Recuperación Primer Certamen Introducción a la Informática Teórica

6 de diciembre de 2011

1. Considere el lenguaje $\mathcal{L} = \{a^i b^j : \gcd(i, j) = 1\}$. ¿Es regular este lenguaje? (15 puntos)

2. Determine la validez de las equivalencias siguientes para expresiones regulares R y S:

a)
$$(R+S)^* = R^* + S^*$$
 b) $(R^*S^*)^* = (R+S)^*$

(20 puntos)

3. Construya un autómata finito que reconozca comentarios de C, que comienzan con (*) terminan con (*), considerando sólo caracteres (*) a. Nótese que son comentarios (*), (*) aaaa(*) y (*).

(10 puntos)

4. Considere el NFA $M = (Q, \Sigma, \delta, q_0, F)$, con estados $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$, alfabeto $\Sigma = \{a, b\}$, estado inicial q_0 , estados finales $F = \{q_2\}$ y función de transición:

δ	a	b	ϵ
q_0	$\{q_3\}$	Ø	$\{q_1\}$
q_1	$\{q_4\}$	$\{q_2\}$	Ø
q_2	Ø	Ø	Ø
q_3	Ø	$\{q_4\}$	$\{q_1\}$
q_4	Ø	Ø	$\{q_5\}$
q_5	Ø	Ø	Ø

- a) Determine $\delta(q_0, aaba)$ y $\delta(q_3, b)$
- b) ¿Es finito o infinito $\mathcal{L}(M)$?

(20 puntos)

- 5. Dados lenguajes regulares \mathcal{L}_1 y \mathcal{L}_2 sobre el alfabeto Σ , diga si son regulares los siguientes: a) $\mathcal{L}_1 \cap \mathcal{L}_2$ b) $\{\omega\omega : \omega \in \mathcal{L}_1\}$ c) $\{(\omega\omega)^*\Sigma^+ : \omega \in \mathcal{L}_1\}$ d) $\{\alpha \in \mathcal{L}_1 : \exists \beta \in \mathcal{L}_2. |\alpha| = |\beta|\}$ (15 puntos)
- 6. Se define SHUFFLE $(\mathcal{L}_1, \mathcal{L}_2) = \{a_1b_1a_2b_2 \dots a_nb_n : a_1a_2 \dots a_n \in \mathcal{L}_1 \land b_1b_2 \dots b_n \in \mathcal{L}_2\}$ para lenguajes \mathcal{L}_1 y \mathcal{L}_2 .

Demuestre que si \mathcal{L}_1 y \mathcal{L}_2 son regulares, lo es SHUFFLE($\mathcal{L}_1, \mathcal{L}_2$).

(30 puntos)