同変 Schubert 計算における組合せ論

京都大学大学院理学研究科数学·数理解析専攻 学籍番号 0530-35-6268 赤松 輝海

はじめに

はじめに

目次

1	同変コホモロジー	3
1.1	Borel 構成	3
1.2	$H^*_G(X)$ の代数的構造 \ldots	4
1.3	Weil/Cartan モデル	4
1.4	localization theorem	4
2	GKM の定理	5
2.1	equivariantly formality	5
2.2	GKM の定理	
3	同変 Schubert 計算	6
3.1	Grassmann 多様体の同変コホモロジー	6
3.2	GKM 条件による Schubert Class の特徴づけ	6
3.3	Schubert puzzle による方法	6
3.4	edge labeled tableux による方法	6
3.5	weight preserving bijection の構成	6

1 同変コホモロジー

1.1 Borel **構成**

X を位相空間, G をコンパクト Lie 群とする.

事実 1.1.1. ある主 G 束 π : $EG \to BG$ が存在して, 任意の主 G 束 $E \to X$ に対してある連続写像 $f: X \to BG$ があって $E = f^*(EG)$ がなりたつ. さらに EG は弱可縮であり,G は EG に自由に (右から) 作用する.

例 1.1.2. $T=\mathbb{C}^*$ に対して $S^\infty \to \mathbb{CP}^\infty$ は事実 1.1.1 の主 G 束である。

定義 1.1.3. G が X に左から作用しているとき G の $X \times EG$ への左作用を

$$g(x,e) := (gx, eg^{-1})$$
 for $g \in G, x \in X, e \in EG$

によって定める $X \times_G EG$: = $(X \times EG)/G$ とし、これを X の homotopy quotient という。このとき $H_G^*(X)$: = $H^*(X \times_G EG)$ を X の G 同変コホモロジーという。

例 1.1.4. 1 点集合 pt の G 同変コホモロジーは

$$\operatorname{pt} \times_G EG = (\operatorname{pt} \times EG)/G \approx BG$$

より

$$H_G^*(\mathrm{pt}) \simeq H^*(BG)$$

である。よって

$$H_{C^*}^*(\mathrm{pt}) \simeq H^*(\mathbb{CP}^\infty) \simeq \mathbb{Z}[y]$$

X の G 同変コホモロジーは主 G 束 $EG \to BG$ の取り方に拠らないことを示そう. 写像 $p\colon X\times EG \to X\times_G EG$ と $p_X\colon X\times_G EG \to BG$ を

$$p(x, e) := [x, e]$$

 $p_X([x, e]) := \pi(e)$

によって定める.

命題 1.1.5. (i) $p: X \times EG \rightarrow X \times_G EG$ は主 G 束である

(ii) $p_X: X \times_G EG \to BG$ は X をファイバーとするファイバー束である

Proof. (i) $EG \rightarrow BG$ は主 G 束であるので、

連続写像 $f: X \to Y$ がホモトピー群の同型

$$f_* \colon \pi_q(X,x) \to \pi_q(Y,f(x)) \quad \text{for} x \in X, q > 0$$

を誘導するとき、f を弱ホモトピー同値という。

補題 1.1.6. E を弱可縮な G 空間とし、 $P \to B$ を主 G 束とする。このとき $(E \times P)/G \to B$ は弱ホモトピー同値である。

定理 1.1.7. M を G 空間, $E \to B$, $E' \to B'$ を主 G 束で E,E' はともに弱可縮であるとする。このとき弱ホモトピー同値 $E \times_G M \to E' \times_G M$ が存在する

[5] より、次が成り立つ

事実 1.1.8. 弱ホモトピー同値 $f: X \to Y$ は同型 $f^*: H^*(Y) \to H^*(X)$ を誘導する

定理 1.1.7 と事実 1.1.8 より、 $EG \rightarrow BG$ 、 $EG' \rightarrow BG'$ が事実 1.1.1 の主 G 束であるとき、

$$H^*(X \times_G EG) \simeq H^*(X \times_G EG')$$

であることがわかる。

1.2 $H_G^*(X)$ の代数的構造

X,Y を G 空間, $f:X\to Y$ を G 写像とする。 $f_G:X\times_G EG\to Y\times_G EG$ を

$$f_G([x,e]) = [f(x),e]$$

によって定めると f_G は well-defined な連続写像となる。したがって f_G は同変コホモロジーの準同型

$$f_G^* \colon H_G^*(Y) \to H_G^*(X)$$

を誘導する。通常のコホモロジーの関手性と同様、同変コホモロジーも関手性をもつ

命題 1.2.1.

- (i) $(id_X)_G^* = id_{H_G^*(X)}$
- (ii) $f: X \to Y, g: Y \to Z$ に対して $(g \circ f)_G^* = (f_G^*) \circ (g_G^*)$

任意の G 空間 X に対して、1 点集合 pt への自明な G 写像は、準同型 $H^*(BG) \simeq H^*_G(\mathrm{pt}) \to H^*_G(X)$ を誘導するから、 $H^*_G(X)$ は $H^*(BG)$ 代数の構造を持つ.

1.3 Weil/Cartan モデル

1.4 localization theorem

- 2 GKM **の定理**
- 2.1 equivariantly formality
- 2.2 GKM **の定理**

3 同変 Schubert 計算

3.1 Grassmann 多様体の同変コホモロジー

 $\operatorname{Gr}_k(\mathbb{C}^n) = \{ V \subset \mathbb{C}^n \mid \dim V = k \}$ を Grassmann 多様体という。 $T = \mathbb{C}^n$ とするとき、T は \mathbb{C}^n に

$$(t_1,\cdots,t_n)\cdot(x_1,\cdots,x_n)=(t_1x_1,\cdots,t_nx_n)$$

によって左から作用する。この作用は自然に $\operatorname{Gr}_k(\mathbb{C}^n)$ への作用を誘導し、 $\operatorname{Gr}_k(\mathbb{C}^n)$ は T 空間となる。 $\operatorname{Gr}_k(\mathbb{C}^n)$ の T 同変コホモロジーの構造は組み合わせ的に決定することができる。 $\binom{n}{k}$ を 0 と 1 からなる n 文字の文字 列のうち、1 が k 個使われている文字列の集合とする。 $\lambda = \lambda_1 \cdots \lambda_n \in \binom{n}{k}$ に対して、

$$\Omega_{\lambda} = \left\{ V \in \operatorname{Gr}_{k}(\mathbb{C}^{n}) \mid \dim(V \cap F_{i}) \geq \dim(\mathbb{C}^{\lambda} \cap F_{i}), \quad \forall i \in \{1, \dots, n \mid \} \right\}$$

を Schubert cell という。ここで、 $\mathbb{C}^{\lambda} = < e_{\lambda_1}, \cdots, e_{\lambda_n} >$, $F_i = < e_{n-i+1}, \cdots, e_n >$ である。 $\operatorname{inv}(\lambda) = \# \left\{ \; (i,j) \, | \, \lambda_i = 1, \lambda_j = 0, i < j \; \right\}$ とすると Ω_{λ} は $\mathbb{C}^{\operatorname{inv}(\lambda)}$ に同相であり

$$\operatorname{Gr}_k(\mathbb{C}^n) = \bigsqcup_{\lambda \in \binom{n}{k}} \Omega_{\lambda}$$

となる。したがって $H^*(\mathrm{Gr}_k(\mathbb{C}))$ は Ω_λ の定めるホモロジー類の Poincare 双対 S_λ たちで \mathbb{Z} 上生成される. $\mathrm{Gr}_k(\mathbb{C})$ は equivariantly formal であるから $H^*_T(\mathrm{Gr}_k(\mathbb{C}^n))$ は $H^*_T(\mathrm{pt}) = \mathbb{Z}[y_1, \cdots, y_n]$ 上 S_λ たちで生成される. S_λ を Schubert class という。

3.2 GKM 条件による Schubert Class の特徴づけ

 $\operatorname{Gr}_k(\mathbb{C}^n)$ の T 作用における固定点は $\{\mathbb{C}^\lambda\}_{\lambda\in\binom{n}{k}}$ であるから、 $[\operatorname{GKM}]$ より $H_T^*(\operatorname{Gr}_k(\mathbb{C}^n))$ は $\bigoplus_{\lambda\in\binom{n}{k}}H_T^*(\operatorname{pt})$ の部分代数である。 GKM の定理を適用するために $\operatorname{Gr}_k(\mathbb{C}^n)$ の T 不変な \mathbb{CP}^1 を計算する.

- 3.3 Schubert puzzle による方法
- 3.4 edge labeled tableux による方法
- 3.5 weight preserving bijection の構成

謝辞

参考文献

- [1] W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry. Cambridge: Cambridge University Press, (1996).
- [2] L. W. Tu and A. Arabia, Introductory Lectures on Equivariant Cohomology. Princeton University Press, (2020).
- [3] A. Knutson and T. C. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), no. 2, 221–260
- [4] H. Thomas and A. T. F. Yong, Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble) **68** (2018), no. 1, 275–318
- [5] Hatcher