Communication Networks I

Graph Theory for Communication Networks

Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab

Overview

- 1 Basics of Graph Theory related to Communication Networks
- 2 Representing Graphs
- 3 Graph Metrics
 - 3.1 Clustering Metrics
 - 3.2 Average Path Length Metric
 - 3.3 Small World Phenomenon
 - 3.4 Power Law Phenomenon
- 4 Paths and related Problems
 - 4.1 Shortest Paths
 - 4.2 Bellman's Optimality Principle
 - 4.3 Dijkstra's Shortest Path Algorithm
- **5 Spanning Trees**
 - 5.1 Kruskal's Greedy Algorithm
 - 5.2 Prim's Algorithm
- **6 Network Flows**
 - **6.1 Flow Augmenting Paths: Example**
 - **6.2 Cuts**
- 7 Annex: Vocabulary English German

Preliminary Remarks

Graph Theory may be known (to some extend)

Goal:

- To focus on communication network issues of graphs
- To show some "relationships"

Contents

- From Tanenbaum
 - Computer Networks
- From other sections at
 - former KN1
- From NCS
 - Prof. Max Mühlhäuser et.al.

1 Basics of Graph Theory related to Communication Networks

Graphs are a widely used abstraction in many fields

- Electrical engineering: networks, electrical design,...
- Civil engineering: Road maps, pipeline networks
- Chemistry: Molecular structures
- Economics: Organizational structures (organograms)
- And of course computer networks :-)

Graph theory used both in design and optimization

Many important problems can be modeled as graphs

Popularity of graph theory has increased recently

 Big reason: Computers become more powerful and can solve large optimization problems (modeled and solved as graphs)

Graph Theory and Networks

Graph theory increasingly important in networking

Graphs often used to model computer networks

Either networks of single computers or networks of networks

Many basic algorithms from graph theory well-known

■ For example, Dijkstra's Shortest Path Algorithm

Examples of uses of graphs in networking:

- Model routing of messages in network
- Model capacity of network for quality of service
- Analyze network topology
 - How network could be optimized?
 - Insight into possible vulnerabilities

• ...

What is a Graph?

Definition of a graph:

Graph G = (V, E) consists of two finite sets,

set V of vertices (nodes) and set E of edges (arcs) $E = \{ \{u,v\} \mid u,v \in V \}$

for which the following conditions apply:

- 1) If $e \in E$, then exists a tuple $(v,u) \in V \times V$, such that $v \in e$ and $u \in e$
- If $e \in E$ and above (v,u) exists, and further for $(x,y) \in V \times V$ applies $x \in e$ and $y \in e$, then $\{v,u\} = \{x,y\}$

Properties of Graphs

An edge $e \in E$ is undirected if e = (x,y) is identical to e = (y,x)

An edge $e \in E$ is directed if e = (x,y) is NOT identical to e = (y,x): $(x,y) \neq (y,x)$

A graph G is directed (undirected) if the above property holds for all edges

A loop is an edge with identical endpoints (e = (x,y) | x = y)

Graph G is linear (simple) if for each $(v, u) \in V \times V$ exists at most one $e \in E$ and G has no loops

- To linearize a graph, replace all multiple edges with a single edge and remove all loops
- All subsequent graphs are assumed linear, unless otherwise said

Graph $G_1 = (V_1, E_1)$ is a subgraph of G = (V, E), if $V_1 \subseteq V$ and $E_1 \subseteq E$ (such that conditions 1 and 2 are met)

Walking in a Graph

We want to go from vertex v_1 to vertex v_k

No restrictions: This is called a walk $(v_1, v_2), (v_2, v_3), ..., (v_{k-1}, v_k) \in E$

A walk is a trail if we go along each edge at most once

A trail is a path if we visit each *vertex* at most once Walk, path, or trail is *closed* if $v_1 = v_k$

A closed path is also called cycle

■ In a linear, undirected graph, a cycle has at least 3 edges, why?

If a graph has no cycles, it is called acyclic

Important Types of Graphs

Vertices $v, u \in V$ are connected if there is a path from v to u: (v, v_2) , (v_2, v_3) , ..., $(v_{k-1}, u) \in E$

Graph G is connected if all $v, u \in V$ are connected

Undirected, connected, acyclic graph is called a tree

■ Sidenote: Undirected, acyclic graph which is not connected is called a forest

Directed, connected, acyclic graph is also called DAG

DAG = directed, acyclic graph (connected is "assumed")

For us, most graphs are connected and undirected

 For example, in computer networks all nodes can talk to each other and traffic flows in both directions

2 Representing Graphs

Drawing a graph is easy way to visualize it

But this works only for very small graphs

- Real problems are far too big to visualize
- Also, a computer is not very good at reading drawings...

Several different representations appropriate for networks

- 1. Incidence matrix
- 2. Adjacency matrix
- 3. Incidence lists (for sparse graphs)
 - Incidence lists similar to how sparse matrices are represented

Most appropriate form depends on

- the graph and on
- the application/problem

Sample Graph

Consider the following graph G = (V, E)

$$V = \{v_1, v_2, v_3, v_4\}, |V| = 4$$

 $E = \{e_1, e_2, e_3, e_4, e_5\}, |E| = 5$

Graph G looks like this:

Incidence Matrix

Incidence matrix is a $|V| \times |E|$ matrix It tells which edges are incident to a vertex (= touch it)

■ Edge e = (v, u) is **incident** to both v and u

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$
Edges

Note: Each column has two 1's (no loops allowed) useful for determining degree of vertex (see below)

Adjacency Matrix

Adjacency matrix is a /V/ x /V/ matrix It tells which vertices are adjacent to each other

- Vertices v and u are adjacent if (v, u) ∈ E or (u, v) ∈ E
- Adjacent vertices also called neighbors
- By definition: Vertex is not adjacent to itself

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Adjacency matrix for undirected graph is symmetric Typically, adjacency matrix is much smaller than incidence matrix and more widely used

Incidence Lists

Two kinds of incidence lists:

Vertex incidence list:

Which edges are incident to a vertex

Edge incidence list:

Which are the endpoints of an edge

Vertex	Edges
v ₁	e ₁ , e ₅
V ₂	e ₁ , e ₂ , e ₃
V ₃	e ₂ , e ₄
V ₄	e ₃ , e ₄ , e ₅

Edge	Endpoints	
e ₁	v ₁ , v ₂	
e ₂	v ₂ , v ₃	
e ₃	V ₂ , V ₄	
e ₄	V ₃ , V ₄	
e ₅	V ₁ , V ₄	

Incidence lists especially good for sparse graphs

- Sparse graph has very few edges
- Sparse = far fewer than n(n 1)/2, where n = |V|
- List is more efficient in computer than matrix

Graph Metrics

Distance d _{ij}	number of edges along shortest path between node i and node j
Diameter D of network	max. distance between any 2 nodes
Average path length L of network	mean distance over all nodes also known as size of an network
Total amount of nodes Nall	
Degree ki of a node i	total number of edges, the node i is attached to
Av. degree <k> of an network</k>	average of all ki of an network
Degree Distribution P(k)	probability distribution of k

Vertex Degree

In graph G = (V, E), the degree of vertex $v \in V$ is the total number of edges $(v, u) \in E$ and $(u, v) \in E$

Degree is the number of edges which touch a vertex

For directed graph, we distinguish between in-degree and out-degree

- In-degree is number of edges coming to a vertex
- Out-degree is number of edges going away from a vertex

Degree of a vertex can be obtained as:

- Sum of the elements in its row in the incidence matrix
- Length of its vertex incidence list

Properties of Network Graphs

Motivation for this section

- Given very many nodes in the network
- Issue 1:
 - Where is the requested information/service ?
- Issue 2:
 - Structure of network should be suitable for fast searches or lookup
- Constraints:
 - Only partial view on the network
 - A peer can only contact its "neighbors"
- Need metrics to describe the properties of network topology

Motivation: Which is the difference between the following graphs? Advantages? Disadvantages?

Properties of Network Graphs

Ideal network characteristics (general)

- Small network diameter (worst-case distance)
- Small average distance / path length
- Limited and small vertex/node degree
- High connectivity (and high fault tolerance)
- Support/allow load balancing of traffic
- Scalability (e.g. O(log n))
- Symmetry
- → but, hard to obtain in reality

3.1 Clustering Metrics

Clustering of one node

- Measured by the Clustering Coefficient CC
 - No. of links among a node's immediate neighbors to each other
- Compared to
 - Max. number of possible links they might have between them

CC has

- K the amount of node's neighbors (directly connected)
- N the actual number of edges among K neighbors of the node

$$CC = \frac{N}{\frac{K(K-1)}{2}}$$

Clustering factor CC_{network} of a network

Average clustering factor of all nodes of a network

Clustering Example

Node i

Nearby node

Edge

N = 3 edges between the K = 4 adjacent nodes to node I

→ Max. 6 edges:
$$\frac{K(K-1)}{2} = \frac{4(4-1)}{2} = 6$$

$$CC_i = \frac{N}{\frac{K(K-1)}{2}} = \frac{3}{6} = 0.5$$

Clustering Example

Example: regular graph

CC of one node has

■
$$N = 3$$

$$CC = \frac{3}{\frac{4(4-1)}{2}} = \frac{3}{6} = 0.5$$

CC of whole network

- Average CC of all nodes
- All nodes have same CC
- I.e., $CC_{network} = 0.5$

3.2 Average Path Length Metric

Path length L

- 1. choose a node
- 2. calculate the median distance to the rest of the graph
- 3. ...choose another not yet selected node ..

. . .

Z. average over all nodes

Issue

How to find the hops with only a local knowledge of the topology?

Example of Calculation of Average Path Length

Example: regular graph with

■ 50 nodes and CC = 0.5

Closest node

■ L = 1

Most distant node

- At opposite side
- Distance to opposite side,180 degrees
 - ca. half of 25 nodes
 - = 12.5

Average node

- located at 90 degrees
- Ca. half of 12.5 = 6.25
- I.e.,
 - approx. L = 6.25
 - (exactly L = 6.63)

3.3 Small World Phenomenon

Graphs seem (at a first glance) to be established randomly

But, characteristics are not "random"

Hence,

- Which are the properties?
- Search for "simple" construction principle

Watts / Strogatz Process

rewiring probability

Process (by Watts and Strogatz)

- randomly select edge (by edge) and
- randomly "rewire" it (them)

Which is the effect of this process?

Small World Phenomenon

	Regular Graph	Slightly rewired graph	Random graph
Clustering Coefficient	?	?	?
Path Length	?	?	?

Small World Phenomenon

	Regular Graph	Slightly rewired graph	Random graph
Clustering Coefficient	high	high	low
Path Length	high	low	low

Results

Effect

- "Rewiring" very few edges to be randomly reconnected
- Clustering remains high
- But, path lengths (better look-up times) are dramatically reduced

Small World Graphs/Networks

Slightly rewired graphs = small world graphs

Noticed properties:

1. Clustered sparseness (clustering)

- How "CLIQUISH" a graph is
 - Small World Networks comprise few edges
 - Network set-up by many interconnected clusters

2. Small Diameter (path length)

- Minimal distance between the most apart peers is small
- Average path length is RATHER SMALL
- Path length GROWS LOGARITHMICALLY with size of network

Scale Free Networks

Power laws are scale free

- Because
 - if k is rescaled (multiplied by a constant),
 - then P(k) is still proportional to ... $P(k) \propto k^{-\gamma}$
- P(k) probability that a node in the network connects with k other nodes
- γ (gamma) coefficient (may vary ca. 2 to 3)

New nodes enter the network

- By attaching to already popular nodes
- (Rich nodes get richer)

Short diameter

Power-law distribution

- Uneven link / load distribution
- Supports heterogeneity
- Fragile to attacks at high-degree nodes

Small World and Scale Free Networks

Examples

- www-pages 17/19 hops
- Phoning in the US
- Personal relationship US 6 degrees of separation
- Movie relationship between performers 3 hops
- Coauthorship in papers
 - E.g.: http://database.cs.ualberta.ca/coauthorship/
- Example Hubs
 - E.g. airports (vs. Streets)

Characteristics

- Clustering
 - Strong local interaction
 - Cliquish
- Connectivity, degree of nodes
 - Few with high degree
 - Many with low degree
 - NO: Poisson distribution
 - YES: power law distribution $P(k) = k^{-\gamma}$

3.4 **Power Law Phenomenon**

Statistics resulting from the Watts/Strogatz graphs

- Do not match those of real-world small world graphs like certain network graphs (topologies)
 - e.g. power supply grids, web pages, P2P networks
- Power-law distribution of edges to nodes
 - Watts/Strogatz model does not account for that

Barabási:

2 techniques result in power law distributions

- Dynamic growth
- constructs small worlds graphs dynamically
- rather than rewiring a graph in place as with Watts/Strogatz
- Preferential attachment

- rewiring of nodes preferentially attaching to most connected nodes
- rather than randomly

Power Law: Distribution of Node Degree

P(k)

- Probability that a randomly selected node has exactly k edges
- I.e., spread of node degrees k_i over the network

E.g. regular lattice

- All nodes have same node degree k_i
- I.e., P(k) is delta function

E.g. random network

- Poisson distribution of node degrees
- I.e., for any degree k >> mean # degree (named <k>)
 - P(k) tends to be 0
- But, does not apply in reality!

But...

Power Law: Distribution of Node Degree

Power law distribution of node degrees

- High connectivity is unlikely
- But occurs more often than predicted by random network

Social Networks

4 Paths and related Problems

Recall

- Path is a walk from vertex *v* to *u* where we go along each edge and visit each vertex at most once
 - Note: Does not have to visit every edge and vertex of the graph
- Cycle is a path which ends in the vertex where it started

Issues

- Shortest Paths
- Bellman's Optimality Principle
- Shortest Path Algorithms

4.1 Shortest Paths

Consider graph G = (V, E)where each edge $(v_i, v_j) \in E$ has a length $I_{ij} > 0$

■ Length = actual length, cost, weight, ... (any suitable metric)

Shortest path problem:

• For fixed v_1 and v_k , which is the path from v_1 to v_k such that the sum of the lengths of its edges is minimum?

Longest path is similarly defined

Note: There can be several "shortest" paths

Consider the problem of finding shortest paths from a given node *v* to all other nodes

- P_i denotes the shortest path from v to j
- L_j denotes the length of the shortest path P_j

4.2 Bellman's Optimality Principle

If P_j is a shortest path from v to j and (i, j) is the last edge of P_j , then P_i (obtained from P_j by dropping edge (i, j)) is a shortest path from v to i

Proof on the next slides

■ Idea: For fixed j, try different shortest paths P_i and add (i, j). Lengths of these paths are $L_i + I_{jj}$. Pick i which gives the smallest overall length

Basis for Dijkstra's Shortest Path Algorithm

Optimality Principle

General statement about optimal routes

- If node J is on optimal path from node I to node K
- Then the optimal path from node J to node K uses the same route

Example

- r1: route from I to J
- r2: route from J to K
- If better route r2' from J to K existed
- Then concatenation of r1 and r2' would improve route from I to K

→ Set of optimal routes

- from all sources
- to a given destination

form a tree rooted at the destination: SINK TREE

Proof of Bellman's Principle

Simple proof by contradiction

If P_j is a shortest path from v to j and (i, j) is the last edge of P_j , then P_i (obtained from P_i by dropping edge(i, j)) is a shortest path from v to i

Suppose that the conclusion is false

- Then there exists path P_i^* from v to i which is shorter than P_i
- If we now add (i, j) to P_i^* , we get a path from v to j which is shorter than P_i
- This contradicts the assumption that P_i is the shortest path from v to j

4.3 Dijkstra's Shortest Path Algorithm

Spanning Tree and Optimized Route

• Information about the entire network has to be available

Example

- Link is labeled with distance / weight
- Node is labeled with distance from source node along best known path (in parentheses)

Non-Adaptive Shortest Path Routing

Procedure E.g., according to Dijkstra

E.g.,

Find the shortest path from A to D

- Labels may be permanent or tentative
- Initially, no paths are known
 → all nodes are labeled with infinity (TENTATIVE)
- Discovery that label represents shortest possible path from source to any node:
 → label is made PERMANENT

- 1. Node A labeled as permanent
- 2. relabel all directly adjacent nodes
- 3. examine
- 4. this node is the new working node

Non-Adaptive Shortest Path Routing

E.g.,

1. Node A labeled as permanent

Filled-in circle

2. Relabel all directly adjacent nodes

- With the distance to A
 - path length,
 - nodes adjacent to source
- E.g., B(2,A) and G(6,A)

3. Examine

- All tentatively labeled nodes;
- Make the node with the smallest label permanent
- E.g., B(2,A)

4. This node is the new working node

- For the iterative procedure
- I.e., continue with step 2.

Non-Adaptive Shortest Path Routing (Worksheet 1)

Example (distance indicated by the number on the edge)

Procedure: e. g. according to Dijkstra

Find: the shortest path from A to D:

- 1. A flagged as permanent (filled-in circle)
- 2. Relabel all directly adjacent nodes with the distance to A
 - (path length, IS adjacent to the source):
 - e. g. B(2,A) and G(6,A)

Non-Adaptive Shortest Path Routing (Worksheet 2)

Example (distance indicated by the number on the edge)

Procedure: e. g. according to Dijkstra

Find: the shortest path from A to D:

•••

- 3. Compare all recent, not firmly flagged IS;
 - Flag the one with the lowest number AS FIXED:
 - B(2,A)
- 4. This IS is the origin of the iterative procedure
 - (i.e., continue with item 1.)

Non-Adaptive Shortest Path Routing (Worksheet 3)

Example

- Link is labeled with distance
- Node is labeled with distance from source along best known path

Procedure: e.g., according to Dijkstra find the shortest path from A to D:

- 1. Node B has been labeled as permanent
 - (filled-in circle)

2. relabel all directly adjacent nodes with the distance to B

- (path length, nodes adjacent to source):
- A (does not apply, because it is the origin),
- i.e. E (4,B), C (9,B)

Non-Adaptive Shortest Path Routing (Worksheet 4)

Example

- Link is labeled with distance
- Node is labeled with distance from source along best known path

Procedure: e.g., according to Dijkstra find the shortest path from A to D:

-
- **-**
- Examine all tentatively labeled nodes;
 - make the node with the smallest label permanent: e.g. E(4,B)
- This node will be the new working node for the iterative procedure ...

Non-Adaptive Shortest Path Routing (Worksheet 5)

And continue with source E ...

5 Spanning Trees

Tree is an acyclic, connected graph

■ Consider graph G = (V, E)

Spanning tree *T* of graph *G* is a tree containing ALL *v* vertices of *G*

- Such a tree has *v* 1 edges
- Why?

E.g., acyclic connected graph

E.g., spanning tree for leftmost node

Shortest Spanning Tree(s)

Given a graph G whose edges (i, j) have lengths $l_{ij} > 0$, the shortest spanning tree T^* is a spanning tree for which $\sum l_{ij}$ is the minimum compared to $\sum l_{ij}$ for any other spanning tree T

Dijkstra's algorithm gives us a spanning tree

- Not necessarily the shortest spanning tree
- If Dijkstra's algorithm is run for all vertices, then we can find the shortest spanning tree,
- but this is not efficient

5.1 Kruskal's Greedy Algorithm

Kruskal's algorithm finds the shortest spanning tree

Given a graph G = (V, E), where all edges (i, j) have length $I_{ij} > 0$, the shortest spanning tree T can be obtained as follows:

- 1. Order the edges of G in ascending order of length
- 2. Choose edges in this order as edges of *T*
 - Reject an edge if it forms a cycle with the edges already chosen
- 3. Repeat step 2 until *v* 1 edges have been chosen

Note: At the intermediate steps, the selected edges may form a disconnected graph

Eventually we get a tree

Kruskal's Algorithm: Example

Consider the following graph:

Kruskal's Algorithm: Example

Order edges by length

Edge	Length	Choice
(3, 6)	1	1
(1, 2)	2	2
(1, 3)	4	3
(2, 3)	5	Reject
(4, 5)	6	4
(3, 4)	8	5
(5, 6)	9	
(2, 4)	11	

Stop after 5 edges Length of spanning tree: 21

5.2 Prim's Algorithm

Prim's algorithm also gives shortest spanning tree

Difference to Kruskal is that Prim gives a tree at every stage of the algorithm

Graph G with $V = \{1, ..., v\}$, edges of length $I_{ij} > 0$

- 1. Initialize:
 - $i(k) = 1 (k = 1, ..., v), U = \{1\}, S = \emptyset$
 - Label vertex k (= 2, ..., v) with $\lambda_k = I_{ik}$ (or ∞ , if no edge (1, k))
- 2. Let λ_j be smallest λ_k for $k \notin U$
 - Add vertex j to U and edge (i(j), j) to S
 - If U = V, then stop
- 3. For every $k \notin U$:
 - If $I_{ik} < \lambda_k$, then set $\lambda_k = I_{jk}$ and i(k) = j
 - Go to step 2

Kruskal's Algorithm and Prim's Algorithm

Kruskal's Algorithm

Prim's Algorithm

- Keeps always a connected graph
- No need for having always a global view of the whole graph

6 Network Flows

Consider a directed graph G = (V, E), where each edge (i, j) has capacity $c_{ii} > 0$

- One vertex s (source) produces a flow
- One vertex t (target or sink) is where flow disappears

Flow may be network traffic, electricity in wires, water in pipes, cars on the road, ...

Note: Possible to have several sources or sinks

Denote f_{ii} the flow along (directed) edge (i, j)

We have two conditions:

- Edge condition: $0 \le f_{ij} \le c_{ij}$
- Vertex condition:
 - Inflow = Outflow

$$\sum_{k} f_{ki} - \sum_{j} f_{ij} = \begin{cases} 0 \\ f \\ -f \end{cases}$$

Flow Augmenting Paths

A path in a directed graph means a sequence of undirected edges which form a path

- If we travel an edge in its direction: Forward edge
- If we travel an edge in opposite direction: Backward edge
- Note: This does not change the direction of the directed edge!
 - See below for example

Goal: to maximize flow f from s to t

■ Idea: Increase flow on forward edges or reduce flow on backward edges

A flow augmenting path is a path for which:

- No forward edge is used to capacity, i.e., $f_{ii} < c_{ii}$ for these
- No backward edge has flow 0, i.e., $f_{ij} > 0$ for these

6.1 Flow Augmenting Paths: Example

First number = capacity, second number = current flow Flow from s to t is 9

Denote Δ_{ij} as possible increase of flow on edge (i, j)

- $\Delta_{ij} = c_{ij} f_{ij}$ for forward edges
- $\Delta_{ij} = f_{ij}$ for backward edges

Flow Augmenting Paths: Example

One possible augmenting path is: s - 2 - 3 - t

We can increase flow from s to t by 3 to 12

Flow Augmenting Paths: Example

Other augmenting path is: s - 4 - 5 - 3 - t

Edge (3, 5) is a backward edge

■ Flow of 2 units that is going from 3 to 5 could go from 3 to *t* and therefore increase total flow from *s* to *t*

This path allows increase of 2 in total flow which is 14

14 is also the maximum flow we can have

6.2 Cuts

Cut set is a set of edges in the network

Idea: To find flow from s to t, we cut network somewhere in between & see what flows on those edges

Any flow from s to t must pass those edges

Cut partitions network into S and T

- Net flow between S and T determines flow between s and t
- Sum of "positive" capacities S → T determines capacity of cut

Cuts and Flows

How to find maximum flow in graph?

Maximum flow is equal to the capacity of the minimum cut set (= cut set with smallest capacity)

Known as max-flow min-cut theorem

Can find maximum flow (min cut) with Ford-Fulkerson algorithm

7 Annex: Vocabulary English - German

Acyclic = azyklisch

Greedy algorithm = gieriger Algoritmus

Adjacency X = Adjazenz X

■ X = list or matrix

Incidence X = Inzidenz X

X = list or matrix

Connected = zusammenhängend

Path = der Pfad / der Weg

Degree = der Grad

Eingangsgrad, Ausgangsgrad

Radius = der Radius

Diameter = der Durchmesser

Spanning tree = Spannbaum

(Un)Directed = (un)gerichtet

Sparse = dünnbesetzt

Eccentricity = die Exzentrizität

Subgraph = der Teilgraph

Edge = die Kante

Tree = der Baum

Flow = der Fluss

Vertex/node = der Knoten

Graph = der Graph