انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

vii																																					يباچي	. کاد	اب	بلی کتا ہلی کتا	یپ	مير
1																																		ات	سياو	رقی.	ه تفر	ىساد	اول	رجه ا	,	1
2																																				i.	ئە نە	نمو		1.1		
13																	ر_	پوا	· يب	تر ک	اور	ست	ماسم	ن ک	بدا	ا_م	ب لب	مط	إنى َ	بىٹر يا	جيو م	1 کا	y'	_	f	(x	, y)		1.2		
22																														ت	باوار	: ي مس	فر ق	ره ^ت	۔ کی سا	بحد گ	ل ^ع ا	قال		1.3	,	
40																																					می سا			1.4	1	
52																																			- /		ئ سا			1.5	,	
70																																					و ی			1.6)	
74																								ئيت	يكتأ	اور	يت	جود) وج	ل ک	ے: ف:	وات	مسا	ر قی	ن تفر	قيمت	رائی	ابتا		1.7	7	
81																																		ات	ساو	ق.	ه تفر	ى ساد	روم	ر جه ۱	,	2
81																														- (.;					نس			2.1		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·				- /					ن نقل	•		$\frac{2.1}{2.2}$		
98 113																											هر د	נס	ساد	U		•		_			**			$\frac{2.2}{2.3}$		
113	•	•	•	•	•	•	•	•	•															٠			•	څ	•	•							ر فيء سي					
																																					ر نلد رکون ^ا			2.4		
134																																				-		••		2.5		
143																																								2.6		
152																													٠											2.7		
164																													•						_		کاار			2.8	5	
																						•				_	ي کمک	مع	-,	**					•		2.8					
174																						:			٠,	;	٠.		•				تى	نه	بانمو	ار کح	ن ن اد و	برا		2.9		
185	•				•	•	•	•	•	•	•		•				Ĺ	احل	ت کا	وار	سياه	رقی.	تفر	ساده	کمی س	2)	فإنسر	رمتح	غير	سے	يقي	طر	کے	لنے	مبد	علوه	رارم	مق	2	.10)	
193																																٠	وات	مساو	, قی	ه تفر	ىساد	خطح	. جي	بند در	ļ	3
193																														, .	• ارد						نس			3.1		-
205																								ت	ماوار	سەل	فرق	ده ت	ساد				- /			-	نقل نقل	•		3.2		

iv

غير متجانس خطی ساده تفر قی مساوات	3.3	
مقدار معلوم بدلنے کے طُریقے سے غیر متجانس خطی سادہ تفرتی مساوات کا حل	3.4	
تى مساوات	نظام ته	4
ن صفادات - قالب ادر سمته کے بنیادی ها کق	هرا مر 4.1	7
قائب اور سنیہ نے بیاد میں تھا ہی ۔		
	4.2	
نظرىيە نظام ساده تفرقی مساوات اور ورونسکى 	4.3	
4.3.1 خطی نظام		
متنقل عددی سروالے نظام۔ سطح مر حلہ کی ترکیب	4.4	
نقطہ فاصل کے جانچ پڑتال کامسلمہ معیار۔استخام ،	4.5	
کیفی تراکیب برائے غیر خطی نظام	4.6	
4.6.1 سطح حرکت پرایک در جی مساوات میں تبادلہ		
سادہ تفرقی مساوات کے غیر متجانس خطی نظام	4.7	
4.7.1 نامعلوم عددی سر کی ترکیب		
سل ہے سادہ تفر تی مساوات کا حل۔اعلٰی نفاعل	طاقق تسا	5
تركيب طاقتي تسلسل	5.1	
ليراندر مساوات ـ ليراندر كثير ركني	5.2	
مبسوط طاقتي تسلىل په ترکیپ فروبنوس	5.3	
5.3.1 على استعال		
مباوات بييل اور نبيل تفاعل	5.4	
بىيىل تفاعل كى دوسرى قشم- عمومى حل	5.5	
نادلـ 385		_
1885 - بادله لايلاس بدل-الث لايلاس بدل- خطيت	لاپلاس: 6.1	6
لاپیا کابدل=ات لاپیا کابدل=سطیت تفر قات اور تکملات کے لاپیا س بدل=سادہ تفر قی مساوات	6.2	
نظر فات اور معلات نے لابیل نہدن۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔		
	6.3	
ڈیراک ڈیلٹائی تفاعل۔ اکائی ضرب تفاعل۔ جزوی تسری پھیلاو	6.4 6.5	
ا بھاق لا پلاس بدل کی تحمل اور تفرق مشغیر عددی سروالے سادہ تفر قی مساوات	6.6	
لاپیا ن بدل فی سی اور عرف نے بیر عدود می مروات سادہ عربی مساوات	6.7	
عرب مساوات کے نظام	6.8	
لاپلا ک برک کے مولی میں کے	0.0	
را: قالب، سمتيه، مقطع_ خطی نظام	خطىالجبر	7
ر برب ہے ہے۔ - قالب اور سمتیات۔ مجموعہ اور غیر سمتی ضرب	7.1	•
قالبى ضرب	7.2	
7.2.1 تىدىلى محل		

تخطی مساوات کے نظام۔گاو تن استفاط	7.3
7.3.1 صف زيند دار صورت	
خطي غير تالعيت ورجه قالب - سمتى نضا	7.4
خطی نظام کے حل: وجودیت، کیکائی	7.5
دودر جي اورتين درجي مقطع قالب	7.6
مقطع _ قاعده كريم	7.7
معكوس قالب ـ گاوس جار ذن اسقاط	7.8
ستى فضا،اندرونى شرب، خطى تبادله	7.9
ن ما	7.5
عارضی باب	8 سمتيات
غیر سمتیات اور سمتیات	8.1
سَمْتُ عِلَى الرّاء	8.2
سمتیات کامجموعه، غیر سمتی کے ساتھ ضرب	8.3
سمتى فضا- خطى تابعيت أورغير تابعيت	8.4
المُدروني ضرب (ضرب نقطه)	8.5
اندرونی ضرب فضا	8.6
ستق ضرب	8.7
ا جزاء کی صورت میں سمتی ضرب	8.8
غيرستي سير شرب خيرستي سير من	8.9
ت 561	ا اضافی ثبو،
	ب مفید معلو
اعلی تفاعل کے مساوات	1.ب

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

ہمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔کوشش کی گئی ہے کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال سکنیکی الفاظ ہی استعال کئے جائیں۔جہاں ایسے الفاظ موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ شکنیکی الفاظ کے چناؤ کے وقت اس بات کا دھیان رکھا گیا ہے کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اس مضمون پر لکھی گئی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس كتاب ميں موجود تمام غلطيال مجھ سے ہى ہوئى ہيں البتہ اسے درست بنانے ميں بہت لوگوں كا ہاتھ ہے۔ ميں ان سب كا شكريہ اداكرتا ہوں۔ يہ سلسلہ انجى جارى ہے اور كمل ہونے پر ان حضرات كے تاثرات يہاں شامل كئے جائيں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر كي

28 اكتوبر 2011

باب8

سمتیات عارضی باب

beginning very the at it palce shall i addition. latest the of 9.4 to 9.1 sec is this issues. the all resolves chapter this 7th my of

8.1 غير سمتيات اور سمتيات

طبیعیات اور جیومیٹری میں ایسی قیمتیں پائی جاتی ہیں جنہیں ان کی مقدار سے مکمل طور پر بیان کیا جا سکتا ہے۔مثلاً کمیت، درجہ حرارت، برقی بار، وقت، رقبہ، حجم، فاصلہ، برقی دباو وغیرہ۔ان میں سے ہر ایک کو (مقدار کی موزوں اکائی چن کر) ایک عدد سے ظاہر کیا جا سکتا ہے۔ ایسی تمام مقداروں کو غیر سمتیات آ کہتے ہیں۔غیر سمتی مقدار کی قیت پر چننی گئی محدد کا کوئی اثر نہیں ہو گا۔

اس کے برعکس طبیعیات اور جیومیٹری میں ایسی قیمتیں بھی پائی جاتی ہیں جن کی مکمل اظہار کے لئے ان کی قیمت کے علاوہ ان کی سمت بھی درکار ہوتی ہے۔ان کی ایک مثال میکائی قوت ہے۔ آپ جانتے ہیں کہ قوت کو تیر کی نثان سے ظاہر کیا جا سکتا ہے جہاں تیر کی سمت، قوت کی سمت اور تیر کی لمبائی (کسی پیائش کے تحت) قوت کی مقدار کو ظاہر کرتی جہاں تیر کی سمت ہوئی کمیت سے کہ دھائے سے بندھی ہوئی کمیت سے کی دائری حرکت دکھائی گئی ہے۔کمیت کی

 $scalars^1$

شكل 8.1: سمتىير كى تفصيل ـ

لمحاتی سمتی رفتار v کو تیر سے دکھایا گیا ہے۔اس تیر کی سمت، کمیت کی کھاتی سمتی رفتار دیتی ہے جبکہ تیر کی لمبائی (کسی موزوں تناسب سے) کھاتی سمتی رفتار کی قیمت دیتی ہے۔شکل میں کمیت کی اسراع می دکھائی گئی ہے جہاں a کی لمبائی (کسی موزوں تناسب سے) کھاتی اسراع کی قیمت دیتی ہے۔

سید ھی سطح میں تکون کی (بلا گھوے) منتقلی شکل 8.1۔ بسیمیں دکھائی گئی ہے۔ اس حرکت کو (تکون کے ہر نقطے کی)
طے فاصلے کی مقدار اور سمت سے ظاہر کیا جا سکتا ہے۔ تکون پر کسی نقطے کی ابتدائی مقام A سے اختتامی مقام B
تک سمتی خط سے اس حرکت کو ظاہر کیا جا سکتا ہے۔ یوں سمتی خط b ، تکون کے ایک نقطہ کی A سے B منتقلی کہ مسمتی خطوط کھنج کر ہمیں سمتی خطوط کی نسل ملتی دکھاتی ہے۔ تکون کے ہر نقطے کی ابتدائی مقام سے اختتامی مقام تک سمتی خطوط کھنج کر ہمیں سمتی خطوط کی نسل ملتی ہے جس میں تمام سمتی خطوط کی لبائی ایک جیسی اور سمت ایک جیسی ہو گی (یعنی یہ آپس میں متوازی ہوں گے)۔ ہم کہہ سکتے ہیں کہ ان میں سے ہر ایک سمتی خط، تکون کے ایک نقطے کی ابتدائی مقام سے اختتامی مقام تک منتقلی کو ظاہر کرتی ہے۔

اس سے سمتیہ کی درج ذیل تعریف بیان کی جاسکتی ہے۔ تعریف: سمتیہ سمتیہ کی سمت کہتے ہیں۔دو سمتیات صرف اور سمت خط کو سمتیہ کی سمت کہتے ہیں۔دو سمتیات صرف اور صرف اس صرف اس صورت ایک دوسرے کے برابر ہول گے جب ان کی لمبائی ایک جیسی ہو اور ان کی سمت ایک جیسی ہو۔

سمتیے کی لمبائی کو سمتیہ کی اقلیدسی معیار 3 (یا معیار) اور سمتیہ کی مقدار 4 بھی کہتے ہیں۔

 ${
m vector}^2$ Euclidean norm³ magnitude⁴

8.2. سمتیہ کے اجزاء

B سمتیہ کی ابتدائی نقطے کو سمتیہ کی **دہ** 5 اور اختتامی نقطے کو سمتیہ کا سو 6 کہتے ہیں۔ یوں شکل 8 . اس کا سر ہے۔ سمتیہ b کی دم ہے جبکہ نقطہ A اس کا سر ہے۔

ہم سمتیات کو موٹی کھائی میں چھوٹی حروف تبجی مثلاً v ، b ، a مثلاً a ہم سمتیات کو موٹی کھا جاتا ہے۔ سمتی a کی استعال کرتے ہوئے سمتی پر تیر یا آدھے تیر کا نشان بنایا جاتا ہے یوں اسراع کو \overline{a} یا \overline{a} کھا جاتا ہے۔ سمتی مقدار کو |a| کھا جاتا ہے۔

سمتیہ کی تعریف سے ظاہر ہے کہ ہم سمتیہ کو بغیر گھمائے ایک جگہ سے دوسری جگہ منتقل کر سکتے ہیں ⁷ یعنی ہم سمتیہ کی دم کہیں پر بھی منتقل کر سکتے ہیں۔ظاہر ہے کہ سمتیہ کی دم کہیں پر بھی منتقل کر سکتے ہیں۔ظاہر ہے کہ سمتیہ کی دم کا مقام مقرر کرنے سے اس کے سرکا مقام بھی مقرر ہوگا۔ ہوگا۔

اگر دو سمتیات a اور b ایک دوسرے کے برابر ہوں تب ہم درج زیل کھتے ہیں

$$(8.1) a = b$$

اور اگرید آپس میں برابر نہ ہول تب ہم درج ذیل کھتے ہیں۔

$$(8.2) a \neq b$$

کسی بھی سمتیہ کو ترسیم طور پر موزوں لمبائی اور ست کی سمتی خط سے ظاہر کیا جا سکتا ہے۔

ایا سمتیہ جس کی لمبائی اکائی (1) ہو اکائی سمتیہ 8 کہلاتا ہے۔

8.2 سمتیہ کے اجزاء

تین بُعدی فضا میں نقطہ ایک جیومیٹریائی چیز ہے جس کو محددی نظام میں تین مرتب اعداد (تصور کیا جا سکتا ہے یا) سے ظاہر کیا جا سکتا ہے۔ گزشتہ جصے میں ہم نے سمتیہ کی تعریف جیومیٹریائی انداز میں پیش کی، جسے محددی نظام کی استعال سے الجبرائی انداز میں بھی پیش کیا جا سکتا ہے۔

tail⁵

⁷ یہاں پہ بتلاناضروری ہے کہ طبیعیات اور جیو میٹری میں ایک صور تیں پائی جاتی ہیں جہاں سمتیہ کو ایک جگہ ہے دوسری جگہ نتقل کرنا ممکن نہیں ہوتا ہے۔ آپ میکا نیات ہے جانے ہیں کہ کسی مجھی غیر کیکدار مادے پر قوت کا اطلاق ہوت کے سمت میں کئیر پر رہتے ہوئے، کسی بھی فیٹر کیا جا سال کا فقط تیر بل کرنے ہے نمائ تیر بل ہوں گے جونا قابل قبول ہات ہے۔ یہ حقیقت مقید معمتیہ کی اتصور کو جنم رہتی ہے۔ اس کتاب میں صرف قابل منتقلی سمتیات پر ہات کی جائے گ۔

2 اطلاق کا فقط تیر بل کرنے ہے نمائ تیر بل ہوں گے جونا قابل قبول ہات ہے۔ یہ حقیقت مقید معمتیہ کی اتصور کو جنم رہتی ہے۔ اس کتاب میں صرف قابل منتقلی سمتیات پر ہات کی جائے گ۔

2 سال 2 vector⁸

شكل 8.2: كارتيسي نظام محددي

نظام محدد کے محور 9 ، آپس میں عمودی تین متقاطع سیدھے خطوط ہوں گے۔ان کے مقام انقطاع کو محددی نظام کا مرکز 10 کہتے ہیں۔ ہم سینوں محور پر پیمائش ناپ ایک جیسی چنتے ہیں لہذا محور پر مرکز سے اکائی فاصلے پر 10 , 10 اور 10 , 10 نقطے پائے جائیں گے۔اس محدد کا نظام کو فضا میں کارتیسی نظام محدد 11 (شکل 10) اور 10 , 10 کہتے ہیں۔

A ہم اب ابتدائی نقط A سے اختتامی نقطہ B تک سمتی a پر غور کرتے ہیں (شکل 8.3-الف)۔اگر نقطہ A کور (x_1,y_1,z_1) ہوں تب درج ذیل اعداد، اس کار تیسی محددی نظام کے کاض سے، سمتی a کے اجزاء 21 کہلاتے ہیں۔

$$(8.3) a_1 = x_2 - x_1, a_2 = y_2 - y_1, a_3 = z_2 - z_1$$

سمتیہ کی تعریف کے تحت a کی لمبائی سے مراد A سے B تک کی لمبائی ہے جو مساوات 8.3 میں دیے گئے اجزاء کو استعال کرتے ہوئے مسّلہ فیثاغورث کے تحت درج ذیل ہو گا۔

(8.4)
$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

مثال 8.1: سمتیہ کے اجزاء اور اس کی لمبائی سمتیہ کے اجزاء حاصل کرتے ہوئے سمتیہ کی میں۔ اس سمتیہ کے اجزاء حاصل کرتے ہوئے سمتیہ کی لمبائی وریافت کریں۔

coordinates⁹

Cartesian coordinate system¹¹ components¹²

8.2. سمتیے کے اجزاء

شكل 8.3: سمتيه كے اجزاءاور تعين گرسمتيه۔

$$a_1=5-(-2)=7$$
, $a_2=-2-3=-5$, $a_3=7-1=6$ اور کمپانی $|a|=\sqrt{7^2+(-5)^2+6^2}=\sqrt{110}$

ہے۔اگر ہم سمتیہ a کی دم کو نقطہ (4,1,3) پر ہنتقل کریں تب اس کا سر a کی دم کو نقطہ a

مساوات 8.3 میں دیے گئے اجزاء کو ذہن میں رکھتے ہوئے آپ دکیھ سکتے ہیں کہ اگر a کی دم کو کار تیسی محدد کی مرکز پر منتقل کیا جائے تب a کے اجزاء اس کی سر کے محور ہوں گے۔اییا سمتیہ جس کو شکل 8.3-ب میں دکھایا گیا ہے تعین گر سمتیہ a کہلاتا ہے اور اس کو r سے ظاہر کیا جاتا ہے۔

ک دم کو ایک جگہ سے دوسری جگہ نتقل کرنے سے سمتیہ کا سر بھی اتنا ہی اپنی جگہ سے بلتا ہے للذا مساوات a کی دم کو ایک جگہ سے نتی کو کما اثر نہیں a کی ابتدائی نقطے کا کوئی اثر نہیں ہوگا۔ یوں کسی بھی معین کار تیسی محددی نظام کے حوالے سے سمتیہ کو کممل طور پر تین (محوری) اعداد سے ظاہر کیا جا سکتا ہے۔

وہ سمتیہ جس کے اجزاء 0 ، 0 ، 0 ہول معدوم سمتیہ 14 یا صفو سمتیہ 15 0 کہلاتا ہے۔ یول کوئی بھی تین اعداد بہ شمول 0 ، 0 ، 0 سمتیہ کے اجزاء ہو سکتے ہیں۔

position vector¹³ null vector¹⁴

zero vector¹⁵

معین نظام محدد کی صورت میں ہر مرتب تین اعداد ایک منفرد سمتیہ کو ظاہر کریں گے۔یہ تین اعداد سمتیہ کے اجزاء ہوں گے۔اس طرح معین نظام محدد میں ہر سمتیہ کے اجزاء سے سمتیہ کو تین مرتب اعداد کی صورت میں لکھا جا سکتا ہے۔ گزشتہ حصہ میں سمتیہ کی تعریف جیومیٹریائی نقطہ نظر سے کی گئی۔ہم اب تین مرتب حقیقی اعداد (جو سمتیہ کے اجزاء کہلاتے ہیں) کو سمتیہ کی تعریف کہہ سکتے ہیں۔اس تعریف کو استعال کرتے ہوئے ہم سمتیہ کی جیومیٹریائی صورت حاصل کر سکتے ہیں۔

یوں دو سمتیات a اور b صرف اور صرف اس صورت ایک جیسے ہوں گے جب ان کے تین مطابقتی اجزاء ایک جیسے ہوں۔لہذا درج ذیل سمتی مساوات

$$a = b$$

سے مراد درج ذیل تین مساوات ہیں جہاں a_3 ، a_2 ، a_3 ، a_2 ، a_3 ایک ہی کار تیسی نظام محدد میں بالترتیب a_3 اور a_3 کے مطابقتی اجزاء ہیں۔

$$a_1 = b_1, \quad a_2 = b_2, \quad a_3 = b_3$$

ظاہر ہے کہ اگر ایک سمتیہ کوئی حقیقی یا جیومیٹریائی چیز ہو تب اس کی لمبائی اور ست پر چننی گئی نظام محدد کا کوئی اثر نہیں ہونا چاہیے۔ اجزائے سمتیہ کو ایک نظام محدد سے دوسری نظام محدد میں منتقل کرنے کے قواعد پر یہ حقیقت کچھ شرائط عائد کرتی ہے جن پر اگلے بابوں میں تبصرہ کیا جائے گا۔

اگلے باب میں سمتیے کے تصور کو وسعت دیتے ہوئے ہر مرتب n اعداد کو سمتیے تصور کیا جائے گا، جہاں n کوئی بھی مثبت عدد صحیح ہو سکتا ہے۔

سوالات

سوال 8.1 تا سوال 8.10 میں سمتیہ u کا ابتدائی نقطہ A اور اختتامی نقطہ B ہے۔ سمتیہ u کے اجزاء حاصل کرتے ہوئے سمتیہ کی لمبائی |u| حاصل کریں۔ u کا خط کیپنیں۔

A:(2,3,0), B:(-4,6,0) :8.1 well

 $|u| = 3\sqrt{5}$ ، $u_1 = -6$ ، $u_2 = 3$ ، $u_3 = 0$. عرابت:

8.2. سمتیے کے اجزاء

$$A: (5,3,1), \quad B: (1,7,2) : 8.2$$
 الا $= \sqrt{33} \cdot u_1 = -4 \cdot u_2 = 4 \cdot u_3 = 1 : 1$ الا $= \sqrt{33} \cdot u_1 = -4 \cdot u_2 = 4 \cdot u_3 = 1 : 1$ الا $= \sqrt{33} \cdot u_1 = -4 \cdot u_2 = 4 \cdot u_3 = 1 : 1$ الا $= \sqrt{33} \cdot u_1 = 1.2 \cdot u_2 = 2.6 \cdot u_3 = -5.7 : 1$ الا $= \sqrt{33} \cdot u_1 = 1.2 \cdot u_2 = 2.6 \cdot u_3 = -5.7 : 1$ الا $= \sqrt{33} \cdot u_1 = 1.2 \cdot u_2 = 2.6 \cdot u_3 = -5.7 : 1$ الا $= \sqrt{3} \cdot u_1 = 4 \cdot u_2 = 0 \cdot u_3 = -3 : 1$ الا $= \sqrt{3} \cdot u_1 = 4 \cdot u_2 = 0 \cdot u_3 = -3 : 1$ الا $= \sqrt{3} \cdot u_1 = -2 \cdot u_2 = -2 \cdot u_3 = -2 : 1$ الا $= \sqrt{3} \cdot u_1 = 2 \cdot u_2 = 2 \cdot u_3 = 2 : 1$ الا $= \sqrt{3} \cdot u_1 = 2 \cdot u_2 = 2 \cdot u_3 = 2 : 1$ الا $= \sqrt{3} \cdot u_1 = 2 \cdot u_2 = 0 \cdot u_3 = 0 : 1$ الا $= \sqrt{3} \cdot u_1 = -3 \cdot u_2 = 0 \cdot u_3 = 0 : 1$ الا $= \sqrt{3} \cdot u_1 = -3 \cdot u_2 = 6 \cdot u_3 = 0 : 1$ الا $= \sqrt{3} \cdot u_1 = 0 \cdot u_2 = 4 \cdot u_3 = 3 : 1$ الا $= \sqrt{3} \cdot u_1 = 0 \cdot u_2 = 4 \cdot u_3 = 3 : 1$ الا $= \sqrt{3} \cdot u_1 = -3 \cdot u_2 = 0 \cdot u_3 = -2 : 1$ الا $= \sqrt{13} \cdot u_1 = -3 \cdot u_2 = 0 \cdot u_3 = -2 : 1$

سوال 8.11 تا سوال 8.20 میں ابتدائی نقطہ A اور سمتیہ کے اجزاء دیے گئے ہیں۔ سمتیہ کا اختتامی نقطہ دریافت کریں۔

$$A: (3,6,1); \quad -5,-7,2 \quad :8.14$$
 يوال $-2,-1,3$

$$A:(\frac{1}{2},\frac{2}{3},\frac{1}{3});$$
 $-\frac{3}{2},\frac{1}{3},1$:8.18 عواب: $-1,1,\frac{4}{3}$:4.

شكل 8.4: تجريب توتوں كامجموعه حاصل كرتے ہوئے سمتيات كے مجموعے كاحصول حاصل ہوتا ہے۔

8.3 سمتیات کامجموعہ، غیرسمتی کے ساتھ ضرب

چونکہ ہم سمتیات کو حماب کتاب کے لئے استعال کرنا چاہتے ہیں للذا سمتیات کے دو عدد الجبرائی اعمال پیش کرتے ہیں جنہیں سمتیات کا غیر سمتی کے ساتھ ضرب کہتے ہیں۔

تجربے سے معلوم ہوتا ہے کہ دو قوتوں کا حاصل، متوازی الاضلاع (شکل 8.4) سے ماتا ہے۔اس سے سمتیات کے مجموعے کی درج ذیل تعریف حاصل ہوتی ہے۔

تعریف: سمتیات کا مجموعه

دو سمتیات a اور b کو لیتے ہوئے a کے سر کے ساتھ b کی دم ملائیں۔اب a اور b کی مجموعے کی تحریف وہ سمتیہ a ہے جو a کی دم سے a کے سر تک تھینچی جائے گی (شکل 8.5-الف)۔اس عمل کو درج ذیل لکھا جاتا ہے۔

$$(8.5) c = a + b$$

 a_2 ، a_1 ہارہ ہے کہ اگر کسی معین کار تیسی نظام محدد میں a_1 کے اجزاء a_2 ہوں تب حاصل جمع سمتی a_3 کے اجزاء a_3 اور a_3 ہوں تب حاصل جمع سمتی a_3 کے اجزاء a_3 اور a_3 درج ذیل ہوں گے۔

(8.6)
$$c_1 = a_1 + b_1, \quad c_2 = a_2 + b_2, \quad c_3 = a_3 + b_3$$

$$\frac{d}{dt} = a_1 + b_1, \quad c_2 = a_2 + b_2, \quad c_3 = a_3 + b_3$$

م ک ماتھ دم ملا کر سمتیات کا مجموعہ حاصل کیا جاتا ہے۔

(ب)سمتیات کے مطابقتی اجزاء کو جمع کرتے ہوئے حاصل جمع سمتیہ کے اجزاء حاصل ہوتے ہیں۔

شكل 8.5: مجموعه سمتيات _

مجوعے کی تعریف یا مساوات 8.6 سے مجموعہ سمتیات کی درج ذمیل خصوصیات ملتی ہیں جہاں a سے مراد ایسا سمتیہ ہے جس کی لمبائی |a| اور سمت a کے الٹ ہو۔

$$(الف)$$
 قانون تبادل $a+b=b+a$ (الف) $a+b=b+a$ قانون تبادل $(u+v)+w=u+(v+w)$ قانون تلازم $a+0=0+a$ (ت.) $a+(-a)=0$

مساوات 8.7-ب میں ہم ہم لی u+v+w کھو سکتے ہیں اور یہی طریقہ زیادہ اعداد کے سمتیات کا مجموعہ کھنے کے a+a کی جگہ ستعال کیا جاتا ہے۔ مجموعہ a+a کی جگہہ a+a کی جگہہ استعال سے) ہم سمتیات کا دوسرا الجبرائی عمل بیان کرتے ہیں۔

سمتیات کاغیر سمتیات (اعداد) کے ساتھ ضرب

اگر a ایک سمتیہ اور q کوئی حقیقی عدد ہو تب سمتیہ a کی تعریف درج ذیل ہے۔

-ے |q||a| کی لبائی qa

a
eq a کی تھی۔ اگر a
eq a ہو اور a
eq a ہو تب a
eq a کی تھی۔

شكل8.6 سمتيات كاغير سمتيه كے ساتھ ضرب اور سمتيات كافرق۔

$$a \neq 0$$
 کی سمت کے الٹ ہو گی۔ $a \neq 0$ ہو تب $a \neq 0$ کی سمت کے الٹ ہو گی۔ $a \neq 0$ اگر $a \neq 0$ یا $a = 0$ ہو (اور یا دونوں صفر ہوں) تب $a = 0$ ہو گا۔ الن قواعد کی سادہ مثالیں شکل 8.6-الف میں دکھائی گئی ہے۔

 qa_2 ، qa_1 ہوں کے اجزاء a_1 ، a_2 ، a_3 ، اور a_3 ہوں تب اسی نظام محدد میں a_2 ہوا ہور a_3 ہوں گے۔اسی طرح سمتیہ کی تعریف سے درج ذیل ہو گا۔

مساوات 8.7 اور مساوات 8.8 سے درج ذیل اخذ کیا جا سکتا ہے۔

-(-8.6 کی جگہ b-a کی جگہ b-(a) ہیں b-(a) ہم

کسی بھی ایک کار تیبی نظام محدد کو استعال کرتے ہوئے، ہم سمتیہ a جس کے اجزاء a_1 اور a_3 ہوں کو تین ایس سمتیات کا مجموعہ ککھ سکتے ہیں جو اس کار تیسی نظام کے تین محور کے متوازی ہوں۔ ہم اس کار تیسی نظام کے ساتھ تین ایسے اکائی سمتیات، جنہیں ہم i i i i i اور i کہیں گے، وابستہ کرتے ہیں جن کی مثبت سمت اس کار تیسی نظام کے محور کی مثبت سمت ہو۔ یوں a کو درج ذیل کھا جا سکتا ہے (شکل 8.7)۔

(8.10)
$$a = a_1 i + a_2 j + a_3 k$$

شكل 8.7: اكائي سمتيات اوران كااستعال_

شکل 8.7-الف میں اکائی سمتیات j ، i اور k کو دکھایا گیا ہے جہاں ان کی دم کو کار تیسی نظام کے مرکز پر رکھا گیا ہے۔ یہ اکائی سمتیات آپس میں عمودی یا قائمہ i ہیں۔ ہم کہتے ہیں کہ i ، i اور k اس نظام محدد کی ثلاثہ اکائی قائمہ سمتیات ہیں۔

کسی بھی سمتیہ کو اس کی لمبائی سے تقسیم کرتے ہوئے اسی سمت میں اکائی سمتیہ حاصل ہو گا۔ یوں a کی سمت میں اکائی سمتیہ درج ذیل ہو گا۔

(8.11)
$$= \frac{a}{|a|}$$

مثال b=-5i+4j+2k اور a=3i-2k ہوں، تب ورج ذیل a=3i-2k ہوں، تب ورج ذیل مثال b=-5i+4j+2k ہوں گے۔

$$3a = 9i - 6k$$
, $-b = 5i - 4j - 2k$, $1.2a - 0.5b = 6.1i - 2j - 3.4k$

 $orthogonal ^{16}\\$

مثال 3.3: کسی سمتیہ a کی دم a پر ہے جبکہ اس کا سر a پر ہے۔ اسی سمت میں کسی بھی سمتیہ کو a کسی اس سکتا ہے جبال a غیر سمتی مستقل ہے۔ اب اگر a سمتیہ کی دم a پر ہو تب a کی صورت میں اس سمتیہ کا سر نقطہ a پر ہو گا۔ اسی طرح a کی صورت میں اس کا سر نقطہ a پر ہو گا۔ اسی طرح a کی صورت میں اس سمتیہ کا سر a کے عین وسط پر ہو گا۔ صورت میں اس سمتیہ کا سر a کے عین وسط پر ہو گا۔

مثال 8.4: اکائی سمتیہ سبت میں اکائی سمتیہ دریافت کریں۔ای سبت میں ایبا سمتیہ حاصل کریں جس میں a=2i-5j+3k کی لمبائی 7 ہو۔

$$\frac{a}{|a|} = \frac{2i - 5j + 3k}{\sqrt{38}}$$

ہو گا۔ کسی بھی اکائی سمتیہ کو غیر سمتی 1 سے ضرب دینے سے اس اکائی سمتیہ کی سمت میں 1 لمبائی کا سمتیہ حاصل ہوتا ہے للذا در کار سمتیہ درج ذیل ہو گا۔

$$7\frac{a}{|a|} = \frac{14i - 35j + 21k}{\sqrt{38}} = 2.27i - 6.68j + 3.41k$$

مثال a:8.5 اور a:0 اور a:0 الف میں دکھائے گئے چپٹا ڈب کے تین قریبی کنارے ہیں۔ ڈب کی مثال a:0 اور a:0 اور

(ب)وترنقطہ t پرایک دونوں کو برابر حصوں میں قطع کرتے ہیں۔

شكل 8.8: سمتيات كااستعال مثال 8.5

شکل 8.8 - ب میں دکھایا گیا ہے، وتری سمتیات v_{mq} اور v_{np} ایک دونوں کو نقطہ t پر قطع کرتے ہیں۔ نقطہ t دریافت کرتے ہوئے ثابت کریں کہ دونوں وتر ایک دونوں کو برابر حصوں میں قطع کرتے ہیں۔

حل: شكل كو ديكير كر درج ذيل لكھا جا سكتا ہے۔

$$r_{mq} = a + c$$
, $r_{np} = -a + c$

(8.12)
$$v_{tq} = l_1 v_{mq} = a + l_2 v_{np} \implies l_1(a+c) = a + l_2(-a+c)$$

جس کو ترتیب دیتے ہوئے

$$a(l_1 - 1 + l_2) + c(l_1 - l_2) = 0$$

ملتا ہے۔ اب چونکہ a اور b غیر صفر ہیں اور ان کی سمتیں بھی مختلف ہیں للذا درج بالا مساوات صرف اور صرف اس صورت ممکن ہوگا جب دونوں قوسین صفر ہول یعنی:

$$l_1 - 1 + l_2 = 0$$

$$l_1 - l_2 = 0$$

 $l_1=l_2=\frac{1}{2}$ کی صورت میں مساوات کو حل کرتے ہوئے $l_1=l_2=\frac{1}{2}$ ماتا ہے۔اب $l_1=l_2=\frac{1}{2}$ کی صورت میں مساوات 8.12 کے سے $v_{tq}=\frac{1}{2}v_{mq}$ کے وسط میں پایا جاتا ہے۔ مساوات کہ اگلے جھے سے اس طرح ثابت ہوتا ہے کہ نقطہ t میں t میں t کے اگلے جھے سے اس طرح ثابت ہوتا ہے کہ نقطہ t میں t میں جاتا ہے۔

سوالات

$$c=-2$$
 اور $b=-3i-2j+4k$ ، $a=2i-j+k$ اور $b=3i-2j+4k$ اور $a=2i-j+k$ اين $c=-2k$

$$-4a, \frac{1}{4}a, 4a$$
 :8.21 سوال $-4a = -8i + 4j - 4k, \frac{1}{4}a = \frac{1}{2}i - \frac{1}{4}j + \frac{1}{4}k, 4a = 8i - 4j + 4k$ يوابت:

$$a+b,b+a$$
 :8.22 سوال
 $-i-3j+5k$ جوابات:

$$a-b,b-a,a-b-c$$
 :8.23 يوال $a-b=5i+j-3k,\,b-a=-5i-j+3k,\,a-b-c=5i+j-k$

$$|a-b|$$
 , $|b-a|$, $|a-b-c|$:8.24 عوال $\sqrt{35}$, $\sqrt{35}$. $\sqrt{35}$. $\sqrt{35}$

$$\frac{a}{|a|}, \frac{b}{|b|}, \frac{c}{|c|}$$
 :8.27 سوال $0.82i-0.41j+0.41k$, $-0.56i-0.31j+0.74k$, $-k$ جوابات:

$$\frac{a+c}{|a+c|}, \frac{b-c}{|b-c|}, \frac{a+b+c}{|a+b+c|}$$
 :8.28 سوال -0.17 i - 0.51 j + 0.85 k , -0.43 i - 0.29 j + 0.86 k , -0.23 i - 0.69 j + 0.69 k

(a+b)+c, a+(b+c) عوال 3j+3k عوال 3j+3k

4(a-b), 4a-4b :8.30 عوال 30i+4j-12k

m اور m=2i-j-3k بیرے گوت m=2i-j-3k اور m=2i-j-3k بیرے گوت m وریافت کریں کہ m اور m گریں کہ m اور m گریں کہ

m=i+3j-4k :براب

سوال 8.32: ثابت کریں کہ شکل 8.8 میں وتر m'q اور n'p ایک دونوں کو برابر حصوں میں تقسیم کرتے ہیں۔

جواب: $v_{tq}=l_1v_{m'q}$ اور ای طرح $v_{n'p}=-a+b+c$ اور ای طرح $v_{m'q}=a+b+c$ اور ای طرح $v_{tq}=a+b+c$ کصا جا سکتا ہے۔انہیں برابر پر کرتے ہوئے

 $l_1(a+b+c) = a + l_2(-a+b+c)$

یعنی $a(l_1-1+l_2)+b(l_1-l_2)+c(l_1-l_2)=0$ ملتا ہے۔چونکہ سمتیات صفر نہیں ہیں للذا قوسین صفر ہوں گے۔یوں حاصل ہمزاد مساوات $l_1-l_2=0$ اور $l_1-l_2=0$ حل کرتے ہوئے $l_1=l_2=rac{1}{2}$

سوال 8.33: تکون کی تین کونوں سے سامنے اطراف کی وسط کو ملانے والے خط ایک دونوں کو نقط t پر قطع کرتے ہیں۔ t کے دونوں اطراف، خط کی لمبائی کا نسبت دریافت کریں۔

سوال 8.34: تکون کے کونے B(5,1,3) ، A(1,-2,4) ، اور C(2,3,1) ہیں۔ BC پیا جاتا BC ہیں۔ BC بیا جاتا BC ہیں۔ BC کی لمبائی دریافت کریں۔ BD جہاں BD = $2\overline{CD}$ ہیں۔ BD کی لمبائی دریافت کریں۔

شكل 8.9: سمتيات كااستعال

 $v_{CB}=-3i+2j-2k$ اور $v_{BA}=4i+3j-k$ بین داب دی گئی معلومات کے تحت $v_{BA}=4i+3j-k$ بین داب دی گئی معلومات کے تحت $v_{DA}=2i+rac{13}{3}j-rac{7}{3}k$ کیت $v_{DA}=v_{BA}+v_{DB}$ ہو گا جس کی لہائی $v_{AD}=\frac{2}{3}v_{CB}$ ہو گا جس کے لہائی ہوگئی ہے۔

سوال 8.35: ثابت کریں کہ متوازی الاضلاع کے ایک کونے سے سامنے والی طرف کی وسط تک کلیر، وتر کو 2: 1 تناسب میں تقسیم کرتی ہے۔

سوال 8.36 تا سوال 8.38 میں a کی سمت میں اکائی سمتیہ حاصل کریں۔اس اکائی سمتیہ کی سمت میں 1 لمبائی کا سمتیہ حاصل کریں۔ظاہر ہے کہ اکائی سمتیہ کو -1 سے ضرب دے کر الٹ سمت میں اکائی سمتیہ حاصل ہو گا۔

$$a = 4j, \ l = 5$$
 :8.36 سوال
جوابات: j ، j

$$a=-2i+j+3k,\ l=2$$
 :8.37 سوال $-3.74i+1.87j+5.61k,\ -0.535i+0.267j+0.802k$ بحوابات:

$$a=b+2c,\;b=3i+2k,\;c=2i-j-k,\;l=10$$
 :8.38 عوال جي $9.61i-2.74j,\;0.96i-0.27j$

8.4 ستمتی فضا۔ خطی تابعیت اور غیر تابعیت

ایسے تمام سمتیات کا سلسلہ V جو سمتی مجموعہ (مساوات 8.7) اور سمتی ضرب (مساوات 8.8) کے الجمرائی قواعد پر پورا اترتا ہو کو سمتی فضا 17 یا خطی فضا 18 کہتے ہیں۔ سمتی فضا کا تصور اس لئے اہم ہے کہ عملی ولچیں کے دیگر سلسلمے جو قالب، نفاعل، تباول وغیرہ پر بمنی ہوں پائے جاتے ہیں جن کے مجموعے اور غیر سمتی ضرب کی بالکل الیکی ہی فطری تعریف کی جا سکتی ہے۔

مسئله 8.1: حقیقی سمتی فضا

اگر سلسلہ V کے ارکان a ، b ، a ، b ، c ووالجبرائی اعمال (جنہیں سمتی جمع اور غیر سمتی ضرب کہتے ہیں) پر پورا اترتے ہوں تب V حقیقی سمتی فضا e^{19} یا حقیقی خطی فضا کہلاتا ہے اور یہ ارکان (جن کے خصوصیات پچھ بھی ہو سکتے ہیں) سمتیات کہلاتے ہیں۔

(الف) سمتی جمع V کے ہر دوسمتیات a اور b کے ساتھ V کا ایبا منفر درکن، جو a اور b کا مجموعہ کہلاتا اور a+b سے ظاہر کیا جاتا ہے، وابستہ کرتا ہے کہ جو درج ذیل مسلمات پر پورا اترتا ہو۔

(الف-1 قانون تبادل۔ V کے ہر دو ارکان a اور b کے لئے درج ذیل ہو گا۔

$$(8.13) a+b=b+a$$

(الف-2 قانون تلازمV کے ہر تین ارکان b ، a اور C کے لئے ورخ ذیل ہو گا۔

$$(8.14)$$
 $(a+b)+c=a+(b+c)$ (ج. کیما چاتا کی $a+b+c$ ج.)

(الفV کیا جاتا ہے، پایا جاتا ہے کہ V میں ایسا منفر د سمتیہ، جو صفو سمتیہ کہلاتا اور V ہے ظاہر کیا جاتا ہے، پایا جاتا ہے کہ V میں ہوگا۔

$$(8.15) a+0=a$$

V (الفV V V میں ہر سمتیہ V کے لئے V میں ایبا سمتیہ V وگا۔

$$(8.16) a + (-a) = 0$$

vector space¹⁷

linear space¹⁸

real vector space¹⁹

(+) غیر سمتی ضوب۔ حقیقی اعداد غیر سمتی کہلاتے ہیں۔ غیر سمتی ضرب، ہر غیر سمتی و اور V کے ہر سمتی a کا ایبا منفر د رکن، جو a اور c کا حاصل ضوب کہلاتا اور c کا ایبا منفر د رکن، جو a اور c کا حاصل ضوب کہلاتا اور c کا ایبا منفر د رکن و درج ذیل مسلمات پر پورا اترتا ہو۔

(-1) قانون جزئیتی تقسیم۔ ہر غیر سمتی c اور V میں موجود ہر سمتیات a اور b کے لئے درج زئی ہوگا۔

$$(8.17) c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$

a قانون جزئيتي تقسيم ۾ غير سمت c c c c ميں موجود ۾ سمتي a ڪ ڪ درج ذيل ہو گا۔

$$(8.18) (c+k)\mathbf{a} = c\mathbf{a} + k\mathbf{a}$$

(-3-1) قانون وابستگی۔ ہر غیر سمتی c ، ہر غیر سمتی k اور V میں موجود ہر سمتی a کے لئے درج ذیل ہو گا۔

یں ہر سمتیہ $a \geq L$ درج ذیل ہو گا۔ V (4-1)

$$(8.20) 1 \cdot a = a$$

درج بالا تعریف میں حقیقی اعداد کی جگه مخلوط اعداد کو غیر سمتی لینے سے مخلوط سمتی فضا کی مسلمی تعریف حاصل ہو گی۔

سمتی فضا پر مزید بحث حصہ 7.9 میں کی جائے گی۔آئیں اب سمتی فضا کی چند اہم خصوصیات پر غور کریں۔

فرض کریں کہ $a_{(n)}$ ، $a_{(n)}$ ، $a_{(n)}$ ، $a_{(n)}$ نہ جموعے $a_{(n)}$ ہیں۔ $a_{(n)}$ نہ جماعے عیر سمتی قیمتیں ہیں۔ $a_{(n)}$ نہ $a_{(n)}$ نہ $a_{(n)}$ نہ جہاں $a_{(n)}$ نہ $a_{(n)}$ نہ جہاں $a_{(n)}$ نہ جہاں $a_{(n)}$ نہ جہاں $a_{(n)}$ نہ جہاں ہیں۔

$$c_1\boldsymbol{a}_{(1)} + c_2\boldsymbol{a}_{(2)} + \cdots + c_m\boldsymbol{a}_{(m)}$$

 $linear\ combination^{20}$

سمتی فضا کی تعریف کے تحت درج بالا ازخود V کا رکن سمتیہ ہو گا۔اس طرز کی تمام مجموعوں کا سلسلہ S ، ان سمتیات کا احاطہ S کہلاتا ہے۔ہم کہتے ہیں کہ یہ سمتیات S کے پیدا کارS ہیں۔ ظاہر ہے کہ احاطہ از خود سمتی فضا ہے۔

خطی مجموعے کو استعال کرتے ہوئے ہم خطی تابعیت اور خطی غیر تابعیت متعارف کرتے ہیں۔

متیات $a_{(m)}$ اس صورت خطی طور غیر تابع سلسلہ پیدا کرتے ہیں جب درج زیل م $a_{(m)}$ \cdots ، $a_{(1)}$ \cdots $a_{(1)}$ \cdots $a_{(1)}$ \cdots $a_{(m)}$ \cdots (8.21)

ے مراد $c_m=0$ ، · · · · $c_1=0$ ہو۔ایکی صورت میں ہم کہتے ہیں کہ سمتیات خطی طور غیر تابع ہیں۔ $c_m=0$ ، · · · · $c_1=0$ ہیں۔ اس کے برعکس اگر کسی ایک یا ایک سے زیادہ c_j کی قیمت غیر صفر ہونے کی صورت میں بھی مساوات 7.84 درست ہو تب $a_{(m)}$ تا $a_{(m)}$ تا $a_{(m)}$ تا مطور تابع c_m خطی طور تابع c_m کہناتے ہیں۔

اں a کی صورت میں مساوات 7.84 سے ca=0 ملتا ہے جس سے ظاہر ہے کہ واحد سمتیہ m=1 صورت خطی طور غیر تابع ہو گا جب $a \neq 0$ ہو۔

مثال 6.6: خطی طور تابع اور خطی طور غیر تابع سمتیات کے سلسلے مثال 6a-2b-3k ، a=i+2j+k سمتیات c=2i+4j ، اور b=3k ، a=i+2j+k سمتیات a=i+2j+k سم

اگر V میں غیر تابع سمتیات کی تعداد n ہو جبکہ V میں موجود n سے زائد تمام سمتیات خطی طور تابع V کو V بعدی کہیں گے۔ ان خطی طور غیر تابع V عدد سمتیات کو V کو V بعدی کہیں گے۔ ان خطی طور غیر تابع

span²¹ generator²² linearly dependent²³

V کی اساس ²⁴ کہتے ہیں اور V میں ہر سمتیہ کو ان اساس کا خطی مجموعہ لکھا جا سکتا ہے۔کسی مخصوص اساس کو استعال کرتے ہوئے یہ خطی مجموعہ منفرد ہو گا۔

اس کی مثال فضا کے تمام سمتیات (حصہ 8.1) کی سمتی فضا ہے۔اس سمتی فضا میں کسی بھی سمتیہ کو تین عدد سمتیات j : i

اب درج ذیل مساوات پر غور کریں۔

(8.22)
$$c_1 \mathbf{a}_{(1)} + c_2 \mathbf{a}_{(2)} + \dots + c_m \mathbf{a}_{(m)} = \mathbf{0}$$

ظاہر ہے کہ تمام c_j کی قیمت صفر ہونے کی صورت میں مساوات 8.22 درست ہو گا چو تکہ ایسی صورت میں ماوات 8.22 درست ہو تب c_j مال ہوتا ہے۔ اگر m عدد c_j کی یہ واحد قیمت ہو جس کے لئے مساوات 8.22 درست ہو تب $a_{(m)}$ تا $a_{(m)}$ تا $a_{(m$

$$a_{(1)} = k_2 a_{(2)} + \dots - k_m a_{(m)}$$
 $(k_j = -\frac{c_j}{c_1})$

جہاں چند k_j صفر ہو سکتے ہیں)۔ اگر $a_{(1)}=0$ کی صورت میں تمام k_j صفر ہو سکتے ہیں)۔ اگر $a_{(1)}=0$ ہو تب میان جب $a_{(1)}=0$ کا میں صورت ہو سکتا ہے جب $a_{(1)}=0$ میں صورت ہو سکتا ہے جب $a_{(1)}=0$ میں جب خطی تابعیت کی تعریف کے تحت خطی طور تابع ہے۔

خطی طور تابع سمتیات کے سلسلہ سے کم از کم ایک عدد سمتیہ، اور عین ممکن ہے کہ ایک سے زیادہ سمتیات، خارج کرتے ہوئے خطی طور غیر تابع سلسلہ حاصل کیا جا سکتا ہے۔

مسکلہ 8.2: خطی طور تالعیت c_m تا c_1 تا c_m تا c_m تا c_m مسکلہ 8.22 صرف اور صرف اس صورت درست ہو جب تمام c_m تا c_m مساوات c_m خطی طور تابع ہول گے۔ $a_{(m)}$

basis²⁴

linear independent²⁵

linearly independent set²⁶

linearly dependent²⁷

درج بالا لازم اور معقول (کافی) شرط کو ہی عموماً تابعیت کی تعریف تصور کی جاتی ہے۔

اگر ان میں کوئی ایک سمتیہ بھی صفر سمتیہ ہو تب $a_{(m)}$ ،··· ، $a_{(1)}$ بول گے ، مثلاً $a_{(m)}$ مثلاً ہے۔ $k_2=k_3=\cdots=k_m=0$ کی صورت میں مساوات 8.22 میں $k_1\neq 0$ اور $a_{(1)}=0$

سہ بُعدی فضا میں دو عدد خطی طور تابع سمتیات ہم خطی 28 ہوں گے (شکل 8.10) یعنی اگران کی دم ایک ہی نقطے پر ہو تب یہ ایک ہی سیدھی خطی v ہو تب یہ اور w جو خطی طور تابع سلسلہ پیدا کرتے ہوں ہم سطحی 29 کہلاتے ہیں، یعنی اگر ان کی دم ایک ہی نقطے پر ہو تب یہ سمتیات ایک ہی سیدھی سطح پر واقع ہوں گے (شکل 8.11)۔ در حقیقت خطی تابعیت کا مطلب یہ ہے کہ ایک سمتیہ کو بقایا سمتیات کا خطی مجموعہ کھا جا سکتا ہے۔ چونکہ سل بُعدی فضا میں کسی بھی سمتیہ کو تین عددی سمتیات i i اور k کا خطی مجموعہ کھا جا سکتا ہے۔ لہذا سہ بُعدی فضا میں کسی جھی سمتیہ کو تین عددی سمتیات i ہوں گے۔

 ${\rm collinear}^{28} \\ {\rm coplanar}^{29}$

سوالات

ثابت کریں کہ سوال 8.39 تا سوال 8.42 میں دیے گئے سمتیات کا سلسلہ سمتی فضا پیدا کرتا ہے۔اس فضا کی بُعد اور اساس دریافت کریں۔

سوال 8.39: سه بُعدى فضا وه تمام سمتيات جن كا پهلا جزو صفر ہے۔

k ، j : 2 جوابات:

سوال 8.40: ایسے تمام سمتیات جنہیں bi+k(j+k) کھا جا سکتا ہے جہاں b اور k کوئی بھی غیر سمتی ہو سکتے ہیں۔

j+k ، i : 2 :جوابات

سوال 8.41: ایسے تمام n مرتب اعداد (a_1, \cdots, a_n) کا سلسلہ جن کے مجموعے کی تعریف اور غیر سمتی کے ساتھ ضرب کی تعریف درج ذیل ہو۔

$$(a_n, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$

$$c(a_n, \dots, a_n) = (ca_n, \dots, ca_n)$$

$$(0, 0, \dots, 1) \dots (0, 1, \dots, 0) (1, 0, \dots, 0) : n : n : n$$

سوال 8.42: ایسے تمام نفاعل جنہیں $y(x) = a\cos x + b\sin x$ اور b افتیاری مستقل ہیں۔ان نفاعل کے مجموعے اور غیر سمتیات کے ساتھ ضرب عمومی تواعد کے تحت ہیں۔

 $\sin x \cdot \cos x : 2$ جوابات:

شکل8.12:سمتیات کے مابین زاویہ۔

8.5 اندرونی ضرب (ضرب نقطه)

سہ بُعدی فضا میں سمتیات a اور b کی اندرونی ضوب 30 جس کو $a \cdot b$ کھا جاتا ہے سے مراد درج ذیل ہے جہال $\gamma(0 \leq \gamma \leq \pi)$ سمتیات کی دم ایک ہی فضلے پر رکھ کر نایا جاتا ہے)۔ (شکل 8.12)

(8.23)
$$\begin{aligned} a \cdot b &= |a| |b| \cos \gamma & (a \neq 0, b \neq 0) \\ a \cdot b &= 0 & (a = 0 \downarrow b = 0 \downarrow a = b = 0) \end{aligned}$$

اندرونی ضرب کو ضرب نقطہ 31 بھی کہتے ہیں۔اندرونی ضرب کا حاصل غیر سمتی (حقیقی عدد) ہوتا ہے اور یوں اندرونی ضرب کو غیر سمتی ضرب کو قیت بیں۔ چونکہ مساوات 8.23 میں π کہ فیم ہو سکتی ہے۔ زاویہ π کہ در میان ہو شکل 8.12 لہٰذا اندرونی ضرب کی قیت بھی مثبت، صفر یا منفی ہو سکتی ہے۔ زاویہ π ک در میان صرف π ہو π کہ ور میان ہوتا ہے۔

مسكه 8.3: قائميت³³

دو عدد غیر صفر سمتیات آپس میں صرف اور صرف اس صورت قائم الزاویہ (عمودی) ہول گے جب ان کا اندرونی ضرب صرف کے برابر ہو۔

inner product³⁰ dot product³¹ scalar product³²

orthogonality³³

مساوات 8.23 میں b=a پر کرنے سے $|a|^2$ سے ماصل ہوتا ہے اور یوں سمتیہ کی لمبائی (اقلید سی معیار) کو اندرونی ضرب سے حاصل کیا جا سکتا ہے۔

$$|a| = \sqrt{a \cdot a} \qquad (\ge 0)$$

درج بالا اور مساوات 8.23 سے درج ذیل لکھا جا سکتا ہے۔

(8.25)
$$\cos \gamma = \frac{a \cdot b}{|a||b|} = \frac{a \cdot b}{\sqrt{a \cdot a} \sqrt{b \cdot b}}$$

اندرونی ضرب کی تعریف سے درج ذیل خصوصیات اخذ کئے جا سکتے ہیں۔

(الف)
$$[q_1a+q_2b]\cdot c=q_1a\cdot c+q_2b\cdot c$$
 (الف)

$$(8.26)$$
 $() \quad a \cdot b = b \cdot a \quad ()$ $() \quad a \cdot a \geq 0$ $() \quad a \cdot a \geq 0$ $() \quad a \cdot a = 0$ $() \quad a = 0$

یوں ضرب نقطہ استبدالی اور سمتیات کی جمع کے لئے جزیمتی تقسیمی ہے۔ مساوات 8.26 میں $q_1=1$ اور $q_2=1$ ور $q_2=1$

ماوات 8.23 اور $\gamma \leq 1$ صے ورج ذیل شوارز عدم مساوات 8.23 اور $\gamma \leq 1$ ماتی ہے۔

$$(8.28)$$
 $|a\cdot b| \leq |a||b|$ (8.28)

درج بالا اور مساوات 8.24 استعال كرتے ہوئے آپ درج ذيل ثابت كر سكتے ہيں۔

$$(8.29)$$
 $|a+b| \leq |a|+|b|$ (8.29)

مساوات 8.24 کی مدد سے

$$|a+b|^2 = (a+b) \cdot (a+b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b$$

 $|a-b|^2 = (a-b) \cdot (a-b) = a \cdot a - a \cdot b - b \cdot a + b \cdot b$

Schwarz inequality 34 [1843-1921] جمن ریاضی دان هر من امند س شوارز

لکھ کر دونوں مساوات جمع کرنے سے درج ذیل ملتا ہے۔

(8.30)
$$|a+b|^2+|a-b|^2=2(|a|^2+|b|^2)$$
 (متوازى الاضلاع مساوات)

سمتیات کو اجزاء کی صورت میں لکھ کر

 $a = a_1 i + a_2 j + a_3 k$, $b = b_1 i + b_2 j + b_3 k$

ان کا غیر سمتی ضرب معلوم کرتے ہیں۔

$$\mathbf{a} \cdot \mathbf{b} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$$

$$= a_1 b_1 \mathbf{i} \cdot \mathbf{i} + a_1 b_2 \mathbf{i} \cdot \mathbf{j} + a_1 b_3 \mathbf{i} \cdot \mathbf{k} + a_2 b_1 \mathbf{j} \cdot \mathbf{i} + a_2 b_2 \mathbf{j} \cdot \mathbf{j} + a_2 b_3 \mathbf{j} \cdot \mathbf{k}$$

$$+ a_3 b_1 \mathbf{k} \cdot \mathbf{i} + a_3 b_2 \mathbf{k} \cdot \mathbf{j} + a_3 b_3 \mathbf{k} \cdot \mathbf{k}$$

 $i\cdot j=0$ اور j آپس میں قائمہ الزاویہ ہیں لہذا مساوات 8.23 میں $\gamma=\frac{\pi}{2}$ ہو گا اور یوں قائمہ الزاویہ ہیں لہذا مساوات 8.23 میں $\gamma=0$ ہو گا اور یوں ہو گا۔ای طرح چونکہ i اور i ایک ہی سمت میں ہیں لہذا مساوات 8.23 میں i ہو گا اور یوں i ہو گا۔ای عمل سے آپ درج ذیل غیر سمتی ضرب کے تعلقات لکھ سکتے ہیں جنہیں درج بالا میں $i\cdot i=1$

$$(8.31) i \cdot i = 1, \quad j \cdot j = 1, \quad k \cdot k = 1$$

$$(8.32) i \cdot j = 0, \quad j \cdot k = 0, \quad k \cdot i = 0$$

پر پر کرتے ہوئے درج ذیل ملتا ہے۔

$$(8.33) a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$$

اگر a اور b (
eq 0) سمتیات کے مابین زاویہ γ ہو تب درج ذیل حقیقی عدد $p=|a|\cos\gamma$

a=0 کی سمت میں a=0 کا جزو یا عمودی سایہa=0 ہو گا۔اگر a=0 ہو تب a=0 غیر معین (بے معنیٰ) ہو گا اور ہم b=0 کیس گے۔

یوں b کی سمت میں خط l پر a کے عمودی سائے کی لمبائی |p| ہو گی۔ p کی قیمت مثبت، صفر یا منفی ہو کتی ہے (شکل 8.13)۔

projection³⁶

 $m{a}$ کی سمتی میں $m{a}$ کا جزوہ $m{b}$:8.13

شكل 8.14: قوت اور كام (مثال 8.7)

 $m{a} = a_1 m{i} + a_2 m{j} + a_3 m{k}$ یوں کار تیسی نظام کے اکائی سمتیات $m{j}$ ، $m{i}$ اور $m{k}$ کی سمت میں سمتی اجزاء بالترتيب a₂ ، a₁ ، ور گے۔

مباوات 8.25 کی مدد سے درج ذیل ہو گا

$$(8.34) p = a\cos\gamma = \frac{a\cdot b}{|b|} (b \neq 0)$$

اور اگر 6 اکائی سمتیہ ہوتب اس سے درج ذیل ملتا ہے۔

$$(8.35) p = a \cdot b$$

مثال 8.7: قوت اور کام فرض کریں کہ قوت a کسی چیز کو اپنی جگہ سے ہٹا کر سمتی فاصلہ d منتقل کرتا ہے۔ d کی سمت میں قوت کا جزو ضرب |d| کام W کی تعریف ہے لیخی

$$(8.36) W = |a||d|\cos\alpha = a \cdot b$$

(8.14 اور a اور a در میان زاویہ a ہے۔

آپ دیکھ سکتے ہیں کہ a کی ست میں d کا جزو ضرب |a| بھی کام کی تعریف ہے۔

شكل 8.15: سيدھے خط كى مساوات۔

شکل 8.15-الف میں نقطہ دار کئیر دکھائی گئی ہے جو r_a کے عمودی ہے۔اگر x اور y کو اس نقطہ دار کئیر x پر رہنے پر پابند کیا جائے تب x اور x_a آپس میں قائمہ الزاویہ ہوں گے۔شکل 8.15-ب میں ایسا ہی کیا گیا ہے۔ یوں شکل-ب میں مسلہ 8.3 کے تحت درج ذیل ہو گا۔

$$(8.37) \mathbf{r} \cdot \mathbf{r}_a = 0 \implies (x\mathbf{i} + y\mathbf{j}) \cdot (a_1\mathbf{i} + a_2\mathbf{j}) = a_1x + a_2y = 0$$

ورج بالا مساوات $(a_1x+a_2y=0)$ میں x اور y نقطہ دار خط پر رہتے ہیں لہذا یہ نقطہ دار خط کی مساوات x

آپ نے دیکھا کہ سیدھے خط کی مساوات دو سمتیات کی اندرونی ضرب $r \cdot r_a = 0$ کی صورت میں لکھی جا سکتی ہے جہال r_a ایبا ہٹاو سمتیہ ہے جو اس سیدھے خط کے ساتھ قائمہ الزاویہ ہو۔

جم شکل 8.16-الف میں نقطہ N سے گزرتے ہوئے ایسے خط L_2 کی مساوات جاننا چاہتے ہیں جو L_1 کے قائمہ الزاویہ ہو۔ L_1 کی مساوات ہمیں معلوم ہے۔

کار تیسی نظام میں xy سطح پر کسی بھی سیدھے خط کو y=mx+c کھا جا سکتا ہے۔اس مساوات میں ڈھلوان $a_1x+a_2y=ca_1=c'$ کھتے ہوئے a_2 ہوگ ہوگ ہوتا ہے۔ ایبا ایک خط $a_1x+a_2y=ca_1=c'$ الف میں $a_1x+a_2y=ca_1=c'$

شكل8.16: قائمه الزاوييه خطوط ـ

(0,0) کو کار تیسی نظام کے مرکز c=0 پر کرنے سے خط L_1^* حاصل ہو گا جو کار تیسی نظام کے مرکز c=0 پر کرنے سے خط L_1 اور L_1^* کی ایک جیسی ڈھلوان ہے لینی یہ آپس سے گزرتا ہے جس کو شکل L_2 بین دکھایا گیا ہے۔خط L_1 اور L_1^* عاصل کرتے ہیں۔اب اگر L_1 اور L_1^* علی متوازی ہیں۔ہم L_2 کو بھی اسی طرح مرکز پر منتقل کرتے ہوئے L_2^* حاصل کرتے ہیں۔اب اگر L_1^* اور L_2^* کا تمہ الزاویہ ہوں گے۔آئیں پہلے L_1^* کی مساوات سے L_2^* کی مساوات حاصل کریں گے۔ کی مساوات حاصل کریں گے۔

 $egin{aligned} r_a &= & xi + yj & xi + yj & xi + yj & xi + a_2y = 0 & a_1x + a_2y = 0 & a_1i + a_2j & a_2y = 0 & a_1i + a_2j & a_2i + a_2i$

اب r_a نط L_1^* اور L_2^* قائمہ الزاویہ ہوں گے اور یوں مسلہ L_3 تحت درج ذیل ہو گا۔

$$r_a \cdot r_b = (a_1 i + a_2 j) \cdot (b_1 i + b_2 j) = a_1 b_1 + a_2 b_2 = 0, \implies b_2 = -\frac{a_1}{a_2} b_1$$

یوں L_2^* کی مساوات $b_1(x-rac{a_1}{a_2}y)=0$ ہو گی جس کو ترتیب دیتے ہوئے درج ذیل لکھا جا سکتا $r\cdot r_b=b_1(x-rac{a_1}{a_2}y)=0$

$$(8.38) a_2 x - a_1 y = 0 (L_2^*)$$

یں۔ $(a_1x+a_2y=0)$ کی مساوات کا L_1^* کی مساوات کا L_2^*

شكل 8.17: قائمه الزاويه خطوط (مثال 8.8) ـ

 L_2 کی مساوات کو استعال کرتے ہوئے L_2 کی مساوات کو استعال کرتے ہوئے L_2 کی مساوات کی مساوات کو استعال کرتے ہوئے $C'=a_2x_0-a_1y_0$ کو لیا مساوات میں پر کرتے ہوئے $C'=a_2x_0-a_1y_0$ کی مساوات میں پر کرتے ہوئے ہوئے $C'=a_2x_0-a_1y_0$ کی مساوات میں ہوتی ہے۔

مثال 8.8: سید هی سطح میں واقع قائمہ الزاویہ سید سے خطوط کار تیسی نظام کی xy سطح پر ایک خط L_1 کی مساوات xy کار تیسی نظام کی xy سطح پر ایک خط L_1 کی مساوات کریں جو L_1 کے عمودی ہو۔ ایسے خط L_2 کی مساوات دریافت کریں جو L_1 کے عمودی ہو۔

حل: شکل L_1 الف میں ان خطوط کو دکھایا گیا ہے۔ L_1 کو مرکز پر منتقل کرتے ہوئے L_1 عاصل ہو گا جس کی مساوات r=xi+yj ہو گی جس کو سمتیات r=xi+yj اور r=xi+yj کا اندرونی ضرب کی مساوات r=xi+yj کی مساوات کی طرح r=xi+yj کا اندرونی ضرب r=xi+yj

 $R_{a}=0$ اور $R_{a}=0$ آپس میں عمودی ہیں البذا $R_{b}=0$ اور $R_{b}=0$ آپس میں عمودی ہوں گے۔ یوں مسئلہ $R_{b}=0$ اور $R_{b}=0$ آپس میں عمودی ہوں گے۔ یوں مسئلہ $R_{b}=0$ آپس میں $R_{b}=0$ مانا ہے۔ اس کے تحت $R_{b}=0$ مانا ہے۔ اس کے تحت $R_{b}=0$ میں میں مساوات $R_{b}=0$ کی مساوات $R_{b}=0$ کی مساوات $R_{b}=0$ کی مساوات $R_{b}=0$ کی مساوات کے تحت $R_{b}=0$ کی مساوات کی مساوات کے تحت $R_{b}=0$ کی مساوات کی مساوات کی مساوات کے تحت کے تحت کے تحت کی مساوات کی مساوات کی مساوات کے تحت کے تحت

X = 0 کامی جا کتی ہے۔ X = 0 نقطہ پر کرتے X = 0 کامی جا کتی ہے۔ X = 0 نقطہ پر کرتے X = 0 کا کتا ہے جس سے X = 0 کی مساوات X = 0 کا کتا ہے جس سے X = 0 کی مساوات X = 0 کا کتا ہے جس سے X = 0 کی مساوات X = 0 کا کتا ہے جس سے X = 0 کی مساوات کا کتا ہے جس سے X = 0 کی مساوات کا کتا ہے جس سے X = 0 کی مساوات کا کتا ہے جس سے X = 0 کی مساوات کا کتا ہے جس سے X = 0 کی مساوات کا کتا ہے جس سے X = 0 کی مساوات کا کتا ہے جس سے X = 0 کی مساوات کا کتا ہے جس سے کتا ہے کتا ہے جس سے کتا ہے کتا ہ

مثال 8.9: سطح کے ساتھ قائمہ الزاوبیہ سمتیہ

ایک سطح کی مساوات 2x - 4y + 6z = 3 ہے۔اییا اکائی سمتیہ دریافت کریں جو اس سطح کے ساتھ قائمہ الزاویہ ہو۔

حل: شکل 8.18 سے رجوع کریں۔سید ھی سطح کی عمومی مساوات درج ذیل ہے۔

$$(8.39) a_1 x + a_2 y + a_3 z = c$$

 $a=a_1i+a_2j+a_3k$ ہوگے ہوگے کا ہٹاو سمتیہ r=xi+yj+zk ہوگا۔ یہال ہم سمتیہ نقطے کا ہٹاو سمتیہ متعارف کرتے ہوئے مساوات 8.39 کو درج زبل لکھ سکتے ہیں۔

$$a \cdot r = c$$

ارج زیل ہو گا۔ n غیر صفر (a
eq 0) ہے اور اس کی سمت میں اکائی سمتیہ a

$$oldsymbol{n} = rac{oldsymbol{a}}{|oldsymbol{a}|}$$

مساوات 8.40 کو |a| سے تقسیم کرتے ہوئے درج ذیل ملتا ہے۔

$$(8.41) n \cdot r = p, p = \frac{c}{|a|}$$

مساوات 8.35 کی مدد سے ہم دیکھتے ہیں کہ n کی سمت میں r کا سامیہ p ہے۔

p اب |p| غیر متغیر مقدار ہے جبکہ سمتیہ r سطح پر کوئی بھی نقطہ ہو سکتا ہے۔ شکل کو دکھ کر ظاہر ہے کہ p صرف اور صرف اس صورت غیر متغیر ہو سکتا ہے جب p سطح کا قائمہ الزاویہ سمتیہ ہو۔ یوں p بھی سطح کا قائمہ الزاویہ سمتیہ ہو گا۔ شکل یہ یہ بھی ظاہر ہے کہ مرکز سے سطح کے قریب ترین نقطے کا فاصلہ |p| ہو گا۔

شكل 8.18:سيد هي سطح كاعمودي سمتىيه ـ

شكل 8.19: سدھے خط كام كزيے فاصليہ مثال 8.10-8-

یوں سطح 2x-4y+6z=3 کا قائمہ الزاویہ سمتیہ 2i-4j+6k ہو گا اور سطح کا مرکز سے فاصلہ $\sqrt{2^2+4^2+6^2}=\sqrt{56}$ ہو گا۔

$$oldsymbol{n} = rac{oldsymbol{a}}{|oldsymbol{a}|} = rac{2oldsymbol{i} - 4oldsymbol{j} + 6oldsymbol{k}}{\sqrt{56}}$$

= 2چونکہ کسی بھی سطح کے دو اطراف ہوتے ہیں للذا = n بھی اس سطح کا اکائی قائمہ الزاویہ سمتیہ ہو گا۔

مثال 8.10: کار تیسی نظام کے xy سطے پر کسی بھی سیدھے خط L کو $a_1x+a_2y=c$ کھا جا سکتا ہے۔ مرکز سے اس خط کا فاصلہ دریافت کریں۔ خط کا قائمہ الزاویہ اکائی سمتیہ دریافت کریں۔

حل: شکل r=xi+yj سے رجوع کریں۔کار تیسی نظام کی xy سطح پر کسی بھی نقطے کو r=xi+yj کھا جا سکتا $a=a_1i+a_2j$ متعارف کرتے ہوئے دیے گئے سیدھے خط کی مساوات کو درج ذیل کھا جا سکتا ہے۔

اس مساوات کو |a| سے تقسیم کرتے ہوئے درج ذمیل ملتا ہے۔

$$n \cdot r = p,$$
 $n = \frac{a}{|a|}, p = \frac{c}{|a|}$

p اب ابنے متخبر مقدار ہے جبکہ سمتیہ r خط پر کوئی بھی نقطہ ہو سکتا ہے۔ شکل کو دیکھ کر ظاہر ہے کہ p اسطے کا قائمہ الزاویہ سمتیہ ہو۔ یوں a بھی سطح کا قائمہ الزاویہ سمتیہ ہو گا۔ شکل یہ یہ بھی ظاہر ہے کہ مرکز سے سطح کے قریب ترین نقطے کا فاصلہ |p| ہو گا۔

 $|p|=a_1i+a_2j$ یوں مرکز سے خط تک کم سے کم فاصلہ $a=a_1i+a_2j$ اور مرکز سے خط تک کم سے کم فاصلہ $\sqrt{a_1^2+a_2^2}$ ہو گا۔یوں خط کے اکائی قائمہ الزاویہ سمتیات درج ذیل ہوں گے۔

$$m{n}=\mp\left(rac{a_1m{i}+a_2m{j}}{\sqrt{a_1^2+a_2^2}}
ight)$$

سوالات

جوابات: 5 ، 5

 $\left|a\right|,\left|b\right|,\left|c\right|$:8.44 سوال

 $|c|=\sqrt{21}$ ، $|b|=\sqrt{10}$ ، $|a|=\sqrt{21}$ جربات:

 $(a-b)\cdot c$, $c\cdot a-c\cdot b$:8.45 سوال

جوابات: 1-

 $(oldsymbol{b}-oldsymbol{c})\cdotoldsymbol{a}$, $(oldsymbol{c}-oldsymbol{b})\cdotoldsymbol{a}$:8.46 سوال

 $(oldsymbol{c}-oldsymbol{b})\cdotoldsymbol{a}=1$ ، $(oldsymbol{b}-oldsymbol{c})\cdotoldsymbol{a}=-1$ برابات:

|a+b|, |a-b| :8.47 سوال

 $\sqrt{21}$ ، $|a+b|=\sqrt{41}$ جوابات:

 $2a \cdot 4c$, $5b \cdot a$:8.48 سوال

25 ، $2a \cdot 4c = 40$:وابات

|a+c| , |a|+|c| :8.49 سوال

 $2\sqrt{21}$ ، $|a+c|=3\sqrt{6}$: برابات:

سوال 8.50 تا سوال 8.54 میں ایک چیز کو قوت f نقطہ f سے نقطہ g منتقل کرتی ہے۔ قوت کتنا کام کرتا ہے؟ کام کی تعریف $f \cdot r_{BA}$ ہے۔

f = i + j - k, A(0,0,0), B(5,0,0) :8.50 عوال : 5 إ

f=2i-3j+k, A(2,5,0), B(0,0,0) :8.51 عوال :11 عواب

f = 3i + j - 2k, A(-5,2,1), B(2,-3,-6) :8.52 عوال :30 J : يواب

f = 5i + 2j + 3k, A(5,5,6), B(7,6,2) :8.53 عواب: 0 J :جواب

f=2i+j+3k, A(3,4,2), B(4,2,1) :8.54 سوال 3.54 براب: 3.54

سوال 8.55: سوال 8.53 میں کام صفر کیوں ہے؟

جواب: چونکه قوت اور هاو سمتیه قائمه الزاویه بین-

سوال 8.56: سوال 8.53 میں کام منفی کیوں ہے؟

جواب: چونکه قوت اور هاو سمتیه آلس میں الث رخ ہیں۔

سوال 8.57: سمتیہ 4i-2j+ck میں c کی قیمت کیا ہونے سے یہ سمتیہ 4i-2j+ck کے عمودی ہوگا۔

جواب: 2

سوال xy :8.58 کا عمودی اکائی سمتیہ دریافت کریں۔

 $rac{-oldsymbol{i}-2oldsymbol{j}}{\sqrt{5}}$ اور $rac{oldsymbol{i}+2oldsymbol{j}}{\sqrt{5}}$:جواب

سوال 8.59: ایک چیز کو قوت f_1 اور قوت f_2 مل کر نقط A سے نقط B منتقل کرتی ہے۔ ثابت کریں کہ کل کام دونوں قوتوں کے کاموں کا مجموعہ ہو گا۔

سوال 8.60: سمتیات استعال کرتے ہوئے ثابت کریں کہ اگر مستطیل کے وتر آپس میں عمودی ہوں تب یہ مستطیل دراصل میں چکور ہو گا۔

سوال 8.61: سمتیات استعال کرتے ہوئے ثابت کریں کہ مکعب کے بالکل الٹ کونوں کو ملاتے ہوئے وتر آپس میں عمودی ہوں گے۔

سوال x-y-2z=-5 فابت كرين كه سطح x-y-3z=22 اور سطح x-y-2z=-5 فائمه الزاويد بين ـ

جواب:ان کے عمودی سمتیات 3k+j+3k اور i-j-2k کا اندرونی ضرب صفر ہے للذا یہ آپس میں عمودی ہیں اور یول سطحیں بھی عمودی ہوں گی۔

سوال x-4y-2z=3 اور 3x-2y+z=-2 کیابین زاویہ وریافت کریں۔

جواب: 1.0182 ريڈيئن يعني °58.33

سوال 8.64: تکون کے تین کونے C(-2,-1,-4) اور B(5,2,4) ، A(2,-4,6) ہیں۔ اس تکون کے زاویے دریافت کریں۔

 62.4° ، 42.98° ، 74.61° . وابات:

سوال 8.65 تا سوال 8.65 میں c=j+2k بیں۔ وی گئی میں میان دویہ وریافت کریں۔ جوڑی سمتیات کے مابین زاویہ دریافت کریں۔

سوال 8.65: a, b جواب: °8.65

a-b, b+c :8.66 سوال جواب: 116.68°

سوال 8.67 :8.67 عوال 44.54°

درج ذیل چار سوالات میں a کی سمت میں b کا جزو دریافت کریں۔

a = i + j + k, b = 3i - 7k :8.68 سوال

a=i+j-2k, b=2i+j-2k :8.69 عوال-1.22i+1.22j-2.45k

a = 3j + 4k, b = 3i + 4j :8.70 سوال 7.2j + 9.6k :جاب

a = -2i + 3j - 4k, b = 3i - 4j - 6k :8.71 عوال 3i - 4i + 3i - 4i + 3i - 4i :8.71 عواب:

سوال 8.72: ثابت کریں کہ k i+j+k تینوں اکائی سمتیات i ، i اور k کے ساتھ کیساں زاویہ بناتا ہے۔

جواب: °54.73

8.6. اندرونی ضرب نصت

8.6 اندرونی ضرب فضا

تین بعدی فضا میں، مجموعہ سمتیات اور سمتیہ کا غیر سمتی کے ساتھ ضرب کے بنیادی قواعد استعال کرتے ہوئے حصہ 8.4 میں سمتی فضا کا تصور متعارف کرایا گیا۔ ہم اسی طرح اندرونی ضرب (حصہ 8.5) کو استعال کرتے ہوئے حقیقی اندرونی ضرب فضا 37 کا تصور حاصل کر سکتے ہیں۔ الیا حقیقی سمتی فضا جس میں اندرونی ضرب مساوات 8.26 کے شرائط پر پورا اترتا ہو حقیقی اندرونی ضرب فضا الدی حقیقی سمتی فضا کہاتا ہے۔ تحریف: اندرونی ضرب فضا کہاتی ہے۔ ایک حقیقی سمتی فضا کہاتی ہے۔

میں ہر رو عدد سمتیات a اور b کے ساتھ ایک ایسا حقیقی عدد وابستہ ہے، جس کو (a,b) سے ظاہر کیا V جاتا ہے اور جو a اور b کا اندرونی ضرب کہلاتا ہے، کہ درج ذیل مسلمات پورا ہوتے ہوں۔

• (الف) کسی بھی غیر سمتیات q_1 اور q_2 اور V اور V اور q_2 اور v کے لئے درج زبل ہو گا۔

(الف)
$$(q_1a + q_2b, c) = q_1(a, c) + q_2(b, c)$$

ورج ذیل ہو گا۔ b اور b کے لئے درج ذیل ہو گا۔ V

$$(a,b) = (b,a)$$
 (تثاکل)

یں ہو گاہ کے لئے درج ذیل ہو گا۔ $V(\mathbb{Q})$

$$egin{aligned} (oldsymbol{a},oldsymbol{a}) & \geq 0 \ (oldsymbol{a},oldsymbol{a}) & = 0 \end{aligned} egin{aligned} oldsymbol{a} & = \mathbf{a} \ \end{array} egin{aligned} olds$$

تعريف: قائميت

اگر آندرونی ضرب فضا V میں دو سمتیات a اور b کا اندرونی ضرب صفر کے برابر ہو تب یہ سمتیات آپس میں قائم الزاویہ ہوں گے۔

$$(a,b)=0$$
 (قائمُ الزاويي)

real inner product space³⁷

اندرونی ضرب کو استعال کرتے ہوئے ہم اندرونی ضرب فضا V میں ہر a کے ساتھ عدد $\|a\|$ وابستہ کرتے ہیں جس کی تعریف درج ذیل ہے

$$\|\boldsymbol{a}\| = \sqrt{(\boldsymbol{a}, \boldsymbol{a})} \quad (\geq 0)$$

اور جو a کی معیاد ³⁸ کہلاتا ہے۔مساوات 8.24 کے ساتھ موازنہ کرنے سے آپ دیکھ سکتے ہیں کہ معیاد در حقیقت لمبائی کی عمومی تعریف ہے۔حقیقت میں ضرب نقطہ اور موجودہ اندرونی ضرب یکساں ہیں یعنی

$$(a,b) = a \cdot b$$

اور ہماری موجودہ تعریف کے تحت مساوات 8.24 کو درج ذیل لکھا جا سکتا ہے۔

$$\|a\|=|a|=\sqrt{(a,a)}=\sqrt{a\cdot a}$$

مسلمات اندرونی ضرب اور معیار کی تعریف سے مساوات 8.28 تا مساوات 8.30 اخذ کیے جا سکتے ہیں۔

$$ig|(a,b)ig|\leq \|a\|\|b\|$$
 ((شوارز عدم مساوات))

درج بالاسے درج ذیل لکھا جا سکتا ہے

$$\|a+b\|\leq \|a\|+\|b\|$$
 تکونی عدم مساوات

اور سادہ الجبرائی حساب سے درج ذیل لکھا جا سکتا ہے۔

$$\|a+b\|^2+\|a-b\|^2=2(\|a\|^2+\|b\|^2)$$
 (متوازى الاصلاع مساوات)

اندرونی ضرب فضا کا تصور عمومی ہے جس کی دو مثالیں (بغیر ثبوت) پیش کرتے ہیں۔ پہلی مثال n اجزاء پر مشمل سمتیات $a = (a_1, \cdots, a_n)$ اور $b = (b_1, \cdots, n)$ اور $a = (a_1, \cdots, a_n)$

(8.42)
$$(a, b) = a_1b_1 + a_2b_2 + \cdots + a_nb_n$$

اندرونی ضرب فضا کی دوسری مثال، وقفہ $eta \leq x \leq eta$ پر استمراری تفاعل f(x) اور g(x) کی اندرونی ضرب ہے جس کی تعریف درج ذیل ہے۔

(8.43)
$$(f,g) = \int_{\alpha}^{\beta} f(x)g(x) dx$$

 $norm^{38}$

8.7 ستى ضر__

شكل8.20: سمتى ضرب كى تعريف

8.7 سمتى ضرب

a ہوتی ہے جس کا حاصل ضرب کی الیمی ضرب کی ضرورت پیش ہوتی ہے جس کا حاصل ضرب کی سمتیہ ہو۔ a اور b سمتیات کا ایبا ضرب جو سمتی ضربa imes b یا صلیبی ضوبb کہلاتا اور a imes b کھا جاتا ہے

 $v = a \times b$

کی تعریف درج ذیل ہے۔

تعریف: سمتی ضرب

a اور a کے رخ ایک جیسے یا آپس میں الٹ ہوں اور یا ان سمتیات میں سے ایک (یا دونوں) صفر سمتیہ ہوں تب $a \times b = 0$ ہوگا۔

اس کے علاوہ $v=a\times b$ ایسا سمتیہ ہو گا جس کی لمبائی اس متوازی الاضلاع کے رقبے کے برابر ہو گی جس کے قریبی اطراف a اور b ہوں اور جس کی سمت یوں a اور b اور c (ای ترتیب ہے) دائیں ہاتھ کی خلافہ قائمہ سمتیات ہوں (شکل 8.20-الف)۔

سمتی ضرب کی تعریف میں خلافہ قائمہ سمتیات کی بات کرتے ہوئے دائیں ہاتھ کا ذکر کیا گیا جس کا مطلب ہے کہ اگر دائیں ہاتھ کا انگوٹھا سمتیہ میں رکھتے ہوئے در میانی انگلی کو ان انگلیوں کے عمودی رکھا جائے تب در میانی انگلی سمتیہ میں کو ظاہر کرے گی۔

vector product³⁹ cross product⁴⁰

شکل 8.21: سمتی ضرب مخالف تبادل ہے

 $h|a|=|a||b|\sin\gamma$ الیا متوازی الاضلاع (شکل 8.20-ب) جس کے قریبی اطراف a اور b ہوں کا رقبہ a ور a کا بیان زاویہ a ہے ۔

$$|v| = |a||b|\sin\gamma$$

اگر $w=b\times a$ اور $w=b\times a$ ہول تب سمتی ضرب کی تعریف کے تحت $w=b\times a$ ہو گا۔ اب $v=a\times b$ اور $w=b\times a$ اس صورت دائیں ہاتھ ٹلانٹہ قائمہ سمتیات ہول گے جب w=-v (شکل 8.21) ہو للذا ہم درج ذیل کھے سکتے ہیں

$$(8.45) b \times a = -a \times b$$

جس کے تحت سمتی ضرب مخالف تبادل ہے۔ یوں سمتی ضرب میں اجزاء کی ترتیب نہایت اہم ہے جس کو تبدیل نہیں کیا جا سکتا ہے۔ کیا جا سکتا ہے۔

ری کھی غیر سمتیہ k کے لئے سمتی ضرب کی تعریف سے درج ذیل لکھا جا سکتا ہے۔ k (8.46) $k(a \times b) = a \times (kb)$

سمتی جمع کی نقطہ نظر سے سمتی ضرب جزئیتی تقسیمی ہے یعنی:

(8.47)
$$a \times (b+c) = (a \times b) + (a \times c)$$
$$(a+b) \times c = (a \times c) + (b \times c)$$

درج بالا کا ثبوت اگلے تھے میں پیش کیا جائے گا۔ہم یہاں بتلانا چاہتے ہیں کہ سمتی ضرب قانون تلازم پر عموماً پورا نہیں اترتا یعنی:

$$a \times (b \times c) \neq (a \times b) \times c$$

شکل 8.22: کار تیسی نظام کے دواقسام

مساوات 8.23 اور مساوات 8.44 سے درج ذمیل لکھا جا سکتا ہے۔

$$|v|^2 = |a|^2 |b|^2 \sin^2 \gamma = |a|^2 |b|^2 (1 - \cos^2 \gamma) = (a \cdot a)(b \cdot b) - (a \cdot b)^2$$
 دونوں اطراف کا جذر گیتے ہوئے حاصل سمتی ضرب کی لمبائی کا درج ذیل قلیہ حاصل ہوتا ہے۔
$$|a \times b| = \sqrt{(a \cdot a)(b \cdot b) - (a \cdot b)^2}$$
 (8.48)

8.8 اجزاء كى صورت ميں سمتى ضرب

اس جھے میں ہم سمی ضرب کے اجزاء کو کار تیسی نظام میں لکھتے ہیں۔ یہاں یہ بتلانا ضروری ہے کہ دو قسم کے کار تیسی نظام ممکن ہیں۔ پہلا قسم دائیں ہاتھ 41 کا نظام کہلاتا ہے۔ دائیں ہاتھ کار تیسی نظام میں محور کی مثبت سمت میں اکائی سمتیات سمت یا j ، i اور k دائیں ہاتھ خلافہ قائمہ سمتیات ہوں گے (شکل 8.22-الف)۔ اگر نظام کے اکائی سمتیات ہائیں ہاتھ خلافہ قائمہ سمتیات ہوں تب اس کو بایاں ہاتھ کار تیسی نظام کہا جائے گا۔ اس کتاب میں دایاں ہاتھ کار تیسی نظام استعال کیا جاتا ہے۔

 a_3 ، a_2 ، a_1 اور a_3 اور a_3 اور a_3 اور a_3 اجزاء بالترتیب a_3 ، a_2 ، a_3 اور a_3 اور

 $\boldsymbol{a} \times \boldsymbol{b}$

right $handed^{41}$

ے اجزاء کو انہیں کی صورت میں لکھا جا سکتا ہے۔ ہمیں صرف اس صورت پر غور کرنا ہے جب $v \neq 0$ ہو۔ چونکہ $v \neq 0$ موں $v \neq 0$ اور $v \neq 0$ اور $v \neq 0$ ہوں $v \neq 0$ ہوں $v \neq 0$ ہوں متیات $v \neq 0$ اور $v \neq 0$ ہوں کہنا مسلم دونوں سمتیات $v \neq 0$ ہوں کہنا مسلم ہے۔ گھا جا سکتا ہے۔

(8.49)
$$a_1v_1 + a_2v_2 + a_3v_3 = 0 b_1v_1 + b_2v_2 + b_3v_3 = 0$$

 $^{-}$ پہلی مساوات کو b_3 اور دوسری کو a_3 سے ضرب دے کر ان کا فرق حاصل کرتے ہیں۔ $(a_3b_1-a_1b_3)v_1=(a_2b_3-a_3b_2)v_2$

اسی طرح مساوات 8.49 کی پہلی مساوات کو b_1 اور دوسری کو a_1 ہیں۔ a_1 کا فرق کھتے ہیں۔ $(a_1b_2-a_2b_1)v_2=(a_3b_1-a_1b_3)v_3$

آپ با آسانی ثابت کر سکتے ہیں کہ درج بالا دو مساوات پر درج ذیل پورا اترتے ہیں جہاں c مستقل ہے۔ $v_1=c(a_2b_3-a_3b_2), \quad v_2=c(a_3b_1-a_1b_3), \quad v_3=c(a_1b_2-a_2b_1)$

مساوات 8.50 کو مساوات 8.49 میں پر کرتے ہوئے آپ ثابت کر سکتے ہیں کہ درج بالا مساوات 8.49 پر بھی پورا اترتا ہے۔ اب مساوات 8.49 میں بالائی مساوات $v_1v_2v_3$ فضا کی مرکز سے گزرتی ایک سیر حمی سطح کو ظاہر کرتی ہے۔ جبکہ پخلی مساوات مرکز سے گزرتی دوسری سید حمی سطح کو ظاہر کرتی ہے۔ a اور b ان سطحوں کے عمود میں سمتیات ہیں (مثال 8.9)۔ اب چونکہ $v \neq v \neq v$ ہے لہذا یہ سمتیات متوازی نہیں ہیں اور یہ سطحیں، ہم سطحی نہیں ور یہ سطحیں ایک دونوں کو مرکز سے گزرتی سیدھے خط $v \neq v \neq v$ ہی بیں۔ یوں یہ سطحیں ایک دونوں کو مرکز سے گزرتی سیدھے خط $v \neq v \neq v$ ہی پورا اترتا ہے اور یوں مساوات 8.50 میں کی قیمت تبدیل کرنے سے سیدھا خط حاصل ہوتا ہے لہذا یہ خط مساوات 8.49 پر بھی پورا اترتا ہے اور یوں مساوات 18.50 کی صورت کا ہو گا۔ بالخصوص $v \neq v \neq v$ ہوں گے جن میں $v \neq v \neq v$ مساوات 8.50 کی صورت کا ہو گا۔ بالخصوص $v \neq v \neq v$ میں ای صورت کے ہوں گے جن میں $v \neq v \neq v$ قیمت دریافت کرنا باقی ہے۔ مساوات 8.50 سے درج ذیل ملتا

 $|v|^2 = v_1^2 + v_2^2 + v_3^2 = c^2[(a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2]$ $+ (a_1b_2 - a_2b_1)^2$

 $|v|^2=c^2[(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)-(a_1b_1+a_2b_2+a_3b_3)^2]$ مساوات 8.33 استعمال کرتے ہوئے یوں درجی ذیل ملتا ہے $|v|^2=c^2[(a\cdot a)(b\cdot b)-(a\cdot b)^2]$

جس کا مساوات $c=\mp 1$ حاصل ہوتا ہے۔

یہاں سے آگے یہ جاننا ضروری ہو گا کہ دایاں یا بایاں ہاتھ کار تیسی نظام استعال کیا جارہا ہے۔آئیں دائیں ہاتھ کا نظام استعال کرتے ہوئے ثابت کریں کہ اس نظام میں c=+1 ہو گا۔

a=i اور کی لمبائیاں یوں مسلس تبدیل کریں کہ آخر کار a=i اور j=i ہو (شکل 8.22) تب $v=i\times j=k$ کی لمبائی یوں تبدیل ہو گی کہ آخر کار $v=i\times j=k$ ہو گا۔ ظاہر ہے کہ ہم یہ تبدیلی یوں پیدا کر سکتے ہیں کہ a=i اور a=i کی مفر نہ ہوں اور نا ہی یہ کبھی متوازی ہوں۔ یوں a=i کی قیمت وہی ہو گا اور چونکہ یہ تبدیلی مسلسل ہے اور a=i کی قیمت صرف a=i یا a=i اور a=i ہیں لمذا اختیامی کی قیمت وہی ہو گی جو ابتدائی a=i وہ a=i ہوں اور نا ہی یہ a=i اور a=i اور a=i ہیں لمذا a=i ہیں جو نکہ آخر پر a=i ہیں a=i ہوں مساوات a=i ہیں جبہ باتی اجزاء صفر ہیں۔ یوں مساوات a=i ہیں جبہ باتی اجزاء صفر ہیں۔ یوں مساوات 8.50 سے المذا اس نتیج کو درج ذیل طرز کی مقطع کھا جا سکتا ہے لہذا اس نتیج کو درج ذیل طرز پیان کیا جا سکتا ہے۔

دائیں ہاتھ کار تنیسی نظام میں

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

کھا جا سکتا ہے جس کو مقطع کی صورت میں

(8.51)
$$\mathbf{a} \times \mathbf{b} = \mathbf{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} + \mathbf{j} \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

کھا جا سکتا ہے جہاں a_3 ، a_2 ، a_3 ، a_2 ، a_3 ، a_2 ، a_3 ، اور a_3 ، اور رکھنے کی خاطر درج بالا کو درج ذیل مقطع تصور کیا جا سکتا ہے

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \quad (الانكى ياتھ كا كا كانكام)$$

جہاں مقطع کو پہلی صف سے پھیلا کر حاصل کیا جائے گا۔ یہ مقطع خصوصی مقطع ہے جس کی پہلی صف کا ارکان سمتیات ہیں۔ بائیں ہاتھ کار تیسی نظام میں بالکل درج بالا بحث کے تحت c=-1 حاصل ہو گا اور یوں اس نظام میں درج ذیل ہو گا۔

(8.53)
$$\mathbf{a} \times \mathbf{b} = - \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \qquad (١٤٤ ع ك الحال)$$

مثال a=2i-j+6k اور b=-5i+3j-2k اور a=2i-j+6k بیں۔ان مثال a=2i-j+6k مثال $a\times b$ وریافت کریں۔

حل:

$$egin{bmatrix} m{i} & m{j} & m{k} \ 2 & -1 & 6 \ -5 & 3 & -2 \ \end{bmatrix} = -16m{i} - 26m{j} + m{k}$$

آئیں اب مساوات 8.47 کو ثابت کری۔مساوات 8.51 کے تحت a imes (b+c) کا پہلا

$$\begin{vmatrix} a_2 & a_3 \\ b_2 + c_2 & b_3 + c_3 \end{vmatrix} = a_2(b_3 + c_3) - a_3(b_2 + c_2)$$

$$= (a_2b_3 - a_3b_2) + (a_2c_3 - a_3c_2)$$

$$= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} + \begin{vmatrix} a_2 & a_3 \\ c_2 & c_3 \end{vmatrix}$$

ہو گا۔ درخ بالا کا دایاں ہاتھ a imes b + a imes c کا پہلا جزو ہے۔ باقی دو اجزاء بھی اسی طرح حاصل کیے جا سکتے ہیں۔ یوں مساوات 8.47 میں بالائی تعلق ثابت ہوتا ہے۔ بالکل اسی طرح اس میں دیا گیا نچلا تعلق بھی ثابت ہو گا۔

آپ درج ذیل مسئلہ خود ثابت کر سکتے ہیں۔ مسئلہ 8.4: دو سمتیات اس صورت خطی طور تابع سلسلہ بنائیں گے جب ان کا سمتی ضرب صفر سمتیہ کے برابر ہو۔

شكل 8.23: قوت كامعيار اثر (مثال 8.12) ـ

سمتی ضرب کئی عملی مسائل میں پیش آتا ہے۔درج ذیل دو مثال ایسے عملی مسلے ہیں۔

مثال 8.12: قوت كا معيار اثر

میکانیات میں قوت f کا نقطہ N پر معیار اثر m سے مراد m=|f|d ہے جہاں N سے قوت کی ہم خطی کلیر L تک عمودی فاصلہ d ہے (شکل 8.23)۔

اگر N سے L پر کسی بھی نقطہ A تک سمتیہ r ہو تب $d=|r|\sin\gamma$ ہو تب R کا لاندا $m=|r||f|\sin\gamma$

ہو گا۔ چونکہ r اور f کے مابین زاویہ γ ہے لہذا اس کو مساوات 8.44 کی مدد سے درج ذیل کھا جا سکتا ہے m=|r imes f|

اور سمتیه $m{m}$ لیعنی

 $(8.54) m = r \times f$

توت f کا معیاد اثر سمتیہ 42 کہلاتا ہے جس کی مقدار m اور سمت N سے گزرتی اس محور کی سمت ہے جس کے گرد f گھمانے کی کوشش کرتا ہے۔

اگر دائیں ہاتھ کی چار انگلیوں کو r کی سمت سے f کی سمت میں گھماتے ہوئے ایک تصوراتی سلاخ کے گرد گھمایا جائے اور انگوٹھے کو اس تصوراتی سلاخ کی سمت میں رکھا جائے تب انگوٹھے کی سمت m کی سمت ہوگ۔

 $moment \ vector^{42}$

شكل 8.24: گروش كرتى جسم كى سمتى رفتار (مثال 8.13) ـ

مثال 8.13: گروش کرتی جسم کی سمتی رفتار

خلا میں کسی بھی ٹھوس جسم B کی گردش کو سمتیہ ω سے ظاہر کیا جا سکتا ہے جس کو زاویائی سمتی رفتار B کہتے ہیں۔ اگر گردش کی سمت میں محور کے گرد لپیٹا جہتے ہیں۔ اگر گردش کی سمت میں محور کے گرد لپیٹا جائے تو انگوٹھا ω کی سمت دے گا (شکل 8.24)۔ ω کی لمبائی زاویائی رفتار ω ω کی سمت دے گا (شکل 8.24)۔ ω کی لمبائی زاویائی رفتار ω

 ωd فرض کریں کہ ٹھوس جسم B پر N کوئی نقطہ ہے جس کا محور سے فاصلہ D ہے۔اس نقطے کی رفتار D ہو گی۔ فرض کریں کہ اس نقطے کی ہٹاہ سمتیہ D ہے جہاں کارشیمی نظام کا مرکز D گردشی محور پر رکھا گیا ہے۔ یوں D ہو گا جہاں D اور D کے مابین زاویہ D ہے۔اس طرح D

$$\omega d = |\boldsymbol{\omega}||\boldsymbol{r}|\sin\gamma = |\boldsymbol{\omega}\times\boldsymbol{r}|$$

v ورج ذیل ککھ سکتے ہیں۔ v ککھا جا سکتا ہے۔ سمتی ضرب کی تعریف کو استعمال کرتے ہوئے ہم سمتی رفتار $v=\omega imes r$

اس کلیے سے جسم B پر کسی بھی نقطہ N کی سمتی رفتار حاصل کی جا سکتی ہے۔

angular velocity⁴³ angular speed⁴⁴

سوالات

دایاں ہاتھ کار تیسی نظام میں c=-i+j اور b=i+2j ، a=2i-j+4k لیتے ہوئے سوال a=2i-j+4k میں دیے گئے تفاعل دریافت کریں۔

a imes b, b imes a = 8i-4j-5k ، a imes b=-8i+4j+5k . وبابت:

 $a \times a$, $b \times b$, $c \times c$:8.74 عوال ت0 :3.9

 $egin{aligned} m{b} imes m{c}, \, |m{b} imes m{c}| \, , \, |m{c} imes m{b}| &: 8.75 \ |m{c} imes m{b}| = 3 \, \cdot |m{b} imes m{c}| = 3 \, \cdot \, m{b} imes m{c} = 3 m{k} \end{aligned}$ بابات:

(a+b) imes c, a imes c + b imes c :8.76 عوال -4i - 4j + 4k :برات

(4a+2b) imes c, (2a+b) imes 2c :8.77 عوال -16i-16j+10k :برایت

(3b-2c) imes c, 3b imes c 3b imes c 9k بوالت:

(3c-5b) imes 2a, 6c imes a + 10a imes b :8.79 عوال -56i + 64j + 44k : بحوال ت

(c imes b) imes a, c imes (b imes a) :8.80 يوال (c imes b) imes a = -3i - 6j, c imes (b imes a) = -5i - 5j - 4k يواب ت

 $(2b \times 4a) \times 5c$, $2b \times (4a \times 5c)$:8.81 عوال $2b \times 4a) \times 5c = 200i + 200j + 160k$, $2b \times (4a \times 5c) = 80i - 40j + 160k$: يوابت:

i imes (j imes k), (i imes j) imes k 38.82 عوال 0 جوابات

سوال 8.83 تا سوال 8.86 میں متوازی الاضلاع کے دو قریبی اطراف دیے گئے ہیں۔متوازی الاضلاع کا رقبہ دریافت کریں۔

$$i-j,\;i+j$$
 :8.83 سوال
جواب: 2

$$i-3j+2k$$
, $-2i+j-k$:8.84 سوال
جواب: $\sqrt{35}$

$$4i-j-k,\;i+2j$$
 نوال 8.85 يوال $\sqrt{86}$ جواب .

$$i+3j-2k,\; 2i-j-k$$
 نوال $\sqrt{83}$:بواب $\sqrt{83}$

سوال 8.87 تا سوال 8.90 میں دایاں ہاتھ کار تیسی نظام کے xy سطح پر متوازی الاصلاع کے کونے دیے گئے ہیں۔سمتیات استعال کرتے ہوئے اس کا رقبہ دریافت کریں۔قریبی اطراف جاننے کے لئے قلم و کاغذ سے جلد متوازی الاصلاع کی شکل بنائیں۔

سوال 8.91 تا سوال 8.94 میں متوازی الاصلاع کے کونے دیے گئے ہیں۔ سمتیات استعال کرتے ہوئے اس کا رقبہ دریافت کریں۔ قریبی اطراف جاننے کے لئے قلم و کاغذ سے جلد متوازی الاصلاع کی شکل بنائیں۔

$$(1,0,0), (0,1,0), (-1,2,4), (0,1,4)$$
 :8.91 $4\sqrt{2}$: $4\sqrt{2}$

$$(1,3,8), (1,2,1), (3,1,2), (-1,4,7)$$
 :8.92 عوال $2\sqrt{66}$:جواب:

$$(-1,-2,-1), (1,-1,1), (-2,0,4), (-4,-1,2)$$
 :8.93 عوال $\sqrt{170}$:۶واپ

$$(1,0,0), (-1,1,1), (-3,4,5), (-1,3,4)$$
 :8.94 عوال 3.95 : $\sqrt{53}$

سوال 8.95 تا سوال 8.98 میں تکون کے کونے دیے گئے ہیں۔ تکون کا رقبہ دریافت کریں۔

$$(1,3,2), (2,-1,3), (5,7,-1)$$
 :8.96 عوال عبد $\frac{3\sqrt{57}}{2}$

$$(-1,-2,-3),\,(1,2,4),\,(0,3,2)$$
 :8.97 عوال :8.97 عواب: $\frac{3\sqrt{30}}{2}$

$$(1,1,1), (2,2,2), (3,4,7)$$
 :8.98 $\frac{\sqrt{26}}{2}$:91 :9.

سوال 8.99 تا سوال 8.102 میں |a imes b| کو مساوات 8.48 کی مدد سے حل کریں۔

$$a=2i+j$$
 , $b=i-3k$ 38.99 عوال $\sqrt{46}$:8.99

$$a=-3i+2j+k$$
, $b=i+j-k$ نوال $\sqrt{38}:$ بوال $\sqrt{38}:$

$$a=5i-2j+3k$$
, $b=-i-2j-2k$:8.101 عوال $\sqrt{293}$:جواب:

$$a = 2i + 2j - 3k$$
, $b = i + 2j - k$:8.102 عوال $\sqrt{21}$:

سوال 8.103 تا سوال 8.106 میں کیا دیے گئے سمتیات عمودی یا متوازی ہیں؟

2i - 3j, 5k :8.103 سوال جواب: عمودي

3i-2j+k, 6i-4j+2k :8.104 عوال جواب: متوازي

 $i-j,\,i+j$ عمودی (8.105 عمودی این عمودی

 $i-2j+3k,\, 3i+j$ يوال 8.106: يواب: نه عمودي اور نا بي متوازي

سوال 8.107 تا سوال 8.110 میں دیے گئے سمتیات کو عمودی دو اکائی سمتیات دریافت کریں۔

i,j $\stackrel{\cdot}{:}$ i,j $\stackrel{\cdot}{:}$ i,j $\stackrel{\cdot}{:}$ i,j $\stackrel{\cdot}{:}$ i,j $\stackrel{\cdot}{:}$ i,j

i-j+2k, 2i+3k :8.108 حوال $\mp \frac{1}{\sqrt{14}}(3i-j-2k)$:3.108 جوابات:

 $i+j-2k,\ i+2j-3k$:8.109 عوال $\mp rac{1}{\sqrt{3}}(i+j+k)$:3.109 عوابات:

-3i+2j-3k, 2i-2j+3k :8.110 عوال $\mp \frac{1}{\sqrt{13}}(3j+2k)$:3.110 جوابات:

سوال 8.111 تا سوال 8.114 میں تین نقطے دیے گئے ہیں جن سے سیدھی سطح گزرتی ہے۔اس سطح کا عمودی اکائی سمتیہ دریافت کریں۔

(0,0,0), (1,0,0), (0,1,0) :8.111 موال k :جواب:

 $(2,0,3),\,(1,3,2),\,(1,1,2)$:8.112 عوال $\frac{1}{\sqrt{2}}(-i+k)$:جواب:

8.9.غيرستي سه ضرب.

$$(2,-1,-3), (1,-3,2), (-1,1,-2)$$
 :8.113 عوال :8.113 عواب : $\frac{1}{\sqrt{101}}(6i+7j+4k)$

$$(1,0,0), (0,1,0), (0,0,1)$$
 :8.114 عوال $\frac{1}{\sqrt{3}}(i+j+k)$:جواب:

سوال x-2y+3z=-22 اور سطح 2x+3y-2z=9 ایک دونوں کو سیر هی کلیر پر قطع کرتے ہیں۔ اس کلیر کے متوازی اکائی سمتیہ دریافت کریں۔

$$\frac{1}{138}(5i-8j-7k)$$
 : براب:

سوال 8.116 تا سوال 8.119 میں قوت f ، نقطہ A سے گزرتی ہوئی لکیر کی سمت میں عمل کرتا ہے۔اس قوت m کا معیار اثر m نقطہ N پر کیا ہوگا۔

$$f=2i-3j$$
, $A(4,5,6)$, $N(-2,4,-5)$:8.116 عوال $33i+22j-20k$:جواب

$$f = 2i + 3j + 2k$$
, $A(4, -5, 3)$, $N(2, 5, -4)$:8.117 عوال :8.2 $i + 10j + 26k$

$$f = -5i + 3j + 4k$$
, $A(0,0,0)$, $N(4,4,4)$:8.118 عوال $-4i + 36j - 32k$

$$f = i + j + k$$
, $A(1,0,0)$, $N(0,0,1)$:8.119 عوال $i - 2j + k$:جواب

8.9 غيرسمتي سه ضرب

حواليه

- [1] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.
- [2] Ince, E. L., Ordinary Differential Equations. New York: Dover, 1956.
- [3] Watson, G. N., A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge: University Press, 1944.