# INF367A: Probabilistic machine learning

Lecture 7: Linear models

Pekka Parviainen

University of Bergen

18.2.2020



#### Outline

#### Linear regression

Maximum likelihood estimation Bayesian estimation

#### Logistic regression

Bayesian estimation Laplace approximation



# Linear regression (recap from INF264)

- ► Simple and widely studied models
- ► Often computationally convenient



Source: https://medium.com/pharos-production/machine-learning-linear-models-part-1-312757

### Regression

- ► Training data consist of n pairs of observations  $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)$  where  $\mathbf{x}_i \in \mathbb{R}^d$  is a d-dimensional feature vector (predictors, input variables, independent variables, covariates) and  $y_i \in \mathbb{R}$  is a response variable (label, output variable, dependent variable)
- Note that we will refer observations with a subscript, i.e.,  $\mathbf{x}_i$  and features with a superscript in parentheses. That is,  $x^{(j)}$  is the jth element of vector  $\mathbf{x}$
- $\triangleright$  Regression, we predict response values using a function f:

$$y_i = f(\mathbf{x}_i) + \epsilon_i,$$

where  $\epsilon_i$  is the error (or residual) for *i*th observations



### Multivariate linear regression

- ▶ Learn a linear function  $f : \mathbb{R}^d \to \mathbb{R}$  for arbitrary d
- Instead of a line, we have a hyperplane
- Data matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$  has n instances  $\mathbf{x}_i^T$  as it rows and  $\mathbf{y} \in \mathbb{R}^n$  has the corresponding labels  $y_i$
- **X** is often called the design matrix
- $lackbox{Weights are stored in } oldsymbol{w} \in \mathbb{R}^d$
- Useful trick:  $\mathbf{x}$  can automatically include a constant term,  $\mathbf{x} = (1, x^{(1)}, x^{(2)}, \dots, x^{(d)})^T$ , such that the intercept is automatically included:

$$\mathbf{w}^T \mathbf{x} = w^{(0)} + w^{(1)} x^{(1)} + \ldots + w^{(d)} x^{(d)}$$

Note that  $x^{(j)}$  denotes the jth feature



### Multivariate linear regression

We have

$$y_i = \mathbf{w}^T \mathbf{x}_i + \epsilon_i,$$

► Goal: choose weights **w** to minimize the sum of squared errors

$$\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
$$= ||\epsilon||_2^2$$



#### Multivariate linear regression

Setting gradient to zero and solving the equations, we get

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y},$$

where  $A^{-1}$  denotes a matrix inverse of matrix A ( $AA^{-1} = I$ ).

▶ If columns of X are linearly independent then the matrix X<sup>T</sup>X is of full rank and has an inverse



### Multivariate linear regression with regularization

- To reduce overfitting, one may want to penalize complexity
- ► For example, the objective function for linear regression with L2-regularizer can be written as

$$||(\mathbf{y} - \mathbf{w}^T \mathbf{X})||_2^2 + \lambda ||\mathbf{w}||_2^2$$

where hyperparameter  $\lambda \geq 0$  specifies the strength of regularization

Setting gradient to zero and solving the equations we get

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$





#### Likelihood

Likelihood is the probability of data given parameters

$$\ell(\mathbf{w}) = P(\mathbf{X} | \mathbf{w}),$$

where X is the data

Assuming that errors are independent and follow Gaussian distribution, that is,  $\epsilon_i \sim N(0, 1/\beta)$ , the likelihood of our linear model is

$$\ell(\mathbf{w}) = \prod_{i=1}^{n} N(\mathbf{y}_{i} - \mathbf{w}^{T} \mathbf{x}_{i} | 0, 1/\beta)$$
$$= \prod_{i=1}^{n} N(\mathbf{y}_{i} | \mathbf{w}^{T} \mathbf{x}_{i}, 1/\beta)$$





#### Maximum likelihood estimation

Maximizing likelihood, that is, finding  $\mathbf{w}$  that maximize  $\ell(\mathbf{w})$  is equivalent with maximizing log-likelihood

$$\begin{split} \ell\ell(\mathbf{w}) &= \log \ell(\mathbf{w}) \\ &= \sum_{i=1}^{n} \log N(\mathbf{y}_{i} - \mathbf{w}^{T} \mathbf{x}_{i} | 0, 1/\beta) \\ &= -\frac{1}{2} (\mathbf{y} - \mathbf{w}^{T} \mathbf{X})^{T} \Sigma^{-1} (\mathbf{y} - \mathbf{w}^{T} \mathbf{X}) + C, \end{split}$$

where  $\Sigma^{-1} = \beta \mathbf{I}$  and C is a constant

Maximum likelihood estimate is

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ell\ell(\mathbf{w}) = \arg\max_{\mathbf{w}} -(\mathbf{y} - \mathbf{w}^T \mathbf{X})^T (\mathbf{y} - \mathbf{w}^T \mathbf{X})$$



#### ML estimation

Solving the problem on the previous slide gives us

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

► The ML estimation with Gaussian likelihood is equivalent to minimizing the squared error

$$\mathbf{w}^* = \hat{\mathbf{w}}$$



# Bayesian estimation



#### Prior distribution

► We can place a Gaussian prior distribution on w:

$$P(\mathbf{w}|\alpha) = N(\mathbf{w}|\nu, \alpha^{-1}\mathbf{I})$$

$$= \prod_{i=1}^{d} N(w_i|\nu_i, \alpha^{-1}) = \left(\frac{\alpha}{2\pi}\right)^{\frac{d}{2}} e^{-\frac{\alpha}{2}\sum_i (w_i - \nu_i)^2}$$

- ► Typically,  $\nu = \mathbf{0}$ . Let use denote the hyperparameters by  $\Gamma = (\alpha, \beta, \nu)$
- Posterior

$$\log P(\mathbf{w} | \Gamma, \mathbf{X}) = -\frac{\beta}{2} \sum_{i=1}^{n} \left[ y_i - \mathbf{w}^T \mathbf{x}_i \right]^2 - \frac{\alpha}{2} (\mathbf{w} - \nu)^T (\mathbf{w} - \nu) + \text{const}$$



#### Posterior distribution

Posterior distribution is obtained by completing the square (left as an exercise):

$$P(\mathbf{w} | \Gamma, \mathbf{X}) = N(\mathbf{w} | \mathbf{m}, \mathbf{S})$$

where

$$\mathbf{S} = \left(\beta \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} + \alpha \mathbf{I}\right)^{-1}, \quad \mathbf{m} = \mathbf{S}(\beta \sum_{i=1}^{n} y_{i} \mathbf{x}_{i} + \alpha \nu)$$



### Predictive posterior distribution

- Typically, the goal is to predict y given x
- ► Mean prediction:

$$\widetilde{y} = \int \mathbf{w}^T \mathbf{x} \times P(\mathbf{w} | \Gamma, \mathbf{X}) d\mathbf{w} = \mathbf{m}^T \mathbf{x}$$

Posterior predictive distribution:

$$P(y \mid \mathbf{x}, \Gamma, \mathbf{X}) = \int N(y \mid \mathbf{w}^T \mathbf{x}, \beta^{-1}) P(\mathbf{w} \mid \Gamma, \mathbf{X}) d\mathbf{w}$$
$$= \int N(y \mid \mathbf{w}^T \mathbf{x}, \beta^{-1}) N(\mathbf{w} \mid \mathbf{m}, \mathbf{S}) d\mathbf{w}$$
$$= N(y \mid \mathbf{m}^T \mathbf{x}, \beta^{-1} + \mathbf{x}^T \mathbf{S} \mathbf{x})$$





## Effect of hyperparamaters



### Hyperparameters



- $ightharpoonup \alpha$ : precision of the regression weights
  - determines the amount of regularization
  - lacktriangle large precision o small variance o weights are close to zero
- $\triangleright$   $\beta$ : *precision* of the noise



# Example, impact of hyperparameters (1/3)

- Setup: simulate  $y = \mathbf{w}_{true}^T \mathbf{x} + \epsilon$ , where  $\epsilon \sim N(0, \beta^{-1})$  and  $\beta = 1$
- $\blacktriangleright$  The goal is to investigate how hyperparameter  $\alpha$  affects the posterior distribution of the parameters  ${\bf w}$





# Example, impact of hyperparameters (2/3)

▶ Too large  $\alpha$ ,  $Var(y - \tilde{y}) = 1.54$  (Original Var(y) = 1.75)





▶ Too small  $\alpha$ ,  $Var(y - \widetilde{y}) = 2.48$ 









# Example, impact of hyperparameters (3/3)

- ▶ About good  $\alpha$ ,  $Var(y \widetilde{y}) = 1.46$
- ► A compromise between bias and variance









#### Determining hyperparameters

- Fully Bayesian approach: If you do not know some quantity, place a prior on it.
  - Specify  $P(\alpha)$  and  $P(\beta)$  and compute the posterior  $P(\mathbf{w}, \alpha, \beta | \mathbf{X})$
  - ► No-closed form solution ⇒ need to approximate
  - More later . . .
- Or use model selection
  - ► More next week . . .





# Logistic regression



### Linear models for classification (Recap from INF264)

- Using standard linear regression is problematic in predicting categorical responses
- ▶ We can use a variant called logistic regression instead



Source:

https://www.machinelearningplus.com/wp-content/uploads/2017/09/linear\_vs\_logistic\_regression.



#### Logistic regression

- Consider binary classification problem
  - ▶  $y_i \in \{0,1\}$
- Let p denote our prediction of the probability that  $P(y=1|\mathbf{x})$
- ► Logistic linear regression

$$\log \frac{p}{1-p} = \mathbf{w}^T \mathbf{x}$$

Or equivalently

$$P(y=1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x}),$$

where  $\sigma(\cdot)$  is the so-called logistic sigmoid

$$\sigma(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$





## Sigmoid function

$$\sigma(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$







### Logistic regression for classification

When used in classification, the decision boundary is defined by  $P(y=1|\mathbf{x})=P(y=0|\mathbf{x})=0.5$ . This corresponds to a hyperplane

$$\mathbf{w}^T\mathbf{x} = 0$$

Classification rule:

$$\begin{aligned} \mathbf{w}^T \mathbf{x} &> 0 &\rightarrow & y = 1 \\ \mathbf{w}^T \mathbf{x} &< 0 &\rightarrow & y = 0 \end{aligned}$$





#### Learning parameters

► Conditional likelihood of data **y** given **X** is

$$P(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{i=1}^{n} P(y_i = 1|\mathbf{w}, \mathbf{x}_i)^{y_i} (1 - P(y_i = 1|\mathbf{w}, \mathbf{x}_i))^{1-y_i}$$
$$= \prod_{i=1}^{n} \sigma(\mathbf{w}^T \mathbf{x}_i)^{y_i} (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))^{1-y_i}$$

 Maximizing the likelihood is equivalent to maximizing the log-likelihood

$$\ell\ell(\mathbf{w}) = \sum_{i=1}^{n} \left( y_i \log \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i)) \right)$$

► Equivalent to minimizing logarithmic loss (log-loss)

$$L(\mathbf{w}) = -\sum_{i=1}^{n} \left( y_i \log \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}_i)) \right)$$

# Bayesian logistic regression



# Prior and posterior

Gaussian prior

$$P(\mathbf{w} \mid \alpha) = N_d(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}) = \alpha^{\frac{d}{2}} (2\pi)^{-\frac{d}{2}} e^{-\frac{\alpha}{2} \mathbf{w}^T \mathbf{w}}$$

where  $\alpha$  is the precision.

▶ Given  $D = \{(\mathbf{x}_i, c_i), i = 1, ..., n\}$  the posterior equals

$$P(\mathbf{w} | \alpha, D) = \frac{P(D | \mathbf{w}, \alpha) P(\mathbf{w} | \alpha)}{P(D | \alpha)}$$
$$= \frac{1}{P(D | \alpha)} P(\mathbf{w} | \alpha) \prod_{i=1}^{n} P(c_i | \mathbf{x}_i, \mathbf{w})$$

(not of standard form, Laplace approximation is feasible to compute).





#### Laplace approximation

▶ Use a Gaussian distribution to approximate the true posterior





### Taylor approximation

A function f(x) can be approximated in the neighborhood of point a using the following polynomial:

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$$



#### Function of several variables

▶ Gradient: if  $f \equiv f(x_1, ..., x_n)$ 

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Hessian matrix (matrix of second partial derivatives):

$$H_f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$





### Laplace approximation to the posterior (1/2)

Approximate the true posterior  $P(\mathbf{w} | D)$  using a Gaussian distribution:

$$P(\mathbf{w} | D) \approx C \cdot e^{-\tilde{E}(\mathbf{w})}$$

where  $\tilde{E}(\mathbf{w})$  is a quadratic polynomial in  $\mathbf{w}$ 

- ▶ Suppose  $E(\mathbf{w}) = -\log P(\mathbf{w} | D)$  (the negative log-posterior)
- Let  $\bar{\mathbf{w}} = \arg \max_{\mathbf{w}} P(\mathbf{w} | D)$  be the mode of the posterior distribution
- Approximate  $E(\mathbf{w})$  in the neighborhood of the mode using the Taylor approximation:

$$\tilde{E}(\mathbf{w}) = E(\bar{\mathbf{w}}) + \frac{1}{2}(\mathbf{w} - \bar{\mathbf{w}})^T H_{\bar{\mathbf{w}}}(\mathbf{w} - \bar{\mathbf{w}})$$





# Laplace approximation to the posterior (2/2)

ightharpoonup We can rewrite  $\tilde{E}(\mathbf{w})$  as follows

$$\tilde{E}(\mathbf{w}) = \frac{1}{2}(\mathbf{w} - \mu)^T \Sigma^{-1}(\mathbf{w} - \mu) + C,$$

where 
$$\mu = \bar{\mathbf{w}}$$
 and  $\Sigma = H_{\bar{\mathbf{w}}}^{-1}$ 

▶ We observe that we are dealing with a Gaussian distribution





### Laplace approximation in practice

#### In practice:

1. Find the minimum of  $E(\mathbf{w})$  (mode of the posterior) by numerical optimization, e.g., Newtons method:

$$\mathbf{w}^{new} = \mathbf{w} - H_w^{-1} \nabla E$$

- 2. When converged, compute the Hessian  $H_{\bar{\mathbf{w}}}$  of the  $E(\mathbf{w})$  at  $\bar{\mathbf{w}}$
- 3. The posterior approximation is

$$q(\mathbf{w} | \alpha, D) = N(\mathbf{w} | \mathbf{m}, \mathbf{S}), \quad \mathbf{m} = \bar{\mathbf{w}}, \quad \mathbf{S} = H_{\bar{\mathbf{w}}}^{-1}.$$





### Laplace approximation for logistic regression

Negative log-posterior:

$$E(\mathbf{w}) = \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \log \sigma(\mathbf{w}^T \mathbf{h}_i),$$

where  $\mathbf{h}_i = (2y_i - 1)\mathbf{x}_i$ 

► Gradient:

$$\nabla E = \alpha \mathbf{w} - \sum_{i=1}^{n} (1 - \sigma_i) \mathbf{h}_i,$$

where  $\sigma_i = \sigma(\mathbf{w}^T \mathbf{h}_i)$ 

Hessian:

$$\mathbf{H} = \alpha \mathbf{I} + \sum_{i=1}^{n} \sigma_i (1 - \sigma_i) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$$

Note that  $\mathbf{x}_i \mathbf{x}_i^T$  is an outer product resulting in a  $d \times d$  matrix



#### When not to use Laplace approximation?

- ► Laplace approximation assumes a Gaussian distribution
- Gives a good approximation when the posterior is "nearly"
   Gaussian
- Can be terrible when the posterior is "far" from being Gaussian
  - ▶ When the posterior is skewed
  - ▶ When the posterior is multimodal



# Further readings

▶ Bishop: 3.1, 3.3, 4.5

