1			
2			
3	CLAIMS:		
4			
5	1. (Original) An energy conditioner comprising:		
6	an internally floating shield structure;		
7	a first electrode structure;		
8	a second electrode structure;		
9	wherein said first electrode structure comprises at least one first electrode structure		
10	first conductive layer, said second electrode structure comprises at least one second electrode		
11	structure first conductive layer;		
12	wherein said internally floating shield structure shields said first electrode structure		
13	first conductive layer from said second electrode structure, and said internally floating shield		
14	structure shields said second electrode structure first conductive layer from said first electrode		
15	structure; and		
16	said first electrode structure includes a first electrode contact region.		
17			
18	2. (Original) A filter arrangement comprising the energy conditioner of claim 1 and		
19	a conductive line segment of a circuit, wherein said first electrode structure contact region is		
20	electrically connected to said conductive line segment.		
21			
22 .	3. (Original) A capacitively/inductively coupling energy conditioner, comprising:		
23	an internally floating shield structure;		
24	a first electrode structure;		
25	a second electrode structure;		
26	wherein said first electrode structure comprises at least one first electrode structure		
27	first conductive layer, said second electrode structure comprises at least one second electrode		
28	structure first conductive layer;		
29	wherein said internally floating shield structure shields said first electrode structure		
30	first conductive layer from said second electrode structure, and said internally floating shield		

1	structure shields said second electrode structure first conductive layer from said first electrode		
2	structure; and		
3		said first electrode structure includes a first electrode capacitive/inductive coupling	
4	pad.		
5			
6	4.	(Original) A filter arrangement comprising the capacitively/inductively coupling	
7	energy conditioner of claim 3 and a conductive line segment of a circuit, wherein first		
8	electro	de capacitive/inductive coupling pad is capacitively/inductively coupled to said	
9	conduc	ctive line segment.	
10			
11	5.	(Original) An internally shielded capacitor comprising;	
12		a shielding conductive layer;	
13		a first electrode defining at least a first electrode layer, wherein said first electrode	
14	layer i	s above said shielding conductive layer;	
15		a second electrode defining at least a second electrode layer, wherein said second	
16	electro	ode layer is below said shielding conductive layer;	
17	wherein said shielding, said first electrode, and said second electrode are electrically		
18	isolate	ed from one another; and	
19		wherein said first electrode, said second electrode, and said shielding conductive layer	
20	are positioned and sized relative to one another such that any straight line passing through		
21	said first electrode and said second electrode contacts said shielding conductive layer.		
22			
23	6.	(Original) An energy conditioner comprising;	
24		a shielding defining at least (1) upper shielding conductive layer, (2) a center shielding	
25	conductive layer, and (3) a lower shielding conductive layer, wherein said upper shielding		
26	conductive layer is above said center shielding conductive layer and said center shielding		
27	conductive layer is above said lower shielding conductive layer;		
28	a first electrode defining at least a first electrode layer, wherein said first electrode		
29	layer is below said upper shielding conductive layer and above said center shielding		
30	conductive layer;		

1	a second electrode defining at least a second electrode layer, wherein said second			
2	electrode layer is below said center shielding conductive layer and above said lower shielding			
3	conductive layer; and			
4	wherein said shielding, said first electrode, and said second electrode are electrically			
5	isolated from one another; and			
6	wherein said first electrode, said second electrode, and said center shielding			
7	conductive layer are positioned and sized relative to one another such that any straight line			
8	passing through said first electrode and said second electrode contacts said center shielding			
9	conductive layer.			
10				
11	7. (Original) The conditioner of claim 6, wherein said shielding further comprises at			
12	least one conductive aperture operable for conductively coupling together all of said shielding			
13	conductive layers to one another.			
14				
15	8. (Original) The conditioner of claim 6, wherein said shielding further comprises at			
16	least one conductive via structure operable for conductively coupling together all of said			
17	shielding conductive layers to one another.			
18				
19	9. (Original) The conditioner of claim 6, wherein said shielding further comprises at			
20	least one conductive aperture, wherein said at least one conductive aperture passes through a			
21	least said first electrode layer or said second electrode layer; and			
22	wherein said at least one conductive aperture is operable for conductively coupling			
23	together all of said shielding conductive layers to one another.			
24				
25	10. (Original) The conditioner of claim 6, wherein said shielding further comprises at			
26	least one conductive via structure, wherein said at least one conductive via structure passes			
27	through at least said first electrode layer or said second electrode layer; and			
28	wherein said at least one conductive via structure is operable for conductively			
29	coupling together all of said shielding conductive layers to one another.			
30				

1	11.	(Original)	The energy conditioner of claim 7, wherein said shielding is not	
2	operable to be physically coupled to a circuit path.			
3				
4	12.	(Original)	The energy conditioner of claim 8, wherein said shielding is not	
5	operab	le to be physic	cally coupled to a circuit path.	
6				
7	13.	(Original)	A method of making an energy conditioner comprising:	
8		providing an	internally floating shield structure;	
9		providing a f	irst electrode structure;	
10		providing a s	econd electrode structure;	
11		wherein said	first electrode structure comprises at least one first electrode structure	
12	first co	first conductive layer, said second electrode structure comprises at least one second electrode		
13	structure first conductive layer;			
14		wherein said	internally floating shield structure shields said first electrode structure	
15	first co	first conductive layer from said second electrode structure, and said internally floating shield		
16	structure shields said second electrode structure first conductive layer from said first electrode			
17	structure; and			
18	said first electrode structure includes a first electrode contact region.			
19				
20	14.	(Original)	A method of making filter arrangement comprising (1) an energy	
21	conditioner comprising an internally floating shield structure; a first electrode structure; a			
22	second electrode structure; wherein said first electrode structure comprises at least one first			
23	electrode structure first conductive layer, said second electrode structure comprises at least			
24	-one second electrode structure first conductive layer; wherein said internally floating shield			
25	structure shields said first electrode structure first conductive layer from said second electrode			
26	structure, and said internally floating shield structure shields said second electrode structure			
27	first conductive layer from said first electrode structure; wherein said first electrode structure			
28	includ	includes a first electrode contact region and (2) a conductive line segment of a circuit,		
29	where	wherein said first electrode structure contact region is electrically connected to said		
30	condu	octive line sec	ment comprising the steps of	

1		providing said energy conditioner;				
2		providing said conductive line segment; and				
3		electrically connecting said conductive line segment to said energy conditioner.				
4						
5	15.	(Original)	A method of making a capacitively/inductively coupling energy			
6	conditi	oner, comprisi	ng:			
7		providing an i	nternally floating shield structure;			
8		providing a fin	rst electrode structure;			
9		providing a se	cond electrode structure;			
0		wherein said f	irst electrode structure comprises at least one first electrode structure			
1	first conductive layer, said second electrode structure comprises at least one second electrode					
12	structu	re first conduc	tive layer;			
13		wherein said i	nternally floating shield structure shields said first electrode structure			
14	first conductive layer from said second electrode structure, and said internally floating shield					
15	structure shields said second electrode structure first conductive layer from said first electrode					
16	structu	re; and				
17		said first elect	trode structure includes a first electrode capacitive/inductive coupling			
18	pad.					
19						
20	16.	(Original)	The method of making a circuit including the method of claim 15, and			
21	further comprising capacitively/inductively coupling said energy conditioner to a conductive					
22	line segment.					
23						
24	17.	(Original)	A method of making an internally shielded capacitor comprising;			
25		providing a sh	nielding conductive layer;			
26		providing a fi	rst electrode defining at least a first electrode layer, wherein said first			
27	electrode layer is above said shielding conductive layer;					
28	providing a second electrode defining at least a second electrode layer, wherein said					
29	secono	d electrode laye	er is below said shielding conductive layer;			
20		wherein caid	shielding said first electrode, and said second electrode are electrically			

PCT/US2004/039777 WO 2005/065097

1	isolated from one another; and			
2	wherein said first electrode, said second electrode, and said shielding conductive layer			
3	are po	are positioned and sized relative to one another such that any straight line passing through		
4	said fi	irst electrode ar	nd said second electrode contacts said shielding conductive layer.	
5				
6	18.	(Original)	A method of making an energy conditioner comprising;	
7		providing a sl	hielding defining at least (1) upper shielding conductive layer, (2) a	
8	center	r shielding cond	ductive layer, and (3) a lower shielding conductive layer, wherein said	
9	upper	shielding cond	luctive layer is above said center shielding conductive layer and said	
10	cente	r shielding cond	ductive layer is above said lower shielding conductive layer;	
11		providing a f	irst electrode defining at least a first electrode layer, wherein said first	
12	electr	ode layer is bel	ow said upper shielding conductive layer and above said center shielding	
13	condi	uctive layer;		
14		providing a s	econd electrode defining at least a second electrode layer, wherein said	
15	secon	nd electrode lay	er is below said center shielding conductive layer and above said lower	
16	shield	ding conductive	layer; and	
17		wherein said	shielding, said first electrode, and said second electrode are electrically	
18	isolat	ted from one an	other; and	
19		wherein said	first electrode, said second electrode, and said center shielding	
20	conductive layer are positioned and sized relative to one another such that any straight line			
21	passing through said first electrode and said second electrode contacts said center shielding			
22	conductive layer.			
23				
24	19.	(Original)	The method of claim 18, wherein said shielding further comprises at	
25	least one conductive aperture operable for conductively coupling together all of said shielding			
26	conductive layers to one another.			
27				
28	20.	(Original)	The method of claim 18, wherein said shielding further comprises at	
29	least	one conductive	e via structure operable for conductively coupling together all of said	
30	shielding conductive layers to one another.			

1	21.	(Original)	The method claim 18, wherein said shielding further comprises at least
2	one con	nductive apertu	re, wherein said at least one conductive aperture passes through at least
3	said fir	st electrode lay	er or said second electrode layer; and
4		wherein said a	t least one conductive aperture is operable for conductively coupling
5	togethe	er all of said shi	ielding conductive layers to one another.
6			
7	22.	(Original)	The method of claim 18, wherein said shielding further comprises at
8	least or	ne conductive v	via structure, wherein said at least one conductive via structure passes
9	through	h at least said f	irst electrode layer or said second electrode layer; and
10		wherein said a	at least one conductive via structure is operable for conductively
11	couplin	ng together all	of said shielding conductive layers to one another.
12			
13	23.	(Original)	The method of claim 19, wherein said shielding is designed to be
14	physic	ally isolated fro	om a circuit path.
15			
16	24.	(Original)	The energy conditioner of claim 20, wherein said shielding is designed
17	be physically isolated from a circuit path.		
18			
19	25.	(Original)	A method of using an energy conditioner, said energy conditioner
20	compr	ising:	
21		an internally f	loating shield structure; a first electrode structure; a second electrode
22	structure; wherein said first electrode structure comprises at least one first electrode structure		
23	first co	onductive layer	, said second electrode structure comprises at least one second electrode
24	structu	ire first conduc	tive layer; wherein said internally floating shield structure shields said
25	first electrode structure first conductive layer from said second electrode structure, and said		
26	internally floating shield structure shields said second electrode structure first conductive		
27	layer f	rom said first e	electrode structure; and said first electrode structure includes a first
28	electro	ode contact regi	ion, said method comprising:
29		connecting sa	id energy conditioner in an electrical circuit.
30			

1	26.	(Original)	A method of using a capacitively/inductively coupling energy		
2	conditi	oner, said ener	gy conditioner comprising: an internally floating shield structure; a first		
3	electrode structure; a second electrode structure; wherein said first electrode structure				
4	comprises at least one first electrode structure first conductive layer, said second electrode				
5	structu	re comprises a	t least one second electrode structure first conductive layer; wherein said		
6	interna	lly floating shi	eld structure shields said first electrode structure first conductive layer		
7	from s	aid second elec	ctrode structure, and said internally floating shield structure shields said		
8	second	electrode stru	cture first conductive layer from said first electrode structure; and said		
9	first el	ectrode structu	re includes a first electrode capacitive/inductive coupling pad, said		
10	metho	d comprising:	•		
11		connecting sa	id energy conditioner in an electrical circuit.		
12					
13	27.	(Original)	A method of using an internally shielded capacitor, said internally		
14	shield	ed capacitor co	mprising: a shielding conductive layer; a first electrode defining at least		
15	a first	electrode layer	, wherein said first electrode layer is above said shielding conductive		
16	layer;	a second electr	ode defining at least a second electrode layer, wherein said second		
17	electro	de layer is bel	ow said shielding conductive layer; wherein said shielding, said first		
18	electro	ode, and said se	econd electrode are electrically isolated from one another; and wherein		
19	said fi	rst electrode, s	aid second electrode, and said shielding conductive layer are positioned		
20	and sized relative to one another such that any straight line passing through said first				
21	electrode and said second electrode contacts said shielding conductive layer, said method				
22	compr	ising:			
23		connecting sa	ud internally shielded capacitor in an electrical circuit.		
24					
25	28.	(Original)	A method of using an energy conditioner, said energy conditioner		
26	compr	ising: a shieldi	ing defining at least (1) upper shielding conductive layer, (2) a center		
27	shield	ing conductive	layer, and (3) a lower shielding conductive layer, wherein said upper		
28	shield	ing conductive	layer is above said center shielding conductive layer and said center		
29	shield	ing conductive	layer is above said lower shielding conductive layer; a first electrode		
30	defining at least a first electrode layer, wherein said first electrode layer is below said upper				

1	shielding conductive layer and above said center shielding conductive layer; a second		
2	electrode defining at least a second electrode layer, wherein said second electrode layer is		
3	below said center shielding conductive layer and above said lower shielding conductive layer		
4	and wherein said shielding, said first electrode, and said second electrode are electrically		
5	isolate	d from one and	other; and wherein said first electrode, said second electrode, and said
6	center	shielding cond	luctive layer are positioned and sized relative to one another such that
7	any str	aight line pass	ing through said first electrode and said second electrode contacts said
8	center	shielding cond	luctive layer, said method comprising:
9		connecting sa	id energy conditioner in an electrical circuit.
10			
11	29.	(Original)	The method of claim 28, wherein said shielding further comprises at
12	least o	ne conductive	aperture operable for conductively coupling together all of said shielding
13	condu	ctive layers to	one another.
14			
15	30.	(Original)	The method of claim 28, wherein said shielding further comprises at
16	least o	ne conductive	via structure operable for conductively coupling together all of said
17	shieldi	ing conductive	layers to one another.
18			·
19	31.	(Original)	The method of claim 28, wherein said shielding further comprises at
20	least o	ne conductive	aperture, wherein said at least one conductive aperture passes through at
21	least said first electrode layer or said second electrode layer; and		
22	wherein said at least one conductive aperture is operable for conductively coupling		
23	togeth	er all of said sh	nielding conductive layers to one another.
24			
25	32.	(Original)	The method of claim 28, wherein said shielding further comprises at
26	least one conductive via structure, wherein said at least one conductive via structure passes		
27	through at least said first electrode layer or said second electrode layer; and		
28		wherein said	at least one conductive via structure is operable for conductively
29	coupli	ng together all	of said shielding conductive layers to one another.
30			

1 33. (Original) The method of claim 29, wherein said shielding is designed to be 2 physically isolated from a circuit path.

3

4 34. (Original) The method of claim 30, wherein said shielding is designed to be

5 physically isolated from a circuit path.

6