CONCEPT

PERMUTATIONS AND COMBINATIONS

Class XI

Properties

•
$${}^{n}P_{n} = n! = n(n-1)\cdot(n-2)...3\cdot 2\cdot 1 = {}^{n}P_{n-1}$$

•
$$^{n}P_{1}=n$$

•
$${}^{n}P_{0} = \frac{n!}{(n-0)!} = 1$$

•
$${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1} = n(n-1)^{n-2}P_{r-2}$$

= $n(n-1)(n-2)^{n-3}P_{r-3}$ and so on

•
$$n-1$$
 $P_r + r \cdot {n-1}P_{r-1} = {n \choose r}$

Circular Permutations

- (i) Arrangement of n different things taken all at a time in form of circle is
- (n 1)!, if sense matter.
- 1/2(n 1)!, if sense doesn't matter
- (ii) Number of circular permutations of n dissimilar things taken r at a time

$$= \frac{{}^{n}P_{r}}{r}$$
 if clockwise and anticlockwise

orders are considered as different.

$$= \frac{{}^{n}P_{r}}{2r}$$
 if clockwise and anticlockwise

order is considered as same.

Factorial Notation

Product of first n natural numbers is denoted by n!

$$i.e., n! = n(n-1)(n-2)...3.2.1$$

Fundamental Principle of Counting

In an operation A can be performed in m different ways and another operation B can be performed in n different ways, then

- Both the operations can be performed in m × n ways.
- Either of the two operations can be performed in (m + n) ways.

Restricted Permutations

The number of ways in which r objects can be arranged from n dissimilar objects if k particular objects are

- Always included (or never excluded)
 - $= {}^{n-k}C_{r-k} r! = {}^{r}P_{k} {}^{n-k}P_{r-k}.$
- Always excluded (never included)
 = ^{n-k}C, r! = ^{n-k}P.

Arranging r objects out of n different things Distributions into Groups

Distribution of n distinct things into r groups G_1 , G_2 , ..., G_r containing P_1 , P_2 , ..., P_r elements respectively.

- Groups are distinct : $\frac{n!}{P_1!P_2!...P_r!}r!$
- Groups are identical: $\frac{n!}{P_1!P_2!...P_r!}$

De-arrangements

Any change in the existing order of things is called De-arrangement. If m things are arranged in a row, the number of ways in which they can be dearranged so that none of them occupies its original place (no one of them occupies the place assigned to it)

$$= m! \left[1 - \frac{1}{1!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^m \frac{1}{m!} \right]$$

=
$$m! \sum_{r=0}^{m} (-1)^r \frac{1}{r!}$$
, we denote it by $D(m)$

$$= {}^{m}P_{m} - {}^{m}P_{m-1} + {}^{m}P_{m-2} - \dots + (-1)^{m} {}^{m}P_{0}$$

Combinations

Permutations

When repetition is not

allowed = ${}^{n}P_{r} = \frac{n!}{(n-r)!}$, where $0 \le r \le n$

When repetition is

PERMUTATIONS

AND

COMBINATIONS

allowed = n^{t}

 Selecting r objects out of n different things given by

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}, 0 \le r \le n$$

Properties

- ${}^{n}P_{r} = {}^{n}C_{r} r!, 0 \le r \le n$
- For $0 \le r \le n$, ${}^{n}C_{r} = {}^{n}C_{n-r}$
- For $1 \le r \le n$, ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
- ${}^{n}C_{a} = {}^{n}C_{b} \implies a = b \text{ or } n = a + b$
- ${}^{n}C_{0} + {}^{n}C_{1} + ... + {}^{n}C_{n} = 2^{n}$

Restricted Combinations

The number of ways in which r objects can be selected from n dissimilar objects if k particular objects are

- Always included = $^{n-k}C_{r-k} = ^{n-k}C_{n-r}$
- never included (Always excluded) = ^{n-k}C_r