Command	Explanation	Notes
anova()	calculates <i>p</i> -value for joint test	
linearHypothesis()	tests a linear (joint) hypothesis	requires "car"
resettest()	performs RESET test	requires "lmtest"
<pre>jarque.bera.test()</pre>	performs Jarque-Bera test	requires "tseries"
vcovHC()	heteroskedasticity-robust calculations	requires "sandwich"
coeftest()	tests regression coefficients	requires "lmtest"
waldtest()	tests overall significance	requires "lmtest"
dwtest()	tests for first-order autocorrelation	requires "lmtest"
bgtest()	tests for higher-order autocorrelation	requires "lmtest"

Example Code

anova(olsu, olsr)

Find *p*-value for restrictions with unrestricted regression olsu and restricted regression olsr with the same dependent variable (e.g. all zero hypotheses).

```
linearHypothesis(olsu, c("x<sub>2</sub> = -3", "x<sub>3</sub> = 100")) Find the p-value for restrictions with unrestricted regression olsu and restrictions H_0: \beta_2 = -3 and \beta_3 = 100.
```

resettest(ols1)

For unrestricted regression olsu, test for the relevance of \hat{y}^2 and \hat{y}^3 nonlinear terms.

```
jarque.bera.test(ols1$residuals)
To test for heteroskedasticity of ols1.
```

coeftest(ols1, vcov = vcovHC(ols1, type = "HCO"))
To see heteroskedasticity-robust standard errors of ols1.

waldtest(ols1, vcov = vcovHC(ols1, type = "HCO")) To see the heteroskedasticity-robust F-statistic of ols1.

bgtest(ols1, order=3, type="F")
Test for third-order autocorrelation of ols1.