Chapter 22: Elementary Graph Algorithms IV

About this lecture

Review of Strongly Connected
 Components (SCC) in a directed graph

 Finding all SCC
 (i.e., decompose a directed graph into SCC)

Mutually Reachable

- Let G be a directed graph
- Let u and v be two vertices in G
- Definition: If u can reach v (by a path) and v can reach u (by a path), then we say u and v are mutually reachable
- We shall use the notation u ↔ v to indicate u and v are mutually reachable
- Also, we assume $u \leftrightarrow u$ for any node u

Strongly Connected Components

- Let V_1 , V_2 , ..., V_k denote the partitions of a graph G
- Each V_i is called a strongly connected component (SCC) of G (i.e. vertices in V_i are mutually reachable)

e.g.,

Property of SCC

- Let G = (V, E) be a directed graph
- Let G^T be a graph obtained from G by reversing the direction of every edge in G
 - \rightarrow Adjacency matrix of G^T
 - = transpose of adjacency matrix of G
- · Theorem:
 - G and G^T has the same set of SCC's

Property of SCC

- Let V_1 , V_2 , ..., V_k denote SCC of a graph G
- · Let G^{SCC} be a simple graph obtained by contracting each V_i into a single vertex v_i
 - We call G^{SCC} the component graph of G

Property of GSCC

- Theorem: GSCC is acyclic
- Proof: (By contradiction) If G^{SCC} has a cycle, then there are some vertices v_i and v_j with $v_i \leftrightarrow v_j$ By definition, v_i and v_j correspond to two distinct SCC V_i and V_i in G. However, we see that any pair of vertices in Vi and Vi are mutually reachable > contradiction

Property of GSCC

Suppose the DAG
 (directed acyclic graph) on
 the right side is the
 GSCC of some graph G

- · Now, suppose we perform DFS on G
 - let u = node with largest finishing time
- Question: Which SCC can u be located?
 (see next Lemma)

Property of GSCC

Lemma: Consider any graph G. Let G^{SCC} be its component graph. Suppose V is a vertex in G^{SCC} with at least one incoming edge. Then, the node u finishing last in any DFS of G cannot be a vertex of the SCC corresponding to V

Proof

- Let v = SCC corresponding to V
- Since V has incoming edge, there exists W such that (W, V) is an edge in G^{SCC}

- In the next two slides, we shall show that some node in SCC(W) must finish later than any node in SCC(V)
 - · Consequently, u cannot be in SCC(V)

Proof

```
Let x = 1st node in SCC(W)
discovered by DFS

Let y = 1st node in SCC(V)
discovered by DFS

Let z = last node in SCC(V)
discovered by DFS

// Note: z may be the same as y
```

Inside G

By white-path theorem, we must have

$$d(y) \le d(z) < f(z) \le f(y)$$

Proof

If
$$d(x) < d(y)$$

- then y becomes x's descendant (by white-path)
 - \rightarrow f(z) \leq f(y) < f(x)

If
$$d(y) < d(x)$$

 since x cannot be y's descendant (otherwise, they are in the same SCC)

- \rightarrow d(y) < f(y) < d(x) < f(x)
- \rightarrow f(z) \leq f(y) < f(x)

Inside G

Finding SCC

- So, we know that u (last finished node of G) must be in an SCC with no incoming edges
- · Let us reverse edge directions, and start DFS on G^{T} from u
- Question: Who will be u's descendants??

Finding SCC

• Note that nodes in the SCC containing u cannot connect to nodes in other SCCs in G^T

 By white-path theorem, the descendants of u in G^T must be exactly those nodes in the same SCC as u

Finding SCC

- Once DFS on u inside G^T has finished, all nodes in the same SCC as u are finished
 - \rightarrow Any subsequent DFS in G^T will be made as if this SCC was removed from G^T
- Now, let u' be the remaining node in G^T whose finishing time (in DFS in G) is latest
 - Where can u' be located?
 - Who will be the descendents of \mathbf{u}' if we perform DFS in G^T now?

 Our observations lead to the following algorithm for finding all SCCs of G:

Finding-all-SCC(G) {

- 1. Call DFS(G) to compute finish times u.f for each vertex u;
- 2. Construct G^{T} ;
- 3. Call (G^T) from u.f in decreasing order;
- 4. Output the vertices of each tree in the depth-first forest formed in line 3 as a separate SCC

Correctness & Performance

- The correctness of the algorithm can be proven by induction
 - (Hint: Show that at each sub-search in Step 3, u is chosen from an SCC which has no outgoing edges to any nodes in an "unvisited" SCC of G^T .
 - → By white-path theorem, exactly all nodes in the same SCC become u's descendants)
- Running Time: O(|V|+|E|) (why?)

Practice at home

• Exercises: 22.5-1, 22.5-3