Project: Messaging Application

Python

Study Course

B205 Computer Networks

Ву

Chehab Hany Mohamed Elsayed Elsayed Elmenoufi

Student Number: GH1034223

Under the Guidance of

Prof. Sami Alsalamin

GitHub URL: https://github.com/Chippo90/Computer-Networks/tree/main

Video Recording URL: https://youtu.be/icIrDzlxHTc

Gisma University of Applied Sciences

Berlin, Germany

June 2025

Table of Contents

1.	Task	x 1 – Messaging Application	3
	1.1	System Architecture Design	3
	1.2	Protocol Specifications	
	1.3	Network Communication Flow	
	1.3.1		
	1.3.2		
	1.3.3	Messaging	4
	1.3.4	File Transfer	4
	1.3.5	Exit	4
	1.4	Protocol Selection Rationale	4
	1.5	Pros and Cons for the TCP Protocol	4
2.	Task	x 2 - Wireshark	5
	2.1	Protocol Hierarchy Analysis	5
	2.2	Conversations Analysis	6
	2.3	HTTP Stream Analysis	7
	2.4	Firewall Rules	7
<i>3</i> .	Con	clusion and Future Work	7
4.	Refe	rences	8

1. Task 1 – Messaging Application

1.1 System Architecture Design

The system is based on a Client-Server architecture using Python. The server accepts many client connections. Each client communicates with the server over a TCP connection. Messages and files are routed through the server. (*Client-Server Model*, 00:30:23+00:00)

1.2 Protocol Specifications

The application protocol contains the below layers:-

Layer	Protocol	Description
Transport Layer	ТСР	Reliable messaging and file transferring
Application Layer	Custom text for header	UTF-8 message for files

Message Design:

• Text: <username>: <message>

• File Transfer: [FILE]:<filename>

1.3 Network Communication Flow

1.3.1 Client

• Connect to server.

• Enter username.

1.3.2 Server

• Add user to the client list.

• Send "user joined" notification.

1.3.3 Messaging

- Client send a message.
- Server tag it with username and send it to all clients.

1.3.4 File Transfer

- Client send a file.
- Header [FILE]:<filename> is sent
- End of file marked with <END>
- Other clients receive and save as received <filename>

1.3.5 Exit

- Client send exit or closes window.
- Server notify others.

1.4 Protocol Selection Rationale

This project uses TCP for all communication between clients and the server.(*TCP/IP Model*, 13:33:57+00:00)

TCP was selected because:

- It guarantees reliable delivery of messages.
- It supports stable connections.
- Built-in error checking.

At the application layer, a custom protocol was designed using UTF-8 encoded text messages and simple header tags for control messages. (*Unicode HOWTO*, no date)

1.5 Pros and Cons for the TCP Protocol

and stable Not ideal for realtime video
n or audio
ment Not encrypted, no authentication
Ĺ

('computer-networking-a-top-down-approach-8th-edition.pdf', no date)

2. Task 2 - Wireshark

In this task, I have downloaded a file from the internet related to HTTP traffic.('nb6-http.pcap', no date)

2.1 Protocol Hierarchy Analysis

(3.11. The "Statistics" Menu, no date)

Observations:-

- IPv4 and IPv6 traffic present.
- Most traffic is TCP (16.1%) and UDP (56.5%).
- Small percentage of HTTP (3.2%) but not HTTPS.

2.2 Conversations Analysis

(3.11. The "Statistics" Menu, no date)

Observations:-

- IP 95.136.242.99 communicates with 109.0.66.20, 109.0.66.10, and 216.69.252.100
- Multiple connections with 8–10 packets per stream

2.3 HTTP Stream Analysis

(3.11. The "Statistics" Menu, no date)

Observations:-

• This might be an update for network or computer (NB6-BOOTLOADER-R3.2.4), (NB6-MAIN-R3.3.4), (NB6-CONFIG-R3.4.2), (NB6-ADSL-A2p035p)

2.4 Firewall Rules

Rule	Action	Description
DROP TCP port 80	Block	Block unsecured HTTP files
PERMIT DNS from local network	Allow	Allow domain lookups
DROP TCP user curl/7.33.0	Block	Block downloads
PERMIT TCP 443	Allow	Use HTTPS for updates

3. Conclusion and Future Work

This project shows the implementation of a client-server messaging application using Python. The application supports messaging, basic file transfer, and chat log.

Future Work:

- Implement user authentication and login.
- Add encryption to secure communications.
- Create a user interface for better visuality.

4. References

3.11. The "Statistics" Menu (no date). Available at: https://www.wireshark.org/docs/wsug_html_chunked/ChUseStatisticsMenuSection.html (Accessed: 24 June 2025).

Client-Server Model (00:30:23+00:00) GeeksforGeeks. Available at: https://www.geeksforgeeks.org/system-design/client-server-model/ (Accessed: 10 June 2025).

'computer-networking-a-top-down-approach-8th-edition.pdf' (no date). Available at: https://networking.harshkapadia.me/files/books/computer-networking-a-top-down-approach-8th-edition.pdf (Accessed: 17 May 2025).

'nb6-http.pcap' (no date).

TCP/IP Model (13:33:57+00:00) *GeeksforGeeks*. Available at: https://www.geeksforgeeks.org/computer-networks/tcp-ip-model/ (Accessed: 12 June 2025).

Unicode HOWTO (no date) *Python documentation*. Available at: https://docs.python.org/3/howto/unicode.html (Accessed: 16 June 2025).