2019302010043 桑乐开 第三次作业

2022年4月9日

目录

1	习题 6.3	3
2	习题 6.4	5
3	习题 6.5	6
4	习题 6.8	7
5	习题 6.9	9
6	习题 6.A	12
7	习题 6.B	13

使用 example 6.9 中的方法,设置重复次数为 m=1000,分别设置样本量 n 为 10, 20, 30, 40, 50。

对每个 j=1,2,...,m,生成一个样本量 n 的随机样本 $X^{(j)}$,并基于第 j 个样本计算检验统计量 T_j^* ,然后根据检验统计量判断在显著性水平 α 下接受还是拒绝原假设。若拒绝原假设则 $I_j=1$,否则 $I_j=0$.

计算显著的检验比例 \bar{I} , 即为检验的功效的估计。

将检验结果分别以不同的曲线表示,并给予不同图例区分,得到结果如下:

图 1: t 检验功效曲线图像

根据图像显示,无论样本量取 10, 20, ..., 50 中的任意一个,功效都在备择参数 μ 等于 μ_0 时接近显著性水平 0.05,且备择参数 μ 越大,显著性水平越大。使用代码如下:

```
m <- 1000
mu0 <- 500
sigma <- 100
```

```
mu \leftarrow c(seq(450, 650, 10)) #alternatives
  M <- length (mu)
  cols <- c('red', 'blue', 'green', 'yellow', 'orange')
  png(filename='C:/Users/Lake/Desktop/R/Statistical
      Computing/hw3/pictures/6 3.png',
   width = 1200, height = 800)
   par(cex=2)
  plot(0, 0, type='l', col='white', xlim=c(450,650), ylim=c
      (0,1),xlab='不同的备择参数',ylab='功效')
11
   for (j in 1:5) {
12
  n <- j*10
  power <- numeric (M)
14
   for (i in 1:M) {
15
  mu1 <- mu[i]
   pvalues <- replicate(m, expr = {</pre>
   #simulate under alternative mu1
   x \leftarrow rnorm(n, mean = mul, sd = sigma)
   ttest \leftarrow t.test(x,
   alternative = "greater", mu = mu0)
21
   ttest$p.value } )
   power[i] <- mean(pvalues <= .05)
23
24
   lines (mu, power, type='b', lty=j+1, pch=j+14, col=cols[j], lwd
25
      =2)
   abline (v = mu0, lty = 1)
27
   abline (h = .05, lty = 1)
28
   title('t检验的功率曲线')
   legend('bottomright',c('n=10','n=20','n=30','n=40','n=50'
30
       ,'0和显著性水平值'),
   col = c(cols, 'black'), lty = c(2,3,4,5,6,1), pch = c
      (15, 16, 17, 18, 19, NaN), lwd=c(2, 2, 2, 2, 2, 1))
  dev. off()
```

设样本量 n=20, 产生 n 个服从参数为 $\mu=0$ 和 $\sigma=1$ 的对数正态分布的随机数 X_i , 则有 lnX 服从 $N(\mu,\sigma^2)$, 记 Y=lnX

在参数 μ 和 σ 未知时,首先易证 σ^2 的一个无偏估计量为: $W^2 = \frac{n}{n-1} \hat{\sigma}_{MLE}^2$ 其中由对数正态分布的性质,易证 σ^2 的最大似然估计为:

$$W^2 = \frac{n}{n-1} \hat{\sigma}_{MLE}^2$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (lnX_i - \frac{1}{n} \sum_{i=1}^n lnX_i)^2$$

则易证:

$$\frac{n-1}{\sigma^2}W^2 \sim \chi^2(n-1)$$

则易证:
$$\frac{n-1}{\sigma^2}W^2 \sim \chi^2(n-1)$$
 为了估计 μ ,构造如下检验统计量:
$$\frac{\frac{1}{n}\sum_{i=1}^n ln X_i - \mu}{W/\sqrt{n}} \sim t(n-1)$$
 所以得到当 σ 未知时,参数 μ 的置信水平 1 - α 的置信

所以得到当 σ 未知时,参数 μ 的置信水平 1- α 的置信区间为:

$$\left[\frac{1}{n}\sum_{i=1}^{n}lnX_{i}-t_{\alpha/2}(n-1)\frac{W}{\sqrt{n}},\frac{1}{n}\sum_{i=1}^{n}lnX_{i}+t_{\alpha/2}(n-1)\frac{W}{\sqrt{n}}\right]$$

其中 $t_{\alpha/2}$ 为 t 分布的上 $\frac{\alpha}{2}$ 分位数。

计算得到置信水平为 95% 置信区间的估计值为:

可以看到真实参数 $\mu=0$ 在此置信区间内。

使用代码如下:

```
n <- 20
  mu <- 0
   sigma <- 1
   alpha <- 0.05
  set . seed (1015)
   x <- rlnorm(n,mu,sigma)
   #n=20 样本量较小选择 t 分布估计
   \operatorname{sigma2hat} \leftarrow \operatorname{sum}((\log(x) - \operatorname{sum}(\log(x))/n)^2)/(n-1)
   lb \leftarrow mean(log(x))-qt(alpha/2,n-1,lower.tail=F)*sqrt(
       sigma2hat/n)
   rb \leftarrow mean(log(x))+qt(alpha/2,n-1,lower.tail=F)*sqrt(
10
       sigma2hat/n)
   print(lb)
   print(rb)
```

对样本量 n=20 的服从 $\chi^2(2)$ 的随机数 X_i , i = 1, 2, ..., n, 计算其均值的 t 区间, 由于:

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

其中 S 为样本标准差:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$[\bar{X} - \frac{S \cdot t_{\alpha/2}(n-1)}{\sqrt{n}}, \bar{X} + \frac{S \cdot t_{\alpha/2}(n-1)}{\sqrt{n}}]$$

所以置信水平为 1- α 的置信区间为: $[\bar{X} - \frac{S \cdot t_{\alpha/2}(n-1)}{\sqrt{n}}, \bar{X} + \frac{S \cdot t_{\alpha/2}(n-1)}{\sqrt{n}}]$ 给定实验重复次数 m=10000,进行 m 次重复实验,并观察真实参数在所得置信 区间内的次数 j,则置信区间覆盖真实参数的概率估计值为:

$$\hat{p} = \frac{j}{m}$$

通过实验模拟得到的结果如下:

$$\hat{p}_{ex6.5} = 0.919 \qquad \hat{p}_{em6.4} = 0.9509$$

根据结果可以看出,example6.4 的置信区间覆盖真实参数概率接近置信水平 0.95, 而由于 exercise6.5 的数据非正态分布, 因此覆盖概率不足 0.95 使用代码如下:

```
n <- 20
             alpha <- .05
             j <- 0
             m < -10000
             set . seed (1015)
             for (i in 1:m) {
             x \leftarrow rnorm(n, mean=0, sd=2)
             UCL \leftarrow (n-1) * var(x) / qchisq(alpha, df=n-1)
             if (UCL>4)
             j < -j+1
             print(j/m)
12
13
             k <- 0
14
             for (i in 1:m) {
15
             x \leftarrow \mathbf{rchisq}(n,2)
16
```

```
lb \leftarrow mean(x)-sqrt(var(x)/n)*qt(alpha/2,n-1,lower)
17
                 tail = F
             rb \leftarrow mean(x) + sqrt(var(x)/n) *qt(alpha/2, n-1, lower)
18
                 tail = F
             if (lb < 2 \& rb > 2)
19
             k <- k+1
20
21
             print (k/m)
22
```

选取实验重复次数 m=10000, 两个随机样本的样本量 $n_1=n_2$, 方差为 $\sigma_1=$ $1, \sigma_2 = 1.5$, 分别生成 n_i 个独立同分布服从 $N(0,\sigma_i)$ 的随机数, 然后重复 example6.16 的 Count Five 检验,若结果为拒绝原假设,则记录决策结果为 1,否则 为 0。将实验重复 m 次, 计算 m 次决策结果的均值, 作为 Count Five 检验功 效的估计。

下面进行 F 检验: 设 S_1^2, S_2^2 分别为两个随机样本的样本方差,则可以证明: $\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

因此为了检验:

$$H_0: \frac{\sigma_1}{\sigma_2} = 1, \qquad H_1: \frac{\sigma_1}{\sigma_2} \neq 1$$

我们构造检验统计量:

$$F = \frac{S_1^2}{S_2^2}$$

置信水平为 $1-\alpha$ 的拒绝域为:

$$\{F \leq F_{\alpha/2}(n_1, n_2) \text{ gd} F \geq F_{1-\alpha/2}(n_1, n_2)\}$$

其中 F_{α} 为 F 分布的下 α 分位点。

因此对生成的样本, 计算其 F 统计量, 并判断是否拒绝原假设, 若结果为拒绝 原假设,则记录决策结果为 1, 否则为 0。将实验重复 m 次, 计算 m 次决策结 果的均值,作为 F 检验功效的估计。

按照题目给定置信水平 $\alpha=0.055$,分别取样本量 $n_1=n_2=20$ 作为小样本实 验, $n_1 = n_2 = 50$ 作为中等样本检验, $n_1 = n_2 = 200$ 作为大样本检验, 得到检 验功效结果如下:

检验方法	$n_1 = n_2 = 20$	$n_1 = n_2 = 50$	$n_1 = n_2 = 200$
Count Five 检验	0.3098	0.6553	0.9460
F 检验	0.4184	0.8185	0.9999

表 1: Count Five 和 F 检验在不同样本量下的检验功效估计表

根据上表可以看出,当样本数据具有正态性的时候,无论是小样本、中等样本、还是大样本,F 检验都比 Count Five 检验具有更高的功效。并且对于两种检验方法,都有样本数量越大,检验的功效越高。使用代码如下:

```
count5test \leftarrow function(x, y)  {
1
             X \leftarrow x - mean(x)
             Y \leftarrow y - mean(y)
              outx \leftarrow sum(X > max(Y)) + sum(X < min(Y))
              outy \leftarrow sum(Y > max(X)) + sum(Y < min(X))
              #return 1 (reject) or 0 (do not reject H0)
              return(as.integer(max(c(outx, outy)) > 5))
              #generate samples under H1 to estimate power
              sigma1 <- 1
10
              sigma2 <- 1.5
11
             m < -10000
12
              n1 \leftarrow n2 \leftarrow 20
13
              \# set.seed(1015)
14
              power <- mean(replicate(m, expr={</pre>
15
              x \leftarrow rnorm(n1, 0, sigma1)
16
              y \leftarrow \mathbf{rnorm}(n2, 0, sigma2)
17
              count5test(x, y)
18
              }))
19
              print(power)
              #生成随机数
22
              \# set.seed(1015)
23
              alpha <- 0.055
24
```

```
power2 <- numeric (m)
25
               for (i in 1:m) {
26
               x \leftarrow \mathbf{rnorm}(n1, 0, sigma1)
27
               y \leftarrow \mathbf{rnorm}(n2, 0, sigma2)
28
29
               #进行 F 检验
30
               re \leftarrow var.test(x, y)
31
               lb \leftarrow qf((alpha)/2, n1-1, n2-1)
               rb \leftarrow qf(1-(alpha)/2, n1-1, n2-1)
33
               if (re$statistic>rb|re$statistic<lb){</pre>
34
               power2[i] <- 1
35
36
37
               print (mean( power2 ) )
38
```

给定实验重复次数为 m=1000,样本量为 n=20,设对数正态分布的参数为 μ = 0, σ = 1,生成 n 个服从对数正态分布的随机数,并排序获得顺序统计量 $x_{(i)}$,然后计算 Gini Ratio 的估计值:

$$\hat{G} = \frac{1}{n^2 \bar{x}} \sum_{i=1}^n (2i - n - 1) x_{(i)}$$

重复 m 次,并计算均值、中位数、十分位数,并画出密度直方图。

对于 (0,1) 上的均匀分布 U(0,1) 和参数 p=0.1 的伯努利分布 B(0.1),重复上述操作,得到图像和结果如下:

图 2: 对数正态分布 Gini Ratio 密度直方图

图 3: 均匀分布分布 Gini Ratio 密度直方图

图 4: 伯努利分布 Gini Ratio 密度直方图

分布类型	均值	中位数
对数正态分布	0.4811	0.4787
均匀分布	0.3210	0.3192
伯努利分布	0.8842	0.9

表 2: 三种分布基尼系数估计的均值和中位数表

分布类型	10%	20%	30%	40%	50%	60%	70%	80%	90%
对数正态分布	0.3875	0.4147	0.4354	0.4579	0.4787	0.4976	0.5202	0.5463	0.5797
均匀分布	0.2523	0.2733	0.2913	0.3046	0.3192	0.3335	0.3490	0.3689	0.3912
伯努利分布	0.80	0.85	0.85	0.90	0.90	0.90	0.90	0.95	0.95

表 3: 三种分布基尼系数估计的十分位数表

使用代码如下:

```
<sub>1</sub> m <- 1000
  n <- 20
   mu <- 0
   sigma <- 1
   p < -0.1
   Ghats <- numeric(m)
   set . seed (1015)
   for (k in 1:3) {
   par(cex=2.5)
   png(filename=paste('C:/Users/Lake/Desktop/R/Statistical
       Computing/hw3/pictures/6_9_',k,'.png',sep=''),width
       =1200, height = 800)
   for (j in 1:m) {
11
   if (k = 1) \times \langle -rlnorm(n, mu, sigma) \rangle
12
   if (k == 2) x \leftarrow runif(n, 0, 1)
   if (k == 3) x \leftarrow sample(c(0,1),n,replace = T,prob=c(1-p,p)
       ))
   xi <- sort(x)
15
   Ghats [ j ] <- 0
   for (i in 1:n){
17
   Ghats[j] \leftarrow Ghats[j] + (2*i-n-1)*xi[i]
18
19
   Ghats [j] \leftarrow Ghats [j]/(n^2*mean(xi))
20
21
   Ghats <- Ghats [!is.nan(Ghats)]
   print('均值')
   print (mean(Ghats, na.rm = T))
   print('中位数')
25
   print(median(Ghats, na.rm = T))
   print('十分位数')
   \mathbf{print}(\mathbf{quantile}(\mathbf{Ghats}, \mathbf{seq}(0.1, 0.9, 0.1), \mathbf{na.rm} = \mathbf{T}))
   bars <- 15
   names <- c('对数指数分布','均匀分布','伯努利分布')
   if (k==3) bars <- 8
   hist (Ghats, breaks=bars, freq=F,
```

```
| col=rgb(0,0,245,30,maxColorValue =255),xlab = '基尼系数', ylab = '密度',main = names[k]) | dev. off() | }
```

给定样本数 n=20,实验重复次数 m=10000,生成独立同分布服从 $\chi^2(1)$ 的 n 个随机数 x_i ,对原假设和备择假设:

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0$$

以显著性水平 $\alpha=0.05$ 进行 t 检验,并记录 t 检验得到的 p 值。将实验重复 m 次,计算 p 的均值作为经验 I 型错误率的估计值,并与显著性水平作比较。 对服从均匀分布 U(0,2) 和指数分布 E(1) 的样本,重复上述操作,最终得到模拟结果如下表所示:

分布类型	显著性水平 α	卡方分布 $\chi^2(1)$	均匀分布 U(0,2)	指数分布 E(1)
经验 I 型错误率	0.05	0.1068	0.0512	0.0805

表 4: 三种分布经验 I 型错误率表

根据上表可以看出,当样本不具有正态性时,使用 t 检验会导致经验 I 型错误率高于显著性水平。其中卡方分布 $\chi^2(1)$ 的样本的经验 I 型错误率最高,达到了 10% 以上,指数分布达到 8%,而均匀分布受到影响较小。但是经验 I 型错误率和显著水平 α 差距不大,可见 t 检验对偏离正态性的数据具有一定鲁棒性。使用代码如下:

```
n <- 20
m <- 10000
v <- 1
a <- 0
b <- 2
lambda <- 1
set.seed (1015)
pvalues <- replicate (m, expr = {
```

```
x \leftarrow \mathbf{rchisq}(n, v)
            ttest <- t.test(x, alternative = "two.sided", mu
10
            ttest$p.value } )
11
            power <- mean( pvalues <= .05)</pre>
12
            print(power)
13
            pvalues <- replicate (m, expr = {
            x \leftarrow runif(n,a,b)
            ttest <- t.test(x, alternative = "two.sided", mu
17
               = (a+b)/2
            ttest$p.value } )
18
            power <- mean(pvalues <= .05)
19
            print(power)
20
            pvalues <- replicate (m, expr = {
            x <- rexp(n,lambda)
            ttest <- t.test(x, alternative = "two.sided", mu
24
               = 1/lambda)
            ttest$p.value } )
25
            power <- mean(pvalues <= .05)
26
            print(power)
27
```

给定样本数 n=20, 实验重复次数 m=10000。给定二元正态分布的均值 $\mu=(0,0)$ 协方差矩阵 Σ 如下:

$$\begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$

生成 n 对独立同分布服从于二元正态分布 $N_2(\mu, \Sigma)$ 的随机数,分别使用 pearson, kendall, spearman 三种方法进行相关性检验,并记录检验的 p 值。将实验 重复 m 次,计算 p 值的均值,作为经验 I 型错误率,最终得到结果如下:

检验方法	pearson	kendall	spearman
经验 I 型错误率	0.0934	0.1261	0.1188

表 5: 三种检验方法对于二元正态分布的经验 I 型错误率表

根据上表看出,使用 pearson 方法检验二元样本相关性,经验 I 型错误率比另外 两种方法更低,因此可以经验地证明,对于二元正态分布的样本,使用 pearson 方法检验效果更好。

为找到一种二元分布 (X,Y) 使得 kendall, spearman 两种检验方法效果比 pearson 方法效果更优,构造随机变量如下:令 X U(0,10), $Y=X^2$ 则 X,Y 为相关的随机变量,生成 n 对服从 (X,Y) 的随机数,并分别使用三种检验方法对样本进行相关性检验,记录检验的 p 值。将实验重复 m 次,计算 p 值的均值,作为经验 I 型错误率,最终得到结果如下:

检验方法	pearson	kendall	spearman
经验I型错误率	0.0237	0.0111	0.0051

表 6: 三种检验方法对于构造的分布的经验 I 型错误率表

根据上表可以看出,对于新构造的服从二元分布 (X,Y) 的样本,使用 pearson 方法进行检验的经验 I 型错误率比另外两种方法都更高,因此 pearson 方法不如另外两种检验方法。

使用代码如下:

```
library (MASS)

Sigma <- matrix(c(1,0.5,0.5,1),2,2)

n <- 20

m <- 10000

p1 <- p2 <- p3 <- numeric(m)

set.seed(1015)

for (j in 1:m){

sample1 <- mvrnorm(n, rep(0, 2), Sigma)

#x2 <- runif(n,0,10)

#y2 <- x2*x2
```

```
\#sample1 < cbind(x2,y2)
11
            #c("pearson", "kendall", "spearman")
12
            cortest < -cor.test(sample1[,1], sample1[,2],
13
            alternative = "two.sided",
14
            method = "pearson")
15
            p1[j] <- cortest$p.value
16
            cortest < -cor.test(sample1[,1], sample1[,2],
            alternative = "two.sided",
            method = "kendall")
19
            p2[j] <- cortest$p.value
20
            cortest <-cor.test(sample1[,1], sample1[,2],
21
            alternative = "two.sided",
22
            method = "spearman")
23
            p3[j] <- cortest$p.value
24
            }
            print(mean(p1))
            print(mean(p2))
28
            \mathbf{print}(\mathbf{mean}(p3))
29
```