615 Midterm Project

Jingrong Cheng 10/21/2016

This data cleaning & EDA project was completed by Jingrong Cheng and Tianwen (Tina) Huan. We are curious about how data reflects about climate change, so we found a suitable dataset on Kaggle.com. https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data We selected "Global Land Temperatures By City" file to do this project.

```
CT <- read.csv("~/Desktop/GlobalLandTemperaturesByCity.csv")
```

1. Check the original dataset

First of all, we want to know the basic information of this file, so we apply "summary", "dim", "str" function.

```
summary(CT)
```

```
AverageTemperature AverageTemperatureUncertainty
##
             dt
##
    1882-01-01:
                   3510
                          Min.
                                  :-42.7
                                               Min.
                                                      : 0.0
##
    1882-02-01:
                   3510
                          1st Qu.: 10.3
                                               1st Qu.: 0.3
                   3510
##
    1882-03-01:
                          Median: 18.8
                                               Median: 0.6
##
    1882-04-01:
                   3510
                          Mean
                                  : 16.7
                                               Mean
                                                      : 1.0
##
    1882-05-01:
                          3rd Qu.: 25.2
                                               3rd Qu.: 1.3
                   3510
##
    1882-06-01:
                   3510
                          Max.
                                  : 39.7
                                               Max.
                                                      :15.4
                                               NA's
##
    (Other)
               :8578152
                          NA's
                                  :364130
                                                      :364130
##
             City
                                     Country
                                                        Latitude
                    9545
##
    Springfield:
                           India
                                         :1014906
                                                     36.17N: 425455
                                         : 827802
                    8359
    Worcester
                           China
                                                     34.56N : 351472
##
    León
                    7469
                           United States: 687289
                                                     52.24N : 347775
                    6526
                                                     40.99N : 331559
##
    Rongcheng
                           Brazil
                                         : 475580
##
    Birmingham:
                    6478
                           Russia
                                          : 461234
                                                     23.31N : 319266
##
    Brest
                    6478
                           Japan
                                          : 358669
                                                     50.63N : 308886
    (Other)
                :8554357
                           (Other)
                                         :4773732
                                                     (Other):6514799
##
##
      Longitude
##
    139.23E: 129600
##
    88.25E:
              88842
##
    136.22E:
              86940
##
    0.00W
              83557
##
    46.31W :
              82878
    5.26E :
##
              64780
    (Other):8062615
dim(CT)
## [1] 8599212
                      7
str(CT$Country)
```

```
## Factor w/ 159 levels "Afghanistan",..: 40 40 40 40 40 40 40 40 40 ...
```

Details highlighted: year/month goes form 1743.11 to 2013.09 8599211 rows, 159 Countries Due to the dataset is too large, we decided to select a subset data only focusing on United States and from year 1900.

2. Choose the subset

```
cityT <- CT %>%
     filter(Country=="United States") %>% # narrow down to United States
     mutate(date=dt) %>%
     separate(dt, c("year", "month", "day")) %>% # sepearate the year month and day
     filter(year >= 1900) # select the data after year 1990
# drop the "day" and "Country" columns
cityT <- subset(cityT, select = c(10,1,2,4,5,6,8,9))
# check missing data
cityT[!complete.cases(cityT),]
##
               date year month AverageTemperature
## 10920 2013-09-01 2013
##
         AverageTemperatureUncertainty
                                            City Latitude Longitude
                                                   61.88N
## 10920
                                    NA Anchorage
                                                             151.13W
# drop all the data for 2013.09
cityT <- cityT %>%
         filter(year!="2013" | month!="09")
```

The initial cleaned dataset includes 350805 observations and 9 variables. All the columns: X, date, year, month, Average temperature, average temperature uncertainty, city, latitude, longitude. The order of date is from 1900/1/1 to 2013/8/1.

3. Data character transformation

In order to explore data eaiser, we transformed the class of some columns.

4. Location Graph According to latitudes and longitude

Using groups of latitudes and longitudes to practice "ggplot" function.

```
citylocation <- subset(cityT, select = c("City","lat","long"))
citylocation <- citylocation %>% distinct(.keep_all= FALSE)

ggplot(citylocation, aes(long, lat), col=temp) +
  borders("state") + geom_point()+
  scale_size_area() + coord_quickmap() +
  labs(x="Longitude", y="Latitude", title="Location of Cities")
```

Location of Cities

5. US Temperature by Month and Year 1900-2012


```
# year trend for different month
ggplot(aT, aes(x=year, y=temp)) +
  geom_jitter(aes(colour=factor(month))) +
  ggtitle("US Temperature by Month and Year") +
  labs(x="Month", y="Average Temperature")
```


6. Boston Temperature by Month and Year 1900-2012


```
# year trend for different month
ggplot(aTB, aes(x=year, y=AverageTemperature)) +
  geom_jitter(aes(colour=factor(month))) +
  ggtitle("Boston Temperature by Month and Year") +
  labs(x="Month", y="Average Temperature")
```



```
# year trend for January
BostonT<- cityT %>% filter(City == "Boston")
bostonjan<-BostonT %>% filter(month == 1)
ggplot(bostonjan, aes(x=year, y=AverageTemperature))+
  geom_line() +
  labs(x="Month", y="Average Temperature", title="Boston January Temperature")
```

Boston January Temperature

7. US Temperature by Year 1900-2012

8. Horizonplot

1900,1910,1920,1930,1940,1950,1960,1970,1980,1990,2000,2010

9. Heatmap for 5 main Cities

```
# choose the subset
hm <- cityT %>%
        group_by(month, City) %>%
        summarise(temp=mean(AverageTemperature)) %>%
       filter(City=="Boston" | City=="Chicago" |
                 City=="Los Angeles" | City=="New York" | City=="Seattle")
# Heatmap
ggplot(hm, aes(x=month, y=City, fill=temp, frame=City)) +
 geom_tile(color="white", size=0.1) +
  scale_fill_gradient(name="Average Temperature", low="white", high="red") +
  coord_equal() +
 labs(x = "Months", y = "", title = "Average Temp from 1900 - 2012") +
  theme_tufte() +
  theme(axis.ticks = element_blank()) +
  theme(axis.text = element_text(size = 14)) +
  theme(plot.title = element_text(size = 15)) +
  theme(legend.title = element_text(size = 15)) +
  theme(legend.text = element_text(size = 10))
```


10. Temperature Trend by Season

