## **INFERENTIAL STATISTICS**

Balaji J

## Normal Distribution

Mean = Median = Mode



## Normal Distribution

68-95-99.7 empirical rule



## Standard Normal Distribution

Move the mean  $\mu = 0 \qquad \qquad \mu = 71$  This gives a new distribution  $X-71 \sim N(0,20.25)$ 



 $Z = \frac{X - \mu}{\sigma}$  is called the Standard Score or the z-score.

NOI TON

## Central Limit Theorem

The Central Limit Theorem is the sampling distribution of the sampling means approaches a normal distribution as the sample size gets larger, no matter what the shape of the data distribution

#### **Key Points**

1. Mean of sample is same as mean of the population.  $\mu_{\overline{x}} = \mu$ 

2.Standard deviation of the sample is equal to standard deviation of the population divided by square root of sample size.  $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{\overline{n}}}$ 

Where,

μ = Population mean

σ = Population standard deviation

 $\mu_{\overline{x}}$  = Sample mean

 $\sigma_{\overline{x}}$  = Sample standard deviation

n = Sample size

## Calculating Probability using Z table

Julie wants to marry a person taller than her and is going on blind dates. The mean height of the 'available' guys is 71" and the variance is 20.25 inch<sup>2</sup>

## Calculating probability using Z table

Julie wants to marry a person taller than her and is going on blind dates. The mean height of the 'available' guys is 71" and the variance is 20.25 inch<sup>2</sup>

By the way, Julie is 64" tall.

## Solution

 $Z = \frac{64-71}{4.5} = -1.56 \text{ in}$  the case of our problem.

| z   | 0.00  | 0.01  | 0.02  | 0.03  | 0.04  | 0.05  | 0.06  | 0.07  | 0.08  | 0.09  |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 8.0 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | ,8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |

|                                        | Devia        | de:<br>.00     | .01            | ,02    | .03            | .04            | .05              | .06          | .07            | .08            | ,09           |
|----------------------------------------|--------------|----------------|----------------|--------|----------------|----------------|------------------|--------------|----------------|----------------|---------------|
| Note the tables give $P(Z < z)$ .      | -4.0         | .0008          | .0000          | .0000  | .0000          | .0000          | ,0000            | .0000        | .0000          | .0000          | ,0000         |
|                                        | -3.9<br>-3.8 | ,0008          | .0000          | .0000  | .0000          | .0000          | 0000             | .0000        | .0000          | 0000           | .0000         |
|                                        | -3.7         | .0001          | .0001          | .0000  | .0000          | 0000           | .0000            | (00(X)       | .0000          | .0000          | .0000         |
| 64-71                                  | -3.6<br>-3.5 | ,0002          | .0002          | .0002  | .0001          | .0002          | .0001            | 1000         | ,0001          | 0001<br>0002   | .0001         |
| $z = \frac{64-71}{4.5} = -1.56$ in the | -3.4         | ,0003          | .0008          | .0003  | .0003          | .0003          | 0003             | 118133       | .0003          | .0003          | .0002         |
| 4.5                                    | -3.3         | ,0005<br>,0007 | .0005          | .0005  | .0004          | .0004<br>.0006 | \$000.<br>\$000. | 0004<br>0006 | .0004          | .0004<br>.0805 | .0003         |
| and of any much laws                   | -3.1         | .0018          | .0009          | .0009  | .0009          | 0008           | 0008             | 8300         | .0088          | .0007          | .0007         |
| case of our problem.                   | -3.0         | ,0013          | .0013          | .0013  | .0012          | .0012          | .0011            | 1100         | .0011          | 0010           | .0010         |
|                                        | -2.9<br>-2.8 | .0019          | .0018          | .0018  | .0017          | 0016           | .0016            | .0015        | .0015          | 0014           | .0014         |
| P(Z>-1.56) = 1 - P(Z<-1.56) = 1 -      | 2.7<br>2.6   | ,0035          | .0034          | .0033  | 0032           | .0031          | 0030             | 0029         | .0028          | .0027          | .0026         |
| 1 (27 1.30) - 1 1 (23 1.30) - 1        | -2.5         | .0047<br>.0062 | .0045<br>.0060 | .0011  | .0043          | .0041          | .0040            | .0052        | .0038<br>.0051 | .0037<br>.0049 | ,0036         |
| 0.0594 = 0.9406                        | -2.4         | ,0082          | ,0080          | ,007 B | .0075          | .0073          | .0071            | .0069        | .0068          | 0866           | .0064         |
| 0.0554 - 0.5400                        | -2.3<br>-2.2 | .0107<br>.0139 | .0104<br>.0136 | .0102  | .0099          | .0096          | .0094            | 1000.        | .0089          | .0887<br>.0113 | .0084         |
|                                        | -2.1         | .0179          | .0174          | .0170  | .0166          | .0162          | 0158             | 1154         | .0150          | 6146           | .0143         |
|                                        | -2.0         | J0228          | .0222          | .0217  | .0212          | .0207          | ,0202            | .0197        | .0192          | 0188           | .0183         |
|                                        | -1.9<br>-1.8 | .0287          | .0281          | .0274  | .0268<br>.0336 | 0262           | 0256<br>0322     | 0250         | .0244          | 0239<br>0301   | 0233          |
|                                        | -1.7         | 0446           | .0436          | .0427  | 0418           | .0409          | 0401             | 0392         | .0384          | 0375           | .0367<br>0455 |
|                                        | -1.5         | 0668           | .0655          | .0643  | 0630           | 3618           | 0006             | 11594        | .0582          | 0571           | 0559          |
|                                        | -1.4         | /0808          | ,0798          | .0778  | 1764           | 0749           | .0735            | .0721        | ,0788          | 0694           | .0681         |
|                                        | -1.3<br>-1.2 | .0968          | .0951          | .0984  | .0918<br>1093  | .0901          | 1056             | .0869        | .0853          | .0838          | .0823         |
|                                        | -1.1<br>-1.0 | 1357           | .1335          | .1314  | 1292<br>1515   | 1271           | 1251<br>1469     | 1230         | 1210           | 1190           | 1379          |
|                                        | -3.0         | 1207           | ,1562          | ,1539  | 1919           | 1482           | 1408             | 1946         | ,1983          | 1401           | 1019          |

#### Note:

Z table gives probability less than Z value and to find the probability more than the Z value, subtract 1 from the probability found in the Z table.

### Continuation...

Q. Julie just realized that she wants her date to be taller when she is wearing her heels, which are 5" high. Find the new probability that her date will be taller.

Will this impact on the existing probability?

## New Probability

Q. Julie just realized that she wants her date to be taller when she is wearing her heels, which are 5" high. Find the new probability that her date will be taller.

$$Z = \frac{69-71}{4.5} = -0.44$$
; P(Z<-0.44) = 0.33, :: P(Z>-0.44) = 0.67 or 67%

# Confidence Intervals and Hypothesis Testing – Two Ways of Inferring the Same



<u>95% CI</u>: Implies that the true population parameter (e.g., mean) will lie within this range  $(\pm 2SE)$  for 95% of the samples. If the sample is in the 5% zone (2.5% in each tail shown in gray), then the true population parameter will not lie in the range  $\bar{x} \pm 2SE$ .

# Critical Region & Significance level

#### **Critical region:**

The region in the tail of the distribution which corresponds to the rejection of the null hypothesis at some chosen significance level.

#### **Z Critical Value:**

The Z value which separates the critical region from the rest of the region in the distribution. Any Z value higher than Z critical value means that the value is in the critical region.

#### **Significance Level:**

The probability level of that is chosen to test the hypothesis testing in statistics. They are 3 levels - 10%, 5%, 1% and normally if this is not provided during testing then **5% is what chosen as a standard**.

## One tailed & two tailed test

The statistical tests used will be **one tailed or two tailed** depending on the nature of the null hypothesis and the alternative hypothesis

#### 1. Two Tail test

$$\mathbf{H_0}: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0;$$



#### 2. One Tail tests

$$\mathbf{H_0}$$
:  $\mu = \mu_0$ 

$$\mathbf{H_1}: \mu < \mu_0;$$



$$\mathbf{H_0} : \mu = \mu_0$$

$$\mathbf{H_1} : \mu > \mu_0$$
;



## One tail test – Z critical values

1. 
$$\alpha$$
 (Significance level) = 10 % Z = 1.28

2. 
$$\alpha$$
 (Significance level) = 5 % Z = 1.64

3.  $\alpha$  (Significance level) = 1 % Z = 2.29

#### Sample of 1 tail test



## Two Tail Test

| 0.10  | 1.645 |
|-------|-------|
| 0.05  | 1.960 |
| 0.010 | 2.576 |

#### Sample of 2 tail test



# Hypothesis Testing

Hypothesis testing is the explanation of the phenomenon - scientific proof of concept about the event

- 1. Null Hypothesis ( $H_0$ )
- 2. Alternate Hypothesis ( $H_a$ )

# Hypothesis Testing Steps

- 1. State null (H<sub>o</sub>) and alternative (H<sub>I</sub>) hypothesis
- 2. Choose level of significance ( $\alpha$ )
- 3. Find critical values
- 4. Find test statistic
- 5. Draw your conclusion

## Steps - Flowchart



# Identify Null & Alternate Hypothesis

It is believed that a candy machine makes chocolate bars that are 5g on average. A worker claims that after maintenance it no longer makes 5g bar.

Write Null and alternate hypothesis?

#### **NOTE:**

Both are mathematical opposites

# Identify Null & Alternate Hypothesis

It is believed that a candy machine makes chocolate bars that are 5g on average. A worker claims that after maintenance it no longer makes 5g bar.

Write Null and alternate hypothesis?

$$H_0 = 5$$
  
 $H_a \neq 5$ 

#### **NOTE:**

Both are mathematical opposites

## Hypothesis Errors

- Type I: We reject the NULL hypothesis incorrectly
- Type II: We "accept" it incorrectly

# Type 1 & Type 2 Errors



#### Types of Inferential Tests

## **Z** Test

In a survey conducted for the psychological test about the students attitudes towards studying with the range of score between 0-200. The mean score is 115 and SD is 30. John suspects that older students have better attitudes and selects 35 students more than 30 years to test and the mean score is 118.6

Carry out the significance test at 0.05?

## Solution

#### 1. State hypothesis

$$H_0 = 115$$
  
 $H_a > \mu (115)$ 

- 2. Significance level  $\alpha = 0.05$
- 3. Z critical value Z = 1.64

#### **Given parameters**

$$\mu$$
 = 115,  $\sigma$  = 30,  $n$ = 35, sample mean = 118.6

#### Find Z?

## Z - Test Statistic

$$Z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

#### **Substituting the parameters**

Z=0.74

Using Z table – find probability

P(Z<0.74) = 0.77

To find probability of Z > than 0.74

$$P(Z>0.74) = 1-0.77 = 0.23$$

## Conclusion

- 1. The Z value is not in the critical region
- 2. There is no strong evidence to reject the Null hypothesis and therefore the mean score older students is same as everyone i.e 115

# Case Study

| School  | Mean | Standard deviation (pop.) | N  |
|---------|------|---------------------------|----|
| Private | 110  | 15                        | 60 |
| Public  | 104  | 15                        | 60 |

Do students from private school obtain significantly higher scores at exams than students from public schools?

- Assignment

## Z Test Vs T Test

#### 1. Sample size

Z test when n > 30

T test when n < 30

2. Z test when population standard deviations are Known

#### NOTE:

P value denotes – Probability of getting the result we expect if the Null hypothesis is true

## T Test

The average IQ of the adult population is 100. A researcher believes that the average IQ of adults is lower. He takes a random sample of 5 adults score and tests it (69,79,89,99,109) with sample SD 15.81

Is there enough evidence to suggest that the average IQ in adults is lower?

## Solution

#### 1. State hypothesis

$$H_0 = 100$$
  
 $H_a < \mu (100)$ 

- 2. Significance level  $\alpha = 0.05$
- 3. T critical value T = -2.132



#### **Given parameters**

$$\mu$$
 = 100, S = 15.81, N= 5, sample mean = 89

#### Find T?

# T Table - How to use T table to find critical value?

1. Check for the degrees of freedom on Y axis

| 2.Check for the             |
|-----------------------------|
| Alpha ( $\alpha$ ) level in |
| X axis                      |

Degrees of Freedom = n - 1

For  $< \mu$  use Negative sign

| um. prob         | t .50 | t .75 | t .80 | t .85 | t.90  | t 95  | t .975 | t .99 | t .995 | t 999  | t .9995 |
|------------------|-------|-------|-------|-------|-------|-------|--------|-------|--------|--------|---------|
| one-tail         | 0.50  | 0.25  | 0.20  | 0.15  | 0.10  | 0.05  | 0.025  | 0.01  | 0.005  | 0.001  | 0.0005  |
| two-tails        | 1.00  | 0.50  | 0.40  | 0.30  | 0.20  | 0.10  | 0.05   | 0.02  | 0.01   | 0.002  | 0.001   |
| df               |       |       |       |       |       |       |        |       |        |        |         |
| 1                | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71  | 31.82 | 63.66  | 318.31 | 636.62  |
| 2<br>3<br>4      | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303  | 6.965 | 9.925  | 22.327 | 31.599  |
| 3                | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182  | 4.541 | 5.841  | 10.215 | 12.924  |
| 4                | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776  | 3.747 | 4.604  | 7.173  | 8.610   |
| 5                | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571  | 3.365 | 4.032  | 5.893  | 6.869   |
| 5<br>6<br>7<br>8 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447  | 3.143 | 3.707  | 5.208  | 5.959   |
| 7                | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365  | 2.998 | 3.499  | 4.785  | 5.408   |
|                  | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306  | 2.896 | 3.355  | 4.501  | 5.041   |
| 9                | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262  | 2.821 | 3.250  | 4.297  | 4.781   |
| 10               | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228  | 2.764 | 3.169  | 4.144  | 4.587   |
| 11               | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201  | 2.718 | 3.106  | 4.025  | 4.437   |
| 12               | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179  | 2.681 | 3.055  | 3.930  | 4.318   |
| 13               | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160  | 2.650 | 3.012  | 3.852  | 4.221   |
| 14               | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145  | 2.624 | 2.977  | 3.787  | 4.140   |
| 15               | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131  | 2.602 | 2.947  | 3.733  | 4.073   |
| 16               | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120  | 2.583 | 2.921  | 3.686  | 4.015   |
| 17               | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110  | 2.567 | 2.898  | 3.646  | 3.965   |
| 18               | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101  | 2.552 | 2.878  | 3.610  | 3.922   |
| 19               | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093  | 2.539 | 2.861  | 3.579  | 3.883   |
| 20               | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086  | 2.528 | 2.845  | 3.552  | 3.850   |
| 21               | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080  | 2.518 | 2.831  | 3.527  | 3.819   |
| 22               | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074  | 2.508 | 2.819  | 3.505  | 3.792   |
| 23               | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069  | 2.500 | 2.807  | 3.485  | 3.768   |
| 24               | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064  | 2.492 | 2.797  | 3.467  | 3.745   |
| 25               | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060  | 2.485 | 2.787  | 3.450  | 3.725   |
| 26               | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056  | 2.479 | 2.779  | 3.435  | 3.707   |
| 27               | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052  | 2.473 | 2.771  | 3.421  | 3.690   |
| 28               | 0.000 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048  | 2.467 | 2.763  | 3.408  | 3.674   |
| 29               | 0.000 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045  | 2.462 | 2.756  | 3.396  | 3.659   |
| 30               | 0.000 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042  | 2.457 | 2.750  | 3.385  | 3.646   |
| 40               | 0.000 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 | 2.021  | 2.423 | 2.704  | 3.307  | 3.551   |
| 60               | 0.000 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.000  | 2.390 | 2.660  | 3.232  | 3.460   |
| 80               | 0.000 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990  | 2.374 | 2.639  | 3.195  | 3.416   |
| 100              | 0.000 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984  | 2.364 | 2.626  | 3.174  | 3.390   |
| 1000             | 0.000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962  | 2.330 | 2.581  | 3.098  | 3.300   |
| z                | 0.000 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645 | 1.960  | 2.326 | 2.576  | 3.090  | 3.291   |

## T - Test Statistic

$$t \; statistic \; (or \; t \; score), t = \frac{(\bar{x} - \mu)}{\frac{S}{\sqrt{n}}}$$

#### **Substituting the parameters**

T=-1.56



#### Conclusion

- 1. The calculated T value is not in the critical region
- We do not have enough evidence to reject the NULL hypothesis and therefore the average IQ for adults is same as everyone i.e 100

#### **F** distribution

- $\chi^2$  was useful in testing hypotheses about a single population variance.
- Sometimes we want to test hypotheses about difference in variances of two populations:
  - Is the variance of 2 stocks the same?
  - Do parts manufactured in 2 shifts or on 2 different machines or in 2 batches have the same variance or not?
  - Is the powder mix for tablet granulations homogeneous?
  - Is there variability in assayed drug blood levels in a bioavailability study?

#### F distribution

- Ratio of 2 variance estimates:  $F = \frac{s_1^2}{s_2^2} = \frac{est.\sigma_1^2}{est.\sigma_2^2}$
- Ideally, this ratio should be about 1 if 2 samples come from the same population or from 2 populations with same variance, but sampling errors cause variation.
- Recall  $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$ . So, F is also a ratio of 2 chi-squares, each divided by its degrees of freedom, i.e.,

$$F = \frac{\frac{\chi_{\nu_1}^2}{\nu_1}}{\frac{\chi_{\nu_2}^2}{\nu_2}}$$

A machine produces metal sheets with 22mm thickness. There is variability in thickness due to machines, operators, manufacturing environment, raw material, etc. The company wants to know the consistency of two machines and randomly samples 10 sheets from machine 1 and 12 sheets from machine 2. Thickness measurements are taken. Assume sheet thickness is normally distributed in the population.

The company wants to know if the variance from each sample comes from the same population variance (population variances are equal) or from different population variances (population variances are unequal).

How do you test this?

Data

| Mach              | ine 1  | Mach              | ine 2  |
|-------------------|--------|-------------------|--------|
| 22.3              | 21.9   | 22.0              | 21.7   |
| 21.8              | 22.4   | 22.1              | 21.9   |
| 22.3              | 22.5   | 21.8              | 22.0   |
| 21.6              | 22.2   | 21.9              | 22.1   |
| 21.8              | 21.6   | 22.2              | 21.9   |
|                   |        | 22.0              | 22.1   |
| $s_1^2 = 0.11378$ | n = 10 | $s_2^2 = 0.02023$ | n = 12 |

Ratio of sample variances, 
$$F = \frac{s_1^2}{s_2^2} = \frac{0.11378}{0.02023} = 5.62$$

What are null and alternate hypotheses?

$$H_0: \sigma_1^2 = \sigma_2^2; H_1: \sigma_1^2 \neq \sigma_2^2$$

Is it a one-tailed test or a two-tailed test?

Two-tailed.

What are numerator and denominator degrees of freedom?

$$v_1 = 10 - 1 = 9$$
;  $v_2 = 12 - 1 = 11$ 

Reading an F-table.

F Table for  $\alpha = 0.025$ 

| 1     | df <sub>1</sub> =1 | 2        | 3        | 4        | 5        | 6        | 2        | 8        | 9        | 10       | 12       | 15       | 20       | 24       | 30       | 40       | 60       | 120      | 00       |
|-------|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| dfy=1 | 647.7890           | 799.5000 | 864.1630 | 899,5833 | 921.8479 | 937.1111 | 948.2169 | 956.6562 | 963.2846 | 968.6274 | 976.7079 | 984.8668 | 993.1028 | 997.2492 | 1001.414 | 1005.598 | 1009.800 | 1014.020 | 1018.258 |
| 2     | 38.5063            | 39.0000  | 39.1655  | 39.2484  | 39.2982  | 39.3315  | 39.3552  | 39.3730  | 39,3869  | 39.3980  | 39.4146  | 39.4313  | 39,4479  | 39.4562  | 39.465   | 39,473   | 39,481   | 39.490   | 39.498   |
| 3     | 17.4434            | 16.0441  | 15.4392  | 15.1010  | 14.8848  | 14.7347  | 14.6244  | 14.5399  | 14,4731  | 14.4189  | 14.3366  | 14.2527  | 14.1674  | 14.1241  | 14.081   | 14.037   | 13.992   | 13.947   | 13.902   |
| 4     | 12.2179            | 10.6491  | 9.9792   | 9.6045   | 9.3645   | 9.1973   | 9.0741   | 8.9796   | 8.9047   | 8.8439   | 8.7512   | 8.6565   | 8.5599   | 8.5109   | 8.461    | 8,411    | 8.360    | 8.309    | 8.257    |
| 5     | 10.0070            | 8.4336   | 7,7636   | 7.3879   | 7.1464   | 6,9777   | 6.8531   | 6.7572   | 6,6811   | 6.6192   | 6.5245   | 6.4277   | 6.3286   | 6.2780   | 6.227    | 6.175    | 6.123    | 6.069    | 6.015    |
|       | 0.0404             | 7.7500   | e 2000   | £ 2222   | F 0000   |          |          |          | (minus)  | c 1510   |          |          | F 4 cm / |          |          |          | 1.000    |          |          |
| 6     | 8.8131             | 7.2599   | 6.5988   | 6.2272   | 5.9876   | 5.8198   | 5.6955   | 5.5996   | 5.5234   | 5.4613   | 5.3662   | 5.2687   | 5.1684   | 5.1172   | 5.065    | 5.012    | 4.959    | 4.904    | 4.849    |
| 7     | 8.0727             | 6.5415   | 5.8898   | 5.5226   | 5.2852   | 5.1196   | 4,9949   | 4.8993   | 4.8232   | 4.7611   | 4.6658   | 4.5678   | 4.4667   | 4.4150   | 4.362    | 4.309    | 4,254    | 4.199    | 4.142    |
| 8     | 7.5709             | 6.0595   | 5.4160   | 5.0526   | 4.8173   | 4.6517   | 4.5286   | 4.4333   | 4.3572   | 4.2951   | 4.1997   | 4.1012   | 3.9995   | 3.9472   | 3.894    | 3.840    | 3.784    | 3.728    | 3.670    |
| 9     | 7.2093             | 5.7147   | 5.0781   | 4.7181   | 4 4844   | 4.3197   | 4.1970   | 4.1020   | 4.0260   | 3.9639   | 3.8682   | 3.7694   | 3.6669   | 3.6142   | 3.560    | 3.505    | 3,449    | 3.392    | 3.333    |
| 10    | 6.9367             | 5.4564   | 4.8256   | 4.4683   | 4.2361   | 4.0721   | 3.9498   | 3.8549   | 3,7790   | 3,7168   | 3.6209   | 3.5217   | 3.4185   | 3.3654   | 3,311    | 3.255    | 3.198    | 3.140    | 3.080    |
|       |                    |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 11    | 6,7241             | 5.2559   | 4,6300   | 4,2751   | 4.0440   | 3.8807   | 3,7586   | 3.6638   | 3,5879   | 3.5257   | 3.4296   | 3.3299   | 3.2261   | 3.1725   | 3,119    | 3.061    | 3.004    | 2.944    | 2.883    |
| 12    | 6.5538             | 5.0959   | 4.4742   | 4.1212   | 3.8911   | 3.7283   | 3.6065   | 3.5118   | 3.4358   | 3.3736   | 3.2773   | 3.1772   | 3.0728   | 3.0187   | 2.963    | 2.906    | 2.848    | 2.787    | 2,725    |

$$F_{0.025,9,11} = 3.5879$$

$$F_{0.025,9,11} = 3.5879$$

$$F_{observed} = 5.62$$

Will you reject the null hypothesis or not?



## Business decision

Variance in machine 1 is higher than in machine 2. Machine 1 needs to be inspected for any issues.

### **Applications of F Distribution**

- Test for equality of variances.
- Test for differences of means in ANOVA.
- Test for regression models (slopes relating one continuous variable to another, e.g., Entrance exam scores and GPA)