Задания для дополнительной тренировки

Задание 1.

Ниже представлены результаты применения метода главных компонент. Исходные индикаторы: X, Y, Z.

	PC1	PC2	PC3
X	0.5884	-0.4993	0.6360
Y	0.6129	-0.2377	-0.7536
\mathbf{Z}	0.5274	-0.8332	0.1662
Variance	2.5149	0.4305	0.0545

- 1. Рассчитайте информативность первой главной компоненты?
- 2. Сформулируйте критерий Кайзера для определения количества извлекаемых главных компонент. Сколько, согласно данному критерию, главных компонент необходимо извлечь в данном случае?
- 3. Чему равен след (trace) ковариационной матрицы исходных переменных X, Y, Z (то есть, сумма элементов матрицы по главной диагонали)? Проинтерпретируйте это значение.

Задание 2. Известно, что настоящая модель регрессии выглядит следующим образом: $y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \varepsilon_i$, и ее МНК-оценки являются BLUE. Вы оцениваете модель $y_i = \theta_0 + \theta_1 x_i + \eta_i$. Чем грозит исключение из модели релевантного регрессора z? В каком случае при исключении предиктора оценки останутся BLUE?

Задание 3. Изучается влияние факта, занимается ли школьник у репетитора, на его успеваемость. У исследователя возник вопрос, нужно ли включать среднюю успеваемость в его классе в качестве контрольной переменной. Всего в классе 6 учащихся. Рассмотрите случаи как включения средней успеваемости в качестве контрольной переменной, так и невключения. Какие могут быть последствия в случае первого и второго решения? Свой ответ объясните.

Задание 4. Ознакомьтесь с постановочной частью исследования Lü, Landry, 2014.

- 1. Проинтерпретируйте оценки коэффициентов Table 2, Model 1.
- 2. Проинтерпретируйте график Figure 4, Panel 2. Что можно сказать о значимости предельного эффекта?

Задание 5. Ниже представлены результаты оценивания линейной регрессионной модели процента детей, получающих образование, (eduger), на социально-экономические показатели. polityIV — индекс демократии Polity IV (от -10 до 10); $gini_8090$ — средний индекс имущественного неравенства в 1980 и 1990 г. (от 0 до 100); ssw — консолидированные бюджетные расходы на социальное обеспечение (% ВВП); prot80 — процент протестантов от численности населения в 1980 г.

	coef	std. error	t	Pr> t	[0.025; 0.975]	
(Intercept)	59.0982	9.2578				
polityIV	1.0462	0.4522				
gini_8090	0.2556	0.1952				
SSW	1.4918	0.3066				
prot80	0.1016	0.0576				
		ANO	AVC			

ANUVA							
	sum_sq	df	mean_sq	f	PR(>F)		
Regression							

Regression
Residual 5665.644
Total 14178.832 57

- 1. Проверьте гипотезу о незначимости коэффициента при предикторе prot80 против двусторонней альтернативы на фиксированном уровне значимости 0.05. Отметьте необходимое значение критической точки из представленного ниже списка
 - (a) квантиль распределения Стьюдента, 0.95, df = 56: 1.673
 - (b) квантиль распределения Стьюдента, 0.95, df = 57: 1.6721
 - (c) квантиль распределения Стьюдента, 0.95, df = 58: 1.6715
 - (d) квантиль распределения Стьюдента 0.975, df = 56: 2.0032
 - (e) квантиль распределения Стьюдента 0.975, $\mathrm{df} = 57$: 2.0025
 - (f) квантиль распределения Стьюдента 0.975, df = 58: 2.0017
- 2. Проинтерпретируйте оценку коэффициента при предикторе ssw
- 3. Рассчитайте коэффициент детерминации и проинтерпретируйте полученное значение
- 4. Проверьте гипотезу, что регрессия на константу не хуже модели с предикторами, на фиксированном уровне значимости 0.01. Запишите значение статистики и ее промежуточные расчеты, а также выберите необходимую критическую точку квантиль. Сделайте вывод.
 - (a) квантиль хи-квадрат распределения уровня 0.99, df= 57: **84.733**
 - (b) квантиль хи-квадрат распределения уровня 0.01, df = 57: **35.131**
 - (c) квантиль распределения Фишера уровня 0.99, df1 = 5, df2 = 53: **3.384**
 - (d) квантиль распределения Фишера уровня 0.99, df1 = 4, df2 = 53: **3.695**
 - (e) квантиль распределения Фишера уровня 0.01, df1 = 5, df2 = 53: **0.108**

- (f) квантиль распределения Фишера уровня 0.01, df1 = 4, df2 = 53: **0.073**
- Задание 6. 1. Модель, представленная в предыдущем задании, была проверена на гетероскедастичность посредством теста Уайта. Запишите количество параметров в дополнительной (вспомогательной) модели, которую необходимо построить на промежуточном этапе реализации теста Уайта
 - 2. Порассуждайте, какие могут быть источники гетероскедастичности в данном случае? Приведите не менее двух, свой ответ поясните