

Model Development Phase Template

Date	4 June2025
Name	Pooja Rajendra Chougule
ProjectTitle	Restaurant Recommendation System
MaximumMarks	5 Marks

${\bf Model Selection Report:}$

Model	Description
Content-Based	Content-basedfilteringrecommendsrestaurantsbycomparinguserpreferences
Filtering	(e.g.,cuisinetype,pricerange,dietaryrestrictions)withrestaurantattributes.It focuses
	on similarities between items and the user's profile without relying on other users'
	data. Thismethod iseffective for users with unique tastes butmay
	strugglewithlimiteduserprofiles(coldstart).
Collaborative	Collaborative filtering leverages the preferences of similar users to make
Filtering	recommendations. Ituses historical ratingsandreviews toidentify patterns. This
	modeliseffectiveindiscoveringnewitemsbutcansufferfromsparsityandcold
	startproblemsifdataislimited.
Hybrid	This combines content-based and collaborative filtering to overcome the
Recommendatio	limitationsofeachmethod.Byintegratingbothuserpreferencedataandbehavior
n Model	ofsimilarusers, hybrid models improve recommendation accuracy, diversity, and
	scalability. It is particularly useful in scenarios with large, sparse datasets like
	restaurantrecommendations.
Matrix	Matrix factorization techniques decompose the user-item interaction matrix into
Factorization	latentfeatures, capturing underlying patterns in user preferences. Singular Value
	Decomposition(SVD)isacommonapproach.Itiscomputationallyefficientand
	workswellforlargedatasetsbutrequiresenoughratings.
DeepLearning	Neural networks can be used to build recommendation systems by learning
(Neural	complex,non-linearrelationshipsbetweenusersandrestaurantsfromrichfeature sets
Networks)	including reviews, preferences, and metadata. While powerful, they require large
	datasets and are computationally intensive.

Conclusion:

	ModelSelected
Hybrid Recommenda tion Model	The hybrid model was selected because it addresses the limitations of both content-basedandcollaborative filtering approaches. It effectively handles the coldstart and sparsity issues by integrating multiple data sources such as user profiles, restaurant attributes, and behavioral data. This results in more personalized, diverse, and accurate recommendations, making it highly suitable for a restaurant recommendation system with varying user preferences and data availability.