

Università "Sapienza" di Roma Facoltà di Informatica

Calcolo delle Probabilità

Appunti integrati con il libro "The Probability Tutoring Book", Carol Ash

> Author Simone Bianco

Indice

0	Introduzione	1
1	Esiti ed Eventi	2
	1.1 Proprietà degli eventi	3
	1.2 Cardinalità e Funzioni indicatrici	7

Capitolo 0

Introduzione

Capitolo 1

Esiti ed Eventi

Prima di poter parlare di probabilità, è necessario definire ciò di cui essa si occupa. Il calcolo di una probabilità corrisponde allo studio di un fenomeno osservabile esclusivamente dal punto di vista della possibilità o meno del suo verificarsi.

Consideriamo ad esempio il lancio di una moneta. Tale fenomeno può avere **solo due esiti**, ossia testa o croce. Possiamo rappresentare tale fenomeno sottoforma di insieme, dove i suoi elementi sono tutti gli esiti possibili:

$$S:\{T,C\}$$

Effettuando un esperimento su tale insieme, ossia un lancio, il risultato di tale esperimento rientrerà in un **numero finito di esiti**, rappresentabili tramite un insieme. Tale esperimento viene detto **aleatorio**, mentre l'insieme di tutti gli esiti possibili viene detto **insieme ambiente (o spazio campionario)**.

Consideriamo ora il lancio di un dado. Anche in questo caso, il numero di esiti risulta essere finito: può uscire solo una faccia avente da uno a sei pallini. **Enumeriamo** quindi tutti gli esiti possibili associando un numero ad ogni esito:

$$S: \{\cdot, \cdot, \cdot\} \longrightarrow S: \{1, 2, 3, 4, 5, 6\}$$

Analogamente, possiamo enumerare gli esiti del lancio di una moneta:

$$S: \{T, C\} \longrightarrow S: \{0, 1\}$$

Consideriamo ora l'**insieme** A contenente le facce di un dado aventi un numero di pallini inferiore o uguale a tre. Possiamo rappresentare tale insieme in **tre modi**:

- Per enumerazione, ossia $A: \{1, 2, 3\}$
- \bullet Per proprietà descrittiva, ossia A: {facce di un dado il cui valore è massimo 3}
- Per notazione matematica, ossia $A : \{x \in S \mid x \leq 3\}$

Abbiamo quindi definito gli elementi di A come appartenenti ad S ($x \in S$), dove S è l'insieme ambiente contenente tutti gli esiti possibili del lancio di un dado. Dunque, ne segue che $A \subset S$ (dunque che $x \in B \implies x \in S$), ossia è un **sottoinsieme dell'insieme ambiente**, che definiamo come **evento**. L'insieme A, quindi, corrisponde all'evento in cui esce una faccia minore o uguale a tre.

Definition 1. Evento

Un evento corrisponde ad un sottoinsieme dell'insieme ambiente, ossia dell'insieme contenente tutti i possibili esiti di un fenomeno.

1.1 Proprietà degli eventi

Consideriamo l'evento in cui esce una faccia pari. Definiamo tale evento come:

$$A: \{x \in S \mid x\%2 = 0\}: \{2, 4, 6\}$$

Riprendiamo anche l'evento già visto in cui esce una faccia minore o uguale a 3:

$$B: \{x \in S \mid x \le 3\} : \{1, 2, 3\}$$

Definiti questi due eventi, possiamo prendere in considerazione l'**evento unione** tra i due, ossia l'evento in cui esce una faccia pari **oppure** minore o uguale a 3:

$$C: A \cup B: \{1, 2, 3, 4, 6\} \text{ dove } x \in A \cup B \iff x \in A \lor x \in B$$

Analogamente, possiamo prendere in considerazione l'evento intersezione tra i due, ossia l'evento in cui esce una faccia pari e anche minore o uguale a 3:

$$D: A \cap B: \{2\} \text{ dove } x \in A \cap B \iff x \in A \land x \in B$$

Notiamo come quest'ultimo evento corrisponda ad un **singleton** (o singoletto), ossia un insieme di un solo elemento. Tale evento viene detto **evento elementare**.

Immaginiamo ora di voler descrivere l'evento in cui esce una faccia dispari. Come sappiamo, un numero dispari non è altro che un numero non pari. Definiamo quindi tale evento come **evento complementare** dell'evento in cui escono facce pari:

$$A^c: \{x \in S \mid x \notin A\}$$

Attenzione: è necessario sottolineare come non basti definire l'evento delle facce dispari come l'evento contenente tutti gli esiti che non sono nell'evento delle facce pari (dunque $A^c \neq \{x \notin A\}$), poiché ciò includerebbe anche gli esiti esterni all'insieme ambiente. Dunque, quando si parla di **evento complementare**, tale evento deve sempre essere **rapportato all'insieme ambiente** (dunque $x \in A^c \implies x \in S$).

Ovviamente, da tale definizione di evento complementare ne segue che l'evento complementare dell'evento complementare di A sia l'evento A stesso:

$$(A^c)^c = A$$

Un ulteriore modo per poter definire un evento complementare è tramite l'**esclusione**: eliminando tutti gli esiti appartenenti all'evento A dall'insieme ambiente S, otteniamo l'evento complementare di A:

$$A^c: S \setminus A$$

Volendo rappresentare l'evento contenente le facce minori o uguali a tre e non pari, possiamo definire tale evento in **due modi**:

• L'intersezione tra l'evento delle facce minori o uguali a tre e l'evento delle facce dispari (ossia il complementare delle facce pari)

$$E:B\cap A^c$$

• L'evento contenente gli esiti minori o uguali a tre esclusi gli esiti contenuti nell'evento delle facce pari

$$E: B \setminus A$$

Dunque, ne traiamo che:

$$B \setminus A = B \cap A^c$$

Trattandosi sostanzialmente di insiemi, gli eventi godono anche delle altre proprietà ad essi legati:

• Proprietà disgiuntiva

$$A \cap A^c = \emptyset$$

• Proprietà associativa

$$(A \cup B) \cup C = A \cup (B \cup C)$$
 e $(A \cap B) \cap C = A \cap (B \cap C)$

• Proprietà distributiva

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
 e $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

• Legge di De Morgan

$$(A \cup B)^c = A^c \cap B^c$$
 e $(A \cap B)^c = A^c \cup B^c$

Dimostrazione:

Ricordiamo che, nell'ambito dell'insiemistica, la notazione A=B indica che l'insieme A coincide esattamente con l'insieme B. Tale affermazione può essere ricondotta alla condizione $A \subseteq B \land B \subseteq A$, poiché l'unico caso possibili in cui A è sottoinsieme proprio di B e B è sottoinsieme proprio di A è quando A e B coincidono.

Dunque, per dimostrare che $(A \cup B)^c = A^c \cap B^c$, è sufficiente dimostrare che:

$$- (A \cup B)^c \subseteq A^c \cap B^c$$

$$-A^c \cap B^c \subseteq (A \cup B)^c$$

Consideriamo la seguente unione:

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

Se un elemento x appartiene al complementare di tale unione, allora ne segue che esso non appartenga all'unione in se

$$x \in \left(\bigcup_{i=1}^{n} A_i\right)^c \implies x \notin \bigcup_{i=1}^{n} A_i$$

A sua volta, ciò è possibile solo se l'elemento x appartenga al complementare di qualsiasi insieme appartenente a tale unione:

$$x \notin \bigcup_{i=1}^{n} A_i \iff \forall A_i \text{ si ha che } x \in (A_i)^c$$

Quest'ultima condizione, infine, implica che:

$$\forall A_i \text{ si ha che } x \in (A_i)^c \implies x \in \bigcap_{i=1}^n (A_i)^c$$

Dunque, concludiamo che:

$$\bigcup_{i=1}^{n} A_i \subseteq \bigcap_{i=1}^{n} (A_i)^c$$

La stessa condizione, tuttavia, implica che non esiste un indice i tale che l'elemento x possa essere in A_i

$$\forall A_i \text{ si ha che } x \in (A_i)^c \implies \nexists i \mid x \in A_i$$

Dunque, considerando l'unione di tutte gli A_i insiemi, l'elemento x non può trovarsi in essa, dunque esso sarà necessariamente situato nel complementare di tale unione:

$$\nexists i \mid x \in A_i \implies x \in \left(\bigcup_{i=1}^n A_i\right)^c$$

Dunque, concludiamo che:

$$\bigcap_{i=1}^{n} (A_i)^c \subseteq \bigcup_{i=1}^{n} A_i$$

Poiché entrambe le condizioni sono verificate, otteniamo che:

$$\left(\bigcup_{i=1}^{n} A_i \subseteq \bigcap_{i=1}^{n} (A_i)^c\right) \wedge \left(\bigcap_{i=1}^{n} (A_i)^c \subseteq \bigcup_{i=1}^{n} A_i\right) \Longleftrightarrow \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (A_i)^c$$

• Esclusione disgiuntiva (XOR)

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$

Dimostrazione:

$$(A \cup B) \setminus (A \cap B)$$

$$(A \cup B) \cap (A \cap B)^{c}$$

$$[(A \cap (A \cap B)^{c}] \cup [B \cap (A \cap B)^{c}]$$

$$[(A \cap (A^{c} \cup B^{c})] \cup [B \cap (A^{c} \cup B^{c})]$$

$$[(A \cap A^{c}) \cup (A \cap B^{c})] \cup [(B \cap A^{c}) \cup (B \cap B^{c})]$$

$$[\emptyset \cup (A \cap B^{c})] \cup [(B \cap A^{c}) \cup \emptyset]$$

$$[A \cap B^{c}] \cup [B \cap A^{c}]$$

$$[A \setminus B] \cup [B \setminus A]$$

1.2 Cardinalità e Funzioni indicatrici

Analogamente agli insiemi, con il termine **cardinalità** indichiamo il **numero di esiti contenuti in un evento**. Per essere numerabile, ovviamente, un evento deve possedere una **quantità finita di eventi**.

Indichiamo la cardinalità di un evento con la notazione:

$$|A| = n$$

dove A è l'evento e n è la sua cardinalità.

Dato un evento A, invece, definiamo come funzione indicatrice di A (indicata come I_A) la funzione che preso un elemento x in input restituisce 1 se l'elemento appartiene all'evento, oppure 0 altrimenti.

Definition 2. Funzione indicatrice

Dato un evento A, la sua funzione indicatrice corrisponde a

$$I_A: S \to \{0,1\}: x \mapsto I_A(x)$$

$$I_A(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \\ 0 & \text{altrimenti} \end{array} \right.$$

Da tale definizione, quindi, ne segue logicamente che:

$$I_A(x) = 1 \iff I_{A^c}(x) = 0$$

$$I_A(x) = 0 \iff I_{A^c}(x) = 1$$

Dunque, dato un qualsiasi evento, si ha che:

$$I_A(x) + I_{A^c}(x) = 1 \quad \forall x \in S$$

Consideriamo ora le due funzioni indicatrici I_A e I_B . La funzione indicatrice dell'evento intersezione $A \cap B$ può essere definita come:

$$I_{A\cap B}(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \cap B \\ 0 & \text{altrimenti} \end{array} \right. = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \wedge x \in B \\ 0 & \text{altrimenti} \end{array} \right.$$

Poiché tale funzione deve valere 1 solo se $x \in A$ e $x \in B$, ne segue che ciò possa essere possibile solo se per lo stesso elemento x si ha che $I_A x = 1$ e $I_B(x) = 1$.

Possiamo quindi definire $I_{A\cap B}$ anche come il prodotto tra $I_A(x)$ e $I_B(x)$, poiché nel caso in cui una (o entrambe) delle due funzioni restituisca 0 allora anche la funzione indicatrice dell'unione restituirà 0.

$$I_{A\cap B}=I_A\cdot I_B$$

Vediamo ora la funzione indicatrice dell'evento unione $A \cup B$, definita come:

$$I_{A\cup B}(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \cup B \\ 0 & \text{altrimenti} \end{array} \right. = \left\{ \begin{array}{ll} 1 & \text{se } x \in A \vee x \in B \\ 0 & \text{altrimenti} \end{array} \right.$$

Cerchiamo quindi un modo matematico per poter calcolare facilmente $I_{A\cup B}(x)$ tramite $I_A(x)$ e $I_B(x)$. Intuitivamente, si potrebbe pensare che la somma tra le due funzioni indicatrici di A e B corrisponda al valore dato da quella dell'unione. Tuttavia, notiamo che:

- Se $I_A(x) = 0$ e $I_B(x) = 0$, allora $I_A(x) + I_B(x) = 0$
- Se $I_A(x) = 1$ e $I_B(x) = 0$, allora $I_A(x) + I_B(x) = 1$
- Se $I_A(x) = 0$ e $I_B(x) = 1$, allora $I_A(x) + I_B(x) = 1$
- Se $I_A(x) = 1$ e $I_B(x) = 1$, allora $I_A(x) + I_B(x) = 2$

Notiamo quindi come l'ultimo caso dia un **risultato sbagliato** rispetto all'output che vorremmo (ossia 1). Il motivo di ciò può essere spiegato comodamente tramite l'**errore** di doppio conteggio degli insiemi:

- Consideriamo i due insiemi $A = \{1, 2, 3, 4\}, B = \{0, 2, 4, 5\}$
- L'unione tra i due insiemi risulterà essere $A \cup B = \{0, 1, 2, 3, 4, 5\}$
- Si ha quindi che $|A \cup B| \neq |A| + |B|$ (dunque che $6 \neq 4 + 4$). Ciò avviene poiché è stata **conteggiata due volte l'intersezione** $A \cap B$, poiché ogni elemento in tale intersezione (ossia $\{1,2\}$) è stato contato sia nella **cardinalità di** A sia nella **cardinalità di** B.
- Per ri-bilanciare il conto, quindi, è necessario sottrarre una volta tale intersezione, in modo da conteggiarla in una sola delle due cardinalità

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Analogamente, quindi, il calcolo esatto della funzione indicatrice unione sarà:

$$I_{A \cup B} = I_A + A_B - I_{A \cap B}$$

Notiamo quindi una stretta relazione tra cardinalità e funzione indicatrice. Difatti, potremmo usare quest'ultima per descrivere la prima come la somma di tutti i valori dati dalla funzione indicatrice dell'evento stesso per ogni elemento dell'insieme:

$$A = \{x_1, x_2, ..., x_n\}$$

$$|A| = \sum_{i=1}^{n} I_A(x_i)$$

Nel caso in cui gli eventi da trattare siano **più di due**, possiamo utilizzare la **proprietà** associativa di cui essi godono per calcolare la loro cardinalità.

• Vogliamo calcolare la **cardinalità dell'insieme** $A \cap B \cap C$. Tramite la proprietà associativa, sappiamo che:

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$$
$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$$

Dunque, ne traiamo che

$$|A \cap B \cap C| = |(A \cap B) \cap C| = |A \cap B| \cdot |C| = |A| \cdot |B| \cdot |C|$$

Poiché ne faremo uso frequentemente, per comodità riscriviamo il **prodotto delle** cardinalità come

$$|A \cap B \cap C| = |A| \cdot |B| \cdot |C| = |ABC|$$

• Per la cardinalità dell'insieme $A \cup B \cup C$, le cose risultano un po' più complesse. Anche in questo caso, procediamo con la proprietà associativa:

$$|A \cup B \cup C| = |(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C| =$$

$$= |A| + |B| - |A \cap B| + |C| - |(A \cup B) \cap C| =$$

$$= |A| + |B| + |C| - |A \cap B| - |(A \cap C) \cup (B \cap C)| =$$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| + |B \cap C| - |A \cap B| \cap (B \cap C)| =$$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| =$$

$$= |A| + |B| + |C| - |AB| - |AC| - |BC| + |ABC|$$

Notiamo come il risultato corrisponda ancora una volta al **ri-aggiustamento di un doppio conteggio**: sommando i tre insiemi contiamo 2 volte ognuna delle intersezioni a due, necessitando quindi che ognuno di essi venga sottratto una volta. In questo modo, però, abbiamo **aggiunto 3 volte** l'intersezione a tre (contando la somma tra i tre insiemi) e **sottratto 3 volte** la stessa intersezione (rimuovendo le tre intersezioni a due), necessitando quindi che essa venga **ri-conteggiata**

$$|A \cup B \cup C| = |A| + |B| + |C| - |AB| - |AC| - |BC| + |ABC|$$

• Analogamente, la cardinalità dell'insieme $A \cup B \cup C \cup D$, corrisponderà a:

$$\begin{split} |A \cup B \cup C \cup D| &= |(A \cup B \cup C) \cup D| = \\ &= \dots = \\ &= |A| + |B| + |C| + |D| - |AB| - |AC| - |AD| - |BC| - |BD| - |CD| + \\ &+ |ABC| + |ABD| + |ACD| + |BCD| - |ABCD| \end{split}$$

Notiamo quindi la presenza di un certo **pattern** durante il calcolo della cardinalità di un'unione:

- Aggiungiamo gli n insiemi
- Sottraiamo tutte le intersezioni a due
- Aggiungiamo tutte le intersezioni a tre
- Sottraiamo tutte le intersezioni a quattro
- ...

Infatti, possiamo riscrivere la cardinalità delle due unioni viste precedentemente anche nel seguente modo compatto

$$|A \cup B \cup C| = \sum_{i=1}^{3} |A_i| - \sum_{1 \le 1 < j \le 3} |A_i A_j| + \sum_{1 \le 1 < j < k \le 3} |A_i A_j A_k|$$

$$|A \cup B \cup C \cup D| = \sum_{i=1}^{4} |A_i| - \sum_{1 \le 1 < j \le 4} |A_i A_j| + \sum_{1 \le 1 < j < k \le 4} |A_i A_j A_k| + \sum_{1 \le 1 < j < k < h \le 4} |A_i A_j A_k A_h|$$

dove, ad esempio, la notazione $1 \le i < j \le 3$ sottostante alla prima sommatoria indica **tutte tuple di valori possibili** in un range di numeri che va da 1 a 3, dove 3 è il **numero degli insiemi nell'unione**. Analogamente, la notazione $1 \le i < j < k \le 3$ indica tutte le triple di valori possibili e così via.

Notiamo anche come il segno di tali sommatorie sia alternato. Difatti, **aggiungiamo** tutte le *m*-uple in cui *m* **è un numero dispari**, mentre **sottraiamo** tutte le *m*-uple in cui *m* **è un numero pari**. Possiamo quindi generalizzare l'intero concetto a *n* **insiemi**, utilizzando la seguente notazione iper-compatta:

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} \left((-1)^{k+1} \cdot \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cdot A_{i_2} \cdot \dots \cdot A_{i_k}| \right)$$