

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Mathematisches Institut Prof. Dr. P. Müller

Klausur Freitag, 18. Februar 2011

$\begin{array}{c} \textbf{Analysis} \ \textbf{1} \\ \textbf{Klausur} \end{array}$

Nachname: Vorname:						
Matrikelnr.: Fachsemester:						
Studiengang: Nebenfach:						
	timme der Vo er Matrikelm		ng des Ergebr	nisses dieser l	Klausur unte	r Angabe
			on aus und le weis sichtbar	~		sch; legen Sie
Bitte überpr	üfen Sie, ob	Sie sechs Aı	u fgaben erh	alten haben.		
Schreiben Sie auf jedes B					oder grün. S	Schreiben Sie
	rwenden Sie	bitte die lee	eren Seiten a			r Platz nicht dies auf dem
Alle Lösunge	en oder Antw	orten müsser	n hinreichend	detailliert b	egründet sein	n.
Bitte achten deutlich durc			_	nur eine Lösu	ng abgeben;	streichen Sie
Sie haben 12	0 Minuten	Zeit, um die	Klausur zu	bearbeiten.		
			Viel Erfolg!			
1	2	3	4	5	6	\sum

Aufgabe 1. (6 Punkte)

Sei $f:]-1,1[\to \mathbb{R}$ definiert durch $f(x):=\ln(\frac{1+x}{1-x})$. Zeigen Sie, dass für alle $n \in \mathbb{N}$ gilt

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} + \frac{(n-1)!}{(1-x)^n}.$$

Aufgabe 2. (6 Punkte)

Entscheiden Sie, ob die Reihe

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}} \right)^{-n^{3/2}}$$

konvergent oder divergent ist.

Aufgabe 3. (6 Punkte)

Berechnen Sie den Real- und Imaginärteil der komplexen Zahlen

(a)
$$z_1 = \left(\frac{2+2i}{1-i}\right)^{10}$$
, (b) $z_2 = \ln(1+i)$,

wobei ln den Hauptzweig des natürlichen Logarithmus bezeichnet.

Aufgabe 4. (6 Punkte)

Für $n \in \mathbb{N}$ definieren wir die Funktion $f_n \colon [0,1] \to \mathbb{R}$ durch

$$f_n(x) := \begin{cases} 1 - nx, & \text{falls } 0 \le x < \frac{1}{n}, \\ 0, & \text{sonst.} \end{cases}$$

- $\begin{array}{c|c}
 1 & & \\
 f_n & & \\
 0 & \frac{1}{2} & & 1
 \end{array}$
- (a) Zeigen Sie: Die Funktionenfolge $(f_n)_n$ konvergiert punktweise. Geben Sie die Grenzfunktion f an.
- (b) Berechnen Sie $s_n := \sup_{x \in [0,1]} |f_n(x) f(x)|$ für $n \in \mathbb{N}$.
- (c) Konvergiert $(f_n)_n$ gleichmäßig gegen f?

Aufgabe 5. (6 Punkte)

Es seien $f, g: \mathbb{R} \to \mathbb{R}$ stetige Funktionen, und für alle $x \in \mathbb{Q}$ gelte f(x) = g(x).

Zeigen Sie: Es gilt f = g, also f(x) = g(x) für alle $x \in \mathbb{R}$.

Aufgabe 6. (6 Punkte)

Seien $\sum_{n=0}^{\infty} a_n z^n$ und $\sum_{n=0}^{\infty} b_n z^n$ zwei Potenzreihen mit Konvergenzradien r_1 bzw. r_2 . Der Konvergenzradius der Summen-Reihe

$$\sum_{n=0}^{\infty} (a_n + b_n) z^n$$

werde mit r bezeichnet. Zeigen Sie:

- (a) In jedem Fall gilt $r > \min(r_1, r_2)$.
- (b) Falls $r_1 < r_2$ ist, gilt $r = r_1$.
- (c) Man zeige an jeweils einem Beispiel, dass im Fall $r_1 = r_2 < \infty$ sowohl $r > r_1$ als auch $r = r_1$ vorkommen kann.

Aufgabe (1)

Sei $f:]-1,1[\to \mathbb{R}$ definiert durch $f(x) := \ln\left(\frac{1+x}{1-x}\right)$. Zeigen Sie, daß für alle $n \in \mathbb{N}$ gilt:

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} + \frac{(n-1)!}{(1-x)^n}$$

Beweis:

Zunächst ist f wohldefiniert:

$$x \in]-1, 1[\implies 1+x>0 \land 1-x>0 \implies \frac{1+x}{1-x}>0 \implies \ln\left(\frac{1+x}{1-x}\right) \text{ ist sinnvoll.}$$

Beweis der Behauptung durch Induktion über n:

Induktionsanfang n = 1:

 $\varphi: \mathbb{R} \setminus \{1\} \to \mathbb{R}; \ x \mapsto \frac{1+x}{1-x}$ ist als rationale Funktion differenzierbar. Mit der Quotientenregel folgt:

$$\varphi'(x) = \frac{(1-x)\cdot 1 - (1+x)\cdot (-1)}{(1-x)^2} = \frac{1-x+1+x}{(1-x)^2} = \frac{2}{(1-x)^2}$$

und

$$f'(x) = \frac{\text{Ketten-}}{\text{regel}} \quad \ln'(\varphi(x)) \cdot \varphi'(x) = \frac{1}{\varphi(x)} \cdot \varphi'(x)$$

$$= \frac{1-x}{1+x} \cdot \frac{2}{(1-x)^2} = \frac{2}{(1-x)(1+x)}$$
Partialbruch-
$$= \frac{1}{1+x} + \frac{1}{1-x} = (-1)^{1-1} \frac{(1-1)!}{(1+x)^1} + \frac{(1-1)!}{(1-x)^1}$$

Induktionsschritt $n \mapsto n+1$:

Induktions voraus setzung: Es gelte für ein $n \in \mathbb{N}$: $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} + \frac{(n-1)!}{(1-x)^n}$ d.h. $f^{(n)}$ ist als rationale Funktion differenzierbar, und es gilt mit der Quotientenregel:

$$f^{(n+1)}(x) \stackrel{\text{Def.}}{=} (f^{(n)})'(x)$$

$$\stackrel{\text{IV}}{=} (-1)^{n-1}(n-1)! \frac{(1+x)^n \cdot 0 - n \cdot (1+x)^{n-1}}{(1+x)^{2n}} + (n-1)! \frac{(1-x)^n \cdot 0 - n \cdot (1-x)^{n-1} \cdot (-1)}{(1-x)^{2n}}$$

$$= (-1)^n \frac{(n-1)! \cdot n}{(1+x)^{2n-(n-1)}} + \frac{(n-1)! \cdot n}{(1-x)^{2n-(n-1)}}$$

$$= (-1)^n \frac{n!}{(1+x)^{n+1}} + \frac{n!}{(1-x)^{n+1}} \quad \text{q.e.d.}$$

Entscheiden Sie. ob die Reihe

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}} \right)^{-n^{\frac{3}{2}}}$$

konvergent oder divergent ist.

Es darf ohne Beweis benutzt werden, daß die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n = \left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}$ konvergiert.

Beweis:

Mit dem Wurzelkriterium:

$$\sqrt[n]{\left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}} = \frac{1}{\left[\left(1 + \frac{1}{\sqrt{n}}\right)^{n^{\frac{3}{2}}}\right]^{\frac{1}{n}}} = \frac{1}{\left(1 + \frac{1}{\sqrt{n}}\right)^{\frac{n^{\frac{3}{2}}}{n}}} = \frac{1}{\left(1 + \frac{1}{\sqrt{n}}\right)^{n^{\frac{1}{2}}}} = \frac{1}{\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}}$$

Nach Voraussetzung ist die Folge $(a_n)_{n\in\mathbb{N}}=\left(\left(1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)_{n\in\mathbb{N}}$ konvergent gegen ein $a\in\mathbb{R}$,

und da $(a_{k^2})_{k\in\mathbb{N}}$ als Teilfolge von $(a_n)_{n\in\mathbb{N}}$ ebenfalls gegen a konvergiert, gilt:

$$a = \lim_{k \to \infty} a_{k^2} = \lim_{k \to \infty} \left(1 + \frac{1}{\sqrt{k^2}} \right)^{\sqrt{k^2}} = \lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k = e$$

Damit folgt also

$$\limsup_{n \to \infty} \sqrt[n]{\left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}} = \frac{1}{e} < 1 ,$$

da nach Übung für die Eulersche Zahl e gilt: e > 2.

Somit ist die Reihe nach dem Wurzelkriterium konvergent.

Beweis, daß die Folge $\left(\left(1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)_{n\in\mathbb{N}}$ konvergiert:

Sei $f(x) := \ln(1+x)$ für $x \in]-1, \infty[$. Dann ist für alle x > 0 f auf dem Intervall [0, x] stetig differenzierbar, und nach dem Mittelwertsatz gibt es ein $0 < \xi(x) < x$, so daß

$$\ln(1+x) - \ln(1+0) = f'(\xi(x)) \cdot x = \frac{1}{1+\xi(x)} \cdot x \implies \frac{\ln(1+x)}{x} = \frac{1}{1+\xi(x)}$$

Wegen $0 < \xi(x) < x$ gilt für $x \to 0$ auch $\xi(x) \to 0$, d.h.

$$\frac{1}{1+\xi(x)} \xrightarrow[x\downarrow 0]{} 1 \implies \lim_{x\downarrow 0} \frac{\ln(1+x)}{x} = 1$$

Insbesondere gilt dann für die Nullfolge $\left(\frac{1}{\sqrt{n}}\right)_{n\in\mathbb{N}}$, daß

$$1 = \lim_{n \to \infty} \frac{\ln\left(1 + \frac{1}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \sqrt{n} \ln\left(1 + \frac{1}{\sqrt{n}}\right) \implies$$

$$e = \exp(1) = \exp\left(\lim_{n \to \infty} \sqrt{n} \ln\left(1 + \frac{1}{\sqrt{n}}\right)\right) \stackrel{\exp}{=} \lim_{n \to \infty} \exp\left(\sqrt{n} \ln\left(1 + \frac{1}{\sqrt{n}}\right)\right)$$

$$\stackrel{\text{Def.}}{=} \lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}$$

Aufgabe (3)

Berechnen Sie den Real- und Imaginärteil der komplexen Zahlen

(a)
$$z_1 = \left(\frac{2+2i}{1-i}\right)^{10}$$
 (b) $z_2 = \ln(1+i)$

wobei In den Hauptzweig des natürlichen Logarithmus bezeichnet.

ad (a)

$$\frac{2+2i}{1-i} = 2 \cdot \frac{(1+i)^2}{(1-i)(1+i)} = 2 \cdot \frac{(1+i)^2}{1-i^2} = (1+i)^2 = 1+2i-1=2i$$

Damit folgt:
$$\left(\frac{2+2i}{1-i}\right)^{10} = (2i)^{10} = 2^{10} \cdot i^{10} = 2^{10} \cdot i^2 = -2^{10} = -1024$$

Also:
$$Re(z_1) = -2^{10} = -1024 \land Im(z_1) = 0$$
.

ad (b)

Wir benutzen die Polardarstellung komplexer Zahlen:

 $z \in \mathbb{C}_l := \{u \in \mathbb{C} \mid u \notin \mathbb{R}_{\leq}\} \implies$ es gibt eindeutig bestimmte r > 0 und $\varphi \in]-\pi,\pi[$, so daß $z = re^{i\varphi} = |z| \, e^{i\varphi}$ ist. Damit folgt für den Hauptzweig des Logarithmus:

$$ln(z) = ln(|z|) + i\varphi$$
 (mit $\varphi = arg(z)$)

In 1+i sind Realteil und Imaginarteil gleich, d.h. mit der Eulerschen Formel $e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)$ folgt mit $\arg(1+i)=\varphi$:

$$\cos(\varphi) = \sin(\varphi) = \frac{1}{2} \cdot \sqrt{2} \implies \varphi = \frac{\pi}{4}$$
, da ja $\varphi \in]-\pi,\pi[$.

Also:
$$\ln(1+i) = \ln(|1+i|) + i \cdot \frac{\pi}{4} = \ln(\sqrt{2}) + i \cdot \frac{\pi}{4} = \frac{1}{2}\ln(2) + i \cdot \frac{\pi}{4}$$
.

Somit:
$$\text{Re}(z_2) = \ln(\sqrt{2}) = \frac{1}{2}\ln(2) \quad \land \quad \text{Im}(z_2) = \frac{\pi}{4}$$

Für $n \in \mathbb{N}$ definieren wir die Funktion $f_n : [0,1] \to \mathbb{R}$ durch

$$f_n(x) := \left\{ \begin{array}{ll} 1 - nx & \text{falls } 0 \le x < \frac{1}{n} \\ 0 & \text{sonst} \end{array} \right\}$$

- (a) Zeigen Sie: Die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise. Geben Sie die Grenzfunktion f an.
- (b) Berechnen Sie $s_n := \sup_{x \in [0,1]} |f_n(x) f(x)|$ für $n \in \mathbb{N}$
- (c) Konvergiert $(f_n)_{n\in\mathbb{N}}$ gleichmäßig gegen f?

Skizze:

ad (a):

Für x = 0 ist für alle $n \in \mathbb{N}$: $f_n(x) = 1 \xrightarrow[n \to \infty]{} 1 \implies f(0) := 1$

Für $0 < x \le 1$: Nach Archimedes gibt es ein $N \in \mathbb{N}$ mit $N > \frac{1}{x}$, so daß für alle $n \ge N$: $0 < \frac{1}{n} < x$

Also nach Definition von $f_n: \forall n \geq N: f_n(x) = 0$, d.h. $f_n(x) \xrightarrow[n \to \infty]{} 0 \implies f(x) := 0$

Für die Grenzfunktion $f: [0,1] \to \mathbb{R}$ gilt also: $f(x) = \begin{cases} 1 & \text{falls } x = 0 \\ 0 & \text{falls } 0 < x \le 1 \end{cases}$

ad (b):

Es ist
$$f_n(x) - f(x) = \begin{cases} 1 - 1 = 0 & \text{für } x = 0 \\ f_n(x) & \text{für } x > 0 \end{cases} = \begin{cases} 0 & \text{für } x = 0 \\ 1 - nx & \text{für } 0 < x < \frac{1}{n} \\ 0 & \text{für } \frac{1}{n} \le x \end{cases}$$

Weil $0 < x < \frac{1}{n} \iff 0 > -x > -\frac{1}{n} \iff 0 > -nx > -1 \iff 1 > 1 - nx > 0$ folgt also: $|f_n(x) - f(x)| < 1$ für alle $x \in [0, 1] \implies \sup_{x \in [0, 1]} |f_n(x) - f(x)| \le 1$

Andererseits gilt für festes $n \in \mathbb{N}$: für alle $\mathbb{N} \ni k > n$ ist $0 < \frac{1}{k} < \frac{1}{n}$, also ist

$$1 \ge s_n = \sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \left| f_n(\frac{1}{k}) - f(\frac{1}{k}) \right| = 1 - n \cdot \frac{1}{k} \xrightarrow[k \to \infty]{} 1$$

Also gilt $s_n = 1$ für alle $n \in \mathbb{N}$.

ad (c):

Entweder:

Oder:

Wegen $f(\frac{1}{k}) = 0 \xrightarrow[k \to \infty]{} 0 \neq 1 = f(0)$ ist die Grenzfunktion f in 0 nicht stetig.

Andererseits sind alle Folgenterme f_n in [0,1] stetig: für $x \in]\frac{1}{n},1]$ als Nullfunktion, in $[0,\frac{1}{n}[$ als Polynom. Bleibt der Punkt $x = \frac{1}{n}$ zu untersuchen:

wegen $\lim_{x\uparrow\frac{1}{n}} f_n(x) = \lim_{x\uparrow\frac{1}{n}} (1-nx) \stackrel{\text{Polynom}}{=} 1 - n\frac{1}{n} = 0 = \lim_{x\downarrow\frac{1}{n}} 0 = \lim_{x\downarrow\frac{1}{n}} f_n(x)$ folgt nach Vorlesung die Stetigkeit von f_n auch im Punkte $x = \frac{1}{n}$, also ist f_n auf ganz [0,1] stetig.

Wäre nun f_n gleichmäßig konvergent gegen f, so wäre nach Vorlesung (Satz 3.33) auch die Grenzfunktion f stetig, was aber nicht der Fall ist. Also ist die Konvergenz nicht gleichmäßig.

Aufgabe (5)

Es seien $f,g:\mathbb{R}\to\mathbb{R}$ stetige Funktionen, und für alle $x\in\mathbb{Q}$ gelte f(x)=g(x).

Zeigen Sie: Es gilt f = g, also f(x) = g(x) für alle $x \in \mathbb{R}$.

Beweis:

Zu zeigen: $\forall x \in \mathbb{R} \setminus \mathbb{Q}$: f(x) = g(x)

Sei also $x \in \mathbb{R} \setminus \mathbb{Q}$; da \mathbb{Q} dicht in \mathbb{R} ist, gibt es eine Folge $(q_n)_{n \in \mathbb{N}}$ in \mathbb{Q} mit $q_n \xrightarrow[n \to \infty]{} x$

(zum Beispiel über die *b*-adische Darstellung $x = \eta \cdot \lim_{N \to \infty} \sum_{k=n_0}^{N} \frac{a_k}{b^k}$ mit $n_0 \in \mathbb{Z}, \ \eta \in \{-1, +1\}$

und $a_k \in \{0, 1, \dots, b-1\}$; wähle $q_n := \eta \cdot \sum_{k=n_0}^n \frac{a_k}{b^k} \in \mathbb{Q}$).

Da f, g stetig in x sind, folgt:

$$f(x) = f(\lim_{n \to \infty} q_n) = \lim_{\text{stetig}} f(q_n) = \lim_{n \to \infty} f(q_n) = \lim_{n \to \infty} g(q_n) = g(\lim_{n \to \infty} q_n) = g(x)$$

Alternativ:

Sei $a \in \mathbb{R}$ fest und $\epsilon > 0$ beliebig. Da f, g in a stetig sind gilt:

$$\exists \ \delta > 0 \ \forall \ x \in \mathbb{R} : |x - a| < \delta \implies |f(x) - f(a)| < \frac{\epsilon}{2} \ \text{und} \ |g(x) - g(a)| < \frac{\epsilon}{2}$$
 (**)

Nun ist \mathbb{Q} dicht in \mathbb{R} , d.h. es gibt ein $q \in \mathbb{Q} \cap]a - \delta, a + \delta[$,

also

$$|f(a)-g(a)| \underset{f(q)=g(q)}{\overset{q \in \mathbb{Q}}{=}} |f(a)-f(q)+g(q)-g(a)| \underset{\text{Ungl.}}{\overset{\Delta}{\leq}} |f(a)-f(q)| + |g(q)-g(a)| \underset{\star}{\overset{\epsilon}{\leq}} \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon ,$$
 da ja $|q-a| < \delta$.

Dies gilt für alle $\epsilon > 0$, also f(a) = g(a) q.e.d.

Seien $\sum_{n=0}^{\infty} a_n z^n$ und $\sum_{n=0}^{\infty} b_n z^n$ zwei Potenzreihen mit Konvergenzradien r_1 bzw r_2 .

Der Konvergenzradius der Summen-Reihe

$$\sum_{n=0}^{\infty} (a_n + b_n) z^n$$

werde mit r bezeichnet. Zeigen Sie:

- (a) In jedem Fall gilt $r \ge \min(r_1.r_2)$
- (b) Falls $r_1 < r_2$ ist, gilt $r = r_1$
- (c) Man zeige an jeweils einem Beispiel, daß im Fall $r_1 = r_2 < \infty$ sowohl $r > r_1$ als auch $r = r_1$ vorkommen kann.

ad (a):

Sei $z \in \mathbb{C}$ mit $|z| < \min(r_1, r_2) \le r_i$ (i = 1, 2); nach Definition des Konvergenzradius sind die Reihen $\sum_{n=0}^{\infty} a_n z^n$ und $\sum_{n=0}^{\infty} b_n z^n$ beide konvergent, also auch die Summen-Reihe, und es gilt:

$$\mathbb{C} \ni \sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n = \sum_{n=0}^{\infty} (a_n z^n + b_n z^n) = \sum_{n=0}^{\infty} (a_n + b_n) z^n.$$

Damit aber folgt: $r = \sup\{ |z| \mid z \in \mathbb{C} \land \sum_{n=0}^{\infty} (a_n + b_n) z^n \text{ konvergiert } \} \ge \min(r_1, r_2)$

ad (b):

Sei
$$r_1 < r_2 \implies r \ge \min(r_1, r_2) = r_1$$
.

Wäre $r_1 < r$, so gäbe es ein $q \in \mathbb{R}_>$ mit $r_1 < q < \min(r, r_2) \le r$, $r_2 \implies$

$$\sum_{n=0}^{\infty} (a_n + b_n)q^n$$
 und
$$\sum_{n=0}^{\infty} b_n q^n$$
 sind beide konvergent, da q innerhalb der Konvergenzkreise liegt.

Aus den Grenzwertsätzen für Folgen/Reihen folgt dann aber, daß auch die Differenzreihe

$$\sum_{n=0}^{\infty} \left[(a_n + b_n)q^n - b_n q^n \right] = \sum_{n=0}^{\infty} a_n q^n \text{ konvergiert, d.h. nach Definition des Konvergenzradius'}$$

muß gelten: $q = |q| \le r_1$ $r_1 < q$

ad (c): Es sei $r_1 = r_2 < \infty$

• Wähle $a_n := 1 = -b_n \implies r_1 = r_2 = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{1}} = \frac{1}{1} = 1 < \infty$ und

 $\sum_{n=0}^{\infty}(a_n+b_n)z^n=\sum_{n=0}^{\infty}0\cdot z^n \text{ konvergient für alle }z\in\mathbb{C}\text{ , hat also den Konvergenz radius }r=\infty>1=r_1\text{ .}$

• Wähle $a_n = 1 = b_n \stackrel{\text{siehe}}{\Longrightarrow} r_1 = r_2 = 1$ und $\sum_{n=0}^{\infty} (a_n + b_n) z^n = \sum_{n=0}^{\infty} 2 \cdot z^n$,

und mit $\limsup_{n\to\infty} \sqrt[n]{2} = 1$ folgt $r = 1 = r_1$.

 $(\text{Man beachte:} \ \ \forall \ 1 < 2 \leq n \ : \ 1 < \sqrt[n]{2} \leq \sqrt[n]{n} \xrightarrow[n \to \infty]{} 1 \overset{\text{Sandwich-}}{\underset{\text{Lemma}}{\Longrightarrow}} \sqrt[n]{2} \xrightarrow[n \to \infty]{} 1 \).$