Alessandro Pedone

Politecnico di Milano

24 settembre 2024

- 1 Introduzione
- 2 Versione invariante
- 3 Esempi
- 4 Versioni alternative
- 5 Applicazioni

•00000

Sofya Vasilyevna Kovalevskaya (1850-1891)

Diamo per nota la figura storica di Augustin-Louis Cauchy. Kovalevskaya è stata:

- una matematica russa allieva di Weierstrass
- la **pima donna** a conseguire un dottorato (3 tesi risalenti al 1875) e a ottenere una cattedra in Europa (in matematica)

- Una biografia accurata: Little Sparrow: A Portrait of Sophia Kovalevsky (1983), Don H. Kennedy
- Un racconto breve: Too Much Happiness (2009), Alice Munro

Introduzione

La domanda cruciale a cui vogliamo rispondere è la seguente:

E' possibile che esista una soluzione analitica a un sistema di EDP qualsiasi?

Introduzione

- sotto quali ipotesi?
- la soluzione a questo sistema è unica?
- la soluzione dipende in modo continuo dai dati?
- quali conseguenze hanno risultati ottenuti?

Introduzione

Prima di entrare nel merito della discussione è necessario introdurre il concetto di superficie caratteristica per un'equazione.

Caso equazione lineare

Disegno

Introduzione

Superifci caratteristiche

Caso generale

Background

Introduzione

si parte dal lavoro di cauchy 1835-42, lavoro di kovalevskaya 70-74 l'esistenza e l'unicità di soluzioni locali (analitche/olomorfe) di equazioni differenziali ordinarie (che abbrevieremo con EDO da qui in poi) e di sistemi lineari del primo ordine, sfruttando il metodo dei maggioranti

Schema dell'approccio

■ EDO

Versioni alternative

Esempio di Lewy

Introduzione

Importanza della richiesta di analiticità

generalizzazione esempio di Lewy

- I traslare il problema del teorema ?? in modo da ricondursi al caso di un generico punto (x_0, y_0, t_0) , usando come forzante la funzione $g(x, y, t) = f(t 2xy_0 + 2x_0y)$;
- 2 costruire una funzione $S_a \in C^\infty$ per ogni $a \in I^\infty$;
- 3 costruire degli insiemi $E_{j,n}\subseteq I^{\infty}$ chiusi e senza parte interna sfruttando S_a e il teorema di Ascoli-Arzelà;
- 4 concludere la dimostrazione del teorema ?? utilizzando i lemmi appena citati per ricavare, con un ragionamento per assurdo, l'uguaglianza $I^{\infty} = \bigcup E_{j,n}$, grazie alla quale si può applicare l'argomento di Baire.

Esempio di Kovalevskaya

Introduzione

Importanza superfici non caratteristiche

Esempio di Hadamard

Introduzione

Nessuna garanzia della stabilità della soluzione

•00000

Versione classica

Enunciato, può essere visto come corollario di un teorema più astratto.

Versione astratta

Introduzione

Premessa

$$E_s = H(\overline{\mathcal{O}_s}; \mathbb{C}^m)$$

con $s \in [0, 1]$, costante C

Enunciato

000000

Dimostrazione esistenza

000000

Dimostrazione unicità

Versioni "olomorfe"

Introduzione

Si può rifare tutto con t variabile complessa e i teoremi non cambiano. Lo stesso vale anche per la versione invariante normale.

- teoria delle equazioni differenziali
- fisica matematica, dove ha fatto emergere numerose domande (cosa succede nella realtà quando esiste una soluzione analitica locale?)
- geometria differenziale
- teoria economica

- teorema di Holmgren
- Treves e Nierenberg per la ricerca di condizioni necessarie e/o sufficienti per l'esistenza di soluzioni locali
- Hormander la teoria degli operatori differenziali lineari (con particolare attenzione alla condizioni necessarie)

Teorema di Holmgren

Introduzione

Enunciato astratto, si dimostra utilizzando la versione astratta di CK

Enunciato concreto

Sketch della dimostrazione

Per quanto riguarda geometria differenziale e teoria economica abbiamo un risultato che seguire dal teorema di CK Enunciato e applicazione al campo economico

Come funziona il processo della ricerca in matematica (che in ui corso non si può fare)

Esempio principe della matematica al femminile

