

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Métodos Numéricos II

 $Los\ Del\ DGIIM, \ {\tt losdeldgiim.github.io}$

Arturo Olivares Martos

Índice general

1.	Relaciones de Ejercicios									5					
	1.1.	Resolución numérica de ecuaciones y sistemas													5

1. Relaciones de Ejercicios

1.1. Resolución numérica de ecuaciones y sistemas

Ejercicio 1.1.1. Se considera el problema de encontrar las soluciones reales de la ecuación $x + \frac{1}{2} - 2\sin(\pi x) = 0$ en el intervalo $\left[\frac{1}{2}, \frac{3}{2}\right]$.

- 1. ¿Se puede utilizar el método de bisección para resolver dicho problema tomando $[^{1}/_{2}, ^{3}/_{2}]$ como intervalo inicial? ¿Por qué? En caso afirmativo, calcule las tres primeras iteraciones de dicho método.
- 2. Halle una cota del error que se comete si consideramos la última de las iteraciones del apartado anterior como el valor de la solución del problema dado.
- 3. ¿Cuántas iteraciones del método de bisección son necesarias para garantizar un error menor que 10^{-5} ?

Ejercicio 1.1.2. Se quiere calcular el inverso de un número real c > 0 sin efectuar divisiones. Para ello, se elige un valor $x_0 > 0$ y se considera el método iterativo dado por $x_{n+1} = x_n(2 - cx_n)$, $n \ge 0$.

- 1. Demuestre que la sucesión generada por dicho método converge a 1/c si y sólo si $0 < x_0 < 2/c$. Sugerencia: comience demostrando por inducción que $r_n = r_0^{2^n}$ $\forall n \ge 0$ siendo $r_n = 1 cx_n$.
- 2. Demuestre que la convergencia referida en a) es al menos cuadrática. ¿Cuál es la constante asintótica del error?
- 3. Compruebe que el método iterativo propuesto es el método de Newton-Raphson aplicado a una cierta ecuación f(x) = 0 cuya única raíz es 1/c.

Ejercicio 1.1.3. Demuestre que la ecuación $x^3 - 2x^2 - 5 = 0$ tiene una única solución en el intervalo [1,4]. Elija una semilla x_0 que permita hallar, usando el método de Newton-Raphson, una aproximación a dicha solución y justifique dicha elección. Calcule las dos primeras iteraciones.

Ejercicio 1.1.4. Deduzca la fórmula para el cálculo de las iteraciones del método de la secante a partir de su interpretación gráfica.

Ejercicio 1.1.5. Dada la ecuación $x - 1/2\cos(x) = 0$, se pide:

1. Demuestre que tiene una única solución real en el intervalo $[0, \pi/2]$.

- 2. Describa un método de iteración funcional, distinto del método de Newton-Raphson, que permita aproximar dicha solución, razonando la respuesta.
- 3. Realice las dos primeras iteraciones del método descrito en el apartado anterior.
- 4. ¿Cuántas iteraciones es preciso realizar para garantizar un error menor que 10^{-2} en el método dado en el apartado 2?

Ejercicio 1.1.6. Usando algún resultado sobre convergencia para los métodos de iteración funcional, demuestre el teorema de convergencia local para ceros simples del método de Newton-Raphson.

Ejercicio 1.1.7. Para resolver la ecuación f(x) = 0 se considera el método $x_{n+1} = x_n - \frac{f(x_n)}{m}$, donde $m \neq 0$.

- 1. Interprete gráficamente el cálculo de las iteraciones según dicho método.
- 2. ¿Qué condiciones para la función f, para la constante m y para el valor inicial x_0 asegurarían unicidad de solución y convergencia a dicha solución del método considerado?

Ejercicio 1.1.8. Localice un intervalo [a, b] en el que se encuentren todas las soluciones reales de la ecuación $2x^4 - 3x^2 + 3x - 4 = 0$, y sepárelas. Tomando $x_0 = -2$ como semilla, calcule las tres primeras iteraciones del método de Newton-Raphson usando el algoritmo de Horner.

Ejercicio 1.1.9. Sea $s = \sqrt{3}$. Para calcular s se considera el método de iteración funcional

$$x_{n+1} = g(x_n)$$
 con $g(x) = ax + \frac{x^3}{3} + bx^2$.

Halle los valores de a y b para que, partiendo de una semilla x_0 suficientemente próxima a s, se asegure la convergencia al menos cuadrática. Para tales valores, calcule x_3 para $x_0 = 1$.

Ejercicio 1.1.10. Se desea aplicar un método iterativo del siguiente tipo para obtener $\sqrt[3]{7}$.

$$x_{n+1} = p \cdot x_n + q \cdot \frac{7}{x_n^2} + r \cdot \frac{7^2}{x_n^5}$$

Halle los valores de p, q, r para que la convergencia local del método sea al menos cúbica. Realice dos iteraciones partiendo de $x_0 = 2$.

Ejercicio 1.1.11. Sea $f(x) = x^5 + x^2 - 1$.

- 1. ¿Cuántas raíces tiene la ecuación f(x) = 0 en el intervalo [0, 1]?
- 2. Pruebe que el método de iteración funcional

$$x_{n+1} = g(x_n) = \sqrt[3]{\frac{1}{x_n^3 + 1}}$$

converge en el intervalo [0,1] a una raíz de f(x)=0.

3. Localice todas las raíces reales de f(x).

Figura 1.1: Semilla para el método de Newton-Raphson en el Ejercicio 1.1.12.

Figura 1.2: Semilla para el método de la Secante en el Ejercicio 1.1.12.

Ejercicio 1.1.12. A partir de la gráfica de y = f(x) que se muestra, determine gráficamente las dos aproximaciones siguientes que generan los métodos de Newton-Raphson y de la secante partiendo de las semillas que aparecen en cada caso. Deduzca si hay convergencia y hacia qué solución de f(x) = 0.

- 1. Método de Newton-Raphson: Figura 1.1.
- 2. Método de la secante: Figura 1.2.

Ejercicio 1.1.13. Se considera la ecuación $xe^{-x^3} + 1 = 0$ y los métodos de iteración funcional $x_{n+1} = g(x_n)$ dados por las funciones

$$g_1(x) = -e^{x/3},$$
 $g_2(x) = e^{x/3},$ $g_3(x) = 3\ln(-x),$ $g_4(x) = \frac{x - e^{x/3}}{2}.$

- 1. Encuentre un intervalo de amplitud 1 donde haya una única raíz de la ecuación.
- 2. Averigüe cuáles de los métodos propuestos son compatibles con la ecuación dada; es decir, para cuáles de ellos la solución es punto fijo.

- 3. De entre los métodos compatibles con la ecuación ¿cuáles son convergentes localmente? Justifique la respuesta.
- 4. De entre los métodos convergentes localmente ¿cuál es el más rápido? ¿Por qué?
- 5. Para los métodos que hayan resultado divergentes, aplique Steffensen con $x_0 = -0.5$ hasta que dos iteraciones consecutivas disten menos de 10^{-3} .

Ejercicio 1.1.14. Supongamos que se modifica el método de bisección cambiando el punto de división del intervalo por el valor $a + \frac{b-a}{3}$ (porque se cree que la solución está más cerca del extremo a). ¿Es convergente dicho método? ¿Cuál es la cota del error absoluto después de n iteraciones?

Ejercicio 1.1.15. Demuestre el teorema de convergencia global de los métodos de iteración funcional para sistemas.

Observación. Generalice al caso k-dimensional la demostración del teorema de convergencia global de los métodos de iteración funcional unidimensional.

Ejercicio 1.1.16. Sea $D = \prod_{i=1}^{k} [a_i, b_i]$ y sea $G : D \to \mathbb{R}^k$ con $G = (g_1, \dots, g_k)$ tal que $G \in C^1(D)$. Demuestre que si existe $L \in]0,1[$ tal que $\forall i,j=1,\dots,k$ se verifique

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \leqslant \frac{L}{k} \quad \forall x \in D,$$

entonces G es contráctil.

Observación. Considere la norma $\|\cdot\|_1$ o $\|\cdot\|_{\infty}$.

Ejercicio 1.1.17. Se considera el sistema de ecuaciones

$$\frac{x^2 - y^2}{2} - x + \frac{7}{24} = 0,$$
$$xy - y + \frac{1}{9} = 0.$$

- 1. Demuestre que tiene una única solución en el rectángulo $D = [0, 0.4] \times [0, 0.4]$.
- 2. Encuentre una sucesión que converja a dicha solución, justificando la respuesta.
- 3. Calcule, tomando $x_0 = (0,1,0,2)$, las dos primeras iteraciones del método de Newton-Raphson para el sistema.

Ejercicio 1.1.18. Se considera el sistema de ecuaciones

$$x - xy = \frac{1}{16},$$

$$x^2 - y = -\frac{1}{8}.$$

- 1. Demuestre que tiene una única solución en el rectángulo $D = [0, \frac{1}{8}] \times [0, \frac{1}{4}]$.
- 2. Encuentre una sucesión que converja a dicha solución, justificando la respuesta.
- 3. Calcule, tomando $x_0 = (0,1,0,2)$, las dos primeras iteraciones del método de Newton-Raphson para el sistema.