

Alzheimer's Classification

Development NN for detection and classification of Alzheimer's disease.

Authors: Martin Martuccio Samuele Pellegrini

Introduction

Context

Alzheimer's is a neurodegenerative disorder causing memory loss and cognitive decline.

Early Diagnosis:

Early diagnosis improves treatment outcomes and quality of life for quality of life for Alzheimer's patients.

Role of Machine Learning:

Machine learning aids in early detection and classification of Alzheimer's disease.

Project Overview

In this project, we aim to develop a Convolutional Neural Network (CNN) model to accurately classify Magnetic Resonance Imaging (MRI) scans into the four distinct stages of Alzheimer's disease.

Mild Demented

Moderate Demented

The dataset utilized in this project was sourced from Kaggle.

Very Moderate Demented

No Demented

Tools and Framework

Leveraging TensorFlow and Keras for machine learning and deep learning. Using Google Colab for a collaborative and GPU-accelerated environment.

Google Colab

TensorFlow and Keras

And the second s

Google Colab

TensorFlow

Data Preparation

1.Initial Analysis

Script's results to count the number of images and their dimensions.

The data obtained:

1. 176x208: **6400** images

2. 180x180: **6400** images

3. 128x128: **6400** images

4. 200x190: **27122** images

2.Image Resizing

All images were resized to 128x128 pixels to ensure uniformity

3.Importance

Uniform image dimensions are crucial for the neural network's performance as they ensure consistent input size, leading to better training efficiency and accuracy.

Data Augmentation

Importance:

•Data augmentation is important for handling **imbalanced datasets** and improving model **robustness**. It helps in
increasing the diversity of the training data, which enhances
the model's ability to **generalize**.

Techniques Used:

- •Rotation: to simulate different viewing angles.
- •Zoom: to simulate different distances.
- •Translation: to simulate different positions.
- •Flipping: to create mirror images.

```
# Define the preprocessing and data augmentation layers externally
rescale = tf.keras.Sequential([
    layers.Rescaling(1./255)
])

data_augmentation = tf.keras.Sequential([
    layers.RandomFlip("horizontal_and_vertical"),
    layers.RandomRotation(0.2, "nearest"),
    layers.RandomZoom(0.15, 0.15, "nearest")
])

data_augmentation1 = tf.keras.Sequential([
    layers.RandomRotation(0.2, "nearest")
])

data_augmentation2 = tf.keras.Sequential([
    layers.RandomZoom(0.15, 0.15, "nearest")
])

data_augmentation3 = tf.keras.Sequential([
    layers.RandomTranslation(0.15, 0.15, "nearest")
])
```


Splitting the dataset

We split the dataset into three subsets: **75**% for <u>training</u>, **20**% for <u>validation</u>, and **5**% for <u>testing</u>.

Model Development

In our approach to developing models for classifying Alzheimer's stages, we evaluated **12 different neural network architectures**. We referenced research papers, implemented custom models, and used TensorFlow documentation to explore various layers, including a ResNet.


```
class CustomNN(Model):
    def __init__(self):
       super(CustomNN, self).__init__()
       # Definizione dei laver
       self.conv1 = Conv2D(16, (3, 3), activation='relu', padding='same', input_shape=(128, 128, 1))
       self.pool1 = MaxPooling2D((2, 2), strides=(2, 2))
       self.conv2 = Conv2D(32, (3, 3), activation='relu', padding='same')
       self.pool2 = MaxPooling2D((2, 2), strides=(2, 2))
       self.conv3 = Conv2D(64, (3, 3), activation='relu', strides=(2, 2))
       self.flatten = Flatten()
       self.fc1 = Dense(512, activation='relu')
       self.fc2 = Dense(4, activation='softmax') # The second fully connected layer with softmax activation (for classification)
    def call(self, x):
        # Defining the input flow through the layers
       x = self.conv1(x)
       x = self.pool1(x)
       x = self.conv2(x)
       x = self.pool2(x)
       x = self.conv3(x)
       x = self.flatten(x)
       x = self.fc1(x)
       x = self.fc2(x)
       return x
```

Referral links: Paper 1°, Paper 2°, Paper 3°

Custom Implementations and Exploring TensorFlow layers

We designed several custom models to test different configurations and layers, including convolutional, pooling, and dense layers.

We explored TensorFlow documentation to use layers such as SeparableConv2D, GlobalAveragePooling2D, and Batch Normalization.

SeparableConv2D


```
class CustomNN6(Model):
    def __init__(self):
        super(CustomNN6, self).__init__()
        self.conv1 = Conv2D(4, (3, 3), activation='relu', padding='same'
        self.pool1 = MaxPooling2D((3, 3), strides=(2, 2))
        self.conv2 = Conv2D(8, (3, 3), activation='relu', padding='same'
        self.pool2 = MaxPooling2D((3, 3), strides=(2, 2))
        self.conv3 = Conv2D(16, (3, 3), activation='relu', padding='same
        self.pool3 = MaxPooling2D((2, 2), strides=(2, 2))
        self.conv4 = Conv2D(32, (3, 3), activation='relu', padding='same
        self.pool4 = MaxPooling2D((2, 2), strides=(2, 2))
        self.flatten = Flatten()
        self.bn = BatchNormalization()
        self.fc1 = Dense(256, activation='leaky relu')
        self.drop1 = Dropout(0.45) # Drop some nodes dur
        self.fc2 = Dense(8, activation='relu')
        self.drop2 = Dropout(0.4) # Drop some nodes duri
        self.fc3 = Dense(4, activation='softmax')
```

GlobalAvaragePooling2D


```
super(CustomNN8, self).__init__()
                      self.conv1 = SeparableConv2D<mark>(</mark>32, (3, 3), padding='same', input_shape=(128, 128, 1))
                       self.bn1 = BatchNormalization()
                       self.pool1 = MaxPooling2D((2, 2), strides=(2, 2))
                       self.conv2 = SeparableConv2D(64, (3, 3), padding='same')
                       self.bn2 = BatchNormalization()
                      self.pool2 = MaxPooling2D((2, 2), strides=(2, 2))
                       self.conv3 = SeparableConv2D(128, (3, 3), strides=(2, 2))
                       self.bn3 = BatchNormalization()
                       self.pool3 = MaxPooling2D((2, 2), strides=(2, 2))
                       self.flatten = Flatten()
                       self.fc1 = Dense(256, activation='relu')
                       self.dropout = Dropout(0.5)
                      self.fc2 = Dense(4, activation='softmax')
class CustomNN10(Model):
    def init (self):
        super(CustomNN10, self). init ()
        self.conv1 = Conv2D(32, (3, 3), padding='same', input shape=(128, 128, 1))
        self.bn1 = BatchNormalization()
        self.conv2 = Conv2D(32, (3, 3), padding='same')
        self.bn2 = BatchNormalization()
        self.add = Add()
        self.pool1 = MaxPooling2D((2, 2), strides=(2, 2))
        self.conv3 = Conv2D(64, (3, 3), padding='same')
        self.bn3 = BatchNormalization()
        self.conv4 = Conv2D(64, (3, 3), padding='same')
        self.bn4 = BatchNormalization()
        \#self.add2 = Add()
        self.global pool = GlobalAveragePooling2D()
        self.fc1 = Dense(128, activation='relu')
        self.dropout = Dropout(0.5)
        self.fc2 = Dense(4, activation='softmax')
```

class CustomNN8(Model):
 def __init__(self):

Learning Rate and Loss Functions

Learning Rate

The learning rate controls how much to change the model in response to the estimated error each time the model weights are updated.

We used a learning rate of 0.001 which is best suited for most optimizers.

Loss Functions

These functions measure the error between the predicted and actual labels.

- Two types of loss functions:
 - **1°** Sparse Categorical Crossentropy
 - 2° Kullback-Leibler Divergence

$$KL(P||Q) = \frac{\sum_{x} P(x) log \frac{P(x)}{Q(x)}}{n}$$

How one probability distribution diverges from a second, expected probability distribution. P(x) the true probability Q(x) the predicted probability

It converts the true labels into **one-hot encoded vectors** internally and then applying the regular categorical cross-entropy loss calculation.

Model Comparison and Selection

After training all models, we compared their performance based on accuracy and loss values at different stages. Each model was evaluated with various configurations. To determine the best models, we looked at the values from the last iteration and the maximum values during training. The top-performing models were selected for further optimization.

Legend Explanation:

Testing

Accuracy

Training

Accuracy

Validation

Accuracy

Model Identifiers: Each model has unique configurations and architectures.

Divergence

Data Values

Training

Accuracy

Validation

Accuracy

Ordered tables

Ordered By

Validation

01_N

01_A

M1 M4

M2

M5

M7

М M8

M6 M9 M11

M10

M4

M

M2

M1

M3

M6

M7

M5

M8

M9

M10

M11

	ed By ning	
	M11	
	М	
	M3	
	M1	
	M4	
01_N	M5	
-	M2	
	M7	
	M8	
	M6	
	M10	
	M9	
	M1	
	M	
	M3	
	M4	
	M2	
01 A	M5	
	M6	
	M7	
	M8	
	M9	
	M10 M11	

Parameter Optimization Overview

How various parameters influence model performance?

Through a detailed analysis of performance metrics, we identified **the optimal configurations** for each model. A color-coded table clearly highlights trends and help us to discard the worst models.

Useful to spot ...

Underfitting occurs when the model is too simplistic to capture the underlying patterns in the data.

Overfitting indicates that the model performs exceptionally well on the training data, but fails to generalize to new, unseen data.

on sparse categ. crossen.	O2 kullback leibler div.		N Training without DA	A Training with DA							
				Last It	eration			Max (Acc) & Min (Loss)			
Data \	/alues	Trai	ning	Validation		Testing		Training		Validation	
		Accuracy	Loss	Accuracy	Loss	Accuracy	Loss	Accuracy	Loss	Accuracy	Loss
	M	0,970813	0,086918	0,840278	0,942821	0,831325	0,92084	0,970813	0,086918	0,849175	0,477502
	M1	0,954723	0,123859	0,902127	0,353786	0,903184	0,358114	0,954723	0,123859	0,903429	0,286309
	M2	0,924558	0,193682	0,892795	0,310255	0,888985	0,316839	0,924558	0,193682	0,892795	0,308043
	M3	0,970641	0,090223	0,851345	0,826116	0,844664	0,820539	0,970641	0,090223	0,853299	0,427012
	M4	0,940562	0,156737	0,900608	0,30994	0,90132	0,311124	0,940562	0,156737	0,911675	0,236601
01_N	M5 M6	0,938259	0,158715	0,892144	0,299664	0,88253	0,345283	0,938259	0,158715	0,897786	0,273791
	M7	0,907806	0,221938	0,881293	0,320778	0,873064	0,340033	0,907806	0,221938	0,897786	0,241308
	M8	0,676703	0,683147	0,828993	0,437899	0,831038	0,457268	0,676703	0,683147	0,829427	0,437899
	M9	0,345864	1,333494	0,33941	1,341201	0,346816	1,336558	0,346842	1,331396	0,33941	1,331101
	M10	0,479362	1,094499	0,212891	1,810457	0,212134	1,823538	0,481262	1,094499	0,417535	1,213668
	M11	0,980427	0,055931	0,336806	9535,638	0,345955	9355,894	0,980427	0,055931	0,338108	469,5905
	M	0,954033	0,119799	0,855469	101,5868	0,852123	99,51452	0,954033	0,119799	0,894531	52,80975
	M1 -	0,963358	0,096333	0,832899	138,9714	0,822576	139,6061	0,963358	0,096333	0,898438	46,87912
	M2	0,918283	0,204798	0,840712	63,11361	0,836919	62,37116	0,918283	0,204798	0,894314	30,77151
	M3	0,94036	0,152931	0,820095	87,96473	0,817269	89,20181	0,94036	0,152931	0,825955	74,01408
	M4	0,928127	0,186115	0,89822	47,09663	0,893574	47,72771	0,928127	0,186115	0,905816	34,50066
01_A	M5	0,759484	0,551318	0,538845	226,1006	0,527395	226,2507	0,759484	0,551318	0,538845	73,03018
01_4	M6	0,705716	0,63784	0,710069	45,6938	0,718158	43,58591	0,705716	0,63784	0,710069	12,84479
-	M7	0,67843	0,679675	0,699653	56,1796	0,682588	55,75502	0,67843	0,679675	0,72526	13,27193
	MB	0,569656	0,918822	0,494141	33,4912	0,497705	32,48192	0,569656	0,918822	0,580295	9,361578
	M9	0,563151	0,929742	0,262153	223,3725	0,258032	229,8507	0,563151	0,929742	0,339193	50,8092
	M10	0,458062	1,147688	0,190972	416,9665	0,193632	424,1612	0,45953	1,146843	0,386068	236,9265
	M11	0,2636	4,279483	0,142795	37,2626	0,137694	37,0009	0,2636	4,279482	0,292752	27,12726
	M	0,291578	37,3172	0,288194	37,19965	0,280838	36,91074	0,291578	37,31562	0,291667	37,16817
	M1	0,228254	37,31723	0,23112	37,17867	0,235944	36,94543	0,228254	37,31714	0,232639	37,10519
	M2	0,291578	37,31724	0,288845	37,13668	0,279834	36,92461	0,291635	37,30269	0,292101	37,13668
	M3	0,291578	37,31723	0,291016	37,19966	0,280981	36,95234	0,291578	37,3172	0,291016	37,1157
	M4	0,256232	4,279462	0,272352	4,265982	0,260614	4,235236	0,264262	4,279458	0,323351	4,26117
OZ_N	M5 M6	0,228254	37,31722 4,279462	0,23112	37,17867 4,273203	0,236087	36,93849 4,232053	0,228254	37,28795 4,279462	0,231771	37,14717 4,259965
	M7	0,228254	4,279463	0,223384	4,258763	0,237091	4,230462	0,256145	4,27946	0,335503	4,258762
	M8	0,228254	4,279465	0,231988	4,273203	0,235944	4,236824	0,262219	4,27946	0,288628	4,261168
	M9	0,149675	37,31722	0,141276	37,21014	0,136833	36,95929	0,324967	37,2941	0,336589	37,12619
	M10	0,219216	4,279465	0,229384	4,273201	0,237665	4,228079	0,274106	4,279456	0,338108	4,262371
	M11	INCME?	ENOME?	SIMONE	INOME?	MNOME?	#NOME?	MNOMER	#NOME?	#NOME?	ATHOMET
	M	0,241005	4,279461	0,25803	4,316164	0,259897	4,299351	0,255253	4,279459	0,26237	4,316164
	M1	0,263974	4,279462	0,26237	4,275856	0,25545	4,245823	0,273502	4,279459	0,274306	4,263356
	M2	0,25485	4,279461	0,283203	4,515382	0,277826	4,484745	0,259225	4,279461	0,289063	4,385705
	M3	0,246704	4,279463	0,233724	4,299067	0,227912	4,26787	0,25154	4,27946	0,233724	4,294394
	M4	0,266507	4,279458	0,191189	4,268377	0,19105	4,23837	0,270883	4,279458	0,203993	4,263204
02 A	MS	0,253267	4,279465	0,144097	4,273181	0,140706	4,239486	0,260117	4,279459	0,287543	4,267675
37.75°	M6	0,208163	4,279461	0,14171	4,269591	0,138124	4,238416	0,257325	4,27946	0,289063	4,255151
	M7	0,219676	4,280461	0,242405	10,35623	0,250861	10,50695	0,243682	4,279481	0,348958	6,456837
	M8 M9	0,231766	4,279472	0,229818	4,269593	0,235944	4,243399	0,270566	4,279462	0,290582	4,262372
	M10	0,227045	4,279459	0,273438	4,440142	0,281268	4,41858	0,28513	4,279458	0,290365	4,422265
	M11	0,240832 ENGMEN	4,47,9405	6,438404	13,75288	0,268216	43,08374	V,cn1043	4,279459 IIN(AME)	0,292101	13,10581

Ordered By		Last Iteration							
Train	ning	Trai	ning	Valid	ation	Testing			
		Accuracy	Loss	Accuracy	Loss	Accuracy	Loss		
	M11	0,980427	0,055931	0,336806	9535,638	0,345955	9355,89		
ı	M	0,970813	0,086918	0,840278	0,942821	0,831325	0,92084		
- 1	M3	0,970641	0,090223	0,851345	0,826116	0,844664	0,820539		
ı	M1	0,954723	0,123859	0,902127	0,353786	0,903184	0,35811		
	M4	0.940562	0.156737	0,900608	0,30994	0,90132	0,31112		
01_N	MS	0,938259	0,158715	0,892144	0,299664	0,88253	0,34528		
	M2	0,924558	0,193682	0,892795	0,310255	0,888985	0,31683		
	M7	0,907806	0,221938	0,881293	0,320778	0,873064	0,34003		
1	MB	0,676703	0,683147	0,828993	0,437899	0,831038	0,45726		
-	M6	0,610443	0,829959	0,568793	0,899124	0,561388	0,91274		
	M10	0,479362	1,094499	0,212891	1,810457	0,212134	1,82353		
	M9	0,345864	1,333494	0,33941	1,341201	0,346816	1,33655		
	MI	0,963358	0,096333	0,832899	138,9714	0,822576	139,606		
[M	0,954033	0,119799	0,855469	101,5868	0,852123	99,5145		
	M3	0,94036	0,152931	0,820095	87,96473	0,817269	89,2018		
[M4	0,928127	0,186115	0,89822	47,09663	0,893574	47,7277		
- 1	M2	0,918283	0,204798	0,840712	63,11361	0,836919	62,3711		
01 A	M5	0,759484	0,551318	0,538845	226,1006	0,527395	226,250		
OI_A	M6	0,705716	0,63784	0,710069	45,6938	0,718158	43,5859		
	M7	0,67843	0,679675	0,699653	56,1796	0,682588	55,7550		
İ	M8	0,569656	0,918822	0,494141	33,4912	0,497705	32,4819		
Ì	M9	0,563151	0,929742	0,262153	223,3725	0,258032	229,850		
	M10	0,458062	1,147688	0,190972	416,9665	0,193632	424,161		
	M11	0,2636	4,279483	0,142795	37,2626	0,137694	37,0009		

Order	Ordered By		ning	Valid		Testing			
Valid	atlan			Validation		resting			
vallu	ation	Accuracy	Loss	Accuracy	Loss	Accuracy	Loss		
	M1	0,954723	0,123859	0,902127	0,353786	0,903184	0,358114		
	M4	0,940562	0,156737	0,900608	0,30994	0,90132	0,311124		
	M2	0,924558	0.193682	0,892795	0,310255	0,888985	0,316839		
	M5	0,938259	0,158715	0,892144	0,299664	0,88253	0,345283		
i	M7	0,907806	0,221938	0,881293	0,320778	0,873064	0,340033		
01_N	M3	0,970641	0,090223	0,851345	0,826116	0,844664	0,820539		
OI_N	M	0,970813	0,086918	0,840278	0,942821	0,831325	0,92084		
	M8	0,676703	0,683147	0,828993	0,437899	0,831038	0,457268		
	M6	0,610443	0,829959	0,568793	0,899124	0,561388	0,912741		
	M9	0,345864	1,333494	0,33941	1,341201	0,346816	1,336558		
- 1	M11	0,980427	0,055931	0,336806	9535,638	0,345955	9355,894		
	M10	0,479362	1,094499	0,212891	1,810457	0,212134	1,823538		
	M4	0,928127	0,186115	0,89822	47,09663	0,893574	47,72771		
	M	0,954033	0,119799	0,855469	101,5868	0,852123	99,51452		
	M2	0,918283	0,204798	0,840712	63,11361	0,836919	62,37116		
	M1	0,963358	0,096333	0,832899	138,9714	0,822576	139,6061		
	M3	0,94036	0,152931	0,820095	87,96473	0,817269	89,20181		
01 A	M6	0,705716	0,63784	0,710069	45,6938	0,718158	43,58591		
OI_A	M7	0,67843	0,679675	0,699653	56,1796	0,682588	55,75502		
	M5	0,759484	0,551318	0,538845	226,1006	0,527395	226,2507		
	MB	0,569656	0,918822	0,494141	33,4912	0,497705	32,48192		
	M9	0,563151	0,929742	0,262153	223,3725	0,258032	229,8507		
	M10	0,458062	1,147688	0,190972	416,9665	0,193632	424,1612		
	M11	0,2636	4,279483	0,142795	37,2626	0,137694	37,0009		

ResNet Implementation

We also implemented a ResNet model to leverage its deep learning capabilities and residual connections for improved performance

The significant discrepancy between the training and validation/testing performance metrics indicates that the model is overfitting. Overfitting occurs when a model learns the training data too well.

	Trai	ning	Valid	ation	Tes	ting
	Accuracy	Loss	Accuracy	Loss	Accuracy	Loss
M11	0,980427	0,055931	0,336806	9535,638	0,345955	9355,894

Optimizers

We evaluated several optimizers to find the best one for our best 7 models. The optimizers considered were:

Adam, Adadelta, Adafactor, AdamW, Lion, Nadam, RMSprop, and SGD.

Optimizers are algorithms or methods used to **minimize** an error function (*loss function*).

Optimizers help to know how to change weights and learning rate of neural network to reduce the losses.

During the test simulations, **10 epochs** turned out to be the ideal number during hypertuning.

Accuracy - Last Iteration: Accuracy metrics at the final iteration of training.

Loss - Last Iteration: Lower loss values indicate better model performance and fewer errors.

Accuracy - Max: Maximum accuracy achieved.

Loss - Min: Minimum loss values achieved.

Model's performances

The following graphs show training and validation accuracy/loss for three different models across epochs. As demonstrated, the models did not exhibit signs of overfitting or underfitting, indicating a great generalization capabilities on the test data.

Ensemble Neural Networks with Majority Voting

Purpose of Ensemble Neural Networks

1. An ensemble neural network combines the predictions of multiple models to improve overall performance.

Advantages:

- **1.Improved Accuracy:** Enhances accuracy by combining outputs of different models.
- **2.Increased Robustness:** Reduces variance and overfitting risk by leveraging diverse model predictions.
- **3.Better Generalization:** Improves generalization to new, unseen data.

Implementation in Our Project

- 1. We used the **Majority Voting** technique (both weighted and unweighted).
- 2.Implemented two types of ensembles: **Ensemble of 3 Networks, Ensemble of 5 Networks**


```
[] # Majority Vote Model (re-implemented v2)
class CustomNN12tris(tf.keras.Model):
    def __init__(self, models, accuracies):
        super(CustomNN12tris, self).__init__()
        self.models = models
        self.accuracies = accuracies

def call(self, inputs):
    predictions = tf.convert_to_tensor([model(inputs) for model in self.models])

# Get votes of each model (weighted based on the accuracy of the model)
    #votes = np.sum(predictions * self.accuracies, axis=0)
    for index, model_votes in enumerate(predictions):
        model_votes *= self.accuracies[index]
    votes = np.sum(predictions, axis=0)

# Normalize the votes
    return tf.convert_to_tensor(votes / votes.sum(axis=1)[:, np.newaxis])
```

Results of Ensemble Model

The ensemble models showed a significant improvement in accuracy. For example, using 5 models with NoSplit and Duplication (NoSplit&Dup), NN12tris achieved an accuracy of 92.67%

NN12bis

• Basic majority voting.

NN12tris

 Weighted majority voting on each validation accuracy.

Accuracy							
3 Models		NoSplit	NoSplit&Dup	Split	Split&Dup V1	Split&Dup V2	
	NN12bis	0,879999995	0,912068963	0,785172403	0,408735633	0,703793108	
	NN12tris	0,881264389	0,9265517	0,787011504	0,713793099	0,755862057	
5 Models		NoSplit	NoSplit&Dup	Split	Split&Dup V1	Split&Dup V2	
	NN12bis	0,911954045	0,918965518	0,794942558	0,71850574	0,790689647	
	NN12tris	0,912758648	0,926666677	0,798505723	0,831724167	0,847356319	
			Loss				
3 Models		NoSplit	NoSplit&Dup	Split	Split&Dup V1		
				opc	Shirt worth AT	Split&Dup V2	
L	NN12bis	0,620373845	0,487590641	1,298410296	2,016934156	Split&Dup V2 1,394545436	
-	NN12bis NN12tris	0,620373845 0,603228152	0,487590641 0,238315463				
-		-	_	1,298410296	2,016934156	1,394545436	
-		-	_	1,298410296	2,016934156	1,394545436	
5 Models		0,603228152	0,238315463	1,298410296 1,270070672	2,016934156 0,834860682	1,394545436 0,61325264	
5 Models	NN12tris	0,603228152 NoSplit	0,238315463 NoSplit&Dup	1,298410296 1,270070672 Split	2,016934156 0,834860682 Split&Dup V1	1,394545436 0,61325264 Split&Dup V2	

NoSplit: All models trained on the same augmented dataset.

NoSplit&Dup: Like NoSplit, but with the addition of the original non-augmented dataset.

Split: Each model receives an independent portion of the dataset, with augmentation.

Split&Dup

Each model receives an independent portion of the augmented dataset, + original dataset.

- **V1**: Base dataset + augmented (mode 2, mode 0, and augmented of mode 2).
- **V2**: Base dataset + augmented.

Healthy Controls 71.4 years

Alzheimer Disease 70.1 years

Results Obtained and Conclusion

1 Summary

This project successfully developed a deep learning learning model capable of classifying MRI images images into four distinct stages of Alzheimer's Alzheimer's disease with accuracy of **92.67%**. **92.67%**.

2 Confusion Matrix

The confusion matrix is a tool used to evaluate the performance of our classification model. It displays the model's predictions against the actual outcomes. Here's the confusion matrix for our model:

3 Impact Reflection

This research has the potential to significantly impact clinical practices by enabling more accurate and earlier detection of Alzheimer's disease.

References

List all the references used in the project, including scientific papers, technical documents, and other relevant sources.

Articles and Studies:

1.Title: Alzheimer's disease detection from structural MRI using sparse coding and linear regression. Link: ScienceDirect

2.Title: Evaluation of Neuro Images for the Detection of Alzheimer's Disease. Link: Frontiers in Public Health

3.Title: The effect of data augmentation and 3D-CNN deep learning model in Alzheimer's disease detection. Link: arXiv

Documentation and Tools:

1.Title: How to choose loss functions when training deep learning neural networks **Link:** Machine Learning Mastery

2.Title: Documentation on Kullback-Leibler Divergence Loss in PyTorch

Link: PyTorch KLDivLoss

3.Title: Documentation on loss functions in PyTorch

Link: PyTorch Loss Functions

4.Title: Harvard CS50's Artificial Intelligence with Python Link: Harvard CS50's AI with Python

Thank you for attention!