GuangZhou U-tek Microelectronics Technology Co., Ltd.

数据手册 DATASHEET V1.2

UTouch_01B

广州优硕 单键触摸 IC

GuangZhou U-tek Microelectronics Technology Co., Ltd.

一、概述

UTouch01B 是一款单通道单按键电容式触摸及接近感应开关 IC, 其用途是替代传统的机械型开关。

该 IC 采用 CMOS 工艺制造,结构简单,性能稳定。该 IC 通过引脚可配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品。

二、特点

- 1、工作电压: 2.0V~5.5V
- 2、最高功耗 11.5uA, 低功耗模式仅 1.5uA(均指在 3V 且无负载)
- 3、外部配置引脚设置为多种模式
- 4、高可靠性,芯片内置去抖动电路,可有效防止外部噪声干扰而导致的误动作
- 5、可用于玻璃、陶瓷、塑料等介质表面

三、应用范围:

- 1、家用电器
- 2、安防产品
- 3、数码产品
- 4、消费类电子产品
- 5、LED 照明
- 6、玩具

四、封装示意图

UTouch01B采用S0T23-6封装,封装示意图如下所示

图 1 封装示意图

五、引脚描述

表 1 引脚功能描述

引脚编号	引脚名称	引脚功能
1	OUT	CMOS 输出
2	GND	负电源
3	TCH	TOUCH PAD 输入
4	AHLB	输出高/低有效模式选择
5	VCC	VDD 正电源
6	TOG	保持/同步模式选择

GuangZhou U-tek Microelectronics Technology Co., Ltd.

六、功能描述

UTouch01B 可通过外部配置引脚设置为多种模式。外部配置引脚悬空时,配置位自动设置为默认值(Default)。

W 2 Shellett					
引脚名称	选项	功能描述			
TOG	=1	保持模式			
106	=0(Default)	同步模式			
AHLB	=1	输出低电平有效			
	=0(Default)	输出高电平有效			

表 2 功能描述表

6.1 保持/同步模式(TOG)

当 PIN 脚 TOG 悬空时,默认下拉为低电平,置为同步模式。

设置 TOG =0,则选择同步模式,此时 PIN 脚 OUT 的状态与触摸响应同步;只有检测到触摸时有输出响应;当触摸消失时,OUT 的状态恢复为初始状态,如下图所示。

图 2 同步模式示意图

设置 TOG =1,则选择保持模式,此时 PIN 脚 OUT 的状态受在触摸响应控制下保持,当触摸 消失后仍保持为响应状态;再次触摸并响应后恢复为初始状态,如下图所示。

图 3 异步模式示意图

注: Td1 为 TOUCH 响应延迟时间, Td2 为 TOUCH 撤销延迟。

6.2 输出模式选择 (AHLB、OUT)

UTouch01B 可设置多种输出模式,当 PIN 脚(AHLB)悬空时,默认下拉为低电平,置为高电平有效模式。

後		
AHLB	OUT	
0	触摸响应后输出高电平	
1	触摸响应后输出低电平	

表 3 输出模式菜单

6. 2. 1

因环境等其他因素碰撞而引起的误触发,会使其一直工作,为了防止此现象发生,UTouch01B 提供了有效键最长时间输出功能,当触摸时间超过所设定时间时(**连续按着触点 75 秒**),系 统会返回上电初始化状态,停止输出直到下次触摸事件发生。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

七、绝对最大值

表 4 工作条件规格表

项目	符号	范围	单位
工作电压	VCC	-0.3 [~] 6.0	V
输入电压	Vi	GND-0.3~VCC+0.3	V
工作温度	TOPR	-40~85	$^{\circ}$
储藏温度	TSTG	-65 [~] 150	$^{\circ}$ C
流过 VDD 最大电流	IVDDmax	50	mA
流过 GND 最大电流	IGNDmax	50	mA
所列电压均以 GND 为参考			

八、电气参数

表 5 电气参数表

参数	符号	条件	最小值	典型值	最大值	单位
工作电压	VCC	T0PR=-20~70°C	2.0	3.0	5. 5	V
工作电流	$\mathrm{I}_{ ext{ iny DD}}$	10PR20 70 C	1.5	10.0	15. 0	uA
输入 PIN 上拉电阻	R_{UP}		50	80	160	kΩ
高电平输出电流(OUT)	${ m I}_{ m OL}$	$V_{DD}=5V$	3	6	_	mA
		$V_{DD}=3V$	1.5	3. 5	_	mA
若无特别说明, VDD 为 3. 0V, 环境温度为 25℃, 芯片输出无负载						

九、应用电路图

9.1 参考电路

图 4 参考电路图

以下说明可供应用时参考:

- 1、ADJ1 指调节灵敏度的电容, 电容值大小 0pF~75pF。
- 2、VDD 与 GND 间需并联滤波电容 C1 以消除噪声,建议值 10uF 或更大。供电电源必须稳定,如果电源 电压漂移或者快速变化,可能引起灵敏度漂移或者检测错误。
- 3、TOUCH PAD 的形状与面积、以及与 TCH 引脚间导线长度,均会对触摸感应灵敏度产生影响。
- 4、从 TOUCH PAD 到 IC 管脚 TCH 不要与其他快速跳变的信号线并行或者与其他线交叉。 TOUCH PAD 需用 GROUND 保护,请参考图 5。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

图 5 TOUCH PAD 参考画法

5、以上功能选项脚若选择默认值,建议接到固定电平,如需选择输出同步模式,TOG 脚建议接到 GND。

9.2 LED 台灯

图 6 LED 台灯应用电路图

9.3 小米触摸 LED 随身灯

图 7 小米触摸 LED 随身灯原理图

GuangZhou U-tek Microelectronics Technology Co., Ltd.

9.4 墙体86开关应用电路图

图 8 墙体 86 开关应用原理图

十、穿透力应用说明

10.1 穿透力与铺地、感应电极大小对应关系

感应电极面积	PCB 顶层不铺地	PCB 顶层铺实铜	
& 型 电 校 国 校	顶层不铺地	底层 35%铺地	
6×6mm	8mm	1.7mm	
7×7mm	10mm	2.8mm	
8×8mm	14mm	2.8mm	
10×10mm	16mm	4.9mm	
12×12mm	18mm	6mm	
15×15mm	22mm	8mm	

说明:

- 1、此表仅供参考,具体焊盘大小应根据实际模具外壳厚度来调整。
- 2、触摸焊盘面积越大,可穿透介质材料越厚。
- 3、PCB 铺地比例越小,PCB 点触焊盘与地之间的寄生电容越小,人体触摸后新生的手指电容相对 PCB 寄生电容变化越大,触摸灵敏度越高,可穿透介质越厚。
- 4、PCB 铺地比例越小,越易受到外界干扰。
- 5、建议实际应用时兼顾灵敏度和抗干扰设计 PCB 的铺地形式。如对穿透介质厚度要求不高,建议增加铺地比例以提高抗干扰性能。

10.2 穿透力与触摸引脚并联电容对应关系

电容值(pF)	亚克力材料穿透力(mm)	
未接	4. 9	
1	4. 9	
5	3	
10	2	
20	1	
30	1	

触摸引脚并联电容到地,测试条件:感应电极(直径10mm),PCB 顶层铺实铜,PCB 底层35%铺地

说明:此表仅供参考,并联电容越小,可穿透介质材料越厚。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

十一、封装信息

封装名称: SOT23-6

注意:

- 1、以上规格如有更新,恕不另行通知。请在使用前更新该芯片规格书至最新版本。
- 2、对于错误或不恰当操作所导致的后果,我们将不承担责任。