Problem 4.1

- Factorial
 - Precondition P(n) is $n \geq 0$
 - Postcondition Q(n, x) is $n \leq x$
 - Loop invariant I is product = (factor 1)!
 - Termination orderings is given by (n-1)!n
- \bullet revertImmutable
 - Precondition P(x) is $x \neq \emptyset$
 - Postcondition Q(x, rev) is |x| = |rev|
 - Loop invariant I is |rest| = |x| |rev|
 - Termination ordering is given by $rest = \emptyset$

Problem 4.2

Problem 4.3

• Proof for soundness of if

From lecture notes, C is assumed to be pure. Hence, when used in if, every possible outcome has to be true - defined in every state. if produces two cases. When C == true and C == false.

$$\frac{\text{In the rule for if}:}{\Gamma \vdash C \Rightarrow [t]F} \frac{\Gamma \vdash \neg C \Rightarrow [t']F}{\Gamma \vdash [\text{if } (C)\{t\} \text{ else } \{t'\}]F}$$

C is allowed two states - the states possible by definition of if and is defined in both of them.

 \therefore if is sound.

• Proof for soundness of while

From lecture notes, C is assumed to be pure. Hence, when used in while, every possible outcome has to be true - defined in every state. while has the loop invariant attribute.

In the rule for if:

$$\frac{\Gamma \vdash I \quad \Gamma * \vdash (I \land C) \Rightarrow [t]I \quad \Gamma \vdash (I \land \neq C) \Rightarrow F}{\Gamma \vdash [\mathbf{while}C\{t\}]F}$$

The loop invariant is defined as true before and after while starts for whatever C.

: while is sound.