We need to show that S satisfies 3 conditions of σ -algebra:

- $\emptyset \in \mathcal{S}$ when we choose $K = \emptyset \subseteq \mathbb{Z}$.
- Let $E \in \mathcal{S}$. Then, by definition, there exists $K \subseteq \mathbb{Z}$ such that $E = \bigcup_{n \in K} (n, n+1]$. WLOG let $K = \{k_1, k_2, \dots\}$ such that $k_1 > k_2 > \dots$ and k_1, k_2, \dots are pairwise distinct, then $E = (k_1, k_1 + 1] \cup (k_2, k_2 + 1] \cup \dots$, therefore $E^c = \dots \cup (k_1 1, k_1] \cup (k_1 + 1, k_1 + 2] \cup \dots \cup (k_2 1, k_2] \cup (k_2 + 1, k_2 + 2] \cup \dots$ We can write E^c as $E^c = \bigcup_{n \in \mathbb{Z} \setminus K} (n, n+1]$. Since $\mathbb{Z} \setminus K \subseteq \mathbb{Z}$ then $E^c \in \mathcal{S}$.
- Let $\bigcup_{n\in K_1}(n,n+1], \bigcup_{n\in K_2}(n,n+1], \dots \in \mathcal{S}$. Then the union of this sequence of elements in \mathcal{S} is $\bigcup_{i=1}^{\infty} \bigcup_{n\in K_i}(n,n+1]$, which is equal to $\bigcup_{n\in K}(n,n+1]$ where $K=\bigcup_{i=1}^{\infty} K_i$. And $\bigcup_{n\in K}(n,n+1]\in \mathcal{S}$ by definition of \mathcal{S} .

Let $S' = \{(r, s] : r, s \in \mathbb{Q}\}$ be the collection of Borel subsets of \mathbb{R} (Theorem (\spadesuit)). To show that S equals the collection of Borel subsets of \mathbb{R} :

Let $r, s \in \mathbb{Q}$. Define $n \in \mathbb{Z}$ such that $n \geq s$.

Then we have
$$\underbrace{(r,s]}_{\in \mathcal{S}'} = (r,n] \cap (-\infty,s] = \underbrace{(r,n]}_{\in \mathcal{S}} \cap (\mathbb{R} \setminus \underbrace{(s,n+1]}_{\in \mathcal{S}})$$
. Therefore $(r,s] \in \mathcal{S}$,

i.e., each element of S' is included in S. Using theorem (\spadesuit) , the collection of Borel subsets of \mathbb{R} is a subset of S.

Let $r \in \mathbb{Q}$ and $n \in \mathbb{Z}$. Then $(r, n] \in \{(r, s] : r, s \in \mathbb{Q}\}$. It means that every element of S is also an element of S'. Using theorem (\spadesuit) , S is a subset of the collection of Borel subsets of \mathbb{R} .

Theorem (♠) [2B Exercise 3]

Suppose S' is the smallest σ -algebra on \mathbb{R} containing $\{(r,s]:r,s\in\mathbb{Q}\}$. Prove that S' is the collection of Borel subsets of \mathbb{R} .

proof.

Let $r, s \in \mathbb{Q}$. Then $(r, s] = \bigcap_{n=1}^{\infty} (r, s + \frac{1}{n})$. Since each $(r, s + \frac{1}{n})$ is a Borel set, then (r, s] is also a Borel set by 2.25 of Measure, Integration & Real Analysis. So \mathcal{S}' is a subset of the collection of Borel subsets of \mathbb{R} .

Let $a, b \in \mathbb{Q}$. Then $(a, b) = \bigcup_{n=1}^{\infty} (a, b - \frac{1}{n}] \in \mathcal{S}'$. Let $c, d \in \mathbb{R}$. For any $n \in \mathbb{N}$, there exists $a_n, b_n \in \mathbb{Q}$ such that $c \leq a_n < c + \frac{1}{n}$ and $d - \frac{1}{n} < b_n \leq d$. Then $(c, d) = \bigcup_{n=1}^{\infty} (a_n, b_n)$. Since $(a_n, b_n) \in \mathcal{S}'$ for each $n \in \mathbb{N}$, $(c, d) \in \mathcal{S}'$. A subset of \mathbb{R} is open if and only if it is the union of a disjoint sequence of open intervals by

0.59 of Supplement for Measure, Integration & Real Analysis. So any open subset of \mathbb{R} is included in \mathcal{S}' . Therefore, the collection of Borel subsets of \mathbb{R} is a subset of \mathcal{S}' .

Conditioning on the value of $\mathbf{t} \in \mathbb{R}$:

- If $\mathbf{t} = \mathbf{0}$, then if $B \subseteq \mathbb{R}$ is a Borel set, $tB = \{0\}$ is also a Borel set since every countable subset of \mathbb{R} is a Borel set (by 2.30 of Measure, Integration & Real Analysis).
- If $t \in \mathbb{R} \setminus \{0\}$ and by defining function $f : \mathbb{R} \to \mathbb{R}$ as $f(x) = \frac{x}{t}$, we argue that f is a Borel-measurable function since it is continuous. Therefore by definition of Borel-measurable functions, $f^{-1}(B) = tB$ is a Borel set for every Borel set $B \subseteq \mathbb{R}$.

(a) Let $k \in \mathbb{Z}^+$ and $x \in G_k$. By definition, there exists $\delta_x > 0$ such that $|f(b) - f(c)| < \frac{1}{k} \quad \forall b, c \in (x - \delta, x + \delta)$. Given the value of δ , let $\delta_x < \delta$ be such that it builds a ball around x as $\underbrace{(x - \delta_x, x + \delta_x)}_{B(x,\delta_x)} \subset (x - \delta, x + \delta)$ and pick $y \in B(x,\delta_x)$.

Given the value of y and δ_x , now let $\delta_y < \delta_x$ such that $\underbrace{(y - \delta_y, y + \delta_y)}_{B(y, \delta_y)} \subset B(x, \delta_x)$.

Then for any $b', c' \in B(y, \delta_y)$ we have $|f(b') - f(c')| < \frac{1}{k}$, thus we can conclude that $y \in G_k$. Since y was chosen arbitrarily from $B(x, \delta_x)$ then $B(x, \delta_x) \subset G_k$ which means that an open ball around x exists for each element x of G_k . Therefore G_k is an open subset of \mathbb{R} .

(b) To show $\bigcap_{k=1}^{\infty} G_k = \underbrace{\{\text{set of points at which } f \text{ is continuous}\}}_{:=C}$:

Let $x \in \bigcap_{k=1}^{\infty} G_k$ and let $\epsilon > 0$. There exists an $n \in \mathbb{Z}^+$ such that $\frac{1}{n} \leq \epsilon$ and $x \in G_n$, so $|f(x') - f(x)| < \frac{1}{n} \leq \epsilon$ for all $x' \in B(x, \delta_x)$, i.e., for all x' such that $|x' - x| < \delta_x$. Therefore $x \in C$.

Let $x \in C$ and $k \in \mathbb{Z}^+$. Then there is δ_x such that $|f(x') - f(x)| < \frac{1}{2k} \quad \forall x' \in B(x, \delta_x)$. Using triangle inequality:

$$|f(x'') - f(x')| < |f(x'') - f(x)| + |f(x) - f(x')| < \frac{1}{2k} + \frac{1}{2k} = \frac{1}{k}$$

for all $x', x'' \in B(x, \delta_x)$, so $x \in G_k$. Since k was arbitrary, then $x \in \bigcap_{k=1}^{\infty} G_k$.

(c) Since G_k 's are open subsets of \mathbb{R} then they are Borel sets. Borel sets are closed under intersection, therefore $\bigcap_{k=1}^{\infty} G_k$ is also a Borel set. And as we showed in part (b), this set is equal to the set of points at which f is continuous. Hence the set of points at which f is continuous, is a Borel set.