The curse of dimensionality

DIMENSIONALITY REDUCTION IN R

Alexandros Tantos

Assistant Professor, Aristotle University of Thessaloniki

Curse of dimensionality

- Dimensions: Columns in the dataset that represent features of the row points
- Dimensionality: Number of features/columns characterizing the dataset

Curse of dimensionality

The iris dataset:

dim(iris)

150 5

5 columns: 4 features/dimensions + 1 class

ID	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
•••	•••	•••	•••	•••

1 Dimension: Sepal.Length

range(iris\$Sepal.Length)

4.3 7.9

- Feature space filled within 4 units of measurement.
- Data density: 150/4 = **37.5** samples/interval.

2 Dimensions: Sepal.Length, Petal.Length

range(iris\$Petal.Length)

1.0 6.9

- Feature space: filled within **24 [4*6]** possible combinations of unit measurements.
- Data density: 150/24 = 6.25
 samples/interval

3 Dimensions: Sepal.Length, Petal.Length, Sepal.Width

range(iris\$Sepal.Width)

2.0 4.4

- Feature space: filled within **72** [**4*6*3**] possible combinations of unit measurements.
- Data density: 150/72 = **2.083333** samples/interval

What is this curse all about?

• As the dimensionalities of the data grow, the feature space grows rapidly.

Why even bother?

- Big computational cost to handle high-dimensional data.
- Estimation accuracy decreases.
- **Difficult interpretation** of the data.

The mtcars dataset

dim(mtcars)

32 11

- Most of the dimensions could probably be reduced due to a small set of latent dimensions, such as:
 - the size of the car or
 - the country of origin or
 - the construction year
- Observed vs True Dimensionality: observed features obscure the true or *intrinsic* dimensionality of the data.

Exploring correlation

How do we trace correlation patterns?

- Correlation matrix is a matrix of correlation coefficients.
- Smaller number of dimensions translates to less complex correlation matrix.

```
mtcars$cyl <- as.numeric(as.character(mtcars$cyl))
mtcars_correl <- cor(mtcars, use = "complete.obs")</pre>
```

Visualising correlation patterns with ggcorrplot

library(ggcorrplot)
ggcorrplot(mtcars_correl)

How do we deal with the Curse of Dimensionality?

Two solutions:

- Feature Engineering: Requires domain knowledge
- Remove redundancy

Reduction methods we will explore

- Principal Components Analysis [PCA]
- Non-Negative Matrix Factorization [N-NMF]
- Exploratory Factor Analysis [EFA]

Let's practice!

DIMENSIONALITY REDUCTION IN R

Getting PCA to work with FactoMineR

DIMENSIONALITY REDUCTION IN R

Alexandros Tantos

Assistant Professor, Aristotle University of Thessaloniki

PCA: What does it do?

Conceptually:

- 1. Removes correlation.
- 2. Extracts new dimensions (=principal components).
- 3. Reveals the true dimensionality of the data.

Practically:

- 1. Decomposes the correlation matrix.
- 2. Changes the coordinate system.
- 3. Helps reduce the number of dimensions.

PCA: The five steps to perform

- 1. Pre-processing steps
- 2. Change of coordinate system
- 3. Explained variance

- Centering
- Standardisation
- Rotation
- Projection
- Reduction

Pre-processing steps: Data Centering and Standardisation

Change of coordinate system: Rotation and Projection

Reduction: Screeplot and the explained variance

PCA with base R's prcomp()

mtcars_pca <- prcomp(mtcars)</pre>

```
Standard deviations (1, ..., p=11):
 [1] 136.5330479 38.1480776 3.0710166
                                         1.3066508
                                                                             0.3085791
                                                                                         0.2859604
                                                                                                     0.2506973
                                                                                                                             0.1984238
                                                      0.9064862
                                                                  0.6635411
                                                                                                                 0.2106519
Rotation (n \times k) = (11 \times 11):
                          PC2
                                                                PC5
                                                                                                       PC8
             PC1
                                       PC3
                                                    PC4
                                                                             PC6
                                                                                         PC7
                                                                                                                    PC9
                                                                                                                                PC10
                                                                                                                                              PC11
                               0.982070847   0.047634784  -0.08832843  -0.143790084  -0.039239174   2.271040e-02  -0.002790139
    -0.038118199 0.009184847
                                                                                                                         0.030630361 -0.0158569365
     0.012035150 -0.003372487 -0.063483942 -0.227991962 0.23872590 -0.793818050 0.425011021 -1.890403e-01 0.042677206
                                                                                                                         0.131718534
cyl
                               0.031442656 -0.005086826 -0.01073597 0.007424138 0.000582398 -5.841464e-04 0.003532713 -0.005399132
disp 0.899568146 0.435372320
                               0.025093049 0.035715638 0.01655194 0.001653685 -0.002212538 4.748087e-06 -0.003734085
      0.434784387 -0.899307303
                                                                                                                         0.001862554 -0.0021526102
                               0.039724928 -0.057129357 -0.13332765 0.227229260 0.034847411 -9.385817e-01 -0.014131110
drat -0.002660077 -0.003900205
                                                                                                                         0.184102094 -0.0973818815
      0.006239405 0.004861023 -0.084910258
                                           0.127962867 -0.24354296 -0.127142296 -0.186558915 1.561907e-01 -0.390600261
asec -0.006671270 0.025011743 -0.071670457 0.886472188 -0.21416101 -0.189564973 0.254844548 -1.028515e-01 -0.095914479 -0.204240658
                                           0.177123945 -0.01688851 0.102619063 -0.080788938 -2.132903e-03 0.684043835
     -0.002729474 0.002198425
                               0.004203328
     -0.001962644 -0.005793760
                               0.054806391 -0.135658793 -0.06270200 0.205217266 0.200858874 -2.273255e-02 -0.572372433 -0.162808201
gear -0.002604768 -0.011272462 0.048524372 -0.129913811 -0.27616440 0.334971103 0.801625551 2.174878e-01 0.156118559 0.203540645 -0.1909325849
     0.005766010 -0.027779208 -0.102897231 -0.268931427 -0.85520810 -0.283788381 -0.165474186 3.972219e-03 0.127583043 -0.239954748 0.0557957968
```


PCA with FactoMineR's PCA()

library(FactoMineR)

mtcars_pca <- PCA(mtcars)</pre>

Individuals factor map (PCA)

Results for the Principal Component Analysis (PCA)

The analysis was performed on 32 individuals, described by 11 variables

*The results are available in the following objects:

	name	description
1	"\$eig"	"eigenvalues"

2 "\$var" "results for the variables"
3 "\$var\$coord" "coord, for the variables"

4 "\$var\$cor" "correlations variables - dimensions"

5 "\$var\$cos2" "cos2 for the variables"

"sind" "contributions of the variables"
"sind" "results for the individuals"
"sind\$coord" "coord. for the individuals"
"sind\$cos2" "cos2 for the individuals"

10 "\$ind\$contrib" "contributions of the individuals"

11 "\$call" "summary statistics"
12 "\$call\$centre" "mean of the variables"

13 "\$call\$ecart.type" "standard error of the variables"
14 "\$call\$row.w" "weights for the individuals"
15 "\$call\$col.w" "weights for the variables"

Variables factor map (PCA)

Variables' factor map

Variables factor map (PCA)

Digging into PCA()

mtcars_pca\$eig

mtcars_pca\$var\$cos2

	eigenvalue	percentage of variance cu	umulative percentage of variance		Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
comp 1	6.60840025	60.0763659	60.07637 mp	pg	0.8685312	0.0006891117	0.031962249	1.369725e-04	0.0023634487
comp 2	2.65046789	24.0951627	84.17153 _{CV}	yl	0.9239416	0.0050717032	0.019276287	1.811054e-06	0.0007642822
comp 3	0.62719727	5.7017934	90 97337					1.775235e-02	
comp 4	0.26959744	2.4508858	92.32421	•				1.234773e-03	
comp 5	0.22345110	2.0313737	94.33336						
comp 6	0.21159612	1.9236011	96.27918 dr	rat	0.5717921	0.1999959326	0.016295731	1.970035e-01	0.0013361275
comp 7	0.13526199	1.2296544	97.50884 wt	t '	0.7916038	0.0542284172	0.073281663	1.630161e-02	0.0012578888
comp 8	0.12290143	1.1172858	98.62612 qs	sec	0.2655437	0.5690984542	0.101947952	1.249426e-03	0.0060588455
comp 9	0.07704665	0.7004241	99.32655 _{VS}	s I	0.6208539	0.1422249798	0.115330572	1.244460e-02	0.0803189801
comp 10	0.05203544	0.4730495	99.79960 am	m I	0 3647715	0 4887450097	0 026555457	2.501834e-04	0 0018011675
comp 11	0.02204441	0.2004037	100 00000						
- '			ge	ear	0.2829342	6.500000000	0.052007205	1.8888296-02	0.0005219259
			co	arb i	0 3026882	0 4533387304	0 175213444	4 333912e-03	0 0291718181

Digging into PCA()

mtcars_pca\$var\$contrib

```
Dim.1
                    Dim.2
                               Dim.3
                                            Dim.4
                                                      Dim.5
    13.142837
               0.02599962 5.0960440 5.080631e-02 1.0577029
               0.19135124 3.0734010 6.717622e-04 0.3420355
    13.981320
disp 13.556034 0.24328694
                          0.3780299 6.584761e+00 15.5232297
    10.893757
               6.18934888
                           1.9604134 4.580062e-01 29.1651238
    8.652504 7.54568403
                          2.5981826 7.307322e+01 0.5979507
    11.978751 2.04599412 11.6839894 6.046647e+00 0.5629370
     4.018275 21.47162226 16.2545274 4.634414e-01 2.7114861
     9.394919 5.36603293 18.3882452 4.615993e+00 35.9447677
VS.
     5.519816 18.43995209 4.2339880 9.279888e-02 0.8060678
am
     4.281433 21.37662593 8.3972408 7.006107e+00 0.2335750
gear
     4.580356 17.10410194 27.9359384 1.607550e+00 13.0551238
```

dimdesc(mtcars_pca)

```
$Dim.1
$Dim.1$quanti
     correlation
                      p.value
       0.9612188 2.471950e-18
cyl
       0.9464866 2.804047e-16
disp
wt
       0.8897212 9.780198e-12
hp
       0.8484710 8.622043e-10
       0.5501711 1.105272e-03
carb
      -0.5153093 2.542578e-03
gsec
      -0.5319156 1.728737e-03
gear
      -0.6039632 2.520665e-04
      -0.7561693 5.575736e-07
drat
      -0.7879428 8.658012e-08
VS
      -0.9319502 9.347042e-15
mpg
```

Let's practice!

DIMENSIONALITY REDUCTION IN R

Interpreting and visualising PCA models with factoextra

DIMENSIONALITY REDUCTION IN R

Alexandros Tantos

Assistant Professor, Aristotle University of Thessaloniki

Plotting contributions of variables

```
fviz_pca_var(mtcars_pca,
  col.var = "contrib",
  gradient.cols = c("#bb2e00", "#002bbb"),
  repel = TRUE)
```


Plotting contributions of selected variables

```
fviz_pca_var(mtcars_pca,
  select.var = list(contrib = 4),
  repel = TRUE)
```


Barplotting the contributions of variables

```
fviz_contrib(mtcars_pca,
    choice = "var",
    axes = 1,
    top = 5)
```


Plotting cos2 for individuals

```
fviz_pca_ind(mtcars_pca,
    col.ind="cos2",
    gradient.cols = c("#bb2e00", "#002bbb"),
    repel = TRUE)
```


Plotting cos2 for selected individuals

```
fviz_pca_ind(mtcars_pca,
    select.ind = list(cos2 = 0.8),
    gradient.cols = c("#bb2e00", "#002bbb"),
    repel = TRUE)
```


Barplotting cos2 for individuals

```
fviz_cos2(mtcars_pca,
    choice = "ind",
    axes = 1,
    top = 10)
```


Biplots

fviz_pca_biplot(mtcars_pca)

Adding ellipsoids

```
mtcars$cyl <- as.factor(mtcars$cyl)</pre>
```


Let's practice!

DIMENSIONALITY REDUCTION IN R

