

1.	Facile à optimiser (différentiable)
2.	Toutes les variables contribuent au modèle
3.	Peut être ajoutée à n'importe quel modèle

Regularization

Machine learning classique: zero-to-hero

Comment choisir la pénalité ?

Les pénalités les plus utilisés sont:

 $\|\theta\|_2^2$ pénalité Ridge $/\ell_2$:

$$\lambda = \frac{1}{C}$$

Ridge: "shrink" toutes les coordonnées lentement vers zéro (sans l'atteindre)

$\|\theta\|_1$ pénalité Lasso $/\ell_1$:

2.

Lasso: annule les coefficients un par un

1. Moins facile à optimiser (non-différentiable)

2. Permet d'avoir des coefficients "sparses" (beaucoup de 0): utile pour la sélection de variables pertinentes

Souvent, prendre un mélange des deux permet d'obtenir de meilleures performances.

3. pénalité Elastic net : $\delta \|\theta\|_2^2 + (1-\delta)\|\theta\|_1$

Comment choisir la pénalité ?

Les pénalités les plus utilisés sont:

1. pénalité Ridge
$$/\ell_2$$
: $\|\theta\|_2^2$

- 1. Facile à optimiser (différentiable)
- 2. Toutes les variables contribuent au modèle
- 3. Peut être ajoutée à n'importe quel modèle

$$\lambda = \frac{1}{C}$$

Ridge: "shrink" toutes les coordonnées lentement vers zéro (sans l'atteindre)

2. pénalité Lasso
$$/\ell_1$$
: $\|\theta\|_1$

- 1. Moins facile à optimiser (non-différentiable)
- 2. Permet d'avoir des coefficients "sparses" (beaucoup de 0): utile pour la sélection de variables pertinentes

Souvent, prendre un mélange des deux permet d'obtenir de meilleures performances.

Lasso: annule les coefficients un par un

Comment choisir C?

