Introductory Statistics Lectures

Probability density functions

The normal distribution

ANTHONY TANBAKUCHI DEPARTMENT OF MATHEMATICS PIMA COMMUNITY COLLEGE

REDISTRIBUTION OF THIS MATERIAL IS PROHIBITED WITHOUT WRITTEN PERMISSION OF THE AUTHOR

© 2009

(Compile date: Tue May 19 14:49:36 2009)

Contents

1	Probability density func-			Inverse cumulative dis-		
	tions		1		tribution func-	
	1.1	Introduction	1		$ ext{tions}$	8
		R tip of the day: graph-		1.3	Normal distribution	9
		ing functions	1		Standard normal distri-	
		Uniform distribution	2		$ \text{bution} \ \dots \ \dots$	10
		Finding probabilities			Finding probabilities	
		from density			involving the	
		functions	3		normal distri-	
	1.2	Cumulative distribu-			$\mathbf{bution} \ldots \ldots$	11
		tion functions	5		Examples	11
		Finding probabilities		1.4	Summary	12
		using CDF's	6	1.5	Additional Examples	13

1 Probability density functions

1.1 Introduction

R TIP OF THE DAY: GRAPHING FUNCTIONS

```
Graphing functions:
curve(expression, xmin, xmax)
expression an expression or function involving x
xmin min value of x to plot
xmax max value of x to plot
```

R COMMAND

2 of 15 1.1 Introduction

```
R: par(mfrow = c(2, 2))
R: curve(x^2, -10, 10)
R: curve(x^3, -10, 10)
R: curve(sin(x), -2 * pi, 2 * pi)
R: curve(sin(pi * x)/(pi * x), -5, 5)
```


UNIFORM DISTRIBUTION

Definition 1.1

Uniform distribution f(x).

Occurs when the probability of a continuous random variable is equal across a range of values.

R COMMAND

```
UNIFORM DENSITY:
dunif(x, min=0, max=1)
```

Useful for graphing, not useful for directly finding probabilities.

In R, all PDF's have a "d" prefix for density.

Uniform Density f(x)

Probability is area!

FINDING PROBABILITIES FROM DENSITY FUNCTIONS

Finding probabilities

Area represents probability!

$$P(x < a) = \int_{-\infty}^{a} f(x) dx \qquad \text{(area to the left of } a)$$

$$P(a < x < b) = \int_{a}^{b} f(x) dx \qquad \text{(area between } a \text{ and } b)$$

$$P(x > a) = \int_{a}^{\infty} f(x) dx \qquad \text{(area to the right of } a)$$

4 of 15 1.1 Introduction

Finding probabilities for uniform density is easy: width \times height. Use the density below to answer the following question.

Uniform PDF

Question 1. Shade the region representing P(x < 5) and find the probability.

1.2 Cumulative distribution functions

Cumulative distribution function (cdf) F(x).

Definition 1.2

Gives the **area to the left** of x on the probability density function.

$$P(x < a') = F(a') \tag{1}$$

$$= \int_{-\infty}^{a'} f(x) \, dx \tag{2}$$

F(x) is **the** tool for finding probabilities of continuous random variables.

UNIFORM CDF:

punif(x, min=0, max=1)

R COMMAND

Gives the **area to the left** of the uniform density at x.

In R, all CDF's have a "p" prefix for probability.

Example 1. Find P(x < 5)

FINDING PROBABILITIES USING CDF'S

What CDF gives us Only give area to the left!

$$P(x < a) = F(a)$$
 (area to the left of a)
 $P(x > a) = ?$ (area to the right of a)
 $P(a < x < b) = ?$ (area between a and b)

Using CDF to find P(x>a)

Example 2. Find P(x > 5).

Uniform PDF f(x)

Uniform CDF F(x)

$$P(x > 5) = 1 - P(x < 5) = 1 - F(5)$$

$$\begin{array}{lll} R \colon \ 1 \ - \ punif (5 \, , \ min \ = \ 2 \, , \ max \ = \ 6) \\ [1] \ \ 0.25 \end{array}$$

Using CDF to find P(a<x<b)

Example 3. Find P(3 < x < 5).

P(3 < x < 5) = F(5) - F(3) (always subtract larger from smaller)

| R:
$$punif(5, min = 2, max = 6) - punif(3, min = 2, + max = 6)$$

| $[1] 0.5$

Finding probabilities with CDF's

Using F(x) to find probabilities:

$$P(x < a) = F(a)$$
 (area to the left of a)
 $P(x > a) = 1 - F(a)$ (area to the right of a)
 $P(a < x < b) = F(b) - F(a)$ (area between a and b)

You must know how to use this!

INVERSE CUMULATIVE DISTRIBUTION FUNCTIONS

Inverse cumulative distribution functions CDF^{-1} .

Finds the value of x that has an area p to the left. (Inverse operation of CDF).

In R, all inverse CDF's have a "q" prefix for quantile.

Using inverse CDF to find x given p

Example 4. Find x' such that P(x < x') = 0.75 (the value of x that has an area to the left of 0.75).

Uniform PDF f(x)

 $egin{array}{ll} R: & qunif(0.75, min = 2, max = 6) \\ [1] & 5 \end{array}$

Question 2. Find x' such that P(x > x') = 0.25 (the value of x that has an area to the right of 0.25).

R Command

Definition 1.3

1.3 Normal distribution

Normal probability density function f(x).

Definition 1.4

$$f(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}}$$
 (3)

characterized by μ and σ .

Occurs frequently in nature.

NORMAL DENSITY:

dnorm(x, mean=0, sd=1)

By default it is the standard normal density.

R COMMAND

Visualizing the normal distribution

|R: curve(dnorm(x, mean = 0, sd = 1), -5, 5)

Visualizing effect of μ , σ

Area under curve is always 1.

STANDARD NORMAL DISTRIBUTION

Definition 1.5

STANDARD NORMAL DISTRIBUTION f(z).

A normal distribution with $\mu=0$ and $\sigma=1$. If you convert normally distributed x data into z-scores, you will have a standard normal distribution.

Since there are an infinite set of normal distributions, historically we converted x to z and then only had **one** standard normal distribution and **one** standard normal cumulative distribution F(z). A single table of F(z) could then be used to solve most probability questions involving normal distributions.

With computers, we can directly use any specific normal cumulative distri-

bution F(x) and very accurately find probabilities.

Standard normal distribution

FINDING PROBABILITIES INVOLVING THE NORMAL DISTRIBUTION

NORMAL CDF:

pnorm(x, mean=0, sd=1)

Gives the area to the left of the normal density at x.

NORMAL PHYSICS CDE:

NORMAL INVERSE CDF: qnorm(p, mean=0, sd=1) Finds x with area p to the left on the density function.

R COMMAND

Tips for solving probabilities involving normal dist.

- 1. Determine μ and σ .
- 2. Sketch the PDF & area representing probability.
- 3. If asked to find probability use CDF: R function pnorm(x,...) to find probability p.
- 4. If asked to find value of x corresponding to probability use CDF^{-1} : R function qnorm(p,...) to find the value of x.
- 5. If working with **upper tail** be sure to take compliment! Be careful, if you want to find the value of x that has an area p to the right you need to use $qnorm(1-p, \ldots)$.

EXAMPLES

Example 5. Given $\mu = 2$ and $\sigma = 1$, find P(x > 3).

12 of 15 1.4 Summary

(x) -4 0 2 4 6 8 x

Normal CDF F(x)

$$P(x > 3) = 1 - F(3)$$

[1] 0.15866

Thus,
$$P(x > 3) = 0.159$$

Now lets look at the inverse problem:

Example 6. Given $\mu=2$ and $\sigma=1$, what value of x' satisfies P(x>x')=0.159?

$$x' = F^{-1}(1 - 0.159)$$

R: p [1] 0.15866 R: x = qnorm(1 - p, mean = 2, sd = 1) R: x [1] 3

Note where we had to take the compliment!

Thus, the value of x that has an area 0.159 to the right is 3!

1.4 Summary

- For discrete random variables, probability is given by the distribution $p = P(x_i)$. ("d" prefix in R.)
 - For the binomial distribution, the probability of a specific number of successes x is p = dbinom(x,n,p).
- For continuous variables, probability is **area** on density f(x).
 - Use CDF's F(x) to find probabilities. ("p" prefix in R)

$$P(x < x') = F(x')$$
 (area to the left of x')
 $P(x > x') = 1 - F(x')$ (area to the right of x')
 $P(a < x < b) = F(b) - F(a)$ (area between a and b)

– Use inverse CDF's $F^{-1}(p)$ to find specific value of x' in p = P(x < x') given probability p. ("q" prefix in R) $x' = F^{-1}(p)$

For the normal distribution:

• CDF p = F(x): p=pnorm(x, mean=0, sd=1)

$$P(x < x') = pnorm(x', ...)$$

 $P(x > x') = 1 - pnorm(x', ...)$
 $P(a < x < b) = pnorm(b, ...) - pnorm(a, ...)$

where "..." is "mean= μ , sd= σ ".

• Use inverse CDF's $x = F^{-1}(p)$ to find x given probability p. ("q" prefix in R)

To find
$$x'$$
 in $p = P(x < x')$: $x'=qnorm(p, ...)$
To find x' in $p = P(x > x')$: $x'=qnorm(1-p, ...)$

For continuous variables in general:

- Carefully determine location of area: to left, to right, interval.
- Always make a sketch when doing problems.
- CDF assumes areas to the left. Take the compliment when finding upper tail!

1.5 Additional Examples

Given the following density function on the left and it's corresponding CDF for the χ^2 distribution, answer the following questions.

Question 3. Find P(x > 10)

Question 4. Find P_{25}

The SAT-I scores for females is normally distributes with a mean of 998 and a standard deviation of 202 (based on data from the college board).

Question 5. If a female is randomly selected, what is the probability that her score is greater than 1100?

Question 6. What would the score be for P_{75} ?

Question 7. What proportion of students scored between 500-1100?

Replacement times for CD players are normally distributed with a mean of 7.1 years and a standard deviation of 1.4 years.

Question 8. Find the probability that a randomly selected CD player will have a replacement time less than 8 years.

Question 9. If you want to provide a warranty so that on only 2% of the CD players will be replaced before the warranty expires, what is the time length of the warranty?