

Elaborato di **Calcolo Numerico** Anno Accademico 2019/2020

Niccolò Piazzesi - 6335623 - niccolo.piazzesi@stud.unifi.it Pietro Bernabei - 6291312 - pietro.bernabei@stud.unifi.it

Contents

1	Capitolo 1					
	1 Esercizio 1					
	.2 Esercizio 2					
	.3 Esercizio 3					
2	Capitolo 2					
	.1 Esercizio 4					
	.2 Esercizio 5					
	.3 Esercizio 6					
3	Capitolo 3					
	.1 Esercizio 8					
	.2 Esercizio 11					
	.3 Esercizio 12					
4	Capitolo 4]				
5	${f Capitoli}{f 5/6}$	1				

1.1 Esercizio 1

Sia f(x) una funzione sufficientemente regolare e sia h > 0 una quantita abbastanza "piccola". Possiamo sviluppare i termini f(x - h) e f(x + h) mediante il polinomio di Taylor:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + O(h^4)$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + O(h^4)$$

Sostituiamo i termini nell'espressione iniziale:

$$\frac{f(x-h)-2f(x)+f(x+h)}{h^2} =$$

$$=\frac{f(x)-hf'(x)+\frac{h^2}{2}f''(x)-\frac{h^3}{6}f'''(x)+O(h^4)-2f(x)+f(x)+hf'(x)+\frac{h^2}{2}f''(x)+\frac{h^3}{6}f'''(x)+O(h^4)}{h^2}=\frac{f(x)-hf'(x)+\frac{h^2}{2}f''(x)-\frac{h^3}{6}f'''(x)+O(h^4)-2f(x)+f(x)+hf'(x)+\frac{h^2}{2}f''(x)+\frac{h^3}{6}f'''(x)+O(h^4)}{h^2}=\frac{f(x)-hf'(x)+\frac{h^2}{2}f''(x)-\frac{h^3}{6}f'''(x)+O(h^4)-2f(x)+f(x)+hf'(x)+\frac{h^2}{2}f''(x)+\frac{h^3}{6}f'''(x)+O(h^4)}{h^2}=\frac{h^2}{2}f''(x)+\frac{h^2}{2}f''(x)+\frac{h^3}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{2}f''(x)+\frac{h^2}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{2}f''(x)+\frac{h^2}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{2}f''(x)+\frac{h^2}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{2}f''(x)+\frac{h^2}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{2}f''(x)+\frac{h^2}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{2}f''(x)+\frac{h^2}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{6}f'''(x)+\frac{h^2}{6}f'''(x)+O(h^4)-2f(x)+\frac{h^2}{6}f'''(x)+\frac{h^2}{6}f''$$

$$= \frac{h^2 f''(x) + O(h^4)}{h^2} = f''(x) + O(h^2)$$

1.2 Esercizio 2

Eseguendo lo script si ottiene $u=1.1102e-16=\frac{\epsilon}{2}$, dove ϵ è la precisione di macchina. ϵ è il più piccolo valore di macchina per il quale $a+\epsilon \neq a$ per un qualsiasi numero a. Quando u assume valore $\frac{\epsilon}{2}$ il controllo interno 1+u==1, che corrisponde alla condizione di uscita, risulta vero, perchè u è minore di ϵ .

1.3 Esercizio 3

Quando si esegue a-a+b il risultato è 100 mentre quando si esegue a+b-a si ottiene 0. La differenza dei risultati è dovuta al fenomeno della cancellazione numerica:

- nel primo caso la sottrazione avviene sullo stesso numero a=1e20. Sottrare un numero da se stesso ha sempre risultato esatto 0.
- nel secondo caso la sottrazione avviente tra i termini a+b=1e20+100 e a=100. Poichè 1e20 è molto più grande di 100, a+b è "quasi uguale" ad a. La sottrazione amplifica gli errori di approssimazione causati dalla rappresentazione in aritmetica finita dei numeri coinvolti. A causa di questi errori il calcolatore approssima la differenza con 0.

2.1 Esercizio 4

```
function x1=radn(x, n)
 2
 3
   % x1=radn(n.x)
   % funzione Matlab che implementa il metodo di newton per il calcolo della
   % radice n—esima di un numero positivo x
 5
 6
   format long e
   imax=1000;
9
   tolx=eps;
10 | if x<=0
11
        error('valore in ingresso errato');
12
13
   x1=x/2:
    for i=1:imax
14
       x0=x1;
16
       fx=x0^n-x;
17
       fx1=(n)*x0^{n-1};
18
       x1=x0-fx/fx1;
19
       if abs(x1-x0) \le tolx
20
           break
21
       end
22
23
   end
24
   if abs(x1—x0)>tolx
25
        error('metodo non converge')
26
   end
```

2.2 Esercizio 5

• Metodo di bisezione

```
function [x,i] = bisez(f,a,b,tolx)
 2
 3
        % [x, i] = bisez(f, a, b, tolx)
 4
        % calcola la radice di f(x) utilizzando il metodo di bisezione sull'intervallo [
            a, b]
 5
        format long e
        fa = feval(f,a);
 6
 7
        fb = feval(f,b);
 8
        if(fa * fb > 0)
 9
            error('gli estremi hanno lo stesso segno');
10
11
        imax = ceil(log2(b-a) - log2(tolx));
12
        for i = 1:imax
13
            x = (a+b)/2;
14
            fx = feval(f,x);
15
            f1x = abs((fb-fa)/(b-a));
            if abs(fx) <= tolx*f1x</pre>
16
17
                break
18
            elseif fa*fx<0</pre>
19
                b = x;
20
                fb = fx;
21
            else
22
                a = x;
```

• Metodo di Newton

```
function [x,i] = newton(f, f1, x0, tolx, maxit)
2
3
           % [x,i] = newton(f, f1, x0, tolx[, maxit])
 4
5
           % Metodo di Newton per determinare una approssimazione
6
           % della radice di f(x)=0 con tolleranza tolx, a
 7
           % partire da x0, entro maxit iterationi (default = 100).
8
9
           format long e
10
           if nargin<4
11
                  error('numero argomenti insufficienti');
12
           elseif nargin==4
13
                   maxit = 100;
14
           end
           if tolx<eps
16
                  error('tolleranza non idonea');
17
           end
18
           x = x0;
19
           for i = 1:maxit
20
                  fx = feval(f, x);
21
                  f1x = feval(f1, x);
22
                  x = x - fx/f1x;
23
                  if abs(x-x0) \le tolx*(1+abs(x0))
24
                         break;
25
                  else
26
                         x0 = x;
27
                  end
28
           end
29
           if abs(x-x0) > tolx*(1+abs(x0))
30
                  error('metodo non converge');
31
           end
32
   end
```

• Metodo delle secanti

```
function [x, i]=secanti(f,x0,x1,tolx,maxit)
2
 3
           % [x,i] = secanti(f, x0, x1, tolx[, maxit])
4
5
          % Metodo delle secanti per determinare una approssimazione
6
           % della radice di f(x)=0 con tolleranza tolx, a
 7
           % partire da x0, entro maxit iterationi (default = 100).
 8
      format long e
9
      if nargin<4
10
       error('numero argomenti insufficienti');
11
      elseif nargin==4
12
       maxit = 100;
13
      end
14
     i=0;
15
      f0=feval(f,x0);
16
     for i=1:maxit
```

```
17
          f1=feval(f,x1);
18
          df1=(f1-f0)/(x1-x0);
19
          x=x1-(f1/df1);
20
          if abs(x1-x0) \le tolx*(1+abs(x0))
21
            break;
22
          end
23
          x0=x1;
24
          x1=x;
25
          f0=f1;
26
27
      end
28
      if abs(x-x0) > tolx*(1+abs(x0))
29
        error('metodo non converge');
30
31
    end
```

• Metodo delle corde

```
function [x,i] = corde(f, f1, x0, tolx, maxit)
2
3
        % [x,i] = corde( f, f1, x0, tolx [, maxit] )
4
5
        % Metodo delle corde per determinare una approssimazione
        % della radice di f(x) con tolleranza tolx, a
6
        % partire da x0, entro maxit iterationi (default = 100).
8
9
        format long e
10
        if nargin<4
11
               error('numero argomenti insufficienti');
12
        elseif nargin==4
13
                maxit = 100;
14
        end
        if tolx<eps</pre>
16
               error('tolleranza non idonea');
17
        end
18
        f1x = feval(f1, x0);
19
        x = x0;
20
        for i = 1:maxit
21
               fx = feval(f, x);
22
               if fx==0
23
                      break;
24
               end
25
               x = x - fx/f1x;
26
               if abs(x-x0) \le tolx*(1+abs(x0))
27
                      break;
28
               else
29
                      x0 = x;
30
               end
31
        end
32
        if abs(x-x0) > tolx*(1+abs(x0))
33
           error('metodo non converge');
34
         end
35
    end
```

2.3 Esercizio 6

```
1 f = Q(x)(x-\cos(x));
```

```
f1 = @(x)(1+sin(x));
3
4
   x0 = 0;
5
   x1 = 1;
6
   for i=3:3:12
7
      [x\_bisez, it\_bisez] = bisez(f, x0, x1, 10^(-i))
8
       [x_newt, it_newt] = newton(f, f1, x0, 10^(-i))
9
       [x_corde, it_corde] = corde(f, f1, x0, 10^{(-i)})
       [x_secanti, it_secanti] = secanti(f, x0, x1, 10^(-i), 100)
11
   end
```

Eseguendo questo codice si ottengono i seguenti risultati:

	Metodo	Valore	iterazioni
	Bisezione	0.73828125000000000	8
• tolleranza = 10^{-3}	Newton	0.7390851333852840	4
	$\operatorname{Secanti}$	0.7390851332150012	5
	Corde	0.7395672022122561	17

Valore Metodo iterazioni Bisezione 0.739084243774414119 $\bullet \ tolleranza = 10^{-6}$ Newton 0.73908513321516075 0.7390851332151607Secanti 6 ${\rm Corde}$ 0.739084549575212634

	Metodo	Valore	iterazioni	
	Bisezione	0.7390851341187954	28	
• tolleranza = 10^{-9}	Newton	0.7390851332151607	5	
	$\operatorname{Secanti}$	0.7390851332151607	7	
	Corde	0.7390851327392538	52	

Metodo Valore iterazioni Bisezione 0.739085133214757739 • tolleranza = 10^{-12} Newton 0.73908513321516076 0.7390851332151607Secanti7 Corde 0.739085133215736869

3.1 Esercizio 8

```
function [LU,p]=palu(A)
   % [LU,p]=palu(A)
3
   % funzione Matlab che dato in input matrice A restituisce matrice fattorizzata LU
   % e il relativo vettore p di permutazione di LU con pivoting parziale di A
6
    [n,m]=size(A);
    if(n\sim=m)
        error(matrice A non quadrata);
9
   end
   LU=A;
11
   p=[1:n];
12
    for i=1:n-1
13
        [mi,ki]=max(abs(LU(i:n,i)));
14
        if mi == 0
            error('La matrice e'' non singolare')
16
        end
17
        ki=ki+i-1;
18
        if ki>i
19
            LU([i ki],:);
            p([i ki])=p([ki i]);
20
21
        end
22
        LU(i+1:n,1)=LU(i+1:n,i)/LU(i,i);
23
        LU(i+1:n,i+1:n)=LU(i+1:n,i+1:n)-LU(i+1:n,i)*LU(i,i+1:n);
24
   end
```

3.2 Esercizio 11

```
function QR = myqr(A)
 2
    QR = myqr(A)
 3
    % calcola la fattorizzazione QR di Householder della matrice A
 4
 5
        [m,n] = size(A);
 6
        if n > m
 7
            error('Dimensioni errate');
 8
        end
 9
        QR = A;
        for i = 1:n
11
            alfa = norm(QR(i:m,i));
12
            if alfa == 0
13
                error('la matrice non ha rango massimo');
14
            end
            if QR(i,i) >= 0
16
                alfa = -alfa;
17
            end
            v1 = QR(i,i) - alfa;
18
19
            QR(i,i) = alfa;
20
            QR(i+1:m,i) = QR(i+1:m,i)/v1;
21
            beta = -v1/alfa;
22
            v = [1; QR(i+1:m,i)];
23
            QR(i:m,i+1:n) = QR(i:m,i+1:n) - (beta * v) * (v' * QR(i:m,i+1:n));
24
        end
25
    end
```

3.3 Esercizio 12

```
function x = qrsolve(QR, b)
 2
 3
   % x = qrSolve(QR, b)
 4
 5
   % risolve il sistema QR*x=b nel senso dei minimi quadrati
 6
 7
   [m,n] = size(QR);
 8
   k = length(b);
9
   if k ~= m
       error('Dati inconsistenti');
11 end
12 | x=b(:);
13 | for i = 1:n
14
       v=[1; QR(i+1:m,i)];
15
       beta = 2/(v'*v);
16
       x(i:m) = x(i:m) - (beta*(v'*x(i:m))*v);
17 end
18 x=x(1:n);
19 | for j = n:-1:1
20
        if QR(j,j)==0
21
           error('Matrice singolare');
22
        end
23
       x(j) = x(j) / QR(j,j);
24
        x(1:j-1) = x(1:j-1) - QR(1:j-1,j)*x(j);
25 end
26
   return
27
   end
```

5 Capitoli 5/6