

Рис. 1a. Масс спектр в режиме положительной ионизации ESI

Рис. 1b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 1а) в положительной ионизации присутствует диазониевый (DC) и арильный (AC) катионы, однако их интенсивность меньше, чем для линий 243.1 и 273.1, вероятно катионы с такими массами образуются в результате присоединения бензин производного [NO $_2$ C $_6$ H $_3$]=121.1 к диазониевому и арильному катионам, причем катион 273.1 способен отщеплять азот. В режиме отрицательной ионизации (рис. 1b) отсутствует катион депротонированного гексафторизопропилового спирта [HFIP-H]=167.0, вместо него наблюдается масса соответствующая окисленной форме [HFIP-H+O]=183.0 и несколько анионов с массами 61.99 (вероятно NO $_3$ при фрагментации отщепляет кислород), 125.0, 286.0. Кроме того на спектрах присутствуют кластерные катионы с шагом [M]=333.0 соответствующей брутто формуле [NO $_2$ C $_6$ H $_4$ N $_2$ $^+$ CO $_2$ H(CF $_3$) $_2$ -]=[DC+A+O] вероятно DC и окисленная форма аниона являются основными компонентами этой соли.

Рис. 2a. Масс спектр в режиме положительной ионизации ESI

Рис. 2b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 2а) в положительной ионизации отсутствуют массы предполагаемых диазониевого (DC) и арильного (AC) катионов и основными являются катионы с массами 243.1 и 273.1, вероятно катионы с такими массами образуются в результате присоединения бензин производного $[NO_2C_6H_3]=121.1$ к диазониевому и арильному катионам, причем катион 273.1 способен отщеплять азот. В режиме отрицательной ионизации (рис. 2b) отсутствует катион депротонированного гексафторизопропилового спирта [HFIP-H]=167.0, вместо него наблюдается масса соответствующая окисленной форме [HFIP-H+O]=183.0 и несколько анионов с массами 61.99 (вероятно NO_3 при фрагментации отщепляет кислород), 125.0, 189.0, 349.0. На спектрах присутствуют кластерные катионы с шагом [M]=333.0 соответствующей брутто формуле $[NO_2C_6H_4N_2^+CO_2H(CF_3)_2^-]=[DC+A+O]$ вероятно DC и окисленная форма аниона являются основными

 $[NO_2C_6H_4N_2^+CO_2H(CF_3)_2^-]=[DC+A+O]$ вероятно DC и окисленная форма аниона являются основными компонентами этой соли, не смотря на отсутствие этих линий в спектре (орто-нитро замещенный арильный катионы малоустойчив).

Рис. За. Масс спектр в режиме положительной ионизации ESI

Рис. 3b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. За) в положительной ионизации присутствует диазониевый (DC) и арильный (AC) катионы. В режиме отрицательной ионизации (рис. Зb) отсутствует катион депротонированного гексафторизопропилового спирта [HFIP-H]=167.0, наблюдается несколько анионов с массами 61.99 (вероятно NO_3 при фрагментации отщепляет кислород), 124.99 (димер NO_3 HNO $_3$). Кроме того на спектрах присутствуют кластерные катионы с шагом [M]=227.05=61.99+135.06 соответствующей брутто формуле [CH $_3$ OC $_6$ H $_4$ N $_2$ $^+$ NO $_3$ $^-$]. Вероятно DC и нитрат ион являются основными компонентами этой соли.

Рис. 4a. Масс спектр в режиме положительной ионизации ESI

Рис. 4b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 4a) в положительной ионизации присутствует диазониевый (DC) и арильный (AC) катионы. В режиме отрицательной ионизации (рис. 4b) мало интенсивная линия катиона депротонированного гексафторизопропилового спирта [HFIP-H]=167.0, наблюдается несколько анионов с массами 61.99 (вероятно NO_3 при фрагментации отщепляет кислород), 225.93.

Рис. 5a. Масс спектр в режиме положительной ионизации ESI

Рис. 5b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 1а) в положительной ионизации присутствует диазониевый (DC) и арильный (AC) катионы. В режиме отрицательной ионизации (рис. 1b) отсутствует катион депротонированного гексафторизопропилового спирта [HFIP-H]=167.0, на спектре несколько анионов с массами 61.99 (вероятно NO_3 при фрагментации отщепляет кислород), 125.0 (димер NO_3 HNO $_3$), 286.0. Кроме того на спектрах присутствуют кластерные катионы с шагом [M]=245.007 соответствующей брутто формуле [BrC $_6$ H $_4$ NO $_3$] вероятно DC и анион с массой 61.99 являются основными компонентами этой соли.

Рис. 6a. Масс спектр в режиме положительной ионизации ESI

Рис. 6b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 6а) в положительной ионизации присутствует диазониевый (\mathbf{DC}) и арильный (\mathbf{AC}) катионы. В режиме отрицательной ионизации (рис. 6b) основная линия \mathbf{A} трифлат-аниона [TfO]=148.95. Кроме того на спектрах присутствуют кластерные ионы с шагом [M]=310.06 соответствующей брутто формуле [BuC $_6$ H $_4$ N $_2$ $^+$ TfO $^-$] вероятно DC и трифлат-анион являются основными компонентами этой соли.

Рис. 7a. Масс спектр в режиме положительной ионизации ESI

Рис. 7b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 7а) в положительной ионизации присутствует диазониевый (\mathbf{DC}) и арильный (\mathbf{AC}) катионы и масса 226.10 (со сдвигом на 44.98), также способная отщеплять азот. В режиме отрицательной ионизации (рис. 7b) основная линия \mathbf{A} трифлат-аниона [TfO]=148.95. Кроме того на спектрах присутствуют кластерные ионы с шагом [\mathbf{M}]=330.03 соответствующей брутто формуле [$\mathbf{PhC}_6\mathbf{H}_4\mathbf{N}_2^+$ TfO $^-$], вероятно DC и трифлат-анион являются основными компонентами этой соли.

GRTRITIL №8

Рис. 8a. Масс спектр в режиме положительной ионизации ESI

Рис. 8b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 8а) в положительной ионизации присутствует диазониевый (\mathbf{DC}) и арильный (\mathbf{AC}) катионы и масса 392.10 (со сдвигом на 44.98), также способная отщеплять азот. В режиме отрицательной ионизации (рис. 8b) основная линия \mathbf{A} трифлат-аниона [TfO]=148.95. Кроме того на спектрах присутствуют кластерные ионы с шагом [\mathbf{M}]=496.11 соответствующей брутто формуле [(\mathbf{Ph}) $_3$ CC $_6$ H $_4$ N $_2$ $^+$ TfO $^-$], DC и трифлат-анион являются основными компонентами этой соли.

Рис. 9a. Масс спектр в режиме положительной ионизации ESI

Рис. 9b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 9а) в положительной ионизации присутствует диазониевый (\mathbf{DC}) и арильный (\mathbf{AC}) катионы. В режиме отрицательной ионизации (рис. 9b) основная линия \mathbf{A} трифлат-аниона [TfO]=148.95. Кроме того на спектрах присутствуют кластерные ионы с шагом [\mathbf{M}]=671.96 соответствующей брутто формуле [$\mathbf{C_8F_{17}CC_6H_4N_2}^+$ TfO $^{-}$], \mathbf{DC} и трифлат-анион являются основными компонентами этой соли.

Рис. 10a. Масс спектр в режиме положительной ионизации ESI

Рис. 10b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 10а) в положительной ионизации присутствует диазониевый (\mathbf{DC}) и арильный (\mathbf{AC}) катионы. В режиме отрицательной ионизации (рис. 10b) основная линия \mathbf{A} трифлат-аниона [TfO]=148.95. Кроме того на спектрах присутствуют кластерные ионы с шагом [\mathbf{M}]=344.03 соответствующей брутто формуле [2,3,4-MeOC₆H₂N₂ $^+$ TfO $^-$].

Рис. 11a. Масс спектр в режиме положительной ионизации ESI

Рис. 11b. Масс спектр в режиме отрицательной ионизации ESI

На спектре (рис. 11а) в положительной ионизации присутствует диазониевый (DC) и арильный (AC) катионы. В режиме отрицательной ионизации (рис. 11b) отсутствует катион депротонированного гексафторизопропилового спирта [HFIP-H]=167.0, наблюдается несколько анионов с массами 61.99 (вероятно NO_3 при фрагментации отщепляет кислород), 124.99 (димер NO_3 HNO $_3$). Кроме того на спектрах присутствуют кластерные катионы с шагом [M]=148.03 вероятно соответствует брутто формуле [$OOCC_6H_4N_2^+$].