LCE0216 Introdução à Bioestatística Florestal 5. Principais Modelos Discretos

Profa. Dra. Clarice Garcia Borges Demétrio Monitores: Eduardo E. R. Junior & Giovana Fumes

> Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Piracicaba, 17 de abril de 2018

Modelos discretos

- Estabelem a relação entre variável e a realização do experimento que a origina;
- Uma variável aleatória segue determinado modelo se cada possível valor da variável acontecer conforme uma determinada lei de atribuição de probabilidades;
- A lei de atribuição é dada pela função de probabilidade;
- ▶ Para alguns casos a função de probabilidade pode ser escrita de maneira mais compacta. Esses casos refletem variáveis aleatórias que ocorrem com frequência em situações práticas.
- Neste curso, veremos os modelos discretos Bernoulli, binomial e Poisson.

Distribuição de Bernoulli

Experimento: O departamento de Entomologia e Acarologia da ESALQ/USP realizou um experimento para verificar a eficácia de um novo controle de determinada praga. Um grupo de 30 insetos foram submetidos à nova substância e, depois de um determinado período, foram avaliados. Tomando-se ao acaso, um inseto do estudo, verifica-se se este esta vivo ou morto.

Variável aleatória X: mortalidade.

x = 1 se morreu

x = 0 se não morreu

Algumas pressuposições:

- É realizada apenas uma repetição do experimento;
- Apenas dois resultados possíveis: morreu ou não morreu.

Evento $M = \{O \text{ inseto morreu}\}\$

$$P(M) = \pi$$
 $P(\bar{M}) = 1 - \pi$.

Distribuição de probabilidade:

Resultados	х	P(X = x)
_		
M	0	$1-\pi$
M	1	π
Total		$(1-\pi)+\pi=1$
-		` /

Portanto, a variável aleatória *X*: mortalidade, tem distribuição de Bernoulli.

A função de probabilidade de uma variável Bernoulli é dada por:

$$P(X = x) = \pi^{x} (1 - \pi)^{1 - x}.$$

Logo,
$$P(X = 0) = P(X = 1) = 0$$

A função de probabilidade de uma variável Bernoulli é dada por:

$$P(X = x) = \pi^{x} (1 - \pi)^{1 - x}.$$

Logo,
$$P(X = 0) = \pi^{0}(1 - \pi)^{1-0} = 1 - \pi.$$

$$P(X = 1) = \pi^{1}(1 - \pi)^{1-1} = \pi.$$

Média

$$E(X) = \mu_X = \sum_{x=0}^{1} x P(X = x) = 0 \times (1 - \pi) + 1 \times \pi = \pi.$$

Variância

$$Var(X) = \sigma_X^2 = E(X^2) - [E(X)]^2 = \pi - \pi^2 = \pi(1 - \pi)$$

Logo, o desvio padrão de uma variável aleatória com distribuição de Bernoulli é dado por:

$$\sigma_X = \sqrt{\pi(1-\pi)}.$$

Exemplo: Um pesquisador diz que o tratamento das estacas com uma certa concentração de hormônio eleva a porcentagem esperada de enraizamento. 10 estacas foram tratadas e destas, 6 enraizaram. Escolhe-se ao acaso uma estaca. Seja X = "a estaca enraizar", verifique se é um ensaio de Bernoulli. Determinar a P(X = x), calcular E(X) e Var(X).

Experimento: Verificar se dois insetos submetidos à nova substância permaneceram vivos ou morreram.

Pressuposições:

- O fato de um inseto morrer, ou não, não tem influência no fato de o outro inseto morrer, ou não; ou seja, as mortes são independentes;
- A probabilidade dos insetos morrerem é a mesma, igual a π.
- Só há dois resultados possível para cada inseto: morreu ou não morreu (ensaio de Bernoulli); e
- Existem duas repetições.

Variável aleatória X = número de insetos mortos.

Resultado	Probabilidade	x
MM	ππ	2
$Mar{M}$	$\pi(1-\pi)$	1
$ar{M}M$	$(1-\pi)\pi$	1
$ar{M}ar{M}$	$(1-\pi)(1-\pi)$	0
Total	1	

Distribuição de probabilidades

x_i	P(X=x)
0	$(1-\pi)^2$
1	$2\pi(1-\pi)$
2	π^2
Total	1

Generalizando...

A probabilidade de x insetos morrerem e, portanto, n-x insetos permanecerem vivos, nesta sequência,

$$\underbrace{MM \dots M}_{x}, \underbrace{\bar{M}\bar{M} \dots \bar{M}}_{n-x}$$

é dada por $\pi^x (1-\pi)^{n-x}$.

Mas note que outras sequências podem ocorrer com a mesma probabilidade, tais como:

$$MMM \dots \bar{M}\bar{M}M\bar{M} \dots \bar{M}$$
 ou $MMM \dots \bar{M}M\bar{M}\bar{M} \dots \bar{M}$.

Existem

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

de tais sequências.

Generalizando...

Logo,

$$P(X = x) = \binom{n}{x} \pi^{x} (1 - \pi)^{n - x}$$
, para $x = 0, 1, 2, ..., n$.

Observações:

- A denominação binomial decorre do fato de os coeficientes $\binom{n}{x}$ serem exatamente os coeficientes do desenvolvimento binomial dos termos $(a+b)^n$;
- ➤ O cálculo dos coeficientes, para n e x grandes, é difícil de ser realizado.

Notação: $X \sim B(n; \pi)$.

Pressuposições:

- Existem n repetições ou provas idênticas do experimento;
- Só há dois tipos de resultados possíveis em cada repetição;
- As probabilidades π de sucesso e (1π) de fracasso permanecem constantes em todas as repetições;
- Os resultados das repetições são independentes uns dos outros.

$$P(X = x) = \binom{n}{x} \pi^{x} (1 - \pi)^{n-x}$$
, para $x = 0, 1, 2, ..., n$.

Média

$$\mu_X = \mathrm{E}(X) = n\pi.$$

Variância

$$\sigma_X^2 = \operatorname{Var}(X) = n\pi(1-\pi)$$

Um lote de *Eucaliptus saligna* com uma proporção de 5% de sementes híbridas (*E. saligna x E. cloeziana*) foi utilizado para a implantação de uma floresta. Se dez árvores desta floresta forem selecionadas ao acaso, qual a probabilidade de

- (a) Nenhuma delas ser híbrido;
- (b) Pelo menos uma delas ser híbrido;
- (c) Todas elas serem híbridos.
- (d) Seja Y o número de sementes híbridas em 10 sementes. Calcule $\mathrm{E}(Y)$ e $\mathrm{Var}(Y)$.

Exercício: Seja X a variável aleatória número de plantas com mutação em um total de n plantas irradiadas e p=0,0001 a probabilidade de uma planta irradiada apresentar mutação. Calcular:

- (a) A probabilidade de não aparecer plantas com mutação em um total de 1000 plantas irradiadas;
- (b) A probabilidade de aparecer ao menos uma planta com mutação em 1000 plantas irradiadas;
- (c) A probabilidade de não aparecer planta com mutação em 2000 plantas irradiadas;
- (d) A probabilidade de aparecer pelo menos duas plantas com mutação em 2000 plantas irradiadas;
- (e) O número médio esperado de plantas com mutação em 2000 plantas irradiadas;
- (f) A variância esperada do número de plantas com mutação em 2000 plantas irradiadas;
- (g) O número mínimo de plantas que devemos irradiar de modo que a probabilidade de aparecer ao menos uma planta com mutação seja maior ou igual a 0,90.

Largamente utilizada quando desejamos contar número de ocorrências de um evento de interesse, por unidade de tempo, comprimento, área ou volume. Exemplos:

- número de indivíduos por quadrante de 1 m²;
- número de colônias de bactérias por 0,01 mm² de uma dada cultura, observado em uma plaqueta de laboratório;
- número de defeitos em 1000 m de tecido;
- número de acidentes em uma esquina movimentada e bem sinalizada, por dia;
- número de partículas radioativas emitidas numa unidade de tempo: e número de micronúcleos/1000 células.

Importante: Muito utilizada em estudos de dinâmica de populações e de entomologia.

Função de probabilidades

A função de probabilidades de uma variável aleatória X com distribuição de Poisson com parâmetro λ é dada por:

$$P(x) = P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, 2, 3, \dots,$$

em que λ é igual ao número de ocorrências do evento de interesse por unidade de tempo, distância, área, . . .

Notação: $X \sim P(\lambda)$.

Média

A esperança de uma variável aleatória X com distribuição de Poisson com parâmetro λ é dada por:

$$\mu_X = E(X) = \lambda.$$

Variância

A variância de uma variável aleatória X com distribuição de Poisson com parâmetro λ é dada por:

$$\sigma_X^2 = \operatorname{Var}(X) = \lambda.$$

Exemplo: A emissão de partículas radioativas tem sido modelada por meio de uma distribuição de Poisson, com o valor do parâmetro dependendo da fonte utilizada. Suponha que o número de partículas alfa, emitidas por minuto, seja uma variável aleatória seguindo o modelo de Poisson com parâmetro 5, isto é, a taxa média de ocorrência é de 5 emissões a cada minuto. Calcule a probabilidade de haver mais de duas emissões em um minuto.

Exemplo: Sabe-se que numa certa rede de computadores ocorre em média uma queda por semana. Um pesquisador deseja realizar um trabalho envolvendo simulação em que são necessários 2 dias consecutivos sem haver queda na rede. Supondo o modelo de Poisson, calcular a probabilidade dele não conseguir realizar a simulação.

Aproximação binomial pela Poisson

A distribuição de Poisson, $P(\lambda)$, com $\lambda = n\pi$ é uma boa aproximação à distribuição binomial $B(n,\pi)$, quando π for pequeno e n for bastante grande, tal que $n\pi \leq 10$.

De fato, a distribuição Poisson é uma distribuição limite da binomial. Quando $n \to \infty$ e $\pi \to 0$ a distribuição binomial resulta na distribuição de Poisson com $\lambda = n\pi$.

Aproximação binomial pela Poisson

Exemplo: Seja X a variável número de plantas com mutação em um total de n plantas irradiadas e $\pi = 0,0001$ a probabilidade de uma planta irradiada apresentar mutação. Calcular:

- (a) A probabilidade de não aparecer planta com mutação em 1000 plantas irradiadas;
- (b) A probabilidade de aparecer ao menos uma planta com mutação em 1000 plantas irradiadas;
- (c) A probabilidade de não aparecer plantas com mutação em 2000 irradiadas;
- (d) A probabilidade de aparecer ao menos duas plantas com mutação em 2000 plantas irradiadas;
- (e) O número médio esperado de plantas com mutação em 2000 plantas irradiadas;
- (f) A variância esperada do número de plantas com mutação em 2000 plantas irradiadas;
- (g) O número mínimo de plantas que devem ser irradiadas de modo que a probabilidade de aparecer ao menos uma planta com mutação seja maior ou igual a 0,90.