MTH 101-Calculus

Spring-2021

Assignment 7-Solutions: Improper Integrals, Appl. of Integration, Pappus Theorem

- 1. (a) Converges by limit comparison test (LCT) with $\frac{1}{\sqrt{x}}$.
 - (b) Diverges by LCT with $\frac{1}{r^2}$.
 - (c) The integral $-\int_{0}^{1} \frac{\log x}{\sqrt{x}} dx$ converges by LCT with $\frac{1}{x^{p}}$, where $\frac{1}{2} .$
 - (d) Since $|\sin \frac{1}{x}| \le 1$, the integral converges. Note that in this case the integral is a proper integral.
 - (e) Converges by LCT with $\frac{1}{x^2}$.
 - (f) Converges by LCT with $\frac{1}{x^p}$, where $p \geq 2$.
 - (g) Note that the integral converges iff $\int_{1}^{\infty} \sin x^2 dx$ converges. By substituting $t = x^2$, we get $\int_{1}^{c} \sin x^{2} dx = \frac{1}{2} \int_{1}^{c^{2}} \frac{\sin t}{\sqrt{t}} dt.$ Use Drichlet test.
 - (h) $\int_{0}^{\frac{\pi}{2}} \cot x dx = -\log \sin x \to \infty \text{ as } x \to 0^{+}.$
 - (i) $\int_{0}^{\infty} \frac{x \log x}{(1+x^2)^2} dx = \int_{0}^{1} \frac{x \log x}{(1+x^2)^2} dx + \int_{1}^{\infty} \frac{x \log x}{(1+x^2)^2} dx = I_1 + I_2.$

Since, $\lim_{x\to 0} x \log x = 0$, I_1 is a proper integral.

For large x, $\log x \le x$. Hence $\frac{x \log x}{(1+x^2)^2} \le \frac{x^2}{(1+x^2)^2} \le \frac{1}{1+x^2}$ and I_2 converges.

Use the substitution $x = \frac{1}{t}$ in I_1 to get $I_1 = -I_2$.

2. (a) Let $f(x) = \frac{1-e^{-x}}{x^p}$ and denote $I_1 = \int_0^1 f(x) dx$ and $I_2 = \int_1^\infty f(x) dx$. By LCT with $\frac{1}{x^{p-1}}$, I_1 converges only for p < 2. Similarly by LCT with $\frac{1}{x^p}$, I_2 converges only for p > 1. Therefore $\int_0^\infty f(x) dx$ converges if and only if 1 .

(b)
$$\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{0}^{1} \frac{\sin^2 x}{x^2} dx + \int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx = I_1 + I_2.$$

 I_1 is a proper integral and I_2 converges by a comparison with $\frac{1}{x^2}$.

Similarly $\int_{0}^{\infty} \frac{\sin x}{x} dx$ converges by Drichlet test.

Using integration by parts we see that
$$\int\limits_0^\infty \frac{\sin^2 x}{x^2} dx = -\frac{\sin^2 x}{x} \mid_0^\infty + \int\limits_0^\infty \frac{2\sin x \cos x}{x} dx = \int\limits_0^\infty \frac{\sin 2x}{2x} d(2x) = \int\limits_0^\infty \frac{\sin x}{x} dx.$$

3. (a) (i) Fix n and let $\epsilon < \frac{1}{n}$. Consider the partitions

$$P_1 = \{\epsilon, \frac{1}{n}, \frac{2}{n}, ..., 1 - \frac{1}{n}\}$$
 and $P_2 = \{\frac{1}{n}, \frac{2}{n}, ..., 1 - \frac{1}{n}, 1 - \epsilon\}$

for the intervals $[\epsilon, 1-\frac{1}{n}]$ and $[\frac{1}{n}, 1-\epsilon]$ respectively. Then

$$\int_{\epsilon}^{1-\frac{1}{n}} f(x)dx \le U(P_1, f) = (\frac{1}{n} - \epsilon)f(\frac{1}{n}) + \frac{f(\frac{2}{n}) + \dots + f(\frac{n-1}{n})}{n}.$$

Allow $\epsilon \to 0$ to get

$$\int_{0}^{1-\frac{1}{n}} f(x)dx \le \frac{f(\frac{1}{n}) + f(\frac{2}{n}) + \dots + f(\frac{n-1}{n})}{n}.$$

Similarly, by using the inequality $L(P_2, f) \leq \int_{\frac{1}{n}}^{1-\epsilon} f(x) dx$, we get that

$$\frac{f(\frac{1}{n}) + f(\frac{2}{n}) + \dots + f(\frac{n-1}{n})}{n} \le \int_{\frac{1}{n}}^{1} f(x)dx.$$

- (a) (ii) Allow $n \to \infty$.
- (b) Take f(x) = ln(x) in a(ii).
- (c) Follows from (b).
- 4. Let $r = \cos 2\theta$. Between $\theta = 0$ to $\theta = \frac{\pi}{4}$, we plot (r, θ) (in polar coordinate) i.e., for each θ we find r. The graph lies in the first quadrant for these $\theta's$.

Note that, since r is negative for $\theta = \frac{\pi}{4}$ to $\theta = \frac{\pi}{2}$, if we sketch the graph for these $\theta's$, the graph appears in the third quadrant.

Whenever $(r, \theta) \in G$, the graph, we see that $(r, -\theta), (r, \pi - \theta), (r, \pi + \theta) \in G$. Therefore, there is symmetry about the x-axis, y-axis and the origin.

Let $r = \sin 2\theta$. Again, we see that there is symmetry about the x-axis, y-axis and the origin.

- 5. Each cross section is a rectangle of area $A(x) = x \cdot 2 \cdot \sqrt{9 x^2}$. Therefore the volume $V = \int_0^3 2x \sqrt{9 x^2} dx = 18$.
- 6. (a) Note that the disc is bounded by the curves $x=a+\sqrt{b^2-y^2}$ and $x=a-\sqrt{b^2-y^2}$. The volume of the torus, evaluated by the Washer Method, is $\pi \int_{-b}^{b} \left((a+\sqrt{b^2-y^2})^2 (a-\sqrt{b^2-y^2})^2 \right) dy = 4a\pi \int_{-b}^{b} \sqrt{b^2-y^2} dy.$ The last integral is the area of the semicircle of radius b. Therefore the volume is $2\pi^2 ab^2$.
 - (b) The volume of the torus is same as the volume of the torus generated by revolving the circular disc $x^2 + y^2 \le b^2$ about the line x = a. Using the Shell Method, we find that the volume is $\int_{-b}^{b} 2\pi (a x)(2\sqrt{b^2 x^2}) dx = 4\pi \left[\int_{-b}^{b} a\sqrt{b^2 x^2} dx \int_{-b}^{b} x(\sqrt{b^2 x^2}) dx \right]$ $= 4\pi a \int_{-b}^{b} \sqrt{b^2 x^2} dx.$
- 7. (a) The length $L = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt = \int_0^{\frac{\pi}{2}} 3|\cos t \sin t| dt = \frac{3}{2} \int_0^{\frac{\pi}{2}} \sin 2t dt = \frac{3}{2}$.
 - (b) The surface area $S = \int_a^b 2\pi y(t) \sqrt{x'(t)^2 + y'(t)^2} dt = \int_0^{\frac{\pi}{2}} 2\pi (\sin^3 t) (3\sin t \cos t) dt = 6\pi \int_0^{\frac{\pi}{2}} \sin^4 t \cos t dt$
 - (c) By Pappus theorem $S=2\pi \overline{y}L$ which implies that $\frac{6\pi}{5}=2\pi \overline{y}\frac{3}{2}$. Therefore $\overline{y}=\frac{2}{5}$.
- 8. By Pappus Theorem $V(\theta) = 2\pi \rho A$, where ρ is the distance of the centroid from the axis and A is the area of the square.

 $V(\theta) = 2\pi a^2 \frac{a}{\sqrt{2}} \sin \theta$. The volume will be largest if $\theta = \frac{\pi}{2}$

9. Let the coordinates of the centroid be (r, y_0) .

By Pappus Theorem, $4\pi r^2 = 2\pi\pi r y_0$. Hence $y_0 = \frac{2r}{\pi}$ and the centroid has coordinates $(r, \frac{2r}{\pi})$.

Distance of centroid from the line y = -mx is $\rho = \frac{mr + \frac{2r}{\pi}}{\sqrt{1+m^2}}$.

Again, by Pappus Theorem, we see that $A=2\pi\rho\pi r.$

 $\frac{dA}{dm}=0 \Rightarrow m=\frac{\pi}{2}.$ Easy to see that A has a maxima at $\frac{\pi}{2}.$