Ispit iz Diskretne matematike 1 14. 9. 2021.

- 1. (8 bodova) Odredite funkciju izvodnicu niza $a_n = 1 + 2n + 3n^2, n \ge 0.$
- **2.** (8 bodova) Neka je a_n broj nizova duljine n sastavljenih od znamenaka 0, 1, 2, 3, 4, 5, a koji ne sadrže uzastopne znamenke koje nisu djeljive s 3.
 - (a) Odredite a_1 i a_2 .
 - (b) Odredite rekurzivnu relaciju za niz (a_n) .
 - (c) Riješite dobivenu rekurzivnu relaciju iz (b) podzadatka.
- 3. (8 bodova) Za graf sa slike detaljno provedite postupak i odredite stablo najkraćih puteva od vrha A do svih ostalih vrhova.

4. (8 bodova)

- (a) Dokažite da svako stablo s n vrhova, barem jednim vrhom stupnja 4 i barem jednim vrhom stupnja 3, ima barem 5 listova.
- (b) Klasificirajte sva stabla s 8 vrhova koja imaju barem jedan vrh stupnja 4, barem jedan vrh stupnja 3 i točno 5 listova.
- 5. (8 bodova) Iskažite i dokažite Eulerovu formulu za povezan planaran graf.
- 6. (8 bodova) Nadopunite zadani latinski pravokutnik do latinskog kvadrata

1	2	3	4	5	6
4	6	1	2	3	5
3	5	2	6	1	4

Rješenja

1. Računamo traženu funkciju izvodnicu po definiciji:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} (1 + 2n + 3n^2) x^n = \sum_{n=0}^{\infty} x^n + \sum_{n=0}^{\infty} 2n x^n + \sum_{n=0}^{\infty} 3n^2 x^n$$
$$= \dots = \frac{2}{1-x} - \frac{7}{(1-x)^2} + \frac{6}{(1-x)^3}.$$

- 2. (a) Uočimo da svaki jednočlan niz ispunjava zadane uvjete pa je $a_1=6$. S druge strane, za dvočlane nizove imamo dvije mogućnosti: ili im je prva znamenka djeljiva s 3 (pa tada prvu znamenku možemo birati na 2, a drugu na 6 načina), ili nije (u tom slučaju prvu znamenku možemo birati na 4 načina, a drugu na 2 jer ona mora biti djeljiva s 3). Dakle, $a_2=2\cdot 6+4\cdot 2=20$.
 - (b) Promotrimo jedan niz duljine n koji zadovoljava zadane uvjete. Razlikujemo iste slučajeve kao u prethodnom podzadatku:
 - 1° Ako je prva znamenka tog niza djeljiva s 3, nju možemo odabrati na 2 načina, a preostalih n-1 znamenaka na a_{n-1} način (jer i među njima ne smiju biti dvije uzsatopne koje nisu djeljive s 3). Dakle, takvih nizova $2a_{n-1}$.
 - 2° Ako prva znamenka niza nije djeljiva s 3, nju možemo odabrati na 4 načina. U tom slučaju druga znamenka mora biti djeljiva s 3 pa ju biramo na 2 načina, a preostale n-2 znamenke biramo na a_{n-2} načina. Dakle, takvih nizova ima $4\cdot 2\cdot a_{n-2}=8a_{n-2}$.

Zato tražena rekurzivna relacija glasi

$$a_n = 2a_{n-1} + 8a_{n_2}, \ n \geqslant 2,$$

uz početne uvjete $a_1 = 6$, $a_2 = 20$.

(c)
$$a_n = \frac{1}{3} \left(4^{n+1} - (-2)^n \right).$$

3. Traženo stablo najkraćih puteva je dano na sljedećoj slici (uz svaki je vrh napisana duljina najkraćeg puta od vrha A do tog vrha):

4. (a) Neka su v i w vrhovi tog stabla takvi da je $\deg(v) = 4$ i $\deg(w) = 3$. Budući da je riječ o stablu, u njemu postoji jedinstveni put između v i w. Uz taj put postoje još 3 brida incidentna sa v te 2 brida incidentna sa w. Uočimo da za svaki od tih 5 bridova možemo konstruirati put koji ga sadrži, a koji spaja jedan od vrhova v, w

- s nekim od listova tog grafa. Ti putevi neće imati zajedničkih bridova ni vrhova (osim v i w) jer bi u suprotnom u grafu postojao ciklus. Dakle, takav graf ima barem 5 listova.
- (b) Uočimo da u ovom slučaju jedinstveni put između vrhova stupnja 3 i 4 sadrži najviše jedan vrh (uz ta dva). Ovisno o tome, do na izomorfizam nalazimo tri takva stabla koja sva imaju niz stupnjeva (1, 1, 1, 1, 1, 2, 3, 4):

- **5.** Skripta, str. 141, teorem 7.6.
- 6.

1	2	3	4	5	6
4	6	1	2	3	5
3	5	2	6	1	4
5	1	4	3	6	2
6	4	5	1	2	3
2	3	6	5	4	1