Testes de hipótese

Parte 3

Prof.: Eduardo Vargas Ferreira

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_1) .
- 2. Com base em H_1 , definir o tipo de teste.
- 3. Definir um nível de significância α , análogo o nível de confiança $100(1-\alpha)\%$ do IC.
- 4. Determinar a região crítica (região de rejeição) baseado na distribuição amostral, sob H_0 .
- 5. Calcular a estatística de teste, com base na sua distribuição amostral sob a hipótese nula.
- 6. Conclusão.

$$H_0: p = 0.5 \quad vs \quad H_1: p \neq 0.5$$

Se $\hat{p} = 0.65$, existe evidência para rejeitar H_0 ao nível de significância de 5%?

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_1) .
- 2. Com base em H_1 , definir o tipo de teste.
- 3. Definir um nível de significância α , análogo o nível de confiança $100(1-\alpha)\%$ do IC.
- 4. Determinar a região crítica (região de rejeição) baseado na distribuição amostral, sob H_0 .
- Calcular a estatística de teste, com base na sua distribuição amostral sob a hipótese nula.
- 6. Conclusão.

$$H_0: p = 0.5 \quad vs \quad H_1: p \neq 0.5$$

Se $\hat{p} = 0.65$, existe evidência para rejeitar H_0 ao nível de significância de 5%?

Interpretação do intervalo de confiança

Suponha um intervalo para μ com 90%. Ou seja, $IC_{0.90}(\mu) = [c_1, c_2]$.

Interpretação errada

Temos 90% de confiança de que a média populacional μ se encontra entre c_1 e c_2 .

Interpretação certa

Temos 90% de confiança de que o intervalo entre c_1 e c_2 contém a média populacional μ .

Teste unilateral à direita

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta > \theta_0$$

Teste unilateral à esquerda

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta < \theta_0$$

Teste bilateral

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta \neq \theta_0$$

Para entendermos o que é o nível de significância (α) , precisamos saber que, ao realizar um teste de hipótese, estamos sujeitos a dois tipos de erros.

	H_o verdadeira	H_o falsa
Não rejeitar H_0	Decisão correta	Erro Tipo II
Rejeitar H_0	Erro Tipo I	Decisão correta

- Erro Tipo I: rejeitar H_0 , quando H_0 é verdadeira (falso negativo).
- Erro Tipo II: não rejeitar H_0 , quando H_0 é falsa (falso positivo).

Exemplo: medicamento genérico

▶ Deseja-se avaliar se um medicamento genérico tem o mesmo efeito do "original".

Não tem o mesmo efeito	Tem o mesmo efeito
$\mu \le 0.8$	$\mu > 0.8$

ightharpoonup Definimos por α e β as probabilidades de cometer os erros do tipo I e II:

$$\alpha = P(\text{erro tipo I})$$
 $\beta = P(\text{erro tipo II})$
$$= P(\text{rejeitar } H_0 \mid H_0 \text{ verdadeira})$$

$$= P(\text{não rejeitar } H_0 \mid H_0 \text{ falsa})$$

Exemplo:

Seja $\bar{X} \sim N(\mu, 1)$, e queremos testar:

$$H_0: \mu = 2 \quad vs \quad H_1: \mu = 4$$

▶ A situação ideal é aquela em que ambas as probabilidades, α e β , são próximas de zero. No entanto, à medida que diminuimos α , a probabilidade β aumenta.

Por isso, na prática, fixamos α e minimizamos β .

▶ A situação ideal é aquela em que ambas as probabilidades, α e β , são próximas de zero. No entanto, à medida que diminuimos α , a probabilidade β aumenta.

ightharpoonup Por isso, na prática, fixamos α e minimizamos β .

▶ A situação ideal é aquela em que ambas as probabilidades, α e β , são próximas de zero. No entanto, à medida que diminuimos α , a probabilidade β aumenta.

Por isso, na prática, fixamos α e minimizamos β .

Exemplos de hipóteses nula e alternativa

1. Num júri, um indivíduo está sendo julgado por um crime. As hipóteses sujeitas ao júri são:

 H_0 : O acusado é inocente:

 H_1 : O acusado é culpado.

Um operador de radar deve detectar aeronaves inimigas. Surgindo algo estranho, ele decide:

 H_0 : Tudo bem, apenas uma leve interferência.

 H_1 : Está começando um ataque.

Exemplo: resistência de lajotas

 Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x} = 210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

1. Definição das hipóteses:

 $H_0: \mu = 206 \quad vs \quad H_1: \mu > 206.$

Exemplo: resistência de lajotas

 Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x} = 210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

2. Definir o tipo de teste: unilateral à direita.

Exemplo: resistência de lajotas

Um fabricante introduziu um material na fabricação de lajotas, e acredita que aumentará a resistência média, que é de 206 kg. A resistência tem distribuição normal com desvio-padrão de 12 kg.

Em uma amostra de 30 lajotas obteve-se $\bar{x} = 210$ kg. Pode-se afirmar que a resistência média aumentou, ao nível de 10%?

Resposta:

3. Definição do nível de significância: $\alpha = 10\%$.

Exemplo: máquina de empacotar

Uma empacotadora de café está calibrada se houver 700 g em cada embalagem. A fim de verificar o funcionamento da máquina, foi coletado uma amostra de 40 pacotes, resultando em $\bar{x} = 698$.

ightharpoonup Considerando $\sigma = 10$ g, teste a hipótese do peso médio das embalagens ser 700 g. com um nível de significância de 5%.

Resposta:

1. Definição das hipóteses:

 $H_0: \mu = 700 \quad vs \quad H_1: \mu \neq 700.$

Exemplo: máquina de empacotar

Uma empacotadora de café está calibrada se houver 700 g em cada embalagem. A fim de verificar o funcionamento da máquina, foi coletado uma amostra de 40 pacotes, resultando em $\bar{x} = 698$.

ightharpoonup Considerando $\sigma = 10$ g, teste a hipótese do peso médio das embalagens ser 700 g. com um nível de significância de 5%.

Resposta:

2. Definir o tipo de teste: teste bilateral.

Exemplo: máquina de empacotar

Uma empacotadora de café está calibrada se houver 700 g em cada embalagem. A fim de verificar o funcionamento da máquina, foi coletado uma amostra de 40 pacotes, resultando em $\bar{x} = 698$.

ightharpoonup Considerando $\sigma = 10$ g, teste a hipótese do peso médio das embalagens ser 700 g. com um nível de significância de 5%.

Resposta:

3. Definição do nível de significância: $\alpha = 5\%$.

Referências

- Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

