

Privacy-Preserving Publication of Sensitive Data using Differentially Private Generative Adversarial Networks

Ricardo Silva Carvalho Computing Science, Simon Fraser University

MOTIVATION

Share sensitive data to support critical research or help solve problems:

- Preserving privacy of entries of the data
- Maintaining usefulness of data

FOGUS

We illustrate the problem for the case of:

- → Data with one individual/user/patient per entry
- → Goal of using data is to train a classification model
- → Existing a trusted-curator of the data

ONE SOLUTION

Generative Adversarial Networks (GANs):

- → Learn distribution of sensitive data
- Generate synthetic data

BAD NEWS: GANs can still be vulnerable. For example: Membership attack [CCS'17]

IMPROVED SOLUTION

GANs + Differential Privacy (DP):

- \rightarrow Bound maximum change (sensitivity: Δf)
- \rightarrow Add random **noise** proportional to $O(\Delta f/\epsilon)$
- → Discriminator needs to satisfy DP

Deep Clip gradient

Learning $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$

[CCS'16]: Add noise

 $\underline{\tilde{\mathbf{g}}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$

Descent

 $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$

A randomized algorithm \mathcal{M} is (ε, δ) -differentially private if for all neighboring datasets D and D' and all sets of outputs $\mathcal{O} \subseteq \text{Range}(\mathcal{M})$:

$$\Pr[\mathcal{M}(D) \in \mathcal{O}] \le \exp(\varepsilon) \Pr[\mathcal{M}(D') \in \mathcal{O}] + \delta$$

Image from: https://chriswaites.com/posts/differentially-private-deep-learning/

BENCHMARKING

Implementation on TensorFlow 2.0:

- → To the best of our knowledge, the first open implementation of a DP GAN with TensorFlow 2.0
- → New custom Optimizer, carefully applying non-trivial DP constraints
- → Comparing to DP-CGAN [CVPR'2019]

AuROC	Real	CGAN	DP-CGAN TF 1.15 (M=1)		_	+ LeakyRelU (alpha=0.2)
LR	0.9217	0.9110	0.8121	0.8642	0.6308	0.8088
MLP	0.9760	0.9106	0.8396	0.8858	0.6586	0.8263

Table 1: AuROC on test data of MNIST using standard sklearn lib of models trained on fake data. Results are average of 3 trials, using differential privacy with parameters ϵ = 9.6 and δ = 10⁻⁵.

Zdim: 100 **GEN:** FC(128) + RelU + FC(784) **D**

DISC: FC(128) + RelU + FC(1)

EXPERIMENTS

Dataset of patients for Thyroid Disease:

- → 7200 patients split into 52.4% (train) + 47.6% (test)
- → 21 attr. (15 binary, 6 continuous) and 3 classes

DP-CGAN: GEN: FC(128) + RelU + FC(21) with Zdim: 100

DISC: FC(128) + RelU + FC(1)

Table 2: AuROC on test data for model trained with real or fake data

$\varepsilon = 3.7, \ \delta = 10^{-5}$	Real	DP-CGAN TF 2.0 (M=B)
MLP: AuROC	0.9858	0.9746

MLP trained with same GridSearchCV for both

REFERENCES

[CCS'17]: Hitaj et al., Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning. [CCS'16]: Abadi et al., Deep Learning with Differential Privacy.

[CVPR'19]: Torkzadehmahani et al., DP-CGAN: Differentially Private Synthetic Data and Label Generation.

[Generative Adversarial Networks]: Ian Goodfellow, 2014. [Differential Privacy]: Cynthia Dwork, 2016. [Conditional GANs]: Mirza, 2014.