# **Importing Libraries**

### In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

# **Importing Datasets**

### In [3]:

df=pd.read\_csv(r"C:\Users\user\Downloads\C10\_air\csvs\_per\_year\csvs(Dataset)\madrid\_2015.
df

### Out[3]:

|        | date                       | BEN | со  | EBE | имнс | NO   | NO_2  | O_3  | PM10 | PM25     | SO_2 | тсн  | TOL |
|--------|----------------------------|-----|-----|-----|------|------|-------|------|------|----------|------|------|-----|
| 0      | 2015-<br>10-01<br>01:00:00 | NaN | 0.8 | NaN | NaN  | 90.0 | 82.0  | NaN  | NaN  | NaN      | 10.0 | NaN  | NaN |
| 1      | 2015-<br>10-01<br>01:00:00 | 2.0 | 0.8 | 1.6 | 0.33 | 40.0 | 95.0  | 4.0  | 37.0 | 24.0     | 12.0 | 1.83 | 8.3 |
| 2      | 2015-<br>10-01<br>01:00:00 | 3.1 | NaN | 1.8 | NaN  | 29.0 | 97.0  | NaN  | NaN  | NaN      | NaN  | NaN  | 7.1 |
| 3      | 2015-<br>10-01<br>01:00:00 | NaN | 0.6 | NaN | NaN  | 30.0 | 103.0 | 2.0  | NaN  | NaN      | NaN  | NaN  | NaN |
| 4      | 2015-<br>10-01<br>01:00:00 | NaN | NaN | NaN | NaN  | 95.0 | 96.0  | 2.0  | NaN  | NaN      | 9.0  | NaN  | NaN |
|        |                            |     |     |     |      |      |       |      |      |          |      |      |     |
| 210091 | 2015-<br>08-01<br>00:00:00 | NaN | 0.2 | NaN | NaN  | 11.0 | 33.0  | 53.0 | NaN  | NaN      | NaN  | NaN  | NaN |
| 210092 | 2015-<br>08-01<br>00:00:00 | NaN | 0.2 | NaN | NaN  | 1.0  | 5.0   | NaN  | 26.0 | NaN      | 10.0 | NaN  | NaN |
| 210093 | 2015-<br>08-01<br>00:00:00 | NaN | NaN | NaN | NaN  | 1.0  | 7.0   | 74.0 | NaN  | NaN      | NaN  | NaN  | NaN |
| 210094 | 2015-<br>08-01<br>00:00:00 | NaN | NaN | NaN | NaN  | 3.0  | 7.0   | 65.0 | NaN  | NaN      | NaN  | NaN  | NaN |
| 210095 | 2015-<br>08-01<br>00:00:00 | NaN | NaN | NaN | NaN  | 1.0  | 9.0   | 54.0 | 29.0 | NaN      | NaN  | NaN  | NaN |
| 210006 | 210096 rows × 14 columns   |     |     |     |      |      |       |      |      |          |      |      |     |
|        |                            |     |     |     |      |      |       |      |      | <b>k</b> |      |      |     |
| ◀      |                            |     |     |     |      |      |       |      |      |          |      |      | •   |

# **Data Cleaning and Data Preprocessing**

### In [4]:

df=df.dropna()

#### In [5]:

```
df.columns
```

```
Out[5]:
```

### In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16026 entries, 1 to 210078
Data columns (total 14 columns):
    Column
             Non-Null Count Dtype
    -----
             -----
---
                             ----
0
    date
             16026 non-null object
 1
    BEN
             16026 non-null float64
 2
    CO
             16026 non-null float64
 3
    EBE
             16026 non-null float64
 4
    NMHC
             16026 non-null float64
 5
             16026 non-null float64
    NO
 6
    NO_2
             16026 non-null float64
 7
    0 3
             16026 non-null float64
 8
    PM10
             16026 non-null float64
 9
    PM25
             16026 non-null float64
 10
    SO_2
             16026 non-null float64
 11
    TCH
             16026 non-null float64
 12
    TOL
             16026 non-null float64
    station 16026 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.8+ MB
```

```
In [7]:
```

```
data=df[['BEN', 'TOL', 'TCH']]
data
```

### Out[7]:

|        | BEN | TOL  | тсн  |  |
|--------|-----|------|------|--|
| 1      | 2.0 | 8.3  | 1.83 |  |
| 6      | 0.5 | 4.8  | 1.29 |  |
| 25     | 1.6 | 6.9  | 1.93 |  |
| 30     | 0.4 | 7.8  | 1.27 |  |
| 49     | 2.2 | 13.9 | 2.05 |  |
|        |     |      |      |  |
| 210030 | 0.1 | 0.2  | 1.18 |  |
| 210049 | 0.4 | 1.2  | 1.45 |  |
| 210054 | 0.1 | 0.2  | 1.18 |  |
| 210073 | 0.1 | 0.6  | 1.44 |  |
| 210078 | 0.1 | 0.4  | 1.18 |  |

16026 rows × 3 columns

## Line chart

### In [8]:

```
data.plot.line(subplots=True)
```

### Out[8]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)



# Line chart

### In [9]:

data.plot.line()

### Out[9]:

### <AxesSubplot:>



## **Bar chart**

### In [10]:

b=data[0:50]

### In [11]:

b.plot.bar()

### Out[11]:

## <AxesSubplot:>



# Histogram

### In [12]:

data.plot.hist()

### Out[12]:

<AxesSubplot:ylabel='Frequency'>



## Area chart

### In [13]:

data.plot.area()

### Out[13]:

<AxesSubplot:>



## **Box chart**

## In [14]:

data.plot.box()

## Out[14]:

## <AxesSubplot:>



## Pie chart

### In [15]:

```
b.plot.pie(y='BEN' )
```

### Out[15]:

<AxesSubplot:ylabel='BEN'>



## **Scatter chart**

### In [16]:

```
data.plot.scatter(x='BEN' ,y='TOL')
```

### Out[16]:

<AxesSubplot:xlabel='BEN', ylabel='TOL'>



### In [17]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 16026 entries, 1 to 210078
Data columns (total 14 columns):

| Daca                                                | COTAIIII | (cocar in coramin | ٠,٠     |  |  |  |
|-----------------------------------------------------|----------|-------------------|---------|--|--|--|
| #                                                   | Column   | Non-Null Count    | Dtype   |  |  |  |
|                                                     |          |                   |         |  |  |  |
| 0                                                   | date     | 16026 non-null    | object  |  |  |  |
| 1                                                   | BEN      | 16026 non-null    | float64 |  |  |  |
| 2                                                   | CO       | 16026 non-null    | float64 |  |  |  |
| 3                                                   | EBE      | 16026 non-null    | float64 |  |  |  |
| 4                                                   | NMHC     | 16026 non-null    | float64 |  |  |  |
| 5                                                   | NO       | 16026 non-null    | float64 |  |  |  |
| 6                                                   | NO_2     | 16026 non-null    | float64 |  |  |  |
| 7                                                   | 0_3      | 16026 non-null    | float64 |  |  |  |
| 8                                                   | PM10     | 16026 non-null    | float64 |  |  |  |
| 9                                                   | PM25     | 16026 non-null    | float64 |  |  |  |
| 10                                                  | S0_2     | 16026 non-null    | float64 |  |  |  |
| 11                                                  | TCH      | 16026 non-null    | float64 |  |  |  |
| 12                                                  | TOL      | 16026 non-null    | float64 |  |  |  |
| 13                                                  | station  | 16026 non-null    | int64   |  |  |  |
| <pre>dtypes: float64(12), int64(1), object(1)</pre> |          |                   |         |  |  |  |

memory usage: 1.8+ MB

```
In [18]:
```

```
df.describe()
```

### Out[18]:

|       | BEN          | СО           | EBE          | NMHC         | NO           | NO_2         |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|
| count | 16026.000000 | 16026.000000 | 16026.000000 | 16026.000000 | 16026.000000 | 16026.000000 |
| mean  | 0.504823     | 0.380594     | 0.394247     | 0.123099     | 23.842256    | 40.948771    |
| std   | 0.716896     | 0.260805     | 0.678592     | 0.092368     | 51.255660    | 33.236098    |
| min   | 0.100000     | 0.100000     | 0.100000     | 0.000000     | 1.000000     | 1.000000     |
| 25%   | 0.100000     | 0.200000     | 0.100000     | 0.070000     | 1.000000     | 14.000000    |
| 50%   | 0.200000     | 0.300000     | 0.100000     | 0.100000     | 6.000000     | 35.000000    |
| 75%   | 0.700000     | 0.500000     | 0.400000     | 0.140000     | 24.000000    | 60.000000    |
| max   | 17.700001    | 4.500000     | 12.100000    | 1.090000     | 960.000000   | 369.000000   |
| 4     |              |              |              |              |              | <b>&gt;</b>  |

### In [19]:

```
df1=df[['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station']]
```

## **EDA AND VISUALIZATION**

### In [20]:

sns.pairplot(df1[0:50])

### Out[20]:

<seaborn.axisgrid.PairGrid at 0x1ee9e9f0c40>



#### In [21]:

```
sns.distplot(df1['BEN'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

#### Out[21]:

<AxesSubplot:xlabel='BEN', ylabel='Density'>



#### In [22]:

sns.heatmap(df1.corr())

#### Out[22]:

### <AxesSubplot:>



## TO TRAIN THE MODEL AND MODEL BULDING

```
In [24]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

## **Linear Regression**

```
In [25]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

#### Out[25]:

LinearRegression()

### In [26]:

```
lr.intercept_
```

#### Out[26]:

28079038.123703483

### In [27]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

#### Out[27]:

#### BEN 1.150938 CO -9.490519 **EBE** -0.493180 **NMHC** 13.263580 NO 0.079809 NO\_2 -0.018493 -0.014573 $O_3$ **PM10** 0.010000

Co-efficient

**SO\_2** -1.127079

**PM25** 

**TCH** -9.503718

**TOL** -0.115914

0.096769

```
In [28]:
```

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

### Out[28]:

<matplotlib.collections.PathCollection at 0x1eeabbee0d0>



## **ACCURACY**

```
In [29]:
```

```
lr.score(x_test,y_test)
```

### Out[29]:

0.8712230144436421

### In [30]:

```
lr.score(x_train,y_train)
```

### Out[30]:

0.871779860524847

# Ridge and Lasso

### In [31]:

```
from sklearn.linear_model import Ridge,Lasso
```

### In [32]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

### Out[32]:

Ridge(alpha=10)

## Accuracy(Ridge)

```
In [33]:
rr.score(x_test,y_test)
Out[33]:
0.8699290510221751
In [34]:
rr.score(x_train,y_train)
Out[34]:
0.8710049657009941
In [35]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[35]:
Lasso(alpha=10)
In [36]:
la.score(x_test,y_test)
Out[36]:
0.7297414144040693
```

# **Accuracy(Lasso)**

```
In [37]:
la.score(x_train,y_train)
Out[37]:
0.7320870681548695
```

# **Accuracy(Elastic Net)**

```
In [38]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[38]:
```

ElasticNet()

```
In [39]:
en.coef_
Out[39]:
                               , -0.
                                                          , 0.07335022,
array([-0.
       -0.05194118, -0.01167171, 0.02182083, 0.05253284, -1.31766686,
                 , -0.08100712])
In [40]:
en.intercept_
Out[40]:
28079025.950274505
In [41]:
prediction=en.predict(x_test)
In [42]:
en.score(x_test,y_test)
Out[42]:
0.818679035054062
```

## **Evaluation Metrics**

```
In [43]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

2.5316843413887313 11.604509628883251 3.406539245169979

## **Logistic Regression**

```
In [44]:
```

```
In [46]:
feature_matrix.shape
Out[46]:
(16026, 10)
In [47]:
target_vector.shape
Out[47]:
(16026,)
In [48]:
from sklearn.preprocessing import StandardScaler
In [49]:
fs=StandardScaler().fit_transform(feature_matrix)
In [50]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[50]:
LogisticRegression(max_iter=10000)
In [51]:
observation=[[1,2,3,4,5,6,7,8,9,10]]
In [52]:
prediction=logr.predict(observation)
print(prediction)
[28079008]
In [53]:
logr.classes_
Out[53]:
array([28079008, 28079024], dtype=int64)
In [54]:
logr.score(fs,target_vector)
Out[54]:
0.9947585174092101
```

```
In [55]:
logr.predict_proba(observation)[0][0]
Out[55]:
1.0
In [56]:
logr.predict_proba(observation)
Out[56]:
array([[1.00000000e+00, 5.69793111e-39]])
Random Forest
In [57]:
from sklearn.ensemble import RandomForestClassifier
In [58]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[58]:
RandomForestClassifier()
In [59]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n_estimators':[10,20,30,40,50]
}
In [60]:
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[60]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                          'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [61]:
grid_search.best_score_
Out[61]:
0.9940274558744875
```

#### In [62]:

```
rfc_best=grid_search.best_estimator_
```

### In [63]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
\nvalue = [0, 35]\nclass = b'),

Text(4310.068965517242, 181.199999999982, 'gini = 0.062\nsamples = 22

51\nvalue = [3414, 112]\nclass = a')]
```

## Conclusion

## **Accuracy**

Linear Regression:0.871779860524847

Ridge Regression:0.8710049657009941

Lasso Regression:0.7320870681548695

ElasticNet Regression:0.818679035054062

Logistic Regression:0.9947585174092101

Random Forest: 0.9940274558744875

## Logistic Regression is suitable for this dataset