Homework #3

N-Queens problem

(Due: 2021-11-13)

Overview

The queen is one of the most powerful pieces in chess, which can move any number of squares *vertically*, *horizontally*, or *diagonally*. In theory, it is possible to place N queens on a N x N chessboard so that they will not attack each other. For this homework, you will be given a N x N chessboard with M (M<N) queens preplaced on it. Please design a program to find all possible placement of the remaining N-M queens on the chessboard.

(a) A queen can move vertically, horizontally, or diagonally

Input.txt

The first line of the input is the number of test cases T. Each test case begins with two integers N, M, which represent the chessboard size ($N \times N$) and the M preplaced queens on the board. Following are M pairs of integers separate by a single space, each of which indicates the row and column of a pre-placed queen.

Take the following input, for example.

1

4 2

01

13

The first integer indicates that T = 1. In the test case, the board size N = 4 and M = 2, the following two lines "0 1" and "1 3" means you must place two queens at [row 0, column 1] and [row 1, column 3]. The test case produces only one solution.

Output.txt

For each test case, output the number of possible placements for the remaining queens.

Sample Input

2

4 2

01

13

8 1

00

Sample Output

1

4

Constrains

```
1 <= T <= 20
1 <= m <= n <= 50
```

Preloaded Input Data

```
struct tTestCase {
    int n;
    int m;
    int preplace[50][2];
};

struct tTestData {
    int t;
    struct tTestCase testcase[100];
};
```