

Introduction to Machine Learning

Model Validation and Selection

Nils M. Kriege WS 2023

Data Mining and Machine Learning Faculty of Computer Science University of Vienna

Credit: Slides based on the IML Lectures by Sebastian Tschiatschek and Andreas Krause

Recap: Achieving generalization

 Fundamental assumption: Our data set is generated independently and identically distributed (iid) from some unknown distribution P:

$$(\mathbf{x}_i, y_i) \sim P(\mathbf{X}, \mathbf{Y})$$

 Our goal is to minimize the expected error (true risk) under P:

$$R(\mathbf{w}) = \int P(\mathbf{x}, y)(y - \mathbf{w}^{\mathsf{T}}\mathbf{x})^{2} d\mathbf{x} d\mathbf{y}$$
$$= \mathbb{E}_{\mathbf{x}, \mathbf{y}}[(y - \mathbf{w}^{\mathsf{T}}\mathbf{x})^{2}]$$

1

Recap: Evaluating predictive performance

 Training error (empirical risk) systematically underestimates true risk:

$$\mathbb{E}_{\mathcal{D}}[\hat{R}_{\mathcal{D}}(\hat{\mathbf{w}}_{\mathcal{D}})] \leq \mathbb{E}_{\mathcal{D}}[R(\hat{\mathbf{w}}_{\mathcal{D}})]$$

More realistic evaluation?

- Want to avoid underestimating the prediction error
- Idea: Use separate test set from the same distribution P
- Obtain training and test data $\mathcal{D}_{\mathsf{train}}$ and $\mathcal{D}_{\mathsf{test}}$
- Optimize w on training set:

$$\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}} = \arg\min_{\boldsymbol{w}} \hat{R}_{\mathcal{D}_{\mathsf{train}}}(\boldsymbol{w})$$

Evaluate on test set:

$$\hat{R}_{\mathcal{D}_{\mathsf{test}}}(\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}}) = \frac{1}{|\mathcal{D}_{\mathsf{test}}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}_{\mathsf{test}}} (\boldsymbol{y} - \hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}}^{\mathsf{T}} \boldsymbol{x})^2$$

Then:

$$\mathbb{E}_{\mathcal{D}_{\mathsf{train}},\mathcal{D}_{\mathsf{test}}}[\hat{R}_{\mathcal{D}_{\mathsf{test}}}(\hat{\mathbf{w}}_{\mathcal{D}_{\mathsf{train}}})] = \mathbb{E}_{\mathcal{D}_{\mathsf{train}}}[R(\hat{\mathbf{w}}_{\mathcal{D}_{\mathsf{train}}})]$$

Why?

4

Recap: Evaluating predictive performance

 Training error (empirical risk) systematically underestimates true risk:

$$\mathbb{E}_{\mathcal{D}}[\hat{R}_{\mathcal{D}}(\hat{\mathbf{w}}_{\mathcal{D}})] \leq \mathbb{E}_{\mathcal{D}}[R(\hat{\mathbf{w}}_{\mathcal{D}})]$$

Using an independent test set avoids this bias:

$$\mathbb{E}_{\mathcal{D}_{\mathsf{train}},\mathcal{D}_{\mathsf{test}}}[\hat{R}_{\mathcal{D}_{\mathsf{test}}}(\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}})] = \mathbb{E}_{\mathcal{D}_{\mathsf{train}}}[R(\hat{\boldsymbol{w}}_{\mathcal{D}_{\mathsf{train}}})]$$

First Attempt: Evaluation for Model Selection

- Obtain training and test data $\mathcal{D}_{\mathsf{train}}$ and $\mathcal{D}_{\mathsf{test}}$
- Fit each candidate model (e.g., degree m of polynomial):

$$\hat{\mathbf{w}}_m = \underset{\mathbf{w}: \text{ degree}(\mathbf{w}) \leq m}{\operatorname{argmin}} \hat{R}_{\operatorname{train}}(\mathbf{w})$$

· Pick one which does best on test set:

$$\hat{m} = \underset{m}{\operatorname{argmin}} \hat{R}_{\operatorname{test}}(\hat{\mathbf{w}}_{m})$$

First Attempt: Evaluation for Model Selection

- Obtain training and test data $\mathcal{D}_{\mathsf{train}}$ and $\mathcal{D}_{\mathsf{test}}$
- Fit each candidate model (e.g., degree m of polynomial):

$$\hat{\mathbf{w}}_m = \underset{\mathbf{w}: \text{ degree}(\mathbf{w}) \leq m}{\operatorname{argmin}} \hat{R}_{\operatorname{train}}(\mathbf{w})$$

· Pick one which does best on test set:

$$\hat{m} = \underset{m}{\operatorname{argmin}} \hat{R}_{\operatorname{test}}(\hat{\mathbf{w}}_m)$$

Do you see a problem?

Overfitting to test set

- Test error is itself random! Variance usually increases for more complex models
- Optimizing for single test set creates bias

Solution: Pick Multiple Test Sets!

- Key idea: Instead of using a single test set, use multiple test sets and average to decrease variance
- Dilemma: Any data I use for testing I can't use for training

Solution: Pick Multiple Test Sets!

- Key idea: Instead of using a single test set, use multiple test sets and average to decrease variance
- Dilemma: Any data I use for testing I can't use for training
- ⇒ Using multiple independent test sets is expensive and wasteful

Evaluation for Model Selection

- For each candidate model m (e.g., polynomial degree) repeat the following procedure for i = 1, ..., k:
 - 1. Split the same data into training and validation set:

$$\mathcal{D} = \mathcal{D}_{\mathsf{train}}^{(i)} \uplus \mathcal{D}_{\mathsf{val}}^{(i)}$$

2. Train the model:

$$\hat{\mathbf{w}}_i = \underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}_{\operatorname{train}}(\mathbf{w})$$

3. Estimate error:

$$\hat{R}_m^{(i)} = \hat{R}_{\text{val}}^{(i)}(\hat{\mathbf{w}}_i)$$

· Select model:

$$\hat{m} = \underset{m}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^{k} \hat{R}_{m}^{(i)}$$

How Should we do the Splitting?

- Randomly (Monte Carlo cross-validation
 - · Pick training set of given size uniformly at random
 - · Validate on remaining points
 - Estimate prediction error by averaging the validation error over multiple random trials
- k-fold cross-validation (default)
 - Partition the data into k "folds"
 - Train on (k-1) folds, evaluating on the remaining fold
 - Estimate prediction error by averaging the validation error obtained while varying the validation fold

k-fold Cross-validation

Example for k = 5:

'	•				
	All training data				
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

Accuracy of Cross-validation

- Cross-validation error estimate is very nearly unbiased for large enough k
- Demo

Cross-validation

- How large should we pick k?
- Too small:
 - Risk of overfitting to the test set
 - Using too little data for training
 - Risk of underfitting on the training set
- · Too large:
 - In general better performance! k = n is perfectly fine (called leave-one-out cross-validation)
 - Higher computational costs
- In practice, k = 5 or k = 10 is often used and works well

Best Practice for Evaluating Supervised Learning

- · Split data set into training and test set
- Never look at the test set when fitting the model. For example, use k-fold cross-validation on training set
- Report final accuracy on test set (but never optimize on test set!)

Best Practice for Evaluating Supervised Learning

- · Split data set into training and test set
- Never look at the test set when fitting the model. For example, use k-fold cross-validation on training set
- Report final accuracy on test set (but never optimize on test set!)
- Caveat: this only works if the data is i.i.d.
- Be careful, for example, if there are temporal trends or other dependencies

Supervised learning summary so far

Representation/ features	Linear hypotheses, nonlinear hypotheses through feature transformations
Model/ objective	Loss-function (squared loss, ℓ_p loss)
Method	Exact solution, Gradient Descent
Evaluation metric	Empirical risk = (mean) squared error
Model selection	<i>k</i> -fold cross-validation, Monte Carlo cross-validation

Model Selection More Generally

- For polynomial regression, model complexity is naturally controlled by the degree
- In general, there may not be an ordering of the features that aligns with the complexity:
 - For example, how should we order words in the bag-of-words model?
 - · Collection of nonlinear feature transformations:

$$x \mapsto \log(x + c)$$

 $x \mapsto x^{\alpha}$
 $x \mapsto \sin(ax + b)$

• Now model complexity is no longer naturally "ordered"

Demo: Overfitting \rightarrow Large weights

Regularization

- If we only seek to minimize our loss (optimize data fit), we can get very complex models (large weights)
- Solution?

Regularization

- If we only seek to minimize our loss (optimize data fit), we can get very complex models (large weights)
- · Solution?
- Regularization!
 Encourage small weights via penalty functions (regularizers)

Ridge regression

Regularized optimization problem:

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_2^2 \quad \lambda \ge 0$$

 Can optimize using gradient descent, or still find analytical solution:

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda n \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Note that now the scale of x matters

Renormalizing Data: Standardization

Ensure that each feature has zero mean and unit variance:

$$\tilde{\mathbf{x}}_{i,j} = (\mathbf{x}_{i,j} - \hat{\mu}_j)/\hat{\sigma}_j$$

• Hereby $x_{i,j}$ is the value of the j-th feature of the i-th data point:

$$\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n x_{i,j}$$
 $\hat{\sigma}_j^2 = \frac{1}{n} \sum_{i=1}^n (x_{i,j} - \hat{\mu}_j)^2$

Gradient Descent for Ridge Regression

Demo: Regularization

How to choose the regularization parameter?

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda ||\mathbf{w}||_2^2 \quad \lambda \ge 0$$

How to choose the regularization parameter?

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_2^2 \quad \lambda \ge 0$$

- Cross-validation
- Typically pick λ logarithmically spaced

Regularization Path

Outlook: Fundamental Tradeoff in ML

- · Need to trade loss (goodness of fit) and simplicity
- A lot of supervised learning problems can be written in this way:

$$\min_{\mathbf{w}} \hat{R}(\mathbf{w}) + \lambda C(\mathbf{w})$$

- Can control complexity by varying regularization parameter λ
- Many other types of regularizers exist and are very useful

Supervised learning summary so far

selection

Representation/ features	Linear hypotheses, non-linear hypotheses through feature transformations			
Model/ objective	Loss-function (squared loss, ℓ_p loss) + Regularization (ℓ_2 norm)			
Method	Exact solution, Gradient Descent			
Evaluation metric	Empirical risk = (mean) squared error			
Model	k-fold cross-validation, Monte Carlo			

cross-validation

What you need to know

- · Linear regression as model and optimization problem:
 - · How do you solve it?
 - · Closed form vs gradient descent
 - · Can represent non-linear functions using basis functions
- Model validation:
 - · Resampling; cross-validation
- Model selection for regression:
 - Comparing different models via cross-validation
- Regularization:
 - · Adding penalty function to control magnitude of weights
 - Choose regularization parameter via cross-validation