Dirichlets Primzahlsatz

Benjamin Sambale

10. Februar 2023

Bemerkung 1. Bekanntlich existieren unendlich viele ungerade Primzahlen p, d. h. $p \equiv 1 \pmod{2}$. Dirichlet [4] bewies 1837, dass für teilerfremde natürliche Zahlen a,d unendlich viele Primzahlen $p \equiv a \pmod{d}$ existieren. Sein Beweis benutzt tiefliegende Eigenschaften der Riemannschen ζ -Funktion und man glaubte lange, dass es keinen "elementaren" Beweis (d. h. ohne Funktionentheorie) geben kann. Ein solcher Beweis wurde erst 1949 von Selberg [13] gefunden (siehe auch [2, 15, 17]). Da Selbergs Beweis deutlich länger und technischer ist, verfolgen wir einen analytischen Ansatz, der mit elementaren Eigenschaften des komplexen Logarithmus auskommt (inspiriert von Chapman [1]). Es werden lediglich Kenntnisse der Analysis 1 im Umfang von Forsters Buch [7] benötigt.

Definition 2. Für $s \in \mathbb{R}$ mit s > 1 definieren wir die Riemannsche ζ -Funktion

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Bemerkung 3. Wegen

$$\sum_{n=1}^{\infty} \frac{1}{n^s} \le 1 + \frac{1}{2^s} + \frac{1}{2^s} + 4\frac{1}{4^s} + \dots = \sum_{n=0}^{\infty} 2^{n(1-s)} = \frac{1}{1 - 2^{1-s}} < \infty$$

konvergiert $\zeta(s)$ für s>1. Für s=1 erhält man hingehen die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$.

Lemma 4. Für s > 1 gilt $\frac{1}{s-1} < \zeta(s) < \frac{s}{s-1}$. Insbesondere ist

$$\lim_{s \to 1} (s-1)\zeta(s) = 1. \tag{1}$$

Beweis. Für $n \in \mathbb{N}$ gilt $\frac{1}{n+1} < \int_n^{n+1} x^{-n} dx < \frac{1}{n}$ (Stichwort: Treppenfunktion). Summieren über n ergibt

$$\zeta(s) - 1 = \sum_{n=2}^{\infty} \frac{1}{n^s} < \int_1^{\infty} x^{-s} dx < \zeta(s).$$

Wir berechnen

$$\int_{1}^{\infty} x^{-s} dx = \lim_{n \to \infty} \int_{1}^{n} x^{-s} dx = -\lim_{n \to \infty} \frac{x^{-s+1}}{s-1} \Big|_{1}^{n} = \frac{1}{s-1}$$

(vgl. [7, Beispiel (20.1)]). Daraus folgt leicht die Behauptung.

Satz 5. Sei A eine endliche abelsche Gruppe und $\hat{A} := \text{Hom}(A, \mathbb{C}^{\times})$. Dann gilt:

- (i) Durch punktweise Multiplikation ist \hat{A} eine abelsche Gruppe der Ordnung |A|, die unter komplexer Konjugation abgeschlossen ist.
- (ii) Für $B \leq A$ ist die Einschränkungsabbildung $\hat{A} \rightarrow \hat{B}$ ein Epimorphismus. Insbesondere besitzt jedes $\lambda \in \hat{B}$ genau |A:B| Fortsetzungen nach A.
- (iii) Für $\lambda, \mu \in \hat{A}$ gilt die erste Orthogonalitätsrelation

$$\sum_{a \in A} \lambda(a) \overline{\mu(a)} = \begin{cases} |A| & \text{falls } \lambda = \mu, \\ 0 & \text{falls } \lambda \neq \mu. \end{cases}$$

(iv) Für $a, b \in A$ gilt die zweite Orthogonalitätsrelation

$$\sum_{\lambda \in \hat{A}} \lambda(a) \overline{\lambda(b)} = \begin{cases} |A| & \text{falls } a = b, \\ 0 & \text{falls } a \neq b. \end{cases}$$

Beweis.

(i) Für $\lambda, \mu \in \hat{A}$ ist $\lambda \mu \in \hat{A}$ mit $(\lambda \mu)(a) := \lambda(a)\mu(a)$ für $a \in A$. Offenbar wird \hat{A} auf diese Weise zu einer abelschen Gruppe. Nach dem Hauptsatz über endliche abelsche Gruppen existieren $a_1, \ldots, a_n \in A$ mit $A = \langle a_1 \rangle \oplus \ldots \oplus \langle a_n \rangle$. Sei $d_i := |\langle a_i \rangle|$ für $i = 1, \ldots, n$. Für $\lambda \in \hat{A}$ gilt $\lambda(a_i)^{d_i} = \lambda(a_i^{d_i}) = \lambda(1) = 1$, d. h. $\lambda(a_i)$ ist eine d_i -te Einheitswurzel. Insbesondere gibt es höchstens d_i Möglichkeiten für $\lambda(a_i)$. Da λ durch die Bilder von a_1, \ldots, a_n eindeutig bestimmt ist, folgt $|\hat{A}| \leq d_1 \ldots d_n = |A|$. Jedes Element in A lässt sich eindeutig in der Form $a_1^{k_1} \ldots a_n^{k_n}$ mit $0 \leq k_i \leq d_i - 1$ für $i = 1, \ldots, n$ schreiben. Sei $\zeta_i \in \mathbb{C}$ eine d_i -te Einheitswurzel. Dann definiert

$$\lambda(a_1^{k_1}\dots a_n^{k_n}) := \zeta_1^{k_1}\dots \zeta_n^{k_n}$$

einen Homomorphismus $A \to \mathbb{C}^{\times}$. Unterschiedliche Wahlen der ζ_i definieren verschiedenen λ . Dies zeigt $|\hat{A}| \ge |A|$. Für $\lambda \in \hat{A}$ ist auch $\overline{\lambda} \in \hat{A}$ mit $\overline{\lambda}(a) := \overline{\lambda(a)}$ für $a \in A$.

(ii) Die Einschränkung $\Gamma \colon \hat{A} \to \hat{B}, \ \lambda \mapsto \lambda_{|B}$ ist offenbar ein Homomorphismus. Für $\lambda \in \operatorname{Ker}(\Gamma)$ gilt $B \leq \operatorname{Ker}(\lambda)$. Nach dem Homomorphiesatz lässt sich λ als Element von $\widehat{A/B}$ auffassen. Umgekehrt definiert jedes $\hat{\lambda} \in \widehat{A/B}$ durch $a \mapsto \hat{\lambda}(aB)$ ein Element aus $\operatorname{Ker}(\Gamma)$. Aus (i) folgt $|\operatorname{Ker}(\Gamma)| = |\widehat{A/B}| = |A/B|$. Nach dem Homomorphiesatz ist

$$|\Gamma(A)| = |\hat{A} : \text{Ker}(\Gamma)| = \frac{|A|}{|A/B|} = |B| = |\hat{B}|,$$

d. h. Γ surjektiv. Die zweite Aussage folgt, da das Urbild von λ eine Nebenklasse nach Ker (Γ) ist.

(iii) Im Fall $\lambda = \mu$ ist $\lambda(a)\overline{\mu(a)} = |\lambda(a)|^2 = 1$, da $\lambda(a)$ eine Einheitswurzel ist. Wir können daher $\lambda \neq \mu$ annehmen. Dann existiert ein $b \in A$ mit $\lambda(b)\overline{\mu(b)} \neq 1$. Aus

$$\lambda(b)\overline{\mu(b)}\sum_{a\in A}\lambda(a)\overline{\mu(a)}=\sum_{a\in A}\lambda(ab)\overline{\mu(ab)}=\sum_{a\in A}\lambda(a)\overline{\mu(a)}$$

folgt die Behauptung.

(iv) Da die Werte von $\lambda \in \hat{A}$ Einheitswurzeln sind, gilt $\overline{\lambda(a)} = \lambda(a^{-1})$. Wir können daher b = 1 annehmen. Für a = 1 ist die Behauptung trivial. Sei also $a \neq 1$ und $B := \langle a \rangle$. Nach (ii) gilt

$$\sum_{\lambda \in \hat{A}} \lambda(a) = |A/B| \sum_{\mu \in \hat{B}} \mu(a).$$

Sei k := |B| und $\zeta \in \mathbb{C}^{\times}$ eine primitive k-te Einheitswurzel. Der Beweis von (i) zeigt

$$\sum_{\mu \in \hat{B}} \mu(a) = 1 + \zeta + \ldots + \zeta^{k-1} = \frac{1 - \zeta^k}{1 - \zeta} = 0.$$

Definition 6. Im Folgenden sei stets $d \geq 2$ eine natürliche Zahl. Eine Funktion $\chi \colon \mathbb{Z} \to \mathbb{C}$ heißt Dirichlet-Charakter modulo d, falls für alle $a, b \in \mathbb{Z}$ gilt

- $\chi(a) = 0 \iff ggT(a, d) > 1$,
- $\chi(ab) = \chi(a)\chi(b)$,
- $\bullet \ \chi(a+d) = \chi(a).$

Die Menge der Dirichlet-Charaktere modulo d sei Ψ_d . Die zu χ gehörige L-Reihe ist durch

$$L(s,\chi) := \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

für $s \in \mathbb{R}$ mit s > 1 definiert.

Bemerkung 7.

- (i) Sei $A := (\mathbb{Z}/d\mathbb{Z})^{\times}$. Durch Einschränkung erhält man einen Monomorphismus $\Gamma \colon \Psi_d \to \hat{A} = \operatorname{Hom}(A, \mathbb{C}^{\times})$. Da sich jeder Homomorphismus $\lambda \in \hat{A}$ durch $\lambda(n) := 0$ für $\operatorname{ggT}(n, d) > 1$ zu einem Dirichlet-Charakter fortsetzen lässt, ist Γ ein Isomorphismus. Insbesondere ist $|\Psi_d| = |\hat{A}| = |A| = \varphi(d)$ nach Satz 5.
- (ii) Mit $\chi \in \Psi_d$ ist auch $\overline{\chi} \in \Psi_d$ nach Satz 5. Im Fall $\chi = \overline{\chi}$ nennen wir χ reell. Ggf. gilt $\chi(\mathbb{Z}) \subseteq \{0, \pm 1\}$. Der triviale Dirichlet-Charakter χ_0 mit den Werten 0 und 1 ist reell.
- (iii) Für $\chi \in \Psi_d$ und s > 1 gilt

$$\sum_{n=1}^{\infty} \frac{|\chi(n)|}{n^s} \le \zeta(s).$$

Daher ist $L(s,\chi)$ absolut konvergent.

Lemma 8 (Euler-Produkt). Für jeden Dirichlet-Charakter χ und s > 1 gilt

$$L(s,\chi) = \prod_{p \in \mathbb{P}} \frac{1}{1 - \chi(p)p^{-s}}.$$
 (2)

Beweis. Sei $\mathbb{P}_N := \{ p \in \mathbb{P} : p \leq N \} = \{ p_1, \dots, p_t \}$. Sei Z_N die Menge der natürlichen Zahlen, deren Primfaktoren in \mathbb{P}_N liegen. Nach dem Cauchy-Produkt für absolut konvergente Reihen (siehe [7, Satz 8.3]) gilt

$$\prod_{p \in \mathbb{P}_N} \frac{1}{1 - \chi(p)p^{-s}} = \prod_{i=1}^t \sum_{k=0}^\infty \frac{\chi(p_i^k)}{p_i^{ks}} = \sum_{k=0}^\infty \sum_{k_1 + \ldots + k_t = k} \frac{\chi(p_1^{k_1} \ldots p_t^{k_t})}{(p_1^{k_1} \ldots p_t^{k_t})^s} = \sum_{n \in \mathbb{Z}_N} \frac{\chi(n)}{n^s},$$

wobei die Reihenfolge der Zahlen in Z_N auf Grund der absoluten Konvergenz keine Rolle spielt (siehe [7, Satz 7.8]). Die Behauptung folgt mit $N \to \infty$.

Beispiel 9. Offensichtlich gilt auch $\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1-p^{-s}}$ für s > 1. Für den trivialen Dirichlet-Charakter $\chi_0 \in \Psi_d$ ergibt sich

$$L(s,\chi_0) = \prod_{\substack{p \in \mathbb{P} \\ p \nmid d}} \frac{1}{1 - p^{-s}} = \zeta(s) \prod_{\substack{p \in \mathbb{P} \\ p \mid d}} \frac{p^s - 1}{p^s}$$

und

$$\lim_{s \to 1} L(s, \chi_0)(s-1) = \lim_{s \to 1} \zeta(s)(s-1) \lim_{s \to 1} \prod_{p \mid d} \frac{p^s - 1}{p^s} \stackrel{\text{(1)}}{=} \frac{\varphi(d)}{d}.$$
 (3)

Insbesondere ist $\lim_{s\to 1} L(s,\chi_0) = \infty$. Wir werden sehen, dass sich nicht-triviale Dirichlet-Charaktere anders verhalten.

Satz 10. $F\ddot{u}r s > 1$ gilt

$$\prod_{\chi \in \Psi_d} L(s, \chi) \ge 1. \tag{4}$$

Beweis. Nach (2) gilt

$$P := \prod_{\chi \in \Psi_d} L(s,\chi) = \prod_{\substack{p \in \mathbb{P} \\ p \nmid d}} \frac{1}{1 - \chi(p)p^{-s}}$$

(beachte $|\Psi_d| = \varphi(d) < \infty$). Sei e die Ordnung von $p + d\mathbb{Z} \in (\mathbb{Z}/d\mathbb{Z})^{\times}$ und $f := \varphi(d)/e$. Nach Satz 5(ii) (angewendet auf $\langle p + d\mathbb{Z} \rangle \leq (\mathbb{Z}/d\mathbb{Z})^{\times}$) durchlaufen die Zahlen $\{\chi(p) : \chi \in \Psi_d\}$ alle e-ten Einheitswurzeln und jede Einheitswurzel tritt genau f-mal auf. Für eine primitive e-te Einheitswurzel $\omega \in \mathbb{C}$ gilt $X^e - 1 = \prod_{k=1}^e (X - \omega^k)$. Dies zeigt

$$\prod_{\chi \in \Psi_d} \frac{1}{1 - \chi(p)p^{-s}} = \left(\prod_{k=1}^e \frac{p^s}{p^s - \omega^k}\right)^f = \frac{p^{sef}}{(p^{se} - 1)^f} > 1.$$

Somit ist $P \geq 1$.

Lemma 11 (ABELsche Summation). Seien $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$ und $A_k := \sum_{i=1}^k a_i$. Dann gilt

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$
 (5)

Beweis. Induktion nach n: Für n=1 ist $\sum_{k=1}^n a_k b_k = A_1 b_1$. Sei nun $n \geq 1$. Dann gilt

$$\sum_{k=1}^{n} a_k b_k = A_{n-1} b_{n-1} + \sum_{k=1}^{n-2} A_k (b_k - b_{k+1}) + a_n b_n = \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) + A_{n-1} b_n + a_n b_n$$

$$= A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$

Folgerung 12. Seien $a_1, a_2, \ldots \in \mathbb{C}$, sodass die Partialsummen $A_n := \sum_{k=1}^n a_k$ beschränkt sind. Sei $b_1, b_2, \ldots \in \mathbb{R}$ eine monoton fallende Nullfolge. Dann konvergiert $\sum_{n=1}^{\infty} a_n b_n$.

Beweis. Sei $|A_n| \leq C$ für alle $n \in \mathbb{N}$. Für $n \leq m$ gilt

$$\left| \sum_{k=n}^{m} a_k b_k \right| \stackrel{(5)}{\leq} |A_m - A_{n-1}| b_m + \sum_{k=n}^{m-1} |A_k - A_{n-1}| \underbrace{(b_k - b_{k+1})}_{>0} \leq 2Cb_n.$$

Wegen $\lim_{n\to\infty} b_n = 0$ bilden die Partialsummen $\sum_{k=1}^n a_k b_k$ eine Cauchyfolge.

Definition 13. Stetigkeit und Differenzierbarkeit von komplexen Funktionen $f: \mathbb{C} \to \mathbb{C}$ definiert man wie im Reellen:

• Wir sagen f konvergiert im Punkt $z \in \mathbb{C}$ gegen $a \in \mathbb{C}$, falls

$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall w \in \mathbb{C} \setminus \{z\} : |z - w| < \delta \Longrightarrow |f(z) - a| < \epsilon.$$

Ggf. schreiben wir $\lim_{w\to z} f(w) = a$.

- Man nennt f stetig im Punkt $z \in \mathbb{C}$, falls $\lim_{w\to z} f(w) = f(z)$ gilt. Ist f in jedem Punkt des Definitionsbereichs stetig, so heißt f stetig.
- Man nennt f differenzierbar im Punkt $z \in \mathbb{C}$, falls

$$f'(z) := \lim_{w \to z} \frac{f(z) - f(w)}{z - w}$$

existiert. Ggf. nennt man f'(z) die Ableitung von f in z. Ist f in jedem Punkt des Definitionsbereichs differenzierbar, so heißt f differenzierbar.

Bemerkung 14. Ist f differenzierbar in z, so ist f auch stetig in z. Die üblichen Ableitungsregeln gelten für komplexe Funktionen genau wie im Reellen (die Beweise in [7, Satz 15.2] übertragen sich). Insbesondere ist (fg)' = f'g + fg' (Produktregel) und $(f \circ g)' = (f' \circ g)g'$ (Kettenregel) für differenzierbare Funktionen $f, g: \mathbb{C} \to \mathbb{C}$.

Beispiel 15. Bekanntlich ist die Exponentialfunktion

exp:
$$\mathbb{C} \to \mathbb{C}^{\times}$$
, $z \mapsto \sum_{n=0}^{\infty} \frac{z^n}{n!}$

differenzierbar mit $\exp' = \exp$. Für $z \in \mathbb{C}$ gilt $\exp(z) = e^z$, wobei $e := \exp(1) \approx 2,718$ die *eulersche Zahl* ist. Die Einschränkung $\exp \colon \mathbb{R} \to \mathbb{R}_{>0}$ ist surjektiv und streng monoton steigend. Sie besitzt mit dem *natürlichen Logarithmus* ln: $\mathbb{R}_{>0} \to \mathbb{R}$ eine differenzierbare Umkehrfunktion (siehe [7, Satz 15.3]).

Bemerkung 16. Aus dem Cauchy-Produkt absolut konvergenter Reihen folgt

$$\exp(z+w) = \exp(z)\exp(w)$$

für $z, w \in \mathbb{C}$ (siehe [7, Satz 8.4]). Induktiv erhält man $\exp(z_1 + \ldots + z_n) = \exp(z_1) \ldots \exp(z_n)$ für $z_1, \ldots, z_n \in \mathbb{C}$. Aus der Stetigkeit von exp folgt

$$\exp\left(\sum_{k=1}^{\infty} z_k\right) = \prod_{k=1}^{\infty} \exp(z_k) \tag{6}$$

für jede konvergente Reihe $\sum_{k=1}^{\infty} z_k$.

Satz 17. Sei $\chi \in \Psi_d \setminus \{\chi_0\}$. Dann ist $L(s,\chi)$ auf $[1,\infty)$ stetig mit $L(1,\chi) \neq 0$.

Beweis (Monsky [10]). Für $n \in \mathbb{N}$ und $s \ge 1$ sei $a_n := \chi(n)$ und $b_n := \frac{1}{n^s}$. Nach der ersten Orthogonalitätsrelation (Satz 5) gilt

$$A_d := \sum_{n=1}^d a_n = \sum_{n=1}^d \chi(n)\chi_0(n) = 0$$

und es folgt

$$|A_k| \le \sum_{n=d|k/d|+1}^k |\chi(n)| \le d$$

für alle $k \in \mathbb{N}$. Der Beweis von Folgerung 12 zeigt

$$\left| L(s,\chi) - \sum_{n=1}^{N-1} \frac{\chi(n)}{n^s} \right| \le \left| \sum_{n=N}^{\infty} a_n b_n \right| \le \frac{2d}{N^s} \le \frac{2d}{N}.$$

Daher konvergieren die Partialsummen von $L(s,\chi)$ gleichmäßig gegen $L(s,\chi)$ für $s \geq 1$. Insbesondere ist $L(s,\chi)$ stetig auf $[0,\infty)$ nach $[7, Satz\ 21.1]$.

Nehmen wir nun $L(1,\chi)=0$ an.

Fall 1: $\overline{\chi} \neq \chi$.

Für $f: \mathbb{R}_{\geq 1} \to \mathbb{R}, x \mapsto x^{-1} - x^{-s}$ gilt

$$f'(x) \le 0 \iff sx^{-s-1} - x^{-2} \le 0 \iff x \ge s^{\frac{1}{s-1}} =: t,$$

wobei t=1 für s=1. Daher ist f für $x\geq t$ monoton fallend. Insbesondere ist $b_n:=f(n)=\frac{1}{n}-\frac{1}{n^s}$ eine monoton fallende Nullfolge für $n\geq t$. Nach dem Mittelwertsatz, angewendet auf $g\colon \mathbb{R}\to\mathbb{R},\ s\mapsto n^{-s},$ existiert $1\leq \xi_n\leq s$ mit

$$b_n = g(1) - g(s) = g'(\xi_n)(1-s) = \frac{\ln(n)}{n\xi_n}(s-1)$$

(siehe [7, Corollar 16.1, Beispiel (15.18)]). Mit b_n ist auch $\frac{\ln(n)}{n^{\xi_n}}$ eine monoton fallende Nullfolge für $n \geq t$. Nach Folgerung 12 konvergiert

$$\gamma(s) := \sum_{n=1}^{\infty} a_n \frac{\ln(n)}{n^{\xi_n}}$$

 $[\]frac{1}{1}$ es gilt $t = (1 + (s - 1))^{\frac{1}{s-1}} \le e$ nach [7, Beispiel (15.13)]

für alle $s \ge 1$ (die endlichen vielen Summanden $n \le t$ haben keinen Einfluss auf die Konvergenz). Der Beweis von Folgerung 12 zeigt (wie für $L(s,\chi)$), dass die Partialsummen gleichmäßig konvergieren und $\gamma(s)$ somit stetig auf $[0,\infty)$ ist. Insgesamt ist

$$L(s,\chi) = L(s,\chi) - L(1,\chi) = -\sum_{n=1}^{\infty} a_n b_n = (1-s)\gamma(s)$$
 (7)

für $s \ge 1$.

Nach Voraussetzung gilt $L(1,\overline{\chi})=\overline{L(1,\chi)}=0$. Das Produkt $P(s):=\prod_{\psi\in\Psi_d}L(s,\psi)$ aus (4) lässt sich aufspalten in $P(s)=L(s,\chi_0)L(s,\chi)L(s,\overline{\chi})Q(s)$. Die Stetigkeit von $L(s,\psi)$ für alle $\psi\neq\chi_0$ zeigt $\lim_{s\to 1}Q(s)<\infty$. Nach (7) und (3) ist andererseits

$$\lim_{s \to 1} L(s, \chi_0) L(s, \chi) L(s, \overline{\chi}) = \lim_{s \to 1} L(s, \chi_0) (1 - s) \lim_{s \to 1} (1 - s) \gamma(s) \overline{\gamma(s)} = 0.$$

Also ist auch $\lim_{s\to 1} P(s) = 0$ im Widerspruch zu (4).

Fall 2: $\overline{\chi} = \chi$.

Für $0 \le x < 1$ und $n \in \mathbb{N}$ ist $\frac{x^n}{1-x^n} \le \frac{x^n}{1-x}$. Daher konvergiert

$$f(x) := \sum_{n=1}^{\infty} \chi(n) \frac{x^n}{1 - x^n}$$

absolut für $0 \le x < 1$. Es gilt

$$-f(x) = \frac{1}{1-x}L(1,\chi) - f(x) = \sum_{n=1}^{\infty} a_n \underbrace{\left(\frac{1}{n(1-x)} - \frac{x^n}{1-x^n}\right)}_{=:b_n}$$

mit

$$(1-x)(b_n - b_{n+1}) = \frac{1}{n} - \frac{1}{n+1} - \frac{x^n}{1+x+\dots+x^{n-1}} + \frac{x^{n+1}}{1+x+\dots+x^n}$$
$$= \frac{1}{n(n+1)} - \frac{x^n}{(1+x+\dots+x^{n-1})(1+x+\dots+x^n)}.$$

Aus der Ungleichung zwischen arithmetischen und geometrischen Mittel folgt

$$\frac{1-x^n}{1-x} = 1 + x + \ldots + x^{n-1} \ge nx^{\frac{1}{n}\binom{n}{2}} = nx^{\frac{n-1}{2}} \ge nx^{n/2} \ge nx^n.$$

Damit erhält man $b_n \geq 0$ und

$$(1-x)(b_n - b_{n+1}) \ge \frac{1}{n(n+1)} - \frac{x^n}{n(n+1)x^n} = 0,$$

d. h. $1=b_1\geq b_2\geq \ldots \geq 0$. Abelsche Summation ergibt

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le db_n + d \sum_{k=1}^{n-1} (b_k - b_{k+1}) = db_1 = d.$$

Insbesondere ist f(x) beschränkt auf [0,1). Wegen $\frac{x^n}{1-x^n} = \sum_{k=1}^{\infty} x^{kn}$ gilt

$$\begin{split} \left| \sum_{n=1}^{N} \chi(n) \frac{x^n}{1 - x^n} - \sum_{n=1}^{N} \left(\sum_{k \mid n} \chi(k) \right) x^n \right| &= \left| \sum_{n=1}^{N} \chi(n) \sum_{k = \lfloor N/n \rfloor + 1}^{\infty} x^{kn} \right| \leq \sum_{n=1}^{N} \frac{x^{n \lfloor N/n \rfloor + n}}{1 - x^n} \\ &\leq \frac{1}{1 - x} \sum_{n=1}^{N} x^N = \frac{N x^N}{1 - x} \xrightarrow{N \to \infty} 0. \end{split}$$

Dies zeigt

$$f(x) = \sum_{n=1}^{\infty} \left(\underbrace{\sum_{k|n} \chi(k)}_{=:c_n} \right) x^n.$$

Da χ reell ist, gilt $\chi(k) \in \{0, \pm 1\}$ für alle $k \in \mathbb{N}$. Für jede Primzahl p folgt $c_{p^r} = 1 + \chi(p) + \ldots + \chi(p)^r \ge 0$. Mit der Primfaktorzerlegung $n = p_1^{r_1} \ldots p_t^{r_t}$ ergibt sich

$$c_n = c_{p_1^{r_1}} \dots c_{p_t^{r_t}} \ge 0.$$

Wegen $d \geq 2$ besitzt d einen Primteiler p. Dann gilt $c_{p^r} = 1$ und $f(x) \geq \sum_{r=1}^{\infty} x^{p^r}$. Folglich ist $\lim_{x \to 1} f(x) = \infty$ im Widerspruch zu Beschränktheit von f(x).

Beispiel 18. Nach [7, Satz 22.11, Beispiel (19.25), Beispiel (23.3)] gilt

$$L(2,\chi_0) = 1 + \frac{1}{9} + \frac{1}{25} + \dots = \zeta(2) - \frac{1}{4}\zeta(2) = \frac{\pi^2}{8} \qquad (\chi_0 \in \Psi_2),$$

$$L(1,\chi) = 1 - \frac{1}{3} + \frac{1}{5} \mp \dots = \frac{\pi}{4} \qquad (\chi \in \Psi_4 \setminus \{\chi_0\}),$$

$$L(3,\chi) = 1 - \frac{1}{27} + \frac{1}{125} \mp \dots = \frac{\pi^3}{32} \qquad (\chi \in \Psi_4 \setminus \{\chi_0\}).$$

Aus der Partialbruchzerlegung des Cotangens [7, Satz 21.7(a)] mit $x = \frac{1}{3}$ bzw. $x = \frac{1}{6}$ folgt außerdem

$$L(1,\chi) = 1 + \sum_{n=1}^{\infty} \left(\frac{1}{3n+1} - \frac{1}{3n-1} \right) = \frac{1}{3}\pi \cot(\pi/3) = \frac{\pi}{3\sqrt{3}} \qquad (\chi \in \Psi_3 \setminus \{\chi_0\}),$$

$$L(1,\chi) = 1 + \sum_{n=1}^{\infty} \left(\frac{1}{6n+1} - \frac{1}{6n-1} \right) = \frac{1}{6}\pi \cot(\pi/6) = \frac{\pi}{2\sqrt{3}} \qquad (\chi \in \Psi_6 \setminus \{\chi_0\}).$$

Definition 19. Eine nichtleere Teilmenge $Z \subseteq \mathbb{C}$ heißt konvex, falls für alle $x, y \in Z$ die Verbindungsstrecke $\{\lambda x + (1 - \lambda)y : 0 \le \lambda \le 1\}$ zwischen x und y in Z liegt.

Lemma 20. Sei $Z \subseteq \mathbb{C}$ konvex und $f: Z \to \mathbb{C}$ differenzierbar mit f'(z) = 0 für alle $z \in Z$. Dann ist f konstant.

Beweis. Seien $x, y \in Z$. Die reelle Funktion

$$g \colon [0,1] \to \mathbb{R}, \qquad \lambda \mapsto f(\lambda x + (1-\lambda)y) + \overline{f(\lambda x + (1-\lambda)y)} = 2\operatorname{Re}(f(\lambda x + (1-\lambda)y))$$

ist wohldefiniert (da Z konvex ist) und erfüllt

$$g'(\lambda) = (x - y)f'(\lambda x + (1 - \lambda)y) + \overline{(x - y)f'(\lambda x + (1 - \lambda)y)} = 0$$

für alle $0 \le \lambda \le 1$ nach der Kettenregel. Aus dem Mittelwertsatz folgt, dass g konstant ist (siehe [7, Corollar 16.3]). Insbesondere ist $\text{Re}(f(x)) = \frac{1}{2}g(1) = \frac{1}{2}g(0) = \text{Re}(f(y))$. Analog zeigt man Im(f(x)) = Im(f(y)). Also ist f auf Z konstant.

Bemerkung 21. Nach [7, Satz 14.9] lässt sich jedes $z \in \mathbb{C}^{\times}$ in eindeutig Polarkoordinaten

$$z = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$$

mit r=|z|>0 und $-\pi<\varphi\leq\pi$ schreiben. Daher ist die Einschränkung

exp:
$$\{z \in \mathbb{C} : -\pi < \operatorname{Im}(z) \leq \pi\} \to \mathbb{C}^{\times}$$

bijektiv.

Definition 22. Der Hauptzweig des komplexen Logarithmus ist durch

$$\log: \mathbb{C}^{\times} \to \mathbb{C}, \qquad re^{i\varphi} \mapsto \ln(r) + i\varphi \qquad (r > 0, -\pi < \varphi \le \pi)$$

definiert.

Bemerkung 23. Für $z = re^{i\varphi} \in \mathbb{C}$ gilt

$$\exp(\log(z)) = \exp(\ln(r) + i\varphi) = re^{i\varphi} = z. \tag{8}$$

Andererseits ist $\log(\exp(2\pi i)) = \log(1) = \ln(1) = 0 \neq 2\pi i$.

Lemma 24.

- (i) Der komplexe Logarithmus ist auf $D := \mathbb{C} \setminus \mathbb{R}_{\leq 0}$ differenzierbar mit $\log'(z) = \frac{1}{z}$ für $z \in D$.
- (ii) Für $z \in \mathbb{C}^{\times}$ mit |z| < 1 gilt $\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}$.

Beweis.

(i) Nach [7, Beispiel (15.13)] ist $\ln : \mathbb{R}_{>0} \to \mathbb{R}$ differenzierbar mit $\ln'(x) = 1/x$ für x > 0. Sei $z = re^{i\varphi} \in D$ mit r > 0 und $-\pi < \varphi < \pi$. Sei $z_k := r_k e^{i\varphi_k} \in D$ eine Folge mit $\lim_{k \to \infty} z_k = z$ und $-\pi < \varphi_k < \pi$ für $k \in \mathbb{N}$. Dann existiert ein $\epsilon > 0$ mit $|\varphi - \varphi_k| < 2\pi - \epsilon$ für alle $k \in \mathbb{N}$. Wegen

$$|r - r_k| = ||z| - |z_k|| \le |z - z_k| \xrightarrow{k \to \infty} 0$$

gilt $\lim_{k\to\infty} r_k = r$. Aus

$$\cos(\varphi - \varphi_k) + i\sin(\varphi - \varphi_k) = e^{i(\varphi - \varphi_k)} = \frac{r_k}{r} \frac{z}{z_k} \xrightarrow{k \to \infty} 1$$

und $|\varphi - \varphi_k| < 2\pi - \epsilon$ folgt $\lim_{k \to \infty} \varphi_k = \varphi$ (die Stetigkeit von arccos gilt nach [7, Satz 12.1, Satz 14.8]). Dies zeigt

$$\lim_{k \to \infty} \log(z_k) = \lim_{k \to \infty} (\ln(r_k) + i\varphi_k) = \ln(r) + i\varphi = z,$$

d.h. log ist stetig auf D. Nehmen wir nun $z_k \neq z$ für $k \in \mathbb{N}$ an. Als Umkehrfunktion der eingeschränkten Exponentialfunktion ist log injektiv. Insbesondere gilt $\log(z_k) \neq \log(z)$. Dies zeigt

$$\lim_{k \to \infty} \frac{\log(z) - \log(z_k)}{z - z_k} \stackrel{\text{(8)}}{=} \frac{1}{\lim_{k \to \infty} \frac{\exp(\log(z)) - \exp(\log(z_k))}{\log(z) - \log(z_k)}} = \frac{1}{\exp'(\log(z))} = \frac{1}{\exp(\log(z))} = \frac{1}{z}$$

für alle $z \in D$.

(ii) Nach (i) ist die Funktion $f(z):=\log(1-z)$ auf der konvexen Menge $Z:=\{z\in\mathbb{C}:|z|<1\}$ differenzierbar mit $f'(z)=-\log'(1-z)=-\frac{1}{1-z}$ für $z\in Z$. Wegen

$$\sum_{n=1}^{\infty} \frac{|z|^n}{n} \le \sum_{n=1}^{\infty} |z|^n = \frac{|z|}{1 - |z|} < \infty$$

konvergiert die Reihe $g(z) := -\sum_{n=1}^{\infty} \frac{z^n}{n}$ absolut für $z \in \mathbb{Z}$. Nach [7, Satz 21.6] gilt

$$g'(z) = -\sum_{n=1}^{\infty} z^{n-1} = -\frac{1}{1-z} = f'(z).$$

Nach Lemma 20 existiert eine Konstante C mit f(z) = g(z) + C und C = f(0) - g(0) = 0.

Bemerkung 25. Aus Lemma 24 folgt

$$\log\left(\frac{1}{1-z}\right) = \log\left(\frac{1-z}{1-z}\right) - \log(1-z) = \log(1) - \log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}$$
 (9)

für |z| < 1.

Satz 26 (DIRICHLETS Primzahlsatz). Für alle teilerfremden Zahlen $a, d \in \mathbb{N}$ gilt

$$\sum_{p \in \mathbb{P}} \frac{1}{p} = \infty.$$

$$p \equiv a \pmod{d}$$

Insbesondere existieren unendlich viele Primzahlen $p \equiv a \pmod{d}$.

Beweis. O. B. d. A. sei $d \geq 2$. Nach Satz 17 existiert ein t > 1 mit $L(s, \chi) \neq 0$ für alle $\chi \in \Psi_d$ und 1 < s < t (beachte $L(s, \chi_0) \geq 1$ für alle s > 1). Im Folgenden sei stets 1 < s < t. Für $\chi \in \Psi_d$ gilt

$$\sum_{p \in \mathbb{P}} \sum_{k=2}^{\infty} \frac{|\chi(p^k)|}{kp^{ks}} \le \sum_{p \in \mathbb{P}} \sum_{k=2}^{\infty} (p^{-s})^k = \sum_{p \in \mathbb{P}} \frac{p^{-2s}}{1 - p^{-s}} = \sum_{p \in \mathbb{P}} \frac{1}{p^s(p^s - 1)} \le \sum_{n=2}^{\infty} \left(\frac{1}{n - 1} - \frac{1}{n}\right) = 1.$$

Nach der zweiten Orthogonalitätsrelation (Satz 5) ist

$$\sum_{\psi \in \Psi_d} \overline{\chi(a)} \chi(p) = \begin{cases} |\Psi_d| = \varphi(d) & \text{falls } p \equiv a \pmod{d}, \\ 0 & \text{sonst.} \end{cases}$$

Dies zeigt

$$f(s) := \sum_{\chi \in \Psi_d} \overline{\chi(a)} \sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{\chi(p^k)}{kp^{ks}} = \sum_{p \in \mathbb{P}} \sum_{\chi \in \Psi_d} \overline{\chi(a)} \Big(\frac{\chi(p)}{p^s} + \sum_{k=2}^{\infty} \frac{\chi(p^k)}{kp^{ks}} \Big) \le \varphi(d) \sum_{p \equiv a \pmod{d}} \frac{1}{p^s} + C$$

für eine Konstante C (da Ψ_d nach Satz 5 unter komplexer Konjugation abgeschlossen ist, ist $f(s) \in \mathbb{R}$). Es genügt daher $\lim_{s\to 1} f(s) = \infty$ zu zeigen. Wegen $|\chi(p)p^{-s}| < 1$ gilt

$$\exp\Bigl(\sum_{p\in\mathbb{P}}\sum_{k=1}^{\infty}\frac{\chi(p^k)}{kp^{ks}}\Bigr)\stackrel{(6)+(9)}{=}\prod_{p\in\mathbb{P}}\exp\Bigl(\log\Bigl(\frac{1}{1-\chi(p)p^{-s}}\Bigr)\Bigr)\stackrel{(8)}{=}\prod_{p\in\mathbb{P}}\frac{1}{1-\chi(p)p^{-s}}\stackrel{(2)}{=}L(s,\chi).$$

Für $\chi \neq \chi_0$ ist also $\lim_{s \to 1} \sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{\chi(p^k)}{kp^{ks}}$ beschränkt. Wegen ggT(a,d) = 1 ist andererseits $\chi_0(a) = 1$ und $\lim_{s \to 1} \sum_{p \in \mathbb{P}} \sum_{k=1}^{\infty} \frac{\chi_0(p^k)}{kp^{ks}} = \infty$ nach Beispiel 9. Dies zeigt $\lim_{s \to 1} f(s) = \infty$.

Bemerkung 27.

(i) Seien $a, d \in \mathbb{N}$ teilerfremd und $\mathbb{P}_n := \{ p \in \mathbb{P} : p \leq n \}$. Man kann zeigen, dass sich die Primzahlen "gleichmäßig" auf die primen Restklassen verteilen, d. h.

$$\lim_{n \to \infty} \frac{|\{p \in \mathbb{P}_n : p \equiv a \pmod{d}\}|}{|\mathbb{P}_n|} = \frac{1}{\varphi(d)}.$$

(ii) In der Funktionentheorie setzt man die Riemannsche ζ -Funktion zu einer holomorphen Funktion auf $\mathbb{C} \setminus \{1\}$ fort. Sie besitzt dann die sogenannten trivialen Nullstellen -2k für $k \in \mathbb{N}$. Der $Gau\beta$ sche Primzahlsatz

$$\lim_{n \to \infty} \frac{|\mathbb{P}_n| \ln(n)}{n} = 1$$

ist äquivalent zu $\zeta(s) \neq 0$ für Re(s) = 1 und lässt sich daher mit Funktionentheorie beweisen (siehe [3, 11, 16]). Auch hier gibt es "elementare" Beweise von Erdős [6], Selberg [14] und anderen (siehe [8, 9, 12]).

(iii) Die Riemannsche Vermutung besagt, dass alle nicht-trivialen Nullstellen von ζ den Realteil $\frac{1}{2}$ haben. Dies ist eines der größten ungelösten Probleme der Mathematik. Man weiß, dass es unendlich viele solche Nullstellen gibt. Die Nullstelle mit dem kleinsten positiven Imaginärteil ist $\approx \frac{1}{2} + 14,347$ i. Ein Beweis der Riemannschen Vermutung würde die folgende Verbesserung des Gaußschen Primzahlsatz implizieren:

$$\left| n - \sum_{p \in \mathbb{P}_n} \log(p) \right| < \frac{\sqrt{n} \ln(n/\ln(n))^2}{8\pi} \qquad (n \ge e^{78})$$

(siehe [5, Proposition 2.5]).

Literatur

- [1] R. Chapman, Dirichlet's theorem a real variable approach, https://empslocal.ex.ac.uk/people/staff/rjchapma/etc/dirichlet.pdf, 2008.
- [2] H. Daboussi, On the prime number theorem for arithmetic progressions, J. Number Theory **31** (1989), 243–254.
- [3] J.-M. De Koninck and F. Luca, *Analytic number theory*, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, RI, 2012.
- [4] P. G. L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Abhandlungen der Königlich Preussischen Akademie der Wissenschaften (1837), 45–81.
- [5] P. Dusart, Estimates of the kth prime under the Riemann hypothesis, Ramanujan J. 47 (2018), 141–154.
- [6] P. Erdös, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Sci. U.S.A. **35** (1949), 374–384.
- [7] O. Forster, Analysis. 1, Grundkurs Mathematik, Springer Spektrum, Wiesbaden, 2016 (12. Auflage).

- [8] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Sixth edition, Oxford University Press, Oxford, 2008.
- [9] A. Hildebrand, The prime number theorem via the large sieve, Mathematika 33 (1986), 23–30.
- [10] P. Monsky, Simplifying the proof of Dirichlet's theorem, Amer. Math. Monthly **100** (1993), 861–862.
- [11] D. J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87 (1980), 693–696.
- [12] F. K. Richter, A new elementary proof of the Prime Number Theorem, Bull. Lond. Math. Soc. 53 (2021), 1365–1375.
- [13] A. Selberg, An elementary proof of Dirichlet's theorem about primes in an arithmetic progression, Ann. of Math. (2) **50** (1949), 297–304.
- [14] A. Selberg, An elementary proof of the prime-number theorem, Ann. of Math. (2) **50** (1949), 305–313.
- [15] A. Selberg, An elementary proof of the prime-number theorem for arithmetic progressions, Canad. J. Math. 2 (1950), 66–78.
- [16] D. Zagier, Newman's short proof of the prime number theorem, Amer. Math. Monthly 104 (1997), 705–708.
- [17] H. Zassenhaus, Über die Existenz von Primzahlen in arithmetischen Progressionen, Comment. Math. Helv. 22 (1949), 232–259.