Definition (Field). Let F be a nonempty set and let "+" and
":" (called addition and multiplication, respectively) be
two binary operations. The set F is called a field if
it satisfies the following axioms:
(A1) Addition (+) is associative:
$(a+b)+c = a+(b+c) + a,b,c \in \mathbb{F}.$
(A2) Existence of additive identity: There exists an
identity element with respect to addition, denoted
0 10 1
by 0 such that $a+0=0+a=a+a\in F$.
(A3) Existence of additive inverse: For each element
$a \in F$, there exists an element $b \in F$ such that
a+b=0=b+a.
This element "b" is denoted by "-a".
(AA) Addition is commutative:
$a+b=b+a + a, b \in F.$
(M1) Multiplication is associative:
$(a \cdot b) \cdot c = a \cdot (b \cdot c) + a, b, c \in F.$
(M2) Existence of multiplicative identity: There exist
a multiplicative identity e EF such that
$a \cdot e = a = e \cdot a + a \in F$

(M3) Existence of multiplicative inverse: For every
element $a \in F(0)$, there exists an element
be F Yor such that
$a \cdot b = e = b \cdot a$.
This "b" is denoted by "a"."
(M4) Multiplication is commutative:
$a \cdot b = b \cdot a + a, b \in \mathbb{F}.$
(D) Distributive property:
$(a+b)\cdot c = a\cdot c + b\cdot c + a, b, c \in \mathbb{F}$
and $a \cdot (b+c) = a \cdot b + a \cdot c + a, b, c \in F$
Examples (a) The set Q of rational numbers, the
set IR of real numbers, the set C
of complex numbers with respect to
usual addition and multiplication are
fields.
(b) The set Z of integers is not a field
(why?).
(c) The set $Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in Q\}$
is a field, where the binary operations
"+" and "." is defined as follows:
$(a+b\sqrt{2}) + (c+d\sqrt{2}) = (a+c) + (b+d)\sqrt{2}$
$(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2}$
(21212)

Remark: Most of the times, we simply write at in place
of a.b.
Theorem. If F is a field, then $a \cdot o = o + a \in F$.
Poroof. Let a.o = b. Then
$b = a \cdot 0 = a(0+0)$ [since 0+0=0]
= a.o + a.o [Distributive property]
= b + b.
Thus $b = b + b$,
and 80
0 = b + (-b) = (b+b) + (-b)
= b+[b+(-b)] [associative property]
= b + 0
= 10.
Thus $b=0$, that is
$a \cdot o = 0$.