```
Vitis-Tutorials/Hardware_Acceleration /Feature_Tutorials /03-dataflow_debug_and_optimization
```

612k0023c

Hao Chen

Outline

- Dataflow Viewer Basics
- FIFO Sizing and Deadlock

- \$cd 03-dataflow_debug_and_optimization/reference-files/dataflow
- \$vitis_hls -p script.tcl
- Run C Simulation / C Synthesis
- Open Dataflow Viewer:

Module Hierarchy view:

The Dataflow Graph Pane

- The Dataflow Graph Pane
 - The edges in the graph (shown as blue, green, or gold arrows) represent the communication between the functions:
 - Blue edges represent data dependencies between the functions
 - Green edges represent the inferred FIFO channels between the functions
 - Gold edges represent the inferred PIPO channels

- Dataflow Properties Table
 - At the bottom part of the GUI is the Dataflow Properties table which shows various details about the dataflow processes (or functions) and the dataflow channels.

• It is important to understand that the dataflow optimization is a dynamic optimization, unlike pipelining which is a static optimization. Because of this, while the compiler informs you of implementing the dataflow optimization, the effects of the optimization cannot be seen until after running RTL co-simulation. The process or channel details are marked as N/A as shown in the figure below until RTL co-simulation has generated performance data.

Viewing the Dataflow Graph after RTL co-simulation

• select the **Solution > Run C/RTL Co-Simulation** command

Viewing the Dataflow Graph after RTL co-simulation

• After the co-simulation completes, select **Analysis** in the upper right hand corner of the screen to switch to the Analysis perspective.

Viewing Dataflow Performance using Waveforms

- Ensure that the Vivado XSIM simulator is chosen
- Select **all** for the **Dump Trace** option to trace all ports and signals. Note: This is a small design and so we can dump and trace all the signals. For a large design, this might cause an increased simulation run time as well as the creation of a large waveform database.
- Enable the **Wave Debug** option to interactive launch the XSIM waveform viewer during simulation.
- Enable the Channel (PIPO/FIFO) Profiling checkbox.
- Click OK.

Viewing Dataflow Performance using Waveforms

Types of channels

Channel Type	Examples	Created By
FIFO	Streams (including hls::streams and streamed arrays)	User
	Scalar propagation FIFOs	Tool
	Streams of blocks	User

Channel Type	Examples	Created By
PIPO	PIPO	User
	Task Level FIFOs (TLF)	Tool
	Input and output ports to the upper level	User

Deadlock Detection and Analysis

•Case 1:

- Producer alternately writes to FIFO1, FIFO2, FIFO1, FIFO2, and so on.
- Consumer alternately reads from FIFO1, FIFO2, FIFO1, FIFO2, and so on.
- A depth of 1 for both FIFOs is enough to avoid deadlocks (and the default depth of 2 optimizes for performance).

•Case 2 (same structure):

- Producer writes to FIFO1 for N times, then to FIFO2 for N times
- Consumer alternately reads from FIFO1, FIFO2, FIFO1, FIFO2, and so on.
- A depth of N is necessary for FIFO1 (and the default depth of 2 for FIFO2 is optimal for performance)

- \$cd 03-dataflow_debug_and_optimization/reference-files/deadlock
- \$vitis_hls -p script.tcl
- Run C-sim, C-synthesis, Co-sim

- There are three ways to do this FIFO sizing, and this lab will walk through each one in turn:
 - Manual FIFO sizing
 - Global FIFO sizing
 - Automated FIFO sizing

Manual FIFO sizing

Manual FIFO sizing

Manual FIFO sizing

Global FIFO sizing

Global FIFO sizing

Automated FIFO sizing

