Project 04: Movielens Dataset Analysis

You don't need to limit yourself to the number of rows/cells provided. You can add additional rows in each section to add more lines of code.

Happy coding!

```
In [1]:
import os
cwd =os.chdir(r'C:\Machine learning datafiles\simplilearn projects\movielens')
os.listdir(cwd)
Out[1]:
['movies.dat', 'movie lens.csv', 'New folder', 'ratings.dat', 'users.dat']
In [2]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('ggplot')
In [3]:
import warnings
warnings.filterwarnings('ignore')
In [4]:
movie_data = pd.read_csv('movies.dat', sep='::', names=['MovieId','Title','Genre'])
ratings data = pd.read csv('ratings.dat', sep= '::', names=['UserId','MovieId','Rating','
TimeStamp'])
users data = pd.read csv('users.dat', sep='::', names=['UserId','Gender','Age','Occupatio
n','Zipcode'])
In [7]:
movie data.columns, ratings data.columns, users data.columns
Out[7]:
(Index(['MovieId', 'Title', 'Genre'], dtype='object'),
Index(['UserId', 'MovieId', 'Rating', 'TimeStamp'], dtype='object'),
 Index(['UserId', 'Gender', 'Age', 'Occupation', 'Zipcode'], dtype='object'))
In [8]:
master data= pd.merge(ratings data, users data, on= 'UserId', how='left')
master data = pd.merge(master data, movie data, on= 'MovieId', how='left')
In [5]:
pd.set option('max columns',5000)
In [10]:
master data.to csv('movie lens.csv', index=False)
In [68]:
%%time
master data= pd.read csv('movie lens.csv')
```

master_data.head()

Wall time: 9.72 s

Out[68]:

	UserId	Movield	Rating	TimeStamp	Gender	Age	Occupation	Zipcode	Title	Genre
0	1	1193	5	978300760	F	1	10	48067	One Flew Over the Cuckoo's Nest (1975)	Drama
1	1	661	3	978302109	F	1	10	48067	James and the Giant Peach (1996)	Animation Children's Musical
2	1	914	3	978301968	F	1	10	48067	My Fair Lady (1964)	MusicallRomance
3	1	3408	4	978300275	F	1	10	48067	Erin Brockovich (2000)	Drama
4	1	2355	5	978824291	F	1	10	48067	Bug's Life, A (1998)	Animation Children's Comedy

In [69]:

```
%%time
master_data['TimeStamp'] = master_data['TimeStamp'].apply(lambda x: pd.Timestamp(x, unit
='s'))
```

Wall time: 5.88 s

In [8]:

master_data.shape

Out[8]:

(1000209, 10)

In [9]:

master data.head()

Out[9]:

	UserId	Movield	Rating	TimeStamp	Gender	Age	Occupation	Zipcode	Title	Genre
0	1	1193	5	2000-12-31 22:12:40	F	1	10	48067	One Flew Over the Cuckoo's Nest (1975)	Drama
1	1	661	3	2000-12-31 22:35:09	F	1	10	48067	James and the Giant Peach (1996)	Animation Children's Musical
2	1	914	3	2000-12-31 22:32:48	F	1	10	48067	My Fair Lady (1964)	MusicallRomance
3	1	3408	4	2000-12-31 22:04:35	F	1	10	48067	Erin Brockovich (2000)	Drama
4	1	2355	5	2001-01-06 23:38:11	F	1	10	48067	Bug's Life, A (1998)	Animation Children's Comedy

Age Distribution

In [124]:

```
plt.figure(figsize=[10,6])
sns.distplot(master_data.Age, kde=False, color='g')
plt.title('Age Distribution of Users')
plt.ylabel('Frequency')
plt.xlabel('Age');
```


Most of the users are users between the ages of 25 and 34

Overall Rating by Users

In [153]:

```
fig, ax= plt.subplots(1,2,figsize=[13,6])
pd.value_counts(master_data.Rating).sort_index().plot.pie(autopct='%.2f%%',labels=[1,2,3,4,5],ax=ax[0])
#ax[0].legend(title='Ratings',loc=(1.,0.29))
ax[0].set(ylabel= '')

pd.value_counts(master_data.Rating).sort_index().plot(kind='bar',color='m',rot=0,ax=ax[1])
ax[1].set(xlabel='Ratings', ylabel='Frequency')
plt.tight_layout(pad=1.2)
fig.suptitle('Overall_User_Ratings',ha='right',color='g',fontsize=15);
plt.savefig('Overall_User_ratings.jpeg')
```


From the overall ratings by users, we see that most of the users rated 4 for most of the movies, followed by 3 and then 5. The least rating is 1

User rating of movie 'Toy Story'

In [17]:

movie_data.head() #getting the movie data

Out[17]:

	Movield	Title	Genre
0	1	Toy Story (1995)	Animation Children's Comedy
1	2	Jumanji (1995)	Adventure Children's Fantasy
2	3	Grumpier Old Men (1995)	ComedylRomance
3	4	Waiting to Exhale (1995)	ComedylDrama
4	5	Father of the Bride Part II (1995)	Comedy

In [18]:

user_toystory= master_data[master_data.MovieId.isin([1])] #getting Toy story data from th
e movie id

In [19]:

user toystory.head()

Out[19]:

	UserId	Movield	Rating	TimeStamp	Gender	Age	Occupation	Zipcode	Title	Genre
40	1	1	5	2001-01-06 23:37:48	F	1	10	48067	Toy Story (1995)	Animation Children's Comedy
469	6	1	4	2000-12-31 04:30:08	F	50	9	55117	Toy Story (1995)	Animation Children's Comedy
581	8	1	4	2000-12-31 03:31:36	М	25	12	11413	Toy Story (1995)	Animation Children's Comedy
711	9	1	5	2000-12-31 01:25:52	М	25	17	61614	Toy Story (1995)	Animation Children's Comedy
837	10	1	5	2000-12-31 01:34:34	F	35	1	95370	Toy Story (1995)	Animation Children's Comedy

In [20]:

user_toystory.Rating.value_counts().sort_index().to_frame(name='Toy Story User ratings')

Out[20]:

Toy Story User ratings

1	16
2	61
3	345
4	835
5	820

In [118]:

```
fig,ax= plt.subplots(1,2,figsize=[13,5])
ax[0].pie(user_toystory.Rating.value_counts().sort_index(), autopct='%.2f%%',labels=[1,2,3,4,5],explode=(0.3,0.3,0,0,0))
ax[0].legend(loc=[1.2,0.247],ncol=1,title='Ratings')
```

```
sns.countplot('Rating', data=user_toystory, ax=ax[1])
ax[1].set(xlabel='User Ratings', ylabel='Frequency')
fig.tight_layout(pad=2)

fig.suptitle('User Ratings Distribution for the movie Toy Story', ha='right', color='g', fon
tsize=16);
plt.savefig('user_toy_story_rating.jpeg')
```


From the charts above we see that most of the users that rated Toy Story rated it as 4 or 5.

Viewership of Toy Story by Age group

In [156]:

```
plt.figure(figsize=[12,7])
sns.countplot('Rating', hue='Age', data=user_toystory)
plt.title('Distribution of Toy Story viewership by Age Group')
plt.xlabel('User Ratings')
plt.ylabel('Frequency')
plt.ylim((0,350))
plt.legend(loc=(1.02,0.23), title='Age Group');
plt.savefig('Toy_story_viewership_by_age_group.png')
```


From the chart, we see that most of the users rated the movie 'Toy Story' as 4 or 5, with most of those ratings from users between the Ages of 25 and 34.

Top 25 Movies bu viewership Ratings

```
In [23]:
```

In [171]:

```
top_25_movies_by_user_ratings[:25].to_csv('top_25_movies_by_user_ratings.csv')
```

In [189]:

```
plt.figure(figsize=[12,6])
sns.barplot('Title','Rating',data=top_25_movies_by_user_ratings[:25],palette='Set2')
plt.xticks(np.arange(25),range(25))
plt.title('Top 25 Movies by Viewership Ratings')
plt.xlim((-1,25));
plt.savefig('Top_25_Movies_by_Viewership_Ratings.jpg')
```


Movie rating bu userid= 2696

In [26]:

```
rating_by_user_2696 = master_data[master_data.UserId == 2696][['UserId','Rating']].reset
_index(drop=True)
```

In [190]:

```
rating_by_user_2696.Rating.value_counts().sort_index().plot.bar(rot=0,color='#5ae42d')
plt.title('Movie Ratings by Userid 2696')
plt.xlabel('Ratings')
plt.ylabel('Rating counts')
plt.savefig('Movie_Ratings_by_Userid_2696.jpg');
```

Movie Ratings by Userid 2696

Feature Engineering

unique Genres

```
In [71]:
```

```
master_data['Genre'] = master_data.Genre.apply(lambda x: x.split('|'))
```

In [72]:

```
%%time
genre_list= []
for genres in master_data.Genre.values:
    for genre in genres:
        genre_list.append(genre)
```

Wall time: 608 ms

In [73]:

```
unique_genre = set(genre_list)
```

In [74]:

```
print('The unique Genres are: [{}]'.format(unique_genre))
```

The unique Genres are: [{"Children's", 'Romance', 'Action', 'Adventure', 'Sci-Fi', 'Weste rn', 'Film-Noir', 'Documentary', 'Comedy', 'Fantasy', 'War', 'Crime', 'Horror', 'Thriller', 'Musical', 'Drama', 'Mystery', 'Animation'}]

One hot encoding of unique genres

In [81]:

```
%%time
for genre in unique_genre:
    master_data[genre] = master_data.Genre.apply(lambda x: 1 if genre in x else 0)
```

Wall time: 9.66 s

In [82]:

```
master_data.head(2)
```

Out[82]:

	UserId	Movield	Rating	TimeStamp	Gender	Age	Occupation	Zipcode	Title	Genre	Children's	Romance	Act
0	1	1193	5	2000-12-31 22:12:40	F	1	10	48067	One Flew Over the Cuckoo's Nest (1975)	[Drama]	0	0	
									James				

and the [Animation

2000-12-31 Children's Romance Act Giant Userld Movield Rating Timesterno Gender Age Occupation Zipcode Peach Musical] (1996)Counting Genres using Counter and defaultdict In [17]: from collections import Counter, defaultdict In [18]: genre count = Counter(genre list) In [19]: genre_count.most_common(5) #most common genre Out[19]: [('Comedy', 356580), ('Drama', 354529), ('Action', 257457), ('Thriller', 189680), ('Sci-Fi', 157294)] In [20]: genre_dict = defaultdict(int) for genre in genre list: if genre in genre dict: genre dict[genre] +=1 else: genre dict[genre] = 1 In [21]: genre_dict Out[21]: defaultdict(int, {'Drama': 354529, 'Animation': 43293, "Children's": 72186, 'Musical': 41533, 'Romance': 147523, 'Comedy': 356580, 'Action': 257457, 'Adventure': 133953, 'Fantasy': 36301, 'Sci-Fi': 157294, 'War': 68527, 'Thriller': 189680, 'Crime': 79541, 'Mystery': 40178, 'Western': 20683, 'Horror': 76386, 'Film-Noir': 18261, 'Documentary': 7910}) In [22]: genres = pd.Series(np.array(genre list)).to frame(name='Genres') In [23]: plt.figure(figsize=[12,5])

and the [Anniauon,

```
sns.countplot('Genres', data=genres, palette='Set2')
plt.xticks(rotation=30)
plt.xlim(-1,18)
plt.title('Frequency Distribution of the Unique Genre')
plt.ylabel('Frequency');
plt.savefig('Unique_genre_Counts.png')
```


In [24]:

```
master data.shape
```

Out[24]:

(1000209, 28)

Machine Learning

In [42]:

```
master_data.columns
```

Out[42]:

In [67]:

```
master_data.head(2)
```

Out[67]:

	UserId	Movield	Rating	TimeStamp	Gender	Age	Occupation	Zipcode	Title	Genre	Children's	Romance	Action
0	1	1193	5	2000-12-31 22:12:40	F	1	10	48067	One Flew Over the Cuckoo's Nest (1975)	[Drama]	0	0	0
1	19	1193	5	2001-02-21 04:48:56	М	1	10	48073	One Flew Over the Cuckoo's Nest (1975)	[Drama]	0	0	0

master_data.groupby(['Title','Movield','Userld'])[['Rating']].mean()

FEATURE ENGINERRING

WE WILL BE GENERATING NEW FEATURES FROM THE AVAILABLE PREDICTORS

- 1. THE MEAN USER RATINGS FOR A PARTICULAR MOVIE
- 2. THE MEAN RATING BY AN AGE GROUP
- 3. THE MEAN RATING FOR A MOVIE BY A PARTICULAR AGE GROUP

```
In [85]:
```

```
mean_user_rating_per_movie = master_data.groupby('MovieId')[['Rating']].mean()
mean_rating_by_age_group = master_data.groupby('Age')[['Rating']].mean()
mean_rating_per_movie_per_age = master_data.groupby(['MovieId','Age'])[['Rating']].mean()
)
```

```
In [86]:
```

```
master_data = pd.merge(master_data, mean_rating_by_age_group, on='Age', suffixes=['', '_mean_by_age'])
master_data = pd.merge(master_data, mean_rating_per_movie, on='MovieId', suffixes=['', '_mean_by_movieid'])
master_data = pd.merge(master_data, mean_rating_per_movie_per_age, on=['Age', 'MovieId'], suffixes=['', '_mean_per_movie_by_age'])
```

For those new features generated, we will be binning them by giving a value of 1 if the rating given by a user for a particular movie is greater than any of those features and a value of 0 if rating isn't

master_data.head()

```
In [87]:

master_data['rating_greater_than_mean_age_rating']= \
  (master_data.Rating >= master_data.Rating_mean_by_age).astype(int)

master_data['rating_greater_than_mean_movie_rating']=\
  (master_data.Rating >= master_data.Rating_mean_by_movieid).astype(int)

master_data['rating_greater_than_mean_movie_rating_by_age']=\
  (master_data.Rating >= master_data.Rating_mean_per_movie_by_age).astype(int)
```

```
In [88]:
```

```
cols_to_drop = ['UserId','MovieId','TimeStamp','Gender','Zipcode','Title','Genre','Occup
ation']
```

```
In [89]:
```

```
age_bins = {1:1,18:2,25:3,35:4,45:5,50:6,56:7}
master_data['Age'] = master_data.Age.map(age_bins)
```

```
In [90]:
```

```
master_data_copy = master_data.copy()
```

master_data_copy = pd.get_dummies(master_data_copy, columns= ['Occupation'])

```
In [91]:
master_data_copy.drop(cols_to_drop,axis=1,inplace=True)
```

```
In [92]:
```

```
master_data_copy.head()
```

```
Out[92]:
```

	Rating	Age	Children's	Romance	Action	Adventure	Sci- Fi	Western	Film- Noir	Documentary	Comedy	Fantasy	War	Crime
0	5	1	0	0	0	0	0	0	0	0	0	0	0	0
1	5	1	0	0	0	0	0	0	0	0	0	0	0	0
2	2	1	0	0	0	0	0	0	0	0	0	0	0	0
3	4	1	0	0	0	0	0	0	0	0	0	0	0	0
4	4	1	0	0	0	0	0	0	0	0	0	0	0	0
4														· •

In [93]:

```
corr= master_data_copy.corr() #correlation
#creating mask
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask)] = True
```

In [94]:

corr

Out[94]:

ouc[94].								
	Rating	Age	Children's	Romance	Action	Adventure	Sci-Fi	Wes
Rating	1.000000	0.059047	-0.039829	0.009644	0.047633	-0.036718	0.044487	0.007
Age	0.059047	1.000000	-0.050375	0.017420	0.032723	-0.017328	- 0.012540	0.038
Children's	0.039829	0.050375	1.000000	-0.084550	- 0.141314	0.098283	0.038844	0.03
Romance	0.009644	0.017420	-0.084550	1.000000	0.067830	-0.024389	- 0.133752	0.044
Action	0.047633	0.032723	-0.141314	-0.067830	1.000000	0.374961	0.319117	0.022
Adventure	0.036718	0.017328	0.098283	-0.024389	0.374961	1.000000	0.284190	0.011
Sci-Fi	0.044487	0.012540	-0.038844	-0.133752	0.319117	0.284190	1.000000	0.010
Western	0.007311	0.038833	-0.031269	-0.044650	0.022242	-0.011964	0.010935	1.000
Film-Noir	0.060259	0.034327	-0.038033	-0.047351	0.080288	-0.014178	0.004056	0.019
Documentary	0.028098	0.004025	-0.024901	-0.037137	0.052565	-0.035109	0.038568	0.012
Comedy	0.039622	0.043938	0.058711	0.112843	0.268092	-0.124960	- 0.187079	0.007
Fantasy	0.023312	0.024406	0.263280	-0.014822	0.014551	0.227046	0.121843	0.028
War	0.075688	0.039283	-0.066539	0.053347	0.135872	0.016647	0.039314	0.019
Crime	0.033446	0.008596	-0.081977	-0.073320	0.088519	-0.045924	0.083730	0.042
Horror	0.094353	- 0.025664	-0.077099	-0.099434	0.042733	-0.057256	0.056505	0.04
Thriller	0.004806	0.014902	-0.132642	-0.081384	0.202756	-0.038423	0.102546	0.058
Musical	0.015643	0.006373	0.312567	0.023506	- 0.100432	-0.022327	0.068012	0.030

Drama	Rating 0.122561	0.064693	Children's -0.135707	Romance 0.023552	Action 0.202415	Adventure -0.194570	Sci-Fi 0.212747	Wes 0.04
Mystery	0.015848	0.024974	-0.052786	-0.040162	- 0.054084	-0.043503	0.028273	0.029
Animation	0.019670	- 0.045272	0.576204	-0.054540	- 0.110294	0.004732	- 0.055526	0.030
Rating_mean_by_age	0.061349	0.962472	-0.036208	0.015512	- 0.035127	-0.015667	0.013394	0.038
Rating_mean_by_movieid	0.488549	0.105987	-0.081524	0.019740	0.097499	-0.075157	0.091059	0.014
Rating_mean_per_movie_by_age	0.514535	0.114758	-0.077407	0.018743	0.092575	-0.071361	0.086460	0.014
rating_greater_than_mean_age_rating	0.845576	0.046186	-0.033144	0.003705	0.043084	-0.036188	0.040404	0.00
rating_greater_than_mean_movie_rating	0.717000	0.005642	0.014023	0.000037	0.021280	-0.008017	0.007995	0.007
rating_greater_than_mean_movie_rating_by_age	0.700598	0.001403	0.006551	-0.002579	0.012122	-0.002431	0.005284	0.00€
4								▶

In [96]:

```
f,ax =plt.subplots(figsize=[12,8])
sns.heatmap(corr.round(2),linewidths=0.05,mask=mask,cmap="coolwarm",ax=ax,annot=True,fmt
='.1f')
f.subplots_adjust(top=0.9)
t= f.suptitle('Correlation scores', fontsize=12);
```

Correlation scores

12

```
from custom metrics import vif
In [102]:
vif.vif calc(master data copy,['Rating','Age','Rating mean by movieid'])
Children's vif= 1.81
Romance vif= 1.07
Action vif= 1.57
Adventure vif= 1.34
Sci-Fi vif= 1.27
Western vif= 1.03
Film-Noir vif= 1.14
Documentary vif= 1.05
Comedy vif= 1.58
Fantasy vif= 1.19
War vif= 1.11
Crime vif= 1.09
Horror vif= 1.19
Thriller vif= 1.35
Musical vif= 1.19
Drama vif= 1.67
Mystery vif= 1.12
Animation vif= 1.67
Rating_mean_by_age vif= 1.02
Rating_mean_per_movie_by_age vif= 1.67
rating_greater_than_mean_age_rating vif= 3.21
rating greater than mean movie rating vif= 6.01
rating_greater_than_mean_movie_rating_by_age vif= 5.83
For this purpose I will be dropping collinear variables with correlation coefficients equal to or above 0.85
(threshold).
From the correlation matrix, there is a very strong correlation between Age and the mean rating by age group
(~0.92), so we will be dropping the age column.
In [187]:
X= master data copy.drop('Rating',axis=1)
y = master data copy.Rating
In [174]:
X = X.drop(['Age', 'Rating mean by movieid'],1)
In [106]:
from sklearn.linear model import LinearRegression, Ridge
from sklearn.model_selection import train_test_split,cross_val_score,GridSearchCV,KFold,S
huffleSplit
from sklearn.preprocessing import StandardScaler, RobustScaler, MinMaxScaler
In [201]:
X train, X test, y train, y test = train test split(X,y,test size= 0.15, random state=19
92)
In [202]:
X train, X val, y train, y val = train test split(X train, y train, test size=0.1, random
state=124)
In [203]:
X train.shape, X test.shape, X val.shape
```

In [97]:

```
Out[203]:
((765159, 25), (150032, 25), (85018, 25))
In [204]:
predictors= X_train.columns.tolist()
In [205]:
scaler = StandardScaler()
In [193]:
from sklearn.pipeline import Pipeline
Linear Regression
In [206]:
lin model= LinearRegression()
In [207]:
pipeline= Pipeline([('scaler', scaler), ('model', lin model)])
In [208]:
fit= pipeline.fit(X train, y train)
In [209]:
y pred= pipeline.predict(X val)
In [210]:
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
In [211]:
r2 train = r2 score(y train, pipeline.predict(X train))
r2_train
Out[211]:
0.8076161458823835
In [212]:
r2_val = r2_score(y_val,y_pred)
r2 val
Out[212]:
0.8067907476886027
In [213]:
train mse = mean squared error(y train, pipeline.predict(X train))
train mse
Out[213]:
0.2399340828307028
In [214]:
val mse = mean squared error(y val, y pred)
val mse
Out[214]:
```

```
0.24192933021228297
 In [215]:
 train_mae = mean_absolute_error(y_train, pipeline.predict(X_train))
 train_mae
 Out[215]:
 0.3929323058790929
 In [216]:
 val_mae = mean_absolute_error(y_val, y_pred)
 val mae
 Out[216]:
 0.3949629434550447
 In [124]:
 coef, pred = zip(*zip(lin_model.coef_.ravel(),predictors))
pd.Series(coef, index=pred).sort_values().plot.barh(figsize=[10,6])
 Ridge
 In [217]:
 ridge = Ridge(random state=423)
 ridge pl = Pipeline([('scaler', scaler), ('ridge', ridge)])
 In [218]:
 fit= ridge pl.fit(X train, y train)
 In [219]:
 ridge pl.score(X val, y val)
 Out[219]:
 0.8067907442205556
 In [220]:
 ridge pl.score(X train,y train)
 Out[220]:
 0.8076161458810671
 In [221]:
 train mse = mean squared error(y train, ridge pl.predict(X train))
 train_mse
 Out[221]:
 0.23993408283234458
 In [222]:
 val mse = mean squared error(y val, y pred)
 val mse
 Out[222]:
 0.24192933021228297
 In [223]:
```

```
kfold = KFold(n splits=5, shuffle=True, random state=3)
(0.2268695470626076, {'ridge_alpha': 10})
 In [224]:
 ridge gcv= GridSearchCV(ridge pl,
                          param_grid={
                               'ridge alpha': [0.1, 0.5, 1, 3, 5, 7.5, 10, 15, 20, 25, 100]
                           },scoring= 'neg_mean_squared_error', cv=10)
 ridge gcv.fit(X train, y train)
 -ridge_gcv.best_score_, ridge_gcv.best_params_
 Out[224]:
 (0.23995052140731943, {'ridge alpha': 20})
 In [225]:
 ridge gcv.cv results ['mean test score']
 Out[225]:
 array([-0.23995052, -0.23995052, -0.23995052, -0.23995052, -0.23995052,
        -0.23995052, -0.23995052, -0.23995052, -0.23995052, -0.23995052,
        -0.239950531)
 In [226]:
 ridge_gcv.cv_results_['std_test_score']
 Out[226]:
 array([0.00116278, 0.00116278, 0.00116278, 0.00116278, 0.00116278,
        0.00116278, 0.00116278, 0.00116278, 0.00116278, 0.00116279,
        0.00116279])
 Ridge regression seems to be underfitting the model.
 In [133]:
 from sklearn.model selection import learning curve, validation curve
 In [143]:
 train sizes, train scores, test scores = learning curve(ridge pl, X, y, cv=kfold, scorin
 g='r2',\
                                                            random state=43, shuffle=True)
 In [144]:
 plt.plot(train sizes, np.median(train scores,1), 'r--', label='train')
 plt.plot(train sizes, np.median(test scores,1), 'b--', label='test')
 plt.legend();
  0.8074
                                         --- train
                                         --- test
  0.8073
  0.8072
  0.8071
  0.8070
  0.8069
```

0.8068

0.8067

100000 200000 300000 400000 500000 600000 700000 800000

concatenating the X_train and X_val datasets, fitting them and predicting on the X_test

```
In [227]:
 X_train_ = pd.concat([X_train, X_val])
 y train = pd.concat([y_train, y_val])
 In [228]:
 ridge model= ridge gcv.best estimator .fit(X train , y train )
 r2 score= ridge model.score(X test, y test)
 r2 score
 Out[229]:
 0.8073494787138824
 In [230]:
 mse = mean squared error(y test, ridge model.predict(X test))
 Out[230]:
 0.24068463836339005
 Cross validation
 In [231]:
 ssplit = ShuffleSplit(n splits=10, test size=0.35, random state=2991)
 In [232]:
 cvs = cross val score(ridge gcv.best estimator , X, y, scoring='r2', cv=ssplit)
 print(cvs)
 cvs.mean()
 [0.80759204 0.80792614 0.80730919 0.80822027 0.80785624 0.8080304
  0.80772101 0.80774523 0.80781624 0.807355711
 Out[232]:
 0.8077572473516218
 In [233]:
 coef, pred = zip(*zip(ridge.coef .ravel(),predictors))
pd.DataFrame(coef,index=pred,columns=['Coefficients']).sort_values(by='Coefficients')
 In [234]:
 pd.DataFrame(coef,index=pred,columns=['Coefficients']).sort values(by='Coefficients').pl
 ot.barh(figsize=[12,8]);
```

rating_greater_than_mean_age_rating Rating_mean_per_movie_by_age

Rating_mean_by_movieid

Age
Thriller
War
Mystery
Action
Western
Romance
Adventure
Film-Noir

rating_greater_than_mean_movie_rating_by_age rating_greater_than_mean_movie_rating

From the cross validation technique we see that our model is in line and seems to be underfitting

Non Parametric model

```
In [235]:
from sklearn.tree import DecisionTreeRegressor,ExtraTreeRegressor

In [236]:
tree= DecisionTreeRegressor(random_state=56)

In [237]:
fit = tree.fit(X_train, y_train)

In [238]:
tree.score(X_val, y_val)
Out[238]:
0.8323533877963364

In [239]:
coef, pred = zip(*zip(tree.feature_importances_,predictors))
In [240]:
```

pd.Series(coef,index=pred).sort values().plot.barh(figsize=[12,8]);

In [241]:

tree.score(X train. v train)

```
Out[241]:
 0.8511215831659009
 In [242]:
 train mse = mean squared error(y train, tree.predict(X train))
 train mse
 Out[242]:
 0.1856756979956234
 In [243]:
 val mse = mean squared error(y val, tree.predict(X val))
 val mse
 Out[243]:
 0.20992075750814423
 This model is overfitting so we will use grid search to find the optimal values.
opt val = (0.862904220277267, {'max_depth': 11})
 In [244]:
 tree gcv = GridSearchCV(tree,
                         param grid={
                              'max depth': [6,7,8,9,10,11,12,13,14]
                          }, scoring='r2', cv=kfold)
 tree gcv.fit(X train, y train)
 tree_gcv.best_score_, tree_gcv.best_params_
 Out[244]:
 (0.8396761102990712, {'max depth': 11})
 In [245]:
 tree_gcv.best_estimator_.score(X_val,y_val)
 Out[245]:
 0.8397475463005599
 In [246]:
 val_mse = mean_squared_error(y_val, tree_gcv.best_estimator_.predict(X_val))
 val mse
 Out[246]:
 0.20066207143069312
 In [247]:
 tree gcv.best estimator .score(X train, y train)
 Out[247]:
 0.8406039778667973
 In [248]:
 train mse = mean squared error(y train, tree gcv.best estimator .predict(X train))
 train mse
 Out[248]:
 0.19879286935384444
```

0.100,0000001111

The model seems not to be overfitting anymore

```
In [249]:
```

```
tree_model = tree_gcv.best_estimator_.fit(X_train_, y_train_) #0.8642376712418565
```

In [250]:

```
tree_model.score(X_test,y_test)
```

Out[250]:

0.8394030828214183

In [251]:

```
features, importance = zip(*zip(predictors, tree.feature_importances_ ))
```

In [252]:

In [253]:

```
from skater.core.explanations import Interpretation
from skater.model import InMemoryModel
```

In [254]:

```
interpreter = Interpretation(X_val, feature_names=predictors)
model = InMemoryModel(tree.predict, examples=X_train)
plots = interpreter.feature_importance.plot_feature_importance(model, ascending=False)
```



```
Musical Crime - Children's - Mystery - Animation - Fantasy - Western - Film-Noir - Documentary - 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
```

In [255]:

```
from eli5.sklearn import PermutationImportance
import eli5
```

In [256]:

```
perm = PermutationImportance(tree, scoring='neg_mean_squared_error',random_state=2).fit(
X_val,y_val)
eli5.show_weights(perm,feature_names=predictors)
```

Out[256]:

```
Weight Feature
1.1533 ± 0.0073 rating_greater_than_mean_age_rating
0.2631 ± 0.0015 Rating_mean_per_movie_by_age
0.2504 ± 0.0018 rating_greater_than_mean_movie_rating_by_age
0.1192 ± 0.0030 Rating_mean_by_movieid
0.0506 ± 0.0012 rating_greater_than_mean_movie_rating
0.0137 ± 0.0005 Age
0.0118 ± 0.0011 Rating_mean_by_age
0.0059 \pm 0.0002
                 Comedy
0.0059 ± 0.0006 Drama
0.0049 ± 0.0004 Action
0.0030 ± 0.0003 Sci-Fi
0.0029 ± 0.0004 Thriller
0.0023 ± 0.0005 Horror
0.0021 ± 0.0005 Adventure
0.0019 ± 0.0002 Romance
0.0012 ± 0.0003 War
0.0011 ± 0.0002 Crime
0.0009 ± 0.0002 Musical
0.0006 \pm 0.0001 Children's 0.0005 \pm 0.0001 Animation
                         ... 5 more ...
```

... ••

In [257]:

```
cvs= cross_val_score(tree_gcv.best_estimator_, X, y, scoring='r2', cv=ssplit)
print(cvs)
cvs.mean()
```

```
[0.83941521 0.84008844 0.83942839 0.840675 0.83953351 0.84007069 0.83993641 0.83984111 0.83947999 0.83953986]
```

Out[257]:

0.8398008593408866

In []:

In [259]:

```
extratree = ExtraTreeRegressor(random state=426)
```

In [260]:

```
fit= extratree.fit(X_train, y_train)
```

In [261]:

```
extratree.score(X_val, y_val)
```

Out[261]:

```
0.8325312682051393
In [262]:
extratree.score(X train, y train)
Out[262]:
0.8511215831659009
In [112]:
extratree gcv = GridSearchCV(extratree,
                        param grid={
                            'max depth': [15]
                         }, scoring='r2', cv=kfold)
extratree gcv.fit(X train, y train)
extratree gcv.best score , extratree gcv.best params
Out[112]:
(0.8576987834169556, {'max depth': 15})
In [113]:
extratree gcv.cv results ['mean test score']
Out[113]:
array([0.85769878])
In [114]:
extratree_gcv.best_estimator_.score(X_val,y_val)
  File "<ipython-input-114-a75fce5dadbd>", line 1
    extratree_gcv.best_estimator_.score(X_val,y_val)`
SyntaxError: invalid syntax
In [ ]:
extratree gcv.best estimator .score(X train, y train)
In [ ]:
val_mse = mean_squared_error(y_val, extratree_gcv.best_estimator_.predict(X_val))
val mse
In [ ]:
train mse = mean squared error(y train, tree gcv.best estimator .predict(X train))
train mse
In [ ]:
extratree_gcv.best_estimator_.score(X_test,y_test) #predicting the X_test
Cross validation
In [ ]:
cvs= cross val score(extratree gcv.best estimator , X train , y train , scoring='r2', cv=
ssplit)
print(cvs)
cvs.mean()
In [266]:
```

```
from sklearn.ensemble import VotingRegressor
 In [267]:
 vreg = VotingRegressor([('ridge',ridge),('tree',tree),('extratree',extratree)])
 In [268]:
 fit=vreq.fit(X train, y train)
 In [269]:
 vreg.score(X_train,y_train)
 Out[269]:
 0.9797091511496802
pred,imp = zip(*zip(predictors,vreg.named_estimators_['extratree'].feature_importances_))pd.Series(imp,
index=pred).sort_values().plot.barh(figsize=[12,7])
 In [275]:
 vreg.score(X val, y val)
 Out[275]:
 0.8314070744972387
 In [276]:
 from sklearn.ensemble import RandomForestRegressor
 In [281]:
 rfc = RandomForestRegressor()
 In [282]:
 fit= rfc.fit(X train, y train)
 In [283]:
 rfc.score(X_train, y_train)
 Out[283]:
 0.9731069978140267
 In [284]:
 rfc.score(X val, y val)
 Out[284]:
 0.8489313896545123
 In [285]:
 pred, imp = zip(*zip(predictors, rfc.feature importances ))
 In [286]:
 pd.Series(imp, index=pred).sort values().plot.barh(figsize=[11,7]);
  rating_greater_than_mean_occupation_rating
      rating greater than mean age rating
              Rating_mean_by_movieid
               Rating_mean_per_user
     rating_greater_than_mean_movie_rating
            Rating_mean_by_occupation
      rating_greater_than_mean_user_rating
                           Age
                Rating mean by age
```


In [287]:

```
from xgboost import XGBRegressor
from xgboost import plot_importance
```

In [288]:

```
xgb = XGBRegressor(random_state=53, max_depth=5)
fit= xgb.fit(X_train, y_train)
```

[21:23:42] WARNING: C:/Jenkins/workspace/xgboost-win64_release_0.90/src/objective/regress ion_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

In [289]:

```
xgb.score(X_train, y_train)
```

Out[289]:

0.8642419228956066

In [290]:

```
xgb.score(X_val, y_val)
```

Out[290]:

0.8652332097688313

In [291]:

```
pred, imp = zip(*zip(predictors, xgb.feature_importances_))
```

In [292]:

```
pd.Series(imp, index=pred).sort values().plot.barh(figsize=[11,8])
```

Out[292]:

<matplotlib.axes._subplots.AxesSubplot at 0xee81975208>

In [293]:

```
fig,ax =plt.subplots(figsize=[12,6])
plot_importance(xgb,ax=ax,)
```

Out[293]:

<matplotlib.axes. subplots.AxesSubplot at 0xee816773c8>

