Álgebra Booleana

Teoremas de Múltiples Variables

$$x+y=y+x \\ x\cdot y=y\cdot x \\ x+(y+z)=(x+y)+z=x+y+z \\ x(yz)=(xy)z=xyz \\ x(y+z)=xy+xz \\ (w+x)(y+z)=wy+xy+wz+xz \\ x+xy=x \\ x+\overline{x}y=x+y \\ \overline{x}+xy=\overline{x}+y$$

Teoremas de Morgan

$$\frac{\overline{(x+y)} = \overline{x} \cdot \overline{y}}{(x \cdot y)} = \overline{x} + \overline{y}$$

Teoremas de una Variable

OR	
x + 0 = x	
x+1=1	
x+x=x	
$x+\overline{x}=1$	
	x+0=x $x+1=1$ $x+x=x$

Números Binarios

Binario a Decimal

Formato Signo Magnitud

$$\underbrace{1}_{\text{Signo Magnitud}}\underbrace{10011} = -13$$

Complemento 1

$$C_1^{N} = \begin{matrix} 1 & 0 & 0 & 1 & 1 & 1 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & 1 & 1 & 0 & 0 & 0 \end{matrix}$$

Complemento 2

$$C_2^N = C_1^N + 1$$

Construcción del Mapa-K

	Distribución							
AB	AB\CD 00 01 11 10							
00	0	1	3	2				
01	4	5	7	6				
11	12	13	15	14				
10	8	9	11	10				

ABCD		ABCD	
0000	0	1000	8
0001	1	1001	9
0010	2	1010	10
0011	3	1011	11
0100	4	1100	12
0101	5	1101	13
0110	6	1110	14
0111	7	1111	15

Circuitos Lógicos

Operaci	ón	Definición	Compuerta
NOT		$\overline{\mathbf{x}}$	->>-
OR	+	x+y	
AND	•	$\mathbf{x}\cdot\mathbf{y}$	
XOR	0	$ \begin{array}{c} \left(x+y\right)\left(\overline{x}+\overline{y}\right) \\ x\overline{y}+\overline{x}y \end{array} $	
NOR	↓	$\overline{(x+y)} = \overline{x} \cdot \overline{y}$	
NAND	1	$\overline{(x \cdot y)} = \overline{x} + \overline{y}$	
XNOR	0	$ \begin{array}{c} \left(x + \overline{y}\right) \left(\overline{x} + y\right) \\ xy + \overline{x} \overline{y} \end{array} $	

Universalidad de las Compuertas NAND y NOR

Operaci	ón	NAND	NOR
NOT	•	$\overline{(\mathbf{x} \cdot \mathbf{x})}$	$\overline{(x+x)}$
OR	+	$\overline{(\overline{\mathbf{x}}{\cdot}\overline{\mathbf{y}})}$	(<u>x+y)</u>
AND		$\overline{(\mathbf{x}\!\cdot\!\mathbf{y})}$	$\overline{(\overline{x}+\overline{y})}$
XOR	0	$\overline{(\mathbf{x} \cdot \overline{\mathbf{y}})} \overline{(\overline{\mathbf{x}} \cdot \mathbf{y})}$	$\overline{(x+y)}+\overline{(\overline{x}+\overline{y})}$
NOR	↓	$\overline{(\overline{\mathbf{x}}{\cdot}\overline{\mathbf{y}})}$	~
NAND	1	~	$\overline{(\overline{x}+\overline{y})}$
XNOR	0	$\overline{\left(\mathbf{x}\!\cdot\!\mathbf{y}\right)\left(\overline{\mathbf{x}}\!\cdot\!\overline{\mathbf{y}}\right)}$	$\overline{(x+\overline{y})+(\overline{x}+y)}$

Tablas de Diseño de Flip-Flops

Flip-Flop SR						
Q(t)	\rightarrow	Q(t+1)	S	R		
0	\rightarrow	0	0	x		
0	\rightarrow	1	1	0		
1	\rightarrow	0	0	1		
1	\rightarrow	1	х	0		

Flip-Flop JK						
Q(t)	\rightarrow	Q(t+1)	J	K		
0	\rightarrow	0	0	х		
0	\rightarrow	1	1	х		
1	\rightarrow	0	х	1		
1	\rightarrow	1	х	0		

Flip-Flop D						
Q(t)	\rightarrow	Q(t+1)	D			
0	\rightarrow	0	0			
0	\rightarrow	1	1			
1	\rightarrow	0	0			
1	\rightarrow	1	1			

Flip-Flop T					
Q(t)	\rightarrow	Q(t+1)	Т		
0	\rightarrow	0	Θ		
0	\rightarrow	1	1		
1	\rightarrow	0	1		
1	\rightarrow	1	0		

7-Segment Display

DEC	BCD	SEGMENTOS
0	0000	ABCDEF
1	0001	ВС
2	0010	ABDEG
3	0011	ABCDG
4	0100	BCFG
5	0101	ACDFG
6	0110	ACDEFG
7	0111	ABC
8	1000	ABCDEFG
9	1001	ABCFG

Notación de Suma

$$f\left(\underbrace{x,y,z}_{\text{Variables}}\right) = \underbrace{\sum_{\text{Valores de activación}} m\left(0,4,5,6\right)}_{\text{Valores de activación}} + \underbrace{\sum_{\text{Redundancía}} d\left(9,14\right)}_{\text{Redundancía}}$$

Sistemas Numéricos

DEC	CUA	ост	HEX	BIN	Gray	COMP ₁	-COMP ₂
0	0	Θ	0	0000	0000	1111	00000
1	1	1	1	0001	0001	1110	11111
2	2	2	2	0010	0011	1101	11110
3	3	3	3	0011	0010	1100	11101
4	10	4	4	0100	0110	1011	11100
5	11	5	5	0101	0111	1010	11011
6	12	6	6	0110	0101	1001	11010
7	13	7	7	0111	0100	1000	11001
8	20	10	8	1000	1100	0111	11000
9	21	11	9	1001	1101	0110	10111
10	22	12	А	1010	1111	0101	10110
11	23	13	В	1011	1110	0100	10101
12	30	14	С	1100	1010	0011	10100
13	31	15	D	1101	1011	0010	10011
14	32	16	Е	1110	1001	0001	10010
15	33	17	F	1111	1000	0000	10001

Tablas de Verdad

AB	XOR	NOR	NAND	XNOR
00	0	1	1	1
01	1	0	1	0
10	1	0	1	0
11	0	0	0	1

Autor: Luis E. Galindo Amaya egalindo54@uabc.edu.mx

Taller de Impresión: @libros.y.zines.corrientes

Fecha: 9 de junio de 2022

ABC	XOR	NOR	NAND	XNOR
000	0	1	1	1
001	1	0	1	0
010	1	0	1	0
011	0	0	1	1
100	1	0	1	0
101	0	0	1	1
110	0	Θ	1	1
111	1	0	0	0