9 - Потоки со стоимостью

А. Максимальный поток минимальной стоимости

2 секунды, 256 мегабайт

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Входные данные

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100, 0 \le m \le 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Выходные данные

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает $2^{63}-1$. Гарантируется, что в графе нет циклов отрицательной стоимости.

входные	данные	
4 5		
1 2 1 2		
1 3 2 2		
3 2 1 1		
2 4 2 1		
3 4 2 3		
выходные данные		
12		

В этой задаче достаточно несколько раз пустить Форд-Беллмана...

В. Задача о назначениях

5.0 с, 256 мегабайт

Дана целочисленная матрица C размера n imes n. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка, а сумма значений в выбранных ячейках была минимальна.

Входные данные

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Выходные данные

В первую строку выходного файла выведите одно число — искомая минимизируемая величина. Далее выведите n строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

Входные данные 3 3 2 1 1 3 2 2 1 3 Выходные данные 3 2 1 3 2 1 3

С. План эвакуации

2 секунды, 256 мегабайт

В городе есть муниципальные здания и бомбоубежища, которые были специально построены для эвакуации служащих в случае ядерной войны. Каждое бомбоубежище имеет ограниченную вместительность по количеству людей, которые могут в нем находиться. В идеале все работники из одного муниципального здания должны были бы бежать к ближайшему бомбоубежищу. Однако, в таком случае, некоторые бомбоубежища могли бы переполниться, в то время как остальные остались бы наполовину пустыми.

Чтобы разрешить эту проблему Городской Совет разработал специальный план эвакуации. Вместо того, чтобы каждому служащему индивидуально приписать, в какое бомбоубежище он должен бежать, для каждого муниципального здания определили, сколько служащих из него в какое бомбоубежище должны бежать. Задача индивидуального распределения была переложена на внутреннее управление муниципальных зданий.

План эвакуации учитывает количество служащих в каждом здании — каждый служащий должен быть учтен в плане и в каждое бомбоубежище может быть направлено количество служащих, не превосходящее вместимости бомбоубежища.

Городской Совет заявляет, что их план эвакуации оптимален в том смысле, что суммарное время эвакуации всех служащих города минимально.

Мэр города, находящийся в постоянной конфронтации с Городским Советом, не слишком то верит этому заявлению. Поэтому он нанял Вас в качестве независимого эксперта для проверки плана эвакуации. Ваша задача состоит в том, чтобы либо убедиться в оптимальности плана Городского Совета, либо доказать обратное, представив в качестве доказательства другой план эвакуации с меньшим суммарным временем для эвакуации всех служащих.

Карта города может быть представлена в виде квадратной сетки. Расположение муниципальных зданий и бомбоубежищ задается парой целых чисел, а время эвакуации из муниципального здания с координатами (X_i,Y_i) в бомбоубежище с координатами (P_j,Q_j) составляет $D_{ij}=|X_i-P_j|+|Y_i-Q_j|+1$ минут.

Входные данные

Входной файл содержит описание карты города и плана эвакуации, предложенного Городским Советом. Первая строка входного файла содержит два целых числа N ($1 \le N \le 100$) и M ($1 \le M \le 100$), разделенных пробелом. N — число муниципальных зданий в городе (все они занумерованы числами от 1 до N), M — число бомбоубежищ (все они занумерованы числами от 1 до M).

Последующие N строк содержат описания муниципальных зданий. Каждая строка содержит целые числа X_i, Y_i и B_i , разделенные пробелами, где X_i, Y_i (- $1000 \le X_i, Y_i \le 1000$) — координаты здания, а B_i ($1 \le B_i \le 1000$) — число служащих в здании.

Описание бомбоубежищ содержится в последующих M строках. Каждая строка содержит целые числа P_j, Q_j и C_j , разделенные пробелами, где P_j, Q_j (- $1000 \le P_j, Q_j \le 1000$) — координаты бомбоубежища, а C_j ($1 \le C_j \le 1000$) — вместимость бомбоубежища.

В последующих N строках содержится описание плана эвакуации. Каждая строка представляет собой описание плана эвакуации для отдельного здания. План эвакуации из i-го здания состоит из M целых чисел E_{ij} , разделенных пробелами. E_{ij} ($0 \le E_{ij} \le 10000$) — количество служащих, которые должны эвакуироваться из i-го здания в i-е бомбоубежище.

Гарантируется, что план, заданный во входном файле, корректен.

Выходные данные

SUBOPTIMAL

OPTIMAL

Если план эвакуации Городского Совета оптимален, то выведите одно слово <code>OPTIMAL</code>. В противном случае выведите на первой строке слово <code>SUBOPTIMAL</code>, а в последующих N строках выведите Ваш план эвакуации (более оптимальный) в том же формате, что и во входном файле. Ваш план не обязан быть оптимальным, но должен быть лучше плана Городского Совета.

```
ВХОДНЫЕ ДАННЫЕ

3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2

ВЫХОДНЫЕ ДАННЫЕ
```

3 0 1 1 0 0 6 0 0 4 0 1 Входные данные 3 4 -3 3 5

```
3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 0 1 1
0 0 6 0
0 4 0 1

Выходные данные
```

D. Автоматное программирование

5 секунд, 256 мегабайт

В один замечательный день в компанию «X» завезли k автоматов. И не простых автоматов, а автоматов-программистов! Это был последний неудачный шаг перед переходом на андроидов-программистов, но это уже совсем другая история.

В компании сейчас n задач, для каждой из которых известно время начала ее выполнения s_i , длительность ее выполнения t_i и прибыль компании от ее завершения c_i . Любой автомат может выполнять любую задачу, ровно одну в один момент времени. Если автомат начал выполнять задачу, то он занят все моменты времени с s_i по s_i+t_i-1 включительно и не может переключиться на другую задачу.

Вам требуется выбрать набор задач, которые можно выполнить с помощью этих k автоматов и который принесет максимальную суммарную прибыль.

Входные данные

В первой строке записаны два целых числа n и k ($1 \le n \le 1000$, $1 \le k \le 50$) — количество задач и количество автоматов, соответственно.

В следующих n строках через пробелы записаны тройки целых чисел s_i,t_i,c_i ($1\leq s_i,t_i\leq 10^9$, $1\leq c_i\leq 10^6$), s_i — время начала выполнения i-го задания, t_i — длительность i-го задания, а c_i — прибыль от его выполнения.

Выходные данные

Выведите n целых чисел x_1, x_2, \dots, x_n . Число x_i должно быть равно 1, если задачу i следует выполнить, и 0 в противном случае.

Если оптимальных решений несколько, то выведите любое из них.

входные данные		
3 1		
2 7 5		
1 3 3		
4 1 3		
выходные данные		
0 1 1		

```
ВХОДНЫЕ ДАННЫЕ

5 2
1 5 4
1 4 5
1 3 2
4 1 2
5 6 1

Выходные данные
1 1 0 0 1
```

Codeforces (c) Copyright 2010-2020 Михаил Мирзаянов Соревнования по программированию 2.0