

SUBJECT INDEX

Vol. 104A, Nos 1-4

Abrothrix andinus, 601
Acid secretion, 283
Acontia, 565
ACTH, 29
Active metabolism, 805
Adipocyte volume, 819
Adipose depots, 819
Adrenocortical ACTH receptors, 43
Adrenocorticotrophin, 105
Adrenocorticotropin, 43
L-Alanine injection, 345
Alevins, 777
Alkaline phosphatase, 469
Ammonia, 479
Amphibian water economy, 1
Angiotensin I, 113
Anguilla japonica, 825
Anoxia, 777
ANP, 291
ANP (irANP), 219
Antarctic birds, 117
Anterior pituitary, 105
Anti-mitotic activities, 229
Anurans, 443
Appearance of nutrients, 349
Arab-based horses, 201
Arginine-vasopressin, 105
Argiope aurantia, 475, 561
Argiope trifasciata, 561, 475
Arid-adapted mammals, 201
Arthropod behaviour, 625
Ascorbate, 279
ATP, 87
Atrial natriuretic peptides, 219
Axon commissures, 399

Bats, 321
BBMV, 267
Bees, 695
Bidyanus bidyanus, 531
Bile acid, 829
Biliary lipids, 829
Biliary secretion, 525
Biochemical adaptations, 613
Bioreduction, 235
Bivalve molluscs, 23
Blaberus craniifer, 51
Blenniidae alticus, 57
Blood, 551
Blood values, 575
Body size, 585
Body fluid pools, 201
Bombyx mori, 247
2,3-BPG levels, 87
Brain lipid, 605
Brush border, 267
Bufo regularis, 497

Calcium concentrations, 555
Calcium, 83
Calcified dermal layer, 443
Calliactis parasitica, 565
Callinectes danae, 785
Calolampra elegans, 155
Carassius auratus, 825
Carbohydrase activities, 155

Carbohydrate metabolism, 381
Carbohydrate utilization, 585
Cardiac nucleotide levels, 163
Casein, 793
Cell pH, 765
Cell-cell interactions, 399
Chenodeoxycholate, 829
Chick embryo, 765
Chicken embryo, 507
Chickens, 261
Chicks, 589
Chimaeric embryos, 411
Chionodraco hamatus, 291
Chloride, 255
Cholesterol, 829
Choline, 837
Chthonic rodents, 357
Circadian rhythmicity, 749
Clemmys insculpta, 243
Cobalamin receptor, 771
Cold He-O₂, 215
Cold storage, 87
Cold-hardiness, 503
Collagen, 819
Columnar organization, 735
Compass courses, 695
Compound eyes, 647
Computer modelling, 625
Concanavalin A, 593
Control systems analysis, 625
Copper, 83
Copper-deficient rats, 163
Corticosterone, 147
Corticotrophin-releasing factor, 105
Cortisol response, 29
Coturnix c. japonica, 143
Cow milk, 35
Crabs, 675
Crayfish nervous system, 419
Crocodylus niloticus, 373
Crustacean posture, 633
Cryptomys damarensis, 357
Cupiennius salei, 717
Cynomys ludovicianus, 613
Cytokeratin 19, 313

Daily rhythm, 143
Dehydroepiandrosterone, 147
Dermochelys coriacea, 449
Diabetic rats, 469
Didelphis virginiana, 771
Diet, 605
Dietary mixing, 125
Dietary restriction, 593
Differentiation, 455
Dopa-positive melanoblasts, 513
Drosophila CNS midline cells, 399
Drosophila melanogaster, 749, 837
Drosophila miniature-dusky gene, 749
Duodenum, 461

E-vector pattern, 695
Ecdysone, 51
Ecdysteroid patterns, 247
Ecdysteroids, 485
Ecophysiological adaptations, 579

Emersion, 57
Emydoidea blandingi, 243
 Endothelial cells, 313
 Energetics, 449
 Energy balance, 183
 Energy needs, 601
 Energy storage reserves, 239
 Epigenetic factors, 195
 Epitope mapping, 75
 Equilibrium reactions, 633
Erpobdella montezuma, 239
Erpobdella octoculata, 75
 Erythropoietin, 63
 Ethanol, 837
 Ethology, 625
 Exocytotic release, 419
 Exteroceptive systems, 647
 Eye movements, 675
 Eyestalk ablation, 183

Fasting, 589
 Fatty acid, 605
 Fenfluramine, 365
 Fermentation, 357
 Flight orientation, 647
 Flow-field analysis, 675
 Fluorescent probe measurement, 479
 Food and water deprivation, 613
 Food intake, 357
 Food quality, 601
 Food transit time, 377
 Free fatty acids, 287
 Freezing, 503
 Fundic perfusion, 283

G34, 461
Gallus domesticus, 365
 Gastrin, 461
Geoscapheus dilatatus, 155
 GH, 261
Glis glis, 299
 Glucagon, 389
 Glycogen reserves, 345
 Goat milk, 35
Goniopsis cruentata, 785
 Granular layer, 735
 Granulosa cells, 279
Graptemys geographica, 243
 Grasshoppers, 125, 133
 growth hormone, 507
Grus grus, 575
 Gut transit time, 349
Gyps coprotheres, 555

Halichoeres poecilopterus, 825
 Heat production, 365
Helix heart, 537
Helix aspersa, 503, 195
 Hepatic steroid receptor binding, 147
 Hermaphroditism, 195
 Hexokinase, 819
 High fat diet, 339
Hirudo medicinalis, 273
 Histidine-excess diet, 381
 Hormonal levels, 423
 Horses, 361
 Host detection, 273
 HPLC, 219
 Human milk, 35, 793
 Hydrin 2 (vasotocinyl-Gly), 497
 20-Hydroxyecdysone, 51
 Hypercapnia, 215
 Hypertonic dehydration, 201

Hypocalcemic action, 825
 Hypcholesterolemic action, 339
 Hypogonadism, 757
 Hypophysectomy, 261
 Hypophysis, 1
 Hypothermia, 215

IgA, 793
 IGF-I, 261
 IGF-I, 507
 IGF-II, 507
 Immersion, 57
 Immune responses, 593
 IMP, 777
 Infused triglyceride, 361
 Insulin, 389, 507
 Integumentary uptake, 169
 Intracellular pH, 479

Ketone body metabolism, 613
 Kidney, 63

α -Lactalbumin, 793
 Lactate, 805
 Lactoferrin, 793
 Land-locked strain salmon, 93
Lasiurus borealis, 321
Lasiurus cinereus, 321
Lasiurus intermedius, 321
Lasiurus seminolus, 321
 Leucine transport, 267
Leptinotarsa decemlineata, 267
 LH, 279, 299
 Lipoproteins, 361
Littorina littorea, 235
 Liver, 589
 Liver lipids, 339
 Locusts, 133, 647
 Luminescence emission, 333
 Luteinizing hormone, 279
 Lysozyme, 793

m-dy, 749
Macaca mulatta, 793
Macquaria ambigua, 349
Macropus eugenii, 799
Macropus parma, 799
Macropus parryi, 799
Macropus rufogriseus, 799
 Male vibration, 717
 Mammalian isocortex, 735
Manduca sexta, 267
 Manganese, 235
 MCH, 519
 Mechanical chasing, 777
 Meiosis, 479
 Melanophores, 513, 519
 Melatonin, 377
Meleagris gallopavo, 345
Meleagris gallopavo merriami, 455
 Memories, 709
Mercenaria mercenaria, 225
Mesocricetus auratus, 829
 Messenger ribonucleic acid, 589
 Metabolic bone disease, 555
 Metabolic water, 813
 Mice, 377, 491
 Migratory, 93
 Mitochondrial respiration, 147, 163
 Molluscan food chain, 235
 Morphology, 423
 Motion computation, 659
 Motion parallax, 675

Motor terminals, 423
 mRNA, 105, 589
 Multifunctional neurons, 537
 Muscle electrolyte, 551
 Myogenic satellite cells, 455
Mytilus edulis, 229
Mytilus galloprovincialis, 101, 229

Nassarius reticulatus, 235
 Navigation, 695
 Na^+/H^+ antiporter, 101
 Nematocytes, 565
Nephelopsis obscura, 239
 Neuronal networks, 659
 Neurotransmitter organization, 735
 Nitrate, 255
 Nitrogen excretion, 57
 NMR studies, 799
Notophthalmus viridescens, 805
 Nuclear magnetic resonance, 491
 Nutrient requirements of fish, 579
 Nutritional ecophysiology, 601
Nycticeius humeralis, 321

 Ocelli, 647
 1-Octanol, 565
 Odor thresholds, 305
 25OHD_3 , 483
 Oligochaetes, 169
Oncorhynchus mykiss, 525, 777
Oniscus asellus, 83
 Oocyte, 219
 Oocytes, 479
Oreochromis aureus, 585
Oreochromis niloticus, 585
Oryzias latipes, 513, 519
 Osmoregulatory hormones, 497
 Osseous plate, 469
 Osteodystrophy, 555
Ostrea edulis, 229
 Ovarian protein, 247
 Ovaries, 51
 Oxygen consumption, 449
 Oxygen uptake, 805
 Oxytocin, 75

Pagothenia bernacchii, 291
Panesthia cibaria, 155
 Parasitic castration, 229
 Pars nervosa, 1
 Passerines, 305
Patella vulgata, 479
 Patterns, 431
 PCPA, 377
Pecten maximus, 229
Penaeus notialis, 183
 Penguins, 117
 Pepsin, 283
 Phenylalanine, 507
 Phosphatidylcholine, 837
 Phosphatidylethanolamine, 837
 Phosphofructokinase, 819
 Pigs, 43
 Pituitary, 29
 Plasma fatty acid, 373
 Plasma insulin, 143
 Plasma lipoproteins, 829
 Pokeweed, 593
 Polarized skylight, 695
 Polypnea, 365
 Postural systems, 633
 PR, 279
 Pre-copulatory behaviour, 717

 Preferred body temperatures, 243
 Primitive red cells, 765
 Progesterone biosynthesis, 279
 Proliferation, 455
 Proopiomelanocortin, 105
Prosorhynchus squamatus, 229
 Prostaglandins, 23
 Protein composition, 793
 Protein economy, 133
Psammomys obesus, 29
Pseudemys rubriventris, 243
 Pulmonary microvessels, 313
 Pygmy goats, 287

 RAIF, 339
Rana catesbeiana, 113
 Rapid eye movement sleep, 189
 Rats, 491
 RBC membranes, 799
 Rectal gland, 255
 Red blood cells, 491
 Refeeding, 589
 Remodelling of motor patterns, 633
 Reproduction control, 23
 Respiration, 239
 Respiratory metabolism, 475, 561
 Respiratory responses, 785
 Rete mirabile, 313
 Retinal large-field motion, 659
 Retinal projections, 431
 Retrieval, 709
 Rhesus monkey milk, 793
 RICO, 339
 Rotatory component, 675
 Route following, 709
 RQ, 365

 Salinity changes, 551
 Salinity, 531
Salmo gairdneri, 63
Salmo salar, 551
Salmo trutta, 389
Salmon salmo salar, 93
 SCGx, 299
 SCN^- , 565
 Seasonal changes, 29
 Seasonal differences, 423
 Secretory organelles, 419
 Sensori-motor integration, 633
 Sensory guidance, 633, 625, 717
 Sensory inputs, 647
 Sensory systems, 273
 Serum albumin, 793
 Serum Ca level, 825
 Short-chain carboxylic acids, 169
Sigmodon hispidus, 593
 Single-minded gene, 399
Skogsbergia lernerii, 333
 Skuas, 117
 Sleeping sickness, 757
 Sleeping, 189
 Snail heart muscle, 67
 SNARF-1, 765
Sparus aurata L., 605
 Spatial memory, 709
Spermophilus tridecemlineatus, 87
 Spider courtship, 717
Squalus acanthias, 255
Stannius corpuscle, 825
 Statocyst control, 633
Stomoxys calcitrans, 485
 Stored information, 709
 Stress responses, 777

Stretch-activated K⁺ channels, 67
Supragranular layers, 735
Surrogate eggs, 411
Sympathectomized fish, 513

T, 299
T4, 299
Tannic acid, 339
Teleost fishes, 431
Temperature, 357
Temperature regulation, 321
Thermoregulation, 189
Thyroxine-induced changes, 247
Tidal exposure, 225
Trachemys scripta, 243
Transcription factors, 399
Transgenic birds, 411
Translatory component, 675
Transmitter release, 423
Triglycerides, 287
Trypanosoma cruzi, 175
Trypanosomes, 757
TSH, 299
Turkey, 345
Turkeys, 455
Turtle cortex, 735
Turtles, 243

Ucides cordatus, 785

Vargula graminicola, 333
Vargula tsuji, 333
Vasopressin, 287
Vasotocin, 497
Ventral epidemis, 399
Visual orientation, 659
Visual pigment absorbance, 333
Vitamin D, 483
Vitamin D overload, 175
Vitellogenesis, 51

Waking, 189
Wallabia bicolor, 799
Water-air media, 785
Water balance, 813
Water diffusional permeability, 491
Water loss, 475
Water permeabilities, 799
Weaning, 605
Wind-sensitive hairs, 647
Wing development, 749
Wing-drooping, 365

Yolk protein synthesis, 485

Zinc, 83, 235
Zucker obese rats, 813

AUTHOR INDEX

Vol. 104A, Nos 1-4

Abelenda M., 575
Acher R., 497
Alemany M., 813
Alfonso A., 101
Almirall H., 189
Alonso J. A., 575
Alonso J. C., 575
Altschuld R. A., 163
Amirat Z., 29
Anderson T. A., 349
Aoyama Y., 381
Avilova K. V., 305

Baba M. D.-E., 283
Bacila M., 117
Bambirra E. A., 175
Barnes W. J. P., 625, 675
Barra P., 565
Barth F. G., 717
Baumann R., 765
Bautista L. M., 575
Bean N. J., 305
Benga G., 491, 799
Berdanier C. D., 147
Berman D. M., 113
Bernays E. A., 125
Biannic M., 503
Blinn D. W., 239
Boersma A., 757
Borkovec A. B., 247
Borst A., 659
Borza T., 491
Botana L. M., 101
Bozinovic F., 601
Braley H., 349
Brezden B. L., 67
Bright K. L., 125
Brito R., 183
Brock A., 483
Brooks J. D., 225
Brooks S., 225
Brousse-Gaury P., 51
Brudieux R., 29
Bubenik G. A., 377
Buffenstein R., 357
Bumpus F. M., 113
Butler A. B., 431
Bychkov R. E., 537
Byrd J. A., 279

Calder P. C., 819
Capra M. F., 531
Cardenete G., 525
Carlston A., 357
Carlton T., 273
Carneiro M. N., 389
Carr D. H., 461
Castro M. G., 105
Chao J. C. J., 163
Chapman B. E., 799
Chauvet J., 497
Chen A. C., 485
Chernitsky A. G., 551
Cho K. W., 219
Christensen V. L., 345
Clark L., 305

Claussen D. L., 805
Collett T. S., 709
Cooper D., 799
Costa V. I., 785
Coustau C., 229
Coviello A., 113
Cranwell P. D., 43
Crews S. T., 399
Cuadras J., 419

Dabrowski K., 579
Daguzan J., 503
Das N. P., 339
Davies R. W., 239
de Bruno M. P., 113
Degand P., 757
Delay B., 229
Deridovich I. I., 23
Descroix-Vagne M., 283
Desvigne A., 283
Devecchi M., 291
Diaz-Iglesia E., 183
Doherty J. C., 87
Donaldson W. E., 345
Dunn P. E., 267

Egelhaaf M., 659
Epstein F. H., 255
Esteve M., 813
Evans J., 819
Fernandez A., 575
Fernandez I., 183
Fernández-López J. A., 813
Fevold H. R., 613

Gaillard S., 479
Gallagher C. H., 799
Gambaryan S. P., 551
Garcia-Gallego M., 525
Gardner D. R., 67
Geer B. W., 837
Gelman A., 373
Genoud M., 321
Gilkerson K. K., 455
Gomot L., 195
Goudey-Perrière F., 51
Graham T. E., 243
Griffond B., 195
Gros I., 283
Guo R., 531
Gutiérrez J., 389

Hargis B. M., 279
Hawkins L. E., 225
Hayes K. C., 829
Hechtman H. B., 313
Hennessy D. P., 43
Hidalgo F., 525
Hinks C. F., 133
Hitomi-Ohmura E., 381
Hoffmann K. H., 169
Hohl C. M., 163
Holt C., 35
Hong Y. S., 267
Hoshino S., 261
Hupka D., 133

Hutchinson S., 225
Huvard A. L., 333
Hwang Y. H., 219

Jackson F. R., 749
Jakobsen K., 483
Jallageas M., 299
Jared C., 443
Jeong G. B., 219
Jiang S., 805
Jørgensen C. B., 1
Jourdan G., 283

Kalarani V., 239
Kanamori M., 215
Karpenko L. A., 551
Kawai F., 215
Kawasaki Y., 215
Kelly T. J., 247, 485
Khosla M. C., 113
Kim S. H., 219
Kita K., 507, 589
Konaka K., 215
Kronon M. T., 87
Krumschnabel G., 777
Kuchel P. W., 799
Kunz C., 793

Lackner R., 777
Lacroix A., 299
Lance V. A., 373
Lavrova E. A., 551
Lawrence L. M., 361
Leone F. A., 469
Lewis J. O., 399
Liang J., 829
Lim S. H., 219
Lnenicka G. A., 423
Lochmiller R. L., 593
Lönnertal B., 793
Lopez-Garcia J. A., 189
Louzao M. C., 101
Lupše C., 491

MacLeod M. G., 365
Maestro J. L., 389
Markezich A. L., 475, 561
Mas N., 299
Masini M. A., 291
Masler E. P., 247
Matei H., 491
Mather P., 531
Mathieu M., 229
Matsunami S., 589
Mattacks C. A., 819
McCauley I., 43
McFarland D. C., 455
McIntosh M. K., 147
McMurry S. T., 593
McVean A., 273
Medeiros D. M., 163
Meier A. H., 143
Michel G., 497
Miller R. R. Jr., 837
Mineau-Hanschke R., 313
Mitsuda H., 215

Morishita D., 261
 Morita T., 215
 Morpurgo B., 373
 Mortensen L., 483
 Mosekilde L., 483
 Moser L. R., 361
 Mourente G., 605
 Muñoz-Pulido R., 575
 Muramatsu T., 507

Nakagawa S., 507
 Nalbach H.-O., 675
 Nambu J. R., 399
 Napoli L., 291
 Nava M. P., 575
 Navarro I., 389
 Neal J. J., 267
 Neil D. M., 633
 Newby L. M., 749
 Nicol P., 283
 Nicolaidou A., 235
 Nicolau M. C., 189
 Nicoli J. R., 175
 Nott J. A., 235
 Novakofski J., 361
 Nutting W. L., 243

Oh S. H., 219
 Okumura J.-I., 507, 589
 Olfert O., 133
 Ouedraogo Y., 497

Pan J.-S., 147
 Pang S. F., 377
 Pardue S. L., 279
 Párrizas M., 389
 Patton W. F., 313
 Perret J. P., 283
 Perrière C., 51
 Pesall J. E., 455
 Petenusci S. O., 469
 Planas J., 389
 Plaut I., 57
 Pond C. M., 819
 Porujiu D., 491
 Powell D. M., 361
 Proto M. C., 113
 Puerta M. L., 575

Rafecas I., 813
 Rakotomalala H., 283

Ramanujam K. S., 771
 Reddy D. C., 239
 Reichert H., 647
 Reiner A., 735
 Reinhardt C., 765
 Remesar X., 813
 Renaud F., 229
 Reunova O. V., 23
 Reuveni M., 267
 Reynolds G. W., 461
 Rezende A. A., 469
 Rial R., 189
 Robbins I., 229
 Rodeau J.-L., 479
 Rodrigues E., 117
 Rosa C. D., 117
 Rosa R., 117
 Rosas C., 183
 Rose H. A., 155
 Rossel S., 695
 Rossi R., 287
 Rotermund A. J. Jr., 87
 Rottiers D. V., 93
 Roussel J. P., 299
 Rozemeijer M. J. C., 57
 Rungby J., 483
 Ryu H., 219

Saboureau M., 299
 Safanova T. A., 537
 Saidel W. M., 431
 Salleo A., 565
 Salzet M., 75
 Santoro G., 565
 Santos M. C. F., 785
 Sanz A., 525
 Sasayama Y., 825
 Scharrer E., 287
 Scrivener A. M., 155
 Seetharam B., 771
 Seetharam S., 771
 Seul K. H., 219
 Shepro D., 313
 Shiau S.-Y., 585
 Shkurko D. S., 551
 Sieger U., 765
 Silva M. E., 175
 Silva M. E. C., 175
 Silva P., 255
 Simkiss K., 411
 Simpson H. V., 461

Slaytor M., 155
 Slomianny M.-C., 75
 Sneddon J. C., 201
 Soria M. O., 113
 Soudan B., 757
 Stephens J. R., 613
 Sugimoto M., 513, 519
 Swenning T. A., 455

Tan B. K. H., 339
 Tedford B. L., 143
 Tetaert D., 757
 Thompson M. B., 449
 Thyagaraja B. S., 247
 Tocher D. R., 605
 Toledo R. C., 443
 Tomita M., 83
 Trautwein E. A., 829
 Tsuda T., 381
 Tung P.-H., 585

Ukawa K.-I., 825
 Urbinati E. C., 469
 Uva B. M., 291

Van Der Bank F. H., 555
 Van Wyk E., 555
 Verdoorn G. H., 555
 Vernon G. M., 83
 Vestey M. R., 593
 Vieira E. C., 175
 Vieytes M. R., 101
 Vilain J.-P., 479

Wakita M., 261
 Watson A., 365
 Wattez, C., 75
 Wickramasinghe S. N., 63
 Witkus R., 83
 Wulf A., 169

Yahav S., 357
 Yates J. W., 837
 Yoon S., 219
 Yoshida A., 381
 Yugarani T., 339

Zhang J., 155
 Zhang S.-H., 43
 Zhuravlev V. L., 537

