2. Osnovni koncepti

Strojno učenje 1, UNIZG FER, ak. god. 2021./2022.

Jan Šnajder, natuknice s predavanja, v1.6

1 Primjena algoritma strojnog učenja

- 1. Priprema i analiza podataka
- 2. Opcionalno: Označavanje podataka za učenje i ispitivanje
- 3. Ekstrakcija značajki
- 4. Opcionalno: Redukcija dimenzionalnosti
- 5. Odabir modela
- 6. Učenje modela
- 7. Vrednovanje modela
- 8. Dijagnostika i ispravljanje
- 9. Instalacija

2 Primjeri, hipoteza, model

- Primjer je vektor značajki: $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$
- \mathcal{X} je ulazni prostor (prostor primjera); \mathcal{Y} je skup oznaka
- Skup označenih primjera: $\mathcal{D} = \left\{ (\mathbf{x}^{(i)}, y^{(i)}) \right\}_{i=1}^N \subseteq \mathcal{X} \times \mathcal{Y}$

- Hipoteza funkcija koja primjerima dodijeljuje oznake: $h: \mathcal{X} \to \mathcal{Y}$
- Binarna klasifikacija: $h: \mathcal{X} \to \{0, 1\}$

- Hipoteza je definirana do na parametre θ : pišemo $h(\mathbf{x}; \theta)$
 - Regresija u $\mathcal{X} = \mathbb{R}$: $h(x; \theta_0, \theta_1) = \theta_1 x + \theta_0$
 - Klasifikacija pravcem u $\mathcal{X} = \mathbb{R}^2$: $h(x_1, x_2; \theta_0, \theta_1, \theta_2) = \mathbf{1}\{\theta_1 x_1 + \theta_2 x_2 + \theta_0 \ge 0\}$ gdje $\mathbf{1}\{P\} = \begin{cases} 1 & \text{ako } P \equiv \top \\ 0 & \text{inače} \end{cases}$
- Model skup hipoteza parametriziranih s θ : $\mathcal{H} = \{h(\mathbf{x}; \theta)\}_{\theta}$
- ullet Učenje (treniranje) modela pretraživanje skupa ${\mathcal H}$ za najboljom hipotezom

3 Empirijska pogreška i funkcija gubitka

- Empirijska pogreška $E(h|\mathcal{D})$ iskazuje netočnost hipoteze h na skupu podataka \mathcal{D}
 - Pogreška klasifikacije: $E(h|\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} \{h(\mathbf{x})^{(i)} \neq y^{(i)} \}$
- ullet Funkcija gubitka ($loss\ function$) $L(y,h(\mathbf{x}))$ mjeri pogrešku na jednom primjeru
 - Gubitak nula-jedan (zero-one loss): $L(y, h(\mathbf{x})) = \mathbf{1}\{h(\mathbf{x})^{(i)} \neq y^{(i)}\}$
- ullet Empirijska pogreška je **očekivana vrijednost** funkcije gubitka na skupu $\mathcal D$

4 Tri komponente algoritma strojnog učenja

- 1. Model: $\mathcal{H} = \{h(\mathbf{x}; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$
- 2. Funkcija pogreške: $E(h|\mathcal{D})$ odnosno $E(\theta|\mathcal{D})$
- 3. Optimizacijski postupak koji minimizira empirijsku pogrešku:

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} E(h|\mathcal{D})$$

odnosno:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} E(\theta|\mathcal{D})$$

5 Složenost modela

- U idealnom slučaju, $E(h|\mathcal{D}) = 0$
- Ako $\forall h \in \mathcal{H}.E(h|\mathcal{D}) > 0$, onda model nije dovoljne složenosti (kapaciteta)
- Šum neželjena anomalija u podatcima
- Uzroci: nepreciznost, pogreške u označavanju, nedostajuće značajke, subjektivnost
- Posljedica šuma: granica između klasa je nepotrebno složena
- Presložen model previše se prilagođava šumu (uči šum)

6 Odabir modela

- Odabir modela iz familije modela $\{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_k\}$
- Složenost modela određena je hiperparametrima (npr. stupanj nelinearnosti)
- Odabir modela = optimizacija hiperparametara
- Preferiramo jednostavnije modele jer bolje **generaliziraju**, lakše se uče i tumače
- Podnaučenost \mathcal{H} je prejednostavan u odnosu na stvarnu funkciju
- Prenaučenost $\mathcal H$ je presložen u odnosu na stvarnu funkciju
- \bullet Prenaučena hipoteza nije točna na neviđenim primjerima \Rightarrow loša generalizacija

7 Unakrsna provjera

- Ideja: dio primjera iz označenog skupa koristiti kao "neviđene" primjere
- Disjunktna podjela skupa na skup za učenje i skup za ispitivanje: $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$
- Pogreška učenja ($train\ error$): $E(h|\mathcal{D}_{train})$
- Ispitna pogreška ($test\ error$): $E(h|\mathcal{D}_{test})$
- $E(h|\mathcal{D}_{\text{train}})$ pada sa složenošću modela, $E(h|\mathcal{D}_{\text{test}})$ tipično prvo opada a zatim raste
- Skica: pogreška učenja i ispitna pogreška kao funkcije složenosti modela

• Optimalan model je onaj koji minimizira $E(h|\mathcal{D}_{\text{test}})$