Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2024

IT3CO33 Theory of Computation

Programme: B.Tech. Branch/Specialisation: IT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. Which of the following representations is used to represent Finite 1 automate
 (a) Transition graph (b) Transition matrix

 (c) Transition function (d) All of these
 - ii. Moore Machine is an application of:

 1
 - (a) Finite automata without input(b) Finite automata with output
 - (c) Non-Finite automata with output
 - (d) None of these
 - iii. Which of the following is not a part of 5-tuple finite automata?
 - (a) Input alphabet (b) Transition function
 - (c) Initial state (d) Output alphabet
 - iv. NFA, in its name has 'non-deterministic' because of-
 - (a) The result is undetermined
 - (b) The choice of path is non-deterministic
 - (c) The state to be transited next is non-deterministic
 - (d) All of these
 - v. The entity which generates language is termed as:
 - (a) Automata (b) Tokens (c) Grammar (d) Data
 - vi. Which of the following is Unit production? (a) $X \rightarrow Y$ (b) $X \rightarrow x$ (c) $X \rightarrow y$ (d)
 - (a) X → Y
 (b) X → x
 (c) X → y
 (d) All of these
 vii. A pushdown automata can be defined as: (Q, ∑, ô, q₀, F, Z₀, Γ)
 What does the symbol Z₀ represent?
 - (a) An element of Γ
- (b) Initial stack symbol
- (c) Top stack alphabet
- (d) All of these

1

1

	viii.	viii. Which of the following are the actions that operate on stack top?						1
		(a) Pushing (b) Popping (c) Replacing (d) All of these					ese	
	ix.	A Turing machine that is able to simulate other Turing machines:					achines:	1
		(a) Nested Turing machine	es					
		(b) Universal Turing mach	nine					
		(c) Counter machine						
		(d) None of these						
	х.	Decidable can be taken as	a syn	onym to:				1
		(a) Recursive	•) Non re				
		(c) Recognizable	(c	l) None o	f these			
			`					
Q.2	i.	What are finite automata?	What	t are the t	ypes of	FA?		2
	ii.	Differentiate between Mea	aly an	d Moore	machin	e.		3
	iii.	Construct a Moore machin	-				y machine-	5
		G		0		1		
		State	State	Output	State	Output		
		→ q 1	q 1	1	q 2	0		
			q 4	1	q 4	1		
			q 2	1	q 3	1		
			q 3	0	q 1	1		
OR	iv.	Write a Regular Express		(RE) ov	-	a,b}* fo	r following	5
		languages:			_			
		(a) Language containing the	he str	ing of ler	igth 2			
		(b) Language containing s	trings	s with exa	actly 2 b	o's		
		(c) Language containing s	trings	s with any	y numbe	er of a's a	and b's	
		(d) Set of strings starts and	d end	s with dif	ferent s	ymbol		
	(e) Set of strings ending with abb							
Q.3	i.	Differentiate between DFA	A and	NFA.				4
	ii.	Explain the pumping lemma for regular languages. Show that the				6		
		language $L = \{a^p \mid p \text{ is prime number}\}\$ is not regular.						
OR	iii.	Construct a minimal DFA over $\Sigma = \{a,b\}^*$:				6		
		(a) That accept the set of all strings, which starts with 'a' and ends with 'b'						
		(b) That accept the set of all strings, in which every 'a' is followed by "bb"						
		(c) That accept the set of a	ll stri	ngs, in wh	nich eve	ery "a" is	not followed	

by "bb"

Q.4	i.	Explain Chomsky's classification of grammar.	4
	ii.	Remove all unit-production, useless production, and ε-production	6
		from the given grammar:	
		$S \rightarrow aA/aBB$	
		$A \rightarrow aaA/\epsilon$	
		$B \rightarrow bB/bbC$	
		$C \rightarrow B$	
OR	iii.	Convert the following grammar in CNF and GNF:	6
		$S \rightarrow 1A/0B$	
		$A \rightarrow 0S/0$	
		$B \rightarrow 1S/1$	
Q.5	i.	Define PDA with an example.	3
	ii.	Construct a PDA for $L = a^n b^n \mid n \ge 1$. Also simulate this PDA for	7
		string "aaaabbbb".	
OR	iii.	Construct a PDA for the given CFG:	7
		$S \rightarrow AB$	
		$A \rightarrow CD$	
		$B \rightarrow b$	
		$C \rightarrow a$	
		$D \rightarrow a$	
		Derive the string "aab" from the resultant PDA.	
Q.6		Attempt any two:	
	i.	What do you mean by Turing machine? Design a Turing machine for	5
		language $L = W W^R \mid W \in \{a, b\}^*$.	
	ii.	Explain various types of Turing machine.	5
	iii.	Differentiate between decidable and undecidable problems.	5

[4]

Marking Scheme

Theory of Computation (T) - IT3CO33 (T)

		automate-	
		d) All of the above	
	ii)	Moore Machine is an application of:	1
		b) Finite automata with output	
	iii)	Which of the following is not a part of 5-tuple finite automata? d) Output Alphabet	1
	iv)	NFA, in its name, has 'non-deterministic' because of:	1
	,	b) The choice of path is non-deterministic	
	v)	The entity which generates Language is termed as:	1
	,	c) Grammar	
	vi)	Which of the following is Unit production:	1
	,	a) X -> Y	
	vii)	A pushdown automata can be defined as: $(Q, \sum, G, q0, Z0, A, d)$ What does the symbol Z0 represent? d) all of the mentioned	1
	viii)	Which of the following are the actions that operate on stack top?	1
	/	d) All of the mentioned	-
	ix)	A Turing machine that is able to simulate other Turing machines:	1
	,	b) Universal Turing machine	_
	x)	Decidable can be taken as a synonym to: a) recursive	1
Q.2 i.	i.	What is Finite Automata? What are the types of FA? Definition – 1 mark Types – 1 mark	2
	ii.	Differentiate between Mealy and Moore machine.	3
		Difference – 3 marks	
	iii.	Write a Regular Expression (RE) over $\Sigma = \{a,b\}^*$ for following	5
		languages:	
		 Language containing the string of length 2. RE = (a+b) (a+b) 	
		2. Language containing strings with exactly 2 b's.	
		RE = $a^* b a^* b a^*$	
		3. Language containing strings with any number of a's and b's. RE = a* b*	
		4. Set of strings starts and ends with different symbol RE = (a (a+b)* b) + (b (a+b)* a)	
		5. Set of strings ending with the string abb RE = (a+b)* a b b	

1 mark for each RE

OR iv. Construct a Moore Machine equivalent to the given Mealy 5 Machine.

Ctata	0		1		
State	State	Output	State	Output	
→ q 1	q 1	1	q 2	0	
q 2	q 4	1	q 4	1	
q 3	q 2	1	q 3	1	
q 4	q 3	0	q 1	1	

Problem Solution – 5 Marks

		Problem Solution – 3 Warks		
Q.3	i.	Differentiate between DFA and NFA.		4
4 .0	••		2 Marks	•
			2 Marks	
	ii.	Explain the Pumping lemma for Regular	languages. Show that the	6
		language $L = \{a^p \mid p \text{ is prime number}\}$ is		
		Definition –	2 Marks	
		Problem Solution –	4 Marks	
OR	iii.	Construct a minimal DFA over $\Sigma = \{a,b\}^*$	•	6
		1. that accept the set of all strings, which with 'b'	n starts with 'a' and ends	
		2. that accept the set of all strings, in whi by "bb"	ch every "a" is followed	
		Problem Solution of each –	2 Marks	
Q.4	i.	Explain Chomsky's Classification of Gran	mmar.	4
		4 types of Grammar –	1 Mark each	
	ii. Remove all unit-production, useless production, and ε-produ			
		from the given grammar:		
		$S \rightarrow aA/aBB$		
		$A \rightarrow aaA/\epsilon$		
		B -> bB/ bbC		
		C -> B	234 1	
		Unit production –	2 Marks	
		Useless production –	2 Marks	
OR	iii.	Null production – 2 Marks	and CNE	6
OK	111.	Convert the following grammar in CNF a S -> 1A/0B	ind GNF.	O
		A -> 0S/ 0		
		B -> 1S/ 1		
		Conversion in each form	3 Marks	
		Conversion in cuch form	Jiviaiks	
Q.5	i.	Define PDA with an example.		3

P.T.O.

[2]

		Definition – Example –	1.5 Mark 1.5 Mark	
	ii.	Construct a PDA for $L = a^n b^n \mid n \ge 1$. Also simula string "aaaabbbb".		7
		PDA Construction –	4 Marks	
		Simulation of string –	3 Marks	
OR	iii.	Construct a PDA for the given CFG:		7
		S -> AB		
		A -> CD		
		B -> b		
		C -> a		
		D -> a		
		Derive the string "aab" from the resultant PDA.		
		PDA Construction –	4 Marks	
		Simulation of string –	3 Marks	
Q.6		Attempt any two:		
	i.	What do you mean by Turing Machine? Design a for language $L = W W^R \mid W \in \{a, b\}^*$.	Turing Machine	5
		Definition –	2 Marks	
		Turing Machine Design –	3 Marks	
	ii.	Explain various types of Turing Machine.		5
		Types –	5 Marks	
	iii.	Differentiate between Decidable and Undecidable	Problems.	5
		Description of each –	2.5 Marks	
