					Bitte hier unbeding trikelnummer und A se eintragen, sonst Bearbeitung möglic
Postan	schrift: F	ernUnive	rsität ⋅580	84 Hagen	
/Namo	Vornam				
(Ivaille,	voman	ie)			
(Straße	, Nr.)				
(Straße	e, Nr.)				

FernUniversität in Hagen FAKULTÄT für Mathematik und Informatik

KLAUSUR zum Kurs Mathematische Grundlagen (01141) SoSe 2009

DATUM: 29.08.2009 **UHRZEIT:** 10.00 - 12.00 Uhr

KLAUSURORT:

Korrektur

Bearbeitungshinweise

(Bitte vor Arbeitsbeginn durchlesen!)

- 1. Schreiben Sie Ihre Klausur bitte nicht mit Bleistift.
- 2. Füllen Sie bitte das Adressfeld leserlich und vollständig aus, und schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jedes Lösungsblatt, das Sie abgeben.
- 3. Die Reihenfolge, in der Sie die Aufgaben/Teilaufgaben lösen, ist Ihnen freigestellt. Kreuzen Sie in der Tabelle (s.u.) an, welche Aufgaben Sie bearbeitet haben.
- 4. Bei jeder Aufgabe ist die erreichbare Höchstpunktzahl vermerkt. Sie haben die Klausur bestanden, wenn Sie **40** Punkte erreichen.
- 5. Erlaubt ist ein handgeschriebenes DIN-A4-Blatt mit eigenen Notizen.
- 6. Weitere Hilfsmittel wie Studienbriefe, Glossare, Bücher, Aufzeichnungen, Taschenrechner, etc. dürfen während der Klausur nicht benutzt werden. Ihre Benutzung sowie andere Täuschungsversuche führen dazu, dass Ihre Klausur mit 5 bewertet wird.

					Bemerkungen:					
					Dellie	rkung	CII.			
Aufgabe	1	2	3	4	5	6	7	8	9	Summe
Bearbeitet										
max. Punktezahl	10	8	12	4	10	10	4	10	12	80
erreichte Punktezahl										

|--|--|--|--|--|--|--|--|--|

Klausur am 29.08.2009:

Aufgabenstellungen

Die Lösungen aller Aufgaben müssen Sie begründen.

Aufgabe 1

Beweisen Sie mit vollständiger Induktion, dass $\sum_{k=0}^{n} \frac{1}{(k+10)(k+11)} = \frac{1}{10} - \frac{1}{n+11}$ für alle $n \in \mathbb{N}_0$ gilt.

[10 Punkte]

Aufgabe 2

Bestimmen Sie die Treppennormalform und den Rang von

$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{44}(\mathbb{R}).$$

[8 Punkte]

Aufgabe 3

Sei $f: \mathcal{M}_{22}(\mathbb{R}) \to \mathbb{R}[T]$ definiert durch $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (a+b)T + (a+b+c+d)T^2$ für alle $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{22}(\mathbb{R}).$

- 1. Beweisen Sie, dass f linear ist.
- 2. Berechnen Sie eine Basis von Bild(f).

 $[4 + 8 = 12 \ Punkte]$

Aufgabe 4

Sei X_0 eine fest gewählte Matrix in $M_{23}(\mathbb{R})$. Sei $V = \{A \in M_{22}(\mathbb{R}) \mid AX_0 = 0\}$. Beweisen Sie, dass V ein Unterraum von $M_{22}(\mathbb{R})$ ist.

[4 Punkte]

Klausuraufgaben MG KL

Aufgabe 5

Beweisen Sie, dass die Funktion $f:[1,e]\to\mathbb{R},\ x\mapsto\frac{1}{x}-\ln(x)$, im Intervall [1,e] genau eine Nullstelle hat.

[10 Punkte]

Aufgabe 6

Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = (2x^2 - x - 1) \exp(-x)$ für alle $x \in \mathbb{R}$. Untersuchen Sie f auf lokale Minima und Maxima.

[10 Punkte]

Aufgabe 7

Untersuchen Sie, ob die Reihe $\sum_{n=1}^{\infty} n^2 (-2)^{-n}$ konvergiert.

[4 Punkte]

Aufgabe 8

Die Kommissarin hat drei Tatverdächtige P,Q und R. Die Voruntersuchungen haben ergeben:

- 1. Wenn Q oder R schuldig sind, dann ist P unschuldig.
- 2. Ist P unschuldig oder R unschuldig, so ist Q schuldig.
- 3. Ist R schuldig, dann ist auch P schuldig.

Lässt sich aus den Voruntersuchungen eindeutig ermitteln, wer der/die Täter ist/sind? Falls ja, wer ist schuldig, und wer ist unschuldig?

[10 Punkte]

Aufgabe 9

Die reelle Folge (a_n) sei definiert durch $a_1 = 88$ und $a_n = \sqrt{a_{n-1} + 12}$ für alle n > 1.

- 1. Beweisen Sie mit Hilfe des Monotonieprinzips, dass (a_n) konvergent ist.
- 2. Bestimmen Sie den Grenzwert von (a_n) .

Hinweis: Hier könnte es nützlich sein, auch die Folge (a_{n+1}^2) zu betrachten.

 $[8 + 4 = 12 \ Punkte]$

Klausuraufgaben MG KL

Funktion	Definitionsbereich	Stammfunktion
$x \mapsto x^n, n \in \mathbb{N}_0$	\mathbb{R}	$x \mapsto \frac{1}{n+1}x^{n+1}$
$x \mapsto x^{-n}, n \in \mathbb{N}, n \ge 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$
$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto \arctan(x)$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)}a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto \frac{1}{\cos^2(x)}$	$((k-\frac{1}{2})\pi,(k+\frac{1}{2})\pi),k\in\mathbb{Z}$	$x \mapsto \tan(x)$
$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi,(k+1)\pi),k\in\mathbb{Z}$	$x \mapsto -\cot(x)$