GEMM3(): Constant-workspace high-performance multiplication of three matrices for matrix chaining

Krzysztof A. Drewniak

The University of Texas at Austin

Date TBD

Outline

Introduction

High-Performance GEMM()

The GEMM3() algorithm

Experiments and Results

Matrix chaining problem

- ▶ Problem: compute $A_1A_2 \cdots A_n$ efficiently, A_i matrices
- ▶ Where do the parentheses go?
- ▶ $O(n \log n)$ algorithm, also $O(n^3)$ with dynamic programming
- ▶ Fewer flops \rightarrow more performance?

Generalized matrix chaining

- ▶ In reality transposes, inverses, properties
- Ex:

```
Ensemble Kalman filter X_i^b S_i(Y_i^b)^T R_i^{-1}
Tridiagonalization \tau_u \tau_v v v^T A u u^T
Two-sided triangular solve L^{-1}AL^{-H} (L lower triangular)
```

- ▶ Performance with BLAS/LAPACK must be expert
- Less performance with Matlab, numpy, etc. (left-to-right)
- ightharpoonup Linnea: expression ightarrow BLAS calls automagically

GEMM3() — Why bother?

- Examples again:
 - $X_i^b S_i (Y_i^b)^T R_i^{-1}$ $\tau_{ii} \tau_{v} v v^T A u u^T$

 - $ightharpoonup L^{-1}A(L^{-1})^H$ (L lower triangular)
- All multiply three matrices as a subproblem
- ▶ (Notation: D += ABC and GEMM3())

GEMM3() — Why a new algorithm?

- Current approach: parentheses, multiply twice, store temporary T
- T often eats memory
- Writing/reading T can hit your performance
- We can do better!
- ▶ Use how GEMM() works to nest computations
- ▶ O(1) extra memory, maybe more performance

Drewniak (UT Austin) GEMM3() 6 / 23

Memory hierarchy

GEMM(): The kernels

GEMM(): The algorithm

Drewniak (UT Austin)

Picking constants: m_R , n_R

- Determine microkernel
- Based on microarchitecture register width, FMA properties
- We're reusing BLIS's work
- \triangleright Can swap m_R and n_R

Drewniak (UT Austin) GEMM3() 10 / 23

Picking constants: k_C

L1

Placing memory in cache: [tag][set #][offset in line]

Maximizing k_C improves performance

$$C_{B} = \left\lceil \frac{n_{R}k_{C}S_{elem}}{N_{L1}C_{L1}} \right\rceil$$
$$= \left\lceil \frac{n_{R}}{m_{R}}C_{A} \right\rceil$$
$$C_{A} \le \left\lceil \frac{W_{L1} - 1}{1 + \frac{n_{R}}{m_{R}}} \right\rceil$$

Drewniak (UT Austin)

Picking constants: m_C and n_C

- ▶ For m_C : reserve ways for B and C
- ► Then take all you can
- \triangleright n_C , leave out what architecture requires, then divide
- ▶ L3 is very big, tuning is much less needed

GEMM3() 12 / 23

Data reuse

- Every loop reads something repeatedly
- Relevant things: packed blocks making them takes time
- Packed block reuse problems:
 - ightharpoonup m small low time between remakes of \tilde{B}
 - ightharpoonup n small same for \tilde{A}
 - ▶ k tiny microkernel doesn't do much, small caches

Key concept of the algorithm

- ▶ We want D += ABC, (dimensions: m, k, l, n in order)
- BC first needed in packing step
- Compute a block then
- ► Have GEMM() algorithm, but...

Drewniak (UT Austin) GEMM3() 14 / 23

The tricky bits

Problem	Solution	
Redundant loop over $n (n \le n_C)$	Remove it	
Packing output wastes space/time	Tweak microkernel params	
\tilde{C} fights \tilde{BC} in $L3$	Halve <i>n_C</i>	
Low \tilde{C} reuse	Low impact in practice	
$m_R \nmid k_C$, leaving fringe	Shrink <i>k_C</i> slightly	

Table: Tweaks needed to make GEMM() fusion work

The algorithm

Drewniak (UT Austin) GEMM3() 16 / 23

$$D += (AB)C$$

- Putting parentheses there sometimes better
- Deriving directly doesn't work
 - Multiple recomputations of AB
- ▶ However, $D += (AB)C \Leftrightarrow D^T += C^T(B^TA^T)$

Implementation details

- Multilevel Optimization of Matrix Multiply Sandbox (MOMMS)
- Extended to support three matrices
- ► Implement both GEMM3() and BLIS algorithm
- ▶ BLIS algorithm port performs like BLIS
- Experiments on Haswell machine from UT lab

	GEMM3()	BLIS algorithm
m_C	72	72
k_C	252	256
I_C	256	
n_C	2040	4080

Table: Constants for Haswell CPUs

Experiments

- 1. D += A(BC), square matrices
 - ▶ Inputs column-major, outputs row-major for fairness
- 2. $D^T += C^T(B^TA^T)$, square matrices
 - After transpose, all row major
- 3. D += A(BC), rectangles (one dimension small)

Workspace usage, square matrices

D += A(BC), square matrices

D += A(BC), square matrices

D += (AB)C, square matrices

D += (AB)C, square matrices

D += A(BC), rectangular matrices

Drewniak (UT Austin) GEMM3() 23 / 23

Acknowledgments

- Dr. Robert van de Geijn, for advising and providing the inspiration for this work
- Dr. Tyler Smith, for writing MOMMS and helping with algorithm design
- ▶ Dr. Tze Meng Low, for performance and paper-writing advice
- ▶ NSF grant **TODO NNNNNNN** for funding