CLAIMS

We claim:

5

- 1. A method for analyzing multivariate images, comprising:
 - a) providing a data matrix **D** containing measured spectral data,
- b) transforming the data matrix \mathbf{D} , using a wavelet transform, to obtain a transformed data matrix $\widetilde{\mathbf{D}}$,
- c) performing an image analysis on the transformed data matrix $\widetilde{\mathbf{D}}$ to obtain a transformed concentration matrix $\widetilde{\mathbf{C}}$ and a spectral shapes matrix \mathbf{S} , and
- d) computing a concentration matrix ${\bf C}$ from the transformed concentration matrix $\tilde{{\bf C}}$.
- 2. The method of Claim 1, wherein the data matrix \mathbf{D} comprises a total of j blocks of data \mathbf{D}_i , each data block \mathbf{D}_i thereby providing a concentration block \mathbf{C}_i in step a), and wherein steps a) through d) are repeated sequentially until the concentration matrix \mathbf{C} is accumulated blockwise, according to

5
$$\mathbf{C} = \begin{bmatrix} \mathbf{C_1} & \mathbf{C_2} & \cdots & \mathbf{C_{j-1}} & \mathbf{C_j} \end{bmatrix}$$
.

- 3. The method of Claim 1, wherein the wavelet transform comprises a Haar transform.
- 4. The method of Claim 1, further comprising thresholding the wavelet coefficients of the transformed data matrix $\tilde{\mathbf{D}}$.
- 5. The method of Claim 4, wherein the thresholding comprises decimating the detail coefficients.
- 6. The method of Claim 1, wherein the image analysis of step c) comprises an alternating least squares analysis and the transformed concentration matrix $\tilde{\mathbf{C}}$ and the spectral shapes matrix \mathbf{S} are obtained from a constrained least squares solution of $\min_{\tilde{\mathbf{C}},\mathbf{S}} \|\tilde{\mathbf{D}} \tilde{\mathbf{C}} \mathbf{S}^{\mathsf{T}}\|_{\mathrm{F}}$.

- 7. The method of Claim 6, wherein the alternating least squares analysis comprises a transformed non-negativity constraint.
- 8. The method of Claim 1, wherein the computing step d) comprises applying an inverse wavelet transform to the transformed concentration matrix $\tilde{\mathbf{C}}$ to provide the concentration matrix \mathbf{C} .
- 9. The method of Claim 1, wherein the computing step d) comprises projecting the data matrix **D** from step a) onto the spectral shapes matrix **S** from step c), according to $\min_{\mathbf{C}} \|\mathbf{D} \mathbf{CS}^{\mathsf{T}}\|_{\mathbf{F}}$.
- 10. A method for analyzing multivariate images, comprising:
 - a) providing a data factor matrix **A** and a data factor matrix **B** obtained from a factorization of measured spectral data **D**,
- b) transforming the data factor matrix \mathbf{A} , using a wavelet transform, to obtain a transformed data factor matrix $\tilde{\mathbf{A}}$,
 - c) performing an image analysis on the transformed data factor matrix $\tilde{\bf A}$ and data factor matrix ${\bf B}$ to obtain a transformed concentration matrix $\tilde{\bf C}$ and a spectral shapes matrix ${\bf S}$, and
- d) computing a concentration matrix ${\bf C}$ from the transformed concentration matrix $\tilde{{\bf C}}$.

5

- 11. The method of Claim 10, wherein the data factor matrix **A** comprises a total of j blocks of data factors \mathbf{A}_i and the data factor matrix **B** comprises k blocks of data factors \mathbf{B}_i , thereby providing a concentration block \mathbf{C}_i in step d), and wherein steps a) through d) are repeated sequentially until the concentration matrix **C** is accumulated blockwise, according to $\mathbf{C} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \cdots & \mathbf{C}_{i-1} & \mathbf{C}_i \end{bmatrix}$.
- 12. The method of Claim 10, wherein the wavelet transform comprises a Haar transform.
- 13. The method of Claim 10, further comprising thresholding the wavelet coefficients of the transformed data factor matrix $\tilde{\bf A}$.

- 14. The method of Claim 13, wherein the thresholding comprises decimating the detail coefficients.
- 15. The method of Claim 10, wherein the image analysis of step c) comprises an alternating least squares analysis and the transformed concentration matrix $\tilde{\mathbf{C}}$ and the spectral shapes matrix \mathbf{S} are obtained from a constrained least squares solution of $\min_{\tilde{\mathbf{C}},\mathbf{S}} \|\tilde{\mathbf{A}}\mathbf{B}^\mathsf{T} \tilde{\mathbf{C}}\mathbf{S}^\mathsf{T}\|_F$.
- 16. The method of Claim 15, wherein the alternating least squares analysis comprises a transformed non-negativity constraint.
- 17. The method of Claim 10, wherein the computing step d) comprises applying an inverse wavelet transform to the transformed concentration matrix $\tilde{\mathbf{C}}$ to provide the concentration matrix \mathbf{C} .
- 18. The method of Claim 10, wherein the computing step d) comprises projecting the product of the data factor matrix **A** and the data factor matrix **B** from step a) onto the spectral shapes matrix **S** from step c), according to $\min \|\mathbf{AB}^T \mathbf{CS}^T\|_{\mathbf{F}}$ and subject to appropriate constraints.
- 19. The method of Claim 10, wherein the data factor matrix **A** comprises a scores matrix **T** and the data factor matrix **B** comprises a loadings matrix **P**, and wherein **T** and **P** are obtained from a principal components analysis of the measured spectral data **D**, according to $D = TP^T$.
- 20. The method of Claim 19, wherein **T** and **P** represent the significant components of the principal components.