L = Pmo Anxmo Pu

Let
$$A_{mxn}$$
 $m \le n$ s.t. $A_X = b \in \mathbb{R}^m$, $b \ne 0$ has no sol, but $\frac{1}{3}$ s.t. $A_X = d \in \mathbb{R}^n$. $d \ne 0$.

of: finit, since $m \le n$, \Rightarrow van $k \le m$.

since $A_X = b$ has no sol, then $A_X = b$ has no $A_X = b$ has no van $A_X = b$ has no $A_X = b$ has no van $A_X =$

$$\begin{pmatrix}
1 & -1 & 0 & 1 \\
t & 0 & 1 & t+1 \\
1 & t-1 & 1 & t+1 \\
t & 0 & t & t
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 0 & 1 \\
t & 0 & t & t
\end{pmatrix}$$

$$\begin{pmatrix}
0 & t & 1 & 1 \\
0 & 0 & t-1 & -1
\end{pmatrix}$$

$$A \sim \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$t \neq 0, -1 \Rightarrow v = 4. \Rightarrow invertible$$

$$t = 0 \implies A \sim \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} \quad r = 3$$

$$P_{k}(F)$$

1. $dim(P_{k}(F)) = k+1$. $B \ge \{1, t, -.., t^{k}\}$

2. $W = \{p \in P_{k} : p(0) + p(1) = 0\}$ is a sub-

2. W= {p & Pk : p(0) + p(1) = 0} is a subspace.

$$3.$$
 $W = \{ p = \sum_{a_{j} \in I} t^{a_{j}} : p_{13} + p_{(1)} = 0 \}$

$$\Rightarrow \sum_{a_1, 1} = a_1 + \sum_{a_k} = 0$$

$$= \frac{1}{2} a_1 \cdot \frac{1}{2} = \frac{1}{2} a_1 \cdot \frac{1}{2} = 0$$

$$= \frac{1}{2} \int_{a_{1}}^{b_{1}} f^{2} = a_{1}(t-\frac{1}{2}) + a_{2}(t-\frac{1}{2}) + \cdots + a_{k}(t-\frac{1}{2})$$

$$\left\{ t-\frac{1}{2}, t^{2}-\frac{1}{2}, \dots, t^{k}-\frac{1}{2} \right\} \text{ span } \mathcal{W}$$

=7
$$a_0 = -\frac{1}{2} |a_1|$$

=> $\omega = \int p = a_1(t-\frac{1}{2}) + a_2(t^2 - \frac{1}{2})$

Let
$$A = (2^{\circ})$$
. Offine $T : (M_{\times}(R) \to M_{\times}(R))$
 $T(B) = AB - BA$. $B_{M_{\times}(R)} = \{(3^{\circ}), (3^{\circ}), (3^{\circ}), (3^{\circ}), (3^{\circ})\}$

$$Im T = ? \left\{ \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} -1 \\ 5 \end{array} \right) \right\}$$

1.
$$T(f_{1}) + T(f_{2}) = T(f_{1} + f_{2})$$

since $f_{1} + f_{2}|_{G_{1}, 2_{3}} = f_{1}|_{G_{1}, 2_{3}} + f_{2}|_{G_{1}, 2_{3}}$.

 $T(\alpha f_{1}) = \alpha T(f_{1})$

since $\alpha(f_{1}|_{G_{1}, 2_{3}}) = \alpha f_{1}|_{G_{1}, 2_{3}}$.

S: $C(G_{1}, 2) \rightarrow C(G_{1}, 3)$

full G_{1}
 G_{2}
 G_{3}
 G_{2}
 G_{3}
 G_{3

8.

Key ST = Ker T. Ker ST =
$$\{f: s7if\} = 0\}$$
.

= $\{f: s(f|g, y) > 0\}$

= $f' \{g', there is e$

= $\{f: f|g, y] = 0\}$.

= $\{f: f|g, y] = 0\}$.

*In S \emptyset Ker T = $\{G\}$ (obviously, from $\}$).

And we can see $\{G\}$ (obviously, from $\}$).

And we can see $\{G\}$ (obviously, from $\}$).

In S = $\{f', \{f', \{i, i\}\}\}$ $\{f', \{i, i\}\}\}$ $\{f', \{i, i\}\}\}$

Then from $\{g', \{i, i\}\}\}$ $\{g', \{i, i\}\}$ $\{g', \{g', \{i\}\}$ $\{g', \{g', \{i\}\}\}$ $\{g', \{g', \{g', \{i\}\}\}$ $\{g', \{g', \{g', \{g', \{g', \{g', \{g', \{g',$