Assignment -2

Data Visualization and Pre-processing

Project Name	A Novel method for Handwritten Digit		
	Recognition System		
Team ID	PNT2022TMID17273		
Assignment Date	October 2022		
Maximum Marks	2 Marks		

Question-1:

Download the dataset:

The dataset "Churn_Modelling.csv" was downloaded Successfully

Question-2:

Load the Dataset:

Question-3:

Perform Below Visualization:

Univariate Analysis

[5] #Univariate Analysis for Numerical data

[] #Univariate Analysis for Categorical Data

```
[14] #Bar Chart
    df = pd.DataFrame(data)

X = list(df.iloc[:, 0])
    Y = list(df.iloc[:, 1])
    plt.bar(X, Y, color='g')
```

<BarContainer object of 10000 artists>

Bivariate Analysis

```
[23] #Bivariate Analysis for Categorical Data

#Stacked Bar chart

plt.bar(data['Gender'], data['Geography'], color='r')
```

<BarContainer object of 10000 artists>


```
[21] #Bivariate Analysis for Numerical Data
plt.scatter(data['Age'],data['CreditScore'], color='b')
```

<matplotlib.collections.PathCollection at 0x7f6589f606d0>

Multivariate Analysis

#Multivariate Analysis for 2 Numerical and 1 Categorical Data
#Scatter Plot
import seaborn as sns
sns.catplot(data=data, x="Age", y="CreditScore", hue="Gender")

<seaborn.axisgrid.FacetGrid at 0x7f657aab5d90>

#Multivariate Analysis for 2 Categorical and 1 Numerical Data
#Box Plot
sns.catplot(data=data, x="Geography", y="Age", hue="Gender", kind="box")

<seaborn.axisgrid.FacetGrid at 0x7f6575c43490>

Question-4:

Perform Descriptive Statistics on the dataset:

```
[ ] #Perform Descriptive Statistics on the Dataset
     data.mean()
  /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1:
        """Entry point for launching an IPython kernel.
                   1.569094e+07
      RowNumber
      CustomerId
      CreditScore
                      6.505288e+02
                       3.892180e+01
      Tenure
                       5.012800e+00
                       7.648589e+04
      Balance
      NumOfProducts
                        1.530200e+00
      HasCrCard
                        7.055000e-01
      IsActiveMember
                        5.151000e-01
      EstimatedSalary 1.000902e+05
      Exited
                        2.037000e-01
      dtype: float64
[34] data.median()
      /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1:
        """Entry point for launching an IPython kernel.
      RowNumber
                       5.000500e+03
      CustomerId
                       1.569074e+07
      CreditScore
                      6.520000e+02
                        3.700000e+01
      Age
      Tenure
                        5.000000e+00
                        9.7198540+04
      Ralance
      NumOfProducts
                       1.000000e+00
      HasCrCard
                       1.000000e+00
      IsActiveMember
                       1.000000e+00
      EstimatedSalary 1.001939e+05
      Exited
                        0.000000e+00
      dtype: float64
```


Question-5:

Handle the Missing values:

```
_{\text{O}_{3}} [39] #Handling the missing values
        data.isnull().sum()
        RowNumber
                             0
        CustomerId
                             0
        Surname
                             0
        CreditScore
                             0
        Geography
                             0
        Gender
                             0
                             0
        Age
        Tenure
                             0
        Balance
                             0
        NumOfProducts
                             0
        HasCrCard
                             0
        IsActiveMember
                             0
        EstimatedSalary
                             0
        Exited
        dtype: int64
```

Question-6:

Find the outliers and replace the outliers:

(41) qnt=data.quantile(q=[0.25,0.75])

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	0.
0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0	
0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0	

[42] IQR = qnt.loc[0.75] - qnt.loc[0.25]

RowNumber 4999.5000 CustomerId 124705.5000 134.0000 Age 1.0000 HasCrCard IsActiveMember 1.0000 EstimatedSalary 98386.1375 Exited dtype: float64 0.0000

[43] upper_extreme = qnt.loc[0.75]+1.5*IQR upper_extreme

1.499950e+04 RowNumber 1.594029e+07 CustomerId CreditScore 9.190000e+02 6.200000e+01 Age Tenure 1.300000e+01 Balance 3.191106e+05 NumOfProducts 3.500000e+00 HasCrCard 2.500000e+00 IsActiveMember 2.500000e+00

EstimatedSalary 2.969675e+05 0.000000e+00 Exited

dtype: float64

[44] lower_extreme = qnt.loc[0.25]-1.5*IQR lower extreme

-4.998500e+03 RowNumber CustomerId 1.544147e+07 CreditScore 3.830000e+02 1.400000e+01 Age -3.000000e+00 Tenure Balance -1.914664e+05 NumOfProducts -5.000000e-01 HasCrCard -1.500000e+00 IsActiveMember -1.500000e+00 EstimatedSalary -9.657710e+04 Exited 0.000000e+00

dtype: float64

Question-7:

Check for Categorical columns and perform Encoding:

```
[53] #Check for Categorical columns and perform encoding
    #Categorical are Geography and Gender
    from sklearn.preprocessing import LabelEncoder

[75] le=LabelEncoder()
    df2['Geography'] = le.fit_transform(df2['Geography'])
    df2['Gender'] = le.fit_transform(df2['Gender'])
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	10-
0	1	15634602	Hargrave	619	0	0	42	2	0.00	1	1	1	101348.88	1	
1	2	15647311	Hill	608	2	0	41	1	83807.86	1	0	1	112542.58	0	
2	3	15619304	Onio	502	0	0	42	8	159660.80	3	1	0	113931.57	1	
3	4	15701354	Boni	699	0	0	39	1	0.00	2	0	0	93826.63	0	
4	5	15737888	Mitchell	850	2	0	43	2	125510.82	1	1	1	79084.10	0	

Question-8:

Split the data into dependent and independent variables:

```
[77] #Split the data into dependent and independent variables.
    y=df2['EstimatedSalary']
    x=df2.drop(columns=['EstimatedSalary'],axis=1)
```

```
[78] x.head()
      RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Exited 🎉
       1 15634602 Hargrave 619 0 0 42 2 0.00 1 1 1 1 1
                           608
                                  2
                                      0 41
                                             1 83807.86
          2 15647311
                   Hill
    2 3 15619304 Onio 502 0 0 42 8 159660.80
                                                        3 1
                                                                       0 1
                          699
                                 0 0 39 1
                                                          2
                                                                         0
         4 15701354
                  Boni
                                                 0.00
    4 5 15737888 Mitchell 850 2 0 43 2 125510.82
```

Question-9:

Scale the independent variables:

Question-10:

Split the data into training and testing:

C 1104 151645.96 6334 143463.28 37577.66 7638 5392 43018.82 2851 100478.60 ... 4269 2048.55 1037 180969.55 9056 166896.01 8440 36864.05 1960 86013.96

Name: EstimatedSalary, Length: 7671, dtype: float64

0

/ [94] x_test

	CreditScore	Geography	Gender	Age
962	0.772974	0.307437	0.911789	0.154977
5257	1.248890	1.516632	-1.096745	0.386361
7515	-0.841005	0.307437	-1.096745	-0.654871
6844	0.959202	-0.901758	-1.096745	-0.886256
4102	-0.996196	1.516632	-1.096745	0.386361
	1027	111	222	75.22
60	0.379825	0.307437	-1.096745	-1.233333
5555	0.503977	-0.901758	0.911789	-0.076408
5112	1.704115	1.516632	-1.096745	2.237441
138	0.131520	-0.901758	0.911789	-0.423486
4973	0.328095	-0.901758	-1.096745	2.353134

1918 rows x 4 columns

```
 [95] y_test
      1002
            184023.54
              92914.67
       5486
            132038.65
      7838
      7133 138780.89
      4281
            36242.19
            126494.82
      61
      5797
             83263.04
      5337
             38941.44
      141
             180427.24
      5191
               706.50
```

Name: EstimatedSalary, Length: 1918, dtype: float64