Podstawy mechaniki kwantowej

Notatki z wykładu

8 marca 2025

Spis treści

1	His	toria powstania fizyki kwantowej	2
	1.1	Zapomnijmy o mechanice klasycznej	2
	1.2	Promieniowanie ciała doskonale czarnego	4
	1.3	Prawo Rayleigha-Jeansa	4
	1.4	Teoria kwantowa Plancka	,
	1.5	Efekt fotoelektryczny	•

1 Historia powstania fizyki kwantowej

1.1 Zapomnijmy o mechanice klasycznej

Związek z nią będzie jasny, kiedy pójdziemy głębiej w teorię.

1.2 Promieniowanie ciała doskonale czarnego

Eksperyment Stefana-Boltzmanna (1878) badał promieniowanie cieplne emitowane przez ciało doskonale czarne. Ciało doskonale czarne to obiekt, który pochłania całe promieniowanie i emituje je zgodnie z temperaturą.

Rysunek 1: Ciało doskonale czarne. Źródło: Wikipedia

Pokazano, że całkowita energia wypromieniowywana przez takie ciało jest proporcjonalna do czwartej potęgi jego temperatury absolutnej

$$R(T) = \sigma T^4,$$

gdzie R to moc promieniowania na jednostkę powierzchni, T to temperatura w kelwinach, a σ to stała Stefana-Boltzmanna.

Całkowita moc promieniowania to

$$R(T) = \int_0^\infty \rho(\lambda, T) d\lambda,$$

gdzie λ to długość fali, a $\rho(\lambda,T)$ to spektralna funkcja rozkładu.

W 1893 Wien zauważył, że spektralna gęstość promieniowania nie zależy od λ i Tosobno, ale od ich iloczynu λT

$$\rho(\lambda, T) = \lambda^{-5} f(\lambda T).$$

1.3 Prawo Rayleigha-Jeansa

W klasycznej elektrodynamice, promieniowanie elektromagnetyczne opisane jako fale stojące daje rozkład energii w funkcji długości fali. Liczba takich fal o długości od λ do $\lambda+d\lambda$ to

$$\rho(\lambda, T) = \frac{8\pi}{\lambda^4} \cdot \bar{\epsilon},$$

gdzie $\bar{\epsilon}$ to średnia energia takiej fali. Wzór ten jest dokładny dla długich fal, ale prowadzi do problemu z "katastrofą ultrafioletową" przy krótkich falach, co zostało skorygowane przez teorię kwantową Plancka.

Rysunek 2: Widmo promieniowania ciała doskonale czarnego w wybranych temperaturach. Źródło: Zbigniew Kakol, Jan Żukrowski (e-Fizyka, AGH)

Teoria kwantowa Plancka 1.4

W 1900 roku Planck zaproponował, że ciała emitują światło w postaci kwantów ($\epsilon = n\epsilon_0$)

$$\bar{\epsilon} = \frac{\sum_{n=0}^{\infty} n\epsilon_0 \exp(-\frac{n\epsilon_0}{kT})}{\sum_{n=0}^{\infty} \exp(-\frac{n\epsilon_0}{kT})} = \dots = \frac{\epsilon_0}{\exp(\frac{\epsilon_0}{kT}) - 1},$$

gdzie $\epsilon_0 = h\nu = \frac{hc}{\lambda}$ jest energią jednego kwantu promieniowania. Z tego wyrażenia Planck otrzymał rozkład promieniowania w funkcji długości fali, który ma postać

$$\beta(\lambda, T) = \frac{8\pi hc}{\lambda^5} \cdot \frac{1}{\exp(\frac{hc}{k\lambda T}) - 1},$$

Wzór ten zgadza się z wynikami eksperymentalnymi, eliminując problem "katastrofy ultrafioletowej".

Efekt fotoelektryczny 1.5

Efekt fotoelektryczny to zjawisko emisji elektronów z powierzchni metalu pod wpływem padającego na niego światła.

Rysunek 3: Układ do obserwacji zjawiska fotoelektrycznego. Źródło: Zbigniew Kąkol, Jan Żukrowski (e-Fizyka, AGH)

W 1900 roku doświadczenia Lenarda wykazały, że energia elektronów zależy od częstotliwości światła, a nie jego intensywności. Einstein sformułował wzór efektu fotoelektrycznego

$$\frac{1}{2}mv_{\max}^2 = h\nu - W,$$

gdzie W to funkcja pracy metalu (zależna od rodzaju metalu).