Models & Markets

Comparing 2018 Midterm predictions

Question

- What is the best way to predict elections?
- When does each method perform best? Why?

Hypothesis

Prediction markets will outperform models

Why Predict Elections?

- 1. Resource allocation
- 2. Strategy adjustment
- 3. Quantitative journalism
- 4. Uncertainty is scary!

How to Predict Elections?

- 1. Opinion polling
- 2. Poll aggregation
- 3. Forecasting models
- 4. Prediction markets

Markets Literature

- Focus on single race, mostly Presidential
- Compare to opinion polling

Room for Congressional comparison to model

Forecasting Models

Forecasting Models

- 21st Century Invention
- Quantitative inputs
- Express uncertainty
- Probabilistic
- Proprietary

Who will win the presidency?

Chance of winning

FORECAST

PRESIDENT SENATE

By Natalie Jackson and Adam Hooper Additional design by Alissa Scheller

PUBLISHED MONDAY, OCT. 3, 2016 12:56 P.M. EDT UPDATED TUESDAY, NOV. 8, 2016, 12:43 A.M. EST

CLINTON 98.0%

Model Process

Most election models work in something like the following way: [1] they calculate the most likely outcome in a particular state... and then [2] they determine the degree of uncertainty around that estimate.

Nate Silver

[1] Model Inputs

- 1. Weighted poll aggregation
- 2. CANTOR imputation
- 3. Fundamentals
 - incumbency
 - fundraising
 - previous election
 - scandals, etc

What goes into the — Classic forecast in the New York 27th

The Classic version of our model projects a race's outcome by taking a weighted average of polls of a district (if available), polls of similar districts (CANTOR) and non-polling factors (fundamentals). It is then reverted toward a mean based on long-term trends in midterms and presidential approval ratings.

KEY

Model Variables

- 1. Date
- 2. Election
- 3. Party
- 4. Special
- 5. Incumbency
- 6. Voteshare(s)
- 7. Probability

Prediction Markets

Prediction Markets

- Exchange-traded binary options
- Efficient market hypothesis
- Many purposes
 - 1503: Papal succession
 - 1988: Iowa Election Market
- Dubious legality
 - Academic waiver from CFTC

Market Contracts

- \$850 limit
- Buyers on either side
- \$1 or \$0 based on outcome
- Sell at any time
- Price change

Contract	Latest Yes Price	Best Offer	Best Offer
Joe Biden	24¢ 1¢*	25¢ Buy Yes Buy No	76¢
Bernie Sanders	22¢ 1¢*	22¢ Buy Yes Buy No	79¢
Pete Buttigieg	18¢ NC	19¢ Buy Yes Buy No	82¢
Kamala Harris	14¢ NC	15¢ Buy Yes Buy No	86¢
Andrew Yang	9¢ 1¢*	10¢ Buy Yes Buy No	91¢
Elizabeth Warren	8¢ 1¢•	9¢ Buy Yes Buy No	93¢

Market Variables

- 1. ID
- 2. Question
- 3. Name
- 4. Contract
- 5. Date
- 6. Volume
- 7. Price

Comparing Methods

Models

Markets

- 1. Date
- 2. Election
- 3. Party
- 4. Voteshare(s)
- 5. Probability

- 1. Date
- 2. Market
- 3. Contract
- 4. Volume
- 5. Price

Distribution of Race Probabilities by Predictive Method

Midterm Races by Democrat's Chance of Winning November 5th, Night Before Election Day \$1.00 -Both Predict Wil Market Predicts Win \$0.75 -Democrat Won **FALSE** Market Price TRUE \$0.50 Chamber house senate Both Predict Loss Model Predicts Win \$0.25 -\$0.00 -25% 50% 75% 100% Model Probability

Date	Race	Method	Prob	Pred	Win	Hi t
8/1	AZ-S1	Market	66	1	1	1
8/1	AZ-S1	Model	74	1	1	1
8/1	CA-12	Market	91	1	1	1
8/1	CA-12	Model	100	1	1	1
8/1	CA-22	Market	30	0	0	1
8/1	CA-22	Model	5	0	0	1
8/1	CA-39	Market	61	1	1	1
8/1	CA-39	Model	38	0	1	0

Proportion of Correct Predictions by Month

Proportions Test

- Market proportion:
- Model proportion:
- Lower bound:
- Upper bound:
- X-squared =
- p-value =
- Alternative hypothesis:

- 86.0343%
- 83.8057%
- 1.158%
- 3.2999%
- 16.794
- 0.000042

Two sided

	TRUE		FALSE		
	Markets	Model	Markets	Model	
Т	79.5 (51.2)	84.5 (51.2)	40.6 (9.7)	36.5 (9.7)	
F	59.3 (4.3)	63.7 (6.5)	23.0 (34.3)	16.8 (32.1)	

Brier Score

- Democrat has has 70% chance
- Democrat wins on election day
- Brier Score = $(0.70-1)^2 = 0.09$

$$BS = \frac{1}{N} \sum_{t=1}^{N} (f_t - o_t)^2$$

Brier T-Test

- Market mean:
- Model mean:
- Lower bound:
- Upper bound:
- t =
- p-value =
- Alternative hypothesis:

- 0.1084
- 0.1091
- -0.005
- 0.0035
- -0.33902
- 0.7346
- Difference

Expected Probabilities and Actual Proportions of Democratic Victory

Expected probabilities binned by rounding to the nearest 10%

Cumulative Dollars Traded on Election Markets \$4,000,000 -\$3,000,000 -\$3,000,000,-\$2,000,000 -\$2,000,000 -\$1,000,000 -\$0 -Oct Apr Jul Jan Date

