

Micro Processors & Interfacing 16CS307

Mr. M Krishna Chennakesava Rao,

Asst. Professor, Dept. of ECE,

VFSTR University

Ref: B Ram

Block diagram of Micro Computer

Address Bus

Ref: Douglas V Hall

Schematic Diagram / Internal parts of Micro Processor

Ref: B Ram

Syllabus Overview

UNIT 1 -	Introduction to 8086	Microprocessor

- **UNIT 2 Hardware features of 8086**
- **UNIT 3 -** Advanced Processors
- **UNIT 4 Introduction to 8051Microcontroller**
- **UNIT 5 -** 8051 Microcontroller Hardware

Syllabus Overview

UNIT 1 - Introduction to 8086microprocessor

- **History** of Micro processors
- Architecture of 8086 → Register model
- Memory Segmentation
- **Software Aspects** of 8086 → Addressing modes
 - → Instruction set
 - → Interrupts → Hardware Interrupts

Software Interrupts

UNIT 2 - Hardware features of 8086 :

- Pins
- Max / Min modes
- Memory Interfacing

Syllabus Overview

UNIT 3 - ADVANCED PROCESSORS

- Real and Virtual Memory Addressing Modes
- Memory Management
- Memory Paging Mechanism
- Cache Memory Techniques
- Exception Handling
- Comparison of Microprocessors (8086 80186 80286 80386 80486)
- Comparison of Pentium Processors.

UNIT 4 - Introduction to 8051Microcontroller

- Comparison of Micro processor and micro controller
- 8051 Architecture, Pin Diagram
- **Software Aspects** of 8051 → Addressing modes
 - → Instruction set
 - → Simple programs

Syllabus Overview

UNIT 5 - 8051 Microcontroller Hardware:

- ParallelPortsin8051, 8051Serialports
- ExternalMemoryinterfacingwith8051,
- 8051Timers,
- 8051 Interrupts.
- LCD & Keyboard Interfacing
- ADC & DAC Interfacing
- Stepper Motor Interfacing
- ■External Memory interfacing.

13-Dec-18 8

TEXTBOOKS:

- 1. Douglas V.Hall, "Microprocessors & Interfacing", 2nd ed., TMH, 2003.
- 2. Kenneth J. Ayala, "8051 Microcontrollers", Cengage Learning, 2008.

REFERENCEBOOKS:

- 1. A K Ray and KM Bhurchandi, "Advanced Microprocessors & Peripherals", 2nd ed., TMH, 2006.
- 2. Raj Kamal, "Microcontroller architecture, programming, Interfacing and System Design", Pearson Education, 2005
- 3. The 8051 Microcontroller and Embedded Systems using Assembly and C Muhammad Ali Mazidi, J anice Gillispie Mazidi, Rolin D. McKinlay, 2nd Edn, Pearson Education, 2008.
- 4. Barry B.Brey: Intel Microprocessor Architecture, Programming and Interfacing-8086/8088, 80186, 80286, 80386 and 80486, PHI, 1995.

UNIT - 1

Introduction to 8086 Micro Processor

Introduction to 8086 Micro Processor

Unit-1 Topics:

- Evolution Of Microprocessors,
- 8086 Microprocessor, Architecture,
- Register Model,
- Memory Segmentation,
- Physical Address Generation,
- Addressing Modes,
- ☐ Instruction Set,
- ☐ Interrupts Of 8086,
- Interrupt Vector Table.

Definition of microprocessor:

Microprocessors can be defined based on 3 things. They are

i. Based on the application of the device.

The CPU of any microcomputer is called microprocessor.

ii. Based on the name of the device.

A small device which is able to do data processing is called microprocessor.

iii. Based on the construction and operation of the device.

Microprocessor is a VLSI/ULSI chip.

It accepts binary data from either an i/p device **or** from the memory and it access the instruction from the memory and it perform the operation of the received data according to the instruction & produces the results those are sent to either an o/p device or memory.

Evolution of Microprocessors

History of microprocessors: - Main parameter → word length

Definitions of word length: -

The no. of bits processed by the CPU at a time are called word length.

(or)

The no. of bits transmitted or received by the CPU at a time.

(or)

The no. of bits identified by the CPU at a time are called word length.

History

Third Generation

During 1978

HMOS technology ⇒ Faster speed, Higher packing density

16 bit processors ⇒ 40/ 48/ 64 pins
Easier to program
Dynamically relatable programs
Processor has multiply/ divide arithmetic hardware
More powerful interrupt handling capabilities
Flexible I/O port addressing

Intel 8086 (16 bit processor)

First Generation

Between 1971 – 1973

PMOS technology, non compatible with TTL

4 bit processors ⇒ 16 pins

8 and 16 bit processors ⇒ 40 pins

Due to limitations of pins, signals are

multiplexed

Intel 4004,4040 (4 bit processors)

Fifth Generation Pentium

64 bit processors

Fourth Generation

During 1980s

Low power version of HMOS technology (HCMOS)

32 bit processors

Physical memory space 2²⁴ bytes = 16 MB Virtual memory space 2⁴⁰ bytes = 1 TB Floating point hardware Supports increased number of addressing modes

Intel 80386

Second Generation

During 1973

NMOS technology \Rightarrow Faster speed, Higher density, Compatible with TTL

4 / 8/ 16 bit processors \Rightarrow 40 pins

Ability to address large memory spaces and I/O ports

Greater number of levels of subroutine nesting

Better interrupt handling capabilities

Intel 8085 (8 bit processor)

Features of 8086: -

- 1. It is a 16-bit Microprocessor. So that it has 16 bit ALU, 16 bit registers and internal data bus and 16 bit external data bus. i.e., It's ALU, internal registers works on 16-bit binary word. It make s faster processing.
- 2. It was implemented in the year 1978 by Intel corp. by using HMOS (hybrid metal oxide semi-conductor or high speed MOS or high density MOS) technology.
- 3. 8086 processor has 20 address lines A19-A0, and 16 data lines D15-D0.
- 8086 has 20 bit address lines to access memory. Hence it can access $2^{20} = 1$ MB memory location. 8086 has 16-bit address lines to access I/O devices, hence it can access $2^{16} = 64$ K I/O location
- 3. 8086 processor has 20 address lines A19-A0, and 16 data lines D15-D0.
 - The data lines are multiplexed with lower order 16 address lines, and then the multiplexed address and data lines are AD15-AD0.
 - The remaining higher order 4 address lines A16-A19 are multiplexing with the status Lines S3-S6.
- 4. It has three versions based on the frequency of operation
- a) 8086: 5MHz b) 8086-2: 8MHz c) 8086-1: 10 MHz
- 5. 8086 processor is available in 40-pin DIP(Dual in line Package).

Features of 8086: -

cont'd...

- 6. 8086 processor supports 256 interrupts.
- 7. It supports full duplex asynchronous serial communication and half duplex Synchronous serial communication.
- 8. 8086 processor have 4 general purpose registers, 4 segment registers, 3 pointer registers, 2 index registers and 1 flag register. (Total: 14 registers) Size of all these registers is 16-bit.
- 9. 8086 processor supports **segmented** version of **memory** (2^{20} =1MB size). Size of each segment is 64KB. (2^{20} = 2^4 2^{16} = 2^4 . 64KB= Sixteen 64KB **logical** segments)
- 10. 8086 operates in two different modes.
 - (1) Minimum mode or Single-Processor mode and
 - (2) Maximum mode or Multi-Processor mode.