彰化高中 114學年度資訊學科能力競賽 校內複賽 題解

A. 方差緊密度 Variance Tightness

subtask1

枚舉切點的位置,預處理一下前綴 / 後綴和即可時間複雜度為 O(N)

subtask2

因為 $N \leq 20$ · 我們可以爆搜 N-1 個切點是否要切,然後花線性的時間判斷是否合法和取最大值時間複雜度為 $O(2^NN)$

subtask3

定義 dp[i][k] 為 A 的前綴 A[1..i] 切分成 K 段的「方差緊密度和」最大值轉移式: $dp[i][k] = \max_{1 \leq j < i}; dp[j][k-1] + R(j+1,i)$ 時間複雜度為 $O(N^3)$

subtask4

定義 C(i,j) = -R(i,j) · 發現到 C 滿足 Monge Condition :

$$C(i,j) + C(i+1,j+1) \le C(i+1,j) + C(i,j+1)$$

證明如下:

有一恆等式:

$$N\sum_{i=1}^N x_i^2 - (\sum_{i=1}^N x_i)^2 = \sum_{1 \leq p < q \leq N} (x_p - x_q)^2$$

因此我們可以得到:

$$C(i,j) = \sum_{i \leq p < q \leq i} (A_p - A_q)^2$$

考慮差值:

$$\Delta = \left(C(i+1,j) + C(i,j+1)
ight) - \left(C(i,j) + C(i+1,j+1)
ight) \ = \ (A_i - A_{j+1})^2 \geq 0$$

移項即得:

$$C(i,j) + C(i+1,j+1) \le C(i+1,j) + C(i,j+1)$$

因為轉移單調,我們可以透過分治優化在 $O(NK\log N)$ 或 SMAWK 在 O(NK) 內解決

B. 伴手禮 Souvenir

subtask1

騙分用, cout<<rand() % 2; 都會過

因為題目說不是 **長邊都相等** · 就是 **寬邊都相等** · 所以答案不是 0 就是 1 · 所以 rand() 幾次就過了 · 所以 cout<<(n == 0 ? 0 : 1); 就過了

時間複雜度O(1)

subtask2

唬爛用 · $O(2^n)$ 都會過

subtask3

因為 $a_i, b_i \leq 100, \, \forall \, 1 \leq i \leq n$ · 所以行李們 unique 後頂多才 10000 多個。

於是 unique 後 滾動 DP 就行了ouob

時間複雜度 $O(n^2)$

subtask4

因為 $n \leq 2000$ · 看起來就很 n^2 · 所以我們快樂地 普通 DP 就會過了 (不用滾動 · 甚至比 $\mathrm{subtask3}$ 簡單)

時間複雜度 $O(n^2)$

subatsk5

因為題目說大行李要放在小行李下面,換句話說就是 **行李們的高度需要嚴格遞減**,看起來跟 *LIS* 相當像。

於是我們套用偏敘的思維,首先對長邊做一次 **sort** ,這樣就可以確保我們等等依次遍歷的時候 · **先走到的長邊一定可以放在後走到的長邊下面** · 但是寬邊呢?

我們只需要找出在這種情況下,寬邊的 LIS ,即是答案了,而理由很簡單,就是之前的 sort 。

理論上到這裡就已經結束了,但是還沒完,因為本人出題時無聊多加了個條件, 就是 **只要長邊或寬邊相等**, 就無法疊起來。

這直接讓這題又上升了一個難度。 首先我們需要理解模板解,透過不斷地二分搜來找到最終答案,於是我們對這個解法做一點點修改 - 對於相同長邊,只更新數列一次,就可以獲得可愛的 **AC** 了 ouob

當然你也可以用 custom sort 但我太笨了沒有想到QAQ

時間複雜度 $O(n \cdot \log_2^n)$

C. 希格瑪 Sigma

subtask1

模擬, 有手就會寫。

簡單舉幾個例子就會發現很多 $|\sqrt{K}|$ 會重複。

像是 $|\sqrt{1}| = |\sqrt{2}| = |\sqrt{3}| = 1 \cdot |\sqrt{4}| = |\sqrt{5}| = \ldots = |\sqrt{8}| = 2$

所以與其窮舉 K · 不如窮舉 $\lfloor \sqrt{K} \rfloor = L$ · 並計算有幾個數開根號為 L (公式: $(L+1)^2 - L^2$)。舉例來說 · $\lfloor \sqrt{K} \rfloor = 2$ 的數有 $3^2 - 2^2 = 5$ 個。

提供一個視覺化的想法,可以畫出 $y = |\sqrt{x}|$ 的函數。

其圖上長方形的面積 (跟 x 軸圍出來的),即為所求 (注意 L = N 只有一個數)。

subtask3

把 subtask2 的解法用 sigma 表示,之後用 sigma 平方公式化減,即可得出 O(1) 的公式解。 須注意由於用到除法,所以模除要使用模逆元,不能直接模除上去。

D. 切糕 Qiegao

經典的 Sliding Window Median。

偷來的題解

E. 質數背包 Prime Knapsack

subtask1

轉換成背包問題,因為題目都提示能用背包了。

窮舉 1000 以內的質數,之後就當成無限背包問題解,給 90 分真的是佛心來著

subtask2

著名的哥德巴赫猜想,任意大於二的偶數皆可用兩個質數組成。

對於奇數,則至多需要三個質數。

由於兩數相加為奇數,其充要條件為一數為奇另一數為偶。

眾所皆知,只有2是偶數的質數,故當一個奇數能用兩個質數相加表示,其中一個數必為2。

故我們只需簡單的 if-else,就能解出來。

所以如果 N 是質數,則輸出 1。

如果 N 是偶數,又或者 N - 2 為質數,則輸出 2。

否則輸出3。

你說如果遇到無解的情況怎麼辦?

那恭喜你獲得了一百萬美金。

subtask3

質數判斷怎麼 $O(\log N)$?

肯定是米勒拉賓直接砸下去。

這1分真難拿

F. 最佳訊號路徑 Optimal Signal Path

subtask1

從基地台開始跑 dijkstra。

建一個虛擬的原點,之後將其與每個基地台連一條權重為 0 的邊,之後從虛擬的點開始跑 dijkstra,即可得出每個點最近的基地台。

subtask3

知道每個最近的基地台了,那要如何找到一條兩點間的路徑其離基地台最遠的點是最小的。不如試試對答案二分搜,每次詢問搜答案,再用 dfs 跑一遍圖,這樣即可用 $O(QN\log w)$ 的時間解決這問題。

subtask4

怕有人不會 dijkstra 但會樹上換根 dp·故開此子題。 隨然好像沒甚麼意義

subtask5

最遠的點最小,是不是很有瓶頸路的感覺?

不過我們找出的是每個點離最近基地台的距離,其為點權而非邊權,沒辦法直接跑最小生成樹。 但不難發現,當我們經過一條路,事實上就是會踩到兩端點,而我們只在乎離基地台最遠的點,故邊權就 設成兩端點的點權取 max。

接下來就是開心的跑 Kruskal 將圖重構成樹,再來 Ica 找瓶頸。

這題算是實作偏難的題目,寫出來全國賽應該有拿到三等獎的實力。 寫不出來的也別氣餒,多練習就寫得出來了。ouobbb

這題有另解,詳見 Testers' Code

G. 神秘交叉 Intersect

題目要求我們找出序列中的 **最大連續 XOR 值**。 題目長那樣純粹是我忘記打題敘

subtask1

 $n \leq 1000$ · 這數字一看就很 $O(n^2)$ · 但是要怎麼做呢?

我們先嘗試構造暴力解,首先,枚舉 **左界** 和 **右界** ,然後每次從 **左界** 一個一個 **XOR** 到 **右界** ,不斷更新最大值,最後獲得答案。

這樣的算法複雜度為 $O(n^3)$ · 顯然跑不完。

於是我們想到 XOR 是有可復原性的,也就是:

$$ig(a\oplus b=cig)\Rightarrowig(c\oplus b=aig)\wedgeig(c\oplus a=big)$$

於是,我們套用 前綴和 prefix sum 的思維,將它們一個一個 XOR 起來,形成一個新的序列 < prefix >

於是我們把 **從左界** l **XOR 到右界** r **的值** 換成 $\text{text{prefix}}r \cdot \text{oplus } \text{text{prefix}}(I - 1) \cdot \text{其中} \cdot \text{text{prefix}}n = \text{text{prefix}}(n - 1) \cdot \text{prefix}_0 = 0$

於是我們的總複雜度從 $O(n^3)$ 降到了 $O(n^2)$

時間複雜度 $O(n^2)$

概念

但是 $O(n^2)$ 實在太慢了,因為 n 最大可以到 10^5

於是我們開始思考要如何讓它 更快。

首先,我們思考對於任意數字 k,最理想的狀態是 **前綴和序列中剛好有** k 的補數 ,也就是 \overline{k} (C++ 裡寫作 \sim k)。

為甚麼呢?

因為 補數 的定義是把舊的數字中,每一個 bit 翻轉(0 換成 1 \cdot 反之亦然),而在 XOR 的世界中,一個 0 和 一個 1 會生出 1 $(0\oplus 1=1)$,這樣可以保證 $k\oplus \overline{k}$ 最大(因為每個 bit XOR 出來的結果都是 1)。

但事情總不會那麼順利,k不會每次都剛好出現在序列中。

所以,我們需要 取捨。

倘若有兩個數,前 l 個 bit 都不一樣,但是第 l+1 相同,則我們將這兩個數的契合度稱為 l 。

而契合度越高的數字,所 XOR 運算出來的值也越大。

於是這個問題,就升級成了 找契合度 的單純問題。

舉個例子:

6 -> 0110

11 -> 1011

2 -> 0010

可以輕易看出與 11 契合度最高的數字為 6 ,因為它們的首位相同數字出現在第 3 個 \emph{bit} ,較 11 和 2 右邊,因此可以推測出 11 和 6 的 \emph{XOR} 結果較大。

因此,我們便開始實作。

實作

因此,我們想到了 **TRIE** · 這原本是一種用於 **字串搜尋** 的資料結構 · 旨在快速地找出和任意字串的最長共同前綴。

我們製造一棵 TRIE ·接著對數字們做遍歷·每次進入 TRIE 中尋找與這個數字契合度最高的數字·然後不斷更新最大值。

最後,我們確認一下空間、時間。

空間肯定夠,因為最多只有約 $\left\lceil log_2^{(10^{18})}
ight
ceil imes 10^5 = 60 imes 10^5 = 6 imes 10^6$ 個 **bit** ,相當穩。

時間的話 $\cdot O(n imes \lceil log_2^{max(< a >)}
ceil)$

是說這題也能用一堆 set 肝出來。

但我大笨了沒想到

詳見 Testers' Code

H. ARC 人類表現估計 H-ARC

閱讀題,讀完就會寫了。

I. 家俱製造商 Furniture

subatsk1

唬爛用 $O(n^7)$ 都會過

subtask6

因為題目說:

不可能有無法開始的工作

但這裡又說

m < n

而聯通圖最少邊數為 n-1 · 即 $m < n \land n-1 \le m$ 也就是說 m=n-1

所以這張圖圖會是一棵樹、因此我們只要快樂地從原點走下去就行了ouob

subtask7

沒錯,仔細觀察可以發現這其實是一張可愛的 DAG,也就是 有向無環圖 ,而說到這個就得馬上想到 拓樸排序。

於是我們使用 **拓樸排序** 將節點按照時間排好後,從頭到尾跑一次,每次將這個點的所有相鄰子孫的時間更新(往後挪),最後就可以獲得答案ouob。

排序時間複雜度: $O(n \cdot log_2^n)$ 更新時間複雜度: O(n)

J. 香蕉衝突 Banana Wars

subtask1

cout << "0\n";

subtask2

窮舉每一對線段‧判定是否相交。 時間複雜度 $O(n^2)$

把右邊的端點由上而下編號·左邊也是。 之後每條線段即可以一點對表示 (a, b)。 跟據 a 排序·之後看 b 的逆序數對個數及相交個數。

subtask4

將所有點逆時針編號.後每條線段即可以一點對表示 (a_1,b_1) 。 考慮線段 (a_1,b_1) , (a_2,b_2) .只要 $a_1 \leq a_2 \perp a_2 \leq b_1 \leq b_2$.兩線段即相交。 只要跟據 a 排序.窮舉每條線 (a_2,b_2) .看排在他前面的線 (a_1,b_1) .其有多少個滿足 $a_2 \leq b_1 \leq b_2$ 。 這可以透過在值域上開 BIT 實現 (用類似找逆序數對的方法)。 時間複雜度 $O(n\log n)$

這題應該算是難觀察,但容易實作的題?