Introduction

The Cast of Characters

Alice and Bob are the good guys

□ Trudy is the bad guy

Trudy is our generic "intruder"

Alice's Online Bank

- Alice opens Alice's Online Bank (AOB)
- What are Alice's security concerns?
- □ If Bob is a customer of AOB, what are his security concerns?
- How are Alice and Bob concerns similar? How are they different?
- How does Trudy view the situation?

CIA

- Confidentiality, Integrity, and Availability
- AOB must prevent Trudy from learning Bob's account balance
- Confidentiality: prevent unauthorized reading of information

Chapter 1 [] Introduction

CIA

- Trudy must not be able to change Bob's account balance
- Bob must not be able to improperly change his own account balance
- □ Integrity: prevent unauthorized writing of information

Chapter 1 🛘 Introduction

CIA

- AOB's information must be available when needed
- Alice must be able to make transaction
 - o If not, she'll take her business elsewhere
- Availability: Data is available in a timely manner when needed
- Availability is a "new" security concern
 - o In response to denial of service (DoS)

Chapter 1 1 Introduction

- □ How does Bob's computer know that "Bob" is really Bob and not Trudy?
- Bob's password must be verified
 - o This requires some clever cryptography
- □ What are security concerns of pwds?
- Are there alternatives to passwords?

- When Bob logs into AOB, how does AOB know that "Bob" is really Bob?
- □ As before, Bob's password is verified
- Unlike standalone computer case, network security issues arise
- What are network security concerns?
- Protocols are critically important
- Crypto also important in protocols

Chapter 1 🛘 Introduction

- Once Bob is authenticated by AOB, then AOB must restrict actions of Bob
 - o Bob can't view Charlie's account info
 - Bob can't install new software, etc.
- Enforcing these restrictions is known as authorization
- Access control includes both authentication and authorization

Chapter 1 1 Introduction

- Cryptography, protocols, and access control are implemented in software
- □ What are security issues of software?
 - Most software is complex and buggy
 - Software flaws lead to security flaws
 - o How to reduce flaws in software development?

- □ Some software is intentionally evil
 - Malware: computer viruses, worms, etc.
- What can Alice and Bob do to protect themselves from malware?
- What can Trudy do to make malware more "effective"?

- Operating systems enforce security
 - o For example, authorization
- OS: large and complex software
 - Win XP has 40,000,000 lines of code!
 - Subject to bugs and flaws like any other software
 - Many security issues specific to OSs
 - o Can you trust an OS?

Our Book

- □ The text consists of four major parts
 - Cryptography
 - Access control
 - o Protocols
 - o Software

Cryptography

- "Secret codes"
- □ The book covers
 - Classic cryptography
 - Symmetric ciphers
 - Public key cryptography
 - o Hash functions
 - Advanced cryptanalysis

Chapter 1 🛘 Introduction

Access Control

- Authentication
 - o Passwords
 - o Biometrics and other
- Authorization
 - Access Control Lists and Capabilities
 - Multilevel security (MLS), security modeling, covert channel, inference control
 - o Firewalls and Intrusion Detection Systems

Chapter 1 🛘 Introduction

Protocols

- Simple authentication protocols
 - "Butterfly effect" small change can have drastic effect on security
 - Cryptography used in protocols
- Real-world security protocols
 - o SSL, IPSec, Kerberos
 - GSM security

Software

- Software security-critical flaws
 - Buffer overflow
 - o Other common flaws
- Malware
 - Specific viruses and worms
 - o Prevention and detection
 - o The future of malware

Chapter 1 1 Introduction

Software

- Software reverse engineering (SRE)
 - o How hackers "dissect" software
- Digital rights management (DRM)
 - o Shows difficulty of security in software
 - Also raises OS security issues
- Limits of testing
 - o Open source vs closed source

Chapter 1 🛘 Introduction

Software

- Operating systems
 - Basic OS security issues
 - o "Trusted" OS requirements
 - o NGSCB: Microsoft's trusted OS for PC
- Software is a big security topic
 - Lots of material to cover
 - o Lots of security problems to consider

Chapter 1 🛮 Introduction

- In the past, no respectable sources talked about "hacking" in detail
- It was argued that such info would help hackers
- Very recently, this has changed
 - Books on network hacking, how to write evil software, how to hack software, etc.

- Good guys must think like bad guys!
- □ A police detective
 - Must study and understand criminals
- □ In information security
 - We want to understand Trudy's motives
 - We must know Trudy's methods
 - We'll often pretend to be Trudy

- □ Is all of this security information a good idea?
- "It's about time somebody wrote a book to teach the good guys what the bad guys already know." — Bruce Schneier

- □ We must try to think like Trudy
- □ We must study Trudy's methods
- We can admire Trudy's cleverness
- Often, we can't help but laugh at Alice and Bob's stupidity
- □ But, we cannot act like Trudy

In This Course...

- Always think like the bad guy
- Always look for weaknesses
- Strive to find a weak link
- □ It's OK to break the rules
- Think like Trudy!
- But don't do anything illegal...

Crypto Basics

Crypto

- Cryptology The art and science of making and breaking "secret codes"
- Cryptography making "secret codes"
- □ Cryptanalysis breaking "secret codes"
- □ Crypto all of the above (and more)

How to Speak Crypto

- A cipher or cryptosystem is used to encrypt the plaintext
- □ The result of encryption is *ciphertext*
- □ We decrypt ciphertext to recover plaintext
- □ A key is used to configure a cryptosystem
- □ A symmetric key cryptosystem uses the same key to encrypt as to decrypt
- □ A public key cryptosystem uses a public key to encrypt and a private key to decrypt (sign)

Crypto

- Basic assumption
 - o The system is completely known to the attacker
 - o Only the key is secret
- Also known as Kerckhoffs Principle
 - o Crypto algorithms are not secret
- Why do we make this assumption?
 - Experience has shown that secret algorithms are weak when exposed
 - Secret algorithms never remain secret
 - Better to find weaknesses beforehand

Crypto as Black Box

A generic use of crypto

Simple Substitution

- □ Plaintext: fourscoreandsevenyearsago
- □ Key:

Plaintext Ciphertext

a	b	С	d	e	f	9	h		j	k		m	n	0	p	q	r	S	†	C	\	W	×	У	Z
	ÞΕ	F	G	Н	I	J	K	L	>	2	0	P	Θ	(R	S	T	U	V	M	/X	У	Z	A	В	C

Simple Substitution

- □ Plaintext: fourscoreandsevenyearsago
- □ Key:

Plaintext abcdefghijklmnopqrstuvwxyz Ciphertext DEFGHIJKLMNOPQRSTUVWXYZABC

□ Ciphertext:

IRXUVFRUHDAGVHYHABHDUVDIR

Shift by 3 is "Caesar's cipher"

Ceasar's Cipher Decryption

- Suppose we know a Ceasar's cipher is being used
- □ Ciphertext:

VSRQJHEREVTXDUHSDQWU

Plaintext Ciphertext

a t	ОС	d	e	f	9	h	i	j	k	ı	m	n	0	p	q	r	S	†	u	V	W	X	У	z
DE	F	G	Н	I	J	K	L	N	2	0	Ρ	U	(R	S	T	J	٧	M	/X	У	Z	A	В	C

Ceasar's Cipher Decryption

- Suppose we know a Ceasar's cipher is being used
- □ Ciphertext:

VSRQJHEREVTXDUHSDQWU

Plaintext abcdefghijklmnopqrstuvwxyz Ciphertext DEFGHIJKLMNOPQRSTUVWXYZABC

□ Plaintext: spongebobsquarepants

Not-so-Simple Substitution

- □ Shift by n for some $n \in \{0,1,2,...,25\}$
- □ Then key is n
- □ Example: key = 7

Plaintext Ciphertext

																									z
H	łΙ	J	K	L	N	Z	0	Ρ	G	R	S	T	J	V	V	/X	Y	Z	A	В	C	D	E	F	G

Cryptanalysis I: Try Them All

- A simple substitution (shift by n) is used
- □ But the key is unknown
- □ Given ciphertext: CSYEVIXIVQMREXIH
- □ How to find the key?
- Only 26 possible keys try them all!
- □ Exhaustive key search
- Solution: key = 4

Even-less-Simple Substitution

- □ Key is some permutation of letters
- Need not be a shift
- □ For example

Plaintext	a b	С	d	e	f	9	h	i	j	k		m	n	0	р	q	r	S	†	u	٧	W	X	У	Z
Ciphertext	JI	C	A	X	S	E	У	٧	D	K	M	/B	Q	T	Z	R	Н	F	M	۱P	N	U	L	G	0

How many possible keys do we have now?

Even-less-Simple Substitution

- □ Key is some permutation of letters
- Need not be a shift
- □ For example

```
Plaintext abcdefghijklmnopqrstuvwxyz
Ciphertext JICAXSEYVDKWBQTZRHFMPNULGO
```

□ 26! > 2⁸⁸ possible keys!