${$\sf COM2004/3004}$$ Data Driven Computing

Week 4a: Linear Classifiers

Autumn Semester

Overview	2
Decision Boundaries	4
Analysis of Bayesian Classifiers	8
Linear Classifiers	18
Summary	23

Overview 2 / 23

Overview
Week 4 – this week
 □ Today: introducing linear classifiers □ Tutorial: examples Bayes classification, linear classifiers □ Lab Class: training and using a classifier with Python □ Lecture: the Perceptron linear classifier
Next Week
 □ Lecture: instance-based classifiers □ Lab Class: K-nearest neighbour classification with Python □ Lecture: more on instance-based classifiers, exam questions

2 / 23

Overview				
Linear classifiers				
 □ decision bound □ linear classifier □ Perceptron □ Perceptron alg □ classification b □ XOR problem 	gorithm			

Decision Boundaries

What is a decision boundary?

- □ Consider a 2-class and 2-feature problem.
 - e.g. classifying male vs. female using height and weight
- \square Consider the 2-D feature space
 - i.e. the plane showing weight on one axis and height on the other
- \square A classifier will output class ω_1 in some regions and class ω_2 in others.
- ☐ The line separating these regions is the decision boundary.
- The decision boundary is a property of the classifier.

4 / 23

Decision Boundaries

- □ Different types of classifier can draw different types of decision boundary.
- □ A classifier that can only draw straight line boundaries is called a linear classifier
- ☐ If the data sets can be separated by a straight line they are said to be linearly separable
- □ Linear classifiers can be used to classifier linearly separable data.
- □ Note,
 - in 2-D a linear decision boundary forms a straight line
 - in 3-D a linear decision boundary forms a flat plane
 - in N-D it forms a flat (N-1)-D hyperplane

6 / 23

Decision Boundaries

- $\ \square$ Consider the Bayesian classifiers with $p(x|\omega)$ modelled using Gaussian distributions that we discussed last week.
- ☐ Are they linear classifiers?
- ☐ To find out we need to examine their decision boundaries.
- ☐ For simplicity we will consider the 2-D case.

Video demo: Gaussians.mov

8 / 23

Bayesian Classifiers

 \square *M*-class classification task:

$$P(\omega_i|\boldsymbol{x}) - P(\omega_i|\boldsymbol{x}) = 0$$

is the surface separating the regions R_i and R_j

□ define a discriminant function:

$$g_i(\boldsymbol{x}) \equiv f(P(\omega_i|\boldsymbol{x}))$$

(note) $f(\bullet)$ can be any monotonic function, meaning that

$$P(\omega_i | \boldsymbol{x}) < P(\omega_j | \boldsymbol{x}) \iff g_i(\boldsymbol{x}) < g_j(\boldsymbol{x})$$

 \Box the decision test:

$$m{x}$$
 belongs to ω_i if $g_i(m{x}) > g_j(m{x}) \ \forall j \neq i$

 \Box the decision boundary between class i and j: $g_i(x) - g_j(x) = 0$

Multivariate normal case

 \square pdf for a class ω_i :

$$p(\boldsymbol{x}|\omega_i) = \frac{1}{(2\pi)^{\frac{l}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i)\right)$$

with the mean μ_i and the covariance Σ_i

□ a discriminant function for the Bayesian classifier:

$$g_i(\boldsymbol{x}) = \ln P(\omega_i | \boldsymbol{x})$$

= $-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i) + c_i + \ln P(\omega_i) - \ln p(\boldsymbol{x})$

with some constant c_i

10 / 23

Bayesian Classifiers

□ the discriminant function:

$$g_{i}(\boldsymbol{x}) = \ln P(\omega_{i}|\boldsymbol{x})$$

$$= \ln \frac{p(\boldsymbol{x}|\omega_{i})P(\omega_{i})}{p(\boldsymbol{x})}$$

$$= \ln p(\boldsymbol{x}|\omega_{i}) + \ln P(\omega_{i}) - \ln p(\boldsymbol{x})$$

$$= -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{i}) \underbrace{-\frac{l}{2}\ln(2\pi) - \frac{1}{2}\ln|\Sigma_{i}|}_{c_{i}}$$

$$+ \ln P(\omega_{i}) - \ln p(\boldsymbol{x})$$

- logarithmic function $\ln(\bullet)$ is monotonic
- can ignore $\ln p(x)$ from the calculation
- can also ignore $\ln P(\omega_i)$ for equiprobable classes

Minimum distance classifiers

□ the discriminant function for equiprobable classes, with the same covariance matrix for each class:

$$g_i(\boldsymbol{x}) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i)$$

- if $\Sigma=\sigma^2I$: maximum $g_i({m x})$ implies the minimum Euclidean distance: $d_e=||{m x}-{m \mu}_i||$
- non-diagonal Σ : maximum $g_i({m x})$ implies the minimum Mahalanobis distance:

$$d_m = \left((\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i) \right)^{\frac{1}{2}}$$

12 / 23

Example

 \square in a two-class two-dimensional classification task, feature vectors are generated by two normal distributions with the mean vectors $\mu_1=(0,0)^T$ and $\mu_2=(3,3)^T$, sharing the same covariance matrix

$$\Sigma = \left(\begin{array}{cc} 1.1 & 0.3 \\ 0.3 & 1.9 \end{array}\right)$$

- \Box Consider the point $(1.0, 2.2)^T$
- \square $(1.0,2.2)^T$ is closer to $\mu_2=(3,3)^T$ using the Euclidean distance

14 / 23

Bayesian Classifiers

Example (continue)

$$\begin{split} d_m^2(\boldsymbol{\mu}_1, \boldsymbol{x}) &= (\boldsymbol{x} - \boldsymbol{\mu}_1)^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_1) \\ &= (1.0, 2.2) \begin{pmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{pmatrix} \begin{pmatrix} 1.0 \\ 2.2 \end{pmatrix} = 2.952 \\ d_m^2(\boldsymbol{\mu}_2, \boldsymbol{x}) &= (\boldsymbol{x} - \boldsymbol{\mu}_2)^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_2) \\ &= (-2.0, -0.8) \begin{pmatrix} 0.95 & -0.15 \\ -0.15 & 0.55 \end{pmatrix} \begin{pmatrix} -2.0 \\ -0.8 \end{pmatrix} = 3.672 \end{split}$$

hence $(1.0,2.2)^T$ is assigned to the class ω_1

Considering the equal covariance case

$$\begin{split} g_j(\boldsymbol{x}) &= -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_j)^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_j) \\ g_k(\boldsymbol{x}) &= -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k) \end{split}$$

 \square The decision boundary is given by

$$g_i(\boldsymbol{x}) = g_k(\boldsymbol{x})$$

 \square The squared terms in x will cancel leaving something of the form

$$\boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + C = 0$$

☐ This is the equation of a straight line - i.e. when the covariances are equal the decision boundaries become

16 / 23

Linear Classifiers

A linear classifier

- □ a linear classifier is a mapping which partitions feature space using a linear function (a straight line, or a hyperplane)
- ☐ it is one of the simplest classifiers we can imagine
 - in the 2-dimensional feature space the decision boundary, separating the two classes, is a straight line

Linear Classifiers

- $\hfill\Box$ a 2-class task with ω_1 and ω_2 in the l-dimensional feature space
- □ decision hyperplane

$$g(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + w_0 = 0$$

where

$$m{x} = \{x_1, x_2, \dots, x_l\}^T$$
 feature vector $m{w} = \{w_1, w_2, \dots, w_l\}^T$ weight vector w_0 threshold

(note)
$$\mathbf{w}^T \mathbf{x} = w_1 x_1 + w_2 x_2 + \ldots + w_l x_l$$

18 / 23

Linear Classifiers

- \square e.g. for a 2-D problem
- □ decision boundary is a straight line defined by

$$g(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_0 = 0$$

i.e.

$$x_2 = -\frac{w_1}{w_2}x_1 - \frac{w_0}{w_2}$$

- □ How many parameters?
 - 2-D 2-class Gaussian classifier? $(3 + 2) \times 2 + 1 = 11$
 - 2-D 2-class linear classifier? 3 ... really 2?

Linear Classifiers

 $\hfill\Box$ $\,$ suppose that ${\boldsymbol x}_1$ and ${\boldsymbol x}_2$ are on the plane $g({\boldsymbol x})=0$:

$$\boldsymbol{w}^T(\boldsymbol{x}_1 - \boldsymbol{x}_2) = 0 \quad \forall \boldsymbol{x}_1, \boldsymbol{x}_2$$

 $\hfill\Box$ the weight vector ${m w}$ is orthogonal to the decision hyperplane because the difference ${m x}_1-{m x}_2$ lies on the plane

20 / 23

Linear Classifiers

figure shows case where $w_1 > 0$; $w_2 > 0$; $w_0 < 0$

Linear Classifiers

in the figure

$$d = \frac{|w_0|}{||\boldsymbol{w}||}; \quad z = \frac{|g(\boldsymbol{x})|}{||\boldsymbol{w}||}$$

- $||{m w}|| = \sqrt{w_1^2 + w_2^2}$ in the 2-dimensional case
- -|g(x)| is a measure of the Euclidean distance of the point $x=\{x_1,x_2\}$ from the plane
- on one side of the plane g(x) takes positive values; negative on the other side
- the plane passes through the origin when $w_0=0$

(note) $|| \bullet ||$ norm; $| \bullet |$ absolute value, determinant

22 / 23

Summary 23 / 23

Summary

- ☐ Linear classifiers have linear decision boundaries
- ☐ We can analyse decision boundaries using discriminant functions
- ☐ Gaussian classifiers aren't in general linear...
 - ... but they become so when all class share the same covariance matrix
- □ A linear classifier can be expressed using an vector orthogonal to the boundary and an offset
 - ... 3 parameters, but only really 2 free parameters
- □ Next lecture we'll see ways of learning the parameters from labelled data.