

Master in Computer Vision Barcelona

Project

A Hands-On Experience on Visual Object Recognition

Module 5

Visual Recognition - Week 1

Coordination

Ramon Baldrich

Project Schedule

Assignments

- Groups of 2-3 students
- Week 1

Basic pipeline for bag of words

The goal of this week is

- (i) to understand the basic principles underlying the pipeline of the Bag of Words approach and
- (ii) tune the parameters of the vocabulary construction when applied in a Scene dataset.
- Subsequently, a more complex classifier based on Support Vector Machine will be trained to learn to discriminate between different object categories.

Assignments

Mandatory tasks:

- · Consider different vocabulary sizes;
- Apply SVM with cross validation.

Optional tasks:

- Experiment with different features like HOG, LBP.
- Consider other kernels instead of linear SVM
- Substitute SVM by the nearest neighbor
 - Performance evaluation: Acc., confusion matrix, ROC curve
 - Deliverables (February 29th, 08:59): zip with code and 3 slides presentation (experiments, results, conclusions)

Upload the zip at the Moodle Master CV platform http://cv.uab.cat/

Datasets

Scene dataset (MIT http://cvcl.mit.edu/database.htm)

 8 classes selected: coast, forest, highway, inside-city, mountain, open-country, street, tall-building

TRAINING/VALIDATION DATASET

~200 images x class

TEST DATASET

• ~100 images x class

Programming Language

- Python python.org
- Suggested libraries (from linux repository)
 - python-opencv
 - python-imaging
 - python-matplotlib
 - python-numpy
 - python-scipy
 - python-libsvm
 - python-skimage
 - python-sklearn

Code description

Code description

Code description

BOVW_functions.py

01_SIFT_visualization.py02 Basic BOVW.py

03_BOVW_CrossValidation.py

04_Early_Fusion.py 05_Late_Fusion.py 06_Spatial_Pyramids.py

BOVW_functions.py

def prepareFiles(rootpath):

def getKeypointsDescriptors(filenames,detector_type,descriptor_type):

def getAndSaveCodebook(descriptors,num samples,k,filename):

def getAndSaveBoVWRepresentation(descriptors,k,codebook,filename):

def trainAndTestLinearSVM(train,test,GT_train,GT_test,c):

def trainAndTestLinearSVM withfolds(train,test,GT train,GT test,folds,start,end,numpara):

Code description: configuration parameters

Tasks to cover:

- 1. Introduce other descriptors
- 2. Nearest neighbor classifier
- 3. Data whitening
- 4. Confusion matrix
- 5. Roc curve
- 6. Work on cross-validation
- 7. Parallel processing (on images)

Master in Computer Vision Barcelona

Project

A Hands-On Experience on Visual Object Recognition

Module 5

Visual Recognition – Week 1

Coordination

Ramon Baldrich Jordi Gonzàlez

