FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY $(FISAT)^{TM}$

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

DATA SCIENCE

LABORATORY RECORD

Name: ROSE MARY CLEEBERT

Branch: MASTER OF COMPUTER APPLICATION

Semester: 3 Batch: B Roll No: 36

FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY

 $(FISAT)^{TM}$

HORMIS NAGAR, MOOKKANNOOR

ANGAMALY-683577

'FOCUS ON EXCELLENCE'

Name : ROSE MARY CLEEBERT

Branch: MASTER OF COMPUTER APPLICATION

Semester: 3 Roll No: 36

University Exam.Reg. No:

<u>CERTIFI</u>	CATE
This is to certify that this is a Bonafide record of	f the Practical work done and submitted to
Kerala Technological University in partial ful	lfillment for the award of the Master Of
Computer Applications is a record of the original	inal research work done by ROSE MARY
CLEEBERT in the DATA SCIENCE Laborato	ry of the Federal Institute of Science and
Technology during the academic year 2021-202	2.
Signature of Staff in Charge	Signature of H.O.D
Name:	Name:
Date:	
Date of University practical examination	•••••
Signature of	Signature of
Internal Examiner	External Examiner

CONTENT

SI No	Date :	Name of Experiment:	Page No:	Signature of Staff –In – Charge:
1	19/11/2021	Matrix operations (using vectorization) and transformation using python and SVD using Python	1	Ü
2	30/11/2021	Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.	4	
3	26/11/2021	Programs to handle data using pandas	15	
4	07/12/2021	Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.	22	
5	14/12/2021	Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm	28	
6	04/01/2022	Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.	31	
7	14/01/2022	Program to implement text classification using Support vector machine.	34	

8	21/12/2022	Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm	38	
9	25/01/2022	Program to implement k-means clustering technique using any standard dataset available in the public domain	40	
10	28/01/2022	Programs on feedforward network to classify any standard dataset available in the public domain	45	
11	28/01/2022	Programs on convolutional neural network to classify images from any standard dataset in the public domain.	47	

<u>AIM</u>

1: Matrix operations(using vectorization) and transformation using python and SVD

CODE:

```
a = np.arange(0,4).reshape((2,2))
b = np.eye(2)
print(np.dot(a,b)) ##Matrix multiplication
```

OUTPUT:

```
[[0. 1.]
[2. 3.]]
```

CODE:

```
x = np.arange(1,10).reshape(3,3)
print(x)
```

OUTPUT:

```
[[1 2 3]
[4 5 6]
[7 8 9]]
```

CODE:

#SVD image compresion

```
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img_eg = mpimg.imread("rose.jpg")
plt.imshow(img_eg)
print(img_eg.shape) #Operation results: (800, 1280,3)

#Converting image data into two-dimensional matrix and singular value decomposition
img_temp = img_eg.reshape(800, 1280 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)

# Take the first 10 singular values
sval_nums = 10
```

```
img re-
struct1 = (U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:])
img restruct1 = img restruct1.reshape(800, 1280,3)
img restruct1.tolist()
# Take the first 50 singular values
sval nums = 50
img re-
struct2 = (U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:])
img restruct2 = img restruct2.reshape(800, 1280,3)
# Take the first 100 singular values
sval_nums = 100
img re-
struct3 = (U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:])
img restruct3 = img restruct3.reshape(800, 1280,3)
#Exhibition
fig, ax = plt.subplots(nrows=1, ncols=3)
ax[0].imshow(img restruct1.astype(np.uint8))
ax[0].set(title = "10")
ax[1].imshow(img restruct2.astype(np.uint8))
ax[1].set(title = "50")
ax[2].imshow(img restruct3.astype(np.uint8))
ax[2].set(title = "100")
plt.show()
```


AIM

2. Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.

Dataset used: iris.csv

CODE:

import pandas as pd
iris = pd.read_csv('iris.csv')

Plotting Using

Matplotlib import

matplotlib.pyplot as plt

plt.plot(iris["sepal.length"],

"r--") plt.show

OUTPUT:

CODE:

Scatter Plot

CODE:

Plotting using Seaborn

import seaborn as sns
sns.set_style("whitegrid")
sns.FacetGrid(iris, hue ="variety",height = 6).map(plt.scatter, 'sepal.length',
'petal.length').add legend()

Distribution Chart #Visualizing the target(class label) column

sns.countplot(x='variety', data=iris,)
plt.show()

OUTPUT:

CODE:

#plotting all the column's relationships using a pairplot. It can be used for multivariate analysis.

sns.pairplot(iris,hue='variety', height=2)

#Histogram for Sepal Length

```
plt.figure(figsize = (10, 7))

x = iris["sepal.length"]

plt.hist(x, bins = 20, color = "green")

plt.title("Sepal Length in cm")

plt.xlabel("Sepal_Length_cm")

plt.ylabel("Count")
```

OUTPUT:

CODE:

#Histogram for Petal Width plt.figure(figsize = (12, 7)) x = iris["petal.width"]

plt.hist(x, bins =20, color = "blue")
plt.title("Petal width in cm")
plt.xlabel("Petal_Width_cm")
plt.ylabel("Count")

CODE:

#Histograms allow seeing the distribution of data for various columns. # It can be used for uni as well as bi-variate analysis.

```
fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")
axes[0,0].hist(iris['sepal.length'], bins=7)

axes[0,1].set_title("Sepal Width")
axes[0,1].hist(iris['sepal.width'], bins=5);

axes[1,0].set_title("Petal Length")
axes[1,0].hist(iris['petal.length'], bins=6);

axes[1,1].set_title("Petal Width")
axes[1,1].hist(iris['petal.width'], bins=6);
```


plot = sns.FacetGrid(iris, hue="variety")

plot.map(sns.distplot, "petal.length").add_legend()

plot.map(sns.distplot, "petal.width").add legend()

plt.show()

#In the case of Sepal Length, there is a huge amount of overlapping.
#In the case of Sepal Width also, there is a huge amount of overlapping.
#In the case of Petal Length, there is a very little amount of overlapping.
#In the case of Petal Width also, there is a very little amount of overlapping.


```
# Box Plot for Iris Data
plt.figure(figsize = (10, 7))
iris.boxplot()
```

OUTPUT:


```
import matplotlib.gridspec as gridspec
fig = plt.figure(figsize=(9, 40))
outer = gridspec.GridSpec(4, 1, wspace=0.2, hspace=0.2)
for i, col in enumerate(iris.columns[:-1]):
    inner = gridspec.GridSpecFromSubplotSpec(2, 1,subplot_spec=outer[i], wspace=0.2, hspace=0.4)
    ax = plt.Subplot(fig, inner[1])
    _ = sns.violinplot(y="variety", x=f"{col}", data=iris, inner='quartile', ax=ax)
    fig.add_subplot(ax)
fig.show()
```


Make default density plot sns.kdeplot(iris['sepal.width'])

AIM

3. Programs to handle data using pandas

CODE:

```
#Pandas is a Python library.
```

#Pandas is used to analyze data.

import numpy as np

import pandas as pd

```
s = pd.Series([1, 3, 5, 6, 8])
print(s)
```

OUTPUT:

```
0 1
1 3
2 5
3 6
4 8
dtype: int64
```

CODE:

OUTPUT

	country	capital	area po	opulation
0	Brazil	Brasilia	8.516	200.40
1	Russia	Moscow	17.100	143.50
2	India	New Dehli	3.286	1252.00
3	China	Beijing	9.597	1357.00
4	South Africa	Pretoria	1.221	52.98

```
b.index = ["BR", "RU", "IN", "CH", "SA"]
```

print(b)

OUTPUT:

	cour	ntry	cap	oital	are	а	popula	ation
BR	Bı	razil	Bra	asilia	8.5	16		200.40
RU	Rı	ıssia	N	Moscow	17.1	00		143.50
IN]	India	New	Dehli	3.2	86	1:	252.00
СН	(China	Ве	eijing	9.5	97	1	357.00
SA	South Af	Frica	Pre	etoria	1.2	21		52.98

CODE:

import pandas as pd
cars = pd.read_csv('cars1.csv')
print(cars)

0 Toyoty Aygo 1000 790 99 1 Mitsubishi Space Star 1200 1160 95 2 Skoda Citigo 1000 929 3 Fiat 500 900 865 4 Mini Cooper 1500 1140 5 VW Up! 1000 929 105 Skoda Fabia 1400 1109 90 7 Mercedes A-Class 1500 1365	95 90 105 6 92 98 99
2 Skoda Citigo 1000 929 3 Fiat 500 900 865 4 Mini Cooper 1500 1140 5 VW Up! 1000 929 105 Skoda Fabia 1400 1109 90	90 105 5 6 92 98
3 Fiat 500 900 865 4 Mini Cooper 1500 1140 5 VW Up! 1000 929 105 Skoda Fabia 1400 1109 90	90 105 5 6 92 98
4 Mini Cooper 1500 1140 5 VW Up! 1000 929 105 Skoda Fabia 1400 1109 90	105 5 6 92 98
5 VW Up! 1000 929 105 Skoda Fabia 1400 1109 90	92 98
Skoda Fabia 1400 1109 90	92 98
	98
7 Mercedes A-Class 1500 1365	98
8 Ford Fiesta 1500 1112	99
9 Audi A1 1600 1150	
10 Hyundai I20 1100 980 99	
11 Suzuki Swift 1300 990 101	
12 Ford Fiesta 1000 1112 99	
13 Honda Civic 1600 1252	94
14 Hundai I30 1600 1326	97
15 Opel Astra 1600 1330	97
16 BMW 1 1600 1365 99	
17 Mazda 3 2200 1280	104
	104
<u>-</u>	105
20 Ford Mondeo 1600 1584	94
21 Opel Insignia 2000 1428	99
22 Mercedes C-Class 2100 1365	99
23 Skoda Octavia 1600 1415	99
24 Volvo S60 2000 1415	99
25 Mercedes CLA 1500 1465	102
26 Audi A4 2000 1490	104
27 Audi A6 2000 1725	114
28 Volvo V70 1600 1523	109
	114
	115
	117
32 Ford B-Max 1600 1235	104
33 BMW 216 1600 1390 :	T O I

```
CODE:
import pandas as pd
cars = pd.read csv('cars1.csv')
cars = pd.read csv('/cars1.csv')
print(cars)
# Print out first 4 observations
print(cars[0:4])
# Print out fifth and sixth observation
print(cars[4:6])
import pandas as pd
cars = pd.read csv('cars1.csv', index col = 0) #first column is taen as index column
print(cars.iloc[2])
OUTPUT:
Model Citigo
Volume 1000
Weight 929
CO2
                 95
Name: Skoda, dtype: object
CODE:
#Slicing dataframe
import pandas as pd
df = pd.DataFrame([['Jay','M',18],['Jennifer','F',17],
           ['Preity','F',19],['Neil','M',17]],
           columns = ['Name','Gender','Age'])
print(df)
df1 = df.iloc[2:,:]
df2 = df.iloc[:2,:]
print(df1)
print(df2)
OUTPUT
       Name Gender Age
0 Jay M 18
1 Jennifer F 17
2 Preity F 19
3 Neil M 17
```

```
Name Gender Age
2 Preity F 19
3 Neil M 17
      Name Gender Age
0 Jay M 18
1 Jennifer F 17
CODE:
import pandas as pd
import numpy as np
#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print(s)
print ("The actual data series is:")
print( s.values)
OUTPUT:
0 -1.138968
1 -1.097746
2 0.109717
3 1.159537
dtype: float64
The actual data series is:
[-1.13896826 -1.09774589 0.10971687 1.15953676]
CodeText
CODE:
print (s.head(2))
OUTPUT:
  -1.138968
    -1.097746
dtype: float64
CODE:
print(s.tail(3))
```

```
OUTPUT:
     -1.097746
     0.109717
3 1.159537
dtype: float64
CODE:
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
  'Age':pd.Series([25,26,25,23,30,29,23]),
  'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
# Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("The transpose of the data series is:")
print(df.T)
OUTPUT:
    Name Age Rating
    Tom 25 4.23
1 James 26
                        3.24
2 Ricky 25 3.98
3 Vin 23 2.56
4 Steve 30 3.20
5 Smith 29 4.60
6 Jack 23 3.80
The transpose of the data series is:
        0 1 2 3 4

        Name
        Tom
        James
        Ricky
        Vin
        Steve
        Smith
        Jack

        Age
        25
        26
        25
        23
        30
        29
        23

        Rating
        4.23
        3.24
        3.98
        2.56
        3.2
        4.6
        3.8

CODE:
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
  'Age':pd.Series([25,26,25,23,30,29,23]),
  'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print(df)
```

print ("Row axis labels and column axis labels are:")

print (df.axes)

```
Name Age Rating
0 Tom 25 4.23
1 James 26
                 3.24
2 Ricky 25
                 3.98
3 Vin 23 2.56
4 Steve 30
                3.20
5 Smith 29 4.60
   Jack 23
                 3.80
Row axis labels and column axis labels are:
[RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age',
'Rating'], dtype='object')]
CODE:
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
 'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])
 }
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print (df)
print ("The dimension of the object is:")
print (df.ndim)
OUTPUT:
  Name Age Rating
0 Tom 25 4.23
1 James 26
                3.24
2 Ricky 25 3.98
3 Vin 23 2.56
4 Steve 30
                 3.20
  Smith
           29
                 4.60
  Jack 30
                3.80
Our object is:
The shape of the object is:
(7, 3)
CODE:
print (df.size)
OUTPUT:
21
```

print (df.values)

OUTPUT:

```
[['Tom' 25 4.23]

['James' 26 3.24]

['Ricky' 25 3.98]

['Vin' 23 2.56]

['Steve' 30 3.2]

['Smith' 29 4.6]

['Jack' 30 3.8]]
```

CODE:

df.isnull().sum() #sum returns the number of missing values

OUTPUT:

```
Name 0
Age 0
Rating 0
dtype: int64
```

CODE:

df = pd.DataFrame(np.arange(12).reshape(3, 4), columns=['A', 'B', 'C', 'D']) print(df)

```
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
```

<u>AIM</u>

4: Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import pandas as pd

```
df = pd.read_csv("iris.csv")
print(df)
```

OUTPUT:

0 1 2 3 4	sepal.length 5.1 4.9 4.7 4.6 5.0	sepal.width 3.5 3.0 3.2 3.1 3.6	petal.length 1.4 1.4 1.3 1.5	petal.width 0.2 0.2 0.2 0.2 0.2 0.2	variety Setosa Setosa Setosa Setosa Setosa
145	6.7	3.0	5.2	2.3	Virginica Virginica Virginica Virginica Virginica Virginica
146	6.3	2.5	5.0	1.9	
147	6.5	3.0	5.2	2.0	
148	6.2	3.4	5.4	2.3	
149	5.9	3.0	5.1	1.8	

[150 rows x 5 columns]

CODE:

df['variety'].value counts()

```
Setosa 50
Versicolor 50
Virginica 50
Name: variety, dtype: int64

CODE:
X = df.drop('variety', axis=1)
y = df['variety']
# splitting to trainset and Test set in the ratio 70:30

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

print(X_train)
print("")
```

$print(X_test)$

sepal.leng	th sepal.widt	h petal.lengt	h petal.widt	.h
46	5.1	3.8	1.6	0.2
95	5.7	3.0	4.2	1.2
67	5.8	2.7	4.1	1.0
45	4.8	3.0	1.4	0.3
143	6.8	3.2	5.9	2.3
116	6.5	3.0	5.5	1.8
41	4.5	2.3	1.3	0.3
62	6.0	2.2	4.0	1.0
91	6.1	3.0	4.6	1.4
123	6.3	2.7	4.9	1.8
[105 rows x	4 columns]			
sepal.le	ength sepal.w	vidth petal.le	ength petal.w	idth
25	5.0	3.0	1.6	0.2
141	6.9	3.1	5.1	2.3
125	7.2	3.2	6.0	1.8
102	7.1	3.0	5.9	2.1
128	6.4	2.8	5.6	2.1
122	7.7	2.8	6.7	2.0
76	6.8	2.8	4.8	1.4
103	6.3	2.9	5.6	1.8
14	5.8	4.0	1.2	0.2
37	4.9	3.6	1.4	0.1
100	6.3	3.3	6.0	2.5
63	6.1	2.9	4.7	1.4
64	5.6	2.9	3.6	1.3
61	5.9	3.0	4.2	1.5
17	5.1	3.5	1.4	0.3
74	6.4	2.9	4.3	1.3
111	6.4	2.7	5.3	1.9
120	6.9	3.2	5.7	2.3
79	5.7	2.6	3.5	1.0
85	6.0	3.4	4.5	1.6
49	5.0	3.3	1.4	0.2
21	5.1	3.7	1.5	0.4
110	6.5	3.2	5.1	2.0
149	5.9	3.0	5.1	1.8
72	6.3	2.5	4.9	1.5
11	4.8	3.4	1.6	0.2
36	5.5	3.5	1.3	0.2
6	4.6	3.4	1.4	0.3
68	6.2	2.2	4.5	1.5
144	6.7	3.3	5.7	2.5
43	5.0	3.5	1.6	0.6
80	5.5	2.4	3.8	1.1
32	5.2	4.1	1.5	0.1
7	5.0	3.4	1.5	0.2
55	5.7	2.8	4.5	1.3
129	7.2	3.0	5.8	1.6
117	7.7	3.8	6.7	2.2
± ± 1	/ • /	J • U	. 1	۷ • ۷

12 4.8 3.0 1.4 0.1

CODE:

```
print("Number transactions X_train dataset: ", X_train.shape) print("Number transactions y_train dataset: ", y_train.shape) print("Number transactions X_test dataset: ", X_test.shape) print("Number transactions y_test dataset: ", y_test.shape)
```

OUTPUT:

```
Number transactions X_{train} dataset: (105, 4)
Number transactions y_{train} dataset: (105,)
Number transactions X_{test} dataset: (45, 4)
Number transactions y_{test} dataset: (45,)
```

CODE:

```
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(y_pred)
print('')
print(y_test)
```

OUTPUT:

```
['Setosa' 'Virginica''Virginica''Virginica''Virginica''Virginica'
'Versicolor''Virginica''Setosa''Setosa''Virginica''Virginica''Versicolor''Versicolor''Setosa''Setosa''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Setosa''Setosa''Setosa''Setosa''Setosa''Setosa''Setosa''Setosa''Virginica''Setosa''Virginica''Versicolor''Virginica''Versicolor''Virginica''Virginica''Virginica'''Setosa''
```

```
63
       Versicolor
64
       Versicolor
61
       Versicolor
17
           Setosa
74
       Versicolor
111
       Virginica
120
        Virginica
79
       Versicolor
85
       Versicolor
49
           Setosa
21
           Setosa
110
       Virginica
       Virginica
149
72
       Versicolor
11
           Setosa
36
           Setosa
           Setosa
```

68 Versicolor

```
144
       Virginica
43
           Setosa
47
           Setosa
77
       Versicolor
80
       Versicolor
32
           Setosa
           Setosa
148
       Virginica
88
       Versicolor
137
       Virginica
55
       Versicolor
112
       Virginica
29
           Setosa
129
       Virginica
       Virginica
117
           Setosa
Name: variety, dtype: object
```

from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_pred)) print(classification report(y test, y pred))

OUTPUT:

[[15 0 0] [0 11 2] [0 0 17]]				
[3 3 2 7]	precision	recall	fl-score	support
Setosa	1.00	1.00	1.00	15
Versicolor	1.00	0.85	0.92	13
Virginica	0.89	1.00	0.94	17
accuracy			0.96	45
macro avg	0.96	0.95	0.95	45
weighted avg	0.96	0.96	0.95	45

```
weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy',
'Over cast','Sunny','Sunny', 'Rainy','Sunny','Overcast','Over-cast','Rainy']

# Second Feature
temp=['Hot','Hot','Hot','Mild','Cool','Cool','Mild',
'Cool'
,'Mild','Mild','Mild','Hot','Mild']

# Label or target varible

play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','
```

```
from sklearn import preprocessing
#creating labelEncoder
le = preprocessing.LabelEncoder()
# Converting string labels into numbers.
weather_encoded=le.fit_transform(weather)
print(weather encoded)
```

```
[2 2 0 1 1 1 0 2 2 1 2 0 0 1]
```

```
temp_encoded=le.fit_transform(temp) print(temp_en-
coded)
print(" ") la-
bel=le.fit_transform(play)
print(label)
```

```
[1 1 1 2 0 0 0 2 0 2 2 2 1 2]
[0 0 1 1 1 0 1 0 1 1 1 1 1 0]
```

CODE:

```
features=list(zip(weather_encoded,temp_encoded))
print(features)
```

OUTPUT:

```
[(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 1), (1, 2)]
```

CODE:

```
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

# Train the model using the training sets

model.fit(features,label)

predicted= model.predict([[0,1]]) # 0:Overcast, 1:Hot

print(predicted)
```

OUTPUT:

[1]

AIM

5: Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: Social Network Ads.csv

```
import pandas as pd
dataset = pd.read_csv("/content/Social_Network_Ads.csv")
print(dataset.describe())
print(dataset.head())
X = dataset.iloc[:, [1, 2, 3]].values
y = dataset.iloc[:, -1].values
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X[:,0] = le.fit_transform(X[:,0])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test si ze = 0.20, random state = 0)
```

			User ID		Age	Estimated	dSalary	Purchased
C	ount	4.000	000e+02	400.	000000	400	.000000	400.000000
me	ean	1.569	154e+07	37.	655000	69742	.500000	0.357500
Si	td	7.165	832e+04	10.	482877	34096	960282	0.479864
m	in	1.556	669e+07	18.	000000	15000	.000000	0.000000
25	5%	1.562	676e+07	29.	750000	43000	.000000	0.000000
56	2%	1.569	434e+07	37.	000000	70000	.000000	0.000000
75	5%	1.575	036e+07	46.	000000	88000	.000000	1.000000
ma	ax	1.581	524e+07	60.	000000	150000	.000000	1.000000
	Us	er ID	Gender	Age	Estima	tedSalary	Purcha	sed
0	156	24510	Male	19		19000		0
1	158	10944	Male	35		20000		0
2	156	68575	Female	26		43000		0
3	156	03246	Female	27		57000		0
4	158	804002	Male	19		76000		0

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB() classi-
fier.fit(X train, y train)
```

OUTPUT:

GaussianNB()

CODE:

```
y_pred = classifier.predict(X_test)
y pred
```

OUTPUT:

```
y_pred = classifier.predict(X_test)
y_test
```

```
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]
```

CODE:

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
print(cm)
print(ac)
```

```
[[56 2]
[ 4 18]]
0.925
```

<u>AIM</u>

6: Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.

CODE:

```
import matplotlib.pyplot as plt
x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
plt.scatter(x, y)
plt.show()
```

OUTPUT:


```
import matplotlib.pyplot as plt
from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

+slope, intercept, r, p, std_err = stats.linregress(x, y) # r
corre lation coefficient # p probability of hypothesis

def myfunc(x):
```

```
return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()
```

-0.758591524376155


```
import pandas
import warnings
warnings.filterwarnings("ignore")

df = pandas.read_csv("cars1.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']
```

```
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(X, y)
```

```
LinearRegression()
```

CODE:

```
predictedCO2 = regr.predict([[2300, 1000]])
print(predictedCO2)
```

OUTPUT:

[104.86715554]

AIM

7. Program to implement text classification using Support vector machine.

CODE:

Dataset used: iris.csv

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
# import some data to play with
iris = datasets.load iris()
X = iris.data[:, :2] # we only take the first two features.
We could
    # avoid this ugly slicing by using a two-dim dataset
y = iris.target
# we create an instance of SVM and fit out data. We do not
scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
svc = svm.SVC(kernel='linear', C=1,gamma='auto').fit(X, y)
# create a mesh to plot in
\#x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
y = x(x, y) = x(x, 1) \cdot 
\#h = (x \max / x \min)/100
#xx, yy = np.meshgrid(np.arange(x min, x max, h),
#np.arange(y min, y max, h
plt.subplot(1, 1, 1)
Z = svc.predict(np.c ravel[xx.(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
```

```
plt.title('SVC with linear kernel')
plt.show()
```


CODE:

Dataset used: True.csv, Fake.csv

```
#Importing Libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.metrics import accuracy_score, confusion_matrix,class
ification_report

from sklearn.svm import LinearSVC

import csv
true = pd.read_csv("True.csv")
fake = pd.read_csv("Fake.csv")
```

```
fake['target'] = 'fake'
true['target'] = 'true'
#News dataset
news = pd.concat([fake, true]).reset_index(drop = True)
news.head()
news.dropna()
```

	title	text	subject	date	target
0	you were wrong! 70-year-old men don t change	News	"December 31	2017"	fake
165	look at me! I m violating the U.S. flag code	News	"October 29	2017"	fake
277	particularly those where people are dying. Ob	News	"September 29	2017"	fake
294	utterly and completely misunderstanding it. T	News	"September 25	2017"	fake
379	I salute you.Featured image via David Becker/	News	"September 10	2017"	fake
		***		•••	
39998	rescuers pulled Maria s body from the rubble	worldnews	"September 21	2017 "	true
40742	adding she had a Spanish passport but chose t	worldnews	"September 14	2017 "	true
40788	adding the Rohingya belong in camps for displ	worldnews	"September 14	2017 "	true
40824	said Reick."	worldnews	"September 14	2017 "	true
41394	in general. "	worldnews	"September 7	2017 "	true

236 rows × 5 columns

```
pipe2 = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTran
sformer()), ('model', LinearSVC())])

model_svc = pipe2.fit(x_train.astype('U'), y_train.astype('U'))
svc_pred = model_svc.predict(x_test.astype('U'))

print("Accuracy of SVM Classifier: {}%".format(round(accuracy_scor
e(y_test, svc_pred)*100,2)))
print("\nConfusion Matrix of SVM Classifier:\n")
print(confusion_matrix(y_test, svc_pred))
print("\nClassification_matrix(y_test, svc_pred))
print(classification_report(y_test, svc_pred))
```

Accuracy of SVM Classifier: 51.43%

Confusion Matrix of SVM Classifier:

[[4302 3] [4085 26]]

Classification Report of SVM Classifier:

	precision	recall	f1-score	support
fake	0.51	1.00	0.68	4305
true	0.90	0.01	0.01	4111
accuracy			0.51	8416
macro avg	0.70	0.50	0.35	8416
weighted avg	0.70	0.51	0.35	8416

<u>AIM</u>

8. Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: iris

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
data=load_iris()
X=data.data
y=data.target
print(X.shape,y.shape)
```

OUTPUT:

```
(150, 4) (150,)
```

CODE:

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier#for checking testi
ng results
from sklearn.metrics import classification_report, confusion_matri
x#for visualizing tree
from sklearn.tree import plot_tree
X_train, X_test, y_train, y_test = train_test_split(X , y, test_si
ze = 25, random_state = 10)
clf=DecisionTreeClassifier()
clf.fit(X_train,y_train)
```

OUTPUT:

DecisionTreeClassifier()

```
y_pred =clf.predict(X_test)
print("Classification report - \n", classification_report(y_test,y
_pred))
```

Classification	report -			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	1.00	0.90	0.95	10
2	0.86	1.00	0.92	6
accuracy			0.96	25
macro avg	0.95	0.97	0.96	25
weighted avg	0.97	0.96	0.96	25

CODE:

```
cm = confusion_matrix(y_test, y_pred)
print(cm)
from sklearn import tree
fig,axes = plt.subplots(nrows=1,ncols=1,figsize =(3,3),dpi=200)
tree.plot_tree(clf,feature_names=data.feature_names,class_names=data.target_names,filled=True)
plt.show() fig.savefig("/con-tent/iris tree.png")
```

OUTPUT:

[[9 0 0] [0 9 1] [0 0 6]]

<u>AIM</u>

9. Program to implement k-means clustering technique using any standard dataset available in the public domain.

CODE:

Dataset used: GENERAL.csv

```
# importing the libraries
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt da-
taset= pd.read_csv('./CC GENERAL.csv')

# checking the presence of null values
print(dataset.isnull().sum())
#CREDIT_LIMIT 1
#MINIMUM PAYMENTS 313
```

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	1
PAYMENTS	0
MINIMUM_PAYMENTS	313
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

CODE:

```
dataset['CREDIT_LIMIT'].fillna(dataset.CREDIT_LIMIT.mean(), inplac
e = True) dataset['MINIMUM_PAYMENTS'].fillna(dataset.MINIMUM_PAY-
MENTS.mean()
, inplace = True) # unfilled vaues replaced using mean
print(dataset.isnull().sum()) print(dataset.de-
scribe())
```

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	0
PAYMENTS	0
MINIMUM_PAYMENTS	0
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

	BALANCE	BALANCE_FREQUENCY	 PRC_FULL_PAYMENT	TENURE
count	8950.000000	8950.000000	 8950.000000	8950.000000
mean	1564.474828	0.877271	 0.153715	11.517318
std	2081.531879	0.236904	 0.292499	1.338331
min	0.000000	0.000000	 0.000000	6.000000
25%	128.281915	0.888889	 0.000000	12.000000
50%	873.385231	1.000000	 0.000000	12.000000
75%	2054.140036	1.000000	 0.142857	12.000000
max	19043.138560	1.000000	 1.000000	12.000000

```
dataset.drop(['CUST_ID'], axis= 1, inplace = True) #no relevance f or custid
```

```
# No Categorical Values found
X = dataset.iloc[:,:].values
```

```
# Using standard scaler
from sklearn.preprocessing import StandardScaler
standardscaler = StandardScaler()
X = standardscaler.fit_transform(X)  #scaling the values
print(X)
```

```
"""K MEANS CLUSTERING """
#Inertia, or the within-
cluster sum of squares criterion, can be recognized as a measure o
f how internally coherent clusters are
from sklearn.cluster import KMeans
wss= []
for i in range(1, 11):
    kmeans= KMeans(n_clusters = i, init = 'k-
means++', random_state = 0)
    kmeans.fit(X) wss.ap-
    pend(kmeans.inertia_)
plt.plot(range(1,11), wss) # selecting 4
```


CODE:

```
wss_mean=np.array(wss).mean()
print(wss)
print(wss_mean)
print([abs(wss_mean-x) for x in wss])
k=np.argmin([abs(wss mean-x) for x in wss])+1
```

OUTPUT:

```
[152149.99999999983, 127784.92103208725, 111986.41162208859, 99073.93826774803, 91502.98328256077, 84851.13240432573, 79532.40237691796, 75568.97609993909, 69954.91393943134, 67546.56302862825] 95995.22420537268 [56154.775794627145, 31789.69682671457, 15991.187416715911, 3078.714062375351, 4492.240922811907, 11144.091801046947, 16462.82182845472, 20426.248105433595, 26040.31026594134, 28448.661176744426]
```

```
kmeans = KMeans(n_clusters = k, init= 'k-
means++', random_state = 0) kmeans.fit(X)

Y_pred_K= kmeans.predict(X)
print(Y pred K)
```

```
#showing the clusters of first 100 persons
plt.figure(figsize=(16,4))
plt.plot(range(1,100+1),Y_pred_K[:100],'ro')
```


<u>AIM</u>

10:Programs on feedforward network to classify any standard dataset available in the public domain.

Dataset used: HR comma sep.csv

CODE:

```
import numpy as np
import pandas as pd

# Load data
data=pd.read_csv('HR_comma_sep.csv')
```

OUTPUT:

data.head()

sat	isfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_5years	sales	salary
0	0.38	0.53	2	157	3	0	1	0	sales	lov
1	0.80	0.86	5	262	6	0	1	0	sales	mediur
2	0.11	0.88	7	272	4	0	1	0	sales	mediur
3	0.72	0.87	5	223	5	0	1	0	sales	lov
4	0.37	0.52	2	159	3	0	1	0	sales	lo

```
from sklearn import preprocessing

# Creating labelEncoder

le = preprocessing.LabelEncoder()

# Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary'])

data['sales']=le.fit_transform(data['sales'])
```

```
X=data[['satisfaction level', 'last evaluation', 'number project', 'average montly hour
s', 'time spend company', 'Work accident', 'promotion last 5years', 'sales', 'salary']]
y=data['left']
# Import train test split function
from sklearn.model selection import train test split
# Split dataset into training set and test set
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42
) # 70% training and 30% test
from sklearn.neural network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden layer sizes=(6,5),
            random state=5,
            verbose=False,
            learning rate init=0.01)
# Fit data onto the model
clf.fit(X train,y train)
```

```
MLPClassifier(hidden_layer_sizes=(6, 5), learning_rate_init=0.01, random state=5)
```

CODE:

```
ypred=clf.predict(X_test)
# Import accuracy score
from sklearn.metrics import accuracy_score
# Calcuate accuracy
accuracy_score(y_test,ypred)
```

OUTPUT:

0.938666666666666

Aim:

11:Programs on convolutional neural network to classify images from any standard dataset in the public domain.

CODE:

import numpy as np import pandas as pd

Load data data=pd.read_csv('HR_comma_sep.csv')

data.head()

Output:

	satis - fac- tion_ I evel	last_ e valu - atio n	num - ber_ p ro - jec t	aver - age_montl y _hours	time_spen d_com - pan y	Work _acci - den t	le ft	promo - tion_last _ 5years	sal es	sal a r y
0	0.38	0.53	2	157	3	0	1	0	sal es	lo w
1	0.80	0.86	5	262	6	0	1	0	sal es	me diu m
2	0.11	0.88	7	272	4	0	1	0	sal es	me diu m
3	0.72	0.87	5	223	5	0	1	0	sal es	lo w
4	0.37	0.52	2	159	3	0	1	0	sal es	lo w

CODE:

from sklearn import preprocessing

Creating labelEncoder le = preprocessing.LabelEncoder()

Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary'])

DEPARTMENT OF COMPUTER APPLICATION data['sales']=le.fit transform(data['sales'])

 $X \!\!=\!\! data \hbox{\tt [['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours',}$

Federal Institution Of Science And Technology

```
'time spend company', 'Work accident', 'promotion last 5years', 'sales', 'salary']]
y=data['left']
# Import train test split function
from sklearn.model selection import train test split
# Split dataset into training set and test set
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42) #
70% training and 30% test
from sklearn.neural network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden layer sizes=(6,5),
            random state=5,
            verbose=False,
            learning rate init=0.01)
# Fit data onto the model
clf.fit(X_train,y_train)
ypred=clf.predict(X test)
OUTPUT:
```

CODE:

Import accuracy score
from sklearn.metrics import accuracy_score
Calcuate accuracy
print ("Accuracy:",accuracy score(y test,ypred))

OUTPUT:

Accuracy: 0.9386666666666666

CODE:

from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, ypred)) print(classification_report(y_test, ypred))

[[3248 [96	180] 976]]				
		precision	recall	f1-score	support
	0	0.97	0.95	0.96	3428
	1	0.84	0.91	0.88	1072
accı	uracy			0.94	4500
macro	o avg	0.91	0.93	0.92	4500
weighted	d avg	0.94	0.94	0.94	4500

DEPARTMENT OF COMPUTER APPLICATION	N