## 109

## **PROBLEMS**

## Sections 3.2 and 3.3 Nodal Analysis

**3.1** Determine  $v_1$ ,  $v_2$ , and the power dissipated in all the resistors in the circuit of Fig. 3.50.



Figure 3.50 For Prob. 3.1.

3.2 For the circuit in Fig. 3.51, obtain  $v_1$  and  $v_2$ .



Figure 3.51 For Prob. 3.2.

3.3 Find the currents  $i_1$  through  $i_4$  and the voltage  $v_o$  in the circuit in Fig. 3.52.



Figure 3.52 For Prob. 3.3.

**3.4** Given the circuit in Fig. 3.53, calculate the currents  $i_1$  through  $i_4$ .



Figure 3.53 For Prob. 3.4.

**3.5** Obtain  $v_o$  in the circuit of Fig. 3.54.



Figure 3.54 For Prob. 3.5.

**3.6** Use nodal analysis to obtain  $v_o$  in the circuit in Fig. 3.55.



Figure 3.55 For Prob. 3.6.

**3.7** Using nodal analysis, find  $v_o$  in the circuit of Fig. 3.56.



Figure 3.56 For Prob. 3.7.

**3.8** Calculate  $v_o$  in the circuit in Fig. 3.57.



Figure 3.57 For Prob. 3.8.

**3.9** Find  $i_o$  in the circuit in Fig. 3.58.



Figure 3.58 For Prob. 3.9.

- **3.10** Solve for  $i_1$  and  $i_2$  in the circuit in Fig. 3.22 (Section 3.5) using nodal analysis.
- **3.11** Use nodal analysis to find currents  $i_1$  and  $i_2$  in the circuit of Fig. 3.59.



Figure 3.59 For Prob. 3.11.

**3.12** Calculate  $v_1$  and  $v_2$  in the circuit in Fig. 3.60 using nodal analysis.



Figure 3.60 For Prob. 3.12.

**3.13** Using nodal analysis, find  $v_o$  in the circuit of Fig. 3.61.



Figure 3.61 For Prob. 3.13.

3.14 Apply nodal analysis to find  $i_o$  and the power dissipated in each resistor in the circuit of Fig. 3.62.



Figure 3.62 For Prob. 3.14.

**3.15** Determine voltages  $v_1$  through  $v_3$  in the circuit of Fig. 3.63 using nodal analysis.



Figure 3.63 For Prob. 3.15.

**3.16** Using nodal analysis, find current  $i_o$  in the circuit of Fig. 3.64.



Figure 3.64 For Prob. 3.16.

**3.17** Determine the node voltages in the circuit in Fig. 3.65 using nodal analysis.



Figure 3.65 For Prob. 3.17.

**3.18** For the circuit in Fig. 3.66, find  $v_1$  and  $v_2$  using nodal analysis.



Figure 3.66 For Prob. 3.18.

**3.19** Determine  $v_1$  and  $v_2$  in the circuit in Fig. 3.67.



Figure 3.67 For Prob. 3.19.

**3.20** Obtain  $v_1$  and  $v_2$  in the circuit of Fig. 3.68.



Figure 3.68 For Prob. 3.20.

**3.21** Find  $v_o$  and  $i_o$  in the circuit in Fig. 3.69.



Figure 3.69 For Prob. 3.21.

<sup>\*3.22</sup> Use nodal analysis to determine voltages  $v_1$ ,  $v_2$ , and  $v_3$  in the circuit in Fig. 3.70.



Figure 3.70 For Prob. 3.22.

**3.23** Using nodal analysis, find  $v_o$  and  $i_o$  in the circuit of Fig. 3.71.



Figure 3.71 For Prob. 3.23.

**3.24** Find the node voltages for the circuit in Fig. 3.72.



Figure 3.72 For Prob. 3.24.

<sup>\*</sup>An asterisk indicates a challenging problem.

\*3.25 Obtain the node voltages  $v_1$ ,  $v_2$ , and  $v_3$  in the circuit of Fig. 3.73.



Figure 3.73 For Prob. 3.25.

#### Sections 3.4 and 3.5 Mesh Analysis

3.26 Which of the circuits in Fig. 3.74 is planar? For the planar circuit, redraw the circuits with no crossing branches.



Figure 3.74 For Prob. 3.26.

3.27 Determine which of the circuits in Fig. 3.75 is planar and redraw it with no crossing branches.





Figure 3.75 For Prob. 3.27.

- 3.28 Rework Prob. 3.5 using mesh analysis.
- 3.29 Rework Prob. 3.6 using mesh analysis.
- 3.30 Solve Prob. 3.7 using mesh analysis.
- 3.31 Solve Prob. 3.8 using mesh analysis.
- For the bridge network in Fig. 3.76, find  $i_o$  using 3.32 mesh analysis.



Figure 3.76 For Prob. 3.32.

Apply mesh analysis to find i in Fig. 3.77. 3.33



Figure 3.77 For Prob. 3.33.

**3.34** Use mesh analysis to find  $v_{ab}$  and  $i_o$  in the circuit in Fig. 3.78.



Figure 3.78 For Prob. 3.34.

**3.35** Use mesh analysis to obtain  $i_o$  in the circuit of Fig. 3.79.



Figure 3.79 For Prob. 3.35.

**3.36** Find current i in the circuit in Fig. 3.80.



Figure 3.80 For Prob. 3.36.

**3.37** Find  $v_o$  and  $i_o$  in the circuit of Fig. 3.81.



Figure 3.81 For Prob. 3.37.

**3.38** Use mesh analysis to find the current  $i_o$  in the circuit in Fig. 3.82.



Figure 3.82 For Prob. 3.38.

**3.39** Apply mesh analysis to find  $v_o$  in the circuit in Fig. 3.83.



Figure 3.83 For Prob. 3.39.

**3.40** Use mesh analysis to find  $i_1$ ,  $i_2$ , and  $i_3$  in the circuit of Fig. 3.84.



Figure 3.84 For Prob. 3.40.

- **3.41** Rework Prob. 3.11 using mesh analysis.
- \*3.42 In the circuit of Fig. 3.85, solve for  $i_1$ ,  $i_2$ , and  $i_3$ .



Figure 3.85 For Prob. 3.42.

**3.43** Determine  $v_1$  and  $v_2$  in the circuit of Fig. 3.86.



Figure 3.86 For Prob. 3.43.

**3.44** Find  $i_1$ ,  $i_2$ , and  $i_3$  in the circuit in Fig. 3.87.



Figure 3.87 For Prob. 3.44.

- **3.45** Rework Prob. 3.23 using mesh analysis.
- **3.46** Calculate the power dissipated in each resistor in the circuit in Fig. 3.88.



Figure 3.88 For Prob. 3.46.

3.47 Calculate the current gain  $i_o/i_s$  in the circuit of Fig. 3.89.



Figure 3.89 For Prob. 3.47.

**3.48** Find the mesh currents  $i_1$ ,  $i_2$ , and  $i_3$  in the network of Fig. 3.90.



Figure 3.90 For Prob. 3.48.

**3.49** Find  $v_x$  and  $i_x$  in the circuit shown in Fig. 3.91.



Figure 3.91 For Prob. 3.49.

**3.50** Find  $v_o$  and  $i_o$  in the circuit of Fig. 3.92.



Figure 3.92 For Prob. 3.50.

# Section 3.6 Nodal and Mesh Analyses by Inspection

**3.51** Obtain the node-voltage equations for the circuit in Fig. 3.93 by inspection. Determine the node voltages  $v_1$  and  $v_2$ .



Figure 3.93 For Prob. 3.51.

**3.52** By inspection, write the node-voltage equations for the circuit in Fig. 3.94 and obtain the node voltages.



Figure 3.94 For Prob. 3.52.

**3.53** For the circuit shown in Fig. 3.95, write the node-voltage equations by inspection.



Figure 3.95 For Prob. 3.53.

**3.54** Write the node-voltage equations of the circuit in Fig. 3.96 by inspection.



Figure 3.96 For Prob. 3.54.

3.55 Obtain the mesh-current equations for the circuit in Fig. 3.97 by inspection. Calculate the power absorbed by the  $8-\Omega$  resistor.



Figure 3.97 For Prob. 3.55.

**3.56** By inspection, write the mesh-current equations for the circuit in Fig. 3.98.



Figure 3.98 For Prob. 3.56.

**3.57** Write the mesh-current equations for the circuit in Fig. 3.99.



Figure 3.99 For Prob. 3.57.

**3.58** By inspection, obtain the mesh-current equations for the circuit in Fig. 3.100.



Figure 3.100 For Prob. 3.58.

## Section 3.8 Circuit Analysis with *PSpice*

**3.59** Use *PSpice* to solve Prob. 3.44.

**3.60** Use *PSpice* to solve Prob. 3.22.

**3.61** Rework Prob. 3.51 using *PSpice*.

**3.62** Find the nodal voltages  $v_1$  through  $v_4$  in the circuit in Fig. 3.101 using *PSpice*.



Figure 3.101 For Prob. 3.62.

- **3.63** Use *PSpice* to solve the problem in Example 3.4.
- **3.64** If the Schematics Netlist for a network is as follows, draw the network.

| R_R1  | 1 | 2 | 2K    |     |  |
|-------|---|---|-------|-----|--|
| R_R2  | 2 | 0 | 4K    |     |  |
| R_R3  | 3 | 0 | 8K    |     |  |
| R_R4  | 3 | 4 | 6K    |     |  |
| R_R5  | 1 | 3 | 3K    |     |  |
| V_VS  | 4 | 0 | DC    | 100 |  |
| I_IS  | 0 | 1 | DC    | 4   |  |
| F_F1  | 1 | 3 | VF_F1 | 2   |  |
| VF_F1 | 5 | 0 | 0V    |     |  |
| E_E1  | 3 | 2 | 1     | 3   |  |

**3.65** The following program is the Schematics Netlist of a particular circuit. Draw the circuit and determine the voltage at node 2.

| R_R1 | 1 | 2 | 20  |     |
|------|---|---|-----|-----|
| R_R2 | 2 | 0 | 50  |     |
| R_R3 | 2 | 3 | 70  |     |
| R_R4 | 3 | 0 | 30  |     |
| V_VS | 1 | 0 | 20V |     |
| T TS | 2 | Ω | DC. | 2.A |

## Section 3.9 Applications

**3.66** Calculate  $v_o$  and  $i_o$  in the circuit of Fig. 3.102.



Figure 3.102 For Prob. 3.66.

**3.67** For the simplified transistor circuit of Fig. 3.103, calculate the voltage  $v_o$ .