Indian Institute of Technology Kharagpur Department of Humanities and Social Sciences Five-Year Integrated M.Sc. in Economics

First Class Test (Autumn Semester: 2021-22) **Subject: Econometric Analysis II (HS40007)**

Time: 1hr **Full Marks 25** Date: 06 September 2021

(Instructions: Answer all the Questions; Submit the handwritten and signed Answer Script in PDF; No late submission of the Answer Script or its submission through email will be considered.)

Part-I: Select the most appropriate alternative for the following:

 $1 \times 10 = 10$

- 1. If we include separate dummy variables for both rural and urban households in a regression model along with the intercept, it will create the problem of:
 - A) Omitted variable bias
 - B) Heteroscedasticity
 - C) Autocorrelation
 - D) Multicollinearity
- 2. Dummy variables are variables of:
 - A) Ratio scale
 - B) Interval scale
 - C) Ordinal scale
 - D) Nominal scale
- 3. Including lagged values of the dependent variable on the right-hand side of a regression equation can cause the OLS estimators of the coefficients to be:
 - A) Biased but consistent coefficient
 - B) Biased and inconsistent
 - C) Unbiased but inconsistent
 - D) Unbiased and consistent but inefficient
- For the multiple regression model $Y_i = \alpha + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + u_i$ $ESS = \beta_1 \sum_i x_{1i} \hat{y}_i + \dots + \beta_k \sum_i x_{ki} \hat{y}_i$ A) True

$$ESS = \beta_1 \sum_{i} x_{1i} \hat{y}_i + \dots + \beta_k \sum_{i} x_{ki} \hat{y}_i$$

- B) False
- C) Uncertain
- 5. Omission of a relevant variable from a regression model, will cause the following:
 - The standard errors will be biased i)
 - ii) If the excluded variable is uncorrelated with the included variables, the slope coefficients will be inconsistent
 - If the excluded variable is uncorrelated with the included variables, the intercept iii) will be inconsistent

- iv) If the excluded variable is uncorrelated with the included variables, both the slope coefficients and the intercept will be consistent and unbiased but inefficient.
 - A) (ii) and (iv) only
 - B) (i) and (iii) only
 - C) (i), (ii) and (iii) only
 - D) (i), (ii), (iii) and (iv)
- 6. The rationale behind the Koyck transformation is that it:
 - A) Eliminates the bias
 - B) Increases the goodness-of-fit of the model
 - C) Exploits an information criterion
 - D) Incorporates more information into the estimation process
- 7. A major problem with distributed lag models is that:
 - A) R-square is low
 - B) Estimated coefficients are biased
 - C) Variances of the estimated coefficients are large
 - D) The lag length is impossible to determine
- 8. Which of the following is true regarding forecasting in econometrics?
 - A) In-sample forecasting is a poor test of model adequacy
 - B) Forecasts can only be made for time-series data
 - (C) Model specification errors are certain to produce inaccurate forecasts
 - D) Structural forecasts are simpler ac compared to those from time-series models
- 9. Which of the following test(s) can be applied for the selection of a non-nested model?
 - i) Restricted F Test
 - ii) Likelihood Ratio Test
 - iii) Lagrange Multiplier Test
 - iv) Davidson Mackinnon J Test
 - A) (i) and (ii) only
 - B) (iii) only
 - C) (ii), (iii) and (iv) only
 - D) (iv) only
- 10. The logistic functional form:
 - A) Forces the dependent variable to lie between zero and one
 - B) Is attractive whenever the dependent variable is a probability
 - C) Never allows the dependent variable to be equal to zero or one
 - D) All of the above

Part II: Comment on the following statements with justification:

 $3 \times 2 = 6$

- 1. Consequences of errors in measurement of the dependent variable are more severe as compared to that of the independent variables
- 2. While estimating a distributed lag model, Almon transformation process should be preferred to the Koyck transformation procedure.

Part-III: Answer the following questions:

1. Consider the following two regression models:

Model I: $Y_i = \alpha_0 + \alpha_1 D_{1i} + \alpha_2 X_i + \alpha_3 (D_{1i} \times X_i) + u_i$ with Y_i = Monthly per capita consumption expenditure; X_i = Monthly per capita income; $D_{1i} = 0$ for the APL households, and $D_{1i} = 1$ for the BPL households; and

Model II: $Y_i = \alpha_0 + \alpha_1 D_{Ii} + \alpha_2 X_i + \alpha_3 (D_{Ii} \times X_i) + u_i$ with $Y_i = \text{Monthly per capita}$ consumption expenditure; $X_i = \text{Monthly per capita income}$; $D_{Ii} = 0$ for the BPL households, and $D_{Ii} = 1$ for the APL households

How will the regression results differ between these two models in respect of estimates of the coefficients, their standard errors, goodness-of-fit, and statistical significance of the model? Justify your answer.

3

2. If the model $Y_i = \gamma + \delta X_{1i} + v_r$ is estimated instead of the true model $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$, examine if the OLS estimator of the intercept will be unbiased.

3

3. If the model $Y_i = \alpha + \beta_l X_{li} + \beta_2 X_{2i} + u_i$ is estimated instead of the true model $Y_i = \gamma + \delta X_{li} + v_i$, will there be any consequence on statistical significance of the estimated model? Justify your answer.

3