Formal Algorithms for Constitutional AI

Notation and Conventions

Sequences: - $\mathcal{L} \equiv [M_V]$: Vocabulary of size M_V - \mathcal{L}^* : Set of all token sequences over vocabulary \mathcal{L} - $x, y \in \mathcal{L}^*$: Prompt and response sequences - $[s_1; s_2; \ldots]$: String concatenation operator

Models: - θ : Neural network parameters - DTransformer($\cdot \mid \theta$): Decoderonly transformer (Algorithm 10 from Formal Algorithms) - $\hat{P}_{\theta}(y \mid x)$: Model's conditional probability distribution

Constitutional AI Specific: - $C = \{c_1, c_2, \dots, c_K\}$: Set of constitutional principles (natural language strings) - θ_{helpful} : Parameters of helpful-only RLHF model - θ_{SL} : Parameters of SL-CAI model (after Stage 1) - θ_{RL} : Parameters of final RL-CAI model (after Stage 2)

Functions: - ∇ : Gradient operator (computed via automatic differentiation) - $\sigma(z) = 1/(1 + e^{-z})$: Sigmoid function - softmax $(z)_i = e^{z_i}/\sum_j e^{z_j}$: Softmax function

Stage 1: Supervised Learning (SL-CAI)

Algorithm 1: Critique Generation

Input: $x \in \mathcal{L}^*$, a prompt

Input: $y \in \mathcal{L}^*$, a response to critique **Input:** $c \in \mathcal{C}$, a constitutional principle

Input: θ_{helpful} , helpful-only model parameters Output: critique $\in \mathcal{L}^*$, the generated critique

Algorithm:

- 1. critique_prompt $\leftarrow [x; \text{``Response: ''}; y; \text{``} \setminus \text{n} \setminus \text{nCritique based on: ''}; c]$
- 2. critique \leftarrow DTransformer(critique_prompt | $\theta_{helpful}$) \triangleright Generate critique
- 3. **return** critique

Algorithm 2: Revision Generation

Input: $x \in \mathcal{L}^*$, a prompt

Input: $y \in \mathcal{L}^*$, original response **Input:** critique $\in \mathcal{L}^*$, the critique of y

Input: θ_{helpful} , helpful-only model parameters Output: $y_{\text{revised}} \in \mathcal{L}^*$, the revised response

Algorithm:

1. revision_prompt $\leftarrow [x; \text{``Response: "}; y; \text{``} \setminus \text{n} \setminus \text{nCritique: "}; \text{critique; ``} \setminus \text{n} \setminus \text{nRevise: "}]$

- 2. $y_{\text{revised}} \leftarrow \text{DTransformer}(\text{revision_prompt} \mid \theta_{\text{helpful}}) \triangleright \text{Generate revision}$
- 3. return y_{revised}

Algorithm 3: Iterative Critique-Revision

Input: $x \in \mathcal{L}^*$, a red-team prompt designed to elicit harmful behavior

Input: θ_{helpful} , parameters of helpful-only RLHF model

Input: $C = \{c_1, c_2, \dots, c_K\}$, constitutional principles Output: $y_{\text{final}} \in \mathcal{L}^*$, a harmless revised response

Hyperparameters: $N_{\text{revisions}} \in \mathbb{N}$, number of critique-revision iterations (typically 4)

Algorithm:

- 1. $y_0 \leftarrow \text{DTransformer}(x \mid \theta_{\text{helpful}}) \triangleright \text{Generate initial (likely harmful) response}$
- 2. for $n = 1, 2, \ldots, N_{\text{revisions}} do$
- $c_n \leftarrow \text{sample_uniform}(\mathcal{C}) \triangleright \text{Randomly sample a principle}$
- $\operatorname{critique}_n \leftarrow \operatorname{CritiqueGeneration}(x, y_{n-1}, c_n, \theta_{\operatorname{helpful}})$
- $y_n \leftarrow \text{RevisionGeneration}(x, y_{n-1}, \text{critique}_n, \theta_{\text{helpful}})$
- 6. end for
- 7. **return** $y_{\text{final}} = y_{N_{\text{revisions}}}$

Key Property: Each iteration refines the response to be progressively less harmful according to sampled principles.

Algorithm 4: SL-CAI Training

Input: $\{x_i^{\text{harm}}\}_{i=1}^{M_{\text{harm}}}$, red-team prompts Input: $\{x_j^{\text{help}}\}_{j=1}^{M_{\text{help}}}$, helpful prompts

Input: θ_0 , initial pretrained model parameters **Input:** θ_{helpful} , helpful-only RLHF model parameters

Input: C, constitutional principles

Output: $\hat{\theta}_{SL}$, trained SL-CAI model parameters

Hyperparameters: $M_{\text{epochs}} \in \mathbb{N}, \, \eta \in (0, \infty)$ (learning rate)

Algorithm:

- 1. $\mathcal{D}_{\text{harmless}} \leftarrow \emptyset$
- 2. **for** $i = 1, 2, ..., M_{\text{harm}}$ **do**
- $y_i \leftarrow \text{IterativeCritiqueRevision}(x_i^{\text{harm}}, \theta_{\text{helpful}}, \mathcal{C})$
- $\mathcal{D}_{\text{harmless}} \leftarrow \mathcal{D}_{\text{harmless}} \cup \{(x_i^{\text{harm}}, y_i)\}$
- 5. end for
- 6. $\mathcal{D}_{\text{helpful}} \leftarrow \emptyset$
- 7. **for** $j = 1, 2, ..., M_{\text{help}}$ **do**
- $y_j \leftarrow \text{DTransformer}(x_i^{\text{help}} \mid \theta_{\text{helpful}}) \triangleright \text{Sample helpful responses}$

```
\mathcal{D}_{\text{helpful}} \leftarrow \mathcal{D}_{\text{helpful}} \cup \{(x_i^{\text{help}}, y_j)\}
10. end for
11. \mathcal{D}_{\text{train}} \leftarrow \mathcal{D}_{\text{harmless}} \cup \mathcal{D}_{\text{helpful}} \triangleright \text{Mix harmless and helpful data}
12. \theta \leftarrow \theta_0
13. for epoch = 1, 2, \ldots, M_{\text{epochs}} do
              for (x,y) \in \mathcal{D}_{\text{train}} do
14.
15.
                 T \leftarrow \text{length}(y)
                \omega(\theta) \leftarrow \text{DTransformer}(x; y[1:T-1] \mid \theta) \triangleright \text{Forward pass}
16.
                loss(\theta) = -\sum_{t=1}^{T-1} log \,\omega(\theta)[y[t+1],t] \triangleright Cross-entropy loss
17.
                \theta \leftarrow \theta - \eta \cdot \overline{\nabla} loss(\theta) \triangleright Gradient descent
19.
              end for
20. end for
21. return \hat{\theta}_{SL} = \theta
```

Memory Complexity: Same as standard DTransformer training (Algorithm 13)

Key Innovation: Training data is self-generated via critique-revision, not human-labeled

Stage 2: Reinforcement Learning from AI Feedback (RL-CAI)

Algorithm 5: AI Feedback Generation (Standard)

```
Input: x \in \mathcal{L}^*, a prompt
Input: \theta_{\mathrm{SL}}, SL-CAI model parameters
Input: \theta_{\mathrm{feedback}}, feedback model parameters (pretrained LM)
Input: c \in \mathcal{C}, a constitutional principle
Output: (y_{\mathrm{chosen}}, y_{\mathrm{rejected}}), a preference pair
Hyperparameters: T_{\mathrm{sample}} \in (0, \infty), sampling temperature
```

Algorithm:

```
1. y_A \leftarrow \text{DTransformer}(x \mid \theta_{\text{SL}}, \text{temp} = T_{\text{sample}}) \triangleright \text{Sample first candidate}
2. y_B \leftarrow \text{DTransformer}(x \mid \theta_{\text{SL}}, \text{temp} = T_{\text{sample}}) \triangleright \text{Sample second candidate}
3. x_{\text{compare}} \leftarrow [\text{"Prompt: "}; x; \text{"\n"}]
4. x_{\text{compare}} \leftarrow [x_{\text{compare}}; \text{"Which is better per '"}; c; \text{"'?\n"}]
5. x_{\text{compare}} \leftarrow [x_{\text{compare}}; \text{"(A) "}; y_A; \text{"\n(B) "}; y_B; \text{"\nAnswer: "}]
6. \omega \leftarrow \text{DTransformer}(x_{\text{compare}} \mid \theta_{\text{feedback}}) \triangleright \text{Get distribution over next token}
7. p_A \leftarrow \exp(\log \operatorname{prob}(\omega, \text{"(A)"})) \triangleright \text{Log probability of token "(A)"}
8. p_B \leftarrow \exp(\log \operatorname{prob}(\omega, \text{"(B)"})) \triangleright \text{Log probability of token "(B)"}
9. if p_A/(p_A + p_B) > 0.5 then
10. return (y_{\text{chosen}} = y_A, y_{\text{rejected}} = y_B)
11. else
12. return (y_{\text{chosen}} = y_B, y_{\text{rejected}} = y_A)
13. end if
```

Key Property: Uses normalized log probabilities as well-calibrated preference labels

Algorithm 6: AI Feedback with Chain-of-Thought

```
Input: x \in \mathcal{L}^*, a prompt
```

Input: θ_{SL} , SL-CAI model parameters

Input: θ_{helpful} , helpful RLHF model for reasoning

Input: $c \in \mathcal{C}$, a constitutional principle Output: $(y_{\text{chosen}}, y_{\text{rejected}})$, a preference pair

Hyperparameters: $p_{\min}, p_{\max} \in (0,1)$, probability clamping bounds (typically

0.4, 0.6

Algorithm:

```
1. y_A \leftarrow \text{DTransformer}(x \mid \theta_{\text{SL}})
 2. y_B \leftarrow \text{DTransformer}(x \mid \theta_{\text{SL}})
 3. x_{\text{CoT}} \leftarrow [\text{"Human: Prompt: "}; x; \text{"} \setminus \text{n"}]
 4. x_{\text{CoT}} \leftarrow [x_{\text{CoT}}; \text{"Evaluate per: "}; c; \text{"} \setminus \text{n"}]
 5. x_{\text{CoT}} \leftarrow [x_{\text{CoT}}; \text{``(A) "}; y_A; \text{``} \setminus \text{n(B) "}; y_B; \text{``} \setminus \text{n"}]
 6. x_{\text{CoT}} \leftarrow [x_{\text{CoT}}; \text{``Assistant: Let's think step-by-step: "}]
 7. reasoning \leftarrow DTransformer(x_{\text{CoT}} \mid \theta_{\text{helpful}}) \triangleright Generate CoT reasoning
 8. if "(A)" appears last in reasoning then
           p_{\text{chosen}} \leftarrow \min(\max(0.9, p_{\min}), p_{\max}) \triangleright \text{Clamp probability}
10.
             return (y_{\text{chosen}} = y_A, y_{\text{rejected}} = y_B)
11. else
12.
           p_{\text{chosen}} \leftarrow \min(\max(0.9, p_{\min}), p_{\max})
13.
            return (y_{\text{chosen}} = y_B, y_{\text{rejected}} = y_A)
14. end if
```

Key Innovation: Explicit reasoning makes AI decision process transparent and improves accuracy

Clamping Rationale: Prevents overconfident labels that destabilize RL training

Algorithm 7: Preference Model Training

Input: $\{x_i^{\text{harm}}\}_{i=1}^{M_{\text{harm}}}$, red-team prompts **Input:** $\{(x_j^{\text{help}}, y_j^{\text{chosen}}, y_j^{\text{rejected}})\}_{j=1}^{M_{\text{help}}}$, human helpfulness preferences

Input: θ_{SL} , SL-ČAI model parameters

Input: θ_{feedback} , feedback model parameters

Input: C, constitutional principles

Output: θ_{PM} , trained preference model parameters

Hyperparameters: $M_{\text{epochs}} \in \mathbb{N}, \, \eta \in (0, \infty)$

Algorithm:

```
1. \mathcal{D}_{AI} \leftarrow \emptyset \triangleright AI-generated harmlessness preferences
   2. for i = 1, 2, ..., M_{\text{harm}} do
               c \leftarrow \text{sample uniform}(\mathcal{C})
                \begin{aligned} &(y_{\text{chosen}}, y_{\text{rejected}}) \leftarrow \text{AIFeedback}(x_i^{\text{harm}}, \theta_{\text{SL}}, \theta_{\text{feedback}}, c) \\ &\mathcal{D}_{\text{AI}} \leftarrow \mathcal{D}_{\text{AI}} \cup \{(x_i^{\text{harm}}, y_{\text{chosen}}, y_{\text{rejected}})\} \end{aligned} 
   4.
   6. end for
  7. \mathcal{D}_{\text{human}} \leftarrow \{(x_j^{\text{help}}, y_j^{\text{chosen}}, y_j^{\text{rejected}})\}_{j=1}^{M_{\text{help}}} \triangleright \text{Human helpfulness data}
8. \mathcal{D}_{\text{PM}} \leftarrow \mathcal{D}_{\text{AI}} \cup \mathcal{D}_{\text{human}} \triangleright \text{Mix AI and human labels}
  9. \theta_{\text{PM}} \leftarrow \theta_{\text{SL}} \triangleright \text{Initialize from SL-CAI}
10. for epoch = 1, 2, ..., M_{\text{epochs}} do
11.
                  for (x, y_{\text{chosen}}, y_{\text{rejected}}) \in \mathcal{D}_{\text{PM}} do
12.
                      r_{\text{chosen}} \leftarrow \text{PreferenceScore}(x, y_{\text{chosen}} \mid \theta_{\text{PM}})
13.
                     r_{\text{rejected}} \leftarrow \text{PreferenceScore}(x, y_{\text{rejected}} \mid \theta_{\text{PM}})
                     loss(\theta_{PM}) = -log(\sigma(r_{chosen} - r_{rejected})) \triangleright Ranking loss
14.
15.
                      \theta_{\mathrm{PM}} \leftarrow \theta_{\mathrm{PM}} - \eta \cdot \nabla \mathrm{loss}(\theta_{\mathrm{PM}})
                  end for
16.
17. end for
18. return \hat{\theta}_{PM}
```

Key Property: Distills both AI (harmlessness) and human (helpfulness) preferences into single model

Algorithm 8: Preference Scoring Function

```
Input: x \in \mathcal{L}^*, a prompt Input: y \in \mathcal{L}^*, a response
```

Input: θ_{PM} , preference model parameters Output: $r \in \mathbb{R}$, scalar reward/preference score

Algorithm:

```
1. T \leftarrow \text{length}(y)
```

2. $H \leftarrow \text{DTransformer}(x; y \mid \theta_{\text{PM}}) \triangleright \text{Get hidden states (shape: } d_e \times T)$

3. $h_{\text{final}} \leftarrow H[:,T] \triangleright \text{Extract final hidden state}$

4. $r \leftarrow W_r^{\top} h_{\text{final}} + b_r \triangleright \text{Linear projection to scalar}$

5. return r

Parameters: $W_r \in \mathbb{R}^{d_e}, b_r \in \mathbb{R}$ (learned during PM training)

Algorithm 9: RL-CAI Training (Proximal Policy Optimization)

Input: $\{x_i\}_{i=1}^{M_{\text{prompts}}}$, training prompts (harmfulness + helpfulness)

Input: θ_{SL} , SL-CAI model parameters (initial policy)

Input: $\hat{\theta}_{\mathrm{PM}}$, trained preference model Output: $\hat{\theta}_{\mathrm{RL}}$, final RL-CAI model parameters Hyperparameters: $M_{\mathrm{epochs}} \in \mathbb{N}, \ \eta \in (0, \infty), \ \beta \in (0, \infty)$ (KL penalty coefficient)

Algorithm:

```
1. \theta_{\text{policy}} \leftarrow \theta_{\text{SL}} \triangleright \text{Initialize policy from SL-CAI}
  2. for epoch = 1, 2, \ldots, M_{\text{epochs}} do
                for i = 1, 2, \dots, M_{\text{prompts}} do
  4.
                   y \leftarrow \text{DTransformer}(x_i \mid \theta_{\text{policy}}) \triangleright \text{Sample response from policy}
                   r_{\text{PM}} \leftarrow \text{PreferenceScore}(x_i, y \mid \hat{\theta}_{\text{PM}}) \triangleright \text{Get PM reward}
  5.
                   T \leftarrow \text{length}(y)
  6.
  7.
                     KL_{penalty} \leftarrow 0
                     for t = 1, 2, ..., T do
  8.
                         p_{\text{policy}} \leftarrow \hat{P}_{\theta_{\text{policy}}}(y[t] \mid x_i; y[1:t-1]) \triangleright \text{Current policy prob}
  9.
                        p_{\mathrm{SL}} \leftarrow \hat{P}_{\theta_{\mathrm{SL}}}(y[t] \mid x_i; y[1:t-1]) \rhd \text{Reference policy prob}
10.
11.
                         KL_{penalty} \leftarrow KL_{penalty} + p_{policy} \cdot \log(p_{policy}/p_{SL})
12.
                     end for
                   r_{\text{total}} \leftarrow r_{\text{PM}} - \beta \cdot \text{KL}_{\text{penalty}} \triangleright \text{Total reward with KL penalty}
13.
                   \begin{split} & \operatorname{loss}(\theta_{\operatorname{policy}}) = -r_{\operatorname{total}} \cdot \sum_{t=1}^{T} \operatorname{log} \hat{P}_{\theta_{\operatorname{policy}}}(y[t] \mid x_i; y[1:t-1]) \\ & \theta_{\operatorname{policy}} \leftarrow \theta_{\operatorname{policy}} - \eta \cdot \nabla \operatorname{loss}(\theta_{\operatorname{policy}}) \rhd \operatorname{Policy} \text{ gradient} \end{split}
14.
15.
16.
17. end for
18. return \hat{\theta}_{RL} = \theta_{policy}
```

KL Penalty Rationale: Prevents policy from drifting too far from SL-CAI initialization, maintaining quality

Note: Simplified for clarity; production implementations use PPO clipping and advantage estimation