LinearRegression

In [1]:

```
import numpy as np
import pandas as pd
```

data collection

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
```

```
In [3]:
```

```
df = pd.read_csv(r"C:\Users\user\Desktop\5_Instagram data.csv")
df
```

Out[3]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits
0	3920	2586	1028	619	56	98	9	5	162	35
1	5394	2727	1838	1174	78	194	7	14	224	48
2	4021	2085	1188	0	533	41	11	1	131	62
3	4528	2700	621	932	73	172	10	7	213	2:
4	2518	1704	255	279	37	96	5	4	123	{
114	13700	5185	3041	5352	77	573	2	38	373	73
115	5731	1923	1368	2266	65	135	4	1	148	2(
116	4139	1133	1538	1367	33	36	0	1	92	34
117	32695	11815	3147	17414	170	1095	2	75	549	148
118	36919	13473	4176	16444	2547	653	5	26	443	611

119 rows × 13 columns

first 10 rows

In [4]:

df.head(10)

Out[4]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits
0	3920	2586	1028	619	56	98	9	5	162	35
1	5394	2727	1838	1174	78	194	7	14	224	48
2	4021	2085	1188	0	533	41	11	1	131	62
3	4528	2700	621	932	73	172	10	7	213	23
4	2518	1704	255	279	37	96	5	4	123	8
5	3884	2046	1214	329	43	74	7	10	144	9
6	2621	1543	599	333	25	22	5	1	76	26
7	3541	2071	628	500	60	135	4	9	124	12
8	3749	2384	857	248	49	155	6	8	159	36
9	4115	2609	1104	178	46	122	6	3	191	31
4										

data cleaning

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119 entries, 0 to 118
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Impressions	119 non-null	int64
1	From Home	119 non-null	int64
2	From Hashtags	119 non-null	int64
3	From Explore	119 non-null	int64
4	From Other	119 non-null	int64
5	Saves	119 non-null	int64
6	Comments	119 non-null	int64
7	Shares	119 non-null	int64
8	Likes	119 non-null	int64
9	Profile Visits	119 non-null	int64
10	Follows	119 non-null	int64
11	Caption	119 non-null	object
12	Hashtags	119 non-null	object
مان بالدام		h = + (2)	

dtypes: int64(11), object(2)

memory usage: 12.2+ KB

In [6]:

df.describe()

Out[6]:

		Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Co
С	ount	119.000000	119.000000	119.000000	119.000000	119.000000	119.000000	11
n	nean	5703.991597	2475.789916	1887.512605	1078.100840	171.092437	153.310924	
	std	4843.780105	1489.386348	1884.361443	2613.026132	289.431031	156.317731	
	min	1941.000000	1133.000000	116.000000	0.000000	9.000000	22.000000	
	25%	3467.000000	1945.000000	726.000000	157.500000	38.000000	65.000000	
	50%	4289.000000	2207.000000	1278.000000	326.000000	74.000000	109.000000	
	75%	6138.000000	2602.500000	2363.500000	689.500000	196.000000	169.000000	
	max	36919.000000	13473.000000	11817.000000	17414.000000	2547.000000	1095.000000	1
4								•

In [7]:

```
df.columns
```

Out[7]:

In [8]:

```
sb.pairplot(df)
```

Out[8]:

<seaborn.axisgrid.PairGrid at 0x1d255e374c0>

In [9]:

sb.distplot(df["Shares"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

<AxesSubplot:xlabel='Shares', ylabel='Density'>

In [10]:

sb.distplot(df["Shares"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='Shares', ylabel='Density'>

In [11]:

Out[11]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	Shares	Likes	Profile Visits	Follows
0	3920	2586	1028	619	56	98	9	5	162	35	2
1	5394	2727	1838	1174	78	194	7	14	224	48	10
2	4021	2085	1188	0	533	41	11	1	131	62	12
3	4528	2700	621	932	73	172	10	7	213	23	8
4	2518	1704	255	279	37	96	5	4	123	8	0
114	13700	5185	3041	5352	77	573	2	38	373	73	80
115	5731	1923	1368	2266	65	135	4	1	148	20	18
116	4139	1133	1538	1367	33	36	0	1	92	34	10
117	32695	11815	3147	17414	170	1095	2	75	549	148	214

In [12]:

```
sb.heatmap(df1.corr())
```

Out[12]:

<AxesSubplot:>

model building

```
In [14]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

linear regression

```
In [15]:
```

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

-9.592326932761353e-14

In [17]:

```
coef = pd.DataFrame(lr.coef_,x.columns,columns=['Co_efficient'])
coef
```

Out[17]:

Co_efficient

```
6.557359e-17
  Impressions
   From Home
                3.659749e-18
From Hashtags
               -1.044350e-16
 From Explore -6.584377e-17
   From Other
                2.000772e-16
               -8.700698e-17
        Saves
    Comments
                2.761500e-16
                1.000000e+00
       Shares
         Likes -5.278061e-17
  Profile Visits -4.977442e-16
      Follows
                1.607783e-16
```

```
In [18]:
```

```
print(lr.score(x_test,y_test))
```

1.0

In [19]:

```
prediction = lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[19]:

<matplotlib.collections.PathCollection at 0x1d2603a4cd0>

lasso and ridge regression

```
In [20]:
```

```
lr.score(x_test,y_test)
```

Out[20]:

1.0

In [21]:

```
lr.score(x_train,y_train)
```

Out[21]:

1.0

In [22]:

from sklearn.linear_model import Ridge,Lasso

```
In [23]:
r = Ridge(alpha=10)
r.fit(x_train,y_train)
r.score(x_test,y_test)
r.score(x_train,y_train)
Out[23]:
0.9999946903983258
In [24]:
l = Lasso(alpha=10)
1.fit(x_train,y_train)
1.score(x_test,y_test)
1.score(x_train,y_train)
Out[24]:
0.9674494232346373
elasticnet
In [25]:
from sklearn.linear_model import ElasticNet
e = ElasticNet()
e.fit(x_train,y_train)
Out[25]:
ElasticNet()
In [26]:
print(e.coef_)
                [ 4.65781471e-06
 -2.12048393e-04 1.90826793e-03 0.00000000e+00 9.57608056e-01
 -0.00000000e+00 -3.02663893e-05 -0.00000000e+00]
In [27]:
```

-0.14962262072909205

print(e.intercept_)

```
In [28]:
predictions = e.predict(x test)
predictions
Out[28]:
array([ 6.22575062, 3.0321759 , 3.29083321, 6.00451146, 0.09114064,
        3.28541562, 10.83768675, 2.29562028, 8.25006063, 2.29514008,
      15.5747305 , 1.25667766, 16.6262233 , 3.27029655, 13.82789928,
        5.26003122, 6.00451146, 3.89309877, 9.82292084, 22.76903267,
       8.34076266, 12.90713554, 2.06863276, 8.02274936, 21.84623472,
        1.04271171, 13.6948035 , 26.84480889, 10.82069932, 14.80039615,
        1.11225466, 0.12878671, 1.03972728, 15.03628293, 1.96900648,
        4.17065627])
In [29]:
print(e.score(x_test,y_test))
0.9987041517146851
In [30]:
from sklearn import metrics
```

mean absolute error

```
In [31]:
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,predictions))
Mean Absolute Error: 0.19387974272182104
```

mean squared error

```
In [32]:
print("Mean Squared Error:", metrics.mean_squared_error(y_test,predictions))
Mean Squared Error: 0.062196718163370884
```

root mean squared error

```
In [33]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,predictions)))
Root Mean Squared Error 0.2493926986969965
```

_		
In	- 1	•
T 11	- 1	•
	-	