Physics GII, Problem Set #1 Tuesday, 10/14, 2 PM Shanol Due: In class, flygdyn words We exceptions!
1) Find, the using calculus of variations, the
shape of a "geodesic"; and a that is, the parth of shortest length between two points
on the surface of a sphere, as follows:
North Pale Write the arc length 5 as "prime meridian": 0=0
Fig. 1
an integral over of of some function of
$\mathcal{L}(o(0), \phi \delta(0))$; i.e.,
$[VI] S = S_{\phi}^{f} \mathcal{L}(o(\phi), \delta(\phi)) d\phi$
where 9 and \$ are the spherical co-ordin

lo) cont) polar and azimuthal angles, respe on the surface of the sphere, respectively, as illustrated in vather ineptly in Figure 1 about the preceding page, and $\mathcal{E}(\beta) = \frac{d\phi}{d\phi}$. You will have to figure out what $\mathcal{L}(\phi, \phi)$ is, explicitly, Vsing geometry. 2 b) invite down the Euter-Lagrange equations for o(p) that follows from minimizing S. c) Show that the (somewhat nasty) Euler-Lagrange equation found in (b) is solved by a "Great circle vor te": that is, the path formed by the intersection of the sphere with

or polane passing through its center.

1 c) cont) (Again, you'll have to use analytic geometry to find the O(D) this construction implies), and then explicitly verify that it so by substitution in for the Euler-Lagrange equation of part c that this o(p) satisfies that equations Id) Compute the gladerie that great circle 2 voute from Eugene, Oregon to your nome town. In particular, Find the Northernmost point on this rorte.

The following

Whit isn't part of the assignment, but rather a fon suggestion:

by tracing this rorte ort on a map, you can actually keep track, only comparing the view out the window with your map, of what you're flying over onso

the nepttime you fly home - which

(d) cont) is much more interesting than watching the lawsy Bruce Willis movie the airline is showing.

2) Ity Tig2 Clamp L X Fig2

The figure above illustrates the configuration of a thin, flexible rod.

The energy needed to bend the rad is

where the constant K 13 a measure

of the "stiffness" of the rod.

a) Derive the Euler-Lagrange equation

Phat minimizes this determines the

mmimum energy configuration of the rod.

20) (Note that the one we derived) in class is insufficient, since the Lagrang a quantity being minimized only involved a function and its first derivatives; here we have second derivatives. So you'll have to first extend our derivation of the E-LG equations to include this case. 26) Solve the E-Lo equation of part a for the boundary conditions illustrated a clamp evolat x=0 holds the rad at y=0 and keeps it horizontal (y'(x=0)=0), while a wedge holds the far end of the vad up a distance h.

	PS)	· (c
\		

PSI.
3)a) Write down the Lagrangian for
the "pedagogical machine" illustrated
te low: Inst 9 1
telow: The low Priction less pulley
The old frictionless table
Gravity g acts vertically; the slot the
Mass m2 slides in is frictionless, and
you needn't warry about what happens
a when Mz hits the bottom of this slot.
b) Find the acceleration (magnitude and direction)
of the mass mil.
4)a) Write down the Lagrangian of a
bead of mass in on a massless wive

When the wive is completely free

honzuntal) 4a) on to votate in a plane, and the bead is moved along the wive at a constant speed Vo (see figure:) (No gravity) VITE VOTOROUND) O(t) ((fivee pivox))) (x) 46) Derive the equation of motion for 01t) from this Lagrangian 40) Solve this equation for O(t) given the initial conditions & (to) = Wo, O(t) = 0 A mass marghan is suspended in a gravitational field by a string wrapped around a cylinder, as shown: (next page:) (of ractive P)

5) (mt)

a) Assuming the mass only mass in a vertical plane, and that the string always remains tart, write down the Lagrangian for this system taking the angle o between the line x from the center of the cylinder to the last point of string-cylinder confact and the harizontal as your independent dynamical variable. The length of string Not in confact with the cylinder when

0=0 150

b) Derive the Equation of motion for O.

c) A Simplify this equation in the limit

RLL P. Da you reragnize the result?

Erming in

27101125

mile = 1 (2 a) 11 = = +