15 Tétel

Permutáció, inverziószám, determináns

Permutáció és inverziószám. Bástyaelhelyezés és permutáció kapcsolata, inverzióban álló bástyapárok. Determináns, kifejtési tag, felső háromszögmátrix determinánsa.

Def: Az f : A → B függvény bijekció, ha minden B-beli elem pontosan egy A-beli képeként áll elő.

Def permutáció: A σ : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ bijekciót n elem permutációjának nevezzük. Az ilyen permutációk halmaza S_n .

Def inverzió: A $\sigma \in$ Sn permutációban az {i, j} pár inverzióban áll, ha i és j nagyságviszonya fordított σ (i) és σ (j) nagyságviszonyához képest. A $\sigma \in$ Sn permutáció I(σ)-val jelölt inverziószáma a σ szerint inverzióban álló párok száma

Bástya elhelyezés

Az (e1,..., en) tetsz. sorrendjéhez tekintsük azt az n × n méretű mátrixot, aminek az oszlopai az egységvektorok a megadott sorrendben. Ekkor a mátrixbeli 1-esek bástyaelhelyezést alkotnak: minden sorban és minden oszlopban pontosan egy db 1-es áll.

Inverzióban van az (i,j) pár, ha ei és ei közül a bal oldaliban az 1-es lejjebb van.

Az (e_1, \ldots, e_n) egy sorrendjéhez tartozó σ permutáció inverziószáma megegyezik megfelelő bástyaelhelyezésben ÉK-DNy pozícióban álló bástyapárok számaval.

Def determináns: Az $A \in R$ n×n P négyzetes mátrix determinánsa det $A = |A| = \sigma \in Sn (-1)I(\sigma)$ Qn i=1 a σ (i),i, ahol ai,j az A mátrix i-edik sorának j-edik eleme.

Kifejtési tag: van a következő matrix:

a b c definíció szerinti kifejtési tagja: aei-ahf-bdi+bfg+cdh-ceg

def

ghi

Def főátló: Az A négyzetes mátrix főátlója az A mindazon elemei, amelyek sor- és oszlopindexe megegyezik.

Def felsőháromszög mátrix: Ha A főátlója alatt csak 0-k állnak, akkor A felső háromszögmátrix.

- (1) Minden LA négyzetes mátrix felső háromszögmátrix.
- (2) F.háromszögmátrix determinánsa a főátlóbeli elemei szorzata.