	Madriy Sulspaces
	let AEMmn
	let AEMMA Tologo
(1)	Column Space, C(A), is the Subspace of Rm that is spanned by the Colomns of A. Also called the Range Space
	Subspace of Prom that is spanned
	by the colomn of A.
	Also called the Range Space
	Ax=b b is a linear combination of columns of A,
	1 TR of column of A
	R')
(\mathcal{Z})	Mullspace, M(A), is the subspace of
	Mullspace, M(A), is the subspace of Rn that is spanned by all vectors which are solutions to
	vectors which are solutions to
	$\underline{A} \underline{v} = \underline{O}$
	Also called the Inernel Space
	All matrices have a nul'space of
	@ is always in N(A)
	^
	A0=0

(3)	Row Space, C(AT):	The subspace
	ch Rn Spanned	ob, the rows
	Row Space, C(AT): of A,	
(4)	Left Nullspace, M(A)) : All solution
	Such that	
	<u> </u>	$\overline{\chi} \geq \overline{\bigcirc}$
	Such that AT	
	$\underline{A}^{T} \underline{x} = \underline{O} = \underline{O} = \underline{O}$	$\frac{\chi}{\chi} = \frac{2}{3}$
	7	A = O T
	<u>/\</u>	<u> </u>
	Summanz	
	<u> </u>	
	Let ACMmn	
		0
	Matrix Subspace	Subspace of
		2 M
	C(H)	
	<i>r</i>) ())	\mathbb{R}^{n}
	$N(\underline{A})$	118
	$C(\underline{A}^{T})$	IR n
		II'\
	MCAT)	R M
	111 (12)	J \

Cteneric Linear Transformation Terms
let V t be vector spares with a linear transformation L: V > be
a linear transformation (: U -> W
Kernel of L: The Ker(L) is the
Kernel of Li The Ker(L) is the Subspace of V Such that
Ken(L)= SUEV: LV=Ow}
The Size of Ker() is called
The Size of Ker(L) is called the hullity of L: Mullity (L)
Rank of L! The name of a linear
Operator, rank (L), is the Dimension of it's image.
Dimensian or 11's image
Recall that the image of a vector
Recall that the image of a vector Space is the portion of W
that maps into 9%:
image

Rank-Nullity on Dimension Theorem,
let V & W be vector spaces who a linear transformation Li V > W,
linear transformation LIV-> W,
tren
Rank(L) + Nullity(L) = 1V]
ý y
Dimension (size
SV,
Apply to metrices. A EMmn
$Ax=b$ $x \in V \in \mathbb{R}^n$
<u>b</u> EW ER ^m
b is the image of X unver the
linear transformation of A,
Linear Combinations of C(A) give all vectors in the image,
vectors in the image,
=
Mote: Each vector in C(A) Most be
Mote! Each vector in C(A) must be an independent vector. E.s. C(A) Contains the minimum # of vector to soon the columns of A.
Contains the minimum to ut vector
to som the columns of A.

Do not Say that

= Rank (A) = 3

```
Thm! let A E Mmn C(A) be the column
Space, M(A) be the null space,
C(AT) the row space & N(AT) the
        Ceft rull space,
     1) Rank (A) = 1C(A) = 1C(A^T)
    2) | M(A) |= n - rank (A)
     3) |M(\underline{A}^{\uparrow})| = m - rank(\underline{A})
E_{X_1}) let A = [2] 2 1 23
U = 2 9 19
U = 2 9 19
rref(A)= (1) 0 0 3 rref(A)= (1) 0 0
0 (1) 0 -1 0 0
                Independent free
                 Columns Vaniable
                                                   In dependent
                                                   (olumn
                                                  No frec
                                                  Variable
=> \text{Rank}(\underline{A}) = 1C(\underline{A}) = 3 = 1C(\underline{A})
=> IM(A)) = n - nank(A) = 4 -3=
=> | N(AT) | = m - rank(A) = 3-3= 0
```

$$= 7 \text{ M(A)} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

$$(I) M(A^T) = \{\}$$

	let ACMmn
	The matrix A New Full column nank of rank(A) = N, If A New full column rank then the following holds!
	1) All Columns of A are huepardent
	2) Only vector in N(A) is O
	3) If And exists, then the
	Sulution to $Ax = b$ is Unique (c.s. only on X such that $Ax = b$);
(2)	The metrix A her full row rank if
	rank (A) = m,
	A = A = A = A = A = A = A = A = A = A =
	1) All rows of A are Mucpowert
	2) ((A) Spans all of RM (b CRM)
	$(\underline{b} \in \mathbb{R}^n)$
	3) Ax=b has at least one solution for apry b, K

((A) Spans all of Phm =>
Any vector in Phm can be writen
as a linear combination of the columns of A,

=> An, b must be in BM (Ax=b)

=> x is that linear combination

of columns of A which gives b, $\frac{A}{X} = \left(\frac{9}{1}, \frac{9}{2}, \frac{9}{1}, \frac{9}{1}\right) \times \left(\frac{9}{1} + \frac{9}{1} + \frac{9}{1} + \frac{9}{1} + \frac{9}{1} + \frac{9}{1} + \frac{9}{1} + \frac{9}{1}\right)$ 3) Now let A EMnn (Square matrix) he say that A has full mank of rank (A) = n (e.g., both full ron d column mank) If A is full rook then, 1) Ax=b her a solution for any b, 2) C(A) Span all & Rn 3) N(A) is only the O (1) Ax=b only has one solution for an, b,

On thus anality be state that the vectors are onthogonal (porpendicular) to each other iff

<u>U·u</u> = <u>u</u>Tv = 6

MAM au Othogonal : N. N = || MIIIII COOD

U w - not uthugons).

be also say that the subspaces are othogonal to each it any vector in one subspace is unthogonal to all vectors in the other Subspace,

If U is in Subspace S, & V is
in Subspace T, then of for any
UES & UET we have

U.V=O, then StT are onthogonal,

For a matrix A EM mn (D) The row space, C(AT), is an anthogonal subspace in Rn of the null space, NI(A) To Show this, look at A = [a11 92 " 917 LA XEM(A) => Ax=0 $\frac{A \times 2}{Q_{11} \quad Q_{12} \quad \dots \quad Q_{1n}} \quad \frac{A \times 3}{A \times 3} \quad \frac{A \times$ The row space is the linear combination of the rows of A, Since any x in N(A) gives Ax=0

A Since Ax = 2 Out product between rows of A+x=7 ((A1) + M(A) xe onthogenal to each other, A Cleoner hay! let y be any vector composible of AT. ATY => A linear combination of the rows of A, let x be in N(A) = $\times \circ (A^{1}) = \times A^{1}A^{1} + \cdots + (A^{1})^{1}$ = 514 = 0 The Column Space (C(A), is an orthogonal subspace in BM of the left-null space, N(A) Ay = any vector in ((b) Let x E M(AT) : xTA=O=BTX $\overline{\chi} \cdot (\overline{P} + \overline{\chi}) = \overline{\chi} \overline{P} + \overline{z} (\overline{\chi} \overline{P}) + \overline{z} \overline{z} = 0$

One step further: 1) N(A) is the orthogonal complement of C(AT) in BM, 2) N(AT) is the orthogonal Complement of C(A) in BM The orthogonal complement to a Subspace contains every possible vector that is perpendicular to that subspace,