Esercizio 1

Sintetizzare a costo minimo in forma PS una rete equivalente a quella della figura sottostante. Nello svolgere la sintesi, si supponga che non si possano presentare stati di ingresso con 3 variabili ad 1.

Esercizio 2

La coppia EPROM e Unità XXX implementano una rete sequenziale sincronizzata di Moore con 16 stati interni. La locazione della EPROM di indirizzo i, (i = 0, 1, ..., 15), contiene la i-ma riga della tabella di flusso della rete di Moore in accordo alle seguenti specifiche: i 4 bit più significativi sono la codifica dello stato interno successivo se x vale 0; i 4 bit contigui sono la codifica dello stato interno successivo se x vale 1; gli 8 bit contigui (cioè gli otto bit meno significativi) rappresentano lo stato di uscita.

Ciò premesso, l'unità XXX è dotata, fra gli altri, di un registro A3_A0 e di un registro OUT e, a regime, compie **ogni 10 periodi del** clock le seguenti azioni:

- Se x vale 0 immette in A3_A0 i quattro bit d15_d0[15:12];
 Se x vale 1 immette in A3_A0 i quattro bit d15_d0[11:8];
- 2) Immette in OUT gli 8 bit d15_d0 [7:0]

Si supponga che al reset iniziale i registri A3_A0 e OUT siano azzerati e che l'accesso alla ROM non richieda stati di wait.

Si descriva e si sintetizzi l'unità XXX e si disegni la Parte Operativa relativa al registro A3_A0.

Esercizio 1 - Una soluzione

Dall'ispezione della rete si ricava la tabella di verità seguente (y_i sono le variabili che collegano il primo livello di logica al secondo, dall'alto verso il basso). I non specificati su z sono aggiunti in corrispondenza degli stati di ingresso che contengono 3 variabili di ingresso ad 1, come da specifica iniziale.

X 3	X 2	X 1	X0	y ₀	y 1	y 2	Z
0	0	0	0	1	0	1	0
0	0	0	1	1	0	0	1
0	0	1	0	1	0	1	0
0	0	1	1	1	0	0	1
0	1	0	0	0	0	0	0
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	1	-
1	0	0	0	1	0	1	0
1	0	0	1	1	1	0	0
1	0	1	0	1	0	1	0
1	0	1	1	1	0	0	-
1	1	0	0	1	0	0	1
1	1	0	1	1	1	1	-
1	1	1	0	1	0	0	-
1	1	1	1	1	0	1	0

Dalla tabella di verità si ricava velocemente la mappa di Karnaugh per \bar{z} e gli implicanti principali.

$x_1 x_0$	X ₂ 00	01	11	10
00	1	1	0	1
01	0	0	-	1
11	0	-	1	-
10	1	1	-	1

Gli implicanti principali sono: $A = \overline{x_3} \cdot \overline{x_0}$, $B = x_3 \cdot \overline{x_2}$, $C = x_3 \cdot x_0$, $D = x_2 \cdot x_1$, $E = x_3 \cdot x_1$, $F = x_1 \cdot \overline{x_0}$, $G = \overline{x_2} \cdot \overline{x_0}$. Di questi, A è essenziale, mentre C,D,E,F,G sono semplicemente eliminabili. Le sintesi a costo minimo (che si trovano a partire A, decidendo se includere o meno B) sono quindi $\{A, B, C\}$, $\{A, B, D\}$, $\{A, B, E\}$, $\{A, C, G\}$ e sono tutte equivalenti secondo il criterio a porte ed a diodi. Una possibile sintesi PS è quindi la seguente (basata sulla lista $\{A, B, C\}$):

$$\bar{z} = \overline{x_3} \cdot \overline{x_0} + x_3 \cdot \overline{x_2} + x_3 \cdot x_0$$

$$z = \overline{(\overline{x_3} \cdot \overline{x_0}) + (x_3 \cdot \overline{x_2}) + (x_3 \cdot x_0)}$$

= $(x_3 + x_0) \cdot (\overline{x_3} + x_2) \cdot (\overline{x_3} + \overline{x_0})$

Esercizio 2 - Una soluzione

```
module XXX(d15_d0,a3_a0,x,z7_z0,clock,reset_);
              clock, reset ;
 output [3:0] a3 a0;
 input [15:0] d15 d0;
 input
              х;
 output [7:0] z7 z0;
                       assign z7_z0=OUT;
assign a3_a0=A3_A0;
           OUT;
 reg [7:0]
             A3 A0;
 reg [3:0]
 reg [3:0]
             COUNT;
              STAR;
                       parameter ST0=0, ST1=1;
parameter Num Periodi=10;
 always @(reset ==0) begin A3 A0<=0; OUT<=0; COUNT<=Num Periodi; STAR<=ST0; end
 always @(posedge clock) if (reset ==1) #3
  casex(STAR)
   STO: begin COUNT<=COUNT-1; STAR<=(COUNT==2)?ST1:STO; end
   ST1: begin OUT<=d15_d0[7:0]; A3_A0<=(x==0)?d15_d0[15:12]:d15_d0[11:8];
         COUNT<=Num Periodi; STAR<=ST0; end
   endcase
endmodule
```