Homework 3

John J Li

February 19, 2021

Problem 1:

Proof. Suppose 0 < a < b. Then multiplying the inequality a < b by the positive number a can conclude that $a^2 < ab$; similarly, multiplying the inequality a < b by the positive number b can conclude that $ab < b^2$. Thus $a^2 < ab < b^2$. Then by multiplying the new inequality $a^2 < ab < b^2$ by the positive number a, we can conclude $a^3 < a^2b < ab^2$; furthermore, by multiplying the new inequality $a^2 < ab < b^2$ by the positive number a, we can conclude $a^2b < ab^2 < ab^2$. So $a^3 < a^2b < ab^2 < b^3$, thus if $a^3 < a^2b < ab^3 < ab^3$.

Problem 2:

Proof. We will prove the contrapositive. Suppose if x=9 then $x^3-\sqrt{x}\neq 3x^2+sin(x)$. Then $(9)^3-\sqrt{9}\neq 3(9)^2+sin(9)$ and $726\neq 243.412$. Therefore if $x^3-\sqrt{x}=3x^2+sin(x)$ then $x\neq 9$.

Problem 3:

Proof. We will prove the contrapositive. Suppose n is not even. Then n=2k+1 where $k \in \mathbb{Z}$. Then $3(2k+1)^3+6$ and $24k^3+36k^2+18k^2+9$ which can be written as $2(12k^3+13k^2+12k+4)+1$ which is not even. Therefore if $3(n)^3+6$ then n is not even.

Problem 4:

Proof. Let x be arbitary. Suppose A and $B \setminus C$ are disjoint. This means $\forall_x (x \in A \land \neg (x \in B \land x \notin C))$ and so $\forall_x (x \in A \land x \in B \rightarrow x \in C)$ and this is the logic form of $A \cap B \subseteq C$ since x is arbitary. Therefore if A and $B \setminus C$ are disjoint then $A \cap B \subseteq C$.