COMS 4721: Machine Learning for Data Science Lecture 13, 3/10/2015

Prof. John Paisley

Columbia University

BOOSTING

For more, see the textbook: Robert E. Schapire and Yoav Freund, *Boosting: Foundations and Algorithms*, MIT Press, 2012. (I borrow some figures from that book.)

BAGGING CLASSIFIERS

Algorithm: Bagging binary classifiers

Given
$$(x_1, y_1), \dots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}$$

- ▶ For b = 1, ..., B
 - ► Sample a bootstrap dataset \mathcal{B}_b of size n from $D_0 = \sum_{i=1}^n \frac{1}{n} \delta_{x_i}$.
 - ▶ Learn a classifier f_b using data in \mathcal{B}_b .
- Set the classification rule to be

$$f_{bag}(x_0) = \operatorname{sign}\left(\sum_{b=1}^{B} f_b(x_0)\right).$$

- ▶ With bagging, we saw how a *committee* of classifiers votes on a label.
- ► Each classifier is learned on a *bootstrap sample* from the data set.
- ▶ Learning a collection of classifiers is referred to as an *ensemble method*.

BOOSTING

How is it that a committee of blockheads can somehow arrive at highly reasoned decisions, despite the weak judgment of the individual members?

- Schapire & Freund, "Boosting: Foundations and Algorithms"

Boosting is another powerful method for ensemble learning. It is similar to bagging in that a set of classifiers are combined to make a better one.

Free to choose a classifier, but a "weak" one is usually picked – i.e., one with accuracy a little better than random guessing, but very fast to learn.

Short history

1984: Leslie Valiant and Michael Kearns ask if "boosting" is possible.

1989: Robert Schapire creates first boosting algorithm.

1990: Yoav Freund creates an optimal boosting algorithm.

1995 : Freund and Schapire create AdaBoost (Adaptive Boosting), the major boosting algorithm.

BAGGING VS BOOSTING (SCHEMATIC)

THE ADABOOST ALGORITHM (A SAMPLING VERSION)

Algorithm: Boosting a binary classifier

Given
$$(x_1, y_1), \dots, (x_n, y_n), x \in \mathcal{X}, y \in \{-1, +1\}, \text{ set } w_1(i) = \frac{1}{n}$$

- ightharpoonup For $t = 1, \dots, T$
 - 1. Sample a bootstrap dataset \mathcal{B}_t of size n from $D_t = \sum_{i=1}^n w_t(i)\delta_{x_i}$.
 - 2. Learn a classifier f_t using data in \mathcal{B}_t .
 - 3. Set $\epsilon_t = \sum_{i=1}^n w_t(i) \mathbb{1}\{y_i \neq f_t(x_i)\}$ and $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t}\right)$.
 - 4. Update $\tilde{w}_{t+1}(i) = w_t(i) \exp\{-\alpha_t y_i f_t(x_i)\}$.
 - 5. Normalize $w_{t+1}(i) = \tilde{w}_{t+1}(i) / \sum_{j} \tilde{w}_{t+1}(j)$.
- ► Set the classification rule to be

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t f_t(x_0)\right).$$

Comment: Step 1 can often be skipped and w_t used directly in Step 2, which is the way AdaBoost is normally presented.

THE ADABOOST ALGORITHM (SCHEMATIC)

Original data

Uniform data distribution Learn weak classifier

Here: Use a decision stump

Round 1 classifier

Weighted error: $\epsilon_1 = 0.3$ Weight update: $\alpha_1 = 0.42$

Weighted data

After round 1

Round 2 classifier

Weighted error: $\epsilon_2 = 0.21$ Weight update: $\alpha_2 = 0.65$

Weighted data

After round 2

Round 2 classifier

Weighted error: $\epsilon_3 = 0.14$ Weight update: $\alpha_3 = 0.92$

A Toy Problem

Random guessing 50% error

Decision stump 45.8% error

Full decision tree 24.7% error

Boosted stump 5.8% error

BOOSTING

Point = one dataset. Location = error rate w/ and w/o boosting. The boosted version of the same classifier almost always produces better results.

BOOSTING

(left) Boosting a bad classifier is often better than not boosting a good one. (right) Boosting a good classifier is often better (but can take more time).

BOOSTING AND FEATURE MAPS

Q: What makes boosting work so well?

A: This is a very well studied question. We will present one analysis later, but we can also give intuition by tying it in with what we've discussed.

The classification for a new x_0 from boosting is

$$f_{boost}(x_0) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t f_t(x_0)\right).$$

Define $\phi(x) = [f_1(x), ..., f_T(x)]^T$, where each $f_t(x) \in \{-1, +1\}$.

- We can think of $\phi(x)$ as a high dimensional feature map of x.
- ▶ The vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_T]^T$ correspond to hyperplane.
- ▶ So the classifier can be written $f_{boost}(x_0) = \text{sign}(\phi(x_0)^T \alpha)$.
- ▶ Boosting learns the feature mapping and hyperplane simultaneously.

APPLICATION: FACE DETECTION

FACE DETECTION (VIOLA & JONES, 2001)

Problem: Locate the faces in an image or video.

Processing: Divide image into patches of different scales, e.g., 24×24 , 48×48 , etc. Extract *features* from each patch.

Classify each patch as face or no face using a *boosted decision stump*. This can be done in real-time, for example by your digital camara (at 15 fps).

- ▶ One patch from a larger image. Mask it with many "feature extractors."
- ► Each pattern gives one number, which is the sum of all pixels in black region minus sum of pixels in white region (total of 45,000+ features).

FACE DETECTION (EXAMPLE RESULTS)

ANALYSIS OF BOOSTING

ANALYSIS OF BOOSTING

Training error theorem

We can use *analysis* to make a statement about the predictive accuracy of boosting *on the training data*.

Theorem: Under the AdaBoost framework, if ϵ_t is the weighted error of classifier f_t , then for the classifier $f_{boost}(x_0) = \text{sign}(\sum_{t=1}^{T} \alpha_t f_t(x_0))$,

training error
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{y_{i}\neq f_{boost}(x_{i})\right\} \leq \exp\left(-2\sum_{t=1}^{T}(\frac{1}{2}-\epsilon_{t})^{2}\right).$$

Even if each ϵ_t is only a little better than random guessing, the accumulation of them over T classifiers can lead to a substantial value in the exponent.

For example:

$$\epsilon_t = 0.45, T = 1000 \rightarrow \text{training error} \leq 0.0067.$$

Setup

We break the proof into three steps. It is an application of the fact that

if
$$\underbrace{a < b}_{\text{Step 2}}$$
 and $\underbrace{b < c}_{\text{Step 3}}$ then $\underbrace{a < c}_{\text{conclusion}}$

- ▶ Step 1 allows us to know what b is above.
- ► Steps 2 and 3 correspond to the two inequalities.

Also recall the following step from AdaBoost:

▶ Update
$$\tilde{w}_{t+1}(i) = w_t(i)e^{-\alpha_t y_i f_t(x_i)}$$
 and normalize $w_{t+1}(i) = \frac{\tilde{w}_{t+1}(i)}{\sum_j \tilde{w}_{t+1}(j)}$.

We define $Z_t = \sum_i \tilde{w}_{t+1}(j)$ for use in the proof.

Step 1

We first want to expand the equation of the weights to show that

$$w_{T+1}(i) = \frac{1}{n} \frac{\exp\{-y_i \sum_{t=1}^{T} \alpha_t f_t(x_i)\}}{\prod_{t=1}^{T} Z_t}.$$

Derivation of Step 1:

To do so, first notice the recurrence: $w_{t+1}(i) = w_t(i)e^{-\alpha_t y_i x_i}/Z_t$.

We can break down $w_t(i)$ in exactly the same way, and continue until $w_1(i)$,

$$w_{T+1}(i) = w_1(i) \frac{\exp\{-\alpha_1 y_i x_i\}}{Z_1} \times \dots \times \frac{\exp\{-\alpha_T y_i x_i\}}{Z_T}$$
$$= \frac{1}{n} \frac{\exp\{-y_i \sum_{t=1}^{T} \alpha_t f_t(x_i)\}}{\prod_{t=1}^{T} Z_t}$$

Step 2

We next need to show that the training error of the classifier after T+1 steps is not greater than $\prod_{t=1}^{T} Z_t$.

Derivation of Step 2:

From Step 1:
$$w_{T+1}(i) = \frac{1}{n} \frac{\exp\{-y_i f_{boost}(x_i)\}}{\prod_{t=1}^{T} Z_t} \rightarrow w_{T+1}(i) \prod_{t=1}^{T} Z_t = \frac{1}{n} e^{-y_i f_{boost}(x_i)}$$

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ y_i \neq f_{boost}(x_i) \} \leq \frac{1}{n} \sum_{i=1}^{n} \exp\{-y_i f_{boost}(x_i) \}$$

$$= \sum_{i=1}^{n} w_{T+1}(i) \prod_{t=1}^{T} Z_t$$

$$= \prod_{t=1}^{T} Z_t$$

Step 3

The final step is to calculate an upper bound on Z_t , and therefore of $\prod_{t=1}^T Z_t$.

Since $\prod_{t=1}^{T} Z_t$ is an upper bound on the training error, the upper bound from Step 3 is *also* of the training error.

Derivation of Step 3:

This step is slightly more involved. It also shows why $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$.

$$Z_t = \sum_{i=1}^n w_t(i) \exp\{-\alpha_t y_i f_t(x_i)\}$$

$$= \sum_{i: y_i = f_t(x_i)} e^{-\alpha_t} w_t(i) + \sum_{i: y_i \neq f_t(x_i)} e^{\alpha_t} w_t(i)$$

$$= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t$$

Derivation of Step 3 (continued):

We're currently at $Z_t = e^{-\alpha_t}(1 - \epsilon_t) + e^{\alpha_t}\epsilon_t$. Remember from Step 2 that

training error
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_i\neq f_{boost}(x_i)\} \leq \prod_{t=1}^{T}Z_t$$
.

We want the training error to be small. We therefore pick α_t to minimize Z_t . This minimum is independent for each t and occurs at

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right).$$

Plugging this value in gives $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$.

Derivation of Step 3 (conclusion):

Thus
$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$

We re-write this as

$$Z_t = \sqrt{1 - 4(\frac{1}{2} - \epsilon_t)^2}.$$

We use the general inequality $1 - x \le e^{-x}$ to conclude that

$$Z_t = \left(1 - 4(\frac{1}{2} - \epsilon_t)^2\right)^{\frac{1}{2}} \le \left(e^{-4(\frac{1}{2} - \epsilon_t)^2}\right)^{\frac{1}{2}} = e^{-2(\frac{1}{2} - \epsilon_t)^2}.$$

Putting it all together

Step 3 showed that $Z_t \le e^{-2(\frac{1}{2} - \epsilon_t)^2}$. Because both sides are positive, the product over t doesn't change this inequality,

$$\prod_{t=1}^{T} Z_t \leq \prod_{t=1}^{T} e^{-2(\frac{1}{2} - \epsilon_t)^2} = e^{-2\sum_{t=1}^{T} (\frac{1}{2} - \epsilon_t)^2}.$$

From the earlier steps we showed $\prod_{t=1}^{T} Z_t$ was also an *upper bound*,

training error
$$=\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\{y_{i}\neq f_{boost}(x_{i})\} \leq \prod_{t=1}^{T}Z_{t} \leq e^{-2\sum_{t=1}^{T}(\frac{1}{2}-\epsilon_{t})^{2}}.$$

The two ends of this chain is what we set out to prove.

TRAINING VS TESTING ERROR

Q: Driving the training error to zero leads one to ask, does boosting overfit?

A: Sometimes, but very often it doesn't!

