# Recall from last time ...

### Batch us. Stochastic us. Mini-batch



#### http://ruder.io/optimizing-gradient-descent





An overview of gradient descent optimization algorithms



Credit: Alec Radford.



# Linear Regression Machine Learning and Pattern Recognition

(Largely based on slides from Andrew Ng)

#### Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886/MO444, August 16, 2018

# Today's Agenda

- Linear Regression with One Variable
  - Model Representation
  - Cost Function
  - Gradient Descent
- Linear Regression with Multiple Variables
  - Gradient Descent for Multiple Variables
  - Feature Scaling
  - Learning Rate
  - Features and Polynomial Regression
  - Normal Equation

Idea: Make sure features are on similar scale.

E.g. 
$$x_1$$
= size (0-2000 feet²)  
 $x_2$ = number of bedrooms (1-5)



Idea: Make sure features are on similar scale.

E.g. 
$$x_1$$
= size (0–2000 feet²)  
 $x_2$ = number of bedrooms (1–5)



$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Idea: Make sure features are on similar scale.

E.g. 
$$x_1$$
= size (0–2000 feet²)  
 $x_2$ = number of bedrooms (1–5)



Get every feature into approximately a  $-1 \le x_i \le 1$  range.

#### Mean Normalization

Replace  $x_i$  with  $x_i - \mu_i$  to make features have approximately zero mean (do not apply to  $x_0 = 1$ ).

E.g. 
$$x_1 = \frac{\text{size} - 1000}{2000}$$
  $\longrightarrow -0.5 \le x_1 \le 0.5$   $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$   $\longrightarrow -0.5 \le x_2 \le 0.5$ 

#### Mean Normalization

Replace  $x_i$  with  $x_i - \mu_i$  to make features have approximately zero mean (do not apply to  $x_0 = 1$ ).

E.g. 
$$x_1 = \frac{\text{size} - 1000}{2000}$$
  $\longrightarrow -0.5 \le x_1 \le 0.5$   $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$   $\longrightarrow -0.5 \le x_2 \le 0.5$ 

$$x_1 = \frac{x_1 - \mu_1}{s_1}$$
  $x_2 = \frac{x_2 - \mu_2}{s_2}$ 

# Learning Rate

#### **Gradient Descent**

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate  $\alpha$ .





Example automatic convergence test:

Declare convergence if  $J(\theta)$  decreases by less than  $10^{-3}$  in one iteration.



Gradient descent not working. Use smaller  $\alpha$ .



Gradient descent not working. Use smaller  $\alpha$ .





Gradient descent not working. Use smaller  $\alpha$ .





- For sufficiently small  $\alpha$ ,  $J(\theta)$  should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

## Summary

- If lpha is too small: slow convergence.
- If  $\alpha$  is too large:  $J(\theta)$  may not decrease on every iteration; may not converge.

To choose  $\alpha$ , try ..., 0.001, ..., 0.1, ..., 1, ...

# Features and Polynomial Regression

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$



$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$



$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$



Area  $x = \text{frontage} \times \text{depth}$ 

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$$

$$x_1 \qquad x_2$$



Area 
$$x$$
 = frontage  $\times$  depth
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$







$$\theta_0 + \theta_1 x + \theta_2 x^2$$



$$\theta_0 + \theta_1 x + \theta_2 x^2$$
  
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$





#### **Choice of Features**



#### **Choice of Features**



# Normal Equation

#### **Gradient Descent**



Normal equation: Method to solve  $\theta$  analytically.

## Intuition: If 1D ( $heta\in\mathbb{R}$ )

$$J(\theta) = a\theta^2 + b\theta + c$$



#### Intuition: If 1D ( $\theta \in \mathbb{R}$ )

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = \dots = 0$$
 Solve for  $\theta$ 



$$\in \mathbb{R}$$

Intuition: If 1D (
$$\theta \in \mathbb{R}$$
)

$$J(\theta) = a\theta^2 + b\theta + c$$

 $\frac{d}{d\theta}J(\theta) = \dots = 0$  Solve for  $\theta$ 

$$\theta \in \mathbb{R}^{n+1} \qquad J(\theta_0, \, \theta_1, \, \dots, \, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_i} J(\theta) = \dots = 0 \quad \text{Solve for } \theta_0, \, \theta_1, \, \dots, \, \theta_n$$

| Size<br>(feet <sup>2</sup> ) | Number of bedrooms | Number of floors | Age of home<br>(years) | Price (\$) in<br>1000's |  |
|------------------------------|--------------------|------------------|------------------------|-------------------------|--|
| $\underline{x_1}$            | $x_2$              | $x_3$            | $x_4$                  | У                       |  |
| 2104                         | 5                  | 1                | 45                     | 460                     |  |
| 1416                         | 3                  | 2                | 40                     | 232                     |  |
| 1534                         | 3                  | 2                | 30                     | 315                     |  |
| 852                          | 2                  | 1                | 36                     | 178                     |  |
|                              |                    |                  |                        |                         |  |

| 1     | Size<br>(feet <sup>2</sup> ) |       |       | Price (\$) in<br>1000's |     |
|-------|------------------------------|-------|-------|-------------------------|-----|
| $x_0$ | $x_1$                        | $x_2$ | $x_3$ | $x_4$                   | У   |
| 1     | 2104                         | 5     | 1     | 45                      | 460 |
| 1     | 1416                         | 3     | 2     | 40                      | 232 |
| 1     | 1534                         | 3     | 2     | 30                      | 315 |
| 1     | 852                          | 2     | 1     | 36                      | 178 |
|       |                              |       |       |                         |     |

|       | Size<br>(feet <sup>2</sup> ) | Number of bedrooms | Number<br>of floors | Age of home (years) | Price (\$) in<br>1000's |
|-------|------------------------------|--------------------|---------------------|---------------------|-------------------------|
| $x_0$ | $\boldsymbol{x}_1$           | $x_2$              | $x_3$               | У                   |                         |
| 1     | 2104                         | 5                  | 1                   | 45                  | 460                     |
| 1     | 1416                         | 3                  | 2                   | 40                  | 232                     |
| 1     | 1534                         | 3                  | 2                   | 30                  | 315                     |
| 1     | 852                          | 2                  | 1                   | 36                  | 178                     |

| $x_0$ | Size (feet <sup>2</sup> ) $x_1$                    | Number of bedrooms $x_2$ | Number of floors $x_3$ | Age of home (years) $x_4$ | Price (\$) in 1000's |
|-------|----------------------------------------------------|--------------------------|------------------------|---------------------------|----------------------|
| 1     | 2104                                               | 5                        | 1                      | 45                        | 460                  |
| 1     | 1416                                               | 3                        | 2                      | 40                        | 232                  |
| ! 1   | 1534                                               | 3                        | 2                      | 30                        | 315                  |
| 1     | 852                                                | 2                        | 1                      | 36                        | 178                  |
|       | $\begin{bmatrix} 1 & 210 \\ 1 & 141 \end{bmatrix}$ |                          |                        |                           |                      |

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

|       | Size<br>(feet <sup>2</sup> ) | Number of bedrooms | bedrooms of floors |       | Price (\$) in 1000's |  |
|-------|------------------------------|--------------------|--------------------|-------|----------------------|--|
| $x_0$ | $x_1$                        | $x_2$              | $x_3$              | $x_4$ | y                    |  |
| 1     | 2104                         | 5                  | 1                  | 45    | 460                  |  |
| 1     | 1416                         | 3                  | 2                  | 40    | 232                  |  |
| 1     | 1534                         | 3                  | 2                  | 30    | 315                  |  |
| 1     | 852                          | 2                  | 1                  | 36    | 178                  |  |

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

| $x_0$ | Size<br>(feet <sup>2</sup> ) |                          | uml<br>edro      | oom              |                      |   | umber floors $x_3$ | A | ge of<br>(yea            | - |    | ce (\$) in<br>.000's |
|-------|------------------------------|--------------------------|------------------|------------------|----------------------|---|--------------------|---|--------------------------|---|----|----------------------|
| 1     | 2104                         | +                        | 5                |                  |                      |   | 1                  |   | 4                        |   | ı. | 460                  |
| _     |                              |                          | ၂ ၁              |                  |                      |   | _                  |   |                          |   |    |                      |
| 1     | 1416                         |                          | 3                |                  |                      |   | 2                  |   | 4                        | 0 | H  | 232                  |
| 1     | 1534                         |                          | 3                |                  |                      |   | 2                  |   | 3                        | 0 | Hi | 315                  |
| 1     | 852                          |                          | 2                |                  |                      |   | 1                  |   | 3                        | 6 | 1. | 178                  |
| X =   | 1 1<br>1 1                   | 104<br>416<br>534<br>352 | 5<br>3<br>3<br>2 | 1<br>2<br>2<br>1 | 45<br>40<br>30<br>36 | ) | y                  | = | 460<br>232<br>315<br>178 |   |    |                      |

| v     | Size<br>(feet <sup>2</sup> ) | Number of bedrooms | bedrooms of floors    |       | Price (\$) in 1000's |  |
|-------|------------------------------|--------------------|-----------------------|-------|----------------------|--|
| $x_0$ | $x_1$                        | $x_2$              | <i>λ</i> <sub>3</sub> | $x_4$ | У                    |  |
| 1     | 2104                         | 5                  | 1                     | 45    | 460                  |  |
| 1     | 1416                         | 3                  | 2                     | 40    | 232                  |  |
| 1     | 1534                         | 3                  | 2                     | 30    | 315                  |  |
| 1     | 852                          | 2                  | 1                     | 36    | 178                  |  |
|       |                              |                    |                       |       |                      |  |

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}_{m \times (n+1)}$$

|       | Size<br>(feet <sup>2</sup> ) | Number of bedrooms | Number<br>of floors | Age of home<br>(years) | Price (\$) in<br>1000's |  |
|-------|------------------------------|--------------------|---------------------|------------------------|-------------------------|--|
| $x_0$ | $x_1$                        | $x_2$              | $x_3$               | $x_4$                  | У                       |  |
| 1     | 2104                         | 5                  | 1                   | 45                     | 460                     |  |
| 1     | 1416                         | 3                  | 2                   | 40                     | 232                     |  |
| 1     | 1534                         | 3                  | 2                   | 30                     | 315                     |  |
| 1     | 852                          | 2                  | 1                   | 36                     | 178                     |  |

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix} \qquad \theta = (X^T X)^{-1} X^T y$$

$$\begin{bmatrix} 45 \\ 40 \\ 30 \\ 36 \end{bmatrix} y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$m \times (n+1)$$

$$\theta = (X^T X)^{-1} X^T y$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} ----- \\ & & \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - --- \\ ---- (x^{(2)})^{\mathrm{T}} - --- \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - ---- \\ ---- (x^{(2)})^{\mathrm{T}} - ----- \\ ---- \vdots \\ ---- (x^{(m)})^{\mathrm{T}} - ------ \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} ---- (x^{(1)})^{\mathrm{T}} - --- \\ ---- (x^{(2)})^{\mathrm{T}} - --- \\ ---- (x^{(m)})^{\mathrm{T}} - --- \\ ---- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

E.g. 
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} --- (x^{(1)})^{\mathrm{T}} - --- \\ --- (x^{(2)})^{\mathrm{T}} - --- \\ --- (x^{(2)})^{\mathrm{T}} - --- \\ --- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

E.g.  $x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$   $X = \begin{bmatrix} 1 & x_1^{(1)} \\ \vdots & \vdots \\ 1 & x_m^{(1)} \end{bmatrix}_{m \times 2}$ 

$$X = \begin{bmatrix} --- (x^{(1)})^{\mathrm{T}} - --- \\ --- (x^{(2)})^{\mathrm{T}} - --- \\ --- \vdots - --- \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$--- (x^{(m)})^{\mathrm{T}} - --- \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$  is inverse of matrix  $X^TX$ .

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$  is inverse of matrix  $X^TX$ .

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$  is inverse of matrix  $X^TX$ .

Deriving the Normal Equation using matrix calculus ...

https://ayearofai.com/rohan-3-deriving-the-normal-equation-using-matrix-calculus-1a1b16f65dda

What if  $X^T X$  is noninvertible?

What if  $X^TX$  is noninvertible?

The common causes might be having:

- Redundant features, where two features are very closely related (i.e. they are linearly dependent).
- Too many features (e.g.  $m \le n$ ). In this case, delete some features or use "regularization".

#### **Gradient Descent**

- $\bullet$  Need to choose  $\alpha$ .
- Needs many iterations.

### **Normal Equation**

- No need to choose  $\alpha$ .
- Don't need to iterate.

m examples and n features

#### **Gradient Descent**

- Need to choose  $\alpha$ .
- Needs many iterations.
- Works well even when n is large.

#### **Normal Equation**

- No need to choose  $\alpha$ .
- Don't need to iterate.
- Need to compute  $(X^TX)^{-1} \rightarrow O(n^3)$ .
- ullet Slow if n is very large.

m examples and n features

# References

\_\_\_\_

#### **Machine Learning Books**

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
   <a href="https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html">https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html</a>
- Pattern Recognition and Machine Learning, Chap. 3

#### **Machine Learning Courses**

https://www.coursera.org/learn/machine-learning, Week 1 & 2