Selecting Transients Automatically for the Identification of Models for an Oil Well

IFAC Workshop on Automatic Control in Offshore Oil and Gas Production

Antônio H. Ribeiro¹ Luis A. Aguirre¹

Laboratory of Modeling, Analysis and Control of Nonlinear Systems (MACSIN)

Department of Electronic Engineering (DELT)

Universidade Federal de Minas Gerais (UFMG)

Florianópolis, 2nd IFAC Oilfield, 2015

Offshore Oil Production Process

- Stacionary Production Unit:
- Riser:
- Flow Line:
- Manifold;
- Wet Christmas Tree;
- Wellhead:
- Gas Lift;
- Soft Sensors.

P&ID diagram

Goals and Objectives

- Define a quantitative way to measure how suitable a window is for system identification;
- Define a quantitative measure that can be used to discard windows where the output is not correlated with the input;
- Use these metrics to automatize the process of finding suitable windows for system identification.

Trajectory Matrix

Dynamic Based Metric

Trajectory Matrix

If you have a set of data containing values of y from k=0 to k=m+n, you may write: $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{x} \in \mathbb{R}^n$:

$$\mathbf{A} = \begin{bmatrix} y(n-1) & y(n-2) & \dots & y(0) \\ y(n) & y(n-1) & \dots & y(1) \\ \vdots & \vdots & \ddots & \vdots \\ y(m+n-2) & y(m+n-3) & \dots & y(m-1) \end{bmatrix};$$

Rank of Trajectory Matrix

Dynamic Based Metric

- Deeply related with how strong a transient is;
- Equals the number of parameters one can estimate for an autoregressive model.
- Depends only on signal y evolution.

Effective Rank of Trajectory Matrix

The effective rank r will be calculated as the maximum value of i, so that:

$$\sigma_i - \sigma_{i-1} > I$$

Correlation Based Metric - Definition

Correlation Based Metric

Correlation Based Metric

The following scalar metric is proposed:

$$s = \sum_{\tau = -\tau_{\text{max}}}^{\tau_{\text{max}}} \frac{|\rho(\tau)| - p}{|\tau|},$$
(1)

 $\rho(\tau)$ is the normalized CCF and confidence interval is given by $\pm p$.

Concluding Remarks

- Daily operation data vs Creating Tests;
- Easily extended for the multivariated case;
- Some adjustments may be done aftewards;
- Time saving.

