4. Tossing a coin a.) We toss the coin 2 times and there are only 21 situations that can happen: O the first toss is head, the second toss is tail 1 the first toss is tail, the second toss is head (3) Both toss are heads (4) Both toss are tails. The probability of O happens is: $\frac{2}{3} \times \frac{1}{3} = \frac{2}{9}$ The probability of @ happens is: \frac{1}{3} \times \frac{2}{3} = \frac{2}{9} The probabily of (3) happens is $\frac{7}{3}x_3^2 = \frac{4}{9}$ The probabily of (1) happens is $\frac{1}{3}x_5^4 = \frac{4}{9}$ We can see that (1) (2) happens with equal probability. As a result, we can toss a coin 2 times, if it outputs (head, tail) we output 1, if it output (had tail, head), we output 0. For cases that output (0,0), (1,1) we do the experiment again. Here is the persudo code: $\gamma \alpha = toss - unfair - coin$ b = toss - unfair - ain if [a =b =head] or [a==b==tail]: ~ repeat. if Ta = hend I and [b=tail]: output 1 no. expected experiment if ta=toill and [b=hend]: out put 0 The average number of coin flips to output a number is: 4 x2 = 4.5

in each experiment

b) Following the same reasoning from the first part: The probability of [head, tail] in 2 flips is: which is the same as the probability of Itail, head] in z flips: $([-P) \cdot P$ The general picture of the algorithm is as follows: 7 a = toss - unfair - coin b = toss - unfair - coin

if [a == head b == head I or [a == head]: repeat if [a=head] and [b=+ail]: (with probability of output 1. if [a=fail] and [b=head]: (with probability of po(1-p).p The expected number of experiments to get THT or THI. A THE SECOND SEC Each experiment requires to flip the coin twice:

$$\frac{1}{2(1-P).P}$$
 \times $2 = \frac{1}{(1-P).P}$

Which is the arg. of coin fips.