Feuille d'exercice n° 01 : Rappels et compléments d'algèbre linéaire, 1ère partie

I. Familles de vecteurs et sous-espaces vectoriels

Exercice 1 () Pour tout entier $0 \le k \le n$, on pose $f_k : \mathbb{R} \to \mathbb{R}$ définie par $f_k(x) = e^{kx}$. Montrer que la famille $(f_k)_{0 \le k \le n}$ est une famille libre de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Exercice 2 (\circlearrowleft) Soit E un \mathbb{K} -espace vectoriel, soit E_1, \ldots, E_n, F des sous-espaces vectoriels de E vérifiant $E = E_1 \oplus \cdots \oplus E_n$.

Si $1 \leq i \leq n$, on pose $F_i = F \cap E_i$.

- 1) Justifier que F_1, \ldots, F_n sont des sous-espaces vectoriels de E.
- 2) Montrer que la somme $F_1 + \cdots + F_n$ est directe.
- 3) Comparer F et $F_1 + \cdots + F_n$.

II. Applications linéaires

Exercice 3 ($^{\circ}$) Soit E un espace vectoriel, et u une application linéaire de E dans E. Dire si les propriétés suivantes sont vraies ou fausses. Si une propriété est vraie, le démontrer. Si elle est fausse, donner un contre-exemple ET donner une condition suffisante sur u du type "u injective" ou "u surjective" sous laquelle l'assertion devient vraie, et démontrer que cette condition est bien suffisante.

- 1) Si e_1, e_2, \ldots, e_p est libre, il en est de même de $u(e_1), u(e_2), \ldots, u(e_p)$.
- 2) Si $u(e_1), u(e_2), \ldots, u(e_p)$ est libre, il en est de même de e_1, e_2, \ldots, e_p .
- 3) Si e_1, e_2, \ldots, e_p est génératrice, il en est de même de $u(e_1), u(e_2), \ldots, u(e_p)$.
- 4) Si $u(e_1), u(e_2), \ldots, u(e_p)$ est génératrice, il en est de même de e_1, e_2, \ldots, e_p .

Exercice 4 (\circlearrowleft) Soit E et F deux \mathbb{K} -espaces-vectoriels, E_1 et E_2 deux sous-espaces-vectoriels supplémentaires de E. Soit $h_1 \in \mathcal{L}(E_1, F)$ et $h_2 \in \mathcal{L}(E_2, F)$. Montrer qu'il existe un unique $h \in \mathcal{L}(E, F)$ vérifiant $h_{|E_1} = h_1$ et $h_{|E_2} = h_2$.

Exercice 5 (A) Soit $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$. Montrer que $f^2 = 0$ si et seulement si il existe une forme linéaire α de \mathbb{R}^3 dans \mathbb{R} et $v \in \mathbb{R}^3$ tels que $\forall x \in \mathbb{R}^3$ $f(x) = \alpha(x) v$ et $\alpha(v) = 0$.

Exercice 6 Soit E un \mathbb{K} -ev de dimension n et soit $u \in \mathcal{L}(E)$, de rang r.

Déterminer les dimensions des sous-espaces de $\mathscr{L}(E)$ suivants :

$$A = \{ f \in \mathcal{L}(E) , f \circ u = 0 \}$$

$$B = \{ f \in \mathcal{L}(E) , u \circ f = 0 \}$$

$$C = A \cap B.$$

Exercice 7 Soit E un \mathbb{K} -espace-vectoriel, p et q deux projecteurs de E. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$. Identifier alors Im(p+q) et Ker(p+q).

Exercice 8 Soient E un \mathbb{K} -ev de dimension $n, k \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$ tel que $u^k = \mathrm{Id}$. Soit enfin F un sev de E stable par u.

- 1) Soit p un projecteur sur F; on pose $q = \frac{1}{k} \sum_{j=0}^{k-1} u^j \circ p \circ u^{k-j}$. Démontrer que q est un projecteur. Quelle est son image?
- 2) Démontrer que F admet un supplémentaire lui aussi stable par u.

Exercice 9 (\triangleright) Soit n dans \mathbb{N}^* et p_1, p_2, \ldots, p_m des projecteurs non nuls de $E = \mathbb{R}^n$ vérifiant $p_i \circ p_j = 0$ pour tout $i \neq j$.

- 1) On suppose m = n. Montrer que $E = \operatorname{Im} p_1 \oplus \cdots \oplus \operatorname{Im} p_n$.
- **2)** Montrer que la famille (p_1, p_2, \ldots, p_m) est libre.
- 3) Soit p un projecteur de \mathbb{R}^n . Déterminer la dimension du commutant de p (c'est-à-dire l'ensemble des endomorphismes de \mathbb{R}^n commutant avec p).
- 4) Trouver une partie libre de cardinal maximal, constituée de projecteurs de \mathbb{R}^n .

Indication : on pourra considérer les matrices élémentaires $E_{i,i}$ ainsi que les $E_{i,i} + E_{i,j}$ avec $i \neq j$.

III. Matrices

Exercice 10 () On considère $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{Z}$.

Exercice 11 ($^{\infty}$) Soit $n \in \mathbb{N}^*$. On note $\mathscr{S}_n(\mathbb{K})$ (resp. $\mathscr{A}_n(\mathbb{K})$) l'ensemble des matrices symétriques (resp. antisymétriques) de taille $n \times n$ à coefficients dans \mathbb{K} .

- 1) Déterminer dim $\mathscr{S}_n(\mathbb{K})$ et dim $\mathscr{A}_n(\mathbb{K})$.
- 2) Montrer que $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ sont supplémentaires dans $\mathscr{M}_n(\mathbb{K})$.

Exercice 12 Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$, et r = rg(A).

On note $J_{n,p,r}$ la matrice de $\mathscr{M}_{n,p}(\mathbb{K})$ telle que $J_{n,p,r} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

- 1) Montrer qu'il existe deux matrices inversibles $P \in \mathcal{M}_n(\mathbb{K})$ et $Q \in \mathcal{M}_p(\mathbb{K})$ telles que $A = PJ_{n,p,r}Q$.
- 2) Montrer qu'il existe $C \in \mathcal{M}_{n,r}(\mathbb{R})$ et $D \in \mathcal{M}_{r,p}(\mathbb{R})$ telles que A = CD.

IV. Bonus sur les polynômes

Exercice 13 (\(\Lambda\)

Soient $P \in \mathbb{C}[X] \setminus \{0\}$, $n \in \mathbb{N}^*$ tels que P^n divise $P \circ P$. Montrer que X^n divise P.

