Segunda INSTANCIA EVALUATIVA		
Materia: Análisis Matemático 1	Docente: Ing. Pablo E Godino	
Modalidad: Presencial	Fecha: 29/06/2021	

Reservado para el alumno

Alumno:	Carrera: Inteligencia Artificial
DNI:	Cuatrimestre: Primero
	Turno: Noche

Esc. Puntuac. 60 a 63 pts = 4 64 a 66 pts = 5 67 a 69 pts = 6 70 a 75 pts = 7 76 a 85 pts = 8 86 a 95 pts = 9 + de 95 pts = 10

Reservado para el docente		el
	NOTA	

- Criterio de Evaluación: Se evaluará la claridad con la que se expresan los cálculos y resultados y metodología aplicada en la resolución de la situación matemática planteada. Se debe enviar las capturas de pantalla de los ejercicios resueltos en papel a la mensajería de la materia. Todos los archivos con nombre y apellido y DNI.
- Modalidad de Evaluación: Desarrollo práctico de las consignas planteadas (en forma virtual, a través de la PC, en presencia del profesor, en el horario de clase, con webcam encendida.

DESARROLLO DE LA PRIMERA INSTANCIA EVALUATIVA

Actividad Nº1: Funciones exponenciales y logarítmicas:

Realizar la gráfica aproximada e indicar dominio y Recorrido de la función $f(x) = 3^x$ -35. Indicar y calcular intersecciones con los ejes cartesianos.

Actividad Nº2: : Límite de una función

Resolver los siguientes Límites: Justificar el resultado con explicación, cálculos y/o gráficos.

a)
$$\lim_{x \to \infty} \frac{x + 3x^3}{x^3 + 3x^2} = b$$
 $\lim_{x \to -\infty} (0,8)^x =$

Actividad Nº 3: Trigonometría

Calcular el área sombreada y el perímetro de la figura.

Actividad Nº 4: Recta tangente

Sabiendo que la derivada es la pendiente de la recta tangebte a la curva de una función, obtener la ecuación de la recta tangente a la función $y = x^2$ en el punto x = 1. Graficar aproximadamente la situación (la función + la recta tangente).