SEMICONDUCTOR DEVICE

Patent number:

JP2000022005

Publication date:

2000-01-21

Inventor:

OBA RYUJI

Applicant:

TOSHIBA CORP

Classification:

- international:

H01L21/8247; H01L29/788; H01L29/792; H01L27/115

- european:

Application number: JP19980181122 19980626

Priority number(s):

Abstract of JP2000022005

PROBLEM TO BE SOLVED: To make feasible of adjusting the write voltage by suppressing the leakage current from a nanocrystal floating gate to a channel. SOLUTION: In a semiconductor device provided with a semiconductor substrate, a gate electrode as well as a gate insulating film containing the semiconductor fine grains capable of accumulating the charge generated between the semiconductor substrate and the floating gate electrode, the semiconductor fine grains contained in said gate insulating film functioning as the floating gate electrode are to be the semiconductor fine grains containing n type or p type impurities also the grain size thereof to be 5 or 10 nano meter scale.

Data supplied from the esp@cenet database - Worldwide

· (19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-22005 (P2000-22005A)

(43)公開日 平成12年1月21日(2000.1.21)

(51) 7 . (7) 7	_	SANTOT EI			15 f	•		テーマコード(参考)
(51) Int.Cl.?	•	識別記号			FΙ			1-47-L (\$\frac{2}{2}\)
HO1L	21/8247				H01L	. 29/78	371	5 F 0 O 1
	29/788				•	27/10	434	5 F 0 8 3
	29/792	•	•	•				
	27/115							

請求項の数4 OL (全8 頁) 審查請求 有

(21)出願番号	特顏平10-181122	(71)出願人	000003078
----------	--------------	---------	-----------

株式会社東芝 平成10年6月26日(1998.6,26) 神奈川県川崎市幸区堀川町72番地 (22)出願日

> (72)発明者 大場竜二

神奈川県横浜市磯子区新杉田町8番地 株

式会社東芝横浜事業所内

(74)代理人 100064285

弁理士 佐藤 一雄 (外3名)

最終頁に続く

(54)【発明の名称】 半導体装置

(57) 【要約】.

【課題】 ナノクリスタル浮遊ゲートからチャネルへの リーク電流を抑制し、曹込み電圧の調節を可能とする。 【解決手段】 半導体基板と、ゲート電極と、前記半導 体基板と浮遊ゲート電極との間に設けられ電荷を蓄積で きる半導体微粒子が含まれるゲート絶縁膜とを備える半 導体装置において、浮遊ゲート電極として機能する前記 ゲート絶縁膜に含まれる前記半導体微粒子がn型または p型の不純物を含む半導体微粒子であると共にその粒径 を5ないし10ナノメータのスケールとした。

【特許請求の範囲】

【請求項1】半導体基板と、ゲート電極と、前記半導体基板と浮遊ゲート電極との間に設けられ電荷を蓄積できる半導体微粒子が含まれるゲート絶縁膜とを備える半導体装置において、浮遊ゲート電極として機能する前記ゲート絶縁膜に含まれる前記半導体微粒子がn型またはp型の半導体微粒子であると共にその粒径がナノメータ単位のものであることを特徴とする半導体装置。

【請求項2】前記n型またはp型の半導体微粒子は、その粒径が5ないし10ナノメータであることを特徴とする請求項1に記載の半導体装置。

【請求項3】前記半導体基板の表面に選択的に形成されたソース・ドレイン領域と、ソース・ドレイン領域間に形成されたチャネル領域と、を備え、前記ゲート絶縁膜は、前記半導体基板の前記チャネル領域の表面に形成されたトンネル酸化膜と、前記トンネル酸化膜上に不純物をドーピングさせながら多結晶シリコンを蒸着・アニールすることにより形成された n型または p型の前記半導体微粒子層と、この半導体微粒子層と前記ゲート電極との間に蒸着された制御酸化膜と、により前記浮遊ゲート電極を構成することを特徴とする請求項1に記載の半導体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体装置に関する もので、特に浮遊ゲート型不揮発性メモリ装置として用 いられる半導体装置に関するものである。

[0002]

【従来の技術】従来より半導体基板表面のチャネル形成面とゲート電極との間に設けられるゲート絶縁膜に粒径がナノメータスケールの結晶微粒子の層を形成して、浮遊ゲート電極として機能させるナノクリスタル浮遊ゲートを有する半導体装置が提案されている(参考文献-S. Tiwari and F. Rana et al. IEDM Dig., p521 /1995-参照)。このような従来の半導体装置が図5に示されている。

【0003】図5を参照して従来の半導体装置の一例としてのナノクリスタル浮遊ゲート型不揮発性メモリ装置の構造を説明する。p型シリコン基板1中にソース/ドレイン領域6があり、基板表面には厚さtox=1.5n m程度のトンネル酸化膜2を介して粒径5nm程度の不純物が含まれていない固有の(Intrinsic)シリコン *

 $V_W = V_{th} + q / 2C + (1 + T_{0x} / t_{0x}) \triangle V_1$

となる。ここで、

 $C \sim \varepsilon \cos \pi r^2$ / $[Tox + 1/2 (\varepsilon \cos / \varepsilon \sin) r]$ (ただし、 $\varepsilon \cos$, $\varepsilon \sin$ を $\varepsilon \sin$ を $\varepsilon \cos / \varepsilon \sin$ を $\varepsilon \cos / \varepsilon \cos / \varepsilon \cos$) はドット=ゲート間容量であり、 $\Delta V_1 \sim h^2$ / 2qm $\varepsilon \cos / \varepsilon \cos / \varepsilon \cos$ な $\varepsilon \cos / \varepsilon \cos / \varepsilon \cos$ を $\varepsilon \cos / \varepsilon \cos$ と $\varepsilon \cos / \varepsilon \cos$ を $\varepsilon \cos$ を $\varepsilon \cos / \varepsilon \cos$ を $\varepsilon \cos$ を $\varepsilon \cos$ を $\varepsilon \cos$ を $\varepsilon \cos$

* (Si) 微粒子3がチャネル全体に均一に積層されており、さらにその上に厚さTox=7nm程度の制御酸化膜4を介しTox=7nm程度の制御酸化膜けられている。

【0004】上記構成を有する半導体メモリ装置において、情報の書き込みはゲート電圧をブラスにかけることにより、チャネルにできる反転層のキャリア電子をトンネル酸化膜2を透しての直接トンネルによりSi微粒子3に注入、捕捉させることにより行なっており、また、情報の読み出しは、捕捉情報電荷によるゲート電極から反転層への電界の遮蔽によるドレイン電流の減少を観察することにより行なっている。その際、情報電荷蓄積部であるSi微粒子におけるクーロンブロッケイド効果により、情報電荷は素電荷qを単位に量子化されるため1素子で多値化が可能である。

【0005】例えばSi微粒子の面密度を 1×10^{12} c m^{-2} であるとして、微粒子一個に一電子ずつ捕捉されていれば、MOSFET (Metal Oxide Semiconductor-FieldEffect Transistor)の閾値は0.36 V変化し、二個づつ捕捉されていればMOSFETの閾値は0.7 2 V変化する。ドレイン電流変化は、サブ・スレッショルド領域ならば5 桁以上の違いとなって現れるので、十分感知できるものである。情報の消去は書き込みと逆にゲート電圧をマイナスにかけることで、捕捉電子をトンネル酸化膜2 を透してSi微粒子3 からチャネルヘトンネルさせることで行なう。

【0006】図5に示した従来の半導体装置は、確かにナノクリスタル浮遊ゲートを備えてはいるが、この浮遊ゲートを構成するナノクリスタル微粒子は不純物が含まれていない固有の(Intrinsicな)半導体微粒子である。このような従来のナノクリスタル浮遊ゲート型メモリ装置においては、チャネルと浮遊ゲート間の酸化膜が非常に薄いため、浮遊ゲートにおいて充電、捕捉された電子がチャネル側へリークし易いという問題がある。

【0007】Si微粒子への電子の書込みは、反転層電子のエネルギよりも静電エネルギと書込準位エネルギの和の方が小さくなった時に行なわれるが、図5に示した従来のナノクリスタルメモリでは、本来的なシリコン(Intrinsic Si)微粒子により形成されるため、一個目の電子の書込電圧Vwは、反転層が形成されるしきい値Vthに、静電エネルギと書込み順位である0次元束縛

 $tox) \triangle V_1 \tag{1}$

の基底状態エネルギを加えた値、

すれば、しきい値Vthを変えないで書込み電圧Vw を調節することは非常に難しい。

[0008]

【発明が解決しようとする課題】上述したように、従来の半導体装置によれば、浮遊ゲートからチャネルへのリーク電流の制御が難しいばかりでなく、しきい値を変えずにむ込み電圧を調整することも難しいという問題があ

った。

【0009】本発明は、浮遊ゲートからチャネルへのリ ーク電流の抑制や、魯込み電圧の調節が可能な半導体装 置を提供することを目的としている。

[0010]

【課題を解決するための手段】上記目的を達成するた め、請求項1に係る半導体装置は、半導体基板と、ゲー ト電極と、前記半導体基板と浮遊ゲート電極との間に設 けられ電荷を蓄積できる半導体微粒子が含まれるゲート 絶縁膜とを備える半導体装置において、_ 浮遊ゲート電極_ 10 として機能する前記ゲート絶縁膜に含まれる前記半導体 微粒子がn型またはp型の半導体微粒子であると共にそ の粒径がナノメータ単位のものであることを特徴として いるまた、請求項2に係る半導体装置は、請求項1に記 載のものにおいて、n型またはp型の半導体微粒子の粒 径が5ないし10ナノメータであることを特徴としてい

【0011】また、請求項3に係る半導体装置は、請求 項1に記載のものにおいて、半導体基板の表面に選択的 に形成されたソース・ドレイン領域と、ソース・ドレイ ン領域間に形成されたチャネル領域と、を備え、前記ゲ ート絶縁膜は、前記半導体基板の前記チャネル領域の表 面に形成されたトンネル酸化膜と、前記トンネル酸化膜 上に不純物をドーピングさせながら多結晶シリコンを蒸 着・アニールすることにより形成されたn型またはp型 の前記半導体微粒子層と、この半導体微粒子層と前記ゲ ート電極との間に蒸着された制御酸化膜と、により前記 * 浮遊ゲート電極を構成することを特徴としている。

【0012】以上のような本発明に係る半導体装置を浮 遊ゲート部にSi微結晶を有するナノクリスタル浮遊ゲ ート型MOSメモリに適用すると、Si微結晶がp型ま たはn型のシリコンで構成されているために、それぞれ 異なる作用を有する。まず、Si微粒子がn型の場合に は書込準位がSi微粒子のコンダクションバンド内の基 底状態より高いエネルギ準位になることにより書込電圧 値が大きくなる方向への調節が可能になる。また、Si 微結晶がp型の場合には書込準位がSi微粒子のヴァレ ンスバンド内になるため書込電圧値の小さくなる方向へ の調節が可能になり、また微粒子からチャネルに戻る際 のエネルギ障壁が高くなるためリーク電流の改善が可能 になる。したがって、上記それぞれの作用を行なわせる ため、半導体微粒子を構成するシリコンの型を任意に選 択することにより所望の作用・効果を得ることができ る。

[0013]

【発明の実施の形態】以下、本発明に係る半導体装置の 好適な実施の形態について、添付図面を参照しながら詳 細に説明する。まず、図1の断面図を参照しながら本発 明の第1実施形態に係る半導体装置について説明する。 この第1実施形態の半導体装置は、単一MOSFET型 不揮発性記憶装置に適用した場合を例にして説明する。 【0014】図1において、第1実施形態に係る不揮発 性半導体記憶装置は、p型シリコン(Si)基板11 と、このSi基板11上に厚さtox=2nmで形成され た熱酸化膜12と、この熱酸化膜12上に粒径m=5m mのn型のシリコン微粒子により形成されたSi微結晶 13と、このSi微結晶13上に形成された酸化膜14 と、ゲート電極となるポリシリコン層15と、より構成 されている。したがってこの第1実施形態に係る半導体 装置は、半導体微粒子がn型シリコンにより構成されて いるタイプのものである。

【0015】上記Si微結晶13は、例えばLPCVD (Low Pressure Chemical VapourDeposition) 装置によ りSi中でドナーとなるリンをドープしながら不純物濃 度1×10²¹cm⁻³のアモルファスシリコンを1nmだ け蒸着(CVD)し、酸素を含む雰囲気にさらすことな く800℃で1分間アニールすることにより形成されて いる。このSi微結晶13の上に化学的気相法(CV D) による厚さTox=10nmの酸化膜14とゲート電 極となる厚さ200nmのn+ポリシリコン層を形成し た後、ゲート電極15のパターンを形成し、電極15を マスクとしてリンをドーズ量1×10¹⁵cm⁻²入射エネ ルギー15KeVで注入し、1000℃で20秒のアニ ールにより、 n+拡散層16を形成することによって、 浮遊ゲート部に n型のSi微粒子を有する第1実施形態 に係るナノクリスタル浮遊ゲート型MOSメモリ装置が 形成できる (図1)。上記n+層16は、ソース・ドレ イン領域として用いられることになる。

【0016】次に、図2の断面図を参照しながら本発明 の第2実施形態に係る半導体装置としての単一MOSF ET型不揮発性半導体記憶装置について説明する。この 第2実施形態に係る半導体装置は半導体微粒子がp型シ リコンにより構成されているタイプのものである。ま た、半導体装置の基板は、第1実施形態と同様に p型シ リコンにより構成されている。

【0017】図2において、第2実施形態に係る不揮発 性半導体記憶装置は、p型シリコン(Si)基板21 と、このSi基板21上に厚さtox=2nmで形成され た熱酸化膜22と、この熱酸化膜22上に粒径r=5n mのp型のシリコン微粒子により形成されたSi微結晶 23と、このSi微結晶23上に形成された酸化膜24 と、ゲート電極となるポリシリコン層25と、より構成 されている。熱酸化膜22はトンネル酸化膜として機能 している。

【0018】上記第2実施形態に係る半導体装置におい ては、まず、p型Si基板21上に厚さtox=2nmの 熱酸化膜22を形成し、その上にLPCVD装置により ポロン(B)を注入(ドープ)しながら不純物濃度1× 10²¹cm⁻³のアモルファスシリコンを1nmほどCV Dし、酸素を含む雰囲気にさらすことなく800℃で1

(3)

分間アニールすることにより、粒径r=5nmのp型の Si 微結晶23を形成している。

【0019】次に、上記Si微結晶23の上にCVDに よる厚さ Tox = 10 n m の酸化膜 24 とゲート電極とな る厚さ200nmのn+ポリシリコン層を形成した後、 ゲート電極25のパターンを形成し、電極25をマスク として用いてリン (P) をドーズ量が「 1×10^{15} c m -2, で入射エネルギが15KeVで注入し、1000℃ で20秒のアニールによりソース・ドレイン領域として 使用される n + 層 2 6 を形成することによって、浮遊ゲ ート部にp型のSi微粒子を有する新しい第2実施形態 の半導体装置としてのナノクリスタル浮遊ゲート型MO Sメモリ装置が形成できる(図2)。

【0020】上記第1および第2実施形態においては、 何れもシリコン微粒子をアモルファスシリコンの薄膜に アニールを加えた方法により形成しているが、ポリシリ コンCVDの初期に形成される微結晶アイランドを利用 する等の他の方法を用いて形成しても構わない。上記第 1および第2実施形態においては、n型、p型の不純物*

$$V_{W(n)} = V_{th} + q / 2 C + (1 + T_{20}x / t_{0x}) \triangle V_{1+1}$$

となる。したがって、固有の (Intrinsic) 時との差 は、

 $V_{W(n)} - V_{W} = (1 + T_{0x}/t_{0x}) (\triangle V_{n+1} - \triangle$ $V_1) > 0$

となるため、書込み電圧を大きくなる方向に調節でき る。(ΔV_{n+1} - ΔV_1)の大きさは、0 次元井戸の東 縛状態エネルギを「 h^2 / $q m^* r^2$ 」のオーダーで、 ※

となる。このように、1個目の電子のみならず任意の順 番である一般のN個目の魯込みも調整が可能となる。

【0022】図2に示した本発明の第2実施形態に係る 半導体装置は、電荷蓄積部として機能するp型Si微粒 子23を有している。このSi微粒子は粒径5nmでな おかつ不純物アクセプタの濃度は「1×10²¹cm⁻³」 であるため、1ドット当たり平均n=15個のアクセプ ターが含まれていることになる。したがって、この場合★

$$Vw(-n) = Vth$$

となる。したがって、不純物が入っていない固有の(In trinsic) 時との差は

 $Vw(-n) - Vw = -q/2C - (1 + Tox/tox) \triangle V$ 0 < 0

となるため、
書込み電圧を小さくなる方向に調節でき る。微粒子がn型の不純物が含まれる場合と違うこと は、反転層の形成と同時に複数個の電子が充電され得る ことである。すなわち、ヴァレンスパンド内に空き準位 があるn個目迄の電子の費込み電圧は、n個の電子の充 電エネルギーがバンドギャップエネルギよりも小さい限 り、全てVthとなる。このようなn電子の充電エネルギ がパンドギャップエネルギよりも小さい場合は、一般的 50

*導入にドーピングCVDを用いているが、固相拡散、低 加速インプラでもn型またはp型の不純物を導入するこ とができる。また、トンネル酸化膜12または22を熱

酸化により形成されたSiO₂としているが、化学的気 相法 (CVD) により形成された SiO_2 や他の形成方 法により形成された絶縁膜でも良い。

【0021】図1に示した本発明の第1実施形態に示し たように、電荷蓄積部にn型のSi微粒子13を有して いる。このSi微粒子は粒径5nmでなおかつ不純物ド ナー濃度は 1×10^{21} c m⁻³であるため、1 ドット当た り平均n=15個のドナーが含まれていることになる。 よってこの場合、第3図に示すようにSi微粒子のコン ダクションバンド中の基底状態からエネルギーの低い順 に n = 15番目の順位までが占有された状態であるた め、一個目の電子の書込順位エネルギーは基底状態エネ ルギーからn+Ι番目に高い固有エネルギになる。よっ て一個目の電子の書込み電圧は、 ΔV_{n+1} をn+1番目 の固有エネルギを素電荷qで割ったものとして上記式 (1) と同様に、

(2)

※粒径r=5nmでは典型的に0.1V程度である。Tox /tox=5だと0.5V程度の書込電圧の調節が可能に なり、Si微粒子のドナー濃度を変えることで微調整が 可能となる。一般的には、1ドットにn個(n=0, 1, 2, 3, …) のドナーが含まれる場合、N個目(N = 0, 1, 2, 3, …) の電子の書込み電圧は

 $V_{W}(n, N) = V_{th} + (N - 1/2) q/2C + (1 + T_{0x}/t_{0x}) \Delta V_{n+N}$

(3)

30★は図4に示すように、Si微粒子のヴァレンスパンド中 の最高エネルギ状態からエネルギの高い順に n=15番 目の準位までが空いた状態になるため、1個目の電子の **魯込み準位エネルギはヴァレンスパンド中の最高エネル** ギからn番目に低い固有エネルギになる。この場合の書 込み準位は、コンダクションパンドよりもパンドギャッ プエネルギを隔てたずっと低い位置にあるため、1個目 の電子の書込電圧はしきい値そのものになり、

(4)

に1ドットにn個 (n=1, 2, 3, …) のアクセプタ が含まれる場合のN個目 (N=1, 2, 3, …) の電子 の書込み電圧は

Vw(-n, N) = Vth(N≦n: 書込順位はヴァレン スバンド内)

 $Vth + (N-1/2) q/2C + (1+Tox/tox) \triangle$ ∇N_{-n}

(N≥n+1: 魯込順位はコンダクションバンド内) となる。このように1個目への費込みのみならず一般に N個目の魯込みに対しても調整が可能となる。n電子の 充電エネルギがバンドギャップエネルギよりも大きい場 合には、これを表わす式はもう少し複雑になるが、調節 可能なのは同様である。また、微粒子がp型の場合には、Siドットからチャネルに戻る時のエネルギ障壁が、不純物の入っていない固有の(Intrinsic)場合よりも高くなるので、リーク電流による情報の喪失の抑制が可能である。

【0023】上記第1および第2実施形態に係る半導体 装置においては、浮遊ゲート電極は複数のSi微粒子群 から構成されるものとしているが、単一ドットのメモリ 構造でも効果は全く同等である。

[0024]

【発明の効果】以上のように、本発明に係る半導体装置によれば、浮遊ゲートからチャネルへ漏洩するリーク電流を抑制することができるばかりでなく、書込み電圧の調節が可能なり、さらにp型の半導体微粒子のものを記憶装置として用いた場合には情報の保持時間(リテンション)を相対的に長くすることも可能となる。

【図面の簡単な説明】

【図1】

Я

【図1】本発明の第1実施形態に係る半導体装置を示す 断面図。

【図2】本発明の第2実施形態に係る半導体装置を示す 断面図。

【図3】本発明の第1実施形態に係る半導体装置の書込 み電圧を説明するパンド図。

【図4】本発明の第2実施形態に係る半導体装置の書込み電圧を説明するバンド図。

【図5】従来の半導体装置を示す断面図。

10 【符号の説明】

1, 11, 21 p型Si基板

2,12,22 トンネル酸化膜

13 n型シリコンナノ微粒子

23 p型シリコンナノ微粒子

4, 14, 24 制御酸化膜

5, 15, 25 n+ポリシリコンゲート電極

6, 16, 26 ソース・ドレインn+拡散層

【図2】

【図3】

【図4】

【図5】

【手続補正書】

【提出日】平成11年4月27日(1999.4.27)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】半導体基板と、ゲート電極と、前記半導体 基板およびゲート電極との間に設けられると共に電荷を 蓄積できる半導体粒子<u>を浮遊ゲート電極として含む</u>ゲー ト絶縁膜と、を備える半導体装置において、

前記半導体粒子の粒径がナノメータ単位であること、および、前記半導体粒子にn型の不純物を注入することによって前記半導体粒子のエネルギ準位が基底準位よりも高くなることを特徴とする半導体装置。

【請求項2】半導体基板と、ゲート電極と、前記半導体 基板およびゲート電極との間に設けられると共に電荷を 蓄積できる半導体粒子<u>を浮遊ゲート電極として含む</u>ゲー ト絶縁膜と、を備える半導体装置において、

前記半導体粒子の粒径がナノメータ単位であること、および、前記半導体粒子にp型の不純物を注入することによって前記半導体粒子のエネルギ準位が基底準位よりも低くなることを特徴とする半導体装置。

【請求項3】前記n型またはp型の半導体微粒子は、その粒径が5ないし10ナノメータであることを特徴とする請求項1または請求項2に記載の半導体装置。

【請求項4】前記半導体基板の表面に選択的に形成されたソース・ドレイン領域と、ソース・ドレイン領域間に形成されたチャネル領域と、を備え、前記ゲート絶縁膜は、前記半導体基板の前記チャネル領域の表面に形成されたトンネル酸化膜と、前記トンネル酸化膜上に不純物をドーピングさせながら多結晶シリコンを蒸着・アニールすることにより形成されたn型又はp型の前記半導体微粒子層と、この半導体微粒子層と前記ゲート電極との間に蒸着された制御酸化膜と、により前記浮遊ゲート電

極を構成することを特徴とする請求項1<u>または請求項2</u> に記載の半導体装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

[0010]

【課題を解決するための手段】上記目的を達成するた め、請求項1に係る半導体装置は、半導体基板と、ゲー ト電極と、前記半導体基板およびゲート電極との間に設 けられると共に電荷を蓄積できる半導体粒子を浮遊ゲー ト電極として含むゲート絶縁膜と、を備える半導体装置 において、前記半導体粒子の粒径がナノメータ単位であ ること、および前記半導体粒子にn型の不純物を注入す ることによって前記半導体粒子のエネルギ準位が基底準 位よりも高くなることを特徴としている。また、請求項 2に係る半導体装置は、半導体基板と、ゲート電極と、 前記半導体基板およびゲート電極との間に設けられると 共に電荷を蓄積できる半導体粒子を浮遊ゲート電極とし て含むゲート絶縁膜と、を備える半導体装置において、 前記半導体粒子の粒径がナノメータ単位であること、お よび前記半導体粒子にp型の不純物を注入することによ って前記半導体粒子のエネルギ準位が基底準位よりも低 くなることを特徴としている。

【手続補正3】

【補正対象鸖類名】明細鸖

【補正対象項目名】0011

【補正方法】変更

【補正内容】

【0011】また、請求項3に係る半導体装置は、請求項1または請求項2に記載のものにおいて、前記n型またはp型の半導体微粒子は、その粒径が5ないし10ナノメータであることを特徴としている。また、請求項4に係る半導体装置は、請求項1または請求項2に記載のものにおいて、前記半導体基板の表面に選択的に形成さ

れたソース・ドレイン領域と、ソース・ドレイン領域間 に形成されたチャネル領域と、を備え、前記ゲート絶縁 膜は、前記半導体基板の前記チャネル領域の表面に形成 されたトンネル酸化膜と、前記トンネル酸化膜上に不純 物をドーピングさせながら多結晶シリコンを蒸着・アニ ールすることにより形成されたn型又はp型の前記半導 体微粒子層と、この半導体微粒子層と前記ゲート電極と の間に蒸着された制御酸化膜と、により前記浮遊ゲート 電極を構成することを特徴としている。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正内容】

【0014】図1において、第1実施形態に係る不揮発 性半導体記憶装置は、p型シリコン(Si) 基板11 と、このSi基板11上に厚さtox=2nmで形成され た熱酸化膜12と、この熱酸化膜12上に粒径が直径5 nmのn型のシリコン微粒子により形成されたSi微結 晶13と、このSi微結晶13上に形成された酸化膜1 4と、ゲート電極となるポリシリコン層15と、より構 成されている。したがってこの第1実施形態に係る半導 体装置は、半導体微粒子がn型シリコンにより構成され ているタイプのものである。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【0017】図2において、第2実施形態に係る不揮発 性半導体記憶装置は、p型シリコン(Si)基板21 と、このSi基板21上に厚さtox=2nmで形成され た熱酸化膜22と、この熱酸化膜22上に粒径<u>が直径</u>5 nmのp型のシリコン微粒子により形成されたSi微結 晶23と、このSi微結晶23上に形成された酸化膜2

となる。したがって、固有の (Intrinsic) 時との差

 $V_{W}(n) - V_{W} = (1 + T_{0x}/t_{0x}) (\triangle V_{n+1})$ $V_1) > 0$

となるため、書込み電圧を大きくなる方向に調節でき る。($\triangle V_{n+1}$ $-\triangle V_1$)の大きさは、0次元井 戸の束縛状態エネルギを「h2 /qm* r2」のオ

4と、ゲート電極となるポリシリコン層25と、より構 成されている。熱酸化膜22はトンネル酸化膜として機 能している。

【手続補正6】.

【補正対象書類名】明細書

【補正対象項目名】0018

【補正方法】変更

【補正内容】

【0018】上記第2実施形態に係る半導体装置におい ては、まず、p型Si基板21上に厚さtox=2nmの 熱酸化膜22を形成し、その上にLPCVD装置により ボロン (B) を注入 (ドープ) しながら不純物濃度 1× 10²¹cm-³のアモルファスシリコンを1nmほど CVDし、酸素を含む雰囲気にさらすことなく800℃ で 1 分間アニールすることにより、粒径<u>が直径</u> 5 n m の p型のSi微結晶23を形成している。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0021

【補正方法】変更

【補正内容】

【0021】図1に示した本発明の第1実施形態に示し たように、電荷蓄積部にn型のSi微粒子13を有して いる。このSi微粒子は粒径5nmでなおかつ不純物ド ナー濃度は 1×10^{21} cm⁻³であるため、1ドット 当たり平均n=15個のドナーが含まれていることにな る。よってこの場合、第3図に示すようにSi微粒子の コンダクションバンド中の基底状態からエネルギーの低 い順に n=15番目の順位までが占有された状態である ため、一個目の電子の書込準位エネルギーは基底状態エ ネルギーからn+I番目に高い固有エネルギになる。よ って一個目の電子の書込み電圧は、 ΔV_{n+1} をn+1番目の固有エネルギを素電荷 q で割ったものとして上 記式(1)と同様に、

· (2) $V_{W}(n) = V_{th} + q / 2C + (1 + T_{0x} / t_{0x}) \triangle V_{1+1}$

> ーダーで、粒径<u>が直径</u>5 nmでは典型的に 0.1 V程度 である。Tox/tox=5だと0.5V程度の書込電圧の 調節が可能になり、Si微粒子のドナー濃度を変えるこ とで微調整が可能となる。一般的には、1ドットにn個 $(n=0, 1, 2, 3, \cdots)$ のドナーが含まれる場合、 N個目 (N=0, 1, 2, 3, …) の電子の書込み電圧

 $Vw(n, N) = Vth + (N-1/2) q/2C + (1 + Tox/tox) \Delta V_n + N$

となる。このように、1個目の電子のみならず任意の順

番である一般のN個目の魯込みも調整が可能となる。

フロントページの続き

F ターム (参考) 5F001 AA10 AA19 AA34 AB08 AC02 AC06 AD12 AE02 AE03 AE08 AF06 AF20 AG02 AG12 AG21 AG24 AG30 AF08 AF08 AF09 BP23 BP42 BR03 BR09 BR14 BR19 BR22 GA21 JA02 JA32 PR21 PR33 PR36