Im Folgenden seien alle Vektorräume endlichdimensional.

Aufgabe 1. (Existenz von Skalarprodukten)

Es sei \mathcal{B} eine Basis eines \mathbb{K} -Vektorraums V. Zeigen Sie, dass es ein eindeutiges Skalarprodukt auf V gibt, bezüglich dessen \mathcal{B} orthonormal ist.

Aufgabe 2. (Kern und Bild der adjungierten Abbildung)

Es seien V und W Skalarprodukträume und es sei $f: V \to W$ linear. Zeigen Sie, dass $\ker f^{\operatorname{ad}} = (\operatorname{im} f)^{\perp}$ und $\operatorname{im} f^{\operatorname{ad}} = (\ker f)^{\perp}$ gelten.

Aufgabe 3. (Endomorphismen mit $\langle f(v), v \rangle = 0$)

- 1. Es sei V ein Skalarproduktraum und $f: V \to V$ ein diagonalisierbarer Endomorphismus mit $\langle f(v), v \rangle = 0$ für alle $v \in V$. Zeigen Sie, dass bereits f = 0 gilt. (*Tipp*: Betrachten Sie die Eigenwerte von f.)
- 2. Es sei nun V ein unitärer Vektorraum und $f\colon V\to V$ ein Endomorphismus mit $\langle f(v),v\rangle=0$ für alle $v\in V$. Zeigen Sie, dass bereits f=0 gilt. (*Tipp*: Betrachten Sie die Sesquilinearform $\beta\in \mathrm{SF}(V)$ mit $\beta(v_1,v_2)=\langle f(v_1),v_2\rangle$, und nutzen Sie Polarisation.)

Aufgabe 4. (Charakterisierung linearer Isometrien)

Es seien V und W Skalarprodukträume und es sei $f\colon V\to W$ linear. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:

- 1. Für alle $v_1, v_2 \in V$ gilt $\langle f(v_1), f(v_2) \rangle = \langle v_1, v_2 \rangle$.
- 2. Für alle $v \in V$ gilt ||f(v)|| = ||v||.

Aufgabe 5. (Trigonalisierung durch Orthonormalbasen)

Es sei V ein unitärer Vektorraum.

1. Zeigen Sie, dass es für jede Flagge

$$0 = V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n = V$$

eine Orthonormalbasis $\mathcal{B} = (v_1, \dots, v_n)$ von V gibt, so dass $V_i = \langle v_1, \dots, v_i \rangle$ für alle i gilt.

2. Zeigen Sie, dass es für jeden Endomorphismus $f\colon V\to V$ eine Orthonormalbasis $\mathcal B$ von V gibt, so dass $\mathcal M_{f,\mathcal B,\mathcal B}$ in oberer Dreiecksform ist.

Aufgabe 6. (Determinanten)

Es sei $A \in M_n(\mathbb{K})$ orthogonal, unitär, bzw. hermitesch. Bestimmen Sie jeweils alle möglichen Werte von det A.