Part 1 of 10 - Section 1: Sets and Relations

Question 1 of 10

2.0 Points

Suppose U = $\{b, \{c, 3\}, 3, 4, \{4, 5\}, 5\}$ is a universal set with the following subsets: A = $\{\{c, 3\}, 3, \{4, 5\}\}, B = \{b, \{c, 3\}, 4, 5\}$ and C = $\{b, 3, 4, 5\}$. Which one of the following sets represents C - A?

- **A.** {b, {c, 3}, 4, 5, {4, 5}}
- **B.** {3, 4, 5}
- (C. {}
- **D.** {b, 4, 5}

Reset Selection

Consider the following Venn diagram with A, B and C sets from the universal set U:

Which one of the following alternatives describes the set represented by the Venn diagram correctly? (Hint: Draw the Venndiagrams in the alternatives on rough to find a match.)

- A. (B C) U (A n C)
- **B.** [(A n C) B] U (B A)
- C. [(A U B) C] + A
- **D.** (B A) U (A n B n C)

Question 3 of 10

2.0 Points

Let $C = \{1, 3, d, e\}.$

Let $R = \{(1, 1), (1, 3), (1, e), (3, 3), (3, d), (e, 3)\}$ be a relation on C.

Which one of the following alternatives is needed to make R transitive and irreflexive?

- A. Add the ordered pairs (1, d) and (e, d), and remove ordered pairs (1, 1) and (3, 3).
- B. Add the ordered pair (d, 1) and remove ordered pairs (1, 1) and (3, 3).
- C. Add the ordered pair (1, d), (d, d) and (e, e).
- D. Add the ordered pair (d, d) and (e, e).

Reset Selection

Let f and g be functions on Z defined by:

$$(x, y) \in g \text{ iff } y = -x^2 + 3$$
 and $(x, y) \in f \text{ iff } y = 5 - 3x$.

Which one of the following alternatives represents an ordered pair that does NOT belong to f?

- **A.** (-3, 13)
- **B.** (0, 5)
- C. (-2, 11)
- O. (1, 2)

Reset Selection

Let f and g be functions on Z defined by:

$$(x, y) \in g \text{ iff } y = 2x^2 - 5$$
 and $(x, y) \in f \text{ iff } y = -3x + 7$.

Which one of the following alternatives represents $f\circ f(x)$ (ie f(f(x))?

- \bigcirc A. $9x^2 42x + 49$
- \bigcirc B. $-9x^2 + 42x + 49$
- C. 9x 21
- D. 9x 14

Reset Selection

What is the result of the operation $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ • $\begin{bmatrix} 4 & 5 \end{bmatrix}$?

- A. It is not possible to do the multiplication on these two matrices.
- \bigcirc **B**. $\begin{bmatrix} 9 \\ 18 \\ 27 \end{bmatrix}$
- \bigcirc c. $\begin{bmatrix} 4 & 5 \\ 8 & 10 \\ 12 & 15 \end{bmatrix}$
- O D. [21 30]

Reset Selection

Question 7 of 10

2.0 Points

Consider the following binary operation *:

*	a	b	С
a	b	С	а
b	С	b	а
С	С	а	b

Which one of the following statements regarding the binary operation * is TRUE?

- A. b((a * b) * c) = (c * a) * (b * b)
- B. (b * c) * a = a * (b * c) proves that the binary operation * is associative.
- C. The binary operation * is NOT commutative.
- **D.** The identity element of the binary operation * is b.

Reset Selection

Which one of the statements in the following alternatives is NOT equivalent to p \land q? (Hint: simplify the statement in each alternative using de Morgan's rules or a truth table to find the statement that is NOT equivalent to p \land q.)

- A. p ∧ (¬(p → ¬q))
- B. p ∧ (¬(¬p → ¬q))
- C. ¬(¬p ∨ (p → ¬q))
- ○ D. p ∧ (¬(¬(p ∧ q)))

Reset Selection

tion Progress

Consider the incomplete truth table below.

р	q	٦р	PГ	(q ∧ p¬)ר
T	Т	F	F	
Т	F	F	Т	
F	Т	Т	F	
F	F	Т	T	

Which one of the following alternatives provides the correct completed truth table?

• () A.

p	q	٦р	-'4	(q ∧ p¬)ר
T	T	F	F	T
T	F	F	T	F
F	Т	Т	F	Т
F	F	Т	T	Т
	T T F	T T F F T	T T F T F F F T T	T T F F T F T F

• () B.

р	q	¬р	¬q	'(q ∧ p) ¬(¬q
T	Т	F	F	F
T	F	F	T	Т
F	Т	Т	F	F
F	F	Т	Т	F

		р	q	¬р	٦q	r(¬q Λ p)
		T	Т	F	F	Т
•	○ A.	Т	F	F	Т	F
		F	T	Т	F	Т
		F	F	Т	T	Т

		р	q	٦p	¬q	(q ∧ p¬)ר
•	○ В.	T	T	F	F	F
		Т	F	F	Т	Т
		F	Т	Т	F	F
		F	F	Т	Т	F

		р	q	٦р	¬q	¬(¬q ∧ p)
		Т	T	F	F	Т
•	○ c.	Т	F	F	T	Т
		F	Т	Т	F	Т
		F	F	T	Т	F

		р	q	р٦	¬q	qr → pr
		T	T	F	F	F
•	○ D.	Т	F	F	T	F
		F	T	Т	F	T
		F	F	Т	T	F

Which of the following alternatives provides a **direct** proof to show that for all $n \in \mathbb{Z}$,

if n - 1 is odd, then $2n^2 - 2n + 1$ is odd.

Let n be an odd number, ie n = 3, 3
$$\in \mathbb{Z}$$
.

• A. Then $2n^2 - 2n + 1 = 2(3)^2 - 2(3) + 1$, ie $2(9) - 6 + 1$, ie $18 - 6 + 1 = 13$, which is odd.

• () B.

Let n-1 be odd, then n is even (odd + even = odd), Then n=2k for some $k\in\mathbb{Z}$,

ie
$$2n^2 - 2n + 1 = 2(2k)^2 - 2(2k) + 1$$

ie
$$8k^2 - 4k + 1$$
,

ie
$$2(4k^2 - 2k) + 1$$
, which is odd. (even + odd = odd).

• () C.

Let n be odd, then n = 2k + 1 for some $k \in \mathbb{Z}$,

ie
$$2n^2 - 2n + 1 = 2(2k + 1)^2 - 2(2k + 1) + 1$$

ie
$$2(4k^2 + 4k + 1) - 4k - 2 + 1$$
,

ie
$$8k^2 + 8k + 2 - 4k - 2 + 1$$
,

ie
$$8k^2 + 4k + 1$$
,

ie
$$2(4k^2 + 2k) + 1$$
 which is odd. (even + odd = odd).

• O D.

Let k - 1 be odd, for some $k \in \mathbb{Z}$,

Then
$$2k^2 - 2k + 1 = 2(k-1)^2 - 2(k-1) + 1$$

ie
$$2(k^2 - 2k + 1) - 2k + 2 + 1$$
,

ie
$$2k^2 - 4k + 2 - 2k + 3$$
,

ie
$$2k^2 - 6k + 5$$
,

ie
$$2(k^2-3k+2)+1$$
 which is odd. (even + odd = odd).

Reset Selection