$12a_{0056} \ (K12a_{0056})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{48} - u^{47} + \dots + b + 1, \ u^{45} - 4u^{43} + \dots + a - 5u, \ u^{49} + 2u^{48} + \dots + u - 1 \rangle$$

$$I_2^u = \langle b + 1, \ u^4 - u^2 + a + u + 2, \ u^5 - u^4 + u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{48} - u^{47} + \dots + b + 1, \ u^{45} - 4u^{43} + \dots + a - 5u, \ u^{49} + 2u^{48} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{45} + 4u^{43} + \dots - 22u^{3} + 5u \\ u^{48} + u^{47} + \dots + 4u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{48} + u^{47} + \dots + 5u - 1 \\ u^{48} + u^{47} + \dots + 4u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{9} + 3u^{5} + u \\ u^{11} - u^{9} + 4u^{7} - 3u^{5} + 3u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{48} + 2u^{47} + \dots + 6u - 1 \\ u^{48} + u^{47} + \dots + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{11} + 4u^{7} + 3u^{3} \\ u^{13} - u^{11} + 5u^{9} - 4u^{7} + 6u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} - u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} + 2u^{3} \\ u^{9} - u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $6u^{48} + 5u^{47} + \cdots + 9u 20$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{49} + 20u^{48} + \dots + 79u + 1$
c_2, c_4	$u^{49} - 6u^{48} + \dots - u + 1$
c_{3}, c_{6}	$u^{49} - u^{48} + \dots + 64u + 32$
c_5, c_{10}	$u^{49} - 2u^{48} + \dots + u + 1$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$u^{49} + 8u^{48} + \dots + 13u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{49} + 24y^{48} + \dots + 2991y - 1$
c_{2}, c_{4}	$y^{49} - 20y^{48} + \dots + 79y - 1$
c_3, c_6	$y^{49} + 33y^{48} + \dots - 9728y - 1024$
c_5, c_{10}	$y^{49} - 8y^{48} + \dots + 13y - 1$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$y^{49} + 68y^{48} + \dots - 67y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.760736 + 0.719246I		
a = 1.12247 + 1.09140I	3.14913 + 0.38825I	-7.13985 + 0.I
b = -0.784658 - 0.558197I		
u = -0.760736 - 0.719246I		
a = 1.12247 - 1.09140I	3.14913 - 0.38825I	-7.13985 + 0.I
b = -0.784658 + 0.558197I		
u = 0.796734 + 0.681722I		
a = -0.291180 + 1.036890I	1.51702 - 2.54299I	-6.23264 + 3.96997I
b = -1.281700 + 0.033312I		
u = 0.796734 - 0.681722I		
a = -0.291180 - 1.036890I	1.51702 + 2.54299I	-6.23264 - 3.96997I
b = -1.281700 - 0.033312I		
u = -0.892137 + 0.327379I		
a = 2.17207 + 1.31935I	0.43580 + 6.91892I	-11.9536 - 9.3736I
b = 1.005090 - 0.623169I		
u = -0.892137 - 0.327379I		
a = 2.17207 - 1.31935I	0.43580 - 6.91892I	-11.9536 + 9.3736I
b = 1.005090 + 0.623169I		
u = -0.844082 + 0.428322I		
a = -0.187763 + 0.837953I	1.59253 + 2.02971I	-8.12894 - 3.92342I
b = 0.617924 + 0.579853I		
u = -0.844082 - 0.428322I		
a = -0.187763 - 0.837953I	1.59253 - 2.02971I	-8.12894 + 3.92342I
b = 0.617924 - 0.579853I		
u = 0.693592 + 0.795699I		
a = -0.527393 + 1.026490I	7.01029 + 5.24368I	-5.42899 - 3.02603I
b = 1.070340 - 0.723216I		
u = 0.693592 - 0.795699I		
a = -0.527393 - 1.026490I	7.01029 - 5.24368I	-5.42899 + 3.02603I
b = 1.070340 + 0.723216I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.842140 + 0.687789I		
a = -0.05555 - 2.42181I	2.88211 + 4.83632I	-8.23420 - 6.42667I
b = -0.868271 + 0.553100I		
u = -0.842140 - 0.687789I		
a = -0.05555 + 2.42181I	2.88211 - 4.83632I	-8.23420 + 6.42667I
b = -0.868271 - 0.553100I		
u = 0.749509 + 0.792916I		
a = -0.060126 - 1.378320I	8.45422 - 0.68674I	-3.54074 + 1.96318I
b = 0.588767 + 0.880625I		
u = 0.749509 - 0.792916I		
a = -0.060126 + 1.378320I	8.45422 + 0.68674I	-3.54074 - 1.96318I
b = 0.588767 - 0.880625I		
u = -0.737633 + 0.516972I		
a = 0.414474 + 0.300895I	1.34830 + 2.00478I	-4.48597 - 4.55079I
b = 0.346209 + 0.168150I		
u = -0.737633 - 0.516972I		
a = 0.414474 - 0.300895I	1.34830 - 2.00478I	-4.48597 + 4.55079I
b = 0.346209 - 0.168150I		
u = 0.880418 + 0.058419I		
a = 1.79760 - 0.81935I	-0.98474 + 2.22735I	-14.5110 - 2.6928I
b = 0.877222 - 0.561628I		
u = 0.880418 - 0.058419I		
a = 1.79760 + 0.81935I	-0.98474 - 2.22735I	-14.5110 + 2.6928I
b = 0.877222 + 0.561628I		
u = 0.892884 + 0.720049I		
a = -1.122640 + 0.355505I	7.97137 - 4.88104I	-4.58899 + 4.14916I
b = 0.517458 - 0.877459I		
u = 0.892884 - 0.720049I		
a = -1.122640 - 0.355505I	7.97137 + 4.88104I	-4.58899 - 4.14916I
b = 0.517458 + 0.877459I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.922095 + 0.682387I		
a = 0.94618 - 2.27074I	6.24237 - 10.68800I	-7.37912 + 8.93754I
b = 1.097470 + 0.693580I		
u = 0.922095 - 0.682387I		
a = 0.94618 + 2.27074I	6.24237 + 10.68800I	-7.37912 - 8.93754I
b = 1.097470 - 0.693580I		
u = 0.740442 + 0.287353I		
a = -1.50962 + 2.57763I	-2.14769 - 2.41886I	-15.9646 + 6.9978I
b = -0.946359 - 0.333388I		
u = 0.740442 - 0.287353I		
a = -1.50962 - 2.57763I	-2.14769 + 2.41886I	-15.9646 - 6.9978I
b = -0.946359 + 0.333388I		
u = -0.359412 + 0.611149I		
a = -0.165040 + 1.109630I	3.14714 + 1.64287I	-3.84623 - 3.06683I
b = 0.758551 - 0.696515I		
u = -0.359412 - 0.611149I		
a = -0.165040 - 1.109630I	3.14714 - 1.64287I	-3.84623 + 3.06683I
b = 0.758551 + 0.696515I		
u = 0.931772 + 0.895572I		
a = 0.237488 - 0.406711I	9.96355 - 3.30520I	0
b = 0.694049 - 0.014591I		
u = 0.931772 - 0.895572I		
a = 0.237488 + 0.406711I	9.96355 + 3.30520I	0
b = 0.694049 + 0.014591I		
u = -0.682651 + 0.184302I		
a = -2.50646 - 0.45724I	-2.69048 + 0.60292I	-15.3689 - 9.6396I
b = -1.096840 - 0.143397I		
u = -0.682651 - 0.184302I		
a = -2.50646 + 0.45724I	-2.69048 - 0.60292I	-15.3689 + 9.6396I
b = -1.096840 + 0.143397I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.948044 + 0.926579I		
a = 0.195056 - 0.777042I	11.83110 + 3.40658I	0
b = -1.395190 - 0.006072I		
u = -0.948044 - 0.926579I		
a = 0.195056 + 0.777042I	11.83110 - 3.40658I	0
b = -1.395190 + 0.006072I		
u = 0.942403 + 0.933530I		
a = 1.03952 - 1.20944I	13.54070 - 0.72694I	0
b = -0.855209 + 0.703197I		
u = 0.942403 - 0.933530I		
a = 1.03952 + 1.20944I	13.54070 + 0.72694I	0
b = -0.855209 - 0.703197I		
u = -0.927792 + 0.948411I		
a = -0.633748 - 1.030830I	17.4053 - 6.0517I	0
b = 1.155820 + 0.749430I		
u = -0.927792 - 0.948411I		
a = -0.633748 + 1.030830I	17.4053 + 6.0517I	0
b = 1.155820 - 0.749430I		
u = 0.956706 + 0.925364I		
a = 0.22666 + 2.17249I	13.4933 - 6.1049I	0
b = -0.870319 - 0.699281I		
u = 0.956706 - 0.925364I		
a = 0.22666 - 2.17249I	13.4933 + 6.1049I	0
b = -0.870319 + 0.699281I		
u = -0.939680 + 0.946771I		
a = -0.07120 + 1.53829I	19.3115 + 0.3590I	0
b = 0.540687 - 1.020080I		
u = -0.939680 - 0.946771I		
a = -0.07120 - 1.53829I	19.3115 - 0.3590I	0
b = 0.540687 + 1.020080I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.975390 + 0.920268I		
a = 0.26091 + 2.26210I	17.2463 + 12.9142I	0
b = 1.161320 - 0.741973I		
u = -0.975390 - 0.920268I		
a = 0.26091 - 2.26210I	17.2463 - 12.9142I	0
b = 1.161320 + 0.741973I		
u = -0.968824 + 0.929241I		
a = -1.16534 - 0.91357I	19.2138 + 6.5292I	0
b = 0.526652 + 1.020740I		
u = -0.968824 - 0.929241I		
a = -1.16534 + 0.91357I	19.2138 - 6.5292I	0
b = 0.526652 - 1.020740I		
u = -0.222542 + 0.611946I		
a = -0.356092 - 1.021050I	2.61636 - 3.65615I	-4.75819 + 3.34819I
b = 0.934438 + 0.678142I		
u = -0.222542 - 0.611946I		
a = -0.356092 + 1.021050I	2.61636 + 3.65615I	-4.75819 - 3.34819I
b = 0.934438 - 0.678142I		
u = 0.560438		
a = 0.882793	-0.730326	-14.0240
b = -0.134956		
u = 0.314290 + 0.268544I		
a = 1.79832 - 0.55498I	-0.980654 + 0.106245I	-9.70626 + 1.04735I
b = -0.725982 + 0.146511I		
u = 0.314290 - 0.268544I		
a = 1.79832 + 0.55498I	-0.980654 - 0.106245I	-9.70626 - 1.04735I
b = -0.725982 - 0.146511I		

II.
$$I_2^u = \langle b+1, u^4-u^2+a+u+2, u^5-u^4+u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} + u^{2} - u - 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} + u^{2} - u - 3 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{4} + u^{2} - u - 2 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{4} - u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^3 + 3u^2 u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^5$
c_3, c_6	u^5
c_4	$(u+1)^5$
<i>C</i> ₅	$u^5 - u^4 + u^2 + u - 1$
c_7, c_8, c_9	$u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1$
c_{10}	$u^5 + u^4 - u^2 + u + 1$
c_{11}, c_{12}	$u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_3, c_6	y^5
c_5, c_{10}	$y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.758138 + 0.584034I		
a = -0.278580 - 1.055720I	0.17487 + 2.21397I	-12.88087 - 4.04855I
b = -1.00000		
u = -0.758138 - 0.584034I		
a = -0.278580 + 1.055720I	0.17487 - 2.21397I	-12.88087 + 4.04855I
b = -1.00000		
u = 0.935538 + 0.903908I		
a = -0.020316 + 0.590570I	9.31336 - 3.33174I	-13.28666 + 2.53508I
b = -1.00000		
u = 0.935538 - 0.903908I		
a = -0.020316 - 0.590570I	9.31336 + 3.33174I	-13.28666 - 2.53508I
b = -1.00000		
u = 0.645200		
a = -2.40221	-2.52712	-13.6650
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{49} + 20u^{48} + \dots + 79u + 1)$
c_2	$((u-1)^5)(u^{49}-6u^{48}+\cdots-u+1)$
c_3, c_6	$u^5(u^{49} - u^{48} + \dots + 64u + 32)$
c_4	$((u+1)^5)(u^{49}-6u^{48}+\cdots-u+1)$
<i>C</i> ₅	$(u^5 - u^4 + u^2 + u - 1)(u^{49} - 2u^{48} + \dots + u + 1)$
c_7, c_8, c_9	$(u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1)(u^{49} + 8u^{48} + \dots + 13u + 1)$
c_{10}	$(u^5 + u^4 - u^2 + u + 1)(u^{49} - 2u^{48} + \dots + u + 1)$
c_{11}, c_{12}	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)(u^{49} + 8u^{48} + \dots + 13u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(y^{49} + 24y^{48} + \dots + 2991y - 1)$
c_2, c_4	$((y-1)^5)(y^{49} - 20y^{48} + \dots + 79y - 1)$
c_3, c_6	$y^5(y^{49} + 33y^{48} + \dots - 9728y - 1024)$
c_5, c_{10}	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)(y^{49} - 8y^{48} + \dots + 13y - 1)$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)(y^{49} + 68y^{48} + \dots - 67y - 1)$