Learning to translate with neural networks

Michael Auli Microsoft Research

What happened in MT over the past 10 years?

What happened in MT over the past 10 years?

"Learning simple models from large bi-texts is a solved problem"

(Lopez & Post, 2013)

What happened in MT over the past 10 years?

"Learning simple models from large bi-texts is a solved problem"

(Lopez & Post, 2013)

WMT 2013

9/10 times

Koehn et al. (2003)

本 地区 的 发展 和 进步。

development and progress of the region

Koehn et al. (2003)

development | and progress | of the region | .

Koehn et al. (2003)

Koehn et al. (2003)

本 地区 的 —— of the region 发展 —— development 和 进步 —— and progress

Koehn et al. (2003)

本 地区 的 —— of the region 发展 —— development 和 进步 —— and progress

Koehn et al. (2003)

本 地区 的 —— of the region 发展 —— development 和 进步 —— and progress

Kneser & Ney (1996)

p(progress in the region) =

Kneser & Ney (1996)

```
p(progress in the region) =
```

Train data:

development and progress of the region

. . .

Kneser & Ney (1996)

```
p(progress in the region) =
p(progress) p(in)
p(the) p(region|the)
```

Train data:

development and progress of the region

Kneser & Ney (1996)

```
p(progress in the region) =
p(progress) p(in)
p(the) p(region|the)
```

Train data:

development and progress of the region

. . .

How can we improve on this?

- Or: how to capture relationships beyond 1.5 2.7 words
- Neural networks: From discrete to distributional representations
- Recurrent nets: From fixed length contexts to unbounded histories

Overview

- Recurrent neural network joint models (Auli et al., EMNLP 2013)
 Combined language and translation modeling
- Minimum translation modeling with recurrent nets (Hu et al., EACL 2014)
 Sequence models over bilingual units
- Training recurrent nets (Auli & Gao, ACL 2014)
 Expected BLEU training for neural network translation models
- Large-scale discriminative sparse ordering models (Auli et al., in submission) Training millions of linear ordering features with expected BLEU

Overview

- Recurrent neural network joint models (Auli et al., EMNLP 2013)
 Combined language and translation modeling
- Minimum translation modeling with recurrent nets (Hu et al., EACL 2014)
 Sequence models over bilingual units
- Training recurrent nets (Auli & Gao, ACL 2014)
 Expected BLEU training for neural network translation models
- Large-scale discriminative sparse ordering models (Auli et al., in submission)
 Training millions of linear ordering features with expected BLEU

and

Still based on limited context!

<S>

Recurrent Network

State of the art in language modeling (Mikolov 2011)

More accurate than feed-forward nets (Sundermeyer 2013)

本 地区 的 发展 和 进步

本 地区 的 发展 和 进步

本 地区 的 发展 和 进步

development

<S>

本 地区 的 发展 和 进步

Entire source sentence representation

<s> development

本 地区 的 发展 和 进步

本 地区 的 发展 和 进步

Source word-window

本 地区 的 发展 和 进步

Source word-window

本 地区 的 发展 和 进步

Source word-window

<s> development

本 地区 的 发展 和 进步

Source word-window

<s> development

本 地区 的 发展 和 进步

Source word-window

Feed-forward nets: Le (2012) & Devlin (2014)

Similar to Kalchbrenner (2013)

Experiment: Generate baseline n-best, remove translation model, rescore with RNN joint model

Improving a phrase-based baseline

Improving a phrase-based baseline

Qualitative Results

src: il aurait fallu 226 voix pour l'approuver.

ref: its ratification would require 226 votes.

base: it should have been 226 votes to approve it.

rnn: it would have been 226 votes to approve.

Qualitative Results

src: il aurait fallu 226 voix pour l'approuver.

ref: its ratification would require 226 votes.

base: it should have been 226 votes to approve it.

rnn: it would have been 226 votes to approve.

src: il reste à déterminer les vainqueurs.

ref: it is time to define the winners.

base: it remains to be seen the victors.

rnn: it remains to determine the victors.

Overview

- Recurrent neural network joint models (Auli et al., EMNLP 2013) Combined language and translation modeling
- Minimum translation modeling with recurrent nets (Hu et al., EACL 2014)
 Sequence models over bilingual units
- Training recurrent nets (Auli & Gao, ACL 2014)
 Expected BLEU training for neural network translation models
- Large-scale discriminative sparse ordering models (Auli et al., in submission) Training millions of linear ordering features with expected BLEU

本 地区 的 发展 和 进步

development and progress of the region

Banchs et al. (2005) Quirk & Menezes (2006)

Banchs et al. (2005) Quirk & Menezes (2006) n-gram models M3 M4 M5 M6 M2 over MTUs 发展 和进步 地区 的 and progress of development region

Source order: p(M1) p(M2|M1) p(M3|M1,M2) ...

Quirk & Menezes (2006) n-gram models M3 M4 M5 M6 M2 over MTUs 发展 和进步 地区 的 and progress development of the region M3 Source order: p(M1) p(M2|M1) p(M3|M1,M2) ... 的 Target order: p(M4) p(M5|M4) p(M6|M4,M5) ...of region

M1

本

the

M2

地区

Banchs et al. (2005)

Banchs et al. (2005) Quirk & Menezes (2006) n-gram models M3 M4 M5 M6 M2 over MTUs 发展 和进步 地区 的 and progress development of the region M1 M2 M3 Source order: p(M1) p(M2|M1) p(M3|M1,M2) ...本 的 地区 Target order: p(M4) p(M5|M4) p(M6|M4,M5) ...of the region

<S>

Data sparsity

Data sparsity

words (w_k) delayed target source

Add MTU output layer

Sparse Mapping MTUs - words

Add MTU output layer

Model 2: Simplified Bag of Words MTU

Model 2: Simplified Bag of Words MTU

Model 2: Simplified Bag of Words MTU

$$p(m_n|h) = \prod_{w \in m_n} p(w|h)$$

Summary so far

- Recurrent net translation models improve phrase-based models (+1.4 BLEU)
- Word-window approach superior to simple sentence representations
- Recurrent MTU models need to be carefully factored
- Bag-of-words factorization adds up to +1.5 BLEU

Overview

- Recurrent neural network joint models (Auli et al., EMNLP 2013) Combined language and translation modeling
- Minimum translation modeling with recurrent nets (Hu et al., EACL 2014)
 Sequence models over bilingual units
- Task-specific training of neural nets (Auli & Gao, ACL 2014) Expected BLEU training for neural network translation models

• Large-scale discriminative sparse ordering models (Auli et al., in submission) Training millions of linear ordering features with expected BLEU

$$\max_{\phi} \sum_{i} p(e_i; \phi)$$

Goal: Make reference most likely

True distribution

0 0 1 0 0

$$\max_{\phi} \sum_{i} p(e_i; \phi)$$

Goal: Make reference most likely

$$\max_{\phi} \sum_{i} p(e_i; \phi)$$

Goal: Make reference most likely

- Likelihood training very common
- Optimizing for evaluation metrics difficult, but empirically successful (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011)

- Likelihood training very common
- Optimizing for evaluation metrics difficult, but empirically successful (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011)
- Objectives usually not convex

- Likelihood training very common
- Optimizing for evaluation metrics difficult, but empirically successful (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011)
- Objectives usually not convex
- But empirically effective

- Likelihood training very common
- Optimizing for evaluation metrics difficult, but empirically successful (Och 2003, Smith 2006, Chiang 2009, Gimpel 2010, Hopkins 2011)
- Objectives usually not convex
- But empirically effective
- Next: Task-specific training of neural nets for translation

BLEU Metric

(Bilingual Evaluation Understudy; Papineni 2002)

BLEU =
$$\exp\left(\sum_{n=1}^{4} \frac{1}{4} \log p_n\right)$$
 BP

(Bilingual Evaluation Understudy; Papineni 2002)

BLEU =
$$\exp\left(\sum_{n=1}^{4} \frac{1}{4} \log p_n\right)$$
 BP

Modified precision scores

Brevity penalty

(Bilingual Evaluation Understudy; Papineni 2002)

$$\text{BLEU} = \exp\left(\sum_{n=1}^4 \frac{1}{4} \log p_n\right) \text{BP}$$
 Modified precision scores Brevity penalty

Human: development and progress of the region

(Bilingual Evaluation Understudy; Papineni 2002)

$$\text{BLEU} = \exp\left(\sum_{n=1}^4 \frac{1}{4} \log p_n\right) \text{BP}$$
 Modified precision scores Brevity penalty

Human: development and progress of the region

(Bilingual Evaluation Understudy; Papineni 2002)

$$\text{BLEU} = \exp\left(\sum_{n=1}^4 \frac{1}{4} \log p_n\right) \text{BP}$$
 Modified precision scores Brevity penalty

Human: development and progress of the region

(Bilingual Evaluation Understudy; Papineni 2002)

$$\text{BLEU} = \exp\left(\sum_{n=1}^4 \frac{1}{4} \log p_n\right) \text{BP}$$
 Modified precision scores Brevity penalty

Human: development and progress of the region

(Smith 2006, He 2012, Gao 2014)

L:
$$\max_{\phi} \sum_{i} p(e_i|f_i;\phi)$$

(Smith 2006, He 2012, Gao 2014)

Desired translation output

$$\lim_{\phi} \sum_{i} p(e_i|f_i;\phi)$$

(Smith 2006, He 2012, Gao 2014)

Desired translation output

$$\lim_{\phi} \sum_{i} p(e_i|f_i;\phi)$$

xBLEU:
$$\max_{\phi} \sum_{i} \sum_{e \in E(f_i)} \text{sBLEU}(e, e_i) p(e|f_i; \phi)$$

(Smith 2006, He 2012, Gao 2014)

Desired translation output

$$\max_{\phi} \sum_{i} p(e_i|f_i;\phi)$$

xBLEU:
$$\max_{i} \sum_{e \in E(f_i)} \text{sBLEU}(e, e_i) p(e|f_i; \phi)$$
Generated outputs Gain function Human translation

(Smith 2006, He 2012, Gao 2014)

Desired translation output

$$\max_{\phi} \sum_{i} p(e_i|f_i;\phi)$$

Generated outputs

Gain function

Human translation

本 地区 的 发展 和 进步

本 地区 的 发展 和 进步

Human: development and progress of the region

advance and progress of the region development and progress of this province progress of this region

本 地区 的 发展 和 进步

	sBLEU
advance and progress of the region	0.8
development and progress of this province	0.5
progress of this region	0.3

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$	
advance and progress of the region	0.8	0.2	
development and progress of this province	0.5	0.3	
progress of this region	0.3	0.5	

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$
advance and progress of the region	0.8	0.2
development and progress of this province	0.5	0.3
progress of this region	0.3	0.5

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$
advance and progress of the region	0.8	0.2
development and progress of this province	0.5	0.3
progress of this region	0.3	0.5

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$	
advance and progress of the region	0.8	0.2	
development and progress of this province	0.5	0.3	
progress of this region	0.3	0.5	

$$xBLEU = \sum_{i} \sum_{e \in E(f_i)} sBLEU(e, e_i) p(e|f_i) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$	δ_t	
advance and progress of the region	0.8	0.2	0.3	
development and progress of this province	0.5	0.3	0	
progress of this region	0.3	0.5	-0.2	

$$xBLEU = \sum_{i} \sum_{e \in E(f_i)} sBLEU(e, e_i) p(e|f_i) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$	δ_t	$p_{t+1}\left(e f_i\right)$
advance and progress of the region	0.8	0.2	0.3	0.5
development and progress of this province	0.5	0.3	0	0.3
progress of this region	0.3	0.5	-0.2	0.1

$$xBLEU = \sum_{i} \sum_{e \in E(f_i)} sBLEU(e, e_i) p(e|f_i) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$	δ_t	$p_{t+1}\left(e f_i\right)$
advance and progress of the region	0.8	0.2	0.3	0.5
development and progress of this province	0.5	0.3	0	0.3
progress of this region	0.3	0.5	-0.2	0.1

$$xBLEU = \sum_{i} \sum_{e \in E(f_i)} sBLEU(e, e_i) p(e|f_i) = 0.5$$

本 地区 的 发展 和 进步

	sBLEU	$p_t(e f_i)$	δ_t	$p_{t+1}\left(e f_i\right)$
advance and progress of the region	0.8	0.2	0.3	0.5
development and progress of this province	0.5	0.3	0	0.3
progress of this region	0.3	0.5	-0.2	0.1

$$xBLEU = \sum_{i} \sum_{e \in E(f_i)} sBLEU(e, e_i) p(e|f_i) = 0.5 \rightarrow \mathbf{0.6}$$

Results

Results

Overview

- Recurrent neural network joint models (EMNLP 2013)
 Combined language and translation modeling
- Minimum translation modeling with recurrent nets (EACL 2014)
 Sequence models over bilingual units
- Training recurrent nets (ACL 2014)
 Expected BLEU training for neural network translation models

Large-scale discriminative training for SMT (Auli et al., in submission)
 Training millions of linear ordering features with expected BLEU

• Tuning: Minimum Error Rate Training: ~30 features (Och, 2003)

- Tuning: Minimum Error Rate Training: ~30 features (Och, 2003)
- Perceptron (Liang, 2006), Max-violation perceptron (Yu et al., 2013)

- Tuning: Minimum Error Rate Training: ~30 features (Och, 2003)
- Perceptron (Liang, 2006), Max-violation perceptron (Yu et al., 2013)
- Several others: PRO (Hopkins, 2011), MIRA (Chiang 2009 Watanabe 2007)

- Tuning: Minimum Error Rate Training: ~30 features (Och, 2003)
- Perceptron (Liang, 2006), Max-violation perceptron (Yu et al., 2013)
- Several others: PRO (Hopkins, 2011), MIRA (Chiang 2009 Watanabe 2007)
- Recent success: MIRA-trained sparse ordering models (Cherry, 2013)

- Tuning: Minimum Error Rate Training: ~30 features (Och, 2003)
- Perceptron (Liang, 2006), Max-violation perceptron (Yu et al., 2013)
- Several others: PRO (Hopkins, 2011), MIRA (Chiang 2009 Watanabe 2007)
- Recent success: MIRA-trained sparse ordering models (Cherry, 2013)
- Next: Training large-scale sparse ordering models with expected BLEU

本 地区 的 发展 和 进步 。

本 地区 的

发展

和 进步

本 地区 的

发展

和 进步

development

and progress

本 地区 的

发展

和 进步

development

and progress

of the region

Lexicalized Reordering

本 地区 的

发展

和 进步

0

development

and progress

of the region

Lexicalized Reordering

本 地区 的

发展

和 进步

0

development

p(Discontinuous | . , .)

and

progress

of the region

Discontinuous

本 地区 的 发展 和 进步

development

and progress

of the region

p(Monotone|和 进步, and progress)

$$p(\mathbf{o}|pp) =$$

$$p(\mathbf{o}|pp) = \frac{\text{count}(\mathbf{o}, pp)}{\text{count}(pp)}$$

$$p(\mathbf{o}|pp) = \frac{\text{count}(\mathbf{o}, pp)}{\text{count}(pp)}$$

Typically 100Ms of parameters

$$p(\mathbf{o}|pp) = \frac{\text{count}(\mathbf{o}, pp)}{\text{count}(pp)}$$

- Typically 100Ms of parameters
- Very sparse estimates

$$p(\mathbf{o}|pp) = \frac{\text{count}(\mathbf{o}, pp)}{\text{count}(pp)}$$

- Typically 100Ms of parameters
- Very sparse estimates
- Objective: Likelihood

$$p(\mathbf{o}|pp) = \frac{\text{count}(\mathbf{o}, pp)}{\text{count}(pp)}$$

- Typically 100Ms of parameters
- Very sparse estimates
- Objective: Likelihood
- Training data: word-aligned bi-texts

MaxEnt Reordering (Xiong 2006, Nguyen 2009)

p(o|pp) = indicator features!

e.g. Monotone_progress,
Monotone_和

MaxEnt Reordering (Xiong 2006, Nguyen 2009)

$$p(\mathbf{o}|pp) = \frac{\exp\{\theta^T h(\mathbf{o}, pp)\}}{\sum_{\mathbf{o}} \exp\{\theta^T h(\mathbf{o}, pp)\}}$$

e.g. Monotone_progress,
Monotone_和

MaxEnt Reordering (Xiong 2006, Nguyen 2009)

$$p(\mathbf{o}|pp) = \frac{\exp\{\theta^T h(\mathbf{o}, pp)\}}{\sum_{o} \exp\{\theta^T h(o, pp)\}}$$

e.g. Monotone_progress,
Monotone_和

- Typically Ms of parameters
- Better estimates
- Objective: Likelihood
- Training data: word-aligned bi-texts

- Simple unigram features
- Most frequent 80 words, 20 or 50 class Brown Clusters e.g., Monotone_the, Monotone_C20, Monotone_C50
- About 3.5K features

- Discontinuous_src_本
- Discontinuous_tgt_of
- Discontinuous_src_C20
- •

Idea: Add ordering features to top-level features and tune with MIRA

$$\hat{e} = \operatorname{argmax}_{e} \theta^{T} h(f, e)$$

Better estimates

Idea: Add ordering features to top-level features and tune with MIRA

$$\hat{e} = \operatorname{argmax}_{e} \theta^{T} h(f, e)$$
 h_{1} : p(e|f)
 h_{2} : p(f|e)
 h_{3} : $p_{LM}(e)$

Better estimates

Idea: Add ordering features to top-level features and tune with MIRA

$$\hat{e} = \operatorname{argmax}_{e} \theta^{T} h(f, e)$$

Better estimates

$$h_1$$
: p(e|f)

$$h_2$$
: p(f|e)

$$h_3: p_{LM}(e)$$

$$h_4$$
: c(Monotone_progress)

$$h_5$$
: c(Monotone_和)

Idea: Add ordering features to top-level features and tune with MIRA

$$\hat{e} = \operatorname{argmax}_{e} \theta^{T} h(f, e)$$

- Better estimates
- Objective: BLEU

$$h_1$$
: p(e|f)

$$h_2$$
: p(f|e)

$$h_3: p_{LM}(e)$$

$$h_4$$
: c(Monotone_progress)

$$h_5$$
: c(Monotone_和)

Idea: Add ordering features to top-level features and tune with MIRA

$$\hat{e} = \operatorname{argmax}_{e} \theta^{T} h(f, e)$$

 h_1 : p(e|f)

 h_2 : p(f|e)

 $h_3: p_{LM}(e)$

 h_4 : c(Monotone_progress)

 h_5 : c(Monotone_和)

Better estimates

• Objective: **BLEU**

• Training data: machine translation output

Idea: Add ordering features to top-level features and tune with MIRA

$$\hat{e} = \operatorname{argmax}_{e} \theta^{T} h(f, e)$$

 h_1 : p(e|f)

 h_2 : p(f|e)

 $h_3: p_{LM}(e)$

 h_4 : c(Monotone_progress)

 h_5 : c(Monotone_和)

• Better estimates

• Objective: **BLEU**

• Training data: machine translation output

Much better than MaxEnt

- Lexicalized models trained on Ms of sentences with 100Ms of parameters
- Cherry (2013): Ordering model with 3.5K features learned on 2K sentences
- Can we learn a general purpose ordering model this way?
- MIRA/PRO don't scale to truly large settings (Yu 2013, Eidelman 2013)
- Next: Large-scale discriminative models with Ms of features trained on 100Ks of sentences using expected BLEU

Scaling the training data

Dev

Scaling the training data

N-best rescore with SparseHRMLocal (4.5K features)

Setup of Cherry (2013)

Why is this better than Lexicalized/Maxent models?

- Objective: Likelihood → BLEU
- Train data: bilingual corpus → machine translation output

Which one responsible for better performance?

Experiment: Likelihood/xBLEU train on MT output

Likelihood vs. xBLEU

xBLEU vs. PRO

Based on SparseHRMLocal (4.5K features)

Train Data: 2.5K 140K

xBLEU vs. PRO

Based on SparseHRMLocal (4.5K features)

xBLEU vs. PRO

Based on SparseHRMLocal (4.5K features)

Max-Violation Perceptron xBLEU

	Max-Violation Perceptron	xBLEU
Loss	No partial credit (0/1)	partial credit

	Max-Violation Perceptron	xBLEU
Loss	No partial credit (0/1)	partial credit
Train data	Mostly short sentences (reference must be reachable)	Uses all data

	Max-Violation Perceptron	xBLEU
Loss	No partial credit (0/1)	partial credit
Train data	Mostly short sentences (reference must be reachable)	Uses all data
Updates	Based 1-best and reference	Based on all outputs in gen-set

Summary

- Directly optimizing sub-models towards BLEU improves translation accuracy
- xBLEU allows estimation of millions of features
- More training data helps
- Objective crucial to good performance

Conclusion

- Recurrent nets are very well suited to model translation
- They complement and improve simpler models
- xBLEU training effective for both neural nets and linear models
- xBLEU scales to millions of features on hundreds of thousands of sentences

Future Directions

What can we do with the presented methods?

- LSTM nets for translation
- Recurrent nets for other NLP tasks, e.g., CCG parsing
- xBLEU training: Large-scale discriminative training of all models

Thank you!