Lecture 36 Neurosymbolic Synthesis - I

Sankha Narayan Guria with slides from

Armando Solar-Lezama in-turn based on slides from Swarat Chaudhuri

Neurosymbolic program synthesis

Neural Guided Search

Symbolic Guided DL

Distillation

Relaxation

$$in \rightarrow \lambda \rightarrow out$$

$$\downarrow \downarrow$$

$$in \rightarrow \lambda \rightleftharpoons out$$

Component Discovery

$$\Rightarrow$$
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ \Rightarrow

Neural Guided Search

Leverage the ability of NN to learn complex conditional distributions

Network guides the search for programs that satisfy the goals

Symbolic Guided Deep Learning

Symbolic knowledge can be used to guide the training of neural networks

- When you want a network that is consistent with prior knowledge
- When you want to improve data efficiency and better generalization

Distillation

Use the neural network as a starting point for program synthesis

Replace neural components with symbolic ones

- To improve interpretability and analyzability
- To better generalize out of distribution
- To ensure more predictable behavior

Relaxation

in
$$\rightarrow \lambda$$
 \rightarrow out
$$\downarrow$$
 in $\rightarrow \lambda$ $\stackrel{\bullet}{\Longrightarrow}$ \rightarrow out

Replace symbolic components with neural proxies

- Can help leverage the information in the symbolic component into a larger DL pipeline
- Can help guide the search for symbolic components

Relaxation: Supporting numerical optimization over discrete programs

The Parameter Synthesis Problem

```
tOff := ??; tOn := ??; h := ??
forever{
  temp := readTemp();
  if (isOn() && temp > tOff)
      switchHeaterOff();
  elseif ( !isOn() && temp < tOn)
      switchHeaterOn(h);
}</pre>
```


Warming:

$$\frac{d}{dt}temp = -k \cdot temp + h$$

Cooling:

$$rac{d}{dt}temp = -k \cdot temp$$

The Parameter Synthesis Problem

$$F(tOff, tOn, h) = [t_0, t_1, \dots, t_k]$$

$$Err(tOff, tOn, h) := \sum_{i=1}^{n} (t_i - 75)^2$$

Can we find values of (tOff, tOn, h) to minimize Err?

Limitations

Smooth function converges to original function according to L2 norm.

- That's not enough for optimization.
- The function below converges to the original function, but the local minima is in the worst possible point

Limitations

Programs tend to be difficult to optimize

• Even with smoothing, there are too many local minima

Can be useful in combination with other search techniques

• e.g. Hamiltonian Monte Carlo

Relaxation + Top-Down = Near

Learning to synthesize incrementally 2

Guiding program search

So far

- Neural network policy to guide search
- Value function scores individual states

Guiding program search

Guiding program search

Estimating the "Cost to Go"

 P^* = partial program (non-terminal nodes) $P^*[? \rightarrow e]$ = completions of P^* (reachable terminal nodes)

Heuristic Estimate:
$$d(P^*) \approx \min_{P \in \mathbb{C}(P^*)} \left[\Delta s(P, P^*) + \min_{\theta} \operatorname{Loss}(\alpha_P, \theta_P) \right]$$
Additional Structure Cost Training Loss

If $d(P^*)$ is a lower bound it becomes an "admissible heuristic"

Learning with Neural Heuristics

Guiding Search with Neural Relaxations

Motivating Observation/Assumption:

Functional Representational Power

Implication (abstract form)

We can train an admissible heuristic!

"Neural Relaxation"

Every neurosymbolic model can be (approximately) represented by some "large" neural model.

Informed Search (e.g., A*)

A* Search

Priority queue of current leaf nodes:

• Sorted by $s(P^*) + d(P^*)$

Pop off top program P^*

- If P^* is complete, terminate
- Else, expand P^* , add child nodes to priority queue

Lower bounds "Cost to Go"

Guarantee: if $d(P^*)$ is admissible, A* will return optimal P

- Tighter $d(P^*)$ prunes more aggressively
- Uninformed $d(P^*)$ (e.g., always 0) => uninformed search

NEAR: Results

NEAR: Neural Admissible Relaxations

