Module 1

John Korah

Topics

• Introduction to Computational Social Systems (CSS)

Introduction to Computational Social Systems

Agenda

- What is Social Systems?
- What is computational Social Systems
- What are the problems/research areas?
- What is Social Network Analysis?

"System"

- System: a group of interacting, interdependent components that form a complex whole.[Montuori 2011]
 - System is a concept
 - Components can be natural or human-made
 - functional relationship between components
- Boundaries: barriers that define a system and distinguish it from other systems in an environment.
- Examples
 - Natural system human body, solar system
 - Man made systems automobile, microprocessor
 - Organized system social systems
- Overall behavior may be more the sum of parts (emergent behavior)

System cont.

- Examples of System Theories:
 - Complex system
 - Chaos theory
 - Control theory
 - Dynamical systems theory
 - ..
 - •

What is a social system?

Social System

- Social system is "the patterned network of relationships constituting a coherent whole that exist between individuals, groups, and institutions." (Merriam-Webster)
 - Orderly and systematic arrangement of social interactions
- All social organizations are social systems
- Individuals/groups interact with each other
 - Guided by cultural factors, norms and practices
- In social systems
 - Individuals may have specialized function/role

What are the characteristics of a social system?

Characteristics of a Social System

- Social system is based on the interactions of individuals and groups
- Interaction must carry meaning.
- Social system is a unit with various components such as institutions, customs, traditions, laws etc.
- Social system is related with cultural system.
- Environment has an impact over the social system

What are the elements of a social system?

Elements of Social System

- Belief and Knowledge
 - Common belief drive coordinated action by individuals
- Sentiment
 - "What we feel"
 - Various types: e.g. intellectual, ethical and religious
- Goal or objective
 - Accomplishing a particular end through appropriate interactions
 - E.g. basic necessities such as food, clothing etc.
- Norms
 - Standards for "right" or "wrong"
 - Changes over time
 - Varies among social system

Elements of Social System cont.

- Status and role:
 - Status or position may be ascribed (conferred by society) or achieved (by individual effort)
- Rank or Standing
 - Relative importance in a social system
- Power
 - Capacity to control others.
- Sanction
 - Rewards and penalties given out for inducing conformity
- Facility
 - Mean to achieve ends within a system

Computational Social System

- Modeling, simulation, analysis, and understanding of social systems from the analytic, quantitative, and/or computational perspectives.
 - Social Systems can include man—man, man—machine, and machine—machine organizations in both cooperative and adversarial situations.

Challenges of Computational Social Systems

- Individual and group behaviors are hard to predict
 - Focus on explainability
- Cross-disciplinary
- New field theories and methodologies are emerging
- Validation is challenging
 - large-scale systems cannot be reproduced in a traditional lab setting
 - In silica simulations are more prevalent
- Security and privacy concerns
 - Models are mostly data driven

Interdisciplinary Science

- Computer Science
 - Human-Computer Interaction (HCI)
 - Network Modeling and Simulation
 - Machine Learning
 - Parallel and Distributed computing
 -
- Social Science
 - Psychology
 - Economics
 - Anthropology
 - •
- Mathematics
- Physics
- Statistics

Flood of Online Social information

- Lots of behavioral information!
 - Twitter: 500 million tweets per day[1], 330 million monthly active users[2]
 - Facebook: 2.7 billion monthly active users [3]
 - Whatsapp: > 2 billion monthly active users [4]
- Lots of real time behavioral information!!
- How is social information different from other information?

```
[1]http://www.internetlivestats.com/twitter-statistics/
[2]http://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
[3]http://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
[4] http://www.statista.com/statistics/260819/number-of-monthly-active-whatsapp-users/
```

Other Emerging Areas

- Social Computing
- Computational social science
- Socio-technical networks
- Social simulation

•

Social Computing

 "Social Computing refers to systems that support the gathering, representation, processing, use, and dissemination of information that is distributed across social collectivities...."[1]

 "Use of computational devices to facilitate or augment the social interactions of their users, or to evaluate those interactions in an effort to obtain new information."[2]

^{[1]&}quot;Social Computing", Introduction to Social Computing special edition of the Communications of the ACM, edited by Douglas Schuler, Volume 37, Issue 1 (January 1994), Pages: 28 – 108

^[2] Social Computing in Encyclopedia of Information Science and Technology, Third Edition. IGI Global, 2014, p. 6754.

Selected Research Areas in Social Computing

- Social media analysis
- Social network models
- Complex networks
- Prediction markets/crowd sourcing
- Human computation
- •

Social Media Analysis

- Utilize online information from blogs, Facebook likes, tweets, Instagram, etc.
- Numerous applications
 - Product popularity
 - Political leanings
 - Detect service degradation and outages
 - "Find the Red Balloons" DARPA Network Challenge https://www.darpa.mil/about-us/timeline/network-challenge

Prediction Markets

- Utilize humans within a futures market framework
 - Don't have to use experts
- Helps to aggregate information and provide prediction of event outcomes.
- Exchanges
 - Hollywood Stock Exchange (HXS), http://www.hsx.com/
 - Iowa Electronic Markets (IEM)

https://tippie.biz.uiowa.edu/iem/

2016 Republican Presidential Nomination

Source: Iowa Electronic Markets (IEM) https://tippie.biz.uiowa.edu/iem/

Human Computation

 "...a paradigm for utilizing human processing power to solve problems that computers cannot yet solve."*

*von Ahn, L. Human Computation. Doctoral Thesis. UMI Order Number: AAI3205378, CMU, (2005)

CAPTCHA ("Completely Automated Public Turing test to tell Computers and Humans Apart")

Source: Wikipedia

Social Structure

- Many different definitions:
 - Arrangement of social relationships and interactions that restricts/supports/directs social behaviors
- Particular arrangement of inter-related components of the system as well as their statuses and roles.
- Social structure are based on:
 - Normative system
 - Position system
 - Sanction system

Social network models

- Several question crop up when analyzing social information
 - Who is the most influential person in the social group?
 - How popular can an idea or sentiment become?
 - How stable is the social group?
- Structure can provide clues
- Represent social information as a network of actors and their relationships

Source: Bearman, Peter S., James Moody, and Katherine Stovel. "Chains of affection: The structure of adolescent romantic and sexual networks," American journal of sociology 110.1 (2004): 44-91.

What insights can you get from this Social Networks?

Social network models cont.

- Apply graph theory concept and algorithm to analyze data
- Helps visualize the data
- Social network Analysis a set of algorithms and metrics to help analyze and quantify

Our Specific Focus

- Social Network based representation, modeling, simulation and analysis
- Dealing with Big Data issues of volume and velocity
 - Utilize parallel/distributed algorithm designs
 - Utilize parallel/distributed computing platforms such as Hadoop and Spark
- Map concepts and theories from the social sciences to social network models and metrics
- Application domain: epidemiology
- Agent Based modeling techniques (if time permits)

Viral Marketing

Recommendation network for Japanese graphic novel "Oh My Goddess!: Mara Strikes Back."

Recommendation network for "First Aid for the USMLE Step"

Source: Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The dynamics of viral marketing. ACM Trans. Web 1, 1, Article 5 (May 2007)

Challenge: Volume and velocity!!

Terror Networks: 9/11 Hijackers

Challenge: Incomplete data

Social Grouping

Source: Andre M, Ijaz K, Tillinghast JD, et al. Transmission Network Analysis to Complement Routine Tuberculosis Contact Investigations. American Journal of Public Health. 2007;97(3):470-477.

CS 5990 Computational Social Systems (CSS)

Book Purchase and Political Leaning

Source: http://www.orgnet.com/divided.html

Book Purchase Network cont.

Source: http://www.orgnetacom/dividedahtml

Complex Systems

The Army Ant – Simple or Complicated or Something else

- Half a million army ants in a colony
- No one is in charge of this army; it has no commander.
- Each individual ant is nearly blind and minimally intelligent
- Swarms over, kills, and efficiently devours all prey in its path.
- In a day, destroys the edible life the size of a football field
- In the night, the ants build a chain-mail ball a yard across made up of the workers' linked bodies, sheltering the young larvae and mother queen at the center.
- When dawn arrives, the routine continues

Complex System

- Complex: (Latin = with + fold/weave (com + plex))
- Made up of multiple parts; intricate or detailed.
- Not simple or straightforward.
- Simple systems: An oscillator, a pendulum, a spinning wheel, an orbiting planet
- Complicated systems: Mechanical watches, airplanes, ...

Complexity vs. Complicated

- A car is not complex, just complicated. Cars do exhibit "unwanted functionality"
- Complicated Systems: Often difficult to describe but succumb to divide-and-conquer (reductionist) approaches.
- Complicated is easier to cope with than complex Seth Bullock Numerous techniques to resolve complicated systems – As a last resort, use brute force/trial and error

Complex System cont.

- "Complexity science is not a single theory: it encompasses more than one theoretical framework and is highly interdisciplinary, seeking the answers to some fundamental questions about living, adaptable, changeable systems." [Wikipedia]
- "... there is no universally accepted definition of a complex system ... most researchers would describe a system of connected agents that exhibits an emergent global behavior not imposed by a central controller, but resulting from the interactions between the agents." Nino Boccara in *Modeling Complex Systems*
- "...complexity theory seeks to understand how order and stability arise from the interactions of many components according to a few simple rules." Philip Ball in Critical Mass

Complex System - Definition

- Distributed system of many interrelated (possibly networked)
 parts with no centralized control exhibiting emergent behavior
- Complex systems exhibit these key characteristics:
 - Non-linearity
 - Emergence
 - Self-organization
- Complexity ensues by system adapting to its environment

Why Define Complexity?

- To estimate how long a particular system will take (e.g. to solve a problem)
- To understand the limits of prediction, approximation, and simulation
- To answer fundamental scientific questions
 - E.g. Does complexity increase through evolution biological or otherwise?
- Can we quantify the increase in complexity over time?

Complex Systems

A complex system is any system:

- That involves a (large) number of elements, arranged in structure(s) which can exist on many scales
- These elements interact locally
- Structures go through a process of change not describable by a single rule or reducible to a single level of explanation
- Features emerge that cannot be predicted from the current description of the structure(s)

Examples of Complex Systems

- human societies
- financial systems
- cells
- ant colonies
- weather systems
- ecosystems

- animal societies
- disease ecologies
- brains
- social insects
- geophysical systems
- the world wide web

i.e., everything that's interesting...

What are Complex Systems?

• At their lowest level, they are comprised of a set of individual agents (a general term!)

- Agents are heterogeneous, differing in important characteristics.
- Agents are indivisible
- Agents are/may be organized into some sort of group or hierarchy, which is/ may be structured. These organizational structures in turn influence system dynamics.

• The system is *dynamic* – it changes over time:

- The agents interact, adapt and undergo natural selection in response to their own environment. The system dynamics are non-linear.
- Agent change often occurs in response to feedback from their actions.

Complex systems may possess the characteristic of emergence.

- The macro- or system-level behavior that emerges from the activities and behaviors of the component parts of the system, but which cannot be explained at the agent level alone.
- It's usually the system-level behavior that intrigues us.

Computational Social Systems and Complex Systems Problem?

- Most pre-computational social science models are linear:
 - Linearity is based on independence of elements
 - Linearity is a good modeling technique for simple systems
 - The linearity assumption implies that the whole is equal to the sum of its parts!
- We know a lot about:
 - Individuals (through surveys)
 - Aggregated as groups and populations
 - On a domain-specific basis
- We know a lot less about interactions among individuals and groups:
 - How social structures form; how protocols emerge and the interactions in large groups and among subgroups
 - How and why do group structures (and their protocols) change
 - What the content of interaction is: influence, power, imitation, exchange, association

BUT:

- π Social science systems are not simple,....
- π The whole may be greater (or lesser) than the sum of its parts!!
- π Modeling the dynamics is (very) hard ...

Complex Systems: Non-Linear Interactions

- For linear systems:
 - a small change to a system's components → a small change at the system level
- For non-linear systems:
 - a small change to a system's components → large/small/no change at the system level

Complex Systems: Emergence

- Emergence: Rather than being planned or controlled the agents in the system interact in apparently random ways.
 - From these interactions patterns emerge which inform the behavior of the agents within the system and the behavior of the system itself.
- Seen in various systems across domains:
 - For example a termite hill is a wondrous piece of architecture with a maze of interconnecting passages, large caverns, ventilation tunnels and much more. Yet there is no grand plan, the hill just emerges as a result of the termites following a few simple local rules.

Complex Systems: A Natural Emergent System

- Ant behavior is determined by the local interactions of many ants
- Exemplar of a "superorganism"
- A superorganism is any aggregate of individual organisms that behaves like a unified organism.
- Members of a superorganism have highly specialized social cooperative instincts, divisions of labor, and are unable to survive away from their superorganism for very long.

Termite Ant Cathedral Mound

Complex Systems: Man made Emergent System

Complex Systems: Man made Emergent System

World Wide Web (WWW)

- No centralized control
- Exponential increase in diversity of information
- Websites arise and disappear seemingly at random (not necessarily true)
- Number of links pointing to page follow a power law
- A few pages are linked to many times and majority are seldom linked to

Complex Systems: Emergence in Social Systems

- "Micromotives and Macrobehavior"
 - Segregation

Thomas Schelling (Economist/Nobel Laureate)

Complex Systems: Emergence in Social Systems

 Understand macrophenomena arises from microbehavior which in turn depends on macrophenomena (James Coleman in Foundations of Social Theory)

Complex Systems: Multi-Scale

- Multi-scale descriptions are needed to understand complex systems:
 - Complexity arises at different levels
 - Mathematical tools must scale
 - Need to understand behavior propagation across levels
 - Ex: Weather (cyclones, tornadoes, dust devils)
- Fine scales influence large scale behavior:
 - Ex: Neurophysiology a nerve cell action triggering a muscle
 - Ex: Economy/society the relevance of individuals to larger scale behaviors

Complex Systems: Man made Emergent System

- Stock Market(s):
 - No leader
 - Each investor is an agent has a limited knowledge of the market, has to abide by some rules
 - Patterns of working of the market emerge: but how?

 https://www.wnycstudios.org/podcasts/radiolab/episodes/91500emergence

Types of Emergence

Weak Emergence

- The emergence results from a linear combination of the system components
- The emergent qualities are reducible to the individual components Newtonian Physics

Strong Emergence

- The behavior of the Whole cannot be predicted from the parts since the combinations are non-linear in this case
- The emergent qualities are irreducible to the system components systems theory of Physics

Self Organization

"Order is not pressure which is imposed on society from without, but an equilibrium which is set up from within."

José Ortega y Gasset, Mirabeau and Politics, 1927-

- The spontaneous emergence of large-scale spatial, temporal, or spatiotemporal order in a system of locally interacting, relatively simple components.
- Self-organization is a bottom-up process where complex organization emerges at multiple levels from the interaction of lower-level entities.
- Objective of self organization:
 - Self-optimization
 - Self-healing/protection
- Tell-tale signs of self-organization are usually statistical properties shared with self-organizing physical systems

Complex Systems: Self-organization

- How come geese fly in organized V-shaped flocks, and fish swim in schools?
- Is there a leader? Maybe the one in front?

