APM462 Lecture Notes

Yuchen Wang October 11, 2019

Contents

1 Matrix Calculus

Row v.s. Column Vector Our default rule is that every vector is a column vector unless explicitly stated otherwise.

This is also known as the numerator layout.

Special case: For $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, Df is a $1 \times n$ matrix or row vector.

1.1 Matrix Multiplication

Definition 1.1.1 Let A be $m \times n$, and B be $n \times p$, and let the product AB be

$$C = AB$$

then C is a $m \times p$ matrix, with element (i, j) given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

for all $i = 1, 2, \dots, m, j = 1, 2, \dots, p$.

Proposition 1.1.2 Let A be $m \times n$, and x be $n \times 1$, then the typical element of the product

$$z = Ax$$

is given by

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

for all i = 1, 2, ..., m.

Similarly, let y be $m \times 1$, then the typical element of the product

$$z^T = y^T A$$

is given by

$$z_i = \sum_{k=1}^n a_{ki} y_k$$

for all i = 1, 2, ..., n.

Finally, the scalar resulting from the product

$$\alpha = y^T A x$$

is given by

$$\alpha = \sum_{j=1}^{m} \sum_{k=1}^{n} a_{jk} y_i x_k$$

Partitioned Matrices 1.2

Proposition 1.2.1 Let A be a square, nonsingular matrix of order m. Partition A as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

so that A_{11} and A_{22} are invertible.

$$A^{-1} = \begin{bmatrix} (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & -A_{11}^{-1}A_{12}(A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \\ -A_{22}^{-1}A_{21}(A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \end{bmatrix}$$

 $\underline{proof:}$ Direct multiplication of the proposed A^{-1} and A yields

$$A^{-1}A = I$$

1.3 **Matrix Differentiation**

Proposition 1.3.1

$$\frac{\partial A}{\partial x} = \frac{\partial A^T}{\partial x}$$

Proposition 1.3.2 Let

$$y = Ax$$

where y is $m \times 1$, x is $n \times 1$, A is $m \times n$, and A does not depend on x. Suppose that x is a function of the vector z, while A is independent of z. Then

$$\frac{\partial y}{\partial z} = A \frac{\partial x}{\partial z}$$

Proposition 1.3.3 Let the scalar α be defined by

$$\alpha = y^T A x$$

where y is $m \times 1$, x is $n \times 1$, A is $m \times n$, and A is independent of x and y, then

$$\frac{\partial \alpha}{\partial x} = y^T A$$

and

$$\frac{\partial \alpha}{\partial y} = x^T A^T$$

Proposition 1.3.4 For the special case where the scalar α is given by the quadratic form

$$\alpha = x^T A x$$

where x is $n \times 1$, A is $n \times n$, and A does not depend on x, then

$$\frac{\partial \alpha}{\partial x} = x^T (A + A^T)$$

proof:

By definition

$$\alpha = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_i x_j$$

Differentiating with respect to the kth element of x we have

$$\frac{\partial \alpha}{\partial x_k} = \sum_{i=1}^n a_{kj} x_J + \sum_{i=1}^n a_{ik} x_i$$

for all k = 1, 2, ..., n, and consequently,

$$\frac{\partial \alpha}{\partial x} = x^T A^T + x^T A = x^T (A^T + A)$$

Proposition 1.3.4 For the special case where A is a symmetric matrix and

$$\alpha = x^T A x$$

where x is $n \times 1$, A is $n \times n$, and A does not depend on x, then

$$\frac{\partial \alpha}{\partial x} = 2x^T A$$

Proposition 1.3.5 Let the scalar α be defined by

$$\alpha = y^T x$$

where y is $n \times 1$, x is $n \times 1$, and both y and x are functions of the vector z. Then

$$\frac{\partial \alpha}{\partial z} = x^T \frac{\partial y}{\partial z} + y^T \frac{\partial x}{\partial z}$$

Proposition 1.3.6 Let the scalar α be defined by

$$\alpha = x^T x$$

where x is $n \times 1$, and x is a functions of the vector z. Then

$$\frac{\partial \alpha}{\partial z} = 2x^T \frac{\partial y}{\partial z}$$

Proposition 1.3.7 Let the scalar α be defined by

$$\alpha = y^T A x$$

where y is $m \times 1$, A is $m \times n$, x is $n \times 1$, and both y and x are functions of the vector z, while A does not depend on z. Then

$$\frac{\partial \alpha}{\partial z} = x^T A^T \frac{\partial y}{\partial z} + y^T A \frac{\partial x}{\partial z}$$

Proposition 1.3.8 Let A be an invertible, $m \times m$ matrix whose elements are functions of the scalar parameter α . Then

$$\frac{\partial A^{-1}}{\partial \alpha} = -A^{-1} \frac{\partial A}{\partial \alpha} A^{-1}$$

proof:

Start with the definition of the inverse

$$A^{-1}A = I$$

and differentiate, yielding

$$A^{-1}\frac{\partial A}{\partial \alpha} + \frac{\partial A^{-1}}{\partial \alpha}A = 0$$

rearranging the terms yields

$$\frac{\partial A^{-1}}{\partial \alpha} = -A^{-1} \frac{\partial A}{\partial \alpha} A^{-1}$$

Vector-by-vector Differentiation Identities 1.3.9

	Ų alt.		
Condition	Expression	Numerator layout, i.e. by y and x ^T	Denominator layout, i.e. by y ^T and x
a is not a function of x	$rac{\partial \mathbf{a}}{\partial \mathbf{x}} =$	0	
	$rac{\partial \mathbf{x}}{\partial \mathbf{x}} =$	I	
A is not a function of x	$rac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	A	\mathbf{A}^{\top}
A is not a function of x	$\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}} =$	\mathbf{A}^{\top}	A
a is not a function of x , $u = u(x)$	$\frac{\partial a \mathbf{u}}{\partial \mathbf{x}} =$	$arac{\partial \mathbf{u}}{\partial \mathbf{x}}$	
$v = v(\mathbf{x}), \mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial v \mathbf{u}}{\partial \mathbf{x}} =$	$vrac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}rac{\partial v}{\partial \mathbf{x}}$	$v rac{\partial \mathbf{u}}{\partial \mathbf{x}} + rac{\partial v}{\partial \mathbf{x}} \mathbf{u}^ op$
A is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{A} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^\top$
u = u(x), v = v(x)	$rac{\partial (\mathbf{u} + \mathbf{v})}{\partial \mathbf{x}} =$	$rac{\partial \mathbf{u}}{\partial \mathbf{x}} + rac{\partial \mathbf{v}}{\partial \mathbf{x}}$	
u = u(x)	$rac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$
u = u(x)	$rac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$

Young's Theorem 1.3.10 i.e. Symmetry of second derivatives

$$[\nabla_{xy} f(x,y)]^T = \nabla_{yx} f(x,y)$$

 $\underline{proof:}$ This is straightforward by writing out the elements of the matrix.

Second-year Calculus Review

functions $\mathbb{R} \to \mathbb{R}$

Mean Value Theorem in 1 Dimension

 $g \in C^1$ on \mathbb{R}

$$\frac{g(x+h) - g(x)}{h} = g'(x+\theta h)$$

where $\theta \in (0,1)$ Or equivalently,

$$g(x+h) = g(x) + hg'(x+\theta h)$$

1st Order Taylor Approximation

 $g \in C^1$ on \mathbb{R}

$$g(x+h) = g(x) + hg'(x) + o(h)$$

where o(h) is "little o" of h, the error term.

Say a function f(h) = o(h), this means $\lim_{h \to 0} \frac{f(h)}{h} = 0$

For example, for $f(h) = h^2$, we can say f(h) = o(h), since $\lim_{h\to 0} \frac{f(h)}{h} = \lim_{h\to 0} \frac{h^2}{h} = \lim_{h\to 0} h = 0$ <u>proof:</u> (Use MVT):

 $\overline{\text{WTS}}: g(x+h) - g(x) - hg'(x) = o(h)$

$$\lim_{h \to 0} \frac{[g(x+h) - g(x)] - hg'(x)}{h} = \lim_{h \to 0} \frac{[hg'(x+\theta h)] - hg'(x)}{h}$$

$$= \lim_{h \to 0} g'(x+\theta h) - g'(x)$$

$$= \lim_{h \to 0} g'(x) - g'(x)$$

$$= 0$$

2nd Order Mean Value Theorem

 $q \in C^2$ on \mathbb{R}

$$g(x+h) = g(x) + hg'(x) + \frac{h^2}{2}g'(x+\theta h)$$

for some $\theta \in (0,1)$

proof:

WTS:
$$g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x) = o(h^2)$$

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - hg'(x) - \frac{h^2}{2}g''(x)}{h^2} = \lim_{h \to 0} \frac{\left[\frac{h^2}{2}g'(x+\theta h)\right] - \frac{h^2}{2}g''(x)}{h^2}$$

$$= \lim_{h \to 0} \frac{1}{2}(g''(x+\theta h) - g''(x))$$

$$= \lim_{h \to 0} \frac{1}{2}(g''(x) - g''(x))$$

$$= 0$$

multivariate functions: $\mathbb{R}^n \to \mathbb{R}$

2.4 Recall: Definition of gradient

Gradient of $f: \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ (denoted $\nabla f(x)$) if exists is a vector characterized by the property:

$$\lim_{\mathbf{v}\to\mathbf{0}} \frac{f(\mathbf{x}+\mathbf{v}) - f(\mathbf{x}) - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||} = 0$$

In Cartesian coordinates, $\nabla f(\mathbf{x}) = (\frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}), \dots, \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}))$

2.5 Mean Value Theorem in n dimension

 $f \in C^1$ on \mathbb{R}^n , then for any $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$,

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

for some $\theta \in (0,1)$

 $\frac{\textit{proof:}}{g(t) := f(\mathbf{x} + t\mathbf{v}), t \in \mathbb{R}}$

$$g'(t) = \frac{d}{dt} f(\mathbf{x} + t\mathbf{v})$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial \mathbf{x}_{i}} (\mathbf{x} + t\mathbf{v}) \cdot \frac{d(\mathbf{x} + t\mathbf{v})_{i}}{dt} \qquad \text{(by Chain Rule)}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial \mathbf{x}_{i}} (\mathbf{x} + t\mathbf{v}) \cdot \frac{d(\mathbf{x}_{i} + t\mathbf{v}_{i})}{dt}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial \mathbf{x}_{i}} (\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v}_{i}$$

$$= \nabla f(\mathbf{x} + t\mathbf{v}) \cdot \mathbf{v} \qquad (*)$$

 $g \in C^1$ on \mathbb{R} Using MVT in \mathbb{R} :

$$f(\mathbf{x} + \mathbf{v}) = g(1)$$

$$= g(0 + 1)$$

$$= g(0) + 1g'(0 + \theta 1) \qquad (\theta \in (0, 1))$$

$$= g(0) + g'(\theta)$$

$$= f(\mathbf{x}) + \nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v} \qquad (by (*))$$

2.6 1st Order Taylor Approximation in \mathbb{R}^n

 $f \in C^1$ on \mathbb{R}^n

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + o(||\mathbf{v}||)$$

proof:

$$\lim_{||\mathbf{v}|| \to 0} \frac{[f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x})] - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||} = \lim_{||\mathbf{v}|| \to 0} \frac{[\nabla f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}] - \nabla f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||}$$

$$= \lim_{||\mathbf{v}|| \to 0} [\nabla f(\mathbf{x} + \theta \mathbf{v}) - \nabla f(\mathbf{x})] \cdot \frac{\mathbf{v}}{||\mathbf{v}||}$$

$$= 0 \quad (\frac{\mathbf{v}}{||\mathbf{v}||} \text{ is a unit vector, remains 1})$$

2.7 2nd Order Mean Value Theorem in \mathbb{R}^n

 $f \in C^2$ on \mathbb{R}^n

$$f(\mathbf{x} - \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}$$

Remarks In this course, ∇^2 means Hessian, not Laplacian.

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_j}\right)_{1 \le i, j \le n} (\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial_1^2} & \frac{\partial f}{\partial_1 \partial_2} & \cdots \\ \frac{\partial f}{\partial_2 \partial_1} & \cdots & \\ \vdots & & \end{pmatrix}$$

The Hessian matrix is symmetric. This is sometimes called <u>Clairaut's Theorem.</u> note: $\mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v} = \sum_{1 \leq i,j \leq n} \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_j} f(\mathbf{x}) \mathbf{v}_i \mathbf{v}_j$

2.8 2nd Order Taylor Approximation in \mathbb{R}^n

 $f \in C^2$ on \mathbb{R}^n

$$f(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v} + o(||\mathbf{v}||^2)$$

proof:

$$\lim_{||\mathbf{v}|| \to 0} \frac{[f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x})] - \nabla f(\mathbf{x}) \cdot \mathbf{v} - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x})\mathbf{v}}{||\mathbf{v}||^2} = \lim_{||\mathbf{v}|| \to 0} \frac{[\frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x} + \theta \mathbf{v}) \cdot \mathbf{v}] - \frac{1}{2}\mathbf{v}^T \nabla^2 f(\mathbf{x}) \cdot \mathbf{v}}{||\mathbf{v}||^2}$$

$$(\text{By 2nd MVT})$$

$$= \lim_{||\mathbf{v}|| \to 0} \frac{1}{2} (\frac{\mathbf{v}}{||\mathbf{v}||})^T [\nabla^2 f(\mathbf{x} + \theta \mathbf{v}) - \nabla^2 f(\mathbf{x})] (\frac{\mathbf{v}}{||\mathbf{v}||})$$

$$= 0$$

2.9 Geometric Meaning of Gradient

 $f: \mathbb{R}^n \to \mathbb{R}$

Rate of change of f at \mathbf{x} in direction $\mathbf{v}(||\mathbf{v}|| = 1) = \frac{d}{dt}|_{t=0}f(\mathbf{x} + t\mathbf{v})$

$$\frac{d}{dt}|_{t=0}f(\mathbf{x}+t\mathbf{v}) = \nabla f(\mathbf{x}+t\mathbf{v}) \cdot \mathbf{v}|_{t=0}$$

$$= \nabla f(\mathbf{x}) \cdot \mathbf{v}$$

$$= |\nabla f(\mathbf{x})||\mathbf{v}| \cos \theta$$

$$= |\nabla f(\mathbf{x})| \cos \theta \qquad (||\mathbf{v}|| = 1)$$

maximized at $\theta = 0$

So $\nabla f(\mathbf{x})$ points in the direction of steepest ascent.

2.10 Implicit Function Theorem

$$\begin{split} f: \mathbb{R}^{n+1} &\to \mathbb{R} \in C^1 \\ \text{Fix } (\mathbf{a},b) &\in \mathbb{R}^n \times \mathbb{R} \text{ s.t. } f(\mathbf{a},b) = 0. \\ \text{If } \nabla f(\mathbf{a},b) &\neq 0, \text{ then } \{(\mathbf{x},y) \in (\mathbb{R}^n \times \mathbb{R}) | f(\mathbf{x},\mathbf{y}) = 0\} \text{ is locally (near } (\mathbf{a},b)) \\ \text{the graph of a function.} \end{split}$$

2.11 Level Sets of f

c-level set of $f := \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) = c \}$

Fact gradient $\nabla f(\mathbf{x}_0) \perp$ level curve (through \mathbf{x}_0)

3 Convex Set & Functions

3.1 Definitions

Definition of Convex Set $\Omega \subseteq \mathbb{R}^n$ is a <u>convex set</u> if $\mathbf{x}_1, \mathbf{x}_2 \in \Omega \Rightarrow s\mathbf{x}_1 + (1-s)\mathbf{x}_2 \in \Omega$ where $s \in [0,1]$

Definition of Convex Function A function f: convex $\Omega \subseteq \mathbb{R}^n$ is <u>convex</u> if

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \le sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in \Omega$ and all $s \in [0, 1]$

Remarks Second line above (or equal to) the graph

Definition of Concave Function A function f is <u>concave</u> if -f is convex.

3.2 Basic Properties of convex functions

Let $\Omega \subseteq \mathbb{R}^n$ be a convex set.

- 1. f_1, f_2 are convex functions on $\Omega \Rightarrow f_1 + f_2$ is a convex function on Ω .
- 2. f is a convex function, $a \ge 0 \Rightarrow af$ is a convex function.
- 3. f is a convex on $\Omega \Rightarrow$ The sublevel sets of f, $SL_c := \{ \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \leq c \}$ is convex.

proof of (3):

 $\overline{\text{Let } x_1, x_2 \in SL_C}$, so that $f(x_1) \leq c$ and $f(x_2) \leq c$.

WTS: $sx_1 + (1 - s)x_2 \in SL_c$ for any $s \in [0, 1]$

$$f(sx_1 + (1-s)x_2) \le sf(x_1) + (1-s)f(x_2) \qquad (f \text{ is convex})$$

$$\le sc + (1-s)c$$

$$= c$$

$$\Rightarrow sx_1 + (1-s)x_2 \in SL_c$$

Example of a convex function Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| Let $x_1, x_2 \in \mathbb{R}$, $s \in [0, 1]$

Then

$$f(sx_1 + (1 - s)x_2) = |sx_1 + (1 - s)x_2|$$

$$\leq |sx_1| + |(1 - s)x_2|$$
 (by Triangle Inequality)
$$= s|x_1| + (1 - s)|x_2|$$

$$= sf(x_1) + (1 - s)f(x_2)$$

Then f is a convex function.

Theorem - Characterization of C^1 **convex functions** Let f : convex subset of \mathbb{R}^n $\Omega \to \mathbb{R}$ be a C^1 function.

Then,

$$f$$
 is convex $\iff f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$ for all $x, y \in \Omega$

Remarks Tangent line below the graph.

 $\frac{proof:}{(\Rightarrow)}$

f is convex, then by definition,

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) \leq sf(\mathbf{x}_1) + (1-s)f(\mathbf{x}_2)$$

$$f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) - f(\mathbf{x}_2) \leq s(f(\mathbf{x}_1) - f(\mathbf{x}_2))$$

$$\frac{f(s\mathbf{x}_1 + (1-s)\mathbf{x}_2) - f(\mathbf{x}_2)}{s} \leq f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

$$\lim_{s \to 0} \frac{f(\mathbf{x}_2 + s(\mathbf{x}_1 - \mathbf{x}_2)) - f(\mathbf{x}_2)}{s} \leq f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

$$\nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2) \leq f(\mathbf{x}_1) - f(\mathbf{x}_2)$$

$$(\text{since } \frac{d}{ds}|_{s=0} f(\mathbf{x}_2 + s(\mathbf{x}_1 - \mathbf{x}_2)) = \nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2)$$

$$f(\mathbf{x}_2) + \nabla f(\mathbf{x}_2) \cdot (\mathbf{x}_1 - \mathbf{x}_2) \leq f(\mathbf{x}_1)$$

$$f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) \leq f(\mathbf{y})$$

where $0 \le s \le 1$ (\Leftarrow) Fix $\mathbf{x}_0, \mathbf{x}_1 \in \Omega$ and $s \in (0, 1)$ Let $x = s\mathbf{x}_0 + (1 - s)\mathbf{x}_1$

$$\begin{cases} f(\mathbf{x}_0) & \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_0 - \mathbf{x}) \\ & = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s)(\mathbf{x}_0 - \mathbf{x}_1) \\ f(\mathbf{x}_1) & \geq f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{x}_1 - \mathbf{x}) \\ & = f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot s(\mathbf{x}_1 - \mathbf{x}_0) \end{cases}$$
$$\begin{cases} sf(x_0) & \geq sf(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s) \cdot s(\mathbf{x}_0 - \mathbf{x}_1) \\ (1 - s)f(\mathbf{x}_1) & \geq (1 - s)f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (1 - s) \cdot s(\mathbf{x}_1 - \mathbf{x}_0) \end{cases}$$

Then

$$sf(\mathbf{x}_0) + (1-s)f(\mathbf{x}_1) \ge f(x) + 0$$

Then f is convex.

3.3 Criterions for convexity

 C^1 criterion for convexity

$$f: \Omega \to \mathbb{R}$$
 is convex $\iff f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$

for all $x, y \in \Omega$

Theorem: C^2 criterion for convexity Let $f \in C^2$ on $\Omega \subseteq \mathbb{R}^n$ (here we assume $\Omega \subseteq \mathbb{R}^n$ is a convex set containing an interior point)

$$f$$
 is convex on $\Omega \iff \nabla^2 f(x) \ge 0$

for all $x \in \Omega$

Remark 1 Let A be an $n \times n$ matrix. " $A \ge 0$ " means A is positive semi-definite:

$$v^T A v > 0$$

for all $v \in \mathbb{R}^n$

Remark 2 In \mathbb{R} ,

$$f$$
 is convex $\iff f'(x) \ge 0$

for all $x \in \Omega$

("concave up" in first year calculus)

proof for Theorem:

Recall 2nd order MVT:

$$f(y) = f(x) + \nabla f(x) \cdot (y - x) + \frac{1}{2}(y - x)^{T} \nabla^{2} f(x + s(y - x)) \cdot (y - x)$$

for some $s \in [0, 1]$

 (\Leftarrow)

Since $\nabla^2 f(x) \geq 0$, then

$$\frac{1}{2}(y-x)^T \nabla^2 f(x+s(y-x)) \cdot (y-x) \ge 0$$

Then

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x)$$

for all $x, y \in \Omega$.

Then by C^1 criterion, f is convex.

 (\Rightarrow)

Assume f is convex on Ω .

Suppose for contradiction that $\nabla^2 f(x)$ is not positive semi-definite at some $x \in \Omega$.

Then $\exists v \neq 0$ s.t. $v^T \nabla^2 f(x) v < 0$ v could be arbitrarily small and > 0 Let y = x + v, then

$$(y-x)^T \nabla^2 f(x+s(y-x)) \cdot (y-x) < 0$$

for all $s \in [0, 1]$

Then by MVT,

$$f(y) < f(x) + \nabla f(x) \cdot (y - x)$$

for some $x, y \in \Omega$, and this contradicts the C^1 criterion.

3.4 Minimization and Maximization of Convex Functions

Theorem $f: \text{convex } \Omega \subseteq \mathbb{R}^n \to \mathbb{R} \text{ is a convex function.}$

Suppose
$$\Gamma := \{x \in \Omega | f(x) = \min_{\Omega} f(x)\} \neq \emptyset$$

(i.e. minimizer exists)

Then Γ is a convex set, and any local minimum of f is a global minimum of f.

proof:

Let
$$m = \min_{\Omega} f(x)$$
.

$$\Gamma = \{x \in \Omega | f(x) = m\} = \{x \in \Omega | f(x) \le m\}$$

(sublevel set)

Then by Basic Properties of Convex Sets, Γ is convex.

Let x be a local minimum of f.

Suppose for contradiction that $\exists y \text{ s.t. } f(y) < f(x)$

(i.e. x is not a global minimum)

$$f(sy + (1 - s)x) \le sf(y) + (1 - s)f(x)$$

$$< sf(x) + (1 - s)f(x) \qquad (f(y) < f(x))$$

$$= f(x)$$

for all $s \in (0,1)$

As s approaches 0, s approaches x.

Then we have $\lim_{s \to 0} f(sy + (1-s)x) = f(x) < f(x)$.

which is a contradiction.

Theorem If $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is a convex function, and Ω is convex and compact, then

$$\max_{\Omega} f = \max_{\partial \Omega} f$$

Remarks Maximum value of f is attained (also) on the boundary of Ω

Since Ω is closed, $\partial \Omega \subseteq \Omega$, so $\max_{\Omega} f \ge \max_{\partial \Omega} f$. Suppose $f(x_0) = \max_{\Omega} f$ for some $x_0 \notin \partial \Omega$. Let L be an arbitrary line through x_0 .

By convexity and compactness of Ω , L meets $\partial \Omega$ at two points x_1, x_2 .

Let $x_0 + sx_1 + (1 - s)x_2$ for $s \in (0, 1)$

$$f(x_0) = f(sx_1 + (1 - s)x_2)$$

$$\leq sf(x_1) + (1 - s)f(x_2)$$

$$\leq \max\{f(x_1), f(x_2)\}$$

$$\leq \max_{\partial \Omega} f$$

$$\leq \max_{\Omega} f = f(x_0)$$

$$(f \text{ convex})$$

This implies that

$$\max_{\Omega} f = \max_{\partial \Omega} f$$

as wanted.

Example

$$|ab| \le \frac{1}{p}|a|^p + \frac{1}{q}|b|^q$$

where p, q > 1 s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Special cases:

1.

$$p = q = 2, |ab| \le \frac{|a|^2 + |b|^2}{2}$$

2.

$$p = 3, q = \frac{3}{2}, |ab| \le \frac{1}{3}|a|^3 + \frac{2}{3}|b|^{\frac{3}{2}}$$

 $\frac{\textit{proof:}}{\text{Since function }} f(x) = -\log(x) \text{ is convex, then}$

$$\begin{aligned} (-\log)|ab| &= (-\log)|a| + (-\log)|b| \\ &= \frac{1}{p}(-\log)|a|^p + \frac{1}{q}(-\log)|b|^q \\ &\geq (-\log)(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q) \\ (-\log)|ab| &\geq (-\log)(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q) \\ \log|ab| &\leq \log(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q) \\ |ab| &\leq \frac{1}{p}|a|^p + \frac{1}{q}|b|^q \qquad \text{(exponential function is increasing)} \end{aligned}$$

Basics of Unconstrained Optimization 4

Extreme Value Theorem

Suppose $f:\mathbb{R}^n\to\mathbb{R}$ is continues, and compact set $K\subseteq\mathbb{R}^n$ Then the problem

$$\min_{x \in K} f(x)$$

has a solution.

Recall

1.

$$K \subseteq \mathbb{R}^n$$
 compact $\iff K$ closed and bounded

2. If h_1, \ldots, h_k and g_1, \ldots, g_m are continuous functions on \mathbb{R}^n , then the set of all points $x \in \mathbb{R}^n$ s.t.

$$\begin{cases} h_i(x) = 0 & \text{for all } i \\ g_j(x) \le 0 & \text{for all } j \end{cases}$$

is a closed set.

3. If such a set is also bounded, then it is compact.

Example

$$\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 - 1 = 0\}$$

by (2), this is a closed set

by (3), this is a compact set.

Remarks $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ convex does not imply f is continuous.

4.2 Unconstrained Optimization

$$\min_{x \in \Omega \subseteq \mathbb{R}^n} f(x)$$

typically

1.
$$\Omega \subseteq \mathbb{R}^n$$

2.
$$\Omega = \mathbb{R}^n$$

3.
$$\Omega = \text{open}$$

4.
$$\Omega = \overline{\text{open}}$$

Remark

$$1. \max f(x) = -(\min -f(x))$$

2.
$$\min f(x) = -(\max - f(x))$$

Definition: local minimum We say that f has a <u>local minimum</u> at a point $x_0 \in \Omega$ if

$$f(x_0) \le f(x)$$

for all $x \in B_{\Omega}^{\varepsilon}(x_0)$, where $B_{\Omega}^{\varepsilon}(x_0) = \{x \in \Omega : |x - x_0| < \varepsilon\}$ which is an open ball around x_0 inside Ω of radius $\varepsilon > 0$.

We say that f has a <u>strict local minimum</u> at a point $x_0 \in \Omega$ if

$$f(x_0) < f(x)$$

for all $x \in B_{\Omega}^{\varepsilon}(x_0) \setminus \{x_0\}$

4.3 1st order necessary condition for local minimum

Theorem Let f be a C^1 function on $\Omega \subseteq \mathbb{R}^n$. If $x_0 \in \Omega$ is a local minimum of f, then

$$\nabla f(x_0) \cdot v \ge 0$$

for all feasible directions v at x_0

Definition: feasible direction $v \in \mathbb{R}^n$ is a <u>feasible direction</u> at $x_0 \in \Omega$ if

$$x_0 + sv \in \Omega$$

for all $0 \le s \le \bar{s}$ where $\bar{s} \in \mathbb{R}$

Remarks Feasible directions go into the set.

Corollary Special case: If $\Omega = \mathbb{R}^n$ is an open set, then any direction is a feasible direction. Then x_0 is a local minimum of f on Ω implies that $\nabla f(x_0) \cdot v \geq 0$ for all $v \in \mathbb{R}^n$.

$$\begin{cases} \nabla f(x_0) \cdot v \ge 0 \\ \nabla f(x_0) \cdot (-v) \ge 0 \iff \nabla f(x_0) \cdot v \le 0 \end{cases} \implies \nabla f(x_0) \cdot v = 0 \text{ for all } v \in \mathbb{R}^n$$

$$\implies \nabla f(x_0) = 0$$

proof: []

Definition: local minimum We say that f has a <u>local minimum</u> at a point $x_0 \in \Omega$ if

$$f(x_0) \le f(x)$$

for all $x \in B_{\Omega}^{\varepsilon}(x_0)$, where $B_{\Omega}^{\varepsilon}(x_0) = \{x \in \Omega : |x - x_0| < \varepsilon\}$ which is an open ball around x_0 inside Ω of radius $\varepsilon > 0$.

We say that f has a strict local minimum at a point $x_0 \in \Omega$ if

$$f(x_0) < f(x)$$

for all $x \in B_{\Omega}^{\varepsilon}(x_0) \setminus \{x_0\}$

4.3 1st order necessary condition for local minimum

Theorem Let f be a C^1 function on $\Omega \subseteq \mathbb{R}^n$. If $x_0 \in \Omega$ is a local minimum of f, then

$$\nabla f(x_0) \cdot v \ge 0$$

for all feasible directions v at x_0

Definition: feasible direction $v \in \mathbb{R}^n$ is a <u>feasible direction</u> at $x_0 \in \Omega$ if

$$x_0 + sv \in \Omega$$

for all $0 \le s \le \bar{s}$ where $\bar{s} \in \mathbb{R}$

Remarks Feasible directions go into the set.

Corollary Special case: If $\Omega = \mathbb{R}^n$ is an open set, then any direction is a feasible direction. Then x_0 is a local minimum of f on Ω implies that $\nabla f(x_0) \cdot v \geq 0$ for all $v \in \mathbb{R}^n$.

$$\begin{cases} \nabla f(x_0) \cdot v \ge 0 \\ \nabla f(x_0) \cdot (-v) \ge 0 \iff \nabla f(x_0) \cdot v \le 0 \end{cases} \implies \nabla f(x_0) \cdot v = 0 \text{ for all } v \in \mathbb{R}^n$$

$$\implies \nabla f(x_0) = 0$$

proof: []

4.4 2nd order necessary condition for local minimum

$$f \in C^2, \Omega \subseteq \mathbb{R}^n$$

If $x_0 \in \Omega$ is a local minimum of f on Ω , then

- 1. $\nabla \cdot v \geq 0$ for all feasible directions v at x_0
- 2. If $\nabla f(x_0) \cdot v = 0$, then $v^T \nabla^2 f(x_0) v \ge 0$ (function curves up)

proof: []

Remark If x_0 is an interior point of Ω , then

$$\nabla f(x_0) = 0, \quad \nabla^2 f(x_0) \ge 0$$

$$f'(x_0) = 0, \quad f''(x_0) \ge 0$$

4.5 Definition: positive definiteness

A $n \times n$ matrix A is

6

Equality Constraints

Definition 1: surface

$$M = \text{"surface"} = \{x \in \mathbb{R}^n | h_1(x) = 0, \dots, h_k(x) = 0\}$$

where $h_i \in C^1$

Definition 2: differentiable curve on surface A differentiable curve on surface $M \subseteq \mathbb{R}^n$ is a C^1 function

$$x: (-\epsilon, \epsilon) \to M: s \mapsto \lambda(s)$$

Definition 4: tangent space Tangent space to the surface M at point x_0 is

$$T_{x_0}M = \{\text{all tangent vectors to } M \text{ at } x_0\} = \{v \in \mathbb{R}^n : v = \frac{d}{ds}|_{s=0} x(s)\}$$

where x(s) is a differentiable curve on M s.t. $x(0) = x_0$

Remarks The zero vector is contained in all tangent spaces.

Definition 1: T-space

$$T_{x_0} = \{x \in \mathbb{R}^n : x^T \nabla h_i(x_0) = 0 \,\forall i\} = Span\{\nabla h_1(x_0), \dots, \nabla h_k(x_0)\}^{\perp}$$

Definition 2: regular point $x_0 \in M$ is a regular point (of the constraints) if $\{\nabla h_1(x_0), \dots, \nabla h_k(x_0)\}$ are linearly independent.

When does the T-space equivalent to the tangent space? When x_0 is a regular point (of the constraints).

Theorem 3 Suppose x_0 is a regular point s.t. $M = \{x \in real^n : h_i(x) = 0 \forall i\}$. Then

$$T_{x_0}M = T_{x_0}$$

Lemma 4 $f, h_1, \ldots, h_k \in C^1$ on open $\Omega \subseteq \mathbb{R}^n$

 $M = \{ x \in real^n : h_i(x) = 0 \,\forall i \}$

Suppose $x_0 \in M$ is a local minimum of f on M, then

$$\nabla f(x_0) \perp T_{x_0} M \iff \nabla f(x_0) \cdot v = 0$$

for all $v \in T_{x_0}M$

5.1 Lagrange Multipliers: 1st order necessary condition for local minimum

 $f, h_1, \ldots, h_k \in C^1$ on open $\Omega \subseteq \mathbb{R}^n$.

Let x_0 be a regular point of the constraints $M = \{x \in real^n : h_i(x) = 0 \,\forall i\}$. Suppose x_0 is a local minimum of f on M, then $\exists \lambda_1, \ldots, \lambda_k \in \mathbb{R}$ s.t.

$$\nabla f(x_0) + \lambda_1 \nabla h_1(x_0) + \ldots + \lambda_k \nabla h_k(x_0) = 0$$

5.2 2nd order necessary condition for local minimum

 $f, h_1, \ldots, h_k \in \mathbb{C}^2$ on open $\Omega \subseteq \mathbb{R}^n$.

Let x_0 be a regular point of the constraints $M = \{x \in real^n : h_i(x) = 0 \,\forall i\}$. Suppose x_0 is a local minimum of f on M, then

1.

$$\nabla f(x_0) + \sum_{i=1}^k \lambda_i \nabla h_i(x_0) = 0$$

for some $\lambda_i \in \mathbb{R}$

2.

$$\nabla^2 f(x_0) + \sum \lambda_i \nabla^2 h_i(x_0) \ge 0$$

on $T_{x_0}M$

5.3 2nd order sufficient condition for local minimum

 $f, h_1, \dots, h_k \in \mathbb{C}^2$ on open $\Omega \subseteq \mathbb{R}^n$.

Let x_0 be a regular point of the constraints $M = \{x \in real^n : h_i(x) = 0 \,\forall i\}$. If $\exists \lambda_i \in \mathbb{R} \text{ s.t.}$

1.

$$\nabla f(x_0) + \sum \lambda_i \nabla h_i(x_0) = 0$$

2.

$$\nabla^2 f(x_0) + \sum \lambda_i \nabla^2 h_i(x_0) > 0$$

on $T_{x_0}M$

Then x_0 is a strict local minimum.

6 Inequality Constraints

Problem open $\Omega \subseteq \mathbb{R}^n$

$$f:\Omega\to\mathbb{R}$$

$$h_1,\ldots,h_k:\Omega\to\mathbb{R}$$

$$g_1,\ldots,g_l:\Omega\to\mathbb{R}$$

$$x \in \Omega \text{ subject to } \begin{cases} \min f(x) \\ h_1(x) = 0, \dots, h_k(x) = 0 \\ g_1(x) \le 0, \dots, g_l(x) \le 0 \end{cases}$$

Definition 1: activeness Let x_0 satisfy the constraints. We say that the constraint $g_i(x) \leq 0$ is <u>active</u> at x_0 if $g_i(x_0) = 0$. It is <u>inactive</u> at x_0 if $g_i(x_0) < 0$

Definition 2: regular point Suppose for some $l' \leq l$:

$$g_1(x) \le 0, \dots, g_{l'}(x) \le 0; g_{l'+1}(x) \le 0, \dots, g_l(x) \le 0$$

where $g_1, \ldots g_{l'}$ active and the rest inactive. We say that x_0 is a regular point of the constraints if $\{\nabla h_1(x_0), \ldots, \nabla h_k(x_0), \nabla g_1(x_0), \ldots, \nabla g_{l'}(x_0)\}$ is linearly independent.

6.1 Kuhn-Tucker conditions: 1st order necessary condition for local minimum

open $\Omega \subseteq \mathbb{R}^n$

 $f:\Omega\to\mathbb{R}$

 $h_1, \ldots, h_k, g_1, \ldots, g_l : C^1 \in \Omega$

Suppose $x_0 \in \Omega$ is a regular point of the constraints which is a local minimum, then

1.

$$\nabla f(x_0) + \sum_{i=1}^{k} \lambda_i \nabla h_i(x_0) + \sum_{j=1}^{l} \mu_j \nabla g_j(x_0) = 0$$

for some $\lambda_i \in \mathbb{R}$

2. $\mu_j g_j(x_0) = 0$ for all f with some $\mu_j \geq 0$