Algebraic Theory I

Thomas Fleming

September 29, 2021

Contents

Lecture 16

Wed 29 Sep 2021 11:25

Lecture 15: Nilpotent Groups (2)

Tue 28 Sep 2021 17:46

Lemma 0.1. If H, K are groups, then $Z(H \times K) = Z(H) \times Z(K)$.

Proof. Let $(x,y) \in H \times K$. If $(x,y) \in Z(H \times K)$ then

$$\underbrace{\left(a,1\right)\left(x,y\right)\left(a,1\right)^{-1}}_{=(axa^{-1},1)} = (x,y).$$

Hence, $x \in Z\left(H\right)$ and similarly, $y \in Z\left(K\right)$. Hence, $Z\left(H \times K\right) \subseteq Z\left(H\right) \times Z\left(K\right)$. The other direction of inclusion is trivial and left as an exercise.

Lemma 0.2. Let $\varphi: G \to G'$ be a homomorphism with $\ker(\varphi) = K$ and $H \leq G$ such that $K \leq H$. Then, $N_G(H) = f^{-1}(N_{G'}(\varphi(H)))$.

Proof. Let $x \in N_G(H)$, so $xHx^{-1} = H$. Hence,

$$\varphi(H) = \varphi(xHx^{-1}) = \varphi(x)\varphi(H)\varphi(x)^{-1}$$
.

Thus,

$$\varphi(x) \in N_{G'}(\varphi(H))$$

$$\Rightarrow x \in \varphi^{-1}(N_{G'}(\varphi(H)))$$

$$\Rightarrow N_{G}(H) \subseteq \varphi^{-1}(N_{G'}(\varphi(H))).$$

Conversely, let $x \in \varphi^{-1}(N_{G'}(\varphi(H)))$, hence $\varphi(x) \in N_{G'}(\varphi(H))$. Then, we see

$$\varphi(H) = \varphi(x) \varphi(H) \varphi(x^{-1})$$

$$= \varphi(xHx^{-1})$$

$$\Rightarrow xHx^{-1} \subseteq \varphi^{-1}(\varphi(H))$$

$$= \langle H, \ker(\varphi) \rangle$$

$$= H \text{ as } \ker(\varphi) \subseteq H.$$

Hence, $xHx^{-1} \subseteq H$, so $x \in N_G(H)$. This concludes the proof.

Now, recall that if G is a finite group with P being a sylow p-group, then TFAE

- 1. P is unique.
- 2. $P \triangleleft G$.
- 3. P is characteristic.
- 4. Any subgroup generated by elements whose orders are powers of p is itself a p-group.

Theorem 0.1. If G is a finite group, then the following are equivalent:

- 1. G is nilpotent.
- 2. $H < G \Rightarrow H < N_G(H)$.
- 3. All sylow *p*-groups are normal.
- 4. G is the direct product of its sylow p-groups.
- *Proof.* (2 ⇒ 3). Let P be a sylow p-group of G. Assume P is not normal, then denote $N = N_G(P) \subset G$. Hence, by the preceding lemma, P is characteristic in N. Then, as $N \leq N_G(N)$, we see $P \leq N_G(N)$. But $N = N_G(P)$ was the largest subgroup in which P was normal, hence $N_G(P) = N_G(N)$. So, by contrapositive of the assumption, (2), we have $N = N_G(N)$, so N = G, hence $P \leq G$.
 - $(3 \Rightarrow 4)$.
 - $(1 \Rightarrow 2)$. Let G be nilpotent. If G is abelian, then $N_G(A) = G$ for all $A \leq G$, hence any proper subgroup H < G has $H < N_G(H) = G$. Hence, assume G is non-abelian and proceed by induction on |G| with base case |G| = p being already completed p-prime. Suppose indirectly that there is an H < G such that $H = N_G(H)$.

Now, we note that $Z\left(G\right)\leq N_{G}\left(H\right)=H$ by definition of $Z\left(G\right)$. That is, $Z\left(G\right)\leq H$. Let $\varphi:G\to G/Z\left(G\right)$, $x\mapsto \varphi(x)=xZ\left(G\right)$. Since G is nilpotent, $Z\left(G\right)=1\Leftrightarrow G=1$, but we assumed G to be nonabelian, so this is not the case. Hence, we can assume $Z\left(G\right)=\{1\}$, hence $|G/Z\left(G\right)|<|G|$. As we know, G being nilpotent implies $G/Z\left(G\right)$ is nilpotent. Lastly, we note that $Z\left(G\right)\leq H< G$, so by the lattice theorem, we have $H/Z\left(G\right)< G/Z\left(G\right)$. Applying the induction hypothesis yields $H/Z\left(G\right)< N_{G/Z\left(G\right)}\left(H/Z\left(G\right)\right)$. Recalling the lemma from last class, $\varphi^{-1}\left(N_{G/Z\left(G\right)}\left(H/Z\left(G\right)\right)\right)=N_{G}\left(H\right)$. Then, we note

$$\varphi^{-1}\left(\varphi\left(H\right)\right) < \varphi^{-1}\left(N_{\varphi\left(G\right)}\left(\varphi\left(H\right)\right)\right) = N_{G}\left(H\right).$$

And as $\ker (\varphi) = Z(G) \leq H$, we have $H < N_G(H)$.