Equation (**) and then replace the occurrence of A^j in $-\theta A^j$ by the right hand side of Equation (*) to obtain

$$b = \sum_{k \in K} u_k A^k - \theta A^j + \theta A^j$$

$$= \sum_{k \in K} u_k A^k - \theta \left(\sum_{k \in K} \gamma_k^j A^k \right) + \theta A^j$$

$$= \sum_{k \in K} \left(u_k - \theta \gamma_k^j \right) A^k + \theta A^j.$$

Consequently, the vector $u(\theta)$ appearing on the right-hand side of the above equation given by

$$u(\theta)_i = \begin{cases} u_i - \theta \gamma_i^j & \text{if } i \in K \\ \theta & \text{if } i = j \\ 0 & \text{if } i \notin K \cup \{j\} \end{cases}$$

automatically satisfies the constraints $Au(\theta) = b$, and this vector is a feasible solution iff

$$\theta \ge 0$$
 and $u_k \ge \theta \gamma_k^j$ for all $k \in K$.

Obviously $\theta = 0$ is a solution, and if

$$\theta^{j} = \min \left\{ \frac{u_{k}}{\gamma_{k}^{j}} \middle| \gamma_{k}^{j} > 0, \ k \in K \right\} > 0,$$

then we have a range of feasible solutions for $0 \le \theta \le \theta^j$. The value of the objective function for $u(\theta)$ is

$$cu(\theta) = \sum_{k \in K} c_k (u_k - \theta \gamma_k^j) + \theta c_j = cu + \theta \left(c_j - \sum_{k \in K} \gamma_k^j c_k \right).$$

Since the potential change in the objective function is

$$\theta \left(c_j - \sum_{k \in K} \gamma_k^j c_k \right)$$

and $\theta \ge 0$, if $c_j - \sum_{k \in K} \gamma_k^j c_k \le 0$, then the objective function can't be increased.

However, if $c_{j^+} - \sum_{k \in K} \gamma_k^{j^+} c_k > 0$ for some $j^+ \notin K$, and if $\theta^{j^+} > 0$, then the objective function can be strictly increased by choosing any $\theta > 0$ such that $\theta \leq \theta^{j^+}$, so it is natural to zero at least one coefficient of $u(\theta)$ by picking $\theta = \theta^{j^+}$, which also maximizes the increase of the objective function. In this case (Case below (B2)), we obtain a new feasible solution $u^+ = u(\theta^{j^+})$.

Now, if $\theta^{j^+} > 0$, then there is some index $k \in K$ such $u_k > 0$, $\gamma_k^{j^+} > 0$, and $\theta^{j^+} = u_k/\gamma_k^{j^+}$, so we can pick such an index k^- for the vector A^{k^-} leaving the basis K. We claim that