1 6.7: Physical Applications

Definition. (Mass of a One-Dimensional Object)

Suppose a thin bar or wire is represented by the interval $a \le x \le b$ with a density function ρ (with units of mass per length). The **mass** of the object is

$$m = \int_{a}^{b} \rho(x) \, dx.$$

Example. A thin bar, represented by the interval $0 \le x \le 4$, has density in units of kg/m given by $\rho(x) = 5e^{-2x}$. What is the mass of the bar?

Definition. (Work)

The work done by a variable force F moving an object along a line from x = a to x = b in the direction of the force is

$$W = \int_{a}^{b} F(x) \, dx.$$

Example. According to **Hooke's Law**, the force required to keep a spring in a compressed or stretched position x units from the equilibrium position is F(x) = kx, where the positive spring constant k measures the stiffness of the spring.

Suppose a force of 40N is required to stretch a spring 0.1m from its equilibrium position. Assuming the spring obeys Hooke's Law, how much work is required to stretch the spring 0.4m beyond is equilibrium position?

Example. Imagine a chain of length L meters with constant density ρ kg/m is hanging vertically. Using g to represent the force due to gravity, the work required to lift the chain is

$$W = \int_0^L \rho g(L - y) \, dy$$

A 50 meter long chain hangs vertically from a cylinder attached to a winch. Assume there is no friction in the system and the chain has a density of $3 \,\mathrm{kg/m}$. How much work is required to wind the entire chain onto the cylinder if a 60-kg load is attached to the end of the chain? Use g for the acceleration due to gravity.

Example. A 30-meter long rope hangs freely from a ledge. The rope has a density of 5 kg/m. How much work is done if the top 1/3 of the rope is pulled up to the ledge? Use g for the acceleration due to gravity.

Procedure: Solving Pumping Problems

- 1. Draw a y-axis in the vertical direction (parallel to gravity) and choose a convenient origin. Assume the interval [a, b] corresponds to the vertical extent of the fluid.
- 2. For $a \leq y \leq b$, find the cross-sectional area A(y) of the horizontal slices and the distance D(y) the slices must be lifted.
- 3. The work required to lift the water is

$$W = \int_{a}^{b} \rho g A(y) D(y) \, dy.$$

Procedure: Solving Force-on-Dam Problems

- 1. Draw a y-axis on the face of the dam in the vertical direction and choose a convenient origin (often taken to be the base of the dam).
- 2. Find the width function w(y) for each value of y on the face of the dam.
- 3. If the base of the dam is at y = 0 and the top of the dam is at y = a, then the total force on the dam is

$$F = \int_{a}^{b} \rho g \underbrace{(a - y)}_{\text{depth}} \underbrace{w(y)}_{\text{width}} dy.$$