● 多类情况 2

采用每对划分,即ω_i/ω_j两分法,此时一个判别界面只能分开两种类别,但不能把它与其余所有的界面分开。 其判别函数为:

$$d_{ij}(\mathbf{x}) = \mathbf{w}_{ij}^T \mathbf{x}$$

若 $d_{ii}(\mathbf{x}) > 0$, $\forall j \neq i$,则 $\mathbf{x} \in \omega_i$

重要性质: $d_{ij} = -d_{ji}$

图例: 对一个三类情况, $d_{12}(x)=0$ 仅能分开 ω_1 和 ω_2 类,不能分开 ω_1 和 ω_3 类。

要分开M类模式,共需M(M-1)/2个判别函数。

不确定区域: 若所有 $d_{ii}(x)$, 找不到 $\forall j \neq i$, $d_{ii}(x) > 0$ 的情况。

例:设有一个三类问题,其判别函数为:

$$d_{12}(\mathbf{x}) = -x_1 - x_2 + 5$$
, $d_{13}(\mathbf{x}) = -x_1 + 3$, $d_{23}(\mathbf{x}) = -x_1 + x_2$ 若 $\mathbf{x} = (4, 3)^{\mathrm{T}}$, 则: $d_{12}(\mathbf{x}) = -2$, $d_{13}(\mathbf{x}) = -1$, $d_{23}(\mathbf{x}) = -1$ 有:
$$\begin{cases} d_{12}(\mathbf{x}) < 0 \\ d_{13}(\mathbf{x}) < 0 \end{cases}$$

$$\begin{cases} d_{21}(\mathbf{x}) = -d_{12}(\mathbf{x}) > 0 \\ d_{23}(\mathbf{x}) < 0 \end{cases}$$

$$\begin{cases} d_{31}(\mathbf{x}) = -d_{13}(\mathbf{x}) > 0 \\ d_{32}(\mathbf{x}) = -d_{23}(\mathbf{x}) > 0 \end{cases}$$

从而 $x \in \omega_3$

若
$$\mathbf{x} = (2.8, 2.5)^{\mathrm{T}}$$
,则: $d_{12}(\mathbf{x}) = -0.3$, $d_{13}(\mathbf{x}) = 0.2$, $d_{23}(\mathbf{x}) = -0.3$
有:
$$\begin{cases} d_{12}(\mathbf{x}) < 0 \\ d_{13}(\mathbf{x}) > 0 \end{cases}$$
,
$$\begin{cases} d_{21}(\mathbf{x}) > 0 \\ d_{23}(\mathbf{x}) < 0 \end{cases}$$
,
$$\begin{cases} d_{31}(\mathbf{x}) < 0 \\ d_{32}(\mathbf{x}) > 0 \end{cases}$$

分类失败。