Chapitre 8 : SERIE STATISTIQUE DOUBLE

8.1. RESUME DU COURS

Définition

L'étude simultanée de deux caractères x et y d'une population donne une série statistique double.

8.1.1. <u>SERIE STATISTIQUE DOUBLE</u>

Définition

Soit x et y deux caractères observés sur une population, $x_1, x_2, ..., x_p$ les valeurs prises par x et $y_1, y_2, ..., y_q$ les valeurs prises par y; soit n_{ij} le nombre de fois qu'on observe le couple $(x_i, y_j)_{1 \le i \le p \text{ et } 1 \le j \le q}$ dans la population.

- $ightharpoonup n_{ij}$ est appelé effectif du couple (x_i, y_j) .
- \gt $\{(x_i, y_j, n_{ij})\}_{1 \le i \le p \text{ et } 1 \le j \le q}$ est appelée série statistique double.

Exemple

L'étude simultanée des notes de sciences physiques(x) et de mathématiques (y) de 11 élèves d'une classe de Terminale S1 donne les résultats suivants, présentés dans le tableau à double entrée ci-dessous appelé tableau de contingence ou de corrélation:

y	10	12	15	18	Totaux
x					
11	1	2	1	0	$n_{1} =$
15	2	3	1	0	$n_{2.} =$
19	0	0	0	1	$n_{3.} =$
Totaux	n _{. 1} =	$n_{.2} =$	n _{. 3} =	n _{. 4} =	N = 11

Le nombre 2 se trouvant dans la case grisée signifie que 2 élèves ont obtenu 11 en Sciences physiques et 12 en Maths.

> Effectifs partiels

$$n_{1.} = n_{1.1} + n_{12.} + n_{1.3} + n_{1.4}$$

= 1+ 2+ 1+ 0 = 4; c'est le nombre d'élèves ayant obtenu 11 en Sciences Physiques.

$$n_{2.} = n_{2.1} + n_{22.} + n_{2.3} + n_{2.4}$$

= 2 + 3 + 1 + 0 = 6; c'est le nombre d'élèves ayant obtenu 12 en Sciences Physiques.

$$n_{.1} = n_{11} + n_{21} + n_{31}$$

= 1 + 2 + 0 = 3; c'est le nombre d'élèves ayant obtenu 10 en Mathématiques.

$$n_{.4} = n_{14} + n_{24} + n_{34} + n_{14}$$

= 0 + 0 + 1 = 1; c'est le nombre d'élèves ayant obtenu 18 en Mathématiques.

Effectifs partiels - Effectif total

$$ightharpoonup n_{i.} = \sum_{j=1}^q n_{ij} \; ; \; \; n_{.j} = \sum_{i=1}^p n_{ij}$$

$$\text{L'effectif total N} = \sum_{i=1}^{p} n_{i.} = \sum_{j=1}^{q} n_{.j}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

Fréquences

Fréquences conditionnelles :
$$f_{x_i/y_j} = \frac{n_{ij}}{n_{.j}}$$
; $f_{y_j/x_i} = \frac{n_{ij}}{n_{i.}}$

Série statistique marginale

La série statistique simple $\{(x_i, n_i)\}_{1 \le i \le p}$, appelée première série statistique marginale est présentée à l'aide du tableau ci-dessous :

x	<i>x</i> ₁	<i>X</i> 2	 x_p
n_{i} .	n_1 .	n_2 .	 n_{p} .

Cette série a pour moyenne $\bar{x} = \frac{1}{N} \sum_{i=1}^{p} n_{i} x_{i}$, pour variance

$$V(x) = \frac{1}{N} \sum_{i=1}^{p} n_i x_i^2 - \bar{x}^2$$
 et pour écart-type $\sigma(x) = \sqrt{V(x)}$.

La série statistique simple $\{(y_j, n_{.j})\}_{1 \le j \le q}$, appelée deuxième série statistique marginale est présentée à l'aide du tableau ci-dessous :

y	<i>y</i> 1	<i>y</i> 2	 y_q
$n_{.j}$	$n_{.1}$	$n_{.2}$	 $n_{.q}$

Cette série a pour moyenne $\bar{y} = \frac{1}{N} \sum_{j=1}^{q} n_{.j} y_j$, pour variance $V(y) = \frac{1}{N} \sum_{j=1}^{q} n_{.j} y_j^2 - \bar{y}^2$ et pour écart-type $\sigma(y) = \sqrt{V(y)}$.

Covariance de x et y

La covariance de x et y est

$$\mathrm{cov}(\mathbf{x},\;\mathbf{y}) = \frac{1}{N} \sum_{i=1}^p \sum_{j=1}^q n_{ij} \, x_i y_j - \bar{x} \, . \bar{y} \quad . \label{eq:cov_power_problem}$$

Représentation graphique

Pour représenter la série double $\{(x_i,y_j,n_{ij})\}_{1\leq i\leq p\text{ et }1\leq j\leq q}$, on place dans un repère orthogonal les x_i en abscisse et les y_j en ordonnée. Le triplet (x_i,y_j,n_{ij}) est représenté dans le repère par le point pondéré $M_{ij}(n_{ij})$ de coordonnées (x_i,y_j) . L'ensemble des points $M_{ij}(n_{ij})$ constitue la représentation graphique de la série ; cette représentation est appelée nuage de points.

 \triangleright On appelle point-moyen du nuage de points, le barycentre G des points pondérés $M_{i,i}(n_{i,i})$.

8.1.2. <u>CAS PARTICULIER : SERIE DOUBLE</u> <u>INJECTIVE</u>

Définition

Si les caractères x et y prennent le même nombre de valeurs

$$(p = q = n)$$
 et si $n_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$ alors la série double est dite

injective; elle est notée $\{\{(x_i, y_i)\}_{1 \le i \le n}$ et ces résultats sont présentés dans un tableau de cette forme :

x	<i>x</i> ₁	<i>x</i> ₂	 χ_n
y	<i>y</i> 1	<i>y</i> 2	 Уn

Effectif total

L'effectif total N de la série est égal au nombre de colonnes du tableau ou bien au nombre de valeurs du caractère x ou du caractère y.

Série marginale

- La première série marginale $\{(x_i,n_i)\}_{1\leq i\leq n}$ a pour moyenne $\bar{x}=\frac{1}{N}\sum_{i=1}^n x_i$, pour variance $V(x)=\frac{1}{N}\sum_{i=1}^n x_i^2$ et pour écart-type $\sigma(x)=\sqrt{V(x)}$.
- La deuxième série marginale $\{(y_i,n_i)\}_{1\leq i\leq n}$ a pour moyenne $\bar{y}=\frac{1}{N}\sum_{i=1}^n y_i$, pour variance $V(y)=\frac{1}{N}\sum_{i=1}^n y_i^2$ et pour écart-type $\sigma(y)=\sqrt{V(y)}$.

Covariance

La covariance de x et y est $cov(x, y) = \frac{1}{N} \sum_{i=1}^{n} x_i y_i - \bar{x} \ \bar{y}$.

Représentation graphique

- ightharpoonup Le couple (x_i,y_i) est représenté dans un repère orthogonal par le point $M_i(x_i,y_i)$. L'ensemble des points M_i constitue le nuage de points de la série double.
- ightharpoonup Le point G de coordonnées (\bar{x}, \bar{y}) est le point-moyen du nuage.

Ajustement linéaire

Si les points du nuage ont l'allure d'une droite, on peut trouver une droite « trés proche » de ces points.

Par la méthode des moindres carrés on trouve deux droites, l'une appelée droite de régression de y en x, notée $d_{y/x}$ et l'autre appelée droite de régression de x en y, notée $d_{x/y}$.

Equations des droites de régression

$$ightharpoonup d_{y/x}: y - \bar{y} = a(x - \bar{x}) \text{ où } a = \frac{cov(x, y)}{V(x)}.$$

$$ightharpoonup d_{x/y}: x - \bar{x} = \alpha(y - \bar{y}) \text{ où } \alpha = \frac{cov(x, y)}{V(y)}.$$

Remarque:

Les droites de régression passent par le point-moyen $G(\bar{x}, \bar{y})$.

Coefficient de corrélation linéaire

Le coefficient de corrélation linéaire des caractères x et y est

$$\mathbf{r} = \frac{cov(x, y)}{\sigma(x)\sigma(y)}.$$

Remarques:

$$ightharpoonup r^2 = \alpha a$$
; $-1 \le r \le 1$.

ightharpoonup Si |r| très proche de 1, on a une bonne ou forte corrélation entre les caractères x et y.

Estimation

Pour estimer la valeur de y (respectivement x) connaissant celle de x (respectivement y) on remplace x (respectivement y) par sa valeur dans l'une des équations des droites de régression.