Mata Kuliah : Kognitif Komputasi (Teori)

Kode Mata Kuliah : KKTI4122

Waktu : Rabu (07.00 – 08.40)

Jumlah SKS : 2 SKS

Nama Dosen : Dewa Gede Parta

Minggu ke : 1 (Satu)
Tanggal : 16-09-2015

Judul Materi : Rangkuman Matematika Pendukung

Dalam pembelajaran mata kuliah Kognitif komputasi terdapat beberpaa materi matematika yang mendukung proses belajar mata kuliah ini. Berikut adalah beberapa materi pendukungnya.

1. Trigonometri

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{\sin A}{\cos A} = \frac{a}{b}$$

$$\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A} = \frac{b}{a}$$

$$\sec A = \frac{1}{\cos A} = \frac{c}{b}$$

$$\csc A = \frac{1}{\sin A} = \frac{c}{a}$$

2. Bentuk Geometri

2-Dimensi (2-D)

2 Dimensi juga dikenali sebagai 2-Matra.

Ciri-ciri bentuk 2-D ialah:

- Bentuk 2-D mempunyai lebar dan panjang.
- Bentuk 2-D mempunyai permukaan yang rata.
- Bentuk 2-D mempunyai Sudut kecuali bentuk bulat dan bujur.
- Semua bentuk 2-D bersisi lurus kecuali bentuk bulat dan bujur iaitu sisi melengkung.

Contoh-contoh bentuk 2-D.

3. Persamaan dan Pertidaksamaan

- 1) Kalimat terbuka yang memuat tanda "=" disebut Persamaan . Sedangkan kalimat terbuka yang memuat tanda " < , < , > , > " disebut Pertidaksamaan.
- 2) Persamaan atau pertidaksamaan linier adalah suatu persamaan atau pertidaksamaan dengan variabelnya berpangkat satu.
- 3) Himpunan penyelesaian sistem persamaan linier dua variabel dapat dicari dengan menggunakan metode sebagai berikut.

- a. eliminasi yaitu mencari nilai variabel dengan melenyapkan variabel yang lain dengan cara mengurangkan atau menjumlahkannya,
- b. substitusi yaitu mengganti atau menyatakan salah satu variabel dengan variabel lainnya,
- c. gabungan eliminasi dan substitusi.
- 4) Bentuk umum pertidaksamaan linier satu variabel dinyatakan dengan ax + b (R) 0; a , $b \in Riil dan (R) = salah satu relasi pertidaksamaan.$
- 5) Beberapa hal yang perlu diperhatikan dalam menyelesaikan pertidaksamaan
 - a. tanda pertidaksamaan tidak berubah arah jika pada ruas kiri dan kanan ditambahkan atau dikurangkan dengan bilangan negatif atau bilangan positif yang sama;
 - b. tanda pertidaksamaan tidak berubah jika pada ruas kiri dan kanan dikalikan atau dibagi dengan bilangan positif yang sama;
 - c. tanda pertidaksamaan berubah arah atau dibalik jika pada ruas kiri dan kanan dikalikan atau dibagi dengan bilangan negatif yang sama.

4. Barisan dan Deret

- Barisan

Barisan bilangan dibentuk oleh bilangan-bilangan yang disusun menurut aturan tertentu. Barisan bilangan ini dapat kita teruskan suku-sukunya apabila aturan untuk memperoleh suku berikutnya sudah ditentukan.

Aritmatika

Adalah barisan bilangan yang suku berikutnya didapat dari penambahan suku sebelumnya dengan bilangan yang tetap (tertentu), bilangan yang tetap tersebut dinamakan **beda (b)**

Geometri

Barisan geometri adalah Barisan bilangan yang suku-suku berikutnya diperoleh dari **hasil kali** suku sebelumnya dengan bilangan tetap yang tidak sama dengan nol.

- Deret

Deret adalah penjumlah barisan.

5. Limit Aljabar

Limit berarti menuju suatu batas , sesuatu yang dekat tetapi tidak dapat dicapai. Dalam matematika kondisi demikian cukup disebut dengan limit. Limit menjelaskan suatu fungsi jika batas tertentu didekati. Mengapa harus didekati ? karena fungsi seringkali tidak terdefinisi pada titik-titik tertentu. Meskipun fungsi tak terdefinisi untuk suatu titik terntentu , tapi masih bisa dicari tahu brapa nilai yang didekati oleh fungsi jika titik tersebut semakin didekati.

Dalam notasi matematika limit dituliskan dengan:

$$\lim_{x \to a} f(x) = L$$

artinya jika x mendekati a tapi x tidak sama dengan a maka f(x) mendekati L. Pendekatan x ke a dapat dilihat dari dua sisi yaitu sisi kiri dan sisi kanan atau dengan kata lain x dapat mendekati dari arah kiri dan arah kanan sehingga menghasilkan limit kiri dan limit kanan.

6. Vektor

Menggambar sebuah Vektor

Vektor pada bidang datar mempunyai 2 komponen yaitu pada sumbu x dan sumbu y. Khusus untuk vektor yang segaris dengan sumbu x atau y berarti hanya mempunyai 1 komponen. Komponen vektor adalah vektor yang bekerja menuyusun suatu vektor hasil (resultan vektor). Oleh karenanya vektor bisa dipindahkan titik pangkalnya asalkan tidak berubah besar dan arahnya.

Secara matematis vektor dapat dituliskan $A = A_x + A_y$ dimana A adalah resultan dari komponen-komponenya berupa Ax dan Ay.

Penjumlahan Vekor

Inti dari operasi penjumlahan vektor ialah mencari sebuah vektor yang komponen-komponennya adalah jumlah dari kedua komponen-komponen vektor pembentuknya atau secara sederhana berarti mencari resultan dari 2 vektor. Aga susah memang dipahami dari definisi tertulis. Kita coba memahaminya dengan contoh

Untuk vektor segaris, resultannya

$$R = A + B + C + n dst...$$

untuk penjumlahan vektor yang tidak segaris misalnya seperti gambar di bawah ini

rumus penjumlahan vektor bisa didapat dari persamaan berikut

Menurut aturan cosinus dalam segitiga,

$$(OR)^2 = (OP)^2 + (PR)^2 - 2(OP)(PR) \cos (1800 - \alpha)$$

 $(OR)^2 = (OP)^2 + (PR)^2 - 2(OP)(PR) \cos (-\cos \alpha)$
 $(OR)^2 = (OP)^2 + (PR)^2 - 2(OP)(PR) \cos \alpha$
Jika $OP = A$, $PR = B$, dan Resultan 'R' = OR

maka didapat persamaan $R^2 = A^2 + B^2 - 2AB \cos \alpha$ Rumus menghitung resultan vektornya

$$R = \sqrt{A^2 + B^2 + 2AB\cos\alpha}$$

Dalam penjumlahan vektor sobat hitung bisa menggunakan 2 cara

1. Penjumlahan Vektor dengan cara Jajar Genjang (Pararelogram)

yaitu seprti yang dijelaskan di atas. Metode yang digunakan adalah dengan mencari diagonal jajar genjang yang terbentuk dari 2 vektor dan tidak ada pemindahan titik tangkap vektor.

2. Penjumlahan Vektor dengan Cara Segitiga

pada metode ini dilakukan pemindahan titik tangka vektor 1 ke ujung vektor yang lain kemudian menghubungkan titi tangkap atau titik pangkal vektor pertama dengn titik ujung vektor ke dua. Lihat ilustrasi gambar di bawah ini.

Untuk vektor yang lebih dari 2, sama saja. Lakukan satu demi satu hingga ketemu resultan akhirnya. Dari gambar di atas, V = A + B dan

R = V + C atau R = A + B + C

7. Derivatif

Misalkan y adalah fungsi dari x atau y = f(x). Turunan (atau Derivatif) dari y terhadap x dinotasikan dengan :

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Berikut adalah turunan untuk trigonometri

```
y = \sin x \rightarrow y' = \cos x
y = \cos x \rightarrow y' = -\sin x
y = \tan x \rightarrow y' = \sec^2 x
y = \csc x \rightarrow y' = -\csc x \cot x
y = \sec x \rightarrow y' = \sec x \tan x
y = \cot x \rightarrow y' = -\csc^2 x
MSC
```

8. Integral

Integral disebut juga sebagai anti turunan yang dapat dirumuskan sebagai berikut :

$$\int f'(x)dx = F(x) + C$$

Dengan f'(x) = Turunan pertama F(x) dan C = Konstanta

9. Matriks

Matriks banyak dimanfaatkan untuk menyelesaikan berbagai permasalahan matematika misalnya dalam menemukan solusi masalah persamaan linear, transformasi linear yakni bentuk umum dari fungsi linear contohnya rotasi dalam 3 dimensi. Matriks juga seperti variabel biasa, sehingga matrikspun dapat dimanipulasi misalnya dikalikan, dijumlah, dikurangkan, serta didekomposisikan. Menggunakan representasi matriks, perhitungan dapat dilakukan dengan lebih terstruktur.

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Operasi Dasar Matriks:

1. Penjumlahan dan Pengurangan Matriks

Penjumlahan serta pengurangan dalam matriks hanya dapat dilakukan apabila kedua matriks mempunyai ukuran atau tipe yang sama. Elemen-elemen dalam suatu matriks yang dijumlahkan atau dikurangan yaitu elemen yang memilki posisi/letak yang sama.

$$a_{ij} \pm b_{ij} = c_{ij}$$

representasi dekoratifnya sebagai berikut

$$\begin{bmatrix} (a_{11} \pm b_{11}) & (a_{12} \pm b_{12}) & (a_{13} \pm b_{13}) \\ (a_{21} \pm b_{21}) & (a_{22} \pm b_{22}) & (a_{23} \pm b_{23}) \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

2. Perkalian Skalar

Perkalian matriks dilakukan dengan cara tiap baris dikalikan dengan tiap kolom, selanjutnya dijumlahkan pada kolom yang sama

$$c_{ij} = \sum_{k=1}^{m} a_{ik} \cdot b_{kj}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad B = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$$

$$A\times B = \begin{pmatrix} ap+br & aq+bs \\ cp+dr & cq+ds \end{pmatrix}$$

Ordo suatu matriks merupakan bilangan yang menunjukan banyaknya baris (m) dan

banyaknya kolom (n). Sebagai contoh : $\begin{pmatrix} 2 & 3 & 5 \\ 1 & 4 & -7 \end{pmatrix}$ merupakan matriks berordo 3×2

10. Sistem Koordinat

Sistem koordinat kartesius adalah tempat bertemunya titik-titik antara sumbu X dan Sumbu Y, biasanya ditulis (x,y) atau (absis, ordinat). Berikut adalah hal-hal penting yang berkaitan dengan dengan sistem koordinat Kartesius:

>>> Sistem koordinat kartesius, terbentuk oleh dua buah garis yang saling tegak lurus, yaitu antara sumbu

X dan sumbu Y

>>> Sumbu X biasanya garis lurus horisontal tempat kedudukan titik absis.

>>> Sumbu Y biasanya garis lurus vertikal tempat kedudukan titik ordinat.

Sistem koordinat kartesius terbagi atas 4 wilayah/daerah yang biasanya disebut kuadran, yaitu:

Kuadran I =======>> (x,y) = (posisitif,positif)

Kuadran II =======>> (-x,y) = (negatif, positif)

Kuadran III =======>> (-x,-y) = (negatif, negatif)

Kuadran IV ======>> (x,-y) = (positif, negatif)

Berikut disajikan gambar sistem koordinat kartesius :

C----1- --- .

11. Bilangan

#BILANGAN ASLI

Bilangan asli adalah himpunan bilangan bulat positif yang bukan nol.

Nama lain dari bilangan ini adalah bilangan hitung atau bilangan yang bernilai positif (integer positif).

Contoh:

{1, 2, 3, 4, 5, 6, 7, 8, 9, ...}

#BILANGAN CACAH

Bilangan cacah adalah himpunan bilangan asli ditambah dengan nol.

Contoh:

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, ...\}$

#BILANGAN NEGATIF

Bilangan negatif

(integer negatif) adalah bilangan yang lebih kecil/ kurang dari nol. Atau juga bisa dikatakan bilangan yang letaknya disebelah kiri nol pada garis bilangan.

Contoh

$$\{-1, -2, -3, -4, -5, -6, -7, -8, -9, ...\}$$

#BILANGAN BULAT

Bilangan bulat merupakan bilangan yang terdiri dari bilangan asli, bilangan nol dan bilangan negatif.

Contoh:

$$\{-4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$$

#BILANGAN PRIMA

Bilangan prima adalah bilangan asli lebih besar dari 1 yang faktor pembaginya adalah 1 dan bilangan itu sendiri.

Contoh:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...}

#BILANGAN KOMPOSIT

Bilangan komposit adalah bilangan asli lebih besar dari 1 yang bukan merupakan bilangan prima. Bilangan komposit dapat dinyatakan sebagai faktorisasi bilangan bulat, atau hasil perkalian dua bilangan prima atau lebih. Atau bisa juga disebut bilangan yang mempunyai faktor lebih dari dua.

Contoh

{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ...}

#BILANGAN KOMPLEKS

Bilangan kompleks adalah

suatu bilangan yang merupakan penjumlahan antara **bilangan real** dan **bilangan imajiner** atau bilangan yang berbentuk a + bi. Dimana a dan b adalah bilangan real, dan i adalah bilangan imajiner tertentu. Bilangan real a disebut juga bagian real dari bilangan kompleks, dan bilangan real b disebut bagian imajiner. Jika pada suatu bilangan kompleks, nilai b adalah b0, maka bilangan kompleks tersebut menjadi sama dengan bilangan real a0. Contoh:

 ${3 + 2i}$

#BILANGAN IMAJINER

Bilangan imajiner adalah bilangan yang mempunyai sifat $i^2 = -1$. Bilangan ini merupakan bagian dari bilangan kompleks. Secara definisi, bilangan imajiner i ini diperoleh dari penyelesaian persamaan kuadratik:

$$x^2 + 1 = 0$$

atau secara ekuivalen
 $x^2 = -1$
atau juga sering dituliskan sebagai
 $x = \sqrt{-1}$

#BILANGAN REAL

Bilangan real atau bilangan riil

menyatakan bilangan yang dapat dituliskan dalam bentuk decimal, seperti 2,86547... atau 3.328184. Dalam notasi penulisan bahasa Indonesia, bilangan desimal adalah bilangan yang memiliki angka di belakang koma "," sedangkan menurut notasi ilmiah, bilangan desimal adalah bilangan yang memiliki angka di belakang tanda titik ".". Bilangan real meliputi bilangan rasional, seperti 42 dan -23/129, dan bilangan irrasional, seperti π dan $\sqrt{2}$, dan dapat direpresentasikan sebagai salah satu titik dalam garis bilangan.

Himpunan semua bilangan riil dalam matematika dilambangkan dengan ${\bf R}$ (berasal dari kata "real").

#BILANGAN IRRASIONAL

Bilangan irrasional merupakan bilangan real yang tidak bisa dibagi atau lebih tepatnya hasil baginya tidak pernah berhenti. Sehingga tidak bisa dinyatakan a/b.

Contoh:

 π = 3,141592653358...... $\sqrt{2}$ = 1,4142135623...... e = 2,71828281284590......

#BILANGAN RASIONAL

Bilangan rasional adalah bilangan-bilangan yang merupakan rasio (pembagian) dari dua angka (integer) atau dapat dinyatakan dengan a/b, dimana a merupakan himpunan bilangan bulat dan b merupakan himpunan bilangan bulat tetapi tidak sama dengan nol. Bilangan Rasional diberi lambang \mathbf{Q} (berasal dari bahasa Inggris "quotient").

Contoh:

 $\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \dots\}$

Bilangan pecahan termasuk sekumpulan bilangan rasional. Pecahan desimal adalah pecahan pecahan dengan **bilangan penyebut** 10, 100, dst. { 1/10, 1/100, 1/1000 }, semua bilangan ini dapat ditemukan dalam garis-garis bilangan.

Sebuah bilangan asli dapat dinyatakan dalam bentuk bilangan rasional. Sebagai contoh bilangan asli 2 dapat dinyatakan sebagai 12/6 atau 30/15 dan sebagainya.

#BILANGAN PECAHAN

Bilangan pecahan adalah bilangan yang disajikan/ ditampilkan dalam bentuk a/b; dimana a, b bilangan bulat dan b \neq 0.

a disebut pembilang dan b disebut penyebut.