Homology for 3-Manifolds

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 8, 2024

Relative Homology

Let K be a simplicial complex, K_0 be a subcomplex of K. The relative chain group $C_p(K, K_0)$ is the quotient of the chain groups of K and K_0 , i.e.

$$C_p(K, K_0) = C_p(K)/C_p(K_0).$$

The general element of $C_p(K, K_0)$ has the form $c + C_p(K_0)$, $c \in C_p(K)$, so it is a coset. So the quotient partitions $C_p(K)$ into cosets, which consists of p-chains in K which are the same on $K \setminus K_0$, but may differ on K_0 .

Relative Boundary Operator

$$c \qquad C_{p}(K) \xrightarrow{\partial_{p}} C_{p-1}(K) \qquad \partial_{p}c$$

$$\downarrow \qquad \qquad \downarrow$$

$$c + C_{p}(K_{0}) C_{p}(K, K_{0}) \xrightarrow{\partial_{p}} C_{p-1}(K, K_{0}) \partial_{p}c + C_{p-1}(K_{0})$$

Given an element $c + C_p(K_0) \in C_p(K, K_0)$, map $c \to \partial_p c \in C_{p-1}(K)$, consider the coset associated with $\partial_p c$, which is $\partial_p c + C_{p-1}(K_0)$. Can check $\partial_{p-1}\partial_p = 0$.

Relative Homology Group

So now, we can have the relative cycles, relative boundaries, relative homology.

- Relative cycles, $Z_p(K, K_0) = \text{Ker } \partial_p$
- Relative boundaries, $B_p(K, K_0) = \text{Img } \partial_{p+1}$
- Relative homology,

$$H_p(K, K_0) = \frac{\operatorname{Ker} \partial_p}{\operatorname{Img} \partial_{p+1}}$$

To distinguish the homology of K fro the pair (K, K_0) , we refer to $H_p(K)$ as the absolute homology of K, and the element as the absolute classes.

Relative Homology Group

The continuous maps between spaces induce maps on homology, and this extends to relative homology as well. $f:K\to L$, and subcomplexes $K_0\subset K$, $L_0\subset L$, and f maps K_0 into L_0 , then we have an induced map $f_\#:C_p(K,K_0)\to C_p(L,L_0)$, which commutes with the boundary map, induces $f_*:H_p(K,K_0)\to H_p(L,L_0)$. One important case is the induced map from $(K,\emptyset)\to (K,K_0)$.

Exact Sequence

Figure: Exact sequence.

Homological Algebra

Chain maps $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$, short exact sequences

Homological Algebra

Yields a long exact sequence

$$\longrightarrow H_n(A) \longrightarrow H_n(B) \longrightarrow H_n(C)$$

$$\longrightarrow H_{n-1}(A) \longrightarrow H_{n-1}(B) \longrightarrow H_{n-1}(C)$$

$$\longrightarrow H_{n-2}(A) \longrightarrow H_{n-2}(B) \longrightarrow H_{n-2}(C)$$

Relative Homology Exact Sequence

There exists an exact sequence:

$$\cdots \to H_n(K_0) \xrightarrow{i_*} H_n(K) \xrightarrow{\pi_*} H_n(K, K_0) \xrightarrow{\partial} H_{n-1}(K_0) \to \cdots$$

where

- \bullet $i_*: K_0 \to K$ the inclusion of K_0 into K
- $oldsymbol{\circ}$ π_* be induced by the projection $C_*(K) o C_*(K, K_0)$
- **③** $\partial: H_*(K, K_0) \to H_{*-1}(K_0)$ be the map that takes a relative cycle to its boundary.

Excision

Theorem

Let $K_0 \subset K$, $L_0 \subset L$, be pair of simplicial complexes, that $L \subset K$,and $L \setminus L_0 = K \setminus K_0$, then we have isomorphic relative homology

$$H_p(K, K_0) \cong H_p(L, L_0)$$

for all dimensions p.

We use the Smith normal form to prove this. We order the simplices in K, so that the simplices in K_0 appear before those in $K \setminus K_0$. Construct the boundary matrix.

Excision

Figure: Proof for excision theorem.

Homology of 3-Manifolds

Proposition

The homology $H_*(M)$ of a closed orientable 3-manifold M is determined by $\pi_1(M)$.

Proof.

The group $H_1(M)$ is the Abelianization of $\pi_1(M)$ and $H^1(M) = \operatorname{Hom}(H_1(M), \mathbb{Z})$ which is isomorphic to $H_1(M)$ modulo its torsion. By Poincaré duality $H_2(M) = H^1(M)$ and $H^2(M) = H_1(M)$. Finally $H_3(M) = H_0(M) = \mathbb{Z}$.

Euler Characteristic $\chi(M)$

The Euler characteristic $\chi(M)$ of a closed odd dimensional manifold vanishes.

Proposition

If M is a compact 3-manifold with boundary, then

$$\chi(M) = \frac{1}{2}\chi(\partial M).$$

Proof.

If M is closed and orientable, we have $\chi(M) = \sum_{i=0}^n (-1)^i b_i$ and the Betti number b_i and b_{n-i} are equal by Poincaré duality, hence $\chi(M) = 0$. If M is non-orientable then it has an orientable double-cover N and $\chi(N) = 2\chi(M)$, hence $\chi(N) = 0$ implies $\chi(M) = 0$. If M has boundary, then

$$0 = \chi(DM) = 2\chi(M) - \chi(\partial M)$$

where DM is the double of M, constructed by taking two copies of M and

Mayer-Vietoris Sequence

Definition (Mayer-Vietoris Sequence)

Let X be a topological space and R be a ring, $X = U \cup V$ and U, V are open, the exact Mayer-Vietoris sequence is:

$$\cdots \to H_{n+1}(X) \xrightarrow{\partial_*} H_n(U \cap V) \xrightarrow{\binom{i_*}{j_*}} H_n(U) \oplus H_n(V) \xrightarrow{k_* - l_*} H_n(X) \to \cdots$$

where $i:U\cap V\to U, j:U\cap V\to V, k:U\to X$ and $I:V\to X$ are inclusion maps, and \oplus denotes the direct sum of Abelian groups.

Mayer-Vietoris Sequence

Figure: ∂_* map.

$$x \in H_n(X)$$
 is an n-cycle, $x = u + v$, $u \subset U$ and $v \subset V$, $\partial x = \partial u + \partial v = 0$, $\partial u = -\partial v \in U \cap V$, then $\partial_* : H_n(X) \to H_{n-1}(U \cap V)$, $\partial_*([x]) = [\partial u]$

Mayer-Vietoris Sequence

Analogy with the Seifert-van Kampen theorem: whenever $U \cap V$ is path-connected, the Mayer-Vietoris sequence yields the isomorphism:

$$H_1(X) \cong (H_1(U) \oplus H_1(V))/\operatorname{Ker}(k_* - l_*),$$

where, by exactness

$$\operatorname{\mathsf{Ker}}(k_*-l_*)\cong\operatorname{\mathsf{Img}}(i_*,j_*).$$

This is the Abelianized statement of the Seifert–van Kampen theorem.

Homology Group Structure

Let M be a compact oriented connected n-manifold with (possibly empty) boundary. The Abelian group $H_k(M,\mathbb{Z})$ is finitely generated and decomposed as

$$H_k(M,\mathbb{Z})\cong F_k\oplus T_k$$

where $F_k = \mathbb{Z}^{b_k}$ is free and T_k is finite. The torsion subgroup T_k consists of all finite-order elements in $H_k(M,\mathbb{Z})$. The rank b_k of F_k is the k-th Betti number of M.

Torsion

Figure: Möbius band, γ is the middle loop.

$$RP^2 = M \cup \mathbb{D}^2, \ M \cap \mathbb{D}^2 = \mathbb{S}^1,$$

$$\pi_1(M) = \langle \gamma \rangle$$

$$\pi_1(\mathbb{D}^2) = \langle e \rangle$$

$$\pi_1(\partial M) = \pi_1(\mathbb{S}^1) = \langle \gamma^2 \rangle$$

By Van Kampan-Seifert,

$$\pi_1(RP^2) = \langle \gamma | \gamma^2 \rangle = \{ \gamma, e \}.$$

Intersection Form

Figure: Intersection form.

Let G and H be finitely generated Abelian groups, a bilinear form

$$\omega: G \times H \to \mathbb{Z}$$

is non-degenerate if for every infinite order element $g \in G$, there is a $h \in H$ such that $\omega(g,h) \neq 0$. If G = H, we say that ω is skew-symmetric if

$$\omega(g_1,g_2)=-\omega(g_2,g_1), \quad \forall g_1,g_2\in G.$$

A skew-symmetric non-degenerate form is called symplectic.

Intersection Form

Figure: Intersection form.

An oriented closed k-submanifold $S \subset M$ defines a class $[S] \in H_k(M)$, if S has boundary and is properly embedded (i.e. $\partial S = \partial M \cap S$), it defines a class $[S] \in H_k(M, \partial M)$. Suppose two oriented submanifolds Sand S' have complementary dimensions k and n-k and intersect transversely: every intersection point x is isolated and has a sign ± 1 , defined by comparing the orientations of $T_xS \oplus T_xS'$ and $T_{\times}M$, the algebraic intersection $S \cdot S'$ is the sum of these signs. The intersection form is defined as

$$\omega([S], [S']) = S \cdot S'.$$

Figure: Intersection form.

Let M be a compact oriented n-manifold with (possibly empty) boundary. Intersection form

$$\omega: H_k(M,\mathbb{Z}) \times H_{n-k}(M,\mathbb{Z}) \to \mathbb{Z}$$

gives an identification

$$\omega(\cdot,\sigma)\in H^k(M,\mathbb{Z}), \sigma\in H_{n-k}(M,\partial M,$$

This is called the Lefschetz duality

$$H^k(M) = H_{n-k}(M, \partial M),$$

for any ring R.

Poincaré Duality

Figure: Intersection form.

If $\partial M = \emptyset$, the this is Poincaré duality,

$$H^k(M) = H_{n-k}(M).$$

In particular

$$H_n(M, \partial M, \mathbb{Z}) = H^0(M, \mathbb{Z}) = \mathbb{Z}$$

and the choice of orientation for M is equivalent to a choice of a generator $[M] \in H_n(M, \partial M, \mathbb{Z})$ called the fundamental class of M.

Figure: Intersection form.

The following exact sequence is important:

$$\cdots \to H_n(M) \to H_n(M, \partial M)$$
$$\to H_{n-1}(\partial M) \to H_{n-1}(M) \to \cdots$$

For non-orientable manifolds, the ring R is $\mathbb{Z}/2\mathbb{Z}$.

Suppose S is a closed, orientable surface embedded in \mathbb{R}^3 , seperating \mathbb{R}^3 into two connected components, the interior I and the exterior O, $\infty \in O$.

Figure: Closed, orientable surface in \mathbb{R}^3 .

Figure: Closed, orientable surface in \mathbb{R}^3 .

Mayer-Vietoris sequence is

$$\cdots \to H_2(\mathbb{R}^3) \to H_1(S)$$

$$\to H_1(I) \oplus H_1(O) \to H_1(X)$$

 \mathbb{R}^3 can shrink to a point, $H_2(\mathbb{R}^3) = 0$, $H_1(\mathbb{R}^3) = 0$,

$$0 \to H_1(S) \to H_1(I) \oplus H_1(O) \to 0,$$

Therefore

$$H_1(S) \cong H_1(I) \oplus H_1(O)$$
.

Handle Loops and Tunnel Loops

generators of $H_1(I)$ Tunnel loops

generators of $H_1(O)$ Handle loops

Figure: $H_1(S) \cong H_1(I) \oplus H_1(O)$.

Handle Loops and Tunnel Loops

Let M be oriented, the boundary ∂M may be disconnected and inherits an orientation. $H_1(\partial M)\cong \mathbb{Z}^{2n}$ for some n, $H_1(\partial M)$ is with the intersection form ω . A subgroup $L< H_1(\partial M)$ is Lagrangian if $\omega|_L\equiv 0$. When $\mathrm{rank}(L)=n$, we say that L has maximal rank.

Lemma

Let M be an oriented compact 3-manifold with boundary. The image of the map

$$\partial: H_2(M, \partial M, \mathbb{Z}) \to H_1(\partial M, \mathbb{Z})$$

is a Lagrangian subgroup of $H_1(\partial M, \mathbb{Z})$ of maximal rank.

Handle Loops and Tunnel Loops

Proof.

We have two parings

$$\omega: H_1(\partial M) \times H_1(\partial M) \to \mathbb{Z}$$

 $\eta: H_2(M, \partial M) \times H_1(M) \to \mathbb{Z}$

The latter is provided by Lefschetz duality and is non-degenerate after quotienting the torsion subgroup. We have

$$\omega(\partial\alpha,\beta)=\eta(\alpha,i_*\beta),$$

for any $\alpha \in H_2(M, \partial M)$, and $\beta \in H_1(M)$,

Figure: $\omega(\partial \alpha, \beta) = \eta(\alpha, i_*\beta)$.

Consider the long exact sequence

$$H_2(M,\partial M) \xrightarrow{\partial} H_1(\partial M) \xrightarrow{i_*} H_1(M)$$

Now if $\beta = \partial \alpha'$

$$\omega(\partial \alpha, \beta) = \eta(\alpha, i_*\beta),$$

 $\omega(\partial \alpha, \partial \alpha') = \eta(\alpha, i_*\partial \alpha')$
 $= \eta(\alpha, 0) = 0,$

hence $Img\partial$ is Lagrangian.

Lagrangian subgroup

Claim: if $\operatorname{Img} \partial < H_1(\partial M) = \mathbb{Z}^{2n}$ is Lagrangian, then $\operatorname{rank}(\operatorname{Img} \partial) \leq n$. The symplectic intersection form ω of $H_1(\partial M)$ can be represented as

$$\omega = \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} & & & \\ & & \ddots & & \\ & & & \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \end{bmatrix}_{2n \times 2n}$$

Let e_k is the k-th base vector, then $\omega(e_k,e_k)=0$, but $\omega(e_{2k},e_{2k+1})=1$. Therefore $\operatorname{Img}\partial$ intersects $\operatorname{Span}\{e_{2k},e_{2k+1}\}$ must be one dimension. Therefore $\operatorname{rank}(\operatorname{Img}\partial)$ is at most n.

$$\operatorname{rank}(\operatorname{Img}\partial) \leq \frac{1}{2}b_1(\partial M).$$
 (1)

By exact sequence

$$\cdots \to H_2(M, \partial M) \xrightarrow{\partial} H_1(\partial M) \xrightarrow{i_*} H_1(M) \to \cdots,$$

we obtain

$$H_2(M, \partial M) = \operatorname{Ker} \partial + \operatorname{Img} \partial$$
 (2)

$$H_1(\partial M) = \operatorname{Ker} i_* + \operatorname{Img} i_* \tag{3}$$

$$\ker i_* = \operatorname{Img} \partial \tag{4}$$

By Lefschetz duality

$$H_2(M,\partial M) = H^1(M) \tag{5}$$

Furthermore, assume $\alpha \in \text{Ker}\partial$, then

$$\eta(\alpha, i_*\beta) = \omega(\partial \alpha, \beta) = \omega(0, \beta) = 0,$$

therefore

$$\mathsf{Ker}\;\partial\perp_{\eta}\mathsf{Img}\;i_*$$

(0)

$$H_2(M, \partial M) = \text{Ker } \partial + \text{Img } \partial$$
 $H_1(\partial M) = \text{Ker } i_* + \text{Img } i_*$
 $\text{ker } i_* = \text{Img } \partial$
 $H_2(M, \partial M) = H^1(M)$
 $\text{Ker } \partial \perp_{\eta} \text{Img } i_*$

$$b_1(M)=\operatorname{rk} \operatorname{Ker} \partial + \operatorname{rk} \operatorname{Img} \partial$$
 $b_1(\partial M)=\operatorname{rk} \operatorname{Ker} i_*+\operatorname{rk} \operatorname{Img} i_*$
 $\operatorname{rk} \operatorname{ker} i_*=\operatorname{rk} \operatorname{Img} \partial$
 $\operatorname{rk} H_2(M,\partial M)=\operatorname{rk} H^1(M)=b_1(M)$
 $\operatorname{rk} \operatorname{Ker} \partial + \operatorname{rk} \operatorname{Img} i_* \leq b_1(M)$

$$b_1(M)=\operatorname{rk} \operatorname{Ker} \partial + \operatorname{rk} \operatorname{Img} \partial$$
 $b_1(\partial M)=\operatorname{rk} \operatorname{Ker} i_*+\operatorname{rk} \operatorname{Img} i_*$ $\operatorname{rk} \operatorname{ker} i_*=\operatorname{rk} \operatorname{Img} \partial$ $\operatorname{rk} H_2(M,\partial M)=\operatorname{rk} H^1(M)=b_1(M)$ $\operatorname{rk} \operatorname{Ker} \partial + \operatorname{rk} \operatorname{Img} i_* \leq b_1(M)$

The summation of the top two equations

$$egin{aligned} b_1(M) + b_1(\partial M) &= 2\mathsf{rk} \ \mathsf{Img}\partial \ &+ \mathsf{rk} \ \mathsf{Ker} \ \partial + \mathsf{rk} \ \mathsf{Img} \ i_* \ &\leq 2\mathsf{rk} \ \mathsf{Img}\partial + b_1(M) \end{aligned}$$

We obtain

$$\operatorname{rank}(\operatorname{Img}\,\partial)\geq rac{1}{2}b_1(\partial M)$$

Compare with the inequality (1), we obtain

$$\operatorname{rank}(\operatorname{Img}\,\partial) = \frac{1}{2}b_1(\partial M).$$

Corollary

Let M be an oriented compact 3-manifold. We have

$$b_1(M) \geq \frac{b_1(\partial M)}{2}$$

Proof.

$$H_2(M,\partial M) \stackrel{\partial}{ o} H_1(\partial M)$$
 $H_2(M,\partial M) = \operatorname{Ker}\partial + \operatorname{Img}\,\partial$
 $\operatorname{rank}(H_2(M,\partial M)) \geq \operatorname{rank}(\operatorname{Img}\,\partial)$
 $\operatorname{rank}(H^1(M)) \geq \operatorname{rank}(\operatorname{Img}\,\partial)$
 $b_1(M) \geq \frac{1}{2}b_1(\partial M).$

Corollary

The boundary of a simply connected compact 3-manifold consists of spheres.

Proof.

$$b_1(M) \geq \frac{1}{2}b_1(\partial M).$$

implies $b_1(\partial M) = 0$, hence ∂M consists of spheres.

Knots

Figure: The homology of the figure-8 knot.

Corollary

Suppose K is a knot, the complementary space $M = \mathbb{S}^3 \setminus K$, then

$$H_1(M) = H_2(M, \partial M) = \mathbb{Z}$$

Proof.

Consider a tubular neighborhood of K, denoted as I, then $I \cap M = T^2$,

$$H_1(M) \oplus H_1(I) = H_1(T^2).$$

By Lefschetz duality,

$$H_1(M,\mathbb{Z})=H_2(M,\partial M,\mathbb{Z}).$$

Non-orientable Surfaces

Figure: The double cover of a Möbius band.

A non-orientable properly embedded surface $S \subset M$ defines a non-trivial class $[S] \in H_2(M, \partial M, \mathbb{Z}_2)$, as opposite to orientable surfaces, this class [S] is always non-trivial.

Non-orientable Surfaces

Proposition

Let M be orientable. Every non-orientable properly embedded surface $S \subset M$ defines a non-trivial class $[S] \in H_2(M, \partial M, \mathbb{Z}_2)$. The manifold M cannot contain more than dim $H_2(M, \partial M, \mathbb{Z}_2)$ disjoint non-orientable surfaces.

Proof.

Suppose $S \subset M$ is an non-orientable surface. A tubular neighborhood of S is diffeomorphic to the orientable interval bundle $S \times I$, whose boundary is the orientable double cover of S, denoted as \tilde{S} . A close loop $\gamma \subset S$ through the base point $p \in S$ is lifted to a path $\tilde{\gamma} \subset \tilde{S}$, connecting \tilde{p}_1 and \tilde{p}_2 . Draw an arc $\tilde{\sigma}$ connecting \tilde{p}_2 and \tilde{p}_1 . The loop $\alpha := \tilde{\gamma}\tilde{\eta}$ is in the tubular neighborhood of S and intersects S transversely in one point. \square

Non-orientable Surfaces

Proof.

The class $[S] \in H_2(M, \partial M; \mathbb{Z}_2) = H^1(M; \mathbb{Z}_2)$ sends α to $1 \in \mathbb{Z}_2$ and is hence non-trivial.

If $S = S_1 \sqcup \cdots \sqcup S_k$ are all non-orientable, each S_i has its own α_i and therefore the elements $[S_1], \ldots, [S_k] \in H_2(M, \partial M; \mathbb{Z}_2)$ are linearly independent.

Corollary

A simply-connected three-manifold does not contain any closed non-orientable surface.

Proof.

Because $H_2(M, \partial M) = H^1(M)$, dim $H_2(M, \partial M, \mathbb{Z}_2) = 0$.

