

Data sheet

VL171

4x6 USB Type-C Alternate Mode MUX

Aug. 16, 2021

Revision 0.9

4x6 USB Type-C Alternate Mode MUX

Revision History

Rev	Draft Date	History	Initial
0.90	08/16/2021	Preliminary Release	TH

Contents

Product Feature	
Function Block Diagram	5 -
Pinout	6 -
Pin List	
Pin Descriptions	8 -
Application Diagram	9 -
Function Description	11 -
Electrical Specification	15 -
Reflow Profile	18 -
Package Mechanical Specifications	19 -
Package Top Side Marking	20 -
Ordering Information	- 20 -
Tape and Reel Information	21 -

List of Figures

Figure 1 - Block Diagram			 			 	 !	5 -
Figure 2 - Pin Diagram (QFN-28)					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Figure 3 - Application for USB Host & DP Source					_			
Figure 4 - Application for USB Device/HUB & D						*		
Figure 5 - Reflow	. <u></u> .	.	 			 	 18	8 -
Figure 6 - Mechanical Specification		 .	 		,.	 	 19	9 -
Figure 7 - Package Top Side Marking								
Figure 8 - Tane and Reel Information							- 2	

Product Feature

VL171

4x6 USB Type-C Alternate Mode MUX

- Compatible with 10 Gbps USB3.2 Gen2 and AM all 4Ch Video based on control pin VASEL, including DP1.4 8.1 Gbps
- VCC = $3.3V \pm 10\%$ single power supply
- Low power consumption with 2.3mA active and 12.3uA shutdown
- High DC common mode voltage supporting to 2.0V
- 28 pins QFN package
- ESD > 2KV, CDM > 500V

Function Block Diagram

- 5 -

Pinout

Figure 2 - Pin Diagram (QFN-28)

Pin List

Pin	Pin Name	Pin	Pin Name
1	RX1_P	15	LNA_N
2	RX1_N	16	LNA_P
3	POL	17	EN
4	TX1_P	18	LNB_N
5	TX1_N	19	LNB_P
6	TX2_P	20	LNC_N
7	TX2_N	21	LNC_P
8	AMSEL	22	VCC
9	RX2_P	23	LND_N
10	RX2_N	24	LND_P
11	CSBU1	25	SSTX_N
12	CSBU2	26	SSTX_P
13	SBU1	27	SSRX_N
14	SBU2	28	SSRX_P

Pin Descriptions

Pin Name	Pin #	I/O	Туре	Description	
RX1_P	1	1/0	Analaa	High aread differential signal	
RX1_N	2	I/O	Analog	High speed differential signal	
POL	3	I	Two Level	MUX control signal	
TX1_P	4	I/O	Appled	High around differential signal	
TX1_N	5	1/0	Analog	High speed differential signal	
TX2_P	6	I/O	Analog	High enoud differential signal	
TX2_N	7	1/0	Analog	High speed differential signal	
AMSEL	8	I	Three Level	MUX control signal	
RX2_P	9	1/0	Analas	High and differential signal	
RX2_N	10	I/O	Analog	High speed differential signal	
CSBU1	11	I/O	Analog	Low speed analog signal	
CSBU2	12	I/O	Analog	Low speed analog signal	
SBU1	13	I/O	Analog	Low speed analog signal	
SBU2	14	I/O	Analog	Low speed analog signal	
LNA_N	15	I/O	Andles	High speed differential signal	
LNA_P	16	1/0	Analog	nigri speed differential signal	
EN	17	I	Three Level	MUX control signal and the whole chip enable control signal	
LNB_N	18				
LNB_P	19	I/O	Analog	High speed differential signal	
LNC_N	20				
LNC_P	21	I/O	Analog	High speed differential signal	
VCC	22	PWR	Power	3.3V power	
LND_N	23	1/0	Analas	High around differential signal	
LND_P	24	I/O	Analog	High speed differential signal	
SSTX_N	25	1/0	Analog	High speed differential signal	
SSTX_P	26	I/O	Analog	riigii speed diirerenda signal	
SSRX_N	27	1/0	Analog	High speed differential signal	
SSRX_P	28	I/O	Analog	High speed differential signal	
VSSA		GND	Ground	All ground down bond	

Application Diagram

For USB Host & DP Source

Figure 3 - Application for USB Host & DP Source

For USB Device/HUB & DP Sink

Figure 4 - Application for USB Device/HUB & DP Sink

Function Description

High speed differential signal switch RL = 50Ω , AC performance (worse case, tt 60° C)

Pa	Parameter			Max.	Unit
	@100MHz for SS path		-0.82		
Differential Insertion loss	@2.5GHz for SS path		-1.36		dB
	@5GHz for SS path		-1.82		
	@100MHz for SS path		-21.1		
Differential Return loss	@2.5GHz for SS path		-12.6		dB
	@5GHz for SS path		-12.5		
	@100MHz		-59		
Differential Off Isolation	@2.5GHz		-31		dB
	@5GHz		-26.9		
	@100MHz		-85.6		
Differential Crosstalk between SSTX and SSRX	@2.5GHz		-50.4		dB
	@5GHz		-40		

Low speed differential signal switch

Low speed differential	i Signai Switch			
	Parameter		Measurement with 100Ω	Unit
		VCOM(V)	Measurement with 10052	Unit
		0	-0.68	
Differential Insertion loss	@100Mhz for LS path	1	-0.73	dB
		2	-0.84	
Differential Return loss	@100Mhz		-20	dB
Low-speed switch –3 dB BW			2000	MHz

Look-up table for Switch connection configuration

The three level detectors sense the input voltage of EN, POL and AMSEL, and configure the signal pass paths. The active current consumption 2.3 mA and 12.3 uA after EN = 0.

POL	AMSEL	EN	Configurations	High Speed Signal Flow	SBU Signal Flow
L	L	Н	2CH USBSS+ 2CH AM (normal)	RX1 LND LNC TX2 LNB RX2 LNA	CSBU1 SBU1 SBU2
н	L	Н	2CH USBSS+ 2CH AM (flipped)	RX1 LIND TX1 LINC TX2 LINB RX2 LINA	CSBU1 SBU1 SBU2
L	н	Н	4CH AM(normal)	SSRX SSTX RX1	CSBU1 SBU1 SBU2
H	Н	Н	4CH AM(flipped)	RX1 LIND LIND TX1 LIND LIND LIND LIND LIND LIND LIND LIND	CSBU1 SBU1 SBU2

POL	AMSEL	EN	Configurations	High Speed Signal Flow	SBU Signal Flow
L	М	Н	2CH USBSS(normal)	RX1 LND TX1 LNC TX2 LNB RX2 LNA	All Low Speed SBU Ports HiGHz
Н	М	Н	2CH USBSS(flipped)	RX1 LND LNC TX2 LNB LNA	All Low Speed SBU Ports HiGHz
L	М	М	2CH USBSS+ 2CH AM (normal)	RX1 LND LNC TX2 LNB RX2 LNA	CSBU1 SBU1 SBU2
н	М	М	2CH USBSS+ 2CH AM (flipped)	SSRX SSTX RX1	CSBU1 SBU1 SBU2

POL	AMSEL	EN	Configurations	High Speed Signal Flow	SBU Signal Flow
L	L	М	2CH USBSS+ 2CH AM from alternate GPU (normal)	RX1 LND LNC TX2 LNB LNA	CSBU1 SBU1 SBU2
Н	L	М	2CH USBSS+ 2CH AM from alternate GPU (flipped)	RX1 LND LNC TX2 LNB LNA	CSBU1 SBU1 SBU2
L	Н	М	Reserved	Reserved	Reserved
Н	Н	М	Reserved	Reserved	Reserved
Х	Х	L	OFF	OFF	OFF

Electrical Specification

Absolute Maximum Rating

Symbol	Parameter	Min	Max	Unit	Note	
T _{STG}	Storage Temperature	-40	150	°C	-	
V _{ESD}	Electrostatic Discharge	2KV		V	Human Body Model	
	Thermal resistance between	4L PCB	28.1		00/11/	
$\theta_{ m jc}$	junction and case	2L PCB	36.7		°C/W	
Tj	Junction Temperature			125	°C	
P _D	Max Power Dissipation		-	8	mW	

Note: Stress above conditions may cause permanent damage to the device.

Functional operation of this device should be restricted to the conditions described.

Note: About thermal factors, T_a is the concerned ambient temperature, and $\theta_{ca}=\theta_{ja}$ - θ_{jc} $T_J=\theta_{ja}*P_D+T_a$ $T_c=\theta_{ca}*P_D+T_a$

Operating Conditions

Items	Descriptions	Test conditions	min	type	max	unit
VCC	Power supply		3	3.3	3.6	V
ICC	Active current			2.3		mA
IQQ	quiescent current			12.3		uA
Vcom	Input common mode voltage		0		2.0	V
VIH	Input high voltage		2.7			V
VIM	Mid-level voltage		VCC/2-0.3	VCC/2	VCC/2+0.3	V
VIL	Input low voltage				0.4	V
Ron_hs	Switch on resistance			10	12	ohm
Ron_ls	Switch on resistance			10	12	ohm
Ron flatness	Ron for different Vcom			1		ohm
Ron mismatch				0.5		ohm
T _A	Ambient Temperature		-25		85	°C

Static characteristics

VDD = $3.3V \pm 10$ %; Temp = -40°C to +85°C; unless otherwise specified.

Item	Description	Test Condition	Min	Тур.	Max	Unit
VIH	Input high voltage		2.7			V
VIM	Mid-Level voltage		VCC/2 - 0.3	VCC/2	VCC/2 + 0.3	V
VIL	Input low voltage				0.4	V
Ron	Switch on resistance			6	8	Ω
Ron Flatness	Ron for different Vcom			1		Ω
Ron Mismatch				0.5		Ω

^{*} The flatness is defined as difference of the maximal ON resistance and minimal ON-resistance for the whole voltage throughput domain

Dynamic characteristics:

TA = $-25 \sim 85$ °C, VCC = 3.3V ± 10 %

Parameter	Description	Min	Тур.	Max	Unit
Tstartup	VCC valid (>85% 3.3V) to channel enable			10	us
Twakeup	Channel enable by changing VEN from VIL to VIH or VIM			120	us
Tswon	Switch turn on time (Twakeup excluded)			5	us
Tswoff	Switch turn off time (Twakeup excluded)			2	us
TPHL, TPLH	Propagation Delay	-	0.1	-	us
TSK	Output Skew between center port to any other port	-	1	30	ps

^{*} Ron mismatch defined as the resistance difference of intra channels R(A_IN+ \rightarrow A_OUT+) and R(A_IN- \rightarrow A_OUT-)

TSK = |TPLHJ - TPLHI| or = |TPHLJ - TPHLI|

Reflow Profile

Follow: IPC/JEDEC J-STD-020 D.1

Condition

Average ramp-up rate (217°C to peak): 1~2°C /sec max.

Preheat: 150~200C, 60~120 seconds

Temperature maintained above 217°C: 60~150 seconds

Time (tp)* within 5 °C of the specified classification temperature (Tc = (260°C)), (the time above 255°C) \geq 30 sec.

Peak temperature: 260+5/-0°C Ramp-down rate: 3°C /sec. max.

Time 25°C to peak temperature: 8 minutes max.

Cycle interval: 5 minus

Figure 5 - Reflow

Package Mechanical Specifications

Figure 6 - Mechanical Specification

Package Top Side Marking

Figure 7 - Package Top Side Marking

Ordering Information

Please contact VIA Labs sales representative or distributor in your region for ordering part number details.

Tape and Reel Information

Figure 8 - Tape and Reel Information

VIA Labs, Inc.

www.via-labs.com
7F, 529-1, Zhongzheng Rd.,

Xindian District, New Taipei City 23148 Taiwan, R.O.C.

TEL: 886-2-2218-1838

Copyright © 2021 VIA Labs, Inc. All Rights Reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Labs, Inc. The material in this document is for information only and is subject to change without notice. VIA Labs, Inc. reserves the right to make changes in the product design without reservation and without notice to its users.

All trademarks are the properties of their respective owners.

No license is granted, implied or otherwise, under any patent or patent rights of VIA Labs, Inc. VIA Labs, Inc. makes no warranties, implied or otherwise, in regard to this document and to the products information described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Labs, Inc. assumes no responsibility for any errors in this document. Furthermore, VIA Labs, Inc. assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.