Example 8

In right $\triangle ABC$, AD is the height and P is the midpoint of AD. Connect BP and extend it to meet AC at E. Suppose that AC:AB=k, what is the value of AE/EC?

(A) $\frac{1}{1+k^2}$ (B) $\frac{1}{1+k}$ (C) $\frac{2}{1+k^2}$ (D) 1+k(E) $\frac{2}{1+k}$

Solution: (A).

Draw AF//BC and AF meets the extension of BE at F. $\triangle AFE$ is similar to $\triangle CBE$, we have $\frac{AE}{EC} = \frac{AF}{BC}$. We know that AP = PD, so AF = BD, so $\frac{AE}{EC} = \frac{BD}{BC}$. By (12.3) and (12.4), $\frac{BD}{DC} = \frac{AB^2}{AC^2} = \frac{1}{k^2}$.

Thus $\frac{BD}{BC} = \frac{BD}{BD+DC} = \frac{1}{1+k^2}$. Therefore $\frac{AE}{EC} = \frac{1}{1+k^2}$.