The Normalized χ^2 Measure for Association Rule Evaluation

Let C and A be two attributes with domains $dom(A) = \{a_1, \ldots a_{n_A}\}$ and $dom(C) = \{c_1, \ldots c_{n_C}\}$, respectively, and let \mathcal{X} be a dataset over C and A. Let N_{ij} , $1 \le i \le n_C$, $1 \le j \le n_A$, be the number of sample cases in \mathcal{X} that contain both the attribute values c_i and a_j . Furthermore, let

$$N_{i.} = \sum_{j=1}^{n_A} N_{ij}, \qquad N_{.j} = \sum_{i=1}^{n_C} N_{ij}, \qquad \text{and} \qquad N_{..} = \sum_{i=1}^{n_C} \sum_{j=1}^{n_A} N_{ij} = |\mathcal{X}|.$$

Finally, let

$$p_{i.} = \frac{N_{i.}}{N}, \qquad p_{.j} = \frac{N_{.j}}{N}, \qquad \text{and} \qquad p_{ij} = \frac{N_{ij}}{N}$$

be the probabilities of the attribute values and their combinations, as they can be estimated from these numbers. Then the well-known χ^2 measure is usually defined as

$$\chi^{2}(C,A) = \sum_{i=1}^{n_{C}} \sum_{j=1}^{n_{A}} \frac{(E_{ij} - N_{ij})^{2}}{E_{ij}} \quad \text{where} \quad E_{ij} = \frac{N_{i.}N_{.j}}{N_{..}}$$

$$= \sum_{i=1}^{n_{C}} \sum_{j=1}^{n_{A}} \frac{\left(\frac{N_{i.}N_{.j}}{N_{..}} - N_{ij}\right)^{2}}{\frac{N_{i.}N_{.j}}{N_{..}}}$$

$$= \sum_{i=1}^{n_{C}} \sum_{j=1}^{n_{A}} \frac{N^{2} \left(\frac{N_{i.}}{N_{..}} \frac{N_{.j}}{N_{..}} - \frac{N_{ij}}{N_{..}}\right)^{2}}{N_{..} \frac{N_{i.}}{N_{..}} \frac{N_{.j}}{N_{..}}} = N_{..} \sum_{i=1}^{n_{C}} \sum_{j=1}^{n_{A}} \frac{(p_{i.} p_{.j} - p_{ij})^{2}}{p_{i.} p_{.j}}$$

$$= \sum_{i=1}^{n_{C}} \sum_{j=1}^{n_{A}} \frac{1}{\frac{N^{2}}{N_{..}} \left(N_{i.}N_{.j} - N_{..}N_{ij}\right)^{2}}{N_{..} \frac{N_{i.}}{N_{..}} \frac{N_{.j}}{N_{..}}} = \sum_{i=1}^{n_{C}} \sum_{j=1}^{n_{A}} \frac{(N_{i.} N_{.j} - N_{..}N_{ij})^{2}}{N_{..}N_{i.} N_{.j}}.$$

This measure is often normalized by dividing it by the size $N_{..} = |\mathcal{X}|$ of the dataset to remove the dependence on the number of sample cases.

For association rule evaluation, C refers the consequent and A to the antecedent of the rule. Both have two values, which we denote by c_0 , c_1 and a_0 , a_1 , respectively. c_0 means that the consequent of the rule is not satisfied, c_1 that it is satisfied; likewise for A. Then we have to compute the χ^2 measure from the 2×2 contingency table

	a_0	a_1	
c_0	N_{00}	N_{01}	N_{0} .
c_1	N_{10}	N_{11}	$N_{1.}$
	$N_{.0}$	$N_{.1}$	$N_{}$

or the estimated probability table

	a_0	a_1	
c_0	p_{00}	p_{01}	$p_{0.}$
c_1	p_{10}	p_{11}	$p_{1.}$
	$p_{.0}$	$p_{.1}$	1

That is, we have

$$\frac{\chi^{2}(C,A)}{N_{..}} = \sum_{i=0}^{1} \sum_{j=0}^{1} \frac{(p_{i.} p_{.j} - p_{ij})^{2}}{p_{i.} p_{.j}}.$$

$$= \frac{(p_{0.} p_{.0} - p_{00})^{2}}{p_{0.} p_{.0}} + \frac{(p_{0.} p_{.1} - p_{01})^{2}}{p_{0.} p_{.1}} + \frac{(p_{1.} p_{.0} - p_{10})^{2}}{p_{1.} p_{.0}} + \frac{(p_{1.} p_{.1} - p_{11})^{2}}{p_{1.} p_{.1}}$$

Now we can exploit

 $p_{00} + p_{01} = p_{0.}$, $p_{10} + p_{10} = p_{1.}$, $p_{00} + p_{10} = p_{.0}$, $p_{01} + p_{11} = p_{.1}$, $p_{0.} + p_{1.} = 1$, $p_{.0} + p_{.1} = 1$, which leads to

Therefore it is

$$\begin{split} \frac{\chi^2(C,A)}{N_{\cdot\cdot\cdot}} &= \frac{(p_{1\cdot\cdot}p_{.1}-p_{11})^2}{(1-p_{1\cdot\cdot})(1-p_{.1})} + \frac{(p_{1\cdot\cdot}p_{.1}-p_{11})^2}{(1-p_{1\cdot\cdot})p_{.1}} + \frac{(p_{1\cdot\cdot}p_{.1}-p_{11})^2}{p_{1\cdot\cdot}(1-p_{.1})} + \frac{(p_{1\cdot\cdot}p_{.1}-p_{11})^2}{p_{1\cdot\cdot}(1-p_{.1})} \\ &= \frac{(p_{1\cdot\cdot}p_{.1}-p_{11})^2(p_{1\cdot\cdot}p_{.1}+p_{1\cdot\cdot}(1-p_{.1})+(1-p_{1\cdot\cdot})p_{.1}+(1-p_{1\cdot\cdot})(1-p_{.1}))}{p_{1\cdot\cdot}(1-p_{1\cdot\cdot})p_{.1}(1-p_{.1})} \\ &= \frac{(p_{1\cdot\cdot}p_{.1}-p_{11})^2(p_{1\cdot\cdot}p_{.1}+p_{1\cdot\cdot}-p_{1\cdot\cdot}p_{.1}+p_{.1}-p_{1\cdot\cdot}p_{.1}+1-p_{1\cdot\cdot}-p_{.1}+p_{1\cdot\cdot}p_{.1})}{p_{1\cdot\cdot}(1-p_{1\cdot\cdot})p_{.1}(1-p_{.1})} \\ &= \frac{(p_{1\cdot\cdot}p_{.1}-p_{11})^2}{p_{1\cdot\cdot}(1-p_{1\cdot\cdot})p_{.1}(1-p_{.1})}. \end{split}$$

In the program, $p_{1.}$ (argument head), $p_{.1}$ (argument body) and $p_{1|1} = \frac{p_{11}}{p_{.1}}$ (argument post, rule confidence) are passed to the routine that computes the measure, so the actual computation is

$$\frac{\chi^2(C,A)}{N_{..}} = \frac{(p_{1.} p_{.1} - p_{1|1} p_{.1})^2}{p_{1.}(1-p_{1.})p_{.1}(1-p_{.1})}. = \frac{((p_{1.} - p_{1|1})p_{.1})^2}{p_{1.}(1-p_{1.})p_{.1}(1-p_{.1})}.$$

In an analogous way the measure can also be computed from the absolute frequencies N_{ij} , $N_{i.}$, $N_{.j}$ and $N_{..}$, namely as

$$\frac{\chi^2(C,A)}{N_{..}} = \frac{(N_{1.}N_{.1} - N_{..}N_{11})^2}{N_{1.}(N_{..} - N_{1.})N_{.1}(N_{..} - N_{.1})}.$$