

Basic VPNs

17 aprilie 2014

Objective

- Clasificarea VPN-urilor
 - Overlay vs. Point-to-point
 - Site-to-Site vs Remote-access
 - Criptografie elemente esențiale
- IPSec Site-to-Site VPNs
 - Servicii IPSec: criptare, autentificare, integritate
 - Protocoale IPSec
 - Funcționarea IPSec
- Cisco ASA
 - ☐ Implementarea Site-to-Site IPSec
- Fortinet
 - Implementarea Site-to-Site IPSec

Ce sunt VPN-urile?

- O soluție de creare a unei conexiuni end-to-end privată peste o infrastructură publică și nesigură precum Internetul
- Există și soluții WAN ce oferă aceleași servicii precum un VPN: linii închiriate.

Care este diferența dintre un VPN și a avea o linie închiriată?

costul

Clasificarea soluțiilor VPN în funcție de SP

- Funcție de SP:
 - Overlay
 - Point-to-point

- Modelul overlay face rețeaua ISP-ului invizibilă pentru clienți
- Ruterele ISP-ului nu ajung să cunoască rețelele clienților
- Modele de VPN-uri overlay: PPTP, L2TP, IPSec

Modele Overlay VPN

Tehnologie VPN	Avantaje	Dezavantaje
PPTP	 suport extins pe platforme Microsoft oferă criptare (MPPE) oferă compresie (MPPC) 	 schemă slabă de autentificare și criptare sistem proprietar de key management nescalabil pe partea de server din cauza unei limite de sesiuni
L2TP	 independent de L2 poate asigura confidențialitate folosind IPSec 	 nu a fost niciodată adoptat la o scară foarte mare
IPSec	 scheme puternice de criptare și autentificare este open și extensibil 	 funcționalitatea ridicată aduce complexitate ridicată interoperabilitate scăzută între vendori posibile probleme cu Firewall/NAT

Point-to-point VPNs

▶ În modelul point-to-point ISP-ul participă în procesul de rutare

Adiacența se face între client și ISP

- Modele overlay constituiau 90% din implementări până la apariția protocului MPLS.
- ▶ Totuși MPLS nu oferă nici o schemă de confidențialitate

Clasificarea soluțiilor VPN în funcție de topologie

- ▶ O topologie Site-to-Site leagă mai multe locații peste Internet
- Configurațiile nu trebuie făcute decât pe firewall-uri/rutere
- Nu necesită un client pentru conectare
 - Toți angajații de la locația respectivă folosesc ca gateway firewall-ul /ruterul configurat pentru conexiunea VPN

VPN-uri Remote-access

- O topologie Remote-access oferă posibilitatea conectării la VPN pentru un teleworker
- Gateway-ul teleworkerului nu este un gateway VPN
- Oferă o conexiuni securizată până la resursele interne ale companiei
- Folosește un client de VPN pentru conectarea la serverul aflat la remote office

Tunelare: încapsulare

- Orice tehnologie de VPN se bazează pe tunelare
- Tunelarea presupune încapsularea cu încâ un antet la nivelul la care se contruiește tunelul

- Exemplu: tunel IPIP
 - □ Folosit când rețeaua sursă sau destinație nu este cunoscută în tabela de rutare a unui ruter intermediar

Antet IP tunel	Antet IP original	Antet nivel 4	Date
----------------	-------------------	---------------	------

Antetul IP original este ascuns tuturor ruterelor dintre cele
 2 capete ale tunelului

Cryptography trivia – Round 1

- Care sunt cele 2 tipuri de criptografie?
 - Simetrică
 - Asimetrică
- Ce presupune criptografia simetrică?
 - □ Folosirea aceleiași chei atât pentru criptare cât și pentru decriptare
- Ce presupune criptografia asimetrică?
 - □ Folosirea de chei diferite pentru criptare și decriptare
- Care dintre cele două variante pot fi realizate în hardware?
 - Ambele
- Care dintre cele două variante este mai rapidă?
 - Simetrică
- Care este problema criptografiei simetrice?
 - Schimbul inițial al cheii de criptare între două entități remote
- Rezolvă criptografia asimetrică această problemă?
 - Depinde

Public key infrastructure

- Ce este PKI?
- ▶ De ce avem nevoie de PKI în criptare asimetrică?

Public key infrastructure – Funcționare

- Criptare asimetrică fără PKI <u>nu rezolvă</u> problema distribuției unei chei inițiale între cele două entități
- Funcționarea PKI este asemănătoare funcționării certificatelor de identitate

Public key infrastructure – Funcționare

- Analogia de mai devreme funcționează pentru că atât Alice cât și banca <u>au încredere în aceeași autoritate comună</u> (statul care a eliberat buletinul)
- ▶ În PKI o autoritate eliberează un certificat digital ce conține:
 - Informație despre deținătorul certificatului (nume, vârstă etc)
 - Cheia publică a deţinătorului certificatului
- ... și este semnat cu cheia privată a autorității
- Însă și o autoritate poate fi atacată MiTM
 - dar mult mai greu
- Concluzie: nu există un mod perfect de a schimba o informație în mod securizat; schema finala se bazează pe <u>încredere</u>.

Cryptography trivia – Round 2

- Care din cele de mai jos poate fi folosită ca o schemă de autentificare?
 - Pre-shared key
 - (IIII) RSA
 - DES

- Care este diferența între autentificare și autentificare_cu_nonrepudiere?
 - Autentificarea simplă autentifică un grup de persoane fără a oferi posibilitatea de a identifica o persoană în grupul respectiv
 - Autentificarea cu nonrepudiere identifică unic o persoană ce nu își poate repudia juridic identitatea

Exemplu:

- Autentificarea simplă poate fi considerată accesarea unui share Windows cu aceeași parolă pentru toți utilizatorii
- □ Autentificarea cu nonrepudiere poate fi considerată PIN-ul unui card de credit

▶ IPSec este un framework de protocoale

▶ IPSec: Confidențialitate

▶ IPSec: integritate

▶ IPSec: autentificare cu non-repudiere

IPSec – Protocoale folosite

- ▶ IPSec definește în standard următoarele protocoale
 - ESP protocol folosit pentru încapsulare ce oferă suport pentru toate serviciile IPSec
 - □ AH protocol folosit pentru încapsulare ce nu oferă suport pentru confidențialitate
 - □ IKE protocol folosit pentru a negocia serviciile IPSec între două capete ale unui tunel
- Structurile de date interne ce definesc ce protocoale folosește IPSec pentru confidențialitate, integritate etc se numesc SA-uri (Security Associations)
- ▶ IKE este folosit pentru a negocia SA-urile IPSec

IPSec – ESP vs. AH

 ESP oferă confidențialitate și autentificare + integritate pentru antetul IP original, pentru antetul ESP și pentru payload

AH oferă autentificare+integritate pentru întreg pachetul

Se pot folosi ambele protocoale în același timp. De ce s-ar dori acest lucru?

IPSec – Moduri de operare

- ▶ IPSec are două moduri de operare:
 - Transport
 - Tunel
- Modul tunel adaugă un nou antet IP pe lângă antetul AH sau ESP
 - Mărește pachetul cu 20 bytes

Antet IP tunel	Antet ESP	Antet IP original	ТСР	Date
----------------	-----------	-------------------	-----	------

- Modul transport inserează antetul ESP/AH între antetul IP original și antetul de nivel 4
 - Nu se adaugă un antet IP nou
 - Util pentru situațiile în care pachetele sunt foarte mici

Antet IP original	Antet ESP	ТСР	Date
-------------------	-----------	-----	------

IPSec – Funcționare IKE

- Toţi parametrii SA-urilor sunt negociaţi folosind IKE
- ▶ IKE are 2 faze
 - □ IKE phase 1 prima fază a IKE este gestionată de protocolul ISAKMP
 - ☐ IKE phase 2 numită și IPSec phase
- ▶ IKE phase 1 (ISAKMP)
 - Are rolul de a negocia SA-uri ce vor fi folosite pentru a securiza negocierea SA-urilor din faza a doua
 - Folosește protocolul de criptare asimetrică Diffie-Hellman pentru a negocia o cheie simetrică cu care se vor cripta propunerile de SA-uri din faza a doua
 - Autentifică cele 2 capete ale tunelului
- ▶ IKE phase 2
 - Se negociază SA-uri peste tunelul sigur creat de ISAKMP pentru a fi folosite la criptarea traficului de date

IKE phase 1 - ISAKMP

In urma acestei faze fiecare firewall va avea un SA pe care îl va folosi atât pentru transmisie cât și recepție în faza a doua

IKE phase 2

- ▶ SA-urile din aceasta fază sunt unidirecționale
 - Există un SA folosit pentru transmisie și altul pentru recepție
 - □ Totuși, dacă SA-urile diferă, tunelul nu este realizat
- În standardul oficial se specifică posibilitatea de a avea nivele de securitate diferite pentru transmisie și recepție, dar nici un vendor nu implementează această opțiune.

Cisco ASA Configurarea IPSec Site-to-Site VPN

Pași de configurare parametri ISAKMP

- Pasul 1: activarea ISAKMP
- Pasul 2: definirea politicilor ISAKMP
- Pasul 3: definirea unui tunnel-group
- ▶ Pasul 4: definirea PSK pentru autentificare

Activare ISAKMP

Activarea ISAKMP pe interfață

```
Pitești(config)# isakmp enable outside
```

 Opțional (pentru ASA OS 7.0, 7.1): Activarea posibilității de a termina un tunel pe ASA

```
# Pentru 7.0
Pitești(config)# sysopt connection permit-ipsec
# Pentru 7.1
Pitești(config)# sysopt connection permit-vpn
```


Configurarea unei politici ISAKMP

 Politicile ISAKMP sunt parcurse în ordinea indexului configurat până la găsirea unei compatibilități perfecte între cele două capete ale tunelului

```
Pitesti#(config)# isakmp policy 10

Pitesti#(config-isakmp-policy)# encryption des

Pitesti#(config-isakmp-policy)# hash sha

Pitesti#(config-isakmp-policy)# authentication pre-share

Pitesti#(config-isakmp-policy)# group 1

Pitesti#(config-isakmp-policy)# lifetime 86400
```


Configurarea unui tunnel-group

- Conceptul de tunnel-group a fost preluat de la VPN 3000 Concentrators
- Definește tipul de tunel folosit (Site-to-Site/Remote-access) și peer-ul cu care se va construi tunelul
- Atenție: deși primul argument al comenzii este un string, trebuie introdus IP-ul celuilalt capăt al VPN-ului

```
Pitesti(config)# tunnel-group 109.2.2.2 type ipsec-121
```


Configurarea PSK

Tot în tunnel-group se definește și pre-shared key-ul folosit pentru autentificare

```
Pitesti(config)# tunnel-group 109.2.2.2 ipsec-attributes
Pitesti(config-ipsec)# pre-shared-key cisco123
Pitesti(config-ipsec)# show run crypto isakmp
isakmp enable outside
isakmp policy 10
authentication pre-share
encryption 3des
hash sha
group 2
lifetime 86400
```

Pași de configurare parametri IPSec (IKE phase 2)

- ▶ Pasul 1: definirea traficului interesant
- Pasul 2: definirea NAT Exemption pentru traficul IPSec
- ▶ Pasul 3: configurarea IPSec transform-set
- Pasul 4: configurarea unui crypto-map
- Pasul 5: aplicarea crypto-map

Definirea traficului interesant și NAT Exemption

- Cele două liste de acces trebuie să fie simetrice
 - Acţiunea permit = encrypt

```
Pitesti(config)# access-list 101 permit ip 10.0.1.0
    255.255.255.0 10.0.2.0 255.255.255.0

Pitesti(config)# nat 0 (inside) 101

Galati(config)# access-list 101 permit ip 10.0.2.0
    255.255.255.0 10.0.1.0 255.255.255.0

Galati(config)# nat 0 (inside) 101
```


Configurarea unui transform-set

- Doar ESP este suportat pe ASA în acest moment
- Se pot defini maxim 2 intrări în fiecare set
- Modul implicit este tunnel

```
Pitesti(config)# crypto ipsec transform-set Galati esp-des esp-
md5-hmac
```


Configurarea și aplicarea unui crypto-map

Structura de date care reunește toate configurațiile IPSec

```
Pitesti(config)# crypto map Pitesti 10 match address 101
Pitesti(config)# crypto map Pitesti 10 set peer 109.2.2.2
Pitesti(config)# crypto map Pitesti 10 set transform-set Galati
Pitesti(config)# crypto map Pitesti 10 set security-association lifetime seconds 28800
```

Aplicarea unui crypto-map

```
Pitesti(config)# crypto map Pitesti interface outside
```


Testarea și verificarea configurației VPN

- Verificarea ACL-urilor
 - □ show run access-list
- Verificarea configurației corecte de ISAKMP
 - □ show run isakmp
 - □ show run tunnel-group
- Verificarea configurației corecte IPSec
 - □ show run ipsec
- Verificarea IPSec și ISAKMP SA
 - □ show crypto ipsec sa
 - □ show crypto isakmp sa

Testarea și verificarea configurației VPN

- Verificarea configurației crypto-map
 - □ show run crypto-map
- Ştergerea SA-urilor IPSec
 - □ clear crypto ipsec sa
- Ştergerea SA-urilor ISAKMP
 - clear crypto isakmp sa
- Debug pentru IPSec şi ISAKMP
 - debug crypto ipsec
 - □ debug crypto isakmp

Fortinet Implementarea IPSec Site-to-Site VPN

Tipuri de configurație IPSec

- ▶ În FortiOS, IPSec se poate configura în două moduri de operare
 - □ Policy-based se implementează prin definirea unei politici cu acțiunea IPSEC între două interfețe și asocierea acesteia cu un tunel VPN
 - □ Route-based la crearea tunelului VPN se creează o interfață virtuală pentru acest tunel; definirea politicii se face între interfața fizice și cea virtuală cu acțiunea ACCEPT
- Se recomandă utilizarea Route-based cât de des posibil din cauza flexibilității pe care o oferă
- Policy-based nu suportă GRE-over-IPSec sau L2TP cu IPSec
- Când folosim Policy-based?
 - □ Dacă UTM-ul este configurat în modul transparent, nu se poate folosi decât policy-based

Configurare IPSec

- Pași de configurare IPSec:
 - Definirea Phase 1
 - Definirea Phase 2
 - □ Definirea unei politici de firewall pentru direcționarea prin tunel (diferită funcție de tipul configurației tunelului route-based/policy-based)

Definirea phase 1 – Policy-based

▶ În phase 1 se alege modul route-based sau policy-based

Definirea phase 1 – Route-based mode

Route-based permite alegerea IKE v2

Definirea phase 2

- Necesită:
 - Nume
 - Asocierea cu un obiect phase 1
 - Definirea transform-setului

Definirea unei politici policy-based

- Acțiunea trebuie să fie IPSec
- Odată cu politica de firewall pot fi definite și politicile de NAT pentru tunel
 - □ Inbound NAT activează Outside NAT pentru pachetele ce vin criptate prin tunel
 - Outbound NAT activează Inside NAT pentru pachetele clear text ce intră în tunel

Definirea unei politici route-based

- În route-based se creează o interfață virtuală cu numele dat IKE Phase 1
- Pentru a permite traficul inițiat din LAN prin tunel trebuie creată o politică
 ACCEPT între interfața internă și interfața virtuală

Definirea unei politici route-mode bidirecționale

▶ În route-mode trebuie definite 2 politici ACCEPT astfel încât tunelul să poată fi inițiat din orice direcție

System		Nev	v Policy
Router	Source Interface/Zone	IPSec_tun1	•
Firewall	Source Address	all	▼ I Multiple
Policy	Destination Interface/Zone	switch	▼
Policy	Destination Address	all	▼ I Multiple
- Central NAT Table	Schedule	always	▼
■ DoS Policy	Service	ANY	▼ I Multiple
Sniffer Policy	Action	ACCEPT	▼
⊕ Protocol Options ⊕ Address	Log Allowed Traffic		
⊕ G Service ⊕ G Schedule	NAT		
🗓 🗐 Traffic Shaper	No NAT		
🗈 🤚 Virtual IP	© Enable NAT	Dynamic IP Pool	
⊕ ⊕ Load Balance	Use Central NAT Table		

Offload și accelerare IPSec

- Unele FortiGate-uri au procesor specializat pentru criptarea IPSec: FortiASIC NP2
- Astfel se face offloading de pe procesorul principal
- Există anumite cerințe de trafic pentru utilizarea sa
 - Pachetele trebuie să fie IPv4
 - □ Nivelul 4 trebuie să fie TCP, UDP, ICMP
 - Politica de firewall nu trebuie să conțină IPS sau antivirus
 - Interfața de ieșire și de intrare trebuie să fie pe același network processor
 - Pachetele incoming nu trebuie să fie fragmentate
 - MTU-ul pentru pachetele outgoing trebuie să fie minim 385 bytes

Overview

Cursul viitor...

- Teleworking
 - Remote-access VPN
 - ☐ Topologii de remote-access
 - Internet-browsing prin SSL

- Intrusion Prevention Systems
 - Strategii IPS
 - Semnături IPS
 - Implementări IPS

