НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Факультет физики

Лабораторная работа

«Свойства переходных металлов и их соединений. Комплексные соединения переходных металлов»

> Работу выполнил студент 3 курса Захаров Сергей Дмитриевич

Москва 3 октября 2020

Содержание

1.	Сво	ойства переходных металлов и их соединений
	1.1.	Опыт 1: Окислительно-восстановительные свойства соединений хрома III
		1.1.1. Реактивы и оборудование
		1.1.2. Порядок выполнения опыта
	1.2.	Опыт 2: Равновесие "хромат-дихромат" и его зависимость от кислотности среды
		1.2.1. Реактивы и оборудование
		1.2.2. Порядок выполнения опыта
	1.3.	Опыт 3: Окислительно-восстановительные свойства хрома и ванадия в высших
		степенях окисления (демонстрационный)
		1.3.1. Реактивы и оборудование
		1.3.2. Порядок выполнения опыта
	1.4.	Опыт 4: Разложение перманганата калия (демонстрационный)
		1.4.1. Реактивы и оборудование
		1.4.2. Порядок выполнения опыта
	1.5.	Опыт 5: Химические свойства железа и меди
		1.5.1. Реактивы и оборудование
		1.5.2. Порядок выполнения опыта
	1.6.	Опыт 6: Взаимодействие цинка с растворами кислот и щелочей
		1.6.1. Реактивы и оборудование
		1.6.2. Порядок выполнения опыта
	TZ	
۷.		иплексные соединения переходных металлов
	2.1.	r u
		2.1.1. Реактивы и оборудование
	2.2	
	2.2.	Опыт 2: Получение катионных комплексов
		2.2.1. Реактивы и оборудование
	2.3.	
	2.3.	Опыт 3: Образование комплексных соединений в реакциях обмена
		* V · ·
	2.4	2.3.2. Порядок выполнения опыта
	2.4.	Опыт 4: Получение двойного комплексного соединения
		2.4.1. Реактивы и оборудование
	9.5	2.4.2. Порядок выполнения опыта
	2.5.	Опыт 5: Окислительно-восстановительные реакции с участием комплексного иона
		2.5.1. Реактивы и оборудование
	0.0	2.5.2. Порядок выполнения опыта
	2.0.	Опыт 6: Исследование устойчивости комплексных ионов
		2.6.1. Реактивы и оборудование
		7 b 7 Hongrov purioring on mo

1. Свойства переходных металлов и их соединений

1.1. Опыт 1: Окислительно-восстановительные свойства соединений хрома III

1.1.1. Реактивы и оборудование

- Растворы: Cr(NO₃)₃, NaOH (1M), H₂O₂ (3%), NaClO
- Пробирки
- Держатель для пробирки
- Спиртовка

1.1.2. Порядок выполнения опыта

В пробирку был налит 1 мл раствора $Cr(NO_3)_3$, после чего в нее был прилит 1 мл 1М раствора NaOH и H_2O_2 (3%).

В ходе опыта окраска раствора поменялась с циановой (исходная) на изумрудную (NaOH), после чего стала коричневой (при добавлении перекиси), а затем со временем стала желтой.

После этого опыт был повторен, только теперь вместо перекиси использовался раствор NaClO. В этом случае, для получения того же результата раствор пришлось нагреть над пламенем спиртовки.

$$2\operatorname{Cr}(NO_3)_3 + 3\operatorname{NaOH} + 10\operatorname{H}_2O_2 \longrightarrow 6\operatorname{NaNO}_3 + 2\operatorname{Na}_2\operatorname{Cr}O_4 + 8\operatorname{H}_2O \tag{1}$$

$$2 \operatorname{Cr}(NO_3)_3 + 3 \operatorname{NaOH} + 10 \operatorname{NaClO} \longrightarrow 6 \operatorname{NaNO}_3 + 2 \operatorname{Na}_2 \operatorname{CrO}_4 + 5 \operatorname{H}_2 \operatorname{O} + 3 \operatorname{NaCl}$$
 (2)

Окислительная активность есть способность принимать электроны от других. Поэтому делаем вывод, что NaClO более окислительно активен, чем H_2O_2 .

1.2. Опыт 2: Равновесие "хромат-дихромат" и его зависимость от кислотности среды

1.2.1. Реактивы и оборудование

- Растворы: NaOH (1M), H₂SO₄ (1M)
- Пробирки

1.2.2. Порядок выполнения опыта

К полученному в прошлом опыте раствору хромата натрия был добавлен небольшой объем 1M раствор H₂SO₄. Вследствие этого желтый хромат стал коричневатого цвета с выделяющимися пузырьками.

$$2 \operatorname{Na_2CrO_4} + \operatorname{H_2SO_4} \longrightarrow \operatorname{Na_2Cr_2O_7} + \operatorname{Na_2SO_4} + \operatorname{H_2O}$$
 (3)

После этого к раствору был постепенно прилит 1M раствор NaOH, из-за чего раствор сперва стал оранжевым, а затем и вовсе пожелтел.

$$\operatorname{Cr}_2\operatorname{O_7}^{2-} + 2\operatorname{OH}^- \longrightarrow 2\operatorname{CrO_4}^{2-} + \operatorname{H}_2\operatorname{O}$$
 (4)

1.3. Опыт 3: Окислительно-восстановительные свойства хрома и ванадия в высших степенях окисления (демонстрационный)

1.3.1. Реактивы и оборудование

- Раствор: K₂Cr₂O₇, Na₃VO₄, HCl (2M), H₂SO₄ (1M)
- Zn (гранулы)
- Гексан
- Пробирки
- Стакан 100 мл

1.3.2. Порядок выполнения опыта

В пробирку было налито примерно 2 мл раствора $K_2Cr_2O_7$. После этого был добавлен 1 мл 2М HCl, а затем несколько гранул цинка. В конце был налит слой органического растворителя (для невозможности реакции с кислородом воздуха). Раствор почернел.

1.4. Опыт 4: Разложение перманганата калия (демонстрационный)

1.4.1. Реактивы и оборудование

• Сухая соль: КМпО₄

• Pactbop: NaOH (1M)

- Пробирки
- Шпатель
- Спиртовка
- Лучина

1.4.2. Порядок выполнения опыта

В сухую пробирку были помещены кристаллы перманганата калия на кончике шпателя. Пробирка была нагрета. В пробирку была внесена тлеющая лучина, которая в момент внесения вновь загорелась от кислорода, выделяющегося в ходе реакции разложения перманганата с выделением кислорода:

$$2 \operatorname{KMnO}_4 \longrightarrow \operatorname{K}_2 \operatorname{MnO}_4 + \operatorname{MnO}_2 + \operatorname{O}_2 \tag{5}$$

После этого (как только пробирка остыла), содержимое пробирки было растворено в 1M растворе NaOH.

(6)

1.5. Опыт 5: Химические свойства железа и меди

1.5.1. Реактивы и оборудование

- Растворы (конц.): HCl, HNO₃, H₂SO₄
- Растворы (разб.): H₂SO₄
- Fe (порошок)
- CuSO₄
- Си (проволока)
- Пробирки
- Шпатель
- Стеклянная палочка

1.5.2. Порядок выполнения опыта

Fe

Описание реакции железа с:

• HCl(конц.): раствор шипит и пенится, пробирка нагревается, образуются бесцветные кристаллы.

$$Fe + 2 HCl(конц.) \longrightarrow FeCl_2 + H_2$$
 (7)

• HNO₃(конц.): раствор шипит, железо растворяется.

$$Fe + 6 HNO_3 (конц.) \longrightarrow Fe(NO_3)_3 + 3 NO_2 + 3 H_2O$$
 (8)

• H_2SO_4 (разб.): раствор шипит.

$$Fe + H_2SO_4(pas6.) \longrightarrow FeSO_4 + H_2$$
 (9)

• H_2SO_4 (конц.): раствор едва шипит, реакция не идет (если и идет, то крайне слабо).

$$2 \text{ Fe} + 6 \text{ H}_2 \text{SO}_4 \text{(конц.)} \longrightarrow \text{Fe}_2 (\text{SO}_4)_3 + 3 \text{ SO}_2 + 6 \text{ H}_2 \text{O}$$
 (10)

После этого порошок меди был добавлен в раствор сульфата меди ${\rm CuSO_4}.$ На крупицах железа начал образовываться рыжий медный налет:

$$Fe + CuSO_4 \longrightarrow FeSO_4 + Cu$$
 (11)

Cu

Описание реакции меди с:

- HCl(конц.): ничего не происходит.
- HNO_3 (конц.): медь быстро растворяется, раствор зеленеет.

$$Cu + 4 HNO_3$$
 (конц.) $\longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$ (12)

• H_2SO_4 (разб.): медь растворяется, но медленнее.

$$Cu + H_2SO_4(pas6.) \longrightarrow CuSO_4 + H_2$$
 (13)

• H_2SO_4 (конц.): медь растворяется, чуть быстрее.

$$Cu + 2 H_2 SO_4$$
 (конц.) $\longrightarrow CuSO_4 + SO_2 + H_2O$ (14)

1.6. Опыт 6: Взаимодействие цинка с растворами кислот и щелочей

1.6.1. Реактивы и оборудование

- Pacтворы: HCl (2M), NaOH (1M)
- Zn (гранулы)
- Пробирки
- Стеклянная палочка
- Спиртовка

1.6.2. Порядок выполнения опыта

В первую пробирку была помещена гранула цинка и прилита 2М НСІ.

$$Zn + 2 HCl \longrightarrow ZnCl_2 + H_2$$
 (15)

Во вторую пробирку была также помещена гранула цинка, а добавлен был раствор NaOH.

$$Zn + 2 NaOH \longrightarrow Na_2 ZnO_2 + H_2$$
 (16)

В обоих случаях было видно выделение газа (во второй пробирке процесс пошел не сразу). Если цинк будет взаимодействовать с чем-то, содержащим водород, то цинк вытесняет его, т.е. обладает выраженными восстановительными свойствами.

2. Комплексные соединения переходных металлов

2.1. Опыт 1: Гидроксокомплексы металлов и их свойства

2.1.1. Реактивы и оборудование

- Pacтворы: ZnCl₂, Cr(NO₃)₃, NaOH (1M)
- Пробирки

2.1.2. Порядок выполнения опыта

В пробирку был налит небольшой объем ZnCl₂. После этого по каплям был добавлен раствор 1M NaOH. Сперва (при недостатке NOH) образовывался белый осадок хлопьями. Спустя время, когда появился избыток NaOH, осадок растворился.

После этого опыт был повторен с $Cr(NO_3)_3$, где произошло аналогичное (сперва раствор слегка позеленел).

В случае недостатка NaOH:

$$\operatorname{ZnCl}_2 + 2 \operatorname{NaOH} \longrightarrow \operatorname{Zn}(\operatorname{OH})_2 + 2 \operatorname{NaCl}$$
 (17)

$$Cr(NO_3)_3 + 3 NaOH \longrightarrow Cr(OH)_3 + 3 NaNO_3$$
 (18)

В случае избытка NaOH:

$$\operatorname{ZnCl}_2 + 4 \operatorname{NaOH} \longrightarrow \operatorname{Na}_2[\operatorname{Zn}(\operatorname{OH})_4] + 2 \operatorname{NaCl}$$
 (19)

$$Cr(NO_3)_3 + 6 NaOH \longrightarrow Na_3[Cr(OH)_6] + 3 NaNO_3$$
 (20)

Осадок растворяется в щелочах, а также, как сказано в указании, в кислотах. По этой причине относим $Zn(OH)_2$ и $Cr(OH)_3$ к амфотерным.

2.2. Опыт 2: Получение катионных комплексов

2.2.1. Реактивы и оборудование

- Растворы: NH₃, Ni(NO₃)₂, CuSO₄, CoCl₃, NaOH (1M)
- Пробирки

2.2.2. Порядок выполнения опыта

В пробирку было внесено несколько капель раствора $Ni(NO_3)_2$, а также раствор 1M NaOH до момента образования бело-зеленоватого осадка $(Ni(OH)_2)$. После этого к осадку было добавлено несколько капель раствора NH_3 . При этом раствор стал сине-сиреневым, а осадок растворился.

Аналогичные опыты были проведены с $CuSO_4$ и $CoCl_3$. В случае меди осадок был синий (а после добавления NH_3 раствор стал сине-фиолетовым), в случае кобальта — сперва лазурным, после циановым (после добавления NH_3 раствор сначала не поменял цвет, а затем посерел; осадок также растворился).

$$Ni(NO_3)_2 + 2 NaOH \longrightarrow Ni(OH)_2 + 2 NaNO_3$$
 (21)

$$Ni(OH)_2 + 6 NH_3 \longrightarrow [Ni(NH_3)_6](OH)_2$$
 (22)

$$[Ni(NH_3)_6](OH)_2 \longrightarrow [Ni(NH_3)_3]^{2+} + 2OH^-$$
(23)

Комплексное основание сильнее гидроксида, т.к. сила определяется радиусом катиона (у комплексного основания он очевидно больше).

2.3. Опыт 3: Образование комплексных соединений в реакциях обмена

2.3.1. Реактивы и оборудование

- Растворы: $CuSO_4$, $K_4[Fe(CN)_6]$
- Пробирки

2.3.2. Порядок выполнения опыта

В пробирке были смешаны несколько капель $0.1 \mathrm{M}$ раствора CuSO_4 и $\mathrm{K}_4[\mathrm{Fe}(\mathrm{CN})_6]$. В результате выпал хлопьевидный осадок коричневого цвета.

$$2 \operatorname{CuSO}_4 + \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \longrightarrow 2 \operatorname{K}_2 \operatorname{SO}_4 + \operatorname{Cu}_2[\operatorname{Fe}(\operatorname{CN})_6]$$
$$\operatorname{Cu}^{2+} + [\operatorname{Fe}(\operatorname{CN})_6]^{4-} \longrightarrow \operatorname{Cu}_2[\operatorname{Fe}(\operatorname{Cn})_6]$$

2.4. Опыт 4: Получение двойного комплексного соединения

2.4.1. Реактивы и оборудование

• Растворы: Ni(NO₃)₂, K₄[Fe(CN)₆], NH₃

2.4.2. Порядок выполнения опыта

В пробирку были внесены 3-4 капели $K_4[Fe(CN)_6]$. К ним были добавлены 5-6 капель раствора $Ni(NO_3)_2$, в результате чего выпал бело-лаймовый осадок. После этого в пробирку был добавлен раствор NH_3 . Спустя некоторое время в пробирке появился лилово-сиреневый осадок.

$$K_4 Fe(CN)_6 + 2 Ni(NO_3)_2 \longrightarrow Ni_2 [Fe(CN)_6] + 4 KNO_3$$
 (24)

$$Ni_2(Fe(CN)_6) + 12 NH_3 \longrightarrow [Ni(NH_3)_6]_2[Fe(CN)_6]$$
 (25)

2.5. Опыт 5: Окислительно-восстановительные реакции с участием комплексного иона

2.5.1. Реактивы и оборудование

- Растворы: KMnO₄, K₄[Fe(CN)₆], HCl (1M)
- Пробирки

2.5.2. Порядок выполнения опыта

В пробирку были внесены 4-5 капли раствора $KMnO_4$. Раствор был подкислен несколькими каплями $HCl\ (1M)$. После этого в раствор по каплям был влит раствор $K_4[Fe(CN)_6]$, в результате чего раствор покраснел.

$$5 K_4[Fe(CN)_6] + 8 HCl + KMnO_4 \longrightarrow 5 K_3[Fe(CN)_6] + MnCl_2 + 6 KCl + 4 H_2O$$
 (26)

$${
m Fe^{2+}-e\longrightarrow Fe^{+3}}$$
 — восстановитель ${
m Mn^{+7}+5\,e\longrightarrow Mn^{+2}}$ — окислитель

2.6. Опыт 6: Исследование устойчивости комплексных ионов

2.6.1. Реактивы и оборудование

- Pacтворы: AgNO₃, NaCl, NH₃, KI
- Zn (Гранулы)
- Пробирки

2.6.2. Порядок выполнения опыта

Сперва необходимо было получить раствор $[Ag(NH_3)_2]Cl$. Для этого в пробирке сперва были смешаны 1 мл раствора NaCl и 1-2 капли раствора $AgNO_3$, при этом в пробирке выпал беловатый осадок. После этого осадок был растворен раствором NH_3 , благодаря чему и был получен $[Ag(NH_3)_2]Cl$. Полученный раствор был разделен надвое.

Опишем строение $[Ag(NH_3)_2]Cl$. Ag — комплексообразователь, NH_3 — лиганд (их два, они лиганды), Cl — ион на внешней сфере.

В первую часть раствора был добавлен раствор КІ. При этом выпал светло-светло-желто-лимонный осадок.

Во вторую часть раствора была внесена гранула цинка. В ходе реакции она почернела.

$$NaCl + AgNO_3 \longrightarrow NaNO_3 + AgCl$$
 (27)

$$AgCl + 2NH_3 \longrightarrow [Ag(NH_3)_2]Cl$$
 (28)

$$[Ag(NH_3)_2]Cl + KI \longrightarrow AgI + KCl + 2NH_3$$
(29)

$$2 \left[Ag(NH_3)_2 \right] Cl + Zn \longrightarrow Ag + ZnCl_2 + 4NH_3$$
 (30)

$$\begin{split} \Pi P_{AgCl} &= [Ag^+] \cdot [Cl^-] \approx 1.77 \cdot 10^{-10} \\ \Pi P_{AgI} &= [Ag^+] \cdot [I^-] \approx 8.3 \cdot 10^{-17} \end{split}$$

ПР — произведения растворимости.

$$Ag^{+} + 2NH_{3} \longleftrightarrow [Ag(NH_{3})_{2}]^{+}$$
(31)

 $b = 2.5 \cdot 10^6$

b — константа образования.

Устойчивость комплексных соединений зависит от прочности химической связи. Она сравнительно небольшая, поэтому $[{\rm Ag}({\rm NH_3})_2]^+$ не сильно устойчивый.

Про сравнительно: например, у $[Ag(CN)_2]^-$ константа равна $b = 1.2 \cdot 10^{21}$.