به نام ایزد منان

تمرین دوم تئوری درس مبانی هوش محاسباتی، «سیستم های فازی»

نکاتی در مورد این تمرین نیاز به توجه و دقت دوستان دارد.

۱- هرگونه کپی کردن باعث عدم تعلق نمره به تمامی افراد مشارکت کننده در آن میشود.

۲- آخرین مهلت ارسال تمرین، ساعت **۵۵:۲۳** دقیقه روز جمعه ۲۶ آذر میباشد. این زمان با توجه به جمعبندیهای

صورت گرفته، شرایط و با توجه به سایر تمرینها در نظر گرفته شده است و قابل تمدید نمی باشد.

۳- دوستان فایل ارسالی خود را به صورت فشرده و به صورت «شماره دانشجویی_HW2_9731000» مانند HW2_97310000
نام گذاری کنید.

۴- در صورت هرگونه سوال یا مشکل می توانید با تدریسیاران درس از طریق ایمیل در ارتباط باشید.

ci.1400fall@gmail.com

 $A = \{\frac{1}{a}, \frac{0.3}{b}, \frac{0.2}{c}, \frac{0.8}{d}, \frac{0}{e}\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی دو زیرمجموعه ی $X = \{a, b, c, d, e\}$ و دو زیرمجموعه ی در زیرمجموعه ی دو زیرمجموعه ی دو زیرمجموعه ی دو زیرمجموعه ی در زیرمجموعه ی دو زیرمجموعه ی دو زیرمجموعه ی دو زیرمجموعه ی دو زیرمجموعه ی در زیرمجموع ی در زیرمجموعه ی در زیرمجموعه ی در زیرمجموع ی در زیرمجموعه ی در زیرمجموع ی در زیرمجموع

- ۱. اجتماع دو مجموعهی A و B
- ۲. اشتراک دو مجموعهی A و B
- ۳. مکمل دو مجموعهی A و B
- ۴. تکیه گاه (support) دو مجموعهی A
 - ۵. هسته (core) دو مجموعهی A و B
 - ۶. مرز (boundary) مجموعه ی A
 - ۷. ارتفاع (height) دو مجموعه ی A
- ∞ = 0.5 و ∞ = 0.3 برای هر دو مجموعه با مقادیر ∞ = 0.4 و ∞ . \wedge

سوال ۲. برای روابط فازی R_1 و R_1 داده شده، رابطه R_1 داده R_2 را به روش ترکیب R_2 تعیین نمایید.

سوال \mathbf{v} . مجموعه های \mathbf{U}_1 , \mathbf{U}_2 , \mathbf{U}_3 , \mathbf{U}_4 و هم چنین رابطه ی \mathbf{Q} که در فضای ضرب کارتزین \mathbf{U}_1 x \mathbf{U}_2 , \mathbf{U}_3 , \mathbf{U}_4 و هم چنین رابطه ی \mathbf{Q} شده است را در نظر بگیرید و موارد خواسته شده را بدست آورید.

$$U1=\{a,b,c\}\ U2=\{s,t\}\ U3=\{x,y\}\ U4=\{i,j\}$$

$$Q = \frac{0.3}{b,t,y,i} + \frac{0.4}{a,s,x,i} + \frac{0.9}{b,s,y,i} + \frac{0.6}{b,s,y,j} + \frac{0.1}{a,t,y,j} + \frac{0.7}{c,s,y,i}$$

 $U_1 \times U_2 \times U_4$ بر Q الف _ تصویر رابطهی

 $U_1 \ x \ U_3$ بر Q بر ابطه Q

 U_4 بر Q بر ابطه

 $U_1 \times U_2 \times U_3 \times U_4$ د_ گسترش استوانه ای رابطه حاصل از بند الف به فضای $U_1 \times U_2 \times U_3 \times U_4$

 $U_1 \; x \; U_2 \; x \; U_3 \; x \; U_4$ ه_ گسترش استوانه ای رابطه حاصل از بند ب به فضای

 $U_1 \times U_2 \times U_3 \times U_4$ و_ گسترش استوانه ای رابطه حاصل از بند ج به فضای

سوال ۴. مجموعه های فازی A و B را در نظر بگیرید. اگر x و y اعداد حقیقی باشند که به ترتیب برگرفته از مجموعه های A و B باشند، در هر قسمت با توجه به روابط داده شده مجموعه ی فازی C را که نمایانگر عدد حقیقی D است را زیر بیابید.

$\mu(x_i)$	0	1	2	3	4	5	6	7
A B	0.0	0.3	0.6 0.9	0.8	1.0 0.2	0.7 0.1	0.2	0.0

$$z = 4x^2 + 3$$
 الف $z = min(x, y)$ ب

سوال ۵. فازی سازی و غیر فازی سازی چیست؟ مجموعه های فازی زیر را در نظر بگیرید. مجموعه ی D را با تکنیک های خواسته شده غیر فازی کنید.

الف_ روش متوسط وزنى مراكز

ب_ روش ماکسیمم گیری

ج_ روش Mean-Max

سوال ۶. درستی یا نادرستی هر یک از عبارات زیر را با ذکر دلیل مشخص کنید. الف_ رابطه ی زیر جداپذیر است.

ب_ اگر R جداناپذیر نباشد، میتوان R=B را نتیجه گرفت.

ج_ در تفسیر کلاسیک q o p می دانیم p o p o q و p o p o p معادل هستند. برای قواعد فازی هم می توان این دو را معادل دانست.

موفق باشید - تیم تدریسیاری