Midsem 1: Tentative marking & cleme

1.a) Let
$$-8(t) = pe^{it}$$
, $t \in [0, 2\pi)$ for some $p > 0$. -0

Then $\int |2| dz = \int_{0}^{2\pi} i p^{2} e^{it} dt - -2$

$$= i p^{2} \frac{e^{it}}{t} \Big|_{0}^{2\pi} = 0 - 2$$

$$\frac{2 \cdot 4}{8} \int f(z) dz = \int \frac{dz}{(z-3)(z^2-1)} = -\frac{1}{2} \left[\int \frac{dz}{(z-3)(z+1)} - \int \frac{dz}{(z-3)(z-1)} \right] - 0$$

$$= \frac{2\pi i}{-2} \left(-\frac{1}{4} + \frac{1}{2} \right)$$

as $8(t) = 2e^{it}$ uncludes the points -1, 1. — 3 $\int f(z) dz = -i\frac{\pi}{4} - 0$

b) Let $= Z_1, Z_2, \dots, Z_n$ be zeeros of P and $P(Z) = \alpha(Z-Z_1) \dots (Z-Z_n) - \emptyset$ where $\alpha \in \mathbb{C}$. Then $\frac{P'(Z)}{P(Z)} = \sum_{i=1}^n \frac{1}{Z-Z_i}$ - 3

=) By Councy's untegeral formula

$$\int \frac{P'(z)}{P(z)} dz = \int \int \frac{dz}{z-z_i} = 2\pi i n - 0$$

3.a) On
$$A_1$$
: $f(z) = \frac{1}{\alpha - \beta} \left(\frac{1}{z - \alpha} - \frac{1}{z - \beta} \right)$

$$= \frac{1}{\alpha - \beta} \left(\frac{1}{z \left(1 - \frac{\alpha}{z} \right)} + \frac{1}{\beta \left(1 - \frac{z}{\beta} \right)} \right) - 2$$

$$= \sum_{n=0}^{\infty} \left(\frac{\alpha^n}{\alpha - \beta} \right) \frac{1}{z^{nr_1}} + \sum_{n=0}^{\infty} \frac{1}{\beta^{n+1}(\alpha - \beta)} z^n - 0$$

$$= \sum_{n=0}^{\infty} \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right) \frac{1}{z^{nr_1}} - 0$$

$$= \sum_{n=0}^{\infty} \left(\frac{\alpha^n - \beta^n}{\alpha - \beta} \right) \frac{1}{z^{nr_1}} - 0$$

b) By Canchy's estimate we have for all
$$K_{+}^{2}$$
 | $f^{(0)}| \leq \frac{K!}{R^{K}} \sup_{12l=R} |f(z)| \leq \frac{K!}{R^{K}} (1+R^{1/2}) - 3$

$$=) f(z) = \alpha (\alpha \cos t) = 0$$

$$=) |d| = |f(0)| \leq 1 - 0$$

4. A) Let-
$$g(z,y) = u^2(z,y) - v^2(z,y) + 2iu(z,y) v(z,y) - 0$$

Since g is analytic are haine from $cR = qn$.
 $2uu_2 - 2vv_2 = 2uv_2 + 2uy_2 - \cdots (i)$ $-2uv_2 - 2uz_2 = 2uu_2 - 2vv_2 - \cdots (ii)$

b) Let- $h(\pm) = \frac{f(\pm)}{g(\pm)}$, — 0Then h is analytic on $B_{1}(0)$.

Since $|h(\pm)| = 1 + 2$ with |2| = 1, by maximum modulus pounciple $|h(\pm)| \le 1 + 2 \in B_{1}(0)$. — 0Similarly $|h(\pm)| \ge 1 + 2 \in B_{1}(0)$ by considering $\frac{1}{h(\pm)} = \frac{9(\pm)}{f(\pm)}$. $\Rightarrow |h(\pm)| = 1 + 2 \in B_{1}(0)$ — 0Since h is analytic int follows from CR egn. That $h(\pm) = q + 2 \in B_{1}(0)$. — 0As $|h(\pm)| = 1$, $d = e^{i\delta}$ for $\delta \in L^{0}(2\pi)$. — 0