

b-Tag Track Studies

Laurie McClymont (with Andreas and Tim)

UCL ATLAS Meeting 17 April 2015

B-tagging - IP3D, SV1, JF

IP3D

- Look for tracks with a large impact parameter significance = $(I.P. / \sigma)$

<u>SV1</u>

<u>JF</u>

- Identify a secondary vertex
- Look for large flight path significance = $(F.P. / \sigma)$

- Identify Second and Tertiary Vertices.
- These vertices correspond to decay of B meson and decay of D meson.
- Assumes these vertices lie on an shared B flight axis

Problems at High P_T

- Global Cut Efficiency = 0.53
- For a fixed discriminant cut SV1_IIr > 4.5
- 13TeV ttbar

- Flat Cut Efficiency = 0.7
- 13TeV ttbar

- Longer decay length of B at high P_T
- Higher boosted jets at high P_T

Aims of Study

- To study the track selection of IP3D, SV1 and Jet Fitter Algorithms when applied to truth b-jets.
- Optimise flavour tagging performance for high P_T by adjusting track selection

Sample Used for Studies

mc14_13TeV.110401
.PowhegPythia_P2012_ttbar
_noallhad.merge
.e2928_s1982_s2008_r6114_r6104

Validation Sample for r20.1.0.3

5m events

Pile-Up On

Origins of Tracks in a b-jet

Primary Vertex

Track Cuts and Some Definitions

Track Cuts

From Talk by R. Zaidan at Flav Tag Workshop 2015

In this study I have applied these cuts manually in my analysis code.

Definitions

From B = Any track associated to the decay of the B or C Hadron

From = Any track without a well matched truth particle.

From Geant = Any track created by a GEANT interaction.

From Frag = Any track not From B or From Geant

From Other = Any track not From B

Selection = #Tracks FromX Selected By a Cut Efficiency # Truth Tracks From X

Fraction of Tracks = #Tracks FromX Selected By a Cut
Total # Tracks Selected by a Cut

14			
	IP3D	SV1	JFit
p _T ≥	1000	700	769.2
η ≤	2.5	2.5	2.5
N _{SI} ≥	7	7	7
N _{SCT} ≥	-	4	4
N _{PIX} ≥	2	1	1
N _{IBL} ≥	1	-	-
N _{IBL} + N _{BL} ≥	-	-	-
$N^{SH}_{PIX} + \frac{N^{SH}_{SCT}}{2} \le$	-	-	1
N ^{HOLE} _{SI} ≤	-	-	-
N ^{HOLE} _{PIX} ≤	-	-	-
d ₀ ≤	1	5	3.5
$z_0^* \sin(\theta) \le$	1.5	25	5
$\sigma(d_0) \leq$	-	1	0.35
$\sigma(z_0) \leq$	-	5	2.5
χ2/NDF≤	-	-	3.5

user.vdao.mc14_13TeV.110401.PowhegPythia_s1982_s2008_r6114_r6104

r20.1.0.3, 5m entries, $\mu = YES$

- This shows the P_T distributions for the average P_T of all tracks from B, average minimum P_T track from B, and average P_T of all tracks from Other (anything but not from P_T).
- Shows great opportunity for a track P_T cut that depends on jet P_T.

Track P_T distributions normalised for a given Jet P_T (vertical slices) including overfill bin.

Track P_T distributions normalised for a given Jet P_T (vertical slices) including overfill bin.

user.vdao.mc14_13TeV.110401.PowhegPythia_s1982_s2008_r6114_r6104

r20.1.0.3, 5m entries, $\mu = YES$

- Applying a variable P_T cut reduces the fraction from Geant and PuFake at High P_T
- The fraction from B is increased, but only slightly.

Conclusions

- I have studied track selection to improve b-tagging algorithms at high P_T.
- There is potential for a jet- P_T dependant cut that can improve performance at high P_T .

Next Steps

- Re-tag after the jet-P_T dependant cuts to see how b-tagging performance is ultimately improved by creating ROC curves.
- Try other slopes and offsets to optimise the variable P_T cut.
- Study other cuts, such as d₀, to see if the current set of cuts can be optimised at high-P_T.

Back Up!

Manual Cut

Algo Flag