Homework 3 - Integer Programming

Adv. Analytics and Metaheuristics

Daniel Carpenter and Iker Zarandona

March 2022

Contents

1 - Problem 1			2
	1.1	Mathematical Formulation	2
	1.2	Code and Output	4
2 - Problem 2		roblem 2	6
	2.1	Mathematical Formulation	6
	2.2	Code and Output	8

1 - Problem 1

1.1 Mathematical Formulation

1.1.1 Sets

Set Name	Description
GENERATORS PERIODS	Set of generators i that can be used (A,B,C) 2 possible periods p (1, 2) in the production day

1.1.2 Parameters

Parameter Name	Description
$\overline{S_i}$	Fixed cost to start a generator
	$(i \in GENERATORS)$ in the entire day
F_i	Fixed cost to operate a generator
	$(i \in GENERATORS)$ in any period
C_i	Variable cost per megawatt to operator a
	generator $(i \in GENERATORS)$ in any
	period
U_i	Max. megawatts generated for generator
	$(i \in GENERATORS)$ in any period
$demand_p$	Total demanded megawatts for period
r	$(p \in PERIODS)$
M_i	Value to map watts used by each
	generator $(i \in GENERATORS)$

1.1.3 Decision Variables

Variable Name	Description
$watts_{i,p}$	Integer variable: Number of watts to
	produce per generator
	$(i \in GENERATORS)$ per period
	$(p \in PERIODS)$
$x_{i,p}$	Binary variable: 1 if a generator
	$(i \in GENERATORS)$ is in period p
	$(p \in PERIODS)$, 0 if not turned on at all
y_i	Binary variable: 1 if a generator
	$(i \in GENERATORS)$ is used, 0 if not
	turned on at all

1.1.4 Objective Function

$$minimize\ cost: \sum_{i \in GENERATORS} \left(\left(\sum_{p \in PERIODS} (watts_{i,p}) \times C_i \right) + \left(F_i \times \sum_{p \in PERIODS} x_{i,p} \right) + \left(S_i \times y_i \right) \right)$$

1.1.5 Constraints

C1: For each period, meet the demanded megawatts

$$requiredWatts: \sum_{i \in GENERATORS} (watts_{i,p}) = demand_p, \forall \ p \in PERIODS$$

C2: For each generator, don't surpass the allowable megawatts

upperBound:
$$\sum_{p \in PERIODS} (watts_{i,p}) \leq U_i, \forall i \in GENERATORS$$

C3: For each generator, map decision variables together to account for the fixed costs in a given day S_i

$$mapVars: \sum_{p \in PERIODS} (watts_{i,p}) \leq M_i \times y_i, \forall i \in GENERATORS$$

C4: For each generator and period, map decision variables y and watts together to account for the fixed costs in a per period p

$$mapVars2: watts_{i,p} \leq M_i \times x_{i,p}, \forall i \in GENERATORS, p \in PERIODS$$

1.2 Code and Output

1.2.1 Code

```
Fynich/Millians N

| Particle | Control | Cont
```

1.2.2 Output

```
ampl: model 'C:\Users\daniel.carpenter\OneDrive - the Chickasaw
CPLEX 20.1.0.0: optimal integer solution; objective 46100
7 MIP simplex iterations
0 branch-and-bound nodes

Which generators are used?
y [*] :=
A 1
B 1
C 1;

Which periods were the generators used?
x :=
A 1 0
A 2 1
B 1 0
B 2 1
C 1 1
C 2 0;

Optimal Amount of Megawatts for each generator and period:
watts :=
A 1 0
A 2 2100
B 1 0
B 2 1800
C 1 2900
C 2 0;
```

1.2.2.1 Analysis of the Output

- The minimized cost is \$46, 100
- Generator A, B, and C run
- Generator C runs in period 1. Generator A and B run in period 2
- Generator A produces 2, 100 megawatts in total
- Generator B produces 1,800 megawatts in total
- Generator C produces 2,900 megawatts in total

2 - Problem 2

2.1 Mathematical Formulation

2.1.1 Sets

Set Name	Description
PRODUCTS	5 types of landscaping and construction products (e.g., cement, sand, etc.) labeled product (p) A, B, C, D , and E
SILOS	8 different silos s that each product must be stored in $(1,2,\ldots,8)$

2.1.2 Parameters

Parameter Name	Description
$\overline{cost_{s,p}}$	Cost of storing one ton of product $p \in PRODUCTS$ in silo $s \in SILOS$
$supply_p$	Total supply in tons available of product $p \in PRODUCTS$
$capacity_s$	Total capacity in tons of silo $s \in SILOS$. Can store products.
M_s	Variable to map $decision\ variable$ $tonsOfProduct_{p,s}$ to $isStored_{p,s}$. Value is slightly more than the capacity of each silo.

2.1.3 Decision Variables

Variable Name	Description
$tonsOfProduct_{p,s}$	Tons of product $p \in PRODUCTS$ to store in silo $s \in SILOS$
$isStored_{p,s}$	Binary variable indicating if product $p \in PRODUCTS$ is stored in silo $s \in SILOS$

2.1.4 Objective Function

$$minimize\ cost: \sum_{p \in PRODUCTS} \sum_{s \in SILOS} tonsOfProduct_{p,s} \times cost_{p,s}$$

2.1.5 Constraints

C1: For each silo s, the tons of the supplied product p must be less than or equal to the capacity limit of silo s

$$meetCapacity: \sum_{p \in PRODUCTS} tonsOfProduct_{p,s} \leq capacity_s, \ \forall \ s \in SILOS$$

C2: For each product p, must use all of the total product that is available

$$useAllProduct: \sum_{s \in SILOS} tonsOfProduct_{p,s} = supply_p, \ \forall \ p \in PRODUCTS$$

C3: For each silo s, can only store one type of product p in each silo

$$\sum_{p \in PRODUCTS} tonsOfProduct_{p,s} \leq M_s \times \sum_{p \in PRODUCTS} isStored_{p,s}, \ \forall \ s \in SILOS$$

- 2.2 Code and Output
- 2.2.1 Code
- 2.2.2 Output