Π
Лабораторная работа:
«Вынужденные колебания в электрическом контуре»
Выполнила: Прохорова Юлия
Б04-906
МФТИ, 2020

Вынужденные колебания в электрическом контуре.

Цель работы:

исследование вынужденных колебаний и процессов их установки.

В работе используются:

генератор звуковой частоты, осциллограф, вольтметр, частотомер, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

Теоретическая часть:

Колебания, возникающие во внешнем источнике при подключении к контуру, являются суперпозицией двух синусоид: 1 - с частотой собственных колебаний контура ω и амплитудой, экспоненциально убывающей со временем; 2 - с частотой внешнего источника Ω и постоянной амплитудой. Со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. Амплитуда максимальна при выполнении $\Omega = \omega_0$ (резонанс).

Рис. 1. Последовательный колебательный контур

Резонансная кривая колебательного контура.

Для экспериментального исследования резонансной кривой тока можно снять зависимость напряжения на резисторе R от частоты при постоянной амплитуде выходного напряжения генератора. Нужно убедиться в незначительном влиянии импеданса контура даже при резонансе. Для это используется схема, изображенная на Рис.2. Зависимость напряжения от частот в этом контуре совпадает с резонансной кривой в 1 контуре, если импеданс возбуждающей и измеряющей цепей намного превосходят импеданс самого контура вблизи резонанса $Z_{\text{рез}} \approx L/(RC)$.

Исследуемый контур слабо связан с внешней цепью, если:

$$\frac{1}{\omega C_1} \gg |Z|_{\text{pes}} = \frac{L}{RC}, \quad R_{30} \gg \frac{L}{RC}$$
 (1).

При выполнении 1-го условия из (1) полный ток через контур зависит только от сопротивления \mathcal{C}_1 , следовательно при небольшом удалении от резонансной частоты полный ток в контуре остается практически неименным. Так как сопротивление параллельного контура в резонансе максимально, то

Рис. 2. Схема установки для исследования вынужденных колебаний

и напряжение на емкости также максимально. Следовательно, на резонансной кривой максимум амплитуды будет достигаться при резонансе.

Процессы установления и затухания колебаний в контуре.

Добротность контура можно определить по скорости нарастания амплитуды вынужденных колебаний при резонансе или при скорости затухания свободных колебаний.

Чем выше добротность, тем медленнее нарастают и затухают колебания.

Рис. 3. Нарастание и затухание вынужденных колебаний

Экспериментальная установка.

Колебательный контур состоит из ёмкости $\mathcal{C}=0,1$ мк Φ , индуктивности $\mathcal{L}=100$ м Γ н и переменного сопротивления.

Рис. 4. Схема экспериментальной установки для исследования вынужденных колебаний

Синусоидальное напряжение от звукового генератора переходит через частотомер, позволяющий измерять рабочую частоту с высокой точностью. После частотомера через небольшую ёмкость $C_1 \approx 600$ пкФ сигнал поступает на клеммы, смонтированные на отдельной панельке.

Ход работы:

1. Резонансная частота контура : $\nu_0 = 1/(2\pi\sqrt{LC})$. L = 100 мГн, $C = 0.10\pm0.02$ мкФ, $\nu_0 = 1.592\pm0.003$ кГн. 2. Измерения для исследования резонансных кривых R = 0 Ом:

№	ν, кГц	U, мВ	№	ν, кГц	U, мВ
1	1,574	10,0	1	1,570	9,6
2	1,580	9,8	2	1,566	8,8
3	1,592	8,0	3	1,556	7,8
4	1,595	7,4	4	1,548	6,4
5	1,597	7,0	5	1,552	7,0
6	1,613	5,0	6	1,538	5,0
7	1,620	4,4	7	1,532	4,4
8	1,628	3,8	8	1,523	3,8
9	1,641	3,2	9	1,513	3,2

Таблица 1

3. Измерения для определения добротности по скорости нарастания и затухания колебаний при $R=0~\mathrm{Om}$:

$$Uyc = 2,8$$

№	U		
нарастание			
1	0,40		
9	1,95		
12	1,80		
18	2,20		
20	2,00		
30	2,50		
36	2,60		
затух	ание		
1	2,60		
3	2,20		
4	2,00		
7	1,60		
10	1,10		
11	1,00		
12	0,80		
14	0,40		

Таблица 2

4. Измерения для исследования резонансных кривых R = 100 Om:

№	ν, кГц	U, мВ	№	ν, кГц	U, мВ
1	1,583	10,0	1	1,558	9,8
2	1,603	9,8	2	1,546	9,4
3	1,633	9,0	3	1,532	9,0
4	1,640	8,8	4	1,527	8,8
5	1,654	8,4	5	1,508	8,0
6	1,738	6,0	6	1,484	7,0
7	1,794	5,0	7	1,474	6,6
8	1,825	4,6	8	1,458	6,0
9	1,883	4,0	9	1,447	5,6
10	1,934	3,6	10	1,428	5,0

Таблица 3

5. Измерения для определения добротности по скорости нарастания и затухания колебаний при $R=100~{\rm Om}$: Uyc=1,4

№	U			
нарастание				
1	0,40			
2	0,65			
3	0,95			
4	1,10			
5	1,20			
6	1,25			
7	1,30			
8	1,35			
затух	кание			
1	1,10			
2	0,80			
3	0,60			
4	0,40			
5	0,25			
6	0,21			
7	0,20			

Таблица 5

6. Измерение активного сопротивления магазина индуктивностей с помощью моста переменного тока:

	L,	
ν, Гц	мΓн	R_L , Ом
50	99,98	21,84
500	99,95	22,01
1500	99,99	23,24

Таблица 6

R = 100 Om

№	ν/νο	U/Uo
1	1,000	1,00
2	1,004	0,98
3	1,011	0,80
4	1,013	0,74
5	1,015	0,70
6	1,025	0,50
7	1,029	0,44
8	1,034	0,38
9	1,043	0,32
10	0,997	0,96
11	0,995	0,88
12	0,989	0,78
13	0,983	0,64
14	0,986	0,70
15	0,977	0,50
16	0,973	0,44
17	0,968	0,38
18	0,961	0,32

№	ν/νο	U/Uo
1	1,000	1,00
2	1,013	0,98
3	1,032	0,90
4	1,036	0,88
5	1,045	0,84
6	1,098	0,60
7	1,133	0,50
8	1,153	0,46
9	1,190	0,40
10	1,222	0,36
11	0,984	0,98
12	0,977	0,94
13	0,968	0,90
14	0,965	0,88
15	0,953	0,80
16	0,937	0,70
17	0,931	0,66
18	0,921	0,60

Таблица 7,8

Рис. 5

2. Определим добротность по формуле: $Q = \omega_0/2\Delta\Omega$.

$$Q_0 = 27,14$$
 $Q_{100} = 5,67$

3. Определение добротности по скорости нарастания и затухания колебаний.

$$heta=rac{1}{n}lnrac{U_k}{U_{k+n}}$$
 — логарифмический декремент затухания $Q=\pi/ heta$ — добротность

$$R = 0 O_M$$

$N_{\underline{0}}$	U	Q				
нарастание						
1	0,40					
9	1,95	15,86				
12	1,80					
18	2,20	31,33				
20	2,00					
30	2,50	49,71				
36	2,60	58,74				
затухание						
1	2,60					
3	2,20	37,61				
4	2,00					
7	1,60	42,24				
10	1,10					
11	1,00	32,96				
12	0,80					
14	0,40	9,06				

$$R = 100 \text{ Om}$$

	1	ı			
$N_{\underline{0}}$	U	Q			
H	нарастание				
1	0,40				
2	0,65	6,47			
3	0,95				
4	1,10	9,32			
5	1,20				
6	1,25	13,79			
7	1,30				
8	1,35	18,08			
	затухание				
1	1,10				
2	0,80	9,86			
3	0,60				
4	0,40	7,75			
5	0,25				
6	0,21	18,02			
7	0,20	13,50			

Таблица 9, 10

4. Рассчитаем теоретическое значение добротности через параметры

контура:
$$Q = \frac{1}{R} \sqrt{\frac{L}{c}}$$
.

$$Q_0 = 33,33 \quad Q_{100} = 7,69$$

R, OM	Rконт	Q			
		кривая	нарастание	затухание	теория
0	30	$27,14\pm2,15$	$38,91\pm19,14$	30,47±14,77	33,33±0,06
100	130	$5,67\pm0,05$	11,92±5,09	12,28±4,5	$7,69\pm0,02$

Таблица 11

5. Погрешность при усреднении:

$$\sigma_Q = \sqrt{\frac{1}{(n-1)} \sum (x_i - \langle x \rangle)^2}$$

Погрешность измерения добротности с помощью резонансной кривой:

$$\begin{split} \sigma_Q &= Q \sqrt{\left(\frac{\sigma_v}{\nu}\right)^2} + \left(\frac{\sigma_{\Delta \nu}}{\Delta \nu}\right)^2, \ \ \ \ \partial e \ \sigma_{\Delta \nu} &= \frac{1}{\sqrt{n}} \sqrt{\frac{< y^2 > - < y >^2}{< x^2 > - < x >^2}} \\ \sigma_{Q0} &= 2,15 \end{split}$$

$$\sigma_{Q100\,=0,05}$$

Нарастание и затухание колебаний при $R=0\,$ и $100\,$ Ом соответственно Рис. $2\,$

Вывод:

В ходе работы были изучены вынужденные колебания в электрическом контуре. Были исследованы резонансные кривые для двух контуров с разными сопротивлениями, найдена добротность этих контуров по полученным кривым. Также добротность была найдена при запуске в контур цугов волн — при нарастании и затухании колебаний.

Биения

Возникают изменения амплитуды при сложении двух гармонических колебаний с близкими частотами - такой процесс называется биением. (Важным критерий — разница между частотами много меньше самих частот).