# Examn notes for Advanced Algorithms and Datastructures 2014

# Martin Jørgensen

May 10, 2014

# **Dispositions**

## **Max-Flow**

- 1. Define a Flow Network
  - Capacity Constraint
  - Flow Conservation
- 2. Define a Max Flow
- 3. How to have multible source/sink networks
- 4. Introduce Ford-Fulkerson
- 5. Introduce Residual Networks
- 6. Introduce Augmenting Paths
- 7. Cuts In particular the min cut max flow.

## **Notes**

#### **Max-Flow**

#### Flow Network

A flow network G = (V, E) is a directed graph where each edge  $(u, v) \in E$  have a nonnegative capacity  $c(u, v) \ge 0$ . In addition, for any edge (u, v) there can be no antiparallel edge (v, u).

Two vertices in the network have special characteristics the source s and sink t. We assume each vertex  $v \in V$  lies on some path from s to t, that is, for each vertex  $v \in V$ , the flow network contains a path  $s \leadsto v \leadsto t$ .

#### **Flow Definition**

We have a flow network G = (V, E) with a source s and a sink t, the network has a capacity function c(u, v). A flow is a real-valued function  $f : V \times V \to \mathbb{R}$  that satisfies the two following properties:

# • Capacity Constraint:

For all  $u, v \in V$ , we require  $0 \le f(u, v) \le c(u, v)$ 

#### • Flow Conservation:

For all  $u \in V - \{s, t\}$  we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

When  $(u, v) \notin E$ , there can be no flow from u to v, and f(u, v) = 0. We call the nonnegative quantity f(u, v) the flow from vertex u to vertex v. The value |f| of a flow f is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

that is the total flow out of the source minus the flow into the source.

## **Antiparallel Edges and Multiple Sources/Sinks**

Since a flow network cannot contain anti-parallel edges, but we want to be albe to represent them in our graph, we need a way to do so. This is done by inserting an additional node  $v^\prime$  and let one of the edges go through this node instead, see Figure 2 for an example.

If a network have multiple sources or sinks, we can convert it to a single source/sink network by adding a supersource and supersink. An example of such conversion can be seen in Figure 3.

# **Flow Examples**



Figure 1: Example flow.



Figure 2: Conversion from antiparallel edges to proper flow.



Figure 3: Example of a graphi with multiple sources and sink, combined using a supersource and supersink.

#### **Residual Networks**

Given a flow network G and a flow f the residual network  $G_f$  consists of edges and capacities that represent how we can change the flow on edges of G. Suppose we have a flow network G = (V, E) with source s and sink t. LEt f be a flow in G, and consider a pair of vertices  $u, v \in V$ . We then define the residual flow like this:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E, \\ 0 & \text{otherwise.} \end{cases}$$



Figure 4: An example of a flow being augmented and showing the residual graph.

An example of a residual network can be seen in Figure 4.

## **Augmenting Paths**

Augmenting paths are simply flows that can be added to other flows in order to increase the flow value through the network. Augmenting flows are described using the \(^{\uparrow}\) operator like so:

$$(f \uparrow f')(u, v) = \begin{cases} f(v, u) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

an example of an applied augmenting path can bee seen in Figure 4.

Finish this up! Lemma 26.1 coming up.

#### Ford-Fulkerson

FORD-FULERSON-METHOD(G, s, t)

- 1 initialize flow f to 0
- 2 **while** there exists an augmenting path p in the residual network  $G_f$
- 3 augment flow f along p
- 4 return f