Machine Learning Live Session #5

Supervised Learning

Supervised learning: each observation is associated with a *label*

- Try to infer a relationship between the features and labels
- Use the relationship to predict label for a new observation

- The label (for classification, also called target) is a categorical variable with some number of levels called classes
- Want to predict the class for a new observation

Assume we know the conditional probabilities

P(*leaves*|*feature* 1, *feature* 2)

P(*stays*|*feature* 1, *feature* 2)

Assume we know the conditional probabilities

P(*leaves*| *feature* 1, *feature* 2)

P(*stays*|*feature* 1, *feature* 2)

- In practice, we don't have this information, but we can:
 - Assume there is a conditional probability distribution over the feature space
 - Use a classifier to estimate the conditional probabilities
 - Note, now we have the estimated \widehat{P} instead of P

- Focus on binary classification
 - Target variable has two classes (i.e., levels)
 - Class 1 is called the positive class; class 0 is called the negative class
 - Positive class is the one we are trying to identify
 - E.g., "customer left" in the previous example should be the positive class
 - Want to identify customers that have a high likelihood of leaving
 - Want context such as false positives (the customer has a low chance of leaving, but the model says the chance is high)
 - False positives can be costly → want a model with low rate of false positives
- Extension to multiple classes (> 2) is straightforward and implemented in common languages (R, Python, etc.)

- Want to evaluate the classifier by assessing how well it predicts the target for new observations
- Test error is the average error that results from predicting the target for a new observation
 - Can we calculate the test error on the dataset used to build the model?
 - No, because of overfitting!

Underfitting vs. Overfitting

Visualizing underfitting and overfitting in classification: a two-dimensional example

Using 100 nearest neighbors

Underfitting

Using 10 nearest neighbors

Just right!

Using 1 nearest neighbor

Overfitting

- Held-out test set approach
 - Instead of building the model on all available observations, split them into two sets called the training set and the held-out test set (or, simply, test set)
 - Then, build the model using the training set and estimate the test error using the held-out test set
 - Some rules-of-thumb for the split are:
 - 75% training set/25% held-out test set
 - 66% training set/33% held-out test set

- The focus here is on the evaluation of binary classifiers using a held-out test set
- Main methods for evaluating classifiers are:
 - Accuracy
 - Confusion matrices
 - Receiver operating characteristic (ROC) curves
 - Area under the ROC curve (AUC)
 - Calibration curves

Evaluation Methods for Classification: Accuracy

Accuracy example for binary classification

	Feature 1	Feature 2	Feature 3		Feature d	Target
	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃		x_{1d}	0
Test set →	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃		x_{2d}	1
	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃		x_{3d}	1
	x_{41}	<i>x</i> ₄₂	x_{43}		x_{4d}	0
	:	:	÷	٠.	÷	:
	$x_{N_{te}1}$	$x_{N_{te}2}$	$x_{N_{te}3}$		$x_{N_{te}d}$	1

Model Probability of Class 1 (p_1)	Model Probability of Class 0 (p_0)	Model Prediction
0.67	0.33	1
0.22	0.78	0
0.56	0.44	1
0.07	0.93	0
÷	ŧ	i i
0.89	0.11	1

•
$$Accuracy = \frac{\# of \ correct \ predictions \ in \ the \ test \ set}{total \ number \ of \ observations \ in \ the \ test \ set}$$

Why might this be a bad measure of model performance?

Class Imbalance

- What if 98% of the observations in our dataset are of the negative class?
 - Approximately 98% of the training set and 98% of the test set will be of the negative class
 - Model will learn to only predict the negative class
 - Has approximately 98% accuracy $\left(\frac{\# of \ correct \ predictions \ in \ the \ test \ set}{total \ number \ of \ observations \ in \ the \ test \ set}\right)$
 - Very bad at identifying the positive class
- Possible solutions:
 - Under-sampling
 - Over-sampling (SMOTE)
 - Penalize a misclassification of the positive class
 - See Chapter 16 of Applied Predictive Modeling for a good discussion of methods

Evaluation Methods for Classification: Confusion Matrices

		1	0
Predicted	1	True Positive (TP)	False Positive (FP)
Class	0	False Negative (FN)	True Negative (TN)

• False positive rate (FPR): $\frac{FP}{FP+TN}$

• True positive rate (TPR): $\frac{TP}{TP+FN}$

Evaluation Methods for Classification: ROC Curves and AUC

- FPR and TPR can be calculated after applying any threshold $0 \le t \le 1$
 - For a threshold t, predict the positive class when $p_1 \ge t$, and the negative class otherwise
- Plotting FPR vs TPR after applying a threshold t ranging from 1 to 0 yields the ROC curve

- Curves that "hug" the top left corner correspond to good classifiers
- The area under the curve (AUC) is a useful way to summarize the ROC curve.
 - A curve that "hugs" the top left corner will have an AUC close to 1
 - The largest AUC value possible is 1

Random Guessing

We assign U(0,1) random numbers to the model confidences.

Threshold value of 0.4: when $p_1 \geq 0.4$, predict class 1. Since $p_1 \sim U(0,1)$, we expect 60% of the true negatives to be classified as positives (false positive rate is 0.6) and 60% of the true positives to be classified as positives (true positive rate is 0.6).

Feature 1	Feature 2	Feature 3		Feature d	Target
<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}		$x_{1,d}$	0
$x_{2,1}$	$x_{2,2}$	<i>x</i> _{2,3}	•••	$x_{2,d}$	1
<i>x</i> _{3,1}	<i>x</i> _{3,2}	<i>x</i> _{3,3}	***	$x_{3,d}$	1
$x_{4,1}$	<i>x</i> _{4,2}	$x_{4,3}$	***	$x_{4,d}$	0
<i>x</i> _{5,1}	<i>x</i> _{5,2}	<i>x</i> _{5,3}	***	$x_{5,d}$	1
$x_{6,1}$	<i>x</i> _{6,2}	<i>x</i> _{6,3}	•••	$x_{6,d}$	1
<i>x</i> _{7,1}	<i>x</i> _{7,2}	<i>x</i> _{7,3}		$x_{7,d}$	0
<i>x</i> _{8,1}	x _{8,2}	<i>x</i> _{8,3}	•••	$x_{8,d}$	1
<i>x</i> _{9,1}	x _{9,2}	<i>x</i> _{9,3}		$x_{9,d}$	0
$x_{10,1}$	$x_{10,2}$	<i>x</i> _{10,3}		$x_{10,d}$	0

$\begin{array}{c} {\sf Model} \\ {\sf Probability} \\ {\sf of Class 0} \\ {\it (p_0)} \end{array}$
$1 - u_1$
$1 - u_2$
$1 - u_3$
$1 - u_4$
$1 - u_5$
$1 - u_6$
$1 - u_7$
$1 - u_8$
$1 - u_9$
$1 - u_{10}$

Test set

Evaluation Methods for Classification: Calibration Curves

- How well do the predicted probabilities match the actual performance of the model?
- To calculate the calibration curve:
 - Define intervals, e.g., [0,0.1), [0.1,0.2), [0.2,0.3), [0.3,0.4), [0.4,0.5), [0.5,0.6), [0.6,0.7), [0.7,0.8), [0.8,0.9), [0.9,1.0]
 - Assign each test set observation to the interval that contains its p_1 value
 - Calculate Observed Event Percentage: the proportion of test set observations in I of the positive class

Feature 1	Feature 2	Feature 3		Feature d	Target
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃		x_{1d}	0
<i>x</i> ₂₁	x_{22}	<i>x</i> ₂₃	•••	x_{2d}	1
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	***	x_{3d}	1
x_{41}	<i>x</i> ₄₂	<i>x</i> ₄₃	•••	x_{4d}	0
:	÷	÷	٠.	÷	÷
$x_{N_{te}1}$	$x_{N_{te}2}$	$x_{N_{te}3}$		$x_{N_{te}d}$	1

Test set

$\begin{array}{c} \textbf{Model} \\ \textbf{Probability} \\ \textbf{of Class 1} \\ (p_1) \end{array}$	
0.67	[0.6, 0.7)
0.22	[0.2, 0.3)
0.56	[0.5, 0.6)
0.07	[0, 0.1]
:	
0.89	[0.8, 0.9)

• Plot the *Bin Midpoint* vs *Observed Event Percentage*

- Drawbacks of the held-out test set approach
 - Held-out test error may over-estimate the test error that would have resulted from building the model using the entire set of available observations
 - Held-out test error can have high variance, since the observations in the training set can be very different from the observations in the held-out test set
 - Due to an unlucky split (training observations are not representative of the general population)
- k-fold cross-validation is an alternative evaluation approach

- *k*-fold cross-validation (CV)
 - Partition the entire set of available observations into k equally-sized groups G_1, G_2, \dots, G_k
 - For each group G_i :
 - 1. Train the model using all other groups $G_1, G_2, \dots, G_{i-1}G_{i+1}, G_{i+2}, \dots, G_k$
 - 2. Test the model on group G_i

- More data is used for training (as long as k isn't too small)
- Each observation gets a chance to be in the training set AND the test set

- 2-fold CV
 - Like the held-out test set approach, often has high bias and can have high variance
- n-fold CV (where n is the number of available observations) is called "leave-one-out CV" (LOOCV)
 - Smallest possible bias for cross-validation, since all but one observation is used for training
 - High variance, since the average is taken over highly correlated estimates
 - The estimates are highly correlated since they are all based on almost the same training set
- k = 5 or 10 is typically used and is a good balance of bias and variance
- Main drawback of CV: time consuming

The evaluation methods we discussed for the held-out test set approach can be applied to CV by averaging

