

Pochôdzky v grafoch

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

11. apríla 2011

Eulerovské sledy a eulerovské ťahy

Definícia

Hovoríme, že sled s(u, v) v súvislom grafe G = (V, H) je **eulerovský**, ak obsahuje všetky hrany grafu G.

Poznámka

Pretože ťah je špeciálnym prípadom sledu, je definíciou eulerovského sledu presne vymedzený pojem **eulerovský ťah** ako taký ťah t(u, v) v súvislom grafe G, ktorý obsahuje všetky hrany grafu G.

Keď že ťah obsahuje každú hranu grafu G práve raz, postupnosť vrcholov a hrán ťahu t(u, v) predstavuje postup, ako nakresliť diagram grafu G "jedným ťahom".

Definícia

Hovoríme, že graf G = (V, H) je **eulerovský**, ak v ňom existuje uzavretý eulerovský ťah.

Eulerovské sledy a eulerovské ťahy

Definícia

Hovoríme, že sled s(u, v) v súvislom grafe G = (V, H) je **eulerovský**, ak obsahuje všetky hrany grafu G.

Poznámka

Pretože ťah je špeciálnym prípadom sledu, je definíciou eulerovského sledu presne vymedzený pojem **eulerovský ťah** ako taký ťah t(u, v) v súvislom grafe G, ktorý obsahuje všetky hrany grafu G.

Keďže ťah obsahuje každú hranu grafu G práve raz, postupnosť vrcholov a hrán ťahu t(u, v) predstavuje postup, ako nakresliť diagram grafu G "jedným ťahom".

Definícia

Hovoríme, že graf G = (V, H) je **eulerovský**, ak v ňom existuje uzavretý eulerovský ťah.

Eulerovské sledy a eulerovské ťahy

Definícia

Hovoríme, že sled s(u, v) v súvislom grafe G = (V, H) je **eulerovský**, ak obsahuje všetky hrany grafu G.

Poznámka

Pretože ťah je špeciálnym prípadom sledu, je definíciou eulerovského sledu presne vymedzený pojem **eulerovský ťah** ako taký ťah t(u, v) v súvislom grafe G, ktorý obsahuje všetky hrany grafu G.

Keďže ťah obsahuje každú hranu grafu G práve raz, postupnosť vrcholov a hrán ťahu t(u, v) predstavuje postup, ako nakresliť diagram grafu G "jedným ťahom".

Definícia

Hovoríme, že graf G = (V, H) je **eulerovský**, ak v ňom existuje uzavretý eulerovský ťah.

Eulerova veta o existencii eulerovského ťahu

Veta

(Euler, 1736.) Súvislý graf G = (V, H) je eulerovský práve vtedy, keď stupne všetkých vrcholov grafu G sú párne.

Dôkaz.

- Ak v grafe G existuje uzavretý eulerovský ťah T, potom stupeň každého vrchola je párny, pretože počet hrán ktorými ťah T z každého vrchola v vyšiel sa rovná počtu hrán, ktorými sme do vrchola v vošli
- Ø Konštrukciu uzavretého eulerovského ťahu v súvislom grafe, ktorý má všetky vrcholy párneho stupňa popisuje nasledujúci algoritmus:

Eulerova veta o existencii eulerovského ťahu

Veta

(Euler, 1736.) Súvislý graf G = (V, H) je eulerovský práve vtedy, keď stupne všetkých vrcholov grafu G sú párne.

Dôkaz.

- Ak v grafe G existuje uzavretý eulerovský ťah T, potom stupeň každého vrchola je párny, pretože počet hrán ktorými ťah T z každého vrchola v vyšiel sa rovná počtu hrán, ktorými sme do vrchola v vošli.
- ② Konštrukciu uzavretého eulerovského ťahu v súvislom grafe, ktorý má všetky vrcholy párneho stupňa popisuje nasledujúci algoritmus

Eulerova veta o existencii eulerovského ťahu

Veta

(Euler, 1736.) Súvislý graf G = (V, H) je eulerovský práve vtedy, keď stupne všetkých vrcholov grafu G sú párne.

Dôkaz.

- Ak v grafe G existuje uzavretý eulerovský ťah T, potom stupeň každého vrchola je párny, pretože počet hrán ktorými ťah T z každého vrchola v vyšiel sa rovná počtu hrán, ktorými sme do vrchola v vošli.
- ② Konštrukciu uzavretého eulerovského ťahu v súvislom grafe, ktorý má všetky vrcholy párneho stupňa popisuje nasledujúci algoritmus:

Algoritmus

- Krok 1. Začni z ľubovoľného vrchola z, polož $\mathcal{T}=(z)$ a postupne predlžuj ťah \mathcal{T} pokiaľ sa dá. Ukončíš vo vrchole z.
- Krok 2. Nájdi prvý vrchol v ťahu T, ktorý má ešte aspoň jednu hranu nepoužitú v ťahu T.

Ak taký vrchol v neexistuje, STOP.

Ťah T je hľadaným uzavretým eulerovským ťahom.

- Krok 3. Vytvor ťah S takto:
 - Polož S = (v) a postupne predlžuj ťah S doteraz nepoužitými hranami, pokiaľ sa dá. Ukončíš vo vrchole v.
- Krok 4. Rozdel ťah \mathcal{T} na z-v ťah \mathcal{T}_1 a v-z ťah \mathcal{T}_2 , t. j. $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2$.

Polož $T = T_1 \oplus S \oplus T_2$

 $Poloz I = I_1 \oplus S \oplus I_2$

GOTO Krok 2

Algoritmus

- **Krok 1.** Začni z ľubovoľného vrchola z, polož $\mathcal{T} = (z)$ a postupne predlžuj ťah \mathcal{T} pokiaľ sa dá. Ukončíš vo vrchole z.
- Krok 2. Nájdi prvý vrchol v ťahu T, ktorý má ešte aspoň jednu hranu nepoužitú v ťahu T.

Ak taký vrchol v neexistuje, STOP.

Ťah T je hľadaným uzavretým eulerovským ťahom.

- Krok 3. Vytvor ťah S takto:
 Polož S = (v) a postupne predlžuj ťah S doteraz nepoužitými hranami, pokiaľ sa dá. Ukončíš vo vrchole v.
- Krok 4. Rozdeľ ťah \mathcal{T} na z-v ťah \mathcal{T}_1 a v-z ťah \mathcal{T}_2 , t. j. $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2$.

Polož $T = T_1 \oplus S \oplus T_2$

GOTO Krok 2

Algoritmus

- **Krok 1.** Začni z ľubovoľného vrchola z, polož $\mathcal{T} = (z)$ a postupne predlžuj ťah \mathcal{T} pokiaľ sa dá. Ukončíš vo vrchole z.
- Krok 2. Nájdi prvý vrchol v ťahu T, ktorý má ešte aspoň jednu hranu nepoužitú v ťahu T.

Ak taký vrchol v neexistuje, STOP.

Ťah $\mathcal T$ je hľadaným uzavretým eulerovským ťahom.

- Krok 3. Vytvor ťah S takto:
 - Polož S = (v) a postupne predlžuj ťah S doteraz nepoužitými hranami, pokiaľ sa dá. Ukončíš vo vrchole v.
- Krok 4. Rozdel ťah \mathcal{T} na z-v ťah \mathcal{T}_1 a v-z ťah \mathcal{T}_2 , t. j. $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2$.

Polož $T = T_1 \oplus S \oplus T_2$

COTO Krok 2

Algoritmus

- **Krok 1.** Začni z ľubovoľného vrchola z, polož $\mathcal{T} = (z)$ a postupne predlžuj ťah \mathcal{T} pokiaľ sa dá. Ukončíš vo vrchole z.
- Krok 2. Nájdi prvý vrchol v ťahu T, ktorý má ešte aspoň jednu hranu nepoužitú v ťahu T.

Ak taký vrchol v neexistuje, STOP.

Ťah T je hľadaným uzavretým eulerovským ťahom.

• Krok 3. Vytvor ťah S takto:

Polož S = (v) a postupne predlžuj ťah S doteraz nepoužitými hranami, pokiaľ sa dá. Ukončíš vo vrchole v.

• Krok 4. Rozdel ťah \mathcal{T} na z-v ťah \mathcal{T}_1 a v-z ťah \mathcal{T}_2 , t. j. $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2$.

Polož $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{S} \oplus \mathcal{T}_2$.

GOTO Krok 2

$$\mathcal{T} = (1,2,5)$$

$$T = (1, 2, 5, 7, 4, 3)$$

$$\begin{split} \mathcal{T} &= (1,2,5,7,4,3,1) \\ \mathcal{T}_1 &= (1,2), \ \mathcal{T}_2 = (2,5,7,4,3,1) \\ \mathcal{S} &= (2,3) \end{split}$$

$$\begin{split} \mathcal{T} &= (1,2,5,7,4,3,1) \\ \mathcal{T}_1 &= (1,2), \ \mathcal{T}_2 = (2,5,7,4,3,1) \\ \mathcal{S} &= (2,3,5) \end{split}$$

$$\begin{split} \mathcal{T} &= (1,2,5,7,4,3,1) \\ \mathcal{T}_1 &= (1,2), \ \mathcal{T}_2 = (2,5,7,4,3,1) \\ \mathcal{S} &= (2,3,5,4) \end{split}$$

$$\begin{split} \mathcal{T} &= (1,2,5,7,4,3,1) \\ \mathcal{T}_1 &= (1,2), \ \mathcal{T}_2 = (2,5,7,4,3,1) \\ \mathcal{S} &= (2,3,5,4,2) \end{split}$$

$$\mathcal{T}_1 = (1, 2, 3, 5, 4, 2, 5, 7), \ \mathcal{T}_2 = (7, 4, 3, 1)$$

 $\mathcal{S} = (7, 6, 12, 7, 11)$

$$\mathcal{T} = (1, 2, 3, 5, 4, 2, 5, 7, 6, \underbrace{12, 13, 9, 8, 10, 11, 12}_{\mathcal{S}}, 7, 11, 13, 10, 9, 4, 8, 7, 4, 3, 1)$$

Algoritmus

- Krok 1. Začni v ľubovoľnom vrchole a do ťahu T zaraď ľubovoľnú s ním incidentnú hranu.
- Krok 2. Ak sú do ťahu T zaradené všetky hrany grafu G, STOP.
- Krok 3. Ako d'alšiu hranu zarad do ťahu T takú hranu incidentnú s
 jeho posledným vrcholom, po vybratí ktorej sa podgraf grafu G
 pozostávajúci z nevybratých hrán a s nimi incidentných vrcholov
 nerozpadne na
 - dva netriviálne komponenty
 - netriviálny komponent a izolovaný začiatok ťahu T.
- GOTO krok 2.

Algoritmus

- Krok 1. Začni v ľubovoľnom vrchole a do ťahu T zaraď ľubovoľnú s ním incidentnú hranu
- Krok 2. Ak sú do ťahu T zaradené všetky hrany grafu G, STOP.
- Krok 3. Ako d'alšiu hranu zarad' do ťahu T takú hranu incidentnú s
 jeho posledným vrcholom, po vybratí ktorej sa podgraf grafu G
 pozostávajúci z nevybratých hrán a s nimi incidentných vrcholov
 nerozpadne na
 - dva netriviálne komponenty
 - netriviálny komponent a izolovaný začiatok ťahu T.
- GOTO krok 2.

Algoritmus

- Krok 1. Začni v ľubovoľnom vrchole a do ťahu T zaraď ľubovoľnú s ním incidentnú hranu
- Krok 2. Ak sú do ťahu T zaradené všetky hrany grafu G, STOP.
- Krok 3. Ako ďalšiu hranu zaraď do ťahu T takú hranu incidentnú s
 jeho posledným vrcholom, po vybratí ktorej sa podgraf grafu G
 pozostávajúci z nevybratých hrán a s nimi incidentných vrcholov
 nerozpadne na
 - dva netriviálne komponenty
 - netriviálny komponent a izolovaný začiatok ťahu T.
- GOTO krok 2.

Algoritmus

- Krok 1. Začni v ľubovoľnom vrchole a do ťahu T zaraď ľubovoľnú s ním incidentnú hranu
- Krok 2. Ak sú do ťahu T zaradené všetky hrany grafu G, STOP.
- Krok 3. Ako ďalšiu hranu zaraď do ťahu T takú hranu incidentnú s jeho posledným vrcholom, po vybratí ktorej sa podgraf grafu G pozostávajúci z nevybratých hrán a s nimi incidentných vrcholov nerozpadne na
 - dva netriviálne komponenty
 - netriviálny komponent a izolovaný začiatok ťahu T.
- GOTO krok 2.

Poznámka

Poznámka

Algoritmus

Labyrintový algoritmus na hľadanie uzavretého eulerovského ťahu v súvislom grafe G=(V,H), v ktorom majú všetky vrcholy párny stupeň.

• Krok 1. Začni z ľubovoľného vrchola $u \in V$.

Nech sled S inicializačne pozostáva z jediného vrchola u.

Polož $w := u - vrchol \ w \ je \ posledný vrchol doteraz vytvoreného sledu <math>S$.

Labyrintový algoritmus – pokračovanie

🛾 Algoritmus (– pokračovanie)

• **Krok 2.** Ako d'alšiu hranu vyber podľa nižšie uvedených pravidiel do sledu S hranu $\{w, v\}$. Zaznač si smer použitia hrany $\{w, v\}$.

Ak doteraz vrchol v ešte nebol zaradený do sledu \mathcal{S} , označ hranu $\{w,v\}$ ako hranu prvého príchodu.

Ďalej zaznamenaj tzv. **spätnú postupnosť** — poradie hrán, v ktorom sa v slede S vyskytujú po druhýkrát.

Pri výbere hrany dodržuj nasledujúce pravidlá:

- (L1): Každú hranu možno v jednom smere použiť iba raz
- (L2): Poradie zaraďovania hrán:
 - nepoužité hrany
 - hrany použité raz
 - hrana prvého príchodu (ak niet inej možnosti)
- Krok 3. Ak taká hrana neexistuje STOP.
 Spätná postupnosť určuje hľadaný eulerovský ťah
- Krok 4. Inak polož w := v a pokračuj krokom 2.

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita

Labyrintový algoritmus – pokračovanie

🛘 Algoritmus (– pokračovanie)

• **Krok 2.** Ako d'alšiu hranu vyber podľa nižšie uvedených pravidiel do sledu S hranu $\{w, v\}$. Zaznač si smer použitia hrany $\{w, v\}$.

Ak doteraz vrchol v ešte nebol zaradený do sledu \mathcal{S} , označ hranu $\{w,v\}$ ako hranu prvého príchodu.

Ďalej zaznamenaj tzv. **spätnú postupnosť** — poradie hrán, v ktorom sa v slede S vyskytujú po druhýkrát.

Pri výbere hrany dodržuj nasledujúce pravidlá:

- (L1): Každú hranu možno v jednom smere použiť iba raz
- (L2): Poradie zaraďovania hrán:
 - nepoužité hrany
 - hrany použité raz
 - hrana prvého príchodu (ak niet inej možnosti)
- Krok 3. Ak taká hrana neexistuje STOP. Spätná postupnosť určuje hľadaný eulerovský ťah.
- Krok 4. Inak polož w := v a pokračuj krokom 2.

Labyrintový algoritmus – pokračovanie

🛾 Algoritmus (– pokračovanie)

• **Krok 2.** Ako d'alšiu hranu vyber podľa nižšie uvedených pravidiel do sledu S hranu $\{w, v\}$. Zaznač si smer použitia hrany $\{w, v\}$.

Ak doteraz vrchol v ešte nebol zaradený do sledu \mathcal{S} , označ hranu $\{w,v\}$ ako hranu prvého príchodu.

Ďalej zaznamenaj tzv. **spätnú postupnosť** — poradie hrán, v ktorom sa v slede S vyskytujú po druhýkrát.

Pri výbere hrany dodržuj nasledujúce pravidlá:

- (L1): Každú hranu možno v jednom smere použiť iba raz
- (L2): Poradie zaraďovania hrán:
 - nepoužité hrany
 - hrany použité raz
 - hrana prvého príchodu (ak niet inej možnosti)
- Krok 3. Ak taká hrana neexistuje STOP. Spätná postupnosť určuje hľadaný eulerovský ťah.
- Krok 4. Inak polož w := v a pokračuj krokom 2.

Hrany sledu ${\cal S}$	smer použitia hrany $\{1,2\}$ $\{1,3\}$ $\{1,4\}$ $\{1,5\}$ $\{2,5\}$ $\{3,4\}$	navštívený vrchol 12345
-		•
$\{5,1\}$	(•
$\{1, 2\}$		•
	\rightarrow	
	←	
	←	
$\{1,3\}$		•
{3,4}		•
$\{4,1\}$	\leftarrow	
	\rightarrow	
	←	
	←	
{1,5}	\rightarrow	

Hrany sledu ${\cal S}$	smer použitia hrany {1,2} {1,3} {1,4} {1,5} {2,5} {3,4}	navštívený vrchol 12345
-		•
$\{5,1\}$	#	•
$\{1, 2\}$	\Rightarrow	•
	\rightarrow	
	←	
	←	
{1,3}		•
{3,4}		•
$\{4, 1\}$	\leftarrow	
	\rightarrow	
	←	
	\leftarrow	
{1,5}	\rightarrow	

Hrany sledu ${\cal S}$	smer použitia hrany {1,2} {1,3} {1,4} {1,5} {2,5} {3,4}	navštívený vrchol 12345
-		•
$\{5,1\}$	\(=	•
$\{1, 2\}$	\Rightarrow	•
$\{2, 5\}$	\rightarrow	
	←	
	←	
$\{1,3\}$		•
{3,4}		•
$\{4,1\}$		
	\rightarrow	
	\leftarrow	
	←	
	\rightarrow	

Hrany sledu ${\cal S}$	smer použitia hrany {1,2} {1,3} {1,4} {1,5} {2,5} {3,4}	navštívený vrchol 12345
-		•
$\{5,1\}$	#	•
$\{1, 2\}$	\Rightarrow	•
$\{2, 5\}$	\rightarrow	
{5, 2 }	←	
	←	
{1,3}		•
{3,4}		•
$\{4, 1\}$	←	
	\rightarrow	
	←	
	←	
{1,5}	\rightarrow	

									_	
Hrany sledu ${\cal S}$	{1,2}	smer {1,3}	r použ {1,4}	itia h	rany {2,5}	{3,4}	vr	tívený chol 3 4 5		
-								•	1	
$\{5, 1\}$				\Leftarrow			•			
$\{1, 2\}$	\Rightarrow						•](3)-	
$\{2, 5\}$					\rightarrow] [
{5, 2 }					\leftarrow				\	\
{2,1}	\leftarrow								Ī	
{1,3}									T	\
{3,4}								•		10°
$\{4, 1\}$			\leftarrow							- (/
			\rightarrow							//
						\leftarrow			<u> </u>	/
									P //	_ 1
				\rightarrow					(2)	

	navštívený
smer použitia hrany	vrchol
[1,2] [1,3] [1,4] [1,3] [2,3] [3,4]	1234 3
	•
=	•
\Rightarrow	•
\rightarrow	
←	
\leftarrow	
\Rightarrow	•
	•
\leftarrow	
\rightarrow	
	
	
\rightarrow	
	smer použitia hrany 1,2} {1,3} {1,4} {1,5} {2,5} {3,4}

Hrany sledu ${\cal S}$	smer použitia hrany {1,2} {1,3} {1,4} {1,5} {2,5} {3,4}	navštívený vrchol 12345
_		•
$\{5,1\}$	ψ	•
$\{1, 2\}$	\Rightarrow	•
$\{2, 5\}$	\rightarrow	
{5, 2 }	←	
$\{{f 2},{f 1}\}$	←	
$\{1, 3\}$	\Rightarrow	•
{3,4}	\Rightarrow	•
$\{4, 1\}$		
	\rightarrow	
	←	
	←	
{1,5}	\rightarrow	

Hrany sledu ${\cal S}$	smer použitia hrany {1,2} {1,3} {1,4} {1,5} {2,5} {3,4}	navštívený vrchol 12345
-		•
$\{5,1\}$	#	•
$\{1, 2\}$	\Rightarrow	•
$\{2, 5\}$	\rightarrow	
{5, 2 }	←	
$\{{f 2},{f 1}\}$	←	
$\{1, 3\}$	\Rightarrow	•
{3,4}	\Rightarrow	•
$\{4,1\}$	\leftarrow	
	\rightarrow	
	←	
	←	
{1,5}	\rightarrow	

Hrany sledu ${\cal S}$	smer použitia hrany {1,2} {1,3} {1,4} {1,5} {2,5} {3,4}	navštívený vrchol 12345
_		•
$\{5,1\}$		•
$\{1, 2\}$	\Rightarrow	•
{2,5}	\rightarrow	
{5, 2 }	←	
$\{{f 2},{f 1}\}$	←	
{1, 3}	\Rightarrow	•
{3,4}	\Rightarrow	•
$\{4,1\}$	\leftarrow	
{1,4}	\rightarrow	
	\leftarrow	
	←	
	\rightarrow	

			=
Hrany sledu ${\cal S}$	smer použitia hrany $\{1,2\}$ $\{1,3\}$ $\{1,4\}$ $\{1,5\}$ $\{2,5\}$ $\{3,4\}$	navštívený vrchol 12345	
-		•	Р
$\{5,1\}$		•	
$\{1, 2\}$	\Rightarrow	•	3 4
$\{2, 5\}$	\rightarrow		1 //
{5, 2 }	←		3.///
$\{\boldsymbol{2},\boldsymbol{1}\}$	←		\\ ///
$\{1, 3\}$	\Rightarrow	•] _//_
{3, 4}	\Rightarrow	•	
$\{4,1\}$] /> ` \
{1,4}	\rightarrow		///
{4, 3}	\leftarrow		///2.
	\leftarrow		1.
$\{1, 5\}$	\rightarrow		(5

			=
Hrany sledu ${\cal S}$	smer použitia hrany $\{1,2\}$ $\{1,3\}$ $\{1,4\}$ $\{1,5\}$ $\{2,5\}$ $\{3,4\}$	navštívený vrchol 12345	
-		•	P
$\{5,1\}$	#	•	
$\{1, 2\}$	\Rightarrow	•	(3)
$\{2, 5\}$	\rightarrow		4. 4 .
{5, 2 }	←		3.///
$\{\boldsymbol{2},\boldsymbol{1}\}$	←		\\ ///
$\{1, 3\}$	\Rightarrow	•	l \\
{3,4}	\Rightarrow	•	
$\{4, 1\}$	←) /) · · · · · · · · · · · · · · · · ·
{1, 4}	\rightarrow		///
{4, 3 }	←		///2.
{3, 1}	←		1.
{1,5}	\rightarrow		(2)

			=
Hrany sledu ${\cal S}$	smer použitia hrany $\{1,2\}$ $\{1,3\}$ $\{1,4\}$ $\{1,5\}$ $\{2,5\}$ $\{3,4\}$	navštívený vrchol 12345	
-		•	Р
$\{5, 1\}$	←	•	
{1, 2}	\Rightarrow	•	(4)
{2,5}	\rightarrow		4. 4 //
{5, 2 }	\leftarrow		5. 3.
{2, 1 }	←		\\\ ///
$\{1, 3\}$	\Rightarrow	•	
{3,4}	\Rightarrow	•	
$\{4,1\}$	←		
{1, 4 }	\rightarrow		///
{4, 3 }	\leftarrow		///2.
{3, 1 }	←] P
{1,5}	\rightarrow		(5

Hrany sledu ${\cal S}$	smer použitia hrany {1,2} {1,3} {1,4} {1,5} {2,5} {3,4}	navštívený vrchol 12345
-		•
$\{5,1\}$	₩	•
$\{1, 2\}$	\Rightarrow	•
{2,5}	\rightarrow	
{5, 2 }	←	
$\{\boldsymbol{2},\boldsymbol{1}\}$	←	
$\{1, 3\}$	\Rightarrow	•
{3,4}	\Rightarrow	•
$\{4,1\}$	←	
{1,4}	\rightarrow	
{4, 3 }	←	
$\{{f 3},{f 1}\}$	←	
$\{ \boldsymbol{1}, \boldsymbol{5} \}$	\rightarrow	

Úloha čínskeho poštára

Chinese postman problem

Slovná formulácia úlohy čínskeho poštára:

Poštár má vyjsť z pošty, prejsť všetky ulice svojho rajónu a vrátiť sa na poštu tak, aby sa čo najmenej nachodil.

Matematická formulácia úlohy čínskeho poštára.

V súvislom hranovo ohodnotenom grafe nájsť uzavretý eulerovský sled najmenšej dĺžky.

Úloha čínskeho poštára

^r Poznámka

- Model cestnej siete poštára súvislý hranovo ohodnotený graf G = (V, H, c).
- Keby mal graf G všetky vrcholy párneho stupňa, stačilo by nájsť v G uzavretý eulerovský ťah.
- Ak má graf G vrcholy nepárneho stupňa, je ich 2t (párny počet).
- Pridaním fiktívnych hrán typu {nepárny, nepárny} s dĺžkou rovnajúcou sa vzdialenosti príslušných vrcholov v G možno z G vyrobiť eulerovský graf alebo multigraf.
- Uzavretý eulerovský ťah v rozšírenom grafe predstavuje trasu poštára, pričom fiktívne hrany predstavujú najkratšie cesty medzi ich koncovými vrcholmi a tieto cesty poštár prejde naprázdno – bez roznášania pošty.
- Čím meší súčet dĺžok pridaných fiktívnych hrán, tým lepšie výsledné riešenie.

Nech G = (V, H, c) je hranovo ohodnotený graf.

Párenie v grafe G je taký jeho podgraf P, v ktorom má každý vrchol stupeň 1.

Cena párenia P je súčet ohodnotení jeho hrán.

Hovoríme, že párenie P je **maximálne párenie** v grafe G, ak P nie je podgrafom žiadneho iného párenia v G.

Párenie P je **najpočetnejšie párenie** v grafe G ak P má zo všetkých párení najväčší počet hrán.

Párenie P je **úplné párenie** v G, ak P je faktorovým podgrafom grafu G (P obsahuje všetky vrcholy grafu G).

a) Maximálne párenie, ktoré nie je ani najpočetnejšie, ani úplné

b) Najpočetnejšie párenie, ktoré nie je úplné

c) Uplné párenie v K₆

Nech G = (V, H, c) je hranovo ohodnotený graf.

Párenie v grafe G je taký jeho podgraf P, v ktorom má každý vrchol stupeň 1.

Cena párenia P je súčet ohodnotení jeho hrán.

Hovoríme, že párenie P je **maximálne párenie** v grafe G, ak P nie je podgrafom žiadneho iného párenia v G.

Párenie P je **najpočetnejšie párenie** v grafe G ak P má zo všetkých párení najväčší počet hrán.

Párenie P je **úplné párenie** v G, ak P je faktorovým podgrafom grafu G (P obsahuje všetky vrcholy grafu G).

a) Maximalne parenie, ktoré nie je ani najpočetnejšie, ani uplnė

Najpočetnejšie parenie, ktore nie je uplne.

c) Uplné párenie v K_6

Nech G = (V, H, c) je hranovo ohodnotený graf.

Párenie v grafe G je taký jeho podgraf P, v ktorom má každý vrchol stupeň 1.

Cena párenia P je súčet ohodnotení jeho hrán.

Hovoríme, že párenie P je **maximálne párenie** v grafe G, ak P nie je podgrafom žiadneho iného párenia v G.

Párenie P je **najpočetnejšie párenie** v grafe G ak P má zo všetkých párení najväčší počet hrán.

Párenie P je **úplné párenie** v G, ak P je faktorovým podgrafom grafu (P obsahuje všetky vrcholy grafu G).

b) Najpočetnejšie párenie, ktoré nie je úplné.
 c) Úplné párenie v Ke

Nech G = (V, H, c) je hranovo ohodnotený graf.

Párenie v grafe G je taký jeho podgraf P, v ktorom má každý vrchol stupeň 1.

Cena párenia P je súčet ohodnotení jeho hrán.

Hovoríme, že párenie P je **maximálne párenie** v grafe G, ak P nie je podgrafom žiadneho iného párenia v G.

Párenie P je **najpočetnejšie párenie** v grafe G ak P má zo všetkých párení najväčší počet hrán.

Párenie P je **úplné párenie** v G, ak P je faktorovým podgrafom grafu G (P obsahuje všetky vrcholy grafu G).

b) Najpočetnejšie párenie, ktoré nie je úplné
 c) Úplné párenie v Ka

Nech G = (V, H, c) je hranovo ohodnotený graf.

Párenie v grafe G je taký jeho podgraf P, v ktorom má každý vrchol stupeň 1.

Cena párenia P je súčet ohodnotení jeho hrán.

Hovoríme, že párenie P je **maximálne párenie** v grafe G, ak P nie je podgrafom žiadneho iného párenia v G.

Párenie P je **najpočetnejšie párenie** v grafe G ak P má zo všetkých párení najväčší počet hrán.

Párenie P je **úplné párenie** v G, ak P je faktorovým podgrafom grafu G (P obsahuje všetky vrcholy grafu G).

- a) Maximálne párenie, ktoré nie je ani najpočetnejšie, ani úplné
 - b) Najpočetnejšie párenie, ktoré nie je úplné.
 - c) Úplné párenie v K₆

Úloha čínskeho poštára

Definícia

Nech G = (V, H, c) je hranovo ohodnotený graf.

Párenie v grafe G je taký jeho podgraf P, v ktorom má každý vrchol stupeň 1.

Cena párenia P je súčet ohodnotení jeho hrán.

Hovoríme, že párenie P je **maximálne párenie** v grafe G, ak P nie je podgrafom žiadneho iného párenia v G.

Párenie P je **najpočetnejšie párenie** v grafe G ak P má zo všetkých párení najväčší počet hrán.

Párenie P je **úplné párenie** v G, ak P je faktorovým podgrafom grafu G (P obsahuje všetky vrcholy grafu G).

- a) Maximálne párenie, ktoré nie je ani najpočetnejšie, ani úplné. b) Najpočetnejšie párenie, ktoré nie je úplné.
- Stanislav Palúch, Fakulta riadenia a informatiky, Žilinsk Dini Laplné párenie v K6 Pochôdzky v grafoch

- Krok 1. V grafe G nájdi všetky vrcholy nepárneho stupňa. Tých je párny počet 2t. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}. Jeho hrany ohodnoť vzdialenosťami koncových vrcholov hrany v pôvodnom grafe G.
- Krok 2. V grafe K_{2t} nájdi úplné párenie s minimálnou cenou.
- **Krok 3.** Hrany párenia pridaj k hranovej množine pôvodného grafu G. Dostaneš tak multigraf \overline{G} , v ktorom majú všetky vrcholy párny stupeň. V multigrafe \overline{G} zostroj uzavretý eulerovský ťah T.
- **Krok 4.** Hrany párenia v ťahu T nahraď príslušnými najkratšími cestami v grafe G a označ ich ako prejdené naprázdno. Dostaneš tak najkratší eulerovský uzavretý sled v grafe G.

- Krok 1. V grafe G nájdi všetky vrcholy nepárneho stupňa. Tých je párny počet 2t. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}. Jeho hrany ohodnoť vzdialenosťami koncových vrcholov hrany v pôvodnom grafe G.
- Krok 2. V grafe K_{2t} nájdi úplné párenie s minimálnou cenou.
- **Krok 3.** Hrany párenia pridaj k hranovej množine pôvodného grafu G. Dostaneš tak multigraf \overline{G} , v ktorom majú všetky vrcholy párny stupeň. V multigrafe \overline{G} zostroj uzavretý eulerovský ťah T.
- **Krok 4.** Hrany párenia v ťahu T nahraď príslušnými najkratšími cestami v grafe G a označ ich ako prejdené naprázdno. Dostaneš tak najkratší eulerovský uzavretý sled v grafe G.

- Krok 1. V grafe G nájdi všetky vrcholy nepárneho stupňa. Tých je párny počet 2t. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}. Jeho hrany ohodnoť vzdialenosťami koncových vrcholov hrany v pôvodnom grafe G.
- Krok 2. V grafe K_{2t} nájdi úplné párenie s minimálnou cenou.
- **Krok 3.** Hrany párenia pridaj k hranovej množine pôvodného grafu G. Dostaneš tak multigraf \overline{G} , v ktorom majú všetky vrcholy párny stupeň. V multigrafe \overline{G} zostroj uzavretý eulerovský ťah \mathcal{T} .
- **Krok 4.** Hrany párenia v ťahu T nahraď príslušnými najkratšími cestami v grafe G a označ ich ako prejdené naprázdno. Dostaneš tak najkratší eulerovský uzavretý sled v grafe G.

- Krok 1. V grafe G nájdi všetky vrcholy nepárneho stupňa. Tých je párny počet 2t. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}. Jeho hrany ohodnoť vzdialenosťami koncových vrcholov hrany v pôvodnom grafe G.
- Krok 2. V grafe K_{2t} nájdi úplné párenie s minimálnou cenou.
- **Krok 3.** Hrany párenia pridaj k hranovej množine pôvodného grafu G. Dostaneš tak multigraf \overline{G} , v ktorom majú všetky vrcholy párny stupeň. V multigrafe \overline{G} zostroj uzavretý eulerovský ťah \mathcal{T} .
- **Krok 4.** Hrany párenia v ťahu T nahraď príslušnými najkratšími cestami v grafe G a označ ich ako prejdené naprázdno. Dostaneš tak najkratší eulerovský uzavretý sled v grafe G.

Postup pri Edmondsovom algoritme.

- a) Pôvodný graf, vrcholy nepárneho stupňa sú vyznačené štvorčekmi.
 - b) Pomocný úplný graf K_{2t} zostrojený podľa kroku 1. algoritmu 5.
 - c) Úplné párenie s minimálnou cenou v K_{2t} .
 - d) Multigraf \overline{G} zostrojený podľa kroku 3. algoritmu 5, kde už existuje eulerovský uzavretý ťah.

Hamiltonovský sled, hamiltonovský cyklus

Definícia

Sled v grafe G sa nazýva **hamiltonovský sled** v grafe G, ak obsahuje všetky vrcholy grafu G.

Poznámka

Predchádzajúca definícia definuje i hamiltonovskú cestu i hamiltonovský cyklus, pretože obe sú špeciálnym prípadom hamiltonovského sledu.

Definícia

Hovoríme, že graf G je **hamiltonovský**, ak v ňom existuje <u>hamiltonovský</u> cyklus.

Hamiltonovský sled, hamiltonovský cyklus

Neexistuje jednoduché kritérium na zixstenie toho, či je daný graf hamiltonovský.

Máme niekoľko hrubých postačujúcich podmienok:

Veta

Nech v grafe G = (V, H) s aspoň troma vrcholmi pre každé dva také vrcholy vrcholy u, v, ktoré nie sú susedné, platí

$$\deg(u) + \deg(v) \ge |V|.$$

Potom je G hamiltonovský graf.

Veta

Nech v grafe G = (V, H) s aspoň troma vrcholmi platí pre každý vrchol $v \in V$

$$\deg(v) \ge \frac{1}{2}.|V|$$

Potom je G hamiltonovský graf.

Neexistuje jednoduché kritérium na zixstenie toho, či je daný graf hamiltonovský.

Máme niekoľko hrubých postačujúcich podmienok:

Veta

Nech v grafe G = (V, H) s aspoň troma vrcholmi pre každé dva také vrcholy vrcholy u, v, ktoré nie sú susedné, platí

$$\deg(u) + \deg(v) \ge |V|.$$

Potom je G hamiltonovský graf.

Veta

Nech v grafe G = (V, H) s aspoň troma vrcholmi platí pre každý vrchol $v \in V$

$$\deg(v) \geq \frac{1}{2}.|V|.$$

Potom je G hamiltonovský graf.

Travelling Salesman Problem - TSP

Slovná formulácia úlohy obchodného cestujúceho:

Obchodný cestujúci má navštíviť všetkých svojich zákazníkov a vrátiť sa domov tak, aby sa čo najmenej nachodil.

Matematická formulácia úlohy obchodného cestujúceho

Ak dovoľujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho môžeme formulovať nasledovne:

V súvislom hranovo ohodnotenom grafe nájsť najkratší uzavretý hamiltonovský sled.

Ak zakazujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho formulujeme takto:

V súvislom hranovo ohodnotenom grafe nájsť najkratší hamiltonovský cyklus.

Slovná formulácia úlohy obchodného cestujúceho:

Obchodný cestujúci má navštíviť všetkých svojich zákazníkov a vrátiť sa domov tak, aby sa čo najmenej nachodil.

Matematická formulácia úlohy obchodného cestujúceho:

Ak dovoľujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho môžeme formulovať nasledovne:

V súvislom hranovo ohodnotenom grafe nájsť najkratší uzavretý hamiltonovský sled.

Ak zakazujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho formulujeme takto:

V súvislom hranovo ohodnotenom grafe nájsť najkratší hamiltonovský cyklus.

Slovná formulácia úlohy obchodného cestujúceho:

Obchodný cestujúci má navštíviť všetkých svojich zákazníkov a vrátiť sa domov tak, aby sa čo najmenej nachodil.

Matematická formulácia úlohy obchodného cestujúceho:

Ak dovoľujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho môžeme formulovať nasledovne:

V súvislom hranovo ohodnotenom grafe nájsť najkratší uzavretý hamiltonovský sled.

Ak zakazujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho formulujeme takto:

V súvislom hranovo ohodnotenom grafe nájsť najkratší hamiltonovský cyklus.

Poznámka

V praktických prípadoch niet dôvodu zakazovať prejsť cez jedno miesto naviac. Navyše v modeloch mnohých skutočných sitácií hamiltonovský cyklus vôbec neexistuje. Preto sa sústredíme na hľadanie najkratšieho uzavretého hamiltonovského sledu.

Najkratší uzavretý hamiltonovský sled

V grafe G=(V,H,c) a) hamiltonovský cyklus neexistuje. Keď že nám stačí nájsť hamiltonovský sled, hľadáme ho pomocou hamiltonovského cyklu v úplnom grafe $\overline{G}=(G,E,d)$) (obr. b), ktorý má hrany ohodnotené vzdialenosťami v pôvodnom grafe G.

V grafe \overline{G} platí trojuholníková nerovnosť t. j.: $\forall u, v, w \in V$ u, v, w po dvoch rôzne, platí:

$$d(u,v) \leq d(u,w) + d(w,v).$$

Najkratší hamilt. cyklus v úplnom grafe s △ nerovnosťou

 $\overline{\mathsf{V}}$ úplnom grafe $\overline{\mathsf{G}}$ už každá permutácia vrcholov definuje hamiltonovský cyklus.

Ak fixujeme prvý vrchol, potom máme (n-1)! rôznych hamiltonovských cyklov.

Pre exaktné hľadanie najkratšieho hamiltonovského cyklu niet podstatne lepšieho algoritmu, ako systematické prehľadanie všetkých (n-1)! permutácií.

Doba výpočtu pri prekontrolovaní 109 permutácií/sec.

n	(n-1)!	sekundy	minúty	dni	roky
10	3,6E+05	0,36 ms	-	-	-
15	8,7E+10	87,17	1,45	-	-
20	1,2E+17	1,2E+08	2000000	1400	3,9
25	6,2E+23	6,2E+14	1,0E+13	7,2E+09	2,0E+07
30	8,8E+30	8,8E+21	1,5E+20	1,0E+17	2,8E+14
35	3,0E+38	3,0E+29	4,9E+27	3,4E+24	9,4E+21
40	2,0E+46	2,0E+37	3,4E+35	2,4E+32	6,5E+29
45	2,7E+54	2,7E+45	4,4E+43	3,1E+40	8,4E+37
50	6,1E+62	6,1E+53	1,0E+52	7,0E+48	1,9E+46

Doba od Veľkého Tresku $1,4*10^{10}$ rokov.

Najkratší hamilt. cyklus v úplnom grafe s \triangle nerovnosťou

Dôsledok: Nutnosť používať algoritmy, ktoré dávajú dostatočne dobré, ale nie zaručene optimálne riešenie – suboptimálne algoritmy, heuristiky.

Algoritmus

Pažravá metóda – Greedy Algorithm. Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G=(V,H,c) s aspoň tromi vrcholmi a s trojuholníkovou nerovnosťou.

- Krok 1. Začni v ľubovoľnom vrchole a do (budúceho) hamiltonovského cyklu vlož najlacnejšiu hranu incidentnú s týmto vrcholom.
- Krok 2. Ak je vybratých n − 1 hrán, uzavri cyklus. STOP
- Krok 3. Inak vyber takú najlacnejšiu nevybranú hranu incidentnú s posledným vrcholom doteraz vybranej postupnosti, ktorá nie je incidentná so žiadnym iným vrcholom vybranej postupnosti.

Najkratší hamilt. cyklus v úplnom grafe s \triangle nerovnosťou

Dôsledok: Nutnosť používať algoritmy, ktoré dávajú dostatočne dobré, ale nie zaručene optimálne riešenie – suboptimálne algoritmy, heuristiky.

Algoritmus

Pažravá metóda – Greedy Algorithm. Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G=(V,H,c) s aspoň tromi vrcholmi a s trojuholníkovou nerovnosťou.

- Krok 1. Začni v ľubovoľnom vrchole a do (budúceho) hamiltonovského cyklu vlož najlacnejšiu hranu incidentnú s týmto vrcholom.
- Krok 2. Ak je vybratých n-1 hrán, uzavri cyklus. STOP
- Krok 3. Inak vyber takú najlacnejšiu nevybranú hranu incidentnú s posledným vrcholom doteraz vybranej postupnosti, ktorá nie je incidentná so žiadnym iným vrcholom vybranej postupnosti.

Najkratší hamilt. cyklus v úplnom grafe s \triangle nerovnosťou

Dôsledok: Nutnosť používať algoritmy, ktoré dávajú dostatočne dobré, ale nie zaručene optimálne riešenie – suboptimálne algoritmy, heuristiky.

Algoritmus

Pažravá metóda – Greedy Algorithm. Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G=(V,H,c) s aspoň tromi vrcholmi a s trojuholníkovou nerovnosťou.

- Krok 1. Začni v ľubovoľnom vrchole a do (budúceho) hamiltonovského cyklu vlož najlacnejšiu hranu incidentnú s týmto vrcholom.
- Krok 2. Ak je vybratých n-1 hrán, uzavri cyklus. STOP
- Krok 3. Inak vyber takú najlacnejšiu nevybranú hranu incidentnú s posledným vrcholom doteraz vybranej postupnosti, ktorá nie je incidentná so žiadnym iným vrcholom vybranej postupnosti.
 GOTO Krok 2.

$$C = (2)$$

 $C = (2, \{2, 4\}, 4)$

$$\mathcal{C} = (2,\{2,4\},4,\{4,5\},5)$$

$$\mathcal{C} = (2,\{2,4\},4,\{4,5\},5,\{5,6\},6)$$

$$\mathcal{C} = (2,\{2,4\},4,\{4,5\},5,\{5,6\},6,\{6,1\},1)$$

$$\mathcal{C} = (2,\{2,4\},4,\{4,5\},5,\{5,6\},6,\{6,1\},1,\{1,3\},3)$$

$$\mathcal{C} = (2,\{2,4\},4,\{4,5\},5,\{5,6\},6,\{6,1\},1,\{1,3\},3,\{3,2\},2)$$

$$\label{eq:continuity} \begin{array}{l} \mathcal{C} = (2,\{2,4\},4,\{4,5\},5,\{5,6\},6,\{6,1\},1,\{1,3\},3,\{3,2\},2) \\ \text{Každú hranu cyklu } \mathcal{C} \text{ nahradíme príslušnou najkratšou cestou v pôvodnom grafe } \mathcal{G} \end{array}$$

$$(2, \{2,4\}, 4) \rightarrow (2, \{2,4\}, 4)$$

$$(4, \{4, 5\}, 5) \rightarrow (4, \{4, 5\}, 5)$$

$$(5, \{5, 6\}, 6) \rightarrow (5, \{5, 4\}, 4, \{4, 6\}, 6)$$

$$(6, \{6, 1\}, 1) \rightarrow (6, \{6, 4\}, 4, \{4, 1\}, 1)$$

$$(1,\{1,3\},3) \to (1,\{1,4\},4,\{4,3\},3)$$

$$(3, \{3, 2\}, 2) \rightarrow (3, \{3, 4\}, 4, \{4, 2\}, 2)$$

Metóda zdvojenia kostry. (Kim – 1975). Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- **Krok 2.** V kostre K zostroj uzavretý sled S, ktorý obsahuje každú hranu práve dvakrát. (Použi napr. Tarryho algoritmus).
- Krok 3. Z uzavretého sledu S vytvor hamiltonovský cyklus takto: Postupne prechádzaj sledom S a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Metóda zdvojenia kostry. (Kim – 1975). Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- **Krok 2.** V kostre K zostroj uzavretý sled S, ktorý obsahuje každú hranu práve dvakrát. (Použi napr. Tarryho algoritmus).
- Krok 3. Z uzavretého sledu S vytvor hamiltonovský cyklus takto: Postupne prechádzaj sledom S a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Metóda zdvojenia kostry. (Kim – 1975). Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- **Krok 2.** V kostre K zostroj uzavretý sled S, ktorý obsahuje každú hranu práve dvakrát. (Použi napr. Tarryho algoritmus).
- Krok 3. Z uzavretého sledu S vytvor hamiltonovský cyklus takto: Postupne prechádzaj sledom S a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Veta

Nech G = (V, H, c) je úplný graf, v ktorom platí trojuholníková nerovnosť. Nech c(MZK) je dĺžka hamiltonovského cyklu získaného metódou zdvojenia kostry, nech c(OPT) je dĺžka najkratšieho hamiltonovského cyklu v grafe G. Potom

$$\frac{c(MZK)}{c(OPT)} < 2.$$

Naviac posledný odhad už nemožno zlepšiť – pre každé $\varepsilon>0$ existuje taký graf G_{ε} , že preň je $c(MZK)/c(OPT)>2-\varepsilon$.

$$\begin{split} \mathcal{T} = & \left(1,\{1,7\},7,\{7,3\},3,\{3,2\},2,\{2,3\},3,\{3,7\},7,\{7,1\},1,\\ & \{4,1\},4,\{4,1\},1,\{1,5\},5,\{5,6\},6,\{6,5\},5,\{5,1\},1\right) \end{split}$$

$$\begin{split} \mathcal{T} &= (1,\{1,7\},7,\{7,3\},3,\{3,2\},2,\{2,3\},3,\{3,7\},7,\{7,1\},1,\\ \text{Skrátene} &\qquad \{4,1\},4,\{4,1\},1,\{1,5\},5,\{5,6\},6,\{6,5\},5,\{5,1\},1) \\ &\qquad \mathcal{T} &= (1,7,3,2,\underbrace{\textbf{3,7,1}}_{},4,1,5,6,5,1) \end{split}$$

premostiť hranou $\{2,4\}$

$$\mathcal{T} = (1, \{1, 7\}, 7, \{7, 3\}, 3, \{3, 2\}, 2, \{2, 3\}, 3, \{3, 7\}, 7, \{7, 1\}, 1, \\ \mathsf{Skr\acute{a}tene} \qquad \{4, 1\}, 4, \{4, 1\}, 1, \{1, 5\}, 5, \{5, 6\}, 6, \{6, 5\}, 5, \{5, 1\}, 1) \\ \mathcal{T} = (1, 7, 3, 2, \underbrace{\textbf{3}, \textbf{7}, \textbf{1}}_{\mathsf{premostif hranou}}, 4, 1, 5, 6, 5, 1) \\ \mathcal{T} = (1, 7, 3, 2, 4, \underbrace{\textbf{1}, 5, 6, 5, 1}_{\mathsf{premostif}})$$

$$\begin{split} \mathcal{T} &= (1,\{1,7\},7,\{7,3\},3,\{3,2\},2,\{2,3\},3,\{3,7\},7,\{7,1\},1,\\ \text{Skrátene} &\qquad \{4,1\},4,\{4,1,\},1,\{1,5\},5,\{5,6\},6,\{6,5\},5,\{5,1\},1)\\ &\qquad \mathcal{T} &= (1,7,3,2,\frac{\textbf{3},\textbf{7},\frac{\textbf{1}}{2},4,1,5,6,5,1) \end{split}$$

premostiť hranou {2,4}

$$\mathcal{T} = (1, 7, 3, 2, 4, \frac{1}{1}, 5, 6, 5, 1)$$

$$T = (1, 7, 3, 2, 4, 5, 6, 5, 1)$$

$$\begin{split} \mathcal{T} &= (1,\{1,7\},7,\{7,3\},3,\{3,2\},2,\{2,3\},3,\{3,7\},7,\{7,1\},1,\\ \text{Skrátene} &\qquad \{4,1\},4,\{4,1,\},1,\{1,5\},5,\{5,6\},6,\{6,5\},5,\{5,1\},1)\\ &\qquad \mathcal{T} &= (1,7,3,2,\frac{\textbf{3},\textbf{7},\textbf{1}}{\textbf{1}},4,1,5,6,5,1) \end{split}$$

premostiť hranou {2,4}

$$T = (1, 7, 3, 2, 4, 1, 5, 6, 5, 1)$$

$$T = (1, 7, 3, 2, 4, 5, 6, 5, 1)$$

$$\mathcal{T} = (1,7,3,2,4,5,6,1)$$

Algoritmus

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K2t nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K.
 Dostaneš tak graf (multigraf) G, ktorý má všetky vrcholy párneho stupňa
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah T.
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Algoritmus

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K2t nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K.
 Dostaneš tak graf (multigraf) G, ktorý má všetky vrcholy párneho stupňa
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah T.
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Algoritmus

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K2t nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K.
 Dostaneš tak graf (multigraf) G, ktorý má všetky vrcholy párneho stupňa
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah T.
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Algoritmus

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K2t nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K.
 Dostaneš tak graf (multigraf) G, ktorý má všetky vrcholy párneho stupňa
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah T.
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Algoritmus

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K2t nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K.
 Dostaneš tak graf (multigraf) G, ktorý má všetky vrcholy párneho stupňa.
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah T.
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Algoritmus

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K2t nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K.
 Dostaneš tak graf (multigraf) G, ktorý má všetky vrcholy párneho stupňa.
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah \mathcal{T} .
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Algoritmus

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K2t nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K.
 Dostaneš tak graf (multigraf) G, ktorý má všetky vrcholy párneho stupňa.
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah \mathcal{T} .
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Veta

Nech G=(V,H,c) je úplný graf, v ktorom platí trojuholníková nerovnosť. Nech c(MKP) je dĺžka hamiltonovského cyklu získaného metódou kostry a párenia, nech c(OPT) je dĺžka najkratšieho hamiltonovského cyklu v grafe G. Potom

$$\frac{c(MKP)}{c(OPT)} < \frac{3}{2}.$$

Naviac posledný odhad už nemožno zlepšiť – pre každé $\varepsilon > 0$ existuje taký graf G_{ε} , že preň je $c(MKP)/c(OPT) > 3/2 - \varepsilon$.

Poznámka

Nie je známy polynomiálny algoritmus ALG, pre ktorý by bol zaručený lepší pomer c(ALG)/c(OPT) než 3/2.

Veta

Nech G=(V,H,c) je úplný graf, v ktorom platí trojuholníková nerovnosť. Nech c(MKP) je dĺžka hamiltonovského cyklu získaného metódou kostry a párenia, nech c(OPT) je dĺžka najkratšieho hamiltonovského cyklu v grafe G. Potom

$$\frac{c(MKP)}{c(OPT)} < \frac{3}{2}.$$

Naviac posledný odhad už nemožno zlepšiť – pre každé $\varepsilon > 0$ existuje taký graf G_{ε} , že preň je $c(MKP)/c(OPT) > 3/2 - \varepsilon$.

Poznámka

Nie je známy polynomiálny algoritmus ALG, pre ktorý by bol zaručený lepší pomer c(ALG)/c(OPT) než 3/2.

Algoritmus

Vkladacia heuristika na konštrukciu suboptimálneho hamiltonovského cyklu v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. Do cyklu zaraď hranu $h = \{u, v\}$ s najmenšou cenou. Nájdi vrchol $w \in V$, pre ktorý je súčet $c\{u, w\} + c\{w, v\}$ najmenší. Vytvor cyklus $C = (u, \{u, w\}, w, \{w, v\}, v, \{v, u\}, u)$.
- **Krok 2.** Ak cyklus C obsahuje všetky vrcholy grafu G, STOP. Inak pokračui krokom 3.
- Krok 3. Pre každú hranu $h = \{u, v\}$ cyklu C vypočítaj

$$z(h) = \min\{c\{u, w\} + c\{w, v\} - c\{u, v\} \mid w \in V - C\}.$$

Vezmi hranu $h = \{u, v\}$ s minimálnym z(h) a w vrchol, pre ktorý nastalo minimum v (9). Vytvor cyklus C' tak, že nahradíš hranu $\{u, v\}$ dvojicou hrán $\{u, w\}$, $\{w, v\}$. Polož C := C'.

Algoritmus

Vkladacia heuristika na konštrukciu suboptimálneho hamiltonovského cyklu v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. Do cyklu zaraď hranu $h = \{u, v\}$ s najmenšou cenou. Nájdi vrchol $w \in V$, pre ktorý je súčet $c\{u, w\} + c\{w, v\}$ najmenší. Vytvor cyklus $C = (u, \{u, w\}, w, \{w, v\}, v, \{v, u\}, u)$.
- **Krok 2.** Ak cyklus C obsahuje všetky vrcholy grafu G, STOP. Inak pokračuj krokom 3.
- Krok 3. Pre každú hranu $h = \{u, v\}$ cyklu C vypočítaj

$$z(h) = \min\{c\{u, w\} + c\{w, v\} - c\{u, v\} \mid w \in V - C\}.$$

Vezmi hranu $h = \{u, v\}$ s minimálnym z(h) a w vrchol, pre ktorý nastalo minimum v (9). Vytvor cyklus C' tak, že nahradíš hranu $\{u, v\}$ dvojicou hrán $\{u, w\}$, $\{w, v\}$. Polož C := C'.

Algoritmus

Vkladacia heuristika na konštrukciu suboptimálneho hamiltonovského cyklu v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. Do cyklu zaraď hranu $h = \{u, v\}$ s najmenšou cenou. Nájdi vrchol $w \in V$, pre ktorý je súčet $c\{u, w\} + c\{w, v\}$ najmenší. Vytvor cyklus $C = (u, \{u, w\}, w, \{w, v\}, v, \{v, u\}, u)$.
- **Krok 2.** Ak cyklus C obsahuje všetky vrcholy grafu G, STOP. Inak pokračuj krokom 3.
- Krok 3. Pre každú hranu $h = \{u, v\}$ cyklu C vypočítaj

$$z(h) = \min\{c\{u, w\} + c\{w, v\} - c\{u, v\} \mid w \in V - C\}.$$

Vezmi hranu $h = \{u, v\}$ s minimálnym z(h) a w vrchol, pre ktorý nastalo minimum v (9). Vytvor cyklus C' tak, že nahradíš hranu $\{u, v\}$ dvojicou hrán $\{u, w\}$, $\{w, v\}$. Polož C := C'.

$$z(h) = c\{6,5\} + c\{5,3\} - c\{6,3\}$$

$$z(h) = \min \{z(h), c\{6,4\} + c\{4,3\} - c\{6,3\}\}$$

$$z(h) = \min \{z(h), c\{6,2\} + c\{2,3\} - c\{6,3\}\}$$

$$z(h) = \min \{z(h), c\{6,7\} + c\{7,3\} - c\{6,3\}\}$$

$$z(h) = \min \begin{cases} c\{6,5\} + c\{5,3\} - c\{6,3\}, \\ c\{6,4\} + c\{4,3\} - c\{6,3\}, \\ c\{6,2\} + c\{2,3\} - c\{6,3\}, \\ c\{6,7\} + c\{7,3\} - c\{6,3\} \end{cases}$$

Poznámka

$$z(h) = c\{6,5\} + c\{5,3\} - c\{6,3\}$$

$$z(h) = \min \{z(h), c\{6,4\} + c\{4,3\} - c\{6,3\}\}$$

$$z(h) = \min \{z(h), c\{6,2\} + c\{2,3\} - c\{6,3\}\}$$

$$z(h) = \min \{z(h), c\{6,7\} + c\{7,3\} - c\{6,3\}\}$$

$$z(h) = \min \begin{cases} c\{6,5\} + c\{5,3\} - c\{6,3\}, \\ c\{6,4\} + c\{4,3\} - c\{6,3\}, \\ c\{6,2\} + c\{2,3\} - c\{6,3\}, \\ c\{6,7\} + c\{7,3\} - c\{6,3\} \end{cases}$$

Poznámka

$$z(h) = c\{6,5\} + c\{5,3\} - c\{6,3\}$$

$$z(h) = \min\{z(h), c\{6,4\} + c\{4,3\} - c\{6,3\}\}$$

$$z(h) = \min\{z(h), c\{6,2\} + c\{2,3\} - c\{6,3\}\}$$

$$z(h) = \min\{z(h), c\{6,7\} + c\{7,3\} - c\{6,3\}\}$$

$$z(h) = \min \begin{cases} c\{6,5\} + c\{5,3\} - c\{6,3\}, \\ c\{6,4\} + c\{4,3\} - c\{6,3\}, \\ c\{6,2\} + c\{2,3\} - c\{6,3\}, \\ c\{6,7\} + c\{7,3\} - c\{6,3\} \end{cases}$$

Poznámka

$$z(h) = c\{6,5\} + c\{5,3\} - c\{6,3\}$$

$$z(h) = \min\{z(h), c\{6,4\} + c\{4,3\} - c\{6,3\}\}\}$$

$$z(h) = \min\{z(h), c\{6,2\} + c\{2,3\} - c\{6,3\}\}\}$$

$$z(h) = \min\{z(h), c\{6,7\} + c\{7,3\} - c\{6,3\}\}$$

$$z(h) = \min \begin{cases} c\{6,5\} + c\{5,3\} - c\{6,3\}, \\ c\{6,4\} + c\{4,3\} - c\{6,3\}, \\ c\{6,2\} + c\{2,3\} - c\{6,3\}, \\ c\{6,7\} + c\{7,3\} - c\{6,3\} \end{cases}$$

Poznámka

$$z(h) = c\{6,5\} + c\{5,3\} - c\{6,3\}$$

$$z(h) = \min\{z(h), c\{6,4\} + c\{4,3\} - c\{6,3\}\}$$

$$z(h) = \min\{z(h), c\{6,2\} + c\{2,3\} - c\{6,3\}\}$$

$$z(h) = \min\{z(h), c\{6,7\} + c\{7,3\} - c\{6,3\}\}$$

$$z(h) = \min \begin{cases} c\{6,5\} + c\{5,3\} - c\{6,3\}, \\ c\{6,4\} + c\{4,3\} - c\{6,3\}, \\ c\{6,2\} + c\{2,3\} - c\{6,3\}, \\ c\{6,7\} + c\{7,3\} - c\{6,3\} \end{cases}$$

Poznámka

Poznámka

Poznámka

Algoritmus

Algoritmus prehľadávania okolí.

Ku každému riešeniu – hamiltonovskému cyklu C – definujeme jeho okolie $\mathcal{O}(C)$ ako množinu hamiltonovských cyklov, ktorú z cyklu C dostaneme nejakými operáciami.

Označme c(C) cenu hamiltonovského cyklu C.

- **Krok 1.** Za počiatočný hamiltonovský cyklus C vezmi ľubovoľný hamiltonovský cyklus (dostať ho môžeš náhodným generátorom alebo ako výsledok niektorej vytvárajúcej heuristiky).
- Krok 2. Hľadaj $C' \in \mathcal{O}(C)$ také, že c(C') < c(C). Ak pre všetky $C' \in \mathcal{O}(C)$ $c(C') \ge c(C)$, STOP, C je suboptimálny hamiltonovský cyklus. Inak pokračuj krokom 3.
- Krok 3. Vezmi $C' \in \mathcal{O}(C)$ také, že c(C') < c(C) a polož C := C'. Goto Krok 2.

Algoritmus

Algoritmus prehľadávania okolí.

Ku každému riešeniu – hamiltonovskému cyklu C – definujeme jeho okolie $\mathcal{O}(C)$ ako množinu hamiltonovských cyklov, ktorú z cyklu C dostaneme nejakými operáciami.

Označme c(C) cenu hamiltonovského cyklu C.

- **Krok 1.** Za počiatočný hamiltonovský cyklus C vezmi ľubovoľný hamiltonovský cyklus (dostať ho môžeš náhodným generátorom alebo ako výsledok niektorej vytvárajúcej heuristiky).
- Krok 2. Hľadaj $C' \in \mathcal{O}(C)$ také, že c(C') < c(C). Ak pre všetky $C' \in \mathcal{O}(C)$ $c(C') \ge c(C)$, STOP, C je suboptimálny hamiltonovský cyklus. Inak pokračuj krokom 3.
- Krok 3. Vezmi $C' \in \mathcal{O}(C)$ také, že c(C') < c(C) a polož C := C'. Goto Krok 2.

Algoritmus

Algoritmus prehľadávania okolí.

Ku každému riešeniu – hamiltonovskému cyklu C – definujeme jeho okolie $\mathcal{O}(C)$ ako množinu hamiltonovských cyklov, ktorú z cyklu C dostaneme nejakými operáciami.

Označme c(C) cenu hamiltonovského cyklu C.

- Krok 1. Za počiatočný hamiltonovský cyklus C vezmi ľubovoľný hamiltonovský cyklus (dostať ho môžeš náhodným generátorom alebo ako výsledok niektorej vytvárajúcej heuristiky).
- Krok 2. Hľadaj $C' \in \mathcal{O}(C)$ také, že c(C') < c(C). Ak pre všetky $C' \in \mathcal{O}(C)$ $c(C') \ge c(C)$, STOP, C je suboptimálny hamiltonovský cyklus. Inak pokračuj krokom 3.
- Krok 3. Vezmi $C' \in \mathcal{O}(C)$ také, že c(C') < c(C) a polož C := C'. Goto Krok 2

Cyklus C a niekoľko prvkov jeho okolia.

Nebezpečenstvo algoritmu prehľadávania okolí

Algoritmus uviazne v takom zlom riešení, v okolí ktorého niet lepšieho riešenia.

Riešenie:

Viacnásobné spustenie algoritmu s rôznymi štartovacími riešeniami.

Cyklus C a niekoľko prvkov jeho okolia.

Nebezpečenstvo algoritmu prehľadávania okolí:

Algoritmus uviazne v takom zlom riešení, v okolí ktorého niet lepšieho riešenia.

Riešenie:

Viacnásobné spustenie algoritmu s rôznymi štartovacími riešeniami.