

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ	
Группа 🗦 3 1 1 4	К работе допущен
Студент Митрогранов Е. Ю	Работа выполнена03.06
Преподаватель Кригов В. А.	Отчет принят
Рабочий прото	окол и отчет по
лабораторн	ой работе № 5,02
Uccegolanne freune	20 Mana Adrane VIII
Λ	m 4 (14:40)
1. Цель работы.	
Uzyrene brennero gomsogopekna	There
2. Задачи, решаемые при выполнении раб	· ·
Transferred King and Zugung	yers Hargieneur om racmonn chere. pomo oppper na gra mjez vaneparok
Oyenka gnarema noemaannoù Tra	un
3. Объект исследования.	
gomo kanegrax mystra	
4. Метод экспериментального исследован	ия.
Monog Prenera (general annua	nygu)
5. Рабочие формулы и исходные данные.	
1) yourk	
2) Maznin	

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Borbmury	Guggsoboi	0-5B	0,0005B
2	Aurepueny	Gugonoloi	U-\$6.A	0,005 A
3	Repektionaments, grunn baun	yuggrabai	200-780 Mm	14m.
4			4	

D'Iacien mara no giune boinne Die yunker; dan =28gna of the - Inin = 4 till Del voenne: Lup = 33 Fun she = day - dain = 7 pm. Die kaladoma: Lup = 248 nu shar dun - linin = 2 hur. Dynner brucienin gre yanke: a= \(\varepsilon \); \(\varepsilon \); \(\varepsilon \); 18.2,51.1016-20,5,4.1015 $(\xi J_i)^2 - n(\xi J_i)^2$ (2,51).10 16-20.2,51. 1032 = 4, 14.10-5 (3B.C) B = { J, V, o { J, - E J; { U; 5,4.1015.2,51.106-2,5.1032.18 (EJ) 2 - N - EJ;2 (2,51 11016)2-20. 2,5.1032 = -4,29 (38) Thomasman Transe h = a = 4,14 .10-5 (38.0) padona bunega Abus = -13 = 4,29 (28) Anavorance bounciene gre Mainie, h=a=4,13.10-15 (ab.c) Abux =-13 = 3,66 (38) Anaromenne biranciena qua kodarbma. N=a= 4,06.10-15 (28-c) Afrin = -13=.4,87(38)

3) Bouwerene no greuno com gur no consennoù Transa. $\int_{C_{r}} = \frac{1}{n} \xi \int_{1}^{1} = \frac{1}{20} \cdot 2,51 \cdot 10^{16} = 1,25 \cdot 10^{15} (r_{y})$ $V_{cp} = \frac{1}{n} \leq U_i = \frac{1}{20}.18 = 0,89(8)$ garee no 14ths D= { (Jop-J;)2 $\leq d_i^2 = \leq (U_i - (\beta + \alpha \cdot J_i))^2 = 5,74.10^{-3}(\beta)$ $\int_{b}^{2} = \sqrt{\frac{\sum d_{1}^{2}}{D(N-2)}} = \sqrt{\frac{5,79.10^{-3}}{3,67.10^{29}.18}} = 2,94.10^{-17}(78)$ $\Delta_{b_1} = S_{b_1} = 2 \cdot 2,94 \cdot 10^{-17} = 5,88 \cdot 10^{-17} (38.c)$ Anadorwino gra Warnua: $\Delta b_2 = 2,37 \cdot 10^{-17} (38.c)$

trassumo que kodalloma

△ b = 6,1.10-14 (>B.C)

Burncieme gregnero znarema u norpe unocena.

$$h_{ch} = \frac{h_1 + h_2 + h_3}{3} = 4, 1.10^{-15} (38.c)$$

$$2 h_{ch} = \frac{1}{3} \sqrt{4 h_1^2 + 4 h_2^2} = 3.00$$

$$= 2, 9 \cdot 10^{-17} = 0,029 \cdot 10^{-5} (38.c)$$

$$E_h = \frac{0 h_{ch}}{h_{ch}} \cdot 100 = 0,74 \%$$

(2) Buboy
$$h = (4,1 \pm 0,08) \cdot 10^{-15} (38.c) \qquad \xi_{n} = 0,22\%$$

- 1) Rodycena zaleuculuscus zaniparoyer paznoemu nomenyuarob om Rucmann chewa
- 2) Jenanobrem zparenna knacksir spannym pomozgopekma. Gle mper verneptionob.
- 3) Onjeglieur znavenne normaannoù Franka u el norpeunsens.
- 4) Branepeuennacional gracebue nanogunas la referen norpeunocume.
- 5) Trobègens koebernoe uzwepenne paromer bærskoga 32 menaisb.

Kodavom: 4,87 4,40

Схема установки

Результат тестирования

Полученные таблицы измерений

1. Цинк (\(\lambda\)kp = 289 нм)

Trial	Metal	Voltage (V)	Current (pA)	Frequency (Hz)	Wavelength (nm)
1	Zinc	0,068	0,01	1,05E+15	285
2	Zinc	0,141	0	1,07E+15	280
3	Zinc	0,209	-0,02	1,09E+15	276
4	Zinc	0,289	-0,01	1,11E+15	271
5	Zinc	0,371	0	1,12E+15	267
6	Zinc	0,448	0	1,15E+15	262
7	Zinc	0,521	0,02	1,16E+15	258
8	Zinc	0,618	0	1,19E+15	253
9	Zinc	0,721	-0,02	1,20E+15	249
10	Zinc	0,789	0,02	1,22E+15	245
11	Zinc	0,89	0,02	1,25E+15	240
12	Zinc	0,971	-0,02	1,27E+15	236
13	Zinc	1,09	0	1,30E+15	231
14	Zinc	1,18	0,02	1,32E+15	227
15	Zinc	1,3	0	1,35E+15	222
16	Zinc	1,408	-0,02	1,38E+15	218
17	Zinc	1,558	0,01	1,41E+15	213
18	Zinc	1,652	0,02	1,44E+15	209
19	Zinc	1,811	-0,02	1,47E+15	204
20	Zinc	1,932	-0,01	1,50E+15	200

2. Магний (\(\lambda\)kp = 337 нм)

Trial	Metal	Voltage (V)	Current (pA)	Frequency (Hz)	Wavelength (nm)
1	Magnesium	0,088	-0,01	9,09E+14	330
2	Magnesium	0,168	0	9,29E+14	323
3	Magnesium	0,262	-0,01	9,49E+14	316
4	Magnesium	0,371	0	9,68E+14	310
5	Magnesium	0,429	-0,02	9,90E+14	303
6	Magnesium	0,531	0,01	1,01E+15	296
7	Magnesium	0,628	-0,01	1,04E+15	289
8	Magnesium	0,74	0,01	1,06E+15	282
9	Magnesium	0,839	0,01	1,09E+15	275
10	Magnesium	0,961	-0,02	1,12E+15	269
11	Magnesium	1,072	-0,02	1,15E+15	262
12	Magnesium	1,21	-0,01	1,18E+15	255
13	Magnesium	1,338	-0,01	1,21E+15	248
14	Magnesium	1,492	0	1,24E+15	241
15	Magnesium	1,64	0,01	1,28E+15	234
16	Magnesium	1,798	-0,02	1,32E+15	227
17	Magnesium	1,948	0,02	1,36E+15	221
18	Magnesium	2,13	0	1,40E+15	214
19	Magnesium	2,331	0,01	1,45E+15	207
20	Magnesium	2,539	-0,01	1,50E+15	200

3. Кобальт (λ кр = 248 нм)

Trial	Metal	Voltage (V)	Current (pA)	Frequency (Hz)	Wavelength (nm)
1	Cobalt	0,068	-0,01	1,22E+15	246
2	Cobalt	0,13	-0,01	1,23E+15	243
3	Cobalt	0,172	0,02	1,24E+15	241
4	Cobalt	0,239	0	1,26E+15	238
5	Cobalt	0,269	-0,02	1,27E+15	236
6	Cobalt	0,322	-0,01	1,28E+15	234
7	Cobalt	0,389	0	1,30E+15	231
8	Cobalt	0,439	0,02	1,31E+15	229
9	Cobalt	0,498	0	1,33E+15	226
10	Cobalt	0,552	0	1,34E+15	224
11	Cobalt	0,598	-0,02	1,35E+15	222
12	Cobalt	0,678	0	1,37E+15	219
13	Cobalt	0,732	0	1,38E+15	217
14	Cobalt	0,808	0	1,40E+15	214
15	Cobalt	0,868	0	1,42E+15	212
16	Cobalt	0,919	0,02	1,43E+15	210
17	Cobalt	1,01	0,01	1,45E+15	207
18	Cobalt	1,071	-0,02	1,46E+15	205
19	Cobalt	1,162	-0,01	1,49E+15	202
20	Cobalt	1,218	0,01	1,50E+15	200

График зависимости запирающего напряжения от частоты

