Corrigé de l'examen du 22 octobre 2021

Le barème est sur 117 points + points de bonus. Sur chaque copie sont indiqués en haut de la première page : le nombre de points par page, puis le total des points et enfin la note sur 20. Limite pour obtenir une note de 4/20: 15 points, 6/20: 23 points, 8/20: 33 points, 10/20: 43 points, 12/20: 50 points; 14/20: 59 points, 16/20: 70 points, 18/20: 82 points, 20/20: 95 points. Le barème n'est donc pas tout à fait linéaire. Le nombre de points attribués par question est indiqué en début de question.

Exercice 1. — Soit b un entier ≥ 4 . Soit $x \in \mathbb{N}$; on suppose que son éciture en base b est 133.

a. (2 points) $Si\ b = 10$, donner l'écriture de x en base 4:

On divise successivement par la base, puis on écrit les restes dans l'ordre inverse :

$$133 = 4.33 + 1$$
, $33 = 4.8 + 1$, $8 = 4.2 + 0$, $2 = 4.0 + 2$, d'où $(133)_{10} = (2011)_4$.

b. (2 points) $Si\ b = 7$, donner l'écriture de x en base 10:

$$(133)_7 = 3.7^0 + 3.7^1 + 1.7^2 = 3 + 21 + 49 = (73)_{10}.$$

c. (3 points) Si 2x s'écrit 321 en base b, déterminer la valeur de b :

 $2x = 2.(133)_b = 2(b^2 + 3b + 3) = 2b^2 + 6b + 6$ et l'énoncé donne $2x = 3b^2 + 2b + 1$. En simplifiant, on obtient l'équation $b^2 - 4b + 5 = 0$, qui a pour solutions b = -1 (impossible puisque $b \ge 4$) et b = 5. On peut vérifier après coup que $86 = (321)_5 = 2.43$ et $43 = (133)_5$.

La seule vérification que b = 5 convient ne donnait que 2 points, car il n'est pas exclu a priori que d'autres valeurs de b puissent aussi convenir.

Exercice 2. — (1+1+3 points) Écrire en base 3 les nombres (écrits en base 10) $\frac{2}{27}$, $\frac{11}{27}$ et $\frac{1}{4}$.

$$\frac{2}{27} = \frac{(2)_3}{(1000)_3} = (0,002)_3 \qquad \qquad \frac{11}{27} = \frac{(102)_3}{1000)_3} = (0,102)_3$$

$$\frac{1}{4} = \frac{(1)_3}{(11)_3} = (0,020202...)_3 = (0,\overline{02})_3.$$

Exercice 3. — (1 point par question) Soit E un ensemble à 5 éléments, et F un ensemble à 6 éléments. Quel est le nombre n_1 de parties de E, le nombre n_2 de bijections de E dans E, le nombre n_3 d'applications de E dans F, le nombre n_4 d'injections de E dans F, le nombre n_5 de surjections de E dans F, le nombre n_6 de parties de F de cardinal 3?

$$n_1 = 2^5 = 32$$
 $n_2 = 5! = 120$ $n_3 = 6^5 = 7776$ $n_4 = \frac{6!}{(6-5)!} = 720$ $n_5 = 0$ $n_6 = {6 \choose 3} = 20$

Exercice 4. — Soit les applications :

$$f_1: \mathbb{R} \to \mathbb{R} \qquad f_2: \mathbb{R} \to \mathbb{R} \qquad f_3: \mathbb{N} \to \mathbb{N} \qquad f_4: \mathcal{P}(E) \to \mathcal{P}(E) \qquad f_5: \mathcal{P}(E) \times \mathcal{P}(E) \to \mathcal{P}(E) \\ x \mapsto |x| + 2x \qquad x \mapsto 2|x| + x \qquad x \mapsto \frac{1}{2}(x^2 + x) \qquad A \longmapsto \overline{A} \qquad (A, B) \mapsto A \cup B$$

Ici E désigne un ensemble non vide et \overline{A} est le complémentaire de A dans E. Les applications f_1, f_2, f_3 et f_4 sont-elles injectives, surjectives?

Répondre par oui ou non dans le tableau : (10 points : 1 par réponse juste, -1 par réponse fausse; ainsi une réponse au hasard ne rapporte pas de points en moyenne)

	f_1	f_2	f_3	f_4	f_5
injective	oui	non	oui	oui	non
surjective	oui	non	non	oui	oui

Exercice 5. — Les relations \mathcal{R}_1 , \mathcal{R}_2 et \mathcal{R}_3 définies sur $E = \{a, b, c\}$ par les diagrammes cartésiens ci-dessous sont-elles réflexives, symétriques, antisymétriques, transitives? La croix signifie la présence d'une relation.

(12 points : 1 point par réponse juste, -1 par réponse fausse)

	7	a	b	c
\mathcal{R}_1 :	a	X		X
κ_1 .	b		X	
	c	X		X

	7	a	b	c
\mathcal{R}_2 :	a	X		
\mathcal{K}_2 :	b	X	X	
	c	X	X	X

	7	a	b	c
\mathcal{R}_3 :	a	X	X	X
<i>1</i> C3 .	b	X	X	
	c	X		

Répondre par oui ou non dans le tableau :

	\mathcal{R}_1	\mathcal{R}_2	\mathcal{R}_3
réflexive	oui	oui	non
symétrique	oui	non	oui
antisymétrique	non	oui	non
transitive	oui	oui	non

La relation est réflexive ssi la diagonale n'a que des croix, symétrique ssi le tableau est symétrique par rapport à la diagonale, antisymétrique ssi il y a au plus une croix parmi deux cases symétriques : si $x\mathcal{R}y$ et $x \neq y$ alors $y \mathcal{R} x$. Seule la transitivité ne se voit pas directement sur les diagrammes. Des points de bonus étaient accordés à celles et ceux qui ont remarqué que \mathcal{R}_1 est une relation d'équivalence et \mathcal{R}_2 une relation d'ordre.

Exercice 6. — (6 points) Soit E un ensemble et A, B deux parties de E. Soit φ l'application de $\mathcal{P}(E)$ dans $\mathcal{P}(A) \times \mathcal{P}(B)$ définie par

$$\varphi(X) = (A \cap X, B \cap X)$$

Montrer que φ est surjective si et seulement si $A \cap B = \emptyset$.

Si φ est surjective, alors il existe $X \in \mathcal{P}(E)$ tel que $\varphi(X) = (A, \emptyset)$, i.e. $A \cap X = A$ et $B \cap X = \emptyset$. On obtient alors

$$A \cap B = (A \cap X) \cap B = A \cap (X \cap B) = A \cap \emptyset = \emptyset.$$

Si $A \cap B = \emptyset$, pour tout $(U, V) \in \mathcal{P}(A) \times \mathcal{P}(B)$, choisissons $X = U \cup V$. Alors

$$A \cap X = A \cap (U \cup V) = (A \cap U) \cup (A \cap V) = U \cup \emptyset \text{ (car } A \cap V \subseteq A \cap B = \emptyset) = U.$$

De même $B \cap X = V$, donc on a trouvé $X \in \mathcal{P}(E)$ tel que $\varphi(X) = (U, V)$, ce qui montre que φ est surjective.

Exercice 7. — (4 points) Soit $E = \{1, 2, 3, 4, 5, 6\}$. On munit l'ensemble $\mathcal{P}(E)$ des parties de E de l'ordre défini par la relation d'inclusion. Donner une partie \mathcal{A} de $\mathcal{P}(E)$ contenant 7 éléments, n'admettant pas de plus petit élément, admettant $\{1, 3, 4, 6\}$ comme plus grand élément et $\{3\}$ comme borne inférieure.

Les éléments de \mathcal{A} sont des parties de E qui doivent toutes contenir $\{3\}$ et être incluses dans $\{1,3,4,6\}$. La partie $\{1,3,4,6\}$ est dans \mathcal{A} mais pas $\{3\}$. Il n'y a pas le choix :

$$\mathcal{A} = \Big\{ \{1,3\}, \{3,4\}, \{3,6\}, \{1,3,4\}, \{1,3,6\}, \{3,4,6\}, \{1,3,4,6\} \Big\}.$$

Exercice 8. — Soit $\mathbb{E} = \{0, 1, 2, \dots, 9\}$. Sur $\mathbb{E} \times \mathbb{E}$ on considère les deux ordres usuels : l'ordre produit \leq_P et l'ordre lexicographique \leq_L . Déterminer le nombre de couples $(x_1, x_2) \in \mathbb{E}$ tels que

- **a.** (2 points) $(x_1, x_2) \leq_P (1, 6) : 14$ $(x_1 \text{ peut prendre 2 valeurs} : 0 \text{ ou } 1 \text{ et } x_2 \text{ peut en prendre } 7 : \text{de } 0 \text{ à } 6)$
- **b.** (2 points) $(x_1, x_2) \le_L (1, 6)$: **17** (si $x_1 = 0$, x_2 peut prendre toute valeur entre 0 et 9, donc 10; si $x_1 = 1$, x_2 peut prendre toute valeur entre 0 et 6, donc 7, d'où 10 + 7 = 17 au total).

Soit \mathcal{A} la partie de E donnée par $\mathcal{A} = \{(1,0), (0,3), (2,3)(2,4), (4,3), (4,6)\}.$

a. (1 point) Dessiner le diagramme de Hasse de A pour l'ordre lexicographique.

$$(0,3) \to (1,0) \to (2,3) \to (2,4) \to (4,3) \to (4,6)$$

(1 point pour chaque) Éléments minimaux, maximaux, l'inf et le sup de \mathcal{A} pour l'ordre lexicographique. Éléments minimaux : (0,3) Éléments maximaux : (4,6)

$$\inf \mathcal{A} = (0,3) \qquad \sup \mathcal{A} = (4,6)$$

b. (2 points) Dessiner le diagramme de Hasse de A pour l'ordre produit.

(1 point pour chaque) Préciser les éléments minimaux, maximaux, l'inf et le sup de \mathcal{A} pour l'ordre produit. Éléments minimaux : (0,3) et (1,0) Éléments maximaux : (4,6)

$$\inf \mathcal{A} = (0,0) \qquad \qquad \sup \mathcal{A} = (4,6)$$

Exercice 9. — Soit $\mathcal{A} = \{a,b\}$ un alphabet à deux lettres et \mathcal{A}^* l'ensemble de tous les mots écrits avec l'alphabet \mathcal{A} . On note ε le mot vide et on considère la partie L de \mathcal{A}^* définie inductivement par $B = \{\varepsilon\}$ et la règle d'induction $f: L \times L \to L$ telle que : f(u,v) = aubv.

a. (3 points pour B_1 et B_2 , 4 points pour B_3) Compléter :

$$B_1 = \{\varepsilon, f(\varepsilon, \varepsilon)\} = \{\varepsilon, a\varepsilon b\varepsilon\} = \{\varepsilon, ab\}.$$

 $B_2 = \{\varepsilon, a\,b, a\,b\,ab, a\,ab\,b, a\,ab\,b\,ab\}$. Les blancs entre les lettres de chaque mot sont là pour mieux visualiser u et v dans les produits aubv; ainsi $a\,b\,ab = f(\varepsilon, ab)$. J'ai laissé volontairement les mots dans cet ordre.

Pour écrire B_3 sans se tromper, on peut remarquer que $B_{p+1} = \{\varepsilon\} \cup f(B_p \times B_p)$ et que $f: B_p \times B_p \to B_{p+1}$ est injective. Autrement dit, on obtient déjà presque tout B_{p+1} en prenant tous les aubv avec $u, v \in B_p$ (il ne manque que le mot vide) et de plus ces produits sont tous différents : si $(u, v) \neq (u', v')$, alors $aubv \neq au'bv'$. En effet, pour voir où termine u et commence v dans un mot aubv, il suffit de voir quand le nombre de a et de b est à égalité. En particulier, on a $Card B_{p+1} = (Card B_p)^2 + 1$, donc $Card B_3 = 26$.

La première ligne contient, en plus du mot vide, les mots $f(\varepsilon, v)$ avec $v \in B_2$, la deuxième les f(ab, v), puis f(abab, v), f(aabb, v) et enfin f(aabbab, v).

b. (3 points) Indiquer (sans démonstration) une caractérisation des mots appartenant à \mathcal{L} :

Ce sont tous les mots qui ont autant de a que de b et tels que tout début de mot comporte au moins autant de a que de b. Chaque b est associé à un a qui le précède, et à la fin il y a autant de a que de b. C'est le langage des parenthèses lorsque a est noté "(" et b est noté ")".

Ce n'est donc pas le langage des mots ayant autant de a que de b (par exemple ba n'est pas dedans) ni celui ayant autant de a que de b, commençant par a et finissant par b (par exemple abbaab n'est pas dedans).

Exercice 10. — Soit $(B, +, \cdot, -)$ une algèbre de Boole.

a. Soit $a, b, c, d \in B$. Simplifier les expressions suivantes :

(1 point)
$$a \cdot (b + \overline{c}) + c \cdot a = a \cdot (b + \overline{c} + c) = a \cdot (b + 1) = a \cdot 1 = a$$
.

(1 point)
$$\overline{\overline{a \cdot b} + a} = \overline{\overline{a \cdot b}} \cdot \overline{a} = a \cdot b \cdot \overline{a} = b \cdot 0 = 0.$$

(2 points) $(a + \overline{b}) \cdot (b + \overline{c}) \cdot (c + \overline{a}) = a \cdot b \cdot c + \overline{b} \cdot \overline{c} \cdot \overline{a}$. On peut par exemple développer (8 termes) et constater que les six autres termes contiennent tous une expression de la forme $x \cdot \overline{x}$, donc valent 0.

Une erreur fréquente : $\overline{a} \cdot \overline{b} \cdot \overline{c} \neq \overline{a \cdot b \cdot c}$ (qui vaut $\overline{a} + \overline{b} + \overline{c}$.)

b. (5 points) Soit $a, b, x \in B$ tels que $a \cdot x = b \cdot \overline{x}$. Montrer que $a \cdot x = b \cdot \overline{x} = 0$

$$a \cdot x = a \cdot (x \cdot x) = (a \cdot x) \cdot x = (b \cdot \overline{x}) \cdot x = b \cdot (\overline{x} \cdot x) = b \cdot 0 = 0.$$

Puisque $a \cdot x = b \cdot \overline{x}$, on a aussi $b \cdot \overline{x} = 0$.

Autre preuve : soit $u = a \cdot x = b \cdot \overline{x}$. Alors $u = u \cdot u = (a \cdot x) \cdot (b \cdot \overline{x}) = (a \cdot b) \cdot (x \cdot \overline{x}) = (a \cdot b) \cdot 0 = 0$.

La réponse consistant à donner la valeur 0 ou la valeur 1 à x est séduisante mais erronée : il y a bien d'autres algèbres de Boole que l'algèbre binaire $\mathbb{B} = \{0, 1\}$.

c. (3 points) Soit $x, y, z \in B$ tels que $x \cdot y \cdot z = x \cdot \overline{y} \cdot z$. Montrer que $x \cdot z = 0$.

D'après le **a.** avec $a=b=x\cdot z$ et x remplacé par y, on a $x\cdot y\cdot z=x\cdot \overline{y}\cdot z=0$. En additionnant on obtient

$$x \cdot z = x \cdot z \cdot (y + \overline{y}) = x \cdot y \cdot z + x \cdot \overline{y} \cdot z = 0 + 0 = 0.$$

Exercice 11. — Soit $(B, +, \cdot, -)$ une algèbre de Boole. On définit une nouvelle opération $*: B \times B \to B$ par

$$a * b = a \cdot \overline{b} + \overline{a} \cdot b$$

a. (1 point pour chaque) Compléter: $a * 1 = a \cdot 0 + \overline{a} \cdot 1 = \overline{a}$

$$a * 0 = a \cdot 1 + \overline{a} \cdot 0 = a$$

$$a*a = a \cdot \overline{a} + \overline{a} \cdot a = 0 + 0 = 0$$
 $a*\overline{a} = a \cdot a + \overline{a} \cdot \overline{a} = a + \overline{a} = 1.$

b. (2 points pour chaque) Écrire $\overline{a*b}$ sous forme normale disjonctive (somme de mintermes). En déduire a*b sous forme normale conjonctive (produit de maxtermes):

 $\overline{a*b} = a \cdot b + \overline{a} \cdot \overline{b}$ (les mintermes manquants dans l'expression de a*b)

 $a*b=(a+b)\cdot(\overline{a}+\overline{b})$ (prendre la forme normale disjonctive de $\overline{a*b}$, échanger + et ·, ôter les barres et mettre des barres où il n'y en avait pas, réordonner)

c. (3 points pour chaque) Écrire (a * b) * c sous forme normale disjonctive, puis sous forme normale conjonctive:

$$(a*b)*c = (a\overline{b} + \overline{a}b)\overline{c} + (ab + \overline{a}\overline{b})c = abc + a\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}\overline{b}c.$$

Alors $\overline{(a*b)*c} = \overline{a}\overline{b}\overline{c} + \overline{a}bc + a\overline{b}c + ab\overline{c}$ (mintermes manquants) donc

$$(a*b)*c = (a+b+c)(a+\overline{b}+\overline{c})(\overline{a}+b+\overline{c})(\overline{a}+\overline{b}+c).$$

Rappel: un minterme est un produit de variables, avec ou sans barre, contenant toutes les variables une et une seule fois.

d. (4 points) L'opération * est-elle associative?

Oui : l'expression est symétrique en a,b et c, donc (a*b)*c=(b*c)*a. De plus * est commutative, donc (b*c)*a=a*(b*c). En combinant, on obtient (a*b)*c=a*(b*c), ce qui est la définition de l'associativité.

Exercice 12. — (5 points) La fonction de Ackermann est la fonction $A: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ définie par :

- **a.** $\forall n \in \mathbb{N}, \ A(0,n) = n+1$;
- **b.** $\forall m \in \mathbb{N}^*, A(m,0) = A(m-1,1);$
- **c.** $\forall m \in \mathbb{N}^*, n \in \mathbb{N}^*, A(m,n) = A(m-1, A(m,n-1)).$

On admet que, pour tout $n \in \mathbb{N}$, on a A(2,n) = 2n+3. Montrer que, pour tout $n \in \mathbb{N}$, on a $A(3,n) = 2^{n+3}-3$.

Récurrence sur n. Pour n=0, on a $A(3,0)=A(2,1)=2.1+3=5=2^{0+3}-3$. (puisque la valeur de A(2,n) est donnée, utilisez-la!)

Hérédité : si $A(3, n) = 2^{n+3} - 3$, alors

$$A(3, n + 1) = A(2, A(3, n)) = A(2, 2^{n+3} - 3) = 2 \cdot (2^{n+3} - 3) + 3 = 2^{n+4} - 6 + 3 = 2^{(n+1)+3} - 3,$$

ce qu'on voulait.

Remarque : on constate que A(1,n)=n+2=2+(n+3)-3 et que A(2,n)=2(n+3)-3. On constate aussi que $2k=2+\cdots+2$ k fois et de même $2^k=2.2...2$ k fois. On démontre de la même manière que $A(4,n)=2^{n}(n+3)-3$, où $2^{n}k=2^{2}$ k fois, et ainsi de suite.

Exercice 13. — Soit A et B deux parties d'un ensemble E. On considère l'équation d'inconnue X

$$(A \cap X) \cup (\overline{A} \cap B) = B. \tag{1}$$

a. (3 points) Écrire chacun des deux membres de cette équation sous la forme d'une réunion de mintermes en les trois variables A, B et X

$$(A\cap X)\cup(\overline{A}\cap B)=\big(A\cap X\cap(B\cup\overline{B})\big)\cup\big(\overline{A}\cap B\cap(X\cup\overline{X})\big)=(A\cap B\cap X)\cup(A\cap\overline{B}\cap X)\cup(\overline{A}\cap B\cap X)\cup(\overline{A}\cap B\cap\overline{X})$$

$$B=(A\cup\overline{A})\cap B\cap(X\cup\overline{X})=(A\cap B\cap X)\cup(A\cap B\cap\overline{X})\cup(\overline{A}\cap B\cap X)\cup(\overline{A}\cap B\cap\overline{X})$$

On pouvait bien sûr utiliser l'écriture plus légère avec \cdot pour \cap et + pour \cup :

$$(A \cap X) \cup (\overline{A} \cap B) = AX + \overline{A}B = A(B + \overline{B})X + \overline{A}B(X + \overline{X}) = ABX + A\overline{B}X + \overline{A}BX + \overline{A}B\overline{X}$$
 et $B = (A + \overline{A})B(X + \overline{X}) = ABX + AB\overline{X} + \overline{A}BX + \overline{A}B\overline{X}$.

(2 points) Simplifier l'égalité obtenue en utilisant l'exercice 10 b.

Il y a égalité entre deux sommes de mintermes s
si les mintermes différents dans les deux sommes sont nuls ; par comparaison on obtient donc
 $A \cap \overline{B} \cap X = A \cap B \cap \overline{X} = \emptyset$.

b. (3 points) Caractériser les solutions de (1) à l'aide d'inclusions (utiliser l'équivalence $U \cap V = \emptyset \Leftrightarrow V \subseteq \overline{U}$).

On a
$$A \cap \overline{B} \cap X = \emptyset$$
 ssi $X \subseteq \overline{A \cap \overline{B}} = \overline{A} \cup B$ et $A \cap B \cap \overline{X} = \emptyset$ ssi $A \cap B \subseteq \overline{\overline{X}} = X$.
Les solutions de (1) sont donc toutes les parties X telles que

. _ -

$$A\cap B\subseteq X\subseteq \overline{A}\cup B$$