אלגברה: תהא Ω קבוצה אזי $\mathcal{F}\subseteq 2^\Omega$ המקיימת $\Omega \in \mathcal{F} \bullet$ $\forall E \in \mathcal{F}.E^{\mathcal{C}} \in \mathcal{F} \bullet$. | או פית מתקיים $E\subset\mathcal{F}$ לכל • $.\emptyset \in \mathcal{F}$ אלגברה אזי \mathcal{F} אלגברה $A \cap E \in \mathcal{F}$ אזי אזי $E \subseteq \mathcal{F}$ אלגברה ותהא אזי למה: תהא המקיימת $\mathcal{F} \subset 2^\Omega$ אזי קבוצה Ω המקיימת σ $\Omega \in \mathcal{F} \bullet$ $\forall E \in \mathcal{F}.E^{\mathcal{C}} \in \mathcal{F} \bullet$. | או בת מניים מתקיים בת $E\subseteq\mathcal{F}$ לכל • $.\emptyset\in\mathcal{F}$ אזי σ ־אלגברה אזי למה: תהא $A \cap E \in \mathcal{F}$ אזי אזי $E \subseteq \mathcal{F}$ בת מנייה אזי σ Ω משפט: תהא $\mathcal F$ הינה מעל Ω אזי $\mathcal F$ הינה מעל סילגברה מעל $\mu\left(igcup_{i=1}^nB_i
ight)=\sum_{i=1}^n\mu\left(B_i
ight)$ מתקיים מתקיים לכל המקיימת לכל $\mu:\mathcal{A} o\mathbb{R}$ המקציה אדטיבית: פונקציה המקיימת לכל . אדטיבית $\mu:\mathcal{F} \to [0,\infty]$ אזי אלגברה תהא \mathcal{F} אדטיבית. מתקיים $\{B_i\}_{i=1}^\infty\subseteq \mathcal{A}$ מתקיימת לכל $\mu:\mathcal{A} o\mathbb{R}$ מתקיים פונקציה σ . $\mu\left(\bigcup_{i=1}^{\infty}B_{i}\right)=\sum_{i=1}^{\infty}\mu\left(B_{i}\right)$ σ אדטיבית. σ $\mu:\mathcal{F} \to [0,\infty]$ מידה על σ אלגברה: תהא σ אלגברה אזי (Ω,\mathcal{F}) אזי איז מרחב מדיד: תהא σ אזי σ -אלגברה מעל $E \in \mathcal{F}$ אזי Ω אזי σ ־אלגברה מעל מדידה: תהא $\mu\left(\emptyset
ight)=0$ אזי $\exists E\in\mathcal{F}.\mu\left(E
ight)<0$ אמיימת \mathcal{F} אמי מידה על . אדטיבית μ אזי \mathcal{F} אזי מעל σ ־אלגברה מעל מידה מעל מידה מעל $\mu\left(A\right)\leq\mu\left(B\right)$ אזי $A\subseteq B$ עבורן $A,B\in\mathcal{F}$ אזי מידה ותהיינה סדרת קבוצות מונוטונית: תהא \mathcal{A} קבוצה ותהא $\mathcal{A}:\mathbb{N}
ightarrow \mathcal{A}$ אזי $\forall n \in \mathbb{N}. A_n \subseteq A_{n+1}$:שונוטונית עולה חלש $.\forall n\in\mathbb{N}.A_{n+1}\subseteq A_n$ יורדת חלש: • מונוטונית יורדת יורדת $\sup{(A)}=\bigcup_{i=0}^{\infty}A_{i}$ אזי אזי $A:\mathbb{N}\to\mathcal{A}$ ותהא קבוצה תהא \mathcal{A} $\inf(A)=\bigcap_{i=0}^\infty A_i$ אזי $A:\mathbb{N}\to\mathcal{A}$ אחוו ההא \mathcal{A} קבוצה ותהא קבוצה ותהא $A:\mathbb{N}\to\mathcal{A}$ אזי וווה גבול עליון: תהא $A:\mathbb{N}\to\mathcal{A}$ הבול עליון: תהא $A:\mathbb{N}\to\mathcal{A}$ קבוצה ותהא $A:\mathbb{N}\to\mathcal{A}$ אזי אוי וווה א . $\liminf_{n \to \infty} A_n = \bigcup_{n=0}^\infty \bigcap_{i=n}^\infty A_i$ אזי איזי $A:\mathbb{N} \to \mathcal{A}$ קבוצה ותהא \mathcal{A} קבוצה ותהא $\lim_{n \to \infty} A_n = \liminf_{n \to \infty} A_n$ אזי א $\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$ עבורה א $A: \mathbb{N} \to \mathcal{A}$ אזי א וווווא אזי א הבול: תהא $A: \mathbb{N} \to \mathcal{A}$ $\lim_{n o\infty}\mu\left(A_n
ight)=\mu\left(B
ight)$ אזי $\lim_{n o\infty}A_n=B$ עבורה $A:\mathbb{N} o\mathcal{F}$ ותהא \mathcal{F} ותהא מידה מעל σ ־אלגברה מעל מידה מעל (Ω,\mathcal{F},μ) אזי \mathcal{F} אזי μ מרחב מידה: תהא \mathcal{F} אלגברה σ -אלגברה מעל $\mathbb{P}\left(\Omega
ight)=1$ המקיימת $\mathbb{P}:\mathcal{F} o[0,\infty]$ היז מידה מעל Ω אזי מידה הסתברות: תהא σ מרחב הסתברות: מרחב מידה (Ω,\mathcal{F},μ) עבורו מידת הסתברות: Ω מרחב התוצאות: יהי $(\Omega,\mathcal{F},\mathbb{P})$ מרחב הסתברות אזי

 $E\in\mathcal{F}$ יהי מאורע: יהי ($\Omega,\mathcal{F},\mathbb{P}$) מרחב הסתברות מאורע

 \mathcal{F} אזי אזי הסתברות מרחב $(\Omega,\mathcal{F},\mathbb{P})$ יהי מרחב המאורעות:

 $A+b\subseteq (0,1]$ באשר $b\in (0,1]$ ולכל ולכל $A\subseteq (0,1]$ עבורו לכל (0,1], \mathcal{F},\mathbb{P}) אינווריאנטיות להזזות: מרחב הסתברות מתקיים B=(0,1] באשר ולכל (0,1].

. טענה: לכל מרחב הסתברות $\left(\left(0,1\right],2^{\left(0,1\right]},\mathbb{P}\right)$ לא מתקיימת אינווריאנטיות להזזות לכל