Oxidation-Reduction Reactions

Also known as 'redox' reactions.

These reactions always occur as a pair where electrons are transferred from one atom to another.

LEO the lion says GER

OILRIG

Example #1

Identify the atoms being oxidized or reduced.

a)Ag
$$^+$$
(aq) + e $^ \rightarrow$ Ag ${(s)}$

Reduction

b)Cu_(s)
$$\rightarrow$$
 Cu²⁺_(aq) + 2 e⁻

Oxidation

c)2 Na + Cl₂
$$\rightarrow$$
 2 NaCl

Oxidation of Na Reduction of Cl₂

Redox Reactions

These reactions may also be interpreted as one reactant causing a change in the other reactant.

oxidizing agent – the reactant which caused the other to be oxidized (this reactant is reduced)

reducing agent – the reactant which caused the other to be reduced (this reactant is oxidized)

Example #2

For the following reactions:

- i. Which element is oxidized? reduced?
- ii. Identify the oxidizing agent. Reducing agent.

a) 2 Ca +
$$O_2 \rightarrow$$
 2 CaO

Oxidized Reduced

Ca: Reducing agent

O₂: Oxidizing agent

Mg: Reducing agent

Br₂: Oxidizing agent

Oxidation numbers are used to keep track of electrons during reactions.

It is an arbitrary system based on:

- a) ions charge of an atom
- b) electronegativity

For any <u>neutral compound</u>, the oxidation numbers of the atoms must <u>add up to zero</u>.

Oxidation Numbers

Atom or Ion	Oxidation Number	Examples	
compounds containing a single type of atom	0	Na Cl ₂	
H in most compounds	+1	HCI	
H in a hydride	-1	LiH	
O in most compounds	-2	H ₂ O	
O in a peroxide	-1	H_2O_2	
monatomic ions	charge of ion	Na ⁺ = +1 S ²⁻ = -2	

Oxidation Numbers

General steps to assign oxidation numbers:

- 1)Assign common oxidation numbers.
 - use your periodic table!!
- 2)The total oxidation number of a molecule or an ion is the value of the charge of the molecule or ion.
- 3)Unknown oxidation numbers can be assigned algebraically.

Example #3

Determine the oxidation numbers for:

a)
$$H_2S_{+1}$$

b)
$$H_2O$$

Example #3

d)
$$SO_3^{2-}$$

f)
$$H_2O_2$$

In a redox reaction, the oxidation numbers of atoms are expected to change.

Oxidation is an in oxidation number.

Reduction is a _____ in oxidation number.

Example #4

For the following reaction:

i. identify the substance oxidized / reduced

ii.oxidizing / reducing agents

oxidation
$$+1-1 + 4-2 + 1+6-2 + 1+6-2 + 2+6-2 = 0 + 1-2$$

$$2 \text{ KCI} + \text{MnO}_2 + 2 \text{ H}_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4 + \text{MnSO}_4 + \text{CI}_2 + \text{H}_2 \text{O}_4 + \text{CI}_2 + \text{H}_2 + \text{CI}_2 + \text{C$$

- i. Cl atoms in KCl are oxidized (-1 to 0). Mn atoms in MnO_2 are reduced (+4 to +2)
- ii. KCl is a reducing agent. MnO₂ is the oxidizing agent.

All redox reactions may be divided into halfreactions. One half represents the oxidation, while the other is the reduction.

$$Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$$

Oxidation: $Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$

Reduction: $Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$

Half-reactions are always written for a single mole of a substance.

Using the halfreactions table, one
can predict whether
a redox reaction will
occur spontaneously.

An oxidizing agent (left column) will always spontaneously react with a reducing agent (right column) lower on the list.

* In volts (V) versus the standard hydrogen electrode.

Increasing strength of oxidizing agents

Half-Reaction	8° (V)	Half-Reaction	€° (V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$\text{Co}^{3-} + \text{e}^- \rightarrow \text{Co}^{2-}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$H_2O_2 + 2H^- + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$2e^- + 2H^+ + IO_4^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^{-} \rightarrow Fe$	-0.036
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.13
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$Sn^{2+} + 2e^- \rightarrow Sn$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$	1.33	$Cd^{2+} + 2e^{-} \rightarrow Cd$	-0.40
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$AI^{3+} + 3e^- \rightarrow AI$	-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La$	-2.37
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{-2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$\rm I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52		

Example #5

a) Will iodine be able to oxidize zinc metal to Zn²⁺ ions?

Yes

b) Name an oxidizing agent that can oxidize Br⁻ to Br₂, but cannot oxidize Cl⁻ to Cl₂.

 O_2 , Mn O_2 , Cr₂ O_7^{2-}

Figure 2 When an oxidizing agent (OA) is above the reducing agent (RA) on the redox table, a spontaneous reaction occurs. But when an oxidizing agent is below the reducing agent, no spontaneous reaction occurs. As an example, when Ag⁺(aq) is the oxidizing agent and Mg(s) is the reducing agent, a reaction occurs.