Video	Time From Start, min:sec	Correction
1	3:08	"left and right side" - for consistency with cursor (pointer) position change to "right and left side"
1	4:40	"one small exception" - change to "two exceptions"
2	6:45	Figure shows laminar flow for R_e < 2000; turbulent flow for R_e > 2000 - this is not quite correct. Turbulent flow occurs for R_e 3000 - the region for 2000 < R_e < 3000 is a region of transitional (from laminar to turbulent) flow. Refer to the replacement slide that is provided.
2	7:23	Says 2000; should say 3000
3	2:43	"viscosity isn't constant" - Bernoulli and Poiseuille equations assume that viscosity (η) is constant for a given fluid. For blood viscosity is not constant over the full range of physiological conditions.
4	1:58	"diameter of wall: - should be "thickness of wall"
4	2:20	"ratio of wall thickness to diameter" should be "ratio of wall thickness to radius"
4	2:50	"inner layer - should be "middle layer"
4	3:15	Clarification: flow resistance is inversely proportional to r ⁴ - refer to video 2, slide 2.
4	4:24	The aorta does not meet the requirement for a thin-walled pressure vessel; the radius (12.5 mm) is only about 6 times the wall thickness. To meet the requirement for a thin-walled pressure vessel the radius needs to be at least 10 times (more would be better) the wall thickness.
4	12:45	"no pressure pulse" = there is a pressure in the aorta after the Ao valve closes, it just doesn't get an additional boost from recoil of the aortic wall.
4	12:51	"blood flow through capillary beds ceases" - not true. Blood will indeed flow through capillaries - aster all, lots of folks walk around with atherosclerotic vessels.
5	9:36	Video 6 is not the last video in this Module - video 7 is the last video in this Module.
6	0:20	Video 6 is not the last video in this Module - video 7 is the last video in this Module.
6	11:35	Video 6 is not the last video in this Module - video 7 is the last video in this Module.