

强化学习原理及应用 Reinforcement Learning (RL): Theories & Applications

DCS6289 Spring 2022

Yucong Zhang (张宇聪)

School of Computer Science and Engineering Sun Yat-Sen University

Lecture 11: Multi-Agent RL

24th May. 2022

- ☐ Learning cooperation
 - **□** MAPPO
 - **□** EOI

■ MAPPO

- On-policy and Off-policy
 - The experiences are collected using the latest learned policy, and then using that experience to improve the policy.
 - ➤ Off-policy learning allows the use of older samples(collected using the older policies) in the calculation.
 - ➤ On-policy RL algorithms are significantly less sample efficient than off-policy methods.
- ➤ Main contributions
 - ➤ Multi-Agent PPO(MAPPO), with minimal hyperparameter tuning and without any domain-specific algorithmic changes or architectures, achieves final performances comparable to various off-policy methods
 - MAPPO obtains these strong results while often using a comparable number of samples to many off-policy methods
 - Five implementation and algorithmic factors that govern the practical performance of MAPPO

■ MAPPO

- Component
 - Following the CTDE structure: following the algorithmic structure of the single-agent PPO algorithm by learning a policy π_{θ} and a value function $V_{\phi}(s)$ which can take extra global information.
 - ➤ Generalized Advantage Estimation(GAE)
 - ➤ Advantage normalization
 - Observation normalization
 - Gradient clipping
 - Value clipping
 - > Layer normalization
 - > ReLU activation with orthogonal initialization
 - ➤ Large batch size
 - Five concrete implementation details which are insightful and particularly critical to MAPPO's practical performance: value normalization, value function inputs, training data usage, policy and value clipping, death masking.

■ MAPPO

- ➤ Value Normalization
 - > To stabilize value learning
 - > Standardize the targets of the value function by using running estimates of the average and standard deviation of the value targets
 - Conclusion: using value normalization never hurts training and often significantly improves the final performance of MAPPO

Training Data Usage

- A major trick in PPO is the use of importance sampling to perform off-policy corrections, allowing for sample reuse.
- ➤ MAPPO's performance degrades when samples are re-used too often.
- Conclusion: avoid using too many training epochs and do not split data into mini-batches.

■ MAPPO

- ➤ Input Representation to Value Function
 - Two common implementations for a centralized value function: concatenation of all local observations, an environment-provided global state. Other methods: agent-specific global state representation.
 - ➤ Concatenation of all local observations(CL) :
 - the value input dimension can be extremely large when the number of agent or the dimension of local observation is large.
 - CL also may not contain sufficient global information to reduce a POMDP to an MDP.
 - Environment-provided global state(EP): Only contains information common to all agents and can omit important local information
 - ➤ Agent-Specific Global State(AS): concatenate the environment state and the local observation
 - Feature-Pruned Agent-Specific Global State(FP): to address the overlap between local and global state, removing all the duplicated features in AS.

■ MAPPO

- Input Representation to Value Function
 - > IND: using decentralized inputs
 - > EP: using environment-provided global state
 - ➤ AS: agent-specific global state which concatenates EP and IND
 - > FP: removing the duplicated features in AS
 - Conclusion: include agent-specific features in the global state and check that these features do not make the state dimension substantially higher

■ MAPPO

> PPO Clipping

- ➤ Clipping the importance ratio and value losses
- Constrain the policy and value functions from drastically changing between iterations
- \triangleright ϵ hyperparameter: lower ϵ values slows learning speed and higher ϵ values result in larger variance and larger volatility in the performance
- \triangleright Conclusion: tuning the clipping ratio ϵ as a trade-off between training stability and fast convergence

> Death Masking

- ➤ Using these informative states for dead agents during value learning amplifies the bias of the learned value function
- Using an agent-specific constant vector, i.e., a zero vector with the agent's ID, as the input to the value function after an agent dies.
- Conclusion: use zero states with agent ID as the value input for dead agents.

■ MAPPO

Algorithm 1 Recurrent-MAPPO

```
Initialize \theta, the parameters for policy \pi and \phi, the parameters for critic V, using Orthogonal
initialization (Hu et al., 2020)
Set learning rate \alpha
while step \leq step_{max} do
   set data buffer D = \{\}
  for i = 1 to batch\_size do
      \tau = [] empty list
      initialize h_{0,\pi}^{(1)}, \dots h_{0,\pi}^{(n)} actor RNN states
     initialize h_{0,V}^{(1)}, \dots h_{0,V}^{(n)} critic RNN states
      for t = 1 to T do
        for all agents a do
           p_t^{(a)}, h_{t,\pi}^{(a)} = \pi(o_t^{(a)}, h_{t-1,\pi}^{(a)}; \theta)
            v_t^{(a)}, h_{t,V}^{(a)} = V(s_t^{(a)}, h_{t-1,V}^{(a)}; \phi)
        Execute actions u_t, observe r_t, s_{t+1}, o_{t+1}
         \tau += [s_t, o_t, h_{t,\pi}, h_{t,V}, u_t, r_t, s_{t+1}, o_{t+1}]
      end for
      Compute advantage estimate \hat{A} via GAE on \tau, using PopArt
      Compute reward-to-go R on \tau and normalize with PopArt
      Split trajectory \tau into chunks of length L
      for l = 0, 1, ..., T//L do
         D = D \cup (\tau[l:l+T, \hat{A}[l:l+L], \hat{R}[l:l+L])
      end for
   end for
  for mini-batch k = 1, \dots, K do
      b \leftarrow random mini-batch from D with all agent data
      for each data chunk c in the mini-batch b do
         update RNN hidden states for \pi and V from first hidden state in data chunk
      end for
   end for
   Adam update \theta on L(\theta) with data b
   Adam update \phi on L(\phi) with data b
end while
```


■ MAPPO

- > Main Results
 - ➤ Three multi-agent testbeds: MPE, SC2, Hanabi

(a) MPE scenarios

(b) 4-player Hanabi-Full

(c) SMAC corridor

(d) SMAC 2c_vs_64zg

□ MAPPO

➤ Main Results

Yu, Chao, et al. "The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games." arXiv preprint arXiv:2103.01955 (2021).

■ MAPPO

➤ Main Results

Map	MAPPO(FP)	MAPPO(AS)	IPPO	QMix	RODE*	MAPPO*(FP)	MAPPO*(AS)
2m vs_1z	100.0 (0.0)	100.0(0.0)	100.0 (0.0)	95.3 (5.2)	/	<i>100.0</i> (0.0)	<u>100.0</u> (0.0)
3m	100.0 (0.0)	100.0 (1.5)	100.0 (0.0)	96.9(1.3)	/	<u>100.0</u> (0.0)	<u>100.0</u> (1.5)
2svs1sc	100.0 (0.0)	100.0 (0.0)	100.0 (1.5)	96.9(2.9)	<u>100.0</u> (0.0)	<u>100.0</u> (0.0)	<u>100.0</u> (0.0)
2s3z	100.0 (0.7)	100.0 (1.5)	100.0 (0.0)	95.3(2.5)	<u>100.0</u> (0.0)	96.9(1.5)	96.9(1.5)
3svs3z	100.0 (0.0)	100.0 (0.0)	100.0 (0.0)	96.9 (12.5)	/	<u>100.0</u> (0.0)	<i>100.0</i> (0.0)
3svs4z	100.0 (1.3)	98.4 (1.6)	99.2 (1.5)	97.7 (1.7)	/	<u>100.0</u> (2.1)	<u>100.0</u> (1.5)
so many baneling	100.0 (0.0)	100.0 (0.7)	100.0 (1.5)	96.9(2.3)	/	<u>100.0</u> (1.5)	96.9(1.5)
8m	100.0 (0.0)	100.0 (0.0)	100.0 (0.7)	97.7(1.9)	/	<u>100.0</u> (0.0)	<u>100.0</u> (0.0)
MMM	96.9 (0.6)	93.8(1.5)	96.9 (0.0)	95.3 (2.5)	/	93.8(2.6)	<u>96.9</u> (1.5)
1c3s5z	100.0 (0.0)	96.9(2.6)	100.0 (0.0)	96.1(1.7)	<u>100.0</u> (0.0)	100.0(0.0)	96.9(2.6)
bane vs bane	100.0 (0.0)	100.0 (0.0)	100.0 (0.0)	100.0(0.0)	<u>100.0</u> (46.4)	<u>100.0</u> (0.0)	<i>100.0</i> (0.0)
3svs5z	100.0 (0.6)	99.2 (1.4)	100.0(0.0)	98.4 (2.4)	78.9(4.2)	<u>98.4</u> (5.5)	<u>100.0</u> (1.2)
2cvs64zg	100.0 (0.0)	100.0 (0.0)	98.4(1.3)	92.2(4.0)	<u>100.0</u> (0.0)	<u>96.9</u> (3.1)	95.3(3.5)
8mvs9m	96.9 (0.6)	96.9 (0.6)	96.9 (0.7)	92.2(2.0)	/	<u>84.4</u> (5.1)	<u>87.5</u> (2.1)
25m	100.0 (1.5)	100.0 (4.0)	100.0 (0.0)	85.9(7.1)	/	<u>96.9</u> (3.1)	<u>93.8</u> (2.9)
5mvs6m	89.1 (2.5)	88.3 (1.2)	87.5 (2.3)	75.8(3.7)	<u>71.1</u> (9.2)	<u>65.6</u> (14.1)	<u>68.8</u> (8.2)
3s5z	96.9 (0.7)	96.9 (1.9)	96.9 (1.5)	88.3(2.9)	<u>93.8</u> (2.0)	71.9(11.8)	53.1(15.4)
10mvs11m	96.9 (4.8)	96.9 (1.2)	93.0 (7.4)	95.3 (1.0)	<u>95.3</u> (2.2)	81.2(8.3)	<u>89.1</u> (5.5)
MMM2	90.6 (2.8)	87.5 (5.1)	86.7 (7.3)	87.5 (2.6)	<u>89.8</u> (6.7)	51.6(21.9)	28.1(29.6)
3s5zvs3s6z	84.4 (34.0)	63.3(19.2)	82.8 (19.1)	82.8 (5.3)	<u>96.8</u> (25.11)	<i>75.0</i> (36.3)	18.8(37.4)
27mvs30m	93.8 (2.4)	85.9(3.8)	69.5(11.8)	39.1(9.8)	<u>96.8</u> (1.5)	<u>93.8</u> (3.8)	<u>89.1</u> (6.5)
6hvs8z	88.3 (3.7)	85.9 (30.9)	84.4 (33.3)	9.4(2.0)	<u>78.1</u> (37.0)	<u>78.1</u> (5.6)	<u>81.2</u> (31.8)
corridor	100.0 (1.2)	98.4 (0.8)	98.4 (3.1)	84.4(2.5)	<u>65.6</u> (32.1)	<u>93.8</u> (3.5)	<u>93.8</u> (2.8)

□ MAPPO

➤ Main Results--Ablation

Yu, Chao, et al. "The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games." arXiv preprint arXiv:2103.01955 (2021).

□ MAPPO

➤ Main Results--Ablation

(a) effect of different training epochs.

(b) effect of different mini-batch numbers.

□ MAPPO

➤ Main Results--Ablation

(a) effect of different training epochs.

(b) effect of different mini-batch numbers.

