实验七—50条指令补充说明

- 1. 处理器应支持MIPS-C3指令集。
 - MIPS-C3={ LB, LBU, LH, LHU, LW, SB, SH, SW, ADD, ADDU, SUB, SUBU, MULT, MULTU, DIV, DIVU, SLL, SRL, SRA, SLLV, SRLV, SRAV, AND, OR, XOR, NOR, ADDI, ADDIU, ANDI, ORI, XORI, LUI, SLT, SLTI, SLTIU, SLTU, BEQ, BNE, BLEZ, BGTZ, BLTZ, BGEZ, J, JAL, JALR, JR, MFHI, MFLO, MTHI, MTLO }.
 - 。 目前为止不需要考虑运算类指令的溢出处理。
- 2. 处理器为流水线设计。
- 3. 建议采用分布式控制器架构,具体来说建议采用3-控制器架构。即将原先的Hazard Unit进一步拆分为暂停控制器和转发控制器。
 - 主控制器: 功能同单周期设计,指令译码,功能部件控制, MUX (不包括转发MUX) 控制等。
 - 。 暂停控制器:根据相关检测,处理插入空指令,即暂停IF/ID的指令。
 - 转发控制器:根据相关检测,根据相关检测,进行转发的控制。
- 4. 对于b类和i类指令,流水线设计**必须支持延迟槽**,因此设计时需要注意使用PC+8。
- 5. ALU接口应符合实验三中规定的技术规范。
- 6. CMP模块。CMP用于实现b类指令的比较操作。CMP位于流水线的译码/读寄存器级(ID级)。下面给出CMP接口设计的规范。

信号名	方向	描述	
A[31:0]	Input	第一个运算数	
B[31:0]	Input	第二个运算数	
Op[X:0]	Input	比较类型,编码及位宽 (X) 可自行定义	
Br	Output	分支指令的比较结果 0:条件不成立 1:条件成立	

7. GPR (寄存器堆) 接口设计规范。

信号名	方向	描述
A1[4:0]	Input	读取的第1个寄存器编号
A2[4:0]	Input	读取的第2个寄存器编号
A3[4:0]	Input	写入的寄存器编号
RD1[31:0]	Output	A1对应的寄存器值
RD2[31:0]	Output	A2对应的寄存器值
WD[31:0]	Input	写入的数据
We	Input	写使能
Clk,Rst	Input	时钟, 复位

- GPR需要实现先写后读功能,即内部转发,当写入寄存器编号与读出寄存器编号相同时,输出值就是待写入的寄存器值。
- 8. 乘除法部件。为了支持 mult, multu, div, divu, mfhi, mflo, mthi, mtlo 这些乘除法指令,需要设计独立的乘/除功能部件,该部件位于流水线的执行级(EX级),如图1所示。

图 1 流水线 EX 阶段的乘/除部件

- o 为降低实现难度,乘除法运算的实现可以使用Verilog的内置运算符,不需要从门级实现乘除 法运算模块。
- 乘除法运算延迟。我们假定该模块执行乘法的时间为5个cycle(包含写入内部的HI和LO寄存器,执行除法的时间为10个cycle。你再乘除法部件内部必须模拟这个延迟,即通过Busy标志来反映这个延迟,如图2所示。

图 2 乘法执行延迟(5 cycles)

- 。 乘除法部件与ALU可以并行工作,这意味这你可以再 mult/multu/div/divu 指令后面放入若干无关指令,从而充分利用乘除法部件的执行延迟。
- 。 乘除法部件的接口设计规范。

信号名	方向	描述
D1[31:0]	Input	1.执行乘除法指令时的第1个操作数 2.执行 mthi/mtlo 指令时的写入数据
D2[31:0]	Input	执行乘除法指令时的第2个操作数
HiLo	Input	待写入的寄存器 0: LO寄存器 1: HI寄存器
Op[1:0]	Input	运算类型 00: 无符号乘法 01: 有符号乘法 10: 无符号除法 11: 有符号除法
Start	Input	运算启动。 该信号只有效1个cycle 1:启动
We	Input	HI或LO寄存器的写使能
Busy	Output	乘除法模块的忙标志 0:乘除单元未执行运算 1:乘除单元正在执行运算
HI[31:0]	Output	HI寄存器的输出值
LO[[31:0]]	Output	LO寄存器的输出值
Clk,Rst	Input	时钟,复位

- 。 自Start信号为1后的第一个时钟上升沿开始,乘除部件开始执行运算,同时Busy置为1。 在运算结果保存到HI和LO后,Busy位清除为0。
- 当Busy为1时,mfhi,mflo,mthi,mtlo,mult,multu,div,divu均被阻塞,即被阻塞在IF/ID。
- 。 数据写入HI或LO,均只需1个cycle。
- 9. 指令存储器 (IM) 和数据存储器 (DM) 容量都扩充为8KB (32bit*2K)
- 10. 为支持 sb,sh 指令, DM模块的接口规范更新如下。

信号名	方向	描述
A[13:2]	Input	DM的地址
BE[3:0]	Input	4位字节使能,分别对应4个字节。 BE[x]为1:对应的WD中的第x字节数据有效 BE[x]为0:对应的WD中的第x字节数据无效
WD[31:0]	Input	32位写入数据
RD[31:0]	Output	32位输出数据
We	Input	写使能
Clk	Input	时钟

提示,由于DM地址的低两位没有意义,所以可以用来传递额外的信息。由于BE的状态只有3 种,所以使用DM地址的低两位进行编码,并在输入DM模块前使用BE扩展进行解码,如图3 所示。

图 3 BE 扩展

11. 对于 lb,lbu,lh,lhu 指令,你必须增加一个数据扩展模块,这个模块把从DM读出的数据取出指定的字节/半字,并对其做符号扩展/零扩展。下面给出数据扩展模块的接口规范。

信号名	方向	描述
A[1:0]	Input	读取数据的最低2位地址
Din[31:0]	Input	输入的32位数据
Op[2:0]	Input	数据扩展控制码 000: 无扩展 001: 无符号字节数据扩展 101: 有符号字节数据扩展 011: 无符号半字数据扩展 111: 有符号半字数据扩展
Dout[31:0]	Output	扩展后的32位数据

- 。数据模块应在MEM/WB之后,而不应在DM之后,即都**处于WB级**,而**不是**MEM级。(为什么?因为在流水线中,MEM阶段是流水线的最长阶段,如果放置在MEM级,那么MEM级的延迟会进一步增加。而放置在WB阶段,由于寄存器堆的延迟低于DM的延迟,所以不会导致时钟频率的降低。)
- 12. 测试要求。尤其注意引入乘除法模块带来的额外测试需求。
 - o 功能测试:注意测试指令的数据边界,如对于mult指令,至少应测试 正*正,正*负,负*正,负*负,数*0,0*数 等情况。
 - o 相关性测试:注意测试控制系统依据Busy标志判断相关指令是否应被阻塞等情况。
- 13. 如无特殊说明, 其它要求同10条指令版本。