Wie funktioniert TPM / BitLocker

Einführung

- Thema: Verschlüsselung mit TPM und BitLocker
- Überblick:
 - Was ist Verschlüsselung?
 - Das Trusted Platform Module (TPM)
 - BitLocker-Funktionsweise
 - Vorteile und Sicherheitsaspekte

https://www.youtube.com/watch?v=L1sz6cm47Os

Grundlagen der Verschlüsselung

- Definition: Umwandlung von Daten in unlesbaren Code, der nur mit dem richtigen Schlüssel wieder lesbar wird
- Zweck: Schutz sensibler Daten vor unbefugtem Zugriff
- Arten der Verschlüsselung:
 - Symmetrische Verschlüsselung (gleicher Schlüssel)
 - Asymmetrische Verschlüsselung (öffentlicher/privater Schlüssel)
- Herausforderung: Sichere Speicherung und Verwaltung von Schlüsseln

Was ist TPM (Trusted Platform Module)?

- Definition: Hardware-Sicherheitschip auf dem Motherboard
- Funktionen:
 - Sichere Speicherung von kryptografischen Schlüsseln
 - Hardware-basierte Schlüsselgenerierung
 - Integritätsmessung des Systems
- Versionen: TPM 1.2, TPM 2.0 (neuer Standard)
- Merkmale: Manipulationssicher, vom Betriebssystem isoliert

BitLocker - Überblick

- Definition: Microsoft-Technologie zur Festplattenverschlüsselung
- Integriert in: Windows 10/11 Pro, Enterprise und Education
- Hauptzweck: Schutz vor Offline-Angriffen und Datendiebstahl
- Verschlüsselung: AES mit 128-Bit oder 256-Bit Schlüssellänge

Zusammenspiel von BitLocker und TPM

• Funktionsweise:

- TPM speichert den BitLocker-Schlüssel sicher
- System-Integritätsprüfung bei jedem Start
- Automatische Entsperrung bei normalem Systemzustand

• Vorteile:

- Transparenz für Benutzer
- Schlüssel bleibt vor Software-Angriffen geschützt
- Erkennung von Boot-Sektor-Manipulationen

Aktivierung von BitLocker

- Voraussetzungen:
 - Kompatibles Windows-System
 - TPM 1.2 oder 2.0
 - UEFI mit Secure Boot (empfohlen)
- Aktivierungsprozess:
 - Systemsteuerung oder PowerShell
 - Wahl der Authentifizierungsmethode
 - Erstellung eines Wiederherstellungsschlüssels

Folie 7: BitLocker-Authentifizierungsmethoden

- TPM-only: Automatische Entsperrung (wenn System unverändert)
- TPM + PIN: Zusätzlicher Schutz durch Benutzer-PIN
- TPM + USB-Schlüssel: Physischer Schlüssel erforderlich
- TPM + PIN + USB-Schlüssel: Mehrstufige Authentifizierung
- Ohne TPM: Kennwort oder USB-Schlüssel (weniger sicher)

Sicherheitsaspekte

- Schutz vor:
 - Offline-Angriffen auf die Festplatte
 - Cold Boot-Angriffen (teilweise)
 - Diebstahl von physischen Geräten
- Einschränkungen:
 - Kein Schutz gegen Schadsoftware im laufenden System
 - Mögliche Angriffe auf TPM (selten, aber möglich)
- Best Practices: Regelmäßige Updates, starke PINs

Wiederherstellung und Management

- Wiederherstellungsoptionen:
 - Wiederherstellungsschlüssel (48-stellige Nummer)
 - Microsoft-Konto oder Active Directory-Sicherung
- Management in Unternehmen:
 - Group Policy-EinstellungenMicrosoft
 - BitLocker Administration and Monitoring (MBAM)
 - Zentralisierte Schlüsselverwaltung

Zusammenfassung

- TPM: Hardware-Sicherheitsbasis für Schlüsselspeicherung
- BitLocker: Vollständige Festplattenverschlüsselung in Windows
- Zusammenspiel: Sicherer, benutzerfreundlicher Datenschutz
- Vorteile: Transparente Sicherheit bei minimaler Benutzerinteraktion
- Fazit: Wesentlicher Bestandteil moderner Datensicherheit