ESTUDIO PREVIO SESIÓN 6

a. Circuito 1a

b. Circuito 1b

Simulación:

c.

Comparación entre valores simulados y calculados teóricamente:

Simulación: Vout / Vin= $1.98 / 998.54 \times 10^{-3} = 2 \text{ V}$

Teóricos

Como se puede observar, los cálculos teóricos coinciden con los simulados.

d. Circuito 2

Filtro paso bajo

f. Al ser un AO, podemos decir que I+=I-=0A. Analizamos mediante la Ley de Nodos de Kirchhoff.

I3 = I4 || I2 = I1 \rightarrow 0-V_/R1=V_-VL/R2 \rightarrow V3-V₊/RL=V₊-0/Zc || Calculamos cuánto vale V+ despejando en la segunda ecuación \rightarrow V₊ =V3*Zc/Zc+RL || Sustituimos V₋ en la primera ecuación por el valor calculado para V₊ || Una vez sustituido V₋ despejamos VL/V3 para obtener la ganancia.

 $Av=VL/V3 \rightarrow R1+R2/R1+R1*RL*jwC$, su módulo es:

$$|Av| = R1 + R2/VR1^2 + (R1*RL*jwC)^2$$

Como es un filtro paso bajo, sabemos que la ganancia máxima se dará para la frecuencia mínima, que es igual a 0.

$$w \rightarrow 0 \mid \mid |Av| = R2 + R1/R1 \rightarrow |Av|_{max} = 2V$$

Calculamos la frecuencia de corte:

 $|Av(wc)| = |Av| max/v2 = 2/v2 \rightarrow Vemos para que w se cumple que la ganancia tenga el valor anterior, esa será la frecuencia de corte.$ $R1+R2/vR1²+(R1*RL*jwC)²=2/v2. Despejando valores y sustituyendo, obtenemos que w=2126rad/s <math>\rightarrow$ w=2*pi*f | | f=339Hz.

Buscamos los 3dB en la gráfica para la frecuencia de corte

Observamos que los valores teóricos coinciden con los simulados.

g. Circuito 3

Filtro paso alto

La tensión que entra en + es la misma que en el -, por ello podemos calcular VA. Utilizamos la Ley de Nodos de Kirchoff para calcular i1.

$$-VA/R1=VA-VH/R2 | | 10^{-3}VA-10^{-3}VH \rightarrow VA = VH / 2$$

I2 es la misma para Rh y Zch

V3-VA/Zch=VA/RH \rightarrow V3/Zch=VA(1/RH+1/Zch) \rightarrow V3/Zch=VL/2(1/Rh+1/Zch) \rightarrow VL/V3=2/Zch(1/RH+1/Zch) = 1/Zch/RH+1 = 2/1+jwCRh \rightarrow Av = VL/V3 = 2/(1+jwCRh)

 $|Av|=(V2)^2/(V1+(wCRh)^2 \rightarrow 2/V1+(wCRh)^2 | | Calculamos frecuencia de corte: <math>|Av|_{max}/V2=2/(V1+(wCRH)^2) | | 2/V2=2/(V1+(2*pi*f*10*10-9*4700)^2)$

Despejamos f y obtenemos que f = 3386,27 Hz = 3,4KHz

Comparamos con los siguientes valores simulados y observamos que coinciden. Buscando los 3dB en la gráfica.

