$2^{\underline{a}}$ Lista de Exercícios de Lógica Matemática - LMA

Gabarito

Professores: Jeferson L. r. s. e Kariston p.

Monitor: Miguel A. Nunes Joinville, 27 de maio de 2019

- 1. Na prova por demonstração direta, basta operar os argumentos para chegar na conclusão.
 - (a) $\vdash p \land q$
 - (1) $r \to t$
 - (2) $t \rightarrow \sim s$
 - (3) $(r \rightarrow \sim s) \rightarrow q$
 - (4) p
 - (5) $r \rightarrow \sim s$ SH 1,2
 - (6) q
- MP 5,3
- (7) $p \wedge q$
- **CONJ 4,6**
- (b) $\vdash \sim (p \lor q)$
 - $(1) \sim p \lor \sim s$
 - (2) $q \rightarrow \sim r$
 - (3) $t \to (r \land s)$
 - (4) t
 - (5) $r \wedge s$ MP 1,4
 - (6) r
- SIMP 5
- $(7) \sim q$
- MT 6,2
- (8) s
- SIMP 5
- $(9) \sim p$
- SD 8,1
- $(10) \sim p \wedge \sim q$ CONJ 7,9
- $(11) \sim (p \vee q)$ DM 10
- (c) $\vdash t$
 - (1) $q \rightarrow p$
 - $(2) t \vee s$
 - (3) $q \lor \sim s$
 - $(4) \sim (p \vee r)$
 - $\overline{(5)} \sim p \wedge \sim r$ DM 4
 - $(6) \sim p$
- SIMP 5
- $(7) \sim q$
- MT 6,1
- $(8) \sim s$
- SD 7,3
- (9) t
- SD 8,2

- (d) $\vdash p \to u$
 - (1) $p \lor q \to r$
 - (2) $s \rightarrow \sim r \land \sim t$
 - (3) $s \vee u$
 - $(4) s \rightarrow \sim (r \lor t)$
 - $(5) \sim s \rightarrow u$
 - $(6) \sim (p \vee q) \vee r$
 - $(7) \sim (p \vee q) \vee (r \vee t)$
 - (8) $(\sim p \land \sim q) \lor (r \lor t)$
 - $(9) (\sim p \vee (r \vee t)) \wedge (\sim q \vee (r \vee t))$
 - $(10) \sim p \vee (r \vee t)$
 - (11) $p \rightarrow r \vee t$
 - $(12) \sim (\sim (r \lor t)) \rightarrow \sim s$
 - $(12) \quad (\quad (\quad (\quad \lor \quad \lor))$
 - $(13) (r \lor t) \to \sim s$
 - $(14) p \to \sim s$
 - (15) $p \to u$

- DN 12
 - SH 11,13

DM 2 COND 3

AD 6

DM 7

CP 4

DIST 8

SIMP 9 COND 10

COND 1

SH 14,5

- (e) $\vdash \sim q \rightarrow t$
 - (1) $p \to q$
 - (2) $r \to t$
 - (3) $s \to r$
 - $(4) p \vee s$
 - (5) $\sim p \rightarrow s$ COND 4
 - (6) $\sim p \rightarrow r$ SH 5,3
 - $(7) \sim p \rightarrow t$ SH 6,2
 - $(8) \sim q \rightarrow \sim p$ CP 1
 - $(9) \sim q \rightarrow t$ SH 8,7
- (f) $\vdash r$
 - (1) $p \lor \sim q$
 - $(2) \sim p$
 - $(3) \sim (p \wedge r) \to q$
 - $\overline{(4)} \sim q$
 - (5) $\sim \sim (p \wedge r)$ MT 4,3
 - (6) $p \wedge r$
- DN 5

SD 2,1

- (7) r
- SIMP 6
- (g) $\vdash r$
 - $(1) \sim (p \vee q)$
 - $(2) \sim p \land \sim q \to r \land s$
 - $(3) s \rightarrow r$
 - $(4) \sim p \wedge \sim q$ **DM 1**
 - (5) $r \wedge s$
- MP 5,2
- (6) r
- SIMP 5

- (h) $\vdash s$
 - (1) $p \vee q$
 - (2) $q \rightarrow r$
 - $(3) \sim r \vee s$
 - $(4) \sim p$
 - (5) q SD 4,1
 - (6) r MP 5,2
 - (7) s SD 6,3
- (i) $\vdash \sim (s \land q)$
 - (1) $p \rightarrow q$
 - (2) $p \lor (\sim r \land \sim q)$
 - (3) $s \rightarrow \sim r$
 - $(4) \sim (p \wedge q)$
 - $(5) p \to (p \land q) \qquad \mathbf{ABS} \ \mathbf{1}$
 - $(6) \sim p$
- MT 4,3
- (7) $\sim \sim r \land \sim \sim q$ SD 6,2
- $(8) \sim r$ SIMP 7
- $(9) \sim s$
- MT 8,3
- $(10) \sim s \lor \sim q$
- AD9
- $(11) \sim (s \land q)$
- DM 10
- (j) $\vdash q \lor t$
 - (1) $p \rightarrow q$
 - $(2) \sim r \to (s \to t)$
 - (3) $r \lor (p \lor s)$
 - $(4) \sim r$
 - (5) $s \rightarrow t$
- MP 4,2
- (6) $p \vee s$
- SD 4,3
- $(7) \sim p \rightarrow s$
- COND 6
- $(8) \sim p \to t$
- SH 7,5
- $(9) \sim q \rightarrow \sim p$
- CP 1
- $(10) \sim q \rightarrow t$
- SH 9,8
- $(11) \sim q \lor t$
- COND 10
- (12) $q \vee t$
- DN 11

- $(k) \vdash t$
 - (1) $p \rightarrow q$
 - (2) $q \rightarrow r$
 - (3) $r \rightarrow s$
 - $(4) \sim s$
 - (5) $p \vee t$
 - $(6) \sim r$ MT 4,3
 - MT 6,2 $(7) \sim q$
 - $(8) \sim p$ MT 7,1
 - (9) tSD 8,5
- (1) $\vdash r$
 - (1) $p \to q$
 - $(2) q \rightarrow r$
 - (3) $p \vee s$
 - $(4) s \rightarrow t$
 - $(5) \sim t$
 - COND 3 $(6) \sim p \rightarrow s$
 - $(7) \sim s$
- MT 5,4
- $(8) \sim p$
- MT 7,6
- (9) p
- **DN** 8
- (10) q
- MP 9,1
- (11) r
- MP 10,2
- (m) $\vdash r \land (p \lor q)$
 - (1) $p \vee q$
 - (2) $q \rightarrow r$
 - (3) $p \to s$
 - $(4) \sim s$
 - MT 4,3 $\overline{(5) \sim p}$
 - (6) q
- SD 5,1
- (7) r
- MP 6,2
- (8) $r \wedge (p \vee q)$ CONJ 7,1
- (n) $\vdash \sim t$
 - (1) $p \wedge q$
 - (2) $p \rightarrow r$
 - (3) $r \wedge (s \rightarrow \sim t)$
 - (4) $q \rightarrow s$
 - $(5) s \rightarrow \sim t$ SIMP 3
 - SIMP 1 (6) q
 - (7) s
- MP 6,4
- $(8) \sim t$
- MP 7,3

- (o) $\vdash t$ (1) $p \wedge \sim q$ (2) $r \rightarrow q$ $(3) r \vee s$ (4) $p \lor s \to t$ $(5) \sim q$ SIMP 1 $(6) \sim r$ MT 2,5SD 6,3 (7) s(8) $s \vee p$ AD 7 ASSOC 8 (9) $p \vee s$ MP 9,4 (10) t
- 2. Na prova por demonstração condicional, o antecedente da conclusão (relembrando que para fazer uma prova por demonstração condicional a conclusão deve, obrigatoriamente, ser uma condicional) é tomado como argumento, e tenta-se provar o consequente por demonstração direta.
 - (a) $\vdash \sim t \rightarrow \sim r$ (1) $p \lor \sim q$ (2) q(3) $r \rightarrow \sim s$ (4) $p \to (\sim s \to t)$ por Dem. C $\vdash \sim r$ $(5) \sim t$ (6) pSD 2,1 MP 6,4 $(7) \sim s \rightarrow t$ $(8) \sim \sim s$ MT 5,7(9) s**DN** 8 $(10) \sim r$ MT 9,3 (b) $\vdash (p \land q) \rightarrow (s \land t)$ (1) $r \vee s$ $(2) \sim t \rightarrow \sim p$ (3) $r \rightarrow \sim q$ por Dem. $C \vdash (s \land t)$ $(4) (p \wedge q)$ (5) qSIMP 4 $(6) \sim r$ MT 5,3 (7) s $SD_{6,1}$ (8) pSIMP 1 MT 2,8 $(9) \sim \sim t$ (10) tDN 9 CONJ 7,10 (11) $s \wedge t$

(c)
$$\vdash \sim (p \lor r) \to t$$

- (1) $q \to p$
- $(2) t \vee s$
- (3) $q \lor \sim s$
- $(4) \sim (p \vee r)$ por Dem. C t
- $(5) \sim p \wedge \sim r$ **DM 4**
- (6) $\sim p$ SIMP 5
- (7) $\sim q$ MT 1,6
- (8) $\sim s$ SD 7,3
- (9) t SD 8,2
- (d) $\vdash p \rightarrow q$
 - (1) $(p \rightarrow q) \lor r$
 - $(2) (s \lor t) \rightarrow \sim r$
 - (3) $s \lor (t \land u)$
 - (4) p por Dem. $C \vdash q$
 - (5) $(s \lor t) \land (s \lor u)$ **DIST 3**
 - (6) $s \lor t$ SIMP 5
 - $(7) \sim r$ MP 6,2
 - (8) $p \rightarrow q$ SD 7,1
 - (9) q MP 4,8
- (e) $\vdash r \rightarrow t$
 - (1) $(p \to q) \land \sim (r \land \sim s)$
 - (2) $s \rightarrow (t \lor u)$
 - $(3) \sim u$
 - (4) r por Dem. $C \vdash t$
 - $(5) \sim (r \wedge \sim s)$ SIMP 1
 - $(6) \sim r \lor \sim s \quad \mathbf{DM} \ \mathbf{5}$
 - $(7) \sim r \vee s$ **DN 6**
 - (8) s SD 4,7
 - (9) $t \vee u$ MP 8,2
 - (10) t SD 9,3
- (f) $\vdash \sim t \rightarrow \sim r$
 - (1) $p \lor \sim q$
 - (2) q
 - (3) $r \rightarrow \sim s$
 - (4) $p \to (\sim s \to t)$
 - (5) $\sim t$ por Dem. C $\vdash \sim r$
 - (6) p SD 2,1
 - (7) $\sim s \to t$ MP 6,4
 - (8) $r \to t$ SH 3,7
 - (9) $\sim r$ MT 8,5

(g)
$$\vdash p \rightarrow s$$

- (1) $p \wedge q \rightarrow \sim r$
- (2) $r \vee (s \wedge t)$
- $(3) p \leftrightarrow q$
- $\frac{\text{(4) }p}{\text{(5) }(n \rightarrow s) \land (s \rightarrow s)} \text{ PICOND }$
- (5) $(p \rightarrow q) \land (q \rightarrow p)$ BICOND 3
- (6) $p \rightarrow q$ SIMP 5
- (7) q MP 6,4
- (8) $p \wedge q$ CONJ 4,7
- $(9) \sim r \qquad \qquad \mathbf{MP 8,1}$
- (11) s SIMP 10
- (h) $\vdash p \to (p \land q)$
 - (1) $r \to t$
 - (2) $t \to \sim s$
 - $(3) (r \rightarrow \sim s) \rightarrow q$
 - (4) p por Dem. $C \vdash p \land q$
 - (5) $r \rightarrow \sim t$ SH 1,2
 - (6) *q* MP 5,3
 - (7) $p \wedge q$ **CONJ 4,6**
- (i) $\vdash p \rightarrow t$
 - (1) $p \rightarrow q$
 - (2) $q \leftrightarrow s$
 - (3) $t \vee (r \wedge \sim s)$
 - (4) p por Dem. $C \vdash t$
 - (5) $(q \rightarrow s) \land (s \rightarrow q)$ BICOND 2
 - (6) q
- MP 1,4
 - $(7) q \to s$
- SIMP 5
- (8) s
- MP 6,7
- (9) $s \lor \sim r$
- AD 8
- $(10) \sim (\sim s \land \sim \sim r)$
- DM 9
- $(11) \sim (\sim s \wedge r)$
- DN 10
- $(12) \sim (r \wedge \sim s)$
- ASSOC 11

(13) t

- SD 12,3
- (j) $\vdash r \rightarrow \sim q$
 - $(1) \sim r \lor \sim s$
 - (2) $q \rightarrow s$
 - (3) r
- por Dem. C $\vdash \sim q$
- $(4) \sim s$ SD 3, 1
- (5) $\sim q$ MT 4, 2

(k)
$$\vdash \sim (p \lor r) \to t$$

- (1) $q \rightarrow p$
- (2) $t \vee s$
- (3) $q \lor \sim s$
- $(4) \sim (p \vee r)$ por Dem. C $\vdash t$
- $(5) \sim p \wedge \sim r$ **DM 4**
- (6) p

SIMP 5

 $(7) \sim q$

MT 6,1

 $(8) \sim s$

SD 7,3

(9) t

SD 8,2

- (1) $\vdash p \rightarrow u$
 - (1) $p \lor u \to r$
 - (2) $s \rightarrow \sim r \land \sim t$
 - (3) $s \vee u$
 - (4) p por Dem. $C \vdash u$
 - (5) $p \vee q$

AD 4

- $(6) p \vee 6$
- MP 1,5
- (7) $r \vee t$
- AD 6
- $(8) \sim (\sim r \land \sim t)$
- DM7
- $(9) \sim s$
- MT 8,2
- (10) u
- SD 3,9
- (m) $\vdash \sim q \rightarrow t$
 - (1) $p \to q$
 - (2) $r \rightarrow t$
 - (3) $s \rightarrow r$
 - $(4) p \vee s$
 - $(5) \sim q$ por Dem. C $\vdash t$
 - $\overline{(6) \ q \lor r \quad \mathbf{DC} \ \mathbf{1,3,4}}$
 - (7) r SD 5,6
 - (8) t MP 7,2
- (n) $\vdash \sim q \rightarrow p \land s$
 - (1) $r \to s$
 - (2) $s \rightarrow q$
 - (3) $r \vee (s \wedge p)$
 - (4) $\sim q$ por Dem. $C \vdash p \land s$
 - $(5) r \rightarrow q$ SH 1,2
 - (6) $\sim r$ MT 4,5
 - (7) $s \wedge p$ SD 6,3
 - (8) $p \wedge s$ ASSOC 7

(o)
$$\vdash \sim (r \land s) \to q$$

(1) $\sim p$
(2) $\sim r \to q$
(3) $\sim s \to p$
(4) $\sim (r \land s)$ por Dem. C $\vdash q$
(5) $\sim r \lor \sim s$ DM 4
(6) $\sim \sim s$ MT 1,3
(7) s DN 6
(8) $\sim r$ SD 5,7
(9) q MP 2,8

3. Na prova por demonstração indireta, assume-se a negação da conclusão como um argumento, e tenta-se provar uma contradição.

(a)
$$\vdash \sim r \lor \sim s$$

(1) $\sim (p \to q) \lor (s \to \sim r)$
(2) $q \lor s$
(3) $p \to \sim s$
(4) $\sim (\sim r \lor \sim s)$ por Dem. Ind $\vdash \Box$

(5) $\sim \sim r \land \sim \sim s$ DM 4
(6) $r \land s$ DN 5
(7) $s \lor q$ ASSOC 2
(8) $\sim s \to q$ COND 7
(9) $p \to q$ SH 3,8
(10) $s \to \sim r$ SD 1,9
(11) s SIMP 6
(12) $\sim r$ MP 10,11
(13) r SIMP 6
(14) $r \land \sim r$ CONJ 12, 13
(15) \Box Contradição 14

```
(b) \vdash s
     (1) \sim (p \to \sim q) \to ((r \leftrightarrow s) \lor t)
     (2) p
     (3) q
     (4) \sim t
     (5) r
     (6) \sim s
                                                      por Dem. Ind \vdash \Box
                                        CONJ 2,3
     (7) p \wedge q
     (8) \sim (\sim p \lor \sim q)
                                        DM 7
                                        COND 8
     (9) \sim (p \rightarrow \sim q)
     (10) (r \leftrightarrow s) \lor t
                                        MP 9,1
     (11) r \leftrightarrow s
                                        SD 4,10
     (12) (r \rightarrow s) \land (s \rightarrow r)
                                        BICOND 11
     (13) r \rightarrow s
                                        SIMP 12
                                        MT 6,13
     (14) \sim r
     (15) r \wedge \sim r
                                        CONJ 5,14
     (16) \square
                                        Contradição 16
(c) \vdash q
     (1) (p \wedge q) \leftrightarrow \sim r
     (2) \sim r \rightarrow \sim p
     (3) \sim q \rightarrow \sim r
                                por Dem. Ind \vdash \Box
     (4) \sim q
     (5) \sim r
                                                             MP 4,3
                                                             MP 5,2
     (6) \sim p
     (7) ((p \land q) \to \sim r) \land (\sim r \to (p \land q))
                                                             BICOND 1
```

SIMP 7 MP 5,8

SIMP 9 CONJ 10,6

Contradição 11

 $(8) \sim r \to (p \land q)$

 $\begin{array}{c} (9) \ p \wedge q \\ (10) \ p \end{array}$

 $(11) \ p \land \sim p$ $(12) \ \Box$

```
(d) \vdash t \lor x
```

- (1) $(p \rightarrow q) \land r$
- (2) $q \lor s \to t \land u$
- (3) $v \to s$
- $(4) v \vee p$
- $(5) \sim (t \vee x)$ por Dem. Ind $\vdash \Box$
- SIMP 1 (6) $p \rightarrow q$
- DC 6,3,4 $(7) q \vee s$
- (8) $t \wedge u$ MP 7,2
- (9) tSIMP 8
- $(10) \sim t \wedge \sim x$ DM 5
- SIMP 10 $(11) \sim t$
- (12) $t \wedge \sim t$ CONJ 11,9
- $(13) \square$ Contradição 12

(e)
$$\vdash p \rightarrow s$$

- $(1) (p \to q) \lor (r \land s)$
- $(2) \sim q$
- $(3) \sim (p \rightarrow s)$ por Dem. Ind $\vdash \Box$
- $(4) \sim (\sim p \vee s)$ COND 3
- **DM 4** $(5) \sim p \wedge \sim s$
- DN 5 (6) $p \wedge \sim s$
- SIMP 6 $(7) \sim s$
- (8) pSIMP 6
- (9) $p \wedge \sim q$ **CONJ 8,2**
- $(10) \sim (\sim p \vee q)$ DM 9
- $(11) \sim (p \to q)$ COND₁₀
- (12) $r \wedge s$ SD 11,1
- (13) s**SIMP 12**
- **CONJ 13,7** (14) $s \wedge \sim s$
- (15)Contradição 14

(f) $\vdash q \rightarrow t$

- $(1) \sim p \rightarrow \sim q \vee r$
- (2) $s \lor (r \rightarrow t)$
- (3) $p \rightarrow s$
- $(4) \sim s$
- por Dem. Ind $\vdash \Box$ $(5) \sim (q \to t)$ MT 4,3
- $(6) \sim p$

- MP 6,1
- $(7) \sim q \vee r$
- COND 7
- (8) $q \rightarrow r$ (9) $r \to t$
- SD 4,2
- $(10) q \rightarrow t$
- SH 8,9
- $(11) (q \to t) \land \sim (q \to t)$
- CONJ 10,5

 $(12) \square$

Contradição 12

```
(g) \vdash \sim (r \lor s)
    (1) \sim p \lor \sim q
    (2) r \vee s \rightarrow p
    (3) q \lor \sim s
    (4) \sim r
    (5) \sim (\sim (r \vee s)) por Dem. Ind \vdash \Box
                      \overline{\mathrm{DN}} 5
    (6) r \vee s
                      MP 6,2
    (7) p
    (8) \sim q
                      SD 7,1
    (9) \sim s
                      SD 8,3
    (10) r
                      SD 9,6
                      CONJ 10,4
    (11) r \wedge \sim r
                      Contradição 11
    (12)
(h) \vdash p \rightarrow u
    (1) p \lor q \to r
    (2) s \rightarrow \sim r \land \sim t
    (3) s \vee u
    (4) p
    (5) \sim (p \to u)
                             por Dem. Ind \vdash \Box
    (6) p \vee q
                            AD 4
    (7) r
                           MP 6,1
    (8) \sim (\sim p \vee u)
                           COND 5
    (9) \sim p \wedge \sim u
                           DM 8
    (10) \sim u
                           SIMP 9
    (11) s
                           SD 10,3
    (12) \sim r \wedge \sim t
                           MP 11,2
                           SIMP 12
    (13) \sim r
    (14) \sim r \wedge r
                           CONJ 13,7
    (15) \square
                           Contradição 14
(i) \vdash t
    (1) p \rightarrow q
    (2) r \to t
    (3) s \rightarrow r
    (4) p \vee s
    (5) \sim q
    (6) \sim t
                    por Dem. Ind \vdash \Box
    (7) \sim r
                       MT 2,6
    (8) \sim s
                      MT 7,3
    (9) p
                       SD 8,4
                       MP 9,1
    (10) q
                      CONJ 10,5
    (11) q \wedge \sim q
```

Contradição 11

(12)

```
(j) p \to t
```

- (1) $p \rightarrow q$
- (2) $q \leftrightarrow s$
- (3) $t \vee (r \wedge \sim s)$
- $(4) \sim (p \to t)$ por Dem. Ind $\vdash \Box$ COND 4
- $(5) \sim (\sim p \lor t)$
- DM 5
- $(6) \sim p \wedge \sim t$
- SIMP 6

- $(7) \sim t$
- SD 7,3
- (8) $r \wedge \sim s$

 $(9) \sim s$

- SIMP 8
- $(10) (q \rightarrow s) \land (s \rightarrow q)$
- BICOND 2
- (11) $q \rightarrow s$
- **SIMP 10**
- $(12) \sim q$
- MT 9,11
- $(13) \sim p$
- MT 12,1
- $(14) \sim p$
- SIMP 6
- (15) p
- DN 14
- (16) $p \wedge \sim p$
- CONJ 15,13 Contradição 16

- $(17) \square$
- (k) $p \rightarrow q$
 - $(1) (p \rightarrow q) \lor r$
 - (2) $s \lor t \to \sim r$
 - (3) $s \lor (t \land u)$
 - $(4) \sim (p \rightarrow q)$ por Dem. Ind $\vdash \Box$
 - (5) r
- SD 4,1
- (6) $s \vee t$ SD 2,5
- $(7) \sim r$ MP 6,2
- CONJ 5,7 (8) $r \wedge \sim r$
- $(9) \square$
- Contradição 8
- (1) $\sim q \lor \sim s$
 - $(1) \sim p \rightarrow \sim q$
 - $(2) \sim p \vee r$
 - (3) $r \rightarrow \sim s$
 - $(4) \sim (\sim q \lor \sim s)$ por Dem. Ind $\vdash \Box$
 - $(5) \sim q \wedge \sim s$ DM 4
 - (6) $q \wedge s$ DN 5
 - (7) q
- SIMP 6
- $(8) \sim p$
- MT 7,1
- (9) p
- **DN** 8
- (10) r
- SD 9,2
- $(11) \sim s$
- MP 10,3
- (12) s
- SIMP 6
- (13) $s \wedge \sim s$

CONJ 12,11

- $(14) \square$
- Contradição 13

```
(m) \vdash \sim (p \land s)
     (1) p \to q \vee r
     (2) q \rightarrow \sim p
     (3) s \rightarrow \sim r
     (4) \sim (\sim (p \land s)) por Dem. Ind \vdash \Box
     (5) p \wedge s
                        DN 4
     (6) p
                        SIMP 5
     (7) q \vee r
                       MP 6,1
     (8) \sim q
                       MT 6,2
     (9) \ s
                        SIMP 5
                       MP 9,3
     (10) \sim r
                       SD 7,10
     (11) q
                       CONJ 11,8
     (12) q \wedge \sim q
                        Contradição 12
     (13) \square
(n) r \to s
     (1) \sim (p \to \sim q) \to ((r \leftrightarrow s) \lor t)
     (2) p
     (3) q
     (4) \sim t
     (5) \sim (r \to s)
                                                  por Dem. Ind \vdash \Box
```

CONJ 2,3

COND 7

BICOND 10 SIMP 11

CONJ 12,5

Contradição 13

MP 8,1

SD 9,4

DM 6

(6) $p \wedge q$

 $(7) \sim (\sim p \vee q)$

 $(8) \sim (p \rightarrow \sim q)$

(9) $(r \leftrightarrow s) \lor t$

 $(11) (r \to s) \land (s \to r)$

 $(13) \sim (r \to s) \land (r \to s)$

(10) $r \leftrightarrow s$

 $(12) r \rightarrow s$

 $(14) \square$

(o)
$$\vdash q$$

$$\begin{array}{l} (1) \ (\sim p \rightarrow q) \wedge (r \rightarrow s) \\ (2) \ p \leftrightarrow t \lor \sim s \\ (3) \ r \\ (4) \sim t \end{array}$$

(2)
$$p \leftrightarrow t \lor \sim s$$

(14) $q \land \sim q$

(15)

(1)	
$(5) \sim q$	por Dem. Ind $\vdash \Box$
$(6) r \to s$	SIMP 1
(7) s	MP 3,6
(8) $p \leftrightarrow t$	SD 7,2
$(9) (p \to t) \land (t \to p)$	BICOND 8
$(10) p \to t$	SIMP 9
$(11) \sim p$	MT 10,4
$(12) \sim p \to q$	SIMP 1
(13) q	MP 11,12

CONJ 13,5

Contradição 14

Equivalências Notáveis:

$$P \vee \blacksquare \Leftrightarrow \blacksquare$$

Identidade (IDENT):
$$P \lor \Box \Leftrightarrow P$$

 $P \land \blacksquare \Leftrightarrow P$

$$P \wedge \square \Leftrightarrow \square$$

Idempotência (ID):
$$P \Leftrightarrow P \land P$$

 $P \Leftrightarrow P \lor P$

Comutação (COM):
$$P \land Q \Leftrightarrow Q \land P$$

 $P \lor Q \Leftrightarrow Q \lor P$

Associação (ASSOC):
$$\begin{array}{ll} P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R \\ P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R \end{array}$$

Distribuição (DIST):
$$\begin{array}{ll} P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R) \\ P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R) \end{array}$$

De Morgan (DM):
$$\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q$$

 $\sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Contradição:
$$P \land \sim P \Leftrightarrow \square$$

 $P \leftrightarrow \sim P \Leftrightarrow \square$

$$P \lor \sim P \Leftrightarrow \blacksquare$$

Tautologia:
$$P \rightarrow P \Leftrightarrow \blacksquare$$

$$P \leftrightarrow P \Leftrightarrow \blacksquare$$

Absorção:
$$P \land (P \lor Q) \Leftrightarrow P$$

 $P \lor (P \land Q) \Leftrightarrow P$

Conectivos de Scheffer
$$P \uparrow Q \Leftrightarrow \sim P \lor \sim Q$$

 $P \downarrow Q \Leftrightarrow \sim P \land \sim Q$

Dupla Negação (DN):
$$P \Leftrightarrow P$$

Condicional (COND):
$$P \rightarrow Q \Leftrightarrow \sim P \lor Q$$

Bicondicional (BICOND):
$$P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$$

Contraposição (CP):
$$P \to Q \Leftrightarrow \sim Q \to \sim P$$

Exportação-Importação (EI):
$$P \land Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$$

Ou-Exclusivo (X-or)
$$P \supseteq Q \Leftrightarrow (P \lor Q) \land \sim (P \land Q)$$

Regras de Inferência Válidas (Teoremas):

Adição (AD): $P \vdash P \lor Q$ $P \vdash Q \lor P$

Simplificação (SIMP): $P \land Q \vdash P$ $P \land Q \vdash Q$

Conjunção (CONJ) $\begin{array}{cc} P,Q \vdash P \land Q \\ P,Q \vdash Q \land P \end{array}$

Absorção (ABS): $P \rightarrow Q \vdash P \rightarrow (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \to Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \lor Q, \sim P \vdash Q$ $P \lor Q, \sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$