This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound having the structural formula

wherein

 R^1 and R^2 :

- i) independently represent H or lower alkyl;
- ii) together form a bridge of structure

$$G^1$$
) m

wherein bonding is achieved via the terminal carbon atoms;

iii) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein bonding is achieved via the terminal carbon atoms; or

iv) together form a bridge of structure

$$\frac{T_{T_1}}{T_1=T_1}$$

wherein one or two ring members T¹ are N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-4; and

G1 is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- -NR³COR⁶;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;

- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;

- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- -NR³CO₂R⁶; and
- $-NR^3CON(R^6)_2$

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- alkyl;
- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

R⁴ is H, halogen, or lower alkyl;

p is 0, 1, or 2;

X is selected from the group consisting of O, S, and NH;

Y is selected from the group consisting of

- $-(CR_2^4)_n$ -S(O)_p-(5-membered heteroaryl)-(CR₂⁴)_s-;
- $-(CR_2^4)_n-C(G^2)(R^4)-(CR_2^4)_s$;

wherein

n and s are each independently 0 or an integer of 1-2; and

```
G^2 is selected from the group consisting of -CN, -CO2R ^3 , -CON(R ^6)_2 , and -CH2N(R ^6)_2 ;
```

- -O-CH₂-;
- -S(O)-;
- $-S(O)_2-$;
- -SCH₂-;
- -S(O)CH₂-;
- -S(O)₂CH₂-;
- $-CH_2S(O)$ -; and
- -CH₂S(O)₂-

A and D independently represent N or CH;

B and E independently represent N or CH;

L represents N or CH;

with the provisos that

- a) the total number of N atoms in the ring containing A, B, D, E, and L is 1, 2, or 3 1 or 2; and
- b) when L represents CH, at least one of A and D is an N atom;

G³ is selected from the group consisting of

- lower alkyl;
- $-NR^3COR^6$;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- $-OR^6$;
- $-SR^6$;

- $-S(O)R^6$;
- $-S(O)_2R^6$;
- -OCOR⁶;
- -COR⁶;
- $-CO_2R^6$;
- $-CH_2OR^3$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- -NO₂;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- $-OCON(R^6)_2$;
- -NR³CO₂R⁶; and
- $-NR^3CON(R^6)_2$;

J is a ring selected from the group consisting of

- aryl;
- pyridyl; and
- cycloalkyl;

q' represents the number of substituents G^4 on ring J and is 0, 1, 2, 3, 4, or 5, and G^4 moieties are selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;

- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- -OCOR⁶;
- -COR⁶;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- -OCO₂R³;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;

- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- $-NR^3CON(R^6)_2$; and
- fused ring-forming bridges attached to and connecting adjacent positions of ring J, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^3

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CR⁴G⁴, C(R⁴)₂, or NR³; and

bonding to ring J is achieved via terminal atoms T² and T³;

b)

$$T^{2} \qquad T^{2}$$

$$T^{2} \qquad T^{2}$$

wherein

each T^2 independently represents N, CH, or CG^4 ; with the proviso that a maximum of two bridge atoms T^2 may be N; and bonding to ring J is achieved via terminal atoms T^2 ; and

c)

$$T^{4}$$
, T^{5} , T^{6} , T^{5} , T^{6} , T^{5} , T^{6} , or T^{5} , T^{6} , T^{5} , T^{5} , T^{6} , T^{5} ,

wherein

each T^4 , T^5 , and T^6 independently represents O, S, CR^4G^4 , $C(R^4)_2$, or NR^3 ; and

bonding to ring J is achieved via terminal atoms T^4 or T^5 ; with the provisos that:

- i) when one T^4 is O, S, or NR^3 , the other T^4 is CR^4G^4 or $C(R^4)_2$;
- ii) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- iii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G^1 , G^2 , G^3 , and G^4 , when two groups R^6 are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR^3 to form a heterocycle of 5-7 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 5 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, -CO₂R³, -CHO, -CH₂OR³, -OCO₂R³, -CON(R⁶)₂, -OCO N(R⁶)₂, -NR³CON(R⁶)₂, nitro, amidino, guanidino, mercapto, sulfo, and cyano;

or a pharmaceutically acceptable salt thereof.

2. (Currently amended) A compound having the structural formula

wherein

 R^1 and R^2 :

i) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein bonding is achieved via the terminal carbon atoms; or

ii) together form a bridge of structure

$$\frac{T_{T^1}^1}{T^1 = T^1}$$

wherein one of the ring members T¹ is N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-2; and

G1 is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;

- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- -NO₂;
- -CN;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy; and
- -S(O)_p(optionally substituted heteroarylalkyl);

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- lower alkyl;

- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

```
p is 0 or 1;
```

Y is selected from the group consisting of

```
• -(CH_2)_n-S(O)_p-(5-membered heteroaryl)-(CH_2)_s-;
```

•
$$-(CH_2)_n-C(G^2)(H)-(CH_2)_s-$$
;

wherein

n and s are each independently 0 or 1; and

 G^2 is selected from the group consisting of -CN, -CO₂R³, -CON(R⁶)₂, and -CH₂N(R⁶)₂;

- -O-CH₂-;
- -S(O)-;
- -S(O)₂-;
- -SCH₂-;
- -S(O)CH₂-;
- -S(O)₂CH₂-;
- -CH₂S(O)-; and
- -CH₂S(O)₂-

A and D independently represent N or CH;

L represents N or CH;

with the provisos that

- a) the total number of N atoms in the ring containing A, D, and L is 1 or 2; and
- b) when L represents CH, at least one of A and D is an N atom;

```
q is 0, 1, or 2;
```

G³ is selected from the group consisting of

- lower alkyl;
- -NR³COR⁶;
- $-OR^6$;
- -SR⁶;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy; and
- -S(O)_p(optionally substituted heteroarylalkyl);
- q' represents the number of substituents G^4 on the phenyl ring and is 0, 1, 2, or 3; and

G⁴ moieties are selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- halogen-substituted alkyl;

- hydroxy-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- -SR⁶;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- -OCOR⁶;
- -COR⁶;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);

- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl); <u>and</u>
- fused ring-forming bridges attached to and connecting adjacent positions of the phenyl ring, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^3

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CHG⁴, CH₂, or NR³; and

bonding to the phenyl ring is achieved via terminal atoms T² and T³;

b)

$$T^{2} \downarrow T^{2}$$

$$T^{2} \downarrow T^{2}$$

wherein

each T^2 independently represents N, CH, or CG^4 ; with the proviso that a maximum of two bridge atoms T^2 may be N; and bonding to the phenyl ring is achieved via terminal atoms T^2 ; and

c)

wherein

each T⁵, and T⁶ independently represents O, S, CHG⁴, CH₂, or NR³; and bonding to the phenyl ring is achieved via terminal atoms T⁵; with the provisos that:

i) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and

ii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G^1 , G^2 , G^3 , and G^4 , when two groups R^6 are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR^3 to form a heterocycle of 5-7 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 2 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, -CO₂R³, -CH₂OR³, -OCO₂R³, -CON(R⁶)₂, -OCO N(R⁶)₂, -NR³CON(R⁶)₂, nitro, and cyano;

or a pharmaceutically acceptable salt thereof.

3. (Currently amended) A compound having the structural formula

wherein

 R^1 and R^2 :

i) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein bonding is achieved via the terminal carbon atoms, and any group G^1 is located on a non-terminal atom of the bridge; ΘF

ii) together form a bridge of structure

$$T^{1}$$

$$T^{1} = T^{1}$$

wherein one of the ring members T¹ is N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-2; and

G1 is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- -OR⁶ wherein R6 represents lower alkyl;
- -NO₂;
- optionally substituted heteroaryloxy; and
- optionally substituted heteroarylalkyloxy;

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- lower alkyl;
- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

```
p is 0 or 1;
Y is selected from
```

Y is selected from the group consisting of

- -S(O)_p-(5-membered heteroaryl)-;
- -C(CN)(H)-;
- -O-CH₂-;
- -S(O)-; and
- $-S(O)_2-$;

```
q is 0 or 1;
```

G³ is selected from the group consisting of

- lower alkyl;
- -NR³COR⁶;
- $-CO_2R^6$;
- $-CON(R^6)_2$; and
- $-S(O)_2N(R^6)_2$;

q' represents the number of substituents G^4 on the phenyl ring and is 0, 1, 2, or 3; and

G⁴ moieties are selected from the group consisting of

- $-N(R^6)_2$;
- halogen;
- lower alkyl;
- halogen-substituted lower alkyl;
- -OR⁶;
- $-SR^6$;
- $-S(O)R^6$;

- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- -OCOR⁶;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl); and
- fused ring-forming bridges attached to and connecting adjacent positions of the phenyl ring, said bridges having the structures:

a)

$$T_{\parallel}^{2}$$
 T^{3}

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CHG⁴, CH₂, or NR³; and

bonding to the phenyl ring is achieved via terminal atoms T² and T³;

b)

$$T^{5}$$
 T^{5} T^{6} or T^{5} T^{6}

wherein

each T⁵, and T⁶ independently represents O, S, CHG⁴, CH₂, or NR³; and bonding to the phenyl ring is achieved via terminal atoms T⁵; with the provisos that:

- i) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- ii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G¹, G², G³, and G⁴, when two groups R⁶ are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR³ to form a heterocycle of 5 6 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 2 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkylthio, -CO₂R³, -CON(R⁶)₂, nitro, and cyano;

or a pharmaceutically acceptable salt thereof.

4. (Original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

- 5. (Previously presented) A method of treating a mammal having a condition of tumor growth, retinopathy, rheumatoid arthritis, psoriasis, or a bullous disorder associated with subepidermal blister formation, comprising administering to said mammal an amount of a compound of claim 1 which is effective to treat said condition.
- 6. (cancelled)
- 7. (Currently amended) A compound having the structural formula

$$X - (CR^{4}_{2})_{p} - J (-G^{4})_{q}$$

$$A - B$$

$$C - CR^{4}_{2} - G^{4}$$

$$R^{2}$$

$$C - G^{4}$$

$$R^{2}$$

$$C - G^{4}$$

$$R^{2}$$

$$C - G^{4}$$

wherein

 R^1 and R^2 :

- i) independently represent H or lower alkyl;
- ii) together form a bridge of structure

$$G^1)_m$$

wherein bonding is achieved via the terminal carbon atoms;

iii) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein bonding is achieved via the terminal carbon atoms; or

iv) together form a bridge of structure

$$T^{1}$$

$$T^{1} = T^{1}$$

wherein one or two ring members T¹ are N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-4; and

G¹ is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;

- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;

- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- -NR³CO₂R⁶; and
- $-NR^3CON(R^6)_2$

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- alkyl;
- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

R⁴ is H, halogen, or lower alkyl;

X is selected from the group consisting of O, S, and NH;

Y is selected from the group consisting of

- lower alkylene, optionally substituted by OH or OAcyl;
- -CH₂-O-;

```
• -CH<sub>2</sub>-S-;
    • -CH<sub>2</sub>-NH-;
    • -O-;
    • -S-;
    • -NH-;
    • -(CR_2^4)_n-S(O)<sub>p</sub>-(5-membered heteroaryl)-(CR_2^4)_s-;
    • -(CR_2^4)_n-C(G^2)(R^4)-(CR_2^4)_s-;
         wherein
             n and s are each independently 0 or an integer of 1-2; and
             G^2 is selected from the group consisting of -CN, -CO<sub>2</sub>R<sup>3</sup>, -CON(R<sup>6</sup>)<sub>2</sub>, and
                 -CH_2N(R^6)_2;
    • -O-CH<sub>2</sub>-;
    • -S(O)-;
    • -S(O)_2-;
    • -SCH<sub>2</sub>-;
    • -S(O)CH<sub>2</sub>-;
    • -S(O)<sub>2</sub>CH<sub>2</sub>-;
    • -CH<sub>2</sub>S(O)-; and
       -CH<sub>2</sub>S(O)<sub>2</sub>-
A and D independently represent N or CH;
B and E independently represent N or CH;
L represents N or CH;
    with the provisos that
    a) the total number of N atoms in the ring containing A, B, D, E, and L is 1, 2, or 3 1 or 2;
        and
    b) when L represents CH, at least one of A and D is an N atom;
```

```
q is 1 or 2;
```

G³ is selected from the group consisting of

- -NR³COR⁶;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- -OCOR⁶;
- $-COR^6$;
- $-CO_2R^6$;
- $-CH_2OR^3$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- -NO₂;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- $-OCON(R^6)_2$;

- $-NR^3CO_2R^6$; and
- $-NR^3CON(R^6)_2$;

J is a ring selected from the group consisting of

- aryl;
- pyridyl; and
- cycloalkyl;

q' represents the number of substituents G^4 on ring J and is 0, 1, 2, 3, 4, or 5, and G^4 moieties are selected from the group consisting of

- $-N(R^6)_2$;
- -NR³COR⁶;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;
- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;

- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- -OCOR⁶;
- -COR⁶;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;

- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$;
- -NR³CON(R⁶)₂; and
- fused ring-forming bridges attached to and connecting adjacent positions of ring J, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^3

whereir

each T² independently represents N, CH, or CG⁴;

 T^3 represents S, O, CR^4G^4 , $C(R^4)_2$, or NR^3 ; and

bonding to ring J is achieved via terminal atoms T^2 and T^3 ;

b)

$$T^{2} \qquad T^{2} \qquad T^{2$$

wherein

each T² independently represents N, CH, or CG⁴;

with the proviso that a maximum of two bridge atoms T^2 may be N; and bonding to ring J is achieved via terminal atoms T^2 ; and

c) T^{4} , T^{5} , T^{6} , T^{5} , T^{6} , or T^{5} , T^{6} , , T^{6

wherein

each T⁴, T⁵, and T⁶ independently represents O, S, CR⁴G⁴, C(R⁴)₂, or NR³; and

bonding to ring J is achieved via terminal atoms T^4 or T^5 ; with the provisos that:

- i) when one T^4 is O, S, or NR³, the other T^4 is CR⁴G⁴ or C(R⁴)₂;
- ii) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- iii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G^1 , G^2 , G^3 , and G^4 , when two groups R^6 are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR^3 to form a heterocycle of 5-7 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 5 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkylthio, lower

alkanoyloxy, $-\text{CO}_2\text{R}^3$, -CHO, $-\text{CH}_2\text{OR}^3$, $-\text{OCO}_2\text{R}^3$, $-\text{CON}(\text{R}^6)_2$, $-\text{OCO}_2\text{N}(\text{R}^6)_2$, nitro, amidino, guanidino, mercapto, sulfo, and cyano; or a pharmaceutically acceptable salt thereof.

8. (Currently amended) A compound having the structural formula

wherein

 R^1 and R^2 :

i) together form a bridge of structure

wherein bonding is achieved via the terminal carbon atoms; or

ii) together form a bridge of structure

$$T^{1} = T^{1}$$

wherein one of the ring members T¹ is N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-2; and

G¹ is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;

- halogen;
- alkyl;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- -NO₂;
- -CN;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy; and
- -S(O)_p(optionally substituted heteroarylalkyl);

```
R<sup>3</sup> is H or lower alkyl;
```

R⁶ is independently selected from the group consisting of

- H;
- lower alkyl;
- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

```
p is 0 or 1;
```

Y is selected from the group consisting of

- lower alkylene, optionally substituted by OH or OAcyl;
- -CH₂-O-;
- -CH₂-S-;
- -CH₂-NH-;
- -O-;
- -S-;
- -NH-;
- $-(CH_2)_n$ -S(O)_p-(5-membered heteroaryl)-(CH₂)_s-;
- -(CH₂)_n-C(G²)(H)-(CH₂)_s-;

wherein

n and s are each independently 0 or 1; and

 G^2 is selected from the group consisting of -CN, -CO₂R³, -CON(R⁶)₂, and -CH₂N(R⁶)₂;

- -O-CH₂-;
- -S(O)-;
- $-S(O)_2-$;
- -SCH₂-;

- -S(O)CH₂-;
- $-S(O)_2CH_2-$;
- -CH₂S(O)-; and
- -CH₂S(O)₂-

A and D independently represent N or CH;

L represents N or CH;

with the provisos that

- a) the total number of N atoms in the ring containing A, D, and L is 1 or 2; and
- b) when L represents CH, at least one of A and D is an N atom;

G³ is selected from the group consisting of

- $-NR^3COR^6$;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);

- optionally substituted heteroarylalkyloxy; and
- -S(O)_p(optionally substituted heteroarylalkyl);
- q' represents the number of substituents G^4 on the phenyl ring and is 0, 1, 2, or 3; and

G⁴ moieties are selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- halogen-substituted alkyl;
- hydroxy-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;

- halogenated lower alkylsulfonyl;
- -OCOR⁶;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl); and
- fused ring-forming bridges attached to and connecting adjacent positions of the phenyl ring, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^3

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CHG⁴, C(H)₂, or NR³; and

bonding to the phenyl ring is achieved via terminal atoms T^2 and T^3 ;

b)

wherein

each T² independently represents N, CH, or CG⁴;

with the proviso that a maximum of two bridge atoms T^2 may be N; and bonding to the phenyl ring is achieved via terminal atoms T^2 ; and

c)

wherein

each T⁵, and T⁶ independently represents O, S, CHG⁴, C(H)₂, or NR³; and bonding to the phenyl ring is achieved via terminal atoms T⁵; with the provisos that:

- i) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- ii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G¹, G², G³, and G⁴, when two groups R⁶ are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR³ to form a heterocycle of 5 7 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 2 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, -CO₂R³, -CH₂OR³, -OCO₂R³, -CON(R⁶)₂, -OCO N(R⁶)₂, -NR³CON(R⁶)₂, nitro, and cyano;

or a pharmaceutically acceptable salt thereof.

9. (Currently amended) A compound having the structural formula

wherein

 R^1 and R^2 :

i) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein bonding is achieved via the terminal carbon atoms, and any group G^1 is located on a non-terminal atom of the bridge; Θ

ii) together form a bridge of structure

$$\frac{\mathsf{T}^1}{\mathsf{T}^1 = \mathsf{T}^1}$$

— wherein one of the ring members T¹ is N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-2; and

G¹ is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- -NR³COR⁶;
- halogen;
- -OR⁶ wherein R6 represents lower alkyl;

- -NO₂;
- optionally substituted heteroaryloxy; and
- optionally substituted heteroarylalkyloxy;

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- lower alkyl;
- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

p is 0 or 1;

Y is selected from the group consisting of

- lower alkylene, optionally substituted by OH;
- -CH₂-O-;
- -S-;
- -NH-;
- -S(O)_p-(5-membered heteroaryl)-;
- -C(CN)(H)-;
- -O-CH₂-;
- -S(O)-; and
- $-S(O)_2-$;

q is 1;

G³ is selected from the group consisting of

- -NR³COR⁶;
- $-CO_2R^6$;
- $-CON(R^6)_2$; and
- $-S(O)_2N(R^6)_2$;
- q' represents the number of substituents G⁴ on the phenyl ring and is 0, 1, 2, or 3;

G⁴ moieties are selected from the group consisting of

- $-N(R^6)_2$;
- halogen;
- lower alkyl;
- halogen-substituted lower alkyl;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- -COR⁶;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- -CH₂OR³;
- -NO₂;
- -CN;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;

- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl); and
- fused ring-forming bridges attached to and connecting adjacent positions of the phenyl ring, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^3

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CHG⁴, CH₂, or NR³; and

bonding to the phenyl ring is achieved via terminal atoms T² and T³;

b)

$$T^{5}$$
 T^{6} or T^{5}

wherein

each T⁵, and T⁶ independently represents O, S, CHG⁴, CH₂, or NR³; and bonding to the phenyl ring is achieved via terminal atoms T⁵; with the provisos that:

- i) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- ii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G^1 , G^2 , G^3 , and G^4 , when two groups R^6 are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR^3 to form a heterocycle of 5-6 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 2 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, -CO₂R³, -CON(R⁶)₂, nitro, and cyano;

or a pharmaceutically acceptable salt thereof.

- 10. (Original) A pharmaceutical composition comprising a compound of claim 7 and a pharmaceutically acceptable carrier.
- 11. (Previously presented) A method of treating a mammal having a condition of tumor growth, retinopathy, rheumatoid arthritis, psoriasis, or a bullous disorder associated with subepidermal blister formation, comprising administering to said mammal an amount of a compound of claim 7 which is effective to treat said condition.

12. (cancelled)

13. (Currently amended) A compound having the structural formula

$$X - (CR^{4}_{2})_{p} \qquad J \qquad G^{4})_{q}$$

$$A - B \qquad R^{2}$$

$$D = E \qquad G^{3})_{q}$$

wherein

 R^1 and R^2 :

i) independently represent H or lower alkyl;

ii) together form a bridge of structure

- wherein bonding is achieved via the terminal carbon atoms;

iii) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein bonding is achieved via the terminal carbon atoms; or

iv) together form a bridge of structure

$$\frac{T^1}{T^1 = T^1}$$

wherein one or two ring members T¹ are N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-4; and

G1 is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- -NR³COR⁶;
- halogen;
- alkyl;
- cycloalkyl;
- lower alkenyl;
- lower cycloalkenyl;

- halogen-substituted alkyl;
- amino-substituted alkyl;
- N-lower alkylamino-substituted alkyl;
- N,N-di-lower alkylamino-substituted alkyl;
- N-lower alkanoylamino-substituted alkyl;
- hydroxy-substituted alkyl;
- cyano-substituted alkyl;
- carboxy-substituted alkyl;
- lower alkoxycarbonyl-substituted alkyl;
- phenyl lower alkoxycarbonyl-substituted alkyl;
- halogen-substituted alkylamino;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;
- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- cyano-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- phenyl-lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- -OCOR⁶;

- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-CH_2OR^3$;
- -NO₂;
- -CN;
- amidino;
- guanidino;
- sulfo;
- -B(OH)2;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- $-OCO_2R^3$;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$; and
- $-NR^3CON(R^6)_2$

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- alkyl;
- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

R⁴ is H, halogen, or lower alkyl;

X is selected from the group consisting of O, S, and NH;

Y is selected from the group consisting of

- lower alkylene, optionally substituted by OH or OAcyl;
- -CH₂-O-;
- -CH₂-S-;
- -CH₂-NH-;
- -O-;
- -S-;
- -NH-;
- $-(CR_2^4)_n$ -S(O)_p-(5-membered heteroaryl)- $(CR_2^4)_s$ -;
- $-(CR_2)_n-C(G^2)(R^4)-(CR_2)_{s-}$;

wherein

n and s are each independently 0 or an integer of 1-2; and $G^2 \ \text{is selected from the group consisting of -CN, -CO}_2R^3, \text{-CON}(R^6)_2 \ , \ \text{and} \\ \text{-CH}_2N(R^6)_2 \ ;$

- -O-CH₂-;
- -S(O)-;
- -S(O)₂-;

 $-CO_2R^6$;

 $-SCH_2-;$ $-S(O)CH_2-$; $-S(O)_2CH_2-$; -CH₂S(O)-; and $-CH_2S(O)_2-$ A and D independently represent N or CH; B and E independently represent N or CH; L represents N or CH; with the provisos that a) the total number of N atoms in the ring containing A, B, D, E, and L is 1, 2, or 3 1 or 2; and b) when L represents CH, at least one of A and D is an N atom; q is 0, 1, or 2; G³ is selected from the group consisting of • lower alkyl; -NR³COR⁶; • carboxy-substituted alkyl; lower alkoxycarbonyl-substituted alkyl; $-OR^6$; • $-SR^6$; $-S(O)R^6$; $-S(O)_2R^6$; -OCOR⁶; -COR⁶;

- $-CH_2OR^3$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- -NO₂;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted saturated heterocyclyl;
- optionally substituted partially unsaturated heterocyclyl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- $-OCON(R^6)_2$;
- -NR³CO₂R⁶; and
- $-NR^3CON(R^6)_2$;

J is a ring selected from the group consisting of

- aryl;
- pyridyl; and
- cycloalkyl;

q' represents the number of substituents G^4 on ring J and is 1, 2, 3, 4, or 5, and G^4 moieties are selected from the group consisting of

- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);

- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl);
- -CHO;
- $-OCON(R^6)_2$;
- $-NR^3CO_2R^6$; and
- fused ring-forming bridges attached to and connecting adjacent positions of ring J,
 said bridges having the structures:

a)

$$T^2$$
 T^2
 T^3

wherein

each T^2 independently represents N, CH, or CG^4 ;

 T^3 represents S, O, CR^4G^4 , $C(R^4)_2$, or NR^3 ; and

bonding to ring J is achieved via terminal atoms T^2 and T^3 ;

b)

$$\begin{array}{c|c}
T^2 & T^2 \\
T^2 & T^2
\end{array}$$

wherein

each T^2 independently represents N, CH, or CG^4 ; with the proviso that a maximum of two bridge atoms T^2 may be N; and bonding to ring J is achieved via terminal atoms T^2 ; and

c)

$$T^{4}$$
, T^{5} , T^{6} , T^{5} , T^{6} , T^{5} , T^{6} , or T^{5} , T^{6} , T^{6} , T^{5} , T^{6} ,

wherein

each T⁴, T⁵, and T⁶ independently represents O, S, CR⁴G⁴, C(R⁴)₂, or NR³; and

bonding to ring J is achieved via terminal atoms T^4 or T^5 ; with the provisos that:

- i) when one T^4 is O, S, or NR³, the other T^4 is CR^4G^4 or $C(R^4)_2$;
- ii) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- iii) in a bridge comprising T^5 and T^6 atoms, when one T^5 is O, the other T^5 is S, CR^4G^4 , $C(R^4)_2$ or NR^3 ;
- iv) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G^1 , G^2 , G^3 , and G^4 , when two groups R^6 are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR^3 to form a heterocycle of 5 7 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 5 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, -CO₂R³, -CHO, -CH₂OR³, -OCO₂R³, -CON(R⁶)₂, -OCO N(R⁶)₂, -OCO N(R⁶)₂, nitro, amidino, guanidino, mercapto, sulfo, and cyano;

or a pharmaceutically acceptable salt thereof.

14. (Currently amended) A compound having the structural formula

$$\begin{array}{c}
 & H \\
 & H \\$$

wherein

 R^1 and R^2 :

i) together form a bridge of structure

$$=$$
 $G^1)_n$

wherein bonding is achieved via the terminal carbon atoms; or

ii) together form a bridge of structure

$$T^{1}$$

$$T^{1} = T^{1}$$

wherein one of the ring members T¹ is N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-2; and

G1 is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- $-NR^3COR^6$;
- halogen;
- alkyl;
- amino-substituted alkylamino;
- N-lower alkylamino-substituted alkylamino;
- N,N-di-lower alkylamino-substituted alkylamino;

- N-lower alkanoylamino-substituted alkylamino;
- hydroxy-substituted alkylamino;
- carboxy-substituted alkylamino;
- lower alkoxycarbonyl-substituted alkylamino;
- $-OR^6$;
- $-SR^6$:
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- halogenated lower alkoxy;
- halogenated lower alkylthio;
- halogenated lower alkylsulfonyl;
- $-OCOR^6$;
- $-COR^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- -NO₂;
- -CN;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy; and
- -S(O)_p(optionally substituted heteroarylalkyl);

R³ is H or lower alkyl;

R⁶ is independently selected from the group consisting of

- H;
- lower alkyl;

- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

```
p is 0 or 1;
```

Y is selected from the group consisting of

```
• lower alkylene, optionally substituted by OH or OAcyl;
```

```
• -CH<sub>2</sub>-O-;
```

- -CH₂-S-;
- -CH₂-NH-;
- -O-;
- -S-;
- -NH-;
- $-(CH_2)_n$ -S(O)_p-(5-membered heteroaryl)-(CH₂)_s-;
- $-(CH_2)_n-C(G^2)(H)-(CH_2)_s-$;

wherein

n and s are each independently 0 or 1; and $G^2 \mbox{ is selected from the group consisting of -CN, -CO_2R^3, -CON(R^6)_2, and -CH_2N(R^6)_2;}$

- -O-CH₂-;
- -S(O)-;
- -S(O)₂-;
- -SCH₂-;
- -S(O)CH₂-;
- -S(O)₂CH₂-;
- -CH₂S(O)-; and
- -CH₂S(O)₂-

```
A and D independently represent N or CH;
```

L represents N or CH;

with the provisos that

- a) the total number of N atoms in the ring containing A, D, and L is 1 or 2; and
- b) when L represents CH, at least one of A and D is an N atom;

```
q is 0, 1, or 2;
```

G³ is selected from the group consisting of

- lower alkyl;
- $-NR^3COR^6$;
- $-OR^6$;
- $-SR^6$;
- $-S(O)R^6$;
- $-S(O)_2R^6$;
- $-CO_2R^6$;
- $-CON(R^6)_2$;
- $-S(O)_2N(R^6)_2$;
- -CN;
- optionally substituted aryl;
- optionally substituted heteroaryl;
- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy; and
- -S(O)_p(optionally substituted heteroarylalkyl);

q' represents the number of substituents G⁴ on the phenyl ring and is 1, 2, or 3;

and

G⁴ moieties are selected from the group consisting of

- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl); and
- fused ring-forming bridges attached to and connecting adjacent positions of the phenyl ring, said bridges having the structures:

a)

$$T_{\parallel}^{2}$$
 T_{\parallel}^{3}

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CHG⁴, C(H)₂, or NR³; and

bonding to the phenyl ring is achieved via terminal atoms T² and T³;

b)

wherein

each T² independently represents N, CH, or CG⁴;

with the proviso that a maximum of two bridge atoms T^2 may be N; and bonding to the phenyl ring is achieved via terminal atoms T^2 ; and

c)

$$T^{5}$$
 T^{6}
or
 T^{5}
 T^{6}

wherein

each T⁵, and T⁶ independently represents O, S, CHG⁴, CH₂, or NR³; and bonding to the phenyl ring is achieved via terminal atoms T⁵; with the provisos that:

- i) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- ii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ is O, the other T⁵ is S, CHG⁴, CH₂ or NR³;
- iii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G^1 , G^2 , G^3 , and G^4 , when two groups R^6 are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR^3 to form a heterocycle of 5 7 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 2 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, lower alkanoyloxy, -CO₂R³, -CH₂OR³, -OCO₂R³, -CON(R⁶)₂, -OCO N(R⁶)₂, -NR³CON(R⁶)₂, nitro, and cyano;

or a pharmaceutically acceptable salt thereof.

15. (Currently amended) A compound having the structural formula

wherein

 R^1 and R^2 :

i) together form a bridge of structure

$$=$$
 $G^1)_m$

wherein bonding is achieved via the terminal carbon atoms, and any group G^1 is located on a non-terminal atom of the bridge; Θ^2

ii) together form a bridge of structure

$$T^{1}$$

$$T^{1} = T^{1}$$

wherein one of the ring members T¹ is N and the others are CH, and bonding is achieved via the terminal atoms; and

wherein

m is 0 or an integer 1-2; and

G¹ is a substituent independently selected from the group consisting of

- $-N(R^6)_2$;
- -NR³COR⁶;
- halogen;
- -OR⁶ wherein R6 represents lower alkyl;
- -NO₂;
- optionally substituted heteroaryloxy; and

• optionally substituted heteroarylalkyloxy;

```
R<sup>3</sup> is H or lower alkyl;
```

R⁶ is independently selected from the group consisting of

- H;
- lower alkyl;
- optionally substituted aryl;
- optionally substituted aryl lower alkyl; and

```
p is 0 or 1;
```

Y is selected from the group consisting of

- lower alkylene, optionally substituted by OH;
- -CH₂-O-;
- -S-;
- -NH-;
- -S(O)_p-(5-membered heteroaryl)-;
- -C(CN)(H)-;
- -O-CH₂-;
- -S(O)-; and
- $-S(O)_2-$;

```
q is 0 or 1;
```

 G^3 is selected from the group consisting of

- lower alkyl;
- -NR³COR⁶;

- $-CO_2R^6$;
- $-CON(R^6)_2$; and
- $-S(O)_2N(R^6)_2$;

q' represents the number of substituents G⁴ on the phenyl ring, and is 1, 2, or 3; and

G⁴ moieties are selected from the group consisting of

- optionally substituted heteroarylalkyl;
- optionally substituted heteroaryloxy;
- -S(O)_p(optionally substituted heteroaryl);
- optionally substituted heteroarylalkyloxy;
- -S(O)_p(optionally substituted heteroarylalkyl); and
- fused ring-forming bridges attached to and connecting adjacent positions of the phenyl ring, said bridges having the structures:

a)

$$T^2$$
 T^2
 T^3

wherein

each T² independently represents N, CH, or CG⁴;

T³ represents S, O, CHG⁴, CH₂, or NR³; and

bonding to the phenyl ring is achieved via terminal atoms T² and T³;

b)

$$T^{5}$$
 T^{6} or T^{5} T^{6}

wherein

each T⁵, and T⁶ independently represents O, S, CHG⁴, CH₂, or NR³; and bonding to the phenyl ring is achieved via terminal atoms T⁵;

with the provisos that:

- i) a bridge comprising T⁵ and T⁶ atoms may contain a maximum of two heteroatoms O, S, or N; and
- ii) in a bridge comprising T^5 and T^6 atoms, when one T^5 is O, the other T^5 is S, CR^4G^4 , $C(R^4)_2$ or NR^3 ;
- iii) in a bridge comprising T⁵ and T⁶ atoms, when one T⁵ group and one T⁶ group are O atoms, or two T⁶ groups are O atoms, said O atoms are separated by at least one carbon atom;

and with the further provisos that:

- in G¹, G², G³, and G⁴, when two groups R⁶ are each alkyl and located on the same N atom they may be linked by a bond, an O, an S, or NR³ to form a heterocycle of 5 6 ring atoms; and
- when an aryl, heteroaryl, or heterocyclyl ring is optionally substituted, that ring may bear up to 2 substituents which are independently selected from the group consisting of amino, mono-loweralkyl-substituted amino, di-loweralkyl-substituted amino, lower alkanoylamino, halogeno, lower alkyl, halogenated lower alkyl, hydroxy, lower alkoxy, lower alkylthio, halogenated lower alkoxy, halogenated lower alkylthio, -CO₂R³, -CON(R⁶)₂, nitro, and cyano;

or a pharmaceutically acceptable salt thereof.

- 16. (Original) A pharmaceutical composition comprising a compound of claim 13 and a pharmaceutically acceptable carrier.
- 17. (Previously presented) A method of treating a mammal having a condition of tumor growth, retinopathy, rheumatoid arthritis, psoriasis, or a bullous disorder associated with

subepidermal blister formation, comprising administering to said mammal an amount of a compound of claim 13 which is effective to treat said condition.

18. (Cancelled)

- 19. (Previously presented) A compound selected from the group consisting of:
 - a) 4-[4-(4-Chlorophenylamino)phthalazin-1-ylmethyl]pyridin-2-yl carboxylic acid methylamide;
 - b) 4-[4-(4-Chlorophenylamino)phthalazin-1-ylmethyl]pyridin-2-yl carboxylic acid amide;
 - c) 1-(4-chlorophenylamino)-4-(3-pyridylmethoxy)phthalazine;
 - d) 4-[4-(4-Chlorophenylamino)phthalazin-1-yloxymethyl]pyridin-2-yl carboxylic acid methylamide;
 - e) 4-[4-(4-Chlorophenylamino)phthalazin-1-yloxymethyl]pyridin-2-yl carboxylic acid amide;
 - f) 4-[4-(3-Bromophenylamino)phthalazin-1-ylmethyl]-pyridin-2-yl carboxylic acid methylamide;
 - g) 4-[4-(3-Bromophenylamino)phthalazin-1-ylmethyl]-pyridin-2-yl carboxylic acid amide;
 - h) 1-(4-chlorophenylamino)-4-[(2-phenyl-4-pyridyl)methyl]phthalazine;
 - i) 1-[4-(4-pyridyloxy)phenylamino]-4-(4-pyridylmethyl)phthalazine;
 - j) 1-(indan-5-ylamino)-4-(4-pyridylmethyl)phthalazine;
 - k) 4-[4-(4-Chlorophenylamino)phthalazin-1-ylmethyl]pyridin-2-yl carboxylic acid methylamide dihydrochloride;
 - 4-[4-(4-Chlorophenylamino)phthalazin-1-ylmethyl]pyridin-2-yl carboxylic acid methylamide dimethanesulfonate;
 - m) 4-[4-(4-Chlorophenylamino)phthalazin-1-ylmethyl]pyridin2-yl carboxylic acid amide dihydrochloride;
 - n) 4-[4-(4-Chlorophenylamino)phthalazin-1-ylmethyl]pyridin-2-yl carboxylic acid amide dimethanesulfonate;

- o) 4-[4-(4-Chlorophenylamino)phthalazin-1-yloxymethyl]pyridin-2-yl carboxylic acid amide dihydrochloride;
- p) 4-[4-(4-Chlorophenylamino)phthalazin-1-yloxymethyl]pyridin-2-yl carboxylic acid amide dimethanesulfonate;
- q) 1-(4-chlorophenylamino)-4-[5-(4-pyridyl)-1H-1,2,4-triazolyl-3-ylthio]phthalazine;
- r) 1-(4-isopropylphenylamino)-4-[5-(4-pyridyl)-1H-1,2,4-triazolyl-3-ylthio]phthalazine
- s) 1-(4-chlorophenylamino)-4-(4-pyridylsufonyl)phthalazine;
- t) 1-(4-chlorophenylamino)-4-(4-pyridylsufinyl)phthalazine;
- v) 1-(indan-5-ylamino)-4-(4-pyridylcyanomethyl)phthalazine; and
- w) 1-(benzothiazol-6-ylamino)-4-(4-pyridylcyanomethyl)phthalazine.
- 20. (Previously presented) The method of claim 5, wherein said condition of retinopathy is diabetic retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, or agerelated macular degeneration.
- 21. (Previously presented) The method of claim 5, wherein when said condition is a bullous disorder associated with subepidermal blister formation, it is bullous pemphigoid, erythema multiforme, or dermatitis herpetiformis.
- 22. (Previously presented) The method of claim 11, wherein said condition of retinopathy is diabetic retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, or agerelated macular degeneration.
- 23. (Previously presented) The method of claim 11, wherein when said condition is a bullous disorder associated with subepidermal blister formation, it is bullous pemphigoid, erythema multiforme, or dermatitis herpetiformis.

- 24. (Previously presented) The method of claim 17, wherein said condition of retinopathy is diabetic retinopathy, ischemic retinal-vein occlusion, retinopathy of prematurity, or agerelated macular degeneration.
- 25. (Previously presented) The method of claim 17, wherein when said condition is a bullous disorder associated with subepidermal blister formation, it is bullous pemphigoid, erythema multiforme, or dermatitis herpetiformis.