REPLACED BY FF 54015

REPLACED BY FF 54015

We claim:

20

25

30

5 1. A process for preparing phenyl iso(thio)cyanates of the formula I

10
$$W=C=N-Ar$$

$$\downarrow N SO_2-A$$

$$\downarrow N SO_2-A$$

$$\downarrow N SO_2-A$$

where the variables are as defined below:

W is oxygen or sulfur,

Ar is phenyl which may be mono- or polysubstituted by the following groups: hydrogen, halogen, C_1-C_4 -haloalkyl or cyano,

A is a radical derived from a primary or secondary amine or is NH_2 ,

which comprises reacting a compound of the formula II

$$H_2N \longrightarrow Ar \longrightarrow N \longrightarrow SO_2 \longrightarrow A$$
 (II)

where the variables Ar and A are as defined above or its HCl adduct with phosgene, thiophosgene or diphosgene.

- 35 2. A process as claimed in claim 1, wherein the HCl adduct of the compound II is used.
- 3. A process as claimed in claim 1 or 2, wherein from 0.9 to 2

 molar equivalents of phosgene, thiophosgene or diphosgene are used, based on the compound II.
- A process as claimed in any of the preceding claims, wherein the reaction of the hydrogen chloride adduct of the compound
 II is carried out in the presence of activated carbon.

AE 20020603 Von/135/sf October 28, 2002

5. A process as claimed in any of the preceding claims, wherein a compound of the formula IIA

where

15

35

40

 R^a , R^b , R^c and R^d independently of one another are hydrogen, halogen, $C_1\text{-}C_4\text{-haloalkyl}$ or cyano, and

A is as defined above

or its HCl adduct is reacted with phosgene, thiophosgene or diphosgene, giving a compound of the formula IA

where the variables R^a , R^b , R^c , R^d , A and W are as defined above.

6. A process as claimed in any of the preceding claims, wherein the radical A in formula I is $-NR^1R^2$,

where the variables R^1 and R^2 are as defined below:

R¹ and R² independently of one another represent hydrogen,

C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl or C₂-C₁₀-alkynyl which may be
unsubstituted or substituted by one of the following
radicals: C₁-C₄-alkoxy, C₁-C₄-alkylthio, CN, NO₂, formyl,

C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl,

C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl,

C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl,

5

10

15

20

25

30

 C_3-C_{10} -cycloalkyl, 3- to 8-membered heterocyclyl having one, two or three heteroatoms selected from the group consisting of 0, S, N and a group NR⁶ (where R⁶ is hydrogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl or C_3-C_6 -alkynyl), phenyl, which for its part may have 1, 2, 3 or 4 substituents selected from the group consisting of halogen, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -fluoroalkyl, C_1-C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, C_1-C_3 -alkylamino, C_1-C_3 -dialkylamino, formyl, nitro and cyano,

 C_1 - C_{10} -haloalkyl, C_2 - C_{10} -haloalkenyl, C_2 - C_{10} -haloalkynyl, C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl having one to three heteroatoms selected from the group consisting of O, S, N and a group NR⁶ (where R⁶ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl), phenyl or naphthyl, where C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl, phenyl and naphthyl may for their part have 1, 2, 3 or 4 substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -fluoroalkyl, C_1 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C_1 - C_3 -alkylamino, C_1 - C_3 -dialkylamino, phenoxy, nitro and cyano, or

 R^1 and R^2 together form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which for its part may be substituted by C_1-C_4 -alkyl, C_1-C_4 -alkoxy and/or C_1-C_4 -haloalkyl and may have one or two carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from the group consisting of O, S, N and a group NR^6 (where R^6 is as defined above) as ring members.

35 7. A process as claimed in claim 1, wherein the process additionally comprises the following steps:

i) reaction of an aroyl compound of the formula III

40

$$O_2N - Ar \xrightarrow{O}_X$$
 (III)

45

in which the variable Ar is as defined above and X is halogen, OH or C_1-C_4 -alkoxy with a sulfamic acid amide of the formula IV

 $H_2N-SO_2-A \qquad (IV),$

where A is as defined above and

ii) reduction of the N-aroylsulfamic acid amide, obtained in step i), of the formula V

15
$$O_2N - Ar \longrightarrow N - SO_2 - A$$
 (V)

where Ar and A are as defined above, giving a compound of the formula II.

- 8. A process as claimed in claim 7, wherein in step (ii) the reduction is carried out in the presence of iron and at least one C_1-C_4 -carboxylic acid.
- A process as claimed in claim 7, wherein in step (ii) the reduction is carried out in the presence of Raney nickel and hydrogen.
 - 10. A phenyl iso(thio) cyanate of the formula I as defined in claim 1.
- 35 11. A phenyl iso(thio)cyanate of the formula IA as defined in claim 5, wherein R^a is fluorine, chlorine or cyano, R^c is hydrogen, fluorine or chlorine and R^b and R^d are each hydrogen.
- 12. A phenyl iso(thio)cyanate of the formula IA as defined in claim 5, wherein A is a radical of the formula NR^1R^2 where R^1 and R^2 are as defined in claim 6.
- 45 13. A phenyl iso(thio)cyanate of the formula IA as claimed in claim 12, wherein R^1 and R^2 independently of one another are hydrogen, C_1 - C_6 -alkyl which is optionally substituted by a

5

10

15

20

30

40

substituent selected from the group consisting of halogen, cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkylthio, C_3 - C_8 -cycloalkyl, furyl, thienyl, 1,3-dioxolanyl, phenyl which for its part is optionally substituted by halogen or C_1 - C_4 -alkoxy,

 C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_8 -cycloalkyl or phenyl which is optionally substituted by 1 or 2 substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -fluoroalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, nitro and C_1 - C_3 -dialkylamino, naphthyl or pyridyl or

 R^1 and R^2 together form a five-, six- or seven-membered saturated or unsaturated nitrogen heterocycle which may optionally contain a further heteroatom selected from the group consisting of N, a group NR^6 (where R^6 is as defined above) and O as ring member and/or which may be substituted by one, two or three substituents selected from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl.

14. A process for preparing compounds of the formula VI

where W, Ar and A are as defined in claim 1, W' is O or S and R^3 and R^4 independently of one another are hydrogen, cyano, amino, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl,

 $\label{eq:c3-C7-cycloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C3-C6-alkynyl, benzyl, OR^5 (where R^5 is hydrogen, C1-C6-alkyl, C1-C6-haloalkyl, C3-C7-cycloalkyl, C2-C6-alkenyl, C3-C6-alkynyl, unsubstituted or substituted phenyl or$

unsubstituted or substituted benzyl), C_1 - C_3 -cyanoalkyl, or R^3 and R^4 together with the nitrogen atoms to which they are attached form a four- to seven-membered heterocycle which is optionally interrupted by sulfur, oxygen, a group NR^6 (where R^6 is as defined above) or nitrogen and which is unsubstituted or mono- or polysubstituted by halogen or

unsubstituted or mono- or polysubstituted by halogen or $C_1-C_4-alkyl$,

5

10

15

which comprises

(i) reacting a compound of the formula I as defined in claim 1 with an oxadiazinecarboxylic acid ester of the formula VII

 \mathbb{R}^3 $\mathbb{C}(\mathbb{W}') \cap \mathbb{R}'$ \mathbb{R}^4 \mathbb{R}^4 \mathbb{R}^4 $\mathbb{C}(\mathbb{W}') \cap \mathbb{R}'$ $\mathbb{C}(\mathbb{W}') \cap \mathbb{R}'$ $\mathbb{C}(\mathbb{W}') \cap \mathbb{R}'$

where W' is as defined above and R' is C_1-C_4 -alkyl, giving a urea derivative of the formula VIII

where the variables R^3 , R^4 , R', W, W', Ar and A are as defined above and

(ii) cyclizing the resulting intermediate VIII, giving a compound of the formula VI.

15. A process as claimed in claim 14, wherein the compound of the formula I used in step (i) is a compound of the formula IA

where the variables Ra, Rb, Rc, Rd, A and W are as defined above.

16. A process as claimed in claim 14, wherein the compound VII used in step (i) is a compound of the formula VII'

5

(VII')

- where W' is O or S and R' is C_1-C_4 -alkyl.
 - 17. An aminobenzoylsulfamic acid amide of the formula II as defined in claim 1.
- 18. A nitrobenzoylsulfamic acid amide of the formula V as defined in claim 7.

20

25

30

35

40

45