СОДЕРЖАНИЕ

1 НАСТРОЙКА FC SAN	. 3
1.1 Мировые имена портов хранения	. 3
1.2 Мировые имена хоста-инициатора	. 3
1.3 FC SAN Trace	
2 HACTPOЙKA IP SAN	. 6
2.1 Создание интерфейса iSCSI	
2.2 Создание LUN	. 7
2.3 iSCSI SAN Trace	11
ЗАКЛЮЧЕНИЕ	14

1 НАСТРОЙКА FC SAN

1.1 Мировые имена портов хранения

Запустим VNXe симулятор. Отметим мировые имена портов хранения. Для этого сначала перейдем на VNXe \rightarrow Settings \rightarrow More configuration \rightarrow Port Settings.

Далее раскроем модуль ввода/вывода 0 и выберем каждый оптоволоконный канал для определения мирового имени и другой информации для каждого из портов хранения (рисунок 1.1).

Рисунок 1.1 – Информация порта хранения

Для того чтобы прочитать мировое имя, найдем номер похожий на следующий: 50:06:01:60:88:E0:02:22:50:06:01:64:08:E0:02:22.

Первые 16 цифр — это мировое имя узла, а вторые 16 — мировое имя порта. Нам нужны вторые 16. Заполним таблицу 1.1, используя полученную информацию.

	1
World Wide Port Name	Node Name
50:06:01:64:08:E0:02:22	FC port 0 SPA
50:06:01:6C:08:E0:02:22	FC port 0 SPB
50:06:01:65:08:E0:02:22	FC port 1 SPA
50:06:01:6D:08:E0:02:22	FC port 1 SPA
50:06:01:66:08:E0:02:22	FC port 2 SPA
50:06:01:6E:08:E0:02:22	FC port 2 SPA
50:06:01:67:08:E0:02:22	FC port 3 SPA
50:06:01:6F:08:E0:02:22	FC port 3 SPA

1.2 Мировые имена хоста-инициатора

Отметим мировые имена портов хоста-инициатора. Для этого сначала перейдем на VNXt \rightarrow Hosts \rightarrow Initiators (рисунок 1.2).

Рисунок 1.2 – Вкладка Initiators

Для того чтобы прочитать мировое имя найдем номер похожий на следующий: 0:00:00:90:FA:14:3D:60:20:00:00:90:FA:14:3D:60. Здесь нам нужны первые 16 цифр. Заполним таблицу 1.2, используя полученную информацию.

Таблица 1.2 – Мировые имена портов хоста-инициатора

World Wide Port Name	Node Name
20:00:00:90:FA:14:3D:60	FC port 0 SPA
20:00:00:90:FA:14:3D:61	FC port 0 SPB

1.3 FC SAN Trace

Запустим Wireshark и откроем файл FC SAN Trace.pcap (рисунок 1.3).

Рисунок 1.3 – Файл FC_SAN_Trace.pcap, запущенный в Wireshark

Ответим на следующие вопросы:

- 1. Что такое FLOGI? FLOGI это запрос входа в систему Fabric.
- 2. Какое мировое имя у первого порта, принадлежащего Fibre Channel Fabric? Мировое имя у первого порта, принадлежащего Fibre Channel Fabric 25:11:00:0D:EC:18:CB:40 (рисунок 1.4).

Рисунок 1.4 – Мировое имя у первого порта, принадлежащего Fibre Channel Fabric

- 3. Почему поле идентификатора источника (S_ID) кадра FLOGI содержит одни нули? Поле идентификатора источника (S_ID) кадра FLOGI устанавливается в нулевое значение, если пакет используется для запроса нового адреса.
- 4. Какой адрес назначен первому порту, принадлежащему Fibre Channel Fabric? Первому порту, принадлежащему Fibre Channel Fabric назначен следующий адрес: 10:00:00:00:C9:44:49:55:20:00:00:00:C9:44:49:55.
- 5. Один из кадров, посланных узлом (Fibre Channel Fabric), отмечен как GID_FT (Get Port IDs-FC-4 Type). Какое шестнадцатеричное представление FC-4 TYPE запрашивается и какой протокол оно представляет? Запрашивается шестнадцатеричное представление FC_CT (0x20), которое представляет протокол DNS.
- 6. Какой сервис ответственен за GID_FT запрос? За GID_FT запрос ответственен сервис FC_GS.

2 НАСТРОЙКА IP SAN

2.1 Создание интерфейса iSCSI

Запустим VNXe симулятор. Откроем панель задач и создадим интерфейс iSCSI. Для этого пройдем по пути Settings \rightarrow iSCSI Settings \rightarrow iSCSI Interfaces. Выберем Ethernet Port 3 и нажмем Create. Окно создания интерфейса iSCSI представлено на рисунке 2.1.

Рисунок 2.1 – Окно создания интерфейса iSCSI

В появившемся окне выставим настройки для одного или для обоих процессоров хранения из таблицы 2.1

Таблица 1.1 – Настройки для одного/обоих процессоров хранения

	SPA	SPB
IP Address	10.244.214.145	10.244.214.146
Subnet Mask	255.255.255.0	255.255.255.0
Gateway	10.244.214.1	10.244.214.1
IQN Alias	4285.a1	4285.b1

На рисунке 2.2 представлен результат создания интерфейса iSCSI.

Рисунок 2.2 – Результат создания интерфейса iSCSI

2.2 Создание LUN

Теперь создадим LUN, который будет обслуживаться с помощью iSCSI. Для этого перейдем на Storage → LUNs и нажмем кнопку Create. Дадим имя LUN01 создаваему LUN (рисунок 2.3).

Рисунок 2.3 – Шаг 1 создания LUN

Далее выберем пул хранения, из которого будет извлечен LUN. Зададим многоуровневую политику. Размер LUN -100 GB, тип LUN - Thin (рисунок 2.4).

Рисунок 2.4 – Шаг 2 создания LUN

В окне «Configure Snapshot Schedule» выберем опцию «Do not configure a snapshot schedule.» (рисунок 2.5).

Рисунок 2.5 – Шаг 3 создания LUN

Последний шаг настройки — настройка доступа к хосту. В этот раз выберем хост, который уже принадлежит массиву, используещему протокол iSCSI. Мы можем использовать фильтр для того, чтобы увидеть только такие хостов такого протокола. В больших системах это очень полезный фильтр. Выберем LUN опцию напротив хостов Windows 2k8 (рисунок 2.6).

Рисунок 2.6 – Шаг 4 создания LUN

Подтвердим настройки, которые мы установили, в итоговом окне (рисунок 2.7).

Рисунок 2.7 – Шаг 5 создания LUN

Если мы удовлетворены полученным результатом, нажимаем кнопку Finish. Результат создания LUN показан на рисунке 2.8.

Рисунок 2.8 – Шаг 6 создания LUN

Далее перейдем по следующему пути: Hosts → Hosts → Windows 2k8. Откроем подробное описание хоста и перейдем на вкладку LUNs. Убедимся, что LUN, который мы создали, связан с данным хостом (рисунок 2.9).

Рисунок 2.9 – LUN, связанные с хостом Windows 2k8

Таким образом, был создан LUN, связанный с хостом Windows 2k8.

2.3 iSCSI_SAN_Trace

Откроем файл iSCSI_SAN_Trace.pcap в программе Wireshark (рисунок 2.10).

Рисунок 2.10 — Файл iSCSI_SAN_Trace.pcap, открытый в Wireshark Изучим первый фрейм (рисунок 2.11).

Рисунок 2.11 – Первый фрейм файла iSCSI_SAN_Trace.pcap

Ответим на следующие вопросы:

- 1. Какой IP адрес у инициатора? IP адрес инициатора 172.12.10.10.
- 2. Какой IP адрес у цели? IP адрес цели 172.12.12.4.
- 3. Какой фильтр следует использовать, чтобы увидеть тольок iSCSI коммуникации? Чтобы увидеть только iSCSI, следует использовать фильтр по протоколу (рисунок 2.12).

No.	Time	Source	Destination	Protocol	Length Info	
гГ	1 0.000000	172.12.10.10	172.12.12.4	iSCSI	242 Login Command	
	2 0.009223	172.12.10.4	172.12.10.10	iSCSI	102 NOP In	
	3 0.011001	172.12.10.10	172.12.10.4	iSCSI	102 NOP Out	
	6 0.027703	172.12.12.4	172.12.10.10	iSCSI	162 Login Response (Success)	
	7 0.030853	172.12.10.10	172.12.12.4	iSCSI	402 Login Command	
	9 0.035166	172.12.12.4	172.12.10.10	iSCSI	350 Login Response (Success)	
	10 0.045385	172.12.10.5	172.12.10.10	iSCSI	102 NOP In	
	11 0.045443	172.12.10.10	172.12.10.5	iSCSI	102 NOP Out	
	15 0.139793	172.12.10.10	172.12.12.4	iSCSI	102 SCSI: Report LUNs LUN: 0x00	
	17 0.141949	172.12.12.4	172.12.10.10	iSCSI	118 SCSI: Data In LUN: 0x00 (Report LUNs Response Data) SCSI: Res	
	18 0.145087	172.12.13.5	172.12.10.10	iSCSI	102 NOP In	
	19 0.145132	172.12.10.10	172.12.13.5	iSCSI	102 NOP Out	
	20 0.145842	172.12.10.10	172.12.12.4	iSCSI	102 SCSI: Report LUNs LUN: 0x00	
	23 0.162142	172.12.12.4	172.12.10.10	iSCSI	158 SCSI: Data In LUN: 0x00 (Report LUNs Response Data) SCSI: Res	
	24 0.169174	172.12.10.10	172.12.12.4	iSCSI	102 SCSI: Inquiry LUN: 0x00	
	26 0.180961	172.12.12.4	172.12.10.10	iSCSI	138 SCSI: Data In LUN: 0x00 (Inquiry Response Data) [SCSI transfe	
	27 0.181668	172.12.10.10	172.12.12.4	iSCSI	102 SCSI: Inquiry LUN: 0x00 Supported Vital Product Data Pages	

Рисунок 2.12 – Фильтр по протоколуіSCSI

4. Какое название у инициатора? На рисунке 2.13 выделено название инициатора.

Рисунок 2.13 – Просмотр названия инициализатора

5. Какое название у цели? На рисунке 2.14 выделено название цели.

Рисунок 2.14 – Просмотр названия цели

6. Как настроены следующие опции: HeaderDigest, DataDigest, MaxRecvDataSegmentLength? На рисунке 2.15 представлена настройка перечисленных опций.

TotalAHSLength: 0 (0x00)
DataSegmentLength: 137 (0x00000089)

Рисунок 2.15 – Настройка опций

7. Сколько LUN's доступно данному инициатору? Данному инициатору доступен один LUN.

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были рассмотрены основные задачи, выполняемые Fibre Channel SAN. Были изучены ключевые аспекты работы с этой технологией, включая управление данными, маршрутизацию и обеспечение надежности передачи.

Также была определена конфигурация настроек свитча, что позволило понять, как правильно настраивать сетевое оборудование для оптимальной работы SAN. Были проанализированы параметры, влияющие на производительность и безопасность сети, а также определена принадлежность к системам хранения данных, что является важным шагом для обеспечения корректного взаимодействия между компонентами.

Кроме того, мы настроили интерфейс и обеспечили хранилище в iSCSI SAN. iSCSI является популярной технологией, позволяющей использовать стандартные Ethernet-сети для передачи SCSI-команд. В процессе работы мы убедились в правильности настроек iSCSI, что включало проверку параметров подключения и конфигурации целевых устройств.

Также была выполнена настройка iSCSI LUN и его привязка к хосту, что позволило создать логическую единицу хранения и сделать ее доступной для использования на сервере. Это важный этап в процессе организации хранения данных, так как он обеспечивает доступ к данным для приложений и пользователей.

С помощью программы Wireshark был проведен анализ сетевого трафика для файлов FC SAN Trace.pcap и iSCSI SAN Trace.pcap.

При анализе файла FCSANTrace.pcap была изучена структура и содержание кадров Fibre Channel, что дало возможность увидеть, как данные передаются между устройствами в Fibre Channel SAN. Анализ файла iSCSISANTrace.pcap позволил рассмотреть, как происходит взаимодействие между инициаторами и целями в iSCSI SAN.

Таким образом, были выполнены ключевые задания, которые на практике продемонстрировали применение теоретических знаний. Были не только изучены теоретические аспекты работы с SAN и iSCSI, но и приобретены практические навыки настройки и управления системами хранения. Это позволит более уверенно работать с подобными технологиями в будущем и применять полученные знания в реальных проектах.