonnes descriptives
- Descriptif des champs du jeu de donnée

□ ENERGY STAR Score

https://www.energystar.gov/buildings/benchmark/analyze_b enchmarking results

2) Traitement et analyse des données

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn

1
Prétraitement du jeu de données

46 colonnes

33 colonnes

2 Analyse univariée

Analyse des 7 variables catégorielles

- ☐ Analyse barplot et describe(max, min, moy)
- □ Traitement des valeurs
- → Filtre sur valeurs compliant
- → Suppression colonnes defaultData, OSEBuildingID, Latitide, Longitude
- → Suppression des doublons de colonne Neighborhood
- → Suppression des lignes NumberofBulding à 0
- → Suppression des lignes Numberofloors à 0

Analyse des 26 variables numériques

- ☐ Analyse boxplot ,describe(max, min, moy), courbe densité
- □ Traitement des valeurs
- → Suppression 1 valeur extrêmes SiteEnergyUse(Kbtu)
- → Suppression 1 valeur Electrity(Kbtu) négative

2) Traitement et analyse des données

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn

3 Traitement des NAN ENERGY STAR SCORE

- ☐ Label Encoder : LargestPropertyUseType
- □ Normalisation : LargestPropertyUseTypeGFA, SourceEUIWN(kBtu)
- ☐ Création de modèles sur la base des infos du site de l'ENERGYSTARSCORE
- → Conservation du meilleur modèle
- ☐ Training et test de plusieurs algorithmes
- → LinearRegression
- → ElasticNet
- → Ridae
- → Lasso
- → KNeighborsRegressor
- → SVR
- → RandomForestRegressor

Imputation des valeurs

- ☐ Mise en place des métriques de mesure (MAE, MDE, MSE, RMSE, R2, VARSCORE)
- ☐ Choix du KNN (RMSE :18, R2 : 0,57)
- ☐ Test comparatif modèle KNN avec Médiane et Moyenne
- □ Validation du modèle KNN ==>
 "LargestPropertyUseType" (LabelEncoder),
 'LargestPropertyUseTypeGFA',
 'SourceEUIWN(kBtu)'

2) Traitement et analyse des données

Nouvelles variables

Structurels: ☐ (NB_FLOOR)/(NB_BULDING) ☐ (GFA_P_USE)/(GFA_TOT) ☐ (GFA_PARKING)/(GFA_BULDING) ☐ (GFA_BULDING)/(GFA_TOT) ☐ (GFA_PARKING)/(GFA_TOT)

(GFA_PARKING)/(GFA_TOT) nergie: proportion CO2: pie_tot ptot GAZ/CO2_tot GAZ/CO2_tot Trgie_tot proportion Energie Building: □ ELEC/Energie tot ==> Bulding

	<u> </u>	_			
proportion Energie Parking :					
	<pre>ELEC/Energie_tot ==> Parking</pre>				
	GAZ/Energie_tot ==> Parking				
	STEAM/Energie_tot ==> Parkin	g			

☐ STEAM/Energie tot ==> Bulding

☐ GAZ/Energie tot ==> Bulding

Dataleakage: ☐ (GAZ)/(GFA_P_USE) ☐ (STEAM)/(GFA_P_USE) ☐ (ELEC)/(GFA_P_USE) ☐ (ELEC)/(GFA_TOT) ☐ (GAZ)/(GFA_TOT) ☐ (STEAM)/(GFA_BUILING) ☐ (ELEC)/(GFA_BUILING) ☐ (GAZ)/(GFA_BUILING) ☐ (GAZ)/(GFA_BUILING) ☐ (GAZ)/(GFA_PARKING) ☐ (STEAM)/(GFA_BUILING) ☐ (STEAM)/(GFA_BUILING) ☐ (STEAM)/(GFA_PARKING)

- Essais réalisés
- → Corrélations très fortes avec cible
- → R2 très élevé
- → RMSE pas meilleur

SiteEnergyUSE(Kbtu)

Feat 2 → Avec LabelEncoder 'LargestPropertyUseTypeGFA', 'NumberofFloors', '(GFA_P_USE)/(GFA_TOT)', 'NumberofBuildings', 'PropertyGFAParking', 'STEAM/Energie_tot ==> Bulding', 'BuldingAge(Years)', 'LargestPropertyUseType', 'GAZ/Energie_tot ==> Bulding', 'Neighborhood', 'STEAM/Energie tot ==> Parking'

Feat 3 → Avec dummies variables 'LargestPropertyUseTypeGFA', 'LargestPropertyUseType_Hospital (General Medical & Surgical)', 'NumberofFloors', '(GFA_P_USE)/(GFA_TOT)', 'NumberofBuildings', 'LargestPropertyUseType_Data Center', 'PropertyGFAParking', 'PrimaryPropertyType_Large Office', 'STEAM/Energie_tot ==> Bulding', 'BuldingAge(Years)cat_(0.885, 29.75]', 'PrimaryPropertyType_Small- and Mid-Sized Office', 'LargestPropertyUseType_Non-Refrigerated Warehouse', 'CouncilDistrictCode_3', 'Neighborhood DOWNTOWN'

Modèles retenus pour optimisation et validation

CO2(Kg)

Feat 2 → Avec LabelEncoder
'LargestPropertyUseTypeGFA',
'NumberofBuildings',
'STEAM/Energie_tot ==> Bulding',
'(GFA_P_USE)/(GFA_TOT)',
'NumberofFloors',
'ELEC/CO2_tot',
'LargestPropertyUseType',
'PropertyGFAParking',
'BuldingAge(Years)',
'STEAM/Energie_tot ==> Parking',
'GAZ/Energie_tot ==> Parking',
'Neighborhood'

Feat 3 → Avec dummies variables

- 'PrimaryPropertyType_Hospital',
- ☐ 'LargestPropertyUseTypeGFA',
- 'NumberofBuildings',
- □ 'STEAM/Energie_tot ==> Bulding',
- '(GFA_P_USE)/(GFA_TOT)',
- □ 'NumberofFloors',
- ☐ 'Neighborhood_EAST',
- ☐ 'ELEC/Energie_tot',
- 'PrimaryPropertyType_Small- and Mid-Sized Office',
- ☐ 'CouncilDistrictCode_2',
- □ 'BuldingAge(Years)cat_(0.885, 29.75]'

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn

Pertinence ENERGY STARSCORE

SiteEnergyUse (Kbtu)

CO2(kg)

Features Importance

Pas d'impact significatifs sur les modèles

- ☐ Rajout dans les modèles feat 2 et feat 3
- ☐ Training et test dans les mêmes conditions
- Comparatif des variations des métriques R2 et RMSE

☐ Comparaison sur graphiques

2023 Armand FAUGERE

Anticipez les besoins en consommation de bâtiments

Feat 3

- ☐ D'autres variables se démarquent (type, nb de buildings...)
- → L'ENERGYSTARSCORE a un impact limité sur la prédiction

Feat 2
Transformation log

SiteEnergyUSE(Kbtu)

Feat 3
Transformation log

- ☐ La variable « LargestPropertyUsetypeGFA » est très importante
- ☐ D'autres variables se démarquent (type, nb de buildings...)
- → L'ENERGYSTARSCORE a un impact limité sur la prédiction

Feat 2

CO2(Kg)

Feat 3

- $\hfill \square$ La variable « LargestPropertyUsetypeGFA » est très importante
- ☐ D'autres variables se démarquent (type, nb de buildings...)
- → L'ENERGYSTARSCORE a un impact limité sur la prédiction

Feat 2
Transformation log

CO2(Kg)

Feat 3 Transformation log

- ☐ La variable « LargestPropertyUsetypeGFA » est très importante
- ☐ D'autres variables se démarquent (type, ratios d'energie…)
- → L'ENERGYSTARSCORE a un impact limité sur la prédiction

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn

Fonction pour optimisation paramétrique

Validation croisée et optimisations hyperparamétriques

Bilan des performances

Grilles des paramètres optimisés

3Optimisation hyper paramétrique

SiteEnergyUse (Kbtu)

CO2(kg)

- □ Paramétrage Gridsearch (Holdout, ["neg_mean_squared_error","r2"])
- ☐ Choix des paramètres à tester
- ☐ Entrainement et test

- ☐ Bilan des métriques
- ☐ Bilan des meilleurs paramètres

Sans Transformation log

SiteEnergyUSE(Kbtu)

Avec Transformation log (unité de log)

	Feat2 R2	Feat3 R2	Feat2 RMSE	Feat3 RMSE
LR	0.550181	0.594310	1.330168e+07	1.149177e+07
ELN	0.551873	0.579688	1.336251e+07	1.306041e+07
RGE	0.550372	0.636346	1.330137e+07	1.169834e+07
LAS	0.550181	0.594310	1.330168e+07	1.149178e+07
KNN	0.247022	0.484180	1.630441e+07	1.435157e+07
GDB	0.554043	0.593493	1.344209e+07	1.281695e+07
SVR	-0.081985	-0.081722	2.033896e+07	2.033570e+07
RF	0.567130	0.604258	1.392568e+07	1.337679e+07

	feat2	feat3
LR	{'fit_intercept': True}	{'fit_intercept': True}
ELN	{'alpha': 0.1}	{'alpha': 0.1}
RGE	{'alpha': 1.0}	{'alpha': 1.0}
LAS	{'alpha': 1.0}	{'alpha': 1.0}
KNN	{'leaf_size': 10, 'n_neighbors': 4}	{'leaf_size': 10, 'n_neighbors': 3}
GDB	{'learning_rate': 0.0999999999999999, 'n_esti	{'learning_rate': 0.19, 'n_estimators': 30}
SVR	{'C': 1.4000000000000001, 'kernel': 'linear'}	{'C': 1.40000000000000001, 'kernel': 'poly'}
RF	{'min_samples_split': 2, 'n_estimators': 70}	{'min_samples_split': 2, 'n_estimators': 110}

	Feat2 R2	Feat3 R2	Feat2 RMSE	Feat3 RMSE
LR	0.464010	0.504464	0.877750	0.839362
ELN	0.436899	0.455320	0.899525	0.883469
RGE	0.464225	0.504496	0.877566	0.839333
LAS	0.405671	0.409341	0.924628	0.921236
KNN	0.195660	0.453995	1.080240	0.884367
GDB	0.641248	0.549178	0.716220	0.798940
SVR	0.435966	0.492259	0.903117	0.846967
RF	0.571281	0.49630	0.779775	0.843626

	Feat 2	feat3
LR	{'fit_intercept': True}	{'fit_intercept': True}
ELN	{'alpha': 0.1}	{'alpha': 0.1}
RGE	{'alpha': 1.0}	{'alpha': 0.1}
LAS	{'alpha': 0.1}	{'alpha': 0.1}
KNN	{'leaf_size': 10, 'n_neighbors': 4}	{'leaf_size': 10, 'n_neighbors': 7}
GDB	{'learning_rate': 0.180000000000000002,'n_esti	{'learning_rate': 0.09, 'n_estimators': 50}
SVR	{'C': 0.1, 'kernel': 'linear'}	{'C': 0.1, 'kernel': 'sigmoid'}
RF	{'min_samples_split': 2, 'n_estimators': 110}	{'min_samples_split': 3, 'n_estimators': 110}

l Le modèle feat 3 semble être le plus performa

[☐] Le Rigde et le Gradboost semblent être plus performants

[☐] Obtention des meilleurs hypers paramètres

Sans Transformation log

CO2(Kg)

Avec Transformation log (unité de log)

	Feat2 R2	Feat3 R2	Feat2 RMSE	Feat3 RMSE
LR	0.412113	0.558361	456612.416065	383759.196905
ELN	0.446777	0.441745	456866.398562	459689.225697
RGE	0.412974	0.560478	456482.580715	389962.839408
LAS	0.412114	0.558361	456613.307885	383764.879183
KNN	0.400643	0.490832	455709.778319	437244.259198
GDB	0.483819	0.565752	453240.169923	409399.369013
SVR	-0.036735	-0.030956	613463.287058	611535.067033
RF	0.501577	0.576306	468713.940461	430099.554339

	feat2	feat3
LR	{'fit_intercept': True}	{'fit_intercept': True}
ELN	{'alpha': 0.3000000000000004}	{'alpha': 0.30000000000000004}
RGE	{'alpha': 1.0}	{'alpha': 0.4}
LAS	{'alpha': 1.0}	{'alpha': 1.0}
KNN	{'leaf_size': 10, 'n_neighbors': 3}	{'leaf_size': 10, 'n_neighbors': 4}
GDB	{'learning_rate': 0.04, 'n_estimators': 130}	{'learning_rate': 0.02, 'n_estimators': 190}
SVR	{'C': 1.4000000000000001, 'kernel': 'linear'}	{'C': 1.4000000000000001, 'kernel': 'poly'}
RF	{'min_samples_split': 3, 'n_estimators': 10}	{'min_samples_split': 3, 'n_estimators': 10}

	Feat2 R2	Feat3 R2	Feat2 RMSE	Feat3 RMSE
LR	0.595523	0.595468	0.915698	0.915771
ELN	0.579350	0.579548	0.933888	0.933563
RGE	0.595738	0.596815	0.915452	0.914219
LAS	0.558495	0.561149	0.956956	0.954002
KNN	0.327284	0.571652	1.182054	0.942185
GDB	0.734114	0.677478	0.742688	0.817607
SVR	0.575218	0.620608	0.938818	0.886299
RF	0.685142	0.656817	0.808176	0.843537

	feat2	feat3
LR	{'fit_intercept': True}	{'fit_intercept': True}
ELN	{'alpha': 0.1}	{'alpha': 0.1}
RGE	{'alpha': 1.0}	{'alpha': 1.0}
LAS	{'alpha': 0.1}	{'alpha': 0.1}
KNN	{'leaf_size': 10, 'n_neighbors': 4}	{'leaf_size': 10, 'n_neighbors': 8}
GDB	{'learning_rate': 0.09999999999999999, 'n_esti	{'learning_rate': 0.12, 'n_estimators': 40}
SVR	{'C': 0.1, 'kernel': 'linear'}	{'C': 1.400000000000001, 'kernel': 'rbf'}
RF	{'min_samples_split': 3, 'n_estimators': 120}	{'min_samples_split': 3, 'n_estimators': 110

Le modèle feat 3 semble être le plus performa

[☐] Le Rigde et le Gradboost semblent être plus performants

[☐] Obtention des meilleurs hypers paramètres

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn

Sélection du featuring 3

Mise en place d'une validation croisée répétée (KFoldRepeated)

Bilan des résultats

Sélection meilleur modèle avec et sans transformation log

4 Validation des résultats

> SiteEnergyUse (Kbtu)

> > CO2(kg)

- ☐ Paramétrage KFR (split = 2, n_repeats = 200)
- ☐ Mise en place des meilleurs hypers paramètres
- ☐ Entrainement et récupération des métriques (R2 et RMSE)

- ☐ Lineplot
- □ Boxplot
- □ Scatterplot

2023 Armand FAUGERE

24

Anticipez les besoins en consommation de bâtiments

4) Choix de l'algorithme

5) Interprétation

CO2(Kg)

☐ Les 3 variables importantes sont :

- LargestPropertyUseTypeGFA,
- LargestPropertyUseType_Hospital (General Medical & Surgical),
- LargestPropertyUseType Data Center

$\hfill \square$ Les 3 variables importantes sont :

- LargestPropertyUseTypeGFA,
- ELEC/Energie_tot
- NumberofBuildings

5) Interprétation

SiteEnergyUSE(Kbtu)

□ 3 variables font augmenter plus fortement le niveau de consommation

- 3 variables font augmenter plus fortement le niveau de consommation :
- 2 liées à la surface
- 1 à l'énergie utilisée
- ☐ D'autres variables font baisser le niveau de consommation

6) Conclusion

But:

→ Créer un système de prédiction des émissions de CO2 et de consommation totale d'énergie des bâtimentss non destinés à l'habitation de la ville de Seattle en se basant sur les données structurelles des bâtiments.

Objectifs:

- -Traiter et explorer le jeu de donnée
- Réaliser des modélisations prédictives
- Evaluer les modèles
- Se passer des relevés de consommation annuels et futurs
- Eviter le Data leakage

- ☐ Mettre en place des plans d'optimisation de surface utiles (réduire les surfaces et conserver la valeur ajoutée)
- Mettre en place un plan d'actions pour les hôpitaux et les Datacenters (surveillance, aides pour rénovation et amélioration du matériel)

Recommandations:

- ☐ Pour certaines activités ciblées, encourager la rénovation des bâtiments
- ☐ Encourager la performance énergétique des équipements électriques

Merci

- Armand FAUGERE
- armand-faugere@live.fr

