

The Zen Performer®: A New Approach in Deep Coaching

Patrice Robert Nko'o

patnkoo@stanford.edu , patricenkoo@gmail.com ¹Computer Science Department, Stanford University

Stanford Science Department

Overview

Deep Coaching, a Reinforcement Learning Model, called The Zen Performer®, will be used to explore the possibility to reduce the stress generated within an organization because of the lack of leadership.

Problem

Connecting Human with an RL Model to accelerate the learning process of an agent:

- Modeling RL for the Zen Performer Features
- Modeling a Human Network in the context of parallel coaching
- Connecting two different models

Question: By connecting different models can we gain in term of efficiency (speed learning)?

Framework

Training

Our agents are trained to maximize their rewards. The Deep Coaching Algorithm used a value iteration from the 1957 bellman equation 1957:

Results

RL results without integrating the HCAI Network Data.

Comparative Models

The Zen Performer® Deep Coaching has been compared to Deep Coach, D-COACH, COACH, Advise and CoachAl

Models	Max Score / Rewards	Iterations / Time
Advise	500	300 episodes
СОАСН	200	10 episodes
D-Coach	500	10 minutes
Zen Performer	598" scale up by 1,5 with HCA to a reward of 897"	10 iterations

Future work

Integration of more features within the model to accelerate the speed of learning.

Discussion

- Which type of Al Coach Platform can improve diversity?
- How to better assess the societal impact of AI Coaching Platforms?

References and Acknowledgement

Thanks to Professor Percy Liang, Dorsa Sadigh, TA Reid Pryzant, and Andrew Zane Tan

Rodrigo Pérez-Dattari, Carlos Celemin, Javier Ruiz-del-Solar and Jens Kober, "Interactive Learning with Corrective Feedback for Policies based on Deep Neural Networks" Dilip Arumugam, Jun Ki Lee, Sophie Saskin, Michael Littman, "Deep Reinforcement Learning from Policy -Dependent Human Feedback" Ahmed Fadhil, Gianluca Schiavo, Yunlong Wang, "CoachAl: A Conversational Agent Assisted Health Coaching Platform" Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles Isbell and Andrea Thomaz, "Policy Shaping: Integrating Human Feedback with Reinforcement Learning"