$12n_{0466} \ (K12n_{0466})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -296878516u^{31} - 276724358u^{30} + \dots + 441171721b - 537239537,$$

$$-397220095u^{31} - 1740337107u^{30} + \dots + 882343442a - 7870777298, \ u^{32} + 2u^{31} + \dots + 6u + 1 \rangle$$

$$I_2^u = \langle b - 1, \ a^2 + 2a - 2u - 3, \ u^2 + u - 1 \rangle$$

$$I_3^u = \langle b + 1, \ a - 1, \ u^2 - u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 38 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -2.97 \times 10^8 u^{31} - 2.77 \times 10^8 u^{30} + \dots + 4.41 \times 10^8 b - 5.37 \times 10^8, \ -3.97 \times 10^8 u^{31} - 1.74 \times 10^9 u^{30} + \dots + 8.82 \times 10^8 a - 7.87 \times 10^9, \ u^{32} + 2u^{31} + \dots + 6u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.450188u^{31} + 1.97240u^{30} + \dots - 8.67806u + 8.92031 \\ 0.672932u^{31} + 0.627249u^{30} + \dots + 0.391427u + 1.21776 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2.40634u^{31} - 3.60527u^{30} + \dots + 10.8122u - 12.0712 \\ 0.218460u^{31} - 0.291561u^{30} + \dots + 2.47123u - 1.19894 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.12312u^{31} + 2.59965u^{30} + \dots - 8.28663u + 10.1381 \\ 0.672932u^{31} + 0.627249u^{30} + \dots + 0.391427u + 1.21776 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} + 2u^{3} + u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.26155u^{31} - 2.69290u^{30} + \dots + 10.8624u - 9.38644 \\ -1.03259u^{31} - 0.976097u^{30} + \dots - 1.09592u - 1.51802 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.145728u^{31} - 1.66532u^{30} + \dots + 12.4977u - 7.36530 \\ -1.43787u^{31} - 1.24356u^{30} + \dots - 2.16974u - 1.82405 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{32} + 37u^{31} + \dots + 305u + 1$
c_2, c_5	$u^{32} + 3u^{31} + \dots - 7u - 1$
c_3,c_8,c_9	$u^{32} + u^{31} + \dots - 4u + 4$
c_4	$u^{32} - 3u^{31} + \dots + 12u - 4$
c_6, c_7, c_{10} c_{11}	$u^{32} + 2u^{31} + \dots + 6u + 1$
c_{12}	$u^{32} + 4u^{31} + \dots - 20u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{32} - 77y^{31} + \dots - 68569y + 1$
c_2, c_5	$y^{32} - 37y^{31} + \dots - 305y + 1$
c_3,c_8,c_9	$y^{32} - 27y^{31} + \dots - 208y + 16$
c_4	$y^{32} + 33y^{31} + \dots - 336y + 16$
c_6, c_7, c_{10} c_{11}	$y^{32} - 36y^{31} + \dots - 56y + 1$
c_{12}	$y^{32} + 36y^{31} + \dots - 568y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.647923 + 0.702860I		
a = -0.11556 - 1.50516I	-5.40621 + 7.69916I	6.58632 - 5.74078I
b = -1.60683 + 0.23584I		
u = 0.647923 - 0.702860I		
a = -0.11556 + 1.50516I	-5.40621 - 7.69916I	6.58632 + 5.74078I
b = -1.60683 - 0.23584I		
u = -0.934535		
a = 0.920748	0.214319	11.1130
b = -1.27591		
u = -0.528252 + 0.752905I		
a = 0.219575 - 1.040740I	-9.84928 - 2.50165I	2.86477 + 2.84418I
b = 1.65258 + 0.07144I		
u = -0.528252 - 0.752905I		
a = 0.219575 + 1.040740I	-9.84928 + 2.50165I	2.86477 - 2.84418I
b = 1.65258 - 0.07144I		
u = 0.383863 + 0.766338I		
a = -0.382365 - 0.514382I	-6.19158 - 2.80814I	5.10038 + 0.76938I
b = -1.62188 - 0.11406I		
u = 0.383863 - 0.766338I		
a = -0.382365 + 0.514382I	-6.19158 + 2.80814I	5.10038 - 0.76938I
b = -1.62188 + 0.11406I		
u = -0.750792		
a = -1.84633	5.68749	17.7080
b = 0.310110		
u = 0.505153 + 0.538065I		
a = 0.446790 + 1.310620I	1.93515 + 4.07265I	8.92952 - 7.04568I
b = 0.571805 - 0.732824I		
u = 0.505153 - 0.538065I		
a = 0.446790 - 1.310620I	1.93515 - 4.07265I	8.92952 + 7.04568I
b = 0.571805 + 0.732824I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.395138 + 0.481331I		
a =	-0.551243 - 0.194239I	1.68006 - 0.53375I	7.96422 - 0.32995I
b =	0.642691 + 0.571386I		
u =	0.395138 - 0.481331I		
a =	-0.551243 + 0.194239I	1.68006 + 0.53375I	7.96422 + 0.32995I
b =	0.642691 - 0.571386I		
u =	-1.40514 + 0.25786I		
a =	0.848313 + 0.771560I	-0.512682 - 0.890588I	8.15263 + 0.I
b =	-1.59035 - 0.06318I		
u =	-1.40514 - 0.25786I		
a =	0.848313 - 0.771560I	-0.512682 + 0.890588I	8.15263 + 0.I
b =	-1.59035 + 0.06318I		
u =	1.44428 + 0.09174I		
a =	0.42149 - 1.57076I	4.34598 + 2.60375I	7.93484 - 3.36675I
b =	-0.611773 + 0.763659I		
u =	1.44428 - 0.09174I		
a =	0.42149 + 1.57076I	4.34598 - 2.60375I	7.93484 + 3.36675I
b =	-0.611773 - 0.763659I		
u =			
a =	0.265813	8.83218	9.93110
	1.38846		
	-1.45288 + 0.07180I		
a =	-0.88013 + 1.22133I	7.57700 - 1.16778I	11.36341 + 0.54162I
	0.795382 - 0.670343I		
	-1.45288 - 0.07180I		
	-0.88013 - 1.22133I	7.57700 + 1.16778I	11.36341 - 0.54162I
	0.795382 + 0.670343I		
	-1.51955 + 0.16796I		_
	-0.08132 - 1.78171I	8.62955 - 6.62987I	12.50269 + 5.26876I
b =	0.464019 + 0.904411I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.51955 - 0.16796I		
a = -0.08132 + 1.78171I	8.62955 + 6.62987I	12.50269 - 5.26876I
b = 0.464019 - 0.904411I		
u = -0.299017 + 0.362824I		
a = -0.106458 + 1.400860I	-1.32881 - 1.04587I	0.13410 + 4.26985I
b = -0.751935 - 0.325766I		
u = -0.299017 - 0.362824I		
a = -0.106458 - 1.400860I	-1.32881 + 1.04587I	0.13410 - 4.26985I
b = -0.751935 + 0.325766I		
u = 1.52451 + 0.26507I		
a = -0.93070 + 1.22794I	-3.16368 + 6.23347I	6.00000 - 3.63332I
b = 1.61492 - 0.22198I		
u = 1.52451 - 0.26507I		
a = -0.93070 - 1.22794I	-3.16368 - 6.23347I	6.00000 + 3.63332I
b = 1.61492 + 0.22198I		
u = 0.451835		
a = 0.432993	0.642131	15.9520
b = 0.202201		
u = -1.58469		
a = -0.466896	7.78318	17.5750
b = 0.692717		
u = -1.58841 + 0.23470I		
a = 0.92703 + 1.56136I	2.01653 - 11.20740I	0
b = -1.56211 - 0.33651I		
u = -1.58841 - 0.23470I		
a = 0.92703 - 1.56136I	2.01653 + 11.20740I	0
b = -1.56211 + 0.33651I		
u = 1.61270		
a = -0.848466	13.8091	18.0020
b = -0.0619566		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.68667		
a = 1.46963	9.57646	6.00000
b = -1.31101		
u = -0.145893		
a = 9.44166	3.33910	1.65970
b = 1.06237		

II.
$$I_2^u = \langle b-1, a^2+2a-2u-3, u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} au - 2 \\ -au - 2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a + 1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -au - u + 1 \\ au - a + u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_8 c_9	$(u^2-2)^2$
c_6, c_7, c_{12}	$(u^2+u-1)^2$
c_{10}, c_{11}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5	$(y-1)^4$		
c_3, c_4, c_8 c_9	$(y-2)^4$		
c_6, c_7, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.28825	4.27683	12.0000
b = 1.00000		
u = 0.618034		
a = -3.28825	4.27683	12.0000
b = 1.00000		
u = -1.61803		
a = -0.125968	12.1725	12.0000
b = 1.00000		
u = -1.61803		
a = -1.87403	12.1725	12.0000
b = 1.00000		

III.
$$I_3^u = \langle b+1, \ a-1, \ u^2-u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 2

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_4, c_8 c_9	u^2
<i>C</i> ₅	$(u+1)^2$
c_6, c_7	$u^2 - u - 1$
c_{10}, c_{11}, c_{12}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5	$(y-1)^2$		
$c_3, c_4, c_8 \ c_9$	y^2		
c_6, c_7, c_{10} c_{11}, c_{12}	$y^2 - 3y + 1$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 1.00000	-0.657974	2.00000
b = -1.00000		
u = 1.61803		
a = 1.00000	7.23771	2.00000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{32} + 37u^{31} + \dots + 305u + 1)$
c_2	$((u-1)^2)(u+1)^4(u^{32}+3u^{31}+\cdots-7u-1)$
c_3,c_8,c_9	$u^{2}(u^{2}-2)^{2}(u^{32}+u^{31}+\cdots-4u+4)$
c_4	$u^{2}(u^{2}-2)^{2}(u^{32}-3u^{31}+\cdots+12u-4)$
<i>C</i> ₅	$((u-1)^4)(u+1)^2(u^{32}+3u^{31}+\cdots-7u-1)$
c_{6}, c_{7}	$(u^{2} - u - 1)(u^{2} + u - 1)^{2}(u^{32} + 2u^{31} + \dots + 6u + 1)$
c_{10}, c_{11}	$((u^{2} - u - 1)^{2})(u^{2} + u - 1)(u^{32} + 2u^{31} + \dots + 6u + 1)$
c_{12}	$((u^2 + u - 1)^3)(u^{32} + 4u^{31} + \dots - 20u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{32} - 77y^{31} + \dots - 68569y + 1)$
c_2, c_5	$((y-1)^6)(y^{32} - 37y^{31} + \dots - 305y + 1)$
c_3,c_8,c_9	$y^{2}(y-2)^{4}(y^{32}-27y^{31}+\cdots-208y+16)$
c_4	$y^{2}(y-2)^{4}(y^{32}+33y^{31}+\cdots-336y+16)$
c_6, c_7, c_{10} c_{11}	$((y^2 - 3y + 1)^3)(y^{32} - 36y^{31} + \dots - 56y + 1)$
c_{12}	$((y^2 - 3y + 1)^3)(y^{32} + 36y^{31} + \dots - 568y + 1)$