ĐẠI HỌC QUỐC GIA THÀNH PHỐ HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA TP HCM KHOA ĐIỆN-ĐIỆN TỬ

BÀI TẬP QUI TRÌNH SẢN XUẤT IC & MEMS

GVHD: TS. Hoàng Trang

Nhóm 5

MỤC LỤC

GVHD: TS.Hoàng Trang

	Trang
MỤC LỤC	1
CHAPTER 1: AN OVERVIEW OF MICROELECTRONIC FABRICATION	2
CHAPTER 2: LITHOGRAPHY	9
CHAPTER 3: THERMAL OXIDATION OF SILICON	11
CHAPTER 4: DIFFUSION	23

CHAPTER 1: AN OVERVIEW OF MICROELECTRONIC FABRICATION

GVHD: TS.Hoàng Trang

1.1

Các thiết bị có IC chips trong cuộc sống hàng ngày:

- computer
- telephone
- kim tử điển
- calculator
- televison
- remote of televison
- radio
- mp3 player
- mp4 player
- washing machine
- USB
- ipad

• • •

1.2

a)

ĐƯỜNG KÍNH (mm)	DIỆN TÍCH (mm²)	Tỷ LỆ
25	490.625	
50	1962.5	4

75	4415.625	9
100	7850	16
125	12265.625	25
150	17662.5	36
200	31400	64
300	70650	144
450	158962.5	324

- b) Số dice (1mm x 1mm) có trên wafer 450 mm là: 158962.5/1 = 158962
- c) Số dice (25mm x 25mm) có trên wafer 450 mm là: 158962.5/(25*25) = 254

1.3

- a) Số dice (20mm x 20mm) có trên wafer 300 mm là: 70650/(20*20) = 176
- b) Tính chính xác số dice có trên wafer 300 mm:
- Chia wafer làm 4 phần
- Tính số dice trên 1 wafer
 - + Chia wafer thành từng cột rộng.

 $X^2 + Y^2 = (bán kính wafer)^2$

X (mm)	0	20	40	60	80	100	120	140

GVHD: TS.Hoàng Trang

Y (mm)	150	148.6607	144.5683	137.4773	126.8858	111.8034	90	53.85165
số dice trên 1 cột = Y/20		7	7	6	6	5	4	2

- Tổng số dice là
$$(7+7+6+6+5+4+2)*4 = 148$$

1.4

$$B = 19.97*10^{0.1977(Y\text{-}1960)} \ bit/chíp$$

1.5

$$N = 1027*10^{0.1505(Y\text{-}1970)} \ transitor$$

1.6

a)

$$B_1 = 19.97*10^{0.1977(Y_1^{-1960)}}$$

$$B_2 = 19.97*10^{0.1977(Y_2^{-1960)}}$$

$$V\acute{o}i B_2 = 2B_1$$

$$B_2 \hbox{:} \ B_1 = 2 <=> 10^{0.1977(Y2-Y1)} = 2 => Y_2 - Y_1 = 0.495 \ \text{n\"{a}m}$$

b)

$$B_1 = 19.97*10^{0.1977(Y_1^{-1960)}}$$

$$B_2 = 19.97*10^{0.1977(Y_2^{-1960)}}$$

$$V\acute{o}i\;B_2\!=10B_1$$

$$B_2$$
: $B_1 = 10 <=> 10^{0.1977(Y2-Y1)} = 10 => Y_2 - Y_1 = 5.06$ năm

1.7

a)

$$N_1 = 1027*10^{0.1505(Y} 1^{-1970)}$$

$$N_2 = 1027*10^{0.1505(Y_2\text{--}1970)}$$

$$V\acute{o}i\ N_2\!=\!2N_1$$

$$N_2 \hbox{:}\ N_1 = 2 <=> 10^{0.1505(Y2-Y1)} = 2 => Y_2 - Y_1 = 2 \ \text{n\"{a}m}$$

b)

$$N_1 = 1027*10^{0.1505(Y_1-1970)}$$

$$N_2 = 1027*10^{0.1505(Y_2^{-1970)}}$$

$$V\acute{o}i\ N_2 = 10N_1$$

$$N_2$$
: $N_1 = 10 <=> 10^{0.1505(Y2-Y1)} = 10 => Y_2 - Y_1 = 6.64$ năm

1.8

$$F = 8.214*10^{-0.06079(Y_1^{-1970)}} \ \mu m$$

Với Y = 2020 => F =
$$7.5*10^{-3} \mu m$$

1.9

P của 1 vacumm tube = 0.5 W

=> P của 300 triệu vacumm tube $= 0.5*300.10^6 = 150.10^6 W$

$$=> I = P/U = 150.10^6/220 = 681818,2 (A)$$

1.10

a)

Bài tập qui trình sàn xuất IC & MEMS

Số line = $18 \text{ mm}/(2*0.25 \,\mu\text{m}) = 36000$

Chiều dài =36000*25 mm = 900000 mm

b)

Số line =18mm: $(2*0.1 \ \mu m) = 90000$

Chiều dài =90000*25 mm = 2250000 mm

1.11 Số dice (10mm x 10mm) có trên wafer 200 mm

X (mm)	0	10	20	30	40	50	60	70	80	90	100
Y (mm)	100	99.49874	97.97 959	95.39 392	91.65 151	86.60 254	80	71.4 142 8	60	43.5 8899	0
$s \hat{o} dice tr \hat{e} n 1$ $c \hat{o} t = Y/10$		9	9	9	9	8	8	7	6	4	0

GVHD: TS.Hoàng Trang

- Tổng số dice là (9+9+9+9+8+8+7+6+4+0)*4 = 276

1.12

a)

- Số dice (10mm x 10mm) có trên wafer 150 mm

X (mm)	0	10	20	30	40	50	60	70
		74.3303	72.2841	68.7386	63.4428	55.901		26.9258
Y (mm)	75	4	6	4	9	7	45	2
số dice trên 1 cột		7	7	6	6	5	4	2

Bài tập qui trình sàn xuất IC & MEMS

77/40				l	
= Y/10					

GVHD: TS.Hoàng Trang

$$\Rightarrow$$
 Tổng số dice là $(7+7+6+6+5+4+2)*4 = 148$

- Tổng số good dice là = 148 * 0.35 = 51
- Giá thành 1 good dice la = 1000/51 = 19.60784 USD

b)

- Số dice (10mm x 10mm) có trên wafer 200 mm

X (mm)	0	10	20	30	40	50	60	70	80	90	100
Y (mm)	10 0	99.49 874	97.97 959	95.39 392	91.65 151	86.60 254	80	71.4 142 8	60	43.5 8899	0
số dice trên 1 cột = Y/10		9	9	9	9	8	8	7	6	4	0

$$\Rightarrow$$
 Tổng số dice là $(9+9+9+9+8+8+7+6+4+0)*4 = 276$

- Tổng số good dice là = 276 * 0.35 = 96
- Giá thành 1 good dice là = 1000/96 = 10.41667 USD

1.13

λ (μm)	Số TRANSISTOR = $(5*5 \text{ mm})$: $(25 \lambda^2)$
1	1000000

Bài tập qui trình sàn xuất IC & MEMS

0.25	16000000
0.1	100000000

GVHD: TS.Hoàng Trang

CHAPTER 2: LITHOGRAPHY

2.1

- 25 masks
- 1 mask thì được x % good dice
- a) => % good dice sau 25 masks là 30 % \Leftrightarrow $x^{25} = 0.3 => x = 0.953$
- b) => % good dice sau 25 masks là 70 % \Leftrightarrow $x^{25} = 0.7 => x = 0.9858$

2.5

F = 180 nm

 $\lambda = 193 \text{ nm}$

mà
$$F = \frac{0.5\lambda}{NA} = NA = 0.536$$

$$DF = \frac{0.6\lambda}{NA^2} = (0.6*193): 0.563^2 = 403 \text{ nm}$$

2.6

a)

 $F = 0.25 \ \mu m$

NA = 1

mà
$$F = \frac{0.5\lambda}{NA} \implies \lambda = 0.5 \ \mu m$$

$$DF = \frac{0.6\lambda}{NA^2} = (0.6*0.5): 1^2 = 0.3 \ \mu m$$

b)

 $F = 0.25 \ \mu m$

NA = 0.5

mà
$$F = \frac{0.5\lambda}{NA} \implies \lambda = 0.25 \ \mu m$$

$$DF = \frac{0.6\lambda}{NA^2} = (0.6*0.25): 0.5^2 = 0.6 \ \mu m$$

2.7

 $\lambda = 193 \text{ nm}$

Mà
$$F = \frac{0.5\lambda}{NA} \implies F_{\min} = \frac{0.5\lambda}{NA_{\max}} = \frac{0.5*193}{1} = 96.5 \text{ nm}$$

2.8

 $\lambda = 13 \text{ nm}$

Mà
$$F = \frac{0.5\lambda}{NA} \implies F_{\min} = \frac{0.5\lambda}{NA_{\max}} = \frac{0.5*13}{1} = 6.5 \text{ nm}$$

CHAPTER 3: THERMAL OXIDATION OF SILICON

GVHD: TS.Hoàng Trang

Dùng công thức 3.12 và bảng 3.1 ta tính được các giá trị B/A và B ứng với các trường hợp cụ thể trong bài toán.

3.1

Grow 100 nm silicon <100>

Wet oxygen at 1000°C

B/A = 0.7422569 um/hr

 $B = 0.3151124 \text{ um}^2/\text{hr}$

=> t = 0.166458946 h

Grow 100 nm silicon <100>

Dry oxygen at 1000°C

B/A = 0.044783 um/hr

 $B = 0.0104205 \text{ um}^2/\text{hr}$

=> t = 3.192642087 h

Phương pháp dry oxygen dùng tốt hơn do thời gian thực hiện dài hơn → dễ kiểm soát hơn.

3.2

Grow 1.2 um silicon <100>

Wet oxygen at 1100°C

B/A = 0.044783 um/hr

 $B = 0.0104205 \text{ um}^2/\text{hr}$

Thời gian thực hiện để grow 0.4 um:

 $=> t_{0.4} = 0.440665677 \text{ h}$

Thời gian thực hiện 0.4 um đầu tiên:

$$\Rightarrow t_1 = t_{0.4} = 0.440665677 \ h$$

Thời gian thực hiện để grow 0.8 um:

$$=>t_{0.8}=1.486347018\;h$$

Thời gian thực hiện 0.4 um thứ hai:

$$=> t_2 = t_{0.8} - t_{0.4} = 1.045681341 \ h$$

Thời gian thực hiện để grow 1.2 um:

$$=> t_{1.2} = 1.486347018 h$$

Thời gian thực hiện 0.4 um thứ ba:

$$=> t_3 = t_{1.2} - t_{0.8} = 1.650697005 h$$

3.4

Grow 3 um silicon <100>

Wet oxygen at 1150°C

B/A = 5.3222307 um/hr

 $B = 0.6667881 \text{ um}^2/\text{hr}$

Thời gian thực hiện để grow 1 um:

$$=> t_{1um} = 1.687617917 h$$

Thời gian thực hiện 1 um đầu tiên:

$$\Rightarrow t_1 = t_{1um} = 1.687617917 h$$

Thời gian thực hiện để grow 2 um:

$$=> t_{2um} = 6.374689383 \ h$$

Thời gian thực hiện 1 um thứ hai:

$$=> t_2 = t_{2um} - t_{1um} = 4.687071466 h$$

GVHD: TS.Hoàng Trang

Thời gian thực hiện để grow 3 um:

 $=> t_{3um} = 14.0612144 h$

Thời gian thực hiện 1 um thứ ba:

 $=> t_3 = t_{3um} - t_{2um} = 7.686525015 h$

3.5

Grow 10 nm silicon <100>

Wet oxygen at 850°C

B/A = 0.0611596 um/hr

 $B = 0.1218941 \text{ um}^2/\text{hr}$

=> t = 0.164327007 h

Grow 10 nm silicon <100>

Wet oxygen at 1000°C

B/A = 0.7422569 um/hr

 $B = 0.3151124 \text{ um}^2/\text{hr}$

=> t = 0.013789771 h

Chọn trường hợp nhiệt độ ở 850° C do thời gian thực hiện dài hơn trường hợp ở nhiệt độ 1000° C.

3.6

Grow 2 um silicon <100>

Wet oxygen at 1150°C

B/A = 5.3222307 um/hr

 $B = 0.6667881 \text{ um}^2/\text{hr}$

=> t = 6.374689383 h

3.7

Grow 1 um silicon <100>

Wet oxygen at 1050°C

B/A = 1.5041447 um/hr

 $B = 0.4122632 \text{ um}^2/\text{hr}$

=> t = 3.090464422 h

Grow 1 um silicon <100>

Dry oxygen at 1050°C

B/A = 0.0892004 um/hr

 $B = 0.0159194 \text{ um}^2/\text{hr}$

=> t = 74.02695349 h

3.8

a) Grow 1 um silicon <100>

A dry-wet-dry oxidation cycle of 30 min/ 120 min/ 30 min at 1100^{0} C

Dry oxidation silicon <100>

Nhiệt độ (K) = 1373

B/A = 0.168976119322279

B = 0.0235811469716845

Thời gian (hour) = 0.5

 $D\hat{Q}$ dày (micromet) = 0.0592945095663939

Qui đổi về trường hợp: Wet oxidation silicon <100>

Nhiệt độ (K) = 1373

B/A = 2.89523914605347

B = 0.528911925641599

 $D\hat{o}$ dày (micromet) = 0.0592945095663939

Thời gian (hour) = 0.0271273090509448

Wet oxidation silicon <100>

Nhiệt độ (K) = 1373

B/A = 2.89523914605347

B = 0.528911925641599

Thời gian (hour) = 2.02712730905094

Độ dày (micromet) = 0.948136622027622

Qui đổi về trường hợp: Dry oxidation silicon <100>

Nhiệt độ (K) = 1373

B/A = 0.168976119322279

B = 0.0235811469716845

 $D\hat{0}$ dày (micromet) = 0.948136622027622

Thời gian (hour) = 43.7331776968616

Dry oxidation silicon <100>

Nhiệt độ (K) = 1373

B/A = 0.168976119322279

B = 0.0235811469716845

Thời gian (hour) = 44.2331776968616

GVHD: TS.Hoàng Trang

 θ dày (micromet) = 0.953911781025885

b) Grow 1 um silicon <111>

A dry-wet-dry oxidation cycle of 30 min/ 120 min/ 30 min at 1100°C

Dry oxidation silicon <111>

Nhiệt độ (K) = 1373

B/A = 0.283752351314771

B = 0.0235811469716845

Thời gian (hour) = 0.5

 $D\hat{o}$ dày (micromet) = 0.0747110283049352

Qui đổi về trường hợp: Wet oxidation silicon <111>

Nhiệt độ (K) = 1373

B/A = 4.86519567841974

B = 0.528911925641599

 $D\hat{0}$ dày (micromet) = 0.0747110283049352

Thời gian (hour) = 0.025909468861561

Wet oxidation silicon <111>

Nhiệt độ (K) = 1373

B/A = 4.86519567841974

B = 0.528911925641599

Thời gian (hour) = 2.02590946886156

Độ dày (micromet) = 0.982215698293071

Qui đổi về trường hợp: Dry oxidation silicon <111>

Nhiệt độ (K) = 1373

B/A = 0.283752351314771

B = 0.0235811469716845

Thời gian (hour) = 44.3733460352091

Dry oxidation silicon <111>

Nhiệt độ (K) = 1373

B/A = 0.283752351314771

B = 0.0235811469716845

Thời gian (hour) = 44.8733460352091

 $D\hat{o}$ dày (micromet) = 0.987958014364775

3.9

Wet oxidation silicon <100>

Nhiệt độ (K) = 1373

B/A = 2.89523914605347

B = 0.528911925641599

Thời gian (hour) = 5

Độ dày (micromet) = 1.53743177824182

Qui đổi về trường hợp: Dry oxidation silicon <100>

Nhiệt độ (K) = 1273

B/A = 0.0447829762860665

B = 0.01042045811596

Độ dày (micromet) = 1.53743177824182

Thời gian (hour) = 261.163018235897

Dry oxidation silicon <100>

Nhiệt độ (K) = 1273

B/A = 0.0447829762860665

B = 0.01042045811596

Thời gian (hour) = 262.163018235897

 $D\hat{o}$ dày (micromet) = 1.54057928821556

3.10

Wet oxidation silicon <111>

Nhiệt độ (K) = 1373

B/A = 4.86519567841974

B = 0.528911925641599

Thời gian (hour) = 5

 $\hat{D} \hat{Q}$ dày (micromet) = 1.57276170116192

Qui đổi về trường hợp: Dry oxidation silicon <111>

Nhiệt độ (K) = 1373

B/A = 0.283752351314771

B = 0.0235811469716845

Thời gian (hour) = 1.57276170116192

Độ dày (micromet) = 110.439208999943

Dry oxidation silicon <111>

Nhiệt độ
$$(K) = 1373$$

$$B/A = 0.283752351314771$$

$$B = 0.0235811469716845$$

$$\theta$$
 dày (micromet) = 1.58004901992165

3.11

Gọi t2 là thời gian grow oxide từ 0 → 200 nm.

Gọi t3 là thời gian grow oxide từ 0 → 300 nm.

$$X3 = \sqrt{Bt3} = 300$$
nm

$$X2 = \sqrt{Bt2} = 200 \text{ nm}$$

$$X = \sqrt{B(t2 + t3)}$$

$$X = \sqrt{Bt2 + Bt3} = 360$$
nm \rightarrow màu yellow green

Và 300 nm → màu blue to violet blue

3.12

Ta có:

 $X = \sqrt{Bt} = 1$ um => man carnation pink.

Thời gian để grow 1 um là t => thời gian để grow bên ngoài square window là 2t.

$$X' = \sqrt{B2t} = 1.41\sqrt{Bt} = 1.41 \text{ um} => \text{måu orange.}$$

3.13

Wet oxidation silicon <100>

Nhiệt độ
$$(K) = 1373$$

$$B/A = 2.89523914605347$$

$$B = 0.528911925641599$$

=> Thời gian để grow 04 um là:

 $t_1 = 0.440665676697385$

=> Thời gian để grow 1.4 um là:

 $t_2 = 4.18927339935428$

=> Thời gian cần thực hiện là:

t = t2 - t1 = 3.748607723 h

=> Màu orange

3.14

4h for boron diffusion at 1150°C → tra đồ thị Fig 3.10 ta có lớp oxide có độ dày là 0.07 um.

1h for phosphorus diffusion at 1050°C → tra đồ thị Fig 3.10 ta có lớp oxide có độ dày là 1.5 um.

GVHD: TS.Hoàng Trang

3.15

15h for boron diffusion at 1150° C \rightarrow tra đồ thị Fig 3.10 ta có lớp oxide có độ dày là 0.15 um.

3.16

20h for phosphorus diffusion at 1200^{0} C \rightarrow tra đồ thị Fig 3.10 ta có lớp oxide có độ dày là 3.5 um.

3.17

Lớp SiO₂ dày 1um có màu là carnation pink.

Lớp SiO₂ dày 2um có màu là carnation pink.

3.18

$$2X_0 = k\lambda/n \rightarrow X_0 = k\lambda/2n$$

$$X_0 = k*0.57um/2*1.46$$

GVHD: TS.Hoàng Trang

 $X_0 < 1.5 \ um$

=> k < 7.68

Với k = 1: $X_0 = 0.2$ um \rightarrow màu light gold or yellow; slightly metallic.

Với k = 2: $X_0 = 0.39$ um \rightarrow màu yellow.

Với k = 3: $X_0 = 0.58$ um \rightarrow màu light orange or yellow to pink.

Với k = 4: $X_0 = 0.78$ um → màu yellowish.

Với k = 5: $X_0 = 0.97$ um \rightarrow màu yellow to yellowish.

Với k = 6: $X_0 = 1.18$ um \rightarrow màu violet.

Với k = 7: $X_0 = 1.4$ um → màu orange.

CHAPTER 4: DIFFUSION

4.1

a)

$$x_j = 2\sqrt{D_t \cdot \ln(\frac{N_0}{N_B})}$$

$$D_t=10^{\text{-8}}\ cm^2$$

$$N_0 = 5.10^{18} \ cm^3$$

$$N_B = 10^{15} \ cm^3$$

$$=> x_j = 5.8*10^{-4} \text{ cm}$$