

Track-based CSC Alignment and Global CMS Alignment

Jim Pivarski

Texas A&M University

9 December, 2008

- ► CSC Alignment: chambers within rings
 - ightharpoonup achieved target resolution of 300 μm
- layers within chambers
 - early plots show small misalignments
- ▶ Global CMS alignment: wheels and disks relative to tracker
 - produced muon alignment constants, but results are surprising
 - sensitivity to tracker could constrain tracker alignment

- ► Muon chambers can be individually aligned to the tracker with 10–100 pb⁻¹ of globalMuons
- ▶ But for CSCs, it will require much less data to
 - 1. align chambers relative to each other in each ring

mlobal Muor russal

2. align the ring to the tracker

globalMuon procedure

Overlaps procedure

Overlaps procedure:

- select tracks that pass through overlap of two CSCs
- require consistency in pair of segments: slope and intercept
- 3. solve system for all pairs

System is over-constrained: circle can't have any gaps!

CSC Overlaps alignment results

Jim Pivarski

ME-2/1 and -3/1 (most complete in beam-halo dataset)

- Expect \sim 230 μ m resolution in $r\phi$ (MC)
- Alignment results in data follow photogrammetry (PG) measurement
- Alignment resolution from PG comparison: 270 μm
- Similarly, ϕ_z resolution is 0.35 mrad
- ► Minutes of beam-halo data!

data: aligned (histogram) and PG (data)

Pivarski, Safonov (Texas A&M), Banicz (US-CMS)

- ▶ Each residual is a difference of positions of neighbors $(x_i x_{i+1})$
- ► Must sum to zero: $(x_1 x_2) + (x_2 x_3) + ... + (x_N x_1) = 0$
- $ightharpoonup r\phi$ residuals summed to zero in MC, but not data
- Precision agreement with photogrammetry is only possible if this is due to a uniform error in the chamber description:
 - either chamber active volume is 2.5 mm closer to beamline
 - or width of active volume is wrong by 800 μ m
 - (or a little of both, or something equivalent)
- Resolution: CSC strip pitch angle in CMSSW was set to design value, rather than the measurement: a 10 μ m width error \times 80 strips

$$\sum_{\text{chambers } i} (r_i - r_{i+1}) = \left\{ \begin{array}{ccc} & \text{with design pitch} & \text{with real pitch} \\ \hline ME-2/1 & +14.30 \text{ mm} & -0.72 \pm 0.42 \text{ mm} \\ ME-3/1 & +15.90 \text{ mm} & -0.36 \pm 0.51 \text{ mm} \end{array} \right.$$

Early look at CSC layer alignment Jim Pivarski

- ► CSC overlaps region has 12 hits - 2 to determine track = 5 unbiased hits per chamber
- ► 5/6 layers is a complete internal alignment
- Test in MC (middle): residuals reproduce test-pattern (high stats)
- Plot from data (bottom): typical misalignment 100–200 μm
- Need 9 minutes × 10² for high precision :)

6/14

Global muon alignment

- Alignment of muon system relative to tracker:
 - select globalMuon tracks by momentum
 - refit, ignoring muon hits
 - use unbiased residuals to align wheels/disks

- ► Same procedure can later be applied to individual chambers
 - Wheel/disk alignment is both "practice" and the largest part of the alignment correction
- ▶ Both HIP and MillePede groups used procedures like this. . .
 - which roughly agreed with each other (6 d.o.f.)
 - in time for CRAFT re-processing
 - but they had unexpected features: twist around beamline $(d\phi_z/dz)$ and z expansion
- Not used in this round of re-processing

Momentum cut/extrapolation

- ► \vec{B} -field errors and multiple scattering affect low-momentum tracks
- ▶ Alignment error \rightarrow 0 as $|p| \rightarrow \infty$
- ▶ Plot vs. curvature (q/p_T) , fit around 0
 - constant = misalignment
 - antisymmetric in $\vec{q} = \vec{B}$ errors
 - ightharpoonup symmetric in q = scattering

Barrel wheel 0

Jim Pivarski

Barrel wheel -2

Twist around beamline

Jim Pivarski 9/14

- Aligned ϕ_z for all wheels/disks with the $q/p_T \rightarrow 0$ method
 - effect of \vec{B} error is minimized
- ► Observed a large (2.5 mrad) twist in the minus endcap
- Reproducible in
 - all stable 3.8 T runs (top plot)
 - all tracker alignments (middle)
 - both algorithms (bottom)
- $\vec{B} = 0$ photogrammetry constrains ϕ_z differences at 0.5 mrad
- Could this be
 - real twisting as $\vec{B} \rightarrow 3.8 \text{ T}$?
 - ▶ an artifact of external bias?

HIP: J. Pivarski, A. Safonov MillePede: P. Martinez, F. Matorras, J. Fernandez, A. Calderon

Apparently, a little of both

Jim Pivarski 10/14

- ightharpoonup Divide wheels/disks into smaller bins by plotting as a function of z
 - obvious discontinuities at wheel boundaries are real misalignments
 - slope within wheels is external bias

- ▶ Possible sources of external bias
 - global distortions in tracker, extrapolated to muon system
 - propagation errors?
 - \vec{B} errors? ($|\vec{p}| > 40$ GeV in the HIP plot)

Invert problem: align tracker?

Jim Pivarski

11/14

- ▶ Plot muon ϕ_z residuals vs. Z_{tracker} (black)
 - broad distribution of entrance angles effectively averages over the muon system
- ► Slope (0.2 mrad across TOB) may indicate a twist in the tracker
- ➤ Zijin Guo added a tracker twist by hand (0.6 mrad, blue): easily observed

Expansion in z

Jim Pivarski 12/14

Global Muons think that the muon system is wider than ideal geometry

- ▶ +14 mm across barrel (0.2%)
- $ightharpoonup \vec{B}$ ought to *compress* in z
- ▶ perhaps ideal isn't intended to represent $\vec{B} = 0$, and this is compression relative to true $\vec{B} = 0$?

Is muon alignment affected by tracker *z*-expansion?

- ► No: muon residuals can't resolve a plausible *z*-expansion (black vs. blue: 0.1% tracker stretch)
- ▶ But we can see large displacements of TEC relative to TOB (discontinuity)

 \triangleright Select parts of the tracker by cutting on R_{PCA} and by removing outer tracker hits from refit (to highlight inner tracker)

- \triangleright CSC Alignment: achieved 300 μ m resolution with minutes of beam-halo data
 - verified by an independent measurement (photogrammetry)
 - \triangleright predicted a 10 μ m correction in chamber geometry
 - can align layers with a similar technique
- Wheel/disk alignment
 - many cross-checks are available in this huge dataset
 - a significant part of the twist we saw was real
 - ▶ is ideal-geometry barrel more compressed than real barrel at $\vec{B} = 3.8 \text{ T}$?
- Global CMS alignment
 - muon system can provide feedback to tracker; we could iterate alignment