Package 'codaredistlm'

December 22, 2022

```
Description Provided data containing an outcome variable, compositional variables and additional co-
      variates (optional); linearly regress the outcome variable on an isometric log ratio (ilr) transfor-
      mation of the linearly dependent compositional variables. The package provides predic-
      tions (with confidence intervals) in the change (delta) in the outcome/response vari-
      able based on the multiple linear regression model and evenly spaced reallocations of the compo-
      sitional values. The compositional data analysis approach implemented is outlined in Du-
      muid et al. (2017a) <doi:10.1177/0962280217710835> and Du-
      muid et al. (2017b) <doi:10.1177/0962280217737805>.
License GPL-2
URL https://github.com/tystan/codaredistlm
BugReports https://github.com/tystan/codaredistlm/issues
Encoding UTF-8
LazyData true
Imports compositions, ggplot2, broom, knitr
Suggests testthat
RoxygenNote 7.1.2
NeedsCompilation no
Author Ty Stanford [aut, cre] (<a href="https://orcid.org/0000-0002-8570-5493">https://orcid.org/0000-0002-8570-5493</a>),
```

Charlotte Lund Rasmussen [aut]

Maintainer Ty Stanford <tystan@gmail.com>

Date/Publication 2022-12-22 19:50:06 UTC

Repository CRAN

(<https://orcid.org/0000-0003-2193-5019>),

Dot Dumuid [aut] (https://orcid.org/0000-0003-3057-0963)

Title Compositional Data Linear Models with Composition Redistribution

Type Package

Version 0.1.0 **Date** 2022-12-22

2 append_ilr_coords

R topics documented:

Index		15
	print_ilr_trans	14
	predict_delta_comps	11
	plot_delta_comp	10
	is_null_or_na	10
	is_lm_mod	9
	is_deltacomp_obj	
	fit_lm	
	fat_data	8
	fairclough	
	extract_lm_quantities	ϵ
	create_v_mat	5
	create_comparison_matrix	
	compare_two_lm	
	cols_exist	4
	check_strictly_positive_vals	3
	check_input_args	
	append_ilr_coords	2

append_ilr_coords Add ILR coordinates to a data.frame containing composition variables

Description

Add ILR coordinates to a data.frame containing composition variables

Usage

```
append_ilr_coords(dataf, comps, psi)
```

Arguments

dataf	data.frame containing composition variables
comps	character vector of composition variable names in dataf
nsi	ilrBase passed to compositions::ilr()

check_input_args 3

Description

Sanity checks for arguments passed to predict_delta_comps()

Usage

```
check_input_args(dataf, y, comps, covars, deltas)
```

Arguments

dataf	A data.frame containing data
у	Name (as string/character vector of length 1) of outcome variable in dataf
comps	Character vector of names of compositions in dataf. See details for more information.
covars	Character vector of covariates names (non-comp variables) in dataf or NULL for none (default).
deltas	A vector of time-component changes (as proportions of compositions , i.e., values between -1 and 1). Optional.

Details

Throws errors for any problematic input. Returns TRUE invisibly if no issues found.

```
{\it Check\_strictly\_positive\_vals} \\ {\it Check\ if\ compositional\ variable\ are\ strictly\ greater\ than\ 0}
```

Description

Check if compositional variable are strictly greater than 0

Usage

```
check_strictly_positive_vals(dataf, comps, tol = 1e-06)
```

Arguments

dataf	data.frame containing composition variables
comps	character vector of composition variable names in dataf
tol	a numeric value that compositional values are expected to be greater or equal than. 1e-6 is deafult

4 compare_two_lm

Value

If any compositional values are found to be strictly less than tol and erro is thrown. Returns TRUE invisibly otherwise.

cols_exist

Check whether columns exist in a data.frame

Description

Check whether columns exist in a data.frame

Usage

```
cols_exist(dataf, cols)
```

Arguments

dataf a data.frame

cols character vector of columns to be checked in dataf

Value

An error if all cols not present in dataf. Returns TRUE invisibly otherwise.

compare_two_lm

Statistical test of the collective significance of the ilr variables

Description

Statistical test of the collective significance of the ilr variables

Usage

```
compare_two_lm(y_str, X1, X2)
```

Arguments

y_str a string representation of the column in X1 (and X2) that is the outcome

X1 a data.frame or matrix that contains a subset of the predictor variables in X2 and

outcome variable

X2 a data frame or matrix that contains the predictor variables and outcome variable

Value

Returns NULL invisibly. The ANOVA analysis is printed to the console, that is, the statistical test of whether the additional predictors in X2 improve the model significantly from the model with only the subset of predictors in X1.

create_comparison_matrix

Creates row-wise perturbations of compositions from the mean composition

Description

Creates row-wise perturbations of compositions from the mean composition

Usage

```
create_comparison_matrix(comparisons, comps, mean_comps)
```

Arguments

comparisons currently two choices: "one-v-one" or "prop-realloc" (default).

comps the names (character vector) of the compositional variables

mean_comps the mean composition of comps

Details

```
comparisons = "one-v-one" creates a matrix with length(comps) columns and length(comps) * (length(comps) - 1) rows. The rows contain all pairs of variables with 1 and -1 values.
```

comparisons = "prop-realloc" creates a matrix with length(comps) columns and length(comps) rows. Each rows contains a 1 value for a compositional variable and the remaining values sum to -1 proportional to the mean_comps value for those variables.

Note that for both comparisons options the net change is 0 (each row sums to 0).

create_v_mat

Create ilr basis matrix (V)

Description

Create ilr basis matrix (V)

Usage

```
create_v_mat(n_comp)
```

Arguments

n_comp the number of compositional variables

6 fairclough

Value

A n_comp by n_comp - 1 matrix where each column relates to one ilr variable

The ilr basis made so that the numerator (+ values) for the ith column is in the ith row. All values below the + value in the column are set to -1 (the denominator).

```
The ilr basis for 3 compositional vars is (2, -1, -1)/sqrt(6), (0, 1, -1)/sqrt(2).
```

```
The ilr basis for 4 comp vars is (3, -1, -1, -1)/sqrt(12), (0, 2, -1, -1)/sqrt(6), (0, 0, 1, -1)/sqrt(2).
```

etc

Description

Extract critical quantities from a lm object (for confidence interval calculations)

Usage

```
extract_lm_quantities(lm_X, alpha = 0.05)
```

Arguments

lm_X a lm object

alpha level of significance. Defaults to 0.05.

Value

A list containing the $lm \mod lm$ model matrix (dmX), the inverse of t(dmX) x dmX (XtX_inv), the standard error (s_e), the estimated single column beta matrix (beta_hat), and the critical value of the relevant degrees of freedom t-dist (crit_val).

fairclough Data from Fairclough (2017). Fitness, fatness and the reallocation of time between children's daily movement behaviours: an analysis of

compositional data

Description

A dataset containing z_bmi (outcome), time-use compositions (sl,sb,lpa,mvpa), and covariates from the Fairclough (2017) paper. The data can be found in supp file 7 of the paper at https://link.springer.com/article/10.1186/s129 017-0521-z.

fairclough 7

Usage

data(fairclough)

Format

A data frame with 169 rows and 21 variables

Details

The variables in the data are as follows:

- child_id
- · school
- sex
- decimal_age
- imd_decile
- · height mass
- bmi
- z_bmi
- itof_grade
- waist_circ
- whtr
- shuttles_20m
- wear_time
- sed
- lpa
- mpa
- vpa
- mvpa
- sleep
- min_in_day

References

Fairclough, Stuart J. and Dumuid, Dorothea and Taylor, Sarah and Curry, Whitney and McGrane, Bronagh and Stratton, Gareth and Maher, Carol and Olds, Timothy. Fitness, fatness and the reallocation of time between children's daily movement behaviours: an analysis of compositional data. International Journal of Behavioral Nutrition and Physical Activity, 2017. 14(1): 64.

fit_lm

fat_data

Randomly generated data to simulate child fat percentage regressed on time-use compositional data

Description

A dataset containing fat percentage (outcome), time-use compositions (sl,sb,lpa,mvpa), and covariates (sibs,parents,ed). Note sl+sb+lpa+mvpa=1440 minutes for each subject. The variables are as follows:

Usage

```
data(fat_data)
```

Format

A data frame with 100 rows and 8 variables

Details

- fat. child fat percentage (11.29–29.99)
- sl. daily sleep in minutes (283–765)
- sb. sedentary behaviour in minutes (354–789)
- lpa. low-intensity physical activity in minutes (157–507)
- mvpa. moderate- to vigorous-intensity physical activity in minutes (35–155)
- sibs. number of siblings (0,1,2,3,4)
- parents. number of parents/caregivers at home (1,2)
- ed. education level of parent(s) (0=high school, 1=diploma, 2=degree)

 fit_lm

fit linear model based on input data.frame

Description

fit linear model based on input data.frame

Usage

```
fit_lm(y_str, X, verbose = TRUE)
```

Arguments

y_str a string representation of the column in X that is the outcome

X a data.frame or matrix that contains the predictor and outcome variables

verbose if TRUE (default), a model summary will be printed to the console

is_deltacomp_obj 9

Value

A lm object where the y_str column has been regressed against the remaining columns of X (with an intercept term as well).

is_deltacomp_obj

Is object that is returned from pred_delta_comps()?

Description

Is object that is returned from pred_delta_comps()?

Usage

```
is_deltacomp_obj(x)
```

Arguments

Х

object to be tested

Value

Boolean TRUE or FALSE

is_lm_mod

Is object that is returned from lm()?

Description

Is object that is returned from lm()?

Usage

```
is_1m_mod(x)
```

Arguments

Х

object to be tested

Value

Boolean TRUE or FALSE

10 plot_delta_comp

is_null_or_na	Catch NULL, empty and objects containing NAs	
---------------	--	--

Description

Catch NULL, empty and objects containing NAs

Usage

```
is_null_or_na(x)
```

Arguments

x object to be tested

Value

Boolean. If object is NULL, empty or contains NA then TRUE returned. FALSE otherwise.

plot_delta_comp	Plot redistributed time-use predictions from compositional ilr multiple linear regression model fit
-----------------	---

Description

Plot redistributed time-use predictions from compositional ilr multiple linear regression model fit by predict_delta_comps()

Usage

```
plot_delta_comp(dc_obj, comp_total = NULL, units_lab = NULL)
```

Arguments

dc_obj	A deltacomp_obj object returned from the function predict_delta_comps
comp_total	A numeric scalar that is the original units of the composition to make the x-axis the original scale instead of in the range $[\min(delta), \max(delta)]$ in $(-1, 1)$.
units_lab	Character string of the units of the compositions relating to comp_total to add to the x-axis label

Value

Returns a plot object from the ggplot2 package (that is, class of gg and ggplot).

predict_delta_comps 11

Author(s)

Ty Stanford <tystan@gmail.com>

Examples

```
data(fairclough)
deltacomp_df <-
  predict_delta_comps(
    dataf = fairclough,
    y = "z_bmi",
    comps = c("sleep", "sed", "lpa", "mvpa"),
    covars = c("decimal_age", "sex"),
    deltas = seq(-20, 20, by = 5) / (24 * 60),
    comparisons = "prop-realloc",
    alpha = 0.05
  )
class(deltacomp_df)
plot_delta_comp(
  dc_obj = deltacomp_df,
  comp\_total = 24 * 60,
  units_lab = "min"
)
deltacomp_df <-</pre>
  predict_delta_comps(
    dataf = fairclough,
    y = "z_bmi"
    comps = c("sleep", "sed", "lpa", "mvpa"),
    covars = c("decimal_age","sex"),
    deltas = seq(-20, 20, by = 5) / (24 * 60),
    comparisons = "one-v-one",
    alpha = 0.05
plot_delta_comp(
  dc_obj = deltacomp_df,
  comp\_total = 24 * 60,
  units_lab = "min"
)
```

predict_delta_comps Get predictions from compositional ilr multiple linear regression model

Description

Provided the data (containing outcome, compositional components and covariates), fit a ilr multiple linear regression model and provide predictions from reallocating compositional values pairwise amunsnst the components model.

12 predict_delta_comps

Usage

```
predict_delta_comps(
  dataf,
  y,
  comps,
  covars = NULL,
  deltas = c(0, 10, 20)/(24 * 60),
  comparisons = c("prop-realloc", "one-v-one")[1],
  alpha = 0.05
)
```

Arguments

dataf	A data.frame containing data
у	Name (as string/character vector of length 1) of outcome variable in dataf
comps	Character vector of names of compositions in dataf. See details for more information.
covars	Optional. Character vector of covariates names (non-comp variables) in dataf. Defaults to NULL.
deltas	A vector of time-component changes (as proportions of compositions, i.e., values between -1 and 1). Optional. Changes in compositions to be computed pairwise. Defaults to 0, 10 and 20 minutes as a proportion of the 1440 minutes in a day (i.e., approximately 0.000, 0.007 and 0.014).
comparisons	Currently two choices: "one-v-one" or "prop-realloc" (default). Please see details for explanation of these methods.
alpha	Optional. Level of significance. Defaults to 0.05.

Details

Values in the comps columns must be strictly greater than zero. These compositional values are NOT assumed to be constrained to (0, 1) values as the function normalises the compositions row-wise to sum to 1 in part of it's processing of the dataset before analysis.

Please see the deltacomp package README.md file for examples and explanation of the comparisons = "prop-realloc" and comparisons = "one-v-one" options.

Value

Messages are printed to the console as the function tests the inputs, produces the isometric log ratios (ilrs), fits the linear model and produces the redistributed time-use predictions (with confidence intervals).

Returns a data.frame of the time-use redistribution predictions (and 95% confidence intervals) with the following columns:

- comp+: the compositional variable with the addition of the delta value
- comp-: the compositional variable with the subtraction of the delta value
- delta: the time-use redistribution value

predict_delta_comps 13

- alpha: significance level for the 100(1-alpha)% confidence interval
- delta_pred: the predicted mean change in the outcome variable
- ci_lo: the lower limit of 100(1-alpha)% confidence interval corresponding to delta_pred
- ci_up: the upper limit of 100(1-alpha)% confidence interval corresponding to delta_pred
- sig: "*" if the delta_pred is significantly different from 0 at the alpha level (empty string otherwise)

The data.frame has a class of deltacomp_obj which denotes there are additional attributes of the returned object accessible using attr(*, "attribute_name").

The possible values for "attribute_name" are:

- dataf: a data.frame of the predictors (covariates and ilrs)
- y: a vector of the outcome variable
- comps: a character vector of the time-use composition names
- 1m: the 1m object of the multiple linear regression fit (using y and dataf from above)
- deltas: the redistributed time-use values used in the predictions
- comparisons: "one-v-one" or "prop-realloc" provided as the comparisons argument
- alpha: significance level for the 100(1-alpha)% confidence intervals
- ilr_basis: the ilr change of basis matrix V
- mean_pred: a single row data.frame with the predicted mean outcome (fit column) value from the "average" set of predictors

Author(s)

Ty Stanford <tystan@gmail.com>

Examples

```
predict_delta_comps(
 dataf = fat_data,
 y = "fat",
 comps = c("sl", "sb", "lpa", "mvpa"),
 covars = c("sibs", "parents", "ed"),
 deltas = seq(-60, 60, by = 5) / (24 * 60),
 comparisons = "one-v-one",
 alpha = 0.05
)
delta_comp_out <- predict_delta_comps(</pre>
 dataf = fat_data,
 y = "fat",
 comps = c("sl", "sb", "lpa", "mvpa"),
 covars = NULL,
 deltas = seq(-60, 60, by = 5) / (24 * 60),
 comparisons = "prop-realloc",
 alpha = 0.05
)
```

print_ilr_trans

```
# get the mean prediction from the returned object
attr(delta_comp_out, "mean_pred")
```

print_ilr_trans

Print the ilr transformation of provided composition parts to console

Description

Print the ilr transformation of provided composition parts to console

Usage

```
print_ilr_trans(comps)
```

Arguments

comps

a character vector of compositional parts

Value

a character vector of representing the ilr transformation of the comps is returned invisibly as the function's purpose is simply to print to the R console

Index

```
* datasets
     fairclough, 6
     fat_data, 8
append_ilr_coords, 2
check_input_args, 3
{\sf check\_strictly\_positive\_vals}, 3
cols_exist, 4
compare_two_lm, 4
create_comparison_matrix, 5
create_v_mat, 5
\verb|extract_lm_quantities|, 6
\texttt{fairclough}, \textcolor{red}{6}
fat_data, 8
\texttt{fit\_lm}, \textcolor{red}{8}
is_deltacomp_obj, 9
\verb"is_lm_mod, 9"
is_null_or_na, 10
plot_delta_comp, 10
predict\_delta\_comps, 11
print_ilr_trans, 14
```