MA 105 : Calculus (Autumn 2019)

Additional Problems for Tutorial 5

1. For which constants $a, b, c, d \in \mathbb{R}$ does the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = ax^3 + bx^2 + cx + d$$
 for $x \in \mathbb{R}$

have a local maximum at -1, a point of inflection at 1 and satisfy f(-1) = 10and f(1) = 6?

2. (Cauchy Mean Value Theorem) If $f, g : [a, b] \to \mathbb{R}$ are continuous on [a,b] and differentiable on (a,b), then show that there exists $c \in (a,b)$ such that

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

3. Find the *n*th Taylor polynomial of $f:(-1,1)\to\mathbb{R}$ around a=0 when:

(i)
$$f(x) = (1+x)^r$$
 [where $r \in \mathbb{Q}$], (ii) $f(x) = \cos x$, (iii) $f(x) = \frac{1}{1-x}$.

Optional Problems

- 4. (L'Hôpital's Rule for $\frac{0}{0}$ indeterminate forms) Let $c \in \mathbb{R}$ and let D = $(c-r,c)\cup(c,c+r)$ for some r>0. Let $f,g:D\to\mathbb{R}$ be differentiable functions such that $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} g(x) = 0$. Suppose $g'(x) \neq 0$ for all $x \in D$, and $f'(x)/g'(x) \to \ell$ as $x \to c$. Then prove that $f(x)/g(x) \to \ell$ as $x \to c$. Here ℓ can be a real number or ∞ or $-\infty$. (Hint: Use the Cauchy Mean Value Theorem.)
- 5. (L'Hôpital's Rule for $\frac{0}{0}$ indeterminate forms when $x \to \infty$) Let $a \in \mathbb{R}$ and let $f,g:(a,\infty)\to \mathbb{R}$ be differentiable functions such that $f(x)\to 0$ and $g(x) \to 0$ as $x \to \infty$. Suppose $g'(x) \neq 0$ for all $x \in (a, \infty)$, and $f'(x)/g'(x) \to \ell$ as $x \to \infty$. Then prove that $f(x)/g(x) \to \ell$ as $x \to \infty$. Here ℓ can be a real number or ∞ or $-\infty$.
- 6. Evaluate the following limits:

(i)
$$\lim_{x \to 1} \frac{(2x - x^4)^{1/2} - x^{1/3}}{1 - x^{3/4}}$$
, (ii) $\lim_{x \to \infty} \frac{5x^2 - 3x}{7x^2 + 1}$,

(ii)
$$\lim_{x \to \infty} \frac{5x^2 - 3x}{7x^2 + 1}$$
,

(iii)
$$\lim_{x \to \infty} \left(x - \sqrt{x + x^2} \right)$$
, (iv) $\lim_{x \to \infty} \frac{\sqrt{x + 2}}{\sqrt{x + 1}}$.

(iv)
$$\lim_{x \to \infty} \frac{\sqrt{x+2}}{\sqrt{x+1}}$$

7. Show that the Taylor series of the function $f(x) = \frac{x}{1 - x - x^2}$ is $\sum_{n=1}^{\infty} f_n x^n$ where f_n is the nth Fibonacci number, that is, $f_1 = 1, f_2 = 1$, and $f_n = 1$ $f_{n-1} + f_{n-2}$ for $n \geq 3$. By writing f(x) as a sum of partial fractions and thereby obtaining the Taylor series in a different way, find an explicit formula for the nth Fibonacci number.

1