TEORIA GRAFURILOR ȘI COMBINATORICĂ

Răspunsuri la examenul parțial (C)

4 decembrie 2015

1. Numărul căutat este N_3-N_{15} unde N_3 este numărul numerelor divizibile cu 3, iar N_{15} este numărul numerelor divizibile cu 3 și cu 5, adică cu 15. Decarece

$$\left. \begin{array}{l} N_3 = \lfloor 547/3 \rfloor - \lceil 12/3 \rceil + 1 = 182 - 4 + 1 = 179 \\ N_{15} = \lfloor 547/15 \rfloor - \lceil 12/15 \rceil + 1 = 36 - 1 + 1 = 36 \end{array} \right\} \Rightarrow N_3 - N_{15} = \textbf{143}.$$

- 2. (a) Permutarea $\langle 2, 1, 3, 4, 5 \rangle$ are rangul **24**.
 - (b) $599_4 = 4344 \Rightarrow$ 4-permutarea cu repetiție a lui $\{1, 2, 3, 4, 5\}$ care are rangul 599 este $\langle \mathbf{5}, \mathbf{4}, \mathbf{5}, \mathbf{5} \rangle$.
 - (c) $\langle 4, 3, 7, 1, 2, 5, 6 \rangle$.
- 3. Fie M mulțimea de șiruri de lungime 4, cu cifre din mulțimea $\{1, 2, 3, 4, 5\}$.
 - (a) Aplicăm regula produsului:
 - Mai întâi calculăm în câte feluri putem alege 2 din 4 poziții pentru aparițiile cifrei $1 \Rightarrow C(4,2)$ posibilități.
 - Apoi calculăm în câte feluri putem alege 2 din cele 2 poziții rămase pentru aparițiile cifrei $5 \Rightarrow C(2,2) = 1$ posibilitate.
 - \Rightarrow C(4,2) astfel de şiruri.
 - (b) $\mathbf{4^4} + \mathbf{C(4,1)4^3} + \mathbf{C(4,2)} \cdot \mathbf{4^2} + \mathbf{C(4,3)} \cdot \mathbf{4}$.
 - (c) Aplicăm regula produsului:
 - Avem 2 posibilități pentru prima cifră
 - Avem 3 posibilități pentru ultima cifră
 - $\bullet\,$ Avem câte 5 posibilități pentru cifrele de la pozițiile 2 și 3
 - $\Rightarrow 2 \cdot 5 \cdot 5 \cdot 3 = 150$ astfel de şiruri.
- 4. Ecuația caracteristică este $r^2 2r + 1 = 0$, cu rădăcina dublă r = 1. Rezultă că $a_n = (a \cdot n + b) \cdot 1^n = a \cdot n + b$ pentru toți $n \ge 0$. Din condițiile inițiale $a_0 = 3 = b$ și $a_1 = 5 = a + b$ rezultă că a = 2 și b = 3, deci $\mathbf{a_n} = \mathbf{2} \cdot \mathbf{n} + \mathbf{3}$.

- 5. Fie a_n numărul de şiruri de lungime n, formate din cifrele 1,2,3 și 4, care nu au două cifre consecutive identice.
 - (a) $a_1=4$ deoarece nici unul din şirurile 1, 2, 3 sau 4 nu are 2 cifre consecutive identice. Dacă n>1 atunci un astfel de şir este de forma $s=d_1d_2\ldots d_n$. Aplicăm regula produsului pentru a număra câte astfel de şiruri putem construi, pornind de la poziția 1 până la poziția n:
 - d_1 poate fi orice număr de la 1 la $4 \Rightarrow 4$ posibilități.
 - d_i ($2 \le i \le n$) poate fi orice număr de la 1 la 4, diferit de $d_{i-1} \Rightarrow 3$ posibilități.

Deci numărul de astfel de şiruri s este $\mathbf{a_n} = \mathbf{4} \cdot \mathbf{3^{n-1}}$.

(b) $\mathbf{a_5} = 4 \cdot 3^4 = 324$.

- (a) $G = \{(1)(2)(3)(4), (1,3)(2,4), (1,4)(2,3), (1,2)(3,4)\}.$
- (b) $\frac{1}{4} \cdot (4^4 + 3 \cdot 4^2) = 28$.
- 7. (a) Numărul de submulțimi cu k elemente al unei mulțimi cu n elemente.
 - (b) **(b1)**.

Punctaj:

Start: 1pt

1: 1pt

2: (a) 0.75pt; (b) 0.75pt; (c) 0.5pt

3: $0.5 \times 3 = 1.5$ pt

4: 1pt

5: $0.75 \times 2 = 1.5$ pt

6: $0.5 \times 2 = 1$ pt

7: $0.5 \times 2 = 1$ pt

Total: 10pt