

Project Report (Milestone- 4) on Short Circuit, Coordination, and Arc Flash Study Report

Course Code: ENEL 674 (L01)

Course Name: Industrial and Commercial Power Systems

Submitted By,

Group: 09

Ahmed Mashook Iqbal UCID: **30267500**

G.K. Md. Muttakin UCID: **30246286**

Laisur Rahman UCID: 30194282

Monjurul Haque Tanbir Rahman UCID: **30261730** UCID: **30239940**

Table of Content

Project Summary	2
Foreword	2
Purpose of the Study	2
Scope of the Study	2
Methodology	2
System Description	2
Basis and Assumptions	3
Input Data	3
Conductors	8
Short Circuit Study	10
Protection and Co-ordination Study:	11
TCC Curve Analysis	14
IEEE 242 Recommendations	19
Arc Flash Result and Analysis:	21
PPE Recommendation & Requirements	22
Appendices	24
Appendix A - Single Line Diagrams with Short Circuit and Arc Flash Energy Levels	24
Appendix B: Data from the Short Circuit Study	26
Appendix C: Time Current Characteristics (TCC) Curves	50
Appendix D: Recommended Protection Settings	81
Appendix E: Incident Arc Flash Energy	83

Project Summary

This milestone-4 examines the proper installation of safety equipment and the evaluation of arc flash risks at the Complex in Lethbridge, Southern Alberta.

We started by performing a short-circuit analysis to determine the fault current at various locations in the system. According to the findings, every protective device is capable of securely handling the maximum short-circuit current. We then conducted a coordination study to optimize the protective device settings, making sure they operate in unison to reduce interruptions and preserve safety.

Last but not least, we measured the possible incident energy on-site using an arc flash investigation. From grid to load, the incidence energy level is 0.7 cal/cm² Cal/cm². On the other hand, from generator to load, the incident energy level is 4.569 cal/cm² Cal/cm².

Foreword

Purpose of the Study

Short circuits, protection coordination and arc flash studies were performed for the 25KV generator to load and 208V grid to load system. The purpose of the short circuit study is to make sure the equipment can tolerate short circuits and interrupt faults sufficiently. The coordination research looks at how to put up the safety equipment correctly. Arc flash dangers in specified electrical equipment at the site are established and analyzed by the Arc Flash study, which also, if appropriate, identifies issues related to these hazards.

Scope of the Study

The scope of this study includes 2 different scenarios which are 25 KV generator to load and 208V grid to load.

Methodology

This study will be based on owner requirements, project restrictions and relevant codes and standards.

System Description

The local utility provides power to this system at 25kV, which is then stepped down to 208V via a 112 kVA rated transformer. 30hp motor will be fed directly from this distribution board. We need to calculate short circuit, protection co-ordination and arc-flash studies in this system.

Basis and Assumptions

- The Electrical Transient Analyzer Program (ETAP, version 20.6.0E) is used for performing the studies.
- ETAP had the limitation of using a maximum of 25 buses only, hence some of the mechanical loads are directly fed from distribution board.
- For transformers, the typical impedance values as provided by the ETAP have been considered.
- For generators, typical impedance values as provided by the ETAP have been considered.
- IEC standards have been followed throughout the studies.
- The software has limitations to consider maximum 25 buses. Our design had 10 buses where 2 buses are main bus and 8 buses are specific load wise buses.

Input Data

Generator Impedance

The impedance value for the generator is given below:

Fig: Parameter Settings for Impedance at Generator.

Transformer Impedance:

The transformer impedance settings have been given below:

Fig: Parameter Settings for Impedance at Transformer.

Current Transformer Rating

The current transformer rating is given below:

Fig: Transformer Rating

Power Grid Settings

Fig: Parameter Settings for Short Circuit at Grid.

Arc Flash Bus-1 Parameter Settings

Fig: Arc-Flash Settings for Bus-1 for Grid to load scenario.

Fig: Arc-Flash Settings for Bus-1 for generator to load scenario.

Arc Flash Bus-2 Parameter Settings

Fig: Arc-Flash Settings for Bus-2 for Grid to load scenario.

Fig: Arc-Flash Settings for Bus-2 for generator to load scenario.

Conductors

Technical information for the conductors were not available at the time of the studies. Therefore, typical impedances provided by ETAP were utilized.

X Cable Editor - Cable7 Info Code: 2 NEC 50 Hz Non-Mag. Physical 100 % 0.6 kV 1/C CU 2 AWG/kcmil Rubber 2 Impedance Option Units Frequency Configuration Zero Seq. Positive Seq. Project Ohms per 1000 ft Library Library Loading 60 Hz Ohms ○ Calculated O Calculated Ampacity Data O User-Defined Cable-Z External File.xl • 50 Hz Protection Sizing - Phase Impedance - Library Sizing - PE & N X/R L Z C Y R X Reliability Pos. 0.19 0.0456 0.000121 0.1954 0.24 0 0 Routing 0.0003032 0 Zero 0.3021 0.1143 0.323 0.378 0 Remarks Comment Calculated Impedance Flat Layout R X L Z X/R Y C Pos. 0.19404 0.10158 0.0002694 0.21902 48.9432 0.524 0.12983 Zero 0.19741 48.9432 0.49333 0.0013086 0.53136 2.499 0.12983 Cable Temperature °C °C Base 75 75 75 * °C Min. Max. Impedance Calculation: DC resistance from the Physical page has been used. Cable 7 # 0 OK Cancel

Short Circuit Study

A short circuit analysis ensured that all equipment and protective devices have sufficient ratings to handle the maximum available fault current. We have conducted short circuit analysis in ETAP version 20.0.1. Two distinct simulations were conducted: one is grid to load and other is generator to load.

Grid to Load Short Circuit Current Analysis:

Bus	Voltage Level (V)	RMS Symmetrical Short Circuit Current (kA)
Bus1	25000	34.648
Bus2	208	6.208
12B (Cable1)	208	0.095
12C (Cable6)	208	0.222
12D (Cable7)	208	0.127
12E (Cable8)	208	0.139
12F (Cable12)	208	0.048
12G (Cable11)	208	0.108
M2H (Cable10)	208	0.220
12A (Cable9)	208	0.127

Generator to Load Short Circuit Current Analysis:

Bus Name	Voltage Level (V)	RMS Symmetrical Short Circuit Current (kA)
Bus1	208 V	17.256 kA
Bus2	208 V	0.101 kA
12B	208 V	0.101 kA
12C	208 V	0.232 kA
12D	208 V	0.127 kA
12E	208 V	0.140 kA
12F	208 V	0.038 kA
12G	208 V	0.105 kA
М2Н	208 V	0.230 kA
12A	208 V	0.131 kA

Protection and Co-ordination Study:

The primary goal of overcurrent coordination is to establish optimal characteristics, ratings, and settings for overcurrent protective devices to minimize equipment damage while ensuring the rapid interruption of short circuits. Proper coordination ensures that the closest protective device to the fault operates first, limiting disruptions to the electrical system.

The term pickup refers to the minimum current required to activate a protective device. In the case of relays, pickup is defined as the minimum current that causes the relay to close its contacts. For overcurrent protective relays, the pickup current corresponds to the relay's current (or tap) setting.

Time-Current Characteristic (TCC) Curve Interpretation

From the ETAP-generated TCC curve, we can observe the following:

• Relay 02 (LV Side Relay): The pickup setting is calculated as:

$$Pickup\ Current = \frac{Transformer\ Rated\ Current \times\ 1.2}{CT\ Ratio\ in\ LV\ Side}$$

With a considered factor of 4, Relay 02 is expected to trip first for a fault near the feeder.

• Relay 01 (HV Side Relay): The pickup value is 3.10, ensuring that it provides backup protection by operating only after Relay 02 has had sufficient time to clear the fault.

Protection Device ID	Device Type	Manufacturer	Model	Max KV	Short Circuit I(Initial) amp
CB 208-2	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50
CB208-15	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50
CB 208-16	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50
CB 208 -17	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50
CB 208- 21	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50
CB 208- 19	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50
CB 208- 18	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50

CB 208- 13	Low-Voltage Circuit Breaker	ABB	SACE Tmax XT1	0.48	50
CB 208- 1	Low-Voltage Circuit Breaker	ABB	HD4_36_06_16	36	630

Protection Device ID	Device Type	Manufacturer	Model	Primary Current(amp)	Secondary Current(amp)	Pick UP Range (sec)	FLA
Relay 2	Electronic	Siemens	7SG11_Argus 1-6	400	5	0.05- 2.5*CT	310.8
Relay 3	Electronic	Siemens	7SA 522_CIP RoTec 4	400	5	0.1-4	310

From the TCC plot, starting at 0.01s and for a given fault current, the first intersected curve belongs to Relay 02, meaning it will operate first. As we move further along the plot, the next intersected curve is Relay 01, confirming that it acts as a backup. This ensures selective coordination and minimizes unnecessary service interruptions.

Protection Device ID	Device Type	Manufacturer	Model	Primary Current(amp)	Secondary Current(amp)	Turn Ratio
CT 1	Electric Device	ABB	ABB CMV-0.5- 400/5	400	5	80:1
CT2	Electric Device	ABB	ABB CMV-0.5- 400/5	400	5	80:1

MCCB Considerations:

Molded-case circuit breakers (MCCBs) with thermal trip elements generally sustain 100% of their rated current at 25°C in open air. However, they should be applied at 80% of their continuous-current rating unless otherwise labeled. To ensure proper ventilation and prevent overheating, MCCBs must be installed according to Underwriters Laboratories (UL) specifications when placed within a panel board.

The ETAP TCC Curve validates that:

- 1. Relay 02 (LV side) is the first to trip for feeder faults, ensuring localized protection.
- 2. Relay 01 (HV side) acts as a backup, tripping after a coordination interval of 0.3s.
- 3. MCCBs are applied with correct continuous-current ratings to maintain system reliability.

This coordination ensures a selective and reliable protection scheme, reducing the risk of widespread outages while maintaining system integrity.

TCC Curve Analysis

Below figure is the TCC curve implementation using ETAP. The image contains multiple protective devices (relays and transformer withstand curves), each with a distinct TCC profile:

Figure: TCC Curve for Bus-1 (Grid to Load)

Fig: TCC Curve for Bus 2 (Grid to Load)

Key Analysis for Bus1 (Grid to Load)

- Transformer T1 withstand and inrush characteristics are properly coordinated with protective devices.
- Relay2 P-50 (Instantaneous OC) and Relay2 P-51 (Time OC) are set to trip before T1 withstand is violated.
- Relay3 protection curves (OL and P-51) show selective coordination, protecting downstream without overlapping the upstream device timings.
- FLA (Full Load Amps) and transformer inrush are well below the relay trip thresholds.
- Coordination: Excellent separation between relay operating curves ensuring minimal overlap indicating good coordination.

Key Analysis for Bus 2 (Grid to Load)

- More complex downstream system with multiple cables (Cable 1 through Cable 12) and relays involved.
- Relay3 and Relay2 (P-50, P-51, OL) offer layered protection with time-delayed and instantaneous trip settings.
- Transformer T1 withstand and inrush clearly marked and respected by relay settings.
- Motor loads (12E, 12G, 12A, etc.) show both FLA and LRC (Locked Rotor Current); LRCs are below trip curves, avoiding nuisance tripping during motor starting.
- Cable protections are well coordinated with relay curves providing discrimination without unnecessary overlap.

TCC Curve for Bus 1 (Generator to Load):

TCC for Bus1 (Generator to Load)

Analysis:

- Gen1 shows two separate trip curves—likely for long-time and short-time protection.
- Relay pickup current begins around 300 A (x100 = 30,000 A).
- Clearing time at lower fault currents (~1,000 A actual) ranges from 10–30 seconds, and much faster (~0.1 sec) for high fault currents (e.g., >5,000 A actual).
- Curve separation suggests time grading for backup coordination.
- Selective coordination is present between upstream and downstream protective elements.
- Arc Flash Energy levels would depend on clearing times and current magnitude.

TCC for Bus 2 (Generator to Load)

Analysis:

- Load protection is defined with motor full-load amps (FLA) and locked rotor current (LRC) indicators.
- Protective curves are coordinated well with motor characteristics, minimizing nuisance trips during starting.
- Arc flash boundaries are clearly illustrated, indicating hazard levels and PPE categories.
 - ✓ IE \ge 40 cal/cm² suggests extreme hazard and need for remote operation.
 - ✓ IE \leq 1.2 cal/cm² areas are safe zones with minimal PPE required.
- There is good separation between LRC and trip curves, ensuring starting current does not trip protection.

IEEE 242 Recommendations

IEEE 242, also known as the IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (commonly called the Buff Book), provides guidelines for the protection, coordination, and reliability of power systems in industrial and commercial facilities. The recommendations cover various aspects of electrical system design and operation to ensure safety, reliability, and efficiency.

Protection Devices and Settings (Grid to Load)

Device	Location	Protection Type	Observations
Relay3	Secondary of Transformer (T1)	Overcurrent Relay	Set to 16 kA max fault; primary device for main protection
Relay7	Feeder to Bus2	Overcurrent Relay	Set to 3.24 kA; coordinates with downstream loads
Feeder CBs (CB2–CB21)	Individual Loads	Thermal Magnetic / Electronic	Protect motors/load cables; LRC considered

Coordination Assessment (As per IEEE 242)

Criterion	Analysis
Relay Coordination	Relay3 and Relay7 show proper grading with fault currents; upstream relay has higher pickup and time delay.
Short-Circuit Ratings	All breakers and relays appear to be rated above the calculated fault currents 16 kA at transformer sec.
Time-Current Coordination	Based on TCC curves, device curves are well-separated to avoid nuisance tripping.
Motor Starting Coordination	Locked Rotor Currents (LRCs) for motors do not intersect protection curves, ensuring smooth starting.
Selective Coordination	Feeder protection (CB2–CB21) isolates faults locally without tripping upstream relays. This prevents total outages.

Breaker & Relay Coordination Comparison with IEEE 242

Protection Device	Function	Trip Setting / Curve	Actual Coordination	IEEE 242 Requirement	Compliance
CB1 + Relay3 (Main)	Protect transformer secondary and Bus1	Pickup: 3.24 kA Trip: 16 kA Inverse Time	Coordinates with Relay7 Clears Bus1/transformer faults	Should coordinate with downstream relays	Yes
Relay7 (Feeder Bus2)	Protects Bus2 and feeds CB2– CB21	Pickup: ~150 A Inverse Time	Coordinates with CB2–CB21	Should clear Bus2 faults without tripping upstream	Yes
CB2–CB21 (Load CBs)	Motor/Load protection	Instantaneous + short delay FLA aligned	Trips locally for faults at each load	Must coordinate with upstream feeder relay	Yes
CB19 (12A)	Motor 12A breaker	LRC support, 0.244 kA fault	Selective trip observed	Breaker must not trip on motor start	Yes
CB15 (12D)	Motor 12D breaker	LRC: 0.135 kA	TCC matches Relay7 delay	Should trip first under fault	Yes
CB21 (12F)	Load breaker	LRC 0.057 kA	Fast trip, upstream delay	First tripping device for 12F faults	Yes

Arc Flash Result and Analysis:

There are two Arc Flash result, one where the grid is feeding the loads and one where the load is being fed from the emergency generator. The results are shown below:

Scenario 1: Arc Flash with Grid Source

The system consists of a transformer (T1) feeding Bus2, with multiple outgoing feeders. The arc flash calculations were performed at Bus2, considering a fault occurring at this location.

Key Arc Flash Parameters:

• Maximum Arcing Current (Ia'): 5.352 kA

• Bus Location: Bus2

• Incident Energy (IE): 0.7 cal/cm² at 18 inches

• Arc Flash Protection Boundary (AFB): 1.1 ft

• Arc Flash Hazard Category: Level A

Arc Flash Current Analysis Grid to Load:

Location	Voltage Level (KV)	Arcing Current (kA)	Fault Clearing Time (s)	Arc Flash Boundary (ft)
Bus1	0.208	34.655	0.8	44.7
Bus2	0.208	4.461	0.5	3.2
12B	0.208	0.099	0.5	3.2
12C	0.208	0.246	0.5	3.2
12D	0.208	0.136	0.5	3.2
12E	0.208	0.149	0.5	3.2
12F	0.208	0.05	0.5	3.2
12G	0.208	0.115	0.5	3.2
М2Н	0.208	0.244	0.5	3.2
12A	0.208	0.136	0.5	3.2

Scenario 2: Arc Flash with Generator Source

The second scenario involves a generator (Gen1) feeding Bus1, which in turn supplies Bus2. This configuration affects the fault current levels and subsequently alters the arc flash hazard parameters.

Key Arc Flash Parameters:

• Maximum Arcing Current (Ia'): 4.916 kA

• Bus Location: Bus2

• Incident Energy (IE): 4.569 cal/cm² at 18 inches

• Arc Flash Protection Boundary (AFB): 3.5 ft

• Arc Flash Hazard Category: Level C

Arc Flash Current Analysis Generator to Load:

Location	Voltage (KV)	Arcing Current (kA)	Fault Clearing Time (s)	Arc Flash Boundary (ft)
Bus1	0.208	10.529	0.8	6.5
Bus2	0.208	10.529	0.7	7.1
12B	0.208	0.117	0.5	7.1
12C	0.208	0.27	0.5	7.1
12D	0.208	0.147	0.5	7.1
12E	0.208	0.162	0.5	7.1
12F	0.208	0.043	0.5	7.1
12G	0.208	0.121	0.5	7.1
M2H	0.208	0.267	0.5	7.1
12A	0.208	0.151	0.5	7.1

PPE Recommendation & Requirements

Technicians must never enter an arc flash hazard zone without the appropriate Personal Protective Equipment (PPE). The level of PPE required depends on the incident energy levels at each location. Using IEEE 1584 calculations and NFPA 70E guidelines, the required PPE Category (CAT) is determined based on the incident energy (cal/cm²) at the specific bus locations in each scenario.

Recommended PPE for Scenario 1 (Grid Source):

Since the incident energy is below 1.2 cal/cm², arc-rated PPE is not mandatory. However, technicians must still follow basic electrical safety protocols:

- 1. Standard flame-resistant (FR) work clothing
- 2. Safety goggles or face shield
- 3. Leather safety shoes (electrically rated)
- 4. **Hard hat** (if required for worksite safety)
- 5. **Hearing protection** (optional, recommended for electrical work)
- 6. **Rubber insulating gloves** (if working near live conductors)

Key Consideration: Workers can operate within the arc flash boundary **without a full arc-rated PPE suit**, but precautions should still be taken.

Recommended PPE for Scenario 2 (Bus2 - Generator Source):

Since the incident energy is above 4 cal/cm², Category 2 arc-rated PPE is required for safety:

- 1. Arc-rated long-sleeve uniform (minimum 8 cal/cm² rating)
- 2. Arc-rated face shield with balaclava (or arc-rated hood)
- 3. Rubber insulating gloves with leather protectors
- 4. Leather safety shoes (EH-rated, non-conductive)
- 5. **Hard hat** (insulated and arc-rated)
- 6. **Hearing protection** (earplugs or earmuffs for arc blast noise protection)

Key Consideration: Technicians must wear full CAT 2 PPE when working within 3.5 feet of the energized equipment.

Summary of PPE Requirements for Both Scenarios:

Scenario	Arcing Current (kA)	Incident Energy (cal/cm²)	Arc Flash Boundary (ft)	PPE Category	Required PPE
Scenario 1 (Transformer Source, Bus2)	5.352 kA	0.7 cal/cm ²	1.1 ft	Below CAT 1	Standard workwear, leather gloves, safety goggles
Scenario 2 (Generator Source, Bus2)	4.916 kA	4.569 cal/cm ²	3.5 ft	CAT 2	Arc-rated clothing (8 cal/cm²), face shield/balaclava, gloves, hearing protection

Appendices

Appendix A - Single Line Diagrams with Short Circuit and Arc Flash Energy Levels

Fig: SLD of Short Circuit with Grid

Fig: SLD of Short Circuit with Generator

Arc Flash Analysis with Grid

Fig: SLD of Arc Flash Analysis with Grid

Arc Flash Analysis with Generator

Fig: SLD of Arc Flash Analysis with Generator.

Appendix B: Data from the Short Circuit Study

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

Electrical Transient Analyzer Program

Short-Circuit Analysis

ANSI Standard

3-Phase, LG, LL, & LLG Fault Currents

1/2 Cycle Network

	Swing	V-Control	Load	Total			
Number of Buses:	1	0	9	10			
	XFMR2	XFMR3	Reactor	Line/Cable/ Busway	Impedance	Tie PD	Total
Number of Branches:	1	0	0	8	0	0	9
	Synchronous Generator	Power Grid	Synchronous Motor	Induction Machines	Lumped Load	Inverter	Total
Number of Machines:	0	1	0	0	8	0	9

System Frequency: 60.00

Unit System:

Project Filename: ENEL674_Milestone-4~

Output Filename: C:\ETAP 2250\ENEL674_Milestone-4\BACKUP\Untitled.SA2S

English

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Cable / Busway Resistance:

Filename: ENEL674_Milestone-4~~ Config.: Normal

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent
Transformer Impedance:	Yes	Individual	
Reactor Impedance:	Yes	Individual	
Overload Heater Resistance:	No		
Transmission Line Length:	No		
Cable / Busway Length:	No		
	Apply	Individual	
Temperature Correction	Adjustments	/Global	Degree C
Transmission Line Resistance:	Yes	Individual	

Yes

Individual

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Bus Input Data

	Bus								
ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.			
Bus1	SWNG	25.000	25.000	1	100.00	0.00			
Bus2	Load	0.208	0.208	1	100.00	-30.00			
Bus25	Load	0.208	0.208	1	100.00	-30.00			
Bus27	Load	0.208	0.208	1	100.00	-30.00			
Bus29	Load	0.208	0.208	1	100.00	-30.00			
Bus30	Load	0.208	0.208	1	100.00	-30.00			
Bus31	Load	0.208	0.208	1	100.00	-30.00			
Bus32	Load	0.208	0.208	1	100.00	-30.00			
Bus33	Load	0.208	0.208	1	100.00	-30.00			
Bus35	Load	0.208	0.208	1	100.00	-30.00			

10 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV. Base kV values of buses are calculated and used internally by ETAP.

Project: **ETAP** Page: 4 22.5.0E 04-17-2025 Location: Date: Contract: SN: UOFCALGSSE Engineer: Revision: Base Study Case: SC Filename: $ENEL674_Milestone\text{-}4\text{---}$ Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens per 1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway			Leng	gth								
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	R0	X0	Y 0
Cable1	1.0MCUS1	2	328.1	0.0	1	75	0.2192104	0.029	0.0000517	0.6908723	0.09102	
Cable4	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable6	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable7	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable8	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable9	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable10	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable12	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

2-Winding Transformer Input Data

Transformer		2	Z Variation			% Tap Setting		Phase Shift						
ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Туре	Angle	
T1	0.112	25.000	0.208	5.00	1.50	0	0	0	0	0	5.00	Dyn	30.00	

2-Winding Transformer Grounding Input Data

Grounding

Trans	former		Rating		Conn.	Conn. Primary					Secondary					
	ID	MVA	Prim. kV	Sec. kV	Туре	Туре	kV	Amp	ohm	Туре	kV	Amp	ohm			
Т1		0.112	25,000	0.208	D/V					Calid						

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

Branch Connections

CKT/Br	anch	Con	nnected Bus ID	% Im	% Impedance, Pos. Seq., 100 MVAb					
ID	Type	From Bus	To Bus	R	X	Z	Y			
T1	2W XFMR	Bus1	Bus2	2476.34	3714.51	4464.29				
Cable1	Cable	Bus27	Bus2	16623.39	2199.16	16768.22	0.0000007			
Cable4	Cable	Bus25	Bus2	14408.27	3457.99	14817.42				
Cable6	Cable	Bus29	Bus2	14408.27	3457.99	14817.42				
Cable7	Cable	Bus30	Bus2	14408.27	3457.99	14817.42				
Cable8	Cable	Bus31	Bus2	14408.27	3457.99	14817.42				
Cable9	Cable	Bus32	Bus2	14408.27	3457.99	14817.42				
Cable10	Cable	Bus33	Bus2	14408.27	3457.99	14817.42				
Cable12	Cable	Bus35	Bus2	14408.27	3457.99	14817.42				

Project: **ETAP** Page: 7 Location: 22.5.0E Date: 04-17-2025 UOFCALGSSE Contract: SN: Engineer: Revision: Base Study Case: SC Filename: $ENEL674_Milestone\text{-}4\text{---}$ Config.: Normal

Power Grid Input Data

Power Grid	Connected Bus	Rat	ting		sitive Seq. Im 100 MVA Ba	Grounding	% Zero Seq. Impedance 100 MVA Base			
ID	ID	MVAsc	kV	X/R R X		Type	X/R	R0	X0	
U1	Bus1	1500.000	25.000	1.50	3.69800	5.54700	Wye - Solid	1.50	6.666667	10.00000

Total Power Grids (= 1) 1500.000 MVA

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Lumped Load Input Data

Lumped Load Motor Loads

]	[mpedance	e				
Lumped Load	Ra	ting	%	Load	Load	ding	X/R F	Ratio	(M	achine Ba	ise)	Grounding		
ID	kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	% R	% X"	% X'	Conn.	Type	Amp.
12A	29.8	0.208	80	20	22.6	7.4	2.38	2.38	8.403	20.00	50.00	Delta		
12B	22.0	0.208	80	20	16.7	5.5	2.38	2.38	8.403	20.00	50.00	Delta		
12C	53.4	0.208	80	20	40.6	13.4	2.38	2.38	8.403	20.00	50.00	Delta		
12D	29.8	0.208	80	20	22.6	7.4	2.38	2.38	8.403	20.00	50.00	Delta		
12E	32.7	0.208	80	20	24.9	8.2	2.38	2.38	8.403	20.00	50.00	Delta		
12F	11.0	0.208	80	20	8.4	2.7	2.38	2.38	8.403	20.00	50.00	Delta		
12G	25.3	0.208	80	20	19.2	6.3	2.38	2.38	8.403	20.00	50.00	Delta		
М2Н	52.9	0.208	80	20	40.2	13.2	2.38	2.38	8.403	20.00	50.00	Delta		

Total Connected Lumped Loads (= 8): 257.0 kVA

22.5.0E 04-17-2025 Location: Date:

UOFCALGSSE

Contract: SN:

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_Milestone-4~~ Config.: Normal

SHORT- CIRCUIT REPORT

Fault at bus: Bus1

 $\begin{array}{ll} Prefault \ voltage \ = \ 25.000 \ kV & = 100 \\ = \ 100.00 \ \% \ \ of \ base \ kV \ \ (\ 25.000 \ \ kV) \end{array}$ = 100.00 % of nominal bus kV (25.000 kV)

									Positive	& Zero Seq	uence Impe	dances	_
Contribution		3-Phas	se Fault		Line-To-Ground Fault					Looking into "From Bus"			
From Bus	To Bus		kA	kA % Voltage at Fro			kA Syn	ım. rms		Impedance or	100 MVA ba	se	_
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus1	Total	0.00	34.655	0.00	112.07	112.07	27.334	27.334	3.70E+000	5.54E+000	6.67E+000	1.00E+001	
Bus2	Bus1	27.16	0.014	73.45	72.90	100.00	0.007	0.000	8.66E+003	1.40E+004			
U1	Bus1	100.00	34.641	100.00	100.00	100.00	27.327	27.334	3.70E+000	5.55E+000	6.67E+000	1.00E+001	

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (3I0) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_Milestone-4~~ Config.: Normal

Fault at bus: Bus2

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Cor	ntribution	3-Phas	se Fault		Line-T	To-Ground	Fault		Looking into "From Bus"				
From Bus	To Bus	% V	kA	% Vo	ltage at Fron	n Bus	kA Sym	ım. rms	%	Impedance or	100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus2	Total	0.00	8.524	0.00	105.57	106.29	7.586	7.586	1.77E+003	2.73E+003	2.48E+003	3.71E+003	_
Bus27	Bus2	12.65	0.209	7.51	104.48	110.05	0.124	0.000	6.44E+004	1.16E+005			
Bus25	Bus2	14.75	0.276	8.75	104.80	110.62	0.164	0.000	4.97E+004	8.73E+004			
Bus29	Bus2	24.41	0.457	14.48	104.96	113.37	0.271	0.000	3.41E+004	5.02E+004			
Bus30	Bus2	14.75	0.276	8.75	104.80	110.62	0.164	0.000	4.97E+004	8.73E+004			
Bus31	Bus2	16.04	0.300	9.51	104.79	111.00	0.178	0.000	4.65E+004	7.98E+004			
Bus32	Bus2	24.23	0.454	14.37	104.95	113.31	0.269	0.000	3.42E+004	5.07E+004			
Bus33	Bus2	12.69	0.238	7.53	104.84	110.03	0.141	0.000	5.60E+004	1.02E+005			
Bus35	Bus2	5.80	0.109	3.44	105.12	108.01	0.064	0.000	1.10E+005	2.31E+005			
Bus1	Bus2	99.85	6.208	99.93	100.00	99.93	6.212	7.586 *	2.48E+003	3.72E+003	2.48E+003	3.71E+003	

 [#] Indicates fault current contribution is from three-winding transformers
 * Indicates a zero sequence fault current contribution (3I0) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

UOFCALGSSE

Contract: SN:

Engineer: Base Revision: Study Case: SC

Filename: ENEL674_Milestone-4~~ Config.: Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 100 % of the Bus Nominal Voltage

Bus	3	-Phase Fau	ılt	Line-to-Ground Fault			Line-to-Line Fault			*Line-to-Line-to-Ground				
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	
Bus1	25.000	19.223	-28.835	34.655	15.162	-22.743	27.334	24.972	16.647	30.012	-31.231	-7.259	32.063	
Bus2	0.208	4.641	-7.150	8.524	4.162	-6.343	7.586	6.192	4.019	7.382	-8.078	-1.170	8.162	

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

Sequence Impedance Summary Report

Bus		Positive Seq. Imp. (ohm)			Negative Seq. Imp. (ohm)			Zero	Seq. Imp.	(ohm)	Fault Zf (ohm)		
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus1	25.000	0.23103	0.34655	0.41650	0.23103	0.34655	0.41650	0.41667	0.62500	0.75116	0.00000	0.00000	0.00000
Bus2	0.208	0.00767	0.01182	0.01409	0.00767	0.01182	0.01409	0.01071	0.01607	0.01931	0.00000	0.00000	0.00000

Location: 22.5.0E Date: 04-17-2025

UOFCALGSSE

Contract: SN:

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Electrical Transient Analyzer Program

Short-Circuit Analysis

ANSI Standard

3-Phase, LG, LL, & LLG Fault Currents

1.5-4 Cycle Network

	Swing	V-Control	Load	Total			
Number of Buses:	1	0	9	10			
	XFMR2	XFMR3	Reactor	Line/Cable/ Busway	Impedance	Tie PD	Total
Number of Branches:	0	0	0	8	0	1	9
	Synchronous Generator	Power Grid	Synchronous Motor	Induction Machines	Lumped Load	Inverter	Total
Number of Machines:	1	0	0	0	8	0	9

System Frequency: 60.00

Unit System:

Project Filename: ENEL674_mI4 With GEN~~

English

Output Filename: C:\ETAP 2250\ENEL674_Milestone-4\ENEL674_mI4 With GEN\BACKUP\Untitled.SA2S

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent
Transformer Impedance:	Yes	Individual	
Reactor Impedance:	Yes	Individual	
Overload Heater Resistance:	No		
Transmission Line Length:	No		
Cable / Busway Length:	No		
Temperature Correction	Apply Adjustments	Individual /Global	Degree C
Transmission Line Resistance:	Yes	Individual	1
Cable / Busway Resistance:	Yes	Individual	

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Bus Input Data

		Bus			Initial V	oltage
ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus1	SWNG	0.208	0.208	1	100.00	0.00
Bus2	Load	0.208	0.208	1	100.00	0.00
Bus30	Load	0.208	0.208	1	100.00	0.00
Bus35	Load	0.208	0.208	1	100.00	0.00
Bus36	Load	0.208	0.208	1	100.00	0.00
Bus37	Load	0.208	0.208	1	100.00	0.00
Bus38	Load	0.208	0.208	1	100.00	0.00
Bus39	Load	0.208	0.208	1	100.00	0.00
Bus40	Load	0.208	0.208	1	100.00	0.00
Bus41	Load	0.208	0.208	1	100.00	0.00

10 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV. Base kV values of buses are calculated and used internally by ETAP.

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens per 1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway			Leng	gth								
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	R0	X0	Y0
Cable1			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable6			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable7			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable8			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable9			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable10			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable11			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable12			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Branch Connections

CKT/B	ranch	Con	% Im) MVAb				
ID	Туре	From Bus	To Bus	R	X	Z	Y	
Cable1	Cable	Bus2	Bus30	2473.60	3668.41	4424.46	0.0000003	
Cable6	Cable	Bus2	Bus35	2473.60	3668.41	4424.46	0.0000003	
Cable7	Cable	Bus2	Bus36	2473.60	3668.41	4424.46	0.0000003	
Cable8	Cable	Bus2	Bus37	2473.60	3668.41	4424.46	0.0000003	
Cable9	Cable	Bus2	Bus38	2473.60	3668.41	4424.46	0.0000003	
Cable10	Cable	Bus2	Bus39	2473.60	3668.41	4424.46	0.0000003	
Cable11	Cable	Bus2	Bus40	2473.60	3668.41	4424.46	0.0000003	
Cable12	Cable	Bus2	Bus41	2473.60	3668.41	4424.46	0.0000003	
CB1	Tie Breakr	Bus1	Bus2					

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Synchronous Generator Input Data

Positive Seq. Impedance

Synchronous Gen	Synchronous Generator			Rating			% Xd"				Grounding	ţ	Zero Seq. Impedance		
ID	Type	MVA	kV	RPM	X"/R	% R	Adj.	Tol.	% Xd'	Conn.	Type	Amp	X/R	% R0	% X0
Gen1	Steam Turbo	0.290	0.208	1800	1.67	2.400	4.00	0.0	4.00	Wye	Solid		2.50	1.600	4.00

Total Connected Synchronous Generators (= 1): 0.290 MVA

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Lumped Load Input Data

Lumped Load Motor Loads

			Impedance										
Rating		% Load		Loading		X/R Ratio		(M	achine Ba	se)		Groundir	ng
kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	% R	% X"	% X'	Conn.	Type	Amp.
29.9	0.208	80	20	22.7	7.5	2.38	2.38	8.403	20.00	50.00	Delta		
23.1	0.208	80	20	17.7	5.5	2.38	2.38	8.403	20.00	50.00	Delta		
53.0	0.208	80	20	40.3	13.2	2.38	2.38	8.403	20.00	50.00	Delta		
29.0	0.208	80	20	22.0	7.2	2.38	2.38	8.403	20.00	50.00	Delta		
32.0	0.208	80	20	24.3	8.0	2.38	2.38	8.403	20.00	50.00	Delta		
8.6	0.208	80	20	6.5	2.1	2.38	2.38	8.403	20.00	50.00	Delta		
24.0	0.208	80	20	18.2	6.0	2.38	2.38	8.403	20.00	50.00	Delta		
52.5	0.208	80	20	39.9	13.1	2.38	2.38	8.403	20.00	50.00	Delta		
	29.9 23.1 53.0 29.0 32.0 8.6 24.0	kVA kV 29.9 0.208 23.1 0.208 53.0 0.208 29.0 0.208 32.0 0.208 8.6 0.208 24.0 0.208	kVA kV MTR 29.9 0.208 80 23.1 0.208 80 53.0 0.208 80 29.0 0.208 80 32.0 0.208 80 8.6 0.208 80 24.0 0.208 80	kVA kV MTR STAT 29.9 0.208 80 20 23.1 0.208 80 20 53.0 0.208 80 20 29.0 0.208 80 20 32.0 0.208 80 20 8.6 0.208 80 20 24.0 0.208 80 20	kVA kV MTR STAT kW 29.9 0.208 80 20 22.7 23.1 0.208 80 20 17.7 53.0 0.208 80 20 40.3 29.0 0.208 80 20 22.0 32.0 0.208 80 20 24.3 8.6 0.208 80 20 6.5 24.0 0.208 80 20 18.2	kVA kV MTR STAT kW kvar 29.9 0.208 80 20 22.7 7.5 23.1 0.208 80 20 17.7 5.5 53.0 0.208 80 20 40.3 13.2 29.0 0.208 80 20 22.0 7.2 32.0 0.208 80 20 24.3 8.0 8.6 0.208 80 20 6.5 2.1 24.0 0.208 80 20 18.2 6.0	kVA kV MTR STAT kW kvar X"/R 29.9 0.208 80 20 22.7 7.5 2.38 23.1 0.208 80 20 17.7 5.5 2.38 53.0 0.208 80 20 40.3 13.2 2.38 29.0 0.208 80 20 22.0 7.2 2.38 32.0 0.208 80 20 24.3 8.0 2.38 8.6 0.208 80 20 6.5 2.1 2.38 24.0 0.208 80 20 18.2 6.0 2.38	kVA kV MTR STAT kW kvar X"/R X'/R 29.9 0.208 80 20 22.7 7.5 2.38 2.38 23.1 0.208 80 20 17.7 5.5 2.38 2.38 53.0 0.208 80 20 40.3 13.2 2.38 2.38 29.0 0.208 80 20 22.0 7.2 2.38 2.38 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.6 0.208 80 20 6.5 2.1 2.38 2.38 24.0 0.208 80 20 18.2 6.0 2.38 2.38	Rating % Load Loading X/R Ratio (M kVA kV MTR STAT kW kvar X"/R X"/R % R 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 8.6 0.208 80 20 6.5 2.1 2.38 2.38 8.403 24.0 0.208 80 20 18.2 6.0 2.38 2.38 8.403	Rating % Load Loading X/R Ratio (Machine Back) kVA kV MTR STAT kW kvar X"/R X'/R % R % X" 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 20.00 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 20.00 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 20.00 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 20.00 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 20.00 8.6 0.208 80 20 6.5 2.1 2.38 2.38 8.403 20.00 24.0 0.208 80 20 18.2 6.0 2.38 2.38 8.403 20.00 <td>Rating % Load Loading X/R Ratio (Machine Base) kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 20.00 50.00 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 20.00 50.00 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 20.00 50.00 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 20.00 50.00 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 20.00 50.00 8.6 0.208 80 20 6.5 2.1 2.38 2.38 8.403 20.00 50.00 24.0 0.208 80</td> <td>Rating % Load Loading X/R Ratio (Machine Base) C kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' Conn. 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 20.00 50.00 Delta 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 20.00 50.00 Delta 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 20.00 50.00 Delta 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 20.00 50.00 Delta 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 20.00 50.00 Delta 8.6 0.208 80 20 6.5 2.1 2.38 2.38</td> <td>Rating % Load Loading X/R Ratio (Machine Base) Grounding kVA kV MTR STAT kW kvar X"/R X"/R % R % X" % X' Conn. Type 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 20.00 50.00 Delta 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 20.00 50.00 Delta 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 20.00 50.00 Delta 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 20.00 50.00 Delta 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 20.00 50.00 Delta 8.6 0.208 80 20 6.5 2.1 2.3</td>	Rating % Load Loading X/R Ratio (Machine Base) kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 20.00 50.00 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 20.00 50.00 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 20.00 50.00 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 20.00 50.00 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 20.00 50.00 8.6 0.208 80 20 6.5 2.1 2.38 2.38 8.403 20.00 50.00 24.0 0.208 80	Rating % Load Loading X/R Ratio (Machine Base) C kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' Conn. 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 20.00 50.00 Delta 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 20.00 50.00 Delta 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 20.00 50.00 Delta 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 20.00 50.00 Delta 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 20.00 50.00 Delta 8.6 0.208 80 20 6.5 2.1 2.38 2.38	Rating % Load Loading X/R Ratio (Machine Base) Grounding kVA kV MTR STAT kW kvar X"/R X"/R % R % X" % X' Conn. Type 29.9 0.208 80 20 22.7 7.5 2.38 2.38 8.403 20.00 50.00 Delta 23.1 0.208 80 20 17.7 5.5 2.38 2.38 8.403 20.00 50.00 Delta 53.0 0.208 80 20 40.3 13.2 2.38 2.38 8.403 20.00 50.00 Delta 29.0 0.208 80 20 22.0 7.2 2.38 2.38 8.403 20.00 50.00 Delta 32.0 0.208 80 20 24.3 8.0 2.38 2.38 8.403 20.00 50.00 Delta 8.6 0.208 80 20 6.5 2.1 2.3

Total Connected Lumped Loads (= 8): 252.1 kVA

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

SHORT- CIRCUIT REPORT

Fault at bus: Bus1

 $\begin{array}{ll} Prefault \ voltage \ = \ 0.208 \ kV & = 10 \\ \ = \ 100.00 \ \% \ \ of \ base \ kV \ \ (\ 0.208 \ \ kV) \end{array}$ = 100.00 % of nominal bus kV (0.208 kV)

Positive & Zero Sequence Impedances

Con	tribution	3-Phas	se Fault	Line-To-Ground Fault					Looking into "From Bus"				
From Bus	To Bus	% V	kA	% Vo	ltage at Fron	n Bus	kA Syn	ım. rms	%	Impedance on	100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus1	Total	0.00	18.268	0.00	102.45	94.28	18.899	18.899	7.54E+002	1.32E+003	5.52E+002	1.38E+003	
Gen1	Bus1	100.00	17.256	100.00	100.00	100.00	17.776	18.899	8.28E+002	1.38E+003	5.52E+002	1.38E+003	
Bus30	Bus2	1.59	0.100	1.71	102.13	94.48	0.107	0.000	4.79E+004	2.74E+005			
Bus35	Bus2	3.58	0.225	3.77	101.81	94.74	0.236	0.000	2.23E+004	1.22E+005			
Bus36	Bus2	1.99	0.125	2.12	102.06	94.53	0.133	0.000	3.87E+004	2.19E+005			
Bus37	Bus2	2.19	0.137	2.33	102.03	94.56	0.146	0.000	3.53E+004	1.99E+005			
Bus38	Bus2	0.60	0.037	0.65	102.32	94.36	0.040	0.000	1.25E+005	7.30E+005			
Bus39	Bus2	1.65	0.104	1.77	102.12	94.49	0.111	0.000	4.62E+004	2.64E+005			
Bus40	Bus2	3.55	0.222	3.73	101.82	94.74	0.234	0.000	2.25E+004	1.23E+005			
Bus41	Bus2	2.05	0.129	2.18	102.05	94.54	0.137	0.000	3.76E+004	2.13E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Base Engineer: Revision: Study Case: SC

Filename: ENEL674_mI4 With GEN~~ Normal Config.:

Fault at bus: Bus2

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Con	tribution	3-Phas	se Fault		Line-T	To-Ground	l Fault		Looking into "From Bus"			
From Bus	To Bus	% V	kA	% Vo	ltage at Fron	n Bus	kA Syn	nm. rms	%	Impedance or	100 MVA bas	se
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0
Bus2	Total	0.00	18.268	0.00	102.45	94.28	18.899	18.899	7.54E+002	1.32E+003	5.52E+002	1.38E+003
Bus30	Bus2	1.59	0.100	1.71	102.13	94.48	0.107	0.000	4.79E+004	2.74E+005		
Bus35	Bus2	3.58	0.225	3.77	101.81	94.74	0.236	0.000	2.23E+004	1.22E+005		
Bus36	Bus2	1.99	0.125	2.12	102.06	94.53	0.133	0.000	3.87E+004	2.19E+005		
Bus37	Bus2	2.19	0.137	2.33	102.03	94.56	0.146	0.000	3.53E+004	1.99E+005		
Bus38	Bus2	0.60	0.037	0.65	102.32	94.36	0.040	0.000	1.25E+005	7.30E+005		
Bus39	Bus2	1.65	0.104	1.77	102.12	94.49	0.111	0.000	4.62E+004	2.64E+005		
Bus40	Bus2	3.55	0.222	3.73	101.82	94.74	0.234	0.000	2.25E+004	1.23E+005		
Bus41	Bus2	2.05	0.129	2.18	102.05	94.54	0.137	0.000	3.76E+004	2.13E+005		
Gen1	Bus1	100.00	17.256	100.00	100.00	100.00	17.776	18.899	8.28E+002	1.38E+003	5.52E+002	1.38E+003

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (3I0) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

UOFCALGSSE

Contract: SN:

Base Engineer: Revision: Study Case: SC Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Short-Circuit Summary Report

1.5-4 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 100 % of the Bus Nominal Voltage

Bus		3.	-Phase Fau	ılt	Line-	to-Ground	Fault	Line	-to-Line F	`ault	*Line-to	-Line-to-C	Fround	
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	
Bus1	0.208	9.068	-15.859	18.268	8.631	-16.813	18.899	14.224	8.177	16.406	10.319	16.343	19.328	
Bus2	0.208	9.068	-15.859	18.268	8.631	-16.813	18.899	14.224	8.177	16.406	10.319	16.343	19.328	

All fault currents are symmetrical (1.5-4 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~ Config.: Normal

Sequence Impedance Summary Report

Bus		Positive Seq. Imp. (ohm)			Negative Seq. Imp. (ohm)			Zero Seq. Imp. (ohm)			Fault Zf (ohm)		
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus1	0.208	0.00326	0.00571	0.00657	0.00306	0.00528	0.00610	0.00239	0.00597	0.00643	0.00000	0.00000	0.00000
Bus2	0.208	0.00326	0.00571	0.00657	0.00306	0.00528	0.00610	0.00239	0.00597	0.00643	0.00000	0.00000	0.00000

Appendix C: Time Current Characteristics (TCC) Curves

Project: **ETAP** Page: 1 04-17-2025 Location: 22.5.0E Date: Contract: SN: UOFCALGSSE Engineer: Revision: Base Study Case: SM Filename: ENEL674_Milestone-4~~ Config.: Normal

Electrical Transient Analyzer Program

Short-Circuit Analysis

ANSI Standard

3-Phase, LG, LL, & LLG Fault Currents

1/2 Cycle Network

	Swing	V-Control	Load	Total			
Number of Buses:	1	0	9	10			
	XFMR2	XFMR3	Reactor	Line/Cable/ Busway	Impedance	Tie PD	Total
Number of Branches:	1	0	0	8	0	0	9
	Synchronous Generator	Power Grid	Synchronous Motor	Induction Machines	Lumped Load	Inverter	Total
Number of Machines:	0	1	0	0	8	0	9

System Frequency: 60.00
Unit System: English

Project Filename: ENEL674_Milestone-4~~

Output Filename: C:\ETAP 2250\ENEL674_Milestone-4\BACKUP\Untitled.ST1S

Project:ETAPPage:2Location:22.5.0EDate:04-17-2025Contract:SN:UOFCALGSSEEngineer:Study Case:SMRevision:Base

Filename: ENEL674_Milestone-4~ Config.: Normal

Cable / Busway Resistance:

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent	
Transformer Impedance:	Yes	Individual		
Reactor Impedance:	Yes	Individual		
Overload Heater Resistance:	No			
Transmission Line Length:	No			
Cable / Busway Length:	No			
Temperature Correction	Apply Adjustments	Individual /Global	Degree C	
Transmission Line Resistance:	Yes	Individual		

Yes

Individual

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SM Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Bus Input Data

				Initial Voltage		
ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus1	SWNG	25.000	25.000	1	100.00	0.00
Bus2 -	Load	0.208	0.208	1	100.00	-30.00
Bus25	Load	0.208	0.208	1	100.00	-30.00
Bus27	Load	0.208	0.208	1	100.00	-30.00
Bus29	Load	0.208	0.208	1	100.00	-30.00
Bus30	Load	0.208	0.208	1	100.00	-30.00
Bus31	Load	0.208	0.208	1	100.00	-30.00
Bus32	Load	0.208	0.208	1	100.00	-30.00
Bus33	Load	0.208	0.208	1	100.00	-30.00
Bus35	Load	0.208	0.208	1	100.00	-30.00

10 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV. Base kV values of buses are calculated and used internally by ETAP.

Project: **ETAP** 4 Page: 22.5.0E 04-17-2025 Location: Date: Contract: SN: UOFCALGSSE Engineer: Revision: Base Study Case: SM Filename: $ENEL674_Milestone\text{-}4\text{---}$ Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens per 1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway												
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	R0	X0	Y0
Cable1	1.0MCUS1	2	328.1	0.0	1	75	0.2192104	0.029	0.0000517	0.6908723	0.09102	
Cable4	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable6	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable7	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable8	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable9	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable10	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	
Cable12	0.6NCUN1	2	328.1	0.0	1	75	0.19	0.0456		0.3021	0.1143	

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SM Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

2-Winding Transformer Input Data

Transformer	Rating				7	Z Variatio	n	% Tap	Setting	Adjusted	Phase Shift			
ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Туре	Angle	
 T1	0.112	25.000	0.208	5.00	1.50		0	0	0	0	5.00	Dyn	30.00	

2-Winding Transformer Grounding Input Data

Grounding

Transformer		Rating		Conn.		Primary			Secondary					
ID	MVA	Prim. kV	Sec. kV	Type	Type	kV	Amp	ohm	Type	kV	Amp	ohm		
T1	0.112	25.000	0.208	D/Y					Solid					

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SM Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Branch Connections

CKT/B	CKT/Branch		nnected Bus ID	% Im) MVAb			
ID	Туре	From Bus	To Bus	R	X	Z	Y	
T1	2W XFMR	Bus1	Bus2	2476.34	3714.51	4464.29		
Cable1	Cable	Bus27	Bus2	16623.39	2199.16	16768.22	0.0000007	
Cable4	Cable	Bus25	Bus2	14408.27	3457.99	14817.42		
Cable6	Cable	Bus29	Bus2	14408.27	3457.99	14817.42		
Cable7	Cable	Bus30	Bus2	14408.27	3457.99	14817.42		
Cable8	Cable	Bus31	Bus2	14408.27	3457.99	14817.42		
Cable9	Cable	Bus32	Bus2	14408.27	3457.99	14817.42		
Cable10	Cable	Bus33	Bus2	14408.27	3457.99	14817.42		
Cable12	Cable	Bus35	Bus2	14408.27	3457.99	14817.42		

Project: **ETAP** Page: 7 Location: 22.5.0E Date: 04-17-2025 UOFCALGSSE Contract: SN: Engineer: Revision: Base Study Case: SM Filename: $ENEL674_Milestone\text{-}4\text{---}$ Config.: Normal

Power Grid Input Data

			% Positive Seq. Impedance							ero Seq. Imp	edance
	Power Grid	Connected Bus	Rat	ting		100 MVA Ba	se	Grounding		100 MVA Ba	ise
	ID	ID	MVASC	kV	X/R	R	X	Type	X/R	R0	X0
U1		Bus1	1500.000	25.000	1.50	3.69800	5.54700	Wye - Solid	1.50	6.666667	10.00000

Total Power Grids (= 1) 1500.000 MVA

Project: **ETAP** Page: 8 Location: 22.5.0E Date: 04-17-2025 UOFCALGSSE Contract: SN: Engineer: Revision: Base Study Case: SM Filename: $ENEL674_Milestone\text{-}4\text{---}$ Config.: Normal

Lumped Load Input Data

Lumped Load Motor Loads

				Impedance										
Lumped Load	Ra	Rating		% Load		Loading		Ratio	(M	achine Ba	se)		Groundin	ıg
ID	kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	% R	% X"	% X'	Conn.	Type	Amp.
12A	29.8	0.208	80	20	22.6	7.4	2.38	2.38	8.403	20.00	50.00	Delta		
12B	22.0	0.208	80	20	16.7	5.5	2.38	2.38	8.403	20.00	50.00	Delta		
12C	53.4	0.208	80	20	40.6	13.4	2.38	2.38	8.403	20.00	50.00	Delta		
12D	29.8	0.208	80	20	22.6	7.4	2.38	2.38	8.403	20.00	50.00	Delta		
12E	32.7	0.208	80	20	24.9	8.2	2.38	2.38	8.403	20.00	50.00	Delta		
12F	11.0	0.208	80	20	8.4	2.7	2.38	2.38	8.403	20.00	50.00	Delta		
12G	25.3	0.208	80	20	19.2	6.3	2.38	2.38	8.403	20.00	50.00	Delta		
М2Н	52.9	0.208	80	20	40.2	13.2	2.38	2.38	8.403	20.00	50.00	Delta		

Total Connected Lumped Loads (= 8): 257.0 kVA

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Base Revision: Study Case: SM

Filename: ENEL674_Milestone-4~~ Config.: Normal

SHORT- CIRCUIT REPORT

Fault at bus: Bus1

= 100.00 % of nominal bus kV (25.000 kV) Prefault voltage = 25.000 kV

= 100.00 % of base kV (25.000 kV)

									Positive	& Zero Sec	uence Impo	edances
Con	tribution	3-Phas	se Fault		Line-	Го-Ground	l Fault		L	ooking into	"From Bus	••
From Bus	To Bus	% V	kA	% Vo	Itage at Fror	n Bus	kA Syn	nm. rms	%	Impedance or	100 MVA ba	se
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0
Bus1	Total	0.00	34.655	0.00	112.07	112.07	27.334	27.334	3.70E+000	5.54E+000	6.67E+000	1.00E+001
Bus2	Bus1	27.16	0.014	73.45	72.90	100.00	0.007	0.000	8.66E+003	1.40E+004		
U1	Bus1	100.00	34.641	100.00	100.00	100.00	27.327	27.334	3.70E+000	5.55E+000	6.67E+000	1.00E+001
Bus27	Bus2	33.75	0.153	77.60	72.61	100.00	0.069	0.000	2.67E+004	1.40E+005		
Bus25	Bus2	35.65	0.201	78.34	73.14	100.00	0.092	0.000	1.92E+004	1.06E+005		
Bus29	Bus2	42.38	0.333	81.55	74.11	100.00	0.152	0.000	6.50E+003	6.49E+004		
Bus30	Bus2	35.65	0.201	78.34	73.14	100.00	0.092	0.000	1.92E+004	1.06E+005		
Bus31	Bus2	36.51	0.219	78.77	73.23	100.00	0.100	0.000	1.66E+004	9.78E+004		
Bus32	Bus2	42.25	0.331	81.49	74.08	100.00	0.151	0.000	6.65E+003	6.54E+004		
Bus33	Bus2	34.30	0.173	77.65	73.02	100.00	0.079	0.000	2.44E+004	1.23E+005		
Bus35	Bus2	30.13	0.079	75.36	72.81	100.00	0.036	0.000	6.82E+004	2.66E+005		
12B	Bus27	100.00	0.153	100.00	100.00	100.00	0.069	0.000	4.77E+004	1.14E+005		
12A	Bus25	100.00	0.201	100.00	100.00	100.00	0.092	0.000	3.52E+004	8.39E+004		
12C	Bus29	100.00	0.333	100.00	100.00	100.00	0.152	0.000	1.97E+004	4.68E+004		
12D	Bus30	100.00	0.201	100.00	100.00	100.00	0.092	0.000	3.52E+004	8.39E+004		
12E	Bus31	100.00	0.219	100.00	100.00	100.00	0.100	0.000	3.21E+004	7.64E+004		
М2Н	Bus32	100.00	0.331	100.00	100.00	100.00	0.151	0.000	1.98E+004	4.72E+004		
12G	Bus33	100.00	0.173	100.00	100.00	100.00	0.079	0.000	4.16E+004	9.90E+004		
12F	Bus35	100.00	0.079	100.00	100.00	100.00	0.036	0.000	9.54E+004	2.27E+005		

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SM

Filename: ENEL674_Milestone-4~~ Config.: Normal

Fault at bus: Bus2

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Cor	ntribution	3-Phas	se Fault		Line-T	To-Ground	Fault		L	ooking into	"From Bus	."	
From Bus	To Bus	% V	kA	% Vo	ltage at Fron	n Bus	kA Sym	ım. rms	%	Impedance or	n 100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus2	Total	0.00	8.524	0.00	105.57	106.29	7.586	7.586	1.77E+003	2.73E+003	2.48E+003	3.71E+003	_
Bus27	Bus2	12.65	0.209	7.51	104.48	110.05	0.124	0.000	6.44E+004	1.16E+005			
Bus25	Bus2	14.75	0.276	8.75	104.80	110.62	0.164	0.000	4.97E+004	8.73E+004			
Bus29	Bus2	24.41	0.457	14.48	104.96	113.37	0.271	0.000	3.41E+004	5.02E+004			
Bus30	Bus2	14.75	0.276	8.75	104.80	110.62	0.164	0.000	4.97E+004	8.73E+004			
Bus31	Bus2	16.04	0.300	9.51	104.79	111.00	0.178	0.000	4.65E+004	7.98E+004			
Bus32	Bus2	24.23	0.454	14.37	104.95	113.31	0.269	0.000	3.42E+004	5.07E+004			
Bus33	Bus2	12.69	0.238	7.53	104.84	110.03	0.141	0.000	5.60E+004	1.02E+005			
Bus35	Bus2	5.80	0.109	3.44	105.12	108.01	0.064	0.000	1.10E+005	2.31E+005			
Bus1	Bus2	99.85	6.208	99.93	100.00	99.93	6.212	7.586 *	2.48E+003	3.72E+003	2.48E+003	3.71E+003	
12B	Bus27	100.00	0.209	100.00	100.00	100.00	0.124	0.000	4.77E+004	1.14E+005			
12A	Bus25	100.00	0.276	100.00	100.00	100.00	0.164	0.000	3.52E+004	8.39E+004			
12C	Bus29	100.00	0.457	100.00	100.00	100.00	0.271	0.000	1.97E+004	4.68E+004			
12D	Bus30	100.00	0.276	100.00	100.00	100.00	0.164	0.000	3.52E+004	8.39E+004			
12E	Bus31	100.00	0.300	100.00	100.00	100.00	0.178	0.000	3.21E+004	7.64E+004			
М2Н	Bus32	100.00	0.454	100.00	100.00	100.00	0.269	0.000	1.98E+004	4.72E+004			
12G	Bus33	100.00	0.238	100.00	100.00	100.00	0.141	0.000	4.16E+004	9.90E+004			
12F	Bus35	100.00	0.109	100.00	100.00	100.00	0.064	0.000	9.54E+004	2.27E+005			
U1	Bus1	100.00	0.052	100.00	100.00	100.00	0.027	0.000	3.70E+000	5.55E+000	6.67E+000	1.00E+001	

 [#] Indicates fault current contribution is from three-winding transformers
 * Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SM

Filename: ENEL674_Milestone-4~~ Config.: Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 100 % of the Bus Nominal Voltage

Bus	Bus		3-Phase Fault			Line-to-Ground Fault			-to-Line I	ault	*Line-to	-Line-to-C	Ground	
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	
Bus1	25.000	19.223	-28.835	34.655	15.162	-22.743	27.334	24.972	16.647	30.012	-31.231	-7.259	32.063	
Bus2	0.208	4.641	-7.150	8.524	4.162	-6.343	7.586	6.192	4.019	7.382	-8.078	-1.170	8.162	

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SM Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Sequence Impedance Summary Report

	Bus		Positive Seq. Imp. (ohm)			Negative Seq. Imp. (ohm)			Zero	Seq. Imp.	(ohm)	Fa	nult Z f (oh	m)
	ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus1		25.000	0.23103	0.34655	0.41650	0.23103	0.34655	0.41650	0.41667	0.62500	0.75116	0.00000	0.00000	0.00000
Bus2		0.208	0.00767	0.01182	0.01409	0.00767	0.01182	0.01409	0.01071	0.01607	0.01931	0.00000	0.00000	0.00000

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_ml4 With GEN---- Config.: Normal

Electrical Transient Analyzer Program

Short-Circuit Analysis

ANSI Standard

3-Phase, LG, LL, & LLG Fault Currents

1.5-4 Cycle Network

	Swing	V-Control	Load	Total			
Number of Buses:	1	0	9	10			
	XFMR2	XFMR3	Reactor	Line/Cable/ Busway	Impedance	Tie PD	Total
Number of Branches:	0	0	0	8	0	1	9
	Synchronous Generator	Power Grid	Synchronous Motor	Induction Machines	Lumped Load	Inverter	Total
Number of Machines:	1	0	0	0	8	0	9

System Frequency: 60.00

Unit System:

Project Filename: ENEL674_mI4 With GEN~~~

English

 $\label{lem:continuous} Output \ Filename: \\ C:\ ETAP\ 2250\ ENEL674_Milestone-4\ ENEL674_mI4\ With\ GEN\ BACKUP\ Untitled. SA2S$

Project: ETAP Page: 2
Location: 22.5.0E Date: 04-17-2025Contract: Study Case: SC Revision: Base

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN---- Config.: Normal

Cable / Busway Resistance:

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent	
Transformer Impedance:	Yes	Individual		
Reactor Impedance:	Yes	Individual		
Overload Heater Resistance:	No			
Transmission Line Length:	No			
Cable / Busway Length:	No			
Temperature Correction	Apply Adjustments	Individual /Global	Degree C	
Transmission Line Resistance:	Yes	Individual		

Yes

Individual

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~~ Config.: Normal

Bus Input Data

			Initial Voltage			
ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus1	SWNG	0.208	0.208	1	100.00	0.00
Bus2	Load	0.208	0.208	1	100.00	0.00
Bus30	Load	0.208	0.208	1	100.00	0.00
Bus35	Load	0.208	0.208	1	100.00	0.00
Bus36	Load	0.208	0.208	1	100.00	0.00
Bus37	Load	0.208	0.208	1	100.00	0.00
Bus38	Load	0.208	0.208	1	100.00	0.00
Bus39	Load	0.208	0.208	1	100.00	0.00
Bus40	Load	0.208	0.208	1	100.00	0.00
Bus41	Load	0.208	0.208	1	100.00	0.00

10 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV. Base kV values of buses are calculated and used internally by ETAP.

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base
Filename: ENEL674_ml4 With GEN~~~ Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens per 1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway			Leng	gth								
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	R0	X0	Y0
Cable1			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable6			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable7			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable8			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable9			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable10			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable11			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029
Cable12			328.1	0.0	1	75	0.032619	0.0483748	0.0000184	0.032619	0.0483748	0.0000029

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~~ Config.: Normal

Branch Connections

CKT/B	CKT/Branch		nnected Bus ID	% Im) MVAb			
ID	Туре	From Bus	To Bus	R	X	Z	Y	
Cable1	Cable	Bus2	Bus30	2473.60	3668.41	4424.46	0.0000003	
Cable6	Cable	Bus2	Bus35	2473.60	3668.41	4424.46	0.0000003	
Cable7	Cable	Bus2	Bus36	2473.60	3668.41	4424.46	0.0000003	
Cable8	Cable	Bus2	Bus37	2473.60	3668.41	4424.46	0.0000003	
Cable9	Cable	Bus2	Bus38	2473.60	3668.41	4424.46	0.0000003	
Cable10	Cable	Bus2	Bus39	2473.60	3668.41	4424.46	0.0000003	
Cable11	Cable	Bus2	Bus40	2473.60	3668.41	4424.46	0.0000003	
Cable12	Cable	Bus2	Bus41	2473.60	3668.41	4424.46	0.0000003	
CB1	Tie Breakr	Bus1	Bus2					

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN---- Config.: Normal

Synchronous Generator Input Data

Positive Seq. Impedance

Synchronous Generator		Rating			% Xd"					Grounding	ţ	Zero S	Seq. Imp	edance	
ID	Type	MVA	kV	RPM	X"/R	% R	Adj.	Tol.	% Xd'	Conn.	Type	Amp	X/R	% R0	% X0
Gen1	Steam Turbo	0.290	0.208	1800	1.67	2.400	4.00	0.0	4.00	Wye	Solid		2.50	1.600	4.00

Total Connected Synchronous Generators (= 1): 0.290 MVA

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base

Filename: ENEL674_mI4 With GEN~~~ Config.: Normal

Lumped Load Input Data

Lumped Load Motor Loads

					Impedance									
Lumped Load			<u>%</u>	Load	Load	ding	X/R F	Ratio	(M	achine Ba	se)		Groundin	g
ID	kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	% R	% X"	% X'	Conn.	Type	Amp.
12A	29.9	0.208	80	20	22.7	7.5	2.38	2.38	8.403	20.00	50.00	Delta		
12B	23.1	0.208	80	20	17.7	5.5	2.38	2.38	8.403	20.00	50.00	Delta		
12C	53.0	0.208	80	20	40.3	13.2	2.38	2.38	8.403	20.00	50.00	Delta		
12D	29.0	0.208	80	20	22.0	7.2	2.38	2.38	8.403	20.00	50.00	Delta		
12E	32.0	0.208	80	20	24.3	8.0	2.38	2.38	8.403	20.00	50.00	Delta		
12F	8.6	0.208	80	20	6.5	2.1	2.38	2.38	8.403	20.00	50.00	Delta		
12G	24.0	0.208	80	20	18.2	6.0	2.38	2.38	8.403	20.00	50.00	Delta		
М2Н	52.5	0.208	80	20	39.9	13.1	2.38	2.38	8.403	20.00	50.00	Delta		

Total Connected Lumped Loads (= 8): 252.1 kVA

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Base Engineer: Revision: Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Config.: Normal

SHORT- CIRCUIT REPORT

Fault at bus: Bus1

 $\begin{array}{ll} Prefault \ voltage = \ 0.208 \ kV & = 10 \\ = 100.00 \ \% \ \ of \ base \ kV \ \ (\ 0.208 \ \ kV) \end{array}$ = 100.00 % of nominal bus kV (0.208 kV)

								Positive & Zero Sequence Impedances							
Con	ntribution	3-Phas	se Fault		Line-T	To-Ground	l Fault		L	ooking into	"From Bus	"			
From Bus	To Bus	% V	kA	% Vo	Itage at Fror	n Bus	kA Syn	nm. rms	%	Impedance or	100 MVA bas	se			
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0			
Bus1	Total	0.00	18.268	0.00	102.45	94.28	18.899	18.899	7.54E+002	1.32E+003	5.52E+002	1.38E+003			
Gen1	Bus1	100.00	17.256	100.00	100.00	100.00	17.776	18.899	8.28E+002	1.38E+003	5.52E+002	1.38E+003			
Bus30	Bus2	1.59	0.100	1.71	102.13	94.48	0.107	0.000	4.79E+004	2.74E+005					
Bus35	Bus2	3.58	0.225	3.77	101.81	94.74	0.236	0.000	2.23E+004	1.22E+005					
Bus36	Bus2	1.99	0.125	2.12	102.06	94.53	0.133	0.000	3.87E+004	2.19E+005					
Bus37	Bus2	2.19	0.137	2.33	102.03	94.56	0.146	0.000	3.53E+004	1.99E+005					
Bus38	Bus2	0.60	0.037	0.65	102.32	94.36	0.040	0.000	1.25E+005	7.30E+005					
Bus39	Bus2	1.65	0.104	1.77	102.12	94.49	0.111	0.000	4.62E+004	2.64E+005					
Bus40	Bus2	3.55	0.222	3.73	101.82	94.74	0.234	0.000	2.25E+004	1.23E+005					
Bus41	Bus2	2.05	0.129	2.18	102.05	94.54	0.137	0.000	3.76E+004	2.13E+005					

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Config.: Normal

Fault at bus: Bus2

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Cor	ntribution	3-Phas	se Fault		Line-T	To-Ground	l Fault		L	ooking into	"From Bus	."	
From Bus	To Bus	% V	kA	% Vo	ltage at Fron	n Bus	kA Syn	nm. rms	%	Impedance or	n 100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus2	Total	0.00	18.268	0.00	102.45	94.28	18.899	18.899	7.54E+002	1.32E+003	5.52E+002	1.38E+003	
Bus30	Bus2	1.59	0.100	1.71	102.13	94.48	0.107	0.000	4.79E+004	2.74E+005			
Bus35	Bus2	3.58	0.225	3.77	101.81	94.74	0.236	0.000	2.23E+004	1.22E+005			
Bus36	Bus2	1.99	0.125	2.12	102.06	94.53	0.133	0.000	3.87E+004	2.19E+005			
Bus37	Bus2	2.19	0.137	2.33	102.03	94.56	0.146	0.000	3.53E+004	1.99E+005			
Bus38	Bus2	0.60	0.037	0.65	102.32	94.36	0.040	0.000	1.25E+005	7.30E+005			
Bus39	Bus2	1.65	0.104	1.77	102.12	94.49	0.111	0.000	4.62E+004	2.64E+005			
Bus40	Bus2	3.55	0.222	3.73	101.82	94.74	0.234	0.000	2.25E+004	1.23E+005			
Bus41	Bus2	2.05	0.129	2.18	102.05	94.54	0.137	0.000	3.76E+004	2.13E+005			
Gen1	Bus1	100.00	17.256	100.00	100.00	100.00	17.776	18.899	8.28E+002	1.38E+003	5.52E+002	1.38E+003	

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (3I0) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus30

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Contribution		3-Phase Fault		Line-To-Ground Fault					Looking into "From Bus"				
From Bus	Bus To Bus _		kA	% Voltage at From Bus			kA Symm. rms		% Impedance on 100 MVA base				
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus30	Total	0.00	4.759	0.00	100.23	98.61	4.816	4.816	3.13E+003	4.92E+003	3.03E+003	5.05E+003	
Bus2	Bus30	74.38	4.666	75.06	100.54	98.48	4.709	4.816	3.23E+003	4.99E+003	3.03E+003	5.05E+003	
12B	Bus30	100.00	0.101	100.00	100.00	100.00	0.110	0.000	4.54E+004	2.70E+005			

 [#] Indicates fault current contribution is from three-winding transformers
 * Indicates a zero sequence fault current contribution (3I0) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus35

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Contr	ibution	3-Phas	se Fault		Line-T	o-Ground	ound Fault		L	ooking into			
From Bus	From Bus To Bus		kA	% Vo	Itage at Fron	n Bus	kA Sym	m. rms	%	Impedance or	100 MVA bas	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus35	Total	0.00	4.872	0.00	99.88	98.81	4.940	4.940	3.01E+003	4.84E+003	3.03E+003	5.05E+003	
Bus2	Bus35	74.25	4.658	74.93	100.50	98.48	4.701	4.940	3.24E+003	5.00E+003	3.03E+003	5.05E+003	
12C	Bus35	100.00	0.232	100.00	100.00	100.00	0.247	0.000	1.98E+004	1.18E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN:

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus36

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

UOFCALGSSE

Cont	Contribution		se Fault	Line-To-Ground Fault					L	ooking into	"From Bus	"	
From Bus	From Bus To Bus		kA	% Vo	ltage at Fron	n Bus	kA Sym	m. rms	%	Impedance or	n 100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus36	Total	0.00	4.781	0.00	100.15	98.64	4.841	4.841	3.11E+003	4.91E+003	3.03E+003	5.05E+003	
Bus2	Bus36	74.35	4.664	75.04	100.53	98.48	4.707	4.841	3.24E+003	4.99E+003	3.03E+003	5.05E+003	
12D	Bus36	100.00	0.127	100.00	100.00	100.00	0.137	0.000	3.62E+004	2.16E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN:

Engineer: Revision: Study Case: SC Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus37

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

UOFCALGSSE

Base

Contr	ibution	3-Phas	Phase Fault		Line-To-Ground Fault					Looking into "From Bus"			
From Bus	From Bus To Bus		kA	% Vo	Itage at Fron	n Bus	kA Sym	m. rms	%	Impedance or	100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus37	Total	0.00	4.793	0.00	100.12	98.66	4.853	4.853	3.09E+003	4.90E+003	3.03E+003	5.05E+003	
Bus2	Bus37	74.34	4.664	75.02	100.53	98.48	4.707	4.853	3.24E+003	4.99E+003	3.03E+003	5.05E+003	
12E	Bus37	100.00	0.140	100.00	100.00	100.00	0.151	0.000	3.28E+004	1.95E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus38

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Contri	bution	3-Phas	se Fault		Line-T	o-Ground	Fault		Looking into "From Bus"		"		
From Bus	To Bus	% V	kA	% Vo	Itage at Fron	n Bus	kA Sym	m. rms	%	Impedance or	n 100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus38	Total	0.00	4.705	0.00	100.45	98.52	4.754	4.754	3.19E+003	4.96E+003	3.03E+003	5.05E+003	
Bus2	Bus38	74.44	4.670	75.13	100.57	98.48	4.714	4.754	3.23E+003	4.99E+003	3.03E+003	5.05E+003	
12F	Bus38	100.00	0.038	100.00	100.00	100.00	0.041	0.000	1.22E+005	7.27E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN:

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus39

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

UOFCALGSSE

Contri	Contribution		se Fault	Line-To-Ground Fault					L	ooking into	"From Bus	**	
From Bus	From Bus To Bus		kA	% Vo	tage at Fron	n Bus	kA Symi	n. rms	%	Impedance or	100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus39	Total	0.00	4.762	0.00	100.22	98.61	4.820	4.820	3.13E+003	4.92E+003	3.03E+003	5.05E+003	
Bus2	Bus39	74.37	4.666	75.06	100.54	98.48	4.709	4.820	3.23E+003	4.99E+003	3.03E+003	5.05E+003	
12G	Bus39	100.00	0.105	100.00	100.00	100.00	0.114	0.000	4.38E+004	2.60E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus40

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

Contri	bution	3-Phas	se Fault		Line-T	o-Ground	Fault		Looking into "From Bus"		"		
From Bus	To Bus	% V	kA	% Vo	Itage at Fron	n Bus	kA Sym	m. rms	%	Impedance or	100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus40	Total	0.00	4.870	0.00	99.89	98.81	4.938	4.938	3.01E+003	4.84E+003	3.03E+003	5.05E+003	
Bus2	Bus40	74.25	4.658	74.93	100.50	98.48	4.701	4.938	3.24E+003	5.00E+003	3.03E+003	5.05E+003	
M2H	Bus40	100.00	0.230	100.00	100.00	100.00	0.245	0.000	2.00E+004	1.19E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

Contract: SN:

Engineer: Revision: Base Study Case: SC

Filename: ENEL674_mI4 With GEN~~~~ Normal Config.:

Fault at bus: Bus41

Prefault voltage = 0.208 kV = 100.00 % of nominal bus kV (0.208 kV) = 100.00 % of base kV (0.208 kV)

Positive & Zero Sequence Impedances

UOFCALGSSE

Contri	Contribution		se Fault	Line-To-Ground Fault					L	ooking into	"From Bus	**	
From Bus	om Bus To Bus		kA	% Vo	tage at Fron	n Bus	kA Symi	n. rms	%	Impedance or	100 MVA ba	se	
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0	
Bus41	Total	0.00	4.785	0.00	100.14	98.65	4.844	4.844	3.10E+003	4.90E+003	3.03E+003	5.05E+003	
Bus2	Bus41	74.35	4.664	75.03	100.53	98.48	4.707	4.844	3.24E+003	4.99E+003	3.03E+003	5.05E+003	
12A	Bus41	100.00	0.131	100.00	100.00	100.00	0.141	0.000	3.51E+004	2.09E+005			

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

22.5.0E 04-17-2025 Location: Date:

UOFCALGSSE

Contract: SN:

Engineer: Revision: Base Study Case: SC Filename: ENEL674_mI4 With GEN~~~~ Config.: Normal

Short-Circuit Summary Report

1.5-4 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 100 % of the Bus Nominal Voltage

Bus		3-Phase Fault		Line-to-Ground Fault			Line	-to-Line F	ault	*Line-to	-Line-to-C	Ground		
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	
Bus1	0.208	9.068	-15.859	18.268	8.631	-16.813	18.899	14.224	8.177	16.406	10.319	16.343	19.328	
Bus2	0.208	9.068	-15.859	18.268	8.631	-16.813	18.899	14.224	8.177	16.406	10.319	16.343	19.328	
Bus30	0.208	2.554	-4.016	4.759	2.550	-4.085	4.816	3.554	2.265	4.214	2.316	4.236	4.828	
Bus35	0.208	2.573	-4.137	4.872	2.588	-4.208	4.940	3.719	2.318	4.382	2.473	4.276	4.939	
Bus36	0.208	2.557	-4.040	4.781	2.557	-4.110	4.841	3.587	2.275	4.247	2.347	4.244	4.850	
Bus37	0.208	2.559	-4.052	4.793	2.561	-4.122	4.853	3.603	2.281	4.264	2.362	4.248	4.861	
Bus38	0.208	2.544	-3.957	4.705	2.531	-4.024	4.754	3.474	2.238	4.132	2.239	4.217	4.775	
Bus39	0.208	2.554	-4.020	4.762	2.551	-4.089	4.820	3.559	2.266	4.219	2.320	4.238	4.831	
Bus40	0.208	2.573	-4.135	4.870	2.587	-4.206	4.938	3.716	2.317	4.380	2.471	4.275	4.938	
Bus41	0.208	2.558	-4.044	4.785	2.559	-4.114	4.844	3.592	2.277	4.253	2.351	4.245	4.853	

All fault currents are symmetrical (1.5-4 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: SC Revision: Base
Filename: ENEL674_mI4 With GEN---- Config.: Normal

Sequence Impedance Summary Report

Bus		Positiv	e Seq. Imp.	(ohm)	Negativ	e Seq. Imp	. (ohm)	Zero	Seq. Imp.	(ohm)	Fa	ault Zf (oh	m)
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus1	0.208	0.00326	0.00571	0.00657	0.00306	0.00528	0.00610	0.00239	0.00597	0.00643	0.00000	0.00000	0.00000
Bus2	0.208	0.00326	0.00571	0.00657	0.00306	0.00528	0.00610	0.00239	0.00597	0.00643	0.00000	0.00000	0.00000
Bus30	0.208	0.01354	0.02129	0.02523	0.01298	0.02033	0.02412	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000
Bus35	0.208	0.01302	0.02093	0.02465	0.01209	0.01935	0.02281	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000
Bus36	0.208	0.01343	0.02122	0.02512	0.01280	0.02013	0.02385	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000
Bus37	0.208	0.01338	0.02119	0.02506	0.01271	0.02003	0.02372	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000
Bus38	0.208	0.01380	0.02147	0.02553	0.01346	0.02084	0.02481	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000
Bus39	0.208	0.01352	0.02128	0.02522	0.01295	0.02030	0.02408	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000
Bus40	0.208	0.01303	0.02094	0.02466	0.01211	0.01936	0.02284	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000
Bus41	0.208	0.01342	0.02121	0.02510	0.01277	0.02010	0.02381	0.01309	0.02184	0.02546	0.00000	0.00000	0.00000

Appendix D: Recommended Protection Settings

 Project:
 ETAP
 Page:
 1

 Location:
 22.5.0E
 Date:
 04-17-2025

 Contract:
 Revision:
 Base

Engineer:

Filename: ENEL674_Milestone-4~ Low Voltage Circuit Breaker Trip Device Settings

CB:	CB13					
MFR:	ABB	Tag #:		3-Phase kA:	1.82	Sym. (Calc.)
Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	1.42	Sym. (Calc.)
Size:	3	Cont. Amp:	3.000	Base kV:	0.208	(Calc.)
CB:	CB15					
MFR:	ABB	Tag #:		3-Phase kA:	2.01	Sym. (Calc.)
Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	1.49	Sym. (Calc.)
Size:	3	Cont. Amp:	3.000	Base kV:	0.208	(Calc.)
CB:	CB16					
MFR:	ABB	Tag #:		3-Phase kA:	1.82	Sym. (Calc.)
Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	1.42	Sym. (Calc.)
Size:	3	Cont. Amp:	3.000	Base kV:	0.208	(Calc.)
CB:	CB17					
MFR:	ABB	Tag #:		3-Phase kA:	1.84	Sym. (Calc.)
Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	1.43	Sym. (Calc.)
Size:	3	Cont. Amp:	3.000	Base kV:	0.208	(Calc.)
CB:	CB18					
MFR:	ABB	Tag #:		3-Phase kA:	2.00	Sym. (Calc.)
Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	1.49	Sym. (Calc.)
Size:	3	Cont. Amp:	3.000	Base kV:	0.208	(Calc.)
CB:	CB19					
MFR:	ABB	Tag #:		3-Phase kA:	1.78	Sym. (Calc.)
Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	1.40	Sym. (Calc.)
Size:	3	Cont. Amp:	3.000	Base kV:	0.208	(Calc.)
CB:	CB2					
MFR:	ABB	Tag #:		3-Phase kA:	0.00	Sym. (Calc.)
Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	0.00	Sym. (Calc.)
Size:	3	Cont. Amp:	3.000	Base kV:	0.000	(Calc.)
CB:	CB21					
	A D D	Tag #:		3-Phase kA:	1.68	Sym. (Calc.)
MFR:	ABB	rug //.				
MFR: Model:	DSM	Rating:	50 kA, 0.24 kV	LG kA:	1.36	Sym. (Calc.)

 Location:
 22.5.0E
 Date:
 04-17-2025

 Contract:
 Revision:
 Base

Engineer:

Filename: ENEL674_Milestone-4~~ Overcurrent Relay Settings

OCR:	Relay2					
MFR:	Siemens	Tag #:		CT	Base kV	If (kA)
Model:	7SG11		Phase:	400:5	0.208	8.52 3 ph, Sym. (Calc.)
						7.59 LG, Sym. (Calc.)
			GND:	400:5	0.208	7.59 LG, Sym. (Calc.)
			Sen. GND:	400:5	0.208	7.59 LG, Sym. (Calc.)

OC Level: OC1

		Range	Setting
Phase TOC	IEC - Normal Inv	verse	
	Pickup (Tap)	0.05 - 2.5 xCT Sec	0.050
	Time Dial		0.025
Phase INST	Pickup	0.05 - 52.5 xCT Sec	52.500
	Time Delay	0 - 300 Sec	0.010
Ground TOC	IEC - Extremely	Inverse	
	Pickup (Tap)	0.05 - 2.5 xCT Sec	0.050
	Time Dial		0.025
Ground INST	Pickup	0.05 - 52.5 xCT Sec	52.500
	Time Delay	0 - 300 Sec	0.010
Sen. GND INST	Pickup	0.005 - 0.96 xCT Sec	0.960
	Time Delay	0 - 300 Sec	0.010

OCR:	Relay3					
MFR:	Siemens	Tag #:		CT	Base kV	If (kA)
Model:	7SA522		Phase:	400:5	0.208	8.52 3 ph, Sym. (Calc.)
						7.59 LG, Sym. (Calc.)
			GND:	400:5	0.208	7.59 LG, Sym. (Calc.)

Please refer to the "Excel Device Settings Report" for Base Current Multiplier settings of this relay.

OC Level: OC1

		Range	Setting
Phase TOC	IEC-Normal Inve	erse	
	Pickup (Tap)	0.1 - 4 Sec - 1A	0.100
	Time Dial		0.500
Phase INST	Pickup	0.05 - 50 Sec - 1A	50.000
	Time Delay	0 - 30 Sec	0.010
Ground TOC	ANSI-Extremely	Inverse	
	Pickup (Tap)	0.05 - 4 Sec - 1A	0.050
	Time Dial		0.500
Ground INST	Pickup	0.05 - 25 Sec - 1A	25.000
	Time Delay	0 - 30 Sec	0.010

Project:ETAPPage:1Location:22.5.0EDate:04-17-2025Contract:SN:UOFCALGSSEEngineer:Study Case: A_SCRevision:Base

Filename: ENEL674_Milestone-4~

Appendix E: Incident Arc Flash

Config.: Normal

Energy

Electrical Transient Analyzer Program

Arc Flash Analysis

IEEE 1584-2018 ANSI Short-Circuit

Swing	V-Control	Load	Total			
1	0	9	10			
XFMR2	XFMR3	Reactor	Line/Cable	Impedance	Tie PD	Total
1	0	0	8	0	0	9
Synchronous	Power	Synchronous	Induction	Lumped		
Generator	Grid	Motor	Machines	Load	Inverter	Total
0	1	0	0	8	0	9
	1 XFMR2 1 Synchronous Generator	1 0 XFMR2 XFMR3 1 0 Synchronous Generator Grid	1 0 9 XFMR2 XFMR3 Reactor 1 0 0 Synchronous Power Generator Grid Motor	1 0 9 10 XFMR2 XFMR3 Reactor Line/Cable 1 0 0 8 Synchronous Power Generator Grid Motor Induction Machines	1 0 9 10 XFMR2 XFMR3 Reactor Line/Cable Impedance 1 0 0 8 0 Synchronous Power Generator Grid Motor Induction Lumped Load	1 0 9 10 XFMR2 XFMR3 Reactor Line/Cable Impedance Tie PD 1 0 0 8 0 8 Synchronous Power Generator Grid Motor Induction Lumped Load Inverter

System Frequency: 60.00

Unit System: English

Project Filename: ENEL674_Milestone-4~~

Output Filename: C:\ETAP 2250\ENEL674_Milestone-4\BACKUP\Untitled.AAFS

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent
Transformer Impedance:	Yes	Individual	
Reactor Impedance:	Yes	Individual	
Overload Heater Resistance:	No		
Transmission Line Length:	No		
Cable / Busway Length:	No		
Temperature Correction	Apply Adjustments	Individual /Global	Degree C
Transmission Line Resistance:	Yes	Individual	
Cable / Busway Resistance:	Yes	Individual	

Energy Levels

NFPA 70E 2021/ Z462 2021 / User-Defined

Level ID	cal/cm ²
Level A	2.00
Level B	4.00
Level C	8.00
Level D	25.00
Level E	40.00
Level F	100.00
Level G	120.00
Level H	0.00
Level I	0.00
Level J	0.00

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Bus Input Data

		Bus			Initial V	Voltage
ID	T	ype Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus1	SWN	IG 25.000	25.000	1	100.00	0.00
Bus2	Load	0.208	0.208	1	100.00	0.00
Bus25	Load	0.208	0.208	1	100.00	0.00
Bus27	Load	0.208	0.208	1	100.00	0.00
Bus29	Load	0.208	0.208	1	100.00	0.00
Bus30	Load	0.208	0.208	1	100.00	0.00
Bus31	Load	0.208	0.208	1	100.00	0.00
Bus32	Load	0.208	0.208	1	100.00	0.00
Bus33	Load	0.208	0.208	1	100.00	0.00
Bus35	Load	0.208	0.208	1	100.00	0.00

10 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV.
Base kV values of buses are calculated and used internally by ETAP.

Contract:

Location: 22.5.0E Date: 04-17-2025

SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~

Config.: Normal

Bus / Enclosure Input Data

		Faulted Bus			Arc Flash Ratings								
_				Equipment	Electrode	Conc	luctor	Enclosu	re Dimensions (inches)	Working	Avail. Protection	
	Enclosure ID	ID	Nom. kV	Type	Configuration	Type	Gap (mm)	Height	Width	Depth	Distance (in.)	cal/cm ²	
		Bus1	25.000	Other	VCB	Copper					18.00		
		Rus?	0.208	Other	VCB	Conner	13	14 00	12.00	8.03	18.00		

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens/1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway			Leng	gth					
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R	X	Y
Cable1	1.0MCUS1	2	328.1	0	1	75	0.21921	0.02900	0.0000517
Cable4	0.6NCUN1	2	328.1	0	1	75	0.19000	0.04560	0.0000000
Cable6	0.6NCUN1	2	328.1	0	1	75	0.19000	0.04560	0.0000000
Cable7	0.6NCUN1	2	328.1	0	1	75	0.19000	0.04560	0.0000000
Cable8	0.6NCUN1	2	328.1	0	1	75	0.19000	0.04560	0.0000000
Cable9	0.6NCUN1	2	328.1	0	1	75	0.19000	0.04560	0.0000000
Cable10	0.6NCUN1	2	328.1	0	1	75	0.19000	0.04560	0.0000000
Cable12	0.6NCUN1	2	328.1	0	1	75	0.19000	0.04560	0.0000000

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

2-Winding Transformer Input Data

	Transformer	former					2	Z Variatio	n	% Tap	Setting	Adjusted	
	ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	
T1		0.112	25.000	0.208	5.00	1.50	0	0	0	0	0	5.0000	

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

Branch Connections

CKT/Bran	ich	Con	nnected Bus ID	% Im	pedance, P	os. Seq., 100 l	MVAb	
ID	Type	From Bus	To Bus	R	X	Z	Y	
T1	2W XFMR	Bus1	Bus2	2476.34	3714.51	4464.29		
Cable1	Cable	Bus27	Bus2	16623.39	2199.16	16768.22		
Cable4	Cable	Bus25	Bus2	14408.27	3457.99	14817.42		
Cable6	Cable —	Bus29	Bus2	14408.27	3457.99	14817.42		
Cable7	Cable	Bus30	Bus2	14408.27	3457.99	14817.42		
Cable8	Cable	Bus31	Bus2	14408.27	3457.99	14817.42		
Cable9	Cable	Bus32	Bus2	14408.27	3457.99	14817.42		
Cable10	Cable	Bus33	Bus2	14408.27	3457.99	14817.42		
Cable12	Cable	Bus35	Bus2	14408.27	3457.99	14817.42		

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Power Grid Input Data

Power Grid	Connected Bus	Rat	ting		% Impedan 100 MVA Ba	ce se
ID	ID	MVAsc	kV	X/R	R	X
U1	Bus1	1500.000	25.000	1.50	3.69800	5.54700

Total Connected Power Grids (= 1): 1500.000 MVA

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~ Config.: Normal

Lumped Load Input Data

	Motor Loads							Static Loads						
Lumped Load	Connected Bus	Rati	ing	%	Load	Load	ling	X/R	Ratio		Impedan chine Ba		Load	ling
ID	ID	kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	R	X"	X'	kW	kvar
12A	Bus25	29.8	0.208	80	20	22.6	7.4	2.38	2.38	8.403	20.00	50.00	5.66	1.86
12B	Bus27	22.0	0.208	80	20	16.7	5.5	2.38	2.38	8.403	20.00	50.00	4.18	1.37
12C	Bus29	53.4	0.208	80	20	40.6	13.4	2.38	2.38	8.403	20.00	50.00	10.15	3.34
12D	Bus30	29.8	0.208	80	20	22.6	7.4	2.38	2.38	8.403	20.00	50.00	5.66	1.86
12E	Bus31	32.7	0.208	80	20	24.9	8.2	2.38	2.38	8.403	20.00	50.00	6.22	2.04
12F	Bus35	11.0	0.208	80	20	8.4	2.7	2.38	2.38	8.403	20.00	50.00	2.09	0.69
12G	Bus33	25.3	0.208	80	20	19.2	6.3	2.38	2.38	8.403	20.00	50.00	4.80	1.58
М2Н	Bus32	52.9	0.208	80	20	40.2	13.2	2.38	2.38	8.403	20.00	50.00	10.06	3.31

Total Connected Lumped Loads (= 8): 257.0 kVA

Project:		ETAP		Page:	10
Location:		22.5.0E		Date:	04-17-2025
Contract:				SN:	UOFCALGSSE
Engineer:		Study Case: A SC	A SC	Revision:	Base
Filename:	ENEL674_Milestone-4~~	Stady Case. 11		Config.:	Normal

Arc Flash Analysis Cycle Calculation Method

Correction

	Ar	c Fault Location			Fac	tors				Incide	ent Energy		
		Enclosure	Electrode	Prefault	Iarc	Encl.			Source PD	FCT		IE	AFB
Element ID	Connected Bus ID	ID Type	Config.	kV	Var. (%)	CF (pu)	Ibf" (kA)	Ia" (kA)	Ia" (kA)	(Cycles)	Source PD ID	(cal/cm²)	(ft)
Bus1	Bus1	Bus Arc Fault	VCB		0		34.655	34.655	0.000	30.0		1061.394	
									FCT =	30.0	(+) Total	= 1061.394	44.69
Bus2	Bus2	Bus Arc Fault	VCB	0.208	0	1.000	8.524	4.461	0.000 FCT =	30.0 30.0	Total	4.123 = 4.123	3.25
CB1	Bus2	Source PD Line Sid	e VCB	0.208	0		8.524	0.000	0.000		Total	0.000	0.00

[#] The FCT (fault clearing time) has been limited to the maximum value allowed in the study case. The incident energy is calculated using this value.

⁺ The theoretically derived Lee method was used to determine the incident energy and flash protection boundary for this location since the bolted fault current or nominal voltage or gap values are outside the empirical IEEE 1584-2018 method range.

⁰ The incident energy has been automatically assigned at this location (i.e. 2000 A/ 240 Volt limit guideline) based on actual study case settings.

 $[\]underline{1} \ \ The user-defined fault clearing PD, as specified in the bus/enclosure editor, is outside the region for calculating short-circuit contributions.$

 $[\]underline{2}$ The user-defined Relay, as specified in the bus/enclosure editor, is not connected to an energized phase CT or has no interlock PDs.

³ The user-defined fault clearing PD, as specified in the bus/enclosure editor, is not energized.

Project: **ETAP** Page: 11 22.5.0E 04-17-2025 Location: Date: Contract: SN: UOFCALGSSE Revision: Base Engineer: Study Case: A_SC Filename: ENEL674_Milestone-4~~ Config.: Normal

Bus Incident Energy Summary

Ві	Total F			Arc-Flash Analysis Results					
		Current (l			FCT	Incident E	AFB	Energy	
ID	Nom. kV	Туре	Bolted	Arcing	(cycles)	(cal/cm²)	(ft)	Level	
#Bus1	25.000	Other	34.655	34.655	30.000	1061.394	44.69	> Level G	
Bus2	0.208	Other	8.524	4.461	30.000	4.123	3.25	Level C	

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_Milestone-4~~ Config.: Normal

Bus Arc Flash Hazard Analysis Summary

F	aulted Bus			F	ault Curi	ent	Trip De	vice			Arc Flash	Incident	Working		
		Equipment	Gap	Bolted Fa	ult (kA)	PD Arc		Trip	Open	FCT	Boundary	Energy	Distance	Energy	
ID	Nom. kV	Type	(mm)	Bus	PD	Fault (kA)	Source Trip Device ID	(cycle)	(cycle)	(cycle)	(ft)	(cal/cm ²)	(in)	Level	
#Bus1	25.000	Other		34.655						30.00	44.7	1061.4	18	> Level G	
Bus2	0.208	Other	13	8.524						30.00	3.2	4.1	18	Level C	

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base
Filename: ENEL674_mI4 With GEN~~~ Config.: Normal

Electrical Transient Analyzer Program

Arc Flash Analysis

IEEE 1584-2018 ANSI Short-Circuit

	Swing	V-Control	Load	Total			
Number of Buses:	1	0	9	10			
	XFMR2	XFMR3	Reactor	Line/Cable	Impedance	Tie PD	Total
Number of Branches:	0	0	0	8	0	1	9
	C1	D	C1	To decide o	T 1		
	Synchronous Generator	Power Grid	Synchronous Motor	Induction Machines	Lumped Load	Inverter	Total
Number of Machines:	1	0	0	0	8	0	9

System Frequency: 60.00

Unit System: English

Project Filename: ENEL674_mI4 With GEN----

Output Filename: C:\ETAP 2250\ENEL674_Milestone-4\ENEL674_mI4 With GEN\BACKUP\Untitled.AAFS

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_mI4 With GEN~~~ Config.: Normal

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent
Transformer Impedance:	Yes	Individual	
Reactor Impedance:	Yes	Individual	
Overload Heater Resistance:	No		
Transmission Line Length:	No		
Cable / Busway Length:	No		
Temperature Correction	Apply Adjustments	Individual /Global	Degree C
Transmission Line Resistance:	Yes	Individual	
Cable / Busway Resistance:	Yes	Individual	

Energy Levels

NFPA 70E 2021/ Z462 2021 / User-Defined

Level ID	cal/cm ²
Level A	2.00
Level B	4.00
Level C	8.00
Level D	25.00
Level E	40.00
Level F	100.00
Level G	120.00
Level H	0.00
Level I	0.00
Level J	0.00

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_ml4 With GEN~~~ Config.: Normal

Bus Input Data

		I	Bus			Initial V	Voltage
	ID	Туре	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus1		SWNG	0.208	0.208	1	100.00	0.00
Bus2		Load	0.208	0.208	1	100.00	0.00
Bus30		Load	0.208	0.208	1	100.00	0.00
Bus35		Load	0.208	0.208	1	100.00	0.00
Bus36		Load	0.208	0.208	1	100.00	0.00
Bus37		Load	0.208	0.208	1	100.00	0.00
Bus38		Load	0.208	0.208	1	100.00	0.00
Bus39		Load	0.208	0.208	1	100.00	0.00
Bus40		Load	0.208	0.208	1	100.00	0.00
Bus41		Load	0.208	0.208	1	100.00	0.00

10 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV.
Base kV values of buses are calculated and used internally by ETAP.

Project: Page: 4 **ETAP**

Location: 22.5.0E Date: 04-17-2025

> UOFCALGSSE SN: Revision:

Base

Engineer: Study Case: A_SC

Contract:

Filename:

ENEL674_mI4 With GEN~~~~

Config.: Normal

Bus / Enclosure Input Data

	Faulted Bus					Arc Flash Ra	ntings				
			Equipment	Electrode	Cone	ductor	Enclosur	re Dimensions (i	nches)	Working	Avail. Protection
Enclosure ID	ID	Nom. kV	Туре	Configuration	Туре	Gap (mm)	Height	Width	Depth	Distance (in.)	cal/cm ²
	Bus1	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus2	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus30	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus35	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus36	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus37	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus38	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus40	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	
	Bus41	0.208	Other	VCB	Copper	13	14.00	12.00	8.03	18.00	

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_mI4 With GEN~~~ Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens/1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway			Leng	gth						
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R	X	Y	
Cable1			328.1	0	1	75	0.03262	0.04837	0.0000184	
Cable6			328.1	0	1	75	0.03262	0.04837	0.0000184	
Cable7			328.1	0	1	75	0.03262	0.04837	0.0000184	
Cable8			328.1	0	1	75	0.03262	0.04837	0.0000184	
Cable9			328.1	0	1	75	0.03262	0.04837	0.0000184	
Cable10			328.1	0	1	75	0.03262	0.04837	0.0000184	
Cable11			328.1	0	1	75	0.03262	0.04837	0.0000184	
Cable12			328.1	0	1	75	0.03262	0.04837	0.0000184	

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_ml4 With GEN~~~ Config.: Normal

Branch Connections

CKT/Brai	nch	Con	nected Bus ID	% Im	pedance, Po	os. Seq., 100 I	MVAb	
ID	Туре	From Bus	To Bus	R	X	Z	Y	
Cable1	Cable	Bus2	Bus30	2473.60	3668.41	4424.46		
Cable6	Cable	Bus2	Bus35	2473.60	3668.41	4424.46		
Cable7	Cable	Bus2	Bus36	2473.60	3668.41	4424.46		
Cable8	Cable —	Bus2	Bus37	2473.60	3668.41	4424.46		
Cable9	Cable	Bus2	Bus38	2473.60	3668.41	4424.46		
Cable10	Cable	Bus2	Bus39	2473.60	3668.41	4424.46		
Cable11	Cable	Bus2	Bus40	2473.60	3668.41	4424.46		
Cable12	Cable	Bus2	Bus41	2473.60	3668.41	4424.46		
CB1	Tie Breaker	Bus1	Bus2					

22.5.0E 04-17-2025 Location: Date:

Contract: SN: UOFCALGSSE

Engineer: Revision: Base Study Case: A_SC

Filename: ENEL674_mI4 With GEN~~~~ Config.: Normal

Synchronous Generator Input Data

% Impedance in Machine Base

Synchronous Generator		Connected Bus	1	Rating			Ratio		Xd"			
ID	Туре	ID	MVA	kV	RPM	X"/R	X'/R	R	Adj.	Tol.	Xd'	
Gen1	Steam Turbo	Bus1	0.290	0.208	1800	1.67	1.67	2.400	4.00	0.0	4.00	
Total Connected Synchro												

Location: 22.5.0E Date: 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_ml4 With GEN---- Config.: Normal

Lumped Load Input Data

	Lumped Load									Motor Loads								
							% Impedance											
Lumped Load	Connected Bus	Rati	Rating		% Load		Loading		Ratio	(Machine Base)			Loading					
ID	ID	kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	R	X"	X'	kW	kvar				
12A	Bus41	29.9	0.208	80	20	22.7	7.5	2.38	2.38	8.403	20.00	50.00	5.68	1.87				
12B	Bus30	23.1	0.208	80	20	17.7	5.5	2.38	2.38	8.403	20.00	50.00	4.42	1.37				
12C	Bus35	53.0	0.208	80	20	40.3	13.2	2.38	2.38	8.403	20.00	50.00	10.07	3.31				
12D	Bus36	29.0	0.208	80	20	22.0	7.2	2.38	2.38	8.403	20.00	50.00	5.51	1.81				
12E	Bus37	32.0	0.208	80	20	24.3	8.0	2.38	2.38	8.403	20.00	50.00	6.08	2.00				
12F	Bus38	8.6	0.208	80	20	6.5	2.1	2.38	2.38	8.403	20.00	50.00	1.63	0.54				
12G	Bus39	24.0	0.208	80	20	18.2	6.0	2.38	2.38	8.403	20.00	50.00	4.56	1.50				
М2Н	Bus40	52.5	0.208	80	20	39.9	13.1	2.38	2.38	8.403	20.00	50.00	9.97	3.28				

Total Connected Lumped Loads (= 8): 252.1 kVA

Location: 22.5.0E 04-17-2025 Date:

SN: UOFCALGSSE Contract:

Engineer: Base Revision: Study Case: A_SC

ENEL674_mI4 With GEN~~~~ Normal Filename: Config.:

Arc Flash Analysis 1/2 Cycle Calculation Method

Correction **Factors**

	Arc Fault Location									Incident Energy								
		Enclosu	re	Electrode	Prefault	Iarc	Encl.			Source PD	FCT		IE	AFB				
Element ID	Connected Bus ID	ID	Туре	Config.	kV	Var. (%)	CF (pu)	Ibf" (kA)	Ia" (kA)	Ia" (kA)	(Cycles)	Source PD ID	(cal/cm ²)	(ft)				
Bus1	Bus1		Bus Arc Fault	VCB	0.208	0	1.000	19.673	10.529	0.000	42.0		14.432					
										FCT =	42.0	Total =	14.432	7.11				
CB1	Bus1		Load PD Line Side	VCB	0.208	0	1.000	19.673	10.529	0.000	42.0		14.432					
										FCT =	42.0	Total =	= 14.432	7.11				
Bus2	Bus2		Bus Arc Fault	VCB	0.208	0	1.000	19.673	10.529	0.000	46.8		16.081					
										FCT =	46.8	Total =	16.081	7.61				
D. 10	D 20		D 4 E 1	MCD	0.200	0	1 000	4.070	2.460	0.000			0.000					
Bus30	Bus30		Bus Arc Fault	VCB	0.208	0	1.000	4.979	2.460	0.000		Cannot be Determined	0.000					
												Total =	0.000	0.00				
CB15	Bus30		Source PD Line Side	VCB	0.208	0		4.979	0.000	0.000		Cannot be Determined	0.000					
												Total =	0.000	0.00				

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_mI4 With GEN---- Config.: Normal

Correction

	Arc F		Fac	tors	Incident Energy								
		Enclosure	Electrode	Prefault	Iarc	Encl.			Source PD	FCT		IE	AFB
Element ID	Connected Bus ID	ID Type	Config.			Var. (%) CF (pu) I		Ia" (kA)	Ia" (kA)	(Cycles)	Source PD ID	(cal/cm ²)	(ft)
Bus35	Bus35	Bus Arc Fault	VCB	0.208	0	1.000	5.264	2.617	0.000		Cannot be Determined	0.000	
											Total =	0.000	0.00
CB20	Bus35	Source PD Line Side	VCB	0.208	0		5.264	0.000	0.000		Cannot be Determined	0.000	
											Total =	0.000	0.00
Bus36	Bus36	Bus Arc Fault	VCB	0.208	0	1.000	5.034	2.491	0.000		Cannot be Determined	0.000	
											Total =	0.000	0.00
CB21	Bus36	Source PD Line Side	VCB	0.208	0		5.034	0.000	0.000		Cannot be Determined	0.000	
											Total =	0.000	0.00
Bus37	Bus37	Bus Arc Fault	VCB	0.208	0	1.000	5.063	2.507	0.000		Cannot be Determined Total =	0.000	0.00
											Total -	- 0.000	0.00
CB22	Bus37	Source PD Line Side	VCB	0.208	0		5.063	0.000	0.000		Cannot be Determined	0.000	
											Total =	0.000	0.00

Location: 22.5.0E Date: 04-17-2025

Contract: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

Filename: ENEL674_mI4 With GEN~~~ Config.: Normal

Correction

	Arc F			Fac	tors				Incid	ent Energy			
		Enclosure	Electrode	Prefault	Iarc	Encl.			Source PD	FCT		IE	AFB
Element ID	Connected Bus ID	ID Type	Config.			Var. (%) CF (pu)		Ibf" (kA) Ia" (kA)		(Cycles) Source PD ID		(cal/cm ²)	(ft)
Bus38	Bus38	Bus Arc Fault	VCB	0.208	0	1.000	4.840	2.385	0.000		Cannot be Determined Total =	0.000	0.00
CB23	Bus38	Source PD Line Side	VCB	0.208	0		4.840	0.000	0.000		Cannot be Determined Total =	0.000	0.00
Bus40	Bus40	Bus Arc Fault	VCB	0.208	0	1.000	5.259	2.615	0.000		Cannot be Determined	0.000	0.00
CB25	Bus40	Source PD Line Side	VCB	0.208	0		5.259	0.000	0.000		Cannot be Determined Total =	0.000	0.00
Bus41	Bus41	Bus Arc Fault	VCB	0.208	0	1.000	5.043	2.496	0.000		Cannot be Determined Total =	0.000	0.00
CB26	Bus41	Source PD Line Side	VCB	0.208	0		5.043	0.000	0.000		Cannot be Determined Total =	0.000	0.00

Project:		ETAP		Page:	12
Location:		22.5.0E		Date:	04-17-2025
Contract:				SN:	UOFCALGSSE
Engineer:		Study Case: A	SC	Revision:	Base
Filename:	ENEL674_mI4 With GEN~~~~	21.0.0, 20.00. 11_	50	Config.:	Normal

					Corre	ection									
	Arc Fault Location						Factors Incident Energy								
			Enclosure		Electrode	Prefault	Iarc	Encl.			Source PD	FCT		IE	AFB
Elemo	ent ID Co	onnected Bus ID	ID	Туре	Config.	kV	Var. (%)	CF (pu)	Ibf' (kA)	Ia" (kA)		(Cycles)	Source PD ID	(cal/cm ²)	(ft)

[#] The FCT (fault clearing time) has been limited to the maximum value allowed in the study case. The incident energy is calculated using this value.

- 0 The incident energy has been automatically assigned at this location (i.e. 2000 A/240 Volt limit guideline) based on actual study case settings.
- 1 The user-defined fault clearing PD, as specified in the bus/enclosure editor, is outside the region for calculating short-circuit contributions.
- 2 The user-defined Relay, as specified in the bus/enclosure editor, is not connected to an energized phase CT or has no interlock PDs.
- $\underline{3}$ The user-defined fault clearing PD, as specified in the bus/enclosure editor, is not energized.

⁺ The theoretically derived Lee method was used to determine the incident energy and flash protection boundary for this location since the bolted fault current or nominal voltage or gap values are outside the empirical IEEE 1584-2018 method range.

 Project:
 ETAP
 Page:
 13

 Location:
 22.5.0E
 Date:
 04-17-2025

Contract: SN: UOFCALGSSE

Engineer: Study Case: A_SC Revision: Base

ENEL674_mI4 With GEN~~~~

Filename:

Bus Incident Energy Summary

	Bus				ult		Arc-Flash Analysis Results						
	Dus			Current (Current (kA)			AFB	Energy				
ID		Nom. kV	Туре	Bolted	Arcing	(cycles)	(cal/cm ²)	(ft)	Level				
Bus1	_	0.208	Other	19.673	10.529	42.000	14.432	7.11	Level D				
Bus2		0.208	Other	19.673	10.529	46.800	16.081	7.61	Level D				
Bus30	_	0.208	Other	4.979	2.460								
Bus35		0.208	Other	5.264	2.617								
Bus36		0.208	Other	5.034	2.491								
Bus37		0.208	Other	5.063	2.507								
Bus38		0.208	Other	4.840	2.385								
Bus40		0.208	Other	5.259	2.615								
Bus41		0.208	Other	5.043	2.496								

Config.:

Normal

Project: ETAP Page: 14 22.5.0E

Date: 04-17-2025 Location:

Contract: SN: UOFCALGSSE Engineer: Revision: Base

Study Case: A_SC Filename: ENEL674_mI4 With GEN~~~~ Config.: Normal

Bus Arc Flash Hazard Analysis Summary

	Faulted Bus			Fault Current			Trip De		Arc Flash	Incident	Working				
ID	Nom. kV	Equipment Type	Gap (mm)	Bolted F	ault (kA) PD	PD Arc Fault (kA)	Source Trip Device ID	Trip (cycle)	Open (cycle)	FCT (cycle)	Boundary (ft)		Distance (in)	Energy Level	
Bus 1	0.208	Other	13	19.673						42.00	7.1	14.4	18	Level D	
Bus2	0.208	Other	13	19.673						46.80	7.6	16.1	18	Level D	
Bus30	0.208	Other	13	4.979							0.0	0.0	18		_
Bus35	0.208	Other	13	5.264							0.0	0.0	18		
Bus36	0.208	Other	13	5.034							0.0	0.0	18		
Bus37	0.208	Other	13	5.063							0.0	0.0	18		
Bus38	0.208	Other	13	4.840							0.0	0.0	18		
Bus40	0.208	Other	13	5.259							0.0	0.0	18		
Bus41	0.208	Other	13	5.043							0.0	0.0	18		