Professor: Jeferson Almir

1 Problemas

- **001.** Seja ABC um triângulo. Prove que suas medianas CD, AE e BF são concorrentes. **Dicas:**
- 002. Seja ABC um triângulo. Prove que suas alturas AE, CF e BD são concorrentes. **Dicas:**
- 003. Prove que as bissetrizes internas de um $\triangle ABC$ são concorrentes. **Dicas:**
- **004.** Seja ABC um triângulo. Seu incírculo toca AB, BC e CA nos pontos C_1 , A_1 e B_1 respectivamente. Prove que as retas CC_1 , BB_1 e AA_1 são concorrentes. **Dicas:**
- 005. Prove que as mediatrizes dos lados de um dado $\triangle ABC$ são concorrentes. Dicas:
- 006. Seja ABC um triângulo de circuncírculo k. Sejam l_A, l_B e l_C as retas tangentes a k pelos pontos A, B e C respectivamente. Se $l_A \cap l_B = C_1, l_B \cap l_C = A_1$ e $l_C \cap l_A = B_1$, prove que as retas AA_1, BB_1 e CC_1 são concorrentes. **Dicas:**
- **007.** Seja ABC um triângulo. Sejam A_1 , B_1 e C_1 os pontos de tangência dos segmentos BC, CA e AB com os exincírculos de $\triangle ABC$. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- 008. Seja ABC um triângulo e seja N seu ponto de Nagel (ponto de concorrência do exercício anterior). Digamos que AN, BN e CN intersectem o incírculo de $\triangle ABC$ nos pontos A_1 , B_1 e C_1 , e os lados BC, CA e AB nos pontos A_2 , B_2 e C_2 , respectivamente. Prove que $AA_1 = NA_2$, $BB_1 = NB_2$ e $CC_1 = NC_2$. Dicas:
- **009.** Seja ABC um triângulo. Os triângulos equiláteros $\triangle ABC_1$, $\triangle AB_1C$ e $\triangle A_1BC$ são construídos no exterior do triângulo ABC. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- **010.** Seja ABC um triângulo. Os triângulos equiláteros $\triangle ABC_1$, $\triangle AB_1C$ e $\triangle A_1BC$ são construídos no interior do triângulo ABC. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- **011.** Prove que para um dado $\triangle ABC$, existe algum ponto X tal que vale $AX \cdot BC = BX \cdot AC = CX \cdot AB$. **Dicas:**
- 012. Prove que para um dado $\triangle ABC$, exatamente dois pontos satisfazem a condição da questão anterior. Dicas:
- 013. Seja ABC um triângulo. Prove que existe um ponto único S tal que vale BC+AS=CA+BS=AB+CS. Dicas:

- **014.** Seja ABC um triângulo. Prove que existe um ponto único S tal que vale BC AS = CA BS = AB CS. **Dicas:**
- 015. Três circunferências $k_1(A)$, $k_2(B)$ e $k_3(C)$ são dadas, e elas são todas tangentes externamente entre si. Seja C_1 e B_1 os pontos de tangência de k_1 com k_2 , e de k_1 com k_3 , respectivamente. Seja A_1 o ponto de tangência de k_2 com k_3 . A circunferência k_4 toca as outras três circunferências externamente. Prove que o primeiro centro de Soddy do $\triangle ABC$ (problema 13) coincide com o centro de k_4 . Dicas:
- 016. Três circunferências $k_1(A)$, $k_2(B)$ e $k_3(C)$ são dadas, e elas são todas tangentes externamente entre si. Seja C_1 e B_1 os pontos de tangência de k_1 com k_2 , e de k_1 com k_3 , respectivamente. Seja A_1 o ponto de tangência de k_2 com k_3 . A circunferência k_4 toca as outras três circunferências internamente. Prove que o segundo centro de Soddy do $\triangle ABC$ (problema 14) coincide com o centro de k_4 . Dicas:
- **017.** Seja ABC um triângulo. Sejam S_1 e S_2 seus primeiro e segundo centros de Soddy (problemas 13 e 14), respectivamente. Prove que os pontos A, B e C estão sobre uma elipse de focos S_1 e S_2 . **Dicas:**
- **018.** Seja ABC um triângulo. Seja S_1 seu primeiro centro de Soddy (problema 13). Prove que existe uma circunferência inscrita no quadrilátero convexo formado pelas retas CS_1 , BS_1 , AC e AB. **Dicas:**
- **019.** Seja ABC um triângulo. Seja S_2 seu segundo centro de Soddy (problema 14). Prove que existe uma circunferência que toca as retas BA e BC e os segmentos AS_2 e CS_2 . **Dicas:**
- **020.** Seja ABC um triângulo, com exincírculos ω_a , ω_b e ω_c . Sejam I_a , I_b e I_c os centros de ω_a , ω_b e ω_c respectivamente. Seja A_1 o ponto de tangência de ω_a com o lado BC. Defina os pontos B_1 e C_1 analogamente. Prove que as retas C_1I_c , B_1I_b e A_1I_a são concorrentes. **Dicas:**
- **021.** Seja ABC um triângulo. O primeiro ponto de Brocard Br_1 é definido como o ponto para o qual $\angle BABr_1 = \angle ACBr_1 = \angle CBBr_1$. Prove que esse ponto sempre existe. **Dicas:**
- 022. Seja ABC um triângulo. O segundo ponto de Brocard Br_2 é definido como o ponto tal que $\angle ABBr_2 = \angle CABr_2 = \angle BCBr_2$. Prove que ele sempre existe. Dicas:
- 023. Seja ABC um triângulo. Seja L seu ponto de Lemoine (problema 6) e sejam Br_1 e Br_2 seu primeiro e segundo pontos de Brocard, respectivamente (problemas 21 e 22). Seja $CL \cap AB = F$. Prove que $\angle AFBr_1 = \angle BFBr_2$. Dicas:

- **024.** Seja ABC um triângulo, com circuncentro O. Seja L seu ponto de Lemoine (problema 6) e sejam Br_1 e Br_2 seu primeiro e segundo pontos de Brocard, respectivamente (problemas 21 e 22). Prove que valem as igualdades $\angle OBr_1L = \angle OBr_2L = 90^\circ$ e $Br_1L = Br_2L$. **Dicas:**
- **025.** Seja ABC um triângulo. Sejam Ap_1 e Ap_2 seus dois pontos isodinâmicos (problemas 11 e 12). Prove que os triângulos pedais com respeito a esses dois pontos são equiláteros. **Dicas:**
- 026. Seja ABC um triângulo. Sejam E e D os pés das bissetrizes interna e externa em relação a C, respectivamente. Prove que os dois pontos isodinâmicos de $\triangle ABC$ (problemas 11 e 12) ficam sobre a circunferência de diâmetro ED. **Dicas:**
- **027.** Seja ABC um triângulo. Seja T_1 seu primeiro ponto de Fermat-Torricelli (problema 9). Prove que $\angle AT_1B = \angle BT_1C = 120^{\circ}$. **Dicas:**
- **028.** Seja ABC um triângulo. Seja T_2 seu segundo ponto de Fermat-Torricelli (problema 10). Prove que vale exatamente uma das igualdades $\angle AT_2B = \angle AT_2C = 60^\circ$, $\angle BT_2A = \angle BT_2C = 60^\circ$ e $\angle CT_2B = \angle CT_2A = 60^\circ$. **Dicas:**
- 029. Seja ABC um triângulo. Prove que o primeiro ponto isodinâmico (problema 11) é conjugado isogonal do primeiro ponto de Fermat-Torricelli (problema 9) com respeito a $\triangle ABC$. Dicas:
- 030. Seja ABC um triângulo. Prove que o segundo ponto isodinâmico (problema 12) é conjugado isogonal do segundo ponto de Fermat-Torricelli (problema 10) com respeito a $\triangle ABC$. Dicas:
- 031. Seja ABC um triângulo. Seja L seu ponto de Lemoine (problema 6). Os pontos $M, K \in AB, H, I \in BC$ e $J, G \in AC$ são escolhidos de tal forma que $MI \parallel AC, GH \parallel AB, KJ \parallel BC$ e $MI \cap KJ \cap GH = L$. Prove que os pontos M, K, H, I, J e G ficam sobre uma circunferência. **Dicas:**
- 032. Seja ABC um triângulo. Seja L seu ponto de Lemoine (problema 6). Os pontos $M, K \in AB$, $H, I \in BC$ e $J, G \in AC$ são escolhidos de tal modo que os quadriláteros MICA, GHBA e KJCB são cíclicos e $MI \cap KJ \cap GH = L$. Prove que os pontos M, K, H, I, J e G ficam sobre uma circunferência de centro L. Dicas:
- 033. Seja ABCD um quadrilátero convexo tal que $AB \cap CD = E$ e $AD \cap BC = E$. Prove que os circuncírculos de $\triangle BFC$, $\triangle AFD$ e $\triangle ABE$ passam por um ponto em comum. **Dicas:**
- 034. A construção do problema 33 é dada. Prove que o ponto M e os respectivos centros $O_1,~O_2,~O_3$ e O_4 dos circuncírculos de $\triangle AFD,~\triangle BFC,~\triangle ABE$ e $\triangle DCE$ ficam sobre uma circunferência. **Dicas:**

- **035.** As circunferências k_1, k_2, k_3 e k_4 são dadas de tal modo que elas passam por um ponto em comum M. Prove que as circunferências que passam pelos pontos de interseção de (k_1, k_2, k_3) , (k_1, k_2, k_4) , (k_1, k_3, k_4) e (k_2, k_3, k_4) , diferentes de M, também passam por um ponto em comum. **Dicas:**
- **036.** Seja ABCDE um pentágono convexo tal que $AC \cap BE = D_1, \ BD \cap AC = E_1, \ BD \cap EC = A_1, \ EC \cap AD = B_1 \ e \ AD \cap BE = C_1.$ Digamos que (XYZ) denote o circuncírculo de $\triangle XYZ$. Sejam $(AD_1C_1) \cap (B_1C_1E) = \{C_1, C_2\}, \ (B_1C_1E) \cap (A_1B_1D) = \{B_1, B_2\}, \ (A_1B_1D) \cap (A_1E_1C) = \{A_1, A_2\}, \ (A_1E_1C) \cap (E_1D_1B) = \{E_1, E_2\} \ e (E_1D_1B) \cap (C_1D_1A) = \{D_1, D_2\}.$ Prove que os pontos A_2, B_2, C_2, D_2 e E_2 ficam sobre uma circunferência. **Dicas:**
- 037. Seja ABCDE um pentágono convexo tal que $AC \cap BE = D'$, $BD \cap AC = E'$, $BD \cap EC = A'$, $EC \cap AD = B'$ e $AD \cap BE = C'$. Digamos que (XYZ) denote o circuncírculo de $\triangle XYZ$. Sejam $(AD'B) \cap (BE'C) = \{B, B''\}$, $(BE'C) \cap (CA'D) = \{C, C''\}$, $(CA'D) \cap (DB'E) = \{D, D''\}$, $(DB'E) \cap (AC'E) = \{E, E''\}$ e $(AC'E) \cap (AD'B) = \{A, A''\}$. Prove que as retas AA'', BB'', CC''', DD'' e EE'' são concorrentes. **Dicas:**
- **038.** Seja ABC um triângulo. Seja O seu circuncentro. Seja M seu baricentro e seja H seu ortocentro. Prove que os pontos H, O e M são colineares. **Dicas:**
- 039. Seja ABC um triângulo. Seja N seu ponto de Nagel (problema 7). Seja M seu baricentro e seja I seu incentro. Prove que os pontos N, I e M são colineares. Dicas:
- 040. Seja ABC um triângulo. Prove que as retas formadas pelos primeiro e segundo pontos de Fermat-Torricelli (problemas 9 e 10) e pelos primeiro e segundo pontos isodinâmicos (problemas 11 e 12) se intersectam no ponto de Lemoine L (problema 6). Além disso, prove que o circuncentro de $\triangle ABC$ fica na reta dada pelos pontos isodinâmicos. **Dicas:**
- **041.** Seja ABC um triângulo. Prove que Ap_2T_1 e Ap_1T_2 se intersectam no baricentro M do $\triangle ABC$. $(Ap_1$ e Ap_2 são os pontos isodinâmicos dos problemas 11 e 12, e T_1 e T_2 são os pontos de Fermat-Torricelli dos problemas 9 e 10). **Dicas:**
- **042.** Seja ABC um triângulo. Seja I seu incentro, e seja O seu circuncentro. Seja Bi seu ponto de Bevan (problema 20). Prove que os pontos I, O e Bi são colineares. **Dicas:**
- **043.** Seja ABC um triângulo. Seja I seu incentro, seja G seu ponto de Gergonne (problema 4), e sejam S_1 e S_2 seus primeiro e segundo centros de Soddy (problemas 13 e 14), respectivamente. Prove que os pontos I, G, S_1 e S_2 são colineares. **Dicas:**
- **044.** Seja ABCD um quadrilátero. Digamos que os pés das perpendiculares de A até BC e CD sejam R e Q,

- respectivamente. Digamos que os pés das perpendiculares de B até CD e DA sejam N e I, respectivamente. Digamos que os pés das perpendiculares de C até DA e AB sejam L e M, respectivamente. Digamos que os pés das perpendiculares de D até AB e BC sejam J e K, respectivamente. Sejam $AR \cap BI = G$, $BN \cap CM = H$, $CL \cap DK = E$ e $AQ \cap DJ = F$. Prove que os pontos E, F, G e H são colineares. **Dicas:**
- **045.** Seja ABCD um quadrilátero tal que $AB \cap CD = E$ e $AD \cap BC = F$. Prove que os pontos médios M, N e P dos segmentos AC, BD e EF, respectivamente, são colineares. **Dicas:**
- **046.** Seja ABCD um quadrilátero. Sejam J e I os pontos médios das diagonais AC e BD, respectivamente. Digamos que a perpendicular DG a BC ($G \in BC$) intersecte a perpendicular CH a AD ($H \in AD$) no ponto K. A perpendicular BF a AD ($F \in AD$) intersecta a perpendicular AE a BC ($E \in BC$) no ponto E. Prove que E E E Dicas:
- **047.** Seja ABCD um quadrilátero tal que $AB \cap DC = E$ e $AD \cap BC = F$. As circunferências k_1, k_2 e k_3 têm AC, BD e EF como diâmetros, respectivamente. Prove que elas têm um eixo radical em comum. **Dicas:**
- 048. Seja ABC um triângulo. Seja k o circuncírculo de $\triangle ABC$. Um ponto arbitrário D é escolhido no arco \widehat{AB} de k que não contém C. Os pontos E, F e G ficam sobre CA, AB e BC respectivamente, e são escolhidos de forma que $\angle AED = \angle AFD = \angle BGD = 90^{\circ}$. Prove que os pontos E, F e G são colineares. Dicas:
- **049.** Seja ABC um triângulo. Seja k o circuncírculo de $\triangle ABC$. Um ponto arbitrário D é escolhido no arco \widehat{AB} de k que não contém C. Os pontos E, F e G ficam sobre CA, AB e BC respectivamente, e são escolhidos de forma que $\angle AED = \angle AFD = \angle BGD = \varphi$. Prove que os pontos E, F e G são colineares. **Dicas:**
- **050.** Seja ABC um triângulo. Seja k o circuncírculo de $\triangle ABC$. Dois pontos arbitrários P e Q são escolhidos no arco \widehat{AB} que não contém C. Pontos M, N e K são escolhidos em BC, CA e AB respectivamente, tais que $\angle(PM,BC) = \angle(QM,CB)$, $\angle(PN,AC) = \angle(QN,CA)$ e $\angle(QK,AB) = \angle(PK,BA)$. Prove que os pontos M, N e K são colineares. **Dicas:**
- 051. Seja ABC um triângulo. Seja D um ponto do circuncírculo de $\triangle ABC$. Prove que o ponto médio J do segmento DH (H é o ortocentro de $\triangle ABC$) fica sobre a reta de Simson (problema 48) do $\triangle ABC$ e do ponto D. **Dicas:**
- 052. Seja ABCD um quadrilátero cíclico. Os pés das perpendiculares de A até BC e CD são E e F, respectivamente. Os pés das perpendiculares de B até CD e DA são I e J, respectivamente. Os pés das

- perpendiculares de C até DA e AB são G e H, respectivamente. Os pés das perpendiculares de D até AB e BC são K e L, respectivamente. Prove que as retas JI, EF, GH e KL são concorrentes. **Dicas:**
- 053. Seja ABCD um quadrilátero cíclico, e seja X um ponto arbitrário. Os pés das perpendiculares de X até AB e CD são H e I, respectivamente. Os pés das perpendiculares de X até BC e DA são K e F, respectivamente. Os pés das perpendiculares de X até AC e BD são G e J, respectivamente. Os pontos médios de HI, GJ e KF são L, M e N, respectivamente. Prove que os pontos M, N e L são colineares. Dicas:
- **054.** Seja ABC um triângulo. O circuncírculo de $\triangle ABC$ é k e seu ortocentro é H. A altura relativa a B intersecta AC e k nos pontos B_1 e B_2 , respectivamente. Prove que os pontos H e B_2 são simétricos com respeito a B_1 . **Dicas:**
- **055.** Seja O o circuncentro de $\triangle ABC$ de alturas AA_1 , BB_1 e CC_1 . As retas CC_1 e A_1B_1 se intersectam no ponto N e as retas CO e AB se intersectam no ponto E. Prove que $HM \parallel EN$, onde M é ponto médio de AB. **Dicas:**
- **056.** Seja ABC um triângulo. Seja k seu circuncírculo. Seja D um ponto arbitrário na tangente a k por C. Os pontos E e F são as projeções de D em AC e BC, respectivamente. Prove que $EF \perp AB$. **Dicas:**
- 057. Seja ABC um triângulo. Seja P um ponto arbitrário no arco menor \widehat{AB} do circuncírculo de $\triangle ABC$. As projeções de P em AC e AB são X e Y, respectivamente. Os pontos M e N são os pontos médios de BC e XY, respectivamente. Prove que $\angle PNM = 90^{\circ}$. Dicas:
- **058.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. Os pontos M, N, P e Q são projeções de C_1 nas retas AC, AA_1 , BB_1 e BC_1 , respectivamente. Prove que os pontos M, N, P e Q são colineares. **Dicas:**
- **059.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. Denote as reflexões de C_1 com respeito aos lados AC e BC por M e N, respectivamente. Prove que os pontos M, B_1 , A_1 e N são colineares. **Dicas:**
- **060.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. Os pontos M e N são as projeções de C_1 sobre os lados AC e BC, respectivamente. Seja $P = MN \cap B_1C_1$. Prove que P é o ponto médio de B_1C_1 . **Dicas:**
- **061.** Seja ABC um triângulo. Seja k seu circuncírculo e seja H seu ortocentro. Sejam AA_1 e BB_1 alturas deste triângulo. Seja D um ponto arbitrário no segmento BH. A reta AD intersecta k novamente no ponto E. Sejam $BE \cap AA_1 = F$ e K o ponto médio de FD. Prove que os pontos A_1 , B_1 e K são colineares. **Dicas:**

- 062. Seja ABC um triângulo. Seja k seu circuncírculo. A reta CM ($M \in AB$) é bissetriz interna de $\angle ACB$, e intersecta k no ponto N. A reta que passa por M e é perpendicular a BC, intersecta BC e o arco menor \widehat{BC} de k nos pontos L e X, respectivamente. A reta que passa por C e é perpendicular a AX, intersecta AX e AB nos pontos Z e Y, respectivamente. Prove que os pontos X, Y e N são colineares. **Dicas:**
- 063. Sejam AA_1 , BB_1 e CC_1 as alturas de um dado triângulo ABC. Seja P um ponto arbitrário interno ao triângulo. Os pontos C_2 e C_3 são as projeções de P em AB e CC_1 , respectivamente. Os pontos $A_2 \in BC$, $A_3 \in AA_1$, $B_2 \in AC$ e $B_3 \in BB_1$ são definidos analogamente. Prove que as retas A_2A_3 , B_2B_3 e C_2C_3 são concorrentes. **Dicas:**
- **064.** Seja ABC um triângulo. Sejam AB_1 e BA_1 alturas desse triângulo, com interseção H. As retas A_1B_1 e AB se intersectam no ponto D, e M é ponto médio de AB. Prove que $MH \perp DC$. **Dicas:**
- **065.** Seja ABC um triângulo acutângulo. O ponto H é seu ortocentro e o ponto M é ponto médio de AB. Sejam AA_1 e BB_1 alturas desse triângulo e seja $AB \cap A_1B_1 = D$. A reta CH intersecta o circuncírculo de $\triangle ABC$ nos pontos C e K. Prove que os pontos K, M, C e D são concíclicos. **Dicas:**
- 066. Seja ABC um triângulo com $\angle ACB > 90^\circ$. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. O ponto M é ponto médio do lado AB. Prove que os pontos médios de AA_1 e BB_1 , e os pontos M e C_1 são concíclicos. **Dicas:**
- **067.** Seja ABC um triângulo com $\angle ACB > 90^\circ$ e de alturas AA_1 e BB_1 . Os pontos P e M são as projeções de A_1 sobre AC e AB, respectivamente, e Q e N são as projeções de B_1 sobre BC e AB, respectivamente. Prove que PM = QN. **Dicas:**
- **068.** Seja ABC um triângulo. Seja CD uma altura e O o circuncentro. Seja M o ponto médio de AB. Denote a projeção de A em CO por P. Prove que DM = PM. **Dicas:**
- 069. Seja ABC um triângulo. Sejam AA_1 e BB_1 alturas. A circunferência de diâmetro AC intersecta a reta BB_1 nos pontos P e M de forma que P fica entre B e M. A circunferência de diâmetro BC intersecta AA_1 nos pontos N e Q de forma que N fica entre A e Q. Prove que o quadrilátero MNPQ é cíclico. Dicas:
- 070. Seja ABC um triângulo. Seja CD uma altura. Os pontos E e F são as projeções de D sobre AC e BC respectivamente. Prove que o quadrilátero ABFE é cíclico. **Dicas:**
- 071. Seja ABC um triângulo. Seja CD uma altura. Os pontos E e F são as projeções de D sobre AC e BC respectivamente. Os pontos M e N são os pontos médios de AC e BC respectivamente. Prove que o quadrilátero EFNM é cíclico. **Dicas:**

- 072. Seja ABC um triângulo. Os segmentos AA_1 e BB_1 são alturas, e a bissetriz interna de $\angle ACB$ intersecta os segmentos A_1B_1 no ponto L. O circuncírculo de $\triangle AB_1L$ intersecta BB_1 uma segunda vez em X. Seja $Y \in AA_1$ um ponto tal que AY = BX. Prove que o quadrilátero BA_1LY é cíclico. **Dicas:**
- **073.** Seja ABC um triângulo. Seu circuncentro é O, seu ortocentro é H e suas alturas são AA_1 , BB_1 e CC_1 . O ponto M é a projeção de C sobre A_1B_1 , e N é a reflexão de C com respeito a A_1B_1 . Prove que os pontos H, O, N e C_1 são concíclicos. **Dicas:**
- 074. Seja ABC um triângulo. Sejam AA_1 e BB_1 alturas. Um ponto D é escolhido na semirreta AA_1 . Um ponto E é escolhido na semirreta BB_1 , de tal forma que $\angle DCE = 90^{\circ}$. Seja H o pé da perpendicular de C a ED. Prove que $\angle AHB = 90^{\circ}$. Dicas:
- **075.** Seja ABC um triângulo. Os segmentos AA_1 , BB_1 e CC_1 são alturas. Os pontos A_2 e A_3 são as projeções de A_1 sobre AC e AB respectivamente. Os pontos B_2 , B_3 , C_2 e C_3 são definidos analogamente. Prove que os pontos A_2 , A_3 , B_2 , B_3 , C_2 e C_3 são concíclicos. **Dicas:**
- 076. Seja ABC um triângulo. Digamos que AC = BC. O segmento CC_1 é uma altura e M é seu ponto médio. Seja P a projeção de C_1 sobre BM. Prove que $\angle APC = 90^{\circ}$. Dicas:
- 077. Seja ABC um triângulo. Seja H seu ortocentro e seja M o ponto médio do lado AB. Prove que o ponto simétrico de H com respeito a M coincide com o ponto diametralmente oposto de C com respeito ao circuncírculo de ΔABC . Dicas:
- **078.** Seja ABC um triângulo. Sejam AA_1 e BB_1 alturas que se intersectam em H. Seja D o segundo ponto de interseção dos circuncírculos de ΔABC e ΔA_1B_1C , e seja M o ponto médio de AB. Prove que os pontos D, H e M são colineares. **Dicas:**
- 079. Seja ABC um triângulo. Seja k seu circuncírculo e H seu ortocentro. Seja l uma reta arbitrária que passa por H. Prove que as reflexões de l com respeito a AB, BC e CA concorrem num ponto de k. Dicas:
- **080.** Seja ABC um triângulo. Seja O seu circuncentro. As reflexões de AB com respeito às retas AC e BC se intersectam no ponto K. Prove que os pontos C, O e K são colineares. **Dicas:**
- **081.** Seja ABC um triângulo. Seja H seu ortocentro, e seja M o ponto médio do lado AB. A reta que passa por H e que é perpendicular a HM intersecta os lados AC e BC nos pontos D e E, respectivamente. Prove que DH = EH. **Dicas:**
- **082.** Seja ABC um triângulo. Seja H seu ortocentro e O seu circuncentro. O ponto M está no lado BC e $\angle OC_1M = 90^\circ$. Prove que $\angle ABC = \angle MHC_1$. **Dicas:**

- 083. Seja ABC um triângulo. O circuncírculo de $\triangle ABC$ é k e seu ortocentro é H. Considere duas retas que passam por H que são perpendiculares entre si. Uma delas intersecta AB, BC e CA nos pontos F, K e P respectivamente, e a outra nos pontos E, Q e L respectivamente. Prove que os pontos médios S, N e M dos segmentos QK, EF e LP, respectivamente, são colineares. **Dicas:**
- 084. Seja ABC um triângulo. O circuncírculo de $\triangle ABC$ é k e seu ortocentro é H. Seja P um ponto arbitrário do interior de $\triangle ABC$. As retas AP, BP e CP intersectam k uma segunda vez nos pontos A_1 , B_1 e C_1 , respectivamente. Os pontos A_2 , B_2 e C_2 são as projeções de P sobre BC, CA e AB, respectivamente. Os pontos A_3 , B_3 e C_3 são as reflexões de A_1 , B_1 e C_1 com respeito a A_2 , B_2 e C_2 respectivamente. Prove que os pontos H, A_3 , B_3 e C_3 são concíclicos. Dicas:
- 085. Seja ABC um triângulo. Seja H seu ortocentro e seja P um ponto arbitrário do interior do triângulo. As retas AP, BP e CP intersectam o circuncírculo k de ΔABC nos pontos A_1 , B_1 e C_1 , respectivamente. Os pontos A_2 , B_2 e C_2 são as reflexões de A_1 , B_1 e C_1 com respeito às retas BC, AC e AB, respectivamente. Prove que o quadrilátero $HA_2B_2C_2$ é cíclico. Dicas:
- **086.** Seja ABC um triângulo. Sejam M e N os pés das bissetrizes internas relativas a A e B, respectivamente. O ponto P é o pé da bissetriz externa relativa a C. Prove que os pontos N, M e P são colineares. **Dicas:**
- 087. Seja ABC um triângulo. Sejam B_1 e C_1 os pés das bissetrizes internas relativas a B e C, respectivamente. Seja O o circuncentro de $\triangle ABC$ e seja I_a o A-exincentro. Prove que $OI_a \perp B_1C_1$. Dicas:
- 088. Seja ABC um triângulo. Digamos que $\angle ABC > 90^\circ$ e sejam CM e CN as bissetrizes interna e externa de $\angle ACB$, respectivamente. Prove que as circunferências (ACB) e (MNC) são ortogonais, isto é, que as retas tangentes por seus pontos de interseção são perpendiculares. **Dicas:**
- 089. Seja ABC um triângulo. Seja k seu circuncírculo. A reta CL $(L \in AB)$ é a bissetriz interna de $\angle ACB$. Denote o ponto de interseção da reta tangente a k por C com a reta AB por N. Prove que NC = NL. Dicas:
- **090.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 bissetrizes internas. Seja P um ponto arbitrário na reta A_1B_1 e sejam X, Y e Z suas projeções sobre as retas AB, BC e CA, respectivamente. Prove que a soma dos comprimentos de dois dos segmentos PX, PY e PZ é igual ao comprimento do terceiro. **Dicas:**
- 091. Seja ABC um triângulo. Seja
m AA_1 e BB_1 bissetrizes internas. Seja
 Ea interseção da reta A_1B_1

- com o circuncírculo de $\triangle ABC$, tal que E e A estão no mesmo semiplano com respeito a BC. Prove que $\frac{1}{EA} = \frac{1}{EB} + \frac{1}{EC}$. Dicas:
- **092.** Seja ABC um triângulo. Sejam AQ e BP bissetrizes internas e k o circuncírculo de $\triangle ABC$. As retas AQ e BP intersectam k nos pontos M e N, respectivamente. Prove que as retas PQ, MN e a reta tangente a k por C são concorrentes. **Dicas:**
- 093. Seja ABCD um quadrilátero. As semirretas AB e DC se intersectam no ponto E e as semirretas AD e BC se intersectam no ponto F. A bissetrizes internas de $\angle EAF$ e $\angle ECF$ se intersectam em X. A bissetriz interna de $\angle ADE$ intersecta a bissetriz externa de $\angle EBC$ em Y. As bissetrizes externas de $\angle AFB$ e $\angle AEC$ se intersectam em Z. Prove que os pontos X, Y e Z são colineares. **Dicas:**
- **094.** Seja ABC um triângulo tal que AC > AB > BC. Sejam AA_1 , BB_1 e CC_1 suas bissetrizes internas. O ciruncírculo de $\Delta A_1B_1C_1$ intersecta AB, AC e BC uma segunda vez nos pontos C_2 , B_2 e A_2 , respectivamente. Prove que $C_1C_2 = A_1A_2 + B_1B_2$. **Dicas:**
- **095.** Seja ABC um triângulo com bissetriz interna CL $(L \in AB)$. A circunferência de diâmetro AB centrada em M intersecta os lados AC e BC uma segunda vez nos pontos B_1 e A_1 , respectivamente. A bissetriz interna de $\angle A_1MB_1$ intersecta a reta CL no ponto K. Prove que os quadriláteros $ALKB_1$ e $BLKA_1$ são cíclicos. **Dicas:**
- **096.** Seja ABC um triângulo e seja l sua bissetriz externa por C. Os pontos D e E são as projeções de A e B sobre l. O segmento CH ($H \in AB$) é a altura de C até AB e o ponto F é o ponto médio de AB. Prove que o quadrilátero DEHF é cíclico. **Dicas:**
- **097.** Seja ABC um triângulo. Os pontos M, N, P e Q são os pés das perpendiculares de C até as bissetrizes interna e externas de $\angle BAC$ e $\angle ABC$, como mostrado na figura. Prove que os pontos M, N, P e Q são colineares. **Dicas:**

- **098.** Seja ABC um triângulo. Seja H seu ortocentro. Os pontos L e P são as projeções de H sobre as bissetrizes interna e externa de $\angle ACB$, respectivamente. Prove que os pontos M, L e P são colineares, onde M é o ponto médio de AB. **Dicas:**
- 099. Seja ABC um triângulo. Uma reta passando por C intersecta a bissetriz interna de A e o circuncírculo de ΔABC nos pontos M e N, respectivamente. Uma circunferência k_1 passa por A e toca CM nos pontos P e Q, respectivamente. Prove que os pontos N, P e Q são colineares. **Dicas:**

- 100. Seja $\angle AOC$ um ângulo. O ponto B fica sobre a semirreta OA e o ponto D fica sobre a semirreta OC. Além disso, AB = CD, A fica entre O e B, e C fica sobre O e D. Os circuncírculos de $\triangle ADO$ e $\triangle BOC$ intersectam-se novamente no ponto K. Prove que OK é bissetriz interna de $\angle AOC$. Dicas:
- 101. Seja ABC (AC > BC) um triângulo, seja CL ($L \in AB$) sua bissetriz interna, e seja O seu circuncentro. Denote os circuncentros de ΔALC e ΔBLC por O_1 e O_2 , respectivamente. Prove que $OO_1 = OO_2$. Dicas:
- 102. Seja ABC um triângulo. Seja CL $(L \in AB)$ uma bissetriz interna. O incírculo de ΔALC toca AC, AL e CL nos pontos M, N e P, respectivamente, e o C-exincírculo de ΔBCL toca as retas BL, CB e CL nos pontos Q, R e S, respectivamente. Prove que cada uma das triplas de pontos M, N, S e P, Q, R são colineares. **Dicas:**
- 103. Seja ABC um triângulo. Sejam AA' e BB' alturas e k o incírculo centrado em I. As retas AI e BI intersectam BC e AC nos pontos F e G respectivamente. A circunferência k toca BC e CA nos pontos D e E respectivamente. Se $A'B' \cap GF = X$, prove que os pontos E, E0 e E1 são colineares. Dicas:
- 104. Seja ABC um triângulo. Seja CL bissetriz interna e I incentro. A mediatriz do segmento CL intersecta as bissetrizes internas de $\angle BAC$ e $\angle ABC$ nos pontos M e N, respectivamente. Prove que o quadrilátero MINC é cíclico. **Dicas:**
- **105.** Seja ABC um triângulo. Seja I seu incentro. Os pontos $Y \in AI$ e $X \in BI$ são escolhidos de forma que $\angle XCA = \angle YCB$. Prove que as retas AX, CI e BY são concorrentes. **Dicas:**
- 106. Seja ABC um triângulo. Sejam AM e BN bissetrizes internas que se intersectam em I. Pontos L e K são escolhidos sobre a reta AB tais que LN e CN são simétricas com respeito a BN, e tais que CM e KM são simétricas com respeito a AM. Seja $D = LN \cap KM$. Prove que $DI \perp AB$. Dicas:
- 107. Seja ABC (AC > BC) um triângulo de alturas AA_1 e BB_1 , que se intersectam no ponto H. As bissetrizes internas de $\angle HAC$ e $\angle HBC$ se intersectam no ponto L. Sejam M e N os pontos médios de AB e CH, respectivamente. Prove que os pontos M, L e N são colineares. **Dicas:**
- 108. Seja ABC um triângulo. Seja C_2 o ponto médio de AB. As retas tangentes ao circuncírculo de $\triangle ABC$ em A e B se intersectam no ponto N. Prove que $\angle ACC_2 = \angle BCN$. Dicas:
- 109. Seja ABC um triângulo. Os pontos D e E são escolhidos sobre os lados AC e BC de tal forma que o quadrilátero ABED é cíclico. Seja M o ponto médio de AB e seja F a interseção das retas tangentes ao circuncírculo de ΔDEC nos pontos D e E. Prove que os pontos M, F e C são colineares. **Dicas:**

- 110. Seja ABC um triângulo. Seja k seu circuncírculo. As retas tangentes a k por A e B se intersectam no ponto D. Digamos que CD intersecte k uma segunda vez no ponto E. As projeções de E sobre AB, BC e CA são N, P e M, respectivamente. Prove que N é o ponto médio de PM. Dicas:
- 111. Seja ABC um triângulo. As retas tangentes a seu circuncírculo pelos pontos A e B se intersectam em T. A reta CT intersecta o circuncírculo de ΔABC uma segunda vez no ponto D. Seja CL ($L \in AB$) bissetriz interna de $\angle ACB$. Prove que DL é bissetriz interna de $\angle ADB$. Dicas:
- 112. Seja ABC um triângulo. As retas tangentes ao seu circuncírculo pelos pontos A e B se intersectam em T. A reta CT intersecta o circuncírculo de ΔABC uma segunda vez no ponto D. Seja E a reflexão de D com respeito a AB, e seja M o ponto médio de AB. Prove que os pontos C, E e M são colineares. Dicas:
- 113. Seja ABC um triângulo. As retas tangentes a seu circuncírculo pelos pontos A e B se intersectam em T. A reta CT intersecta o circuncírculo de ΔABC uma segunda vez no ponto D. Seja $N \in CD$ um ponto tal que $\angle NBC = \angle ACN$. Prove que $\angle BCN = \angle CAN$. Dicas:
- 114. Seja ABC um triângulo. Sejam E, F e M pontos médios de AC, BC e EF, respectivamente. O segmento CD é uma altura de ΔABC . Prove que os circuncírculos de $\Delta ECF, \Delta BDF$ e ΔADE concorrem num ponto da reta DM. Dicas:
- 115. Seja ABC um triângulo. Seja M o ponto médio de AB e seja D o ponto de interseção das retas tangentes ao circuncírculo de ΔABC pelos pontos A e B. As projeções de D sobre as retas CA e CB são E e F, respectivamente. Prove que $CM \perp EF$. Dicas:
- 116. Seja ABC um triângulo. Seja N o ponto médio da altura CD e seja M o ponto médio de AB. Seja L o ponto de Lemoine de ΔABC . Prove que os pontos N, L e M são colineares. **Dicas:**
- 117. Seja k uma circunferência. Um ponto C é escolhido exterior a k. As retas tangentes k por C tocam a circunferência nos pontos A e B. Prove que o incentro de ΔABC fica sobre k. **Dicas:**
- 118. As circunferências k_1 e k_2 se tocam externamente no ponto I. Sejam l_1 e l_2 as retas tangentes externas comuns às duas circunferências. Os pontos de tangência de l_1 e l_2 a k_2 são A e B, respectivamente. Os pontos de tangência de l_1 e l_2 a k_1 são D e C, respectivamente. Prove que o quadrilátero ABCD é inscritível. **Dicas:**
- 119. Seja ABC um triângulo. I é o incentro do triângulo. O incírculo de ΔABC toca AB em N. O C-exincírculo de ΔABC toca AB em M. Sejam P e Q as projeções ortogonais de A e B sobre a reta CI, respectivamente. Prove que os pontos P, M, Q e

- N ficam sobre uma circunferência de diâmetro MN. **Dicas:**
- 120. Seja ABC um triângulo. Seja ω seu incírculo, de centro I. Denote a projeção ortogonal de B sobre AI por K. Sejam N e M os pontos tangência de AC e BC por ω , respectivamente. Prove que os pontos M, N e K são colineares. **Dicas:**
- 121. Seja ABC um triângulo. Seja ω seu incírculo, de centro I. Digamos que AB toque ω em N. Sejam K e M os pontos médios de CN e AB, respectivamente. Prove que K, I e M são colineares. **Dicas**:
- 122. Seja ABC um triângulo. Seja k seu incírculo, de centro I. Digamos que AB toque k no ponto P. Seja CH ($H \in AB$) uma altura de ΔABC . Denote o ponto médio de CH por M. Seja $k_C(I_C)$ o C-exincírculo de ΔABC , e digamos que ele toque AB em F. Prove que os pontos M, I e F são colineares, e prove que os pontos M, P e I_C são colineares. Dicas:
- 123. Seja ABC um triângulo. Digamos que seu incírculo toque os lados BC, CA e AB nos pontos F, E e D, respectivamente. Digamos também que seu C-exincírculo toque as retas BC, CA e AB nos pontos Q, P e M, respectivamente. Seja MN ($N \in PQ$) uma altura em ΔPMQ , e seja DH ($D \in EF$) uma altura em ΔEDF . Prove que $\angle ACN = \angle BCH$. Dicas:
- 124. Seja ABC um triângulo. Sejam $\omega_X(I_X)$ seus X-exincírculos para $X \in \{A, B, C\}$. Digamos que ω_A toque AB, AC e BC em P, Q e E, respectivamente, assim como ω_B toca BC, BA e CA em N, M e D, respectivamente. Diremos ainda que $PE \cap MN = R$ e $MD \cap PQ = S$. Prove que os pontos I_B , R, C, S e I_A são colineares. **Dicas:**
- 125. Seja ABC um triângulo. Sejam $\omega_X(I_X)$ seus Xexincírculos para $X \in \{A, B, C\}$. Digamos que ω_A toque AB, AC e BC em P, Q e E, respectivamente,
 assim como ω_B toca BC, BA e CA em N, M e D,
 respectivamente. Seja $PE \cap MD = F$. Prove que CF = r, onde r é o inrraio de ΔABC . Dicas:
- 126. Seja ABC um triângulo. Sejam $\omega_X(I_X)$ seus X-exincírculos para $X \in \{A,B,C\}$. Digamos que ω_A toque AB, AC e BC em P, Q e E, respectivamente, assim como ω_B toca BC, BA e CA em N, M e D, respectivamente. Sejam $PE \cap MD = U$ e $PQ \cap MN = F$. Prove que $CF \perp AB$ e que $CU \perp AB$. Dicas:
- 127. Seja ABC um triângulo. Sejam $\omega_X(I_X)$ seus X-exincírculos para $X \in \{A, B, C\}$. Digamos que ω_A toque BC em N, assim como ω_B toca CA em M e ω_C toca CA e CB em P e Q, respectivamente. Prove que as retas PQ, MN e AB concorrem. Dicas:
- 128. Seja ABC um triângulo. Seja K o ponto médio de AB. A reta CL ($L \in AB$) é a bissetriz interna de $\angle ACB$. O B-exincírculo de ΔABC toca AC no

- ponto N. O A-exincírculo de ΔABC toca BC no ponto P. Seja M ponto médio de NP. Prove que $KM \parallel CL$. **Dicas:**
- 129. Seja ABC um triângulo. Seja ω_A seu A-exincírculo, e ω_B seu B-exincírculo. ω_A toca AB e BC em Q e N, respectivamente, assim como ω_B toca AB e AC em P e M, respectivamente. Prove que as mediatrizes de AN e BM, e a bissetriz interna de $\angle ACB$ são concorrentes. **Dicas:**
- 130. Seja ABC um triângulo. Seja k seu circuncírculo. Seja M o ponto médio de AB, e seja N o ponto médio do arco ACB. Sejam I_1 e I_2 os incentros de ΔACM e ΔBCM , respectivamente. Prove que os pontos N, C, I_1 e I_2 são concíclicos. **Dicas:**
- 131. Seja ABC um triângulo. Seja CM uma mediana. Sejam $k_1(I_1)$ e $k_2(I_2)$ os incírculos de ΔACM e ΔBCM , respectivamente. Sejam $k_3(I_3)$ e $k_4(I_4)$ os M-exincírculos de ΔACM e ΔBCM , respectivamente. Prove que os pontos I_1 , I_2 , I_3 e I_4 são concíclicos. **Dicas:**
- 132. Seja ABC um triângulo. Seja k seu incírculo de centro I. Seja k_1 a circunferência que passa por A e B, e que toca k no ponto T. Seja CH uma altura em ΔABC , e seja M o ponto médio de CH. Seja P o ponto de tangência de AB com k. Prove que os pontos P, M e T são colineares. **Dicas:**
- 133. Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 alturas. Sejam C_2 , A_2 e B_2 os pontos de tangência do incírculo de $\triangle ABC$ com AB, BC e CA, respectivamente. Denote os pontos médios de AA_1 , BB_1 e CC_1 por M, N e P, respectivamente. Prove que as retas MA_2 , NB_2 e PC_2 são concorrentes. **Dicas:**
- 134. Seja ABC um triângulo. Seja $\omega(I)$ seu incírculo, que toca AB em M. Seja L a reflexão de M com respeito a I. Sejam $AI \cap BC = N$, $BI \cap AC = P$ e $PN \cap IC = K$. Seja H a projeção de C sobre AB. Prove que os pontos L, K e H são colineares. Dicas:
- 135. Seja ABC um triângulo. Seja ω seu incírculo, que toca os lados AB, BC e CA nos pontos M, N e P, respectivamente. Uma circunferência k_1 é construída de forma que toque AB em M. Seja L o ponto de interseção das retas tangentes a k_1 por A e B (distintas de AB). Digamos que k_1 toque LA e LB nos pontos S e Q, respectivamente. Prove que os pontos P, N, Q e S são concíclicos. **Dicas:**
- 136. Seja ABC um triângulo. Seja $\omega(I)$ seu incírculo, que toca BC e CA nos pontos M e N, respectivamente. Seja D a projeção de A sobre BI, e seja T a projeção de I sobre CD. Sejam P e Q os pontos de interseção de ω com BD. Prove que os pontos P, Q, C e T são concíclicos. **Dicas:**
- 137. Seja ABC um triângulo. Seja ω seu incírculo, que toca AB em D. Seja $CD \cap \omega = E \neq D$. A circunferência de centro B e raio BD intersecta CD

- no ponto $F \neq D$. Seja $BF \cap AE = K$. Prove que KF = FB. **Dicas:**
- 138. Seja ABC um triângulo. Seja $\omega(I)$ seu incírculo, que toca os lados AB, BC e CA nos pontos N, Q e P, respectivamente. Seja $NI \cap PQ = E$. Seja F o ponto tal que CF = CP, $CF \parallel AB$, e F e A ficam em semiplanos distintos, com respeito a BC. Prove que os pontos A, E e F são colineares. **Dicas:**
- 139. Seja ABC um triângulo. Seja ω seu incírculo, que toca os lados AB, BC e CA nos pontos M, F e E, respectivamente. Seja $CM \cap \omega = N \neq M$. Seja $l \parallel AB$ uma reta que passa por C. Os pontos P e Q são os pontos de interseção de l com as retas ME e MF, respectivamente. Prove que $\angle ENF = \angle PNQ$. Dicas:
- 140. Seja ABC um triângulo. Seja ω seu incírculo, que toca os lados BC e CA nos pontos D e F, respectivamente. Seja $AD \cap BF = G$. Denote o ponto médio de FD por M. Sejam K e L as reflexões de F e D com respeito a A e B, respectivamente. Prove que $MG \perp KL$. Dicas:
- 141. Seja ABC um triângulo. Digamos que $AC \geq BC$ e que k seja seu incírculo, que toca os lados BC, CA e AB nos pontos D, E e F, respectivamente. Sejam L e K as respectivas reflexões de A e B com respeito a F. As retas que passam por L e K, perpendiculares a AB, intersectam CB e CA em N e M, respectivamente. Prove que MN toca k. Dicas:
- 142. Seja ABC um triângulo. Seja ω seu incírculo, que toca os lados AB, BC e CA nos pontos M, N e P, respectivamente. Seja T a interseção do segmento CI com ω . Seja $MP \cap AT = R$ e $MN \cap BT = Q$. Prove que $RQ \perp IC$. **Dicas:**
- 143. Seja ABC um triângulo isósceles (AC = BC) e digamos que AC > AB. Seu incírculo ω toca AB e CA em M e N, respectivamente. Seja P um ponto no lado BC tal que AP = AB. Seja I_1 o incentro de ΔAPC . As retas AI_1 e MN se intersectam em K. Prove que K é o ponto médio de AI_1 . **Dicas:**
- 144. Seja ABC um triângulo. Seja I seu incentro. Seja $k_2(I_2)$ uma circunferência que toca os segmentos AC e BC. Seja $k_1(I_1)$ uma circunferência que toca AB em G, AC, e k_2 em D. Seja $k_3(I_3)$ uma circunferência que toca AB em T, BC, e k_2 em F. Prove que I fica sobre a mediatriz do segmento cujas extremidades são os pontos de interseção dos segmentos AI e BI com o circuncírculo de ΔGTF . **Dicas:**
- **145.** 4.5.29
- 146. Sejam m_A , m_B e m_C círculos de Malfatti de um triângulo ABC de incentro I. Sejam $m_A \cap m_B = T_C$, $m_B \cap m_C = T_A$ e $m_A \cap m_C = T_B$. As circunferências m_A e m_B tocam AB em X e Y, respectivamente. Prove que o quadrilátero XYT_AT_B é inscrito numa

- circunferência, e digamos que essa circunferência intersecte AI e BI nos pontos M e N, respectivamente. Prove também que AM = AX e BN = BY. **Dicas:**
- **147.** 4.5.31
- 148. Seja ABC um triângulo. Sejam D e E pontos sobre AB (D fica entre A e E). Sejam k_1 , k_2 , k_3 e k_4 os incírculos de ΔADC , ΔAEC , ΔBDC e ΔBEC , respectivamente. Prove que AB e as retas tangentes externas (diferentes de AB) dos pares de círculos (k_1, k_4) e (k_2, k_3) são concorrentes.
- 149. Seja ABC um triângulo. Seja D um ponto arbitrário do segmento AB. Sejam k_1 e k_2 os incírculos de ΔADC e ΔBDC , respectivamente. Digamos que a reta tangente externa comum a k_1 e k_2 (distinta de AB) intersecta CD em K. Prove que $CK = \frac{AC + BC AB}{2}$. Dicas:
- 150. Seja ABC um triângulo. Seja k seu incírculo, que toca AB em E. Seja D um ponto sobre o segmento AB. Sejam $k_1(I_1)$ e $k_2(I_2)$ os incírculos de ΔADC e ΔBDC , respectivamente. Prove que $\angle I_1E_2 = 90^\circ$. Dicas:
- 151. Seja ABC um triângulo. Seja CH uma altura e digamos que seu incírculo toque AB em M. Denote os incentros de ΔAHC e ΔBHC por I_1 e I_2 , respectivamente. Um ponto D_1 é escolhido tal que $MI_2D_1I_1$ é um retângulo. Prove que este retângulo é um quadrado, e prove que D_1 fica sobre CH. Dicas:
- 152. Seja ABC um triângulo. Seja k seu circuncírculo. Seja l a reta tal que $l \parallel AB$ e tal que l intersecta AC e BC nos pontos D e E, respectivamente. Digamos que DE intersecte k nos pontos P e Q, respectivamente (D fica entre P e E). Seja k_1 a circunferência que toca os segmentos PD, DC, e o arco menor PC de k. Seja k_2 a circunferência que toca os segmentos EQ, EC, e o arco menor QC de k. Digamos que k_1 toque DC em M. Digamos que k_2 toque EC em N. Prove que $MN \parallel l$. Dicas:
- 153. Seja ABC um triângulo. Seja k seu circuncírculo. Os pontos médios dos arcos menores BC e AC são M e N, respectivamente. As retas AM e BN se intersectam em I. Seja $k_1(N)$ a circunferência que toca AC, e seja $k_2(M)$ a circunferência que toca BC. Prove que uma das retas tangentes externas comuns a k_1 e k_2 passa por C, e a outra passa por I. Dicas:
- **154.** Seja ABC um triângulo. Seja l uma reta que passa por A, que não intersecta o segmento BC. Sejam $k_1(O_1), k_2(O_2)$ e $k_3(O_3)$ circunferências que tocam as retas AB, BC, CA e l (k_1 não toca AC, k_2 não toca BA e k_3 não toca l). Prove que o quadrilátero $O_1O_3O_2A$ é cíclico. **Dicas:**
- 155. Usando a construção do problema anterior, prove que o ortocentro de $\Delta O_1 O_2 O_3$ fica sobre BC. Dicas:

Jeferson Almir

- 156. Seja ABCD um quadrilátero convexo. Os quatro exincírculos do quadrilátero são construídos. Sejam O_1 e O_2 os centros das circunferências que tocam os segmentos AD e BC. As outras duas circunferências tocam os segmentos AB e DC em L e K, respectivamente. Seja M o ponto médio de O_1O_2 . Prove que MK = ML. Dicas:
- 157. Seja ABC um triângulo. Sejam AF, BD e CE alturas. Digamos que seu incírculo toque AB e AC nos pontos K e L, respectivamente. Sejam I_1 e I_2 os incentros de ΔAED e de ΔCDF , respectivamente. Prove que $KI_1 = LI_1 = LI_2$. Dicas:
- 158. Seja ABC um triângulo. Sejam CC_1 e CC_2 , AA_1 e AA_2 , BB_1 e BB_2 três pares de segmentos isogonalmente conjugados com respeito a ΔABC . Temos que $C_1 \in AB$, $C_2 \in AB$, $B_1 \in AC$, $B_2 \in AC$, $A_1 \in BC$, e $A_2 \in BC$. Sejam $AA_1 \cap CC_2 = X$, $BB_1 \cap AA_2 = Y$, e $CC_1 \cap BB_2 = Z$. Prove que se os quadriláteros AC_1ZB_2 e BA_1XC_2 são circunscritíveis, então o quadrilátero B_1YA_2C também é circunscritível. **Dicas:**
- 159. Seja ABCD um quadrilátero circunscritível e incírculo k. Digamos que as semirretas DA e CB se intersectem em E, e digamos que as semirretas DC e AB se intersectem em F. Seja H a projeção de B sobre a reta EF. Sejam k_1 e k_2 os incírculos de ΔABE e ΔBCF , respectivamente. Sejam I_1 e I_2 seus respectivos centros. Sejam HP e HQ as retas tangentes de H respectivamente a k_1 e k_2 ($P \in k_1$ e $Q \in k_2$). Prove que $\angle I_1HP = \angle I_2HQ$. Dicas:
- **160.** Prove o Lema do Incentro-Exincentro, isto é, para um triângulo ABC de incentro I e circuncírculo k, se M é o segundo ponto de interseção de CI com k, então MA = MB = MI. **Dicas:**
- 161. Seja ABC um triângulo. Seja I seu incentro. Seja M o ponto médio de AB, e seja L o ponto médio do arco ACB. Prove que $\angle ILC = \angle IMB$. Dicas:
- **162.** Prove a fórmula de Euler, isto é, que para um triângulo ABC, $OI^2 = R^2 2Rr$, onde O e I são o circuncentro e incentro, respectivamente, e R e r são o circunraio e o inraio, respectivamente. **Dicas:**
- 163. Seja ABC um triângulo. Seja k seu circuncírculo, ω seu incírculo, e I seu incentro. A reta que passa por I e que é perpendicular a CI, intersecta a reta AB em M. Seja K a segunda interseção de k com MC. Prove que $IK \perp MC$. **Dicas:**
- 164. Seja ABC um triângulo. Seja ω seu incírculo e k seu circuncírculo. A circunferência ω toca AB, BC e CA nos pontos M, N e P, respectivamente. Os pontos R, S e T são os pontos médios dos arcos menores AB, BC e CA, respectivamente. Prove que as retas MR, SN e PT são concorrentes. **Dicas:**
- 165. Seja ABC um triângulo. Seja ω seu incírculo e k seu circuncírculo. A circunferência ω toca BC, CA

- e AB nos pontos D, E e F, respectivamente. Digamos que $ED \cap AB = K$. Prove que o ponto médio M de KF fica sobre o eixo radical de k e ω . **Dicas:**
- 166. Prove o Lema de Verrièr, isto é, dado um triângulo ABC, com circuncírculo k, e com incírculo C-mixtilinear ω , que toca AC, BC e k nos pontos E, F e D, respectivamente, prove que o incentro de ΔABC é o ponto médio do segmento EF. Dicas:
- 167. Seja ABC um triângulo. Seja k seu circuncírculo. Seja ω seu incírculo C-mixtilinear, que toca AC, BC e k nos pontos E, F e X, respectivamente. O ponto D é o ponto médio do arco ACB. Prove que os pontos X, D e o ponto médio de EF são colineares. Dicas:
- 168. Seja ABC um triângulo. Seja k seu circuncírculo. Seja ω seu incírculo A-mixtilinear, que toca AC, AB e k nos pontos E, F e X, respectivamente. Os pontos P e Q são os pontos médios dos arcos menores AC e AB, respectivamente. Os pontos M e N são os pontos médios de AE e AF, respectivamente. Prove que os pontos P, M, N e Q são colineares. **Dicas:**
- 169. Seja ABC um triângulo. Seja k seu circuncírculo. Seja M o ponto médio do arco menor AB de k. Seja G o ponto diametralmente oposto a C com respeito a k, e seja $AG \cap CM = X$. Seja k_1 o incírculo C-mixtilinear de ΔABC . O segmento GH ($H \in k_1$) é tangente a k_1 . Prove que GH = GX. Dicas:
- 170. Seja ABC um triângulo. Seja k seu circuncírculo. O incírculo C-mixtilinear k_1 toca k no ponto M, e as retas AC e BC nos pontos F e L, respectivamente. Seja $FL \cap CM = N$. Prove que $\angle ANF = \angle BNL$. Dicas:
- 171. Seja ABC um triângulo. Seja k seu circuncírculo. Seja D um ponto arbitrário no arco menor AB de k. A circunferência k_1 toca k internamente no ponto D e a reta BC no ponto P. A circunferência k_2 toca k internamente no ponto D e a reta AC no ponto H. O ponto I é o incentro de ΔABC . Prove que os pontos H, I e P são colineares. **Dicas:**
- 172. Seja ABC um triângulo. Seja k seu circuncírculo e k_1 seu incírculo C-mixtilinear. Seu incírculo k_2 toca AB no ponto Q. Prove que $\angle APQ = \angle BAC$ e $\angle BPQ = \angle ABC$. Dicas:
- 173. Seja ABC um triângulo. Seja I seu incentro. Seja k um círculo arbitrário que passe por A e B. O círculo k_1 toca AC e BC nos pontos N e M, respectivamente. Ele também toca o arco menor AB de k internamente no ponto X. Prove que $\angle AXI = \angle IXB$. Dicas:
- 174. Seja ABC um triângulo. Seja k seu circuncírculo. O círculo C-mixtilinear k_1 toca k no ponto P. Seja Q um ponto arbitrário no arco AB de k que não contém C. Os pontos I_1 e I_2 são os incentros de ΔAQC e ΔQBC , respectivamente. Prove que o quadrilátero QPI_2I_1 é cíclico. **Dicas:**

- 175. Seja ABC um triângulo. Seja k seu circuncírculo, ω seu incírculo. O incírculo C-mixtilinear k_1 toca k no ponto K. O ponto M no arco AKB é arbitrário. As retas tangentes por M a ω intersectam AB nos pontos E e F. Prove que o quadrilátero MEFK é cíclico. **Dicas:**
- 176. Seja ABC um triângulo. Seja k seu circuncírculo. Seu C-exincírculo k_1 toca AB no ponto F. Seu incírculo C-mixtilinear k_2 toca k no ponto D. Prove que $\angle ACF = \angle BCD$. Dicas:
- 177. Seja ABC um triângulo. Seja k seu circuncírculo. Seu incírculo k_1 toca o segmento AB no ponto F. Seu exincírculo C-mixtilinear k_2 toca k no ponto D. Prove que $\angle ACF = \angle BCD$. Dicas:
- 178. Prove o Lema de Sawayama: Seja ABC um triângulo. Seja k seu circuncírculo. Seja D um ponto arbitrário em AB. A circunferência k_1 toca os segmentos AD e CD, assim como k internamente num ponto do arco AC. Digamos que k_1 toque AB em F, e CD em M. O ponto I é o incentro de ΔABC . Prove que os pontos F, M e I são colineares. **Dicas:**
- 179. Seja ABC um triângulo. Seja k seu circuncírculo. O ponto D fica sobre o segmento AB. A circunferência k_1 toca AB no ponto F, toca CD no ponto M e toca k internamente no ponto K, sobre o arco menor AC. O ponto I é o incentro de ΔABC , e o ponto I_1 é o incentro de ΔADC . Prove que o pentágono KI_1IMC é cíclico. **Dicas:**
- 180. Prove o Teorema de Thébault: Seja ABC um triângulo. Seja k seu circuncírculo. O ponto D fica sobre o segmento AB. A circunferência k_1 toca o segmento AD no ponto K, o segmento CD no ponto E, e a circunferência k internamente num ponto do arco AC. A circunferência k_2 toca o segmento BD no ponto M, o segmento CD no ponto N, e a circunferência k internamente num ponto do arco BC. O ponto I é o incentro de ΔABC e os pontos I_1 e I_2 são os centros de k_1 e k_2 , respectivamente. Prove que os pontos I, I_1 e I_2 são colineares. **Dicas:**
- 181. Seja ABC um triângulo. Seja k seu circuncírculo. O ponto D fica sobre o segmento AB. A circunferência k_1 toca a circunferência k internamente num ponto do arco AC, toca o segmento AD no ponto X, e toca o segmento CD no ponto F. A circunferência k_2 toca a circunferência k internamente num ponto do arco BC, toca o segmento BD em G, e toca o segmento CD no ponto K. O ponto I é o incentro de ΔABC . O segmento YZ é a segunda reta tangente externa comum entre k_1 e k_2 , tal que $Y \in k_1$ e $Z \in k_2$. Seja $ZK \cap FY = L$. Prove que os pontos A, B, I e L são concíclicos. **Dicas:**
- 182. Seja ABCD um quadrilátero cíclico de circuncírculo k. A circunferência k_1 toca a circunferência k internamente num ponto do arco menor AD, toca o segmento AC no ponto F, e toca o segmento BD no ponto E. A circunferência k_2 toca a circunferência k

- internamente num ponto do arco menor BC, toca o segmento AC num ponto N, e toca o segmento BD no ponto K. Os pontos P e Q são os pontos médios de EK e NF, respectivamente. Os pontos T e S são os pontos médios dos arcos menores CD e AB, respectivamente. Prove que os pontos T, P, Q e M são colineares. **Dicas:**
- 184. Seja ABCD um quadrilátero cíclico de circuncírculo k. A circunferência k_1 toca as retas AC e BD, e a circunferência k internamente no ponto E sobre o arco menor AD. A circunferência k_2 toca as retas AC e BD, e a circunferência k internamente no ponto Z sobre o arco menor BC. Sejam $X \in k_2$ e $K \in k_1$ pontos tais que XK é uma reta tangente externa comum a k_1 e k_2 , com C e X sobre o mesmo semi-plano com respeito a EZ. A circunferência k_3 toca k_1 e k_2 externamente. Seja $k_3 \cap BD = M$, tal que M é o ponto de interseção mais próximo de D, e seja $k_3 \cap AC = T$, tal que T é o ponto de interseção mais próximo de C. Prove que $MT \parallel XK \parallel CD$. Dicas:
- 185. (Círculo de Euler) Seja ABC um triângulo. Seja H seu ortocentro. Prove que os pontos médios de seus lados, os pés de suas alturas, e os pontos médios dos segmentos AH, BH e CH são concíclicos. **Dicas:**
- 186. Seja ABC um triângulo. Sejam k, k_A, k_B e k_C o incírculo e os três exincírculos, respectivamente. Sejam A_1, B_1 e C_1 os pontos médios de BC, CA e AB, respectivamente. Prove que o circuncírculo ω de $\Delta A_1B_1C_1$ é tangente a todas as outras circunferências. **Dicas:**
- 187. Seja ABC um triângulo. Seja I seu incentro e O seu circuncentro. Seja P um ponto arbitrário na reta OI. Denote os pés das perpendiculares de P a AB, BC e CA por C_2 , A_2 e B_2 , respectivamente. Prove que o ponto de Feuerbach F fica sobre o circuncírculo de $\Delta A_2B_2C_2$. Dicas:
- **188.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 bissetrizes internas. Seja F o ponto de Feuerbach de $\triangle ABC$. Prove que o quadrilátero $A_1B_1C_1F$ é cíclico. **Dicas:**
- 189. Seja ABC um triângulo. Seja I seu incentro. Seu incírculo toca AB, BC e AC em C_2 , A_2 e B_2 , respectivamente. Os pontos médios de AB, BC e CA são C_1 , A_1 e B_1 , respectivamente. Seja $A_1B_1 \cap A_2B_2 = D$. Prove que o ponto de Feuerbach F fica sobre a reta DC_2 . Dicas:

- **190.** 4.8.6
- 191. Seja ABC um triângulo. Denote os pontos médios de AB, BC e CA por C_1 , A_1 e B_1 , respectivamente. Denote os pontos de tangência dos exincírculos com os segmentos AB, BC e CA por C_2 , A_2 e B_2 , respectivamente. Seja $A_1B_1 \cap A_2B_2 = G$. Prove que o ponto de Feuerbach F fica sobre a reta GC_2 . Dicas:
- 192. Seja ABC um triângulo. Sejam M e N os pontos médios de AB e BC, respectivamente. Denote o incírculo, o círculo de Euler e os exincírculos de ΔABC por k, k_1 , k_A , k_B e k_C , respectivamente. Sejam $k \cap k_1 = D$, $k_A \cap k_1 = E$, $k_B \cap k_1 = F$ e $k_C \cap k_1 = G$. Prove que as retas MN, DF e EG são concorrentes. **Dicas:**
- 193. Seja ABC um triângulo. Seja k seu circuncírculo. Seja X um ponto arbitrário interno a ΔABC . De-

- note $AX \cap BC = A_1$, $BX \cap AC = B_1$ e $CX \cap AB = C_1$. A circunferência k_A é externa a ΔABC , toca k internamente, e também toca o segmento BC no ponto A_1 . As circunferências k_B e k_C são definidas analogamente. Denote o incírculo de ΔABC por ω . Prove que existe uma circunferência que é tangente externamente a k_A , k_B e k_C , e internamente a ω . Dicas:
- 194. (Círculo de Conway) Seja ABC um triângulo. Os pontos P e S ficam sobre a reta AB, tais que os pontos P, A, B e S estão nessa ordem, AP = BC e BS = AC. Os pontos R e N ficam sobre a reta BC, tais que os pontos R, B, C e N estão nessa ordem, CN = AB e BR = AC. Os pontos M e Q ficam sobre a reta CA, tais que os pontos Q, A, C e M estão nessa ordem, CM = AB e AQ = BC. Prove que o hexágono MNPQRS é cíclico. **Dicas:**