Espaces préhilbertiens

Espaces préhilbertiens réels

Dans toute cette partie, E désigne un \mathbb{R} -ev (de dimension finie ou non).

Définitions

<u>Définition</u>: (produit scalaire)

Le produit scalaire (p.s.) sur un \mathbb{R} -ev E désigne toute application $\varphi: E \times E \to \mathbb{R}$ vérifiant :

- (i) φ est bilinéaire, ie φ est linéaire selon chacune de ses variables.
- (ii) φ est symétrique : $\forall x, y \in E, \varphi(x, y) = \varphi(y, x)$
- (iii) φ est positive, ie $\forall x \in E, \varphi(x, x) \ge 0$
- (iv) φ est définie, ie $\varphi(x,x) = 0 \Leftrightarrow x = 0_E$

En d'autres termes, un p.s. sur E est une forme bilinéaire symétrique définie positive.

Remarques:

- 1. Pour montrer la bilinéarité symétrique, on a juste à montrer la linéarité à droite et la symétrie.
- 2. Si $\varphi: E \times E \to \mathbb{R}$ est bilinéaire, alors $\forall x \in E, \varphi(x, 0_E) = 0_E = \varphi(0_E, x)$ Donc pour la partie (iv), il suffit de montrer le sens direct de l'équivalence.

<u>Propriété</u> : Soit φ : E × E → ℝ

Alors φ est un produit scalaire sur E ssi :

- (i) φ est bilinéaire
- (ii) φ est symétrique
- (iii) $\forall x \in E, x \neq 0_E, \varphi(x, x) > 0$

Définition: (espace préhilbertien réel)

On appelle espace préhilbertien réel tout couple (E, φ) où E est un \mathbb{R} -ev et φ un produit scalaire. Dans ce cas, il est usuel de noter : $\forall x, y \in E, (x|y), \langle x, y \rangle$, ou plus rarement x.y le produit scalaire $\varphi(x,y)$.

<u>Définition</u>: On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

Exemples à connaître :

Produit scalaire usuel sur \mathbb{R}^n

<u>Propriété</u>: Soit $n \in \mathbb{N}^*$. L'application $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ définie par :

$$\forall x=(x_1,\dots,x_n), y=(y_1,\dots,y_n)\in\mathbb{R}^n, \langle x,y\rangle=\sum_{k=1}^n x_ky_k$$

est un produit scalaire sur \mathbb{R}^n . On l'appelle le p.s. canonique (ou usuel) sur \mathbb{R}^n

<u>Démonstration</u>: ★

- Par construction, on a bien $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$
- Linéarité à droite : Soient $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n),y'=(y_1',\ldots,y_n'),\lambda\in\mathbb{R}$

$$\begin{split} \langle x, \lambda y + y' \rangle &= \langle (x_1, \dots, x_n), (\lambda y_1 + y_1', \dots, \lambda y_2 + y_2') \rangle \\ &= \sum_{k=1}^n x_k (\lambda y_k + y_k') \\ &= \lambda \sum_{k=1}^n x_k y_k + \sum_{k=1}^n x_k y_k' \\ &= \lambda \langle x, y \rangle + \langle x, y' \rangle \end{split}$$

- Soient $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in\mathbb{R}^n$ Alors $\langle y,x\rangle=\sum_{k=1}^ny_kx_k=\sum_{k=1}^nx_ky_k=\langle x,y\rangle$ Donc \langle ,\rangle est bien symétrique.

Soit $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$, $x\neq 0_{\mathbb{R}^n}$, alors $\exists i_0\in \llbracket 1,n\rrbracket$, $\operatorname{tq} x_{i_0}\neq 0$

$$\langle x, x \rangle = \sum_{k=1}^{n} x_k^2 = \sum_{\substack{k=1 \ k \neq i_0}}^{n} x_k^2 + x_{i_0}^2 \ge x_{i_0}^2 > 0$$

Donc (,) est définie positive.

Donc c'est un produit scalaire sur \mathbb{R}^n

Exemple: $\forall a > 0, \varphi_a : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ définie par $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$,

$$\varphi_a(x,y) = ax_1y_1 + a(x_1y_2 + x_2y_1) + (a+1)x_2y_2$$

Produit usuel sur $M_{n,p}(\mathbb{R})$

 $\underline{\mathsf{Propri\acute{e}t\acute{e}}} : \mathsf{Soient} \ n,p \in \mathbb{N}^*. \ \mathsf{L'application} \ \langle , \rangle : M_{n,p}(\mathbb{R}) \times M_{n,p}(\mathbb{R}) \to \mathbb{R} \ \mathsf{d\acute{e}finie} \ \mathsf{par} \ \forall A,B \in M_{n,p}(\mathbb{R})$

$$\langle A,B\rangle = Tr({}^tAB)$$

est un produit scalaire sur $M_{n,p}(\mathbb{R})$ appelé p.s. canonique

<u>Démonstration</u>: **★**

- Soient $A, B \in M_{n,p}(\mathbb{R})$, ${}^tA \in M_{p,n}(\mathbb{R})$ donc le produit tAB est bien défini et ${}^tAB \in M_p(\mathbb{R})$ donc $Tr({}^tAB)$ existe et appartient à \mathbb{R}
- Soient $A, B, C \in M_{n,p}(\mathbb{R}), \lambda \in \mathbb{R}$

$$\langle A, \lambda B + C \rangle = Tr({}^tA(\lambda B + C)) = Tr(\lambda^tAB + {}^tAC) = \lambda \langle A, B \rangle + \langle A, C \rangle$$

- Soient $A, B \in M_{n,n}(\mathbb{R})$,

$$\langle B, A \rangle = Tr({}^{t}BA) = Tr({}^{t}({}^{t}BA)) = Tr({}^{t}A{}^{t}{}^{t}B) = Tr({}^{t}AB) = \langle A, B \rangle$$

Soit $A \in M_{n,p}(\mathbb{R})$, notons $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$, alors par calcul,

$$\langle A, A \rangle = Tr({}^t A A) = \sum_{i=1}^{p} \sum_{k=1}^{n} a_{ki}^2 \ge 0$$

De plus,
$$\langle A,A\rangle=0 \Leftrightarrow \sum_{i=1}^p \sum_{k=1}^n a_{ki}^2=0 \Leftrightarrow \forall i\in \llbracket 1,p \rrbracket, \forall k\in \llbracket 1,n \rrbracket, a_{ki}=0 \Leftrightarrow A=0_{M_{n,n}(\mathbb{R})}$$

Donc c'est bien un p.s. sur $M_{n,n}(\mathbb{R})$.

Produit scalaire canonique sur $\mathcal{C}([a,b],\mathbb{R})$

Propriété : Soient $a, b \in \mathbb{R}$, a < b, notons $E = \mathcal{C}([a, b], \mathbb{R})$.

L'application $\langle , \rangle : E \times E \to \mathbb{R}$ définie par :

$$\forall f, g \in E, \langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt$$

est un p.s. sur E appelé produit scalaire canonique sur E.

<u>Démonstration</u>: Soient $f, g \in E$ alors la fonction $f \times g$ est continue sur [a, b] donc intégrable sur ce segment.

- La symétrie de (,) provient de la commutativité du produit :

$$\langle g, f \rangle = \int_{a}^{b} g(t)f(t)dt = \int_{a}^{b} f(t)g(t)dt = \langle f, g \rangle$$

- $\forall f, g, h \in E, \forall \lambda \in \mathbb{R}$

$$\langle f, \lambda g + h \rangle = \int_{a}^{b} f(t) (\lambda g(t) + h(t)) dt = \lambda \int_{a}^{b} f(t) g(t) dt + \int_{a}^{b} f(t) h(t) = \lambda \langle f, g \rangle + \langle g, h \rangle$$

- Soit $f \in E$, $\langle f, f \rangle = \int_a^b (f(t))^2 dt \ge 0$ De plus, $\langle f, f \rangle = 0 \Leftrightarrow \int_a^b (f(t))^2 dt = 0 \Leftrightarrow \forall t \in [a, b], f(t)^2 = 0 \Leftrightarrow \forall t \in [a, b], f(t) = 0$

<u>Remarque</u>: Si on a un produit scalaire sur E et F un sev de E, alors le même produit restreint à $F \times F$ reste un produit scalaire sur F.

Norme euclidienne

Dans cette partie, E désigne un espace préhilbertien réel et on notera \langle , \rangle son produit scalaire associé.

<u>Définition</u>: On appelle norme euclidienne sur E l'application $\|\cdot\|: E \to \mathbb{R}_+$ définie par :

$$\forall x \in E, ||x|| = \sqrt{\langle x, x \rangle}$$

Exemple : Dans $E = \mathcal{C}([a,b],\mathbb{R})$ muni de son p.s. canonique, $\forall f \in E, \|f\| = \sqrt{\int_a^b (f(t))dt}$

Exemple : Soient $x, y \in E, \lambda \in \mathbb{R}$. $\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \lambda^2 \langle x, x \rangle = \lambda^2 \|x\|^2$

Soient $x, y \in E$,

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x + y \rangle + \langle y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$
$$= ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

De même, $||x - y|| = ||x||^2 - 2\langle x, y \rangle + ||y||^2$

Et
$$\langle x + y, x - y \rangle = ||x||^2 - ||y||^2$$

Théorème: Inégalité de Cauchy-Schwarz

Soit (E, \langle, \rangle) un espace préhilbertien réel. On rappelle qu'on note $||x|| = \sqrt{\langle x, x \rangle}$. Alors

$$\forall x, y \in E, |\langle x, y \rangle| \le ||x|| \cdot ||y||$$

avec égalité si et seulement si la famille (x, y) est liée.

Démonstration : 🟵

Soient $x, y \in E$.

 \hookrightarrow Si $x=0_E$, alors $|\langle x,y\rangle|=|\langle 0_E,y\rangle|=|0|=0$. Ainsi il y a bien égalité et la famille $(0_E,y)$ est liée \hookrightarrow Si $x\neq 0_E$, posons $P:\mathbb{R}\to\mathbb{R}, t\mapsto \|tx+y\|\geq 0$

$$\forall t \in \mathbb{R}, P(t) = t^2 ||x||^2 + 2\langle x, y \rangle t + ||y||^2 = at^2 + bt + c, \begin{cases} a = ||x||^2 > 0 \\ b = 2\langle x, y \rangle \\ c = ||y||^2 \end{cases}$$

Ainsi P est une fonction polynômiale de degré 2, à valeurs ≥ 0 . Ainsi P admet au plus une racine réelle, donc son discriminant $\Delta \leq 0$.

Ainsi
$$b^2-4ac \le 0 \Leftrightarrow \langle x,y\rangle^2 \le \|x\|^2 \cdot \|y\|^2 \Leftrightarrow |\langle x,y\rangle| \le \|x\| \cdot \|y\|$$

De plus, on a $|\langle x,y\rangle| = \|x\| \cdot \|y\| \Leftrightarrow \Delta = 0 \Leftrightarrow \exists !\ t_0 \in \mathbb{R} \ \mathrm{tq}\ P(t_0) = 0$

$$\Leftrightarrow \exists !\ t_0 \in \mathbb{R} \ \mathrm{tq}\ \|t_0x+y\| = 0$$

$$\Leftrightarrow \exists !\ t_0 \in \mathbb{R} \ \mathrm{tq}\ t_0x+y = 0_E$$

$$\Leftrightarrow \exists !\ t_0 \in \mathbb{R} \ \mathrm{tq}\ y = -t_0x$$

$$\Leftrightarrow (x,y) \ \mathrm{est}\ \mathrm{li\acute{e}e}$$

<u>Propriété</u>: Soit (E, \langle, \rangle) un espace préhilbertien réel.

La norme euclidienne $\|\cdot\|: \frac{E \to \mathbb{R}_+,}{x \mapsto \sqrt{\langle x, x \rangle}}$ est une norme sur E.

On l'appelle norme associée au produit scalaire (,).

Propriété: (Identités de polarisation)

Soit (E, \langle, \rangle) un espace préhilbertien réel. On note $\|\cdot\|$ la norme associée à $\langle\cdot\rangle$.

$$\forall x, y \in E, \text{ on a } \langle x, y \rangle = \begin{cases} \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) \\ \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2) \\ \frac{1}{2} (\|x\|^2 + \|y\|^2 - \|x - y\|^2) \end{cases}$$

Démonstration : 🖈

Soient $x, y \in E$.

 $||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$, ce qui donne la première égalité.

 $||x - y||^2 = ||x||^2 - 2\langle x, y \rangle + ||y||^2$, ce qui donne la deuxième égalité.

Et $||x + y||^2 - ||x - y||^2 = 4\langle x, y \rangle$, ce qui donne la dernière égalité.

Propriété : Identité du parallélogramme

Soit (E, \langle , \rangle) un espace préhilbertien réel dont on note $\|\cdot\|$ la norme euclidienne associée.

$$\forall x, y \in E, ||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

Espaces préhilbertiens complexes

Dans toute cette partie, E est un \mathbb{C} -ev (de dimension quelconque).

Le produit scalaire n'a plus de sens : $\forall x \in E \setminus \{0_E\}, 0 < \langle ix, ix \rangle = -\langle x, x \rangle < 0$

<u>Définition</u>: On appelle produit hermitien sur un \mathbb{C} -ev toute application $\varphi: E \times E \to \mathbb{C}$ vérifiant:

(i) φ est sesquilinéaire, ie φ est linéaire en sa 2^{nde} variable et semi-linéaire en sa 1^{ere} :

$$\begin{cases} \forall x, y, y' \in E, \forall \lambda \in \mathbb{C}, \varphi(x, \lambda y + y') = \lambda \varphi(x, y) + \varphi(x, y') \\ \forall x, x', y, \in E, \forall \lambda \in \mathbb{C}, \varphi(\lambda x + x', y) = \overline{\lambda} \varphi(x, y) + \varphi(x', y) \end{cases}$$

- (ii) φ est à symétrie hermitienne, ie $\forall x, y \in E, \varphi(y, x) = \overline{\varphi(x, y)}$
- (iii) φ est positive : $\forall x \in E, \varphi(x, x) \ge 0$
- (iv) φ est définie : $\forall x \in E$, on a $\varphi(x, x) = 0 \Leftrightarrow x = 0_E$

Un produit scalaire hermitien sur *E* est une forme sesquilinéaire hermitienne définie positive.

Attention : on a $\varphi(x,x) = \overline{\varphi(x,x)}$, donc $\varphi(x,x) \in \mathbb{R}$. Ainsi on peut parler de positivité.

En général $\varphi(x,y) \in \mathbb{C}$, on a donc pas lieu d'écrire « $\varphi(x,y) \geq \cdots$ »

<u>Propriété</u>: Soit E un \mathbb{C} -ev et $\varphi: E \times E \to \mathbb{C}$. Alors φ est un produit scalaire hermitien sur E ssi:

- (i) φ est sesquilinéaire
- (ii) $\forall x, y \in E, \varphi(y, x) = \overline{\varphi(x, y)}$
- (iii) $\forall x \in E, x \neq 0_E, \varphi(x, x) > 0$

Définition:

On appelle espace préhilbertien complexe tout couple (E, \langle, \rangle) où E est un \mathbb{C} -ev et \langle, \rangle est un produit scalaire hermitien sur E. On appelle espace hermitien tout espace préhilbertien complexe (E, \langle, \rangle) où $\dim E < +\infty$.

Exemples à connaître :

<u>Propriété</u>: Soit $n \in \mathbb{N}^*$. L'application $\langle , \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ définie par :

$$\forall x=(x_1,\ldots,x_n), y=(y_1,\ldots,y_n)\in\mathbb{C}^n, \langle x,y\rangle=\sum_{k=1}^n\overline{x_k}y_k$$

est un produit scalaire hermitien sur \mathbb{C}^n appelé produit scalaire canonique sur \mathbb{C}^n .

<u>Démonstration</u>: **★**

- Linéarité à droite : comme sur les réels
- $\overline{\varphi(y,x)} = \sum_{k=1}^{n} \overline{\overline{y_k}} \cdot \overline{x_k} = \varphi(x,y)$
- $\varphi(x,x) = \sum_{k=1}^{n} \overline{x_k} x_k = \sum_{k=1}^{n} |x_k|^2 \ge 0$
- $-\varphi(x,x)=0 \Leftrightarrow \sum_{k=1}^{n} |x_k^2| = 0 \Leftrightarrow \forall k \in [1,n], x_k^2=0 \Leftrightarrow \forall k \in [1,n], x_k=0 \Leftrightarrow x=0$

<u>Propriété</u>: Soient $n, p \in \mathbb{N}^*$. L'application $\langle , \rangle : M_{n,p}(\mathbb{C}) \times M_{n,p}(\mathbb{C}) \to \mathbb{C}$ définie par $\forall A, B \in M_{n,p}(\mathbb{C})$

$$\langle A, B \rangle = Tr \left({}^t \overline{A} B \right)$$

Est un produit scalaire hermitien sur $M_{n,p}(\mathbb{C})$, appelé canonique.

Propriété:

Soient $a, b \in \mathbb{R}$, a < b, et $E = \mathcal{C}([a, b]; \mathbb{C})$. L'application $\langle \cdot, \cdot \rangle$ définie par

$$\forall f, g \in E, \langle f, g \rangle = \int_{a}^{b} \overline{f(t)} g(t) dt$$

définit un produit scalaire sur E appelé produit scalaire canonique sur E.

3) Norme hermitienne

Soit (E, \langle, \rangle) un espace préhilbertien complexe. Pour $x \in E$, posons $||x|| = \sqrt{\langle x, x \rangle}$.

Soient $x, y \in E, \lambda \in \mathbb{C}$,

$$\|\lambda x\|^{2} = \langle \lambda x, \lambda x \rangle = \lambda \langle \lambda x, x \rangle = \overline{\lambda} \lambda \langle x, x \rangle = |\lambda|^{2} \|x\|^{2}$$
$$\|x + y\|^{2} = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, x \rangle + \langle x, y \rangle + \langle y, y \rangle = \|x\|^{2} + 2Re(\langle x, y \rangle) + \|y\|^{2}$$
$$\langle x + y, x - y \rangle = \langle x, x \rangle - \langle x, y \rangle + \langle y, x \rangle - \langle y, y \rangle = \|x\|^{2} - 2i \operatorname{Im}(\langle x, y \rangle) - \|y\|^{2}$$

Théorème: (Inégalité de Cauchy-Schwarz)

Soit (E, \langle, \rangle) un espace préhilbertien complexe. Pour tout $x \in E$, on note $||x|| = \sqrt{\langle x, x \rangle}$. Alors $\forall x, y \in E$,

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Avec égalité si la famille (x, y) est liée.

Corollaire:

Soit (E, \langle, \rangle) un espace préhilbertien complexe. L'application $\|\cdot\|: E \to \mathbb{R}_+, x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E appelée norme hermitienne sur E (aussi appelée norme associée au p.s. hermitien \langle, \rangle).

<u>Propriété</u>: Soit (E, \langle, \rangle) un espace préhilbertien complexe. On note $\|\cdot\|$ la norme hermitienne sur E associée à \langle, \rangle .

1) Identités de polarisation

$$\langle x,y\rangle = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2 + i\|ix+y\|^2 - i\|ix-y\|^2)$$

2) Identité du parallélogramme

$$\forall x, y \in E, ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

III) Matrice d'un produit scalaire

Soit E un espace <u>euclidien</u> ou <u>hermitien</u> avec dim $E = n \in \mathbb{N}^*$. Soit $B = (e_1, ..., e_n)$ une base de E.

Pour tous x (resp. y) $\in E$, $\exists ! (x_1, ... x_n) \in \mathbb{K}^n$ (resp. $(y_1, ... y_n)$) ($\mathbb{K} = \{ \mathbb{C} \text{ si } E \text{ euclidien} \}$) tel que

$$x = \sum_{k=1}^{n} x_k e_k$$
 et $y = \sum_{k=1}^{n} y_k e_k$

Alors
$$\langle x, y \rangle = \left\langle \sum_{k=1}^{n} x_k e_k, \sum_{l=1}^{n} y_l e_l \right\rangle = \sum_{l=1}^{n} y_l \left\langle \sum_{k=1}^{n} x_k e_k, e_l \right\rangle$$

$$= \sum_{l=1}^{n} y_l \left(\sum_{k=1}^{n} \overline{x_k} \langle e_k, e_l \rangle \right)$$
$$= \sum_{k=1}^{n} \sum_{l=1}^{n} \overline{x_k} y_l \langle e_k, e_l \rangle$$

Ainsi \langle , \rangle est entièrement caractérisé par la donnée des termes $\langle e_k, e_l \rangle$ pour $1 \leq k, l \leq n$

<u>Définition</u>: Soient (E, \langle, \rangle) un espace euclidien ou hermitien de dimension $n \in \mathbb{N}^*$ et $B = (e_1, ..., e_n)$ une base de E. On appelle matrice du produit scalaire \langle, \rangle dans la base B la matrice :

$$M = Mat_B(\langle,\rangle) = (\langle e_k, e_l \rangle)_{\substack{1 \le k \le n \\ 1 \le l \le n}}$$

$$= \begin{pmatrix} \langle e_1, e_1 \rangle & \langle e_1, e_2 \rangle & \dots & \langle e_1, e_n \rangle \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \langle e_n, e_1 \rangle & \dots & \dots & \langle e_n, e_n \rangle \end{pmatrix}$$

De plus, pour tous $x=\sum_{k=1}^n x_k e_k$, $y=\sum_{k=1}^n y_k e_k$, on a $\langle x,y\rangle={}^t\overline{X}MY$

Effet d'un changement de base

Soit $B' = (e'_1, ..., e'_n)$ une autre base de E. Notons $P = Pass_{B \to B'}$.

Pour $x, y \in E$, notons $X = Mat_B(x), X' = Mat_{B'}(x), Y = Mat_B(y), Y' = Mat_{B'}(y)$

$$\operatorname{Et} M = \operatorname{Mat}_{B}(\langle,\rangle), M' = \operatorname{Mat}_{B'}(\langle,\rangle)$$

$$\forall x, y \in E, X = PX', Y = PY', \text{donc } \langle x, y \rangle = {}^t (\overline{P} \cdot \overline{X}) MPY' = {}^t \overline{X'} {}^t \overline{P} MPY'$$

D'autre part, $\langle x, y \rangle = {}^t \overline{X'} M' Y'$

Ainsi on a:

$$M' = {}^{t}\overline{P}MP$$

Propriété:

Soit (E, \langle, \rangle) un espace euclidien ou hermitien de dimension n et B, B' deux bases de E. Alors

$$Mat_{R'}(\langle,\rangle) = {}^{t}\overline{P} \cdot Mat_{R}(\langle,\rangle) \cdot P$$

Où $P = Pass_{B \to B'}$