Find the Lasso Solution

He He¹

CDS, NYU

Feb 16, 2021

He He² (CDS, NYU)

¹Slides based on Lecture 2c from David Rosenberg's course material.

Quadratic Programming

How to find the Lasso solution?

• How to solve the Lasso?

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||_1$$

• $||w||_1 = |w_1| + |w_2|$ is not differentiable!

Rewrite the Absolute Function

- Consider any number $a \in R$.
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0).$$

- Do you see why $a^+ \geqslant 0$ and $a^- \geqslant 0$?
- How do you write a in terms of a^+ and a^- ?
- How do you write |a| in terms of a^+ and a^- ?

The Lasso as a Quadratic Program

We will show: substituting $w = w^+ - w^-$ and $|w| = w^+ + w^-$ gives an equivalent problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda 1^T \left(w^+ + w^- \right)$$
subject to $w_i^+ \geqslant 0$ for all i $w_i^- \geqslant 0$ for all i ,

- Objective is differentiable (in fact, convex and quadratic)
- 2d variables vs d variables and 2d constraints vs no constraints
- A "quadratic program": a convex quadratic objective with linear constraints.
 - Could plug this into a generic QP solver.

Possible point of confusion

We have claimed that this objective is equivalent to lasso problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda 1^T \left(w^+ + w^- \right)$$
subject to $w_i^+ \geqslant 0$ for all i $w_i^- \geqslant 0$ for all i ,

- When we plug this optimization problem into a QP solver,
 - it just sees 2d variables and 2d constraints.
 - Doesn't know we want w_i^+ and w_i^- to be positive and negative parts of w_i .
- Turns out they will come out that way as a result of the optimization!
- But to eliminate confusion, let's start by calling them a_i and b_i and prove our claim...

He He⁷ (CDS, NYU) DS-GA 1003 Feb 16, 2021 6/15

The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left((a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$
subject to $a_{i} \geqslant 0$ for all i $b_{i} \geqslant 0$ for all i ,
$$a-b=w$$

$$a+b=|w|$$

Claim: Don't need constraint a + b = |w|.

Exercise: rove by showing that the optimal solutions a^* and b^* satisfies $\min(a^*, b^*) = 0$, hence $a^* + b^* = |w|$.

He He⁸ (CDS, NYU) DS-GA 1003 Feb 16, 2021

7/15

The Lasso as a Quadratic Program

$$\min_{w} \min_{a,b} \quad \sum_{i=1}^{n} \left((a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda \mathbf{1}^{T} (a+b)$$
 subject to $a_{i} \geqslant 0$ for all i , $b_{i} \geqslant 0$ for all i , $a-b=w$

Claim: Can remove min_w and the constraint a - b = w.

Exercise: Prove by switching the order of the minimization.

Projected SGD

Now the objective is differentiable, but how do we handle the constraints?

$$\begin{aligned} & \min_{w^+, w^- \in \mathbf{R}^d} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right) \\ & \text{subject to } w_i^+ \geqslant 0 \text{ for all } i \\ & w_i^- \geqslant 0 \text{ for all } i \end{aligned}$$

- Just like SGD, but after each step
 - Project w^+ and w^- into the constraint set.
 - In other words, if any component of w^+ or w^- becomes negative, set it back to 0.

Coordinate Descent (Shooting Method)

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, ..., w_d)$ over $w = (w_1, ..., w_d) \in \mathbb{R}^d$.

In gradient descent or SGD, each step potentially changes all entries of w.

In coordinate descent, each step adjusts only a single coordinate w_i .

$$w_i^{\text{new}} = \arg\min_{w_i} L(w_1, \dots, w_{i-1}, w_i, w_{i+1}, \dots, w_d)$$

- Solving this argmin may itself be an iterative process.
- Coordinate descent is great when it's easy or easier to minimize w.r.t. one coordinate at a time

Coordinate Descent Method

Goal: Minimize
$$L(w) = L(w_1, \dots w_d)$$
 over $w = (w_1, \dots, w_d) \in \mathbb{R}^d$.

- Initialize $w^{(0)} = 0$
- while not converged:
 - Choose a coordinate $j \in \{1, \ldots, d\}$
 - $w_j^{\text{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \dots, w_{j-1}^{(t)}, w_j, w_{j+1}^{(t)}, \dots, w_d^{(t)})$
 - $w_j^{(t+1)} \leftarrow w_j^{\mathsf{new}}$ and $w^{(t+1)} \leftarrow w^{(t)}$
 - $t \leftarrow t + 1$
- Random coordinate choice \implies stochastic coordinate descent
- Cyclic coordinate choice \implies cyclic coordinate descent

In general, we will adjust each coordinate several times.

Coordinate Descent Method for Lasso

- Why mention coordinate descent for Lasso?
- In Lasso, the coordinate minimization has a closed form solution!

Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

$$\hat{w}_{j} = \underset{w_{j} \in \mathbb{R}}{\arg \min} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda |w|_{1}$$

Then

$$\hat{w}_j = \begin{cases} (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\ 0 & \text{if } c_j \in [-\lambda, \lambda] \\ (c_j - \lambda)/a_j & \text{if } c_j > \lambda \end{cases}$$

$$a_j = 2\sum_{i=1}^n x_{i,j}^2$$
 $c_j = 2\sum_{i=1}^n x_{i,j}(y_i - w_{-j}^T x_{i,-j})$

where w_{-j} is w without component j and similarly for $x_{i,-j}$.

Coordinate Descent in General

- Theoretically, coordinate descent is not competitive, e.g. its convergence rate is slower than GD and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement
- Example applications: lasso regression, SVMs