Anatomical region calling via semantic segmentation

Tommaso Biancalani

Introduction to project

This is an image from Allen CCFv3 representing a coronal slice of a mouse brain.

The reason why people like Allen CCF is that is annotated

Morphological images need to be registered to Allen CCF (which is what BICCN is doing)...

...because by doing so, annotations can be transferred from the CCF to the actual image.

The final result is a fully annotated morphological image

Problem

We do not have a fully automated way to register images to consensus atlases.

My proposed solution

We produce anatomical maks using semantic segmentation and we register the masks rather than images.

Background

Semantic segmentation is a branch of ML which combines:

- the fact that similar pixels belong to same region (*ie* classic segmentation concepts).
- with the fact that AI can distinguish (say) a cat from a dog
- (ie semantic understanding).

Semantic segmentation is a solved problem in AI and has been successfully applied to different fields

The way it works: we supervise a proper neural net with images and labels...

The way it works:then abracadabra it works.

What I propose: to supervise a neural net with morphological images and annotations from (eg) Allen

during training it learns (eg) to distinguish thalamus from hypothalamus.

What should happen: the model outputs a segmentation mask for an unseen image

Image from BrainMaps (UC Davis). Same staining, mouse age but unseen.

Preliminary results

We build training set using Allen CCFv2 and v3. This is an example training sample (image + mask):

Another example image:

This ML problem is difficult because of the scarce dataset

- 512 x 512 pixels ~ 268k features.
- 5 classes: background, cortex, cerebellum, white matter, other grey matter.
- just 234 annotated images in training set.

no. features >> no. training samples

We augment each image by applying several transforms

Transforms are stochastically combined so that one image becomes zilions

Training image

Training mask

Transforms are stochastically combined so that one image becomes zilions

Training image

Training mask

Result:model predicts well the unaugmented training set

Ground truth **Prediction** Image Image from CCFv2 Image from CCFv3

Result: model predicts the unseen P56 Coronal Atlas - 1

Image

Ground truth

Prediction

Result: model predicts the unseen P56 Coronal Atlas - 1

Note: this cranial nerve is actually there. It is not annotated in P56c but our model correctly finds it (because we train on CCF which is better).

Result: model predicts the unseen P56 Coronal Atlas - 2

Indeed, ground masks of P56c aren't very good, eg this vertical line should not be here. Our predicted masks are better.

I now try to predict an ISH image from Allen. These images are very low quality wrt atlas images.

(Result) Yet, our model does a nice job

(Result) Yet, our model does a nice job

Distortions are classified as background

(Result) Yet, our model does a nice job

This slice is not precisely coronal (because asymmetrical), but the model recognize that cerebellum is only on one side.

Some other pair image/prediction:

Overall seems OK even though there are some errors here and there

Not every prediction is nice though. 4-5% of them can be improved.

