Discrete Mathematics and Logic Graph Theory Lecture 1

Andrey Frolov Professor

Innopolis University

Books

Mathematics for Computer Science

revised Thursday 10th January, 2013, 00:28

Eric Lehman Google Inc.

Google Inc.

F Thomson Leighton

Department of Mathematics and the Computer Science and AI Laboratory, Massachussetts Institute of Technology; Akamai Technologies

Albert R Meyer

Department of Electrical Engineering and Computer Science and the Computer Science and AI Laboratory, Massachussetts Institute of Technology

Books

GRAPH THEORY WITH APPLICATIONS

J. A. Bondy and U. S. R. Murty

Department of Combinatorics and Optimization, University of Waterloo, Ontario, Canada

Problem with graph terminology

GRAPH THEORY

by Frank Harary

PROFESSOR OF MATHEMATICS UNIVERSITY OF MICHIGAN

"In order to avoid quibbling at conferences on graphtheory, it has been found convenient to adopt the procedure that each man state in advance the graph theoretic language he would use. Even the very word "graph" has not been sacrosanct."

Frank Harary

Main Definition

Definition (undirected simple)

A pair G = (V, E) is called a graph, if

$$E \subseteq \{\{u,v\} \mid u,v \in V \& u \neq v\}$$

Terminology

The elements of V	vertices	nodes	points
The elements of E	edges	arcs	lines or links

An edge $\{x, y\}$ is written as xy, x - y, or (x, y).

Adjacency and Incidence

Definitions

- 1) Two vertices x, y of G are adjacent or neighbours, if xy is an edge of G.
- 2) A vertex v is incident with an edge e, if $v \in e$, that is $e = (v, \cdot)$ or (\cdot, v) .
- 3) Two vertices incident with an edge are its endvertices or ends.
- 4) Two edges v, w of G are adjacent or neighbours, if one of their ends is the same.

Isomorphisms

Definition

Let G = (V, E) and G' = (V', E') be two graphs. We call G and G' isomorphic, and write $G \cong G'$, if there is a bijection $\varphi : V \to V'$ (φ is called an isomorphism) such that for all $x, y \in V$

$$(x,y) \in E \Leftrightarrow (\varphi(x),\varphi(y)) \in E'.$$

Isomorphisms

Example

$$\phi: u_1 \to v_1, u_2 \to v_3, u_3 \to v_2, u_4 \to v_4$$

Isomorphisms

Example

Degrees

Definitions

1) The set of neighbours of a vertex v in $G = (V_G, E_G)$ is denoted by $N_G(v)$ or shortly N(v).

$$N_G(v) = \{u \in V_G \mid (v, u) \in E_G\}$$

2) The degree (or valency) $d_G(v) = d(v)$ of a vertex v is the number of its neighbours:

$$d_G(v) = |N_G(v)|$$

Degrees

Example

Degrees and Isomorphisms

Example

Degrees and Isomorphisms

Question

Suppose that two graphs have the same collections of vertices.

Then is it true that these two graphs are isomorphic?

Lemma (Handshaking lemma)

For each graph $G = (V_G, E_G)$,

$$\sum_{v\in V_G}d_G(v)=2\cdot |E_G|.$$

If several people shake hands, then the number of hands shaken is even.

Lemma (Handshaking lemma)

For each graph $G = (V_G, E_G)$,

$$\sum_{v\in V_G}d_G(v)=2\cdot |E_G|.$$

Proof

Note that every edge $e \in E_G$ has two ends.

Question

Is there a graph with 3 vertices whose degrees are (2,3,4)?

Question

Is there a graph with 3 vertices whose degrees are (2,3,4)?

Answer

No!

Question

Is there a graph with 3 vertices whose degrees are (2,3,4)?

Answer

No!

Why?

Question

Is there a graph with 3 vertices whose degrees are (2,3,4)?

Answer

No!

Why?

By handshaking lemma, the sum of degrees must be even, but 2+3+4=9 is odd.

Walks and Paths

Definitions

The sequence $u_1u_2...u_k$ is called a **walk** or a **way** from u_1 to u_k , if any vertices u_i and u_{i+1} are neighbours.

Definition

```
Let the sequence u_1, u_2, \ldots, u_k be a walk. We say that it is closed, if u_1 = u_k. it is a path, if (u_i, u_{i+1}) \neq (u_j, u_{j+1}) for all i \neq j. it is a cycle, if it is a closed path.
```

Walks and Paths

Example

 $v_1v_2v_3v_1$ — a non-walk $v_1v_2v_3v_2$ — some walk $v_1v_2v_3v_2v_1$ — a closed walk $v_4v_3v_4$ — a closed walk $v_4v_3v_2$ — a path $v_1v_2v_3v_4$ — a path $v_1v_2v_3v_4v_1$ — a cycle

Definition

A non-empty graph G is called **connected** if G contains a path (walk) from v to w for any its vertices v, w.

Otherwise, G is called disconnected.

Definition

Let G = (V, E) be a graph. A maximal connected subgraph of G is called a **component** of G.

G' = (V', E') is subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$.

Example

Disconnected

Connected

Definition

G' = (V', E') is called a **subgraph** of G = (V, E), if $V' \subseteq V$ and $E' \subseteq E$.

Definition

Let G = (V, E) be a graph. A maximal connected subgraph of G is called a **component** of G.

Example

Disconnected

2 components

Definition

Let
$$G = (V, E)$$
 and $G' = (V', E')$ be two graphs. We set

$$G \cup G' \leftrightharpoons (V \cup V', E \cup E')$$

$$G \cap G' \leftrightharpoons (V \cap V', E \cap E')$$

Proposition

Any graph is a disjoint union of all its connected components.

Proof

It is obvious. :)

What we knew today?

- 1. My favorite question is "Why?".
- 2. Books
- 3. The basic terminology of Graph Theory.
- 4. Handshaking lemma.
- 5. Connectivity.

Thank you for your attention!