City University of Hong Kong Department of Electrical Engineering

EE3009 Data Communications and Networking

Assignment 2

Due Date: 2 November 2024

- 1. Consider four stations that are all attached to two different bus cables. The stations exchange fixed-size packets of length 1 sec. Time is divided into slots of 1 sec. When a station has a packet to transmit, the station chooses either bus with equal probability and transmits at the beginning of the next slot with probability *p*. Find the value of *p* that maximizes the rate at which packets are successfully transmitted.

 [5 marks]
- 2. A channel using non-persistent CSMA has three stations on a bus with end-to-end propagation delay τ . Station A is located at one end of the bus, and stations B and C are together located at the other end of the bus. Frames arrive at the three stations and are ready to be transmitted at stations A, B, and C at the respective times $\tau_A = 0$, $\tau_B = \tau/2$, and $\tau_C = 3\tau/2$. Frames require transmission times of 4τ . The timeout value is 2τ . Draw a figure, with time as the horizontal axis, to show the transmission activity of each of the three stations.

[5 marks]