Math 325K - Lecture 14 Section 5.4 & 5.5

Bo Lin

October 18th, 2018

Outline

- The well-ordering principle for integers.
- Recurrence relations.
- Application of strong mathematical induction sequences.

The principle

Axiom

Let S be a nonempty set of integers all of which are greater than some fixed integer C. Then S has a least element.

The principle

Axiom

Let S be a nonempty set of integers all of which are greater than some fixed integer C. Then S has a least element.

Remark

This principle is equivalent to the principle of mathematical induction. In other words, either one could imply the other.

Example

For the following sets, if the set has a least element, find it. Otherwise explain why the well-ordering principle is not violated.

Solution

(a) If $16 - 3k \in \mathbb{N}$, then $k < \frac{16}{3} = 5 + \frac{1}{3}$. Since $k \in \mathbb{Z}$, k is at most 5, so 16 - 3k is at least $16 - 3 \cdot 5 = 1$.

Solution

- (a) If $16 3k \in \mathbb{N}$, then $k < \frac{16}{3} = 5 + \frac{1}{3}$. Since $k \in \mathbb{Z}$, k is at most 5, so 16 3k is at least $16 3 \cdot 5 = 1$.
- (b) Suppose $y=\frac{p}{q}$ is the least element in this set, then its half, $\frac{p}{2q}$ that is even smaller is also in the set, a contradiction! So there is no least element. But the well-ordering principle is only for sets of integers, so it does not apply to rational numbers.

Solution

- (a) If $16 3k \in \mathbb{N}$, then $k < \frac{16}{3} = 5 + \frac{1}{3}$. Since $k \in \mathbb{Z}$, k is at most 5, so 16 3k is at least $16 3 \cdot 5 = 1$.
- (b) Suppose $y=\frac{p}{q}$ is the least element in this set, then its half, $\frac{p}{2q}$ that is even smaller is also in the set, a contradiction! So there is no least element. But the well-ordering principle is only for sets of integers, so it does not apply to rational numbers.
- (c) Suppose $n \in \mathbb{N}$, then $n \ge 1$, which implies that $n^2 = n \cdot n \ge n \cdot 1 = n$. So the set is empty and it does not have a least element.

Application: existence part of quotient-remainder theorem

Theorem

Given $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, there exists integers q and r such that n = dq + r and $0 \le r < d$.

Application: existence part of quotient-remainder theorem

Theorem

Given $n \in \mathbb{Z}$ and $d \in \mathbb{N}$, there exists integers q and r such that n = dq + r and $0 \le r < d$.

Proof.

Let S be the set $\{n-dk \mid k \in \mathbb{Z}, n-dk \geq 0\}$. We claim that S is nonempty. Because if we choose k=-|n|, then $n-d(-|n|)=n+d|n|\geq n+|n|\geq 0$, so it belongs to S. By the well-ordering principle for the integers, S contains a least element r (then $r\geq 0$), and there exists an integer q such that r=n-dq. Now we consider another number n-d(q+1)=n-dq-d=r-d. Since r-d is strictly smaller than r, it cannot belong to S. While $q+1\in \mathbb{Z}$, so it must be the case that $r-d\geq 0$ does not hold. Hence r-d<0, r< d.

Application: proving existential statements/proof by contradiction

Remark

The well-ordering principle for the integers is also frequently used in combination with proof by contradiction. The pattern is the following:

- In order to justify that a statement p is true, we assume that p is false.
- Next we construct some nonempty set S of integers that have a lower bound.
- \bigcirc Then by the well-ordering principle for the integers, we can choose the least element r of S.
- 0 With the assumption that p is false, we can find another element in S that is smaller than r, which is the desired contradiction.

The prime divisor example revisited

Example

Using the well-ordering principle for the integers to show that any integer n greater than 1 is divisible by a prime number.

The prime divisor example revisited

Example

Using the well-ordering principle for the integers to show that any integer n greater than 1 is divisible by a prime number.

Proof.

Let S be the set of all positive integers at least 2 that is not divisible by any prime number. Suppose S is nonempty, then by the well-ordering principle for the integers, S has a least element $r \geq 2$. Since r > 1, it is either prime or composite. If r is prime, then it is divisible by itself which is a prime number, a contradiction to the fact that $r \in S$; if r is composite, then there exist integers a,b>1 such that r=ab. Since b>1, a must be strictly less than r. Then $a \notin S$. Note that $a \geq 2$, so it must be the case that a is divisible by some prime number, say p. So we have $p \mid a$ and $a \mid r$, then $p \mid r$, a contradiction to the fact that $r \in S$. So our assumption is false and $S=\emptyset$.

Definition

Definition

A recurrence relation for a sequence a_0, a_1, a_2, \cdots is a formula that relates each term a_k to certain of its predecessors $a_{k-1}, a_{k-2}, ..., a_{k-i}$, where i is an integer with $k-i \geq 0$. The initial conditions for such a recurrence relation specify the values of $a_0, a_1, a_2, \cdots, a_{m-1}$, where m is i or some other positive integer. The sequence $\{a_n\}$ is also called recursively defined.

Definition

Definition

A **recurrence relation** for a sequence a_0, a_1, a_2, \cdots is a formula that relates each term a_k to certain of its predecessors $a_{k-1}, a_{k-2}, ..., a_{k-i}$, where i is an integer with $k-i \geq 0$. The initial conditions for such a recurrence relation specify the values of $a_0, a_1, a_2, \cdots, a_{m-1}$, where m is i or some other positive integer. The sequence $\{a_n\}$ is also called **recursively defined**.

Remark

The way we define a recurrence relation is very similar to the principle of strong mathematical induction.

Examples: computing terms in recursively defined sequences

Example

Suppose $\{a_n\}_{n\geq 0}$ is a sequence with $a_0=0$ and $a_1=1$.

- ① If $a_n = 2a_{n-1} a_{n-2}$ for integers $n \ge 2$, evaluate a_4 and a_5 .
- \bullet If $a_n = a_{n-1} + a_{n-2}$ for integers n > 2, evaluate a_4 and a_5 .

Examples: computing terms in recursively defined sequences

Example

Suppose $\{a_n\}_{n>0}$ is a sequence with $a_0=0$ and $a_1=1$.

- ① If $a_n = 2a_{n-1} a_{n-2}$ for integers $n \ge 2$, evaluate a_4 and a_5 .
- \bullet If $a_n = a_{n-1} + a_{n-2}$ for integers $n \geq 2$, evaluate a_4 and a_5 .

Solution

(a)
$$a_2 = 2a_1 - a_0 = 2$$
, $a_3 = 3$, $a_4 = 4$, $a_5 = 5$.

Examples: computing terms in recursively defined sequences

Example

Suppose $\{a_n\}_{n>0}$ is a sequence with $a_0=0$ and $a_1=1$.

- ① If $a_n = 2a_{n-1} a_{n-2}$ for integers $n \ge 2$, evaluate a_4 and a_5 .
- \bullet If $a_n = a_{n-1} + a_{n-2}$ for integers $n \geq 2$, evaluate a_4 and a_5 .

Solution

(a)
$$a_2 = 2a_1 - a_0 = 2$$
, $a_3 = 3$, $a_4 = 4$, $a_5 = 5$.

$$a_2 = a_1 + a_0 = 1, a_3 = 1 + 1 = 2, a_4 = 2 + 1 = 3, a_5 = 3 + 2 = 5.$$

Example: Fibonacci number

Fibonacci is a great Italian mathematician in the 13th century. He considered the rapid reproduction of rabbits and introduced the following sequence:

Definition

The Fibonacci sequence F_n is defined as follows:

•
$$F_0 = 0, F_1 = 1$$
;

•
$$F_n = F_{n-1} + F_{n-2}$$
 for all integers $n \ge 2$.

The terms F_n are called **Fibonacci numbers**.

Example: Fibonacci number

Fibonacci is a great Italian mathematician in the 13th century. He considered the rapid reproduction of rabbits and introduced the following sequence:

Definition

The Fibonacci sequence F_n is defined as follows:

- $F_0 = 0, F_1 = 1$;
- $F_n = F_{n-1} + F_{n-2}$ for all integers $n \ge 2$.

The terms F_n are called **Fibonacci numbers**.

Remark

Fibonacci numbers have a lot of properties, and itself even became a small branch of mathematical research (there are research journals about them).

An explicit formula for F_n

It is quite obvious that F_n are all nonnegative integers and they are increasing with respect to n. Do we have an explicit formula?

An explicit formula for F_n

It is quite obvious that F_n are all nonnegative integers and they are increasing with respect to n. Do we have an explicit formula?

Theorem

For all integers $n \geq 0$, we have

$$F_n = \frac{1}{\sqrt{5}} \cdot \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

Its proof is among the homework problems.

An explicit formula for F_n

It is quite obvious that F_n are all nonnegative integers and they are increasing with respect to n. Do we have an explicit formula?

Theorem

For all integers $n \geq 0$, we have

$$F_n = \frac{1}{\sqrt{5}} \cdot \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

Its proof is among the homework problems.

Remark

Since $\left|\frac{1-\sqrt{5}}{2}\right| < 1$, asymptotically F_n is like a geometric progression with common ratio $\frac{1+\sqrt{5}}{2} \approx 1.618$.

Example: compound interests

Example

Suppose you deposit 10,000 dollars into a bank account that earns 4% interest compounded annually. Let A_n be the balance in your account after n years. Find an explicit formula of A_n .

Example: compound interests

Example

Suppose you deposit 10,000 dollars into a bank account that earns 4% interest compounded annually. Let A_n be the balance in your account after n years. Find an explicit formula of A_n .

Solution

After $n \geq 0$ years, the account has a balance of A_n . In the next year, the interest is 4%, which equals to $A_n \cdot 4\%$. So the total balance after next year would be $A_n \cdot (1+4\%) = 1.04 \cdot A_n$. Hence A_n is recursively defined as

$$A_{n+1} = 1.04 \cdot A_n.$$

So A_n is a geometric progression and $A_n = A_0 \cdot 1.04^n = 10000 \cdot 1.04^n$.

Why we need strong mathematical induction

Suppose we would like to prove a property of the terms in a recursively defined sequence. For example, $F_n \in \mathbb{Z}$ for all $n \geq 0$. It is natural to apply mathematical induction. While if we apply the ordinary version, we may face the following issue:

Why we need strong mathematical induction

Suppose we would like to prove a property of the terms in a recursively defined sequence. For example, $F_n \in \mathbb{Z}$ for all $n \geq 0$. It is natural to apply mathematical induction. While if we apply the ordinary version, we may face the following issue: In the inductive step, suppose $k \geq 1$ is an arbitrary integer such that $F_k \in \mathbb{Z}$. We need to consider F_{k+1} . By the recurrence relation, $F_{k+1} = F_k + F_{k-1}$. We only know that $F_k \in \mathbb{Z}$, but what about F_{k-1} ? It is not addressed in the inductive hypothesis! So the inductive step in this version of mathematical induction cannot proceed.

Why we need strong mathematical induction

Suppose we would like to prove a property of the terms in a recursively defined sequence. For example, $F_n \in \mathbb{Z}$ for all $n \geq 0$. It is natural to apply mathematical induction. While if we apply the ordinary version, we may face the following issue:

In the inductive step, suppose $k\geq 1$ is an arbitrary integer such that $F_k\in\mathbb{Z}$. We need to consider F_{k+1} . By the recurrence relation, $F_{k+1}=F_k+F_{k-1}$. We only know that $F_k\in\mathbb{Z}$, but what about F_{k-1} ? It is not addressed in the inductive hypothesis! So the inductive step in this version of mathematical induction cannot proceed.

But if we apply the strong mathematical induction instead, it becomes a piece of cake: by the stronger inductive hypothesis, since $0 \le k-1 \le k$, $F_{k-1} \in \mathbb{Z}$ also holds. Then F_{k+1} is the sum of two integers, which is still an integer and the inductive step is done.

Example

Suppose $\{a_n\}_{n\geq 0}$ is a sequence with $a_0=0, a_1=1$ and $a_n=2a_{n-1}-a_{n-2}$ for integers $n\geq 2$. Show that $a_n=n$ for all integers $n\geq 0$.

Example

Suppose $\{a_n\}_{n\geq 0}$ is a sequence with $a_0=0, a_1=1$ and $a_n=2a_{n-1}-a_{n-2}$ for integers $n\geq 2$. Show that $a_n=n$ for all integers $n\geq 0$.

Proof.

We use strong mathematical induction on n. Basis step: the claim is true for n=0,1. Suppose $k\geq 1$ is an arbitrary integer such that the claim is true for integers i with $0\leq i\leq k$. Now we consider the case when n=k+1.

Example

Suppose $\{a_n\}_{n\geq 0}$ is a sequence with $a_0=0, a_1=1$ and $a_n=2a_{n-1}-a_{n-2}$ for integers $n\geq 2$. Show that $a_n=n$ for all integers $n\geq 0$.

Proof.

We use strong mathematical induction on n. Basis step: the claim is true for n=0,1. Suppose $k\geq 1$ is an arbitrary integer such that the claim is true for integers i with $0\leq i\leq k$. Now we consider the case when n=k+1. Since $k\geq 1$, the integer k+1 is at least 2, so by the condition, $a_{k+1}=2a_k-a_{k-1}$. So we need to evaluate a_k,a_{k-1} .

Example

Suppose $\{a_n\}_{n\geq 0}$ is a sequence with $a_0=0, a_1=1$ and $a_n=2a_{n-1}-a_{n-2}$ for integers $n\geq 2$. Show that $a_n=n$ for all integers $n\geq 0$.

Proof.

We use strong mathematical induction on n. Basis step: the claim is true for n=0,1. Suppose $k\geq 1$ is an arbitrary integer such that the claim is true for integers i with $0\leq i\leq k$. Now we consider the case when n=k+1. Since $k\geq 1$, the integer k+1 is at least 2, so by the condition, $a_{k+1}=2a_k-a_{k-1}$. So we need to evaluate a_k,a_{k-1} . Note that $0\leq i\leq k$ holds for both i=k-1,k, by the inductive hypothesis, $a_k=k$ and $a_{k-1}=k-1$. Then

$$a_{k+1} = 2a_k - a_{k-1} = 2k - (k-1) = 2k - k + 1 = k + 1.$$

The inductive step is done.

Example

Let $\{F_n\}$ be the Fibonacci sequence. Prove that $F_n < 2^n$ for all integers $n \ge 0$.

Example

Let $\{F_n\}$ be the Fibonacci sequence. Prove that $F_n < 2^n$ for all integers $n \ge 0$.

Proof.

We use strong mathematical induction on n. Basis step: when n=0, $F_0=0<1=2^0$; when n=1, $F_1=1<2=2^1$.

Example

Let $\{F_n\}$ be the Fibonacci sequence. Prove that $F_n < 2^n$ for all integers $n \ge 0$.

Proof.

We use strong mathematical induction on n. Basis step: when n=0, $F_0=0<1=2^0$; when n=1, $F_1=1<2=2^1$. Now suppose $k\geq 1$ is an arbitrary integer such that $F_i<2^i$ holds for all integers i with $0\leq i\leq k$. We consider F_{k+1} . By definition, $F_{k+1}=F_k+F_{k-1}$.

Example

Let $\{F_n\}$ be the Fibonacci sequence. Prove that $F_n < 2^n$ for all integers $n \ge 0$.

Proof.

We use strong mathematical induction on n. Basis step: when n=0, $F_0=0<1=2^0$; when n=1, $F_1=1<2=2^1$. Now suppose $k\geq 1$ is an arbitrary integer such that $F_i<2^i$ holds for all integers i with $0\leq i\leq k$. We consider F_{k+1} . By definition, $F_{k+1}=F_k+F_{k-1}$. Note that $0\leq i\leq k$ holds for both i=k-1,k. By the inductive hypothesis, $F_k<2^k$ and $F_{k-1}<2^{k-1}$. Hence

$$F_{k+1} = F_k + F_{k-1} < 2^k + 2^{k-1} = 3 \cdot 2^{k-1} < 4 \cdot 2^{k-1} = 2^{k+1}$$
.

The inductive step is done.

HW #7 of today's sections

Section 5.4 Exercise 7, 11, 21, 26. Section 5.5 Exercise 6, 14, 32.