FMI, Info, Anul I

Logică matematică și computațională

Seminar 6

(S6.1) Fie \mathcal{L} un limbaj de ordinul I. Să se arate că pentru orice \mathcal{L} -formule φ , ψ şi orice variabilă $x \notin FV(\varphi)$,

- (i) $\forall x(\varphi \wedge \psi) \vDash \varphi \wedge \forall x\psi$;
- (ii) $\varphi \bowtie \exists x \varphi$;
- (iii) $\exists x(\psi \to \varphi) \vDash \forall x\psi \to \varphi$.

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$.

(i) Avem, pe de-o parte, $\mathcal{A} \vDash (\forall x(\varphi \land \psi))[e] \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash (\varphi \land \psi)[e_{x \mapsto a}] \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash \varphi[e_{x \mapsto a}] \text{ si } \mathcal{A} \vDash \psi[e_{x \mapsto a}] \text{ (*)}.$

Pe de altă parte, $\mathcal{A} \vDash (\varphi \land \forall x \psi)[e] \iff \mathcal{A} \vDash \varphi[e]$ şi $\mathcal{A} \vDash \forall x \psi[e] \iff \mathcal{A} \vDash \varphi[e]$ şi pentru orice $a \in A$, $\mathcal{A} \vDash \psi[e_{x \mapsto a}] \iff$ pentru orice $a \in A$, $\mathcal{A} \vDash \varphi[e]$ şi $\mathcal{A} \vDash \psi[e_{x \mapsto a}]$ (**).

Vrem să arătăm că (*) este echivalent cu (**). Pentru aceasta, este suficient să arătăm că, pentru orice $a \in A$, $A \models \varphi[e_{x \leftarrow a}]$ dacă şi numai dacă $A \models \varphi[e]$.

Fie $a \in A$. Din Propoziția 3.29, este suficient să arătăm că pentru orice $v \in FV(\varphi)$, $e_{x\mapsto a}(v)=e(v)$. Fie $v\in FV(\varphi)$. Cum $x\notin FV(\varphi)$, avem $v\neq x$. Dar, atunci, din definiția lui $e_{x\mapsto a}$, rezultă că $e_{x\mapsto a}(v)=e(v)$, ceea ce trebuia arătat.

Scriem raționamentul de mai sus în felul următor, pe scurt:

$$\mathcal{A} \vDash (\forall x (\varphi \land \psi))[e] \iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash (\varphi \land \psi)[e_{x \mapsto a}]$$

$$\iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash \varphi[e_{x \mapsto a}] \text{ si } \mathcal{A} \vDash \psi[e_{x \mapsto a}]$$

$$\iff \text{pentru orice } a \in A, \ \mathcal{A} \vDash \varphi[e] \text{ si } \mathcal{A} \vDash \psi[e_{x \mapsto a}] \text{ (Prop. 3.29)}$$

$$\iff \mathcal{A} \vDash \varphi[e] \text{ si pentru orice } a \in A, \ \mathcal{A} \vDash \psi[e_{x \mapsto a}]$$

$$\iff \mathcal{A} \vDash \varphi[e] \text{ si } \mathcal{A} \vDash \forall x \psi[e] \iff \mathcal{A} \vDash (\varphi \land \forall x \psi)[e].$$

(ii) Avem:

$$\mathcal{A} \vDash (\exists x \varphi)[e] \quad \Longleftrightarrow \quad \text{există } a \in A \quad \text{a.î. } \mathcal{A} \vDash \varphi[e_{x \mapsto a}] \\ \iff \quad \text{există } a \in A \quad \text{a.î. } \mathcal{A} \vDash \varphi[e] \text{ (Prop. 3.29)} \\ \iff \quad \mathcal{A} \vDash \varphi[e].$$

(iii) Avem:

$$\mathcal{A} \vDash (\exists x(\psi \to \varphi))[e] \iff \text{există } a \in A \text{ a.î. } \mathcal{A} \vDash (\psi \to \varphi)[e_{x \mapsto a}]$$

$$\iff \text{există } a \in A \text{ a.î. } (\mathcal{A} \not\vDash \psi[e_{x \mapsto a}] \text{ sau } \mathcal{A} \vDash \varphi[e_{x \mapsto a}])$$

$$\iff \text{există } a \in A \text{ a.î. } (\mathcal{A} \not\vDash \psi[e_{x \mapsto a}] \text{ sau } \mathcal{A} \vDash \varphi[e]) \text{ (Prop. 3.29)}$$

$$\iff \text{(există } a \in A \text{ a.î. } \mathcal{A} \not\vDash \psi[e_{x \mapsto a}] \text{ sau } \mathcal{A} \vDash \varphi[e]$$

$$\iff \mathcal{A} \not\vDash \forall x \psi[e] \text{ sau } \mathcal{A} \vDash \varphi[e]$$

$$\iff \mathcal{A} \vDash (\forall x \psi \to \varphi)[e].$$

(S6.2) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de relație de aritate 2, notat cu \sim . Să se scrie un \mathcal{L} -enunț φ ce spune că relația asociată simbolului este o relație de echivalență cu proprietatea că fiecare clasă a sa are exact două elemente. Să se determine mulțimea acelor $n \in \mathbb{N}^*$ cu proprietatea că există o \mathcal{L} -structură cu n elemente care satisface φ .

Demonstrație:

Enunțul φ va fi conjuncția celor trei proprietăți ale relațiilor de echivalență, anume:

- $\forall v_0(v_0 \sim v_0),$
- $\forall v_0 \forall v_1 (v_0 \sim v_1 \rightarrow v_1 \sim v_0),$
- $\forall v_0 \forall v_1 \forall v_2 (((v_0 \sim v_1) \land (v_1 \sim v_2)) \rightarrow (v_0 \sim v_2)),$

împreună cu:

$$\forall v_0 \exists v_1 (v_0 \sim v_1 \land \neg (v_0 = v_1) \land \forall v_2 (v_2 \sim v_0 \to (v_2 = v_0 \lor v_2 = v_1))).$$

Este imediat faptul că o mulțime finită poate fi înzestrată cu o asemenea relație dacă și numai dacă are un număr par de elemente. Așadar, mulțimea cerută este mulțimea numerelor naturale nenule pare.

(S6.3) Considerăm limbajul \mathcal{L}_r ce conține doar două simboluri, anume două simboluri de operație de aritate 2, notate cu \dotplus și $\dot{\times}$, și \mathcal{L}_r -structura $\mathcal{R} := (\mathbb{R}, +, \cdot)$. Să se dea exemplu de \mathcal{L}_r -formulă ψ astfel încât pentru orice $e: V \to \mathbb{R}$,

$$\mathcal{R} \vDash \psi[e] \Leftrightarrow e(v_0) \leq e(v_1).$$

Demonstrație: Luăm

$$\psi := \exists v_2(v_1 = v_0 \dot{+} (v_2 \dot{\times} v_2)).$$

(S6.4) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de relație de aritate 2. Să se găsească un enunț φ astfel încât $(\mathbb{Q}, <) \vDash \varphi$, dar $(\mathbb{Z}, <) \not\vDash \varphi$.

Demonstrație: Luăm

$$\varphi := \forall v_0 \forall v_1 (v_0 < v_1 \to \exists v_2 (v_0 < v_2 \land v_2 < v_1)).$$

(S6.5) (Exercițiu suplimentar) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de funcție de aritate 2. Să se găsească un enunț φ astfel încât $(\mathbb{Z},+) \vDash \varphi$, dar $(\mathbb{Z} \times \mathbb{Z},+) \not\vDash \varphi$ (în ultima sa apariție, simbolul + denotă operația de adunare pe componente pe $\mathbb{Z} \times \mathbb{Z}$).

Demonstrație:

Prima soluție: se ia φ ca fiind

$$\forall v_0 \forall v_1 ((\neg \exists v_2 (v_0 = v_2 + v_2) \land \neg \exists v_2 (v_1 = v_2 + v_2)) \rightarrow \exists v_2 (v_0 + v_1 = v_2 + v_2)),$$

ce exprimă faptul că suma a două elemente "nepare" este pară – în \mathbb{Z} , avem într-adevăr regula "impar + impar = par", dar în $\mathbb{Z} \times \mathbb{Z}$ avem contraexemplul (1,0) + (0,1) = (1,1).

A doua soluție: se ia φ ca fiind

$$\exists v_2 \forall v_0 (\exists v_1 (v_0 = v_1 + v_1) \lor \exists v_1 (v_0 = v_1 + v_1 + v_2)),$$

ce este adevărată în \mathbb{Z} , unde orice element este ori de forma 2z, ori de forma 2z+1, dar nu este adevărat în $\mathbb{Z} \times \mathbb{Z}$, unde relația de congruență indusă de elementele pare are patru clase, și nu două.