Radici, esponenziali e logaritmi #Analisi1

Radici (reali) = "inversa della potenza"

Teorema: sia $y \in R$, y > 0, $n \in N \setminus \{0\}$

Allora
$$\exists ! x \in R \text{ t.c. } x \ge 0 \text{ e } x^n = y$$

(Segue dal fatto che la funzione $f:[0,\infty)\to [0,\infty)$, $f(x)=x^n$ è monotona, strettamente crescente, continua,

$$con f(0) = 0 e Lim_{x->\infty} f(x) = +\infty$$

Definizione: per definizione il numero reale x siffatto si chiama radice n-

esima (reale) di y,
$$x = y^{1/n} = \sqrt{y}$$

Osservazione: $\sqrt{2}$ 4 = 2 giusto $\sqrt{2}$ 4 ±2 sbagliato!

Osservazione:
$$\sqrt[2]{a^2} = |a|$$
 $\forall a \in \mathbb{R}$

$$\label{eq:continuous} \begin{split} & ^{n} \sqrt{y} \geq 0 & \forall y \geq 0, \ \forall n \in N, \ n \geq 1 \\ & ^{n} \sqrt{a}^{n} & \forall a \geq 0, \ \forall n \in N, \ n \geq 1 \end{split}$$

Esponenziali:

Definizione: ∀a > 0, ∀m,n ∈N, n≠0

$$a^{m} = a*...*a$$
 } m-volte m \neq 0

$$a^0 = 1$$

$$a^{1/n} = n \sqrt{a}$$

$$a^{m/n} = (a^m)^{1/n}$$

Questo definisce a^r , $\forall a > 0$, $\forall r \in R$ con $r \ge 0$

Definizione: ∀a > 0

$$a^{-1} = 1/a \text{ m,n} \in N \text{ con n} \neq 0$$

$$a^{-m} = 1/a*...*1/a$$
 } m-volte m $\neq 0$

$$a^{-1/n} = 1/a^{1/n} = 1/n \sqrt{a}$$

$$a^{-m/n} = \sqrt{a^{-m}} = \sqrt{1/a^m}$$

Questo definisce a^r , $\forall a > 0$, $\forall r \in Q$

Come definire a^b , a > 0, $b \in R$

$$b \in R => b = \pm b_0, b_1 b_2 ... b_k$$

$$b_0 \in \mathbb{N}, b_k \in \{0...9\}, k \in \mathbb{N}, k \ge 1$$

Costruiamo una sequenza di numeri (successione): $a^{\pm b}_{0}$; $a^{\pm b}_{0}$;

Poiché $\forall k \in \mathbb{N}$ il numero $\pm b_0$, b_1b_2 ... b_k è razionale, tutti i numeri della successione sono potenze con esponente in Q con a > 0, che possiamo calcolare con la definizione precedente

Idea:
$$a^b = Lim_{k-\infty}$$
 $a^{\pm b_0, b_1 \dots b_k}$ più precisamente:

- a > 1, $b \ge 0$ oppure 0 < a < 1, $b \le 0$ allora:

la successione è crescente: a b₀, b₁...b_k diventa sempre più grande all'aumentare di k ed è limitato superiormente.

definiamo
$$a^b = \sup \{ a^{b_0}, a^{b_0}, a^{b_0}, a^{b_0}, a^{b_0}, a^{b_0}, a^{b_0}, a^{b_0} \} -> a^b \in \mathbb{R}$$

- $a > 1, b \le 0$ oppure $0 < a < 1, b \ge 0$ allora:

la successione è decrescente: a diventa sempre più piccolo all'aumentare di k ed è limitato inferiormente.

definiamo
$$a^b = \inf \{ a^{\pm b}0, b^{\pm b}0, b^{\pm b}1, a^{\pm b}0, b^{\pm b}1, b^{\pm b}\} -> a^b \in \mathbb{R}$$

$$-A = 1, b \in \mathbb{R} \text{ allora } a^{\pm b}0, b^{\pm b}1, b^{\pm b}k = 1 \ \forall k \in \mathbb{N}$$

$$\text{quindi } a^b = 1 \text{ se } a = 1, \ \forall b \in \mathbb{R}$$

Osservazione: a^b definito $\forall a > 0$, $\forall b \in R e a^b > 0$

Osservazione: a^b può essere definito per $a \le 0$ solo per alcuni valori di $b \in \mathbb{R}$

- Per a = 0,
$$0^b = 0$$
, $\forall b > 0$

- Per a < 0, b = $m/n \in Q$ con m,n relativamente primi (MCD = 1), ed n dispari

$$a^{1/n} = -|a|^{1/n} = -^n \sqrt{|a|}$$

 $a^{-1/n} = -1/(|a|^{1/n}) = -1/(^n \sqrt{|a|})$
 $a^{\pm m/n} = (a^m)^{\pm 1/n}$

Proprietà delle potenze: siano $a,b,c,d \in R$ e a,b>0

$$- E_1 a^0 = 1 \forall a \neq 0; 1^c = 1 \forall c$$

$$-E_{2}$$
 $a^{C} > 0 \ \forall c; \ a^{C} \le 1 \text{ se } a \le 1 \text{ e } c > 0$

$$- E_3 a^{c+d} = a^c * a^d$$

$$- E_{\Lambda} (ab)^{C} = a^{C} * b^{C}$$

$$- E_5 (a^b)^c = a^{bc}$$

$$-E_6$$
 $c < d \Rightarrow a^c \leq a^d \text{ se a} \leq 1$

$$- E_7 \quad 0 < a \le b => a^C \le b^C \ \forall c > 0$$

Teorema: dati y, $a \in \mathbb{R}$, con y > 0, a > 0 e a $\neq 1$

allora $\exists ! x \in R \text{ t.c. } a^X = y$

Definizione: dati y, a \in R, con y > 0, a > 0 e a \neq 1

definiamo $x = log_a y$ l'unica soluzione

Osservazione:
$$a \log_a y = y$$

Proprietà dei logaritmi: siano x,y,a \in R, con x > 0, y > 0, a > 0 e a \neq 1

$$-L_1 \log_a xy = \log_a x + \log_a y$$

$$-L_2 \log_a x/y = \log_a x - \log_a y$$

$$-L_3 \log_a x^\beta = \beta^* \log_a x \quad \forall \beta \in \mathbb{R}$$

$$- L_A = \log_{a} x = 1/(\log_{x} a) = -\log_{1/a} x \quad (x \neq 1)$$

-
$$L_4$$
 $log_a x = 1/(log_x a) = -log_{1/a} x$ $(x \ne 1)$
- L_5 $log_b x = (log_a x)/(log_a b)$ $\forall b > 0, b \ne 1$