LAAS-CNRS, NICTA, UNSW

SAT and Hybrid models of the Car-Sequencing problem

Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala, and Toby Walsh

Cork, Ireland

- to encode into SAT or to use global constraints?
- Can we get the best from both approaches?

- to encode into SAT or to use global constraints?
- Can we get the best from both approaches?
- Hybridization!

- to encode into SAT or to use global constraints?
- Can we get the best from both approaches?
- Hybridization!
 - →A key concept in hybrid solvers (*Lazy Clause Generation*): explaining constraints

An explanation is a set of atomic constraints triggering a failure/filtering.

example

Cardinality Constraint: $\sum_{i=1}^{n} x_i \leq k$; $D_{initial}(x_i) = \{0, 1\}$. $x_i \leftarrow 1$ is pruned if we already have k appearances of the value 1.

$$\{x_i \leftarrow 1 | D(x_i) = \{1\}\} \rightarrow x_i \not\leftarrow 1$$
.

Mohamed SIALA May 2014 CPAIOR'14 3 / 21

example

Cardinality Constraint: $\sum_{i=1}^{n} x_i \leq k$; $D_{initial}(x_i) = \{0, 1\}$. $x_i \leftarrow 1$ is pruned if we already have k appearances of the value 1.

$$\{x_i \leftarrow 1 | D(x_i) = \{1\}\} \rightarrow x_i \not\leftarrow 1$$
.

Car-sequencing

Constraints

- Each class c is associated with a demand D_c .
- For each option j, each sub-sequence of size q_j must contain at most u_i cars requiring the option j.

Modelling in CP

Variables:

- *n* integer variables $\{x_1, \ldots, x_n\}$ taking values in $\{1, \ldots, k\}$
- nm Boolean variables $\{y_1^1, \ldots, y_n^m\}$

Constraints:

1 Demand constraints: for each class $c \in \{1..k\}$

$$|\{i \mid x_i = c\}| = D_c^{class}.$$

 $\to GCC$

2 Capacity constraints: for each option $j \in \{1..m\}$, for each slot $i \in \{1, ..., n - q_j + 1\}$.

$$\sum_{l=i}^{i+q_j-1} y_l^j \le u_j.$$

 \rightarrow GSC, ATMOSTSEQCARD or ATMOSTSEQCARD \oplus GSC

Mohamed SIALA May 2014 CPAIOR'14 5 / 21

Modelling in CP

Variables:

- n integer variables $\{x_1, \ldots, x_n\}$ taking values in $\{1, \ldots, k\}$
- nm Boolean variables $\{y_1^1, \ldots, y_n^m\}$

Constraints:

1 Demand constraints: for each class $c \in \{1..k\}$

$$|\{i \mid x_i = c\}| = D_c^{class}.$$

 $\to GCC$

2 Capacity constraints: for each option $j \in \{1..m\}$, for each slot $i \in \{1, ..., n - q_i + 1\}$.

$$\sum_{l=i}^{i+q_j-1} y_l^j \leq u_j.$$

 \rightarrow GSC, ATMOSTSEQCARD or ATMOSTSEQCARD \oplus GSC

Mohamed SIALA May 2014 CPAIOR'14 5 / 21

Definition

$$\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

ATMOSTSEQCARD $(u, q, d, [x_1, \dots, x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

 $\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

 $ATMOSTSEQCARD(u, q, d, [x_1, ..., x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

 $ATMOSTSEQCARD(u, q, d, [x_1, ..., x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

 $\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

 $\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

 $\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

Definition

 $\mathsf{ATMOSTSEQCARD}(u,q,d,[x_1,\ldots,x_n]) \Leftrightarrow$

$$\bigwedge_{i=0}^{n-q} \left(\sum_{l=1}^{q} x_{i+l} \le u \right) \wedge \left(\sum_{i=1}^{n} x_{i} = d \right)$$

- leftmost: computes an assignment w maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- max[i]: maximum cardinality for each sub-sequence involving xi
- $Left[i] = \sum_{i=1}^{j=i} leftmost[j]$.
- Right[i]: same as Left but in the reverse order, i.e. $[x_n, ..., x_1]$.

- leftmost: computes an assignment w maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- max[i]: maximum cardinality for each sub-sequence involving xi
- $Left[i] = \sum_{i=1}^{j=i} leftmost[j]$.
- Right[i]: same as Left but in the reverse order, i.e. $[x_n,..,x_1]$.

- leftmost: computes an assignment w maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- max[i]: maximum cardinality for each sub-sequence involving xi
- $Left[i] = \sum_{j=1}^{j=i} leftmost[j]$.
- Right[i]: same as Left but in the reverse order, i.e. $[x_n, ..., x_1]$.

```
 \begin{aligned} \text{ATMOSTSEQCARD} \big( u = 4, q = 8, d = 12 \big) \\ \mathcal{D}(x_i) & 0 \dots 0 10? \dots 1 \end{aligned} 
 \begin{aligned} \text{leftmost}[i] & 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 \\ \textit{Left}[i] & 0 1 1 2 3 4 4 4 4 4 4 5 6 7 7 7 7 8 8 9 10 10 \end{aligned} 
 \begin{aligned} \text{Right}[i] & 10 9 9 9 8 7 6 6 6 6 6 6 6 5 4 3 3 3 3 3 2 1 0 0 0 \end{aligned}
```

- leftmost: computes an assignment w maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- max[i]: maximum cardinality for each sub-sequence involving xi
- $Left[i] = \sum_{i=1}^{j=i} leftmost[j]$.

Right[i]

• Right[i]: same as Left but in the reverse order, i.e. $[x_n,..,x_1]$.

10 9 9 9 8 7 6 6 6 6 6 6 5 4 3 3 3 3 3 2 1 0 0

- leftmost: computes an assignment w maximizing the cardinality of the sequence with respect to the ATMOST constraints.
- max[i]: maximum cardinality for each sub-sequence involving xi
- $Left[i] = \sum_{i=1}^{j=i} leftmost[j]$.
- Right[i]: same as Left but in the reverse order, i.e. $[x_n,..,x_1]$.

Domain consistency

- DC on each ATMOST: $(\sum_{l=1}^{q} x_{l+l} \le u)$
- DC on $\sum_{i=1}^{n} x_i = d$
- If Left[n] < d Then fail
- If Left[n] = d and $Left[i] + Right[n i + 1] \le d$ Then $\mathcal{D}(x_i) \leftarrow \{0\}$
- If Left[n] = d and Left[i-1] + Right[n-i] < d Then $\mathcal{D}(x_i) \leftarrow \{1\}$

Explaining ATMOSTSEQCARD: the key idea

Explaining Failure

- 1 If a failure is triggered by a cardinality constraint (i.e. $(\sum_{l=1}^{q} x_{i+l} \le u)$ or $\sum_{i=1}^{n} x_i = d$), then it is easy to generate an explanation.
- 2 If a failure triggered by Left[n] < d, a naive explanation would be the set of all assignments in the sequence.

```
Let S: 1 1 0 0 . subject to ATMOST(2/5).
```

 \rightarrow leftmost on S gives $1\ 1\ 0\ 0\ 0$

Consider the sequence S_0 : 1 1 . 0 .

 \rightarrow leftmost on S_0 gives 1 1 0 0 0

```
Let S: 1 \ 1 \ 0 \ 0 . subject to ATMOST(2/5). \rightarrowleftmost on S gives 1 \ 1 \ 0 \ 0
```

Consider the sequence S_0 : 11.0.

 \rightarrow leftmost on S_0 gives 1 1 0 0 0

$$\{x_i \leftarrow 0 \mid max[i] = u\}$$

```
Let S: 1 \ 1 \ 0 \ 0 . subject to ATMOST(2/5).
```

 \rightarrow leftmost on S gives 1 1 0 0 0

Consider the sequence S_0 : 1 1 . 0 .

 \rightarrow leftmost on S_0 gives 1 1 0 0 0

$$\{x_i \leftarrow 0 \mid max[i] = u\}$$

Consider the sequence S_2 : . 1 0 0 .

 \rightarrow leftmost on S_2 gives $1\ 1\ 0\ 0\ 0$

```
Let S: 1 1 0 0 . subject to ATMOST(2/5).
```

 \rightarrow leftmost on S gives $1\ 1\ 0\ 0\ 0$

Consider the sequence S_0 : 11.0.

 \rightarrow leftmost on S_0 gives 1 1 0 0 0

$$\{x_i \leftarrow 0 \mid max[i] = u\}$$

Consider the sequence S_2 : . 1 0 0 .

 \rightarrow leftmost on S_2 gives $1\ 1\ 0\ 0\ 0$

$$\{x_i \leftarrow 1 \mid max[i] \neq u\}$$

Theorem

Theorem

Let S be the set of all assignments,

 $S^{*} = S \setminus (\{x_i \leftarrow 0 \mid max[i] = u\} \cup \{x_i \leftarrow 1 \mid max[i] \neq u\})$, then S^{*} is a valid explanation.

 \rightarrow runs in O(n) since we call leftmost once.

Example: AtMost(2,5)

Size of S is 20 while size of S^* is 9.

Explaining pruning

explanation for $x \leftarrow k$?

- **1** Add $x \leftarrow k$ to the instantiation where the pruning was performed.
- 2 Use the previous procedure to explain the failure on the new instantiation.

PB & SAT Modelling

Variables:

- c_i^j : c_i^j is true iff the class of the *i*th slot is *j*.
- y_i^j : y_i^j is *true* iff the *i*th vehicle requires option *j*.

Constraints:

- Demand constraints: $\forall j \in [1..k], \sum_i c_i^j = D_i$
- Capacity constraints: $\sum_{l=i}^{i+q_j-1} y_l^j \leq u_j$
- Channelling:
 - $\forall i \in [1..n], \forall l \in [1..k], \text{ we have:}$
 - $\forall j \in \mathcal{O}_I, \ \overline{c_i^I} \lor \underline{y_i^j}$
 - $\forall j \notin \mathcal{O}_I, \ \overline{c_i^I} \vee \overline{y_i^j}$
 - a redundant clause: $\forall i \in [1..n], j \in [1..m], \overline{y_i^j} \lor \bigvee_{l \in C_i} c_i^l$
- $\forall i \in [1..n], \sum_i c_i^j = 1$

PB & SAT Modelling

Variables:

- c_i^j : c_i^j is true iff the class of the *i*th slot is *j*.
- y_i^j : y_i^j is *true* iff the *i*th vehicle requires option *j*.

Constraints:

- Demand constraints: $\forall j \in [1..k], \sum_i c_i^j = D_i$
- Capacity constraints: $\sum_{l=i}^{i+q_j-1} y_l^j \leq u_j$
- Channelling:
 - $\forall i \in [1..n], \forall l \in [1..k]$, we have:
 - $\forall j \in \mathcal{O}_I, \ \overline{c_i^I} \lor \underline{y_i^j}$
 - $\forall j \notin \mathcal{O}_I, \ \overline{c_i^I} \vee \overline{y_i^j}$
 - a redundant clause: $\forall i \in [1..n], j \in [1..m], y_i^j \lor \bigvee_{I \in C_i} c_i^I$
- $\forall i \in [1..n], \sum_i c_i^j = 1$

SAT model? encode CARDINALITY constraints: Sequential counter, Cardinality Networks, Sorting network, etc.

PB & SAT Modelling

Variables:

- c_i^j : c_i^j is true iff the class of the *i*th slot is *j*.
- y_i^j : y_i^j is *true* iff the *i*th vehicle requires option *j*.

Constraints:

- Demand constraints: $\forall j \in [1..k], \sum_i c_i^j = D_i$
- Capacity constraints: $\sum_{l=i}^{i+q_j-1} y_l^j \leq u_j$
- Channelling:
 - $\forall i \in [1..n], \forall l \in [1..k]$, we have:
 - $\forall j \in \mathcal{O}_I, \ \overline{c_i^I} \lor \underline{y_i^j}$
 - $\forall j \notin \mathcal{O}_I, \ \overline{c_i^I} \vee \overline{y_i^j}$
 - a redundant clause: $\forall i \in [1..n], j \in [1..m], y_i^j \lor \bigvee_{I \in C_i} c_i^I$
- $\forall i \in [1..n], \sum_i c_i^j = 1$

SAT model? encode CARDINALITY constraints: Sequential counter, Cardinality Networks, Sorting network, etc.

Sequential Counter $C_C[Sin05]$

Encoding $\sum_{i \in [1..n]} x_i = d$ to a CNF?

- Variables:
 - $s_{i,j}: \forall i \in [0..n], \forall j \in [0..d+1], s_{i,j} \text{ is true iff } \sum_{k \in [1..i]} x_k \ge j$
- Encoding: $\forall i \in [1..n]$
 - Clauses for restrictions on the same level: $\forall j \in [0..d+1]$
 - $\mathbf{0} \neg s_{i-1,j} \lor s_{i,j}$
 - $2 x_i \vee \neg s_{i,j} \vee s_{i-1,j}$
 - Clauses for increasing the counter, $\forall j \in [1..d+1]$
 - $3 \neg s_{i,j} \lor s_{i-1,j-1}$
 - $4 \neg x_i \lor \neg s_{i-1,j-1} \lor s_{i,j}$
 - Initial values for the bounds of the counter:
 - 5 $s_{0,0} \wedge \neg s_{0,1} \wedge s_{n,d} \wedge \neg s_{n,d+1}$

Sequential Counter $C_C[Sin05]$

Encoding $\sum_{i \in [1..n]} x_i = d$ to a CNF?

- Variables:
 - $s_{i,j}$: $\forall i \in [0..n], \forall j \in [0..d+1], s_{i,j}$ is true iff $\sum_{k \in [1..i]} x_k \ge j$
- Encoding: $\forall i \in [1..n]$
 - Clauses for restrictions on the same level: $\forall j \in [0..d+1]$
 - $\mathbf{0} \neg s_{i-1,j} \lor s_{i,j}$
 - $2 x_i \vee \neg s_{i,j} \vee s_{i-1,j}$
 - Clauses for increasing the counter, $\forall j \in [1..d+1]$

 - $4 \neg x_i \lor \neg s_{i-1,j-1} \lor s_{i,j}$
 - Initial values for the bounds of the counter:

Unit Propagation on this encoding enforces AC on $\sum_{i \in [1...n]} x_i = d$.

LAAS-CNRS, NICTA, UNSW

Extension to ATMOSTSEQCARD

ATMOSTSEQCARD: CARDINALITY \oplus ATMOST \to C $_C$ on CARDINALITY and C $_A$ on each ATMOST.

Mohamed SIALA May 2014 CPAIOR'14 16 / 21

Extension to ATMOSTSEQCARD

ATMOSTSEQCARD: CARDINALITY \oplus ATMOST \rightarrow C $_C$ on CARDINALITY and C $_A$ on each ATMOST.

Other possibility: Using a similar encoding of the Gen-Sequence constraint [Bac07, BNQ $^+$ 07] (C_5).

$$\neg s_{i,j} \lor s_{i-q,j-u}$$

Extension to ATMOSTSEQCARD

ATMOSTSEQCARD: CARDINALITY \oplus ATMOST \to C $_{\mathcal{C}}$ on CARDINALITY and C $_{\mathcal{A}}$ on each ATMOST.

Other possibility: Using a similar encoding of the Gen-Sequence constraint [Bac07, BNQ $^+$ 07] (C_S).

$$\neg s_{i,j} \vee s_{i-q,j-u}$$

Proposition

The level of pruning using C_S is incomparable with C_A .

GAC on ATMOSTSEQCARD

Theorem

UP on $C_C+C_A+C_S$ enforces *GAC* on the ATMOSTSEQCARD constraint.

Configuration

- SAT:
 - **1** SAT (1) $C_C \oplus C_A$
 - 2 SAT (2) $C_C \oplus C_S$
 - **3** SAT (3) $C_C \oplus C_A \oplus C_S$.
- Mistral as a hybrid CP/SAT solver:
 - hybrid (VSIDS)
 - 2 hybrid (Slot)
 - hybrid (Slot/VSIDS)
 - 4 hybrid (VSIDS/Slot)
- Baseline methods:
 - ① CP: A pure CP approach
 - PBO-clauses: SAT encoding [MiniSat+]
 - 3 PBO-cutting planes: [SAT4J]

LAAS-CNRS, NICTA, UNSW

Method	sat[easy] (74 × 5)			sat	[hard] (7 × 5)	unsat* (28×5)			
ivietnod	#suc	avg fails	time	#suc	avg fails	time	#suc	avg fails	time	
SAT (1)	370	2073	1.71	28	337194	282.35	85	249301	105.07	
SAT (2)	370	1114	0.87	31	60956	56.49	65	220658	197.03	
SAT (3)	370	612	0.91	34	32711	36.52	77	190915	128.09	
hybrid (VSIDS)	370	903	0.23	16	207211	286.32	35	177806	224.78	
hybrid (VSIDS/Slot)	370	739	0.23	35	76256	64.52	37	204858	248.24	
hybrid (Slot/VSIDS)	370	132	0.04	34	4568	2.50	37	234800	287.61	
hybrid (Slot)	370	132	0.04	35	6304	3.75	23	174097	299.24	
CP	370	43	0.03	35	57966	16.25	0	-	-	
PBO-clauses	277	538743	236.94	0	-	-	43	175990	106.92	
PBO-cutting planes	272	2149	52.62	0	-	-	1	5031	53.38	

Table: Experimental results

Method	sat[easy] (74 × 5)			sat	[hard] (7 × 5)	unsat* (28×5)			
ivietnod	#suc	avg fails	time	#suc	avg fails	time	#suc	avg fails	time	
SAT (1)	370	2073	1.71	28	337194	282.35	85	249301	105.07	
SAT (2)	370	1114	0.87	31	60956	56.49	65	220658	197.03	
SAT (3)	370	612	0.91	34	32711	36.52	77	190915	128.09	
hybrid (VSIDS)	370	903	0.23	16	207211	286.32	35	177806	224.78	
hybrid (VSIDS/Slot)	370	739	0.23	35	76256	64.52	37	204858	248.24	
hybrid (Slot/VSIDS)	370	132	0.04	34	4568	2.50	37	234800	287.61	
hybrid (Slot)	370	132	0.04	35	6304	3.75	23	174097	299.24	
CP	370	43	0.03	35	57966	16.25	0	-	-	
PBO-clauses	277	538743	236.94	0	-	-	43	175990	106.92	
PBO-cutting planes	272	2149	52.62	0	-	-	1	5031	53.38	

Table: Experimental results

Finding solutions quickly:

 Propagation is very important to find solutions quickly when they exist, by keeping the search "on track" and avoiding exploring large unsatisfiable subtrees.

Method	sat[easy] (7	4×5)					unsat* (28×5)			
Method	#suc	avg fails	time	#suc	avg fails	time	#suc	avg fails	time		
SAT (1)	370	2073	1.71	28	337194	282.35	85	249301	105.07		
SAT (2)	370	1114	0.87	31	60956	56.49	65	220658	197.03		
SAT (3)	370	612	0.91	34	32711	36.52	77	190915	128.09		
hybrid (VSIDS)	370	903	0.23	16	207211	286.32	35	177806	224.78		
hybrid (VSIDS/Slot)	370	739	0.23	35	76256	64.52	37	204858	248.24		
hybrid (Slot/VSIDS)	370	132	0.04	34	4568	2.50	37	234800	287.61		
hybrid (Slot)	370	132	0.04	35	6304	3.75	23	174097	299.24		
CP	370	43	0.03	35	57966	16.25	0	-	-		
PBO-clauses	277	538743	236.94	0	-	-	43	175990	106.92		
PBO-cutting planes	272	2149	52.62	0	-	-	1	5031	53.38		

Table: Experimental results

For proving unsatisfiability

- Clause learning is by far the most critical factor.
- Surprisingly, the "lightest" encoding gave best results!

Conclusion

Contributions

- First non-trivial SAT encodings for the car-sequencing problem.
- A linear time explanation for ATMOSTSEQCARD
- A SAT encoding of ATMOSTSEQCARD maintaining GAC
- Closing 13 out of the 23 large open instances.

Thank you!

Fahiem Bacchus.

GAC Via Unit Propagation.

In Proceedings of CP, pages 133-147, 2007.

Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter J. Stuckey, and Toby Walsh.

Encodings of the Sequence Constraint.

In Proceedings of CP, pages 210-224, 2007.

Carsten Sinz

Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.

In Proceedings of CP, pages 827-831, 2005.