

Gv: TRẦN QUỐC NGHĨA

2: 098 373 4349

Trường THPT	
Họ và tên học sinh:	
Lép:	<i>STT</i> :

Chủ đề 2 HÀM SỐ LŨY THỪA HÀM SỐ MŨ – HÀM SỐ LOGARIT

- Tóm tắt lý thuyết
- Các dạng toán thường gặp
- Phương pháp giải toán
- Toán mẫu
- Bài tập co bản
- Bài tập nâng cao
- Bài tập tổng ôn

Năm học 2017 - 2018

Lưu hành nội bộ

Chủ để

HÀM SỐ LUỸ THỪA HÀM SỐ MŨ - HÀM SỐ LÔGARIT

Vấn đề 1. LŨY THỪA VỚI SỐ MŨ HỮU Tỉ - SỐ MŨ THỰC

1. Lũy thừa với số mũ nguyên

Cho n là một số nguyên dương. Với a là số thực tùy ý, lũy thừa bậc n của a là tích của n thừa số a.

<u>Quy wớc</u>: Với $a \neq 0$ thì: ② $a^0 = 1$; ③ $a^{-n} = \frac{1}{a^n}$. <u>Chú ý</u>: 0^0 và 0^{-n} không có nghĩa.

2. Căn bậc n

a. Khái niệm:

- Cho số thực b và số nguyên dương $n \ge 2$. Số a được gọi là căn bậc n của số b nếu
- Với n lẻ, $b \in \mathbb{R}$ thì phương trình có duy nhất một căn bậc n của b, kí hiệu: $\sqrt[n]{b}$.
- Với n chẵn:
 - b < 0: Không tồn tại căn bậc n của b.
 - $b = 0 : C \acute{o} m \acute{o} t c \check{a} n b \acute{a} c n c u \acute{a} b l \grave{a} s \acute{o} 0.$
 - $\Rightarrow b > 0$: Có hai căn trái dấu là $\sqrt[n]{b}$ và $-\sqrt[n]{b}$.

b. Tính chất của căn bậc n:

9
$$\sqrt[n]{a^p} \cdot \sqrt[n]{a^q} = \sqrt[n]{a^{p+q}}$$
 10 $\frac{\sqrt[n]{a^p}}{\sqrt[n]{a^q}} = \sqrt[n]{a^{p-q}}$

$$\mathbf{0} \frac{\sqrt[n]{a^p}}{\sqrt[n]{a^q}} = \sqrt[n]{a^{p-q}}$$

3. Lũy thừa với số hữu tỉ

Cho số thực a dương và số hữu tỉ $r = \frac{m}{n}$ trong đó $m \in \mathbb{Z}$, $n \in \mathbb{N}^*$.

Lũy thừa của a với số mũ r là a^r xác định bởi: $a^r = a^{\frac{m}{n}} = \sqrt[n]{a^m}$

4. Lũy thừa với số vô tỉ

Cho a là một số dương, α là một số vô tỉ. Ta thừa nhận rằng luôn có một dãy số hữu tỉ (r_n) có gới hạn là α và dãy số tương ứng (α^{r_n}) có giới hạn không phụ thuộc vào việc chọn dãy $s\acute{o}(r_n)$.

Ta gọi giới hạn của dãy số (α^{r_n}) là lũy thừa của a với số mũ α . Kí hiệu là a^{α} .

$$a^{\alpha} = \lim_{r \to +\infty} a^{r_n}$$
 với $\alpha = \lim_{r \to +\infty} r_n$

5. Tính chất của lũy thừa với số mũ thực

②
$$a^{\alpha}.a^{\beta} = a^{\alpha+\beta}$$
 ③ $\frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}$ **④** $(a^{\alpha})^{\beta} = a^{\alpha.\beta}$ **⑤** $(a.b)^{\alpha} = a^{\alpha}.b^{\alpha}$

$$\left(\frac{a}{b}\right)^{\alpha} = \frac{a^{\alpha}}{b^{\alpha}} = \left(\frac{b}{a}\right)^{-\alpha}$$

1 Thù
$$a^{\alpha} > a^{\beta} \Leftrightarrow \alpha > \beta$$
 1 Thù $a^{\alpha} > a^{\beta} \Leftrightarrow \alpha < \beta$ **1** Thù $a^{\alpha} > a^{\beta} \Leftrightarrow \alpha < \beta$

- 6. Công thức lãi kép
 - a. Định nghĩa: Lãi kép là phần lãi của kì sau được tính trên số tiền gốc kì trước cộng với phần lãi của kì trước.
 - **b.** Công thức: Giả sử số tiền gốc là A; lãi suất r% /kì hạn gửi (có thể là tháng, quý hay năm).
 - Số tiền nhận được $c\it{a}~g\it{\acute{o}c}~v\it{a}~l\it{\~{a}i}$ sau n~kì hạn gửi là $A\left(1+r\right)^n$
 - Số *tiền lãi* nhận được sau n kì hạn gửi là $A(1+r)^n A = A[(1+r)^n 1]$

Dạng 1. Tinh toán - Rút gọn biểu thức lũy thừa

A. PHƯƠNG PHÁP GIẢI

Áp dụng các tính chất của lũy thừa để tính giá trị của biểu thức, rút gọn một biểu thức, chứng minh một biểu thức không phụ thuộc tham số, ...

B. BÀI TẬP MẪU

Ví dụ 1: Tính giá trị của các biểu thức sau:

a)
$$A = 4^{3+\sqrt{2}} \cdot 2^{1-\sqrt{2}} \cdot 2^{-4-\sqrt{3}}$$

b)
$$B = \frac{2^3 \cdot 2^{-1} + 5^{-3} \cdot 5^4}{10^{-3} \cdot 10^{-2} - (0,25)^0}$$

c)
$$C = \left(\frac{1}{16}\right)^{-0.75} + (0.25)^{-\frac{5}{2}} + (0.04)^{-1.5} - (0.125)^{-\frac{2}{3}} d) G = \left(\left(\sqrt{5}\right)^{\sqrt{5}}\right)^{\sqrt{5}} + 4^{1-2\sqrt{3}}.16^{1+\sqrt{3}}$$

e)
$$E = \sqrt[3]{6 + \sqrt{\frac{847}{27}}} + \sqrt[3]{6 - \sqrt{\frac{847}{27}}}$$

f)
$$F = \frac{\sqrt{3}.\sqrt[3]{3}}{9^{\frac{5}{12}}} \cdot \pi^0 + \frac{\sqrt[3]{3}}{e^0.\sqrt{3}} \cdot 9^{\frac{7}{12}}$$

g)
$$D = (0,5)^{-4} - 625^{0.25} - \left(2\frac{1}{4}\right)^{-1\frac{1}{2}} + 19.(-3)^{-3}$$
 h) $H = \frac{2:4^{-2} + \left(3^{-2}\right)^3 \cdot \left(\frac{1}{9}\right)^{-3}}{5^{-3}.25^2 + (0,7)^0 \cdot \left(\frac{1}{2}\right)^{-2}}$

 •••••
 •••••
 •••••
•••••

GV. TRẨN QUỐC NGHĨA (Sưu tầm & biên tập)	3
	••••
	••••
	••••
	••••
	••••
Ví dụ 2: Đơn giản các biểu thức sau:	
a) $A = \frac{a^{\frac{1}{3}} - a^{\frac{7}{3}}}{\frac{1}{2} + \frac{4}{2}} - \frac{a^{-\frac{1}{3}} - a^{\frac{5}{3}}}{\frac{2}{2} - \frac{1}{2}}$ b) $B = \frac{a^{\frac{4}{3}} \left(a^{-\frac{1}{3}} + a^{\frac{2}{3}}\right)}{\frac{1}{2} \left(a^{\frac{3}{3}} - \frac{1}{2}\right)}$ c) $C = \frac{a^{\frac{1}{3}} \sqrt{b} + b^{\frac{1}{3}} \sqrt{a}}{\frac{6}{3} a + \frac{6}{3}b}$	
a) $A = \frac{a^{\frac{1}{3}} - a^{\frac{7}{3}}}{a^{\frac{1}{3}} - a^{\frac{4}{3}}} - \frac{a^{-\frac{1}{3}} - a^{\frac{5}{3}}}{a^{\frac{2}{3}} + a^{-\frac{1}{3}}}$ b) $B = \frac{a^{\frac{4}{3}} \left(a^{-\frac{1}{3}} + a^{\frac{2}{3}}\right)}{a^{\frac{1}{4}} \left(a^{\frac{3}{4}} + a^{-\frac{1}{4}}\right)}$ c) $C = \frac{a^{\frac{1}{3}} \sqrt{b} + b^{\frac{1}{3}} \sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}}$	
_	
d) $D = \frac{\sqrt{a} - \sqrt{b}}{\sqrt[4]{a} - \sqrt[4]{b}} - \frac{\sqrt{a} + \sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}}$ e) $E = \left(\frac{a^{\sqrt{5}}}{b^{\sqrt{5}-2}}\right)^{\sqrt{5}+2} \cdot \frac{a^{-2-\sqrt{5}}}{b^{-1}}$	
$\left(\begin{array}{cccc} \frac{1}{2} & \frac{9}{2} & \frac{1}{2} & \frac{3}{2} \end{array}\right) = \left[\begin{array}{cccc} \frac{1}{2} & \frac{3}{2} & \frac{3}{2} & \frac{1}{2} & $	
f) $F = \sqrt{(x^{\pi} + y^{\pi})^2 - (\frac{1}{4^{\pi}.x.y})^{\pi}}$ g) $I = \begin{bmatrix} \frac{a^{\frac{1}{4}} - a^{\frac{9}{4}}}{\frac{1}{a^{\frac{1}{4}} - a^{\frac{5}{4}}}} : \frac{b^{-\frac{1}{2}} - b^{\frac{3}{2}}}{\frac{1}{b^{\frac{1}{2}} + b^{-\frac{1}{2}}}} \end{bmatrix}_{3}^{3} \sqrt{\frac{a}{b^{4}}} \cdot \sqrt[6]{\frac{b^{14}}{a^{2}}}$	
$(a^{2\sqrt{3}}-1)(a^{2\sqrt{3}}+a^{\sqrt{3}}+a^{3\sqrt{3}})$	
h) $H = \frac{a^{\sqrt{5}} - b^{\sqrt{7}}}{a^{\frac{2\sqrt{5}}{3}} + a^{\frac{\sqrt{5}}{3}} b^{\frac{\sqrt{7}}{3}} + b^{\frac{2\sqrt{7}}{3}}}$ i) $G = \frac{\left(a^{2\sqrt{3}} - 1\right)\left(a^{2\sqrt{3}} + a^{\sqrt{3}} + a^{3\sqrt{3}}\right)}{a^{4\sqrt{3}} - a^{\sqrt{3}}}$	
$a^{\frac{3}{3}} + a^{\frac{3}{3}}b^{\frac{3}{3}} + b^{\frac{3}{3}}$	

.....

TÀI LIỆU HỌC TẬP TOÁN 12 - MŨ - LOGARIT

Dạng 2. So sánh các lũy thừa hay căn số

A. PHƯƠNG PHÁP GIẢI

- ✓ So sánh hai lũy thừa cùng cơ số a ta áp dụng kết quả sau:

 - 4 Với 0 < a < 1 thì $a^{x_1} > a^{x_2} \iff x_1 < x_2$
- ✓ So sánh hai lũy thừa có cùng só mũ x, ta áp dụng kết quả sau:

✔ Với hai biểu thức chứa căn, ta cần đưa về các căn cùng bậc.

Ví dụ 3: So sánh các số sau (không dư	ìng máy tính bỏ túi):		
a) $a = 3^{600}$ và $b = 5^{400}$		$x = \sqrt[3]{7} + \sqrt{15} \text{ và } y = 0$	
c) $p = (\sqrt{3} - 1)^{\frac{1}{4}} \text{ và } q = (\sqrt{3} - 1)^{\frac{1}{4}} $		d) $u = \left(\frac{\sqrt{3}}{5}\right)^{-\sqrt{2}}$ và $v = \left(\frac{\sqrt{3}}{5}\right)^{-\sqrt{2}}$, ,
e) $m = \left(\frac{\pi}{2}\right)^{\sqrt{2}}$ và $n = \left(\frac{\pi}{5}\right)^{-\sqrt{3}}$	5 f	$h = \left(\frac{\sqrt{3}}{5}\right)^{-\sqrt{2}} \text{ và } k = 0$	$\left(\frac{\sqrt{2}}{2}\right)^{\sqrt{5}}$
	•••••		
		•••••	
	•••••		••••••
	•••••	•••••	•••••
	•••••	•••••	

lụ 4:	Tìm giá trị lớn nhất, giá tr		
	$ y = \left(\frac{1}{2}\right)^{\sin^2 x} $		
•			
• • • • • • • • •			
		Dạng 3. Bài toán lãi	kép
		Dạng 3. Bài toán lãi A. PHƯƠNG PHÁP G	•
a.	-	A. PHƯƠNG PHÁP G	•
	phần lãi của kì trước.	A. PHƯƠNG PHÁP G	IÅI
	phần lãi của kì trước. <i>Công thức:</i> Giả sử số tiền năm).	A. PHƯƠNG PHÁP G	T ĂI trên số tiền gốc kì trước cộng với hạn gửi (có thể là tháng, quý hay
	 phần lãi của kì trước. Công thức: Giả sử số tiền năm). Số tiền nhận được cả g 	A. PHƯƠNG PHÁP G hần lãi của kì sau được tính n gốc là A ; lãi suất $r\%$ /kì	IÅI trên số tiền gốc kì trước cộng với hạn gửi (có thể là tháng, quý hay $A(1+r)^n$
	 phần lãi của kì trước. Công thức: Giả sử số tiền năm). Số tiền nhận được cả g 	A. PHƯƠNG PHÁP G hần lãi của kì sau được tính n gốc là A; lãi suất r% /kì ốc và lãi sau n kì hạn gửi là	IÅI trên số tiền gốc kì trước cộng với hạn gửi (có thể là tháng, quý hay $A(1+r)^n$
b.	 phần lãi của kì trước. Công thức: Giả sử số tiền năm). Số tiền nhận được cả g Số tiền lãi nhận được s 	A. PHƯƠNG PHÁP G hần lãi của kì sau được tính n gốc là A ; lãi suất $r\%$ /kì $\acute{o}c$ và lãi sau n kì hạn gửi là au n kì hạn gửi là $\boxed{A(1+r)}$	IÅI trên số tiền gốc kì trước cộng với hạn gửi (có thể là tháng, quý hay $A(1+r)^n$

Ví dụ 6:	Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền (cả vốn lẫn lãi) gần nhất với kết quả nào sau đây?
Ví dụ 7:	Bác An đem gửi tổng số tiền 320 triệu đồng ở hai loại kỳ hạn khác nhau. Bác gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2,1% một quý. Số tiền còn lại bác An gửi theo kỳ hạn một tháng với lãi suất 0,73% một tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi kỳ hạn số tiền lãi sẽ được nhập vào gốc để tính lãi cho kỳ hạn tiếp theo. Sau 15 tháng kể từ ngày gửi bác An đi rút tiền. Tính gần đúng đến hàng đơn vị tổng số tiền lãi thu được của bác An.

BÀI TẬP TỔNG HỢP VẪN ĐỀ 1

Bài 1. Cho:
$$\sqrt{x^2 + \sqrt[3]{x^4 y^2}} + \sqrt{y^2 + \sqrt[3]{y^4 x^2}} = a$$
. Chứng minh $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

Bài 2. Đơn giản các biểu thức sau:

(a)
$$A = \frac{ab^{-2}.(a^{-1}b^2)^4.(ab^{-1})^2}{a^{-2}b.(a^{-2}b^{-1})^3.a^{-1}b}$$

Dáp số:
$$A = a^8 b^5$$
; $B = 1$; $C = a^{\sqrt{3}} + a^9$; $D = a^3 b^2 - 1$

Bài 3. Tính giá tri của các biểu thức sau:

(a)
$$A = 64^{-\frac{1}{4}} + \left(\frac{1}{255}\right)^{-2} - \left(-\frac{1}{81}\right)^{-0.75} + \left(9\frac{1}{2}\right)^{0}$$

b
$$B = (0, 25)^{-\frac{1}{2}} + \left(\frac{1}{32}\right)^{-\frac{1}{5}} - \left(2\frac{1}{9}\right)^{-2} + (-5)^{-3}$$

©
$$C = \frac{\sqrt{3}.\sqrt[3]{3}}{9^{\frac{5}{12}}} \cdot \left(\pi^{\frac{-13}{4}}\right)^0 + \frac{\sqrt[3]{5}}{\left(e^{\frac{-3}{4}}\right)^0.\sqrt{5}} \cdot 16^{\frac{7}{12}}$$

$$E = 256^{-0.75} - \left(\frac{1}{125}\right)^{-\frac{1}{3}} - (9^0)^{-5}$$

①
$$F = \sqrt[3]{7 + 5\sqrt{2}} + \sqrt[3]{7 - 5\sqrt{2}}$$

Bài 4. Tính giá trị của các biểu thức sau:

(a)
$$A = \sqrt[3]{7 + 5\sqrt{2}} + \sqrt[3]{7 - 5\sqrt{2}}$$

Đơn giản các biểu thức sau: Bài 5.

(a)
$$A = \frac{x^{-1} + (y+z)^{-1}}{x^{-1} - (y+z)^{-1}} \cdot \left(1 + \frac{z^2 + y^2 - x^2}{2yz}\right) \cdot (x+y+z)^{-2}$$
 (b) $B = \frac{\sqrt[3]{a + \sqrt{2 - a^2}} \cdot \sqrt[6]{1 - a\sqrt{2 - a^2}}}{\sqrt[3]{1 - a^2}}$

Chứng minh nếu $1 \le x \le 2$ thì $\sqrt{x+2\sqrt{x+1}} + \sqrt{x-2\sqrt{x-1}} = 2$. Bài 6.

Bài 7. So sánh các số sau:

(a)
$$a = \left(\frac{7}{9}\right)^{-\frac{\sqrt{7}}{3}}$$
 và $b = \left(2\frac{4}{13}\right)^0$

(b)
$$x = \sqrt[3]{126} + \sqrt{26}$$
 và $y = \sqrt{170} - \sqrt[3]{82}$

Bài 8. So sánh các số sau:

(a)
$$a = (\sqrt{5})^{-\frac{5}{6}}$$
 và $b = \left(5^{-1}\sqrt[4]{\frac{1}{5}}\right)^{-\frac{1}{3}}$

©
$$p = \left(\frac{\sqrt{3}}{2}\right)^{\sqrt{5}}$$
 và $q = \left(\frac{\sqrt{3}}{6}\right)^{-\sqrt{3}}$

(a)
$$m = (\sqrt{5} - 2)^{\frac{1}{4}}$$
 và $n = (\sqrt{5} + 2)^{-\frac{\sqrt{3}}{2}}$

(f)
$$h = \sqrt[6]{65} + \sqrt{37}$$
 và $k = \sqrt{97} - \sqrt[3]{10}$

Bài 9. Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

(a)
$$y = 5^{-x^2 + x + 1}$$

Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 2% một quý Bài 10. theo hình thức lãi kép. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền là bao nhiêu?

Vấn đề 2. LÔGARIT

1. Dịnh nghĩa

Cho hai số dương a, b với $a \neq 1$. Số α thỏa mãn đẳng thức $a^{\alpha} = b$ được gọi là **lôgarit cơ số** a của b và kí hiệu là log b.

- ≥ Chú ý: ♦ Không có lôgarit của số âm và số 0.
 - & Cơ số của lôgarit phải dương và khác 1.
 - $\overset{\text{d}}{\sim}$ Cho hai số dương $a \neq 1$ và b, ta có các tính chất sau:

②
$$\log_a 1 = 0$$
 ③ $\log_a a = 1$ ④ $a^{\log_a b} = b; e^{\ln b} = b; 10^{\lg b} = b$ ⑤ $\log_a (a^{\alpha}) = \alpha$

2. Tính chất

- a. So sánh hai lôgarit có cùng cơ số: Cho các số dương b và c:
 - Khi a > 1 thì $\log_a b > \log_a c \Leftrightarrow b > c$ Với $0 < a \ne 1$ và các số b, c dương: Khi 0 < a < 1 thì $\log_a b > \log_a c \Leftrightarrow b < c$
 A Khi a > 1 thì $\log_a b > 0 \Leftrightarrow b > 1$
 - \checkmark Khi 0 < a < 1 thì $\log_a b > 0 \Leftrightarrow b < 1$

- b. Các quy tắc tính lôgarit: Cho ba số dương $a \neq 1$, b, c:
 - **6** $\log_a(b.c) = \log_a b + \log_a c$ **7** $\log_a \frac{b}{c} = \log_a b \log_a c$ **8** $\log_a b^{\alpha} = \alpha \log_a b$ Các hệ quả:

SA Chú ý: Nếu $0 < a \ne 1$, bc > 0 thì:

$$\log_a \frac{b}{c} = \log_a |b| - \log_a |c|$$

(4)
$$\log_a b^{2k} = 2k \log_a |b|, \ b \neq 0, \ k \in \mathbb{Z}^+.$$

3. Đổi cơ số của logarit

a. Cho ba số dương a, b, $c \neq 1$, ta có:

b. Hệ quả: $cho(0 < a.b \neq 1, b > 0, \alpha, m, n \neq 0)$

(8)
$$\log_a b = \frac{1}{\log_b a} \iff \log_a b \cdot \log_b a = 1$$
 (9) $\log_{a^a} b = \frac{1}{\alpha} \log_a b$ **(20)** $\log_{a^n} b^m = \frac{m}{n} \log_a b$

4. Lôgarit thập phân, lôgarit tự nhiên

- a. **Lôgarit thập phân**: là lôgarit cơ số 10: $\log_{10} b$ thường được viết là $\log b$ hay $\lg b$.
- b. Lôgarit tự nhiên:
 - ✓ Người ta chứng minh được dãy số (u_n) với $u_n = \left(1 + \frac{1}{n}\right)^n$ có giới hạn là một số vô tỉ và

gọi giới hạn đó là
$$e: e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$$

Một giá trị gần đúng của e là: $e \approx 2,718281828459045...$

- ✓ Lôgarit tự nhiên: là lôgarit cơ số $e : \log_a b$ hay $\ln b$.
- c. Chú ý công thức đổi cơ số: $\log_a b = \frac{\lg b}{\lg a} = \frac{\ln b}{\ln a} \ (0 < a \ne 1, \ b > 0)$

Dạng 1. Tính toán – Rút gọn biểu thức có chứa lôgarit

A. PHƯƠNG PHÁP GIẢI

Áp dụng định nghĩa, các tính chất và các công thức đổi cơ số để rút gọn, tính toán các biểu thức lôgarit...

Ví dụ 8:	Tính giá trị của các biểu thức sau:	
	(a) $A = \frac{1}{2}\log_7 36 - \log_7 14 - 3\log_7 \sqrt[3]{21}$	
	© $C = 36^{\log_6 5} + 10^{1-\lg 2} - e^{\ln 27}$	
	(e) $E = 3\lg(\sqrt{2} - 1) + \lg(5\sqrt{2} + 7)$	① $F = \ln(\sqrt{3} + 2)^{2017} + \ln(2 - \sqrt{3})^{2017}$
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
Ví dụ 9:	Tìm $\log_a x$ biết $\log_a b = 5$, $\log_a c = -4$ và	$\hat{a} \ \ $

Dạng 2. So sánh hai lôgarit

A. PHƯƠNG PHÁP GIẢI

Để so sánh hai lôgarit ta áp dụng các kết quả sau:

- 1) $N\acute{e}u \ a > 1 \ thì \log_a M > \log_a N \Leftrightarrow M > N > 0$
- 2) $N\acute{e}u \ 0 < a < 1 \ thì \log_a M > \log_a N \Leftrightarrow 0 < M < N$
- 3) Nếu 0 < a < b < 1 hay 1 < a < b thì:
 - $\checkmark \log_a x > \log_b x \Leftrightarrow x > 1$
 - $\checkmark \log_a x < \log_b x \Leftrightarrow 0 < x < 1$
- 4) $\log_a b > 0 \Leftrightarrow a \ va \ b \ cùng lớn hơn 1 hoặc cùng nhỏ hơn 1$

Ví dụ 10: So sánh hai số sau:	
ⓐ $m = \log_{\sqrt{3}} \frac{3}{5}$ và $n = \log_{\sqrt{3}} \frac{7}{9}$	ⓑ $m = \log_{\frac{1}{3}} 8$ và $n = \log_{115} 2$
	① $m = 10 g_2 + \log 3$ và $n = \log 5$
(e) $m = \log_7 29$ và $n = \log_3 5$	$f) m = \log_{0,3} 0.8 \text{ và } n = \log_{0,2} 0.3$

Dạng 3. Biểu diễn một lôgarit theo các lôgarit khác

A. PHƯƠNG PHÁP GIẢI

 $D^{\hat{e}}$ biểu diễn $\log_a b$ theo $\log_c d$ ta đưa $\log_a b$ về lôgarit theo cơ số c sau đó viết a và b thành tích hay thương của dãy các lũy thừa theo cơ số c và d.

Áp dụng tính chất lôgarit của tích và của thương ta suy ra kết quả.

Ví dụ 11: ⓐ Cho $\alpha = \log_2 3$ và $\beta = \log_2 5$. Tính $\log_{225} 2700$ theo α và β

© Cho $a = \ln 2$. Tính $\ln 16$; $\ln 0.125$; $\frac{1}{8} \ln \frac{1}{4} - \frac{1}{4} \ln \frac{1}{8}$ theo a
© Cho $a = \log_3 15$ và $b = \log_3 10$. Tính $\log_{\sqrt{3}} 50$ theo a và b .
<a>© Cho $a = \log 3$ và $b = \log 5$. Tính $\log_{15} 30$ theo a và b.
<a>© Cho $a = \log_2 3$, $b = \log_3 5$ và $c = \log_7 2$. Tính $\log_{140} 63$ theo a, b và c

Dạng 4. Chứng minh đẳng thức chứa lôgarit

A. PHƯƠNG PHÁP GIẢI

Áp dụng các công thức biến đổi lôgarit, công thức đổi cơ số để biến đổi vế này thành vế kia hoặc hai vế cùng bằng một đại lượng thứ ba, ...

Ví dụ 12: (a Cho	a, b, c	là ba số	dương v	à c≠1. ¢	Chứng mi	nh: $a^{\log_c b}$	$=b^{\log_c a}$		
(6 Cho	a, b, c	là ba số	dương k	hác 1. C	hứng min	h: $\frac{\log_a c}{\log_a c}$	$=1+\log_a b$		
									n(n+1)	
	© Cho (0 < a, b	9≠1. Cr	iững minh	$\frac{1}{\log_a b}$	$+\frac{1}{\log_{a^2} b}$	$+\frac{1}{\log_{a^3} b}$	$+\dots+\frac{1}{\log_{a^n}b}$	$=\frac{1}{2\log_a b}$	
	•••••	•••••	••••••	•••••	•••••		•••••			
•••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••		••••••	•••••
	•••••	•••••	•••••		•••••	••••••	••••••			•••••
•••••	•••••	•••••	••••••	••••••	••••••		•••••	•••••	••••••	•••••
••••••	••••••	••••••	••••••	••••••	••••••	•	••••••	•••••	•••••	••••••
Ví dụ 13: 7	_		_	_		_				
(Nếu đ	$a^2 + b^2 =$	=7 <i>ab</i> th	$\log_7 \frac{a+3}{3}$	$\frac{-b}{b} = \frac{1}{2} (b$	$\log_7 a + \log_7 a$	$g_7 b$			
(b Nếu α	$a^2 + c^2 =$	$=b^2$ thì	$\log_{b+c} a +$	$\log_{b-c} a$	$=2\log_{b+c}$	$a.\log_{b-c}a$			
	•••••		•••••							
	• • • • • • • • • • • • • • • • • • • •									
•••••		••••••	••••••		•••••					••••••

Dạng 5. Bài toán lãi kép

A. PHƯƠNG PHÁP GIẢI

- a. Định nghĩa: Lãi kép là phần lãi của kì sau được tính trên số tiền gốc kì trước cộng với phần lãi của kì trước.
- b. Công thức: Giả sử số tiền gốc là A; lãi suất r% /kì hạn gửi (có thể là tháng, quý hay năm).
 - Số tiền nhận được $c \mathring{a} g \acute{o} c v \grave{a} l \~{a} i$ sau n kì hạn gửi là $A \left(1+r\right)^n$
 - Số *tiền lãi* nhận được sau n kì hạn gửi là $A(1+r)^n A = A[(1+r)^n 1]$

VI UŲ 14.	EDÈ CHÍNH THÚC 2016 – 2017] Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 6% / năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiều năm người đó nhận được số tiền nhiều hơn 100 triệu đồng bao gồm cả gốc và lãi? Giả sử trong suốt thời gian gửi
	lãi suất không đổi và người đó không rút tiền ra.
•••••	
•••••	
••••••	
Ví dụ 15:	[ĐỀ CHÍNH THÚC 2016 – 2017] Đầu năm 2016, ông A thành lập một công ty. Tổng số tiền
	ông A dùng để trả lương cho nhân viên trong năm 2016 là 1 tỷ đồng. Biết rằng cứ sau mỗi năm
	thì tổng số tiền dùng để trả lương cho nhân viên trong cả năm đó tăng thêm 15% so với năm
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho
	trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho

BÀI TẬP TỔNG HỢP VẤN ĐỀ 2

Bài 11. So sánh các số sau:

ⓐ
$$a = \log_2 10$$
 và $b = \log_4 63$

ⓑ
$$x = \log_{0.5} 3$$
 và $y = \log_7 2$

©
$$m = 3\log_6 2 + \log_6 3$$
 và $n = 2\log_6 5$

①
$$u = 5^{\log_6 1,05}$$
 và $v = 7^{\log_6 0,995}$

①
$$u = \log_{0.4} \sqrt[3]{2}$$
 và $v = \log_{0.2} 0.34$

Bài 12. ⓐ Biết
$$\log_a b = \sqrt{5}$$
. Tìm $\log_{\frac{a}{\sqrt{b}}} \sqrt[5]{a^3 b^6}$ DS: $-6(12 + 2\sqrt{5})/5$

ⓑ Biết
$$\log_a x = m; \log_b x = n; \log_c x = p \ (abc \neq 1)$$
. Tìm $\log_{abc} x$

$$DS: \frac{mnp}{np + pm + mn}$$

© Biết
$$\log_6 15 = m$$
; $\log_{12} 18 = n$. Tìm $\log_{25} 24$.

$$DS: \frac{5-n}{2m(n+1)-4n+2}$$

Bài 13. Tính giá trị của các biểu thức sau:

(a)
$$A = \log_{\frac{1}{\sqrt{3}}} \frac{27}{\sqrt[5]{9}}$$

$$B = 9^{\frac{1}{\log_6 3}} + 4^{\frac{1}{\log_6 2}}$$

©
$$C = \log_3 2.\log_4 3.\log_5 4.\log_2 5$$

$$D = a^{\sqrt{\log_a b}} - b^{\sqrt{\log_b a}} \quad \text{(f)} \quad F = \log_\pi \left(\frac{1}{2} \right)$$

$$\textcircled{0} \ E = \sqrt{25^{\frac{1}{\log_6 5}} + 49^{\frac{1}{\log_8 7}}} \quad \textcircled{0} \ D = a^{\sqrt{\log_a b}} - b^{\sqrt{\log_b a}} \quad \textcircled{0} \ F = \log_\pi \left(6 + \sqrt{35}\right)^4 + \log_\pi \left(6 - \sqrt{35}\right)^4$$

Đơn giản các biểu thức sau:

(a)
$$A = (\ln a + \log_a e)^2 + \ln^2 a - (\frac{\lg e}{\lg a})^2$$

ⓑ
$$B = \log_5 (\tan 6) + \log_5 (\cot 6)$$
.

©
$$C = 2 \lg a + 3 \log_a 10 - \frac{3}{\lg a} - \frac{2}{\log_a 10}$$

Bài 15. ⓐ Biết
$$\log_2 3 = m$$
; $\log_2 5 = n$. Tìm $\log_2 \sqrt{0.3}$; $\log_2 \sqrt[5]{135}$

ⓑ Biết
$$\log_{27} 5 = a; \log_8 7 = b; \log_2 3 = c$$
. Tìm $\log_6 35$.

© Biết
$$\log_7 12 = a; \log_{12} 24 = b$$
. Tìm $\log_{54} 168$.

(d) Biết
$$\log_{12} 18 = a; \log_{24} 54 = b$$
. Chứng minh: $ab + 5(a - b) = 1$.

Bài 16. Chứng minh các đẳng thức sau:

©
$$\log_{ax}(bx) = \frac{\log_a b + \log_a x}{1 + \log_a x}$$
 với $0 < a, b, x, ax \ne 1$.

Bài 17. Cho
$$x^2 + 9y^2 = 10xy$$
 $(x, y > 0; 0 < a \ne 1)$. CM: $\log_a(x + 3y) - 2\log_a 2 = \frac{1}{2}(\log_a x + \log_a y)$

Bài 18. Cho
$$y = 10^{\frac{1}{1-\lg x}}; z = 10^{\frac{1}{1-\lg y}} (x, y, z > 0)$$
. Chứng minh: $x = 10^{\frac{1}{1-\lg z}}$.

Bài 19. Chứng minh: (a)
$$\log_{\frac{1}{2}} 5 + \log_{5} \frac{1}{3} < -2$$

Bài 20. Tìm x biết:

(a)
$$\lg x = \frac{1}{3} \lg 5a - 4 \lg b + 7 \lg c$$
.
(b) $\ln x = \frac{7}{16} \ln (3 + 2\sqrt{2}) - 4 \ln (\sqrt{2} + 1) - \frac{25}{8} \ln (\sqrt{2} - 1)$.

- Bài 21. Anh Nam mong muốn rằng sau 6 năm sẽ có 2 tỷ để mua nhà. Hỏi anh Nam phải gửi vào ngân hàng một khoản tiền tiết kiệm như nhau hàng năm gần nhất với giá trị nào sau đây, biết rằng lãi suất của ngân hàng là 8% /năm và lãi hàng năm được nhập vào vốn.
- **Bài 22.** Ông A muốn sau 5 năm có 1.000.000.000 đồng để mua ô tô **Camry**. Hỏi rằng ông A phải gửi ngân hàng mỗi tháng (số tiền như nhau) là bao nhiêu? Biết lãi suất hằng tháng là 0.5% và tiền lãi sinh ra hằng tháng được nhập vào tiền vốn.
- Bài 23. [ĐỀ MINH HỌA 2016 2017] Ông Việt vay ngắn hạn ngân hàng 100 triệu đồng, với lãi suất 12% /năm. Ông muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay. Hỏi, theo cách đó, số tiền m mà ông Việt sẽ phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiều? Biết rằng, lãi suất ngân hàng không thay đổi trong thời gian ông Việt hoàn nợ.
- **Bài 24.** Một người đàn ông vay vốn ngân hàng với số tiền 100000000 đồng. Người đó dự định sau đúng 5 năm thì trả hết nợ; Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau. Hỏi, theo cách đó, số tiền *a* mà ông sẽ phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết lãi suất hàng tháng là 1,2% và không thay đổi trong thời gian ông hoàn nợ.
- **Bài 25.** Biết rằng năm 2001, dân số Việt Nam là 78685800 người và tỉ lệ tăng dân số năm đó là 1,7%. Cho biết sự tăng dân số được ước tính theo công thức $S = A.e^{N.r}$ (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm). Cứ tăng dân số với tỉ lệ như vậy thì đến năm nào dân số nước ta ở mức 120 triệu người?
- **Bài 26.** Các khí thải gây hiệu ứng nhà kính là nguyên nhân chủ yếu làm trái đất nóng lên. Theo OECD (Tổ chức hợp tác và phát triển kinh tế thế giới), khi nhiệt độ trái đất tăng lên thì tổng giá trị kinh tế toàn cầu giảm. Người ta ước tính rằng khi nhiệt độ trái đất tăng thêm $2^{\circ}C$ thì tổng giá trị kinh tế toàn cầu giảm 3%, còn khi nhiệt độ trái đất tăng thêm $5^{\circ}C$ thì tổng giá trị kinh tế toàn cầu giảm 10%. Biết rằng nếu nhiệt độ trái đất tăng thêm $t^{\circ}C$, tổng giá trị kinh tế toàn cầu giảm f(t)% thì $f(t) = k.a^t$ (trong đó a, k là các hằng số dương). Nhiệt độ trái đất tăng thêm bao nhiêu độ C thì tổng giá trị kinh tế toàn cầu giảm 20%?
- **Bài 27.** Một người đã thả một lượng bèo hoa dâu chiếm 4% diện tích mặt hồ. Biết rằng cứ sau đúng một tuần bèo phát triển thành 3 lần lượng đã có và tốc độ phát triển của bèo ở mọi thời điểm như nhau. Sau bao nhiều ngày, lượng bèo sẽ vừa phủ kín mặt hồ?

Vấn đề 3. HÀM SỐ MŨ – HÀM SỐ LÔGARIT

Đinh nghĩa

- **1** Hàm số mũ: Cho a là số thực dương, khác 1. Hàm số $y = a^x$ được gọi là hàm số mũ cơ số a.
- **② Hàm số lôgarit:** Cho a là số thực dương, khác 1. Hàm số $y = \log_a x$ được gọi là hàm số lôgarit cơ số a.
- **3** Hàm số lũy thừa: Hàm số $y = x^{\alpha}$ với $\alpha \in \mathbb{R}$ được gọi là hàm số lũy thừa.

2. Tập xác định

- ① Hàm số mũ $y = a^x (0 < a \ne 1)$ có tập xác định $D = \mathbb{R}$
- ② Hàm số lôgarit $y = \log_a x (0 < a \ne 1) có txđ D = (0; +\infty)$
- ③ Hàm số lũy thừa $y = x^{\alpha}$ với $\alpha \in \mathbb{R}$ có tập xác định tùy thuộc α :
 - & Với α nguyên dương:

- $\forall V \acute{o}i \ \alpha \ nguyên âm hoặc bằng <math>0: D = \mathbb{R} \setminus \{0\}$
- ₹ Với α không nguyên:
- $D = (0; +\infty)$

3. Một số giới hạn có liên quan

- **(3)** Khi $\alpha > 0$: $\lim_{x \to 0^+} x^{\alpha} = 0$, $\lim_{x \to +\infty} x^{\alpha} = +\infty$ **(9)** Khi $\alpha < 0$: $\lim_{x \to 0^+} x^{\alpha} = +\infty$, $\lim_{x \to +\infty} x^{\alpha} = 0$

4. Đạo hàm

Hàm sơ cấp	Hàm hợp $(u = u(x))$
$(e^x)' = e^x$	$(e^u)' = u'.e^u$
$\left(a^{x}\right)' = a^{x} \cdot \ln a$	$\left(a^{u}\right)'=u'.a^{u}.\ln a$
$\left(\ln x \right)' = \frac{1}{x}$	$\left(\ln\left u\right \right)' = \frac{u'}{u}$
$\left(\log_a x \right)' = \frac{1}{x \ln a}$	$\left(\log_a u \right)' = \frac{u'}{u \ln a}$
$\left(x^{\alpha}\right)' = \alpha x^{\alpha - 1}$	$\left(u^{\alpha}\right)'=\alpha u^{\alpha-1}.u'$
$\left(\sqrt[n]{x}\right)' = \frac{1}{n\sqrt[n]{x^{n-1}}}$	$\left(\sqrt[n]{u}\right)' = \frac{u'}{n\sqrt[n]{u^{n-1}}}$

5. Sự biến thiên và đồ thị

a. Hàm số mũ $y = a^x$:

a > 1	0 < a < 1
① $T\hat{a}p \ x\acute{a}c \ dinh$: $D = \mathbb{R}$	① $T\hat{q}p \ x\acute{a}c \ d\tilde{q}nh$: $D = \mathbb{R}$

② Sự biến thiện: $y' = a^x . \ln a > 0$

Giới hạn đặc biệt:

 $\lim_{x \to -\infty} a^x = 0; \lim_{x \to +\infty} a^x = +\infty$

Tiệm cận: Trục Ox là TCN.

3 Bảng biến thiên:

(4) Đồ thị:

② Sự biến thiện: $y' = a^x . \ln a < 0$

Giới hạn đặc biệt:

 $\lim_{x \to -\infty} a^x = +\infty; \lim_{x \to +\infty} a^x = 0$

Tiệm cận: Trục Ox là TCN.

③ Bảng biến thiên:

4) Đồ thị:

b. $\overline{H\grave{a}m\ s\acute{o}\ l\^{o}garit\ y} = \log_a x$.

a > 1

- ① $T\hat{a}p \ x\acute{a}c \ dinh$: $D = (0; +\infty)$
- ② Sự biến thiện: $y' = \frac{1}{x \cdot \ln a} > 0$

Giới hạn đặc biệt:

 $\lim_{x \to 0^+} \log_a x = -\infty; \lim_{x \to +\infty} \log_a x = +\infty$

Tiệm cận: Trục Oy là TCĐ.

③ Bảng biến thiên:

(4) Đồ thị:

 $\alpha > 1$

- 0 < a < 1
- ① $T\hat{a}p \ x\acute{a}c \ dinh$: $D = (0; +\infty)$
- ② Sự biến thiện: $y' = \frac{1}{x \cdot \ln a} < 0$

Giới hạn đặc biệt:

 $\lim_{x \to 0^+} \log_a x = +\infty; \lim_{x \to +\infty} \log_a x = -\infty$

Tiệm cận: Trục Oy là TCĐ.

3 Bảng biến thiên:

(4) Đồ thị:

c. Hàm số lũy thừa $y = x^{\alpha}$.

① Tập khảo sát:	$D = \bigl(0; +\infty\bigr)$
-----------------	------------------------------

② Sự biến thiện: $y' = \alpha x^{\alpha-1} > 0$

Giới hạn đặc biệt:

- α<0
- ① $T\hat{a}p$ khảo sát: $D = (0; +\infty)$
- ② Sự biến thiện: $y' = \alpha x^{\alpha-1} < 0$ Giới hạn đặc biệt:

 $\lim x^{\alpha} = 0$; $\lim x^{\alpha} = +\infty$

Tiệm cận: Không có.

③ Bảng biến thiên:

 $\lim_{\alpha \to 0^+} x^{\alpha} = +\infty; \lim_{\alpha \to 0^+} \overline{x^{\alpha}} = 0$

Tiệm cận: Ox: TCN; Oy: TCĐ.

③ Bảng biến thiên:

4) Đồ thi:

Dạng 1. Tìm tập xác định của hàm số

A. PHƯƠNG PHÁP GIẢI

1. $y = b \ (b \in \mathbb{R})(h \text{àm } h \text{\grave{a}ng}).$ Hàm số xác định với mọi $x \in \mathbb{R}$. 2. $y = P(x) \ (P(x) \ \text{đa thức})$ Hàm số xác định với mọi $x \in \mathbb{R}$.

 $D = \mathbb{R}$

2. y = P(x) (P(x) da thức)

 $D = \mathbb{R}$

3. $y = \sqrt{A(x)}$ Hàm số xác định $\Leftrightarrow A(x) \ge 0$.

 $\underline{M\mathring{o} \ r\hat{o}ng} \ y = {}^{2k+1} \overline{A(x)} \ (k \in \mathbb{N}^*) \ x\acute{a}c \ d\tilde{q}inh \iff A(x) \ x\acute{a}c \ d\tilde{q}inh.$

5. $y = \frac{A(x)}{B(x)}$ Hàm số xác định $\Leftrightarrow B(x) \neq 0$.

6. $y = \frac{\sqrt{A(x)}}{B(x)}$ Hàm số xác định $\iff \begin{cases} A(x) \ge 0 \\ B(x) \ne 0 \end{cases}$

7. $y = \frac{A(x)}{\sqrt{B(x)}}$ Hàm số xác định $\Leftrightarrow B(x) > 0$.

8. $y = \frac{\sqrt{A(x)}}{\sqrt{B(x)}}$ Hàm số xác định $\Leftrightarrow \begin{cases} A(x) \ge 0 \\ B(x) > 0 \end{cases}$

9. $y = \frac{k(x)}{\sqrt{A(x)} \pm \sqrt{B(x)}} H \lambda m \ s \delta \ x \delta c \ d \sinh \Leftrightarrow \begin{cases} A(x) \ge 0 \\ B(x) \ge 0 \\ \sqrt{A(x)} \pm \sqrt{B(x)} \ne 0 \end{cases}$

10. $y = \tan f(x)$ Hàm số xác định $\Leftrightarrow f(x) \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

11. $y = \cot f(x)$ Hàm số xác định $\Leftrightarrow f(x) \neq k\pi, k \in \mathbb{Z}$

12.
$$y = \log_{a(x)} f(x)$$
 Hàm số xác định $\Leftrightarrow \begin{cases} 0 < a(x) \neq 1 \\ f(x) > 0 \end{cases}$
 $y = \lg f(x)$ Hàm số xác định $\Leftrightarrow f(x) > 0$
 $y = \ln f(x)$ Hàm số xác định $\Leftrightarrow f(x) > 0$

13. $y = a^{f(x)}$ Hàm số xác định $\Leftrightarrow \begin{cases} 0 < a \neq 1 \\ f(x) > 0 \end{cases}$

14. $y = f(x) \pm g(x)$ Hàm số xác định $\Leftrightarrow \begin{cases} f(x) & \text{xác định} \\ g(x) & \text{xác định} \end{cases}$

15. $y = f(x).g(x)$ Hàm số xác định $\Leftrightarrow \begin{cases} f(x) & \text{xác định} \\ g(x) & \text{xác định} \end{cases}$

13.
$$y = a^{f(x)}$$
 Hàm số xác định \Leftrightarrow
$$\begin{cases} 0 < a \neq 1 \\ f(x) > 0 \end{cases}$$

14.
$$y = f(x) \pm g(x)$$
 Hàm số xác định $\Leftrightarrow \begin{cases} f(x) & \text{xác định} \\ g(x) & \text{xác định} \end{cases}$

15.
$$y = f(x).g(x)$$
 Hàm số xác định \Leftrightarrow
$$\begin{cases} f(x) & \text{xác định} \\ g(x) & \text{xác định} \end{cases}$$

16. Hàm số lũy thừa $y = x^{\alpha}$ với $\alpha \in \mathbb{R}$ có tập xác định tùy thuộc α :

$$\delta$$
 Với α nguyên dương: $D = \mathbb{R}$

17.
$$y = \begin{cases} g(x) & khi & x \neq a \\ h(x) & khi & x = a \end{cases}$$
 (TXD D)

- Khi x ≠ a, y = g(x). Ta tìm được tập xác định D₁.
 Khi x = a, y = h(x). Ta tìm được tập xác định D₂.

Khi đó $D = D_1 \cup D_2$.

Ví dụ 16: Tìm tập xác định của hàm số:

(a) $y = x^{\frac{3+2\sqrt{2}}{3+2\sqrt{2}}-12\sqrt{2}}$

B. BÀI TẬP MẪU

b $y = \left(\sqrt{3} + 2\right)^{\frac{x^2 - 3x}{x - 1}}$

\bigcirc $y=2$	$0 y = \sqrt{x} + x - 2 \cdot \log_3(y - x)$
	$ 9 y = \log_3 \frac{x+1}{\sqrt{x^2 - x - 2}} $

GV. IKA	IN QUOC NGHIA	A (Sưu tam & bien tạp)		21
•••••		11-		
		C. BAI TẠP	TỰ LUYỆN	
Bài 28.		định của hàm số:		
	$ a) y = \frac{\sqrt{\log x}}{2^{2x}} $	$\frac{\overline{y_2(x+1)}}{y_{-3}-1} \qquad \text{(b)} y = \left(\frac{1}{2}\right)^{\frac{x^2-2x}{2x+3}}$		① $y = \log_{2x-1}(x^2 - 1)$
			hàm số mũ và logarit	7
		A. PHƯƠNG	PHÁP GIẢI	
	Sử dụng các	công thức:		
		Hàm sơ cấp	Hàm hợp $(u = u(x))$	
		$\left(e^{x}\right)'=e^{x}$	$\left(e^{u}\right)'=u'.e^{u}$	
		$\left(a^{x}\right)' = a^{x} \cdot \ln a$	$\left(a^{u}\right)' = u'.a^{u}.\ln a$	
		$\left(\ln\left x\right \right)' = \frac{1}{x}$	$\left(\ln\left u\right \right)' = \frac{u'}{u}$	
		$\left(\log_a x \right)' = \frac{1}{x \ln a}$	$\left(\log_a u \right)' = \frac{u'}{u \ln a}$	
		$\left(x^{\alpha}\right)' = \alpha x^{\alpha - 1}$	$\left(u^{\alpha}\right)' = \alpha u^{\alpha - 1} . u'$	

 $\left(\sqrt[n]{u}\right)' = \frac{u'}{n\sqrt[n]{u^{n-1}}}$

 $(x^{\alpha})' = \alpha x^{\alpha - 1}$ $(\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n - 1}}}$

B. BÀI TẬP MẪU

Ví dụ 17: Tính đạo hàm của các hàm số sau:

(a)
$$y = 1 - (x^2 - 2x + 1)e^x$$
 (b) $y = 3^x - (2x + 1).2^x$

b
$$y = 3^x - (2x+1).2^x$$

f)
$$y = \log \sqrt[3]{x^2} . \ln(3 - x^2)$$

C. BÀI TẬP TỰ LUYỆN

Bài 29. Tính đao hàm của các hàm số sau:

(a)
$$y = (2x^2 - 1).e^{3x}$$

(b)
$$y = x^3 \sqrt{e^{x^2} + 1}$$

©
$$y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

(d)
$$y = 3^x - \sqrt{e^{3x} + 2}$$

(e)
$$y = \ln(x^3 + 2x^2 - x)$$

①
$$y = (x^2 + 3) \ln(x^2 + 2)$$

$$y = 1 - (2x + 3)3^x$$

①
$$y = 2^x - \sqrt{e^x} + 3^{\sin{\frac{\pi}{4}}}$$

$$\bigcirc y = 1 + x - 2 \ln^2 x$$

$$y = (x^2 + 3) \ln(x^2 + 2)$$

Bài 30. Tính đạo hàm của các hàm số sau:

b
$$y = x^{\pi}.\pi^{x}$$

©
$$y = \ln^5 |4x - 5|$$

(e)
$$y = (x^2 + 3)^{\sin x}$$

①
$$y = \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos x}}}$$

Cho hàm số $f(x) = x \log_x 2$ $(0 < x \ne 1)$. Tính đạo hàm f'(x) và giải bất phương trình Bài 31. $f'(x) \leq 0$.

Chứng minh hàm số $y = x [3\cos(\ln x) + 4\sin(\ln x)]$ thỏa mãn: $x^2y'' - xy' + 2y = 0$. Bài 32.

- **Bài 33.** Cho hàm số: $y = x.e^x$
 - (a) Tính đạo hàm cấp một y', đạo hàm cấp hai y'' của hàm số rồi suy ra đạo hàm cấp n của hàm số.
 - ⓑ Chứng minh rằng: y'' 2y' + y = 0
- **Bài 34.** Tìm a để hàm số sau đây có đạo hàm trên \mathbb{R} : $y = f(x) = \begin{cases} e^x & \text{khi } x \ge 0 \\ x^2 + ax + 1 & \text{khi } x < 0 \end{cases}$
- **Bài 35.** Tìm a để hàm số sau đây có đạo hàm tại x = 0: $y = f(x) = \begin{cases} (x+1)e^{-x} & \text{khi } x > 0 \\ -x^2 ax + 1 & \text{khi } x \le 0 \end{cases}$
- **Bài 36.** Tính đạo hàm cấp n của hàm số $y = \ln(2x+1)$.

Dạng 3. GTLN và GTNN của hàm số mũ và logarit

A. PHƯƠNG PHÁP GIẢI

- Tính y'.
- Giải phương trình y' = 0 và chỉ nhận những nghệm X_0 thuộc [a;b].
- Tính f(a), f(b) và $f(x_0)$.
- Khi đó: $\min_{[a;b]} f(x) = \min\{f(a), f(b), f(x_0)\}; \max_{[a;b]} f(x) = \max\{f(a), f(b), f(x_0)\}$
- 🖎 Chú ý:
 - ✓ Nếu hàm số y = f(x) tăng trên [a;b] thì: $\min_{x \in [a;b]} f(x) = f(a)$ và $\max_{x \in [a;b]} f(x) = f(b)$
 - ✓ Nếu hàm số y = f(x) giảm trên [a;b] thì:

$$\min_{x \in [a;b]} f(x) = f(b) \text{ và } \max_{x \in [a;b]} f(x) = f(a)$$

✓ Nếu bài toán phải đặt ẩn phụ thì phải có điều kiện cho ẩn phụ đó.

B. BÀI TẬP MẪU

Ví dụ 18: Tìm giá trị lớn nhất và giá tị nhỏ nhất của hàm số $y = \frac{\ln^2 x}{x} - 1$ trên đoạn $[1; e^2]$.

C. BÀI TẬP TỰ LUYỆN

Bài 37. Tìm giá trị lớn nhất và giá tị nhỏ nhất của hàm số

ⓐ
$$y = x^2 e^x + 1$$
 trên $[-3; 2]$

©
$$y = (x^2 - 3x + 1)e^x$$
 trên [-3;0]

(d)
$$y = x \ln x - 1$$
 trên $\left[1; e^2\right]$

(e)
$$y = x^2 - \ln(1 - 2x)$$
 trên $[-2; 0]$

(f)

Dạng 4. Khảo sát sự biến thiên và vẽ đồ thị hàm số

A. PHƯƠNG PHÁP GIẢI

- ① Hàm số mũ $y = a^x$:

 - $\emptyset 0 < a < 1$: Hàm số nghịch biến trên \mathbb{R}
- ② Hàm số mũ $y = \log_a x (0 < a \ne 1)$ có tập xác định $D = (0; +\infty)$
 - ϕ a>1: Hàm số đồng biến trên (0;+∞)
 - \emptyset 0 < a < 1: Hàm số nghịch biến trên (0; + ∞)
- ③ $H\grave{a}m\ s\acute{o}\ m\~{u}\ y=x^{\alpha}\ v\acute{o}i\ \alpha\in\mathbb{R}$.
 - - \emptyset $\alpha < 1$: Hàm số nghịch biến trên $(0; +\infty)$
 - - $\mathscr{Y} \quad \alpha < 0$: Hàm số đồng biến trên $(-\infty; 0)$

Ví dụ 19: Vẽ đô thị của các hàm sô sa	ıu:
---------------------------------------	-----

(a)
$$y = 3^x$$
; $y = 3^{x-1}$; $y = 3^{|x|}$

(b) Chứng minh các hàm số $y = a^x$; $y = \left(\frac{1}{a}\right)^x$ có đồ thị đối xứng qua trục Oy .	

C. BÀI TẬP TƯ LUYỀN

Bài 38. Vẽ đồ thị của các hàm số sau:

(a)
$$y = \log_3 x$$
; $y = \log_{\frac{1}{3}} x$; $y = |\log_3 x|$.

(b) Chứng minh các hàm số $y = a^x$; $y = \log_a x$ có đồ thị đối xứng qua y = x.

Vẽ đồ thị của các hàm số sau: Bài 39.

(b)
$$y = \lg(x^2 - 1)$$
 (c) $y = \frac{1}{\sqrt[4]{x}}$.

©
$$y = \frac{1}{\sqrt[4]{x}}$$
.

Xét sự biến thiên của các hàm số sau: Bài 40.

(a)
$$y = \left(\frac{e}{\pi}\right)^x$$

(a)
$$y = \left(\frac{e}{\pi}\right)^x$$
 (b) $y = 3^{-x} \left(\frac{1}{\sqrt{6} - \sqrt{5}}\right)^x$ (c) $y = \log_{\frac{\pi}{e^2}} x$

(e)
$$y = x^{\frac{1}{2}(\sqrt[3]{3}-1)(\sqrt[3]{9}+\sqrt[3]{3}+1)}$$

(a)
$$y = x^{\frac{1}{2}(\sqrt[3]{3}-1)(\sqrt[3]{9}+\sqrt[3]{3}+1)}$$
 (b) $y = \sqrt{x\sqrt{x\sqrt{x}}}$ (c) $y = (5-2\sqrt{6})^{\frac{x^2-2}{2}}$ (d) $y = \log_{\frac{2}{3(2-\sqrt{3})}} x$

(h)
$$y = \log_{\frac{2}{3(2-\sqrt{3})}} x$$

Dạng 5. Tim giới hạn của các hàm số mũ và lôgarit

A. PHƯƠNG PHÁP GIẢI

- ① Biến đổi đưa về các giới hạn cơ bản.
- 2 Một số công thức mở rộng:

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \, (a > 0); \ \lim_{x \to 0} \frac{\log_a (1 + x)}{x} = \frac{1}{\ln a} \, (0 < a \neq 1)$$

③ Đặc biệt ta có thể áp dụng quy tắc L'hopitan: Nếu $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ có dạng vô định $\frac{0}{0}$ hay $\frac{\infty}{\infty}$

và f(x), g(x) có đạo hàm tại một lân cận của điểm x_0 , trừ điểm x_0 thì:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f''(x)}{g''(x)} = \dots$$

4 Các công thức tính giới hạn lượng giác:

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{\sin x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{\sin x} = 1 \qquad \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{x}{\tan x} = 1$$

B. BÀI TẬP MẪU

Ví dụ 20: Tìm các giới hạn sau

(b)
$$\lim_{x\to 0} \frac{\sqrt[3]{e^x} - 1}{2x}$$

$$\bigoplus_{x \to +\infty} \left(\frac{x+3}{x+1} \right)^{4x+3}$$

$$\oint \lim_{x \to 0} \log \left| \frac{\sin 10x}{x} \right|$$

$$\lim_{x \to 0} \frac{\ln(1 + \sin 2x)}{x}$$

$$\bigoplus_{x\to 0} \frac{\ln\left(1+x^2\right)}{x}$$

TÀI LIỆU HỌC TẬP TOÁN 12 - MỮ - LOGARIT 26			
••••••			
••••••		•••••	
• • • • • • • • • • • • • • • • • • • •	••••••	C PÀT TÂD:	rı' ı ıvêsı
		C. BÀI TẬP	I O TO TEN
3ài 41.	Tìm các giới hạn sau	ı:	
	(a) $\lim_{x\to 0} \frac{e^3 - e^{4x+3}}{x}$		© $\lim_{x \to 0} \frac{\left(e^{3x} - e^{5x}\right) \cdot \sin x}{x^2}$ @ $\lim_{x \to +\infty} \frac{e^{\frac{1}{x}} - 1}{\sqrt{\frac{1}{x} + 1} - 1}$
			$\bigvee x$
		$ \oint \lim_{x \to 0} \frac{3^{x^2} - \cos x}{x^2} $	
	$ \text{(i) } \lim_{x \to 0} \frac{e^{-2x^2} - \sqrt[3]{1 + x^2}}{\ln(1 + x^2)} $	$ \bigoplus_{x\to 0} \frac{\ln(1+4x)}{\sin 3x} $	$ \lim_{x \to +\infty} \left(\frac{x+2}{x+1} \right)^{2x+1} \qquad \bigcirc \lim_{x \to 0} \frac{\log_2(1+3x)}{\sin 3x} $
	$ \lim_{x \to 2} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x} - 2^{1-x}}} $		
	$\underline{\underline{D\acute{ap}\ s\acute{o}}}$:	ⓑ 3; ⓒ −2;	(d) 2; (e) 1; (f) ln3 + 1/2
	9 4		-
		① - 7 /3 ①4/3	$\bigcirc \mathbb{R} e^2$ $\bigcirc 1/\ln 2$ $\bigcirc \mathbb{R} $ $\bigcirc 1/2$ $\bigcirc 2$

Dạng 6. Dùng tính đơn điệu để chứng minh bất đẳng thức chứ mũ logarit

A. PHƯƠNG PHÁP GIẢI

Chứng minh bất đẳng thức: $f(x) \ge g(x)$ hoặc $(\le,>,<)$

- ① Chuyển bất đẳng thức đã cho về dạng: $h(x) \ge 0$ hoặc $(\le,>,<)$.
- ② Tìm tập xác định của hàm số y = h(x).
- ③ Tính đạo hàm y' = h'(x) giải phương trình $h'(x) = 0 \implies nghiệm$
- 4 Lập bảng biến thiên. Dựa vào bảng biến thiên suy ra chiều biến thiên của h(x). Từ đó suy ra được bất đẳng thức cần chứng minh.

B. BÀI TẬP MẪU

<mark>Ví dụ 21:</mark> Chứng minh các bất đẳng thức sau	
VI all ZI Chirno minn cac hai dano inire sai	1.
VI du 21. Chang mini cae out dang mae sac	٠.

(a)
$$e^x + \cos x \ge 2 + x - \frac{x^2}{2}$$
, $\forall x \in \mathbb{R}$

(b)
$$\ln(1+x) > x - \frac{x^2}{2}, \ \forall x > 0$$

C. BÀI TẬP TỰ LUYỆN

Bài 42. Chứng minh các bất đẳng thức sau:

(b)
$$e^x > \frac{x^2}{2} + x + 1$$
, $\forall x > 0$

(a)
$$(x+1) \ln x > 2(x-1)$$
, $\forall x > 1$

Chứng minh rằng: $a^2 \ln b - b^2 \ln a > \ln a - \ln b$, (0 < a < b < 1). Cao Đẳng Khối A, B, D - 2009

BÀI TẬP TỔNG HỢP VẤN ĐỀ 3

(a)
$$y = \frac{\sqrt{\log_2(x+1)}}{2^{2x-3}-1}$$
 (b) $y = \left(\frac{1}{2}\right)^{\frac{x^2-2x}{2x+3}}$

b
$$y = \left(\frac{1}{2}\right)^{\frac{x^2-2x}{2x+3}}$$

b
$$y = \left(\frac{1}{2}\right)^{\frac{x^2 - 2x}{2}}$$

©
$$y = \frac{\ln(x^2 + 1)}{\ln 3}$$

Cho hàm số $y = \ln \frac{x}{x+m}$ (1) (m là tham số). Tìm m để hàm số (1): Bài 46.

Nghịch biến trên trừng khoảng xác định.

ⓑ Nghich biến trên khoảng (2; +∞).

Cho hàm số $y = \frac{m}{x} + \ln x$. Tìm m để hàm số đồng biến trên $(1; +\infty)$. Bài 47.

Vẽ đồ thị của các hàm số sau: Bài 48.

$$y = \left(\frac{1}{3}\right)^{|x|}$$

b
$$y = \lg(x^2 - 1)$$

Tìm các giới hạn sau: Bài 49.

$$\lim_{x \to +\infty} \left(\frac{3x+5}{3x-1} \right)^{2x}$$

$$\bigcirc \lim_{x \to 0} (1 + \tan^2 x)^{\frac{1}{\sin x}}$$

(a)
$$\lim_{x \to 0} (1 + \tan^2 x)^{\frac{1}{\sin x}}$$
 (b) $\lim_{x \to 0} \frac{e^{2x} - \sqrt[3]{x^2 + 1}}{\sin 3x}$

$$\lim_{x \to 0} \frac{\lg(1+x^2)}{1-\cos 2x}$$

(a)
$$\lim_{x \to 0} (1 + \sin 3x)^{\frac{1}{x}}$$
 (b) $\lim_{x \to 0} \frac{\lg(1 + x^2)}{1 - \cos 2x}$ (f) $\lim_{x \to 0} \frac{\ln(1 + x^2)}{\sqrt{x^2 + 5} - \sqrt{5}}$

Tính đạo hàm của các hàm số sau: Bài 50.

(a)
$$y = \frac{x^2 + e^x}{e^{2x}}$$

b
$$y = (x^2 + 2) \cdot e^{3x+1}$$

©
$$y = \ln(3 + 2x^2)$$

(b)
$$y = (x^2 + 2)e^{3x+1}$$
 (c) $y = \ln(3 + 2x^2)$ (d) $y = \ln(x + \sqrt{x^2 + 2})$

Cho hàm số: $y = e^x \cdot \sin x$. Chứng minh: y'' - 2y' + 2y = 0. Bài 51.

Cho hàm số: $y = x.\ln x$. Chứng minh: $x^2y'' - xy' + y = 0$. Bài 52.

Tính đạo hàm của hàm số sau tại x = 0: $y = f(x) = \begin{cases} \frac{\ln(\cos x)}{x} & \text{khi } x \neq 0 \\ 0 & \text{khi } x = 0 \end{cases}$ Bài 53.

Tính đạo hàm của hàm số sau tại $\forall x \in \mathbb{R}$: $y = f(x) = \begin{cases} \frac{\sqrt[3]{4x^2 + 8 - \sqrt{8x^2 + 4}}}{\sin 2x} & \text{khi} \\ 0 & \text{khi} \end{cases}$ Bài 54.

Tính đạo hàm của hàm số sau: $y = f(x) = \begin{cases} \frac{x^2}{2} \ln x - \frac{x^2}{4} & \text{khi } x \neq 0 \\ 0 & \text{khi } x = 0 \end{cases}$ Bài 55.

Chứng minh các bất đẳng thức sau: Bài 56.

(b)
$$x - \frac{x^2}{2} < \ln(1+x) < x, (x > 0)$$

©
$$2^{2\sin x} + 2^{\tan x} > 2^{\frac{3x}{2} + 1}$$

(d)
$$e^{2x} > 2(x^2 + x), (x > 0)$$

Vấn đề 4. PHƯƠNG TRÌNH MŨ

1. Dạng cơ bản.

Phương trình mũ cơ bản có dạng: $a^x = b \ (0 < a \ne 1)$

<u>Cách giải</u>: * Khi b > 0 thì $a^x = b \Leftrightarrow x = \log_a b$

* Khi b < 0 thì $a^x = b$ vô nghiệm.

2. Các phương pháp giải

- a. Phương pháp đưa về cùng cơ số.
- b. Phương pháp đặt ẩn phụ.
- c. Phương pháp lôgarit hóa.
- d. Đưa về phương trình tích
- e. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số.

Dạng 1. Phương pháp đưa về cùng cơ số

A. PHƯƠNG PHÁP GIẢI

Sử dụng quy tắc biến đổi lũy thừa để đưa phương trình đã cho về phương trình mà hai vế là hai lũy thừa có cùng cơ số. Áp dụng kết quả:

$$0 < a \ne 1$$
 thì $a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$

ta sẽ đưa phương trình đã cho về phương trình không còn ẩn ở mũ.

		•		
Ví dụ 22: Giải các phương trình sau:				
	a $2^{2x-1} + 4^{x+1} = 72$	ⓑ $9^{x^2+3} = 27^{2x+2}$	© $5^{2^{\frac{1}{x}}} = 625$	$ 4^{-2x^2} = 64^{x-9} $
•••••				
•••••				
•••••				

Ví dụ 23: Giải các phương trình sau:			
a $3^x - 3^{x-1} +$	$3^{x-2} = 2^x + 2^{x-1} + 2^{x-2}$	ⓑ $3^{x+1} + 3^{x+2} + 3^{x+3} = 9.5^x + 5^{x+1} + 5^{x+2}$	
© $5^{2x} - 7^x - 5^x$	$5^{2x}.17 + 7^x.17 = 0$	a $2.3^{x+1} - 6.3^{x-1} - 3^x = 9$	
Ví dụ 24: Giải các phươ	ong trình sau:	-12 ² -17 -16-7	
a $(7+4\sqrt{3})^3$	$= \left(7 - 4\sqrt{3}\right)^{2x+3}$	b $(3-2\sqrt{2})^{x^2-4x} = (3+2\sqrt{2})^{6-x}$	

Ví dụ 25: Giải các phương trình sau:

a $5^{x-2} = 10^x . 2^{-x} . 5^{x+3}$	
--	--

©
$$2^{x+3} \cdot 3^{x-2} \cdot 5^{x+1} = 4000$$
 @ $5^x \cdot 8^{\frac{x-1}{3}} = 500$

•••••	•••••	•••••	

 $\sqrt{16x} + 20$

C. BÀI TẬP TỰ LUYỆN

Bài 57. Giải các phương trình sau:

(a)
$$(1,5)^{5x-7} = \left(\frac{2}{3}\right)^{x+1}$$

$$(0,75)^{2x-3} = \left(1\frac{1}{3}\right)^{5-x}$$

©
$$7^{x-1} = 2^x$$

DS: (a) x = 1; (b) x = -2; (c) $x = \log_{7/2} 7$; (d) $x = -1 \lor x = 6$; (e) $x = -1 \lor x = 2$; (f) x = -1/3

Bài 58. Giải các phương trình sau:

(a)
$$5^{x+1} + 6.5^x - 3.5^{x-1} = 52$$

ⓑ
$$2.3^{x+1} - 6.3^{x-1} - 3^x = 9$$

$$DS: \textcircled{a} \ x = 1; \textcircled{b} \ x = 1;$$

©
$$3^x . 2^{x+1} = 72$$

(d)
$$2^{x+4} + 2^{x+2} = 5^{x+1} + 3.5^x$$

DS: ©
$$x = 2$$
; @ $x = 1$

Bài 59. Giải các phương trình sau:

(a)
$$32^{\frac{x+5}{x-7}} = 0,25.128^{\frac{x+17}{x-3}}$$

©
$$4^{x^2-3x+2} + 4^{x^2+6x+5} = 4^{2x^2+3x+7} + 1$$

DS: ⓐ x = 10; ⓑ $x = \pm \sqrt{5}$ ⓒ $x = -5 \lor x = \pm 1 \lor x = 2$ ⓓ $x = \pm 2 \lor x = 1$

Bài 60. Giải các phương trình sau:

(a)
$$6^x + 6^{x+1} + 6^{x+2} = 5^x + 5^{x+3} - 5^{x+1}$$
 (b) $2^x \cdot 3^{x+1} \cdot 5^{x+2} = 37500$

DS: (a)
$$x = 1$$
; (b) $x = 1$;

DS: ©
$$x = 5$$
; @ $x = -\frac{1}{4}$

Dạng 2. Phương pháp đặt ẩn phụ

A. PHƯƠNG PHÁP GIẢI

Tìm một lũy thừa chung, đặt làm ẩn phụ t để đưa phương trình về phương trình đơn giản hơn.

Khi đặt ẩn phụ cần lưu ý:

1. Nếu đặt $t = a^x$, điều kiện là t > 0 thì:

$$a^{2x} = (a^2)^x = (a^x)^2 = t^2; \ a^{3x} = t^3; \ a^{-x} = \frac{1}{t}, \dots$$

2. Lưu ý khác:

$$\sqrt{2}-1=(\sqrt{2}+1)^{-1}$$
; $2-\sqrt{3}=(2+\sqrt{3})^{-1}$; $\sqrt{7-\sqrt{48}}=(\sqrt{7+\sqrt{48}})^{-1}$; ...

- 3. Gặp phương trình dạng $m.a^{2f(x)} + n.a^{f(x)+g(x)} + p.a^{2g(x)} = 0$ ta chia 2 vế cho $a^{2g(x)}$ và đặt $t = a^{f(x)-g(x)}$
- 4. Gặp phương trình dạng $m.a^{2f(x)} + n.(ab)^{f(x)} + p.b^{2f(x)} = 0$ ta chia 2 vế cho $a^{2f(x)}$ và đặt $t = \left(\frac{a}{b}\right)^{f(x)}$ (a > b)

Ví dụ 26: Giải các phương trình sau:			
a $e^{4x} + 2 = 3.e^{2x}$	ⓑ $9^x - 4.3^x - 45 = 0$	© $3^{2x+5} = 3^{x+2} + 2$	

Ví dụ 27: Giải các phương trình sau:	
Ví dụ 28: Giải các phương trình sau:	
a $5^{x+1} + 5^{1-x} = 26$ b $2^{x^2-x} - 2^{2+x-x^2} = 3$	© $2^{\sin^2 x} + 4.2^{\cos^2 x} = 6$ @ $3^{x+1} + 18.3^{-x} = 29$

Ví dụ 29: Giải các phương trình sau:		
a $4^{\frac{-1}{x}} + 6^{\frac{-1}{x}} = 9^{\frac{-1}{x}}$		
Ví dụ 30: Giải các phương trình sau:		
a $3.8^x + 4.12^x = 18^x + 2.27^x$		
	$ 3.8^x + 4.12^x - 18^x - 2.27^x = 0 $	

GV. TRÂ	N QUỐC NGHĨA (Sưu tầm	& biên tập)	35
•••••			
		C. BÀI TẬP TỤ	'LUYỆN
Bài 61.	Giải các phương trình s	au:	
	(a) $2^{2x} - 3 \cdot 2^{x+2} + 32 = 0$	$(x=2\lor x=3)$	ⓑ $-8^x + 2.4^x + 2^x - 2 = 0$ $(x = 0 \lor x = 1)$
	© $2^{3x+1} - 7 \cdot 2^{2x} + 7 \cdot 2^x - (x = \pm 1 \lor x = 0 \lor x = 2)$	$2 = 0 \ (x = \pm 1 \lor x = 0)$	
Bài 62.	Giải các phương trình s	au:	
	(a) $4^{x+1} - 6.2^{x+1} + 8 = 0$	$(x = 0 \lor x = 1)$	ⓑ $3^{4x+8} - 4.3^{2x+5} + 27 = 0$ $(x = -3/2 \lor x = -1)$
		(x=1)	
Bài 63.	Giải các phương trình s	au:	
	$ (a) 10^{x^2+1} - 10^{1-x^2} = 99 $	$(x=1\lor x=-1)$	b $2^{3x} - 6.2^x - \frac{1}{2^{3(x-1)}} + \frac{12}{2^x} = 1 (x = 1)$
		(x=1)	
Bài 64.	Giải các phương trình s	au:	
	$ (a) 6.4^x - 13.6^x + 6.9^x = $	$0 (x=1 \lor x=-1)$	
		$0 \ (x=1)$	① $3.25^x + 2.49^x = 5.35x \left(x = \log_{\frac{5}{7}} \frac{2}{3} \lor x = 0 \right)$
Bài 65.	Giải các phương trình s	au:	
		U –	$x^{2} + 4.2^{\cos^{2}x} = 6$
		$=4^{\frac{1}{2}}$	$\int_{0}^{\infty} x^{2\cos x + 1} - \left(\frac{1}{15}\right)^{-\cos x - \sin x - \log_{15} 8} + 5^{2\sin x + 2\cos x + 1} = 0$
D_{i}	$S: \odot$ $x = \pm \frac{\pi}{3} + k\pi$ ⓐ	$x = k\frac{\pi}{2}$; (b) $x = \frac{\pi}{2} + k\pi$	$x : \textcircled{1} x = \frac{3\pi}{4} + k\pi \lor x = -\frac{\pi}{2} + k2\pi \lor x = \pi + k2\pi$
Bài 66.	Giải các phương trình s	au:	
	$ (2-\sqrt{3})^x + (2+\sqrt{3})$	^x = 14 <i>DS</i> :	$x = 2 \lor x = -2$
		$\left(-\sqrt{35}\right)^x = 12$	$DS: x = 2 \lor x = -2$
		$\sqrt{21}\big)^x = 2^{x+3}$	$DS: x = 0 \lor x = \log_{\frac{5-\sqrt{21}}{2}} 7$
		$\overline{7 - 4\sqrt{3}}\right)^{\cos x} = 4$	$DS: x = k\pi$
	$(8+3\sqrt{7})^{\tan x} + (8-3)^{\tan x}$	$(\sqrt{7})^{\tan x} = 16$	$DS: x = \pm \pi/4 + k\pi$

Dạng 3. Phương pháp lôgarit hóa

A. PHƯƠNG PHÁP GIẢI

Với phương trình không cùng cơ số dạng $a^{f(x)} = b^{g(x)}$ (a, b dương, khác 1 và nguyên tố cùng nhau), lấy lôgarit cơ số a (hoặc b) cho hai vế, ta có:

$$a^{f(x)} = b^{g(x)} \iff \log_a \left[a^{f(x)} \right] = \log_a \left[b^{g(x)} \right] \iff f(x) = g(x) \log_a b$$

Ví dụ 31: Giải các phương trình sau:				
	a $50.2^{x^2-2} = 5^{x+1}$	ⓑ $3^{x-1}.5^{3\cdot\frac{x-1}{x}} = 15^{x^2-7}$	© $5^x . 8^{\frac{x-1}{x}} - 500 = 0$	a $3^{4^x} = 4^{3^x}$
•••••				
•••••				
•••••				
•••••				
		C. BÀI TẬP TỤ	LUYỆN	
Bài 67.	Giải các phương trình s	au:		
	(a) $3^x \cdot 2^{\frac{x+1}{x-1}} = 72$	ⓑ $5^{7^x} = 7^{5^x}$	0	$5^x . 8^{\frac{x-1}{x}} = 500$
		(e) $x^{-6}.3^{-\log_x 3}$	$=3^{-5}$ (f)	$2^{x^2 - 2x} \cdot 3^x = \frac{3}{2}$
		$DS: \ \ f) \ \ x = 1 \lor x = 1$	$-\log_2 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{\lg 12}{\lg 13}$; $\bigcirc x = \log_{\frac{7}{5}}(\log_5 7)$;
			$3 \lor x = -\log_5 2 \; ; \; \textcircled{a} x =$	$=\sqrt{5}$; (e) $x = \sqrt{3} \lor x = \sqrt[3]{3}$;
Bài 68.	Giải các phương trình s			
	(a) $2^x.5^x = 0, 2.(10^{x-1})^5$	ⓑ $7^{5^x} = 5^{7^x}$	© $3^{x^2-4} = 5^{x-2}$	
	ĐS:	(a) $x = \frac{3}{2} - \frac{1}{4} \lg 2$; (b) x	$t = \log_{\frac{4}{3}}(\log_3 4)$; © x	$= 2 \lor x = \log_3 \frac{5}{9}$; @ $x = 4$;

Dạng 4. Phương pháp đưa về phương trình tích

A. PHƯƠNG PHÁP GIẢI

Biến đổi phương trình đã cho về dạng phương trình tích: $A.B = 0 \Leftrightarrow \begin{bmatrix} A = 0 \\ B = 0 \end{bmatrix}$

Ví dụ 32: Giải phương trình:			
	(a) $8.3^x + 3.2^x = 24 + 6^x$	$6^x + 3^{x+1} = 9 \cdot 2^x + 27$	
•••••			
•••••			
•••••			
•••••			
	C	. BÀI TẬP TỰ LUYỆN	
Bài 69.	Giải các phương trình sau:		
	(a) $3.12^x - 16.3^{x+1} + 16 - 4^x = 0$	\bigcirc 12.3 x + 3	$3.15^x - 5^{x+1} = 20$
		$\bigcirc 6^x - 2^{x+1}$	$+3^x-2=0$
		① $15^x - 3.5$	$5^x + 3^x = 3$
	$ 2^{x+1} + 3 \cdot 2^{2x} = 6 + 2^{3x} $	ⓑ $3^{4x-3}+3$	$x^{x-2} = 9 + 3^{5x-7}$.
Bài 70.	Giải các phương trình sau:		
	(a) $x^2 \cdot 2^{x-1} - 2^{x+1} - x^2 \cdot 2^{ x-7 +4} + 2^{x+1}$	$2^{ x-7 +6} = 0 $	$(-2^{2-x})+3=3x^2+2^{2-x}+2^{x-1}$
	© $x^2 (2^{x+1} - 2^{ x-3 +4}) + 2^{ x-3 +2} -$	$2^{x-1} = 0 (d) 4^{2x+\sqrt{x+2}}$	$+2^{x^3} = 4^{2+\sqrt{x+2}} + 2^{x^3+4x-4}$
		7 + 1	$+2^{x^3} = 4^{2+\sqrt{x+2}} + 2^{x^3+4x-4}$
	DS: (a) $x = -2$	$2 \lor x = 2 \lor x = 6 \ \text{(b)} \ x = \pm 1 \lor x = 0$	$2 © x = \pm 1/2 \lor x \ge 3 @ x = 1 \lor x = 2$
		(e) $x = \pm 1$	$x = 2 \lor x = 5 $

Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số

A. PHƯƠNG PHÁP GIẢI

Định lí: Nếu y = f(x) là hàm số liên tục và đồng biến trên (a;b), y = g(x) là hàm số liên tục và nghịch biến trên (a;b) thì phương trình f(x) = g(x) có tối đa một nghiệm trong khoảng (a;b).

Hướng 1: Biến đổi hai vế của phương trình sao cho một vế là một hàm số đồng biến (hoặc là hàm hằng) và một vế là một hàm số nghịch biến (hoặc là hàm hằng)

- ✓ <u>Bước 1</u>: Nhẩm và chứng minh x_0 là nghiệm
- ✓ <u>Bước 2</u>: Chứng minh x_0 là nghiệm duy nhất (bằng cách chứng minh $x \neq x_0$ không là nghiệm)

Hướng 2: Đưa phương trình về dạng f(u) = f(v) mà f là hàm số tăng hay giảm. Khi đó ta có: $f(u) = f(v) \Leftrightarrow u = v$.

🖎 Chú ý:

- Nếu f(x) hoặc g(x) là hằng số thì định lí trên vẫn đúng.
- Nếu h(x) và k(x) là hai hàm số liên tục và đồng biến trên (a;b) thì h(x)+k(x) cũng đồng biến trên (a;b).
- Nếu h(x) và k(x) là hai hàm số liên tục và nghịch biến trên (a;b) thì h(x)+k(x) cũng nghịch biến trên (a;b).
- Hàm số $y = a^x$ đồng biến trên \mathbb{R} khi a > 1 và nghịch biến trên \mathbb{R} khi 0 < a < 1.

Ví dụ 33: Giải các phương trình sau:				
	a $2^x + 3x - 5 = 0$	b $3^x + 4^x = 5^x$		
•••••				
•••••				
•••••				
•••••				
•••••				
•••••				
•••••				
•••••				
•••••				
•••••				
•••••				

GV. TRĀ	N QUỐC NGHĨA (Sưu tầm & biên tập)	39
•••••		
•••••		
	C. BÀI TẬP TỤ	LUYỆN
Bài 71.	Giải các phương trình sau:	
	(a) $2^x = 1 + 3^{\frac{x}{2}}$ (b) $2^{x-1} - 2^{x^2 - x} = (x-1)^2$	© $2^x = 3^{-x}$ @ $(2\sqrt{6})^x + 1 = 5^x$
	(e) $6^x + 8^x = 10^x$ (f) $5^x + 12^x = 13^x$,
	<i>DS</i> : (a) $x = 2$; (b) $x = 1$; (c) $x = 1$	=1; (a) $x = 2$ (b) $x = 2$ (f) $x = 2$ (g) $x = 2$ (h) $x = 1$
Bài 72.	Giải các phương trình sau:	
	(a) $\left(\sqrt{7+4\sqrt{3}}\right)^x + \left(\sqrt{7-4\sqrt{3}}\right)^x = \sqrt{14^x}$	
		<i>DS</i> : ⓐ $x = 2$ ⓑ $x = 2$ ⓒ $x = 2$ ⓓ $x = 2$
Bài 73.	Giải các phương trình sau:	
	(a) $9^x + 2(x-2) \cdot 3^x + 2x - 5 = 0$	ⓑ $x \cdot 2^x = x(3-x) + 2(2^x - 1)$
	© $3^{2x-1} + 3^{x-1}(3x-7) - x + 2 = 0$	
	(a) $3.25^{x-2} + (3x-10).5^{x-2} + 3 - x = 0$	① $3.2^x + 6 - 2x = 3 - x - (3x - 10).2^x$
	<i>DS</i> : (a) $x = 1$ (b) $x = 2 \lor x = 0$ (c) $x = 1 \lor x = 0$ (d) $x = 1$	$= 4 x = 2 x = 2 - \log_5 3 x = 1 x = -\log_2 3$
	BÀI TẬP TỔNG HỌ	YP VẤN ĐỀ 4
Bài 74.	Giải các phương trình sau:	-
	© $4^{\log_9 x} - 6.2^{\log_9 x} + 2^{\log_3 27} = 0$	
	DS: a x = x	± 1 ; (a) $x = 0$; (c) $x = 9 \lor x = 81$; (d) $x = 9 \lor x = 1$
Bài 75.	Giải các phương trình sau:	
	(a) $2.4^{-\frac{1}{x}} - 6^{-\frac{1}{x}} = 3.9^{-\frac{1}{x}}$	
	© $8^x + 18^x = 2.27^x$	② $25^{2x-x^2+1} + 9^{2x-x^2+1} = 34.15^{2x-x^2}$

DS:ⓐ x = 1 ⓑ $x = \log_{\frac{1+\sqrt{2}}{2}} \frac{7}{5}$; ⓒ x = 0; ⓓ $x = 0 \lor x = 2 \lor x = 1 + \sqrt{3} \lor x = 1 - \sqrt{3}$

Vấn đề 5. BẤT PHƯƠNG TRÌNH MŨ

1. Dạng cơ bản

- <u>Dang:</u> $a^x > b$ $(0 < a \ne 1)(hoặc <math>a^x \ge b, a^x < b, a^x \le b)$
- <u>Cách giải</u>: Xét bất phương trình: $a^x > b$
 - Nếu $b \le 0$, bất phương trình có vô số nghiệm
 - $N\acute{e}u \ b > 0$:

$$\checkmark V \acute{o}i \ a > 1: \qquad a^x > b \Leftrightarrow a^x > a^{\log_a b} \Leftrightarrow x > \log_a b$$

2. Các phương pháp giải

- a. Phương pháp đưa về cùng cơ số.
- b. Phương pháp đặt ẩn phụ.
- c. Phương pháp mũ hóa hay lôgarit hóa.

Dạng 1. Phương pháp đưa về cùng cơ số

A. PHƯƠNG PHÁP GIẢI

Với $0 < a \ne 1$ thì:

•
$$a^{f(x)} > a^{g(x)} \Leftrightarrow \begin{cases} f(x) > g(x) & khi & a > 1 \\ f(x) < g(x) & khi & 0 < a < 1 \end{cases}$$
• $a^{f(x)} \ge a^{g(x)} \Leftrightarrow \begin{cases} f(x) \ge g(x) & khi & a > 1 \\ f(x) \le g(x) & khi & a > 1 \end{cases}$

•
$$a^{f(x)} \ge a^{g(x)} \Leftrightarrow \begin{cases} f(x) \ge g(x) & khi & a > 1 \\ f(x) \le g(x) & khi & 0 < a < 1 \end{cases}$$

Ví dụ 34: Giải các l	bât phương trình sau:
-----------------------------	-----------------------

a
$$3^x > 81 \ (x > 4)$$

(e)
$$8.4^{\frac{x-3}{x^2+1}} < 1 \ (-1 < x < 0)$$

①
$$5^{\log_3 \frac{x-2}{x}} < 1 \ (x > 2)$$

ⓑ
$$3^{x+2} + 3^{x-1} \le 29 \ (x \le 1)$$

ⓑ
$$\left(\frac{1}{2}\right)^x > 32 \ (x < -5)$$

3
$$3^{x^2-2x+\log_3 5} > 5 (x < 0 \lor x > 2)$$

(f)
$$2^{-x^2+3x} < 4 \ (x < 1 \lor x > 2)$$

$$\bigcirc \frac{1}{27^x} \le \sqrt{3} \ (x \ge 1/6)$$

GV. TRẨN QUỐC NGHĨA (Sưu tầm & biên tập)	41
Ví dụ 35: Giải các phương trình sau: (a) $3^{x^2-2x} < 3 \left(1-\sqrt{2} < x < 1+\sqrt{2}\right)$ (b) $2^{ x-2 } > 4^{ x+1 } \left(-4 < x < 0\right)$	
	:3)
	$\sqrt{5}$

	-

.....

TÀI LIỆU	HỌC TẬP TOÁN 12 - MŨ - LOGAR	!IT		42
•••••		•••••		
•••••				
•••••				
	C.	BÀI TẬP TỰ	LUYỆN	
Bài 76.	Giải các bất phương trình sau:	2 -		
		$\left(\right)^{2x^2 - 3x} \ge \frac{9}{7}$	© $3^{ x-2 } < 9$	3 $4^{ x+1 } > 16$
		6x > 1		ⓑ $16^x \ge 0,125$
		$ -2 > 4^{ x+1 }$	$ (0,5)^{x^2-5x+4} > 4 $	① $3^{2x+5} > 1$
	<i>DS</i> : (a) $1 < x \le 2$ (b) $1/x$	$2 \le x \le 1 \odot 0 < x$	x < 4	
	⑨ -6≤2	$x \le 3 \text{ (b) } x > -3/4$	$1 \bigcirc x < 3 \bigcirc -4 < x < 0$	8 2 < x < 3 1 x > -5/2
Bài 77.	Giải các bất phương trình sau:			
	$ (3) 15^{2x+3} > 5^{3x+1} \cdot 3^{x+5} (x < 2) $			>4)
	© $5^x \cdot 2^{\frac{2x-1}{x+1}} < 50 (x < -\log_5 10 \lor)$	-1 < x < 2)		$x^{-4} \ge 12 (x \le -1 \lor x \ge 4)$
Bài 78.	Giải các bất phương trình sau: ⓐ $7^x - 2^{x+2} \le 5.7^{x-1} - 2^{x-1}$ ($x \le 2$)	2)		$3.5^{x-1} (x > 3)$
		$c \leq 2$		$118.5^{x-1} (x < 2)$
Bài 79.	Giải các bất phương trình sau:			
	(a) $(x^2 + 2x + 3)^{\frac{x-1}{x+1}} \ge 1$ (b) $(x^2 + 2x + 3)^{\frac{x-1}{x+1}} \ge 1$	$(x^2 + x + 1)^x < 1$	© $(x-2)^{2x^2-7x} > 1$	
	∂S : ⓐ $x < -1 \lor$	$x \ge 1 \ \ \ \ \ x < -1$	© $2 < x < 3 \lor x > 7/2$	

Dạng 2. Phương pháp đặt ẩn phụ

A. PHƯƠNG PHÁP GIẢI

Tìm một lũy thừa chung, đặt làm ẩn phụ t để đưa bất phương trình về bất phương trình đơn giản hơn.

Khi đặt ẩn phụ cần lưu ý:

1. Nếu đặt $t = a^x$, điều kiện là t > 0 thì:

$$a^{2x} = (a^2)^x = (a^x)^2 = t^2; \ a^{3x} = t^3; \ a^{-x} = \frac{1}{t}, \dots$$

2. Lưu ý khác:

$$\sqrt{2}-1=(\sqrt{2}+1)^{-1}$$
; $2-\sqrt{3}=(2+\sqrt{3})^{-1}$; $\sqrt{7-\sqrt{48}}=(\sqrt{7+\sqrt{48}})^{-1}$; ...

- 3. Gặp bất phương trình dạng $m.a^{2f(x)} + n.a^{f(x)+g(x)} + p.a^{2g(x)} > 0$ ta chia 2 vế cho $a^{2g(x)}$ và đặt $t = a^{f(x)-g(x)}$
- **4.** Gặp phương trình dạng $m.a^{2f(x)} + n.(ab)^{f(x)} + p.b^{2f(x)} > 0$ ta chia 2 vế cho $a^{2f(x)}$ và đặt $t = \left(\frac{a}{b}\right)^{f(x)}$ (a > b)

Ví dụ 36: Giải các bất phương trình sau:
a $4^{x} - 2.5^{x} < 10^{x} (x > -\log_{5/2} 2)$ b $(\sqrt{5} + 1)^{x-x^{2}} + 2^{-x^{2} + x + 1} < 3.(\sqrt{5} - 1)^{x-x^{2}} (x < 0 \lor x > 1)$
© $4^x - 3.2^x + 2 > 0$ ($x < 0 \lor x > 1$)

Ví dụ 37:	Ví dụ 37: Giải các bất phương trình sau:			
	a $9^{\sqrt{x^2-3x}} + 3 < 28.3^{\sqrt{x^2-3x}-1} (-4 < x \le 0)$ b $2^{3x} - \frac{8}{2^{3x}} - 6\left(2^x - \frac{1}{2^{x-1}}\right) \le 1$ $(x \le 1)$			
	© $3^{2x} - 8.3^{x + \sqrt{x+4}} - 9.9^{\sqrt{x+4}} > 0 \ (x > 5)$			
	(a) $25^{1+2x-x^2} + 9^{1+2x-x^2} \ge 34.15^{2x-x^2} (x \le 1 - \sqrt{3} \lor x > 1 + \sqrt{3} \lor 0 \le x \le 2)$			
•••••				
•••••				
•••••				
•••••				
••••••				
••••••				
•••••				

GV. TRÂI	N QUỐC NGHĨA (Sưu tầm & biê	n tập)	4
•••••			
		}	
		C. BÀI TẬP TỰ LƯ	YĘN
Bài 80.	Giải các bất phương trình sa ⓐ $9^x < 3^{x+1} + 4$	u: (b) $16^x - 4^x - 6 \le 0$	$\odot 49^x - 6.7^x - 7 < 0$
			> 12
	$\bigcirc 9^x - 2.3^x < 3$		$ \bigcirc 9^{\sqrt{x^2-3}} + 3 > 28.3^{\sqrt{x^2-3}-1} $
	DS:	(b) $x < \log_4 3$ (c) $x < 10$	① $1 - \sqrt{2} \le x \le 1 + \sqrt{2}$ ② $-1 < x < 3$ ① $x > 1$
	$9 \ 1 < x < 3 \ \text{(b)} \ x < 1 \ \text{(c)}$	$) x < -1 \lor x > 1 $	(k) $x < 2$ (1) $-\sqrt{7} < x \le -\sqrt{3} \lor \sqrt{3} \le x < \sqrt{3}$
Bài 81.	Giải các bất phương trình sa		
		Ь	$6.9^{\frac{1}{x}} - 13.6^{\frac{1}{x}} + 6.4^{\frac{1}{x}} \le 0$
	© $3^{2x} - 8.3^{x+\sqrt{x+4}} - 9.9^{\sqrt{x+4}} >$	0 @	$\left(\sqrt{5}+1\right)^{-x^2+x}+2^{-x^2+x+1}<3.\left(\sqrt{5}-1\right)^{-x^2+x}$
	$ (9) 5.36^x - 2.81^x - 3.16^x \le 0 $	f	$25^{2x-x^2+1} + 9^{2x-x^2+1} \ge 34.15^{2x-x^2}$
		DS: ⓐ x	$x > 0 \oplus x \le -1 \lor x \ge 1 \oplus x > 5 \oplus x < 0 \lor x > 0$
			$\sqrt{x} \ge 1/2 $
Bài 82.	Giải các bất phương trình sa		
	(a) $\frac{4^x - 2^{x+1} + 8}{2^{1-x}} < 8^x$ (b)	$\frac{1}{3^x + 5} < \frac{1}{3^{x+1} - 1} \qquad \bigcirc$	$\frac{2.3^{x} - 2^{x+2}}{3^{x} - 2^{x}} \le 1 \qquad \textcircled{0} \frac{11.3^{x-1} - 31}{4.9^{x} - 11.3^{x-1} - 5} \ge 5$
	DS ⓐ $x > 1$ ⓑ $-1 < 1$	$< x \le 1 \odot 0 < x \le \log_{3/2} 3$	3
Bài 83.	Giải các bất phương trình sa		
		_	① $5^x - 5^{3-x} > 20$
			$+2 \ge 0$
		$DS: \qquad \textcircled{a} x > 0$) (a) $x < -1$ (b) $0 < x < 1$ (d) $x > 1$ (e) $x < -1$
			① $x > 2$ ② $x < \log_3 \frac{3}{\sqrt[3]{5}}$ ① $x \ge \frac{1}{2} \log_2 3 - \frac{1}{3} \log_2 3 - $

Ví dụ 38: Giải các bất phương trình sau:

Dạng 3. Phương pháp lôgarit hóa

A. PHƯƠNG PHÁP GIẢI

Với bất phương trình mũ mà cả hai vế là tích hay thương của nhiều lũy thừa với các cơ sơ khác nhau thì ta có thể lấy lôgarit hai vế, ta có:

• Dạng 1:
$$a^{f(x)} > b^{g(x)}$$

$$\checkmark N\acute{e}u \ a>1: \qquad a^{f(x)}>b^{g(x)} \Leftrightarrow f(x)>g(x).\log_a b$$

$$\checkmark N\acute{e}u \ 0 < a < 1: \ a^{f(x)} > b^{g(x)} \Leftrightarrow f(x) < g(x).\log_a b$$

• Dạng 2:
$$a^{f(x)} \ge b^{g(x)}$$

$$\checkmark N\acute{e}u \ a>1: \qquad a^{f(x)}>b^{g(x)} \Leftrightarrow f(x)\geq g(x).\log_a b$$

$$\checkmark N\acute{e}u \ 0 < a < 1: \ a^{f(x)} > b^{g(x)} \Leftrightarrow f(x) \le g(x).\log_a b$$

• Dang 3, 4:
$$a^{f(x)} < b^{g(x)}$$
, $a^{f(x)} \le b^{g(x)}$: twong tw.

a 3 ²	$x^{x-1} < 11^{3-x} \left(x < \frac{3\log_3 11 + 11}{2 + \log_3 11} \right)$	6 $(x-2)^{x^2-6x+8} > 1$ (với $2 < x \ne 3$) $(2 < x \ne 3)$	$x < 3 \lor x > 4)$
© 3 ^{x²}	$^{2}.2^{x} \le 1 \left(-\log_{3} 2 \le x \le 0\right)$	6 $5^{4x^2-3} > 5.3^{3x-3} \left(x < \frac{3\log_5 3 - 4}{4} \lor x > 1 \right)$	
® 5 ^x .	$.8^{\frac{x-1}{x}} > 500 \left(-\log_5 2 < x < 0 \lor x > \right)$	3)	$\vee x \ge 1$
•••••			
			•••••
•••••			

GV. TRÂ	N QUỐC NGHĨA (Sưu tầm & biên tập)		47
•••••			
•••••			
•••••			
•••••			
••••••			
•••••			
•••••			
••••••			
	C PÀI TÂ	P TỰ LUYỆN	
D)1.04	_	P IQ LOIĻI	
Bài 84.	Giải các bất phương trình sau:	ay ay	2
	(a) $4^{x}.27^{\frac{x-1}{x}} > 576$ (b) $125^{\frac{x}{x+2}} \le 225.3^{2-x}$	© $3^{5^4} < 5^{3^4}$	
	(a) $x^6.5^{-\log_x 5} > 5^{-5}$ (b) $5.x^{\log_5 x} \ge x^2$		
			$0 \le x \le 4$ © $x < \log_{5/3} (\log_3 5)$
	($) \ x < \log_2(3/4) \lor x > 2 \ ($	$0 < x < 1/5 \lor x > \sqrt[6]{5} \text{fo} x > 0$
		<pre>9 1/6 < x < 1 </pre>	$x < \sqrt[4]{6}$ (b) $x \ge 3/2 - (\lg 2)/4$

BÀI TẬP TỔNG HỢP VẤN ĐỀ 5

Bài 85. Giải các bất phương trình sau:

DS:
$$x < -8 \lor x > 4$$

$$\odot 3^{\sqrt{x^2-2x}} > \left(\frac{1}{3}\right)^{x-|x-1|}$$

$$DS: x \ge 2$$

$$DS: -2 < x < -1 \lor x > 1$$

DS:
$$-3 < x < -\sqrt{5} \lor 1 < x < \sqrt{5}$$

(f)
$$3^{x^2-x} + 3^{x^2+2x} > 3^{2x^2+x} + 1$$

$$DS: -2 < x < 0 \lor 0 < x < 1$$

Bài 86. Giải các bất phương trình sau:

(a)
$$|x-1|^{\lg^2 x - \lg x^2} \ge |x-1|^3$$

$$DS: \frac{1}{10} \le x < 2 \lor x \ge 1000$$

ⓑ
$$|x|^{x^2-2x} \ge 1$$

ĐS:
$$x < -1 \lor 0 < x < 1 \lor x ≥ 2$$

Bài 87. Giải các bất phương trình sau:

(a)
$$2.2^x + 3.3^x > 6^x - 1$$

$$DS: \frac{1}{2} < x \le 2$$

Vấn đề 6. PHƯƠNG TRÌNH LÔGARIT

1. Dạng cơ bản.

Phương trình lôgarit cơ bản có dạng: $\log_a x = b \ (0 < a \ne 1, x > 0)$

<u>Cách giải</u>: $\log_a x = b \iff x = a^b$

2. Các phương pháp giải

- a. Phương pháp đưa về cùng cơ số.
- b. Phương pháp đặt ẩn phụ.
- c. Phương pháp mũ hóa.
- d. Đưa về phương trình tích
- e. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số.

Dạng 1. Phương pháp đưa về cùng cơ số

A. PHƯƠNG PHÁP GIẢI

Với 0 < a ≠ 1 thì:

•
$$\log_a [f(x)] = \log_a [g(x)] \Leftrightarrow \begin{cases} f(x) > 0 & (hay \ g(x) > 0) \\ f(x) = g(x) \end{cases}$$

• $\log_a f(x) = m \Leftrightarrow f(x) = a^m$

Ví dụ 39: Giải các phương trình sau:	
a $\log_3 x + \log_x (x+2) = 1 (x=1)$	b $\log_2(2^x - 3) + x = 2$ (x = 2)
	$\Theta \log_4(x+12).\log_x 2=1 \ (x=4)$

Ví du 40	: Giải các phương trình sau:		
VI UŲ 40	(a) $\log(\sqrt{x+1}+1) - 3\log\sqrt[3]{x-40} = 0$		$\Theta = \log(x, 0) \log(2x, 1) = 0$
	$\Theta \log(\sqrt{x+1+1}) - 3\log(\sqrt{x-40}) = 0$		ⓑ $2 - \log(x - 9) - \log(2x - 1) = 0$
		,	
	DS: ⓐ $x =$	48; (b) $x = 13$; (c)	$x = 0; x = 2; x = 1 \pm 2\sqrt{3}; \text{ (d)} x = 3^{\log_{9/4} 4}$
•••••			
•••••			
•••••		•••••	
•••••		•••••	
•••••			
•••••			
•••••		••••••	
••••••			
••••••			
••••••			
	C. BÀI 1	ΓẬΡ TỰ LUYỆN	
Bài 88.	Giải các phương trình sau:		
			$+\log_3(x+2) = 1$
	© $\log_2(x^2-3)-\log_2(6x-10)+1=0$	$\log_2(2)$	$2^{x+1} - 5) = x$
		$DS: \ \textcircled{a} \ \ x = 1 \lor x = 1$	-3 ; (a) $x = 1$; (b) $x = 2$; (d) $x = \log_2 5$
Bài 89.	Giải các phương trình sau:		
	(a) $2\lg 2x = \lg (x^2 + 75)$	b lg(x+10) +	$\frac{1}{2}\lg x^2 = 2 - \lg 4$
	© $\log_3(3^x + 8) = 2 + x$	$\log_3 \left[x(x-1) \right]$	2
		<i>DS</i> : (a) $x = 5$; (b)	$x = -1/4$; © $x = 0$; @ $x = -1 \lor x = 2$

Bài 90. Giải các phương trình sau:

(a)
$$\ln x + \ln (x+1) = 0$$

$$\ln (x+1) + \ln (x+3) = \ln (x+7)$$

(d)
$$\lg x^4 + \lg 4x = 2 + \lg x^3$$

(a)
$$\log_4 \left[(x+2)(x+3) \right] + \log_4 \frac{x-2}{x+3} = 2$$
 (b) $\log_{\sqrt{3}} (x-2) \log_5 x = 2 \log_3 (x-2)$

①
$$\log_{\sqrt{3}}(x-2)\log_5 x = 2\log_3(x-2)$$

DS: (a)
$$x = (\sqrt{5} - 1)/2$$
; (b) $x = 1$; (c) $x = 3$; (d) $x = 5$ (e) $x = 2\sqrt{5} \lor x = -2\sqrt{5}$ (f) $x = 3 \lor x = 5$

Bài 91. Giải các phương trình sau:

(a)
$$\log_{\frac{1}{2}}(x-1) + \log_{\frac{1}{2}}(x+1) - \log_{\frac{1}{\sqrt{2}}}(7-x) = 1$$

$$DS: x = 3$$

(b)
$$\frac{3}{2} \log_{\frac{1}{4}} (x+2)^2 - 3 = \log_{\frac{1}{4}} (4-x)^3 + \log_{\frac{1}{4}} (x+6)^3$$

DS:
$$x = 2 \lor x = 1 - \sqrt{33}$$

DS:
$$x = 1 \lor x = \sqrt{3}/8$$

DS:
$$x = 4 \lor x = 1/4$$

Dạng 2. Phương pháp đặt ẩn phụ

A. PHƯƠNG PHÁP GIẢI

Tìm một $\log_a f(x)$ chung trong phương trình, đặt bằng t để đưa phương trình về phương trình theo ẩn t, giải phương trình này tìm t sau đó tìm x.

Khi đặt ẩn phụ cần lưu ý: Nếu đặt $t = \log_a x$ thì:

$$\log_{\frac{1}{a}} x = -t; \log_{a^2} x = \frac{1}{2}t; \log_a^2 x = (\log_a x)^2 = t^2; \log_x a = \frac{1}{t}$$

VI uu 41. Giai cac phuong triili sau.		
a $\log_2^2 x - 3\log_2 x + 2 = 0 \ (x = 1)$	(b) $\log_{\frac{1}{2}} x + \log_2^2 x = 2$	(x=4; x=1/2)

©
$$\frac{1}{5 - \log x} + \frac{2}{1 + \log x} = 1(x = 100; x = 1000)$$
 @ $\frac{6}{\log_2 2x} + \frac{4}{\log_2 x^2} = 3(x = 4; x = \sqrt[3]{4}/2)$

	$+\frac{2}{1+\log x} = 1(x =$	=100; x = 1000) @	$\int \frac{0}{\log_2 2x} + \frac{4}{\log_2 x^2} = 3$	$3 (x = 4; x = \sqrt[3]{4/2})$

TÀI LIỆU HỌC TẬP TOÁN 12 - MŨ - LOGARIT	52
	•••••
	••••••
	••••••
Ví dụ 42: Giải các phương trình sau:	
(a) $\log_3(2x+1) - 2\log_{2x+1} 3 - 1 = 0$ $(x = -1/3; x = 4)$ (b) $\log_{x-1} 4 = 1 + \log_2(x - 1/3; x = 4)$	1) $(x = 3; x = 5/4)$
- 23 () 22 () 22 (, , , ,
	••••••
	••••••
Vá do 42. Ci2i các abragas talab som	
Ví dụ 43: Giải các phương trình sau:	
(a) $\log_2^2 x^2 - 4\log_2 x^3 + 8 = 0 \ (x = 2; x = 4)$ (b) $\frac{6}{\log_2 16x} + \frac{4}{\log_2 x^2} = 2 \ (x = 4)$	x = 4; x = 1/4
© $\log_3^2 x + \sqrt{\log_3^2 + 1} - 5 = 0$ $\left(x = 3^{\sqrt{3}}; x = 3^{-\sqrt{3}} \right)$	$x = -2; x = -2^{25})$
	•••••
	•••••
	••••••

GV. TRÅI	N QUỐC NGHĨA (Sưu tầm & biên tập)	53
•••••		
•••••		•••••
••••••		
	C. BÀI TẬP TỰ LUYỆN	
Bài 92.	Giải các phương trình sau:	
	(a)	43 = 0
	© $3\sqrt{\log_3 x} - \log_3 3x - 1 = 0$	
	$1 + \log_9 x 1 + \log_{81} x \qquad \qquad \log_4 2x \log_{16} 8x$ $DS: \qquad \textcircled{a} x = 3 \lor x = 1 + 2^{-7/4}; \textcircled{b} x = 2^{-3} \lor x = 2^{-4/3}$	5 · 6 · r = 2 · / r = 81 ·
Bài 93.	Giải các phương trình sau:	
	(a) $4\log_9 x + \log_x 3 = 3$ (b) $\log_x 2 - \log_4 x + \frac{7}{6} = 0$ (c) $\log_{\frac{2}{x}} 2 + \log_{\frac{2}{x}} 2$	$_{2}4x=3$
	① $\log_2 x + \log_x 2 = \frac{5}{2}$ ② $\log_2 (2x^2 - 5) + \log_{2x^2 - 5} 4 = 3$ ① $\log_2 x + 1 - 1$	$\log_{x+1} 64 = 1$
	<i>DS</i> : (a) $x = 3 \lor x = \sqrt{3}$; (b) $x = 2^{-2/3} \lor x = \sqrt{3}$	
	① $x = \sqrt{2} \lor x = 4$; ② $x = \pm \sqrt{7/2} \lor x = \pm \sqrt{9/2}$	(f) $x = 7 \lor x = -3/4$
	Dạng 3. Phương pháp mũ hóa	
	A. PHƯƠNG PHÁP GIẢI	

Với các phương trình dạng $\log_a f(x) = g(x)$, ta thường sử dụng phương pháp mũ hóa để đưa về phương trình mũ:

$$\log_a f(x) = g(x) \Leftrightarrow f(x) = a^{g(x)}$$

B. BÀI TẬP MẪU

Ví dụ 44: Giải các phương trình sau:

a
$$\log_7 (6+7^{-x}) = 1+x \ (x=0)$$

©
$$\log_2(3.2^x - 1) - 2x - 1 = 0$$
 $(x = 0; x = -1)$ @ $\log_2(9 - 2^x) = 5^{\log_5(3 - x)}$ $(x = 0)$

a)
$$\log_{x}(9-2^{x}) = 5^{\log_{5}(3-x)}$$
 ($x = 0$)

TÀI LIỆU HỌC TẬP TOÁN 12 - MŨ - LOGARIT	54
C. BÀI TẬP TỰ LUY	ÊN
Bài 94. Giải các phương trình sau:	
(a) $\log_{x+1}(x^2 - 3x + 1) = 1$ (b) $\log_2(3.2^x - 1) = 2x + 1$ (c)	$\log_{x+1} \left(2x^3 + 2x^2 - 3x + 1 \right) = 3$
(a) $\log_2(9-2^x) = 3-x$ (b) $\log_{2x-3} x = 2$	$\log_{2x-3} 16 = 2$
	3; (a) $x = 0 \lor x = 3$ (e) $x = 9/4$; (f) $x = 7/2$

Dạng 4. Phương pháp đưa về phương trình tích

A. PHƯƠNG PHÁP GIẢI

Biến đổi phương trình đã cho về dạng phương trình tích: $A.B = 0 \Leftrightarrow \begin{bmatrix} A = 0 \\ B = 0 \end{bmatrix}$

B. BÀI TẬP MẪU

Ví dụ 45: Giải phương trình: $2\log_9^2 x = \log_3 x \cdot \log_3 (\sqrt{2x+1} - 1)$	<i>DS</i> : $x = 1 \lor x = 4 + 2\sqrt{5}$
C BÀT TÂD TI' LIVÊN	

Bài 95. Giải các phương trình sau:

(a)
$$\log_2 x + 2\log_7 x = 2 + \log_2 x \cdot \log_7 x$$
 (b) $2x + \log_2 (x^2 - 4x + 4) = 2 - (x + 1)\log_{\frac{1}{2}} (2 - x)$

$$\odot \frac{1}{x-1}\log_2^2 x + \log_2 x + 2 = \frac{4}{x-1}$$

DS: ⓐ
$$x = 4 \lor x = 7$$
 ⓑ $x = 1 \lor x = -2$ ⓒ $x = 1/4 \lor x = 2$ ⓓ $x = 32 \lor x = 1/\sqrt{5}$

Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số

A. PHƯƠNG PHÁP GIẢI

Định lí: Nếu y = f(x) là hàm số liên tục và đồng biến trên (a;b), y = g(x) là hàm số liên tục và nghịch biến trên (a;b) thì phương trình f(x) = g(x) có tối đa một nghiệm trong khoảng (a;b).

Hướng 1: Biến đổi hai vế của phương trình sao cho một vế là một hàm số đồng biến (hoặc là hàm hằng) và một vế là một hàm số nghịch biến (hoặc là hàm hằng)

- ✓ <u>Bước 1</u>: Nhẩm và chứng minh x_0 là nghiệm
- ✓ <u>Bước 2</u>: Chứng minh x_0 là nghiệm duy nhất (bằng cách chứng minh $x \neq x_0$ không là nghiệm)

Hướng 2: Đưa phương trình về dạng f(u) = f(v) mà f là hàm số tăng hay giảm. Khi đó ta có: $f(u) = f(v) \Leftrightarrow u = v$.

🖎 Chú ý:

Giải các phương trình

- Nếu f(x) hoặc g(x) là hằng số thì định lí trên vẫn đúng.
- Nếu h(x) và k(x) là hai hàm số liên tục và đồng biến trên (a;b) thì h(x)+k(x) cũng đồng biến trên (a;b).
- Nếu h(x) và k(x) là hai hàm số liên tục và nghịch biến trên (a;b) thì h(x)+k(x) cũng nghịch biến trên (a;b).
- Hàm số $y = a^x$ đồng biến trên \mathbb{R} khi a > 1 và nghịch biến trên \mathbb{R} khi 0 < a < 1.

11 uu 40	Olar cac phaong trini sau.	
	a $11-x = \log_3 x \ (x=1)$	b $\log_3(x^2+x+1) = x(2-x) + \log_3 x (x=1)$
	© $x - 2^{\log_5(x+3)} = 0$ $(x = 4)$	
•••••		
•••••		
•••••		
•••••		

GV. TRÂ	N QUỐC NGHĨA (Sưu tầm & biên tập)		57
	C. BÀI T	ẬP TỰ LUYỆN	
Bài 96.	Giải các phương trình sau:	2	
	(a) $\log_2^2 x + (x-1)\log_2 x = 6-2x$		-2
	© $\log_3(x^2 + x + 1) - \log_3 x = 2x - x^2$	(d) $\lg(x^2 - x - 6) + x = \lg(x + 2)$)+4
	DS: ⓐ $x =$	$= 1/4 \lor x = 2 \textcircled{5} x = -1 \lor x = -2 \textcircled{5} x$	x = 1 x = 4 x = 1
Bài 97.	Giải các phương trình sau:	o (
		$DS: \textcircled{a} \ x = 5 \textcircled{b} \ x = 9$	© $x = 256$ @ $x = -1$
	BÀI TẬP TỔN	IG HỢP VẤN ĐỀ 6	
Bài 98.	Giải các phương trình sau:		-
	(a) $\log_2(x^2 + 2x + 3) - \log_3(4 + 2 x - x^2)$)=0	DS: x = -1
			<i>DS</i> : $x = 3 \lor x = 4$
	© $\log_2(9-2^x) = 3-x$		$DS: x = 3 \lor x = 0$
			<i>DS</i> : $x = 8 \lor x = \frac{1}{\sqrt[3]{4}}$
			DS: x = 1
	① $\lg 5 + \lg (x+10) = 1 - \lg (2x-1) + \lg ($	21x-20)	<i>DS</i> : $x = 10 \lor x = \frac{3}{2}$
		$2) = 3 + \log_2 3$	$DS: x = 0 \lor x = 5$

(b) $(\sqrt{1-x} + \sqrt{1+x} - 2) \cdot \log_2(x^2 - x) = 0$

Vấn đề 7. BẤT PHƯƠNG TRÌNH LÔGARIT

Dang cơ bản

- <u>Dang</u>: $\log_a x > b$ ($0 < a \ne 1$) (hoặc $\log_a x \ge b$, $\log_a x < b$, $\log_a x \le b$)
- $C\acute{a}ch$ giải: Xét bất phương trình: $\log_a x > b$

 $\delta N\acute{e}u \ a > 1$: $\log_a x > b \Leftrightarrow x > a^b$

2. Các phương pháp giải

- a. Phương pháp đưa về cùng cơ số.
- b. Phương pháp đặt ẩn phụ.

Dạng 1. Phương pháp đưa về cùng cơ số

A. PHƯƠNG PHÁP GIẢI

Xét dạng: $\log_a f(x) \ge \log_a g(x)$:

- $N\acute{e}u \ a > 1$: $\log_a f(x) \ge \log_a g(x) \Leftrightarrow \begin{cases} g(x) > 0 \\ f(x) \ge g(x) \end{cases}$
- $N\acute{e}u \ 0 < a < 1$: $\log_a f(x) \ge \log_a g(x) \Leftrightarrow \begin{cases} g(x) > 0 \\ f(x) \le g(x) \end{cases}$
- * Tổng quát: $\log_a f(x) \ge \log_a g(x) \Leftrightarrow \begin{cases} 0 < a \ne 1 \\ f(x) > 0, g(x) > 0 \end{cases}$ $(a-1)\lceil f(x)-g(x)\rceil \ge 0$

B. BÀI TẬP MẪU

Ví dụ 47: Giải các bất phương trình sau:

- **a** $\log_2(x^2 2x) > 3 \ (x < -2 \lor x > 4)$ **b** $\log_{\frac{1}{2}}(x^2 6x) > -3 \ (-3 < x < 0 \lor 6 < x < 9)$
- $\log_3 \frac{x^2 + 4x}{2x 3} < 1 \ (-4 < x < 0)$

- **6** $\log_2 \left(2 x \sqrt{x^2 1}\right) < 1 \ (1 \le x < 5/4)$ **6** $\log_2 \log_3 |x 3| \ge 0 \ (4 < x \le 6 \lor 0 \le x < 2)$
- ① $\log_{\frac{1}{2}} \frac{x^2 3x + 2}{x} \ge 0 \ (2 \sqrt{2} \le x < 1 \lor 2 < x \le 2 + \sqrt{2})$

GV. TRẦN QUỐC NGHĨA (Sưu tầm & biên tập)	59

Ví dụ 48: Giải các bất phương trình sau:

	$ \log_2(x-3) + \log_2(x-2) \le 1 $
<i>DS</i> : ⓐ $-2 < x < 1$ ⓑ $3 < x \le 4$ ⓒ $(1 - \sqrt{5})$	$\frac{1}{2} < x < (1 + \sqrt{5}) / 2 \cdot 0 \cdot 1 - 2\sqrt{2} < x < 1 + 2\sqrt{2} \lor x > -1$
	$\bullet x < 1 \lor x > 2 \bullet 3/4 < x \le 3$

GV. TRẨN	N QUỐC NGHĨA (Sưu tầm & b	iên tập)			61	
•••••						
		C DÀT TÂ				
D) : 00			P TỰ LUYỆN	N		
Bài 99.	Giải các bất phương trình s a $\log_{10}(x^2 + 2x - 8) > -4$) > -2.	© $\log_{x}(5x+1) < -5$		
	(a) $\log_{\frac{1}{2}} (x^2 + 2x - 8) \ge -4$	3		© $\log_{\frac{1}{2}}(5x+1) < -5$		
			$-5x+6$) ≥ -1	$ \oint \log_5(3x-1) < 1 $		
			$\frac{3x+2}{x} \ge 0$		$\frac{1+3x}{x-1} \ge 0$	
	<i>DS</i> : ⓐ $-6 \le x < -4 \lor 2 < x \le x$	$4 \oplus 1 < x \le 10$	0 © $x > 31/5$	① $1/5 < x < 2/5$ ② $1 \le x <$	$2 \vee 3 < x \le 4$	
	① $1/3 < x < 2$ ② $1/2 < x < x < x < x < x < x < x < x < x < $	$(1 \oplus 2 - \sqrt{2} <$	$x < 1 \lor 2 < x < 1$	$2 + \sqrt{2} \textcircled{1}/3 \le x < 1/2 \textcircled{1}$	$c \le -1 \lor x > 1$	
Bài 100.	Giải các bất phương trình sau:					
	(a) $\log_{\frac{1}{3}} \sqrt{x+6} \le \log_{\frac{1}{3}} (x+4)$			$+8) \ge \log_{\frac{1}{5}}(x-4)$		
		: -1)		$(x)^2 > \log_{\frac{1}{2}} (6 x - 3)$		
			$ \oint \log_{\frac{1}{3}} \left(3 - x \right) $	$\log_{\frac{1}{3}}(4 x -2)$		
		$x^2 + 6x + 8$	$\log_{0,8}(x^2 -$	$+x+1$) < $\log_{0.8}(2x+5)$		
	(i) $\log_{\frac{1}{2}} \sqrt{5-x} < \log_{\frac{1}{2}} (3-x)$	c)		$-x-2$) > $\log_{0,1}(x+3)$		
		$\frac{1}{g_3}$ 20				
	<i>DS</i> : ⓐ $-4 < x \le 2$ (ⓐ $x ≥ 8$ ⓒ $-2 <$	$x < -\sqrt{2} \vee \sqrt{2}$	$< x < 2 (7 - \sqrt{30})/2 < x < 0$	$(7+\sqrt{30})/2$	
	e	$-3 < x < -\sqrt{5}$	$\sqrt{5} < x < 3$ (f)	$1 - \sqrt{3} < x < -1 \lor 1 < x < \sqrt{3}$	9 - 2 < x < 1	
		$\frac{7}{7})/2 \lor -5/2 < x$	$c < (1 - \sqrt{17})/2$	$\bigcirc 1 < x < 3 \bigcirc -\sqrt{5} < x < -2$	$\vee 1 < x < \sqrt{5}$	
		Œ	$) x < -1 \lor (7 - \sqrt{3})$	$\sqrt{5}$)/2 < x < 3 \leftright 4 < x < (7 + \cdots	$\sqrt{5})/2 \lor x > 8$	

Bài 101. Giải các bất phương trình sau:

(a)
$$\log_{0,1}(x^2+x-2) > \log_{0,1}(x+3)$$

ⓑ
$$\log_{\frac{1}{3}}(x^2-6x+5)+2\log_3(2-x) \ge 0$$

©
$$\log_{\frac{1}{5}}(x^2-6x+18)+2\log_5(x-6x+18)$$

©
$$\log_{\frac{1}{2}}(x^2-6x+18)+2\log_5(x-4)<0$$
 @ $\log_2 x+\log_2\frac{3x-1}{x^2+1}>0$

①
$$\ln |x-2| + \ln |x+4| \le 3 \ln 2$$

$$\bigcirc \log_{\frac{1}{2}} \left(x - \frac{1}{2} \right) + \log_{\frac{1}{2}} \left(x - 1 \right) \le 1$$

$$\bigcirc \log_{\frac{1}{2}} \left(x + \frac{1}{2} \right) + \log_{\frac{1}{2}} x \ge 1$$

DS: (a) $-\sqrt{5} < x < -2 \lor 1 < x < \sqrt{5}$ (b) $1/2 \le x < 1$ (c) x > 4 (d) x > 1 (e) $x < -1 \lor 2 < x < 11/5$

Bài 102. Giải các bất phương trì nh sau:

(a)
$$\log_{\frac{1}{3}} \left[\left(\frac{1}{2} \right)^x - 1 \right] < \log_{\frac{1}{3}} \left[\left(\frac{1}{4} \right)^x - 3 \right]$$
 (b) $\log_{\frac{1}{\sqrt{5}}} \left(6^{x+1} - 36^x \right) \ge -2$

ⓑ
$$\log_{\frac{1}{\sqrt{\xi}}} (6^{x+1} - 36^x) \ge -2$$

©
$$\log_5(26-3^x) > 2$$

(a)
$$\log_3(13-4^x) > 2$$
 (b) $\log_{\frac{1}{\sqrt{6}}}(5^{x+1}-25^x) \ge -2$

DS: ⓐ x > -1 ⓑ $x \le 0 \lor \log_6 5 \le x < 1$ ⓒ x < 0 ⓓ x < 1 ⓔ $x \le \log_5 2 \lor \log_5 3 \le x < 1$

Bài 103. Giải các bất phương trình sau:

(a)
$$\log_{x+1} (x^2 + x - 6)^2 \ge 4$$

(a)
$$\log_{x+1}(x^2+x-6)^2 \ge 4$$
 (b) $\log_{9x^2}(6+2x-x^2) \le \frac{1}{2}$ (c) $\log_{|x|}(x^2-\frac{1}{2}x) > 1$

DS: (a) $0 < x \le 1$ (b) $1 - \sqrt{7} < x \le -1 \lor -1/3 < x < 0 \lor 0 < x < 1/3 \lor 2 \le x < 2 + \sqrt{7}$

©
$$x < 1 \lor -1/2 < x < 0 \lor 1/2 < x < 1 \lor x > 3/2$$
 @ $x \ge 5$ @ $-3 < x < -1$ ① $0 < x < 1 \lor 4/3 < x < 4$

Bài 104. Giải các bất phương trình sau:

(a)
$$\log_{\frac{1}{2}} \left(\log_2 \frac{1+2x}{1+x} \right) > 0$$

(a)
$$\log_{\frac{1}{2}} \left(\log_{\frac{1}{2}} \frac{1+2x}{1+x} \right) > 0$$
 (b) $\log_{\frac{3}{2}} \left(\log_{3} |x-3| \right) \ge 0$ (c) $\log_{3} \log_{\frac{9}{16}} \left(x^{2} - 4x + 3 \right) \le 0$

DS: ⓐ x > 0 ⓑ $0 \le x < 2 \lor 4 < x \le 6$ ⓒ $2 - \sqrt{2} < x \le 3/4 \lor 13/4 \le x < 2 + \sqrt{2}$ ⓓ $x < -4 \lor x > 1$

(a)
$$(1-3\sqrt{3})/2 \le x < -2 \lor 3 < x \le (1+3\sqrt{3})/2$$
 (b) $-\sqrt{2} < x < -3/2\sqrt{2} \lor 3/2\sqrt{2} < x < \sqrt{2}$

Bài 105. Tìm tập xác định của các hàm số sau:

(a)
$$y = \sqrt{\log_{0.8} \frac{2x+5}{x+5} - 2}$$

(b)
$$y = \sqrt{\log_{\frac{1}{2}}(x+2) + 1}$$

©
$$y = \sqrt{\log_{0.3} \frac{3x-1}{x+2} - 3}$$

(e)
$$y = \sqrt{\log_{x+1}(6+5x-x^2)-2}$$

(e)
$$y = \sqrt{\log_{x+1}(6+5x-x^2)-2}$$
 (f) $y = \sqrt{\log_{0.5}(-x^2+x+6)} + \frac{1}{x^2+2x}$

$$DS: \textcircled{a} \ D = \left(-\frac{1}{2}; \frac{55}{34}\right] \textcircled{b} \ D = \left(2; 4\right] \textcircled{c} \ D = \left(\frac{1}{3}; \frac{10}{23}\right] \textcircled{d} \ D = \left[\frac{1}{2}; 1\right) \textcircled{e} \ D = \left(0; \frac{5}{2}\right] \textcircled{f} \ D = \left(-2; \frac{1 - \sqrt{21}}{2}\right] \cup \left[\frac{1 + \sqrt{21}}{2}; 3\right)$$

Dạng 2. Phương pháp đặt ẩn phụ

A. PHƯƠNG PHÁP GIẢI

Tìm một $\log_a f(x)$ chung trong bất phương trình, đặt bằng t để đưa bất phương trình về bất phương trình theo ẩn t, giải bất phương trình này tìm t sau đó tìm x. Khi đặt ẩn phụ cần lưu ý: Nếu đặt $t = \log_a x$ thì:

$$\log_{\frac{1}{a}} x = -t; \log_{a^2} x = \frac{1}{2}t; \log_a^2 x = (\log_a x)^2 = t^2; \log_x a = \frac{1}{t}$$

-								
Ví dụ 49: Giải các bất phương trình sau:								
a $\log_2(2^x-1).\log_2(2^{x+2}-2) < 2$	ⓑ $2\log_5 x - \log_x 125 < 1$							
© $\log_x 2.\log_{\frac{x}{16}} 2 > \frac{1}{\log_2 x - 6}$								
<i>DS</i> :	$\sqrt{5} \lor 0 < x < 1/5 \odot 0 < x < 1 \lor 4 < x < 8 \lor 16 < x < 64$							

TÀI LIỆU	HỌC TẬP TOÁN 12 - MŨ - LOGARI	г			64			
••••								
•••••					•••••			
•••••								
•••••					•••••			
C. BÀI TẬP TỰ LUYỆN								
Rài 106	Giải các bất phương trình sau:	DAT IVE IÅ						
Dai 100.		6 lo	$\log_{0.2}^2 x - 5$	$\log_{0.2} x < -6$				
			- 0,2	$\log_{0,2} x - 3 \le 0$				
		≥0 ① lo	$\log_2^4 x - \log_2^4 x$	$g_{\frac{1}{2}}^{2} \left(\frac{x^{3}}{8}\right) + 9\log_{2}\left(\frac{32}{x^{2}}\right) < 4\log_{\frac{1}{2}}^{2} x$				
		5 b lo	$\log_2^2 \left(2 + x - \frac{1}{2}\right)$	$(-x^2) + 3\log_{\frac{1}{2}}(2 + x - x^2) + 2 \le 0$)			
	(i) $\log_5^2(6-x) + 2\log_{\frac{1}{\sqrt{5}}}(6-x) +$	$\log_3 27 \ge 0 \text{()}$	$\int \log_2^2 x$	$\sqrt{x + \log_{\frac{1}{2}} x^2 - 3} > \sqrt{5} \left(\log_4 x^2 - 3 \right)$	1			
	DS : ⓐ $x \le 1/4 \lor$	$x \ge 2 \oplus -6 \le x$	<-4 \lor 2 <	$< x \le 4 \odot (0,2)^3 \le x \le 25 \odot 1/2$	$\leq x \leq 4$			
	(e) $1/4 \le x \le 1$	$/2 \lor x \ge \sqrt{2}$ ①	1/8 < <i>x</i> <	$1/4 \lor 4 < x < 8 \ \ \ \ x \le 0 \lor 63/32$	$\leq x < 2$			
		(b) $0 \le x \le 1$		$19 \lor 1 \le x < 6 \oplus 0 < x \le 1/2 \lor 8 < 1/2 \lor 8$	< x < 16			
Bài 107.	Giải các bất phương trình sau:			_				
	(a) $\log_2(x+1) - \log_{x+1} 64 < 1$ (b)			3				
<i>DS</i> : ⓐ $-1 < x < -3/4 \lor 0 < x < 7$ ⓑ $0 < x < 1/2 \lor 2^{\frac{3-\sqrt{13}}{2}} \le x \le 2^{\frac{3+\sqrt{13}}{2}}$ ⓒ $3^{-1-\sqrt{5}} < x < 3 \lor 3^{-1+\sqrt{5}} < x < 27$								
Bài 108.	Giải các bất phương trình sau:	0.3	- 4.0					
	(a) $\log_x 3 - \log_{\frac{x}{3}} 3 < 0$	(b) 3	$\log_x 4 + 2$	$\log_{4x} 4 + 3\log_{16x} 4 \le 0$				
	© $\log_{2x} 64 + \log_{x^2} 16 \ge 3$		- X Z	$_{x}$ 2 > \log_{4x} 2				
		ĐS: @	0 < x < 1	$\forall x > 3 \oplus x < \frac{1}{16} \lor \frac{1}{8} < x \le \frac{1}{4} \lor \frac{1}{2}$	$\leq x < 1$			
			$\checkmark 1 < x \le 4$		$x < 2^{\sqrt{2}}$			
Bài 109.	Giải các bất phương trình sau:							
		$\frac{1}{1}$		$DS: x < -2 \lor 1 < x$	x < 2			
		+1 :-1		$DS: x \le -5 \lor$	<i>x</i> > 1			

BÀI TẬP TỔNG HỢP VẤN ĐỀ 7

Bài 110. Giải các bất phương trình sau:

$$a) 5^{\log_3\left(\frac{x-2}{x}\right)} < 1$$

DS: x > 2

 $DS: x \ge 4$

$$\odot \log_2 \log_{0.5} \left(2^x - \frac{31}{16} \right) \le 2$$

 $DS \ 1 \le x \le \log_2 \frac{47}{16}$:

DS: $-4 - \sqrt{17} < x \le -5 \lor -4 + \sqrt{17} < x \le 1$

DS: $0 < x < 2 \lor x > 3$

$$(4x^2 - 16x + 7) \cdot \log_3(x - 3) > 0$$

DS:
$$3 < x < \frac{7}{2} \lor x > 4$$

DS:
$$\frac{8}{3} < x < 3 \lor 3 < x < 4$$

ⓑ
$$2x + \log_2(x^2 - 4x + 4) > 2 - (x + 1)\log_{0.5}(2 - x)$$

DS:
$$x < -2 \lor 1 < x < 2$$

Bài 111. Giải các bất phương trình sau:

(a)
$$\log_{\sin\frac{\pi}{3}}(x^2 - 3x + 2) \ge 2$$

DS:
$$\frac{1}{2} \le x < 1 \lor 2 < x \le \frac{5}{2}$$

ⓑ
$$\log_{\sin\frac{\pi}{6}}(x^2-4x+3) \ge -3$$

$$DS: -1 \le x < 1 \lor 3 < x \le 5$$

©
$$\log_{\sin\frac{\pi}{12}} \left(\frac{1}{6} x^2 - x + \frac{35}{24} \right) \ge 0$$

DS:
$$3 - \frac{\sqrt{2}}{2} \le x < \frac{5}{2} \lor \frac{7}{2} < x \le 3 + \frac{\sqrt{2}}{2}$$

$$\bigcirc \log_{\frac{1}{2}\sin{\frac{\pi}{4}}} (4x^2 - 16x + 15) \ge -2$$

DS:
$$\frac{1}{2} \le x < \frac{3}{2} \lor \frac{5}{2} < x \le \frac{7}{2}$$

Bài 112. Giải các bất phương trình sau:

(a)
$$\log_3 (5x^2 + 6x + 1) \le 0$$

$$DS: -\frac{6}{5} \le x < -1 \lor -\frac{1}{5} < x \le 0$$

$$\log_{12}(6x^2-48x+54) \le 2$$

$$DS: 4 + \sqrt{7} < x \le 4 + \sqrt{31} \lor 4 - \sqrt{31} \le x < 4 - \sqrt{7}$$

DS:
$$-6 \le x < -3 \lor 1 < x \le 4$$

$$\log_4(x^2-4x-5) \le 4$$

DS:
$$-3 \le x < -1 \lor 5 < x \le 7$$

Bài 113. Giải các bất phương trình sau:

(a)
$$\log_x \left(x - \frac{1}{4} \right) \ge 2$$

$$DS: \frac{1}{4} < x < 1$$

$$DS: \frac{\sqrt{3}}{3} < x < 1 \lor x > 8$$

$$\bigcirc \log_{x^2+x+1} \left(\sqrt{2x^2-2x-1} \right) < \frac{1}{2}$$

DS:
$$-1 < x < \frac{1 - \sqrt{3}}{2} \lor \frac{1 + \sqrt{3}}{2} < x < 2$$

$$\frac{\log_2\left(x^2 - 9x + 8\right)}{\log_2\left(3 - x\right)} < 2 \qquad \qquad DS: -\frac{1}{3} < x < 1$$

$$\frac{\log_a\left(35 - x^3\right)}{\log_a\left(5 - x\right)} > 3 \ (0 < a \ne 1) \qquad \qquad DS: \ 2 < x < 3$$

$$\frac{\log_3\left(x - 1\right)^4 - \log_4\left(x - 1\right)^2}{x^2 - 2x + 3} < 0 \qquad \qquad DS: \ -1 < x < 0 \lor 2 < x < 3$$

$$\frac{\log_3\left(x^2 - 4x - 11\right)^2 - \log_{11}\left(x^2 - 4x - 11\right)^3}{2 - 5x - 3x^2} \ge 0 \qquad DS: \ x < -2 \lor -2 < x < 2 - \sqrt{15} \lor x \ge 6$$

$$\frac{\log_2\left(x + 1\right)^2 - \log_3\left(x + 1\right)^3}{x^2 - 3x - 4} > 0 \qquad DS: \ -1 < x < 0 \lor x > 4$$

$$\frac{\log_2\left(x + 1\right)^2 - \log_3\left(x + 1\right)^3}{x^2 - 3x - 4} > 0 \qquad DS: \ \frac{3 + \sqrt{13}}{6} < x < 1 \lor x > \frac{3 + \sqrt{15}}{2}$$

$$\frac{\log_2\log_2\left(\frac{x^2}{2}\right) \log_2\left(\frac{x^2}{2}\right) \log_2\left$$

$$\bigotimes \frac{\log_3(3^x - 1)}{x - 1} \ge 1$$

DS:
$$0 < x \le 1 - \log_3 2 \lor x > 1$$

Vấn đề 8. HỆ PHƯƠNG TRÌNH MŨ - LÔGARIT

1. Hệ phương trình mũ – lôgarit là hệ phương trình trong đó có chứa các phương trình mũ – lôgarit.

2. Phương pháp giải

Để giải hệ phương trình mũ và lôgarit, ta cũng dùng các phương pháp giải hệ phương trình quen thuộc như: phương pháp thế, phương pháp cộng đại số, phương pháp đặt ẩn phụ, ... Cần chú ý ta rất hay dùng phương pháp đặt ẩn phụ đưa hệ đã cho về hệ đại số đã biết cách giải, từ đó suy ra các phương trình mũ và lôgarit cơ bản, đặc biệt có mốt số bài phức tạp ta cần sử dụng tính đơn điệu của hàm số để giải.

Bài 114. Giải các hệ phương trình sau:

(a)
$$\begin{cases} x + y = 20 \\ \log_4 x + \log_4 y = 1 + \log_4 9 \end{cases}$$

$$\bigoplus \begin{cases} x^2 - y^2 = 2 \\ \log_2(x+y) - \log_3(x-y) = 1 \end{cases}$$

$$\oint \begin{cases} \log_2(x-y) = 5 - \log_2(x+y) \\ \frac{\lg x - \lg 4}{\lg y - \lg 3} = -1 \end{cases}$$

$$\bigoplus \begin{cases}
2\log_2 x - 3^y = 15 \\
3^y \cdot \log_2 x = 2\log_2 x + 3^{y+1}
\end{cases}$$

 $DS: \ \ \textcircled{0}(2;18),(18;2); \ \ \textcircled{0}(1/2;1/2); \ \ \textcircled{0}(-2;7); \ \ \textcircled{0}(3/2;1/2); \ \ \textcircled{0}(-2;0); \ \ \textcircled{0}(2;5); \ \ \textcircled{0}(6;2); \ \ \textcircled{0}(512;1)$

Bài 115. Giải các hệ phương trình sau:

(a)
$$\begin{cases} x + y = 11 \\ \log_2 x + \log_2 y = 1 + \log_2 15 \end{cases}$$

$$\mathfrak{G} \begin{cases}
2^{x} + 5^{x+y} = 7 \\
2^{x-1} \cdot 5 y^{x+y} = 5
\end{cases}$$

$$\oint \begin{cases} \lg(x^2 + y^2) = 1 + \lg 8 \\ \lg(x + y) - \lg(x - y) = \lg 3 \end{cases}$$

$$\bigoplus \begin{cases} x + y = 25 \\ \log_2 x - \log_2 y = 2 \end{cases}$$

$$\oint \begin{cases} 3^{-x} + 3^{-y} = \frac{4}{9} \\ x + y = 3 \end{cases}$$

$$\oint \begin{cases} x^2 - y^2 = 3 \\ \log_3(x+y) - \log_5(x-y) = 1 \end{cases}$$

DS: 3; (5;6), (6;5) 5; (8;4) 5 (5;2) 4 (20;5) 9; (0;1), (1;0)

①; (1;2),(2;1) ② $(\log_2 5; \log_5 2 - \log_2 5),(1;0)$ ⑥ (2;1)

Bài 116. Giải các hệ phương trình sau:

(a)
$$\begin{cases} \lg^2 x = \lg^2 y + \lg^2 xy \\ \lg^2 (x - y) + \lg x \cdot \lg y = 0 \end{cases}$$

$$\begin{cases}
y = 1 + \log_2 x \\
x^y = 64
\end{cases}$$

$$\oint \begin{cases} 9x^2 - 4y^2 = 5 \\ \log_5 (3x + 2y) - \log_3 (3x - 2y) = 1 \end{cases}$$

$$\oint \begin{cases} \log_{27} xy = 3\log_{27} x.\log_{27} y \\ \log_3 \frac{x}{y} = \frac{3\log_3 x}{4\log_3 y} \end{cases}$$

DS: (2;1),
$$(\sqrt{2};1/\sqrt{2})$$
 (1/4;1/3) (3- $\sqrt{6};3+\sqrt{6}$), $(3+\sqrt{6};3-\sqrt{6})$

(a)
$$(4;3),(1/8;-2)$$
 (a) $(1/6;1/5)$ (b) $(1;1)$ (a) $(3;2)$ (b) $(1/3;\sqrt{3}),(27;3\sqrt{3})$

Bài 117. Giải các hệ phương trình sau

(a)
$$\begin{cases} \ln(1+x) - \ln(1+y) = x - y \\ x^2 - 12xy + 20y^2 = 0 \end{cases}$$

Bài 118. Giải các hệ phương trình sau:

(a)
$$\begin{cases} 4^{x+y-1} + 3 \cdot 4^{2y-1} \le 2 \\ x + 3y \ge 2 - \log_4 3 \end{cases}$$

$$\bigoplus \begin{cases} \log_x (x+2) > 2 \\ \log_2 2^{x-1} + \log_2 (2^{x+1} + 1) < \log_2 (7.2^x + 12) \end{cases}$$

$$\bigoplus \begin{cases} \log_{x-1}(y+5) < 0 \\ \log_{y+2}(4-x) < 0 \end{cases}$$

BÀI TẬP TỔNG HỢP VẪN ĐỀ 8

Bài 119. Giải các hệ phương trình sau:

(a)
$$\begin{cases} 6^x - 2.3^y = 2\\ 6^x.3^y = 12 \end{cases}$$

$$\bigoplus \begin{cases}
2^{\frac{2x}{y}} = 2^5 \cdot 2^{\frac{3y}{x}} \\
\frac{y}{3^x} = 3 \cdot 3^{\frac{2(1-y)}{y}}
\end{cases}$$

$$\bigoplus \begin{cases}
3^{x} - 2^{y^{2}} = 77 \\
3^{\frac{x}{2}} - 2^{\frac{y^{2}}{2}} = 7
\end{cases}$$

$$\oint \begin{cases}
2^{3x} = 5y^2 - 4y \\
\frac{4^x + 2^{x+1}}{2^x + 2} = y
\end{cases}$$

$$DS: \textcircled{3}(1;\log_3 2) \textcircled{5}\left(\frac{3}{2};\frac{1}{2}\right), (-2;4) \textcircled{6}\left(\frac{1}{2};\frac{1}{2}\right)$$

$$(4;\sqrt{2}),(4;-\sqrt{2}) (6;\frac{1}{6};\frac{1}{4}),(\frac{1}{4};\frac{1}{6}) (6;1),(2;4)$$

Bài 120. Giải các hệ phương trình sau:

$$\begin{cases}
\log_{\frac{1}{4}}(y-x) - \log_4 \frac{1}{y} = 1 \\
x^2 + y^5 = 25
\end{cases}$$

$$\bigoplus \begin{cases} \log_3 x + \log_3 y = 1 + \log_3 2 \\ x - y = 10 \end{cases}$$

Bài 121. Giải các hệ phương trình sau:

(a)
$$\begin{cases} \log_x (11x + 14y) = 3 \\ \log_y (11y + 14x) = 3 \end{cases}$$
 (5;5)

$$\bigoplus \begin{cases} \log_x \left(x^3 + 2x^2 - 3x - 5y \right) = 3 \\ \log_y \left(y^3 + 2y^2 - 3y - 5x \right) = 3 \end{cases}$$

$$DS: (4;4)$$

$$\bigoplus \begin{cases} \log_4(x^2 + y^2) - \log_4(2x) + 1 = \log_4(x + 3y) \\ \log_4(xy + 1) - \log_4(4y^2 + 2y - 2x + 4) + 1 = \log_4\left(\frac{x}{y}\right) - 1 \end{cases}$$

$$\Longrightarrow (2;1);(t;t) \ v \acute{o}i \ t > 0$$

$$DS: \left(\frac{5-\sqrt{17}}{2}; \frac{5+\sqrt{17}}{2}\right), \left(\frac{5+\sqrt{17}}{2}; \frac{5-\sqrt{17}}{2}\right)$$

Bài 122. Giải các hệ bất phương trình sau:

$$\bigoplus \begin{cases} \log_2^2 x - \log_2 x^2 < 0 \\ \frac{x^3}{3} - 3x^2 + 5x + 9 > 0 \end{cases}$$

$$DS: 1 < x < 4$$

$$\bigotimes \begin{cases} (x-1)\lg 2 + \lg(2^{x+1}+1) < \lg(7.2^x+12) \\ \log_x(x+2) > 2 \end{cases}$$

$$DS: 1 < x < 2$$

Bài 123. Tìm
$$a$$
 để hệ bất phương trình sau có nghiệm
$$\begin{cases} 3^x - 4 \ge 5^{\frac{x}{2}} \\ 1 + \log_2(a - x) \ge \log_2(x^4 + 1) \end{cases}$$
 $DS: a \ge \frac{21}{2}$

Vấn đề 9. PHƯƠNG TRÌNH № HỆ PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH MŨ – LÔGARIT CÓ THAM SỐ

Phương pháp giải

- ✓ Đặt ẩn phụ.
- ✓ Dựa vào điều kiện của biến suy ra miền giá trị của ẩn phụ.

Bài 124. Tìm điều kiện của m để mỗi hàm số sau xác định với mọi x:

(a)
$$y = \log_5(x^2 - mx + m + 2)$$

b
$$y = \frac{1}{\sqrt{\log_3(x^2 - 2x + 3m)}}$$

DS: ⓐ
$$2-2\sqrt{3} < m < 2+2\sqrt{3}$$
 ⓑ $m > 2/3$

Bài 125. Cho phương trình: $4^x - m \cdot 2^{x+1} + 2m = 0$

(a) Giải phương trình khi m=2.

- *DS*: ⓐ x = 1; ⓑ m = 4
- ⓑ Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x_1 , x_2 sao cho $x_1 + x_2 = 3$.
- **Bài 126.** Tìm m để phương trình sau có nghiệm: $(m-2)4^{x^2+1} (m+1)2^{x^2+1} + 2m-6 = 0$ $DS: 2 < m \le 4$
- **Bài 127.** Tìm m để phương trình: $9^x m \cdot 3^x + 2m + 1 = 0$ có nghiệm. $DS: m < -1/2 \lor m \ge 4 + 2\sqrt{5}$
- **Bài 128.** Tìm m để phương trình: $4\left(\log_2 \sqrt{x}\right)^2 \log_{\frac{1}{2}} x + m = 0$ có nghiệm thuộc (0;1). $DS: m \le 1/4$
- **Bài 129.** Cho phương trình: $(2+\sqrt{3})^x + (2-\sqrt{3})^x = m$
 - (a) Giải phương trình khi m = 4.
 - ⓑ Tìm m để phương trình có hai nghiệm phân biệt.
- *DS*: (a) x = 1; (b) m = 4

Bài 130. Cho phương trình: $m.16^x + 2.81^x = 5.36^x$

- (a) Giải phương trình khi m=3.
- *DS*: ⓐ $x = 0 \lor x = 1/2$; ⓑ $m \le 0 \lor m = 25/28$
- b Tìm tất cả các giá trị của m để phương trình có nghiệm duy nhất.
- **Bài 131.** Cho phương trình: $4^x 4m(2^x 1) = 0$
 - ⓐ Giải phương trình khi m=1.
 - ⓑ Tìm tất cả các giá trị của m để phương trình có nghiệm. DS: ⓐ vn; ⓑ $m < 0 \lor m > 1$
- **Bài 132.** Tìm m để phương trình: $4^x + 2^{x+1} + m = 0$ có nghiệm. $DS: m \le 1$
- **Bài 133.** Cho hệ phương trình: $\begin{cases} \frac{1}{2} \log_3 x^2 \log_3 y = 0 \\ |x|^3 + y^2 my = 0 \end{cases}$
 - (a) Giải hệ khi m=2.
 - b Định m để hệ phương trình có nghiệm.

DS: a. (1;1), (-1;1); b. m > 0

Bài 134. Cho hệ phương trình:
$$\begin{cases} 9x^2 - 4y^2 = 5 \\ \log_m (3x + 2y) - \log_3 (3x - 2y) = 1 \end{cases}$$
 ĐS: a. (1;1); *b.* $m = 5$

- **a** Giải hệ khi m = 5.
- **ⓑ** Tìm giá trị lớn nhất của m sao cho hệ phương trình trên có nghiệm (x; y) thỏa mãn: $3x+2y \leq 5$.

Bài 135. Tìm
$$m$$
 để hệ bất phương trình sau có nghiệm:
$$\begin{cases} 7^{2x+\sqrt{x+1}} - 7^{2+\sqrt{x+1}} + 2009x \le 2009 \\ x^2 - (m+2)x + 2m + 3 \ge 0 \end{cases}$$
 $DS: m \ge -2$

BÀI TẬP TỔNG HỢP VẤN ĐỀ 9

- **Bài 136.** Cho phương trình: $4^x 4m(2^x 1) = 0$
 - ⓐ Giải phương trình khi m=1.
 - b Tìm tất cả các giá trị của m để phương trình có nghiệm.

DS: ⓐ vn; ⓑ $m < 0 \lor m > 1$

Bài 137. Tìm m để phương trình: $4^x + 2^{x+1} + m = 0$ có nghiệm.

DS: m ≤1

- **Bài 138.** Cho phương trình: $25^{1+2x-x^2} + m \cdot 9^{2x-x^2} = (3m+7) \cdot 15^{2x-x^2}$
 - (a) Giải phương trình khi m = 9.
 - ⓑ Tìm tất cả các giá trị của m để phương trình có nghiệm $x \in [0; 2]$.

DS: ⓐ
$$x = 0 \lor x = 2 \lor x = 1 \pm \sqrt{3}$$
; ⓑ $9 \le m \le \frac{130}{9}$

Bài 139. Cho phương trình:
$$(\sqrt{5}+1)^x + a(\sqrt{5}-1)^x = 2^x$$
 $DS: \textcircled{a} \ x = -\log_{\frac{\sqrt{5}+1}{2}} 2$; \textcircled{b} $a \le 0 \lor a = \frac{1}{4}$

DS: ⓐ
$$x = -\log_{\frac{\sqrt{5}+1}{2}} 2$$
; ⓑ $a \le 0 \lor a = \frac{1}{4}$

- (a) Giải phương trình khi $a = \frac{1}{4}$.
- ⓑ Tìm tất cả các giá trị của *m* để phương trình có nghiệm duy nhất.

Bài 140. Cho phương trình:
$$(3 + 2\sqrt{2})^{\tan x} + (3 - 2\sqrt{2})^{\tan x} = m$$

ⓐ Giải phương trình khi m = 6.

DS: (a)
$$x = \pm \frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$
; (b) $m > 2$

- **ⓑ** Tìm m để phương trình có đúng 2 nghiệm trong khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.
- **Bài 141.** Với giá trị nào của *m* thì các phương trình sau có nghiệm duy nhất:

(a)
$$\log_{2+\sqrt{3}} \left[x^2 - 2(m+1)x \right] + \log_{2-\sqrt{3}} (2x+m-2) = 0$$

$$DS: -\frac{2}{5} \le x \le 2 \lor m = \frac{\sqrt{17} - 5}{2}$$

 $DS: m < 0 \lor m = 4$

©
$$\log_3(x^2 + 4mx) + \log_{\frac{1}{3}}(2x - 2m - 1) = 0$$

DS:
$$-\frac{1}{2} \le m \le -\frac{1}{10} \lor m = 0$$

(a)
$$\lg(x^2 + 2mx) - \lg(8x - 6m - 3) = 0$$

DS:
$$-\frac{1}{2} \le m \le \frac{3}{22} \lor m = 1$$

Bài 142. Tìm m để bất phương trình sau đây có nghiệm: $3^{2x+1} - (m+3)3^x - 2(m+3) < 0$

DS: m > -3

Bài 143. Tìm tất cả các giá trị của m để bất phương trình thỏa với mọi x.

(a)
$$9^x - 2(m+1)3^x - 2m - 3 > 0$$

$$DS: m \le -\frac{3}{2}$$

ⓑ
$$m.4^x + (m-1)2^{x+2} + m-1 > 0$$

$$DS: m \ge 1$$

©
$$m.25^x + 4(m-1)5^x + m-1 > 0$$

$$DS: m \ge 1$$

$$(m-1)4^x + 2^{x+1} + m + 1 > 0$$

$$DS$$
: $m ≥ 1$

(e)
$$(m+2)4^{|x-1|} - 2m \cdot 2^{|x-1|} + 3m + 1 > 0$$

$$DS: m > -\frac{3}{2}$$

①
$$4^x - 2(m+2) \cdot 2^x + m^2 + 2m + 2 > 0$$

$$DS: m < -1$$

Bài 144. Tìm tất cả các giá trị của m để bất phương:

(a)
$$(3m+1).12^x + (2-m).6^x + 3^x < 0$$
 thỏa $\forall x > 0$

$$DS: m \leq -2$$

ⓑ
$$m.9^x - (2m+1).6^x + m.4^x \le 0$$
 thỏa $\forall x \in [0;1]$

$$DS: m \le 6$$

©
$$m.9^{2x^2-x} - (2m+1).6^{2x^2-x} + m.4^{2x^2-x} \le 0 \ \forall x \notin \left(-\frac{1}{2}; \frac{1}{2}\right)$$

$$DS: m \le 0$$

Bài 145. Cho bất phương trình: $a.9^x + 4(a-1)3^{x+1} + a > 1$

ⓐ Giải bất phương trình khi a = 2.

b Tìm tất cả các giá trị của a để bất phương trì thỏa với mọi x.

 $DS:a. \ x \in R; b. \ a \ge 1$

Bài 146. Tìm m để mọi nghiệm của bất phương trình $2^{2x+1} - 9 \cdot 2^x + 4 \le 0$ cũng là nghiệm của bất phương trình $(m^2 + m + 1)x + 3x + 1 > 0$ DS: 0 < m < 2

Bài 147. Tìm m để mọi nghiệm của bất phương trình $2^{\frac{2}{x}} - 2^{1+\frac{1}{x}} > 8$ cũng là nghiệm của bất phương trình $4x^2 - 2mx + (m+1)^2 < 0$ $DS: m \le 0 \lor m \ge 1$

Bài 148. Tìm m để mọi nghiệm của bất phương trình $\log_{\frac{1}{2}}^2 x + \log_{\frac{1}{4}} x^2 < 0$ cũng là nghiệm của bất

phương trình
$$x^2 + mx + m^2 + 6m < 0$$

DS:
$$\frac{-7 - 3\sqrt{5}}{2} < m < -4 + 2\sqrt{3}$$

Bài 149. Tìm m để mọi nghiệm của bất phương trình $\log_5 \sqrt{3x+4} \cdot \log_x 5 > 1$ cũng là nghiệm của bất phương trình $1 + \log_5 \left(x^2 + 1\right) + \log_{\frac{1}{5}} \left(x^2 + 4x + 2m\right) > 0$ $DS: -\frac{5}{2} \le m \le \frac{5}{2}$

Bài 150. Tìm tất cả các giá trị của m để bất phương trình thỏa với mọi x.

(a)
$$\log_2(7x^2+7) \ge \log_2(mx^2+4x+m)$$

$$DS: 2 < m \le 5$$

Bài 151. Tìm các giá trị của m để bất phương trình thỏa với mọi $x \in (2;3)$.

$$\log_5(x^2+4x+m)-\log_5(x^2+1)<1$$

 $\mathcal{D}S: -12 \le m \le 13$

BÀI TẬP TRẮC NGHIỆM (trích từ bộ BTN – 387 câu + 7 đề của BGD – 68 câu)

Vấn đề 1. LŨY THỪA

Câu 1. Khẳng định nào sau đây đúng:

A. a^{-n} xác định với mọi $\forall a \in \mathbb{R} \setminus \{0\}; \forall n \in \mathbb{N}$. **B.** $a^{\frac{m}{n}} = \sqrt[n]{a^m}; \forall a \in \mathbb{R}$.

C. $a^0 = 1; \forall a \in \mathbb{R}$.

D. $\sqrt[n]{a^m} = a^{\frac{m}{n}} : \forall a \in \mathbb{R} : \forall m, n \in \mathbb{Z}$.

Tìm x để biểu thức $(2x-1)^{-2}$ có nghĩa. Câu 2.

A. $\forall x \neq \frac{1}{2}$.

B. $\forall x > \frac{1}{2}$.

C. $\forall x \in \left(\frac{1}{2}; 2\right)$. D. $\forall x \ge \frac{1}{2}$.

Tìm x để biểu thức $(x^2-1)^{\frac{1}{3}}$ có nghĩa. Câu 3.

A. $\forall x \in (-\infty;1] \cup [1;+\infty)$.

B. $\forall x \in (-\infty, -1) \cup (1, +\infty)$.

C. $\forall x \in (-1;1)$.

D. $\forall x \in \mathbb{R} \setminus \{\pm 1\}$.

Tìm x để biểu thức $(x^2 + x + 1)^{-\frac{2}{3}}$ có nghĩa. Câu 4.

A. $\forall x \in \mathbb{R}$.

B. Không tồn tại x.

C. $\forall x > 1$.

D. $\forall x \in \mathbb{R} \setminus \{0\}$

Câu 5. Các căn bậc hai của 4 là

A. -2.

B. 2.

C. ±2.

D. 16

Cho $a \in \mathbb{R}$ và $n = 2k(k \in \mathbb{N}^*)$, a^n có căn bậc n là Câu 6.

A. *a* .

 \mathbf{B} . |a|.

 \mathbf{C} . -a.

D. $a^{\frac{n}{2}}$.

Cho $a \in \mathbb{R}$ và $n = 2k + 1(k \in \mathbb{N}^*)$, a^n có căn bậc n là Câu 7.

A. $a^{\frac{n}{2n+1}}$.

 \mathbf{B} . |a|.

 \mathbf{C} . -a.

D. a.

Phương trình $x^{2016} = 2017$ có tập nghiệm trong $\mathbb R$ là Câu 8.

A. $T = \{\pm^{201}\sqrt[7]{2016}\}$ **B.** $T = \{\pm^{2016}\sqrt[6]{2017}\}$. **C.** $T = \{\frac{2016}\sqrt[6]{2017}\}$.

D. $T = \{-\frac{2016}{\sqrt{2017}}\}$

Các căn bậc bốn của 81 là Câu 9.

A. 3.

B. ±3.

C. −3.

D. ±9

Câu 10. Khẳng định nào sau đây sai?

A. Có một căn bậc n của số 0 là 0.

B. $-\frac{1}{2}$ là căn bậc 5 của $-\frac{1}{242}$.

C. 4 có một căn bậc hai.

D. Các căn bậc 8 của 2 được viết là $\pm \sqrt[8]{2}$.

Câu 11. Tính giá trị biểu thức $\left(\frac{1}{16}\right)^{-0.75} + \left(\frac{1}{8}\right)^{-\frac{4}{3}}$, ta được :

A. 12.

B. 16.

C. 18.

D. 24

Câu 12. Viết biểu thức $\sqrt{a\sqrt{a}}$ (a>0) về dạng lũy thừa của a, ta được:

A. $a^{\frac{5}{4}}$.

B. $a^{\frac{1}{4}}$.

C. $a^{\frac{3}{4}}$.

D. $a^{\frac{1}{2}}$

Câu 13.	Viết biểu thức	$\frac{\sqrt{2\sqrt[3]{4}}}{16^{0,75}}$	về dạng lũy thừa	2^m	với giá trị của	m	là
---------	----------------	---	------------------	-------	-----------------	---	----

A.
$$-\frac{13}{6}$$
.

B.
$$\frac{13}{6}$$
.

C.
$$\frac{5}{6}$$
.

D.
$$-\frac{5}{6}$$
.

Câu 14. Các căn bậc bảy của 128 là

Câu 15. Viết biểu thức $\sqrt[5]{\frac{b}{a}\sqrt[3]{\frac{a}{b}}}$, (a,b>0) về dạng lũy thừa $\left(\frac{a}{b}\right)^m$, với giá trị của m là

A.
$$\frac{2}{15}$$
.

B.
$$\frac{4}{15}$$
.

$$C. \frac{2}{5}$$
.

D.
$$\frac{-2}{15}$$

Câu 16. Cho a > 0; b > 0. Viết biểu thức $a^{\frac{2}{3}}\sqrt{a}$ về dạng a^m và biểu thức $b^{\frac{2}{3}}:\sqrt{b}$ về dạng b^n . Ta có m+n=?

A.
$$\frac{1}{3}$$
.

D.
$$\frac{1}{2}$$

Câu 17. Cho x > 0; y > 0. Viết biểu thức $x^{\frac{4}{5}} \cdot \sqrt[6]{x^5 \sqrt{x}}$ về dạng x^m và biểu thức $y^{\frac{4}{5}} : \sqrt[6]{y^5 \sqrt{y}}$ về dạng y^n . Giá trị của biểu thức m-n là

A.
$$-\frac{11}{6}$$
.

B.
$$\frac{11}{6}$$
.

C.
$$\frac{8}{5}$$
.

D.
$$-\frac{8}{5}$$

Câu 18. Viết biểu thức $\sqrt{\frac{2\sqrt{2}}{\sqrt[4]{8}}}$ về dạng 2^x và biểu thức $\frac{2\sqrt{8}}{\sqrt[3]{4}}$ về dạng 2^y . Ta có $x^2 + y^2 = ?$

A.
$$\frac{2017}{567}$$
.

B.
$$\frac{11}{6}$$
.

C.
$$\frac{53}{24}$$
.

D.
$$\frac{2017}{576}$$

Cho $f(x) = \sqrt[3]{x} \cdot \sqrt[6]{x}$ khi đó f(0,09) bằng: Câu 19.

Câu 20. Cho $f(x) = \frac{\sqrt{x\sqrt[3]{x^2}}}{6\sqrt{x}}$ khi đó f(1,3) bằng:

Câu 21. Cho $f(x) = \sqrt[3]{x} \sqrt[4]{x} \sqrt[12]{x^5}$. Khi đó f(2,7) bằng

Câu 22. Đơn giản biểu thức $\sqrt{81a^4b^2}$, ta được:

A.
$$-9a^2|b|$$
.

B.
$$9a^2|b|$$
.

C.
$$9a^2b$$
.

D.
$$3a^2|b|$$
.

Câu 23. Đơn giản biểu thức $\sqrt[4]{x^8(x+1)^4}$, ta được:

A.
$$x^2(x+1)$$
.

B.
$$-x^2(x+1)$$
.

C.
$$x^2(x-1)$$
.

D.
$$x^2 |x+1|$$
.

Câu 24. Đơn giản biểu thức $\sqrt[3]{x^3(x+1)^9}$, ta được:

A.
$$-x(x+1)^3$$
.

B.
$$x(x+1)^3$$
.

A.
$$-x(x+1)^3$$
. **B.** $x(x+1)^3$. **C.** $|x(x+1)^3|$. **D.** $x|(x+1)^3|$.

D.
$$x | (x+1)^3 |$$

Câu 25. Khẳng định nào sau đây đúng?

$$\mathbf{A.} \ a^0 = 1, \ \forall a \ .$$

B.
$$a^2 > 1 \Leftrightarrow a > 1$$
.

B.
$$a^2 > 1 \Leftrightarrow a > 1$$
. **C.** $2\sqrt{3} < 3\sqrt{2}$.

$$\mathbf{D}_{\bullet} \left(\frac{1}{4}\right)^{-1} < \left(\frac{1}{4}\right)^{2}.$$

Câu 26. Nếu
$$(2\sqrt{3}-1)^{a+2} < 2\sqrt{3}-1$$
 thì
A. $a < -1$. **B.** $a < 1$.

110lig cac kliang diffi s

A
$$(0.01)^{-\sqrt{2}} > (10)^{-\sqrt{2}}$$

C.
$$a > -1$$
.

D.
$$a \ge -1$$
.

A.
$$(0,01)^{-\sqrt{2}} > (10)^{-\sqrt{2}}$$
.

B.
$$(0,01)^{-\sqrt{2}} < (10)^{-\sqrt{2}}$$
.

C.
$$(0,01)^{-\sqrt{2}} = (10)^{-\sqrt{2}}$$
.

D.
$$a^0 = 1, \forall a \neq 0$$
.

A.
$$(2-\sqrt{2})^3 < (2-\sqrt{2})^4$$
.

B.
$$(\sqrt{11} - \sqrt{2})^6 > (\sqrt{11} - \sqrt{2})^7$$
.

C.
$$(4-\sqrt{2})^3 < (4-\sqrt{2})^4$$
.

D.
$$(\sqrt{3} - \sqrt{2})^4 < (\sqrt{3} - \sqrt{2})^5$$
.

Câu 29. Nếu
$$(\sqrt{3} - \sqrt{2})^{2m-2} < \sqrt{3} + \sqrt{2}$$
 thì

A.
$$m > \frac{3}{2}$$
.

B.
$$m < \frac{1}{2}$$
.

C.
$$m > \frac{1}{2}$$
.

D.
$$m \neq \frac{3}{2}$$
.

Câu 30. Cho
$$n$$
 nguyên dương thở mãn $n \ge 2$, khẳng định nào sau đây là khẳng định **đúng**?

$$\mathbf{A.} \ a^{\frac{1}{n}} = \sqrt[n]{a} \ \forall a > 0.$$

A.
$$a^{\frac{1}{n}} = \sqrt[n]{a} \ \forall a > 0$$
. **B.** $a^{\frac{1}{n}} = \sqrt[n]{a} \ \forall a \neq 0$. **C.** $a^{\frac{1}{n}} = \sqrt[n]{a} \ \forall a \geq 0$. **D.** $a^{\frac{1}{n}} = \sqrt[n]{a} \ \forall a \in \mathbb{R}$.

$$\mathbf{C.} \ a^{\frac{1}{n}} = \sqrt[n]{a} \ \forall a \ge 0.$$

D.
$$a^{\frac{1}{n}} = \sqrt[n]{a} \forall a \in \mathbb{R}$$

A.
$$\sqrt{ab} = \sqrt{a}\sqrt{b} \ \forall a,b$$
.

B.
$$\sqrt[2n]{a^{2n}} \ge 0 \ \forall a, n \text{ nguyên dương} (n \ge 1)$$
.

C.
$$\sqrt[2n]{a^{2n}} = |a| \forall a, n \text{ nguyên duong } (n \ge 1).$$
 D. $\sqrt[4]{a^2} = \sqrt{a} \forall a \ge 0.$

$$\mathbf{D.} \ \sqrt[4]{a^2} = \sqrt{a} \ \forall a \ge 0$$

Câu 32. Cho
$$a > 0, b < 0$$
, khẳng định nào sau đây là khẳng định **sai**?

A.
$$\sqrt[4]{a^4b^4} = ab$$
.

B.
$$\sqrt[3]{a^3b^3} = ab$$

B.
$$\sqrt[3]{a^3b^3} = ab$$
. **C.** $\sqrt{a^2b^2} = |ab|$.

$$\sqrt{a^4b^2} = -a^2b$$
.

Câu 33. Tìm điều kiện của
$$a$$
 để khẳng định $\sqrt{(3-a)^2} = a - 3$ là khẳng định **đúng** ?

A.
$$\forall a \in \mathbb{R}$$
.

$$\mathbf{R}$$
 $a < 3$

C.
$$a > 3$$

D.
$$a \ge 3$$
.

Câu 34. Cho
$$a$$
 là số thực dương, m, n tùy ý. Phát biểu nào sau đây là phát biểu sai ?

A.
$$a^m.a^n = a^{m+n}$$
.

B.
$$\frac{a^n}{a^m} = a^{n-m}$$
. **C.** $(a^m)^n = a^{m+n}$. **D.** $(a^m)^n = a^{m,n}$.

C.
$$(a^m)^n = a^{m+n}$$
.

$$\mathbf{D.} \left(a^m \right)^n = a^{m.n}$$

Câu 35. Bạn An trong quá trình biến đổi đã làm như sau:
$$\sqrt[3]{-27} = (-27)^{\frac{1}{3}} = (-27)^{\frac{2}{6}} = \sqrt[6]{(-27)^{\frac{2}{6}}} = \sqrt[6]{(-27)^{\frac{2}{6$$

Câu 36. Nếu
$$(\sqrt{3} - \sqrt{2})^x > \sqrt{3} + \sqrt{2}$$
 thì

A.
$$\forall x \in \mathbb{R}$$
.

B.
$$x < 1$$
.

C.
$$x > -1$$
.

D.
$$x < -1$$
.

Câu 37. Với giá trị nào của
$$a$$
 thì phương trình $2^{ax^2-4x-2a} = \frac{1}{\left(\sqrt{2}\right)^{-4}}$ có hai nghiệm thực phân biệt.

A.
$$a \neq 0$$
.

B.
$$\forall a \in \mathbb{R}$$
.

C.
$$a \ge 0$$
.

D.
$$a > 0$$

A.
$$(-3)^{-4}$$
.

B.
$$(-3)^{-\frac{1}{3}}$$
.

C.
$$0^4$$
.

D.
$$\left(\frac{1}{2^{-3}}\right)^0$$
.

Câu 39. Đơn giản biểu thức
$$P = a^{\sqrt{2}} \cdot \left(\frac{1}{a}\right)^{\sqrt{2}-1}$$
 được kết quả là

A.
$$a^{\sqrt{2}}$$
.

B.
$$a^{2\sqrt{2}-1}$$
.

C.
$$a^{1-\sqrt{2}}$$
.

Câu 40. Biểu thức
$$(a+2)^{\pi}$$
 có nghĩa với :

A.
$$a > -2$$
.

B.
$$\forall a \in \mathbb{R}$$
.

C.
$$a > 0$$

D.
$$a < -2$$

Câu 41. Ch
$$\sqrt[2n]{\frac{a}{b}} = \frac{\sqrt[2n]{|a|}}{\sqrt[2n]{|b|}}, \forall ab \ge 0, b \ne 0$$
 khẳng định nào sau đây **đúng**?

A.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, $\forall a \neq 0$. **B.** $a^{\frac{1}{n}} = \sqrt[n]{a}$, $\forall a > 0$. **C.** $a^{\frac{1}{n}} = \sqrt[n]{a}$, $\forall a \geq 0$. **D.** $a^{\frac{1}{n}} = \sqrt[n]{a}$, $\forall a \in \mathbb{R}$.

B.
$$a^{\frac{1}{n}} = \sqrt[n]{a}, \forall a > 0$$
.

$$\mathbf{C.} \ a^{\frac{1}{n}} = \sqrt[n]{a} \ , \forall a \ge 0$$

D.
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
, $\forall a \in \mathbb{R}$

Câu 42. Nếu
$$a^{\frac{1}{2}} > a^{\frac{1}{6}} \text{ và } b^{\sqrt{2}} > b^{\sqrt{3}} \text{ thì}$$

A.
$$a > 1; 0 < b < 1$$
.

B.
$$a > 1; b < 1$$
.

C.
$$0 < a < 1; b < 1$$
. **D.** $a < 1; 0 < b < 1$

D.
$$a < 1; 0 < b < 1$$

Câu 43. Cho
$$a$$
, b là các số dương. Rút gọn biểu thức $P = \frac{\left(\sqrt[4]{a^3 \cdot b^2}\right)^4}{\sqrt[3]{\sqrt{a^{12} \cdot b^6}}}$ được kết quả là

A.
$$ab^2$$
.

B.
$$a^2b$$
.

D.
$$a^2b^2$$
.

Câu 44. Cho
$$3^{|\alpha|} < 27$$
. Mệnh đề nào sau đây là đúng?

A. $\begin{bmatrix} \alpha < -3 \\ \alpha > 3 \end{bmatrix}$.

B. $\alpha > 3$.

C. $\alpha < 3$.

B.
$$\alpha > 3$$

C.
$$\alpha$$
 < 3

D.
$$-3 < \alpha < 3$$
.

Câu 45. Giá trị của biểu thức
$$A = (a+1)^{-1} + (b+1)^{-1}$$
 với $a = (2+\sqrt{3})^{-1}$ và $b = (2-\sqrt{3})^{-1}$

A. 3.

Câu 46. Với giá trị nào của
$$x$$
 thì đẳng thức $\sqrt[2010]{x^{2016}} = -x$ đúng

A. Không có giá trị x nào.

B. $x \ge 0$.

C. x = 0.

D. $x \le 0$.

Câu 47. Với giá trị nào của
$$x$$
 thì đẳng thức $\sqrt[2017]{x^{2017}} = x$ đúng

A. $x \ge 0$.

B. $\forall x \in \mathbb{R}$.

C. x = 0.

D. Không có giá trị x nào.

Câu 48. Với giá trị nào của
$$x$$
 thì đẳng thức $\sqrt[4]{x^4} = \frac{1}{|x|}$ đúng

A.
$$x \neq 0$$
.

B. $x \ge 0$.

C. $x \neq \pm 1$.

D. Không có giá trị x nào.

A.
$$\sqrt[3]{4}$$
.

B.
$$\sqrt[4]{3}$$
.

C.
$$-\sqrt[4]{3}$$
.

D.
$$\pm \sqrt[4]{3}$$
.

A.
$$\pm \sqrt[3]{-4}$$
.

B.
$$\sqrt[3]{-4}$$
.

C.
$$-\sqrt[3]{-4}$$
.

A.
$$-^{2016}\sqrt{2016}$$
.

C.
$$\sqrt[2016]{-2016}$$
.

D.
$$^{2016}\sqrt{2016}$$
 .

A.
$$(-2016)^0$$
.

B.
$$(-2016)^{2016}$$
.

$$\mathbf{C.} \ 0^{-2016} \ .$$

D.
$$(-2016)^{-2016}$$
.

A. $x \ge 2$.

Câu 53. Với giá trị nào của x thì biểu thức $(4-x^2)^{\frac{1}{3}}$ sau có nghĩa

	C. $x \le -2$.		D. Không có giá trị x	nào.
Câu 54.	Cho số thực dương a . F	Rút gọn biểu thức $\frac{4a^{-1}}{2a^{\frac{1}{2}}}$	$\frac{-9a^{-1}}{-3a^{-\frac{1}{2}}} + \frac{a - 4 + 3a^{-1}}{a^{\frac{1}{2}} - a^{-\frac{1}{2}}} \right]^{2}$	
	A. $9a^{\frac{1}{2}}$.	B. 9a.	C. 3 <i>a</i> .	D. $3a^{\frac{1}{2}}$.
Câu 55.	Cho số thực dương a,b	. Rút gọn biểu thức $(\sqrt[3]{a}$	$+\sqrt[3]{b}\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}-\sqrt[3]{ab}\right)$	
	A. $a^{\frac{1}{3}} - b^{\frac{1}{3}}$.	B. $a-b$.	C. <i>a</i> + <i>b</i> .	D. $a^{\frac{1}{3}} + b^{\frac{1}{3}}$.
Câu 56.	Cho số thực dương a . F	1		
	A. $a^{\frac{3}{4}}$.	B. $a^{\frac{1}{2}}$.	C. a.	D. $a^{\frac{1}{4}}$.
Câu 57.	Cho $a+b=1$ thì $\frac{4^a}{4^a+2}$	$+\frac{4^b}{4^b+2}$ bằng		
	A. 4.	B. 2.	C. 3.	D. 1.
Câu 58.	Có bao nhiều giá trị x t	hỏa mãn $(x^2 - 3x + 3)^{x^2}$	$x^{-x-6} = 1$	
	A. 2.	B. 3.	C. 4.	D. 1.
Câu 59.	Có bao nhiều giá trị x t	hỏa mãn $\left(\sqrt{5}+2\right)^{x^2-3x}$ =	$= \left(\sqrt{5} - 2\right)^{2x - 2} \text{ dúng}$	
	A. 3.	B. 3.	C. 2.	D. 1.
Câu 60.	Biết $4^x + 4^{-x} = 23$ tính g A. 5.	giá trị của biêu thức $P = \mathbf{B} \cdot \sqrt{27}$.	= $2^x + 2^{-x}$ ta được kết qu C. $\sqrt{23}$.	å là D. 25 .
C2 (1	Cho a là số thực dương			
Cau 61.			c viet dươi dạng luy thu $\mathbf{C.} \ a^{\frac{3}{4}}.$	
Câu 62.	Cho x là số thực dương			
			C. $x^{\frac{12}{7}}$.	
Câu 63.	Cho b là số thực dương	. Biểu thức $\frac{\sqrt[5]{b^2\sqrt{b}}}{\sqrt[3]{b\sqrt{b}}}$ đư	ợc viết dưới dạng lũy th	ừa với số mũ hữu tỉ là
	A. – 2.	B. – 1.	C. 2.	D. 1.
Câu 64.	Cho x là số thực dương số mũ hữu tỉ là	Biểu thức $x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt{x\sqrt$	$x\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}$ được viê	t dưới dạng lũy thừa với
		$\frac{255}{R}$ r^{256}	C. $x^{\frac{127}{128}}$.	D. $x^{\frac{128}{127}}$.
	Δ. A.	υ. λ .	C. 1.	υ. λ .

B. -2 < x < 2.

Cho hai số thực dương a và b. Biểu thức $\sqrt[5]{\frac{a}{b}}\sqrt[3]{\frac{b}{a}}\sqrt{\frac{a}{b}}$ được viết dưới dạng lũy thừa với số mũ hữu tỉ là

A.
$$x^{\frac{7}{30}}$$
.

B.
$$\left(\frac{a}{b}\right)^{\frac{31}{30}}$$
.

$$\mathbf{B.} \left(\frac{a}{b}\right)^{\frac{31}{30}}. \qquad \mathbf{C.} \left(\frac{a}{b}\right)^{\frac{30}{31}}. \qquad \mathbf{D.} \left(\frac{a}{b}\right)^{\frac{1}{6}}.$$

D.
$$\left(\frac{a}{b}\right)^{\frac{1}{6}}$$
.

Câu 66. Cho các số thực dương a và b. Rút gọn biểu thức $P = \left(a^{\frac{1}{3}} - b^{\frac{2}{3}}\right) \cdot \left(a^{\frac{2}{3}} + a^{\frac{1}{3}}b^{\frac{2}{3}} + b^{\frac{4}{3}}\right)$ được kết quả là

$$\mathbf{A} \cdot a - b$$
.

B.
$$a - b^2$$
.

$$\mathbf{C}$$
. $b-a$.

D.
$$a^3 - b^3$$

Câu 67. Cho các số thực dương a và b. Rút gọn biểu thức $P = \frac{\sqrt{a} - \sqrt{b}}{\sqrt[4]{a} - \sqrt[4]{b}} - \frac{\sqrt{a} + \sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}}$ được kết quả là

A.
$$\sqrt[4]{b}$$
.

B.
$$\sqrt[4]{a} - \sqrt[4]{b}$$
.

$$\mathbf{C}.\ b-a$$
.

D.
$$\sqrt[4]{a}$$

Câu 68. Cho các số thực dương a và b. Rút gọn biểu thức $P = \left(\frac{a+b}{\sqrt[3]{a} + \sqrt[3]{b}} - \sqrt[3]{ab}\right) : \left(\sqrt[3]{a} - \sqrt[3]{b}\right)^2$ được kết quả là

A.
$$-1$$
.

Câu 69. Cho các số thực dương a và b. Biểu thức thu gọn của biểu thức $P = \frac{a^{\frac{1}{3}}\sqrt{b} + b^{\frac{1}{3}}\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} - \sqrt[3]{ab}$ là

Câu 70. Cho số thực dương a. Biểu thức thu gọn của biểu thức $P = \frac{a^{\frac{4}{3}} \left(a^{-\frac{1}{3}} + a^{\frac{2}{3}}\right)}{a^{\frac{1}{4}} \left(a^{\frac{3}{4}} + a^{-\frac{1}{4}}\right)}$ là

B.
$$a + 1$$

Câu 71. Cho a > 0, b > 0. Biểu thức thu gọn của biểu thức $P = (a^{\frac{1}{4}} - b^{\frac{1}{4}}) \cdot (a^{\frac{1}{4}} + b^{\frac{1}{4}}) \cdot (a^{\frac{1}{2}} + b^{\frac{1}{2}})$ là

A.
$$\sqrt[10]{a} - \sqrt[10]{b}$$
. **B.** $\sqrt{a} - \sqrt{b}$. **C.** $a - b$.

B.
$$\sqrt{a} - \sqrt{b}$$
.

$$\mathbf{C}$$
. $a-b$.

D.
$$\sqrt[8]{a} - \sqrt[8]{b}$$
.

Câu 72. Cho a > 0, b > 0. Biểu thức thu gọn của biểu thức $P = \left(a^{\frac{1}{3}} + b^{\frac{1}{3}}\right) : \left(2 + \sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{a}}\right)$ là

A.
$$\sqrt[3]{ab}$$
.

B.
$$\frac{\sqrt[3]{ab}}{\sqrt[3]{a} + \sqrt[3]{b}}$$
.

C.
$$\frac{\sqrt[3]{ab}}{\left(\sqrt[3]{a} + \sqrt[3]{b}\right)^3}$$

B.
$$\frac{\sqrt[3]{ab}}{\sqrt[3]{a} + \sqrt[3]{b}}$$
. **C.** $\frac{\sqrt[3]{ab}}{(\sqrt[3]{a} + \sqrt[3]{b})^3}$. **D.** $\sqrt[3]{ab}(\sqrt[3]{a} + \sqrt[3]{b})$.

Câu 73. Cho a > 0, b > 0 và $a \ne b$. Biểu thức thu gọn của biểu thức $P = \frac{\sqrt[3]{a} - \sqrt[3]{b}}{\sqrt[6]{a} - \sqrt[6]{b}}$ là

A.
$$\sqrt[6]{a} + \sqrt[6]{b}$$

$$\mathbf{B}_{a} \sqrt[6]{a} - \sqrt[6]{b}$$

C.
$$\sqrt[3]{b} - \sqrt[3]{a}$$
. **D.** $\sqrt[3]{a} + \sqrt[3]{b}$.

$$\mathbf{D}_{a} \sqrt[3]{a} + \sqrt[3]{b}$$

Câu 74. So sánh hai số m và n nếu $3, 2^m < 3, 2^n$ thì:

A.
$$m > n$$
.

B.
$$m=n$$
.

$$\mathbf{C}$$
. $m < n$.

So sánh hai số m và n nếu $(\sqrt{2})^m < (\sqrt{2})^n$

A m > n.

B. m=n.

 \mathbf{C} . m < n.

D. Không so sánh được.

Câu 76. So sánh hai số m và n nếu $\left(\frac{1}{9}\right)^m > \left(\frac{1}{9}\right)^n$.

A. Không so sánh được.

B. m=n.

C. m > n.

D. m < n.

So sánh hai số m và n nếu $\left(\frac{\sqrt{3}}{2}\right)^m > \left(\frac{\sqrt{3}}{2}\right)^n$.

A. m < n.

B. m=n.

 \mathbb{C} . m > n.

D. Không so sánh được.

Câu 78. So sánh hai số m và n nếu $(\sqrt{5}-1)^m < (\sqrt{5}-1)^n$.

A. m=n.

B. m < n.

C. m > n.

D. Không so sánh được.

Câu 79. So sánh hai số m và n nếu $(\sqrt{2}-1)^m < (\sqrt{2}-1)^n$.

A. m > n.

B. m=n.

 \mathbf{C} . m < n.

D. Không so sánh được.

Câu 80. Kết luận nào đúng về số thực a nếu $(a-1)^{-\frac{2}{3}} < (a-1)^{-\frac{1}{3}}$?

A. a > 2.

B. a > 0.

D. 1 < a < 2.

Câu 81. Kết luận nào đúng về số thực a nếu $(2a+1)^{-3} > (2a+1)^{-1}$?

A. $\begin{vmatrix} -\frac{1}{2} < a < 0 \\ a < -1 \end{vmatrix}$ **B.** $-\frac{1}{2} < a < 0$ **C.** $\begin{vmatrix} 0 < a < 1 \\ a < -1 \end{vmatrix}$.

D. a < -1.

Câu 82. Kết luận nào đúng về số thực a nếu $\left(\frac{1}{a}\right)^{-0.2} < a^2$?

A. 0 < a < 1.

B. a > 0.

C. a > 1.

D. a < 0.

Kết luận nào đúng về số thực a nếu $(1-a)^{-\frac{1}{3}} > (1-a)^{-\frac{1}{2}}$?

A. a < 1.

B. a > 0.

C. 0 < a < 1.

D. a > 1.

Câu 84. Kết luận nào đúng về số thực a nếu $(2-a)^{\frac{1}{4}} > (2-a)^2$?

A. a > 1.

B. 0 < a < 1.

C. 1 < a < 2.

D. a < 1.

Kết luận nào đúng về số thực a nếu $\left(\frac{1}{a}\right)^{\frac{-1}{2}} > \left(\frac{1}{a}\right)^{-\frac{1}{2}}$?

A. 1 < a < 2.

B. a < 1.

C. a > 1.

D. 0 < a < 1.

Câu 86. Kết luận nào đúng về số thực a nếu $a^{\sqrt{3}} > a^{\sqrt{7}}$?

A. *a* < 1.

B. 0 < a < 1.

C. a > 1.

D. 1 < a < 2.

Câu 87. Kết luận nào đúng về số thực a nếu $a^{-\frac{1}{17}} > a^{-\frac{1}{8}}$?

A. a > 1.

B. *a* < 1.

C. 0 < a < 1.

D. 1 < a < 2.

Kết luận nào đúng về số thực a nếu $a^{-0.25} > a^{-\sqrt{3}}$?

A.
$$1 < a < 2$$
.

B.
$$a < 1$$
.

C.
$$0 < a < 1$$
.

D.
$$a > 1$$
.

Câu 89. Rút gọn biểu thức $\frac{a^{1,5} + b^{1,5}}{a^{0,5} + b^{0,5}} - a^{0,5}b^{0,5}}{a^{0.5} - b^{0.5}}$ ta được:

$$\frac{a^{1,3} + b^{1,3}}{a^{0,5} + b^{0,5}} - a^{0,5}b^{0,5}$$

A.
$$a+b$$
.

B.
$$\sqrt{a} - \sqrt{b}$$
. **C.** $\sqrt{a} + \sqrt{b}$.

C.
$$\sqrt{a} + \sqrt{b}$$

$$\mathbf{D}$$
. $a-b$

Câu 90. Rút gọn biểu thức
$$\frac{x^{\frac{1}{2}} - y^{\frac{1}{2}}}{\frac{1}{xy^{\frac{1}{2}} + x^{\frac{1}{2}}y} + \frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{\frac{1}{xy^{\frac{1}{2}} - x^{\frac{1}{2}}y}} . \frac{x^{\frac{3}{2}} y^{\frac{1}{2}}}{x + y} - \frac{2y}{x - y}$$
 được kết quả là

A.
$$x-y$$
.

B.
$$x + y$$
.

$$\mathbf{D.} \ \frac{2}{\sqrt{xy}}.$$

Câu 91. Biểu thức $f(x) = (x^2 - 3x + 2)^{-3} - 2\sqrt{x}$ xác định với :

A.
$$\forall x \in (0; +\infty) \setminus \{1; 2\}$$
.

B.
$$\forall x \in [0; +\infty)$$
.

C.
$$\forall x \in [0; +\infty) \setminus \{1; 2\}$$
.

D.
$$\forall x \in [0; +\infty) \setminus \{1\}$$
.

Câu 92. Biểu thức $f(x) = \left(\frac{4x - 3x^2}{2x^2 + 3x + 1}\right)^{\frac{-2}{3}}$ xác định khi:

$$\mathbf{A.} \ x \in \left[-1; -\frac{1}{2} \right] \cup \left[0; \frac{4}{3} \right]..$$

B.
$$x \in (-\infty; -1) \cup \left(-\frac{1}{2}; 0\right) \cup \left(\frac{4}{3}; +\infty\right)$$
.

$$\mathbf{C.} \ x \in \left(-1; -\frac{1}{2}\right) \cup \left(0; \frac{4}{3}\right).$$

D.
$$x \in \left(-1; \frac{4}{3}\right)$$
.

Câu 93. Biểu thức $f(x) = (x^3 - 3x^2 + 2)^{\frac{1}{4}}$ chỉ xác định với :

A.
$$x \in (1+\sqrt{3};+\infty)$$
.

B.
$$x \in (-\infty; 1 - \sqrt{3}) \cup (1; 1 + \sqrt{3})$$
.

C.
$$x \in (1 - \sqrt{3}; 1)$$
.

D.
$$x \in (1 - \sqrt{3}; 1) \cup (1 + \sqrt{3}; +\infty)$$
.

Câu 94. Tìm giá trị x thỏa mãn $(x^2 - 3x + 2)^{x^2 - 5x + 6} = 1$.

A.
$$x = 2$$
.

B.
$$x = 3$$

C.
$$x = 2$$
: $x = 3$.

C. x = 2; x = 3. **D.** Không tồn tại x.

Câu 95. Với giá trị nào của x thì $(x^2 + 4)^{x-5} > (x^2 + 4)^{5x-3}$?

A.
$$x > -\frac{1}{2}$$
.

B.
$$x < \frac{1}{2}$$
.

C.
$$x < -\frac{1}{2}$$
. **D.** $x > \frac{1}{2}$.

D.
$$x > \frac{1}{2}$$
.

Câu 96. Cho $(a-1)^{-\frac{2}{3}} < (a-1)^{-\frac{1}{3}}$ khi đó

A.
$$a > 2$$

B.
$$a < 1$$
.

$$C, a > 1$$
.

D.
$$a < 2$$
.

Câu 97. Cho $a = 1 + 2^{-x}$, $b = 1 + 2^{x}$. Biểu thức biểu diễn b theo a là

A.
$$\frac{a-2}{a-1}$$
.

B.
$$\frac{a-1}{a}$$
.

C.
$$\frac{a+2}{a-1}$$
.

D.
$$\frac{a}{a-1}$$
.

Câu 98. Cho số thực dương a. Biểu thức thu gọn của biểu thức $P = \frac{a^{\frac{4}{3}} \left(a^{-\frac{1}{3}} + a^{\frac{2}{3}}\right)}{\frac{1}{a^{\frac{1}{4}}\left(\frac{3}{a^{\frac{1}{4}}} - \frac{1}{a^{\frac{1}{4}}}\right)}}$ là

B.
$$a+1$$
.

Câu 99. Cho các số thực dương a và b. Biểu thức thu gọn của biểu thức

$$P = \left(2a^{\frac{1}{4}} - 3b^{\frac{1}{4}}\right) \cdot \left(2a^{\frac{1}{4}} + 3b^{\frac{1}{4}}\right) \cdot \left(4a^{\frac{1}{2}} + 9b^{\frac{1}{2}}\right) \text{ c\'o dạng là } P = xa + yb \text{ . T\'nh } x + y \text{ .}$$

A.
$$x + y = 97$$

B.
$$x + y = -65$$

C.
$$x - y = 56$$

D.
$$y - x = -97$$
.

Câu 100. Cho các số thực dương a và b. Biểu thức thu gọn của biểu thức $P = \frac{a^{\frac{1}{3}}\sqrt{b} + b^{\frac{1}{3}}\sqrt{a}}{\sqrt{a} + \sqrt{b}} - \sqrt[3]{ab}$ là

A.
$$-2$$

Câu 101. Cho các số thực dương a và b. Biểu thức thu gọn của biểu thức

$$P = \left(\frac{a+b}{\sqrt[3]{a} + \sqrt[3]{b}} - \sqrt[3]{ab}\right) : \left(\sqrt[3]{a} - \sqrt[3]{b}\right)^2$$

D. -2.

Câu 102. Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức $P = \frac{\sqrt{a} - \sqrt{b}}{\sqrt[4]{a} - \sqrt[4]{b}} - \frac{\sqrt{4a} + \sqrt[4]{16ab}}{\sqrt[4]{a} + \sqrt[4]{b}} \text{ có dạng } P = m\sqrt[4]{a} + n\sqrt[4]{b} \text{ . Khi đó biểu thức liên hệ giữa } m \text{ và } n \text{ là}$

A.
$$2m - n = -3$$

B.
$$m + n = -2$$
.

C.
$$m - n = 0$$
.

D.
$$m + 3n = -1$$
.

Câu 103. Biểu thức thu gọn của biểu thức $P = \left(\frac{a^{\frac{1}{2}} + 2}{a + 2a^{\frac{1}{2}} + 1} - \frac{a^{\frac{1}{2}} - 2}{a - 1}\right) \cdot \frac{\left(a^{\frac{1}{2}} + 1\right)}{a^{\frac{1}{2}}}, (a > 0, a \neq \pm 1), \text{ có dạng}$

 $P = \frac{m}{a + n}$ Khi đó biểu thức liên hệ giữa m và n là

A.
$$m + 3n = 1$$
.

B.
$$m + n = -2$$
. **C.** $m - n = 0$.

C.
$$m - n = 0$$

D.
$$2m - n = 5$$
.

Câu 104. Một người gửi số tiền 2 triệu đồng vào một ngân hàng với lãi suất 0,65% / tháng. Biết rằng nếu người đó không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Số tiền người đó lãnh được sau hai năm, nếu trong khoảng thời gian này không rút tiền ra và lãi suất không đổi là

A.
$$(2,0065)^{24}$$
 triệu đồng.

B.
$$(1,0065)^{24}$$
 triệu đồng.

C.
$$2.(1,0065)^{24}$$
 triệu đồng.

Câu 105. Một người gửi số tiền M triệu đồng vào một ngân hàng với lãi suất 0.7% / tháng. Biết rằng nếu người đó không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Sau ba năm, người đó muốn lãnh được số tiền là 5 triệu đồng, nếu trong khoảng thời gian này không rút tiền ra và lãi suất không đổi, thì người đó cần gửi số tiền M là

A. 3 triệu 600 ngàn đồng.

B. 3 triệu 800 ngàn đồng.

C. 3 triệu 700 ngàn đồng.

D. 3 triệu 900 ngàn đồng.

Câu 106. Lãi suất gửi tiết kiệm của các ngân hàng trong thời gian qua liên tục thay đổi. Bác An gửi vào một ngân hàng số tiền 5 triệu đồng với lãi suất 0,7% / tháng. Sau sáu tháng gửi tiền, lãi suất tăng lên 0,9% / tháng. Đến tháng thứ 10 sau khi gửi tiền, lãi suất giảm xuống 0,6% / tháng và giữ ổn định. Biết rằng nếu bác An không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Sau một năm gửi tiền, bác An rút được số tiền là (biết trong khoảng thời gian này bác An không rút tiền ra):

A. ≈ 5436521,164 đồng.

C. ≈ 5452733,453 đồng.

D. ≈ 5452771,729 đồng.

Vấn đề 2. LOGARIT

- Với giá trị nào của x thì biểu thức $f(x) = \log_2(2x-1)$ xác định? Câu 1.

 - **A.** $x \in \left(\frac{1}{2}; +\infty\right)$. **B.** $x \in \left(-\infty; \frac{1}{2}\right)$. **C.** $x \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$.
- **D.** $x \in (-1; +∞)$.
- Với giá trị nào của x thì biểu thức $f(x) = \ln(4-x^2)$ xác định? Câu 2.
 - **A.** $x \in (-2; 2)$.
- **B.** $x \in [-2; 2]$.
- C. $x \in \mathbb{R} \setminus [-2;2]$.
- **D.** $x \in \mathbb{R} \setminus (-2; 2)$.
- Với giá trị nào của x thì biểu thức $f(x) = \log_{\frac{1}{2}} \frac{x-1}{3+x}$ xác định? Câu 3.
 - **A.** $x \in [-3;1]$.
- **B.** $x \in \mathbb{R} \setminus [-3;1]$.
- C. $x \in \mathbb{R} \setminus (-3;1)$.
- **D.** $x \in (-3;1)$.
- Với giá trị nào của x thì biểu thức: $f(x) = \log_6(2x x^2)$ xác định? Câu 4.
 - **A.** 0 < x < 2.
- **B.** x > 2.
- C. -1 < x < 1.
- **D.** x < 3.
- Với giá trị nào của x thì biểu thức: $f(x) = \log_5(x^3 x^2 2x)$ xác định? Câu 5.
 - **A.** $x \in (0;1)$.

B. $x \in (1; +\infty)$.

C. $x \in (-1,0) \cup (2,+\infty)$.

- **D.** $x \in (0,2) \cup (4,+\infty)$.
- Cho $a > 0, a \ne 1$, giá trị của biểu thức $A = a^{\log_{\sqrt{a}} 4}$ bằng bao nhiêu? Câu 6.
 - **A.** 8.

- **B.** 16.

- **D.** 2.
- Câu 7. Giá trị của biểu thức $B = 2\log_2 12 + 3\log_2 5 - \log_2 15 - \log_2 150$ bằng bao nhiều?
 - **A.** 5.

- **D.** 3.
- Giá trị của biểu thức $P = 22 \log_2 12 + 3 \log_2 5 \log_2 15 \log_2 150$ bằng bao nhiều? Câu 8.
 - **A.** 2.

- **D.** 5.
- Cho $a > 0, a \ne 1$, biểu thức $D = \log_{a^3} a$ có giá trị bằng bao nhiều? Câu 9.
 - **A.** 3.

- **C.** −3.
- **D.** $-\frac{1}{2}$.
- **Câu 10.** Giá trị của biểu thức $C = \frac{1}{2}\log_7 36 \log_7 14 3\log_7 \sqrt[3]{21}$ bằng bao nhiêu ?
 - **A.** -2.

B. 2.

- $C. -\frac{1}{2}$.
- **D.** $\frac{1}{2}$.
- **Câu 11.** Cho $a > 0, a \ne 1$, biểu thức $E = a^{4\log_{a^2} 5}$ có giá trị bằng bao nhiêu?
 - **A.** 5.

- **B.** 625.
- **C.** 25.
- **D.** 5^8 .

- Câu 12. Trong các số sau, số nào lớn nhất?
 - **A.** $\log_{\sqrt{3}} \sqrt{\frac{5}{6}}$. **B.** $\log_3 \frac{5}{6}$.
- C. $\log_{\frac{1}{2}} \frac{6}{5}$.
- **D.** $\log_3 \frac{6}{5}$.

- Câu 13. Trong các số sau, số nào nhỏ nhất?
 - **A.** $\log_5 \frac{1}{12}$.
- **B.** $\log_{1} 9$.
- C. $\log_{\frac{1}{2}} 17$.
- **D.** $\log_5 \frac{1}{15}$.
- **Câu 14.** Cho a > 0, $a \ne 1$, biểu thức $A = (\ln a + \log_a e)^2 + \ln^2 a \log_a^2 e$ có giá trị bằng
 - **A.** $2 \ln^2 a + 2$.
- **B.** $4 \ln a + 2$.
- C. $2\ln^2 a 2$.
- **D.** $\ln^2 a + 2$.

Câu 15. Cho
$$a > 0, a \ne 1$$
, biểu thức $B = 2 \ln a + 3 \log_a e - \frac{3}{\ln a} - \frac{2}{\log_a e}$ có giá trị bằng

A.
$$4 \ln a + 6 \log_a 4$$
.

B.
$$4 \ln a$$
.

C.
$$3 \ln a - \frac{3}{\log_a e}$$
. **D.** $6 \log_a e$.

D.
$$6\log_a e$$
.

Câu 16. Cho
$$a > 0, b > 0$$
, nếu viết $\log_3 \left(\sqrt[5]{a^3 b} \right)^{\frac{2}{3}} = \frac{x}{5} \log_3 a + \frac{y}{15} \log_3 b$ thì $x + y$ bằng bao nhiều?

Câu 17. Cho
$$a > 0, b > 0$$
, nếu viết $\log_5 \left(\frac{a^{10}}{\sqrt[6]{b^5}} \right)^{-0.2} = x \log_5 a + y \log_5 b$ thì xy bằng bao nhiêu?

B.
$$\frac{1}{3}$$
.

B.
$$\frac{1}{3}$$
. **C.** $-\frac{1}{3}$.

Câu 18. Cho
$$\log_3 x = 3\log_3 2 + \log_9 25 - \log_{\sqrt{3}} 3$$
. Khi đó giá trị của x là :

A.
$$\frac{200}{3}$$
.

B.
$$\frac{40}{9}$$
.

C.
$$\frac{20}{3}$$
.

D.
$$\frac{25}{9}$$
.

Câu 19. Cho
$$\log_7 \frac{1}{x} = 2\log_7 a - 6\log_{49} b$$
. Khi đó giá trị của x là :

A.
$$2a - 6b$$
.

B.
$$x = \frac{a^2}{b^3}$$
.

C.
$$x = a^2b^3$$
.

D.
$$x = \frac{b^3}{a^2}$$
.

Câu 20. Cho
$$a,b,c>0; a\neq 1$$
 và số $\alpha\in\mathbb{R}$, Trong các khẳng định sau, khẳng định nào **sai**?

A.
$$\log_a a^c = c$$
.

B.
$$\log_a a = 1$$
.

$$\mathbf{C.} \, \log_a b^\alpha = \alpha \log_a b \, .$$

D.
$$\log_a (b-c) = \log_a b - \log_a c$$
.

Câu 21. Cho
$$a,b,c > 0; a \ne 1$$
, Trong các khẳng định sau, khẳng định nào **sai**?

$$\mathbf{A.} \, \log_a b = \frac{1}{\log_b a}.$$

B.
$$\log_a b \cdot \log_b c = \log_a c$$
.

$$\mathbf{C.} \, \log_{a^c} b = c \log_a b \, .$$

D.
$$\log_a(b.c) = \log_a b + \log_a c$$
.

Câu 22. Cho
$$a,b,c>0$$
 và $a,b\neq 1$, Trong các khẳng định sau, khẳng định nào **sai**?

$$\mathbf{A.} \ a^{\log_a b} = b \,.$$

B.
$$\log_a b = \log_a c \Leftrightarrow b = c$$
.

$$\mathbf{C.} \, \log_b c = \frac{\log_a c}{\log_a b}.$$

D.
$$\log_a b > \log_a c \Leftrightarrow b > c$$
.

Câu 23. Cho
$$a,b,c>0$$
 và $a>1$. Trong các khẳng định sau, khẳng định nào **sai**?

A.
$$\log_a b < \log_a c \Leftrightarrow b < c$$
.

B.
$$\log_a b > \log_a c \Leftrightarrow b > c$$
.

C.
$$\log_a b > c \Leftrightarrow b > c$$
.

D.
$$a^b > a^c \Leftrightarrow b > c$$
.

Câu 24. Cho
$$a,b,c > 0$$
 và $a < 1$. Trong các khẳng định sau, khẳng định nào **sai**?

A.
$$\log_a b > \log_a c \Leftrightarrow b < c$$
.

B.
$$a^{\sqrt{2}} < a^{\sqrt{3}}$$
.

C.
$$\log_a b < \log_a c \Leftrightarrow b > c$$
.

D.
$$\log_a b > 0 \Leftrightarrow b < 1$$
.

Câu 25. Số thực
$$a$$
 thỏa điều kiện $\log_3(\log_2 a) = 0$ là

A.
$$\frac{1}{3}$$
.

$$\frac{1}{2}$$
.

IAILIĘU	HỘC TẬP TOAN 12 - MO	LOGARII			
Câu 26.	Biết các logarit sau đều	có nghĩa. Khẳng định n	nào sau đây là khẳng đị	nh đúng ?	
	A. $\log_a b = \log_a c \Leftrightarrow b =$		B. $\log_a b > \log_a c \Leftrightarrow b > c$		
	C. $\log_a b > \log_a c \Leftrightarrow b$	< c .	$\mathbf{D.} \log_a b + \log_a c < 0$	$\Leftrightarrow b+c<0$.	
Câu 27.	Cho $a,b,c > 0$ và $a \ne 1$. Khẳng định nào sau đ	ây là khẳng định sai ?		
	$\mathbf{A.} \log_a(bc) = \log_a b + \log_$	$\log_a c$.	B. $\log_a(\frac{b}{c}) = \log_a b - 1$	$\log_a c$.	
	C. $\log_a b = c \Leftrightarrow b = a^c$.		$\mathbf{D.} \log_a(b+c) = \log_a b$	$b + \log_a c$.	
Câu 28.	Số thực x thỏa mãn điể		$\log_8 x = 11 \text{ là} :.$		
	A. 64.	B. $2^{\frac{11}{6}}$.	C. 8.	D. 4.	
Câu 29.	Số thực x thỏa mãn điể	$\hat{e}u \text{ kiện } \log_x 2\sqrt[3]{2} = 4 \text{ là}$			
	A. $\sqrt[3]{2}$.	B. . $\frac{1}{\sqrt[3]{2}}$	C. 4.	D. 2.	
Câu 30.	Cho $a,b>0$ và $a,b\neq 1$. Biểu thức $P = \log_{\sqrt{a}} b$	$^{2} + \frac{2}{\log_{\frac{a}{h^{2}}} a}$ có giá trị bằ	ng bao nhiêu?	
	A. 6.	B. 3.	C. 4.	D. 2.	
Câu 31.	Cho $a,b > 0$ và $a,b \ne 1$, biểu thức $P = \log_{\sqrt{a}} b^3$.	$\log_b a^4$ có giá trị bằng	bao nhiêu?	
	A. 6.	B. 24.	C. 12.	D. 18.	
Câu 32.	Giá trị của biểu thức 4 ³ A. 20.	$^{\log_8 3 + 2\log_{16} 5}$ là B. 40.	C. 45.	D. 25 .	
Câu 33.	Giá trị của biểu thức <i>P</i>			2,720,	
	~ 0	2=	C 20	n 1	
	A. $\frac{53}{30}$.	B. $\frac{37}{10}$.	C. 20.	D. $\frac{1}{15}$.	
Câu 34.	Giá trị của biểu thức A	$= \log_3 2.\log_4 3.\log_5 41$	log ₁₆ 15 là		
	A. $\frac{1}{2}$.	B. $\frac{3}{4}$.	C. 1.	D. $\frac{1}{4}$.	
	2	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	
Câu 35.	Giá trị của biểu thức lo	$g_{\frac{1}{a}} \left(\frac{a \sqrt{a} \sqrt{a}}{\sqrt{a} \sqrt[4]{a}} \right) l \hat{a}.$			
	A. $\frac{1}{5}$.	B. $\frac{3}{4}$.	$\mathbf{C.} - \frac{211}{60}$.	D. $\frac{91}{60}$.	
Câu 36.	Trong 2 số log ₃ 2 và lo	$\log_2 3$, số nào lớn hơn 1?			
	A. $\log_2 3$.		B. $\log_3 2$.		
	C. Cả hai số.		D. Đáp án khác.		
Câu 37.	Cho 2 số log ₁₉₉₉ 2000 v	và log ₂₀₀₀ 2001. Khẳng đ	tịnh nào sau đây là khẳi	ng định đúng?	
	A. $\log_{1999} 2000 > \log_{2000}$	2001.	B. Hai số trên nhỏ hơ	n 1.	
	C. Hai số trên lớn hơn 2	2.	D. $\log_{1999} 2000 \ge \log_{20} $	2001.	
Câu 38.	Các số $\log_3 2$, $\log_2 3$,	log ₃ 11 được sắp xếp th	eo thứ tự tăng dần là		
	A. log ₃ 2, log ₃ 11, log ₂		B. $\log_3 2$, $\log_2 3$, \log	s ₃ 11.	
	$C. \log_2 3, \log_3 2, \log_3 $	11.	D. $\log_3 11$, $\log_3 2$, lo	$g_2 3$.	

GV. I KAI	QUUC NUMIA (Suu taili (z nieu ráh)		•	
Câu 39.	Số thực x thỏa mãn điều kiện $\log_3(x+2)=3$ là				
	A. 5.	B. -25.	C. 25.	D. -3.	
Câu 40.	Số thực x thỏa mãn điề	$\text{su kiện } \log_3 x + \log_9 x =$	$\frac{3}{2}$ là:		
	A. -3.	B. 25.	C. 3.	D. 9.	
Câu 41.	Cho $\log_3 x = 4\log_3 a + 7$	$7\log_3 b \ (a,b>0)$. Giá t	rị của x tính theo a,b 1	à	
	A. <i>ab</i> .	B. a^4b .	C. a^4b^7 .	D. b^{7} .	
Câu 42.	Cho $\log_2(x^2 + y^2) = 1 +$	$\log_2 xy \ (xy > 0)$. Chọn	khẳng định đúng trong	các khẳng định sau?	
	$\mathbf{A.} \ x > y \ .$		$\mathbf{B.} \ x = y \ .$		
	$\mathbf{C.} \ x < y \ .$		D. $x = y^2$.		
Câu 43.	Cho $\log_{\frac{1}{4}}(y-x)-\log_4$	$\frac{1}{y} = 1 \ (y > 0, y > x)$. Ch	ọn khẳng định đúng tro	ng các khẳng định sau?	
	A. $3x = 4y$.	B. $x = -\frac{3}{4}y$.	C. $x = \frac{3}{4}y$.	D. $3x = -4y$.	
Câu 44.	Chọn khẳng định đúng	trong các khẳng định sa	u?		
	$\mathbf{A.} \log_a x^2 = 2\log_a x \left(x \right)$	$^{2}>0$).	$\mathbf{B.} \log_a xy = \log_a x + \log_a y .$		
	$\mathbf{C.} \log_a xy = \log_a x + \log_a$	$g_a y (xy > 0).$	$\mathbf{D.} \log_a xy = \log_a x + 1$	$\log_a y (xy > 0).$	
Câu 45.	Cho $x, y > 0$ và $x^2 + 4y$	$y^2 = 12xy$. Khẳng định r	nào sau đây là khẳng địn	h đúng ?	
	$\mathbf{A.} \ \log_2 \left(\frac{x + 2y}{4} \right) = \log_2$	$x - \log_2 y$.	B. $\log_2(x+2y) = 2 + \frac{1}{2}$	$\frac{1}{2}(\log_2 x + \log_2 y).$	
	C. $\log_2(x+2y) = \log_2 x$	$z + \log_2 y + 1$.	D. $4\log_2(x+2y) = \log_2(x+2y)$	$g_2 x + \log_2 y.$	
Câu 46.	Cho $a, b > 0$ và $a^2 + b^2$	=7ab. Khẳng định nào	sau đây là khẳng định c	đúng ?	
	$\mathbf{A.} \ 2\log(a+b) = \log a + 2\log(a+b) = \log(a+b) = \log(a+b$	$-\log b$.	B. $4\log\left(\frac{a+b}{6}\right) = \log a$	$a + \log b$.	
	$\mathbf{C.} \log \left(\frac{a+b}{3} \right) = \frac{1}{2} (\log a)$	$a + \log b$).	$\mathbf{D.} \log \left(\frac{a+b}{3} \right) = 3(\log \log \log$	$a + \log b$).	
Câu 47.	Cho $\log_2 6 = a$. Khi đó	giá trị của log ₃ 18 được	a tính theo a là		
	A. a.	B. $\frac{a}{a+1}$.	C. 2 <i>a</i> +3.	D. $\frac{2a-1}{a-1}$.	
Câu 48.	Cho $\log_2 5 = a$. Khi đó	giá trị của log ₄ 1250 đu	rọc tính theo a là:		
	A. $\frac{1-4a}{2}$.	B. 2(1+4 <i>a</i>).	C. 1+4 <i>a</i> .	D. $\frac{1+4a}{2}$.	
Câu 49.	Biết $\log_7 2 = m$, khi đó	giá trị của log ₄₉ 28 đượ	m c tính theo m là		
	A. $\frac{m+2}{4}$.	B. $\frac{1+m}{2}$.	C. $\frac{1+4m}{2}$.	D. $\frac{1+2m}{2}$.	
Câu 50.	$Bi\acute{e}t a = \log_2 5, b = \log_5 3$; khi đó giá trị của log	$_{10}$ 15 được tính theo a là	ı	
	A. $\frac{a+b}{a+1}$.	B. $\frac{ab+1}{a+1}$.	C. $\frac{ab-1}{a+1}$.	D. $\frac{a(b+1)}{a+1}$.	

Câu 51.	Cho $a = \log a$	$a_{1}, 15; b = \log_{1} 10$) . Khi đó	giá tri của	$\log 50$	được tính theo	a,b là

A.
$$2(a-b-1)$$
.

B.
$$2(a+b-1)$$
.

C.
$$2(a+b+1)$$
.

D.
$$2(a-b+1)$$
.

Câu 52. Biết
$$\log_5 3 = a$$
, khi đó giá trị của $\log_{15} 75$ được tính theo a là

A.
$$\frac{2+a}{1+a}$$
.

B.
$$\frac{1+2a}{a+1}$$
.

C.
$$\frac{1+a}{2+a}$$
.

Câu 53. Biết
$$\log_4 7 = a$$
, khi đó giá trị của $\log_2 7$ được tính theo a là

B.
$$\frac{1}{2}a$$
.

C.
$$\frac{1}{4}a$$
.

Câu 54. Biết
$$\log_5 3 = a$$
, khi đó giá trị của $\log_3 \frac{27}{25}$ được tính theo a là

A.
$$\frac{3}{2a}$$
.

B.
$$\frac{3a}{2}$$
.

C.
$$\frac{3a-2}{a}$$
.

D.
$$\frac{a}{3a-2}$$
.

Câu 55. Biết
$$a = \log_2 5, b = \log_5 3$$
. Khi đó giá trị của $\log_{24} 15$ được tính theo a là:

A.
$$\frac{ab+1}{b}$$
.

B.
$$\frac{ab+1}{a+1}$$
.

C.
$$\frac{b+1}{a+1}$$
.

D.
$$\frac{a(b+1)}{3+ab}$$
.

Câu 56. Cho
$$\log_{12} 27 = a$$
. Khi đó giá trị của $\log_6 16$ được tính theo a là

A.
$$\frac{4(3+a)}{3-a}$$

A.
$$\frac{4(3+a)}{3-a}$$
. **B.** $\frac{4(3-a)}{3+a}$. **C.** $\frac{4a}{3-a}$.

C.
$$\frac{4a}{3-a}$$
.

D.
$$\frac{2a}{3+a}$$
.

Câu 57. Cho
$$\lg 3 = a$$
, $\lg 2 = b$. Khi đó giá trị của $\log_{125} 30$ được tính theo a là

A.
$$\frac{1+a}{3(1-b)}$$
. **B.** $\frac{4(3-a)}{3-b}$. **C.** $\frac{a}{3+b}$.

B.
$$\frac{4(3-a)}{3-b}$$

C.
$$\frac{a}{3+b}$$

D.
$$\frac{a}{3+a}$$
.

Câu 58. Cho
$$\log_a b = \sqrt{3}$$
. Giá trị của biểu thức $A = \log_{\frac{\sqrt{b}}{a}} \frac{\sqrt[3]{b}}{\sqrt{a}}$ được tính theo a là

A.
$$-\frac{\sqrt{3}}{3}$$
. **B.** $\frac{\sqrt{3}}{4}$. **C.** $\frac{1}{\sqrt{3}}$

B.
$$\frac{\sqrt{3}}{4}$$
.

C.
$$\frac{1}{\sqrt{3}}$$

D.
$$-\frac{\sqrt{3}}{4}$$
.

Câu 59. Cho
$$\log_{27} 5 = a$$
, $\log_8 7 = b$, $\log_2 3 = c$. Giá trị của $\log_6 35$ được tính theo a, b, c là

A.
$$\frac{ac}{1-c}$$
.

B.
$$\frac{ac}{1+b}$$
.

C.
$$\frac{3(ac+b)}{1+c}$$
. D. $\frac{3ac+3b}{3+a}$.

D.
$$\frac{3ac + 3b}{3 + a}$$

Câu 60. Cho
$$x = 2000!$$
. Giá trị của biểu thức $A = \frac{1}{\log_2 x} + \frac{1}{\log_3 x} + ... + \frac{1}{\log_{2000} x}$ là

C.
$$\frac{1}{5}$$
.

Câu 61. Biết
$$a = \log_7 12, b = \log_{12} 24$$
. Khi đó giá trị của $\log_{54} 168$ được tính theo a là

A.
$$\frac{a(8-5b)}{1+ab-a}$$

A.
$$\frac{a(8-5b)}{1+ab-a}$$
. **B.** $\frac{ab+1-a}{a(8-5b)}$. **C.** $\frac{a(8-5b)}{1+ab}$. **D.** $\frac{ab+1}{a(8-5b)}$.

C.
$$\frac{a(8-5b)}{1+ab}$$

D.
$$\frac{ab+1}{a(8-5b)}$$

Câu 62. Biết
$$\log_a b = 2$$
, $\log_a c = -3$. Khi đó giá trị của bieeur thức $\log_a \frac{a^2 b^3}{c^4}$ bằng:

B.
$$-\frac{2}{3}$$
.

D.
$$\frac{3}{2}$$
.

Câu 63. Biết $\log_a b = 3, \log_a c = -4$. Khi đó giá trị của biểu thức $\log_a \left(a^2 \sqrt[3]{b}c^2\right)$ bằng:

A.
$$-\frac{16\sqrt{3}}{3}$$
.

Câu 64. Rút gọn biểu thức $A = \log_a a^3 \sqrt{a} \sqrt[5]{a}$, ta được kết quả là

A.
$$\frac{37}{10}$$
.

B.
$$\frac{35}{10}$$
.

C.
$$\frac{3}{10}$$
.

D.
$$\frac{1}{10}$$
.

Câu 65. Rút gọn biểu thức $B = \log_{\frac{1}{2}} \frac{a\sqrt[5]{a^3}\sqrt[3]{a^2}}{\sqrt{a\sqrt[4]{a}}}$, ta được kết quả là :

A.
$$-\frac{91}{60}$$
.

B.
$$\frac{60}{91}$$
.

$$\frac{16}{5}$$
.

D.
$$-\frac{5}{16}$$
.

Câu 66. Biết $a = \log_2 5, b = \log_3 5$. Khi đó giá trị của $\log_6 5$ được tính theo a, b là:

A.
$$\frac{ab}{a+b}$$
.

B.
$$\frac{1}{a+b}$$
.

$$\mathbf{C}. \ a+b$$
.

D.
$$a^2 + b^2$$
.

Câu 67. Cho $a = \log_2 3$; $b = \log_3 5$; $c = \log_7 2$. Khi đó giá trị của biểu thức $\log_{140} 63$ được tính theo a, b, c là

$$\mathbf{A.} \ \frac{2ac-1}{abc+2c+1}$$

A.
$$\frac{2ac-1}{abc+2c+1}$$
. **B.** $\frac{abc+2c+1}{2ac+1}$. **C.** $\frac{2ac+1}{abc+2c+1}$. **D.** $\frac{ac+1}{abc+2c+1}$.

C.
$$\frac{2ac+1}{abc+2c+1}$$

$$\mathbf{D.} \ \frac{ac+1}{abc+2c+1}$$

Câu 68. Cho $a = \log_5 2$; $b = \log_5 3$. Khi đó giá trị của $\log_5 72$ được tính theo a, b là:

A.
$$3a + 2b$$
.

B.
$$a^3 + b^2$$
.

C.
$$3a - 2b$$
.

Câu 69. Biết $a = \log_{12} 18, b = \log_{24} 54$. Khẳng định nào sau đây là khẳng định đúng?

A.
$$ab + 5(a - b) = -1$$
.

B.
$$5ab + a + b = 1$$
.

C.
$$ab + 5(a-b) = 1$$
.

D.
$$5ab + a - b = 0$$
.

Câu 70. Biết $\log_3(\log_4(\log_2 y)) = 0$, khi đó giá trị của biểu thức A = 2y + 1 là

Câu 71. Cho $\log_5 x > 0$. Khẳng định nào sau đây là khẳng định đúng?

A.
$$\log_{x} 5 \le \log_{x} 4$$
.

A.
$$\log_x 5 \le \log_x 4$$
. **B.** $\log_x 5 > \log_x 6$. **C.** $\log_5 x = \log_x 5$. **D.** $\log_5 x > \log_6 x$.

$$\mathbf{C.} \, \log_5 x = \log_x 5$$

D.
$$\log_5 x > \log_6 x$$
.

Câu 72. Cho 0 < x < 1. Khẳng định nào sau đây là khẳng định đúng?

A.
$$\sqrt[3]{\log_x 5} + \sqrt[3]{\log_{\frac{1}{2}} 5} < 0$$

B.
$$\sqrt[3]{\log_x 5} > \sqrt{\log_x \frac{1}{2}}$$

C.
$$\sqrt{\log_x \frac{1}{2}} < \log_5 \frac{1}{2}$$
.

D.
$$\sqrt{\log_x \frac{1}{2}} . \sqrt[3]{\log_x 5} > 0$$

Câu 73. Trong bốn số $3^{\log_3 4}$, $3^{2\log_3 2}$, $\left(\frac{1}{4}\right)^{\log_2 5}$, $\left(\frac{1}{16}\right)^{\log_0 5^2}$ số nào nhỏ hơn 1?

A.
$$\left(\frac{1}{16}\right)^{\log_{0.5} 2}$$
. **B.** $3^{2\log_{3} 2}$. **C.** $3^{\log_{3} 4}$.

B.
$$3^{2\log_3 2}$$

C.
$$3^{\log_3 4}$$

D.
$$\left(\frac{1}{4}\right)^{\log_2 5}$$
.

Câu 74. Gọi $M = 3^{\log_{0.5} 4}$; $N = 3^{\log_{0.5} 13}$. Khẳng định nào sau đây là khẳng định đúng?

A.
$$M < 1 < N$$
.

B.
$$N < M < 1$$
.

C.
$$M < N < 1$$
.

D.
$$N < 1 < M$$
.

IVIFI		E MO - LOGARTI		00
Câu 75.	Biểu thức \log_2	$\left(2\sin\frac{\pi}{12}\right) + \log_2\left(\cos\frac{\pi}{12}\right)$	có giá trị bằng:	
	A. -2.	B. −1.	C. 1.	D. $\log_2 \sqrt{3} - 1$.
Câu 76.	Với giá trị nào c	của m thì biểu thức $f(x)$	$=\log_{\sqrt{5}}(x-m) \text{ xác địn}$	h với mọi $x \in (-3;+∞)$?
	A. $m > -3$.		B. $m < -3$.	
O^ ==	C. $m \le -3$.	° 151:6 17 (4.)	D. $m \ge -3$.	. 4.1 /· · - [4.0] o
Cau 77.	Vơi gia trị nao c	f(x) and the bleu thuc $f(x)$	$0 = \log_{\frac{1}{2}}(3-x)(x+2m)$	xác định với mọi $x \in [-4;2]$?
	A. $m \ge 2$.	B. $m \ge \frac{3}{2}$.	C. $m > 2$.	D. $m \ge -1$.
Câu 78.	Với giá trị nào c	của m thì biểu thức $f(x)$	$=\log_3\sqrt{(m-x)(x-3m)}$	xác định với mọi $x \in (-5; 4]$?
	A. $m \neq 0$.		B. $m > \frac{4}{3}$.	
	C. $m < -\frac{5}{3}$.		D. $m \in \emptyset$.	
Câu 79.	Với mọi số tự nh	hiên n, Khẳng định nào s	au đây là khẳng định đứ	ing?
	$\mathbf{A.} \ n = \log_2 \log_2$	$\sqrt{\sqrt{\sqrt{\sqrt{2}}}}$.	$\mathbf{B.} \ n = -\log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 $	$g_2 \underbrace{\sqrt{\sqrt{\dots \sqrt{2}}}}_{n \ c\check{a}n \ b\check{a}c \ hai}$.
	C. $n = 2 + \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2$	$\log_2 \frac{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}{n \text{ căn bậc hai}}.$	D. $n = 2 - \log_2 1$	· .
Câu 80.	Cho các số thụ	a,b,c thỏa mãn: a^{\log_3}	$b^{7} = 27, b^{\log_7 11} = 49, c^{\log_{11} 2}$	$^{5} = \sqrt{11}$. Giá trị của biểu thức
	$A = a^{(\log_3 7)^2} + b^{(\log_3 7)^2}$			
	A. 519.	B. 729.	C. 469.	D. 129.
Câu 81.		của biểu thức $C = \sqrt{\log_a}$		$\log_{ab}b)\sqrt{\log_a b}$ là
	A. $\sqrt[3]{\log_a b}$.		B. $.\sqrt{\log_a b}$.	
	C. $\left(\sqrt{\log_a b}\right)^3$.		$\mathbf{D.} \log_a b$.	
Câu 82.	Cho $a, b, c > 0$ đ	ôi một khác nhau và khác	c 1, Khẳng định nào sau	ı đây là khẳng định đúng?
	A. $\log_{\frac{a}{b}}^2 \frac{c}{b}; \log_{\frac{b}{c}}^2 \frac{c}{c}$	$\frac{a}{c}; \log_{\frac{c}{a}}^{2} \frac{b}{a} = 1.$	B. $\log_{\frac{a}{b}}^2 \frac{c}{b}; \log_{\frac{b}{c}}^2$	$\frac{a}{c}; \log_{\frac{c}{a}}^{2} \frac{b}{a} > 1.$
	C. $\log_{\frac{a}{b}}^2 \frac{c}{b}; \log_{\frac{b}{c}}^2 \frac{c}{c}$	$\frac{a}{c}; \log_{\frac{c}{a}}^{2} \frac{b}{a} > -1.$	$\mathbf{D.} \log_{\frac{a}{b}}^{2} \frac{c}{b}; \log_{\frac{b}{c}}^{2}$	$\frac{a}{c}; \log_{\frac{c}{a}}^{2} \frac{b}{a} < 1.$
Câu 83.		ghiệm nguyên của phươn h nào sau đây đúng?	ag trình 2x + y = 3 sao	cho $P = x + y$ là số dương nhỏ

Câu 84. Có tất cả bao nhiều số dương a thỏa mãn đẳng thức $\log_a a + \log_a a + \log_a a = \log_a a + \log_a a + \log_a a = \log_a a + \log_a a$

A. $\log_2 x + \log_3 y$ không xác định.

C. $\log_2(x+y) > 1$.

 $\log_2 a + \log_3 a + \log_5 a = \log_2 a \cdot \log_3 a \cdot \log_5 a$

A. 3.

B. 1.

C. 2.

B. $\log_2(x+y) = 1$. **D.** $\log_2(x+y) > 0$.

D. 0.

Vấn đề 3. HÀM SỐ MŨ – HÀM SỐ LOGARIT – HÀM SỐ LŨY THỪA

- Tìm mệnh đề đúng trong các mệnh đề sau: Câu 1.
 - **A.** Đồ thị hàm số $y = a^x$ và đồ thị hàm số $y = \log_a x$ đối xứng nhau qua đường thẳng y = x.
 - **B.** Hàm số $y = a^x$ với 0 < a < 1 đồng biến trên khoảng $(-\infty; +\infty)$.
 - C. Hàm số $y = a^x$ với a > 1 nghịch biến trên khoảng $(-\infty; +\infty)$.
 - **D.** Đồ thị hàm số $y = a^x$ với a > 0 và $a \ne 1$ luôn đi qua điểm M(a;1).
- Tập giá trị của hàm số $y = a^x$ $(a > 0; a \ne 1)$ là: Câu 2.
 - **A.** $(0; +\infty)$.
- **B.** $[0; +\infty)$.
- C. $\mathbb{R} \setminus \{0\}$.
- \mathbf{D} . \mathbb{R} .

- Với a > 0 và $a \ne 1$. Phát biểu nào sau đây không đúng? Câu 3.
 - **A.** Hai hàm số $y = a^x$ và $y = \log_a x$ có cùng tính đơn điệu.
 - **B.** Hai hàm số $y = a^x$ và $y = \log_a x$ có cùng tập giá trị.
 - C. Đồ thị hai hàm số $y = a^x$ và $y = \log_a x$ đối xứng nhau qua đường thẳng y = x.
 - **D.** Đồ thị hai hàm số $y = a^x$ và $y = \log_a x$ đều có đường tiệm cận.
- Cho hàm số $y = (\sqrt{2} 1)^x$. Phát biểu nào sau đây là đúng? Câu 4.
 - **A.** Hàm số nghịch biến trên khoảng $(-\infty; +\infty)$.
 - **B.** Hàm số đồng biến trên khoảng $(0; +\infty)$
 - C. Đồ thị hàm số có đường tiệm cận ngang là trục tung.
 - **D.** Đồ thị hàm số có đường tiệm cận đứng là trục hoành.
- Tập xác định của hàm số $y = (2x-1)^{2017}$ là: Câu 5.

 - **A.** $D = \begin{bmatrix} \frac{1}{2}; +\infty \end{bmatrix}$. **B.** $D = \left(\frac{1}{2}; +\infty\right)$. **C.** $D = \mathbb{R}$.
- **D.** $D = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$.

- Tập xác định của hàm số $y = (3x^2 1)^{-2}$ là: Câu 6.
 - **A.** $D = \left\{ \pm \frac{1}{\sqrt{3}} \right\}$.

- **B.** $D = \mathbb{R} \setminus \left\{ \pm \frac{1}{\sqrt{3}} \right\}$.
- C. $D = \left(-\infty; -\frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}; +\infty\right)$.
- **D.** $\left(-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right)$.
- Tập xác định của hàm số $y = (x^2 3x + 2)^{-e}$ là: Câu 7.
 - **A.** D = (1, 2).

B. $D = \mathbb{R} \setminus \{1; 2\}$.

C. $D = (0; +\infty)$.

- **D.** $D = (-\infty; 1) \cup (2; +\infty)$.
- Tập xác định của hàm số $y = \log_{0.5}(x+1)$ là: Câu 8.
 - **A.** $D = \mathbb{R} \setminus \{-1\}$.
- **B.** $D = (-1; +\infty)$.
- **C.** $D = (0; +\infty)$. **D.** $(-\infty; -1)$.

- Tìm x để hàm số $y = \log \sqrt{x^2 + x 12}$ có nghĩ**A.** Câu 9.
 - **A.** $x \in (-4;3)$.

B. $x \in (-\infty; -4) \cup (3; +\infty)$.

C. $\begin{cases} x \neq -4 \\ x \neq 3 \end{cases}$.

- **D.** $x \in R$.
- **Câu 10.** Tập xác định của hàm số $y = \log_2 \frac{x+3}{2-x}$ là:
 - **A.** D = (-3, 2).
- **B.** $D = \mathbb{R} \setminus \{-3, 2\}$. **C.** $D = (-\infty, -3) \cup (2, +\infty)$. **D.** D = [-3, 2].

Câu 11. Tập xác định của hàm số
$$y = \frac{1}{\sqrt{2-x}} + \ln(x-1)$$
 là:

A.
$$D = (0; +\infty)$$
.

B.
$$D = (1; +\infty)$$
.

C.
$$D = (1, 2)$$
.

D.
$$D = [1; 2]$$
.

Câu 12. Tập xác định của hàm số
$$y = \frac{e^x}{e^x - 1}$$
 là:

A.
$$D = (e; +\infty)$$
.

B.
$$(0;+\infty)$$
.

C.
$$\mathbb{R} \setminus \{1\}$$
.

$$\mathbf{D}. \ D = \mathbb{R} \setminus \{0\}.$$

Câu 13. Tập xác định
$$y = \sqrt{-2x^2 + 5x - 2} + \ln \frac{1}{x^2 - 1}$$
 là:

A.
$$D = (-1;1)$$
.

B.
$$D = [1; 2]$$
.

C.
$$D = (1; 2]$$
.

D.
$$D = (-1, 2)$$
.

Câu 14. Tập xác định của hàm số
$$y = \ln(\ln x)$$
 là:

A.
$$D = (1; +\infty)$$
.

B.
$$D = (0; +\infty)$$
.

C.
$$D = (e; +\infty)$$
.

D.
$$D = [1; +\infty)$$
.

Câu 15. Tập xác định của hàm số
$$y = (3^x - 9)^{-2}$$
 là

A.
$$D = (2; +\infty)$$
.

B.
$$D = \mathbb{R} \setminus \{0\}$$
.

C.
$$D = \mathbb{R} \setminus \{2\}$$
.

D.
$$D = (0; +\infty)$$
.

Câu 16. Hàm số
$$y = \log_{x-1} x$$
 xác định khi và chỉ khi :

A.
$$x \neq 2$$
.

B.
$$x > 1$$
.

C.
$$x > 0$$
.

$$\mathbf{D.} \begin{cases} x > 1 \\ x \neq 2 \end{cases}$$

Câu 17. Đường cong trong hình bên là đồ thi của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

A.
$$y = 2^x$$
.

B.
$$y = x$$
.

C.
$$y = (\sqrt{2})^x$$
. **D.** $y = (\sqrt{2})^{-x}$.

D.
$$y = (\sqrt{2})^{-x}$$

Câu 18. Hàm số
$$y = (x-1)^{\frac{1}{3}}$$
 có đạo hàm là:

A.
$$y' = \frac{1}{3\sqrt{(x-1)^3}}$$
.

B.
$$y' = \frac{1}{3\sqrt[3]{(x-1)^2}}$$
.

A.
$$y' = \frac{1}{3\sqrt{(x-1)^3}}$$
. **B.** $y' = \frac{1}{3\sqrt[3]{(x-1)^2}}$. **C.** $y' = \frac{\sqrt[3]{(x-1)^2}}{3}$. **D.** $y' = \frac{\sqrt{(x-1)^3}}{3}$.

D.
$$y' = \frac{\sqrt{(x-1)^3}}{3}$$

Câu 19. Đạo hàm của hàm số
$$y = 4^{2x}$$
 là:

A.
$$y' = 2.4^{2x} \ln 2$$
.

B.
$$y' = 4^{2x} . \ln 2$$

C.
$$y' = 4^{2x} \ln 4$$

A.
$$y' = 2.4^{2x} \ln 2$$
. **B.** $y' = 4^{2x} . \ln 2$. **C.** $y' = 4^{2x} \ln 4$. **D.** $y' = 2.4^{2x} \ln 4$.

Câu 20. Đạo hàm của hàm số
$$y = \log_5 x, x > 0$$
 là:

A.
$$y' = \frac{1}{5^x \ln 5}$$
. **B.** $y' = x \ln 5$. **C.** $y' = 5^x \ln 5$. **D.** $y' = \frac{1}{x \ln 5}$.

B.
$$y' = x \ln 5$$

C.
$$y' = 5^x \ln 5$$
.

D.
$$y' = \frac{1}{x \ln 5}$$

Câu 21. Hàm số
$$y = \log_{0.5} x^2$$
 $(x \ne 0)$ có công thức đạo hàm là:

A.
$$y' = \frac{2}{x^2 \ln 0.5}$$

A.
$$y' = \frac{2}{x^2 \ln 0.5}$$
. **B.** $y' = \frac{1}{x^2 \ln 0.5}$. **C.** $y' = \frac{2}{x \ln 0.5}$. **D.** $\frac{1}{x \ln 0.5}$.

C.
$$y' = \frac{2}{x \ln 0.5}$$
.

D.
$$\frac{1}{x \ln 0.5}$$

Câu 22. Đạo hàm của hàm số
$$y = \sin x + \log_3 x^3$$
 $(x > 0)$ là:

A.
$$y' = -\cos x + \frac{1}{x^3 \ln 3}$$
.

B.
$$y' = -\cos x + \frac{3}{x \ln 3}$$
.

C.
$$y' = \cos x + \frac{1}{x^3 \ln 3}$$
.

D.
$$y' = \cos x + \frac{3}{x \ln 3}$$
.

- **Câu 23.** Cho hàm số $f(x) = \ln(x^4 + 1)$. Đạo hàm f'(0) bằng:

B. 1.

D. 3.

- **Câu 24.** Cho hàm số $f(x) = e^{2017x^2}$. Đạo hàm f'(0) bằng:

B. 0.

- **D.** e^{2017}
- **Câu 25.** Cho hàm số $f(x) = xe^x$. Gọi f''(x) là đạo hàm cấp hai của f(x). Ta có f''(1) bằng:
 - **A.** $-5e^2$.
- **B.** $-3e^2$.
- $\mathbf{C}.\ e^3.$
- **D.** 3e.

- Câu 26. Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
 - **A.** $y = \log_2 x$.
- **B.** $y = \log_{\frac{1}{2}} x$.
- **C.** $y = \log_{\sqrt{2}} x$.
- **D.** $y = \log_2(2x)$.

- **B.** Đồ thị hàm số $y = x^{\alpha}$ với $\alpha > 0$ không có tiệm cận.
- C. Hàm số $y = x^{\alpha}$ với $\alpha < 0$ nghịch biến trên khoảng $(0; +\infty)$.
- **D.** Hàm số $y = x^{\alpha}$ có tập xác định là $D = \mathbb{R}$.
- Trong các mệnh đề sau mệnh đề nào đúng? Câu 28.
 - A. Đồ thị hàm số lôgarit nằm bên phải trục tung.
 - B. Đồ thị hàm số lôgarit nằm bên trái trục tung.
 - C. Đồ thị hàm số mũ nằm bên phải trục tung.
 - D. Đồ thị hàm số mũ nằm bên trái trục tung.
- Chọn phát biểu sai trong các phát biểu sau?
 - A. Đồ thị hàm số logarit nằm bên trên trục hoành.
 - **B.** Đồ thị hàm số mũ không nằm bên dưới trục hoành.
 - C. Đồ thi hàm số lôgarit nằm bên phải truc tung.
 - **D.** Đồ thi hàm số mũ với số mũ âm luôn có hai tiêm cân.
- Đường cong trong hình bên là đồ thị của **Câu 30.** một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

$$\mathbf{B.} \ \ y = \log_2 x$$

- **Câu 31.** Tìm a để hàm số $y = \log_a x (0 < a \ne 1)$ có đồ thị là hình bên dưới:
 - **A.** a = 2.
- **B.** $a = \sqrt{2}$.
- **C.** $a = \frac{1}{2}$.
- **D.** $a = \frac{1}{\sqrt{2}}$.
- **Câu 32.** Tìm tập xác định D của hàm số $y = \log_3 \frac{10 x}{x^2 3x + 2}$.
 - **A.** $D = (-\infty; 10)$.
- **B.** $D = (1; +\infty)$. **C.** $D = (-\infty; 1) \cup (2; 10)$.
- **D.** D = (2;10).

Câu 33. Tìm tập xác định D của hàm số $y = \sqrt{\log_3(x-2)-3}$?

A.
$$D = (29; +\infty)$$
.

B.
$$D = [29; +\infty)$$

C.
$$D = (2;29)$$
.

B.
$$D = [29; +\infty)$$
. **C.** $D = (2; 29)$. **D.** $D = (2; +\infty)$.

Câu 34. Tính đạo hàm của hàm số $y = (x^2 + 2x)e^{-x}$?

A.
$$y' = (2x-2)e^x$$

B.
$$y' = (x^2 + 2)e^{-x}$$

C.
$$y' = xe^{-x}$$

A.
$$y' = (2x-2)e^x$$
. **B.** $y' = (x^2+2)e^{-x}$. **C.** $y' = xe^{-x}$. **D.** $y' = (-x^2+2)e^{-x}$.

Câu 35. Tìm tất cả các giá trị thực của tham số m để hàm số $y = \ln(x^2 - 2mx + 4)$ có tập xác định $D = \mathbb{R}$?

B.
$$-2 < m < 2$$
. **C.** $m > -2$. **D.** $-2 \le m \le 2$.

C.
$$m > -2$$
.

D.
$$-2 \le m \le 2$$

Câu 36. Cho tập D = (3;4) và các hàm số $f(x) = \frac{2017}{\sqrt{x^2 - 7x + 12}}$, $g(x) = \log_{x-3}(4-x)$, $h(x) = 3^{x^2 - 7x + 12}$

D là tập xác định của hàm số nào?

A.
$$f(x)$$
 và $f(x) + g(x)$.

B.
$$f(x)$$
 và $h(x)$.

C.
$$g(x)$$
 và $h(x)$.

D.
$$f(x) + h(x)$$
 và $h(x)$

Câu 37. Biết hàm số $y = 2^x$ có đồ thị là hình bên.

Khi đó, hàm số $y = 2^{|x|}$ có đồ thị là hình nào trong bốn hình được liệt kê ở bốn A, B, C, D dưới đây ?

A. Hình 1.

B. Hình 2.

C. Hình 3.

D. Hình 4.

Cho hàm số $y = ex + e^{-x}$. Nghiệm của phương trình y' = 0? Câu 38.

A.
$$x = 1$$
.

B.
$$x = -1$$
.

C.
$$x = 0$$
.

D.
$$x = \ln 2$$
.

Câu 39. Tìm tất cả các giá trị thực của a để hàm số $y = \log_a x \ (0 < a \ne 1) \ \text{có đồ thị là hình bên }?$

B.
$$a = \sqrt{2}$$
.

D.
$$a = \frac{1}{\sqrt{2}}$$
.

Câu 40. Tìm giá trị lớn nhất của hàm số $f(x) = x^2 e^x$ trên đoạn [-1;1]?

$$\mathbf{B} \cdot \frac{1}{e}$$
.

Câu 41. Cho hàm số $y = \log_2(2x)$. Khi đó, hàm số $y = \left|\log_2(2x)\right|$ có đồ thị là hình nào trong bốn hình được liệt kê ở bốn phương án A, B, C, D dưới đây:

0

Hình 3

- **A.** Hình 1.
- **B.** Hình 2.
- **C.** Hình 3.
- **D.** Hình 4.
- **Câu 42.** Tìm điều kiện xác định của phương trình $\log^4(x-1) + \log^2(x-1)^2 = 25$?

A.
$$x \neq 1$$
.

B.
$$x > 1$$
.

- **D.** $x \in \mathbb{R}$.
- **Câu 43.** Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = 2^{|x|}$ trên [-2;2]?

A. max
$$y = 4$$
; miny $= \frac{1}{4}$.

B. max
$$y = 4$$
; min $y = -\frac{1}{4}$.

C. max
$$y = 1$$
; miny $= \frac{1}{4}$.

D. max
$$y = 4$$
; miny = 1.

- **Câu 44.** Chọn khẳng định đúng khi nói về hàm số $y = \frac{\ln x}{x}$
 - A. Hàm số không có cực trị.
 - B. Hàm số có một điểm cực đại.
 - C. Hàm số có một điểm cực tiểu.
 - D. Hàm số có một điểm cực đại và một điểm cực tiểu.
- Hình bên là đồ thị của ba hàm số $y = \log_a x$, Câu 45. $y = \log_b x$, $y = \log_c x (0 < a, b, c \ne 1)$ được vẽ trên cùng một hệ trục tọa độ. Khẳng định nào sau đây là khẳng định đúng?

- A. a > b > c.
- **B.** b > a > c.
- **C.** b > c > a.
- Tìm tất cả các giá trị thực của tham số m để hàm số $y = \frac{1}{\sqrt{2m+1-x}} + \log_3 \sqrt{x-m}$ xác định trên (2;3).
 - **A.** -1 < m < 2.
- **B.** $1 < m \le 2$.
- **C.** $1 \le m \le 2$.
- **D.** $-1 \le m \le 2$.
- **Câu 47.** Cho hàm số $y = x \ln(x + \sqrt{1 + x^2}) \sqrt{1 + x^2}$. Khẳng định nào sau đây là khẳng định đúng?
 - **A.** Hàm số có đạo hàm $y' = \ln(x + \sqrt{1 + x^2})$. **B.** Hàm số tăng trên khoảng $(0; +\infty)$.
 - C. Tập xác định của hàm số là $D = \mathbb{R}$.
- **D.** Hàm số giảm trên khoảng $(0; +\infty)$.
- **Câu 48.** Đối với hàm số $y = \ln \frac{1}{x+1}$, Khẳng định nào sau đây là khẳng định đúng?
 - **A.** $xy'-1=e^y$.
- **B.** $xy'-1=-e^y$. **C.** $xy'+1=-e^y$. **D.** $xy'+1=e^y$.

- **Câu 49.** Đạo hàm của hàm số $y = \frac{e^x e^{-x}}{e^x + e^{-x}}$ là:

 - **A.** $y' = \frac{3e^{2x}}{(e^{2x} + 1)^2}$. **B.** $y' = \frac{e^{2x}}{(e^{2x} + 1)^2}$. **C.** $y' = \frac{2e^{2x}}{(e^{2x} + 1)^2}$. **D.** $y' = \frac{4e^{2x}}{(e^{2x} + 1)^2}$.
- **Câu 50.** Cho hàm số $y = x \sin x$. Khẳng định nào sau đây là khẳng định đúng?
 - **A.** $xy'' + y' xy = 2\cos x + \sin x$.
- **B.** $xy' + yy'' xy' = 2\sin x$.

C. $xy' + yy' - xy' = 2\sin x$.

- **D.** $xy'' 2y' + xy = -2\sin x$
- **Câu 51.** Hình bên là đồ thị của ba hàm số $y = a^x$, $y = b^x$, $y = c^x$ ($0 < a, b, c \ne 1$) được vẽ trên cùng một hệ trục tọa độ. Khẳng định nào sau đây là khẳng định đúng?

- **A.** a > b > c.
- **B.** b > a > c.
- **C.** a > c > b.
- **D.** c > b > a.

Vấn đề 4. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ

	van de 4. PH	IUUNG IRINH – I	SAI PHUUNG	I KINH MU	
Câu 1.	Cho phương trình 3^{x^2} . A. 26.	$^{-4x+5}$ = 9 tổng lập phươn B. 27.	ng các nghiệm thực c. 28.	của phương trình là D. 25.	
Câu 2.				ghiệm của phương trình là $\mathbf{B.} \ S = \{-2; -5\}.$	
	C. $S = \left\{ \frac{5 - \sqrt{61}}{2}; \frac{5 + \sqrt{61}}{2} \right\}$	$\left\{\frac{\sqrt{61}}{2}\right\}$.	D. $S = \left\{ \frac{-5 - \sqrt{6}}{2} \right\}$	$\frac{\sqrt{51}}{2};\frac{-5+\sqrt{61}}{2}$.	

- **Câu 4.** Số nghiệm của phương trình $9^{\frac{x}{2}} + 9 \cdot \left(\frac{1}{\sqrt{3}}\right)^{2x+2} 4 = 0$ là **A.** 4. **B.** 2. **C.** 1. **D.** 0.
- Câu 5. Cho phương trình : 2 | 28 x+4 | = 16 x²-1 . Khẳng định nào sau đây là khẳng định đúng ?
 A. Phương trình vô nghiệm.
 B. Tổng các nghiệm của phương tình là một số nguyên .
 C. Nghiệm của phương trình là các số vô tỉ.
- **Câu 6.** Phương trình $2^{8-x^2} ext{.} 5^{8-x^2} = 0,001. \left(10^5\right)^{1-x}$ có tổng các nghiệm là **A.** 5. **B.** 7. **C.** -7 . **D.** -5 .
- **Câu 7.** Phương trình $9^x 5.3^x + 6 = 0$ có nghiệm là **A.** $x = -1, x = \log_3 2$. **B.** $x = 1, x = \log_3 2$. **C.** $x = 1, x = \log_2 3$. **D.** $x = -1, x = -\log_3 2$.

D. Tích các nghiệm của phương trình là một số âm.

- **Câu 8.** Cho phương trình $4.4^x 9.2^{x+1} + 8 = 0$. Gọi x_1, x_2 là hai nghiệm của phương trình trên. Khi đó, tích $x_1.x_2$ bằng:
- **A.** −1. **B.** 2. **C.** −2. **D.** 1.
- **Câu 9.** Cho phương trình $4^x 4^{1-x} = 3$. Khẳng định nào sau đây là khẳng định **sai**? **A.** Phương trình có một nghiệm.
 - B. Phương trình vô nghiệm.
 - C. Nghiệm của phương trình là luôn lớn hơn 0.
 - **D.** Phương trình đã cho tương đương với phương trình: $4^{2x} 3.4^x 4 = 0$.
- **Câu 10.** Cho phương trình $9^{x^2+x-1} 10.3^{x^2+x-1} + 1 = 0$. Tính tổng tất cả các nghiệm của phương trình. **A.** 0. **B.** 2. **C.** 1. **D.** -2.
- **Câu 11.** Nghiệm của phương trình $2^x + 2^{x+1} = 3^x + 3^{x+1}$ là **A.** $x = \log_{\frac{3}{2}} \frac{3}{4}$. **B.** x = 1. **C.** x = 0. **D.** $x = \log_{\frac{4}{3}} \frac{2}{3}$.
- **Câu 12.** Tập nghiệm của phương trình $2^{2x} 3 \cdot 2^{x+2} + 32 = 0$ là **A.** $S = \{2; 3\}$. **B.** $S = \{4; 8\}$. **C.** $S = \{2; 8\}$. **D.** $S = \{3; 4\}$.

Câu 13. Tập nghiệm của phương trình $6.4^x - 13.6^x + 6.9^x = 0$ là

A.
$$S = \{-1; 0\}$$
.

B.
$$S = \left\{ \frac{2}{3}; \frac{3}{2} \right\}$$
. **C.** $S = \{1; -1\}$. **D.** $S = \{0; 1\}$.

C.
$$S = \{1; -1\}$$
.

D.
$$S = \{0;1\}$$

Câu 14. Nghiệm của phương trình $12.3^x + 3.15^x - 5^{x+1} = 20$ là

A.
$$x = \log_3 5$$
.

B.
$$x = \log_3 5 - 1$$
.

C.
$$x = \log_3 5 + 1$$
.

D.
$$x = \log_5 3 - 1$$
.

Câu 15. Phương trình $9^x - 5.3^x + 6 = 0$ có tổng các nghiệm là

$$\mathbf{A} \cdot \log_3 6$$

B.
$$\log_3 \frac{2}{3}$$

B.
$$\log_3 \frac{2}{3}$$
. **C.** $\log_3 \frac{3}{2}$.

$$\mathbf{D}_{\bullet} - \log_3 6$$
.

Câu 16. Cho phương trình $2^{1+2x} + 15.2^x - 8 = 0$ (1), khẳng định nào sau đây là khẳng định đúng?

B. (1) có một nghiệm.

D. (1) có hai nghiệm âm.

Câu 17. Phương trình $5^x + 25^{1-x} = 6$ có tích các nghiệm là :

A.
$$\log_5\left(\frac{1+\sqrt{21}}{2}\right)$$

A.
$$\log_5\left(\frac{1+\sqrt{21}}{2}\right)$$
. **B.** $\log_5\left(\frac{1-\sqrt{21}}{2}\right)$. **C.** 5.

D.
$$5\log_5\left(\frac{1+\sqrt{21}}{2}\right)$$
.

Câu 18. Phương trình $(7+4\sqrt{3})^x + (2+\sqrt{3})^x = 6$ có nghiệm là

A.
$$x = \log_2 3$$
.

B.
$$x = \log_{(2+\sqrt{3})} 2$$

B.
$$x = \log_{(2+\sqrt{3})} 2$$
. **C.** $x = \log_2(2+\sqrt{3})$. **D.** $x = 1$.

D.
$$x = 1$$
.

Câu 19. Tập nghiệm của bất phương trình $\left(\frac{1}{2}\right)^x > 32$ là

A.
$$S = (5; +\infty)$$
.

B.
$$S = (-\infty; 5)$$

B.
$$S = (-\infty; 5)$$
. **C.** $S = (-5; +\infty)$. **D.** $S = (-\infty; -5)$.

D.
$$S = (-\infty; -5)$$

Câu 20. Cho hàm số $f(x) = 2^{2x} \cdot 3^{\sin^2 x}$. Khẳng định nào sau đây là khẳng định đúng?

A.
$$f(x) < 1 \Leftrightarrow x \log_3 2 + \sin^2 x < 0$$
.

B.
$$f(x) < 1 \Leftrightarrow 2x + 2\sin x \log_2 3 < 0$$
.

C.
$$f(x) < 1 \Leftrightarrow x \ln 4 + \sin^2 x \ln 3 < 0$$
.
D. $f(x) < 1 \Leftrightarrow 2 + x^2 \log_2 3 < 0$.

D.
$$f(x) < 1 \Leftrightarrow 2 + x^2 \log_2 3 < 0$$

Câu 21. Tập nghiệm của bất phương trình $2^x + 2^{x+1} \le 3^x + 3^{x-1}$

A.
$$S = [2; +\infty)$$
.

B.
$$S = (2; +\infty)$$
.

B.
$$S = (2; +\infty)$$
. **C.** $S = (-\infty; 2)$. **D.** $S = (2; +\infty)$.

D.
$$S = (2; +\infty)$$
.

Câu 22. nghiệm của bất phương trình $\left(\frac{1}{9}\right)^x > 3^{\frac{2x}{x+1}}$ là

A.
$$-1 \le x < 0$$

B.
$$x < -2$$

A.
$$-1 \le x < 0$$
. **B.** $x < -2$. **C.** $-1 < x < 0$.

D.
$$\begin{bmatrix} x < -2 \\ -1 < x < 0 \end{bmatrix}$$
.

Câu 23. Nghiệm của bất phương trình $16^x - 4^x - 6 \le 0$ là

A.
$$x > \log_4 3$$
.

B.
$$x \le \log_4 3$$
.

C.
$$x \ge 1$$
.

D.
$$x \ge 3$$

Câu 24. Nghiệm của bất phương trình $\frac{3^x}{3^x-2} < 3$ là

$$\mathbf{A.} \begin{bmatrix} x > 1 \\ x < \log_3 2 \end{bmatrix}.$$

B.
$$x > \log_3 2$$
. **C.** $x < 1$.

C.
$$x < 1$$

D.
$$\log_3 2 < x < 1$$
.

Câu 25. Nghiệm của bất phương trình $11^{\sqrt{x+6}} \ge 11^x$ là

A.
$$x > 3$$
.

B.
$$x < -6$$
.

C.
$$-6 \le x \le 3$$
.

$$\mathbf{D}. \varnothing$$
.

GV. HIVAI	QUUC NOI IIA (Saa tairi	a pien táb)		31
Câu 26.	6. Nghiệm của bất phương trình $\frac{1}{3^x+5} \le \frac{1}{3^{x+1}-1}$ là			
	A. $-1 < x \le 1$.	B. $x \le -1$.	C. $x > 1$.	D. 1 < <i>x</i> < 2.
Câu 27.	Cho bất phương trình ($\left(\frac{5}{7}\right)^{x^2-x+1} > \left(\frac{5}{7}\right)^{2x-1}$, tập	nghiệm của bất phương	g trình có dạng $S = (a;b)$.
	Giá trị của biểu thức <i>A</i> A. 1.	=b-a nhận giá trị nào B. -1 .	o sau đây? C. 2.	D. -2.
Câu 28.	Tập nghiệm của bất pho A. $S = (1; 2)$.	$4^x - 3.2^x + 2$	$c > 0$ là B. $S = (-\infty; 1) \cup (2; +\infty)$	∞).
	C. $S = (0;1)$.		D. $S = (-\infty; 0) \cup (1; +$	∞).
Câu 29.	Tập nghiệm của bất pho A. $S = [2; +\infty)$.	=	là C. $S = (-\infty; 2)$.	D. $S = (-\infty; 2].$
Câu 30.	Tập nghiệm của bất pho A. $S = (0; +\infty)$.	wrong trình $3^{x+1} - 2^{2x+1} - 2^{2x+1}$	$12^{\frac{x}{2}} < 0 \text{ là}$ $\mathbf{B.} \ S = (1; +\infty).$	
	$\mathbf{C.} \ S = (-\infty; 0).$		D. $S = (-\infty; 1)$.	
Câu 31.	Tập nghiệm của bất ph	wrong trình $\frac{2 \cdot 3^x - 2^{x+2}}{3^x - 2^x} \le$	≤1 là	
	A. $S = (1;3].$	B. $S = (1;3)$.	C. $S = \left[0; \log_{\frac{3}{2}} 3\right].$	D. $S = \left[0; \log_{\frac{3}{2}} 3\right].$
Câu 32.	Tập nghiệm của bất ph	$\text{wrong trình } \left(\frac{2}{\sqrt{5}}\right)^{\frac{1}{x}} \le \left(-\frac{1}{\sqrt{5}}\right)^{\frac{1}{x}}$	$\left(\frac{2}{\sqrt{5}}\right)^3$ là	
	$\mathbf{A.}\left(0;\frac{1}{3}\right].$	$\mathbf{B.}\left(0;\frac{1}{3}\right).$	$\mathbf{C.}\left(-\infty;\frac{1}{3}\right].$	$\mathbf{D.}\left(-\infty;\frac{1}{3}\right]\cup(0;+\infty).$
Câu 33.	Nghiệm của bất phương	_	0^x là	
	A. $x < 0$.	$\mathbf{B.} \begin{bmatrix} x < 0 \\ x > 2 \end{bmatrix}.$	C. $x > 2$.	D. 0 < <i>x</i> < 2.
Câu 34.	Tập nghiệm của bất ph		(1 là	
	A. [-1; 1].	B. (-8;0).	C. (1;9).	D. (0;1].
Câu 35.	Tìm tất cả các nghiệm α A. $x \in \{-5, -1, 1, 3\}$.	của phương trình 4^{x^2-3x}	$+2 + 4^{x^2+6x+5} = 4^{2x^2+3x+7} + $ B. $x \in \{-5; -1; 1; 2\}.$	1.
	C. $x \in \{-5; -1; 1; -2\}$.		D. $x \in \{5; -1; 1; 2\}.$	
Câu 36.	Phương trình $(\sqrt{3} - \sqrt{2})$	$\left(-\frac{1}{3}\right)^{x} + \left(\sqrt{3} + \sqrt{2}\right)^{x} = \left(\sqrt{10}\right)^{x}$	$\left(\frac{1}{2}\right)^{x}$ có tất cả bao nhiêu n	ghiệm thực ?
	A. 4.	B. 2.	C. 3.	D. 1.

Câu 37. Phương trình $3^{2x} + 2x(3^x + 1) - 4 \cdot 3^x - 5 = 0$ có tất cả bao nhiều nghiệm không âm ?

C. 0.

D. 1.

B. 2.

A. 3.

Câu 48. Cho phương trình $4^x - m \cdot 2^{x+1} + 2m = 0$ có hai nghiệm phân biệt x_1, x_2 (trong đó m là tham số). Tìm tất cả các giá trị thực của m để $x_1 + x_2 = 3$.

A. m = 4.

B. m = 2.

C. m = 1.

D. m = 3.

A. 3.

B. 4.

C. 1.

D. 2.

Câu 49.	. Cho bất phương trình $2^{\sin^2 x} + 3^{\cos^2 x} \ge m \cdot 3^{\sin^2 x}$ (1) (trong đó m là tham số). Tìm tất cả các giá trị			
	thực của m để (1) có r	nghiệm.		
	A. $m \ge 4$.	B. $m \le 4$.	C. $m \le 1$.	D. $m \ge 1$.
Câu 50.	phương trình (1) nghiệ	m đúng $\forall x > 1$.		
	A. $m > 3 + 2\sqrt{2}$.	B. $m > -\frac{3}{2}$.	C. $m \ge -\frac{3}{2}$.	D. $m \ge 3 + 2\sqrt{2}$.
	Vấn đề 5. PHƯƠN	NG TRÌNH – BẤT I	PHƯƠNG TRÌNH	LOGARIT
Câu 1.	Điều kiện xác định của	phươg trình $\log_{2x-3} 16 =$	= 2 là:	
	$\mathbf{A.} \ x \in \mathbb{R} \setminus \left[\frac{3}{2}; 2 \right].$	B. $x \neq 2$.	C. $\frac{3}{2} < x \neq 2$.	D. $x > \frac{3}{2}$.
Câu 2.	Điều kiện xác định của	phươg trình $\log_{x}(2x^{2} -$	7x+12) = 2 là:	
	A. $x \in (0;1) \cup (1;+\infty)$.			D. $x \in (0; +\infty)$.
Câu 3.	Điều kiện xác định của	phương trình $\log_5(x-1)$	$= \log_5 \frac{x}{x+1} \text{là:}$	
	A. $x \in (1; +\infty)$.	B. $x \in (-1;0)$.	$\mathbf{C.} \ x \in \mathbb{R} \setminus [-1;0].$	$\mathbf{D.} \ x \in \left(-\infty; 1\right).$
Câu 4.	Điều kiện xác định của	phươg trình $\log_9 \frac{2x}{x+1} =$	$\frac{1}{2}$ là:	
	$\mathbf{A.} x \in \left(-1; +\infty\right).$	B. $x \in \mathbb{R} \setminus [-1;0]$.	C. $x \in (-1,0)$.	$\mathbf{D.} \ x \in \left(-\infty; 1\right).$
Câu 5.	Phương trình $\log_2(3x -$			
	A. $x = \frac{4}{3}$.	B. $x = \frac{2}{3}$.	C. $x = 1$.	D. $x = 2$.
Câu 6.	Phương trình $\log_2(x+3)$	$+\log_2(x-1) = \log_2 5 c$	ó nghiệm là:	
	A. $x = 2$.	B. $x = 1$.	C. $x = 3$.	D. $x = 0$.
Câu 7.	Phương trình $\log_3(x^2 -$	$6) = \log_3(x-2) + 1 \text{ có ta}$	ập nghiệm là:	
	A. $T = \{0; 3\}$.	B. $T = \emptyset$.	C. $T = \{3\}$.	D. $T = \{1, 3\}$.
Câu 8.	Phương trình $\log_2 x + \log_2 x$	$\log_2(x-1) = 1$ có tập ngh	iệm là:	
	A. $\{-1;3\}$.	B. {1;3}.	C. {2}.	D. {1}.
Câu 9.	Phương trình $\log_2^2(x+1)$	$(1) - 6\log_2 \sqrt{x+1} + 2 = 0$	có tập nghiệm là:	
	A. {3;15}.	B. {1;3}.	C. {1;2}.	D. {1;5}.
Câu 10.	Số nghiệm của phương A. 0.	trình $\log_4 (\log_2 x) + \log_2 x$ B. 2.	$(\log_4 x) = 2$ là: C. 3.	D. 1.
Câu 11.	Số nghiệm của phương A. 2.	trình $\log_2 x . \log_3(2x-1)$ B. 0.	= $2\log_2 x$ là:	D. 3.
Câu 12.	Số nghiệm của phương A. 0.	trình $\log_2(x^3 + 1) - \log_2(x^3 + 1) = \log_2(x^3 + 1)$	$(x^2 - x + 1) - 2\log_2 x = 0$ C. 3.	là: D. 1.
Câu 13.	Số nghiệm của phương			

IVIFO	TIÇCIA TOANIZ MO	LOGARII		100
Câu 14.	Phương trình $\log_3(5x -$	$-3) + \log_{\frac{1}{2}}(x^2 + 1) = 0$ có	5 2 nghiệm x_1, x_2 trong	g đó $x_1 < x_2$. Giá trị của
	$P = 2x_1 + 3x_2$ là A. 5.	B. 14.	C. 3.	D. 13.
Câu 15.	Hai phương trình 2log	$_{5}(3x-1)+1 = \log_{\sqrt[3]{5}}(2x+1)$	-1) và $\log_2(x^2 - 2x - 8)$	$=1-\log_{\frac{1}{2}}(x+2) \text{lần lượt}$
	có 2 nghiệm duy nhất là A. 8.	x_1, x_2 . Tổng $x_1 + x_2$ là B. 6.	? C. 4.	D. 10.
Câu 16.	Gọi x_1, x_2 là nghiệm củ	ia phương trình $\log_x 2$	$\log_{16} x = 0$. Khi đó tích	$x_1.x_2$ bằng:
	A. -1.	B. 1.	C. 2.	D. -2.
Câu 17.	Nếu đặt $t = \log_2 x$ thì p	bhương trình $\frac{1}{5 - \log_2 x}$ +	$\frac{2}{1 + \log_2 x} = 1 \text{ trở thành}$	phương trình nào?
	A. $t^2 - 5t + 6 = 0$.		B. $t^2 + 5t + 6 = 0$.	
	C. $t^2 - 6t + 5 = 0$.		D. $t^2 + 6t + 5 = 0$.	
Câu 18.	Nếu đặt $t = \lg x$ thì phu	$\operatorname{rong tr} \ln \frac{1}{4 - \lg x} + \frac{2}{2 + 1}$	$\frac{2}{\log x} = 1$ trở thành phươn	g trình nào?
	A. $t^2 + 2t + 3 = 0$. C. $t^2 - 2t + 3 = 0$.		B. $t^2 - 3t + 2 = 0$. D. $t^2 + 3t + 2 = 0$.	
Câu 10		urong trình log ³ v. 21o		
Cau 19.	Nghiệm bé nhất của ph			_ 1
	A. $x = 4$.	B. $x = \frac{1}{4}$.		D. $x = \frac{1}{2}$.
Câu 20.	Điều kiện xác định của	bất phương trình $\log_{\frac{1}{2}}($	$4x+2) - \log_{\frac{1}{2}}(x-1) > \log_{\frac{1}{2}}(x-1)$	$g_{\frac{1}{2}}x$ là:
	A. $x > -\frac{1}{2}$.	B. $x > 0$.	C. <i>x</i> > 1.	D. $x > -1$.
Câu 21.	Điều kiện xác định của			
	A. 2 < x < 5.	B. 1 < x < 2.	C. 2 < x < 3.	D. $-4 < x < 3$.
Câu 22.	Điều kiện xác định của	bât phương trình $\log_{\frac{1}{2}}$	$\log_2(2-x^2) \rfloor > 0 \mathrm{la}:$	
	A. $x \in [-1;1]$.		B. $x \in (-1,0) \cup (0,1)$	
	C. $x \in (-1;1) \cup (2;+\infty)$		D. $x \in (-1;1)$.	
Câu 23.	Bất phương trình log ₂ (2	$2^x + 1) + \log_3(4^x + 2) \le 2$	có tập nghiệm là:	
	A. $[0; +\infty)$.	B. $(-\infty;0)$.	C. (-∞;0].	D. $(0; +\infty)$.
Câu 24.	Bất phương trình log ₂ ($(x^2 - x - 2) \ge \log_{0.5} (x - 1)$)+1 có tập nghiệm là:	
	A. $\left[1+\sqrt{2};+\infty\right)$.		B. $\left[1-\sqrt{2};+\infty\right)$.	
	C. $\left(-\infty;1+\sqrt{2}\right]$.		D. $(-\infty; 1-\sqrt{2}]$.	
Câu 25.	Nghiệm nguyên nhỏ nh	nất của bất phương trình	$\log_2(\log_4 x) \ge \log_4(\log_4 x)$	(x_2, x) là:
	A 16	D 10	C 0	D 0

Câu 26. Nghiệm nguyên nhỏ nhất của bất phương trình $\log_3 \left(1-x^2\right) \le \log_{\frac{1}{3}} \left(1-x\right)$ là: **A.** x = 0. **B.** x = 1. **C.** $x = \frac{1-\sqrt{5}}{2}$. **D.** $x = \frac{1+\sqrt{5}}{2}$.

Tập nghiệm của bất phương trình $\log_2(x^2 - 3x + 1) \le 0$ là:

A.
$$S = \left[0; \frac{3-\sqrt{5}}{2}\right] \cup \left(\frac{3+\sqrt{5}}{2}; 3\right].$$

B.
$$S = \left(0; \frac{3 - \sqrt{5}}{2}\right) \cup \left(\frac{3 + \sqrt{5}}{2}; 3\right)$$

C.
$$S = \left[\frac{3 - \sqrt{5}}{2}; \frac{3 + \sqrt{5}}{2} \right].$$

D.
$$S = \emptyset$$
.

Câu 28. Điều kiện xác định của phương trình $\log_2(x-5) + \log_3(x+2) = 3$ là:

A.
$$x \ge 5$$
.

B.
$$x > -2$$

C.
$$-2 < x < 5$$
.

D. x > 5.

Điều kiện xác định của phương trình $\log(x^2 - 6x + 7) + x - 5 = \log(x - 3)$ là:

A.
$$x > 3 + \sqrt{2}$$
.

B.
$$x > 3$$
.

C.
$$\begin{bmatrix} x > 3 + \sqrt{2} \\ x < 3 - \sqrt{2} \end{bmatrix}$$
. D. $x < 3 - \sqrt{2}$.

D.
$$x < 3 - \sqrt{2}$$
.

Câu 30. Phương trình $\log_3 x + \log_{\sqrt{3}} x + \log_{\frac{1}{2}} x = 6$ có nghiệm là:

A.
$$x = 27$$
.

B.
$$x = 9$$
.

C.
$$x = 3^{12}$$
.

D. $.x = \log_3 6..$

Câu 31. Phương trình $\ln \frac{x+8}{x-1} = \ln x$ có nghiệm là:

A.
$$x = -2$$
.

$$\mathbf{B.} \quad \begin{bmatrix} x = 4 \\ x = -2 \end{bmatrix}.$$

C.
$$x = 4$$
.

D. x = 1.

Câu 32. Phương trình $\log_2^2 x - 4\log_2 x + 3 = 0$ có tập nghiệm là:

D. {6;8}.

Câu 33. Tập nghiệm của phương trình $\frac{1}{2}\log_2(x+2)^2 - 1 = 0$ là:

B.
$$\{0; -4\}$$
.

D. $\{-1;0\}$.

Câu 34. Tập nghiệm của phương trình $\log_2 \frac{1}{x} = \log_{\frac{1}{x}} (x^2 - x - 1)$ là:

A.
$$\{1+\sqrt{2}\}$$
.

B.
$$\{1+\sqrt{2};1-\sqrt{2}\}.$$

B.
$$\{1+\sqrt{2};1-\sqrt{2}\}.$$
 C. $\{\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\}.$ **D.** $\{1-\sqrt{2}\}.$

Câu 35. Phương trình $\log_2(3.2^x - 1) = 2x + 1$ có bao nhiều nghiệm?

A. 1.

C. 3.

D. 0.

Số nghiệm của phương trình $\ln(x^2 - 6x + 7) = \ln(x - 3)$ là:

A. 0.

D. 1.

Câu 37. Nghiệm nhỏ nhất của phương trình $-\log_{\sqrt{3}}(x-2).\log_5 x = 2\log_3(x-2)$ là:

A.
$$\frac{1}{5}$$
.

B. 3.

C. 2.

D. 1.

Nghiệm lớn nhất của phương trình $-\log^3 x + 2\log^2 x = 2 - \log x$ là :

D. 1000.

Gọi x_1, x_2 là 2 nghiệm của phương trình $\log_3(x^2 - x - 5) = \log_3(2x + 5)$.

Khi đó $|x_1 - x_2|$ bằng:

A. 5.

B. 3.

 $\mathbf{C.} - 2.$

D. 7.

Câu 40. Gọi x_1, x_2 là 2 nghiệm của phương trình $\frac{1}{4 + \log_2 x} + \frac{2}{2 - \log_2 x} = 1$. Khi đó $x_1.x_2$ bằng:

A.
$$\frac{1}{2}$$
.

B. $\frac{1}{9}$. **C.** $\frac{1}{4}$.

Câu 41. Gọi x_1, x_2 là 2 nghiệm của phương trình $\log_2 \left[x(x+3) \right] = 1$. Khi đó $x_1 + x_2$ bằng:

C. $\sqrt{17}$.

D. $\frac{-3+\sqrt{17}}{2}$.

Câu 42. Nếu đặt $t = \log_2 x$ thì phương trình $\log_2(4x) - \log_x 2 = 3$ trở thành phương trình nào?

A.
$$t^2 - t - 1 = 0$$

A. $t^2 - t - 1 = 0$. **B.** $4t^2 - 3t - 1 = 0$. **C.** $t + \frac{1}{4} = 1$. **D.** $2t - \frac{1}{4} = 3$.

Câu 43. Nếu đặt $t = \log x$ thì phương trình $\log^2 x^3 - 20 \log \sqrt{x} + 1 = 0$ trở thành phương trình nào?

A.
$$9t^2 - 20\sqrt{t} + 1 = 0$$
. **B.** $3t^2 - 20t + 1 = 0$. **C.** $9t^2 - 10t + 1 = 0$. **D.** $3t^2 - 10t + 1 = 0$.

Câu 44. Cho bất phương trình $\frac{1-\log_9 x}{1+\log_9 x} \le \frac{1}{2}$. Nếu đặt $t = \log_3 x$ thì bất phương trình trở thành:

A.
$$2(1-2t) \le 1+t$$
.

A. $2(1-2t) \le 1+t$. **B.** $\frac{1-2t}{1+t} \le \frac{1}{2}$. **C.** $1-\frac{1}{2}t \le \frac{1}{2}(1+t)$. **D.** $\frac{2t-1}{1+t} \ge 0$.

Câu 45. Điều kiện xác định của bất phương trình $\log_5(x-2) + \log_{\frac{1}{2}}(x+2) > \log_5 x - 3$ là:

A. x > 3.

B. x > 2.

C. x > -2.

Câu 46. Điều kiện xác định của bất phương trình $\log_{0.5}(5x+15) \le \log_{0.5}(x^2+6x+8)$ là:

A.
$$x > -2$$
.

B. $\begin{vmatrix} x < -4 \\ x > -2 \end{vmatrix}$.

C. x > -3. **D.** -4 < x < -2.

Câu 47. Điều kiện xác định của bất phương trình $\ln \frac{x^2-1}{x} < 0$ là:

A.
$$\begin{bmatrix} -1 < x < 0 \\ x > 1 \end{bmatrix}$$
 B. $x > -1$. **C.** $x > 0$.

 $\mathbf{D.} \begin{bmatrix} x < -1 \\ x > 1 \end{bmatrix}.$

Câu 48. Bất phương trình $\log_{0,2}^2 x - 5\log_{0,2} x < -6$ có tập nghiệm là:

A.
$$S = \left(\frac{1}{125}; \frac{1}{25}\right)$$
. **B.** $S = (2;3)$. **C.** $S = \left(0; \frac{1}{25}\right)$.

D. S = (0;3).

Câu 49. Tập nghiệm của bất phương trình $\log_{\frac{1}{2}}(x^2-6x+5)+\log_3(x-1) \ge 0$ là:

A.
$$S = [1;6].$$

B. S = (5;6]. **C.** $S = (5;+\infty)$. **D.** $S = (1;+\infty)$.

Câu 50. Bất phương trình $\log_2(2x^2 - x + 1) < 0$ có tập nghiệm là:

A.
$$S = \left(0; \frac{3}{2}\right)$$
.

B. $S = \left(-1; \frac{3}{2}\right)$.

C.
$$S = (-\infty; 0) \cup \left(\frac{1}{2}; +\infty\right)$$
.

D. $S = (-\infty; 1) \cup \left(\frac{3}{2}; +\infty\right)$.

Câu 51. Tập nghiệm của bất phương trình $\log_3 \frac{4x+6}{x} \le 0$ là:

A.
$$S = \begin{bmatrix} -2; -\frac{3}{2} \end{bmatrix}$$
.

A. $S = \begin{bmatrix} -2; -\frac{3}{2} \end{bmatrix}$. **B.** $S = \begin{bmatrix} -2; 0 \end{bmatrix}$. **C.** $S = (-\infty; 2]$. **D.** $S = \mathbb{R} \setminus \left[-\frac{3}{2}; 0 \right]$.

A. x = 6.

A. x = 3.

Câu 52. Nghiệm nguyên nhỏ nhất của bất phương trình $\log_{0,2} x - \log_5 (x-2) < \log_{0,2} 3$ là:

C. x = 5.

C. x = 1.

B. x = 3.

Câu 53. Nghiệm nguyên lớn nhất của bất phương trình $\log_3(4.3^{x-1}) > 2x - 1$ là: **B.** x = 2.

D. x = 4.

D. x = -1.

Câu 54.	Điều kiện xác định của phương trình $\log_2[3\log_2(3x-1)-1]=x$ là:				
	A. $x > \frac{\sqrt[3]{2} + 1}{3}$.	B. $x \ge \frac{1}{3}$.	C. $x > 0$.	D. $x \in (0; +\infty) \setminus \{1\}$.	
Câu 55.	Điều kiện xác định của	phương trình $\log_2(x-$	$\sqrt{x^2-1}$). $\log_3\left(x+\sqrt{x^2-1}\right)$	$(1) = \log_6 \left x - \sqrt{x^2 - 1} \right $ là:	
	A. $x \le -1$.	B. <i>x</i> ≥1.	C. $x > 0, x \ne 1$.	D. $x \le -1$ hoặc $x \ge 1$.	
Câu 56.	Nghiệm nguyên của ph	$\text{wrong trình } \log_2\left(x - \sqrt{x}\right)$	$(x + \sqrt{x^2 - 1}) \cdot \log_3 (x + \sqrt{x^2 - 1})$	$= \log_6 \left x - \sqrt{x^2 - 1} \right $ là:	
	A. $x = 1$.	B. $x = -1$.		D. $x = 3$.	
Câu 57.	Nếu đặt $t = \log_2 x$ thì	bất phương trình $\log_2^4 x$	$(x - \log_{\frac{1}{2}}^2 \left(\frac{x^3}{8}\right) + 9\log_2\left(\frac{32}{x^3}\right)$	$\left(\frac{2}{2}\right) < 4\log_{2^{-1}}^2(x)$ trở thành	
	bất phương trình nào? A. $t^4 + 13t^2 + 36 < 0$.		B. $t^4 - 5t^2 + 9 < 0$.		
	C. $t^4 - 13t^2 + 36 < 0$.		D. $t^4 - 13t^2 - 36 < 0$.		
Câu 58.	Nghiệm nguyên lớn nh	ất của bất phương trình	$\log_2^4 x - \log_{\frac{1}{2}}^2 \left(\frac{x^3}{8}\right) + 9 \log_{\frac{1}{2}}^4 \left($	$\log_2\left(\frac{32}{x^2}\right) < 4\log_{2^{-1}}^2(x)$ là:	
	A. $x = 7$.	B. $x = 8$.	C. $x = 4$.	D. $x = 1$.	
Câu 59.	Bất phương trình \log_x	$\left(\log_3\left(9^x - 72\right)\right) \le 1 \text{ có tậ}$	p nghiệm là:		
	A. $S = [\log_3 \sqrt{73}; 2].$		B. $S = (\log_3 \sqrt{72}; 2].$		
	C. $S = (\log_3 \sqrt{73}; 2].$		D. $S = (-\infty; 2]$.		
Câu 60.	Gọi x_1, x_2 là nghiệm củ	a phương trình $\log_2 \left[x \right]$	(x-1) = 1. Khi đó tích	$x_1.x_2$ bằng:	
	A. -2.	B. 1.	C. –1.	D. 2.	
Câu 61.	· · · · ·) thì phương trình \log_2	$(5^x - 1) \cdot \log_4 (2.5^x - 2) =$	1 trở thành phương trình	
	nào? A. $t^2 + t - 2 = 0$.	B. $2t^2 = 1$.	C. $t^2 - t - 2 = 0$.	D. $t^2 = 1$.	
Câu 62.	Số nghiệm của phương				
	A. 0.	B. 2.	C. 3.	D. 1.	
Câu 63.	Phương trình $\log_5^2(2x - 4x)$		0 có tập nghiệm là:C. {3;63}.	n /1·2\	
Câu 64.	Nếu đặt $t = \log_3 \frac{x-1}{x+1}$ t	hì bất phương trình log	$_{4}\log_{3}\frac{x-1}{x+1} < \log_{\frac{1}{4}}\log_{\frac{1}{3}}\frac{x}{x}$	$\frac{1+1}{1-1}$ trở thành bất phương	
	trình nào?		+ ² 1	+ ² + 1	
	A. $\frac{t^2-1}{t} < 0$.	B. $t^2 - 1 < 0$.	$\mathbf{C.} \ \frac{\iota - 1}{t} > 0 \ .$	$\mathbf{D.} \frac{t + 1}{t} < 0.$	

TAI LIĘU	HỌC TẠP TOAN 12 - MU -	LOGARIT		104
Câu 65.	Phương trình $\log_{2x-3} (3x)$	$(x^2 - 7x + 3) - 2 = 0$ có n	ghiệm là:	-
	A. $x = 2; x = 3$.	B. $x = 2$.	C. $x = 3$.	D. $x = 1; x = 5$.
Câu 66.	Nghiệm nguyên nhỏ nh	ất của bất phương trình	$\log_2(\log_4 x) > \log_4(\log_4 x)$	(x_2, x) là:
	A. 18.	B. 16.	C. 15.	D. 17.
Câu 67.	Phương trình $\frac{1}{4-\ln x}$ +	$\frac{2}{2 + \ln x} = 1 \text{ có tích các}$	nghiệm là:	
	A. e^3 .	$\mathbf{B.} \ \frac{1}{e}.$	C. e.	D. 2.
Câu 68.	Phương trình $9x^{\log_9 x} = 3$ A. 1.	x² có bao nhiêu nghiệmB. 0.	? C. 2.	D. 3.
Câu 69.	Nghiệm nguyên nhỏ nh	ất của bất phương trình	$\log_x 3 - \log_{\underline{x}} 3 < 0$ là:	
	A. $x = 3$.	B. $x = 1$.	C. $x = 2$.	D. $x = 4$.
Câu 70.	Phương trình $x^{\ln 7} + 7^{\ln x}$	= 98 có nghiệm là:		_
	$\mathbf{A.} \ \ x = e \ .$	B. $x = 2$.	C. $x = e^2$.	$\mathbf{D.} \ \ x = \sqrt{e} \ .$
Câu 71.	Bất phương trình \log_2			
	$\mathbf{A.} \ S = \left[1 - \sqrt{2}; +\infty\right).$	$\mathbf{B.} S = \left[1 + \sqrt{2}; +\infty\right).$	$\mathbf{C.} \ S = \left(-\infty; 1 + \sqrt{2}\right].$	$\mathbf{D.} S = \left(-\infty; 1 - \sqrt{2}\right].$
Câu 72.	Biết phương trình $\frac{1}{\log_2 x}$	$-\frac{1}{6}\log_2 x + \frac{7}{6} = 0 \text{ có h}$	ai nghiệm x_1, x_2 . Khẳng	định nào sau đây là đúng?
	A. $x_1^3 + x_2^3 = \frac{2049}{4}$.	B. $x_1^3 + x_2^3 = -\frac{2047}{4}$.	$\mathbf{C.} \ \ x_1^3 + x_2^3 = -\frac{2049}{4} \ .$	D. $x_1^3 + x_2^3 = \frac{2047}{4}$.
Câu 73.	Số nghiệm nguyên dươn	ng của phương trình loạ	$g_2(4^x + 4) = x - \log_{\frac{1}{2}}(2^{x^2})$	$^{+1}-3$) là:
	A. 2.	B. 1.	C. 3.	D. 0.
Câu 74.	Tập nghiệm của bất phu	rong trình $\log_{\frac{1}{2}}(\log_2(2$	(x-1) > 0 là:	
	A. $S = \left(1; \frac{3}{2}\right)$.	B. $S = \left(0; \frac{3}{2}\right)$.	C. $S = (0;1)$.	D. $S = \left(\frac{3}{2}; 2\right)$.
Câu 75.	Tập nghiệm của bất phu	$rong trình \log_4 \left(2x^2 + 3\right)$	$(x+1) > \log_2(2x+1)$ là:	
	A. $S = \left(\frac{1}{2}; 1\right)$.	B. $S = \left(0; \frac{1}{2}\right)$.	C. $S = \left(-\frac{1}{2};1\right)$.	D. $S = \left(-\frac{1}{2}; 0\right)$.
Câu 76.	Tập nghiệm của bất phu	rong trình $\log_x (125x)$.	$\log_{25} x > \frac{3}{2} + \log_5^2 x$ là:	
	A. $S = (1; \sqrt{5})$.	B. $S = (-1; \sqrt{5})$.	C. $S = (-\sqrt{5};1)$.	D. $S = (-\sqrt{5}; -1)$.
Câu 77.	Tích các nghiệm của ph	arong trình $\log_2 x \cdot \log_4 x$	$x.\log_8 x.\log_{16} x = \frac{81}{24}$ là :	
	A. $\frac{1}{2}$.	B. 2.	C. 1.	D. 3.
Câu 78.	Phương trình $\log_{\sqrt{3}} x+$	1 = 2 có bao nhiều nghi	iệm ?	
	A. 2.	B. 0.	C. 1.	D. 3.

	N QUỐC NGHĨA (Sưu t			105
Câu 79.	Biết phương trình	$4^{\log_9 x} - 6.2^{\log_9 x} + 2^{\log_3 27} = 0$) có hai nghiệm x_1, x_2	x_1^2 . Khi đó $x_1^2 + x_2^2$ bằng:
	A. 6642.	B. $\frac{82}{6561}$.	C. 20.	D. 90.
Câu 80.		t phương trình $2^{\log_2^2 x} - 10$		
	A. $S = \left(0; \frac{1}{2}\right) \cup \left(2; \frac{1}{2}\right)$	+∞).	B. $S = (-2, 0) \cup$	$\left(\frac{1}{2};+\infty\right)$.
	$\mathbf{C.} \ S = \left(-\infty; 0\right) \cup \left(\frac{1}{2}\right)$	[;2).	$\mathbf{D.} \ S = \left(-\infty; \frac{1}{2}\right)$	\cup $(2;+\infty)$.
Câu 81.		$\text{wrong trình } 4^{\log_2 2x} - x^{\log_2 6}$		
	$\mathbf{A.} \ S = \left\{ \frac{4}{9} \right\}.$	B. $S = \left\{ -\frac{1}{2} \right\}$.	$\mathbf{C.} \ S = \left\{ \frac{1}{4} \right\}.$	D. $S = \{-2\}$.
Câu 82.	Tìm tất cả các giá	trị thực của tham số n	n để phương trình lo	$g_3 x - \log_3(x - 2) = \log_{\sqrt{3}} m $ có
	nghiệm? A. <i>m</i> > 1.	B. <i>m</i> ≥1.	C. <i>m</i> < 1.	D. <i>m</i> ≤ 1.
Câu 83.	Tìm tất cả giá trị th	nực của tham số m để bá	ất phương trình log ₃	$(x^2 + 4x + m) \ge 1$ nghiệm đúng
	với mọi $x \in \mathbb{R}$? A. $m \ge 7$.	B. $m > 7$.	C. <i>m</i> < 4.	D. $4 < m \le 7$.
Câu 84.	Tìm tất cả giá trị th	ực của tham số m để bất	phương trình $\log_{\frac{1}{2}}(m)$	$(x-x^2) \le \log_{\frac{1}{5}} 4$ vô nghiệm?
		Γ > 4	3	D. $-4 < m < 4$.
Câu 85.	Tìm tất cả các giá tr	rị thực của tham số m để	phương trình $\log_2(n)$	$(x-x^2) = 2$ vô nghiệm?
	A. $m < 4$.	B. $-4 < m < 4$.	$\mathbf{C.} \begin{bmatrix} m > 4 \\ m < -4 \end{bmatrix}.$	D. $m > -4$.
Câu 86.	Tìm tất cả các giá nghiệm phân biệt?	trị thực của tham số m	để phương trình loạ	$g_4^2 x + 3\log_4 x + 2m - 1 = 0 \text{có } 2$
	A. $m < \frac{13}{8}$.	B. $m > \frac{13}{8}$.	C. $m \le \frac{13}{9}$.	D. $0 < m < \frac{13}{8}$.

Câu 87. Tìm tất cả các giá trị thực của tham số m để bất phương trình $\log_2(5^x - 1) \cdot \log_2(2.5^x - 2) \le m$

Câu 88. Tìm tất cả các giá trị thực của tham số m để phương trình $\log_3^2 x + 2\log_3 x + m - 1 = 0$ có

Câu 89. Tìm tất cả các giá trị thực của tham số m để bất phương trình $\log_2(5^x - 1) \le m$ có nghiệm

C. $m \leq 6$.

C. $m \ge 2$.

C. $m \leq 2$.

C. $m \in (0;2]$.

Tìm tất cả các giá trị thực của tham số m để phương trình $\log_3^2 x + \sqrt{\log_3^2 x + 1} - 2m - 1 = 0$ có ít

D. m < 6.

D. m > 2.

D. m < 2.

D. $m \in [0;2)$.

B. m > 6.

B. $m \le 2$.

B. m > 2.

B. $m \in (0;2)$.

nhất một nghiệm thuộc đoạn $[1;3^{\sqrt{3}}]$?

A. $m \ge 6$.

nghiệm?

A. m < 2.

 $x \ge 1$?

A. $m \ge 2$.

A. $m \in [0; 2]$.

có nghiệm $x \ge 1$?

Tìm tất cả các giá trị thực của tham số m để phương trình $\log_2(5^x-1).\log_4(2.5^x-2)=m$ có nghiêm $x \ge 1.$?

A. $m \in [2; +\infty)$.

B. $m \in [3; +\infty)$. **C.** $m \in (-\infty; 2]$. **D.** $m \in (-\infty; 3]$

Tìm tất cả các giá trị thực của tham số m để phương trình $\log_3^2 x - (m+2)\log_3 x + 3m - 1 = 0$ có **Câu 92.** hai nghiệm x_1, x_2 thỏa mãn $x_1.x_2 = 27.$?

A. m = -2.

B. m = -1.

C. m = 1.

D. m = 2.

Tìm tất cả các giá trị thực của tham số m $\sqrt{\log_2^2 x + \log_{\frac{1}{2}} x^2 - 3} = m(\log_4 x^2 - 3) \text{ có nghiệm thuộc } [32; +\infty) ?$ để phương Câu 93. Tìm tất trình

A. $m \in (1; \sqrt{3}]$. **B.** $m \in [1; \sqrt{3})$. **C.** $m \in [-1; \sqrt{3})$. **D.** $m \in (-\sqrt{3}; 1]$.

Tìm tất cả các giá trị thực của tham số m sao cho khoảng (2;3) thuộc tập nghiệm của bất Câu 94. phương trình $\log_5(x^2+1) > \log_5(x^2+4x+m)-1$ (1).

A. $m \in [-12;13]$.

B. $m \in [12;13]$. **C.** $m \in [-13;12]$. **D.** $m \in [-13;-12]$.

cả các giá trị thực của tham số m để bất phương Câu 95. $\log_2\left(7x^2+7\right) \ge \log_2\left(mx^2+4x+m\right), \ \forall x \in \mathbb{R}.$

A. $m \in (2;5]$. **B.** $m \in (-2;5]$. **C.** $m \in [2;5)$. **D.** $m \in [-2;5)$.

Tìm tất cả các giá trị thực của tham số m để bất phương **Câu 96.** trình $1 + \log_5(x^2 + 1) \ge \log_5(mx^2 + 4x + m)$ có nghiệm đúng $\forall x$.

A. $m \in (2;3]$.

B. $m \in (-2,3]$. **C.** $m \in [2,3)$.

D. $m \in [-2;3)$.

Vấn đề 6. BÀI TẬP TRẮC NGHIỆM (trích từ 7 đề của BGD)

[2D2-1-MH1] Giải phương trình $\log_4(x-1) = 3$. Câu 1:

A. x = 63.

B. x = 65.

C. x = 80.

D. x = 82.

[2D2-1-MH1] Tính đạo hàm của hàm số $y = 13^x$. Câu 2:

A. $y' = x.13^{x-1}$.

B. $y' = 13^x \ln 13$. **C.** $y' = 13^x$.

D. $y' = \frac{13^x}{\ln 13}$.

[2D2-1-MH2] Với các số thực dương a, b bất kì. Mệnh đề nào dưới đây đúng? Câu 3:

A. $\ln(ab) = \ln a + \ln b$. **B.** $\ln(ab) = \ln a \cdot \ln b$. **C.** $\ln \frac{a}{b} = \frac{\ln a}{\ln b}$. **D.** $\ln \frac{a}{b} = \ln b - \ln a$.

[2D2-1-MH2] Tìm nghiệm của phương trình $3^{x-1} = 27$. Câu 4:

A. x = 9.

B. x = 3.

D. x = 10.

[2D2-1-MH3] Tìm đạo hàm của hàm số $y = \log x$. Câu 5:

A. $y' = \frac{1}{r}$. **B.** $y' = \frac{\ln 10}{r}$. **C.** $y' = \frac{1}{r \ln 10}$. **D.** $y' = \frac{1}{10 \ln r}$.

[2D2-1-MH3] Tìm tập nghiệm S của bất phương trình $5^{x+1} - \frac{1}{5} > 0$. Câu 6:

A. $S = (1; +\infty)$. **B.** $S = (-1; +\infty)$. **C.** $S = (-2; +\infty)$. **D.** $S = (-\infty; -2)$.

[2D2-1-MH3] Tính giá trị của biểu thức $P = (7 + 4\sqrt{3})^{2017} (4\sqrt{3} - 7)^{2016}$. **Câu 7:**

A. P = 1.

B. $P = 7 - 4\sqrt{3}$. **C.** $7 + 4\sqrt{3}$. **D.** $P = (7 + 4\sqrt{3})^{2016}$.

[2D2-1-MH3] Cho a là số thực dương, $a \ne 1$ và $P = \log_{\sqrt[3]{a}} a^3$. Mệnh đề nào dưới đây đúng? Câu 8:

A. P = 3.

B. P = 1.

C. P = 9.

D. $P = \frac{1}{2}$.

[2D2-1-101] Cho phương trình $4^x + 2^{x+1} - 3 = 0$. Khi đặt $t = 2^x$, ta được phương trình nào dưới Câu 9:

A. $2t^2 - 3 = 0$

B. $t^2 + t - 3 = 0$. **C.** 4t - 3 = 0. **D.** $t^2 + 2t - 3 = 0$.

Câu 10: [2D2-1-101] Cho a là số thực dương khác. 1 Tính $I = \log_{\sqrt{a}} a$.

A. $I = \frac{1}{2}$.

B. I = 0.

C. I = -2.

D. I = 2.

Câu 11: [2D2-1-101] Với a, b là các số thực dương tùy ý và a khác 1, đặt $P = \log_a b^3 + \log_{a^2} b^6$. Mệnh đề nào dưới đây đúng?

A. $P = 9 \log_a b$.

B. $P = 27 \log_a b$. **C.** $P = 15 \log_a b$. **D.** $P = 6 \log_a b$.

Câu 12: [2D2-1-102] Cho a là số thực dương khác 1. Mệnh đề nào dưới đây đúng với mọi số thực durong x, y?

A. $\log_a \frac{x}{y} = \log_a x - \log_a y$.

B. $\log_a \frac{x}{y} = \log_a x + \log_a y$.

C. $\log_a \frac{x}{y} = \log_a (x - y)$.

D. $\log_a \frac{x}{v} = \frac{\log_a x}{\log_a y}$.

Câu 13: [2D2-1-102] Tìm nghiệm của phương trình $\log_2(1-x) = 2$.

A. x = -4.

B. x = -3.

C. x = 3.

D. x = 5.

Câu 14: [2D2-1-103] Tìm nghiệm của phương trình $\log_{25}(x+1) = \frac{1}{2}$.

A. x = -6.

B. x = 6.

C. x = 4.

D. $x = \frac{23}{2}$.

Câu 15: [2D2-1-104] Tìm nghiệm của phương trình $\log_2(x-5) = 4$.

A. x = 21.

B. x = 3.

C. x = 11.

D. x = 13.

Câu 16: [2D2-1-104] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?

A. $\log_2 a = \log_a 2$. **B.** $\log_2 a = \frac{1}{\log_2 a}$. **C.** $\log_2 a = \frac{1}{\log_2 2}$. **D.** $\log_2 a = -\log_a 2$.

Câu 17: [2D2-2-MH1] Giải bất phương trình $\log_2(3x-1) > 3$.

A. x > 3.

B. $\frac{1}{3} < x < 3$. **C.** x < 3.

D. $x > \frac{10}{2}$.

Câu 18: [2D2-2-MH1] Tìm tập xác định *D* của hàm số $y = \log_2(x^2 - 2x - 3)$.

A. $D = (-\infty; -1] \cup [3; +\infty)$.

B. D = [-1;3].

C. $D = (-\infty; -1) \cup (3; +\infty)$.

D. D = (-1;3).

Câu 19: [2D2-2-MH1] Cho hàm số $f(x) = 2^x \cdot 7^{x^2}$. Khẳng định nào sau đây là khẳng định **sai**?

A. $f(x) < 1 \Leftrightarrow x + x^2 \log_2 7 < 0$.

B. $f(x) < 1 \Leftrightarrow x \ln 2 + x^2 \ln 7 < 0$.

C. $f(x) < 1 \Leftrightarrow x \log_2 2 + x^2 < 0$.

D. $f(x) < 1 \Leftrightarrow 1 + x \log_2 7 < 0$.

Câu 20: [2D2-2-MH2] Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức $s(t) = s(0).2^t$, trong đó s(0) là số lượng vi khuẩn A lúc ban đầu, s(t) là số lượng vi khuẩn A có sau t phút. Biết sau 3 phút thì số lượng vi khuẩn A là 625 nghìn con. Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng vi khuẩn A là 10 triệu con?

A. 48 phút.

B. 19 phút.

C. 7 phút.

D. 12 phút.

Câu 21: [2D2-2-MH2] Cho biểu thức $P = \sqrt[4]{x} \cdot \sqrt[3]{x^2} \cdot \sqrt{x^3}$, với x > 0. Mệnh đề nào dưới đây đúng?

A. $P = x^{\frac{1}{2}}$.

B. $P = x^{\frac{13}{24}}$.

C. $P = x^{\frac{1}{4}}$.

Câu 22: [2D2-2-MH2] Với các số thực dương a, b bất kì. Mệnh đề nào dưới đây đúng?

A. $\log_2\left(\frac{2a^3}{b}\right) = 1 + 3\log_2 a - \log_2 b$. **B.** $\log_2\left(\frac{2a^3}{b}\right) = 1 + \frac{1}{3}\log_2 a - \log_2 b$.

C. $\log_2\left(\frac{2a^3}{b}\right) = 1 + 3\log_2 a + \log_2 b$. D. $\log_2\left(\frac{2a^3}{b}\right) = 1 + \frac{1}{3}\log_2 a + \log_2 b$.

Câu 23: [2D2-2-MH3] Cho hàm số $f(x) = x \ln x$. Một trong bốn đồ thị cho trong bốn phương án A, B, C, D dưới đây là đồ thị của hàm số y = f'(x). Tìm đồ thị đó?

Câu 24: [2D2-2-MH3] Tập nghiệm S của phương trình $\log_2(x-1) + \log_2(x+1) = 3$.

A. $S = \{-3, 3\}$.

B. $S = \{4\}$.

C. $S = \{3\}$. **D.** $S = \{-\sqrt{10}; \sqrt{10}\}$.

Câu 25: [2D2-2-MH3] Cho a, b là các số thực dương thỏa mãn $a \ne 1$, $a \ne \sqrt{b}$ và $\log_a b = \sqrt{3}$. Tính

$$P = \log_{\frac{\sqrt{b}}{a}} \sqrt{\frac{b}{a}} .$$

A. $P = -5 + 3\sqrt{3}$. **B.** $P = -1 + \sqrt{3}$. **C.** $P = -1 - \sqrt{3}$. **D.** $P = -5 - 3\sqrt{3}$.

Câu 26: [2D2-2-101] Tìm tập xác định của hàm số $y = \log_5 \frac{x-3}{x+2}$.

A. $D = \mathbb{R} \setminus \{-2\}$.

B. $D = (-\infty; -2) \cup [3; +\infty)$.

C. D = (-2;3).

D. $D = (-\infty; -2) \cup (3; +\infty)$.

Câu 27: [2D2-2-102] Rút gọn biểu thức $P = x^{\frac{1}{3}} . \sqrt[6]{x}$ với x > 0.

A. $P = x^{\frac{1}{8}}$.

B. $P = x^2$.

Câu 28: [2D2-2-102] Tính đạo hàm của hàm số $y = \log_2(2x+1)$.

A. $y' = \frac{1}{(2x+1)\ln 2}$. **B.** $y' = \frac{2}{(2x+1)\ln 2}$. **C.** $y' = \frac{2}{2x+1}$. **D.** $y' = \frac{1}{2x+1}$.

Câu 29: [2D2-2-102] Cho $\log_a b = 2$ và $\log_a c = 3$. Tính $P = \log_a (b^2 c^3)$.

A.
$$P = 31$$
.

B.
$$P = 13$$
.

C.
$$P = 30$$
.

D.
$$P = 108$$

Câu 30: [2D2-2-102] Tìm tập nghiệm S của phương trình $\log_{\sqrt{2}}(x-1) + \log_{\frac{1}{2}}(x+1) = 1$.

A.
$$S = \{2 + \sqrt{5}\}.$$

B.
$$S = \left\{2 - \sqrt{5}; 2 + \sqrt{5}\right\}.$$

C.
$$S = \{3\}$$
.

D.
$$S = \left\{ \frac{3 + \sqrt{13}}{2} \right\}$$
.

Câu 31: [2D2-2-103] Cho a là số thực dương khác 2. Tính $I = \log_{\frac{a}{4}} \left(\frac{a^2}{4} \right)$.

A.
$$I = \frac{1}{2}$$
.

B.
$$I = 2$$
.

C.
$$I = -\frac{1}{2}$$
.

D.
$$I = -2$$
.

Câu 32: [2D2-2-103] Tìm tập nghiệm S của phương trình $\log_3(2x+1) - \log_3(x-1) = 1$.

A.
$$S = \{4\}.$$

B.
$$S = \{3\}.$$

C.
$$S = \{-2\}.$$
 D. $S = \{1\}.$

D.
$$S = \{1\}.$$

Câu 33: [2D3-2-103] Cho hai hàm số $y = a^x$, $y = b^x$ với a, b là 2 số thực dương khác 1, lần lượt có đồ thị là (C_1) và (C_2) như hình bên. Mệnh đề nào dưới đây đúng? **A.** 0 < a < b < 1.

B.
$$0 < b < 1 < a$$
.

C.
$$0 < a < 1 < b$$
.

D.
$$0 < b < a < 1$$
.

Câu 34: [2D2-2-103] Cho $\log_3 a = 2$ và $\log_2 b = \frac{1}{2}$. Tính $I = 2\log_3 \left[\log_3 (3a)\right] + \log_{\frac{1}{2}} b^2$.

A.
$$I = \frac{5}{4}$$
.

B.
$$I = 4$$
.

C.
$$I = 0$$
.

D.
$$I = \frac{3}{2}$$
.

Câu 35: [2D2-2-103] Rút gọn biểu thức $Q = b^{\frac{5}{3}} : \sqrt[3]{b}$ với b > 0

A.
$$Q = b^2$$
.

B.
$$Q = b^{\frac{5}{9}}$$

C.
$$Q = b^{-\frac{4}{3}}$$

D.
$$Q = b^{\frac{4}{3}}$$

Câu 36: [2D2-2-103] Tìm tất cả các giá trị thực của tham số m để hàm số $y = \log(x^2 - 2x - m + 1)$ có tập xác định là \mathbb{R} .

A.
$$m \ge 0$$
.

B.
$$m < 0$$
.

C.
$$m \leq 2$$
.

D.
$$m > 2$$
.

Câu 37: [2D2-2-104] Tìm tập xác định *D* của hàm số $y = (x^2 - x - 2)^{-3}$.

A.
$$D = \mathbb{R}$$
.

B.
$$D = (0; +\infty)$$
.

C.
$$D = (-\infty; -1) \cup (2; +\infty)$$
.

D.
$$D = \mathbb{R} \setminus \{-1, 2\}$$
.

Câu 38: [2D2-1-104] Tìm tất cả các giá trị thực của m để phương trình $3^x = m$ có nghiệm thực.

A.
$$m \ge 1$$
.

B.
$$m \ge 0$$

C.
$$m > 0$$

D.
$$m \neq 0$$

Câu 39: [2D2-1-104] Tìm tập xác định *D* của hàm số $y = \log_3(x^2 - 4x + 3)$

A.
$$D = (2 - \sqrt{2}; 1) \cup (3; 2 + \sqrt{2}).$$

B. D = (1;3).

C.
$$D = (-\infty; 1) \cup (3; +\infty)$$
.

D. $D = (-\infty; 2 - \sqrt{2}) \cup (2 + \sqrt{2}; +\infty)$.

Câu 40: [2D2-2-104] Với mọi a,b,x là các số thực dương thoả mãn $\log_2 x = 5\log_2 a + 3\log_2 b$. Mệnh đề nào dưới đây đúng?

A.
$$x = 3a + 5b$$
.

B. x = 5a + 3b.

C.
$$x = a^5 + b^3$$
. **D.** $x = a^5b^3$.

Câu 41: [2D2-2-104] Tìm giá trị thực của tham số m để phương trình $9^x - 2.3^{x+1} + m = 0$ có hai nghiệm thực x_1 , x_2 thỏa mãn $x_1 + x_2 = 1$.

A.
$$m = 6$$
.

C.
$$m = 3$$
.

[2D2-2-104] Tìm tất cả các giá trị thực của tham số m để hàm số $y = \ln(x^2 - 2x + m + 1)$ có tập Câu 42: xác định là \mathbb{R} . 400000

A.
$$m = 0$$
.

B. 0 < m < 3.

C. m < -1 hoặc m > 0. **D.** m > 0.

Câu 43: [2D2-2-104] Với các số thực dương x, y tùy ý, đặt $\log_3 x = \alpha$, $\log_3 y = \beta$. Mệnh đề nào dưới đây đúng?

A.
$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = 9 \left(\frac{\alpha}{2} - \beta \right)$$
.

B.
$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = \frac{\alpha}{2} + \beta$$

C.
$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = 9 \left(\frac{\alpha}{2} + \beta \right)$$
.

D.
$$\log_{27} \left(\frac{\sqrt{x}}{y} \right)^3 = \frac{\alpha}{2} - \beta$$
.

[2D2-2-MH2] Tính đạo hàm của hàm số $y = \ln(1+\sqrt{x+1})$.

A.
$$y' = \frac{1}{2\sqrt{x+1}(1+\sqrt{x+1})}$$
.

B.
$$y' = \frac{1}{1 + \sqrt{x+1}}$$
.

C.
$$y' = \frac{1}{\sqrt{x+1}(1+\sqrt{x+1})}$$
.

D.
$$y' = \frac{2}{\sqrt{x+1}(1+\sqrt{x+1})}$$
.

Câu 45: [2D2-2-101] Tìm tập xác định *D* của hàm số $y = (x-1)^{\frac{1}{3}}$.

A.
$$D = (-\infty; 1)$$
.

B. $D = (1; +\infty)$. **C.** $D = \mathbb{R}$.

D. $D = \mathbb{R} \setminus \{1\}$.

Câu 46: [2D2-2-103] Với mọi số thực dương a và b thỏa mãn $a^2 + b^2 = 8ab$, mệnh đề nào dưới đây đúng?

A.
$$\log(a+b) = \frac{1}{2}(\log a + \log b)$$
.

B.
$$\log(a+b) = 1 + \log a + \log b$$
.

C.
$$\log(a+b) = \frac{1}{2}(1 + \log a + \log b)$$
.

D.
$$\log(a+b) = \frac{1}{2} + \log a + \log b$$
.

Câu 47: [2D2-3-MH1] Cho các số thực dương a, b với $a \ne 1$. Khẳng định nào sau đây là khẳng định

A.
$$\log_{a^2}(ab) = \frac{1}{2}\log_a b$$
.

B.
$$\log_{a^2}(ab) = 2 + \log_a b$$
.

C.
$$\log_{a^2}(ab) = \frac{1}{4}\log_a b$$
.

D.
$$\log_{a^2}(ab) = \frac{1}{2} + \frac{1}{2}\log_a b$$
.

Câu 48: [2D2-3-MH1] Tính đạo hàm của hàm số $y = \frac{x+1}{4^x}$.

A.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{2x}}$$
.

B.
$$y' = \frac{1+2(x+1)\ln 2}{2^{2x}}$$
.

C.
$$y' = \frac{1 - 2(x+1)\ln 2}{2^{x^2}}$$
.

D.
$$y' = \frac{1+2(x+1)\ln 2}{2^{x^2}}$$
.

Câu 49: [2D2-3-MH1] Đặt $a = \log_2 3, b = \log_5 3$. Hãy biểu diễn $\log_6 45$ theo a và b.

A.
$$\log_6 45 = \frac{a + 2ab}{ab}$$
.

B.
$$\log_6 45 = \frac{2a^2 - 2ab}{ab}$$
.

C.
$$\log_6 45 = \frac{a + 2ab}{ab + b}$$
.

D.
$$\log_6 45 = \frac{2a^2 - 2ab}{ab + b}$$
.

Câu 50: [2D2-3-MH1] Cho hai số thực a và b, với 1 < a < b. Khẳng định nào dưới đây là khẳng định

A.
$$\log_a b < 1 < \log_b a$$
.

B.
$$1 < \log_a b < \log_b a$$
.

C.
$$\log_b a < \log_a b < 1$$
.

D.
$$\log_b a < 1 < \log_a b$$
.

Câu 51: [2D2-3-MH2] Tìm tập nghiệm S của bất phương trình $\log_{\frac{1}{2}}(x+1) < \log_{\frac{1}{2}}(2x-1)$

A.
$$S = (2; +\infty)$$
. **B.** $S = (-\infty; 2)$.

B.
$$S = (-\infty; 2)$$

C.
$$S = \left(\frac{1}{2}; 2\right)$$
.

Câu 52: [2D2-3-MH2] Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số $y = a^x$, $y = b^x$, $y = c^x$ được cho trong hình vẽ bên. Mênh đề nào dưới đây đúng?

B.
$$a < c < b$$
.

C.
$$b < c < a$$
.

D.
$$c < a < b$$
.

Câu 53: [2D2-3-MH3] Cho hàm số $y = \frac{\ln x}{x}$, mệnh đề nào dưới đây đúng?

A.
$$2y' + xy'' = -\frac{1}{x^2}$$
. **B.** $y' + xy'' = \frac{1}{x^2}$. **C.** $y' + xy'' = -\frac{1}{x^2}$. **D.** $2y' + xy'' = \frac{1}{x^2}$.

B.
$$y' + xy'' = \frac{1}{x^2}$$
.

C.
$$y' + xy'' = -\frac{1}{x^2}$$
.

D.
$$2y' + xy'' = \frac{1}{x^2}$$

Câu 54: [2D2-3-101] Tìm tập nghiệm S của bất phương trình $\log_2^2 x - 5\log_2 x + 4 \ge 0$.

A.
$$S = (-\infty; 2] \cup [16; +\infty)$$
.

B.
$$S = [2;16]$$
.

C.
$$S = (0, 2] \cup [16, +\infty)$$
.

D.
$$S = (-\infty; 1] \cup [4; +\infty)$$
.

Câu 55: [2D2-3-101] Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 6% /năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiều năm, người đó nhận được số tiền hơn 100 triệu đồng bao gồm gốc và lãi ? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra.

- A. 13 năm.
- **B.** 14 năm.
- C. 12 năm.
- **D.** 11 năm.

TÀI LIỆU	HỌC TẬP TOÁN 12 - M	Ũ - LOGARIT		112
Câu 56:	[2D2-3-101] Tìm cá	c giá trị thực của tham	số m để phương trình	$\log_3^2 x - m \log_3 x + 2m - 7 = 0$
		x_1 , x_2 thỏa mãn $x_1x_2 =$		
	A. $m = -4$.	B. $m = 4$.	C. $m = 81$.	D. $m = 44$.
Câu 57:	[2D2-3-101] Cho lo	$g_a x = 3$, $\log_b x = 4$ với	a, b là các số thực lớ	$from 1. Tinh P = \log_{ab} x.$
	A. $P = \frac{7}{12}$.	B. $P = \frac{1}{12}$.	C. $P = 12$.	D. $P = \frac{12}{7}$.
Câu 58:	[2D2-3-102] Tìm tất nghiệm thực phân bi		tham số <i>m</i> để phương	trình $4^x - 2^{x+1} + m = 0$ có hai
	A. $m \in (-\infty; 1)$.	B. $m \in (0; +\infty)$.	C. $m \in (0;1]$.	D. $m \in (0;1)$.
Câu 59:	[2D2-3-102] Cho	x, y là các số th	ực lớn hơn 1 thoả	$m\tilde{a}n x^2 + 9y^2 = 6xy. T\text{inh}$
	$M = \frac{1 + \log_{12} x +$	$\left(\frac{12}{y}\right)$.		
	A. $M = \frac{1}{4}$.	B. $M = 1$.	C. $M = \frac{1}{2}$.	D. $M = \frac{1}{3}$.
Câu 60:	lương cho nhân viên dùng để trả cho nhâ dưới đây là năm đầu năm lớn hơn 2 tỷ để	n trong năm 2016 là 1 t în viên trong cả năm đ n tiên mà tổng số tiền c	cỷ đồng. Biết rằng cứ ró tăng thêm 15% so ông A dùng để trả lươ	ng số tiền ông A dùng để trả sau mỗi năm thì tổng số tiền với năm trước. Hỏi năm nào rng cho nhân viên trong cả 5 D. Năm 2020.
Cân 61.			,	m để bất phương trình
Cau 01.		a-2 < 0 có nghiệm thự		m de bat phoong trilli
		B. $m < \frac{2}{3}$.		D. <i>m</i> ≤1.
Câu 62:		tập hợp các giá 0 có nghiệm thuộc kho		thực m để phương trình
	A. [3;4].	B. [2;4].	C. (2;4).	D. (3;4).
Câu 63:	[2D2-4-MH2] Xét c	tác số thực a , b thỏa	mãn $a > b > 1$. Tìm g	iá trị nhỏ nhất $P_{ m min}$ của biểu
	thức $P = \log_{\frac{a}{b}}^2 (a^2) +$	$3\log_b\left(\frac{a}{b}\right).$		
	A. $P_{\min} = 19$.	B. $P_{\min} = 13$.	C. $P_{\min} = 14$.	D. $P_{\min} = 15$.
Câu 64:	[2D2-4-MH3] Hỏi	có bao nhiêu giá trị	m nguyên trong $[-2]$	017;2017] để phương trình
		1) có nghiệm duy nhất		
	A. 2017	B. 4014	C. 2018	D. 4015

Câu 65: [2D2-4-101] Xét các số thực dương x, y thỏa mãn $\log_3 \frac{1-xy}{x+2y} = 3xy + x + 2y - 4$. Tìm giá trị

A. $P_{\min} = \frac{9\sqrt{11}-19}{9}$. **B.** $P_{\min} = \frac{9\sqrt{11}+19}{9}$. **C.** $P_{\min} = \frac{18\sqrt{11}-29}{9}$. **D.** $P_{\min} = \frac{2\sqrt{11}-3}{3}$.

nhỏ nhất P_{\min} của P = x + y.

Câu 66: [2D2-4-102] Xét các số thực dương a, b thỏa mãn $\log_2 \frac{1-ab}{a+b} = 2ab+a+b-3$. Tìm giá trị nhỏ nhất P_{\min} của P=a+2b.

A.
$$P_{\min} = \frac{2\sqrt{10} - 3}{2}$$
. **B.** $P_{\min} = \frac{3\sqrt{10} - 7}{2}$. **C.** $P_{\min} = \frac{2\sqrt{10} - 1}{2}$. **D.** $P_{\min} = \frac{2\sqrt{10} - 5}{2}$.

Câu 67: [2D2-4-103] Xét hàm số $f(t) = \frac{9^t}{9^t + m^2}$ với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m sao cho f(x) + f(y) = 1 với mọi x, y thỏa mãn $e^{x+y} \le e(x+y)$. Tìm số phần tử của S.

A. 0.

B. 1.

C. Vô số.

D. 2.

Câu 68: [2D2-4-104] Xét các số nguyên dương a,b sao cho phương trình $a \ln^2 x + b \ln x + 5 = 0$ có hai nghiệm phân biệt x_1, x_2 và phương trình $5 \log^2 x + b \log x + a = 0$ có hai nghiệm phân biệt x_3, x_4 thỏa mãn $x_1x_2 > x_3x_4$. Tính giá trị nhỏ nhất S_{\min} của S = 2a + 3b.

BẢNG ĐÁP ÁN BÀI TẬP TRẮC NGHIỆM

Vấn đề 1. LŨY THỪA

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	A	В	A	C	В	D	В	В	C	D	C	A	В	D	C	В	C	D	В
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
C	В	D	В	C	A	В	C	C	A	A	A	D	C	D	D	A	В	D	A
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
В	A	C	D	C	D	В	A	D	В	В	A	A	A	C	D	D	C	C	A
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
В	A	D	В	D	В	A	В	A	D	C	В	A	C	C	D	A	В	A	A
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
A	C	D	C	D	В	A	D	В	C	C	C	D	A	C	A	D	A	В	D
101	102	103	104	105	106														
В	A	D	C	D	C														

Vấn đề 2. LOGARIT

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	A	В	A	C	В	D	В	В	A	C	D	C	A	C	D	C	В	D	D
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
C	D	C	В	D	A	D	A	A	D	В	C	В	D	В	A	A	В	C	C
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
C	В	В	C	В	C	D	D	D	D	В	A	Α	C	D	В	A	A	C	A
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
D	A	В	A	A	A	C	A	C	D	В	A	D	В	В	C	C	D	В	C
81	82	83	84																
C	Α	A	A																

Vấn đề 3. HÀM SỐ MŨ – HÀM SỐ LOGARIT – HÀM SỐ LŨY THỪA

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	A	В	A	C	В	D	В	В	A	C	D	C	A	C	D	C	В	D	D
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
C	D	C	В	D	A	D	A	A	D	В	C	В	D	В	A	A	В	C	C
41	42	43	44	45	46	47	48	49	50	51									
Α	В	В	C	В	C	D	D	D	D	В									

Vấn đề 4. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MỮ

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
C	A	A	В	D	A	В	C	C	D	A	A	C	В	A	В	A	В	D	C
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
A	D	C	A	C	A	A	D	A	A	C	A	В	A	В	D	В	A	D	В
41	42	43	44	45	46	47	48	49	50										
A	A	С	D	В	Α	A	A	В	C										

Vấn đề 5. PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH LOGARIT

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
C	A	A	В	D	A	C	C	В	D	A	A	C	В	A	В	A	В	D	C
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Α	D	C	A	A	A	A	D	A	A	C	A	В	A	В	D	В	A	D	В
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A	A	C	D	В	A	A	A	В	C	A	D	C	A	В	A	C	A	C	A
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Α	D	C	A	C	D	A	A	D	C	В	A	В	A	D	A	C	A	A	A
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96				
C	A	A	D	В	A	С	В	A	A	В	С	A	A	A	A				

Vấn đề 6. BÀI TẬP TRẮC NGHIỆM (trích từ 7 đề của BGD)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
В	В	A	C	C	C	C	C	D	D	D	A	В	C	A	C	A	C	D	C
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
В	Α	C	C	C	D	C	В	В	A	В	A	В	D	D	В	D	C	C	D
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
C	D	D	A	D	C	D	Α	С	D	С	В	A	C	C	В	D	D	В	C
61	62	63	64	65	66	67	68												
D	С	D	С	D	A	D	A												

GHI CHÉP THÊM

HÀM SỐ LUỸ THỪA - HÀM SỐ MŨ - HÀM SỐ LÔGARIT

Vấn đề 1. LŨY THỪA VỚI SỐ MŨ HỮU TỈ - SỐ MŨ THỰC	1
Dạng 1. Tính toán – Rút gọn biểu thức lũy thừa	
Dạng 2. So sánh các lũy thừa hay căn số	5
Dạng 3. Bài toán lãi kép	6
Vấn đề 2. LÔGARIT	9
Dạng 1. Tính toán – Rút gọn biểu thức có chứa lôgarit	10
Dạng 2. So sánh hai lôgarit	11
Dạng 3. Biểu diễn một lôgarit theo các lôgarit khác	12
Dạng 4. Chứng minh đẳng thức chứa lôgarit	13
Dạng 5. Bài toán lãi kép	14
Vấn đề 3. HÀM SỐ MŨ – HÀM SỐ LÔGARIT	17
Dạng 1. Tìm tập xác định của hàm số	19
Dạng 2. Đạo hàm của hàm số mũ và logarit	21
Dạng 3. GTLN và GTNN của hàm số mũ và logarit	23
Dạng 4. Khảo sát sự biến thiên và vẽ đồ thị hàm số	24
Dạng 5. Tìm giới hạn của các hàm số mũ và lôgarit	25
Dạng 6. Dùng tính đơn điệu để chứng minh bất đẳng thức chứ mũ logarit	26
Vấn đề 4. PHƯƠNG TRÌNH MŨ	29
Dạng 1. Phương pháp đưa về cùng cơ số	29
Dạng 2. Phương pháp đặt ẩn phụ	
Dạng 3. Phương pháp lôgarit hóa	
Dạng 4. Phương pháp đưa về phương trình tích	
Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số	38
Dạng 1. Phương pháp đưa về cùng cơ số	
Dạng 2. Phương pháp đặt ẩn phụ	
Dạng 3. Phương pháp lôgarit hóa	
Vấn đề 6. PHƯƠNG TRÌNH LÔGARIT	
Dạng 1. Phương pháp đưa về cùng cơ số	
Dạng 2. Phương pháp đặt ẩn phụ	
Dạng 3. Phương pháp mũ hóa	
Dạng 4. Phương pháp đưa về phương trình tích	
Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số	
Vấn đề 7. BẤT PHƯƠNG TRÌNH LÔGARIT	
Dạng 1. Phương pháp đưa về cùng cơ số	
Dạng 2. Phương pháp đặt ẩn phụ	
Vấn đề 8. HỆ PHƯƠNG TRÌNH MŨ - LÔGARIT	
Vấn đề 9. PHƯƠNG TRÌNH № HỆ PHƯƠNG TRÌNH BẤT PHƯƠNG TRÌNH CÓ THAM SỐ	
BÀI TẬP TRẮC NGHIỆM (trích từ bộ BTN – 387 câu + 7 đề của BGD – 68 câu)	
Vấn đề 1. LŨY THỪA	
Vấn đề 2. LOGARIT	
Vấn đề 3. HÀM SỐ MŨ – HÀM SỐ LOGARIT – HÀM SỐ LŨY THỪA	
Vấn đề 4. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ	
Vấn đề 5. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT	
Vấn đề 6. BÀI TẬP TRẮC NGHIỆM (trích từ 7 đề của BGD)	
BẢNG ĐÁP ÁN BÀI TẬP TRẮC NGHIỆM	
MUC LUC	

Chuyên: TOÁN

- > LÓP 6, 7, 8, 9, 10, 11, 12
- > LUYỆN THI LỚP 10
- LUYỆN THI THPT QUỐC GIA

TRỌN BỘ TÀI LIỆU HỌC TẬP

Môn: TOÁN - Lớp: 12 và THPTQG Năm học 2017-2018

- 1. Tài liệu TOÁN 12 theo chủ đề (7 chủ đề)
- 2. Bài tập trắc nghiệm TOÁN 12 quyển 1
- 3. Bài tập trắc nghiệm TOÁN 12 quyển 2
- 4. Bài tập trắc nghiệm TOÁN 12 quyển 3
- 5. Bộ đề thi thử THPT năm 2017
- 6. Bộ để thi thử THPT năm 2018
- 7. Bộ đề thi ĐH- CĐ THPTQG từ 2002
 ightarrow 2017

Năm học 2017 - 2018

Lưu hành nội bộ