

Selective Bokeh Effect Transformation

Juewen Peng 1 , Zhiyu Pan 1 , Chengxin Liu 1 , Xianrui Luo 1 , Huiqiang Sun 1 , Liao Shen 1 , Ke Xian 2 , Zhiguo Cao 1* ¹Huazhong University of Science and Technology ²Nanyang Technological University

Problem Statement

Bokeh effect transformation aims to convert bokeh effects from one camera lens to another. In this paper, we mainly consider the transformation of lens type and blur amount.

Blur Ratio

To perform blur amount transformation, we define blur ratio η :

$$\eta = \frac{S_t}{S_s} = \frac{l_t^2 f_s}{l_s^2 f_t},$$

where subscript t and s denote target lens and source lens. S is defocus map. l is focal length. f is f-number.

Integration in feature level to

implement blur amount

transformation with an arbitrary

blur ratio which may not exist in

the training dataset

$$\eta = \frac{S_t}{S_s} = \frac{l_t^2 f_s}{l_s^2 f_t},$$

Experiments

NTIRE 2023 Bokeh Effect Transformation Challenge Results:.

Methods	Synthetic + Real			Real	
iviethous	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	LPIPS↓
NAFBNET	35.264	0.9362	0.0985	0.8416	0.2186
SBTNet (Ours)	<u>34.572</u>	0.9361	0.0966	0.8435	0.2224
CBTNet	32.326	0.9333	0.1076	0.8420	0.2230
BokehOrNot	32.288	0.9327	0.1130	0.8423	0.2199
SGLMS	32.076	0.9324	0.1076	0.8419	0.2161
IR-SDE	30.866	0.9297	0.1301	0.8427	0.2387
BGNet	30.866	0.9297	0.1301	0.8427	0.2387
JiXiangNiu	27.970	0.9213	0.1542	0.8455	0.2175
EBokehNet-s (Organizers) EBokehNet (Organizers)	34.543 35.521	0.9350 0.9362	0.1039 0.0993	0.8414 0.8412	0.2206 0.2208

Ablation Study on Cat-Eye Encoding:

Coordinate Map	PSNR↑	SSIM↑	LPIPS↓
w/o	43.567	0.9892	0.0352
w/	45.627	0.9946	0.0331

Integration in Image Level vs. in Feature Level:

	Integration Mode	PSNR↑	SSIM↑	LPIPS↓				
	Canon50mmf1.8 \rightarrow Sony50mmf16.0							
	Image Level	35.755	0.9850	0.0684				
	Feature Level	35.768	0.9851	0.0675				
_	Sony50mmf16.0 \rightarrow Canon50mmf1.8							
	Image Level	37.282	0.9894	0.0752				
	Feature Level	38.005	0.9921	0.0555				

Method

Qualitative Results:

Sony50mmf16.0 \rightarrow Canon50mmf1.8

Canon50mmf1.4 \rightarrow Sony50mmf1.8

Synthetic

Real

Sony50mmf16.0 \rightarrow Canon50mmf1.4

Sony50mmf1.8 → Canon50mmf1.4

Canon50mmf1.4 \rightarrow Sony50mmf1.8

Canon50mmf1.4 \rightarrow Sony50mmf1.8

GitHub: https://juewenpeng.github.io/SBTNet/

Sony50mmf1.8 \rightarrow Canon50mmf1.4

Sony50mmf1.8 \rightarrow Canon50mmf1.4

Sony50mmf1.8 \rightarrow Canon50mmf1.4