AMENDMENTS TO THE CLAIMS

The following **Listing of Claims** will replace all prior versions, and listings of claims in the application.

1. (CURRENTLY AMENDED) A pharmaceutical composition comprising:

- a pharmaceutically acceptable carrier, adjuvant or vehicle; and
- a therapeutically effective amount of a compound having the structure:

$$R_a$$
 R_b
 R_1
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4

or pharmaceutically acceptable salt thereof;

wherein R_1 and R_2 are each independently hydrogen or lower alkyl;

R₃ is hydrogen or lower alkyl, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or a prodrug moiety or an oxygen protecting group;

R^{4A} and R^{4B} are independently hydrogen, lower alkyl or lower alkoxy; a nitrogen protecting group or an oxygen protecting group;

R₅ is hydrogen or lower alkyl;

 \mathbf{R}_6 is hydrogen or lower alkyl;

 $\mathbf{R}_{\mathbf{a}}$ and each occurrence of $\mathbf{R}_{\mathbf{b}}$ and $\mathbf{R}\mathbf{c}$ are independently hydrogen;

n is 3:

 X_1 is O, NR^{X1} or CR^{X1}R^{X2}; wherein R^{X1} and R^{X2} are independently hydrogen;

Q is hydrogen, lower alkyl,

$$\dot{s}^{\xi}$$
 \dot{c}
 $\dot{c$

 $\mathbf{Y_1}$ and $\mathbf{Y_2}$ are independently hydrogen, lower alkyl, or CF_3 ; or WR^{Y1} ; wherein W is independently -O, or $-NR^{Y2}$, wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or lower alkyl; or an aliphatic, heteroaliphatic, or Y_1 and Y_2 together with the carbon

atom to which they are attached form a moiety having the structure:

$$\sum_{v_{i}} = N^{r^{i}} \xrightarrow{OR^{Y1}} \sum_{v_{i}} = N^{r^{i}} \xrightarrow{NHR^{Y1}} ;$$

whereby the composition is formulated for administration to a subject at a dosage between about 0.1 mg/kg to about 50 mg/kg of body weight,

with the proviso that the compound does not have the following structure:

- 2. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.
- 3. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.

- 4. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
- 5. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
- 6. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
- 7. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
- 8. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.
- 9. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.
- 10. (ORIGINAL) The composition of claim 1, wherein the dosage is 10 mg/kg or greater of body weight.
- 11. (CURRENTLY AMENDED) The composition of claim 1, wherein:

 R_1 and R_2 are each independently hydrogen or substituted or unsubstituted lower alkyl; R_3 is hydrogen, or substituted or unsubstituted lower alkyl;

$$\mathbf{R}_4$$
 is hydrogen, halogen, $-\mathrm{OR}^{4\mathrm{A}}$, $-\mathrm{OC}(=\mathrm{O})\mathrm{R}^{4\mathrm{A}}$, $-\mathrm{OC}(=\mathrm{O})\mathrm{R}^{4\mathrm{A}}$, or

-NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted lower alkyl or lower alkoxy; a nitrogen protecting group or an oxygen protecting group;

 \mathbf{R}_{5} and \mathbf{R}_{6} are each independently hydrogen or substituted or unsubstituted lower alkyl;

 \mathbf{R}_a and each occurrence of \mathbf{R}_b and $\mathbf{R}\mathbf{c}$ are independently hydrogen;

n is 3;

 $\textbf{X_1}$ is O, NR X1 or CR X1 R X2 ; wherein R X1 and R X2 are independently hydrogen;

Q is hydrogen, lower alkyl,

$$j^{2}$$
 j^{2}
 j^{2

 $\mathbf{Y_1}$ and $\mathbf{Y_2}$ are independently hydrogen, lower alkyl, or CF_3 ; or WR^{Y1} ; wherein W is independently O, or NR^{Y2} , wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an alkyl, or $\mathbf{Y_1}$ and $\mathbf{Y_2}$ together with the carbon atom to which they are attached form a moiety

12. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a , R_b and R_c are each hydrogen, and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , X_1 , n and Q are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, $\frac{\partial F}{\partial x}$ an aliphatic <u>moiety</u>, $\frac{\partial F}{\partial x}$ heteroaliphatic <u>moiety</u>.

13. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a , R_b and R_c are each hydrogen, Q is a carbonyl-containing moiety and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , X_1 , and n are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic; R_7 is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R_8 is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl; and Alk is a substituted or unsubstituted C_{0-6} alkylenyl or $\underline{\mathbf{a}} C_{0-6}$ alkenylenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, O, $\underline{\mathbf{or}} NR^{Z1}$, $\underline{\mathbf{wherein}} R^{Z1}$ is independently hydrogen or alkyl.

14. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a , R_b and R_c are each hydrogen, n is 3 and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , Q and X_1 are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic moiety, or a heteroaliphatic moiety.

15. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a , R_b and R_c are each hydrogen, n is 3, Q is a carbonyl-containing moiety, and the compound has one of the following structures:

wherein R_1 - R_6 , X_1 and Y_2 are as defined in claim 1; W is O or NH; R^{Y1} is hydrogen, or an aliphatic <u>moiety</u>, or a heteroaliphatic <u>moiety</u>, R_7 is a substituted or unsubstituted lower alkylor or heteroalkylomoiety; R_8 is a substituted or unsubstituted alkylo, heteroalkylor cycloalkylor, heterocycloalkyl; and Alk is a substituted or unsubstituted C_{0-6} alkylenylor or C_{0-6} alkenylenylor chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, C

- 16. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_1 and R_2 are each hydrogen.
- 17. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_5 and R_6 are each methyl.
- 18. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_3 is lower alkyl.
- 19. (ORIGINAL) The composition of claim 18, wherein R_3 is methyl.
- 20. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_4 is OH, NH_2 or halogen.
- 21. (ORIGINAL) The composition of claim 13 or 15, wherein R_7 is lower alkyl.
- 22. (ORIGINAL) The composition of claim 21, wherein R_7 is methyl.

23. (CURRENTLY AMENDED) The composition of claim 1, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted, <u>or a lower alkyl moiety</u>; R_8 is a substituted or unsubstituted carbocyclic, or heterocyclic <u>moiety</u>; and X, Y and Z are independently a bond, -O-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, or a substituted or unsubstituted C_{0-6} alkylenyl or C_{0-6} alkenylenyl wherein up to two non-adjacent methylene units are independently optionally replaced by CO, O, or NR^{Z1} and each occurrence of , wherein R^{Z1} is hydrogen or alkyl; and pharmaceutically acceptable derivatives thereof.

24. (CURRENTLY AMENDED) The composition of claim 23, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted lower alkyl moiety; R_8 is a substituted or unsubstituted carbocyclic <u>moiety</u>, or <u>a</u> heterocyclic <u>moiety</u>; and R^Y is hydrogen, $-OR^{Y1}$; wherein R^{Y1} is hydrogen, alkyl, or heteroalkyl.

25. (Currently Amended) The composition claim 13, wherein R_8 is one of:

wherein p is an integer from 0 to 5; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, and each occurrence of R^{8B} is independently hydrogen or lower alkyl.

26. (ORIGINAL) The composition of claim 25, wherein R₈ has the structure:

wherein R^{8B} is hydrogen or lower alkyl.

- 27. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein n is 3.
- 28. (PREVIOUSLY PRESENTED) The composition of claim 12 wherein Y_1 is OR^{Y_1} and Y_2 is lower alkyl; wherein R^{Y_1} is hydrogen or lower alkyl.
- 29. (ORIGINAL) The composition of claim 28, wherein Y_1 is OH and Y_2 is CF_3 .
- 30. (ORIGINAL) The composition of claim 11 wherein R_a , R_b and R_c are each hydrogen, and the compound has one of the structures:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 , n and Q are as defined in claim 1; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl.

31. (ORIGINAL) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 and Q are as defined in claim 11; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl.

32. (PREVIOUSLY PRESENTED) The composition of claim 11 wherein the compound has the structure:

$$\begin{array}{c} R_{7}M_{1}, \\ R_{5}M_{1}, \\ R_{6} \\ R_{7}M_{1}, \\ R_{6} \\ R_{7}M_{1}, \\ R_{8} \\ R_{8} \\ R_{7}M_{1}, \\ R_{8} \\ R_{8}$$

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -C(=O)-, -N R^{Z1} -, -CHO R^{Z1} ; or a substituted or unsubstituted C_{0-6} alkylenyl or C_{0-6} alkenylenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, O, or NR^{Z1} ; and R^{Z1} is hydrogen, or alkyl.

33. (PREVIOUSLY PRESENTED) The composition of claim 11 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -C(=O)-, -N R^{Z1} , or -CHO R^{Z1} ; or a substituted or unsubstituted C_{0-6} alkylenyl or C_{0-6} alkenylenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, O, or NR^{Z1} ; and R^{Z1} is hydrogen or alkyl.

34. **(PREVIOUSLY PRESENTED)** The composition of claim 32 or 33, wherein –X-Y-Z together represents the moiety -CH₂-Y-CH₂; wherein Y is -CHOR^{Y1} or C=O; and R^{Y1} and R^{Y2} are independently hydrogen or alkyl.

35. (PREVIOUSLY PRESENTED) The composition of claim 11 wherein the compound has the structure:

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, or C=O, and R^{Y1} is hydrogen, alkyl, or heteroalkyl.

wherein R_3 - R_6 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, or C=O; and R^{Y1} is hydrogen, alkyl, or heteroalkyl.

wherein n, R_3 and R_4 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, or $-OR^{Y1}$; wherein R^{Y1} is hydrogen, alkyl, or heteroalkyl.

wherein R_3 and R_4 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^{Y} is hydrogen, or -OR^{Y1}; wherein R^{Y1} is hydrogen, alkyl, or heteroalkyl.

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

wherein R_3 - R_6 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

41. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the following structure:

$$Y_1$$
 Y_2
 X_1
 R_5
 R_6
 R_{30}

or a pharmaceutically acceptable salt thereof; wherein X_1 is CH_2 , NH or O;

 Y_1 and Y_2 are independently OH, $C(R^{Y_1})_3$ or Y_1 and Y_2 taken together with the carbon atom to which they are attached are -C=0, wherein R^{Y_1} is halo;

R₆ is H or lower alkyl;

R₅ is H or lower alkyl;

R4 is OH, -OAc or oxo; and

R₃ is alkyl.

42. **(ORIGINAL)** The composition of claim 41 wherein the compound has one of the following structures:

Claims 43 and 44 (CANCELED).

- 45. (ORIGINAL) The composition of claim 1, further comprising a cytotoxic agent.
- 46. **(ORIGINAL)** The composition of claim 45, wherein the cytotoxic agent is an anticancer agent.
- 47. (ORIGINAL) The composition of claim 1, further comprising a palliative agent.

Claims 48-62 (CANCELED).