Аналитический контроль процессов

Алексей Померанцев

Институт химической физики РАН

Российское хемометрическое общество

Что такое РАТ?

Process Analytical Technology (PAT) = Аналитический контроль процессов

РАТ — это система планирования, анализа и контроля критических переменных, характеризующих состояние производственных материалов и процессов в реальном времени (т.е. по ходу производства), с целью под-тверждения качества производимого продукта.

Guidance for Industry PAT — A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. Pharmaceutical CGMPs, September 2004

Основные положения РАТ

- Акцент на понимании процесса, как основы для подтверждения качества
- Контроль качества в реальном времени: приоритет тестирования процесса перед тестированием продукта
- Использование косвенных методов **анализа** для *in-*, *at-* и *on-*line методов контроля (вместо прямых *off-* line методов)
- Активное использование хемометрики

Наивный пример РАТ

Качество Домашнее качество Экспертный контроль Домашнее качество PAT **cGMP** Ресторанное качество Стандартный контроль Фармакопея Качество фастфуда **ISO 900X GMP**

Эффективность производства

Инструменты для контроля

Доля статей про БИК в периодике

Много переменных и много измерений

Одно измерение – спектр (600 точек)

Один цикл - 800 спектров (времен)

Один массив данных - 200 образцов (циклов)

Традиционный контроль процесса

30.04.10

Аналитический контроль процесса

Структура кинетических данных

30.04.10

Многомерное разрешение кривых

http://rcs.chph.ras.ru/Tutorials/mcr.htm

Примеры РАТ-решений

Сырье

Процесс

Продукт

Входной **контроль**

Контроль процесса

Выходной контроль

Входной контроль

Цель: сплошная проверка качества субстанций

Контроль: at-line

Инструмент: PerkinElmer

Метод: БИК + МГК

Разработка: Россия

Внедрение: Украина

Постановка задачи

Вещество: Таурин, 2-Аминоэтан-

сульфоновая кислота

Измерения: спектр в диапазоне 4100 –

10000 cm ⁻¹ с разрешением

 2 cm^{-1}

Объект: Субстанция в закрытых ПЭ

мешках, 82 бочки, каждая

измеряется 3 раза, всего 246

спектров

Спектральные данные

Анализ данных

Проблема:

60 измерений из 246 никуда не годятся.

Неужели это брак?

В чем дело?

30.04.10

Влияние позиции

Две модели

Модель 1

Круг – обучающий набор (группа 1), Квадрат – тест (группа 2)

Модель 2

Квадрат – обучающий набор (группа 1), Круг – тест (группа 2)

Блок схема входного контроля

Выводы из примера

• Метод устойчивый к ошибкам

• Качественный анализ: да / нет / не знаю

• Проверка до окончательного результата

Подробности

O.Ye. Rodionova, Ya.V. Sokovikov, A.L. Pomerantsev Quality control of packed raw materials in pharmaceutical industry

Anal. Chim. Acta, 642 (1-2), 222-227 (2009)

Контроль процесса

Цель: мониторинг процесса

Контроль: in-line

Инструмент: Ј&М

Метод: БИК + PLS

Разработка: Россия +

Германия

Внедрение: в процессе

Эксперимент

NIR Spectra

t = 105

Dissolution Profiles

Задача РАТ

Кинетический подход

Кинетика растворения

$$\frac{dy}{dt} = k_1(1-y)\left(y + \frac{k_2}{k_1}\right); \quad y(0) = 0$$

Константа k_1 и цвет покрытия

Прогноз растворения

Выводы из примера

• Оценка качества по ходу процесса

• Контроль = количественный анализ

• Необходима модель и ее проверка

Подробности

In-line prediction of drug release for pH-sensitive coating pellets

A. Pomerantsev, O. Rodionova, A. Bogomolov

J. Control. Release (в подготовке)

Выходной контроль

Цель: проверка качества лекарств

Контроль: on-line

Метод: БИК + SIMCA

Инструмент: Bomem 160 FT

Разработка: Россия + Дания

Внедрение: Китай

Год назад: апрель 2009

Дексаметазон: 4% водный раствор

G1

G2

F2

Подлинные образцы

G1: 15 ампул

G2: 15 ампул

Подделка

F2: 15 ampoules

БИК спектры

Метод главных компонент

ВЭЖХ ДМ УФ λ =254 nm

Площади пиков примесей

Образец G1 принят за 1 (ВЭЖХ ДМ УФ λ =254 nm)

Выводы из примера

• Мы не проверяем состав, например АРІ

• Качественный анализ: да / нет

• Возможен сплошной контроль всей продукции

Подробности

Noninvasive detection of counterfeited ampoules of dexamethasone using NIR with confirmation by HPLC-DAD-MS and CE-UV methods

O. Rodionova , A.Pomerantsev, L. Houmøller, A. Shpak, O.Shpigun

Anal. BioAnal. Chem. (в печати)

Analytical Chemistry 1966, 38

Что такое Аналитическая Химия?

Очевидно, что даже среди химиков-аналитиков нет полного согласия относительно определения их собственной области. Мы слышим заявления о том, что: "Химия уходит из аналитической химии". В тоже время, другие говорят, что студентов-аналитиков не нужно учить тому, как применять электронные приборы, — это нужно оставить инженерам-электрикам. Обе точки зрения кажутся нам слишком узкими.

Что можно сказать относительно утверждения "Аналитическая химия—это то, что делают аналитические химики"? К сожалению, такая формулировка может привести к недоразумению. Важно подчеркнуть необходимость модернизации нашей области, и, поэтому, было бы лучше сказать, что "Аналитическая химия—это то, что делают аналитические химики сейчас".

Editor: HERBERT A. LAITINEN

Благодарности

Оксана Родионова ИХФ РАН Россия

Lars
Houmøller
Arla Foods
Denmark

Олег Шпигун МГУ Россия

Андрей Богомолов J&M Germany

Спасибо за внимание!

