5.3 Total unimodularity

One way to prove that $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is integral, is by proving properties about constraint matrix A.

One strong and influential property: total unimodularity.

5.3.1 Definition and basic properties

Definition 5.3

A matrix is *totally unimodular* (TU) if the determinant of any square submatrix of it is either 0, 1, or -1.

Remark 5.4

 $A \in \mathbb{R}^{m \times n}$ is $TU \Rightarrow A \in \{-1, 0, 1\}^{m \times n}$.

Leach entry of A is a square submetrix of A.

Remark 5.5

 $A \text{ is TU} \Leftrightarrow A^{\top} \text{ is TU}.$

Remark 5.6

If $A \in \mathbb{R}^{m \times n}$ is TU, then so is [A - A], i.e., the $\mathbb{R}^{m \times 2n}$ matrix obtained by appending the columns of -A to the columns of A.

- · Either H contains a negated edumn of H => detQ = 0.
- . If not =) Q is submatrix of A with some columns negated

 A is TU

 A is TU

Remark 5.7

(n+m)

If $A \in \mathbb{R}^{m \times n}$ is TU, then so is $[A\ I]$, i.e., the $\mathbb{R}^{m \times n}$ matrix obtained by appending the columns of an $m \times m$ identity matrix I to the columns of A.

5.3.2 Integrality of polyhedra with TU constraint matrices

Theorem 5.8

Let $A \in \mathbb{Z}^{m \times n}$. Then,

A is TU \Leftrightarrow $P = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ is integral $\forall b \in \mathbb{Z}^m$.

Proof

⇒) Let y ∈ vertices (P).

=) y is unique sol. to square subsystem Dx = d of

$$\begin{pmatrix} A \\ -I \end{pmatrix} \times = \begin{pmatrix} b \\ 0 \end{pmatrix}$$
 constraints defining P

 $y = 0^{-1} d$

Dx=d is full-rank
bystem

A TU \Longrightarrow $\begin{pmatrix} A \\ -I \end{pmatrix}$ TU \Longrightarrow det D \in $\langle -1, \times, 1 \rangle$

D integral

integral

D'd = y is integral.

subvector of b & Zm

Assume by sake of contradiction f square submatrix $Q \in \mathbb{R}^{k \times k}$ of A with $det Q \notin \{-1,0,1\}$.

$$H^{-1} = \begin{pmatrix} Q^{-1} & Q^{-1} w \\ 0 & -1 \end{pmatrix}$$

Q is integer

detQ & d-1,0,1 =) Q is not integer.

Let
$$j \in [n]$$
 s.t. j -th column of $det Q^{-1} = det Q \notin \mathbb{Z}$ of Q^{-1} is not integral.

We now define a point y eIR" with at least one fractional entry and a rhs b \(Z'^m \) s.t. \(\text{\$\infty} \) \(\text{vertices} \((P) \), where $\rho = d_{X} \in \mathbb{R}^{m} : A_{X} \leq b, X \geq 0$

Definition of y[i) First k entries of y:

Q'e; + p.1, where $p \in \mathbb{Z}_{\geq 0}$ is s.f.

Q'e; + p.1 ≥ 0 (ii) Remaining u_{-k} entries: 0

(ii) Remaining N-k entries: 0

Pure to fractionally of $Q^{\dagger}e_{j} \rightarrow y$ is fractional. $H^{z}(Q^{\dagger}w)$ First k entries of $b: e_{j} + pQ1 = ib$ $H^{-1}=\begin{pmatrix} Q^{\dagger} & Q^{\dagger}w \\ 0 & -T \end{pmatrix}$ =) y fulfills first k constraints of Ax=b with equality. $[Qw] y = [Qw] \begin{pmatrix} Q^{\dagger}e_{j} + p1 \\ 0 \end{pmatrix} = e_{j} + pQ1 = b.$

Choose last un-k entries of large enough s.t. Ay < b.

=) y & vertices(P), because y is solution to subsystem

$$\mathsf{H}_{\mathsf{X}} = \begin{pmatrix} \widetilde{\mathsf{b}} \\ \mathsf{o} \end{pmatrix} \quad \mathsf{of} \quad \begin{pmatrix} \mathsf{A} \\ -\mathcal{I} \end{pmatrix} \times = \begin{pmatrix} \mathsf{b} \\ \mathsf{o} \end{pmatrix}$$

and rank(H) = 4.

5.3.3 Characterization of Ghouila-Houri

Theorem 5.9: Characterization of Ghouila-Houri

A matrix $A \in \mathbb{R}^{m \times n}$ is TU if and only if for every subset of the rows $R \subseteq [m]$, there is a partition $R = R_1 \cup R_2$ such that

$$\sum_{i \in R_1} A_{ij} - \sum_{i \in R_2} A_{ij} \in \{-1, 0, 1\} \quad \forall j \in [n] .$$
 (5.6)

=) Assume A is TU and let REIMJ.

$$d_i = \begin{cases} 1 & \text{if } i \in \mathbb{R}, \\ 0 & \text{if } i \in [m] \setminus \mathbb{R} \end{cases} \quad (d = \chi^R)$$

$$Q := \left\{ x \in \mathbb{R}^m : A^T x \leq \lceil \frac{1}{2} A^T d \rceil, A^T x \geq \lfloor \frac{1}{2} A^T d \rfloor, x \leq d, x \geq 0 \right\}$$

G is integral, because $\begin{pmatrix} A^T \\ -A^T \end{pmatrix}$ is TU.

$$\frac{d}{2} \in Q \implies Q \neq \emptyset$$

@ is polytope ______ A has a vertex y, which is integer.

Let
$$R_i = \{i \in R : y_i = 0\}$$
,
 $R_2 = \{i \in R : y_i = 1\}$.

This partition fulfills the Chouila-Houri criterion, because:

$$\sum_{i \in R_1} A_i = (d-2y)^T A$$

$$A = (d-2y)^T A$$

$$A = (d-2y)^T A$$

$$A^T (d-2y) \in \{-1,0,1\}^T$$
To show

$$y \in Q \implies \lfloor \frac{1}{2}A^{T}d \rfloor \leq A^{T}y \leq \lceil \frac{1}{2}A^{T}d \rceil
= \frac{1}{2}A^{T}d - \frac{1}{2} \cdot 1 \leq A^{T}y \leq \frac{1}{2}A^{T}d + \frac{1}{2} \cdot 1
-1 \leq A^{T}(d-2y) \leq 1$$

$$\Rightarrow A^{T}(d-2y) \in \{-1,0,1\}^{n}$$

$$A \in \mathbb{R}^{(k+1) \times (k+1)}$$

$$A = \begin{pmatrix} Q & \epsilon \\ r^{\mathsf{T}} & 1 \end{pmatrix}$$

row operations
$$\overline{A} = \begin{pmatrix} G - cr^T & 0 \\ r^T & 1 \end{pmatrix}$$
 $\det(\overline{A}) = \det(A)$

-> See script

Remark 5.10

Because A is TU if and only if A^{\top} is TU, one can exchange the roles of rows and columns in Theorem 5.9.

Example 5.11

Consecutive - ones matrices are TU.