Chapter 1

Homework 21935004 谭焱

1.1 第五次作业

Exercise 1.1. f 是 Abel 群 **G** 到 Abel 群 **G**' 的同态,**H** 和 **H**' 分别 1 是 **G** 和 **G**' 的子群,且 f(**H**) \subset **H**'.则可以定义

$$\widetilde{f}: \frac{\mathbf{G}/\mathbf{H} \to \mathbf{G}'/\mathbf{H}'}{\mathbf{x} + \mathbf{H} \mapsto \mathbf{f}(\mathbf{x}) + \mathbf{H}'}.$$

同态 (合理且同态).

Solution. 合理的: 对于 $\forall h \in \mathbf{H}, \widetilde{f}(x+h+\mathbf{H}) = f(x+h)+\mathbf{H}' = f(x)+f(h)+\mathbf{H}' = f(x)+\mathbf{H}' = \widetilde{f}(x+\mathbf{H}).$ 所以 \widetilde{f} 将 x 和 $x+h, \forall h \in \mathbf{H}$ 映射到同一个值,所以是合理的.

同态: $\forall x, y \in \mathbf{G/H}$, $\widetilde{f}(xy + \mathbf{H}) = f(xy) + \mathbf{H'} = f(x)f(y) + \mathbf{H'} = \widetilde{f}(x + \mathbf{H})\widetilde{f}(y + \mathbf{H})$

Exercise 1.2. 对于每个 $n \geq 0$, $\mathbf{S}_n : \mathbf{Top} \to \mathbf{Ab}$ 是一个函子.

Solution. 对象 \mathbf{S}_n 已定义为 $\mathbf{S}_n(\mathbf{X})$. 如果函数 $f: \mathbf{X} \to \mathbf{Y}$ 是连续的. 定义 $\mathbf{S}_n(f): \mathbf{S}_n(\mathbf{X}) \to \mathbf{S}_n(\mathbf{Y}), x_n \mapsto f(x_n)$. 由 f 的连续性 $f(x_n) = f \circ x_n : \Delta^n \to \mathbf{Y}$ 是一个连续映射 $\sigma: \Delta^n \to \mathbf{Y}$, 即定义是合理的. 当 $f = 1_{\mathbf{X}}$ 时 $\mathbf{S}_n(f)(x_n) = f(x_n) = f \circ x_n = x_n$ 是恒等映射. 并且 $\mathbf{S}_n(fg)(x_n) = (f \circ g)(x_n) = f(g(x_n)) = \mathbf{S}_n(f)\mathbf{S}_n(g)(x_n)$. 因此 \mathbf{S}_n 是一个函子.

1.2 第六次作业

Exercise 1.3. X 是拓扑空间. $\sigma: \Delta^1 \to X$ 连续, 直接写出 $P_1^X(\sigma)$ 的定义.

Solution. 令 $\beta_2 = [a_0, b_0, b_1] - [a_0, a_1, b_1], a_i = (e_i, 0), b_i = (e_i, 1).$ 则 $\beta_2 : \Delta_2 \to X \times I, X = [e_1, e_2].$ 对 $\forall e \in \Delta^2, e = (1 - t)[e_0, e_1] + te_2,$ 定义 $P_1^X(\sigma) : \Delta^2 \to X \times I, t \mapsto (\sigma \times t)_\# \beta_2,$ 然后线性拓展得到 $S_1(X)$ 上的 全定义 $P_0^X : S_1(X) \to S_2(X \times I).$ 下面验证满足两个条件. 令 δ 为 Δ^1 上的恒等映射.

$$P_{1}^{X} \sigma_{\#}(\delta) = P_{1}^{X}(\sigma \circ \delta) = P_{1}^{X}(\sigma) : t \mapsto (\sigma \times t)_{\#} \beta_{2};$$

$$(\sigma \times 1)_{\#} P_{1}^{\Delta^{1}}(\delta) : t \mapsto (\sigma \times 1)_{\#} (\delta \times t)_{\#} \beta_{2} =$$

$$(\sigma \circ \delta \times t)_{\#} \beta_{2} = (\sigma \times t)_{\#} \beta_{2} = P_{1}^{X} \sigma_{\#}(\delta);$$

$$\begin{split} &(\partial_2 P_1^X + P_0^X \partial_1)(\sigma) \\ &= (\partial_2 ((\delta \times I)_\# \beta_2) + P_0^X (\partial_1 (\delta)))(\sigma) \\ &= (([b_0,b_1] - [a_0,b_1] + [a_0,b_0]) - ([a_1,b_1] - [a_0,b_1] + [a_0,a_1]) \\ &+ P_0^X (e_1 - e_0))(\sigma) \\ &= ([b_0,b_1] - [a_0,a_1] + [a_0,b_0] - [a_1,b_1] \\ &+ [(e_1,0),(e_1,1)] - [(e_0,0),(e_0,1)])(\sigma) \\ &= ([b_0,b_1] - [a_0,a_1])(\sigma) \\ &= ([e_0,1),(e_1,1)] - [(e_0,1),(e_1,1)])(\sigma) \\ &= (\lambda_{1\#}^X - \lambda_{0\#}^X)(\sigma) \end{split}$$