GROUPE OPÉRANT SUR UN ENSEMBLE

Soient (G, \star) un groupe d'élément neutre e et X un ensemble non vide. On appelle opération de G sur X la donnée d'une application $\omega: \left\{ \begin{array}{ccc} G \times X & \longrightarrow & X \\ (g,x) & \longmapsto & g.x \end{array} \right.$ vérifiant les deux axiomes :

- 1. $\forall x \in X$, on a: e.x = x;
- 2. $\forall g, h \in G \text{ et } x \in X, \text{ on a: } g.(h.x) = (g \star h).x$

Partie I: Orbites et stabilisateurs

On définit la relation \mathcal{R} sur X par:

$$\forall (x,y) \in X^2, \quad x\mathcal{R}y \iff \exists g \in G, \ y = g.x$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence. On note $\mathcal{O}_x = \{g.x, g \in G\}$ la classe de $x \in X$ et \mathcal{S} une section de la relation d'équivalence \mathcal{R} , c'est-à-dire une partie de X qui contient exactement un élément de chacune des classes d'équivalence de \mathcal{R}
- 2. Pour $x \in X$, on définit le stabilisateur \mathcal{G}_x de x par

$$\mathcal{G}_x = \{ g \in G , \ g.x = x \}$$

Montrer que le stabilisateur est un sous-groupe de (G, \star)

Partie II: Exemples

- 1. Opération par translation à gauche:
 - (a) Montrer que G opère sur lui-même par translation à gauche via l'action

$$\omega: \left\{ \begin{array}{ccc} G \times G & \longrightarrow & G \\ (g,x) & \longmapsto & gx \end{array} \right.$$

- (b) Décrire les orbites et les stabilisateurs de $x \in G$ pour cette action
- 2. Opération par conjugaison:
 - (a) Montrer que G opère sur lui-même par translation à gauche via l'action

$$\omega: \left\{ \begin{array}{ccc} G\times G & \longrightarrow & G \\ (g,x) & \longmapsto & gxg^{-1} \end{array} \right.$$

- (b) Décrire les orbites et les stabilisateurs de $x \in G$ pour cette action
- 3. Soit \mathcal{H} l'ensemble des sous-groupes de (G,.)
 - (a) Soit $H \in \mathcal{H}$ et $g \in G$. Montrer que $gHg^{-1} = \{ghg^{-1}, h \in H\}$ est un sous-groupe de (G,.) (appelé sous-groupe conjugué de H)
 - (b) Montrer que G opère sur \mathcal{H} via l'action

$$\omega: \left\{ \begin{array}{ccc} G \times \mathcal{H} & \longrightarrow & \mathcal{H} \\ (g,H) & \longmapsto & gHg^{-1} \end{array} \right.$$

DEVOIR LIBRE: N° 01 ENONCÉ

GROUPE OPÉRANT SUR UN ENSEMBLE

Partie III: Équation aux classes

- 1. On suppose que G est fini.
 - (a) Montrer que $Card(G) = Card(\mathcal{O}_x).Card(\mathcal{G}_x)$
 - (b) Si X est aussi fini. Montrer l'équation aux classes

$$\mathbf{Card}(X) = \sum_{x \in \mathcal{S}} \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$$

2. On fait agir G sur lui-même par les automorphismes intérieurs:

$$(s,x) \longmapsto s.x = sxs^{-1}$$

Montrer que

$$\mathbf{Card}(G) = \mathbf{Card}\left(Z(G)\right) + \sum_{x \in \mathcal{S} \atop x \notin Z(G)} \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$$

où Z(G) est le centre de G, c'est-à-dire $Z(G):=\{a\in G\ ,\ \forall x\in G\ ax=xa\}$

Partie IV: Applications

1. APPLICATION 1: Soit (G, .) un groupe abélien d'ordre $m \in \mathbb{N}^s$. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que:

$$\forall x \in G, \quad x^n = e$$

- (a) Montrer que m divise une puissance de n
- (b) Montrer que le résultat reste encore vrai en ne supposant plus G abélien
- 2. Application 2: Soit (G,.) un groupe abélien d'ordre mp^r , avec p premier et $m \wedge p = 1$
 - (a) Montrer que G admet un sous-groupe d'odre p^r
 - (b) Montrer que le résultat reste encore vrai en ne supposant plus G abélien
- 3. APPLICATION 3: Soit (G, .) un groupe d'ordre p^r , avec p premier et $r \ge 2$
 - (a) Montrer que $Z(G) \neq \{e\}$
 - (b) Si r=2, montrer que (G,.) est abélien
- 4. APPLICATION 4: Soit (G, .) un groupe non abélien d'ordre pq, avec p et q premiers et $r \ge 2$
 - (a) Montrer que $Z(G) = \{e\}$
 - (b) En déduire qu'il existe dans G des sous-groupes d'ordre p (resp. d'ordre q)

Devoir libre: N° 01 Corrigé

GROUPE OPÉRANT SUR UN ENSEMBLE

Soient (G, \star) un groupe d'élément neutre e et X un ensemble non vide. On appelle opération de G sur X la donnée d'une application $\omega : \begin{cases} G \times X & \longrightarrow & X \\ (g, x) & \longmapsto & g.x \end{cases}$ vérifiant les deux axiomes :

- 1. $\forall x \in X$, on a: e.x = x;
- 2. $\forall g, h \in G \text{ et } x \in X, \text{ on a: } g.(h.x) = (g \star h).x$

Partie I: Orbites et stabilisateurs

On définit la relation \mathcal{R} sur X par:

$$\forall (x,y) \in X^2, \quad x\mathcal{R}y \iff \exists g \in G, \ y = g.x$$

- 1. Montrons que \mathcal{R} est une relation d'équivalence.
 - \mathcal{R} est réflèxive car e.x = x
 - \mathcal{R} est symétrique car: Si $x\mathcal{R}y$, alors il existe $g \in G$ tel que y = g.x, donc

$$g^{-1}.y = g^{-1}.(g.x) = (g^{-1} \star g).x = e.x = x$$

Donc $y\mathcal{R}x$

- \mathcal{R} est transitive car: Si $x\mathcal{R}y$ et $y\mathcal{R}z$, alors il existe $s,t\in G$ tels que y=s.x et z=t.y, alors z=(ts).x, avec $ts\in G$ on tire que $x\mathcal{R}z$
- 2. Soit $x \in X$. \mathcal{G}_x est une partie de G
 - $\mathcal{G}_x \neq \emptyset$, car $e \in \mathcal{G}_x$
 - Soit $s, t \in \mathcal{G}_x$, alors

$$(s^{-1} \star t).x = s^{-1}.(t.x) = s^{-1}.x = s^{-1}.(s.x) = (s^{-1} \star s).x = e.x = x$$

Donc $s^{-1}t \in \mathcal{G}_x$. Ce qui montre que \mathcal{G}_x est un sous-groupe de (G,\star)

Partie II: Exemples

Accessible

Partie III: Équation aux classes

- 1. On suppose que G est fini.
 - (a) On considère l'application $\psi: \left\{ \begin{array}{l} G \longrightarrow \mathcal{O}_x \\ g \longmapsto g.x \end{array} \right.$ ψ est bien définie, surjective par construction et pour tout $g \in G$, on a $\psi^{-1}(\{g.x\}) = g.\mathcal{G}_x$ qui a le même cardinal que \mathcal{G}_x , par le principe des bergers $\mathbf{Card}(G) = \mathbf{Card}(\mathcal{O}_x).\mathbf{Card}(\mathcal{G}_x)$
 - (b) S est une section de R, alors la famille $(\mathcal{O}_x)_{x \in S}$ forme une partition de X et puisque X est fini, alors

$$\mathbf{Card}(X) = \sum_{x \in \mathcal{S}} \mathbf{Card}\left(\mathcal{O}_x\right) = \sum_{x \in \mathcal{S}} \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$$

2. On fait agir G sur lui-même par les automorphismes intérieurs. Pour tout $x \in G$, on a $x \in Z(G) \iff \mathcal{O}_x = \{x\}$. Donc $Z(G) \subset \mathcal{S}$ et l'équation aux classes devient alors:

$$\mathbf{Card}(G) = \mathbf{Card}\left(Z(G)\right) + \sum_{x \in \mathcal{S} \atop x \notin Z(G)} \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$$

Devoir libre: N° 01 Corrigé

GROUPE OPÉRANT SUR UN ENSEMBLE

Partie IV: Applications

1. APPLICATION 1:

- (a) Par récurrence forte sur $m \in \mathbb{N}^*$
 - Pour m=1, rien à démontrer
 - Soit G un groupe d'ordre $\leq m+1$ et vérifiant $x^n=e$ pour tout $x\in G$. Si G est d'ordre 1 alors c'est fini, sinon soit $x\in G\setminus \{e\}$ et considérons le groupe quotient $G/\operatorname{gr}(x)$. On a $\operatorname{Card}(G/\operatorname{gr}(x))<\operatorname{Card}(G)\leq m+1$; en appliquant l'hypothèse de récurrence, on déduit que $\operatorname{Card}(G/\operatorname{gr}(x))$ divise une puissance de n. De plus, l'ordre de x divise n ($\operatorname{car} x^n=e$) et $\operatorname{Card}(\operatorname{gr}(x))=O(x)\mid n$. Maintenant, comme

$$Card(G) = Card(G/gr(x)) \times Card(gr(x))$$

Alors Card(G) divise une puissance de n.

La récurrence est terminée

- (b) On suppose G quelconque. On fait un raisonnement par récurrence forte sur $m \in \mathbb{N}^*$
 - Pour m=1, rien à démontrer
 - Soit G un groupe d'ordre $\leq m+1$ et vérifiant $x^n=e$ pour tout $x\in G$. On écrit $\mathbf{Card}(G)=ab$ avec $a\wedge n=1$ et b divise une puissance de n. Soit $\mathcal S$ une section de la classe d'équivalence $\mathcal R$ et $x\in S$ tel que $x\notin Z(G)$, alors $\mathcal G_x\neq G$ et par suite $\mathbf{Card}(\mathcal G_x)<\mathbf{Card}(G)$. Comme $\mathcal G_x$ est un sous-groupe de G, alors $\mathcal G_x$ vérifie les conditions de l'hypothèse de récurrence, c'est-à-dire $\mathbf{Card}(\mathcal G_x)$ divise une puissance

alors
$$\mathcal{G}_x$$
 vérifie les conditions de l'hypothèse de récurrence, c'est-à-dire $\mathbf{Card}(\mathcal{G}_x)$ divise une puissance de n . Mais $a \wedge n = 1$, donc $a \wedge \mathbf{Card}(\mathcal{G}_x) = 1$. En outre $a \mid \mathbf{Card}(G) = \mathbf{Card}\left(\frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}\right) \mathbf{Card}(\mathcal{G}_x)$, alors par Gauss $a \mid \mathbf{Card}(G) = \mathbf{Card}\left(\frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}\right)$. Ceci montre que a divise $\sum_{\substack{x \in \mathcal{S} \\ x \notin Z(G)}} \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$.

D'après l'équation aux classes on en déduit que $a \mid \mathbf{Card}(Z(G))$. Or, comme Z(G) est abélien, alors $\mathbf{Card}(Z(G))$, et donc a, divise une puissance de n, ce qui est impossible car $a \land n = 1$ sauf si a = 1

Récurrence achevée

- 2. APPLICATION 2: Soit (G, .) un groupe abélien d'ordre mp^r , avec p premier et $m \wedge p = 1$
 - (a) Soit l'application $\varphi: \left\{ \begin{array}{ll} G & \longrightarrow & G \\ x & \longmapsto & x^{p^r} \end{array} \right.$ φ est un endomorphisme de groupes car G est abélien. On sait que $\operatorname{Ker}(\varphi)$ est un sous-groupe de G, et de plus on a pour tout $x \in \operatorname{Ker} \varphi \colon x^{p^r} = e$. On en déduit, d'après l'application 1, que $\operatorname{Card}(\operatorname{Ker}(\varphi))$ divise une puissance de p^r . De même, pour tout $x \in \operatorname{Im}(\varphi) \colon x^m = e$, donc $\operatorname{Card}(\operatorname{Im}(\varphi))$ divise une puissance de m. Mais $mp^r = \operatorname{Card}(\operatorname{Ker}(\varphi))/times\operatorname{Card}(\operatorname{Im}(\varphi))$ avec $m \wedge p^r = 1$, on en déduit forcément que: $\operatorname{Card}(\operatorname{Ker}(\varphi)) = p^r$ et $\operatorname{Card}(\operatorname{Im}(\varphi)) = m$. En conclusion $\operatorname{Ker}(\varphi)$ est un sous-groupe de G d'ordre p^r
 - (b) On fait un raisonnement par récurrence sur l'ordre de G. Soit

 $\mathcal{P}(m)$: Tout groupe d'ordre kp^s avec p premier, $p \wedge k = 1$ et $kp^s \leqslant m$, admet un sous-groupe d'ordre p^s

- Pour m = 1 le résultat est vrai.
- Soit $m \in \mathbb{N}$ et soit G un groupe d'ordre $m+1=hp^r$ avec p premier et $p \wedge h=1$. On sait que

$$Card(G) = Card(G/gr(x)) \times Card(gr(x))$$

- S'il existe un élément $x \in S \setminus Z(G)$ tel que $p^r \mid \mathbf{Card}(\mathcal{G}_x)$, on applique l'hypothèse de récurrence \mathcal{G}_x
- Sinon, pour tout $x \in \mathcal{S} \setminus Z(G)$, $p \mid \mathbf{Card}(Z(G))$. On distingue alors deux cas
 - * G est abélien, le problème est réglé
 - * G n'est pas abélien, alors on applique le résultat à Z(G) qui est un groupe abélien de G. D'où, Z(G) admet un sous-groupe H d'ordre p^s , avec $s \in [1, r]$. De plus H est distingué dans G car Z(G) l'est et $\mathbf{Card}(G/H) = hp^{r-s}$, donc $\mathbf{Card}(G/H) < \mathbf{Card}(G)$, et par hypothèse de récurrence G/H admet un sous-groupe K d'ordre p^{r-s} . Finalement, soit $\pi: G \longrightarrow G/H$ la surjection canonique, alors $\pi^{-1}(K)$ est un sous-groupe de G de cardinal p^r

Devoir libre: No 01 Corrigé

GROUPE OPÉRANT SUR UN ENSEMBLE

- 3. APPLICATION 3: Soit (G, .) un groupe d'ordre p^r , avec p premier et $r \ge 2$
 - (a) Soit $x \in G$, le stabilisteur \mathcal{G}_x de x est un sous-groupe de G, donc son cardinal est une spuissance de p. De plus, si $x \notin Z(G)$ alors $\mathbf{Card}(\mathcal{G}_x) < \mathbf{Card}(G)$ car $\mathcal{G}_x \neq G$. Or, $\mathbf{Card}(\mathcal{O}_x) = \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$, donc $\mathbf{Card}(\mathcal{O}_x) > 1$ pour tout $x \notin Z(G)$. D'où, $\mathbf{Card}(\mathcal{O}_x) = p^k$ avec $k \geqslant 1$ pour tout $x \notin Z(G)$. Par conséquent, p divise $\sum_{\substack{x \in S \\ x \notin Z(G)}} \mathbf{Card}(\mathcal{O}_x)$. Comme $p \mid \mathbf{Card}(G)$, alors, d'après l'équation aux classes p divise $\mathbf{Card}(Z(G))$, donc $Z(G) \neq \{e\}$
 - (b) D'après la question ci-dessus on sait que $\mathbf{Card}(Z(G)) > 1$ et p divise $\mathbf{Card}(Z(G))$. D'où, puisque $\mathbf{Card}(G) = p^2$, on a $\mathbf{Card}(Z(G)) = p$ ou $\mathbf{Card}(Z(G)) = p^2$. Par absurde si G n'est pas abélien, alors $Z(G) \subsetneq G$, donc $\mathbf{Card}(Z(G)) = p$. Mais s'il existe $x \in G$ tel que $x \notin Z(G)$, alors $x \cup Z(G) \subset \mathcal{G}_x$, et par suite \mathcal{G}_x est de cardinal > p+1 et il divise p^2 , alors \mathcal{G}_x est forcément vaut p^2 , puis $\mathcal{G}_x = G$, ceci entraîne \mathcal{O}_x est de cardinal 1, c'est-à-dire $x \in Z(G)$. Ce qui absurde
- 4. APPLICATION 4: Soit (G, .) un groupe non abélien d'ordre pq, avec p et q premiers et $r \ge 2$
 - (a) On sait que $\operatorname{Card}(Z(G))$ divise pq, par suite si $Z(G) \neq \{e\}$ alors Z(G) est de cardinal soit p, soit q car G n'est pas abélien et p et q sont premiers entre eux. Puisque p et q jouent un rôle symétrique, on peut supposer par exemple que $\operatorname{Card}(Z(G)) = p$, alors H = G/Z(G) est un groupe de cardinal q premier. Par suite, H est monogène engendré par \overline{x} avec $x \in G$. Soit $a, b \in G$, alors il existe $m, n \in \mathbb{N}$ tel que $\overline{a} = \overline{x}^m$ et $\overline{b} = \overline{x}^n$, c'est-à-dire $a(x^{-1})^m \in Z(G)$ et $b(x^{-1})^n \in Z(G)$, donc on peut trouver deux éléments k et ℓ dans Z(G) tels que $a(x^{-1})^m = k$ et $b(x^{-1})^n = \ell$, alors on a:

$$ab = x^m k x^n \ell = x^m x^n k \ell \quad (\operatorname{car} k \in Z(G))$$

$$= x^n x^m \ell k \quad (\operatorname{car} x^m x^n = x^n x^m)$$

$$= x^n \ell x^m k \quad (\operatorname{car} \ell \in Z(G))$$

$$= ba$$

On a donc montré que G est abélien. Absurde

(b) D'après l'équation aux classes on a:

$$pq = 1 + \sum_{\substack{x \in \mathcal{S} \\ x \notin Z(G)}} \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$$

Si G n'admet aucun sous-groupe d'ordre p, alors pour tout $x \in G \setminus Z(G)$ on a $\mathbf{Card}(\mathcal{G}_x) < \mathbf{Card}(G)$, donc $\mathbf{Card}(\mathcal{G}_x) = 1$ ou q. Alors, on aurait p divise $\sum_{\substack{x \in S \\ x \notin Z(G)}} \frac{\mathbf{Card}(G)}{\mathbf{Card}(\mathcal{G}_x)}$ et donc $p \mid 1$. Contradiction