Logic Gates & Boolean Algebra

- Digital vs Analogue
- Computers and electricity
- Truth tables
- •Logic gates

Learning Objectives

By the end of this topic you should understand:

- Truth tables for NOT, AND, OR, XOR, NAND and NOR gates.
- Logic gate diagrams involving one or more of the logic gates.
- How to determine the output of a simple logic circuit

Digital vs Analogue

What does **DIGITAL** mean?

-> In general, digital signals are represented by only **two** possible voltages on a wire - 0 volts (which we call "binary 0", or just "0") and 5 volts (which we call "binary 1", or just "1"). We sometimes call these values "high" and "low", or "true" and "false".

The analogy that is often used is that of a light switch. It can be in just two positions - "on" or "off".

"Boolean Algebra" = logic computation

- George Boole, 1847 shorthand notation for a system of logic.
- Boolean variable can have only 2 possible discrete values: true or false
- Eg the following are Boolean <u>variables</u>:
 - "it is raining today" = X
 - "today is my birthday" = Y. Truth tables:

X	Meaning
True (1)	It is raining today
False (o)	It is not raining today

Υ	Meaning
True (1)	Today is not my birthday.
False (o)	Today is my birthday.

Computers and electricity

- A gate is a device that performs a basic operation on electrical signals
- Gates are combined into circuits to perform more complicated tasks
 - There are three different, but equally powerful, notational methods for describing the behavior of gates and circuits
 - Boolean expressions
 - logic diagrams
 - truth tables

Computers and electricity

Truth tables

X	Υ	Lamp (Q)

Truth tables

X	Υ	Lamp (Q)
Open (o)	Open (o)	Off (o)
Open (o)	Closed (1)	On (1)
Closed (1)	Open (o)	On (1)
Closed (1)	Closed (1)	On (1)

Computers and electricity

- Boolean expression (equation)
 - expresses a Boolean output Q in terms of the inputs X, Y, Z etc to which one or more Boolean functions (OR, AND, NOT...) are applied.
- Logic diagram / gate
 - an electronic circuit that performs a Boolean function
- Truth table
 - table that shows the result of applying the logical function to <u>all</u> <u>possible combinations</u> of inputs

NOT function & gate

Boolean Expression Logic Diagram Symbol

Truth Table

$$X = \overline{A}$$

Α	Х
0	1
1	0

Notice that the NOT function inverts the input.

Equivalent Boolean expression: (I'm using the ! symbol for negationyou draw a line above the A!)

X = A!

Input

AND function & gate

When will the lamp be on?

Only if both A and B switches are on.

Boolean Expression

Logic Diagram Symbol

Truth Table

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Two AND gates

OR function & gate

When will the lamp be on?

If either A or B switches are on.

Boolean Expression Logic Diagram Symbol

Logic Diagram Symb

Truth Table

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

AND and NOT gates together

AND and OR gates together

OR and NOT gates together

Task (10 mins)

- 1. Draw the truth tables for AND, OR and NOT functions.
- 2. What logic function is performed by this switch arrangement (write the Boolean expression):

- Draw a switch arrangement for the AND function.
- 4. Draw the switch arrangement for output Q=X.Y+X.Z what do you notice?

Answers

1.

X	Υ	X.Y
1	1	1
1	0	0
0	1	0
0	0	0

X	Υ	X+Y
1	1	1
1	0	1
0	1	1
0	0	0

X	\overline{X}
1	0
0	1

2. X.(Y+Z)

4.

Logic gates - recap

$$A.B=X$$

(AND)

$$A+B=X$$

(OR)

$$\overline{A}=X$$

(NOT)

Starter - check Homework (5 mins)

Peer assessment – in pairs, check your homework answers.

Combinations of logic gates

A.B+C.D=Q

When is Q on? If either A and B, or C and D are ON.

- 2. suppose we require an output Q from 3 inputs, A,B,C such as Q=0 when
 - A is present (1) and B is present (1) or
 - •B is not present (0) but C is present (1).

Draw the logic diagram for this expression.

Solution

$$A.B+\overline{B}.C=\overline{Q}$$

$$A.B+\overline{B}.C=Q$$

Question

In the following circuit, there is only one combination of inputs A and B that produces a 1 output. What is that combination?

Exclusive OR function (XOR or EOR)

- An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise
- Note the difference between the XOR gate and the OR gate; they differ only in one input situation
- When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

 $X = A \oplus B$

Boolean Expression Logic Diagram Symbol

Truth Table

A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

NAND and NOR functions

Boolean Expression Logic Diagram Symbol

Truth Table

Note the little extra circle added to the AND and OR gates

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Boolean Expression Logic Diagram Symbol

Truth Table

X	-	(A	+	B)

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

NAND and NOR functions

More practice

3.2.2 further logic gates.pdf (handout)