IT-System Engineering & Operation

Patrick Bucher

Contents

1	Das Data Center				
	1.1	Bestandteile Data Center	1		
	1.2	Klimatisierung	2		
		EDV-Einbau			
		Kritische Punkte			
	1.5	Überwachungsgebiete	4		
	1.6	Rechenzenter-Effizienz, PUE-Faktor	5		
	1.7	Repetitionsfragen	5		
2	Glos	ssar	6		

1 Das Data Center

1.1 Bestandteile Data Center

- Lüftung (Zu- und Abluft, Wärmetauscher)
- Hochwasserschutz (erhöhte Bauweise)
- Zutrittskontrolle an den Eingängen, Überwachungskameras
- Stromversorgung
 - USV: unterbrechungsfreie Stromversorgung (Energiespeicher: Batterien)
 - Dieselgenerator als Notstromaggregat (Energiespeicher: Dieseltank), mit Kühlung und Abluft
- Server in Serverracks
- Stromverteilung
- Datenleitung/Netzwerk
- Löschanlagen
- Administration/Überwachung

1.2 Klimatisierung

- optimale Temperatur: 26°C
 - keine Schäden bei leicht erhöhter Raumtemperatur (gegenüber 21°C)
 - Wärmeenergie geht von selber an die Umgebung (Heizung benachbarter Räumlichkeiten)
 - im optimalen Leistungsbereich der Klimaanlagen
 - Kondenswasser bei zu tiefen Temperaturen
- Staub und Pollen können schädlich sein
 - verstopfen Ventilatoren (gesteigerter Stromverbrauch durch erhöhte Kühlleistung)
 - Metallpartikel können Schäden an Hardware verursachen
- Probleme
 - Kondenswasser: Ablauf kann verstopfen, Kondenswasser auslaufen
 - Filterkontrolle: verstopfte Filter verursachen erhöhte Leistungsaufnahme
 - zusätzlicher Energieverbrauch
 - Luftverteilung
 - Überwachung
- Kühlluftverteilung
 - 1. Free-Flow-Systeme
 - Warme Luft steigt auf, kalte Luft sinkt ab
 - Gemischte Lufttemperatur
 - einfach
 - Problem: möglicher Wärmekurzschluss (warme Abluft wird als Kühlluft angesogen)
 - 2. Kalt- oder Warmgang-Einhausung
 - Trennung von Warm- und Kaltluft
 - dadurch bessere Energieeffizienz
 - aber teurer im Aufbau
 - Front der Racks sollten komplett abgeschlossen sein, um Warm- und Kaltluft voneinander zu trennen
- Immersion Cooling: flüssigkeitsgekühlte Systeme
 - mit Wärmetauscher und Flüssigkeit in Leitungskabel
 - oder komplett in Öl eingelegt

1.3 EDV-Einbau

- Serverracks
 - verschiedene Höhen (21-49U), Breiten (0.6-1m) und Tiefen (0.8-1.2m)
 - * 1 HE = 1 U = 1.75 Zoll = 44.45 mm
 - auch mit integrierter Kühlung
 - Zuleitungen: oben, unten, seitlich
 - Standard: 19 Zoll (48.26 cm)
- Netzwerk

- Kupfer (gegenwärtig stark verbreitet)
- Glasfaser (löst Kupfer derzeit ab)
- Klimageräte, USV und Batterieschränke
 - Batterien sind sehr schwer, spezielle Racks/Bodenverstärkung erforderlich
- Kühlleitungen und Überwachungsgeräte

1.4 Kritische Punkte

- Einbruch, Diebstahl, Vandalismus, Sturmschäden, Trümmer
 - bauliche Massnahmen: stabile Aussenhülle
 - verschlossen mit Zaun
 - teilweise fernab von anderen Gebäuden
 - keine oder kaum Fenster
- · Fremdzugriff
 - Zutrittskontrolle (biometrisch, Chip-Karten, Passwörtern)
 - Abhörsicherheit (elektromagnetische Abschirmung, keine mobilen Endgeräte mit Netzwerkverbingungen zulassen, keinen WiFi-Access-Point)
 - Firewall
- · Feuer und Rauch
 - Branderkennung
 - Löschanlage: CO2 (Vorwarnzeit zur Flucht nötig!), Verringerung des Sauerstoffanteils der Luft auf ca. 10% (nicht tödlich, aber das Feuer verlöscht) durch Stickstoff (gefährlicher und günstig) oder Inergen (weniger gefährlich und teurer)
 - Handfeuerlöscher: CO2
 - * Feuer benötigt: Sauerstoff, Hitze und Brennstoff
 - Abschottung einzelner Zellen
 - automatische Abschaltung der Klimaanlage damit der Rauch nicht verteilt wird
 - kein PVC (bildet Salzsäure!) verwenden
- Netzausfälle, Netzstörungen
 - Netzfilter (in Netzteilen integriert)
 - vorgeschaltete USV mit Batterien
 - Diesel-Generatoren
- Elektromagnetische Störfelder
 - EMP: elektromagnetische Impulse (durch Atombomben oder spezielle Generatoren verursacht), kann Geräte zerstören
 - Abschirmung (kann teuer sein)
 - metallische Aussenfassade
 - Blitzableiter
- Staub, Schmutz, Wasser
 - Filteranlagen
 - Schmutzschleusen, spezielle Teppiche
 - erhöhte Bauweise
 - Standortwahl (nicht in Nähe von Gewässern oder mit Steinschlag und Lawinen)

- Pumpanlagen zum Abpumpen bei Überschwemmungen

1.5 Überwachungsgebiete

- Gebäude
 - Türen (offen/geschlossen)
 - Kameras
 - Bewegungsmelder
 - Zutritte
- Räume
 - Temperatur
 - Luftfeuchtigkeit
 - Bewegung
 - Rauch
 - Brand
 - Wasserlecks
- Energieversorgung
 - Netzausfall
 - Strom, Spannung, Leistung
 - Leistungsfaktor (Kosinus Phi)
- Geräte
 - Niederspannungsverteilungen
 - Schalterstellungen (Ein/Aus)
 - Stromverbrauch einzerlner Bereiche
 - Sicherungsausfall
 - Kurzschluss
 - Überlast
- Generator
 - Kraftstoffstand (Dieseltank)
 - Funktionsbereitschaft
 - Temperatur
 - Überlast
- Klimageräte
 - Temperaturen
 - Luftfeuchtigkeit
 - Übertemperatur
 - Filterwiderstand
 - Störungen
- USV-Anlagen
 - Normalbetrieb
 - Batteriebetrieb
 - Bypass-Betrieb
 - Ladezustand

- Batterietemperatur
- Brandmelde- und Löschanlage (Zustandsanzeigen)
 - Löschanlage ausgelöst
 - Übertragungseinrichtung ausgeschaltet
 - Störung
 - Service

1.6 Rechenzenter-Effizienz, PUE-Faktor

- PUE: Power Usage Effectiveness
- Massstab für die Effizienz eines Rechenzentrums
- PUE = gesamte vom Rechenzentrum verbrauchte Energie / Verbrauch der IT-Geräte
 - 1.0: optimal (in kalten Regionen möglich)
 - 1.2: guter Wert (normale Rechenzentren)
 - über 1.4: Optimierungsbedarf
- Stichwort "Green IT"

1.7 Repetitionsfragen

1. Notieren Sie zu 5 beliebigen Bausteinen eines Rechenzentrums die folgenden Punkte:

Baustein	Funktionen	Gefährdet durch	Abhilfe gegen Gefährdungen
Gebäude	Schutz der Server vor äusseren Einflüssen	Umweltkatastrophen	Resistente Bauweise
Klimatisierung	Schutz vor Überhitzung	Verunreinigung der Filter, Kondenswasser	Filterservice, Abpumpvorrichtung
Stromversorgung	Bereitstellung von elektrischer Energie	Stromausfälle, Netzschwankungen	USV mit Batterie, Diesel-Generatoren
Netzwerk	Verbindung der Komponenten	Ausfall, Überlastung, Überhitzung, Brand	Redundanz, Datensicherung, Lastverteilung, Kühlung, Löschanlage
Eingangskontrolle	Gewährung und Verweigerung von Einlass	unautorisierte Personen	Biometrie, Überwachungskameras, Chipkarten, Passwörter, Personenkontrolle

2. Versuchen Sie den Kostenanteil pro Baustein am gesamten RZ abzuschätzen.

- Gebäude: ca. 10 Millionen CHF (92%)
- Klimatisierung: ca. 250'000 CHF (2.3%)
- Stromversorgung: ca. 100'000 CHF (1%)
- Netzwerk: ca. 500'000 CHF (4.6%)
- Eingangskontrolle: 25'000 CHF (0.2%)
- Summe: 10'875'000 CHF (100%)
- 3. Was ist der PUE Faktor und was sind die erreichbaren und effektiv erreichten Werte?
 - PUE bedeutet Power Usage Effectiveness und Massstab für die Effizienz eines Rechenzentrums. Er errechnet sich aus der gesamthaft durch das Rechenzentrum verbrauchten Energiemenge geteilt durch die gesamthaft von den IT-Geräten verbrauchte Energie.
 - 1.0: optimal (in kalten Regionen möglich)
 - 1.2: guter Wert (normale Rechenzentren)
 - über 1.4: Optimierungsbedarf

2 Glossar

- ITIL: IT Infrastructure Library, Standard für IT-Belange v.a. für Grossunternehmen, für KMU übertrieben
- PUE: Power Usage Effectiveness, Massstab für die Effizienz eines Rechenzentrums