

Ministério da Educação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Apucarana

Laboratório de Análise de Circuitos Elétricos 1 (FUCO5A) 4º Experimento – Lei das Malhas e Lei dos Nós.

1) Objetivos

- Calcular a resistência em circuitos séries e circuitos paralelos;
- Calcular a tensão circuitos séries e circuitos paralelos;
- Calcular

2) Material utilizado

- Multímetro;
- Matriz de contato (protoboard);
- Cinco resistores de 470 Ω , de 560 Ω , de 820 Ω , de 1 k Ω ;
- Potenciômetro.
- Fonte de Tensão variável.

3) Parte prática 01

Lei das malhas

i) Construa o Circuito ilustrado na Fig. 1. Assuma R1=460 Ω , R2=560 Ω e R3=820 Ω . E1= 5 Vcc e E3 = 3 Vcc.

Figura 1 – Circuito Genérico 01.

ii) Determine a corrente em cada resistor utilizando a lei das malhas.

Tabela 1 - Resistência equivalente teórica e medida do circuito Série, em Ω

Corrente	Valor da corrente medida (A)	Teórica (A)
em R1 (I_1)		
em R2 (I_2)		
em R3 (I_3)		

iii) Faça a medida do valor da valores de corrente pela lei d	tensão total e prove (dica: malha e	xterna). Além disso, prove os	
Valores de corrente pela lei a	03 1103.		
4) Parte prática 02			
<u>Lei dos nós</u>			
i) Construa o Circuito Paralelo 5 Vcc.	o ilustrado na Fig. 2. Assuma R1=1 k	Ω , R2=560 Ω e R3=820 Ω . E1=	
Figura 2 – Circuito Genérico 02.			
($ \begin{array}{c c} I_B & I_C & I_D \\ \downarrow & R_1 & \downarrow R_2 & \downarrow S \end{array} $	R ₃	
ii) Determine a corrente em c	ada resistor utilizando análise noda	al.	
	ia equivalente teórica e medida do		
Corrente	Valor da corrente medida (A)	Teórica (A)	
em R1 (I_B)			
em R2 (I_C) em R3 (I_D)			
iii) Prove os valores de corren	ite aplicando a lei dos nós.		