Homework 4

Due February 16, 2018 PHY 204B

11.6.2 Show that the function

$$w(z) = (z^2 - 1)^{1/2}$$

is single-valued if we make branch cuts on the real axis for x > 1 and for x < -1.

11.6.7 Show that negative numbers have logarithms in the complex plane. In particular, find $\ln(-1)$.

ANS.
$$\ln(-1) = i\pi$$
.

11.7.1 Determine the nature of the singularities of each of the following functions and evaluate the residues (a > 0).

(a)
$$\frac{1}{z^2 + a^2}$$
 (e) $\frac{ze^{+iz}}{z^2 + a^2}$

(b)
$$\frac{1}{(z^2+a^2)^2}$$
 (f) $\frac{ze^{+iz}}{z^2-a^2}$

(c)
$$\frac{z^2}{(z^2+a^2)^2}$$
. (g) $\frac{e^{+iz}}{z^2-a^2}$

(d)
$$\frac{\sin 1/z}{z^2 + a^2}$$
. (h) $\frac{z^{-k}}{z+1}$, $0 < k < 1$.

Hint. For the point at infinity, use the transformation w=1/z for $|z|\to 0$. For the residue, transform $f(z)\,\mathrm{d} z$ into $g(w)\,\mathrm{d} w$ and look at the behavior of g(w).

11.7.2 Evaluate the residues at z = 0 and z = -1 of $\pi \cot \pi z/z(z+1)$.

11.7.10 The statement that the integral halfway around a singular point is equal to one-half the integral all the way around was limited to simple poles. Show, by a specific example, that

$$\int_{\text{Semicircle}} f(z) \, dz = \frac{1}{2} \oint_{\text{Circle}} f(z) \, dz$$

does not necessarily hold if the integral encircles a pole of higher order.

Hint. Try $f(z) = z^{-2}$.

11.8.4 Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta \, d\theta}{5 - 4\cos \theta}.$

ANS. $\pi/12$.