中国农业大学

2023~2024 学年春季学期

数学分析 Ⅱ 课程考试试题解答

- 选择题: 本题共 5 小题, 每小题 3 分, 共 15 分。在每小题给出的四个选项中, 只有一项是 符合题目要求的。
- 1. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 满足下极限 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = A, 0 < A < +\infty$, 那么下面正确的论断是

 - A. $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径必定等于 $\frac{1}{A}$ B. $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径可能大于 $\frac{1}{A}$.

(D)

(B)

- C. $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径必定小于 $\frac{1}{A}$. D. 以上说法都不对

解答 有不等式

$$A = \underline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \leqslant \underline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \leqslant \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \leqslant \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|,$$

而收敛半径等于 $1/\overline{\lim}$ $\sqrt[n]{|a_n|}$, 因此而收敛半径小于 $\frac{1}{4}$, 等于 $\frac{1}{4}$ 都是可能的

等于
$$\frac{1}{A}$$
 的例子: $a_n = \frac{1}{n}$, 那么 $1 = \underline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$.
 小于 $\frac{1}{A}$ 的例子: $a_n = \frac{3^{n+(n \mod 2)}}{5^n}$, 那么 $\frac{1}{5} = \underline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \frac{3}{5}$.

- 2. 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是一个连续映射, 以下说法不正确的是
 - A. 若 $K \subset \mathbb{R}^n$ 是紧集, 则它的像集 f(K) 必然也是 \mathbb{R}^m 中的紧集
 - B. 若 $K \subset \mathbb{R}^n$ 是闭集, 则它的像集 f(K) 必然也是 \mathbb{R}^m 中的闭集
 - C. 若 $E \subset \mathbb{R}^m$ 是闭集, 则它的原像集 $f^{-1}(E)$ 必然也是 \mathbb{R}^n 中的闭集
 - D. 若 $E \subset \mathbb{R}^m$ 是开集,则它的原像集 $f^{-1}(E)$ 必然也是 \mathbb{R}^n 中的开集

解答 (无界) 闭集在连续映射下的像一般不是闭集. 例如 $f(x) = \frac{1}{1+x^2}$, 闭集 \mathbb{R} (或者取 $[0,+\infty)$) 的像为 (0,1], 不是 \mathbb{R} 中闭集. 3. 设二元函数 f(x,y) 在点 $(x_0,y_0) \in \mathbb{R}^2$ 的某个去心邻域 $\mathring{O}((x_0,y_0),\delta)$ 内有定义. 那么关 于 f(x,y) 在点 (x_0,y_0) 处的二重极限 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$ 以及二次极限 $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$,

 $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ 的存在性以及取值的情况,下面哪一种情况是不可能的

$$\text{A. } \lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = \lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = 1$$

B.
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
 不存在, $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = 2$, $\lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = 1$

C.
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$
 不存在, $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$ 也不存在, $\lim_{y\to y_0} \lim_{x\to x_0} f(x,y) = 2$

D.
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = 1$$
, $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = 2$, $\lim_{y\to y_0} \lim_{x\to x_0} f(x,y)$ 不存在.

解答 累次极限与重极限所有可能的取值情况如下

二重极限	二次极限	
$\lim_{\substack{x\to x_0\\y\to y_0}}f(x,y)$	$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$	$\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$
A	A	A
A	A	X
A	×	A
A	×	X
×	A	A
×	A	B
×	×	A
×	A	X
×	×	×

- 4. 设 f 是定义在闭区间 [a,b] 上的函数. 以下关于函数 f 说法正确的是
 - A. 若 f 单调,则 f 必然 Riemann 可积
 - B. 若 f 有界, 则 f 必然 Riemann 可积

C. 若
$$\int_a^b |f(x)| dx = 0$$
, 则 f 在闭区间 $[a, b]$ 上恒等于 0

D. 若 $f \in [a,b]$ 上 Riemann 可积函数, 且值域包含于闭区间 [A,B], g 为定义在 [A,B] 上 的另一个 Riemann 可积函数, 则它们的复合 $g \circ f$ 也必然是 Riemann 可积的.

(A)

第1页 共12页 数学分析Ⅱ 中国农业大学制

第 2 页 共 12 页 数学分析 II 中国农业大学制

解答 注意, 定义在闭区间 [a,b] 上的函数, 其单调性蕴含了有界性

B. 的反例: [0,1] 上的 Dirichlet 函数

C. 的反例:
$$f(x) = \begin{cases} 1, & x = 1, \\ 0, & x \in [0, 1) \end{cases}$$

D. 的反例: f(x) 为 [0,1] 上的 Riemann 函数, $g(x)=\begin{cases} 1, & x\in(0,1],\\ 0, & x=0 \end{cases}$, 则 f,g 都 Riemann

可积, 但 $g \circ f$ 是 [0,1] 上的 Dirichlet 函数, 不是 Riemann 可积的.

5. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 发散, $S_n = \sum_{k=1}^n a_k$, 满足 $\lim_{n \to \infty} \frac{a_n}{S_n} = 0$, 那么幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半 径为

A. $+\infty$

B. 0

C. 1

D. 某个小于1的正实数

解答 由 $\lim_{n\to\infty}\frac{a_n}{S_n}=0$ 可推出 $\lim_{n\to\infty}\frac{s_{n+1}}{S_n}=1$,由 d'Alembert 定理知 $\sum_{n=1}^{\infty}S_nx^n$ 的收敛半径

为 1. 由于 $\sum_{n=1}^{\infty} a_n$ 是正项级数, 所以 $a_n \leqslant S_n$, 故 $\sum_{n=1}^{\infty} s_n x^n$ 的收敛半径 \geqslant 1.

另一方面, $\sum_{n=1}^\infty s_n x^n$ 在 x=1 处发散, 故其收敛半径 $\leqslant 1$. 综合知, $\sum_{n=1}^\infty s_n x^n$ 的收敛半径等于 1.

二、填空题: 本题共 5 小题, 每小题 3 分, 共 15 分。

1. 定积分 $\int_{-3\pi/2}^{\pi/2} \sin(2x)\sin(5x) dx = 0.$

解答 $\cos nx, n=0,1,2,\cdots;\sin mx, m=1,2,\cdots$ 在任何一个长度为 2π 的区间 [a,b] 上构成一个关于 $\langle f,g\rangle=\int_a^b f(x)g(x)\,\mathrm{d}x$ 正交函数系. 这题里 $[a,b]=[-3\pi/2,\pi/2]$.

2. 设函数 $S(x) = \int_0^x |\sin t| dt$, 则 $\lim_{x \to +\infty} \frac{S(x)}{x} = \frac{2}{\pi}$.

解答 对任意非负整数 k, $\int_{k\pi}^{(k+1)\pi} |\sin t| dt = 2$. 令 $n = \left[\frac{x}{\pi}\right]$, 那么

$$2n = \int_0^{n\pi} |\sin t| dt \leqslant \int_0^x |\sin t| dt \leqslant \int_0^{(n+1)\pi} |\sin t| dt = 2(n+1).$$

第3页 共12页 数学分析 II 中国农业大学制

那么在区间 $[n\pi, (n+1)\pi]$ 上有

$$\frac{2n}{(n+1)\pi} \leqslant \frac{\int_0^x |\sin t| \mathrm{d}t}{x} \leqslant \frac{2(n+1)}{n\pi}.$$

由夹逼准则知

$$\lim_{x \to +\infty} \frac{S(x)}{x} = \lim_{x \to +\infty} \frac{\int_0^x |\sin t| dt}{x} = \frac{2}{\pi}.$$

3. 若反常积分 $\int_{1}^{+\infty} \frac{\ln x}{x^p} dx$ 收敛, 则实数 p 可以取值的范围为 $\underline{(1,+\infty)}$ (或写 p > 1).

解答 任取 1 < q < p,有 $\lim_{x \to +\infty} \frac{\ln x}{x^p} \bigg/ \frac{1}{x^q} = \lim_{x \to +\infty} \frac{\ln x}{x^{p-q}} = 0$,根据非负函数反常积分敛散性的比较判别法的极限形式,由 $\int_1^{+\infty} \frac{1}{x^q} \mathrm{d}x$ 收敛知 $\int_1^{+\infty} \frac{\ln x}{x^p} \mathrm{d}x$ 收敛.

4. 若幂级数 $\sum_{n=0}^{\infty} a_n x^{2n+1}$ 的收敛半径是 2, 那么幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径是 $\underline{4}$.

解答 由 Cauchy-Hadamard 定理,
$$2 = \overline{\lim}_{n \to \infty} \sqrt[2n+1]{|a_n|} = \left(\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}\right)^{1/2}$$

5. 二重极限 $\lim_{(x,y)\to(0,0)} \frac{\sin(x^3+y^5)}{x^2+y^2} = 0$.

解答 令 $x = r \cos \theta, y = r \sin \theta, r \ge 0, \theta \in [0, 2\pi)$. 不妨设 r < 1, 那么有

$$\left|\frac{\sin(x^3+y^5)}{x^2+y^2}\right| \leqslant \left|\frac{x^3+y^5}{x^2+y^2}\right| = r \cdot \left|r^2 \sin^5 \theta + \cos^3 \theta\right| \leqslant r \cdot \left(\left|r^2 \sin^5 \theta\right| + \left|\cos^3 \theta\right|\right) \leqslant 2r.$$

于是, 对任意 $\varepsilon > 0$, 取 $\delta = \varepsilon/2 > 0$, 那么对任意满足 $\|(x,y)\| = \sqrt{x^2 + y^2} = r < \delta$, 有

$$\left| \frac{\sin(x^3 + y^5)}{x^2 + y^2} \right| \leqslant 2r < 2\delta = \varepsilon,$$

所以二重极限 $\lim_{(x,y)\to(0,0)} \frac{\sin(x^3+y^5)}{x^2+y^2} = 0.$

三、计算题: 本题共 2 小题, 共 20 分。本题应写出具体演算步骤。

1. $(10 \, \text{分})$ 求 Archimedes 螺线 $r(\theta) = a\theta, a > 0$, 第一圈 (对应 $\theta \in [0, 2\pi]$) 的弧长. 解答 由于 $r'(\theta) = a$, 代入极坐标下的弧长公式有

$$\ell = \int_0^{2\pi} \sqrt{(r(\theta))^2 + (r'(\theta))^2} d\theta$$

第 4 页 共 12 页 数学分析 II 中国农业大学制

$$= \int_0^{2\pi} \sqrt{(a\theta)^2 + a^2} d\theta = a \int_0^{2\pi} \sqrt{\theta^2 + 1} d\theta$$
$$= \frac{a}{2} \left(x\sqrt{x^2 + 1} + \ln\left(x + \sqrt{x^2 + 1}\right) \right) \Big|_0^{2\pi}$$
$$= \frac{a}{2} \left(2\pi\sqrt{4\pi^2 + 1} + \ln\left(2\pi + \sqrt{4\pi^2 + 1}\right) \right)$$

2. (10 分) 计算函数 $f(x) = x \cot x$ 在 x = 0 附近直到 x^4 的幂级数展开.

解答 首先 $\lim_{x\to 0} x \cot x = 1$, 所以函数 $f(x) = x \cot x$ 在 x = 0 处有定义.

由于 $x \cot x$ 是偶函数, 可以用待定系数法令 $x \cot x = c_0 + c_2 x^2 + c_4 x^4 + \cdots$, 有

$$x\cos x = x\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\right) = x\cot x \cdot \sin x = \left(c_0 + c_2x^2 + c_4x^4 + \cdots\right) \cdot \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots\right),$$

令对应系数相等,得方程组

$$\begin{cases} 1 = c_0 \\ -\frac{1}{2} = c_2 - \frac{1}{6} \cdot c_0 \\ \frac{1}{24} = c_4 - \frac{1}{6} \cdot c_2 + \frac{1}{120} \cdot c_0 \end{cases}$$

解得 $c_0 = 1, c_3 = -\frac{1}{3}, c_4 = -\frac{1}{45}$. 于是幂级数展开为

$$x \cot x = 1 - \frac{x^2}{3} - \frac{x^4}{45} + \cdots$$

四、解答题: 本题共 5 小题, 共 50 分。解答应写出文字说明或者证明过程。

1. $(8 \, \mathcal{G})$ 记 $M_n(\mathbb{R})$ 为 n 阶实方阵全体构成的集合, 通过如下的一一映射

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \mapsto (a_{11}, \cdots, a_{1n}, a_{21}, \cdots, a_{2n}, \cdots, a_{nn})$$

可以将 $\mathbf{M}_n(\mathbb{R})$ 视作 n^2 维 Euclid 空间 \mathbb{R}^{n^2} . 记 $\mathbf{M}_n(\mathbb{R})$ 中所有可逆方阵构成的集合为 $\mathrm{GL}_n(\mathbb{R})$,即

$$\operatorname{GL}_n(\mathbb{R}) = \{ A \in \operatorname{M}_n(\mathbb{R}) : \det A \neq 0 \}.$$

证明 $\mathrm{GL}_n(\mathbb{R})$ 在 $\mathrm{M}_n(\mathbb{R})$ 中不是道路连通的.

第5页 共12页 数学分析 II 中国农业大学制

解答 令矩阵 $A_1={
m diag}(1,1,\cdots,1)$ 为n 阶单位阵, 其行列式等于 1; 令矩阵 $A_2={
m diag}(-1,1,\cdots,1)$ 为将矩阵 A_1 的第 1 行第 1 列元素改为 -1 所得矩阵, 其行列式等于 -1. 假设 ${
m GL}_n(\mathbb{R})$ 是道路连通的, 那么存在一条道路

$$\gamma: [0,1] \longrightarrow \mathrm{GL}_n(\mathbb{R}),$$

使得 $\gamma(0) = A_1, \gamma(1) = A_2$. 由于行列式 det 是关于方阵元素的多项式, 因此是连续的. 于是

$$\det \circ \gamma : [0,1] \longrightarrow \mathbb{R}$$

是连续的一元函数,并且有 $\det(\gamma(0))=\det A_1=1,\det(\gamma(1))=\det A_2=-1.$ 于是根据闭区间上连续函数的零点存在定理 (或者中间值定理),存在 $\xi\in[0,1]$,使得 $0=\det(\gamma(\xi))$. 记 $B=\gamma(\xi)$,那么上式表明 $\det B=0$,从而有 $B\notin \mathrm{GL}_n(\mathbb{R})$,这与 γ 是 $\mathrm{GL}_n(\mathbb{R})$ 中的一条道路矛盾

2. (10 分) 求证函数 $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0, \\ 0, & x = 0 \end{cases}$ 在任何形如 (-a, a), a > 0, 的区间上, 都不能

表示为某个在 (-a, a) 上收敛的幂级数的和函数

解答 容易算得当 $x \neq 0$ 时, f(x) 的各阶导数为

$$\begin{split} f'(x) &= \frac{2}{x^3} e^{-1/x^2}, \\ f''(x) &= \left(\frac{4}{x^6} - \frac{6}{x^4}\right) e^{-1/x^2}, \\ &\vdots \\ f^{(k)}(x) &= P_{3k} \left(\frac{1}{x}\right) e^{-1/x^2}, \end{split}$$

其中 $P_{3k}\left(\frac{1}{x}\right)$ 是关于 $\frac{1}{x}$ 的 3k 次多项式. 在 x=0 处的各阶导数可依次用定义求:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x} = 0,$$

$$f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \lim_{x \to 0} \frac{\frac{2}{x^3} e^{-1/x^2}}{x} = 0,$$

$$\vdots$$

$$f^{(k+2)}(0) = \lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x} = \lim_{x \to 0} \frac{P_{3k}\left(\frac{1}{x}\right)e^{-1/x^2}}{x} = 0,$$
 :

第6页 共12页 数学分析Ⅱ 中国农业大学制

假设 f(x) 等于某个在 (-a,a) 上收敛的幂级数的和函数 $f(x)=\sum_{k=0}^{\infty}a_kx^k$,那么根据幂级数的逐项可导性有

$$a_k \cdot k! = f^{(k)}(0) = 0,$$

那么有 $a_k = 0$ 对所有的 $k = 0, 1, \cdots$ 都成立, 相应幂级数的和函数显然等于常值函数 0, 不等于 f(x), 矛盾. 所以 f(x) 在任何形如 (-a,a), a > 0, 的区间上, 都不能表示为某个在 (-a,a) 上收敛的幂级数的和函数.

- 3. $(10 \, \text{分})$ 设函数项级数 (称为 Dirichlet 级数) $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 在 $x = x_0 \in \mathbb{R}$ 处收敛.
 - (1) 证明 $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 在 $x \in [x_0, +\infty)$ 上一致收敛.
 - (2) 任取 $x > x_0 + 1$, 证明 $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 绝对收敛.

解答

(1) 记 $\tau_n(x) := \frac{1}{n^{x-x_0}}$,那么 $\tau_n(x)$ 对每个固定的 $x \in [x_0, +\infty)$ 关于 n 单调非增,且一致地以 1 为界:

$$|\tau_n(x)|\leqslant 1, \ \forall x\in [x_0,+\infty), n\in \mathbb{N}.$$

又由于数项级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{x_0}}$ 收敛, 把它视作关于 x 的函数项级数, 则它关于 x 一致收敛.

于是根据函数项级数的 Abel 判别法,

$$\sum_{n=1}^{\infty} \frac{a_n}{n^{x_0}} \cdot \tau_n(x) = \sum_{n=1}^{\infty} \frac{a_n}{n^{x_0}} \cdot \frac{1}{n^{x-x_0}} = \sum_{n=1}^{\infty} \frac{a_n}{n^x}$$

在 $[x_0, +\infty)$ 上一致收敛.

(2) 由于数项级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{x_0}}$ 收敛, 因此其通项 $\frac{a_n}{n^{x_0}} \to 0 \ (n \to \infty)$. 于是, 存在正整数 N, 使得对任意 n > N 有

$$\left|\frac{a_n}{a_{x_0}}\right| = \left|\frac{a_n}{a_{x_0}} - 0\right| < 1.$$

记 $s = x - x_0 > 1$, 那么对任意 n > N 有

$$\left| \frac{a_n}{n^x} \right| = \left| \frac{a_n}{n^{x_0}} \right| \cdot \frac{1}{n^s} < \frac{1}{n^s}.$$

 $\sum_{n=1}^{\infty} \frac{1}{n^s}$ 是收敛的正项级数, 因此由正项级数的比较判别法知 $\sum_{n=1}^{\infty} \left| \frac{a_n}{n^x} \right|$ 也收敛.

第7页 共12页 数学分析 II 中国农业大学制

4. (10 分) 叙述并证明 n 维 Euclid 空间 \mathbb{R}^n 中的 Cantor 闭区域套定理.

解答 Cantor 闭区域套定理: 设

$$D_1 \supset D_2 \supset \cdots \supset D_k \supset D_{k+1} \supset \cdots$$

为 \mathbb{R}^n 中的闭集 (闭区域) 套, 且满足 $\lim_{k\to\infty}$ diam $D_k=0$, 其中

$${\rm diam}\, D_k = \sup_{x_1, x_2 \in D_k} \|x_1 - x_2\|,$$

那么存在唯一一点 $x \in \bigcap_{k=1}^{\infty} D_k$.

Cantor 闭区域套定理的证明: 首先证明 x 的存在性, 即 $\bigcap_{k=1}^{\infty} E_k \neq \emptyset$.

由于每个 E_k 都是非空闭集,于是可以取到点列 $x_k \in E_k$.由于对任意 $p \geqslant 1$,有 $E_{k+p} \subset E_k$,于是 $x_{k+p} \in E_{k+p} \subset E_k$,从而有 $d(x_k,x_{k+p}) \leqslant \operatorname{diam} E_k$,这表明 $\{x_k\}_{k \in \mathbb{N}}$ 是 \mathbb{R}^n 中的一个 Cauchy 列,从而存在 $x \in \mathbb{R}^n$,使得 $\lim_{k \to \infty} x_k = x$.

由于对任意 $p\geqslant 1$,有 $x_{k+p}\in E_k$,那么 x 是每个闭集 E_k 的聚点,从而 $x\in\overline{E}_k=E_k$,即 $x\in\bigcap_{k=1}^\infty E_k$.

接下来证明 x 的唯一性. 假设存在另一点 $y\in\bigcap_{k=1}^\infty E_k$, 则 $y\in E_k$, 从而 $d(x,y)\leqslant {\rm diam}\, E_k$ 对所有 k 成立, 从而 d(x,y)=0, 即 x=y.

- 5. (12 分)设 $\sum_{n=1}^{\infty} a_n$ 为数项级数, 令 $S_n = \sum_{k=1}^n a_k$ 为其通项的前 n 项和, $\sigma_n = \frac{1}{n} \sum_{k=1}^n s_k$ 为数 列 $\{s_n\}$ 的前 n 项均值.
 - (1) 若数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的和函数在闭区间 [0,1] 上有定义 (即幂级数在此区间上收敛) 且连续.
 - (2) 设 $\lim_{n\to\infty}\sigma_n=A\in\mathbb{R}, A\neq 0$. 证明幂级数 $\sum_{n=1}^\infty n\sigma_n x^n, \sum_{n=1}^\infty s_n x^n, \sum_{n=1}^\infty a_n x^n$ 的收敛半径 都大于等于 1, 并证明等式 $\sum_{n=1}^\infty a_n x^n=(1-x)^2\sum_{n=1}^\infty n\sigma_n x^n$ 在 |x|<1 时恒成立.
 - (3) 利用 $(1-x)^{-1}$ 在 |x| < 1 内的幂级数展开

$$(1-x)^{-1} = 1 + x + x^2 + \cdots$$

第8页 共12页 数学分析 II 中国农业大学制

求函数 $\frac{1}{(1-x)^2}$ 的幂级数展开, 并验证等式 $1=(1-x)^2\sum_{n=0}^{\infty}(n+1)x^n$ 在 |x|<1 时恒成立. 由此证明

$$\lim_{x \to 1-} \sum_{n=1}^{\infty} a_n x^n = A.$$

解答

- (1) 由题设知幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 x=1 处收敛, 于是由幂级数的 Abel 第二定理知幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在任意闭区间 $[a,b] \subset (-1,1]$ 上一致收敛, 特别地在 [0,1] 上一致收敛, 从 而和函数在 [0,1] 上连续.
- (2) 由于 $\lim_{n\to\infty} \sigma_n = A \in \mathbb{R}, A \neq 0$, 所以当 n 充分大时有

$$\frac{|A|}{2} \leqslant |\sigma_n| \leqslant \frac{3|A|}{2}$$

由夹逼准则知 $\lim_{n\to\infty} \sqrt[n]{|\sigma_n|} = 1$. 另一方面, 有 $\lim_{n\to\infty} \sqrt[n]{n} = 1$, 于是

$$\overline{\lim}_{n \to \infty} \sqrt[n]{|n\sigma_n|} = \lim_{n \to \infty} \sqrt[n]{|\sigma_n|} \cdot \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

由 Cauchy-Hadamard 定理知, 幂级数 $\sum_{n=1}^{\infty} n\sigma_n x^n$ 收敛半径等于 1.

由于
$$\sum_{n=1}^{\infty} n\sigma_n x^n$$
 收敛半径等于 1, 所以任取 $|x| < 1$, $\sum_{n=1}^{\infty} n\sigma_n x^n$ 与 $\sum_{n=1}^{\infty} (n-1)\sigma_{n-1} x^n = x \cdot \sum_{n=1}^{\infty} (n-1)\sigma_{n-1} x^{n-1}$ 都收敛, 其中约定 $\sigma_0 = 0$. 于是

$$\sum_{n=1}^\infty s_n x^n = \sum_{n=1}^\infty n \sigma_n x^n - \sum_{n=1}^\infty (n-1) \sigma_{n-1} x^n = (1-x) \sum_{n=1}^\infty n \sigma_n x^n$$

也收敛. 于是幂级数 $\sum_{n=1}^{\infty} s_n x^n$ 的收敛半径 r 要满足 $r \geqslant |x|$. 由于 x 是任取的满足 |x| < 1 的数, 因此有 $r \geqslant 1$.

用类似的方法可以算得, 当 |x| < 1 时,

$$\sum_{n=1}^{\infty}a_nx^n=(1-x)\sum_{n=1}^{\infty}s_nx^n$$

第9页 共12页 数学分析Ⅱ 中国农业大学制

收敛, 进而推出 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径要大于等于 1.

我们将当|x|<1时证明成立的两式

$$\sum_{n=1}^{\infty} s_n x^n = (1-x) \sum_{n=1}^{\infty} n \sigma_n x^n,$$

$$\sum_{n=1}^{\infty} a_n x^n = (1-x) \sum_{n=1}^{\infty} s_n x^n.$$

综合起来, 便是 $\sum_{n=1}^{\infty} a_n x^n = (1-x)^2 \sum_{n=1}^{\infty} n \sigma_n x^n$.

(3) 由 $(1-x)^{-1}$ 的幂级数展开

$$(1-x)^{-1} = 1 + x + x^2 + \cdots,$$

利用待定系数法

$$(1-x)^{-2} = (1-x)^{-1} \cdot (1-x)^{-1} = (1+x+x^2+\cdots) \cdot (1+x+x^2+\cdots)$$
$$= 1 + a_1x + a_2x^2 + \cdots,$$

那么有 $a_n x^n = 1 \cdot x^n + x \cdot x^{n-1} + \dots + x^n \cdot 1 = (n+1)x^n$,故有 $(1-x)^{-2} = \sum_{n=0}^{\infty} (n+1)x^n$,并且容易看出其收敛半径大于等于 $(1-x)^{-1}$ 的收敛半径. 于是在 |x| < 1 的范围内,有

$$1 = (1 - x)^{2} \sum_{n=0}^{\infty} (n+1)x^{n}.$$

下面证明 $\lim_{x\to 1^-}\sum_{n=1}^\infty a_n x^n=A$. 在 |x|<1 的范围内有

$$\begin{split} \sum_{n=1}^{\infty} a_n x^n - A &= (1-x)^2 \sum_{n=1}^{\infty} n \sigma_n x^n - A \\ &= (1-x)^2 \sum_{n=1}^{\infty} n \sigma_n x^n - A (1-x)^2 \sum_{n=0}^{\infty} (n+1) x^n \\ &= (1-x)^2 \sum_{n=1}^{\infty} x^n (n \sigma_n - (n+1)A) - (1-x)^2 A \\ &= (1-x)^2 \sum_{n=1}^{\infty} x^n n (\sigma_n - A) - (1-x)^2 \sum_{n=1}^{\infty} x^n A - (1-x)^2 A \end{split}$$

第10页 共12页 数学分析Ⅱ 中国农业大学制

$$= (1-x)^2 \sum_{n=1}^{\infty} x^n n (\sigma_n - A) - (1-x)A - (1-x)^2 A$$

当 $x \to 1$ 一 时,上式后两项 -(1-x)A 与 $-(1-x)^2A$ 都趋于 0,因此接下来只要证明 $\lim_{x\to 1-} (1-x)^2 \sum_{n=1}^\infty x^n n(\sigma_n-A) = 0$ 即可.

由于 $\lim_{n\to\infty}\sigma_n=A,$ 所以 $\forall \varepsilon>0,$ 存在正整数 N, 使得对任意 n>N, 有 $|\sigma_n-A|<\varepsilon/2.$ 令

$$M = \max_{1 \leqslant n \leqslant N} n |\sigma_n - A|,$$

对于 0 < x < 1, 有

$$\begin{split} \left| (1-x)^2 \sum_{n=1}^\infty x^n n(\sigma_n - A) \right| &\leqslant (1-x)^2 \sum_{n=1}^\infty x^n n |\sigma_n - A| \\ &= (1-x)^2 \sum_{n=1}^N x^n n |\sigma_n - A| + (1-x)^2 \sum_{n=N+1}^\infty x^n n |\sigma_n - A| \\ &\leqslant (1-x)^2 \sum_{n=1}^N x^n M + (1-x)^2 \sum_{n=N+1}^\infty x^n n \frac{\varepsilon}{2} \\ &\leqslant M (1-x)^2 \sum_{n=1}^N x^n + \frac{\varepsilon}{2} (1-x)^2 \sum_{n=0}^\infty x^n (n+1) \\ &= M x (1-x) (1-x^N) + \frac{\varepsilon}{2} \leqslant M (1-x) + \frac{\varepsilon}{2} \end{split}$$

对于取定的 $\varepsilon > 0$, 进一步令 $1 - \frac{\varepsilon}{2M} < x < 1$, 代入上式有

$$\left|(1-x)^2\sum_{n=1}^\infty x^n n(\sigma_n-A)\right|\leqslant M\cdot\frac{\varepsilon}{2M}+\frac{\varepsilon}{2}=\varepsilon.$$

这样就完成了 $\lim_{x\to 1-} (1-x)^2 \sum_{n=1}^{\infty} x^n n(\sigma_n - A) = 0$ 的证明.