Survey Analysis week 41 "R practical – putting it all together"

© Peter Lugtig

Today

- Discuss take home exercise
 - Your adopted survey
 - How to stratify?
 - How to cluster?
- Set of class exercises

Which mode do I want to use?

What kind of sampling frame info?
- address, tel, e-mail

Class exercises

- 1. Other statistics
- 2. Hurvitz-Thompson estimator
 - Design weights
 - Inclusion robabilities
- 3. Stratified cluster samples

Extra slides

Not discussed in class, but in case you want to know the end of the story of the "student" sample...

Horvitz-Thompson estimation

- We discussed SRS, stratified and cluster sampling
 - With and without replacement
 - Equal + unequal probabilities
 - All with slighlty different formulas
- Horvitz and Thompson (1952) designed a general framework for inference for random (probability surveys)
 - **For me**: $\hat{y}_{HT} = \frac{1}{N} \sum_{i \in S} \frac{y_i}{\pi_i} = \frac{1}{N} \sum_{i=1}^{N} a_i \frac{Y_i}{\pi_i}$
 - π_i = inclusion probability of individual i,
 - a_i=1: in sample. a_i=0, not selected
 - S: all individuals in sample

HT-estimation – a unifying framework...

$$\hat{y}_{HT} = \frac{1}{N} \sum_{i \in S} \frac{y_i}{\pi_i} = \frac{1}{N} \sum_{i=1}^{N} a_i \frac{Y_i}{\pi_i}$$
 design-based sampling methods

- SRS equal probabilities: π_i = equal
- Stratified: π_i depends on strata selection
- One-stage cluster: π_i depends on cluster selection
- Two-stage (and more complex): cluster and withincluster

All you need is π_i , for every individual on your sampling frame

Horvitz Thompson: stratified

Sample n1 out of N1, n2 out of N2

$$\hat{y}_{HT} = \frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}} = \frac{\sum_{i=1}^{n_{1}} \frac{N_{1}}{n_{1}} y_{1i} + \sum_{i=1}^{n_{2}} \frac{N_{2}}{n_{2}} y_{2i}}{\sum_{i=1}^{n_{1}} \frac{N_{1}}{n_{1}} + \sum_{i=1}^{n_{2}} \frac{N_{2}}{n_{2}}}$$

$$\hat{y}_{HT} = \frac{N_1 \overline{y}_1 + N_2 \overline{y}_2}{N_1 + N_2} = \frac{N_1}{N} \overline{y}_1 + \frac{N_2}{N} \overline{y}_2$$

Our recurring example

- We would like to do a survey among all students at Utrecht University
 - Population = 20.000
 - RQ: Interested in differences in grades and student happiness between programmes
 - approx. 49 BA programmes and 150 MA programmes
 - Limited budget (cannot do census) for about n=1000
- This week:

What if we combine clustering and stratification?

Example – 150 programmes (Ba/MA)

simulated data

- Student grades (y)
- 200 programmes (x)
 - 50 BA, n=280 each
 - 150 MA, n=40 each

- R-code is available on Blackboard
- Population mean:6.52

Stratified cluster sample

Stratify on programme (2) 8 clusters in each (can also vary) Random sample per cluster PPS:

• sample with p=.4

dataclustersrs\$V2

Master

16 clusters

For BA:

Total n=1000 out of population 20000

Variance estimation

- How do we calculate variances.
- Alternative: Horvitz-Thompson estimator
 - Stage 1: stratify
 - Stage 1: cluster
 - Stage 2: Select individuals

dataclustersrs\$V2

- 🖶 Master
- Weights:
- Stage 2: per cluster:
 - Wt|s,master = 15 out of 40 -> 2.5
 - Wt|s,Bachelor = 112 out of 280 -> 2.5

Variance estimation using weights

- Weights:

- Stage 2: per cluster:
 - Wt|s,master = 15 out of 40 -> 2.5
 - Wt|s,Bachelor = 112 out of 280 -> 2.5
- Stage 1: clusters out of strata
 - Wt|s,master = 8 out of 150 -> 18.75
 - Wt|s,Bachelor = 8 out of 50 -> 6,25

Variance estimation – constructing weights

- Weights:
- Stage 2: per cluster:
 - Wt|s,master = 15 out of 40 -> 2.5
 - Wt|s,Bachelor = 112 out of 280 -> 2.5
- Stage 1: clusters out of population
 - Wt|s,master = 8 out of 150 -> 18.75
 - Wt|s,Bachelor = 8 out of 50 -> 6,25
- Total weight
 - Wt|s,master = 2.5 * 18.75 -> 46.875
 - Wt|s,Bachelor = 2.5 * 6.25 -> 18.75
- Rescaled weight
 - Wt|s,master = 46.875/mean(Wt) = 2,42
 - Wt|s,Bachelor = 18.75/mean(Wt)= 0,81

Variance estimation in R – identical results

Weights

- The study doesn't stop at sampling
 - nonresponse weights (see week 44,45)
- Variance in weights indication of difference with perfect SRS design without nonresponse
 - In SRS -> Wi=1, Var(weights)=0.
 - In our design -> Var(weights)=.27
 - Likely in our design with NR: Var(weights) >.27
 - Variance inflation
- Can trim weights if they are large (rescaled weights >3 or 5)
 - Bias becomes larger
 - Variance lower -> precision higher
 - Goal is to Minimize Mean Square Error (bias² + variance)

Weighted graphs (using ggplot2)

Without weights

With weights

 Heavier mass in upper tail (high weights for MA

Next weeks:

- Next week:
 - Last week about sampling: model assisted estimation
 - Design based ----- model-based
 - Ratio and regression estimation
 - Stuart 71-90
 - Finish class exercises today
 - Take home exercise:
 - Specify your survey design in R
 - In two weeks: class-free week
 - Assignment 1 online tonight
 - Deadline: 20 October 17:00