Messtechnik LU

376.046 Wintersemester 2018

Patrick Star - 0000000 Kathi Sophie - 0000000 Oskar Fürnhammer - 01329133

Studienkennzahl 033 235

Inhaltsverzeichnis

1	$ m U/I/R ext{-}Messung und Messwerke$	1
2	Statistik und Leistungsmessung 2.1 Einleitung	2 2 4 4 4 4 4 4 4
3	Messbrücken und Messverstärker	5
4	Signalübertragung	6
5	Abtastung und automatisierte Messsysteme 5.1 Einleitung	7
6	Sensoren und frequenzselektive Messverfahren	8
\mathbf{A}	Eigentumserklärung	9

Abbildungsverzeichnis

U/I/R-Messung und Messwerke

[1] [2]

Statistik und Leistungsmessung

2.1 Einleitung

Verwendete Messgeräte:

- A
- B

Im Rahmen der 2. Laborübung sollten fünf unterschiedliche Impedanzen (Z1-Z5) vermessen werden. Dabei war lediglich deren Struktur (siehe Tabelle XXXX) im Vorhinein bekannt. Es wurde zuerst ein passender Strommessshunt ausgewählt und die Schaltung konzipiert. Um aus den erhaltenen Spannungswerten den dazugehörigen Strom bestimmen zu können ist natürlich die genau Kenntnis über den Widerstandswert unabdingbar, weshalb dieser zu Beginn mehrmals und mit unterschiedlichen Methoden bestimmt worden ist. Die eigentliche Impedanzmessung wurde darauf hin mit einem analogen Oszilloskop durchgeführt.

Teilübung	Statistik und Leistungsmessung
Teilübungsnr.	2
Datum	28.11.2018
Messplatzbez.	CA

Tabelle 2.1: Grundlegende Information der 2. Laborübung

Messung	Widerstandswert $[\Omega]$	Ergebnis
M1	986	•
M2	984	•
M3	988	•
DM	987	•

Tabelle 2.2: •

PLC	Samples	Mittelwert $[\Omega]$	Standardabweichung $[m\Omega]$
0.02	15k	987.44	20
0.2	15k	987.421	12
1	273	987.442	3
•	1017	987.416	2
•	5456	987.401	13

Tabelle 2.3: •

Strang	f [kHz]	u [V]	i [A]	$Z[\Omega]$	Struktur
S1	1	•	•	•	•
•	15	•	•	•	•
S2	1	•	•	•	•
•	15	•	•	•	•
S3	1	•	•	•	•
•	15	•	•	•	•
S4	1	•	•	•	•
•	15	•	•	•	•
S5	1	•	•	•	•
•	15	•	•	•	•

Tabelle 2.4: •

Messung Nr.	$x_1 = I_{RMS} [V]$	$x_2 = \Phi \text{ [rad]}$
1	•	•
2	•	•
3	•	•
4	•	•
5	•	•
6	•	•
$\overline{x_i}$	•	•
$s(\overline{x_i})$	•	•
$\frac{\partial P}{\partial x_i}$	•	•
$(\frac{\partial P}{\partial x_i})^2 s^2(\overline{x_i})$	•	•
Kovarianz	•	
$s(\overline{P})$	•	

Tabelle 2.5: •

Strang	C/L [nF/mH]	$R [\Omega]$	$Z[\Omega]$
S1	47.84	13.57	300.9
S2	1.1018	17.80	18.91
S3	97.89	2.701e3	3.153e3
S4	102	27.5	1.56e3
S5		8.066	8.066e3

- 2.2 Widerstandsmessung
- 2.3 Impedanzmessung
- ${\bf 2.4}\quad {\bf Fehler forp flanzung}$
- ${\bf 2.5}\quad {\bf Impedazmes sung\ mit\ LCR-Meter}$

TO DO

2.6 5/8-Methode

TO DO

2.7 Leistungsmessung

Messbrücken und Messverstärker

Signalübertragung

Abtastung und automatisierte Messsysteme

5.1 Einleitung

Verwendete Messgeräte:

- A
- B
- 5.2 Spannungsmessung
- 5.3 Umwandlung von singleended auf differentielle Signale
- 5.4 Automatisierte Messsysteme

Teilübung	Statistik und Leistungsmessung
Teilübungsnr.	2
Datum	28.11.2018
Messplatzbez.	CA

Tabelle 5.1: Grundlegende Information der 2. Laborübung

Sensoren und frequenzselektive Messverfahren

Eigentumserklärung

Hiermit erklären wir, die xxx

Literaturverzeichnis

- [1] G. Schitter, Skriptum zur Messtechnik LU. Institut für Automatisierungsund Regelungstechnik, TU Wien, 2018.
- [2] E. Schrüfer, L. Reindl, and B. Zagar, *Elektrische Messtecchnik*. Caarl Hanser Verlag, 2012.