

F Y B Tech (Semester I and II) (Common to all branches)

Teaching, Credit and Evaluation Scheme

From Academic Year 2023-24 (Version 2.0)

Presented and Approved in the 9th Meeting of the Academic Council of Somaiya Vidyavihar University held on 5th April, 2023

It is notified for information of all concerned that the Boards of Studies of various departments at their meeting held on following dates, and the subsequent meeting of the Academic Council held on 05 April 2023 amended the syllabus of FY B Tech (Common to all disciplines) and same be brought in to force from Academic Year 2023-24.

• Dates of Approvals and Amendments:

- 1. 8th Meeting of the Board of Studies in Mechanical Engineering held on 23/03/2023
- 2. 8th Meeting of the Board of Studies in Electronics and Telecommunications Engineering held on 23/03/2023
- 3. 8th Meeting of the Board of Studies in Computer Engineering held on 24/03/2023
- 4. 8th Meeting of the Board of Studies in Information Technology (for IT and AI-DS) held on 21/03/2023
- 5. 1st Meeting of the Board of Studies in Robotics and Artificial Intelligence held on 20/03/2023
- 6. 8th Meeting of the Board of Studies in Electronics and Computer Engineering held on 24/03/2023
- 7. FoET dated --/--/2023 (presented by the Dean, Faculty of Technology by mail dated 31 March 2023)
- 8. 9th Meeting of the Academic Council held on 05/04/2023

• Preamble

With Academic Year 2023-24, we bring the second revision of the curriculum of our UG programs in Engineering and Technology. K J Somaiya College of Engineering, as an autonomous college earlier and now as a part of the Somaiya Vidyavihar University has always tried to provide an environment for the students to learn fundamentals, share knowledge, get the latest trends in Technology and create facts from fictions. Acknowledging the penetration of Computer Technology and Data Science into all sectors of Engineering, we are launching three new UG programs namely Artificial Intelligence & Data Science, Computer & Communication Engineering and Robotics & Artificial Intelligence from Academic Year 2023-24.

Even before the NEP-2020 guidelines, the approach of KJSCE towards curriculum designing has always been towards the 360-degree development of students focusing on both, academic as well as extracurricular skills. This has given us an advantage over other institutions in implementation of NEP-2020 guidelines as now we are in a process of fine-tuning our curricular framework with the NEP, which is a smooth transition for us rather than making an abrupt change in the academic policies of our college. The features like skill and ability enhancement courses, value added courses, and foundation courses etc. are introduced in the curriculum in a systematic manner.

In the First Year, students are encouraged to select from a wide variety of exposure courses from music to mountaineering, from badminton to broadcasting and from film-making to football. Keeping with the current needs, every student will learn programming skills using python programming in the first semester while they will learn C-programming, which forms the backbone of embedded systems, in the second semester. The contents and tutorials of Mathematics are deigned to imbibe the real feel of mathematical concepts and methods in engineering applications. Apart from the strong foundations of basic and engineering sciences, courses like AutoCAD will develop design skills and courses like presentation and communication skills will develop proficiency of formal and public communication in students. The basic workshop practice course is redesigned and new branch-specific trades are introduced in the second semester.

Perhaps, the most important part of engineering education has been the project work, which trains students not only to become technically sound but also to build-up his/her social and societal connect. Keeping this in mind, we have introduced a new course called the Project-Based Learning from first year itself to orient students to an interdisciplinary environment. The experiential learning students get through this course will be more important than the technical learning they get through traditional courses. In this course, students are given a freedom to select their project topic on solutions of some real-life problems from engineering, healthcare, environment and sustainability, energy-efficiency, agriculture etc. Through this course, they will learn life-skills such as team-building, design thinking, engineering ethics, project management, methodologies, product development and so on. The course is completely hands-on type covering Arduino-based applications development and introduces robotics and automation techniques through simple toys and kits. I am sure students would be excited to learn this revised curriculum SVU-R2023!

Dr. Shubha Pandit, Principal, K J Somaiya College of Engineering

Salient features and changes with respect to SVU R-2020:

- 1. Introduced Project-based learning course
- 2. Python Programming is shifted to semester I and C Programming in semester II
- Communication Skills is modified to Presentation and Communication Skills with more stress on contemporary methods of communication instead of focusing only on language skills
- 4. Chemistry syllabus is modified by about 50% to include foundations of new courses added in higher semesters.
- 5. Basic Workshop Practice course is modified to add discipline-specific jobs/hands-on skills in the second semester.
- 6. Term work, Oral/Practical Exam is replaced by Lab/Tutorial CA (continuous Assessment)
- 7. End semester examination will be conducted for 50 marks
- 8. Term work defaulter policy (semester penalty) removed

• Aspects of NEP-2020 guidelines covered during First Year:

- Inclusion of credit-based courses and projects in the areas of community engagement and service and environmental education to include areas such as climate change, pollution, waste management, sustainable development etc. covered through PBL course
- Ability Enhancement Compulsory course covered through Presentation and Communication Skills
- Skill Enhancement Compulsory Course covered through Computer Programming, Engineering Drawing, Workshop Practice
- Value Added Course A variety of courses offered under "Exposure courses" such as Yoga, Sports, Indian Classical Music etc.

• Program Outcomes (PO) – Common to all Disciplines

- **PO1 Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem Analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/Development Of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4 Conduct Investigations Of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development
- **PO7 Multidisciplinary Competence:** Recognize/study/analyze/provide solutions to real-life problems of multidisciplinary nature from diverse fields
- **PO8 Ethics:** Apply ethical principles and commit to professional ethics, responsibilities, and norms of the engineering practice.
- **PO9** Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 Life-Long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

• Acronyms use:

1. Acronyms for category of courses and syllabus template

Acronym	Description	Acronym	Description
BS	Basic Science Courses	CA	Continuous Assessment
			(Theory Course)
ES	Engineering Science	ESE	End Semester Exam
HS	Humanities, Social Sciences	IA	Internal Assessment
	and Management Courses		
PC	Professional Core Courses	TH	Theory
PE	Professional Elective courses	TUT	Tutorial
OET	Open Elective – Technical	ISE	In- Semester Examination
OEHM	Open Elective – Humanities	CO	Course Outcome
	and Management		
LC	Laboratory Courses	PO	Program Outcome
PR	Project	PSO	Program specific Outcome
EX	Exposure Course	Lab/Tut	Continuous Assessment of
		CA	Laboratory/Tutorial Course

2. Type of Course

Acronym	Description
C	Core Course
E	Elective Course
O	Open Elective Technical
H	Open Elective - Humanities/ Management/
	SWAYAM-NPTEL/ Coursera
P	Project
L	Laboratory Course
T	Tutorial
X	Exposure course

3. Eight Digit Course code e.g. 216U06C101

Acronym	Description				
Serially as per code					
2	SVU-2023 Second Revision				
16	College code				
U	Alphabet code for type of program				
06	Program/Department code				
С	Type of course				
1	Semester number (Semester I)				
01	Course serial number				

Teaching, Credit and Evaluation Scheme

SEMESTER I Course-Group C

Teaching and Credit Scheme

Course Code	Name of the Course	Teaching	Total	Credit	Total	Course
		Scheme	(hrs.)	Scheme	Credits	Category
		TH-PR-		TH-PR-		
		TUT		TUT		
216U06C101	Applied Mathematics – I	3 - 0 - 1	4	3 - 0 - 1	4	BS
216U06C103	Engineering Chemistry	3 - 0 - 0	3	3 - 0 - 0	3	BS
216U06C105	Engineering Drawing	2 - 0 - 1	3	2 - 0 - 1	3	ES
216U06C106	Elements of Electrical and	3 - 0 - 0	3	3 - 0 - 0	3	ES
	Electronics Engineering					
216U06L101	Python Programming	0 - 2 - 2	4	0 - 1 - 2	3	ES
216U06L103	Engineering Chemistry	0 - 2 - 0	2	0 - 1 - 0	1	BS
	Laboratory					
216U06L105	Engineering Drawing Laboratory	0 - 2 - 0	2	0 - 1 - 0	1	ES
216U06L106	Elements of Electrical and	0 - 2 - 0	2	0 - 1 - 0	1	ES
	Electronics Engineering					
	Laboratory					
216U06P101	Project-Based Learning	0 - 0 - 2	2			PR
216U06W101	Basic Workshop Practice – I	0 - 2 - 0	2	0 - 2 - 0	2	ES
216U06X101	Exposure Course	0 - 2 - 0	2			EX
	Total		29		21	

Course Code	Name of the Course	LAB/ CA		ESE	Total	
		TUT	IA	ISE		
		CA				
216U06C101	Applied Mathematics – I	25	20	30	50	125
216U06C103	Engineering Chemistry		20	30	50	100
216U06C105	Engineering Drawing		20	30	50	100
216U06C106	Elements of Electrical and		20	30	50	100
	Electronics Engineering					
216U06L101	Python Programming	75				075
216U06L103	Engineering Chemistry	50				050
	Laboratory					
216U06L105	Engineering Drawing Laboratory	50				050
216U06L106	Elements of Electrical and	50				050
	Electronics Engineering					
	Laboratory					
216U06P101	Project-Based Learning					
216U06W101	Basic Workshop Practice – I	50				050
216U06X101	Exposure Course					
	Total	300	080	120	200	700

SEMESTER I Course-Group P

Teaching and Credit Scheme

Course Code	Name of the Course	Teaching Scheme TH-PR- TUT	Total (hrs.)	Credit Scheme TH-PR- TUT	Total Credits	Course Category
216U06C101	Applied Mathematics – I	3 - 0 - 1	4	3 - 0 - 1	4	BS
216U06C102	Engineering Physics	3 - 0 - 0	3	3 - 0 - 0	3	BS
216U06C104	Engineering Mechanics	3 - 0 - 0	3	3 - 0 - 0	3	ES
216U06L101	Python Programming	0 - 2 - 2	4	0 - 1 - 2	3	ES
216U06L102	Engineering Physics Laboratory	0 - 2 - 0	2	0 - 1 - 0	1	BS
216U06L104	Engineering Mechanics	0 - 2 - 0	2	0 - 1 - 0	1	ES
	Laboratory					
216U06P101	Project-Based Learning	0 - 0 - 2	2	-		PR
216U06T101	Presentation and Communication	0 - 0 - 2	2	0 - 0 - 2	2	HS
	Skills					
216U06W101	Basic Workshop Practice – I	0 - 2 - 0	2	0 - 2 - 0	2	ES
216U06X101	Exposure Course	0 - 2 - 0	2			EX
	Total	-	26	<u> </u>	19	

Course Code	Name of the Course	Lab/	CA		ESE	Total
		TUT	IA	ISE		
		CA				
216U06C101	Applied Mathematics – I	25	20	30	50	125
216U06C102	Engineering Physics		20	30	50	100
216U06C104	Engineering Mechanics		20	30	50	100
216U06L101	Python Programming	75				075
216U06L102	Engineering Physics Laboratory	50				050
216U06L104	Engineering Mechanics	50				050
	Laboratory					
216U06P101	Project-Based Learning					
216U06T101	Presentation and Communication	50				050
	Skills					
216U06W101	Basic Workshop Practice – I	50				050
216U06X101	Exposure Course					
	Total	300	060	090	150	600

SEMESTER II Course-Group C

Teaching and Credit Scheme

Course Code	Name of the Course	Teaching Scheme TH-PR- TUT	Total (hrs.)	Credit Scheme TH-PR- TUT	Total Credits	Course Category
216U06C201	Applied Mathematics – II	3 - 0 - 1	4	3 - 0 - 1	4	BS
216U06C102	Engineering Physics	3 - 0 - 0	3	3 - 0 - 0	3	BS
216U06C104	Engineering Mechanics	3 - 0 - 0	3	3 - 0 - 0	3	ES
216U06L102	Engineering Physics Laboratory	0 - 2 - 0	2	0 - 1 - 0	1	BS
216U06L104	Engineering Mechanics Laboratory	0 - 2 - 0	2	0 - 1 - 0	1	ES
216U06L201	Programming in C	0 - 2 - 2	4	0 - 1 - 2	3	ES
216U06P101	Project-Based Learning	0 - 2 - 0	2	0 - 2 - 0	2	PR
216U06T101	Presentation and Communication Skills	0 - 0 - 2	2	0 - 0 - 2	2	HS
216U06W201	Basic Workshop Practice – II	0 - 2 - 0	2	0 - 2 - 0	2	ES
216U06X101	Exposure Course	0 - 2 - 0	2			EX
	Total	-	26	-	21	

Course Code	Name of the Course	Lab/	ab/ CA		ESE	Total
		TUT	IA	ISE		
		CA				
216U06C201	Applied Mathematics – II	25	20	30	50	125
216U06C102	Engineering Physics	-	20	30	50	100
216U06C104	Engineering Mechanics		20	30	50	100
216U06L102	Engineering Physics Laboratory	50				050
216U06L104	Engineering Mechanics	50				050
	Laboratory					
216U06L201	Programming in C	75				075
216U06P101	Project-Based Learning	50				050
216U06T101	Presentation and Communication	50				050
	Skills					
216U06W201	Basic Workshop Practice – II	50				050
216U06X101	Exposure Course					
	Total	350	060	090	150	650

SEMESTER II Course-Group P

Teaching and Credit Scheme

Course Code	Name of the Course	Teaching Scheme TH-PR-	Total (hrs.)	Credit Scheme TH-PR-	Total Credits	Course Category
		TUT		TUT		
216U06C201	Applied Mathematics – II	3 - 0 - 1	4	3 - 0 - 1	4	BS
216U06C103	Engineering Chemistry	3 - 0 - 0	3	3 - 0 - 0	3	BS
216U06C105	Engineering Drawing	2 - 0 - 1	3	2 - 0 - 1	3	ES
216U06C106	Elements of Electrical and	3 - 0 - 0	3	3 - 0 - 0	3	ES
	Electronics Engineering					
216U06L103	Engineering Chemistry	0 - 2 - 0	2	0 - 1 - 0	1	BS
	Laboratory					
216U06L105	Engineering Drawing Laboratory	0 - 2 - 0	2	0 - 1 - 0	1	ES
216U06L106	Elements of Electrical and	0 - 2 - 0	2	0 - 1 - 0	1	ES
	Electronics Engineering					
	Laboratory					
216U06L201	Programming in C	0 - 2 - 2	4	0 - 1 - 2	3	ES
216U06P101	Project-Based Learning	0 - 2 - 0	2	0 - 2 - 0	2	PR
216U06W201	Basic Workshop Practice – II	0 - 2 - 0	2	0 - 2 - 0	2	ES
216U06X101	Exposure Course	0 - 2 - 0	2			EX
	Total		29	·	23	

Course Code	Name of the Course		C	CA		Total
		TUT	IA	ISE		
		CA				
216U06C201	Applied Mathematics – II	25	20	30	50	125
216U06C103	Engineering Chemistry	-	20	30	50	100
216U06C105	Engineering Drawing		20	30	50	100
216U06C106	Elements of Electrical and		20	30	50	100
	Electronics Engineering					
216U06L103	Engineering Chemistry	50				050
	Laboratory					
216U06L105	Engineering Drawing Laboratory	50				050
216U06L106	Elements of Electrical and	50				050
	Electronics Engineering					
	Laboratory					
216U06L201	Programming in C	75				075
216U06P101	Project-Based Learning	50				050
216U06W201	Basic Workshop Practice – II	50				050
216U06X101	Exposure Course					
	Total	350	080	120	200	750

Course-wise Detailed Syllabus

Course Code	Name of the Course							
216U06C101		Applied Mathematics - I						
Teaching Scheme	TH	P		7	ΓUT	Total		
(Hrs./Week)	03				01	04		
Credits Assigned	03			01		04		
Evaluation Scheme			Ma	rks				
	LAB/TUT	CA	CA (TH)		CA (TH)		ESE	Total
	CA	IA ISE						
	25	20	30	0	50	125		

Course pre-requisites:

Basics of Matrices, Inverse and Adjoint, Differentiation Techniques, Basics of Complex numbers, Basics of Differential Equations

Course Objectives:

The objective of the course is to impart knowledge of De-Moivre's theorem, hyperbolic functions and logarithm of complex numbers. The course introduces the concept of partial differentiation and its applications to find extreme values of a function and Jacobian. The concept of rank of matrix, solving system of linear equations is explained in detail. The course communicates the methods of solving linear differential equations.

Course Outcomes (CO):

- **CO1.** Solve problems involving different forms and properties of complex numbers, hyperbolic functions and logarithm of complex numbers.
- **CO2.** Apply the concept of rank of a matrix and numerical methods to solve system of linear equations.
- **CO3.** Find partial derivatives of multivariable functions, apply the concept of partial differentiation to find maxima and minima of 2-variable functions
- **CO4.** Apply Euler's theorem to prove results related to Homogeneous functions.
- **CO5.** Identify and solve different types of ordinary differential equations using various methods.

Module No.	Unit No.	Contents	No of Hrs	СО
1	_	lex Numbers, Hyperbolic Functions and Logarithm of Complex	12	CO1
	Numb			
	1.1	Statement of De Moivre's theorem and related examples		
	1.2	Powers and roots of complex numbers		
	1.3	Circular functions and hyperbolic functions of complex number		
	1.4	Inverse circular and inverse hyperbolic functions Logarithm of complex numbers		
	1.5 1.6	Separation of real and imaginary parts of a function		
	1.0	#Self-learning topics: Expansion of $sinn\theta$, $cosn\theta$ in terms of sine		
		and cosine of multiples of angle θ and expansion of $sinn\theta$, $cosn\theta$		
		in powers of $sin\theta$, $cos\theta$		
				1
2	Rank	of Matrix and System of Equations	08	CO2
	2.1	Types of matrices: Hermitian, Skew-Hermitian, Unitary and		
		Orthogonal matrix		
	2.2 Rank of a matrix using row echelon forms, reduction to normal form			
	2.3 System of homogeneous and non-homogeneous equations, their			
	consistency and solutions			
	2.4 Linearly dependent and independent vectors			
	2.5 Solution of system of linear algebraic equations by (a) Gauss			
		Seidal method (b) Jacobi iteration method		
		#Self-learning topics: Symmetric, Skew-symmetric matrices and		
		properties, Properties of adjoint and inverse of a matrix		
3	Dantia	Differentiation and Application	09	CO3
3	3.1	Differentiation and Application Functions of several variables, Partial derivatives of first and	09	COS
	3.1	higher order (definition using limits and simple problems)		
	3.2	Differentiation of composite functions		
	3.3	Maxima and minima of a function of two independent variables		
	3.4	Introduction of Jacobian of two and three independent variables		
		(simple problems)		
				_
4		geneous Functions	04	CO4
	4.1	Euler's theorem on homogeneous functions with two and three		
		independent variables (statement only) and problems		
	4.2	Deductions(Corollaries) from Euler's theorem (statements only)		
		and problems		<u> </u>
5	Linear	r Differential Equations of First and Higher Order	12	CO5
	5.1	Differential Equation of first order and first degree- Exact	12	
	J.1	differential equations, Equations reducible to exact equations by		
		integrating factors.		
	5.2	Linear differential equations (Review), Equation reducible to		
		linear form. Applications of Differential Equation of first order		
		and first degree		
	5.3	Linear Differential Equation with constant coefficients:		
		Complimentary function, particular integrals of differential		
		equation of the type $f(D)y = X$, where X is e^{ax} , $\sin(ax +$		
		b), $\cos(ax + b)$, x^n , $e^{ax}V$		

5.4	Method of variation of parameters		
	#Self-learning topic: Bernoulli's equation. Equation reducible to		
	Bernoulli's equation. Cauchy's homogeneous linear Differential		
	Equation		
	Total	45	

#Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

• Distribution of TUT CA:

Component*	Online Tutorial (may comprise	Offline Tutorial (written	
	of quiz/embedded quiz/ tutorial/assignments/s		
	gamification/any other	discussion/open book test/	
	innovative method etc.)	surprise test/ any other	
		innovative method etc.)	
Weightage	40-60%	60-40%	

^{*}TUT CA will be a combination of Online/offline tutorials. Minimum 8 graded/non-graded tutorials will be conducted. For graded tutorials, mode of assessment will be shared with students in the beginning of semester. It will be common to all divisions and batches.

Sr.	Name/s of Author/s	Title of Book	Publisher	Edition/
No				Year
1	B. S. Grewal	Higher Engineering Mathematics	Khanna Publications,	43 rd /e,
			India	2014
2	Shanti Narayan	A text book of Matrices	S. Chand, India	10 th /e,
				2004
3	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th /e
		Mathematics	Limited, India	2015
4	Ramana B.V.	Higher Engineering Mathematics	Tata Mcgraw Hill	34 th /e,
			New Delhi, India	2019
				Reprint
5	Glyn James	Advanced Modern Engineering	Pearson Publication	4 th /e,
		Mathematic	India	2010

Course Code	Name of the Course							
216U06C102		Engineering Physics						
Teaching Scheme TH P TUT Total								
reaching Scheme		1		101				
	03				03			
Credits Assigned	03				03			
Evaluation Scheme			Marks					
	LAB/TUT	CA (TH)		ESE	Total			
	CA	IA	ISE					
		20	30	50	100			

Course pre-requisites:

Physics: Metric units and conversions, basic concepts and laws of optics, electricity and magnetism, basic mechanical and thermal properties of solids, electrical properties of conductors and semiconductors, particle properties of radiation, quantum theory prior to de' Broglie hypothesis **Mathematics:** A good grasp of differential equations and integration, vectors and vector operations, trigonometric operations and identities, logarithms, coordinate system (Cartesian), complex numbers, probability, basic matrix operations

Course Objectives:

- This Physics course is designed to establish strong foundations of Engineering Sciences by using a problem-solving approach to learn fundamental physical concepts and mathematical foundations of a variety of real-life applications.
- The course covers areas of both, pure and applied Physics such as laser and fibre optics, electromagnetism, plasma physics, semiconductors, dielectrics, liquid crystals, and Physics of sensors used in IoT applications.
- The course is also aimed to convey the importance of quantum mechanics for futuristic engineering and computing applications.

Course Outcomes (CO):

- **CO1.** Explain a variety of optical phenomena using concepts of wave optics and photonics
- CO2. Analyse basic physical properties of technologically important engineering materials
- **CO3.** Identify the scope of quantum mechanics in engineering and computing applications
- **CO4.** Solve engineering problems using mathematical foundations of electromagnetism and plasma physics
- **CO5.** Correlate physics of different types of sensors used in IoT applications

Module No.	Unit No.	Contents	Hrs/ week	СО
1	Photo	nics	09	CO1
_	1.1	Principles of Lasers: Laser properties and parameters, Interaction of radiation with matter, Rate equations and Einstein's coefficients, population inversion, pumping, metastable states, optical resonator, threshold condition		
	1.2	Optical Fibres: Total internal reflection, numerical aperture, type of optical fibres, modes of propagation, V-number, attenuation and dispersion, bit rate, optical window		
2	Fngin	eering Materials	10	CO2
	2.1	Physics of Semiconductors: Carrier concentration in intrinsic and extrinsic semiconductors, charge carrier transport and current mechanisms, Fermi-Dirac statistics, temperature dependence of Fermi-Dirac function, Fermi level and effect of doping	10	C02
	2.2	Dielectrics: Dielectric parameters, types of polarization and their expressions, frequency dependence of dielectric constant		
	2.3	Liquid crystals: Liquid crystal phases, properties, application in displays		
3	Introd	luctory Quantum Mechanics	10	CO3
3	3.1	De' Broglie hypothesis and illustrative examples	10	003
	3.2	Uncertainty principle and illustrative examples		
	3.3	Wave function, time dependent Schrodinger equation (1-dimensional), time-independent form, illustrative application to particle in a box problem		
	3.4	Basics of quantum computing – qubits, quantum logic gates, quantum circuits, proposed applications		
4				004
4	4.1	Gradient, divergence, curl, physical interpretations, fundamental theorems of vector calculus	09	CO4
	4.2	basic laws of electricity and magnetism in differential and integral forms		
	4.3	Electromagnetic wave equation (1-dimensional), speed of light		
	4.4	Plasmas and their characterization, Basic plasma concepts, Plasma parameters, waves in plasmas		
5	Dhysic	es of Sensors for IoT Applications	07	CO5
3	5.1	Review of different types of sensors used in IoT	U/	003
	5.2	Electro-optic Sensors: IR sensors, Image sensors		
	5.3	Mechanical Sensors: Pressure and Motion Sensors		
	5.4	Environmental Sensors: Temperature and Humidity Sensors		
		Total	45	

Sr. No	Name/s of Author/s	Title of Book	Publisher	Edition/ Year
1	M N Avadhanulu, P G Kshirsagar, TVS Arun Murthy	A Textbook of Engineering Physics	S Chand	11 th /e, 2018
2	Gaur, Gupta	Engineering Physics	Dhanpat Rai, India	8/e, 2018
3	Ajoy Ghatak	Optics	McGraw Hill India	6th Edition, 2017
4	Arthur Beiser	Concepts of Modern Physics	McGraw Hill India	7th Edition, 2017
5	David Griffiths	Introduction to Electrodynamics	PHI	5th Edition, 2015
6	Kourosh Kalantar- zadeh	Sensors: An Introductory Course	Springer	2013
7	F.F. Chen	Introduction to Plasma physics and controlled fusion	Springer	2016

Course Code	Name of the Course							
216U06C103		Engineering Chemistry						
Teaching Scheme	TH	P		T	UT	Total		
(Hrs./Week)	03					03		
Credits Assigned	03					03		
Evaluation Scheme			Mar	ks				
	LAB/TUT	CA	(TH)		ESE	Total		
	CA	IA	ISE	E				
		20	30		50	100		

Course pre-requisites: Nil

Course Objectives:

The objective of course is to appreciate the basic concepts of chemistry behind the development of futuristic materials and their applications in engineering and technology. The course objective is to understand chemical processes involved in development of sustainable energy sources. To analyse the knowledge of analytical techniques involved in the analysis and characterization of chemical compounds, nanomaterial.

Course Outcomes (CO):

- CO1. Identify and evaluate emerging technologies and best practices in water treatment and monitoring to continuously improve process.
- CO2. Identify and select different types of engineering materials including polymer ceramic, composite and metals for different application based on properties applications and limitations.
- CO3. Design and evaluate sustainable energy system such as solar, hydrocarbon, biodiesel, power alcohol including power generation and storage system.
- CO4. Understand and apply basic concepts of spectroscopy and electro-analytical technique in characterizing chemical compounds
- CO5. Understand the applications and limitations of computer applications in chemistry and identify the best practices for e waste management

Module No.	Unit No.	Contents	No of Hrs.	CO
1	Techn	ologies in Water Quality Monitoring	09	CO1
	1.1	Introduction, Types of Hardness, Equivalence of CaCO ₃ ,		
		Experimental determination of hardness		
	1.2	Emerging Technology for Sustainable Water Treatment: Lime		
		soda method Zeolite method, Ion Exchange process, Methods to		
		determine extent of water pollution, BOD, COD, Treatment of		
		industrial wastewater.		
	1.3	Artificial Intelligence & Internet of Things in Water Management:		
		artificial intelligence and machine learning in integrated water		
		system		
2	N/I - 4	\$-1- \$ To\$\$ A124\$	11	COA
2		ials in Engineering Applications Polymers: Polymers as Industrials Materials, Conducting	11	CO2
	2.1	Polymers: Polymers as Industrials Materials, Conducting polymers, Fabrications of Polymers, Biodegradable Polymers		
	2.2	Nanomaterials: Introductions, Classifications, Growth Techniques		
	2.2	for Nanomaterials, Applications		
	2.3	Common Materials used in Biomedical Applications: Metals &		
	2.5	Alloys, Bio Ceramics, Composites, new materials in prosthetics		
	2.4	Materials for MEMS and microsystem: Introduction, Active		
		substrate materials, Silicon as substrate materials, Working		
		principle of Bio sensors and Chemical Sensors		
				•
3	Chem	istry for Sustainable Energies	09	CO3
	3.1	Energy & Sustainable Development, Renewable Energy, Solar		
		Energy, solar Photovoltaic, solar heater		
	3.2	Unit of Energy, Definition, characteristic of good fuel, Calorific		
		value of fuel Hydrocarbon as Fuel, Bio Diesel, Power Alcohol		
	3.3	Rechargeable Batteries: Lead acid battery, Lithium ion battery,		
		Nickel based battery, other battery technology		
	I ~			I
4		oscopy and Instrumental methods of Analysis	09	CO4
	4.1	UV spectroscopy, Principle, Instrumentation and application		
	4.2	IR spectroscopy, Basic Principle, Instrumentation and applications		
	4.3	1H NMR Spectroscopy: Principle, Instrumentation, Chemical		
	4.4	Shift, Factors affecting chemical shift, Applications Electroanalytical techniques, pH-metry, Conductometry,		
	4.4	Potentiometry techniques, pri-metry, conductometry,		
		1 otentionicity		
5	Chem	istry & Computers	07	CO5
	5.1	Introduction: Philosophy of Computational Chemistry, tools of	07	
		Computational Chemistry, Software and Hardware, Applications		
		of Computational Chemistry		
	5.2	Computational approach in Cheminformatics and Bioinformatics		
	5.3	E-waste Management: Sustainable Development & e-waste		
		management, impact of legislations on materials used in		
		electronics, printed circuit boards, Socio-economic factors		
		Total	45	

Sr.	Name/s of Author/s	Title of Book	Publisher	Edition/
No				Year
1	Dr. S.S.Dara, Dr.	A textbook of Engineering	S.Chand,	India
	S.S. Umare	Chemistry		Revised
				edition,
				2015
2	Shashi Chawla	A textbook of Engineering	Dhanpat Rai & Co	3rd
		Chemistry		edition,
				2017
3	O G Palanna	Enginnering Chemistry	Mc Graw Hill, India	2nd
				edition,
				2017

Course Code	Name of the Course						
216U06C104		Engineering Mechanics					
					T-		
Teaching Scheme	TH	P]	ΓUT	Total	
(Hrs./Week)	03					03	
Credits Assigned	03					03	
Evaluation Scheme			Mar	ks			
	LAB/TUT	CA (CA (TH)		ESE	Total	
	CA	IA	ISI	E			
		20	30	30 50		100	

Course pre-requisites:

Basics of units and conversions, Basics of Trigonometry, Newton's Laws of Motion

Course Objectives:

Engineering mechanics is the application of physics to solve problems involving common engineering elements. This course introduces system of forces and its effect on stationary and moving objects. The goal of this course is to expose students to problems in real-world scenarios and respond accordingly.

Course Outcomes (CO):

- **CO1.** Evaluate resultant and moment of a force system
- **CO2.** Analyse the concept of kinematics of particle and rigid body.
- CO3. Determine centre of gravity of wires (rods), lamina and solids
- **CO4.** Analyse applications of equilibrium using free body diagram
- **CO5.** Analyse the dynamic system using D'Alembert, work energy and impulse momentum principle.

Module	Unit	Contents	No of	CO
No.	No.		Hrs.	004
1		n of forces	07	CO1
	1.1	System of coplanar forces: Resultant of concurrent forces, parallel		
		forces, non-concurrent non parallel system of forces, moment of		
		force about a point, couples, Varignon's theorem, Principle of		
	1.0	transmissibility of forces (Vector and analytical approach).		
	1.2	Resultant of forces in space.	11	COA
2		natics of Particles and Rigid Bodies	11	CO2
	2.1	Variable motion, motion curves (a-t, v-t, s-t) (acceleration curves		
		restricted to linear acceleration only), motion along plane curved		
		path, velocity & acceleration in terms of rectangular components,		
	2.2	tangential & normal component of acceleration		
	2.2	Introduction to general plane motion, problems based on ICR		
		method for general plane motion of bodies (up to 2 linkage mechanism and no relative velocity method).		
3	Contra	oid of Wires and Laminas	05	CO3
3		Centroid of wires/rods.	US	COS
	3.1			
	3.2	Centroid of plane laminas: Plane lamina consisting of primitive geometrical shapes.		
4	Fanili	brium of Force System and Friction	13	CO4
4	4.1	Equilibrium of system of coplanar forces: Condition of	13	CO4
	7.1	equilibrium for concurrent forces, parallel forces and non-		
		concurrent, non-parallel force system (general force system), Free		
		body diagram.		
	4.2	Types of support, loads, beams, determination of reactions at		
		supports for various types of loads on beams (excluding internal		
		hinge and compound beam problems).		
	4.3	Laws of friction, cone of friction, angle of repose, equilibrium of		
		bodies on inclined plane, application to problems involving		
		wedges and ladders.		
5	Kineti	cs of particle	09	CO5
	5.1	Force and acceleration: Introduction to basic concepts, equations		
		of dynamic equilibrium, Newton's second law of motion (only		
		rectilinear motion).		
	5.2	Work energy principle.		
	5.3			
		momentum, law of conservation of momentum, impact and		
		collision, direct central and oblique central impact.		
		Total	45	

Sr.	Name/s of Author/s	fame/s of Author/s Title of Book		Edition/
No				Year
1	Tayal, A.K.	Engineering Mechanics, Statics and	Universal	14th
		Dynamics	Publication, India	Edition
				2011
2	Bhavikatti S. S.	Engineering Mechanics	New Age	Revised
			international, India	Edition
				2019
3	Hibbeler, H. C. and	Engineering Mechanics, Statics and	Prentice Hall Private	Revised
	Gupta	Dynamics	limited, India	Edition
	-	-		2017
4	Bhattacharyya B.	Engineering Mechanics	Oxford University	2nd
			Press, India	Edition
				2014
5	Ram H.D. and	Foundations and Applications of	Cambridge	1st
	Chauhan A.K.	Engineering Mechanics	University Press, UK	Edition
			•	2015

100

Course Code	Name of the Course							
216U06C105	Engineering Drawing							
Teaching Scheme	TH	P		TUT	Total			
(Hrs./Week)	02			01	03			
Credits Assigned	02			01	03			
Evaluation Scheme	Marks							
	LAB/TUT	CA	(TH)	ESE	Total			
	CA	TΔ	ISF					

Course pre-requisites:

Knowledge of various geometric constructions, Basics of trigonometry.

Course Objectives:

The students will be able to

1. Familiarize with the conventions and standards along with the principles of projections applied to points and lines.

20

30

50

- 2. Apply the principles of orthographic projections to draw elevation, plan, end view, isometric views etc.
- 3. Apply the principles of orthographic projections to draw various views of regular solid objects.
- 4. Apply the fundamentals of solid geometry and develop lateral surfaces of solids

Course Outcomes (CO):

- **CO1.** Able to visualize and draw projection of lines and planes
- CO2. Able to visualize and draw orthographic projection and sectional views of given 3D object.
- **CO3.** Able to visualize and draw isometric drawing.
- **CO4.** Able to draw projection of regular solids
- CO5. Able to draw sectional views and lateral development of regular solids

Module	Unit	Contents	No of	CO
No.	No.		Hrs.	
1	Projec	ction of points, lines and planes	08	CO1
	1.1	Introduction to Engineering Drawing, Standard sizes of drawing		
		sheets, Types of lines, Dimensioning, Scales, Drawing pencils etc.		
	1.2	Projection of points, Projection of lines inclined to both the		
		reference planes. (Line in 1 st quadrant ONLY)		
	1.3	Projection of Planes: Triangular, Square, Rectangular, Pentagonal,		
	Hexagonal and Circular planes inclined to one reference plane			
		only and perpendicular to other.		
2	2 Orthographic Projection		06	CO2
	2.1	Orthographic projections of simple machine parts by first angle		
		method as recommended by Indian standards		
	2.2	Sectional views of simple machine parts (full section ONLY).		
3 Isometric V		tric View/Drawing	04	CO3
	3.1	Introduction to isometric view/drawing, isometric projection		
	3.2	Construction of isometric drawing of simple machine parts		
4	Projec	etion of Solids	06	CO4
	4.1	Introduction to Projection of Solids, Classification of Solids		
	4.2	Projection of right regular solids (prism, pyramid, cylinder, and		
		cone) inclined to one reference plane only (excluding spheres,		
		hollow and composite solids)		
5	Section	n and Development of Solids	06	CO5
	5.1	Projection of sectional views of solids (prism, pyramid, cylinder,		
		and cone) cut by the plane perpendicular to one and inclined to		
		other reference plane only (excluding curved cutting planes).		
	5.2	Lateral surface development of solids (prism, pyramid, cylinder,		
		and cone) cut by the section plane inclined to one reference plane		
		only. (excluding reverse development)		
		Total	30	

Sr.	Name/s of Author/s	Title of Book	Publisher	Edition/
No				Year
1	N.D. Bhatt	Engineering Drawing	Charotar Publishing	53 rd
			House Pvt. Ltd	Revised
				2014
2	P. S. Gill	Engineering Graphics and Drafting	S.K. Kataria & Sons	Revised
				Edition,
				India,
				2014
3	Lakhwinder Pal	Engineering Drawing Principles	Cambridge	2021
	Singh	And Applications	University Press	

Course Code	Name of the Course						
216U06C106	Elem	Elements of Electrical and Electronics Engineering					
Teaching Scheme	TH	P	ŗ	ГUТ	Total		
(Hrs./Week)	03				03		
Credits Assigned	03				03		
Evaluation Scheme			Marks				
	LAB/TUT	CA (TH)	ESE	Total		
	CA	IA	ISE				
		20	30	50	100		

Course pre-requisites:

Knowledge of Basic Electrical parameters: Resistance, Inductance, Capacitance, Frequency, Voltage, Current and Power and Energy, basic laws of magnetism

Course Objectives: It is difficult to imagine life without electricity and electronics. Electricity plays a major role in the working of all minor and major devices used in our day to day life. In this course students acquire fundamental knowledge to understand the design of electrical and electronics systems.

Course Outcomes (CO):

- **CO1.** Analyse resistive networks excited by DC sources using various network theorems
- **CO2.** Demonstrate and analyse steady state response of single phase and three phase circuits
- CO3. Understand principles and working of AC and DC machines with their applications.
- **CO4.** Explain rectifier-filter circuits using PN junction diode and voltage regulator circuits using Zener diode
- CO5. Understand Bipolar Junction transistor and its applications

Module	Unit	Contents	No of	CO
No.	No.		Hrs.	CO1
1	DC cir	Concept of dependent and independent sources, ideal and practical	12	CO1
	1.1	voltage and current sources, Kirchhoff's Laws, source		
		transformation and network terminology.		
	1.2	Resistive network simplification, Series, parallel connection and		
		Star-Delta transformations		
	1.3	Mesh and nodal analysis, concept of super mesh and super node		
		(Analysis only with independent sources)		
	1.4	Superposition theorem, Thevenin's theorem, Norton's theorem,		
	Maximum power transfer theorem (Analysis only with independent sources)			
		independent sources)		
	1.0 .	•,	1.5	001
2	AC cir 2.1		15	CO2
	2.1 Generation of alternating voltage, average value, RMS value, form factor, crest factor, phasor representation in rectangular and			
	2.2	polar form. Steady state behaviour of single phase AC circuits with pure R, L,		
	and C, concept of inductive and capacitive reactance, phasor diagram of impedance, phase relationship in voltage and current.			
	2.3	RL, RC and RLC series and parallel circuits, concept of		
	impedance and admittance, power triangle, power factor, active,			
	reactive and apparent power, concept of power factor			
	improvement.			
	2.4	Series and parallel resonance, Q-factor and bandwidth		
	2.5 Three-phase balanced circuits, voltage and current relations in star			
	26	and delta connections. Measurement of power in 3-phase system using two wattmeter		
	2.6	method		
		nethod		
3	Electr	ical Machines	12	CO3
	3.1	Single phase transformer construction and principle of working,		
		emf equation of a transformer, losses in transformer, equivalent		
		circuit of Ideal and practical transformer, voltage regulation and		
		efficiency of transformer, phasor diagram at various loading		
		condition (No numerical expected)		
	3.2	Construction and working principle of DC motors such as series,		
		shunt and compound, torque-speed characteristics, selection		
	3.3	criteria and applications (no derivations and numerical expected) Single phase induction motor: Construction, working principle,		
	3.3	double field revolving theory, split phase, capacitor start and		
		shaded pole motor, applications (no derivations and numerical		
		expected)		
	3.4	Three phase induction motor: Construction, working principle,		
		Generation of rotating magnetic field, applications. (no		
		derivations and numerical expected)		
				~~:
4		s and their applications	04	CO4
	4.1	P-N Junction diode: Construction and working of PN junction diode current voltage		
		Construction and working of PN junction diode, current voltage characteristics.		
		Application as Rectifier: Half wave rectifiers with resistive load,		
L	i	FF		<u> </u>

	1			
		full wave center tap and bridge rectifier with resistive load with		
		their parameters such as ripple factor, rectification efficiency,		
		transformer utilization factor. Filter circuits		
	4.2	Zener Diode:		
		Construction and working, current voltage characteristics.		
		Application of Zener diode: Voltage regulator		
	4.3	Light emitting diode (LED) and Photo Diode:		
		Construction and working, current voltage characteristics and		
		applications		
	I .	, , , ,		
5	Bipola	ar Junction Transistor and their applications	03	CO5
	5.1	Bipolar Junction Transistor (BJT):		
		BJT construction and operation, Common-Base (CB), Common-		
		Emitter (CE) and Common-Collector (CC) configurations and		
		input and output characteristics, operating point, DC biasing (No		
		Numerical expected)		
	5.2	Application of BJT-CE configuration: Voltage amplifier,		
		Electronic Switch (No Numerical expected)		
		1		
	Self-le	earning topics#		
		Components of LT Switchgear: Switch Fuse Unit (SFU), MCB,		
		ELCB, MCCB		
		Types of Wires and Cables, Earthing		
		Types of Batteries, Important Characteristics for Batteries,		
		Elementary calculations for energy consumption, power factor		
		improvement and battery backup		
		Lamps- fluorescent, CFL, LED		
		Electrical measuring instruments principle and applications-		
		energy meter, megger, tong tester.		
	1	Total	45	
		2000		

[#] Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA.

Sr.	Name/s of	Title of Book	Publisher	Edition/
No	Author/s			Year
1	B. L. Thereja	Electrical Technology Vol-1 and	S. Chand	25 th
		Vol-II		Edition
				2014
2	Mittle and Mittle	Basic Electrical Engineering	2^{nd}	
			India	edition
				(New)
				2001
3	Singh Ravish R	Basic Electrical Engineering	S. Chand	1^{st}
				Edition,
				2023
4	B.R. Patil	Basic Electrical Engineering	Oxford University	2^{nd}
			Press	Edition,
				2022
5	Donald Neamen	Microelectronics: Circuit Analysis	Tata McGraw Hill	4 th
		and Design	India	Edition
				2021

Course Code	Name of the Course						
216U06L101	Python Programming						
Teaching Scheme	TH	P		1	CUT	Total	
(Hrs./Week)		02	02		02	04	
Credits Assigned		01	01		02	03	
Evaluation Scheme			Mar	ks			
	LAB/TUT	CA	CA (TH)		ESE	Total	
	CA	IA	IA ISI				
	75					75	

Course pre-requisites:

Basic knowledge of computer peripheral devices

Course Objectives:

The objective of the course is to impart knowledge of python programming. The course mainly introduces basic in python programming language concepts like data structures, Decision Making statements and Functions. Further the course also covers the concept of file handling and python packages. This first course in programming enables students to develop domain specific software based solutions..

Course Outcomes (CO):

- **CO1.** Formulate problem statement and develop the logic (algorithm/flowchart) for its solution.
- **CO2.** Understand the concepts of data structures in python.
- CO3. Use different Decision Making statements and Functions in Python.
- **CO4.** Apply the concept of exception handling and file handling in python.
- **CO5.** Illustrate the use of python packages.

Module No.	Unit No.	Contents	No of Hrs.	CO
100.	NO.		(Tutorial	
1	Introdi	Lection to Python	+ Lab) 06	CO1
	1.1	Problem solving skill development: Problem Definition,	00	
		fundamentals of algorithms and flowcharts		
	1.2	Features of python programming		
	1.3	Applications of python programming in real world		
	1.4	Execution of python program: Compilation, interpreter		
	1.5	Introduction to various python IDE and its installation.		
		Introduction to Command interface and Graphical interface of		
		python execution		
	1			1
2		ypes and data structures in python	14	CO2
	2.1	Data Types in Python, Whitespace, Code Block Indentation,		
	Comments, Variables, reserved key words, Naming conventions,			
	Python's built-in type 2.2 Operators in Python, Basic built-in Math functions			
	2.2 Operators in Python, Basic built-in Math functions 2.3 Strings, format(), print(), type casting in python			
	2.3 Strings, format(), print(), type casting in python 2.4 Data Structures: Tuples, List, Dictionaries, Set, Arrays,			
	2.4	Conversion of data structures methods		
		Conversion of data structures methods		
3	Decisio	on Making and Functions in python	16	CO3
	3.1 If statement: if, if-else, elif, Nested if, pass statement		10	
	3.2 Repetition using While loop, for loop & range function, break,			
	continue and pass statement			
	3.3	Defining a Function, Checking & Setting Parameters		
		Types of arguments: Required arguments, Keyword arguments		
		Default arguments, Variable-length arguments		
	3.4	Pass statement in function, Nested Functions, Scope of variables		
	3.5	Recursion, Lambda and Filter, Map		
4	De alle e a	arranting and file handling	10	CO4
4	_	exception and file handling	12	CO4
	4.1	Error, Types of error: Runtime error, compile type error, logical error, Exceptions Handling and Assertions		
	4.2	Types of Files in Python, Opening a File: File opening modes,		
	7.2	Closing a File, Writing Text Files, Appending in Text Files		
	4.3	Working with Binary Files, File Exceptions		
		1		ı
5	Python	ı packages	12	CO5
	5.1	Introduction to packages, Installation, Use		
	5.2 Introduction to Numpy, ndarray, datatypes, shape, reshape,			
	iterating, join, split, search, sort, filter, slice, Mathematical and			
		string functions		
	5.3	Introduction to Python Matplotlib, Markers, line, labels, grid,		
		subplot, scatterplot, histogram, bar chart, pie charts		
		Self-learning: Seaborn library	(D4	
		Total	60*	

^{*}Laboratory+Tutorial

Sr. No	Name/s of Author/s	Title of Book	Publisher	Edition/ Year
1	Reema Thareja	Python Programming: Using Problem Solving Approach	Oxford University Press	First Ed ition 20 17, India
2	Dr. R. Nageswara Rao	Core Python Programming	Wiley Publication.	Second Edition 2018,Ind ia
3	Sheetal Taneja and Naveen Kumar	Python Programing: A Modular Approach	Pearson India	Second Edition 2018, I ndia
4	Yashavant Kanetkar	Let us Python	Let us Python	4 th edition 2022
5	Official documentation of Python	https://docs.python.org/3/tutorial/	Python Officials	-
6	Python Tutorial website	https://realpython.com/	Python web URL	-

- Distribution of Lab/Tut CA marks
- 1. Continues assessment of laboratory evaluation for 25 marks.
- 2. Onscreen test one divisions wise for 20 marks after module 3 is completed.
- 3. Onscreen test two divisions wise for 20 marks after module 5 is completed.
- 4. Quiz for 10 marks at the end of the semester.

Course Code	Name of the Course							
216U06L102		Engineering Physics Laboratory						
Teaching Scheme	TH	P		TUT	Total			
(Hrs./Week)		02			02			
Credits Assigned		01	01		01			
		•		·				
Evaluation Scheme			Marks					
	LAB/TUT	CA (TH)		ESE	Total			
	CA*	IA	ISE					
	50				50			

Distribution of LAB CA:

Criterion	Marks
Experiments performed*, written	30
record of experiments (Journal) and	
viva	
Quiz based on experiments conducted	20
Total:	50

^{*}It is recommended to have a blend of hands-on, demonstration, experiential learning type and virtual lab experiments for the Engineering Physics lab course. Hands-on experiments should comprise of 60-80% of the minimum number of experiments prescribed (typically 10) during the semester.

Course Code	Name of the Course								
216U06L103	Engineering Chemistry Laboratory								
Teaching Scheme	TH	P		TUT		Total			
(Hrs./Week)		02	02						
Credits Assigned		01							
Evaluation Scheme			Marl	KS					
	LAB/TUT CA (TH)				E	Total			
	CA	IA	ISE	1					
	50	50 50							

• Distribution of LAB CA:

Criterion	Marks
Experiments performed*, written	30
record of experiments (Journal) and	
viva	
Quiz based on experiments conducted	20
Total:	50

^{*}It is recommended to have a combination of hands-on and virtual lab experiments for the Engineering Chemistry lab course. Hands-on experiments should comprise of 60-80% of the minimum number of experiments prescribed (typically 10) during the semester.

Course Code	Name of the Course								
216U06L104	Engineering Mechanics Laboratory								
Teaching Scheme	TH	P		T	UT	Total			
(Hrs./Week)		02	02			02			
Credits Assigned		01			01				
Evaluation Scheme		Marks							
	LAB/TUT	Total							
	CA*	IA	ISE	E					
	50	50 50							

*Distribution of LAB CA:

In ature at are	• Lob CA includes journal / written record of experiments (25 modes) and and							
Instructions:	• Lab CA includes journal / written record of experiments (25 marks) and oral							
	based on experiments performed (25 marks).							
	• Experiments will be evaluated out of 25 marks each . There will be a minimum of 8-10 experiments (lab experiments/virtual lab experiments/ EM problem solving with the help of any software tool) to be performed in a semester. The <u>average</u> will be taken to determine marks out of 25. Oral will be taken at the end of semester for 25 marks. Total marks for Lab CA will be 50 .							
	• A student must complete the stipulated minimum no of experiments							
	satisfactorily in order to clear the Lab CA.							
Rubrics	Proper conclusion of experiment							
(Journal):	2. Appropriate and neat sketches							
	3. Proper calculations							
	4. Timely submission							
	5. Attendance during conduction of practical							

Course Code	Name of the Course									
216U06L105	Engineering Drawing Laboratory									
Teaching Scheme	TH	P		TUT	Total					
(Hrs./Week)		02			02					
Credits Assigned		01			01					
Evaluation Scheme		Marks								
	LAB/TUT CA (TH) ESE Total									
	CA*	IA	ISE							
	50	50 50								

- Distribution of LAB/TUT CA:
- 1. Evaluation will be carried out during the said laboratory/tutorial throughout the semester on a continuous basis.
- 2. In case of Laboratory, 5 assignments (one on each module with 2 questions per assignment) will be performed On-screen on AutoCAD software.
- 3. In case of tutorial, 5 assignments (one on each module with 1 question from each module) will be performed in A3 size sketch book during regular tutorial session.
- 4. ED ISE as well as ESE will be is conducted on AutoCAD. Lab for AutoCAD session with 35 marks and Tutorial with 15 marks combine for CA out of 50 marks.

Course Code	Name of the Course								
216U06L106	Elements of Electrical and Electronics Engineering Laboratory								
Teaching Scheme	TH	P	'	TUT	Total				
(Hrs./Week)		02			02				
Credits Assigned		01		01					
	· ' '								
Evaluation Scheme	Marks								
	LAB/TUT	CA (ESE	Total					
	CA*	IA	ISE						
	50				50				

• Distribution of LAB CA:

Instructions:	 LAB CA includes journal / written record of experiments (25 marks) and oral based on experiments performed (25 marks).
	• Experiments will be evaluated out of 25 marks each . A minimum of 8-10 experiments (lab experiments/virtual lab experiments/ EM problem solving with the help of any software tool) will be performed in a semester. The <u>average</u> will be taken to determine marks out of 25. Oral will be taken at the
	end of the semester for 25 marks. The total marks for LAB CA will be 50.
Rubrics	Proper/correct understanding of the objective /aim of experiment
(Journal):	Proper execution of experimental procedure
	3. Active participation during laboratory hours
	4. Submission of the laboratory write-up with correct calculations, neat
	diagrams, and appropriate results/conclusion
	5. Timely submission of the laboratory write-up

Course Code	Name of the Course								
216U06P101		Project Based Learning							
Teaching Scheme	T	H	I)	T	UT	Tot	tal*	
(Hrs./Week)	SEM I	SEM	SEM I	SEM	SEM I	SEM	SEM I	SEM	
		II		II		II		II	
				02	02		02	02	
Credits Assigned				02				02	
Evaluation Scheme		Marks							
	LAB/TUT CA (TH)				ESE	7	Cotal		
	CA* IA ISE								
	50	50 50						50	

^{*}Credit-assignment and Evaluation for the course will be done in semester II

Course pre-requisites: Nil

Course Objectives:

This course aims at promoting creativity, collaborative work, problem-solving approach in students from an early stage. It establishes strong foundations for students' development as Engineering graduates with skills of project based learning and awareness about environment and sustainability while solving real world problems.

Course Outcomes (CO):

- **CO1.** Understand the engineering design process for a real life application
- **CO2.** Apply the engineering design process to build a product using simple mechanisms, controllers and software development approaches.
- **CO3.** Explore the scope of robotics and automation in various applications
- **CO4.** Understand the notion of sustainability and design the product, system, or process in accordance with the United Nations' sustainable development goals.

Trade	Unit	Contents	No of	СО
No	No.	Contents	Hrs.	
1	1	luction to Project Based Learning (PBL)		
	1.1	Introduction to Engineering and Engineering Study, Introduction	04	CO1
		to Engineering Projects, and design thinking. Significance of		
		teamwork, Ethics in Engineering		
		Activity based on design thinking		
	1.2	Introduction to Project management : Life cycle of project	02	CO1
	Activity based on Team building			
2	Engin	eering Explorations	06	CO2
	2.1	Engineering Design Process, Need statement finalization, Problem		
		statement formulation, Pairwise comparison chart.		
	Activity for problem statement formation			
	2.2 Basic Components of a Mechanism, Introduction to mechatronics			
	system, Degrees of Freedom or Mobility of a Mechanism 4 Bar			
	Chain, Crank Rocker Mechanism, Slider Crank Mechanism Simple Robotic Arm building			
	Introduction of biomechanics: Musculoskeletal biomechanics,			
	Cardiovascular Mechanisms, Case studies on applications of			
	biomechanics on bones, joints, muscles, tissues etc.			
	2.3 Introduction to sensors, transducers and actuators Interfacing of			
		arduino with various sensors like temperature, humidity, IR		
		sensor, Bio sensors and materials		
2	D - L - 4	? / A 4 4 ²	06	CO2
3		ics/Automation	06	CO3
	3.1	Introduction to industrial revolutions, Components of Industrial		
	3.2	revolution, Robot components, Common robot applications. Introduction to various platform based development (Arduino)		
	3.2	programming and its essentials		
	3.3	Introduction to automation in manufacturing, Automation		
	3.3	techniques, Case studies of industrial automation.		
		teeninques, case studies of industrial automation.		
4	Sustai	nability Solutions	06	CO4
	4.1	SDG 7 : Affordable and clean energy -		
		Renewable / alternative energy resources, Waste to energy		
		technology, zero waste technology and circular economy		
	4.2	SDG 9 & 11 : Industry, innovation and infrastructure -		
		Sustainable building design criterias and certification system,		
	green building materials, urban infrastructure & smart cities			
	Community outreach (water, sanitation, Agriculture)			
	4.3 SDG 13 : Climate action			
	Climate action plan, Ecological footprint, product life cycle			
	analysis			
	4.4 SDG 14 & 15 : Life below water and Life on land			
		Underwater sensing and detection (physical / chemical / biological		
		parameters)		
		Remote sensing and GIS for environment assessment		
		Total	24	

Note: For Semester II, course coordinators are requested to design laboratory sessions for the first 2-3 weeks.

Course Code	Name of the Course							
216U06T101		Presentation and Communication Skills						
Teaching Scheme	TH	P		T	TUT	Total		
					02	02		
Credits Assigned					02	02		
Evaluation Scheme			Mar	·ks				
	LAB/TUT	CA (TH)			ESE	Total		
	CA	IA	IA ISI					
	50		-			50		

Course pre-requisites:

Grammar of English Language, Reading and Listening Comprehension, Letter Writing

Course Objectives: The focus of this course is to improve presentation and soft skills. The course aims to inculcate in students, self-management and interpersonal skills for enhanced workplace communication. The course also focuses on developing soft skills and business writing skills of the students.

Course Outcomes (CO):

- CO1. Use basic communication and behavioural skills in day-to-day communication.
- CO2. To present themselves effectively in business meetings and group discussions.
- **CO3.** Perform confidently and effectively in campus placements.
- **CO4.** Compose business letters, technical proposals and e-communication messages.
- CO5. Manage the self for a successful career.

Module No.	Unit No.	Contents	No of Hrs.	СО
1	Soft S	kills	06	CO1
	1.1	Non-verbal Communication		
	1.2	Assertiveness		
		Barriers to communication		
	1.3	Emotional Intelligence		
2	Effect	ive Business Presentations	08	CO2
	2.1	Business Meetings: Notice, Agenda, Minutes, and Mock Meetings		
	2.2			
	2.3	Debates		
	2.4	Group Discussion		
3		oyment Skills	08	CO3
	3.1	Mock Interviews		
	3.2	SOP Writing		
	3.3	Job Application and Resume		
	3.4	Corporate Ethics		
	ı		ı	1
4		sional Writing Skills	04	CO4
	4.1	Business Letters: Inviting Quotations, Sending Quotations,		
		Placing Orders		
	4.2	Writing Escalation Letters and Emails		
	4.3	Proposal Writing: Language, Style and Types		
	G 16 3		0.4	005
5		Inagement	04	CO5
	5.1	Developing a Growth Mind-Set		
	5.2	Time Management		
	5.3	Stress Management	20	
		Total	30	

• Distribution of Tut CA:

- 1. 10 marks for Group Discussion
- 2. 10 marks for Presentation (with slides)
- 3. 30 marks for assignments (Case studies, Quiz, Written assignments, Language lab based assignments etc.)

Sr. No	Name/s of Author/s			Edition/ Year
1	Sharma, R C. and Krishna Mohan	Basic Correspondence and Report Writing: A Practical Approach to Business and Technical Communication	Tata McGraw- Hill, India	1 st Edition, 2017
2	Wallace, Harold R. and Ann Masters	Personal Development for Life and Work.	Cengage, USA	10 th Edition, 2012
3	Sullivan, Jay	Simply Said: Communicating Better at Work and Beyond	Wiley	1 st Edition, 2018 (reprint)
4	Petes S. J., Francis.	Soft Skills and Professional Communication.	Tata McGraw-Hill, India	1 st Edition, 2011
5		DLM software (Language Lab)	Thaliyola Infotech	

Course Code	Name of the Course							
216U06W101		Basic Workshop Practice - I						
	T							
Teaching Scheme	TH	P		1	TUT	Total		
(Hrs./Week)		02	02			02		
Credits Assigned		02)2			02		
		•						
Evaluation Scheme			Mai	rks				
	LAB/TUT	CA (TH)			ESE	Total		
	CA	IA ISI		E				
	50					50		

Course pre-requisites: Nil

Course Objectives: The main objective of the engineering workshop is to provide all engineering students with theoretical and practical knowledge of the manufacturing environment. The workshop is the foundation of the real industrial environment, and it helps students develop and improve relevant technical hand skills. It teaches the fundamentals of various hand tools, power tools, machine tools, and their applications in various areas of manufacturing. The workshop experiences would help in developing an understanding of the complexity of the industrial job, as well as the time and skill requirements.

Course Outcomes (CO):

- **CO1.** Apply the safety measures practiced while using the tools, equipment, devices, etc.
- **CO2.** Understand the functions and uses of various tools, machines, and devices used in engineering practice to create objects out of raw materials.
- **CO3.** Know various operations and processes carried out in basic engineering shops.
- **CO4.** Interpret job drawings, plan the processes, and carry out the operations to manufacture basic components from raw materials.
- **CO5.** Work with confidence and communicate effectively.

Module	Unit	Contents	No. of	CO
No.	No.		Hrs.	~~1
1		entry shop (Compulsory trade)	06	CO1
	1.1	Introduction to carpentry shop, Demonstration of measuring		to
		instruments, cutting tools used in Carpentry shop, and Planning a		CO5
	1.2	job using Jack plane.		
	1.2	One simple job consisting of lap joints is to be performed in a group consisting of Two students.		
		group consisting of Two students.		
2	Woldi	ng shop (Compulsory trade)	06	CO1
<u> </u>	2.1	Introduction to the Welding shop. Demonstration of welding tools	00	to
	2.1	and equipment, arc welding practice.		CO5
	2.2	One simple job involving Lap, Butt, and Vertical joints is to be	1	
	2.2	performed in a group consisting of Four students.		
		performed in a group consisting of Four stadents.		
3	Printe	ed circuit board (PCB) shop (Compulsory trade)	06	CO1
	3.1	Introduction to PCB shop. Demonstration of tools, and material		to
		used for PCB making.		CO5
	3.2	Demonstration of PCB making.	-	
	J. <u>Z</u>	Demonstration of 1 cb making.		
4	Fitting	g shop*	04	CO1
•	4.1	Introduction to Fitting shop, Demonstration of measuring		to
		instruments, cutting tools, etc. used in Fitting shop.		CO5
	4.2	One simple job involving filing, right angle making, and cutting		
		to-size operations.		
		to size operations.	1	<u> </u>
5	Machi	ine shop*	04	CO1
	5.1	Introduction of all machines available in a machine shop.		to
		Demonstration of assembling and disassembling of tools.		CO3
	5.2	One demonstration job includes turning, facing, grooving,		&
		threading, and other operations on a lathe machine.		CO5
6	Electr	ical Wiring shop*	04	CO1
	6.1	Introduction to Electrical wiring. Demonstration of Electrician		to
		tools like Tester, pliers, screwdriver, multimeter, etc.		CO3
	6.2	Hands-on experience in House wiring or staircase wiring or		&
		godown wiring. Exposure to connecting solar panels with battery		CO5
		and tube light.		
7		uter hardware and assembly*	04	CO1
	7.1	Introduction to various PC hardware components]	to
	7.2	Demonstration of PC assembly		CO3
				&
				CO5
			1	1
8		metal working*	04	CO1
	8.1	Introduction to sheet metal working tools, operations		to
	8.2	Demonstration of various sheet metal operations		CO5
		Total	30	

- Distribution of Lab CA:
- 1. Each student has to complete a total of six trades.
- 2. Carpentry shop, Welding shop, and PCB shop are compulsory trades.
- 3. Any Three of the remaining five trades marked with * will be offered to the students during semester I.
- 4. Lab CA for each student is based on
 - i. Continuous assessment
 - ii. Quality of finished product

Sr.	Name/s of Author/s	Title of Book	Publisher	Edition/Year
No.				
1	Hajra Choudhury S.K., Hajra	Elements of Workshop	Media Promoters,	16 th Edition,
	Choudhury A.K.	Technology,	India	2015
	and Nirjhar Roy	Vol. I & II.		
2	Raghuwanshi B.S.	A Course in Workshop	Dhanpat Rai and	10 th Edition,
		Technology,	Co. India	2012
		Vol. I &II.		Reprint 2017
3	Khurmi R.S. and Gupta J.K.	Textbook of Workshop	S. Chand	16 th Edition,
	_	Technology	Publications India	2021

Course Code		Name of the Course						
216U06C201		Applied Mathematics - II						
Teaching Scheme	Teaching Scheme TH P TUT Total							
(Hrs./Week)	03	00	_		04			
Credits Assigned	03	00		01	04			
Evaluation Scheme			Marks					
	LAB/TUT	CA (TH)		ESE	Total			
	CA	IA	ISE					
	25	20	30	50	125			

Course pre-requisites:

Rank of Matrix, system of Equations, Basics of Integration, Basics of Differentiation, Knowledge of standard curves

Course Objectives:

The objective of the course is to impart knowledge of Eigen Values and Eigen vectors of a matrix, concept of diagonalization, minimal polynomial and singular value decomposition. The course introduces the concept of successive differentiation and helps students to find series of some standard functions. The course communicates various techniques to solve improper integrals. The concept multiple integration is introduced and applications to find Area and Volume are discussed.

Course Outcomes (CO):

- **CO1.** Apply the concept of Eigen values, Eigen vectors of a matrix to diagonalisation of a matrix, singular value decomposition, Cayley-Hamilton theorem, and functions of square matrices.
- **CO2.** Solve problems involving Successive derivatives of real variable functions. Expand a function as an infinite series using Taylor's and Maclaurin's series.
- **CO3.** Apply concept of Beta Gamma function and DUIS to solve improper integrals
- **CO4.** Find length of a curve using Cartesian, Polar and Parametric equations of curves.
- **CO5.** Evaluate multiple integrals and use it to find Area and Volume.

Module	Unit No.	Contents	No of	CO
No. 1		values & Eigen vectors	Hrs 12	CO1
	1.1	Characteristic equation, Eigen values and Eigen vectors, Properties	12	COI
	1.1	of Eigen values and Eigen vectors		
	1.2	Statement of Cayley-Hamilton theorem, Examples based on		
	1.2	verification and application of Cayley-Hamilton theorem		
	1.3	Similarity of matrices, Diagonalization of a matrix		
	1.4	Functions of square matrix, Derogatory and non-derogatory matrices, Minimal polynomial		
	1.5	Singular Value Decomposition		
2	Succes	ssive Differentiation, Expansion Of Functions	6	CO2
	2.1	Successive differentiation: nth derivative of standard functions.	ŭ	- CO-
		Leibnitz's Theorem (without proof) and problems.		
	2.2	Taylor's Theorem (only statement) and Taylor's series, Maclaurin's		
		series(only Statement) Expansion of e^x , $sinx$, $cosx$, $tanx$		
		#Self-learning topic: Expansion of sinh(x), cosh(x), tanh(x), log (1		
		+ x), Indeterminate forms, L'Hospital Rule, problems involving		
		series		
	l.			
3	Integr	ation: Review And Some New Techniques	8	CO3
	3.1	Beta and Gamma functions with properties		
	3.2	Differentiation under integral sign with constant limits of		
		integration.(without proof)(simple examples)		
		#Self-learning topic: Differentiation under integral sign with		
		variable limits of integration.		
4	Rectif	ication	4	CO4
		Pre-requisite: Idea of Curve tracing in Cartesian, Parametric and polar forms. (Straight lines, Circles, Parabolas, Ellipse, Hyperbola, Catenary, Cissoid, Astroid, Cycloid, Lemniscate of Bernoulli, Cardiode).		
	4.1	Rectification of plane curves in Cartesian form		
	4.2	Problems of Rectification in parametric and polar forms		
5	Multip	ple Integration and their Applications	15	CO5
	5.1	Double integration- Introduction, Evaluation of Double Integrals		
		with given limits and over the given region.(Cartesian and Polar		
		coordinates)		
	5.2	Change of order of integration, Evaluation of double integrals by		
		changing order of integration		
	5.3 Application of double integrals to compute Area			
	5.4	Triple integration- Introduction and evaluation of integral in		
		Cartesian form		
	5.5	Problems of Triple integration using cylindrical and spherical Polar		
	- -	coordinates		
	5.6	Application of triple integral to compute volume.		
		# Self-learning topic: Mass of Lamina	4-	
		Total	45	

#Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

• Distribution of TUT CA:

Component*	Online Tutorial (may comprise	Offline Tutorial (written		
	of quiz/embedded quiz/	tutorial/assignments/group		
	gamification/any other	discussion/open book test/		
	innovative method etc.)	surprise test/ any other		
		innovative method etc.)		
Weightage	40-60%	40-60%		

^{*}TUT CA will be a combination of Online/offline tutorials. Minimum 8 graded/non-graded tutorials will be conducted. For graded tutorials, mode of assessment will be shared with students in the beginning of semester. It will be common to all divisions and batches.

Sr.	Name/s of Author/s	Title of Book	Title of Book Publisher	
No				ar
1	B. S. Grewal	Higher Engineering	Khanna Publications,	43 rd Edition
		Mathematics	India	2014
2	Shanti Narayan	A text book of Matrices	S. Chand, India	10 th Edition
				2004
3	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition
		Mathematics	Limited, India	2015
4	Ramana B.V.	Higher Engineering	Tata Mcgraw Hill	34 th Edition
		Mathematics	New Delhi, India	(reprint)
				2019
5	Glyn James	Advanced Modern Engineering	Pearson Publication	4 th Edition
		Mathematic	India	2010
6	M. D. Raisinghania	Ordinary and Partial Differential	S. Chand, India	18 th Edition
		Equations		2013

Course Code	Name of the Course							
216U06L201		Programming in C						
Teaching Scheme	TH	P		1	ΓUT	Total		
(Hrs./Week)		02	02		02	04		
Credits Assigned		01			02	03		
Evaluation Scheme			Mar	ks				
	LAB/TUT	CA (TH)			ESE	Total		
	CA	IA	IS	E				
	75					75		

Course pre-requisites:

Basic knowledge of computer peripheral devices, software concepts, Programming concepts

Course Objectives:

The course is designed to provide complete knowledge of C language. Students will be able to develop logics which will help them to create programs, applications in C. Also by learning the basic programming constructs they can easily switch over to any other language in future.

Course Outcomes (CO):

- CO1. Understand the concepts of data types and operators
- CO2. Illustrate the use of control structures.
- **CO3.** Apply the concepts of arrays and strings.
- **CO4.** Design modular programs using functions and the use of structure and union.
- **CO5.** Apply concepts of pointers in dynamic memory allocation and file handling.

Module No.	Unit No.	Contents		СО
	- 1		(Tutorial + Lab)	
1	Introdu			
	1.1	C Program execution process, Structure of C program and its Elements: Keywords and Identifiers, Literals, Variables		
	1.2 Data Types and its qualifiers, Declaration and Initialization of Variables, Local and Global Variables, Declaring Constants, Comments, Formatted Input/output functions and unformatted input/output functions, printf and scanf function		08	CO1
	1.3	Types of Operators: Introduction, Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise Operators, Special Operators Comma Operator, dereferencing operator, Expressions and Evaluation of Expressions, Operator Precedence and Associativity, Type Conversions		
	I.			
2	Contro	l Structures		
	2.1	Decision Making and Branching Control Structures: if Statement, Multiple, Statements within if, if – else Statement, Nested if – else, else if Ladder,	12	CO2
	2.2	Decision making using Swich-Case		
	2.3	Looping Control Structures: While Loop, For Loop, Do While Loop		
	2.3	Jump Statements: Break and Continue, goto Statement		
				ı
3		and Strings		
	3.1	Arrays: Introduction to One Dimensional Arrays, Multidimensional Arrays, Declaration and Initialization of Arrays, Reading and Displaying arrays, introduction string and various operation on strings, string handling inbuilt functions	12	CO3
	3.2	Character Arrays and Strings: Introduction, Declaring and Initializing String Variables, Reading Character and Writing Character, Reading and Writing Strings, String Handling		
		Functions		
4	TT. 1	-C'1 C		1
4	4.1	efined function and Structures User Defined Functions: Need, Function Declaration and		
	7.1	Definition, Return Values, Function Calls, Passing Arguments to a Function by Value, Recursive functions		
	4.2	Structures and Unions: Introduction, Declaring and defining Structure, Structure Initialization, Accessing and Displaying		
		Structure Members, Array of Structures, Introduction to Unions, Structure Vs Unions		
	<u> </u>	Situation 15 Onions	<u> </u>	<u> </u>
5	Pointer	rs and dynamic memory allocation and C pre-processor		
	5.1	Introduction to pointers: Pointer declaration and initialization,		
		Pointer addition and subtraction, Evaluating pointer expressions		
		Pointers and Functions: Pass by Reference, Returning pointers from functions, File Handling Dynamic Memory Allocation using Pointers: Dynamic memory	14	CO5
	5.2			

	allocation using malloc(), calloc() and realloc() and deallocation of memory using free()		
5.3	C Pre-processor, Directives, Macros		Ī
	Total	60*	

^{*}Laboratory+Tutorial

- Distribution of LAB/TUT CA:
- 5. Continues assessment of laboratory evaluation for 25 marks.
- 6. Onscreen test one divisions wise for 20 marks after module 3 is completed.
- 7. Onscreen test two divisions wise for 20 marks after module 5 is completed.
- 8. Quiz for 10 marks at the end of the semester.

Sr.	Name/s of Author/s	Title of Book	Publisher	Edition/Year	
No					
1	E. Balagurusamy	Programming in ANSI C	McGraw-	8 th Edition,	
			Hill Education, Indi	2019	
			a		
2	Yashwant Kanetkar	Let Us C	BPB Publications, I	16th	
			ndia	Edition,	
				2017	
3	Brian W.	The C	Prentice Hall	2 nd Edition,	
	Kernighan and	programming Language		2015	
	Dennis Ritchie				
4	Pradeep Dey	Structured	Oxford University	1 st Edition,	
	and Manas Ghosh	Programming Approach	Press, India	2016	

Course Code	Name of the Course						
216U06W201		Basic W	Basic Workshop Practice - II				
Teaching Scheme	TH	P		TUT		Total	
(Hrs./Week)		02				02	
Credits Assigned		02				02	
Evaluation Scheme	Marks						
	LAB/TUT		CA (TH)		ESE	Total	
	CA	IA	ISI	E			
	50					50	

Course pre-requisites: Nil

Course Objectives: The main objective of the engineering workshop is to provide all engineering students with theoretical and practical knowledge of the manufacturing environment. The workshop is the foundation of the real industrial environment, and it helps students develop and improve relevant technical hand skills. It teaches the fundamentals of various hand tools, power tools, machine tools, and their applications in various areas of manufacturing. The workshop experiences would help in developing an understanding of the complexity of the industrial job, as well as the time and skill requirements.

Course Outcomes (CO):

- **CO1.** Fabricate products on their own.
- **CO2.** Enhance creativity by exploring new ideas.
- **CO3.** Understand the entire product development and manufacturing process.
- **CO4.** Work as a team member, learn new skills, and develop leadership qualities.
- **CO5.** Maintain safety standards and dimensional accuracy in different manufacturing processes.

Module	Unit	Contents	No of	CO
No.	No.		Hrs.	001
1	Computer hardware and assembly		10	CO1
	1.1 Identify the different PC components, Assemble a Desktop PC			to
		from its components, Install any operating systems on the PC, and		CO5
	Troubleshoot.			
	1.2 Introduction to computer-controlled machines.			
2	Printed circuit board (PCB) shop			CO1
	2.1	Read the given circuit drawing, create a process plan, and Identify		to
		the different tools required.		CO5
	2.2	Manufacture the product according to the given specifications.		
	•	• • • • • • • • • • • • • • • • • • • •		
3	Weldi	Welding shop		CO1
	3.1			to CO5
	3.2	Manufacture the product according to the given specifications.		
4	Carpe	ntry shop	10	CO1
	4.1	Read the given drawing, Prepare the process plan, and Identify the		to
		different tools required.		CO5
	4.2	Manufacture the product as per the given specifications.		
5	Sheet	metal shop	10	CO1
	5.1	Read the given drawing, create a process plan, and Identify the		to
		different tools required.		CO5
	5.2	Manufacture the product according to the given specifications.		
		Total	30	

Note: Based on the department, the compulsory trades are

Computer hardware and assembly: Computer and Information Technology Departments

Printed Circuit Board: Electronics and Computer Engineering, Electronics and Telecommunications

Engineering Departments

Welding shop: Mechanical Engineering Department

Students will be allotted to any **TWO** trades apart from compulsory trade. With the help of their skills, they will make products or jobs in their respective trade. A team of students will consist of 5 to 6 members. Each team will get a maximum 10 of hours to complete one trade. Term work assessment for each student is based on

- 1. Continuous assessment
- 2. Quality of finished product

The work expected from the student includes

- 1. Prepare detailed product drawing
- 2. Calculate material required
- 3. Calculate the selling price of the product considering raw material cost, labor cost, profit, etc.
- 4. Process plan with manpower and approximate time required.
- 5. Complete the product in the given period

Sr.	Name/s of Author/s	Title of Book	Publisher	Edition/Year
No.				
1	Hajra Choudhury S.K., Hajra	Elements of	Media	16 th Edition,
	Choudhury A.K. and Nirjhar Roy Workshop		Promoters,	2015
		Technology,	India	
		Vol. I & II.		
2	Raghuwanshi B.S.	A Course in	Dhanpat Rai and	10 th Edition,
		Workshop	Co. India	2012
		Technology,		Reprint 2017
		Vol. I &II.		
3	Khurmi R.S. and Gupta J.K.	Textbook of	S. Chand India	6 th Edition,
	_	Workshop		2007
		Technology		Reprint 2012

END OF DOCUMENT