

Study Introduction and Synops

John W. Hines, Study Lead
Chief Technologist

NASA-Ames Research Center (650) 604-5538 **ASGSB 2011**

john.w.hines@nasa.gov

NASA's Space Technology Program

NASA SPACE TECHNOLOGY ROADMAP
TECHNICAL AREA BREAKDOWN STRUCTURE

STR • TABS TECHNOLOGY AREA BREAKDOWN STRUCTURE

LAUNCH PROPULSION SYSTEMS

• SCIENCE INSTRUMENTS, OBSERVATORIES & SENSOR SYSTEMS

 IN-SPACE PROPULSION TECHNOLOGIES

• ENTRY, DESCENT & LANDING Systems

 SPACE POWER & ENERGY STORAGE

• NANOTECHNOLOGY

ROBOTICS, TELE-ROBOTICS &
AUTONOMOUS SYSTEMS

 MODELING, SIMULATION, INFORMA-TION TECHNOLOGY & PROCESSING

COMMUNICATION & NAVIGATION

 MATERIALS, STRUCTURES, MECHAN-ICAL SYSTEMS & MANUFACTURING

• HUMAN HEALTH, LIFE SUPPORT & HABITATION SYSTEMS

 GROUND & LAUNCH SYSTEMS PROCESSING

 HUMAN EXPLORATION DESTINA-TION SYSTEMS

THERMAL MANAGEMENT SYSTEMS

NASA-Ames Technology Elements

Definition - Development -- Infusion

ARC Strategic Technology Initiatives

Selected Studies

- 1. <u>Biological Technologies for Life Beyond Low Earth Orbit (BT4LBLEO)</u>
- 2. Next Generation Spacecraft Systems
- 3. Emerging Aeronautics Systems and Technologies (EAST)
- 4. Cyber-Physical Systems Modeling and Analysis (CPSMA)
- 5. Designing High-Confidence Software and Systems (DHCSS) *
- 6. Quantum Computing (QuC)
- 7. Beamed Energy Propulsion (Microwave Thermal Rocket)
- 8. Active Debris Removal

Studies in Transition

- Synthetic Biology (SynBio)
- PhoneSat

Other Suggested Initiatives

- Low Cost, Off-the-Shelf Space Technologies (LCOSST)
- GREEN Technologies (Technologies for Sustainability)
- Technologies for Earth and Space Science Applications (TESSA)
- Disaster/Homeland Security Monitoring, Mitigation, Training (DHSMMT)

BT4LBLEO Study Objectives

The Biological Technologies to enable Life Beyond Low Earth Orbit (BT4LBLEO) Study will:

- 1. <u>Define a set of Design Reference Experiments (DREs)</u> which address pertinent space biological science and exploration science questions using model and small organisms;
- 2. <u>Identify, specify, and recommend the necessary technologies,</u> techniques and systems to accomplish those DREs; and
- 3. <u>Develop and recommend a strategic technology development and insertion roadmap</u> to provide those technologies for utilization in the BLEO, Moon, Mars and deep space environments in support of Space Biological Research and Human Exploration.

DREs	2011 2	013 2019	2020	2025	203	0 203
OCT HEOMD SMD GOV ACAD INDUSTRY INTERNAT'L						
<u>BTAB</u>						
1. BTAB 1 1. N 2. N 3. N 4. N 5. N 2. BTAB 2 3. BTAB 3 1. N 2. N		Possibl	e Road	map Fo	ormat	
3. N 4. BTAB 4 1. N 2. N 3. N 5. BTAB 5						
1. N 2. N 3. N						

Rationale

- A major element in NASA's new vision of technology innovation and exploration is to prepare for eventual human travel and presence beyond low earth orbit (BLEO), on near-earth-objects, and on the surface of, or in orbit around, the Moon, Mars, and beyond. To accomplish these bold objectives, we must collectively understand how life in general, and specific biological systems in particular, adapt, respond and thrive in these extraterrestrial environments.
- The study will address the following mission concerns:
 - Extended human presence in the environments of deep space as well as the Moon and Mars will require a solid biological understanding of the integrated effects of diminished gravity, enhanced radiation, and transit- and destination-specific variables from the sub-cellular to the whole organism level
 - Biological and associated technologies for biological and robotic precursor missions to realize future objectives for space colonization
 - Surfaces, gravity levels, radiation environments, and atmospheres of these nearest neighbors are radically different in chemical and geological make-up from those on

Relevant and Supporting Science Disciplines:

Space Biology, Astrobiology, Lunar Science, Synthetic Biology, Human Research Program, Crew Health Systems, Human Health and Performance, Exploration Life Support, Planetary Protection

NASA Applications of BioScience/BioTechnology

BioScience Targets & Applications

(example)

- <u>Goal:</u> Provide the capability to support biological/biotechnology payloads for model organisms, mammalian cells, and other relevant specimens
- Measurement Targets (examples):
 - Gene expression; protein expression; metabolites, signalers, excretates; growth, kill curves; behavior
- Possible Applications (representative subset):
 - Combined radiation/reduced gravity consequences: mammalian cells, human gene carriers (e.g. yeast), model organisms.
 - DNA damage: wound healing, cancer
 - Cell membrane damage: central nervous system
 - Oxidation: compromised defense to hazards & pathogens
 - **Protein damage:** impaired bone & muscle function
 - Space effects on microbes/pathogens
 - Virulence increase/decrease
 - Changes in pharmacological efficacy (PharmaSat-1)
- Push the envelope of miniaturization, automation: also benefits human-tended payloads, related terrestrial applications—e.g. "canary-on-a-chip".

BT4LBLEO Technology Needs

An important element, which was not specifically defined in the OCT Space Technology Roadmaps (STR), is the area of technologies required to conduct biological research and human exploration precursor missions beyond low earth orbit. Emphasis for this study will be from the biological perspective to define a crosscutting biological technology evolution and insertion strategy, which augments and enhances the present STRs. Particular technology needs include:

Functional Categories

Transportation	Sample Return		
Measurement	Control		
Computation	Analysis		
Life support	Habitation		
Sample handling and management	Biotechnology		
Automated and in-situ bioanalytical instruments	Fundamental and applied biological R&D		
Biologically based manufacturing and production technologies			

Wish List Specific Examples

- •Miniature, in-situ Biological Sensors, Arrays, and Signal Processors
- •Species-specific Biological Sample Management and Handling Systems
- Programmable, in-situ Biofluidics Modules and Processors
- •Advanced, and Multi-Mode Microscopy, Biophotonics, and Imaging Systems
- •Long-duration Biospecimen Life Support and Culture Systems
- Technologies for in-situ Molecular Biology (Genomics and Proteomics) Research
- Miniaturized, Fluorescent Activated Cell Sorters / Cytometers
- •High-sensitivity, Target-specific BioMolecular Probes, Tags, and Indicators
- •Autonomous, Robotic, Biospecimen Preservation and Freezer Modules (Fast, Snap, and Cryogenic)
- •Advanced Information Technology Tools for Data Interpretation and Control
- •Modular, Adaptable, Multi-Platform Biological Payloads and Subsystems

Parameter Cube

X Axis		Y Axis			Z Axis		
Model Organisms	= 1	Gravity	=	G	ISS/LEO	=	Red
Molecules / Organics	= 2	Radiation	=	R	BLEO	=	Blue
Cells	= 3	Oxidative Stress	=0	OS	Lunar	=	Green
Small Animals	= 4	Environmental Exposure	=	EE	Mars	=	Violet
Integrated Ecologies	= 5	Physical	=	Р	Planetary	=	Orange

BT4LBLEO Design Reference Experiments

[Notional Construct]

Mission Increments (years)	Mission Timeline (years)	Destination Missions/Location	Complexity	Organism Type Mission	Science to be Addressed	Technologies Required to Address the Science
2	0 - 2	Near/ISS	Low		Resolve basis of cell cultures, microbial, model organisms, integrated ecologies, and rodents (small animals) response to microgravity and other space environment variables. In addition to questions relevant to: Space Biology, Human Exploration, Astrobiology, and Earth applications.	1). In-Situ Bioanalytical Technologies 2). Sample Preservation, Management and Handling Technologies 3). Biological Sensors and Instruments
2	2 - 4	Near / (GEO/HEO)	Medium	Model Organisms,		1). <i>In-situ</i> Bioanalytical
2	4 - 6	Near / (GEO/HEO)	High	Microbes, Cell		Technologies
2	6 - 8	Mid / (Lunar Flyby/Orbit)	Low	Cultures	Resolve basis of cell cultures, microbial,	2). Sample Preservation,
2	8 - 10	Mid / (Lunar Flyby/Orbit)	Medium			Management and Handling
2	10 - 12	Mid / Lunar Surface Mission	High		response to microgravity, radiation, and	Technologies
3	10 - 20	Long / NEA	Low		and Earth applications.	3). Biological Sensors and Instruments 4). Biological Habitats and Experiment Hardware
3	10 - 20	Long / (Phobos/Deimos)	Medium			5). Spaceflight Payload Hardware
3	10 - 20	Long / Mars	High			and Systems

Capability Driven Exploration

Demonstrations

BT4LBLEO Study Deliverables

DELIVERABLE	TIMEFRAME		
Study Team/SME recommendation/approval	ATP+ 30 days *		
Roadmap and Implementation Plan	30 days (ATP+60 days)		
White Paper	30 days (ATP+90 days)		
Workshop#1	60 days (ATP+150 days)		
Interim Report	30 days (ATP+180 days)		
Workshop #2	30 days (ATP+210 days)		
Final Report	60 days (ATP+270 days)		

^{*} ATP= Authority to Proceed

Study Synergies

The BT4LBLEO Study complements and supports other agency studies and initiatives as well as the STR activity sponsored by the OCT. In particular, synergistic objectives exist between the Synthetic Biology Initiative and the BT4LBLEO Study. Whereas the Synthetic Biology Initiative concentrates specifically on the fundamental nature and design constructs for engineering organisms for use in space, the BT4LBLEO Study addresses a broader study of the necessary technologies, techniques and systems to support mission and science requirements for multiple mission scenarios, including those missions targeted for testing and utilization of Synthetic Biology products.

Other synergies are noted between the BT4LBLEO Study and STR TA-06 Human Health, Life Support and Habitation Systems (HLHS). While TA-06 focuses on technologies required to achieve national and agency goals in human space exploration, the BT4LBLEO Study concentrates on technologies for use on precursor robotic missions that will enable human exploration.

Biological Technologies for Life Beyond Low Earth Orbit (BT4LBLEO)

HABITAT & EQUIPMENT

MEASUREMENT and CONTROL

SYSTEM

INFORMATION SYSTEM

SCIENCE

HARDWARE (EUE)

SUBJECT

(Specimen)

A Systems Study Approach for Biological Technology Definition, Development, and Insertion

http://bt4lbleo.arc.nasa.gov