Game Theory: Lecture #4

Outline:

- The Matching Problem
- Stable Matchings
- The Gale-Shapley Algorithm

The Matching Problem

- Recap: Social choice theory
 - Goal: Derive reasonable mechanism for aggregating opinions of many
 - Conclusion: Any reasonable mechanism for this task has inherent shortcomings
 - Note: Ignored strategic behavior of users (will come shortly)
- Takeaway: Be careful when working with social systems
- New problem setting: The matching problem
- Example: Matching residents to residency programs
 - Residents have preferences over residency programs
 - Residency programs have preferences over potential residents
 - Limited spots available that must be filled
- Example: The marriage problem
 - Men: Al, Bob, Cal, Dan
 - Women: Ann, Beth, Cher, Dot
 - Preferences:

	Ann	Beth	Cher	Dot
Al	1	1	3	2
Bob	2	2	1	3
Cal	3	3	2	1
Dan	4	4	4	4

Women's Preferences

	Ann	Beth	Cher	Dot
Al	3	4	1	2
Bob	2	3	4	1
Cal	1	2	3	4
Dan	3	4	2	1

Men's Preferences

- Ex: Ann prefers Al to Bob, Bob to Cal, Cal to Dan, etc
- Questions:
 - What is a reasonable (or stable) matching for a society?
 - Are there any reasonable mechanisms for making matches in society?

The Marriage Problem

	Ann	Beth	Cher	Dot
Al	1	1	3	2
Bob	2	2	1	3
Cal	3	3	2	1
Dan	4	4	4	4

	Ann	Beth	Cher	Dot
Al	3	4	1	2
Bob	2	3	4	1
Cal	1	2	3	4
Dan	3	4	2	1

Women's Preferences

Men's Preferences

• Proposal #1: Average quality matching

$$\begin{array}{c|cccc} \text{Al} & \text{Bob} & \text{Cal} & \text{Dan} \\ & | & | & | \\ \text{Dot} & \text{Ann} & \text{Beth} & \text{Cher} \\ (2 \times 2) & (2 \times 2) & (2 \times 3) & (2 \times 4) \end{array}$$

- Cher displeased (given last choice)
- Cher can propose to Bob. Will he accept?
- Cher can propose to Al. Will he accept?
- Proposal not stable since Cher and Al prefer each other over proposed mates
- Proposal #2: Mens highest choice Stable matching?

$$\begin{array}{c|cccc} \text{Al} & \text{Bob} & \text{Cal} & \text{Dan} \\ & | & | & | \\ \text{Cher} & \text{Dot} & \text{Ann} & \text{Beth} \\ (1 \times 3) & (1 \times 3) & (1 \times 3) & (4 \times 4) \end{array}$$

• Proposal #3: Womens highest choice – Stable matching?

$$\begin{array}{c|cccc} \mathsf{AI} & \mathsf{Bob} & \mathsf{Cal} & \mathsf{Dan} \\ | & | & | & | \\ \mathsf{Ann} & \mathsf{Cher} & \mathsf{Dot} & \mathsf{Beth} \\ (3\times1) & (4\times1) & (4\times1) & (4\times4) \end{array}$$

Stable Proposals

- Questions:
 - Are there any stable matchings?
 - How do you find a stable matching?
 - Multiple stable matchings? Optimal stable matching?
- Definition: A stable matching is one in which there do not exist two potential mates that prefer each other to their proposed mates.
- Example: The Roommate Problem
 - Potential Roommates: $\{A, B, C, D\}$
 - Goal: Divide into two pairs

	Α	В	С	D
А	-	1	2	3
В	2	-	1	3
С	1	2	-	3
D	1	2	3	-

Roommates' Preferences

- Question: What are the stable roommate divisions?
- Inspection:
 - (A,B) and (C,D)?
 - (A,C) and (B,D)?
 - (A,D) and (B,C)?
- Conclusion: There are no stable matchings for the roommate problem
- Does this negative result apply to the marriage problem? Differences?

Gale-Shapley Algorithm

- Setup: The Marriage Problem
 - Set of n men (or applicants)
 - Set of m women (or schools)
 - Preferences for each man over the women
 - Preferences for each woman over the men
- Definition: Gale-Shapley algorithm

– First stage:

- * Each man proposes to woman first on list
- * Each woman with multiple proposals
 - · Selects favorite and puts him on waiting list
 - · Informs all other that she will never marry them

– Second stage:

- * Each rejected man proposes to woman second on list
- * Each woman with multiple proposals (1st stage WL + 2nd stage proposals)
 - · Selects favorite and puts him on waiting list
 - \cdot Informs all other that she will never marry them

– Third stage:

- * Each rejected man proposes to next woman on list
 - \cdot If rejected in Stage 1 and 2 \Rightarrow 3rd woman on list
 - · If on WL Stage 1, rejected Stage $2 \Rightarrow 2$ nd woman on list
- * Each woman with multiple proposals (2nd stage WL + 3rd stage proposals)
 - · Selects favorite and puts him on waiting list
 - · Informs all other that she will never marry them
- Continuation: Process continues until no man is rejected in a stage
- Note: Algorithm could proceed with either Men or Women proposing

Example

	Ann	Beth	Cher	Dot
Al	1	1	3	2
Bob	2	2	1	3
Cal	3	3	2	1
Dan	4	4	4	4

	Ann	Beth	Cher	Dot
Al	3	4	1	2
Bob	2	3	4	1
Cal	1	2	3	4
Dan	3	4	2	1

Women's Preferences

Men's Preferences

- ullet Denote men by $\{a,b,c,d\}$ and women by $\{A,B,C,D\}$
- Algorithm #1: Gale-Shapley algorithm with men proposing

$$- \text{ Stage 1:} \quad \begin{array}{c|c} \underline{A & B & C & D} \\ \hline c & a & b \\ \hline d^* \end{array} \qquad \text{(* means male is rejected)}$$

$$- \text{ Stage 2:} \quad \begin{array}{c|c} \underline{A & B & C & D} \\ \hline c & a & b \\ \hline d^* \end{array}$$

$$- \text{ Stage 3:} \quad \begin{array}{c|c} \underline{A & B & C & D} \\ \hline c & a & b \\ \hline d^* \end{array}$$

$$- \text{ Stage 4:} \quad \begin{array}{c|c} \underline{A & B & C & D} \\ \hline c & d & a & b \\ \hline \end{array}$$

• Resulting proposal

$$\begin{array}{ccccccc} \mathsf{Ann} & \mathsf{Beth} & \mathsf{Cher} & \mathsf{Dot} \\ | & | & | & | \\ \mathsf{Cal} & \mathsf{Dan} & \mathsf{Al} & \mathsf{Bob} \\ (3\times1) & (4\times4) & (3\times1) & (3\times1) \end{array}$$

Example (2)

	Ann	Beth	Cher	Dot
Al	1	1	3	2
Bob	2	2	1	3
Cal	3	3	2	1
Dan	4	4	4	4

	Ann	Beth	Cher	Dot
Al	3	4	1	2
Bob	2	3	4	1
Cal	1	2	3	4
Dan	3	4	2	1

Women's Preferences

Men's Preferences

• Algorithm #2: Gale-Shapley algorithm with women proposing

• Proposal:

$$\begin{array}{cccccc} \mathsf{Ann} & \mathsf{Beth} & \mathsf{Cher} & \mathsf{Dot} \\ | & | & | & | \\ \mathsf{Cal} & \mathsf{Dan} & \mathsf{Al} & \mathsf{Bob} \\ (3\times1) & (4\times4) & (3\times1) & (3\times1) \end{array}$$

Example (3)

Women's Preferences

Men's Preferences

• Resulting proposal: Same irrespective of proposing party

$$\begin{array}{cccccc} \mathsf{Ann} & \mathsf{Beth} & \mathsf{Cher} & \mathsf{Dot} \\ | & | & | & | \\ \mathsf{Cal} & \mathsf{Dan} & \mathsf{Al} & \mathsf{Bob} \\ (3\times1) & (4\times4) & (3\times1) & (3\times1) \end{array}$$

- Question: Is resulting proposal stable?
 - Cal will never accept proposal from another potential mate. Why?
 - Al will never accept proposal from another potential mate. Why?
 - Bob will never accept proposal from another potential mate. Why?
- Question: Are there other stable profiles? (Answer = No)
- Questions for next lecture:
 - Does a stable proposal always exist?
 - Is there a unique stable proposal? Conditions for uniqueness?
 - Does the Gale-Shapley algorithm always terminate?
 - Does the Gale-Shapley algorithm always find a stable proposal?
 - How many stages will the Gale-Shapley algorithm take to find a proposal?
 - How does the proposing party impact the quality of the resulting proposals?
 - Is there an optimal proposal?