Углом отсечки θ называется половина части периода, выраженная в градусах, в течение которого протекает выходной ток (рис.2.7).

На рис. 2.6 на входе нелинейного элемента (НЭ) действует гармоническое напряжение с частотой ω_0 и амплитудой U_m . Напряжение смещения Е задает рабочую точку на ВАХ. Ток на выходе НЭ имеет вид импульсов с амплитудой I_{max} . Периодическую последовательность импульсов $i_{вых}$ (t) представим рядом Фурье:

θ>90°

 $\theta = 0^{\circ}$

Рис.2.7.

$$i_{_{\theta blx}}(t) = I_0 + I_1 \cos \omega_0 t + I_2 \cos 2\omega_0 t + I_3 \cos 3\omega_0 t + I_4 \cos 4\omega_0 t + \dots$$
 (2.6) Порядок расчета амплитуд гармоник I_k методом угла отсечки следующий:

1) Определяем $I_{\max} = SU_m(1-\cos\theta)$ і і ци 2) Рассчитываем: $\cos\theta = \frac{E_0 - E}{U_m}$ (правая ВАХ) і ци $\cos\theta = \frac{E - E_0}{U_m}$ (левая ВАХ)