Daniel Yao

(608) 738-6047 | dyao13@jh.edu | github.com/dyao13

Education

Johns Hopkins University

Baltimore, MD

B.S. Applied Mathematics and Statistics, B.S. Biomedical Engineering 4.00 GPA, 36 ACT, 1590 SAT

Expected May 2027

Relevant Coursework

Unofficial Transcript: github.com/dyao13/CV/blob/main/transcript/yao transcript.pdf

Abstracts

Liu, S., Sargent C., Broman L., **Yao**, **D.** (2024). Role of CRF1 and CRF2 Receptors in Stress-induced Increase in Intestinal Permeability in the Mouse Colon. Physiology 39(S1), 815. doi.org/10.1152/physiol.2024.39.S1.815.

Experience

Johns Hopkins University

Aug 2024 - Present

Teaching Assistant

• Lead 30-student recitation sections for upper-level EN.553.420 Probability

McCallion Lab, Johns Hopkins Medicine

May 2024 – Present

Undergraduate Research Assistant

- Edit iPS cells with CRISPR Del/Rei to investigate the role of cis-regulatory elements in Parkinson's Disease
- Design primers with SnapGene and perform PCRs to genotype mice and iPSCs
- Analyze scRNA-Seq data with Seurat R package to study transcriptional differences in Parkinson's-positive mice

Garza Lab, Johns Hopkins Medicine

Feb 2024 – May 2024

Undergraduate Research Assistant

- Investigated function of fibroblasts to regulate keratinocytes with goal of modifying skin identity in amputees
- Isolated, cultured, and imaged fibroblasts taken from mouse epidermal tissue and analyze images with ImageJ

Onalaska High School

Sep 2022 – Jan 2023

Teaching Assistant

• Taught 20-student review sessions and tutored individual students for AP Calulus AB and AP Calculus BC

University of Wisconsin-La Crosse

Jun 2022 – Aug 2022

Research Intern

- Investigated the specific roles of CRF1 and CRF2 receptors in stress-induced increase in intestinal permeability
- Assayed transcellular and paracellular flux through mucosa/submucosa tissue taken ex vivo from mice
- Performed ANOVA statistical analysis and visualized data in R

Projects

Pediatric Sedation Assessment | github.com/dyao13/PedAccel

Aug 2024 - Present

- Develop machine-learning model to calculate sedative dosages for pediatric critical-care patients
- Extract heart-rate variability features from 250 Hz electrocardiogram data in time and frequency domains and analyze nonlinear features with Poincare maps using SciPy, Matplotlib, and neurokit in Python
- Recruit clinical study participants and collect State Behavorial Scale, vitals, and accelerometry data

Brawl Stars Draft Engine | github.com/dyao13/BrawlStars

Jul 2024 - Aug 2024

• Searched for optimal draft of 3 picks out of 82 characters per team via minimax algorithm with alpha-beta pruning to yield a 12% edge over human players in friendly matches

- Optimized weights of individual and pairwise effects in SciPy to estimate win probability with 92% accuracy
- Computed Nash equilibrium of simultaneous choice of 3 bans per team via linear programming in SciPy
- Scraped e-sports games using beautifulsoup4 logged ranked games with BrawlStarsAPI
- Employed draft strategies to reach top 1000 global ranking out of 15 million monthly players

Patient Referral Scheduler | github.com/dyao13/RefMe

Jul 2024 - Aug 2024

- Optimized scheduling of patient referrals from a stochastic data stream to prioritize high-urgency patients
- Computed solutions via Monte Carlo methods and integer linear programming with lpSolveAPI in R to yield a 25% improvement over a first-come-first-serve model
- Parallelized across 10 clustered CPUs to improve runtime by 12000x compared to laptop performance

ARTIS Over-the-Counter Hearing Aids

Jan 2024 - May 2024

- Developed mobile application to match patients to over-the-counter hearing aids backed by VC firm ARTIS
- Trained multiple regression model to map responses to a 25-component questionnaire to hearing aids in Python
- Clustered and visualized 3300 audiometric profiles with UMAP, DBSCAN, and ggplot2 in R

Cell Tracker | github.com/dyao13/cell tracker

Jan 2024

- Isolated centroid and areas of 40 cells with Sobel operator in MATLAB to achieve 98% accuracy compared to manual measurement with ImageJ
- Tracked cell movement over time by predicting next position with 4th-order finite difference methods

Conway's Game of Life | github.com/dyao13/conways game of life

Jan 2024

• Created dynamic GUI application for Conway's Game of Life with GUIDE in MATLAB with features to import rle patterns and export .mp4 movies

Activities

Organic Chemistry Initiative Lecture Team	Baltimore, MD Mar 2024 - Present
Hippocrates Med Review Treasurer, Writer	Baltimore, MD Sep 2023 - Present
Hopkins Symphony Orchestra Cellist	Baltimore, MD Sep 2023 - Present
Supporting Hospitals Abroad with Resources and Equipment Shift Leader	Baltimore, MD Sep 2023 - Present
Awards	

Financial Education Scholarship (\$5000), Altra Federal Credit Union	Jun 2023
Community Service Scholarship (\$1000), Altra Federal Credit Union	May 2023
Academic Scholarship (\$1500), Onalaska High School	May 2023
Individual Champion, Wisconsin NAQT Quiz Bowl	Apr 2023
Finalist, National Merit Scholarship Corporation	Feb 2023
US Presidential Scholars Candidate, Department of Education	Jan 2023
Perfect AP US Government and Politics Exam, College Board	Aug 2022

Skills

Languages: Python, R, Julia, SQL, MATLAB, Bash

Technologies: pandas, NumPy, SciPy, scikit-learn, PyTorch, Matplotlib, ggplot2, Jupyter