WHAT IS CLAIMED IS:

1. A compound represented by Formula A:

5

15

20

30

$$\begin{array}{c|c}
 & R^5 \\
 & V - X \\
 & - X \\$$

A

or a pharmaceutically acceptable salt thereof, wherein:

10 R¹, R², R³ and R⁴ are each independently selected from the group consisting of: –H, -F, -Cl, -Br, -I, -CN, -OH, C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy,

wherein said C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH, C₁-8alkoxy and -CO₂H,

and any two of R¹, R², R³ and R⁴ may be joined together with the atoms to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms optionally containing 1 or 2 oxygen atoms;

R⁵ is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,

wherein said C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl and C₁₋₄alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH and C₁₋₈alkoxy;

R6 is selected from the group consisting of: phenyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridizinyl and thienyl, each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, phenyl, thienyl,

C₁₋₄alkyl, C₃₋₆cycloalkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₃₋₆cycloalkoxy, C₁₋₄alkylthio and C₂₋₄acyloxy,

- wherein said phenyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and
- R6 may be substituted on two adjacent atoms to form a fused partially aromatic bicyclic ring of 9 to 12 atoms optionally containing one or two oxygen or sulfur groups, or both, and optionally substituted with one to three substituents independently selected from the group consisting of:
 -F, -Cl, -Br, -I, -CN, -OH, and C₁-4alkyl;
- R7 and R8 are independently selected from the group consisting of: -H, C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl, wherein said C₁-6alkyl, C₂-6alkenyl and C₂-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy, and
- R7 and R8 may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy;
 - U, V and W are independently selected from the group consisting of: -C(R⁹)- and -N-;

25

- each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,
- wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy;
 - For U or V, R^9 and R^1 or R^9 and R^2 may be joined together with the atoms to which they are attached to form a 4 to 8 membered ring, optionally containing 1 or 2 oxygen, sulfur or $N(R^{10})$

atoms, thus forming a fused partially aromatic bicyclic ring system of 8 to 12 atoms with the 6membered aromatic ring to which R⁹ is attached;

X, Y and Z are independently selected from $-C(R^{11})=$, -O-, -N=, $-N(R^{12})-$ and -S- such that the resulting ring together with Q and T form an aromatic heterocycle; 5

Q and T are independently selected from
$$\sim\sim$$
 or $\sim\sim$, with the proviso that both Q

and T are not

- R10, R11 and R12 are each indepedently selected from the group consisting of: -H, C1-6alkyl, 10 C2-6alkenyl and C2-6alkynyl, wherein said C1-6alkyl, C2-6alkenyl and C2-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy;
- J is selected from the group consisting of: -CO₂H, -PO₃H₂, -PO₂H₂, -SO₃H, -CONHSO₂R¹³, 15 -PO(R13)OH,

5 R¹³ is selected from the group consisting of: C₁-C₄ alkyl, phenyl, -CH₂OH and CH(OH)-phenyl; and

each R¹⁴ is independently selected from the group consisting of: -H and -CH₃.

10

2. A compound in accordance with Claim 1 represented by Formula I

or a pharmaceutically acceptable salt thereof, wherein:

5

15

R1, R2, R3 and R4 are each independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C1-6alkyl, C2-6alkenyl, C2-6alkynyl and C1-5alkoxy,

wherein said C₁-6alkyl, C₂-6alkenyl, C₂-6alkynyl and C₁-5alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH, C₁-8alkoxy and -CO₂H,

and any two of R¹, R², R³ and R⁴ may be joined together with the atoms to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms optionally containing 1 or 2 oxygen atoms;

R5 is selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, C1_4alkyl, C2_4alkenyl, C2_4alkynyl and C1_4alkoxy,

wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

-F, -Cl, -Br, -I, -OH and C₁-8alkoxy;

pyridizinyl and thienyl, each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, phenyl, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₂-4acyloxy,

wherein said phenyl, C₁₋₄alkyl, C₃₋₆cycloalkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy,

C3-6cycloalkoxy, C1-4alkylthio and C1-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C1-8alkoxy, and

- R6 may be substituted on two adjacent atoms to form a fused partially aromatic bicyclic ring of 9 to 12 atoms optionally containing one or two oxygen or sulfur groups, or both, and optionally substituted with one to three substituents independently selected from the group consisting of:
 -F, -Cl, -Br, -I, -CN, -OH, and C₁-4alkyl;
- 10 R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and
- 15 R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy;
- U, V and W are independently selected from the group consisting of: $-C(R^9)$ and -N-;
 - each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy,
- wherein said C₁_4alkyl, C₂_4alkenyl, C₂_4alkynyl and C₁_4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of:

 -F, -Cl, -Br, -I, -OH and C₁_8alkoxy;
- For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 4 to 8 membered ring, optionally containing 1 or 2 oxygen, sulfur or N(R¹⁰) atoms, thus forming a fused partially aromatic bicyclic ring system of 8 to 12 atoms with the 6-membered aromatic ring to which R⁹ is attached;
- X, Y and Z are independently selected from $-C(R^{11})=$, -O-, -N=, $-N(R^{12})-$ and -S- such that the resulting ring together with Q and T form an aromatic heterocycle;

WO 2005/058848

PCT/US2004/041887

Q and T are independently selected from

and T are not

10

15

20

25

30

R10, R11 and R12 are each indepedently selected from the group consisting of: -H, C1-6alkyl, 5 C2-6alkenyl and C2-6alkynyl, wherein said C1-6alkyl, C2-6alkenyl and C2-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy.

> A compound according to Claim 2 wherein R⁵ is methyl. 3.

A compound according to Claim 2 wherein R⁶ is selected from the group 4. consisting of: phenyl and pyridinyl, each optionally substituted with one to three substituents independently selected from the group consisting of: F, -Cl, -Br, -I, -CN, -OH, -NR⁷R⁸, -NO₂, C₁-4alkyl, C₃-6cycloalkyl, C₂-4alkenyl, C₂-4alkynyl, C₁-4alkoxy, C₁-4alkylthio, C3-6cycloalkoxy and C1-4acyloxy,

wherein said C₁₋₄alkyl, C₃₋₆cycloalkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkylthio, C3-6cycloalkoxy and C1-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₈alkoxy; and

R⁷ and R⁸ are independently selected from the group consisting of: -H, C₁-6alkyl, C2-6alkenyl and C2-6alkynyl, wherein said C1-6alkyl, C2-6alkenyl and C2-6alkynyl are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R7 and R8 may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy.

- 5. A compound according to Claim 2 wherein V and W are -CH-.
- 6. A compound according to Claim 2 of Formula Ia

$$R^{b}$$
 R^{a}
 R^{a}

or a pharmaceutically acceptable salt thereof, wherein:

5

30

10 R¹ and R² are independently selected from the group consisting of: -H, -OH and methyl or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are each independently selected from the group consisting of: $-C(R^9)$ - and -N-;

- each R9 is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy, wherein said C₁-4alkyl, C₂-4alkenyl, C₂-4alkynyl and C₁-4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-8alkoxy, and
- For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;
- A is selected from the group consisting of: -N- and -C(R¹³)-, wherein R¹³ is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH₃, -OCH₃, -CF₃, ethynyl, -NO₂ and -NH₂;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: –F, -Cl, -Br, -I and -OH;

R7 and R8 are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

5

R7 and R8 may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy; and

10

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

15

7. A compound according to Claim 2 of Formula Ib

or a pharmaceutically acceptable salt thereof, wherein:

R1 is selected from the group consisting of: -H, -OH and methyl;

25

A is selected from the group consisting of: -N- and - $C(R^{13})$ -, wherein R^{13} is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2;

Ra is selected from the group consisting of: NR⁷R⁸, C₁_4alkyl, C₃_6cycloalkyl, C₁_4alkoxy, C₃_6cycloalkoxy, C₁_4alkylthio and C₁_4acyloxy, wherein said C₁_4alkyl, C₃_6cycloalkyl, C₁_4alkylthio and C₁_4acyloxy are each optionally substituted from

one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I and -OH;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

8. A compound according to Claim 2 of Formula Ic

20

5

10

15

or a pharmaceutically acceptable salt thereof, wherein:

R¹ and R² are independently selected from the group consisting of: -H, -OH and methyl or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

25

30

U and V are each independently selected from the group consisting of: $-C(R^9)$ - and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl and C₁₋₄alkoxy, wherein said C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋ 4alkynyl and C₁_4alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C1-8alkoxy, and

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;

A is selected from the group consisting of: -N- and $-C(R^{13})$ -, wherein R^{13} is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, $-CH_3$, $-OCH_3$, $-CF_3$, ethynyl, $-NO_2$ and $-NH_2$;

Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I and -OH;

15 R7 and R8 are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and

R7 and R8 may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁-5alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

9. A compound according to Claim 2 of Formula Id

$$R^{b}$$
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{b}
 R^{b}
 R^{b}
 R^{a}
 R^{b}
 R^{b

30

5

or a pharmaceutically acceptable salt thereof, wherein:

5

10

15

25

R¹ and R² are independently selected from the group consisting of: -H, -OH and methyl or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are each independently selected from the group consisting of: -C(R⁹)- and -N-;

each R⁹ is independently selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -OH, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl and C₁₋₄alkoxy, wherein said C₁₋₄alkyl, C₁₋₄alkenyl, C₁₋₄alkynyl and C₁₋₄alkoxy are each optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₈alkoxy, and

R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the 6-membered aromatic ring to which R⁹ is attached;

A is selected from the group consisting of: -N- and $-C(R^{13})$ -, wherein R^{13} is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, $-CH_3$, $-OCH_3$, $-CF_3$, ethynyl, $-NO_2$ and $-NH_2$;

- Ra is selected from the group consisting of: NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy, C₃-6cycloalkoxy, C₁-4alkylthio and C₁-4acyloxy are each optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: -F, -Cl, -Br, -I and -OH;
 - R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three substituents independently selected from the group consisting of: -F, -Cl, -Br, -I, -OH and C₁₋₅alkoxy, and
- R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, optionally containing 1 or 2 oxygen atoms, said ring is optionally substituted with one to three substituents independently selected from the group consisting of: –F, -Cl, -Br, -I, -OH and C₁-5alkoxy; and

Rb is selected from the group consisting of: -H, -F, -Cl, -Br, -I, -CN, -CH3, -OCH3, -CF3, ethynyl, -NO2 and -NH2.

5

10. A compound according to Claim 2 selected from the following table:

$$R^{b}$$
 R^{a}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{a}
 R^{b}
 R^{b}

Ie

Ex.	Ra	Rb	A	U	R ²	R ¹
1	i-PrO-	-CN	-CH=	=CH-	H	H
2	i-PrO-	Cl-	-CH=	=CH-	H	H
3	i-PrO-	Br-	-CH=	=CH-	H	H
4	i-PrO-	MeO-	-CH=	=CH-	H	H
5	i-PrO-	Me-	-CH=	=CH-	H	H
6	i-PrO-	<u>F-</u>	-CH=	=CH-	H	H
8	i-PrO-	-CF3	-CH=	=CH-	R ² and R ³ joined to	
					form cyclopropyl	
9	i-PrO-	-CF3	-CH=	=CH-	H	Me
10	i-PrO-	-CN	-CH=	=CH-	H	Me
11	i-PrO-	-CH3	-CH=	=CH-	H	Me
12	i-PrO-	-CF3	-CH=	=CH-	Me	H
13	i-PrO-	-CN	-CH=	=CH-	Me	Н
14	i-PrO-	-CH3	-CH=	=CH-	Me	H
15	i-PrO-	Cl-	-N=	=CH-	H	H
16	i-Pr-NH-	Cl-	-N=	=CH-	H	H
17	2,2,2-trifluoro-1-	Cl-	-N=	=CH-	H	H
	methylethoxy					
18	pyrrolidinyl	Cl-	-N=	=CH-	H	Н
19	morpholin-4-yl	Cl-	-N=	=CH-	Н	H
20	i-Pr-N(Me)-	Cl-	-N=	=CH-	H	Н

21	2,2,2-trifluoroethoxy	Cl-	-N=	=CH-	Me	H	
22	2,2,2-trifluoro-1-	Cl-	-N=	=CH-	Me	H	
	methylethoxy						
23	3,3-difluoro	Cl-	-N=	=CH-	Me	H	
	piperidinyl						
24	3,3,-difluoro	Cl-	-N=	=CH-	Me	Н	
•	pyrrolidinyl						
25	morpholin-4-yl	-CF3	-N=	=CH-	Me	H	
26	3,3,-difluoro	Cl-	-N=	=CH-	R ² and R ³ joined to		
	pyrrolidinyl				form cyclopropyl		
27	2,2,2-trifluoroethoxy	Cl-	-N=	=CH-	R ² and R ³ joined to		
					form cyclopropyl		
28	2,2,2-trifluoro-1-	Cl-	-N=	=CH-	R ² and R ³ joined to		
	methylethoxy			•	form cyc	cyclopropyl	
29	1-Me-n-PrO-	Cl-	-N=	=CH-	R ² and R ³ joined to form cyclopropyl		
30	i-PrO-	Cl-	-N=	=CH-	R ² and R ³ joined to		
					form cyclopropyl		
31	i-Bu-	Cl-	-N=	=CH-	H	H	
32	i-Pr-N(Me)-	I-	-N=	=CH-	H	H	
33	i-Pr-N(Me)-	-CN	-N=	=CH-	Н	H	
34	3,3,-difluoro	I	-N=	=CH-	H	Н	
	pyrrolidinyl				•		
35	3,3,-difluoro	-CN	-N=	=CH-	H	H	
	pyrrolidinyl						
36	i-PrO-	-CN	-CH=	=CH-	R ² and R ³	R ² and R ³ joined to	
					form cyclopropyl		
37	2,2,2-trifluoro-1-	-CN	-CH=	=CH-	R ² and R ³ joined to		
	methylethoxy				form cyclopropyl		
38	i-PrO-	MeO-	-CH=	=CH-	R ² and R ³ joined to		
					form cyclo	form cyclopropyl	
39	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	R ² and R ³ joined to		
					form cyclopropyl		
40	2,2,2-trifluoro-	-CN	-CH=	=CH-	R ² and R ³ joined to		

	1-trifluoromethyl ethoxy				form cyclop	ropyl
43	1-Me-n-PrO-	-CN	-CH=	=CH-	R ² and R ³ joined to form cyclopropyl	
44	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=CH-	R ² and R ³ joined to form cyclopropyl	
45	i-PrO-	Ι	-N=	=CH-	R ² and R ³ joined to form cyclopropyl	
48	Ethoxy	-CN	-N=	=CH-	Н	Н
49	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=CH-	H	Н
50	2-Me-n-Pr-	-CN	-N=	=CH-	H	H
51	2-methyl-1,1- difluoro- <i>n</i> -propyl	H	-CH=	=CH-	H	H
52	2,2,2-trifluoro-1- methylethoxy	I-	-N=	=CH-	H	Н
53	Cyclopentyloxy	Cl-	-CH=	=CH-	H	H
54	2-Me-n-PrO-	Cl-	-CH=	=CH-	H	H
55	2,2,2-trifluoro-1- methylethoxy	-CN	-CH=	=CH-	H	Н
56	2,2,2-trifluoro-1- methylethoxy	Cl-	-CH=	=CH-	H	H
57	i-PrO-	Cl-	-C(Cl)=	=CH-	Н	Н
58	cyclopropylmethoxy	Cl-	-CH=	=CH-	Н	Н
60	2,2,2-trifluoro-1- methylethoxy	-NO ₂	-CH=	=CH-	Н	H
61	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	Н	H
62	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=CH-	H	Н
63	1-Me-n-PrO-	-CN	-CH=	=CH-	Н	Н
65	2,2,2-trifluoro-1- methylethoxy	-NH ₂	-CH=	=CH-	Н	Н
66	1-Me-n-PrO-	-CN	-CH=	=CH-	Me	Н

67	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=CH-	Me	H
68	2,2,2-trifluoroethoxy	-CN	-CH=	=CH-	Me	H
69	i-PrO-	-CN	-CH=	=N-	H	H
70	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=N-	H	H
71	2,2,2-trifluoroethoxy	-CN	-CH=	=N	H	Н
72	2,2,2-trifluoro- 1-trifluoromethyl ethoxy	-CN	-CH=	=N-	H	H
73	2,2,2-trifluoroethoxy	-CN	-CH=	=N-	Me	H
74	2,2,2-trifluoro-1- methylethoxy	-CN	-N=	=N-	Me	H
75	i-PrO-	-CF3	-CH=	=CH-	H	H
79	i-PrO-	-CN	-CH=	=CH-	OH	OH
80	i-PrO-	-CN	-CH=	=CH-	OH	OH

or a pharmaceutically acceptable salt of any of the compounds above.

11. A compound according to Claim 2 selected from the following table:

5

or a pharmaceutically acceptable salt of any of the compounds above.

- 12. A method of treating an immunoregulatory abnormality in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective for treating said immunoregulatory abnormality.
- abnormality is an autoimmune or chronic inflammatory disease selected from the group consisting of: systemic lupus erythematosis, chronic rheumatoid arthritis, type I diabetes mellitus, inflammatory bowel disease, biliary cirrhosis, uveitis, multiple sclerosis, Crohn's disease, ulcerative colitis, bullous pemphigoid, sarcoidosis, psoriasis, autoimmune myositis, Wegener's granulomatosis, ichthyosis, Graves ophthalmopathy and asthma.

14. The method according to Claim 12 wherein the immunoregulatory abnormality is bone marrow or organ transplant rejection or graft-versus-host disease.

15. The method according to Claim 12 wherein the immunoregulatory 5 abnormality is selected from the group consisting of: transplantation of organs or tissue, graftversus-host diseases brought about by transplantation, autoimmune syndromes including rheumatoid arthritis, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes, uveitis, posterior uveitis, allergic encephalomyelitis, glomerulonephritis, post-infectious autoimmune diseases including rheumatic fever and post-10 infectious glomerulonephritis, inflammatory and hyperproliferative skin diseases, psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitis, seborrhoeic dermatitis, lichen planus, pemphigus, bullous pemphigoid, epidermolysis bullosa, urticaria, angioedemas, vasculitis, erythema, cutaneous eosinophilia, lupus erythematosus, acne, alopecia areata, keratoconjunctivitis, vernal conjunctivitis, uveitis associated with Behcet's disease, keratitis, 15 herpetic keratitis, conical cornea, dystrophia epithelialis corneae, corneal leukoma, ocular pemphigus, Mooren's ulcer, scleritis, Graves' opthalmopathy, Vogt-Koyanagi-Harada syndrome, sarcoidosis, pollen allergies, reversible obstructive airway disease, bronchial asthma, allergic asthma, intrinsic asthma, extrinsic asthma, dust asthma, chronic or inveterate asthma, late asthma and airway hyper-responsiveness, bronchitis, gastric ulcers, vascular damage caused by ischemic 20 diseases and thrombosis, ischemic bowel diseases, inflammatory bowel diseases, necrotizing enterocolitis, intestinal lesions associated with thermal burns, coeliac diseases, proctitis, eosinophilic gastroenteritis, mastocytosis, Crohn's disease, ulcerative colitis, migraine, rhinitis, eczema, interstitial nephritis, Goodpasture's syndrome, hemolytic-uremic syndrome, diabetic nephropathy, multiple myositis, Guillain-Barre syndrome, Meniere's disease, polyneuritis, 25 multiple neuritis, mononeuritis, radiculopathy, hyperthyroidism, Basedow's disease, pure red cell aplasia, aplastic anemia, hypoplastic anemia, idiopathic thrombocytopenic purpura, autoimmune hemolytic anemia, agranulocytosis, pernicious anemia, megaloblastic anemia, anerythroplasia, osteoporosis, sarcoidosis, fibroid lung, idiopathic interstitial pneumonia, dermatomyositis, leukoderma vulgaris, ichthyosis vulgaris, photoallergic sensitivity, cutaneous T cell lymphoma, 30 arteriosclerosis, atherosclerosis, aortitis syndrome, polyarteritis nodosa, myocardosis, scleroderma, Wegener's granuloma, Sjogren's syndrome, adiposis, eosinophilic fascitis, lesions of gingiva, periodontium, alveolar bone, substantia ossea dentis, glomerulonephritis, male pattern alopecia or alopecia senilis by preventing epilation or providing hair germination and/or promoting hair generation and hair growth, muscular dystrophy, pyoderma and Sezary's 35

syndrome, Addison's disease, ischemia-reperfusion injury of organs which occurs upon preservation, transplantation or ischemic disease, endotoxin-shock, pseudomembranous colitis, colitis caused by drug or radiation, ischemic acute renal insufficiency, chronic renal insufficiency, toxinosis caused by lung-oxygen or drugs, lung cancer, pulmonary emphysema, cataracta, siderosis, retinitis pigmentosa, senile macular degeneration, vitreal scarring, corneal alkali burn, dermatitis erythema multiforme, linear IgA ballous dermatitis and cement dermatitis, gingivitis, periodontitis, sepsis, pancreatitis, diseases caused by environmental pollution, aging, carcinogenesis, metastasis of carcinoma and hypobaropathy, disease caused by histamine or leukotriene-C4 release, Behcet's disease, autoimmune hepatitis, primary biliary cirrhosis, sclerosing cholangitis, partial liver resection, acute liver necrosis, necrosis caused by toxin, viral hepatitis, shock, or anoxia, B-virus hepatitis, non-A/non-B hepatitis, cirrhosis, alcoholic cirrhosis, hepatic failure, fulminant hepatic failure, late-onset hepatic failure, "acute-on-chronic" liver failure, augmentation of chemotherapeutic effect, cytomegalovirus infection, HCMV infection, AIDS, cancer, senile dementia, trauma, and chronic bacterial infection.

15

20

25

10

5

- 16. The method according to Claim 12 wherein the immunoregulatory abnormality is selected from the group consisting of:
 - 1) multiple sclerosis,
 - 2) rheumatoid arthritis,
 - 3) systemic lupus erythematosus,
 - 4) psoriasis,
 - 5) rejection of transplanted organ or tissue,
 - 6) inflammatory bowel disease,
 - 7) a malignancy of lymphoid origin,
 - 8) acute and chronic lymphocytic leukemias and lymphomas and
 - 9) insulin and non-insulin dependent diabetes.
- 17. A method of suppressing the immune system in a mammalian patient in need of immunosuppression comprising administering to said patient an immunosuppressing effective amount of a compound of Claim 1.
 - 18. A pharmaceutical composition comprised of a compound in accordance with Claim 1 in combination with a pharmaceutically acceptable carrier.

19. A method of treating a respiratory disease or condition in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective for treating said respiratory disease or condition.

5

10

15

- 20. The method according to Claim 19 wherein the respiratory disease or condition is selected from the group consisting of: asthma, chronic bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, infant respiratory distress syndrome, cough, eosinophilic granuloma, respiratory syncytial virus bronchiolitis, bronchiectasis, idiopathic pulmonary fibrosis, acute lung injury and bronchiolitis obliterans organizing pneumonia.
- a patient in need thereof, wherein the disease or condition is selected from the group consisting of: angioedemas, vasculitis, vascular damage caused by ischemic diseases and thrombosis, ischemic bowel diseases, inflammatory bowel diseases, necrotizing enterocolitis, intestinal lesions associated with thermal burns, arteriosclerosis, athersosclerosis, aortitis syndrome, ischemia-reperfusion injury of organs which occurs upon preservation, transplantation or ischemic disease, endotoxin-shock, pseudomembranous colitis, colitis caused by drug or radiation, ischemic acute renal insufficiency, chronic renal insufficiency, toxinosis caused by lung-oxygen or drugs, sepsis, pancreatitis, disease caused by histamine or leukotriene-C4 release, necrosis cuased by toxin, viral hepatitis, shock or anoxia, senile dementia, and trauma, comprising administering to the patient a compound in accordance with Claim 1 in an amount that is effective to treat the disease or condition.

25

20

22. A method for treating a disease or condition associated with cerebral or pulmonary edema in a patient in need thereof, comprising administering to the patient a compound in accordance with Claim 1 in an amount that is effective to treat the disease or condition.

30

- 23. A method according to Claim 22 wherein the disease or condition is selected from the group consisting of: shock, sepsis, acute respiratory distress syndrome and brain edema.
- 35
- 24. A compound according to Claim 1 of Formula If:

$$\begin{array}{c|c}
R^{b} & R^{2} \\
R^{b} & R^{1} & OH
\end{array}$$
If

or a pharmaceutically acceptable salt thereof, wherein:

5

 R^1 and R^2 are -H, or R^1 and R^2 may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are $-C(R^9)$ -;

10

15

each R⁹ is -H, or

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: C₁-4alkoxy and C₃-6cycloalkoxy, said C₁-4alkoxy and C₃-6cycloalkoxy groups optionally substituted from one up to the maximum number of substitutable positions with fluoro; and

20

Rb is selected from the group consisting of: C1-4alkyl and C2-4alkenyl.

25. A compound according to Claim 24 selected from the group consisting of:

or a pharmaceutically acceptable salt of any of the above.

26. A compound according to Claim 1 of Formula Ig:

Ra

Ig

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from -N- or -CH-;

he group is selected from the group consisting of:

15

R¹ and R² are -H, or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

U and V are $-C(R^9)$ -;

each R⁹ is -H, or

5

20

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: thienyl, NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁4alkoxy and C₃-6cycloalkoxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃6cycloalkoxy are each optionally substituted from one up to the maximum number of
substitutable positions with fluoro;

R⁷ and R⁸ are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three flouro groups, and

R⁷ and R⁸ may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, said ring is optionally substituted with one to three fluoro groups.

5

27. A compound according to Claim 26 selected from the group consisting of:

or a pharmaceutically acceptable salt of any of the above.

28. A compound according to Claim 1 of Formula Ih:

 R^{b} R^{a} R^{b} R^{a} R^{b} R^{a} R^{b} R^{a} R^{b} R^{a} R^{b} R^{a} R^{b} R^{a}

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from -N- or -CH-;

5

10

the group Z

is selected from the group consisting of:

R¹ and R² are -H, or R¹ and R² may be joined together with the atoms to which they are attached to form cyclopropyl;

 R^5 is -H or -CH3;

10 U and V are $-C(R^9)$ -;

each R⁹ is -H, or

For U or V, R⁹ and R¹ or R⁹ and R² may be joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

Ra is selected from the group consisting of: -F, NR⁷R⁸, C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy, wherein said C₁-4alkyl, C₃-6cycloalkyl, C₁-4alkoxy and C₃-6cycloalkoxy

are each optionally substituted from one up to the maximum number of substitutable positions with fluoro;

R7 and R8 are independently selected from the group consisting of: -H and C₁₋₆alkyl, optionally substituted with one to three flouro groups, and

R7 and R8 may be joined together with the nitrogen atom to which they are attached to form a saturated monocyclic ring of 3 to 8 atoms, said ring is optionally substituted with one to three fluoro groups;

Rb is Cl or I;

5

10

J is selected from the group consisting of: -CO₂H, -PO₃H₂, -PO₂H₂, -SO₃H, -CONHSO₂R¹³, -PO(R¹³)OH,

R¹³ is selected from the group consisting of: C₁-C₄ alkyl, phenyl, -CH₂OH and CH(OH)-phenyl; and

each R¹⁴ is independently selected from the group consisting of: -H and -CH₃.

29. A compound according to Claim 28, wherein:

For U, R⁹ and R¹ are joined together with the atoms to which they are attached to form a 5 membered ring, thus forming a fused partially aromatic bicyclic ring system of 9 atoms with the phenyl ring to which R⁹ is attached;

R⁵ is CH₃;

15

5

Rb is Cl; and

J is selected from the group consisting of: -CO₂H,

20 from the group consisting of: -H and -CH3.

30. A compound according to Claim 28 selected from the group consisting of:

, wherein each R¹⁴ is independently selected

HÖ CO₂H HN' ·CO₂H N=N NH CI

or a pharmaceutically acceptable salt of any of the above.