CSE211

Computer Organization and Design

Lecture: 3 Tutorial: 1 Practical: 0 Credit: 4

Unit 1: Basics of Digital Electronics

- Decoder
- Encoder
- Multiplexers
- Demultiplexer
- Binary Counter
- Registers

2-2 Decoder/Encoder

Decoder

- A combinational circuit that converts binary information from the n coded inputs to a maximum of 2ⁿ unique outputs
- n-to-m line decoder = n x m decoder
 - n inputs, m outputs
- If the n-bit coded information has unused bit combinations, the decoder may have less than 2ⁿ outputs
 Fig. 2-1 3-to-8 Decoder
 - m ≤ 2ⁿ
- 3-to-8 Decoder

A Binary-to-octal conversion Enable

- Logic Diagram : Fig. 2-1
- Truth Table : Tab. 2-1
- Commercial decoders include one or more Enable Input(E)

Tab. 2-1 Truth table for 3-to-8 Decoder

2-2 Decoder/Encoder

- NAND Gate Decoder
- * Active Low Output

 * Fig. 2-1 3-to-8 Decoder

 Active High Output
- Constructed with NAND instead of AND gates
- Logic Diagram/Truth Table : Fig. 2-2

Fig. 2-2 2-to-4 Decoder with NAND gates

Enable	Inp	ut	Output			
Е	A1	A0	D0	D1	D2	D3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	X	×	1	1	1	1
(a) Truth Table						

Decoder Expansion

- Constructed decoder: Fig. 2-3
- 3 X 8 Decoder constructed with two 2 X 4 Decoder

Encoder

- Inverse Operation of a decoder
- 2ⁿ input, n output
- Truth Table : Tab. 2-2
 - 3 OR Gates Implementation
 - A0 = D1 + D3 + D5 + D7
 - » A1 = D2 + D3 + D6 + D7
 - » A2 = D4 + D5 + D6 + D7

Fig. 2-3 A 3-to-8 Decoder constructed with two with 2-to-4 Decoder

2-2 Decoder/Encoder

Octal to Binary Encoder

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	_	0	_	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	l 1	1	1

$$A_0 = D_1 + D_3 + D_5 + D_7$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

HALF ADDER

- Performs arithmetic addition of two bits.
- Input variables are called as AUGEND and ADDEND
- Output Variables are SUM and CARRY

FULL ADDER

- Performs arithmetic addition of three bits.
- Consists of three inputs and two outputs.

 TABLE 1-2 Truth Table for Full-Adder

Ir	puts	Out	puts	
x	у	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

FULL ADDER

$$S = x \oplus y \oplus z$$

 $C = xy + (x \oplus y)z$ or $C = xy + (x'y + xy')z$

2-3 Multiplexers

- Multiplexer(Mux)
 - A combinational circuit that receives binary information from one of 2ⁿ input data lines and directs it to a single output line
 - A 2ⁿ -to 1 multiplexer has 2ⁿ input data lines and I_n input selection lines (Data Selector)
 - 4-to-1 multiplexer Diagram : Fig. 2-4
 - 4-to-1 multiplexer Function Table : Tab. 2-3

Tab. 2-3 Function Table for 4-to-1 line Multiplexter

Sele	ect	Output
S1	S0	Y
0	0	lo
0	1	I ₁
1	0	12
1	1	l ₃

Fig. 2-4 4-to-1 Line Multiplexer

- Quadruple 2-to-1 Multiplexer
 - Quadruple 2-to-1 Multiplexer: Fig. 2-5

Fig. 2-5 Quadruple 2-to-1 line Multiplexter

ct	Output
S	Υ
0	All 0's
0	A
1	В
	S 0

(a) Function Table

2-3 Multiplexers

Fig A. Combinational logic diagram with four 2×1 multiplexer

Fig B. Demultiplexer

A **Demultiplexer**, sometimes abbreviated **DMUX** is a circuit that has one input and more than one output. It is used when a circuit wishes to send a signal to one of many devices

Binary Counters

 It is a hardware circuit in which series of flipflops are used, to give output of one flip-flop to the input of the next flip-flop.

 Binary counters are used for counting the number of occurrences of an event and are useful for generating timing signals to control the sequence of operations in digital computers.

Binary Counters

- Depending upon the connection setup of flip-flops, binary counters can be either Asynchronous or Synchronous.
- Asynchronous Counter: In these, the clock pulses are applied only to the first flip-flop. i.e. all subsequent flip-flops are clocked by the output produced by the preceding flip-flop.
- Synchronous Counter: These have a regular pattern i.e. inputs of all flip-flops receive the common clock.

2-4 Registers

Register

- A group of flip-flops with each flip-flop capable of storing one bit of information
- An n-bit register has a group of n flip-flops and is capable of storing any binary information of n bits
- The simplest register consists only of flip-flops, with no external gate :
 Fig. 2-6
- A clock input C will load all four inputs in parallel
 - The clock must be inhibited if the content of the register must be left unchanged

Register with Parallel Load

- A 4-bit register with a load control input: Fig. 2-7
- The clock inputs receive clock pulses at all times
- The buffer gate in the clock input will increase "fan-out"
- Load Input
 - 1 : Four input transfer
 - 0 : Input inhibited, Feedback from output to input(no change) Fig. 2-6 4-bit register

2-4 Registers

■ When the load input is 1, the data in the four inputs are transferred into the register with the next positive transition of a clock pulse

■ When the load input is 0, the data inputs are inhibited and the Doutput of flip flop are connected to their inputs.

Fig. 2-7 4-bit register with parallel load

2-5 Shift Registers

Shift Register

- A register capable of shifting its binary information in one or both directions
- The logical configuration of a shift register consists of a chain of flip-flops in cascade
- The simplest possible shift register uses only flip-flops: Fig. 2-8
- The serial input determines what goes into the leftmost position during the shift
- The serial output is taken from the output of the rightmost flip-flop

Fig. 2-8 4-bit shift register

2-5 Shift Registers

- Bidirectional Shift Register with Parallel Load
 - A register capable of shifting in one direction only is called a unidirectional shift register
 - A register that can shift in both directions is called a bidirectional shift register
 - The most general shift register has all the capabilities listed below:
 - An input clock pulse to synchronize all operations
 - A shift-right /left (serial output/input)
 - A parallel load, n parallel output lines
 - The register unchanged even though clock pulses are applied continuously
 - 4-bit bidirectional shift register with parallel load :

Fig. 2-9

4 X 1 Mux = 4 D F/F = 4

Tab. 2-4 Function Table for Register of Fig. 2-9

Mode		Operation
S1	S0	
0	0	No chage
0	1	Shiftright(down)
1	0	shift left(up)
1	1	Parallel load

2-5 Shift Registers

Fig. 2-9 Bidirectional shift register