МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» Інститут комп'ютерних наук та інформаційних технологій

Кафедра систем штучного інтелекту

Лабораторна робота №3 з курсу "Дискретна математика"

Моделювання основних операцій для числових множин

Виконав: ст. гр. КН-110 Помірко Олег

Викладач: Мельникова Н.І.

Тема: Побудова матриці бінарного відношення

Мета роботи: набуття практичних вмінь та навичок при побудові матриць бінарних відношень та визначені їх типів.

ТЕОРЕТИЧНІ ВІДОМОСТІ ТА ПРИКЛАДИ РОЗВ'ЯЗАННЯ ЗАДАЧ

Декартів добуток множин A і B (позначається $A \times B$) — це множина всіх упорядкованих пар елементів (a,b), де $a \in A$, $b \in B$. При цьому вважається, що $(a_1,b_1) = (a_2,b_2)$ тоді і тільки тоді, коли $a_1 = a_2$, $b_1 = b_2$.

Потужність декартова добутку дорівнює $|A \times B| = |A| \times |B|$.

Приклад. Довести тотожність $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. Розв'язання.

Нехай
$$(x, y) \in (A \times B) \cap (C \times D) \Leftrightarrow$$

$$(x, y) \in (A \times B) \& (x, y) \in (C \times D) \Leftrightarrow$$

$$(x \in A \& y \in B) \& (x \in C \& y \in D) \Leftrightarrow$$

$$(x \in A \& x \in C) \& (y \in B \& y \in D) \Leftrightarrow$$

$$(x \in A \cap C) \& (y \in B \cap D) \Leftrightarrow (x, y) \in (A \cap C) \times (B \cap D).$$

Бінарним відношенням R називається підмножина декартового добутку $A \times B$ (тобто $R \subset A \times B$). Якщо пара (a,b) належить відношенню R, то пишуть

 $(a, b) \in R$, and aRb.

Областю визначения бінарного відношення $R \subset X \times Y$ називається множина $\delta_R = \{x \mid \exists y \ (x, \ y) \in R\}$, а областю значень – множина $\rho_R = \{y \mid \exists x \ (x, \ y) \in R\}$ (\exists - існує).

Для скінчених множин бінарне відношення $R \subset A \times B$ зручно задавати за допомогою матриці відношення $R_{m\times_n} = (r_{ij})$, де m = |A|, а n = |B|.

Елементами матриці є значення $r_{\theta} = \begin{cases} 1, & \textit{якщо } (a_i, b_j) \in \mathbb{R}, \\ 0, & \textit{якщо } (a_i, b_j) \notin \mathbb{R}. \end{cases}$

Приклад. Знайти матрицю відношення $R \subset M \times 2^M$, де

$$R \subset M \times 2^M$$
, де

$$R = \{(x, y) | x \in M \& y \subset M \& x \in y\},\$$

$$M = \{x \mid x \in Z \& x \le 1\}, Z$$
 - множина цілих чисел.

Розв'язания.

Згідно з означенням матриці відношення, розв'язок має вигляд

	Ø	{-1}	{0}	{1}	{-1,0}	{-1,1}	{0,1}	{-1,0,1}
-1	0	1	0	0	1	1	0	1
0	0	0	1	0	1	0	1	1
1	0	0	0	1	0	1	1	1

<u>Приклад.</u> Зобразити відношення графічно, де R - множина дійсних чисел, та знайти його область визначення та область значень:

1.
$$\alpha_1 = \{(x, y) | (x, y) \in \mathbb{R}^2 \& |2x + y| \le 4 \& x \ge 0\}$$

2.
$$\alpha_2 = \{(x, y) | (x, y) \in \mathbb{R}^2 \& x^2 + 2x - y^2 \le 0 \}$$

Розв'язания.

Зображення відношення α_1 зводиться до графічного розв'язання системи нерівностей $\begin{cases} 2x + y \le 4, \\ 2x + y \ge -4. \end{cases}$

Розв'язок цієї системи з врахуванням останньої умови зображено на рис. 2.1. Область визначення δ_{α} = [0;∞), область значень ρ_{α} = (-∞;4].

Рисунок 2.1

Рисунок 2.2

Для побудови області, яка відповідає відношенню α_2 , знаходимо границю цієї області $x^2 + 2x - y^2 = 0$, або $(x+1)^2 - y^2 = 1$. Це є рівняння гіперболи з центром симетрії в точці (-1; 0) та дійсною та уявною піввісями, рівними 1. Тому відношенню α_2 відповідає частина площини, зображена на рис. 2.2. Область визначення $\delta_{\alpha^2} = R$, область значень $\rho_{\alpha^2} = R$.

Види бінарних відношень.

Нехай задано бінарне відношення R на множині $A^2: R \subseteq A \times A = \{(a, b) | a \in A, b \in A\}$.

- 1. Бінарне відношення R на множині A називається peфлексивним, якщо для будь якого $a \in A$ виконується aRa, тобто $(a,a) \in R$. Головна діагональ матриці рефлексивного відношення складається з одиниць. Граф рефлексивного відношення обов'язково має петлі у кожній вершині.
- 2. Бінарне відношення R на множині A називається антирефлексивним, якщо для будь якого a ∈ A не виконується aRa, тобто $(a,a) \notin R$. Головна діагональ матриці антирефлексивного відношення складається з нулів. Граф антирефлексивного відношення не має петель.
- 3. Бінарне відношення R на множині A називається симетричним, якщо для будь яких $a,b \in A$ з aRb слідує bRa, тобто якщо $(a,b) \in R$ то і $(b,a) \in R$. Матриця симетричного відношення симетрична відносно головної діагоналі. Граф симетричного відношення не є орієнтованим.
- 4. Бінарне відношення R на множині A називається антисиметричним, якщо для будь яких $a,b \in A$ з aRb та bRa слідує що a=b. Тобто якщо $(a,b) \in R$ і $(b,a) \in R$, то a=b. Матриця антисиметричного відношення не має жодної пари одиниць, які знаходяться на симетричних місцях по відношенню до головної діагоналі. У графа антисиметричного відношення вершини з'єднуються тільки однією напрямною дугою.

- 5. Бінарне відношення R на множині A називається mpanзитивним, якщо для будь яких $a, b, c \in A$ з aRb та bRc слідує, що aRc. Тобто якщо $(a,b) \in R$ і $(b,c) \in R$, то $(a,c) \in R$. Матриця транзитивного відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та $\sigma_{jm} = 1$, то обов'язково $\sigma_{im} = 1$. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та другатретя вершини, то обов'язково ϵ дуга з першої в третю вершину.
- 6. Бінарне відношення R на множині A називається антитранзитивним, якщо для будь яких a, b, c∈ A з aRb та bRc слідує що не виконується aRc. Тобто якщо (a, b)∈ R і (b, c)∈ R, то (a, c)∉ R. Матриця антитранзитивного відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та $\sigma_{jm} = 1$, то обов'язково $\sigma_{im} = 0$. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та друга-третя вершини, то обов'язково немає дуги з першої в третю вершину.

<u>Приклад.</u> На множині $A = \{1,2,3,4,5\}$ задано відношення $R = \{(a,b)|a,b\in A,a+b-napne\ число\}$. Визначити тип даного відношення.

Розв'язания.

Матриця даного відношення має вигляд:
$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Очевидно, що дане відношення ϵ :

- рефлексивним (вздовж головної діагоналі знаходяться одиниці);
- симетричним (О₁₃ = О₃₁, О₂₄ = О₄₂ та інші);
- траизитивним ((1,3) ∈ R, (3,5) ∈ R ⇒ (1,5) ∈ R; (1,5) ∈ R, (5,3) ∈ R ⇒ (1,3) ∈ R та інші).

<u>Приклад.</u> Які властивості на множині $A = \{a, b, c, d\}$ має бінарне відношення $R = \{(a, b), (b, d), (a, d), (b, a), (b, c)\}$.

Матриця даного відношення має вигляд:
$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Дане відношення ϵ :

- антирефлексивним (вздовж головної діагоналі знаходяться нулі);
- не симетричним, так як $\sigma_{23} = 1$, а $\sigma_{32} = 0$;
- не антисиметричним, так як $\sigma_{12} = \sigma_{21} = 1$;
- не транзитивним, тому що $\sigma_{12} = 1$, $\sigma_{23} = 1$ та $\sigma_{13} = 0$.

Функцією з множини X на множину Y називається всюди визначена бінарна відповідність, при якому кожен елемент множини X зв'язаний з єдиним елементом множини Y. Функція записується

наступним чином: якщо $f \subseteq X \times Y$, то $f : X \to Y$. Множину X називають областю визначення, а Y – множиною значень функції.

Областю значень функції називається підмножина Y, яка складається з образів всіх елементів $x \in X$. Вона позначається символом f(X).

Оскільки для кожного $x \in X$ існує єдиним образом визначений $y \in Y$, такий що $(x, y) \in f$, то записують y = f(x) та говорять, що функція f відображує множину X на множину Y, а f(x) називають образом x при відображенні f або значенням функції, яка відповідає аргументу x.

Види функціональних відношень

1. Функція називається ін'єктивною (ін'єкцією), якщо з умови $f(x_1) = f(x_2)$ слідує, що $x_1 = x_2$ для будь-яких $x_1, x_2 \in X$.

Функція ін'єктивна тоді і тільки тоді, коли для будь-яких $x_1, x_2 \in X$ якщо $x_1 \neq x_2$, то $f(x_1) \neq f(x_2)$, тобто для різних аргументів функція f приймає різні значення.

- 2. Функція називається сюр'єктивною (сюр'єкцією), якщо для кожного $y^* \in Y$ знайдеться такий $x^* \in X$, що $y^* = f(x^*)$.
- Функція називається бієктивною (бієкцією), якщо вона ін'єктивна та сюр'єктивна одночасно.
 Таку функцію ще називають взаємно-однозначним відображенням.

Приклад. Визначити, які з зображених функцій ін'єктивні, сюр'єктивні або бієктивні.

- 1. Рисунок 2.3. Дана функція не ін'єктивна, тому що значення $1 \in Y$ відповідає a та $b \in X$. Функція не є сюр'єктивною, тому що у елемент $2 \in Y$ нічого не переходить;
- Рисунок 2.4. Дана функція ін'єкнивна, тому що різним аргументам відповідають різні значення. Функція сюр'єктивна, тому що множина її значень співпадає з областю значень. У даному випадку маємо бієктивну функцію;
- 3. Рисунок 2.5. Дана функція не інє ктивна, тому що значення 1 функція приймає як для a так і для b. Функція сюр'єктивна, тому що множина Y співпадає з областю значень функції, тобто для кожного $y \in Y$ існує відповідний аргумент x з області визначення, що y = f(x);
- Рисунок 2.6. Дана функція ін'єктивна, але не сюр'єктивна.

Варіант № 7

1. Чи ϵ вірною рівність: $(A \cap B) \times (C \cap D) = (A \times D) \cap (B \times C)$ Нехай $(x, y) \in (A \times D) \cap (B \times C) \Leftrightarrow (x, y) \in (A \times D) \& (x, y) \in (B \times C) \Leftrightarrow (x \in A \& y \in D) \& (x \in B \& y \in C) \Leftrightarrow (x \in A \& x \in B) \& (y \in C \& y \in D) \Leftrightarrow (x \in A \cap B) \& (y \in C \cap D) \Leftrightarrow (x, y) \in (A \cap B) \times (C \cap D)$.

2. Знайти матрицю відношення $R \subset 2^{A} \times 2^{B}$: $R = \{(x, y) | x \subset A \& y \subset B \& x \subset y\}$, де $A = \{1, 2\}, B = \{1, 2, 4\}.$

, , ,	Ø	{1}	{2}	{4}	{1,2}	{1,4}	{2,4}	{1,2,4}
Ø	1	1	1	1	1	1	1	1
{1}	0	1	0	0	1	1	0	1
{2}	0	0	1	0	1	0	1	1
{1,2}	0	0	0	0	1	0	0	1

3. Зобразити відношення графічно:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& x^2 - 2x + y^2 = 8 \}$$
, де \mathbb{R} - множина дійсних чисел.

4. Навести приклад бінарного відношення $R \subset A \times A$, де $A = \{a,b,c,d,e\}$, яке ε антирефлексивне,

симетричне, транзитивне, та побудувати його матрицю.

	a	b	c	d	e
a	0	1	1	1	1
b	1	0	1	1	1
c	1	1	0	1	1
d	1	1	1	0	1
e	1	1	1	1	0

5. Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б) бієктивним:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& y = (x - 2)^{-2} \}.$$

Дане відношення ϵ функціональним при $x \in (-\infty; 2)U(2; +\infty)$ Дане відношення ϵ бієктивним при $x \in (2; +\infty)$ або $x \in (-\infty; 2)$

Додаток:

```
7. \rho = \{(a, b) | a \in A \& b \in B \& a < 3b \}
#include
<stdio.h>
             #include <math.h>
             int main(void)
             {
               int size;
               printf("Input size of arrays:\n ");
               scanf("%d", &size);
               printf("\n");
               int array1[size];
               int array2[size];
               for (int i=0; i<size; i++)</pre>
                 printf("Array1[%d]=\n", i);
                 scanf("%d", &array1[i]);
               }
               printf("\n");
               for (int i=0; i<size; i++)</pre>
                 printf("Array2[%d]=\n", i);
```

```
scanf("%d", &array2[i]);
}
printf("\nArray1 is:{");
for (int i=0; i<size; i++)</pre>
  printf("%d ", array1[i]);
printf("\b}\n\nArray2 is:{");
for(int i=0; i<size; i++)</pre>
  printf("%d ", array2[i]);
printf("\b}\n");
int array3[size][size];
for (int i=0; i<size; i++)</pre>
  for (int j=0; j<size; j++)</pre>
    if (2*array1[i]<3*array2[j])</pre>
      array3[i][j]=1;
    }
    else
      array3[i][j]=0;
    }
  }
printf("\nMatrix is:\n");
for (int i=0; i<size; i++)</pre>
  printf("(");
  for (int j=0; j<size; j++)</pre>
    printf("%d ", array3[i][j]);
  printf("\b)\n");
}
int refl=0;
for (int i=0; i<size; i++)</pre>
  if (array3[i][i]==1)
    refl++;
  }
```

```
}
if (refl==size)
  printf("Relation is reflexivity\n");
}
else if (refl<size && refl>0)
  printf("Relation is not reflexivity\n");
}
else if (refl==0)
  printf("Relation is antireflexivity\n");
}
int symm=0;
for (int i=0; i<size; i++)</pre>
  for (int j=0; j<size; j++)</pre>
    if (array3[i][j]==array3[j][i])
      symm++;
    }
  }
}
if (symm==pow(size,2))
  printf("Relation is symmetric\n");
else if (symm<pow(size,2) && symm>size)
  printf("Relation is not symmetric\n");
else if (symm==size)
  printf("Relation is antisymmetric\n");
}
int m=1,n=1;
for (int i=0; i<size; i++)</pre>
  for (int j=0; j<size; j++)</pre>
    for (int k=0; k<size; k++)</pre>
      if (i!=j && j!=k && i!=k)
       if (array3[i][j]==1 && array3[j][k]==1 && array3[i][k]==0)
       {
```

```
m=0;
         }
         else if (array3[i][j]==1 \&\& array3[j][k]==1 \&\& array3[i][k]==1)
           n=0;
         }
        }
      }
    }
  }
  if (m==1)
    printf ("Relation is transitivity\n");
  else if (n==1)
   printf ("Relation is antitranzitivity\n");
  }
  else
    printf ("Relation is not tranzitivity\n");
  }
  scanf("%d",& size);
  return 0;
}
```