

Sprawozdanie z laboratorium Architektury Komputerów

Laboratorium numer: 2

Temat: Watchdog Timer, Przerwania

Wykonujący ćwiczenie:		
Patryk Wójtowicz		
Studia dzienne I stopnia		
Kierunek: Informatyka		
Semestr: III	Grupa zajęciowa: Lab 15	
Prowadzący ćwiczenie: Dr inż. Mirosław Omieljanowicz		OCENA
Data wykonania ćwiczenia 18.10.2021r.		
		Data i podpis prowadzącego

Cel zadania

Zapoznanie się z obsługą przerwań i restartów Watchdog Timer'a.

Teoria

Watchdog Timer (WDT) jest to zegar, którego działenie ma na celu zapobieganie zawieszaniu się programu. Jest sekwencyjnie zwiększany do momentu przepełnienia się zmiennej WDT, wtedy dokonuje on restartu mikrokontroleru i wyzerowaniu WDT. Mikrokontrolery MSP430 posiadają wbudowany układ WDT. Schemat ten widoczny jest na Rysunku 1.

Rysunek 1 Schemat blokowy układu Watchdog Timer MSP430 [1]

Ważnym aspektem pracy z Watchdog'iem jest automatyczne włączenie zegara w stan pracy ustawiony na czas 32[ms], powoduje to restart układu za każdym razem gdy program zawiesi się i przekroczony zostanie ustalony czas. Dlatego zaleca się jako pierwszą czynność wyłączenie lub konfiguracja Watchdog'a aby uniknąć nie pożądanych działań. Dodatkowo jeżeli funkcja Watchdog Timer'a nie jest używana w kodzie może zostać uzyta w celu licznka "odliczającego odstępy czasowe po których generowane jest przerwanie.

Dodatkowo, moduł MSP430 jest zaopatrzony w 16 bitowy rejesr Watchdog Timer Control (WDTCTL), służy on do konfiguracji Watchdog Timera. Producenci zadbali także o kontrole nad dostępem do tego rejestru poprzez zmienną Watchdog Timer Password (WDTPW), której wartość należy ustawić na 0x5ah, w przeciwnym wypadku będzie genreowane przerwanie. Natomiast podczas odczytywania rejestru zawsze jest odczytywana wartość 069h.

Do zarządzania Watchdog Timerem służą następujace wpisy w rejestrze:

- **1. WDTHOLD** Watchdog Timer Hold. Steruje układem WDT. Bit 0 odpowiada za włączenie układu a bit 1 zatrzymuje jego działanie.
- **2. WDTNMIES** Watchdog Timer NMI Edge Select. Służy do ustawienia program w stan inkrementacji zmiennej WDT (bit 0) lub deinkrementacji (bit 1).
- **3. WDTNMI** Watchdog Timer NMI Select. Definiuje to pracę układu dla bitu 0 przyjmię funkcję resetu, dla bitu 1 przyjmie funkcję przerwania niemaskowanego.
- **4. WDTTMSEL** Watchdog Timer Mode Select. Konfiguruje tryb pracy WDT. Bit 0 włącza WDT, dla bitu 1 włączany jest tryb interval, który odmierza czas
- **5. WDTCNTCL** Watchdog Timer Counter Clear. Zerowanie rejestru dla bitu 1, dla bitu 0 nic się nie dzieje.
- **6. WDTSSEL** Watchdog Timer Clock Source Select. Odpowiada za wybór zegara na którym będzie pracować WDT. Bit 1 spowoduje pracę na zegarze ACLK, bit 0 wybierze SMCLK.
- **7. WDTIS**x Watchdog Timer Interval Select. Bity ustawiją czas po którym flaga WDTIFG generuje przerwanie.

W trybie pracy Watchdog, za pomocą WDTCNTCL zerujemy licznik. Gdy minie ustalony czas i licznik nie zostanie wyzerowany, rejestr IFG1 zostanie ustawiony z flagą przerwania (WDTIFG) i wykona się reset mikrokontrolera. [2]

Założenia zadania

Założeniem zadanie jest demonstracja obsługi przerwań przez Watchdog Timer'a. W przypadku resetu zasilania dioda P.2.1 (status) jest włączona, natomiast podczas przerwania, wywołanego wciśnięciem przycisku P.4.4, zapalenie diód P.1.5 oraz P.1.6 informuje nas o zaistniałym przerwaniu.

Realizacja zadania

```
Program demonstruje działanie układu watchdog timer w trybie pracy watchdog
// Układ watchdog restartuje program a użytkownikowi jest to oznajmiane po przez
#include <msp430x14x.h>
#define
                                  BTT48P4TN
                                  BIT5&P10UT
                                  BIT6&P10UT
void main( void )
   WDTCTL = WDTPW + WDTHOLD;
   P1DIR |= BIT5 + BIT6;
   P10UT
           &= ~BIT5;
    P10UT
   P2DIR |= BIT1;
    P2OUT &= ~BIT1;
    BCSCTL1 |= XTS + DIVA1 + DIVA0;
     IFG1 &= ~OFIFG;
    while ((IFG1 & OFIFG));
    WDTCTL = WDTPW + WDTCNTCL + WDTSSEL;
    if(WDTIFG & IFG1)
     IFG1 &= ~WDTIFG:
     P20UT |= BIT1;
     P10UT |= BIT5;
     P10UT |= BIT6;
```

Rysunek 1 Kod programu cz.1

Rysunek 3 Kod program cz.2

Wnioski

Przy włączonym układzie, Watchdog zapewnia ciągłość pracy mikrokontrolera. Realizuje to poprzez reset mikrokontrolera w przypadku wykrycia zawieszenia programu. Ma to nie bagatelny wpływ na pracę urządzenia które musi być w ciągłym działaniu. Rozwiązuje to problem kiedy to człowiek nie jest w stanie zareagować na daną "usterkę". Ważnym aspektem konfiguracji MSP430 jest to aby wyłączyć WDT, ma to na celu ułatwienie emulowania programu który w niektórych przypadkach może się zawiesić i zostać zresetowany. Dlatego implementację Watchdoga zaleca się

dopiero w ukońzonym programie.

Bibliografia

- [1] Informator Laboratoryjny
- [2] https://pl.wikipedia.org/wiki/Watchdog