Hough Transform

Feature Engineering

Xiaohui Yuan

Associate Professor
Department of Computer Science and Engineering
University of North Texas
xiaohui.yuan@unt.edu

Line Detection

Original

Parameter Space

Hough Transform

- Detect objects with a shape that has explicit mathematical expression
 - Disconnected boundaries
 - Partially visible objects
 - Distortions (noise, overlaps, etc.)
- Hough transform maps an edge image into a parameter space and uses voting to identify plausible objects/models
 - It is infeasible to check all combinations of features by fitting a model to each possible subset.
 - Hough transform let features vote for models and look for models (parameters) that receive many votes.
 - Noise and clutters also cast votes. But their votes are mostly inconsistent with the majority of the "good" features.

Line Detection using Hough Transform

- A line can be expressed as a function of (x, y): y = mx + c
- Given a set of points (x_i, y_i) sampled from this line, the problem becomes estimating parameters m and c.
- For a point (x_i, y_i) , the lines go through it are $c = -x_i m + y_i$
 - An infinite number of lines go through this point (x_i, y_i)
 - A point in the image space corresponds to a line in the Hough space
 - ullet We just need two such equations to decide the parameters m and c
 - Unfortunately, we usually have more than two points and, hence, the problem is

Hough Transform Algorithm

- Problems with the (m, c) space (i.e., using y = mx + c as a line model):
 - Unbounded parameter space
 - · Vertical lines require infinite m
- An alternative formulation is the polar representation

$$x\cos\theta + y\sin\theta = \rho$$

- Each point on this line is represented with a pair of polar coordinates (ρ, θ)
 - The parameter space: $\theta \in [0,\pi)$ and $\rho < k$, k is the half length of the diagonal line of the image
- · Hough transform algorithm
 - 1. Initialize an accumulator matrix H with zeros
 - 2. For each point (x,y) in the image For $\theta=0$ to 180 compute $\rho=x\cos\theta+y\sin\theta$ $H(\theta,\rho)=H(\theta,\rho)+1$ end
 - 3. Find the value(s) of (θ, ρ) , where $H(\theta, \rho)$ is a local maximum
 - 4. The detected line is given by $\rho = x \cos \theta + y \sin \theta$

	1						1	
		1				1		
			1		1			
П				2				
Г			1		1			
П		1				1		
П	1						1	

Examples of Hough Transform Results

Horizontal axis is θ and vertical axis is ρ

Implementation Issues

- How many lines?
 - Count the peaks (local maxima) in the Hough space
 - Treat adjacent peaks as a single one
- How to decide the quantization bin of the accumulator?
 - · big bin merges multiple lines into one
 - small bin leads to less robustness to noise; the votes are not strong enough to pass the threshold

Practice

х	У	
1	2	c = -1m + 2
2	3	c = -2m + 3
3	4	c = -3m + 4

What About Detecting Circles?

- A circle is represented as $(x-a)^2 + (y-b)^2 = r^2$
 - Parameters a, b, and r.
- For <u>a fixed (known) radius r</u>, we have

Example: Finding Coins

Detecting Circles with an Unknown Radius

$$(x-a)^2 + (y-b)^2 = r^2$$

For circles with an $\underline{\text{unknown radius }r}$, the Hough transform algorithm is

- 1. For every edge pixel (x, y):
- 2. For each radius r:
- 3. For each possible gradient direction θ :
- 4. $a = x r \cos(\theta) // \text{column}$
- 5. $b = y + r \sin(\theta) // row$
- 6. H[a, b, r] = H[a, b, r] + 1

Generalized Hough Transform

— for Detecting Arbitrary Shapes!

Let's take another look at the detection of lines and circles

Generalized Hough Transform

• Describe a shape using a reference point a.

Build a Look Up Table (LUT)

- At each boundary point, compute the displacement vector: r = a - p_i
- Store these vectors in a table indexed by the gradient direction $\boldsymbol{\theta}$

	-
θ	1
θ	\(\)
i	

Apply This LUT for Shape Detection

For each edge point:

- Use its gradient θ to get the stored vector
- \bullet Use the retrieved r to compute and vote for the reference point

θ	1
θ	N
ŧ	

Generalized Shape Model

- The parameters are the angle and magnitude of the vectors
- Points of a shape model are ordered based on the gradient direction
- More than one possible vectors at each gradient direction
- Each vector v_i consists of α_i^j and r_i^j , where i is the index of the points, j is the index of the gradient direction

Direction	Vector $v_i = (r_i, \alpha_i)$		
θ_1	v_1, v_7, v_{23}		

$ heta_j$	v_2		
θ_{I}	v_{11}, v_{20}		

Generalized Hough Transform Algorithm

- 1. Given a shape model $LUT(\theta, v)$
- 2. Create an accumulator $H(x_c, y_c; r, \alpha) = 0$
- 3. For each point on the edge $(x_i, y_i; \theta)$
- 4. For each entry $<\theta$; $v>=\{r_i^1,r_i^2,...,r_i^k\}$ in table, compute: $x_c=x_i+r_i^k\cos(\alpha_i^k)$ $y_c=y_i+r_i^k\sin(\alpha_i^k)$
- 5. Increment $H(r, \alpha) = H(r, \alpha) + 1$
- 6. Find local maxima in H

Generalized Hough Transform Algorithm

Unknown scale and rotation of the target shape

- 1. Given a shape model $LUT(\theta, R)$
- 2. Create an accumulator $H(r, \alpha, s, \beta) = 0$
- 3. For each point on the edge $(x_i, y_i; \theta)$
- 4. For each entry $<\theta$; $R>=\{r_i^1,r_i^2,...,r_i^k\}$ in table, compute for all s and β :

$$x_c = x_i + s r_i^k \cos(\alpha_i^k + \beta)$$

$$y_c = y_i + s r_i^k \sin(\alpha_i^k + \beta)$$

- 5. Increment $H(r, \alpha, s, \beta) = H(r, \alpha, s, \beta) + 1$
- 6. Find Local Maxima in H

Hough Transform: Pros and Cons

- All points are processed independently
 - It is robust to occlusion and gaps
- Robustness to noise (to some extent)
 - noise points are unlikely to contribute consistently to any single shape (cell)
- It detects multiple instances in a single pass
- Complexity increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in the parameter space
- Quantization bin
 - It can be tricky to pick a good bin size