PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-268260

(43) Date of publication of application: 17.10.1995

(51)Int.CI.

C09D 11/00

CO9D 11/10

(21)Application number: 06-063362

(71)Applicant: TOYOBO CO LTD

(22)Date of filing:

31.03.1994

(72)Inventor: SHIMOMURA TETSUO

MAEDA SATOSHI YAMADA YOZO

(54) INK

(57) Abstract:

PURPOSE: To obtain an ink for an ink jet printer which does not blur recording paper and gives an image excellent in density and lightfastness by dispersing minute resin particles colored with a specific dye in an aq. medium.

CONSTITUTION: This ink is obtd. by finely dispersing colored minute resin particles in an aq. medium (e.g. a medium comprising water, methyl ethyl ketone, and tetrahydrofuran). The particles mainly comprise a polyester resin pref. having ionic groups in an amt.of 20–1,000eq/ton (e.g. a polyester obtd. from dimethyl terephthalate, dimethyl isophthalate, dimethyl 5– sodiumsulfoisophthalate, ethylene glycol, and neopentyl glycol) and colored with an oily phthalocyanine dye.

LEGAL STATUS

[Date of request for examination]

22.03.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-268260

(43)公開日 平成7年(1995)10月17日

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

技術表示箇所

C09D 11/00

PSZ

11/10

PTV

審査請求 未請求 請求項の数6 〇L (全6頁)

(21)出願番号

特願平6-63362

(22)出願日

平成6年(1994)3月31日

(71)出願人 000003160

東洋紡績株式会社

大阪府大阪市北区堂島浜2丁目2番8号

(72)発明者 下村 哲生

滋賀県大津市堅田二丁目1番1号 東洋紡

續株式会社総合研究所内

(72)発明者 前田 郷司

滋賀県大津市堅田二丁目1番1号 東洋紡

續株式会社総合研究所内

(72)発明者 山田 陽三

滋賀県大津市堅田二丁目1番1号 東洋紡

續株式会社総合研究所内

(54) 【発明の名称】インク

(57)【要約】

【目的】 本発明は、記録紙上でのインクの滲みを無くし、かつ、極めて良好な画像濃度を得ることの可能なインクジェット用プリンタのインクを提供するものである。

【構成】 染料にて着色された微小樹脂粒子が、水系媒体中に微分散してなることを特徴とするインクジェットプリンタ用インクに於いて、該染料がフタロシアニン系油性染料であることを特徴とするインクである。

【効果】 本発明により、インクジェットプリンタを用いたプリントにおいて、記録紙上のインクの滲みが全く無くかつ、極めて良好な画像濃度が得られ更に、耐光性の優れた画像が得られる。

【特許請求の範囲】

【請求項1】 染料にて着色された着色微小樹脂粒子 が、水系媒体中に微分散してなる分散体であることを特 徴とするインクジェットプリンタ用インクに於いて、該 染料がフタロシアニン系油性染料であることを特徴とす るインク。

【請求項2】 着色微小樹脂粒子が、20~1000 e q/tonの範囲でイオン性基を含有するポリエステル 樹脂を主成分とするものである請求項1のインクジェッ トプリンタ用のインク。

【請求項3】 着色微小樹脂粒子の粒子径が0.1 μmか ら1.0 μmの範囲である請求項1のインク。

【請求項4】 着色微小樹脂粒子の分散体中の含有量 が、10から50wt% の範囲である請求項1のインク。

微小樹脂粒子に対する染料の含有量が2 【請求項5】 から20wi% の範囲である請求項1のインク。

分散体が0.1 から10wt% の範囲でエチレ 【請求項6】 ングリコールまたは、グリセリンまたは、多価アルコー ル類を含有する請求項1のインク。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、出力装置に関するもの であり、特に、インクジェットプリンタ用のインクに関 するものである。

[0002]

【従来の技術】コンピュータ等の情報機器の出力装置と してはドットマトリックスプリンタ、熱転写プリンタ、 レーザープリンタ等様々な方式があり、その中で最近、 ランニングコストが安く、髙精細でかつカラー化が容易 な方式としてインクジェット方式が注目されている。イ ンクジェットプリンタ用のインクとしては、従来染料水 溶液が使用されてきたが、ノズルから飛ばされたインク が記録紙に付着したとき、インクが記録紙で滲み、飛ば されたときに形成したインク粒よりも大きなドットとな ってしまったり、記録された画像の耐水性に問題があっ た。

【0003】従来、この様なインクジェット用インクで は、それら問題を解決するために多くのアイディアが提 案されてきた。a)水溶性染料を水と有機溶媒の混合溶剤 に溶解し、染料の濃度を5 wt %以下とし、有機溶剤の添 加料を3~30%の範囲としたもの(特開昭62-124166)

b) インク中に特定のジエーテル化合物を添加したもの (特開昭62-32159) c)界面活性物質を吸着樹脂によっ て除去した水溶性直接染料、または酸性染料を使用する もの (特開昭60-49070) d) インク中に染料及び造膜さ せるためのエマルジョンを添加したもの (特開平4-1846 2) e)染料によって染色された乳化重合または分散重合 粒子を用いるもの (特開平3-250069) 等が提案されてい る。

[0004]

【発明が解決しようとする課題】前述のインク (a)~ (d) は、記録紙上でインクの滲みをある程度は低減させ るが、記録紙繊維への毛細管現象によるインクの滲みを 完全に防ぐことは不可能であった。一方、前述のe)の方 式は、染色された重合粒子を用いている為に、滲みは発 生しないが、該方式で得られた粒子は、粒子の安定性が 悪く長時間放置すると染料が析出沈降したり、粒子表面 に浮き出してしまう。さらに、高濃度に染色することが 難しい為、十分な画像濃度が得られない。

[0005] 10

【課題を解決するための手段】本発明は、記録紙上での インクの滲みを無くし、かつ、極めて良好な青色の画像 濃度を得ることの可能なインクジェット用プリンタのイ ンクを提供するものである。即ち本発明は、染料にて着 色された微小樹脂粒子が、水系媒体中に微分散してなる ことを特徴とするインクジェットプリンタ用インクに於 いて、該染料がフタロシアニン系油性染料であることを 特徴とするインクである。また本発明の該微小樹脂粒子 は好ましくは、20~1000eq/tonの範囲でイ 20 オン性基を含有するポリエステル樹脂がよい。

【0006】本発明は、高い画像濃度を得るという課題 に対して、染色が容易であるポリエステルを微小粒子と して用いることによって解決をした。また、該ポリエス テルは、エマルジョンであるために、記録紙に付着した 場合、滲みも少なくする効果もある。本発明に用いられ る、ポリエステル粒子を着色する染料としては、鋭意検 討の結果、フタロシアニン系油性染料を使用することを 必須条件とする。該染料を用いることによって、極めて 良好な着色濃度の青色ポリエステル粒子を得ることが可 能となり、また、耐光性も良好である。本発明に用いら れる、ポリエステル微小粒子は、エマルジョン状態であ ることが好ましいが、より好ましくは、粒径が1ミクロ ン以下が良い。さらに本発明ポリエステル微小粒子に用 いられるポリエステル樹脂は、多価カルボン酸類と多価 アルコール類からなる。ポリエステル樹脂に用いられる 多価カルボン酸類としては、例えば、テレフタル酸、イ ソフタル酸、オルソフタル酸、1、5-ナフタルレンジ カルボン酸、2,6-ナフタレンジカルボン酸、ジフェ ン酸、スルホテレフタル酸、5-スルホイソフタル酸、 4-スルホフタル酸、4-スルホナフタレン-2, 7ジ カルボン酸、5 [4-スルホフェノキシ] イソフタル 酸、スルホテレフタル酸、およびまたはそれらの金属 塩、アンモニウム塩などの芳香族ジカルボン酸、p-オ キシ安息香酸、 p - (ヒドロキシエトキシ) 安息香酸な どの芳香族オキシカルボン酸、コハク酸、アジピン酸、 アゼライン酸、セバシン酸、ドデカンジカルボン酸等の 脂肪族ジカルボン酸、フマール酸、マレイン酸、イタコ ン酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、 等の不飽和脂肪族、および、脂環族ジカルボン酸等を、

50 また多価カルボン酸としては他にトリメリット酸、トリ

メシン酸、ピロメリット酸等の三価以上の多価カルポン 酸等を例示できる。

【0007】ポリエステル樹脂に用いられる多価アルコール類としては脂肪族多価アルコール類、脂環族多価アルコール類、脂肪族多価アルコール類を例示できる。脂肪族多価アルコール、1、3ープロパンジオール、プロピレングリコール、1、4ープタンジオール、1、5ーペンタンジオール、1、6ーヘキサンゴール、ジプロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ジオーレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の脂肪族ジオール類、トリメチロールプロパン、グリセリン、ペンタエルスリトール等のトリオールおよびテトラオール類等を例示できる。

【0008】脂環族多価アルコール類としては1,4一シクロヘキサンジオール、1,4ーシクロヘキサンジメタノール、スピログリコール、水素化ビスフェノールA、水素化ビスフェノールAのエチレンオキサイド付加物、トリシクロデカンジメタノール等を例示できる。芳香族多価アルコール類としてはパラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1,4ーフェニレングリコールのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等を例示できる。

【0009】さらにポリエステルポリオールとして、ε カプロラクトン等のラクトン類を開環重合して得られ る、ラクトン系ポリエステルポリオール類等を例示する ことができる。これらの他、ポリエステル高分子末端の 極性基を封鎖する目的にて単官能単量体がポリエステル に導入される場合がある。単官能単量体としては、安息 香酸、クロロ安息香酸、プロモ安息香酸、パラヒドロキ シ安息香酸、スルホ安息香酸モノアンモニウム塩、スル ホ安息香酸モノナトリウム塩、シクロヘキシルアミノカ ルポニル安息香酸、n-ドデシルアミノカルポニル安息香 酸、ターシャルブチル安息香酸、ナフタレンカルボン 酸、4-メチル安息香酸、3メチル安息香酸、サリチル 酸、チオサリチル酸、フェニル酢酸、酢酸、プロピオン 酸、酪酸、イソ酪酸、オクタンカルポン酸、ラウリル 酸、ステアリル酸、およびこれらの低級アルキルエステ ル、等のモノカルボン酸類、あるいは脂肪族アルコー ル、芳香族アルコール、脂環族アルコール等のモノアル

【0010】本発明においては必要に応じて不飽和単量 体を用いてもよく、他の成分もポリエステル樹脂のガラ

コールを用いることができる。

ス転移温度、モノマーとの相溶性、等により適宜選択される。

【0011】ポリエステルに導入されるイオン性基としては、スルホン酸アルカリ金属塩基あるいはスルホン酸アンモニウム塩基を有するモノあるいはジカルボン酸等を好ましく用いることができるほか、例えばカルボン酸アルカリ金属塩基あるいはカルボン酸アンモニウム塩基を有する単量体、硫酸基、リン酸基、ホスホン酸基、ホスワィン酸基もしくはそれらのアンモニウム塩、金属塩のアニオン性基、または第1級ないし第3級アミン基等のカチオン性基単量体などをもちいることができる。

ボン酸アンモニウム塩基を導入する場合には、ポリエステルの重合末期にトリメリット酸等の多価カルボン酸を系内に導入することにより高分子末端にカルボキシル基を付加し、さらにこれをアンモニア、水酸化ナトリウム等にて中和することによりカルボン酸塩の基に交換する方法を用いることができる。また、スルホン酸アルカリ金属塩基あるいはスルホン酸アンモニウム塩基を有する20 モノあるいはジカルボン酸を含有することによりこれらのイオン性基をポリエステル樹脂に導入することができる。塩としてはアンモニウム系イオン、Li、Na、

K、Mg、Ca、Cu、Fe等の塩があげられ、特に好ましいものはK塩またはNa塩である。本発明では5ーナトリウムスルホイソフタル酸、あるいはメタナトリウムスルホ安息香酸を用いることが好ましい。またカルボン酸塩の基とスルホン酸塩の基を使用しても良い。

【0013】本発明におけるポリエステル樹脂のより具体的な例として、以下に示される。

- 30 a) 芳香族系単量体を80mol%以上含有する多価カルボン 酸類、と、
 - b) エチレングリコール 0 ~ 9 0 mol%、プロピレングリコール 1 0 0 ~ 1 0 mol%

とから得られるポリエステル樹脂、または

- a) 芳香族系単鼠体を 8 0 mol %以上含有する多価カルボン 酸類、と、
- b) 2, 3 プタンジオール 5 ~ 8 0 mol%、エチレングリコール 2 0 ~ 9 5 mol%

とから得られるポリエステル樹脂、または

- 40 a) 芳香族系単量体を80mol%以上含有する多価カルポン 酸類、と、
 - b) C 2 ~ C 4 の脂肪族系グリコール類 7 0 ~ 9 5 mol%、
 - c)トリシクロデカン骨格を有するモノあるいは多価アル コール類 5 ~ 3 0 mo 1%

とから得られるポリエステル樹脂、または

- a) 芳香族系単量体を80mol%以上含有する多価カルポン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、
- c)ヒドロキシメチルトリシクロデカン5~30mol%
- 50 とから得られるポリエステル樹脂、または

【0014】a) 芳香族系単量体を80mol%以上含有する 多価カルボン酸類、と、

- b) C2 ~ C4 の脂肪族系グリコール類 7 0 ~ 9 5 mol%、
- c)トリシクロデカンジメタノール5~30mol%
- とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80 mol%以上含有する多価カルポン 酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95 mol%、
- c)シクロヘキサン骨格を有するモノあるいは多価アルコ ール類 5 ~ 3 O mol%

とから得られるポリエステル樹脂、または

- a) 芳香族系単量体を80mol%以上含有する多価カルポン 酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95mol%、
- c)シクロヘキサンジオール5~30mol%
- とから得られるポリエステル樹脂、または
- a) 芳香族系単量体を80 mol%以上含有する多価カルボン 酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類 70~95 mol%、
- c)水添ピフェノール5~30mol%
- とから得られるポリエステル樹脂、または
- 【0015】a) 芳香族系単量体を80mol%以上含有する 多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類70~95mol%、
- c)水添ピスフェノールA5~30mol%
- とから得られるポリエステル樹脂、または
- a) ナフタレン骨格を有するモノあるいは二価以上のカル ボン酸1~20mol%を含む芳香族系単量体を80mol%以 上含有する多価カルボン酸類、と、
- b) C2 ~ C4 の脂肪族系グリコール類 7 0 ~ 1 0 0 mol
- c) 脂環族系単量体 0~30 mol%を含有する多価アルコー ル類、

とから得られるポリエステル樹脂等を例示することがで きる。さらに、ここに示される、「a) 芳香族系単量体」 はテレフタル酸あるいはイソフタル酸であることが好ま しい。テレフタル酸とイソフタル酸の比率は、テレフタ ル酸含有率/イソフタル酸含有率=90~40/10~ 60 [mol%] が好ましく、さらに、テレフタル酸含有率 /イソフタル酸含有率=80~50/20~50 [mol *]、またさらにテレフタル酸含有率/イソフタル酸含 有率=85~60/15~40 [mol%] が好ましい。

【0016】イオン性基含有単量体をポリエステル樹脂 に導入し、ポリエステル樹脂にイオン性基を与えた場 合、ポリエステル樹脂が水分散性を発現する。イオン性 基含有単量体としては前述したスルホン酸アルカリ金属 塩基あるいはスルホン酸アンモニウム塩基を有するモノ あるいはジカルボン酸等を好ましく用いることができる ほか、例えばカルボン酸アルカリ金属塩基あるいはカル

酸基、ホスホン酸基、ホスフィン酸基もしくはそれらの アンモニウム塩、金属塩等のアニオン性基、または第1 級ないし第3級アミン基等のカチオン性基単量体などを もちいることができる。 カルボン酸アルカリ金属塩基 あるいはカルポン酸アンモニウム塩基を導入する場合に は、ポリエステルの重合末期にトリメリット酸等の多価 カルボン酸を系内に導入することにより高分子末端にカ ルポキシル基を付加し、さらにこれをアンモニア、水酸 化ナトリウム等にて中和することによりカルボン酸塩の 10 基に交換する方法を用いることができる。

【0017】これらイオン性基の含有量は、スルホン酸 基およびまたはその塩の基をふくめ、該ポリエステル樹 脂に対し、10~1000m当量/1000g、好まし くは20~500m当量/1000g、なお好ましくは 50~200m当量/1000g、である。イオン性基 の含有量が所定の量より少ない場合には十分なる水分散 性が得られない。染料としては、フタロシアニン系油性 染料を用いることが必須条件である。より具体的には、

- ·C. I. Solvent Blue 25
- ·C. I. Solvent Blue 38 20
 - ·C. I. Solvent Blue
 - ·C. I. Solvent Blue 70 などや、市販商品としては、
 - ・Valifast Blue 1605 (オリエント 化学社製)
 - ・Valifast Blue 2620 (オリエント 化学补敷)
 - ・Valifast Blue 2606 (オリエント 化学补敷)
- ・Oil Blue BO (オリエント化学社製) 30
 - ·Neopen Blue 808 (BASF社製)
 - ·Neptun Blue 698 (BASF社製)
 - ·Neptun Blue 722 (BASF社製)
 - ·Spilon Blue GNH (保土谷化学社製) ·Spilon Blue 2BNH (保土谷化学社
 - ·Sot Blue-1 (保土谷化学社製)

劇)

- ·SPT Blue-26 (保土谷化学社製)
- ·SPT Blue-111 (保土谷化学社製)
- 40 から選択される少なくとも1種の染料が好ましく用いら れる。これらは特に耐光堅牢度、昇華堅牢度、色相、彩 度に優れるものであり、プロセスカラ-用三原色として 好ましいものである。他に色相の微調整のために公知の 染顔料を併用してもよい。

【0018】本発明における微粒子分散体の平均粒子径 は1. 0μm以下であることが必須であり、好ましくは 0. 5 μ m 以下である。 微粒子分散体の粒子系がこの範 囲を越える場合には分散安定性が悪化する場合がある。 また平均粒子径は、少なくとも0.1 μm以上のものがよ ボン酸アンモニウム塩基を有する単量体、硫酸基、リン 50 い。微粒子分散体の粒子系がこの範囲を越える場合には

102重量部.

インクの滲みが大きくなる場合がある。本発明における (着色) 微粒子のインク中の含有 畳は 10~50 W t % の範囲が好ましく、10Wt%以下では必要な画像濃度 が得られず、50Wt%を越えるとインクの粘度が高す ぎノズルでのインクの吐出が困難となる。また、微粒子 に対する染料の含有量は2~20Wt%の範囲が好まし く、2Wt%以下では必要な画像濃度が得られず、20 Wt%を越えるとインク(分散体)が安定せず凝固、沈 殿等の問題が起こる。

【0019】かかるポリエステル樹脂の微粒子分散体は 以下に述べる方法にて得ることができる。すなわち、イ オン性基を含有した場合、本発明におけるポリエステル 樹脂は水分散性を発現する。水分散性とは一般にエマル ジョンあるいはコロイダルディスパージョンと称される 状態を意味するものである。イオン性基は水系媒体中に おいて解離し、ポリエステル樹脂と水との界面に電気二 重層を形成する。ポリエステル樹脂が微細なミクロ粒子 として水系内に存在する場合には電気二重層の働きによ りミクロ粒子間には静電的な反発力が生じ、ミクロ粒子 が水系内にて安定的に分散する。

【0020】イオン性基含有ポリエステル樹脂の水分散 体は、イオン性基含有ポリエステル樹脂と水溶性有機化 合物とをあらかじめ混合後に水を加える方法、イオン性 基含有ポリエステル樹脂と水溶性有機化合物と水とを一 括して混合加熱する方法等により得ることができる。ま たその際に界面活性剤等を併用することもできる。水溶 性有機化合物としてはエタノール、イソプロパノール、 プタノール、エチレングリコール、プロピレングリコー ル、メチルセロソルブ、エチルセロソルブ、ブチルセロ ソルブ、アセトン、メチルエチルケトン、テトラヒドロ フラン、ジオキサン等を用いることができる。水溶性有 機化合物はイオン性基含有ポリエステル樹脂を水分散化 した後に共沸等により除去することができるものが好ま しい。

【0021】染料をポリエステル樹脂に含有させる方法 としては高温分散染色法を用いることができる。染料原 体を樹脂に直接練り込む方法は、加熱による染料のダメ - ジを考慮したばあいに好ましい方法ではない。本発明 のポリエステル樹脂はイオン性基の作用により水中にて 良好なる安定分散性を示すため、粒子状を保持したまま 高濃度な染色が可能である。また、エマルジョン化時 に、ポリエステル樹脂を溶剤で溶解した時に染料を添加 しても良い。本発明のインクジェットプリンタ用インク は、水中に分散された微小ポリエステル粒子を、10~ 50wt%で含まれる。また、本発明インクジェットプリ ンタ用インクは、微小ポリエステル粒子の他に、必要に 応じて、分散剤、分散安定助剤である、界面活性剤や高 分子分散安定剤を添加しても良い。また、粒子の湿潤性 を高めるために、エチレングリコール、グリセリン、各 種多価アルコール類を添加しても良い。更に、インク中 50

に混入する金属イオンを封鎖するために、各種キレート 化剤等を添加しても良い。さらに、インクの保存安定性 を向上するために、各種殺菌剤や防力ビ剤、紫外線吸収 剤、酸化防止剤等も添加しても良い。

[0022]

【実施例1】

(ポリエステル樹脂の合成)温度計、撹拌機を備えたオ ートクレープ中に、

ジメチルテレフタレート 140重量部、 ジメチルイソフタレート 140重量部、 5 ナトリウムスルホイソフタル酸ジメチルエステル 1 1重量部、

エチレングリコール ネオペンチルグリコール 172重量部、 を仕込み180~230℃で120分間加熱してエステ ル交換反応を行った。ついで反応系を240℃まで昇温 し、系の圧力1~10mmHgとして60分間反応を続 けた結果、共重合ポリエステル樹脂を得た。次に、得ら れたポリエステル樹脂150重量部、メチルエチルケト 20 ン150重量部、テトラヒドロフラン150重量部、染 料 Spilon Blue 2BNH (保土谷化学) のコンクケーキ 15重量部を80℃にて溶解した後7 5℃の水600部を添加し、粒子径約0.15µmの共 重合ポリエステル樹脂の水系ミクロ分散体を得た。さら に得られた水系ミクロ分散体を蒸留用フラスコに入れ、 留分温度が100℃に達するまで蒸留し、冷却後に水を 加え固形分濃度を20%とした。

【0023】この様にして得た水系ミクロ分散体をイン クジェットプリンター(SHARP社製IO-735 X)のインクとして使用した。使用した紙は、インクジ ェット用としての加工のされていないものを使用した。 その結果、本発明によるインクを用いた場合インクの滲 みは全く無かった。また得られた画像の濃度は極めて高 く、鲜明な画像であった。また製作した水系ミクロ分散 体は、室温で3カ月以上放置しても沈澱物の発生や、染 料の析出等は発生せず極めて良好な安定性を示した。

[0024]

40

【比較例1】比較例として、実施例1で製作したポリエ ステル樹脂を用い、染料としてはアントラキノン系染料 にかえてインクを製作した。実施例1のポリエステル樹 脂150重量部、メチルエチルケトン150重量部、テ トラヒドロフラン150重量部、染料 C. I. Solvent Blue 35 のコンクケーキ 15重 **畳部を80℃にて溶解した後75℃の水600部を添加** し、粒子径約0.15μmの共重合ポリエステル樹脂の 水系ミクロ分散体を得た。さらに得られた水系ミクロ分 散体を蒸留用フラスコに入れ、留分温度が100℃に達 するまで蒸留し、冷却後に水を加え固形分濃度を20% とした。得られて水系ミクロ分散体を実施例1と同様に 印字を行い、耐光性の比較を行った。プリントアウトし

10

たそれぞれのインクは紫外線フェードメーター(カーボ ンアーク) 63℃で20時間照射した前後の色差を測定 した。その結果本発明によるインクはΔEが1~3であ ったのに対して、染料C. I. Solvent Bl ue 35によるインクはΔEが8以上と大きく退色し た。

[0025]

【比較例2】比較例として、スチレンによる分散体を製 作した。スチレン重合体を乳化重合して製作し、平均粒 子系約0.1 μmの単分散体を得た。次に得られたスチレ 10 ン分散体を実施例1と同様に、Spilon Blue 2 B N H (保土谷化学) を界面活性剤 (一方社油脂工 このときの温度は、130℃であり、染色時間は2時間 であった。このようにして製作した分散体は、その微小 濃度も低く、さらに分散体の安定性が悪く室温で3カ月 以上放置した場合、染料の析出が見られた。

業製、ミグノール802)で分散した染液で染色した。

[0026]

【比較例3】 更に比較例として通常インクジェットイン クに使用されている水溶性染料を用いてインクの滲みを 見た。使用した水溶性染料は

C. I. Acid Blue 1,

を水に溶解しインクとした。その結果、専用紙を用いた 場合は、良好であるが、普通紙を用いた場合は、本発明 とはことなり、大きく滲んでしまった。また耐光性の比 較も行った。プリントアウトしたそれぞれのインクは紫 外線フェードメーター (カーボンアーク) 63℃で20 時間照射した前後の色差を測定した。その結果本発明に よるインクはΔEが1~3であったのに対して、水溶性 染料によるインクはΔΕが8~40と大きく退色した。 [0027]

【発明の効果】本発明の、特定の染料を用いて着色した 樹脂微粒子の水系分散体であるインクは、記録紙上での 滲みがなく、極めて良好な画像を得ることが出来、しか も耐光性においてもすぐれたものである。