Теплопроводность, детерминированное горение

Этап № 1

Содержание

1	Цель работы	5
2	Задачи проекта	6
3	Определения	7
4	Основная часть	8
	4.1 Размерная система уравнений	 8
	4.1.1 Закон Аррениуса для реакции первого порядка	8
	4.2 Размерная система уравнений	8
	4.2.1 Одномерный случай	8
	4.3 Размерная система уравнений	9
	4.3.1 Одномерный случай	9
	4.4 Система уравнений для безразмерных величин	9
	4.5 Различные режимы горения	10
	4.5.1 Одномерный случай	10
	4.6 Различные режимы горения	10
	4.6.1 Двумерный случай	 10
	4.7 Различные режимы горения	11
	4.7.1 Спиновое горение	11
	4.8 Явная разностная схема	11
	4.9 Явная разностная схема	11
	4.10 Неявные разностные схемы	12
	4.11 Неявные разностные схемы	12
5	Заключительная часть	13
	5.1 Результаты	 13
	5.2 Истоиники	 13

Список иллюстраций

Список таблиц

1 Цель работы

Изучить методы математического моделирования на примере теплопроводности и детерминированного горения.

2 Задачи проекта

- Написать программу, решающую одномерное уравнение теплопроводности с адиабатическими граничными условиями, используя явную разностную схему. Исследовать поведение численного решения при различных значениях $\chi \Delta t/h2$.
- Исследовать влияние E на режим горения. При каком минимальном значении E возникает пульсирующий режим?
- По профилю N(x) рассчитать положение фронта. Достаточно точным и простым способом является нахождение координаты с N=0,5. Предлагается воспользоваться линейной интерполяцией между двумя соседними точками. Построить график скорости горения от координаты фронта.

3 Определения

- Горение это яркий и сложный природный процесс, который можно описать с помощью относительно простых моделей.
- Детерминированное горение это процесс горения, который подчиняется определенным законам физики и химии.
- Теплопроводность это передача тепла в веществе от горячих участков к холодным за счет взаимодействия частиц.

4 Основная часть

4.1 Размерная система уравнений

4.1.1 Закон Аррениуса для реакции первого порядка

Будем моделировать простейшим образом: вещество вида A переходит в B, при этом выделяется тепло. Для скорости воспользуемся законом Аррениуса для реакции первого порядка:

$$\frac{\partial N}{\partial t} = -\frac{N}{\tau} \, e^{-E/RT}$$

- N доля непрореагировавшего вещества A, меняющаяся от 1 исходное состояние, до 0 все прореагировало.
- Е энергия активации.
- т характерное время перераспределения энергии.
- T температура в данной точке.

4.2 Размерная система уравнений

4.2.1 Одномерный случай

В одномерном случае необходимо добавить уравнение теплопроводности с дополнительным членом, отвечающим за энерговыделение:

$$\rho c \frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} - \rho Q \frac{\partial N}{\partial t}$$

- ρ плотность,
- c удельная теплоемкость.
- к коэффициент теплопроводности.
- Q удельное энерговыделение при.

4.3 Размерная система уравнений

4.3.1 Одномерный случай

В этой системе уравнений возможен режим в виде самостоятельно распространяющейся волны горения:

4.4 Система уравнений для безразмерных величин

Поделив уравнение теплопроводности на ρQ и перейдя к безразмерным температуре $T^{\sim}=cT/Q$ и энергии активации $E^{\sim}=cE/(RQ)$, получим систему уравнений:

$$\begin{split} \frac{\partial T}{\partial t} &= \chi \frac{\partial^2 T}{\partial x^2} - \frac{\partial N}{\partial t}, \\ \frac{\partial N}{\partial t} &= -\frac{N}{\tau} \, e^{-E/T}, \end{split}$$

 $\chi = \Box/\Box$ с называется коэффициентом температуропроводности.

Из имеющихся в системе уравнений и трех параметров наиболее интересна безразмерная энергия активации E, равная отношению энергии активации к теплоте реакции. Именно этот параметр определяет режим волны горения, а остальные параметры τ и χ только масштабируют явление во времени и в пространстве.

4.5 Различные режимы горения

4.5.1 Одномерный случай

- Первый режим скорость распространения волны постоянна, а профили температуры и концентрации переносятся вдоль оси X не деформируясь.
- Второй режим скорость волны переменная, и горение распространяется в виде чередующихся вспышек и угасаний. От значения параметра E, зависит какой режим реализуется.

4.6 Различные режимы горения

4.6.1 Двумерный случай

Для моделирования волны горения в двумерном случае в уравнение:

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2} - \frac{\partial N}{\partial t},$$

Нужно добавить перенос тепла по второй координате:

$$\chi \frac{\partial^2 T}{\partial y^2}.$$

4.7 Различные режимы горения

4.7.1 Спиновое горение

Кроме стационарного и пульсирующего режимов для этой двухмерной системы возможен третий режим распространения волны горения — спиновый. При этом фронт состоит из нескольких зон горения, распространяющихся по винтовой линии вдоль цилиндра.

4.8 Явная разностная схема

Рассмотрим численные методы решения одномерного уравнения теплопроводности без химических реакций:

$$\frac{\partial T}{\partial t} = \chi \frac{\partial^2 T}{\partial x^2}$$

Для этого в уравнении теплопроводности заменим частные производные на разностные:

$$\frac{\hat{T}_i - T_i}{\Delta t} = \chi \frac{\frac{T_{i+1} - T_i}{h} - \frac{T_i - T_{i_1}}{h}}{h} = \chi \frac{(T_{i+1} - 2T_i + T_{i-1})}{h^2}$$

4.9 Явная разностная схема

Теперь, чтобы учесть , добавим к прошлой формуле изменение безразмерной температуры за счет энерговыделения в химических реакциях за

шаг по времени:

$$\Delta N_{i} = -\frac{N_{i}}{\tau} e^{-E/T_{i}} \Delta t,$$

$$\hat{T}_{i} = T_{i} + \frac{\chi \Delta t}{h^{2}} (T_{i+1} - 2T_{i} + T_{i-1}) - \Delta N_{i},$$

$$\hat{N}_{i} = N_{i} - \Delta N_{i},$$

$$i = 1, 2, ..., n$$

4.10 Неявные разностные схемы

Явная схема, устойчива:

1.
$$\frac{\hat{T}_i - T_i}{\Delta t} = \chi \frac{(\delta^2 T)_i}{h^2}, \quad e = O[\Delta t] + O[h^2],$$

Неявная схема, всегда устойчива:

2.
$$\frac{\hat{T}_i - T_i}{\Delta t} = \chi \frac{(\delta^2 \hat{T})_i}{h^2}, \quad e = O[\Delta t] + O[h^2],$$

Неявная схема Кранка-Николсон, всегда устойчива:

3.
$$\frac{\hat{T}_i - T_i}{\Delta t} = \chi \frac{(\delta^2 T)_i + (\delta^2 \hat{T})_i}{2h^2}, \quad e = O[(\Delta t)^2] + O[h^2],$$

4.11 Неявные разностные схемы

Преобразовав выражение для третьей схемы, получим систему n уравнений:

$$\hat{T}_{i-1} - \left(2 + \frac{2h^2}{\chi \Delta t}\right)\hat{T}_i + \hat{T}_{i+1} = -T_{i-1} + \left(2 - \frac{2h^2}{\chi \Delta t}\right)T_i - T_{i+1},$$

5 Заключительная часть

5.1 Результаты

Мы рассмотрели понятия теплопроводности и горения (детерминированного в том числе). Мы познакомились с понятиями, используемыми при изучении и построении уравнений теплопроводности и детерминированного горения.

5.2 Источники

Медведев Д. А., Куперштох А. Л., Прууэл Э. Р., Сатонкина Н. П., Карпов Д. И. Моделирование физических процессов и явлений на ПК: Учеб. пособие / Новосибирск: Новосиб. гос. ун-т., 2010. — 101 с.