STANISLAS Exercices

Déterminants

PSI2021-2022

Chapitre IV

I. Calculs de déterminants

Exercice 1. (\triangle) Soient $a, b \in \mathbb{C}, n \in \mathbb{N}^*$. Calculer

Exercice 2. Calculer le déterminant

$$\begin{vmatrix} a_1 + b_1 & a_1 & \cdots & a_1 \\ a_2 & a_2 + b_2 & \cdots & a_2 \\ \vdots & & \vdots & \vdots \\ a_n & a_n & \cdots & a_n + b_n \end{vmatrix}.$$

Exercice 3. Soient $n \in \mathbb{N}^*$ et $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$. Déterminer $\det(\sin(\alpha_i + \alpha_i))$ $(\alpha_i))_{1 \leq i,j \leq n}$

Exercice 4. Calculer $\det(a_{i,i})_{1 \le i,j \le n}$, où $a_{i,i} = 2$, $a_{i,i+1} = 1$, $a_{i,i-1} = 3$ et $a_{i,j} = 0$ sinon.

Exercice 5. (Déterminant circulant, \heartsuit) Soient $a_1, \ldots, a_n \in \mathbb{C}$. On note ζ_1, \ldots, ζ_n les racines n-èmes de l'unité. On pose C_n

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ \vdots & & \ddots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{pmatrix} \text{ et } W_n = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \zeta_1 & \zeta_2 & \cdots & \zeta_n \\ \vdots & \vdots & & \vdots \\ \zeta_1^{n-1} & \zeta_2^{n-1} & \cdots & \zeta_n^{n-1} \end{pmatrix}.$$
1. Calculer le produit $C_n W_n$

2. En déduire $\det(C_n)$.

3. En déduire $\Delta_n = \begin{bmatrix} 1 & 2 & \cdots & n \\ n & 1 & \cdots & n-1 \\ \vdots & \ddots & \ddots & \vdots \\ 2 & & & 1 \end{bmatrix}$.

Exercice 6. Soit Δ le déterminant de $\det(1+(x_i)^j)_{(i,j)\in[0,n]^2}$. Calculer

Exercice 7. Soit $M = \begin{pmatrix} A & B \\ {}^t\!B & C \end{pmatrix} \in \mathscr{M}_{2n}(\mathbb{K})$. Montrer que, si A et S = $C - {}^{t}BA^{-1}B$ sont inversibles, alors M est inversible et calculer M^{-1} . On pourra chercher M^{-1} sous la forme d'une matrice par blocs.

Exercice 8. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$.

- **1.** On suppose que AB = BA. Montrer que $\det(A^2 + B^2) \ge 0$.
- **2.** Montrer que le résultat précédent est faux en général si $AB \neq BA$.

II. Applications

Exercice 9. [IMT]

- **1.** Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Montrer que, si A ou B est inversible, alors A+tB est inversible pour tout réel t, sauf en un nombre fini de valeurs.
- **2.** Soient $\mathscr{F} = (a_1, \ldots, a_n)$ et $\mathscr{F}' = (b_1, \ldots, b_n)$ deux familles de vecteurs de \mathbb{R}^n . Montrer que, si \mathscr{F} ou \mathscr{F}' est libre, alors la famille $\mathscr{L} = (a_1 +$ $tb_1, \ldots, a_n + tb_n$) est libre pour tout réel t, sauf un nombre fini de valeurs de t.

Exercice 10. Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $B \in \mathcal{M}_{p,n}(\mathbb{R})$ tels que p < n. Montrer que $\det(AB) = 0$.

Exercice 11. [Mines] Soient $n \in \mathbb{N}^*$ et $(z_k)_{0 \le k \le n}$ une famille de nombres complexes deux à deux distincts. Montrer que la famille $((X-z_k)^n)_{0 \le k \le n}$ est une base de $\mathbb{C}_n[X]$.

Exercice 12. [Centrale] Soient E un \mathbb{C} -espace vectoriel de dimension $p \in$ \mathbb{N}^* et (f_1,\ldots,f_p) une famille de formes linéaires sur E. Démontrer que les trois assertions suivantes sont équivalentes :

Exercices IV PSI

- (i). la famille (f_1, \ldots, f_p) est libre;
- (ii). $\varphi: x \in E \mapsto {}^{t}(f_1(x), \dots, f_p(x)) \in \mathscr{M}_{p,1}(\mathbb{C})$ est surjective;
- (iii). $\exists (x_1, \dots, x_p) \in E^p ; \det(f_i(x_j))_{1 \le i, j \le n} \neq 0.$

Exercice 13. [Mines] Soit (f_1, \ldots, f_n) une famille de fonctions de \mathbb{R} dans \mathbb{R} . Montrer que (f_1, \ldots, f_n) est libre si et seulement s'il existe $(x_1, \ldots, x_n) \in \mathbb{R}^n$ tel que $\det(f_i(x_j))_{1 \leq i,j \leq n} \neq 0$.

Mathématiciens

VANDERMONDE Alexandre-Théophile (28 fév. 1735 à Paris-1^{er} jan. 1796 à Paris).