ROZDELENIA DISKRÉTNYCH NÁHODNÝCH PREMENNÝCH

Rozdelenie:	Pravdepodobnostná funkcia:	$\mathbf{E}(\mathbf{X})$	$\mathbf{D}(\mathbf{X})$
Rovnomerné	$p(x) = \frac{1}{m}, \qquad x = 1, 2, \dots, m$	$\frac{m+1}{2}$	$\frac{m^2-1}{12}$
Alternatívne	$p(1) = p, \ p(0) = 1 - p$	p	p(1-p)
Binomické	$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$ $x = 1, 2, \dots, n, p \in (0; 1)$	np	np(1-p)
	$x = 1, 2, \dots, n, p \in (0; 1)$		
Geometrické	$p(x) = p(1-p)^{x-1}, x = 1, 2, 3, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poissonovo	$p(x) = \frac{\lambda^x}{x!} e^{-\lambda}, x = 0, 1, 2, \dots$	λ	λ
Hypergeometrické	$p(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}, x = 1, 2, \dots, n$	$\frac{Mn}{N}$	$\frac{Mn(N-M)(N-n)}{N^2(N-1)}$

ROZDELENIA SPOJITÝCH NÁHODNÝCH PREMENNÝCH

Rozdelenie:	Pravdepodobnostná funkcia:	$\mathbf{E}(\mathbf{X})$	$\mathbf{D}(\mathbf{X})$
Rovnomerné	$f(x) = \frac{1}{b-a} \qquad x \in \langle a; b \rangle$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponenciálne	$f(x) = b e^{-bx} \qquad x \ge 0$	$\frac{1}{b}$	$\frac{1}{b^2}$
Normálne	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in (-\infty; \infty)$	m	σ^2
Erlangovo	$f(x) = \frac{(\lambda x)^{k-1}}{(k-1)!} \lambda e^{-\lambda x}, x \ge 0$	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$
Laplaceovo	$f(x) = \frac{1}{2b} e^{-\frac{ x-a }{b}}, x \in (-\infty; \infty)$	a	$2b^2$
Gama	$f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}, x > 0$	$\frac{a}{b}$	$\frac{a}{b^2}$
Chí-kvadrát	$f(x) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n-2}{2}} e^{-\frac{n}{2}} x > 0$	n	2n
Studentovo	$f(x) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, x > 0$	0	$\boxed{\frac{n}{n-2}, \ n>2}$