146

7.1. Bandstructure

7.2. Semiconductor bandstructure

7. Semiconductor

1	1

Eigenschaft		Si	Ge	GaAs	Einheit
Gitterparameter	a	5.431	5.646	5.653	Å Si, Ge: Diamantstruktur
Atomdichte	n_A	4.99	4.44	4.43	$10^{22} \mathrm{cm}^{-3}$ GaAs: Zinkblende
Bandlücke 0 K	E_g	1.17	0.75	1.52	eV
Bandlücke 300 K	E_g	1.12	0.67	1.42	${ m eV}$
Ladungsträger 300 K	n, p	10^{10}	10^{13}	10^{6}	cm ⁻³ intrinsische Konzentration
Valenzbandmaximum	<u>k</u>	(000)	(000)	(000)	Γ-Punkt E _v ΛE k
Masse leichter Löcher	m_{lh}^*	0.16	0.044	0.082	m Aso Can
Masse schwerer Löcher	m_{hh}^*	0.49	0.28	0.45	m 10%
Spin-Bahn-Aufspaltung	Δ_{so}	0.044	0.29	0.34	eV / light holes', \(\sigma' \)
Valenzbandmasse	m_v^*	0.55	0.29	0.47	$m = m_v^{*3/2} = m_{lh}^{*3/2} + m_{hh}^{*3/2}$
Leitungsbandminimum	<u>k</u>	$(\frac{4}{5}00)$	$(\frac{1}{2}\frac{1}{2}\frac{1}{2})$	(000)	$\frac{2\pi}{a}$ Si: 0.8 Γ X, Ge: L, GaAs: Γ
Anzahl der Minima	M_c	6	8	1	
Longitudinale Masse	m_l^*	0.98	1.57	0.067	m Bewegung parallel zu \underline{k}
Transversale Masse	m_t^*	0.19	0.082	0.067	m Bewegung senkrecht zu \underline{k}
Leitungsbandmasse	m_c^*	1.08	0.88	0.067	$m m_c^{*3/2} = M_c (m_l^* m_t^* m_t^*)^{1/2}$

D_L(E)/ f(E)·D_L(E) f(E) [1-f(E)] · D_V(E) (a) dn bzwdp f(E) bzw. D(E)

	$E_{\mathrm{g}}\left[\mathrm{eV}\right]$	$n_i [\mathrm{cm}^{-3}]$
Ge	0,67	$2,4 \times 10^{13}$
Si	1,1	$1,5 \times 10^{10}$
GaAs	1,43	5×10^7

7.3. Doping of semiconductors

7. Semiconductor

149

Donor

	P	As	Sb	
	[meV]			
Si	45	49	39	
Si Ge	12	12,7	39 9,6	

Acceptor

	В	Al	Ga	In		
	[meV]					
Si	45	57	65	16		
Ge	10,4	10,2	10,8	11,2		

150

		300 78	Tempe 33,3	erature 20.4		10
	1018	ممم	(1)	. 0.4	14.3	0
			"		N _n ~ 10 ¹⁸ cm	-3
	1017	-	-			
		acasas	(2)		n-Ge	
3)	10 ¹⁶	ļ	1			_
Density of charge carriers n (cm ⁻³)		Samo	(3)	1		
L S	1015	, poor	(4) 2	1	1017_	
arrie	1015	i	Pal	1	10"	
ğ g		1		18/	1	
charg	1014	20000	(5)	Ba	2 10 ¹⁶	
, of		ģ	`	M	9 8 8 10 .	
ansit	10 ¹³	ģ	(6)		8 8 V	
۵		10000	•	-au	1 / 6/2	ys
		i			De 8	
	1012	1			18	014
		1			N _D ~10 ¹³ cm	
	1011	1	.02 0.1	n/ n	06 0.08	0.1
					ure T ⁻¹ (K ⁻¹	
		nec	procarte	mperau	ne i (K	,

Temperatur	Therm. Energie	Chem. Pot. μ	0	Ladungsträgerkonzentration		
niedrig	$k_BT < E_d$	$> E_D$	Reserve	$n \propto e^{-E_d/2k_BT}$	(Wichtig für	
mittel	$E_d < k_B T < E_g$	-)	$n = n_D = \text{const.}$	Halbleiter-	
hoch	$E_g < k_B T$	$\approx \frac{1}{2}(E_v + E_c)$	Intrinsisch	$n \propto e^{-E_g/2k_BT}$	bauelemente!	

7.4. pn-junction

diffusion (recombination) current: e in $n \rightarrow p$, h in $p \rightarrow n$

field (generation) current: e generated in p \rightarrow n h generated in $n \rightarrow p$

in equilibrium: $I_{gen} = I_{rec}$, $\mu = const.$

space charge layer: fixed positively charged donors (in n) and negatively charged acceptors (in p)

Electric field and potential according to Poisson equation:

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon \epsilon_0}, \ \vec{\mathcal{E}} = -\nabla \Phi$$

$$e(\Phi(\infty) - \Phi(-\infty)) = e\Delta\Phi = E_c - E_v + k_B T \ln \frac{n_A n_D}{N_C^{eff} N_V^{eff}}$$

Schottky's approximation (square charge distributions)

$$\Delta \Phi = \frac{e}{2\epsilon\epsilon_0} (n_A d_p^2 + n_D d_n^2)$$

Space charge region $d_p \cdot n_A = d_n \cdot n_D$

$$d_n = \sqrt{\frac{2\epsilon\epsilon_0}{e} \frac{n_A/n_D}{n_A + n_D} \Delta \Phi} \qquad d_p = \sqrt{\frac{2\epsilon\epsilon_0}{e} \frac{n_D/n_A}{n_A + n_D} \Delta \Phi}$$

$$\mathcal{E} \approx 10^6 \text{ V/m}$$
 $d \approx 10^2 - 10^4 \text{ Å}$

7.4. pn-junction

7.4. pn-junction

7. Semiconductor

153

7.4. pn-junction

7.4. pn-junction

7. Semiconductor

155

First transistor - Bell labs 1947

p-n-p transistor - planar technology

7.5. Transitors

7. Semiconductor

157

Fig. 3 (a) A p-n-p transistor with all leads grounded. (b) Doping profile of a transistor with abrupt impurity distributions. The crosshatched areas are the depletion regions. (c) Electric-field profile. (d) Energy band diagram at thermal equilibrium.

159

7.5. Transitors 7. Semiconductor

(a) Perspective view of an MOS diode. (b) Cross section of an MOS diode.

Fig. 22 Energy band diagram of an ideal MOS diode at V=0.

7. Semiconductor

a) Accumulation

7.5. MOS diode

b) Depletion

c) Inversion

$$n = N_L \exp -\left(\frac{E_L - E_F}{kT}\right)$$

$$= N_L \exp -\left(\frac{E_L - E_i}{kT}\right) \exp\left(\frac{E_F - E_i}{kT}\right)$$

$$n = n_i \cdot \exp\left(\frac{E_F - E_i}{kT}\right)$$

$$p = n_i \cdot \exp\left(\frac{E_i - E_F}{kT}\right)$$

7. Semiconductor

163

- Accumulation
- b) Depletion
- Inversion

7.5. MOSFET

$$\begin{array}{lcl} n & = & N_L \exp{-(\frac{E_L - E_F}{kT})} \\ \\ & = & N_L \exp{-(\frac{E_L - E_i}{kT})} \exp(\frac{E_F - E_i}{kT}) \\ \\ n & = & n_i \cdot \exp(\frac{E_F - E_i}{kT}) \\ \\ p & = & n_i \cdot \exp(\frac{E_i - E_F}{kT}) \end{array}$$

V_T: Spannung für die Inversionskanal (n) existiert V_G: gate Spannung V_D: drain Spannung

 $V_D > 0$ bedeutet n_{drain} -p Übergang in Sperrrichtung

 $V_D = V_{Dsat} >> 0$ n_{drain}-p Verarmungszone ausgedehnt, leitender Kanal wird eingeschnürt (= pinch-off point)

 $V_D > V_{Dsat}$ n_{drain}-p Verarmungszone weiter ausgedehnt, leitender Kanal wird zurückgedrängt, Injektion von Elektronen aus Kanal in p-Schicht und Absaugen in n_{drain} analog zu Bipolartransitor, Drainstrom I_D in Sättigung

7.6. Hall Effect E ⊥ B

7. Semiconductor

165

 $hbar{h}\dot{\vec{k}} = -e(\vec{\mathcal{E}} + \vec{v} \times \vec{B}) = -e(\vec{v} - \vec{w}) \times \vec{B}$

Drift velocity: $\vec{w} = \frac{\vec{\mathcal{E}} \times \vec{B}}{B^2}$ $\vec{j} = -ne \ \vec{w}$

$$\vec{j} = -ne \ \bar{u}$$

Hall field: $E_y = R_H j_x \cdot B, j_y = 0$

Hall coefficient: $R_H = -1/ne$

Non-closed orbits or carriers with different mobility or concentration \Rightarrow R_H depends on magnetic field B

7.6. Hall Effect E ⊥ B

7. Semiconductor

166

Inversion layer

Leads to quantization into levels E_n 2d - electron gas

7.6. Quantum Hall Effect

7. Semiconductor

167

Quantum Hall Effekt

NP 1985, Klaus v. Klitzing

$$r_H = \frac{U_H}{I} = \frac{h}{e^2} \frac{1}{\nu},$$

 $\nu = 1, 2, \dots$

Shubnikov - de Haas Oszillationen des Magentowiderstands

7.6. Quantum Hall Effect

7. Semiconductor

168

Transport via 1d edge channels

$$I = \frac{e^2}{h} \cdot \nu \cdot V, \ \nu = 1, 2, \dots$$