

RELATÓRIO

SEMÁFORO DE ACESSO A PASSADEIRA DE PEÕES

SISTEMAS DIGITAIS 2013/2014

ALUNOS:

29248 – Hiago Oliveira 31511 – Rui Oliveira 32250 – João Palinhas

DOCENTE:

Teresa Gonçalves

RELATÓRIO – SEMÁFORO DE ACESSO A PASSADEIRA DE PEÕES

Índice

ntroduçãontrodução	2
mplementação	
Modelo ASM	
Гabela de transição de estados	
•	
Mapas de Karnaugh	
Equações	
mplementação em Logisim	<u>c</u>

Introdução

Este trabalho prático tem como objetivo implementar um sistema de semáforos para acesso a uma passadeira de peões, de forma a consolidar e aprofundar os conhecimentos da disciplina.

Este sistema em situação normal terá um sinal de proibição de passagem para os peões e de permissão de passagem para os veículos. Ao ser pressionado o botão de passagem de peões o semáforo dos automóveis fica vermelho após um ciclo de relógio no amarelo, e o dos peões fica verde ao fim de 2 ciclos de relógio. Após 4 ciclos de relógio o semáforo começa a transição para o seu estado normal, passando antes por um estado intermédio onde ambos estão vermelhos. No sistema limitador, sempre que um veículo se aproxima em excesso de velocidade enquanto o semáforo está em situação normal, os semáforos dos automóveis fica vermelho e o sinal dos peões fica verde ao fim de um ciclo de relógio.

Implementação

Ao começar a implementar do sistema, começámos por transformar as cores verde, amarelo e vermelho dos semáforos paras os automóveis e peões em letras e números para ser exibido no display de 7 segmentos. Optamos pela seguinte configuração:

Veículos	Peões	Informação no mostrador
Verde	Vermelho	F B C D
Amarelo	Vermelho	F B G C
Vermelho	Vermelho	F B G C
Vermelho	Verde	F B C D

De seguida optámos por implementar o sistema controlador limitador, ou seja, tem a função da passagem de peões e de limitador de velocidade. Caso seja acionado o botão dos peões ou algum veículo surja em excesso de velocidade o sistema proíbe a passagem dos veículos e autoriza a passagem dos peões.

Modelo ASM

Ao implementar o sistema, tal como sugerido, começámos por desenhar o modelo ASM, que se segue:

Tabela de transição de estados

Com o modelo ASM desenhado, começámos a construir a tabela de transição de estados. Decidimos utilizar flip-flops JK, porque apesar de ser mais trabalhoso encontrar as equações das entras e das saídas, em termos de implementação e equações resultantes, é bastante mais simples quando comparados com os outros flip-flops (T e D).

	Q*					Q				M	ostrad	lor		
Q2	Q1	Q0	L	В	Q2	Q1	Q0	A	В	C	D	E	F	G
0	0	0	0	0	0	0	0	1	1	1	0	1	1	1
0	0	0	0	1	0	0	1	1	1	1	0	1	1	1
0	0	0	1	0	0	1	0	1	1	1	0	1	1	1
0	0	0	1	1	0	0	1	1	1	1	0	1	1	1
0	0	1	X	X	0	1	0	1	0	0	1	1	1	0
0	1	0	X	X	0	1	1	1	1	1	1	1	1	0
0	1	1	X	X	1	0	0	1	1	0	0	1	1	1
1	0	0	X	X	1	0	1	1	1	0	0	1	1	1
1	0	1	X	X	1	1	0	1	1	0	0	1	1	1
1	1	0	X	X	1	1	1	1	1	0	0	1	1	1
1	1	1	X	X	0	0	0	1	1	1	1	1	1	0

Através da tabela de transição de estados, conseguimos então chegar às equações de saída dos flip flops, assim como das saídas para o módulo mostrador.

Mapas de Karnaugh

♣ Q2 (Flip flop 2)

Q2 = 0							
L B Q1 Q0	.000	.001	.011	.010			
.00	0	0	0	0			
.01	0	0	0	0			
.11	1	1	1	1			
.10	0	0	0	0			
J = 0							

Q2 = 1						
L B Q1 Q0	.000	.001	.011	.010		
.00	X	X	X	X		
.01	X	X	X	X		
.11	X	X	X	X		
.10	X	X	X	X		
1Q0						

$\mathbf{Q2} = 0$							
L B Q1 Q0	.000	.001	.011	.010			
.00	X	X	X	X			
.01	X	X	X	X			
.11	X	X	X	X			
.10	X	X	X	X			
				K =			

Q2 = 1						
L B Q1 Q0	.000	.001	.011	.010		
.00	0	0	0	0		
.01	0	0	0	0		
.11	1	1	1	1		
.10	0	0	0	0		
1Q0						

♣ Q1 (Flip flop 1)

Q2 = 0						
L B Q1 Q0	.000	.001	.011	.010		
.00	0	0	0	1		
.01	1	1	1	1		
.11	X	X	X	X		
.10	X	X	X	X		

			Q	2 = 1		
.010		L B Q1 Q0	.000	.001	.011	.010
1		.00	0	0	0	0
1		.01	1	1	1	1
X		.11	X	X	X	X
X		.10	X	X	X	X
I = Q0	+ ((Q2'LB')				

RELATÓRIO – SEMÁFORO DE ACESSO A PASSADEIRA DE PEÕES

Q2 = 0						
L B Q1 Q0	.000	.001	.011	.010		
.00	X	X	X	X		
.01	X	X	X	X		
.11	1	1	1	1		
.10	0	0	0	0		
				T7		

	Q2 = 1						
	L B Q1 Q0	.000	.001	.011	.010		
	.00	X	X	X	X		
	.01	X	X	X	X		
	.11	1	1	1	1		
	.10	0	0	0	0		
n	<u> </u>						

♣ Q0 (Flip flop 0)

Q2 = 0							
L B Q1 Q0	.000	.001	.011	.010			
.00	0	1	1	0			
.01	X	X	X	X			
.11	X	X	X	X			
.10	1	1	1	1			
				J = Q1			

Q2 = 1				
L B Q1 Q0	.000	.001	.011	.010
.00	1	1	1	1
.01	X	X	X	X
.11	X	X	X	X
.10	1	1	1	1
B + Q2				

Q2 = 0					
L B Q1 Q0	.000	.001	.011	.010	
.00	X	X	X	X	
.01	1	1	1	1	
.11	1	1	1	1	
.10	X	X	X	X	
				K	:

Q2 = 1				
L B Q1 Q0	.000	.001	.011	.010
.00	X	X	X	X
.01	1	1	1	1
.11	1	1	1	1
.10	X	X	X	X
1				

Equações

A partir das tabelas e dos mapas de Karnaugh acima indicados, conseguimos chegar às equações para cada um dos flip-flops e para cada um dos estados do display de 7-segmentos utilizado. Visto que a tabela de excitação dos flip-flops JK é a seguinte:

Q*	Q	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Chegamos às seguintes equações para os nossos flip-flops:

Flip-Flop	J	K
Q2	Q1Q0	Q1Q0
Q1	Q0 + Q2'LB'	Q0
Q0	Q1 + B + Q2	1

E conseguimos obter, também, as equações para cada saída do display de 7 segmentos:

Segmento	Equação
Α	1
В	Q1 + Q0' + Q2
С	Q2'Q0' + Q2Q1Q0
D	Q2'Q1Q0' + Q2'Q1'Q0 + Q2Q1Q0
E	1
F	1
G	Q1'Q0' + Q2'Q1Q0 + Q2Q1' + Q2Q0'

Implementação em Logisim

Após ter-mos tudo isto, a implementação do circuito no Logisim foi relativamente fácil.

