Sitzung 1

Uni-Teil

Erweiterung des ersten Strahlensatzes

$$\frac{a}{c} = \frac{a+b}{c+b}$$

$$\Leftrightarrow \frac{c+d}{c} = \frac{a+b}{a}$$

$$\Leftrightarrow \frac{d}{c} = \frac{b}{a}$$

$$\Leftrightarrow \frac{a}{b} = \frac{c}{d}$$

Zweiter Strahlensatz

Es gilt der erste Strahlensatz.

Skizze:

Es gilt mit dem ersten, erweiterten Strahlensatz und Zentrum ${\cal B}$

$$\frac{BC}{CE} = \frac{BA}{AF} \tag{1}$$

sowie für Zentrum E

$$\frac{ED}{DF} = \frac{EC}{CB}$$

und somit natürlich auch

$$\frac{DF}{ED} = \frac{BC}{CE} \tag{2}$$

Aus (1) und (2) folgt dann

$$\frac{BA}{AF} = \frac{DF}{ED}$$

$$\Leftrightarrow \frac{BA}{DF} = \frac{AF}{ED}$$

5. Dezember 2017

Da $AF\parallel CD$ und $AC\parallel DF$ ist ACDFein Parallelogramm. Damit gilt AC=DF und folglich

$$\frac{BA}{DF} = \frac{AF}{DE}$$

$$\Leftrightarrow \frac{DE}{DF} = \frac{AF}{BA}$$

$$\Leftrightarrow \frac{DE}{DF} = \frac{AF}{BA}$$

$$\Leftrightarrow \frac{DE + DF}{DF} = \frac{AF + BA}{BA}$$

$$\Leftrightarrow \frac{BA}{DF} = \frac{AF + BA}{DE + DF}$$

$$\Leftrightarrow \frac{BA}{AC} = \frac{BF}{EF}$$

Widerlegung der Umkehrung

Betrachte die Punkte A(0,0), B(2,2), C(1,0), D(3,0). Skizze:

Offenbar gilt

$$\frac{AB}{BC} = \frac{AB}{BC},$$

doch die Geraden $B \vee C$ und $B \vee D$ sind verschieden, da $C \neq D$, es gilt aber

$$B \in B \vee C \cap B \vee D \neq \emptyset.$$

Folglich sind die Geraden nicht parallel.

Sitzung 2

Schul-Teil

Eigenschaften der Zentrischen Streckung (Elemente 5)

Beispiele an Konstruktionen mit maßstäblicher Vergrößerung.

Definition Eine **zentrische Streckung** wird festgelegt durch das **Streckzentrum** Z und den positiven **Streckfaktor** k.

Zu einem Punkt erhältst du den Bildpunkt wie folgt:

- (1) Wenn der Punkt P nicht mit dem Zentrum zusammenfällt, dann erhält man den Bildpunkt P' wie folgt:
 - (a) Zeichne die Halbgerade \overrightarrow{ZP} .
 - (b) Zeichne den Punkt P' auf der Halbgeraden \overrightarrow{ZP} so, dass gilt

$$|ZP'| = k \cdot |ZP|$$

(2) Der Bildpunkt Z' von Z fällt mit Z zusammen: Z' = Z.

Zentrische Streckung mit negativem Streckfaktor Eingeführt als zentrische Streckung um |k| und anschließender Punktspiegelung in Z.

Diskussion S.18, Afg 12

 ${\bf Eigenschaften} \quad {\bf Betrachtung} \ {\bf verschiedener} \ {\bf Abbildungen} \ ({\bf vgl} \ {\bf S}.19)$

Abb. ungenau, nur intuitive Vermutungen

- (1) Drehung + Verkleinerung
- (2) Stauchung von Winkel
- (3) Zentrische Streckung Dreieck
- (4) Verschiedene Streckungsfaktoren

mit Hinblick auf zentrische Streckungen. Beurteilung:

- (1) nicht, da AB nicht parallel zu A'B'.
- (2) nicht, da Winkel nicht erhalten.
- (3) ja.
- (4) nicht, da unterschiedliche Streckfaktoren.

\mathbf{Satz}	Für	jede	zentrische	Streckung	mit	einem	positiven	Streckfaktor	k	gilt:
-----------------	-----	------	------------	-----------	----------------------	-------	-----------	--------------	---	-------

- (a) Gerade und Bildgerade sind parallel.
- (b) Bildstrecke ist k-mal so lang wie Originalstrecke.
- (c) Winkel und Bildwinkel sind gleich groß.

Beweis des Satzes

- (a) Wird nicht bewiesen.
- (b) Betrachtung zweier Fälle
 - (a) Fall: Die StreckeABliegt auf einer Geraden durch das Streckzentrum.

 $Z \in A \vee B$

(b) Fall:

(c)

Vergleich der Schulbücher