

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 2: ELEKTRIZITÄT, MAGNETISMUS, OPTIK

Übungstitel: Transformator							
Betreuer:				_			
Gruppennun	nmer:	41	Vorbereitung Durchführung Protokoll				
Name:	Name: Tanja Maier, Johannes Winkler						
Kennzahl:	033 678	Matrikelnummer:	11778750, 00760897				
Datum:	23. Oktober 2020		WS _ 20				

1 Aufgabenstellung

2 Grundlagen und Versuchsaufbau

Abbildung 1: Ionentransport im Elektrolyten im elektrischen Feld. A Anode, K Kathode.

3 Geräteliste

Tabelle 1: Liste der verwendeten Geräte

Bezeichnung	Hersteller	Gerätenummer	Unsicherheit
Thermometer			±1 °C
Frequenzgenerator	Wavetek	0161674	
Trenntransformator			
Oszilloskop	RIGOL	DS1ET204711289	
Widerstand 1 k Ω	Rosenthal		$\pm~1\%$
Widerstand 200 Ω	Rosenthal		$\pm~1\%$
2x Spule $n = 500$		843/3	
Kondensator 1 μ F	Philips	,	

4 Durchführung und Messwerte

- 5 Auswertung
- 6 Zusammenfassung
- 7 Diskussion

8 Literaturverzeichnis

- [1] https://www.chemie.de/lexikon/Elektrochemisches_quivalent.html, 22.10.2020 22:53 Uhr
- [2] bereitgestellte Unterlagen zum Versuch aus dem TeachCenter der TU Graz