Esempi Parametri di riferimento

Riferimenti parametri tecnologici

PARAMETRI TECNOLOGICI ($V_{dd} = 3.3 \text{ V}$) n-channel p-channel		
V_{T0}	$0.7\mathrm{V}$	-0.7
K'	$100\mu\text{A/V}^2$	$50 \mu A/V^2$
\mathbf{C}_{ox}	$3.45\mathrm{fF}/\mu m^2$	$3.45 \mathrm{fF} / \mu m^2$
$\mathbf{L}_{ ext{min}}$	0.35 μm	0.35 μm
λ	0	0
γ	0	0
$R_{RIF} (V_{gs} = V_{dd} , 50\%, S = 1)$	5 kΩ	10 kΩ

Riferimenti parametri tecnologici

 $V_{TO} = Tensione di soglia$

 γ = Coefficiente effetto body

 λ = *Modulazione di canale*

$$K' = \mu_x C_{ox} = \frac{\mu_x \varepsilon_{ox}}{t_{ox}}$$
 Transconduttanza del processo

 $R_{eq} = Resistenza$ equivalente modello a interruttore

$$S = \frac{W}{L}$$
 Fattore di forma

 $R_{RIF} = Resistenza$ equivalente modello a interruttore per S = 1

$$C_{int} = C_{ox} * L * W$$
 Capacità interna di Gate

• • • Riferimenti Relazioni

$$S = \frac{R_{RIF}}{R_{eq}} * S_{RIF}$$

$$t_{pHL} = 0.69 * C_L * R_{eqN}$$

$$t_{pLH} = 0.69 * C_L * R_{eq}$$

$$S_{MOS\ eq} = \frac{S_{MOS}}{n}$$
 Equivalenza fra singolo MOS e n MOS in serie

Riferimenti Relazioni

$$R_{eq} = \frac{R_{RIF}}{S_{EQ}} = n \cdot R_N$$

$$R_N = \frac{R_{RIF}}{S_N}$$

$$R_{eq} = \frac{R_{RIF}}{S_{eq}} = n \cdot R_N = n \cdot \frac{R_{RIF}}{S_N}$$

$$S_{eq} = \frac{S_N}{n}$$