Assignment – 9

1. Adjacency Matrix and Adjacency List

- Given an **undirected** graph G = (V, E) in its adjacency matrix representation. Obtain the corresponding adjacency list representation.
- Given an **undirected** graph G = (V, E) in its adjacency list representation. Obtain the corresponding adjacency matrix representation.
- Given an **directed** graph G = (V, E) in its adjacency matrix representation. Obtain the corresponding adjacency list representation.
- Given an **directed** graph G = (V, E) in its adjacency list representation. Obtain the corresponding adjacency matrix representation.

2. Connectivity in Undirected Graph

- Given an **undirected** graph G = (V, E) in its adjacency list representation. Do the following
 - Obtain the number of connected component in the graph G
 - Print the vertices in all the connected components of graph G
 - Given two nodes $u, v \in V$ (User input), find whether both the nodes are in the same component or not. This you need to answer in $\mathcal{O}(1)$ time. So store the obtained information in your process in an intelligent way.

3. Connectivity in Directed Graph

- Given an **directed** graph G = (V, E) in its adjacency list representation. Do the following
 - Obtain the adjacency list representation of G^T
 - Check whether the graph G is **strongly connected** or not
 - * Using brute force technique
 - * With the help of G^T in $\mathcal{O}(m+n)$ time where n=|V| and m=|E|
 - Check whether the graph G is weakly connected or not
 - Find the number of strongly connected components in the graph G
 - * Using brute force technique
 - * With the help of G^T in $\mathcal{O}(m+n)$ time where n=|V| and m=|E|