Data Mining Assignment 3

- 1) Read Chapter 6 (only sections 6.1 and 6.7).
- 2) Do Chapter 6 textbook problem #2 (parts a,b,c,d only) on page 404.
- a) Compute the support for item sets {e}, {b, d}, and {b, d, e} by treating each transaction ID as a market basket.

10 distinct baskets/transactions.

•
$$\{e\}$$
: $s = 8/10 = 0.8$

•
$$\{b, d\}$$
: $s = 2/10 = 0.2$

•
$$\{b, d, e\}$$
: $s = 2/10 = 0.2$

b) Use the results in part (a) to compute the confidence for the association rules {b, d} ---> {e} and {e} ---> {b, d}. Is confidence a symmetric measure?

Both rules have support 0.2, (support count is 2):

• {b, d}
$$\rightarrow$$
 {e}: c = 0.2 /0.2 = 1

•
$$\{e\} \rightarrow \{b, d\}$$
: $c = 0.2 / 0.8 = 0.25$

Support is a symmetric measure, but confidence is not symmetric

c) Repeat part (a) by treating each customer ID as a market basket. Each item should be treated as a binary variable (1 if an item appears in at Least one transaction bought by the customer, and 0 otherwise.)

Now we have 5 baskets in total.

•
$$\{e\}$$
: $s = 4/5 = 0.8$

•
$$\{b, d\}$$
: $s = 5/5 = 1$

•
$$\{b, d, e\}$$
: $s = 4/5 = 0.8$

d) Use the results in part (c) to compute the confidence for the association

rules {b, d} ---> {e} and {e} ---> {b, d}.

•
$$\{b, d\} \rightarrow \{e\}$$
: $c = 0.8/1 = 0.8$

• {e}
$$\rightarrow$$
 {b, d}: c = 0.8 /0.8 = 1

3) Do Chapter 6 textbook problem #6 (parts d,e only) on page 406.

Transaction ID	Items Boueht
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

(d) Find an itemset (of size 2 or larger) that has the largest support.

Itemset	Support
cookies milk	1
bread cookies	1
milk	5
beer cookies	2

beer diapers	3
bread butter milk	3
bread butter cookies	1
beer milk	1
butter cookies	1
butter milk	3
butter	5
bread butter diapers milk	2
bread butter	5
bread	5
butter diapers milk	2
bread diapers	3
cookies	4
beer	4
butter diapers	3
diapers	7
diapers milk	4
beer cookies diapers	1
beer diapers milk	1
bread diapers milk	2
bread butter diapers	3
bread milk	3
cookies diapers milk	1
cookies diapers	2

Ø	10

The table is having all item sets with non-zero support count Ignoring the 1-itemsets (and \varnothing), the itemset with the largest support is {bread, butter}.

(e) Find a pair of items, a and b, such that the rules $\{a\} \rightarrow \{b\}$ and $\{b\} \rightarrow \{a\}$ have the same confidence.

Bread and butter have the same support (s = 5). This means that the rules {bread} \rightarrow {butter} and {butter} \rightarrow {bread} have the same confidence (c = 5/5 = 1). The same can be said with beer and cookies (s = 4, c = 2/4 = 0.5).

4) Using the data at <u>www.stats202.com/more_stats202_logs.txt</u> and treating each row as a "market basket" compute the support and confidence for the rule ip=65.57.245.11 → "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3".

State what the support and confidence values mean in plain English in this context.

The rule for which we have to find the support and confidence of the given Address is $\{65.57.245.11\}$ -> $\{\text{``Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3)}$ Gecko/20070309 Firefox/2.0.0.3"} Support for $\{65.57.245.11\}$ = 5021/14803 = 0.33

The support for {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"} = 1619 /14803 = 0.109

Confidence for rule {65.57.245.11} -> {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"} = support count ({65.57.245.11, "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"}) / support count ({65.57.245.11}) = 1619 / 5021 = 0.322