微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: http://bbs.rfeda.cn

HFSS FULL BOOK v10 中文翻译版 568 页(原 801 页)

(分节 水印 免费 发布版)

微波仿真论坛 --组织翻译 有史以来最全最强的 2955 中文教程

感谢所有参与翻译,投对,整理的会员

版权申明: 此翻译稿版权为微波仿真论坛(bbs.rfeda.cn)所有. 分节版可以转载. 严禁转载 568 页完整版.

推荐: EDA问题集合(收藏版) 之HFSS问题收藏集合 → http://bbs.rfeda.cn/hfss.html

- Q: 分节版内容有删减吗? A: 没有, 只是把完整版分开按章节发布, 免费下载. 带水印但不影响基本阅读.
- Q: 完整版有什么优势? A:完整版会不断更新,修正,并加上心得注解.无水印.阅读更方便.
- Q: 本书结构? A: 前 200 页为使用介绍.接下来为实例(天线,器件, BMC, SI 等).最后 100 页为基础综述
- 0: 完整版在哪里下载? A: 微波仿真论坛(http://bbs.rfeda.cn/read.php?tid=5454)
- Q: 有纸质版吗? A:有.与完整版一样,喜欢纸质版的请联系站长邮寄rfeda@126.com 无特别需求请用电子版
- Q: 还有其它翻译吗? A: 有专门协助团队之翻译小组. 除 HFSS 外, 还组织了 ADS, FEKO 的翻译. 还有正在筹划中的任务!
- 0: 翻译工程量有多大? A: 论坛 40 位热心会员, 120 天初译, 60 天校对. 30 天整理成稿. 感谢他们的付出!
- Q: rfeda. cn 只讨论仿真吗?
- **A: 以仿真为主. 微波综合社区. 论坛正在高速发展. 涉及面会越来越广! 现涉及** 微波|射频|仿真|通信|电子|EMC| 天线|雷达|数值|高校|求职|招聘
- Q: rfeda. cn 特色?
- A: 以技术交流为主,注重贴子质量,严禁灌水;资料注重原创;各个版块有专门协助团队快速解决会员问题;

http://bbs.rfeda.cn --- 等待你的加入

RFEDA. cn

rf---射频(Radio Frequency)
eda---电子设计自动化(Electronic Design Automation)

微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: http://bbs.rfeda.cn

致谢名单 及 详细说明

http://bbs.rfeda.cn/read.php?tid=5454

一个论坛繁荣离不开每一位会员的奉献 多交流,力所能及帮助他人,少灌水,其实一点也不难

打造国内最优秀的微波综合社区

还等什么?加入 RFEDA. CN 微波社区

我们一直在努力

微波仿真论坛

bbs.rfeda.cn

RFEDA. cn

rf---射频(Radio Frequency)
eda---电子设计自动化(Electronic Design Automation)

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

第四节 回路

这个例子教你如何在 HFSS 设计环境下创建、仿真、分析回路。

在HFSS设计平台中,可以用回路(Return Path)来观察边界/激励(Boundary/Excitations)

F 8.4.1

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

一. 开始

- 一) 启动HFSS
 - 1. 运行 Ansoft HFSS, 点击桌面上的开始按钮,选择所有程序,找到 *Ansoft > HFSS 10* 程序组,点击 HFSS 10。
- 二)设置工具选项(Setting Tool Options)

注意: 按本例仿真之前,请核实以下工具栏选项已设置好:

- 1. 选择菜单条目 Tools > Options > HFSS Options
- 2. HFSS Options 窗口:

 - 2). 点击 **OK** 按钮
- 3. 选择菜单条目 Tools > Options > 3D Modeler Options
- 4. 3D模型选项窗口:
 - 1). 点击操作Operation_{图标}
 选中 Automatically cover closed polylines: ☑

 - 3). 点击 **OK**按钮
- 三) 新建项目 (Opening a New Project)
 - 1. 在 Ansoft HFSS 家人中,点击标准工具栏中的□图标,或者选择菜单条目 文件>新建 *File > New*。
 - 2. 在工程 Project 菜单中,选择插入 HFSS 设计 Insert HFSS Design。

F 8.4.2

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

四) 设置求解类型 (Set Solution Type)

- 选择菜单条目 HFSS > Solution Type
- 求解类型窗口:
 - 1).选择端口驱动 Driven Terminal
 - 2).点击 OK 按钮

F 8.4.3

构造3D模型

- 设置模型单位(Set Model Units)
 - 1. 选择菜单条目 3D Modeler>Units
 - 2).设置模型单位: mn
 - 3).点击**OK**按钮

默认材料(Set Default Material)

- 3D模型材料工具栏,选择 Select
 - Select Definition 窗口:
 - 1).Search by Name表格处键入PEC
 - 2).点击**OK**按钮

F 8.4.5

微波仿真论坛 组织翻译

第 429 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

三)构造导线(Create Conductor) 构造导线线条:

- 1. 选择菜单条目 Draw > Line
- 2. 使用**coordinate entry fields fields**,输入坐标点:
 - X: -5.0, Y: -0.24 2: 0.1, 按Enter
- 3. 使用coordinate entry fields ,输入坐标点:
 - X: -1.0, Y 0.24, Z: 0.1, 按Enter
- 4. 使用coordinate entry fields ,输入坐标点: X(1,10, Y: -0.24, Z: 1.1,按Enter
- 5. 使用coordinate entry fields ,输入坐标点:
 - X: 0.0, Y: -0.24, Z: 1.1, 按Enter
- 6./ 使用鼠标右键并选择 Done

F 8.4.7

设置栅格平面grid plane

1. 选择菜单条目 3D Modeler > Grid Plane > YZ

构造导线轮廓conductor profile

- 1. 选择菜单条目 *Draw > Rectangle*
- 2. 使用coordinate entry fields ,输入坐标点:

微波仿真论坛 组织翻译

第 430 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

X: -5.0, Y: -0.3, Z: 0.1, 接Enter

使用coordinate entry fields ,输入矩形对角的坐标: d X: 0.0, d Y: 0.12, d Z: 0.02, 按Enter

设置名称

- 1. 在Properties窗口中选择属性Attribute
- 2. 命名为: **Cond**
- 3. 点击**OK**按钮

构造导线

- 1. 选择菜单条目 Edit > Select All Visible, 或者按 CTRL+A
- 2. 选择菜单条目 Draw > Sweep > Along Path
- 3. 沿路径扫描(Sweep along path)对话框出现时点击OK按钮

调整视角view

F 8.4.8

- 1. 选择菜单条目 View > Fit All > Active View, 或者按 CTRL+D
- 四)复制导线(Duplicate Conductor)。

选择对象:

1. 选择菜单条目 Ædit > Select All Visible

复制导线:

- 1. 选择菜单条目 沿导线 Edit > Duplicate > Along Line. 1).第一个点: X: 0.0, Y: 0.0, Z: 0.0, 按Enter 2).第二个点: d X: 0.0,d Y: 0.24, d Z: 0.0,按Enter 3).总数: 3
 - 4).点击**OK**按钮
- 五) 景线镜像(Mirror Conductor)

复制现有导线:

- 选择菜单条目 Edit > Select All Visible., 或者按 CTRL+A
- 选择菜单条目 Edit > Duplicate > Mirror
 - 1).输入对称镜面的定位点:

X: 0.0, Y: 0.0, Z: 0.0, 按Enter

2).输入法线方向下指向镜面的目标点:

d X: 1.0, d Y: 0.0, d Z: 0.0, 按Enter

- 六) 导线组(Group Conductors) 设置导线组:
 - 1. 选择菜单条目 Edit > Select All Visible.

微波仿真论坛 组织翻译

第 431 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

2. 选择菜单条目 *3D Modeler > Boolean > Unite*

F 8.4.9

七) 构造地面 (Create Ground)

构造地面:

- 1. 选择菜单条目 *Draw > Box*
- 2. 使用 coordinate entry fields ,输入坐标点: X: -5.0, Y: -1.0, Z: 0.0,按**Enter**
- 3. 使用 coordinate entry fields ,输入矩形对角的坚标点: d X: 4.0, d Y: 2.0, d Z: -0.02,按Enter.

设置名称:

- 1. 在Properties窗口中选择Attribute
- 2. 命名为: **GND**
- 3. 点击**OK**按钮

调整视角

- 1. 选择菜单条目 View > Fit All > Active View.
- 八) 地面镜像 (Mirror Ground)

选择GND

- 1. 选择菜单条 Edit > Select > By Name
- 2. 选择**Object Dialog**,
 - 1). **译**名字: **GND**
 - 2).点击OK按钮

复制地面

选择菜单条目 Edit > Duplicate > Mirror.

1).输入对称镜面的定位点:

X: 0.0, Y: 0.0, Z: 0.0, 按Enter

2).输入法线方向下指向镜面的目标点:

d X: 1.0, d Y: 0.0, d Z: 0.0, 按Enter

XX./Ybos.t.f.edta.cn

微波仿真论坛 组织翻译

第 432 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 九)设置栅格平面(Set Grid Plane) 设置栅格平面:
- 十) 构造源(Create Source)

构造源:

- 1. 选择菜单条目 *Draw > Rectangle*2. 使用 coordinate entry fields
 X: -5.0, Y: -0 ^
 3. 使甲 ^
- 3. 使用 coordinate entry fields ,输入矩形对角的坐标点: d X: 0.0, d Y: 0.12 d Z: -0.1, 按Enter

设置名称:

- 1. 在Properties窗口中选择Attribute
- 2. 命名为: Source
- 3. 点击**OK按钮**

调整视角

1. 选择菜单条目 *View>Fit All>Active View*

所然於即根據鄉

微波仿真论坛 组织翻译 第 433 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

F 8.4.11

十一) 指派激励 (Assign Excitation)

选择Source:

- 1. 选择菜单条目 Edit > Select > By Name
- 2. 选择**Object Dialog**,
 - 1).选择名字: Source
 - 2).点击**OK**按钮 🚫

注意: 在 Model Tree 也可以选择对象

分配激励给所选对象: 人

- 1. 选择菜单类 HFSS > Excitations > Assign > Lumped Port
- 2. Normal
 - 1). Name: P1
 - 2). Resistance: 50
 - 3). Reactance: 0
 - 4). 点击Next按钮

3. **Terminals**

- 1). Number of Terminals: 1
- 2). 点击Undefined并选择New Line
- 3). 使用coordinate entry fields,输入坐标点:
 - ▲ X: 5.0, Y: 0.0, Z: 0.0, 按Enter
- 4). 使用coordinate entry fields,输入坐标点:
 - ▲ d X: 0.0, d Y: 0.0, d Z: 0.1, 按Enter
- 5). 点击**Next**按钮
- 6). 点击Finish按钮

所有的

微波仿真论坛 组织翻译

第 434 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

十二) 构造源2 (Create Source2)

选择Source

复制Source

X: 0.0, Y: 0.0, Z: 0.0, 按Enter

2). 输入法线方面产指向镜面的目标点

d X: 0, d Y: 0.0, d Z: 0.0, 按 Enter

十三) 构造源3 (Create Source3)

选择Source

- 1. 选择菜单条目 Edit > Select > By Name
- 选择Object Dialog,
 - 1). 选择名字: Source 1
 - 2). 点击**OK**按钮

复制Source

- 选择菜单条目 Edit > Duplicate > Mirror.
 - 1). 输入对称镜面的定位点:

X: 0.0, Y: 0.12, Z: 0.0, 按Enter

2). 输入法线方向下指向镜面的目标点:

d X: 0.0, d Y: 1.0, d Z: 0.0, 按 Enter

十四) 增加新材料 (Add New Material)

选择 Source

- 1. 使用3D模型材料工具栏,选择 Select
- 在Select Definition窗口中选择Add Material按钮
- View/Edit Material窗口: 3.

微波仿真论坛 组织翻译

第 435 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 1). material Name: My_FR4
- 2). Relative Permittivity: 4.4
- 3). 点击**OK**按钮
- 4. 点击**OK**按钮

F 8.4.13

五) 设置栅格平面(Set Grid Plane) 设置栅格平面:

- 1. 选择菜单条目 3D Modeler>Grid Plane>XY
- 十六) 构造衬底(Create Substrate) 构造衬底:
 - 1. 选择菜单条目 *Draw>Box*
 - 2. 使用 coordinate entry fields ,输入坐标点: X: -5.0, Y: -1.0, Z: 0.0,按**Enter**
 - 3. 使用 coordinate entry fields ,输入矩形对角的坐标点: d X: 4.0, d Y: 2.0, d Z: 0.1,按Enter

微波仿真论坛 组织翻译

第 436 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

设置名称:

- 1. 在Properties窗口中选择Attribute
- 2. 命名为: Substrate

设置透明度:

- 1. 在Properties窗口中选择Attribute
- 2. 点击Transparency按钮
 - With attp://bbs.treeda.cm 1). 移动游标至**0.8**(Opaque=0,Transparency=1)
 - 2). 点击Transparency按钮
 - 3). 点击**OK**按钮
- 3. 点击**OK**按钮
- 十七) 衬底镜像 (Mirror Substrate)

选择Substrate

- 1. 选择菜单条目 *Edit>Select>By Name*
- 2. 选择Object Dialog,
 - 1). 选择名字: Substrate
 - 2). 点击**OK**按钮

复制衬底

- 1. 选择菜单条目 *Edit>Duplicate>Mirror*
 - 1). 输入对称镜面的定位点:

X: 0.0, Y: 0.0, Z: 0.0, 按Enter

2). 输入法线方向下指向镜面的具标点:

d X: 1.0, d Y: 0.0, d Z: 0.0, 接Enter

设置默认材料 (Set Default Material) 十八)

复制衬底

使用3D模型材料工具栏,选择 vacuum

F 8.4.15

十九) 构造空气(Create air)

构造空气:

- 1. 选择菜单条目 *Draw>Box*
- 2. 使用 coordinate entry fields ,输入坐标点:

X: -5.2, Y: -2.0, Z: -0.2, 按Enter

3. 使用 coordinate entry fields ,输入矩形对角的坐标点: d X: 10.4, d Y: 4.0, d Z: 2..0, 按Enter

微波仿真论坛 组织翻译

第 437 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

设置名称:

- 1. 在Properties窗口中选择Attribute
- 2. 命名为: **Air**
- 3. 点击**OK**按钮

调整视角

1. 选择菜单条目 View>Fit All>Active View

设置辐射 (Assign Radiation) 二十)

选择Air:

- 1. 选择菜单条目 *Edit>Select>By Name*
- 选择Object Dialog,
 - 1). 选择名字: Air
 - 2). 点击**OK**按钮

设置辐射边界:

- 1. 选择菜单条目 *HFSS>Boundaries>Assign*>Radiation
- 2. 点击**OK**按钮

二十一)显示边界(Boundary Display)

校验边界设置:

- 1. 选择菜单条目 HFSS > Boundary Display (Solver View)
- 在 Solver View of Boundaries 窗口中设置各种边界的可见性

注意:导体的边界显示为smetal边界

注意:选择菜单条目 View > Visibility 来隐藏几何模型,以更好的观察边界

3. 完成设置后点击Close按钮

微波仿真论坛 组织翻译

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

Name	Туре	Solver Visibility	Visibility	Color
Rad1	User Defined	Visible to solver.		
p1	User Defined	Visible to solver.		
p2	User Defined	Visible to solver.		
р3	User Defined	Visible to solver.		
outer	Default	Overridden by other boundaries. Invi		
smetal	Default	Visible to solver.		

F 8.4.18

求解设置

- 设置求解器 (Create Analysis Setup)
 - 1. 选择菜单条目 HFSS>Analysis Setup Add Solution Setup
 - 2. Solution Setup 窗口:
 - 1). 点击 General 图标 👏

Solution Frequency: 15.1GHz Maximum Number Of Passes: 20

Maximum Delta S: 0.03

2). 点击 Options 图标

选中 Do Lambda Refinement

Target: 0.05

选中 User Low-Order Solution Basis

点击 OK 按钮

增加频率扫描 (Adding a Frequency Sweep)

选择菜单条目 HFSS>Analysis Setup>Add Sweep

- 1). 选择 Solution Setup: Setup1
- 2). 点击 **OK** 按钮
- 2. 编辑 Sweep 窗口:
 - 1). Sweep Type: Fast
 - 2). Frequency Setup Type: Linear Count

Start: 0.1GHz Stop: 15.1GHz Count: 301 选中 Save Fields

3). 点击 **OK** 按钮

微波仿真论坛 组织翻译

第 439 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

四. 保存项目

- 保存项目:
 - 1. 选择菜单条目 File > Save As.
 - 2. 在Save As窗口中输入文件名: hfss returnpath
 - 3. 点击 **Save** 按钮

五. 求解

- 验认模型(Model Validation)
 - 1. 选择菜单条目 HFSS > Validation Check
 - 2. 点击 close 按钮

二) 求解 (Analyze) 启动求解进程:

1. .选择菜单条目 HFSS > Analyze All

三) 数据记录 (Solution Data)

观察数据记录:

1. 选择菜单条件: HFSS>Results>Solution Data

滅察 Profile:

1). 点击 Profile 图标

观察 Convergence:

1). 点击 Convergence 图标

注意:系统默认以表格形式观察,可以点击单选按钮 Plot 来观察 图像表示

观察 Matrix Data:

1). 点击 Matrix 图标

注意:可以设置 Setup1 为 Last adaptive 来实时观察数据矩阵

2. 点击 **Close** 按钮

微波仿真论坛 组织翻译

第 440 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

六. 生成报表

- 一) 构造对自适应级的端口S参数图(Create Terminal S-Parameter Plot vs. Adaptive Pass) 注意: 如果这个报告优先,求解进程将会显示实时结果 构造报告:
 - 1. 选择菜户简: HFSS>Results>Create Report
 - 2. 构造 **Peport** 窗口:
 - 1). Report Type: **Terminal S Parameter**
 - 2). Display Type: Rectangular
 - 3). 点击 **OK** 按钮

Traces 窗口:

- 1). 求解: Setup1: Adaptive1
- 2). 点击 Y 图标
 - A) Category: **Terminal S Parameter**
 - B) Quantity: St (P1, P1), St (P1, P2), St (P1, P3)
 - C) Function: dB
 - D) 点击 Add Trace 按钮
- 3). 点击 **Done** 按钮

微波仿真论坛 组织翻译

第 441 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 二)构造对频率的终端S参数图(Create Termina)—Parameter Plot vs. Frequency)构造报告:
 - 1. 选择菜单条目: HFSS>Results>Create Report
 - 2. 构造 Report 窗口:
 - 1). Report Type: Terminal S Parameter
 - 2). Display Type: Rectangular
 - 3). 点**X OK** 按钮
 - 3. Traces
 - 求解: Setup1: Sweep1
 - 2). Domain: Sweep
 - 3). 点击 **Y**图标
 - A) Category: **Terminal S Parameter**
 - B) Quantity: St (P1, P1), St (P1, P2), St (P1, P3)
 - C) Function: dB
 - D) 点击 Add Trace 按钮
 - 4). 点击 **Done** 按钮

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

2.50 5.00 i

微波仿真论坛 组织翻译 第 443 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

七. 回路-增加直流回路 (Return Path-Add an DC Return Path)

通过在两地之间增加直流回路来继续我们的研究,直流回路有更小的电阻。

一)复制设计(Copy The Design) 复制整个设计:

1. 使用项目管理器

in attached HFSSModel1并选择Copy

2. 使用项目管理器

1). 右键点击 hfss_returnpath 并选择Paste

2. 所以下的根据的

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- F 8. 4. 24
- 二) 打开3D模型编辑器 (Open 3D Model Editor) 打开 3D 模型编辑器:
 - 1. 使用项目管理器
 - 1). 右键点击 HFSSModel2 并选择 3D Model Editor
- 三) 设置默认材料 (Set Default Material) 设置默认材料:
 - 1. 选择 3D 模型材料工具,选择 PEC
- 四)构造直流回路(Create DC Path)

构造直流回路:

- 1. 选择菜单条 Draw>Box
- 2. 使用 **coordinate entry fields** ,输入坐标点:

∠X: -1.0, Y: 1.0, Z:0.0,按Enter

3. 使用 coordinate entry fields ,输入矩形对角的坐标点:

d X: 2.0, d Y: -0.12, d Z: 0.02, 按Enter

设置名称

- 1. 在Properties窗口中选择Attribute
- 2. 命名为: DCPath
- 3. 点击**OK**按钮

调整视角

1. 选择菜单条目 *View>Fit All>Active View*

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 五) 保存项目 (Save project) 选择菜单条目 File>Save
- 六) 求解 (Analyze)
- 验认模型(Model Validation) 七) 选择菜单条目 HFSS>Validation Check
 - 1. 点击**Close** 按钮

微波仿真论坛 组织翻译 第 446 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

微波仿真论坛 组织翻译 第 447 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

八. 回路-增加射频回路(Return Path-Add an RF Return Path)

通过在两地之间增加射频回路来继续我们的研究,射频回路有更小的自感应。

- 一) 复制设计(Copy The Design) 复制整个设计:
 - 1. 使用项目管理器
 - 使用项目管理器
 - 1. 右键点击 hfss_returnpath 并选择Paste

F 8. 4. 28

- 二) 打开3D模型编辑器 (Open 3D Model Editor) 打开 3D 模型编辑器:
 - 1. 使用项目管理器
 - 1). 右键点击 HFSSModel3并选择 3D Model Editor

微波仿真论坛 组织翻译

第 448 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

- 设置默认材料 (Set Default Material) 三) 设置默认材料:
 - 1. 选择 3D 模型材料工具栏,选择 PEC
- 四)构造射频回路(Create RF Path) 构造射频回路:
 - 1. 选择菜单条目 Draw > Line
 - 2. 使用coordinate entry fields ,输入坐标点: X: -1.0, Y: 0.0, Z: 0.0, 按Enter
 - 使用coordinate entry fields ,输入坐标点: X: -0.972, Y:0.0, Z: 0.0, 按Enter
 - 使用coordinate entry fields , 输入坐标点: X: -0.972, Y: 0.0, Z: 1.072, 按Enter
 - 使用coordinate entry fields , 输入坐标点: X: 0.0, Y: 0.0, Z: 1.072, 按Enter
 - 6. 使用鼠标右键并选择 Done
 - 7. Properties对话框出现时点击OK按钮

设置栅格平面

Mith. Mbs. rfeda.cm 1. 选择菜单条目 3D Modeler > Grid Plane > YZ

构造导线轮廓

- 1. 选择菜单条目 **Draw > Rectangle**:
- X: -1.0, Y: -0.06, Z: 0.0, 按Enter
- 使用coordinate entry fields ,输入矩形对角的坐标: d X: 0.0, d Y: 0.12, d Z: -0.02, 按Enter

设置名称

- 1. 在Properties窗户选择Attribute
- 2. 命名为: RFpath
- 3. 点击**OK**按钮

构造射频回路

- 1. 选择菜单条目 Edit > Select > By Name
- 选择 Object 对话框
 - 1). 选择名字: polyline2,RFPath
 - 2). 点击**OK**按钮
- 选择菜单条目 Draw > Sweep > Along Path
- Sweep along path对话框出现时点击OK按钮

线镜像(Mirror Conductor)

复制导线:

- 1. 选择菜单条目 Edit > Select > By Name
- 2. 选择 Object 对话框
 - 1). 选择名字: RFPath
 - 2). 点击 **OK** 按钮
- 3. 选择菜单条目 Edit > Duplicate > Mirror.
 - 1). 输入对称镜面的定位点

X: 0.0, Y: 0.0, Z: 0.0, 按Enter

微波仿真论坛 组织翻译

第 449 页

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

2). 输入法线方向下指向镜面的目标点

d X: 1.0, d Y: 0.0, d Z: 0.0, 按 Enter

- 六) 导线组(Group Conductors) 设置导线组:
 - 1. 选择菜单条目 Edit > Select > By Name
 - 2. 选择 Object 对话框
 - 1). 选择名字: RFPath, RFPath_1
 - 2). 点击 **OK** 按钮
 - 3. 选择菜单条目 3D Modeler > Boolean > Unite

- 七) 保存项目 (Save project)
 - 1. 选择菜单条目 *File>Save*
- 八) 确认模型 (Model Validation)
 - 1. 选择菜单条目 *HFSS>Validation Check*
 - 2. 点击 **Close** 按钮
- 九) 求解 (Analyze)

启动求解进程:

- 1. 选择菜单条目 **HFSS>Analyze All**
- 十) 打开所有现有报告(Open All Existing Report)
 - 1. 选择蒸算系目 Results>Open All Results

九. 退出程序(Exiting HFSS)

微波仿真论坛 组织翻译

第 450 页

原创: 微波仿真论坛(http://bbs.rfeda.cn) 协助团队 HFSS 小组 --- RFEDA.cn 拥有版权

RFEDA 微波社区 --- 专业微波通信射频仿真论坛 --- 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 欢迎您 第八章 信号完整性分析实例

退出程序:

- 1. 选择菜单条目 File > Exit
 - 1). 提示是否保存改动

White the state of the state of

微波仿真论坛 组织翻译

第 451 页

完整版 目录

版权申明: 此翻译稿版权为微波仿真论坛(<u>bbs.rfeda.cn</u>)所有. 分节版可以转载. <u>严禁转载 568 页完整版</u> 如需<mark>纸质</mark>完整版(586 页),请联系 <u>rfeda@126.com</u> 邮购

由 ● hfss_full_book中文版.pdf **自 002-009 内容简介** 3 绪论 № 022-051 创建参数模型 📔 第一章 Ansoft HFSS参数化建模 - 1 052-061 边界条件 □ 062-077 激励 - 第二章 Ansoft HFSS求解设置 - 1 078-099 求解设置 - 第三章 Ansoft HFSS数据处理 **100-125 数据处理** 📄 第四章 Ansoft HFSS求解及网格设定 **126-137 求解循环** - 137-155 网格 第五章 天线实例 - 160-181 超高频探针天线 · 182-199 圆波导管喇叭天线 200-219 同轴探针微带贴片天线 220-237 缝隙耦合贴片天线 **238-259 吸收率** - 🕒 260-281 共面波导(CPW)馈电蝶形天线 - 1 282-303 端射波导天线阵 ■ 第六章 微波实例 · 🕒 306-319 魔T 320-347 同轴连接器 📭 348-365 环形电桥 366-389 同轴短线谐振器 - 390-413 微波端口 - 14-435 介质谐振器 ■ 第七章 滤波器实例 - [3 438-457 帯通滤波器 - 1 458-483 微带带阻滤波器 🕒 第八章 信号完整性分析实例 - 🕒 526-567 分段回路 - 🕒 568-593 非理想接地面 **1** 594-623 回路 📄 第九章 电磁兼容/电磁干扰实例 - 624-643 散热片 - 644-665 屏蔽体 ■ 第十章 On-chip无源实例

B 致 谢.pdf