Relational Algebra

DBI - Databases and Interfaces
Dr Matthew Pike & Dr Yuan Yao

This Lecture

- Relational algebra Operators
 - Projection, Selection
 - Product, Join
 - Union, Intersection, Difference
 - Rename
 - Examples

Chapters 4, 5 of the DB Book

Manipulate Database

English <-> Relational Algebra <-> SQL queries

English: "Find all universities with > 20000 students"

Relational Algebra: $\pi_{\text{uName}}(\sigma_{\text{Enrollment}} > 20000(\text{University}))$

SQL: SELECT uName FROM University WHERE University.Enrollment>20000

Recall: Relational model

Relations: mathematical definition

• A relation R of degree n, where values come from domains A_1 , ..., A_n : $R \subseteq A_1 \times A_2 \times ... \times A_n$ subset of the Cartesian product of domains

Cartesian product:

$$A_1 \times A_2 \times ... \times A_n = \{(v_1, v_2, ..., v_n) \mid v_1 \in A_1, v_2 \in A_2, ..., v_n \in A_n\}$$

Example:

$$A_1 = \{1, 2\} \text{ and } A_2 = \{3, 4\}$$

 $A_1 \times A_2 = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$

Relational model: data manipulation

- Data → Relations
- Data manipulation → Operations on relations
- Relational Algebra: take relations as input and produce new relations
- Operators: +,-,*,\ for numbers, &, |, ! for boolean values
 - Common set-theoretic one
 - Specific to relations

Unary Operators

Example: University Applications

- The University/Student/Apply example.
- What is the key for Apply?
- Relations can be represented as rName(aName1, aName2, ...)
- E.g., University(uName, County, Enrollment).

University		
<u>uName</u>	County	Enrollment
NOTT	Nott/shire	18000
CAM	Cam/shire	22000
UCL	Great/Lon	20000

Student			
SID	sName	GPA	HS
0135	John	18.5	100
0025	Mary	19.3	1000
0423	Mary	17.5	300

Apply			
SID	<u>uName</u>	<u>Subj</u>	Dec
0135	CAM	CS	'A'
0135	NOTT	CS	'A'
0423	NOTT	ENG	'R'

Selection

- Selection works as filters.
- Let R be a relation with n columns and α is a property of tuples.
- Selection from R subject to condition α is defined as:

$$\sigma_{\alpha(R)} = \{(a_1, ..., a_n) | (a_1, ..., a_n) \in R, \alpha(a_1, ..., a_n)\}$$

- σ : selection operator
- α : properties
- R: target relation

Student			
SID	sName	GPA	HS
0135	John	18.5	100
0025	Mary	10.3	1000
0423	Mary	17.5	300

What are properties?

- Properties are expressions connected with logical symbols (and, or, not)
- Each expression is either:
 - Attributes comparisons $(=, \neq, >, <, \geq, \leq)$, e.g., Enrollment > HS
 - Or comparison between an attribute and a value, e.g., GPA > 15

Exercise: Selection

- 1. Find out all students with GPA more than 19.
- 2. Find out all students with GPA more than 19 and high school size less than 1000.
- 3. Find out all applications to University of Nottingham with subject CS

University		
<u>uName</u>	County	Enrollment
NOTT	Nott/shire	18000
CAM	Cam/shire	22000
UCL	Great/Lon	20000

Student			
SID	sName	GPA	HS
0135	John	18.5	100
0025	Mary	19.3	1000
0423	Mary	17.5	300

Apply			
SID	<u>uName</u>	<u>Subj</u>	Dec
0135	CAM	CS	'A'
0135	NOTT	CS	'A'
0423	NOTT	ENG	'R'

Exercise: Selection

1. Find out all students with GPA more than 19.

$$\sigma_{GPA} > 19(Student)$$

• 2. Find out all students with GPA more than 19 and high school size less than 1000.

$$\sigma_{GPA}$$
 > 19 and HS < 1000 (Student)

 3. Find out all applications to University of Nottingham with subject CS

$$\sigma_{uName} = Notts' \text{ and } Subj = CS'(Apply)$$
 $\sigma_{Subj} = SS'(\sigma_{uName} = Notts')$

Projection

- Projection works as slicing.
- Let R be a relation with n columns and X is a set of

attributes.

Projection of R on X is represented as:

 $\pi_X(R)$

- π : projection operator
- X: a set of attributes
- R: target relation
- $\pi_{X(R)}$ is a new relation only contain attributes from X

Student				
SID	sName	G	PA	HS
0135	John	18	3.5	100
0025	Mary	1).3	1000
0423	Mary	1	'.5	300

Exercise: Projection

- 1. Get IDs and decisions from all applications.
- 2. Get IDs and names of students with GPA greater than
 19.

University		
<u>uName</u>	County	Enrollment
NOTT	Nott/shire	18000
CAM	Cam/shire	22000
UCL	Great/Lon	20000

Student			
SID	sName	GPA	HS
0135	John	18.5	100
0025	Mary	19.3	1000
0423	Mary	17.5	300

Apply			
SID	<u>uName</u>	<u>Subj</u>	Dec
0135	CAM	CS	'A'
0135	NOTT	CS	'A'
0423	NOTT	ENG	'R'

Exercise: Projection

1. Get IDs and decisions from all applications.

$$\pi_{SID,Dec}(Apply)$$

2. Get IDs and names of students with GPA greater than
 19.

$$\pi_{SID, SName}(\sigma_{GPA} > 19(Student))$$

Set Operators

Union

Standard set-theoretic definition:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

• E.g., $\{a, b, c\} \cup \{a, d, e\} = \{a, b, c, d, e\}$

Union

Standard set-theoretic definition:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

• E.g., $\{a, b, c\} \cup \{a, d, e\} = \{a, b, c, d, e\}$

ID	Name
M139	John Smith
A368	Jane Brown
A367	David Jones

ID	Name
M140	Mary Jones
P222	Mark Brown
A367	David Jones

Union

Standard set-theoretic definition:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

• E.g., $\{a, b, c\} \cup \{a, d, e\} = \{a, b, c, d, e\}$

ID	Name
M139	John Smith
A368	Jane Brown
A367	David Jones

ID	Name
M140	Mary Jones
P222	Mark Brown
A367	David Jones

ID	Name
M139	John Smith
M140	Mary Jones
A368	Jane Brown
P222	Mark Brown
A367	David Jones

Union-compatible

 Two relations are union compatible if they have the same number of column and corresponding columns have the same domain. (Partial operation)

ID	Name
M139	John Smith
A368	Jane Brown
A367	David Jones

ID	Age
M140	23
P222	31
A367	28

Set difference

$$A - B = \{x \mid x \in A \text{ or } x \notin B\}$$

- E.g., $\{a, b, c\} \{a, d, e\} = \{b, c\}$
- Partial Operation: requires union-compatible

Set difference

$$A - B = \{x \mid x \in A \text{ or } x \notin B\}$$

- E.g., $\{a, b, c\} \{a, d, e\} = \{b, c\}$
- Partial Operation: requires union-compatible

ID	Name
M139	John Smith
A368	Jane Brown
A367	David Jones

ID	Name
M140	Mary Jones
P222	Mark Brown
A367	David Jones

Set difference

$$A - B = \{x \mid x \in A \text{ or } x \notin B\}$$

- E.g., $\{a, b, c\} \{a, d, e\} = \{b, c\}$
- Partial Operation: requires union-compatible

ID	Name
M139	John Smith
A368	Jane Brown
A367	David Jones

ID	Name
M140	Mary Jones
P222	Mark Brown
A367	David Jones

ID	Name
M139	John Smith
A368	Jane Brown

Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

- E.g., $\{a, b, c\} \cap \{a, d, e\} = \{a\}$
- Partial Operation: requires union-compatible

Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

- E.g., $\{a, b, c\} \cap \{a, d, e\} = \{a\}$
- Partial Operation: requires union-compatible

ID	Name
M139	John Smith
A368	Jane Brown
A367	David Jones

ID	Name
M140	Mary Jones
P222	Mark Brown
A367	David Jones

Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

- E.g., $\{a, b, c\} \cap \{a, d, e\} = \{a\}$
- Partial Operation: requires union-compatible

ID	Name		
M139	John Smith		
A368	Jane Brown		
A367	David Jones		

ID	Name		
M140	Mary Jones		
P222	Mark Brown		
A367	David Jones		

ID	Name
A367	David Jones

Cartesian product

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

- E.g., $\{a,b\} \times \{d,e\} = \{(a,d),(a,e),(b,d),(b,e)\}$
- Total Operation
- Extended Cartesian product:

$$A \times B = \{(c_1, ..., cn, d_1, ..., dm) \mid (c_1, ..., cn) \in A, (d_1, ..., dm) \in B\}$$

Example: Cartesian product

- The contents of the result are all combination of tuples from the 2 relations
- Note, some tuples are meaningless, e.g.,
 S.SID=0135 is combined with A.SID = 0423
- How to solve it?

E.g.: Student x Apply

Student			Apply				
SID	sName	GPA	нѕ	SID	<u>uName</u>	<u>Subj</u>	Dec
0135	John	18.5	100	0135	CAM	CS	'A'
0025	Mary	19.3	1000	0135	NOTT	CS	'A'
0423	Mary	17.5	300	0423	NOTT	ENG	'R'

Student	X Apply						
<u>S.SID</u>	sName	GPA	HS	A.SID	<u>uName</u>	<u>Subj</u>	Dec
0135	John	18.5	100	0135	CAM	CS	'A'
0135	John	18.5	100	0135	NOTT	CS	'A'
0135	John	18.5	100	0423	NOTT	ENG	'R'
0025	Mary	19.3	1000	0135	CAM	CS	'A'
0025	Mary	19.3	1000	0135	NOTT	CS	'A'
0025	Mary	19.3	1000	0423	NOTT	ENG	'R'
0423	Mary	17.5	300	0135	CAM	CS	'A'
0423	Mary	17.5	300	0135	NOTT	CS	'A'
0423	Mary	17.5	300	0423	NOTT	ENG	'R'

Joint Operators

Natural Join Operator

- Student ⋈ Apply (bowtie)
 - Same as Cartesian Product but enforces equality on all attributes with the same name (S.SID and A.SID in our case)
 - Automatically sets values equal when attribute names are the same
 - Gets rid of multiple copies of the attributes with the same name (there will be only one common SID attribute in the result)

Student M Apply						
SID	sName	GPA	HS	uName	Subj	Dec
0135	John	18.5	100	CAM	CS	'A'
0135	John	18.5	100	NOTT	CS	'A'
0423	Mary	17.5	300	NOTT	ENG	'R'

Natural Join Operator

- E.g. 1 "Names and GPAs of students with HS>1000 who applied to CS and were rejected"
 - $\pi_{GPA,sName}(\sigma_{HS>1000 \text{ and subj='CS' and dec='Rej'}}$ (Student \bowtie Apply))

- E.g. 2 "Names and GPAs of students with HS>1000 who applied to CS at Universities with enrolment > 20000 and were rejected"
 - → This is a subject of the sub
- Natural join does not add expressive power to Relational Algebra, just facilitates the writing of complex queries

Theta Join Operator

- Cartesian Product satisfy certain properties
- Can be implemented via Cartesian Product and Select.
- The Theta Join operator is defined as
 - \circ R \bowtie_{θ} S = σ_{θ} (R \times S)
- The result of this operation consists of all combinations of tuples in R and S that satisfy property θ
- Theta join does not add expressive power to Relational Algebra, just facilitates the writing of complex queries

Rename Operator

- The rename operator has 3 forms. The first one is the most general
 - \circ $\rho R(A_1, A_2, ...A_n)(E)$.
 - This should be read as: "Evaluate E, and get a relation as a result. Then call the result relation R with attributes A₁,...,An."

 From now on, we can use this schema to describe the result of E.
 - \circ ρ R(E).
 - "Use the same attribute names but change the relation name to
 - \circ $\rho(A_1, A_2, ...A_n)(E)$.
 - "Use the same relation name but change the attribute names to A₁,...,An."

Rename Operator

• 2 main uses

- Unifies schemas for the Union, Difference and Intersection operators
- E.g. 1 "List all Student and University names"

(ρC(name)(^{$\mathbf{\pi}$} sName(**Student**)) U(ρC(name)(^{$\mathbf{\pi}$}uName (**University**))

- Helps to disambiguation in self joins
- E.g. 2 "Pairs of Universities in same County"

University				
<u>uName</u>	County	Enrollment		
NOTT	Nott/shire	18000		
CAM	Cam/shire	22000		
UCL	Great/Lon	20000		

Rename Operator

E.g. 2 "Pairs of Universities in same County"

- Step 1
 - \circ ρ U1(n1, c, e1)(University) $\bowtie \rho$ U2(n2, c, e2)(University)
- Step 2
 - $\sigma_{n1\neq n2}$ (pU1(n1, c, e1)(University) \bowtie pU2(n2, c, e2)(University))
- Step 3
 - \circ $\sigma_{n1>n2}$ (ρ U1(n1, c, e1)(University) \bowtie ρ U2(n2, c, e2)(University))

Question

Assume that we are given relations R(A,C) and S(B,C,D):

R			
Α	С		
3	3		
6	4		
2	3		
3	5		
7	1		

S	S				
В	O	D			
5	1	6			
1	5	8			
4	3	9			

Compute the natural join of R and S. Which of the following tuples is in the result? Assume each tuple has schema (A,B,C,D).

- **1)** (5, 1, 6, 4)
- **2)** (6, 4, 3, 9)
- **3)** (3, 3, 5, 8)
- **4)** (2, 4, 3, 9)