

Before we start...

- Who has used Linux before?
- Who has used ROS before?
- Who has used the Darwin OP/ ROBOTIS OP2 before?

By Jorge Cham, Ph.D. Comics.

- What will you learn today?
 - What is ROS? What is Gazebo?
 - What are the key components?
 - Which basics are important to know?
 - How does the Robotis OP2 ROS Interface look like? How do I use it?
 - How do I implement a ball follower with the Robotis OP2 using ROS? → Hands-on project

- What will you learn today?
 - What is ROS? What is Gazebo?
 - What are the key components?
 - Which basics are important to know?
 - How does the Robotis OP2 ROS Interface look like? How do I use it?
 - How do I implement a ball follower with the Robotis OP2 using ROS? → Hands-on project

ROS - Robot Operating System

- What is ROS?
 - A collection of

 - Tools
 - Conventions
- What is ROS not?
 - An operating system like e.g. Ubuntu or Windows
- Why use it?
 - High reusability/ Easy collaboration
 - Collection of powerful development tools
 - Popular in academics and industry

ROS Core Elements

- Communication Structure
- Tools
 - Rviz
 - Rqt
- Integration
 - Gazebo
 - OpenCV
 - PCL
 - Movelt

- What will you learn today?
 - What is ROS? What is Gazebo?
 - What are the key components?
 - Which basics are important to know?
 - How does the Robotis OP2 ROS Interface look like? How do I use it?
 - How do I implement a ball follower with the Robotis OP2 using ROS? → Hands-on project

Key concept

- Nodes
 - Modular separated programs → "loose coupling"
- Master
 - Main node, e.g. manages address spaces
- Parameter server
 - Stores data
- Messages
 - Data structures to exchange information
- Topics
 - Message "channels". Nodes subscribe to topics to receive messages or publish on topics to send messages

Publisher Example

```
//Initializing Publisher
ros::Publisher vel_pub_;
vel_pub_ = nh_.advertisekgeometry_msgs::Twist>("robotis_op
/cmd_vel', 1);
                              message type
                                                    topic
//Sending message
geometry_msgs::Twist vel;
    vel.angular.z = a_scale_*(joy->axes[axis_angular_r_] -
joy->axes[axis angular 1 ]);
    vel.linear.x = l_scale_*joy->axes[axis_linear_x_];
    vel.linear.y = l_scale_*joy->axes[axis_linear_y_];
    vel pub .publish(vel);
```


Subscriber Example

```
// Initializing Subscriber
ros::NodeHandle nh ;
                                         topic
ros::Subscriber image_sub_;
image_sub_ = nh_.subscribe("/robotis_op/camera/image_raw",
100, &RobotisOPBallTrackingNode::imageCb, this);
                                                  message type
//Receiving Image Callback
void RobotisOPBallTrackingNode::imageCb(const sensor_msgs:
:Image& msg)
   cv_bridge::CvImagePtr image_ptr;
   image_ptr = cv_bridge::toCvCopy(msg,sensor_msgs::image_
encodings::RGB8);
   [...]
```


Repetition

- Nodes
 - Modular separated programs → "loose coupling"
- Master
 - Main node, e.g. manages address spaces
- Parameter server
 - Stores data
- Messages
 - Data structures to exchange information
- Topics
 - Message "channels". Nodes subscribe to topics to receive messages or publish on topics to send messages.

- What will you learn today?
 - What is ROS? What is Gazebo?
 - What are the key components?
 - Which basics are important to know?
 - How does the Robotis OP2 ROS Interface look like? How do I use it?
 - How do I implement a ball follower with the Robotis OP2 using ROS? → Hands-on project

OP2 ROS Packages

robotis_op

robotis_op_common

robotis_op_description

robotis_op_launch

robotis_op_moveit

robotis_op_teleop

robotis_op_simulation

robotis_op_simulation_control

robotis_op_gazebo

robotis_op_simulation_walking

robotis_op_ros_control

robotis_op_camera

F

Mow to use it

- Gazebo physics simulator with OP2 model roslaunch robotis_op_gazebo robotis_op_gazebo_position_control_soccer_field.launch
- Rviz monitoring tool (image, robot state, ...)
 rosrun rviz rviz
- Dynamic reconfigure dynamic parameter configuration rosrun rqt_reconfigure rqt_reconfigure
- Build
 cd ~/catkin_ws/
 catkin make
- Starting the ball tracker node
 rosrun robotis_op_ball_tracker_tutorial robotis_op_ball_tracker_tutorial_node

- What will you learn today?
 - What is ROS? What is Gazebo?
 - What are the key components?
 - Which basics are important to know?
 - How does the Robotis OP2 ROS Interface look like? How do I use it?
 - How do I implement a ball follower with the Robotis OP2 using ROS? → Hands-on project

Project I

- Ball tracking with Gazebo and real OP2
- Ball detection
- Receive image as sensor_msgs::Image on the topic /robotis_op/camera/image_raw
- Process with OpenCV bool RobotisOPBallTrackingNode::detectCircles(const sensor_msgs::Image& msg, cv::Point& offset)
- Track movement
- According to ball detection in the image
- Publish pan and tilt position on as std_msgs::Float64 on the topics
 /robotis_op/j_pan_position_controller/command and /robotis_op/j_pan_position_controller/command

 Try walking towards the ball message type: geometry_msgs::Twist topic: robotis_op/cmd_vel

Project III

- Ball tracking real OP2
 - Copy your code to the robot
 - Connect to robot and launch robot ssh <u>robotis@192.168.123.1</u> sudo killall demo roslaunch robotis_op_onboard_launch robotis_op_whole_robot.launch
 - On your notebook export ROS_MASTER_URI=http://192.168.123.1:11311

