

VadaTech AMC502

Software User Manual

January 2019 Version 5.0

Copyright

© 2019 VadaTech Incorporated, All rights reserved.

VadaTech and the globe image are trademarks of VadaTech Incorporated.

All other product or service names mentioned in this document are the property of their respective owners.

Notice

While reasonable efforts have been made to assure the accuracy of this document, VadaTech, Inc. assumes no liability resulting from any omissions in this document or from the use of the information obtained herein. VadaTech reserves the right to revise this document and to make changes periodically and the content hereof without obligation of VadaTech to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to the VadaTech Incorporated Web site. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of VadaTech, Inc.

It is possible that this publication may contain reference to or information about VadaTech products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that VadaTech intends to announce such products, programming, or services in your country.

Trademarks

The VadaTech, Inc name and logo are registered trademarks of VadaTech Incorporated in the U.S.A. All other product or service names mentioned in this document are the property of their respective owners.

© 2019, VadaTech Incorporated. Printed in the U.S.A., All Rights Reserved.

Revision History

Doc Revision	Description of Change	Revision Date
1.0	Document created March 2015	
2.0	Updated document to match latest partition mapping	May 2016
3.0	Added Slot Based IP section	September 2017
4.0	Added Application development and BSP sources sections	January 2019
5.0	Updated to the new template	January 2019

Table of Contents

1	DOCUMENT OVERVIEW	б
	PURPOSE	
	APPLICABLE PRODUCTS	
	DOCUMENT REFERENCES	
1.3.		
1.3.		
	ACRONYMS USED IN THIS DOCUMENT	
1.5	CONVENTIONS USED	٠ ک
2	LINUX BSP SOFTWARE OVERVIEW	9
2.1	LINUX BOOT SEQUENCE	<u>9</u>
2.2	MEMORY MAP AND LINUX DEVICE NODES	<u>9</u>
2.3	DEFAULT IP ADDRESS	10
2.4	SLOT BASED IP ADDRESS	10
2.5	LINUX BSP FIELD UPGRADE	11
3	PROGRAMMING BSP VIA U-BOOT	12
3.1	Programming the U-Boot Image	12
3.2	PROGRAMMING THE LINUX KERNEL IMAGE	13
3.3	Programming the Root File System	13
3.4	PROGRAMMING THE ETC FILE SYSTEM	13
3.5	COMPLETING AN UPGRADE VIA U-BOOT	13
4	PROGRAMMING FPGA IMAGE FROM IMX6 CPU	14
5	BSP SOURCES	15
6	APPLICATION DEVELOPMENT	16
6.1	BUILDING U-BOOT	17
6.2	BUILDING KERNEL	17
6.3	PACKAGING A RELEASE	17
CON	ITACT VADATECH	18
TECH	INICAL SUPPORT	18
	ATIONS	18

Tables

Table 1: Acronyms	6
Table 2: NAND Flash Memory Map	
Table 3: Boot Flash Memory Map	
Table 4: FPGA QSPI Memory Map	
Table 5: Top Level Directories	

1 Document Overview

1.1 Purpose

This document describes the AMC502 board software including the Linux BSP for the iMX6 Quad Core CPU. This document also provides details on how to program AMC502 FPGA image to QSPI flash.

1.2 Applicable Products

AMC502

1.3 Document References

1.3.1 Specification

The AMC502 is compliant with the following specification:

- PICMG® AMC.0 AdvancedMC Mezzanine Module (http://www.picmg.org)
- PICMG® AMC.1 AdvancedMC PCI Express and AS (http://www.picmg.org)
- PICMG® AMC.2 AdvancedMC Ethernet (http://www.picmg.org)
- PICMG® AMC.4 AdvancedMC Serial RapidIO (http://www.picmg.org)
- ANSI/VITA 57.1 FPGA Mezzanine Card (FMC) Standard (http://www.vita.com)

1.3.2 Related Documents

The following documents provide information related to AMC502:

- AMC502 Datasheet
- VadaTech AMC502 Hardware Reference Manual
- Xilinx Kintex-7 Datasheets and User's Guides

1.4 Acronyms Used in this Document

Table 1: Acronyms

Acronym	Description	
AMC	Advanced Mezzanine Card	
BAR	Base Address Register	
BIST	Built-In Self Test	
BPI	Byte Peripheral Interface	
BSP	Board Support Package	
C2M	Carrier-to-Mezzanine (signal)	
CGND	Chassis Ground	
CLK	Clock	
CPU	Central Processing Unit	

	B		
Acronym	Description		
DAC	Digital to Analog Converter		
DDR3	Dual Data Rate 3 SDRAM		
DIP	Dual In-line Package		
DMA	Direct Memory Access		
DMUX	De-multiplexer		
DR	Data Ready		
FMC	FPGA Mezzanine Card		
FMC10G	Refers to VadaTech FMC106/107		
FMC1G	Refers to VadaTech FMC102/103/104/105		
FPGA	Field Programmable Gate Array		
FRU	Field Replaceable Unit		
GbE	Gigabit Ethernet		
GND	Signal Ground		
GTX	Virtex-6 Gigabit Transceiver		
HPC	High Pin Count (FMC connector)		
ioctl	Input/Output/Control		
IP	Intellectual Property		
IPMI	Intelligent Platform Management Interface		
JSM	JTAG Switch Module		
JTAG	Joint Test Action Group		
LED	Light Emitting Diode		
LPC	Low Pin Count (FMC connector)		
LVCMOS	Low-Voltage Complementary Metal Oxide Semiconductor		
LVDS	Low Voltage Differential Signaling		
M2C	Mezzanine-to-Carrier (signal)		
MAC	Media Access Controller		
MB	Megabyte (2^20 bytes)		
MIG	Memory Interface Generator		
M-LVDS	Multi-point Low Voltage Differential Signaling		
mmap	Memory Map		
MMC	Module Management Controller (IPMI controller of AMC)		
MMIO	Memory Mapped Input/Output		
MUX	Multiplexer		
n.c.	No connection		
PCI	Peripheral Component Interconnect		
PCIe	Peripheral Component Interconnect Express		
PHY	Physical Layer Device		
PICMG	PCI Industrial Computer Manufacturer's Group		
PIO	Programmed Input/Output		
PLL	Phase Locked Loop		
SDRAM	Synchronous Dynamic Random Access Memory		
SERDES	Serializer/Deserializer		
SGMII	Serial Gigabit Media Independent Interface		
SOL	Serial-Over-LAN		
SRIO	Serial RapidIO		
SSIF	SMBus System Interface		
TCLK	Telephony Clock		
USB	Universal Serial Bus		

Acronym	Description
VADJ	Adjustable Voltage (power rail)
VIO	I/O Voltage (power rail)
VREF	Reference Voltage (power rail)
XAUI	Ten Gigabit Attachment Unit Interface

1.5 Conventions Used

The following conventions are used in this document:

WARNING - Important information, when ignored can cause harm. serious injury or death to the User is described next to this symbol

CAUTION - Important information, when ignored can cause serious damage to the device is described using this symbol

NOTE - Important information useful to the reader is described next to this symbol

Command Any CLI commands are described with this font style

2 Linux BSP Software Overview

The AMC502 comes pre-configured with a boot loader (U-Boot) and Linux kernel/file system in flash memory.

The CPU RS-232 port can be used to gain access to the serial console. The serial port setup is 115200-8-N-1-NOFLOW.

2.1 Linux Boot Sequence

When the board boots up the sequence is as follows:

- 1. U-Boot loader starts up and initializes SDRAM, Flash, GbE ports
- 2. U-Boot script automatically loads/starts the 'active' Linux kernel from flash
- 3. Linux initializes devices and mounts 'active' root file system from flash
- 4. File system init scripts run
- 5. The Linux login prompt is presented.

2.2 Memory Map and Linux Device Nodes

The 8GB NAND Flash (u65) memory map and corresponding Linux device files are as follows:

Table 2: NAND Flash Memory Map

Address	Size	Part	Description	Linux Device
0x0000000000000	128 MB	Nand Flash (U65)	Reserved	/dev/mtd0
0x000008000000	8 MB	Nand Flash (U65)	Reserved	/dev/mtd1
0x000008800000	64 MB	Nand Flash (U65)	Linux Kernel Image A	/dev/mtd2
0x00000c800000	2500 MB	Nand Flash (U65)	Root File System A	/dev/mtd3
0x0000a8c00000	8 MB	Nand Flash (U65)	Reserved	/dev/mtd4
0x0000a9400000	64 MB	Nand Flash (U65)	Linux Kernel Image B	/dev/mtd5
0x0000ad400000	2.500 MB	Nand Flash (U65)	Root File System A	/dev/mtd6
0x000149800000	2920 MB	Nand Flash (U65)	Reserved	/dev/mtd7

The Boot Flash (U63) memory map and corresponding Linux device files are as follows:

Table 3: Boot Flash Memory Map

Address	Size	Part	Description	Linux Device
0x000000000000	1920 KB	Boot Flash (U63)	U-boot	/dev/mtd8
0x0000001e0000	64 KB	Boot Flash (U63)	U-boot Environment A	/dev/mtd9
0x0000001f0000	64 KB	Boot Flash (U63)	U-boot Environment B	/dev/mtd10
0x000000200000	2048 KB	Boot Flash (U63)	Etc file system	/dev/mtd11

The FPGA QSPI Flash (U24) memory map and corresponding Linux device files are as follows:

Table 4: FPGA QSPI Memory Map

Address	Size	Part	Description	Linux Device
0x0000000000000	128 MB	Nand Flash (U65)	Reserved	/dev/mtd0

2.3 Default IP Address

eth0 (AMC Port 0): 192.168.1.252

These IP addresses can be used to ssh into the board to get a command prompt or to use scp for transferring files. To change them edit the /etc/rc.d/rc.conf file.

2.4 Slot based IP Address

Slot based IP automatically generates the unique IP for an Ethernet interface based on the

Slot number of the AMC in the chassis. This feature calculates the fourth octet of the IP by adding the slot number to the base value of the fourth octet and the rest of the first three octets are applied as is.

Slot based IP is a result of cooperation of different components of AMC design which are described below:

- 1. Module Management Controller, which accepts OEM IPMI commands and provides the slot info for the AMC.
- 2. Hardware support, which allows the IPMI interface between MMC and Payload CPU.
- 3. The slot based IP script at the OS level which calculates the fourth octet and the resultant IP address, which is applied to the corresponding Ethernet interface.

The slot based IP would be applicable only if the fourth octet is '0' (zero). The octet can be made zero by modifying the IPADDRO variable in the /etc/rc.d/rc.conf file.

For example if the IPADDR0 in the /etc/rc.d/rc.conf is 192.168.1.252, it's in slot 2 and the base value is set to 200, then changing the IP in the interface file to 192.168.1.0, would result in the eth0 having an address of 192.168.1.202.

User can set the base value for the fourth octet by assigning the value to the variable IP_OCT4_BASE in /etc/rc.d/rc.conf file.

2.5 Linux BSP Field Upgrade

The BSP binary release includes a field upgrader package which can be used to upgrade the board from the Linux command prompt. This upgrader uses a ping-pong partition style upgrade using the 'A' and 'B' partitions seen in the memory map above. This ensures a consistent upgrade with minimal risk should a failure occur. But it does mean that any customizations that you've applied to the file system will need to be re-applied after the upgrade except <code>/etc</code> file system which is standalone partition and all files changed in this location will be preserved during upgrade.

To use the upgrade package, transfer the upgrade tar file to the **/upgrade** directory using **scp**. Then untar the package using the following command:

```
tar xvzf amc502-bsp-upgrade-releaseX.tgz
```

Then to invoke the upgrade type:

./upgrade

To verify the BSP version after rebooting the board, type:

bsp-version

3 Programming BSP via U-Boot

Programming the board via U-Boot is recommended only when some other factor is preventing upgrade via Linux.

In order to program via U-Boot, power up the board and interrupt the auto-boot sequence by pressing ENTER. This will drop you to a U-Boot prompt. Then you will need to setup the U-Boot networking environment.

To set up the U-Boot networking, use the following commands from the U-Boot prompt:

```
=> setenv ipaddr <board ip address>
=> setenv netmask <board netmask>
=> setenv gatewayip <optional gateway router>
=> setenv serverip <tftp server ip>
=> setenv ethact XXX (XXX is Gem.e000b000, Gem.e000c000)
```

Next, ping through the selected port first to the gateway router (if you have one) and next to the TFTP server to ensure that you have network connectivity.

```
=> ping <gateway router>
=> ping <tftp server>
```

Then proceed on to placing the upgrade images onto your TFTP server and using U-Boot to download them to the board and program the partitions. Use extreme care when entering commands and do not progress from one step to the next if any failure occurs.

WARNING: If the U-Boot binary partition of the flash becomes erased or corrupted and the board is reset/power-cycled before reprogramming a valid image.

3.1 Programming the U-Boot Image

run up uboot

This will download amc502/u-boot.imx image from TFTP server and reprogram it.

NOTE: If the board does not already have a valid U-Boot image programmed on it then the board will not boot.

3.2 Programming the Linux Kernel Image

run up_kernela (for upgrading Kernel-A)run up kernelb (for upgrading Kernel-B)

This will download amc502/uImage image from TFTP server and reprogram it.

3.3 Programming the Root File System

- run up_roota (for upgrading Rootfs-A)
- run up rootb (for upgrading Rootfs-B)

This will download amc502/rootfs.ubifs.img image from TFTP server and reprogram it.

3.4 Programming the Etc File System

run up_etc

This will download mc502/ etcfs.jffs2 image from TFTP server and reprogram it.

3.5 Completing an Upgrade via U-Boot

After the necessary partitions are upgraded please issue the reset command from U-Boot to ensure that the upgrades take effect. The bsp-version command can be used within Linux to check the BSP version and confirm the success of the upgrade.

4 Programming FPGA Image from iMX6 CPU

In order to program FPGA image from iMX6 CPU download FPGA image to /upgrade directory and do the following:

[root@amc502 upgrade]# fpga_upgrade amc502_fpga.bin

```
NOTE: This upgrade script DOES upgrade/downgrade
the FPGA Configuration in QSPI flash.....

Please ensure that you have specified the proper image.
Do you wish to continue with the upgrade (y/n)? y

$25f1512s spi3.0: $25f1512s (65536 Kbytes)
Creating 1 MTD partitions on "$25f1512s":

0x000000000000000-0x000004000000 : "$25f1512s"
Writing FPGA image to /dev/mtd12...
Erasing blocks: 12/12 (100%)
Writing data: 2987k/0k (100%))
Verifying data: 2987k/0k (100%))
FPGA Configuration ... SUCCESS
```

The fpga_upgrade script will attach QSPI flash to iMX6 CPU, program provided image into it and trigger FPGA to configure itself from the QSPI Flash using the new image. Refer to AMC502 Hardware reference manual for more information about FPGA QSPI Flash Upgrade Sequence.

5 BSP Sources

The sources package is named as amc502_bsp_source_releaseX.tgz where 'X' is the release number.

The source tree includes the following top level directories:

Table 5: Top Level Directories

Directory	Contents		
auto_build.sh	Script that performs a complete build of the BSP		
kernel	This directory contains the customized Linux kernel for the AMC502 board. The		
	amc502_make script found here can be used for building it. The make_release packager		
	picks up the kernel image (Image) from the kernel/arch/arm/boot/uImage location within		
	this tree, expecting that it has already been built (binary not included in source package).		
make_release	This script is used to package up all of the binaries into the production and field upgrade packages. This script can be used by the customer to package their own customized version of the BSP for their own internal use if desired. In this way a simple field upgrade to convert the stock VadaTech reference design to the customer's application-specific design is possible. This script assumes that binaries are available for everything needed and that any changes to the root file system binaries have already been merged in. It does not do any building of source code.		
u-boot	This directory contains the U-Boot bootloader sources customized for the AMC502 board. The amc502_make script can be used to build it. The make_release packager picks up the U-Boot image from this location.		
ltib	Root file system builder		
tools	This directory contains various tools used to create the production, upgrade packages and tools that were not created during rootfs build.		
fpga	FPAG image and tool to get u-boot readable image		
iomux	NXP iMX6 IOMUX source files		

6 Application Development

In order to build applications for AMC502 you need to prepare host system where you can build the applications from sources. You can setup your building environment in the hosts mentioned below

- Redhat: 7.3, 8.0, 9.0, Enterprise release 4
- Fedora Core: 1, 2, 3, 4, 5, 8
- Debian: 3.1r0 (stable), unstable, 4.0
- Suse: 8.2, 9.1, 9.2, 10.0, 10.2, 10.3
- Ubuntu 6.10, 7.04, 7.10, 8.04

To develop the applications follow these steps:

- 1. Download the amc502 bsp source releaseX.tgz package from VadaTech into your build host.
- 2. Extract it and change the directory to amc502:

```
tar xvf amc502_bsp_source_releaseX.tgz
cd amc502
```

3. You have to install some libraries needed to build the project. If you already have them installed then skip this step

```
sudo yum install lzo
sudo yum install lzo-devel
sudo yum install tcl
```

NOTE: Use apt-get to install the libraries if you are using Debian based host.

4. At first you need to build the LTIB which will download the cross compiler to build the rootfs and later it will be used to compile kernel, u-boot and the other applications for AMC502. Run the ./Itib and follow steps during it's execution:

```
cd ./ltib
./ltib
```

NOTE: LTIB may stop the execution and provide you to add some privilege credentials into sudoers file like this

```
"... To configure this, as root using the command "/usr/sbin/visudo", and add the following line in the User privilege section: username ALL = NOPASSWD: /bin/rpm, /opt/freescale/ltib/usr/bin/rpm ..."

Just add this line into the sudoers file and rerun ./ltib command
```

5. Move back to the project's root folder and run

```
./autobuild.sh -v
```

You will be notified about build completion at the end.

6.1 Building U-BOOT

To build U-Boot:

- Go to the VadaTech AMC502 BSP's u-boot directory
- Run: ./amc502 make

The resulting U-Boot binary will be called **u-boot**.bin in the **u-boot** directory. Refer to upgrade section for instructions on how to flash this image to the board.

6.2 Building kernel

To build the Linux Kernel:

- Go to the VadaTech AMC502 BSP's kernel directory
- Run: ./amc502_make

6.3 Packaging a release

The previous sections described how to build individual components from the BSP. Doing individual component upgrades is fine for most development activity, but you may desire to also package the components into a complete release in the same manner as the field upgrade packages are provided by VadaTech. The release package is easier to upgrade the board with since you can use the Linux command line upgrade script. This method also ensures that all the binaries on the board match to a given release configuration and avoids potential human errors.

To package a release:

- 1. Edit tools/bsp-version/bsp-version.dat file and add a suffix of your choosing to help identify the filesystem version as being different from VadaTech's release.
- 2. Make sure that U-Boot, Linux kernel are also built with any customizations of your requirement.
- 3. From the BSP root directory run ./make_release release XXSS where XX is the VadaTech BSP number you are using as a baseline and SS is your own suffix. This will make the full release packages.

Look in the /tmp/amc502_bsp_release**xxss** directory for the upgrade package which you can transfer to the board and run the upgrade as described earlier in the manual.

Contact VadaTech

Technical Support

If you have purchased the VadaTech product through our distributor network, contact your distributor for any technical assistance. If you require further technical support, you can contact VadaTech technical support team from <u>VadaTech Customer Support</u> site.

Locations

VadaTech Corporate Office

198 N, Gibson Road Henderson, NV 89014

USA

Email: <u>info@vadatech.com</u> Telephone: +1 702 896 3337 Fax: +1 702 896 0332

European Sales Office

VadaTech House, Bulls Copse Road, Southampton, SO40 9LR UK

Email: <u>info@vadatech.com</u> Telephone: +44 2380 016403

Asia Pacific Sales Office

7th Floor, No 2, Wenhu Street, Neihu District, Taipei 114,

Taiwan

Email: <u>info@vadatech.com</u> Telephone: +886 2 2627 7655 Fax: +886 2 2627 7792

© 2019 VadaTech, Incorporated. All rights reserved

The VadaTech logo is a registered trademark of VadaTech, Inc. Other registered trademarks are the property of their respective owners. Advanced MC^{TM} , Advanced TCA^{TM} and $MTCA^{TM}$ logos are trademarks of the PCI Industrial Computers Manufacturers Group.