In this lecture, we use model categories to compute limits and colimits.

1. ∞-Limits as homotopy limits

1.1. Recall we have a Quillen equivalence

$$\mathfrak{C}: \mathsf{Set}^\mathsf{Joyal}_\Delta \Longrightarrow \mathsf{Cat}_\Delta: \mathfrak{N}_{ullet}.$$

In this section, we will expain the following result:

Theorem 1.2 (HTT.4.2.4.1). Let \mathbb{C} be a combinatorial simplicial model category. Then for a small fibrant simplicial category \mathbb{J} , a diagram

$$\mathbb{J}^{\triangleleft} \to \mathbb{C}^{\triangleleft}$$

is a homotopy limit diagram in $\mathbb C$ iff the corresponding diagram

$$\mathfrak{N}_{\bullet}(\mathbb{J})^{\triangleleft} \to \mathfrak{N}_{\bullet}(\mathbb{C}^{\circ})$$

is a limit diagram in the quasi-category $\mathfrak{N}_{\bullet}(\mathbb{C}^{\circ})$.

Variant 1.3. Dually, a diagram $\mathbb{J}^{\triangleright} \to \mathbb{C}^{\circ}$ is a homotopy colimit diagram iff $\mathfrak{N}_{\bullet}(\mathbb{J})^{\triangleright} \to \mathfrak{N}_{\bullet}(\mathbb{C}^{\circ})$ is a limit diagram.

1.4. We will soon give the precise definitions of the undefined notions in Theorem 1.2. For now, let us be satisfied by the following informal words.

A simplicial model category is a model category \mathbb{C} equipped with a compatible simplicial enrichment. Here the compatibility condition guarantees

(1) There is a canonical equivalence

$$h\mathbb{C} \simeq \pi_0\mathbb{C}$$
,

where $h\mathbb{C}$ is the homotopy category of the model category \mathbb{C} (see [Lecture 2, Definition 2.20]), while $\pi_0\mathbb{C}$ is the homotopy category of the simplicial category \mathbb{C} (see [Lecture 5, Definition 5.3]).

(2) For bifibrant objects $x, y \in \mathbb{C}$, the simplicial set $\mathsf{Hom}_{\mathbb{C}}(x, y)$ is a Kan complex. In other words, \mathbb{C}° is a fibrant object in Cat_{Δ} .

For a model category, being combinatorial is a technical set-theoretical size condition, which can be ignored for now.

For a simplicial model category \mathbb{C} , the *homotopy limit* of a diagram $u: \mathbb{J} \to \mathbb{C}$ is the value of the right derived functor of the naive limit functor. In other words,

$$holim u := \mathbb{R}lim(u),$$

where the functor lim is the right adjoint in a Quillen adjunction

$$const : \mathbb{C} \longrightarrow Fun(\mathbb{J}, \mathbb{C}) : lim.$$

Here $\operatorname{\mathsf{Fun}}(\mathbb{J},\mathbb{C})$ is the category of simplicial enriched functors from \mathbb{J} to \mathbb{C} , equipped with a suitable model structure induced by the model structure on \mathbb{C} .

Date: Oct. 15, 2024.

1

Dually, the *homotopy colimit* of a diagram $u: \mathbb{J} \to \mathbb{C}$ is the value of the left derived functor of the naive colimit functor, i.e.,

$$hocolim u := Lcolim(u),$$

1.5. Recall that Set_Δ is Cartesian closed and therefore has a natural simplicial enrichment given by $\mathsf{Fun}(-,-)$. This enrichment is compatible with the Kan–Quillen model structure. We denote the obtained simplicial model category by $\mathsf{Set}_\Delta^{\mathsf{KQ}}$. In Theorem 1.2, we can take $\mathbb{C} := \mathsf{Set}_\Delta^{\mathsf{KQ}}$. Note that $\mathbb{C}^\circ = \mathsf{Kon}$ is the simplicial category defined in [Lecture 5, §7]. We obtain:

Corollary 1.6. Let \mathbb{J} be a small fibrant simplicial category. Then the homotopy (co)limit of a \mathbb{J} -indexed diagram in

$$\mathbb{K}\mathrm{an} \subset \mathbb{S}\mathrm{elt}_\Delta^{\mathsf{KQ}}$$

calculates the (co)limit of the corresponding $\mathfrak{N}_{\bullet}(\mathbb{J})$ -indexed diagram in the quasicategories

$$Kan := \mathfrak{N}_{\bullet}(Kan).$$

Remark 1.7. Note that the latter models (co)limits in the ∞ -category Grpd_{∞} , which essentially control (co)limits in any ∞ -category ([Lecture 7, Theorem 2.11]).

Remark 1.8. The above corollary provides a model-categorical algorithm to calculate small (co)limits of ∞ -groupoids. Let us take the second case as an example. Let $u: K \to \mathsf{Grpd}_{\infty}$ be a small diagram with $K \in \mathsf{Set}_{\Delta}$.

- (i) Choose a weak equivalence $\mathfrak{C}(K) \to \mathbb{J}$ in Cat_{Δ} .
- (ii) Find a functor $w: \mathbb{J} \to \mathbb{K}$ on such that the composition

$$K \to \mathfrak{N}_{\bullet}(\mathbb{J}) \to \mathfrak{N}_{\bullet}(\mathbb{K}an) =: \mathcal{K}an$$

represents u. By HTT.4.2.4.4, such w always exists.

(iii) View w as an object in the model category $\operatorname{Fun}(\mathbb{J}, \mathbb{Sel}_{\Delta}^{\mathsf{KQ}})$. Calculate the derived (co)limits

$$\mathbb{R}\mathsf{lim}(w),\,\mathbb{L}\mathsf{colim}(w)\in\mathsf{Set}^{\mathsf{KQ}}_{\Delta}\big[W^{-1}\big]$$

by finding a (co)fibrant replacement of w.

By Corollary 1.6, the obtained objects in $\mathsf{Set}^{\mathsf{KQ}}_\Delta[W^{-1}] \simeq \mathsf{hGrpd}_\infty$ are canonically isomorphic to $\limsup u$ and $\liminf u$.

Exercise 1.9. Prove the functor w in Step (ii) exists in the case when $\mathfrak{C}(K) \to \mathbb{J}$ is a cofibration.

Remark 1.10. In Remark 1.8, when $K = N_{\bullet}(J)$ is the nerve of an ordinary category, we can take J := J, viewed as a simplicial category with discrete enrichment. Then $\operatorname{Fun}(J, \operatorname{Sel}_{\Delta}^{KQ})$ is just the category of functors between the ordinary categories $J \to \operatorname{Set}_{\Delta}$, and the underived functor \lim is the limit functor for ordinary categories.

In fact, the above essentially covers all the cases because for any simplicial set K, there exists an initial morphism $N_{\bullet}(J) \to K$ such that J is an ordinary category or even a partially ordered set. See HTT.4.2.3.14.

LECTURE 8 3

Remark 1.11. In Remark 1.8, the obtained objects are contained in the homotopy category hGrpd_{∞} rather than in Grpd_{∞} . In other words, the above algorithm only calculates $\limsup u$ up to homotopy. In particular, it cannot produce the entire limit diagram, nor the canonical lifting of $\limsup u$ (Grpd_{∞})_{lu}.

To remedy this, one can try to find an extended diagram $\overline{w}: \mathbb{J}^{\triangleleft} \to \mathbb{K}$ on that exhibits $\overline{w}(*)$ as the homotopy limit of w (see Definition 2.18 below). Then Theorem 1.2 says the corresponding diagram

$$\mathfrak{N}_{\bullet}(\mathbb{J})^{\triangleleft} \to \mathfrak{N}(\mathbb{K}an) =: \mathcal{K}an$$

is also a limit diagram. Now restriction along the categorical equivalence $K^{\triangleleft} \rightarrow \mathfrak{N}_{\bullet}(\mathbb{J})^{\triangleleft}$ produces a limit diagram extending $v: K \rightarrow \mathcal{K}an$.

For general w, the above extension \overline{w} may not exsit¹. Nevertheless, we can replace w by any fibrant replacement of it because they represent the same diagram in $\operatorname{Grpd}_{\infty}$. Under this additional assumption, such extension \overline{w} exists and is unique up to unique equivalence, because it has to be the limit diagram extending w.

Remark 1.12. In future lectures, we will see that any presentable ∞ -category can be realized as $\mathfrak{N}_{\bullet}(\mathbb{C}^{\circ})$ for some combinatorial simplicial model category \mathbb{C} . This provides a model-categorical algorithm to calculate small (co)limits in any presentable ∞ -category.

2. Definition of homotopy limits

2.1. In this section, we give the precise definitions for the notions used in Theorem 1.2.

Definition 2.2. Let \mathbb{C} be a simplicial category.

(1) We say \mathbb{C} is **tensored over** Set_{Λ} if for any $S \in \mathsf{Set}_{\Lambda}$ and $X \in \mathbb{C}$, the functor

$$\operatorname{Fun}(S, \operatorname{Hom}_{\mathbb{C}}(X, -)) : \mathbb{C} \to \operatorname{Set}_{\Delta}$$

is represented by an object in \mathbb{C} , which we denote by $S \otimes X$.

(2) We say \mathbb{C} is cotensored over Set_{Δ} if for any $S \in \mathsf{Set}_{\Delta}$ and $Y \in \mathbb{C}$, the functor

$$\operatorname{Fun}(S, \operatorname{Hom}_{\mathbb{C}}(-, Y)) : \mathbb{C}^{\operatorname{op}} \to \operatorname{Set}_{\Lambda}$$

is represented by an object in \mathbb{C} , which we denote by $\operatorname{Fun}(S,Y)$.

Proposition-Definition 2.3 (HTT.A.3.1.5, A.3.1.6). Let \mathbb{C} be a model category equipped with a simplicial enrichment such that it is both tensored and cotensored over Set_{Δ} . Then the following conditions are equivalent:

(i) Given any cofibration $j: X \to X'$ and any fibration $k: Y \to Y'$ in \mathbb{C} , the morphism

$$\operatorname{Hom}_{\mathbb{C}}(X',Y) \to \operatorname{Hom}_{\mathbb{C}}(X',Y') \underset{\operatorname{Hom}_{\mathbb{C}}(X,Y')}{\times} \operatorname{Hom}_{\mathbb{C}}(X,Y)$$

is a fibration in $\mathsf{Set}^\mathsf{KQ}_\Delta$, which is a weak equivalence if either j or k is so.

¹For example, consider Sing_•($\{0\}$ → [0,1] ← $\{1\}$).

4

(ii) Given any cofibrations $i: S \to S'$ and $j: X \to X'$ respectively in $\mathsf{Set}_{\Delta}^{\mathsf{KQ}}$ and \mathbb{C} , the morphism

$$(S' \otimes X) \bigsqcup_{S \otimes X} (S \otimes X') \to S' \otimes X'$$

is a cofibration in \mathbb{C} , which is a weak equivalence if either i or j is so.

(iii) Given any cofibration $i: S \to S'$ in $\mathsf{Set}^{\mathsf{KQ}}_\Delta$ and any fibration $k: Y \to Y'$ in \mathbb{C} , the morphism

$$\operatorname{Fun}(S',Y) \to \operatorname{Fun}(S',Y') \underset{\operatorname{Fun}(S,Y')}{\times} \operatorname{Fun}(S,Y)$$

is a fibration in \mathbb{C} , which is a weak equivalence if either i or k is so.

We say \mathbb{C} is a **simplicial model category** if the above conditions are satisfied.

Exercise 2.4. Let \mathbb{C} be a simplicial model category. Show that $\mathsf{Hom}_{\mathbb{C}}(X,Y)$ is a Kan complex if X is cofibrant and Y is fibrant.

Exercise 2.5. Can you make $\mathsf{Set}^\mathsf{Joyal}_\Delta$ into a simplicial model category?

Exercise 2.6. Let \mathbb{C} be a simplicial model category. Construct a canonical equivalence $h\mathbb{C} \simeq \pi_0\mathbb{C}$.

2.7. We also need the following technical size conditions.

Definition 2.8 (HTT.A.2.6.1). Let \mathbb{C} be a model category. We say \mathbb{A} is **combinatorial** if the following conditions are satisfied:

- (a) The category \mathbb{C} is presentable.
- (b) As a weakly saturated class of morphisms, (C) is generated by a set.
- (c) As a weakly saturated class of morphisms, $(C \cap W)$ is generated by a set.

Example 2.9. The model category $\mathsf{Set}^{\mathsf{KQ}}_{\Delta}$ equipped with the simplicial enrichment $\mathsf{Fun}(-,-)$ is a combinatorial simplicial model category.

Proposition-Definition 2.10 (HTT.A.3.3.2). Let \mathbb{C} be a combinatorial simplicial model category and \mathbb{J} be a small simplicial category. Then there exists two combinatorial model structures on Fun(\mathbb{J},\mathbb{C}):

- (1) The projective model structure, denoted by $\operatorname{Fun}(\mathbb{J},\mathbb{C})_{\operatorname{proj}}$, where
 - (W) A weak equivalence is a natural transformation that is a pointwise weak equivalence.
 - (F) A projective fibration is a natural transformation that is a pointwise fibration.
 - (C) The collection of **projective cofibrations** is determined by $(C \cap W)$.
- (2) The injective model structure, denoted by $Fun(\mathbb{J},\mathbb{C})_{ini}$, where
 - (W) A weak equivalence is a natural transformation that is a pointwise weak equivalence.
 - (C) A injective cofibration is a natural transformation that is a pointwise cofibration.
 - (F) The collection of **injective cofibrations** is determined by $(F \cap W)$.

Example 2.11. When $\mathbb{J} = [0]$ is the singleton, both model structures coincide with the given model structure on \mathbb{C} .

LECTURE 8 5

Proposition 2.12 (HTT.A.3.3.6). *Let*

$$F: \mathbb{A} \longrightarrow \mathbb{B}: G$$

be a Quillen adjunction between combinatorial simplicial model categories. Then for any small simplicial category \mathbb{J} , it induces Quillen adjunctions

$$F \circ -: \operatorname{Fun}(\mathbb{J}, \mathbb{A})_? \Longrightarrow \operatorname{Fun}(\mathbb{J}, \mathbb{B})_? : G \circ -,$$

where ? can be either proj or inj. They are Quillen equivalences if $F:\mathbb{A} \Longrightarrow \mathbb{B}:G$ is so.

Proposition 2.13 (HTT.A.3.3.7, A.3.3.8). Let $\iota: \mathbb{J} \to \mathbb{J}'$ be a functor between small simplicial enriched categories. For a combinatorial simplicial model category \mathbb{C} , we have Quillen adjunctions

$$\mathsf{LKE}_{\iota} : \mathsf{Fun}(\mathbb{J}, \mathbb{C})_{\mathsf{proj}} \Longrightarrow \mathsf{Fun}(\mathbb{J}', \mathbb{C})_{\mathsf{proj}} : \iota \circ \neg;$$

$$\iota \circ - : \mathsf{Fun}(\mathbb{J}',\mathbb{C})_{\mathsf{inj}} \ensuremath{\longrightarrow} \mathsf{Fun}(\mathbb{J},\mathbb{C})_{\mathsf{inj}} : \mathsf{RKE}_{\iota};$$

which are Quillen equivalences if $\iota: \mathbb{J} \to \mathbb{J}'$ is a weak equivalence in the model category Cat_{Δ} (see [Lecture 5, Definition 5.4]).

Definition 2.14. We call the right derived functor of

$$\mathsf{RKE}_{\iota} : \mathsf{Fun}(\mathbb{J}, \mathbb{C})_{\mathsf{inj}} \to \mathsf{Fun}(\mathbb{J}', \mathbb{C})_{\mathsf{inj}}$$

the homotopy right Kan extension functor, and denote it by

$$\mathsf{hoRKE}_{\iota} : \mathsf{Fun}(\mathbb{J}, \mathbb{C})[W^{-1}] \to \mathsf{Fun}(\mathbb{J}', \mathbb{C})[W^{-1}].$$

When J' = [0] is the singleton, we obtain **homotopy limit** functor

$$\mathsf{holim} : \mathsf{Fun}(\mathbb{J}, \mathbb{C})[W^{-1}] \to \mathbb{C}[W^{-1}],$$

which is the right derived functor of

$$\lim : \operatorname{Fun}(\mathbb{J}, \mathbb{C})_{\operatorname{inj}} \to \mathbb{C}.$$

Dually, we define the **homotopy left Kan extension** functor and the **homotopy colimit** functor.

Warning 2.15. Note that

$$\operatorname{Fun}(\mathbb{J},\mathbb{C})[W^{-1}] \neq \operatorname{Fun}(\mathbb{J},\mathbb{C}[W^{-1}]).$$

Hence homotopy limit is not a functorial construction about diagrams in $\mathbb{C}[W^{-1}]$.

Remark 2.16. In fact, Theorem 1.2 implies the theory of ∞ -limits serves as a remedy for the non-functoriality of the classical theory of homotopy limits. Namely, instead of considering diagrams into the ordinary homotopy category $\mathbb{C}[W^{-1}]$, one should consider diagrams into the ∞ -category modelled by the quasi-category $\mathfrak{N}_{\bullet}(\mathbb{C}^{\circ})$. In fact, the latter can be canonically identified with the quasi-categorical localization $\mathsf{N}_{\bullet}(\mathbb{C})[W^{-1}]$. See [Lecture 5, A.5] for more information.

Construction 2.17. Let $\overline{w}: \mathbb{J}^{\triangleleft} \to \mathbb{C}$ be a functor and $w: \mathbb{J} \to \mathbb{C}$ be its restriction. There is an obvious morphism in $\text{Fun}(\mathbb{J},\mathbb{C})$ from the constant functor $\overline{w}(\star)$ to w. By adjunction, we obtain a canonical morphism

$$\overline{w}(*) \to \lim w$$
.

Definition 2.18. Let $\overline{w}: \mathbb{J}^{\triangleleft} \to \mathbb{C}$ be a functor and $w: \mathbb{J} \to \mathbb{C}$ be its restriction. We say \overline{w} exhibits $\overline{w}(*)$ as the homotopy limit of w if for any/all fibrant replacement $w \to w'$, the composition

$$\overline{w}(*) \to \lim w \to \lim w'$$

is an isomorphism.

3. Examples of homotopy (co)limits

3.1. Throughout this section, \mathbb{C} is a combinatorial simplicial model category.

Exercise 3.2. Let \mathbb{J} be a set. Show that:

- (1) A functor $w: \mathbb{J} \to \mathbb{C}$ is fibrant in $\operatorname{Fun}(\mathbb{J}, \mathbb{C})_{\operatorname{inj}}$ iff $w(j) \in \mathbb{C}$ is fibrant for any $j \in \mathbb{J}$.
- (2) A functor $w : \mathbb{J} \to \mathbb{C}$ is cofibrant in $\operatorname{Fun}(\mathbb{J}, \mathbb{C})_{\operatorname{proj}}$ iff $w(j) \in \mathbb{C}$ is cofibrant for any $j \in \mathbb{J}$.

Deduce that the homotopy (co)products of (co)fibrant objects can be calculated by the naive (co)products.

Exercise 3.3. Let $\mathbb{J} := \{a_0 \xrightarrow{f_0} b \xleftarrow{f_1} a_1\}$ be the index category of pullbacks. Show that a functor $w : \mathbb{J} \to \mathbb{C}$ is fibrant in $\mathsf{Fun}(\mathbb{J}, \mathbb{C})_{\mathsf{inj}}$ iff $w(b) \in \mathbb{C}$ is fibrant and $w(f_i)$ are fibrations. Deduce a necessary condition for a homotopy pullback diagram in \mathbb{C} .

Remark 3.4. Note that the above condition is stronger than those in [Lecture 1, Exercise A.1]. The reason is: the latter conditions are obtained by using another model structure on $Fun(\mathbb{J},\mathbb{C})$, known as the Reedy model structure. For more information, see HTT.A.2.9.

Exercise 3.5. Let $\mathbb{J} := \{a \Rightarrow b\}$ be the index category of equalizers. Show that a functor $w : \mathbb{J} \to \mathbb{C}$ is fibrant in $\mathsf{Fun}(\mathbb{J}, \mathbb{C})_{\mathsf{inj}}$ iff $w(b) \in \mathbb{C}$ is fibrant and $w(a) \to w(b \times b)$ is a fibration. Deduce a necessary condition for a homotopy equalizer diagram in \mathbb{C} .

Exercise 3.6. Let $\mathbb{J} := \{ \cdots < -2 < -1 < 0 \}$ be the index category of sequencial limits. Show that a functor $w : \mathbb{J} \to \mathbb{C}$ is fibrant in $\mathsf{Fun}(\mathbb{J},\mathbb{C})_{\mathsf{inj}}$ iff $w(0) \in \mathbb{C}$ is fibrant and $w(-n) \to w(-n+1)$ is a fibration. Deduce a necessary condition for a homotopy sequencial limit diagram in \mathbb{C} .

APPENDIX A. MARKED SIMPLICIAL SETS

Definition A.1. Let Set_{Δ}^{+} be the ordinary category defined by:

- Objects are pairs (X, E), where X is a simplicial set and $E \subset X_1$ is a subset of 1-simplexes in X, called the set of **marked** 1-simplexes.
- A morphism from (X, E) to (X', E') is a morphism $X \to X'$ in Set_{Δ}^+ such that E is sent into E'.

We call it the category of marked simplicial set.

Construction A.2. There is a functor

$$(-)^{\flat}: \mathsf{Set}_{\Delta} \to \mathsf{Set}_{\Delta}^{+}$$

such that the marked 1-simplexes in X^{\flat} are given by degenerate 1-simplexes in X.

There is a functor

$$(-)^{\sharp}: \mathsf{Set}_{\Delta} \to \mathsf{Set}_{\Delta}^{+}$$

LECTURE 8 7

such that any 1-simplex in X is a marked 1-simplex in X^{\sharp} .

There is a functor

$$(-)^{\natural}: \mathsf{QCat} \to \mathsf{Set}^+_{\Lambda}$$

such that the marked 1-simplexes in X^{\natural} are given by isomorphisms in X.

Exercise A.3. Let X and Y be objects in Set_{Δ}^+ . Show that the functor

$$\mathsf{Hom}_{\mathsf{Set}^+_\Delta}((-)^{\flat} \times \mathsf{X}, \mathsf{Y}) : \mathsf{Set}^{\mathsf{op}}_\Delta \to \mathsf{Set}$$

is represented by an object in $\mathsf{Set}_\Delta,$ which we denote by $\mathsf{Fun}^\flat(\mathsf{X},\mathsf{Y}).$

Similarly, show that the functor

$$\mathsf{Hom}_{\mathsf{Set}^+_\Delta}\left((-)^{\sharp}\times\mathsf{X},\mathsf{Y}\right):\mathsf{Set}^{\mathsf{op}}_\Delta\to\mathsf{Set}$$

is represented by an object in Set_Δ , which we denote by $\mathsf{Fun}^\sharp(\mathsf{X},\mathsf{Y})$.

Exercise A.4. Construct a canonical model structure on Set_Δ^+ such that

- Any morphism is a cofibration;
- Bifibrant objects are given by X^{\natural} for $X \in \mathsf{QCat}$;
- Weak equivalence between bifibrant objects are given by categorical equivalences between quasi-categories;
- The model structure is compatible with the simplicial enrichment given by $\operatorname{\mathsf{Fun}}^\sharp(-,-).$

A.5. Suggested readings. HTT.3.1.