INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

Department of Mathematics SI 427 (Probability I) Tutorial Sheet-VI

All random objects are in (Ω, \mathcal{F}, P) unless told otherwise.

- 1. Let X be a random variable with distribution function F and $a \in \mathbb{R}$. Define $Y = \max\{X, a\}$. Find the distribution function of Y in terms of F.
- 2. Let X be a random variable with distribution function F. Find the distribution function of the following random variables in terms of F. (i) X^2 (ii) |X| (iii) e^X .
- 3. Let X be an exponential(1) random variable and denote the distribution function of X by F. Find the distribution of $F \circ X$.
- 4. Let X be a continuous random variable with pdf f. Let X is symmetric 1 and X^2 is exponential with parameter λ . Find f.
- 5. Let X be a random variable with distribution function F and Y = aX + b. Find the distribution function of Y in terms of F.
- 6. Let X be Uniform (-1, 1) random variable and $Y = X^2$. Find the pdf of Y.
- 7. Let X be uniform (0, 1) random variable. Find $g : \mathbb{R} \to \mathbb{R}$ such that $g \circ X$ is uniform (-1, 1).
- 8. Let X be a continuous random variable with distribution function F and $\varphi : \mathbb{R} \to \mathbb{R}$ is given by

$$\varphi(x) = \begin{cases} x - 1 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ x + 1 & \text{if } x > 1. \end{cases}$$

Find the distribution of $\varphi \circ X$ in terms of F.

¹A random variable X is said to be symmetric if X and -X have the same distribution.

- 9. Are closed sets in \mathbb{R} are Borel sets? Justify your answer.
- 10. Is $(-1, 1) \setminus \{0\}$ a Borel set? Justify your answer.
- 11. Is $(-2, 1) \setminus \mathbb{Q}$ a Borel set? Here \mathbb{Q} denote the set of all rational numbers. Justify your answer.
- 12. Let D denote the set of all discontinuities of a distribution function? Is D a Borel set? Justify your answer.
- 13. Is $(\frac{1}{2}, 1] \cup [2, 3)$ a Borel set? Justify your answer.
- 14. Let $B = \{x \in [0,1] | x \text{ doesn't contain 2 in its decimal expansion} \}$. Is B a Borel set? Justify your answer.
- 15. Let $f : \mathbb{R} \to \mathbb{R}$ is a continuous function? Is $f^{-1}([0,1])$ a Borel set? Justify your answer.
- 16. Let $\mathcal{J} = \{[a, b) | a, b \in \mathbb{R}, a \leq b\}$. Find $\sigma(\mathcal{J})$.
- 17. The function $f: \mathbb{R} \to \mathbb{R}$ is defined as

$$f(x) = \begin{cases} x & \text{if } x < 0 \\ -1 & \text{f } 0 \le x < \frac{1}{2} \\ (x-2)^2 & \text{if } x \ge \frac{1}{2}. \end{cases}$$

Is $f^{-1}(B)$ a Borel set, where B is given in question 11?

- 18. Let B be a Borel set. Is $2B := \{2x | x \in B\}$ a Borel set? Justify your answer.
- 19. Show that the closed region bounded by a triangle is a Borels set in \mathbb{R}^2 .
- 20. Let $B = \{(x,y) \in \mathbb{R}^2 | 1 < x^2 + y^2 < 2\}$ Is B a Borel set in \mathbb{R}^2 ? Justify your answer.
- 21. Let B_1 and B_2 are Borel sets in \mathbb{R} . Show that $B_1 \times B_2$ is a Borel set in \mathbb{R}^2
- 22. Let $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. Show that $B = \{(x,y) \in \mathbb{R}^2 | a \le x \le b, y \le f(x) \}$ is a Borel set in \mathbb{R}^2 .
- 23. Let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous functions such that $f\leq g$ and $D=\{(x,y)\in\mathbb{R}^2|a\leq x\leq b,\ f(x)\leq y\leq g(x)\}$. Show that D is a Borel set in \mathbb{R}^2 .