Symmetric Encryption Revisited

Chanathip Namprempre

Computer Science Reed College

Agenda: Symmetric Encryption Revisted

- 1. Modes of operation
- 2. Security definitions for confidentiality
 - ► IND-CPA: definition and example attacks
 - ► IND-CPA security of CTR and CBC modes
 - ► IND-CCA: definition and example attacks

Recall Syntax of Symmetric Encryption

Syntax

A symmetric encryption scheme $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a triple of algorithms.

alg	input	output	notation	maybe randomized?	maybe stateful?
K	-	key K	$K \stackrel{\$}{\leftarrow} K$	yes	no
\mathcal{E}	$K \in Keys(\mathcal{SE})$	ciphertext	$C \stackrel{\$}{\leftarrow} \mathcal{E}_K(M)$	yes	yes
\mathcal{D}	$M \in \{0, 1\}^*$ $K \in Keys(SE)$ $C \in \{0, 1\}^*$	$C \in \{0,1\}^* \cup \{\bot\}$ plaintext $M \in \{0,1\}^* \cup \{\bot\}$	$M \leftarrow \mathcal{D}_K(C)$	no	no

Correctness

For all $K \in \mathit{Keys}(\mathcal{SE})$ and all $M \in \{0,1\}^*$,

$$\mathsf{Pr}\left[\ C = \bot \ \mathsf{OR} \ \mathcal{D}_{\mathcal{K}}(C) = M \ : \ C \stackrel{\$}{\leftarrow} \mathcal{E}_{\mathcal{K}}(M) \ \right] = 1 \ .$$

Modes of operation

OTP is impractical. Most symmetric encryption schemes use block ciphers as building block.

Let E be a block cipher.

idea

$$C \leftarrow E_K(M)$$

- ▶ But oftentimes, *M* is longer than the block length and/or isn't of the length multiple of the block length!
- ightharpoonup So we need to figure out how to chop up M and/or pad it.
- ► There are many methods to do this. These methods are called modes of operation.

Electronic Code Book mode (ECB): key generation

Encryption scheme in ECB mode is **deterministic** and **stateless**.

Let $E:\{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a block cipher.

 $\mathcal{K}: \mathcal{K} \stackrel{\$}{\leftarrow} \{0,1\}^k$; return \mathcal{K}

[This key generation algorithm will be used for all modes of operation.]

ECB: encryption and decryption

Cipher Block Chaining mode (CBC\$): encryption and decryption

Encryption scheme in CBC\$ mode is randomized and stateless.

Cipher Block Chaining mode (CBCC): encryption and decryption

Encryption scheme in CBCC mode is deterministic and stateful.

Counter mode

idea

Try to be like OTP but use block cipher to generate the pad.

As usual, there are two versions:

apply the block cipher to a random value \implies CTR\$ apply the block cipher to a counter \implies CTRC

Counter mode (CTRC): encryption and decryption

Encryption scheme in CTRC mode is deterministic and stateful.

Counter mode (CTR\$): encryption and decryption

Encryption scheme in CTR\$ mode is randomized and stateless.

Security definitions for confidentiality

Issues in confidentiality

Setting:

- ▶ First pick a key: $K \stackrel{\$}{\leftarrow} \mathcal{K}$
- sender and receiver know K
- ► adversary *A* does not know *K*
- ► adversary *A* can capture ciphertexts

What's considered insecure?

Definition for confidentiality: attempt 1

key recovery

From the ciphertexts, A can get K.

- For sure, this is true:
 A breaks key recovery ⇒ scheme is insecure
- ► What about the inverse?
- counterexample: can you think of an encryption scheme secure under key recovery but does nothing to hide the message?

Definition for confidentiality: attempt 2

plaintext recovery

From the ciphertexts, A can get M.

What if the message format is such that some bits are more important than others?

In this case, what if A can't get the whole message M but can get at those important bits?

Definition for confidentiality: attempt 3

partial information recovery

From the ciphertexts, A can get partial information about M.

But which bits do we want to protect???

- ▶ 1st bit?
- ▶ i-th bit?
 For example, suppose
 the i-th bit of the plaintext is 0 iff we want to sell stock
- sum of all bits?

Bottom line:

We don't want to make assumptions about data format!

Definition for confidentiality

► We need to approach this more directly:

Q : What would an ideal encryption scheme look like?

A : An angel delivers your messages, i.e. no partial information gets leaked!

We want to approximate this. [but we can't help but leak the length of M]
So we aim for this:

A secure scheme shouldn't let A relate ciphertexts of messages of the same length.

Examples of insecure scheme: ECB

A can get information even if A can't break the block cipher.

example

```
0^n = don't fire missile
```

 $1^n =$ fire missile

Suppose the two commands are to fire missiles.

- 1. A sees the first ciphertext C_0 followed by a missile.
- 2. A sees the second ciphertext C_1 , which looks exactly the same as C_0 .
- 3. What would A do??

Bottom line:

For ECB, ciphertexts of messages with the same contents look exactly the same!

Definition for confidentiality: first lesson

A secure encryption scheme cannot be both deterministic and stateless.

- one message should correspond to many possible ciphertexts.
- ► This is **not** what's historically done.

Indistinguishability against chosen-plaintext attacks IND-CPA

Idea

- ▶ Pick a hidden bit *b* at random.
- Let A choose two messages.
- ▶ One of the messages will get encrypted.
- ► The resulting ciphertext is given to *A*.
- ► A guesses what b is.

IND-CPA

$$b \stackrel{\$}{\leftarrow} \{0,1\} \; ; \; K \stackrel{\$}{\leftarrow} KG$$

Subroutine
$$\operatorname{Enc}(M_0,M_1)$$

If $|M_0| \neq |M_1|$ then return \perp
Return $\operatorname{Enc}_{\mathcal{K}}(M_b)$

Subroutine
$$Finalize(d)$$

Return $(d = b)$

Experiment $\mathbf{Exp}^{\mathrm{ind-cpa}}_{\mathsf{SE}}(A)$

Initialize $d \stackrel{\$}{\leftarrow} A^{\text{Enc}}$ Return Finalize(d)

ind-cpa advantage

The ind-cpa advantage of an adversary A mounting a chosen-ciphertext attack against SE is

$$\textbf{Adv}^{\mathrm{ind\text{-}cpa}}_{\mathsf{SE}}(\textit{A}) = 2 \cdot \mathsf{Pr} \left\lceil \, \textbf{Exp}^{\mathrm{ind\text{-}cpa}}_{\mathsf{SE}}(\textit{A}) \Rightarrow \mathsf{true} \, \right\rceil - 1 \; .$$

IND-CPA: observations

- SE is secure against IND-CPA if an adversary restricted to practical amount of resources can't obtain significant advantage.
- resources are
 - 1. time
 - the running time of A (over all coins of A and all return values)
 - size of A's code
 - time spent by A to read bits returned from oracle (return values in unit time)
 - 2. number of bits queried [length of query $(M_0, M_1) = \max \{length \ of \ M_0 \ and \ M_1\}$]
 - 3. number of queries submitted

Bottom line: IND-CPA captures confidentiality.

IND-CPA: observations

As we'll see,

IND-CPA \Rightarrow key recovery is hard.

 \Rightarrow message recovery is hard.

 \Rightarrow partial information recovery is hard.

. . .

Example IND-CPA attacks

Proposition: ECB is insecure.

Let $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$. Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the ECB encryption scheme based on E. Then, there exists an ind-cpa adversary A such that,

$$Adv_{\mathcal{S}\mathcal{E}}^{\mathrm{ind-cpa}}(A)=1$$

and A runs in time O(n) and asks 1 query totalling 2n bits.

Notice

ECB is bad *even if* E is a perfectly good block cipher! This is a design flaw!

Proposition:

Any deterministic and stateless schemes are insecure.

Let $\mathcal{SE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ be the deterministic, stateless symmetric encryption scheme.

Assume that there's an integer m such that the plaintext space of the scheme cantains at least 2 distinct strings of length m. Then, there is an adversary A such that

$$Adv_{\mathcal{SE}}^{\mathrm{ind-cpa}}(A) = 1$$

and A runs in time O(m) and asks 2 queries totalling 2m bits.

Proposition: CBCC is insecure.

Let $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$. Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the CBCC scheme based on E. Then, there exists A such that

$$Adv_{\mathcal{S}\mathcal{E}}^{\mathrm{ind-cpa}}(A)=1$$

and A runs in time O(n) and asking 2 queries totalling 2n bits.

Indistinguishability against chosen-ciphertext attacks IND-CCA: idea

- ► Similar to IND-CPA except that we also let *A* ask for decryption of ciphertexts of its choice.
- ▶ But to prevent a trivial attack, we do not let *A* ask for the decryption of the ciphertexts that it got back from the encryption oracle.
- ▶ Similar to IND-CPA, we also allow multiple adaptive queries.

IND-CCA: Left-or-right indistinguishability against chosen-ciphertext attacks: formal definition

Subroutine Initialize
$$b \stackrel{s}{\leftarrow} \{0,1\}$$
; $K \stackrel{s}{\leftarrow} KG$; $S \leftarrow \emptyset$
Subroutine $\operatorname{Enc}(M_0,M_1)$
If $|M_0| \neq |M_1|$ then return \bot
Return $\operatorname{Enc}_K(M_b)$
Subroutine $\operatorname{Dec}(C)$

If $C \in S$ then return \bot Return $Dec_K(C)$

```
Subroutine Finalize(d)

Return (d = b)

Experiment \mathbf{Exp}^{\mathrm{ind-cca}}_{\mathrm{SE}}(A)

Initialize

d \overset{\$}{\leftarrow} A^{\mathrm{Enc,Dec}}

Return Finalize(d)
```

ind-cca advantage

The **ind-cca advantage** of an adversary *A* mounting a chosen-ciphertext attack against SE is

$$\mathsf{Adv}^{\mathrm{ind\text{-}cca}}_\mathsf{SE}(A) = 2 \cdot \mathsf{Pr} \left[\mathsf{Exp}^{\mathrm{ind\text{-}cca}}_\mathsf{SE}(A) \Rightarrow \mathsf{true} \right] - 1$$
.

Example IND-CCA attacks

Proposition : *CTR*\$ is insecure against chosen-ciphertext attacks.

Let $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^l$ be a family of functions. Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the CTR\$ encryption scheme based on E. Then, there exists an ind-cca adversary A such that,

$$Adv_{\mathcal{S}\mathcal{E}}^{\mathrm{ind-cca}}(A) = 1$$

and A runs in time O(n+1) plus the time for one application of E and asks 1 query totalling I bits to the encryption oracle and 1 query totalling n+1 bits to the decryption oracle.

Note

CTR\$ is secure against IND-CPA but insecure against IND-CCA.

Proposition : *CBC*\$ is insecure against chosen-ciphertext attacks.

Let $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions. Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the *CBC*\$ encryption scheme based on E. Then, there exists an ind-cca adversary A such that,

$$Adv_{\mathcal{S}\mathcal{E}}^{\mathrm{ind-cca}}(A) = 1$$

and A runs in time O(n) plus the time for one application of E and asks 1 query totalling n bits to the encryption oracle and 1 query totalling 2n bits to the decryption oracle.

Note

CBC\$ is secure against IND-CPA but insecure against IND-CCA.

Proving positive results

CTR\$ and CTRC are secure under IND-CPA

proposition: CTRC is secure under IND-CPA

Let $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions and let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the *CTRC* encryption scheme. Let A be an ind-cpa adversary that runs in time at most t and asks at most q queries, each of length at most m^* n-bit blocks. Then, there exists a prf adversary B such that

$$Adv_{\mathcal{S}\mathcal{E}}^{\mathrm{ind-cpa}}(A) \leq 2 \cdot Adv_{\mathcal{E}}^{\mathrm{prf}}(B)$$
.

Furthermore, B runs in time at most $t' = t + O(q + nqm^*)$ and asks at most $q' = qm^*$ oracle queries.

proposition: CTR\$ is secure under IND-CPA

$$Adv_{\mathcal{SE}}^{\mathrm{ind-cpa}}(A) \leq 2 \cdot Adv_{\mathcal{E}}^{\mathrm{prf}}(B) + \frac{q^2 m^*}{2^n}$$
.

Furthermore, B runs in time at most $t' = t + O(q + nqm^*)$ and asks at most $q' = qm^*$ oracle queries.

CBC\$ is secure under IND-CPA

proposition

Let $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a family of functions and let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the CBC\$ encryption scheme. Let A be an ind-cpa adversary that runs in time at most t and asks at most q queries, these totalling at most σ n-bit blocks. Then there exists a prf adversary B such that

$$Adv_{\mathcal{SE}}^{\mathrm{ind-cpa}}(A) \leq Adv_{E}^{\mathrm{prf}}(B) + \frac{\sigma^{2}}{2^{n+1}}$$
.

Furthermore B runs in time at most $t' = t + O(q + n\sigma)$ and asks at most $q' = \sigma$ oracle queries.

Let $E:\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be the underlying block cipher. Let A be an IND-CPA adversary making q queries the maximum length of which is m^* blocks long.

```
Game G2
Game G0
                                                          Game G1
                                                                                                                       b \stackrel{\$}{\leftarrow} \{0,1\}; ctr \leftarrow 0
    b \stackrel{\$}{\leftarrow} \{0,1\}; K \stackrel{\$}{\leftarrow} KG
                                                              b \stackrel{\$}{\leftarrow} \{0,1\} \; ; \; f \stackrel{\$}{\leftarrow} Func(n,n)
                                                                                                                       d \leftarrow A^{\text{Enc}}
    ctr \leftarrow 0: d \leftarrow A^{Enc}
                                                              ctr \leftarrow 0; d \leftarrow A^{Enc}
                                                                                                                       For i = 1 to a
    Return (d = b)
                                                              Return (d = b)
                                                                                                                            For j = 1 to m^*
                                                                                                                                 P_{i}[i] \stackrel{\$}{\leftarrow} \{0, 1\}^{n}
Enc(M_0, M_1)
                                                          \operatorname{Enc}(M_0, M_1)
                                                                                                                       Return (d = b)
    If |M_0| \neq |M_1| then return \perp
                                                              If |M_0| \neq |M_1| then return \perp
    Parse M_h into m blocks
                                                              Parse M_h into m blocks
    Let i be the current guery number
                                                              Let i be the current guery
                                                                                                                  Enc(M_0, M_1)
    C_i[0] \leftarrow ctr : ctr \leftarrow ctr + m
                                                              C_i[0] \leftarrow ctr : ctr \leftarrow ctr + m
                                                                                                                       If |M_0| \neq |M_1| then return \perp
    For i = 1 to m do
                                                              For j = 1 to m do
                                                                                                                       Parse M_h into m blocks
         X_i[j] \leftarrow C_i[0] + j - 1
                                                                   X_i[j] \leftarrow C_i[0] + j - 1
                                                                                                                       Let i be the current query
         P_i[j] \leftarrow E_K(X_i[j])
                                                                   P_i[j] \leftarrow f(X_i[j])
                                                                                                                       C_i[0] \leftarrow ctr ; ctr \leftarrow ctr + m
         C_i[j] \leftarrow P_i[j] \oplus M_b[j]
                                                                   C_i[j] \leftarrow P_i[j] \oplus M_b[j]
                                                                                                                       For i = 1 to m do
                                                              Return C_i[0] || ... || C_i[m]
    Return C_i[0] || ... || C_i[m]
                                                                                                                            C_i[i] \leftarrow P_i[i] \oplus M_b[i]
                                                                                                                       Return C_i[0] || ... || C_i[m]
```

Recall that

$$\mathsf{Adv}^{\mathrm{ind-cpa}}_{\mathsf{SE}}(A) = 2 \cdot \mathsf{Pr}\left[\, \mathsf{Exp}^{\mathrm{ind-cpa}}_{\mathsf{SE}}(A) \Rightarrow \mathsf{true} \, \right] - 1 \; .$$

Notice that

$$\begin{split} \Pr \Big[\; \mathsf{Exp}^{\mathrm{ind-cpa}}_{\mathsf{SE}}(A) &\Rightarrow \mathsf{true} \; \Big] &= \Pr \big[\; \mathsf{G0}(A) \Rightarrow \mathsf{true} \; \big] \\ &= \Pr \big[\; \mathsf{G0}(A) \Rightarrow \mathsf{true} \; \big] + \Pr \big[\; \mathsf{G1}(A) \Rightarrow \mathsf{true} \; \big] - \Pr \big[\; \mathsf{G1}(A) \Rightarrow \mathsf{true} \; \big] \end{split}$$

We construct an adversary B attacking E in PRF game as follows:

```
Adversary B^g
w \overset{\$}{\smile} \{0,1\} \; ; \; ctr \; \leftarrow \; 0
\text{Run } A \text{ replying to its encryption queries } \left(M_0, M_1\right) \text{ as follows:}
\text{If } |M_0| \neq |M_1| \text{ then return } \bot
\text{Parse } M_w \text{ into } m \text{ blocks}
\text{Let } i \text{ be the current query number}
C_i[0] \leftarrow ctr \; ; \; ctr \leftarrow ctr + m
\text{For } j = 1 \text{ to } m \text{ do}
X_i[j] \leftarrow C_i[0] + j - 1
P_i[j] \leftarrow C_i[0] + j - 1
P_i[j] \leftarrow C_i[0] \oplus M_b[j]
\text{Return } C_i[0] \cdots ||C_i[m] \text{ to } A
\text{Once } A \text{ finishes running, it returns a bit } d
\text{If } d = w \text{ then return } 0 \text{ else return } 1.
```

Let b be the bit in the PRF game in which B plays.

$$\Pr[G0(A) \Rightarrow \text{true}] + \Pr[G1(A) \Rightarrow \text{true}] \tag{1}$$

$$\leq \Pr\left[\mathsf{Exp}_E^{\text{prf}}(B) \Rightarrow \text{true} \mid b = 1\right] + \Pr\left[\mathsf{Exp}_E^{\text{prf}}(B) \Rightarrow \text{true} \mid b = 0\right] \tag{2}$$

$$= \Pr\left[\mathsf{Exp}_E^{\text{prf}}(B) \Rightarrow \text{true} \mid b = 1\right] + (1 - \Pr\left[\mathsf{Exp}_E^{\text{prf}}(B) \Rightarrow \text{false} \mid b = 0\right]) \tag{3}$$

$$= \Pr\left[\mathsf{Exp}_E^{\text{prf}}(B) \Rightarrow \text{true} \mid b = 1\right] - \Pr\left[\mathsf{Exp}_E^{\text{prf}}(B) \Rightarrow \text{false} \mid b = 0\right] + 1 \tag{4}$$

$$= \mathsf{Adv}_E^{\text{prf}}(B) + 1 \tag{5}$$

Or more relatably.

Equation (9) follows from Equation (8) because

$$Pr[G1(A) \Rightarrow true] = Pr[G2(A) \Rightarrow true]$$
.

Equation (10) follows from Equation (9) because

$$\Pr\left[\; G2(A) \Rightarrow \mathsf{true} \; \right] = \frac{1}{2} \; .$$

Substituting Equation (10) into the definition for $Adv^{\mathrm{ind-cpa}}$, we get

$$\begin{split} \mathbf{Adv}_{\mathsf{SE}}^{\mathrm{ind-cpa}}(A) &\leq 2 \cdot \left(\mathbf{Adv}_{E}^{\mathrm{prf}}(B) + 1 - \frac{1}{2} \right) - 1 \\ &= 2 \cdot \mathbf{Adv}_{E}^{\mathrm{prf}}(B) + 2 - 1 - 1 \\ &= 2 \cdot \mathbf{Adv}_{F}^{\mathrm{prf}}(B) \; . \end{split}$$

Let $E:\{0,1\}^k\times\{0,1\}^n\to\{0,1\}^n$ be the underlying block cipher. Let A be an IND-CPA adversary making q queries the maximum length of which is m^* blocks long.

```
 \begin{aligned} & \text{Game } G0 \\ & b \overset{\$}{\leftarrow} \{0,1\} \; ; \; K \overset{\$}{\leftarrow} KG \\ & d \leftarrow A^{\text{Enc}} \\ & \text{Return } (d=b) \end{aligned}   \begin{aligned} & \underbrace{\text{Enc}(M_0,M_1)} & \text{If } |M_0| \neq |M_1| \\ & \text{then return } \bot \\ & \text{Parse } M_b \text{ into } m \text{ blocks} \\ & \text{Let } i \text{ be the current query} \end{aligned}   \begin{aligned} & C_i[0] \overset{\$}{\leftarrow} \{0,1\}^n \\ & \text{For } j=1 \text{ to } m \text{ do} \\ & X_i[j] \leftarrow C_i[0]+j-1 \\ & P_i[j] \leftarrow E_K(X_i[j]) \\ & C_i[j] \leftarrow P_i[j] \overset{\$}{\leftarrow} M_b[j] \\ & \text{Return } C_i[0] \| \cdots \| C_i[m] \end{aligned}
```

```
Game G1
b \overset{\$}{\leftarrow} \{0,1\} ; f \overset{\$}{\leftarrow} Func(n,n)
d \leftarrow A^{\text{Enc}}
Return (d = b)
\frac{\text{Enc}(M_0, M_1)}{\text{If } |M_0| \neq |M_1|}
then return \bot
Parse M_b into m blocks
Let i be the current query
C_i[0] \overset{\$}{\leftarrow} \{0,1\}^n
For j = 1 to m do
X_i[j] \leftarrow C_i[0] + j - 1
P_i[j] \leftarrow f(X_i[j])
C_i[j] \leftarrow P_i[j] \oplus M_b[j]
Return C_i[0] \| \dots \| C_i[m]
```

```
Game G2
     b \stackrel{\$}{\leftarrow} \{0,1\} \; ; \; d \; \leftarrow \; A^{\operatorname{Enc}}
     For i = 1 to q
          For i = 1 to m^*
               P_i[i] \stackrel{\$}{\leftarrow} \{0,1\}^n
     Return (d = b)
Enc(M_0, M_1)
     If |M_0| \neq |M_1|
          then return \bot
     Parse M_b into m blocks
     Let i be the current query
     C_{i}[0] \stackrel{\$}{\leftarrow} \{0,1\}^{n}
     For i = 1 to m do
          X_i[i] \leftarrow C_i[0] + i - 1
          C_i[j] \leftarrow P_i[j] \oplus M_b[j]
          If X_i[j] = X_i'[j'] for some (i', j') < (i, j)
               then P_i[j] \leftarrow P'_i[j']
     Return C_i[0] || ... || C_i[m]
```

Let $E:\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be the underlying block cipher. Let A be an IND-CPA adversary making q queries the maximum length of which is m^* blocks long.

```
Game G2
                                                                           Game G3
     b \stackrel{\$}{\leftarrow} \{0,1\} \; ; \; d \leftarrow A^{\text{Enc}}
                                                                                b \stackrel{\$}{\leftarrow} \{0,1\} \; ; \; d \leftarrow A^{\text{Enc}}
                                                                                For i = 1 to q
     For i = 1 to a
         For i = 1 to m^*
                                                                                     For i = 1 to m^*
              P_i[j] \stackrel{\$}{\leftarrow} \{0,1\}^n
                                                                                          P_i[j] \stackrel{\$}{\leftarrow} \{0,1\}^n
     Return (d = b)
                                                                                Return (d = b)
Enc(M_0, M_1)
                                                                           Enc(M_0, M_1)
     If |M_0| \neq |M_1|
                                                                                If |M_0| \neq |M_1|
         then return |
                                                                                     then return |
     Parse M_b into m blocks
                                                                                Parse M_b into m blocks
     Let i be the current query
                                                                                Let i be the current query
     C_i[0] \stackrel{\$}{\leftarrow} \{0,1\}^n
                                                                                C_i[0] \stackrel{\$}{\leftarrow} \{0,1\}^n
     For i = 1 to m do
                                                                                For i = 1 to m do
         X_i[i] \leftarrow C_i[0] + i - 1
                                                                                     C_i[j] \leftarrow P_i[j] \oplus M_b[j]
          C_i[i] \leftarrow P_i[j] \oplus M_b[j]
                                                                                Return C_i[0] || ... || C_i[m]
          If X_i[j] = X_i'[j'] for some (i', j') < (i, j)
               then P_i[j] \leftarrow P'_i[j']
     Return C_i[0] \parallel \ldots \parallel C_i[m]
```

Difference Lemma

Fix a sample space. If two events are identical unless a particular (bad) event occurs, then the difference in the probabilities of the two events is bounded by the probability of the particular (bad) event.

Theorem 4.7 [Boneh-Shoup]. Let Z, W_0, W_1 be events defined over some probability space, and let \overline{Z} denote the complement of the event Z. Suppose that $W_0 \wedge \overline{Z}$ occurs iff $W_1 \wedge \overline{Z}$ occurs. Then, we have

$$\Pr[W_0] - \Pr[W_1] \le \Pr[\overline{Z}]$$
.

Proof. We have

$$\begin{aligned} \Pr[\ W_0\] - \Pr[\ W_1\] &= \Pr[\ W_0 \wedge Z\] + \Pr[\ W_0 \wedge \overline{Z}\] \\ &- \Pr[\ W_1 \wedge Z\] - \Pr[\ W_1 \wedge \overline{Z}\] \\ &= \Pr[\ W_0 \wedge Z\] - \Pr[\ W_1 \wedge Z\] \\ &\leq \Pr[\ Z\]\ . \end{aligned}$$

CTR\$ is a little bit worse than CTRC

```
Let W_0 be the event that G2(A) \Rightarrow true.

Let W_1 be the event that G3(A) \Rightarrow true.

Let Z be the event that \exists (i',j') < (i,j) such that X_i[j] = X_i'[j'].
```

Observation:

 W_0 and W_1 are the same as long as Z does not occurr.

```
Game G2
     b \stackrel{\$}{\leftarrow} \{0,1\} \; ; \; d \leftarrow A^{\text{Enc}}
     For i = 1 to q
          For i = 1 to m^*
               P_i[i] \stackrel{\$}{\leftarrow} \{0,1\}^n
     Return (d = b)
Enc(M_0, M_1)
     If |M_0| \neq |M_1|
          then return \bot
     Parse M_b into m blocks
     Let i be the current query
     C_{i}[0] \stackrel{\$}{\leftarrow} \{0,1\}^{n}
     For i = 1 to m do
          X_i[i] \leftarrow C_i[0] + i - 1
          C_i[j] \leftarrow P_i[j] \oplus M_b[j]
          If X_i[j] = X_i'[j'] for some (i', j') < (i, j)
               then P_i[j] \leftarrow P'_i[j']
     Return C_i[0] \parallel \ldots \parallel C_i[m]
```

```
Game G3
    b \stackrel{\$}{\leftarrow} \{0,1\} \; ; \; d \leftarrow A^{\text{Enc}}
    For i = 1 to a
         For i = 1 to m^*
              P_i[j] \stackrel{\$}{\leftarrow} \{0,1\}^n
    Return (d = b)
Enc(M_0, M_1)
    If |M_0| \neq |M_1|
         then return \bot
    Parse M_b into m blocks
    Let i be the current query
    C_i[0] \stackrel{\$}{\leftarrow} \{0,1\}^n
    For j = 1 to m do
         C_i[j] \leftarrow P_i[j] \oplus M_b[j]
    Return C_i[0] || ... || C_i[m]
```

CTR\$ Game Hopping

G0: CTR\$ based on E

G1: CTR\$ based on a random function f

G2: CTR\$ in which the pad blocks are chosen independently and uniform-randomly from each other while being mindful of repeated inputs to (what used to be) the block cipher

G3: CTR\$ in which the pad blocks are chosen independently and uniform-randomly from each other

See Boneh-Shoup p. 193 Equation (5.20) for the third inequality.