Foundations of Machine Learning Al2000 and Al5000

FoML-06 Linear Regression

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- What is ML and the learning paradigms
- Probability refresher
- MLE, MAP, and fully Bayesian treatment

Dataset D

- Input variable
- Output variable
- Simplest linear model

Linear Basis function Models

- Fix the number of parameters M s.t.
- Choose M-1 basis functions x:
- Mapping/Approximation:

$$y(\mathbf{x}, \mathbf{w}) =$$

Example Basis functions

Components of input

Powers of input

Example Basis Function

Gaussian basis functions

Example Basis Function

Logistic sigmoid basis functions

Example Basis Function

Linear Regression via MLE

Given data D

$$D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$$

Input variables

Target variables

Linear Model with basis functions

$$y(\mathbf{x}, \mathbf{w}) =$$

Maximum Likelihood

Assume Gaussian noise around the target

$$t = y(x, \mathbf{w}) + \sigma \cdot \epsilon, \quad \epsilon \in \mathcal{N}(0, 1)$$

Maximum Likelihood

Assume Gaussian noise around the target

$$t = y(x, \mathbf{w}) + \sigma \cdot \epsilon, \quad \epsilon \in \mathcal{N}(0, 1)$$

$$p(t|x, \mathbf{w}, \beta) =$$

Data matrix

Targets vector

ML: sum of squares error

Likelihood

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(t_i|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i), \beta^{-1})$$

NLL =

Sum-of-squared error E_D (w) =

ML: sum of squares error

ML Estimates

Minimize the NLL (or, the sum of squared errors)

ML Estimates

Optimal w* satisfies

$$\mathbb{E}[t'|\mathbf{x}',\mathbf{w_{ML}}] =$$

Next SGD

