<u>Άσκηση 1</u>

(D,I) όπου D=N

$$I(\alpha)=0$$
, $I(b)=1$, $I(c)=3$, $I(f): n \rightarrow n^2$, $I(g): m$, $n \rightarrow m+n$

 $\underline{\Sigma \dot{\nu} voλo \dot{\alpha} \rho \tau \iota \omega v}$ ← I(P)={neN/n: $\dot{\alpha} \rho \tau \iota o \varsigma$ }, $\underline{\Sigma \dot{\nu} voλo \dot{\zeta} \epsilon u v}$. ← I(Q)= {(m,n) eNxN/ το m διαιρ. το n}

(α) P(f(b)) Το τετράγωνο του b είναι άρτιος αριθμός.

$$F_{D,I}P(F(b))$$
 $\iota\sigma\chi$. Av I'(F(b)) \in I(P).

Avv. $I(f)I'(b) \in I(P)$ δεν ισχύει επειδή το $1^2 \frac{\delta \epsilon v}{\delta \epsilon v}$ είναι άρτιος.

b) P(g(b,c)) Το άθροισμα των των b,c είναι άρτιος αριθμός.

$$F_{D,I}P(g(b,c)) \alpha vv. I'(g(b,c)) \in I(P) \alpha vv I(g)I'(b,c) \in I(P)$$

<u>Ισχύει</u> επειδή I(b)+I(c)=4 ε στους άρτιους.

c) P(g(f(c),f(b))) Το άθροισμα των τετραγώνων των b και c είναι άρτιος αριθμός.

$$F_{D,I}P(g(f(c),f(b))) \alpha VV I'(g(f(c),f(b))) \in I(P)$$

$$I'(g(f(c),f(b))) = 3^2 + 1^2 = 10 ∈ I(P)$$
. Άρα ισχύει

d) Q(f(f(c)), f(f(c))) Το τετράγωνο του τετραγώνου του c διαιρεί το τετράγωνο του τετραγώνου του c

$$F_{P,I}Q(f(f(c),f(f(c))) \alpha vv. I'(f(f(c)),f(f(c)) \in I(Q)$$

Όπου Ι΄ $(f(f(c)), f(f(c)) = ((3^2)^2, (3^2)^2)$ το οποίο ανήκει στο I(Q) επειδή κάθε αριθμός διαιρεί τον εαυτό του.

e) \forall XQ (f(x),x) Το τετράγωνο κάθε φυσικού αριθμού, διαιρεί αυτόν τον αντίστοιχο φυσικό αριθμό.

$$F_{P,I} \forall Q(f(x),x) \alpha vv I'(Q(f(x),x))=D$$

Όπου
$$I'(Q(f(x),x)) = I(Q)(I'(f(x)),I'(x))$$

Δεν ισχύει επειδή δεν διαιρεί το τετράγωνο ενός αριθμού, αυτόν τον αριθμό. (π.χ. 1 δε διαιρεί το 2)

f) $\exists x \, Q(x,f(x))$ Υπάρχει φυσικός αριθμός που διαιρεί το τετράγωνο του.

 $F_{P,I} \exists xQ(x,f(x)) \alpha vv I'(Q(x,f(x)) \neq 0$

Όπου I'(Q(x,f(x)) = I(Q)(I'(x,f(x))) ισχύει επειδή υπάρχει τουλάχιστον ένας αριθμός που διαιρεί το τετράγωνό του

g) \forall x P(x) \rightarrow P(f(x)) για κάθε φυσικό αριθμό ο οποίος είναι άρτιος το τετράγωνο του είναι άρτιος αριθμός επίσης.

 $F_{P,I} \forall x (P(x) \rightarrow P(f(x))) \alpha v I'(P(x) \rightarrow P(f(x))) = D$

Ισχύει επειδή για κάθε φυσικό που είναι άρτιος ισχύει ότι και το τετράγωνο του θα είναι άρτιος (π.χ. 2)

h) \exists x (P(x) \land P(f(x))) Υπάρχει φυσικός ο οποίος είναι άρτιος και το τετράγωνο του είναι ταυτόχρονα άρτιος.

 $F_{P,I} \exists x (Px) \land P(f(x))) \alpha vv I'(P(x) \land P(f(x))) \neq \emptyset$

Ισχύει επειδή υπάρχει αριθμός που είναι άρτιος και είναι και το τετράγωνο του άρτιος (π.χ. 2)

i) $\exists x \exists y (P(x) \land P(y) \land P(g(x,y)))$ Θέλουμε να ελέγξουμε αν υπάρχουν 2 άρτιοι για τους οποίους να ισχύει: να είναι άρτιος επίσης

 $F_{P,I} \exists x \exists y(P(x))$

Άσκηση 2

a) Έστω ότι η πρόταση $\exists x \Box y \ P(x,y)$ είναι ικανοποιήσιμη. Τότε θα ισχύει $I(\exists x \Box y \ P(x,y)) \neq \emptyset$.

Τότε υπάρχει x=a τ.ω \square y άρα και για y=a P(a,a) αληθής.

Άρα $a \notin I(\Box x \neg P(x,x)) => I(\Box x \neg P(x,x)) \neq \emptyset$. Συνεπώς το σύνολο είναι μη ικανοποιήσιμο.

b) Έστω ότι οι προτάσεις $\exists x \ P(x)$ και $\Box x \neg Q(x)$ ικανοποιήσιμες. Τότε $I(\exists x \ P(x)) \neq \varnothing \text{ και } I(\Box x \neg Q(x)) = D.$ Άρα υπάρχει $x = a \ \tau.\omega.$ Q(x) να είναι αληθής και δεν υπάρχει $x \ \tau.\omega.$ Q(x) να είναι αληθής. Για $x = a \ \text{έχουμε}$ ότι $P(a) \rightarrow Q(a)$ ψευδής. Άρα $a \not\in I(\Box x \ P(x) \rightarrow Q(x)).$ Συνεπώς $I(\Box x \ P(x) \rightarrow Q(x)) \neq D.$ Άρα το σύνολο μή ικανοποιήσιμο.

(εναλλακτική λύση)

```
α) {∃x ∀y P(x,y), ∀x ¬ P(x,x)}

Ano ∀x ¬P(x,x) ευτηρείνευτε ότι δεν υπόρχει Χ το εποίο μαζι με
τον εαυτό του, εποληθείουν την P

Ano ∃x ∀y P(x,y) ευτηρείνουτε ότι χια καθε y υπόρχει ενα
Χ τετοιο ώστε να ι εχύει η P(x,y). Αν ομως X = y τότε θα
εχω ε P(x,x), ¬ P(x,x) επου δεν ι εχύει. Αρα. το ευνολο είναι

μπ ικανοποιή είτος

Δ) ξ ∃x P(x), ∀x(P(x) → Q(x)), ∀x ¬ Q(x)}

Anό ∃x P(x) ευτηρείνουτε ότι η P ιεχύει τια ενα τουλ χ. Φ

Aπό ∀x ¬Q(x) ευτηρείνουτε ότι η P ιεχύει τια ενα τουλ χ. Φ

Aπό ∀x ¬Q(x) ευτηρείνουτε ότι η Q δεν ι εχύει τια κανένα χ. Φ

Aπό ∀x (P(x) → Q(x)) ευτηρείνω ότι

α) δεν ι εχύει η P η

είνως
είνως
είνως
είνως
απου από Φ ∃x P(x) άρα πρέπει αυτο το χ να εποίλη Φ.

και την Q, για να είναι ι κανοποιη είτο. Αυτό όμως δεν ι εχύει απο Φ

Αραι το ενιολο μη ικανοποίη είτο π
```

Άσκηση 3

- a) 1. Υποπαραγωγή
 - 1.1. P(b) (YY)
 - 1.2. $\exists x P(x) \quad (\alpha \pi \acute{o} 1.1 \text{ και εισαγωγή } \exists)$
 - 1.3. $\exists x P(x) \rightarrow Q(a)$ (Υπόθεση)
 - 1.4. Q(a) (από 1.2, 1.3 και απαλοιφή →)

```
2. \Box x(P(x) \rightarrow Q(a)) (από 1 και εισαγωγή \Box)
    Προσοχή: Η εισαγωγή □ επιτρέπεται γιατί το b δεν εμφανίζεται σε καμία υπόθεση. Αν στην
    υπόθεση της υποπαραγωγής είχαμε υπόθεση P(a) θα ήταν λάθος.
b) 1. Υποπαραγωγή
       1.1. P(\alpha) (YY)
       1.2.□x ∃y (P(x) \rightarrow R(y,x)) (Υπόθεση)
       1.3. \exists y (P(a) \rightarrow R(y,a)) (από 1.2, απαλοιφ \Box και αντικατ με a)
       1.4. Υποπαραγωγή
            1.4.1. P(a) \rightarrow R(b,a) (YY)
            1.4.2. P(a) (επανάληψη 1.1)
            1.4.3. R(b,a) (1.4.1, 1.4.2 και απαλοιφή \rightarrow)
            1.4.4. \exists y R(y,a) (από 1.4.3, εισαγ \exists και αντικ b με y)
       1.5. ∃y R(y,a) (από 1.3, 1.4 και απαλοιφή ∃)
    2. \Box x(P(x) \rightarrow \exists y \ R(y,x)) (από 1, εισαγωγή \Box και αντικ a με x)
c) 1. \exists x \Box y (P(y) \rightarrow R(x,y)) (Yπόθεση)
    2. \Box y P(y) \rightarrow \exists x R(x,y) (από ερώτημα b)
                                  (από 2, απαλοιφή □ y και αντικατ με α)
    3. P(a) \rightarrow \exists x (R(x,a))
    4. P(a) (υπόθεση)
    5. \exists x \ R(x,a) (από 3,4 και απαλοιφή \rightarrow)
```

Άσκηση 4

```
1. Υποπαραγωγή
```

- 1.1. R(a,b) (YY)
- 1.2. R(a,b) (1.1 και επανάληψη)
- 2. $\Box x \Box y (R(x,y) \rightarrow R(x,y))$ (από 1 και εισαγωγή \Box)

Άσκηση 5

1) predicate_1(c1) $\equiv \forall$ (d1, d2, Co, C2)(Department (d1, "Chemistry", d2) \land Courses(Co, C1, C2, d1)

- 2) predicate_2(fname_2, fname_3) $\equiv \exists$ (i1, i2, i3, i4, i5) [Instructor(i1, fname_2, fname_3, i2, i3, i4, i5) $\land \forall$ (a, b, c, d, e, f, g) (Instructor(a, b, c, d, e, f, g) \land (i3 >=e) \land (i1 \neq a))]
- 3) predicate_3(fname_3, lname_3) ≡ ∃ (d1, d2, i1, i2, i3, i4) (Department (d1, "Biology", d2) ∧ Instructor (d2, fname_3, lname_3, i1, i2, i3, i4))
- 4) predicate_4(fname_4, Iname_4, fname_5, Iname_5) ≡

```
\forall (S1, S2, ... S7, i1..., i6, C1,..., C4) (Instructor(i1, fname_5, Iname_5, i2, ..., i6) \land Student (S1, fname_4, Iname_4, S2, ..., S7) \land Course (c1, ..., c4) \land Teach (i1, C1) \rightarrow Attend (S1, C1)).
```

5) Predicate_5(cname) $\equiv \forall$ (C1, C2, C3) [Course(C1, cname, C2, C3) \rightarrow \exists (i1, i2, ..., i7)(Instructor(i1, i2, "Papadopoulos", i3, ..., i7) \land Teaches (i1, c1)) \lor \exists (S1, S2, ..., s8) (Student(S1, S2, "Papadopoulos", S3, ..., S8) \land Attend (s1, C1))]