Universidad Escuela Colombiana de Ingeniería Julio Garavito Sistemas Operativos y Plataformas Computacionales Proyecto

Objetivos

- Implementar en el simulador de hardware la Memoria y la Unidad Aritmética de una version de MARIE de 32 bits
- 1. Circuitos: Implementar en el simulador de hardware los siguientes circuitos:
 - Complemento a 1: Implementar un circuito en HDL que realice el complemento a 1 de un número de 32 bits. Utilice en la entrada dos vectores de 16 bits (a1 y a0) y en la salida dos vectors de 16 bits (b1 y b0). El archivo del circuito debe llamarse complement1.hdl
 - Incremento de 32 bits: Implementar un circuito en HDL que realice el incremento en uno de un número de 32 bits. Utilice en la entrada dos vectores de 16 bits (a1 y a0) y en la salida dos vectores de 16 bits (b1 y b0). El archivo del circuito debe llamarse increment.hdl
 - Suma de 32 bits: Implementar un circuito en HDL que realice la suma de dos numeros de 32 bits. Utilice en la entrada cuatro vectores de 16 bits (a1, a0, b1 y b0) y en la salida un vector de 16 bits (c1 y c0). El archivo del circuito debe llamarse add.hdl
 - Resta de 32 bits: Implementar un circuito en HDL que realice la resta de dos numeros de 32 bits usando complemento a 2. Utilice en la entrada cuatro vectores de 16 bits (a1, a0, b1 y b0) y en la salida dos vector de 16 bits (c1 y c0). El archivo del circuito debe llamarse subtract.hdl
 - Memoria: Implementar un circuito en HDL para una memoria de 4096 posiciones y 32 bits en cada posicion. Use para la dirección un vector de 12 bits (a), use para la entrada dos vectores de 16 bits (in1 y in0), use para la salida dos vectores de 16 bits (out1 y out0) y use un bit (w) para indicar si se escribe a la memoria o no. El archivo del circuito debe llamarse memory.hdl
 - Unidad Aritmética: Implementar un circuito en HDL para la unidad aritmetica. Utilice en la entrada seis vectores de 16 bits (MEMin1, MEMin0, MBRin1, MBRin0, ACin1 y ACin0), dos vectores de 12 bits (MARin, PCin), un vector de 8 bits (inREG) y un vector de 4 bits (inst). Utilice en la salida cuatro vectores de 16 bits (MBRout1, MBRout0, ACout1, ACout0), dos vectores de 12 bits (MARout, PCout) y un vector de 8 bits(outREG). Las salidas que no se utilicen en la instrucción a ejecutar deben tomar el valor cero en todos los bits.
 - La entrada **inst** contiene el código de la instrucción, **MARin** contiene la dirección en la instrucción, **MBRin** contiene el valor de **Memory**[**MARin**] y **MEMin** contiene el valor de **Memory**[**MBRin**]. La salida **MBRout** contiene el valor que debe ser colocado en la memoria en la dirección **MARout**. En la segunda página se encuentra detallado el **RTN** para cada instrucción. El archivo del circuito debe llamarse **AU.hdl**

Nota: Para la implementación de cualquiera de los circuitos solo puede utilizar los circuitos **And**, **Or**, **Xor**, **Not**, **Bit**, **HalfAdder** y **FullAdder** de la carpeta BuiltIn y circuitos propios.

inst	Register Transfer Notation (RTN)
0000	$ACout \leftarrow MARin + 1$
	$MARout \leftarrow MARin$
	$MBRout \leftarrow PCin$
	$PCout \leftarrow MARin + 1$
0001	$ACout \leftarrow MBRin$
0010	$MARout \leftarrow MARin$
	$MBRout \leftarrow ACin$
0011	$ACout \leftarrow ACin + MBRin$
0100	$ACout \leftarrow ACin - MBRin$
0101	$ACout \leftarrow inREG$
0110	$outREG \leftarrow ACin$
0111	
1000	if $MARin[11-10] = 00$ then
	if $ACin < 0$ then $PCout = PCin + 1$ else $PCout = PCin$
	else if $MARin[11-10] = 01$ then
	if $ACin = 0$ then $PCout = PCin + 1$ else $PCout = PCin$
	else if $MARin[11-10] = 10$ then
	if $ACin > 0$ then $PCout = PCin + 1$ else $PCout = PCin$
1001	$PCout \leftarrow MARin$
1010	$ACout \leftarrow 0$
1011	$ACout \leftarrow ACin + MEMin$
1100	$PCout \leftarrow MBRin$
1101	$ACout \leftarrow MEMin$
1110	$MARout \leftarrow MBRin$
	$MBRout \leftarrow MEMin$
1111	