

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : CE(PC)402 Environmental Engineering-I UPID : 004446

Time Allotted: 3 Hours Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A	Very	Short	Answer	Tvi	pe Q	uestion)
---------	------	-------	--------	-----	------	----------

1. An	swer	any ten of th	ie foll	owing	:													[1 x 10 = 10]
	(1)	The bacteri	a whi	ch sur	vive i	n the	absen	ice of	Oxyg	en, ar	e call	ed				. ,	* -	
	(II) Settling velocity of inorganic particles follow																	
	(#I)	A large whi	rling	mass	of air,	at the	e cent	re of	which	the l	parom	etric	press	ure is	low, is	s knaw	n as	<u> </u>
	(N)	Municipal S	olid V	Vaste	(MSV	V) doe	s not	includ	des									
	(V)	The earth's	wate	r circ	lator	y syste	em is	know	n as _				_					
	(VI)	Sanitary lar	ndfill s	ite sh	ould i	nclude	e								_			
	(V#)															water	is	
	{VIII}	The 100% r	emov	al line	for T	ype-2	sedin	nenta	tion is	s						_to tir	ne axis.	
	(1X)	In double m					size (of a d	istribu	ition i	eserv	oir is	equal	to m	aximu	m		
	(X)	Per capita v					erage	d valu	ie ove	er		Years	,					
	(XI)	Peak Dema Demand by					Dema	nd of	the M	taxim	um D	ay) is	great	er th	an the	Annual	l Averag	ge Hourly
	(XII)	2					e higl	h diss	olved	solid	conce	ntrati	on.					
						Gro	oup-B	(Sho	rt An	swer	Type	Ques	tion)					
							Answe	er any	three	e of th	ne foll	owing	ζ:					[5 x 3 = 15 }
2.		mate the foll ximum Daily	_	-	_						-				-	aily De	mand,	[5]
3.	Der	ive the expre	ession	s for f	inding	out t	he yie	ld of	an inf	iltrati	on ga	llery.						[S]
4.											[5]							
5.	fron leng	m ³ /dy of wa n sub-surface th of the gal uence may be	e wate lery it	er tab f the o	le. Th drawd	e co-e own ii	fficie n the	nt of p	oerme	abilit	y of th	ne soi	l aqui	fer is	100m/	/day. Fi	ind the	[5]
6.	thei	down the sta r undesirable nganeese, To	pres	ence:	Cotou	ır, Tas	te, O	dour,	pΗ, Τι	ırbidi:	ty, TD:	s, Chle	ori d e,	Flou	ride, N	itrate,	Iron,	
						Gr	oup-((Lon	g Ans	wer 1	Гуре (Quest	ion)					
							Answe	er any	three	e of th	ne foll	owing	3:					$[15 \times 3 = 45]$
ン		Derive the incremental											ometr	ic in	crease	meth	nod, an	d [5]
		The population fincrease met	or th	e yea	r 201	6. Ad	lopt a	rithm										
		Year	92	93	94	95	96	97	98	99	00	01	02	03	04			
		Population (Thousand)	1	111	113	116	118	119	123	125	126	128	131	133	136			
8.	, .	Derive the e aquifer.	xpres	sions	for fi	nding	out t	ne yie	ld of	a wel	l in c	ase o	f a ste	ady	flow ir	an ur	nconfine	ed [5]
	(b)	A well penet 250 liters p																

1/2

homogeneous aquifer, estimate the discharge at 18 metres drawdown. The distance from the well where the drawdown influences are not appreciable may be taken to be equal for both the cases.

9. (a) Derive the logistic population growth equation as proposed by Verhulst.

- [5]
- (b) In two periods of each of 20 years, a city has grown from 30000 to 170000 and then to 300000 population. Determine (a) the saturation population, (b) The equation of the logistic curve, (c) the expected population after the next 20 years.
- [10]
- 10. (a) Derive the expressions for finding out the yield of a well in case of a steady flow in a confined aquifer.
- [5]
- (b) A pumping test was made in a medium sand and gravel to a depth of 15 m where a bed of clay was encountered. The normal level of ground water was at surface. Observation holes are located at distances 3m and 7.5m from the pumping well. At the discharge of 3.6 L/Sec from the pumping well, a steady state was attained in about 24 hours. The drawdown in the test wells were 1.65m and 0.36m respectively. Compute the coefficient of permeability of the soil.

[10]

11. (a) Write down the Carmen-Kozeny equation to determine the head loss through a sand filter bed with multiple-sand layers and explain each term.

[5]

(b) Water at 20°C (p = 998.2kg/m³, μ = 1.002 X 10⁻³ N.s/m²) is passed through a bed of uniform sand at a filtering velocity of 4.32m/h. The bed is 0.75m deep and is composed of non-uniform sand (specific gravity of 2.65) stratified so that the smallest particles are on top and the largest at the bottom. The shape factor is 0.85 and the porosity is 0.4. Determine the head loss through the bed. nakaut.com

[10]

The size distribution of	the granules is g	iven below:	https://www.m

Particle S	ize, mm	Mass Fraction in					
Passing	Retained	Size Range, X _{ij}					
	1.41	0.01					
1.41	0.84	0.11					
0.84	0.71	0.20					
0.71	0.60	0.32					
0.60	0.50	0.21					
0.50	0.42	0.13					
0.42		0.02					

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने प्राने पेपर्स भेजे और 10 रुपये पायें, Pavtm or Google Pav से