Examen General de Probabilidad

David Peña / Susana Nuñez / 2023-01-09

Table of contents

Examen General de Probabiidad				
1	Not	acion empleada en el libro	4	
2	Examen 2008			
	2.1	Problema 1	5	
	2.2	Problema 2	5	
	2.3	Problema 3	5	
	2.4	Problema 4	5	
	2.5	Problema 5	5	
	2.6	Problema 6	5	
	2.7	Problema 7	5	
	2.8	Problema 8	5	
3	Examen 2009			
	3.1	Problema 1	6	
		3.1.1 Solución (1.)	6	
		3.1.2 Solución (1.2)	7	
	3.2	Problema 2	7	
	3.3	Problema 3	7	
	3.4	Problema 4	7	
	3.5	Problema 5	8	
	3.6	Problema 6	8	
	3.7	Problema 7	9	
	3.8	Problema 8	9	
4	Prol	blemas Resnick	10	
Re	References			

Examen General de Probabiidad

Libro de Quarto creado como herramienta de estudio para el examen general que será presentado la primera semana de octubre de 2023.

1 Notacion empleada en el libro

2 Examen 2008

2.1 Problema 1

Sea $(\Omega, \mathcal{F}, \mathcal{P})$ un espacio de probabilidad y X una variable aleatoria. Para todo boreliano $A \in \mathcal{B}(\mathbb{R})$ se define

$$\mathcal{P}(A) = \mathcal{R}[X^{-1}(A)]$$

- 1. Demuestre que \mathcal{R}_X es una medida de probabilidad en $(\mathbb{R},\mathcal{B}(\mathbb{R}))\}$
- 2. Demuestre que si $g: \mathbb{R} \to [0, +\infty)$ es Borel medible, entonces

$$\int_{\mathbb{R}} g \mathrm{d} \mathcal{P}_X = \int_{\Omega} (g \circ P) \mathrm{d} P$$

Si ges Borel medible, entonces $g^{-1}(A)\in\mathcal{B}(\mathbb{R})$ para todo $A\in\mathcal{B}(\mathbb{R})$

- 2.2 Problema 2
- 2.3 Problema 3
- 2.4 Problema 4
- 2.5 Problema 5
- 2.6 Problema 6
- 2.7 Problema 7
- 2.8 Problema 8

3 Examen 2009

Aqui veremos la solución de los problemas del examen general de 2009.

Note

Todos los espacios y variables aleatorias considerados en este examen se referiran a un espacio de probabilidad. $(\Omega, \mathcal{F}, \mathcal{P})$

3.1 Problema 1

Demuestre que :

1. Para cualesquiera eventos E y F

$$|\mathcal{P}(E) - \mathcal{P}(F)| \le \mathcal{P}(E \triangle F)$$

2. Si X y Y son v.a's y $A \in \mathcal{F}$ entonces

$$|\mathcal{P}\left[X \in A\right] - \mathcal{P}\left[Y \in A\right]| \leq \mathcal{P}\left[X \neq Y\right]$$

3.1.1 Solución (1.)

Observemos que $F=(F\cap E)\cup (F\cap E^\complement)$, donde ambos conjuntos son disjuntos, esto implica que

$$\mathcal{P}\left(F\right)=\mathcal{P}\left(F\cap E\right)+\mathcal{P}\left(F\cap E^{\complement}\right),$$

análogamente para E

$$\mathcal{P}\left(E\right) = \mathcal{P}\left(E \cap F\right) + \mathcal{P}\left(E \cap F^{\complement}\right).$$

Por otro lado

$$\mathcal{P}\left(E\triangle F\right) = \mathcal{P}\left(E\cap F^{\mathbb{C}}\cup F\cap E^{\mathbb{C}}\right),\,$$

como $E\cap F^\complement$ y $F\cap E^\complement$ son conjuntos disjuntos entonces

$$\mathcal{P}\left(E\triangle F\right)=\mathcal{P}\left(E\cap F^{\complement}\right)+\mathcal{P}\left(F\cap E^{\complement}\right).$$

Ahora considere

$$\begin{split} \mathcal{P}\left(F\right) - \mathcal{P}\left(E\right) &= \mathcal{P}\left(F \cap E^{\complement}\right) - \mathcal{P}\left(E \cap F^{\complement}\right) \\ &\leq \mathcal{P}\left(E \triangle F\right), \end{split}$$

de forma análoga tenemos que

$$\mathcal{P}\left(E\right)-\mathcal{P}\left(F\right)\leq\mathcal{P}\left(E\triangle F\right).$$

Concluyendo entonces

$$|\mathcal{P}(F) - \mathcal{P}(E)| \leq \mathcal{P}(E \triangle F)$$

3.1.2 Solución (1.2)

3.2 Problema 2

Sean (X_n) una sucesión de v.a's que converge en distribución a X.

1. Demuestre que para todo $\epsilon > 0$ existen $\alpha, \beta \in \mathbb{R}, a < \beta$ tal que

$$\mathcal{P}\left[X_n \in [\alpha,\beta]\right] \geq 1 - \epsilon, \forall n \in \mathbb{N}$$

2. Sea $S_n = \sum_{k=1}^n X_k$. Demuestre que si $\frac{S_n}{\sqrt{n}}$ converge en distribución a una v.a Y, entonces

$$\frac{S_n}{n} \stackrel{\mathcal{P}}{\longrightarrow} 0$$

3.3 Problema 3

Sea (X_n) una sucesión de v.a's independientes e identicamente distribuidas con distribución uniforme en (0,1). Demuestre que $M_n = \max_{i \le i \le n} X_i$ converge en probabilidad cuando $n \to \infty$.

3.4 Problema 4

Suponga que X_n tiene función de densidad $f_n\left(x\right)=\frac{n}{\sqrt{x}}\exp\left(-\left(nx-n-1\right)^2\right), n=1,2...$ Demuestre que (X_n) converge en probabilidad a una constante.

3.5 Problema 5

Sea (X_n) una sucesión de v.a's independientes tales que $\mathcal{P}\left[X_n=1\right] = p$ y $\mathcal{P}\left[X_n=-1\right] = p$ 1-p, n=1,2,..., con $p\in \left(0,1\right), p\neq 1/2.$ Denotemos $S_{0}=0,$

$$S_n = \sum_{i=1}^n X_i, n=1,2,\dots$$

- $\begin{array}{l} \text{1. Calcular } \mathcal{P}\left[S_n=0\right] \text{ para } n=1,2,\ldots \\ \text{2. Demostrar que } \sum_{n=0}^{\infty} \mathcal{P}\left[S_n=0\right] < \infty. \\ \text{3. Calcular } \mathcal{P}\left[S_n=0 \text{ i.o}\right] \end{array}$

Use la formula de Stirling: $n! \sim \sqrt{2\pi n} (n/e)^n$

3.6 Problema 6

Tomando (X_n) y (S_n) como en el problema anterior, pero con p=1/2.

- 1. Verificar que para toda $t \in \mathbb{R}$, $E\left[e^{tX_n}\right] = \cosh(t)$.
- 2. Deducir que para toda $t \in \mathbb{R}$, $E[e^{tX_n}] \leq e^{t/2}$

Taylor

Utilice el desarrollo de Taylor de ambos términos de la desigualdad en (1.)

3. Demostrar que para todas $a > 0, n \ge 1$ y u > 0 se tiene que

$$\mathcal{P}\left[S_n > a\right] \le \exp\left[n\frac{u^2}{2} - ua\right]$$

4. Demostrar que $\mathcal{P}\left[S_n>a\right] \leq e^{-a^2/2n}$ y por lo tanto

$$\mathcal{P}\left[|S_n| > a\right] \le 2 \exp\left(-\frac{a^2}{2n}\right)$$

5. Sea c > 1. Demostrar que, con probabilidad 1, para n suficientemente grande se tiene que $S_n \le c\sqrt{2n\ln{(n)}}$

8

3.7 Problema 7

1. Pruebe que si $X \in L_p$ para algun p > 0, entonces

$$\lim_{t\to\infty}t^p\mathcal{P}[|X|>t]=0$$

2. Pruebe que (1.) implica que $X\in L_p$ para toda $q\in (0,p).$

• Fubini-Tonelli

Use el Teorema de Fubini-Tonelli a $\int_0^\infty t^{q-1} \mathcal{P}[|X|>t] \mathrm{d}t$

3.8 Problema 8

Sean X,X_1,X_2,\dots v.a's no negativas tales que $X\in L_1,X_n\stackrel{\mathcal{P}}{\longrightarrow} X$ y $E[X_n]\to E[X]$. Demuestre que $X_n\stackrel{L_1}{\longrightarrow} X$

4 Problemas Resnick

En esta parte veremos los problemas planteados del libro Resnick.

References