MATH 212 - Multivariable Calcul Tuesday, Apr. 24, 11:45AM-1:00PM	lus - Spring 2018 - EXAM3 (14.7-14.9, 15.1-15.7) I
Name:	Section 04
Books, notes, and electronic devices are not permitted. Turn off cell phones. Present your answers and supporting work neatly and clearly. Sign the pledge below.	
Ι,	, have neither given nor received unauthorized help in this exam.

FOR FULL CREDIT, CIRCLE YOUR FINAL ANSWERS AND SHOW YOUR WORK.

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
TOTAL

Problem 1 (20pts). Using a double integral and a convenient change of variables, calculate the volume of the solid consisting of the region above the elliptic paraboloid $z = 4x^2 + 25y^2$ and below the plane z = 100.

Problem 2 (20pts). The curve C is parametrized by $\vec{r}(t) = \langle e^{t(1-t)}, \sin(\pi t), t^4 \rangle$, with $t \in [0,1]$. A particle moving along C is acted on by a force field represented by $\vec{F} = \langle 2xy + z, x^2 + ze^{yz}, x + ye^{yz} \rangle$. Compute the amount of work that it takes for a particle to move along the curve C.

Problem 3 (15pts). The surface S is the part of the paraboloid $z = 5 - x^2 - y^2$ that lies above the plane z = 1, oriented upward. Find the flux through S of the vector field $\vec{F} = \langle z - x^2, 2xy, 2 + x \rangle$.

Problem 4 (15pts). The curve C starts at the point (3,0), follows the circle of center (0,0) and radius 3 in the counterclockwise direction to the point (0,3), then goes down the y-axis to the point (0,2), and ends at the point (2,0) after following the circle of center (0,0) and radius 2 in the clockwise direction. Calculate

$$\int_C xy \, dx + x^2 \, dy.$$

Problem 5 (15pts). Compute the flux of the vector field $\vec{F} = \langle x - x^2, 2xy, 2 + z^2 \rangle$ through the inward oriented sphere of center (0,0,2) and radius 2.

Problem 6 (15pts). Consider the points A(1,1,0), B(0,2,-1) and C(-1,1,4). Let T be the triangle ABC, oriented counterclockwise as seen from above. Find the work of $\vec{F} = \langle e^x z + y, z + 5x, e^x + 3y \rangle$ along T.