Objective 1 - Holes

Link to section in online textbook.

Introduction video describing holes/vertical asymptotes without limits.

A *hole* in a function occurs when the value of that function is $\frac{0}{0}$. For example, the function

$$f(x) = \frac{(x+2)(x-3)}{x-3}$$

has a hole at x=3 because $f(3)=\frac{0}{0}$. If we want to describe this with limits, we would say $\lim_{x\to 3}f(x)=\frac{0}{0}$. Holes only affect the function *exactly* at that point. Notice for our example that

$$f(x) = x + 2$$
 when $x \neq 3$ and $f(x)$ is undefined at $x = 3$.

That means the rational function actually looks like a line almost everywhere! Recognizing if a rational function has holes will be our first step in graphing these functions.

Theorem 1. Holes of a Rational Function:

A rational function f(x) has a hole at x = a if

$$\lim_{x \to a} f(x) = \frac{0}{0}.$$

Thus, to determine if there are any holes in a rational function, we need to factor the denominator and check if that value is a zero of the numerator (using Synthetic Division, if necessary).

Practice with the questions below.

Question 1 Find all holes of the rational function below. If they do not exist, answer "NA".

$$f(x) = \frac{??}{??}$$

Learning outcomes:

Author(s): Darryl Chamberlain Jr.

Holes: at the x-value x = ??

Question 2 Find all holes of the rational function below. If they do not exist, answer "NA".

$$f(x) = \frac{??}{??}$$

Holes: at the x-value x = NA

Question 3 Find all holes of the rational function below. If they do not exist, answer "NA".

$$f(x) = \frac{??}{??}$$

Holes: at the x-value x = NA

Question 4 Find all holes of the rational function below. If they do not exist, answer "NA".

$$f(x) = \frac{??}{??}$$

Holes: at the x-value x = NA

Question 5 Find all holes of the rational function below. If they do not exist, answer "NA".

$$f(x) = \frac{??}{??}$$

Holes: at the x-value $x = \boxed{??}$

Question 6 Find all holes of the rational function below. If they do not exist, answer "NA".

$$f(x) = \frac{??}{??}$$

Holes: at the x-value $x = \boxed{??}$