Π исток 10

10 (2.6). Дзета функция Артина

Упражнения и задачи

- 1. Докажите, что $|\mathbb{P}^n(\mathbb{F}_q)| = q^n + q^{n-1} + \dots + 1$.
- 2. Докажите, что для $f = -y_0^2 + y_1^2 + y_2^2 + y_3^2$ дзета-функция имеет вид $Z_f(u) = (1 u)^{-1}(1 qu)^{-2}(1 q^2u)^{-1}$, если -1 квадрат в \mathbb{F}_q , и $Z_f(u) = (1 u)^{-1}(1 qu)^{-1}(1 + qu)^{-1}(1 q^2u)^{-1}$ в противном случае.
- 3. Докажите, что проективная n-мерная гиперплоскость в $\mathbb{P}^n(\mathbb{F}_q)$ (т.е. гиперповерхность, заданная однородным многочленом степени 1) имеет столько же точек сколько n-1-мерное проективное пространство $\mathbb{P}^{n-1}(\mathbb{F}_q)$.
- 4. Пусть $f(x_0, x_1, x_2) \in \mathbb{F}_q[x_0, x_1, x_2]$ однорлный многочлен $\deg f = n$. $h = \in \mathbb{F}_q[x_0, x_1, x_2]$ линейная форма, такая что не каждый её нуль является нулём f. Докажите, что в $\mathbb{P}^2(\mathbb{F}_q)$ у f и h может быть не более n общих нулей (т.е. плоская проективная кривая пересекается с проективной прямой в не более чем n точках).
- 5. Пусть $SL_n(\mathbb{F}_q)$ множество $n \times n$ матриц с элементами из поля \mathbb{F}_q и определителем равным 1. Покажите, что $SL_n(\mathbb{F}_q)$ можно рассматривать как гиперповерхность в $\mathbb{A}^{n^2}(\mathbb{F}_q)$ и что число её точек равно $(q-1)^{-1}(q^n-1)(q^n-q)\dots(q^n-q^{n-1})$.
- 6. Пусть $\frac{\partial}{\partial x_i}$ операторы формальных производных на $\mathbb{F}_q[x_0,\dots,x_n]$ (например, для $f(x)=a_0x^n+\dots+a_{n-1}x+a_n$ по определению $\frac{\partial}{\partial x}f=a_0x^{n-1}+\dots+a_{n-1}$ и пусть $f\in\mathbb{F}_q[x_0,\dots,x_n]$ однородный многочлен $\deg f=m$. Докажите, что:
 - $\sum_{i=0}^{n} x_i \frac{\partial}{\partial x_i} = mf;$
 - если (m,p)=1 $(p=\operatorname{char}\mathbb{F}_q)$ и для $a=(a_0,\ldots,a_n)$ при всех i выполняется $\frac{\partial}{\partial x_i}f(a)=0$, то f(a)=0. (Такая точка a называется особой точкой гиперповерхности f=0).
- 7. Пусть $q = p^n$, (m, p) = 1. Докажите, что гиперповерхность $a_0 x_0^m + \dots + a_n x_n^m = 0$ не имеет особых точек в $\mathbb{P}^n(\mathbb{F}_q)$.
- 8. Пусть $q = p^n$, $p \neq 2$. Рассмотрим кривую $ax^2 + bxy + cy^2 = 1$, $a, b, c \in \mathbb{F}_q$. Докажите, что если $d = b^2 4ac$ не является квадратом в \mathbb{F}_q , то не существует бесконечно удаленных точек на кривой в $\mathbb{P}^n(\mathbb{F}_q)$, а если d квадрат, то существует одна или две бесконечно удаленные точки, в зависимости от обращения d в ноль. При этом если d = 0, то бесконечно удаленная точка является особой точкой заданной кривой.
- 9. Выпишите дзета-функцию кривой $x_0x_1 x_2x_3 = 0$ над \mathbb{F}_p .
- 10. Выпишите дзета-функцию для $f = a_0 x_0^2 + \dots + a_n x_n^2$ над \mathbb{F}_q при $\operatorname{char}(\mathbb{F}_q) \neq 2$.
- 11. Покажите, что на кривой $x_0^3+x_1^3+x_2^3=0$ в $\mathbb{P}^2(\mathbb{F}_4)$ лежит девять точек. Выпишите дзета-функцию этой кривой.
- 12. Выпишите дзета-функцию кривой $y^2 = x^3 + x^2$ над \mathbb{F}_p .
- 13. Пусть $q\equiv 1$ (3), $\alpha\in\mathbb{F}_q^*$. Покажите, что дзетв-функция кривой $y^2=x^3+\alpha$ над \mathbb{F}_q имеет вид $Z(u)=(1+au+qu^2)(1-u)^{-1}(1-qu)^{-1}$, где $a\in\mathbb{Z},\,|a|\leqslant 2\sqrt{q}$.

14. Пусть C_1 — кривая над \mathbb{F}_p заданная $y^2=x^3-Dx,\, D\neq 0$. Покажите, что подстановка $x=\frac{1}{2}(u+v^2),\,y=\frac{1}{2}v(u+v^2)$ переводит C_1 в кривую C_2 заданную уравнением $u^2-v^4=4D$. Докажите, что для любого расширения $\mathbb{F}_q/\mathbb{F}_p$ для числа точек справедливо $|C_1(\mathbb{F}_q)|>|C_2(\mathbb{F}_q)|$.

SageMath

- Исследуйте основные функции SageMath связанные с количеством точек на кривых над конечными полями:
 - Для эллиптических и гиперэллиптических кривых: cardinality().

Темы для самостоятельного изучения

• *L*-функции Артина. Суперэллиптическое уравнение. [Степ], §§I.3–I.4.