Klausur: Informations- und Kodierungstheorie

Bitte in Druckschrift ausfüllen:

Name	Vorname	MatrNr.	B-260 oder D-310	

Punktverteilung:

Aufgabe	1	2	3	4	5	Σ
Max. Punktzahl	12	12	14	8	14	60
Erreichte Punktzahl						

Note:		
-------	--	--

Beachten Sie: Der Lösungsweg der einzelnen Aufgaben muss klar erkennbar sein!

Rechnen Sie mit einer Genauigkeit von drei Stellen nach dem Komma!

Aufgabe 1

Die Zeichen einer Quelle haben folgende Auftrittswahrscheinlichkeiten:

 $(p(x_i)) = (0,05 \quad 0,18 \quad 0,04 \quad 0,07 \quad 0,1 \quad 0,08 \quad 0,3 \quad 0,03 \quad 0,15).$

- a) Wie groß ist die Koderedundanz bei gleichmäßiger Kodierung?
- b) Setzen Sie eine Kodierung um, welche eine geringere Koderedundanz erreicht!
- c) Wieviel Prozent an Speicherplatz spart man mit dieser Kodierung gegenüber der gleichmäßigen Kodierung ein?
- d) Wo liegt die Grenze möglicher Einsparung? Nennen sie einen Ansatz, mit dem diese Einsparung erreicht werden kann!

Aufgabe 2

Für eine gesicherte Übertragung ist ein einfehlerkorrigierender HAMMING-Gruppenkode einzusetzen. Das Quellenalphabet umfasst 150 Zeichen.

- a) Bestimmen Sie die Parameter $(n, l, d_{min})!$ Wie groß ist $|A^*|$ tatsächlich?
- b) Geben Sie die Kontrollmatrix und die Bestimmungsgleichungen für die Kontrollstellen an! Bilden Sie für das Quellenkodewort $a^*(x) = x^5 + x^2 + x + 1$ das Kanalkodewort a!
- c) Das Kanalkodewort $a(x) = x^6 + x^4 + x$ wird während der Übertragung mit dem Fehlermuster $e(x) = x^{10} + x^5$ überlagert. Überprüfen Sie die Empfangsfolge, interpretieren Sie das Ergebnis und dekodieren Sie, falls möglich, in die Folge b^* ! Welches Rekonstruktionsergebnis liegt vor, wie konnte es zu diesem Ergebnis kommen?

Aufgabe 3

- a) Analysieren Sie den verkürzten (26, 15, $d_{min} = ?$) Kode! Geben Sie Aufbau und Grad des Generatorpolynoms, Grad des Modularpolynoms sowie d_{min} an.
- b) Über welche Fehlererkennungseigenschaften verfügt dieser Kode?
- c) Zur sicheren Übertragung von Quellenkodewörtern der Länge l=6 wird ein verkürzter zyklischer HAMMING-Kode mit $g(x)=x^4+x^3+1$ angewendet (M(x)) primitiv).
 - Bestimmen Sie die Kodeparameter $(n, l, d_{min})!$
 - Zur Kodierung wird das Divisionsverfahren angewendet. Prüfen Sie die Empfangsfolge, in Polynomschreibweise $b(x) = x^8 + x^6 + x^5 + x^4 + x + 1$, und dekodieren Sie, falls möglich, in die Folge b^* ! Interpretieren Sie das Ergebnis!

Aufgabe 4

Beantworten Sie in knapper Form die folgenden Fragen direkt in untenstehender Tabelle!

Möglichkeiten der Fehler- korrektur?	
Was bedeutet "systematischer" Kode? 2 Beispiele!	
Paritätskode für $N = 80$ Quellenzeichen:	$(n,l,d_{min}) =$
Ist $A^* = \{01, 101, 011\}$ dekodierbar? Begründung!	

Aufgabe 5

Für die Übertragung von 110 Quellenzeichen pro Sekunde steht ein gestörter Binärkanal mit $p(y_1|x_0) = 0, 1, p(y_0|x_1) = 0, 05, p(x_0) = p(x_1)$ zur Verfügung. Die diskrete Quelle enthält N = 120 gleichverteilt auftretende Zeichen.

- a) Zeichnen Sie das Kanalmodell!
- b) Ermitteln Sie die erforderliche Schrittgeschwindigkeit sowie den Transinformationsfluss am Kanalausgang bei gesicherter Übertragung!
- c) Ermitteln Sie den Transinformationsfluss am Kanalausgang bei ungesicherter Übertragung und interpretieren Sie das Ergebnis (Vergleich mit Ergebnis aus Teil b)!
- d) Wie groß ist die notwendig aufzubringende Redundanz Δl bei gesicherter Übertragung?