Introduction

Notion of Algorithm:

Example: Find the GCD of two integer number:

Euclid's algorithm for computing gcd(m, n)

Step 1 If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step 2.

Step 2 Divide m by n and assign the value of the remainder to r.

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

Alternatively, we can express the same algorithm in a pseudocode:

Method-1:

ALGORITHM Euclid(m, n) //Computes gcd(m, n) by Euclid's algorithm //Input: Two nonnegative, not-both-zero integers m and n //Output: Greatest common divisor of m and n while n ≠ 0 do r ← m mod n m ← n n ← r

Method-2:

return m

Consecutive integer checking algorithm for computing gcd(m,n)

- **Step 1** Assign the value of $min\{m, n\}$ to t.
- **Step 2** Divide m by t. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.
- Step 3 Divide n by t. If the remainder of this division is 0, return the value of t as the answer and stop; otherwise, proceed to Step 4.
- **Step 4** Decrease the value of t by 1. Go to Step 2.

Method-3:

Middle-school procedure for computing gcd(m, n)

- Step 1 Find the prime factors of m.
- **Step 2** Find the prime factors of n.
- Step 3 Identify all the common factors in the two prime expansions found in Step 1 and Step 2. (If p is a common factor occurring p_m and p_n times in m and n, respectively, it should be repeated min $\{p_m, p_n\}$ times.)
- Step 4 Compute the product of all the common factors and return it as the greatest common divisor of the numbers given.

Finding Prime numbers less than or equal to N:

```
ALGORITHM Sieve(n)
     //Implements the sieve of Eratosthenes
    //Input: An integer n \ge 2
    //Output: Array L of all prime numbers less than or equal to n
    for p \leftarrow 2 to n do A[p] \leftarrow p
    for p \leftarrow 2 to \lfloor \sqrt{n} \rfloor do //see note before pseudocode
         if A[p] \neq 0 //p hasn't been eliminated on previous passes
              j \leftarrow p * p
               while j \leq n do
                   A[j] \leftarrow 0 //mark element as eliminated
                   j \leftarrow j + p
    //copy the remaining elements of A to array L of the primes
    i \leftarrow 0
    for p \leftarrow 2 to n do
         if A[p] \neq 0
              L[i] \leftarrow A[p]
               i \leftarrow i + 1
     return L.
```

Algorithm Design Process:

Asymptotic Notations

O-notation

DEFINITION 1 A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \le cg(n)$$
 for all $n \ge n_0$.

Ω-notation

DEFINITION 2 A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \ge cg(n)$$
 for all $n \ge n_0$.

Θ-notation

DEFINITION 3 A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constant c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$.

Using Limits for Comparing Orders of Growth

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n) \\ c > 0 & \text{implies that } t(n) \text{ has the same order of growth as } g(n) \\ \infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n). \end{cases}$$

EXAMPLE 1 Compare the orders of growth of $\frac{1}{2}n(n-1)$ and n^2 . (This is one of the examples we used at the beginning of this section to illustrate the definitions.)

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}.$$

EXAMPLE 2 Compare the orders of growth of $\log_2 n$ and \sqrt{n} . (Unlike Example 1, the answer here is not immediately obvious.)

$$\lim_{n\to\infty}\frac{\log_2 n}{\sqrt{n}}=\lim_{n\to\infty}\frac{(\log_2 n)'}{(\sqrt{n})'}=\lim_{n\to\infty}\frac{(\log_2 e)\frac{1}{n}}{\frac{1}{2\sqrt{n}}}=2\log_2 e\lim_{n\to\infty}\frac{\sqrt{n}}{n}=0.$$

EXAMPLE 3 Compare the orders of growth of n! and 2^n . (We discussed this issue informally in the previous section.) Taking advantage of Stirling's formula, we get

$$\lim_{n\to\infty}\frac{n!}{2^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{2^n}=\lim_{n\to\infty}\sqrt{2\pi n}\frac{n^n}{2^ne^n}=\lim_{n\to\infty}\sqrt{2\pi n}\left(\frac{n}{2e}\right)^n=\infty.$$

Efficiency Classes:

Class	Constant	Comments	
1		Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows infinitely large.	
log <i>n</i>	logarithmic	Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 5.5). Note that a logarithmic algorithm cannot take into account all its input (or even a fixed fraction of it): any algorithm that does so will have at least linear running time.	
n	linear	Algorithms that scan a list of size n (e.g., sequential search) belong to this class.	
n log n	"n-log-n"	Many divide-and-conquer algorithms (see Chapter 4), including mergesort and quicksort in the average case, fall into this category.	
n^2	quadratic	Typically, characterizes efficiency of algorithms with two embedded loops (see the next section). Elementary sorting algorithms and certain operations on <i>n</i> -by- <i>n</i> matrices are standard examples.	
n ³	cubic	Typically, characterizes efficiency of algorithms with three embedded loops (see the next section). Several nontrivial algorithms from linear algebra fall into this class.	
2 ⁿ	exponential	Typical for algorithms that generate all subsets of an n-element set. Often, the term "exponential" is used in a broader sense to include this and larger orders of growth as well.	
n!	factorial	Typical for algorithms that generate all permutations of an <i>n</i> -element set.	

Mathematical Analysis of Algorithms:

1.Nonrecursive Algorithms

General Plan for Analyzing Time Efficiency of Nonrecursive Algorithms

- 1. Decide on a parameter (or parameters) indicating an input's size.
- 2. Identify the algorithm's basic operation. (As a rule, it is located in its innermost loop.)
- Check whether the number of times the basic operation is executed depends only on the size of an input. If it also depends on some additional property,
 - the worst-case, average-case, and, if necessary, best-case efficiencies have to be investigated separately.
- 4. Set up a sum expressing the number of times the algorithm's basic operation is executed.⁴
- Using standard formulas and rules of sum manipulation, either find a closedform formula for the count or, at the very least, establish its order of growth.

ALGORITHM MaxElement(A[0..n-1])

```
//Determines the value of the largest element in a given array //Input: An array A[0..n-1] of real numbers //Output: The value of the largest element in A maxval \leftarrow A[0] for i \leftarrow 1 to n-1 do if A[i] > maxval \leftarrow A[i] return maxval
```

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct

// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```

```
ALGORITHM MatrixMultiplication(A\{0..n-1,0..n-1\}). B[0..n-1,0..n-1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to n-1 do

C[i,j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i,j] \leftarrow C[i,j] + A[i,k] * B[k,j]

return C
```

ALGORITHM Binary(n)

```
//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation

count ← 1

while n > 1 do

count ← count + 1

n ← [n/2]

return count
```

2. Recursive Algorithms

General Plan for Analyzing Time Efficiency of Recursive Algorithms

- Decide on a parameter (or parameters) indicating an input's size.
- 2. Identify the algorithm's basic operation.
- 3. Check whether the number of times the basic operation is executed can vary on different inputs of the same size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately.
- 4. Set up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation is executed.
- Solve the recurrence or at least ascertain the order of growth of its solution.

ALGORITHM BinRec(n)

//Input: A positive decimal integer n//Output: The number of binary digits in n's binary representation if n = 1 return 1 else return $BinRec(\lfloor n/2 \rfloor) + 1$

ALGORITHM Fib(n)

//Computes the *n*th Fibonacci number iteratively by using its definition //Input: A nonnegative integer n //Output: The *n*th Fibonacci number $F[0] \leftarrow 0$; $F[1] \leftarrow 1$ for $i \leftarrow 2$ to n do $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

ALGORITHM SelectionSort(A[0..n-1])

//Sorts a given array by selection sort //Input: An array A[0..n-1] of orderable elements //Output: Array A[0..n-1] sorted in ascending order for $i \leftarrow 0$ to n-2 do $min \leftarrow i$ for $j \leftarrow i+1$ to n-1 do if A[j] < A[min] $min \leftarrow j$ swap A[i] and A[min]

ALGORITHM BubbleSort(A[0..n-1])

//Sorts a given array by bubble sort //Input: An array A[0..n-1] of orderable elements //Output: Array A[0..n-1] sorted in ascending order for $i \leftarrow 0$ to n-2 do for $j \leftarrow 0$ to n-2-i do if A[j+1] < A[j] swap A[j] and A[j+1]

INSERTION-SORT (A)
$$cost$$
 times

1 for $j \leftarrow 2$ to length[A] c_1 n

2 do $key \leftarrow A[j]$ c_2 $n-1$

3 Finsert A[j] into the sorted

sequence A[1 \Box $j-1$]. 0 $n-1$

4 $i \leftarrow j-1$ c_4 $n-1$

5 while $i > 0$ and A[i] $> key$ c_5 $\sum_{j=2}^{n} (t_j-1)$

6 do A[i+1] \leftarrow A[i] c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i \leftarrow i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] \leftarrow key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8).$$

Tower of Hanoi Problem:


```
M(n) = 2M(n-1)+1 for n > 1.
M(1) = 1.

void towers(int n1,char source,char dest,char aux)
{
    if(n1==1)
    {
        printf("step%d:move%d from %c to %c\n",++count,n1,source,dest);
    }
    else
    {
        towers(n1-1,source,aux,dest);
        printf("step%d:move%d from %c to %c\n",++count,n1,source,dest);
        towers(n1-1,aux,dest,source);
    }
}
```