

SEQUENCE LISTING

<110> NAGAI, KAZUO
WACHI, MASAAKI

<120> NOVEL GENE

<130> 084335/0131

<140> 09/786,474
<141> 2001-03-05

<150> PCT/JP98/03981
<151> 1998-09-04

<160> 6

<170> PatentIn Ver. 2.1

<210> 1

<211> 1920

<212> DNA

<213> Corynebacterium glutamicum

<400> 1

atgtgcggcc ttcttggcat attgactgca aatggaaacg ctgaaggcatt cgttcctgca 60
ctcgagcggg cttgccatg catgcgccac cgtggtcctg acgatgccgg cacttggcat 120
gacgccatg cagcgtttg attcaaccgc ctctccatca ttgatattgc acactcccac 180
caaccactgc gttgggacc tgcggatgaa cccgaccgct acgcaatgac tttcaacggt 240
gagatctaca actacgttga gctgcgtaaa gagctctcg 300
acttctggcg atggcgagcc aattgttgc ggttccacc actggggcga gtccgtggc 360
gagcatctcc gcggaatgtt cggcattgcc atttggata caaaggaaaa gtcgctttc 420
cttgcgcgtg atcagttcgg catcaagcca ctgttctacg caaccaccga gcatggcacc 480
gtgttctcct cagagaagaa gaccatcttgc gagatggccg aggagatgaa tctagatctg 540
ggccttata agcgcaccat tgagcaactac gtggacctgc agtacgtgcc cgagccagat 600
acccttcacg cgcaatttc ccgcttggag tcaggctgca ccgcaacagt tcgtccggc 660
ggcaagctgg aacagaagcg ttacttcaag cctcagttcc cagtacagaa ggtcgtaaag 720
ggtaaggagc aggaccttgc cgatcgcat gcccagggtgt tggaggatag cgtcgaaaag 780
catatgcgtg ccgacgtgac cgtaggctcg ttcccttccg gccgcattga ctcaaccgca 840
attgcgccgc ttgcaaagcg ccacaaccct gacctgctca cttcaccac cggttcgag 900
cgtgaaggct actcggaggt cgatgtggct gcggagtcgg ccgctgctgat tggcgctgag 960

cacatcgta agattgtctc gcctgaggaa tacgccaacg cgattcctaa gatcatgtgg 1020
 tacttggatg atccctgtgc tgaccatca ttggtcccgc tgtacttcgt ggcagcggaa 1080
 gcacgtaagc acgtcaaggt tgtgctgtct ggcgaggcgc cagatgagct gttcggtgga 1140
 tacaccattt acaaagagcc gctatcgctt gctccatttga agaagatccc ttccccacta 1200
 cgtaaaggcc tggaaaagct cagcaaggtt ctgccagacg gcatgaaggg caagtccctt 1260
 cttgagcgtg gctccatgac catggaagag cgctactacg gcaacgctcg ctccttcaat 1320
 ttgcagcaga tgcaacgcgt tattccatgg gcaaagcgcg aatgggacca cgcgaagtc 1380
 actgcaccga tctacgcaca atcccgaac tttgatccag tagcccgcat gcaacacctg 1440
 gatctgttca cctggatgcg cggcgacatc ctggtaagg ctgacaagat caacatggcg 1500
 aactcccttg agctgcgagt tccattcttg gataaggaag ttttcaaggt tgcagagacc 1560
 attccttacg atctgaagat tgccaaacggt accaccaagt acgcgcgtcg cagggcactc 1620
 gagcagattg ttccgcctca cgaaaaacgcg tgggcttccc tggccatg 1680
 cggccactggc ttgcggcga tgagctgttc ggttggcgc aggacaccat taaggaatcc 1740
 ggtactgaag atatcttcaa caagcaggct gtgctggata tgctgaacga gcaccgcgt 1800
 ggcgtgtcag atcattcccg tcgactgtgg actgttctgt catttatggt gtggcacggc 1860
 attttgtgg aaaaccgcata tgcattccacag attgaggacc gtcctaccc ggtcgagctt 1920

<210> 2
 <211> 640
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 2
 Met Cys Gly Leu Leu Gly Ile Leu Thr Ala Asn Gly Asn Ala Glu Ala
 1 5 10 15

Phe	Val	Pro	Ala	Leu	Glu	Arg	Ala	Leu	Pro	Cys	Met	Arg	His	Arg	Gly
20						25							30		

Pro Asp Asp Ala Gly Thr Trp His Asp Ala Asp Ala Ala Phe Gly Phe
 35 40 45

Asn	Arg	Leu	Ser	Ile	Ile	Asp	Ile	Ala	His	Ser	His	Gln	Pro	Leu	Arg
50						55					60				

Trp Gly Pro Ala Asp Glu Pro Asp Arg Tyr Ala Met Thr Phe Asn Gly
 65 70 75 80

Glu	Ile	Tyr	Asn	Tyr	Val	Glu	Leu	Arg	Lys	Glu	Leu	Ser	Asp	Leu	Gly
85									90					95	

Tyr Thr Phe Asn Thr Ser Gly Asp Gly Glu Pro Ile Val Val Gly Phe
100 105 110

His His Trp Gly Glu Ser Val Val Glu His Leu Arg Gly Met Phe Gly
115 120 125

Ile Ala Ile Trp Asp Thr Lys Glu Lys Ser Leu Phe Leu Ala Arg Asp
130 135 140

Gln Phe Gly Ile Lys Pro Leu Phe Tyr Ala Thr Thr Glu His Gly Thr
145 150 155 160

Val Phe Ser Ser Glu Lys Lys Thr Ile Leu Glu Met Ala Glu Glu Met
165 170 175

Asn Leu Asp Leu Gly Leu Asp Lys Arg Thr Ile Glu His Tyr Val Asp
180 185 190

Leu Gln Tyr Val Pro Glu Pro Asp Thr Leu His Ala Gln Ile Ser Arg
195 200 205

Leu Glu Ser Gly Cys Thr Ala Thr Val Arg Pro Gly Gly Lys Leu Glu
210 215 220

Gln Lys Arg Tyr Phe Lys Pro Gln Phe Pro Val Gln Lys Val Val Lys
225 230 235 240

Gly Lys Glu Gln Asp Leu Phe Asp Arg Ile Ala Gln Val Leu Glu Asp
245 250 255

Ser Val Glu Lys His Met Arg Ala Asp Val Thr Val Gly Ser Phe Leu
260 265 270

Ser Gly Gly Ile Asp Ser Thr Ala Ile Ala Pro Leu Ala Lys Arg His
275 280 285

Asn Pro Asp Leu Leu Thr Phe Thr Thr Gly Phe Glu Arg Glu Gly Tyr
290 295 300

Ser Glu Val Asp Val Ala Ala Glu Ser Ala Ala Ile Gly Ala Glu
305 310 315 320

His Ile Val Lys Ile Val Ser Pro Glu Glu Tyr Ala Asn Ala Ile Pro
325 330 335

Lys Ile Met Trp Tyr Leu Asp Asp Pro Val Ala Asp Pro Ser Leu Val
340 345 350

Pro Leu Tyr Phe Val Ala Ala Glu Ala Arg Lys His Val Lys Val Val
355 360 365

Leu Ser Gly Glu Gly Ala Asp Glu Leu Phe Gly Gly Tyr Thr Ile Tyr
370 375 380

Lys Glu Pro Leu Ser Leu Ala Pro Phe Glu Lys Ile Pro Ser Pro Leu
385 390 395 400

Arg Lys Gly Leu Gly Lys Leu Ser Lys Val Leu Pro Asp Gly Met Lys
 405 410 415

Gly Lys Ser Leu Leu Glu Arg Gly Ser Met Thr Met Glu Glu Arg Tyr
 420 425 430

Tyr Gly Asn Ala Arg Ser Phe Asn Phe Glu Gln Met Gln Arg Val Ile
 435 440 445

Pro Trp Ala Lys Arg Glu Trp Asp His Arg Glu Val Thr Ala Pro Ile
 450 455 460

Tyr Ala Gln Ser Arg Asn Phe Asp Pro Val Ala Arg Met Gln His Leu
 465 470 475 480

Asp Leu Phe Thr Trp Met Arg Gly Asp Ile Leu Val Lys Ala Asp Lys
 485 490 495

Ile Asn Met Ala Asn Ser Leu Glu Leu Arg Val Pro Phe Leu Asp Lys
 500 505 510

Glu Val Phe Lys Val Ala Glu Thr Ile Pro Tyr Asp Leu Lys Ile Ala
 515 520 525

Asn Gly Thr Thr Lys Tyr Ala Leu Arg Arg Ala Leu Glu Gln Ile Val
 530 535 540

Pro Pro His Val Leu His Arg Lys Lys Leu Gly Phe Pro Val Pro Met
 545 550 555 560

Arg His Trp Leu Ala Gly Asp Glu Leu Phe Gly Trp Ala Gln Asp Thr
 565 570 575

Ile Lys Glu Ser Gly Thr Glu Asp Ile Phe Asn Lys Gln Ala Val Leu
 580 585 590

Asp Met Leu Asn Glu His Arg Asp Gly Val Ser Asp His Ser Arg Arg
 595 600 605

Leu Trp Thr Val Leu Ser Phe Met Val Trp His Gly Ile Phe Val Glu
 610 615 620

Asn Arg Ile Asp Pro Gln Ile Glu Asp Arg Ser Tyr Pro Val Glu Leu
 625 630 635 640

<210> 3
 <211> 3825
 <212> DNA
 <213> Corynebacterium glutamicum

<400> 3
 gaattcaccc tcggcacgct tttcagccct ctttgcgccc caggcaaaga tggcggtgag 60
 gaatagaccc cacatgatga tgccgatgat ccaggcagca acccagaccc atgaccagaa 120
 gttacccatg gccactgctt cagggtaat gccatcaggc caaccatac gtaggaaatc 180

tccaaggcaca ccggccagagg ggcgacttca cagccctcgaa tggcgaggcc acctaagctc 240
aagacaccgc caagcaggc cttgcgttt aaaccacgct tattttgctg ttctacgtgt 300
gttctgcctt cctgtccaca caaaaaccag agaccttacg gtcatttcta tcttcgcaga 360
atagccttatt tgccagccga ttccatatct tgtgtttggg ggaaatatct tcgtgggtt 420
cgaaaaatgg ggcgtcaaataat gtcttcaac tgcaacgata tgcccgaaatc ctcaggtgga 480
atacctaaag tctaggcaat tggtgtatgc cacgtcacag accatcaacc ttttgattgc 540
ccttggaaatt cccccccct tacccctac gttcctacaa ggtgcatgta ttaggaaatc 600
aatctggttt tcaggaacct ttgaggatgc tgcaatagtc agctgatgca cgttgtttga 660
gggagcttc gtcaattttg gcgtgcctt ttacacccatg atgtaacttc gccgtatcgt 720
tgacacgaga tttaacaaat gcagcgtctt atttcttcca acaaaaatttc tttgcgattt 780
aaggcgccctt ttatttcagg aggattttc attcatgtgc ggccttcttgc gcatattgac 840
tgcaaatggg aacgctgaag cattcgttcc tgcaactcgag cgggccttgc catgcattgcg 900
ccaccgttgtt cctgacgatg ccggcacttg gcatgacgcc gatgcagcgt ttggattcaa 960
ccgcctctcc atcattgata ttgcacactc ccaccaacca ctgcgttggg gacctgcgga 1020
tgaacccgac cgctacgcaa tgacttcaa cggtagatc tacaactacg ttgagctgcg 1080
taaagagctc tcggatttgg gatataccctt taataacttct ggcgatggcg agccaattgt 1140
tgtcggtttc caccactggg gcgagtcgt ggtcgagcat ctccgcggaa tgttcggcat 1200
tgccatttgg gataacaaagg aaaagtcgt tttccttgcg cgtgatcagt tcggcatcaa 1260
gccactgttc tacgcaacca ccgagcatgg caccgttttc tcctcagaga agaagaccat 1320
cttggagatg gccgaggaga tgaatctaga tctggccctt gataagcgca ccattgagca 1380
ctacgtggac ctgcagtacg tgcccggatc agataaccctt cacgcgcaga tttcccgctt 1440
ggagtcaggc tgccacccgaa cagttcgtcc gggcggcaag ctggaaacaga agcggtactt 1500
caaggcctcag ttcccagtac agaaggcgt aaagggttaag gagcaggacc tcttcgatcg 1560
cattgcccag gtgttggagg atagcgtcga aaagcatatg cgtgccgacg tgaccgtagg 1620
ctcggttccctt tccggcggca ttgactcaac cgcaatttgcg ccgcttgcggaa agcgccacaa 1680
ccctgacccctg ctcacccatca ccaccgggtt cgagcgtgaa ggctactcgg aggtcgatgt 1740
ggctgcggag tccggccgtg cgattggcgc tgagcacatc gtgaagatttgc tctcgccctga 1800
ggaatacgcc aacgcgattc ctaagatcat gtggtacttg gatgatcctg tagctgaccc 1860
atcattggtc ccgcgtgtact tcgtggcagc ggaagcacgt aagcacgtca aggttgcgt 1920

gtctggcgag ggcgcagatg agctgttcgg tggatacacc atttacaaag agccgctatc 1980
gcttgctcca tttgagaaga tcccttcccc actacgtaaa ggcctggaa agctcagcaa 2040
ggttctgcca gacggcatga agggcaagtc cctcttgag cgtggctcca tgaccatgga 2100
agagcgctac tacggcaacg ctcgctcctt caatttcgag cagatgcaac gcgttattcc 2160
atgggcaaag cgcaatggg accaccgcga agtcaactgca ccgatctacg cacaatcccg 2220
caactttgat ccagtagccc gcatgcaaca cctggatctg ttcacctgga tgcgcggcga 2280
catcctggtc aaggctgaca agatcaacat ggcaactcc cttgagctgc gagttccatt 2340
cttggataag gaagtttca aggttgcaga gaccattcct tacgatctga agattgccaa 2400
cggttaccacc aagtacgcgc tgcgcagggc actcgagcag attgttccgc ctcacgttt 2460
gcaccgcaag aagctggct tccctgttcc catgcgccac tggcttgccg gcatgagct 2520
ttcgggttgg ggcaggaca ccattaagga atccggtaact gaagatatct tcaacaagca 2580
ggctgtgctg gatatgctga acgagcaccc cgatggcgtg tcagatcatt cccgtcgact 2640
gtggacttgtt ctgtcattta tggtgtggca cggcattttt gtggaaaacc gcattgatcc 2700
acagatttag gaccgctcct acccggtcga gctttaagtc ttAAAGCCTA aACCCCTCC 2760
ttctcaagga gggggttca ctatttcctg aggacaaagc aattacgcca gcaaacacaa 2820
aagctcgccc gtagacaatg cgtccagggc cgagccttta ttccatatata acggaatctc 2880
tttagttgaa ggagtcacca caagcgcaag agctgcctgc gtttgggttg tcgatggta 2940
agccctgctg ctcgatggtg tcagcgaagt cgatctgagc gccgagcagg tatgggtgc 3000
tcatcttgtc aacgacaagg cgaacgcac cgacgatgtc ttccttatcg ccatcaaggg 3060
tgcggtcgtc gaagtaaagc tggtaacgaa ggccagagca gccgccaggc tgaacggcga 3120
tacgcagaga gaggtcgctg cggccttcct gatcgatgag tgccttagct ttggacgctg 3180
cggaactcggt caagataaca ccggtgttgg ttgatggagc ggtcatcgct ttagtctcct 3240
taactgttgg cccttgaat tactttagg ccgggacatc ataggcttgc agtgtactcc 3300
ccttttacg gatctccggc gagcgatgct ggattacggtt catatggaa gcggatggat 3360
gttccccagc ctactcaccc tccacagatg agtaaaacccg gaaaaacccg tatttagtta 3420
ttgggtttac ctgcgtggc tgaaagtctt cactttaat cttacagat ggtcggtctg 3480
attcctttca acgatgaagt gtgcacccct attcccgatt tggaggttt tccttgtagc 3540
ctattgagtg tgaaacttcc ttgggataaa aataagaaca acgaaggggc tgacgctgca 3600
ggccaagacg ccagctccac ccctgagacc gctacgcctg acgctactga gcagaaattg 3660

ccaaaggggc acacggcacc gaagggccgt cccactccga agcgctcgta agttgagtta 3720
gagcgaggtg tcgttggcgg ccagtcttg gcgcctactg atacttatgc gcagcagcgc 3780
cagaagcgta aagaatttaa agcatctatg accaaggaag aattc 3825

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 4
tgaacccgac cgcatgccaa tgact 25

<210> 5
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 5
tccaaggatcg acatgatctt aggaa 25

<210> 6
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 6
caggaaacag ctatgac 17