概率论与数理统计

华中科技大学 概率统计系

叶 鹰 副教授

例7(P_{30} 例2.11) 设某电路的电压 V是随机变量且 $V\sim E(\lambda)$, 现用电压表进行测量,电压表的最大读数为 Vo。以X记电压表的 读数, 求的分布函数。

解 由题意 $X = \min(V, V_0)$, 故

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-\lambda x}, & 0 \le x < V_0, \\ 1, & x \ge V_0. \end{cases}$$

$$P(X=x) = \begin{cases} e^{-\lambda V_0}, & x = V_0, \\ 0, & x \neq V_0. \end{cases}$$

$$F_1(x) = \begin{cases} 0, & x < 0, \\ (1 - e^{-\lambda x})/(1 - \alpha), & 0 \le x < V_0, \\ 1, & x \ge V_0. \end{cases} \qquad F_2(x) = \begin{cases} 0, & x < V_0, \\ 1, & x \ge V_0. \end{cases}$$

$$F(x) = (1-\alpha)F_1(x) + \alpha F_2(x)$$

$$F_2(x) = \begin{cases} 0, & x < V_0, \\ 1, & x \ge V_0, \end{cases}$$

——混合型随机变量

§ 2.4 随机变量函数的分布

2.4.1 问题

1.
$$V \sim E(\lambda)$$
 \longrightarrow $X = \min(V, V_0) \sim ?$

2.
$$R \sim U(0, r) \implies S = \pi R^2 \sim ?$$

2.4.2 D.R.V.的函数

例1(P_{31} 例2.12)已知X的分布列,求 Y_1 =2X+1, Y_2 = X^2 的分布。

$$Y_1 = 2X + 1$$
 | -3 | -1 | 1 | 3 | 5 | P | $\frac{1}{10}$ | $\frac{2}{10}$ | $\frac{4}{10}$ | $\frac{2}{10}$ | $\frac{1}{10}$

$$Y_2 = X^2$$
 4 1 0 1 4

$$egin{array}{c|cccc} m{Y_2} & m{0} & m{1} & m{4} \\ \hline m{P} & rac{4}{10} & rac{4}{10} & rac{2}{10} \\ \hline \end{array}$$

2.4.2 C.R.V.的函数

例2 设 $X \sim N(0, 1)$, 求 Y = aX + b 的分布。

解 $F_Y(y) = P(Y \le y) = P(aX + b \le y)$

$$= \begin{cases} P(X \le \frac{y-b}{a}) = \Phi(\frac{y-b}{a}), & a > 0 \\ P(X \ge \frac{y-b}{a}) = 1 - \Phi(\frac{y-b}{a}), & a < 0 \end{cases}$$

$$f_{Y}(y) = F_{Y}'(y) = \begin{cases} \frac{1}{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y-b}{a}\right)^{2}}, & a > 0 \\ -\frac{1}{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y-b}{a}\right)^{2}}, & a < 0 \end{cases} = \frac{1}{\sqrt{2\pi} |a|} e^{\frac{-(y-b)^{2}}{2a^{2}}}$$

即 $Y\sim N(b, a^2)$

定理(P_{35}) 设R.V.X 有密度函数 $f_X(x)$, 函数 y = g(x) 有反函数x = h(y), 且h'(x)存在并保号,则R.V. Y = g(X)有密度函数

$$f_{Y}(y) = \begin{cases} f_{X}[h(y)]|h'(y)|, & \alpha < y < \beta \\ 0, & \text{ #...} \end{cases}$$

其中 $\alpha = \min\{g(-\infty), g(+\infty)\}, \beta = \max\{g(-\infty), g(+\infty)\}.$

$$F_{Y}(y) = P(\underline{g(X) \leq y}) = P(X \geq h(y))$$
$$= \int_{h(y)}^{+\infty} f_{X}(x) dx \quad \underline{g(+\infty)} \leq y \leq g(-\infty)$$

$$f_Y(y) = F_Y(y) = f_X[h(y)] | h'(y) |$$

$$Y=g(X)$$
的密度函数
$$f_Y(y) = \begin{cases} f_X[h(y)]h'(y)|, & \alpha < y < \beta \\ 0, & \text{其他} \end{cases}$$

例3 (P_{33} 例2.14)设 $X\sim N(\mu,\sigma^2)$,求Y=aX+b ($a\neq 0$)的分布。

解:
$$y = g(x) = ax + b$$
, $x = h(y) = \frac{y - b}{a}$, $h'(y) = \frac{1}{a}$

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\frac{y-b}{a}-\mu)^{2}}{2\sigma^{2}}} \left| \frac{1}{a} \right|$$

$$= \frac{1}{\sqrt{2\pi|a|\sigma}} e^{-\frac{(y-a\mu-b)^{2}}{2a^{2}\sigma^{2}}}$$

 $\mathbb{P} Y = aX + b \sim N(a\mu + b, (|a|\sigma)^2)$

线性变换不变性

$$Y=g(X)$$
的密度函数
$$f_Y(y) = \begin{cases} f_X[h(y)]h'(y)|, & \alpha < y < \beta \\ 0, & \text{其他} \end{cases}$$

例3 设 $X \sim E(\lambda)$,求 $Y = X^3$ 的分布。

解:
$$y = g(x) = x^3$$
, $x = h(y) = y^{\frac{1}{3}}$,

$$h'(y) = \frac{1}{3} y^{-\frac{2}{3}}$$

$$f_Y(y) = \begin{cases} \frac{1}{3} y^{-\frac{2}{3}} \lambda e^{-\lambda \sqrt[3]{y}}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

例4 (P₃₄例2.16) 设C是以原点为圆心的单位圆周,A为C上的任意一点,求A的横坐标的分布。

解 记θ为OA与x轴的夹角,

由题意 $\theta \sim U(-\pi, \pi)$,则 $X = \cos \theta$

$$F_X(x) = P(\cos \theta \le x)$$

$$= \begin{cases} 0 & x < -1 \\ p & -1 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

$$p = P(-\pi < \theta \le -\arccos x) + P(\arccos x < \theta \le \pi)$$

$$=1-2P(0<\theta \leq \arccos x)$$

$$=1-2\frac{\arccos x}{2\pi}$$

$$f_X(x) = F_X'(x) = \begin{cases} \frac{1}{\pi \sqrt{1 - x^2}}, & -1 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

例5 设 X 具有概率密度 $f_X(x)$, 求 $Y=X^2$ 的概率密度.

解 注意到 $Y=X^2 \ge 0$, 故当 $y \le 0$ 时, $F_Y(y)=P(Y \le y)=0$.

当
$$y>0$$
 时, $F_Y(y) = P(Y \le y) = P(X^2 \le y)$

$$= P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} \frac{1}{2\sqrt{y}} \left[f_{X}(\sqrt{y}) + f_{X}(-\sqrt{y}) \right], & y > 0\\ 0, & y \le 0 \end{cases}$$

例6(P_{33} 例2.15) 若 $X\sim N(0,1)$, 则 $Y=X^2$ 的概率密度为:

$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$