Geometry Unit 4: Volume Bronx Early College Academy

Christopher J. Huson PhD

31 October - 18 November 2022

Outline

4.2 Rectangular prisms

4.3 Solve for a side

4.4 Surface area

4.5 Spheres, cones, pyramids

4 November

3 November

31 October

1 November

Learning Target: I can fold nets into 3-dimensional solids

HSG.CO.C.9 Prove theorems about lines and angles

4.1 Monday 31 October

Do Now

- 1. Review your Deltamath assignments
- 2. Check your Jumprope scores
- 3. Set a study goal
- 4. Answer survey in Google Classroom, "Mark as Done"

Lesson: Nets, Deltamath classwork practice Homework: Area formulas review problem set

Learning Target: I can calculate the volume of a rectangular prism

HSG.CO.C.9 Prove theorems about lines and angles

4.2 Tuesday 1 November

Do Now

- 1. Find the area of a rectangle 4 inches by 6 inches
- 2. Find the length of a rectangle 7 inches wide with an area of 63 square inches

Lesson: Prism definitions, volume formula

Homework: Deltamath practice

A prism is a polyhedron, a 3-dimensional shape

Solid A 3-dimensional object

Face A flat surface of a geometric solid

Edge A line segment where two faces meet

Vertex A point where edges meet

Prism A solid with two identical, parallel, bases and uniform cross section

Base Flat shapes that form the top and bottom or ends of a prism

Lateral face The sides of a prism, which are parallelograms Cross section The shape of a plane's intersection with a solid

Common types of prisms, named by their base

Rectangular Bases are rectangles (or squares)

Triangular Triangular base

Hexagonal Six-sided base, a hexagon

Cylinder Solid with two parallel circles as bases

Right Lateral faces are a right angles to the base

Oblique Slanted

Math Monks prisms page

Prism Shapes

Volume is a measure of space, the number of unit cubes a solid contains

Given the area of the base B and height h, the volume of a prism is $V = B \times h$

Rectangular
$$V = I \times w \times h$$

Square $V = s^2 \times h$
Triangular $V = \frac{1}{2}(I \times w \times h)$
Cylinder $V = \pi r^2 \times h$

BECA / Huson / Geometry Unit 4: Volume

Learning Target: I can solve for a missing parameter

HSG.CO.C.9 Prove theorems about lines and angles

4.3 Thursday 3 November

Do Now

- 1. Find the area of a circle with radius r=10, in terms of π
- 2. Find the radius of a circle with area $A=49\pi$

Lesson: Using algebra to solve problems, Deltamath practice

Homework: Handout practice with volume calculations

Muhammad ibn Musa al-Khwarizmi - the "father" of algebra

Persian 780 - 847 AD worked in Baghdad during the "Islamic golden age"

Algebra Mathematics with symbols (named after al-Khwarizmi's book, al-jabra) Algorithm Logical steps to solve a problem (comes from his name) Unknown A symbol or letter representing a number, x, y, a, π , θ "reduction" Cancellation of like terms on opposite sides of the equation

"Solve for x" or "isolate the variable"

The algorithm developed by al-Khwarizmi

Operation Combine two numbers (multiplication or addition, for example) Identity 0 for addition, 1 for multiplication.

$$a + 0 = a$$
 and $a \times 1 = a$

Inverse Two values that make the identity for an operation.

$$a+(-a)=0$$
 and $a imesrac{1}{a}=1$

$$a = b \iff a + c = b + c$$

Multiplying and dividing fractions

Rational numbers those that can be expressed as fractions, $\frac{p}{q} \in \mathbb{Q}$

Numerator The top number in a fraction, dividend, p

Denominator Divisor, bottom number in a fraction, q

Reciprocal The multiplicative inverse

Division Means to multiply by the reciprocal. $a \div b = \frac{a}{b} = a \times \frac{1}{b}$

To multiply fractions, multiply the numerators and denominators

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

To divide fractions, multiply by the reciprocal

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}$$

Learning Target: I can calculate the surface area of a rectangular prism

HSG.CO.C.9 Prove theorems about lines and angles

4.4 Friday 4 November

Do Now: Lumber used in construction called a "two-by-four" is actually $3\frac{1}{2}$ inches by $1\frac{1}{2}$ inches by 8 feet long.

- 1. Find the area of the rectangular cross section, $3\frac{1}{2}$ inches by $1\frac{1}{2}$ inches
- 2. Find the area of a triangular wedge cut from a two-by-four that is $3\frac{1}{2}$ inches by one foot long.

Lesson: Surface area definition, formula; adding fractions

Homework: Deltamath practice

Extension: Deltamath absolute value, percent error

4 November

Surface area is the combined total area of the faces of a polyhedron

Surface area The total area of the outside of a solid Given a rectangular prism with dimensions I, w, and h the surface area is the sum of the six faces:

$$S.A. = 2lw + 2lh + 2wh$$

= $2(5 \times 3) + 2(5 \times 8) + 2(3 \times 8)$
= 158 square units

Adding and subtracting fractions

To add fractions with the same denominator, add the numerators.

$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

Equivalent fractions Fractions that are equal.

$$\frac{a}{b} = \frac{a}{b} \times \frac{c}{c} = \frac{ac}{bc}$$

LCM Lowest Common Multiple, for two fractions, multiples of the denominators that are equal.

Mixed fraction A whole number and a fraction. e.g. $3\frac{1}{2}$

Adding fractions with different denominators

First convert to equivalent fractions with a common denominator. e.g. find

$$\frac{1}{3} + \frac{1}{2}$$

Convert to sixths

$$\frac{1}{3} \times \frac{2}{2} = \frac{2}{6} \text{ and } \frac{1}{2} \times \frac{3}{3} = \frac{3}{6}$$

Add these equivalent fractions instead:

$$\frac{2}{6} + \frac{3}{6} = \frac{5}{6}$$

Learning Target: I can calculate the volume of spheres, cones, and pyramids

HSG.CO.C.9 Prove theorems about lines and angles

4.5 Thursday 10 November

Do Now: Find the volume of a $3\frac{1}{2}$ inch long scrap of a "two-by-four". (remember, the actual cross section is $3\frac{1}{2}$ inches by $1\frac{1}{2}$ inches)

Lesson: More volume formulas; exponent review

Homework: Deltamath practice

Extension: Deltamath exponent rules

Volume of a cone or pyramid is one-third of a prism

Given a base with area B and a height h, the volume of a cone or pyramid is $V = \frac{1}{3}B \times h$

Rectangular
$$V = \frac{1}{3}(I \times w \times h)$$

Square $V = \frac{1}{3}(s^2 \times h)$
Cone $V = \frac{1}{3}(\pi r^2 \times h)$

Volume and surface area of a sphere is a function of π

Given a sphere with radius r

Sphere A ball or globe shape Volume $V=\frac{4}{3}\pi r^3$ Surface area $S.A.=4\pi r^2$

Exponents mean repeated multiplication

Superscript "Writing above," used for exponentiation. x^2 Subscript "Writing below," used for labeling or naming. x_2

Multiplying exponents with the same base $\underbrace{a \times a \times a}_{5} \times \underbrace{a \times a}_{2} = a^{5}$