The Discovery of Significant Oil and Gas Fields in the United States

Appendixes

Richard Nehring with E. Reginald Van Driest II

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
. REPORT DATE JAN 1981 2. REPORT TYPE 3. DATES COVERED 00-00-1981 to 00-00-1981						
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
_	ignificant Oil and G	as Fields in the Uni	ited States.	5b. GRANT NUM	MBER	
Appendixes				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	MBER	
				5e. TASK NUME	BER	
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Rand Corporation,1776 Main Street,PO Box 2138,Santa Monica,CA,90407-2138 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYMONITOR'S					ONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO	OTES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	Same as Report (SAR)	502			

Report Documentation Page

Form Approved OMB No. 0704-0188 The research reported herein was financed by the U.S. Geological Survey, Department of the Interior, under USGS Contract No. 14-08-0001-16593 and by the U.S. Department of Energy under Contract No. DE-AC01-79-PE70078.

Library of Congress Cataloging in Publication Data

```
Nehring, Richard.
The discovery of significant oil and gas fields in the United States.
```

```
Bibliography: v., p.
"R-2654/1[/2]-USGS."

1. Oil fields--United States. 2. Gas, Natural--
United States. I. Van Driest, E. Reginald, 1945-
II. Rand Corporation. III. Geological Survey (U.S.)
IV. Title.
TN872.A5N39 553.2'8'0973 81-239
ISBN 0-8330-0297-X (v. 1) AACR2
ISBN 0-8330-0298-8 (v. 2)
```

The Rand Publications Series: The Report is the principal publication documenting and transmitting Rand's major research findings and final research results. The Rand Note reports other outputs of sponsored research for general distribution. Publications of The Rand Corporation do not necessarily reflect the opinions or policies of the sponsors of Rand research.

Copyright © 1981 The Rand Corporation

R-2654/2-USGS/DOE

The Discovery of Significant Oil and Gas Fields in the United States

Appendixes

Richard Nehring with E. Reginald Van Driest II

January 1981

Prepared for the U.S. Geological Survey/ Department of the Interior and the U.S. Department of Energy

PREFACE

The data appendixes included in this volume provide basic background for and supplement the descriptions and analyses presented in The Discovery of Significant Oil and Gas Fields in the United States, R-2654/1-USGS/DOE, and should be used in conjunction with that volume. Appendix A consists of the significant oil and gas fields data base, the primary source of data for the descriptive analysis of Secs. III and IV of the main report. Appendix B provides cumulative and current (1975) production data for crude oil and natural gas by field size class for each state or statistical area and region, supplementing the descriptive analyses of Sec. III. Appendix C lists the number of significant oil field discoveries in the United States by field size class over five-year periods by region and type of field, supplementing the figures of Sec. IV. Appendix D gives data on the amounts of crude oil and natural gas discovered in the United States by five-year periods up to and including 1975, also supplementing the figures of Sec. IV. Appendix E presents data on exploratory drilling by region in the United States from 1936 to 1975. Appendix F provides estimates of future significant discoveries in the lower 48 states by field size and region, supplementing the undiscovered resource estimates of Sec. V.

Each appendix is preceded by a brief introduction that describes the tables in that appendix, the procedures used to prepare them, and their sources of data.

These appendixes were prepared as part of The Rand Corporation's program of energy studies funded by the Geologic Division of the U.S. Geological Survey/Department of the Interior under Contract No. 14-08-0001-16593 and by the U.S. Department of Energy under Contract No. DE-AC01-79-PE70078.

CONTENTS

PREFACE				
Appendix A				
INTRO	DUCTION	3		
Table				
A.1.	The Significant Oil and Gas Fields of Alaska	4		
A.2a.	The Significant Oil and Gas Fields of Central and Northern	_		
	California	6		
A.2b.	The Significant Oil and Gas Fields of the California Central Coast	16		
A.2c.	The Significant Oil and Gas Fields of the Los Angeles Basin,			
	California	24		
A.3a.	The Significant Oil and Gas Fields of Arizona	30		
A .3b.	The Significant Oil and Gas Fields of Colorado	32		
A.3c.	The Significant Oil and Gas Fields of Montana	38		
A.3d.	The Significant Oil and Gas Fields of Nebraska	42		
A.3e.	The Significant Oil and Gas Fields of Northwestern New Mexico	44		
A.3f.	The Significant Oil and Gas Fields of North Dakota	48		
A.3g.	The Significant Oil and Gas Fields of Utah	52		
A.3h.	The Significant Oil and Gas Fields of Wyoming	56		
A.4a.	The Significant Oil and Gas Fields of Southeastern New Mexico	72		
A.4b.	The Significant Oil and Gas Fields of Texas R.R.C. District 7C	88		
A.4c.	The Significant Oil and Gas Fields of Texas R.R.C. District 8	96		
A.4d.	The Significant Oil and Gas Fields of Texas R.R.C. District 8A			
A.5a.	The Significant Oil and Gas Fields of Texas R.R.C. District 7B			
A.5b.	The Significant Oil and Gas Fields of Texas R.R.C. District 9			
A.6a.	The Significant Oil and Gas Fields of Kansas			
A.6b.	The Significant Oil and Gas Fields of Oklahoma			
A.6c.	The Significant Oil and Gas Fields of Texas R.R.C. District 10			
A.7a.	The Significant Oil and Gas Fields of Texas R.R.C. District 1			
A.7b.	The Significant Oil and Gas Fields of Texas R.R.C. District 2			
A.7c.	The Significant Oil and Gas Fields of Texas R.R.C. District 3			
A.7d.	The Significant Oil and Gas Fields of Texas R.R.C. District 4			
A.8a.	The Significant Oil and Gas Fields of Offshore Louisiana			
A.8b.	The Significant Oil and Gas Fields of Southeastern Louisiana			
A.8c.	The Significant Oil and Gas Fields of Southwestern Louisiana			
A.9a.	The Significant Oil and Gas Fields of Arkansas			
A.9b.	The Significant Oil and Gas Fields of Northern Louisiana			
A.9c.	The Significant Oil and Gas Fields of Texas R.R.C. District 5			
A.9d.	The Significant Oil and Gas Fields of Texas R.R.C. District 6			
A.10a.	The Significant Oil and Gas Fields of Alabama			
A.10b.	The Significant Oil and Gas Fields of Florida			
A.10c.	The Significant Oil and Gas Fields of Mississippi			
A 11a	The Significant Oil and Gas Fields of Illinois	364		

A.11b. A.11c.	The Significant Oil and Gas Fields of Indiana	370 372
	Appendix B	
INTRO	DDUCTION	379
Table		
В.	(Summary). Cumulative and Current Production of Crude Oil and	
	Natural Gas by Size of Field in the United States	380
B.1.	Cumulative and Current Production of Crude Oil and Natural Gas	
	by Size of Field in Alaska	381
B.2.	Cumulative and Current Production of Crude Oil and Natural Gas	001
D 0	by Size of Field in California	381
B.2a.	Cumulative and Current Production of Crude Oil and Natural Gas	202
th ou	by Size of Field in California—Central and Northern	304
B.2b.	Cumulative and Current Production of Crude Oil and Natural Gas by Size of Field in California—Central Coast	282
B.2c.	Cumulative and Current Production of Crude Oil and Natural Gas	002
D.2c.	by Size of Field in California—Los Angeles Basin	383
B.3.	Cumulative and Current Production of Crude Oil and Natural Gas	000
ъ.о.	by Size of Field in the Rocky Mountains	. 383
B.3a.	Cumulative and Current Production of Crude Oil and Natural Gas	
D.0u.	by Size of Field in Arizona	. 384
B.3b.	Cumulative and Current Production of Crude Oil and Natural Gas	
2.02.	by Size of Field in Colorado	. 384
B.3c.	Cumulative and Current Production of Crude Oil and Natural Gas	
	by Size of Field in Montana	. 385
B.3d.	Cumulative and Current Production of Crude Oil and Natural Gas	
	by Size of Field in Nebraska	. 385
B.3e.	Cumulative and Current Production of Crude Oil and Natural Gas	
	by Size of Field in Northwestern New Mexico	. 386
B.3f.	Cumulative and Current Production of Crude Oil and Natural Gas	
	by Size of Field in North Dakota	. 386
B.3g.	Cumulative and Current Production of Crude Oil and Natural Gas	0.05
***	by Size of Field in Utah	. 387
B.3h.	Cumulative and Current Production of Crude Oil and Natural Gas	. 387
D 4	by Size of Field in Wyoming	. 001
B.4.	Cumulative and Current Production of Crude Oil and Natural Gas by Size of Field in the Permian Basin	. 388
B.4a.	Cumulative and Current Production of Crude Oil and Natural Gas	, 000
U.4a.	by Size of Field in Southeastern New Mexico	. 388
B.4b.	Cumulative and Current Production of Crude Oil and Natural Gas	
<u>_</u> .10.		. 389
B.4c.	Cumulative and Current Production of Crude Oil and Natural Gas	
 .	by Size of Field in Texas R.R.C. District 8	. 389
B.4d.	Cumulative and Current Production of Crude Oil and Natural Gas	
	by Size of Field in Texas R.R.C. District 8A	. 390

B.5.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in North Central Texas
B.5a.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Texas R.R.C. District 7B
B.5b.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Texas R.R.C. District 9
B.6.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in the Mid-Continent
B.6a.	Cumulative and Current Production of Crude Oil and Natural Gas
.	by Size of Field in Kansas
B.6b.	Cumulative and Current Production of Crude Oil and Natural Gas
D.C.	by Size of Field in Oklahoma
B.6c.	Cumulative and Current Production of Crude Oil and Natural Gas by Size of Field in Texas R.R.C. District 10
B.7.	Cumulative and Current Production of Crude Oil and Natural Gas
D , (,	by Size of Field in the Western Gulf
B.7a.	Cumulative and Current Production of Crude Oil and Natural Gas
D. 1 a.	by Size of Field in Texas R.R.C. District 1
B.7b.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Texas R.R.C. District 2
B.7c.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Texas R.R.C. District 3
B.7d.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Texas R.R.C. District 4
B.8.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in the Central Gulf
B.8a.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field, Offshore Louisiana
B.8b.	Cumulative and Current Production of Crude Oil and Natural Gas
D.O.	by Size of Field in Southeastern Louisiana
B.8c.	Cun ulative and Current Production of Crude Oil and Natural Gas
n d	by Size of Field in Southwestern Louisiana
B.9.	Cumulative and Current Production of Crude Oil and Natural Gas by Size of Field in the Northern Gulf
B.9a.	Cumulative and Current Production of Crude Oil and Natural Gas
D.Ja.	by Size of Field in Arkansas
B.9b.	Cumulative and Current Production of Crude Oil and Natural Gas
15.00.	by Size of Field in Northern Louisiana
B.9c.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Texas R.R.C. District 5
B.9d.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Texas R.R.C. District 6
B.10.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in the Eastern Gulf
B.10a.	Cumulative and Current Production of Crude Oil and Natural Gas
D 401	by Size of Field in Alabama
B.10b.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Florida

B.10c.	Cumulative and Current Production of Crude Oil and Natural Gas
D 11	by Size of Field in Mississippi
B.11.	by Size of Field in Illinois-Michigan Basins
B.11a.	Cumulative and Current Production of Crude Oil and Natural Gas
D.Lla.	by Size of Field in Illinois
B.11b.	Cumulative and Current Production of Crude Oil and Natural Gas
_ 	by Size of Field in Indiana
B.11c.	Cumulative and Current Production of Crude Oil and Natural Gas
	by Size of Field in Michigan
	Appendix C
TNITTO	ODUCTION
INTRO	JDCCHOR
Table	
C.	(Summary). The Number of Discoveries of Significant Oil and
	Natural Gas Fields in the United States (Ex-Appalachia) by Size of Field over Five-Year Periods
Co	(Summary). The Number of Discoveries of Significant Oil Fields
C.a.	in the United States (Ex-Appalachia) by Size of Field over
	Five-Year Periods
C.b.	(Summary). The Number of Discoveries of Significant Natural Gas
7.7.	Fields in the United States (Ex-Appalachia) by Size of Field over
	Five-Year Periods
C.c.	(Summary). The Number of Discoveries of Significant Composite Oil
	and Gas Fields in the United States (Ex-Appalachia) by Size of Field
0.1	over Five-Year Periods
C.1.	The Number of Discoveries of Significant Oil and Natural Gas Fields in Alaska by Size of Field over Five-Year Periods
C.1a.	The Number of Discoveries of Significant Oil Fields in Alaska by
C.1a.	Size of Field over Five-Year Periods
C.1b.	The Number of Discoveries of Significant Natural Gas Fields in
**	Alaska by Size of Field over Five-Year Periods
C.2.	The Number of Discoveries of Significant Oil and Natural Gas
	Fields in California by Size of Field over Five-Year Periods 416
C.2a.	The Number of Discoveries of Significant Oil Fields in California by
	Size of Field over Five-Year Periods 417
C.2b.	The Number of Discoveries of Significant Natural Gas Fields in
C So	California by Size of Field over Five-Year Periods
C.2c.	Fields in California by Size of Field over Five-Year Periods 419
C.3.	The Number of Discoveries of Significant Oil and Natural Gas
Ų.ij.	Fields in the Rocky Mountain Region by Size of Field over
	Five-Year Periods
C.3a.	The Number of Discoveries of Significant Oil Fields in the Rocky
	Mountain Region by Size of Field over Five-Year Periods 421

C.3b.	The Number of Discoveries of Significant Natural Gas Fields in the
_	Rocky Mountain Region by Size of Field over Five-Year Periods 422
C.3c.	The Number of Discoveries of Significant Composite Oil and Gas
	Fields in the Rocky Mountain Region by Size of Field over
	Five-Year Periods 423
C.4.	The Number of Discoveries of Significant Oil and Natural Gas Fields
	in the Permian Basin by Size of Field over Five-Year Periods 424
C.4a.	The Number of Discoveries of Significant Crude Oil Fields in the
	Permian Basin by Size of Field over Five-Year Periods
C.4b.	The Number of Discoveries of Significant Natural Gas Fields in the
	Permian Basin by Size of Field over Five-Year Periods
C.4c.	The Number of Discoveries of Significant Composite Oil and Gas
	Fields in the Permian Basin by Size of Field over Five-Year Periods 427
C.5.	The Number of Discoveries of Significant Oil and Natural Gas Fields
	in North Central Texas by Size of Field over Five-Year Periods 428
C.5a.	The Number of Discoveries of Significant Crude Oil Fields in North
	Central Texas by Size of Field over Five-Year Periods
C.5b.	The Number of Discoveries of Significant Natural Gas Fields in
	North Central Texas by Size of Field over Five-Year Periods 430
C.5c.	The Number of Discoveries of Significant Composite Oil and Gas
	Fields in North Central Texas by Size of Field over Five-Year
	Periods
C.6.	The Number of Discoveries of Significant Oil and Natural Gas Fields
	in the Mid-Continent by Size of Field over Five-Year Periods 432
C.6a.	The Number of Discoveries of Significant Crude Oil Fields in the
	Mid-Continent by Size of Field over Five-Year Periods
C.6b.	The Number of Discoveries of Significant Natural Gas Fields in the
	Mid-Continent by Size of Field over Five-Year Periods 434
C.6c.	The Number of Discoveries of Significant Composite Oil and Gas
	Fields in the Mid-Continent by Size of Field over Five-Year Periods. 435
C.7.	The Number of Discoveries of Significant Oil and Natural Gas Fields
	in the Western Gulf by Size of Field over Five-Year Periods 436
C.7a.	The Number of Discoveries of Significant Crude Oil Fields in the
	Western Gulf by Size of Field over Five-Year Periods
C.7b.	The Number of Discoveries of Significant Natural Gas Fields in the
	Western Gulf by Size of Field over Five-Year Periods
C.7c.	The Number of Discoveries of Significant Composite Oil and Gas
	Fields in the Western Gulf by Size of Field over Five-Year Periods . 439
C.8.	The Number of Discoveries of Significant Oil and Natural Gas Fields
	in the Central Gulf by Size of Field over Five-Year Periods 440
C.8a.	The Number of Discoveries of Significant Crude Oil Fields in the
	Central Gulf by Size of Field over Five-Year Periods
C.8b.	The Number of Discoveries of Significant Natural Gas Fields in the
	Central Gulf by Size of Field over Five-Year Periods
C.8c.	The Number of Discoveries of Significant Composite Oil and Gas
	Fields in the Central Gulf by Size of Field over Five-Year Periods 443
C.9.	The Number of Discoveries of Significant Oil and Natural Gas Fields
	in the Northern Gulf by Size of Field over Five-Year Periods 444

C.9a.	The Number of Discoveries of Significant Crude Oil Fields in the
	Northern Gulf by Size of Field over Five-Year Periods 445
C.9b.	The Number of Discoveries of Significant Natural Gas Fields in the
~ ^	Northern Gulf by Size of Field over Five-Year Periods 446
C.9c.	The Number of Discoveries of Significant Composite Oil and Gas
~	Fields in the Northern Gulf by Size of Field over Five-Year Periods. 447
C.10.	The Number of Discoveries of Significant Oil and Natural Gas Fields
0.10.	in the Eastern Gulf by Size of Field over Five-Year Periods 448
C.10a.	The Number of Discoveries of Significant Crude Oil Fields in the Eastern Gulf by Size of Field over Five-Year Periods
C 10)	Eastern Gulf by Size of Field over Five-Tear Leftous
C.10b.	The Number of Discoveries of Significant Natural Gas Fields in the Eastern Gulf by Size of Field over Five-Year Periods 450
O 10-	The Number of Discoveries of Significant Composite Oil and Gas
C.10c.	Fields in the Eastern Gulf by Size of Field over Five-Year Periods 451
C 11	The Number of Discoveries of Significant Oil and Natural Gas Fields
C.11.	in the Illinois-Michigan Basins by Size of Field over Five-Year
	Periods
C.11a.	The Number of Discoveries of Significant Crude Oil Fields in the
C.11a.	Illinois-Michigan Basins by Size of Field over Five-Year Periods 453
C.11e.	The Number of Discoveries of Significant Composite Oil and Gas
C.11C.	Fields in the Illinois-Michigan Basins by Size of Field over Five-Year
	Periods
	Terrous
	Appendix D
INTE	ODUCTION
ININ	ODUCTION
Table	
D.1.	The Amount of Crude Oil Discovered in the United States by Region
	over Five-Year Periods, Pre-1901 to 1975
D.2.	The Amount of Natural Gas Discovered in the United States by
	Region over Five-Year Periods, Pre-1901 to 1975
	Appendix E
INTR	ODUCTION
Table	- 1 1000 107F 40F
E.1.	Exploratory Drilling in the United States by Region, 1936-1975 465
	$Appendix \ F$
INTR	ODUCTION
Table	
F.1.	The second secon
	Be Discovered at the 90-Percent Probability Level after 1975 in the
	Lower 48 States by Region and Field Size Category
	MANAGE AND

F.2,	Estimated Number of Significant Oil and Gas Fields Remaining To
	Be Discovered at the 50-Percent Probability Level after 1975 in the
	Lower 48 States by Region and Field Size Category
F.3.	Estimated Number of Significant Oil and Gas Fields Remaining To
	Be Discovered at the 10-Percent Probability Level after 1975 in the
	Lower 48 States by Region and Field Size Category 477

	•	
		·

Appendix A THE SIGNIFICANT OIL AND GAS FIELDS DATA BASE

INTRODUCTION TO APPENDIX A

Appendix A consists of the significant oil and gas fields data base. Our purposes were to create a field-by-field data base (1) that encompassed nearly all of known U.S. oil and gas resources, (2) that was consistently constructed according to a common set of defining characteristics, and (3) that was organized to facilitate analyses of the historic exploration process and to explore the implications of past exploration results for the national potential for further discoveries. This data base is the principal source of information for the descriptive analyses of Vol. I, Secs. III and IV, and provides essential background information for the resource assessments of Sec. V.

The 38 tables of App. A represent states or statistical areas within states (in the cases of California, Louisiana, New Mexico, and Texas). We organized these tables into 11 regions as described in Vol. I, Sec. II. The region and state or area are indicated on the upper outside corner of every page.

Each table lists the significant fields of a particular state or area, organized by field size categories and listed in order of decreasing size. The tables give the geologic province in which each field is located, the year in which it was discovered, the methods used to discover it, the general and specific types of traps in the field, the geologic ages of the major reservoirs in each field and the lithologies, depths, and net thicknesses of those reservoirs, the area of the field, the original oil in place, the cumulative production and reserves of crude oil, natural gas, and natural gas liquids in each field as of the end of 1975, and 1975 production of crude oil, natural gas, and natural gas liquids in each field. We describe in detail the procedures that we used to develop the data base in Sec. II. The Bibliography in Vol. I lists the sources for the data base.

The significant oil and gas fields data base is also available through the Petroleum Data System (PDS) of the Information Systems Program of the University of Oklahoma. In addition to the information provided in App. A, the PDS file of significant oil and gas fields also provides a description of the composition of each field and our estimate of field size, expressed in millions of barrels of petroleum liquids and natural gas converted to their liquid equivalents at a ratio of 6000 cubic feet per barrel.

Users of the data base are invited to send any corrections, additions, or deletions they can make to the data of App. A to Richard Nehring, The Rand Corporation, 1700 Main Street, Santa Monica, California 90406.

Table A.1
THE SIGNIFICANT OIL AND GAS FIFEDS OF ALASKA

				Cualosia tur		Depth to	Reservoir
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Top (feet)	Thickness (feet)
Class AAAA Fields							
1. Prudhoe Bay (Arctic Slope)	1968	Seismic, Surface	Combination/ Faulted anticline, Unconformity	Triassic/ Lower	Sandstone	8,800	00-450
2. McArthur River (Cook Inlet)	1965	Seismic	Structural/ Anticline	Tertiary/ Miocene, Oligocene	Sandetone	9,300, 5,400	290
3. Kenni [*] (Cook Inlet)	1959	Seismic	Structural/ Anticline	Tertiary/ Pliocene, Miocene	Sandstone	4,000, 9,000	425. 100
Class AAA Fields						1	
4. Kuparuk Piver (Arctic Slope)	1969	Seismic, Trend	Combination/ Unconformity, Nose	Jurassic/ Upper	Sandstone	6,500	
5. Swanson Hiver (Cook Inlet)	1957	Seismic	Structural/ Faulted auticline	Tertiary/ Oligocene	Sandstone	10,400	220
6. North Sook Inlet (Cook Inlet)	1962	Seismic	Structural/ Anticline	Tertiary/ Pliocene, Miccene	Sandstone	4,200, 5,100	130 30
Class AA Fields							į
7. Middle Cround Shoal** (Cook Inlet)	1962	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,500	1,320
8. Beluga River (Cook Inlet)	1962	Seismic	Structural/ Anticline	Tertiary/ Pliocene	Sandstone	3,300	105
9. Granite Point (Cook Inlet)	1965	Selsmic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	8,800	250-600
10. Frading Bay ** (Cook Inlet)	1965	Seismic	Structural/ Faulted anticline	Tertlary/ Oligocene	Sandstone	5,600, 9,800, 4,400	100-1000 215
Class A Fields							
11. Ivan River (Gook Inlet)	1966	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	7,900	35
12. Kavík (Arctic Foothills)	1969	Selsmic	Structural/ Faulted anticline	Triassic/ Lower	Sandstone	4,800	400
13. Kemik (Arctic Foothills)	1972	Šeismic	Structural/ Anticline	Triassic/ Lower	Limestone	8,700	30
Class B Fields							
14. Beaver Creek (Cook Inlet)	1967	Seismic	Structural/ Anticline	Tertiary/ Pliocene	Sandstone	5,000	110
Class C Fields							
15. Nicolai Creek** (Cook Inlet)	1966	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	1,900	35

^{*}Partially offshore.

^{**}Offshore.

Surface	(millions		de Oil of Dec. 31,	1975)	N (Bcf as	atural Gas of Dec. 31,	1975)	Natu (mill. bbl	ral Gas Liquid s as of Dec. 3	s 1, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
150,000+	22,400.0	2.2	9,397.8	0.72	8.6	25,991.4	3.05		400.0	
12,400	1,336.0	294.2	216.8	40.88	129.8	593.2	19.77	3.5	9.0	0.64
7,560				[]	639.4	2,510.6	77.18	*	*	*
	3,560.0		250.0				!			
6,820	445.0	163.1	34.9	8.75	(-166.7)	241-7	(-7.31)	0.5	1.0	0.09
8,300					268.0	932.0	45.62	 		
4,000	589.0	96.3	69.4	8.67	45.8	34.3	4.20			
5,120					34.6	1,020.4	6.98			
3,200	413.0	60.5	57.5	4.36	56.9	45.1	3,39			
2,200	332-0	62.6	26.9	6.13	41.4	18.6	2.52	0.2	0.3	0.03
2,420						360.0				
4,320						300.0				
						300.0				
3,160					0.3	249.7	0.20			
680					0.9	/7.1	0.08			

Table A.2a

THE SIGNIFICANT OIL AND GAS FIELDS OF CENTRAL AND MORTHERN CALIFORNIA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1. Midway-Swasa! (San Joaquin)	1901	Seepage	Combination/ Unconformity, Anticline, Nose, Facies change, Fracturing	Tertiary/ Pliocene, Miocene	Sandscone	500- 3,000	20- 500
2. Kern River (San Joaquin)	1899	Seepage	Stratigraphic/ Permeability plnchout	Tertiary/ Pliocene	Sandstone	900	700
3. Elk Hille (San Joaquin)	1919	Surface	Combination/ Anticline, Facies change	Tertiary/ Miocene, Pliocene	Sandstone	6,500, 2,400	800, 80
4. Kettleman North Dome (San Joaquin)	1928	Surface	Structural/ Anticline	Tertiary/ Miocene, Eocene	Sandstone	6,000, 9,200	1,500, 400
5. Buena Vista (San Joaquin)	1910	Surface	Combination/ Anticline, Permeability pinchout	Tertiary/ Pliocene, Miocene	Sandstone, Shale	2,900, 3,500, 5,300	120 50 300
6. Coalinga (San Joaquin)	1890	Seepage	Combination/ Anticline, Facies change, Tar seal	Tertiary/ Miocene	Sandstone	700, 500	250, 200
7. Coalinga, Baet, Extension (San Joaquin)	1938	Subsurface	Combination/ Facies change, Nose	Tertiary/ Eocene	Sandstone	7,400	375
8. Rio Vista (Sacramento)	1936	Surface, Seismic	Combination/ Faulted anticline, Pacies change	Tertiary/ Eocene, Paleocene	Sandstone	3,800, 5,300	40-31
Class AAA Fields							
9. Belridge, South (San Joaquin)	1911	Surface	Structural/ Anticline	Quaternary/ Pleistocene; Tertiary/ Miocene	Sandstone	400, 1,100	400 100
10. <i>Mount Poso</i> (San Joaquin)	1926	Surface, Subsurface	Structural/ Fault	Tertiary/ Miocene	Sandstone	1,800	390
11. Coles Levee, North (San Joaquin)	1938	Seismic	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	8,400	230
12. MaKittrick: Main (San Joaquin)	1887	Seepage	Structural/ Fault	Quaternary/ Pleistocene; Tertiary/ Miocene	Sandstone	500, 1,500	300 400
13. Kern Front (San Joaquin)	1912	Surface, Subsurface	Combination/ Fault, Permeability pinchout	Tertiary/ Miocene, Pliocene	Sandstone	2,300	250
Class AA Fields							1
14. Belridge, North (San Joaquin)	1912	Trend, Surface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	7,700, 5,000	400 500

Surface						Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	Ir. Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Proc	
28,740	6,187.0	1,264.8	624.5	37.27	511.8	22.4	3.51			0.6	
9,920	4,062.0	659.0	1,121.0	27.81	2.6			₹₩.			
19,880	2,780.3	283.9	1,008.1	0.77	368.1	1,077.9	0.03				
13,700		452.9	3.3	0.52	2,866.5	85.1	9.46			0.55	
16,820		618.6	29.6	3.42	991.1	132.2	12.00			0.18	
20,220	4,505.0	642.9	187.1	6.05	225,9	0.6	*	:			
4,560		472.0	33.0	3.46	294.5	304.3	2.04			0.49	
24,920					2,924.4	575.6	39.04	1.3 ^b		0.03	
9,000	1,400.0	205.8	239.2	9,27	20.1	40.9	0.16	1			
3,820	498.3	172.9	73.1	3,47	1.9	0.1	*				
3,700		142.6	14.0	2.00	244.7	16.7	0.96				
1,480		163.0	37.0	4.00	30.1	2,5	0.41				
5,580		138.8	60.0	4,04	15.6	3.4	0.30	;			
2,100		70.0	5,1	0.42	531.7	71.7	2.87			0.11 ^c	

Field		Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
15. Lost Hill (San Jos		1910	Random	Combination/ Anticline, Facies change	Tertiary/ Pliocene	Sandstone	1,000	300
16. <i>Coles Lev</i> (San Jos		1939	Seismic	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	9,600	300
17. Río Bravo (San Joa		1937	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	11,400	400
18. Tule Elk (San Jos	iqu i n)	1973	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,500	200
19. Symmic: h Front & k (San Jos	lelport .	1909	Surface	Structural/Faulted anticline	Quaternary/ Pleistocene; Tertiary/ Miocene	Sandstone	1,200, 8,600	125, 140
20. Edison (San Jos	squin)	1928	Subsurface	Combination/ Fault, Fracturing, Facies change, Unconformity	Tertiary/ Miocene; Jurassic/ Upper	Sandstone, Schist	1,200, 800, 3,200	360, 450, 200
21. Greeley (San Jos	aquin)	1936	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,300	100
22. Paloma (San Jo	aquin)	1934	Seismin	Structural/ Anticline	Tertiary/ Miocene, Pliocene	Sandstone	11,800	600
23. Ten Secti (San Jos		1936	Seismic	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	7,900	320
24. Fruitvale (San Jos		1928	Surface	Combination/ Fault, Permeability pinchout	Tertiary/ Miocene- Pliocene	Sandstone	3,400	740
25. McKittrio east (San Jos		1944	Surface, Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene; Quaternary/ Pleistocene	Sandstone	7,800, 700	300 400
26. Mountain (San Jo.		1933	Surface, Subsurface	Combination/ Fault, Facies change, Unconformity	Tertiary/ Miocene, Pliocene	Sandstone	5,400	200
Class A Field	ds.				ļ			
27. Rowid Moi Main, Co Canyon, I (San Jo	ffee Pyramiä	1927	Surface, Subsurface	Structoral/ Fault	Tertiary/ Miocene	Sandstone	2,000, 1,600	80 130
28. Grimes (Sacram	ento)	1960	Selsmic	Combination/ Facies change, Fault	Cretaceous/ Gulf	Sandstone	4,900	25-50
29. Poso Cre & Premie (San Jo	?I*	1929	Subsurface	Combination/ Fault, Permeability pinchout	Tertiary/ Pliocene, Miocene	Sandstone	2,400, 2,500	100 250

Surface	<u>{million</u>		e 011 of Dec. 31,	1975)		atural Gas of Dec. 31,	ral Gas Dec. 31, 1975)		tural Gas Liquids ls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonat. Reserves	1975 Prod.	
4,240		121.2	41.8	2.21	119.9	24.1	1.92			0.03	
3,340		25.8	20.2	0.22	217.7	187.3	2.44	24.9°		0.27	
2,080		113.2	0.8	0.10	134.2	29.2	1.26				
1,460 ^a	300.0	1.7	133.3	0.01	1.0	52.7	0.01				
3,260	:	100.7	20.8	2.12	82.7	4.3	0.58				
7,500		115.0	11.4	1.35	66.6	2.4	0.34				
2,280		108.6	4.2	0.60	98.5	6.5	0.41				
5,760		36.9	0.1	0.07	435.2	6.7	0.97	21.5°		0.06	
2,420		79.2	2.3	0.49	183.1	48.9	0.81				
3,460		101.6	11.0	0.92	35.5	2.5	0.32				
1,980		49.3	23.2	1.95	138.8	18.6	4.71				
4,780		80.6	3.4	0.60	83.5	2.2	0,42			0.02	
2,260		85,4	4.5	0.49	1.4	0.1	0.03				
<u>.</u>											
14,320					332.5	147.4	12.03				
3,500		62.6	7.9	1.46	4.9	3.1	0.12				

Proli	Year Dis-	Discovery	Type of	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Field 30. Tejen, North (San Joaquin)	1956	Method(s) Seismic, Subsutface	Trap(s) Combination/ Faulted nose, Facies change	Tertiary/ Mincene, Encene	Sandstone	10,000,	700, 400
31. YouTumme (San Joaquin)	1974	Seismic, Subsurface	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	11,200, 11,500	200, 125
32. Lathrop (Sacramento)	1961	Seismic, Subsurface	Combination/ Facies change, Faulted anticline	Cretaceous/ Gulf	Sandstone	7,200, 8,300	550, 130
33. Belgian Antieline: Main (San Joaquin)	1946	Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene, Eccene	Sandstone	5,300, 5,400	150, 300
34. Guijarral Hille: Main (San Joaquin)	1948	Subsurface	Stratigraphic/ Facies change	Tertiary/ Miocene	Sandstone	8,700, 8,500	200, 150
35. Willows-Beehive Eend (Sacramento)	1938	Seismic	Combination/ Facies change, Faulted anticline	Cretaceous/ Gulf	Sandstone	4,400, 1,900	5-60, 10-80
36. Wheeler Ridge: Central (San Joaquin)	1922	Surface	Structural/ Anticline	Tertiary/ Oligocene, Miocene	Sandstone	9,600, 2,000	170, 200
37. Asphalto (San Joaquin)	1962	Subsurface	Combination/ Facies change, Unconformity, Anticline	Tertiary/ Miocene	Sandstone	5,700	165
Class B Fields					-		
38. Belm (San Joaquin)	1941	Seismic	Combination/ Facies change, Paulted anticline	Tertiary/ Miocene; Cretaceous/ Gulf	Sandstone	6,800, 8,200	20, 50
39. Raisin City (San Joaquin)	1941	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene, Eccene	Sandstone	5,100, 4,700, 6,300	35, 20, 20
40. Union Island (Sacramento)	1972	Seismic	Structural/ Fault	Cretaceous/ Gulf	Sandstone	9,700	150
41. Canfield Ranch (San Joaquin)	1938	Seismic	Structural/ Fault	Tertiary/ Miocene	Sandstone	7,900	100
42. Sutter Buttes (Sacramento)	1933	Seepage, Seismic	Combination/ Facies change, Faulted nose	Cretaceous/ Gulf	Sandstone	2,100	5-60
43. Trico (San Joaquin)	1934	Seismic	Combination/ Anticline, Facies change	Quaternary/ Pleistocene; Tertiary/ Pliocene	Sandstone	2,500, 3,200	20, 25
44. Tejon: Central & Western (San Josquin)	1937	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	2,600, 5,600, 7,200	55, 170, 50
45. Canal (San Joaquin)	1937	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	8,000	100

11 A. 2a(CA-CN)-3

Surface	(millio	Crud ns bbls as	e Oil of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Na (mill. b	tural Gas Liquid	de 31, 1975)
Area (acres)	In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,640		20.2	2.4	0.26	197.9	20.9	2.43			
2,060 ^a	180.0	2.8	47.2	2.28	1.8	58.2	1.58			
2,340			- -		265.0	88.0	7.82			
1,200		27.8	3.7	0.44	111.7	6,6	1.32			
1,800		42,4	0.1	0.02	66.7	0.3	0.03			
13,220	 				284.6	58.4	6,12			
760		34.7	2.3	0.53	69.8	1,2	0.36			
900	122,9	30.5	2.0	0.40	66.4	14.6 	3.14			
4,860		29.5	1.1	0.19	77.4	3.6	U.17			
1,680		38.1	4.2	0.48	21.9	3,1	Q.26			
580 ^a					0.1	248.1	0.02			
2,180		28.7	3.6	0.66	29.3	4.2	0.76			
9,020					138.0	63.9	5.16			
11,120					198.5	2.7	0.77			
1,740		25.5	2.1	0,23	17.9	0.2	0.05			
780		25.2	0.3	0.17	27.4	0.2	0.12			
										,

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
46. Cymric: Salt Creek Main (San Joaquin)	1946	Subsurface, Seismic	Structural/ Faulted nose	Tertiary/ Miocene	Sandstone	1,500	150
47. McDonald Island (Sacramento)	1936	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	5,200	45
48. Belgian Antiolíne: Northuest (San Joaquin)	1951	Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene, Eocene	Sandstone	2,000, 2,600	175, 300
49. Jacalitos (San Joaquin)	1941	Surface, Subsurface	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	3,400	170
50. Riverdale (San Joaquin)	1941	Seismic	Combination/ Anticline, Facies change	Tertiary/ Miocene, Eocene	Sandstone	6,800, 7,800	50, 35
51. Maine Prairie (Sacramento)	1945	Seismic	Combination/ Faulted anticline, Unconformity	Tertiary/ Eocene, Paleocene	Sandstone	4,700. 6,400	40, 90
52. Railroad Gap (San Joaquin)	1964	Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	7,000, 9,100	250. 180
53. Lindsey Slough (Sacramento)	1962	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Paleocene; Cretaceous/ Gulf	Sandstone	10,200, 7,600	95, 60
Class C Fields							
54. Brentwood (Sacramento)	1962	Surface, Subsurface	Combination/ Fault, Unconformity, Facies change	Tertiary/ Paleocene; Cretaceous/ Gulf	Sandstone	3,600, 4,000	250, 180
55. McDonald Anticline (San Joaquin)	1945	Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	2,600	100
56. River Island (Sacramento)	1950	Subsurface, Seismic	Combination/ Facies change, Faulted nose	Cretaceous/ Gulf; Tertlary/ Eocene, Paleocene	Sandstone	8,500, 4,400	30, 40
57. San Emidio Nose (San Joaquin)	1958	Subsurface, Seismic	Combination/ Nose; Permeability pinchout	Tertiary/ Miocene	Sandstone	11,500, 12,600	120, 150
58. Dutch Slough (Sacramento)	1963	Subsurface	Combination/ Faulted anticline, Unconformity	Tertiaty/ Paleocene	Sandstone	7,400, 7,200	95, 50
59. Hyer Island (Sacramento)	1967	Seismic	Structural/ Anticline	Tertiary/ Eocene	Sandstone	4,800, 4,300	200, 60
60, Strand: Main & Northwest (San Joaquin)	1939	Seismic	Combination/ Facies change, Faulted nose	Tertiary/ Miocene	Sandstone	8,200, 9,200	30, 40
61. Thornton, West- Walnut Grove (Sacramento)	1956	Seismic	Combination/ Unconformity, Faulted anticline, Facies change	Tertiary/ Eocene, Paleocene	Sandstone	4,500, 3,000	60. 40

12

13 A.2a(CA-CN)-4

Surface	(millio	Crude ns bbls as	e Oil of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31,	1975)	Nat (mill. bb	ural Gas Liqui ols as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum.	Demonst. Reserves	1975 Prod.
480		26.3	2.7	0.31	4.9	3.8	0.03			
2,140					183.6		3.39			
1,240		16.2	0.7	0.09	44.7	5.4	0.64			
2,680		21.3	0.6	0.08	25.3	1.7	0.08			
1,960		19.2	1.7	0.21	28.8	2.3	0.20			
2,300			- -		109.1	48.3	4.19	0.2 ^b		*
500		8.2	1.6	0.20	68.1	11.1	2.75			
2,520					95.9	56.8	5.77	0.5 ^b		0.03 ^b
920		6.8	1.5	0.25	47.8	37.7	1.90	0.1 ^b		0.01 _p
620		15.0	5.0	0.57	11.6	5.3	0.67			
4,760			 		112.9	28.1	3.39	*		*
1,140]	17.7	2.7	0.43	4.7	1.1	0.12			
2,360					101.7	23.3	2,46	0.2		*
400					78.2	41.8	9.83	0.1 ^b		0.01 ^b
980		16.3	1.2	0.13	13.8	0.4	0.29			
3,320		 			116.3	4.0	0.33	*		*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoit Thickness (feet)
62. <i>Todhu</i> nters Lake (Sacramento)	1967	Seismic, Subsurface	Combination/ Fault, Unconformity	Cretaceous/ Gulf; Tertiary/ Paleocene	Sandstone	3,600, 3,200	40, 60
53. Wild Goose (Sacramento)	1951	Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	2,900, 2,500	250, 200
4. Antelope Hills: Williams (San Joaquin)	1942	Seismic, Subsurface, Core- drill	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	2,300, 2,100	70, 80
55. Rosedale Ranch (Sen Josquin)	1945	Subsurface, Seismic	Combination/ Facies change, Faulted nose	Tertiary/ Pliocene, Miocene	Sandstone	4,200, 4,900	160, 100
56. Vermalis (Sacramento)	1941	Seismic	Combination/ Faulted anticline, Facies change	Cretaceous/ Gulf	Sandstone	3,800	80
57. Wheeler Ridge: Windgap (San Joaquin)	1956	Subsurface	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	5,600	170
58, Pleasant Valley (San Joaquin)	1943	Subsurface	Stratigraphic/ Fermeability pinchout	Tertiary/ Eccene	Sandstone	9,100	120
69. Suisum Bay (Sacramento)	1944	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene, Paleocene	Sandstone	3,600, 4,100	175, 65
70. Tompkins Hill (Eel River)	1937	Seepage, Surface	Combination/ Facies change, Anticline	Tertiary/ Pliocene	Sandstone	2,100	5~50
71. Sutter City: South (Sacramento)	1961	Seismic	Combination/ Fault, Facies change	Cretaceous/ Gulf	Sandstone	4,000	5-50
72. <i>Tejon Hills</i> (San Joaquin)	1948	Surface	Combination/ Fault, Facies change	Tertiary/ Miocene	Sandstone	500, 1,400	50 30
73. Malton-Black Butte (Sacramento)	1964	Subsurface, Seismic	Combination/ Facies change, Faulted nose	Cretaceous/ Gulf	Sandstone	2,000	50
74. Millar: Main (Sacramento)	1944	Seismic, Subsurface	Structural/ Fault, Nose	Tertiary/ Eocene; Cretaceous/ Gulf	Sandstone	4,600, 7,100	40 35
75. Arbuckle (Sacramento)	1957	Seismic	Combination/ Facies change, Anticline	Cretaceous/ Gulf	Sandstone	4,400	45
76. Bunker (Sacramento)	1960	Subsurface	Structural/ Faulted anticline	Tertiary/ Paleocene	Sandstone	6,800	40
77. Kern Bluff (San Joaquin)	1944	Surface, Subsurface	Structural/ Fault	Tertiary/ Miocene	Sandstone	1,000	55
78. McMullin Ranch (Sacramento)	1960	Subsurface	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	4,500, 7,200	5-30 35
79. Gill Ranch (San Joaquin)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	4,400.	45

a Not yet fully delineated.

b Lease condensate.

^CPlant condensate.

^{*} Partially offshore.

Surface	(million	Crude ns bbl s as	0il of Dec. 31,	1975)		Natural Gas of Dec. 31.	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 2rod	
2,980					40.4	76.6	11.91				
360					101.5	3.5	0.51				
440		13.3	1.8	0.19	8.0	0.1	0.07				
760		12.3	2.0	0.29	8.7	1.0	0.14				
4,040					85.6	13.7	1.67				
560		12.3	2.3	0.48	9.6	0.6	0.12				
500		13.2	0.1	0.01	12.1	*	*				
720				 !	83.5	6.4	1.50	* 		*	
1,440					62,8	19.8	1.84				
3,080					52.0	27.4	1.98				
940		12,7	0.2	0.05	2.5	*	0.02			- -	
7,960	- -				50.6	26,6	6,38			:	
2,280					39.5	32.9	3.96				
5,260					61.6	8.4	0.76		•		
860		<u></u>			59.5	7.5	1.16	0.3 ^b		*	
700		9.8	1.0	0.09					 		
3,040					59.2	5.2	0.71				
940					59.3	1.9	0.44				

 $\label{table A.2b}$ The significant oil and Gas fields of the California central coast

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
Class AAAA Fields						ļ	
1. Ventura-Rincon (Ventura)	1916	Surface	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	7,800, 10,200, 12,000	960, 670, 1,010
a. Venturz (AAAA)	1916	Surface	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	7,800, 10,200, 12,000	960, 670, 1,010
b. San Miguelito (AA)	1931	Surface	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	5,600, 7,300	1,220,
c. Rincon (AAA)	1927	Surface, Trend	Combination/ Faulted anticline, Facies change	Tertlary/ Pliocene	Sandstone	4,000, 7,700	2,100, 1,800
2. San Ardo (Coastal: Salinas)	1947	Surface, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	2,000, 2,400	150, 120
Class AAA Fields							
 Cat Canyon (Senta Maria) 	1908	Seepage	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene, Pliocene	Sandstone, Chert, Shale	6,000, 2,800	1,500, 600
4. Santa Maria Valley (Santa Maria)	1934	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Miocens	Sandstone, Siltstone, Shale	3,400	1,150
5. Cuyama, South (Coastal: Cuyama)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	3,600	400
6. Dos Cuadras (Ventura)	1968	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	2,300	745
7. Greater South Mountain (Ventura)	1916	Surface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene, Pliocene	Sandstone	1,300, 7,200	2,000 1,250
a. South Mountain (AA)	1916	Surface	Combination/ Faulted anticline, Facies change	Tertiary/ 011gocene, Pliocene	Sandstone	1,300, 7,200	2,000 1,250
b. Satisoy (B)	1955	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Pliocene, Pleistocene	Sandstone	9,000, 6,400	425 450
c. West Mountain (D)	1945	Trend	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,100	700
8. Orcutt (Santa Maria)	1901	Seepage	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone, Chert, Shale	2,700	300
9. Hondo (Ventura)	1969	Seismic, Core-drill	Structural/ Anticline	Tertiary/ Miocene	Chert, Sandstone	8,000, 11,000	

In Place	Cum. Prod.	Demonst.			of Dec. 31,		Natural Gas Liquids (mill. bbls as of Dec. 31, 1975			
		Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
4,585.0	990.0	217.5	15.65	2,333.4	98.1	11.39			1.19	
3,500.0	792.5	157.5	10.94	1,964.6	62.8	6.78				
385.0	71.3	20.1	1.79	186.0	8.3	0.88		:		
700.0	126.2	40.0	2.92	182.8	27.0	3.73			0.22	
1,450.0	288.1	261.9	13.88	71.4	0.1	0.16				
	222.1	78.9	6.45	113.5	46.8	3.92		i	0.04	
1,121.0	162,4	76.1	3.00	221.6	52.0	4.61	:		0.66	
	209.7	6.3	1.20	215.9	9.4	2.83				
750.0	115.9	103.6	13.67	55.7	114.6	5.02				
	155.4	17.7	1.80	309.0	25.6	2.89				
:	132.2	15.6	1.55	266.5	24.0	2.66				
	19.8	1.3	0.20	39.9	0.6	0.15	:			
	3.4	0.8	0.05	2.6	1.0	80,0				
	150.4	24.6	1,64	269.4	15.6	1.07				
606.3	 !	94.0			 					
•	385.0 700.0 1,450.0	385.0 71.3 700.0 126.2 1,450.0 288.1 222.1 1,121.0 162.4 209.7 750.0 115.9 155.4 132.2 19.8 3.4	385.0 71.3 20.1 700.0 126.2 40.0 1,450.0 288.1 261.9 222.1 78.9 1,121.0 162.4 76.1 209.7 6.3 750.0 115.9 103.6 155.4 17.7 132.2 15.6 19.8 1.3 3.4 0.8	385.0 71.3 20.1 1.79 700.0 126.2 40.0 2.92 1,450.0 288.1 261.9 13.88 222.1 78.9 6.45 1,121.0 162.4 76.1 3.00 209.7 6.3 1.20 750.0 115.9 103.6 13.67 155.4 17.7 1.80 132.2 15.6 1.55 19.8 1.3 0.20 3.4 0.8 0.05 150.4 24.6 1.64	385.0 71.3 20.1 1.79 186.0 700.0 126.2 40.0 2.92 182.8 1,450.0 288.1 261.9 13.88 71.4 222.1 78.9 6.45 113.5 1,121.0 162.4 76.1 3.00 221.6 209.7 6.3 1.20 215.9 750.0 115.9 103.6 13.67 55.7 155.4 17.7 1.80 309.0 132.2 15.6 1.55 266.5 19.8 1.3 0.20 39.9 3.4 0.8 0.05 2.6 150.4 24.6 1.64 269.4	385.0 71.3 20.1 1.79 186.0 8.3 700.0 126.2 40.0 2.92 182.8 27.0 1,450.0 288.1 261.9 13.88 71.4 0.1 222.1 78.9 6.45 113.5 46.8 1,121.0 162.4 76.1 3.00 221.6 52.0 209.7 6.3 1.20 215.9 9.4 750.0 115.9 103.6 13.67 55.7 114.6 155.4 17.7 1.80 309.0 25.6 132.2 15.6 1.55 266.5 24.0 19.8 1.3 0.20 39.9 0.6 3.4 0.8 0.05 2.6 1.0 150.4 24.6 1.64 269.4 15.6	385.0 71.3 20.1 1.79 186.0 8.3 0.88 700.0 126.2 40.0 2.92 182.8 27.0 3.73 1,450.0 288.1 261.9 13.88 71.4 0.1 0.16 222.1 78.9 6.45 113.5 46.8 3.92 1,121.0 162.4 76.1 3.00 221.6 52.0 4.61 209.7 6.3 1.20 215.9 9.4 2.83 750.0 115.9 103.6 13.67 55.7 114.6 5.02 155.4 17.7 1.80 309.0 25.6 2.89 132.2 15.6 1.55 266.5 24.0 2.66 19.8 1.3 0.20 39.9 0.6 0.15 3.4 0.8 0.05 2.6 1.0 0.08 150.4 24.6 1.64 269.4 15.6 1.07	385.0 71.3 20.1 1.79 186.0 8.3 0.88 700.0 126.2 40.0 2.92 182.8 27.0 3.73 1,430.0 288.1 261.9 13.88 71.4 0.1 0.16 222.1 78.9 6.45 113.5 46.8 3.92 1,121.0 162.4 76.1 3.00 221.6 52.0 4.61 209.7 6.3 1.20 215.9 9.4 2.83 750.0 115.9 103.6 13.67 55.7 114.6 5.02 155.4 17.7 1.80 309.0 25.6 2.89 132.2 15.6 1.55 266.5 24.0 2.66 19.8 1.3 0.20 39.9 0.6 0.15 3.4 0.8 0.05 2.6 1.0 0.08 150.4 24.6 2.64 269.4 15.6 1.07	385.0 71.3 20.1 1.79 186.0 8.3 0.88 700.0 126.2 40.0 2.92 182.8 27.0 3.73 1,450.0 288.1 261.9 13.88 71.4 0.1 0.16 222.1 78.9 6.45 113.5 46.8 3.92 1,121.0 162.4 76.1 3.00 221.6 52.0 4.61 209.7 6.3 1.20 215.9 9.4 2.83 750.0 115.9 103.6 13.67 55.7 114.6 5.02 155.4 17.7 1.80 309.0 25.6 2.89 132.2 15.6 1.55 266.5 24.0 2.66 19.8 1.3 0.20 39.9 0.6 0.15 3.4 0.8 0.05 2.6 1.0 0.08 150.4 24.6 2.64 269.4 15.6 1.07	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
Class AA Fields							
10. Elwood* (Ventura)	1928	Surface	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	3,400, 3,700	320, 100
11. Newhall-Potrero (Ventura)	1937	Surface, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	6,500, 9,300, 11,500	300, 300, 200
12. Carpinteria (Ventura)	1966	Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	3,000	1,650
13. Pescado ** (Ventura)	1970	Seismic, Core-drill	Structural/ Anticline	Tertiary/ Miocene	Chert. Sandstone	7,500	
14. Santa Clara (Ventura)	1971	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene		7,100	
Class A Fields							
15. Aliso Canyon: Main (Ventura)	1938	Surface, Subsurface	Structural/ Faulted nose	Tertiary/ Pliocene, Miocene	Sandstone	8,100, 6,500	110, 200
16. Russell Ranch (Coastal: Cuyama)	1948	Seismic	Structural/ Fault	Tertiary/ Miocene	Sandstone	2,800	350
17. Elwood, South** (Ventura)	1965	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene	Shale, Sandstone	3,400, 5,000	500, 150
18. Montalvo, West 4 (Ventura)	1947	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Oligocene, Pliocene	Sandstone	11,500, 900	2,500, 250
19. Lompoc (Santa Maria)	1903	Seepage	Structural/ Faulted anticline	Tertiary/ Miocene	Shale, Siltstone	2,800	500
20. Casmalia (Santa Maria)	1905	Seepage	Structural/ Faulted anticline	Tertiary/ Miocene	Chert, Shale	700	1,275
21. Sacate (Ventura)	1970	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene	Chert, Sandstone	7,500, 8,700	110
Class B Fields							
22. Summerland Off- shore (Ventura)	1958	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,500	250
23. Del Valle (Ventura)	1940	Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	5,500, 6,900	200 350
24. Placerita (Ventura)	1920	Surface	Combination/ Fault, Facies change	Tertiary/ Pliocene	Sandstone	800, 1,700	200 400
25. Molino Offshore ** (Ventura)	1962	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene- Oligocene	Sandstone	6,200	390
26. Castaic Junction (Ventura)	1950	Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,400, 10,200	200 300

31, 19 <u>75)</u>	tural Gas Liquid	(mill. bi	1975)	Natural Gas of Dec. 31,		1975)	Crude 011 (millions bbls as of Dec. 31, 1975)					
1975 Prod.	Demonst. Reserves	Cum. Prod.	1975 Prod.	Demonst. Reserves	Cum. Prod.	1975 Prod.	Demonst. Reserves	Cum. Prod.	In Place	Area acres)		
			0,20	0.9	96.7	0.04	0.2	103.3	235.0	600		
			1.22	65.6	81.3	0.44	3.3	70.3		1,500		
		i										
0.06 ^a			2.69	53.3	37.5	3.21	32.2	47.9	319.0	1,800		
- -												
					7-							
			38.40	21.0	157,6	0.64	4.9	50.3		1,060		
			0.79	6.3	43.8	0.26	1.9	65.1		1,540		
			0.02	3.2	7.7	1.20	12.3	9.9	74.8	100		
			2,42	23.0	49.5	0.59	7.2	34.8		1,860		
			0.83	6.5	41.7	0.33	4.3	40.7		2,300		
			0.51	12.7	11.2	0.66	17.3	32.2		2,760		
0.03 ^a			1.33	14.9	85.1	0.26	1.7	24.5		840		
			0.24	1.1	90.6	0.10	0.9	25.0		660		
			***	0.3	6.0	0.30	3.0	40.8	180.0	760		
0.13 ^c		4.3 ^b	3.37	11.2	223.8	;			i	.,140 ·		
			1.81	8.2	47.5	0.47	3,4	27.9		.,640		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
27. Guadalupe (Sança Maria)	1948	Subsurface	Stratigraphic/ Facies change	Tertiary/ Miocene- Pliocene	Sandstone, Siltstone	2,800	400
28. Osmard (Ventura)	1937	Seismic	Combination/ Unconformity, Facies change, Fault	Tertiary/ Oligocene, Miocene, Eocene	Sandstone	6,000, 2,800, 9,000- 10,400	300, 400, 450
29. Shiells Canyon (Ventura)	1911	Surface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	2,000, 4,300	150, 1,000
30. Seape (Ventura)	1887	Seepage	Combination/ Facies change, Faulted nose, Fracturing	Tertiary/ Oligocene	Sands tone	5,400	1,000
31. Bardsdale (Ventura)	1892	Seepage	Structural/ Faulted anticline	Tertiary/ Eocene, Oligocene, Fliocene	Sandstone	6,500, 2,000, 5,500	600, 2,450, 1,300
32. Ramona (Ventura)	1943	Trend	Structural/ Fault	Tertiary/ Miocene	Sandstone	4,500	1,100
33. Zaca (Santa Maria)	1942	Surface	Structural/ Fault	Tertiary/ Miocene	Siltstone, Shale	3,500	1,700
34. Torrey Canyon (Ventura)	1889	Seepage	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,700, 1,500	3,000, 400
35. Honor Rancho: Southeast (Ventura)	1956	Surface, Subsurface	Combination/ Fault, Facies change	Tertiary/ Miocene	Sandstone	10,000	375
Class C Fields							
36. Conception Offshore ** (Ventura)	1961	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	3,000	250
37. Sapitan* (Ventura)	1929	Surface	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	1,100, 3,400, 2,300	100, 250, 150
38. Oak Canyon (Ventura)	1941	Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,200, 5,400	80, 110
39. Oakridge (Ventura)	1952	Core-drill, Subsurface	Structural/ Faulted nose	Tertiary/ Miocene	Sandstone	2,400	500
40. Fillmore (Ventura)	1954	Seismic, Subsurface	Stratigraphic/ Facies change	Tertiary/ Pliocene	Sandstone	14,500	130
41. Santa Eusana- Tapo Canyon, South (Ventura)	1953 (1963)	Core-drill. Subsurface	Structural/ Fault, Nose	Tertiary/ Oligocene, Miocene	Sandstone	5,500, 2,200	150, 60
42. Ojai: Silverthread (Ventura)	1966 (1971)	Seepage	Structural/ Fault	Tertiary/ Miocene	Sandstone	4,000	500
43. Honor Ranaho: Main (Ventura)	1950	Surface, Subsurface	Combination/ Facies change, Anticline	Tertiary/ Miocene	Sandstone	6,200, 5,200	400, 140
44. Castaic Hills (Ventura)	1951	Surface, Subsurface	Combination/ Faulted nose, Facies change	Tertiary/ Mioceme	Sandstone	5,500, 5,900	150, 80

Surface	(million	Crude a bbls as	011 of Dec. 31,	1975)	(Bcf as	Vatural Gas of Dec. 31,	1975)	Nat (mill. bb	ural Gas Liquid ls as of Dec. :	ls 3 <u>1, 1975)</u>
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,860		23.1	13.9	1.21	15.4	8.1	0.90			
1,860		34.7	1.9	0.37	21.4	2.3	0.28			
1,040		23.4	7.1	0.35	43.8	1.4	0.09			
2,700		20.0	10.9	1.08	18.1	18.8	1.38			
600		12.6	1.5	0.15	74.9	. 4.4	0,62			
600	121.7	19.7	2.7	0.18	37.8	1.6	0.38			
500		20.9	8.6	0.46	2.9					-
260		18.7	1.8	0.21	19.7	21.6	0.19			
420		15.3	3.7	0.04	28.5	: <u></u>	0.24			
340	98.0	20.9			12.3					
340		19,4	0.3	0.03	14.8	0.1	*			
300	44.6	12.1	2.9	0.19	18.7	2.3	0.29	ļ		
480		12.0	3.0	0.21	7.8	1.3	0.08			
1,120		12.6			19.6					
480		10.7	1.5	0.18	6.5	8.0	0.10			
500	1 1	5.4	6.0	0.91	5.0	10,0	1.50			
320		10.3	1.1	0.10	11.3	0.7	0.09			
520	<u> </u>	8.3	0.9	0.04	17.6	0.9	0.09			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology_	Depth to Top (feet)	Reservoir Thickness (feet)
45. Gaviota Offshore (Ventura)	1960	Seismic, Core- drill	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	5,100	500
46. Hueneme** (Ventura)	1969	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	5,200	

Partially offshore.

aPlant condensate.

b Lease condensate.

 $^{^{\}rm C}{\rm Plant}$ and lease condensate.

Surface	(million	Crude is bbls as	0il of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Cas Liquids (mill, bbls as of Dec. 31, 1 <u>975)</u>		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Frod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
140					69.9	*	*			
		-								
	1	<u></u>		ļ		!				!

Table A.2c

THE SIGNIFICANT OIL AND GAS FIELDS OF THE LOS ANGELES BASIN, CALIFORNIA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (fest)	Reservoir Thickness (feet)
Class AAAA Fields					1	}	
1. Wilmington Trend (Los Angeles)	1922 (1936)	Subsurface, Seismic, Random	Structural/ Faulted anticline	Tertlary/ Miocene, Pliocene	Sandstone	3,000, 2,500, 3,500	300, 150, 360
a. Wilmington*(AAAA)	1932 (1936)	Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	3,000, 2,500, 3,500	300, 150, 360
b. Torrance (AAA)	1922	Random	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	3,300, 4,200	120, 40
c. Belmont Off- shore** (A)	1947	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,000, 5,400	300, 200
2. Hintington Beach* (Los Angeles)	1920	Seepage	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	4,300, 3,800, 2,300	275, 450, 100
3. Long Beach (Los Angeles)	1921	Surface	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	3,600, 5,300	840, 500
4. Santa le Springs (Los Angeles)	1919	Seepage	Structural/ Anticline	Tertiary/ Pliocene, Miocene	Sandstone	4,600, 6,700, 8,200	700, 700, 900
5. Brea-Olinda- Saneinena (Los Angeles)	1880 (1897)	Seepage	Combination/ Fault, Facies change, Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	1,800, 4,000	350, 770
a. Brea-Olinda (AAA)	1880 (1897)	Seepage	Combination/ Fault, Facies change, Nose	Tertiary/ Pliocene, Miocene	Sandstone	1,800,	350, 770
b. Sansinena (A)	1898	Seepage	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	3,600, 2,900, 4,200	475, 300, 200
Class AAA Fields							
6. inglewood (Los Angeles)	1924	Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	1,500, 2,400	750, 400
7. Domingues (Los Angeles)	1923	Surface	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	5,300, 3,950	340, 200
8. Coyote, West (Los Angeles)	1909 (1930)	Surface	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	5,500, 4,400	500, 350
9. Seal Beach (Los Angeles)	1924	Random	Structure1/ Faulted enticline	Tertiary/ Miocene, Pliocene	Sandstone	4,600, 5,500, 4,100	900, 800, 310
10. Montebello (Los Angeles)	1917	Surface	Structural/ Anticline	Termiary/ Pliocene, Miocene	Sandstone	2,200, 3,500	600, 600
II. Richfield (Los Angeles)	1919	Seepage	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	3,800, 2,900	500, 500

Surface	(million	Crud s bbls as	e 011 of Dec. 31.	1975)	(Bef as	Natural Gas of Dec. 31,	1975)		tural Gas Liquible as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
22,900	10,783.1	1,973.4	784.8	70.92	1,183.6	131.3	13.83			0.10
14,700	9,693.1	1,748.0	714.0	65.60	1,021.5	105.5	11.81			0.08
7,440	910.0	184.1	29.4	2.86	126.9	16.1	1.42			0.02
760	180.0	41.3	41.4	2.46	35.2	9.7	0.60			
6,300	6,000.0	941.2	153.8	17.17	784.7	34.4	4.00			0.22
1,720	3,250.0	870.8	59.2	2.54	1,073.0	15.5	1.45			0.44
1,480	2,200.0	601.7	20.6	0.71	831.9	8.6	0.69			0.08
3,110	.1,650.0	395.4	45.8	3.92	480.4	43.7	5.29			0.43
2,440	1,450.0	348.3	38.0	3.18	424.8	34.2	4.14			0.43
680	200,0	47.1	7.8	0.74	55.6	9,5	1.15			
1,220	1,100.0	300.6	29.4	3.58	239.4	15.7	1.79			0.37
1,680	900.0	259.5	14.0	1.04	378.2	6.3	0.50			0,13
1,130	925.0	234.3	15.7	2,04	266.5	1.6	0.18			
870	742.5	189.2	14.1	1.21	202.7	8.4	0.85			
1,600	700.0	185.0	6.7	0.68	212.0	5.4	0.52			
1,620	700.0	167.9	26.7	1.67	169.9	2.7	0.14			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AA Fields							
12. Beverly Hills (Los Angeles)	1900 (1954,1966)	Surface, Subsurface, .Cpre-drill	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	9,900, 10,800, 4,500	700, 800, 100
13. Rosecrone & South (AA) (Los Angeles)	1924	Seepage	Structoral/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	5,700, 7,200	350, 270
a. Rosecrans (AA)	1924	Seepage	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	5,700, 7,200	350, 270
b. Rosecrans, South (C)	1939	Subsurface	Structural/ Faulted Hose	Tertiary/ Miocene, Pliocene	Sandstone	8,600, 7,900	375
14. Coyote, East (Los Angeles)	1909	Surface, Trend	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	3,400, 4,000, 5,500	200, 250, 400
Class A Fields		į					
15. Salt Lake (Los Angeles)	1902	Seepage	Combination/ Facies change, Faulted nose	Tertiary/ Miocene	Sandstone	2,300, 2,700	275, 200
16. <i>Yorba Linda</i> (Los Angeles)	1930 (1954)	Random	Stratigraphic/ Facies change	Quaternary/ Pliestocene; Tertiary/ Pliocene	Sandstone	2,000	250
17. Playa del Rey (Los Angeles)	1929	Random	Combination/ Anticline, Facies change	Tertiary/ Miocene, Pliocene	Sandstone	6,400, 4,000	200, 100
18. Las Cienegas (Los Angeles)	1961 (1964,1965)	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	3,50k 2,900	150, 240
19. Newport, West (Los Angeles)	1943	Seepage, Surface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	2,500, 5,300	100, 250
20. Cheviot Hills (Los Angeles)	1958	Subsurface, Core-drill	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	8,800	550
21. Whittier: Central & La Habra (Los Angeles)	1896	Seepage	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	2,100, 1,600	300, 200
Class B Fields							
22, Potrero (Los Angeles)	1928	Random	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	8,800, 7,800	800, 600
23. Riviera (Los Angeles)	1966	Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone		
						Ę	

27 A.2c(CA-LA)-2

Surface	(millions		011 of Dec. 31,	1975)		atural Gas of Dec. 31,	1975)		iral Gas Liquid ls as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,320	490.0	82.9	45,0	4.41	157.8	41.0	4.94			
920	415.0	85.5	6.6	0.42	179.6	7.5	0.58			
720	320.0	77.3	6.0	0.38	160.1	6.2	0.50			
200	95.0	8.2	0.6	0.05	19.5	1.3	0.08			
1,500	375.0	99.6	10.7	0.72	55.6	4.3	0.34			0.05
1,160	250.0	49.0	5.3	0.32	208.1	4.1	0.26			
860	230.7	53.7	41.1	3.73	1.9	0.1	0.01			
600	183.0	61,8	0.5	0.07	61.8	0.2	0.02			
980	225.0	44.0	16.5	1.69	40.1	12.2	1,23			
1,400	200.0	45.2	23,6	1.43	7.8	0.3	0.04		:	
820	126.0	23.3	6.1	0.41	135.8	12.2	1.10			
1,000	240.0	41.1	5.4	0.65	41.5	4-4	0.66			
360	70.0	13.9	0.9	0.13	70.1	1,2	0.15			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class C Fields						}	
24. Los Angeles City (Los Angeles)	1890	Seepage	Structural/ Fault	Tertiary/ Miocene	Sandstone	900, 1,100	125, 30
25. El Segundo (Los Angeles)	1935	Random	Structural/ Anticline, Fracturing	Tertiary/ Miocene, Pliocene	Schist, Sandstone	7,300, 1,500- 4,200	150, 300
26. Los Angeles Down- town (Los Angeles)	1965	Subsurface, Core~drill	Combination/ Faulted anticline, Facies change	Tertiary/ Mioceme	Sandstone	2,900, 3,500	200, 1,300
27. Long Beach Airport (Los Angeles)	1954	Subsurface, Core-drill	Structural/ Faulted Mose	Tertiary/ Miocene	Sandatone	8,200	1,200
28. San Vicente (Los Angeles)	1968	Subsurface, Core-drill	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	4,200, 3,200	2,000, 1,000
29. Sawtelle (Los Angeles)	1965	Subsurface, Core-drill	Structural/ Faulted mose	Tertiary/ Miocene	Sandatone	9,500	500
30. Howard Townsite (Los Angeles)	1947	Subsurface	Combination/ Nose, Facies change	Tertiary/ Miocene, Pliocene	Sandstone	8,100, 5,700	300, 50

Partially offshore.

In			1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
120.0	22.0	0.4	0.05						
46.7	13.7	0,5	0.04	34.5	0.2	0.02	:		
56.0	9.4	5.2	0.60	13.4	7.3	0.91			
50.0	10.0	0.4	0.06	32.9	1.2	0.12			
73.0	8.1	5,8	0.92	7.9	5.1	1.13			
40.0	8.4	3.6	0.32	7.9	3.1	0.33	į		
	5.1	1.0	0.07	23.6	3.4	0.34			
	46.7 56.0 50.0	46.7 13.7 56.0 9.4 50.0 10.0 73.0 8.1	46.7 13.7 0.5 56.0 9.4 5.2 50.0 10.0 0.4 73.0 8.1 5.8 40.0 8.4 3.6	46.7 13.7 0.5 0.04 56.0 9.4 5.2 0.60 50.0 10.0 0.4 0.06 73.0 8.1 5.8 0.92 40.0 8.4 3.6 0.32	46.7 13.7 0.5 0.04 34.5 56.0 9.4 5.2 0.60 13.4 50.0 10.0 0.4 0.06 32.9 73.0 8.1 5.8 0.92 7.9 40.0 8.4 3.6 0.32 7.9	46.7 13.7 0.5 0.04 34.5 0.2 56.0 9.4 5.2 0.60 13.4 7.3 50.0 10.0 0.4 0.06 32.9 1.2 73.0 8.1 5.8 0.92 7.9 5.1 40.0 8.4 3.6 0.32 7.9 3.1	46.7 13.7 0.5 0.04 34.5 0.2 0.02 56.0 9.4 5.2 0.60 13.4 7.3 0.91 50.0 10.0 0.4 0.06 32.9 1.2 0.12 73.0 8.1 5.8 0.92 7.9 5.1 1.13 40.0 8.4 3.6 0.32 7.9 3.1 0.33	46.7 13.7 0.5 0.04 34.5 0.2 0.02 56.0 9.4 5.2 0.60 13.4 7.3 0.91 50.0 10.0 0.4 0.06 32.9 1.2 0.12 73.0 8.1 5.8 0.92 7.9 5.1 1.13 40.0 8.4 3.6 0.32 7.9 3.1 0.33	46.7 13.7 0.5 0.04 34.5 0.2 0.02 56.0 9.4 5.2 0.60 13.4 7.3 0.91 50.0 10.0 0.4 0.06 32.9 1.2 0.12 73.0 8.1 5.8 0.92 7.9 5.1 1.13 40.0 8.4 3.6 0.32 7.9 3.1 0.33

A.3a(RM-AZ)-1

Table A.3a
THE SIGNIFICANT OIL AND GAS FIELDS OF ARIZONA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class C Fields 1. Dineh-Bi-Keyah (Black Mesa)	1967	Seismic, Core-drill	Stratigraphic/ Facies change	Tertiary/ Oligocene	Igneous	2,900	25

A.3a(RM-AZ)-1

Surface	(million:		e Oil of Dec. 31	, 1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Nec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Roserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
4,500	59.0	13.9	3.8	0.58	1.9	3.1	0.16			

Table A.3b

THE SIGNIFICANT OIL AND GAS FIELDS OF COLORADO

32

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields				-			[
1. Igracio-Blonco (also NM) (San Juan)	1950	Surface, Seismic	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone, Shale	5,300, 7,500	315, 215
a. Mesa Verde (also NM)	1950 (1927)	Surface, Seismic	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone, Shale	5,300	315
b. Dakota (also NM)	1950 (1947)	Surface, Seismic	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone	7,500	225
c. Fruitland- Pictured Cliffs	1950	Surface, Seiamic	Combination/ Anticline,	Cretaceous/ Gulf	Sandstone, Shale	2,500	245
2. Rangely (Piceance)	1902 (1933)	Surface	Facies change Structural/ Anticline	Permian/ Wolfcamp	Sandstone, Shale	6,200	150
Class AAA Fields							
3. Oreenwood: Topeka- Lansing (also KS) (Anadarko)	1954 (1952)	Trend	Stratigraphic/ Facies change	Fennsylvanian/ Virgil	Limestone	3,100	10
Class AA Fields						Ì	!
4. Wattenberg: "V" Sand (Denver)	1970	Subsurface, Core-drill	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	8,000	25
5. Spindle (Denver)	1972	Trend	Stratigraphic/ Facies change	Gretaceous/ Gulf	Sandstone	4,700, 5,100	20,
Class A Fields							
6. Wilson Creek (Piceance)	1938	Surface	Structural/ Anticline	Jurassic/ Upper	Sandstone	6,600	70
7. Adena (Denver)	1953	Seismic	Combination/ Permeability pinchout, Nose	Cretaceous/ Comanche	Sandstone	5,600	30
Class B Fields	1			}			
8. Barker Creek (also NM) (San Juan)	1945 (1942)	Seismic, Subsurface	Structural/ Anticline	Pennsylvanian/ Des Moines	Dolomite	8,300	125
9. Douglas Creek Area (Piceance)	1943	Surface, Subsurface	Combination/ Faulted fractured anticline, Facies change	Cretaceous/ Gulf, Comanche	Sandstone, Shale	2,400, 1,400	360, 10
a. Douglas Creek (all) (C)	1943	Surface	Combination/ Faulted fractured anticline, Facies change	Gretaceous/ Gulf, Communche	Sandstone, Shale	1,400, 1,500, 800	10, 80, 30
b. Uragon Trail 1 North (C)	1959	Surface, Subsurface	Combination/ Faulted fractured anticline, Facies change	Cretaceous/ Gulf	Sandstone, Shale	2,400	360

33 A.3b(RM-CO)-1

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975	(Bef as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
103,360					544.2		23.38				
103,360					354.2		15.85				
28,800					164.7		7.33				
15,680					33.0		0.10				
24,540	1,681.6	533.9	221.3	20.44	274.7	23.7	1.71	18.0ª		0.23ª	
5,840					7.0	7.0	0.33				
283,000					55.3	472.7	33.23	0.7 ^b		0.33 ^b	
24,080		5.0	43.0	1.90	16.8	175.2	8.02				
2,540	200.0	76.2	13.2	1.06	24.6	3.5	0.52	2.1ª		0.03ª	
13,080	141.0	60.4	1.6	0.12	84.6	8.4	0.62	10.9 ⁸		0.16ª	
3,400					89.5	22.9	1.59	0.16			
23,400		 		-	136.9	145.1	13.63	0.9ª		0.21ª	
5,600					45.4		2.77				
11,040					64.7		7.04				
					!						
							,				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
c. Lower Horse Draw (C)	1960	Surface, Subsurface	Combination/ Faulted Fractured anticline, Facies change	Cretaceous/ Gulf	Sandstone, Shale	2,600	360
10. <i>Fowder Wash</i> (Green River: Sand Wash)	1931	Surface	Combination/ Anticline, Facies change	Tertiary/ Eocene, Paleocene	Sandstone	4,500, 6,500	25, 110
ll. Piceance Creek (Piceance)	1930	Surface	Combination/ Anticline, Porosity- permeability pinchout	Tertiary/ Eocene	Sandstone, Limestone	3,200, 5,500	60, 110
12. Hichartha (also WY) (Green River; Sand Wash)	1926	Surface	Combination/ Anticline, Facies change	Tertiary/ Eocene, Paleocene	Sandstone	1,700, 4,500	75, 60
13. West Side Canal (also WY) (Green River: Sand Wash)	1954	Surface, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	4,800	20
a. Pole Gulch (C)	1965	Surface, Seismic	Structural/ Faulted Nose	Cretaceous/ Gulf	Sandstone	4,600	20
14. Hiawatha, West (Green River: Sand Wash)	1930	Surface	Structural/ Anticline	Tertiary/ Faleocene, Eocene	Sandstone	4,100, 2,100	85, 45
Class C Fields							}
15. Little Beaver (Denver)	1951	Seismic	Combination/ Permeability pinchout, Nose	Cretaceous/ Comanche	Sandstone	5,300	40
16. Ites (Green River: Sand Wash)	1927	Surface	Structural/ Anticline	Jurassic/ Upper	Sandstone	3,200	95
17. Plum Bush Creek (Denver)	1954	Seismic, Subsurfac⊾	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	5,000	20
18. Peorta (Denver)	1970	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	6,400	15
19. Flodine Park (also UT) (Paradox)	1959 (1957)	Seismic, Subsurface	Combination/ Permeability pinchout, Anticline	Pennsylvanian/ Des Moines	Limestone	5,600	40
20. Yenter (Denver)	1950	Seismic	Combination/ Permeability pinchout, Nose	Cretaceous/ Comanche	Sandstone	5,200	5
21. Graylin, Northwest (Denver)	1951	Seismíc	Combination/ Permeability pinchout, Nose	Cretaceous/ Comanche	Sandstone	4,900	15
22. Florence-Canon City (Denver)	1862	Seepage	Structural/ Fracturing	Cretaceous/ Gulf	Shale	1,000	100
23. Sugar Loaf (Green River: Sand Wash)	1953	Surface	Structural/ Anticline	Gretaceous/ Gulf	Sandstone	5,000	65

Surface	(million	Crud is bbls as	e Oil of Dec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst.	1975 Prod	
6,720					26.8		3.82				
7,520	29.5	4.7	1.9	0.04	132.6	103.9	9,36	1.0 ^b		0.10	
19,000					133.3	142.7	9,42	0.8°		0.13	
6,240		3.4	0.3	0.02	97.5	34.5	2.24	0.1 ^b		0.01	
540					5.0	2,2	0.41	*		*	
540					5.0)	2.2	0.41	*		*	
2,120				- -	103.7	58.3	5.06	0,2 ^b		*p	
2,620		16.6	1.0	0.04	20.1	0.3	0.03				
1,000		18.0	ე.6	0.12	2.0		 				
3,180		18.3	0.4	0.10	2.1	0.1	- 0.01				
2,520		9.9	3.1	1.16	14.7	3.9	1.42				
600		2.0	0.3	0.05	7.2	1.5	0.21				
1,660		9.8	0.5	0.07	23.8	0.8	0.21				
3,120		12.4	0.7	0.13	11.2	*	0.01		:		
21,800	63.4	14.7	0.3	0.02			;				
3,680					48,2		2.61	0.2 ^b		0.01	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
24. Big Beaver (Denver)	1954	Seismic	Combination/ Permeability pinchout, Nose	Cretaceous/ Comanche	Sandstone	5,000	5
25. Third Creek (Denver)	1971	Core-drill, Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	8,300	30
26. Wellington (Denver)	1923	Surface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone, Shale	4,400	25
27. <i>Pierce</i> (Denver)	1955	Seismic	Structural/ Anticline	Permian/ Leonard	Sandstone, Anhydrite	9,200	25
28. Black Hollow (Denver)	1953	Seismic	Structural/ Anticline	Permian/ Leonard	Sandstone, Anhydrite	8,900	30
29. Brandon (Las Animas Arch)	1959	Seismic, Core-drill, Subsurface	Structural/ Anticline	Mississippian/ Osage	Limestone	4,800	15
30. Divide Creek (Piceance)	1956	Surface	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	3,900	40

^aPlant liquids only.

Gross production minus reinjected gas.

CNew gas storage area.

Surface	(million		e Dil of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)		ural Gas Liquid ls as of Dec. 3	
Area (acres)	In Place	Cum. Prod.	Demonst, Réserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,320		11.5	1.3	0.14	1.6	0.2	0.01			
6,440		2.7	1.2	0.67	12.8		4.41	1.2ª		0,54
2,440		7.3	0.2	0.02	18.6	*	0.01			
1,600		9.0	1.8	0.27	0.5	*	0.02			
1,660		9.9	0.7	0.08	0.3	*	*			
720		7.5	3.0	0.50						
9,600					40.7		1.19			

Table A.3c

THE SIGNIFICANT OIL AND GAS FIELDS OF MONTANA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1. Elk Basin (also WY) (Big Horn)	1915	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Mississippian/ Kinderhook	Dolomite, Limestone, Sandstone	5,000, 5,300	125 225
Class AAA Fields	i					•	
2. Cedar Creek Anti- aline (also ND) (Williston)	1912	Surface, Seismic	Structural/ Anticline	Silurian/ Lower; Ordovician/ Upper; Cretaceous/ Gulf	Dolomite, Limestone, Sandstone	9,000, 8,800, 600	150, 25, 100
a. Cabin Creek (A)	1953	Surface, Seismic	Structural/ Faulted anticline	Silurian/ Lower; Mississippian/ Osage	Dolomite	9,000, 7,300	150 25
b. Cedar Creek (A) (also ND)	1912	Surface	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone, Shale	600	100
c. Little Beaver, East (C) (also ND)	1954	Surface, Seismic	Structural/ Anticline	Ordovician/ Upper	Dolomite	8,300	25
d. Little Beaver (C)	1952	Surface, Seismic	Structural/ Anticline	Ordovician/ Upper	Dolomite	8,300	35
e. Lookout Butte (B)	1961	Surface, Seismic	Structural/ Anticline	Ordovician/ Upper	Dolomite	8,900	15
f. Monarch (D)	1958	Surface, Seismic	Structural/ Faulted anticline	Silurian/ Lower	Dolomite, Limestone	8,400	30
g. Pennel (A)	1955	Surface, Seismic	Structural/ Faulted anticline	Silurian/ Lower	Dolomite, Limestone	8,800	25
3. Cut Bank (Sweetgrass Arch)	1926	Random	Combination/ Anticline, Porosity pinchout	Cretaceous/ Comanche	Sandstone	2,900	20
Class AA Fields							
4. Bell Creek (Powder River)	1967	Seismic, Subsurface, Trend	Combination/ Facies change, Hydrodynamic	Cretaceous/ Comanche	Sandstone	4,400	16
5. Frannie (also WY) (Big Horn)	1940 (1928)	Surface, Trend	Structoral/ Anticline	Pennsylvanian/ Des Moines	Sandstone, Limestone	2,700	31
 Pine (Williston) 	1952	Surface, Seismic	Structural/ Anticline	Silurian/ Lower	Limestone, Dolomite	8,400	34
7. Kevin-Sunburst (Sweetgrass Arch)	1922	Surface	Combination/ Anticline, Porosity pinchout	Cretaceous/ Comanche	Dolomite, Limestone, Sandstone	1,500	1.
Class A Fields							
(None)		ļ					

39 A.3c(RM-MT)-1

Surface	(million	Crude On bbls as of	ll Dec. 31,	1975)	(Bcf as	latural Gas of Dec. 31,	1975)	Na (mill. b	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
1,400	274.9	69.5	15.7	1.19	13.8		0.37		·		
113,000	699.7	132.8	57.4	5.82	267.7		2.35				
7,620	251.1	69.5	20.3	2.01	19.4		0.62				
113,000					248.3		1.73				
1,600	16.8	3.9	2.3	0.15							
2,400	38.2	7.2	5,8	0.44							
6,100	91.7	16.4	8.3	0.57							
2,240	22.3	3.5	1.9	0.13							
22,380	279.6	32.3	25.7	2.52		770 777					
58,000	634.1	137.3	25.2	2.45	469.0		-4.29			0.68	
17,440	244.0	77.5	50.5	8.67	22.0		0.45				
80	2.8	0.7	0.1	0.01							
13,320	237.4	81.1	23.9	2.56	14.0		0.54				
40,200	365.4	71.5	8,5	0.31	89.5		0.52				
						:					

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class B Fields							
8. Sumatra (Central Montana Uplift)	1952	Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	4,500	30
9. Poplar, East (Williston)	1952	Seismic F		Mississippian/ Kinderhook	Limestone	5,500	25
10. Bowdoin (Williston)	1913	Surface	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	700	15
11. Tiger Ridge (Sweetgrass Atch)	1967	Subsurface	Combination/ Facies change, Fault	Cretaceous/ Gulf	Sandstone	1,000	135
12. Flat Lake (also Sask.) (Williston)	1964	Subsurface, Seismic	Combination/ Facies change, Nose,	Mississippian/ Meramec	Limestone	6,500	15
13. Fondera (Sweetgrass Arch)	1927	Random	Stratigraphic/ Porosity- permeability pinchout, Unconformity	Mississippian/ Kinderhook	Dolomite	2,100	15
14. Cat Creek (Central Montana Uplift)	1920	Surface	Combination/ Faulted anticline, Facies change	Cretaceous/ Commanche; Jurassic/ Upper	Sandstone, Shale	1,100,	50, 25
Class C Fields							
15. Fred & George Greek (Sweetgrass Arch)	1963	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	2,600	40
16. Bowes (Sweetgrass Arch)	1924	Surface	Combination/ Anticline, Fault, Facies change	Jurassic/ Middle; Cretaceous/ Gulf	Limestone, Sandstone	3,300, 700	50, 60
17. Whitlash (Sweetgrass Arch)	1918	Surface	Combination/ Anticline, Facies change	Cretaceous/ Comanche	Sandstone	1,900, 2,600	20 15
18. Glendive (Williston)	1952	Surface, Seismic	Combination/ Faulted anticline, Porosity pinchout	Ordovician/ Upper	Dolomite	8,900	150
19. Dry Creek (Big Horn)	1929	Surface	Structoral/ Faulted anticline	Cretaceous/ Gulf, Comanche	Sandstone	4,000, 5,800	25 30
20. Reagon (Sweetgrass Arch)	1941	Surface, Subsurface, Core-drill	Structural/ Faulted anticline	Mississippian/ Meramec	Dolomite	3,600	10
21. Fairview (Williston)	1965	Seismic	Structural/ Anticline	Ordovician/ Upper	Dolomite	12,700	35
22. Stensvad (Central Montana Uplift)	1958	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	5,500	25
23. Gas City (Williston)	1955	Seismic	Structural/ Faulted enticline	Ordovician/ Upper	Dolomite	8,900	30

^aIncluded in Cut Bank.

Surface	(million	Crude ()il [Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Na (mill, b	tural Gas Liqui	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Pr od.
5,520	136.8	30.2	15.8	1.92						
18,600	247.7	41.7	4.9	0.45						
123,000					139.5		4.73			
60,000					71.7		15.72			
9,600	68.3	9.1	7.7	0.62						
5,560	59.6	20.3	5.7	0.29						
2,300	75.9	22.4	1,2	0.13						 :
1,360	40.9	9.6	6.6	0.47						
4,700	87.6	8.0	1.4	0.13	33.2		0.64			
1,960	25.7	3.6	2.4	0.15	43.8		0.81			
1,280	60.7	10.2	3.5	0.25						
1,500	3.6	*	0.2	*	55.7		0.70			
2,520	16.4	5.8	1.9	0.15	a	*	a			
1,760	26.7	5.5	2.6	0.29	1.0		0.39			
1,360	22.3	9.9	0.2	0.11						
2,800	33.1	8,4	1.1	0.23						

Table A.3d
THE SIGNIFICANT OIL AND GAS FIELDS OF NEBRASKA

42

Field	Year Dis- covered	Discovery Merhod(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class B Fields						}	
1. Sleepy Hollow (Cambridge Arch)	1960	Seismic, Subsurface	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone, Limestone	3,400	.30
Class C Fields			-	1	1		<u> </u>
2. Sloss-State (Denver)	1954	Seismic	Combination/ Facies change, Nose	Cretaceous/ Comanche	Sandstone	6,200	10
3. Sidney, Southwest (Denver)	1950	Seismic	Combination/ Facies change, Nose	Cretaceous/ Comanche	Sandstone	4,700	10
4. Singleton (Denver)	1958	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	5,600	10
5. Huntsman (Denver)	1950	Seismic, Subsurface	Structural/ Anticline	Cretaceous/ Commanche	Sandstone	4,700	75

(million			1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
130.0	38.8	8.7	1.10	i					
46.4	16.6	0.3	0.05	4.9		*			
	1.1	0,4	0.09	50.2		0.66			0.16
19.5	10.1	0,7	0,10	2.0		*		1	
	3.7	*	0.03	31.7					
	In Place	(millions bbls as of In Cum, Place Prod. 130.0 38.8 46.4 16.6 1.1	In Place Cum. Prod. Reserves 130.0 38.8 8.7 46.4 16.6 0.3 1.1 0.4 19.5 10.1 0.7	(millions bbls as of Dec. 31, 1975) In Place Cum, Prod. Demonst. Reserves 1975 Prod. 130.0 38.8 8.7 1.10 46.4 16.6 0.3 0.05 1.1 0.4 0.09 19.5 10.1 0.7 0.10	(millions bbls as of Dec. 31, 1975) (Bcf as In Place Cum. Prod. Demonst. Reserves 1975 Prod. Cum. Prod. 130.0 38.8 8.7 1.10 46.4 16.6 0.3 0.05 4.9 19.5 10.1 0.7 0.10 2.0	(millions bbls as of Dec. 31, 1975) (Bcf as of Dec. 31, 1975) (Bcf as of Dec. 31, 1975) In Place Cum. Prod. Demonst. Reserves 1975 Prod. Cum. Prod. Demonst. Reserves 130.0 38.8 8.7 1.10 46.4 16.6 0.3 0.05 4.9 19.5 10.1 0.7 0.10 2.0	In Place Cum, Prod. Demonst. Reserves 1975 Prod. Cum. Prod. Demonst. Reserves 1975 Prod. Cum. Prod. Demonst. Reserves 1975 Prod. 130.0 38.8 8.7 1.10 46.4 16.6 0.3 0.05 4.9 * 19.5 10.1 0.7 0.10 2.0 *	(millions bbls as of Dec. 31, 1975) (Bef as of Dec. 31, 1975) (mill. b) In Place Cum. Prod. Demonst. Reserves 1975 Prod. Demonst. Reserves 1975 Prod. Prod. <td< td=""><td>(millions bbls as of Dec. 31, 1975) (Bef as of Dec. 31, 1975) (mill. bbls as of Dec. 1975)</td></td<>	(millions bbls as of Dec. 31, 1975) (Bef as of Dec. 31, 1975) (mill. bbls as of Dec. 1975)

Table A.3e

THE SIGNIFICANT OIL AND GAS FIELDS OF NORTHWESTERN NEW MEXICO

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields				ļ			
1. Blanco: Mesa Verde (also CO) (San Juan)	1927	Surface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	4,600	750
2. Basin: Dakota (also CO) (San Juan)	1947	Subsurface, Seismic	Combination/ Facies change. Hydrodynamic	Cretaceous/ Gulf	Sandstone	6,500	60
Class AAA Fields							
3. Aztec-Blanco, South: Pictured Cliffs (San Juan)	1941	Subsurface, Seismic	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	2,800	70
a. Aztec: Pictured Cliffs (A)	1941	Subsurface	Stratigraphic/ Facies change	Cretaceous Gulf	Sandstone	2,700	90
 b. Blanco, South: Piotured Cliffs (AAA) 	1951	Subsurface, Seismic	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	2,800	70
Class AA Fields							
4. Ballard-Fulcher- Kute: Pictured Cliffs (San Juan)	1927	Surface, Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	1,800	90
 Ballard: Pictured Cliffs (A) 	1953	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	2,000	50
b. Fulcher-Kutz: Pictured Cliffs (A)	1927	Surface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	1,500	130
5. Blanco: Pictured Cliffs (San Juan)	1927	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	2,500	25
Class A Fields]						
6. Tapacito: Pictured Cliffs (San Juan)	1954	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	3,600	60
Class B Fields							
7. Barker Creek (also CO) (Sen Juan)	1942	Seismic, Subsurface	Structural/ Anticline	Pennsylvanian/ Des Moines; Cretaceous/ Gulf	Dolomite, Sandstone	8,800, 2,400	60, 75
8. Bisti: Gallup (San Juan)	1955	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	4,700	200
9. Horseshoe (San Juan)	1957	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	1,600	40
 Kutz, West: Pictured Cliffs (San Juan) 	1950	Surface, Seismic	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	1,800	70
Class C Fields		1		[
11. Otero: Mesa Verde (San Juan)	1956	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	3,800	30
12. Ute Dome (San Juan)	1921	Surface, Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines; Cretaceous/ Gulf	Dolomite, Sandstone	7,300, 2,200	50, 285
13. Tocito Dome (San Juan)	1963	Surface, Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Dolomite	6,300	40

Surface	(million	Crude	of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonat. Reserves	1975 Prod
1,364,000	•			: 	4,161.3	6,066.7	216.89	16.8ª		0.95
766,400			<u></u>		2,601.3	2,994.7	162.25	26.2ª		1.09
383,720					969.1	882.9	43.16			
92,840					222.4	219.6	10.99	*		*
290,880					746.7	663.3	32.17	*		*
205,120					484.2	432.8	21,65			
136,320		_			268.9	244.1	11.19	*		*
68,800					215.3	188.7	10.46			
81,120	-	<u></u> _			190.3	469.7	23.49			
52,000			<u></u> -		184.8	221.7	9,26	*		*
7,360					120.1	14.4	1,24			
47,000	200.0	33.4	1.2	0.17	72.7		0.32			
16,600		34.6	4.2	0.47	7.7	0.1	0.01		-	
63,360		-			117.9		3.81			
32,320				~ -	67.8	52.8	5.20	* .		*
4,160					49.4	39.2	4.55			
4,800	44.1	10,8	2.2	1,11	20.8	4.3	3.42			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
14. Puerto Chiquito, West (San Juan)	1960	Subsurface	Combination/ Fault, Facies change	Gretaceous/ Gulf	Sandstone	1,800	30
15. Cha Cha (San Juan)	1959	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	5,300	45
16. Angel's Peak: Gallup (San Juan)	1958	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sands tone	5,900	325
17. Hospah, South (San Juan)	1965	Surface, Seismic	Structural/ Faulted anticline	Gretaceous/ Gulf	Sandstone	1,600	35

aLease condensate only.

	2 0012 00	of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
	5.5	4.9	0.32	3.5	5.5	0.52			•
	8.5	0.6	0.09	15.2	0.4	0.01			
	0.7	0.2	0.04	49.0	13.4	2.54		;	
34.7	6.0	5.2	0.69	*	*	0.02			
	Place	Place Prod, 5.5 8.5	Place Prod, Reserves 5.5 4.9 8.5 0.6 0.7 0.2	Place Prod. Reserves Prod. 5.5 4.9 0.32 8.5 0.6 0.09 0.7 0.2 0.04	In Cum. Place Prod. Reserves Prod. Prod. 5.5 4.9 0.32 3.5 8.5 0.6 0.09 15.2 0.7 0.2 0.04 49.0	In Place Prod. Reserves Prod. Prod. Reserves Prod. Prod. Reserves Prod. Prod. Reserves Prod. Prod. Reserves Reserves Prod. Prod. Reserves Reserves Prod. Prod. Prod. Reserves Prod. Prod. Prod. Reserves Prod. Pro	In Cum. Demonst. 1975 Cum. Prod. 1975 Reserves Prod.	In Cim. Demonst. 1975 Cim. Demonst. 1975 Cim. Prod. Reserves Prod. Prod. Reserves Prod. Prod. Reserves Prod. Prod.	In Place Demonst. 1975 Cum. Demonst. 1975 Cum. Prod. Prod. Prod. Reserves Prod. Prod. Prod. Prod. Reserves Prod. Prod. Prod. Reserves Prod. P

 $\mbox{ \begin{tabular}{lllll} Table A.3f \end{tabular} } \mbox{ \begin{tabular}{lllll} Table A.3f \end{ta$

				Geologic Age	;	Depth to	Reservoir
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	of Reservoir Rock	Reservoir Lithology	Top (feet)	Thickness (feet)
Class AAA Fields							
1. Greater Beaver Lodge (Williston)	1951	Seismic	Structural/. Anticline	Mississippian/ Kinderhook; Devonian/ Upper	Limestone, Dolomite	8,500, 10,500, 12,700	65, 15, 40
a. Beaver Lodge (AAA)	1951	Seismic	Structural/ Anticline	Mississippian/ Kinderhook; Devonian/ Upper; Ordovician/ Upper	Limestone, Dolomite	8,500, 10,500, 12,700	65, 15, 40
b. Capá (C)	1953	Seismic	Structural/ Anticline	Mississippian/ Kinderhook	Limestone, Dolomite	8,300	35
c. Hofflund (D)	1952	Şeişmic	Combination/ Anticline, Permeability pinchout	Mississippian/ Kinderhook	Limestone, Dolomite	8,700	40
2. Cedar Creek Anticline (also MT) (Williston)	1929 (1912)	Surface, Seismic	Structural/ Anticline	Ordovician/ Upper; Cretaceous/ Gulf	Dolomite, Sandstone	8,300, 1,200	105 , 50
Class AA Fields							
3. Tioga (Williston)	1952	Seismic	Structural/ Anticline	Mississippian/ Kinderhook	Limestone, Dolomite	8,300	40
a. Tioga (AA)	1952	Seismic	Structural/ Anticline	Mississippian/ Kinderhook	Limestone, Dolomite	8,300	40
b. Tioga, North (C)	1957	Seismic, Subsurface	Combination/ Anticline, Permeability pinchout	Mississippian/ Kinderhook	Limestone, Eclomite	8,000	15
Class A Fields							
4. Antelope (Williston)	1953	Seismic	Structural/ Anticline	Mississippian/ Kinderhook; Devonian/ Upper; Silurian/ Lower	Sandstone, Dolomite	8,700, 10,600, 11,800	175, 20, 20
Class B Fields							
5. Charlson (Williston)	1952	Seismic	Structural/ Anticline	Mississippian/ Kinderhook; Devonian/ Upper	Limestone	8,900, 10,000	75. 55
6. Blue Buttes (Williston)	1955	Seismic, Subsurface	Combination/ Anticline, Permeability pinchout	Mississippian/ Kinderhook	Limestone, Dolomite	9,200	20
7. Newburg-Westhope, South (Williston)	1955	Subsurface	Stratigraphic/ Unconformity, Facies change	Triassic/ Lower	Sandstone	3,300	20
a. Newburg (B)	1955	Subsurface	Stratigraphic/ Unconformity	Triassic/ Lower	Sandstone	3,300	20
b. Westhope, South (C)	1956	Subsurface	Stratigraphic/ Unconformity, Facies change	Triassic/ Lower	Sandstone	3,300	25

Surface	(million	Crude bbls as o	0il f Dec. 31,	1975)		Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 P rod.	Cum. Frod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.		
41,040		94.9	42.1	3.24	259.0		15.99					
21,520	320,2	81.5	41.0	3.10	237,9		15.78					
8,360		10.8	0.8	0.11	17.5		0.14					
11,160	:	2.6	0.3	0.03	3.6		0.07					
13,640	68.0	9,5	4.1	0.55	14.4		0.33					
41,280		71.2	14.8	1.23	117.5		1.59					
26,400		57.2	11.8	0.95	96.3		0.96					
14,680		14.0	3.0	0,28	21.2		0.63					
13,840		30.7	4.3	0.57	57.7		1.38					
12,540		22.6	8.1	0.74	40.7		1.17					
18,200		21,2	7.3	0.57	45.4		0.48					
19,600		24.0	16.2	1.51	2.5		*					
11,800		15.6	12.4	1.17	1.9		×					
7,800		7.4	3.8	0.34	0.6		*					

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
8. Dickinson (Williston)	1958	Seismic, Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone, Shale	7,900	30
9. Fryburg (Williston)	1953	Seismic	Combination/ Porosity pinchout, Nose	Pennsylvanian/ Morrow; Mississippian/ Kinderhook	Sandstone, Dolomite	8,200, 9,400	10,
10. Sherwood (also Sask.) (Williston)	1958	Seismic	Combination/ Nose, Porosity pinchout	Mississippian/ Kinderhook	Limestone	4,200	15
Class C Fields				1			
11. Rival (Williston)	1957	Seismic, Subsurface	Stratigraphic/ Porosity pinchout	Mississippian/ Kinderhook	Limestone	6,100	20
12. Hawkeye (Williston)	1955	Seismic	Combination/ Porosity pinchout, Nose	Mississippian/ Kinderhook	Limestone, Dolomite	9,200	35
13. Medora (Williston)	1964	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Morrow; Mississippian/ Kinderhook	Sandstone, Dolomite	7,800, 9,000	10, 15
14. Red Wing Creek (Williston)	1972	Seismic	Structural/ Faulted anticline	Mississippian/ Kinderhook	Sandstone	8,900	20
15. Glenburn (Williston)	1958	Seismic	Combination/ Nose, Permeability pinchout	Mississippian/ Kinderhook	Limestone	4,500	15
16. Elmore (also Sask.) (Williston)	1961	Subsurface	Stratigraphic/ Permeability pinchout	Mississippian/ Kinderhook	Limestone	4,000	15
17. Clear Creek (Williston)	1-958	Seismic, Subsurface	Stratigraphic/ Permeability pinchout	Mississippian/ Kinderhook	Dolomite, Limestone	9,200	20
18. Wiley (Williston)	1958	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Mississippian/ Kinderhook	Limestone	4,100	15

	(million b	Crude O	11 Dec. 31,	1975)		atural Gas of Dec. 31,	1975)	Natu	ral Gas Liqui	.ds
Surface Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
16,400		10.3	17.7	1.37	3.3		0.71			
23,120		15.1	9.7	1.14	13.1		0.53			
3,440		11.6	4.9	0.47	3.2		0.05			
11,600		12.4	1.1	0.20	22.6		0.48			
6,840		11.7	2.8	0.37	15.9		0.42			
8,800		7.9	9.5	0.78	1.6		0.12			
1,040		2.2	10.8	1.06	2.2		1.06			
11,760		12.0	4.7	0.96	1.0		0.02			
1,700		1.3	0.6	0.06	0.2		*		:	
5,760		6.9	1.7	0.19	12.9		0.35			
6,720		6.4	5.1	0.28	0.6		0.05			

Table A.3g
THE SIGNIFICANT OIL AND GAS FIELDS OF UTAH

 		 				, , , , , , , , , , , , , , , , , , ,	<u></u>
Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields							
1. Greater Aneth (Paradox)	1956	Surface, Seismic, Subsurface	Combination/ Permeability pinchout, Faulted nose	Pennsylvanian/ Des Moines	Limestone, Dolomite	5,500	60
2. Altamont-Eluebell (Uinta)	1967	Subsurface	Combination/ Fracturing, Facies change, Porosity pinchout	Tertiary/ Eocene	Sandstone	12,300, 9,000	57 5. 455
Class AA Fields			, , , , , , , , , , , , , , , , , , , ,				
3. Greater Red Wash (Uinta)	1951	Seismic, Subsurface, Photogeology	Combination/ Facies change, Nose, Porosity- permeability pinchout	Tertiary/ Eocene	Sandstone	5,400	200
a. Red Wash (AA)	1951	Seismic, Subsurface, Photogeology	Combination/ Facies charge, Nose, Porosity- permeability pinchout	Tertiary/ Eccene	Sandstone	5,400	200
b. Wonsits Valley (B)	1958	Subsurface	Combination/ Facies change, Nose, Porosity- permeability pinchout	Tertiary/ Eocene	Sandstone	5,500	25
c. Walker Hollow (C)	1952	Seismic, Subsurface	Combination/ Facies change, Nose, Porosity- permeability pinchout	Tertiary/ Eocene	Sandstone	4,700	70
d. White River (D)	1960	Subsurface	Combination/ Facies change, Nose, Porosity- permeability pinchout	Tertiary/ Eccene	Sandstone	5,500	15
4. Pinaviaw (Green River- Overthrust Belt)	1975	Seismic	Structural/ Faulted anticline	Jurassic/ Lower	Limestone	9,800	500
Class A Fields		1					
5. Liston (Paradox)	1960	Surface, Seismic, Subsurface	Structural/ Faulted nose	Mississippian/ Kinderhook	Dolomite	7,800	230
Class B Fields				-			
6. Clay Basin (Green River)	1927	Surface	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone, Shale	5,600	75
Class C Fields		İ					
7. <i>Upper Valley</i> (Plateau- Kaiparowits)	1964	Surface	Structural/ Anticline	Permian/ Guadalupe; Mississippian/ Osage	Dolomite, Limestone	6,700 8,800	
8. Clear Creek (Wasatch Uplift)	1951	Surface, Subsurface	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	4,700	200
9. Ashley Valley (Uinta)	1948	Surface	Structural/ Faulted anticline	Permian/ Wolfcamp	Sandstone	4,200	40

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)		atural Gas of Dec. 31,	1975)	Natural Cas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
63,520	1,185.0	268.5	108.6	8.32	261.4	80.6	6.40			0.71
245,000	1,080.0	72,2	82.3	23.19	75.3	124.2	27.11			1.53
63,600	795.0	97.9	34.8	3.94	199.0		6,63			0.04
42,000	484.5	56.8	18.4	2.10	156.1 ^b		5.56			
	225.0	30.6	11.8	1.32	20.4		0,52			
	68.2	8.5	4.0	0.43	20.9		0,52			
	15.0	2.0	0.5	0.09	1.6		0.03			
1,040		0.2		0.22	0.2		0.17			
5,500	133.7	38.6	6.6	1.07	27.8 ^b		1.26 ^b			0.76
8,500					129.6	76.8	2,95			
3,800	136.9	14.8	9.7	1.44						
20,960					135.3	2.2	0.27			
1,240	65.6	17.9	2,2	0.22						

Field	Year Dis- covered	Discovery Method(s)		Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
10. Ismay-Flodine Park (also CO) (Paradox)	1957	Seismic, Subsurface	Combination/ Permeability pinchout, Anticline	Pennsylvanian/ Des Moines	Limestone	5,600	40
11. Natural Buttes (Uinta)	1952 (1959)	Seismic	Stratigraphic/ Facies change	Tertiary/ Eocene; Cretaceous/ Gulf	Sandstone	5,000, 6,700	60
12. San Arreyo (Vinta)	1955	Surface	Combination/ Anticline, Facies change	Jurassic/ Upper	Sandstone	5,200	55
13. Bridger Lake (Green River)	1966	Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	15,500	45

a Plant liquids.

b Gross production minus reinjected gas.

CNew gas storage area.

Surface	(million		e 011 of Dec. 31,	1975)	Natural Cas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbis as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
3,600	35.8	9.3	0.9	0.18	15.9	1.1	0.33			
100,000+		0.1	*	*	37.3		1.67			
22,400		0.1	*	*	61.7		2.49			
3,000	65.1	8.6	3.6	0.53	7,9	^c	¢			

A.3h(RM-WY)-1

Table A.3h
THE SIGNIFICANT OIL AND GAS FIELDS OF WYOMING

56

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thicksess (feet)
Class AAAA Fields							
 Salt Creek Anti- cline (Powder River- Casper Arch) 	1889	Surface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	1,500	180
a. Salt Creek (AAAA)	1889	Surface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	1,500	180
b. Teapat 6 East (A)	1922	Surface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	2,800	60
2. Elk Bagin (also MT) (Big Horn)	1915	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines; Mississippian/ Kinderhook	Sandetone, Limestone	3,900, 4,500	160, 225
Class AAA Fields							
3. Biy Finey-La Barge Complex (Green River)	1924	Surface, Seepage	Combination/ Fault, Anticline, Pacies change	Cretaceous/ Gulf; Tertiary/ Paleocene	Sandstone	7,200, 5,800	335, 80
a. Big Piney (all) (C)	1938	Surface	Combination/ Fault, Facies change	Cretaceous/ Gulf; Tertiary/ Paleocene, Eocene	Sandstone	3,100, 2,500, 900	45, 15, 15
b. Birch Creek (A)	1957	Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Cretaceous/ Gulf; Tertiary/ Paleocene	Sandstone	7,000, 2,400	35, 15
c. Chirmey Butte (C)	1957	Subsurface, Seismic	Combination/ Fault, Facies change	Cretaceous/ Gulf	Sandstone	7,400	350
d. Dry Piney (B)	1957	Subsurface, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf; Jurassic/ Lower	Sandstone	7,000, 11,000	240, 20
e. Green River Bend (B)	1958	Subsurface	Combination/ Faulted anticline, Facies change	Cretaceous/ Gulf	Sandstone	7,100	175
f. Eogeback (A)	1955	Surface, Subsurface, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf; Jurassic/ Lower	Sandstone, Shale	7,200, 11,000	75, 10
g. La Barge (all) (A)	1924	Surface, Seepage	Combination/ Faulted anticline, Facies change	Gretaceous/ Gulf; Tertiary/ Paleocene	Sandstone	7,200, 2,700	335, 25
h. McDonald Draw (C)	1960	Subsurface, Seismic	Combination/ Fault, Facies change	Tertiary/ Paleocene	Sandstone	3,300	. 30
i. Ruben (D)	1969	Subsurface	Stratigraphic/ Facies change	Tertiary/ Paleocene	Sandstone	3,300	25
j. Saddle Ridge (D)	1962	Subsurface	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandatone	1,700	20
k. Tip Top (A)	1928 (1951)	Seepage, Surface, Seismic	Combination/ Faulted anticline. Facies change	Cretaceous/ Gulf; Jurassic/ Lower; Tertiary/ Paleocene	Sandstone	5,800, 9,800, 750	

Surface		Crud s bble as	e 011 of Dec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 197		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
25,000		559.7	206.3	9.95	711.5		0.05				
22,000	1,479.0	549.0	163.0	9.84	711.2						
3,920		10.7	43.3	0.11	0.3		0.05				
6,520	809.5	379.6	70.4	6.83	228.6		11.07			υ.40 ¹	
c.91,000		65.6	26.6	3.56	958.9		55.22			1.24 ^l	
14,000		4.0	1.0	0.21	67.5		2,95				
9,280		8.9	2.1	0.19	78.1		3.46				
4,000					41.2		1.70	0.14		*ª	
6,000		6.9	7.4	1.74	39.0		5.40				
15,000		8.4	2,1	0.19	114.3		5.67				
11,000		7.8	0.5	0.17	215.8		13.25				
14,600		18.9	5.6	0.30	134,7	:	10.81	0.9ª		0.07ª	
1,700		6.4	2.5	0.39	31.6		0.45				
1,400		2.9	4.3	0.33	4.5		0.21				
380		1.4	1.1	0.04	6.9		0.24				
13,800					225.3		11.07	3.7ª		0.18ª	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(8)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
4. Oregon Basin (Big Horn)	1912	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Permian/ Guadalupe	Sandstone, Limestone, Dolomite	3,300, 3,100	100, 35
5. Hamilton Dome (Big Harn)	1918	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	3,000	305
6. Lost Scidier (Green River- Rawlins Uplift)	1916	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Cretaceous/ Gulf; Mississippian/ Kinderhook	Sandstone, Limestone	3,800, 1,500, 4,600	130, 50, 110
7. Table Rock (Green River- Wamsutter Arch)	1946	Surface	Combination/ Anticline, Permeability- porosity pinchout	Cretaceous/ Culf; Mississippian/ Kinderhook	Sandstone, Limestone	6,300, 18,000	70. 350
Class AA Fields							
B. Garland (Big Horn)	1906	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines; Mississippien/ Kinderhook	Sandstone, Limestone	3,600, 4,000	.50, 100
9. Grass Creek (Big Horn)	1914	Surface	Structural/ Anticline	Cretaceous/ Gulf; Fermian/ Guadalupe; Mississippian/ Kinderhook	Limestone, Sandstone	1,000, 3,000, 4,400	65, 20, 140
10. Beaver Creek (Wind River)	1938	Surface, Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche; Mississippian/ Kinderhook	Sandstone, Limestone	8,000, 11,200	45, 210
11. Little Buffalo Basin (Big Horn)	1914	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines; Permian/ Guadalupe; Cretaceous/ Gulf	Sandstone, Dolomite	4,600, 4,300, 1,500	100, 30, 60
12. Hilight (Powder River)	1969	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone, Shale	9,600	20
13. Eyron (Big Horn)	1918	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Limestone, Sandstone	5,500	70
14. Meadow Creek- Sussex (Powder River)	1948	Surface, Seismic	Structural/ Faulted nose	Cretaceous/ Gulf; Pennsylvanian/ Atoka, Des Moines	Sandstone, Dolomite	8,900, 4,200	20, 35
a, Meadow Creek (B)	1950	Surface, Seismic	Structural/ Anticline	Cretaceous/ Gulf; Pennsylvanian/ Des Moines	Sandstone	4,200, 9,000	35, 70
b. Meadow Creek, North (C)	1949	Subsurface	Structural/ Faulted nose	Cretaceous/ Gulf	Sandstone	3,900	55
c. Sussex (A)	1948	Surface, Seismic	Structural/ Paulted nose	Pennsylvanian/ Atoka; Cretaceous/ Gulf	Sandstone, Dolomite	8,900, 4,200	20, 25

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)		Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
14,840	1,179.6	252.6	112.2	12.55	129.5		6.14				
3,320		185.1	54.9	4.62	*		0.04		!		
1,060		157.0	57.0	2.76	71.0		0.69			0.14 ¹	
1,120					141.1		9.53	1.4ª		0.01	
4,360		121.1	44.9	3.52	124.3		2.64				
5,900		143.3	41.2	4.71	5.5		0.10				
6,500		46.2	7.3	0.68	408.6		19.90			0.53 ^b	
4,920		61.4	74.6	3.97	113.8		0.75		:		
48,960		53.8	23.2	5.56	175.6		11.74			0.90 ^b	
1,940		90.8	44.2	3.01	11.6		1,19	:			
9,000		95.9	12.1	1.90	118.1	i	0,92			0.06 ^b	
4,400		27.3	4.7	0.88	77.4		0.32				
3,200		9.4	0.1	0,03	27.1		0.52				
1,580		59.2	7.3	0.99	13.6		0.08				

						Τ ——	
Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
15. Lance Creek (Powder River)	1918	Surface	Structural/ Faulted anticline	Pennsylvanian/ Missouri; Jurassic/ Upper	Sandstone	5,300, 3,800	100, 55
16. Brady (Green River- Washakie)	1973	Seismic	Structural/ Faulted anticline	Pennsylvanian/ Virgil; Cretaceous/ Comanche; Jurassic/ Lower	Sandstone, Limestone	13,500, 10,800, 11,000	100, 75, 35
17. Frannie (also MT) (Big Horn)	1928	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	2,600	60
18. Desert Springs (Green River- Wamsutter Arch)	1958	Subsurface, Seismic, Surface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	5,800	35
19. Worland (Big Horn)	1945	Seismic	Structural/ Anticline	Cretaceous/ Gulf; Permian/ Guadalupe	Sandstone, Limestone, Dolomite	7,700, 10,200	50, 70
Class A Fields					}		
20. Wertz (Green River- Rawlins Uplift)	1920	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines; Mississippian/ Kinderhook	Sandstone, Limestone	5,800, 6,500	250, 200
21. Big Sand Draw (Wind River)	1918	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Cretaceous/ Gulf; Permian/ Guadalupe	Sandstone, Limestone	7,100, 2,800, 6,300	150, 40, 85
22. Steamboat Butte (Wind River)	1943	Surface, Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	7,000	200
23. Winkleman Dome (Wind River)	1917	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines; Permian/ Guadalupe	Sandstone, Limestone	3,000, 2,800	160, 75
24. Glenrook & South (Powder River- Casper Arch)	1950	Subsurface	Stratigraphic/ Facies change, Permeability pinchout	Cretaceous/ Comanche	Sandstone	5,800	20
a. Glenrock & South (A)	1950	Subsurface,	Stratigraphic/ Facies change Permeability Finchout	Cretaceous/ Comanche	Sandstone	5,800	20
b. Big Muddy, East (D)	1961	Subsurface	Stratigraphic/ Permeability pinchout	Cretaceous/ Comanche	Sandstone	4,300	10
25. Hartzog Draw (Powder River)	1975	Subsurface, Seismic:	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	9,200	30
26. Canyon Creek-Trail (Green River- Sand Wash)	1941	Trend Surface, Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	5,500	75
27. Monell-Patrick Draw (Green River- Wamsutter Arch)	1964	Subsurface, Seismic	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	4,400	20
28. Church Buttes (Green River)	1946	Seismic, Geophysics	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	12,700	50

Surface		Crude	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
4,800		103.8	5.2	0.28	137.3	Reserves	0.48	1100.	RESERVES	11901	
5,100		3.4	56.6	2.00	12.7		7.76			0.03	
5,120		83.3	36,7	3.24	0.2		0.04				
14,100					124.8		14.16	0.98		0.07	
6,080		17.1	1.9	0.13	341.9		10.04			0.38 ^b	
1,840		70.9	15.6	1.66	18.9		1.39				
1,960		50.0	12.5	0.84	129.0		2.39				
2,320		75.2	11.8	1.03	9.3		0.20				
4,400		64.0	23.2	2.69	1.6						
10,680		71.5	8.0	0.80	30.3		0.05		:		
6,620		68.9	7.7	0.78	30.3		0.05				
4,060		2.6	0.3	0. 02							
33,000		0.1	73.4	0.12	*		0.01				
13,700					201,4		12.12	1.2		0.04	
13,440		35.0	6.2	1.41	116.9		5.32				
6,100	_			****	261.2		7.21	2.6ª		0.06 ^b	

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
9. Cattanwood Creek (Big Horn)	1953	Subsurface	Stratigraphic/ Facies change	Permian/ Guadalupe	Limestone, Dolomite	7,300	35
30. <i>Madden</i> (Wind River)	1968	Seismic, Subsurface	Structural/ Anticline	Cretaceous/ Gulf; Tertiary/ Paleocene	Sandstone	12,000, 5,600	40, 100
ll. Big Muddy (Powder River- Casper Arch)	1916	Surface	Combination/ Anticline, Permeability pinchout	Cretaceous/ Comanche, Gulf	Sandstone	4,300, 3,200	20, 30
32. Recluse (Powder River)	1967	Surface	Combination/ Facies change, Hydrodynamic	Cretaceous/ Comanche	Sandstone	7,600	20
33. <i>Grieve</i> (Wind River)	1954	Seismic	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	6,700	60
34. Raven Creek (Powder River)	1960	Surface, Subsurface	Stratigraphic/ Facies change, Unconformity	Permian/ Wolfcamp	Sandstone	8,400	35
Class B Fields							
35. Hiawatha (also CO) (Green River- Sand Wash)	1928 (1926)	Surface	Combination/ Anticline, Facies change	Tertiary/ Eocene	Sandstone	2,200	30
36. Well Draw (Powder River)	1973	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	7,100	15
37. Bonanza (Big Horn)	1950	Surface, Seepage	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	2,900	90
38. Rock River (Laramie)	1918	Surface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	3,400	75
39. Kitty (Powder River)	1965	Subsurface	Combination/ Facies change, Hydrodynamic	Cretaceous/ Comanche	Sandstone	9,100	30
40. Murphy Dome (Big Horn)	1949	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	4,600	115
41. Arch (Green River- Wamsutter Arch)	1959	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	5,700	20
42. West Side Canal (also CO) (Green River-Sand Wash)	1954	Surface, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	3,200	30
a. West Side Canal (B)	1964	Surface, Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	3,200	30
b. Baggs, South & West (D)	1954	Surface, Seiswic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	4,700	30
43. Gebo (Big Horn)	1943	Surface	Structural/ Anticline	Permian/ Guadalupe; Pennsylvanian/ Des Moines	Polomite, Sandstone	4,700. 4,900	

62

Surface	(million	Crude is bbls as	011 of Dec. 31,	1975)		Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
14,200		41.1	7.4	0,63	39.1	NOSCI VED	0.13	11001	No. of the last of	1200,	
3,840					56.1		8.70	0.1ª		0.03	
6,520		52.0	1.0	0.17	*		0.01				
37,520		20.4	1.1	0.55	69.5		4.74		į		
1,220		29.3	0.5	0.15	49.1		2.21			0.02	
2,980		27.9	22.1	2.46							
2,720					60.8	:	2,30	, _* a		*a	
42,400		5.2	20.8	4.06	6.5		5.19				
500		40.1	1.4	0.14							
3,760		36,2	2.8	0.18	7.2	:	0.29			0.07 ^b	
16,000		16.0	2.0	0.80	55.3		8.59			1.01	
1,520		34.2	3.8	0.56							
7,760		17.0	2.0	0.24	72.5		2.40				
12,400					102.2		9.87				
9,000					80.3		8.13				
3,400					21.9		1.74	*8	<u>.</u>	*ª	
1,360		22.3	9.2	0.61	0.7		0.01				

							
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
44. Riverton Dome (Wind River)	1949	Surface, Seismic	Structural/ Anticline	Permian/ Guadalupe	Dolomite	8,200	130
45. Pavillion (Wind River)	1960	Surface, Seismic	Structural/ Anticline	Tertiary/ Eocene	Sandstone	3,600	15
46. Pitchfork (Big Horn)	1930	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	3,700	125
47. Circle Ridge (Wind River)	1923	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Permian/ Guadalupe	Sandstone, Dolomite	1,200, 1,000	150, 40
48. <i>Gas Draw</i> (Powder River)	1968	Subsurface	Combination/ Facies change, Hydrodynamic	Cretaceous/ Comanche	Sandstone	7,300	10
49. Osage (Powder River)	1919	Seepage	Combination/ Fracturing, Unconformity, Facies change	Cretaceous/ Comanche	Sandstone, Shale	200	10
50. Baxter Basin, South (Green River- Rock Springs Uplift)	1922	Surface	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	3,000	25
51. Elk Basin, South (Big Rorn)	1945	Surface, Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines; Cretaceous/ Gulf	Sandstone	7,000, 4,700	140, 40
52. Spearhead Ranch (Powder River)	1973	Seismic	Stratigraphic/ Unconformity, Facies change	Cretaceous/ Gulf	Sandstone	13,700	10
53. Mush Creek - Skull Creek (Powder River)	1943	Randon	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	2,900, 3,300	10, 20
a. Mush Creek (C)	1943	Random	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	2,900	10
b. Skull Creek (C)	1945	Random	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	3,300	20
54. Coyote Creek (Powder River)	1958	Subsurface, Seiswic	Stratigraphic/ Facies change	Cretaceons/ Comanche	Sandstone	6,400	40
55. House Creek (Powder River)	1968	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	8,300	10
56. Rozet (Powder River)	1959	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	6,900	45
Class C Fields							
57. Fiddler Creek (all) (Powder River)	1948	Random	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	5,700	10
58. Sussex, West (Powder River)	1951	Surface, Seismic	Structural/ Faulted nose	Cretaceous/ Gulf	Sandstone	2,900	20
59. Fourbear (Big Horn)	1928	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines, Morrow	Sandstone, Limestone	2,900, 3,500	60, 35
60. North Fork (Powder River)	1951	Surface, Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	6,500	225
61. Poison Spider, Wes (Wind River)	t 1948	Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	7,300	55

Surface	(million	Crude	011 of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31		Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Ares (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
1,000					105.0		3.38	3.0 ^a		0.09	
1,760					52.0		8.04				
1,640	:	16.7	12.8	0.71	0.4						
1,560		18.3	9.7	0.52							
6,640		17.9	9.1	2.11	10.6		0.29			i	
6,960		22.0	5.0	1.36			-				
6,500	<u></u>				148.3		1.72				
640		14.8	3.7	0.34	31.1		0.32				
11,260		1.8	5.0	1.37	7.2		6.96			0.01	
25,360		21.8	3.0	0.53	3.3		0.08				
13,920		11.6	1.4	0.12	2,0		0.06				
11,440		10.2	1.6	0.41	1.3		0.02				
2,120		19.8	1,2	0,24	23.8		0.24				
4,400		8.7	11.3	1.90	4.0		1.36				
4,560		15.0	7.5	0.74	8.6	ļ	0.08				
L6,000		20.8	2.1	0,27	0.2	i	0.02				
3,280		14.9	5.6	0.36	8.1		0.05				
2,960		19.6	2.4	0.76	*						
840		17.1	4.4	0.40							
840		6.3	6.2	0.60	12.3		2.81				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
62. Higgins (Green River- Wamsutter Arch)	1969	Seismic, Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	6,700	40
b3. Manderson (Big Horn)	1951	Surface, Subsurface	Combination/ Porosity- permeability pinchout, Anticline	Cretaceous/ Comanche; Permian/ Guadalupe	Sandstone, Dolomite	5,000, 7,200	50 125
4. Nitchie Gulch (Green River- Rock Springs Uplift)	1961	Surface	Combination/ Porosity- permeability pinchout, Nose	Gretaceous/ Comanche	Sandstone	8,400	30
55. Rooky Point (Powder River)	1961	Surface, Trend, Subsurface	Stratigraphic/ Porosity- permeability pinchout	Cretaceous/ Comanche	Sandstone	3,700	10
66. Spring Creek, South (Big Horn)	1929	Surface	Structurel/ Anticline	Pennsylvanian/ Des Moines	Sandstone	4,100	185
57. Donkey Creek & South (Powder River)	1953	Seismic, Subsurface, Surface	Combination/ Facies change, Nose	Pennsylvanian/ Virgil; Cretaceous/ Comanche	Sandstone, Dolomite	7,700, 6,300	7 <u>5</u> 20
68. Wameutter (Green River- Wameutter Arch)	1958	Surface, Seismic	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone	9,600	2
69. Black Mountain (Big Horn)	1922	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Permian/ Guadalupe	Sandstone, Dolomite	3,200, 3,000	51 41
70. Cole Creek (Powder River- Casper Arch)	1938	Seismic, Surface	Combination/ Anticline, Facies change	Cretaceous/ Gulf, Comanche	Sandstone	4,500, 7,900	20
71. Dead Horse Creek- Barber Creek (Powder River)	1957	Subsurface, Seismic, Trend	Combination/ Facies change, Nose	Gretaceous/ Gulf	Sandstone	6,900	4
72. Sage Spring Creek (Powder River- Casper Arch)	1949	Subsurface	Combination/ Facies change, Nose	Cretaceous/ Comanche	Sandstone	7,300	2
73. Torchlight (Big Horn)	1913	Seepage	Structural/ Anticline	Mississippian/ Kinderhook; Pennsylvanian/ Des Moines	Limestone, Sandstone	3,500, 3,100	3
74. Ute (Powder River)	1967	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	6,400	1
75. Cole Creek, South (Powder River- Casper Arch)	1948	Surface, Seismic	Combination/ Anticline, Facies change	Cretaceous/ Comanche	Sandstone	8,300	2
76. <i>Lander</i> (Wind River)	1909	Surface	Structural/ Anticline	Permian/ Guadalupe; Pennsylvanian/ Des Moines	Limestone, Saudstone	1,300, 1,700	10
77. Timber Creek (Powder River)	1958	Subsurface, Seismic	Combination/ Facies change, Anticline	Pennsylvanian/ Virgil	Sandstone	9,400	2

67 A.3h(RM-WY)-6

Surface	(million	Crude as bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod,	Demonst. Reserves	1975 Prod.	Cum. Prod,	Demonst. Reserves	1975 Prod.	
640					1.9		0.47				
3,000		3.4	0.6	0.04	30.1		9.93				
6,400					45.5		3.86	0.1 ⁴		0.01	
1,280		7.3	7.7	0.47	13.9		0.68			0.01	
1,200		10.3	7.7	0.50	0.1						
1,620		14.4	2.6	0.18	2.9	_	0.06				
4,060					26.4		2.76	0.3ª		0.03	
1,880		9.9	7.1	0.66	0.1		0.03				
2,580		16.4	0.6	0.15	0.5		0.01				
5,600		11.4	5.1	0.41	2,9		0.06				
2,000		8.4	7.6	0.48	28,1		0.10				
4,720	:	12.8	3.0	0.48	3.7		0.06				
5,360		7.9	2.6	0.21	21.4		0.47				
3,040		15.4	0.6	0.19	*		0.01				
3,600	56.0	5.7	10.3	0.54							
2,160		10.2	5.8	0.41	0.1		0.02				

							
Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
78. Pilot Butte (Wind River)	1916	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Pérmian/ Guadalupe	Sandstone, Limestone	6,100, 5,100	150, 30
79. Duvall Banch (Powder River)	1964	Trend, Subsurface	Combination/ Porosity pinchout, Anticline	Pennsylvanian/ Virgil	Sandstone	8,100	40
80. Baxter Basin, North (Green River- Rock Springs Uplift)	1926	Surface	Structural/ Faulted anticline	Cretaceous/ Comanche; Triassic/ Upper	Sandstone	3,000, 4,000	30, 50
81. Crooks Gap (Green River- Great Divide)	1925	Surface	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	4,800	90
82. Golden Eagle (Big Horm)	1921	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines; Permian/ Guadalupe	Sandstone, Dolomite	9,300, 9,000	135, 40
83. Maverick Springs (Wind River)	1917	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines; Permian/ Guadalupe	Sandstone, Limestone	1,600, 1,000	60,
84. Halverson (Powder River)	1961	Subsurface, Seismic	Stratigraphic/ Unconformity	Permian/ Wolfcamp	Sandstone	8,500	40
85. Sait Creek, East (Powder River- Casper Arch)	1951	Surface, Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	7,400	70
86. Waltman (Wind River)	1959	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Paleocene	Sandstone	4,400	75
87. Mike's Draw (Powder River)	1974	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	7,200	10
88. Springen Ranch (Powder River)	1968	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	7,500	15
89. Quealy (Laramie)	1934	Surface, Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Cretaceous/ Comanche	Sandstone	5,400, 3,300	130,
90. Playa (Green River- Wamsutter Arch)	1958	Subsurface, Seismic	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	5,400	20
91. Little Buck Creek (Powder River)	1944	Surface, Seismic	Structural/ Anticline	Cretaceous/ Comanche; Pennsylvanian/ Virgil	Sandstone	3,800, 5,800	35, 40
92. Kummerfeld (Powder River)	1960	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	5,900	35
93. Casper Creek, South (Wind River)	1918	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	2,400	50
94. Dillinger Nanch (Powder River)	1964	Subsurface	Combination/ Facies change, Anticline	Pennsylvanian/ Virgil	Sandstone	9,100	30

n]	13.0 5.6	Demonst. Reserves 1.5	1975 Prod. 0.10	Cum. Prod.	of Dec. 31, Demonst. Reserves	1975 Frod. 0.18	Cum. Prod.	Demonst. Reserves	1975 Prod.
		9.9				0.18			
	5.6		0.83						
		-							
				72.0		1.48	. _* a		* ^a
	12.0	2.0	0.06	1.0					
	12.6	1.0	0.13	2,3		0.07	 		
	7.6	6.4	0.23						
	10,4	3.1	1.04	0.2			<u></u>		
	11.2	2.0	0.17	0.7		0.02			
_				32.4		2.76	0.1 ^a		0.01
	0.3	10.7	0.29	0.1		0.11	_		
	8,2	1.3	1.27	13.4		0.41			0.21
	11.3	1.3	0.17						
				20.9		3.18	0.3 ^a		0.03
	11.7	*	0.01	3.2	*	*			
	7.0	5.0	0.32	0.7		0.01			
İ	9.5	2.0	0.17						
	9.4	2.1	0.99	0.1		0.07			
		7.6 10.4 11.2 0.3 8.2 11.3 11.7 7.0 9.5	7.6 6.4 10.4 3.1 11.2 2.0 0.3 10.7 8.2 1.3 11.3 1.3 11.7 * 7.0 5.0 9.5 2.0	7.6 6.4 0.23 10.4 3.1 1.04 11.2 2.0 0.17 0.3 10.7 0.29 8.2 1.3 1.27 11.3 1.3 0.17 11.7 * 0.01 7.0 5.0 0.32 9.5 2.0 0.17	7.6 6.4 0.23 10.4 3.1 1.04 0.2 11.2 2.0 0.17 0.7 32.4 0.3 10.7 0.29 0.1 8.2 1.3 1.27 13.4 11.3 1.3 0.17 20.9 11.7 * 0.01 3.2 7.0 5.0 0.32 0.7 9.5 2.0 0.17	7.6 6.4 0.23 10.4 3.1 1.04 0.2 11.2 2.0 0.17 0.7 32.4 0.3 10.7 0.29 0.1 8.2 1.3 1.27 13.4 11.3 1.3 0.17 20.9 11.7 * 0.01 3.2 * 7.0 5.0 0.32 0.7 9.5 2.0 0.17	7.6 6.4 0.23 10.4 3.1 1.04 0.2 0.02 11.2 2.0 0.17 0.7 0.02 32.4 2.76 0.3 10.7 0.29 0.1 0.11 8.2 1.3 1.27 13.4 11.3 1.3 0.17 20.9 3.18 11.7 * 0.01 3.2 * * 7.0 5.0 0.32 0.7 0.01 9.5 2.0 0.17	7.6 6.4 0.23	7.6 6.4 0.23

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
95. Porcupine (Powder River)	1969	Seismic, Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Sandstone	10,200	5
96. Suge Creek (Big Horn)	1948	Surface, Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	3,300	20
97. Riverton Dome, Fast (Wind River)	1965	. Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	9,800	90
98. Dallas (Wind River)	1884	Seepage	Structural/ Anticline	Permian/ Guadalupe; Pennsylvanian/ Des Moines	Limestone, Sandstone	900, 1,100	35, 25
99. Lance Creek, East (Powder River)	1919	Surface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	3,900	30
100. Semlek & West (Powder River)	1962	Trend, Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Virgil	Sandstone	7,200	20
101. Reno (Powder River)	1965	Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	14,900	35
102. Big Polecat (Big Horn)	1916	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Cretaceous/ Gulf	Sandstone	5,400, 2,300	100, 100
103. Silver Tip (Big Horn)	1948	Seismic	Structural/ Faulted nose	Pennsylvanian/ Des Moines; Permian/ Guadalupe	Sandstone, Limestone	8,800, 8,500	80, 20
104. Frenchie Draw (Wind River)	1961	Seismic, Subsurface	Stratigraphic/ Facies change	Tertiary/ Paleocene	Sandstone	4,100	735
105. Hidden Dome (Big Horn)	1918	Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Cretaceous/ Gulf	Sandstone	4,500, 1,200	55 15
106, Reet (Powder River)	1962	Subsurface, Seismic	Stratigraphic/ Unconformity	Permian/ Wolfcamp	Sandstone	8,400	30

⁸Plant liquids only.

bLease condensate only.

CPlant and lease liquids.

Surface	(millio	Crude ns bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Nate (mill. bb:	ural Gas Liquid ls as of Dec. 1	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Flace	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.		
2,720		0.8	1.7	0.11	17.2		2.23					
1,440		8.5	3.0	0.26								
1,280					44.5		4.05	0.2ª		0.01		
660		9.0	2.0	0.18					-			
1,020		10.2	0.3	0.01	2.7		0.02					
600		6.3	5,7	0.71	*	:						
1,760		7.8	2.9	0.32								
640		5.4	2.3	0.14	13.0		0,54		:			
2,420		4.3	0.6	0.04	24.8		0.62					
3,200					32.6		1.26	0.9		0.03		
1,800		4.3	2.1	0.15	22.2	*	*					
1,100		3.4	6.6	0.34	* :							

Table A.4a

THE SIGNIFICANT OIL AND CAS FIELDS OF SOUTHEASTERN NEW MEXICO

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservois Thickness (feet)
Class AAAA Fields			I			•	l
1. Elonice Area (Permian: Central Basin)	1927	Seismic, Subsurface	Combination/ Porosity- permeability pinchout, Anticline	Permian/ Guadalupe, Leonard	Sandatone, Dolomíte	3,700, 2,700, 3,400	100, 150, 60
a. Eumont (AAAA)	1929	Seismic, Subsurface	Combination/ Porosity- permeability pinchout, Anticline	Permian/ Guadalupe	Sandstone, Dolomite	2,700	150
b. Eurice-Monument (AAAA)	1929	Seismic, Subsurface, Trend	Combination/ Porosity- permeability pinchout, Anticline	Permian/ Guadalupe	Sandstone, Dolomite	3,700	100
c. Eurice, South (AA)	1930	Subsurface, Trend	Combination/ Porosity- permeability pinchout, Anticline	Permian/ Guadalupe	Sandstone, Dolomite	3,700	50
d. Jaimat (AAAA)	1927	Subsurface	Combination/ Forosity- permeability pinchout, Anticline	Permian/ Guadalupe	Sandstone, Dolomite	2,900	100
e. Langlie-Mattix (AAA)	1935	Subsurface, Trend	Combination/ Porosity pinchout, Anticline	Permian/ Guadalupe	Sandstone, Dolomite	3,400	60
f. Monument (A)	1948	Seismic, Subsurface	Structural/ Anticline	Permian/ Leonard; Ordovician/ Lower	Dolomite	5,600, 9,800, 5,200	
g. Crosby (C)	1955	Subsurface	Structural/ Faulted anticline	Devonian/ Lower	Dolomite	8,500	95
h. Fowler (B)	1949	Seismic	Structural/ Faulted anticline	Ordovician/ Lower; Permian/ Leonard	Dolomite	9,700 5,700	175, 75
1. Justîs & North (AA)	1944	Subsurface, Seismic	Structural/ Anticline	Permian/ Leonard; Silurian/ Middle	Dolomite, Sandstone, Anhydrite	5,200, 4,700 7,000	
j. Oil Center (C)	1962	Subsurface	Combination/ Anticline, Porosity pinchout	Permian/ Leonard	Dolomite	5,900	25
k. Teague (C)	1950	Subsurface, Seismic	Structural/ Anticline	Permian/ Leonard; Ordovician/ Middle, Lower	Dolomite, Sandstone	5,400 9,300 9,700	, 50

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Na: (mill. b	tural Cas Liqui bls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
c.150,000	!	655.1	285.6	12.74			163.26			
66,680	2	54.3	19.7	0.91	1,798.2		67.87	3.2ª		0.02
45,080	2,000.3	321.0	139.0	3.81	1,141.1		22.10			
11,680		23.5	11.5	0.56	398.8		4.64			
67,680		55.5	38.5	1.10	1,826.2		33.48	3.5 ^a		0.01
50,200		91.8	43,2	3.42	1,182.3		8.20			
2,120		20.0	5,0	0.37			5.72	0.6ª		0.01 ⁸
2,020		0.3	0.4	0.07	92.3		0.77	0.7 ⁸		0.034
1,280		18.7	6.3	0.53			4.38			<u> </u> -
12,040		55.8	16.6	1.54			11.52			
2,640		5.7	1.9	0,22		:	1.15			
2,500		8.5	3.5	0.20			1.24			
			!			i				

Field	Year Dis- covered	Discovery (Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir	Depth to Top (feet)	Reservoin Thickness (feet)
2. South Sand Belt (also TX8) (Permian: Central Basin)	1927 (1926)	Surface, Trend	Combination/ Porosity pinchout, Anticline	Permian/ Guadalupe	Dolomite, Sandstone	3,000	500
a. Scarborough (A) (also TX8)	1927	Surface, Trend	Combination/ Porosity pinchout, Anticline	Permian/ Guadalupe	Dolomite, Sandstone	3,000	500
3. Blinebry-Drinkord (Permian: Central Basin)	1935	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Leonard	Dolomite, Sandstone	5,500, 6,400, 6,100	
a. Penrose-Skelly (A)	1935	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite, Sandstone	3,600	50
b. Paddock (all) (B)	1945	Seismic, Subsurface	Combination/ Perosity pinchout, Anticline	Permian/ Leonard	Dolomite	5,200	25
c. Blinebry (AAA)	194 5	Subsurface	Structural/ Anticline	Permian/ Leonard	Dolomite	5,500	110
d. Tubb (AA)	1948	Seismic, Subsurface	Combination/ Anticline, Porosity pinchout	Fermian/ Leonard	Dolomite	6,100	20
e. Drinkard (AAA)	1944	Seismic, Subsurface	Structural/ Anticline	Permian/ Leonard	Dolomite, Sandstone	6,400	100
f. Wants (B)	1952	Subsurface	Combination/ Porosity- permeability pinchout, Anticline	Permian/ Leonard	Dolomite	7,200	40
g. Hare (B)	1947	Subsurface	Combination/ Unconformity, Anticline	Ordovician/ Middle	Sandstone	7,800	50
h. <i>Brunson</i> (B)	1945	Subsurface, Seismic	Combination/ Unconformity, Anticline	Ordovician/ Lower	Dolowite	8,100	70
4. Vacuum (all) (Permian: Northwest Shelf)	1929	Geophysics, Subsurface, Trend	Combination/ Anticline, Porosity pinchout, Organic reef	Permian/ Guadalupe, Leonard	Dolomite	4,400 8,700 6,400	, 70,
Class AAA Fields 5. Hobbs	1928	Geophy si cs	Structural/	Permian/	Dolomite	4,100	100
(Permian: Central Basin)			Anticline	Guadalupe			

Surface	(million	Crude	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	, 1975)	Nat (mill. b)	ural Gas Liqu	ide 31, 1975)
Area (acres)	In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod.
2,960		14.7	3.1	0.27			0.48			
2,960		14.7	3.1	0.27			0.48			
c.30,000		199.1	57.5	4.38			133.99			
10,000		17.7	2.3	0.31			3.61			
6,160		24.0	5.2	0.61	i		2.42			
23,960		34.9	13.6	1.01			48.06			
25,500		1.6	1.1	0.06			20,11	3.9ª		0.06 ^a
23,320		69.7	24.1	1.57			55.63			
3,360		6.3	12.2	0.67			3.39			i
3,600		15.4	0.8	0.05			0.36	* a		* a
6,160		27.5	0.2	0.06			0.34			
22,080		302.1	221.9	14.11			27.45	=	,	
14,800	809.4	231.9	130.8	4,44			15.53			
,										

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
6. Artesia-Maljamar: Grayburg-San Andres (Permian: Northwest Shelf)	1923	Surface, Seepage	Combination/ Porosity- permeability pinchout,	Permian/ Guadalups	Dolomite, Sandstone	3,600	50
a. Maljamar (AA)	1926	Subsurface, Trend	Nose Combination/ Porosity- permeability pinchout, Anticline	Permian/ Guadalupe	Dolomite, Sandstone	3,600	50
b. Grayburg-Jackson (AA)	1929	Subsurface, Trend	Stratigraphic/ Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite, Sandstone	3,600	40
c. Loco Hills (A)	1939	Subsurface	Combination/ Porosity- permeability pinchout, Nose	Permian/ Guadalupe	Dolomite, Sandstone	2,600	50
d. Artesia (B)	1923	Surface, Seepag <mark>e</mark>	Combination/ Porosity- permeability pinchout, Nose	Permian/ Guadalupe	Dalomite	1,900	35
e. Square Lake (B)	1941	Subsurface	Combination/ Forosity- permeability pinchout, Nose	Permian/ Guadalupe	Dolomite, Sandstone	2,700	15
f. Red Lake (D)	1924	Trend, Subsurface	Combination/ Porosity- permeability pinchout, Nose	Permian/ Guadalupe	Dolomite, Sandstone	9,400	15
1. Dollarhide (also TX8) (Permian: Central Basin)	1952 (1945)	Seismic, Geophysics, Subsurface	Structural/ Faulted anticline	Permian/ Leonard; Devonian/ Lower; Silurian/ Middle	Dolomite	6,600, 8,200, 8,700	
8. Empire: Abo (Permian; Northwest Shelf)	1957	Subsurface	Stratigraphic/ Organic reef	Permian/ Leonard	Dolomite, Anhydrite	6,000	300
9. Indian Basin (Permian; Northwest Shelf)	1962	Seismic, Subsurface	Combination/ Porosity- permeability pinchout, Anticline, Hydrodynamic	Pennsylvanian/ Virgil	Dolomite	7,400	200
Class AA Fields							1
10. Denton (Permian: Tatum)	1949	Seismic, Subsurface	Structural/ Faulted anticline	Silurian/ Upper; Permian/ Wolfcamp	Dolomite, Limestone	11,300, 9,400	390, 20

Surface	(million	Crude as bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31	, 1975)	Nat (mill. b)	ural Gas Liqui ls as of Dec.	ds 31, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1 97 5 Prod
142,560		271.5	95.1	8,63			5.59			
27,720	411.9	106.3	55.7	4.85			2.28			
53,320		74.3	16.5	1.97			2.58			
14,000		41.1	6.9	0.59			0.10			
23,680	61.6	22,3	6.1	0.56	24.7	0,3	0.03			
15,040		20.7	9.0	0.57	:		0.31		:	
8,800		6.8	0.9	0.09			0.19			
3,480		33,7	11.7	0.81			0.49			
5,040	390.2	127.8	93.3	15,22			7.21			
35,840				·	627.8		68.06			
			ļ							
4,560		122.4	19.6	1.55			1.01			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class A Fields							1
11. Caprock (Permian: Tatum)	1940	Subsurface, Seismic	Stratigraphic/ Forosity- permeability pinchout	Permian/ Guadalupe	Sandstone	2,900	10
12. Lovington & East (Permian: San Simon Channel)	1938	Subsurface	Combination/ Anticline, Porosity pinchout, Organic reef	Permian/ Leonard, Guadalupe	Bolomite	8,300, 6,200, 4,700	125, 25, 50
13. Bagley, North (Permian: Tatum)	1957	Subsurface, Seismic	Stratigraphic/ Porosity pinchout	Pennsylvanian/ Des Moines, Virgil	Limestone	10,000, 9,500	70, 10
14. Gladiola (Permian: Tatum)	1950	Seismic	Structurel/ Faulted anticline	Silurian/ Upper	Dolomite	11,800	50
15. Vada (Permian: Tatum)	1966	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvantan/ Virgil	Limestone	9,800	10
16. Rhodes (Permian: Central Basin)	1927	Geophysics	Stratigraphic/ Facies change	Permian/ Guadalupe	Dolomite, Limestone, Sandstone	2,900	25
17. Warren-Skaggs (Permian: Central Basin)	1937	Subsurface, Geophysics	Structural/ Faulted anticline	Ordovician/ Middle; Permian/ Leonard, Guadalupe	Sandstone, Bolomite	9,000, 3,800, 6,400	50, 50, 20
a. Warren (a11) (B)	1948	Subsurface, Geophysics	Structural/ Faulted anticline	Ordovician/ Middle; Permian/ Leonard	Sandstone, Dolomite	9,000, 6,400	50, 20
b. Skaggs (C)	1937	Subsurface, Geophysics	Combination/ Fermeability pinchout, Anticline	Permian/ Guadalupe, Leonard	Dolomite, Sandatone	3,800, 5,300, 6,900	50, 35, 30
18. Arrowhead (Permian: Central Basin)	1938	Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite, Sandstone	3,500	50
Class B Fields							
19. Carlobad, South (Permian: Northwest Shelf)	1969	Subsurface	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Morrow, Des Moines	Sandstone	11,400, 10,500	15, 25
20. Crossroads (Permian: Tatum)	1948	Seismic	Structural/ Faulted anticline	Silurian/ Upper	Dolomite	12,200	100
21. Townsend-Eidson (Permian: San Simon Channel)	1952	Seismic	Stratigraphic/ Forosity pinchout	Permian/ Wolfcamp	Limestone	10,400	. 35
22. Lusk: Straum (Permian: Northwest Shelf)	1960	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Des Moines	Limestone	11,200	40

Surface	(millie	Crudens bbls as	e Oil of Dec. 31	L, 1975)	(Bcf a	Natural Gas s of Dec. 3	9 1, 1 97 5)	Natu (mill. b)	ıral Cas Liqui ols as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum, Prod,	Demonst. Reserves	1975	Cum. Prod.	Demonst. Reserves	1975	Cum. Prod.	Demonst. Reserves	1975 Prod.
29,360		71.2	3.8	0.29						
4,680		52.0	15.0	1.39			0,90			
	İ						0,70			
					!	i				
15,000		38.7	7.8	2.18			7.63			
3,920		54.4	1.3	0.22		j				İ
	[113				0.07			
56,320		46.4	4.9	1.42	112,5		5,87			
3,200		7.0	9.6	0.14			1,47			
6,000		29.1	7.8	0.45			2.24		i	1
}							İ			
2,800		18.8	4.2	0.16			1,41	0.3ª		0.01 ⁸
i							1.41	0.3		0.01
4,400		10.3	3,6	0.28				0.2ª		* 8
			2.0	0.20			0.83	0.2		* -
5,440		26.4	3.1	0.19						
		20.7	3.1	0.19			0.73			
1										
4,000]			117.6		22.98			
İ										
2,120		39.3	4.7	1.43			0.05			
		-								
5,360		20.3	3.0	0.16			0.46			
0,240		18.5	1,9	0.17	75.4		0.00			
				7.17	,,,,,		0.83			
]							
İ		ļ	ĺ			ļ				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
23. Saunders (Permian: Tatum)	1950	Seismic	Structural/ Anticline	Permian/ Wolfcamp	Limestone	9,900	50
24. Bagley (Permian: Tatum)	1949	Seismic	Combination/ Anticline, Porosity pinchout	Silurian/ Upper; Pennsylvanian/ Virgil	Dolomite, Limestone	11,000, 9,000	175, 45
25. El Mar (also TX8) (Permian: Delaware)	1959	Subsurface, Trend	Stratigraphic/ Permeability pinchout	Permian/ Guadalupe	Sandstone	4,600	25
26. Broneo (also TX8A) (Permian: North Basin)	1953 (1952)	Seismic	Structural/ Faulted anticline	Silurian/ Upper; Permian/ Wolfcamp	Dolomite, Limestone	11,700, 9,600	105, 35
27. Burton Flat (Permian: Northwest Shelf)	1973	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	11,000	40
28. Allison (Permian: Tatum)	1954	Seismic	Combination/ Anticline, Forosity pinchout	Pennsylvanian/ Virgil	Limestone	9,700	30
29. Bell Lake Trend (Permian: Delaware)	1954	Geophysics, Seismic, Subsurface	Combination/ Anticline, Porosity- permeability piachout	Pennsylvanian/ Atoka; Silurian/ Upper	Dolomite, Limestone	12,600, 14,900	30,
30. Atoka: Penn (Permian: Northwest Shelf)	1958	Seismic, Subsurface	Stratigraphic/ Facies change, Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	9,100	30
31. Chaveroo (Perwian; Tatum)	1965	Subsurface. Seismic	Combination/ Porosity- permeability pinchout, Hydrodynamic	Permian/ Guadalupe	Dolomite	4,300	50
32. Kemmitz: Wolfcamp (Permian: Tatum)	1956	Subsurface, Seismic	_retigraphic/ Organic reef	Permian/ Wolfcamp	Limestone	10,700	40
33. Shugart: Yates et al. (Permian: Northwest Shelf)	1937	Subsurface	Combination/ Facies change, Nose	Permian/ Guadalupe	Sandstone, Dolomite	2,600	55
Class C Fields							
34. Caprock, East (Permian: Tatum)	1951	Seismic	Structural/ Faulted anticline	Silurian/ Upper	Dolomite	11,200	30
35. Anderson Ranch & North (Permian: Tatum)	1953	Seismic, Subsurface	Structural/ Anticline	Permian/ Wolfcamp; Silurian/ Upper	Limestone, Dolomite	9,700, 13,400	50, 65
36. Inbe (Permian: Tatum)	1962	Subsurface	Combination/ Porosity pinchout, Nose	Pennsylvanian/ Virgil	Limestone	9,900	10

Surface	(million	s bbls as	of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31	, 1975)	Nati (mill, b)	ural Gas Liquio	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
4,760		27.7	3.8	0.23			0.33			
1,920		29.3	3.9	0.38			0.20			
2,360		5.1	0.9	0.08			0.31			
560		14.5	5.5	0.39		: 	0,02			
13,440			_		46.5	!	22.60	0.4ª		0.04 ⁸
·					10.3		22.00	0.4		0.54
10,640		20.8	2.8	0.23	49.3		0.38			
							ĺ			
5,760		0.4	*	0.03	48.7		9.53	*		*
3,520					98.4		7.96			
16 760										
16,360		17.3	6.2	0.50	23.0		0.80			
1,760		14.6	1.4	0.08			1.00			
					!					
14,520		14.8	9.2	0.80		;	0.32			
960		22.0	2.0	0.16			*			
					:					
1,460		16.2	1.8	0.17			1.02	0.28		a
			İ							
11,040		15.8	0.4	9.20	33.6		0.62			
			İ							
		Ì								
:				i		ı		1 1		

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
7.	Cato (Permian: Northwest Shelf)	1966	Subsurface	Combination/ Porosity- permeability pinchout, Nose, Hydrodynamic	Fermian/ Guadalupe	Dolomite	3,500	30
38.	Pearl: Queen (Permian: Northwest Shelf)	1956	Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Permian/ Guadalupe	Sandstone	4,800	30
39.	Moore (Permian: Tatum)	1952	Seismic, Subsurface	Structural/ Faulted anticline	Silurian/ Upper	Dolomite	10,400	75
40.	Antelope Pidge (Permian: Delaware)	1962	Seismic, Subsurface, Trend	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Morrow; Silurian/ Middle	Sandstone, Limestone, Dolomite	12,900, 14,700	50, 125
41.	Lynch: Yates-Seven Rivers (Permian: Northwest Shelf)	1929	Surface, Subsurface	Stratigraphic/ Organic reef	Permian/ Guadalupe	Dolomite, Sandstone	3,700	15
42,	Paduca: Delaware (Permian: Delaware)	1961	Surface, Subsurface	Combination/ Porosity- permeability pinchout, Nose, Hydrodynamic	Permian/ Guadalupe	Sandstone	4,700	20
43.	. White City: Penn (Permian: Delaware)	1960	Seismic	Combination/ Nose, Facies change	Pennsylvanian/ Morrow	Sandstone	10,800	85
44	. Lea (Permian: Northwest Shelf)	1934	Geophysics, Seismic	Combination/ Anticline, Porosity pinchout	Silurian/ Upper; Pennsylvanian/ Atoka; Permian/ Leonard	Dolomite	14,300, 13,000, 9,500	
45	. Corbin: Abo (Permian: Northwest Shelf)	1960	Subsurface, Trend	Stratigraphic/ Organic reef	Permian/ Leonard	Dolomite	8,600	70
46	. Buffalo Valley: Penn (Permian: Northwest Shelf)	1962	Seismic, Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Atoka	Sandstone	8,200	25
47	. Empire, South (Permian: Northwest Shelf)	1971	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	10,700	70
48	. Sanyer & West: Son Andres (Permian: Tatum)	1947	Seismic	Combination/ Faulted anticline, Porosity pinchout	Permian/ Guadalupe	Dolomite	4,900	25
49	. Cemetary: Morrow (Permian: Northwest Shelf)	1964	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	9,300	10

Surface	(million	Crude s bbls as	Cil of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
9,240		13.3	4.5	0.29	22.4		1,30			
8,560		17.7	3.7	0.38			0.10			
760		20.6	1.5	0.32	:		0.03			
6,720		 -			72.3		4.64	1.2ª	:	0.07 ^a
2,560		14.1	1.6	0.12			0.04			
2,800		9.5	7.5	0,65		:	0.30			
1,280	<u>.</u>				19.4		2,21	* =		*
2,240		8.1	1.2	0.23			0.91			
I,520		11.8	1.9	0.45	14.6		0.78			
6,400					40.8		5,54	0.4ª		0.03 ^a
3,200		0.2	0.3	0.13			4.48	0.2ª		0.05 ^a
4,800		2.1	4.6	0.35			1.69			
8,320					17.4		2.98			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feat)	Reservoin Thickness (feet)
50. Mescalero (Permian: Tatum)	1952	Seismie, Subsurface	Structural/ Faulted anticline	Permian/ Guadalupe; Silurian/ Upper	Dolomite, Limestone	4,100, 9,800	45, 30
51. Mason, North (also TX8) (Permian: Delaware)	1954 (1952)	Trend, Subsurface	 Stratigraphic/ Facies change 	Permian/ Guadalup e	Sandstone	4,100	10
52. Milnesand: Son Andres (Permian: Tatum)	1958	Subsurface	Stratigraphic/ Forosity- permeability pinchout	Permian/ Guadalupe	Dolomite, Anhydrite	4,600	55
53. Lovington, We (Permian: San Simon Cr		Subsurface	Combination/ Anticline, Porosity pinchout, Organic reef	Permian/ Guadalupe	Dolomite	4,700	50
54. Flying M (Permian; Tatum)	1963	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	4,500	15
55. Bough (Permian: Tatum)	1949	Seismic	Structural/ Anticline	Permian/ Wolfcamp; Silurian/ Upper	Limestone, Dolomite	9,600. 11,900	20, 80
56. Tobac (Permian: Tatum)	1964	Seismic	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Virgil	Limestone	9,100	10
57. Baum (Permian: Tatum)	1955	Seismic, Subsurface	Stratigraphic/ Porosity pinchout	Pennsylvanian/ Virgil	Limestone	9,900	20
58. Catelas Draw (Permian: Northwest Si	nelf)	Subsurface	Combination/ Facies change, Nose	Fennsylvanian/ Morrow	Sandstone	10,200	35
59. Rock Tank (Permian: Northwest Si	1968 he 1f)	Subsurface	Structural/ Fault	Pennsylvanian/ Morrow	Sandstone	9,900	30
60. Washington Ri (Permian: Delaware)	anch 1972	Surface, Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Morrow	Sandstone	6,800	50
61. Wilson: Yate Seven Rivers (Permian: Central Bas		Subsurface	Stratigraphic/ Facies change	Permian/ Guadalupe	Sandstone	3,600	30
62. Fron (Permian: Northwest S	1936 helf)	Subsurface, Seismic	Combination/ Nose, Porosity- permeability pinchout	Permian/ Guadalupe; Pennsyivanian/ Atoka	Sandstone, Limestone	1,900, 12,000	10, 15
63. Red Lake: P (Permian: Northwest S	1	Seismic, Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	9,400	20

Surface	(million	Crude es 8bls es	0(1 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Na (mill. bl	tural Gas Liqui bls as of Dec.	ds 31, 197
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	197 Pro
2,080		11.0	2.0	0.30			0.31			
1,880		3.2	1,4	0.12			0.27			
6,040	-	7.8	3.7	0.22	13.5		0.16			
2,400		10.0	2.7	0.18			0.03			
3,000		4.9	7.1	0.41			0.12			
1,120		9.4	0.4	0.11		:	0.37			
2,900		7.5	1.9	0.15	10.6		0.33			
3,720		6.3	3.8	0.32	6.1		0.57			
11,520					40.4		9,32			
5,760					44.1		3.60			
6,400					39.5		6.62			
2,600		8.9	0.1	0.02			0.04			
5,160		4,2	3.0	0.04			0.25			
1,000					16,9		1.29			

field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
64. Avalon (Permian: Northwest Shelf)	1974	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	10,600	20
65. Salt Lake, South (Permian: Northwest Shelf)	1958	Şeismic, Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	13,200	40
66. Atoka, West: Morrow (Permian: Northwest Shelf)	1970	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	8,800	30

Lease condensate.

Surface	(million	Crude is bbls as		1975)		Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Sum. Fred,	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
7,040					8.6		7.61	*a		0.02	
1,920					14.4		1.92	0.28		0.02	
3,520					39.6		10.89	0.2 ⁴		0.04	
							10.07	5.2			

Table A.4b

THE SIGNIFICANT OIL AND GAS FIELDS OF TEXAS R.R.C. DISTRICT 7C

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields		,					
1. Spraberry Trend (also TX8) (Permian: Midland Basin)	1952 (1949)	Seismic	Combination/ Permeability pinchout, Fracturing	Permian/ Leonard	Sandstone, Shale	6,300	40
Class AAA Fields							
 Pegasus & South (Permian: Midland Basin) 	1949	Seismic, Core-drill	Structural/ Faulted anticline	Ordovician/ Lower; Pennsylvanian/ Atoka; Devonian/ Lower	Dolomite, Limestone	12,700, 10,500, 11,600	120, 20, 20
Class AA Fields				}		-	
3. Jameson (Permian: Eastern Shelf)	1946	Surface, Subsurface, Seismic	Stratigraphic/ Organic reef, Facies change	Pennsylvanian/ Des Moines	Limestone, Sandstone	6,400, 5,800	245, 120
4. McCamey (all) (Permian: Central Basin)	1925	Surface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,100	80
5. Big Lake (Permian: Midland Basin)	1923	Surface	Structural/ Faulted anticline	Permian/ Guadalupe	Dolomite	3,000	20
6. Ozona: Camyon (Permian: Ozona Platform)	1951	Seismic, Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Missouri	Sandstone	6,300	15
Class A Fields					! }		
7. Srown-Bassett (Permian: Val Verde)	1958	Surface, Geophysics, Seismic	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	14,300	400
8. Todd; Deep (Permian: Ozona Platform)	1940	Surface, Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Limestone	6,200, 5,700	90, 80
9. Calvin: Dean (Permian: Midland Basin)	1965	Seismic, Trend	Stratigraphic/ Permeability pinchout	Permian/ Wolfcamp	Sandstone	7,200	185
10. Sawyer (Permian: Val Verde)	1967	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Missouri	Sandstone	5,800	135
ll. Wilshire (Permian: Midland Basin)	1951	Seismic	Structural/ Anticline	Ordovician/ Lower; Devonian/ Lower	Dolomite, Limestone	11,900, 10,900	100. 95
12. Benedian (Permian: Midland Basin)	1947	Seismic, Surface, Subsurface	Structural/ Faulted anticline	Permian/ Leonard; Ordovician/ Lower; Silurian/ Middle	Sandstone, Dolomite, Limestone	7,500, 11,900, 11,200	
13. Fort Chadbourne (all) (Permian: Eastern Shelf)	1949	Seismic, Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Des Moines	Limestone	5,400	40

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Na (mill. h	atural Gas Liqui bls as of Dec.	ids 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
550,000		211.3	68.7	6.62			30.25			7.00
16,800		116.9	15.3	2.35			26.09			2.64 ¹
29,200		72.2	13.3	1.09			5,86			1.38
20,000		125.2	7.4	0.84			1.07		:	
5,620	251.2	124.2	5.4	0.51			0.46			0.09
190,720					220.0		22.01			1.40 ^t
19,200					525.0		22.92	*	*	*
2,200		69.0	7.1	1.48			0.79			0.13 ⁸
22,560		17.0	22,3	1.91	97.6		9.73			
278,720					86.1		41.62			0.14 ^c
1,720		40.4	1.5	0.32			6.71			0.40 ^b
22,000		20.5	2.7	0.32			1.68			0.45 ^b
15,180		55.4	2.1	0.34			0.40			
										C

·	- 1					1	
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
14. J-M (Permian: Val Verde)	1965	Seismic	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	12,100	1,600
15. Amacker-Tippett (Permian: Central Basin)	1953	Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower; Devonian/ Lower	Dolomite, Chert	11,900, 10,900	125, 265
Class B Fields							
16. World (Permian: Midland Basin)	1925	Surface	Combination/ Anticline, Facies change	Permian/ Guadalupe	Dolomite	2,600	15
17. Hulidale (Permian: Eastern Shelf)	1950	Seismic	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	5,600	40
18. I.A.B. (all) (Permian: Eastern Shelf)	1957	Subsurface	Stratigraphic/ Organic reef, Unconformity	Pennsylvanian/ Des Moines	Limestone	5,200	45
19. <i>Barnhart</i> (Permian: Midland Basin)	1941	Geophysics, Seismic	Combination/ Anticline, Unconformity	Ordovician/ Lower	Dolomite	9,000	80
20. H-J (Permian: Eastern Shelf)	1954	Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	5,500	20
21. Sonora (Permian: Val Verde)	1954	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Missouri	Sandstone	5,500	70
22. Millican (Permian: Eastern Shelf)	1948	Surface, Subsurface, Seismic	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	6,000	45
23. Tippett & North, East, West (Permian: Central Basin)	1947	Subsurface, Core-drill, Seismic	Combination/ Porosity pinchout, Nose, Facies change	Permian/ Wolfcamp, Leonard	Sandstone Shale	6,300, 4,600, 5,100	55, 55, 10
24. World, West (Permian: Midland Basin)	1954	Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	8,200	40
25. Adamo (Permien: Central Basin)	1953	Sciente	Structural/ Faulted anticline	Devonian/ Lower; Pennsylvanian/ Atoka	Dolomite, Sandstone	10,500, 9,200	40, 20
Class C Fields			1			İ	
26. <i>Midway Lone</i> (Permian: Ozona Flatform)	1947	Seismic, Subsurface	Structural/ Anticline	Permian/ Guadalupe; Ordovician/ Lower	Sandstone, Dolomite	1,100, 7,600	55, 135
27. Bronte (Permian: Eastern Shelf)	1948	Surface, Seismic, Core-drill	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Cambrian/ Upper	Limestone, Sandstone	4,800, 4,400, 5,300	25, 40, 15
28. Suean Peak (Permian: Eastern Shelf)	1948	Seismic, Surface	Structural/ Anticline	Pennsylvanian/ Des Moines, Virgil	Limestone	4,700, 4,500	60, 25

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)		latural Cas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
8,320					194.7		25.53			
1,000		19.5	6.1	0.40	;		5.73			0.14
6,160		37.7	4.7	0.48			0.01			
6,400	67.8	25,5	2.6	0.37	55.5		1.74			0.64
4,900		20.5	5.3	0.69			3.21			0.01
9,100		15.7	0.5	0.03			0.19			0.12
1,120		16.1	12.9	1.35			1.63			0.21
42,240					94.4	<u> </u>	12.17			0.03
1,440	40.0	6.7	*	*	104.0		*			0,01
2,540		12.0	2.5	0.39			4.19			
3,440		7.9	0.6	0.06			1.49			0.13
2,700		7.0	0.1	0.01	-		2.80			0.20
1,940		9.6	3.4	0.37			0.22			
2,000		16.4	1.3	0,25			0,55			0.10
2,360	:	15.5	1.1	0.28		}	0.46			0.0
2,360		15.5	1.1	0.28			0.46			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thicknes: (feet)
29. Cree Sykes & East (Permian: Eastern Shelf)	1950	Surface, Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,900	20
30. <i>Aldwell Ranch</i> (Permian; Val Verde)	1973	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Missouri	Sandstone	7,200	
 Amacker-Tippett, South, Southwest (Permian: Midland Basin) 	1961	Se1smic, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Atoka	Limestone	9,800	40
32. Clara Couch (Permian: Ozona Platform)	1949	Seismic, Subsurface	Structural/ Anticline	Pennsylvanian/ Virgil	Limestone	5,800	65
33. Neva, West (Permian: Eastern Shelf)	1951	Seismic	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	6,200	75
34. <i>Toe Nail</i> (Perwian: Eastern Shelf)	1953	Trend	Structural/ Anticline	Pennsylvanian/ Missouri, Des Moines	Sandstone, Limestone	4,700, 5,300	5, 10
35. Bavidson Ranch (Permian: Ozona Platform)	1964	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Atoka	Sandstone	7,900	25
36. <i>Page</i> (Permian: Eastern Shelf)	1936	Surface	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	5,500	140
37. Heluma (all) (Permian: Central Basin)	1956	Seismic, Subsurface	Structural/ Anticline	Ordovician/ Lower	Dolomite	10,600	135
38. Farmer (Permian: Midland Basin)	1953	Seismic, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,200	250
39. <i>Elkhorn</i> (Permian: Ozona Platform)	1951	Surface, Subsurface, Seismic	Structural/ Faulted anticline	Ordovician/ Lower	Dolomíte	7,200	50
40. <i>Cope</i> (Permian: Midland Basin)	1951	Subsurface	Stratigraphic/ Facies change	Permian/ Leonard	Sandstone	6,000	25
41. Olson (Permian: Central Basin)	1940	Subsurface, Core-drill	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,100	20
42. Vaughn (Permian: Ozona Platform)	1947	Subsurface	Combination/ Perosity pinchout, Nose	Permian/ Guadalupe	Dolomite, Sandstone	1,400	5
43. Lancaster Hill (Permian: Ozona Platform)	1947	Core-drill	Structural/ Anticline	Pennsylvanian/ Des Moines	Limestone	6,900	40
44. Eldorado: Canyon (Permian: Val Verde)	1948	Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	6,200	1 60

Surface	(millio	Crue	de 011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Na (mill. t	tural Gas Liqu bls as of Dec.	1ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
5,140		17.4	0.3	0.04	0.6		0.03			
23,360			<u> </u> 		13.1		8.27	<u>:</u>		0.01 ^c
2,400		9.3	2.8	0.29	:		0.72			
1,600							0.39			
2,060	40.8	12.6	0.5	0.05	23.0		0.15			
2,560		3.9	1.2	0.14			1.10			* c
21,440			 -		35.8		7.86			0.07 ^c
2,200		4.7	0.2	0.02			0.65			
2,640		5.6		0.67			1.81	E		
2,860		6.1	4.7	0,12	<u> </u>		0.30			
2,040		11.1	0.7	0.07			0.05			
1,720		10.9	0.9	0.20	12.1		0.17			
5,220		11.3	2.1	0,24	0.6		.0.02			
4,670		11.0	1.0	0.10			0.01			
2,240					54.2		5.27			0.02 ^c
10,880					40.5		2.41	0.3 ^c		* ¢
				i						

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
45. King Mountain (Permian: Midland Basin)	1955	Seismic	Structural/ Faulted anticline	Ordovician/ Lower; Pennsylvanian/ Des Moines; Devonian/ Lower	Dolomite, Limestone	11,800, 8,900, 10,500	215, 10, 90
46. Shæmon (Permian: Central Basin)	1943	Surface, Subsurface, Core-drill	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,100	65
47. Miere (Permian: Midland Basin)	1946	Seismic	Combination/ Organic reef, Fault	Pennsylvanian/ Des Moines, Missouri	Limestone, Shale	4,500, 4,100	25, 40
48. Cody Bell (Permian: Val Verde)	1967	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Missouri	Sandstone	6,400	25

³Plant condensate only.

bLease and plant condensate.

CLease condensate only.

Surface	(million	Crude в bbls дв	011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod,	Demonst. Reserves	1975 Prod.
680		7.6	0.6	0.08			0.47			0.01
6,080		8.9	1.6	0.12			*	*	*	*
3,200							0.64	:		
10,880		0.1	*	*	17.8		2.32	0.2		0.01
		<u></u>								

 $\label{table A.4c}$ The significant oil and GAS fields of Texas R.R.C. district 8

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields						•	
l. Yates (Permian: Central Basin)	1926	Surface	Combination/ Anticline, Facies change	Permian/ Guadalupe	Dolomite, Limestone	1,500	220
a. Yates (AAAA)	1926	Surface	Combination/ Anticline, Facies change	Permian/ Guadalupe	Polomite, Limestone	1,500	220
b. Toborg (B)	1928	Trend, Subsurface, Core-drill	Combination/ Anticline, Facies change	Cretaceous/ Comanche	Sandstone	500	10
2. South Sand Belt (slso SENM) (Permian: Central Basin)	1926	Surface, Trend	Combination/ Anticline, Facies change	Permian/ Guadalupe	Sandstone, Limestone	3,000, 3,100, 9,000	85, 300, 60
a. Scarborough (also SENM) (B)	1927	Trend, Subsurface	Combination/ Anticline, Facies change	Permian/ Guadalupe	Sandstone	3,200	80
b. Henderson (C)	1936	Trend	Combination/ Anticline, Facies change	Permian/ Guadalupe	Sandstone	3,000	100
c. Kermit & South (AAA)	1928	Trend, Surface	Combination/ Anticline, Facies change	Permian/ Guadalupe; Devonian/ Lower	Sandstone, Limestone	2,800, 8,200	200, 10
d. Hendrick (AAA)	1926	Surface, Trend, Core-drill	Combination/ Anticline, Facies change	Permian/ Guadalupe	Limestone	3,100	300
e. Emperor (all) (AAA)	1935	Trend, Subsurface	Combination/ Anticline, Facies change	Devonian/ Lower	Limestone	9,000	60
f. Weiner (C)	1941	Subsurface	Combination/ Anticline, Facies change	Permian/ Guadalupe	Sandstone	3,200	20
g. Halley (AA)	1934	Trend, Subsurface	Combination/ nticline, Facies change	Devonian/ Lower; Permian/ Guadalupe	Limestone, Sandstone	9,900, 3,200	15, 100
h. Ward-Estes, North (AAA)	1929	Subsurface	Stratigraphic/ Facies change	Permisu/ Guadalupe	Sandstone	3,000	85
3. Goldamith-Andector (Permian: Central Basin)	1935	Subsurface, Geophysics	Structural/ Anticline	Permian/ Guadalupe, Leonard; Ordovician/ Lower	Dolomite	4,300, 5,600, 8,500	
a. Goldomith & West (AAAA)	1935	Subsurface, Geophysics	Structural/ Anticline	Permian/ Guadalupe, Leonard	Dolom ite	4,300, 5,600, 6,300	
b. Andector (all) (AAA)	1946	Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	8,500	55
4. Spraberry Trend (also TX7C) (Permian: Midland Basin)	1949	Seismic	Combination/ Anticline, Facies change	Permian/ Leonard	Sandstone	8,000	150

Surface	(million	Crude bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	D e monst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
25,280		661.0	1,385.0	18.72			4.01				
25,280	4,000.0	623.6	1,376.4	18.16			4.00				
7,500		37.4	8.6	0,56			*				
c.115,000		828.4	70.7	9.13			155.44				
10,240		39.1	0.7	0.09			0.03	*			
6,080		14.5	0.4	0.01			*				
45,320		113.9	9.8	1.02	i		16.75	1.7		0.02	
23,960		252.8	7.2	0.59			0.44	*			
10,000		14.2	5.8	0.59			99.23	5,6		. 0,10	
2,960		7.1	1.8	0;12			0,23	. *		*	
3,920		50.5	4.3	0.92			35.65	4.0		0.31	
69,200		336.3	40.7	5.79			3,56				
73,360		699.3	167,0	20.81			37.92				
68,400		564.9	111.1	14.82			33.47			*	
4,960	301.0	134.4	55.9	5.99			4.45				
700,000		193.0	121.0	11.57			22.73	0.4		0.02	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
5. MaElroy-Dune (Permian: Central Basin)	1926	Surface, Trend	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	2,900, 3,300	150, 170
a. McElroy (all) (AAAA)	1926	Surface, Trend	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	2,900	150
b. Dune (all) (AAA)	1938	Surface, Subsurface, Trend	Structural/ Anticline	Permian/ Guadalupe	Dolomite	3,300	170
6. Sand Hills (Permian: Central Basin)	1930	Surface, Core-drill	Structural/ Anticline	Permian/ Guadalupe, Leonard	Dolomite	3,000, 3,400, 4,500	30, 80, 200
7. Gomes (Permian: Delaware Basin)	1963	Seismic	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	19,900	135
8. Cowden, North ^a (Permian: Central Basin)	1930	Surface, Trend, Subsurface, Seismic	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	4,400	200
9. Cowden, South (Permian: Central Basin)	1932	Surface, Subsurface, Geophysics, Seismic	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	4,300, 5,100	110, 225
a. Cowden, South ^b (AAA)	1932	Surface, Subsurface, Geophysics, Seismic	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	5,100, 9,200	225, 35
b. Foster (AAA)	1936	Trend, Subsurface, Seismic	Structural/ Anticline	Permian/ Guadalupe	Dolomite	4,300	110
c. Johnson (A)	1934	Trend, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	4,200	75
0. Fullerton (all) (Permian: Central Basin)	1941	Surface, Subsurface, Geophysics	Structural/ Anticline	Permian/ Leonard; Devonian/ Lower	Dolomite	7,300, 8,700	245, 125
il. Keystone (Permian: Central Basin)	1929	Trend	Combination/ Faulted anticline, Porosity- permeability pinchout	Ordovician/ Lower; Permian/ Guadalupe	Dolomite, Sandstone	9,500, 3,300, 4,800	750, 170, 50

Surface	(millions	Crude bbls as c	011 of Dec. 31,	1975)	(Bof as	latural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
104,280		473.8	276.7	19.27			8.85				
74,800	2,544.2	341.8	220.2	13.26			4.78				
29,480		132.0	56,5	6.01			4.07	*	:	*	
19,000		189.9	57.1	4.64	į		95.28	0.4		0.08	
77,440					2,385.5		328.38	0.1		0.09	
33,760	1,208.8	294.0	171.0	16.45			19.63				
62,940		331.3	164.4	16.21			7.62				
25,000		132.4	76.7	7.81			5.35			<u> </u>	
29,860	755.0	177.7	55.6	6,52			1.69				
B,080		21.2	26.1	1,88			0.58				
29,960		245.7	68.7	7.18			5.69	*			
25,600		273.0	41.4	3.68		:	24.39			*	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields			ļ			ļ. 1	l
12. Pemwell-Waddell (Permian: Central Basin)	1926	Surface, Subsurface	Structural/ Anticline	Permian/ Guadalupe, Leonard	Dolomite	3,800, 3,700, 3,500	100, 150, 150
a. Penwell (all) (AA)	1926	Surface, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	3,800	100
b. Jordan (all) (AA)	1937	Trend, Subsurface	Structural/ Anticline	Permian/ Leonard; Ordovician/ Lower	Limestone, Dolomite	3,700, 8,900	150, 80
c. Edwards (all) (A)	1934	Surface	Structural/ Anticline	Pennsylvanian/ . Missouri; Permian/ Guadalupe	Limestone, Dolomite	9,000, 3,400	15, 40
d. Waddell (AA)	1927	Surface, Subsurface, Core-drill	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	3,500	150
13. Puckett (Permian: Val Verde Basin)	1952	Subsurface, Core-dril1	Structural/ Faulted anticline	Ordovician/ Lower; Devonian/ Lower	Dolomite, Limestone	13,700, 10,400	135, 110
14. Howard Glassocck (Permian: Eastern Shelf)	1925	Surface, Subsurface	Structural/ Anticline	Permian/ Leonard	Sandstone	3,200	-30
15. TXL (all) (Permian: Central Basin)	1944	Seismic, Subsurface	Combination/ Faulted anticline, Unconformity	Ordovician/ Lower; Devonian/ Lower; Permian/ Leonard	Dolomite, Limestone, Sandstone	9,600, 8,100, 6,200	
16. Coyenosa (Permian: Delaware Basin)	1959	Seismic, Subsurface	Combination/ Faulted anticline, Porosity- permeability pinchout	Devontan/ Lower; Ordovician/ Lower; Permian/ Wolfcamp	Limestone, Dolomite, Sandstone	11,800, 15,000, 11,600	
a. Coyanosa (AAA)	1959	Seismic, Subsurface	Combination/ Faulted anticline, Forosity- permeability pinchout	Devonian/ Lower; Ordovician/ Lower; Permian/ Wolfcamp	Limestone, Dolomite, Sandstone	11,800, 15,000, 11,600	
b. Survey 16 (C)	1967	Seismic	Structural/ Anticline	Permian/ Wolfcamp	Limestone	10,000	280
						İ	

Surface	(million	Crude Oil 9 bbls as	of Dec. 31,	1975)		(atural Gas of Dec. 31,	1975)	Nati	ural Gas Liquid bla as of Dec.	is 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Frod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
45,680		298.2	85.1	9.85		Reserves	5.56	, riou.	RESERVES	Tiva.
15,520		86.3	23.2	1.24			1.63			
12,400		106.0	25.0	3.55			2.01	*		
3,000		22.1	15.5	2.64			0.08	li li		
14,760		63.8	21.4	2.42			1.84	İ		
34,560		*			2,039.2		. 96. 19		:	0.04
64,560	1,421.1	317.0	110.1	7.04			1.32			
16,440		236.5	24.2	3.28			15.29	0.1		0.01
17,920		3 . B	5.8	0.40	1,131.2		89.57			
15,360		3.8	5.8	0.40	1,068.5	:	84.74	0.6		0.04
2,560					62.7		4.83	2,8		0.02
									:	
		l								

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
17. Means-McFarland (Permian: Central Basin)	1934	Surface, Subsurface, Seismic	Combination/ Anticline, Facies change	Permian/ Guadalups	Dolomite, Sandstone	4,400, 4,800, 4,000	90, 15, 40
a. Means (all) (AAA)	1934	Surface, Subsurface, Seismic	Combination/ Anticline, Facies change	Permian/ Guadalupe	Dolomite, Sandstone	4,400, 4,000	90, 40
b. McFarland (all) (A)	1955	Seismic	Combination/ Ancicline, Organic reef	Permian/ Guadalupe, Wolfcamp	Sandstone, Dolomite, Limestone	4,800, 9,100	15, 125
c. Nottey (B)	1951	Seismic	Combination/ Anticline, Organic reef	Permian/ Wolfcamp; Devonian/ Lower	Limestone, Dolomice	9,200, 12,300	75, 15
18. Block 31 (all) (Permian: Central Basin)	1945	Seismic, Subsurface	Structural/ Anticline	Devonian/ Lower	Limestone	8,800	175
19. Headlee (all) (Permian: Central Basin)	1953	Seismic	Structural/ Anticline	Devonian/ Lower; Ordovician/ Lower	Limestone, Dolomite	11,800, 13,100	85, 215
20. Dollarhide (also SENM) (Permian: Central Basin)	1945	Seismic, Subsurface	Structural/ Faulted anticline	Devonian/ Lower; Silurian/ Upper; Permian/ Leonard	Limestone, Dolomite	7,900, 8,300, 6,500	120, 100, 105
21. Midland Farms (all) (Permian: Midland Basin)	1944	Seismic	Structural/ Anticline	Permian/ Guadalupe; Ordovician/ Lower	Dolomite	4,800, 12,700	80, 30
a. Midiand Farms (all) (AAA)	1944	Seismic	Structural/ Anticline	Permian/ Guadalupe; Ordovician/ Lower	Dolomite	4,800, 12,700	80, 30
b. Inez (B)	1961	Seismic	Structural/ Anticline	Ordovician/ Lower; Silurian/ Middle	Dolowite, Limestone	12,500, 11,700	10, 20
Class AA Fields				1			
22. Fatan-Snyder (Permian: Eastern Shelf)	1925	Surface, Trend	Structural/ Anticline	Permian/ Leonard, Guadalupe	Dolomite	2,700	200
a. Iatan (a11) (AA)	1925	Surface, Trend	Structural/ Anticline	Permian/ Leonard	Dolomite	2,700	200
b. <i>Snyder</i> (B)	1937	Surface, Trend	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,800	50
23. Block 16 (Permian: Delaware Basin)	1968	Seismic	Structural/ Faulted anticline	Ordovician/ Lower; Devonian/ Lower	Dolomite, Limestone	15,900, 12,900	710, 150

Surface	(million	Crude as bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31	, 1975)	Nat (mill. b	ural Gas Liqui bls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
33,620		224.2	99.2	8.47			3.65	110,00	, NOSCITUS	1199
18,500		152.7	75.3	5.75			1.72		!	
12,760		45.6	15.8	1.42			0,62			
2,360		25.9	8.1	1.30			1.31			
7,000		151.0	84,0	6.28			10.66	*	i	*
4,720		54.9	2.4	0.64			9.81	0.1		*
9,040		144.9	34.4	5.04			2.64			
14,920		198.0	\$5.7	7.46			3,76			
14,040		182.6	50.0	6.71			3.44	0.6		0.01
880		15.4	5.7	0.75			0.32			
44,720		121.0	68.8	5.08			0.31			
26,920		93.4	56.2	4.08		· ·	0.27			
17,800	į	27.6	12.6	1.00			0.04			
15,360		0.4	0.2	0.04	646.9		114.55	12.0		1,78
				ļ	;			!		
į										

F:	ield	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
24 . Do:	ra Roberts-Virey Permian: idland Basin)	1953	Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower; Devonian/ Lower	Dolomite	12,800, 12,000	175, 280
а.	Dora Roberts (AA)	1953	Seismic	Structural/ Faulted anticline	Ordovician/ Lower; Devonian/ Lower	Dolomite, Limestone	12,800, 12,000	175, 280
ь.	Virey (B)	1953	Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower	Dolowite	13,300	290
(hrman-Mascho ^C sil) Permian: lentral Basin)	1930	Trend, Surface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolómíte	4,700	60
De (after Lake- ep Rock Permian: entral Basin)	1929	Trend, Surface, Subsurface	Combination/ Faulted anticline, Porosity- permeability pinchout	Permian/ Guadalupe; Devonian/ Lower; Ordovician/ Lower	Dolomite, Limestone	4,500, 8,400, 12,300	55, 50, 25
a.	Shafter Lake (all) (AA)	1938	Subsurface, Seismic	Combination/ Faulted anticline, Porosity- permeability pinchout	Permian/ Guadalupe, Wolfcamp; Devonian/ Lower	Polomite, Limestone	4,500, 9,400, 8,400	55, 140, 50
ъ.	Deep Rock (ali) (B)	1929	Trend, Surface, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Ordovician/ Lower; Permian/ Guadalupe	Dolomite	12,300, 5,700	25,
<i>81</i> (oldsmith, North- lock 11 (Permian: Central Basin)	1934	Subsurface, Selsmic	Combination/ Anticline, Unconformity	Permian/ Guadalupe; Devonian/ Lower	Dolomite, Limestone	4,500, 8,200	50, 60
a.	Goldsmith, North (AA)	1934	Subsurface, Seismic	Combination/ Anticline, Unconformity	Permian/ Guadalupe	Dolomite	4,500	50
ъ.	. Block 11 (all) (B)	1951	Subsurface	Stratigraphic/ Unconformity	Devonian/ Lower	Limestone	8,200	60
1	mma-Triple N (Permian: Central Basin)	1938	Surface, Geophysics	Combination/ Faulted anticline, Porosity- permeability pinchout	Ordovician/ Lower; Permian/ Guadalupe; Pennsylvanian/ Virgil	Dolomite, Limestone	13,300, 4,300, 8,900	35, 90, 65
a	. Emma (all) (AA)	1938	Surface, Geophysics	Combination/ Faulted anticline, Porosity- permeability pinchout	Ordovician/ Lower; Permian/ Guadalupe	Dolomite	13,300, 4,300	35, 90
ь	. Triple N (B)	1952	Seismic	Structural/ Faulted anticline	Pennsylvanian/ Virgil; Permian/ Guadalupe	Limestone, Polomite	8,900, 4,300	65,

Surface Area (acres) (millions bbls as of Dec. 31, 1975) (Bcf as of Dec. 31, 1975) (millions bbls as of Dec. 31, 1975	Reserves Prod.
6,880 76.2 11.0 2.52 12.97 3,640 46.6 6.8 1.68 11.84 22.4 3,040 29.6 4.2 0.84 1.13 * 33,440 76.7 34.0 1.77 3.09 31,840 96.6 30.4 3.00 1.99	1.11
3,840 46.6 6.8 1.68 11.84 22.6 3,040 29.6 4.2 0.84 1.13 * 33,440 76.7 34.0 1.77 3.09 31,840 96.6 30.4 3.00 1.99	
3,040 29.6 4.2 0.84 1.13 * 33,440 75.7 34.0 1.77 3.09 31,840 96.6 30.4 3.00 1.99	
3,040 29.6 4.2 0.84 1.13 * 33,440 76.7 34.0 1.77 3.09 31,840 96.6 30.4 3.00 1.99	
33,440 76.7 34.0 1.77 31,840 96.6 30.4 3.00 1.99	
33,440 76.7 34.0 1.77 31,840 96.6 30.4 3.00 1.99	
31,840 96.6 30.4 3.00 1.99	*
13,840 76.0 20.4 2.13	
13,840 76.0 20.4 2.13	
13,840 76.0 20.4 2.13 1.67	
18,000 20.6 10.0 0.87 0.32	
31,760 35.7 16.7 1.80 14.75	
	i l
30,000 24.7 9.8 1.20 14.24 0.8	0.04
1,760 11.0 6.9 0.60 0.50 *	
7,040 97.8 17.3 1.67	
4,880 79.0 12.0 1.13 0.59	
2,160 18.8 5.3 0.52 0.52	

	~~						1	<u> </u>
	Field	Year Dis- covered	Discovery Method(s)	Type of T rap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
29.	Love-Makee (Permian: Midland Basin)	1943	Seismic	Combination/ Anticline, Porosity pinchout	Permian/ Guadalupe; Silurian/ Upper; Ordovician/ Lower	Dolomite	4,700, 12,800, 13,300	50, 10, 20
	a. Lowe (B)	1953	Seismic	Structural/ Anticline	Silurian/ Upper; Ordovician/ Lower	Dolomite	12,800, 13,300	10, 20
	ъ. Mabee (AA)	1943	Seismic	Combination/ Anticline, Porosity pinchout	Permian/ Guadalupe	Dolomite	4,700	50
30.	Ward, South (Permian: Delaware Basin)	1929	Trend	Structural/ Anticline	Permian/ Guadalupe	Saudstone	2,700	175
31.	Waha: Deep (Permian: Delaware Basin)	1964	Seismic	Structural/ Anticline	Ordovician/ Lower; Devonian/ Lower; Mississippian/ Meramec	Dolomite, Limestone	14,000, 11,000, 10,100	1,140, 175, 45
32.	University Waddell (Permian: Central Basin)	1947	Seismic	Structural/ Faulted anticline	Devonian/ Lower; Ordovician/ Lower	Limestone, Dolowite	9,000, 10,600	210, 300
33.	Mi Vida (Permian: Delaware Basin)	1969	Seismic, Subsurface	Structural/ Anticline	Silurian/ Middle; Ordovician/ Lower	Limestone, Dolomite	16,100, 18,500	105, 570
34.	Lockridge (Permian: Delaware Basin)	1966	Subsurface, Geophysics, Seismic	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	18,600	25
Cla	ss A Fields							
35.	Harper-Moss (all) (Permian: Central Basin)	1933	Trend, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe; Ordovician/ Lower; Devonian/ Lower	Dolomite, Limestone	4,300, 12,400, 10,000	75, 10, 30
36.	Westbrook (Permian: Eastern Shelf)	1920	Surface	Combination/ Anticline, Permeability pinchout, Facies change	Permian/ Leonard	Dolomite	3,100	100
37.	Bakke (Permian: Central Basin)	1956	Seismic, Subsurface	Combination/ Anticline, Perosity- permeability pinchout	Ordovician/ Lower; Permian/ Wolfcamp; Devonian/ Lower	Dolomite, Limestone	12,300, 8,500, 10,500	
38.	Evetts (Permian: Delaware Basin)	1970	Sei smi c	Combination/ Anticline, Facies change	Silurian/ Upper	Dolomite	17,800	195
39.	Vealmoor, East (Permian: Horseshoe Atoll)	1950	Seismíc	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	7,400	40

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)		Satural Gas of Dec. 31,	1975)		ural Gas Liqui ls as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reservas	1975 Prod
10,880		70.4	46.2	3,19	11041	NGC TVC	0.18	12007		
2,000		23.4	6.0	0.67			-0.67			
8,880		47.0	40.2	2.52			0.85			
39,480		97.3	9.7	0,60			0.79	0.4		*
5,120					315.7		41.13	1.3		0.05
3,520		48.6	25.1	2.04			3.11			
7,680					440.2	195.8	60.05	*	*	*
14,080	*	*	*	*	375.0	237.0	30.67			0.0
20,120		64.5	15.9	2.07			1.99			
20,680		58.4	37.7	3.09			0.17			
2,640		64.8	13.1	1. 14			0.97			
6,400	*	*	*	*	226.8	331.2	63.46	*	*	*
4,080		42.2	19.8	2.00			2.41			•

Field		Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
40. Magutex (Permiar Midland		1952	Seismic	Structural/ Anticline	Devonian/ Lower; Ordovician/ Lower	Limestone, Dolomite	12,500, 13,800	55, 45
41. Abell (all) (Permian Central		1940	Subsurface, Core-drill	Combination/ Faulted anticline, Unconformity	Silurian/ Middle; Devonian/ Lower; Ordovician/ Middle	Dolomite, Limestone	4,900, 5,200, 5,400	10, 55, 40
42. Worsham-1 (Permia: Delawar		1961	Subsurface	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	16,800	230
43. Universi (Permia Central	n:	1953	Seismic	Structural/ Anticline	Permian/ Wolfcamp; Devonian/ Lower; Pennsylvanian/ Virgil	Limestone	8,400, 10,500, 9,000	20, 110, 50
44. Moore-Ho Vermejo (Permia Delawar		1973	Seismic	Structural/ Faulted anticline	Silurian/ Middle	Dolomíte	18,800	300
45. Asalea (Permia Midland		1956	Subsurface, Seismic, Surface	Stratigraphic/ Organic reef, Porosity pinchout	Devonian/ Lower; Pennsylvanian/ Des Moines	Limestone, Sandstone	11,500, 10,300	60, 55
46. R.O.C. (Permia Delawar	n: e Basin)	1969	Seismic	Structural/ Anticline	Devonian/ Lower; Ordovician/ Lower	Limestone, Dolomite	13,300, 16,800	325, 120
47. Embar (Permia Central	n; Basin)	1942	Core-drill, Geophysics, Subsurface, Seismic	Structural/ Faulted anticline	Ordovician/ Lower; Permian/ Leonard	Dolomite	8,000, 6,300, 5,600	85, 85, 40
48. Three Ba (Permia Central		1945	Seismic	Combination/ Faulted anticline, Unconformity	Devonian/ Lower	Limestone	8,400	55
49. Hutex (all) (Permia	m: Basin)	1953	Seismic	Structural/ Anticline	Devonian/ Lower	Limestone	12,500	20
50. Wheeler (Permia Central	in: Basin)	1943	Seismic	Structural/ Anticline	Ordovician/ Lower; Devonian/ Lower	Dolumite, Limestone	10,700, 8,600	200 300
51. Martin (Permis Central	m: L Basin)	1940	Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower, Middle	Dolomite, Sandstone	8,400, 8,300	150 30
52. Goldsmî: (Permis Central		1953	Seismíc	Structural/ Anticline	Permian/ Guadalupe	Dolomite, Limestone	4,100, 4,200, 5,000	
53. Monahans (Permis Central		1942	Seismic	Structural/ Anticline	Permian/ Leonard, Guadalupe	Dolomite, Sandstone	4,800, 5,600, 3,300	

Surface	(million	Crude is bbls as	011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (will, bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
5,760		56.2	. 14.0	1,63			0.92			
6,200		39.1	10.1	1.06			3.74	*		*
7,680		0.1	0.1	0.01	261.1	158.9	22.49	0.1		0.01
2,240		48.1	11.9	1.15			0.91			
13,440					44.7	345.3	30.56			
36,000		1.6	5.1	0.40			6,50	15.1		0.23
7,680	*	*			187.8	172.2	37.35	0.3		0.04
4,240		27.8	8.8	0.29			3.76			
2,680		30.0	13.4	1-11			1.05			
4,480		31.7	19.9	1.30			0.26			
2,800		31.4	3.6	0.15			0.48	*		*
3,740		42,0	6.9	0.50			0.41			
2,760		13.4	7.0	1.20			5.42	0.1		0.01
2,720		17.8	10.0	0,60			2.33			*

	_		·				<u></u>
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Tap (feet)	Reservoir Thickness (feet)
Class B Fields	Ţ						1
54. Toro: Deep (Permian: Delaware Basin)	1966	Seiemic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	19,900	30
55. Farbrough & Allen (Fermian: Central Basin)	1947	Seismic	Structural/ Anticline	Ordovician/ Lower	Dolomite	10,500	25
56. Pecos Valley (all) (Permian: Central Basin)	1928	Surface	Combination/ Anticline, Facies change, Porosity- permeability pinchout	Permian/ Guadalupe; Devonian/ Lower	Sandstone, Limestone	1,800, 1,600, 5,800	60, 25, 35
57. Andrews, South (Permian: Central Basin)	1953	Seismic	Combination/ Anticline, Organic reef, Porosity- permeability pinchout	Devonian/ Lower; Permian/ Wolfcamp	Limestone	11,100, 9,200	40, 30
58. Vealmoor (Permian: Horseshoe Atoll)	1948	Seismic	Stratigraphic/ Organic reef	Pennsylvanian/ Virgil	limestone	7,900	75
59. War-Wink, South (Permian: Delaware Basin)	1972	Seismic, Subsurface	Structural/ Faulted anticline	Silurian/ Middle	Dolomite	17,700	150
60. Andrews (Permian: Central Basin)	1953	Seismic	Combination/ Anticline, Organic reef	Permian/ Wolfcamp; Pennsylvanian/ Virgil	Limestone	8,600, 9,200	10, 20
61. Andrews, North (Permian: Central Basin)	1959	Seismíc	Combination/ Anticline, Organic reef	Ordovician/ Lower; Devonian/ Lower	Dolomite, Limestone	12,300, 10,400	10, 45
 Sweetie Peck/ War-San (Permian: Midland Basin) 	1950	Subsurface, Seismic, Core-drill	Combination/ Anticline, Facies change	Ordovician/ Lower; Pennaylvanian/ Atoka	Dolomite, Limestone	13,100, 10,800	180, 30
63. Reoming W (Permian: Central Basin)	1957	Seismic, Core-drill, Subsurface	Combination/ Faulted anticline, Porosity- permeability pinchout	Ordovician/ Middle	Sandstone	6,100	50
64. Crittendon (Permian: Delaware Basin)	1968	Seismic	Structural/ Anticline	Pennsylvanian/ Atoka; Ordovician/ Lower	Dolomite	14,500, 21,500	20, 160
65. Waha, West: Ellenburger (Permian: Delaware Basin)	1961	Seismic	Structural/ Anticline	Ordovician/ Lower	Dolomite	16,100	500
66. <i>Conger</i> (Permian: Eastern Shelf)	1974		:	Pennsylvanian/ Missouri	Limestone	7,100	60
67. Fort Stockton (Permian: Delaware Basin)	1944	Surface, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,900	55

	(million	Crude	011 of Dec. 31,	1975)	(Bof ==	Natural Gas of Dec. 31,	19751	Natur (mill bil	al Gas Liqui	ids
Surface Area	In	Cum.	Demonst.	1975	Cum.	Demonst.	1975)	Cum.	Demonst.	1975
(acres)	Place	Prod.	Reserves	Prod.	Prod.	Reserves	Prod.	Prod,	Reserves	Prod.
7,040			_		207.6	89.4	14.49			
2,480		42.8	2.6	0.34			0.29			
18,360		29.8	7.9	0.61			2,05			0.01
2,360		21,3	1.9	0.41			1.95	*		*
3,320		31.0	5.0	0.99			1.10			
4,480					58.9	205.1	28.89	0.1		0.04
3,560		29.5	6.6	0.59			0.61			
1,200		33.4	5.6	1.29			0,63			
2,300		28.0	3.1	0.67			2.02			
6,800		22.8	2.3	0.39			2,16			
4,480					103.4	112.6	15.51	1.8		0.29
6,400					141.0	75.0	12,60	0.1		0.01
10,800		0.1	11.3	0.06	5.5		5,32			0.12
12,800		23.3	9.6	0.92		i	0.51			*
			,			, ,	•		'	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age . of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thickness (feet)
68. Oates, Northeast (Permian: Delaware Basin)	1961	Seismic	Structural/ Faulted anticline	Bevonian/ Lower	Limestone	14,500	135
69. <i>Barstow</i> (Permian: Delaware Basin)	1969	Seismic	Structural/ Anticline	Silurian/ Middle	Dolomite	17,500	30
70. Lea (all) (Permian: Central Basin)	1953	Seismic	Structural/ Faulted anticline	Ordovician/ Lower; Permian/ Guadalupe	Dolomite	8,200, 3,100	40, 80
71. Crossett, South (Permian: Central Basin)	1956	Subsurface	Combination/ Fault, Unconformity	Devonian/ Lower; Pennsylvanian/ Des Moines	Limestone	5,300, 4,900	10,
72. Grey Ranch (Permian: Val Verde Basin)	1964	Surface, Subsurface, Seismic	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	14,100	570
73. Rhoda Walker (Permian: Delaware Basin)	1967	Seismic	Structural/ Anticline	Pennsylvanian/ Missouri	Limes tone	6,000	80
74. Breedlove (Permian: Midland Basin)	1951	Seismic, Subsurface	Structural/ Anticline	Devonian/ Lower	Limestone	12,100	40
75. Crawar (Permian: Central Basin)	1954	Subsurface	Structural/ Anticline	Devonian/ Lower	Limestone	6,400, 6,500	10, 30
76. El Mar (also SENM) (Permian; Delaware Basin)	1959	Subsurface, Core-drill	Stratigraphic/ Porosity- permeability pinchout, Facies change	Permian/ Guadalupe	Sandstone	4,500	5
77. Bedford (Permian: Central Basin)	1945	Seismic, Subsurface	Structural/ Anticline	Devonian/ Lower; Ordovician/ Lower	Limestone, Dolomite	8,800, 11,000	375, 650
78. Cordonna Lake (Permian: Central Basin)	1949	Subsurface, Seismic	Combination/ Faulted anticline, Facies change, Unconformity	Devonian/ Lower	Limestone	5,500	40
79. Shipley (Permian: Central Basin)	1928	Trend	Structural/ Anticline	Permian/ Guadalupe	Sandstone	3,100	80
80. Geraldine-Ford (Permian: Delaware Basin)	1957	Subsurface, Trend	Stratigraphic/ Permeability pinchout, Facies change	Permian/ Guadalupe	Sandstone	2,600	5
81. Greasewood (Permian: Delaware Basin)	1968	Seismic	Structural/ Anticline	Devonian/ Lower	Limestone	16,300	130
82. Luther, Southeast (Permian: Midland Basin)	1953	Seismic	Combination/ Anticline, Unconformity	Devonian/ Lower	Limestone	9,900	25

Surface	(million	Crude bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dac. 31	1975)	Na (mill. b	tural Gas Liqu bls as of Dec.	id∎ 31, 1975)
Ares (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
11,520					188.2		19.45			
5,120					187,5	37.5	20.21	*	*	*
3,000		26.5	5.2	0.67			0,34			
5,420		14.1	12.2	0.96			3.24	*	:	
5,120					164.7	42.3	11.70	*		*
1,880		0.7	14.3	0.16	7.9		0.67			
3,520		24.3	9.4	0.83			0.03			
1,300		6.2	3.0	0.26			5,26	0.3		0.01
9,320		14.8	3.6	0.39			1.44			
800		17.6	8.3	0.50			0.92			
2,680		15.8	10.2	0.93			1.01			
9,600		27.9	1.6	0.18			0.06			
9,360		15.8	10.3	1.07			0.66			
6,400			<u></u>		138.1	41.9	14.52			!
3,600		16.3	4.9	0.55			1.03			:

113

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
3. C-Bur (Permian: Central Basin)	1948	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupa	Dolomite	3,500	30
84. H.S.A. (Permian: Central Basin)	1953	Subsurface	Structural/ Anticline	Pennsylvanian/ Missouri	Dolomite	8,100	45
85. Oceanic (Permian: Horseshoe Atoll)	1953	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	a,100	5 5
86. Arenoso (Permian: Central Basin)	1965	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	8,600	85
87. Union (Permian: Central Basin)	1943	Subsurface	Structural/ Anticline	Permian/ Leonard	Dolomite	7,500	150
88. Apollo (Permian: Delaware Basin)	1973	Seismic	Structural/ Faulted anticline	Silurian/ Middle	Dolomite	16,200	100
89. Waha: Delaware (Permian: Delaware Basin)	1960	Seismic	Combination/ Anticline, Facies change, Hydrodynamic	Permian/ Guadalupe	Sandstone	4,800	40
90. <i>Chapman: Deep</i> (Permian: Delaware Basin)	1973	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Silurian/ Upper	Dolomite	15,600	85
91. Wheat (Permiso: Delaware Basin)	1925	Random	Stratigraphic/ Unconformity, Porosity- permeability pinchout	Permian/ Guadalupe	Sandstone	4,200	20
92. Worsham (Permian: Delaware Basin)	1957	Subsurface	Structural/ Anticline	Perwian/ Guadalupe	Sandstone	5,000	50
93. Crossett: Devonian (Permian: Central Basin)	1944	Seismic, Subsurface	Combination/ Faulted anticline, Unconformity, Facies change	Devonian/ Lower	Limestone	5,400	60
Class C Fields						İ	-
94. Jameson, North (Permian: Eastern Shelf)	1953	Subsurface, Trend	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Des Moines	Sandstone	5,900	20
95. Parks (Permian: Val Verde)	1950	Seismic, Subsurface	Structural/ Faulted anticline	Pennsylvanian/ Atoka	Limestone	10,400	15
96. Sand Hills, West (Permisn: Central Basin)	1937	Seismic, Subsurface	Structural/ Anticline	Devonian/ Lower; Permian/ Guadalupe	Limestone, Dolomite	6,300, 3,900	15, 25
97. Grey Ranch, West (Permian: Val Verde)	1971	Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	18,300	1,700

Surface	(million	Crude is bbls as	011 of Dec. 31,	1975)		Natural Gas of Dec. 31		Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
5,600		14.7	10.3	0.51			0.37		į		
6,800		3,4	1.2	0.05	45.6		6.73	0.6		0.03	
1,880		18.0	6.0	0.81			0.78	,			
200		11.9	11.6	0.56	13.7		0.41	*		0.01	
5,000		14.3	1.7	0.17			0.76	*			
7,040					56.2	108.8	23.89	*	*	*	
8,000		0.7	0.5	0.06			5.12	0.5		0.01	
7,040					29.3	129.7	14.58				
7,360		19.7	1.6	0.16			0.35				
6,720	į	0.8	0.5	0.04			- 5.65	0.7		0.02	
1,080	i	9.0	10.9	0.64			2.11				
1,920		1.9	11.2	0.12			0.79				
5,120		12.8	4.2	0.30			1,13	0.2		0.03	
1,160		2.3	1.3	0.06			5.44	0.5		0.02	
4,480			- -		55.8	82,2	19.55				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
98. Block 12 (Permian: Central Basin)	1946	Seismic, Subsurface	Combination/ Faulted anticline, Unconformity	Ordovician/ Lower; Fermian/ Leonard	Dolomite	10,100, 10,900, 7,200	30, 85, 80
99. Monahane, North (Permian: Central Basin)	1944	Seismic	Structural/ Anticline	Devonian/ Lower; Ordovician/ Lower; Permian/ Leonard	Limestone, Dolomite	9,400, 12,000, 6,200	150, 80, 200
.00. Elsinore- Pikes Peak, East (Permian: Delaware Basin)	1958	Seismic, Subsurface	Structural/ Faulted anticline	Devonian/ Lower	Limestone	11,400	40
01. Glasco (Permian: Midland Basin)	1953	Seismic	Structural/ Anticline	Devonian/ Lower	Limestone	12,500	20
102. Apco-Warner ^d (Permian: Central Basin)	1929	Surface, Subsurface	Combination/ Faulted anticline, Unconformity	Ordovician/ Lower	Dolomite	4,600	100
103. <i>Lawson</i> (Permian: Central Basin)	1950	Seismic	Structural/ Anticline	Permian/ Guadalupe	Limestone	4,300	20
LO4. Dollarkide, East (Permian: Central Basin)	1949	Seismic	Structural/ Faulted anticline	Ordovician/ Lower; Devonian/ Lower	Dolomite, Limestone	12,600, 10,200	25, 15
105. Wink, South (Permian: Delaware Basin)	1969	Seismic	Structural/ Faulted anticline	Ordovician/ Upper, Lower	Limestone	16,300	1,520
106. Fasken & South (Permian: Midland Basin)	1949	Seismic, Subsurface	Structural/ Anticline	Permian/ Wolfcamp; Ordovician/ Lower	Limestone, Dolomite	8,400, 12,600	25, 25
107. Rojo Caballos, South (Permisu: Delaware Basin)	1973	Seismic	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	21,300	
108. Payton (Permian: Central Basin)	1937	Subsurface	Structural/ Anticline	Permian/ Guadalupe	Sandstone	2,000	40
109. Lacaff (Permian: Midland Basin)	1969		Stratigraphic/ Facies change	Fermian/ Wolfcamp	Sandstone	9,500	265
110. Taylor-Link (Permian: Central Basin)	1929	Surface, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Sandstone	1,800	30
lll. Walker-White & Baker (Permian: Central Basin)	1935	Surface, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Sandstone	2,000, 1,100	30. 40

Surface	(million	Crude	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31.	, 1975)	Nat (mill, bb	ural Gas Liqui ls as of Dec.	ds 31, 1975)
Area (acres)	In ?lace	Cum. Prod.	Demonst. Reserves	1975 Prod,	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
2,000		17.4	1.0	0.10			0.68			
880		14.1	2.1	0,36			1.61	*		*
19,840					18.8	110.2	11.41			***
1,320		16.3	5.0	0.62	*		*			
2,460		18.7	1.4	0.19			0.17			
1,480		11.9	3.9	0.46			0.68			
1,760		10.4	1.7	0.18			1.01			
5,760		*			59.9	33.1	12.14	2.6		0.48
1,160		9,2	5.2	0.28			0.32			
3,840				7.7	21.5	89.5	13.36			
10,360		12.5	0.9	0.04			0.45	0.1		*
6,000		4.3	9.1	1.09	. 6,5		3.25			
7,480		14.7	1.2	0.09			*			
5,200		13.2	1.1	0.16			0.11			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
112. Hamon (Permian: Delaware Basin)	1965	Seismic, Subsurface	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	20,500	600
113. Howe (Permian: Delaware Basin)	1973	Seismic	Structural/ Anticline	Devonian/ Lower	Limestone	12,200	300
114. Fuckett, North (Permian: Val Verde)	1952	Subsurface, Core-drill, Seismic	Structurs1/ Faulted anticline	Ordovician/ Lower	Dolomite	10,300	55
115. Mason, North (also SENM) (Permisn: Delaware Basin)	1952	Subsurface, Core-drill	Stratigraphic/ Facies change	Permian/ Guadalupe	Sandatone	4,100	20
116. Sulphur Drow (Permian: Midland Basin)	1966		Stratigraphic/ Facies change	Permian/ Wolfcamp	Sandstone	9,400	30
117. Quito: Fusselmon (Permian: Delaware Basin)		Seismic	Combination/ Permeability pinchout, Nose	Silurian/ Middle	Dolomite	17,400	55
118. R.K. (Permian: Midland Basin)	1975	Seismic	Structural/ Anticline	Devonian/ Lower	Limestone	11,700	5
119. Grice (Permian: Delaware Basin)	1956	Subsurface	Combination/ Facies change, Nose, Forosity- permeability pinchout	Permian/ Guadalupe	Sandstone	4,500	10
120. Twofreds (Permian: Delaware Basin)	1957	Subsurface	Stratigraphic/ Facies change, Permeability pinchout	Permian/ Guadalupe	Sandstone	4,900	25
121. Donnelly (Permian: Central Basin)	19 50	Subsurface	Structural/ Anticline	Permisn/ Guadalupe	Dolomite	4,300	60
122. Waha, West: Delaware (Permian: Delaware Basin)	1961	Seismic	Combination/ Facies change, Hydrodynamic	Permian/ Guadalupe	Sandstone	5,000, 5,500, 5,800	25, 30, 15
123. Wemac (all) (Permian: Midland Basin)	1953	Seismic	Combination/ Anticline, Organic reef	Ordovician/ Lower; Permian/ Wolfcamp	Dolomite, Limestone	13,300, 8,700, 8,800	35, 165, 10
124. Armer (Permian: Central Basin)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Silurian/ Opper	Dolomite	6,300	35
125. Moore (Permian: Midland Basin)	1937	Surface, Trend	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	3,200	40
126. Tunstill (Permian: Delaware Basin)	1947	Surface, Subsurface	Combination/ Anticline, Unconformity, Facies change, Porosity- permeability pinchout	Permian/ Guadalupe	Sandstone	3,300	15

118

Surface	(míllio	Crude ns bbls as	0il of Eec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
3,200		u			82.1	8.5	2.23	*		*	
3,200		0.1	0.3	0.04	50.9	24.1	18.09	1.8		0.45	
5,760					73.7	13.3	4.86	0.5		0.02	
3,020		5.8	0.7	0.05			0.05				
3,700		4.3	7.9	0.73	3.5		0.84	:			
2,560					58.3	22.7	15.85				
1,200		0.2	13.2	0.19	*		*				
3,600		6.9	3.3	0.20			0.63	*		*	
4,640		8.7	3.4	0.10		:	*				
2,800		7.6	2.4	0.21			0.23				
1,200	:	2.4	2.7	0,24			2.68	0.1		*	
960		11.0	0.4	0.09			0.31		:		
960		5.8	1.5	0.10			0.34				
10,120	:	8,2	2.6	0.09			*				
6,880	:	9.8	0.6	0.04			0.03				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thicknes: (feet)
27. Brown & Thorp (all) (Permian: Central Basin)	1951	Subsurface	Structural/ Anticline	Permian/ Leonard	Limestone	3,000	25
28. Credo (all) (Permian: Eastern Shelf)	1962	Seismic	Stratigraphic/ Facies change	Permian/ Wolfcamp	Limestone	7,300, 7,400	25, 15
29. Waha, North (Permian: Delaware Basin)	1960	Seismic	Combination/ Pacies change, Hydrodynamic	Permian/ Guadalupe	Sandstone	4,900	10
30. Cheyenne (Permian: Delaware Basin)	1975	Seismic	Structural/ Anticline	Silurian/ Middle	Dolomite	19,600	35
31. Yucca Butte (Permian: Sheffield Channel)	1960	Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines; Ordovician/ Lower	Dolomite	8,200, 10,100	30 20

^aIncludes Block 9.

bIncludes Addis and Cowden.

CIncludes Nix & South.

dIncludes Fromme, Masterson, and Shearer.

Surface	(millions	Crude bbls as c	0il of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Réserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,560		8.6	2.0	0.19			*			
2,760		6.4	1.0	0 .1 6			1.05	*		0.01
1,700		4.0	2.3	0.29			1.30	*		*
1,920	<u>-</u>				0:3	54.9	0.28			
1,920		*			39.1	17.9	3.70	0.3		0.02
		<u> </u>								

Table A.4d

THE SIGNIFICANT OIL AND GAS FIELDS OF TEXAS R.R.C. DISTRICT 8A

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields		T				İ	
1. Wasson (Permian: North Basin)	1936	Geophysics, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Colomite	4,900	185
a. Wasson (all) (AAAA)	1936	Geophysics, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	4,900	185
b. Оынду (all) (B)	1939	Seismic, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite, Limestone	5,300	65
2. Scurry (Permian: Horseshoe Atoll)	1948	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	6,700	210
a. Kelly-Snyder (all) (AAAA)	1948	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Miseouri	Limestone	6,800	235
b. Diamond -M- (AAA)	1948	Seismic	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	6,600	140
3. Slaughter-Levelland (Permian: North Basin)	1936	Seismíc	Stratigraphic/ Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	5,000. 4,900	100, 180
a. Slaughter (AAAA)	1936	Seismíc	Stratigraphic/ Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	5,000	100
b, Levelland (all) (AAAA)	1945	Seismic	Stratigraphic/ Porosity- permeability pinchout	Fermian/ Guadalupe	Dolomíte	4,900	180
4. Seminole (Permian: Central Basin)	1936	Seismic	Structural/ Anticline	Permian/ Guadalupe	Dolomite	5,100	195
Class AAA Fields							
5. Cogdell (Permian: Horseshoe Atoll)	1949	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Missourt	Limestone	6,800	60
6. Salt Creek (Permian: Horseshoe Atoll)	1950	Seismic, Core-drill	Stratigraphic/ Organic reef	Pennsylvanian/ Miseouri	Limestone	6,200	35
7. Robertson-Flanagan (Permian: Central Basin)	1942	Seismíc, Surface	Structural/ Anticline	Permian/ Leonard	Dolomite	6,300 7,100 6,000	105,
a. Riley (all) (B)	1947	Subsurface, Seismic	Structural/ Anticline	Permian/ Leonard	Dolomite	6,900	25
b. Robertson (all) (AA)	1942	Seismic, Surface	Structural/ Anticline	Permian/ Leonard	Dolomite	6,300 7,100	
c, Flanagan (B)	1949	Seismic	Structural/ Anticline	Fermian/ Leonard	Limestone, Dolomite	6,400	155
d. <i>Harris</i> (A)	1949	Seismic	Structural/ Anticline	Fermian/ Leonard	Dolom ite	6,000	65

123 A.4d(PB-TX8A)-I

Surface	(million	Crude	011 of Dec. 31,	1975)		atural Gas of Dec. 31,	1975)	Nat (mill. bb	ural Gas Liqui ls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
66,420		991.6	886.7	94.80			56.11			
63,500	4,747.8	973.7	876.3	94.15			55.32	<u>:</u>		9.22 ^a
2,920		17.9	10.4	0.65			0.79			į
70,220	2,777.4	1,051.0	650.0	79. 06			83.53			21.84ª
51,000	2,160.9	847.3	586.1	72,40	835.0		78,00			18.27 ^a
19,220	616.5	203.7	63.9	6.66			5.53			3.57 ^a
178,000	2,822.0	885,4	619.6	60.56	719.1		26.56			3.34 ^b
88,000	1,810.0	642.7	417.3	46.58	472.3		14.81			2.31 ^a
90,000	1,012.0	242.7	202.3	13.98	246.8		11.75			1.03 ^b
15,700	1,014.6	211.1	248.9	21.73	317.0		16.41			
15,060	523.8	204.0	61.2	13.08	39.5		*8,61			3.40 ^a
9,260	370,2	136.8	113,2	11.69	19.0		2.18			0.57ª
30,800	:	129.5	86.0	5.44	!		3.54			
3,500		17.0	3.9	0.32			0.54			
16,700		72.1	43.7	2,67			2.50			
5,400		16.9	11.1	0.61	:		0.12			
5,200		23.5	27.3	1.84	1.2		0.38			

Field	Year Dis- covered	Discovery Nethod(s)	Type of :	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feat)	Reservoir Thickness (feet)
8. Anton-Irish (Permian: Matador Arch)	1944	Seismic, Subsurface, Geophysics	Structural/ Anticline	Permian/ Leonard	Dolomite	5,300	325
Class AA Fields							ţ
9. Prentice (all) (Permian: North Basin)	1950	Seismic	Structural/ Anticline	Permian/ Leonard, Guadalupe	Dolomite	6,700, 5,900	165, 65
10. Weich (Permian: Midland Basin)	1941	Geophysics	Stratigraphic/ Porosity pinchout	Permian/ Gwadalupe	Dolomite	5,000	40
ll. <i>Heinec</i> ke (Permian: Horseshoe Atoll)	1950	Trend, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Virgil	Limestone	6,800	45
12. Adair & Northeast (Permian: Horseshoe Atol1)	1947	Seismic, Subsurface	Combination/ Organic reef, Anticline	Permian/ Wolfcamp, Guadalupe	Limestone, Dolomite, Sandstone	8,500, 4,900	60, 60
13. Jo-Mill (Permian: Midland Basin)	1954	Subsurface	Stratigraphic/ Facies change, Permeability pinchout	Permian/ Leonard	Sandstone, Siltstone	7,100	40
14. Garza (Permian: Eastern Shelf)	1935	Surface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,900	50
Class A Fields							
15. Sharon Ridge (Permian: Eastern Shelf)	1923	Surface, Subsurface	Structural/ Anticline	Permian/ Guadalupe, Leonard	Dolomite, Limestone	1,700, 2,400, 3,000	25, 200, 20
16. Russell, North (Permian: North Basin)	1948	Seismic, Subsurface	Structural/ Anticline	Devonian/ Lower	Dolomite, Limestone	11,100	75
17. Cedar Lake (Permian: Midland Basin)	1939	Seismic, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	4,800	160
18. Seminale, West (Permian: Central Basin)	1948	Seismic, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	5,000	120
19. Russell & Southwest (Permian: North Basin)	1943	Seismic, Subsurface	Structural/ Anticline	Permian/ Leonard	Dolomite	7,700	125
20. Wellman (Permian: Central Basin)	1950	Seismic	Stratigraphic/ Organic reef	Permian/ Wolfcamp	Limestone	9,700	350
21. Good (Permian: Horseshoe Atol1)	1949	Seismic, Subsurface, Core-drill	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	7,900	100
22. Brahansy (Permian: North Basin)	! 1945 	Subsurface	Combination/ Porosity pinchout, Nose	Permian/ Guadalupe; Mississippian/ Meramec	Dolomite, Limestone	5,300, 10,900	30, 45
23. Ackerley (Permian: Midland Basin)	1954	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Permian/ Wolfcamp	Sandstone	8,200	35

Surface	(million	Crude as bbls as	011 of Dec. 31,	1975)	(Bcf_as	Natural Cas (Bof as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 197		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
9,000	450.0	85.1	102.9	7.50	38.6		1.65			0.32	
8,500		99.8	57.8	5.93	19,6		1.34			0,25	
16,480		91.7	56.7	5.41	16.1		0.89			0.20	
2,840		47.0	55.0	4.27	57.0		4.59				
6,500		72.8	37.8	4.57	21.9		1.22			0.32	
28,520		53.5	25.8	1.50	26.0		2.71			0.83	
9,760		65.0	35.4	2.28			0.42				
13,000		51.0	36.0	2.74			0.07				
5,200		70.7	9.3	1.20			0.31				
8,600		55,1	23.2	2.62	7.6		0.60				
2,780		27.1	16.8	1.73	75.0		3.89				
6,600		42.3	23.2	1.17			0.84				
1,200		33.9	24.3	2.75			1.35				
1,940	:	31.9	17.9	1.76			1.55				
15,000		28.2	22.2	1.70	14.6	:	0.79				
22,000		21.4	19.6	1.36			1.82	<u>.</u>			
	!			İ							

				····			
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
24. Smyer (all) (Permian: North Basin)	1944	Seismic, Subsurface	Structural/ Anticline	Permian/ Leonard	Dolomite	5,900	70
Class B Fields							
25. Eroneo (also SENM) (Permian: North Basin)	1952	Se1smic	Structural/ Faulted anticline	Devonian/ Lower	Dolomite	11,900	140
26. Dorward-Post (Permian: Eastern Shelf)	1950	Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite, Limestone	2,500, 2,700	30, 85
27. Kingdom (all) (Permian: North Basin)	1970	Seismic	Stratigraphic/ Organic reef	Permian/ Leonard	Dolomite	7,800	330
28. Anne Tandy (Permian: Eastern Shelf)	1972	:		Pennsylvanian/ Des Moines	Limestone	5,300	5
29. Reeves (Permien: Midland Basin)	1957	Seismic, Subsurface	Stratigraphic/ Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite, Limestone	5,500	30
30. <i>Ropes</i> (Permian: Midland Basin)	19 50	Seismic	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	9,300	100
31. West (Permian: North Basin)	1937	Subsurface	Structural/ Anticline	Devoniau/ Lower; Permian/ Guadalupe	Dolomite	11,100, 5,100	20, 35
32. Von Roeder (Permian: Horseshoe Atoll)	1949	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	6,700	45
33. Tex-Hamon (Permian: Midland Basin)	1962	Seismic	Combination/ Anticline, Porosity pinchout	Silurian/ Middle; Ordovician/ Upper	Dolomite, Chert	11,600, 11,700	50, 35
34. Fluvarna & North (Permian: Eastern Shelf)	1949	Seismic, Subsurface, Geophysics	Structural/ Anticline	Pennsylvanian/ Des Moines; Mississippian/ Meramec; Ordovician/ Lower	Limestone, Dolomite	7,800, 8,200, 8,400	
35. Clairemont-Boomerang (Permian: Eastern Shelf)	1950	Subsurface, Core-drill	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	6,700	15
Class C Fields			ļ				
36. Spraberry: Deep (Permian: Midland Basin)	1946	Seismic	Structoral/ Anticline	Permian/ Leonard	Sandstone	6,400 6,700	
37. Bottenfield/D.E.S./ Toby-Jo (Permian: Midland Basin)	1952	Seismic	Structural/ Anticline	Permian/ Wolfcamp	Limestone	9,200 9,400	
3B. Swenson-Barron- Garsa (Permian: Eastern Shelf)	1971			Ordovician/ Lower; Fennsylvanian/ Des Moines	Bolomite, Limestone	7,900 7,400	

Surface	(million	Crude ns bbla as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 197		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
5,820		28.3	21.7	1.90			0.22	1100.	VEGETARR	7104
680	İ	13.3	2.0	0.17			*			
20,700		23.3	8.9	0.82			0.33			
2,640		0.2	29.8	0.18	0.1		0.04			
1,320		2.9	27.6	1.64	0.2		0.11			
6,840	88.0	16.8	10,1	1.07	5.5		0.29		:	
1,800		19.9	6.7	0.85	5.5		0.31			0.09
1,480		14.0	12.8	1.13			0.07			
1,740		14,2	7.4	0.70	i		0.73			
1,200		18.2	7.0	1.78			0.06			
3,860		19.8	1.7	0.24		:	0.22			
1,360		16.9	6.6	0.66			0.39			
2,340		14.2	1.9	0.35			0.61			
1,520		12.1	7.2	0.97			0.48			
2,160		5.3	15.2	2.09	1.3		0.38			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
39. Spraberry, West (Permien: Midland Basin)	1953	Seismic, Subsurface	Combination/ Organic reef, Anticline	Permian/ Leonard; Pennsylvanian/ Missouri	Sandstone, Limestone	7,500, 6,400, 8,000	90, 80, 40
40. <i>G-M-K</i> (Permian: Midland Basin)	1957	Seismic, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Dolomite	5,500	8 5
41. Bateman Ranch (Permian: Eastern Shelf)	1943	Surface	Structural/ Anticline	Pennsylvanian/ Virgil	Limestone	5,100, 3,700	30, 25
42. Huntley (Permian: Eastern Shelf)	1954	Seismic	Structural/ Anticline	Permian/ Guadalupe	Dolomite	3,900, 3,400	10, 20
43, Amrow (Permian: Midland Basin)	1954	Seismic	Structural/ Anticline	Devonian/ - Lower	Dolomite	12,600	55
44. Hobo (Permian: Horseshoe Atoll)	1951	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Virgil	Limestone	7,100	50
45. Buckshot (Permian: Midland Basin)	1957	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Permian/ Guadalupe	Dolomite	5,000	20
46. Von Roeder, North (Permian: Horseshoe Atoll)	1954	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	6,800	30
47. <i>Revilo</i> (Permian: Eastern Shelf)	1955	Seismic	Structural/ Anticline	Permian/ Guadalupe	Dolomite	2,600.	10
48, Yellowhouse (Permian: North Basin)	1944	Saismic	Combination/ Porosity pinchout, Nose	Permian/ Guadalupe	Dolomite, Anhydrite	4,600	65
49. S-M-S (Permian: Eastern Shelf)	1954	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Missouri	Sandstone	6,100	15
50. D-L-S (Permian; North Basin)	1953	Seismic	Stratigraphic/ Unconformity	Permian/ Guadalupe	Dolomite	5,100	25
51. <i>Sable</i> (Permian; North Basin)	1957	Core-drill, Subsurface	Structural/ Anticline	Permian/ Guadalupe	Limestone	5,300	40
52. <i>Lee Harrison</i> (Permian: Eastern Shelf)	1941	Seismic	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Leonard	Limestone	5,000	45
53. Good, Southeast (Permian: Horseshoe Atoll)	1958	Subsurface	Stratigraphic/ Unconformity, Organic reef	Silurian/ Middle; Pennsylvanian/ Missouri	Limestone, Dolomite	9,700 8,100	
54. Landon (Permian: North Basin)	1945	Seismic	Structural/ Anticline	Permian/ Guadalupe; Devonian/ Lower	Limestone, Dolomite	5,000 10,200	

^aEstimated plant liquids.

b. Lease condensate only.

Surface		Ciude ns bbls as	011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,100		11.8	2.9	0.32			0.39	11001		
2,620		7.3	6.3	0.67			0-44			
1,700		14.7	2.1	0.18		:	0.04			
1,640		11.5	4.5	0.38			0.05			
1,460		11.6	3.9	0.32	*	. *	*			
1,540		10.3	1.4	0.23			0.28			
7,600		8.6	2.6	0.23	7.2		1.50			0.01
1,680		9.2	0,9	0.35			0,25			
5,000		10.5	1.8	0,25			0.08			
3,240		7.9	3.8	0.22			0.05			
4,100		10.8	0.5	0.13	2.9		0.05			
2,920		1.5	8.8	0.43	1.3		0.43			
1,240		3.7	6.6	0.40			0.09			
800		5.8	4-6	0.24			0.03			
3,500	:	8.8	0.5	0.16			0.10			
1,440		7.6	2.4	0.17		:	0,01			

Table A.5a

THE SIGNIFICANT OIL AND GAS FIELDS OF TEXAS R.R.C. DISTRICT 7B

130

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields							
 Breckenridge^a (Bend) 	1918	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Limestone	3,200	50
Class AA Fields							
2. Ranger ^b (Bend)	1917	Random	Structural/ Anticline	Pennsylvanian/ Atoka	Limestone, Sandstone	3,200	30
Class A Fields							
3. Claytonville (Permian: Eastern Shelf)	1952	Surface, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Missouri	Limestone	5,700	20
4. Round Top (Permian: Eastern Shelf)	1947	Subsurface, Seismic	Combination/ Faulted organic reef, Porosity- permeability pinchout	Pennsylvanian/ Missouri	Limestone	4,800	45
5. Nena Lucia (Permian: Eastern Shelf)	1955	Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines	Limestone	6,900	25
6. Xats (Permian: Eastern Shelf)	1951	Geophysics, Subsurface	Structural/ Anticline	Fennsylvanian/ Des Moines	Sandstone	4,900, 5,100	30, 30
7. Desdemona ^C (Bend)	1918	Surface	Combination/ Facies change, Anticline	Fennsylvanian/ Atoka	Limestone, Sandstone	2,700, 3,000	60,
Class B Fields							
8, Flowers (all) (Permian: Eastern Shelf)	1951	Surface, Core-drill, Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	4,000	25
9. Boyd (Permian: Eastern Shelf)	1939	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Limestone	6,000	15
10. Cooke ^d (Bend)	1926	Surface	Combination/ Facies change, Nose	Pennsylvanian/ Virgil	Sandstone	1,300	15
Class C Fields							
11. Dora, North (Permian: Eastern Shelf)	1953	Geophysics, Seismic, Core-drill	Stratigraphic/ Organic reef	Pennsylvanian/ Des Moines; Cambrian/ Upper	Limestone, Sandstone	5,900, 6,000, 5,900	
12. White Flat (Permian: Eastern Shelf)	1952	Core-drill	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone, Limestone	5,400, 5,000	15, 20
13. Curry ^e (Bend)	1921	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Limestone	3,100	20
14. Sipe Springs (Bend)	1910	Randon	Combination/ Nose, Facies change	Pennsylvanian/ Atoka	Limestone	2,700	15

Surface	(millio	Crude ns bbls as	of Dec. 31,	1975)	Natural Cas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Proc	
c.30,000		c.145.7	c.32.8	c.1,90			c.2.24	•			
e. <u>16,000</u>		e. 72.3	c. 2.7	c.0.12			c.0.75				
2,560	!	46.2	19.8	6.24			6.33	*		*	
3,000		36.2	17.4	1.26			4.31	*		*	
1,440	 	29.3	6.3	0.70			4.32			*	
5,760		43.4	7.6	0.89			0.33				
6,200		c.26.5	e.0.5	c.0.05		·	c.1.47				
9,120		25.9	6.1	0.63			0.11		:		
2,440		19.9	9.1	0.78		<u> </u>	0.47				
1,460		c.25,1	c.2.9	c.0,23			c.0.08				
320		16.8	1.5	0.39			0.56	*	:	*	
1,960		14.7	2.2	0,29			0.61				
2,580		c.12.0	c. 2. 5	c.0.16			c.0.18				
900		1.5	*	*			0.58			*	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thicknes (feet)
15. Royston (Permian: Eastern Shelf)	1928	Surface	Structural/ Anticline	Pennsylvanian/ Virgil	Limestone	3,100	20
16. Hylton, Northwe (Permian: Eastern Shelf)		Core-drill, Geophysics, Subsurface	Structural/ Anticline, Fault	Cambrian/ Upper; Pennsylvanian/ Des Moines, Missouri	Sandstone, Limestone	6,000, 5,400, 4,600	40. 15, 20
17. Lee Ray (Bend)	1927	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	3,000	20
18. Strawn ^f (Bend)	1912	Randor	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	1,900, 3,000	20, 35
19. X-Ray (Strawn)	1920	Random	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Atoka	Sandstone	3,200	50
20. Audas-Graham (Bend)	1971	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Limestone	4,200	15
21. Sojourner (Permian: Eastern Shelf	1950	Seismic, Geochemistry	Combination/ Porosity- permeability pinchout, Facies change, Nose	Pennsylvanian/ Des Moines	Sandstone	5,300, 4,800	30, 10
22. Hamlin, East (Bend)	1950	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Virgil	Sandstone	3,200	20
23. Santa Anna (Bend)	1915	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Atoka	Limestone	2,200	60
24. Old Glory (Permian: Eastern Shelf	1950	Surface, Core-drill	Structural/ Anticline	Pennsylvanian/ Atoka, Des Moines	Limestone, Sandstone	5,900, 5,000	. 5 15
25. Pardue (Permian: Eastern Shelf	1949	Subsurface, Seismic	Structural/ Anticline	Pennsylvanian/ Virgil, Missouri; Cambrian/ Upper	Sandstone, Limestone	3,700, 6,000, 4,400	
26. Lake Tramel 9 West (Permian: Eastern Shelf		Subsurface	Stratigraphic/ Organic reef, Uncomformity, Facies change	Pennsylvanian/ Miesouri	Sandstone	5,200	45
27. Cook Ranch (Bend)	1949	Seismic, Subsurface	Structural/ Anticline	Permian/ Wolfcamp	Sandstone	1,200	10
28. Toto (Fort Worth)	1954	Subsurface, Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Atoka	Limestone, Sandstone	3,900	20
29. Noodle Creek ⁸ (Bend)	1926	Surface	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Virgil	Limestone	2,400	10

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Pro d
3,300		17.5	0,6	0.04			*			
800		14.6	1.7	0.37			0.39	*		*
4,160		*		*			0.73			*
2,500		c.8.6	c.1.4	c.0.10			c.0.09			
		1.0	*	*		ļ. -	1.79			
3,880		1.0	14.0	0.31	0.9		0.24			
1,160		15,1	1.6	0.61			0.08			
860		11.3	3.8	0.36			0.16			
14,300		0.4	0.1	*			1,80			**
4,000		13.0	1.3	0,16			0.11			
1,920		13,7	0.7	0.22			0.12			
4,060		10.1	1.3	0.23			0.16		ļ	
8,960		10.7	1.8	0.35			0.03			
8,600							2.78			0,0
1,700		c.11.5	c.1.0	c.0.09			c.0.01			

							
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
30. Stoverh (Bend)	1926	Surface	Combination/ Facies change, Nose	Pennsylvanian/ Missouri	Sandstone	1,200	10
31. Gues: (Permian: Eastern Shelf)	1951	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	4,600	25
32. Fry ¹ (Bend)	1926	Surface	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines	Sandstone	1,300	15
33. Glen Cove (Bend)	1951	Subsurface, Trend	Stratigraphic/ Unconformity, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,400	15
34. Goldsboro (Bend)	1926	Surface	Combination/ Unconformity, Nose	Pennsylvanian/ Des Moines	Sandstone	4,200	1 5
35. Rough Draw (Permian: Eastern Shelf)	1961	Subsurface	Stratigraphic/ Facies change	Permian/ Wolfcamp	Limestone	3,800	10
36. Reddin (all) (Bend)	1942	Geochemistry	Structural/ Anticline	Permian/ Wolfcamp; Pennsylvanian/ Virgil	Sandstone	2,600, 2,600	10. 10
37. Avoca & North (Bend)	1937	Seismic, Core-drill	Structural/ Anticline	Pennsylvanian/ Missouri	Limestone	3,300	40
38. Griffin (Bend)	1938	Seismic, Core-drill	Structural/ Anticline	Pennsylvanian/ Missouri	Limestone	3,300	20
39. Bluff Creek ⁾ (Bend)	1930	Surface	Combination/ Facies change, Nose	Pennsylvanian/ Virgil	Sandstone	1,600	1.0
40. Cross-Cut ^k (Bend)	1922	Surface	Combination/ Facies change, Nose	Pennsylvanian/ Missouri	Sandstone	1,200	10
41. Mineral Wells (Bend)	1915	Seepage	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	1,000 1,800	, 15, 20
42. Neill, South (Permian: Eastern Shelf)	1971	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Limestone	5,700	15
43. Pioneer ¹ (Bend)	1919	Surface	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines	Limestone	2,400	20
44. Wimberly (Bend)	1941	Seismic, Subsurface	Combination/ Anticline, Organic reef, Porosity- permeability pinchout	Pennsylvanian/ Virgil; Permian/ Wolfcamp	Limestone, Sandstone	2,600 2,400 2,200	10,
		<u></u>		<u> </u>		J	

134

^aEighty-five percent of Stephens County Regular.

 $^{^{\}mathrm{b}}\mathrm{Sixty}$ percent of Eastland County Regular.

 $^{^{\}mathrm{C}}$ Twenty-two percent of Eastland County Regular.

 $^{^{}m d}$ Thirty percent of Shackleford County Regular.

eSeven percent of Stephens County Regular.

fThirty-eight percent of Palo Pinto County Regular and three percent of Stephens County Regular.

SThirty percent of Jones County Regular.

 $^{^{\}mathrm{h}}$ Nenty-four percent of Brown County Regular.

¹Twenty-two percent of Brown County Regular.

 $^{^{\}hat{J}}$ Ten percent of Shackleford County Regular.

 $^{^{\}mathbf{k}}$ Twenty percent of Brown County Regular.

 $^{^{\}mathrm{l}}$ Five and one-half percent of Eastland County Regular.

Surface	(million	Crude	011 of Dec. 31	, 1975)	(Ecf as	Natural Gas of Dec. 31	, 1975)	Natr	ural Cas Liqu ls as of Dec.	ids 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves		Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod.	Demonst. Reserves	1975 Prod.
1,520		c.10.2	c.0.6	c,0,04	11001		e.0.07	11541	nest rves	1154
1,080		7.1	2.8	0.44		1	0.15			
1,060		c. 9.3	e.0.6	c.0.04		!	c.0.06			
1,880	<u> </u> :	7.6	2.9	0.02		<u>.</u>	0.15	! - -		*
7,720		6.3	2.2	0.08			*			
4,360		10.0	0.5 j	0.09		 	0.02			
2,000	 	10.0	0.4	0.03			J.02			
1,520	į	10.2	0.1	0.02			*			
1,380		9.9	0.4	0.04		:	*			
2,680		c.8.4	c.D.9	c.0.08			c.0.03			
2,300	i i	c.8.5	c.0.5	c.0.04			c.0.06			
c.5,000	<u></u>	ļ	i 			<u> </u>	0.84			
2,520		4.7	2.8	1.22	4.0		1.05			
1,400	 	c.6.6	c.0.2	c.0.01			c.0.05			
4,140		8.9	0.1	0.02			0.01			
]								
		<u> </u>	:							

 $\label{table A.5b}$ The Significant oil and gas fields of Texas R.R.G. District 9

Fie ld	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields							
1. Boonsville (Fort Worth)	1950	Seismic, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Atoka	Sandstone	5,400	100
2. Burkburmett ^a (also OK) (Palo Duro: Red River Arch)	1918	Randon	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Sandstone	1,700	30
3. Fleatra b (Palo Duro: Red River Arch)	1911	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Sandstone	1,800,	20, 20
4. K-M-A (Palo Duro: Red River Arch)	1920	Surface, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,700	100
Class AA Fields	1						1
5, Wainut Bend (all) (South Oklahoma)	1938	Surface, Seismíc	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	4,900, 5,500, 3,900	15, 40, 10
6. Sherman & East (South Oklahoma)	1947	Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	7,500, 4,900, 3,500	35, 10, 35
Class A Fields							
7. Hull-Silk-Sikes (Bend)	1916	Kandom	Combination/ Anticline, Permeability- porosity pinchout	Pennsylvanian/ Des Moines	Sandstone	3,900, 4,300	100, 75
8. Nocona ^C (Fort Worth)	1924	Surface	Combination/ Faulted anticline Facies change	Pennsylvanian/ Virgil	Sandstone	1,200	45
9. Big Mineral Creek (South Oklahoma)	1951	Seismic :	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	5,300	15
10. #lvord (all) (Fort Worth)	1954	Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Molues	Limestone	5,700, 5,900	40, 10
Class B Fields							
11. Anarene ^d (Bend)	1949	Seismic, Subsurface	Structural/ Anticline	Pennsylvanian/ Des Moines	Limestone	4,700	65
12. Landreth ^e (Palo Duro: Red River Arch)	1925	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Limestone	1,900	30
13. Petrolía ^f (Fort Worth)	1902	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Sandstone	1,500, 1,700	50, 50
14. <i>Iowa Park^g</i> (Palo Duro: Red River Arch)	1913	Randon	Combination/ Anticline, Facies change	Fennsylvanian/ Virgil	Sandstone	1,700, 1,000	30, 20
15. Farqo (Palo Duro: Hardeman Basin)	1940	Seismic	Structural/ Anticline	Pennsylvanian/ Missouri, Virgil	Sandstone	4,200, 3,300	20, 20

Surface	(millio	Crude		. 1975)	(Bcf as	Matural Gas of Dec. 31,	1975)	Natur (mill, bbl	al Gas Liquids s as of Dec. 31	, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975	Cutt.	Demonst.	1975	Cum. Prod.	Demonst. Reserves	1975 Prod.
(acres)	Frace	rrou.	Keserves	Prod.	Prod.	Reserves	Prod.	rrug.	Reserves	- FLOG-
250,000		3.7	2.3	0.05	,		78.31			0.15
c.27.000		c.243.9	c.26.1	c.2.03			c.0.17			
c.20,500		c.204.7	c.20.3	c.1.68			c.0.12			
, 500			C. 20.5	C.1.00			2.0.12			
37,000		169.2	27.4	1.84			0.19			
	1									
4,640		104.6	9.6	3.30			1.09	*		*
6,700		47.7	12.5	1.22			7.08			0.01
8,000		80.5	5.1	0.29			0.02			
3,100		c.43.1	c.9.9	c.0.79			c.0.18			
,				•,			210120			
					l				i	
1,300		34.1	10.3	1.77			1.41	*		
5,120		14.4	14.0	0.68			2.47			0.01
3,120		14.4	14.0	0.08		:	2.47			0.01
e.4,000		c.36.0	c.4.0	c.0.30		Ì	c.0.01			
c.9,600		c.32.0	c.3.0	c.0.25			c.0.01			
6,400		c.20.5	c.3.0	- O 25			- 0.06			
7,400		C.2015	2.3.0	c.0.25			c.0.06			
c.3,500		c.30.5	c.3.5	c.0.25			c.0.02			
4,160		28,5	4.3	1.53			0.01			

A.5b(NCT-TX9)-2 138

	Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
16.	Sivells Send (also OK) (South Oklahoma)	1944	Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	6,900	10
17.	Hildreth (Fort Worth)	1942	Seismic	Structurel/ Anticline	Pennsylvanism/ Des Moines, Atoka	Limestone, Sandstone	6,100, 6,400	50, 20
C1as	ss C Fields							
18.	Joy (Fort Worth)	1941	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	4,000	30
19.	Sadler (South Oklahoma)	1943	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	6,700	20
20.	Sandueky (South Oklahoma)	1950	Seismic	Structural/ Faulted anticline	Ordovician/ Middle	Sandstone	7,200	5
21.	New-Mag (South Oklahoma)	1955	Seismic	Combination/ Faulted anticline, Porosity- permeability pinchout	Ordovician/ Middle	Sandstone	12,800	100
22.	Wilson (South Oklahoma)	1941	S eis mîc	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,200, 3,500	10, 15
23.	South Bend ^h (Bend)	1917	Random	Structural/ Anticline	Pennsylvanian/ Atoka, Virgil	Sandstone, Limestone	4,000, 1,000	20, 20
24.	Bryson (all) (Fort Worth)	1915	Subsurface, Surface	Combination/ Nose, Porosity- permeability pinchout, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,100	35
25.	Chico, West (Fort Worth)	1948	Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	5,100, 5,900	55, 10
26.	Rusmag (Fort Worth)	1950	Subsurface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	4,600	5
27.	Antelope (all) (Fort Worth)	1940	Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	3,200	40
28.	Knox City, North (Permian: Eastern Shelf)	1950	Seismic, Subsurface	Stratigraphic/ Organic reef	Pennsylvanian/ Missouri	Limestone	4,200	15
29.	Langeton-Kleiner- Garvey (Bend)	1941	Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,500	5
30.	Vogtsberger & South (Bend)	1940	Surface, Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	4,300, 4,700	20, 80
31.	Eanes (Fort Worth)	1951	Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Limestone	5,900	20

139 A.5b(NCT-TX9)-2

	(11111111	os bbls as	of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31.	, 1975)	(mill. bb	ral Gas Liquid ols as of Dec.	31, 197
Surface Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	197 Pro
2,440		24.0	2.8	0.77			0.16			
6,960		27,6	1.4	0.23			0.04			
2,700		21.4	1.2	0.15			0.02			
2,960		16.0	1.6	0.38			0.23			
1,320		15.4	1.0	0,11			0.19			
1,600		0.1	*	*	106.9		2.49	0.8		
1,360		13.6	6,2	0.28			0.01			
1,440		c.16.0	*	*		:	*			
2,000		14.5	0,7	0.10			0.02			
2,560		8.3	1.5	0.08			1.07			*
5,560		14.1	2.0	0.21			0.04	*		<u> </u>
1,660		13.9	0.9	0.08			0.03			
2,700		13.0	1.9	0.21			0.05			
12,600		13.8	1.0	0.07			0.01			
2,160		14.1	0.4	0.10			0.01	*		
10,000		7.6	1.2	0.33			0.20	*		

		· ·			<u> </u>		<u> </u>
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
32. Holliday, East (Bend)	1946	Subsurface, Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Limestone	4,100	5
33. Hardy, Southeast (South Oklahoma)	1953	Seismic, Trend	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,700	55
34. Bowers (all) (Fort Worth)	1939	Random	Structural/ Anticline	Pennsylvanian/ Missouri	Limestone, Sandstone	3,800	10
35. Rasberry (Palo Duro: Hardeman Basin)	1955	Surface, Trend	Structural/ Anticline	Pennsylvanian/ Des Moines	Limestone	6,100	25
36. Worshom-Steed (Fort Worth)	1942	Surface, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	4,700	20
37. Conley (Palo Duro: Hardeman Basin)	1959	Seismic	Structural/ Anticline	Mississippian/ Osage; Ordovicism/ Lower; Pennsylvanian/ Missouri	Limestoné	7,800, 8,000, 5,200	210, 55, 30
38. Wise-Kent (Fort Worth)	1963	Subsurface, Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	3,900	
39. Gatewood (South Oklahoma)	1944	Seismic, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	1,600	15
40. Woodbine (South Oklahoma)	1944	Seismíc	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	4,400	10
41. Caughlin: Strawn (Fort Worth)	1955	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	4,000	15

aForty-eight percent of Wichita County Regular.

b Twenty-eight percent of Wichita County Regular and thirty-nine percent of Wilbarger County Regular.

 $^{^{\}mathrm{C}}$ Ninety percent of Montague County Regular. $^{\mathrm{d}}$ Fifteen percent of Archer County Regular.

e Twenty percent of Wilbarger County Regular.

frifty percent of Clay County Regular.

gSix percent of Wichita County Regular.

h_{Ten percent of Young County Regular.}

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)		ral Gas Liquid ls as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,200		12.3	0.5	0.08			0.01			
1,000		9.1	1.5	0.59			0.82		:	
1,300		8.5	2.1	0.08			0.01			
3,160		9.8	0.8	0.20			0.02			
4,000		10.1	0.1	0.03			0.02	*		
1,980		7.9	1.9	0.19			0.16	*		*
3,520	- -	-			23.7		3.10	0.1		*
1,340		9.8	1.1	0.15			*			
1,140		8.7	1.3	0.13			0.02			
18,520		5.7	2,5	0.22			0.07	*		

Table A.6a
THE SIGNIFICANT DIL AND GAS FIELDS OF KANSAS

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1. Hugoton (also OK & TX10) (Anadarko)	1922 (1910)	Random	Combination/ Facies change, Porosity- permeability pinchout, Hydrodynamic	Permian/ Wolfcamp	Limestone	2,500	50
a. Hugoton (AAAA)	1922 (1910)	Randon	Combination/ Facies change, Porosity- permeability pinchout, Hydrodynamic	Permian/ Wolfcamp	Limestone	2,500	50
b. Panoma (AAA)	1956	Subsurface	Stratigraphic/ Facies change	Permian/ Wolfcamp	Limestone	2,800	40
2. El Dorado (Nemaha)	1915	Surface	Combination/ Faulted anticline, Unconformity	Permian/ Wolfcamp; Pennsylvanian/ Missouri; Ordovician/ Middle	Sandstone. Limestone	600~ 2,500	35
3. Chase-Silica (Central Kansas)	1931	Surface, Core-drill, Geophysics	Combination/ Anticline, Unconformity	Fennsylvanian/ Virgil, Missouri; Ordovician/ Lower	Limestone	2,300- 3,300	10
4. Bemis-Shutts (Central Kansas)	1926	Surface, Core-drill	Combination/ Anticline, Unconformity	Ordovician/ Lower; Pennsylvanian/ Virgil, Missouri	Dolomite, Limestone	2,900- 3,700	10
5. Trapp (Central Kansas)	1936	Surface, Core-drill	Combination/ Unconformity, Nose	Pennsylvanian/ Virgil, Missouri; Ordovician/ Lower	Limestone	2,900- 3,300	10
6. Greenwood (also CO) (Anadarko)	1952	Subsurface	Stratigraphic/ Facies change, Porosity- permeability pinchout	Pennsylvanian/ Virgil	Limestone	2,800- 3,100	65
Class AA Fields	İ	į				1	
7. Hall-Gurmey (Central Kansas)	1931	Trend, Subsurface, Core-drill	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri, Virgil; Ordovician/ Lower	Limestone	2,300- 3,200	30
8. Spivey-Grabs-Basil (Sedgwick)	1949	Subsurface	Combination/ Foresity- permeability pinchout, Unconformity, Fracturing	Mississippian/ Osage	Limestone	4,100- 4,400	. 15
9. Kraft-Prusa (Central Kansas)	1937	Random	Combination/ Anticline, Unconformity, Porosity- permeability pinchout	Ordovician/ Lower; Pennsylvanian/ Virgil, Missouri	Dolomite, Limestone	2,900- 3,300	- 25

Surface Area (acres) Cm Cum Demonst 1975 Cum Demonst 1975 Cum Demonst 1975 Cum Prod. Reserves Prod. Prod	1975 Prod.
2,617,980 15,771.7 673.55 2,617,980 15,454.0 594.36 603,840 317.7 79.19 * 25,060 281.0 9.0 1.09 *	Prod.
603,840 317.7 79.19 *	
25,060 281.0 9.0 1.09 *	
49,580 251.5 10.8 1.13 2.4	
26,700 220.3 16.7 1.89	
38,360 208.3 13.5 1.34 0.2	
214,000 822.4 27.96	
45,700 128.8 14.4 1.62 1.5	
93,800 51.1 10.1 1.19 658.0 19.98	
21,380 118.6 9.4 0.85 1.7 0.01	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
10. Gorhum (Central Kansas)	1926	Surface, Core-drill	Structural/ Anticline	Pennsylvanian/ Missouri, Virgil; Ordovician/ Lower	Limestone	2,700- 3,300	50
Class A Fields			!	ļ	i		į
11. Geneseo-Edwards (Central Kansas)	1934	Core-drill, Subsurface	Combination/ Anticline, Unconformity	Ordovician/ Lower; Pennsylvanian/ Missouri	Limestone	3,300, 2,900	5, 5
12, Burrton (Sedgwick)	1931	Core-drill, Trend	Combination/ Faulted anticline, Unconformity	Mississippian/ Osage	Limestone	3,300	40
13. Humboldt-Chanute (Cherokee)	1894	Random	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone	700- 900	25
14. Glick (Anadarko)	1957	Subsurface	Stratigraphic/ Facies change, Unconformity	Mississippian/ Osage	Limestone	4,500	10
15. Ritz-Canton (Sedgwick)	1929	Core-drill	Structural/ Anticline	Mississippian/ Osage; Pennsylvanian/ Missouri; Ordovician/ Middle	Limestone	2,900, 2,400, 3,400	30, 40, 5
16. Stoltenberg (Central Kansas)	1931	Randon	Combination/ Anticline, Unconformity	Ordovician/ Lower	Limestone	3,300	15
17. Lost Springs (Sedgwick)	1926	Surface, Core-drill	Combination/ Anticline, Unconformity	Mississippian/ Meramec; Pennsylvanian/ Missouri; Ordovician/ Middle	Limestone	2,400, 1,800, 2,800	15, 25, 20
18. Seeley-Wick (Cherokee)	1922	Trend	Stratigraphic/	Pennsylvanian/ Des Moines	Sandstone	1,900, 1,600	45, 20
19. Fairport (Central Kansas)	1923	Surface, Core-drill	Combination/ Anticline, Unconformity	Pennsylvanian/ Missouri	Limestone	3,000	10
20, Bloomer (Central Kansas)	1935	Trend	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Limestone	3,300,	25, 10
21. Peru-Sedun (Cherokee)	1895	Seepage	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	1,200	20
22. Medicine Lodge- Boggs (Sedgwick)	1927	Surface, Core-drill	Structural/ Anticline	Mississippian/ Osage; Ordovician/ Middle	Limestone	4,500, 4,800	10,
23. Augusta (Nemaha)	1906	Surface	Structural/ Faulted anticline	Pennsylvanian/ Missouri; Ordovician/ Middle, Lower	[,imestone	2,000, 2,400, 2,600	

Surface	(million	Cro ns bbls as	ude 011 of Dec. 31	, 1975)	(Bcf as	Natural Gas of Dec. 31	1975)	Natu (mill. bt	ral Gas Liquid ols as of Dec.	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonat. Reserves	1975 Prod.
21,900		79.6	11.3	0.55	0.2					
10,620		80,5	3.3	0.44						
13,000		64.8	8.5	0.72	2.8					
28,920		c.30.7	2.8	c.0.28						
21,760					233.5		15.62	0.4		0.02
16,760		63.2	7.1	0.49	7,0		0.15			
13,980		48.6	2.7		0.7		_ 			
35,280		c,48.0	2.0	0.17						
	! 									
9,460		51.5	1.7	0.15			:			
10,840		46.1	7.3	0.73						
4,700		51.3	1.2	0.21						
22,700		c.44.0	5.0	0 45						
14,000		6,6	0.2	0,07	318.0		2,06			
6,940		44.5	1,2	0.13						
			:							

Pield	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class B Fields							
24. Ray (Central Kansae)	1940	Seismic, Core-drill	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri; Ordovician/ Lower	Limestone	3,300, 3,500	50, 15
25. Morel (Central Kansas)	1938	Seismic, Core-drill	Structural/ Anticline	Ordovician/ Lower	Dolomite, Limestone	3,700	10
26. Zenith-Peace Creek (Central Kansas)	1937	Seismic	Combination/ Unconformity, Facies change, Nose	Ordovician/ Middle; Devonian/ Upper	Limestone, Sandstone	3,900, 3,800	5, 20
27. Thrall-Agaard (Cherokee)	1921	Trend	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,200	165
28. Welch-Bornholdt (Central Kansas)	1924	Core-drill, Subsurface	Combination/ Unconformity, Anticline	Mississippian/ Osage	Limestone	3,400	45
29. Marcotte (Central Kansas)	1943	Subsurface, Surface	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Limestone	3,800, 3,600	5, 5
30. <i>Bradsha</i> w (Anederko)	1957	Subsurface	Stratigraphic/ Facies change	Permian/ Wolfcamp	Limestone	2,500	35
31. <i>Iuko-Carmi</i> (Central Kansas)	1937	Seismic, Core-drill	Structoral/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Limestone	2,400- 4,300	60
32. Virgil, North (Cherokee)	1920	Trend	Stratigraphic/ Pacies change	Pennsylvanian/ Des Moines; Mississippian/ Meramec; Ordovician/ Lower	Sandstone, Limestone	1,600, 1,800, 2,100	50, 10, 15
33. Jefferson-Sycamore (Cherokee)	1892	Random	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	700- 1,200	30
34. Rhodes & Northeast (Sedgwick)	1949	Random	Stratigraphic/ Facies change, Porosity- permeability pinchout	Mississippian/ Osage; Pennsylvanian/ Virgil	Limestone	4,600, 3,700	5,
35. Wayside-Havana (Cherokee)	1903	Seepage	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	600- 1,200	20
36. Aetna (Sedgwick)	1935	Seismic	Combination/ Anticline, Unconformity	Mississippian/ Meramec; Ordovician/ Middle	Limestone	4,800, 5,300	15, 45
37. Coffeyville- Cherryvale (Cherokee)	1890	Seepage	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines; Ordovician/ Lower	Sandstone, Dolomite	600- 1,000, 1,300	25 , 5
38. Voshell (Sedgwick)	1929	Core-drill	Combination/ Faulted anticline, Unconformity	Mississippian/ Osage; Ordovician/ Lower	Limestone	3,100, 3,400	15, 10

Surface	(millio	Cri ne bbls as	ude 011 of Dec. 31	1975)	(Bcf as	Natural Gas of Dec. 31	, 1975)	Nati (mill, b)	ral Gas Liquid	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
4,960		41.0	5.4	0.75						
]				
8,800		39.9	4.4	0.53						
11 160										
14,460		42.9	0.9	0.10	*					
5,100		38.0	0.5	0.09						
10,700		38.5	1.3	0.13						
11,560		34.2	4.0	0.46						
108,200					93.5		6.07			
10,320		30,5	2.2	0.22	11.3		1.18			
				0.22	12.5		1.10			
11 0/0										
11,260		31.7	3.3	0.38						
	İ									
c.40,000	ĺ	c.13.4	0.6	c.0.06						
13,500		9.8	1,3	0.15	99.1		0.65			
11,100		c.26.5	2.5	c.0.25						
18,000		0,3	0.2	0.01	116.8		4.63		}	
				;						
9,700		c.11.2	0.8	0.08]		
3,300		31.8	0.8	0.08						
			-,,							
		·								
	!	·			į		i	I	ŧ	

Field	Year Dis- covered	Discovery Method(a)	Type of Trap(s)	Ceologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
39. Interstate (Anadarko)	1953	Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Norrow; Permian/ Leonard	Sandstone	4,200, 1,200	30, 30
40. Hollow-Nikkel (Sedgwick)	1931	Corc-drill., Trend	Combination/ Faulted anticline, Unconformity	Pennsylvanian/ Missouri; Mississippian/ Osage; Silurian/ Lower	Limestone, Dolomite	2,500, 3,200, 3,500	20, 15, 15
41. Iola (Cherokee)	1873	Randon	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines	Sandstone	800- 900	50
42. Wil (Anadarko)	1942	Seismic, Subsurface, Core-drill	Combination/ Anticline, Unconformity, Porosity- permeability pinchout	Mississippian/ Kinderhook	Limestone	4,400	30
43. Harper Ranch (all) (Anadarko)	1953	Subsurface	Combination/ Facies change, Nose	Pennsylvanian/ Morrow	Sandstone	5,400	15
44, McKinney (Anadarko)	1950	Seismic, Surface, Core-drill	Stratigraphic/ Unconformity, Facies change	Mississippian/ Chester; Pennsylvanian/ Morrow	Limestone, Sandstone	5,800, 5,800	15, 15
45. Alford (Anadarko)	1944	Core-drill	Stratigraphic/ Porosity- permeability pinchout	Mississippian/ Meramec	Limestone	5,100	10
46. Hardtner (Sedgwick	1954	Subsurface	Combination/ Facies change, Nose	Mississippian/ Osage; Pennsylvanian/ Des Moines	Limestone, Sandstone	4,800, 4,800	25, 10
47. Neodesha (Cherokee)	1893	Seepage	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	800- 1,000	50
48. Cooper (Central Kanses)	1949	Subsurface, Seismic	Structural/ Anticline	Pennsylvanian/ Missouri; Ordovician/ Lower	Limestone, Dolomite	3,700, 3,800	15, 10
49. Tester-Scott (Cherokee)	1920	Surface	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,500	15
50. Valley Center (Sedgwick)	1928	Surface, Core-drill	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Missouri; Mississippian/ Kinderhook		2,900, 3,400	10,
Class C Fields							
51. Churchill (Sedgwick)	1926	Core-drill	Structural/ Faulted anticline	Pennsylvanian/ Missouri; Ordovician/ Lower	Limestone, Dolomite	1,800,	
52. Sallyards (Cherokee)	1917	Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,400	40

Surface	(million	Cru ns bbls as	de 011 of Dec. 31	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natu (mill. bb	ral Gas Liquid ls as of Dec.	s 31, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
15,000		19.5	4.9	0.88	19.4		0.56			
3,100		27.0	0.8	0.16						
3,600		c.4.7	1.3	0.14			0.02			
12,620		4.7	1.4	0.07	c.37.0		1.53			
22,500		3.1	0.3	0.01	120.2		1.86			
47,740					169.3		3.68	0.6		0.0
18,640		3.3	3.1	0,42	32.1		1.41			
6,220		1.3	0.5	0.08	108.4		1.47			
c.15,000		c.7.3	0.6	0.06						
8,260		21.5	2.3	0.26						
3,700		26.5	1.1	0.12	*					
1,460		23.1	0.4	0.04						
94 0		20.3	0.4	0.01		:			!	
3,520		19.7	0.9	0.09						

A.6a(MC-RS)-5 150

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
53.	Wilburton (Anadarko)	1959	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow, Virgil	Limestone	5,000, 3,100	35, 55
54.	Gates (Central Kansas)	1933	Seismic, Core-drill	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Limestone	3,700, 3,500	40, 15
55.	Pleasont Prairie (Anadarko)	1939	Subsurface, Core-drill	Combination/ Faulted anticline, Facies change, Porceity- permeability pinchout	Mississippian/ Meramec	Limestone	5,000, 5,100	95, 25
56.	Eubank (Anadarko)	1958	Subsurface, Seismic	Combination/ Anticline, Porceity- permeability pinchout, Facies change	Mississippian/ Chester; Pennsylvanian/ Morrow, Missouri	Sandstone, Limestone	5,500, 5,200, 4,100	25, 25, 20
57,	Buffalo-Vilas (Cherokee)	1900	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	800~ 1,000	140
58.	Rainbow Bend (Nemaha)	1923	Surface	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	3,200	50
59,	Burkett (Cherokee)	1922	Trend	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,000	100
60,	Richardson (Central Kansas)	1930	Seismic, Core-drill	Structural/ Faulted anticline	Ordovician/ Lower	Dolomite	3,500	60
61.	Trico (Central Kansas)	1951	Seismic	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Limestone	3,800, 3,700	20, 5
62.	Gladys (Sedgwick)	1954	Subsurface	Combination/ Facies change, Nose	Mississippian/ Meramec	Limestone	3,200	35
63.	Oxford (Sedgwick)	1927	Core-drill	Structural/ Faulted anticline	Pennsylvanian/ Missouri	Sandstone	2,500, 2,000	20, 15
64.	Wellington (Sedgwick)	1929	Core-drill	Stratigraphic/ Unconformity	Mississippian/ Osage	Limestone	3,700	10
65.	DeMalorie-Souder (Cherokee)	1924	Trend	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,200	55
66.	Wherry (Central Kansas)	1933	Seismic, Core-drill	Stratigraphic/ Unconformity	Pennsylvanian/ Morrow; Mississippian/ Osage	Sandstone, Limestone	3,400, 3,400	20, 20
67.	Hussell (Central Kansas)	1934	Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil, Des Moines; Ordovician/ Lower	Limestone, Dolomite	2,400, 3,200, 3,300	10, 10, 5
68.	Augusta, North (Nemaha)	1914:	Surface	Structural/ Faulted auticline	Fennsylvanian/ Missouri	Limestone	1,900	35
69.	Graber (Sedgwick)	1934	Core-drill	Structural/ Anticline	Silurian/ Lower	Dolomite	3,300	25

Surface	(million	Cri ns bbls as	ude Oil of Dec. 31	1975)	(Bcf as	Natural Gas of Dec. 31	, 1975)	Nati (mill. b)	iral Gas Liquid	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,640		8.0	4.5	0.34	5.6		2.50			
6,620	ļ	18.6	2,0	0.22	0.9					
7,440		15,9	4.5	0.61						
35,640		8.6	2.7	0.28	29.8		1.46			
2,800		c.1.6	0.4	0.04						
3,620		19.9	0.7	0.08		<u> </u>				
3,840		19.8	0.3	0.04						
1,900		17.9	1.1	0.11						
6,900		15.7	3.5	0.34				 		
37,100	į	17.6	0.9	0.13						
920		17.3	0.6	0.06						
3,600		17.3	1.4	0.17						
2,240		17.9	0.2	0.03						
6,660		16.3	0.8	0.55						
5,640	1	16.7	ņ.8	0.10	0,6					
1,540	i	16.0	0.6	0.02	:					
3,240		16.2	0.5	0.07	2,5		0.08			

A. 6a (MC-KS) -6 152

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(9)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
O. Bush City (Forest City)	1923	Surface	Combination/ Facies change, Anticline, Unconformity	Pennsylvanian/ Des Moines	Sandstone	800	15
1. Barry (Central Kansas)	1941	Core-drill	Structural/ Anticline	Pennsylvanian/ Missouri; Ordovician/ Lower	Limestone, Dolomite	3,400, 3,400	35, 5
2. Huffstutter (Central Kansas)	1943	Seismic. Core-drill	Structural/ Anticline	Pennsylvanian/ Missouri	Limestone	3,500	35
3. Slick-Carson (Nemaha)	1.924	Core-drill	Structural/ Anticline	Pennsylvanian/ Missouri	Limestone	2,700	55
4. Vingil (Cherokee)	1916	Surface	Structural/ Anticline	Mississippian/ Chester; Pennsylvanian/ Des Moines	Limestone, Sandstone	1,700, 1,600	10,
5. Kinsler (Anadarko)	1959	Subsurface, Seismic	Combination/ Facies change, Fault	Pennsylvanian/ Morrow; Mississippian/ Meramec	Sandstone, Limestone	5,200, 5,500	5, 5
6. Otis-Albert (Central Kansas)	1930	Surface, Core-drill	Combination/ Faulted anticline, Unconformity	Ordovician/ Lower	Sandstone, Dolomite	3,500	30
7. Atyeo-Pixlee (Cherokee)	1923	Trend	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines; Mississippian/ Meramec	Sandstone, Limestone	2,200, 2,500	30, 15
78. <i>Domne</i> (Anadarko)	1951	Subsurface	Combination/ Forosity- permeability pinchout, Nose	Mississippian/ Meramec; Pennsylvanian/ Morrow	Limestone, Sandstone	4,700, 4,700	25, 15
79. Lindsborg (Sedgwick)	1938	Seismic	Combination/ Anticline, Facies change	Ordovician/ Middle	Limestone	3,400	20
30. Mueller (Central Kansas)	1938	Seismic, Core-drill	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Timestone	3,600, 3,400	10, 10
31. Taloga (Anadarko)	1955	Selsmic, Subsurface	Combination/ Faulted anticline, Facies change, Porosity- permeability pinchout	Pennsylvanian/ Morrow, Virgil, Missouri	Sandstone, Limestone	4,500, 2,900, 3,600	20, 65, 35
82. Chitwood (Central Kansas)	1943	Core-drill, Seismic	Structural/ Faulted anticline	Ordovician/ Middle	Sandstone, Limestone	4,400	20
B3. Covert-Sellers (Sedgwick)	1920	Surface	Combination/ Faulted anticline, Unconformity	Ordovician/ Middle; Pennsylvanian/ Missouri	Limestone	2,300, 1,700	5 , 5

Surface	(million	Cr ns bbls as	ude Oil of Dec. 31	, 1975)		Natural Gas of Dec. 31.	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
2,980		c.15.0	1.0	c.0.10							
3,480		15.4	1.4	0.17							
7,120		12.2	4.2	0.39							
1,000		16.0	*	0.01							
5,520		14.4	0.8	0.09							
14,000		0.1	*	*	66.5		1.47				
16,600	:	14.7	0.2	0.05			0.02				
3,380		10.5	4.5	0.08		:					
5,120		8,2	6.8	1.01							
4,860		13.9	0.9	0.14							
4,920		12.8	2.0	0.22	*		*				
8,500		4.5	1.6	0.15	46.3		0.61				
2,000		12.0	0.1	0.01	10.2		0.03				
1,320		13.7	0.3	0.03		,					

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
84. Evalyn-Condit (Anadarko)	196 0	Subsurface	Stratigraphic/ Facies change	Mississippian/ Chester; Fennsylvanian/ Morrow	Limestone, Sandstone	6,000, 5,700	15, 20
85. Ogallah (Central Kansas)	1941	Seismic	Structural/ Anticline	Ordovician/ Lower	Dolomite	4,000	25
86. Soyd (Central Kaneas)	1942	Surface, Seismic	Structural/ Anticline	Pennsylvanian/ Missouri; Ordovician/ Lower	Limestone	3,200, 3,400	5, 10
87. Greenwich (Sedgwick)	1929	Core-drill	Structural/ Anticline	Mississippian/ Osage; Ordovician/ Middle	Limestone, Sandstone	2,900, 3,300	5 , 5
88. Sparks (Anadarko)	1954	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Morrow	Sandstone	5,200	80
89. Laton (Central Kansas)	1927	Surface, Core-drill	Structural/ Accicline	Pennsylvanian/ Missouri	Limestone	3,200	35
90. Borchers & North (Anadarko)	1959	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	5,500	35
91, Worton (Central Kansas)	1953	Subsurface	Combination/ Anticline, Unconformity	Ordovician/ Lower	Dolomite	3,800	10
92. Winterscheid (Cherokee)	1922	Random	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	1,700	15
93. Kísmet (Anadarko)	1948	Seismic, Core-drill	Combination/ Facies change, Anticline	Pennsylvanian/ Missouri; Permian/ Wolfcamp; Mississippian/ Chester	Limestone	4,500, 3,200, 5,800	5, 80, 40
94. Tobics (Central Kansas)	1961	Seismic, Subsurface	Combination/ Faulted anticline, Organic reef	Ordovician/ Lower	Limestone	3,400	10
95. Browning (Cherokee)	1924	Trend	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,200	75
96. Max (Central Kansas)	1938	Seismic, Core-drill	Structural/ Anticline	Pennsylvanian/ Yissouri; Ordovician/ Lower	Limestone, Dolomite	3,400, 3,600	15, 5
97. Fox-Bush-Couch (Nemaha)	1917	Seepage	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,700	40
98. Lorraine (Central Kansas)	1934	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Limestone	3,100	45
99. Bogge, Southwest (Sedgwick)	1955	Subsurface	Combination/ Anticline, Facies change	Mississippian/ Osage	Limestone	4,500	10
100. Nichols (Anadarko)	1955	Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Mississippian/ Osage	Limestone	4,900	50

Surface	(millions	Cro bbls as	ide 011 of Dec. 31,	1975)		Natural Gas (Bef as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 19/5)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod		
9,940		2.5	0.7	0.11	54.6		3.19					
3,320		13.4	1.1	0.14								
3,660		12.1	1.7	0.09								
1,480		13.6	0.3	0.02								
16,640					75,7		1.51	0.2		*		
5,500		11.4	1.8	0.24				<u> </u>				
3,200		0.6	*	0.02	75.9		3.09					
4,400		9.8	1.3	0,15	•							
14,400		c.10.5	2.5	e.025		į			:			
7,320		7.3	1.0	0.15	21.1		0.52					
3,400		10.3	1.5	0.44								
1,320		12.1	*	0.01				:				
4,280		11,2	0.7	0.10								
6,500		11.1	0.7	0.03	İ							
5,500		12.0	0.2	0.05	, ,		'					
4,160		0.1	*	*	67.2			*				
6,500		5.6	0,1	0.01	27.3		0.17					

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(m)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
.01.	Solomon (Central Kansas)	1936	Subsurface	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Virgil	Dolomite, Limestone	3,600, 3,000	5, 5
.02.	Elbing (Nemsha)	1918	Surface	Combination/ Faulted anticline, Unconformity	Pennsylvanian/ Missouri; Ordovician/ Middle	Limestone	2,300, 2,500	70, 40
LO3.	Adell & Northwest (Central Kansas)	1944	Core-drill, Seismic	Structural/ Anticline	Pennsylvanian/ Missouri	Limestone	3,800	10
.04.	Irvin (Central Kansas)	1946	Seismic	Structural/ Anticline	Ordovician/ Lower	Limestone	3,900	20
105.	Rock (Nemaha)	1923	Trend	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,800	45
106.	Victory (Anadarko)	1960	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow, Missouri, Des Moines	Sandstone, Limestone	5,200, 4,100- 5,000	80, 10
107.	Murphy (Nemaha)	1933	Seismic	Combination/ Anticline, Facies change	Mississippian/ Osage; Pennsylvanian/ Missouri, Des Moines	Limestone, Sandstone	3,500, 3,100, 3,500	5, 15, 10
108.	Fotwin (Nemaha)	1921	Surface	Structural/ Faulted anticline	Mississippian/ Meramec	Limestone	2,700	95
109.	Alameda (Sedgwick)	1961	Subsurface, Seismic	Structural/ Faulted anticline	Ordovician/ Middle; Pennsylvanian/ Missouri	Limestone	4,400, 3,600	5, 10
110,	Hittle (Nemaha)	1926	Surface	Structural/ Anticline	Pennsylvanian/ Missouri	Sandstone	2,400	20
111.	Garfield (Central Kansas)	1947	Seismic	Combination/ Anticline, Facies change	Mississippian/ Kinderhook	Limestone	4,300	40
112.	. Lerado (Sedgwick)	1935	Core-drill	Combination/ Anticline, Facies change	Ordovician/ Middle; Mississippian/ Osage	Limestone	4,100, 3,900	30, 50
113.	. Jelinek (Central Kansas)	1947	Seismic, Subsurface	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Limestone	3,500, 3,200	15, 10
114.	. Richfield (Anadarko)	1948	Seismic, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Morrow	Sandstone	5,200	40
115	. Wilmore (Anadarko)	1966	Subsurface	Stratigraphic/ Facies change	Mississippian/ Chester	Limestone	5,000	10
116	. <i>Hanston-Oppy</i> (Anadarko)	1961	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Mississippian/ Osage; Pennsylvanian/ Des Moines	Limestone	4,500, 4,300	30, 20

Surface	(million	Cri ns bbls as	ude 011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Rese rve s	1975 Prod
4,420		10.0	1.6	0.15	:					
2,320		9.9	1.3	0.11						
1,700		10.0	1.4	0.15						
4,120		9.0	2.1	0.18						
2,400		10.8	0.5	0.14						
20,000		7.8	1.8	0.23	6.5		0.41			
4,860		10.0	0.6	0.06						
2,840		9.5	1.1	0.06						
1,700		8.7	1.2	0.22	3.8		0.22			
1,640		10.2	0.1	0.02				•		
7,880		9.2	0.5	0.05	6.1		0.08			
1,920		2.7	0.1		38.0		0.53			
2,040		9.3	0.9	0.11						
10,800			-	+	65.2		1.18	1.5		0.0
3,080		0.1	0.4	0.02	7.7		2.83			
5,200		7.7	1.3	0.17						

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
117. Northampton (Central Kansas)	1948	Subsurface, Seismic	Structural/ Anticline	Ordovician/ Lower; Pennsylvanian/ Missouri	Dolomite, Limestone	3,800, 3,600	10, 5
116. Cimarron Bend (Anadarko)	1959	Subsurface, Core-drill	Stratigraphic/ Facies change	Mississippian/ Chester	Limestone	6,000	90
119. Cunningham (Sedgwick)	1931	Core-drill	Structural/ Faulted anticline	Pennsylvanian/ Missouri; Ordovician/ Middle	Limestone	3,400, 4,100	75, 35
120. Eastborough (Sedgwick)	1929	Core-drill, Subsurface	Structural/ Anticline	Mississippian/ Osage	Limestone	3,000	15
121. Elrick (Central Kansas)	1955	Seismic	Structural/ Anticline	Pennsylvanian/ Missouri, Des Moines	Limestone, Sandstone	3,900, 4,200	15, 10
122. John Creek (Nemaha)	1954	Surfaçe, Seismic	Structural/ Faulted anticline	Ordovician/ Middle	Dolomite	3,000	20
123. Liberal, Southeast (ålso OK) (Anadarko)	1947	Core-drill	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	6,100	35
124. Skinner (Sedgwick)	1942	Surface, Subsurface	Structural/ Anticline	Ordovician/ Middle; Pennsylvanian/ Missouri	Limestone	4,600, 4,100	40, 15
125. Unger (\$edgwick)	1955	Seismic, Subsurface	Combination/ Anticline, Unconformity	Silurian/ Lower	Dolomite	2,800	20

159 A.6a(MC-KS)-9

Surface						Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
1,360		8.0	1.5	0.11	Į.						
6,840					7.4	:	0.54				
4,800		6.5	0.4	0.06			0.52	:			
940		9.6									
2,220		7.1	1.2	0.16							
2,000		6.2	2.1	0.18							
7,600					35.3	:	1.08	0.2		*	
1,800		2.5	0.2	0.03	c.29.0		0.80				
2,160		7.7	0.5	0.06							

Table A.6b

THE SIGNIFICANT OIL AND GAS FIELDS OF OKLAHOMA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1. Guymon-Hugoton (also TX10 & KS) (Anadarko)	1926 (1910)	Surface	Stratigraphic/ Facies change	Permian/ Wolfcamp	Dolomite	2,600	20
2. Sho-Vel-Tum (South Oklahoma)	1904	Surface, Seepage	Combination/ Faulted anticline, Unconformity, Facies change	Mississippian/ Meramec; Pennsylvanian/ Des Moines	Limestone, Sandstone	7,800, 7,400, 3,400	360, 190, 40
3. Oklahoma City (Chautauqua)	1928	Surface, Core-drill	Combination/ Faulted anticline, Unconformity	Ordovician/ Middle; Pennsylvanian/ Missouri	Sandstone	6,000, 4,000	100, 50
4. Mocane-Laverne (Anadarko)	1930	Subsurface, Trend	Stratigraphic/ Porosity- permeability pinchout, Unconformity, Facies change	Pennsylvanian/ Virgil, Morrow; Mississippian/ Chester	Sandstone, Limestone	4,200, 7,600, 7,600	45, 55, 65
5. Wolden Trend (South Oklahoma)	1944	Seismic	Combination/ Fault, Anticline, Unconformity, Porosity- permeability pinchout, Facies change	Pennsylvanian/ Des Moines; Ordovician/ Middle; Devonian/ Lower	Sandstone, Limestone	6,600, 11,000, 8,600	30, 75, 145
6. Sooner Trend (Anadarko)	1945	Seismic	Stratigraphic/ Unconformity, Porosity- permeability pinchout, Facies change	Mississippian/ Meramec; Pennsylvanian/ Missouri	Limestone, Sandstone	6,200, 5,700	100, 25
7. Cushing (Chautauqua)	1912	Surface	Combination/ Anticline, Unconformity	Pennsylvanian/ Des Moines	Sandstone	2,700	70
8. Burbank (Chautauqua)	1920	Surface	'ombination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,800	60
Class AAA Fields							
9. <i>Glerm</i> (Chautauqua)	1905	Seepage	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines; Mississippian/ Osage	Sandstone, Limestone	1,400, 1,900	100, 200
10. Healdton (South Oklahoma)	1913	Surface, Seepage	Combination/ Faulted anticline, Unconformity, Facies change	Pennsylvanian/ Des Moines, Morrow	Sandstone	5,600, 6,100	330, 280
11. Watonga Trend (Anadarko)	1965	Seismic. Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Morrow	Sandstone	9,100, 8,300	35, 10
12. Hewitt (South Oklahoma)	1919	Surface, Seepage, Core-drill	Combination/ Faulted anticline, Unconformity	Mississippian/ Meramec; Pennsylvanian/ Des Moines	Limestone, Sandstone	3,300, 2,800	40. 25

Surface	(million	Cru s bbls as	de Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31	1975)	Nate (mill, bb	ral Gas Liquid ols as of Dec.	ls 31, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,060,940					4.094.4		126.97			
2,000,000					4,094.4		120.97			
14,020	3,100.0	1,033.6	399.9	32.84	295.6		7.83			
17,280		735.7	19.3	1.91			0.68			
98,560		13.2	6.8	0.66	3,160.9		188.79			
100,480	1,170.0	407.7	50.3	6.41	932.3		8.15			
240,720	1,173.9	208.0	96.3	9.57	446.8		38.24			İ
37,020		. 465.7	24.3	2.66	12.7		0.24			
36,920		507.3	25.2	3.36						
28,060		311.2	16.8	1.85	:					
11,360	940.0	301.0	22,0	6,20	1.4	;	0.09			
. 240,000			~-		292.8		142.30			
18,000		224.7	50.3	5.46						
								Ì		
				ļ	İ	ĺ	1			

Field	Yesr Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
13. Red River Bed (also TX9) (Palo Duro)	1920 (1918)	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Sandstone	1,500	30
14. Kinta (Arkoma)	1916	Surface	Combination/ Faulted anticline, Porosity- permeability pinchout, Facies change	Pennsylvanian/ Atoka, Motrow	Sandatone	5,600, 5,900	70, 95
15. Putnah (Anadarko)	1957	Subaurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Missouri; Mississippian/ Meramec	Sandstone, Limestone	7,800, 13,200	60, 85
16. Camrick (s11) (Anadarko)	1954	Seismic, Subsurface	Stratigraphic/ Facies change, Porosity- permeability pinchout	Pennsylvanian/ Morrow, Des Moines	Sandstone	7,500, 6,300	40, 85
17. Cement (Anadarko)	1917	Surface	Structural/ Faulted auticline	Pennsylvanian/ Missouri	Sandstone	8,100, 7,100	75, 55
18. St. Louis (Chautauqua)	1925	Surface, Subsurface	Combination/ Anticline, Facies change	Silurian/ Lower; Devonian/ Lower	Limestone	4,200, 4,000	60, 50
19. Edmond, West (Chautauqua)	1930	Randon	Combination/ Anticline, Unconformity, Facies change	Devonian/ Lower; Pannsylvanian/ Des Moines	Limestone, Sandstone	7,000, 6,500	75, 25
20. Seminole (Chautauqua)	1926	Surface, Core-drill	Structural/ Anticline	Pennsylvanian/ Dea Moines; Silurian/ Upper	Sandstone, Limestone	3,100, 4,000	30, 30
21. Earlaboro (Chautauqua)	1926	Surface, Subsurface	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	3,500	15
21. Fitts (Arkoma)	1933	Surface, Subsurface	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Atoka; Siluro- Devonian; Ordovician/ Middle	Sandstone, Limestone	1,200, 3,400, 4,000	20, 30, 40
23. Ringwood (Anadarko)	1945	Selsmic, Geophysics	Stratigraphic/ Unconformity, Porosity- permeability pinchout	Mississippian/ Chester; Pennsylvanian/ Des Moines	Limestone, Sandstone	6,800, 6,700	80, 40
24. Bartleeville-Dewey (Chautauqua)	1897	Seepage, Surface	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone	1,300, 1,500, 700	
25. Allen District (Arkoma)	1913	Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines, Virgil	Sandstone	2,100, 1,400	25, 75
26. Bowlegs (Chautauqua)	1927	Surface, Subsurface	Structural/ Anticline	Ordovician/ Middle; Pennsylvanian/ Atoka	Sandstone	4,300, 2,400	30, 15

Surface	(million	Cro us bbls as	ude 011 of Dec. 31,	, 1975)	(Bcf as	atural Gas of Dec. 31,	1975)	Natu (mill. bb	ral Gas Liquio	is 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975	Cum.	Demonst.	1975
1,500	Table 1	9.8	0.2	0.02	Prod.	KEBETVES	Prod.	Prod.	Reserves	Prod.
140,000		_			1,103.9	858.1	86.09			
45,540		42.6	11.1	1.24	517.5		55.34	j		
85,000		27.3	14.7	1,26	854,2		41.14			
18,520		142.8	25,2	2.47	362.5		8.65			:
26,920		216.7	11.3	1.01	3.6		0.04			
43,160		155.6	6.4	0.55	143.3		3.01			
10,280		182.8	9.6	0.87	2.8	:	0.04	į		
11,040		199.7	5.3	0.45	0.1					
7,400		150.7	34.3	2.56	41.4		0.29		į	
50,000		61.4	31.1	2.70	403.8	:	32.04			
65,320		c.170.0	5.0	0,53						
6,800		129.2	25.8	2.36	31.6		0.62			
4,840		160.2	2.3	1.19	*	Į.	0.03			
							!			

A. 6b (MC-OK) - 3 164

Field	Year Dia- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AA Fields							
27. Eola-Kobberson (South Oklahoma)	1920	Surface, Seepage	Combination/ Faulted anticline, Unconformity	Ordovician/ Middle; Pennsylvanian/ Virgil	Sandstone	10,600, 2,200	175, 40
28. <i>Postle</i> (Anaderko)	1958	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	6,100	20
29. Tonkawa (Chautauqua)	1921	Surface, Core-drill	Combination/ Faulted anticline, Unconformity	Ordovician/ Middle, Lower	Sandstone, Limestone	4,100, 4,200	20, 55
30. Little River (Chautauqua)	1927	Surface, Subsurface	Structural/ Anticline	Pennsylvanian/ Morrow	Sandstone	3,200	50
31. Bird Creek- Flat Rock a (Chautauqua)	1904	Seepage	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone, Limestone	800, 1,100, 1,300	55, 95, 30
32. Norris-Red Cak (Arkoms)	1912	Şurface	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Atoka	Sandstone	7,000	50
33. Wilburton (Arkowa)	1929	Surface, Subsurface	Combination/ Faulted anticline, Porosity- permeability pinchout, Facies change	Pennsylvanian/ Atoka	Sandstone	8,800	25
34. Coody's Bluff- Alluse-Chelsea (Chautauqua)	1889	Seepage	Combination/ Facies change, Forceity- permeability pinchout, Anticline	Pennsylvanian/ Des Moines	Sandstone	500, 1,000	80, 30
35. Avant (Chautauqua)	1904	Seepage, Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	1,400, 1,500	65, 150
36. Garber (Anadarko)	1916	Surface	Structural/ Faulted anticline	Pennsylvanian/ Missouri; Ordovician/ Middle	Sandstone	1,100, 5,100	15, 65
37. Delaware-Childers (Chautauqua)	1906	Random	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone	700, 1,000	40, 35
38. Cedardale, Northeast (Anadarko)	1957	Subsurface, Seismic	Stratigraphic/ Facies change, Unconformity	Pennsylvanian/ Missouri; Mississippian/ Chester	Sandstone, Limestone	6,400, 7,200	50, 40
39. Keyes (Palo Duro)	1943	Core-drill	Combination/ Anticline, Porosity- permeability pinchout, Facies change	Pennsylvanian/ Morrow	Sandstone	4,300, 4,600	15, 25
40. Mayfield, West (also TXLO) (Anadarko)	1974 (1971)	\$eişmic	Structural/ Faulted anticline, Fracturing	Ordovician/ Lower	Dolomite	17,000	1,000

Surface	(millio	Cru ns bbls as	de 011 of Dec. 31,	1975)	(Bcf as	(atural Gas of Dec. 31,	19 75)	Nato (mill. bl	iral Gas Liquid ols as of Dec.	ls 31, 197
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Com. Prod.	Demonst. Reserves	197 Pro
5,620	:	111.2	16.8	3,21						
13,600	268.7	76.7	49.3	5.29	13.2					
4,960		135.5	3.0	0.29	5.1					
5,600		134.8	2.2	0.19	*		*			
35,000		139.0	2.0	0.22			· 			
45,000			_		553.6	456.4	41.78			
27,760					477.0	453.0	42.49			
40,000		c.118.5	1,5	0.17						
12,660		106.0	2.0	0.16						
6,560		81.6	6,4	0.64	82.4		0.36			
10,440	220.0	c.92.0	3.0	0.20						
13,880		2,0	1.6	0.14	305.5		28.74		-	
90,000		 	:		402.2		23.96			
8,320										_

	··		· · · · · · · · · · · · · · · · · · ·				
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
41. Strond (Chautauqua)	1923	Surface, Core-drill	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,200	50
42. Holdenville (Chautauqua)	1916	Surface	Combination/ Anticline, Unconformity	Pennsylvanian/ Des Moines, Morrow	Sandstone, Limestone	2,800, 3,100	25, 40
Class A Fields							
43. Chickasha, Northwest (Anadarko)	1969	Subsurface, Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Morrow	Sandstone	14,400	10
44. Chiokasha (Anadarko)	1922	Surface, Seepage	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,300	20
45. Knox (Anadarko)	1923	Surface, Core-drill	Combination/ Faulted anticline, Unconformity	Ordovician/ Middle; Pennsylvanian/ Morrow	Sandstone	15,100, 3,800	215, 30
46. Apache (Anadarko)	1940	Seismic	Structural/ Anticline	Ordovician/ Middle	Sandstone	3,600	80
47. Cromwell (Chautauqua)	1922	Surface, Core-drill	Structural/ Faulted nose	Pennsylvanian/ Morrow	Sandstone	3,500	90
48. Cumberland (South Oklahoma)	1940	Seismic	Structural/ Faulted anticline	Ordovician/ Middle	Sandstone	6,400	100
49. Elk City (Anadarko)	1947	Seigmic	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	9,300	100
50. <i>Wewokα</i> (Chautauqua)	1913	Surface	Structural/ Anticline	Pennsylvanian/ Morrow	Sandstone	3,300	90
51. Bald Hill (Chautauqua)	1908	Seepage, Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines, Atoka	Sandstone	800, 1,700	150, 40
52. Carthage (Anadarko)	1956	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	4,500	15
53. Naval Reserve (Chautauqua)	1928	Surface	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Sandstone	2,900	110
54. Hooker, Southwest (Anaderko)	1961	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	6,100	10
55. Lucien (Chantauqua)	1932	Surface, Seismic, Core-drill	Combination/ Unconformity, Faulted anticline	Pennsylvanian/ Missouri	Sandstone	3,700	10
56. Konawa-Dora (Chautauqua)	1929	Surface, Subsurface	Combination/ Anticline, Facies change, Unconformity	Pennsylvanian/ Des Moines	Şandstone	1,700, 2,700	20, 35
57. Osage City (Chautauqua)	1904	Random	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines	Sandstone	2,300	30
58. Yale-Quay (Chautauqua)	1914	Surface, Seepage	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,700	40

Surface	_(millio		ude Oil of Dec. 31,	_1975)	(3cf as	Natural Gas of Dec. 31	, 1975)	Nati	ral Gas Liquio	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975	Cum. Prod.	Demonst,	1975
20,720	Trace	67.9	6.5	0.65	33.9	RESETVES	0.55	riod.	Reserves	Prod.
14,300		74.7	3.5	0.33	20.1		0.01			 -
10,880		10.3	59.7	0.62	16.3	:	0.45			•
2,340		8.6	1.9	0.16	411.1		2.85			
7,040		59.0	6.0	0.84	47.7		1.12			
2,080		57.7	13.3	1.70	*					i
6,200		72.0	1.0	0.15	0.9		0.01			
2,160		70.3	2.0	0.39	1.3					
12,040		59.7	0,3	0.06	0.9		0.09			
4,560		62.5	3.0	0.25	0.9		0.12		:	
33,160		64,6	3.2	0.23	2.1		0:14			
12,800					341.5		18.84	1.0		0.05
5,260		54.7	5.3	0.40						
26,880	:	1.3	0.2	0.04	214.1		16.97			
6,040		52.0	4.5	0.31	10.2		0.35			
10,360		54.9	3.6	0.34	2,4					
3,800		c.38.0	2.5	0.18						
15,040		54.4	2.2	0.21	1.1		0.03			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(0)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
9. Slidk (Chautauqua)	1913	Random	Combination/ Facies change, Faulted anticline	Pennsylvanian/ Des Moines; Mississippian/ Kinderhook	Sandstone, Limestone	2,300, 3,000	260, 120
0. Mouser (Anadarko)	1958	Subsurface, Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Morrow	Sandstone	6,400	15
il. Duncan, West (South Oklahoma)	1919	Surface, Seepage	Structural/ Anticline	Fermian/ Leonard; Pennsylvanian/ Virgil	Sandstone	1,400, 1,700	25, 25
o2. Enid, Northeast (Anaderko)	1940	Seismic	Combination/ Anticline, Facies change	Mississippian/ Osage, Kinderhook	Limestone	6,200, 6,500	20, 40
53. Rogshooter (Chaut auqua)	1906	Randon	Stratigraphic/ Facies change, Porosity- permeability pinchout	Pennsylvanian/ Des Moines	Sandstone, Limestone	1,200, 1,100, 700	70, 30, 40
64. Fayne (Chautauqua)	1956	Seismic	Combination/ Faulted anticline, Porosity- permeability pinchout	Devonian/ Lower; Ordovician/ Upper	Limestone	8,500, 9,000	45, 125
55. <i>Bristow</i> (Chautauqua)	1908	Random	Combination/ Facies change, Fault	Pennsylvanian/ Atoka, Des Moines	Sandstone	2,700, 1,300	55, 20
66. Cleveland (Chautauqua)	1904	Surface, Seepage	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines, Missouri	Sandstone	2,400, 1,300	110, 50
67. Searight (Chautauque)	1926	Surface, Subsurface	Structural/ Anticline	Ordovician/ Middle	Sandstone	4,300	100
68. Enville, Southwest (South Oklahoma)	1957	Seismic	Structural/ Faulted anticline	Mississippian/ Meramec; Ordovician/ Upper	Limestone	3,000, 11,600	30, 40
69. <i>Depe</i> w (Chautauqua)	1915	Random	Structural/ Faulted anticline	Ordovician/ Middle; Pennsylvanian/ Atoka	Sandstone	3,700, 3,200	55, 60
70. Moore, West (Chautauqua)	1943	Seismic	Combination/ Faulted anticline, Facies change	Ordovician/ Middle	Sandstone	8,800	30
71. Carr City (Chautauqua)	1927	Surface, Subsurface	Structural/ Anticline	Ordovician/ Middle	Sandstone	4,200	30
72. <i>Canary-Caney</i> (Chautauqua)	1907	Surface	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone	1,200	55
73. Atlantic (Chautauqua)	1924	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	1,600	10
74. Oakdale (Anadarko)	1955	Subsurface, Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Limestone, Sandstone	6,200, 6,200	10, 40

168

06	(millio	Crude ns bbls as (011 of Dec. 31.	1975)		Natural Gas of Dec. 31,	19751	Natur	al Gas Liquids	s 31_ 1975)
Surface Area	In	Cum.	Demonst.	1975	Cum.	Demonst.	1975	Cum.	Demonst.	1975
(acres)	Place	Prod.	Réserves	Prod.	Prod.	Reserves	Prod.	Prod.	Reserves	Prod.
9,240		2.53.4	2.6	0.26			0.05			
16,000	Ì	2.2	0.6	0.10	203.8		15.49			
•					20313		25145			
4,660	1	c.22.0	1,5	0.14	c.240.0					
•	1									1
	İ	:								
35,200		16.0	3.9	0.28	104,1		5.00			
	-									
15,800		c.11.7	0.3	0.04						
9,500		35.3	12.7	1.25						
	ļ									
								!		
7,660		c.43.3	0.7	0.08						
5,100		45.7	÷.9	0.14						
2,760		42.7	3.5	0.30						
3,200		12.1	1.5	0.12	99,2		8.11	:		
-					33,12		0.11			
						1				
2,120		c.44.2	0.8	0.09						
						'				
18,440		34.2								
10,440		34.2	3.8	0.41	8.9		0.10			İ
1,900		40,8	0.5	0.08	İ					
F 222										
5,000] .	c.11.5	0.5	0.08	Į				,	
				i						
10,320		38.5	5.1	0.63						
19,000	38.0	7.7	2.8	0.28	92.2		10.27			
						j		ļ		
	1 4	ı	ı	ı	ı	,	I	i		I

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoin Thickness (feet)
rield	covered	Method(s)	Tiap(s)	ROCK	LITERIOLOGY _	(1000)	(2000)
5. Walters (South Oklahoma)	1917	Surface, Seepage	Structural/ Anticline	Pennsylvanian/ Virgil	Sandstone	2,100	10
f6. Guymor, South (Anadarko)	1959	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow; Permian/ Wolfcamp	Sandstone, Limestone	6,700, 4,500	15, 30
lass B Fields							
7. Quinton District ^h (Arkoma)	1915	Surface	Combination/ Faulted anticline, Porosity- permeability pinchout	Pennsylvanian/ Des Moines	Sandstone	1,400, 1,500, 1,800	100, 60, 85
78. Olympic (Chautauqua)	1934	Subsurface	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone	1,700	35
9. Empire-Comanche (South Oklahoma)	1918	Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Sandstone	2,100, 2,300	20, 40
80, Crescent-Lovell (Chautauqua)	1928	Core-drill, Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri; Ordovician/ Middle	Sandstone	4,900, 6,600	50, 80
BI. Chester, West (Anadarko)	1959	Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Mississippian/ Chester	Limestone	8,000	30
32. Waynoka, Northeaet (Anedarko)	1956	Seismic	Combination/ Nose, Facies change	Mississippian/ Meramec; Pennsylvanian/ Missouri	Limestone, Sandstone	6,300, 5,500	40, 20
33. Loco District (South Oklahoma)	1913	Surface, Seepage	Structural/ Anticline	Pennsylvanian/ Virgil; Ordovician/ Lower	Sandstone, Limestone	700, 2,400	20, 65
84. Okarche, North (Anadarko)	1958	Subsurface, Seismic	Stratigraphic/ Unconformity, Porosity- permeability pinchout	Mississippian/ Chester; Pennsylvanian/ Des Moines	Sandstone	8,600, 7,700	80, 15
35. Bixby-Jenks (Chautauqua)	1901	Surface, Seepage	Combination/ Anticline, Facies change	Pennsylvanian/ Atoka, Des Moines	Sandstone	1,700, 1,400	55, 20
36. Cherokita Trend (Anadarko)	1957	Subsurface, Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines; Mississippian/ Osage	Sandstone, Limestone	5,200, 5,200	30, 10
37. Norman, North (Chautauqua)	1956	Seismic	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	6,700	25
88. Bebee-Konawa, Sauthwest (Arkoma)	1923	Surface, Subsurface	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	2,500	50

170

Surface	(million	Crude s bbls as	Oil of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natur (mill. bbl	a: Gas Liquids s as of Dec. 3	1, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst, Reservés	1975 Prod.	Cum.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
11,020		c.33.0	3.0	0.26	c.81.0					
6,400		1.6	0.2	0.05	211.4		12.00			
17,800					285.4		1,44			
4,360		38.6	*	0.01	0.5			:		
7,200		c.35.7	2.3	0.23						
4,320		32.3	1.4	0.12	15.8		0.41	s ·		
7,680					135.6		14.16	0,4		0.02
9,600		1.3	0.1	0,04	161.3		11.30			
3,840	ļ 	c.32.0	7.0	0.63	0.5		0.09			
17,280					124.8	:	9.88	2.5		0.13
9,960		34.2	1,4	0.12			0.02			
3,380		10.5	3.9	0.38	98.2		2,32			
4,040		23.1	2.8	0.25	26.1		0.11			:
5,000		28.8	5.2	0.46	0.1				·	

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Keservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
89.	Okeene, Northwest (Anadazko)	1956	Seismic, Subsurface	Stratigraphic/ Unconformity, Porosity- permeability pinchout	Mississippian/ Chester	Limestone	7,500	35
90,	Hoover, North (South Oklahoma)	1944	Seismic, Subsurface	Structural/ Paulted anticline	Ordovician/ Lower; Pennsylvanian/ Virgil	Limestone	10,100, 1,100	100, 50
91.	Pauls Valley (South Oklahoma)	1942	Seismic	Combination/ Faulted anticline, Facies change	Ordovician/ Middle	Sandstone	3,600	35
92.	Washington (Chautauqua)	1944	Subsurface, Seismic	Combination/ Faulted anticline, Pacies change	Ordovician/ Middle	Sandstone	9,200	60
93.	Mission (Chautauqua)	1927	Surface, Subsurface	Structural/ Anticline	Siluro- Devonian	Limestone	3,500	100
94.	Seiling, Northeast (Anadarko)	1952	Seismic	Combination/ Anticline, Facies change	Mississippien/ Chester	Limestone	8,400	70
95.	Morris (Chautauqua)	1907	Seepage	Combination/ Anticline, Factes change	Pennsylvanian/ Des Moines; Ordovician/ Middle	Sandstone	1,200, 2,500	20, 45
96.	Iron Post (Chautauqua)	1917	Random	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines, Missouri	Sandstone	2,500, 2,100	65. 100
97.	Marlow, West (South Oklahoma)	1937	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	7,700	45
98.	Billings (Chautauqua)	1916	Surface	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Morrow	Sandstone	4,300	20
99.	Aledo (Anadarko)	1967	Seismic	Combination/ Faulted anticline, Facies change	Siluro- Devonian	Limestone	15,400	35
100,	Custer City, North (Anadarko)	1959	Seismic	Structural/ Faulted anticline	Devonian/ Lower	Limestone	14,400	135
101.	Osage-Hominy (Chautauqua)	1917	Şurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines; Mississippian/ Osage	Sandstone, Limestone	2,100, 2,400	60, 75
102.	Lyons-Quinn (Chautauqua)	1919	Random	Combination/ Anticline, Facies change	Ordovician/ Middle	Sandstone	3,700	35
103.	Sivells Bend (also TX9) (South Oklahoma)	1946 (1944)	Trend, Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines	Sandstone	6,200	25

Surface	(million	Crude as bbls as	0il of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31,	1975)	Natu (mill. bi	eral Gas Liquid	is 31, 1975)
Area (acres)	In Place	Cum. Frod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
25,600					106.2		9.61	1.9		0.28
5,020		25.4	1.8	0.18	6.7		0.06			
2,120		28.2	0.8	0.12	3.1			į		
4,400		20.7	2.3	0.41	31.1		1.45			
2,200		29.5	0.6	0.05		;				
24,000		2.9	2.0	0.20						
10,600		28.3	0.5	0.05	0.6					
9,680		c.24.4	2.6	0.28						
640		5.2	0.4	0.04	130.7		2.84			
1,940	<u>.</u>	27.9	0.4	0.04						
6,000		0.2	0.1	0.02	164.6	:	15.50			
4,480					141.4		4.68	0.1		0.01
3,080		c.20.5	6,5	0.70		i				
5,180		23.6	0.9	0.09	2.0		k			
880		2,1	0.2	0.04	=		İ			
]	l		ŀ			ı			

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoit Thickness (feet)
104.	Little River, East (Chautauqua)	1928	Surface, Subsurface	Structural/ Anticline	Pennsylvanian/ Morrow; Ordovician/ Middle	Sandstone	3,200, 4,500	20, 15
105.	Chandler (Chautauqua)	1924	Surface, Core-drill	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	4,000	40
106.	Greasy Creek (Chautauqua)	1937	Surface	Structural/ Anticline	Pennsylvanian/ Morrow	Sandstone	3,000	35
107.	Cache Creek (South Oklahoma)	1946	Seismic, Trend	Structural/ Anticline	Permian/ Wolfcamp	Sandstone	1,300	20
108.	Thi twood (Anadarko)	1945	Seismlc	Structural/ Faulted anticline	Ordovician/ Middle; Pennsylvanian/ Morrow	Sandstone	15,700, 10,500	925, 20
109.	Reydon, West (Anadarko)	1962	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	15,000	20
110.	Witcher (Chautauqua)	1947	Seismic	Combination/ Anticline, Unconformity	Pennsylvanian/ Des Moines; Devonian/ Lower	Sandstone, Limestone	6,100, 6,200	35, 35
11 1 .	Edmond, Northeast (Chautauqua)	1941	Seismic	Stratigraphic/ Unconformity, Facies change	Pennsylvanian/ Des Moines	Sandatone	5,900	45
112.	Papoose (Chautauqua)	1923	Core-drill, Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines, Morrow	Sandstone	1,100, 3,400	10, 55
113.	Wakita Trend (Anadarko)	1953	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	4,700	20
114.	Balko, South (Anadarko)	1958	Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Limestone	6,600	45
115	. Binger, East (Anadarko)	1971	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Missouri	Sandstone	9,800	15
116	. <i>Bowden</i> (Chautauqua)	1906	Surface, Seepage	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	1,300	10
117	. Lauderdale (Chautauqua)	1915	Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	1,200	15
118	. Ramsey (Chautauqua)	1938	Core-drill, Seismic	Combination/ Faulted anticline, Unconformity	Silurian/ Upper; Mississippian/ Kinderhook	Limestone, Sandstone	4,600, 4,600	40, 50
119	. Cheyenne Valley (Anadarko)	1958	Subsurface	Combination/ Porosity- permeability pinchout, Fault	Pennsylvanian/ Des Moines	Sandstone	7,000	65
120	. Keckuk (Chautauqua)	1933	Surface, Subsurface, Seismic	Structural/ Faulted anticline	Devonian/ Upper	Limestone	4,100	25

Surface	(million		of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Arca (acres)	In Place	Com. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Com. Prod.	Demonst. Reserves	1975 Prod.	
1,400		24.0	1.0	0.12	2.3	REGULTES	0.09		RESCLYES	7,00.	
3,000		22.4	2.5	0.21	2.1		0.17				
3,080		4.3	0.7	0.08	114.3		2.02				
3,000	•	25.2	0.8	0.11							
1,240	i				46.1		1.86	16.4		0.24	
12,200		 			25.1		11.01	*		0.01	
9,800		19.6	1.6	0.14	10.8		0.07				
8,600		18.9	1,5	0.14	12.8		0.03			1	
3,440		24.1	0.1	0.01	0.3		0.01				
16,000		7.1	1.9	0.15	89.5		0.50				
c.12,000		13.2	2.0	0.43	23.4]	2.04				
10,880	'	0.8	21.2	0.65	0.3		0.20				
6,220		25.8	0.6	0.06							
5,700	;	22.9	1.1	0.10			İ				
600		20.0	1.2	0.20			ĺ				
28,800		4.8	4.0	0.34	44.0		4.69				
2,640		20.2	1.3	0.08	7.5	į	*				

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(5)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
121.	Marshall (Chautauqua)	1927	Surface, Subsurface	Structural/ Faulted anticline	Pennsylvanian/ Virgil; Mississippian/ Osage	Sandstone, Limestone	3,600, 5,600	100, 90
122.	Madill & North (South Oklahoma)	1906	Seepage	Structural/ Faulted anticline	Ordovician/ Middle; Mississippian/ Kinderhook	Sandstone	6,100, 2,400	105, 200
123.	Maud (Chautauqua)	1920	Surface	Structural/ Faulted anticline	Siluro- Devonian	Limestone	3,800	45
124.	Muskogee (Chautauqua)	1894	Surface, Seepage	Structural/ Faulted anticline	Ordovician/ Middle	Sandstone	1,100	20
125.	Carthage, Northeast (Anadarko)	1958	Subsurface	Combination/ Facies change, Nose	Pennsylvanian/ Morrow	Sandstone	4,500	15
126,	Hallett (Chautauqua)	1922	Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri, Des Moines	Sandstone	2,100, 2,600	25, 35
127.	Braman, North (Chautauqua)	1924	Surface, Core-drill	Structural/ Anticline	Pennsylvanian/ Missouri	Sandstone	3,100	15
128.	Dibble, North (Chautauqua)	1946	S eis mic	Combination/ Facies change, Nose	Pennsylvacian/ Des Moines; Devonian/ Lower; Ordovician/ Middle	Sandstone, Limestone	9,200, 9,700, 11,200	40, 300, 75
129	. Wetumka (Chautauqua)	1919	Surface	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines, Morrow	Sandstone	1,200,	20, 60
130	. Lovedale (Anadarko)	1958	Seismic	Combination/ Facies change, Nose	Pennsylvanian/ Morrow	Sandstone	6,100	80
131	. Avard, Horthwest (Anadarko)	1954	Subscriace, Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Virgil; Mississippian/ Osage	Sandstone, Limestone	4,800, 5,900	25, 50
132	. Mænnford Pistrict (Chautauqua)	1922	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines, Missouri	Sandstone	1,700- 2,800	150
Cla	ss C Fields							
133	. Como, Southeast (Anadarko)	1960	Subsurface	Combination/ Porosity- permeability pinchout, Nose	Pennsylvanian/ Morrow	Sandstone	7,900	20
134	. Seminole, West (Chautauqua)	1930	Subsurface, Seismic	Structural/ Anticline	Ordovician/ Middle	Sandstone	4,200	30
135	. Xeliyville (Chautauqua)	1915	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	1,800 2,000	

Surface	(millio	Crude	Oil of Dec. 31,	1975)	(Bcf as	Natural Gas s of Dec. 31.	, 1975)	Nat (mill, bb	ural Cas Liquid is as of Dec. 3	ls 1, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,120		16.2	3.0	0.12	17.1		0.39			
2,900		14.4	1.5	0.21	33.1	i : 	1,39			
3,160		21.9	1.3	0.12						
4,700		22.9	0.9	0.09						
1,000		11.6	10.6	0.92	3.1	}	0.21			
2,380		3.2	0.1	0.01	127.5		0.53			
1,220		21.6	0.3	0.05						
10,160		3.7	0.8	0.08	66.0		3.86			
860		1.7	0.1	0.01	129.8		0.33			
39,000					75.7		6.22	0.6		0.02
58,000		- 			68.9	:	5.22	3.2	:	0.24
10,220		c.17.8	2.9	0,25			0,04			
8,320		10.2	3.0	0.26	27.3		0.81			
3,500		17.6	0.4	0.04						
6,000		18.8	1.2	0.12						

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
136.	Wynona (Chautauqua)	1905	Surface, Seepage	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,100	100
137.	Centrahoma (Arkoma)	1937	Seiswic	Combination/ Faulted anticline, Porosity- permeability pinchout	Pennsylvanian/ Atoka	Sandstone	1,200	70
138.	Folo (Chautauqua)	1934	Seismic	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines, Missouri	Sandstone	4,700, 3,800	35, 20
139.	Payson (Chautauqua)	1940	Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	4,200	15
140.	Collinsville (Chautauqua)	1910	Random	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines	Sandstone	1,400, 900	175, 30
141.	Domes-Pond Creek (Chautauqua)	1904	Seepage, Surface	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone	1,700	100
142.	Erick (Anadarko)	1934	Surface	Combination/ Anticline, Facies change	Permian/ Wolfcamp; Pennsylvanian/ Des Moines	Limestone	3,300, 6,400	15, 30
143.	Oscar (South Oklahoma)	1924	Surface, Seepage	Structural/ Faulted anticline	řennsylvanían/ Virgil	Limestone	1,500	30
144.	Pine Hollow, South (Arkoma)	1959	Seismic, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,200	760
145.	Coon Creek (Chautauqua)	1944	Seismic	Structural/ Anticline	Ordovician/ Middle; Pennsylvanian/ Missouri	Sandstone, Limestone	6,000, 4,700	150, 20
146.	Erick, South (South Oklahoma)	1946	Surface, Subsurface	Combination/ Faulted anticline, Facies change	Permian/ Wolfcamp	Dolomíte	1,700	40
147	Ponea City (Chautauqua)	1906	Surface, Seepage	Structural/ Anticline	Pennsylvanian/ Missouri	Sandstone	1,500	30
148	. <i>Midwell</i> (Palo Duro)	1962	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	4,300	15
149	. Bishop (Anadarko)	1961	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Sandstone	7,800	50
150	Fort Reno, Southwest (Anadarko)	1962	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	10,700	10
151	. <i>Maramec</i> (Chautauqua)	1914	Surface	Structural/ Anticline	Pennsylvanian/ Missouri, Des Moines	Sandstone, Limestone	2,100, 2,700	50, 70

179 A.6b(MC-OK)-10

Surface	(million	Crude as bbls as	0il of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
3,480		19.1	0.3	0,17						
6,000		3.1	0.3	0.08	88.1		3,36			
o ,000		3.1	0.5	0.00	00.1		3,35			
									:	
4,760		15,1	2.4	0.22	3.4		0.19			
4,680		15.3	0.2	0.02						
1,600		c.0.7	0.3	0.03						
17,000		10.1	7,2	0.59						
4,000		*	*	*	94.5		2.07			
2,140		c.17.0	1.5	0.15						
4,160					57.2		5,4%		 	
1,640		15.6	0.2	0.01	0.8		0.78			
10,000		*			53.1		5,93			
2,580		12.3	4.2	0.37	0.3					
2,400		7.4	7.1	0.62	5.1		0.82			
21,760		0,5	0.1	0.02	72,2		2.56			
14,000	*	*	*	*	8.1		2,19	0.1		0.0
4,460		12.7	3.1	0.28						

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoin Thickness (feet)
152.	Okmulges District (Chautauqua)	1904	Seepage, Surface	Structural/ Faulted anticline	Pennsylvanian/ Des Moines; Ordovician/ Middle	Sandstone	1,200, 2,800	75, 100
153.	Watcherm, East (Chautauqua)	1942	Surface, Seismic	Structural/ Faulted anticline	Ordovician/ Middle	Sandstone	3,900	10
154.	Beggs District (Chautauqua)	1909	Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines, Atoka	Sandstone	1,900, 2,200	50, 20
155.	Boston (Chautauqua)	1904	Random	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines, Missouri; Ordovician/ Lower	Sandstone, Limestone	2,200, 1,800, 2,600	40, 30, 60
156.	Soldier Creek (South Oklahoma)	1946	Trend, Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Limestone	1,600	25
157.	Wayne, Southwest (Chautauqua)	1946	Seismic, Subsorface	Combination/ Anticline, Facies change, Unconformity	Devonian/ Lower; Pennsylvanian/ Des Moines	Limestone, Sandstone	7,200, 7,000	50, 45
158.	Carleton, Northeast (Anadarko)	1965	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sancstone	8,400	45
159.	Chitwood, Northwest (Anadarko)	1953	Seismíc	Structural/ Faulted anticline	Pennsylvanian/ Des Moines, Missouri	Sandstone	10,000, 9,700	40, 20
16 0.	Ivanhoe (Anadarko)	1959	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow, Des Moines	Sandstone	8,500, 7,200	40, 30
161.	Joiner City (South Oklahoma)	1953	Seismic, Subsurface	Combination/ Anticline, Unconformity	Devonian/ Lower; Silurian/ Lower	I,imestone	6,400, 9,700, 10,100	100, 120, 50
162.	Mt. Termon, Southwest (Chautauqua)	1954	Trend, Subsurface, Seismic	Combination/ Facies change, Nose	Pernsylvanian/ Des Moines	Sandstone	4,300	5
163	. Peek, South (Anadarko)	1965	Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil	Sandstone	8,200	25
164	. California Creek (Chautauqua)	1909	Random	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines	Sandstone	1,000	50
165	. Ingalls (Chautauqua)	1914	Snepage, Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	3,400, 3,600	15 25
166	. Noble, Northwest (Chautauque)	1958	Seismic	Structural/ Paulted anticline	Ordovician/ Middle, Lower	Sandstone, Limestone	8,300, 8,800	20 25
167	. Blocker, Southeast (Arkowa)	1962	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Atoka	Sandstone	6,200	20
168	. Bristos, North (Chautauqua)	1922	Randon	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines, Atoka	Sandstone	2,600, 2,900	, 100 55

Surface	(millions	Crude bbls as c	Dil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Nati (mill. bb)	ral Gas Liquid Ls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
5,020		15.1	0.7	0.06	0.8		0.20	1104.	Nesserves	
1,500		13.5	1.1	0.10						
7,280		c.14.7	0.3	0.03			0.02	į		
1,780		c.14.8	1.2	0.12	:					
3,040		14.4	0.9	0.09						
7,500		13.7	0.9	0.23						
11,520		4.6	*	0.30	52.8		0.50			
3,840		8.3	6.7	0.62		:				
12,800		0.6	0.3	0.04	44.4		4,27			
4,360		12.1	2.4	0.18						
3,940		7.9	1.0	0.02	22.1		0.32			
42,240		*	*	0.01	51.0		3.41	2.1		0.08
900		c.1.7	0.3	0.03						
1,120		9.2	0.3	0.02	37.6					
1,220		11.3	1.5	0.35						
2,400			***		52.7		4.38			
2,180		c,13,3	0.7	0,07						

Field	Year Dis- covered	Discovery Method(5)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoin Thickness (feet)
169. <i>Caddo</i> (South Oklahoma)	1939	Surface, Seismic	Structural/ Faulted anticline	Mississippian/ Kinderhook	Sandstone	4,200	155
170. Verden, Wortheast (Anadarko)	1967	Trend, Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Missouri	Limestone	10,100	10
171. Blackvell (Chautauqua)	1909	Seepage, Surface	Structural/ Anticline	Pennsylvanian/ Missouri; Mississippian/ Osage	Sandstone, Limestone	1,600, 3,500	10, 35
172. Fidal-Osage (Chautauqua)	1916	Seepage, Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,200	40
173. Grand Valley, East (Anaderko)	1959	Subsurface	Combination/ Facies change, Nose	Pennsylvanian/ Morrow	\$andstone	7,100	20
174. Bubbard (Chautauqua)	1924	Sorface, Core-drill	Structural/ Faulted anticline	Ordovician/ Middle; Pennsylvanian/ Virgil	Şandstone	3,600, 2,600	50, 60
175. Tyrone (Anadarko)	1966	Seismic, Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	6,300	15
176. <i>Coyle</i> (Chautauqua)	1938	Seismic	Combination/ Faulted anticline, Hydrodynawic	Silurian/ Cpper	Dolomite	4,700	20
177. Asher, West (Chautsuqua)	1930	Surface, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	2,900	25
178. Brook (South Oklahoma)	1922	Surface, Seepage	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	1,300	20
179. Keystone (Chautauqua)	1919	Surface	Structural/ Anticline	Pennsylvanian/ Missouri; Mississippian/ Osage	Sandstone, Limestone	1,100, 2,000	45 , 55
180. Bekeshe, South (Arkoma)	1964	Subsurface	Stratigraphic/ Pacies change	Pennsylvanian/ Atoka	Sandstone	7,900	130
181. Dane (Anadarko)	1961	•	:	Mississippian/ Chester	Limestone	7,500	40
182. Gilliland (Chautauqua)	1919	Surface	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	2,300	15
183. Laffoon (Chautauqua)	1932	Seismic	Structural/ Anticline	Ordovician/ Middle; Silurian	Sandstone, Limestone	4,200, 4,100	25, 20
184. Mocane, Northwest (Anadarka)	1955	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Missouri, Des Moines	Sandstone	5,300, 5,600	20,
185. Okemah, North (Chautauqua)	1941	Seismic, Subsurface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	3,100, 3,200	

Surface	Crude Oil (millions bbls as of Dec. 31, 1975)					Natural Gas (Bcf as of Dec. 31, 1975)			Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	. Cum. Prod.	Demonst. Reserves	1975 Prod		
760	1200	4.1	C.1	0.04	42.0	Vesetves	1.98	1100.	Reserves	7100		
8,320		9.0	4.5	0.70	1.4		0.11					
3,760		11.9	1.3	0.13								
3,140		9.9	3.8	0.31								
7,680		6.5	2.9	0.16	20.3		0.55			ł		
1,000		c,12.6	0.4	0.04								
15,360		0.4	0.1	0.02	50,1		4.98					
1,000		12.4	0.3	0.05								
1,000		8.7	0.5	0.01	19.5							
2,280		9.8	1.5	0.16	5.7		0.55					
5,560		11.8	0.8	0.08								
12,160					36.2		3.40					
7,680	İ	0.6	2.0	0.17	20,8		3.64					
1,980		c.5.2	5.5	0.25								
1,800		7.0	1.2	0.11			0.05					
920		8,4	1.4	0.39	5.6		0.74					
4,000		5,9	0.8	0.07	34.5							

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
186.	Olive (Chautauqua)	1914	Surface	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,500, 2,300	70, 30
187.	Earlsboro, North (Chauteuqua)	1936	Seismic	Combination/ Anticline, Facies change	Silurian/ Lower	Limestone	4,400	30
188.	Aylesworth (South Oklahoma)	1942	Surface, Seismic	Structural/ Faulted anticline	Mississippian/ Kinderhook; Ordovician/ Middle	Sandstone	3,000, 3,100, 3,300	330, 130, 50
189.	Canton, South (Anadarko)	1964	Subsurface, Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	8,900	5
190.	Paulo Valley, East (South Oklahoma)	1943	Seismic	Combination/ Faulted anticline, Facies change, Porosity- permeability pinchout	Pennsylvanian/ Missouri	Sandstone	3,000	30
191.	Mt. Vermon (Chautauqua)	1952	Seismic, Subsurface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines; Mississippian/ Osage	Sandstone, Limestone	4,200, 4,600	10, 25
192.	Cedardale, Northweet (Anadarko)	1964	Subsurface	Combination/ Forosity- permeability pinchout,	Mississippian/ Chester; Pennsylvanian/ Missouri	Limestone, Sandstone	7,600, 6,500	25, 20
193.	Ceres, South (Chautauqua)	1947	Seismic, Subsurface	Fracturing Combination/ Facies change, Nose	Pennsylvanian/ Des Moines	Sandstone	4,500	20
194.	Hunter, South (Anadarko)	1945	Seismic	Combination/ Anticline, Facies change	Mississippian/ Kinderhook; Ordovician/ Middle	Sandstone, Limestone	5,700, 6,100	30, 40
195.	Jones (Chautauqua)	1939	Seismic	Structural/ Anticline	Pennsylvanian/ Missouri	Sandstone	4,800	10
1 9 6.	Nahola, Northeast (South Oklahoma)	1961	Subsurface	Combination/ Anticline, Facies change	Ordovician/ Middle	Sandstone	2,000	15
197.	Çuapar (Chautauqua)	1914	Seepage, Surface	Combination/ Facies change, Nose	Pennsylvaniar/ Des Moines	Sandstone	1,600	50
198.	Thomae (Chautauqua)	1914	Surface	Combination/ Faulted anticline, Facies change	Ordovician/ Middle; Fennsylvanian/ Des Moines; Fermian/ Wolfcamp	Sandstone, Limestone	4,000, 1,700, 1,200	90, 45, 50
199.	Falls, Mortheast (Chautauqua)	1955	Subsurface, Seismic	Structural/ Anticline	Ordovician/ Middle, Upper	Sandstone, Limestone	7,100, 6,900	10, 15
200	. Sharon, West (Anadarko)	1965	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	9,100	25

185 A.6b(MC-OK)-13

Surface	(millio	ns bbls as	ude Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natu (mill. bb	ral Gas Liquid ls as of Dec.	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Frod.	Demonst. Reserves	1975 Prod.
6,140		c.9.7	1.7	0.15			0.08			
1,060		11.4	0.4	0.04		İ				
1,320		9.8	1.5	0.09	3.3		5.03			
9,600		5.3		0.89	18,4		0.64			
2,280		9.7	1.3	0.12	5.4		0.05			
2,220	:	9.4	0.3	0.04	0.6					
11,840		<u></u>			29.6		3.65	0.1		0.01
920		8.9	0.4	0.03	4.4		3.39			
2,840		4.7	0.3	0.10	32.1		2.70			
4,860		10.9	0.3	0.03						
3,460		7.4	4.4	0,49						
3,640		11.0	0.5	0.03						
86 0		10,6	0.9	0.08						
									:	
720		8.2	2.7	0.28						
11,520			- - -	 - -	39.8		2.32	1.4		0.04

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir lithology	Depth to Top (feet)	Reservoir Thickness (feet)
201.	Velma, West (South Oklahoma)	1944	Seismic	Structural/ Faulted anticline	Pennsylvanian/ Des Moines, Atoka	Sandstone	1,600, 3,500	200, 150
202.	Gray (Chautauqua)	1932	Surface, Seismic	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	2,900	30
203.	Marlow District (South Cklahoma)	1945	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Missouri	Sandstone	7,500, 8,400	30, 70
204.	Broken Arrow (Chautauqua)	1901	Seepage	Combination/ Facies change, Nose	Pennsylvanian/ Des Moines, Atoka	Sandstone	1,400, 1,500	20, 15
205,	Crompell, East (Chautauqua)	1940	Subsurface	Structural/ Faulted nose	Pennsylvanian/ Morrow	Sandstone	3,400	55
206.	Pershing (Chautauqua)	1917	Seepage, Surface	Combination/ Anticline, Facies change	Pennsylvanian/ Des Moines	Sandstone	2,000	30
207.	<i>Como</i> (Anadarko)	1959	Subsurface	Combination/ Porosity- permeability pinchout, Nose	Pennsylvanian/ Morrow	Sandstone	7,800	5
208.	Avant, West (Chautauqua)	1905	Seepage, Surface	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines	Sandstone, Limestone	1,700, 1,200	10, 10
209.	Crawford, Northwest (Anaderko)	1965	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Virgil	Sandstone	8,600	15
210.	Dill (Chautauqua)	1934	Subsurface, Geophysics	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Morrow; Silurian/ Upper	Sandstone, Limestone	3,600, 3,900	15, 45
211.	Quinlan, Northwest (Anadarko)	1958	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Mississippian/ Chester; Pennsylvanian/ Morrow	Limestone, Sandstone	7,100, 6,700	30, 25
212,	Whitebead, West (South Oklahome)	1970	Subsurface	Stratigraphic/ Facies change	Ordovician/ Middle	Sandstone	5,900	5
213.	Nowata-Claggett (Chautauqua)	1905	Random	Stratigraphic/ Pacies change	Pennsylvanian/ Des Moines	Sandstone, Limestone	1,000, 600	30, 30
214.	Watekorn (Chautauqua)	1915	Surface	Structural/ Anticline	Ordovician/ Middle; Pennsylvanian/ Missouri	Sandstone	4,100, 2,700	105, 30
215.	Wildhorse (Chautauqua)	1912	Seepage, Surface	Combination/ Facies change, Faulted anticline	Pennsylvanian/ Des Moines; Ordovician/ Middle	Sandstone, Limestone	1,800, 2,600	100, 25
216.	Altona (Anadarko)	1964	Seismic, Subsurface	Combination/ Anticline, Facies change, Fracturing	Mississippian/ Chester	Limestone	8,800	5
217.	Putnam, Southwest (Anadarko)	1969	Seismic, Subsurface	Stratigraphic/ Porosity- permeability pinchout	Devonian	Limestone	14,100	75

Surface	(million	Cro ns bbls as	ude Oil of Dec. 31,	1975)	(Bofas	atural Gas of Dec. 31,	1975)	Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod	Cum. Prod.	Demonst. Reserves	1975 Prod
880		9.2	1.6	0.17	0.4		0.01			
860		9.6	0.5	0.07						
640		4.8	0.5	0,09	32.6		1.06			
4,120		c.10.2	0.1	0.01						
1,400		9.4	0.4	0.03	<u> </u>		:	i		
7,880		9.6	0.4	0.11	!					
6,500		4.9	0.5	0.05	20.3		0.86			
4,540	į 	c.8.1	1.9	0.19	i					
18,560		1,4	0.4	0,12	37.8		3.10			
1,920		9,1	0.3	0.03						
5,800							5.54			
720		2.5	5.9	0.67						
10,260		c.9.7	*	*						
760		8.7	0.3	0.02		1		:		
6,180		9.0	0.4	0.26						
20,480					13.2		5.20	0.1		0.0
80					65.6	:	0.03	*		*

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
218.	Davenport District, West (Chautauqua)	1934	Surface, Core-drill, Seismic	Combination/ Facies change, Porosity- permeability pinchout, Nose	Pennsylvanian/ Des Moines, Missouri	Sandstone	3,500, 3,900, 3,000	50, 30, 20
219.	Hardesty Northeast (Anaderko)	1958	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	6,400	10
220.	Lovednie, Northwest (Anadarko)	1961	Subsurface	Combination/ Facies change, Nose	Pennsylvanian/ Morrow; Mississippian/ Chester	Sandstone, Limestone	5,700, 5,700	20. 40
221.	Sampsel, Northeast (Palo Duro)	1961	Subsurface, Seismic	Stratigraphic/ Facies change, Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	4,400	5
222.	Skellyville (Chauteuqua)	1924	Random	Stratigraphic/ Facies change, Unconformity	Pennsylvanian/ Des Moines; Silurian/ Lower	Sandstone, Limestone	3,100, 3,600, 4,000	40, 10, 35
223.	Rich Yalley (Anadarko)	1949	Seismic	Combination/ Anticline, Unconformity	Ordovician/ Middle; Mississippian/ Osage	Sandstone, Limestone	5,800, 5,200	20, 25
224.	Fay, Southeast (Anadarko)	1964	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow, Des Moines	Sandstone, Limestone	10,700, 9,300	40, 30
225.	Griggs, Southeast (Pale Duro)	1957	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Pennsylvanian/ Des Moines, Morrow	Sandstone	3,900, 4,600	30. 10
2 26.	Hamilton Switch (Chautauqua)	1909	Random	Combination/ Facies change, Anticline	Pennsylvanian/ Des Moines, Atoka	Sandstone	1,400, 2,000	150, 20
227.	. <i>Henryetta</i> (Chautauqua)	1910	Random	Stratigraphic/ Facies change	Pennsylvanian/ Atoka	Sandstone	2,200	30
228.	. Liberal Southeast (also KS) (Anadarko)	1947	Core-drill	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	6,100	30
229.	. Ramona (Chautauqua)	1911	Seepage	Stratigraphic/ Facies change	Pennsylvanian/ Des Moines	Limestone, Sandstone	900, 1,700	100, 20
230.	. Teagarden (Anadarko)	1954	Seismic, Subsurface	Stratigraphic/ Facies change	Mississippian/ Meramec	Limestone	5,800	30

a Includes Turley.

b Includes Carney and Featherston.

Surface	(million	Cra as bbls as	ide 011 of Dec. 31	, 1975)	(Bcf as	Netural Gas of Dec. 31	i, 1975)	Na (mill. b	tural Gas Liqu bls as of Dec.	ids 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Frod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
5,760		6.5	0.1	0.04	8.1		80.0			
2,500		5.5	2.9	0.23	:					
25,600		1.3	0.5	0.05	38.7		1.81			
6,080					24.5	i	3.21	*		*
10,020		4.2	0.5	0.03	24.5		0,12			
5,440		6.2	1.2	0.11						
9,600	¬ -				17,5		2,29	0.1		0.01
9,360		1.8	0.5	0.07	30,7		1.86			
6,160		5.9	0.7	0.06		:	0.02			
6,800		6.5	0.5	0.04			0.04			
1,920					2.9		0.12	*		*
1,760		7.8	0.8	0.07						
7,920		*			24.6		2.92	0.2		0.01

 $\label{eq:table_a.6c} The \ \ \text{Significant oil, and gas fields of texas r.r.c.} \ \ \text{district 10}$

<u> Field</u>	Year Dis- coveted	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1. Hugoton-Panhandle (also OK & K5) (Anadarko-Amarillo)	1910	Surface	Combination/ Anticline, Porosity- permeability pinchout, Hydrodynamic	Permida/ Wolfcamp	Dolomite, Limestone	3,500, 3,000	45. 50
a. Hugoton (also OK & KS) (AAAA)	1918	Surface	Combination/ Porosity- permeability pinchout, Hydrodynamic	Permian/ Wolfcamp	Dolomite	2,600	50
5. Pankandle (all) (AAAA)	1 91 0	Surface	Combination/ Anticline, Porosity- permeability pinchout	Permian/ Wolfcamp	Dolomite, Limestone	3,500, 3,000, 1,500	45, 50, 85
Class AAA Fields							
2. Hansford (Anadarko)	1953	Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout, Facies change	Pennsylvanian/ Morrow	Sandstone	7,300, 7,600	15, 15
Class AA Fields		1					ļ
3. Buffalo Wallow (Anadarko)	1967	Seismic	Combination/ Anticline, Facies change	Silurian/ Upper; Pennsylvanian/ Morrow	Limestone, Sandstone	19,500, 13,500	70, 35
4. Mills Ranch (all)- Mayfield, West (also OK) (Anadarko)	1971	Seismic	Structural/ Faulted anticline	Silurian/ Lower	Dolomite	21,100	65
5. Quinduno (Anadarko)	1952	Seismic, Core-drill	Structural/ Anticline	Permian/ Wolfcamp	Dolomite	4,000	25
Class A Fields							
6. Washita Creek (Anadarko)	1960	Surface, Seismic	Combination/ Anticline, Facies change	Silurian/ Upper; Pennsylvanian/ Morrow	Dolomite, Sandstone	19,500, 13,600	95, 20
7. Parsell (Anadarko)	1957	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	9,400	10
8. Hemphill (Anadarko)	1951	Subsurface	Combination/ Hydrodynamic, Porosity- permeability pinchout	Pennsylvanian/ Des Moines	Sandstone	10,700	60
9. Ellis Ranch (Anadarko)	1959	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Missouri, Morrow	Sandstone	7,000, 8,800	10,

Surface	(millions	Crude s bbls as o	0il f Dec. 31,	1975)		Natural Gas of Dec. 31	1975)	Na (mill. b	tural Gas Liqu bls as of Dec.	ids ^a 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
853,440	6,060.0	1,294.6	128.4	11.50			694.26	0.3		
653,440						:	87.51	0.1		*
200,000	6,060.0	1,294.6	128.4	11.50			606.75	0.2		0.02
126,720		3,7	1.3	0.08			48.77	3.8		0.13
8,320	_	- -			459.0		48.39	0.2		0.02
7,680					67.3		38.58	*	*	*
35,360		20.9	2.1	0.29			14.58	0,1	;	*
5,120					292.7		38.94	*	*	*
5,100		0.2	0.3	0.10	145.5		17.85	0.8		0.09
1,280	:	0.1	*	0.01	70.7		22.50	1.4		0,44
49,920		0.2	*	*	195.1		10.81	0.8		0.03
	· 									

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class B Fields			1				
10. Kiowa Creek (Anadarko)	1957	Subsurface	Combination/ Porosity pinchout, Nose	Pennsylvanian/ Morrow, Missouri	Sandstone	8,900, 6,400, 9,000	20, 10, 20
11. Canadian, Southeast: Douglas (Anedarko)	1972	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Virgil	Sandstone	7,100	30
12. Farnsworth (Anadarko)	1952	Subsurface	Stratigraphie/ Facies change	Pennsylvanian/ Morrow	Sandstone	8,000	25
13. Bradford (Anadarko)	1958	Subsurface	Combination/ Porosity pinchout, Nose	Pennsylvanian/ Missouri	Sandstone	7,300, 6,500	20, 10
14. Mendota, Northwest (Anadarko)	1962	Subsurface, Seismic	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	11,300	10
15. Hansford, North: (Anadarko)	1954	Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Missouri, Morrow	Sandstone	5,200, 7,300	60, 40
16. Mathers Hanch (Anaderko)	1969	Seismic, Geophysics	Stratigraphic/ Porosity- permeability pinchout, Facies change	Silurian/ Lower	Dolomite	16,700	25
17. Tuin (Anadarko)	1954	Seismic, Subsurface	Combination/ Unconformity, Nose, Permeability pinchout	Pennsylvanian/ Des Moines, Morrow	Limestone, Sandstone	6,100, 7,100	40, 10
Class C Fields							
18. Earison (Anadarko)	1957	Subsurface	Combination/ Nose, Porosity- permeability pinchout	Pennsylvanian/ Missouri	Sandstone	6,400	25
19. Gageby Creek (Anadarko)	1964	Seismic, Subsurface	Structural/ Faulted anticline	Silurian/ Lower	Limestone	14,600	120
20. Higgins, South (also OK) (Anadarko)	1961	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	11,900	15
21. Feldman (Anadarko)	1957	Seismic, Subsurface	Combination/ Permeability pinchout, Nose	Pennsylvanian/ Missouri	Sandstone	7,600, 7,000	60, 20
22. Follett (Anadarko)	1957	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	8,800	15
23. Canadian, Northeast (Anadarko)	1973	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Virgil	Sandstone	6,900	55

Surface	(million	Crude as bbls as	Oil of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
9,600		1.8	0,2	0.03			12.14	1.4		0.06
13,760		*	0.2	0.02	29.5	;	14.84	0.4		0.20
12,000		26.4	12.1	2.09			0.73	0.3		*
5,120		2.5	0.9	0.07		:	4.81	0.3		0.02
2,000		0.2	0.6	0.09	109.6		10,83	0.2		0.01
32,640		2.2	0.3	0.03			4.36			0.01
14,720		*	*	0.01	127.7	:	22.20	*		*
9,280		10.3	0.5	0,08			2.70	*		*
16,640		5,1	4.4	0.48			2,88	0.1		0.01
2,400					95.9		3.88	0.1		*
4,880		*	*	*	12.9	1	1.18	0.1	i	0.01
7,040		2.7	0.8	0.08			3.41	0.5		0.02
10,240					59.9		5.19	0.7	i	0.04
4,160					11,8		11.61	0.2	:	0.17
4,160					11,8		11.61	0.2		0.

A. 6c(MC-TXI0)-3 194

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoit Thickness (feet)
24. Bernstein (Anadarko)	1954	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	6,900	80
25. Hitchland (Anadarko)	1954	Subsurface, Seismic	Stratigraphic/ Porosity pinchout	Pennsylvanian/ Virgil	Sandstone	4,600	20
26. Ligacomb (Anadarko)	1957	Seismic, Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow, Atoka	Sandstone	9,700, 9,000	15, 15
27. R.H.F. (Anadarko)	1956	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	8,100	10
28. Perryton, West (Anadarko)	1956	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	8,500, 8,100	25, 20
29. Carrie Killebrew (Anadarko)	1974	Subsurface	Stratigraphic/ Forosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	8,500	20
30. Humphreys (Anadarko)	1971	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Virgil	Sandstone	7,200	30
31. Red Deer Creek (Anadarko)	1975	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	11,200	40
32. Lips (Anadarko)	1949	Seismic, Subsurface	Combination/ Faulted anticline, Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	8,400	20
33. Farnsworth-Conner (Anadarko)	1956	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Fennsylvanian/ Des Moines	Limestone	6,700	15
34. Share, Southeast (Anadarko)	1959	Subsurface	Stratigraphic/ Forosity- permesbility piachout	Pennsylvanian/ Morrow	Sandstone	7,600	10
35. Canadian (Anadarko)	1955	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Sandstone	11,100	10
36. Notla (Anadarko)	1958	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	10,400	30
37. Morrison Ranch (Anadarko)	1963	Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	9,500, 10,400	5, 5
38. Perryton (Anadarko)	1955	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	7,800, 9,500	45, 10

Surface	(million	Cruo is bbls as	le Oil of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Na (mill. b	tural Gas Liqu bls as of Dec.	1ds 31, 1975)
Area (Acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod.	Demonst. Reserves	1975 Prod.
12,800					45,2		2.58	0.1		*
18,560		3.4	0.4	0.04			4.58			0.01
9,600		0.2	0.4	0.03			4.67	0.7		0.03
6,000		15.2	1.3	0.47			0.15	*		
9,600		4.1	0.3	0.04			2,28	0.1		*
1,280			 		0.7		0.68	*		0.01
13,440					16.8		6.51	0.2		0.06
1,200		0.1	5.9	0.05	0.3		0.28			
12,900		*			68.7		2.23	0.3		0.01
4,000		8.7	1.7	0,20			0.83	*		
8,800		1.9	0.2	0.03			1.57	0.1		*
1,920		0.1	*	*			1.64	*		*
10,240	-				82.0			0.1		
2,400		2.7		0.03			1.07	0.1		*
13,440		1.3	0,2	0.02			2.04	0.2		*
							İ			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
39. Dude Wilson (Anadarko)	1958	Subsurface	Stratigraphic/ Permeability pinchout	Pennsylvanian/ Morrow	Sandstone, Limestone	8,300, 7,800	20, 40
40. Follett, West (Anadarko)	1961	Subsurface	Stratigraphic/ Porosity pinchout, Facies change	Penneylvanian/ Des Moines	Sandstone	7,900	20
41. Clementine (Anadarko)	1964	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Sandstone	6,800	10
42. Eutchinson, North (Amarillo)	1952	Seismic	Structural/ Faulted anticline	Pennsylvanian/ Missouri; Permian/ Wolfcamp	Sandstone, Dolomite	6,000, 3,500, 5,000	20, 25, 15
43. <i>Moheetie</i> (Anadarko)	1963	Seismic	Combination/ Anticline, Facies change	Pennsylvanian/ Virgil, Missouri	Sandstone, Limestone	6,900, 7,200	5, 40
44. Parsell, South (Anaderko)	1961	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Morrow	Saudstone	11,800	55
45. Wheeler-Pan (Anadarko)	1974	Seiemic	Combination/ Faulted anticline, Facies change, Unconformity	Silutian/ Upper	Dolomite	14,500	25
46. Northrup (Anadarko)	1956	Subaurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Pennsylvanian/ Virgil	Sandstone	5,800	10
47. Shreikey (Anadarko)	1975	Subsurface	Stratigraphic/ Facies change	Pennsylvanian/ Morrow	Chert, Sandstone	10,800	20
48. Kelin (Anadarko)	1958	Subsurface, Seismic	Combination/ Facies change, Permeability pinchout, Nose	Pennsylvanian/ Missouri	Sandstone	7,200	20

aLease condensate only.

Surface	(million:	Crude 5 bble as c	oil of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
7,680		1.1	*	0.01			3.81	0.3		0.03
3,680		2.4	0.1	0.03			4.37	0.3		0.01
1,920		1,1	0.2	0.05	43.9		1.71	0.2		*
5,760					47.7		1.70	0.1		*
4,500		3.6	0.3	0.06	43.2		2.86	0.3		0.01
2,880		*			3.6		3.11	*		*
10,880		¬=			2.5		2,47	*		0.03
5,120	!	*	*	*	35.7		2,43	0.2		0.01
2,560			- -		8.8		8.78	*		0.03
2,400		2.7	0.4	0.03			2.92	0.4		0.02

 $\label{eq:table_A.7a} The \ \ Significant \ \mbox{oil and GAS FIELDS OF TEXAS R.R.C. DISTRICT 1}$

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AA Fields							
I. Pashing (Gulf Coast)	1956	Surface, Trend, Seismic, Subsurface	Structural/ Fault	Cretaceous/ Comanche	Limestone	10,800	195
2. Luling-Branyon (Gulf Coast)	1922	Surface, Trend	Structural/ Fault	Cretaceous/ Comanche	Limestone	2,100	50
3. Danst Creek (Gulf Coast)	1929	Surface	Structural/ Fault	Cretaceous/ Comanche	Limestone	2,500, 2,400	40, 30
Class A Fields							
h. Peareall: Austin (Gulf Coast)	1936	Surface, Core-driil, Seismic	Structural/ Fracturing, Faulted anticline	Cretaceous/ Gulf	Chalk	5,200	100
5. Salt Flat (Gulf Coast)	1928	Surface	Structural/ Fault	Cretaceous/ Comanche	limestone	2,400	25
6. Big Wells (all) (Gulī Coast)	1958 (1969)	Subsurface, Core-drill	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	5,400	15
7. Big Foot (all) (Gulf Coast)	1949	Subsurface, Seismic, Core-drill	Stratigraphic/ Unconformity, Facies change	Cretaceous/ Gulf	Sandstone	3,200, 3,000	10, 20
a. Bíg Foot (B)	1949	Subsurface, Seismic, Core-drill	Stratigraphic/ Unconformity	Cretaceous/ Gulf	Sandstone	3,200	10
b. Big Foot, West (C)	1953	Subsurface, Seismic	Stratigraphic/ Facies change	Cretaceous/ Culf	Sandstone	3,000	20
6. Charlotte (Gulf Coast)	1944	Surface, Geophysics, Core-drill, Seismic	Structural/ Pault	Cretaceous/ Gulf, Comanche	Sandstone, Limestone	5,200, 7,000	15, 40
9. Jourdantown (Gulf Coast)	1946	Surface, Seismic	Structural/ Fault	Cretaceous/ Comanche	Limestone	7,400	35
Class B Fields							-
10. Dilworth (Gulf Coast)	1950	Seismic, Core-drill	Structural/ Faulted salt dome	Cretaceous/ Comanche	Limestone	9,700	50
11. Sacatosa (Gulf Coast)	1955	Trend, Seismic	Combination/ Facies change, Nose	Cretaceous/ Gulf	Sandstone	1,200	10
12. San Miguel Creek (Gulf Coast)	1948	Seismic. Surface	Structural/ Salt dome, Fracturing	Cretaceous/ Comanche	Limestone	10,100	35
13. Campana, South (Gulf Coast)	1941	Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	3,000	10
Class C Fields							
14. Roos (Gulf Coast)	1957	Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	7,500	30
15. Vînegarone (Permian: Val Verde)	1955	Subsurface	Stratigraphic/ Pacies change	Pennsylvanian/ Des Moines	Limestone	10,000	280

199 A.7a(WG-TXI)~1

Surface	(million	Grude	of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbis as of Dec. 31, 1975		
Arca (acres)	In Place	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
10,000		0.8	0.1	0.01	785.8		29.49	0.8ª		0.48
3,940	473.7	146.5	18.1	1.29			0.02			
2,100	308.8	142.9	20.9	1.50			0.02			
40,000	363.7	7.0	71.0	0.59	:		0.25			
8,100	283.6	69.6	11.0	0.72			0.06			
30,500	249.1	28.8	21.6	3.35	28.0		2.95			0.8
34,720	120.7	25.1	7.5	0.68			2.43			0.0
10,400	120.7	25,1	7.5	0,68			0.51			
24.320					95.3		1.92			
7,880	116.9	40.3	9.1	0.68			0.87			
4,600		12.8	4.5	0.51			9.10			
5,120		*			96.4	ļ	7.66	0.2ª		0.0.
3,380		14.1	12.9	1.05			0.79		ŧ	}
1,920		2.0	0.1	0.31			5.86			0.07
3,780	: 	8.5	3.7	0.35			1.60			
1,440					 109.8		3.46	0.1ª		0.00
2,880							4.16			

A.7a(WG-TX1)-2 200

1951 1911	Seismic Random	Structural/ Fault	Tertiary/ Eocene	Sandstone	9,700,	45,
1911	Random		1		6,000, 8,400	20 20
		Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	1,300	20
1961	Trend, Subsur- face, Seismic	Structural/ Fault	Cretaceous/ Comanche	Limestone	12,100	75
1974		Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	4,800	30
1955	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,300	20
1955	Seismic, Subsurface	Stratigraphic/ Organic reef	Cretaceous/ Comanche	Limestone	11,200	200
1946	Surface, Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	3,800	15
1938	Subsurface	Structural/ Fault	Cretaceous/ Comanche	Limestone	2,300	20
1953	Seismic, Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	7,800	15
1971		Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	3,400	25
1925	Surface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Igneous	1,200	15
1924	Surface, Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	3,900, 4,100	30, 20
1954	Subsurface	Structural/ Fault	Cretaceous/ Gulf	Sandstone	4,300	20
	1974 1955 1955 1946 1938 1953 1971 1925	face, Seismic 1974 1955 Seismic 1955 Seismic, Subsurface 1946 Surface, Subsurface 1938 Seismic, Subsurface 1971 1925 Surface 1971 1925 Surface 1974 Surface Subsurface	face, Seismic Fault 1974 Stratigraphic/ Facies change 1955 Seismic Structural/ Paulted anticline 1955 Seismic, Stratigraphic/ Subsurface Organic reef 1946 Surface, Structural/ Fault 1938 Subsurface Structural/ Fault 1953 Seismic, Structural/ Fault 1971 Stratigraphic/ Facies change 1925 Surface Structural/ Facies change 1926 Surface, Structural/ Facies change 1927 Surface, Structural/ Seismic Structural/ Anticline 1958 Subsurface Structural/ Seismic Structural/ Anticline	face, Seismic Fault Comanche 1974 Stratigraphic/ Facies change 1955 Seismic Structural/ Faulted anticline 1955 Seismic, Stratigraphic/ Organic reef 1946 Surface, Structural/ Fault Eocene 1948 Subsurface Structural/ Fault Comanche 1953 Seismic, Structural/ Fault Comanche 1954 Surface Structural/ Fault Eocene 1971 Stratigraphic/ Fault Comanche 1971 Stratigraphic/ Fault Comanche 1971 Stratigraphic/ Fault Eocene 1971 Stratigraphic/ Fault Comanche 1971 Stratigraphic/ Fault Eocene 1971 Stratigraphic/ Fault Eocene 1972 Stratigraphic/ Fault Cretaceous/ Gulf 1973 Surface Stratigraphic/ Facies change Gulf 1974 Surface, Structural/ Cretaceous/ Gulf 1975 Surface Structural/ Cretaceous/ Gulf 1976 Subsurface Structural/ Cretaceous/ Gulf 1977 Cretaceous/ Gulf 1978 Subsurface Structural/ Cretaceous/ Gulf 1979 Subsurface Structural/ Cretaceous/ Gulf 1970 Cretaceous/ Gulf	face, Seismic Fault Comanche 1974 Stratigraphic/ Facies change Gulf 1955 Seismic Structural/ Faulted anticline 1955 Seismic, Stratigraphic/ Comenche 1946 Surface, Structural/ Fault 1938 Subsurface Structural/ Fault Comenche 1948 Subsurface Structural/ Fault Comanche 1953 Seismic, Structural/ Fault Comanche 1954 Surface Structural/ Fault Comanche 1971 Cretaceous/ Comanche 1971 Stratigraphic/ Fault Eocene 1972 Stratigraphic/ Fault Cretaceous/ Gulf 1973 Seismic, Structural/ Cretaceous/ Gulf 1974 Surface Stratigraphic/ Facies change Gulf 1975 Surface Stratigraphic/ Gretaceous/ Gulf 1976 Surface Structural/ Cretaceous/ Gulf 1977 Sandstone Gulf 1978 Surface Structural/ Cretaceous/ Sandstone Gulf 1979 Surface Structural/ Cretaceous/ Sandstone Gulf 1970 Surface Structural/ Cretaceous/ Sandstone Gulf 1971 Surface Structural/ Cretaceous/ Sandstone Gulf 1972 Surface Structural/ Cretaceous/ Sandstone Gulf 1973 Subsurface Structural/ Cretaceous/ Sandstone Gulf 1974 Subsurface Structural/ Cretaceous/ Sandstone Gulf 1975 Subsurface Structural/ Cretaceous/ Sandstone Gulf 1976 Subsurface Structural/ Cretaceous/ Sandstone	face, Seismic Fault Comanche Stratigraphic/Facies change Gulf Seismic Structural/Faulted Eocene 1955 Seismic, Stratigraphic/Organic reef Subsurface Structural/Fault Eocene 1946 Surface, Structural/Fault Eocene 1938 Subsurface Structural/Fault Comanche 1953 Seismic, Structural/Fault Eocene 1954 Subsurface Structural/Fault Comanche 1955 Seismic, Structural/Fault Eocene 1956 Subsurface Structural/Fault Eocene 1957 Seismic, Structural/Fault Eocene 1958 Seismic, Structural/Fault Eocene 1959 Seismic, Structural/Fault Eocene 1970 Stratigraphic/Facies change Cretaceous/Gulf 1971 Stratigraphic/Facies change Gulf 1972 Surface Stratigraphic/Facies change Gulf 1973 Surface Structural/Facies Change Gulf 1974 Surface, Structural/Facies Change Gulf 1975 Surface Structural/Facies Change Gulf 1976 Subsurface Structural/Facies Change Gulf 1977 Sandstone 3,400 1978 Supsurface Structural/Facies Change Gulf 1979 Sandstone 3,900, 4,100 1979 Subsurface Structural/ Cretaceous/ Sandstone 3,900, 4,100 1970 Subsurface Structural/ Cretaceous/ Sandstone 4,300

aLease condensate only.

^bPlant liquids only.

Clease and plant liquids.

201 A.7a(WG-TX1)-2

Surface	(million	Crude s bbls as	0il of Dec. 31,	1975)		Natural Gas of Dec. 31,	. 1975)	Nat (mill, bb	ural Gas Liqui Ls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Pred.
1,600		*			85,4	!	1.22	0.98		0.01 ^a
14,000		14.6	1.4	0.09			*			
2,100		0.3	*	0.01	67.7		3.75	0.9ª		0.04 ^a
15,000					3.9		3,07	* a		0.038
1,920		-			58.6		1.67	0.1 ^a		0.02°
960		*			56.7		1.97	*		
1,640		9.5	2.3	0.21			0.07			- -
1,480	92,1	5.9	5.6	0.33			0.04			- -
1,920				- -	51.8		0.80	0.5ª		0.01ª
10,000	50.7	4.0	3.6	1.21	5.5		1.80			
2,000	57.8	10.5	0.5	0,05			*			
1,080		9.5	1.7	0.16			0.02			
6,600		8.5	2.0	0.13			0.01			
	<u> </u>			<u></u>						<u> </u>

Table A.7b

THE SIGNIFICANT OIL AND GAS FIELDS OF TEXAS R.R.C. DISTRICT 2

Fleld	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Ceologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							1
1. Orsta-Tom O'Cornor (Gulf Coast)	1933	Surface. Trend, Seismic, Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	4 ,40 0	175
a. Greto (AAA)	1933	Surface, Trend, Seismic	Cembination/ Faulted anticline, Facies Change	Tertiary/ Oligocene	Sandstone	4,400	50
b. Tom G'Sonkor (all) (AAAA)	1934	Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	4,400- 5,800	175
2. West Ranch (Guif Coast)	1938	Surface, Ceophysics, Subsurface, Seismic	Combination/ Anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,800, 5,100, 6,100	25, 180, 35
Class AAA Fields			<u>.</u>	•			
3. Refugio (all) (Gulf Coast)	1920	Surface, Seepage	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	3,700- 7,100, 5,900	75, 10
a. Mary Ellen C'Connor (A)	1953	Subsurface	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	5,900	10
b. Melon Creek- Mission River (D)	1932	Surface, Geophysics, Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,900, 4,600→ 7,100	15, 145
c. Rafugio (all) (AAA)	1920	Surface, Seepage	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene, Miocene	Sandstone	3,700- 7,100	75
d. Woodsboro (all) (C)	1941	Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,700- 5,900	65
4. Lake Pasture (Gulf Coast)	1953	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	4,500	5
5. Heyser (Gulf Coast)	1936	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,400, 4,400, 5,800	60. 25, 25
Class AA Fields							
6. MoFaddin ^a (Culf Coast)	1930	Seepage, Surface, Geophysics	Combination/ Faulted anticline, racies change	Tertiary/ Oligocene	Sandstone	4,400	15
7. Surmell (all) (Gulf Coast)	1935	Surface, Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	6,900, 6,700	20, 5
8. Provident City (Gulf Coast)	1941	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	11,900, 8,600	195, 125

203 A.7b(WG-TX2)-1

Surface	(million		de 011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids b (mill, bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	197 Pro
20,760		620.6	337.4	29,19			44.20			*
5,760		121.3	437	4.45			15.49			٠
15,000	1,282.1	499.3	295.7	26.74	:		28.71			,
10,500	693.5	289.1	85.9	13.77			30,57			o.:
c.18,000		93.9	4.5	0.77			5.88			;
6,360		29.6	2.4	0.38			1.45			
1,760		7.4	0,2	0.03			0.17			
10,900		50,2	1.1	0.20			3.75			
1,820		6.7	0.8	0.11			0.51			
4,760	250.6	49.0	48.5	4,49			23.60			0.
6,200		57.8	3.7	0.47			11.51			1
10,000		35.1	4.6	0.46	:		8.71			
4,620		18.1	0.9	0.20			15.91			
7,500		1.4	0.4	0.07			14.65			0,

A.7b(WG-TX2)-2 204

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
9. Tuleita-Wilcox (Gulf Coast)	1945	Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,200, 7,000	15, 25
0. Placedo (Gulf Coast)	1936	Surface, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,700- 6,000	55
1. Person-Panna María (Gulf Coast)	1959	Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche	Limestone	10,800, 11,000	50, 30
Class A Fields		ŀ					
.2. Appling (Gulf Coast)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	B _* 500	10
3. Lolita (Gulf Coast)	1940	Seismic, Subsurface, Geophysics	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	5,200	20
4. Helen Schike (Gulf Coast)	1950	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,100	30
15. Clayton (Gulf Coast)	1944	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,600	20
16. Francitas (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,600	15
17. LaRosa (all) (Gulf Coast)	1938	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,900	20
18. Karon (Gulf Coast)	1949	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Eccene	Sandstone	7,200- 7,300	90
19. Refugio-Fox (Gulf Coast)	1931	Surface, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	6,300	10
20. McFaddin, North (Gulf Coast)	1935	Surface, Geophysics	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	6,700	5
ll. Magnolia Beach- Kellers Bay (Gulf Coast)	1947	Se1smic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,700, 8,400, 7,800	40, 15, 15
22. Ganado (Gulf Coast)	1937	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,100- 6,600	50
23. LaWard, North (Gulf Coast)	1941	Subsurface, Seismic	Combination/ Anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,100- 6,400	20
Class B Fields							
24. Heard Ranch (Culf Coest)	1939	Seismíc	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,700, 3,900	60 . 5

urface Area	(million		ude Oil of Dec. 31,	1975)	(Bef as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
2,580		5,6	*	0.02			16.51				
3,560		41.5	1.0	0.16			0.70			*	
12,600		20.3	2,6	0.42			12.77	3.1		0,25	
2,040		4.6	0.6	0.08			2.16			*	
6,000		54.3	2.2	0.51	<u>.</u>		1.22			*	
8,300		24.0	4.0	0.37			1 4.56			0.10	
8,100		4.6	0.8	0.06			3.18			0.02	
1,800		8.2	0.4	0.08			4.20			0.01	
3,880		33.3	2.5	0.50			4.63			0.01	
3,940		7.5	0.4	0,22		İ	20.91			0.03	
2,500		45.3	0.2	0.03			0.51			*	
1,720		6.0	3.9	0.19			1.32			*	
7,160		4.1					5.76			*	
2,440		20.7	2.3	0,49			2,27				
9,000		19.4	2.6	0.23			0.80			*	
4,000	į.	*					5.94			*	

A.7b(WG-1X2)-3 206

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
25. Bloomington (Gulf Coast)	1947	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,600	5
26. Ganado, West (Gulf Coast)	1940	Seismíc	Structural/ Faulted salt dome	Tertiary/ Oligocene	Sandstone	4,700- 6,500	70
27. Normanna (Gulf Coast)	1930	Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Eccene	Sands tone	9,000	10
28. Maurbro (Gulf Coast)	1941	Geophysics, Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	5,200	45
29. Slick (Gulf Coast)	1943	Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,500	10
30. Bonnie View (Gulf Coast)	1939	Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	4,600	35
31. Falls City (Gulf Coast)	1944	Surface, Geophysics, Core-drill	Combination/ Faulted anticline, Hydrodynamic	Tertiary/ Eocene	Sandstone	4,700- 6,100	15
32. Harris (Gulf Coast)	1947	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,500, 7,500	65, 5
33. Texana (all) (Gulf Coast)	1939	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,500	10
34. Matagorda Bay (Gulf Coast)	1947	Geophyeics, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,700	5
35. Cabeza Creek (all) (Gulf Coast)	1944	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,700	15
36. Cologne (Gulf Coast)	1939	Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	1,400	30
37. Mayo (Gulf Coast)	1942	Seismic, Subsurface	Combination/ Unconformity, Anticline	Tertiary/ Miocene, Oligocene	Sandstone	3,600, 5,100	15, 10
38. Roche (Gulf Coast)	1947	Seismic, Subsorface	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	6,800	10
39. Swam Lake (Gulf Coast)	1950	Trend, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,100	15
40. Morales (Gulf Coast)	1946	Geophysics	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	2,700	5
41. Blanconia (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,900	5
Class C Fields							
42. Flacedo, East (Gulf Cosst)	1937	Surface, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,000- 6,300	110

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31,	1 975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cuma. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Frod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,660		29.6	3.7	0,69	71307	ACSETVES	0.67	1150.	VEGETAES	1 150
2,420		22.8	10.2	1.02			0.92	į		
6,760		0.4	*	0.01			5.39	į		
3,240		23.0	3.0	0.50			0.99			
1,880		19.2	0.6	0.17			0.47	*		*
2,500		17.9	4.1	0.31		:	0.69			*
2,340		24.9	3.2	0.65			0.07	*		
2,080		*					1.97	:		
3,540		1.0	0.2	0.08			1.15			*
3,200		1.3	-				0.53			
4,060	:	9.0	0.3	0.09		:	2.62			0.0
2,040		1.2	*	*		;	1.10			*
4,180		7.9	0,1	0.04			1.64			*
3,200		16.3	4.4	0.69			1.07			
1,580		14.8	4.5	0.96			2.24			0.0
5,280					:		1.87			*
1,600		1.3	0.9	0.01	:		0.72			*
2,800		12.0	0.5	0,13			0.28			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
43. Fagan (Gulf Coast)	1940	Ceophysics, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	3,000, 2,100	10, 15
44. Francitas, North (Gulf Coast)	1951	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	7,800	20
45. Meyersville (all) (Gulf Coast)	1947	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,500	15
46. Oakville-Wilcox (Gulf Coast)	1945	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,300, 6,900	15, 15
47. Pettue (Gulf Coast)	1929	Seepagė, Surface	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	3,600- 3,900	30
48. Boyce (Gulf Coast)	1945	Seismic	Structural/ Faulted anticline	Tertlary/ Eocene	Sandstone	7,300	20
49, Sarco Creek (Gulf Coast)	1938	Surface, Subsurface	Combination/ Fault. Facies change	Tertiary/ Oligocene	Sandstone	4,700, 4,100	25, 10
50. Tuleta, West (Gulf Coast)	1937	Surface, Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	7,500	80
51. Keeran (Gulf Coast)	1932	Geophysics, Seismic	Combination/ Anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,600- 7,000	15
52. Armeckville (Gulf Coast)	1950	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	9,100	10
53. Maude B. Traylor, North (Gulf Coast)	1957	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,200	10
54. Yougeen (Gulf Coast)	1944	Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	3,400- 3,700	100
55. Morales, North (Gulf Coast)	1953	Seismic, Core-drill	Combination/ Anticline, Facies change	Tertiary/ Eocene	Sandstone	10,000, 9,500	30, 35
56. Speaks, Southwest (Gulf Coast)	1949	Subsurface, Seismic, Geophysics	Structural/ Anticline	Tertiary/ Eocene	Sandstone	8,300	105
57. Coletto Creek (Gulf Coast)	1933	Surface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	2,800	10
58. Berclair (Gulf Coast)	1945	Surface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	3,200	5
59. <i>Yoakum</i> (Gulf Coast)	1945	Seismic	Combination/ Faulted anticline, Unconformity	Tertiary/ Eocene	Sandstone	8,800	5

209 A.7b(WG-TX2)-4

Surface	(million	Crude is bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod.	Demonst. Reserves	1975 Prod	
640		0.6]		3.63			*	
2,000		13.8	0.2	0.07			0.40			*	
5,900		1.1	*	0.01			0.58			0.0	
2,720										*	
2,300		19.4	0.6	0.06			0.28				
1,320		3.0	0.5	0.07			0.71			0.0	
9,000		0.1	0.1	0.01			2.71			*	
840		*	*	*			0.02				
5,000		9.3	0.5	0.09			0.16				
3,400		0.1	0.1	0.01	87,2		1.29			0.0	
1,640		0.3	0.2	0.01			2.05			*	
1,200		4.4	0.7	0.07			0.59			*	
800			 -		69.7		3.41	0.6		0.0	
5,160		*	*	*			0.92			*	
1,560		11,2	3.0	0.31			0.21				
1,380		12.7	2.2	0,28			0.24				
920		*					1.25			0.0	
				į							

A.7b(WC-TX2)-5 210

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
50. Forchers (Gulf Coast)	1953	Seismic, Geophysics, Subsurface	Structural/ Fault	Tertiary/ Oligocene	Sandatone	2,500, 3,600	5, 5
61. Caesar, South (Gulf Coast)	1942	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	6,500	10
52. Cook, South (Gulf Coast)	1963	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	10,800,	60, 10
63. Youard (Gulf Coast)	1947	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,400- 7,600	105
64. Brandt (Gulf Coast)	1947	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,300	15
65. McFaddin, East (Gulf Coast)	1949	Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,800	5
66. Yorktown (Gulf Coast)	1942	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	11,000	45
67. Tom Lyne (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Eccene	Sandstone	6,000, 9,200	15, 30
68. Gottschalt (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,300	13
69. Cottonwood Creek, South (Gulf Coast)	1950	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,600	5
70. Helen Gohlke, West (Gulf Coast)	1952	Surface, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,200	10
71. Live Oak Lake (Gulf Coast)	1965	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	5,000, 4,800	5, 5
72. Nordheim (Gulf Coast)	1942	Seismic	Structural/ Anticline	Tertiary/ Eocene	Sandstone	11,200	10
73. Pridham Lake (all) (Gulf Coast)	1944	Selsmic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,700	10
74. Ray-Wilcox (Gulf Coast)	1943	Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	7,700, 8,100	25, 5
75. Sheriff (Gulf Coast)	1945	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,700	15
76. Hordes Creek (Gulf Coast)	1929	Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,900	20

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)	(Bef as	Matural Gas of Dec. 31,	1975)	Natu (mill. bbl	ral Cas liqui s as of Dec.	ids 31, 1975)
Area (acres)	In Place	Gum. Prod.	Demonst. Réserves	1975 Prod-	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,000					38.3		17.42	*		*
2,240		7.6	0,2	0.03		:	0.21			*
480					65.2		1.91	0.8		0,03
1,240		7.9	0.1	0.03			0.59	:		0.01
1,200		1.8	*	0.01			1.69			0.02
1,620		7.9	2.0	0.29	<u> </u>		0.75			
480			-		68.3		3.67	0.6		0.02
1,100		0.2	*	0.01			0.95			
2,560	! !	1.3				!	0.01	į		*
2,720		10.2	0.4	0.12			0.35			*
2,720	:	6.6	0.9	0.08			0.73			0.01
1,120		2.2	4.6	0.24			0,13			!
1,600							3.31			0.03
1,740		7.6	0,6	0.10			0,54			*
1,860							1.08			
1,600		7.6	2.4	0.19			0.13			*
1,000		1.3	*	0.01			0.21			*

				, <u>-</u>			
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
77. Posderhorm (Gulf Coast)	1939	Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandston e	5,100	50
78. Ramirena, Southwest (Gulf Coast)	1952	Selsmic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eccene	Sandstone	4,500, 4,600	5, 10
79. Word, North (Gulf Coast)	1971	Şeismic :	Structural/ Fault	Tertiary/ Eocene	Sandstone	8,100, 7,800	15, 10
80. Cordele (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	2,800	45
81. Kats-Elick (Gulf Coast)	1959	Seismic	Structural/ Faulted anticline	Tertiary/ Eccene	Sandstone	10,500	15
82. Christmas (Gulf Coast)	1953	Seismic, Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	10,800	20
83. Minoak (Gulf Coast)	1947	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,300	20
84. Vienna (Gulf Coast)	1941	Seismic	Structural/ Fault	Tertiary/ Oligocene, Eocene	Sandstone	2,900, 8,400- 8,600	10, 20
85. Clay, West (Gulf Coast)	1946	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	10,300, 9,400	170, 10
86. Elma (Gulf Coast)	1957	Subsurface	Structural/ Fault	Tertiary/ Eocene	Sandstone	7,000, 7,900	120, 10
87. Lavaca Bay (Gulf Coast)	1964	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sands tone	10,300, 9,800	25 , 5
88. Weesatche, South (Gulf Coast)	1944	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	3,000	5
89, Anna Barre (all) (Gulf Coest)	1954	Subsurface	Structural/ Anticline	Tertiary/ Eocene	Sandstone	9,100	10
90. Dirks (Gulf Coast)	1934	Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Pocene	Sandstone	3,900	5
91. George West, West (Gulf Coast)	1952	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,500, 7,900	25, 10
92. Maxine, East (Gulf Coast)	1950	Seismic, Subsurface	Structural/ Faulted anticline	Tertlary/ Eccens	Sandstone	8,000, 7,600	10, 5
93. McCaskill (Gulf Coast)	1944	Seismic	Structural/ Fault	Tertiary/ Eocene	Sandstone	9,000, 7,700	20, 10
94. San Antonio Bay, North * (Gulf Coast)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,700,	120,
95. San Domingo (Gulf Coast)	1947	Seismic	Structural/ Anticline	Tertiary/ Eocene	Sandstone	7,800, 7,700	30, 20
		1	1	_ I			

alocludes Huff and T.C.

blease condensate only.

Partially offshore

Surface	(million	Crude	Oil of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Nac (mill. bb	ural Gas Liqui ls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,040		3.7	1.3	0.15			0.46			
2,020		4.4	0.3	0.03			0.68			
800		0.3	0.1	0,06			4.58			0.14
960		9.5	0.9	0.15			0.06	i		
2,240					66.8		0.59	0.8		*
1,280		0.1					4.27			0.12
1,160		*					1.61			0.01
2,340		1.4	*	* *			0.62			*
1,280			-				0.38			*
1,440		*	*	*	56.0		2.01	0.4		0.01
1,280					41.8		1.82			
1,500		0.2	0.1	*			0,36			*
2,200		! *	*	0.02	42.7		1.64	0.7		0.02
1,220		8.6	0.3	0,02			0.01		,	
1,500	*	*	- <u>-</u>				0.84			*
1,640		0.1					1.05			0.02
640		*	*	0.01	40.3		6.31	0.9		0.11
1,560		1.8	*	*			0.97	0.4		0,01
1,020		0,2					0.88			*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thickness (feet)
Class AAAA Fields							
1. Katy (all) (Gulf Coast)	1935	Geophysics, Seismic, Subsurface	Structural/ Anticline	Tertiary/ Eocene	Sandstone	7,200, 6,900, 6,400	110, 50, 120
2. Conros (Gulf Coast)	1931	Seepage, Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	5,200	60
3. Hastings, East 8 West (Gulf Coast)	1934	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,200	600
4. Old Ocean (Gulf Coast)	1934	Seepage, Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ 01igocene	Sandstone	11,100,	80, 50
5. Webster (all) (Gulf Coast)	1937	Geophysics, Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,100	100
6. Thompson (all) (Gulf Coast)	1931	Geophysics, Surface, Subsurface	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	5,400	25
7, Pledger (Gulf Coast)	1932	Seepage, Surface, Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,800	80
Class AAA Fields			i İ				
8. Anahuac (Gulf Coast)	1935	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sande tone	7,100	55
9. Chocolate Bayou (Gulf Coast)	1939	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,700	30
10. Magnet Withers (all) (Gulf Coast)	1936	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,600	15
11. Sheridan (Gulf Coast)	1940	Seismic, Surface	Structural/ Faulted anticline	Tertiary/ Eccene	Sandstone	10,000	40
12. Tomball (Gulf Coast)	1933	Geophysics, Seismic	Structural/ Anticline	Tertiary/ Eocene	Sandstone	5,500	30
13. Hull-Merchant (all) (Gulf Coast)	1918	Surface, Seepag e	Combination/ Faulted salt dome, Facies change	Tertiary/ Oligocene	Sandstone	5,000	30
a. Hull (all) (AAA)	1918	Surface, Seepage	Combination/ Faulted salt dome, Facies change	Tertiary/ Oligocene	Sandstone	5,000	30
b. Merchant (all) (C)	1952	Subsurface, Seismic	Combination/ Faulted salt dome, Facies change	Tertiary/ Eocene	Sandstone	8,900	20

Surface	(million	Cro ng bbls as	ode Oil of Dec. 31,	1975)	(Bef as	Natural Gas of Bec. 31	s , 1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Pred,	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Frod.	Demonst. Reserves	1975 Prod.
30,000		19.1	1.4	0.53	:		290.53	*		
18,000		558.2	182.8	21.45			40.85			0.09
5,460		530.4	229.6	27.79			15.28			
17,000		121.9	7.1	0.45			112.65			0.28
4,200		438.7	201.3	25.10			18.24	*		
7,500		384.6	115.4	15.05			12.38	0.1		0.02
4,960							64.09	*		
7,560		250.6	34.4	7.34			56.83			0.03
10,000		38.7	3.3	0.53			6.49			0.0
16,000		92.4	26,7	2.55			36.37	i 		0.01
14,900		4.1	0.6	0.09			41.59			
8,500		99.9	13.1	2.47			17.05	*		*
18,240		196.4	13.6	1.62			1.77	ļ		
15,200		177.4	12.6	1.48			1.63			0.0
3,040		19.0	1.0	0.14			0.14	*		
			t.							
		:		!						

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
14. Dickinson-Gillock (all) (Gulf Coast)	1934	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,100, 8,300	30, 10
a. Sickinson (all) (A)	1934	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,100	30
b. Gillock (all) (AA)	1935	Geophysics, Seismic	Structural/ Faulted anticline	Tertiaty/ Oligocene	Sandstone	9,100, 8,300, 9,400	30, 10, 15
Class AA Fields			1				
15. Markham, North- Bay City, North (Gulf Coast)	1938	Geophysics, Seismic, Subsurface	Structural/ Salt dome	Tertiaty/ Oligocene	Sandstone	7,700, 7,000, 8,400	20, 20, 10
I6. Humble (all) (Gulf Coast)	1905	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,400	15
17. West Columbia (Gulf Coast)	1904	Surface, Seepage	Combination/ Faulted salt dome, Porosity- permeability pinchout, Facies change	Tertiary/ Miocene, Oligocene	Sandstone	4,000, 9,200	100, 25
18. Oyster Bayou (Gulf Coast)	1941	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,300	50
19. Spindletop (all) (Gulf Coast)	1901	Surface, Seepage	Combination/ Paulted salt dome, Facies change	Tertiary/ Oligocene	Sandstone	5,900	30
20. Goose Creek (all) (Gulf Coast)	1908	Surface, Seepage	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,600	35
21. Barber's Hill (Gulf Coast)	1916	Surface, Seepage	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	7,200	30
22. High loland (Gulf Coast)	1922	Surface, Seepage	Structural/ Salt dome	Tertisty/ Miocene	Sandstone	6,300	150
23. Port Neches (all) (Gulf Coast)	1929	Seepage, Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	6,000, 8,700	30, 15
24. Red Fish Reef & South** (Gulf Coast)	1940	Seismic, Subsurface	Structural/ Faulted salt dome	Tertlary/ Oligocene	Sandstone	8,700	35
25. Liberty, South (Gulf Coast)	1925	Surface, Seepage	Combination/ Faulted salt dome, Facies change	Tertiary/ Rocene	Sandstone	7,000	35
26. Sowr Lake (all) (Gulf Coast)	1902	Surface, Seepage	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	4,400	35
27. Federal (Galveston) Block 266 (Gulf Coast)	1963	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Miocene	Sandston€	8,600, 8,800	5, 5

Surface	(million	Cri is bbls as	de Oil of Dec. 31,	19/5)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
12,300		116.8	26.5	4.02			12.96			
2,700		20.4	0.9	0.11			2.65			0.0
9,600		96.4	25.6	3.91			10.31			*
3,200		39.4	11.9	1.07	:		6.02	0.5		0.0
6,000		163.4	7.6	1.54			1.27			
6,820		158.4	6.6	0,92			0.52	*		
1,700		101.1	49.4	5.64			4.97	0.1		*
1,620		151.9	2.1	0,14			0.07	*		
3,480		131.4	6.1	0.73			0,21			:
1,920		124.9	6.1	0.43			0.72	0.2		0.0
7,000		128.4	4.1	0.65			0.66	*		
2,100		29.9	4.1	0.39			2,70			0.0
3,220		23.7	4.3	0.20			14.46	3.4		0.1
7,280		81.8	11.0	0.77			1.42	1.4		*
13,260		118.3	9.7	0.95			0.37	*		0.0
		6.4	0.3	0.09	569.8		27.67	0.1		*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
28. Frint Bolivar, Borih** (Gull Coast)	1972	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,300	30
29. Baccoon Bend (Gulf Coast)	1928	Surface, Seepage, Geophysics	Structural/ Salt dome	Tertlary/ Eocene	Sandstone	4,200	15
30. Manuel (Gulf Coast)	1931	Surface, Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene, Miocene	Sandstone	5,800, 4,200	15, 10
31. Village Mills, East (Gulf Coast)	1949	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eccene	Sandstone	7,500	10
32. Fig Ridge-Seabreeze (Gulf Coast)	1936	Scismic, Geophysics	Structoral/ Faulted anticline	Tettiary/ Oligocene	Sandstone	8,900, 8,500	50, 30
a. Fig Ridge (A)	1940	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,900	50
b. Seabreeze (B)	1936	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,500	30
33. Pierce Junction (Gulf Coast)	1921-	Surface, Seepage	Structural/ Faulted salt dome	Tertiary/ Miocene- Oligocene	Sandstone	5,000	25
34. Bay City, East (Gulf Coast)	1945	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,100, 10,200, 10,300	15, 5, 5
35. Stowell (Gulf Coast)	1941	Surface, Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,800	25
36. Bleseing-Pheasant (Gulf Coast)	1940	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,300, 8,800	40, 15
a. Blessing (A)	1940	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,300, 8,200	40, 5
b. Pheasant (C)	1956	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,800, 9,100	15, 10
37. Trinity Eay (Gulf Coast)	1950	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,300, 7,600, 7,900	20, 10, 30
Class A Fields							}
38. High Island East, Block A359/A370** (Gulf Coast)	1974	Seismic, Subsurface	Combination	Quaternary/ Pleistocene	Sandstone		
39. Collegeport (all) (Gulf Coast)	1939	Surface, Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	3,800, 4,100	10, 10
40. Farmett (all) (Gulf Coast)	1927	Seismic	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	8,400	1 5

219 A.7c(WG-TX3)-3

Surface	(million	Cri is bbls as	de 011 of Dec. 31,	1975)	N (Bcf as	latural Gas of Dec. 31,	1975)	Nati (mill. bb	ural Gas Liquio ls as of Dec	is 31, 1975)
ATES (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
_		1.2	3.8	0.41	67.6		35.62	0.5		0.27
									:	
4,020		93.4	8.6	2.03			0.42	i		ı
3,140		87.4	12.6	2.51			3.18			
1,920		57.6	4,4	0.55			3.00	*		0.01
3,340		49.4	10.2	1.39			2.14			
2,640		41.9	10.1	1.37			1.07			*
700		7.5	0.1	0.02			1.07	0.1		*
4,000		87.1	2.9	0.22	į		0.28		:	*
3,560		1.6	3.6	0.12			7.05			0.01
4,640		69.5	10.5	0.89			1.66	C.1		*
5,500		13.3	2.7	0.58			3.39		•	
3,020		12.3	2.7	0.58			2.74	*		
2,480		1.0	*	*	102.7		0.65	0.4		•
8,000		29.9	4.1	1.02			9.97	1.5		0.05
			4.0						 	
7,440		0.4	0.1	*			5.68	*		*
2,180		46.6	8.4	0.72			1.38			0.02
	ı		1		l l	1	1	1	I	1

A.7c(WG-TX3)-4 220

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
41, Withers, North (Gulf Coast)	1908	Surface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,300	15
42. Big Hill (all) (Gulf Coast)	1923	Surface, Seepage	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	8,400, 5,000	30, 10
43. Moore's Grchard (Gulf Coast)	1926	Seismic	Structural/ Salt dome	Tertiary/ Zoceme	Sandstone	7,700	25
44. Silebee (Gulf Coast)	1936	Ceophysics	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,000	10
45. Bay City (Gulf Coast)	1934	Surface, Subsurface, Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,400	140
46. High Island Fast Block A343	1974	Seismic, Subsurface	Structural/ Fault	Quaternary/ Pleistocene	Sandstone		
(Gulf Coast) 47. Sugarland (Gulf Coast)	1928	Seismic, Geophysics	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	3,900	50
48. Orange (all) (Gulf Coast)	1913	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,900	15
49. High Island Block 1807.** (Gulf Coast)	1961	Seismic, Subsurface	Combination/ Fault, Facies change, Salt dome	Tertiary/ Miocene	Sandstone	8,400, 8,500	20, 20
50. Columbus (Gulf Coast)	1944	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	9,200, 9,600	25, 30
51. Sugar Valley (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,100- 10,000	25
52. Batsen (Gulf Coast)	1901	Scepage, Surfaçe	Structural/ Faulted salt dome	Tertlary/ Miocene, Eocene	Sandstone	2,600, 4,900	10, 15
53, Lovells Lake (Gulf Coast)	1938	Geophysics, Seismic, Core-dril]	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,700, 7,900	15, 20
54. Willow Slough (Gulf Coast)	1937	Seismic	Structural/ Faulted auticline	Tertiary/ Cligocene	Sandstone	8,500	20
55. Fairbanks (Gulf Coast)	1938	Geophysics, Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	6,800	75
56. Fort Trinidad (all) (Gulf Coast)	1953	Seismic, Subsurface	Combination/ Faulted nose, Facies change, Porosity- permeability pinchout	Cretaceous/ Comanche	Limestone, Sandstone	11,000	30
57. Hankamer (all) (Gulf Coast)	1929	Surface, Geophysics, Seismic	Structural/ Faulted sait dome	Tertiary/ Miocene	Sandstone	4,200	15

Surface	(million		ude Oil of Dec. 31,	1975)	(Ref as	Natural Gas	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum.	Demonst. Keserves	1975 Prod.
5,000		50.1	6.9	0.80			4.14			
4.820		15.2	1.8	0.23	;	:	2.48			0.02
1,620		20.5	2.5	0.29			4.37	0.1		0.01
1,100		23,4	1.1	0.15			0.51			!
1,100		41.7	4.8	0.83	68.7		2.38	0.6		0.01
1,400		67.9	4.1	0.80			1.14			
2,600		53.9	10.1	0.29			0.06			*
5,200					312.7		14.93	*		
4,800		7.8	0.3	0.12			7.38		i	0.08
4,920		24.8	0.7	0.12			3.57			0.03
3,320		58.7	1.8	0.43			0.41	*		*
3,600		32.4	1.1	0.21			15.62			0.02
3,000		3.0	0.2	0.01			1.80			*
3,500		41.4	*	*			0.83			*
16,200		16.4	6.6	0.73			12.36	2.1		0.09
2,700		42.3	10.7	1.37			1.43	0.1		*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
58. Becument (all) (Gulf Coast)	1936	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene, Miocene	Sandstone	5,400- 6,100	60
59. Fisher's Reef (Gulf Coast)	1940	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,000, 8,400, 8,200	25, 15, 10
60. Saratoga (all) (Gulf Coast)	1896	Seepage, Surface	Combination/ Salt dome, Facies change	Tertiary/ Miocene, Eocene	Sandstone	1,600, 7,400	10, 50
51. Esperson Dome (all) (Gulf Coast)	1929	Geophysics, Seismic	Combination/ Faulted salt dome, Unconformity, Facies change	Tertiaty/ Eocene, Miocene	Sandstone	2,200- 9,500	120
62. Amelia (Gulf Coast)	1936	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Oligocene	Sandstone	6,800	20
63. Marrs McLean (Gulf Coast)	1954	Subsurface, Seismic	Combination/ Fault, Unconformity	Tertlary/ Oligocene	Sandstone	11,400, 10,200, 10,900	5, 10, 90
64. Houston, North (Gulf Coast)	1938	Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	6,800	20
65. Port Acres (all) (Gulf Coast)	1957	Seismic, Subsurface	Combination/ Faulted nose, Facies change	Tertiary/ Oligocene	Sandstone	10,500	5
66. Bammel & South (Gulf Coast)	1937	Geophysics, Subsurface, Seismic	Combination/ Faulted nose, Porosity- permeability pinchout	Tertiary/ Eccene	Sandstone	6,200	5
67. High Island Block 24L** (Gulf Coast)	1969	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Miocene	Sandstone	8,100, 9,000	40, 15
68. Livingston (Gulf Coast)	1930	Trend, Geophysics, Surface, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	4,500, 7,400	10,
69. Falacios (Gulf Coast)	1937	Surface, Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,800 8,000	25, 35
70. High Island Block A663** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
71. Lake Creek (Gulf Coast)	1941	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	11,500	60
Class B Fields							1
72. High Island Block A573** (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Faulted nose	Quaternary/ Pleistocene	Sandstone	ļ	

A.7c(WG-TX3)-5

Surface	(million	Cr ns bbls as	ude Oil of Dec. 31	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	To Place	Cum. Prod.	Demonst. Reserves	1975 Prod,	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
3,880		23.9	2.6	0.23			0.88	0.1		0.0
5,000		14.3	0.9	0.31			10.75			0.1
21,260		56.3	4.7	0.46			0.06			
5,700		46.7	6.3	1.02			0.61			*
4,220		43.8	2.3	0.43			0.52	0.3		*
680		0.3					3.56	4.1		0.0
4,560		1.7	0.1	*			0.14			*
8,160		*		-	282.5		2.93	10.6		0.0
4,500		6.2	0.6	0.08			6.80			0.0
		0.9	0.7	0.07	228.4		18.77			0.0
2,340		40.2	4.8	0.74			1.07	*		*
4,940		4.6	*.	0.02			5.70			0.0
5,040		2.8	0.2	0.17			1.51			0.0

A.7c(WC-TX3)-6 224

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
73. Houston, South (Gulf Coast)	1935	Seismic, Geophysics	Structural/ Salt dome	Tertiary/ Oligocene, Miocene	Sandstone	4,600, 4,800, 4,200	25, 50, 50
74. High island Block A670** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
75. Spanish Camp (Gulf Coast)	1936	Surface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	3,000, 3,100	45, 5
76. Chesterville (all) (Gulf Coast)	1943	Seismic	Structural/ Faulted ancicline	Tertiary/ Eocene	Sandstone	9,600, 9,200	45, 30
77. Clear Lake (all) (Gulf Coast)	1938	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Eocene	Sandstone	6,200	30
78. Segno (Gulf Coast)	1936	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,200- 9,200, 5,200	40, 35
79. Danbury (all) (Gulf Coast)	1930	Surface, Seismic	Structural/ Faulted salt dome	Tertiary/ Oligocene, Miocene	Sandstone	5,700, 2,000	20, 55
80. Boling (all) (Gulf Coast)	1923	Seepage, Surface, Core-drill	Combination/ Faulted salt dome, Facies change	Tertiary/ Oligocene, Miocene	Sandstone	300~ 4,800, 6,800	40, 25
81. Phoenix Lake (also SWLA) (Gulf Coast)	1950	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,000	5
82. Umbrella Point (Gulf Coast)	1957	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,300	10
83. Angleton (Gulf Coast)	1939	Seismic, Subsurf a ce	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,400	20
84. High Island Block 111* (Gulf Coast)	1974	Seismic, Subsurface			Sandatone		
85. High Teland Block A475 (Gulf Coast)	1974	Seismic, Subsurface		Quaternaty/ Pleistocene	Sandstone		
86. High Island East Block A350 (Gulf Coast)	1973	Seismic					:
87. Needville (all) (Gulf Coast)	1941	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Oligocene, Miocene	Sandstone	5,100, 6,700, 4,100	
88. Madisonville (Gulf Coast)	1945	Seismic, Geophysics, Subsurface	Combination/ Faulted anticline, Porosity- permeability pinchout	Cretaceous/ Gulf	Sandstone	8,100	20
89. Bermard, Weet (Gulf Coast)	1947	Seismic	Combination/ Faulted anticline, Porosity- permeability pinchout, Facies change	Tertiary/ Eccene	Sandstone	7,100	10

225 A.7c(WG-TX3)-6

Surface	(million	Cr ns bbls as	ude Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Nat (mill. bi	tural Gas Liqui ols as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,600		39.5	2.5	0.28			0.15	*	•	
			~-	- -						
7,840		*	*	0.01	258.1		1.45	0.1	i	*
5,000	:	0.1	:				4.62			0.03
1,800		22.4	2.6	0.25			4.76	0.1		0.01
4,040		26.1	0.9	0.14			0.55		i	0.01
6,340		21.1	0.9	0.14			1.27	0.1		0.01
4,980		34.7	1.3	0.18			0.10			:
1,000		4.9	0.2	0.02			0.03			
2,700		10.8	3.7	0.60			2.61			0.0:
2,080		1.2					0.40			*
					-					
900		3.9	0.3	0.06			5.23	. *		*
3,640		*	0.3		149.2		4.58	2.3		0.0
7,500		*					2.09	*		*

A.7c(NG-TX3)-7 226

							**	b
	field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
90.	Hardin (all) (Gulf Coast)	1935	Surface, Subsurface, Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,900	10
91.	Nona Mills (Gulf Coast)	1950	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,290	30
92.	Winnie, North (Gulf Coast)	1944	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,400	5
93.	Rome (Gulf Coast)	1936	Surface, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,100, 7,500, 7,300	50, 10, 20
94.	Franks (Gulf Coast)	1953	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,000	10
95.	Mayes, South (Gulf Coast)	1946	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,100, 9,900	20, 50
96,	High Island Block A536** (Gulf Coast)	1974	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		
97.	High Island Block A545** (Gulf Coast)	1975	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		
98.	High Island Fast Block 4302 ^{4*} (Gulf Coast)	1975	Selsmic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
99.	Big Creek (Gulf Coast)	1922	Seepage	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	4,500	10
100.	Brazos Block A76 ⁴⁴ (Gulf Coast)	.1972	Se i smic	Structural	Tertiary/ Miocene	Sandstone	11,300	
.O 1 .	High Island Fast Block A334 (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Fault	Quaternary/ Pleistocene	Sandstone		
102.	Brazos Block 405L** (Gulf Coast)	1966	Seismic, Subsurface	Structural	Tertiary/ Miocene	Sandstone	8,000, 8,900	15. 20
103.	Brazos Block 470** (Gulf Coast)	1975	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Miocene	\$andstone	7,000	
104.	Blue Ridge (all) (Gulf Coast)	1919	Surface	Combination/ Faulted salt dome, Facies change	Tertiary/ Miocene	Sandstone	2,200- 4,700	100
105.	High Island East Block £340 ^{4 4} (Gulf Coast)	1974	Seismin, Subsurface		Quaternary/ Pleistocene	Sandstone		
106.	Brazes Block 440 ** (Gulf Coast)	1966	Seismic, Subsurface	Structural	Tertiary/ Miocene	Saudstone	7,700, 8,500	20, 15
107.	Caplen (Gulf Coast)	1939	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene, Oligocene	Sandstone	7,100, 7,600	25, 20

Surface	(million	Cru s bbls as	de Oil of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Natu (mill, bb	ral Gas Liquids ls as of Dec.	3 <mark>1, 1</mark> 975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,000		22.3	3.2	0.25			0.17			*
1,740		7.4	0.6	0.04	l		3.44			0.05
1,100		10.7	3.3	0.40			0.30	0.1		
1,080		14.2	0.6	0.10			1.29	0.6		0.03
2,700		10.2	1.8	0.23			1.53			0.09
2,900		1.2	0.1	*			3,05		<u> </u>	0.00
									•	
920		22.4	5.6	0.44			0.12			
				 	83.1		21.46			
3,520					128.8		8.31			
5,040		23.8	0.4	0.08			0.01	*		
1,600					107.8		16.10			
1,100		15.5	4.5	0.41			0.63	0.1		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
108. La Belle (all) (Gulf Coast)	1938	Geophysics	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	8,200	40
109. Lochridge (Culf Coast)	1936	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Oligocene	Sandstone	7,000, 6,300	15, 15
10. Hed Fish Heef, Southwest (Gulf Coast)	1957	Subsurface, Seismic	Structural/ Faulted salt dome	Tertiary/ Oligocene	Sandstone	10,200, 10,700	15, 45
tll. Hampton, South (Gulf Coast)	1952	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,000	20
112. <i>Giddings</i> (Gulf Coast)	1960	Subsurface, Seismic	Combination/ Fracturing, Facies change	Cretaceous/ Gulf	Chalk	7,500	100
113. Hitchcock & Mortheast (Gulf Coast)	1937	Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene, Miocene	Sandstone	9,100, 6,600	20, 25
ll4. Raywood (Gulf Coast)	1953	· Seismic	Structural/ Faulted anticline	Tertiary/ Eocene, Oligocene	Sandstone	11,200, 7,600	5, 10
Class C Fields							
(Gulf Coast)	1950	Surface, Geophysics	Structural/ Faulted sait dome	Tertiary/ Oligocene	Sandstone	11,000	15
116. Clinton (all) (Gulf Coast)	1937	Seisuic	Structural/ Salt dome	Tertiary/ Eocene	Sandstone	8,500	5
117. Cove** (Gulf Coast)	1967	Seismic	Structural	Tertiary/ Miocene	Sandstone	7,700. 8,000	20, 15
118, Eigh Island East Elook A323** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted ancicline	Quaternary/ Pleistocene	Sandstone		
119. Manor Lake (Gulf Coast)	1955	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Oligonene	Sandstone	9,800, 10,000	15, 10
120. Milton, North (Gulf Coast)	1963	Seiswic	Combination/ Paulted anticline, Facies change	Tertiary/ Enceme	Sandstone	13,000	20
121. Wadsworth (Gulf Coast)	1951	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sanostone	9,800	20
122. High Island Block 1401.** (Gulf Coast)	1961	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Miocene	Sandstone	7,700, 9,400	5.
123. Damon Mound (all) (Gulf Coast)	1915	Surface, Seepage	Structural/ Faulted salt dome	Tertiary/ Oligocene, Miocene	Sandstone	1,400- 3,800, 4,700	55 , 35
124. Hamshire, West (Gulf Coast)	1950	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	12,600	60
125. Cedar Point ** (Gulf Coast)	1938	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Oligocene	Sandstone	6,000	15

Surface	_(million		de Oil of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Nat (mlil. b	ural Gas Liquid bls as of Dec.	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,000		10.8	2.2	0.31			0.27	*		*
1,300		12.3	1.2	0.11			0.68			*
800		3.3	0.1	0.03			2.90	1.3		0.02
900		2.3	0-T	0.05			1.01			
120,000		0.5	21.5	0.13			0,14			
880		4.4	*	*			0.76	5.1		0.04
2,280		3.3	0.2	0.07			1.39	0.3		0.01
		*	*	0.03	70.5		10.57	0.9		0.08
5,060		4.4	0.1	0.02			1.95			0.01
					106.7		3.82			
1,080					126.6		0.40	0.6		*
					108.9		4.45	1.5		0.06
5,600		1.7	0.3	0.12			0.29	0.9		
1,280					89.1		10.56	0.6	ļ	0.04
5,400		21.0	1.3	0.13			0.06			
960							0.85		!	
2,340		17.4	0.8	0.24			0.27	*		

A.7c(WC-TX3)-9 230

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
26. Alvin, South (Gulf Coast)	1956	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,400, 10,500, 9,800	25, 30, 10
27. Bigh Island East Block A317** (Gulf Coast)	1974	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		
28. Pheasant, Southwest (Gulf Coast)	1959	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,800, 8,200, 10,600	10, 10, 35
29. Durkee (all) (Gulf Coast)	1948	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,100	30
30. New Ulm (Gulf Coast)	1945	Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	10,100, 9,200	15, 10
31. Clam Lake (Gulf Coast)	1937	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	2,400- 6,400	95
32. Dyersdale (Gulf Coast)	1940	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,900	20
33. High Island East Block A279** (Gulf Coast)	1975	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		
34. Lissie (all) (Gulf Coast)	1940	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene, Miocene	Sandstone	9,600, 2,400	40, 5
35. High Island East Block A327** (Gulf Coast)	1973	Seismic		Quaternary/ Pleistocene	Sandstone		
36. Markham (Gulf Coast)	1908	Seepage, Surface	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	4,400	15
37. Algoa (all) (Gulf Coast)	1949	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,500, 8,900	35, 10
38. Decker's Prairie (all) (Gulf Coast)	1949	Seismic, Subsurface	Combination/ Anticline, Facies change	Tertiary/ Eocene	Sandstone	5,600	5
39. Jackson Pasture (Gulf Coast)	1943	Geophysics, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,000	20
40. Rose City (all) (Gulf Coast)	1950	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,100	25
41. Smith Foint ** (Gulf Coast)	1944	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,200, 9,000	25, 20
42. Hamman (Gulf Coast)	1936	Seismic	Structural/ Faulted salt dome	Tertiary/ Oligocene	Sandstone	9,700	5

Surface	(million	Cru s bble as	ide Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natu (mill, bb	ral Gas Liquid: ls as of Dec. :	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,500		0.6	0.1	0.02			1.76	0.3		0.01
960		3.2	0.6	0.12			2.65	0.1		
1,560		12.2	2.8	0.41	!		1.12	0.2		0.01
5,000		3.4	0.1	0.03			3.23	0.1		
940		16.8	2.0	0.54			0.14			
1,380		18.8	0.2	0.05			0.79	*		*
960		*					1,18			0.01
5,360		17.4	0.6	0.04			*			
2,300		5.0	4,4	0.39			0.97	0.2		
3,200		5.0	0.1	0.01		ļ	1.16			*
2,500		0.6	0.3	0.03			0.02			. *
700		12.8	1.7	0.19			0.11			
640		6.6	*	0.01			*	0.7		*
1,540		7.7	0.1	0.03			0.19	*		*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
143. High Teland Block 14L ⁴⁴ (Gulf Coast)	1970	Seismic	Structural/ Faulted anticline	Tertiary/ Mincene	Sandstone	10,100, 9,400	20, 30
144. Pickett Ridge (al. (Gulf Coast)	1935	Subsurface, Geophysics, Selsmic	Combination/ Facies change, Nose	Tertiary/ Oligocene	Sandstone	4,700	15
145. Dayton, North (Gulf Coast)	1905	Surface, Seepage	Structural/ Salt dome	Tertiary/ Oligocene, Miocene, Eocene	Sandstone	400- 5,200	40
146. Sugar Creek (Gulf Coast)	1975	Subsurface, Seismic	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	11,200	20
147. High Island East Block A273 ^{A,*} (Gulf Coast)	1974	Seismic, Subsurface			Sandstone	<u> </u>	
148. League City (Gulf Coast)	1938	Surface, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocens	Sandstone	10,700	10
149. Louise, Morth (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,100, 4,600	5, 5
150. Midfields (Gulf Coast)	1946	Seismic, Geophysics	Structural/ Anticline	Tertiary/ Cligocene	Sandstone	9,100	25
151. Turtle Bay [*] (all) (Gulf Coast)	1935	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,600	30
152. Alco-Mag (all) (Gulf Coast)	1953	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,900	5
153. Blue Basîn (Gulf Coast)	1942	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	4,300	10
154. Brazos Block A 133 (Gulf Coast)	1975	Seismic, Subsurface	Structural	Tertiary/ Miocene	Sandstone		
155. Mercy (Gulf Coast)	1942	Seismic	Structural/ Faulted anticline	Tertiaty/ Eocene	Sandstone	8,300	20
156. Brazoe Block 4461. (Gulf Coast)	1966	Seismic			Sandstone	7,500	135
157. Double Hayou (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,300	10
158. High Teland Block The ** (Gulf Coest)	1974	Seismic, Subsurface			Sandstone	11,000	100
159. High leland Block Abbb** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
160. High Island, East Block ASCO ** (Gulf Coast)	1974	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		
161. High Leland, Bant Block A389** (Gulf Coast)	1975	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		

Surface	(million	us bbls as	ude Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	(mill. b	eral Gas Liquid	31, 197
Area (acres)	In Place	Cum. Prod.	Demonst. Réserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	I975 Proc
					23.5		6.22	*		
	Ì							*		
1,680		15.4	1.1	0.12	0.4		0.12			
2,960		12.3	1.7	0.13	<u> </u> 		0.20			
		- 			*		*	*		,
										-
740		10.8	2.2	0,12			0.18			0.
360		0.7	0.3	0.06			3.52	*		,
2,840		8.5	0.5	0.10			0.13			
1,060		12.9	0.3	0.07	<u> </u>		0.41			
4,800		3.2	0.1	0.07			1.02		, 	
3,000								*		-1
									-	
1,900		13.1	0.2	0.03	-		10.01	*		
					9.5		4.80	*		0
1,500		0.2	0.1				1.43			٥

A.7c(WG-TX3)-11 234

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thickness (feet)
162. Louise (Gulf Coast)	1933	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	6,500	15
163. Englehart (Gulf Coast)	1945	Subsurface, Selsmic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,800, 9,200, 3,800	35, 10, 10
164. Fort Arthur (Gulf Coast)	1959	Seismic, Subsurface, Trend	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	11,100, 11,200	10, 5
165. Hutchins-Kubela (Gulf Coast)	1936	Scismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,700	15
166. Bender (Gulf Coast)	1953	Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eccene	Sandstone	6,000, 5,800	5, 10
167. Blue Lake (Gulf Coast)	1945	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,000	60
168. Clay Creek (Culf Coast)	1928	Surface, Core-drill, Geophysics	Structural/ Salt dome	Tertiaty/ Miocene	Sandstone	1,200	5
169. Dyeredale, North (Culf Coast)	1970			Tertiary/ Eocene	Sandstone	8,400, 8,900, 9,300	10, 10, 15
170. Lafitte's Gold** (Gulf Coast)	1968	Seismic, Subsurīace	Structural/ Paulted anticline	Tertiary/ Miocene	Sandstone	8,300	15
171. Sealy (Gulf Coast)	1942	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandston≘	8,700	50
172. Texas City Dike** (Gulf Coast)	1975	Seismic	Structural/ Fault	Tertiary/ Oligocene	Sandstone	10,200	40
173. Wada (Gulf Coast)	1944	Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocens	Sandstone	6,500	15
174. Rowan (Gulf Coast)	1940	Seismic	Structural/ Salt dome	Tertiary/ Oligocene	Sandstone	8,600	10
175. Mayes, East (Gulf Coast)	1952	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,800	10
176. Sugar Valley, North (Gulf Coast)	1966	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,000, 9,000	10, 10
177. Lucky (Gulf Coast)	1941	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandston∈	8,900, 9,900	15, 10
178. Alta Loma, West (Gulf Coast)	1956	Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,000, 11,200	5, 5
179. Erazos Block AI** (Gulf Coast)	1973	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	6,600, 8,500	10, 20

Surface	(million	Cru s bbls as	de Oil of Dec. 31,	1975)	(Bef as	Matural Gas	1 9 75)	Natu (mill. bb	ral Cas Liquid is as of Dec.	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Com. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,340		8.7	0.3	0.04			1.99	0.2		0.01
3,000		0.1	0.1	0.02			1.70			0.01
5,100		 i			68.1		0,19	3.1		0.01
3,300		8.0	3,2	0.08		i	0.11	*		
2,500		9.9	3.8	0.08			0.06	*		
1,500		3.6	0.6	0.08			0.20			*
1,240		11.9	1.8	0.14			0.02		!	
		0.4	2.1	0.12	8.8		3.34	0,1		0.0
		0.1	0.5	0.06	22.1		3.64	0.3		0.0
1,480		*					0.66	:		*
1,300							0.91	0.1		*
500		4.2	0.2	0.04			0.23		!	*
		0.2					0.07			*
		6.3	1.3	0.17	26.2		1.13	0.1		*
880		3.0	0.2	0.03			0.54			*
		0.2	0.1	0.10			1.14			0.1
					24.2		10,13			

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feat)	Reservoir Thickness (feet)
180.	High Island Block A511** (Gulf Coast)	1974	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		
181.	Lucky, West (Culf Coast)	1959	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,500	5
182.	Nelsonville (Gulf Coast)	1951	Seismic, Geophysics	Structural/ Anticline	Tertiary/ Eocene	Sandstone	8,400	10
183.	Dunoan Slough (Gulf Coast)	1960	Seismíc, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	11,000, 10,600, 10,600	5, 10, 10
184.	Gist (Gulf Coast)	1947	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,200	35
185.	Romsey (all) (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	9,400	15
186.	Aldine (all) (Gulf Coast)	1939	Subsurface, Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,500	35
187.	Angelina (Gulf Coast)	1967	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,800, 11,200	5, 10
188.	Joe's Lake (Gulf Coast)	1937	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,600	100
189.	Fulshear-Finrock (Gulf Coast)	1950	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	6,800	10
190.	Hastings, Southeast (Gulf Coast)	1972	Subsurface	Structural/ Faulted salt dome	Tertiary/ Oligocene	Sandstone	9,500	5
191.	Sweeney (Gulf Coast)	1958	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,300	50
192.	Altair (Gulf Coast)	1942	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	10,100, 10,200	45, 40
193.	Bernard, East (Gulf Coast)	1940	Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	8,100, 7,500	30, 10
194.	Chenango & West (Gulf Coast)	1941	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	8,100	15
195.	Halliday-OSR (Culf Coast)	1961	Subsurface	Stratigraphic/ Facies change, Porosity- permeability pinchout	Cretaceous/ Gulf	Sandstone	7,800, 8,500	5, 5

237 A.7e(WG-TX3)-12

Surface	(million	Cr 15 bbls as	ude Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natu (mill. b)	ural Cas Liquid bls as of Dec.	5 31, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Frod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,160		0.6	0.1	0.02	46.7		2.53	0.4		0.0
4,400		0.2	*	0.01			5.07			0.:
1,080		2.8	0.2	0.01			0.52	0.3	•	0.0
1,380		6.3	1.7	0.13			0.29	*		
2,340		0.2	*	 			3.75			0.0
1,400		0.4	*	*			*			
		0.1	*	¦ ★	43.6		2.15	2.1		0.0
2,800		6.5				!	- -			
3,400		1.6	*	0.02			0.36	i		*
1,400		0.7	1.8	0.22	3.6		2.61	*		0.
1,440					59.1		0.70	1.0		0.
2,400		*					0.88	<u>.</u>		٥.،
1,800							1.49			0.
2,600		6.1	0.4	0.07			0.21			
2,140		6.1	2.4	0.16			0.44			
			!						t	

	Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
196.	High Island Block 525** (Gulf Coast)	1962	Seismic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Miocene	Sandstone	9,700	5
197,	Sublime (Gulf Coast)	1944	Seismíc	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	9,100, 9,400	20, 50
198.	Tidehaven (Gulf Coast)	1946	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,100, 8,500	20, 5
199.	Cotton Lake & South (Gulf Coast)	1936	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,500, 6,400, 6,300	35, 5, 25
200.	Cold Springs (all) (Gulf Coast)	1940	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	3,300, 4,500- 7,900	5, 50
201.	Hartburg, North, 5 Northwest (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,400, 7,500	5. 50
202.	Chocolate Bayou, South (Gulf Coast)	1960	Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,500, 13,800	10,
203.	Frelsburg (Gulf Coast)	1944	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,000	20
204.	Calveston Island (Gulf Coast)	1964	Seismic	Structural	Tertiary/ Miocene	Sandstone	7,800	1.5
205	Gum Island, North (Gulf Coast)	1971	Subsurface	Stratigraphic/ Facies change	Tertiary/ Oligocene	Sandstone	10,900, 10,600	10, 10
206	High Island Block A442** (Gulf Coast)	1973	Seismic		Quaternary/ Pleistocene	Sandstone		
207	. High Island Block K485** (Gulf Coast)	1973	Seismic		Quaternary/ Pleistocene	Sandstone		
208	. High Island Block A568** (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone	!	
209	. High Island Block A595** (Gulf Coast)	1975	Seismic, Subsurface		Quaternary/ Pleistocenc	Sandstone		
210	. High Island East Block A313** (Gulf Coast)	1974	Seismic, Subsurface		Quaternary/ Pleistoceme	Sandstone		
211	. High Island East Block A341** (Gulf Coast)	1975	Seismic, Subsurface	ļ	Quaternary/ Pleistocene	Sandstone		
212	. High Island East Block A385** (Gulf Coast)	1975	Seismic, Subsurface	i i	Quaternary/ Pleistocene	Sandstone		

Fartially offshore.

Surface	(million	Cr ns bbls as	ude 011 of Dec. 31	, 1975)	(Bcf_as	Natural Gas of Dec. 31,	1975)	Natu (mill bb	ral Gas Liquid	s 31, 1975)
Area (acres)	In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
		1.7	0.3	0.11	45.0		4.04			0.02
2,320		0.2	0.1	0.01			0.70			0.01
1,780		3.1	0.3	*			1.97	0.4		0.03
2,500		*					*.		;	
1,000		2.9	*	0.01			0.83	ļ		0.03
1,560		4.9	0.6	0.07			0.54	*		*
3,080		*					2.12			0.03
1,360		*	*	*		<u> </u> 	C.38	1		0.01
					28.4		4.00	0.1		0.01
	-						0.79			0.04
										
										, -
			-							
						:				
				ļ						
		-				[
									į	

 $\label{table A.7d} \mbox{The Significant Oil AND GAS FIELDS OF TEXAS R.R.C. DISTRICT 4}$

				Geologic Age		Depth to	Reservoir
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	of Reservoir Rock	Reservoir Lithology	Top (feet)	Thickness (feet)
Class AAAA Fields							
1. Borregos-Seeligson- T.C.B. (Gulf Coast)	1937	Geophysics, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	4,500- 8,800	305
a. Borregos (all) (AAAA)	1945	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,100- 6,800	55
b. Seeligeon (all) (AAAA)	1937	Geophysics, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	4,500- 6,700	130
c. T.C.B. (all) (AAA)	1942	Subsurface, Geophysics	Structural/ Faulted anticline	Tertiaty/ Oligocene	Sandstone	6,000- 8,800	305
d. Zone 21-8 (AAA)	1946	Subsurface	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	6,900	250
2. Agua Dulce-Stratton (Gulf Coast)	1928	Surface, Setsmic, Geophysics	Structural/ Faulted anticline	Tertiaty/ Oligocene	Sandstone	4,300- 8,500	430
a. Agua-Dulae(all) (AAAA)	1928	Surface, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,800- 8,500	60
b. Stratton (all) (AAAA)	1937	Surface, Geophysics, Seismic	Structoral/ Faulted anticline	Tertiary/ Oligocene	Sandstope	4,300- 6,500	
3. La Gloria (all) (Gulf Coast)	1939	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,200 7,300	
4. Bidalgo (all)- Klump (also Reynosa in Mexico) (Culf Coast)	1949	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,200 6,700	
Class AAA Fields							•
5. Viborqs (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,900 8,600	
6. Plymouth-Portilla (Gulf Coast)	1935	Surface, Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,500 7,400 7,300	, 35,
a. Flymouth (all) (AA)	1935	Surface, Subsurface, Selsmic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,500	210
b. Portilla (AA)	1950	Subsurface, Selsmic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,400 7,300	
7. Kelsey & South ^a (Gulf Coast)	1938	Surface, Geophysics, Seismic	Structural/ Faulted anticline	Tertia t y/ Oligocene	Sandstone	5,000 7,200	
8. Alazan (all) (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiaty/ Oligocene	Sandstone	4,300 9,800	

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natur (mill. bb)	ral Gas Liquid Is as of Dec.	s d 31, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
28,140		484.8	18.7	4.78			361.59			0.44
4,000		106.4	6.6	0.97			110.96			0.23
19,360		254.1	8.1.	1.97			89.44			0.10
4,780		49.7	1.5	0.59		: 	29.31			0.04
12,560		74.6	2,5	1.25			131.88	0.1		0.07
21,500		140.2	6.8	1.65			104,94			0.09
8,000		51,1	0.9	0.30			27.75		:	0.02
13,500		89.1	5.9	1.35			77.19			0.07
7,500		30.8	0.2	0.03			46.37			
6,720							4.04			0.01
1,700		7.4	0.6	0.16			73.29			
11,920		184.9	12.6	1.98			4.69	į		*
5,480		118.0	4.0	0.75			1.94	0.1		*
6,440		66.9	8.6	1.23			2.75			*
14,000		114.5	7.5	1.81			45.66	ļ		0.03
4,080		46.1	2.3	0.55			92.56	0.1		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
9. Mustang island- Red Fish Ray** (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene, Miocene	Sandstone	8,400, 7,300, 10,500	15, 160, 20
a. Mustang Island ^{**} (A)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	S and stone	7,300, 7,700	160, 65
ь. Red Fish Bay (all) (AA)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	8,400, 10,500	15, 20
10. Rincon (all) (Gulf Coast)	1938	Surface, Subsurface, Geophysics, Core-drill	Combination/ Faulted anticline, Facies change, Unconformity	Tertiary/ Oligocene	Sandstone	3,300- 7,500	155
11. White Point & East* (Gulf Coast)	1914	Seepage, Surface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,500	200
Class AA Fields							•
12. Samet (all) (Gulf Coast)	1923	Surface, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ . Oligocene	Sandstone	4,700	15
13. McAllen-Fharr (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,600, 9,700	745, 55
a. MoAllen (AA)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,600	745
b. Pharr (B)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,700	55
14. Laguna Larga (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,400, 6,500, 6,000	30, 30, 20
15. McAllen Ranch (Gulf Coast)	1960	Seismic	Structural/ Faulted anticline	Tertlary/ Oligocene	Sandatone	11,800, 11,300, 10,600	100, 15, 75
16. Flour Bluff (all)* (Gulf Coast)	1936	Surface, Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,800, 6,200	20, 20
17. Government Welle (all) (Gulf Coast)	1928	Surface, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	2,400, 7,500	5, 50
18. Willamar & West (Gulf Coast)	1940	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene, Miocene	Sandstone	7,900, 7,600	30, 285
19. Thompsonville, Northeast (Gulf Coast)	1959	Geophysics, Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	9,500	55

Surface	(millio)	Crude ns bbls as c		1975)		atural Gas of Dec. 31,	, 1975)	Natura (mill. bbls	al Gas Liquids as of Dec. 3	1, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Pr od.
14,540		49.4	1.4	0.25			17.89			0.06
9,660		31.5	1.0	0,19			6.60			0.01
4,880		17.9	0.4	0.06	; [11.29	!		0.05
12,860		69.6	5.4	0.66			15.28			0.14
5,540		100.4	4.6	0.74			4.00			*
14,000		83.2	1.3	0.25			2.53			
8,580		 					9,04			ļ
6,500							7.59	İ		*
2,080				_	192.3		1.45	*		
3,200					265.3		60,38	1.3		0.26
7,200			 		384.1		28.16	1.9		0.67
3,800		27.7	0.4	0.06		ı.	32.95			*
8,680		96.6	4.8	0.85			3.22			0.02
12,360		72.4	8.1	1.54			9.84	0.3		0.01
7,940		0.2	*	0.01	487.3		26.69	0.3		0.01
					:					
					,	;				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
20. Laredo (Gulf Coast)	1973	Seismic	Combination/ Fault, Unconformity	Tertiary/ Eocene	Sandstone	8,400	40
1. San Salvador (Gulf Coast)	1935	Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	6,500	55
2. Pulton Beach (all) b* (Gulf Coast)	1947	Seism1c	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,100	5
3. Hagist Panch (Gulf Coast)	1932	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,000	300
14. Endry (Gulf Coast)	1937	Surface, Geophysics, Seismic	Structural/ Faulted nose	Tertiary/ Oligocene	Sandstone	5,600, 6,100	5, 10
Class A Fields						1	
25. J. C. Martin (Gulf Coast)	1974	Şeismic	Combination/ Fault, Unconformity	Tertiary/ Eocene	Sandstone	8,800	40
26. Sejita (Gulf Coast)	1939	Surface, Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Eocene	Sandstone	5,600	15
27. Sarita (Gulf Coast)	1948	Seismic, Core-drill	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	2,300, 6,200	10, 55
28. La Blunca (Gulf Coast)	1936	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligoceme	Sandstone	7,200	30
29. Sun (Gulf Coast)	1938	Surface, Core-drill, Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	4,800	100
30. Seven Sisters (Gulf Coast)	1935	Surface, Subsurface	Combination/ Faulted nose, Facies change	Tertiary/ Eocene	Sandstone	2,200	75
31. Odem (Gulf Coast)	1939	Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	6,700	90
32, Sun, North (Gulf Coast)	1941	Core-drill, Geophysics	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	4,400, 5,400	5
33. Hoffman (Gulf Coast)	1933	Surface, Seismic, Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene, Oligocene	Sandstone	2,800, 2,700, 3,400	
34. San Carlos (Gulf Coast)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,400	190
35. Loma Novia (Gulf Coast)	1934	Subsurface	Stratigraphic/ Facies change	Tertiary/ Eocene	Sandstone	2,500	215

Surface -	C	is pors as	of Dec. 31,	1975)	(Bcf as	atural Gas of Dec. 31,	1975)	(mit]]. bt	ral Gas Liquids ls as of Dec. 1	1, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
26,720					30.3		30,31	0.3		0.29
12,160							2.38			*
6,100		37.6	. 0.8	0.10			6,92		: 	0.05
4,260		7.3	0.8	0.10			6.71		 - -	0.01
3,580		26.9	1.1	0.16			7.36			*
20,880			 		11.3		11.27	*		*
1,200		4.9					7.85			*
1,700		17.8	1.4	0.39			17.75	*		
4,500		0.4					9.71	 		0.06
5,700		27,2	1.8	0.51			11.85			*
5,340		54.0	3.0	0.24			0.17			
3,840		14.4	1.6	0.33			5.47			0.01
4,880	İ	20.0	1.2	0.19			11.37			0.01
6,020		52.8	6.7	1.45			1.55			
3,120							4.37			0.01
8,680		50.2	1.9	0.22			0.01	1		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
36. Brayton (Gulf Coast)	1944	Subsurface	Combination/ Facies change, Fault	Tertiary/ Oligocene	Sandstone	6,500	5
37. Lacy-Mercedes (Gulf Coast)	1935	Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,200	85
Class B Fields							
38. García (all) · (Gulf Coast)	1942	Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	3,700	10
39. Domia (Gulf Coast)	1949	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,500	160
40. Cano-Mexico (also Mexico) (Gulf Coast)	1957	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	5,900	10
41. Cheuron (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,600	10
42. Faft (Gulf Coast)	1935	Surface, Geophysics, Trend	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene, Oligocene	Sandstone	4,000, 5,700	25. 5
43. Lundell (Gulf Coast)	1937	Random	Combination/ Anticline, Facies change	Tertiary/ Eocene	Sandstone	2,400, 1,500	20, 55
44. Stillman (Gulf Coast)	1961	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,000	20
45. Conoco-Driccoll (Gulf Coast)	1908	Random	Combination/ Salt dome, Facies change	Tertiary/ Eocene	Sandstone	500 3,500	, 100, 40
46. Mobil-David (all) (Gulf Coast)	1965	Surface, Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	11,200	40
47. Richard King (Gulf Coast)	1937	Surface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,600	110
46. Jeffress (Gulf Coast)	1960	Şeismic	Combination/ Faulted anticline, Unconformity	Tertiary/ Oligocene	Sandstone	12,300	115
49. Murdock Pass (Gulf Coast)	1952	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,200	85
50. Tabasec (Gulf Coast)	1952	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	6,900	70
51. Piedre Lumbre (Gulf Coast)	1935	Randon	Combination/ Faulted anticline, Facies chauge	Tertiary/ Eocene	Sandstone	7,000 2,000	

Surface	(million	Crude	Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natur (mill. bbl	al Gas Liquids s as of Dec. 1	1, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod,	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,280		7.9	*	0.01			0.91		_	
4,120		0.9	*	0.01			1.96			*
3,560		31.4	7.6	0.92			2.58			
2,520		0.7					2.04			0.01
960			- -		21.4		1.27	0.1		0.02
3,160		3.3	*	*			7.12			
2,480		37,2	4.3	0.78			0.41			
1,960		12,9	1.7	0.23		:	4.12			*
1,920					116.6		14.80			
4,000	į]	26.3	2.7	0.39			1.26			
2,560]	0.1	0.1	*			4,99	2.0		0.02
2,480	 	19.8	2,2	0.27			0.87		•	*
1,120					89.4		15.87	1.6		0.32
8,000				 	178.3		7.83			
2,320		3.2	0.3	0.04		:	2.65	*		*
3,420		20.2	1.3	0.14		!	2.35			*
2,320	Walter	3.2	0.3	0.04	178.3		2.65	*		

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
52. Prodo (all) (Gulf Coast)	1955	Trend, Geophysics, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	3,700	45
53. Armold-David (Gulf Coast)	1960	Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	6,100	10
54. May (Gulf Coast)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,200, 8,800	20 , 20
55. Petronilla-luby, North (Gulf Coast)	1939	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,000	5
56. Yeary (Gulf Coast)	1958	Seismíc	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	9,000	10
57. Midway (Culf Coast)	1937	Geophysics	Combination/ Anticline, Facies change	Tertiary/ Oligocene, Miocene	Sandstone	5,300, 3,600	120, 30
58. El Faietle (Gulf Coast)	1951	Seiemic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	13,800, 6,100	440. 15
59. Sénton (all) (Gulf Coast)	1934	Geophysics, Seiamic	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene, Oligocene	Sandstone	1,100, 5,400	10, 35
60. Benavides (Gulf Coast)	1937	Surface, Geophysics, Subsurface	Combination/ Faulted salt dome, Facies change	Tertiary/ Miocene, Eocene	Sandstone	3,500, 3,900	15, 60
61. Lopez (Gulf Coast)	1935	Subsurface	Stratigraphic/ Facies change	Tertiary/ Eocene	Sandstone	2,100	85
62. Rita (Gulf Coast)	1949	Seism1c	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,600	20
63. Chapmin Banch (all) (Gulf Coast)	1937	Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	4,300	5
64. Encinal Channel ** (Culf Coast)	1965	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,200, 9,000	40, 5
65. Riverside (all) (Gulf Coast)	1930	Seismic, Subsurface, Geophysics	Structural/ Faulted anticlise	Tertiary/ Oligocene	Sandstone	5,200, 5,000	5, 10
66. Alics (Gulf Coast)	1938	Random	Combination/ Anticline, Facies change	Tertiary/ Oligocene	Sandstone	4,800	10
67. Monte Christo (Gulf Coast)	1953	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	6,300, 8,500	50, 110

Surface	(million	Crude is bols as	0i1 of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31,	1975)	Natu (mill. bb	ral Gas Liquids 1s as of Dec. 3	11, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,340		23.2	0.8	0.12			0.31	*		
2,700		11.1	1.4	0.36			3.93	*		0.01
1,300		1.9	0.1	0.02			1.65	0.1		*
1,200		7.6	1.2	0.18			1.86	0.4		*
1,800		0.1	*	*	153.3		3.87	0.6		0.02
4,600		24.2	0.2	0.09		:	0.42			0.01
840		*	*	*			9.45	*		
4,180		20.1	0.2	0.04			0.36			*
3,900		23.0	0.9	0.01			0.08			
4,000		29.3	2.7	0.25			*			
2,400		2.1	0.7	0.08		· '	8.63	*		
6,640		4.1	7.4	0.95			3.41	0.1		*
1,600					125.0		5.48	0.7		
3,340		6.7	0.3	0.04			1.16			0.01
3,760		5.5	*	*			0.42			*
1,300					120.9		3.52	0.1		*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feat)
8. Clara Driecoll, South (Gulf Coast)	1937	Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene, Miocene	Sandstone	8,400, 3,800	10, 55
9. Penitas (also Mexico) (Gulf Coast)	1942	Subsurface, Seismic	Combination/ Fault, Facies change	Tertiary/ Oligocene	Sandstone	5,600	20
0. Big Caesar (all) (Guif Coast)	1963	Seismic	Combination/ Fault, Facies change	Tertiary/ Oligocene	Sandatone	7,300	5
l. Moríposa (Guif Coast)	1945	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,300	10
12. La Reforma (Gulf Coast)	1938	Surface, Subsurface, Geophysics, Trend	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,200, 6,800	10, 10
73. Minnie Bock, North (Gulf Coast)	1940	Surface, Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,800	55
74, La Copita (Gulf Coast)	1948	Seismic :	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	8,800	85
75. Luma Blanca (Gulf Coast)	1962	Seismíc	Structural/ Faulted anticline	Tertiaty/ Oligocene	Sandstone	9,000	2.5
76. Madero, East (Gulf Coast)	1968	Seismíc	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,200, 9,300	10, 15
77, Lopeno (Gulf Coast)	1934	Surface	Structural/ Anticline	Tertiary/ Eocene	Sandstone	2,000	770
Class C Fields 78. Aransas Pass (Gulf Coast)	1936	Surface, Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	6,500- 7,100	160
79. <i>Colorado</i> (Gulf Goast)	1936	Trend, Subsurface	Stratigraphic/ Facies change	Tertiary/ Eocene	Sandstone	2,800	395
80. G'Hern (Gulf Coast)	1930	Trend, Subsurface	Combination/ Fault, Facies change	Tertiary/ Eocene	Sandstone	2,800	10
81. La Sal Vieja (Gulf Coast)	1945	Surface, Geophysics	Structural/ Faulted ealt dome	Tertiary/ Oligocene	Sandstone	11,400, 10,800	10, 45
82. Shepherd (all) (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Faulted auticline	Tertiary/ Oligocene	Sandstone	7,000	5
83. <i>Pita</i> (Gulf Coast)	1945	Selemic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,800, 7,300	10,

Surface	(million	Cru ns bble as	de Oil of Dec. 31,	1975)) (Bef as	Natural Gas of Dec. 31,	1975)	Natur (mill, bbl	ral Gas Liqui s as of Dec.	31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,000		11.3	0.8	0.14			0.83			*
820		0.8	 				1.34			*
3,320		17.2	0.6	0.50			0.56	sk.		*
2,560		0.3					0.62	<u> </u>		*
3,060		2,1	0.2	0.01			1.72			*
1,440		3.8	0.3	0.03			0.79	0.2		0.00
1,620		0.7	*	*			3.39			0.1
1,280		0.6	*	*			3.35	1.9		0.0
1,600		0.2			58.9		7.69	*		
4,800		0.1	7 k	*			1.58			
6,200		20.2	*	*			*	*		
3,240	į	21.6	0.2	0.05	į		0.01			
2,900		22.0	0.4	0.03			0,24			
1,280		1.7	0.1	0.02			3.13			0.0
1,600		0.9					0.37	0.1		*
3,840		1.3	0.1	0.05			3.98			
3,840		1.3	0.1	0.05			3.98			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
84. Wade City (Gulf Coast)	1939	Seismic, Subsurface, Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	3,300, 4,800	30, 75
85. Escobas-Comitas (Gulf Coast)	1927	Surface, Trend, Subsurface	Combination/ Faulted nose, Facies change	Tertiary/ Eocene	Sandstone	9,000, 1,200	25, 75
86. Tom Graham (Gulf Coast)	1938	Surface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,300	80
87. Calandria (Gulf Coast)	1952	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,700	15
88. Copano Bay, South (Gulf Coast)	1961	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,300, 7,600	5, 15
89. Edinburg & West (Gulf Coast)	1949	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,800	330
90. Encinitas (Gulf Coast)	1940	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	8,700, 8,300	10, 10
91. London-London Gin (Gulf Coast)	1937	Seismic, Geophysics	Combination/ Anticline, Facies change	Tertiary/ Oligocene, Miocene	Sandstone	4,500, 4,600	5, 10
92. Monte Christo, Nor (Gulf Coast)	1 zh 1954	Seismic, Subsurface	Combination/ Fault, Unconformity, Facies change	Tertiary/ Oligocene	Sandstone	9,400	30
93. Fremont & East (Gulf Coast)	1933	Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandatone	4,400, 3,600	30, 50
94. Holly Beach (Gulf Coast)	1960	Seismic	Structural/ Fault	Tertiary/ Miocene	Sandstone	7,300, 7,500	40, 10
95. McCook, East (Gulf Coast)	1970	Subsurface	Stratigraphic/ Facies change	Tertiary/ Oligocene	Sandstone	12,200	400
96. Midway, East (Gulf Coast)	1954	Subsurface	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	10,700	65
97. Captain Lucey (Culf Coast)	1932	Surface, Subsurface, Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	5,000	20
98. Sunta Fe, East (Gulf Coast)	1.959	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,000, 7,900	10,
99. Santellana (all) c (Gulf Coast)	1952	Seispic, Subsurface	Combination/ Fault, Facies change	Tertiary/ Oligocene	Sandstone	8,400, 8,600, 8,000	
100. Seven Sisters, East (Gulf Coast)	1961	5eismic	Structural/ Fault	Tertiary/ Eocene	Sandstone	9,500, 10,000	30, 100

253 A.7d(NG-TX4)-7

Cum. Prod. 10.1 15.2 6.4 1.1 17.3	Demonst. Reserves 0.1 0.4 0.3 0.7 2.2	1975 Prod. 0.01 0.06 *	2.4 2.4	of Dec. 31, Demonst. Reserves	1975 Prod. 0.58 2.15 1.08 2.34 3.95	* 0.5	Demonst. Reserves	197 Pro
10.1 15.2 6.4 1.1 17.3	0.4 0.3 0.7	0.01			2.15 1.08 2.34 3.95	0.5		0
3.8	0.3	0.12			1.08 2.34 3.95	0.5		0
3.8 1.1 17.3	0.7	0.12			2.34 3.95 1.92	0.5		0
1.1	0.7	0.12			3.95 1.92	0.5		0
1.1	0.2	0.03	83.9		1.92			
1.1	0.2	0.03	83.9			0.1		
17.3					6.09			
!	2.2	0.37		1	I			
_ [1			0.08	*		
į l			102,3		1,66	0.2		
8,4	0.3	0.04			1.12			
			88.8		5.12	0,2		
			10.6		2.20	0.1		C
*			24.5		7.10	1.2		,
3.7	0.5	0.15			0,45	:		
			75.2		2,42	*		
0.2	0.1	0.02	86.2		5.83	0.6		,
			63.8		4.28	0.1		,
	_		,,,,,		4720			
	3.7	3.7 0.5	3.7 0.5 0.15	10.6 * 24.5 3.7 0.5 0.15 75.2 0.2 0.1 0.02 86.2	10.6 * 24.5 3.7 0.5 0.15 75.2 0.2 0.1 0.02 86.2	10.6 2.20 * 24.5 7.10 3.7 0.5 0.15 0.45 75.2 2.42 0.2 0.1 0.02 86.2 5.83	10.6 2.20 0.1 * 24.5 7.10 1.2 3.7 0.5 0.15 0.45 75.2 2.42 * 0.2 0.1 0.02 86.2 5.83 0.6	10.6 2.20 0.1 * 24.5 7.10 1.2 3.7 0.5 0.15 0.45 75.2 2.42 * 0.2 0.1 0.02 86.2 5.83 0.6

A.7d(WG-TX4)-8 254

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoin Thickness (feet)
101.	Charamousca, West (Gulf Coast)	1949	Subsurface	Stratigraphic/ Facies change	Tertiary/ Eocene	Sandstone	5,300	5
102.	Corpus Christi (Gulf Coast)	1935	Surface, Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	10,400	15
103.	Madero (Gulf Coast)	1963	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,500	20
104.	Mustang Işland Block 889 (Gulf Coast)	1955	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,400	15
105.	St. Churles (Gulf Coast)	1940	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,600	30
106.	Cage Rimoh (Gulf Coast)	1946	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,000, 6,900	15, 10
107.	Elpar (Gulf Coast)	1962	Seismic	Structural/ Fault	Tertlary/ Oligocene	Sandstone	5,100, 5,500	5, 5
108.	Mathie, East (Gulf Coast)	1939	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene	Sandstone	3,800	5
109.	G.O.M. State 904** (Gulf Coast)	1957	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,800, 8,200	10, 5
110.	Mustang Island Block 888 (Gulf Coast)	1973	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	9,900	45
111.	Rooke (Gulf Coast)	1942	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,000	5
112.	Ecott & Hopper (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,500	95
113.	Ben Bolt (all) (Gulf Coast)	1939	Seismic. Subsurface, Trend	Combination/ Faulted anticline, Factes change	Tertiary/ Oligocene	Sandstone	5,400, 5,300	20, 130
114.	Alta Mesa (Gulf Coast)	1936	Surface, Selemic	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	1,200- 3,500	70
115,	. Cole-Bruni (Gulf Coast)	1924	Randow	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene, Oligocene	Sandstone	500- 3,400	150
116	. Pita, Northwest (Gulf Coast)	1973	Selsmic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,200	10
117	. Corpus Channel, Northwest (Gulf Coast)	1956	Seismle, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,000, 8,800	25, 10

Surface	(million	Crud is bbls as	e Oil of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Natur (mill, bb)	ral Gas Liquids Is as of Dec. 3	1, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Pred
1,440		5.1	2.4	0.64			3.86			0.05
1,500		7.6	0.1	0.01			1.61			0,02
800		1.2	*	0.03			4,95		1	
640							3.66		i	0.12
1,040		*					0.63			0.01
1,180		*					4.07			0.04
1,360		2,5	6.1	1.47			4.65			0,01
2,600		3.9	0.1	0.02			0.68			*
1,280	 		<u></u>		85.3		3.42	0.8		0.01
960					2.6		2.63			
3,060		1,9	*	*			0.09	*	:	
1,520		1.2	0.6	0.04			0.58			*
2,100		9.4	*	*			1.05			*
2,500	1	9.6	0.5	0.09		i	0.59	*		
5,360		*			76.2			i		
2,080					5.7		5.71	*		*
1,920		*			61.9		0.88	0.1		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoin Thickness (feet)
118. Sneino (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,400	5
119. Jennings, West (Gulf Coast)	1951	Subsurface	Stratigraphic/ Facies change	Tertiary/ Eocene	Sandstone	3,600, 4,200	5 ,
120. Julian (Gulf Coast)	1950	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	8,100	10
121. Magnolia City, North (Culf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	5,400, 5,000	5, 20
122. Minnie Bock (Gulf Coast)	1930	Geophysics, Subsurface	Combination/ Anticline, Facies change	Tertiary/ Miocene, Oligocene	Sandstone	3,800- 5,500	110
123. Faymondville (Gulf Coast)	1945	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	7,700	5
124. Turkey Creek (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,000	95
125. Baldwin (all) (Gulf Coast)	1935	Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	3,200- 3,900	БО
126. Brnni (all) (Gulf Coast)	1926	Trend, Subsurface	Combination/ Anticline, Facies change	Tertiary/ Focene	Sandstone	5,700	25
127. Candelaria (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,100	10
128. Corpus Christi, Rast (Gulf Coast)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,200	70
129. Sarita, East (Gulf Coast)	1967	Seiswic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	13,100	45
130. Dos Hermanos (al (Gulf Coast)	1) 1967	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Gulf	Sandstone	5,200	25
131. Nine Mile Point [*] (Gulf Coast)	1965	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,300	65
132. Portland, North (Culf Coast)	1974	Seismic, Subsurface	Structural/ Fault	Tertiary/ Oligocene	Sandstone	11,200	30
133. Mirando City (Gulf Coast)	1921	Randon	Combination/ Facies change, Fault	Tertiary/ Eocene	Sandstone	1,500, 1,700	130, 60
134, Aviators (all) (Gulf Coast)	1922	Random	Combination/ Facies change, Fault	Tertiary/ Eocene	Sandstone	1,500	290
135. Cortez (all) (Gulf Coast)	1944	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	2,800	70

Surface	(million	Crude is bbls as		1975)	(Bcf as	Natural Gas of Dec. 31	, 1975)	Natu (mill. bb	ral Cas Liquids ls as of Dec. (31, 1975
Area	In	Cum.	Demonst.	1975	Cum,	Demonst.	1975	Cum.	Demonst.	1975
(астев)	Place	Prod.	Reserves	Frod.	Prod.	Reserves	Prod.	Prod.	Reserves	Prod
1,180		4.8	1.2	0.16			2,30	0,1		*
3,000		7.6	0.8	0.16			1.20	*		
*,****			, ,,,	0.10			1.20	, "		
1,120		1.2	*	0.01	67.0		0.20			*
3,080		8.6	0.2	0.18			0.14			*
2,920		10.9	0,1	0.02			0.05	*		
3,840		1.4	0.3	0.06			1.45	0.1		*
1,660		12.6	0.5	0.09			0.03	*		
1,400		8.1	0.7	0.13			0.28	0.2		*
2,000	•	9.4	0.6	0.11			0.30			*
1,280		0.2	*	0.02			2.52	*		
800					65.6		1.85	*		
I,440					61.2		3.71	!		
8,640		- -			35.5		3.28	0.3		0.02
2,080					45.5		2.60			
7,040					3.5		2.84	0.3		0.21
3,120		11.9	0.3	0.04			*			
1,840	!	9.7	0.5	0.08			*			
2,000		*					0.99			*
						'	1	1 1		

		i		1	Τ	1	
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoit Thickness (feet)
136. Las Piendas (Gulf Coast)	1967	Subsurface	Stratigraphic/ Facies change	Tertiary/ Eocene	Sandstone	3,100	40
137. May, South (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Fault, Anticline	Tertiary/ Oligocene	Sandstone	9,400	20
138. Tenerias (Gulf Coast)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,900	20
139. La Jara (Gulf Coast)	1954	Seismic	Structural/ Anticline	Tertiary/ Oligocene	Sandstone	9,900, 10,000	30, 35
140. Midway, South (Gulf Coast)	1968	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,000,	15, 10
141. Mills Rennett (Gulf Coast)	1953	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	4,400	5
142. Amargosa (Gulf Coest)	1930	Surface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	2,300	25
143. Indian Point ** (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Paulted anticline	Tertiary/ Oligocene	Sandstone	9,500	10
144. San Roman (Gulf Cosst)	1962	Seismic, Subsurface	Stratigraphic/ Facies change	Tertiary/ Eocene	Sandstone	2,800, 2,800	10, 20
145. Stedman Island (all) (Gulf Coest)	1951	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,300	15
146. Whitted (Gulf Coast)	1957	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	6,900	10

^{**}Includes Jay Simmons.

b Includes Copano Ray, Coose Island, Half Moon Reef, and Salt Lake.

**C Includes Schmidt and Cerritos.

d Lease condensate only.

**Partially offshore.

**Offshore.

259 A.7d(WG-TX4)-10

Surface	(million	Crude is bbls as c	0il of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)		ral Gas Liquids Is as of Dec. 3	
Area (acrea)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,200		- -			36.3		4.37		:	
1,040		*			56.6		0.73	*		
800					44.0		3.55	*]	*
1,440					52.2		2.95	0.3		0.02
1,120		- -			15.5		2.36	0.5		0.08
1,780		6.0	1.2	0.20			0.88	† * *		*
5,080	:	0.1					0.87	1		
1,280		0.4	0.1	0.01			1.35	0.6		0.02
1,920		0.4	0.4	*	15.8		2.01	*		
960		*					1,67	:		*
2,000		*					0.50	<u> </u>		*

Table A.8a

THE SIGNIFICANT OIL AND GAS FIELDS OF OFFSHORE LOUISIANA

	,	· · · · · · · · · · · · · · · · · · ·		, . ,			
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields	<u> </u>						
1. Bay Marchand #2** (Gulf Coast)	1949	Seismic, Subsurface	Structural/ Faulted salt dome	Tertiary/ Miocene, Pliocene	Sandstone	2,500- 11,000	500
2. Vermillion #58 (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,500- 9,900	150
3. Scuth Pass #24 (Gulf Coast)	1956	Seismic, Geophysics, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,500, 8,200- 8,800, 9,600	100, 75, 30
4. Eugene Island #336 ** (Gulf Coast)	1971	Scismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene; Tertiary/ Pliocene	Sandstone	4,300- 12,000	90
5. Tiger Shoal (Gulf Coast)	1958	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,000	40
6. South Pape #27** (Gulf Coast)	1953	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	6,500- 15,500	115
7. West Delta #30 ** (Gulf Coast)	1949	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	2,100- 15,000	700
8. Vermilion #19** (Gulf Coast)	1956	Seisnic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,100- 14,000	130
Class AAA Fields							
9. West Delta #27** (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,200- 15,800	200
10. Grand Isle #43 (Gulf Coast)	1956	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	2,300- 12,700	- 180
11. Mound Point ** (Gulf Coast)	1958	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,500	15
12. Main Pass #41 (Gulf Coast)	1956	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	3,500 8,900	155
13. Main Pass #60 (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocenc	Sandstone	5,500 8,700	180
14. Ship Shoal #268** (Gulf Coast)	1962	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	9,200 11,800	
15. Grand Tale #16 (Gulf Coast)	1948	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Miocene, Pliocene	Sandstone	1,500 13,100	
16. West Cumeron \$189** (Gulf Coast)	1960	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,400 10,100	
17. Rabbit Island ** (Gulf Coast)	1942	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	8,700 12,400	

Surface	(millions		de 011 of Dec. 31,	1975)	N (Bcf as	atural Gas of Dec. 3 <u>1</u> ,	1975)	Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
26,660	1,567.4	461.2	154.3	28.29	448.8		19.03	1.1		0.05
11,360		*	15.0		1,035.0	!	41.56	4.9		0.14
38,360	1,004.7	383.4	92.4	12.84	519.0		15.16	2.3		0.05
12,240	485-7	65.1	224.9	31.08	138.0		83.42	2.7		1.98
7,600		14.0	1.5	0.17	1,104.2		184.74	8.6		0.88
28,800	880.7	267.0	116.1	9.31	706.6		35.11	1.1		0.13
33,440	640.4	330.7	94.1	17.75	530.8		33.55	4.5		0.48
18,200		*			1,383.1		93.00	25.4		0.93
14,200		18.9	9.1	0.75	1,975.1		87.35	41.1		0.84
18,320	483.4	181.6	91.4	16.91	634.6	į	90.11	10.3		0.86
9,600		5.6	0.4	0.12	891.9		120.71	5.3		0.66
12,100	454.0	148.8	69.5	6.04	377.9	•	30.27	0.3		0.02
15,960	440.2	196.3	49.7	5.63	392.5		16.49	0.4		0.04
8,440	263.0	103.1	47.9	8.49	720.2		79.38	10.8	<u> </u>	0.77
12,040	446.4	223.1	35.9	10.81	253.8	:	18.25	1.1		0.12
14,720		0.2	0.1	0.15	843.4		138.90	6.5		0.87
11,520		35.4	12.6	1.32	535.8		104.53	3.3		0.50

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
18. East Cameron #64* (Gulf Coast)	1 95 7	Seismic	Structural/ Salt dome	Tertiary/ Miccene	Sandstone	9,800- 11,100	90
19. South Marsh Island #48 ^{**} (Gulf Coast)	1961	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Pliocene, Miocene	Sandstone	6,800, 12,000- 12,700	30, 10
20. West Delta #73** (Gulf Coast)	1962	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,300- 10,200	25
21. South Marsh Island #66 ^{**} (Gulf Coast)	1963	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Fliocene	Sandstone	11,900	170
22. South Timbalier #135 ^{**} (Gulf Coast)	1956	Seismic	Structural/ Sait dome	Tertiary/ Miocene	Sandstone	8,800- 14,400	155
23. East Cameron #271 ** (Gulf Coast)	1971	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone	8,300- 8,700	105
24. Eugene Island #292 ^{**} (Gulf Coast)	1964	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Pliocene	Sandstone	3,900- 6,100	20
25. West Delta #78** (Gulf Coast)	1968	Seismic. Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	11,700- 15,700	
26. Eugene Island #296 ^{**} (Gulf Coast)	1971	Subsurface, Seismic	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
27. Mississippi _{**} Canyon #194 (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	8,500- 9,600	255
Class AA Fields			İ				ļ
28, Ship Shoal #222** (Gulf Coast)	1966	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	7,300- 9,300	70
29. Grand Isle #85** (Gulf Coast)	1972	Seismic	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
30. South Pass #78** (Gulf Coast)	1973	Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	3,000- 15,000	400
31. South March Island #23** (Gulf Coast)	1960	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,700- 12,700	65
32. Grand Isle #47 ** (Gulf Coast)	1955	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,100- 13,600	350
33. South Pass #61 (Gulf Coast)	1968	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,000- 7,900	10
34. West Cameron #21** (Gulf Coast)	1955	Selsmic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,000- 13,200, 11,800	145, 40
35. West Cameron #817** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone	4,000- 6,000	

			de Oil		Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Surface Area	(millions	bbls as Cum.	of Dec. 31, Demonst.	1975) 1 9 75	(Bcf as	of Dec. 31, Demonst.	19 7 5) 1975	(mill. bbls	Demonst.	1, 1975)
(acres)	Place	Prod.	Reserves	Prod.	Prod.	Reserves	Prod.	Prod.	Reserves	Prod.
18,800		0.3			985.3		49.48	14.5		0.48
8,160		3.5	4.5	0.47	709.1		83.60	8.5		0.69
8,640	258.2	140.3	42.7	9.13	214.5		19.59	2.1		0.14
4,880		0.2	0.2		180.2		37.08	1.3		0.21
10,520		124.8	25.2	4.44	276.5		7.52	2.7		0.06
12,280		7.4	29.6	3.12	504.8		162.77	1.8		0.39
3,700			4.5		517.6		93.90	0.2		0.02
14,240	199.5	47.7	59.1	9.01	249.6		29.05	9.5		0.58
10,760		0.7	8.3	0.40	437.4		176.71	5.1		1.87
6,200			108.0					- -		
10,560		13.7	37.3	3.48	317.0		95.98	3.6		0.78
7,000			6.0							
4,500			88.0							
5,600		6.5	1.0	0.36	671.5		52.91	14.4		1.04
5,440		76.8	20.2	3.14	216.8		10.84	5.0		0.13
7,280	456.9	16.5	128.5	7.57	25.7		13.38	*		0.01
4,700		0.9	0.1	0.12	280.0		30.48	5.4		0.60
6,400										

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
36. Ship Shoal #28** (Gulf Goast)	1949	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,500- 16,000	115
37. Eugene Island #32** (Gulf Coast)	1949	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,600- 10,700	75
38. Ship Shoal #169 ^{**} (Gulf Coast)	1960	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,200- 11,000	65
39. South Timbalier #172 ^{**} (Gulf Coast)	1965	Seismic	Structural/ Faulted anticline	Tertiary/ Fliocene	Sandstone	8,200	10
40. West Cameron #192 ^{**} (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandetone	6,000- 14,900	45
41. Ship Shoal #176 ⁴⁴ (Gulf Coast)	1956	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,400- 10,400	220
42. Ship Shoal #207 ^{**} (Gulf Coast)	1967	Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	10,800- 12,000	150
43. Main Pass #6 ^{**} (Gulf Coast)	1962	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,000- 8,300	30
44. West Cameron #533 ⁴⁴ (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene; Tertiary/ Pliocene	Sandstone		
45. Vermilion #75 ^{**} (Gulf Coast)	1949	Seism1c	Structural/ Anticline	Tertiary/ Miocene, Pliocene	Sandstone	6,600- 9,500	15
46. South Timbalier #176** (Gulf Coast)	1 96 3	Seismic. Subsurface	Structural/ Salt dome	Tertiary/ Pliocene, Miocene	Sandstone	9,400- 13,000	155
47. South Pass #62 ^{**} (Gulf Coast)	1965	Seismic	Structural/ Salt dome	Tertiary/ Pliocene	Sandstone	5,500- 10,100	20
48. Eugene Island #126 ^{**} (Gulf Coast)	1950	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	4,000~ 12,500	800
49. Eugene Island #342*** (Gulf Coast)	1973	Seismic	Structural/ Anticline	Quaternary/ Pleistocene	Sandstone		600
50. West Cameron #17** (Gulf Coast)	1962	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	11,200	10
51. Breton Sound #20 ^{**} (Gulf Coast)	1953	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	5,200- 10,300	30
52. West Cameron #45** (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,300- 8,800	45
53. Urand Isle #41 (Gulf Coast)	1964	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,400- 12,300	10

Surface	(million		of Dec. 31.	1975)	Natural Gas (Bef as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
8,360		*	*	0.01	669.7		8.87	18.2		0.1
3,720		20.3	6.7	0.85	737.0		14.10	5.7		0.0
7,640		2.1	30.9	0.32	349.8		55.85	1.4		0.2
2,380		0.1	0.9	*	261.3		50.72	0.6		0.1
11,160		1.7	0.3	*	794.7		31.90	6.5		0.2
5,200		25.2	6.8	1.62	306.1		46.90	2.4		0.4
4,840	287,8	49.8	44.2	5.23	207.1		14.40	3.0		0.1
6,840		10.2	9.3	0.75	397.9		15.45	0.3		*
9,600						810.0				
6,040					632.8		20.76	1.2	:	0.0
6,280		24.4	22,1	2,60	274.1		25.70	5.1	i	0;
3,920	208.5	53.5	55.1	5.37	61.0		5 .92	*		*
5,860		93.6	16.4	3.76	94.8		4.69	0.8		0.3
4,240			5.0		1.5		1.50			-
5,780					492.3		63.74	2.9		0.:
6,280		32.6	34.4	2.63	82.2		6.16	0.2		0.
6,120		7.1	0.2	0.07	513.1		20.68	7.0		0.
4,080		35.5	28.0	3.43	132.6		14.33	3.4		0.

				1			
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Keservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
54. Expens laband #1s ** (Gulf Coast)	1954	Seismíc	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,900- 10,500	15
55. Math Page 435 *** (Oulf Coast)	լ951	Seismlt	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,000- 8,300	75
56. Ship Shoal ≈115** (Gulf Coast)	1955	Seismic	Structural/ Salt dome	Tertiary/ Mincene	Sandstone	6,400- 11,100	85
57. Bugene Island #276** (Gulf Coast)	1964	Scismic, Subsurface	Structoral/ Salt dome	Tertiary/ Pliocene	Sandstone	6,100- 8,800	25
58. Sint Communica #35 ** (Gulf Coast)	1972	Subsurface. Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,100	20
59. Ship Short #2004 ^{**} (Gulf Coast)	1968	Subsurface, Seismic	Structural/ Salt dome	Tertiary/ Pliocene; Quaternary/ Pleistocene	Sandstone	7,600- 11,700	330
60. Wast Comeron 8887** (Gulf Coast)	1971	Subsurface, Seismic	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone	<u> </u>	
61. South March Inland #73** (Gulf Cosst)	1963	Seismic	Structural/ Salt dome	Tertiary/ Pliocene; Quaternary/ Pleistocene	Sandstone	5,800- 11,700	35
62. Vermilion #720*** (Gulf Coast)	1972	Sejemic, Subsurface	Structural/ Faulted salt dome	Quaternary/ Pleistocene	Sandstone		
Class A Fields 63. South Pass #65 (Culf Coast)	1969	Subsurface, Seismic	Structural/ Faulted salt dome	Tertlary/ Miocene	Sandstone	8,000	3
64. South Marsh _{As} Island #189 (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Faulted salt dome	Tertiary/ Pliocene	Sandstone	8,000	
65. Eugene Island #279 ⁴⁴ (Gulf Coast)	1964	Subsurface, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	8,900- 9,200	65
66. Vermilion #245 ** (Gulf Coast)	1962	Se;smlc	Structural/ Faulted salt dome	Tertiany/ Miocene	Sandstone	6,700- 9,900	265
67. Main Pass #300** (Culf Coast)	1969	Subsurface, Setsmic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,200- 7,200	10
68. Vermilion #13! ** (Gulf Coast)	1960	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,400- 14,400	40
69. Scuti _{l Marsh} Island \$128** (Gulf Coast)	1974	Scismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
70. Vermilion #255 ** (Gulf Coast)	1965	Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	9,000- 10,800	20
71. Eugene Island #172 *** (Gulf Coast)	1956	Seismle, Geophysics	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	9,500- 11,700	80

Surface	(millions		ide Oil of Dec. 31,	1975)		atural Cas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 3-, 1975)		
Atea (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Frod.
4,920		50.7	6.3	1.53	149.5		8.41	1.2		0.08
5,480		81.2	9.3	1.68	95.2		3.99	0.8		0.10
7,300		37.0	35.0	3.50	78.0		8.49	1.0		0.0
4,440		54.5	18.5	5.22	123.9		18.90	0.8		0.1
3,340			1.0		113.2		49.90	0.8		0.3
3,300		31.7	42.3	4.51	84.2		8.81	0.7		0.0
3,520]		32.2	1	32.22	0.5		0.4
5,900		46.1	15.9	3.95	179.0		9.76	3.0		0.1
5,960		[;]	4.0		54.3		51.09	0.3		0.1
2,440		53.2	29.8	8.28	36.9	!	8.13	t.		0.0
1,080	202.0	- -	80.5							
2,280		11.1	16.4	1.18	57.8		10.92	0.7		0.:
3,320		23.3	10.7	1.38	107.7		28.12	2-4		0.0
5 ,12 0		39.1	37.9	4.90	35.5		4.55	0.3		
3,540					289.3		22.78	5,4		0.
4,430	133.0		65.0							-
4,840		1.5	3.5	0.48	84.0		20.11	4.7		0.
4,800		42.0	22.5	5.11	64.6		13.85	0.8		0.

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
2, South Polto the (Gulf Coast)	1951	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	8,100- 11,100	125
3. South Marsh _{a.} Island 5142 (Gulf Coast)	1966	Scism ic	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	3,800	. 15
4. Eugene Island #286 ^{**} (Gulf Coast)	1964	Selsmic, Subsurface	Structural/ Faulted anticline	Tertiary/ Pliocene	! Sandstone	5,000	5
5. Eugene Island #898** (Gulf Coast)	1958	Seismic	Structura1/ Salt dome	Tertiary/ Miocene; Quaternary/ Pleistocene	Sandstone	6,000- 12,500	25
6. West Felto #4!** (Gulf Coast)	1962	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,500- 12,200	20
7. Rost Cameron #334 (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		
8. Eugene Island #805 ^{**} (Gelf Coast)	1971	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	9,900	10
9. Main Pass 145 (Gulf Coast)	1967	Seismic .	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,400	5
O. West Cameron #119 ^{**} (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,700- 8,000, 8,500	110, 35
1. Supere Island \$205 ** (Gulf Coast)	1961	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,400- 11,700	65
12. South Timbolier #54 ^{**} (Gulf Coast)	1955	Seismic, Geophysics	Combination/ Facited salt dome, Facies change	Tertiary/ Miocene, Pliocene	Sandstone	6,600- 13,300	35
3. West Delta \$105** (Gulf Coast)	1964	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	6,000- 8,100	20
4. East (ameron #62 ^{**} (Gulf Coast)	1956	Seismic	Structural/ Faulted articline	Tertiary/ Miocene	Sandstone	6,500- 8,300	75
35. Ship Sheat \$197 (Gulf Coast)	1957	Geophysics, Seismle	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,300- 14,400	20
36. Ship Shool #274** (Gulf Coast)	1965	Seismic	Structural/ Salt dome	Quaternary/ Pleistocene	Sandstone	3,300- 8,600	1.30
37. Kouth Timbalier #181 ^{8*} (Gulf Coast)	1958	Seismic, Geophysics	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,700- 8,700	20
18. Vermillon FF41 (Guif Coast)	1975	Seismic, Subsurface	Combination	Tertlary/ Pliocene	Sandscone		

Surface	(millions	Cre bbls as	de 011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Nat (mill. bb	ural Gas Liqui Is as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,960		22.7	27.3	1.57	41.1		1.70	0.7		0.01
2,600			22.0		- -	 		·		
7,200		0.1	0.1	0.02	241.6		44.33	0.1		0.03
7,380		24.2	25.8	4.54	54.8		9.77	1.0		0.12
3,060		36.4	11.1	2.50	107.3		12.71	0.4		0.07
5,100						450.0				
4,200		0.3	3.7	0.34	33.7		33.66	0.6		0.61
2,400	179.3	29.5	40.0	5.19	13.9	!	2.94	*		*
2,700		0.3			294.1		21.24	2.1		0.07
4,820		4.2	5.8	1.01	149.3		56.59	2.3		0.78
5,680		12.5	6.5	0.46	169.9		13.61	5.3		0.28
3,500		23.6	5.4	1.55	187.8		16.11	0.9		0.13
2,600					275.6		23.01	2.5	 	0.24
2,460		43.4	10.6	2,11	47.6		1.75	*		*
3,520		9.0	5.5	0.79	136.2		30.56	0.9		0.24
3,480		35.9	7.1	1.74	85.7		5.21	0.5		0.07
1,500						360.0				
			<u> </u>							
									1	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
89. Eugene /stand #128** (Gulf Coast)	1955	Seismlc	Structural/ Salt dome	Tertiary/ Miocene, Pliocene	Sandstone	6,000- 13,000	220
90. Eugene Island #52** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Fault	Tertiary/ Miocene	Sandstone	10,000- 12,000	130
91. Main Pass #283 (Gulf Coast)	1967	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,200- 9,000	80
92. Shir Shoal #154 (Gulf Coast)	1955	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,400- 7,700, 6,700	140, 100
93. West Delta #71?*** (Gulf Coast)	1963	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,400- 15,600	365
94. Grand Isle #18 ^{**} (Gulf Coast)	1948	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	7,700- 10,100	800
95. Hog Bayou (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,200, 6,700	100, 75
96. Eugene Island #258 ⁴⁴ (Gulf Coast)	1970	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Pliocene	Şandston≙	8,900	
97. Ship Shoal #39 (Coon Point)* (Gulf Coast)	1957	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	13,500- 16,800	35
98. Yermilion #15 (Gulf Coast)	1961	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,300- 15,300	100
99. West Cameron #146** (Gulf Coast)	1970	Seismic	Structural/ Fault	Tertiary/ Miocene	Sandstone		
100. Main Pass #47	1955	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,800- 9,000	190
101. Eugene Island #273 ^{***} (Gulf Coast)	1963	Seismic	Structural/ Salt dome	Quaternary/ Pleistocene; Tertiary/ Pliocene	Sandetone	3,200- 7,900	135
102. Ship Shoal #246 ** (Gulf Coast)	1966	Seismic	Structural/ Faulted anticline	Quatermary/ Pleistocene	Sandstone	7,500	270
103. Ship Shoal #342 ^{**} (Gulf Coast)	1972	Seismic, Subsurface	Structural/ Anticline	Quaternary/ Pleistocene	Sandstone		
104. West Delta #55** (Gulf Coast)	1955	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,600- 13,000	
105. South Marsh _{**} Island #108 (Gulf Coast)	1964	Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	5,700	5
106. Ship Shoal #72*** (Gulf Coast)	1948	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	4,400 7,000 12,200	85

Surface	(million	Cru s bbls as	de 011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 P rod
4,120		40.7	9.3	1.39	67.5		1.40	0.6		
4,500						360.0				
3,600		27.7	28.3	3.16	16.9	!	2.17	*		
4,980		40.1	16.9	2.92	17.8		1.37	*		
4,280		22.4	21.6	3.19	38.6		3,65	0.6		0,2
4,500		46.9	9.1	1.28	26.9			*		*
5,400	,	2.2	1.2	0.12	233.6		14.59	3.7		0.1
7,400		2.3	9.7	0.37	50.7		22,65	0.4		0.3
1,840					184.1		25.14	4,8		0.5
4,200		*			225.5		14.98	12.4		0.6
1,880		0.6	0.9	0.26	106.3		36.57	0.9		0.2
3,400		1.6	0.5	0.05	217.1		11.61	1.8		0.0
2,320					168.8		35.83	0.3		a.o
3,300			4.0		0.5		0.54	*		0.0
3,200						c.336.0				
3,840		*			150.9		15.23	0.1		
3,900			4.0		161.0		29.55			
1,720		5.4	6.6	0.09	36.1		1.16	0.5		0.0

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Resetvoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
07. South Marsh Inland #6** (Gulf Coast)	1963	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	8,100- 10,200	90
.08. South Timbalier #37^* (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	9,700- 16,000	<u>.</u> [
.09. Eugene Tsland #188 ^{**} (Gulf Coast)	1956	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	8,700- 12,400	330
.10. West Delta #103 ^{***} (Gulf Coast)	1975	Seismle, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,000- 12,800	
11. West Cameron #67 (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Fault	Tertiary/ Miocene	Sandstone	8,100- 10,100	45
112. Lighthouse Point 44 (Gulf Coast)	1958	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,600- 12,200	80
113. Vermilion #250 ** (Gulf Coast)	1963	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,200	70
(Gulf Coast)	1947	Seismic	Structural/ Salt dome	Tertiary/ Miocene, Pliocene	Sandstone	3,000- 16,700	245
115. Mississippi Canyon #148** (Gulf Coast)	1975	Selsmic, Subsurface	Combination	Tertiary/ Pliocene	Sandstone		
116. South Warsh _{**} Island #269 (Culf Coast)	1973	Seismic, Subsurface	Structural/ Faulted anticline	Tertlary/ Miocene	Sandstone	9,800	5
Class B Fiel <u>ds</u>							
ll7. Bast Cameron #14** (Gulf Coast)	1968	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,000- 15,100	85
118. East Cameron #86 ** (Gulf Coast)	1963	Scismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,000	10
119. West Cameron #280 ^{**} (Gulf Coast)	1965	Selsmic	Structural/ Fault	Tertiary/ Mioceme	Sandstone	7,900	5
120. South Timbalier #35 ^{**} (Culf Coast)	1975	Seismic, Subsurface	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone		
121. West Cameron #630** (Gulf Coast)	1974	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		
122. West Delta #83*** (Gulf Coast)	1956	Seismic	Structural/ Faulted anticline	Tertiary/ Mioceme	Sandstone	9,800, 10,200	20, 20
123. West Cameron #165** (Gulf Coast)	1960	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Textiary/ Miocene	Sandstone	9,800	20

Surface	(million	Cti s bbls as	de Oil of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Com. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
5,440		24.5	5.5	1.01	109.2	,	12.39	0.7		0.1
2,900			25.0							<u> </u>
4,000		39.4	4.6	1.+32	55.8		4.27	0.3		0.0
1,200			50.0							
2,320			8.5							
2,760		1.1	0.3	0.13	198.5		17.47	2.2		0.0
2,000		0.2	0.1		129.5]	34.40	4.5		1.0
4,600					128.0		11.32	2.4		0.1
1,500						c.300.0				
2,100		0.4	28.6	0.37	0.9		0.90	*		*
1,500			2,5		164.6		13.51	3.4		0.5
2,960		*			143.5		18.61	9.4		0.0
3,400					26.3		6.90	0.1		0.0
5,400			c.12.0			c.180.0				
1,200						c.240.0				
2,700		24,2	0.4	0.20	79.0		2.89	1.2	<u> </u>	0.0
2,880					63.3		19.90	0.5		0.1

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
124. Grand Tale #78** (Gulf Coast)	1972	Seismic, Subsurface	Structural	Tertiary/ Pliocene	Sandstone		160
125. Ship Shool #263 ^{4*} (Gulf Coast)	1962	Seismic	Structural/ Salt dome	Tertiary/ Pliocene	Sandstone	8,300	5
126. East Cameron #71 ^{4*} (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,100- 14,900	65
127. West Cameron #620*** (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone	2,900- 7,400	
128. South Marsh _{**} Island #115 (Gulf Coast)	1972	Seismic	Structural/ Fault	Tertiary/ Plincene	Sandstone		
129. East Cameron #23; ** (Gulf Coest)	1971	Seismic, Subsurface	Structural/ Anticline	Quaternary/ Pleistocene	Sandstone		
130, East Cameron #265 ^{**} (Gulf Coast)	1963	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	9,100	
131. Verwilion #214 ^{***} (Gulf Coast)	1971	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Pliocene	Sandstone		
132. Vermilion #215 ^{**} (Gulf Coast)	1967	Seismic	Structural/ Anticline	Tertiary/ Pliocene	Sandstone	10,400- 12,300	20
133. Eugene Island #100 ^{**} (Gulf Coast)	1960	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,200- 12,100	60
134. Ship Shoul #231 (Gulf Coast)	1965	Seismic	Struc tura l/ Fault	Quaternary/ Pleistocene	Sandstone	6,900	
135. Vermilion #46 ⁴⁴ (Gulf Coast)	1956	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,600- 15,200	150
136, West Cameron W585 ** (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Anticline	Quaternary/ Pleistocene	Sandstone		
137. West Delta #53 ** (Gulf Coast)	1953	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	4,600- 12,500	190
138. Main Pass #146 ** (Gulf Coast)	1972	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Pliocene, Miocene	Sandstone	7,100	10
139. Breton Sound #35 ** (Gulf Coast)	1948	. Seismic	Structurel/ Faulted anticline	Tertiary/ Miocene	Sandstone	3,800- 6,700	205
140, West Cameron #543 ^{**} (Gulf Coast)	1972	Seismic, Subsurface	Structural/ Salt dome	Quaternary/ Pleistocene	Sandstone		
141. Missigsippi Canyon #311 (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Salt dome	Quaternary/ Pleistocene	Sandstone		
142. Eugene Island #330 ** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Salt dome	Quaternary/ Pleistocene	Sandstone		
143. Main Pass #290 ** (Gulf Coast)	1968	Selamic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,500, 6,300	10, 35

Surface	(míllio	Crude ns bbl <u>s as</u>	of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31	, 1975)		ral Gas Liqu s as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,240		- -				c.225.0				
5,800		9.5	6.5	1.81	57.1		12.87	0.8		0.25
1,360		*			161.6		8.96	1.7	:	0.04
3,000						c.234.0				
2,200		<u></u>	7.0		~-	c.180.0	N. 18			
1,600			0.5			c.210.0				
2,880					137,6		8.02	0.7		0.02
1,680	l	1.0	19.0	1.04	3.3		3.28	*		0.04
1,560		4.6	0.9	0.38	45.5		4.02	0.9		0.19
2,700		12.1	5.4	0.68	76.9		5.06	1.7	;	0.11
2,500			26.0							
2,160		*	0.1		137.6		5.32	1.5		0.05
4,200						c.210.0				
1,860		12.5	3.5	0.40	97.9		0.93	4.4		
1,400		1.3	16.7	1.34	2.9		2.93	*		*
2,560					144.1		6.72	*		
1,300						c.192.0				
1,500			28.0							
4,500						c.192.0				
3,240		9.7	17.3	1.31	9.9	İ	2.10	*		0.01
		-								

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
144. Ship Shoal #230* (Gulf Coast)	1962	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Pliocene	Sandstone	7,500- 10,200	320
(Gulf Coast)	1966	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,000	5
146. West Cameron #49 ** (Gulf Coast)	1964	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,700, 12,300	25, 15
147. West Comeron #145 ** (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	5,100- 9,300	215
148. West Comeron #635 (Gulf Coast)	1971	Seismic, Subsurface	Structural/ Anticline	Quaternary/ Pleistocone	Sandstone	4,000- 6,500	
149. Chandeleur Sound #25** (Culf Coast)	1965	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	4,800- 5,400	60
150. Eloi Bay (Gulf Coast)	1954	Seismic, Geophysics	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	4,900- 7,400	55
151, South Pass #88/83** (Culf Coast)	1972	Seismic, Subsurface	Structural/ Salt dome	Quaternary/ Pleistocene	Sandstone		
152. Vermillon #86 (Gulf Coast)	1958	Seismic	Structural/ Faulted anticline	Tertjary/ Miocene	Sandstone	10,800	15
153. East Cameron #245** (Gulf Coast)	1965	Seismic	Structural/ Fault	Tertiary/ PJIocene	Sandstone	4,000	5
154. South Timbalier #88 ^{4*} (Gulf Coast)	1956	Seismic, Geophysics	Structural/ Salt dome	Quatermary/ Pleistocene; Ter:iaty/ Miocene	Sandstone	3,800, 4,000, 11,200	45
155. Vermilion #120 ** (Gulf Coast)	1957	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Miocene, Pliocene	Sandstone	7,200 9,500	
156. Vermilion #331** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Anticline	Quaternary/ Pleistocene	Sandstone	5,300 6,300	
157. Vermilion #205 (Gulf Coast)	1970	Seismic, Subsurface	Structural/ Fault	Tertiary/ Pliocene	Sandstone		
158. Weet Camaron \$480* (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Salt dome	Quaternary/ Pleistocene; Tertiary/ Plicene	Sandstone	7,600 8,000	
159, South March _{**} Island #248 (Gulf Coast)	1974	Seismle, Subsurface	Structural/ Fault	Tertiary/ Miocene	Sandstone	10,000	
160. South March Intend #137 (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Salt dome	Quaternary/ Pleistocene	Sandstone		

Surface	(millions		dc Oil of Dec. 31,	1975)	(Bcf as	Satural Gas of Dec. 31,	t975)	Natur (mill. bbl	al Cas Liquid	s 31, 1975)
Area (acres)	ln Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 P ro d.	Cum. Prod.	Demonst. Reserves	1975 Prod.
4,360		10.8	12.7	1.63	19.2		2.54	1.0		0.01
1,840		1.2	1.3	0.17	46.3		14.93	1.2		0.30
1,280					28.1		5.02	į		0.03
2,580					154.7		9.82	0.2		0.01
1,920						c.180.0				
1,920		13.1	15.2	1.72	6.7		0.69		<u> </u>	
3,400		11.9	12.6	1.05	28.8	į	0.62	0.1	ļ	
2,200			23.0							
800					68.0		3.72	1-4		0.01
1,120			_	_	36.2		15,24	:		
2,260		1.1	2.9		61.4		7.16	1.3		0.12
2,160		16.9	7.1	1.97	13.0		1.79	0.2		
3,200			11.0							
1,600		3.4	8.6	1.11	30.8	•	12.47	0.2		0,08
1,600						c.152.G				- -
3,000						c.153.0				
6,000			6.0			c.114.0				

Field	Year Dis- covered	Discovery Method (s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (fest)
61. Vermilion #71** (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,600	10
62. West Cameron #648 ^{**} (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		200
63. Eupene Teland #332** (Gulf Coast)	1973	Seismlc	Structural/ Salt dome	Quaternary/ Pleistocene	Sandstone	8,300- 9,100	
64. Main Tass #133 (Gulf Coast)	1970	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Pliocene	Sandstone	2,600, 6,200	10, 30
lass C Fields							1
65. East Cameron 4378 ** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocone	Sandstone		
66. Sugene Island #198** (Gulf Coast)	1958	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	14,300, 13,500	40, 30
67. Bugene Island #86 ** (Gulf Coast)	1949	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	8,100- 12,100	250
58. Eugene Island #395 ** (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Fault	Quaternary/ Pleistocene	Sandstone		
69. Eugene Island #45 ** (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,500- 10,200	150
70. South Marsh _{**} Island #243 (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,900, 9,200	30, 15
71. South Pass #54 ⁴⁴ (Gulf Coast)	1969	Subsurface, Seiemic	Structu ra l/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,700	5
72. East Cameron #32]** (Gulf Coast)	1971	Seismic, Subsurface	Structural/ Faulted auticline	Quaternary/ Pleistocene	Sandstone		
73. Main Pass #48 ^{**} (Gulf Coast)	1956	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	9,600, 7,700	120, 60
74. West Pella #152 ^{**} (Gulf Coast)	1970	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	10,500	10
75. West Cameron #68 ^{**} (Gulf Coast)	1958	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,300- 13,200	30
76. West Cameron \$353** (Gulf Coast)	1975	Seismic. Subsurface		Tertiary/ Miocene	Sandstone		
77. West Cameron #563** (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Anticline	Quaternary/ Pleistocene	Sandstone		
78. Eugene Island #848 ^{**} (Gulf Coast)	1975	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone		

urface	(milling		de Oil of Dec. 31,	1975)	(<u>Bcf as</u>	Natural Gas of Dec. 31,	1975)		ral Gas Liquid ols as of D⊖c.	
Area acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,840) , *			106.6		6,18	0.4		0.02
5,000						c.156.0				
2,100		ļ		 		c.150.0	<u>-</u>			
1,640		0.5	3.5	0.25	19.4		6.24	0.1		0.02
2,800			12.5							
4,500		1.8	2.2	0.10	71.7		3.39	2.3		0.09
3,980		12.5	3.5	0.55	25.0	:	0.02	0.4		***
1,600			3.0			c.105.0				
1,160		11.2	4.8	0.49	26.6		0.37	ŋ.1	[0.03
1,400						c.114.0				
1,840		3.5	1.5	0.61	26.0		6.53	0,1		0.03
2,200		2.9	14.1	1.98	2.0		1.35			
2,040		2.9		*	61.2	:	3.68	1.1		0.03
1,080		8.8	5.2	0.95	15.4		2.62	0.2		0.01
5,400					78.0		1.63	1.9		0.04
2,400						c.102.0				
1,900						c.102.0				
600						0.96.0				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
79. Skip Shoal #23* (Gulf Coast)	1951	Seismic	Structural/ Faulted anticline	Tertlary/ Miocene, Pliocene	Sandstone	13,400, 2,600	15, 120
80. East Cameron #785 ** (Gulf Coast)	1966	Seismic, Subsurface	Structural/ Fault	Tertiary/ Pliocene	Sandstone	10,000	10
81. Eugene Island #851 ** (Gulf Coast)	1975	Seismic, Subsurface	Structural	Tertiary/ Pliocene	Sandstone		
82. Grand Tale #25 ^{*†} (Gulf Coast)	1961	Subsurface, Seismic	Combination/ Fault. Facies change	Tertiary/ Miocene	Sandstone	13,700, 14,300	330, 15
33. East Comeron #1? ⁴⁴ (Gulf Coast)	1955	Seismic (Structural/ Faulted anticline	Tertiaty/ Minceme	Sandstone	8,200, 11,800, 11,100	525, 45, 45
84. South Pelto #28** (Gulf Coast)	1962	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene, Pliocene	Sandstone	5,500- 9,400	65
35. South Timbalier #198 (Gulf Coast)	1967	Subsurface, Seismic	Structoral/ Faulted anticline	Tertiary/ Pliocene	Sandstone	7,900, 10,500	5,
36. Fast Cameron #388 ** (Gulf Coast)	1971	Seismic	Structural/ Salt dome:	Quaternamy/ Pleistoceme	Sandstone		
37. West Delta #84 ^{**} (Gulf Coast)	1955	Seismíc	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,800- 10,900	70
88. Sugene Island #352** (Gulf Coast)	1973	Selsmic, Subsurface		Quaternary/ Pleistocene	Sandstone		
89. South Fass he ** (Gulf Coast)	1955	Seismic	Structural/ Faulted anticline	Tertiary/ Migcene	Sandstone	8,500, 8,300	30, 30
90. South Fimbalier #34 (Gulf Coast)	1949	Seismic. Geophysics	Structural/ Anticline	Tertiary/ Miocene, Pliocene	Sandstone	9,600, 3,700	10, 10
91. West Cameron #484 (Gulf Coast)	1974	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone	5,500	
92. Fast Cameron 44 ⁴ (Gulf Coast)	1955	5⊵ismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,000- 13,100	300
93. East Comeron #861** (Gulf Coast)	1971	Subsurface, Seismic	Structural/ Fault	Quaternary/ Pleistocene; Tertiary/ Pliocene	Sandstone	8,100, 9,200	
94. West Cameron #33 ** (Gulf Coast)	1949	Scismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,100, 10,400	160, 30
95. West Cameron #522 *** (Gulf Coast)	1975	Seismic, Subsurface		Quaternary/ Pleistocene	Sandstone	7,800	15
96. dmodd Isla 482 ** (Gulf Coast)	3965	Seismic	Structural/ Faulted anticline	Tertiary/ Pliocene	Sandstone	12,000	5
97. West Cameron #376 ** (Gulf Coast)	1971	Selsmic, Subsurface	Structoral/ Anticline	Quaternary/ Pleistocene	Sandstone		

	· · · · · · · · · · · · · · · · · · ·		de Oil	· · · <u>-</u>		Natural Gas		Nat	ural Gas Liquio	ds
Surface	million.		of Dec. 31,		Bcf as	of Dec. 31,			ls as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,520			neder ves		40.5	RESELVEN	16.52	0.9		0.23
1,600		 	;		47.7		4.00	0.8		0.13
2,600						c.96.0		- -		
1,000			- -		66.8		9.89	0.4		0.04
2,240		2.1	_ -		68.1			1.0		
1,560		8.3	3.2	0.73	14.6		0.57	0.5		 -
720		*	*	0.01	53.2	 	9.80	1.4		0.23
800		*			9.4		3.18	0.2		0.06
1,400		7.4	3.9	0.32	18.3		0.51	0.1	:	
2,000						c.90.0				
1,400		1.0	6.5		44.2		1,25	ი.9		0.01
600		1.1	9.4	0.59	2.7		1.46	0,1		0.03
600						c.90.0				
1,320		*			72.5			1.5		
1,600					16.3		16.31	*		0.02
2,500		0.1	0.1	0.01	57.1		1.52	0.7		9.01
700				-		c.78.0				
1,760		0.6		0.13	9.4		3.07	0.2		0.02
2,200						c.78.0				
		1								

		ı	·	-1	j - -	T	<u>. </u>
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Ceologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
198. West Pelia #Un" (Culf Cnast)	1954	Subsurface, Seismíc	Combination/ Faulted anticline, Facies change	Tertiary/ Miccene	Sandstone	7,600	50
199. Ship Shool #272.** (Gulf Coast)	1975	Scismic, Subsurface		Quaternary/ Pleistocene	Sandstone		=
200. Varmilian #kgr** (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Fault	Quaternary/ Pleistocene	Sandstone	8,800	5
201. Breton Sound #82** (Culf Coast)	1949	Seismin, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sændstone	5,600, 5,800	155, 30
202. West Cameron *18	1965	Seism1c	Structural/ Faulted anticline	Tertlary/ Miocene	Sandstone	11,900	200
103. Went Cameron #549*** (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Fault	Quaternary/ Pleistocene	Sandstone	8,000	
204. Swip Shoal #288 ** (Gulf Coast)	1965	Seispic, Subsurface	Structural/ Faulted salt dome	Quaternary/ Pleistocene; Tertiary/ Pliocene	Sandstone	10,100, 12,800	15, 5
205. Termilion \$182.	1971	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Plicene	Sandstone		
206. Vermilion #372 ^{***} (Culf Coast)	1975	Seismic, Subsorface		Quaternary/ Plaistocene	Sandstone		
207. Vermilion \$191 ^{AA} (Gulf Coast)	1964	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,800, 13,600	25, 50
208. West Lelia #133 ^{**} (Gulf Coast)	1966	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	12,600	210
209. West Comeron #688 ** (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Fault	Quaternary/ Pleistocene	Sandstone		
210. Eugene Island #77** (Gulf Coast)	1956	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	14,500	30
211. Greele ** (Cuif Coast)	1938	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Miocene, Pliocene	Sandstone	6,700, 13,400, 3,100	55, 35, 100
212. West Delta #64 (Gulf Coast)	1963	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,700, 11,600	35, 15
213. Kugene (Sland #23) ^{##} (Gulf Coast)	1966	Seismic	Structural/ Salt dome	Tertiary/ Pliocene	Sandstone	10,600	15
214. West Cameron #225 ** (Gulf Coast)	1962	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	5,900, 8,600	40, 30
215. West Comeron #55?*** (Gulf Coast)	1973	Seismic, Subsurface	Structural/ Fault	Quaternary/ Pleistocene	Sandstone		
216. Main Pass #107** (Gulf Coast)	1962	Subsurface, Seismic	Structural/ Fault	Tertiary/ Miocene	Sandstore	4,500- 5,100	30
			[-	

Surface	(millio	Crue ns bbis as	de Oil of Dec. 3 <u>l,</u>	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum- Prod.	Demonst. Reserves	191 Pro
2,120		8.0	2.0	0.12	11.9		0.27	0.1		
1,400				<u></u>		c.75.0				
1,800			0.3			c.72.0				-
2,180		1.7	0.7	Ø.12	35.3		2,92	0.1		
1,440					61.7		5.64	0.7		0.
1,200						c.72.0				-
980		1.8	0.7	0.13	32.3		4.64	0.1		0.
800		0.3	*	0.02	1.8		1.60	*		0.
800						c.72.0				-
1,120		1.5	0.1	0.02	26.8		1,22	1.3		0.
2,260		7.2	0.8	0.23	17.5		0.48	0.4		,
3,500						c.66.0				-
960		0.5			47.5		3.56	0.4		0
1,260		6.7	2.4	0.20	10.7		0.78	*		,
680		*	*	*	7.4		3.09	*		
2,200						c.60.0				
1,840					35.5		3.27	0.2		0
1,100						c.60.0				
1,300		0.2			39.9		4.89	*		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
217. Vermilion #50** (Gulf Coast)	1975	Seismic, Subsurface	Structural/ Fault	Tertiary/ Miocene	Sandstone		
218. Bust Cameron #43 ^{AA} (Gulf Coast)	1955	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	11,100	15
219. Half Moom Lake (Gulf Coast)	1963	Seismic, Subsurface	Structural/ Anticline	Tentiary/ Miocene	Sandstone	4,900- 8,800	130
220. South March Teland #35 ^{**†} (Gulf Coast)	1963	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	11,000, 9,700	50, 10
221. South Marsk Tsland #146 (Gulf Coast)	1974	Seismic, Subsurface	Structural/ Faulted anticline	Quaternary/ Pleistocene	Sandstone		

Partially offshore.

Surface	(million		de Oil of Dec. 31,	1975)		Natural Gas			ral Cas Liqui Is as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,000						c.60.0				
800					46.7		3,79	0.5		0.02
600		3.5	5.4	0.34	3.0		0.14	*		
1,600		*	0.1	0.02	10.5		1,56	0.1		0.02
1,800					<u>.</u> _					
						İ				

•

286

Table A.8b

THE SIGNIFICANT OIL AND GAS FIELDS OF SOUTHEASTERN LOUISIANA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1. Caillou Island (Gulf Coast)	1930	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,600- 16,000	1,600
2. Timbolier Bay (all) (Gulf Coast)	1938	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,000- 16,000	600
a. Timbalier Bay (AAA)	1938	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,000- 16,000	600
b. Timbalier Bay Block 21 (AAA)	1938	Geophysics, Seismic	Combination/ Faulted salt dome, Pacies change	Tertiary/ Miocene	Sandstone	7,000- 13,000	
3. Bastian Bay (Gulf Coast)	1941	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,400, 13,600	80, 90
Class AAA Fields			 				
4. Lake Barre (Gulf Coast)	1929	Se1smic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,500- 11,900	220
5. Lake Washington (Gulf Coast)	1931	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Saudstone	9,500- 15,000, 1,100- 6,300	400
6. Paradis (Gulf Coast)	1939	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	9,600- 11,000	400
7. Bay Ete. Elaine (Gulf Coast)	1929	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,700- 14,500	600
8. Hollywood-Houma (Gulf Coast)	1945	Surface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,200	75
a, Hollywood (AAA)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,200, 16,400	, 75, 90
b. Howard (AA)	1945	Surface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sendstone	10,300- 11,800	- 150
9. West Bay (Gulf Coast)	1940	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,900- 10,500	400
10. Lafitte (Gulf Coast)	1935	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	4,700- 10,400	185
11. Lirette (Gulf Coast)	1937	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,400	150
a. Lirette (AAA)	1937	Seismic, Seepage	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,400 9,600 8,400	, 140,
b. Eay Baptiste (B)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,800	155
12. Garden Island Bay (Gulf Coast)	1935	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	1,400 9,000	

Surface	(mlllion	Crude s bbls as	011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Nat (mill. bb	ural Cas Liquid ls as of Dec. 1	ls ^a 31, 1975
Area (acres)	ln Flace	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
30,040	1,230.4	529.9	126,9	14.16	1,565.2		101.67	29.2		1.7
29,100		394.9	112,8	11.58	670.3		20.65	5.8		
19,100		235.6	62.1	6.08	421,7		14.88	5.3		0.3
10,000		159.3	50.7	5.50	248.6		5.77	0.5		
8,200		17.5	2,8	0.38	1,864.1		95.89	42.5		1.21
15,600		173.9	56.1	3.74	685.6		27.63	4.8		0,29
15,680	504,9	203,3	39.7	5,25	583,2		38.48	19.1	i	1.66
14,000		108.4	15.4	4,69	1,063.8		65.20	14.9		0.84
13,820	345.8	147.0	42. 1	3.87	640.1		49.45	5.6		0.43
14,020					1,705.5		63.27	20.0		0.62
6,800					981.7		38.87	13.1		0,50
7,220			 _		724.1		24,40	6.9	i	0,12
13,240		182.4	38.2	5.57	541.8		23.94	2.1		0.06
8,060	424.7	217.9	47.7	5.69	282.6		8.67	0.3		0.02
9,620		3.6	1.8	0.10	1,172.7		39.23	12.8		0.39
7,660		3.5	0.9	0.10	1,075.0		28.88	11.7	i	0.24
1,960		0,1	0.9	¬=	97.7		10.35	1.1		0,15
13,600	403.5	181.6	55.9	7.54	144.2		7.11	0.2		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
13, Lake Raccourci ((Gulf Coast)	1949	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,100, 14,800	25, 45
14. Gibson (Gulf Coast)	1937	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,600- 10,300	230
15. Verice (Gulf Coast)	1937	Seismic, Subsurface	Combination/ Faulted salt dome, Unconformity	Tertiary/ Miocene	Sandstone	2,300- 15,800	1,150
l6. Lake Pagie (Gulf Coast)	1958	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	12,100	200
17. Eayou Penchant (Gulf Coast)	1944	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	9,900- 13,700	365
18. Grand Bay * (Gulf Coast)	1938	Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	5,900- 10,500	290
19. Quarantine Bay (Gulf Coast)	1937	Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,100- 10,500	270
20. Chacahoula (Gulf Coast)	1938	Seepage, Seismic	Combination/ Faulted salt dome, Unconformity	Tertiary/ Miocene	Sandstone	4,200- 14,200	465
21. Lake Pelto* (Culf Coast)	1929	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	1,300- 12,400	310
22. Black Bay & West (Culf Coast)	1949	Seismic, Geophysics	Structural/ Anticline	Tertiary/ Miocene	Sandstone	7,100- 9,600	40
Class AA Fields							
23. Leguille (Gulf Coast)	1931	Seismic	Structural/ Salt dome	Tertiary/ Mioceme	Sandstone	3,000- 12,700	500
24. Valentine (Culf Coast)	1936	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandatone	3,800- 11,800	400
25. Golden Meadow (Gulf Coast)	1938	Seismic	Structural/ Salt dome, Fault	Tertiary/ Miocene	Sandstone	2,700- 10,900	365
26. Delta Farms (Gulf Coast)	1940	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,900- 10,300	270
27. Romere Pass (Gulf Coast)	1950	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ MIocene	Sandstone	6,500- 11,700	275
28. Lapsyrouse (Gulf Coast)	1941	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	16,000, 12,600	60,
29. Lake Palourde, East (Gulf Coast)	1954	Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,500 13,200	100, 30
30. Bay de Chene (Gulf Coast)	1941	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	10,700, 2,500	95, 75
31. Bully Comp (Gulf Coast)	1942	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,500	140

289 A.8b(CG-SELA)-2

Surface	(million	Crude	011 of Dec. 31,	1975)		Matural Gas	1975)	Natu (mill, bb	ral Cas Liquid Is as of Dec.	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 P r od.	Cum. Prod.	Demonst. Reserves	1975 Prod.
10,640		4.8	0.3	0.02	740.2	Reserves	51.95	22.9	RESCIVES	0.85
7,400		41.3	1.3	0.14	918.2		50.09	11.5		0.63
4,440		161.6	25.2	3.59	247.0		9.35	3.7		0.30
5,440		0.1	0.9	0.06	794.9		66.52	25.9		1.15
8,480		0.1			758.9		35.62	29.6		0.87
7,080		155.1	17.6	2.97	239.3		5.00	0.8		0.04
7,480	İ	152.2	20.8	2.89	215.7	:	6.34	0.3		*
7,020		23.3	1.1	0.39	587.5		29.79	7.8		0.50
8,260		103.9	12.3	3.43	309.8		24,38	3.C		0.31
5,960		106.6	66.0	6,48	126.7		2.06	0.7		0.01
11,400		127.8	12.5	2.61	215.2		7.95	0.8		0.03
9,100		31.5	3.1	0.51	700.0		22.43	16.0		0.37
12,700		117.1	17.7	1.92	201.9		16,19	4.7		0.54
6,200		110.7	5.1	0.73	292.9		3.81	4-4		0.08
4,660		82.1	17.9	1.80	300.3		21.93	1.9		0,16
7,560		1.1	0.6	0.06	477.8		18.83	8.5		0.27
4,880	:	17.8	1.4	0.25	631.0		31.55	12.2		0.32
9,200	207.2	80.2	17.5	4.82	147.6		17.02	1.6		0.44
5,780		57.2	46,1	3,67	174.3		7.22	1.5		0.02

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (fect)
32. Turtle Bayou (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,200	20
33. Pour Isle Dome (Gulf Coast)	1935	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,500- 12,100	145
34. Fordoche (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandatone	7,600- 10,400	65
35. Lake Salvador (Gulf Coast)	1940	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	9,900- 10,900	200
36. Good Hope (Gulf Coast)	1944 :	Seismic	Structural/ Faulte¢ anticline	Tertiary/ Miocene	Sandstone	7,600- 9,200	230
Class A Fields 37. Humphreys (Gulf Coast)	1956	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	12,500	60
38. Write Castle (Gulf Coast)	1929	Seismic	Structurs1/ Salt dome	Tertiary/ Miocene	Sandstone	5,100 - 6,500, 7,400 - 9,300	380, 145
39. Delta Duck Club (Gulf Coast)	1941	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,900- 10,700	295
40. Dog Lake (Gulf Coast)	1929	Seismic	Structural/ Salt done	Tertiary/ Miocene	Sandstone	6,500- 9,600	255
41. Bourg (Gulf Coast)	1952	Core-drill, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,600	130
42. Lake Boeuf (Gulf Coast)	1956	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	12,700, 9,500	60, 20
43. <i>Grandison</i> (Gulf Coast)	1953	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	13,000, 12,400	35, 20
a. <i>Coffee Bay</i> (B)	1953	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	13,000	35
b. Kings Ridge (C)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,400	20
c. Lake Enfermer (B)	1955	Seismic, Subsurface	Combination/ Faulted anticline, Facies change	Tertiary/ Miocene	Sandstone	13,000	30
44. Barataria (all) (Gulf Coast)	1939	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,600- 11,800	120
a. Barataria (B)	1939	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,600~ 11,500	120
b. Barataria, South (C)	1940	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	9,700- 11,800	65
c. Barataria, West (C)	1947	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	7,200- 11,400	90

Surface	(million	Crude ns bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Nat (mill. bb	Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
3,000					627.9		24,95	13.1		0.34	
6,060		2.3	4.4	0.08	351.6		15.49	9.9		0.37	
5,960		35.3	10.7	1.64	193.0		10.76	8.2		0 47	
2,880		76.4	7.6	1.21	130.1		4.76	1.2		0,06	
2,160	151.3	53.6	38.9	2.61	56.4		1.78	0.3		**	
1,420					118.2		28.09	1.8		0.42	
5,980		68.0	17.0	1.72	33.6		0.91	0.1		*	
3,020		49.5	8.5	1,52	114.0		3.58	0.4		0.07	
11,320		46.7	5.9	1.83	105.9		8.77	2.0		0.14	
3,400		*	0.1	0.01	437.9		2.51	4.5		0.01	
3,020		7.2	3.4	0.27	203.8	i	15.32	5.0		0.16	
7,440		2,3	3.6	0.35	326.8		. 7.88	7.5		0.12	
3,480		0.5	*	*	169.7		4.21	3.5	:	0.04	
1,800		1.3	0.2	0.03	64.8	i	2.09	2.0		0.07	
2,160	I	0.5	3.4	0.32	92.3		1.58	2.0		0.01	
4,180	:	43.6	1.0	0.31	139.1		3.05	1.5		0.03	
1,720		29.0	0.8	0.26	33.4	ļ	0.27	0.1			
1,780	ļ	0.2	*	*	80.6		2.64	1,2		0.02	
680	ĺ	14.4	0.2	0.05	25.1		0.14	0,2		0.01	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
5. Poin: a la Hache (Culf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,800, 10,200	30, 25
6. Cox Bay (Gulf Coast)	1950	Seismic. Geophysics	Structural/ Faulted anticline	Tertiary/ Mioceme	Sandstone	8,500- 10,200	80
7. Lake Verret, East (Gulf Coast)	1952	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,700	50
B. Lake Long (Gulf Coast)	1937	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	9,400- 10,400	100
9. Bayou Sorrel (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Miocens	Sandstone	7,100	80.
O. Clovelly (Gulf Coast)	1951	Geophysics, Seismic	Structural/ Salt dome	Terti ar y/ Miocene	Sandstone	10,400, 12,800	50, 50
l. Little Lake (Culf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,000, 9,900	30, 25
2. University (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	3,900- 8,200, 9,300	55, 130
3. Montegut (Gulf Coast)	1957	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,800	40
54. Potash (Gulf Coast)	1937	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	700- 11,700	460
55, Bayou Rambio- DeLarge (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	14,900, 13,500, 13,300	80, 60, 50
a. Bayou Rambio (B)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	14,900	80
b. SeLarge (C)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,500, 13,300	60, 50
56. Southeast Pass* (Gulf Coast)	1952	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,500~ 9,200	110
57. La Pice (Gulf Coast)	1939	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,800- 11,000	350
58. Tribodaux (Gulf Coast)	1954	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,600- 12,100	155
59. Delacroix Island (Gulf Coast)	1941	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	8,200	50
60. Gut Off (Gulf Coast)	1953	Seismic, Subsurface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	10,600	20
61. Sunriue (Gulf Coast)	1957	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,100	

Surface	(million:	Crude s bbls as	011 of Dec. 31,	1975)	(Bcf as	latural Gas of Dec. 31,	1975)	Nat (m111, bb	ural Gas Liqui ls as of Dec.	.ds 31, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
4,820		37.7	7.8	0.63	126.5		3.26	1.6		0.0
2,700	 - -	48.8	12.7	1.25	52.8		1.16	0.5		0.0
4,420		0.1		 	160.7		7.37	3.1		0.1
3,840		15.2	0.2	0.14	282.1		3.03	3.7		0.0
3,680		29.4	4.2	0.70	150.0		6.41	2.3		0.1
3,680		26.2	2.4	0.31	165.8		4.19	1.5		0.0
3,820		43.0	2.0	0.45	99.5		1.13	0.8		0.0
2,420		46.7	1.6	0.16	85.8		0.21	0.2		
2,400		3.0			175.7		15.87	2.6		0.19
3,100		21.4	12.8	1,33	109.6		3,65	1.0		0.03
2,360		0.2			222.7		4.82	3.5		0.02
900		*			108.1		3.70	1.0		0.02
1,460		0.2			114.6		1.12	2.5		*
4,240		22.2	3.2	0.78	121.6		8,59	1.0		0.03
2,520		35.7	4.3	1.57	46.2		0.76	0.4		*
6,440		*			227.8		2.56	9.9		0.05
1,960		17.7	0.2	0.09	120.2		16,30	1.6		0.30
4,800		28.1	9.8	1.13	64.2		2.49	0,5		0.02
2,360		*			135.2		4.42	0.6		0.01

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feat)	Reservoir Thickness (feet)
62. Black Bay, East (Gulf Coast)	1952	Seismic, Geophysics	Structural/ Anticline	Tertiary/ Miocene	Sandstone	7,300	20
63. Napoleonville (Gulf Coast)	1943	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,400- 9,700	180
64. Queen Ress Island * (Gulf Coast)	1945	Seismic	Structu ral / Faulted anticline	Tertiary/ Mioceme	Sandstone	13,900	35
Class B Fields							•
65. Rayou des Allemands (Gulf Coast)	1937	Seismíc	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,800- 10,400	345
66. St. Cabriel (Gulf Coast)	1941	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	7,700- 10,900	125
67. Oakley (Gulf Coast)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,100, 9,800	25, 15
68. Raceland (Gulf Coast)	1938	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	8,200- 10,000	160
69. Grand Bayou (Gulf Coast)	1968	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,100, 14,500	30, 20
70. Deer Island (Gulf Coast)	1942	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,000, 8,300	25, 20
71. Darrow (Gulf Coast)	1932	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	4,200	310
72. Lake Hatch (Gulf Coast)	1948	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	7,900, 12,000	25, 30
73. La Rose (Gulf Coast)	19,53	Seismic	Structural/ Faulted anticline	Tertiary/ Miccene	Sandstone	11,000, 12,200	20. 20
74. Bayou Bleu (Gulf Coast)	1929	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	1,200- 7,400	210
75. Chauvin, South (Gulf Coast)	1960	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,600	135
76. False River (Gulf Coast)	1975	Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	19,800	80
77. Halter Island (Gulf Coast)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,900, 9,500	35, 35
78. Kent Bayou (Gulf Coast)	1950	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,100	25
79. Boutte (Gulf Coast)	1953	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	10,200	100

Surface	(million	Crude s bbls as	0il of Dec. 31,	1975)	(Nof as	Natural Gas of Dec. 31,	, 1975)	Nat (mill. bb	ural Gas Liqui ls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,840		30.8	14.2	1.51	30.7		0.66	0,4		
5,440		15.0	2.1	0.29	144.1		4.57	2.0		0.02
7,760		*			163.0		21.15	1.2		0.09
4,300		33.2	5.2	0.81	43.7		0.73	0.6		*
3,440		32.6	0.6	0.10	74.5		1.50	1.6		0.06
2,840		1.4	0.3	0.07	205.5		11.12	3.3		0.08
4,100		20,8	0.3	0.25	129.5		0.72	1.8		*
2,040		0.1	0.1	0.03	53.0		8.78	1.0		0.21
3,260		2,9	0.1	0.09	175.3		6.18	3.2		0.13
4,540		29.6	5.4	2.11	35.0		1.76	0.4		0.06
4,820	1	15.3	12.6	1.53	58.8		2.33	1.0		0.02
3,280		17.6	1.9	0.23	115.7		3.30	2.2		0.05
3,160		30.8	5.1	0.79	17.1		1.61	*		0.01
2,240		2,9	0.6	0.09	146.2		2.94	4.9		0.09
2,500										
1,980		2.4	*	*	162.4		9,25	1.6		0.11
2,000		9.8	0.6	0.09	88.2		6.85	1.7		0,26
1,960		1.7			135.3		6.38	4.2		0.17

A.8b(CG-SELA)-6 296

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Rese Thic
80.	Hester-Vacherie (Gulf Coast)	1938	Geophysics, Seismic	Structural/ Salt come	Tertiary/ Miocene	Sandstone	3,300, 5,600- 11,100	
	a. Hester (C)	1938	Geophysics. Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,600- 11,100	
	b. Vacherie (C)	1938	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandatone	3,300	
81.	Roussegu (Gulf Coast)	1952	Seismic, Subsurface, Geophysics	Structural/ Anticline	Tertiary/ Miccene	Sandstone	13,000, 10,400	
82.	Bayou Choetaw (Gulf Coast)	1931	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	2,400- 8,500	3
83.	Bonnet Carre (Gulf Coast)	1958	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,100, 9,400	
84.	Black Bay, North (Gulf Coast)	1950	Geophysics, Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	6,900	
85.	College Point- St. James (Gulf Coast)	1944	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,600	
86.	Laurel Ridge (Gulf Coast)	1944	Seism1c	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,200	
87.	Coquille Bay (Gulf Coast)	1951	Seismic, Subsurface	Structural/ Faulted auticline	Tertiary/ Miocene	Sandstone	8,300- 12,000	1
88.	. Orange Grove (Culf Coast)	1953	Seismíc, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	10,600	
89.	Black Bay Southeast* (Gulf Coast)	1953	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	7,700	
90.	Burruoud [*] (Gulf Coast)	1955	Selsmic	Structural/ Faulted auticline	Tertiary/ Miocene	Sandstone	7,400, 10,600	
91.	Bayou Segnette (Gulf Coast)	1960	Subsurface, Geophysics	Combination/ Anticline, Facies change	Tertiary/ Miocene	Sandstone	9,200	1
92.	. Manilla Village (Gulf Coast)	1949	Şeismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,900, 10,200	1
<u>c1</u>	ass C Fields							
93	. Bayon Couba (Gulf Coast)	1942	Geophysics, Selsmic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	6,400	
94	. Sherburne (Gulf Coast)	1950	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,300	

297 A.8b(CG-SELA)-6

Surface	(million	Crude s bbls as	011 of Dec. 31,	1975)		etural Gas of Dec. 31,	, 1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
2,700		2.5	0.7	0.05	98.5		1.44	0.9		0.01
700		0.1	0.6	0.03	65.2			0.6		- -
2,000		2,4	0.1	0.02	33.3		1.44	0.3		0.01
3,400			- -		115.5		4.00	3.3		0.14
2,640		27.4	2.1	0.43	25,6		0.38	0.1		*
900		20.4	9.9	1.24	18.4		1.31	0.1		
5,360		16.9	14.1	1.23	5.5	:	0.37	*		
3,160		1.2	0.8		143.5		3.41	2.4		0.04
3,240		2.6	2.0	0.04	140.4		0.93	2.4		0.01
2,600		11.0	1.8	0.23	66.4		2.44	0,8		0.05
1,760		5.3	0.3	0.09	34.7		7.49	0.5		0.13
980		14.7	9.9	1.31	12.8		0.41	0.2		
2,600		16.6	4.4	0.45	21.6		0,71	*		
1,300		9.4	4.6	0.45	6.3		1.84	*		
3,320	:	8.6	2.7	0.31	55.3		1.80	1.1		0.03
3,880		17.7	1.4	0,27	27.5	:	0.49	0.5		0.01
1,860		*			89.6		4.94	1.7		0.06
1,860		*			89.6		4.94	1.7		

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
95. Fointe ou Fer (Gulf Coast)	1941	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	11,900, 5,600- 6,700	20, 35
96. Bayou des Glaises (Gulf Coast)	1940	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandatone	9,800, 10,400	75, 90
97. Saturday Teland [*] (Gulf Coast)	195 7	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,700	135
98. Angie (also MS) (Gulf Coast)	1951 (1948)	Subsurface, Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandatone	8,900	25
99. Sullivan'e Lake (Gulf Coast)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandatone	11,000	20
00. Avondale (Gulf Coast)	1949	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Miocens	Sandstone	5,400	30
Ol. Empire (Gulf Coast)	1959	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,600	30
)2. Chauvin (Gulf Coast)	1957	Seismic	Structural/ Faulsed anticline	Tertiary/ Miocene	Sandstone	11,300	35
03. <i>Bayou Henry</i> (Gulf Coast)	1964	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,500	10
04. Crescent Parms (Gulf Coast)	1954	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,500, 12,500	25, 30
D5. Lake des Allemands (Gulf Coast)	1955	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,800, 9,700	20, 10
)6. Bayou St. Vincent (Gulf Coast)	1964	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	15,000	110
07. Eayou Jean LaCroix (Gulf Coast)	1951	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,200	15
08. Little Temple (Gulf Coast)	1946	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,600	30
09. Bayou de Fleur (Gu lf C oast)	1946	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	9,400, 10,500	20, 20
10. Lake Boudreout (Gulf Coast)	1971	Seismic, Subsurface	Structural/ Faulted anticline	Tertiaty/ Miocene	Sandstone	12,600	90
ll. Stella (Gulf Coast)	1940	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	6,300- 11,600	70
12. Coteau Frene (Gulf Coast)	1965	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,400	100

06	(million	Crude s bbls as	011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Surface Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
3,840		4.7	3,8	0.09	70.5		4.25	0.5		0.0:
3,000		12.3	0.5	0,12	44.7		1.95	0.2		0.0
1,780		14.1	0.9	0.19	38.0		0.89	0.2		0.0
2,240					8.0			0.1		
1,920		*			93.5		0.29	4.5		0.0
1,180		16.2	1.8	0.29	12.3		0.22	*		
1,320		9.4	3.6	0.32	27.2		0.61	0.6		0.0
1,120		0.1			89.0		1,23	1.3		0.0
1,360		8.3	6.4	0,68	17.7		0.87	0.1		
2,520		*			84.2		1.26	2.1		0.0
1,640		0.5	*	0.01	59.4		2.35	1.3		0.0
1,240					37.8		-4.96	1.2		0.0
2,740		6.2	0.7	0.20	48.3		0.35	1.3		0.0
1,700		12.0	0.5	0.16	19.5		0.56	0.2		0.0
1,360		7,9	1.0	0.11	38.7		0,73	0.8		0.0
760					14.7		5.86	0.2		0.0
1,660		9.9	0.6	0.08	30.7		0.63	0.8	:	0.0
1,360		0.1			44.7		4.45	1.0		0.4
	İ	:								

	 					1	1
Fi.eld	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
113. St. John (Gulf Coast)	1957	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	15,200	75
114. Burtville (Gulf Coast)	1950	Geophysics, Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,700, 10,800	50. 40
il). Bayou fer Blanc (Gulf Coast)	1959	Seismic, Subsurface	Structural/ Faulted anticline	fertiary/ Miccene	Sandstone	13,600	20
ll6. Bayou Willars (Gulf Coast)	1955	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,800, 9,000	20, 20
117. St. Amelia (Gulf Coast)	1966	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,700, 13,200	40, 25
118. Sorrento (Gulf Coast)	1929	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	900, 6,200	30, 40
119. Lake Hermitage (Gulf Coast)	1934	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,100- 14,900	655
120. Sunshine (Culf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,400	10
121. Howma, South (Gulf Coast)	1938	Seisπic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	9,700	20
122. La Place (Gulf Coast)	1939	Seismic	Structural/ Faulted nose	Tertiary/ Miocene	Sandstone	8,100	90
123. <i>Melodia</i> (Gulf Coast)	1958	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,900	50
124. <i>Pierre Pass</i> (Golf Coast)	1960	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	13,900	30
125. Lafourche Crossing (Gulf Coast)	1939	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	9,600	60
126. Rigolets (Gulf Coast)	1975	Seismic	Structural/ Anticline	Cretaceous/ Culf	Sandstone	14,700	50
127. Thibodaux, North (Gulf Coast)	1954	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,900	25
128. Manchae Point (Gulf Coast)	1967	Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,000	15
129. Delta Farms, West (Gulf Coast)	1952	Subsurface, Seismic	Structural/ Faulted anticline	Tertlary/ Miocene	Sandatone	9,000	60
130. Ponchartrain Block 41 West (Gulf Coast)	1956	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,800	20

aLease condensate only.

Partially offshore.

Surface	(million	Crude as bbls as	0il of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natu (mill, bbl	ral Gas Liqu s as of Dec.	ids 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Pro J .	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,000					72.6		1.65	3.4		0.03
1,060		8.3	0,4	0.03	29.2		0.24	0.7		*
1,620	•	5.7	1.9	0.17	18.8		1.61	0.3		0,06
520		11.5	2.2	0.31	8.0		0.18	****		
2,260		*	*	*	51.3		2.84	1.8	!	0.04
2,040		3.7	0.4	0.09	51.7		2.30	0.4		0.02
1,770		4.0	0.3	0.15	27.8		0.20	C.5		*
2,720		7.5	0.1	*	28.7		0.14	0.3		*
1,360		3.0	0.9	0.09	45.2		0.11	0.6		
960		0.6	0.1	0.01	62.1		0,23	0.8	·	*
840					34.9		2.17	1.1	0.2	0.03
1,040		0.2			46.3		0.62	1.3		0.01
1,680		1.5			45.1		0.70	1.0		*
1,920										
1,560				 	42.1		0.44	0.9		0.02
900		4.8	4.2	0.52	3.6		0.48			
1,340		4-7	*	0.04	26.6		0.02	0.6		
920				ļ !	24.6		0.10	*		

Table A.8c
THE SIGNIFICANT OIL AND GAS FIELDS OF SOUTHWESTERN LOUISIANA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1. Hateman Like (Gulf Coast)	1937	Geophysics, Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	8,600- 10,900	220
2. Bayou Sale (Gulf Coast)	1937	Se is míc	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,600 10,700, 14,300	210, 390
a. Bayou Sale (AAAA)	1941	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,600- 10,700, 14,300	210, 390
b. Horseshoe Bayou (A)	1937	Seismic, Geophysics	Structural/ Faulted nose	Tertiary/ Miocene	Sandstone	9,900- 11,200	300
Class AAA Fields							
3. Lake Arthur (Gulf Coast)	1937	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	12,000, 12,600	200, 200
4. Pecan Island (Gulf Coast)	1943	: Setsmic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	10,800, 10,300, 7,500	50, 40, 35
5. Duck Lake (Gulf Coast)	1949	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,900- 12,800	250
6. Carden City (Gulf Coast)	1956	Subsurface, Selsmic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	15,600, 15,000	75, 70
7. Erath (Gulf Coast)	1940	Seismic, Geophysics	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	7,000- 11,600	240
8. Weeks Island (Gulf Coast)	1945	Surface, Subsurface	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	2,400- 17,300	1,000
9. Patterson (Gulf Coast)	19 51	Seismic	Combination/ Fault, Facies change	Tertiary/ Miocene	Sandstone	16,000, 16,500	135, 100
10. Cote Blancke Bay, West ** (Gulf Coast)	1940	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	2,000- 11,800	135
11. Belle Isle * (Gulf Coast)	1941	Surface	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	8,200, 15,000, 12,300	180, 160, 90
12. Rayne (Gulf Coast)	1953	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	10,700, 12,600	420. 70
13. Krots Springs (Gulf Coast)	1942	Geophysics, Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Oligocene, Eocane	Sandstone	9,300, 10,400	65, 45
14. Deep Lake (Gulf Coast)	1952	Seismic	Structural/ Faulted anticline	Tertiary/)Mocene	Sandstone	10,900, 11,200, 6,900	

Surface	(million	Crue	de Gil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	. 1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
13,900		45.7	2.5	0.92	1,277.3		127.22	17.1	:	1.17
16,420		174.5	14.6	2.85	1,795.9		72.59	24.0		0.63
12,600		147.7	13,8	2,56	1,662.8		62.91	22.1		0.53
3,820		26.8	0.8	0.29	133.1		9.68	1.9		0.10
9,840		3.9	0,6	*	1,804.9		47.19	25.3		0.42
4,580					734.2		123.32	7.2		1.48
5,980		54.8	5.7	0.63	1,237.7		12.75	14.4	 	0.15
5,440		2.3	0.7	0.09	1,149.5		63.47	13.3		0.74
5,960		65.1	4.8	0.78	1,171.2		40.54	35.4		0.41
6,220		203.6	19.3	4.51	471.4		4.59	13.2		0:03
6,740		12.8	0,1	0.01	781.7		36.43	10.9		0.30
24,160		154.1	62.3	7.53	187.3		9.13	0.6		0.04
5,780		16.3	2.8	0.24	788.7		41.10	12.8		0.38
4,960		0,6	*	0.01	807.3		27.49	29.7		0.64
4,600		0,5	0.9	0.06	676.5		22.88	37.1		0.70
5,960				<u></u>	843.5		21.96	11.0		0.32
		: ! 								

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thickness (feet)
15. Lake Sand (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,000	130
Class AA Fields						ĺ	
16. ICWC (Gulf Coast)	1936	Seismic	Structural/ Salt dome	Tertiary/ Miocene, Oligocene	Sandatone	4,400- 5,200, 6,600	400, 435
17. Thornwell, South (Gulf Coast)	1942 i	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene. Miocene	Sandstone	14,100, 11,500	150, 90
18. Crowley, North (Gulf Coast)	1937	Seismic	Structural/ Salt dome	Tertiary/ Miocene, Oligocene	Sandstone	4,900- 8,100	100
19. Eackberry, West (Gulf Coast)	1928	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,100- 7,300, 7,700- 9,800	890, 665
20. Vinton (Gulf Coast)	1910	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene, Oligocene	Sandstone	1,500- 5,100	350
21. Jeanerette (Gulf Coast)	1935	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene, Pliocene	Sandstone	5,000- 11,900	410
22. Mud Lake, East (Gulf Coast)	1947	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,400, 12,000, 10,800	155, 150, 105
23. Live Oak (Gulf Coast)	1954	Seismic, Subsurface, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,200	165
24. Ville Platte (Gulf Coast)	1937	Seismic	Structural/ Faulted sait dome	Tertiary/ Eocene	Sandstone	9,900,	140, 60
25. Lac Blanc (Gulf Coast)	1957	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	14,800, 12,700	55, 25
26. Midland (Gulf Coast)	1949	Seismlc, Subsurface	Structural/ Faulted anticline	Tertiary/ Mincene, Oligocene	Sandstone	9,600, 11,900, 11,800	195, 55, 30
27. Cote Bignohe Island (Gulf Coast)	1948	Subsurface, Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,200, 15,300, 13,300	95, 70, 60
28. Lake Verret, West (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Mioceme	Sandstone	8,000, 1,300, 4,200	90, 80, 80
29. Pecan Lake, South (Gulf Coast)	1951	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,500- 12,900	500
30. Jennings (Gulf Coast)	1901	Surface, Seepage	Structural/ Salt dome	Tertiary/ Pliocene, Miocene	Sandstone	2,700, 1,300, 5,400	1,120, 900, 500
31. Hackberry, Fast (Gulf Coast)	1926	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	3,000- 7,600, 8,100- 10,800	1,320, 230

Surface	(million		de 011 of Dec. 31,	1975)	(Bof as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bb)s as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
6,880		0.7			840.3		37.40	17,4		0.5	
5,540		93.3	2.9	0.76	491.7		1.14	13.6		0.0	
6,960		*			611.3		24.13	13.5		0.2	
5,300		43.1	7.2	0.67	502.0		20.53	10.8		0.2	
6,300		119.9	14.5	2.22	109.0		3.00	0.1		0.0	
7,020		125.7	12.2	2.71	42.7		1.59	3.1	ļ	0.0	
5,380		39.6	1.7	0.27	412.4		15.19	5.2		0.1	
2,040		0.1			550.6		14.58	4.9	!	0.1	
3,740		2.0	0.3	0.03	561.9		14.46	10.1		0.1	
6,540		56.9	2.6	0.25	401.0		1,21	3.9		0.0	
4,680		0.3			336.0		15.42	6.2		0.3	
B,460		0.7	0.2	0.02	467.0		8.60	12.9		0.2	
4,400	•	81.5	7.1	3.26	178.9		18.12	2.0		0.1	
5,780		59.0	11.6	2.31	270.7		4.52	3.9		0.0	
4,580		1.0	*	0.03	562.2		11.59	5.8		0.0	
3,760		111.8	3.6	0.28	46.9		0.08	0.1			
5,100		95.0	13.7	1.55	67.1		0.79	0.1		*	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
2. Egan (Gulf Coast)	1943	Subsurface, Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,600, 10,100	25, 20
3. Theria (Gulf Coast)	1917	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene, Pliocene	Sandstone	800- 11,000	400
4. Bosco & South (Gulf Coast)	1934	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	5,900, 7,800	195. 150
5. Lauson (Gulf Coast)	1963	Seismic, Subsurface	Combination/ Fault, Permeability pinchout	Tertiary/ Oligocene	Sandstone	11,500, 16,700	55, 60
66. Avery Teland (Gulf Coast)	1942	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	9,500, 15,600	810. 350
7. Tigre Lagoon (Gulf Coast)	1947	Surface, Seismic	Structural/ Faulted anticline	Tertlary/ Miocene	Sandstone	10,600	140
98. Shuteston (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,800- 10,900	190
lass A Fields							
9. Maxie-Ellis (Gulf Coast)	1950	Seismic	Structural/ Faulted anticline	Tertiary/ Miccene, Oligocene	Sandstone	10,000- 12,000	165
40. Welsh (Gulf Coast)	1903	Surface, Seepage	Structural/ Faulted salt dome	Tertiary/ Pliocene, Miocene	Sandstone	1,100, 8,900	200, 100
1. Freshwater Bayou, North (Gulf Coast)	1958	Subsurface, Seismic	Structural/ Faulted anticline	Tertisry/ Miocene	Sandstone	14,900, 13,300	180, 75
i2. Chalkley (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,500, 8,900	65, 30
43. Jennings, South (Gulf Coast)	1936	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,500- 12,600, 8,100- 9,000	110, 95
44. Duson (Gulf Coast)	1947	Selsmic	Structural/ Faulted auticline	Tertiary/ Miocene, Oligocene	Sandstone	9,900, 11,100	35, 30
45. Anse La Butte (Gulf Coast)	1902	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene, Pliocene	Sandstone	3,600, 9,200, 600	520, 350, 720
46. Mud Lake- Second Bayou (Gulf Coast)	1945	Seismic	Structural/ Faulted anticline	Tertiary/ Miccene	Sandstone	12,500	200
47. Sweet Bay Lake (Gulf Coest)	1953	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	10,700	105
48. Tepetate, North (Gulf Coast)	1938	Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,800, 9,000	50, 35

Surface	(million		de 011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Gum. Prod.	Demonst. Reserves	1975 Prod.
5,540		40.1	2.5	0.21	286.2		1.85	4.2		0.10
2,960		76.0	19.3	3.23	36.7		1.99	0.2		0.01
4,800		47.1	1.4	0.26	246.0		15,02	3.6		0.30
4,120		1.0	*	*	275.7		12.56	2.9		0.08
1,920		79.0	7,4	0.79	82.4		3.18	1.0	 	0.11
5,200		11.7	2.3	0,50	460.I		5.60	9.3		0.08
7,980		5.4	0.4	0,03	483.1		3.26	9.5		0.03
7,000		7.7	0.7	0.07	306.2		3.69	7.4		0.05
3,420		19.8	6.0	0.75	114.1		2.77	1.4		0.03
3,340		*	i 	<u> </u>	339.8		24.90	6.7		0.45
2,900		13.7	0.5	0.05	312.6		7.30	2.4		0.06
3,640		1.1	*	0.01	369.0		14.07	9,2		0.04
5,860		0.3	0.2	0.07	335,1		21.32	5.0		0.20
3,440		66.1	6.3	1.04	49.5		1,40	0.4		0.01
4,660		0.2			249.5		7.88	2.0		0.04
3,660		18.1	1.2	0.60	145.8		13,97	2.6	İ	0.15
4,340		8.5	1.3	0.10	347.3		0.86	5.7		0.06
							•			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(4)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoin Thickness (feet)
49. White Lake, West (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,800, 7,300	35, 20
50. Gillis-English Bayou (Gulf Coast)	1934	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	5,100- 8,000	300
51, Abbeville (Gulf Coast)	1937	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandatone	6,300- 11,000	355
52. Bayou Long (Gulf Cosst)	1953	Seiemic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,900, 12,400, 12,200	10, 10, 20
53. Bayou Pigeon (Gulf Coast)	1940	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,200, 8,100	220, 45
54. Section 28 (Gulf Coast)	1940	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocens	Sandstone	9,300- 11,300	145
55. Tepetate (Gulf Coast)	1935	Seismic, Geophysics	Structural/ Anticline	Tertiary/ Miocene, Oligocene	Sandstone	8,300, 9,100	65, 43
56. Cameron (Gulf Coast)	1952	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,300	485
57. Heddell (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	9,900, 9,600	65, 40
58. Feorm Lake (Gulf Coast)	1941	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,200- 11,700	390
59. Port Barre (Gulf Coast)	1929	Seismic	Structural/ Salt dome	Tertiary/ Miocene, Oligocene	Sandstone	3,100	400
60. Charenton (Gulf Coast)	1936	Seismic, Geophysics, Seepage	Structural/ Salt dome	Tertiary/ Miocene, Pliocene	Sandstone	2,500- 9,900, 1,000- 2,100	350
61. Gueydan, West (Gulf Coast)	1938	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,700- 10,000	65
62. Black Bayou (Gulf Coast)	1929	Surface, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	4,200	245
63. White Lake, East (Gulf Coast)	1940	Seiamic	Structural/ Anticline	Tertlary/ Miocene	Sandstone	6,000- 10,500	205
64. Fausse Point (Gulf Coast)	1926	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,300- 8,700, 5,000	
65. Grand Lake (Gulf Coast)	1939	Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	8,300- 8,900	
66. Lewisburg, South (Gulf Coast)	1943	Seismic, Ceophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,200 10,700	

309 A.8c(CG-SWLA)-4

Surface	_(million		de Dil of Dec. 31,	. 1975)	(Bcf as	Matural Gas of Dec. 31,	, 1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,920		15.8	3.3	0.78	289.0		7.05	4.7	:	0.16
5,820		30.9	1,9	0.19	172.7	[0.89	8.2		0.5
3,840		10.3	2.9	0.41	202,1		9.55	2.7		0.00
5,880		4.3	0.2	0.07	221.4		2.85	3.9		0.0
5,040		12.7	2.4	0.46	266.9		7.86	5.0		0.1
3,840		29.0	7.4	0.60	133.3		2.45	1.2		0,0
2,720		28.5	3.8	0.39	160.6		1.60	1.6		0.0
1,940		2.1	0.5	0.19	267.5		4.63	5.2		0.1
4,540		0.7	0,5	0.05	149.6		10.39	6.7	1	0.4
2,380					298.1		6,15	3.1		0.0
6,480		42.6	9.5	1.19	51.3		2.02	1.3		c.o
4,440		51.0	4.3	0.48	40.9		0.54	0.6		
3,380		10.7	2.0	0.15	191.8		9.99	3.7		0.1
2,500		45.9	8.5	1,28	26,2		0.16	1.0		
2,220		43.3	11.1	1.50	66.4		1.02	0.5		*
2,840		33.9	5.1	1.61	82.2		10.51	1.2		0.1
6,160		29.6	7.1	0.56	88.7		3.56	0.8		0.0
1,600		0.7			135.2		1.00	3.1		*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(8)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
67. Cameron Meadowe (Gulf Coast)	1931	Seepage, Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	3,100- 7,600, 8,500	290, 200
68. Opelousas (Gulf Coast)	1950	Seismic, Subsurface	Structural/ Faulted salt dome	Tertiary/ Eocene, Oligocene	Sandstone	11,300, 10,400, 10,100	30, 20, 15
69. Lake Chicot (Gulf Coast)	1941	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandatone	8,100, 11,200	30, 35
70. Simon Pass (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	14,000	70
71. Holmwood- Manchester, South (Gulf Coast)	1947	Seismic	Combination/ Faulted anti- cline, Poros- ity-permea- bility pinchout	Tertiary/ Oligocene, Miocene	Sandetone	13,200, 10,800	25, 115
72. Bayou Bouillion (Gulf Coast)	1902	Seepage	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	2,200- 7,500, 8,500- 12,000	160, 105
73. Crowley (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertlary/ Miocene, Oligocene	Sandstone	1,700, 11,100, 11,800	100, 20, 30
74. <i>Lakeside</i> (Gulf Coast)	1941	Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	10,000, 13,700	70, 40
75. Church Point (Gulf Coast)	1952	Seismic	Structural/ Faulted enticline	Tertiary/ Miocene	Sandstone	9,400	285
76. Lake Misere, South (Gulf Coast)	1966	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,200	180
77. Pine Prairie (Gulf Coast)	1912	Surface	Structural/ Salt dome	Tertiary/ Encene	Saudstone	8,700- 9,900, 10,200	235. 380
Class B Fields			1				
78. Bayou Mallet (Gulf Coast)	1936	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	8,600, 6,400, 7,200	
79. King'e Bayou (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Faulted nose	Tertiary/ Miocene	Sandstone	11,100, 12,600	55, 30
80. Bayou Postillion, East (Gulf Coast)	1968	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,900	310
81. Cankton & North (Gulf Coast)	1936	Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	1,300, 8,900	45, 40
82. Maurice (Gulf Coast)	1956	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	14,700, 11,400	50, 15

Surface	(million	Crude s bbls as	0f1 of Dec. 31,	19 <u>7</u> 5)		Natural Gas of Dec. 31,	1975)	Natur (mill. bb)	ral Gas Liquids Is as of Dec. 1	31, 1975)
Area (acres)	În Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,200		15.8	7.1	0.62	147.3	RESERVES	3.11	4.5		0.05
11,940		10.9	1.7	0.10	176.8		5.95	12.7		0.12
3,460		38.8	4.1	1.39	75.8		1.85	1.7		0.12
1,780		0.8	0,2	0.08	136.7		8.73	5.2		0,29
5,860		9.0	0.5	0.10	155.9		3,19	8.1		0.29
2,060		17.2	8.3	1.61	89.1		6.96	1.9		0.11
5,300		6.6	2.2	0.15	179.0		15.40	1.6		0.11
3,900		0.4			254.7		3.79	4.3		0.10
6,460		*			261.0		2.16	7.8		0.07
4,960		*			245.1		15,22	0.9		0.04
3,620		28.0	4.1	0.38	65,3		2.13	0.1		0.03
3,140		11.8	1.9	0.17	177,3		1.17	3.8		0.02
3,120					153.5		8.04	1.9		0.13
2,800					41.7		19.58	0.9		0.37
4,080		17.7	1.6	0.12	134.7		1,01	2.0		0.01
3,280		0.1	0.2	0.05	133.6		7.49	3.4		0.18
]					

	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
83.	St. Martinville (Gulf Coast)	1935	Surface, Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miccene	Sandstone	4,700- 10,000	100
84.	Johnson Bayou (Guif Coast)	1946	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	5,500~ 8,300	220
85.	Red Fish Point ** (Gulf Coast)	1959	Subsurface, Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	15,200	165
86.	Bayou Carlin (Gulf Coest)	1945	Selemic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,600, 12,500	30, 30
87.	Washington (Gulf Coast)	1951	Seismic, Subsurface	Combination/ Faulted anticline, Pacies change	Tertiary/ Eocene, Miocene	Sands tone	9,300, 7,800	25, 20
88.	Gueydan (Gulf Coast)	1932	Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene, Oligocene	Sandstone	7,600- 9,700, 16,300	145, 90
89.	Roanoke (Gulf Coast)	1934	Geophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,300- 8,800	360
90.	Kala (Gulf Coast)	1939	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,400, 6,400	70, 20
91.	Lockport (Gulf Coast)	1924	Seepage, Surface	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	6,100- 9,400, 1,000- 6,000	220, 170
92.	Elton, North (Gulf Coast)	1939	Surface, Geophysics, Scismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	7,300, 8,200, 7,400	25, 15, 10
93.	Little Pengn Lake (Gulf Coast)	1952	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandscone	14,500, 12,500	60, 45
94.	Perry Point (Gulf Coast)	1958	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	9,700, 10,100	35, 5
95.	Suget take (Gulf Coast)	1925	Seepage, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	4,500- 7,300	350
96.	Phoenix Lake (also TX3) (Gulf Coast)	1950 	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	7,600, 8,500, 8,000	100, 30, 20
97.	Lenrisburg (Gulf Coast)	1941	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,100- 10,200	40
98.	Hages (Gulf Coast)	1942	Geophysics	Structural/ Faulted anticline	Tertlary/ Miccene	Sandstone	11,800	345
99.	Orand Chemier (Gulf Coast)	1947	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,500, 11,200	60, 45

313 A.8c(CG-SWLA)-6

Surface	(millions	Crude s bbls as	Oil of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)		al Gas Liquids s as of Dec. 3	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 P r od.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,020		11.1	3.5	0.57	151.2		2.18	1.5		0.01
2,480		15.6	1.8	0.63	117.9		2,61	3.9		0.16
2,160		2.6	2.8	0.24	142.0		7,93	4.1		0,15
3,440		1.5	*	*	139.2		10.84	2.9		0.24
9,360		6.8	2.6	0.38	125.1		1.34	8.9		0.02
2,080		31.8	1.6	0.41	44.9		0.46	0.5		*
2.720		22.8	0.6	0.10	97.3		1,03	1.1		0.02
2,860		32.2	1.1	0.16	42.2		0.06	0.1		*
3,460		30.9	1.5	0.26.	40.3		0.58	0.8		0.01
3,800		*			192.6		1.17	4.2		0.01
4,680		0.5	0.1	0.02	143.9		10.38	2.3		0.14
2,680		7.3	2.0	0.21	55.8		7.28	2.1		0.37
3,000		32.2	2.6	0.74	13.2		0.32	*		
1,880		22.1	1.0	0,27	36.9		0.42	1.0		0.03
2,680		0.1	 		168.9		3.48	3.1		0,03
2,480		*			171.1	:	2.64	3.5		0.03
2,160		0,7	0.3	0.02	136.9		5.70	2.8		0.18
			ļ							

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thicknes: (feet)
.00. Bayes Postillion (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	11,800	40
01. Neale (Gulf Coast)	1940	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,400- 11,600	170
.02. Tepetrite, Wast (Gulf Coast)	1944	Geophysics, Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	9,200, 8,500	30, 20
.03. Osswn, North (Gulf Coast)	1958	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,600	25
.04, Sulphur Mines (Gulf Coast)	1926	Seepage	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	2,600- 6,900	620
LOS. Vermilion Bay (Gulf Coast)	1938	Seismic, Geophysics	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	10,200, 9,300	75, 50
.06, Big Lake (Gulf Coast)	1935	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	8,600, 13,400	35, 40
107. Jennings Townsite (Gulf Coast)	1974	Seismic. Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,600, 10,900	150, 10
LOB. Buck Point (Gulf Coast)	1958	Şeismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	14,000, 13,800, 14,600	
LO9, Lake Wongoulots (Gulf Coast)	1938	Ceophysics, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	10,400- 12,200	160
llo, Woodlawn (Gulf Coast)	1938	Geophysics, Seismic	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	8,000, 10,600	30, 15
lll. Fresh Water Bayou (Guli Coast)	1942	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,500	65
112. Gueydan, Scutheast (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,900	. 85
113. Lake Arthur, South (Gulf Coast)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene, Miocene	Sandstone	12,900- 13,200 10,600	
114. Leleur (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	15,600 16,100	, 50, 25
ll5. Franklin (Gulf Goast)	1953	Seismic, Subsurface	Structural/ Faulted nose	Tertiary/ Miocene, Oligocene	Sandstone	10,200 15,400 11,100	
ll6. Jefferson Island (Gulf Coast)	1938	Surface, Seismic	Structural/ Salt dome	Tertiary/ Miocene	Sandstone	7,600- 8,700 10,100	85
117. Bayou Millet, South (Gulf Coast)	1945	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	4,500 8,500	

urface	(million	Crude s bbls as c	0il of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)	Natur (mill. bb)	ral Gas Liquids ls as of Dec. 1	; 31, 1975)
urrace Area acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Çum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
2,740		1.1	0.7	0.12	76.2		7.94	0.9		0.06
3,900		20.6	0.2	0.10	64.3		0.12	*		
1,660		22.1	0,2	0.08	56.7		0.16	0.5		
1,400			~~		103.8		0.56	11.6		0.05
820		28,5	2.9	0.12	3.3		0.11	*		*
2,380		1.3			54.3		2,68	0.3		0.01
4,700		9.9	1.3	0.12	92.0		1.39	1.9		0.03
8,200		0.7	19.3	0.66	11.2		9.27	0,1		0,06
2,900					143.2		7.89	4.2		0.15
1,480		18.0	5.8	0.09	56.8		0.69	0.4		*
2,260		12.2	8,0	0.15	79.4		0,51	1.5		0.03
2,900		0.1			155.9		1.64	2.3	i i	0.00
2,140					75.4		8.06	1.8		0,2
1,520					87.1		13.41	1.7		0.2
6,340		0.2			134.0		5.62	2,2		0.1
1,440		12.3	1.7	0.31	53.8		1.23	0.5		0.0
1,620		6.4	1.2	0.12	57.0		2.26	0.2		0.0
3,540		9,2	5.1	0.49	34.5		0.75	1.2		*

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thicknes: (feet)
118. Branch (Gulf Coast)	1942	Seismic, Geophysics	Structural/ Anticline	Tertiary/ Miocene	Sandstone	10,400, 12,000	100, 75
119. Edgerly (Gulf Coast)	1912	Surface, Seepage	Structural/ Salt dome	Tertiary/ Miocene, Pliocene	Sandstone	2,700- 8,500, 1,500	145, 25
120. kaplan (Gulf Coast)	1947	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	21,200	70
121. Mancheater, West (Gulf Coast)	1968	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,200	5
122. Xinder (Gulf Coast)	1953	Seismic	Combination/ Facies change, Faulted anticline	Tertiary/ Miocene	Sandstone	7,700, 6,500	25, 20
Class C Fields							
123. Mermentau, Weet (Gulf Coast)	1940	Surface, Subsurface	Structural/ Faulted anticline	Tertlary/ Miocene	Sandstone	9,400, 8,200	35, 30
124. Plumb Bob (Gulf Coast)	1939	Seismic	Structurai/ Salt dome	Tertiary/ Miocene	Sandstone	10,000, 9,100	55 , 50
125. Win Island (Gulf Coast)	1966	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	i 11,400	35
126. Branch, Northwest (Gulf Coast)	1951	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,800, 11,100	40, 30
127. <i>Clear Cree</i> k (Gulf Coast)	1953	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,900	20
128. Moss Lake, East (Gulf Coast)	1944	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ 01igocene	Sandstone	8,600- 10,400	70
129. Mystic Bayou (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	11,800, 15,600	40. 50
130. Lake IARose (Gulf Coast)	1958	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,600	25
131. Riceville (Gulf Coast)	1950	Seismic, Geophysics	Structural/ Faulted anticline	Tertiary/ Oligocene, Miocene	Sandstone	15,000, 14,700	100, 25
132. Wywndotte (Golf Coast)	1969	Subsurface	Structural/ Fault	Tertiary/ Miocene	Sandstone	15,700, 15,800	45, 30
133. Son Air (Culf Coast)	19 45	Seismic	Structural/ Anticline	Tertlary/ Oligocene, Miocene	Sandstone	10,700, 10,200	15, 15
134. Lake Arthur, Southwest (Gulf Coast)	1963	Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Tertiaxy/ Miocene	Sandstone	10,800	15
135. Bayou Crook Chene (Culf Coast)	1956	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	12,900	40

	(million	Crude s bbls as c		1975)		Natural Gas of Dec. 31,	1975)	Natura (mill. bbls	1 Gas Liquid as of Dec.	s 31, 1975)
Surface Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst.	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,060	7 2800	*	*	*	112.2	, neser vea	0.23	3.2	NEGETYEE	0.01
3,600		15.1	1.7	0.16	49.1		1.62	0.6		0.01
1,540		*	0.8		43.1		3.77	0.9		0.09
1,120		- 			85.5		8.70	1.6		0.16
1,340		11.4	1.6	0.26	56.7		1.32	1.2		0.03
1,760		0.1			100.4		3.49	1.5		0.05
3,040		15.3	2.9	0.32	20.3		0.82	*		
2,060		0.4	*	0.02	89.3		3,25	1.2		0.34
2,200		*			100.5		0.63	5,0		0.01
2,720		14.0	1.3	0.25	35.6		0.31	0.1		0.01
2,540		3.8	*	0.02	77.2		2.01	2.6		0.05
1,600					50.0			0.9		
1,280					62.0		4.71	2.6		0.16
1,720		0,2	*	0.01	74.1		2.51	3.1		0.09
1,260				 I	38.8		3.97	1.2		0.15
820		6,9	1.7	0.04	39.7		1.80	1.4		0.07
4,240		0.2	*	*	91.1		3.36	1.3		0.02
960		1.1			23.8		2.33	4.4		0.56

Field	Year Dis-	Discovery Method(s)	Type of Trap(8)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
36. Ridge (Gulf Coast)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene, Oligocene	Sandstone	11,000, 10,100, 12,200	65, 45, 25
(Gulf Coast)	1956	Seismic	Structural/ Faulted anticline	Tertiary/ Miccene	Sandstone	11,600, 11,800	40, 20
138. Grosse Isle (Gulf Coast)	1958	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocese	Sandstone	14,700, 14,400	20, 15
139. Grand Chenier, South (Gulf Coast)	1954	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	12,500, 11,200	60, 45
140. Bell City, South (Gulf Coast)	1952	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,900, 11,000	35, 30
I41. Cypress Island (Gulf Coast)	1965	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,800	10
142. Bameroft (Gulf Coast)	1938	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,700, 10,300	35, 15
143. David Equs (Gulf Coast)	1947	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	7,500, 8,500	80, 50
144. Florence (Gulf Coast)	1952	Seismic	Structural/ Anticline	Tertiary/ Mioceme	Sandstone	11,800, 13,200	30, 15
145. Lake Sand, East** (Gulf Coast)	1958	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	15,800, 13,700	150, 75
146. Maurice, North (Gulf Coast)	1967	Subsurface	Structural/ Faulted anticline	Tertiaty/ Oligocene	Sandstone	13,100	30
147. Savoy (Gulf Coast)	1947	Seismic	Structural/ Faulted nose	Tertiary/ Oligocene	Sandstone	10,400, 9,000	30, 15
148. Vatican (Gulf Coast)	1960	Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	10,900, 10,200	45, 20
149. Hurricane Creek (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	8,400	30
150. Hell Hole Bayou (Gulf Coast)	1965	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	16,200, 15,100	35, 20
151. Bayou Pigeon, Eas (Gulf Coast)	t 1956	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	11,600, 12,100	15, 10
152. Cecelía (Gulf Coast)	1956	Seismic	Structural/ Faulted nose	Tertiary/ Miocene, Oligocene	Sandstone	11,600, 12,000	75, 25
153. Happytown (Gulf Coast)	1939	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	9,900, 9,700	

319 A.8c(CG-SWLA)-9

Surface	(million	Crud is bbls as	e 011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Keserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,120			0.8		79.7		1.64	1.7		0.0
2,000				_	91.5		2.99	0.6		0.0
1,620					45.7		1,72	4.4		0.1
1,600					94.7		3.97	0.8		0.0
2,160		*		 	76.7		3.68	1.7	ļ	0.6
1,340		1.1	0.1	0.03	87.7		1,43	0.9		0.0
1,360		8.6	0.1	0.04	44.3		0.1 6	0.4		0.0
1,320		11.8	2,1	0.10	16.2		0.04			
2,720		0.2			70.4		0.74	1.5		*
1,840		*			68.8		2.42	2.7		0.0
1,800					50.7		2.55	0.6		0.0
4,300		5.4	0.2	0.11	48.8		0,29	1.5		0.0
1,260		2.6	0.4	0.17	56.6		3.83	0.9		0.0
1,640		10.6	1.0	0.16	13.3		0.17	*		- -
1,440		0.4	, * 	0.03	39.8		3.45	2.3		0.:
1,440		0.4	0.7	0.06	30.2		5,02	0.3		0,:
780		8.9	3.5	0.42	7.7		0.67	*		*
2,100		1.9	*	*	55.2		0.41	1.6		0.0

A.8c(CC-SWLA)-10 320

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
154. Starks (Gulf Coast)	1927	Şeismic	Structural/ Salt dome	Tertiary/ Pliocene, Miocene	Sandstone	700- 3,700	445
155. Constance Bayou (Gulf Coast)	1953	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	14,200	35
156. Perkina (Gulf Coast)	1939	Seiswic	Structural/ Faulted anticline	Tertlary/ Miocene, Oligocene	Saudstone	7,000, 5,400, 10,000	25, 20, 15
157. Tota (Gulf Coast)	1945	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	B,800, 9,200	35, 25
158. Chalkley, North (Gulf Coast)	1957	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	11,800	60
159. Lake Charles, South (Gulf Coast)	1944	Seismic, Geophyeics, Subsurface	Structural/ Faulted salt dome	Tertiary/ Miocene	Sandstone	10,800, 13,300	50, 45
160. Big Bayou Pigeor (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	11,600, 8,800	60, 20
161. Holly Beach (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,800, 11,900	105, 40
162. Black Bayou, Son (Gulf Coast)	uth 1968	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	13,700	5
163. Cheneyville (Gulf Coast)	1935	Seismic	Structural/ Salt dome	Tertiary/ Eocene	Sandstone	5,700, 5,600	30, 20
164. Lake Arthur, Wes (Gulf Coast)	st 1957	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,800, 13,100	15, 10
165. Parcperdus, North (Gulf Coast)	1972	Subsurface, Seismic	Stratigraphic/ Porosity- permeability pinchout	Tertiaty/ Cligocene	Sandstone	15,700, 15,600	30, 25
166. Hancroft, North (Gulf Coast)	1949	Geophysics, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	9,300	20
167. Esther, Southwe (Gulf Coast)	st 1958	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandetone	12,900	85
168. DeQuincey (Gulf Coast)	1949	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	5,200- 6,700	25
169. Bear-Ragley (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,500	25
170. Lacqueine Refug (Gulf Coast)	e 1959	Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandstone	16,100, 13,600	20. 10
171, Ramos (Gulf Coast)	1957	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	14,700	170

321 A. Bc (CG-SWLA) -10

Surface	(million	Crude as bbls as	011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Cas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (actes)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
2,220		8.6	1.2	0.08	23.8		0.01	0.1		
1,160					45.5		0.07	1.6		*
1,540		9.5	1.9	0.26	10.6		0.29	0.1		*
3,320		6.7	1.1	0.09	26.0		0.25	0.7		*
860		*			49.0		1.15	3.2		0.0
3,200		1.6	0.7	0.04	47.8		0.97	1.6		0.0
720		5.8	1.5	0.07	24.5		0.05	0.4		*
2,040					60.0		0.34	0.8		*
1,920		4.1	2.7	0.43	20.1	[1.40	0.6		0.0
1,100		8.2	0.4	0.11	23.0		0.03	*		
2,100		0.9	0.1	0.01	50.6		1.22	1.0		0.
640					16.2		8.48	0.6		٥.
640		10.7	0.9	0.14	4.3		0.09			
1,400		*			58.8		2.00	0.6)	s.
2,560		9.5	1,5	0.21	5.8		0.15			
3,300	:	3.7	1.5	0.07	31.6		0.11	0.7		_
1,540					33.9		4.35	2,5		0.:
1,600		0.3	0,4	*	51,5		1.24	1.6		٥.،

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
72. <i>Ridge, West</i> (Gulf Coast)	1963	Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,200	45
73. Leroy, North (Gulf Coast)	1957	Seismic. Subsurface	Structural/ Faulted anticline	Tertiary/ Oligocene	Sandstone	12,200	45
74. Fields (Gulf Coast)	1943	Seismic	Structural/ Faulted anticline	Tertiary/ Eccene	Sandstone	8,200, 8,500	10, 10
75. Mallard Bay (Gulf Coast)	1949	Geophysics, Seismic, Subsurface	Structural/ Anticline	Tertiary/ Miocene	Sandatone	10,300	40
76. Atchafalaya Bay ** (Gulf Cosst)	1951	Seismic	Structural/ Anticline	Tertiary/ Miocene	Sandstone	12,000	35
.77. Calcasieu Pass (Gulf Coast)	1956	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	6,700, 10,800	25, 25
.78. Intracoastal City (Culf Coast)	1955	Seismic, Subsurface	Structural/ Faulted anticline	Tertiary/ Miocene	Sanástone	13,700	75
79. Bell City (Gulf Coast)	1948	Seismic	Structural/ Faulted anticline	Tertiary/ Miocene	Sandstone	10,700	35

^{*} Partially offshore.

^{**} Offshore.

Surface	(million	Crude	011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)		ral Gas Liquids ls as <u>of Dec. 3</u>	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
520		0.3	*	*	63.1		1.97	0.8		0.06
3,060					48.1		1.62	0.5		0.01
4,180		1.2	0.1	0.01	15.0		0.49	3.0		0.4
1,200		0.5	0,1		45.6		0.98	1.2		0.0
1,040					23.5		2.06	0.5		a.b.
1,660		0.2			42.0		2.21	0.6	:	0.0.
1,060		0.4	1.1	0.05	29.5		0.32	0.9		
1,240		0,9	0.4	0.01	41.0		0.70	1.1		0.0

Table A.9a
THE SIGNIFICANT OIL AND GAS FIELDS OF ARKANSAS

324

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields					6 3	2,500	20
l. Srackover ^a (Arkla)	1922	Random	Combination/ Faulted anticline, Facies change	Cretaceous/ Gulf	Sandstone	2,300	
Class AAA Fields							ĺ
2. Rodessa (also NLA 8 TX6) (Arkla)	1937 (1930)	Surface, Subsurface, Trend	Combination/ Fault, Facies change, Forosity pinchout	Cretaceous/ Comanche	Limestone, Sandstone, Shale	6,000	15
3. Haynesville (also NLA) (Arkla)	1942 (1921)	Surface, Subsurface	Combination/ Anticline, Facies change	Cretaceous/ Coahuila	Limestone, Sandstone	5,400	10
4. Magnolía (Arkla)	1938	Surface, Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	7,500	105
Class AA Fields							ļ
5. McKamie-Patton (Arkla)	1940	Subsurface, Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	9,100	120
6. Cecil-Hollis Lake (Arkoma)	19 15	Surface, Seepage	Structural/ Faulted anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	4,500, 3,400	100, 80
a. Cesil (A)	1949	Surface	Structural/ Faulted anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	4,500, 4,800	100, 15
b. Dyer (D)	1963	Surface, Subsurface	Structural/ Anticline	Pennsylvanian/ Morrow, Atoka	Sandstone	5,200, 4,600	15, 5
c. Kibler-Williams ^b (B)	1915	Surface, Seepage	Structural/ Faulted anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	2,300, 5,200	30, 20
d. Alma (all) (D)	1922	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	5,000, 2,100	35, 20
e. Hollis Lake ^c (B)	1926	Surface	Structural/ Faulted anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	3,400, 5,700	80, 55
7. Shuler (Arkla)	1937	Subsurface, Seismic	Combination/ Anticline, Facies change	Jurassic/ Upper	Sandstone	7,500	35
8. Stephens-Wesson (Arkla)	1922	Randon	Combination/ Faulted anticline, Facies change	Cretaceous/ Comanche, Gulf	Sandstone, Limestone	3,100, 2,100, 2,600	20, 5, 30
a. Stephens (A)	1922	kandom	Combination/ Faulted anticline, Facies change, Unconformity	Cretaceous/ GuIf, Comanche	Sandstone, I,imestone	2,100, 3,200	5, 15
b. Center (D)	1953	Subsurface	Combination/ Fault, Facies change	Cretaceous/ Comanche	Sandstone	3,200	15
c. Wesson (A)	1923	Random	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	3,100, 2,600	20, 30

Surface	(million	Crude	011 of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31,	1975)	Na (mill. b	tural Gas Liqui bls as of Dec.	ds 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
44,000		512.0	54.0	3.13	15.1		0.06			
3,380		9.0	0.1	0.03	48.7				ļ	
3,420		6.3	0.5	0.06	6.9		0.01			
4,720		153.3	6.7	0.50	279.1		0.56			
6,580		32.7	2./	0.32	550.6		7.93			
117,080					533.3		26.20		: 	
58,080					275.5	 	12.22			
5,720					8.1		1.20			
23,480					140.4	!	3.85		-	
9,600					23.5		0.65			
20,200					85.8		8,28			
6,720		101.8	5.2	0.57	204.2		0.25			
22,520		105.0	16.0	1.43	5.0		0.03			
17,500		49.4	8.8	0.68	0.1					
360		2.5	0.2	0.04						!
4,660		53.1	7.0	0.71	4.9		0.03			
										!

		<u></u>					
Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
9. Dorchent-Manedonia (Arkla)	1.939	Seismic	Structural/ Anticline	Jurassic/ Upper	Sandstone, Limestone	6,700, 8,800	30, 40
Class A Fields							
10. Midway (Arkla)	1942	Subsurface, Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	6,500	70
11. Aetma-Altus (Arkoma)	1928	Surface	Combination/ Faulted anticline, Permeability pinchout	Pennsylvanian/ Atoka, Morrow	Sandstone	4,600, 5,300	80, 60
a Aeina (A)	1928	Surface	Combination/ Faulted anticline, Permeability pinchout	Pennsylvanian/ Atoka, Morrow	Sands tone	4,600, 5,300	80, 60
b. Altus (D)	1960	Surface, Subsurface	Structurel/ Faulted anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	4,800, 5,200	35, 10
12. Walker Creek (Arkia)	1968	Seismic, Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Jurassic/ Upper	Limestone	10,900	55
13. El Dorado, South (Arkla)	1920	Random	Combination/ Anticline, Facies change, Unconformity	Cretaceous/ Gulf	Sandstone	2,200	40
Class B Fields							
14. Massard (all) ^d (Arkoma)	1904	Seepage	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	2,200, 4,900	75, 20
15. Village (Arkla)	1938	. Seisnic	Structural/ Anticline	Jurassic/ Upper; Cretaceous/ Coahuila	Limestone, Sandstone	7,300, 4,500	20, 65
16. Shongaloo, North (diso NLA) (Arkla)	1951 (1945)	Subsurface	Combination/ Faulted anticline, Facies change	Gretaceous/ Coahuila	Limestone	5,700	50
17. Champagnolle (Arkla)	1927	Surface. Trend	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone	2,700	10
18. Fouke (Arkla)	1940	Seismic, Subsurface	Combination/ Fault, Facies change	Cretaceous/ Comanche; Jurassic/ Upper	Sandstone, Limestone	3,400, 9,000	30, 10
19. Atlanta (Arkle)	1938	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	8,200	15
20. Chalybeat Springs (Arkla)	1971	Seismic	Combination/ Anticline, Facies change	Jurassic/ Upper	Limestone	10,100	35
21. White Oak (Arkoma)	1943	Seismic, Subsurface	Structural/ Anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	3,000, 4,000	35. 40

326

Surface	(million	Crude	0il of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31	s , 1975)	Na (mill. b	tural Gas Liqui bls as of Dec.	ds 31, 1975
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Proc.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Frod.	Demonst. Reserves	1975 Prod
9,680		27.6	7.7	0.66	265.3		3,47			
1,840		68.5	7.5	0.74	23.9		0.19			
60,260					281.1		14.65			
46,020					258.3		12.81			
14,240					22,9		1.84	77/8		
11,520		14.0	18.2	1.57	35.7		5.76			
10,660		54.6	0,9	0.09	6.3		<u></u>			
26,280					131.9		7.14			
2,720		25.2	2.2	C.20	51.2		0.32			
720		0.5	0.1	0.01	0.6					
8,500		28.7	2.3	0.43	4.5					
1,200	:	24,6	3.4	0.38	11.4		0.87	0.7		0.05
2,540		20.3	0.4	0.06	26.8			,		
1,120		3.5	12.4	1.28	8.4		4.03			
22,400					109.9		3.47			

 $_{\Lambda,\,9a\,(\text{NG-AR})\rightarrow3}\qquad \qquad 328$

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
Class C Fields							
22. Sonanza (Arkoma)	1962	Surface, Seismic	Structural/ Faulted anticline	Silurian/ Middle; Pennsylvanian/ Atoka, Morrow	Limestone, Sandstone	7,900, 4,600, 7,100	20, 20, 35
23. El Dorado, East (Arkla)	1922	Surface, Trend	Combination/ Anticline, Facies change, Unconformity	Cretaceous/ Gulf	Sandatone	2,200	50
24. Dover-Ross (Arkoma)	1929	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	3,400, 4,000	20, 20
a. Dover (C)	1959	Surface, Seismic	Structural/ Anticline	Pennsylvanian/ Atoka, Morrow	Sandatone	3,400, 4,000	20, 20
b. Rosa (D)	1959	Seismic	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	3,300	25
c. New Hope - Tates Island (D)	1929	Surface	Combination/ Anticline, Porosity pinchout	Pennsylvanian/ Atoka, Morrow	Sandstone	3,700, 1,000, 4,200	50, 30, 30
25. Ewing-Ursula ^e (Arkoma)	1936	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	6,200, 3,800	15, 140
a. Ewing (C)	1936	Surface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	6,200	15
b. Ursula (D)	1962	Surface, Subsurface	Structural/ Anticline	Pennsylvanian/ Atoka	Sandstone	3,800	140
26. Buckner (Arkla)	1937	Seismic	Structural/ Anticline	Jurassic/ Upper; Cretaceous/ Coahuila	Limestone, Sandstone	7,200, 4,600	30, 25
27. Urbana (Arkla)	1929	Surface, Subsurface	Combination/ Anticline, Facies change	Cretaceous/ Coahuila	Sandstone	3,200	10
28. Irma (Arkla)	1921	Random	Structural/ Faulted anticline	Cretaceous/ Gulf; Jurassic/ Upper	Sandstone, Limestone	1,200, 2,600, 4,800	25, 15, 5
29. Clarksville (Arkoma)	1921	Surface	Structural/ Anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	1,100, 3,300	40 25
30. Spadra (Arkoma)	1958	Surface	Structurs1/ Faulted anticline	Pennsylvanian/ Atoka	Sandstone	3,500	25
31. Union City (Arkoma)	1958	Surface	Structural/ Anticline	Pennsylvanian/ Atoka, Morrow	Sandstone	4,400, 4,700	15. 20
32. Sandy Send (Arkla)	1947	Subsurface	Combination/ Fault, Facies change	Cretaceous/ Gulf	Sandstone	2,300	35
	1947	Subsurface	Fault,	, .	Sandstone	2,300	

Surface	(million	Crude s bbls as	Oil of Dec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill, bbls as of Dec. 31, 1975)		
Area (acres)	. In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	197: Proc	
20,480					74.9		4.36				
2,660		20.4	0.7	0.29	1.2	*	*				
19,580					58.8		4.27				
7,680					26.6		2,83				
7,740					17.8		1.25				
4,160					14.4		0.19				
21,000					40.4		3.65				
9,920					35.2		3.09				
5,000					5.2		0.56				
2,600		16.9	2.0	0.16	0.1				<u></u>		
4,280		16.9	1.0	0.10	1.7						
2,160		14.9	2.5	0.26	-						
6,300					76.0		2.12				
17,600					51.8		3.43				
17,040					40.4		4.25				
5,360		10,5	2.0	0.21							

330 A.9a(NG-AR)-4

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
33. Troy (Arkla)	1936	Surface, Subsurface	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	1,200	15
34. Batton (Arkoma)	1952	Surface, Subsurface	Structural/ Anticline	Pennsylvanian/ Morrow, Atoka	Sandstone	1,900, 1,400	70, 15

a Includes Snowhill.

Uncludes Kibler and Williams.

cIncludes Shibley.
dIncludes Massard Frairie.

^eIncludes *Bloomer*.

Surface	Crude Oil (millions bils as of Dec. 31, 1975)		1975)		Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
1,500		9.7	1.3	0.11	*					
21,120					2.3		2,26			
21,120							-,			

 $\label{table A.9b} \mbox{ Table A.9b}$ THE SIGNIFICANT OIL AND GAS FIELDS OF NORTHERN LOUISIANA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoit Thickness (feet)
Class AAAA Fields							:
1. Monroe (Arkla)	1916	Random	Combination/ Anticline, Unconformity, Fracturing	Cretaceous/ Gulf	Limestone	2,000	40
Class AAA Pields		1					
2. Slige (Arkla)	1922	Subsurface	Structural/ Anticline	Cretaceous/ Coahuila, Comanche	Limestone, Sandstone	5,200, 4,000	50, 30
3. Rođessa (also AR & TX6) (Arkla)	1930	Surface, Subsurface	Combination/ Fault, Facies change, Porosity pinchout	Cretaceous/ Comanche	Limestone, Sandstone, Shale	5,400	125
4. Caddo-Pine Island (also TX6) (Arkla)	1904	Random, Seepage	Combination/ Faulted anticline, Unconformity	Cretaceous/ Gulf, Comanche, Coahuila	Sandstone, Limestone	1,300, 2,200, 3,600	100, 20, 20
5. Bethany- Langstreet (also TX6) (Arkla)	1919 (1916)	Surface, Subsurface	Combination/ Anticline, Porosity pinchout	Cretaceous/ Comanche, Communita	Limestone, Sandstone	5,300, 6,500	20,
6. Cotton Valley (Arkla)	1922	Surface, Subsurface	Structural/ Faulted anticline	Juraseic/ Upper	Sandstone	8,200, 8,500	20, 15
7. Delhi-Big Creek (Arkla)	1944	Subsurface, Seismic	Stratigraphic/ Unconformity, Permeability pinchout	Cretaceous/ Comanche, Gulf	Sandstone	3,300, 3,100	15, 10
8. Greenwood- Waskom (also TX6) (Arkla)	1916	Surface, Subsurface	Combination/ Anticline, Facies change	Cretaceous/ Coahuila, Comanche; Jurassic/ Upper	Sandstone, Limestone	5,900, 5,600, 8,500	45, 25, 10
9. Haynesville å East (also AR) (Arkla)	1921	Surface, Subsurface	Combination/ Faulted anticline, Facies change	Gretaceous/ Gulf, Coahuila; Jurassic/ Upper	Limestone, Sandstone	2,900, 10,200, 5,200	
10. Joaquin- Logansport (also TX6) (Arkle)	1936	Subsurface, Geophysics	Combination/ Anticline, Permeability pinchout	Cretaceous/ Comanche	Limestone, Sandstone	4,800	50
Class AA Fields							
ll. Lisbon (Arkla)	1936	Subsurface	Combination/ Faulted anticline, Facies change	Jurassic/ Cpper; Cretaceous/ Coahuila	Sandstone, Limestone	8,500, 5,300	15, 10
12. Black Laks (Arkla)	1.964	Subsurface, Seismic	Combination/ Permeability- porosity pinchout, Nose, Organic reef	Cretaceous/ Coahuila	Limestone	7,800	100
13. Lake St. John (Arkla)	1942	Seismic, Geophysics	Structural/ Faulted anticline	Cretaceous/ Gulf; Tertiary/ Eocene	Sandstone	9,000, 3,400	40, 65

Surface	(millions	Crude bbls as	0il of Dec. 31,	1975)	(Bcf as	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst, Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
275,000		*			6,803.8	426.2	29,28	*			
16,640	:	24.5	2.0	0.18	2,131.8		26.91	10.2 ³		0.50	
20,000		102.4	1.6	0.20	719.2		0.49	3.0 ^a		0.0	
100,480		316.6	29.4	3.05	267.4		1.35	0.1ª			
32,640		0.3	*	*	277.5		2.69	10.7ª		0.1	
50,640		58.8	1.7	0.29	1,248.6		25.99	52.1 ^a		0.3	
13,600		186.3	96.0	6.63	158.0		4.15	0.18		*	
35,480		14.8	1.4	0.37	508.2		13.19	6.7 ^a		0.1	
23,640		167.8	16.2	1.75	349.0		1,52	13.5 ^a		0.1	
35,620		0.5	*	. *	624.7		12.63	2.2ª		0.1	
20,480		32.5	4.5	0.54	642.2		11.35	9.2ª		0.4	
16,940		29.5	18.1	2.76	261.0		33.81	18.0ª		1.	
13,000		81.0	4.0	0.34	424.2		5.24] 1.6 ^a		0.	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(6)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
14. Hioc-Knowles (Arkla)	1945	Subsurface, Geophysics, Seismic	Structural/ Faulted anticline	Jurassic/ Upper	Sandstone	8,300	55
15. Ruston (Arkla)	1937	Surface, Subsurface, Seismic	Combination/ Anticline, Facies change	Jurassic/ Upper; Cretaceous/ Coahuila	Sandstone, Limestone	8,800, 5,700	40, 85
16. Red Piver- Bull Bayou (Arkla)	1912	Surface, Subsurface	Combination/ Faulted anticline, Porosity- permeability pinchout	Cretaceous/ Comanche, Gulf	Sandstone, Chalk	2,400, 700	100,
17. Sear Creek- Bryceland (Arkla)	1937	Geophysics, Seismic	Structural/ Faulted anticline	Cretaceous/ Coahuila	Sandstone, Limestone	7,500, 6,700	10, 20
18. Olla (Arkla)	1940	Subsurface, Seismic	Combination/ Anticline, Facies change	Tertiary/ Eocene	Sandstone	2,300	20
19. Homer (Arkia)	1919	Surface	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	1,000, 1,900	50, 50
Class A Fields							
20. <i>Ada</i> (Arkla)	1944	Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche, Coahuila	Limestone, Sandstone	5,600, 6,800	30, 30
21. Nebo-Hemphill (Arkla)	1940	Subsurface, Seismic	Structural/ Faulted anticline	Tertiary/ Eocene	Sandstone	3,400, 1,400	15, 15
22. Richland (Arkla)	1926	Surface	Combination/ Anticline, Unconformity	Cretaceous/ Gulf	Sandstone	2,600	75
23. Calhoun (Arkla)	1948	Geophysics	Combination/ Anticline, Facies change	Cretaceous/ Coahuila	Sandstone	2,300, 9,500	90, 200
24. Athens (Arkla)	1940	Seismic, Subsurface	Structural/ Faulted anticline	Cretaceous/ Coahuila, Comanche; Jurassic/ Upper	Sandstone, Limestone	6,200, 8,100, 5,800	
25. Sibley (Arkla)	1936	Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche, Coshuila	Limestone, Sandstone	5,600, 6,600	30, 40
26. Tuilos-Urania (Arkla)	1925	Surface, Subsurface	Combination/ Faulted amticline, Facies change	Tertiary/ Eocene	Sandstone	1,500	20
27. Benton (Arkla)	1944	Seismic, Geophysics	Structural/ Anticline	Jurassic/ Upper	Sandstone	8,000	35
28. Elm Grove (Arkla)	1916	Surface	Structural/ Anticline	Cretaceous/ Coahuila, Gulf, Comanche	Sandstone, Limestone	5,200, 1,700, 2,400	

Surface	(million	Crude as bbls as	of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
5,480		1.5	0.2	C.02	480.8		4.58	5.7 ^a		0.04
8,300		0.1	*	*	526.6	:	9.06	6.8 ^{&}		0.08
40,000		75.5	14.5	1,10	106.6		2,20	*		*
25,140	*	*			472.3		12.52	1.2ª		0.02
11,620		67.2	14.3	1.44	114.0		3,57			
3,400		92.7	2.8	0.37	19,0		0.06	0.1ª		
13,880		4.1	0.8	C.09	406.9	:	9.83	2.0ª		0.03
7,840		68.6	13.4	1,36	39.3		0,68	*		
42,240					466,2	*	0.05	*		
19,520	*	*			208,4		18.07	22.5ª		0.43
7,800		1.3	0,1	C.01	214.8		1.32	1.8 ^a		0.01
24;000		0.7	*	*	241.3		8.84	0.7ª		0.02
9,500		49.7	5.1	0.48	0.9		0.05		-	
7,000		0.5	0.1	0.02	207.0		1.32	18.4 ^a		0.03
16,140		6.5	0.6	C.06	205,1		2.76	0.1ª		0,02

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class B Fields					•		
29. Danville (Arkla)	1966	Subsurface, Seismic	Structural/ Anticline	Cretaceous/ Coahuila	Sandstone	7,700	125
30. Sugar Creek (Arkla)	1930	Subsurface, Seismic	Structural/ Faulted anticline	Cretaceous/ Coshuils, Comanche; Jurassic/ Upper	Sandstone, Limestone	5,500, 7,900, 4,300	25, 60, 15
31. Vixen (Arkla)	1945	Seismic	Structural/ Anticline	Cretaceous/ Coahuils; Jurassic/ Upper	Sandstone	9,500, 11,800	30, 120
32. Lucky (Arkla)	1943	Seismic	Structural/ Faulted anticline	Cretaceous/ Coahuila	Limestone, Sandstone	6,800, 7,900	40, 25
33. Simeboro (Arkla)	193 5	Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche, Coahuila	Sandstone, Limestone	5,200, 6,400, 5,700	35, 60, 25
34. Spider (Arkla)	1914	Surface	Structural/ Anticline	Cretaceous/ Comanche, Coahuila	Limestone	4,800, 6,100	10, 20
35. Shongaloo, North- Red Rock (also AR) (Arkla)	1945	Seismic	Combination/ Faulted anticline, Facies change	Cretaceous/ Coahuila; Jurassic/ Upper	Limestone, Sandstone	5,700, 9,000	20,
36. Bellavue (Arkla)	1920	Surface, Core-drill	Structural/ Faulted anticline	Cretaceous/ Gulf, Comanche, Coahuila	Sandstone, Limestone	300, 1,800, 3,700	25, 20, 20
37. Sarepta, South (Arkla)	1949	Seismic	Combination/ Faulted anticline, Facies change	Jurassic/ Upper	Sandstone	8,700	55
38. Bryceland, West (Arkla)	1952	Seismin	Structu r al/ Faulted anticline	Cretaceous/ Coahuila	Sandstone	6,900	15
39. Holly Ridge (Arkla)	1943	Seismic, Subsurface	Structural/ Anticline	Cretaceous/ Gulf; Tertiary/ Eocene	Sandstone	8,300, 3,000	25, 20
40. Lake Bisteneau (Arkla)	1916	Surface	Structural/ Faulted anticline	Cretaceous/ Coahuila	Limestone	5,200	30
Class C Fields							
41. Colquitt (Arkla)	1 9 53	Seismic, Subsurface	Structural/ Anticline	Juraseto/ Upper	Limestone, Sandstone	8,900, 9,900	10,
42. Lengwood (also TX6) (Arkla)	1927	Seismic, Subsurface	Combination/ Porosity pinchout, Facies change, Nose	Cretaceous/ Coahuila	Limestone, Sandstone	5,700	15
43. Shongaloo (Arkla)	1921	Surface, Subsurface	Combination/ Anticline, Permeability pInchout	Jurassic/ Upper; Cretaceous/ Gulf	Sandstone	9,000, 3,000	70. 20

Surface	(mill(o:	Crude ns bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
8,100			 		73.2		18.89	*		0.02ª	
8,160		3.8	0.1	0.01	203.8	ļ	1.19	2.0 ⁴		0.01ª	
6,680					202.6		5.94	* a			
16.800		1.1	0.2	0.02	199.0		4.31	0.6ª		0.01 ^a	
8,920		*			193.7		2.50	0.4ª		*	
17,380	*	*	*	*	177.3		3.57	0.7ª		0.01ª	
6,200		16.5	1.8	0.19	83.8		1.56	2.3 ^a		0.03 ^a	
3,200		22.6	10.8	1.11	7.7		0.13	*			
9,200		0.1			106.0		7.54	8.7ª		0.25 ^a	
7,980		*	*	0.01	78.5		12.25	0.2ª		0.03 ^a	
4,160		12.5	2.0	0.19	55.6		1,18	0.1ª		*	
5,740		*			137.9		 	0.1 ^a		*	
3,860		9.4	1.2	0,25	53.3	į	1.92	0.5 ^a		*	
7,680		1.5	0.1	0.01	44.0		0.89	0.4ª		0.01 ^a	
5,820		3.8	1.9	0.14	83.6		1.03	0.1ª		0.028	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
44. Unionville (Arkla)	1950	Seismic, Subsurface	Combination/ Anticline, Facies change	Jurassic/ Upper	Sandstone	8,600	35
45. Esperance Point (Arkla)	1950	Subsurface, Seismic	Combination/ Nose, Porosity- permeability pinchout	Tertiary/ Eocene	Sandstone	4,800, 6,300	80, 10
46. Carterville- Sarepta (Atkla)	1922	Trend	Combination/ Anticline, Permeability pinchout	Cretaceous/ Gulf; Jurassic/ Upper	Sandstone, Limestone	2,700, 10,800	30, 25
47. Pendleton-Many (Arkla)	1958	Subsurface, Seismic	Combination/ Faulted fracture anticline, Hydrodynamic	Cretaceous/ Gulf	Limestone, Sandstone, Chalk	2,800	50
48. Skreveport (Atkla)	1913	Random	Structural/ Anticline	Cretaceous/ Coahulla, Gulf	Sandstone, Limestone	5,500, 800, 2,400	15, 25, 10
49. Big Island, North (Gulf Coast)	1962	Seismic	Combination/ Nose, Facies change	Tertiary/ Eocene	Sandstone	3,000	120
50. Minden (Arkla)	1957	Surface, Geophysics, Seismic	Structural/ Salt dome	Cretaceous/ Comanche	Sandstone, Limestone, Anhydrite	6,900, 7,400	10, 10
51. Choudront (Arkla)	1946	Seismic	Structural/ Anticline	Jurassic/ Upper	Sandstone	9,100	25
52. Catahoula Lake (Arkla)	1942	Seismic	Combination/ Nose, Facies change	Tertiary/ Eocene	Sandstone	4,100	10
53. Sentell (Arkla)	1951	Subsurface, Seismic	Combination/ Anticline, Facies change	Jurassic/ Upper; Cretaceous/ Comanche	Sandstone, Limestone	8,300, 2,500, 3,400	
54. Little Creek (Arkia)	1938	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene	Sandstone	2,400	15
55. Catahoula Lake, West (Arkla)	1949	Seismic, Subsurface	Combination/ Nose, Unconformity	Tertia <i>t</i> y/ Eocene	Sandstone	3,400	5
56. Locust Ridge (Arkla)	1954	Subsurface	Combination/ Nose, Porosity- permeability pinchout	Cretaceous/ Gulf	Sandstone	9,000	45
57. Tremont (Arkla)	1944	Seismic	Structural/ Anticline	Cretaceous/ Coahuila; Jurassic/ Upper	Sandstone	5,300, 9,500	60, 25
58. Zwlle (Arkla)	1928	Seepage	Structural/ Faulted anticline	Cretaceous/ Gulf	Limestone, Chalk	2,100	180
59. Ternyville (Arkla)	1959	Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Jurassic/ Upper	Sandstone	8,800	10

338

339 A.9b(NG-NLA)-4

Surfaçe	(millio	Crud ns bbls_as	le 011 of Dec. 31,	1975)	Natural Gas (8cf_as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
10,600					118.8			0.7ª		0.03
5,660		18.9	1.9	0.21	6,6	* 	0.05			
9,400		5.1	0.7	0.07	75.4		0.83	0.6 ^a		0.03
16,920	<u> </u> 	19.9	0.9	0,10	3.5	0.1				
6,080		13.3	0,7	0.07	34.5		0.25	* a		*
4,360		13.5	6.5	0.73	4.1	0.7	0.08			
6,080		3.1	0.3	0.05	65.3		2.67	1.1ª		0.01
4,800		*	*	- -	101.5		1.82	0.8ª		0.02
2,060		14.1	4,6	0,77	4.3		0.28	<u></u>		
8,960		2.3	4.5	0.46	58.3		0.73	0.9 ^a		*
5,400	ž.	14.0	2.0	0.21	8.8	0.2	0.08	*		
2,680		12.8	2.7	0.30	5.1	1.5	0.18			
2,880		10.1	0.3	0.03	32,1		0.09	0,19 ^a		*
6,000		*			33.6		2.60	0.6 ^a		0.28
18,340		16.4	0.1	0.02	0.2					
5,280		0.1		*	74.9		1.39	2.1 ^a		0.02

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
60. Buckhorn (Arkla)	1959	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Cretaceous/ Commanche	Limestone, Sandstone	8,700	20
61. Colgrade (Arkla)	1959	Subsurface	Combination/ Anticline, Facies change	Tertiary/ Eocene	Sandstone	1,300	5
62. Fairview (Arkla)	1950	Subsurface, Seismic	Combination/ Nose, Permeability- porosity pinchout	Tertiary/ Rocene	Sandstone	6,400	55
63. Saline Lake (Arkia)	1948	Subsurface, Seismic	Combination/ Nose, Porosity- permeability pinchout	Tertiary/ Eocene	Sandetone	3,100, 5,500	40, 10
64. Cheniere (Arkla)	1961	Subsurface, Seismic	Combination/ Nose, Facies change	Jurassic/ Upper	Sandstone	7,700	15
65. Carlton, North (Arkla)	1964	Seismic, Subsurface	Structural/ Anticline	Jurassic/ Upper	Søndstone	9,000	50
66. Driscoli (Arkla)	1936	Surface, Seismic, Subsurface	Structural/ Faulted anticline	Cretaceous/ Coahuila	Sandstone, Limestone, Anhydrite	7,200, 6,800	50, 70
67. Downsville, South (Arkla)	1961	Subsurface	Combination/ Anticline, Porosity- permeability pinchout	Jurassic/ Upper	Sandstone, Limestone	8,900	20
68. Big Island (Gulf Coast)	1942	Seismic	Combination/ Nose, Facies change	Tertiary/ Eccene; Cretaceous/ Culf	Sandstone	5,400, 9,700	10, 40
69. Rayou Middle Fork (Arkla)	1953	Seismic, Subsurface	Structural/ Faulted anticline	Jurassic/ Upper	Limestone	10,200	35
70. <i>Ora</i> (Arkla)	1947	Subsurface, Seismic, Core-drill	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	2,100	15
71. Tew Lake (Arkla)	1956	Subsurface	Combination/ Nose, Porosity- permeability pinchout	Tertiary/ Eocene	Sandstone	4,100	30

alease condensate only.
bPlant condensate.

	(million	Crude s bbls as o	Oil of_Dec. 31,	1975)		atural Gas of Dec. 31,	1975)	Nat (mill. <u>b</u> b	ural Gas Liqui ls as of Dec.	ds 31, 1975)
Surface Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reservas	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,920		10.1	0.2	0.04	22.5		0.31	0.2ª		0.028
7,400		9.2	5.8	0.49						
1,160		9.6	2.9	0.28	2.6	0.4	0.05			
2,280		9.6	2.4	0.23	4.3	0.5	0.02			
12,960					17.2		0.54	6.0ª		0.35ª
9,240					55.6		1.85	1.3ª		0.03 ^a
4,460		*	*	*	56.6		3,00	0.1ª		0.01 ^a
3,520	~-				53.8		0.43	0.3		*
3,560		9.9	0.7	0.08	3.5	0.1	0.01			
1,240		0.6		0.29	0.3	!	0.28			
2,220		10.1	0.2	0.02	0.9		<u></u>			
2,640		7.6	2.4	0.27	0.4	*	*			
							<u> </u>			<u> </u>

 $\label{table A.9c} \mbox{The Significant OIL AND GAS FIELDS OF TEXAS R.R.C. DISTRICT 5}$

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields							
1, Van (all) (East Texas)	1929	Surface, Seismic, Geophysics, Core-drill	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	2,800	130
Class AAA Flelds							
(None)							
Class AA Fields 2. Opelika	1937	Cuntana	Structural/	Cretaceous/	Limestone,	7,900,	25,
(East Texas)	193,	Surface, Core-drill, Seismic	Faulted anticline	Comanche	Sandstone	8,700	40
3. Powell (East Texas)	1923	Surface, Subsurface	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	2,900	45
4. Mexia (East Texas)	1912	Surface, Seepage	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	3,000	40
Class A Fields						-	
5. Tri-Cities (East Texas)	1941	Surface, Core-drill, Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche	Limestone	8,100, 7,600	30, 10
6. Corsicana (East Texas)	1895	Random	Combination/ Faulted anticline, Porosity pinchout	Cretaceous/ Gulf	Sandstone	1,000	50
Class B Fields							
7. Eustade (East Texas)	1,973	Seismic. Subsurface	Combination/ Anticline, Porosity pinchout	Juraesic/ Upper	Dolomite	12,500	75
8. Edgewood, Northeast (East Texas)	1962	Seismic	Structural/ Anticline	Jurassic/ Upper	Dolomite	12,600	15
9. Currie (East Texas)	1921	Surface	Structural/ Faulted anticline	Jurassic/ Upper; Cretaceous/ Gulf	Dolomite, Sandstone	9,200, 3,000	10,
10. Sulphur Bluff (East Texas)	1936	Surface, Core-drill	Structural/ Fault	Cretaceous/ Comanche	Sandstone	4,500	35
11. Como (East Texas)	1947	Seismic	Structural/ Anticline	Jurassic/ Upper; Cretaceous/ Gulf	Dolomite, Sandstone	12,700, 4,200	100,
12. Teague (East Texas)	1945	Surface, Subsurface, Seismic	Structural/ Anticline	Jurassic/ Upper; Cretaceous/ Comanche	Sandstone, Limestone	12,300, 7,600	30, 30
13. Wortham (East Texas)	1924	Surface	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	3,000	25

Surface	(millions	Crude bbls as	011 of Dec. 31,	1975)	(Bcf as	Natural Cas of Dec. 31,	1975)	Na (mill. bi	tural Gas Liqui	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum, Prod,	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.		
6,000	892.7	435.8	110.3	16.06			5.47					
11,820	23.7	8.7	0.1	0.01	654.8		11.66			0.02		
2,660		130.2	0.8	0.09			3.25	0.5ª	İ	0.11		
6,500		107.5	1.5	ე,15			0.04			0.05		
3,200	6.3	2.1	0.1	0.01			9.84			0.01		
15,760		38.7	3.3	0.33			0.02					
4,800						180.0			18.0			
2,920					111.5		7.03					
1,520	17.1	7.4	*	*	83,9		14.92	2.4ª		0.34		
1,140	67.4	29.9	1.7	0.25	6.8		*					
1,100	12.7	4.0	0.3	0.05	83.4		2.85	0,2ª		0.01		
2,500					34.8		0.59	0.1		*		
800		24.4	0.1	0.01								

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(6)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thicknes: (feet)
Class C Fields							
14. Buffalo (East Texas)	1933	Surface, Core-drill, Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	5,200	30
I5. <i>Reed</i> (East Texas)	1945	Surface, Subsurface, Seismic	Structural/ Ancicline	Jurassic/ Upper; Gretaceous/ Coahuila	Limestone, Sandstone	11,800, 8,200	10, 35
16. Pickton (East Texas)	1944	Subsurface, Seismic	Structural/ Anticline	Cretaceous/ Comanche	Limestone	7,900	10
17. Brantley Jackson (East Texas)	1967	Subsurface	Structural/ Fault	Jurassic/ Upper	Limestone, Dolomite	9,400	10
18. Oakwood (East Texas)	1939	Surface, Core-drill, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	5,800	15
19. Ham Gussett (all) (East Texas)	1948	Surface, Core-drill, Subsurface, Seismic	Structura1/ Faulted anticline	Cretaceous/ Gulf, Comanche	Sandstone, Limestone	3,200, 3,400	5,
20. Kerens, South (East Texas)	1952	Seismic, Subsurface	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	3,400	5
21. Birthright (East Texas)	1954	Subsurface	Structural/ Fault	Juraseic/ Upper	Dolomite	9,500	35
22. Myrtle Springs (East Texas)	1944	Seiswic	Combination/ Anticline, Facies change	Jurassic/ Epper	Dolomite	13,300	60
23. Teague, West (East Texas)	1952	Seismic, Subsurface	Combination/ Anticline, Facies change	Cretaceous/ Comanche, Coahuila	Limestone, Sandstone	6,800, 7,300, 7,700	20, 80, 95
24. Nan-Su-Gail (East Texas)	1957	Subsurface	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone	4,400	15
25. Oletha, Southwest (East Texas)	1959	Seismic	Structural/ Anticline	Cretaceous/ Comanche	Limestone	6,700	55

^{*}Lease condensate only.

	(million		e Oil of Dec. 31,	1975)	Natural Gas (3cf as of Dec. 31, 1975)			Natural Gas Liquids (mill, bbls as of Dec. 31, 1975)		
Surface Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum, Prod.	Demonst. Reserves	1975 Prod.
7,100		2.5	0.5	0.08		!	0.50			
3,500					29.3		0.68			:
6,640		16.4	0.1	0.01	22.3		0.39	0.2ª		0.02ª
660	20.9	5.3	7.3	0.70	4.6		0.62			
3,200		2,6		0.02			0.25			
2,560	53.0	13.9	1.2	0.21			0.03			
820	17.7	7.4	2.6	0.31			0.07			
1,440	13.6	2.7	1.3	0.16	13.6		2.15	ļ		
720		*	*	*	37.3		4.69			
3,420							0.66			*
2,640		_			48.2		0.89	0.3		*
2,900					53.5		1.20	0.7ª		0.01ª

	,		7—				
Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAAA Fields			<u> </u>				
1. Sast Temas (East Texas)	1930	Random	Stratigraphic/ Unconformity, Facies change	Cretaceous/ Gulf	Sandstone	3,600	35
2. Carthage (all) (East Texas)	1936	Surface, Subsurface, Geophysics	Combination/ Permeability pinchout, Nose	Cretaceous/ Coahuila	Limestone, Sandstone	6,500, 5,600	10, 10
3. Haukine (all) (East Texas)	1940	Surface, Core-drill, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	4,800	75
Class AAA Fields					i		
4. Rodessa (all) (also AR & NtA) (East Texas)	1930	Surface, Subsurface	Combination/ Fault, Facies change, Porosity pinchout	Cretaceous/ Comanche	Limestone, Sandstone, Shale	6,000, 5,700	20, 50
5. Caddo-Marion-Potter (also MLA) (East Texas)	1905 (1904)	Random	Combination/ Anticline, Facies change	Cretaceous/ Gulf, Comanche	Sandstone, Shale, Limestone	2,200, 2,400	5, 10
6. Bellany (all)- Lungstreet (also NLA) (East Texas)	1916	Surface	Combination/ Anticline, Porosity pinchout	Cretaceous/ Coahuila; Jurassic/ Upper	Limestone, Sandstone	5,600, 6,200, 8,100	40, 5, 10
7. Pairway (all) (East Texas)	1960	Subsurface, Seismic	Stratigraphic/ Organic reef, Porosity- permeability pinchout	Cretaceous/ Comanche	Limestone	10,000	75
8. Greenwood-Waskom (also MLA) (East Texas)	1924 (1916)	Surface, Subsurface	Combination/ Anticline, Facies change	Cretaceous/ Coahuila	Sandstone, Limestone, Shale	6,000, 7,400, 8,500	20; 10, 30
9. Taleo (East Texas)	1936	Surface, Core-drill, Seismic	Structural/ Fault	Cretaceous/ Comanche	Sandstone	4,300	45
10. Joaquin-Logosport (also NLA) (East Texas)	1936	Subsurface, Seismic	Combination/ Anticline, Permeability pinchout	Cretaceous/ Comanche	Limestone	4,600	35
Class AA Fields					ļ		
11. Sayuga (East Texas)	1934	Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf, Comanche	Sandstone, Limestone	4,200, 7,500	20, 35
12. Trawick (East Texas)	1949	Surface, Subsurface, Seismic	Combination/ Anticline, Permeability pinchout	Cretaceous/ Coahuila	Limestone	7,500, 8,400	30. 45
13. Willow Springs (East Texas)	1938	Surface, Core-drill, Seismic	Structural/ Anticline	Cretaceous/ Coahuila, Comanche	Limestone	7,600, 6,800, 7,200	20, 20, 30
14, Neches (Éast Texas)	1953	Surface, Subsurface, Core-drill, Seismic	Structural/ Anticline	Gretaceous/ Gulf	Sandstone	4,700	35
15. Quitnom (all) (East Texas)	1942	Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	6,700	35

Surface	(millions	Crude bbls as	Oil of Dec. 31,	1975)	(Bcf as	Matural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	
140,000	7,000.0	4,310.1	1,289.9	69.02			23.17				
240,000		13.8	4.2	0.23			61.95			0.03ª	
14,000	1,336.9	577.0	438.9	40.81		:	29.48			0.01	
46,800		72.6	2.1	0.22			1.74			0.012	
2,500		7.3	1.0	0.13			0.01				
26,000		35.3	3.7	0.62			32.97			0.32ª	
23,000	414.2	134.3	78.7	11.11			43.45			3.42 ^h	
41,000	89.0	19.4	1.5	0.25			7.61			0.01ª	
9,500	739.0	240.2	49.8	3.35		*	*				
33,920		*	*	*	:		4.25			*a	
15,360		60.1	3,6	0.34	600.3		2.17			0.04 ^a	
24,000		0.1			579.3		14.07				
11,800		0.1			820.7		13.20			0.09 ^a	
7,080	198.0	64.8	57.3	4.56			3.53				
10,560		87.9	34.1	3.37	:		3.14			0,02ª	

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
16. Long Lake (all) (East Texas)	1933	Seísmic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	5,200	45
17. New Hope (East Texas)	1943	Geophysics, Seismic	Structural/ Faulted anticline	Jurassic/ Upper; Cretaceous/ Coahuila, Comanche	Limestone, Sandstone	12,000, 8,000, 7,300	60, 15, 15
Class A Fields							•
18. Chapel Hill (East Texas)	1930	Surface, Seismic	Combination/ Faulted anticline, Porosity pinchout	Cretaceous/ Comanche	Sandstone	5,800	20
19. Bryans Mill (East Texas)	1960	Seismic	Structural/ Faulted anticline	Jurassic/ Upper	Limestone	10,300	60
20. Woodlawn (East Texas)	1947	Surface, Seismic	Combination/ Permeability pinchout, Nose	Cretaceous/ Coahuila, Comanche	Limestone	6,400, 5,700	25, 5
21. Srapeland (East Texas)	1936	Surface	Combination/ Anticline, Porosity pinchout	Cretaceous/ Gulf	Sandstone	6,000	10
Class E Fields		<u>:</u>					Ì
22. Soke (East Texas)	1942	Seismic	Structural/ Anticline	Cretaceous/ Comanche, Gulf	Sandstone	6,300, 4,100	55, 1 5
23. Shomburger Lake (East Texas)	1957	Subsurface	Structural/ Fault	Cretaceous/ Comanche	Sandstone	7,600	75
24. Wheim (all) (East Texas)	1945	Seismic	Structure1/ Anticline	Cretaceous/ Coahuila	Sandstone, Limestone	7,300	30
25. Sand Flat (East Texas)	1944	Surface, Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	7,300	20
26. Manziel (East Texas)	1943	Surface, Seismic	Structural/ Faulted anticline	Cretaceous/ Comanche	Sandstone	6,600	20
27. Henderson (East Texas)	1943	Surface	Combination/ Anticline, Porosity- permeability pinchout	Cretaceous/ Coahuila	Limestone, Sandstone	7,300, 7,500	40, 15
28. Navarro Crossing (East Texas)	1938	Surface, Core-drill, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	5,900	55
29. Lansing, North (East Texas)	1949	Seismic	Structural/ Anticline	Cretaceous/ Comanche, Coahuila	Limestone, Sandstone	6,700, 7,500	15, 20
30. Fittsburg (East Texas)	1940	Surface, Core-drill, Seismic	Structura1/ Anticline	Cretaceous/ Coahuila; Jurassic/ Upper	Sandstone, Limestone	8,000, 12,400	20, 30

348

Surface	(million	Crude ns bbls as	011 of Dec. 31,	1975)	Natural Gas (8cf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
13,860		36.8	2.8	0.30			0.91			*
6,400		40.7	2.1	0.22			12.87			1.01
12,700		7.3	1.7	0.09	291.7		3.38			0.02
6,520		0.3	0.5	0.23	92.2	:	20.32			0.70
23,000		6.4	0.8	0.06			2.52			0.18
8,060		2.4		 	•		2.37		:	0.01
2,160		24.3	15.7	1.16			0.94			0.02
1,940	83.2	19.5	18.6	1.42			0.52			•
8,500		1.1	0.5	0.10			4.83		İ	*
2,400		20.4	14.6	1.06			0.16			
2,760		20.1	7.4	0.70			0.53			0.01
15,000		5.4	0.3	0.06			1.27		:	0.02
4,800		5.4	0.4	0.08	li li		0.25			*
10,080		0,2	0,1	0.01			0.35		i	0.01
5,800		13.5	4.7	0.59			3.75			

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class C Fields 31. Longwood (also NLA) (East Texas)	1933 (1927)	Subsurface, Seismic	Combination/ Porosity pinchout, Facies change, Nose	Cretaceous/ Comanche	Limestone	2,400	55
32. Pewitt Ranch (East Texas)	1949	Seismic	Structural/ Fault	Cretaceous/ Comanche	Sandstone	4,700	25
33. Gilmer (East Texas)	1965	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	11,700	140
34. W. A. Monorief (East Texas)	1963	Seismic	Structural/ Anticline	Jurassic/ Upper; Cretaceous/ Coahuila	Limestone	12,400. 8,200	10, 10
35. Fantis, Southwest (East Texas)	1961	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	12,600	30
36. Hallsville, South (East Texas)	1952	Subsurface	Stratigraphic/ Porosity- permeability pinchout	Cretaceous/ Coahuila	Limestone	6,700	20
37. Overton (East Texas)	1973	Subsurface	Combination/ Porosity pinchout, Nose	Jurassic/ Upper	Limestone	12,000	15
38. Kildare (East Texas)	1942	S@1smic	Structural/ Anticline	Cretaceous/ Comanche, Coahuila	Limestone	6,000, 9,700	10, 50
39. Lassater (East Texas)	1946	Seismic, Subsurface	Structural/ Anticline	Cretaceous/ Coahuila	Sandstone	8,700	50
40. Bethel (East Texas)	1956	Seismic, Subsurface	Structural/ Salt dome	Cretaceous/ Comanche	Dolomite	8,300, 9,800	25, 40
41. Shiloh (East Texas)	1960	Subsurface	Stratigraphic/ Porosity pinchout	Cretaceous/ Coahuila	Limestone	7,000	10
42. Haynes (East Texas)	1954	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Comanche	Limestone	6,000	10
43. Pins Mills (East Texas)	1949	Subsurface	Structural/ Fault	Cretaceous/ Gulf	Sandstone	5,500, 4,800	15, 25
44. Frost (East Texas)	1964	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	9,700	70
45. Hitts Lake (East Texas)	1953	Subsurface, Seismic	Structural/ Faulted anticline	Cretaceous/ Comenche	Sandstone	7,200	50
46. Elkhart (East Texas)	1938	Surface	Structural/ Faulted anticline	Cretaceous/ Coahuila, Gulf	Sandstone	9,900, 5,300	20,
47. Trix-Lia (East Texas)	1950	Subsurface	Combination/ Faulted anticline, Porosity pinchout	Cretaceous/ Gulf	Sandstone	3,800 3,600 3,700	, 25,

Surface	(million	Cruce s bbls as	011 of Dec. 31,	1975)	(Bef as	Natural Gas of Dec. 31,	1975)	Na (mill. b	tural Gas Liqu bls as of Dec.	ide 31, 1975)
Area (acres)	In Place	Cum, Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
13,000		7.7	1.3	0.17			0.19			
1,500		18.8	3.9	0.34						_
3,200		*	*	*	38.1		4.79	0.6ª	ļ	0.08ª
1,600		2.4	0.5	0.16	23.0	:	4.20	1.5ª		
960					74.7		4.39	, *a		
24,000		0.2	*	*			0.19			**
6,000					0.1	104.9		*		
6,180		13.1	1.9	0.16			0.37			*a
2,240		*					1.24			*ª
2,560		1.1	*	*	62.8		2,30			0.01 ^a
7,700		7,4	1.2	0.12			0.65			* ^a
6,280		12.2	1.6	0.23	i		0.13			
6,680	İ	12.9	1.4	0.20			*			
1,120		5.7	3.4	0.43	10.6	<u> </u>	1.40			
1,120		8,4	3.8	0.29			0.24			
1,400		*			42.1		3.15	0.4ª		0.04
1,000		7.4		0.41		ļ	*			
										<u> </u>
			!							

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
48. New Diana (East Texas)	1959	Subsurface	Stratigraphic/ Unconformity, Porosity pinchout	Cretaceous/ Culf	Sandstone	3,700	10
49. Danville (East Texas)	1959	Subsurface	Combination/ Nose, Porosity pinchout	Cretaceous/ Coahuila	Limestone	7,400, 7,300	10, 15
50. Tatum (East Texas)	1956	Subsurface	Stratigraphic/ Facies change	Cretaceous/ Coahuila	Limestone	6,700	5
51. Merigale-Paul (East Texas)	1944	Seismic, Trend	Combination/ Fault, Porosity- permeability pinchout	Cretaceous/ Gulf	Sandstone, Shale	4,800	25
52. Rosewood (East Texas)	1975	Subsurface	Stratigraphic/ Porosity-perme- ability pinchout	Jurassic/ Upper	Sandstone	10,100	390
53. <i>Scoober Creek</i> (East Texas)	1971		, , , , , , , , , , , , , , , , , , , ,	Cretaceous/ Comanche	Limestone	6,900	10
54. Wright Mtn. (East Texas)	1953	Seismic, Subsurface	Combination/ Anticline, Porosity pinchout	Cretaceous/ Coahuila	Limestone	8,000	15
55. Slocum (East Texas)	1955	Seismic	Combination/ Faulted anticline, Facies change	Tertiary/ Eocene; Cretaceous/ Gulf	Sandstone	500, 5,700	50.
56. Bethel Dome, East (East Texas)	1958	Seismic, Subsurface	Combination/ Salt dome, Porosity pinchout	Cretaceous/ Comanche	Dolomite	9,800	40

^aLease condensate only.

 $^{^{\}mathrm{b}}$ Plant condensate.

Surface	(millions	Crude bbls as c	0il of Dec. 31,	1975)		atural Gas of Dec. 31,	, 1975)		tural Gas Liqui ols as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,220		9.0	2.6	0.51			0.06			-
3,200		2.7	0.3	0.08			1.05			0.0t ^a
4,000		8.0	0.2	0.04			0.03	i		
1,600		10.8	0.5	0.04		*	*]		
								İ		
640					0.9		0.95			i
					6.1		2.44	*a		0.02 ^a
15,800		8.8	1.0	0.18			0.09			- -
2,500	:	9.2		0.56			0.01			- -
2,560		0.1	0.1	0.01	38.5		0.75	1.8		0.01

Table A.10a

THE SIGNIFICANT OIL AND GAS FIELDS OF ALABAMA

Field	Year Dist	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields							
1. Jay-Tittle Escambia Creek (also FL) (Mid-Gulf Coast)	1970	Seiswic	Combination/ Anticline, Pacies change	Jurassic/ Upper	Dolomite, Limestone	15,400	50
Class AA Fields							
2. Citronelle (Mid-Gulf Coast)	1955	Subsurface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	10,600	50
3. Hatter's Pond (Mid-Gulf Coast)	1974	Seismic	Combination/ Faulted anticline, Facies change	Jurassic/ Upper	Dolomite, Sandstone	18,100	80
Class A Fields	ļ						
4. Chunchula (Mid-Gulf Coast)	1974	Seismic, Geophysics	Combination/ Anticline, Facies change	Jurassic/ Upper	Dolomite	18,400	20
5. Rig Escambia Creek (Mid-Gulf Coast)	1972	Seismic	Combination/ Fault, Permeability pinchout	Jurassic/ Upper	Linestone	15,100	50
Class B Fields							
6. Chatom (Mid-Gulf Coast)	1970	Seismic	Structural/ Anticline	Jurassic/ Upper	Dolomite	16,000	. 55
Class C Fields							
7. Womaak Hill (Mid-Gulf Coast)	1970	Seismic	Structural/ Faulted anticline	Jurassic/ Upper	Limestone	11,400	10
8. Flomaton (Mid-Gulf Coast)	1968	Seismic	Structural/ Anticline	Jurassic/ Upper	Sandstone	15,300	40
9. Gilbertown (Mid-Gulf Coast)	1944	Seismic	Structural/ Fault, Practuring	Cretaceous/ Gulf	Sandstone, Chalk	3,200, 2,600	25, 13
10. Pollard (Mid-Guif Coast)	1952	Core-drill, Geophysics, Subsurface	Structural/ Faulted anticline	Gretaceous/ Gulf	Sandstone	5,900	30
11. Chootaw Ridge, North (Mid-Gulf Coast)	1972	Trend	Structural/ Faulted anticline	Jurassic/ Upper	Limestone	12,000	30
		1			I		

			e Oil	1075)	(D 6	Natural Gas	1075)	Nat	ural Gas Liquid	is
Surface	·		of Dec. 31,			of Dec. 31,			ls as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,200		9.0	13.7	2.75	11.6		3.41	0.2		0.22
16,440 8,320	416.4	116.2 	27.8 	4.16 	10.5 0.1		0.41		*	0.12
21,120 14,720		~- 		No. 40-	0.1		0.04	2.4	*	0.02
2,560		 .		_ -	8.9		4.43	2.5		1.28
1,920		5.6		1.58	2.6		0.73	0.3		0.17
5,760					29.9		10.24	2.5		0.96
4,160	75.8	10.8	0.8	0.15						
880	31.9	11.5	0.4	0.09	0.2		0.01			
600	37.4	1.3	7.6	0.44	0.6		0.22		-2.0	
	<u></u>	<u> </u>						<u> </u>		

Table A.10b

THE SIGNIFICANT OIL AND GAS FIELDS OF FLORIDA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields							
1. Jay-Vittle Escambia Creek (also AL) (Mid-Gulf Coast)	1970	Seismic, Trend	Combination/ Anticline, Facies change	Jurassic/ Upper	Dolowite, Limestone	15,500	55
Class AA Fields							
(None)						ĺ	
Class A Fields	1				<u> </u>		
2. Blackjack Creek (Mid-Gulf Coast)	1972	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone, Dolomite	15,800	15
Class B Fields							
3. Felda, West (South Florida)	1966	Subsurface, Trend	Combination/ Permeability pinchout, Anticline	Cretaceous/ Comanche	Limestone	11,500	20
Class C Fields							
4. Sunniland (South Florida)	1943	Core-drill, Geophysics	, Structural/ Anticline	Cretaceous/ Comanche	Limestone	11,600	25
5, Sunoco-Felda (South Florida)	1964	Subsurface	Combination/ Permeability pinchout, Nose	Cretaceous/ Comanche	Limestone	11,500	15
6. Bear Island (South Florida)	1972	Trend	Combination/ Permeability pinchout, Nose	Cretaceous/ Comanche	Limestone	11,800	10

Surface	(millions	Crude bbls as o	011 of Dec. 31,	1975)		latural Gas	1975)		ral Gas Liquid s as of Dec. 3	
Атеа	In	Cum.	Demonst.	1975	Cum.	Demonst.	1975	Cum. Prod.	Demonst. Reserves	1975 Prod.
(acres)	Place	Prod.	Reserves	Prod.	Prod.	Reserves	Prod.	Prod.	Késerves	PIOU.
14,000	696.8	104.0	219.3	31.69	126.6		39.35			
5,720		4.6	45.4	4.60	4.4		4.34			
7,500	96.9	18.5	21.5	3.37	1.6		0.26			
2,080	57.1	15.4	3.4	0.51	1.2		0.05		-	
3,840	34.0	8.0	2.9	0.55	8.0		0.04			
2,880		0.6	9.4	0.33	*		0.02			
										<u> </u>

Table A.10c

THE SIGNIFICANT OIL AND GAS FIELDS OF MISSISSIPPI

358

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields		į					İ
1. Paxterville (sll) (Mid-Gulf Coast)	1944	Geophysics, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	8,700, 7,600	55, 50
2. Gwinville (Mid-Gulf Coast)	1944	Geophysics, Seismic	Structural/ Faulted salt dome	Cretaceous/ Gulf, Comanche	Sandstone	7,700	35
3. Tinsley (Mid-Gulf Coast)	1939	Surface, Seismic, Geophysics	Combination/ Faulted anticline, Facies change	Cretaceous/ Gulf	Sandstone	4,700	40
Class AA Fields	!						
4. Cranfield (Mid-Gulf Coast)	1943	Geophysics, Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	10,000	50
5. Heidelberg (all) (Mid-Gulf Coast)	1944	Geophysics, Seismic	Structural/ Faulted salt dome	Cretaceous/ GuIf	Sandstone	4,400	40
 Brookhaven (Mid-Gulf Coast) 	1943	Geophysics, Seismic	Structural/ Anticline	Cretaceous/ Gulf	Sandstone	10,100	30
Class A Fields							
7. Soso (Mid-Gulf Coast)	1945	Geophysics, Seismic	Structural/ Anticline	Cretaceous/ Comanche, Gulf	Sandstone	12,000, 6,600, 11,400	20, 15, 10
8. Pistol Ridge (Mid-Gulf Coast)	1951	Subsurface, Seismic	Combination/ Faulted anticline, Facies change	Cretaceous/ Gulf, Comanche	Sandstone	8,500, 7,200, 8,300	10, 20, 5
9. Hwb (all) (Mid-Gulf Coast)	1945	Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf, Comanche	Sandstone	9,000, 11,600	40. 80
10. Maxie (Mid-Gulf Coast)	1952	Subsurface, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	8,200, 7,200	50, 35
11, Eucutta (all) (Mid-Gulf Coast)	1943	Geophysics, Seismic	Structural/ Faulted anticline	Cretaceous/ Gulf	Sandstone	4,900	35
12. Pachuta Creek (Mid-Culf Coast)	1968	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	13,000, 12,500	90 , 65
13. Little Creek (Mid-Gulf Coast)	1958	Geophysics. Subsurface, Seismic	Combination/ Anticline, Facies change	. Cretaceous/ Gulf	Sandstone	10,400	35
14. Dexter (Mid-Gulf Coast)	1957	Seismic, Subsurface	Structural/ Salt dome	Cretaceous/ Comanche, Gulf	Sandstone	10,800, 10,000, 9,600	15, 10, 20
15. Thomasville (Mid-Gulf Coast)	1969	Seismic	Structural/ Anticline	Jurassic/ Upper	Sandstone	19,700	780
Class B Fields	i						1
16. Raleigh (Mid-Culf Coast)	1957	Geophysics, Seismic	Structural/ Faulted salt dome	Cretaceous/ Coahuila	Sandstone	12,100, 12,600	45, 50

359 A.10c(EG-MS)-1

Surface	(millio	Crud ns bbls as	e Oil of Dec. 31,	19 75)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids ^a (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod
7,920		171.8	50.3	6.69	398.4		5.32	1.9		0.0
26,240		0.2	-		1370.8		7.72	6.3		0.0
10,720		198.5	20.0	2.55	0.1	*				
7,760	•	48.4	1.1	0.07	700.6		0.09	*		
8,360		120.6	44.9	4.80	15.9		1.02	*		
7,120		69.0	5.0	0.59	336.6		0.06			
8,880		51.0	5.5	0.74	165.7		2.15	2.9		0.0
14,080		3.1	*	*	314.3		1.35	4.1		0.0
8,200		0.6	0.1	0.03	263.8		8.82	6.7		0
12,160		_			301.0		1.20	4.9		0.0
5,760		46.6	7.2	1.44	3.1		0.12			
4,640		27.3	22.0	3.04	14.8		2,28			
8,200		46.7	0.1	0.06	25.5					
8,960		9.5	0,5	0.12	162,8		7,13	0.3	*	0.0
3,840					35.5		14.13			-
1,240		21.0	2.8	0.54	108.0		2,73			_

A,10c(EG-MS)-2 360

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (fest)	Reservoi Thicknes (feet)
7. La Srange (Mid-Gulf Coast)	1946	Seismic	Combination/ Anticline, Nose, Facies change	Tertiary/ Eocene	Sandstone	6,100, 6,200, 4,300	5, 10, 10
 Yellow Creek, East & West (Mid-Gulf Coast) 	1948	Geophysics, Seismic	Structural/ Faulted salt dome	Cretaceous/ Gulf	Sandstone	4,900	35
9. Bay Springs (Mid-Gulf Coast)	1965	Seismic	Structural/ Anticline	Jurassic/ Upper	Sands tone	14,500	50
0. Mallalieu (all) (Mid-Gulf Coast)	1944	Seismic	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone	10,400	35
21. McComò (Mid-Gulf Coast)	1959	Subsurface, Seismic	Combination/ Anticline, Facies change	Cretaceous/ Gulf	Sandstone	10,500	15
22. Quitman Bayou (Mid-Gulf Coast)	1963	Subsurface	Structural/ Anticline	Tertiary/ Eocene	Sandstone	3,900	50
23. Bryan (Mid-Gulf Coast)	1958	Seismic, Geophysics, Subsurface	Structural/ Anticline	Cretaceous/ Comanche, Comanulla	Sandstone	10,300, 10,700	15 15
Class C Fields			- •		r3-4	7,900,	10
4. Davis (Mid-Gulf Coast)	1969	Subsurface, Seismic	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	6,700	20
25. Waveland (Mid-Gulf Coast)	1965	Subsurface, Seismlc	Combination/ Porosity- permeability pinchout, Nose, Fracturing	Cretaceous/ Comanche	Limestone	13,500	10
26. Knowo (Mid-Gulf Coast)	196C	Seismic	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	12,500	20
27. Pickens (Mid-Gulf Coast)	1940	Subsurface, Seismic, Core-drill	Structural/ Fault, Fracturing	Cretaceous/ Gulf	Sandstone	4,800	20
28. Tallahala Sreek (all) (Mid-Gulf Coast)	1966	Seismic	Structural/ Anticline	Jurassic/ Upper	Sandstone, Limestone	15,600, 16,200	40
29, Bassfield (Mid-Gulf Coast)	1974	Seismic, Subsurface	Structural/ Anticline	Cretaceous/ Coahuila	Sandstone	15,900	55
30. Sandy Hook-Angie (also SELA) (Mid-Gulf Coast)	1948	Subsurface, Selsmic, Core-drill	Structural/ Anticline	Cretaceous/ Comanche, Gulf	Sandstone	11,700, 9,000	10
31. Polton (all) (Mid-Culf Coast)	1954	Seismic	Structural/ Faulted auticline	Cretaceous/ Comanche, Comanuila	Sandstone	10,700, 8,900, 11,200	20 30 25
32. Nancy, West (Mid-Culf Coast)	1970	Subsutface, Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	13,800	85
33. Jackson (Mid-Gulf Coast)	1930	Surface	Structural/ Anticline, Fracturing	Cretaceous/ Gulf	Limestone	2,400	
34. Corinne (Warrior)	1972	Seismic	Structural/ Faulted anticline	Mississippian/ Chester; Pennsylvanian/ Morrow	Sandstone	2,700, 5,000, 5,300	50 20 25

Surface	(millions	Crude	011 of Dec. 31,	1975)		Natural Gas of Dec. 31,	1975)		tural Gas Liqui bls as of Dec.	
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
5,800		39.6	2.5	0,33	7.4		0.04			
5,320		30.a	9.2	1.29	2.0		0.06			
1,760		27.5	5.5	1.32	15.1		0.90			
4,680		33.4	0.2	0.10	11.4		0.02			
12,720		29.4	0.1	0.04	27.3		0.03			
1,200		15.5	16.5	1.36	4.2		0.42			
1,800		23,4	5.6	0.55	2.7		0.01	-		
070			15.7	1 50			0.01			
920		8.3	15.7	1.52	0.1		0.01			
19,000					8.6		0.74	0.2		0.01
8,000		0.8	0.1	0.01	112.0		5.13			*
2,440		21.5	0.4	0.03	2,3		0.02			
2,000		14.7	2.8	0,54	24.8		1.02			
3,200		0,1	2.4	0.06	2.7		2,70			
8,640		0.1			99.7		1.73	1.0		0.01
1,880		16.3	2.6	0.22	6.6		0.12			
1,760		- 8.5	9.5	0.94	6.3		0.53			
7,500					117.8		0.02	-		
6,080					5.1		2.75	*		0.01
		1	1		-	!	-			

	·	1			<u> </u>		<u>.</u>	1
	Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
35.	Quâtman (Mid-Gulf Coast)	1945	Surface, Core-drill, Seismic	Structural/ Faulted anticline	Jurassic/ Upper	Sandstone, Limestone	10,800, 11,400, 10,700	15, 285, 30
36.	Summerland (Mid-Gulf Coast)	1961	Subsurface	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	10,400, 9,300, 11,600	20, 25, 30
37.	Diamond (Mid-Culf Coast)	1957	Seismic	Combination/ Anticline, Facies change	Cretaceous/ Comanche; Jurassic/ Upper	Sandstone	9,200, 12,000, 10,000	15, 50, 10
38.	Cypress Creek, South (Mid-Gulf Coast)	1968	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	14,300	65
39.	Loring (Mid-Gulf Coast)	1953	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone, Dolomite	12,100	15
40.	Carthage Foint (Mid-Gulf Coast)	1945	Seismíc	Combination/ Anticline, Permeability pinchout	Cretaceous/ Gulf	Sandstone	10,100	40
41.	Piney Woods (Mid-Gulf Coast)	1970	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	19,800	750
42.	Muldon (Warrior)	1952	Geophysics, Seismic	Structural/ Faulted anticline	Miseissippian/ Chester	Sandstone	5,200	90
43.	Merit (Mid-Gulf Coast)	1959	Subsurface, Seismic	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	12,900, 12,100	30, 20
44.	Overton (Mid-Gulf Coast)	1951	Geophysics, Subsurface, Seismic	Combination/ Anticline, Unconformity	Tertiary/ Eocene	Sandstone	6,100	10
45.	Pool Creek (Mid-Gulf Coast)	1961	Geophysics, Subsurface	Structural/ Faulted salt dome	Cretaceous/ Comanche, Coahuila; Jurassic/ Upper	Sandstone, Limestone	10,700, 12,600, 11,200	25, 95, 20
46.	Kokomo (Mid-Gulf Coast)	1960	Subsurface, Seismic	Structural/ Anticline	Cretaceous/ Comanche	Sandstone	12,900	10
47.	Nancy, East (Mid-Gulf Coast)	1968	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	13,500, 14,300	15, 5
48.	Martinville (Mid-Gulf Coast)	1957	Surface, Seismic, Geophysics	Structural/ Faulted anticline	Cretaceous/ Coahuila, Comanche	Sandstone	14,200, 11,600	15, 25
49.	Fayette (Mid-Gulf Coast)	1945	Geophysics, Seismic	Combination/ Anticline, Facies change	Tertiary/ Eocene; Cretaceous/ Gulf	Sandstone	3,900, 9,600	5, 25
50.	Gvett (Mid-Gulf Coast)	1948	Geophysics, Seismic	Structural/ Faulted salt dome	Cretaceous/ Culf	Sandstone	7,300, 8,600	25, 20
51.	Piney Woods, Southwest (Mid-Gulf Coast)	1974	Seismic	Structural/ Anticline	Jurassic/ Upper	Limestone	22,100	100

aLease condensate only.

Surface	(millions	Crude	Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Natural Gas Liquids (mill. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,400		14.6	3.7	0.65	3.7	-	0.12			
1,040		13.2	4.3	0.49	2.3		0.07			
1,320		11.6	2.6	0.29	3.2		0.07			
720		5.7	7.8	0.57	1.7		0.15			
1,280				<u>-</u> -	54.0		1,34	1.1		0.01
4,480		0.6	*	0.01	49.2		*	3.7		
1,280					10.9		4.37			
2,560					64.9			0.3		
3,000		4.8	0.3	0.08	19.6		2,09	0.4		0,02
800		8.6	2.1	0.18	0.3					
800		9.3	0.8	0.17	3.7		0.04			
8,320					40.1		2.05	*		*
860		7.5	2.3	0.54	3.0		0.18			
640		6.6	3.2	0.07	2,2					
2,640		5,6	*	0.05	27.2		0.05	*		
1,160		5.5	. 4.5	0.25	*					
1,280					0.6		0.54			

Table A.lla
THE SIGNIFICANT OIL AND GAS FIELDS OF ILLINOIS

Field	Year Dis-	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi Thicknes (feet)
Class AAA Fields							
1. Louden (Illinois)	1937	Surface, Seismic, Core-drill	Structural/ Anticline	Mississippian/ Chester	Sandstone	1,500, 1,500, 1,600	30, 15, 10
2. Laurence County Div. (Illinois)	1900	Random	Structural/ Anticline	Mississippian/ Chester; Pennsylvanian/ Dos Moines	Sandstone	1,400, 800; 1,700	30, 40, 5
3. Salem Consol. (Illinois)	1938	Seismic	Structural/ Anticline	Mississippian/ Chester, Meramec; Devonian/ Middle	Sandstone, Limestone	1,800, 2,100, 3,400	40, 15, 40
4. Clay City Consol. (Illinois)	1937	Geophysics, Seismic	Combination/ Anticline, Facies change	Mississippian/ Chester, Meramec	Sandstone, Limestone	2,900, 3,100, 3,000	15, 10, 5
5. Main Consol. (Illinois)	1906	Random	Stratigraphic/ Facies change	Pennsylvanian/ Atoka	Sandstone	1,000	25
6. Griffin- New Harmony Consol. (also IN) (Illinois)	1939 (1938)	Seismic	Combination/ Faulted anticline, Facies change	Mississippien/ Chester	Sandstone	2,600, 2,700, 2,800	20, 20, 15
Class AA Fields						 - 	1
7. Dale Consol. (Illinois)	1940	Seismic, Subsurface	Structural/ Anticline	Mississippian/ Chester, Meramec	Sandstone, Limestone	3,200, 3,100, 3,200	20, 10, 5
Class A Fields							
8. Clark County Division ⁸ (Illinois)	1904	Surface	Structural/ Anticline	Pennsylvanian/ Atoka, Des Moines; Mississippian/ Osage	Sandstone, Limestone	400, 500	25, 50
a. Johnson, North & South (B)	1907	Random	Structural/ Anticline	Pennsylvanian/ Des Moines, Atoka	Sandstone	400, 500	10, 50
b. Martinsville (C)	1907	Surface	Structural/ Anticline	Pennsylvaniam/ Atoka; Mississippiam/ Osage	Sandstone	500, 1,300	30, 40
e. Siggins (8)	1906	Random	Structural/ Anticline	Pennsylvanian/ Des Moines	Sandstone	400, 600	25, 40
d. Westfielā (C)	1904 	Surface	Structural/ Anticline	Mississippian/ Meramec; Ordovician/ Middle	Limestone	300, 2,300	40, 10
9. Sailor Springs Consol. (Illinois)	 1938 	Seismic	Structural/ Anticline	Mississippian/ Chester, Meramec	Sandstone, Limestone	2,600, 2,900	10,
10. Roland Consol. (Illinois)	1939	Seismic, Core-drill, Su!surface	Combination/ Faulted auticline, Facies change	Mississippian/ Chester	Sandstone	2,900, 2,600, 2,700	15, 20, 15
<pre>11. Johnsonville Consol. (311inois)</pre>	1940	Seismic. Subsurface	Combination/ Anticline, Facies change	Mississippian/ Meramec, Chester	Limestone, Sandstone	3,200, 3,000, 3,100	15, 20, 10

Surface	(million	Crude is bbis as	0i1 of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Na (mill. b	tural Gas Liquid	31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
24,580		361.2	17.8	2.28						
37,020		370.8	28.2	3.23						
13,640		360.6	24.4	2.78						
93,160		304.6	33.4	3.50				:		
62,000		225.7	15.3	1.04						
25,780		156.2	8.1	1.54			:	·		
18,460		98.9	2.1	0.42						
26,840		85.5	2.7	0.28						
4,480					:					
2,600		<u> </u>				 				
4,440							:			
10,500										
18,900		56.7	4.7	0.72						
11,140		57.3	1.7	0.58		· - 				!
9,000		52.2	3.3	C.44		 - 				
		!	.							

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thickness (feet)
12. Centralia (Illinois)	1937	Seismic	Structural/ Anticline	Mississippian/ Chester; Devonian/ Middle; Ordovician/ Middle	Sandstone, Limestone	1,400, 2,900, 3,900	20, 10, 20
Class B Fields	i]					
13. Benton (Illinois)	1941	Seismic, Subsurface, Core-drill	Combination/ Anticline, Facies change	Mississippian/ Chester	Sandstone	2,100, 2,800	10, 15
14. Phillipstown Consol. (Illinois)	1939	Seismic	Combination/ Faulted anticline, Facies change	Pennsylvanian/ Atoka; Mississippian/ Meramec	Sandstone, Limestone	1,500, 3,000	10, 10
15. Albion Consol. (Illinois)	1940	Seismic	Combination/ Faulted anticline, Facies change	Mississippian/ Chester; Pennsylvanian/ Morrow	Sandstone	3,000, 2,000, 3,000	20, 15, 15
16. Mt. Cormel (also IN) (Illinois)	1939	Seismic	Combination/ Anticline, Facies change	Mississippian/ Chester, Meramec; Pennsylvanian/ Des Moines	Sandstone, Limestone	2,000, 1,400; 2,300	15, 20, 5
17. Allendale (Illinois)	1912	Random	Structural/ Anticline	Pennsylvanian/ Morrow, Des Moines	Sandstone	1,500, 700	20, 30
18. Inman, East, Consol. (also IN) (Illinois)	1940	Seismic	Structural/ Faulted anticline	Mississippian/ Chester	Sandstone	2,400, 2,100, 2,000	15, 15, 20
19. Matteon (Illinois)	1939	Seismic, Core-drill	Combination/ Anticline, Facies change	Mississippian/ Meramec, Chester	Sandstone, Limestone	2,000, 1,800, 2,000	10, 15, 5
20. St. James (Illinois)	1938	Seismic, Trend	Structural/ Anticline	Mississippian/ Chester, Osage	Sandstone	1,600, 3,100	15, 35
Class C Fields						ţ	
21. Storms Consol. (Illinois)	1939	Seismic	Combination/ Faulted anticline, Facies change	Mississippian/ Chester	Saudstone	2,200, 3,300	15, 15
22. Woodlawn (Illinois)	1940	Surface, Seismic	Structural/ Anticline	Mississippian/ Chester	Sandstone	2,000	25
23. Herald Consol. (Illinois)	1940	Seismic, Core-drill	Combination/ Anticline, Facies change	Mississippian/ Chester	Sandstone	2,700, 2,900, 2,200	15; 5, 10
24. Goldengate Consol. (Illinois)	1939	Seismic	Combination/ Anticline, Facies change	Mississippian/ Chester, Meramec	Sandstone, Limestone	3,200, 3,300, 3,300	15; 5, 5
25. Iola Consol. (Illinois)	1939	Seismic, Subsurface	Structural/ Anticline	Mississippian/ Chester. Meramec	Sandstone, Limestone	2,300, 2,400, 2,400	10, 10, 5
26. Boyd (Illinois)	1944	Seismic	Structural/ Anticline	Mississippian/ Chester	Sandstone	2,100, 2,100	20. 15

Surface	(million	Crude ns bbls as	011 of Dec. 31,	1975)	Natural Gas (Bcf as of Dec. 31, 1975)			Natural Gas Liquids (mill. bbls as of Dec. 31, 1975			
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod,	Cum. Prod.	Demonst. Reserves	197. Pro	
2,980		57.1	1.2	0.19							
2,360		39.9	0.3	0.04	İ						
7,080		28,5	5.8	0.51				ļ			
5,680		29.5	1.8	0.22							
4,660		i 17.9	2.1	0.20							
10,000		22.4	2.2	0.23							
4,480		21.8	1.0	0.07							
6,080		19.8	1.5	0.14	4.7		1.19				
2,280		20.2	1.4	0.18				<u> </u> - -			
4,680		20.2	2.4	0.28							
1,900		18.1	0.4	0.07		:					
6,340		16.5	1.8	0.20							
7,100		17.3	1.7	0.16							
3,460		15.6	1.8	0.24							
1,500]	14.8	0.2	0.02							

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
27. Bungay Conscl. (Illinois)	1941	Seismic	Combination/ Anticline, Facies change	Mississippian/ Chester	Sandstone	3,300, 3,300	15, 10
28. Aden Consol. (Illinois)	1938	Seismic	Structural/ Anticline	Mississippian/ Chester, Meramec	Sandstone, Limestone	3,200,	10,
29. Patoka (Illinois)	1937	Surface, Seismic	Structural/ Anticline	Mississippian/ Chester, Meramec; Ordovician/ Middle	Sandstone, Limestone	1,400, 4,000, 1,600	25, 25, 10
30. Eldorado Consol. (111inois)	1941	Subsurface, Seismic	Combination/ Anticline, Facies change	Mississippian/ Chester	Sandstone	2,100, 2,900	25, 10
31. Tonti (Illinois)	1939	Seismic	Structural/ Anticline	Mississippian/ Meramec, Chester	Limestone, Sandstone	2,100, 2,000, 1,900	15; 30, 20
32. Parkersburg Consol. (Illinois)	1941	Se1smic	Structural/ Anticline	Mississippian/ Meramec	Limestone	3,200, 3,200, 3,100	10, 10, 10
33. Mill Shoals (Illinois)	1939	Seismíc	Combination/ Anticline, Facies change	Mississippian/ Chester, Meramec	Sandstone, Limestone	3,200, 3,300, 3,300	10, 10, 10
34. Walpole (Illinois)	1941	Setsmic	Structural/ Anticline	Mississipp1an/ Chester	Sandstone	3,100	20
35. Marine (Illinois)	1943	Geophysics	Stratigraphic/ Organic reef	Silurian/ Middle	Limestone	1,700	20
36. Divide Consol. (Illinois)	1943	Seismic	Combination/ Anticline, Facies change	Mississippian/ Meramec	Limestone	2,700, 2,800, 2,700	5, 5, 10
37. Irman, West, Consol. (Illinois)	1940	Seismic, Trend	Combination/ Fault, Facies change, Unconformity	Mississippian/ Chester	Sandstone	2,500, 2,100, 2,800	10, 10, 15
38. Irvington (Illinois)	1940	Selsmic	Structural/ Anticline	Mississippian/ Chester; Ordovician/ Middle	Sandstone, Limestone	1,500, 4,300, 1,400	10, 90, 10
39. Cordes (Illinois)	1939	Seismic	Structural/ Anticline	Mississippian/ Chester	Sandstone	1,300	15
40. Rochester (also IN) (Illinois)	1948	Subsurface	Stratigraphic/ Facies change	Mississippian/ Chester; Pennsylvanian/ Morrow	Sandstone	1,900, 1,300	20, 15
41. Assumption Consol. (Illinois)	1948	Seismic	Combination/ Anticline, Facies change	Devontan/ Middle; Mississippian/ Chester, Meramec	Limestone, Sandstone	2,300, 1,100, 1,200	
42. Centerville, East (Illinois)	1941	Seismic	Combination/ Faulted anticline, Facies change	Mississippian/ Chester	Sandstone	2,500, 2,900	25, 5

a Includes Beilair, Caney, and New York.

369 A. lla(IMB-IL)-3

Surface	(million	Grude s bbls as	Oil of Dec. 31,	1975)		Natural Gas of Dec. 31.	1975)	Nat (mill. b	ural Gas Liquid ble as of Dec.	s 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
3,260		14.1	0.7	0.09						
2,400		13.3	0.5	0.08						
1,560		14.6	0.2	0.04						
3,560	:	11.6	0.6	0.10	3.7		0.01			E
580		13.8	0.5	0.09]			
5,320		11.1	0.3	0.02						
3,240		11.7	0.4	0.11						
2,180		10.4	0.2	0.10						
2,480		11.9	0.3	0.03		İ				
3,820		10.8	1.1	0.15		į				
3,860		8.8	1.1	0.13						
1,420		9.1	1.1	0.10						
1,640		10,1	0.3	0.07						
380		2.5	0.1	0.01				!		
2,460		10.1	0.8	0.09				: : :		
1,280		8.4	0.4	0.07						

Table A.11b

THE SIGNIFICANT OIL AND GAS FIELDS OF INDIANA

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
Class AAA Fields							
1. Griffin-New Harmony Consol. (also IL) (Illinois)	1938	Seismic	Combination/ Anticline, Facies change	Mississippian/ Chester, Meramec	Sandstone, Limestone	2,500, 2,700, 2,800	25, 25, 15
Class AA Fields							
2. Trenton (Cincinnati)	1886	Random	Stratigraphic/ Facies change	Ordovician/ Middle	Dolomite	800	15
Class A Fields							
(None)				i			
Class B Fields							
3. Mt. Carmel Consol. (also IL) (Illinois)	1941 (1939)	Seismic	Combination/ Anticline, Facies change	Mississippian/ Chester, Meramec	Sandstone, Limestone	1,600, 2,000, 2,300	20, 15, 5
4. Inman, East, Concol. (also IL) (Illinois)	1943 (1940)	Seismic	Structural/ Faulted anticline	Mississippian/ Chester	Sandstone	2,400, 2,100, 2,000	15, 15, 15
5. Union-Bouman Consol. (Illinois)	1916	Seepage	Stratigraphic/ Facies change	Mississippian/ Chester, Meramec; Pennsylvanian/ Atoka	Sandstone, Limestone	1,400, 1,700, 1,000	15, 10, 10
Class C Fields							
6. Springfield Consol. (Illinois)	1943	Subsutface	Stratigraphic/ Facies change	Mississippian/ Chester; Pennsylvanian/ Atoka	Sandstone	2,100, 1,100	15, 15
7. Mt. Vernon Consol. (Illinois)	1941	Seismic	Combination/ Faulted anticline, Facies change	Mississippian/ Chester; Pennsylvanian/ Atoka	Sandstone	2,300, 1,100, 1,400	10, 10, 15
8. Heusler Consol. (Illinois)	1938	Subsurface	Stratigraphic/ Facies change	Mississippian/ Chester, Meramec; Pennsylvanian/ Atoka	Sandstone, Limestone	1,800, 2,500, 1,500	10, 10, 20
9. Rochester (also IL) (Illinois)	1948	Subsurface	Stratigraphic/ Facies change	Mississippian/ Chester; Pennsylvanian/ Atoka	Sandstone	1,900, 1,300	40, 40
10. Caborn Consol. (Illinois)	1940	Seismic	Combination/ Faulted anticline, Facies change	Mississippian/ Chester; Pennsylvanian/ Atoka	Sandstone	1,900; 1,100	15, 30

Surface	(millions	Crude bbls as	Oil of Dec. 31,	1975)	(Bcf as	Natural Gas of Dec. 31,	1975)	Nat (mill. b	ural Gas Liquid bls as of Dec.	ls 31, 1975)
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst.	1975	Cum. Prod.	Demonst. Reserves	1975 Prod.
	Flace	riou.	Reserves	Proo.	rron.	Reserves	Prod.	11501	Neset yes	1104
7,600		74.5		0.56						
,			'			ļ	:			
105 120	, 1	105 3	,	0.01			l			
195,120		105.3	i i	0.01						
				•						
		•								
							<u> </u>		•	
3,840		7.3		0.13						
									İ	
360		2.8		*						
18,980		20.1		0.19						
10,760		20.1		0.19	 					
					İ					
					ļ					
2,800		20.0	ĺ	0.27						
2,800		20.0		0.27	:					
		 			! 		!	1		
2,500		14.9		0.20						
						Ì			İ	
2,340		9.1		0.17						
	i	}	•							
440	j	6.8		0.02						
1,980		8.7		0.09						

Table A.llc

THE SIGNIFICANT OIL AND GAS FIELDS OF MICHIGAN

372

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoi: Thickness (feet)
Class AA Fields							ĺ
1. Albion-Scipic Trend (Michigan)	1955	Random	Stratigraphic/ Facies change	Ordovician/. Middle	Dolomite	3,600, 3,800, 4,000	50, 65, 15
Class A Fields							
2. Read City (Michigan)	1940	Core-drill, Subsurface	Structural/ Anticline	Devonian/ Middle	Dolomite	3,600	5
3. Porter (Michigan)	1931	Core-drill, Trend	Combination/ Anticline, Porosity- permeability pinchout	Devonian/ Middle	Limestone	3,400	10
Class B Fields							
4. Mt. Pleasant (Michigan)	1928	Core-drill	Structural/ Anticline	Devonian/ Middle	Limestone	3,500	15
5. Deep River (Michigan)	1941	Subsurface, Core-drill	Combination/ Anticline, Facies change	Devonian/ Middle	Dolamite	2,800	145
Class C Fields							
6. Coldwater (Michigan)	1944	Core-drill, Seismic	Structural/ Anticline	Devonian/ Middle	Limestone, Dolomite	3,700, 3,100	25, 20
7. Buckeye, North (Michigan)	1937	Geophysics	Structural/ Anticline	Devonian/ Middle	Limestone	3,600	15
8. Frgeman (all) (Michigan)	1938	Subsurface, Core-drill	Structural/ Anticline	Devonian/ Middle	Limestone	3,900	20
9. Beaver Creek (Michigan)	1947	Core-drill	Structural/ Anticline	Devonian/ Middle	Dolomite	4,200	. 20
10. Walker (Michigan)	1938	Subsurface, Core-drill	Structural/ Anticline	Devonian/ Middle	Limestone	1,900	10
ll. <i>Norwich, East</i> (Michigan)	1942	Core-drill, Subsurface	Structural/ Anticline	Devonian/ Middle	Dolomite	4,400	15
12. <i>Kawkalin</i> (Michigan)	1938	Subsurface, Core-drill	Structural/ Anticline	Devonian/ Middle	Limestone	2,800	45
13. West Branch (Michigan)	1933	Surface, Subsurface, Geophysics	Structural/ Anticline	Devonian/ Middle	Limestone	2,700, 4,100	20, 10
14. Onondaga 10-IN-2W (Michigan)	1971	Seismic	Stratigraphic/ Organic reef	Silurian/ Middle	Dolomite	3,800	40
15. Headquarters (Michigan)	1941	Core-drill, Subsurface	Combination/ Anticline, Facies change	Devonian/ Middle	Dolomite	5,100	25
16. Rose City (Michigan)	1942	Subsurface, Core-drill	Structural/ Anticline	Devonian/ Middle	Dolomite	4,100	10
17. Salem (Michigan)	1937	Core-drill	Structural/ Anticline	Devonian/ Middle	. Dolomite	1,600	10
18. St. Helen (Michigan)	1941	Subsurface, Core-drill	Structural/ Anticline	Devonian/ Middle	Dolomite	4,200	10

Surface	(million	Crude as bbls as a		1975)	(Bcf as	Natural Gas of Eec. 31,	1975)	Na (mill. b)	Natural Gas Liquids 11. bbls as of Dec. 31, 1975)		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod	
11,440		110.6	27.4	2,48	157.8		9.78				
7,020		48.0	1.1	0,31	27.19						
6,700		49.6	1.1	0.10	5,0	 					
5,720		27.9	0.9	0.09	7,8						
1,600		26.7	0.6	0.06	1.6						
3,200		22.0	0.3	0.03	13.7						
3,040		19.6	7.7	0.09	*		 				
2,800		16.7	0.3	0.03	20,2						
4,240		10.8	5.8	0.55	18.7		0.13			l	
8,560		17.0	1.2	0.12	5.0	*	0.01				
4,640	-	10.0	4.5	0.40	8.9		0.56				
6,400		14.9	1.4	0.15	*						
5,280		12.5	3.1	5.20	0.1						
920		2.9	7.4	1,00	2.3		0.75				
2,400		10.6	0.5	0.08	6.8						
5,120		6.6	3.2	0.31	8.6		0.20			<u>;</u> 	
4,460		9.2	0.3	0.03	11.4					<u> </u>	
4,040		5.3	3.3	0,27	10.7		0.32				

Field	Year Dis- covered	Discovery Method(s)	Type of Trap(s)	Geologic Age of Reservoir Rock	Reservoir Lithology	Depth to Top (feet)	Reservoir Thickness (feet)
19. Peters (Michigan)	1955	Geophysics	Stratigraphic/ Organic reef	Silurian/ Middle	Dolomite	2,400	45
20. Chester 18-30N-2W (Michigan)	1971	Seismic	Stratigraphic/ Organic reef	Silurian/ Middle	Dolomite	5,900	20
21. Bloomingdale (Michigan)	1938	Subsurface, Core-drill	Structural/ Anticline	Devonian/ Middle	Limestone	1,200	5

Surface	(m.i11110r	Crude s bbls as	of Dec. 31,	1975)		Natural Gas s of Dec. 31,	1975)	Natural Cas Liquids (mill. bbls as of Dec. 31, 19		
Area (acres)	In Place	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.	Cum. Prod.	Demonst. Reserves	1975 Prod.
1,780		5.1	1.1	0.13	17,6		0.69			
840		3.0	5.8	0.82	1.7	}	0.47			
4,040		10.0	*	0.01						
					ĺ		ļ	i I		

Appendix B CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL AND NATURAL GAS

INTRODUCTION TO APPENDIX B

Appendix B provides cumulative and current (1975) production data for crude oil and natural gas. These tables are included to supplement the figures of Vol. I, Sec. III, which describe the distribution of known recoverable crude oil and natural gas resources by field size.

We have organized the 49 tables of App. B by state or statistical areas and by region, using the same numbering system as the tables of App. A. We also provide a summary table for the entire United States, excluding the states of the Appalachian region.

Each table of App. B provides information on 1975 production and cumulative production to the end of 1975 of crude oil and natural gas by significant field size category. We also provide data on total production in the state, area, or region, production in nonsignificant fields, and on the number of fields in each significant field size category. The crude oil data in the tables are complete. The natural gas figures lack annual production data from Indiana and Illinois, have only partial annual production data from Kansas and Oklahoma (lacking casinghead gas production), and do not have cumulative gas production data from southeastern New Mexico, all the areas of Texas, Kansas (lacking casinghead gas only), Oklahoma (lacking casinghead gas only), Illinois, and Indiana.

We derived the data in the state or statistical area tables of App. B from the field production data in App. A. The data in the regional tables are in turn summarized from the data in the state or area production tables for each region. The data on the number of fields in the regional and national summary tables are adjusted to avoid double-counting of fields in more than one state or statistical area.

Table B (Summary)

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL AND NATURAL GAS BY SIZE OF FIELD IN THE UNITED STATES⁸

			ie Oil barrels)	Katura (billion o	Natural Cas ^b (billion cubic feet)		
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75		
Class AAAA	81	1,173.31	37,821.4	5,824.03			
Class AAA	169	562.96	21,075.9	4,281.60			
Class AA	245	324.38	13,317.4	2,655.15			
Class A	378	241.21	9,613.8	2,258.72			
Class B	533	162.81	6,665.9	1,585.67			
Class C	1,065	151.46	6,553.9	1,372.11			
Others		269.61	10,146.0	1,889.25			
Total		2,885.74	105,194.3	19,866.53			

^aExcluding the Appalachian Region.

 $^{^{}m b}_{
m Excluding}$ casinghead gas in Illinois, Indiana, Kansas, and Oklahoma.

Table B.1

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN ALASKA

Field Size Class			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	3	41.60	296.4	100.00	777.8	
Class AAA	3	8.75	163.1	38.31	101.3	
Class AA	4	19.16	219.4	17.09	178.7	
Class A	3					
Class B	1		<u></u>	0.20	9.3	
Class C	1			0.08	0.9	
Others		0,32	1.3	0.95	12.3	
Total		69.83	680.2	156.63	1,071.3	

Table B.2

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN CALIFORNIA

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative - 12-31-75	1975	Cumulative 12-31-75
Class AAAA	15	204.09	10,454.7	102.89	14,943.3
Class AAA	18	60.76	3,175.5	26.15	2,966.2
Class AA	21.	20.30	1,493.3	27.03	2,737.2
Class A	25	17.86	857.5	81.27	2,211.2
Class B	32	7.93	558.7	35.34	1,856.5
Class C	44	6.21	317.8	57.16	1,587.1
Others		4.90	211.5	37.81	1,047.9
Total		322.05	17,069.0	367.65	27,349.4

Table B.2a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN CALIFORNIA--CENTRAL AND NORTHERN

Field Size Class		Crude 0il (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	8	79.30	4,394.1	66.08	8,184.9
Class AAA	5	22.78	823.1	1.83	312.4
Class AA	13	11.06	1,003.8	17.06	2,128.7
Class A	11	5.88	306.4	34.98	1,402.7
Class B	16	2.62	238.2	24.36	1,070.9
Class C	26	2.49	129.4	52.16	1,283.4
Others		1.98	94.9	35.12	817.3
Total	i	126.11	6,990.0	231.59	15,200.3

Table B.2b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN CALIFORNIA--CENTRAL COAST

Field Size Class		1	Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12~31-75	
Class AAAA	2	29.53	1,278.1	11,55	2,404.8	
Class AAA	7	27.76	1,015.9	20.34	1,185.1	
Class AA	5	3,69	221.5	4.11	215.5	
Class A	7	3.68	233.0	42.97	311.5	
Class B	14	5.18	306.6	10.83	715.5	
Class C	11	1.66	111.7	2,15	183.5	
Others		1.41	68.3	1.37	167.5	
Total		72.91	3,235.1	93.32	5,183.4	

Table B.2c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN CALIFORNIA--LOS ANGELES BASIN

ı		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	5	95.26	4,782.5	25.26	4,353.6
Class AAA	6	10.22	1,336.5	3.98	1,468.7
Class AA	3	5.55	268.0	5.86	393.0
Class A	7	8.30	318.1	3.32	497.0
Class B	2	0.13	13.9	0.15	70.1
Class C	7	2.06	76.7	2.85	120.2
Others		1.51	48.3	1.32	63.1
Total		123.03	6,844.0	42.74	6,965.7

Table B.3

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL AND NATURAL GAS BY SIZE OF FIELD IN THE ROCKY MOUNTAINS

Field Size Class			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	5	38.41	1,542.7	415.72	8,535.4	
Class AAA	12	67.06	1,375.5	171.58	3,623.4	
Class AA	22	49.74	1,225.2	166.93	2,881.3	
Class A	20	15.33	743.3	57.52	1,361.9	
Class B	45	27.95	693.0	134.50	2,270.9	
Class C	101	29.67	802.1	75.43	1,457.4	
Others		48.94	1,058.4	122.69		
Total		277.10	7,440.2	1,144.37		

Table B.3a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN ARIZONA

			Crude Oil (million barrels)		. Gas bic feet)
Field Size Class	Number of Fields	197 5	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0				
Class AAA	0				
Class AA	0				
Class A	0				
Class B	0				
Class C	1	0.58	13.9	0.16	1.9
Others		0.05	1.6	0.09	13.7
Total	:	0.63	15.5	0.25	15,6

Table B.3b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN COLORADO

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	2	20.44	533.9	25.09	818.9
Class AAA	1			0.33	7.0
Class AA	2	1.90	5.0	41.25	72.1
Class A	2	1.18	136.6	1.14	109.2
Class B	7	0.06	8.1	41.71	698.5
Class C	16	3.37	149.6	10.14	203.8
Others		10.68	283.5	51.11	689.7
Total		37.63	1,116.7	170.77	2,599.2

Table B.3c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN MONTANA

Field Size Class			Crude Oil (million barrels)		al Gas cubic feet)
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	1	1.19	69.5	0.37	13.8
Class AAA	2	8.27	270.1	6.64	736.7
Class AA	4	11.55	230.8	1.51	125.5
Class A	0				
Class B	7	3.41	123.7	20.45	211.2
Class C	9	1.78	61.0	2.54	133.7
Others		6.64	109.7	12.11	N.A.
Total		32.84	864.8	43.62	N.A.

Table B.3d

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN NEBRASKA

			Crude 011 (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	0					
Class AAA	0					
Class AA	0					
Class A	0					
Class B	1	1.10	38.8			
Class C	4	0.27	32.5	0.66	88.8	
Others		4.75	281.9	3.22	N.A.	
Total		6-12	353.2	3.88	N.A.	

Table B.3e

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN NORTHWESTERN NEW MEXICO

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	2			379,14	6,762.6
Class AAA	1			43.16	969.1
Class AA	2			45,14	674.5
Class A	1			9.26	184.8
Class B	4	0.64	68.0	5.38	318.4
Class C	7	2.25	31.5	16.26	205.7
Others		1.49	61.2	20.21	N.A.
[otal		4,38	160.7	518.55	N.A.

Table B.3f

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN NORTH DAKOTA

Field Size Class			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	0					
Class AAA	2	3.79	104.4	16.32	273.4	
Class AA	1	1.23	71.2	1.59	117.5	
Class A	1	0.57	30.7	1.38	57.7	
Class B	6	5.80	104.8	2.94	.108.2	
Class C	8	3.90	60.8	2.50	57.0	
Others		5.16	82.3	8,18	N.A.	
Fotal		20.45	454.2	32. 9 1	N.A.	

Table B.3g

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN UTAH

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0				
Class AAA	2	31.51	340.7	33.51	336.7
Class AA	2	4,16	98.1	6.80	199.2
Class A	1 :	1.07	38.6	1.26	27.8
Class B	1			2.95	129.6
Class C	7	2.37	50.8	4.76	258.1
Others		0.87	23.2	5.28	148.6
Total		39.98	551.4	54.56	1,100.0

Table B.3h

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL CAS BY SIZE OF FIELD
IN WYOMING

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion_cubic_feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	2	16.78	939.3	11,12	940.1
Class AAA	5	23.49	660.3	71.62	1,300.5
Class AA	12	30.90	820.1	70.64	1,692.5
Class A	15	12.51	537.4	44.48	982.4
Class B	22	16.94	349.6	61.07	805.0
Class C	50	15,15	402.0	38.41	508.4
Others		19.30	215.0	22.49	369.6
Total		135.07	3,923.7	319.83	6,598.5

Table B.4

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN THE PERMIAN BASIN

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	18	421.93	8,710.7	1,247.98	
Class AAA	19	117.62	2,965.7	377.40	
Class AA	24	49.66	1,594.5	326.28	
Class A	46	47.68	1,506.0	330.64	
Class B	74	32.87	1,065.7	327.17	
Class C	112	23.02	809.3	234.04	
Others		42.02	1,104.8	404.75	
Total		734.80	17,756.8	3,248.26	

Table B.4a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIJ.

AND NATURAL GAS BY SIZE OF FIELD

IN SOUTHEASTERN NEW MEXICO

Field Size Class		Crude 0il (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	4	31.50	1,171.0	325.18	
Class AAA	5	29.10	664.9	96.88	
Class AA	1	1.55	122.4	1.01	
Class A	8	6,28	325.2	18.91	
Class B	15	4,48	222.6	67.77	
Class C	33	5,22	224.6	70.34	
Others		8,24	259.5	104.46	
Total	:	86.37	2,990.2	684.55	

Table B.4b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN TEXAS R.R.C. DISTRICT 7C

			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	1	6.62	211.3	30.25		
Class AAA	1	2.35	116.9	26.09		
Class AA	4	2.44	321.6	29,40		
Class A	9	4.77	221.8	115.11		
Class B	10	3.38	149.1	27.43		
Class C	23	3.04	162.0	33.87		
Others		5.57	166.9	53,57		
Total		28.17	1,349.6	315.72		

Table B.4c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN TEXAS R.R.C. DISTRICT 8

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	11	127.66	4,189.4	709.94	
Class AAA	10	48.46	1,628.5	238,45	
Class AA	13	21.71	720.7	284.70	
Class A	19	17.70	569.1	185.18	
Class B	40	15.77	534.5	229.42	
Class C	38	6.77	249.5	124.57	
Others		13.52	363.3	233.61	
Total		251.59	8,255.0	2,005.87	_

Table B.4d

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN TEXAS R.R.C. DISTRICT 8A

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	4	256.15	3,139.1	182.61	
Class AAA	4	37.71	555.4	15.98	
Class AA	6	23.96	429.8	11.17	
Class A	10	18.93	389.9	11.44	
Class B	11	9.24	159.5	2.55	
Class C	19	7.99	173.2	5.26	
Others		14.69	315.1	13.11	
lotal .		368.67	5,162.0	242.12	

Table B.5

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN NORTH CENTRAL TEXAS

Field Size Class			le 0il barrels)	Natural Gas (billion_cubic_feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0			- -	
Class AAA	5	7.50	767.2	81.03	
Class AA	3	4.64	224.6	8.92	
class A	9	12.67	353.7	20.84	
Class B	10	5,22	270.0	0.97	
lass C	58	9.62	556.9	21.53	
thers		33.53	2,067.4	96.16	
Total		73.18	4,239.8	229.45	

Table B.5a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN TEXAS R.R.C. DISTRICT 7B

Field Size Class		Crude 0il (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	o				
Class AAA	1	1.90	145.7	2,24	
Class AA	1	0.12	72.3	0.75	
Class A	5	9.14	181.6	16.76	
Class B	3	1.64	70.9	0.66	
Class C	34	5.85	293.2	12.93	
Others		16.16	793.9	58.69	
Total		34.81	1,557.6	92.03	

Table B.5b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL CAS BY SIZE OF FIELD
IN TEXAS R.R.C. DISTRICT 9

Field Size Class			e 011 barrels)	Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0				ļ
Class AAA	4	5.60	621.5	78.79	
Class AA	2	4.52	152.3	8.17	
Class A	4	3.53	172.1	4.08	
Class B	7	3.58	199.1	0.31	
Class C	24	3.77	263.7	8.60	
Others		17.37	1,273.5	37.47	
Total		38.37	2,682.2	137.42	

Table B.6

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN THE MID-CONTINENT

Field Size Class	ا	_	de Oil n barrels)	Natural Gas ^a (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	8	68.91	4,665.8	1,738.71	
Class AAA	24	36.25	3,450.5	446.37	
Class AA	22	15.99	1,538.9	259.43	!
Class A	51	14.42	1,816.2	199.92	
Class B	91	17.09	1,439.0	210.44	
Class C	203	24.31	1,561.0	210.99	
Others		53.88	2,790.1	378.96	
Total		230.85	17,261.5	3,444.82	

a Excludes casinghead gas in Kansas and Oklahoma.

Table B.6a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN KANSAS

			de Oil n barrels)	Natural Gas ^a (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	1			673.55	15,771.7
Class AAA	5	5.45	961.1	27.96	825.0
Class AA	4	4.21	378.1	19.99	661.4
Class A	13	3.84	579.8	17.83	567.1
Class B	27	5.53	531.7	23.06	807.1
Class C	75	9.83	780.8	23.22	691.8
Others		29.67	1,387.7	65.18	
Total		58.53	4,619.2	850.79	

^aExcludes casinghead gas production.

Table 8.6b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN OKLAHOMA

Field Size Class			Crude Oil (million barrels)		ral Gas ^a cubic feet)
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	8	57.41	3,371.2	370.90	8,942.7
Class AAA	18	30.72	2,485.7	369.64	3,759.1
Class AA	16	11.49	1,139.9	137.89	1,893.0
Class A	34	10.47	1,235.9	91.99	2,091.1
Class B	56	9.14	863.9	114.75	2,331.4
Class C	98	12.83	723.8	94.35	1,382.6
Others		21.93	1,346.4	224.60	1,847.6
Total		153.99	11,166.8	1,404.12	22,247.5

 $^{^{\}mathrm{a}}\mathrm{Excludes}$ casinghead gas production.

Table B.6c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN TEXAS R.R.C. DISTRICT 10

		Crude Oil (million_barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	1	11.50	1,294.6	694.26	
Class AAA	1	0,08	3.7	48.77	
Class AA	3	0.29	20.9	101.55	
Class A	4	0.11	0.5	90.10	704.0
Class B	8	2.42	43.4	72.63	
Class C	31	1,65	56.4	93.42	
Others		2.28	56.0	89.18	
Total		18.33	1,475.5	1,189.91	

Table B.7

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN THE WESTERN GULF

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	13	139.79	3,618.4	1,145.73	
Class AAA	17	30.50	1,571.9	467.42	
Class AA	45	30.58	2,513.5	453.04	
Class A	65	23.27	1,454.3	295.14	
Class B	105	16,55	895.6	271.94	
Class C	236	14.33	844.6	372.74	
Others		24.01	1,046.5	476.28	
Total		279.03	11,944.8	3,482.29	

Table B.7a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN TEXAS R.R.C. DISTRICT 1

Field Size Class			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	0					
Class AAA	0					
Class AA	3	2.80	290.2	29.53		
Class A	6	6.53	183.6	15.66		
Class B	4	1.41	24.6	15.91		
Class C	15	2.19	62.8	22.04		
thers		4.76	155.9	46.94		
Cotal		17.69	717.1	130.08		

Table B.7b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN TEXAS R.R.C. DISTRICT 2

			Crude Oil (million barrels)		ral Gas cubic feet)
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	2	42.96	909.7	74.77	
Class AAA	3	5.73	200.7	40.99	
Class AA	6	1.35	122.0	69.25	
Class A	12	2.76	232.0	61.52	
Class B	. 18	5.22	190.6	30.05	
Class C	54	2,67	180.5	81.55	
Others		4.34	165.2	114.92	
Total		65.03	2,000.7	473.05	

Table B.7c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN TEXAS R.R.C. DISTRICT 3

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	7	90.37	2,052.9	554.02	
Class AAA	7	18.62	798.9	173.06	į
Class AA	23	23.26	1,749.4	127.77	
Class A	34	10.63	788.2	133.77	
Class B	43	4.33	329.3	91.40	
Class C	98	4.95	332.7	129.01	
Others		8.83	337.3	152.47	
Total		160.99	6,388.7	1,361.50	

Table 8.7d

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN TEXAS R.R.C. DISTRICT 4

			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	4	6.46	655.8	516.94		
Class AAA	7	6.15	572.3	253.37		
Class AA	13	3.17	351.9	226.49		
Class A	13	3.35	250.5	84.19		
Class B	40	5,59	351.1	134.58	}	
Class C	69	4.52	268.6	140.14		
Others		6.08	388.1	161.95		
Total		35.32	2,838.3	1,517.66		

Table B.8

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN THE CENTRAL GULF

Field Size			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	13	129.33	2,683.9	923.59	13,038.3	
Class AAA	51	147.17	3,719.7	2,438.02	33,952.1	
Class AA	72	103.19	2,655.0	1,199.91	20,410.1	
Class A	121	92.19	1,961.3	1,112.42	16,201.6	
Class B	121	34.87	889.1	483.33	8,331.9	
Class C	152	14.96	437.4	273.39	5,401.4	
Others	[8.60	212.3	165.05	2,900.0	
Total		530.31	12,558.7	6,595.71	100,235.4	

Table B.8a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD,

OFFSHORE LOUISIANA

Field Size			le Oil barrels)		Natural Gas Lion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	8	99.44	1,521.4	505.57	5,865.5	
Class AAA	19	76.79	1,237.9	1,345.69	10,700.2	
Class AA	35	61.70	771.7	796.83	8,428.5	
Class A	54	58.81	667.8	680.84	4,838.6	
lass B	48	15.06	133.8	208.44	1,970.3	
Class C	57	7.67	95.6	125.57	1,215.2	
thers		3.54	29.2	56.33	519.6	
Fotal		323.01	4,457.4	3,719.27	33,537.9	

Table B.8b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN SOUTHEASTERN LOUISIANA

Field Size Class		Crude Oil (million barrels		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	3	26.12	942.3	218.21	4,099.6
Class AAA	19	56.52	1,967.1	604.08	11,757.7
Class AA	14	22.11	793.1	204.67	4,500.0
Class A	28	16.35	638.5	182.71	4,163.5
Class B	28	12.68	338.4	99.25	2,195.9
Class C	38	3.93	174.9	50.90	1,514.6
Others		2.23	69.6	64.72	888.8
Total		139.94	4,923.9	1,424.54	29,120.1

Table B.8c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN SOUTHWESTERN LOUISIANA

		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	2	3.77	220.2	199.81	3,073.2
Class AAA	13	13.86	514.7	488.25	11,494.2
Class AA	23	19.38	1,090.2	198.41	7,481.6
Class A	39	17.03	655.0	248.87	7,199.5
Class B	45	7.13	416.9	175.64	4,165.7
Class C	57	3.36	166.9	96.92	2,671.6
Others		2.83	113.5	44.00	1,491.6
Total		67.36	3,177.4	1,451.90	37,577.4

Table B.9

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN THE NORTHERN GULF

			e Oil barrels)	Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	6	129.25	5,848.7	149.41	
Class AAA	12	28.74	1,549.7	179.52	
Class AA	24	18.59	1,184.0	185.11	
Class A	19	5.14	325.7	101.97	<u> </u>
Class B	35	9.38	335.0	112.88	
Class C	81	11.67	511.0	86.47	
Others		13.59	517.9	103.94	
Total		216.36	10,272.0	919.30	

Table B.9a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN ARKANSAS

			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	1	3,13	512.0	0.06	15.1	
Class AAA	3	0.59	168.6	0.57	334.7	
Class AA	5	2.98	267.1	37.88	1,558.4	
Class A	4	2.40	137.1	20.60	347.0	
Class B	8	2.36	102.8	15.83	344.7	
Class C	13	1.13	89.3	24.34	347.6	
Others		3.00	111.8	22.86	108.6	
Total		15.59	1,388.7	122.14	3,056.1	

Table B.9b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN NORTHERN LOUISIANA

Field Size Class		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	1			29.28	6,803.8
Class AAA	9	12.47	872.0	88.92	6,284.4
Class AA	9	6.57	380.0	82.39	3,046.7
Class A	9	2.02	131.4	42.92	1,989.9
Class B	12	1.53	56.6	59.06	1,519.2
Class C	31	5.12	225.0	21.38	925.6
thers		6.36	226.2 .	17.30	563.3
Total		34.07	1,891.2	341.25	21,132.9

Table B.9c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN TEXAS R.R.C. DISTRICT 5

		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	1	16.06	435.8	5.47	
Class AAA	0				
Class AA	3	0.25	246.4	14.95	
Class A	2	0.34	40.8	9.86	
Class B	7	0.31	65.7	25.39	
Class C	12	1.49	50.8	12.13	
Others		0.71	37.0	24.32	
Total		19.16	876.5	92.12	

Table B.9d

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN TEXAS R.R.C. DISTRICT 6

		Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
lass AAAA	3	110.06	4,900.9	114,60	
lass AAA	7	15.68	509.1	90.03	
Class AA	7	8.79	290.5	49.89	
Class A	4	0.38	16.4	28.59	
lass B	9	5.18	109.9	12.60	
Class C	26	3.93	145.9	28.62	
Others		3.52	142.9	39,46	
Cotal		147.54	6,115.6	363.79	

Table B.10 CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL AND NATURAL GAS BY SIZE OF FIELD IN THE EASTERN GULF

			de Oil n_barrels)	Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0				
Class AAA	4	43.68	483.5	55.80	1,907.5
Class AA	5	9,62	354.2	1.63	1,063.7
Class A	12	10.03	189.4	59.00	1,317.7
Class B	10	8,90	239.1	8.90	188.6
Class C	36	10.32	217.1	37.15	707.9
)thers		16.42	344.4	12.89	320.5
rotal		98.97	1,827.7	175.37	5,505.9

Table B.10a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL
AND NATURAL GAS BY SIZE OF FIELD
IN ALABAMA

Field Size			e Oil barrels)	Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0				
Class AAA	1	2.75	9.0	3.41	11.6
Class AA	2	4.16	116.2	0.46	10.6
Class A	2			17.48	26.8
Class B	1			4.43	8.9
Class C	5	2.26	292	11.20	33.3
Others		1.50	11.1	1.87	7.7
Total		10,67	165.5	38.85	98.9

Table B.10b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN FLORIDA

Field Size Class	1	Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0				
Class AAA	1	31.69	104.0	39.35	126.6
Class AA	0				
Class A	1	4.60	4.6	4.34	4.4
Class B	1	3.37	18.5	0.26	1.6
Class C	3	1.39	24.0	0.11	2.0
Others		0.64	1.3	0.57	1.2
Total		41.69	152.4	44,63	135.8

Table B.10c

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN MISSISSIPPI

Field Size Class			de Oil n barrels)	Natural Gas (billion cubic feet)	
	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
lass AAAA	o				
lass AAA	3	9.24	370.5	13.04	1,769.3
lass AA	3	5,46	238.0	1.17	1,053.1
lass A	9	5.43	184.8	37.18	1,286,5
lass B	8	5.53	220.6	4.21	178.1
lass C	28	6.67	163.9	25.84	672.6
thers		14.28	332.0	10.45	311.6
otal		46.61	1,509.8	91.89	5,271.2

Table B.11

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN ILLINOIS-MICHIGAN BASINS

			le Oil n barrels)	Natural Gas ^a (billion cubic feet)	
Field Size Class	Number of Fields	1975	.Cumulative 12-31-75	1975	Cumulative 12-31-75
lass AAAA	0				
lass AAA	6	14.93	1,853.6		
lass AA	3	2.91	314.8	9.78	157.8
lass A	7	2.62	406.4		32.8
lass B	11	2.06	284.8		9.4
lass C	42	7.24	570.5	3.13	126.7
thers		23.50	773.5	89.77	643.1
otal		53,26	4,143.6	102.68	969.8

 $^{^{\}rm a}{\rm Less}$ Illinois and Indiana (AGA estimates 1.45 Bcf 1975 production and 1625.0 Bcf cumulative production from those two states).

Table B.11a

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN ILLINOIS

			le 011 barrels)	Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	o				
Class AAA	6	14.37	1,779.1		
Class AA	1	0.42	98.9		
Class A	5	2.21	308.8		
Class B	8	1.59	200.0		
Class C	22	2.22	274.8		
Others		5.23	364.9		
Total		26.07	3,026.5		

Table B.11b

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN INDIANA

		Crude 0il (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75
Class AAAA	0			ـــ	
Class AAA	1	0.56	74.5		
Class AA	1	0.01	105.3		
Class A	0				
Class B	3	0.32	30.2		
Class C	5	0.75	59.5		
Others		2.99	178.5		
Total		4.63	448.0		

Table B.llc

CUMULATIVE AND CURRENT PRODUCTION OF CRUDE OIL

AND NATURAL GAS BY SIZE OF FIELD

IN MICHIGAN

			Crude Oil (million barrels)		Natural Gas (billion cubic feet)	
Field Size Class	Number of Fields	1975	Cumulative 12-31-75	1975	Cumulative 12-31-75	
Class AAAA	0					
Class AAA	0			ш-		
Class AA	1	2,48	110.6	9.78	157.8	
Class A	2	0.41	97.6		32.8	
Class B	. 2	0.15	54.6		9.4	
Class C	16	4.24	176.2	3.13	126.7	
Others		15.28	230.1	89.77	643.1	
Total		22.56	669.1	102.68	969.8	

Appendix C THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS

INTRODUCTION TO APPENDIX C

Appendix C provides data on the number of discoveries of significant oil and natural gas fields by field size category over five-year periods. This appendix is included to provide more detailed information about the number of significant discoveries over time than could be included in the figures of Vol. I, Sec. IV.

We organized the 46 tables of App. C by region and by type of discovery. Except for Alaska (Region 1) and Illinois-Michigan (Region 11), there are four tables of discovery data for each region, one for all oil and natural gas fields, one for oil fields, one for natural gas fields, and one for composite oil and gas fields. Because Alaska has no significant composite fields and the Illinois-Michigan region has no significant gas fields, we have excluded the tables for those types of fields from these two regions. Oil fields are defined as fields in which petroleum liquids provide more than two-thirds of the total liquid and liquid-equivalent recoverable resources. Natural gas fields are defined as fields in which natural gas provides more than two-thirds of the total recoverable resources. Composite oil and gas fields are those in which neither resource predominates. They typically are either natural gas fields with a high liquids content, oil fields with a large gas cap, or fields with multiple producing zones, some of which are predominantly oil and some predominantly gas. The numbering system for the regions is the same as that used in Apps. A and B. We also provide summary tables for the United States, excluding the Appalachian region.

The tables of App. C give the number of discoveries in each field size category over five-year periods from as early as pre-1885 to 1971-1975. We show the number of discoveries in each five-year period and in each field size category over the entire period of exploration in each region. In the regional tables for all oil and gas fields and in all of the summary tables, we also provide the mode and median discovery size in each five-year period.

The sources for App. C were the data on field size and discovery year from the tables of App. A.

Table C (Summary)

THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN THE UNITED STATES (LX-APPALACHIA)

BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

40.00																			
Size	Pre- 1891		1891/ 1896/ 1895 1900	1901/ 1905	1906/	1911/	1916/ 1920	1921/ 1925	1926/ 1930	1931/	1936/	1941/ 1945	1946/	1951/ 1955	1956/	1961/ 1965	1970	1971/	Total
Class AAAA	س	ŧ	7	ĸ٦	2	7	9	¢٦	16	10	14	47	æ	н	4	2	1	7	81
Class AAA	1	ł	2	٣	ri)	6	15	70	13	11	27	18	15	11	14	∞	9	ń	169
Class AA	2	ł	-	7	7	7	6	14	19	15	36	25	56	20	11	16	13	17	245
Class A	1	m	7	10	9	\$	11	11	27	1.7	09	37	35	77	38	25	23	23	378
Class B	4	7	ŀ	-3	4	σ	18	19	57	21	99	99	09	99	49	88	29	47	533
Class C	m	1	1	6 0	10	18	13	33	43	32	86	116	124	162	141	111	85	88	1065
Total	13	7	7	35	32	51	78	8	142	106	299	266	268	304	272	192	130	179	2471
Mode	ρħ	μű	AAA-A	¥	ပ	ပ	ပ	IJ	Ü	၁	Ç	U	O	ပ	O	Ų	U	ပ	υ
Median	4	щ	AA	A.	4	4	₩	Ą	₩	Y	A	В	æ	m	m	æ	*2	æ	<u>ac</u>

TABLE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL FIELDS IN THE UNITED STATES (EX-APPALACHIA)

BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field Pre- 1891/ 1 Size 1891 1895 1	Pre- 1891	Pre- 1891/ 1896/ 1891 1895 1900	Pre- 1891/ 1896/ 1901/ 1891 1895 1900 1905	1901/	1906/	1911/	1916/ 1920	1921/	1926/	1931/	1936/	1941/ 1945	1946/ 1950	1951/ 1955	1956/	1961/	1966/	1971/	Total
Class AAAA	6	ţ	1	ю	1	2	5	es.	∞	Ŋ	æ	2	·s	7	H	a	т	1	50
Class AAA	7	1	2	3	3	6 C	11	7	œ	6	14	6	9	7	45	-1	٠	!	93
Class AA	2	l	1	7	7	4	6	13	14	5	14	11	6	10	ч	5	Ф	7	122
Class A	ł	7	2	œ	4	9	6	6	20	11	26	15	18	17	11	5	œ	9	177
Class B	2	1	ł	2	ю	9	15	16	1.5	11	33	32	31	23	23	11	9	7	237
Class C	en			αĢ	7	14	16	26	33	21	63	79	72	83	42	38	23	12	525
Total	11	m	9	31	25	04	65	74	86	62	158	133	141	135	83	19	67	29	1204
Mode	AAAA-C	∢	AAA-A	AC	AA-C	υ	ပ	Ü	၁	ပ	c	Ü	c	U	U	U	ن	ပ	U
Median	¥	V	¥	¥	Ą	₩	4	A	Ą	¥	m	£Ω	ED.	æ	pp.	83	æ	æ	80

Table C.b (Summary)

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL CAS FIELDS IN THE UNITED STATES (EX-APPALACHIA) BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	Pre-	1891/	Pre- 1801/ 1896/ 1 1891 1895 1900 1	1901/	1906/	1911/	1916/	1921/	1926/	1931/	1936/	1941/ 1945	1946/	1951/	1956/	1961/	1966/ 1970	1971/ 1975	Total
Class AAAA	;	 					τ	;	М	ĸ	4	1	£,	1	3	н	ł	1	20
Class AAA	1	ţ	;	}	1	ŀ	33	2	ļ	;	6	00	%	80	2	9	1	2	53
Class AA		†		ŀ	1	2	1	1	4	4	6	5.0	6	æ	6	9	9	70	7.5
Class A	1	ţ	1	Ē	1	١	1	7	ľ	7	21	16	80	17	23	14	13	14	136
Class B		ļ	1	1	1	3	٣	eī	1	9	16	25	22	23	27	16	20	35	212
Class C		ļ	-1	ţ	m	2	-	4	œ	4	23	38	36	63	83	9	31	73	435
Total	4	0	1	1	-3	7	٥	11	27	19	82	98	86	121	152	108	70	134	931
Node	ø	 	ပ	pů.	ນ	123	AAA-B	Ü	Ų	μQ	v	υ	ပ	Ų	Ü	υ	O	Ü	ပ
Median	6		U	EI	=	£	¥	В	¥	4	4	μά	m	E	æ	E	324	E	F

THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND GAS FIELDS IN THE UNITED STATES (EX-AFPALACHIA) Table C.c (Summary)

Field	Pre-	Pre- 1891/ 1891 1895	Pre- 1891/ 1896/ 1901/ 1891 1895 1900 1905	1901/	1906/	1911/ 1915	1916/	192 1 / 1925	1926/	1931/	1936/ 1940	1941/	1946/ 1950	1951/	1956/	1961/	1966/	1971/	Total
Class AAAA		+	1	;	ł	}	1	1	5	2	21	-	ł	1	1	1	1	н	11
Class AAA	†		1	1	ł	Ħ	1	7	ĸ٦	2	4	1	٦	2	2	ı	Ħ	1	23
Class AA	!	1	ŀ	1		~	1	1	П	9	13	4	α¢	4	П	٠.	П	m	87
Class A	}	-	ł	7	2	ļ	1	1	2	7	13	9	6	10	4	9	2	٣	65
Class B	1	en	}	1	н	1	ł	1	21	4	15	6	7	16	14	٣	т	5	84
Class C	1	1	1	1	1	2	2	ei	2	7	12	14	16	16	16	\$\$	4	m	105
Total	-	7	0	6	٣	-3	ব	5	11	25	59	35	41	48	37	23	=	16	336
Mode	#5	<u>~</u>		¥	₩	٥	ပ	Ų	AAAA- AAA	ن	æ	IJ	υ	သူ	U	υ	ပ	89	Ü
Median	8	æ	;	Ą	*	¥	A-B	μů	AA	¥	¥	22	βĊ	æ	æ	В	æ	≪:	A-B

Table C.1

THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL CAS FIELDS IN ALASKA
BY SIZE OF FIELD OVER FIVE-TEAR PERIODS

Field	1956/	1961/	1956/ 1961/ 1966/ 1971/ 1960 1965 1970 1975	1971/ 1975	Total
Class AAAA	-	7	7	ŀ	m
Class AAA	1	1	-1	ŀ	m
Class AA	;	4	ł	ŀ	-37
Class A	l	}	84	-1	m
Class B	E (ł	=	ŀ	1
Class C	1	1	Н	ı	1
Total	8	5	5	1	ST.
Mode	AAA-			٧	
Med1an	AAAA- AAA	AA-	4	*	

Table C.1a
THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL FIELDS IN ALASKA
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1956/	1961/	1956/ 1961/ 1966/ 1971/ 1960 1965 1970 1975	1971/	Total
Class AAAA	1	-	-		2
Class AAA	т	1	1	1	2
Class AA	1	٣	ł	1	3
Class A	1	ŀ	ł	ŀ	ŀ
Class B]	ŀ	1	ţ	1
Class C	1	ł	1	1	1
	٦	4	ŕ	ć	

Table C.lb
THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN ALASKA
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field Size	1956/ 1960	1961/	1961/ 1966/ 1965 1970	1971/ 1975	Total
Class AAAA	-	ł	ţ	1	7
Class AAA	ì	7	ı	I	7
Class AA	1	1	ł	ł	н
Class A	1	}	*	Ţ	r.
Class B	ł	1	н	ļ	1
Class C	1	1	-	1	r
Total	н	2	47	ц	æ

Table C.2
THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN CALIFORNIA
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Total	15	1.8	21	25	32	44	155		
1971/ 1975	1	}	2	7	7	1	4	AA	Ą
1966/ 1970	1	2	2	Ħ	щ	<u>د</u>	11	ပ	BA
1961/ 1965	1	1	1	4	ĸ٦	7	14	U	В
1956/ 1960	1	1	1	3	2	7	12	Ų	m
1951/ 1955	ţ	1	ŀ		н	ø	7	Ų	ပ
1876/ 1881/ 1886/ 1891/ 1896/ 1901/ 1906/ 1911/ 1916/ 1921/ 1926/ 1931/ 1936/ 1941/ 1946/ 1951/ 1956/ 1961/ 1966/ 1971/ 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975	-	П	;	4	ы	à	13	A-C	¥
1941/	1	1	1	г	^	10	19	ပ	m
1936/	2	+-4	s,	7	9	73	18	ĸ	4
1931/ 1935	1	ĭ	7	1	2	1	9	AA-B	¥
1926/ 1930	н	1	ო	4	1	1	ដ	₩	V
1921/ 1925	2	ы	1	7	1	;	۲	AAA	AAA
1916/ 1920	4	Э	}	ł	ч	}	œ	AAAA	AAA
1911/	1	7	1	1	п	}	4	AA A	A.A
1906/		8	٣	}	1	1	æ	AA	AAA
1901/	=	Ħ	ļ	£.	1		νı	#	¥
1896/	~		1	H		1	m		¥
1891/	1	1	1	1	1		1	9	2
1886/	П	4		ł	2	-	5	粒	4
1876/ 1881/ 1886/ 1891/ 1880 1885 1890 1895	1	1	!		}		0		1
1876/	-	1	1		}	1	1	AAAA	AAAA
Field 1876, Size 1880	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total	Mode	Median

Table C.2a

THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL FIELDS IN CALIFORNIA
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Total	13	18	18	19	20	25	113
ī							
1971/	}	1	2	ч	}	1	6
1966/ 1970	1	2	2	-	-	3	6
1956/ 1961/ 1960 1965	1	1	1	m	1	m	9
1956/ 1960	1	1	!	}	н	7	۳n
1896/ 1901/ 1906/ 1911/ 1916/ 1921/ 1926/ 1931/ 1936/ 1941/ 1946/ 1951/ 1956/ 1961/ 1966/ 1971/ 1900/ 1905/ 1910/ 1915/ 1920/ 1925/ 1930/ 1935/ 1940/ 1945/ 1950/ 1955/ 1960/ 1965/ 1970/ 1975	;		1	1	1	ľΩ	yo
1946/ 1950	1	1	ł	4	ъ	2	=
1941/ 1945	ł	;	Ħ	m	9	9	77
1936/ 1940	1	1	4	1	4	н	12
1931/	1	1	-		1	٦	60
1926/		т	'n	4	!	7	6
1921/ 1925	2	ě.	н	н	ł	;	7
1906/ 1911/ 1916/ 1921/ 1926/ 1931/ 1936/ 1941/ 1910 1915 1920 1925 1930 1935 1940 1945	47	e	1	†	1	1	æ
1911/	1	2		1	П	1	en .
1906/	П	2	٣	1		1	9
1901/	1	-	ł	7	1	1	-77
1896/	1	1	1	1	;	ł	m
1891/ 1895	ł	1	}	1	1	1	0
1876/ 1881/ 1886/ 1891/ 1880 1885 1890 1895	-		1	ł	2	г	v
1881/			1	ţ	1	ŀ	0
1876/ 1880	H	1	1	;	}	ļ	-
Field Size	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

Table C.2b

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN CALIFORNIA

BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1921/	1926/	1921/ 1926/ 1931/ 1936/ 1941/ 1946/ 1951/ 1956/ 1961/ 1966/ 1971/ 1935/ 1946/ 1971/ 1935/ 1946/ 1975/ 1935/ 1946/ 1975/ 1935/ 1946/ 1975/ 1935/ 1946/ 1975/ 1935/ 1946/ 1945/ 1946/ 1945/ 1946/ 1945/ 1946/ 1945/ 1946/ 1945/ 1946/	1936/	1941/	1946/	1951/	1956/	1961/	1966/	1971/	1971/ 1975 Total
2770	1243	722	1737	74.7	1747	222	17,73	77.7	361			
Class AAAA	ł	}	ł	1		1	1	ŀ	1	1	1	~4
Class AAA	ł	ł	1		1	I		1	ŀ	1	1	0
Class AA	1	}	1	;	1	l	ì	1	ŀ	1	;	0
Class A	ł	1	ŀ	٦	ł		}	1	1	}	ł	٣
Class B	I	ł	7	1	-	1	ł	1	7	1	H	1
Class C	1	1		1	4	1	ĭ	'n	eП	7	ł	17
Total	0	0	٠	47	6	-	-	νο	ø	2	7	28

Table C.2c

THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND GAS FIELDS IN CALIFORNIA
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field 1891/ 1896, Size 1895 1900	1891/ 1896/ 1895 1900	1901/ 1905	1906/ 1910	1911/ 1915	1916/ 1920	1916/ 1921/ 1920 1925	1926/ 1930	1931/ 1935	1936/	1931/ 1936/ 1941/ 1946/ 1951/ 1956/ 1935 1940 1945 1950 1955 1960	1946/	1951/ 1955	1956/ 1960	1961/ 1965	1966/ 1970	1971/ 1975	Total
+		. !	1	1		1		ł	ŀ	1	1	1	1	1	1	{	7
1		1	1	1	1	1	1	ļ	ţ	{	ł	}	1	1	1	;	o
		1	1	1	ł	ł	1	н	1	ł	ŀ	ŀ	ł		ŀ	1	m
		 4	}	1	ł	ł	ł	}	ł	}	;	ł	2	ļ	!	ł	m
•	1	!	ŀ	ł		ł	1	;	-	1	1	ŀ	ᆏ	₩	ł	ŀ	'n
'	1	1	1	Ì	1	1	1			1	1		1	1	1	}	2
	0	1	0	1	0	0	5	٦	2	0	-	0	m	7	۵	٥	14

Table C.3 THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN THE ROCKY MOUNTAIN RECION BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	Pre-	1886/ 1890	1886/ 1891/ 1896, 1890 1895 1900	1896/	1901/	1906/ 1910	1911/	1916/ 1920	1921/ 1925	1926/ 1930	1931/ 1935	1936/ 1940	1941/ 1945	1946/ 1950	1951/	1956/	1961/ 1965	1966/ 1970	1971/	Total
Class AAAA	1	1	j	}	1	1		1	;	П	1	ŀ	i	1	ł	ļ	ŀ	ŀ	1	Ŋ
Class AAA	;	ł	ļ	ļ	ł	1	2	2	п	٦	ì	ł		1	44	1		Ħ	ı	12
Class AA	1	1	1	!	;	ri	2	2	-1	6	}	ı	1	1	3	1	†	ሮጎ	3	2.2
Class A	;	1	}	;	}	1	1	4	ł	1	1	1	2	2	5	2	1	2	н	20
Class B	ŀ	1	ŀ	1	ţ	ŀ	-	6	2	9	-	ŀ	'n	4	×o	90	2	٣	2	45
Class C	2	ł	ł	1	{	⊣	П	,	9	īv	1	-	7	10	19	61	17	7.	æ	101
Total	2	Н	0	0	H	2	1	18	10	16	7	3	11	61	37	31	20	16	σ.	205
Mode	၁	AAAA	1	 	AAAA	AA-C	AAA- AA	Ü	Ü	£	3-C		ŭ	Ü	ပ	Ų	ວ	υ	AA=C	
Median	ပ	AAAA	1	;	AAAA	A-B	AA	μQ	æ	A-B	B~C	Ą	ED :	æ	ф	д	ט	pa l	ph	

Table C.3a

NO	
N RECION	
MOUNTAIN	
ROCKY	
THE	PERIODS
Z	Ä
FIELDS	TE-YEAR
OIL	H
THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL FIELDS IN THE ROCKY MOUNTAIN	BY SIZE OF FIELD OVER FIVE-YEAR P
ES	SIZE
DISCOVER	BY
ö	
NUMBER	
THE	

Total	m	7	15	14	29	74	142
1971/ 1975	1	;	2	1	1	2	9
1966/		+	7	1	2	ξĴ	10
1961/	}	1	ł	1	2	71	17
1956/ 1960	1	1	1	ч	9	13	21
1951/ 1955	1	-	٣	4	7	14	29
1946/ 1951/ 195 1950 1955 196	ł	;	-	-	2	9	10
1941/ 1945	ļ	ŀ		1	m	2	٠
1936/ 1940	1	1	ŀ	Н	1	н	2
1931/	1	ļ	1	1	1	-	
1926/ 1930	1	1	н	1	73	£	9
1916/ 1921/ 1920 1925	1	1	+4	1	П	4	9
1916/ 1920	1	2	2	4	ന	'n	16
1911/		2	2	1	ļ	1	9
1906/	}	1	7	1	1	г	2
1901/	1	ł	1	ì	1	}	н
1896/	1	i	1	ŀ	ł	ł	0
1891/ 1895	 	ł	ŀ	1			0
1886/	1 - 1	1		1			1 0 0
Pre-			1	ŀ	ł	3	2
Field Pre- 1886/ 1891/ 1896/ Size 1885 1890 1895 1900	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

Table C.3b

THE NUMBER OF DISCOVERIES OF SIGNIFICANT MATURA, CAS FIELDS IN THE ROCKY MOUNTAIN REGION
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field Pre- 1886/ 1891/ 1896/	Pre-	1886/	1891/	1896/	1901/	1906/	1911/	1916/	1921/	1926/	1931/ 1935	1936/ 1940	1941/ 1945	1946/	1951/ 1955	1956/	1961/ 1965	1966/	1971/ 1975	Total
Class AAAA	1	1	1	1	1	<u> </u>		1		1	 			1		1	}	ł	1	~
Class AAA	ļ	1	;		ł	١	ł	1	1	1	1		FI	н	\vdash	1	1	1	!	4
Class AA	ţ	1	1	ł		1	ł	1	ł	2	ł	;		1	;	٦	ļ	7	ļ	5
Class A	{	ł	1	1	1	1	ł	ł	ļ	1	ì	1	г	1	н	}		1	}	7
Class B	ł	1	1	}		ļ	H	}	1	4		ł	2	2	н	1	ļ	1		14
Class C	ŀ	ł	!	ł	ŀ	ł	1	}	п	2	1	ł	i	-	Ŋ	£	æ	+4	ł	19
Total	0	0 0 0 0	0	0	0	0	1	0	m	6	-	0	νn	9	80	œ	£0	7	0	87

Table C.3c

THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL. AND CAS FIELDS IN THE ROCKY MOLNTAIN REGION BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Total	0	1	2	2	2	œ	15
1971/		1	-	;	1	Н	m
1966/	1	1	1	Т	}	,-1	2
6/ 1961/ 1 0 1965 1	1	}	1	1	1		0
1951/ 1956/ 1955 1960	1	ł	ì	н	1	1	2
1951/	I	ŀ		1	1	1	0
1946/	ļ	ŀ	;		}	en	
1941/ 1946/ 1945 1950		ţ	1	ŀ	}	!	0
1936/ 1940		ł	٦	ţ	}	1	⊣
1931/	1	l	ł	ŀ	ļ	}	0
1926/ 1930		П	ŀ		1	1	<u>-</u>
1921/ 1925	ļ	1	ł	1	1	1	:
1911/ 1916/ 1915 1920	Ļ	1	1	ļ	1	7	2
1911/	}	1	J	1	1	1	٥
1906/	1	1		l	1		0
1901/	}	1	1	;	1	1	0
1896/	1	1	!	ŀ	1	1	0
1891/	1	1	ţ	1	;	ļ	c
1886/	{	1		ł	1	1	0 0
Pre- 1886/ 1891/ 1896/ 1901/ 1906/ 1885 1890 1895 1900 1905 1910		}			}	1	0
Field	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

Table C.4
THE NIMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN THE PERMIAN BASIN BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1916/ 1920	1921/	1926/ 1930	1931/ 1935	1936/ 1940	1941/	1946/	1951/	1956/	1961/ 1965	1966/ 1970	1971/	Total
Class AAAA	1		æ	e	en	П	2	ŧ	1	ч	!	ł	18
Class AAA	1	7	2	ч	ļ	10	٣	7	7	н	1	1	19
Class AA	ł	e	ĸī	7	7	2	9	6	ł	1	٣	ļ	54
Class A	7	-	н	1	90	1	\$ 0	7	4	6	4	7	46
Class B	ŀ	2	7	}	2	5	16	16	12	9	7	9	74
Class C	1	1	-7	2	9	7	19	27	16	12	7	12	112
Total	-	æ	20	6	20	28	54	55	34	24	21	19	293
Mode	4	W	AAAA	AAAA	ধ	A-C	υ	υ	ပ	ပ	B-C	ن	
Median	Ą	ΑA	W.	A.A.	¥	¥	₽	ĸ	ń	μū	æ	၁	

THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE OIL FIELDS IN THE PERMIAN BASIN BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1916/ 1920	1921/	1926/	1931/ 1935	1936/ 1	941/	1946/ 1950	1951/ 1955	1956/	1961/ 1965	1966/ 1971, 1970 1975	1971/	Total
Class AAAA	ł	ŀ	ıΩ	2	m	ᆏ	2	;	1	1	;	;	13
Class AAA	1	2	2	7	1	9	2	}	н	1	;	}	14
Class AA	;	3	6	4	7	2	5	2	1	1	1		17
Class A	7	н	1	1	7	7	7	5	2			1	32
Class B	1	7	14	1	7	•#	14	80	0 0	3	~	1	45
Class C	1	ŀ	7	м	4	7	14	25	10	9	ι.;	2	92
Total	Н	æ	16	9	17	27	77	70	21	55	'n	٣	197

TABLE C.4b

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN THE PERMIAN BASIN
BY SIZE OF FIELD OVER FIVE-YEAR PIRIODS

Field	1916/ 1920	1921/ 1 1925	1926/	1931/ 1935	1936/	1936/ 1941/ 1940 1945	1946/ 1950	1951/ 1955	1956/ 1960	1961/ 1965	1966/ 1970	1971/ 1975	Total
Class AAAA	ł	1	;	1	ŀ	1	ļ	}	ţ	7	1	1	1
Class AAA	1	l	ŀ	1	ļ	1	1	H	1		1	1	С
Class AA	ł	l	ł	ļ	}	1	1	7	1	1	e	1	5
Class A	;	1	-	1	!	ł	;	ł	7	2	٣	П	Φ
Class B	1	;	1	1	ŀ	ł	1	2	3	6	ď	4	17
Class C	}	ļ	ţ	ł	1	}	ю	H	z.	٧n	4	10	56
Total	Φ	0	+4	0	-	0	6	٩n	11	13	15	15	64

Table C.4c

THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND GAS FIELDS IN THE PERMIAN BASIN
BY SIZE OF FIELD OVER FÜVE-YEAR PERIODS

												1	
Field	1916/	1916/ 1921/ 1920 1925	1926/	1931/	1936/	1936/ 1941/ 1940 1945	1946/	1951/	1956/ 1960	1946/ 1951/ 1956/ 1961/ 1966/ 1971/ 1950 1955 1960 1965 1970 1975	1966/	1971/	Total
Class AAAA	1	ļ	ю	ч	1	1	1	1	1	1	1	1	4
Class AAA	Ļ		1	1	1	1	-4	П	ł	;	}	ļ	2
Class AA	l	-	1	1	1	1	Т	1	1	1	1	1	7
Class A	1	ł	}	l t	1	ł	1	esi	ł	F	1	1	ĽΊ
Class B	i	1	;	1	ļ	ᆏ	2	9	1	1	1	г	12
Class C	ł	1	Ļ	1	1	1	2	П	н	1		ţ	7
Total	c	٥	m	n	2		7	10	7	2	т.	П	32

Table C.5

THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN NORTH CENTRAL TEXAS BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1901/	1906/	1911/	1916/	1921/ 1925	1926/	1931/ 1935	1931/ 1936/ 1935 1940	1941 1945	1946/ 1950	/ 1946/ 1951/ 1 1950 1955 1	956/	1961/ 1965	1966/ 1970	1971/ 1975	Total
Class AAAA		1	1		1	1	1	1	ł		1	}	1	ł		0
Class AAA	;	1	Ħ	e.	ł	ł		1	ŀ	1	1	1	ł	ł	ļ	50
Class AA	1	;	1	1	ł	ł	1	н	1	1	}	}	;		1	8
Class A	;]	7	1	}		†	1	1	'n				1	φ
Class B		ļ	~	1	۲	1	ŀ	2	2	~	+	;	}	1	i	01
Class C	†	1	4	æ	7	7	}	5	6	11	11	٦	7	!	7	58
Total			9	ø	4	€0	0	80	11	15	17	н	2	0	2	85
Mode	æ	o	ပ	AAA-C	u	ပ ပ	ł	၁	υ	၁	ပ	ບ	ပ	ł	υ.	
Median	띠	o	æ	¥	В	ρΔ		Ħ	ပ	ĸ	æ	c	Ų	}	၁	

Table C.5a
THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE OIL PIELDS IN NORTH CENTRAL TEXAS
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1901/	1906/ 1910	1911/	1916/ 1920	1921/	1926/	1931/	1936/ 1940	1941/ 1946/ 1945 1950	1946/	5/ 1951/ 1 0 1955 1	1956/ 1960	1961/ 1965	1966/	1971/ 1975	Total
Class AAAA	.	1	i	1	;	1	ŀ	1	1	1	i	1		1	ì	O
Class AAA	l F		1	e'n		ł	}	ł	ł	ł	ł	ŀ	ł	ł	ł	•
Class AA	1	1	ì	р-4	ŀ	1	1	-	1	-			ŀ	ł	1	65
Class A	1	I	ļ	2	7	}	}	;	}	7	4	ł	}	ł	1	œ
Class B	1	}	7	1	П	1	1	2	2	7	Т	1	1	1	ì	6
Class C	1	1	1	2	2	9		2	σ	11	σ	п	Ħ	ł	7	65
Total	0	0	m	ಕು	7	7	0	∞	11	14	14	-	1	0	2	73

Table C.5b
THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN NORTH CENTRAL TEXAS
BY SIZE OF FIELD OVER PIVE-YEAR PERIODS

Field	1901/	1906/	1911/	1916/	1921/ 1925	1926/ 1930	1931/ 1935	1936/	1941/	1946/ 1950	1951/ 1955	1956/ 1960	1961/ 1965	1966/ 1970	1971/ 1975	Total
Class AAAA	1	1	1		:		1	1	1	;	:		ì	;	1	0
Class AAA	1	1	ŀ	1		}	1	}	1	-	;	1	}	1		٦
Class AA	1	}	1	}	ŀ		ł	;		1	ł	ļ	1	1	F	0
Class A	1	1	1	ŀ	ł	1	1	1	;	‡	1	}	ł	}	ł	0
Class B	I	1	ł	1	ł	1	}	}	1	;	ł		1	1	1	0
Class C	i	1	2	ᆏ	ł	1	1	1	ł	ŀ	2	ł	-	1	ì	00
Total	o	₩	7	-	0	-	0	0	0	г	23	0	***	0	0	ø

THE NUMBER OF DISCOVERIES OF SICNIFICANT COMPOSITE OIL AND CAS FIELDS IN NORTH CENTHAL TEXAS BY SIZE OF PIELD OVER FIVE-YEAR PERIODS

	, 1001	1,0001	1011/	19167	1001	1035/	1631/	1	1	19761	/ 1.501	1056/	1061	10667	1071/	
Size	1905	1906/	1915	5 1920 1	1921/	1930	1935	1940	1945	1950	1955	1960	1965	1970	1975	Total
Class AAAA	ŧ			1	ı	1	;	}	1	1	1	ł	ł	ł	1	0
Class AAA	ł		1	1	1	1		1	1	1	}	1	1	1	ł	0
Class AA	1	1	;	1	1	ŀ	1	1	1	i		ļ	1	i	!	0
Class A		}	;	1	i	1	1	1	1		-ï	1	1	1	ł	1
Class B	1	1	1	ł	;	ì	ł	ł	1	ł	1	1	1	1		pri
Class C	1		٦	ł	١,	l	;	}	;	1	1	1	1	ł	ŀ	1
Tatal	1	0	-	0	0	٥	0	0	0	Q	ı	0	o.	0	0	۳ ا

Table C.6

THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NAFFRAL GAS FIELDS IN THE MID-CONTINENT
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

1966/ 1971/ 1970 1975 Total		24	1 1 22	1 51	1 — 51 2 2 91			C 9 6 2
1961 / 1965	1	1	1	2	7 7	2 7 7 2 5	2 2 27 32	2 2 2 2 3 32 C
1956/ 1960	;	7	2	5 ^	9	9 14 28	9 14 28 54	9 14 28 54 C
1951/	1	س	4	1	1 6	1 9 23	1 9 23 37	1 9 23 37 c
1946/	ł	ł	1	П	1 7	1 7 7 13	1 7 7 13 13	1 7 7 13 13 C C C
1941/	c4	1	П		 &	1 8 8	1 8 8 15 28	1 8 8 13 28 C
1936/	1	7	г	33	9	3 6	3 6 12 23	3 6 112 23
/ 1931/ 1935	ł	2	mi	5:	κ. 4	5 4 114	5 4 14 26	5 4 4 14 26 C C
1926/	2	ĸ	3	7	9	7 6 111	7 6 6 111 334	7 6 111 34 C
/ 1921./ 1925		1	2	9	9 8	6 8 15	6 8 15 32	6 8 8 15 32
1916/	_	4	٣	2	2 10	2 10	2 10 9	2 10 9 29
1911/	1	m	1	4	4 m	4 3	4 3 3 10 12 22	4 3 3 10 10 C C
1906/	н	ļ	7	5	n m	2 6 6	5 7 17	5 3 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1901/	-	1	2	2	2 2	2 2 1-	2 2 7 1 15	
1891/ 1896/ 1901 1895 1900 1905	ł	П		i	1 1	1 1 -	7 1 1	1 2 2 AAA-C
1891/	;		1	5	0 m	9 %	3 8	8 6 8
Pre- 1891	1		1	-	7	2	3 [2]	1 2 1 6 8
Field	Class AAAA	Class AAA	Class AA	Class A	Class A	Class A Class B Class C	Class A Class B Class C Total	Class A Class B Class C Total

TABLE C.6a

THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE OIL FIELDS IN THE MLD-CONTINENT
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	Prc- 1891	1891/	Prc- 1891/ 1896/ 1901/ 1891 1895 1909 1905	1901/	1906/	1911/	1916/	1921/ 1925	1926/	1931/	1936/	1941/ 1945	1946/	1951/	1956/	1961/	1966/	1971/	Total
Class AAAA	}	1		1	}	Ħ	Ħ	ł	1	1	1	1	1	ļ	}	;	i	<u>!</u>	5
Class AAA		1	1	-	}	m	٣	1	Ŋ	2	щ.	1	1		1	1	1	į	17
Class AA	1	;		7	1	I	ю	2	2	1	~	}	ļ	1	Ħ	1	1	1	14
Class A	}	ч		2	м	7	1	2	9	ų	2	rt	ı	1	1	}	-	;	33
Class B	1	1	1	2	2	2	80	7	9	ę	ιζ	ĸ٦	4	7	7			7	50
Class C	1	ł	1	7	5	σ	6	14	10	11	10	11	σ.	12	2	Z.	8	1	119
Total	г	5	- I	15	11	19	25	29	30	22	19	18	14	14	6	\$	m	+	238

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN THE MID-CONTINENT BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Total	2	9	9	12	30	29	118
1971/ 1975	1	1	п	;	-1	υ,	7
1966/ 1970	}	}	П	ŀ	2	ď	νp
1961/ 1965	ł	Т	1	2	2	19	24
1956/ 1960	;	٦	7	7	6	91	34
1951/ 1955	l	М	ļ	-	'n	∞	11
1946/ 1950	ì	1	!	!	2	7	9
1941/ 1945	ł	1	7	}	7	1	е.
1936/	ł	;	ŀ	ţ	7	2	n
1931/ 1935	1	1	1	1	1	2	٣
1926/	1	1	1	П	1	1	en
1921/	ţ	1	l	1	н	!	2
1916/ 1920	1		1	1	C4	ł	es.
1911/	1	1	ч	1	П	1	2
1906/	1	{	l	ł	ţ	2	es
1901/	ł	ŀ	;	}	1	}	0
1896/	1		i	!	1	₩	
1891/	ļ	ţ	!	l	1	1	1 0 1
Pre- 1891/ 1896/ 1901/ 1891 1895 1900 1905			ł	f	1	1.	
Field	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL, AND GAS FIELDS IN THE MID-CONTINENT BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Total	п	П	7	9	11	22	43
1971/ 1975	1	ŀ	ļ		ŀ	7	1
1966/ 1971/ 1970 1975	1	ł	1	1	ŀ	1	0
1961/	1	1	1	1	}	٣	£.
1956/ 1960	ł		1	П	3	۲-	11
1951/	}		1	ţ	2	3	49
1946/		1	1	1	m	1	7
1936/ 1941/ 1946/ 1951/ 1 1940 1945 1950 1955 1	н	н	1	;	н	4	7
1936/	1	ł	}	1		1	-
1931/ 1935		ł	1	1		-	-
1926/ 1930	!	1	ł	!	ł	Ţ	, 1
1916/ 1921/ 1920 1925		ļ	1	ŀ	;	4	٦
1916/		;	ļ	-	1	;	1
1911/ 1915	1	1	ļ	1	1	~	٠,
1906/	1	}	1	7	1	1	3
1901/	1	}	1	}	1	1	0
1896/			ł	ł	}	t	0
1891/			1	7	2	;	1 3 0
Pre-	1	}	}		r=1		П
Field Pre- 1891/ 1896/ 1901/ Size 1891 1895 1900 1905	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

Table C.7
THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN THE WESTERN CULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1896/ 1	1901/	1906/	1911/	1916/	1921/	1926/	1931/	1936/	1941/	1946/	1951/ 1955	1956/	1961/ 1965	1966/	1971/ 1975	Tota]
Class AAAA	}	ŀ	1	ļ	1		ᆏ	7	7	1	-	1	ł	1	1	ł	13
Class AAA	}	1	1	п	2	ŧ	1	4	9	ļ	2	2	ł	;	1	1	17
Class AA	1	4	п	1	7	Ŋ	'n	4	6	2	4	1	4	ri	1	2	45
Class A	1	Ħ	-	1	ŀ	7	7	7	20	c c	9	7	2	-	1	4	65
Class B	}	1	1	;		2	ъ	7	24	14	15	11	7	ω	en.	12	105
Class C	i	1	н	7	1	'n	80	10	33	37	58	33	21	15	12	53	236
Total	٦	ç	7	4	4	13	2.4	39	96	64	57	20	34	22	16	4.7	481
Mode	4	.AA		C	AAA	AA-C	υ	၁	၁	Ų	U	Ç	Ų	Ü	υ	U	
Median	٧	¥	A-B	A-8	A.A	B	4	4	Ħ	μά	μQ	ď	В	၁	O	ы	

Table C.7a
THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE OIL FIELDS IN THE WESTERN GULP
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Total	5	4	17	20	27	64	122
1971/	!	1		ţ	1	Fr.	-
1966/	ł	1		ł	ì	1	0
1961/ 1965	1	1	1		1	1	2
1956/ 1.960		1		ч	٦	1	П
1951/	1	1	}	1	П	-7	2
1946/ 1950	1	1	;	1	4	9	01
1941/ 1945	1	1	24	-	4	4	=
1936/	2	}	1	47	^	14	28
1931/	т	m	٦	7		vs.	21
1926/		1	М	¢	1	9	372
1921/ 1925		1	প	ì	2	4	10
1916/ 1920	ł	₽	1	1	7	1	£.
/1161 1915	ł	1	1	1	}	7	м
1906/	ł	ŀ	7	1	П	щ	4
1901/	1	ļ	-7+	1	Ē	1	9
1896/	1	ŀ	}	П	1		-
Field Size	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

Table C.7b

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN THE WESTERN GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1896/ 1900 19	1896/ 1901/ 1900 1905	1906/ 1910	1911/ 1915	1916/ 1921/ 1920 1925	1921/ 1925	1926/ 1930	1931/ 1935	1936/ 1940	1941/ 1945	1946/	1951/ 1955	1956/ 1960	1956/ 1961/ 1960 1965	1966/ 1971/ 1970 1975	1971/	Total
Class AAAA	[1	1	1	;	1	m	-1	1	ч	1	ŀ	ŧ	1	1	æ
Class AAA		1	ţ	1	ł	ı	;	ł	7	ł	2	Т	1	1	1	1	7
Class AA	ł	1	1	;	ł		~	ю	-3*	6	٦	ł	en.	1	1	7	18
Class A	į	ł	1	1	1	1		2	5	4	6	er,	T	-	7	4	29
Class B	ł	}	;	1	1	;	2	ı	6	9	10	畋	ব	4	۳	12	59
Class C	}	1	ł	1	ŧ	1	2	r i	11	28	16	25	20	12	11	28	155
Total	٥	0	0	0	o	2	æ	10	38	41	33	33	28	18	15	46	274

Table C.7c
THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND GAS FIELDS IN THE WESTERN GOLF
BY SIZE OF FIRED OVER FIVE-YEAR PERIODS

Field Size	1896/	1901,	1906/ 1	1911/	1916/	1921/	1926/ 1930	1921/ 1926/ 1931/ 1 1925 1930 1935 1	1936/	1941/	1946/ 19 1950 19	1951/	1956/	1961/	1966/	1971/	Total
Class AAAA	1	l	ļ		;	1	1	m	н	l	1	1	1	1	ŧ	ì	2
Class AAA	1	ł		۲	1	1		1	5:	!	ì		;	;	!	ł	y
Class AA	1	;	ł	ł	1	1	1	[√1	ţ	3	1	7	1		1	10
Class A	}	;	ł	1	1	ł	1	7	~-	٣	en	4	1	ļ		}	16
Class B	1	;	1	ł	1	1	7	-	œ	4	Ħ	2	2	ļ	1	ţ	19
Class C	1	ł	1	i	1	;	1	4	\$0	5	r~	à	1	7	٦	ļ	32
					•												
Total	0	0	0	г	-	-	m	00	30	12	ž,	5 C	4	14	1	¢	35

Table C.8
THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN THE CENTRAL GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field Size	1901/	1906/	1911/	1916/	1921/	1926/	1931/	1936/	1941/	1946/	1951/	1956/	1961/ 1965	1966/	1971/	Total
Class AAAA		ŀ	1	1	1	н	1	en.	П	£.	ч	3	1	!	н	13
Class AAA	1	ł	1	1	1	е	Б	11	7	7	eñ	œ	2	н	٣	51
Class AA	-	7	1	1	1	2	4	œ	o¢.	12	10	4	6	7	DQ.	7.2
Class A	3	1	г	;	1	'n	m	17	17	11	20	1.5	1.4	6	12	121
Class B	1	ł	٦		7	2	9	1.2	₽	11	19	17	6	6	22	121
Class C	;		1	1	1	2	2	1.1	00	20	2.5	28	83	12	52	152
Total	ব	T	2	7.	2	15	18	62	46	64	78	7.5	55	35	72	530
Mode	Ą	Ą	A-B	ΨΨ	М	*	Ħ	₩	A-is	υ	Ų	Ç	J	υ	O	
Median	¥	AA	A-B	A.	ы	4	¥	Ą	ч	¥	æ	Я	∢ ;	<u>κ</u>	ĸ	

Table C.8a

THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE OIL, FIELDS IN THE CENTRAL CULF

BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Total	5	13	21	34	28	32	133
1971/	ì	;	ļ	e n	ć.	-	7
1966/	;	-1	2	47	1	3	10
1961/	ł	-4	2	1	er;	٣	10
1956/	Ħ	1	1	ì٦	2	٣	12
1951/	ĭ	ł	61	7	٣	4	14
1946/ 1950	2	3	7	4	е	10	24
1941/ 1945	1	H	-31	-1	2	2	10
1936/	7	ľΫ́	m	5	, - -1	4	21
1931/ 1935	1	2	н	ł	3	-	1
1926/	ł	ŀ	2	-\$	2	-	9/
1921/	1	;	;	1	2	1	8
1916/	;	1	1	1	ļ	;	Т
1911/	ł	1	1	1	-	1	2
1906/	ţ	,	-	ļ	i	1	=
1901/ 1905]	ł		7	Ή.	1	٣
Field Size	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

Table C.86

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN THE CENTRAL GULF BY SIZE OF FIELD OVER FIVE-YEAR PFRIODS

Field	1901/	1906/	1911/	1916/	1921/	1926/	1931/	1936/	1941/	1946/	1951/ 1955	1956/ 1960	1961/ 1965	1966/ 1970	1971/ 1975	Toral
Class AAAA	ŀ	1	1	;	1	}	1	Т	T	-	1	2	}	ł		2
Class AAA	ł	1		ł	1		1	4	vo	4	9	ī.	m	1	2	27
Class AA	ţ	} .	1	1	1	1	۲	1	٣	7	5	4	~	-	7	32
Class A	1	}	}	ì	}	ł	1	œ	7	7	10	10	80	iO	7	57
Class B	ł		1	1		ŀ	1	4	œ	ď	10	10	ς,	7	16	99
Class C	;	}	1	ļ	L I	1	1	4	2	7	17	20	15	∞	24	46
Total	0	0	0 :	0	0	0	-	22	27	26	45	51	25	21	35	283

Table C.8c
THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND CAS FIELDS IN THE GENTRAL GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIORS

1920
- 1
. 3
1
1
9 0 0

TABLE C.9

THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN THE NORTHERN GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

																:		
Field Size	1891/	1891/ 1896/ 1901/ 1895 1900 1905	1901/	1906/ 1910	1911/ 1915	1916/ 1920	1921/ 1925	1926/ 1930	1931/ 1935	1936/	1941/ 1945	1946/ 1950	1951/ 1955	1956/ 1960	1961/ 1965	1966/ 1970	1971/	Total
Class AAAA		}	l	1	1	Ħ	,,	2	ţ	2	1	l	1	,	1	ł	1	9
Class AAA	1	;	н		ł	2	m	٦	ţ	3	1	1		-	ļ	1	1	12
Class AA	1		ļ	:	m	1	2	;	2	9	4	뻔	н	ļ	П	1	1	24
Class A	1	}	ł	;	1	7	П	ćή	ļ	4	4	2	ł	н	ļ	7	:	19
Class B	1	1	ч	1	п	2	2	2	7	Q	11	6	ч	ч	П	П	3	35
Class C	ł	i	1	ŀ	-	;	Ŋ	7	#	7	∞ .	13	13	316	6	1	3	81
Total	1	0	7	o	55.	æ	14	12	4	31	28	19	15	19	17	n	ž,	177
Mode	<	W -	AAA-B	1	\$	AAA- A-B) 	. 0	ΨV	AA	₽≏	Ç	ပ	υ	Ü	Ü	Ú	
Median	V	1	AA-A	1	٧	A.A. A.	Ą	Ą	Ą	4	ĸ	ď	ပ	ပ	Q	×	၁	

TABLE C.9a

THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE OIL FIELDS IN THE NORTHERN GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1891/ 1895	1896/	1891/ 1896/ 1901/ 1895 1900 1905	1906/	1911/ 1915	1916/ 1920	1916/ 1921/ 1920 1925	1926/ 1930	1926/ 1931/ 1930 1935	1936/ 1940	1941/	1941/ 1946/ 1951/ 1945 1950 1955	1951/ 1955	1956/ 1960	1961/ 1966/ 1965 1970		1971/ 1975	Total
Class AAAA	 		1	l	1	ł	1	7	1	1	ł	í	1	1	1	1		7
Class AAA	I	1	1	ì	1	1	7	}	1	2	1	;	}	1	1	}	!	Ç
Class AA	1	1	ł	ł	2		2	ţ	;	2	+4	ŀ	ч	1	ł	1	;	ø.
Class A	1	ł	ŀ	1	ł	m	1	ł		1	7	1	1	1	1	1	ļ	'n
Class B	}			1	}	1	Ħ	г	1	4	E	ł	ļ	1		}	1	12
Class C	}	1	1	1	1	ļ	2	2	ļ	6	Ŋ	10	7	9	2	1	ì	39
Total	-1	o	-	ø	m	ተሳ	න	'n	0	1.3	11	10	œ	æ	2	1	г	7.5

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL GAS FIELDS IN THE NORTHERN GULF BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	1891/	1896/ 1901/ 1900 1905	1901/	1906/ 1910	1911/	1916/ 1920	1921/ 1925	1926/ 1930	1931/ 1935	1936/	1941/	1946/ 1950	1951/ 1955	1956/ 1961/ 1960 1965		1966/	1971/	Total
Class AAAA	;		1	ļ	l	1	}	;	;	1	1	}	;	1	ł	ł	I	7
Class AAA	1	1		1		2	1	ļ		1	}	}	1	1	1	1	1	7
Class &A	1]	l	l	1	1	}	ļ	1	4	г	1	1	;	1	ļ	1	7
Class A	1	ļ	;	l		7	ł	κ'n	}	٣	ĸΊ	2	1	1	1	1	1	13
Class B	1	;	٦	ł	1	7	7	æ	н	1	ę.	eп	=	ŀ	ŀ	~	7	19
Class C	1	ļ	T	{	;	ł	2	~	'n	4	m	m	3	6	9	1	m	36
Tota1	0	0	٦	0	2	٠	4	ی	2	14	13	ф. 	4	10	٥	-	-37	18.

TABLE C.9c

THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND GAS FIELDS IN THE NORTHERN GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

[otal	0	7.	60	1	\$7	9	21
1971/ 1975		1	ł		1	1	0
1966/ 1970	;	;	:	1	}		ᆏ
1961/ 1965	;	1	٦	ŀ	П	г	ų
1956/ 1961/ 1960 1965	!	ţ	ł	ļ	ļ	ч	п
1951/		{	1		}	en.	3
1946/		1	ł	1	1	[0
1931/ 1936/ 1941/ 1935 1940 1945		1	2	Ļ	2	1	4
1936/ 1940	ļ	1	٣	i	7	ł	4
1931/ 1935	1	}	2	1	}	ŀ	2
1921/ 1926/ 1925 1930	ļ	-	1	ł	1	1	-
1921/ 1925	;	~	1	}		r=1	2
1916/ 1920	ţ	1	ł	ţ	1	†	0
1913/	1	}	;	1	1	1	0
1906/	1	1	;	ł	1	1	Q
1901/	1		1	1	ŀ	1	0
1891/ 1896/ 1901/ 1895 1900 1905	1	ł	1	1	ŀ	ł	c
1891/ 1895	1	ł	1	1	1	1	0
Field Size	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	Total

Table C.10
THE NUMBER OF DISCOVERIES OF SIGNIFICANT OIL AND NATURAL GAS FIELDS IN THE EASTERN GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field Size	1926/ 1930	1926/ 1931/ 1930 1935	1936/ 1940	1941/	1946/	1951/ 1955	1956/ 1960	1961/ 1965	1966/	1971/ 1975	Total
Class AAAA	1	1	;	ŀ	ł	;	ł	}	i	1	o
Class AAA	1	1	ч	2	1	1	1	ł	н	}	7
Class AA	ł	1	ł	٣	1	н	1	;	1	щ	Ŋ
Class A	ł	ł	ţ	m	}	7	7	1	7	ന	12
Class B	;	ł	1	7	7	;	m	2	2	}	10
Class C	7	;	7	iņ.	2	ç	47	4	œ	νı	36
Total	H	0	74	14	, 4	æ	1.0	œ	13	ď	67
Hode	၁	}	AAA-C	ပ	3-g	ပ	Ç	ပ	ပ	ပ	
Median	ņ		Ą	4	B-C	£	ĸ	U	м	æ	

Table C.10a
THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE CIL FIELDS IN THE EASTERN GULF
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field Size	1926/	1931/ 1935	1936/ 1940	1926/ 1931/ 1936/ 1941/ 1946/ 1951/ 1956/ 1961/ 1966/ 1971/ 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975	1946/ 1950	1951/ 1955	1956/ 1960	1961/ 1965	1966/ 1970	1971/ 1975	Total
Class AAAA	1	ļ	1	1	ŀ	1	1	ł	1	1	ō
Class AAA	1	ļ			ţ	ı	ł	1	-	;	er)
Class AA			ł	1	}	Ħ	}	}	;	ŀ	2
Class A	†	1	ł	2	ļ	Ţ	П	ŀ	1	-	<u>د</u> ٦
m.	1	ŀ	1	Ħ	2	1	2	2	1	l	60
Class C	1	l	٦	m		ମ	6)	т	\$	2	21
	0	0	2	90	ų	4	ψ	'n	Ф	ю	66

Table C.10b

THE NUMBER OF DISCOVERIES OF SIGNIFICANT NATURAL CAS FIELDS IN THE EASTERN GULF BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Fle1d	1926/	1931/	1936/	1941/	1946/	1951/	1956/	1961	1966/	/1/61 /9961	
Size	1930	1930 1935 1940 1945 1950 1955 1960 1965	1940	1945	1950	1955	1960	1965	1970	1975	Total
Class AAAA	ŀ	ł	ł	ł	!	ţ	ŀ	ł	ŀ	}	0
Class AAA	1	;	ł	-	1	ł	1	ļ	ı	ŀ	-
Class AA	1	}	1	ч	ł	;	ţ	١	1	ł	1
Class A	;		}	1	ļ	7	-	ł	٦	ч	9
Class B	!	!	;	;	ţ	;	ŀ	1	ŀ	ł	0
Class C		1	ł	1	1	71	7	н	7	т	17
Total	7	0	Ф	4	н	4	en	ч	8	4	20

Table C.10c THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND GAS FIELDS IN THE EASTERN GULF BY SIZE OP FIELD OVER FIVE-YEAR PERIODS

Field Size	1926/ 1930	1931/ 1935	1926/ 1931/ 1936/ 1941/ 1946/ 1951/ 1956/ 1961/ 1966/ 1971/ 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975	1941/	1946/ 1950	1951/ 1955	1956/ 1960	1961/ 1965	1966/ 1970	1971/	Total
Class AAAA	1	. !	ļ	‡ †	1	1	ł		1	1	0
Class AAA	!	1	1	}	1	1	1	ł	ł	}	0
Class AA	}	;	!	1	ļ	ł	ì		i	1	2
Class A	l	;	}	ŀ	1	1	1	1		н	Н.
Class B	1	1	I	ŀ	1	1	н	;	H	1	73
Class C	}	¦ •		н	1	}	н	1	-	1	E
Total	c	c	c	^	c	c	2	c	,	2	00

Table C.11
THE NUMBER OF DISCOVERIES OF SICRIFICANT OIL AND NATURAL GAS FIELDS IN THE ILLINOIS-MICHIGAN BASINS
BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

Field	Pre-	Pre- 1891/ 1891 1895	1896/	1901/ 1905		1906/ 1911/ 1910 1915	1916/	1921/	1926/	1926/ 1931/ 1930 1935	1936/ 1940	1941/ 1945	1946/ 1950	1951/	1956/ 1960	1961/ 1965	1966/ 1970	1971/ 1975	Total
Class AAAA	}		ļ 		1	1		1	}	1		1			1	1	1	1	0
Class AAA	ł	!	1	1	1	!	1	ŀ	;	1	4	ł	1	;		1	1	1	9
Class AA	1	ł	t	;	1		ł	ŀ		ł	1	1	;		1	ł	1	1	е
Class A	}	{	1	H	1	1				ч	5		ł	}	1	}	}	;	7
Class B	ł	ł		}	1		1	1	1	1	vo	2	l		;	}	}	1	11
Class C	1	;	i		ł	ŀ		ļ	!	p=={	20	15	6	п	ŧ ŧ	1	;	2	42
Total	1	O.	-	т		П		0	н	2	36	17	т	2	0	0	٥	2	69
Mode	AA.	1	AAA	Ą	AAA	ď	μū	ţ	Ľ	A-C	Ç	Ų	Ü	AA-C	1	ł	1	o	
Median	ΨV	ļ	AVA	4	AAA	m	βĊ	1	æ	æ	В	၁	U	A-B	+	}	3	ņ	

Table C.11a

THE NUMBER OF DISCOVERIES OF SIGNIFICANT CRUDE OIL FIELDS IN THE ILLINOIS-MICHIGAN BASINS

BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

	Total	o	9	m	7	11	41	89
	욉							
1	1975	1	;		1	1	2	7
1000	1906/	ļ		1	ì	1	1	0
1	1961/		1	1	ļ	1	1	0
	1956/ 1960	1	1	1	ŀ	1	1	0
	1951/ 1955	1	ļ	٦		ł	}	H
	1946/	1	}	1	į. Į	ŀ	m	m
	1941/ 1946/ 1945 1950		1	¦	1	61	15	17
	1936/ 1940	ł	4	1	5	¢	20	36
	1931/ 1935	1		1	1	ŧ	1	2
	1926/ 1930		;	}	1	1		,-d
	1921/ 1926/ 1925 1930	1	1	1	1	ł	1	o
	1916/ 1920	1	1	;	ł	н	ł	
	1911/ 1915	 	1	1	;	٦	1	-
	1906/ 1910		1	į	ļ	ł	ì	-
	1901/ 1905		ł	1	7	1	1	-
	1896/		-	ł	ŀ	ļ	1	-
	1891/ 1895		1	1	ŀ	}	ł	c
	Pre-	1	1	1	!	ŀ	ţ	-
	Field Fre- 1891/ 1896/ 1901/ Size 1891 1895 1900 1905	Class AAAA	Class AAA	Class AA	Class A	Class B	Class C	, (1

Table C.11c

THE NUMBER OF DISCOVERIES OF SIGNIFICANT COMPOSITE OIL AND GAS PIFIDS IN THE ILLINOIS-MIGHICAN BASINS BY SIZE OF FIELD OVER FIVE-YEAR PERIODS

1910 1920 192	11/	930 193	1916/ 1921/ 1926/ 1931/ 1936/ 1941/ 1920 1925 1930 1935 1940 1945	1941/	1946/	1951/ 19 1955 19	1956/ 1961/ 1960 1965	1966/ 1971/ 1970 1975	1971/ 1975 Total
}		1	;	1	1	}	!	ł	1
 		; ;	;		;	1	!	;	ŀ
;		 	}		1	, 	!	1	1
\ \			1	ţ	ļ		1	;	1
:		1	ł		}	1	!	;	!
: :			}	;	ŀ		1	;	1
0 0	0	0 0	0	0	Ó	7	0 0	0	0

Appendix D

THE AMOUNT OF CRUDE OIL AND NATURAL GAS DISCOVERED IN THE UNITED STATES, PRE-1901 TO 1975

INTRODUCTION TO APPENDIX D

Appendix D provides data on the amount of crude oil and natural gas discovered in the United States from pre-1901 to 1975. This appendix is included to provide more detailed information about the amount discovered than could be included in the figures of Vol. I, Sec. IV.

Table D.1 shows the amount of crude oil discovered, and Table D.2 shows the amount of natural gas discovered before 1901 and over 15 five-year periods. We aggregated the annual data into five-year periods to smooth out insignificant year-to-year fluctuations, thus highlighting the more important long-term trends, and to provide for a consistent base of comparison with the tables of App. C. The amounts are given to the nearest million barrels or the nearest billion cubic feet. We provide data on the amount discovered for each of the twelve regions used in this report, for the United States as a whole, for the United States excluding Alaska (the lower 48), and for the lower 48 offshore and onshore.

The principal source of data for the tables were the tables providing the 1978 estimates of ultimate recovery by year of discovery published in Vol. 33 of the report of the American Petroleum Institute and the American Gas Association on the reserves of crude oil, natural gas liquids, and natural gas in the United States as of December 31, 1978. We adjusted and supplemented these estimates (1) to provide data by five-year periods before 1920, (2) to include indicated additions to reserves in the crude oil numbers, (3) to give estimates of the size of recent discoveries, particularly in the Gulf of Mexico, in the data, and (4) to maintain consistency with our own estimates and definitions. Thus, wherever possible, we have adjusted the data to reflect our field definitions and judgments on field composition, our data on the year of discovery, and our estimates of field size. The totals in each region are identical with the totals for known recoverable resources of oil and gas in fields discovered to the end of 1975 that we use elsewhere in the report.

THE AMOUNT OF CRUDE OIL DISCOVERED IN THE UNITED STATES BY REGION OVER FIVE-YEAR PERIODS, PRE-1901 TO 1975 (million barrels) Table D.1

Region	Pre- 1901	1901-	1906-	1911- 1915	1916- 1920	1921- 1925	1926-	1931- 1935	1936- 1940	1941-	1946-	1951-	1956-	1961-	1966- 1970	1971- 1975	Iotal
l, Alaska		1	1	1	ŀ	;	1	1	}	ţ	l	ļ	198	884	059*6	٣	10,735
2. California	3,394	2,213	1,594	750	4,814	4,327	1,596	443	1,331	416	1,149	153	191	362	599	293	23,660
3. Rocky Mountain	ո 792	755	182	1,236	1,148	320	387	64	174	267	472	1,563	1,194	465	711	341	10,056
4. Permian Basin	1	1	1	1	96	1,400	7,460	2,210	4,520	2,425	4,671	1,617	1,280	664	278	152	26,608
5. North Central Texas	ļ	47	2	459	1,185	111	225	209	482	219	593	945	183	26	9	70	4,893
6. Mid-Continent	520	2,370	1,903	1,640	1,995	1,403	3,324	1,283	697	1,054	1,143	738	835	267	225	194	19,663
7. Western Gulf	61	643	205	101	378	617	1,263	4,784	2,969	916	166	637	358	171	109	51	14,260
8. Central Gulf	1	239	138	64	95	34	1,742	1,295	2,942	1,100	2,744	1,892	1,815	1,126	919	1,035	17,165
9. Northern Gulf	42	322	1	192	245	1,181	6,246	228	2,113	926	291	368	514	135	7.7	39	12,949
10. Eastern Gulf	}	1	;	1		1	}		240	699	160	329	258	158	618	121	2,553
11. Illinois- Michigan	543	95	250	33	38	9	58	90	2,300	867	197	95	174	22	37	239	4,675
12. Appalachian	c.2,845	2.88	c.56	c.71	c.166	38	24	4	42	119	99	88	87	78	83	00	3,820
United States	8,197	6,772	4,330	4,531	10,160	9,443	22,325	10,595	17,882	8,639	12,481	8,423	7,018	4,264	13,431	2,546	151,037
Lower 48-Total	8,197	6,772	4,330	4,531	10,160	9,443	22,325	10,595	17,882	8,639	12,481	8,423	6,820	3,380	3,781	2,543	140,302
Offshore-Gulf of Mexico	ŀ	}		1	ļ	1	;	1	φ	48	1,855	1,081	1,570	1,040	882	1,006	7,491
Offshore- Californía	1	1	i		1	1	ŀ	ŀ	ŀ	1	83	!	27	75	589	85	859
Offshore Total- Lower 48	ł	1	1	1	1	1	1	1	6	4.8	1,938	1,081	1,597	1,1115	1,471	1,091	8,350
Onshore Total- Lower 48	8,197	6,772	4,330	4,531	10,160	9,443	22,325	10,595	17,873	8,591	10,543	7,342	5,223	2,265	2,310	1,452	131,952

THE AMOUNT OF NATURAL GAS DISCOVERED IN THE UNITED STATES BY REGION OVER FIVE-YEAR PERIODS, PRE-1901 TO 1975 (billion cubic feet) Table D.2

														1			
Region	Pre-	1901- 1905	1906- 1910	1911- 1915	1916- 1920	1921– 1925	1926- 1930	1931- 1935	1936- 1940	1941- 1945	1946- 1950	1951- 1955	1956- 1960	1961- 1965	1966- 1970	1971- 1975	Total
l, Alaska	 	;		 	; ;	;		;		25	1	-31	3,227	3,263	27,011	330	33,860
2. California	1.189	1,103	1.843	728	6,250	3,518	3,328	1,360	6,490	1,050	1,022	456	1,470	1,493	1,083	842	33,225
3. Rocky Mountain		298	133	1,054	557	1,211	12,760	280	651	1,603	9,039	6,437	3,922	1,274	2,179	2,486	43,979
4. Permian Basin		;	l	1	1	707	15,338	3,852	5,273	6,811	7,511	8,104	4,885	11,735	6,425	2,792	73,433
5. North Central Texas	-	189	06	613	2,317	127	230	168	486	274	2,864	1,661	625	634	178	316	10,772
6. Mid-Continent	t 1,701	2,725	78,956	2,059	2,990	2,384	6,425	1,453	1,505	4,084	5,404	11,337	15,831	6,176	5,220	3,728	151,978
7. Western Gulf		170	185	161	215	1,804	5,713	24,305	29,897	14,454	14,288	10,192	10,501	6,423	3,759	8,305	130,390
8. Central Gulf	1	354	45	45	65	52	6,349	4,848	21,583	119,511	22,167	21,793	30,222	18,059	5,944	18,216	169,253
9. Northern Gulf	£ 39	225	1	290	8,515	1,416	2,233	2,909	15,710	5,306	4,355	2,874	4,756	2,034	1,363	1,401	53,426
10. Eastern Culf		ł	;	ł		1	122	1	2	3,468	173	968	290	197	1,165	1,224	7,837
11. Illinois- Michigan	205	37	103	15	73	m	4	ю	876	260	162	121	283	129	152	1,179	3,534
12, Appalachian	c.15,742	c.870	c.875	c.915	c.915 c.1,520	1,074	2,576	1,144	1,615	1,856	1,431	1,550	1,662	2,167	2,631	1,677	39,305
United States	18,989	5,971	82,230	5,880	22,431	12,296	55,078	40,322	84,088	58,702	68,416	65,425	77,974	53,584	57,110	42,496	750,992
Lower 48-Total	18,989	5,971	82,230	5,880	22,431	12,296	55,078	40,322	84,088	58,677	68,416	65,421	74,747	50,321	30,069	42,166	717,132
Offshore- Gulf of Mexico	ł	ł	1	1	ŀ	1	1	1	12	1,364	11,670	7,585	20,251	18,141	5,889	23,388	88,300
Offshore- California	ţ	†	ļ	;	1	ì	1	ţ	1	1	45	;	209	316	607	06	1,267
Offshore Total- Lower 48	1	ł	}	1	ł		1	1	12	1,364	11,715	7,585	20,460	18,457	6,496	23,478	89,567
Onshore Total- Lower 48	18,989	5,971	82,230	5,880	22,431	12,296	55,078	40,322	84,076	57,313	56,701	57,836	54,287	31,864	23,603	18,688	627,565

Appendix E EXPLORATORY DRILLING IN THE UNITED STATES BY REGION, 1936-1975

INTRODUCTION TO APPENDIX E

Appendix E provides data on exploratory drilling in the United States by region between 1936 and 1975. These data were included to complement the material in Apps. C and D. Whereas the latter provide data on the *results* of exploration, App. E describes exploratory *efforts*, permitting the analysis of correlations between these efforts and their results over time.

The App. E tables give the number of exploratory wells drilled and the amount of exploratory footage by year between 1936 and 1975 for each of the twelve regions used in this report and for the United States as a whole. Exploratory wells include new field wildcats, new pool wildcats, deeper pool tests, shallower pool tests, and extension (or outpost) wells, as defined by the American Association of Petroleum Geologists—Committee on Statistics of Drilling (AAPG-CSD). The sources for the data were the annual reports on North American drilling activity in the American Association of Petroleum Geologists Bulletin.

We encountered three problems in assembling these data: (1) Drilling data were not reported for 1936 for California, the Rocky Mountain states, and North Central Texas, for 1936 to 1939 for all or parts of the Mid-Continent region, and for 1936 to 1943 for all or parts of the Appalachian region. Because the former two groups were otherwise complete, we estimated the few numbers that were not available. Because the drilling data for the Appalachian region were sketchy before 1944, we did not include any estimates for the region from 1936 to 1943, after deciding that there was no reasonable base for extrapolation. (2) Drilling data were not broken down by statistical area in Louisiana and New Mexico in some years. Because we had data for the entire state and because data for previous and subsequent years provided a reasonably reliable guide to disaggregation, we estimated the likely division between the two areas in each state. All of our estimates are indicated by a "c." (for circa), emphasizing their approximate nature. (3) The definitions used in the annual AAPG report are not consistent throughout the forty-year reporting period. Before 1944, the data do not include all extension wells and all new pool tests. If the number of shallower pool tests within existing field boundaries were approximately the same proportion of all exploratory wells then as they are today and if some deeper pool tests and extension wells were excluded as well, the drilling data presented here for the period 1936 to 1943 are underestimated by 10 to 15 percent. We made no attempt to adjust the data for this definitional inconsistency. However, it should be taken into account in all analyses using the data.

Table E.1 EXPLORATORY DRILLING IN THE UNITED STATES BY REGION, 1936-1975

	Region 1	- Alaska	Region 2 -	California	Region 3 -	Rocky Mountains
		Footage		Footage	}	Footage
Year	Wells	(10 ³)	Wells_	(103)	Wells	(10 ³)
1936			c.150	c.675	c.50	c.145
1936			150	709	57	165
			135	605	32	102
1938	_ _		102	468	c.33	c.104
1939 1 940			102	539	49	144
1941		- -	124	640	62	187
1942			163	817	78	241
1943	- -	·	251	1,064	93	339
1944			315	1,438	125	412
1945			415	1,794	122	.474
1946			369	1,608	165	548
1947			360	1,608	218	827
1948			495	2,038	321	1,215
1949	~-		591	2,150	374	1,642
1950	·	- -	488	1,834	482	2,015
1951]		581	2,379	713	3,240
1952			540	2,491	1,062	5,240
1953			618	2,825	1,225	6,279
1954			641	2,968	1,637	8,554
1955			664	3,400	2,077	10,470
						-
1956			608	3,079	2,164	10,632
1957	5	48	592	2,983	2,045	10,650
1958	5	43	484	2,508	1,678	8,947
1959	13	133	503	2,818	1,858	9,955
1960	9	88	439	2,482	1,713	8,896
1961	33	224	436	2,569	1,706	8,636
1962	24	244	429	2,525	1,806	9,082
1963	16	132	446	2,502	1,496	c.7,598
1964	20	184	559	2,890	1,461	c.7,338
1965	22	174	433	2,215	1,253	c.6,089
1966	38	397	337	1,953	1,398	7,037
	34	345	350	2,058	1,286	6,726
1967	18	172	355	2,038	1,706	9,711
1968	12		290	1,741	2,453	13,649
1969 1970	60	93 633	250	1,585	1,916	10,836
	1		i			·
1971	5	47	220	1,241	1,579	8,767
1972	13	118	186	1,141	1,875	10,312
1973	14	130	205	1,280	1,568	8,233
1974	12	95	235	1,355	1,533	8,868
1975	22	208	205	1,152	1,711	9,830
			ĺ		1	
Total,						
1936-	375	3,508	14,818	74,245	43,180	224,135
1975	3/3	مهر, د	14,610	, , , 273	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
			<u> </u>		<u> </u>	

Table E.I EXPLORATORY DRILLING IN THE UNITED STATES BY REGION, 1936-1975 (2)

	Region 4 - P	ermian Basin	Region 5 - N	Central Texas	Region 6 -	Mid-Continent
		Footage		Footage	_	Footage
Year	Wells	(103)	Wells	(10 ³)	Wells	(103)
1936	138	460	c.150	c.338	c.400	c.1,500
1937	164	622	208	483	c.426	c.1,616
1938	161	607	281	734	c.328	c.1,220
1939	c.100	c.338	99	382	c.306	c.1,097
1940	114	398	286	823	353	1,226
1941	151	544	351	1,137	498	1,780
1942	168	695	338	1,004	601	2,258
			445	1,388	808	3,104
1943	156	692	1	•		•
1944	290	1,338	523	1,655	892	3,483
1945	450	2,172	571	1,715	967	3,827
1946	399	2,098	639	1,921	1,045	3,829
1947	395	2,182	794	2,375	1,444	5,197
1948	481	2,724	1,111	3,817	1,425	5,661
1949	597	3,321	1,575	5,089	1,536	5,417
1950	1,018	5,632	1,368	4,703	2,058	7,317
1951	1.078	6.564	1.766	6,117	2,301	8,752
1952	1,038	6,425	2,012	7,078	2,439	9,951
1953	1,125	6.741	2.084	8,033	2,659	10,376
1954	1,117	6,295	1,791	6,918	2,491	9,846
1955	1,121	6,624	2,051	7,717	2,887	11,352
1956	1,447	8,398	2,217	7,875	3,120	12,156
1957	1,245	6,873	1.960	6,534	2,777	11,284
1958	1,082	5,935	1,494	4,981	2,932	11,281
				4,512	2,915	11,219
1959 1960	1,171 983	6,361 5,097	1,319 948	3,718	2,181	8,844
	1	-	l .	·	ì ·	-
1961	916	5,250	714	2,900	2,171	8,999
1962	1,049	5,813	673	2,593	1,851	7,895
1963	1,052	c.6,115	840	3,091	1,721	7,434
1964	1,022	c.6,239	668	2,738	1,545	7,209
1965	676	c.5,097	662	2,391	1,308	5,886
1966	778	5,163	704	2,797	1,540	7,201
1967	650	4,325	530	1,996	1,762	7,366
1968	622	3,940	415	1,673	1,670	7,071
1969	671	4,810	493	2,007	1,665	7,604
1970	550	3,810	412	1,513	1,347	6,359
1971	449	3,008	420	1,594	1,189	5,479
1972	563	3,757	456	1,843	1,227	6,260
	1	4.025	542	2,363	1.185	5,743
1973	579		1		1,355	6,398
1974	662	4,453	678	2,919	, ,	
1975	767	5,428	741	3,065	1,375	6,728
Total,					ĺ	
1936-						
1975	27,195	169,369	35,329	126,530	62,700	257,225

Table E.1
EXPLORATORY DRILLING IN THE UNITED STATES BY REGION, 1936-1975 (3)

	Region 7 -	· Western Gulf	Region 8 -	Central Gulf	Region 9 -	Northern Gulf
7/	Wells	Footage (10 ³)	Wells	Footage (10 ³)	Wells	Footage (10 ³)
Year	WEIIS	(10-)	METTE	(10-)	- WEILS	(10 /
1936	614	2,344	49	319	270	936
1937	634	2,507	85	672	233	975
1938	700	2,624	83	657	215	897
1939	720	2,843	82	726	226	820
1939	647	2,852	88	711	197	771
1940		-				
1941	608	2,815	76	730	304	1,327
1942	484	2,499	c.69	c.668	c.275	c.1,304
1943	575	3,228	c.108	c.935	c.287	c.1,486
1944	842	4,997	151	1,411	308	1,659
1945	1,137	4,938	126	1,121	286	1,567
1946	978	4,852	136	1,147	350	1,742
1947	1,258	6,023	154	1,568	441	2,045
1948	1,443	7,344	284	2,837	441	2,049
1948	1,443	7,165	258	2,545	482	2,196
1949	1,382	7,181	270	2,720	532	2,363
	_	•				
1951	1,485	8,600	330	3,102	73 7 .	3,351
1952	1,736	10,216	390	3,931	726	3,636
1953	1,974	11,345	430	4,548	796	3,877
1954	1,776	10,049	500	5,179	743	3,803
1955	1,910	10,688	773	8,430	949	4,100
1956	2,312	12,132	781	8,703	963	4,617
1957	2,012	10,930	833	9,485	953	4,484
1958	1,776	9,979	717	8,049	1,007	4,062
1959	1,620	8,977	787	8,859	849	4,126
1960	1,502	8,842	587	6,818	826	3,995
		Ť			932	4,208
1961	1,324	8,169	605	7,001		3,944
1962	1,243	8,427	601	6,736	815	
1963	1,194	7,431	751	8,449	840	4,136
1964	1,119	7,167	773	8,673	780	3,467
1965	1,351	8,982	675	7,339	650	3,768
1966	1,448	9,415	865	10,210	662	3,887
1967	1,186	8,065	748	8,629	592	3,513
1968	972	6,936	796	9,447	616	3,819
1969	1,326	9,323	673	7,822	647	4,337
1970	1,030	7,049	520	6,099	424	2,658
	1	-		•		2,850
1971	825	5,610	627	7,148	438	•
1972	889	6,174	561	6,406	437	2,768
1973	1,120	7,893	568	6,330	365	2,463
1974	1,447	10,140	427	4,634	511	3,459
1975	1,528	10,712	504	5,591	481	3,109
Total,			•			
1936-						
1975	49,620	287,463	17,841	196,385	22,586	114,574
	<u> </u>		<u>, </u>		·	

Table E.1
EXPLORATORY DRILLING IN THE UNITED STATES BY REGION, 1936-1975 (4)

	Region 10 -	Eastern Gulf	Region 11 -	Illinois - Michigan	Region 12	- Appalachia
Year	Wells	Footage (10 ³)	Wells	Footage (10 ³)	Wells	Footage (10 ³)
1936	16	56	150	323	N.A.	N.A.
1937	24	86	248	569	N.A.	N.A.
1938	18	80	611	1,237	N.A.	N.A.
1939	26	109	955	1,948	N.A.	N.A.
1940	124	689	989	1,987	N.A.	N.A.
1941	67	273	935	2,046	N.A.	N.A.
1942	73	357	887	2,140	N.A.	N.A.
1943	75	450	856	2,016	N.A.	N.A.
1944	104	717	823	1,995	423	1,119
1945	165	1,120	968	2,428	461	1,215
1946	106	701	1,133	2,602	432	1,123
1947	129	787	1,065	2,432	517	1,351
1948	163	1,097	1,308	2,960	543	1,229
1949	153	1,036	1,577	3,203	422	1,034
1950	160	1,125	1,997	4,047	551	1,235
1951	203	1,440	1,925	4,213	637	1.,585
1952	222	1,551	1,499	3,218	761	1,876
1953	308	1,993	1,363	2,797	731	1,890
1954	273	1,770	1,417	2,744	714	1,748
1955	267	1,714	1,423	2,940	815	1,743
1956	261	1,917	1,569	3,240	750	1,449
1957	238	1,683	1,311	2,688	736	1,494
1958	231	1.,833	1,290	2,525	603	1,342
1959	330	2,759	1,229	2,292	597	1,245
1960	314	2,863	1,563	2,835	639	1,353
1961	263	2,506	1,294	2,569	598	1,411
1962	300	2,424	1,371	2,498	637	1,460
1963	344	2,626	1,107	2,002	849	1,968
1964	467	3,634	988	1,761	1,345	3,589
1965	406	3,013	830	1,568	1,058	2,682
1966	440	3,435	885	1,708	1,217	2,153
1967	391	3,101	792	1,579	726	1,420
1968	409	3,177	585	1,324	715	568
1969	415	3,440	583	1,365	475	1,282
1970	272	2,380	497	1,220	415	1,111
1971	261	2,348	440	1,227	469	1,071
1972	363	3,598	462	1,404	507	1,299
1973	314	3,201	511	1,640	495	1,476
1974	380	3,344	646	2,132	719	2,358
1975	355	3,165	682	2,323	812	2,197
Total,					Ì	
1936-	2 / 20	70 500		07.7/5	21 260	51 076
1975	9,430	73,598	40,764	87,745	21,369	51,076

Table E.1
EXPLORATORY DRILLING IN THE UNITED STATES
BY REGION, 1936-1975 (5)

	United S	tates Summary
İ	<u> </u>	Footage.
Year	Wells	(10 ³)
1936	c.1,987 a	c.7,096 a
1937	c.2,229 a c.2,564 a	c.8,404 a c.8,763 a
1938 1939	c.2,649 a	c.8,835 a
1940	2,951 a	10,140 a
1941	3,176 a	11,479 ^a
1942	3,136 ^a	11,983 ^a
1943	3,654 ^a	14,702 ^a
1944	4,796	20,224
1945	5,668	22,371
1946	5,752	22,171
1947	6,775	26,395
1948	8,015	32,971
1949	9,058	34,798
1950	10,306	40,172
1951	11,756	49,343
1952	12,425	55,613
1953	13,313	60,704
1954 1955	13,100 14,937	59,874 69,178
1956 1957	16,192 14,707	74,198 69,136
1958	13,299	61,485
1959	13,191	63,256
1960	11,704	55,831
1961	10,992	54,442
1962	10,799	53,641
1963	10,656	53,484
1964	10,747	54,889
1965	9,324	49,204
1966	10,312	55,356
1967	9,047	49,123
1968	8,879	50,956
1969	9,703	57,473
1970	7,693	45,253
1971	6,922	40,390
1972	7,539	45,080
1973	7,466	44,777
1974 1975	8,605 9,183	50,155 53,508
	, , , , ,	
Total,	1	
1936-	245 200	1 656 053
1975	345,208	1,656,853

^aExcludes Appalachia.

Appendix F ESTIMATED UNDISCOVERED SIGNIFICANT OIL AND GAS FIELDS IN THE LOWER 48 STATES

INTRODUCTION TO APPENDIX F

Appendix F provides our estimates of the number of significant oil and gas fields remaining to be discovered after 1975 in the lower 48 states. We include these data to supplement the estimates of remaining undiscovered oil and gas resources presented in the tables and discussed in the text of Sec. V of the main report. These data can also be usefully compared to the historical number of significant discoveries described in Sec. IV and presented in the tables of App. C.

The three tables of this appendix give our estimates of future significant discoveries as broken down by region and by field size category at the 90-percent, 50-percent, and 10-percent probability levels. The tables also include our estimates of the amounts of crude oil, natural gas, and natural gas liquids as expressed in billions of barrels of liquids and liquid equivalents. All significant oil and gas fields are represented—those that are predominantly oil fields, those that are predominantly natural gas fields, and those that are composite oil and gas fields. We include estimates of future discoveries only for the lower 48 states. Alaska is excluded because our estimates of undiscovered resources in this area are primarily based on those of others, and we therefore lacked sufficient data to make meaningful calculations of future discoveries by field size for most of the provinces and subprovinces in that state.

Our estimates are given by region. Because our estimates of resource potential for onshore and offshore areas of the same region were made separately (as stated in Sec. V), we separate onshore and offshore areas here as well (unlike the data of App. C). We also provide summary estimates for the onshore lower 48 states, the offshore lower 48 states, and the entire lower 48 states, onshore and offshore. These summary estimates are the statistical summations of the appropriate sets of regional estimates, rounded off to the nearest whole number, just as the regional estimates are statistical summations of our estimates by play or province.

Estimates of undiscovered fields are given for each of our six significant field size categories. If one assumes average field sizes of 750 million barrels' L&LE (Class AAAA), 325 million barrels (Class AAA), 140 million barrels (Class AA), 70 million barrels (Class A), 35 million barrels (Class B), and 16 million barrels (Class C), one can readily calculate our estimates of the proportion of undiscovered amounts in each field size category and in all significant fields by region or summary area.

We developed these estimates as part of our effort to determine undiscovered resources. Specifying the range of probable values for both the number and size category of future significant discoveries proved to be a useful means of disciplining our thinking about the amounts remaining to be discovered, particularly in light of the temporal patterns of past discoveries. Our estimates are ultimately judgmental; that is, they were developed through a nonmechanical consideration of a number of key factors, including historical discovery patterns, the compositions of those patterns by exploration play, the extent of drilling, and, most important, potential ranges in the number, effective volume (area, thickness, porosity, and extent of fill), trap type, and hydrocarbon type of possible prospects in both old and new plays. Because these estimates are judgmental, we consider our postulated distributions by field size of undiscovered amounts more uncertain than our estimates of those amounts. Numerous distributions are possible for any specific amount. The estimates presented here should be considered as our mean expectation of the field size distribution associated with a particular probability level of an undiscovered resource estimate.

Table F.1

ESTIMATED NUMBER OF SIGNIFICANT OIL AND GAS FIELDS REMAINING TO BE DISCOVERED AT THE 90-PERCENT PROBABILITY LEVEL AFTER 1975 IN THE LOWER 48 STATES BY REGION AND FIELD SIZE CATEGORY

		Field S	Size Ca	tegory			Total Undiscovered Amount
Region	AAAA	AAA	AA	Α	В	С	109 bbl L&LE
Onshore							
2. California		_		1	2	6	0.34
Rocky Mountain	1	6	9	3	17	34	6.56
4. Permian Basin					1	12	0.64
North Central Texas							0.28
6. Mid-Continent				2	4	16	1.08
Western Gulf					1	6	0.71
8. Central Gulf				4	8	12	1.05
Northern Gulf				1	2	7	0.60
10. Eastern Gulf					2	7	0.35
11. Illinois-Michigan							0.41
12. Appalachian			1	1	2	4	0.71
Lower 48 onshore	1	8	14	30	53	141	17.26
Offshore							
2A. California		1	3	4	6	8	1.39
7A. Western Gulf	~			3	7	18	1.19
8A. Central Gulf	ļ 		2	5	9	46	2.16
10A. Eastern Gulf	<u> </u>			1	1	2	0.14
12A. Atlantic			1	1	2	3	0.33
Lower 48 offshore	 	I	8	19	35	106	7.19
Lower 48 total	1	10	24	52	94	264	26.23

Table F.2

ESTIMATED NUMBER OF SIGNIFICANT OIL AND GAS FIELDS REMAINING TO BE DISCOVERED AT THE 50-PERCENT PROBABILITY LEVEL AFTER 1975 IN THE LOWER

48 STATES BY REGION AND FIELD SIZE CATEGORY

	Field Size Category						Total Undiscovered Amount
Region	AAAA	AAA	AA	A	В	С	10 ⁹ bb1 L&LE
Onshore						}	
2. California			1	2	5	10	0.79
3. Rocky Mountain	2	8	11	16	21.	42	8.79
4. Permian Basin					3	23	1.33
5. North Central Texas						1	0.51
6. Mid-Continent			1	4	9	28	2,29
7. Western Gulf				1	3	13	1.24
8. Central Gulf			1	6	12	19	1.64
9. Northern Gulf	ļ			1	3	12	0.94
10. Eastern Gulf				1	4	12	0.65
ll. Illinois-Michigan			~-			2	0.55
12. Appalachian			2	3	5	7	1.14
Lower 48 onshore	2	8	17	36	68	177	20.76
Offshore							
2A. California		2	4	7	10	14	2,32
7A. Western Gulf			1	5	10	24	1.93
8A. Central Gulf		1	4	8	17	55	3.53
10A, Eastern Gulf			1	1	2	4	0.36
12A. Atlantic		1	2	3	5	11	1.21
Lower 48 offshore		4	13	25	46	113	9.83
Lower 48 total	2	12	30	61	115	291	30.72

Table F.3

ESTIMATED NUMBER OF SIGNIFICANT OIL AND GAS FIELDS REMAINING TO BE DISCOVERED AT THE 10-PERCENT PROBABILITY LEVEL AFTER 1975 IN THE LOWER 48 STATES BY REGION AND FIELD SIZE CATEGORY

-		Field	Size Ca	ategory	r		Total Undiscovered Amount
Region	AAAA	AAA	AA	A	<u>B</u>	C	10 ⁹ bb1 L&LE_
Onshore							
2. California			2	5	7	1.8	1.42
3. Rocky Mountain	3	10	15	21	28	51	11.84
4. Permian Basin				1	7	36	2.45
North Central Texas						2	0.87
6. Mid-Continent			3	6	16	45	3.91
7. Western Gulf				2	6	24	2.04
8. Central Gulf		1	2	7	17	31	2.67
9. Northern Gulf				2	6	21	1.47
10. Eastern Gulf				4	8	19	1.19
11. Illinois-Michigan						4	0.90
12. Appalachian		1	3	4	7	13	1.98
Lower 48 onshore	2	10	20	42	82	213	24.74
Offshore							
2A. California	1	3	6	10	13	18	4.20
7A. Western Gulf		1	1	7	13	38	2.89
8A, Central Gulf		.2	6	14	31	68	5.38
10A. Eastern Gulf	\	1	1	2	3	7	0.94
12A. Atlantic	1	2	3	5	7	13	2.63
Lower 48 offshore	2	8	14	32	56	121	13.48
Lower 48 total	4	16	32	70	130	315	36.17

RAND/R-2654/2-USGS/DOE