Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 13

Midterm Results - CS 477

$$Min = 23$$

Max = 110

Average = 78.2

Midterm Results - CS 677

Min = 57

Max = 111

Average = 89.26

Binary Search Trees

- Tree representation:
 - A linked data structure in which each node is an object
- Node representation:
 - Key field
 - Satellite data
 - Left: pointer to left child
 - Right: pointer to right child
 - p: pointer to parent (p [root [T]] =
 NIL)
- Satisfies the binary search tree property

Binary Search Tree Example

- Binary search tree property:
 - If y is in left subtree of x,
 then key [y] ≤ key [x]
 - If y is in right subtree of x, then key [y] ≥ key [x]

Binary Search Trees

- Support many dynamic set operations
 - SEARCH, MINIMUM, MAXIMUM, PREDECESSOR,
 SUCCESSOR, INSERT, DELETE
- Running time of basic operations on binary search trees
 - On average: Θ(Ign)
 - The expected height of the tree is Ign
 - In the worst case: $\Theta(n)$
 - The tree is a linear chain of n nodes

Red-Black Trees

- "Balanced" binary trees guarantee an O(lgn) running time on the basic dynamicset operations
- Red-black tree
 - Binary tree with an additional attribute for its nodes: color which can be red or black
 - Constrains the way nodes can be colored on any path from the root to a leaf
 - Ensures that no path is more than twice as long as another ⇒ the tree is balanced
 - The nodes inherit all the other attributes from the binary-search trees: key, left, right, p

Red-Black Trees Properties

- 1. Every node is either red or black
- 2. The root is black
- 3. Every leaf (NIL) is black
- 4. If a node is red, then both its children are black
 - No two red nodes in a row on a simple path from the root to a leaf
- For each node, all paths from the node to descendant leaves contain the same number of black nodes

Example: RED-BLACK TREE

- For convenience we use a sentinel NIL[T] to represent all the NIL nodes at the leafs
 - NIL[T] has the same fields as an ordinary node
 - Color[NIL[T]] = BLACK
 - The other fields may be set to arbitrary values

Black-Height of a Node

- Height of a node: the number of edges in a longest path to a leaf
- **Black-height** of a node x: bh(x) is the number of black nodes (including NIL) on a path from x to leaf, not counting x CS 477/677 - Lecture 13

Claim

Any node with height h has black-height ≥ h/2

Proof

 By property 4, there are at most h/2 red nodes on the path from the node to a leaf

Claim

The subtree rooted at any node x contains at least $2^{bh(x)}$ - 1 internal nodes

Proof: By induction on height of x

Basis: height[x] = $0 \Rightarrow$

x is a leaf (NIL[T]) ⇒

$$bh(x) = 0 \Rightarrow$$

of internal nodes: 2° - 1 = 0

Inductive step:

- Let height(x) = h and bh(x) = b
- Any child y of x has:
 - bh (y) = b (if the child is red), or
 - -bh(y) = b 1 (if the child is **black**)

- Want to prove:
 - The subtree rooted at any node x
 contains at least 2^{bh(x)} 1 internal nodes
- Assume true for children of x:
 - Their subtrees contain at least 2^{bh(x)-1} 1
 internal nodes
- The subtree rooted at x contains at least:

$$(2^{bh(x)-1}-1)+(2^{bh(x)-1}-1)+1=$$
 $2\cdot(2^{bh(x)-1}-1)+1=$
 $2^{bh(x)}-1$ internal nodes

Lemma: A red-black tree with **n** internal nodes has height at most 2lq(n + 1). height(root) = h(root)

bh(root) = b

Proof:

n
$$\geq 2^b - 1$$
 $\geq 2^{h/2} - 1$
number n of internal since $b \geq h/2$ nodes

Add 1 to all sides and then take logs:

$$n + 1 \ge 2^b \ge 2^{h/2}$$

$$\lg(n + 1) \ge h/2 \Rightarrow$$

$$h \le 2 \lg(n + 1)$$

r

Operations on Red-Black Trees

- The non-modifying binary-search tree operations MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR, and SEARCH run in O(h) time
 - They take O(lgn) time on red-black trees
- What about TREE-INSERT and TREE-DELETE?
 - They will still run in O(Ign)
 - We have to guarantee that the modified tree will still be a red-black tree

INSERT

INSERT: what color to make the new node?

- Red? Let's insert 35!
 - Property 4: if a node is red, then both its children are black
- Black? Let's insert 14!
 - Property 5: all paths from a node to its leaves contain the same number of black nodes

DELETE

26 41 30 47 50

DELETE: what color was the node that was removed? Red?

- 1. Every node is either red or black OK!
- 2. The root is black OK!
- 3. Every leaf (NIL) is black OK!
- 4. If a node is red, then both its children are black

OK! Does not change any black heights

OK! Does not create 'two red nodes in a row

 For each node, all paths from the node to descendant leaves contain the same number of black nodes

DELETE

26 41 30 47 ?

Not OK! If removing

DELETE: what color was the node that was removed? Black?

- 1. Every node is either red or black OK!
- 2. The root is black
- 3. Every leaf (NIL) is black OK! that replaces it is red
- 4. If a node is red, then both its children are black

Not OK! Could change the black heights of some nodes

Not OK! Could create two red nodes in a row

 For each node, all paths from the node to descendant leaves contain the same number of black nodes

Rotations

- Operations for restructuring the tree after insert and delete operations on red-black trees
- Rotations take a red-black tree and a node within the tree and:
 - Together with some node re-coloring they help restore the red-black tree property
 - Change some of the pointer structure
 - Do not change the binary-search tree property
- Two types of rotations:
 - Left & right rotations

Left Rotations

- Assumption for a left rotation on a node x:
 - The right child of x(y) is not NIL

- Idea:
 - Pivots around the link from x to y
 - Makes y the new root of the subtree
 - x becomes y's left child
 - y's left child becomes x's right child

Example: LEFT-ROTATE

LEFT-ROTATE(T, x)

- 1. $y \leftarrow right[x]$ \blacktriangleright Set y
- 2. $right[x] \leftarrow left[y]$ > y's left subtree becomes x's right subtree
- 3. if left[y] ≠ NIL
- 4. then $p[left[y]] \leftarrow x \triangleright$ Set the parent relation from left[y] to x
- 5. $p[y] \leftarrow p[x]$

- ▶ The parent of x becomes the parent of y
- 6. if p[x] = NIL
- 7. then $root[T] \leftarrow y$
- 8. else if x = left[p[x]]
- 9. then $left[p[x]] \leftarrow y \beta$
- 10. else right[p[x]] \leftarrow y
- 11. $left[y] \leftarrow x$

▶ Put x on y's left

12. $p[x] \leftarrow y$

▶ y becomes x's parent

Right Rotations

- Assumption for a right rotation on a node x:
 - The left child of y(x) is not NIL

- Idea:
 - Pivots around the link from y to x
 - Makes x the new root of the subtree
 - y becomes x's right child
 - x's right child becomes y's left child

 CS 477/677 Lecture 13

Insertion

Goal:

Insert a new node z into a red-black tree

Idea:

- Insert node z into the tree as for an ordinary binary search tree
- Color the node red
- Restore the red-black tree properties
 - Use an auxiliary procedure RB-INSERT-FIXUP

RB-INSERT(T, z)

1.
$$y \leftarrow NIL$$

- 2. $x \leftarrow root[T]$
- Initialize nodes x and y $^{\circ}$
- Throughout the algorithm y points to the parent of x
- 3. while x ≠ NIL
- 4. do $y \leftarrow x$
- 5. if key[z] < key[x]
- 6. then $x \leftarrow left[x]$
- 7. else *x* ←

- Go down the tree until reaching a leaf
- At that point y is the parent of the node to be inserted

- right[x]
- Sets the parent of z to be y
- 8. $p[z] \leftarrow y$

RB-INSERT(T, z)

9. if
$$y = NIL$$

- 10. then $root[T] \leftarrow z$
- The tree was empty: 38 set the new node to be the root
- 11. else if key[z] < key[y]</pre>
- 12. then $left[y] \leftarrow z$
- 13. else right[y] \leftarrow z

Otherwise, set z to be the left or right child of y, depending on whether the inserted node is smaller or larger than y's key

- 14. $left[z] \leftarrow NIL$
- 15. right[z] ← NIL

Set the fields of the newly added node

- 16. color[z] ← RED
- 17. RB-INSERT-FIXUP(T, z)

Fix any inconsistencies that could have been introduced by adding this new red node

RB Properties Affected by Insert

1. Every node is either red or black

OK!

2. The root is black

If z is the root \Rightarrow not OK

- 3. Every leaf (NIL) is black OK!
- 4. If a node is red, then both its children are black*

If p(z) is red \Rightarrow not OKz and p(z) are both red

UK

5. For each node, all paths from the node to descendant leaves contain the same number of black nodes

RB-INSERT-FIXUP – Case 1

z's "uncle" (y) is red

Idea: (z is a right child)

- p[p[z]] (z's grandparent) must be black: z and p[z] are both red
- Color p[z] black
- Color y black
- Color p[p[z]] red
 - Push the **red** node up the tree
- Make z = p[p[z]]

RB-INSERT-FIXUP - Case 1

z's "uncle" (y) is red

Idea: (z is a left child)

 p[p[z]] (z's grandparent) must be black: z and p[z] are both red

- color[p[z]] ← black
- color[y] ← black
- color p[p[z]] ← red
- z = p[p[z]] Case1
 - Push the **red** node up the tree

RB-INSERT-FIXUP – Case 3

Case 3:

- z's "uncle" (y) isblack
- z is a left child

Idea:

- $color[p[z]] \leftarrow black$
- color[p[p[z]]] ← red
- RIGHT-ROTATE(T, p[p[z]]) Case3
- No longer have 2 reds in a row
- p[z] is now black

RB-INSERT-FIXUP – Case 2

Case 2:

- z's "uncle" (y) is black
- z is a right child

Idea:

- $z \leftarrow p[z]$
- LEFT-ROTATE(**T**, **z**) Case2
- ⇒ now z is a left child, and both z and p[z] are red ⇒ case 3

RB-INSERT-FIXUP(T, z)

```
The while loop repeats only when
    while color[p[z]] = RED
                                        case1 is executed: O(Ign) times
           do if p[z] = left[p[p[z]]]
                                         Set the value of x's
              then y \leftarrow right[p[p[z]]]
3.
                                           "uncle"
                    if color[y] = RED
5.
                      then Case 1
6.
                      else if z = right[p[z]]
7.
                                  then Case 2
8.
                                Case3
9.
              else (same as then clause with "right"
                                 and "left" exchanged)
                                           We just inserted the root, or
10. color[root[T]] ← BLACK
                                           the red node reached the
                         CS 477/677 - Lecture 13
                                                                 33
                                          root
```

Example

Analysis of RB-INSERT

- Inserting the new element into the tree
 O(lgn)
- RB-INSERT-FIXUP
 - The while loop repeats only if CASE 1 is executed
 - The number of times the while loop can be executed is O(Ign)
- Total running time of RB-INSERT: O(Ign)

Red-Black Trees - Summary

Operations on red-black trees:

- SEARCH	O(h)
- PREDECESSOR	O(h)
- SUCCESOR	O(h)
- MINIMUM	O(h)
- MAXIMUM	O(h)
- INSERT	O(h)
- DELETE	O(h)

 Red-black trees guarantee that the height of the tree will be O(Ign)

Readings

For this lecture

- Sections 6.3, 6,5
- Chapter 13

Coming next

- Chapter 17