

1	ገሳ	+	٠.

Tutorial 2

Maximum Marks-10

1. Evaluate
$$\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dxdy$$

2. Evaluate $\iint_R xy(x+y) dxdy$, where R is the region bounded by the curve

$$y = x^2$$
 and $y = x$.

3.

 $\iint (x^2 + y^2) x \, dx \, dy \text{ over the positive quadrant of the circle } x^2 + y^2 = a^2 \text{ by changing to polar coordinates.}$

Ans.
$$\frac{a^2}{5}$$

- 4. Evaluate the following integrals by converting them into polar coordinate $\iint_D xydA$, D is the portion of the region between the circles of radius 2 and radius 5 centred at the origin that lies in the first quadrant.
- 5. Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by using triple integration.
- 6. Change the order of integration in the double integral and then evaluate :

$$\int_0^{2a} \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} dy dx$$