CHAPTER 11

Managing Bond Portfolios

Managing Fixed Income Securities: Basic Strategies

Active strategy

- has as its goal to secure superior returns from the fixed-income portfolio
- Trade on interest rate predictions
- Trade on market inefficiencies

Passive strategy

- takes market prices of securities as set fairly.
- Act to maintain appropriate risk-return balance
- Immunization strategy that attempts to insulate **Pf** from interest rate risk.

Bond Pricing Relationships

- I. Inverse relationship between price and yield
- An increase in a bond's yield to maturity results in a smaller price decline than the gain associated with a decrease in yield
- Long-term bonds tend to be more price sensitive than short-term bonds
- As maturity increases, price sensitivity increases at a decreasing rate
- 5. Price sensitivity is inversely related to a bond's coupon rate
- 6. Price sensitivity is inversely related to the yield to maturity at which the bond is selling

Figure 11.1 Change in Bond Price as a Function of YTM

Duration

- ▶ A measure of the effective maturity of a bond
 - → <u>Duration measures the period of time required to recover</u> the initial investment on the loan.
- ▶ The weighted average of the times until each payment is received, with the weights proportional to the present value of the payment
- Duration is shorter than maturity for all bonds except zero coupon bonds
- Duration is equal to maturity for zero coupon bonds

Example of Duration

- ▶ Bond w/ one-year 15% annual interest rate.
- Pay half of \$100 at the end of six months.

$$CF_{1/2}$$
= \$57.5 (\$100×0.075) $PV_{1/2}$ = \$57.5/(1.075) = \$53.49 CF_{1} = \$53.75 (\$50×0.075) PV_{1} = \$53.75/(1.075) = \$46.51 $CF_{1/2}$ + CF_{1} = \$111.25 $PV_{1/2}$ + PV_{1} = \$100.00

< Promised cash flows on the one year <u>loan</u> >

< PV of the cash flows from the <u>loan</u> >

$$PV_{1/2} = \$53.49$$
 $CF_{1/2} = \$57.5$ $CF_{1/2} = \$57.5$ $CF_{1} = \$53.75$ $CF_{1} = \$53.75$ $CF_{1/2} = \$57.5$

Example of Duration (continued)

- $X_{1/2}$ (= HPR of PV_{1/2}) + X_1 (=HPR of PV₁) = I where, X is weight
- Dur = $PV_{1/2}(1/2) + PV_1(1) = 0.5349(1/2) + 0.4651(1)$ = <u>0.7326 years</u>
- > Initial investment is recovered after 0.7326 years. After that time this investor earns profits.

Figure 10.2 Cash Flows of 8-yr Bond with 9% annual coupon and 10% YTM

Duration: Calculation

$$w_{t} = \frac{CF_{t}}{(1+r)^{t}}$$
Bond price

$$D = \sum_{t=1}^{T} t \times w_t$$

 CF_t = Cash flow for period t

Duration Calculation

8% (annual) Bond	Time Year	Payment	PV of CF (10%)	Weight	Years× Weight
I	I	80	72.727	0.0765	0.0765
2	2	80	66.116	0.0690	0.1392
3	3	1,080	811.420	0.8539	2.5617
Sum			950.263	1.00	2.7774
8% (semi-) Bond	Time Year	Payment	PV of CF (10%)	Weight(W)	W × years
1	0.5	40	36.36364	0.049228	0.024614
2		40	33.05785	0.044752	0.044752
3	1.5	40	30.05259	0.040684	0.061026
4	2	40	27.32054	0.036985	0.073971
5	2.5	40	24.83685	0.033623	0.084058
6	3	1040	587.0529	0.794728	2.384183

What determines Duration?

- ▶ **Rule 1**: The duration of zero-coupon bond equals its time to maturity.
- Rule 2: Holding time to maturity and yield to maturity constant, a bond's duration and interest rate sensitivity are higher when the coupon rate is lower.
- ▶ <u>Rule 3</u>: Holding the coupon rate constant, a bond's duration and interest rate sensitivity generally increase w/ time to maturity. Duration always increases w/ maturity for bonds selling at par or at a premium to par.
- Rule 4: Holding other factors constant, the duration and interest rate sensitivity of a coupon bond are higher when the bond's yield to maturity is lower.
- ▶ **Rule 5**: The duration of a level perpetuity is (I+r)/r

Figure 11.2 Duration as a Function of Maturity

Example of Duration

- Face value = \$100, Maturity = 2 years
- YTM = 5%, Coupon rate = 50%
- \triangleright Bond price = $(50/1.05)+(150/1.05^2)=183.67$

$$Dur = \sum_{t=1}^{n} (t) \times \left(\frac{CF(t)}{/(1+r)^{t}} \right) = (1) \times \left(\frac{CF(1)}{/(1+r)^{1}} \right) + (2) \times \left(\frac{CF(2)}{/(1+r)^{2}} \right)$$

$$= (1) \times \frac{\frac{50}{(1+0.05)}}{183.67} + (2) \times \frac{\frac{150}{(1+0.05)^2}}{183.67} = 0.257 + 2 \times 0.741 = 1.741$$
 years

Duration/Price Relationship

Price change is proportional to duration and not to maturity

$$\frac{\Delta P}{P} = -D \times \left(\frac{\Delta r}{(1+r)}\right) = \frac{-D}{(1+r)} \times \Delta r = -MD \times \Delta r$$

where, MD= modified duration

Uses of Duration

- Summary measure of length or effective maturity for a portfolio
- Immunization of interest rate risk (passive management)
 - Net worth immunization
 - Target date immunization
- Measure of price sensitivity for changes in interest rate

Figure 11.3 Growth of Invested Funds

Figure 11.4 Immunization

Pricing Error from Convexity

Correction for Convexity

Modify the pricing equation:

$$\frac{\Delta P}{P} = -D \times \Delta r + \frac{1}{2} convexity \times (\Delta r)^{2}$$

Convexity is Equal to:

Scaling factor \times [capital loss from 1bp rise in yield + capital gain from 1bp fall in yield]

$$Convexity = \frac{1}{P \times (1+r)^2} \sum_{t=1}^{n} \left[\frac{CF_t}{(1+r)^t} (t^2 + t) \right]$$

Where, CF_t is the cash flow (interest and/or principal) at time t.

Example 11.4

- ▶ 30 year maturity, 8% coupon, 8% of initial YTM. This bond sells at par value, \$1,000.
- ▶ Modified Duration = 11.26 years, Convexity = 212.4
- ▶ If YTM 8% → 10%, bond price will fall to \$811.46 (18.85% decline)
- Prediction of price change is

$$\frac{\Delta P}{P} = -MD \times \Delta r = -11.26 \times 0.02 = -0.2252(-22.52\%)$$

Use duration-with-convexity is

$$\frac{\Delta P}{P} = -D \times \Delta r + \frac{1}{2} convexity \times (\Delta r)^{2}$$

$$= -11.26 \times 0.02 + \frac{1}{2} \times 212.4 \times (0.02)^{2} = -0.1827(-18.27\%)$$

Calculation of CX

Example: convexity of 8% coupon, 8% yield, six-year maturity Eurobond priced at \$1,000.

$$CX = 10^{8} \left[\frac{999.53785 - 1,000}{1,000} + \frac{1,000.46243 - 1,000}{1,000} \right]$$
$$= 10^{8} \left[0.00000028 \right] = 28$$

▶ Price change from 2% increase in interest rate $(8 \rightarrow 10\%)$

$$\frac{\Delta P}{P} = -MD \times \Delta r + \frac{1}{2} \times Convexity \times (\Delta r)^{2}$$

$$= -\left[\frac{4.993}{1.08}\right] \times (0.02) + \frac{1}{2}(28)(0.02)^{2}$$

$$= -0.0925 + 0.0056 = -0.0869(-8.69\%)$$

→ Simple duration model predicts 9.25% drop on bond price

Figure 11.5 Bond Price Convexity

Figure 11.6 Convexity of Two Bonds

Example of Convexity

	2%	10%	18%
1	9.803922	9.090909	8.474576
2	9.611688	8.264463	7.181844
3	103.6555	82.64463	66.9494
total	123.0711	100	82.60582

Active Bond Management: Swapping Strategies

► Substitution swap

Exchange of one bond for a bond with similar attributes but more attractively price.

Intermarket swap

Switching from one segment of the bond market to another.

Rate anticipation swap

A switch made in response to forecasts of interest rate changes.

Pure yield pickup

Moving to higher yield bonds, usually with longer maturities

▶ Tax swap

Swapping two similar bonds to receive a tax benefit.

Interest Rate Swaps

Interest rate swap basic characteristics

- One party pays fixed and receives variable
- Other party pays variable and receives fixed
- Principal is notional

Growth in market

- Started in 1980
- Estimated over \$60 trillion today

Hedging applications

Interest rate swap: structure

- Company B pay 7.05% of fixed rate, receive LIBOR
- Company A pay LIBOR, receive 6.95% of fixed rate
- Dealer make 0.1% return in every period.