18. Carefully observe the IR spectra depicted below and indicate if the following statements are true or false?

	True	(T) or Fa	alse (F)?
(i) Is likely to be a symmetrical alkyne	(T	1/
(ii) Has sp C-H bond	(T) <
(iii) Is devoid of any carbonyl group	(T)~
(iv) Has several sp ³ C-H bonds	(T) <
(v) May have a nitrile (-C≡N group) as wel	1 (F) %
(vi) Has sp ² C-H bonds	(F) 🎸

19. Calculate the magnetic field (in tesla) require to flip an ¹H nucleus in an NMR spectrometer that operate at 600 MHz. (Given: $v = 2.675 \times 10^8 \text{ T}^{-1} \text{ s}^{-1}$ and $\pi = 3.14$)

Magnetic field
$$B_0 = \frac{2\pi v}{y} = 14.086T$$

20. If two signals differ by 90 Hz in a 400 MHz spectrometer, by how much do they differ in a 600 MHz spectrometer?

135 Hz

21. Show the structure of the compound corresponding to the following ¹H NMR for molecular formula: C₆H₁₂O₂. IR (KBr cm⁻¹): 3500 (broad), 1715 (strong)

22. Give the structure of the compound corresponding to the following ¹H NMR for molecular formula: C₁₀H₁₄O. **1 Mark**

23. Indicate the structure of the compound corresponding to the following ¹H NMR for molecular formula: C₂H₆O and IR (KBr cm⁻¹): 3300 (medium), 2234 (medium) 1715 (strong)

Indian Institute of Technology, Guwahati Guwahati, INDIA 781 039

Department of Chemistry

Date: 21 September 2017; 2:00-4.00 p.m.

CH-101

IBRAR ALI

Mid Semester Exam Division: 111

Maximum Marks = 30

Name: Roll No.:

170121020

Tutorial Group: 79

Answer only in this sheet. Only fully correct answers will be accepted. All questions are compulsory. Rough work is mandatory.

1. Given the Planck's radiation law, $\rho(\upsilon) = \frac{8\pi h \upsilon^3}{c^3} \frac{1}{h\upsilon}$, the expression for $\rho(\lambda)$ would be, 2.0 Marks

2. If, $E_{\mathcal{V}} = (v + \frac{1}{2})\hbar\omega$ is the energy of a harmonic oscillator in the quantum state v, then the expression for $\langle x^2 \rangle$ is:

2.0 Marks

3. If the wave function for an electron circulating on a ring could be written as $\Psi(\varphi)=Ae^{im\varphi}$, then the value of A would be, 2.0 Marks

 $\sqrt{2\pi}$ (Q) $1/\sqrt{\pi}$ (P) $1/\sqrt{2\pi}$ (0) $\sqrt{2/\pi}$

4. A proton (1.67×10⁻²⁷ kg) is confined in an infinite square well of width 10 fm (1 fm = 10^{-15} m). h = 6.62×10^{-34} Js; c = 3.0 × 108 ms⁻¹. The wavelength of the photon (in fm) emitted when the proton undergoes a transition from the first excited state (n = 2) to the ground state (n = 1) is: 2.0 Marks

(M) 302 (L) 101 (K) 202

With the length of the box, L, the probability of finding an electron with, = 0.75 L is,

0.62 (G) 0.26

6.	Draw the Lewis struc	cture of XeO ₂ F ₂ with appropr	iate molecu	lar geomet	ry.		1 Mark
0	F	:0: -Xe-F:		`			
7.	Using the VSEPR the	ory draw the most probable	molecular g	eometry fo	r ClF ₃		1 Mark
	FL.						
8.	Arrange the element	ts (Mg, Al, P and S) in the incr	easing orde	r of their fi	rst ionization pot	ential.	1 Mark
	AI	LMgLSLP					
9.	The correct order of	electronegativity of the follo	wing eleme	nts is.			1 Mark
	(F) 0 < S < As <	Ge (E) Ge < As < S < C		(D) S	< 0 < As < Ge	(C) As < 0	< Ge < S
10.	(i) [Cr(NH:	ng in the decreasing order of $_{3}^{3}$) ₆] ³⁺ , [CrCl ₆] ³⁻ , [Cr(CN) ₆] ³⁻ 0) ₆] ²⁺ , [Rh(H ₂ O) ₆] ³⁺ , [Co(H ₂ O)		splitting e	nergy ∆₀.		(1+1) Marks
e	(i) [Cr(($[CN]_{3-} > [C_{4}(R)_{3-}]$	VH3)6]	3+ > 1	[C&C16]3-1		
V	(ii) [Rh(H20)6J3+ > [Col	H20)6]3	·+ > [(Co (H20)6]	24	-
11.	Use valence bond theory and complete the following table (0.5+0.5+0.5+0.5) Mar					5+0.5) Marks	
	-Gomplex	-Hybrid-orbitals-involved	-Geometry		-Magnetism-		
	[Co(Cl) ₄] ²⁻	SP3 (4 coordinal)	telral	redral	Par amagni	1) ic	
0 /	[Ni(CN) ₄] ²⁻	dSP2 (4 wo odinile)	Square	Planar	dia magno	<u>Jic</u>	
1	[CoF ₆] ³⁻	SP3d2 (6 coordinate)	octahe	dral	Paramagn	Dic	
	[Co(CN) ₆] ³⁻	d2sP3 (6 coordinate)	octah	edra	digmagn	elic.	
12.	12. Which of the following is true when one compares the bond angles in CH ₂ F ₂ and CH ₂ Br ₂ 1 Mark						1 Mark
0	$ \begin{array}{c cccc} (B) & F & F & > \\ H_2 & F & < \\ \hline (Z) & F & C & F & < \end{array} $	$\begin{array}{c c} H & H & A & F \\ \hline F_2 & Br & Y & Br \\ \hline H_2 & H_2 & H_2 \\ \end{array}$	F > Br.(Br H ₂ Br ₂			
13.	I ₂ has a lower boilin	g point than Br ₂					1 Mark
	(X) True	(W) False		1			

14. Which of the following statements are true (T) and which are false (F). (Suppose the answer for the statements (i), (ii), (iii) and (iv) follows the order; True, True, False and True respectively, then the option is "TTFT")

1+1 Marks

14a

- (i) The pollution prevention hierarchy is: Dispose, Treat, Recycle, Prevent.
- (ii) Turnover number tells about the productivity of a catalyst.
- (iii) In a cascade reaction, several components react together to give a single product.
- (iv) E-factor of pharmaceuticals are worse than bulk chemicals.

/ 1

- (i) Diels-Alder reaction goes with 100% atom economy.
- (ii) Reaction having higher yields has always higher atom economy.
- (iii) Biorefinary converts biomass in to useful products.
- (iv) Solvent CCl4 is preferable over diethylether.

(S) TFTT Tick the right option
Tick the right ention
TICK THE LIGHT OUTION

Tick the right option

(V) FTFT

(U) FTTF

(P) TTFT

(O) TFTF

15. Shown below are two quartz cuvettes of 1 cm path length. The first one is having capacity of 1 mL and the second 5 mL. If a compound of same concentration is filled and UV-Vis spectra is measured in both the cuvettes separately, what will be the effect of λ_{max}, absorbance (A) and extinction coefficient (ε).
1 Mark

Statements

- (i) λ_{max} shall remain unchanged in both.
- (ii) λ_{max} , shall remain same but ϵ for 2^{nd} will be more than 1^{st} cuvette.
- (iii) Absorbance (A) for 2nd shall be 5 times more than the first.
- (iv) λ_{max} , and ϵ shall remain same but (A) for 2^{nd} shall be more than the 1^{st} .
- (v) λ_{max} Absorbance (A) and ϵ all three shall remain unchanged.

2

he correct statements are					

(N) i, ii and v only	(L) i and v only
(M) i, ii, iii and v only	(K) ii, iii, iv only
	. /

SI Cuvette 2nd Cuvet

16. Observe the given UV-Vis spectra carefully and answer the following:

1 Mark

Statements

- (i) SA-BP on gold spectra is most RED shifted.
- (ii) All the compounds are likely to be coloured.
- (iii) Electronic transition of Gold np requires lowest energy.
- (iv) SA-BP on gold spectra is most blue shifted.
- (v) All the three species have nearly equal extinction coefficient.
- (vi) PB on gold have $\lambda_{\text{max}} \approx 545 \text{ nm}$.

The correct statements are

(J) ii, iv and v only	(H) i, ii, iii, vi only
(I) i, iii, iv and v only	(G) i, ii, v, vi only

Gold np
PB on gold
SA-PB on gold
400 500 600 700 800

17. From the context of IR spectroscopy, indicate if the following statements are true or false?

True (T) or False (F)?

(i) Energy absorption will increase the amplitude and not the frequency.	(T
(ii) Frequency decreases with increasing molecular weight.	(T
(iii) Frequency increases with increasing bond energy.	(T
(iv) Region between 1400-4000 cm ⁻¹ is called finger print region.	(F
(v) Symmetrical alkyne will show intense peak at 2150 cm ⁻¹	(F

3

1 Mark