RT0707 TP

Introduction à l'internet des Objets TP

On souhaite mettre en place une architecture permettant la gestion des données issus de véhicules.

L'architecture globale du système est la suivante

Fonctionnement global

Les objets sont des véhicules qui envoient, par le biais de messages MQTT, des événements qui seront remontés par la **passerelle** s'ils deviennent valides.

La passerelle remonte à destination du centralisateur d'évènements, par le biais d'un échange MQTT :

- Un accident si l'événement est remonté par au moins 2 véhicules qui observe l'évenement dans une fenêtre temporelle de 10 min.
- Un embouteillage si elle prend connaissance que au moins 3 véhicules roulent en dessous de d'une vitesse basse (ici 30km/h) dans une fenêtre temporelle de 2 min
- SI un événement est remonté par un véhicule de type opérateur routier, il est considéré valide (il n y a pas besoin d'avoir au moins 2 véhicules

Le **serveur WEB** est abonné aux évènements remontés par la passerelle, et propose une page d'affichage en temps réel des évènements (bouchons, accident) pendant l'ensemble de la durée de l'incident plus 5 minutes.

La **file tampon** est abonné aux évènements remontés par la passerelle. Elle va stocker dans différentes files, les événements, afin que ceux-ci soient collectés pour sauvegarde.

Le **serveur de Sauvegarde** collecte les événements auprès de la **file tampon**, avec le modèle producteur / consommateur. Selon le gestionnaire de base de données choisi, elle sauvegardera les événements.

Le **serveur WEB** à accès aux données du serveur de Sauvegarde par le biais d'une API Rest. Il propose une série de pages, assurant la visualisation de l'historique des événements.

Données des objets

CAM (Cooperative Awareness Message)

Message de l'état du véhicule qui est constitué de :

- stationId (identifiant du véhicule)
- stationType
 - Véhicule ordinaire (5);
 - Véhicule d'urgence (10);
 - Véhicule opérateur Routier (15))
- vitesse
- Heading (l'angle par rapport au nord)
- positions GPS

DENM (Decentralized Event Notification Message)

Messages des évènements sur la route, qui est constitué de :

- stationId (identifiant du véhicule)
- stationType
 - véhicule ordinaire (5);
 - véhicule d'urgence (10);
 - o véhicule opérateurRoutier (15))
- cause code (type d'événement sur un octet)
 - o 3= travaux;
 - o 4= accident;
 - 5= Embouteillage;
 - o 6= route glissante ;
 - o 7= brouillard;
- subCause code code (sous type)
- position GPS

Les messages CAM sont envoyés à une fréquence de 1hz à 10hz en fonction de la vitesse. SI la vitesse < 90km/h, la fréquence est de 1hz autrement elle est de 10hz.

Les messages DENM sont remontés à chaque événement (souvent automatiquement grâce à des conditions de déclenchement qui ne sont pas traités dans ce TP). Par contre la passerelle ne remonte vers le centralisateur que les événements de type accident et embouteillage.

Travail à réaliser

Vous avez une architecture virtualisée à votre disposition. Afin de réaliser ce TP vous devez :

- Installer et configurer les différents serveurs ;
- Simuler la génération des messages des objets ;

•	Assurer sur chacun des acteur le développement de programme ou d'API permettant la mise en œuvre de l'architecture.