Homework 6: Multiclass, Trees and Gradient Boosting

Lin Pengyun

August 10, 2021

1 Reformulation of Multiclass Hinge Loss

1.1 Multiclasss setting review

There is no question in this part.

1.2 Two version of multiclass hinge loss

1. We have:

$$\max_{y \in \mathcal{Y}} f(y) = \max_{y \in \mathcal{Y} - \{y_i\}} \{ \max[f(y_i), f(y)] \}$$

If $\Delta(y,y) = 0$, then $\Delta(y_i,y_i) + h(x_i,y_i) - h(x_i,y_i) = 0$, we have:

$$\max_{y \in \mathcal{Y}} [\Delta(y_i, y) + h(x_i, y) - h(x_i, y_i)] = \max_{y \in \mathcal{Y} - \{y_i\}} \{ \max[0, \Delta(y_i, y) + h(x_i, y) - h(x_i, y_i)] \}$$

$$m_{i,y}(h) = h(x_i, y_i) - h(x_i, y)$$

So we have:

$$\max_{y \in \mathcal{Y}} [\Delta(y_i, y) + h(x_i, y) - h(x_i, y_i) = \max_{y \in \mathcal{Y} - \{y_i\}} \{ \max[0, \Delta(y_i, y) - m_{i, y}(h)] \}$$

2. If $\forall y \in \mathcal{Y}, m_{i,y}(h) \geq \Delta(y_i, y)$, we have:

$$l_1(h,(x_i,y_i)) = l_2(h,(x_i,y_i)) = 0$$

The classification creteria is $f(x_i) = \arg \max_{y \in \mathcal{Y}} h(x_i, y), m_{i,y}(h) = h(x_i, y_i) - h(x_i, y) \ge 0$ and the equality holds only when $y = y_i$. Hence, $f(x_i) = y_i$ in the conditions described in this question.

2 SGD for Multiclass Linear SVM

1. If for a set of functions $\{f_1(x),...,f_n(x)\}, f_i(x)$ is convex function, then:

$$\max_i f_i[\alpha x + (1-\alpha)y] \le \max_i \alpha f_i(x) + (1-\alpha)f_i(y) \le \alpha \max_i f_i(x) + (1-\alpha)\max_i f_i(y)$$

So $\max_i f_i(x)$ is also convex.

$$J(w) = \lambda w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max_{y \in \mathcal{Y}} [\Delta(y_{i}, y) + \langle w, \Psi(x_{i}, y) - \Psi(x_{i}, y_{i}) \rangle]$$

The norm and inner product of w are both convex, for the additivity of convex function and max invariance shown before, J(w) is also convex

2. The subgradient of $\lambda w^T w$ w.r.t. w is $2\lambda w$. Denote $\hat{y_i}$ as $\arg\max_{y\in\mathcal{Y}}[\Delta(y_i,y)+< w, \Psi(x_i,y)-\Psi(x_i,y_i)>]$, one of the subgradients of each max term is:

$$\Psi(x_i, \hat{y_i}) - \Psi(x_i, y_i)$$

So one subgradient of J(w) could be:

$$2\lambda w + \frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i)$$

3. According to 2, the subgradient on (x_i, y_i) could be:

$$2\lambda w + \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i)$$

4. The minibatch subgradient based on $(x_i, y_i), ..., (x_{i+m}, y_{i+m})$ is:

$$2\lambda w + \frac{1}{m} \sum_{k=i}^{i+m} \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i)$$

3 Hinge Loss is a Special Case of Generalized Hinge Loss

When the problem reduces to binary classification where the output space $\mathcal{Y} = \{-1, 1\}$, the loss function on (x_i, y_i) is:

$$\max_{y \in \{-1,1\}} [\Delta(y_i, y) + h(x_i, y) - h(x_i, y_i)]$$

Denote the score function of binary SVM is g(x), let:

$$\Delta(-1,1) = \Delta(1,-1) = 1, \Delta(1,1) = \Delta(-1,-1) = 0$$
$$h(x_i, y_i) = \frac{y_i}{2}g(x_i)$$

 $y \in \{-1, 1\} = \{-y_i, y_i\}$, the loss function will be:

$$\max[0, 1 - y_i g(x)],$$

which is as same as the that of binary SVM.

4 Multiclass classification—Implementation

4.1 One-vs-All (or One-vs-Rest)

1. Code is in another repository. The result is shown below.

4.2 Multiclass-SVM

1. Code is in another repository. The result is shown below.

5 Audio Classification

This part is optional, now I just leave it unfinished.

6 Decision Tree Implementation

1. The fitting result of classification decision tree is below:

As the depth's growing, the fitting result is generally becoming better and better, but overfit appears in the last two pictures.

2. The fitting result of regression tree w.r.t. one-dimensional data is below:

Fitting result goes better while overfit to noise aggravates as the depth grows.

7 Gradient Boosting Machine

1. If the prediction function is f(x) and the loss function is given by:

$$l(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2, \hat{y} = f(x)$$

then the partial derivative on (x_i, y_i) w.r.t. the (m-1)'th round prediction function $f_{m-1}(x)$ is:

$$\frac{\partial}{\partial f_{m-1}(x_i)}l(y_i, f_{m-1}(x_i)) = f_{m-1}(x_i) - y_i,$$

so the gradient of g_m is:

$$g_m = (f_{m-1}(x_1) - y_1, ... f_{m-1}(x_n) - y_n)^T$$

According to the gradient boosting algorithm, the function selected in m'th round should be:

$$h_m = \underset{h \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^n [-g_{m,i} - h(x_i)]^2$$

= $\underset{h \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^n [y_i - f_{m-1}(x_i) - h(x_i)]^2$

Therefore, in every round of iteration, the algorithm always finds the function which fits best the residual in the former round.

2. If the loss function is given by:

$$l(y, f(x)) = \ln(1 + e^{-yf(x)}),$$

the derivative w.r.t. $f_{m-1}(x)$ on (x_i, y_i) is:

$$\frac{\partial}{\partial f_{m-1}(x_i)} l(y_i, f_{m-1}(x_i)) = -\frac{y_i}{1 + e^{y_i f_{m-1}(x_i)}}$$

So we have:

$$h_m = \underset{h \in \mathcal{F}}{\operatorname{arg \, min}} \sum_{i=1}^n \left[\frac{y_i}{1 + e^{y_i f_{m-1}(x_i)}} - h(x_i) \right]^2$$

8 Gradient Boosting-Implementataion

1. In this question, an gradient boosting algorithm with l_2 loss and base prediction function of decision tree is used to perform a classification task on 2-D data and regression task on 1-D dataset. The result is below:

The last diagram is the prediction result of gradient boosting algorithm in sklearn.