Island of projecting onthe a single \bar{e} , let project \bar{e} it onto two \bar{e}_a & \bar{e}_b 's - both are onthonormal to each other.

(Here $Z_i = X_i - \bar{X}_i$)

Consider,

Our goal is to find the Zi that minimize the MSE.

MSE = \frac{N}{|Z_i - \frac{1}{2}i|^2} \tau \left(\text{let there be N samples & let } \text{Zet Rd} \)

The Rd

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (x_i - (x_i \cdot e_a) \cdot e_a - (x_i \cdot e_b) \cdot e_b) \cdot (x_i - (x_i \cdot e_a) \cdot e_a) - (x_i \cdot e_b) \cdot e_b)$$

$$= \frac{1}{N} ||x_i||^2 - (x_i \cdot e_a)^2 - (x_i \cdot e_a)^2$$

For orininging MSE, we need to onasimise

to maximize them separately.

in)

We would like to impose sextrictions like 1821 = 1 SIR 11 = 1 SIR 11 = 1

Le(e_b, A) =
$$\sqrt{1 - 2(e_{a}^{\dagger}e_{a}^{-1})}$$
 [e_a^te_a = $||e_{a}||^{2} = 1$]
Le(e_b, A) = $\sqrt{2 - 2(e_{a}^{\dagger}e_{b}^{-1})}$ [e_a^te_b = $||e_{a}||^{2} = 1$ ist.
constaint

$$\frac{\partial \mathcal{L}_1}{\partial \mathcal{A}_1} = -(e_0^T e_0 - 1)$$

$$\frac{\partial \mathcal{L}_2}{\partial \mathcal{A}_2} = -(e_0^T e_0 - 1)$$

$$= 2 \operatorname{Ca} = ||\operatorname{Ca}||^{2} = 1$$

$$\operatorname{Ca} = 2 \operatorname{Ca} = ||\operatorname{Ca}||^{2} = 1$$

$$\operatorname{Ce}_{b} = 2 \operatorname{Ce}_{b} = 2 \operatorname{Ce}_{b} = 1$$

So, la & & au both eigen vectors of C' matrix

$$T_1 = A_1(e_1^T e_2)$$
 $T_2 = A_2(e_1^T e_2)$
= A_1 = A_2

So, if we want to maximiz Ti+T2, we need to choose I, I Iz values in such as way they are the largest two eigen values.

with the second highest eigen value