Лабораторная работа №4

Модель боевых действий

Липатникова Марина Сергеевна¹ 03.03.2022, Moscow

¹RUDN University, Moscow, Russian Federation

Цель работы

Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- Колебания гармонического осциллятора без затуханий и без действий внешней силы;
- Колебания гармонического осциллятора с затуханием и без действий внешней силы;
- Колебания гармонического осциллятора с затуханием и под действием внешней силы.

Задание работы

$$\frac{d^2x}{dt^2} + 18x = 0$$

2.

$$\frac{d^2x}{dt^2} + 18\frac{dx}{dt} + 9x = 0$$

3.

$$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = 0.5\cos(3t)$$

На интервале $t \in [0;68]$ шаг (0.05) с начальными условиями $x_0 = 1.8, y_0 = 0.8$

Теоретическое введение

Гармонические колебания — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному) закону.

Осциллятор — система, совершающая колебания, то есть показатели которой периодически повторяются во времени.

Дифференциальные уравнения 1 случай

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = 0$$
$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0$$

Для однозначной разрешимости уравнения второго порядка необходимо задать два начальных условия вида:

Дифференциальные уравнения 1 случай

$$\begin{cases} x(t_0) = x_0 \\ \frac{dx}{dt}(t_0) = y_0 \end{cases}$$

Дифференциальные уравнения 2 случай

Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\begin{cases} \frac{dx}{dt} = y\\ \frac{dy}{dt} = -\omega_0^2 x \end{cases}$$

Начальные условия для системы примут вид:

$$\begin{cases} x(t_0) = x_0 \\ y(t_0) = y_0 \end{cases}$$

Дифференциальные уравнения 3 случай

Со внешней силой система примет вид:

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = -\omega_0^2 x - f(t) \end{cases}$$

Начальные условия как во 2 случае.

График в 1 случае

Фазового портрет гармонических колебаний:

График во 2 случае

Фазового портрет гармонических колебаний:

10/13

График в 3 случае

Фазового портрет гармонических колебаний:

Результат выполнения работы

Построили фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- Колебания гармонического осциллятора без затуханий и без действий внешней силы;
- Колебания гармонического осциллятора с затуханием и без действий внешней силы;
- Колебания гармонического осциллятора с затуханием и под действием внешней силы.

Список литературы

- 2. Wikipedia: Осциллятор ([2]: [https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D*)
- 3. Теоретические материалы курса.