

Lesson objectives

By the end of the module, you should be able to:

- Understand the three basic light sources
- Describe Phong illumination model
- Understand the effects of the three components of the model
- Apply Phong illumination model to compute color and intensity

Page 4 of 54

2. Light sources

- Ambient light source
- Directional light source
- Point light source

Page 11 of 54

3.1 Ambient reflection

- Ambient light exists everywhere and reflects in all directions with equal intensity.
- How much is being reflected?
 - Determined by the surface properties; and
 - Independent from the surface's position and orientation.

Page 22 of 54

3.3 Specular reflection

 Specular reflection accounts for the highlight in shiny, glossy surfaces, such as metals or plastics.

3.4 Total intensity

Putting them all together:

$$I = k_a I_a + k_d I_s \cos \theta + k_s I_s \cos^n \phi$$
Ambient Diffuse Specular reflection reflection

 How about the situation where there are several light sources?

Page 39 of 54

4. Phong illumination model computation

 How to perform actual computation with Phong illumination model?

$$I = k_a I_a + \sum_{\substack{\text{for each} \\ \text{light } s}} k_d I_s \cos \theta + \sum_{\substack{\text{for each} \\ \text{light } s}} k_s I_s \cos^n \phi$$

- The key is:
 - $\cos\theta = \dot{s}$
 - $\cos \phi = \dot{s}$
- Our strategy is to use vector calculation.

Page 43 of 54

Dot product of two vectors

- If $N = [a_1 \ a_2 \ a_3], L = [b_1 \ b_2 \ b_3],$ then $N \cdot L = a_1 \times b_1 + a_2 \times b_2 + a_3 \times b_3$.
- Geometric meaning:

$$N \cdot L = \cos\theta$$

if N and L are unit vectors.

NANYANG TECHNOLOGICAL UNIVERSITY

Refer to the left figure

$$\cos\theta = N \cdot L$$

$$cos\phi = V \cdot R$$

where
$$|L| = |N| = |V| = |R| = 1$$

$$I = k_a I_a + \sum_{\substack{\text{for each} \\ \text{light } s}} k_d I_s \cos \theta + \sum_{\substack{\text{for each} \\ \text{light } s}} k_s I_s \cos^n \phi$$

$$I = k_a I_a + \sum_{\substack{\text{for each} \\ \text{light } s}} k_d I_s(N \cdot L) + \sum_{\substack{\text{for each} \\ \text{light } s}} k_s I_s(V \cdot R)^n$$

Page 45 of 54

How to compute normal?

Counter-

clockwise

- Polygonal surface
 - Use cross product of 2 vectors lying on a facet

•
$$\mathbf{a} = [a_1 \ a_2 \ a_3], \ \mathbf{b} = [b_1 \ b_2 \ b_3]$$

•
$$N = \mathbf{a} \times \mathbf{b} = \det \begin{bmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

$$= i \det \begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix} - j \det \begin{bmatrix} a_1 & a_3 \\ b_1 & b_3 \end{bmatrix} + k \det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$$

Example: Triangle

Page 47 of 54

Summary

By now, you should be able to:

- Define and understand the three basic light sources:
 - Ambient light source
 - Directional light source
 - Point light source
- Describe Phong illumination model and understand the effects of its three components:
 - · Ambient reflection
 - Diffuse reflection
 - Specular reflection
- Apply Phong illumination model to compute intensity/color:
 - Vectors L, N, V
 - Vector R = 2 (N•L) N L

Page 54 of 54