ETC3250/5250: Visualisation of multivariate data (part 2) Semester 1, 2020

Professor Di Cook

Econometrics and Business Statistics Monash University Week 5 (b)

Parallel coordinate plots

Parallel coordinate plots show the data using parallel axes

- Scatterplots use orthogonal axes, and are thus limited to two variables on the page.
- Turning the axes parallel allows for many more variables to be displayed together.
- Lines connecting the points show associations between variables.

Comparison with tours

Compare the tour of the flea data, with three clusters:

Comparison with tours

With the parallel coordinate plot:

How to read parallel coordinate plots

- $oxed{A}$ A set of points in p-dimensional space map to a set of lines in p parallel axes
- The pattern among and between the lines indicate structure in high-dimensions
 - Groups of lines trending together indicate clustering
 - Single lines trending differently to other indicate outliers
 - ♠ Between pairs of axes intersecting lines indicate strong negative association, and parallel lines indicate strong positive association

Points in Euclidean space \equiv lines in parallel coordinates

Details that need to be controlled:

Order of axes can affect perception of structure. Placing axes next to each other emphasizes that association

Variables need to be on a similar scale, and may need to be standardised

Unordered, default standardised scale.

Ordered, default standardised scale.

Ordered, centered standardised scale.

Ordered, scaled univariately to 0-1.

Ordered, scaled globally to 0-1.

Andrews curves

For the p variables (x_1,\ldots,x_p) make a fourier transform $f_x(t)=x_1/\sqrt{2}+x_2\sin(t)+x_3\cos(t)+x_4\sin(2t)+x_5\cos(2t)+\ldots$

Preceded the tour, but like a tour (d=1) laid out on a page, but algorithm is not space-filling.

Categorical variables

Hammock plots are a variation of parallel coordinate plots for categorical variables. They show the flow of groups between stacked barcharts, providing information about the association between multiple categorical variables.

Categorical variables

Mosaic plots partition the axes sequentially on the categorical variables.

For this data, titanic, there is a response variable, "Survived" and good practice would have this variable mapped to fill colour, because we are interested in the proportion change in response across the predictor categories.

Categorical variables

Mosaic plots can handle multiple categorical variables.

Data in the model space

(Chapter3/3.9.pdf)

Model in the data space

Inference

Its hard to read residual plots. How do you know if the residual plot "really" has no structure?

Boostrapping

Bootstrapped residuals. If there is still structure in the residual plot, the "true" residual plot should be identifiable from the plots of bootstrapped residuals.

Made by a human with a computer

Slides at https://iml.numbat.space.

Code and data at https://github.com/numbats/iml.

Reading: Wickham, Cook, Hofmann (2015) Visualizing statistical models: Removing the blindfold, Statistical Analysis and Data Mining, 8(4):203-225.

Created using R Markdown with flair by xaringan, and kunoichi (female ninja) style.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.