Franklin Hu, Sunil Pedapudi SID: 20157715SID: 20247144 CS 194-10

2011-09-19 Assignment 2

$1. \ \, \mathbf{Kernels}$

(a) Original input

Input mapped onto space consisting of x_1 and x_1x_2 :

The maximum margin separator is the line $x_1x_2 = 0$.

The separating line on the original input space is a plane that rests at $x_1x_2 = 0$.

(b) Given

$$(x_1 - a)^2 + (x_2 - b)^2 - r^2 = 0$$
$$x_1^2 - 2ax_1 + a^2 + x_2^2 - 2bx_2 + b^2 - r^2 = 0$$

let us pose the following:

$$\mathbf{w} = [-2a, -2b, 1, 1]$$

$$\mathbf{x} = [x_1, x_2, x_1^2, x_2^2]$$

$$\beta = a^2 + b^2 - r^2$$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x} + \beta > 0, \text{ if } \mathbf{x} \text{ escapes the circle region}$$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x} + \beta < 0, \text{ if } \mathbf{x} \text{ occupies the circle region}$$

$$\mathbf{w}^{\mathbf{T}}\mathbf{x} + \beta = 0, \text{ if } \mathbf{x} \text{ demarcates the circle region}$$

We then let $y_i = -1$ if **x** occupies the region inside the circle; $y_i = 1$ otherwise. Then, to satisfy the separability constraint, we note that

$$y_i(\mathbf{w^T}\mathbf{x} + \beta) > 0, \forall i$$

Thus, we show that in feature space (x_1, x_2, x_1^2, x_2^2) , the region defined by $(x_1-a)^2+(x_2-b)^2-r^2=0$ is linearly separable.

(c) Given

$$K(\mathbf{u}, \mathbf{v}) = (1 + \mathbf{u}^{T} \mathbf{v})^{2}$$

$$= 1 + 2\mathbf{u}^{T} \mathbf{v} + (\mathbf{u}^{T} \mathbf{v})^{2}$$

$$= 1 + 2u_{1}v_{1} + 2u_{2}v_{2} + (u_{1}^{2}v_{1}^{2} + 2u_{1}v_{1}u_{2} + v_{2} + u_{2}^{2}v_{2}^{2})$$

Let us realize that this kernel suggests a feature space $[1,\sqrt{2}u_1,\sqrt{2}u_2,u_1^2,u_2^2,\sqrt{2}u_1u_2]$. For simplicity, we adapt this feature space more generally as $[1,x_1,x_2,x_1^2,x_2^2,x_1x_2]$ and drop the constant multipliers as suggested. Then, given an ellipse is defined by

$$c(x_1 - a)^2 + d(x_2 - b)^2 = 1$$
$$cx_1 - 2acx_1 + ca_2^2 + dx_2^2 - 2dbx_2 + db^2 - 1 = 0$$

we wish to recycle the proof from 1b. To do this, we form the following vector

$$\mathbf{w} = [ca^2 + db^2, -2ac, -2db, c, d, 0]$$

Then, we define $y_i = -1$ if a point lies within the ellipse, $y_i = 1$ otherwise. We simply adopt the inequalities from 1b and claim that

 $\mathbf{w}^{\mathbf{T}}\mathbf{x} + \beta > 0$, if \mathbf{x} escapes the ellipse region $\mathbf{w}^{\mathbf{T}}\mathbf{x} + \beta < 0$, if \mathbf{x} occupies the ellipse region $\mathbf{w}^{\mathbf{T}}\mathbf{x} + \beta = 0$, if \mathbf{x} demarcates the ellipse region

which satisfies the separability constraint $y_i(\mathbf{w^T}\mathbf{x} + \beta) > 0, \forall i$

2. Logistic Regression Given:

$$L(w) = -\sum_{i=1}^{N} log(\frac{1}{1 + e^{y_i(w^T x_i + b)}}) + \lambda ||w||_2^2$$

(a)
$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^{N} (1 + e^{y_i(w^T x_i + b)}) \cdot -1 \cdot (1 + e^{y_i(w^T x_i + b)})^{-2} (e^{y_i(w^T x_i + b)}) \cdot x_{ij} y_i + \frac{\partial}{\partial w_j} (\lambda ||w||_2^2)$$

$$= -\sum_{i=1}^{N} \frac{-e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j$$

$$= \sum_{i=1}^{N} \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j$$

$$\begin{split} &(b) \\ &\frac{\partial^{2}L}{\partial w_{j}\partial w_{k}} = \frac{\partial L}{\partial w_{k}} (\sum_{i=1}^{N} \frac{e^{y_{i}(w^{T}x_{i}+b)}}{(1+e^{y_{i}(w^{T}x_{i}+b)})} \cdot x_{ij}y_{i} + 2\lambda w_{j}) \\ &= \sum_{i=1}^{N} \frac{x_{ij}y_{i} \cdot (1+e^{y_{i}(w^{T}x_{i}+b)}) \cdot \frac{\partial L}{\partial w_{k}} (e^{y_{i}(w^{T}x_{i}+b)}) - e^{y_{i}(w^{T}x_{i}+b)} \cdot \frac{\partial L}{\partial w_{k}} (1+e^{y_{i}(w^{T}x_{i}+b)})}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= \sum_{i=1}^{N} \frac{x_{ij}y_{i} \cdot (1+e^{y_{i}(w^{T}x_{i}+b)}) \cdot \frac{\partial L}{\partial w_{k}} (e^{y_{i}(w^{T}x_{i}+b)}) - e^{y_{i}(w^{T}x_{i}+b)} \cdot \frac{\partial L}{\partial w_{k}} (e^{y_{i}(w^{T}x_{i}+b)})}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= \sum_{i=1}^{N} \frac{x_{ij}y_{i} \cdot (1+e^{y_{i}(w^{T}x_{i}+b)} - e^{y_{i}(w^{T}x_{i}+b)}) \cdot \frac{\partial L}{\partial w_{k}} (e^{y_{i}(w^{T}x_{i}+b)})}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= \sum_{i=1}^{N} \frac{x_{ij}y_{i} \cdot \frac{\partial L}{\partial w_{k}} (e^{y_{i}(w^{T}x_{i}+b)})}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= \sum_{i=1}^{N} \frac{x_{ij}y_{i} \cdot e^{y_{i}(w^{T}x_{i}+b)}}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= \sum_{i=1}^{N} \frac{x_{ij}y_{i} \cdot e^{y_{i}(w^{T}x_{i}+b)}}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \\ &= \sum_{i=1}^{N} \frac{x_{ij}y_{i}y_{i} \cdot e^{y_{i}(w^{T}x_{i}+b)}}{(1+e^{y_{i}(w^{T}x_{i}+b)})^{2}} \end{split}$$

Since $y_i^2 = 1$, we simply rewrite this as

$$\sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \tag{1}$$

(c) Then, we wish to show

$$\mathbf{a}^{\mathbf{T}}\mathbf{H}\mathbf{a} \equiv \sum_{j,k} a_j a_k H_{j,k} \ge 0$$

Note that summation (1) indicates the j, k^{th} element of the Hessian which allows us to rewrite the above inequality as

$$\begin{split} \sum_{j,k} a_{j} a_{k} H_{j,k} &= \sum_{j,k} a_{j} a_{k} \sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \\ &= \sum_{j,k} a_{j} a_{k} \sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \\ &= \sum_{j,k} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} a_{j} a_{k} x_{ij} x_{ik} \\ &= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \sum_{k} a_{k} x_{ik} \\ &= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}^{T} \mathbf{x} \\ &= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}^{T} \mathbf{x} \\ &= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}^{T} \mathbf{x} \\ &= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \cdot (\mathbf{a}^{T} \mathbf{x})^{2} \geq 0 \end{split}$$

We show this summation is non-negative by showing each component of the summation is non-negative. Consider

$$\sum_{i=1}^{N} \frac{\alpha}{\beta} \cdot \epsilon = \sum_{i=1}^{N} \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \cdot (\mathbf{a^T x})^2 \ge 0 \text{ Then, we realize that}$$

$$\alpha = e^{y_i(w^T x_i + b)} > 0, \text{since } e^z \text{ is always positive}$$

$$\beta = (1 + e^{y_i(w^T x_i + b)})^2 > 0$$

$$\epsilon = (\mathbf{a^T x})^2 \ge 0$$

Therefore, L is convex.

3. Training data

(a) Yes the classes {+,-} are linearly separable. The - class is represented by circles in the graph below.

(b) The best hyperplane by inspection is:

$$x_{2} = -x_{1} + 1.5$$

$$x_{1} + x_{2} - 1.5 = 0$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} - 1.5 = 0$$

So therefore $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and b = -1.5. The support vectors are (1,0), (0,1), (2,0), (1,1).

- (c) If we remove a support vector, then the optimal margin will increase since there are fewer constraints.
- (d) The answer for (c) is not always true. Consider if we have a class + with points (0,0), (0,1), (0,2) and a class with points (1,0), (1,1), (1,2). If we remove either (0,1) or (1,1), the best hyperplane does not change and thus the optimal margin remains the same.

4. 3 point dataset

- (a) No
- (b)

$$\phi(x_1) = [1, 0, 0]^T$$

$$\phi(x_2) = [1, -\sqrt{2}, 1]^T$$

$$\phi(x_3) = [1, \sqrt{2}, 1]^T$$

Yes, this is linearly separable with the hyperplane $x^2 = \frac{1}{2}$

(c) Let

$$\begin{split} x_1 &= 0 \\ x_2 &= -1 \\ x_3 &= 1 \\ y_1 &= 1 \\ y_2 &= -1 \\ y_3 &= -1 \\ \Lambda(w_1, w_2, w_3, b, \lambda, \mu, \varepsilon) &= \frac{1}{2} \|w\|_2^2 \\ &+ \lambda(y_1(w_1 + b) - 1) \\ &+ \mu(y_2(w_1 - \sqrt{2}w_2 + w_3 + b) - 1) \\ &+ \varepsilon(y_3(w_1 + \sqrt{2}w_2 + w_3 + b) - 1) \end{split}$$

Then, using the method of Lagrange multipliers,

$$\frac{\partial \Lambda}{\partial w_1} = \frac{1}{2}w_1^2 + \lambda - \mu - \varepsilon = 0 \tag{2}$$

$$\frac{\partial \Lambda}{\partial w_2} = \frac{1}{2}w_2^2 + \sqrt{2}\mu - \sqrt{2}\varepsilon = 0 \tag{3}$$

$$\frac{\partial \Lambda}{\partial w_3} = \frac{1}{2}w_3^2 - \mu - \varepsilon = 0 \tag{4}$$

$$\frac{\partial \Lambda}{\partial b} = \lambda - \mu - \varepsilon = 0 \tag{5}$$

$$\frac{\partial \Lambda}{\partial \lambda} = w_1 + b - 1 = 0 \tag{6}$$

$$\frac{\partial \lambda}{\partial \mu} = -(w_1 - \sqrt{2}w_2 + w_3 + b) - 1 = 0 \tag{7}$$

$$\frac{\partial \Lambda}{\partial \varepsilon} = -(w_1 + \sqrt{2}w_2 + w_3 + b) - 1 = 0 \tag{8}$$

We inspect these equations to arrive at the following conclusions:

From (4), we know $\lambda - \mu - \varepsilon = 0$ so in (1), we realize that $\frac{1}{2}w_1^2 + \lambda - \mu - \varepsilon = \frac{1}{2}w_1^2 = 0$, therefore $w_1 = 0$. Then, in (5), $w_1 + b - 1 = 0 + b - 1 = 0$, therefore b = 1. Then, (6) and (7) render a system of simple equations.

$$-(0 - \sqrt{2}w_2 + w_3 + 1) - 1 = 0$$
$$-(0 + \sqrt{2}w_2 + w_3 + 1) - 1 = 0$$

Solving this system of equations renders $w_3 = -1$ and $w_2 = 0$.

- (d) Generalizing the solution to 4c. renders that $b = \rho$ from (5). Given ρ_1 and ρ_2 , let us say that 4c. expresses b, \mathbf{w} for some ρ_1 . Then, for some ρ_2 , we find $b = \rho_2$, $\mathbf{w} = [0, 0, -2\rho_2]$. We realize that our function classifies according to the sign of $\rho(\mathbf{w^Tx} + b)$ instead of simply $\mathbf{w^Tx} + b$. Knowing that $\rho \geq 1$, we realize that $sign(\mathbf{w^Tx} + b) = sign(\rho(\mathbf{w^Tx} + b))$ so the classification remains the same for all such ρ .
- 5. Seismic waves
 - (a) phase, iphase frequencies
 - phase

	phase	absolute frequency	relative frequency
_	Lg	1594	0.017811
	P	61779	0.690322
	PKP	5974	0.066754
	Pg	403	0.004503
	Pn	10762	0.120255
	Rg	11	0.000123
	S	4685	0.052350
	Sn	4285	0.047881

• iphase

	iphase	absolute frequency	relative frequency
	Lg	2171	0.024259
	N	10683	0.119372
	P	50815	0.567810
_	Pg	5291	0.059122
	Pn	12610	0.140905
	Px	365	0.004079
	Rg	444	0.004961
	Sn	318	0.003553
	Sx	4179	0.046696
	tx	2617	0.029243

(b) Confusion matrix (empty cells are zero)

						phase							
			Lg	PKP	P	S	Rg	Sn	Pn	Pg	Te	otal	Accuracy (%)
		Lg	293	2	114	860	5	859	34	4	2	171	13.496
		Sx	297	61	971	1257	3	1191	393	6	4	179	58.579
		tx	17	383	2039	26		18	111	23	20	617	0
		Px	30	13	101	46		68	61	46	3	365	60.548
	iphase	N	431	564	6097	1278	1	1133	1149	30	10)683	0
		Ρ	105	4586	42600	336		153	2993	42	50)815	83.834
		Rg	83		8	182	2	169			4	144	0.450
		Pg	218	120	2716	318		303	1509	107	55	291	2.022
		Pn	95	244	7123	243	256		4504	145	12	2610	35.717
		Sn	25	1	10	139		135	8		3	318	42.453

(c) Top stations

i. 7: 8751 detections

ii. 24: 5794 detections

iii. 3: 2677 detections

iv. 80: 2528 detections

v. 19: 2478 detections

vi. 38: 2429 detections

vii. 63: 2411 detections

viii. 12: 2343 detections

ix. 74: 2265 detections

x. 65: 2227 detections

(d) Data munging

	station	iphase accuracy (%)	classifier accuracy (%)
	7	97.75	88.08
	24	87.23	92.15
	3	83.86	92.02
	80	95.64	88.10
•	19	67.56	88.87
	38	94.74	90.69
	63	91.09	88.18
	12	82.33	88.77
	74	81.44	89.56
	65	81.56	92.51

(e) Optimal c

9

station	c	accuracy
7	0.42	93.23
24	0.5	86.64
	0.1	87.43
	0.2	87.03
)	0.05	87.98
	0.01	89.79
	0.001	92.04
	0.0001	92.20
	0	92.15