ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФГАОУ ВО НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Прикладная математика и информатика»

УДК 004.8

Отчет об исследовательском проекте на тему: Кластеризация аудио

(промежуточный, этап 1)

Выполнил студент:

группы #БПМИ213, 3 курса

Бонич Дмитрий Сергеевич

Принял руководитель проекта:

Сендерович Александра Леонидовна Научный сотрудник Факультет компьютерных наук НИУ ВШЭ

Содержание

A	ннот	кидия	3							
1	Вве	едение	4							
	1.1	Постановка задачи	4							
	1.2	.2 Метрики качества								
	1.3	Классические методы решения	5							
		1.3.1 K-means	5							
		1.3.2 DBSCAN	5							
		1.3.3 MeanShift	5							
		1.3.4 AgglomerativeClustering	5							
2	Обз	зор литературы	5							
3	Пла	ан дальнейшей работы	5							
4	Прі	имеры	5							
	4.1	Ссылки на статьи	5							
	4.2	Рисунки	6							
	4.3	Таблицы	7							
	4.4	Формулы	7							
Cı	писо	ок литературы	8							

Аннотация

Существующие методы глубинного обучения для кластеризации изображений работают довольно хорошо. Однако вопрос качественной кластеризации аудио остается открытым. В этой работе мы планируем адаптировать лучшие методы кластеризации изображений для задачи кластеризации аудио.

Ключевые слова

Глубинное обучение, обучение без учителя, кластеризация

1 Введение

1.1 Постановка задачи

В задаче классификации мы имеем обучающую выборку, где для каждого объекта известен его класс и от нас требуется моделировать распределение классов на пространстве объектов. Задача кластеризации более сложная – необходимо разбить объекты на осмысленные группы не зная ни самих групп, ни их распределения.

1.2 Метрики качества

Чтобы замерить качество кластеризации как правило метод решает задачу на размеченном для кластеризации датасете, разумеется не используя метки классов. Полученные после кластеризации номера кластеров будем называть *псевдометками*. Псевдометки сравниваются с настоящими метками и качество определяется как некоторый вид корреляции между ними.

Одной из самых популярных метрик качества является NMI(Normalized Mutual Information) Пусть у нас есть пара случайных величин X и Y, тогда:

$$NMI(X,Y) = \frac{KL(p_{(X,Y)}|p_X \otimes p_Y)}{\sqrt{H(X)H(Y)}}$$

При подсчете NMI мы считаем распределения меток и псевдометок за X и Y и вычисляем оценку максимального правдоподобия 1 . NMI принимает значения от 0 до 1.

Еще одной используемой метрикой является $ARI(Adjusted\ Rand\ Index)$. Это скорректированная версия метрики RI^2 (Rand Index). Определяется ARI следующим образом:

$$ARI(X,Y) = \frac{RI(X,Y) - E[RI(X,Y)]}{1 - E[RI(X,Y)]}$$

ARI принимает значения от 0 до 1.

Также в качестве метрики качества можно использовать долю правильных ответов как и в задаче классификации. Однако предварительно необходимо решить задачу о назначениях³. между псевдометками и метками. Мы переименуем псевдометки так, чтобы достичь максимального качества. Затем на переименованных псевдометках мы посчитаем долю правильных ответов, которую и используем в качестве метрики качества.

 $^{^{1}}$ далее ОМП

²https://en.wikipedia.org/wiki/Rand_index

³https://en.wikipedia.org/wiki/Assignment_problem

1.3 Классические методы решения

С точки зрения классических методов кластеризуемые объекты это точки в многомерном пространстве. Такие методы обычно имеют итерационную природу и решают задачу выделения кластеров точек находя их скопления, области с повышенной плотностью, некоторые структуры. Посмотрим на несколько примеров.

1.3.1 K-means

Одним из самых простых и известных методов является K-means. Он работает на базе EM-алгоритма⁴. K-means итерационно пытается найти два неизвестных набора переменных — номера кластеров для объектов и центры этих кластеров. Количество кластеров фиксировано и задается до начала работы алгоритма в качестве гиперпараметра k.

В начале своей работы классический K-means инициализирует все центры кластеров случайно. Затем чередуются Е и М шаги до сходимости. На Е-шаге мы назначаем каждому объекту номер кластера к центру которого объект ближе всего в качестве псевдометки. На М-шаге мы вычисляем ОМП для каждого центра кластера, то есть берем в качестве центра кластера усредненную точку из всех объектов с псевдометкой этого кластера.

1.3.2 DBSCAN

1.3.3 MeanShift

1.3.4 AgglomerativeClustering

2 Обзор литературы

3 План дальнейшей работы

4 Примеры

4.1 Ссылки на статьи

Ссылки на статьи оформляются с помощью пакета biblatex, например [1]. В описании статье в bib файле нужно обязательно указывать место публикации работы (журнал или конференцию) и год. Обратите внимание, что для описания статей из разных источников в списке литературы используются разные команды в bib файле: статья из журнала [3],

⁴https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

статья с конференции [1], книга [6], глава книги [5]. Если статься еще не опубликована нигде, а только выложена на arXiv, то на нее тоже можно сослаться [2], но предпочтительно ссылаться на опубликованную версию, если она уже существует. Если вы хотите сослаться на сайт, то можно либо так же внести его в список литературы [4] (рекомендуется, если таких ссылок у вас много из-за особенностей темы вашего проекта), либо использовать ссылку внизу страницы⁵. При работе с онлайн ресурсами не забывайте указывать дату обращения к этому ресурсу, так как в отличие от опубликованных статей, эти ресурсы могут измениться в любой момент.

4.2 Рисунки

Рис. 4.1: Пример графика. Тут должна быть подпись, поясняющая что происходит на рисунке (краткая, но достаточная для понимания основной идеи графика).

Все рисунки в тексте должны иметь подписи и вы на них должны ссылаться в тексте. Например, на Рисунке 4.1 изображен пример графика. Не забывайте подписывать все оси на графиках, добавлять легенду и пояснять все обозначения, а также используйте адекватного размера шрифты и толщину линий на графиках (все должно быть видно и понятно без многократного увеличения). На рисунке из примера явно не хватает обозначения синей линии в легенде.

 $^{^5}$ Книги доступны по ссылке: http://www-cs-faculty.stanford.edu/~uno/abcde.html, дата обр. 16.05.2013

4.3 Таблицы

Все таблицы в тексте тоже должны иметь подписи и вы на них должны ссылаться в тексте. Например, в Таблице 4.1 показаны результаты примерного эксперимента.

Таблица 4.1: Пример таблички. Тут должна быть подпись, поясняющая что происходит в таблице (краткая, но по делу).

		Val			Test			
	Prec	Rec	F1	Prec	Rec	F1	nodes	subtokens
запуск 1 запуск 2 запуск 3	0.4894 0.4887 0.4820	0.3775 0.3739 0.3751	0.4263 0.4237 0.4219	0.4824 0.4891 0.4838	0.3683 0.3724 0.3677	0.4177 0.4228 0.4178	10029 10039 10037	179 177 180
среднее дисперсия	0.4867 0.0041	0.3755 0.0019	0.4239 0.0022	0.4851 0.0036	0.3695 0.0025	0.4195 0.0029		

4.4 Формулы

Формулы стоит центрировать, а также нумеровать, если вы ссылаете на них в тексте. Также не забывайте пояснять все обозначения в формулах. Например, запишем следующую задачу оптимизации:

$$\theta * = \min_{\theta} F(\theta), \tag{1}$$

где F — квадратичная функция от параметра θ . При необходимости, далее в тексте можно сослаться на формулу (1). При этом, в зависимости от конкретных формул, можно использовать разные слова: формула, уравнение, задача оптимизации и т.п.

Список литературы

- [1] Nadezhda Chirkova, Ekaterina Lobacheva и Dmitry Vetrov. "Bayesian Compression for Natural Language Processing". в: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). 2018.
- [2] Nadezhda Chirkova, Ekaterina Lobacheva и Dmitry Vetrov. "Bayesian Compression for Natural Language Processing". в: arXiv preprint, arXiv:1810.10927, version 2 (2018).
- [3] George D. Greenwade. "The Comprehensive Tex Archive Network (CTAN)". B: TUGBoat 14.3 (1993), c. 342—351.
- [4] Donald Knuth. Knuth: Computers and Typesetting. URL: http://www-cs-faculty.stanford.edu/~uno/abcde.html (дата обр. 16.05.2013).
- [5] Donald E. Knuth. "Fundamental Algorithms". в: Addison-Wesley, 1973. гл. 1.2.
- [6] Donald E. Knuth. The Art of Computer Programming. Four volumes. Seven volumes planned. Addison-Wesley, 1968.