

ELTE TTK

AZ COMPTON-EFFEKTUS VIZSGÁLATA

Olar Alex

laborvezető Csanád Máté 2018

Kivonat

A mérés célja az volt, hogy a kiértékelés során a lehető legpontosabban járjunk el a számolások közben, hibabecslésen alkalmával. A Compton-effektus tulajdonságait vizsgáltuk. Az energia és a hatáskereszmetszet elméleti szögfüggését vettük alapul a kiértékelés során.

Tartalomjegyzék

	Mérési eszközök I.1. Mérési elrendezés	2
II.	Elméleti összefoglaló	2
	IMérési feladatok, kiértékelés	3
	III.1. Aktivitás, dózis	3
	III.2. Szögfüggés vizsgálata	4
	III.3. Klein-Nishina formula vizsgálata	7

I. Mérési eszközök

- plasztik elektron detektor
- állítható fotodetektor
- sokcsatornás analizátor (MCA)
- számítógép
- ^{137}Cs , közvetett γ -foton forrás

I.1. Mérési elrendezés

II. Elméleti összefoglaló

A Compton-effektus a fotonok, lazán kötött (kvázi szabad) elektronokon való szóródását írja le, alapegyenlete a négyesimpulzus megmaradásból következik

$$E = \frac{E_0}{1 + \frac{E_0}{m_0 c^2} (1 - \cos \theta)}$$

ahol ϑ az foton szórási szögét, E_0 annak kezdeti energiáját, míg m_e az elektron tömegét jelöli. A mérés során E_0 értéke adott, a γ -fotonok 662 keV enerigával rendelkeznek. Természetesen E a szórt fotonok energiáját jelöli.

Bevezetve a $P=\frac{E}{E_0}$ arányszámot, az elméleti differenciális hatáskeresztmetszet felírható

$$\frac{d\sigma}{d\Omega} = \frac{1}{2}r_0^2(P - P^2\sin^2\vartheta + P^3)$$

alakban. Ahol r_0 a klasszikus elektronsugár, melynek értéke a Bohr-modell alapján számolható

$$r_0 = \frac{1}{4\pi\epsilon_0} \frac{e^2}{m_e c^2} = 2.82 \times 10^{-15} \ m$$

A mérés során ezeket az összefüggéseket próbáljuk a lehető legpontosabban belátni.

III. Mérési feladatok, kiértékelés

III.1. Aktivitás, dózis

A ^{137}Cs minta aktivitása 1963. július 1-jén 486.55 MBq volt. A cézium felezési ideje $T=(11018\pm9.5)~nap$, míg az adott dátum óta eltelt napok száma a mérés időpontjáig 19960 nap volt. Így az exponenciális bomlástörvény szerint, ma az aktivitás

$$A(t) = A_0 2^{-\frac{t}{T}} = (138.61 \pm 0.08) \ MBq$$

Mivel az elbomlott céziumokból további bomlás után nagyjából 94%-os valószínű-séggel lesz 662 keV-os γ -foton, így a másodpercenként közvetített teljes energia

$$\dot{E} = A(t)\eta E_{\gamma} = 1.38 \times 10^{-5} \frac{J}{s}$$

amiből személyenként kapjuk az elnyelt dózist rendre akkor ha lenyeljük, 1 méterre vagyunk a forrástól, valamint ha 1 méterre, ólom árnyékolás választ el a forrástól

dózis [mSv] - Dávid	dózis [mSv] - Marci	dózis [mSv] - Alex
3.15	2.25	2.4
0.13	0.09	0.09
5.69e-06	4.08e-06	4.27e-06

ahol a mérés idejét 4 órának vettem és ezt helyettesíttem az adott képletekre melyek rendere

$$D_{max} = \frac{\dot{E} \times 4 \times 60 \times 60}{m}$$

$$D_{1m} = \frac{\dot{E} \times 4 \times 60 \times 60}{m} \frac{0.5}{4 \times 1^{2}\pi}$$

$$D_{1m,Pb} = \frac{\dot{E} \times 4 \times 60 \times 60}{m} \frac{0.5}{4 \times 1^{2}\pi} \times e^{-10}$$

Látható, hogy árnyékolással és megfelelő távolságtartással nem számottevő a labor alatt elnyelt dózis, azonban ha közvetlenül a szerezetbe kerülne, már számottevő többlet dózist lehetne kapni.

Feladat volt még megbecsülni a $\vartheta=0^\circ$ szögben, az elektron detektorra érkező fotonok számát másodpercenként. Ehhez felhasználva a mérési összeállítás geometriáját

$$N_{(foton, \vartheta=0^{\circ})} = \frac{0.3^2}{4(17.33 - 3.38)^2} \times 138.61 \ (MBq) \times 1 \ (s) \approx 16000$$

Azonban ezalatt a mérés során ehhez kapcsolódóan nem volt több feladatunk.

III.2. Szögfüggés vizsgálata

A szögfüggéshez tartozó sokcsatornás beütésszámlálóval 10 különböző szöget vizsgáltunk mindegyiknék nagyjából 1000 s-ig. Harminc fokról indulva, száztíz fokig néztük meg a beütésket, majd a hisztogrammokra exponenciális háttérrel, a Compton-csúcsra Gauss-görbét illesztettünk. Az illesztett adatok táblázatba foglalva

szög [°]	csatorna	szórás	terület	csatorna hiba	szórás hiba	terület hiba	idő [t]
30	89.73	3.23	166	0.37	0.23	12	1224
40	82.31	3.11	173	0.36	0.44	35	1085
50	74.37	2.43	120	0.42	0.27	13	1002
60	66.15	1.96	85	0.43	0.43	26	962
70	60.63	1.93	108	0.24	0.23	15	1166
80	54.49	2.31	121	0.33	0.20	11	1100
90	50.92	1.67	100	0.38	0.27	18	977
100	46.62	1.46	101	0.19	0.13	9	1113
110	42.88	1.82	155	0.34	0.31	44	1098

A görbéket a *matplotlib* könyvtárral illesztettük exponenciális háttérrel, amely paramétreit itt nem tűntettük fel. Az ábrák a kövekezőképpen festenek

Az illesztés szisztematikus hibájának számításához 23 esetet néztünk végig. Az illesztés alsó szélétől és felső szélétől ± 5 és a két legszélső helyzetet. Ezt csak a 110°-os esetre vizsgáltuk, a feltevés az, hogy a többi illesztés is ugyan ilyen relatív hibával rendelkezik.

_	átlag	hiba (szórás)	relatív hiba [%]
csatorna	42.81	0.002	$4.6 \times 10 - 5$
szélesség	1.72	0.0008	4.7×10^{-4}
terület	140.79	12.97	9.2

Ez alapján a csúcsnak és annak szórásának nincs számottevő szisztematikus hibája, míg a területnek igen. Ez betudható annak, hogy az exponenciális háttér ezt befolyásolja a legjobban.

Ezután a csúcsok helyeinek ismerétében el lehet végezni az energia kalibrációt. Ehhez egy $x=E\times a+b$ összefüggést használtunk, ahol x a csatornaszám. Az elméleti energiákat kiszámítva végeztük el az illesztést.

csatorna	hiba	$E_{\text{elm\'eleti}}$
89.73	0.3738	563.82
82.305	0.36105	507.78
74.374	0.42373	452.36
66.148	0.42954	401.58
60.631	0.24439	357.22
54.489	0.33175	319.59
50.916	0.37857	288.27
46.6247	0.18966	262.55
42.805	0.195	241.64

Itt az illesztett paraméterek értéke $a=(0.1458\pm0.00167)~1/keV$, míg $b=(8.08748\pm0.5751)$. Ellenben, nekünk nem ezekre az adatokra, hanem ezek inverzére volt szükségünk így azokat véve, és a hibaterjedést figyelembe véve kapjuk, hogy

$$E = Ax + B$$

$$A = \frac{1}{a} = (6.857 \pm 0.079) \ keV$$

$$B = -\frac{b}{a} = (-55.453 \pm 4.578) \ keV$$

Így kiszámolva a mért energiákat és azok hibáját

$E_{\text{elm\'eleti}}$	$E_{ m m\acute{e}rt}$	$\Delta E_{ m m\acute{e}rt}$
563.822	559.789	2.56299
507.789	508.879	2.47557
452.366	454.5	2.90534
401.59	398.097	2.94518
357.226	360.269	1.67568
319.597	318.156	2.27467
288.279	293.658	2.5957
262.552	264.234	1.30042
241.641	238.044	1.33704

Ekkor kiszámolva χ^2 -et erre nagyjából 21.5-et kapunk. Az ereményt az alábbi képletbe helyettesítve számoltuk

$$\chi^2 = \sum_{i} \frac{(E_{\text{mért},i} - E_{\text{elméleti},i} + \epsilon E_{\text{szisztematikus},i})^2}{(\Delta E_{\text{mért},i})^2}$$

Ahol az energia szisztematikus hibáját a kalibrációs egyenes illesztési hibájából számoltuk. A konfidencia szint a (9-2) szabadsági fokú rendszerre ekkor 0.3%, aminek számításához a scipy köyvtárat használtuk. Természetesen ezt az értéket $\epsilon=0$ -nál vettük.

III.3. Klein-Nishina formula vizsgálata

Ehhez felhasználjuk az elméleti összefoglalóban említett képletet

$$\frac{d\sigma}{d\Omega} = \frac{1}{2}r_0^2(P - P^2\sin^2\theta + P^3)$$

Itt felhaználjük az illesztett Gauss-görbék területét, amelyet illesztési paraméterként megkaptunk.