Introduction to Machine Learning

Random Forest Out-of-Bag Error Estimate

Learning goals

- Understand the concept of out-of-bag and in-bag observations
- Learn how out-of-bag error provides an estimate of the generalization error during training

OUT-OF-BAG VS IN-BAG OBSERVATIONS

ID	Color	Form	Length	Origin	Banana	ООВ
1	yellow	oblong	14	imported	yes	IB
2	brown	oblong	10	imported	yes	
3	red	round	16	domestic	no	predict
	Boot	strapping to t	ain tree 1			
ID	Boot	estrapping to to	ain tree 1	Origin	Banana	Tree 1
ID 1	<u> </u>			Origin imported	Banana yes	Tree 1
	Color	Form	Length			Tree 1

- IB observations for *m*-th bootstrap: $IB^{[m]} = \{i \in \{1, ..., n\} | (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}^{[m]}\}$
- OOB observations for *m*-th bootstrap: OOB^[m] = $\{i \in \{1, ..., n\} | (\mathbf{x}^{(i)}, y^{(i)}) \notin \mathcal{D}^{[m]} \}$
- Nr. of trees where *i*-th observation is OOB: $S_{\text{OOB}}^{(i)} = \sum_{m=1}^{M} \mathbb{I}(i \in \text{OOB}^{[m]}).$

OUT-OF-BAG ERROR ESTIMATE

Predict *i*-th observation with all trees $\hat{b}^{[m]}$ for which it is OOB:

ID	Color	Form	Length	Origin	Banana	OOB trees		
1	yellow	oblong	14	imported	yes	{2}		
2	brown	oblong	10	imported	yes	{1, 3, 4}		
3	red	round	16	domestic	no	{2, 4}		
	Tree 1	Tree	e 2	Tree 3	Tree 4			
yes yes no								
				ification of ation 2	OOB classification of observation 3			
cor	rect inco	rrect	correct	incorrect	corre	ct incorrect		
1	1 (,	<u> </u>	1	0	2		

OOB prediction $\hat{\pi}_{\text{OOB}}^{(2)} = 2/3$. Evaluating all OOB predictions with some loss function L or set-based metric ρ estimates the GE. As we do not violate the **untouched test set principle**, $\widehat{\text{GE}}$ is not *optimistically* biased.

OUT-OF-BAG ERROR PSEUDO CODE

Out-Of-Bag error estimation

1: **Input:** OOB^[m], $\hat{b}^{[m]} \forall m \in \{1, ..., M\}$

2: for $i = 1 \rightarrow n$ do

3: Compute the ensemble OOB prediction for observation i, e.g., for regression:

$$\hat{f}_{\mathsf{OOB}}^{(i)} = \frac{1}{\mathcal{S}_{\mathsf{OOB}}^{(i)}} \sum_{m=1}^{M} \mathbb{I}(i \in \mathsf{OOB}^{[m]}) \cdot \hat{f}^{[m]}(\mathbf{x}^{(i)})$$

4: end for

5: Average losses over all observations:

$$\widehat{\mathrm{GE}}_{\mathrm{OOB}} = \frac{1}{n} \sum_{i=1}^{n} L(y^{(i)}, \hat{t}_{\mathrm{OOB}}^{(i)})$$

USING THE OUT-OF-BAG ERROR ESTIMATE

- Gives us a (proper) estimator of GE, computable during training
- Can even compute this for all smaller ensemble sizes (after we fitted M models)

OOB ERROR: COMPARABILITY, BEST PRACTICE

OOB Size: The probability that an observation is out-of-bag (OOB) is:

$$\mathbb{P}(i \in \mathsf{OOB}^{[m]}) = \left(1 - \frac{1}{n}\right)^n \stackrel{n \to \infty}{\longrightarrow} \frac{1}{e} \approx 0.37$$

 \Rightarrow similar to holdout or 3-fold CV (1/3 validation, 2/3 training)

Comparability Issues:

- OOB error rather unique to RFs / bagging
- To compare models, we often still use CV, etc., to be consistent

Use the OOB Error for:

- Get first impression of RF performance
- Select ensemble size
- Efficiently evaluate different RF hyperparameter configurations

