Tempo rimasto 1:59:48
Un anello sottile in acciaio (E= $2\cdot10^5$ MPa, ν = 0.3, ρ = 7000 kg/m ³) ha diametro medio D = 700 mm e spessore s = 5 mm. Il disco ruota alla velocità angolare Ω = 15000 rpm. Calcolate lo spostamento radiale u al diametro medio.
Risposta: Omm
In un disco sottile a spessore costante caricato con una sollecitazione di trazione uniforme sul bordo esterno
\square A. la somma ($\varepsilon_r + \varepsilon_c$) è costante mentre ε_a è costante e pari a zero, $\varepsilon_a = 0$;
\square B. sia la somma ($\epsilon_r + \epsilon_c$) sia ϵ_a sono costanti;
\square C. la somma (ε _r +ε _c) ha un andamento crescente lungo il raggio (minima al raggio interno, massima a quello esterno) mentre ε _a è costante;
Il calcolo della interferenza necessaria a produrre una assegnata pressione di calettamento richiede il calcolo degli spostamenti radiali dell'albero e del mozzo. Questo calcolo viene eseguito
A. usando la geometria che fornisce il massimo di interferenza;
B. usando la geometria vera, ovvero tenendo conto degli effettivi raggi esterno dell'albero ed interno del mozzo, differenti per le tolleranze dimensionali:

 $\ \square$ C. usando la geometria nominale di albero e mozzo;

In un mozzo calettato su un albero non rotante e senza gradiente termico la somma ($\sigma_r + \sigma_c$)
☐ A. è costante lungo il raggio
☐ B. ha un andamento decrescente lungo il raggio (massima al raggio interno, minima a quello esterno);
☐ C. è zero al raggio interno
Un mozzo è calettato su un albero, avendo scelto la coppia di tolleranze H8/r7. Ai fini della verifica a resistenza si considera
 A. l'interferenza massima nominale diminuita della perdita dovuta allo schiacciamento della rugosità superficiali;
☐ B. l'interferenza effettiva minima;
 C. l'interferenza massima nominale aumentata della perdita dovuta allo schiacciamento della rugosità superficiali;
Un mozzo calettato su un albero è parzialmente plasticizzato,
 A. il disco è plasticizzato dal bordo interno fino ad un raggio r* che dipende solo dal valore della pressione di calettamento;
 B. il disco è plasticizzato dal bordo interno fino ad un raggio r* che dipende dal valore della pressione di calettamento, dalla tensione di snervamento del materiale, dal diametro esterno del disco;
 C. il disco è plasticizzato dal bordo interno fino a un raggio r* che dipende solo dal valore della pressione di calettamento e dalla tensione di snervamento del materiale;

Un mozzo viene calettato su un albero con interferenza nominale i _{nom} =36 μm. Il diametro di calettamento è Dc = 52; i coefficienti di deformabilità valgono δa = 4.8·10-6 mm²/N per l'albero e δm = 2.8·10-5 mm²/N per il mozzo. La rugosità è Ra=4 μm sia per l'albero sia per il mozzo Calcolate la pressione di forzamento garantita. Risposta:
Un'ipotesi semplificativa introdotta nel calcolo di un anello "sottile" rotante è
$ ule{\hspace{-0.1cm} \!$
$lacksquare$ C. assumere la σ_r uguale a zero al raggio esterno
Un tubo viene caricato da una pressione interna molto elevata, che plasticizza tutto il materiale dal raggio interno al raggio esterno. Si ipotizza materiale idealmente plastico.
\blacksquare A. La somma delle tensioni σ_r e σ_c è costante con il raggio
\blacksquare B. La differenza (σ_c - σ_r) non varia lungo il raggio
C. I punti più sollecitati si trovano al bordo interno del tubo
Il "disco a spessore costante" (tensione piana) e il "tubo" (deformazione piana) sollecitati da pressione interna e/o esterna hanno uguali tensioni σ _r e σ _c ciò avviene
 A. perché disco e tubo sono, in questo caso, solidi di uniforme resistenza
■ B. perché il "disco" sollecitato da pressione interna o esterna si deforma mantenendo costante il suo spessore
\square C. perché le equazioni che legano le tensioni σ_r e σ_c alle deformazioni ϵ_r e ϵ_c sono uguali nei due casi

Un anello in acciaio (E = $2\cdot105$ MPa, n = 0.3) ha diametro interno d_i = 450 mm e spessore s = 2 mm. L'anello è caricato con una pressione interna p_i = 28 MPa. Calcolare, nell'ipotesi di anello sottile, lo spostamento radiale al bordo esterno u_e .
Risposta:
In un disco di turbina si vuole introdurre l'effetto del gradiente termico. Rispetto al caso a temperatura costante, è necessario aggiungere il termine
✓ A. $ε^T = α* ΔT(r)$ nelle equazioni costitutive del materiale;
■ B. $ε^T = α* ΔT(r)$ nelle equazioni di congruenza
\square C. $σ = E α* ΔT(r)$ nell'equazione di equilibrio radiale;
Un collegamento forzato mozzo-albero, avente interferenza nominale i=45 μ m e diametro di calettamento Dc = 70 mm. viene montato a caldo, con un gioco di infilamento S = 40 μ m. Il materiale è acciaio (α *=12·10 ⁻⁶ °C ⁻¹ , E=2·10 ⁵ MPa, v=0.3). Nota la temperatura ambiente t ₀ =20°C calcolare la temperatura t per il corretto calettamento del mozzo.
Per ottenere le tensioni residue in un tubo che è stato plasticizzato parzialmente applicando una opportuna pressione interna p
\square A. si applica una pressione esterna p_e che riporti il diametro esterno del tubo al valore indeformato;
□ B. si somma alle tensioni elastoplastiche dovute alla pressione p un ulteriore stato di tensione, calcolato in campo elastoplastico, dovuto alla pressione -p applicata all'interno del tubo;
☐ C. si somma alle tensioni elastoplastiche dovute alla pressione <i>p</i> uno stato di tensione, calcolato in campo elastico, tale da ristabilire le condizioni al contorno opportune;

Un mozzo è calettato con interferenza su un albero pieno. Mozzo e albero sono fatti dello stesso materiale. La soluzione è quella in campo elastico. La verifica di resistenza
 A. occorre compierla sia sul mozzo sia sull'albero, a seconda che l'uno o l'altro si trovino in stato di tensione piana o deformazione piana;
■ B. è sufficiente eseguirla solo sul mozzo e al suo bordo interno;
 C. occorre compierla sia sul mozzo sia sull'albero, a seconda che i materiali di mozzo e albero siano duttili o fragili;
Un disco di alluminio ($E = 7 \cdot 10^4$ MPa, $v = 0.3$) non forato di spessore costante, $b = 10$ mm, è caricato con una pressione uniforme applicata al bordo esterno $p_e = 500$ MPa. Calcolate la variazione di spessore del disco Δb dopo l'applicazione del carico (in valore e segno). Risposta: Omicrometri
In un disco il diagramma delle tensioni σ_c al variare del raggio si inverte di segno; il disco non è stato plasticizzato. La causa di tale andamento delle tensioni è quindi dovuto
☐ A. alla pressione esercitata al bordo interno e al bordo esterno contemporaneamente;
 B. alla combinazione di pressione di calettamento al bordo interno ed effetto centrifugo della rotazione;
C. all'effetto del gradiente termico lungo il raggio del disco;