一、设 f(x) 在区间 $[0,+\infty)$ 内可微, f(0)=0 ,并设有实数 A>0 ,使得在 $(0,+\infty)$ 内有 |f'(x)| < A|f(x)| ,那么,在 $(0,+\infty)$ 内, $f(x) \equiv 0$.

证明: 设存在 $y \in (a,b]$ 使得 $f(y) \neq 0$,不失一般性,设 f(y) > 0.

由函数 f(x) 的连续性,存在 $c \in (a, y]$ 使得 f(c) = 0 且 f(x) > 0 , $x \in (c, y]$.

记 $g(x) = \ln f(x) - Ax$, $x \in (c, y]$, 那么由已知条件,

$$g'(x) = \frac{f'(x)}{f(x)} - A \le 0$$
, $x \in (c, y]$,

从而 g(x) 是单调减函数.

于是, $\ln f(x) - Ax \ge \ln f(y) - Ay$, $x \in (c, y]$, 从而

$$f(x) \ge f(y)e^{A(x-y)}, x \in (c, y],$$

因此, 令 $x \to c^+$, 则 $f(y)e^{A(c-y)} \le 0$, 与f(y) > 0矛盾.

故在 $(0,+\infty)$ 内, $f(x) \equiv 0$.

如果 f(y) < 0, 只需考虑 F(x) = -f(x), F(x)满足定理的条件,故在 $(0, +\infty)$ 内, $F(x) \equiv 0$, 即 $f(x) \equiv 0$.

二、设 f(x) 是 [0,1] 上的可微函数,且当 $x \in (0,1)$ 时, 0 < f'(x) < 1 , f(0) = 0 , 试证明 $(\int_0^1 f(x) dx)^p > 2^{1-p} p \int_0^1 f^{2p-1}(x) dx \, ,$

其中 p > 1 为常数.

证明: $\Rightarrow F(x) = (\int_0^x f(t)dt)^p - 2^{1-p} p \int_0^x f^{2p-1}(x)dx$,则 $F'(x) = pf(x)[(\int_0^x f(t)dt)^{p-1} - 2^{1-p} f^{2p-2}(x)].$

因为 $f(x) = f(0) + \int_0^x f'(x) dx = \int_0^x f'(x) dx$. 由 0 < f'(x) < 1, 则当 0 < x < 1时,有 $0 < f(x) < x \le 1$.

记 $g(x) = 2\int_0^x f(t)dt - f^2(x)$,则 g'(x) = 2f(x)[1 - f'(x)] > 0,因此,当 $x \in (0,1)$ 时,

g(x) > 0, $\mathbb{I} \int_0^x f(t) dt > 2^{-1} f^2(x)$.

于是, $\left(\int_0^x f(t) dt\right)^{p-1} > 2^{1-p} f^{2p-2}(x) > 2^{1-p} f^{2p-1}(x)$.

所以, F'(x) > 0, 则 F(1) > F(0), 即

$$\left(\int_{0}^{1} f(x) dx\right)^{p} > 2^{1-p} p \int_{0}^{1} f^{2p-1}(x) dx$$

三、设f(x)在[0,1]上存在二阶连续导数,证明:

$$\int_0^1 |f'(x)| dx \le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx.$$

证明:因为 f(x) 在[0,1] 上存在二阶连续导数,则存在 $x_0, x_1 \in [0,1]$,使得

$$|f(x_0)| = \min_{x \in [0,1]} |f(x)|, |f'(x_1)| = \min_{x \in [0,1]} |f'(x)|.$$

由拉格朗日中值定理,对任何 $x \in [0,1]$,存在 $\xi_x \in (0,1)$,使得

$$f(x) = f(x_0) + f'(\xi_x)(x - x_0)$$
.

若 $f(x_0) \neq 0$,那么 f(x) 与 $f(x_0)$ 同号(否则,必存在 $t_0 \in (0,1)$,使得 $f(t_0) = 0$,与 $|f(x_0)| = \min_{x \in [0,1]} |f(x)|$ 矛盾),再由 $|f(x)| \geq |f(x_0)|$,则 $f(x_0)$ 与 $f'(\xi_x)(x-x_0)$ 同号,于是

$$|f(x)| = |f(x_0)| + |f'(\xi_x)(x - x_0)| \ge |f'(x_1)(x - x_0)|, x \in [0, 1].$$

上式从0到1积分,得

$$\int_0^1 |f(x)| dx \ge |f'(x_1)| \int_0^1 |x - x_0| dx$$

$$= \left| f'(x_1) \right| \left(\frac{x_0^2}{2} + \frac{(1 - x_0)^2}{2} \right) \ge \frac{1}{4} \left| f'(x_1) \right|.$$

进一步,由

$$|f'(x)| = |f'(x_1) + \int_{x_1}^x f''(x) dx| \le |f(x_1)| + \int_0^1 |f''(x)| dx$$

$$\le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx.$$

再由上面不等式从0到1积分,得

$$\int_0^1 |f'(x)| dx \le 4 \int_0^1 |f(x)| dx + \int_0^1 |f''(x)| dx.$$

四、设函数 f(x) 在 [-2,2] 上二阶可到,且 $|f(x)| \le 1$,还满足 $[f(0)]^2 + [f'(0)]^2 = 2$,证明:在 (-2,2) 内至少存在一点 ξ , 使得 $f(\xi) + f''(\xi) = 0$.

证明: 记 $g(x) = [f(x)]^2 + [f'(x)]^2$.

由拉格朗日中值定理,存在 $a \in (-2,0), b \in (0,2)$,使得

$$\frac{f(0)-f(-2)}{2}=f'(a), \quad \frac{f(2)-f(0)}{2}=f'(b).$$

由题设 $|f(x)| \le 1$,则 $|f'(a)| \le 1$, $|f'(b)| \le 1$,从而 $g(a) \le 2$, $g(b) \le 2$.

由 g(0) = 2, 所以, g(x) 在 (a,b) 内取得最大值.

设最大值点为 $\xi \in (a,b)$. 那么 $g'(\xi) = 0$, 即 $f'(\xi)[f(\xi) + f''(\xi)] = 0$.

由于 $g(\xi) \ge 2$, $|f(\xi)| \le 1$, 得 $|f'(\xi)| = \sqrt{g(\xi) - [f(\xi)]^2} \ge \sqrt{2 - 1} > 0$, 所以 $f'(\xi) \ne 0$. 故 $f(\xi) + f''(\xi) = 0$.

五、设函数 f(x) 在区间 [a,b] 上二阶可导,且 $f(x) \ge 0$, $f''(x) \le 0$,证明:

$$\max_{a \le x \le b} f(x) \le \frac{2}{b-a} \int_a^b f(x) dx.$$

证明: 记 $F(x) = 2\int_a^x f(t)dt - f(x)(x-a)$, 则F(a) = 0.

因为 F'(x) = f(x) - f'(x)(x-a), $F'(a) = f(a) \ge 0$.

又因为 $F''(x) = -f''(x)(x-a) \ge 0$,即F'(x)是单调不减的,则当 $x \in [a,b]$,有

 $F'(x) \ge F'(a) \ge 0$,即F(x)是单调不减的,故 $F(x) \ge F(a) = 0$,即

$$2\int_{a}^{x} f(t)dt \ge f(x)(x-a).$$

取 $x_0 \in [a,b]$, 使得 $f(x_0) = \max_{a \le x \le b} f(x)$, 则

$$2\int_{a}^{x_0} f(t)dt \ge f(x_0)(x_0 - a)$$
.

同理可证: $2\int_{x_0}^b f(t)dt \ge f(x_0)(b-x_0)$.

两式相加,得 $\max_{a \le x \le b} f(x) = f(x_0) \le \frac{2}{b-a} \int_a^b f(x) dx$.

六、设函数 f(x) 在[0,1] 上连续,证明:存在 $\xi \in (0,1)$,使得 $f(\xi) = \frac{2}{1-\xi} \int_0^\xi f(x) dx$.

证明: 设 $F(x) = (1-x)^2 \int_0^x f(t) dt$,则F(x)在[0,1]上连续,在(0,1)内可导,且

$$F'(x) = -2(1-x)\int_0^x f(t)dt + (1-x)^2 f(x).$$

又 F(0) = F(1) = 0,由罗尔定理,存在 $\xi \in (0,1)$,使得

$$F'(\xi) = -2(1-\xi)\int_0^{\xi} f(t)dt + (1-\xi)^2 f(\xi) = 0.$$

移项后,可得 $f(\xi) = \frac{2}{1-\xi} \int_0^{\xi} f(x) dx$.