Grupos, Anillos y Cuerpos

Inmaculada Fortes
Departamento de Matemática Aplicada
Universidad de Málaga

Operaciones binarias

Definición

Dados el conjunto A, llamamos operación binaria interna sobre A a cualquier función * cuyo dominio es el producto cartesiano $A \times A$ y codominio A, esto es:

$$*: A \times A \longrightarrow A$$

$$(a_1, a_2) \longmapsto a_1 * a_2$$

Ejemplo

La suma y el producto en los enteros modulares son operaciones internas.

$$+: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$

$$\cdot: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$

Definición

Dados los conjuntos A, B y C llamamos operación binaria externa es una función * cuyo dominio es el producto cartesiano $A \times B$ y codominio C, esto es:

$$*: A \times B \longrightarrow C$$

 $(a_1, a_2) \longmapsto a_1 * a_2$

Ejemplo

La función $*: \mathbb{N} \times \mathcal{P}(\mathbb{R}) \longrightarrow \mathcal{P}(\mathbb{R})$, definida para cada $n \in \mathbb{N}$ y $p(x) \in \mathcal{P}(\mathbb{R})$ como *(n, p(x)) = n p(x) es una operación externa, donde $\mathcal{P}(\mathbb{R})$ es el conjunto de polinomios con coeficientes reales.

Ejemplo

La siguiente función también es una operación externa.

$$*: \mathbb{Z} \times \mathcal{M}_{m \times n}(\mathbb{Z}) \longrightarrow \mathcal{M}_{m \times n}(\mathbb{Z})$$
$$(\lambda, M) \longmapsto *(\lambda, M) = \lambda M$$

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q G

Propiedades

Propiedad asociativa: Si para cada $a, b, c \in A$ se verifica que

$$(a*b)*c = a*(b*c)$$

Propiedad conmutativa: Si para cada $a, b \in A$ se verifica que

$$a * b = b * a$$

Leyes de cancelación: Cancelación a la izquierda si para cada $a,b,c\in A$ se verifica que

si
$$a*b=a*c$$
 entonces $b=c$

Si tenemos una segunda operación *

Propiedad distributiva: Si para cada $a, b, c \in A$ se verifica que

$$a \star (b * c) = (a \star b) * (a \star c)$$

Por otro lado, algunos elementos del conjunto A se pueden comportar de forma notable con respecto a una operación *.

Elemento neutro $e \in A$: Si para cada $a \in A$ se verifica que

$$a * e = e * a = a$$

Elemento absorbente $z \in A$: Si para cada $a \in A$ se verifica que

$$a*z=z*a=z$$

Elemento idempotente $a \in A$: Si se verifica que

$$a*a=a$$

Elemento simétrico $a \in A$: Si existe un elemento $a' \in A$ tal que

$$a * a' = a' * a = e$$

Comprobar qué propiedades cumplen las operaciones siguientes.

- *: $\mathbb{A} \times \mathbb{A} \to \mathbb{A}$ definida como p * q = p, para todo $p, q \in \mathbb{A}$.
- \star : $(\mathbb{Z}_n \times \mathbb{Z}_n) \times (\mathbb{Z}_n \times \mathbb{Z}_n) \to \mathbb{Z}_n$ definida como

$$(n,m)\star(s,t)=(n+s,m+t)$$

para todo $(n, m), (s, t) \in \mathbb{Z}_n \times \mathbb{Z}_n$.

Ejemplo

Dado un conjunto A, sobre el que definimos la operación:

$$\Delta \colon \mathbb{Q} \times \mathbb{Q} \longrightarrow \mathbb{Q}; \qquad x\Delta y = x + y + 1$$

¿ Qué propiedades cumple?

Estructuras algebraicas

Cuando tenemos uno o más conjuntos con una o varias operaciones binarias, con unas determinadas propiedades y unos determinados elementos notables, tenemos una estructura algebraica.

Si $A = \{a_1, a_2, \dots, a_n\}$ es posible representar dicha operación mediante una tabla de la forma

*	a_1	 a_j	 an
a_1		:	
:		:	
aį		 $a_i * a_j$	
:		:	
a _n		:	

Las estructuras se presentan agrupando bajo un paréntesis el conjunto y las operaciones que actúan sobre él, como por ejemplo (A,*), $(A,*,\star)$

Enteros modulares

El conjunto \mathbb{Z}_n se define mediante una relación de equivalencia en \mathbb{Z} llamada de congruencia módulo n, se dice que

$$a \equiv b \pmod{n} \iff b-a$$
 es múltiplo entero de n

Una de las operaciones internas que se pueden definir sobre este conjunto, se representa por +, y viene dada por

$$[a] + [b] = [a + b]$$

Obteniendo que $(\mathbb{Z}_n, +)$ es una estructura algebraica. Dado que \mathbb{Z}_n es finito, se puede representar dicha operación mediante una tabla.

Por ejemplo podemos observar las dadas para \mathbb{Z}_2 y \mathbb{Z}_5 con la suma:

	[0]	[1]
	[0]	[1]
[0]	[0]	[1]
[1]	[1]	[0]

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

Escribe las tablas para \mathbb{Z}_4 y \mathbb{Z}_5 con el producto, y analiza las diferencias.

Morfismos

Definición

Dadas dos estructuras algebraicas similares (con las mismas propiedades) se llama homomorfismo entre las estructuras a una función entre los conjuntos que respeta la estructura. Por ejemplo, si (A,*) y (B,*) son dos estructuras algebraicas, un homomorfismo entre ambas es una función $f:A\to B$ que verifica

$$f(a*b) = f(a) \star f(b)$$

para cada par de elementos a, b de A.

Cuando los homomorfismos son inyectivos o sobreyectivos reciben nombres especiales:

Monomorfismo: si es inyectivo.

Epimorfismo: si es sobreyectivo.

Isomorfismo: si es biyectivo.

Definición

Decimos que dos estructuras algebraicas son isomorfas si existe un isomorfismo entre ambas.

Ejemplo

Dados los conjuntos $A = \{a, b, c\}$ y $B = \{1, 2, 3\}$ con operaciones definidas mediante las tablas

se observa que son estructuras isomorfas, puesto que la función $f: A \to B$ definida como f(a) = 2, f(b) = 1 y f(c) = 3 es un isomorfismo.

Grupos

Definición

Dado un conjunto G y una operación interna $*: G \times G \to G$ que verifica las propiedades:

- **1** Asociativa: (a * b) * c = a * (b * c) para cada $a, b, c \in G$;
- **2** Existencia de elemento neutro: existe un elemento $e \in G$ que cumple que a * e = e * a = a para cualquier $a \in G$, que llamamos elemento neutro;
- Existencia de elemento simétrico: para cada a ∈ G, existe un elemento a' ∈ G tal que a * a' = a' * a = e, que llamamos elemento simétrico de a; se dice que el par (G,*) forma un grupo.

Si la operación interna cumple la propiedad conmutativa, se dice que el grupo es conmutativo, o abeliano en honor al matemático noruego Niels Henrik Abel (1802–1829).

- Los pares $(\mathbb{Z},+)$, $(\mathbb{Q},+)$ y $(\mathbb{R},+)$ son grupos abelianos (aditivos), mientras que el par $(\mathbb{N},+)$ no lo es. Esto último debido a que no se cumple la propiedad de elemento simétrico.
- Ninguno de los pares (\mathbb{N},\cdot) , (\mathbb{Z},\cdot) , (\mathbb{Q},\cdot) y (\mathbb{R},\cdot) es grupo. Todos fallan, al menos, en que el simétrico de 0 no es un elemento del conjunto considerado. Sin embargo, los conjuntos (\mathbb{Q}^*,\cdot) y (\mathbb{R}^*,\cdot) , donde $\mathbb{Q}^*=\mathbb{Q}-\{0\}$ y $\mathbb{R}^*=\mathbb{R}-\{0\}$, son grupos abelianos (multiplicativos).
- Si p es primo, (\mathbb{Z}_p^*, \cdot) , es un grupo abeliano.
- Si consideramos un conjunto A, el formado por todas las aplicaciones biyectivas de A en A, denotado por S(A), junto con la operación composición de funciones forman un grupo.
- Estudiar las propiedades que cumplen las estructuras $(\mathcal{P}(A), \cup)$ y $(\mathcal{P}(A), \cap)$.

Notación Multiplicativa

Dado un grupo (G,*), la notación habitual es la multiplicativa, entonces se representa por (G, \cdot) , y se adoptan los siguientes convenios, donde $a \in G$.

- El elemento neutro se representa por 1.
- El elemento simétrico de a se representa por a^{-1} y se llama inverso de a
- Si $n \in \mathbb{Z}^+$, se define $a^n = \overbrace{a \cdot a \cdot \cdot \cdot a}$;
 - si n = 0, se define $a^0 = 1$
 - si $n \in \mathbb{Z}^+$, se define $a^{-n} = (a^{-1})^n = (a^n)^{-1}$
- Para cualesquiera $n, m \in \mathbb{Z}$ se tiene que

$$a^{m+n} = a^m \cdot a^n$$

$$a^{m-n} = a^m \cdot a^{-n}$$

$$a^{mn} = (a^m)^n$$

Notación Aditiva

De forma análoga, dado un grupo (G,*), si es conmutativo se suele usar la notación aditiva, entonces se representa por (G,+), y se adoptan los siguientes convenios, donde $a \in G$.

- El elemento neutro se representa por 0.
- El elemento simétrico de a se representa por -a y se llama opuesto de a
- Si $n \in \mathbb{Z}^+$, se define $na = \overbrace{a + a + \cdots + a}^+$;
 - si n = 0, se define 0a = 0
 - si $n \in \mathbb{Z}^+$, se define (-n)a = n(-a) = -(na)
- Para cualesquiera $n, m \in \mathbb{Z}$ se tiene que

$$(m+n)a = ma + na$$

 $(m-n)a = ma + (-na)$ (que se podrá denotar por $ma - na$)
 $(mn)a = m(na)$

Teorema

En un grupo (G,*), el elemento simétrico de cualquier $a \in G$ es único.

Teorema

En un grupo (G,*), se cumplen las leyes de cancelación. Esto es, para cualesquiera $a,b,c\in G$ se tiene que:

- Si a * b = a * c, entonces b = c.
- Si b * a = c * a, entonces b = c.

Teorema

Dado un grupo (G,*) y $a,b \in G$, se tiene que:

- El elemento simétrico del neutro es él mismo: e' = e.
- ② El simétrico del simétrico de un elemento a es el propio a: (a')' = a.
- (a*b)' = b'*a'
- Las ecuaciones del tipo: a * x = b y x * a = b, tienen solución única.

De forma usual, se representará la operación de un grupo abeliano cualquiera por + (notación aditiva). Para el resto de grupos, se denotará la operación interna por · (notación multiplicativa).

Ejemplo

Sobre el conjunto \mathbb{Z}_n , se define la operación interna dada por $[a] \cdot [b] = [ab]$. ¿Es (\mathbb{Z}_n, \cdot) un grupo? ¿Qué ocurre con (\mathbb{Z}_n^*, \cdot) ?

Grupos Simétricos

Ya hemos visto que dado A, el conjunto S(A) de las aplicaciones biyectivas es un grupo. Si A es finito entonces a las aplicaciones biyectivas, de A en A, se les llama permutaciones y al grupo de las permutaciones S(A) se le suele representar como S_n (donde n es el cardinal de A) y se le conoce como el grupo simétrico en n letras o n símbolos.

Se puede considerar que los elementos de A son de la forma $1, 2, \ldots, y, n$, en lugar de a_1, a_2, \ldots, y, a_n ; por tanto, tenemos que $A = \{1, 2, \ldots, n\}$. Si $\sigma \in S_n$ y $\sigma(i) = s_i$, se acostumbra a usar la siguiente notación para

representarla:

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & \dots & n \\ s_1 & s_2 & \dots & s_n \end{array}\right)$$

Llamamos producto de permutaciones a la composición como funciones, es decir $\sigma \tau = \tau \circ \sigma$.

En el grupo simétrico S₄ si

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{array}\right) \quad \ y \quad \ \tau = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{array}\right)$$

entonces

$$\sigma\tau = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{array}\right) \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{array}\right) = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right)$$

Bajo esta notación el elemento neutro será la permutación identidad

$$e = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{array}\right)$$

Teorema

El grupo simétrico S_n tiene n! elementos.

El grupo simétrico S_3 tiene 3! = 6 elementos que son:

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$\mu_1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right) \mu_2 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) \mu_3 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right)$$

donde e actúa como elemento neutro y la tabla para este grupo queda de la forma:

	e	ρ_1	ρ_2	μ_1	μ_2	μ_{3}
e	e	$ ho_1$	ρ_2 e ρ_1 μ_2 μ_3 μ_1	μ_1	μ_2	μ_3
$ ho_1$	ρ_1	$ ho_2$	е	μ_2	μ_{3}	μ_1
ρ_2	ρ_2	е	$ ho_1$	μ_{3}	μ_1	μ_2
μ_1	μ_1	μ_{3}	μ_2	е	$ ho_2$	$ ho_1$
μ_2	μ_2	μ_1	μ_{3}	$ ho_1$	e	$ ho_2$
μ_{3}	μ_3	μ_2	μ_1	$ ho_2$	ρ_1	e

Subgrupos

Definición

Decimos que un subconjunto H de un grupo (G,\cdot) es un subgrupo si es grupo con la restricción de la operación G en H, y se representa por $H \leq G$.

Por tanto, que H es subgrupo si verifica:

- **1** Es cerrado para la operación: si $a, b \in H$, entonces $a \cdot b \in H$.
- ② Contiene al elemento neutro: $e \in H$.
- **3** Es cerrado para el inverso: si $a \in H$, entonces $a^{-1} \in H$. ¹

Ejemplo

Dado cualquier grupo (G, \cdot) , los subconjuntos $\{e\}$ y el propio G son subgrupos de (G, \cdot) , y reciben el nombre de subgrupos triviales. Los subgrupos que no son triviales se denominan subgrupos propios.

¹Obsérvese que las propiedades 2) y 3) implican la propiedad 1) ← → ← ≥ → ← ≥ → → ≥ → → ○ ○

(Matemática Discreta) Grupos, Anillos y Cuerpos 21

El par (\mathbb{R}^+,\cdot) forma un subgrupo de (\mathbb{R}^*,\cdot) , mientras que (\mathbb{R}^-,\cdot) no lo es.

Ejemplo

Buscar un subgrupo de $(\mathbb{Z}_4,+)$.

El siguiente teorema, proporciona una caracterización del concepto de subgrupo.

Teorema

Dado un grupo (G,\cdot) , una condición necesaria y suficiente para que un subconjunto $H\subseteq G, H\neq\varnothing$ sea subgrupo es que

para todo $a, b \in H$ se tiene que $ab^{-1} \in H$

Ejemplo

Los subgrupos del grupo $(\mathbb{Z},+)$ son los subconjuntos de la forma $n\mathbb{Z}=\{nx\mid x\in\mathbb{Z}\}$ siendo $n\in\mathbb{N}.$

Probar que para el grupo multiplicativo (Q^*, \cdot) , el conjunto $\{1, 2, 1/2, 2^2, 1/2^2, \dots, 2^n, 1/2^n, \dots\}$ es un subgrupo.

Ejemplo

Comprobar que (\mathbb{Z}^*,\cdot) no es un subgrupo de (\mathbb{Q}^*,\cdot) , esto es, $(\mathbb{Z}^*,\cdot) \nleq (\mathbb{Q}^*,\cdot)$.

En el caso de considerar un subconjunto finito, el teorema de caracterización se simplifica del siguiente modo:

Teorema

Si $H \neq \emptyset$ es un subconjunto finito de un grupo (G, \cdot) , entonces H es subgrupo si y solo si es cerrado para la operación del grupo.

Si el subgrupo H es finito llamamos orden del subgrupo al número de elemento que posee.

Morfismos de grupos

Definición

Dados los grupos (G,*) y (G',*), decimos que una función $f:(G,*)\to (G',*)$ es un homomorfismo de grupos si

$$f(a*b) = f(a) * f(b)$$
 para todo $a, b \in G$

se mantiene la terminología de monomorfismo, epimorfismo e isomorfismo.

Teorema

Si $f:(G,*) \to (G',\star)$ es un homomorfismo de grupos, entonces:

- Si e y e' son los elementos neutros de (G,*) y (G',*) respectivamente, entonces f(e) = e'.
- **2** Para cada $a \in G$ se cumple $f(a^{-1}) = (f(a))^{-1}$.
- **3** Para cada entero n y cada $a \in G$ se cumple $f(a^n) = (f(a))^n$.
- **(**f(G), \star) es un subgrupo y se denota por Im(f).

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 - り Q G

Probemos que la función $f:(\mathbb{R},+)\to(\mathbb{R}^+,\cdot)$ definida por $f(x)=e^x$ es un isomorfismo.

- Si f(a) = f(b), de modo que $e^a = e^b$, entonces a = b. Por lo tanto, f es inyectiva.
- Si $c \in \mathbb{R}^+$, entonces $ln(c) \in \mathbb{R}$ y $f(ln(c)) = e^{ln(c)} = c$, por lo tanto f es sobreyectiva.
- $f(a+b) = e^{a+b} = e^a e^b = f(a)f(b)$, por lo tanto f es un isomorfismo.

Ejemplo

Si consideramos un grupo (G,\cdot) y un elemento $a\in G$, la función $f:(G,\cdot)\to (G,\cdot)$, definida como $f(x)=a^{-1}xa$, para cada $x\in G$ y donde a^{-1} es el inverso de a, es un isomorfismo de grupos.

Orden de un elemento

Definición

Sea (G,*) un grupo y sea $a \in G$. Se define:

- $a^0 = e$
- $a^{n+1} = a * a^n$

El **orden** de un elemento $a \in G$ es el menor entero positivo n tal que $a^n = e$. Si no existe tal entero, se dice que el elemento a tiene orden infinito.

Ejemplo

- En el grupo $(\mathbb{Z}_6, +)$ se tiene $[4] + [4] + [4] = [0] \Rightarrow o([4]) = 3$ y $[5] + \cdots + [5] = [0] \Rightarrow o([5]) = 6$
- En el grupo (\mathbb{Z}_7, \cdot) se tiene $[2] \cdot [2] \cdot [2] = [1] \Rightarrow o([2]) = 3$ y $[6] \cdot [6] = [1] \Rightarrow o([6]) = 2$

Grupos cíclicos

Teorema

Sea (G,*) un grupo y sea $c \in G$. El mínimo subgrupo de G que contiene a c es $\{c^n : n \in \mathbb{Z}\}$, y se denota por c < c > c.

Ejemplo

En el grupo (\mathbb{Z}_7^*,\cdot) el subgrupo generado por [4] es < [4] >= {[1],[2],[4]}.

Definición

Se dice que un grupo G es **cíclico** si existe un elemento $c \in G$ tal que < c >= G.

Ejemplo

 $(\mathbb{Z}_7^*,+) \text{ es c\'iclico y est\'a generado por} < [4] >= \{[0],[4],[1],[5],[2],[6],[3]\}$

Teorema

Si(G,*) es un grupo cíclico entonces es abeliano.

Clases laterales

Definición

Sea H un subgrupo de (G,*) un grupo y sea $a \in G$.

- La clase lateral izquierda del elemento a respecto del subgrupo H es el conjunto $aH = \{a * h, h \in H\}$
- La clase lateral derecha del elemento a respecto del subgrupo H es el conjunto $Ha = \{h * a, h \in H\}$

Lema

Un subgrupo H de (G,*) induce dos particiones de G usando las clases laterales

$$G/H = \{aH, a \in G\}$$
 $G \setminus H = \{Ha, a \in G\}$

Subgrupos normales

Definición

Sea H un subgrupo de (G,*). Se dice que H es un subgrupo normal si para cada $a \in G$ se tiene que aH = Ha.

Lema

Sea H un subgrupo de (G,*). Entonces cada clase lateral de H en G tiene el mismo cardinal que H.

Teorema (de Lagrange)

Sea H un subgrupo de un grupo finito (G,*). Entonces el cardinal de H divide al cardinal de G.

Anillos y Cuerpos

Definición

Dado un conjunto A con dos operaciones internas que denotamos por $+ y \cdot$, decimos que $(A, +, \cdot)$ es un anillo si verifica:

- \bullet (A, +) es un grupo abeliano.
- (A, \cdot) es un semigrupo.
- **9** Para cualesquiera $a, b, c \in A$ se cumplen:
 - $\bullet \ a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
 - $(a+b)\cdot c = (a\cdot c) + (b\cdot c)$

Cuando (A, \cdot) es un monoide se dice que A es un anillo unitario o anillo con unidad. Denotaremos al elemento neutro de (A, \cdot) por 1.

Cuando (A, \cdot) es un semigrupo conmutativo, se dice que R es un anillo conmutativo.

Los conjuntos numéricos con las operaciones habituales $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$ y $(\mathbb{R},+,\cdot)$ son anillos conmutativos unitarios. $(\mathbb{N},+,\cdot)$ no es un anillo por no ser $(\mathbb{N},+)$ un grupo.

Ejemplo

Para cada entero positivo n:

- el conjunto \mathbb{Z}_n junto con la suma y el producto usuales es un anillo conmutativo y unitario.
- el conjunto $\mathcal{M}_n(A)$ de matrices cuadradas con coeficientes en un anillo $(A,+,\cdot)$, junto con las operaciones de suma y producto de matrices, forman un anillo.

Teorema

Si A es un anillo, con elemento neutro aditivo 0, entonces para cualesquiera elementos $a,b \in A$ se tiene:

$$0 \cdot a = a \cdot 0 = 0$$

②
$$a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$$

$$(-a) \cdot (-b) = a \cdot b$$

Muchas de las propiedades de los anillos son reformulaciones de las propiedades correspondientes a los grupos, por ejemplo:

• Si
$$m, n \in \mathbb{Z}, a \in \mathbb{R}$$
 $\begin{cases} ma + na = (m+n)a \\ m(na) = (mn)a \end{cases}$

• Si
$$m, n \in \mathbb{N}, a \in \mathbb{R}$$

$$\begin{cases} a^m a^n = a^{m+n} \\ (a^m)^n = a^{mn} \end{cases}$$

Al ser una estructura más rica que la de grupo, se tienen expresiones completamente nuevas basadas en la propiedad distributiva.

(Matemática Discreta)

Subanillos

Definición

Dado un anillo $(A, +, \cdot)$, $S \subseteq A$ es un subanillo de $(A, +, \cdot)$ si forma un anillo junto con las operaciones definidas en A, es decir:

Dados
$$x, y \in S \Rightarrow x - y \in S \ y \ x \cdot y \in S$$

Dominios de integridad

Definición

Si a y b son elementos distintos de cero de un anillo $(A, +, \cdot)$ tal que a \cdot b = 0, entonces se dice que a y b son divisores de cero.

Ejemplo

- Los elementos [2] y [3] de Z₆ son dos divisores de cero.
- Los divisores de cero del anillo $(\mathbb{Z}_n,+,\cdot)$ son aquellas clases cuyos elementos no son primos relativos con n.

Teorema

Si $(A,+,\cdot)$ es un anillo, entonces son válidas las leyes de cancelación para (A,\cdot) si y solo si no tiene divisores de cero.

Definición

Llamamos dominio de integridad a un anillo conmutativo unitario que no contiene divisores de cero.

Ejemplo

- Los anillos numéricos ($\mathbb{Z},+,\cdot$), ($\mathbb{Q},+,\cdot$)y ($\mathbb{R},+,\cdot$) son dominios de integridad.
- El anillo $(\mathcal{M}_n, +\cdot)$ de matrices cuadradas de orden n, con $n \geq 2$ no son dominios de integridad.

Cuerpos

Definición

Llamamos cuerpo a un anillo conmutativo unitario $(K,+,\cdot)$ donde cada elemento distinto de cero es inversible, es decir: si $a \in K$, $a \neq 0$, existe a^{-1} tal que $a \cdot a^{-1} = a^{-1} \cdot a = 1$.

Ejemplo

 \mathbb{Z} , con las operaciones usuales de suma y producto, no es un cuerpo, puesto que los únicos elementos inversibles son 1 y -1. En cambio sí son cuerpos las estructuras $(\mathbb{Q},+,\cdot)$ y $(\mathbb{R},+,+,\cdot)$

Teorema

Todo cuerpo es un dominio de integridad.

El inverso de este teorema no es cierto, en general, tenemos dominios de integridad que no son cuerpos y $(\mathbb{Z},+,\cdot)$ es un ejemplo de ello. En cambio si el conjunto considerado es finito.

Teorema

Todo dominio de integridad finito es un cuerpo.

Este teorema nos permite identificar los cuerpos finitos.

Corolario

Si p es un entero positivo primo, $(\mathbb{Z}_p, +, \cdot)$ es un cuerpo.

Se puede probar que todo cuerpo finito contiene un subcuerpo que es isomorfo a un cierto $(\mathbb{Z}_p,+,\cdot)$, es más, se prueba también que todos los cuerpos infinitos contienen un subcuerpo isomorfo a $(\mathbb{Q},+,\cdot)$.