Problem 2 Solution

2.3 Part 3.

Consider a prime number p of the form 4n + 1, p is prime in \mathbb{Z} .

Lemma 4. *p* is not prime in $\mathbb{Z}[i]$ if *p* is of the form 4n + 1.

Proof. Since p is of the form 4n + 1, by (2.5) we have some x such that $(x^2 + 1) \mod p = 0$, or we can say that $x^2 + 1 = kp, k \in \mathbb{N}$.

Now assume p is a prime number in $\mathbb{Z}[i]$.

We can write $x^2 + 1 = (x+i)(x-i)$ and since $p \mid x^2 + 1$, by definition of prime in $\mathbb{Z}[i]$, $p \mid x+i$ or $p \mid x-i$.

Case 1. p | x + i

Since $p \mid x+i, \frac{x}{p} + \frac{i}{p} \in \mathbb{Z}[i]$ but since we know that i is a unit in $\mathbb{Z}[i], \frac{i}{p} \notin \mathbb{Z}[i]$, thus our statement is a **Contradiction**.

Case 2. p | x - i

Same argument as that of Case 1.

By above 2 cases, our lemma is proved.

Now we will prove that there exists integers x, y and c such that $x^2 + y^2 = cp$ and gcd(c, p) = 1.

Proof. Since we have proved that p is not a prime in $\mathbb{Z}[i]$, we consider that it is product of 2 numbers from $\mathbb{Z}[i]$.

Let p = (x + iy)(a + ib), doing computations on it and equating imaginary part to 0, we get:

$$p = (ax - by) + i(ay + bx)$$
(2.6)

$$ay + bx = 0 (2.7)$$

$$\frac{a}{b} = -\frac{x}{y}$$

$$kp = x^2 + y^2, k = \frac{x}{a}$$
(2.8)

$$kp = x^2 + y^2, k = \frac{x}{a}$$
 (2.9)

Putting k = 1 in the above equation, we get $p * 1 = x^2 + y^2, x, y \in \mathbb{Z}$ and gcd(1,p) = 1 and so the proof is complete

2.4 Part 4.

We are given that p is prime number such that $x^2 + y^2 = cp$, where x, y and c are integers and gcd(c,p) = 1.

I have to prove that p is not a prime in $\mathbb{Z}[i]$.

Proof. Assume that p is a prime in $\mathbb{Z}[i]$.

Since $cp = x^2 + y^2$, we can write it as cp = (x + iy)(x - iy), since $p \mid (x + iy)(x - iy)$, by definition of prime in $\mathbb{Z}[i]$, either $p \mid (x+iy)$ or $p \mid (x-iy)$.

Considering either of the both cases we get that $\frac{x}{p}, \frac{y}{p} \in \mathbb{Z}[i]$ and since $x, y \in \mathbb{Z}$, also units of $\mathbb{Z}[i]$ are $\pm 1, \pm i$, and $p \mid x$ and $p \mid y$.

Using above result, x = ap and y = bp, $a, b \in \mathbb{Z}$, putting these values in our original equation we get:

$$cp = b^2 p^2 + a^2 p^2 (2.10)$$

$$c = p(b^2 + a^2) (2.11)$$

Since equation (2.11) is a **Contradiction** to the fact that gcd(c, p) = 1, thus p is not a prime in $\mathbb{Z}[i]$.

2.5 Part 5.

We are given a prime number p which is prime in \mathbb{Z} but not in $\mathbb{Z}[i]$. I have to prove that $p = a^2 + b^2$ and $a, b \in \mathbb{Z}$.

Proof. Since p is not a prime in $\mathbb{Z}[i]$, we can write p as p = (a+ib)(x+iy), where a,b,x,y are integers.

Now doing the same computations done in (2.6), (2.7), (2.8) and (2.9), putting k = 1, we get:

$$p = x^2 + y^2, \quad x, y \in \mathbb{Z}$$

The above equation is the one which I had to prove and so my proof is complete.

2.6 Part 6.

We are given that p is a prime number in \mathbb{Z} and is of the form 4n+1. I have to prove that $p=a^2+b^2$, where $a,b\in\mathbb{Z}$.

Proof. Using **Lemma 4**, we can say that since p is of the form 4n+1, p will not be a prime in $\mathbb{Z}[i]$. Since p is not a prime in $\mathbb{Z}[i]$, from the proof of **2.5 Part 5.** we can say that $p = a^2 + b^2$ for some integers a and b, which concludes our proof.