Building a High-Resolution Earthquake Catalog from Raw Waveforms: A Step-by-Step Guide Template Matching

Eric Beaucé¹

¹Columbia University, Lamont-Doherty Earth Observatory, New York

April 14, 2025

Outline for section 1

1. Introduction

- Demonstration
 - Notebook 1
 - Notebook 2
 - Notebook 3 (bonus)

Earthquake signals often come in "families"

Family = near-repeats of the same waveform.

Can we use the similarity of these signals to our advantage to design an earthquake detection algorithm?

Earthquake signals often come in "families"

Family = near-repeats of the same waveform.

Can we use the similarity of these signals to our advantage to design an earthquake detection algorithm?

Looking for repeating patterns (template matching)

Similar earthquakes share same mechanism and location

Seismic signals result from the combination of: source + propagation (including local site effects) + instrument response

Similar earthquakes share same mechanism and location

Seismic signals result from the combination of: source + propagation (including local site effects) + instrument response

$$\underbrace{u(t;r)}_{seismogram} = \underbrace{S(t;\xi,t_0)}_{source} * \underbrace{G(t-t_0,r-\xi)}_{propagation} * \underbrace{I(t)}_{instrument}$$
 (1)

- t: recording time.
- r: recording location.
- ξ : source location.
- t₀: source origin time.

Similar earthquakes share same mechanism and location

Seismic signals result from the combination of: source + propagation (including local site effects) + instrument response

$$\underbrace{u(t;r)}_{\text{seismogram}} = \underbrace{S(t;\xi,t_0)}_{\text{source}} * \underbrace{G(t-t_0,r-\xi)}_{\text{propagation}} * \underbrace{I(t)}_{\text{instrument}} \tag{1}$$

- t: recording time.
- r: recording location.
- ξ : source location.
- t₀: source origin time.
 - ⇒ Similar waveforms and moveouts = Similar source location and mechanism

Measuring waveform similarity

Template matching uses the Pearson correlation coefficient, CC, to measure the similarity between the template waveforms, T, and the continuous seismograms, u:

Measuring waveform similarity

Template matching uses the Pearson correlation coefficient, CC, to measure the similarity between the template waveforms, T, and the continuous seismograms, u:

$$CC(t) = \sum_{s,c} w_{s,c} \sum_{i=1}^{N} \frac{T_{s,c}^{*}(n\Delta t)u_{s,c}^{*}(t + \tilde{\tau}_{s,c} + n\Delta t)}{\sqrt{\sum_{i=1}^{N} T_{s,c}^{*}^{2}(n\Delta t)\sum_{i=1}^{N} u_{s,c}^{*}^{2}(t + \tilde{\tau}_{s,c} + n\Delta t)}}$$
(2)

- Δt : Sampling time.
- $\tilde{\tau}_{s,c}$: Moveout on station s and channel c.
- $T_{s,c}^*$: Centered template waveform, $T_{s,c}^* = T_{s,c} \frac{1}{N} \sum_{i=1}^{N} T_{s,c}(n\Delta t)$.
- $u_{s,c}^*(t)$: Centered continuous seismogram, $u_{s,c}^*(t) = u_{s,c}(t) \frac{1}{N} \sum_{i=1}^N u_{s,c}(t+n\Delta t)$.
- $w_{s,c}$: Weight, e.g., $w_{s,c} = \frac{1}{NN}$.

$$CC(t) = +1$$
 perfect match

$$CC(t) = 0$$
 nothing in commmon

$$CC(t) = 0$$
 $CC(t) = -1$ nothing in commmon perfect match with inverse polarity

Measuring waveform similarity

Template matching uses the Pearson correlation coefficient, CC, to measure the similarity between the template waveforms, T, and the continuous seismograms, u.

$$CC(t) = \sum_{s,c} w_{s,c} \sum_{t=1}^{N} \frac{T_{s,c}^*(n\Delta t)u_{s,c}^*(t + \tilde{\tau}_{s,c} + n\Delta t)}{\sqrt{\sum^{N} T_{s,c}^*(n\Delta t)\sum^{N} u_{s,c}^*(t + \tilde{\tau}_{s,c} + n\Delta t)}}$$
(2)

Template matching is extremely computation intensive!

 \rightarrow requires **High Performance Computing** \leftarrow

-
$$u_{s,c}(t)$$
: Centered continuous seismogram, $u_{s,c}(t) = u_{s,c}(t) - \frac{1}{N} \sum_{i=1} u_{s,c}(t + n\Delta t)$.

-
$$w_{s,c}$$
: Weight, e.g., $w_{s,c} = \frac{1}{N_s N_c}$.

$$CC(t) = +1$$
 perfect match

$$CC(t) = 0$$
 nothing in commmon

$$CC(t) = 0$$
 $CC(t) = -1$ nothing in commmon perfect match with inverse polarity

Why template matching? And when can I use it?

WHY?

- Searching for a specific seismic waveform allows to find very small events.
- Event location is known approximately, even for very small events.

WHEN?

- Requires a starting catalog!
- For example: densify a regional catalog or a deep learning catalog.

Next: Implementing template matching with Fast Matched Filter

Next: Implementing template matching with Fast Matched Filter

Outline for section 2

1. Introduction

- 2. Demonstration
 - Notebook 1
 - Notebook 2
 - Notebook 3 (bonus)

Hands-on demonstration with Jupyter notebooks

- Notebook 1: Introduction to template matching with a single template.
- Notebook 2: Application with multiple templates over a single day.
- Notebook 3 (bonus): Common issue with detection threshold.

Github repository:

https://github.com/AI4EPS/Earthquake_Catalog_Workshop

Example of template matching with a single template

https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_one_template/

Github repository:

https:

//github.com/AI4EPS/Earthquake_Catalog_Workshop/blob/main/notebooks/tm_one_template.ipynb

Outline of tm_one_template.ipynb:

- Step 1: Build the template event from catalog data.
- Step 2: Compute the time series of correlation coefficients with Fast Matched Filter.
- Step 3: Choose and apply a detection threshold.
- Step 4: Extract detected events, build catalog and plot waveforms.
- Step 5: Compute relative magnitudes.

Step 1: Build template from catalog

 $\verb|https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_one_template/\#build-template/property. The property of t$

Step 2: Compute time series of correlation coefficients

https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_one_template/#run-fmf

Compute CC(t)

Gaussian distribution: 68.2% in $\pm 1\sigma$, 95.4% in $\pm 2\sigma$, ..., $(100 - 1.22 \times 10^{-13})$ in $\pm 8\sigma$

Step 4: Extract information on detected events

 $https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_one_template/\#set-detection-threshold-and-find-events$

- Event timing.
- Peak waveform amplitude.
- Approximately share template location.

Relative magnitudes between events sharing similar location and focal mechanism:

$$M_r = M_{ref} + \sum_{i} \log_{10} \frac{A_i}{A_{ref}}$$
 (3)

multiple seismometers/channels

Example of template matching with multiple templates

https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_multiple_templates/

Github repository:

https://github.com/AI4EPS/Earthquake_Catalog_Workshop/blob/main/notebooks/tm_multiple_templates.ipynb

Outline of tm_multiple_templates.ipynb:

- Build the template events from catalog data.
- Compute the time series of correlation coefficients with Fast Matched Filter.
- Choose and apply a detection threshold.
- Extract detected events, build catalog and plot waveforms.
- Find and remove events detected by multiple templates.
- Compute relative magnitudes.

All the steps are similar to the first notebook, except at the end...

Flag and remove redundant detections I (from example with 91 templates)

 $https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-template$

Inter-event time:

Time between *any* two consecutive events.

Return time:

Time between two consecutive events detected by same template.

Flag and remove redundant detections I (from example with 91 templates)

 $\verb|https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-temp$

Inter-event time:

Time between any two con-

secutive events

Criteria to identify redundant detections:

- Inter-event time shorter than Δt (e.g., 4 s).
- Inter-event distance smaller than Δr (e.g., 15 km).
- Inter-template waveform similarity greater than S (e.g., 0.1).

Time between two consecutive events detected by same template.

Flag and remove redundant detections II (from example with 91 templates)

 $https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_workshop/notebook$

Inter-event time:

Time between *any* two consecutive events.

Return time:

Time between two consecutive events detected by same template.

Flag and remove redundant detections II (from example with 91 templates)

 $https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/\#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-the-catalog_workshop/notebooks/tm_multiple_templates/#de-lumping-template$

937 templates $\rightarrow \approx$ 3200 detected events

Gutenberg-Richter law:

$$\log_{10} N(m \ge M) = a - bM, \tag{4}$$

for magnitudes above M_c , the magnitude of completeness.

Run with 937 templates: Comparison against deep learning catalog

 $\verb|https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_multiple_templates/\#compare-with-deep-learning-catalog_tolder-with-deep-$

Run with 937 templates: Comparison against deep learning catalog

 $\verb|https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_multiple_templates/\#compare-with-deep-learning-catalog_tolder-with-deep-$

Template matching allows to:

- detect smaller events,
- better perform phase association under high seismicity rates.

Example of deffective detection threshold in template matching (BONUS)

https://ai4eps.github.io/Earthquake_Catalog_Workshop/notebooks/tm_issues_w_detection_threshold/

Github repository:

https://github.com/AI4EPS/Earthquake_Catalog_Workshop/blob/main/notebooks/tm_issues_w_detection_threshold.ipynb

Outline of tm_issues_w_detection_threshold.ipynb:

- Build the template events from catalog data.
- Introduce gaps in the data.
- Compute the time series of correlation coefficients with Fast Matched Filter.
- Choose and apply a detection threshold, illustrate gap-induced threshold bias.