#[STATISTICS] (Data Science & Analysis CheatSheet)

Descriptive Statistics

• Mean: mean(x) Median: median(x) Mode: mode(x) Range: max(x) - min(x) • Variance: variance(x) • Standard Deviation: std_deviation(x) Coefficient of Variation: std_deviation(x) / mean(x) • **Percentiles**: percentile(x, p) • Interguartile Range (IQR): Q3(x) - Q1(x) • **Skewness**: skewness(x) • **Kurtosis**: kurtosis(x) Mean Absolute Deviation (MAD): mean(abs(x - mean(x))) • Five Number Summary: min, Q1, median, Q3, max

Probability Distributions

• **Binomial Distribution**: binom_dist(n, p, x) Poisson Distribution: poisson_dist(λ, x) • Normal Distribution: norm_dist(μ , σ , x) • t-Distribution: t_dist(v, x) Chi-Squared Distribution: chi2_dist(v, x) • F-Distribution: f_dist(d1, d2, x) Exponential Distribution: exp_dist(λ, x) • Uniform Distribution: uniform_dist(a, b, x)

Correlation and Covariance

• Covariance: covariance(X, Y) Pearson Correlation Coefficient: pearson_r(X, Y) Spearman's Rank Correlation: spearman_rho(X, Y) • Kendall's Tau: kendall_tau(X, Y)

Regression Analysis

- Simple Linear Regression: y = b0 + b1*x
- Multiple Linear Regression: y = b0 + b1*x1 + b2*x2 + ... + bn*xn
- Polynomial Regression: $y = b0 + b1*x + b2*x^2 + ... + bn*x^n$
- Logistic Regression: logit(p) = ln(p/(1-p)) = b0 + b1*x
- Coefficient of Determination (R²): R² = 1 (SS_res / SS_tot)

Hypothesis Testing

- **Z-test**: $z = (x^{-} \mu) / (\sigma/sqrt(n))$
- t-test for Independent Samples: $t = (x^{-}1 x^{-}2) / sqrt(s_p^2(1/n1 +$ 1/n2))
- t-test for Paired Samples: t = (d μd) / (Sd / sqrt(n))
- Chi-Squared Test: $X^2 = \Sigma((0 E)^2/E)$
- ANOVA (Analysis of Variance): F = MST / MSE
- Mann-Whitney U Test: U = n1*n2 + (n1(n1+1)/2) R1
- Wilcoxon Signed-Rank Test: W = Σ|ranked_differences|
- Kruskal-Wallis Test: $H = (N-1)*\Sigma(ni(Ri^2) / \Sigma ni)$

Sampling and Estimations

- **Simple Random Sampling**: random_sample(n, population)
- Systematic Sampling: systematic_sample(k, population)
- Stratified Sampling: stratified_sample(strata, population)
- Cluster Sampling: cluster_sample(clusters, population)
- Point Estimation: point_estimate = x or p
- Confidence Interval for Mean: $(x^- Z^*(\sigma/\sqrt{n}), x^- + Z^*(\sigma/\sqrt{n}))$
- Confidence Interval for Proportion: (pˆ Z*(√(pˆ(1-pˆ)/n)), pˆ + $Z*(\sqrt{(p^{(1-p^{)}/n)})}$

Significance and Power Analysis

- Alpha Level (Type I Error): a
- Beta Level (Type II Error): β
- Power of a Test: 1β
- Effect Size (Cohen's d): $d = (\mu 1 \mu 2) / \sigma$ pooled

- Sample Size Calculation for Mean Difference: $n = ((Z\alpha/2 + Z\beta)^2 *$ $2\sigma^2$) / d^2
- Sample Size Calculation for Proportions: n = (p1(1-p1) + p2(1-p2))* $(Z\alpha/2 + Z\beta)^2 / (p1-p2)^2$

Time Series Analysis

- Moving Average: moving_average(t, k)
- Exponential Smoothing: smoothed_value = α*current_value + (1-α)*previous_smoothed_value
- Seasonal Decomposition: decompose(time_series)
- Autocorrelation Function (ACF): acf(time_series)
- Partial Autocorrelation Function (PACF): pacf(time_series)
- Seasonal ARIMA (SARIMA): SARIMA(time_series, p, d, q, P, D, Q, s)
- Vector Autoregression (VAR): VAR(time_series)
- Cointegration Test: cointegration_test(series1, series2)
- Exponential Triple Smoothing (ETS): ETS(time_series)

Non-parametric Methods

- Mann-Kendall Trend Test: mann_kendall(time_series)
- Kolmogorov-Smirnov Test: ks_test(sample1, sample2)
- Kruskal-Wallis H Test: kruskal_wallis(groups)
- Spearman's Rank Correlation: spearman_rank(X, Y)
- Wilcoxon Signed-Rank Test: wilcoxon_signed_rank(sample)
- Mood's Median Test: moods_median_test(sample1, sample2)
- Friedman Test: friedman_test(data)
- Cochran's Q Test: cochrans_Q(tests)
- Run Test for Randomness: runs_test(data)

Bayesian Statistics

- Bayes' Theorem: P(A|B) = (P(B|A) * P(A)) / P(B)
- Posterior Distribution: posterior ∞ likelihood * prior
- Beta Distribution as Prior: beta(α, β)
- Markov Chain Monte Carlo (MCMC): mcmc(samples, parameters)

Dimensionality Reduction

- Principal Component Analysis (PCA): PCA(data)
- Factor Analysis: factor_analysis(data)
- t-SNE (t-Distributed Stochastic Neighbor Embedding): tSNE(data)

Cluster Analysis

- K-Meαns Clustering: kmeans(data, k)
- Hierarchical Clustering: hierarchical_clustering(data)
- **DBSCAN**: dbscan(data, ε, minPts)
- **Silhouette Score**: silhouette_score(data, labels)

Association Analysis

- Support in Association Rule: support(X) = P(X)
- Confidence in Association Rule: confidence(X=>Y) = P(X U Y) / P(X)
- Lift in Association Rule: lift(X=>Y) = confidence(X=>Y) / P(Y)

Survival Analysis

- Kaplan-Meier Estimate: kaplan_meier(survival_times)
- Log-Rank Test: log_rank(test, control)
- Cox Proportional Hazards Model: cox_proportional_hazards(data)
- Weibull Reliability Function: weibull_reliability(β, η, t)
- Log-Rank Test for Survival Data: log_rank(survival_times1, survival_times2)
- Proportional Hazards Assumption Check: proportional_hazards_test(data)

Quality Control

- Control Charts: control_chart(data)
- Pareto Chart: pareto_chart(data)
- Process Capability Index (Cpk): Cpk(lower_spec, upper_spec, data)
- Deming Regression (for Method Comparison): deming_regression(method1, method2)
- Six Sigma Process Capability: six_sigma_capability(process_data)

• Statistical Process Control (SPC): SPC(control_data)

Experimental Design

- Analysis of Variance (ANOVA): ANOVA(data)
- Covariance Analysis (ANCOVA): ANCOVA(data)
- Factorial Design Analysis: factorial_design(data)

Advanced Topics

- Generalized Linear Models (GLM): GLM(data, family)
- Mixed Effects Models: mixed_effects_model(data)
- Time Series Forecasting (ARIMA, etc.): forecast_ARIMA(time_series)
- Machine Learning Algorithms: machine_learning_algorithm(data)

Meta-Analysis

- Fixed-Effect Model: fixed_effect(meta_data)
- Random-Effects Model: random_effects(meta_data)

Decision Analysis

- Expected Value Calculation: expected_value(decision_outcomes, probabilities)
- Decision Tree Analysis: decision_tree(decision, outcomes)
- Utility Function Modeling: utility(value, risk_aversion)
- Sensitivity Analysis: sensitivity_analysis(model, parameter)
- Monte Carlo Decision Making: monte_carlo_decision(decision_model, iterations)

Advanced Probability

- Conditional Probability: P(A|B) = P(A and B) / P(B)
- Joint Probability: P(A and B)
- Marginal Probability: P(A)

Special Distributions and Functions

- Gamma Distribution: gamma_dist(shape, scale, x)
- Beta Distribution: beta_dist(α, β, x)
- Weibull Distribution: weibull_dist(λ, k, x)
- Dirichlet Distribution: dirichlet_dist(alpha)

Quality and Performance Metrics

- Sensitivity/Recall/True Positive Rate: TP / (TP + FN)
- Specificity/True Negative Rate: TN / (TN + FP)
- Precision/Positive Predictive Value: TP / (TP + FP)
- F1 Score: 2 * (Precision * Recall) / (Precision + Recall)

Multivariate Analysis

- Canonical Correlation Analysis: CCA(X, Y)
- Multivariate Analysis of Variance (MANOVA): MANOVA(data)
- Principal Component Regression (PCR): PCR(X, Y)
- Partial Least Squares Regression (PLSR): PLSR(X, Y)

Advanced Modeling Techniques

- Ridge Regression: ridge_regression(X, Y, λ)
- Lasso Regression: lasso_regression(X, Y, λ)
- Elastic Net: elastic_net(X, Y, α, λ)
- Support Vector Machines: SVM(X, Y)

Model Evaluation and Validation

- Cross-Validation: cross_validation(model, data, k)
- Bootstrapping for Error Estimation: bootstrap_error(model, data)
- AIC (Akaike Information Criterion): AIC(model)
- BIC (Bayesian Information Criterion): BIC(model)

Advanced Probability and Distributions

- Multinomial Distribution: multinomial_dist(n, probabilities)
- Negative Binomial Distribution: negative_binomial(r, p)
- Hypergeometric Distribution: hypergeometric(N, K, n)

• Bivariate Normal Distribution: bivariate_normal(μ 1, μ 2, σ 1, σ 2, ρ)

Spatial and Geostatistical Analysis

- Kriging for Spatial Interpolation: kriging(spatial_data)
- Moran's I for Spatial Autocorrelation: morans_I(spatial_data)
- Geographically Weighted Regression (GWR): GWR(spatial_data)

Risk Analysis and Financial Statistics

- Value at Risk (VαR): VaR(portfolio, α)
- Expected Shortfall (CVαR): CVaR(portfolio, α)
- Sharpe Ratio: sharpe_ratio(returns, risk_free_rate)
- Beta Coefficient in Finance: beta(stock_returns, market_returns)

Advanced Cluster and Classification Methods

- Gaussian Mixture Models (GMM): GMM(data, components)
- Agglomerative Hierarchical Clustering: agglomerative_clustering(data)
- Dendrogram for Hierarchical Clustering: dendrogram(hierarchical_model)
- Naive Bayes Classifier: naive_bayes(features, labels)

Psychometrics and Educational Statistics

- Item Response Theory (IRT): IRT(item_responses)
- Cronbach's Alpha for Reliability: cronbachs_alpha(data)
- ANOVA for Repeated Measures: repeated_measures_ANOVA(data)

Scale Development and Validation

- Exploratory Factor Analysis (EFA): EFA(items)
- Confirmatory Factor Analysis (CFA): CFA(items, model)
- Item Discrimination Analysis: item_discrimination(test_items)

Network Analysis

- **Degree Centrality**: degree_centrality(network)
- Betweenness Centrality: betweenness_centrality(network)
- Community Detection: community_detection(network)

Advanced Techniques in Data Reduction

- Multidimensional Scaling (MDS): MDS(distance_matrix)
- Isomap for Nonlinear Dimensionality Reduction: isomap(data)
- Local Linear Embedding (LLE): LLE(data)

Miscellaneous Advanced Operations

- Copula for Joint Distribution Modeling: copula(types, parameters)
- Gini Coefficient for Inequality: gini(income_distribution)
- Entropy for Information Theory: entropy(probabilities)
- Simpson's Diversity Index: simpsons_diversity(species_counts)
- Monte Carlo Simulations: monte_carlo(model, parameters)
- Bootstrap Resampling: bootstrap(sample)
- Jackknife Resampling: jackknife(sample)