2on Control Arquitectura de Computadors	Curs 2016-2017 Q1
• Temps: 13:15 a 15:15	
Poseu clarament amb LLETRES MAJÚSCULES a cada full els cognoms i	i el nom
Problema 1. (3 puntos)	
Dado el siguiente código escrito en C:	
typedef struct { char a[3]; } s1;	
char F(sl p1[2], char p2, sl p3){ sl vl1[2];	
char vl2; s1 vl3;	
 a) Dibuja como quedaría almacenada en memoria la estructura s1 y indicando claramente los desplazamientos y el tamaño de todos los o 	
b) Traduce la siguiente sentencia a ensamblador del x86, suponiendo q return F(vl1,vl2,p3); // Nota: los char se devuelven en %al	ue está dentro de la función F:

COGNOMS:	OM:
2on Control Arquitectura de Computadors	Curs 2016-2017 Q1
• Temps: 13:15 a 15:15	
Poseu clarament amb LLETRES MAJÚSCULES a cada full els cognoms i el i	nom
Problema 2. (3,5 puntos)	
Se quiere diseñar una memoria cache de datos con políticas de escritura writa	e through y write NO allocate:
Se han obtenido por simulación las siguientes medidas para un determinado	programa:
 porcentaje de escrituras (sobre el total de accesos): 15% tasa de aciertos: 0,9 	
La memoria cache es de mapeo directo y se leen etiquetas y datos en paralelo de MP se escribe en la MC y posteriormente el dato se envía a la CPU deso memoria cache (MC) es de 10 ns tanto para lectura como escritura. El tiemp para escribir una palabra es de 90 ns. Para leer o escribir un bloque en la MP :	de la MC. El tiempo de acceso (Tsa) a o de acceso a memoria principal (MP)
a) Calcula el tiempo empleado en realizar 1000 accesos consecutivos	

Dado el siguiente código escrito en ensamblador del x86:

```
movl $0, %ebx
movl $0, %esi

for:
    cmpl $512*1000, %esi
    jge end

(a) movl (%ebx, %esi, 4), %eax
(b) addl 2*4*1024(%ebx, %esi, 4), %eax
(c) movl %eax, 3*4*1024(%ebx, %esi, 4)

    addl $1, %esi
    jmp for
end:
```

Sabemos que el código se ejecuta en un sistema con memoria cache y memoria virtual. La memoria virtual utiliza páginas de tamaño 4KB y disponemos de un TLB de 4 entradas y reemplazo LRU. La memoria cache de datos (únicos accesos a memoria que contemplaremos en este problema) es *Write Through + Write No Allocate*, de 2 vías con reemplazo LRU, tamaño 4 KB y 8 bytes por bloque. Responde a las siguientes preguntas:

b) **Calcula,** para cada uno de los accesos etiquetados como (a, b, c), el conjunto de la memoria cache al que se accede en cada una de las 9 primeras iteraciones del bucle

iteración	0	1	2	3	4	5	6	7	8
а									
b									
С									

c) **Indica,** para cada uno de los accesos indicados (etiquetas a, b, c), a qué página de la memoria virtual se accede en cada una de las siguientes iteraciones del bucle (recuerda que los accesos son a 4 bytes).

iteración	0	1*512	2*512	3*512	4*512	5*512	6*512	7*512	8*512	9*512
а										
b										
С										

Calcula la cantidad de aciertos y de fallos de TLB, en todo el código.

2on Control Arquitectura de Computadors	Curs 201	Curs 2016-2017 Q1		
Temps: 13:15 a 15:15 Poseu clarament amb LLETRES MAJÚSCULES a cada full els cognoms i el nom				
Problema 3. (3,5 puntos)				
in una CPU ejecutamos un programa (X). Esta CPU está conectada a una cache de instrucc latos (\$D), esta última con políticas de escritura copy back + write allocate . La siguiente tab obtenidos para ambas caches al ejecutar el programa X:				
Característica	\$I	\$D		
Número de accesos a memoria por instrucción (nr)	1 ref/inst	0,5 ref/inst		
Tasa de fallos (m)	10%	20%		
Consumo de energía en caso de acierto (Ea)	1 nJ	1 nJ		
Penalización en consumo de energía en caso de fallo al reemplazar un bloque no modificado (Epf)	20 nJ	20 nJ		
Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (EpfM)		40 nJ		
Porcentaje de bloques modificados (pm)	0%	25%		
b) Calcula la energía media por acceso (EmaD) consumida por la jerarquía de memoria p	para los acce	esos a datos		
Hemos medido que, en promedio, la ejecución de una instrucción consume 2 nJ (nano Joule os accesos a memoria no consumen nada.	es) en el casc	o ideal en qu		
os accesos a memoria no consumen nada.		•		
os accesos a memoria no consumen nada. c) Calcula la energía media consumida por la ejecución de una instrucción teniendo e				
os accesos a memoria no consumen nada. c) Calcula la energía media consumida por la ejecución de una instrucción teniendo e				

muc	onjunto formado por CPU+\$I+\$D (que llamaremos <i>núcleo</i>) esta conectado a una cache de segundo nivel (L2) cho mayor que las de primer nivel. El programa X ejecuta 5x10 ⁹ instrucciones, todos los accesos del programa X de 4 bytes (tanto a instrucciones como datos) y los bloques de cache de \$I, \$D y L2 son todos de 32 bytes.
d)	Calcula cuantos bytes lee el <i>núcleo</i> desde L2 y cuantos bytes escribe el <i>núcleo</i> en L2 .
Dad	o el siguiente fragmento de código:
	<pre>for (i=0; i<n; +="" i++)="" pre="" suma="suma" v[i];<=""></n;></pre>
	to el código como las variables i, N y suma se encuentran almacenados en \$I y \$D respectivamente. Los nentos del vector v son de 4 bytes (recuerda que los bloques de L2 son de 32 bytes).
Hem	nos ejecutado 2 veces consecutivas el mismo bucle y hemos medido los ciclos de la segunda ejecución del bucle
• [Para valores de N medios (L2 > tamaño de $v > 2$ veces \$D) el bucle se ejecuta en 20*N ciclos.
• [Para valores de N muy grandes (v es muchísimo mayor que la L2) el bucle se ejecuta en 45*N ciclos. Calcula el tiempo de penalización (en ciclos) en caso de fallo en L2.
	cache L2 le añadimos un mecanismo de <i>prefetch</i> hardware. Cuando se accede un bloque (i) se desencadena
inne	etch del bloque siguiente (i+1) siempre que el bloque (i+1) no se encuentre ya en la cache (en cuyo caso escesario hacer <i>prefetch</i>) o no haya un <i>prefecth</i> previo del bloque (i+1) pendiente de completar (en cuyo caso solo que esperar que se complete).
f)	Calcula el número máximo de ciclos que puede durar un <i>prefetch</i> para que el bucle anterior se ejecute en 20*N ciclos para N muy grandes.
g)	Calcula los ciclos que tarda en ejecutarse el bucle (para N muy grande) si un <i>prefetch</i> dura los mismos ciclos que
	la penalización por fallo (apartado e)