

On the Multi-Activation Oriented Design of D2D-Aided Caching Networks

Yang Cai, Andreas F. Molisch
University of Southern California, CA, USA

- Background
- System Model
- Proposed Design
- Numerical Results
- Conclusions

Background

- Huge demand for video contents
- D2D-aided caching networks
 - Store the videos in the user devices
 - Transmit the videos by D2D comm.
- Related work
- Transmission scheme (cluster model)
 - A cell is divided into several clusters
 - Users in the same cluster can cooperate
 - Only one link is activated at a time

Data traffic of mobile video (source: Cisco virtual networking index)

- Caching policy
 - Which files are cached by which user
 - Multiple metrics: throughput, hit rate, ...
 - Optimum caching distribution [Ji2016]

Transmission Scheme

- Spatial
 - Cluster model

- Temporal
 - A typical time slot

Motivation

- Multiple links can be activated simultaneously within one cluster
 - Advantage: improve the spectral efficiency
- Problem 1: clash avoidance
 - Caching distribution: increase # of copies of the popular files
 - Fact: users requesting the same video might access to the same node
- Problem 2: interference management
 - Given # of activated links: link scheduling and power control
 - Determine the optimal duration of each transmission session
 - Tradeoff between more links and higher SINR

- Background
- System Model
- Proposed Design
- Numerical Results
- Conclusions

System Model

- Consider a cluster of N users with video requests
 - Library includes $N_{\rm f}$ possible videos, each of size F
- Request model
 - Poisson process with λ
 - Recent request replaces an older one
 - Preference distribution $p_r = \{p_{r,i} : 1 \le i \le N_f\}$
- Caching model (probabilistic caching)
 - Caching distribution $p_c = \{p_{c,i} : 1 \le i \le N_f\}$
 - Caching size for each user S

System Model

- Transmission scheme
 - Channel model
 - Pathloss $\eta(r) = 10\alpha \log_{10} r + 10 \log_{10} \eta_0$
 - Signal to interference and noise ratio (SINR) of link $e \in \mathcal{E}$
 - Decision variables: activation indicator $a_e \in \{0, 1\}$, and transmit power $p_e \in [0, P_{\max}]$

$$\gamma_e = \frac{a_e p_e r_e^{-\alpha}}{I_e + \eta_0 \sigma_e^2} \sum_{e \in \{\text{links involving node } i\}} a_e \le 1$$

$$\gamma_e \ge a_e \gamma_0, \text{ with } \gamma_0 \triangleq e^{\frac{F \ln 2}{Bh}} - 1$$
interference noise power

- Time is slotted
 - Reliability constraint: the transmission must be completed within one time slot (# of activated links is related to the duration of each time slot)

System Model

• Goal: maximize the D2D-supplied throughput

size of each video

$$T = \lim_{n \to \infty} \frac{F}{nh} \sum_{t=1}^{n} L(t)$$

L(t): # of activated links in time slot t

h: duration of each time slot

- P1: increase # of clash-free D2D requests (related to caching distribution)
- P2: interference management (link scheduling and power control)
- P3: tradeoff high SINR and more links (duration of each time slot)

- Background
- System Model
- Proposed Design
- Numerical Results
- Conclusions

Proposed Design P1

- Problem description
 - Input: the # of requests U (i.e., the number of active users)
 - Assumption: inactive users serve as helper, totally V = (N U)S cached videos
 - Output: caching distribution that maximizes # of clash-free D2D requests
- Expected # of clash-free D2D links Z
 - For a certain file i
 - # of requests $u_i \sim \mathcal{B}(U, \boldsymbol{p}_{\mathrm{r},i})$ (binominal dist.)
 - # of copies within the cluster $v_i \sim \mathcal{B}(V, \boldsymbol{p}_{\mathrm{c},i})$ s. t. $\sum_{i=1}^{N_{\mathrm{f}}} \boldsymbol{p}_{\mathrm{c},i} = 1$.
 - # of clash-free requests $z_i = \min(u_i, v_i)$

$$\sum_{m{p}_{ ext{c}} \geq 0}^{N_{ ext{f}}} Z(m{p}_{ ext{c}}) = \sum_{i=1}^{N_{ ext{f}}} \mathbb{E}\left\{z_i
ight\} ext{ (not tractable)}$$
 s. t. $\sum_{i=1}^{N_{ ext{f}}} m{p}_{ ext{c},i} = 1.$

- Approximate form: $Z(\mathbf{p}_{c}) \approx U - \sum_{i=1}^{N_{f}} A_{i} \exp\left[-(1-Q_{i})V\mathbf{p}_{c,i}\right]$ (concave, tractable) A_{i}, Q_{i} : parameters related to preference dist.

Proposed Design

- Iterative design
 - Green arrows represent the information updated in each iteration

Proposed Design P2

- Transmission scheme (network operations)
 - Input: # of desired links L
 - Output: a set of L links and the corresponding transmit powers that maximize the minimum SINR (max-min-SINR)
- Link scheduling & Power control
 - In general, dealing with the two problems jointly is difficult
 - Our approach (separate)
 - Link scheduling: suppose the transmit power is P_{max} for all activated links, and find the links that max-min-SINR (greedy algorithm: select the links one by one)
 - Power control: given the scheduled links, coordinate their transmit powers to max-min-SINR (feasibility check problem for linear system, which is convex)

Proposed Design

- Iterative design
 - Green arrows represent the information updated in each iteration

Proposed Design P3

- Transmission scheme (duration of each time slot)
 - Tradeoff between more links (large h) and higher SINR (small h)
 - Require extensive simulations (dynamic network, random topology)

• Throughput
$$T = f \mathbb{E}\{L; h\} = F \mathbb{E}_w\{L|w; h\}$$
 video size b) w : # of all links a) L : # of activated links

- Approximated throughput: we can use the min-SINR $\gamma_k(w, L)$ calculated from K_0 random network topologies (one snapshot) to
 - a) Approximate the conditional dist. of L (given w and h)
 - b) Approximate the dist. of w over time (Markov chain)

Proposed Design

- Iterative design
 - Green arrows represent the information updated in each iteration

- Background
- System Model
- Proposed Design
- Numerical Results
- Conclusions

Configuration

- Network setup
 - N = 100 users, within a cluster of size $100 \text{ m} \times 100 \text{ m}$
 - Speed: 1.5 m/s, change to random direction every 10 s, reflecting in the area
- Video request
 - $N_{\rm f} = 500$ videos, each of size $F = 250~{\rm MB}$
 - Request intensity $\lambda = 10^{-2} / \text{s}$
 - Preference distribution (Zipf) $p_{\mathrm{r},i} = i^{-0.6}/(\sum_{j=1}^{N_{\mathrm{f}}} j^{-0.6})$
- Wireless transmission
 - D2D transmission: pathloss $\eta(r) = 36.8 \log_{10}(r) + 37.6$, bandwidth B = 20 MHz, power budget $P_{\text{max}} = 100 \text{ mW}$, noise $\sigma_e^2 = -97 \text{ dBm}$, antenna gain -3.5 dB
 - BS transmission: $N_{\rm b}=10$ users, at a constant rate $R_{\rm b}=200{\rm kb/s}$

- Gain of proposed caching distribution
 - Compared with max-hit and selfish caching

- Gain of network operation (the CDF of the min data rate)
 - Link scheduling: max-min-SINR outperforms min-interference [Zhang2016]
 - Power control (solid line) leads to significant gain

- Gain of multi-activation
 - Compared with TDMA
 - Less sensitive to h

- Background
- System Model
- Proposed Design
- Numerical Results
- Conclusions

Conclusions

- MA can improve the spectral efficiency, and thus the throughput
- Joint optimization of the caching policy and transmission scheme
 - Caching distribution: clash-free access to the contents
 - Interference management: the max-min-SINR criteria
 - System parameter design: tradeoff between more links and higher SINR

Thank you!

