1. Seminar EVU RegAut

Sigurd Meldgaard

Datalogisk Institut Århus Universitet stm@cs.au.dk

27/08 2010

- Hvad er Regularitet og Automater
- · Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- · Præsentation af Java projekt

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

- Hvad er Regularitet og Automater
- · Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

- Hvad er Regularitet og Automater
- · Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

- Hvad er Regularitet og Automater
- · Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- · Præsentation af Java projekt

- Hvad er Regularitet og Automater
- · Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

- Hvad er Regularitet og Automater
- · Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automater

Skelnelighed og produktkonstruktior

dRegAut pakker

Automater til modellering og verifikation

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - Logik og Beregnelighed
 - Oversættelse.
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - Logik og Beregnelighed
 - Oversættelse,
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - Logik og Beregnelighed
 - Oversættelse,
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - · Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - Logik og Beregnelighed
 - Oversættelse,
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - · Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - Logik og Beregnelighed
 - Oversættelse,
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - · Logik og Beregnelighed
 - Oversættelse.
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - · Logik og Beregnelighed
 - Oversættelse,
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - · Logik og Beregnelighed
 - Oversættelse.
 - Sprog og Semantik
 - · Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - · Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - · Logik og Beregnelighed
 - Oversættelse,
 - Sprog og Semantik
 - Søgning og Optimering, ...

- At præsentere matematiske teknikker og centrale begreber, der anvendes i datalogi
 - Rekursive definitioner, induktionsbeviser
 - Formelle sprog
 - Modeller for beregnelighed
 - Regularitet ("egenskaber som generelt kendetegner beregningsprocesser i it-systemer med begrænset mange tilstande")
- Fundament for andre kurser
 - · Logik og Beregnelighed
 - Oversættelse,
 - Sprog og Semantik
 - · Søgning og Optimering, ...

Tekstgenkendelse

- Specificere og genkende tekststrenge
- søgning i tekster (Unix grep)
- leksikalsk analyse i oversættere (flex)
- HTML input validering (PowerForms)
- ...
- •
- Konkret anvendelse af regulære udtryk og endelige automater

Eksempel...

Eks. HTML formularer

HTML formularer indeholder input-felter, hvor brugeren kan indtaste tekststrenge.

For eksempel

- datoer
- telefonnumre
- CPR-numre
- emailadresser
- URL'er
- ..

- Brugeren må ikke indtaste ugyldige strenge
- Den traditionelle l

 øsning: Programmer input validering i JavaScript
 (til browseren så input valideres l

 øbende mens formularen
 udfyldes), og Java (til serveren for det tilfælde at browseren ikke
 udfører JavaScript-koden)
- Problemer:
 - Det er svært at programmere JavaScript, der virker på alle (nyere) browsere
 - Vi skal skrive den samme kode i to forskellige sprog
 - Store dele af koden skal skrives igen og igen...

- Brugeren må ikke indtaste ugyldige strenge
- Den traditionelle l\u00edsning: Programmer input validering i JavaScript (til browseren – s\u00e1 input valideres l\u00f8bende mens formularen udfyldes), og Java (til serveren – for det tilf\u00e7elde at browseren ikke udf\u00edrer JavaScript-koden)
- Problemer:
 - Det er svært at programmere JavaScript, der virker på alle (nyere) browsere
 - Vi skal skrive den samme kode i to forskellige sprog
 - Store dele af koden skal skrives igen og igen...

- Brugeren må ikke indtaste ugyldige strenge
- Den traditionelle l

 øsning: Programmer input validering i JavaScript
 (til browseren så input valideres l

 øbende mens formularen
 udfyldes), og Java (til serveren for det tilfælde at browseren ikke
 udfører JavaScript-koden)
- Problemer:
 - Det er svært at programmere JavaScript, der virker på alle (nyere) browsere
 - Vi skal skrive den samme kode i to forskellige sprog
 - Store dele af koden skal skrives igen og igen...

- Brugeren må ikke indtaste ugyldige strenge
- Den traditionelle l

 øsning: Programmer input validering i JavaScript
 (til browseren så input valideres l

 øbende mens formularen
 udfyldes), og Java (til serveren for det tilfælde at browseren ikke
 udfører JavaScript-koden)
- Problemer:
 - Det er svært at programmere JavaScript, der virker på alle (nyere) browsere
 - Vi skal skrive den samme kode i to forskellige sprog
 - Store dele af koden skal skrives igen og igen...

- Brugeren må ikke indtaste ugyldige strenge
- Den traditionelle l

 øsning: Programmer input validering i JavaScript
 (til browseren så input valideres l

 øbende mens formularen
 udfyldes), og Java (til serveren for det tilfælde at browseren ikke
 udfører JavaScript-koden)
- Problemer:
 - Det er svært at programmere JavaScript, der virker på alle (nyere) browsere
 - Vi skal skrive den samme kode i to forskellige sprog
 - Store dele af koden skal skrives igen og igen...

- Brugeren må ikke indtaste ugyldige strenge
- Den traditionelle l\u00edsning: Programmer input validering i JavaScript (til browseren – s\u00e1 input valideres l\u00f8bende mens formularen udfyldes), og Java (til serveren – for det tilf\u00e7elde at browseren ikke udf\u00edrer JavaScript-koden)
- Problemer:
 - Det er svært at programmere JavaScript, der virker på alle (nyere) browsere
 - Vi skal skrive den samme kode i to forskellige sprog
 - Store dele af koden skal skrives igen og igen...

Den datalogiske løsning

- Analysér problemområdet
- Design et domæne-specifikt højniveau sprog
- Lav en oversætter, der genererer JavaScript- og Java-koden fra højniveau specifikationer

Sproget *PowerForms* er udviklet efter denne metode Input-felter beskrives med *regulære udtryk*, der oversættes til *endelige automater*

Den datalogiske løsning

- Analysér problemområdet
- Design et domæne-specifikt højniveau sprog
- Lav en oversætter, der genererer JavaScript- og Java-koden fra højniveau specifikationer

Sproget *PowerForms* er udviklet efter denne metode Input-felter beskrives med *regulære udtryk*, der oversættes til *endelige automater*

Den datalogiske løsning

- Analysér problemområdet
- Design et domæne-specifikt højniveau sprog
- Lav en oversætter, der genererer JavaScript- og Java-koden fra højniveau specifikationer

Sproget *PowerForms* er udviklet efter denne metode Input-felter beskrives med *regulære udtryk*, der oversættes til *endelige automater*

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automater

Skelnelighed og produktkonstruktior

dRegAut pakker

Automater til modellering og verifikation

Grundliggende begreber

Vi starter med nogle matematiske definitioner

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet

```
• Ex. "onkel sune drejer den usle kno"
```

- Ex. "10110"
- Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

Grundliggende begreber

Vi starter med nogle matematiske definitioner

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En *streng* er en *endelig* sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

Grundliggende begreber

Vi starter med nogle matematiske definitioner

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet

```
• Ex. "onkel sune drejer den usle kno"
```

- Ex. "10110"
- Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {*a*, *b*, *c*, ...*z*}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. {"hans", "ole"}
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. {"hans", "ole"}
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. { "hans", "ole" }
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

- Et alfabet er en endelig mængde af tegn
 - Ex. {a, b, c, ...z}
 - Ex. ASCII, Unicode
 - Ex. {0, 1}
- En streng er en endelig sekvens af tegn fra alfabetet
 - Ex. "onkel sune drejer den usle kno"
 - Ex. "10110"
 - Ex. " " (Den tomme streng. Skrives også Λ (andre steder ε)).
- Et sprog er en mængde af strenge
 - Ex. {"hans", "ole"}
 - Ex. {Λ, a, aa, aaa, aaaa, ...}
 - Ex. {} (Det tomme sprog)
 - Ex. Alle korrekte danske sætninger

Regulære udtryk

Et regulært udtryk beskriver et sprog

- Regulære udtryk findes på 6 former
- 3 basis-tilfælde:
 - ∅ den tomme mængde af strenge
 - Λ mængden bestående af den tomme streng
 - a ∈ Σ mængden bestående af en enkelt streng, som er det ene tegn a fra alfabetet Σ
- Og 3 Sammensatte tilfælde (rekursive tilfælde):
 - $r_1 + r_2$ de strenge der beskrives af r_1 eller r_2
 - $r_1\dot{r}_2$ de strenge der kan opdeles i to dele, så venstre del beskrives af r_1 og højre del af r_2
 - r* de strenge der kan opdeles i et antal dele, der hver beskrives af r

Eksempler på regulære udtryk

- Strenge over alfabetet $\{0, 1\}$ med et *lige* antal tegn: $(00 + 11 + 01 + 10)^*$ eller $((0 + 1)(0 + 1))^*$
- Strenge over alfabetet {0, 1} med et *ulige* antal 1'er: 0*1(0*10*1)*0* eller 0*10*(10*10*)*
- Gyldige datoer, telefonnumre, CPR-numre, emailadresser, URL'er,

Eksempler på regulære udtryk

- Strenge over alfabetet $\{0, 1\}$ med et *lige* antal tegn: $(00 + 11 + 01 + 10)^*$ eller $((0 + 1)(0 + 1))^*$
- Strenge over alfabetet {0, 1} med et ulige antal 1'er: 0*1(0*10*1)*0* eller 0*10*(10*10*)*
- Gyldige datoer, telefonnumre, CPR-numre, emailadresser, URL'er,

S. Meldgaard (AU)

Eksempler på regulære udtryk

- Strenge over alfabetet $\{0, 1\}$ med et *lige* antal tegn: $(00 + 11 + 01 + 10)^*$ eller $((0 + 1)(0 + 1))^*$
- Strenge over alfabetet {0, 1} med et ulige antal 1'er: 0*1(0*10*1)*0* eller 0*10*(10*10*)*
- Gyldige datoer, telefonnumre, CPR-numre, emailadresser, URL'er,

S. Meldgaard (AU)

. . .

- Eksempler på gyldige strenge: "3.14" "5.6E13" "-42.0"
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$
- Forkortelser:
 - d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
 - $r^+ = rr^*$ (mindst én af r)
 - s = A + + + + -
- Samlet udtryk: $sd^+(.d^+ + .d^+Esd^+ + Esd^+ + \Lambda)$

- Eksempler på gyldige strenge: "3.14" "5.6E13" "-42.0"
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$
- Forkortelser:
 - d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
 - $r^+ = rr^*$ (mindst én af r)
 - $s = \Lambda + + + -$
- Samlet udtryk: $sd^+(.d^+ + .d^+Esd^+ + Esd^+ + \Lambda)$

- Eksempler på gyldige strenge: "3.14" "5.6E13" "-42.0"
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$
- Forkortelser:
 - d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
 - $r^+ = rr^*$ (mindst én af r)
 - $s = \Lambda + + + -$
- Samlet udtryk: $sd^+(.d^+ + .d^+Esd^+ + Esd^+ + \Lambda)$

- Eksempler på gyldige strenge: "3.14" "5.6E13" "-42.0"
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$
- Forkortelser:
 - d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
 - $r^+ = rr^*$ (mindst én af r)
 - $s = \Lambda + + + + -$
- Samlet udtryk: $sd^+(.d^+ + .d^+Esd^+ + Esd^+ + \Lambda)$

- Eksempler på gyldige strenge: "3.14" "5.6E13" "-42.0"
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$
- Forkortelser:
 - d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
 - $r^+ = rr^*$ (mindst én af r)
 - $s = \Lambda + + + + -$
- Samlet udtryk: $sd^+(.d^+ + .d^+Esd^+ + Esd^+ + \Lambda)$

- Eksempler på gyldige strenge: "3.14" "5.6E13" "-42.0"
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$
- Forkortelser:
 - d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
 - $r^+ = rr^*$ (mindst én af r)
 - $s = \Lambda + + + -$
- Samlet udtryk: $sd^+(.d^+ + .d^+Esd^+ + Esd^+ + \Lambda)$

- Eksempler på gyldige strenge: "3.14" "5.6E13" "-42.0"
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$
- Forkortelser:
 - d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
 - $r^+ = rr^*$ (mindst én af r)
 - $s = \Lambda + + + -$
- Samlet udtryk: $sd^+(.d^+ + .d^+ Esd^+ + Esd^+ + \Lambda)$

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - ∧ matcher kun den tomme streng.
 - $a \in \Sigma$ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - r₁ · r₂ Opdel x så x = x₁ · x₂ på alle mulige måder Og prøv om r₁
 matcher x₁ og r₂ matcher x₂
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - ∧ matcher kun den tomme streng.
 - $a \in \Sigma$ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - r₁ · r₂ Opdel x så x = x₁ · x₂ på alle mulige måder Og prøv om r₁
 matcher x₁ og r₂ matcher x₂
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - A matcher kun den tomme streng.
 - $a \in \Sigma$ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - r₁ · r₂ Opdel x så x = x₁ · x₂ på alle mulige måder Og prøv om r₁
 matcher x₁ og r₂ matcher x₂
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - A matcher kun den tomme streng.
 - $a \in \Sigma$ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - $r_1 \cdot r_2$ Opdel x så $x = x_1 \cdot x_2$ på alle mulige måder Og prøv om r_1 matcher x_1 og r_2 matcher x_2
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - A matcher kun den tomme streng.
 - $a \in \Sigma$ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - r₁ · r₂ Opdel x så x = x₁ · x₂ på alle mulige måder Og prøv om r₁
 matcher x₁ og r₂ matcher x₂
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - A matcher kun den tomme streng.
 - a ∈ Σ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - r₁ · r₂ Opdel x så x = x₁ · x₂ på alle mulige måder Og prøv om r₁
 matcher x₁ og r₂ matcher x₂
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - A matcher kun den tomme streng.
 - $a \in \Sigma$ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - r₁ · r₂ Opdel x så x = x₁ · x₂ på alle mulige måder Og prøv om r₁
 matcher x₁ og r₂ matcher x₂
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

- Den naive metode: vi prøver os frem:
 - Ø matcher intet
 - A matcher kun den tomme streng.
 - $a \in \Sigma$ matcher kun strengen bestående af den ene karakter a
 - $r_1 + r_2$ matcher hvis r_1 mathcer, eller r_2 matcher
 - r₁ · r₂ Opdel x så x = x₁ · x₂ på alle mulige måder Og prøv om r₁
 matcher x₁ og r₂ matcher x₂
 - r_1^* Opdel x så $x = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ på alle mulige måder. Og se om r_1 matcher alle x_i for alle $i = 1, \ldots, n$
- Det virker! Men det er håbløst ineffektivt.

Endelige Automater (forsmag)

- En endelig automat der genkender strenge over alfabetet $\Sigma = \{0, 1\}$ med et *lige* antal 0'er
- Automaten starter i den tilstand der er markeret med pilen
- Den "spiser" et tegn af gangen af strengen fra venstre mod højre
- Hvis den ender i tilstanden med dobbelt-cirkel, så accepterer den

Kleenes sætning

"Regulære udtryk og endelige automater har samme udtrykskraft"

- Konstruktivt bevis:
- For ethvert regulært udtryk findes en ækvivalent endelig automat
- For enhver endelig automat findes et ækvivalent regulært udtryk

Powerforms eksempel

- Lad R være et regulært udtryk, der svarer til gyldige datoer på form dd/mm-åååå
- Oversæt R til en ækvivalent endelig automat F
- Repræsenter F som et JavaScript-program, der kan svare på om en streng x er:
 - accepteret
 - ikke accepteret, men der er en sti til accept
 - ikke accepteret og ingen sti til accept

http://www.brics.dk/bigwig/powerforms/examples/date.html

Endelige automater til modellering af systemer

- Endelige automater er også nyttige uden regulære udtryk
- Endelige automater kan modellere systemer og egenskaber
- De teoretiske resultater om endelige automater kan bruges til at kombinere modeller og verificere om et givet system har en given egenskab

En endelig automat, der modellerer en togsimulator (fra VisualSTATE)

- 1421 del-automater
- 11102 transitioner
- 2981 inputs
- 2667 outputs
- 3204 lokale tilstande
- Antal tilstande ialt: 10⁴⁷⁶

Virker toget?

Beregnelighed

- Input og Output er strenge
- Program er en algoritme som kører på en maskine
- Eksempel: Givet et naturligt tal N i binær repræsentation som Input, beregn N^2 som output.

Beslutningsproblemer

- Hvis vi ignorerer effektivitet, så kan alle beregningsproblemer omformuleres til beslutningsproblemer.
- Eksempel: Givet to naturlige tal N, M i binær repræsentation som Input, svar ja hvis og kun hvis $N^2 = M$

Beslutningsproblemer som sprog

- Ethvert beslutningsproblem er et sprog (en mængde af strenge)
- $L = \{x | P(X) = ja\}$
- Ethvert sprog *L* er også et beslutningsproblem:

$$P(x) = \begin{cases} ja & \text{hvis } x \in L \\ nej & \text{ellers} \end{cases}$$

Beslutningsproblemer som sprog

- Ethvert beslutningsproblem er et sprog (en mængde af strenge)
- $L = \{x | P(X) = ja\}$
- Ethvert sprog *L* er også et beslutningsproblem:

$$P(x) = \begin{cases} ja & \text{hvis } x \in L \\ nej & \text{ellers} \end{cases}$$

Beslutningsproblemer som sprog

- Ethvert beslutningsproblem er et sprog (en mængde af strenge)
- $L = \{x | P(X) = ja\}$
- Ethvert sprog L er også et beslutningsproblem:

$$P(x) = \begin{cases} ja & \text{hvis } x \in L \\ nej & \text{ellers} \end{cases}$$

Eksempler på beslutningsproblemer

Givet en streng x,

- er den en gyldig dato på form dd/mm-åååå?
- er den et syntaktisk korrekt Java program?
- er den et primtal?
- er den en konfiguration i skak hvor det er muligt for hvid at vinde?
- er den et semantisk korrekt Java-program?
- er den en syntaktisk korrekt sætning i dansk?
- er den en litterær klassiker?
- vi vil kun se på formelle sprog og veldefinerede problemer

Endelige automater som model for beregnelighed

Vi vil studere følgende emne:

- Hvilke problemer kan afgøres af en maskine med endeligt meget hukommelse?
- Med andre ord: Hvilke sprog kan genkendes af endelige automater?

Mere generelle modeller for beregnelighed

- Pushdown-automater:
 - endelige automater med adgang til en vilkårligt stor stak (last-in-first-out)
 - anvendes ofte i parsere i oversættere
 - svarer til kontekstfri grammatikker
- · Turing-maskiner:
 - ligesom endelige automater med adgang til en uendeligt stor notesblok
 - kan udføre vilkårlige algoritmer (Church-Turing-tesen)
 - svarer til uindskrænkede grammatikker (hvor endelige automater svarer til regulære grammatikker)

Klasser af formelle sprog

Klasser af formelle sprog

Picture from http://www.flickr.com/photos/33602849@N00/5894257

Hvorfor så nøjes med regulære automater

- Klassen af regulære sprog har mange "pæne" egenskaber:
 - afgørlighed (f.eks, "givet en FA M, accepterer den nogen strenge overhovedet?")
 - lukkethed (snit, forening, ...)
- Til sammenligning:
 - Ved Turing-maskiner er næsten alt uafgørligt (Rices sætning: "alt interessant vedrørende sproget for en Turing-maskine er uafgørligt")
 - Pushdown-automater / kontekstfri grammatikker: en mellemting, både med hensyn til udtrykskraft og afgørlighedsegenskaber

Uafgørlighed

```
while (x\neq 1) {
    if (even(x))
        x = x/2;
    else
        x = 3·x+1;
}
```

- Terminerer dette program på alle input x? Ja eller nej?
- Tilsyneladende ja, men ingen har endnu bevist det!
- Men vi kan bevise, at der ikke findes et program (=en Turing-maskine), der kan afgøre det generelle problem "givet et program P, terminerer P på alle input?"

Plan

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automate

Skelnelighed og produktkonstruktior

dRegAut pakker

Automater til modellering og verifikation

Praktiske oplysninger om kurset

- Hjemmeside: http://cs.au.dk/~stm/RegAut
- Seminarer:
 - 27/8 2010 Fredag 9-16
 - 10/9 2010 Fredag 9-16
 - 1/10 2010 Fredag 9-16

Materiale

John Martin Introduction to Languages and the Theory of Computation 3. udgave, McGraw-Hill, 2002 ISBN: 0071198547 eller 0072322004

Opgaver på ugesedlerne

Aktivitetsniveau

- Forventet aktivitet per uge ~ 15 timer
- 6 uger · 15 timer/uge = 90 timer
- Seminarer: 21 timer
- Mellem seminarer: 69
- Forventet hjemmearbejde ca. 11 timer per uge
- Det forventes at man:
 - Læser de relevante kapitler i bogen
 - Løser opgaverne
 - · Laver programmeringsprojektet

Opgaver

- Teoretiske opgaver
 - udfordrer forståelsen af det gennemgåede materiale øvelse i typisk "datalogisk matematik"
- Programmeringsprojekt
 - (dRegAut Java-pakken) implementation af de gennemgåede algoritmer, der udledes af konstruktive beviser Øvelse i at implementere formelle specifikationer i Java.

Eksamen

- Mundtlig, ekstern censur, 13-skalaen 20 min. per person, uden forberedelsestid
- For at kunne indstilles til eksamen skal man have godkendt besvarelser af de obligatoriske opgaver

Plan

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninge

Regulære udtryk

Induktionsbevis

Regulære automate

Skelnelighed og produktkonstruktior

dRegAut pakker

Automater til modellering og verifikation

Alfabeter, strenge og sprog

- Et alfabet Σ er en endelig mængde (af tegn/symboler) eks.: $\Sigma = a, b, c$
- En streng x er en endelig sekvens af tegn fra alfabetet eks.: $x = abba \land$ repræsenterer den tomme streng (strengen af længde 0), $\land \notin \Sigma$
- Et sprog L er en (vilkårlig) mængde af strenge eks.:
 L = Λ, cab, abba
- Σ* er mængden af alle strenge over Σ dvs. L ⊆ Σ* hvis L er et sprog over Σ eks.: hvis Σ = a, b, c så er Σ* = Λ, a, b, c, aa, ab, ac, aaa, aab, ...

Konkatenering af strenge

- Hvis x, y ∈ Σ*, så er x · y (konkateneringen af x og y) den streng, der fremkommer ved at sætte tegnene i x før tegnene i y
 - Eks.: hvis x = abb og y = a, så er

$$x \cdot y = abba$$

$$y \cdot x = aabb$$

- Bemærk: $x \cdot \Lambda = \Lambda \cdot x = x$ for alle x
- x · y skrives ofte xy (uden "·")

Konkatenering af sprog

 Hvis L₁, L₂ ⊆ Σ*, så er L₁ · L₂ (konkateneringen af L₁ og L₂) defineret ved

$$L_1 \cdot L_2 = \{x \cdot y | x \in L_1 \land y \in L_2\}$$

• Eks.: Hvis $\Sigma = \{0, 1, 2, a, b, c\}$ og $L_1 = \{\Lambda, 10, 212\}$, $L_2 = \{cab, abba\}$ så er:

$$L1 \cdot L2 = \{cab, 10cab, 212cab, abba, 10abba, 212abba\}$$

- Bemærk:
 - $L \cdot \{\Lambda\} = \{\Lambda\} \cdot L = L$ for alle L
 - $L \cdot \emptyset = \emptyset \cdot L = \emptyset$ for alle L
 - L₁ · L₂ skrives ofte L₁L₂ (uden "·")

Kleene stjerne

Kleene stjerne er en måde at udtrykke "0 eller flere forekomster"

- $L^k = \underbrace{LL \cdots L}_{k \text{ gange}}$ (konkatenering af k forekomster af L)
- $L^0 = \{\Lambda\}$ (0 forekomster af L)
- $L^* = \bigcup_{i=0}^{\infty} L^i$ (Kleene stjerne af L)
- $L^+ = L^*L$ (1 eller flere forekomster)
- Eks.: Hvis *L* = {*aa*, *b*} så er

 $L^* = \{\Lambda, aa, b, aaaa, aab, baa, bb, aaaaaa, \ldots\}$

Rekursive definitioner

- En definition er rekursiv, hvis den refererer til sig selv
- Eks.: Fibonacci f : N → N

$$f(n) = \begin{cases} 1, & \text{hvis } n = 1 \lor n = 0 \\ f(n-1) + f(n-2), & \text{ellers} \end{cases}$$

 Enhver selv-reference skal referere til noget "mindre" og dermed føre til endeligt mange selv-referencer

Rekursiv definition af strenge

- x er en streng over alfabetet Σ , dvs. $x \in \Sigma^*$ hvis:
- $x = \Lambda$, eller
- $x = y \cdot a$ hvor $y \in \Sigma^*$ og $a \in \Sigma$
- (underforstået Σ* er den mindste mænge der opfylder dette)
- Eksempel:

$$abc = (((\Lambda \cdot a) \cdot b) \cdot c) \in \Sigma^*, (\text{hvor } \Sigma = \{a, b, c, d\})$$

Syntax af regulære udtryk

Mængden R af regulære udtryk over Σ er den mindste mængde, der indeholder følgende:

- Ø
- \(\lambda\)
- a for hver $a \in \Sigma$
- $(r_1 + r_2)$ hvor $r_1, r_2 \in R$
- (r_1r_2) hvor $r_1, r_2 \in R$
- (r^*) hvor $r \in R$

Semantik af regulære udtryk

Sproget L(r) for $r \in R$ er defineret rekursivt i strukturen af R

- $L(\emptyset) = \emptyset$
- $L(\Lambda) = \{\Lambda\}$
- $L(a) = \{a\}$
- $L((r_1 + r_2)) = L(r_1) \cup L(r_2)$
- $L((r_1r_2)) = L(r_1)L(r_2)$
- $L((r^*)) = (L(r))^*$

Regulære sprog

• Definition: Et sprog S er regulært hvis og kun hvis der eksisterer et regulært udtryk r hvor L(r) = S

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - · konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - · konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - · konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - · konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer **præcedens** for operatorerne:
 - * binder stærkest
 - · konkatenering binder middel
 - + binder svagest
 - Eks.: $(a + ((b^*)c))$ kan skrives $a + b^*c$

Eksempel

Betragt følgende regulære udtryk r over alfabetet {0, 1}:

$$r = (1 + \Lambda)001$$

På grund af parentesreglerne er dette det samme som

$$r = ((((1 + \Lambda)0)0)1)$$

• Så sproget for *r* er

$$L(r) = (((\{1\} \cup \{\Lambda\})\{0\})\{0\})\{1\}) = \{1001, 001\}$$

Eksempel

Betragt følgende regulære udtryk r over alfabetet {0, 1}:

$$r = (1 + \Lambda)001$$

På grund af parentesreglerne er dette det samme som

$$r = ((((1 + \Lambda)0)0)1)$$

• Så sproget for r er

$$L(r) = (((\{1\} \cup \{\Lambda\})\{0\})\{0\})\{1\}) = \{1001, 001\}$$

Eksempel

Betragt følgende regulære udtryk r over alfabetet {0, 1}:

$$r = (1 + \Lambda)001$$

På grund af parentesreglerne er dette det samme som

$$r = ((((1 + \Lambda)0)0)1)$$

• Så sproget for r er

$$L(r) = (((\{1\} \cup \{\Lambda\})\{0\})\{0\})\{1\}) = \{1001, 001\}$$

Quiz

- Hvad betyder {a, bc}*?
- 2 Hvad er betingelsen for at et sprog S er regulært?

Øvelser

- [Martin] Opg. 3.2
- [Martin] Opg. 3.9 (a-e)
- [Martin] Opg. 3.10 (a-b)

Plan

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automater

Skelnelighed og produktkonstruktior

dRegAut pakker

Automater til modellering og verifikation

Reverse-operatoren

- Givet en streng x ∈ Σ*, definer reverse(x) rekursivt i strukturen af x:
- $reverse(\Lambda) = \Lambda$
- reverse(ya) = a(reverse(y)), hvor $y \in \Sigma^*$, $a \in \Sigma$
- Eksempel: $reverse(123) = 3 \cdot reverse(12) = ... = 321 \cdot reverse(\Lambda) = 321$

Reverse på et sprog

Givet et sprog L⊆Σ*, definer

$$reverse(L) = \{reverse(x) | x \in L\}$$

Eksempel: Hvis L={Λ,123,abc} så er

$$reverse(L) = \{\Lambda, 321, cba\}$$

Rekursion og induktionsbeviser

- Rekursive definitioner giver ofte anledning til induktionsbeviser
- Hvis vi skal bevise noget på form "for alle X gælder P(X)", hvor mængden af X'er er defineret rekursivt, så kan vi prøve bevisteknikken "induktion i strukturen af X"

Rekursion og induktionsbeviser

- Rekursive definitioner giver ofte anledning til induktionsbeviser
- Hvis vi skal bevise noget på form "for alle X gælder P(X)", hvor mængden af X'er er defineret rekursivt, så kan vi prøve bevisteknikken "induktion i strukturen af X"

- Påstand: Hvis S er et regulært sprog, så er reverse(S) også regulært (dvs. de regulære sprog er lukkede under Reverse)
- Bevis: S er regulært, så der eksisterer et regulært udtryk r så L(r) = SVi vil vise ved **induktion** i strukturen af r, at der eksisterer et regulært udtryk r' hvor L(r') = reverse(L(r)), hvilket medfører, at reverse(S) er regulært

- Påstand: Hvis S er et regulært sprog, så er reverse(S) også regulært (dvs. de regulære sprog er lukkede under Reverse)
- Bevis: S er regulært, så der eksisterer et regulært udtryk r så L(r) = SVi vil vise ved **induktion** i strukturen af r, at der eksisterer et regulært udtryk r' hvor L(r') = reverse(L(r)), hvilket medfører, at

reverse(S) er regulært

Basis

•
$$r = \emptyset$$
: $r' = \emptyset$

$$L(\emptyset) = \emptyset = reverse(\emptyset) = reverse(L(\emptyset))$$

•
$$r = \Lambda$$
: $r' = \Lambda$

. . .

•
$$r = a$$
: $r' = a$

. .

Induktionsskridtet

For alle deludtryk s af r kan vi udnytte **induktionshypotesen**:

- $\underline{r = r_1 + r_2}$ hvor $r_1, r_2 \in R$: vælg $r' = r'_1 + r'_2$ hvor r'_1 of r'_2 er givet i induktionshypotesen.
- $r = r_1 r_2$ hvor $r_1, r_2 \in R$: vælg $r' = r_2' r_1'$
- $r = r_1^*$ hvor $r_1 \in R$: vælg $r' = (r_1')^*$
- Lemma 1: $\forall x, y \in \Sigma^*$: reverse(xy) = reverse(y) reverse(x)Bevis: induktion i strukturen (eller længden) af y
- Lemma 2: $\forall i \geqslant 0, E \subseteq \Sigma^*$: $reverse(E^i) = (reverse(E))^i$ Bevis: induktion i i

Induktionsskridtet

For alle deludtryk *s* af *r* kan vi udnytte **induktionshypotesen**:

- $\underline{r = r_1 + r_2}$ hvor r_1 , $r_2 \in R$: vælg $r' = r'_1 + r'_2$ hvor r'_1 of r'_2 er givet i induktionshypotesen.
- $r = r_1 r_2$ hvor $r_1, r_2 \in R$: vælg $r' = r'_2 r'_1$
- $r = r_1^*$ hvor $r_1 \in R$: vælg $r' = (r'_1)^*$
- Lemma 1: $\forall x, y \in \Sigma^*$: reverse(xy) = reverse(y) reverse(x)Bevis: induktion i strukturen (eller længden) af y
- Lemma 2: $\forall i \geqslant 0, E \subseteq \Sigma^*$: $reverse(E^i) = (reverse(E))^i$ Bevis: induktion i i

Induktionsskridtet

For alle deludtryk *s* af *r* kan vi udnytte **induktionshypotesen**:

- $\underline{r = r_1 + r_2}$ hvor $r_1, r_2 \in R$: vælg $r' = r'_1 + r'_2$ hvor r'_1 of r'_2 er givet i induktionshypotesen.
- $r = r_1 r_2$ hvor $r_1, r_2 \in R$: vælg $r' = r'_2 r'_1$
- $r = r_1^*$ hvor $r_1 \in R$: vælg $r' = (r'_1)^*$
- Lemma 1: $\forall x, y \in \Sigma^*$: reverse(xy) = reverse(y) reverse(x)Bevis: induktion i strukturen (eller længden) af y
- Lemma 2: $\forall i \geqslant 0, E \subseteq \Sigma^*$: $reverse(E^i) = (reverse(E))^i$ Bevis: induktion i i

Induktionsskridtet

For alle deludtryk *s* af *r* kan vi udnytte **induktionshypotesen**:

- $\underline{r = r_1 + r_2}$ hvor r_1 , $r_2 \in R$: vælg $r' = r'_1 + r'_2$ hvor r'_1 of r'_2 er givet i induktionshypotesen.
- $r = r_1 r_2$ hvor $r_1, r_2 \in R$: vælg $r' = r_2' r_1'$
- $r = r_1^*$ hvor $r_1 \in R$: vælg $r' = (r_1')^*$
- Lemma 1: $\forall x, y \in \Sigma^*$: reverse(xy) = reverse(y) reverse(x)Bevis: induktion i strukturen (eller længden) af y
- Lemma 2: $\forall i \geq 0, E \subseteq \Sigma^*$: $reverse(E^i) = (reverse(E))^i$ Bevis: induktion i i

Induktionsskridtet

For alle deludtryk s af r kan vi udnytte **induktionshypotesen**:

- $\underline{r = r_1 + r_2}$ hvor r_1 , $r_2 \in R$: vælg $r' = r'_1 + r'_2$ hvor r'_1 of r'_2 er givet i induktionshypotesen.
- $r = r_1 r_2$ hvor $r_1, r_2 \in R$: vælg $r' = r'_2 r'_1$
- $r = r_1^*$ hvor $r_1 \in R$: vælg $r' = (r_1')^*$
- Lemma 1: $\forall x, y \in \Sigma^*$: reverse(xy) = reverse(y) reverse(x)Bevis: induktion i strukturen (eller længden) af y
- Lemma 2: $\forall i \geq 0, E \subseteq \Sigma^*$: $reverse(E^i) = (reverse(E))^i$ Bevis: induktion i i

Induktionsskridtet

For alle deludtryk *s* af *r* kan vi udnytte **induktionshypotesen**:

- $\underline{r = r_1 + r_2}$ hvor r_1 , $r_2 \in R$: vælg $r' = r'_1 + r'_2$ hvor r'_1 of r'_2 er givet i induktionshypotesen.
- $r = r_1 r_2$ hvor $r_1, r_2 \in R$: vælg $r' = r'_2 r'_1$
- $r = r_1^*$ hvor $r_1 \in R$: vælg $r' = (r_1')^*$
- Lemma 1: ∀x, y ∈ Σ*: reverse(xy) = reverse(y)reverse(x)
 Bevis: induktion i strukturen (eller længden) af y
- Lemma 2: $\forall i \geqslant 0, E \subseteq \Sigma^*$: $reverse(E^i) = (reverse(E))^i$ Bevis: induktion i i

Konstruktive beviser

- Bemærk at dette induktionsbevis implicit indeholder en algoritme til – givet et regulært udtryk for S – at konstruere et regulært udtryk for reverse(S)
- Sådanne beviser kaldes konstruktive
- Husk altid både konstruktionen og beviset for dens korrekthed

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - $REV(\emptyset) = \emptyset$
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - REV(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - *REV*(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - *REV*(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - *REV*(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - *REV*(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - *REV*(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - REV(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

- Input: et regulært udtryk r
- Definer en rekursiv funktion REV ved:
 - *REV*(∅) = ∅
 - $REV(\Lambda) = \Lambda$
 - REV(a) = a, hvor $a \in \Sigma$
 - $REV(r_1 + r_2) = REV(r_1) + REV(r_2)$
 - $REV(r_1r_2) = REV(r_2) \cdot REV(r_1)$
 - $REV(r_1^*) = (REV(r_1))^*$
- Output: det regulære udtryk REV(r)

Øvelse

- Lad r være det regulære udtryk $((a + \Lambda)cbc)^*$ over alfabetet $\{a, b, c\}$.
 - Bevis at enhver streng i sproget sproget L(r) har et lige antal c'er.
 - Argumentér kort og præcist for hvert trin i beviset.
- Hint: Brug definitionen af sprog for regulære udtryk (Definition 3.1 i [Martin]), definitionen af * på sprog (s. 31 øverst i [Martin]), og lav induktion.

- a) 00
- b) 01
- c) 0
- d) 010

- a) 00
- b) 01
- c) 0
- d) 010

- a) 00
- b) 01
- c) 0
- d) 010

- a) 00
- b) 01
- c) 0
- d) 010

- a) 00
- b) 01
- c) 0
- d) 010

- a) 1*01*01*
- b) (0+1)*0(0+1)*0(0+1)*
- c) $\Lambda + 0 + 1 + (0 + 1)^*(00 + 10 + 11)$
- d) $(00+11)(0+1)^* + (0+1)^*(00+11)$
- e) $(1+01)^*(0+\Lambda)$

- a) The language of all strings containing an odd number of 1's
- b) The language of all strings containing 3n or 3n + 1 characters for any natural number n

Plan

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automater

Skelnelighed og produktkonstruktion

dRegAut pakker

Automater til modellering og verifikation

Regulære udtryk vs endelige automater

- Regulære udtryk: deklarative
 - dvs. ofte velegnede til at specificere regulære sprog
- Endelige automater: operationelle
 - dvs. bedre egnet til at afgøre om en given streng er i sproget
- Ethvert regulært udtryk kan oversættes til en endelig automat og omvendt
 - (bevises næste seminar...)

En endelig automat

• En endelig automat, der genkender strenge over alfabetet $\Sigma = \{0, 1\}$ med ulige antal 1'er:

- Automaten læser strengen ét tegn ad gangen, fra venstre mod højre
- Hvis automaten ender i en accept-tilstand, så accepteres(=genkendes) strengen

At køre en streng på en automat

Eksempel: vi vil vide om strengen 1010 accepteres

- Vi starter i starttilstanden og læser strengen ét tegn ad gangen
- Vi ender i en ikke-accept tilstand, så strengen accepteres ikke

Hvad repræsenterer tilstandende

- Hver tilstand repræsenterer en viden om den hidtil læste delstreng
- Eksempel:

- X: "der er læst et lige antal 1'er"
- Y: "der er læst et ulige antal 1'er"

Formel definition af endelige automater

- En endelig automat (finite automaton/FA) er et 5-tupel $(Q, \Sigma, q_0, A, \delta)$ hvor
- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- A ⊂ Q er accepttilstandene
- $\delta: Q \times \Sigma \to Q$ er en transitionsfunktion

Eksempel

Denne grafiske repræsentation af en automat:

- svarer til 5-tuplet $(Q, \Sigma, q_0, A, \delta)$ hvor
- $Q = \{X, Y\}$
- $\Sigma = \{0, 1\}$
- $q_0 = X$
- $A = \{Y\}$
- $\delta: Q \times \Sigma \to Q$ er denne funktion:

	0	1
Χ	Χ	Υ
Υ	Υ	Χ

- Den formelle definition viser kort og præcist hvad en FA er
- · For eksempel,
 - en FA har endeligt mange tilstande
 - den har præcis én starttilstand
 - en vilkårlig delmængde af tilstandene kan være accepttilstande
 - for enhver tilstand q og alfabetsymbol a er der én udgående transition (til tilstanden $\delta(q, a)$)
 - der er ikke noget krav om, at alle tilstande kan nås fra starttilstanden

- Den formelle definition viser kort og præcist hvad en FA er
- · For eksempel,
 - en FA har endeligt mange tilstande
 - den har præcis én starttilstand
 - en vilkårlig delmængde af tilstandene kan være accepttilstande
 - for enhver tilstand q og alfabetsymbol a er der én udgående transition (til tilstanden $\delta(q, a)$)
 - der er ikke noget krav om, at alle tilstande kan nås fra starttilstanden

- Den formelle definition viser kort og præcist hvad en FA er
- · For eksempel,
 - en FA har endeligt mange tilstande
 - den har præcis én starttilstand
 - en vilkårlig delmængde af tilstandene kan være accepttilstande
 - for enhver tilstand q og alfabetsymbol a er der én udgående transition (til tilstanden $\delta(q, a)$)
 - der er ikke noget krav om, at alle tilstande kan nås fra starttilstanden

- Den formelle definition viser kort og præcist hvad en FA er
- · For eksempel,
 - en FA har endeligt mange tilstande
 - den har præcis én starttilstand
 - en vilkårlig delmængde af tilstandene kan være accepttilstande
 - for enhver tilstand q og alfabetsymbol a er der én udgående transition (til tilstanden $\delta(q, a)$)
 - der er ikke noget krav om, at alle tilstande kan nås fra starttilstanden

- Den formelle definition viser kort og præcist hvad en FA er
- · For eksempel,
 - en FA har endeligt mange tilstande
 - den har præcis én starttilstand
 - en vilkårlig delmængde af tilstandene kan være accepttilstande
 - for enhver tilstand q og alfabetsymbol a er der én udgående transition (til tilstanden $\delta(q, a)$)
 - der er ikke noget krav om, at alle tilstande kan nås fra starttilstanden

Sproget af en automat

- 5-tupel-definitionen fortæller hvad en FA er
- Vi vil nu definere hvad en FA kan:
- En FA accepterer en streng, hvis dens kørsel fra starttilstanden ender i en accepttilstand
- Sproget L(M) af en FA M er mængden af strenge, den accepterer
- M genkender sproget L(M)

Formel definition af L(M)

 Givet en FA M = (Q, Σ, q₀, A, δ), definer den udvidede transitionsfunktion δ* : Q × Σ* → Q ved

$$\delta^*(q, x) = \begin{cases} q & \text{hvis } x = \Lambda \\ \delta(\delta^*(q, y), a) & \text{hvis } x = ya \text{ hvor } y \in \Sigma^* \text{ og } a \in \Sigma \end{cases}$$

- $x \in \Sigma^*$ accepteres af M hvis og kun hvis $\delta^*(g_0, x) \in A$
- Definer $L(M) = \{x \in \Sigma^* | x \text{ accepteres af } M\}$

Formel definition af L(M)

 Givet en FA M = (Q, Σ, q₀, A, δ), definer den udvidede transitionsfunktion δ* : Q × Σ* → Q ved

$$\delta^*(q, x) = \begin{cases} q & \text{hvis } x = \Lambda \\ \delta(\delta^*(q, y), a) & \text{hvis } x = ya \text{ hvor } y \in \Sigma^* \text{ og } a \in \Sigma \end{cases}$$

- $x \in \Sigma^*$ accepteres af M hvis og kun hvis $\delta^*(q_0, x) \in A$
- Definer $L(M) = \{x \in \Sigma^* | x \text{ accepteres af } M\}$

Formel definition af L(M)

 Givet en FA M = (Q, Σ, q₀, A, δ), definer den udvidede transitionsfunktion δ* : Q × Σ* → Q ved

$$\delta^*(q,x) = \begin{cases} q & \text{hvis } x = \Lambda \\ \delta(\delta^*(q,y), a) & \text{hvis } x = ya \text{ hvor } y \in \Sigma^* \text{ og } a \in \Sigma \end{cases}$$

- $x \in \Sigma^*$ accepteres af M hvis og kun hvis $\delta^*(q_0, x) \in A$
- Definer $L(M) = \{x \in \Sigma^* | x \text{ accepteres af } M\}$

Konstruer en FA så $L(M) = \Sigma^*$

$$L(M) = \emptyset$$

$$L(M) = \{a\}$$

$$L(M) = \{x \in \Sigma^* | n_a(x) \text{ lige og } n_b(x) \text{ ulige} \}$$

$$\textit{L}(\textit{M}) = \Sigma^*$$

$$L(M) = \emptyset$$

$$L(M) = \{a\}$$

$$L(M) = \{x \in \Sigma^* | n_a(x) \text{ lige og } n_b(x) \text{ ulige} \}$$

$$L(M) = \Sigma^*$$

$$L(M) = \emptyset$$

$$L(M) = \{a\}$$

$$L(M) = \{x \in \Sigma^* | n_a(x) \text{ lige og } n_b(x) \text{ ulige} \}$$

$$L(M) = \Sigma^*$$

$$L(M) = \emptyset$$

$$L(M) = \{a\}$$

$$L(M) = \{x \in \Sigma^* | n_a(x) \text{ lige og } n_b(x) \text{ ulige} \}$$

$$\textit{L}(\textit{M}) = \Sigma^*$$

$$L(M) = \emptyset$$

$$L(M) = \{a\}$$

$$L(M) = \{x \in \Sigma^* | n_a(x) \text{ lige og } n_b(x) \text{ ulige} \}$$

Øvelser

- [Martin] Opg. 3.17 (e)
- [Martin] Opg. 3.18
- [Martin] Opg. 3.19 (a-c)

Plan

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automater

Skelnelighed og produktkonstruktion

dRegAut pakker

Automater til modellering og verifikation

Skelnelighed

- Givet et sprog L, hvor mange tilstande er nødvendige i en FA M hvis L(M) = L?
- To strenge, x og y, skal ende i forskellige tilstande, hvis der er behov for at kunne skelne dem:
- dvs., $\delta^*(q_0, x) \neq \delta^*(q_0, y)$ hvis $\exists z \in \Sigma^* : (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$

Definition af skelnelighed

- Lad $L \subseteq \Sigma^*$ og $x, y \in \Sigma^*$
- Kvotientsproget L/x defineres som

$$L/x = \{z \in \Sigma^* | xz \in L\}$$

x og y er skelnelige mht. L hvis

$$L/x \neq L/y$$

• z skelner x og y mht. L hvis

$$z \in L/x - L/y$$
 eller $z \in L/y - L/x$

Eksempel

- Hvis
 - $L = \{s \in \{0, 1\}^* | s \text{ ender med } 10\}$
 - x = 00
 - y = 01
- så er x og y skelnelige mht. L
- Bevis: z = 0 skelner x og y
- Heraf kan vi se, at hvis $M = (Q, \Sigma, q_0, A, \delta)$ genkender L så er

$$\delta^*(q_0, x) \neq \delta^*(q_0, y)$$

Uanset hvordan M ellers er opbygget.

Nødvendigt antal tilstande i en FA

- Antag x₁, x₂,..., x_n ∈ Σ*
 og for ethvert par x_i, x_j, i ≠ j er x_i og x_j skelnelige mht. L
- Enhver FA der genkender L har mindst n tilstande
- · Bevis (skitse):
 - Antag FA'en har færre tilstande
 - Det medfører at $\exists i \neq j : \delta^*(q_0, x_i) = \delta^*(q_0, x_i)$ (skuffeprincippet)
 - Det er i modstrid med at x_i og x_i var skelnelige mht. L

Nødvendigt antal tilstande i en FA

- Antag x₁, x₂,..., x_n ∈ Σ*
 og for ethvert par x_i, x_j, i ≠ j er x_i og x_j skelnelige mht. L
- Enhver FA der genkender L har mindst n tilstande
- Bevis (skitse):
 - Antag FA'en har færre tilstande
 - Det medfører at $\exists i \neq j : \delta^*(q_0, x_i) = \delta^*(q_0, x_i)$ (skuffeprincippet)
 - Det er i modstrid med at x_i og x_i var skelnelige mht. L

http://www.flickr.com/photos/curiousexpeditions/2194711073/

Nødvendigt antal tilstande i en FA

- Antag x₁, x₂,..., x_n ∈ Σ*
 og for ethvert par x_i, x_j, i ≠ j er x_i og x_j skelnelige mht. L
- Enhver FA der genkender L har mindst n tilstande
- Bevis (skitse):
 - Antag FA'en har færre tilstande
 - Det medfører at $\exists i \neq j : \delta^*(q_0, x_i) = \delta^*(q_0, x_i)$ (skuffeprincippet)
 - Det er i modstrid med at x_i og x_i var skelnelige mht. L

http://www.flickr.com/photos/curiousexpeditions/2194711073/

- Dette eksempel kan give intuition for begrebet skelnelighed
- Lad $L_{42} = \{x \in \{0, 1\}^* | |x| \geqslant 42 \text{ og det } 42. \text{ symbol fra højre i } x \text{ er et } 1\}$
- Lad $x_1, x_2, ..., x_{2^{42}}$ være alle strenge af længde 42 over alfabetet $\{0, 1\}$
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L₄₂ har derfor mindst 2⁴² tilstande
- (...hvis den overhovedet findes)
- Bevis: $x \neq y$ må være forskellige i *i*'te tegn fra venstre. Strengen z som skelner kan være 0^{i-1}

- Dette eksempel kan give intuition for begrebet skelnelighed
- Lad
 L₄₂ = {x ∈ {0, 1}*||x| ≥ 42 og det 42. symbol fra højre i x er et 1}
- Lad $x_1, x_2, ..., x_{2^{42}}$ være alle strenge af længde 42 over alfabetet $\{0, 1\}$
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L₄₂ har derfor mindst 2⁴² tilstande
- (...hvis den overhovedet findes)
- Bevis: $x \neq y$ må være forskellige i *i*'te tegn fra venstre. Strengen z som skelner kan være 0^{i-1}

- Dette eksempel kan give intuition for begrebet skelnelighed
- Lad $L_{42} = \{x \in \{0, 1\}^* ||x| \geqslant 42 \text{ og det } 42. \text{ symbol fra højre i } x \text{ er et } 1\}$
- Lad $x_1, x_2, ..., x_{2^{42}}$ være alle strenge af længde 42 over alfabetet $\{0, 1\}$
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L₄₂ har derfor mindst 2⁴² tilstande
- (...hvis den overhovedet findes)
- Bevis: $x \neq y$ må være forskellige i *i*'te tegn fra venstre. Strengen z som skelner kan være 0^{i-1}

- Dette eksempel kan give intuition for begrebet skelnelighed
- Lad $L_{42} = \{x \in \{0, 1\}^* ||x| \geqslant 42 \text{ og det } 42. \text{ symbol fra højre i } x \text{ er et } 1\}$
- Lad $x_1, x_2, ..., x_{2^{42}}$ være alle strenge af længde 42 over alfabetet $\{0, 1\}$
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L₄₂ har derfor mindst 2⁴² tilstande
- (...hvis den overhovedet findes)
- Bevis: $x \neq y$ må være forskellige i *i*'te tegn fra venstre. Strengen z som skelner kan være 0^{i-1}

- Dette eksempel kan give intuition for begrebet skelnelighed
- Lad $L_{42} = \{x \in \{0, 1\}^* ||x| \geqslant 42 \text{ og det } 42. \text{ symbol fra højre i } x \text{ er et } 1\}$
- Lad $x_1, x_2, ..., x_{2^{42}}$ være alle strenge af længde 42 over alfabetet $\{0, 1\}$
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L_{42} har derfor mindst 2^{42} tilstande
- (...hvis den overhovedet findes)
- Bevis: $x \neq y$ må være forskellige i *i*'te tegn fra venstre. Strengen z som skelner kan være 0^{i-1}

- Dette eksempel kan give intuition for begrebet skelnelighed
- Lad
 L₄₂ = {x ∈ {0, 1}*||x| ≥ 42 og det 42. symbol fra højre i x er et 1}
- Lad $x_1, x_2, ..., x_{2^{42}}$ være alle strenge af længde 42 over alfabetet $\{0, 1\}$
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L_{42} har derfor mindst 2^{42} tilstande
- (...hvis den overhovedet findes)
- Bevis: $x \neq y$ må være forskellige i *i*'te tegn fra venstre. Strengen z som skelner kan være 0^{i-1}

- Dette eksempel kan give intuition for begrebet skelnelighed
- Lad
 L₄₂ = {x ∈ {0, 1}*||x| ≥ 42 og det 42. symbol fra højre i x er et 1}
- Lad $x_1, x_2, ..., x_{2^{42}}$ være alle strenge af længde 42 over alfabetet $\{0, 1\}$
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L_{42} har derfor mindst 2^{42} tilstande
- (...hvis den overhovedet findes)
- Bevis: $x \neq y$ må være forskellige i *i*'te tegn fra venstre. Strengen z som skelner kan være 0^{i-1}

Eksempel 2: Palindromer

- Lad $pal = \{x \in \{0, 1\}^* | x = reverse(x)\}$
- Lad x og y være vilkårlige forskellige strenge over {0, 1}
- x og y er skelnelige mht. pal (bevis: se bogen Theorem 3.3 side 109)
- Vi kan altså finde en vilkårligt stor mængde parvist skelnelige strenge, så *pal* er ikke regulært.

Eksempel 2: Palindromer

- Lad $pal = \{x \in \{0, 1\}^* | x = reverse(x)\}$
- Lad x og y være vilkårlige forskellige strenge over {0, 1}
- x og y er skelnelige mht. pal (bevis: se bogen Theorem 3.3 side 109)
- Vi kan altså finde en vilkårligt stor mængde parvist skelnelige strenge, så *pal* er ikke regulært.

Eksempel 2: Palindromer

- Lad $pal = \{x \in \{0, 1\}^* | x = reverse(x)\}$
- Lad x og y være vilkårlige forskellige strenge over {0, 1}
- x og y er skelnelige mht. pal (bevis: se bogen Theorem 3.3 side 109)
- Vi kan altså finde en vilkårligt stor mængde parvist skelnelige strenge, så *pal* er ikke regulært.

Eksempel 2: Palindromer

- Lad $pal = \{x \in \{0, 1\}^* | x = reverse(x)\}$
- Lad x og y være vilkårlige forskellige strenge over {0, 1}
- x og y er skelnelige mht. pal (bevis: se bogen Theorem 3.3 side 109)
- Vi kan altså finde en vilkårligt stor mængde parvist skelnelige strenge, så *pal* er ikke regulært.

Forening af regulære sprog

- Givet to regulære sprog, L_1 og L_2 er $L_1 \cup L_2$ også regulært?
- Ja! (dvs. klassen af regulære sprog er lukket under forening)

Eksempel

M1: (strenge med lige antal 0'er)

M2: (strenge der ender med 0)

$$L(M) = L(M1) \cup L(M2)$$

Produktkonstruktionen

- Antag vi har to FA'er:
- $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$
- $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$
- Definer en ny FA: $M = (Q, \Sigma, q_0, A, \delta)$ hvor
 - $Q = Q_1 \times Q_2$ (produktmængden af tilstande)
 - $q_0 = (q_1, q_2)$
 - $A = \{(p, q) | p \in A_1 \lor q \in A_2\}$
 - $\delta((p,q), a) = (\delta_1(p,a), \delta_2(q,a))$
- Der gælder nu:

$$L(M) = L(M_1) \cup L(M_2)$$

Konstruktivt bevis for korrekthed

- Lemma: $\forall x \in \Sigma^* : \delta^*((p,q),x) = (\delta_1^*(p,x),\delta_2^*(q,x))$
- (Bevis: opgave 3.32, induktion i x)
 - Brug lemmaet samt definitionerne af M og L(◆)

Nøjes med opnåelige tilstande

- Nøjes med opnåelige tilstande
- Produktkonstruktionen bruger Q = Q₁ × Q₂
- I praksis er hele tilstandsrummet sjældent nødvendigt

Eksempel:

 Kun tilstande, der er opnåelige fra starttilstanden er relevante for sproget!

Snitmængde og differens

- Givet to regulære sprog, L₁ og L₂
 - er L₁ ∩ L₂ også regulært?
 - er L₁ − L₂ også regulært?
- Ja! (dvs. klassen af regulære sprog er lukket under snit og differens)
- Bevis: produktkonstruktion som ved ∪ men
 - for \cap , vælg $A = (p, q)|p \in A_1 \land q \in A_2$
 - for -, vælg $A = (p, q)|p \in A_1 \land q \notin A_2$

Snitmængde og differens

- Givet to regulære sprog, L₁ og L₂
 - er L₁ ∩ L₂ også regulært?
 - er L₁ − L₂ også regulært?
- Ja! (dvs. klassen af regulære sprog er lukket under snit og differens)
- Bevis: produktkonstruktion som ved ∪ men
 - for \cap , vælg $A = (p, q)|p \in A_1 \land q \in A_2$
 - for –, vælg $A = (p, q)|p \in A_1 \land q \notin A_2$

Komplement

- Givet et regulære sprog R er R' (Rs komplement) også regulært?
- Ja! (dvs. klassen af regulære sprog er lukket under komplement)
- Bevis 1:
 - Vælg $L_1 = \Sigma^*$ og $L_2 = R$, hvorved $R' = L_1 L_2$
- Bevis 2:
 - Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$ hvor L(M) = R
 - Definer $M' = (Q, \Sigma, q_0, Q A, \delta)$
 - Derved gælder at L(M') = R'

Eksempel

 M: (Strenge der enten har et lige antal 0'er, eller slutter med 0)

 M': (Strenge der både har et ulige antal 0'er, og ikke slutter med 0)

Øvelse

• [Martin] 3.33 (a-c)

Plan

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automater

Skelnelighed og produktkonstruktion

dRegAut pakken

Automater til modellering og verifikation

dRegExp

- Java-repræsentation af regulære udtryk
- Speciel syntax:
 - # betyder ∅
 - % betyder Λ
- Alfabetet angives som en mængde af Unicode tegn
- Eks.: $((a + \Lambda)cbc)^*$ skrives som "((a+%))cbc)*"

dRegAut pakken

Udleverede programdele:

- FA.java:
 - repræsentation af FA'er
- Alphabet.java, State.java, StateSymbolPair.java, AutomatonNotWellDefinedException.java: hjælpeklasser til FA.java

FA.java

- et Alphabet objekt indeholder mængde af Character objekter
- et StateSymbolPair objekt består af et State objekt og et Character objekt

Nyttige metoder i FA.java

- FA() konstruerer uinitialiseret FA objekt
- FA (Alphabet a) konstruerer FA for det tomme sprog
- clone() kloner et FA objekt
- checkWellDefined() undersøger om FA objektet repræsenterer en veldefineret FA
- getNumberOfStates() returnerer størrelsen af states
- setTransition(State q, char c, State p) — tilføjer en c transition fra q til p
- toDot() konverterer FA objekt til 'Graphviz dot' input (til grafisk repræsentation)

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - · accepts,intersection, union, minus
 - Opbyg en FA og vis den grafisk

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - · accepts,intersection, union, minus
 - Opbyg en FA og vis den grafisk

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - · accepts,intersection, union, minus
 - Opbyg en FA og vis den grafisk

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - · accepts,intersection, union, minus
 - Opbyg en FA og vis den grafisk

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - · accepts,intersection, union, minus
 - Opbyg en FA og vis den grafisk

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - · accepts,intersection, union, minus
 - Opbyg en FA og vis den grafisk

Plan

Introduktion

Hvad er regularitet og Automater

Praktiske oplysninger

Regulære udtryk

Induktionsbevis

Regulære automater

Skelnelighed og produktkonstruktior

dRegAut pakker

Automater til modellering og verifikation

Eksempel

En jernbaneoverskæring

- Tre komponenter:
 - et tog
 - krydser vejen
 - kommunikerer med kontrolsystemet
 - et kontrolsystem
 - styrer bommen
 - en bom
- Sikkerhedsegenskab: bommen er altid nede, når toget krydser vejen

Modellering af systemet

- Begivenheder (alfabet):
 - approach: toget nærmer sig
 - cross: toget krydser vejen
 - exit: toget forlader området
 - lower: besked til bommen om at gå ned
 - raise: besked til bommen om at gå op
 - down: bommen går ned
 - up: bommen går op

Modellering som FA

Eksempel:

- definer accepttilstande
- tilføj loop-transitioner så komponenterne får samme alfabet
- tilføj crash-tilstand og ekstra transitioner så transitionsfunktionen bliver total

Kombination af elementerne

- Vi er interesseret i de sekvenser af begivenheder, der opfylder alle komponenterne
- Produktkonstruktion:

$$L(M) = L(M_{TOG}) \cap L(M_{KONTROL}) \cap L(M_{BOM})$$

Modellering af sikkerhedsegenskaben

"Bommen er altid nede når toget krydser vejen"

S:

Verifikation

- Korrekthed: $L(M) \cap (L(S))' = \emptyset$
- dvs. vi skal bruge
 - produktkonstruktion (igen)
 - komplement
 - algoritme til at afgøre om sproget for en given FA er

tomt (3. seminar)

hvis L(M) ∩ (L(S))'≠Ø: enhver streng i L(M) ∩ (L(S))' svarer til et modeksempel (algoritme: 3. seminar)

Verifikation med dRegAut-pakken

- Opbyg FA-objekter svarende til M_{TOG} , $M_{KONTROL}$, M_{BOM} , og S
- Kombiner med FA.intersection() og FA.complement()
- Brug FA.isEmpty() og FA.getAShortestExample()
- Resultat: modeksempel:
 - approach · lower · down · up · cross

- Definition af endelige automater og deres sprog
- Skelnelighed, hvad repræsenterer tilstandene, nødvendigt antal tilstande
- **Produktkonstruktionen**, komplement (konstruktive beviser)
- dRegAut.FA klassen, Java-repræsentation af FA'er
- Eksempel: automater til modellering og verifikation

- Definition af endelige automater og deres sprog
- Skelnelighed, hvad repræsenterer tilstandene, nødvendigt antal tilstande
- **Produktkonstruktionen**, komplement (konstruktive beviser)
- dRegAut.FA klassen, Java-repræsentation af FA'er
- Eksempel: automater til modellering og verifikation

- Definition af endelige automater og deres sprog
- Skelnelighed, hvad repræsenterer tilstandene, nødvendigt antal tilstande
- Produktkonstruktionen, komplement (konstruktive beviser)
- dRegAut.FA klassen, Java-repræsentation af FA'er
- Eksempel: automater til modellering og verifikation

- Definition af endelige automater og deres sprog
- Skelnelighed, hvad repræsenterer tilstandene, nødvendigt antal tilstande
- Produktkonstruktionen, komplement (konstruktive beviser)
- dRegAut .FA klassen, Java-repræsentation af FA'er
- Eksempel: automater til modellering og verifikation

- Definition af endelige automater og deres sprog
- Skelnelighed, hvad repræsenterer tilstandene, nødvendigt antal tilstande
- Produktkonstruktionen, komplement (konstruktive beviser)
- dRegAut .FA klassen, Java-repræsentation af FA'er
- Eksempel: automater til modellering og verifikation