

13 NOV 2000

EXPRESS MAIL CERTIFICATE

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee service under 37 CFR § 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

09700354

Typed or Printed Name	Matthew GHS	Express Mail No.	EL 563 650 845 US
Signature	<i>MGHS</i>	Date	November 13, 2000
Form PTO-1390 (REV 10-94)		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		ATTORNEY'S DOCKET NUMBER IRVN-007CIP2	
INTERNATIONAL APPLICATION NO. PCT US99/10793 ✓		U.S. APPLICATION NO.	
INTERNATIONAL FILING DATE May 14, 1999 ✓		PRIORITY DATE CLAIMED May 14, 1998 ✓	

TITLE OF INVENTION: Factors Affecting Tumor Necrosis Factor Receptor Releasing Enzyme Activity ✓

APPLICANT(S) FOR DO/EO/US (The Regents of the University of California)

EATAWAGA Tetsuya

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This express request to begin examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and the PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2)):
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. Amendments to the claims of the International Application under PCT Article 19 (37 U.S.C. 371(c)(3)):
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). (**SIGNED**)
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

ITEMS 11 TO 16 BELOW CONCERN OTHER DOCUMENT(S) OR INFORMATION INCLUDED:

11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13. A **FIRST** preliminary amendment.
 A **SECOND** or **SUBSEQUENT** preliminary amendment.
14. A substitute specification.
15. A change of power of attorney and/or address letter.
16. Other items or information:

17. The following fees are submitted:**Basic National Fee (37 CFR 1.492(a)(1)-(5)):**

Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and international search report not prepared by the EPO or JPO \$970.00

International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search report prepared by the EPO or JPO \$840.00

International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$690.00

International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$670.00

International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4) \$ 96.00

ENTER APPROPRIATE BASIC FEE AMOUNT = \$840.00

Surcharge of **\$130.00** for furnishing the oath or declaration later than 20 30 months from the earliest claimed priority date (37 CFR 1.492(e)).

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	
Total Claims	20 - 20 =	00	X \$18.00	\$
Independent Claims	06 - 03 =	03	X \$78.00	\$234.00
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+ \$260.00	\$
TOTAL OF ABOVE CALCULATIONS =			\$	
Reduction of $\frac{1}{2}$ for filing by small entity, if applicable. (Note 37 CFR 1.9, 1.27, 1.28)			\$537.00	
SUBTOTAL =			\$537.00	
Processing Fee of \$130.00 for furnishing the English translation later than <u> 20 </u> <u> 30 </u> months from the earliest claimed priority date (37 CFR 1.492(f)).			\$	
TOTAL NATIONAL FEE =			\$537.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property.			\$	
TOTAL FEES ENCLOSED =			\$537.00	
			Amount to be: refunded	\$
			charged	\$537.00

- a. A check in the amount of \$ * to cover the above fees is included.
- b. Please charge my Deposit Account No. 50-0815 in the amount of \$ 537.00 to cover the above fees.
- c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 50-0815.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO

BOZICEVIC, FIELD & FRANCIS LLP
200 Middlefield Road, Suite 200
Menlo Park, CA 94025
(650) 327-3400 Telephone
(650) 327-3231 Facsimile

SIGNATURE

NAME: Carol L. Francis

36,513
REGISTRATION NUMBER

09/700354

529 Rec'd PCT/PTC 13 NOV 2000

Atty Dkt. No.: IRVN-007CIP2

EXPRESS MAIL CERTIFICATE

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

Typed or Printed Name	<i>Matthew Ottis</i>	Express Mail No.	EL 563 650 845 US
Signature	<i>M. Ottis</i>	Date	November 13, 2000

**PRELIMINARY
AMENDMENT**

Address to:
Commissioner for Patents
Washington, D.C. 20231

Attorney Docket	IRVN-007CIP2 (UC 96-367-4)
First Named Inventor	Gatanaga, et al.
Application Number	N/A
Filing Date	Herewith
Group Art Unit	N/A
Examiner Name	N/A
Title	Factors Affecting Tumor Necrosis factor Receptor Releasing Enzyme Activity

Sir:

Prior to the examination on the merits of the above-referenced application, please amend the application as follows.

AMENDMENTS

In The Claims:

Cancel claims 1-36 without prejudice.

Add the following new claims:

-- 37. (New) An isolated polypeptide having at least one of the following properties:

- a) the polypeptide comprises at least 10 consecutive amino acid residues encoded in any of SEQ ID NOS:8, 9, 1-3, 5-6, or 10; or
- b) the polypeptide comprises at least 15 consecutive amino acids that are at least 80% identical to a sequence encoded in any of SEQ ID NOS:8, 9, 1-3, 5-6, or 10.

38. (New) The polypeptide of claim 37, having at least one of the following properties:

- a) the polypeptide comprises at least 10 consecutive amino acid residues contained in SEQ ID NOS: 147-149, 151, or 153-154;
- b) the polypeptide comprises at least 15 consecutive amino acids that are at least 80% identical to a sequence contained in SEQ ID NOS: 147-149, 151, or 153-154.

39. (New) The polypeptide of claim 37, which when incubated with COS-1 cells expressing TNF receptor, promotes enzymatic cleavage and release of the receptor.

40. (New) The polypeptide of claim 37, which is immunogenic for an antibody specific for a modulator of TRRE activity.

41. (New) The polypeptide of claim 37, which either:

- a) lacks a membrane spanning sequence; or
- b) is produced by a process comprising recombinant expression in a host cell followed by purification of the polypeptide from medium in which the cell is cultured.

42. (New) A method of producing the polypeptide according to any of claim 37, comprising:

- a) culturing host cells genetically altered to express a polynucleotide comprising an encoding sequence for the polypeptide; and subsequently
- b) purifying the polypeptide from the cells.

43. (New) The method of claim 42, comprising harvesting culture medium, and purifying the polypeptide from the culture medium by a process comprising affinity chromatography.

44. (New) An isolated antibody specific for a polypeptide according to claim 37.

45. (New) A method for producing the antibody according to claim 44, comprising immunizing a mammal or contacting an immunocompetent cell or particle with a polypeptide according to claim 37.

46. (New) An assay method for determining altered TRRE activity in a cell or tissue sample, comprising:

- a) contacting the sample with a polynucleotide under conditions that permit the polynucleotide to hybridize specifically with nucleic acid that encodes a modulator of TRRE activity, if present in the sample; and
- b) determining polynucleotide that has hybridized as a result, as a measure of altered TRRE activity in the sample;

wherein the polynucleotide has at least one of the following properties:

- i) the polynucleotide comprises a nucleotide sequence contained in SEQ ID NOs:1-10;
- ii) the polynucleotide comprises a nucleotide sequence of at least 30 consecutive nucleotides contained in SEQ ID NOs:1-10;
- iii) the polynucleotide comprises a nucleotide sequence of at least 50 consecutive nucleotides at least 90% identical to a sequence contained in SEQ ID NOs:1-10; or
- iv) the polynucleotide is capable of hybridizing specifically to a nucleotide sequence contained in SEQ ID NOs:1-10 under stringent conditions.

47. (New) The assay method of claim 46, wherein the polynucleotide comprises a nucleotide sequence of at least 30 consecutive nucleotides contained in SEQ ID NOs:1-10.

48. (New) An assay method for determining altered expression of a modulator of TRRE activity in a cell or tissue sample, comprising:

- a) contacting the sample with the antibody of claim 44 under conditions that permit the antibody to bind the modulator if present in the sample, thereby forming an antibody-antigen complex; and
- b) determining any complex formed as a measure of altered expression of the modulator.

49. (New) A method for assessing a disease condition associated with altered TRRE activity in a subject, comprising determining altered expression of a TRRE modulator according to claim 46, and then correlating the extent of alteration with the disease condition.

50. (New) A method for decreasing signal transduction from a cytokine into a cell, comprising contacting the cell with a polypeptide having at least one of the following properties:

- a) the polypeptide comprises at least 10 consecutive amino acid residues encoded in any of SEQ ID NOs:1-10; or
- b) the polypeptide comprises at least 15 consecutive amino acids that are at least 80% identical to a sequence encoded in any of SEQ ID NOs:1-10.

51. (New) A method for increasing signal transduction from a cytokine into a cell, comprising contacting the cell with an antibody according to claim 44.

52. (New) The method of claim 50, wherein the cytokine is TNF.

53. (New) A method of screening polynucleotides for an ability to modulate TRRE activity, comprising:

- a) providing cells that express both TRRE and the TNF-receptor;
- b) genetically altering the cells with the polynucleotides to be screened;
- c) cloning the cells genetically altered; and
- d) identifying clones that enzymatically release the receptor at an altered rate.

54. (New) A pharmaceutical composition comprising a polynucleotide in a pharmaceutically compatible excipient, wherein the polynucleotide has at least one of the following properties:

- a) the polynucleotide comprises a nucleotide sequence contained in SEQ ID NOs:1-10;
- b) the polynucleotide comprises a nucleotide sequence of at least 30 consecutive nucleotides contained in SEQ ID NOs:1-10;
- c) the polynucleotide comprises a nucleotide sequence of at least 50 consecutive nucleotides at

least 90% identical to a sequence contained in SEQ ID NOs:1-10;

- d) the polynucleotide is capable of hybridizing specifically to a nucleotide sequence contained in SEQ ID NOs:1-10 under stringent conditions; or
- e) the polynucleotide comprises a nucleotide sequence that encodes at least 10 consecutive amino acids encoded in SEQ ID NOs:1-10.

55. (New) A pharmaceutical composition comprising a polypeptide in a pharmaceutically compatible excipient, wherein the polypeptide has at least one of the following properties:

- a) the polypeptide comprises at least 10 consecutive amino acid residues encoded in any of SEQ ID NOs:1-10; or
- b) the polypeptide comprises at least 15 consecutive amino acids that are at least 80% identical to a sequence encoded in any of SEQ ID NOs:1-10.

56. (New) A pharmaceutical composition comprising an antibody according to claim 44 in a pharmaceutically compatible excipient.--

REMARKS

Claims 37-56 are pending after entry of the amendments above.

Claims 1-36 are canceled without prejudice to renewal, without intent to abandon any subject matter therein, and without acquiescing to any rejection which may have been applied. Applicants expressly reserve the right to pursue the subject matter of the canceled claims in a continuing application.

Support for new claims 37-43 is found in, for example, claims 7-14 as originally filed.

Support for new claims 44-45 is found in, for example, claims 16 and 17 as originally filed.

Support for new claims 46-47 is found in, for example, claims 18, 3, 4, and 5 as originally filed.

Support for new claim 48 is found in, for example, claim 19 as originally filed.

Support for new claim 49 is found in, for example, claim 20 as originally filed.

Support for new claim 50 is found in, for example, claims 21, 9, and 10 as originally filed.

Support for new claims 51, 52 and 53 is found in, for example, claims 22-24 as originally filed.

Support for new claim 54 is found in, for example, claims 2-6 and 27 as originally filed, as well as in the specification at page 26, lines 3-28 and page 27, lines 16-30.

Support for new claim 55 is found in, for example, claims 29 and 7-14 as originally filed, as well as in the specification at page 25, line 26 to page 26, line 2and page 27, lines 16-30.

Support for new claims 56 is found in, for example, claim 28 as originally filed as well as in the specification at page 21, lines 5-9.

No new matter is added.

CONCLUSION

Applicants respectfully submit that the claims are in form for allowance, early notice of which is requested. If, in the opinion of the Examiner a telephone conference would expedite the prosecution of the subject application, the Examiner is invited to call the undersigned at (650) 327-3400.

The Commissioner is hereby authorized to charge any fees under 37 C.F.R. §§ 1.16 and 1.17 which may be required by this paper, or to credit any overpayment, to Deposit Account No. 50-0815.

Respectfully submitted,
BOZICEVIC, FIELD & FRANCIS LLP

By:

Carol L. Francis
Registration No. 36,513

Date: November 13, 2000
BOZICEVIC, FIELD & FRANCIS LLP
200 Middlefield Road, Suite 200
Menlo Park, CA 94025
Telephone: (650) 327-3400
Facsimile: (650) 327-3231

09/700354

529 Rec'd PCT/PTC 13 NOV 2000

Our Docket: FP-UC 3668

PATENT COOPERATION TREATY
IN THE INTERNATIONAL BUREAU OF WIPO

In re International Application)
No. PCT/US99/10793)
)
Applicant: The Regents of the)
University of California,)
et al.)
)
Filed: 14 May 1999)
)
Entitled: FACTORS AFFECTING TUMOR)
NECROSIS FACTOR RECEPTOR)
RELEASING ENZYME ACTIVITY)
)

International Bureau of WIPO
34, chemin des Colombettes
1221 Geneva 20
Switzerland

LETTER

Sir:

Pursuant to PCT Article 19(1), and responsive to the International Search Report dated December 3, 1999, Applicant respectfully requests that the following amendments and remarks be considered and that the Substitute page submitted herewith be entered for examination.

AMENDMENTS

Applicant respectfully requests replacement of original page 99 with the enclosed substitute page 99. The status of the claims is as follows:

Claims 1 to 32 are unchanged.

New claims 33 to 35 have been added, as follows:

Application No. PCT/US99/10793
Filed: 14 May 1999
Docket: FP-UC 3668
Page 2

--33. The polynucleotide according to any of claims 1-5, wherein said nucleotide sequence is not contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.

34. The polypeptide according to any of claims 7-10, the sequence of which is not completely encoded by a polynucleotide sequence contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.

35. The polynucleotide according to claim 15, the sequence of which is not contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.--

REMARKS

The GenBank Accession Numbers recited in new claims 33 to 35 relate to items cited in the International Search Report.

Application No. PCT/US99/10793
Filed: 14 May 1999
Docket: FP-UC 3668
Page 3

CONCLUSION

The Examiner is invited to contact the undersigned agent or Cathryn Campbell if there are any questions relating to the subject application.

Respectfully submitted,

1/15/00
Date

Melanie K. Webster
Melanie K. Webster
Registration No. 45,201
(Tel) 858.535.9001
(Fax) 858.535.8949

CAMPBELL & FLORES LLP
4370 La Jolla Village Drive
Suite 700
San Diego, California 92122

FACTORS AFFECTING TUMOR NECROSIS FACTOR RECEPTOR
RELEASING ENZYME ACTIVITY

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. application 09/081,385,
5 filed May 14, 1998, pending. For purposes of prosecution in the U.S., the priority
application is hereby incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

This invention relates generally to the field of signal transduction between
10 cells, via cytokines and their receptors. More specifically, it relates to enzymatic
activity that cleaves and releases the receptor for TNF found on the cell surface,
and the consequent biological effects. Certain embodiments of this invention are
compositions that affect such enzymatic activity, and may be included in
medicaments for disease treatment.

15

BACKGROUND OF THE INVENTION

Cytokines play a central role in the communication between cells.
Secretion of a cytokine from one cell in response to a stimulus can trigger an
adjacent cell to undergo an appropriate biological response — such as
20 stimulation, differentiation, or apoptosis. It is hypothesized that important
biological events can be influenced not only by affecting cytokine release from
the first cell, but also by binding to receptors on the second cell, which mediates
the subsequent response. The invention described in this patent application
provides new compounds for affecting signal transduction from tumor necrosis
25 factor.

The cytokine known as tumor necrosis factor (TNF or TNF- α) is
structurally related to lymphotoxin (LT or TNF- β). They have about 40 percent
amino acid sequence homology (Old, *Nature* 330:602-603, 1987). These
cytokines are released by macrophages, monocytes and natural killer cells and

play a role in inflammatory and immunological events. The two cytokines cause a broad spectrum of effects both in vitro and in vivo, including: (i) vascular thrombosis and tumor necrosis; (ii) inflammation; (iii) activation of macrophages and neutrophils; (iv) leukocytosis; (v) apoptosis; and (vi) shock. TNF has been
5 associated with a variety of disease states including various forms of cancer, arthritis, psoriasis, endotoxic shock, sepsis, autoimmune diseases, infections, obesity, and cachexia. TNF appears to play a role in the three factors contributing to body weight control: intake, expenditure, and storage of energy (Rothwell, *Int. J. Obesity* 17:S98-S101, 1993). In septicemia, increased
10 endotoxin concentrations appear to raise TNF levels (Beutler et al. *Science* 229:869-871, 1985).

Attempts have been made to alter the course of a disease by treating the patient with TNF inhibitors, with varying degrees of success. For example, the TNF inhibitor dexamabinol provided protection against TNF mediated effects
15 following traumatic brain injury (Shohami et al. *J. Neuroimmun.* 72:169-77, 1997). Some improvement in Crohn's disease was afforded by treatment with anti-TNF antibodies (Neurath et al., *Eur. J. Immun.* 27:1743-50, 1997).

Human TNF and LT mediate their biological activities by binding specifically to two distinct glycoprotein plasma membrane receptors (55 kDa and
20 75 kDa in size, known as p55 and p75 TNF-R, respectively). The two receptors share 28 percent amino acid sequence homology in their extracellular domains, which are composed of four repeating cysteine-rich regions (Tartaglia and Goeddel, *Immunol. Today* 13:151-153, 1992). However, the receptors lack significant sequence homology in their intracellular domains, and mediate
25 different intracellular responses to receptor activation. In accordance with the different activities of TNF and LT, most human cells express low levels of both TNF receptors: about 2,000 to 10,000 receptors per cell (Brockhaus et al., *Proc. Natl. Acad. Sci. USA* 87:3127-3131, 1990).

Expression of TNF receptors on both lymphoid and non-lymphoid cells
30 can be influenced experimentally by many different agents, such as bacterial lipopolysaccharide (LPS), phorbol myristate acetate (PMA; a protein kinase C

activator), interleukin-1 (IL-1), interferon-gamma (IFN- γ) and IL-2 (Gatanaga et al. *Cell Immunol.* 138:1-10, 1991; Yui et al. *Placenta* 15:819-835, 1994). It has been shown that complexes of human TNF bound to its receptor are internalized from the cell membrane, and then the receptor is either degraded or recycled 5 (Armitage, *Curr. Opin. Immunol.* 6:407-413, 1994). It has been proposed that TNF receptor activity can be modulated using peptides that bind intracellularly to the receptor, or which bind to the ligand binding site, or that affect receptor shedding. See for example patent publications WO 95/31544, WO 95/33051, WO 96/01642, and EP 568 925.

10 TNF binding proteins (TNF-BP) have been identified at elevated levels in the serum and urine of febrile patients, patients with renal failure, and cancer patients, and even certain healthy individuals. Human brain and ovarian tumors produced high serum levels of TNF-BP. These molecules have been purified, characterized, and cloned (Gatanaga et al., *Lymphokine Res.* 9:225-229, 1990a; 15 Gatanaga et al., *Proc. Natl. Acad. Sci USA* 87:8781-8784, 1990b). Human TNF-BP consists of 30 kDa and 40 kDa proteins which are identical to the N-terminal extracellular domains of p55 and p75 TNF receptors, respectively (US Patent No. 5,395,760; EP 418,014). Such proteins have been suggested for use in treating endotoxic shock. Mohler et al. *J. Immunol.* 151:1548-1561, 1993

20 There are several mechanisms possible for the production of secreted proteins resembling membrane bound receptors. One involves translation from alternatively spliced mRNAs lacking transmembrane and cytoplasmic regions. Another involves proteolytic cleavage of the intact membrane receptors, followed by shedding of the cleaved receptor from the cell. The soluble form of p55 and 25 p75 TNF-R do not appear to be generated from mRNA splicing, since only full length receptor mRNA has been detected in human cells *in vitro* (Gatanaga et al., 1991). Carboxyl-terminal sequencing and mutation studies on human p55 TNF-R indicates that a cleavage site may exist between residues Asn 172 and Val 173 (Gullberg et al. *Eur. J. Cell. Biol.* 58:307-312, 1992).

30 There are reports that a specific metalloprotease inhibitor, TNF- α protease inhibitor (TAPI) blocks the shedding of soluble p75 and p55 TNF-R (Crowe et al.

J. Exp. Med. 181:1205-1210, 1995; Mullberg et al. *J. Immunol.* 155:5198-5205, 1995). The processing of pro-TNF on the cell membrane to release the TNF ligand appears to be dependent on a matrix metalloprotease like enzyme (Gearing et al. *Nature* 370:555-557, 1994). This is a family of structurally related 5 matrix-degrading enzymes that play a major role in tissue remodeling and repair associated with development and inflammation (Birkedal-Hansen et al. *Crit. Rev. Oral Biol. Med.* 4:197-250, 1993). The enzymes have Zn²⁺ in their catalytic domains, and Ca²⁺ stabilizes their tertiary structure significantly.

In European patent application EP 657536A1, Wallach et al. suggest that 10 it would be possible to obtain an enzyme that cleaves the 55,000 kDa TNF receptor by finding a mutated form of the receptor that is not cleaved by the enzyme, but still binds to it. The only proposed source for the enzyme is a detergent extract of membranes for cells that appear to have the protease activity. If it were possible to obtain an enzyme according to this scheme, then 15 the enzyme would presumably comprise a membrane spanning region. The patent application does not describe any protease that was actually obtained.

In a previous patent application in the present series (International Patent Publication WO 9820140), methods are described for obtaining an isolated enzyme that cleaves both the p55 and p75 TNF-R from cell surfaces. A 20 convenient source is the culture medium of cells that have been stimulated with phorbol myristate acetate (PMA). The enzyme activity was given the name TRRE (TNF receptor releasing enzyme). In other studies, TRRE was released immediately upon PMA stimulation, indicating that it is presynthesized in an inactive form to be rapidly converted to the active form upon stimulation. 25 Evidence for direct cleavage of TNF-R is that the shedding begins very quickly (~5 min) with maximal shedding within 30 min. TRRE is specific for the TNF-R, and does not cleave IL-1 receptors, CD30, ICAM-1 or CD11b. TRRE activity is enhanced by adding Ca⁺⁺ or Zn⁺⁺, and inhibited by EDTA and phenantroline.

Given the involvement of TNF in a variety of pathological conditions, it is 30 desirable to obtain a variety of factors that would allow receptor shedding to be

modulated, thereby controlling the signal transduction from TNF at a disease site.

SUMMARY OF THE INVENTION

5 This disclosure provides new compounds that promote enzymatic cleavage and release of TNF receptors from the cell surface. Nine new DNA clones have been selected after repeat screening in an assay that tests the ability to enhance receptor release. The polynucleotide sequences of this invention and the proteins encoded by them have potential as diagnostic aids, 10 and therapeutic compounds that can be used to adjust TNF signal transduction in a beneficial way.

One embodiment of the invention is an isolated polynucleotide comprising a nucleotide sequence with the following properties: a) the sequence is expressed at the mRNA level in Jurkat T cells; b) when COS-1 cells expressing 15 TNF-receptor are genetically transformed to express the sequence, the cells have increased enzymatic activity for cleaving and releasing the receptor. If a polynucleotide sequence is expressed in Jurkat cells, then it can be found in the Jurkat cell expression library deposited with the ATCC (Accession No. TIB-152). It is recognized that the polynucleotide can be obtained from other cell lines, or 20 produced by recombinant techniques.

Included are polynucleotides in which the nucleotide sequence is contained in any of SEQ. ID NOS:1-10. Also embodied are polynucleotides comprising at least 30 and preferably more consecutive nucleotides in said nucleotide sequence, or at least 50 consecutive nucleotides that are homologous 25 to said sequence at a significant level, preferably at the 90% level or more. Also included antisense and ribozyme polynucleotides that inhibit the expression of a TRRE modulator.

Another embodiment of the invention is isolated polypeptides comprising an amino acid sequence encoded by a polynucleotide of this invention. Non- 30 limiting examples are sequences shown in SEQ. ID NOS: 147-158. Fragments

and fusion proteins are included in this invention, and preferably comprise at least 10 consecutive residues encoded by a polynucleotide of this invention, or at least 15 consecutive amino acids that are homologous at a significant level, preferably at least 80%. Preferred polypeptides promote cleavage and release 5 of TNF receptors from the cell surface, especially COS-1 cells genetically transformed to express TNF receptor. The polypeptides may or may not have a membrane spanning domain, and may optionally be produced by a process that involves secretion from a cell. Included are species homologs with the desired activity, and artificial mutants with additional beneficial properties.

10 Another embodiment of this invention is an antibody specific for a polypeptide of this invention. Preferred are antibodies that bind a TRRE modulator protein, but not other substances found in human tissue samples in comparable amounts.

15 Another embodiment of the invention is an assay method of determining altered TRRE activity in a cell or tissue sample, using a polynucleotide or antibody of this invention to detect the presence or absence of the corresponding TRRE modulator. The assay method can optionally be used for the diagnosis or evaluation of a clinical condition relating to abnormal TNF levels or TNF signal transduction.

20 Another embodiment of the invention is a method for increasing or decreasing signal transduction from a cytokine into a cell (including but not limited to TNF), comprising contacting the cell with a polynucleotide, polypeptide, or antibody of this invention.

25 A further embodiment of the invention is a method for screening polynucleotides for an ability to modulate TRRE activity. The method involves providing cells that express both TRRE and the TNF-receptor; genetically altering the cells with the polynucleotides to be screened; cloning the cells; and identifying clones with the desired activity.

30 Yet another embodiment of the invention is a method for screening substances for an ability to affect TRRE activity. This typically involves incubating cells expressing TNF receptor with a TRRE modulator of this

invention in the presence or absence of the test substance; and measuring the effect on shedding of the TNF receptor.

The products of this invention can be used in the preparation of a medicament for treatment of the human or animal body. The medicament 5 contains a clinically effective amount for treatment of a disease such as heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, sepsis, and cancer. These compositions can be used for administration to a subject suspected of having or being at risk for the disease, optionally in combination with other forms of treatment appropriate for their condition.

10

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of plasmid pCDTR2. This plasmid expresses p75 TNF-R, the ~75 kDa form of the TNF receptor. PCMV stands for cytomegalovirus; BGHPA stands for bovine growth hormone polyadenylation 15 signal.

Figure 2 is a line depicting the levels of p75 TNF-R detected on COS-1 cells genetically altered to express the receptor. Results from the transformed cells, designated C75R (●, upward swooping line) is compared with that from the parental COS-1 cells (■, baseline). The receptor number was calculated by 20 Scatchard analysis (inset).

Figure 3 is a survival graph, showing that TRRE decreases mortality in mice challenged with lipopolysaccharide (LPS) to induce septic peritonitis. (♦) LPS alone; (■) LPS plus control buffer; (●) LPS plus TRRE (2,000 U); (▲) LPS plus TRRE (4,000 U).

Figure 4 is a half-tone reproduction of a bar graph, showing the effect of 9 new clones on TRRE activity on C75R cells (COS-1 cells transfected to express the TNF-receptor. Each of the 9 clones increases TRRE activity by over 2-fold.

Figure 5 is a survival graph, showing the ability of 4 new expressed to save mice challenged with LPS. (♦) saline; (■) BSA; (△) Mey-3 (100 µg); (X) 30 Mey-3 (10 µg); (*) Mey-5 (10 µg); (●) Mey-8 (10 µg).

DETAILED DESCRIPTION OF THE INVENTION

It has been discovered that certain cells involved in the TNF transduction pathway express enzymatic activity that causes TNF receptors to be shed from the cell surface. Enzymatic activity for cleaving and releasing TNF receptors has been given the designation TRRE. Phorbol myristate acetate induces release of TRRE from cells into the culture medium. An exemplary TRRE protein had been purified from the supernatant of TNF-1 cells (Example 2). The protease bears certain hallmarks of the metalloprotease family, and is released rapidly from the cell upon activation.

In order to elucidate the nature of this protein, functional cloning was performed. Jurkat cells were selected as being a good source of TRRE. The cDNA from a Jurkat library was expressed, and cell supernatant was tested for an ability to release TNF receptors from cell surfaces. Cloning and testing of the expression product was conducted through several cycles, and nine clones were obtained that more than doubled TRRE activity in the assay (Figure 4). At the DNA level, all 9 clones had different sequences.

Protein expression products from the clones have been tested in a lipopolysaccharide animal model for sepsis. Protein from three different clones successfully rescued animals from a lethal dose of LPS (Figure 5). This points to an important role for these molecules in the management of pathological conditions mediated by TNF.

The number of new TRRE promoting clones obtained from the expression library was surprising. The substrate specificity of the TRRE isolated in Example 2 distinguishes the 75 kDa and 55 kDa TNF receptors from other cytokine receptors and cell surface proteins. There was little reason beforehand to
5 suspect that cells might have nine different proteases for the TNF receptor. It is possible that one of the clones encodes the TRRE isolated in Example 2, or a related protein. It is possible that some of the other clones have proteolytic activity to cleave TNF receptors at the same site, or at another site that causes release of the soluble form from the cell. It is a hypothesis of this disclosure that
10 some of the clones may not have proteolytic activity themselves, but play a role in promoting TRRE activity in a secondary fashion.

This possibility is consistent with the observations made, because there is an endogenous level of TRRE activity in the cells used in the assay. The cleavage assay involves monitoring TNF receptor release from C75 cells, which
15 are COS-1 cells genetically altered to express p75 TNF-R. The standard assay is conducted by contacting the transformed cells with a fluid believed to contain TRRE. The level of endogenous TRRE activity is evident from the rate of spontaneous release of the receptor even when no exogenous TRRE is added (about 200 units). Accordingly, accessory proteins that promote TRRE activity
20 would increase the activity measured in the assay. Many mechanisms of promotion are possible, including proteins that activate a zymogen form of TRRE, proteins that free TRRE from other cell surface components, or proteins that stimulate secretion of TRRE from inside the cell. It is not necessary to understand the mechanism in order to use the products of this invention in most
25 of the embodiments described.

It is anticipated that several of the clones will have activity not just for promoting TNF receptor cleavage, but also having an effect on other surface proteins. To the extent that cleavage sequences or accessory proteins are shared between different receptors, certain clones would promote phenotypic
30 change (such as receptor release) for the family of related substrates.

This disclosure provides polypeptides that promote TRRE activity, polynucleotides that encode such polypeptides, and antibodies that bind such peptides. The binding of TNF to its receptor mediates a number of biological effects. Cleavage of the TNF-receptor by TRRE diminishes signal transduction by TRRE. Potentiators of TRRE activity have the same effect. Thus, the products of this invention can be used to modulate signal transduction by cytokines, which is of considerable importance in the management of disease conditions that are affected by cytokine action. The products of this invention can also be used in diagnostic methods, to determine when signal transduction is being inappropriately affected by abnormal TRRE activity. The assay systems described in this disclosure provide a method for screening additional compounds that can influence TRRE activity, and thus the signal transduction from TNF.

Based on the summary of the invention, and guided by the illustrations in the example section, one skilled in the art will readily know what techniques to employ in the practice of the invention. The following detailed description is provided for the additional convenience of the reader.

Definitions and basic techniques

As used in this disclosure, "TRRE activity" refers to the ability of a composition to cleave and release TNF receptors from the surface of cells expressing them. A preferred assay is cleavage from transfected COS-1 cells, as described in Example 1. However, TRRE activity can be measured on any cells that bear TNF receptors of the 55 kDa or 75 kDa size. Other features of the TRRE enzyme obtained from PMA induction of THP-1 cells (exemplified in Example 2) need not be a property of the TRRE activity measured in the assay.

Unit activity of TRRE is defined as 1 pg of soluble p75 TNF-R released from cell surface in a standard assay, after correction for spontaneous release. The measurement of TRRE activity is explained further in Example 1.

A "TRRE modulator" is a compound that has the property of either increasing or decreasing TRRE activity for processing TNF on the surface of

cells. Those that increase TRRE activity may be referred to as TRRE promoters, and those that decrease TRRE activity may be referred to as TRRE inhibitors. TRRE promoters include compounds that have proteolytic activity for TNF-R, and compounds that augment the activity of TNF-R proteases. The nine 5 polynucleotide clones described in Example 5, and their protein products, are exemplary TRRE promoters. Inhibitors of TRRE activity can be obtained using the screening assays described below.

The term "polynucleotide" refers to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. 10 Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: a gene or gene fragment, exons, introns, (mRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, nucleic acid probes, and primers. A polynucleotide may comprise 15 modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The term polynucleotide refers interchangeably to double-and single-stranded molecules. Unless otherwise specified or required, any embodiment of the invention described herein that is a polynucleotide 20 encompasses both the double-stranded form, and each of two complementary single-stranded forms known or predicted to make up the double-stranded form

"Hybridization" refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. Hybridization reactions can be performed 25 under conditions of different "stringency". Relevant conditions include temperature, ionic strength, and the presence of additional solutes in the reaction mixture such as formamide. Conditions of increasing stringency are 30°C. in 10X SSC (0.15M NaCl, 15 mM citrate buffer); 40°C. in 6X SSC; 50°C. in 6.X. 30 SSC 60°C. in 6X SSC, or at about 40°C. in 0.5X SSC, or at about 30°C. in 6.X. SSC containing 50% formamide. SDS and a source of fragmented DNA (such as salmon sperm) are typically also present during hybridization. Higher

stringency requires higher minimum complementarity between hybridizing elements for a stable hybridization complex to form. See "Molecular Cloning: A Laboratory Manual", Second Edition (Sambrook, Fritsch & Maniatis, 1989).

It is understood that purine and pyrimidine nitrogenous bases with similar
5 structures can be functionally equivalent in terms of Watson-Crick base-pairing;
and the inter-substitution of like nitrogenous bases, particularly uracil and
thymine, or the modification of nitrogenous bases, such as by methylation, does
not constitute a material substitution.

The percentage of sequence identity for polynucleotides or polypeptides is
10 calculated by aligning the sequences being compared, and then counting the
number of shared residues at each aligned position. No penalty is imposed for
the presence of insertions or deletions, but are permitted only where required to
accommodate an obviously increased number of amino acid residues in one of
15 the sequences being aligned. When one of the sequences being compared is
indicated as being "consecutive", then no gaps are permitted in that sequence
during the comparison. The percentage identity is given in terms of residues in
the test sequence that are identical to residues in the comparison or reference
sequence.

As used herein, "expression" of a polynucleotide refers to the production
20 of an RNA transcript. Subsequent translation into protein or other effector
compounds may also occur, but is not required unless specified.

"Genetic alteration" refers to a process wherein a genetic element is
introduced into a cell other than by mitosis or meiosis. The element may be
heterologous to the cell, or it may be an additional copy or improved version of
25 an element already present in the cell. Genetic alteration may be effected, for
example, by transducing a cell with a recombinant plasmid or other
polynucleotide through any process known in the art, such as electroporation,
calcium phosphate precipitation, or contacting with a polynucleotide-liposome
complex. Genetic alteration may also be effected, for example, by transduction
30 or infection with a DNA or RNA virus or viral vector. It is preferable that the

genetic alteration is inheritable by progeny of the cell, but this is not generally required unless specified.

The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.

A "fusion polypeptide" is a polypeptide comprising regions in a different position in the sequence than occurs in nature. The regions can normally exist in separate proteins and are brought together in the fusion polypeptide; they can normally exist in the same protein but are placed in a new arrangement in the fusion polypeptide; or they can be synthetically arranged. A "functionally equivalent fragment" of a polypeptide varies from the native sequence by addition, deletion, or substitution of amino acid residues, or any combination thereof, while preserving a functional property of the fragment relevant to the context in which it is being used. Fusion peptides and functionally equivalent fragments are included in the definition of polypeptides used in this disclosure.

It is understood that the folding and the biological function of proteins can accommodate insertions, deletions, and substitutions in the amino acid sequence. Some amino acid substitutions are more easily tolerated. For example, substitution of an amino acid with hydrophobic side chains, aromatic side chains, polar side chains, side chains with a positive or negative charge, or side chains comprising two or fewer carbon atoms, by another amino acid with a side chain of like properties can occur without disturbing the essential identity of the two sequences. Methods for determining homologous regions and scoring the degree of homology are described in Altschul et al. *Bull. Math. Bio.* 48:603-616, 1986; and Henikoff et al. *Proc. Natl. Acad. Sci. USA* 89:10915-10919, 1992. Substitutions that preserve the functionality of the polypeptide, or confer a new

and beneficial property (such as enhanced activity, stability, or decreased immunogenicity) are especially preferred.

An "antibody" (interchangeably used in plural form) is an immunoglobulin molecule capable of specific binding to a target, such as a polypeptide, through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule. As used herein, the term encompasses not only intact antibodies, but also antibody equivalents that include at least one antigen combining site of the desired specificity. These include but are not limited to enzymatic or recombinantly produced fragments antibody, fusion proteins, humanized antibodies, single chain variable regions, diabodies, and antibody chains that undergo antigen-induced assembly.

An "isolated" polynucleotide, polypeptide, protein, antibody, or other substance refers to a preparation of the substance devoid of at least some of the other components that may also be present where the substance or a similar substance naturally occurs or is initially obtained from. Thus, for example, an isolated substance may be prepared by using a purification technique to enrich it from a source mixture. Enrichment can be measured on an absolute basis, such as weight per volume of solution, or it can be measured in relation to a second, potentially interfering substance present in the source mixture. Increasing enrichments of the embodiments of this invention are increasingly more preferred. Thus, for example, a 2-fold enrichment is preferred, 10-fold enrichment is more preferred, 100-fold enrichment is more preferred, 1000-fold enrichment is even more preferred. A substance can also be provided in an isolated state by a process of artificial assembly, such as by chemical synthesis or recombinant expression.

A "host cell" is a cell which has been genetically altered, or is capable of being transformed, by administration of an exogenous polynucleotide.

The term "clinical sample" encompasses a variety of sample types obtained from a subject and useful in an in vitro procedure, such as a diagnostic test. The definition encompasses solid tissue samples obtained as a surgical removal, a pathology specimen, or a biopsy specimen, cells obtained from a

clinical subject or their progeny obtained from culture, liquid samples such as blood, serum, plasma, spinal fluid, and urine, and any fractions or extracts of such samples that contain a potential indication of the disease.

Unless otherwise indicated, the practice of the invention will employ conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, within the skill of the art. Such techniques are explained in the standard literature, such as: "Molecular Cloning: A Laboratory Manual", Second Edition (Sambrook, Fritsch & Maniatis, 1989), "Oligonucleotide Synthesis" (M. J. Gait, ed., 1984), "Animal Cell Culture" (R. I. Freshney, ed., 1987); the series "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology" (D. M. Weir & C. C. Blackwell, Eds.), "Gene Transfer Vectors for Mammalian Cells" (J. M. Miller & M. P. Calos, eds., 1987), "Current Protocols in Molecular Biology" (F. M. Ausubel et al., eds., 1987); and "Current Protocols in Immunology" (J. E. Coligan et al., eds., 1991). The reader may also choose to refer to a previous patent application relating to TRRE, International Patent Application WO 98020140.

For purposes of prosecution in the U.S., and in other jurisdictions where allowed, all patents, patent applications, articles and publications indicated anywhere in this disclosure are hereby incorporated herein by reference in their entirety.

Polynucleotides

Polynucleotides of this invention can be prepared by any suitable technique in the art. Using the data provided in this disclosure, sequences of less than ~50 base pairs are conveniently prepared by chemical synthesis, either through a commercial service or by a known synthetic method, such as the triester method or the phosphite method. A preferred method is solid phase synthesis using mononucleoside phosphoramidite coupling units (Hirose et al., *Tetra. Lett.* 19:2449-2452, 1978; U.S. Patent No. 4,415,732).

For use in antisense therapy, polynucleotides can be prepared by chemistry that produce more stable in pharmaceutical preparations. Non-limiting

examples include thiol-derivatized nucleosides (U.S. Patent 5,578,718), and oligonucleotides with modified backbones (U.S. Patent Nos. 5,541,307 and 5,378,825).

Polynucleotides of this invention can also be obtained by PCR amplification of a template with the desired sequence. Oligonucleotide primers spanning the desired sequence are annealed to the template, elongated by a DNA polymerase, and then melted at higher temperature so that the template and elongated oligonucleotides dissociate. The cycle is repeated until the desired amount of amplified polynucleotide is obtained (U.S. Patent Nos. 4,683,195 and 4,683,202). Suitable templates include the Jurkat T cell library and other human or animal expression libraries that contain TRRE modulator encoding sequences. The Jurkat T cell library is available from the American Type Culture Collection, 10801 University Blvd., Manassas VA 20110, U.S.A. (ATCC #TIB-152). Mutations and other adaptations can be performed during amplification by designing suitable primers, or can be incorporated afterwards by genetic splicing.

Production scale amounts of large polynucleotides are most conveniently obtained by inserting the desired sequence into a suitable cloning vector and reproducing the clone. Techniques for nucleotide cloning are given in Sambrook, Fritsch & Maniatis (*supra*) and in U.S. Patent No. 5,552,524. Exemplary cloning and expression methods are illustrated in Example 6.

Preferred polynucleotide sequences are 50%, 70%, 80% , 90%, or 100% identical to one of the sequences exemplified in this disclosure; in order of increasing preference. The length of consecutive residues in the identical or homologous sequence compared with the exemplary sequence can be about 15, 20, 30, 50, 75, 100, 200 or 500 residues in order of increasing preference, up to the length of the entire clone. Nucleotide changes that cause a conservative substitution or retain the function of the encoded polypeptide (in terms of hybridization properties or what is encoded) are especially preferred substitutions.

The polynucleotides of this can be used to measure altered TRRE activity in a cell or tissue sample. This involves contacting the sample with the polynucleotide under conditions that permit the polynucleotide to hybridize specifically with nucleic acid that encodes a modulator of TRRE activity, if present in the sample, and determining polynucleotide that has hybridized as a result of step a). Specificity of the test can be provided in one of several ways. One method involves the use of a specific probe — a polynucleotide of this invention with a sequence long enough and of sufficient identity to the sequence being detected, so that it binds the target and not other nucleic acid that might be present in the sample. The probe is typically labeled (either directly or through a secondary reagent) so that it can be subsequently detected. Suitable labels include ^{32}P and ^{33}P , chemiluminescent and fluorescent reagents. After the hybridization reaction, unreacted probe is washed away so that the amount of hybridized probe can be determined. Signal can be amplified using branched probes (U.S. Patent No. 5,124,246). In another method, the polynucleotide is a primer for a PCR reaction. Specificity is provided by the ability of the paired probes to amplify the sequence of interest. After a suitable number of PCR cycles, the amount of amplification product present correlates with the amount of target sequence originally present in the sample.

Such tests are useful both in research, and in the diagnosis or assessment of a disease condition. For example, TNF activity plays a role in eliminating tumor cells (Example 4), and a cancer may evade the elimination process by activating TRRE activity in the diseased tissue. Hence, under some conditions, high expression of TRRE modulators may correlate with progression of cancer. Diagnostic tests are also of use in monitoring therapy, such as when gene therapy is performed to increase TRRE activity.

Polynucleotides of this invention can also be used for production of polypeptides and the preparation of medicaments, as explained below.

Polypeptides

Short polypeptides of this invention can be prepared by solid-phase chemical synthesis. The principles of solid phase chemical synthesis can be found in Dugas & Penney, Bioorganic Chemistry, Springer-Verlag NY pp 54-92 (1981), and U.S. Patent No. 4,493,795. Automated solid-phase peptide synthesis can be performed using devices such as a PE-Applied Biosystems 430A peptide synthesizer (commercially available from Applied Biosystems, Foster City CA).

Longer polypeptides are conveniently obtained by expression cloning. A polynucleotide encoding the desired polypeptide is operably linked to control elements for transcription and translation, and then transfected into a suitable host cell. Expression may be effected in prokaryotes such as *E. coli* (ATCC Accession No. 31446 or 27325), eukaryotic microorganisms such as the yeast *Saccharomyces cerevisiae*, or higher eukaryotes, such as insect or mammalian cells. A number of expression systems are described in U.S. Patent No. 5 ,552,524. Expression cloning is available from such commercial services as Lark Technologies, Houston TX. The production of protein from 4 exemplary clones of this invention in insect cells is illustrated in Example 6. The protein is purified from the producing host cell by standard methods in protein chemistry, such as affinity chromatography and HPLC. Expression products are optionally produced with a sequence tag to facilitate affinity purification, which can subsequently be removed.

Preferred sequences are 40%, 60%, 80% , 90%, or 100% identical to one of the sequences exemplified in this disclosure; in order of increasing preference. The length of the identical or homologous sequence compared with the native human polynucleotide can be about 7, 10, 15, 20, 30, 50 or 100 residues in order of increasing preference, up to the length of the entire encoding region.

Polypeptides can be tested for an ability to modulate TRRE in a TNF-R cleavage assay. The polypeptide is contacted with the receptor (preferably expressed on the surface of a cell, such as a C75 cell), and the ability of the polypeptide to increase or decrease receptor cleavage and release is

determined. Cleavage of TNF-R by exemplary polypeptides of this invention is illustrated in Example 7.

Polypeptides of this invention can be used as immunogens for raising antibody. Large proteins will raise a cocktail of antibodies, while short peptide fragments will raise antibodies against small region of the intact protein. Antibody clones can be mapped for protein binding site by producing short overlapping peptides of about 10 amino acids in length. Overlapping peptides can be prepared on a nylon membrane support by standard F-Moc chemistry, using a SPOTS™ kit from Genosys according to manufacturer's directions.

Polypeptides of this invention can also be used to affect TNF signal transduction, as explained below.

Antibodies

Polyclonal antibodies can be prepared by injecting a vertebrate with a polypeptide of this invention in an immunogenic form. Immunogenicity of a polypeptide can be enhanced by linking to a carrier such as KLH, or combining with an adjuvant, such as Freund's adjuvant. Typically, a priming injection is followed by a booster injection is after about 4 weeks, and antiserum is harvested a week later. Unwanted activity cross-reacting with other antigens, if present, can be removed, for example, by running the preparation over adsorbants made of those antigens attached to a solid phase, and collecting the unbound fraction. If desired, the specific antibody activity can be further purified by a combination of techniques, which may include protein A chromatography, ammonium sulfate precipitation, ion exchange chromatography, HPLC, and immunoaffinity chromatography using the immunizing polypeptide coupled to a solid support. Antibody fragments and other derivatives can be prepared by standard immunochemical methods, such as subjecting the antibody to cleavage with enzymes such as papain or pepsin.

Production of monoclonal antibodies is described in such standard references as Harrow & Lane (1988), U.S. Patent Nos. 4,491,632, 4,472,500 and 4,444,887, and *Methods in Enzymology* 73B:3 (1981). Briefly, a mammal is

immunized, and antibody-producing cells (usually splenocytes) are harvested. Cells are immortalized by fusion with a non-producing myeloma, transfecting with Epstein Barr Virus, or transforming with oncogenic DNA. The treated cells are cloned and cultured, and the clones are selected that produce antibody of the
5 desired specificity.

Other methods of obtaining specific antibody molecules (optimally in the form of single-chain variable regions) involve contacting a library of immunocompetent cells or viral particles with the target antigen, and growing out positively selected clones. Immunocompetent phage can be constructed to
10 express immunoglobulin variable region segments on their surface. See Marks et al., *New Eng. J. Med.* 335:730, 1996, International Patent Applications WO 9413804, WO 9201047, WO 90 02809, and McGuiness et al., *Nature Biotechnol.* 14:1449, 1996.

The antibodies of this invention are can be used in immunoassays for
15 TRRE modulators. General techniques of immunoassay can be found in "The Immunoassay Handbook", Stockton Press NY, 1994; and "Methods of Immunological Analysis", Weinheim: VCH Verlags gesellschaft mbH, 1993). The antibody is combined with a test sample under conditions where the antibody will bind specifically to any modulator that might be present, but not any other
20 proteins liable to be in the sample. The complex formed can be measured in situ (U.S. Patent Nos. 4,208,479 and 4,708,929), or by physically separating it from unreacted reagents (U.S. Patent No. 3,646,346). Separation assays typically involve labeled TRRE reagent (competition assay), or labeled antibody (sandwich assay) to facilitate detection and quantitation of the complex. Suitable
25 labels are radioisotopes such as ¹²⁵I, enzymes such as β-galactosidase, and fluorescent labels such as fluorescein. Antibodies of this invention can also be used to detect TRRE modulators in fixed tissue sections by immunohistology. The antibody is contacted with the tissue, unreacted antibody is washed away, and then bound antibody is detected — typically using a labeled anti-
30 immunoglobulin reagent. Immunohistology will show not only whether the modulator is present, but where it is located in the tissue.

Detection of TRRE modulators is of interest for research purposes, and for clinical use. As indicated earlier, high expression of TRRE modulators may correlate with progression of cancer. Diagnostic tests are also of use in monitoring TRRE modulators that are administered in the course of therapy.

5 Antibodies of this invention can also be used for preparation of medicaments. Antibodies with therapeutic potential include those that affect TRRE activity — either by promoting clearance of a TRRE modulator, or by blocking its physiological action. Antibodies can be screened for desirable activity according to assays described in the next section.

10

Screening assays

This invention provides a number of screening methods for selecting and developing products that modulate TRRE, and thus affect TNF signal transduction.

15 One screening method is for polynucleotides that have an ability to modulate TRRE activity. To do this screening, cells are obtained that express both TRRE and the TNF receptor. Suitable cell lines can be constructed from any cell that expresses a level of functional TRRE activity. These cells are identifiable by testing culture supernatant for an ability to release membrane-bound TNF-R. The level of TRRE expression should be moderate, so that an increase in activity can be detected. The cells can then be genetically altered to express either p55 or p75 TNF-R, illustrated in Example 1. Exemplary is the C75R line: COS-1 cells genetically altered to express the 75 kDa form of the TNF-R. Release of TNF-R from the cell can be measured either by testing residual binding of labeled TNF ligand to the cell, or by immunoassay of the supernatant for released receptor (Example 1).

20 25

30 The screening assay is conducted by contacting the cells expressing TRRE and TNF-R with the polynucleotides to be screened. The effect of the polynucleotide on the enzymatic release of TNF-R from the cell is determined, and polynucleotides with desirable activity (either promoting or inhibiting TRRE activity) are selected. In a variation of this method, cells expressing TRRE

activity but not TNF-R (such as untransfected COS-1 cells) are contacted with the test polynucleotide. Then the culture medium is collected, and used to assay for TRRE activity using a second cell expressing TNF-R (such as C75 cells).

This type of screening assay is useful for the selection of polynucleotides from an expression library believed to contain encoding sequences for TRRE modulators. The Jurkat cell expression library (ATCC Accession No. TIB-152) is exemplary. Other cells from which suitable libraries can be constructed are those known to express high levels of TRRE, especially after PMA stimulation, such as THP-1, U-937, HL-60, ME-180, MRC-5, Raji, K-562, and normal human monocytes. The screening involves expressing DNA from the library in the selected cell line being used for screening. Wells with the desired activity are selected, and the DNA is recovered, optionally after replication or cloning of the cells. Repeat cycles of functional screening and selection can lead to identification of new polynucleotide clones that promote or inhibit TRRE activity.

This is illustrated below in Example 5. Further experiments can be performed on the selected polynucleotides to determine it modulates TRRE activity inside the cell, or through the action of a protein product. A long open reading frame suggests a role for a protein product, and examination of the amino acid sequence for a signal peptide and a membrane spanning region can help determine whether the protein is secreted from the cell or expressed in the surface membrane.

This type of screening is also useful for further development of the polynucleotides of this invention. For example, expression constructs can be developed that encode functional peptide fragments, fusion proteins, and other variants. The minimum size of polynucleotide sequence that still encodes TRRE modulation activity can be determined by removing part of the sequence and then using the screening assay to determine whether the activity is still present. Mutated and extended sequences can be tested in the same way.

This type of screening assay is also useful for developing compounds that affect TRRE activity by interfering with mRNA that encode a TRRE modulator. Of particular interest are ribozymes and antisense oligonucleotides. Ribozymes

are endoribonucleases that catalyze cleavage of RNA at a specific site. They comprise a polynucleotide sequence that is complementary to the cleavage site on the target, and additional sequence that provide the tertiary structure to effect the cleavage. Construction of ribozymes is described in U.S. Patent Nos. 5 4,987,071 and 5,591,610. Antisense oligonucleotides that bind mRNA comprise a short sequence complementary to the mRNA (typically 8-25 bases in length). Preferred chemistry for constructing antisense oligonucleotides is outlined in an earlier section. Specificity is provided both by the complementary sequence, and by features of the chemical structure. Antisense molecules that inhibit expression of cell surface receptors are described in U.S. Patent Nos. 5,135,917 and 5,789,573. Screening involves contacting the cell expressing TRRE activity and TNF-R with the compound and determining the effect on receptor release. Ribozymes and antisense molecules effective in altering expression of a TRRE promoter would decrease TNF-R release. Ribozymes and antisense molecules effective in altering expression of a TRRE inhibitor would increase TNF-R release.

Another screening method described in this disclosure is for testing the ability of polypeptides to modulate TRRE activity (Example 7). Cells expressing both TNF-R and a moderate level of TRRE activity are contacted with the test polypeptides, and the rate of receptor release is compared with the rate of spontaneous release. An increased rate of release indicates that the polypeptide is a TRRE promoter, while a decreased rate indicates that the polypeptide is a TRRE inhibitor. This assay can be used to test the activity of new polypeptides, and develop variants of polypeptides already known to modulate TRRE. The minimum size of polypeptide sequence that still encodes TRRE modulation activity can be determined by making a smaller fragment of the polypeptide and then using the screening assay to determine whether the activity is still present. Mutated and extended sequences can be tested in the same way.

Another screening method embodied in this invention is a method for screening substances that interfere with the action of a TRRE modulator at the protein level. The method involves incubating cells expressing TNF receptor

(such as C75R cells) with a polypeptide of this invention having TNF promoting activity. There are two options for supplying the TRRE modulator in this assay. In one option, the polypeptide is added to the medium of the cells as a reagent, along with the substance to be tested. In another option, the cells are genetically 5 altered to express the TRRE modulator at a high level, and the assay requires only that the test substance be contacted with the cells. This option allows for high throughput screening of a number of test compounds.

Either way, the rate of receptor release is compared in the presence and absence of the test substance, to identify compounds that enhance or diminish 10 TRRE activity. Parallel experiments should be conducted in which the activity of the substance on receptor shedding is tested in the absence of added polypeptide (using cells that don't express the polypeptide). This will determine whether the activity of the test substance occurs via an effect on the TRRE promoter being added, or through some other mechanism.

15 This type of screening assay is useful for identifying antibodies that affect the activity of a TRRE modulator. Antibodies are raised against a TRRE modulator as described in the previous section. If the antibody decreases TRRE activity in the screening assay, then it has therapeutic potential to lower TRRE activity *in vivo*. Screening of monoclonal antibodies using this assay can also 20 help identify binding or catalytic sites in the polypeptide.

This type of screening assay is also useful for high throughput screening of small molecule compounds that have the ability to affect the level of TNF receptors on a cell, by way of its influence on a TRRE modulator. Small molecule compounds that have the desired activity are often preferred for 25 pharmaceutical compositions, because they are often more stable and less expensive to produce.

Medicaments and their use

As described earlier, a utility of certain products embodied in this invention 30 is to affect signal transduction from cytokines (particularly TNF). Products that promote TRRE activity have the effect of decreasing TNF receptors on the

surface of cells, which would decrease signal transduction from TNF. Conversely, products that inhibit TRRE activity prevent cleavage of TNF receptors, increasing signal transduction.

The ability to affect TNF signal transduction is of considerable interest in
5 the management of clinical conditions in which TNF signaling contributes to the pathology of the condition. Such conditions include:

- Heart failure. IL-1 β and TNF are believed to be central mediators for perpetuating the inflammatory process, recruiting and activating inflammatory cells. The inflammation depress cardiac function in congestive heart failure, transplant rejection, myocarditis, sepsis, and burn shock.
- Cachexia. The general weight loss and wasting occurring in the course of chronic diseases, such as cancer. TNF is believed to affect appetite, energy expenditure, and metabolic rate.
- Crohn's disease. The inflammatory process mediated by TNF leads to thickening of the intestinal wall, ensuing from lymphedema and lymphocytic infiltration.
- Endotoxic shock. The shock induced by release of endotoxins from gram-negative bacteria, such as E. coli, involves TNF-mediated inflammation
- Arthritis. TNF promotes expression of nitric oxide synthetase, believed to be involved in disease pathogenesis.

Other conditions of interest are multiple sclerosis, sepsis, inflammation brought on by microbe infection, and diseases that have an autoimmune etiology, such
25 as Type I Diabetes.

Polypeptides of this invention that promote TRRE activity can be administered with the objective of decreasing or normalizing TNF signal transduction. For example, in congestive heart failure or Crohn's disease, the polypeptide is given at regular intervals to lessen the inflammatory sequelae.
30 The treatment is optionally in combination with other agents that affect TNF

signal transduction (such as antibodies to TNF or receptor antagonists) or that lessen the extent of inflammation in other ways.

Polynucleotides of this invention can also be used to promote TRRE activity by gene therapy. The encoding sequence is operably linked to control elements for transcription and translation in human cells. It is then provided in a form that will promote entry and expression of the encoding sequence in cells at the disease site. Forms suitable for local injection include naked DNA, polynucleotides packaged with cationic lipids, and polynucleotides in the form of viral vectors (such as adenovirus and AAV constructs). Methods of gene therapy known to the practitioner skilled in the art will include those outlined in U.S. Patent Nos. 5,399,346, 5,827,703, and 5,866,696.

The ability to affect TNF signal transduction is also of interest where TNF is thought to play a beneficial role in resolving the disease. In particular, TNF plays a beneficial role in the necrotizing of solid tumors. Accordingly, products of this invention can be administered to cancer patients to inhibit TRRE activity, thereby increasing TNF signal transduction and improve the beneficial effect.

Embodiments of the invention that inhibit TRRE activity include antisense polynucleotides. A method of conferring long-standing inhibitory activity is to administer antisense gene therapy. A genetic construct is designed that will express RNA inside the cell which in turn will decrease the transcription of the target gene (U.S. Patent No. 5,759,829). In humans, a more frequent form of antisense therapy is to administer the effector antisense molecule directly, in the form of a short stable polynucleotide fragment that is complementary to a segment of the target mRNA (U.S Patent Nos. 5,135,917 and 5,789,573) — in this case, the transcript that encodes the TRRE modulator. Another embodiment of the invention that inhibits TRRE are ribozymes, constructed as described in an earlier section. The function of ribozymes in inhibiting mRNA translation is described in U.S. Patent Nos. 4,987,071 and 5,591,610.

Once a product of this invention is found to have suitable TRRE modulation activity in the in vitro assays described in this disclosure, it is preferable to also test its effectiveness in an animal model of a TNF mediated

disease process. Example 3 describes an LPS model for sepsis that can be used to test promoters of TRRE activity. Example 4 describes a tumor necrosis model, in which TRRE inhibitors could be tested for an ability to enhance necrotizing activity. Those skilled in the art will know of other animal models
5 suitable for testing effects on TNF signal transduction or inflammation. Other illustrations are the cardiac ischemia reperfusion models of Weyrich et al. (*J. Clin. Invest.* 91:2620, 1993) and Garcia-Criado et al. (*J. Am. Coll. Surg.* 181:327, 1995); the pulmonary ischemia reperfusion model of Steinberg et al. (*J. Heart Lung Transplant.* 13:306, 1994), the lung inflammation model of
10 International Patent Application WO 9635418; the bacterial peritonitis model of Sharar et al. (*J. Immunol.* 151:4982, 1993), the colitis model of Meenan et al. (*Scand. J. Gastroenterol.* 31:786, 1996), and the diabetes model of von Herrath et al. (*J. Clin. Invest.* 98:1324, 1996). Models for septic shock are described in Mack et al. *J. Surg. Res.* 69:399, 1997; and Seljelid et al. *Scand. J. Immunol.*
15 45:683-7.

For use as an active ingredient in a pharmaceutical preparation, a polypeptide, polynucleotide, or antibody of this invention is generally purified away from other reactive or potentially immunogenic components present in the mixture in which they are prepared. Typically, each active ingredient is provided
20 in at least about 90% homogeneity, and more preferably 95% or 99% homogeneity, as determined by functional assay, chromatography, or SDS polyacrylamide gel electrophoresis. The active ingredient is then compounded into a medicament in accordance with generally accepted procedures for the preparation of pharmaceutical preparations, such as described in *Remington's
25 Pharmaceutical Sciences 18th Edition* (1990), E.W. Martin ed., Mack Publishing Co., PA. Steps in the compounding of the medicament depend in part on the intended use and mode of administration, and may include sterilizing, mixing with appropriate non-toxic and non-interfering excipients and carriers, dividing into dose units, and enclosing in a delivery device. The medicament will typically be
30 packaged with information about its intended use.

Mode of administration will depend on the nature of the condition being treated. For conditions that are expected to require moderate dosing and that are at well perfused sites (such as cardiac failure), systemic administration is acceptable. For example, the medicament may be formulated for intravenous administration, intramuscular injection, or absorption sublingually or intranasally. Where it is possible to administer the active ingredient locally, this is usually preferred. Local administration will both enhance the concentration of the active ingredient at the disease site, and minimize effects on TNF receptors on other tissues not involved in the disease process. Conditions that lend themselves to administration directly at the disease site include cancer and rheumatoid arthritis. Solid tumors can be injected directly when close to the skin, or when they can be reached by an endoscopic procedure. Active ingredients can also be administered to a tumor site during surgical resection, being implanted in a gelatinous matrix or in a suitable membrane such as Gliadel® (Guilford Sciences). Where direct administration is not possible, the administration may be given through an arteriole leading to the disease site. Alternatively, the pharmaceutical composition may be formulated to enhance accumulation of the active ingredient at the disease site. For example, the active ingredient can be encapsulated in a liposome or other matrix structure that displays an antibody or ligand capable of binding a cell surface protein on the target cell. Suitable targeting agents include antibodies against cancer antigens, ligands for tissue-specific receptors (e.g., serotonin for pulmonary targeting). For compositions that decrease TNF signal transduction, an appropriate targeting molecule may be the TNF ligand, since the target tissue may likely display an unusually high density of the TNF receptor.

Effective amounts of the compositions of the present invention are those that alter TRRE activity by at least about 10%, typically by at least about 25%, more preferably by about 50% or 75%. Where near complete ablation of TRRE activity is desirable, preferred compositions decrease TRRE activity by at least 90%. Where increase of TRRE activity is desirable, preferred compositions increase TRRE activity by at least 2-fold. A minimum effective amount of the

active compound will depend on the disease being treated, which of the TRRE modulators is selected for use, and whether the administration will be systemic or local. For systemic administration, an effective amount of activity will generally be an amount of the TRRE modulator that can cause a change in the enzyme 5 activity by 100 to 50,000 Units — typically about 10,000 Units. The mass amount of protein, nucleic acid, or antibody is chosen accordingly, based on the specific activity of the active compound in Units per gram.

The following examples provided as a further guide to the practitioner, and are not intended to limit the invention in any way.

10

EXAMPLES

Example 1: Assay system for TRRE activity.

This Example illustrates an assay system that measures TRRE activity on the human TNF-R in its native conformation in the cell surface membrane

15 Membrane-associated TNF-R was chosen as the substrate, as having microenvironment similar to that of the substrate for TRRE in vivo. Membrane-associated TNF-R also requires more specific activity, which would differentiate less-specific proteases. Cells expressing an elevated level of the p75 form of TNF-R were constructed by cDNA transfection into monkey COS-1 cells which 20 express little TNF-R of either the 75 kDa or 55 kDa size.

The procedure for constructing these cells was as follows: cDNA of human p75 TNF-R was cloned from a λgt10 cDNA library derived from human monocytic U-937 cells (Clontech Laboratories, Palo Alto, CA). The first 300 bp on both 5' and 3' ends of the cloned fragment was sequenced and compared to the 25 reported cDNA sequence of human p75 TNF-R. The cloned sequence was a 2.3 kb fragment covering positions 58-2380 of the reported p75 TNF-R sequence, which encompasses the full length of the p75 TNF-R-coding sequence from positions 90-1475. The 2.3 kb p75 TNF-R cDNA was then subcloned into the multiple cloning site of the pCDNA3 eukaryotic expression vector. The

orientation of the p75 TNF-R cDNA was verified by restriction endonuclease mapping.

Figure 1 illustrates the final 7.7 kb construct, pCDTR2. It carries the neomycin-resistance gene for the selection of transfected cells in G418, and the expression of the p75 TNF-R is driven by the cytomegalovirus promoter. The pCDTR2 was then transfected into monkey kidney COS-1 cells (ATCC CRL-1650) using the calcium phosphate-DNA precipitation method. The selected clone in G418 medium was identified and subcultured. This clone was given the designation C75R.

To determine the level of p75 TNF-R expression on C75R cells, 2×10^5 cells/well were plated into a 24-well culture plate and incubated for 12 to 16 hours in 5% CO₂ at 37°C. They were then incubated with 2-30 ng ¹²⁵I human recombinant TNF (radiolabeled using the chloramine T method) in the presence or absence of 100-fold excess of unlabeled human TNF at 4°C for 2 h. After three washes with ice-cold PBS, cells were lysed with 0.1N NaOH and bound radioactivity was determined in a Pharmacia Clinigamma counter (Uppsala, Sweden).

Figure 2 shows the results obtained. C75R had a very high level of specific binding of radiolabeled ¹²⁵I-TNF, while parental COS-1 cells did not. The number of TNF-R expressed on C75R was determined to be 60,000-70,000 receptors per cell by Scatchard analysis (Figure 2, inset). The Kd value calculated was 5.6×10^{-10} M. This Kd value was in close agreement to the values previously reported for native p75 TNF-R.

TRRE was obtained by PHA stimulation of THP-1 cells (WO 9802140). THP-1 cells (ATCC 45503) growing in logarithmic phase were collected and resuspended to 1×10^6 cells/ml of RPMI-1640 supplemented with 1% FCS and incubated with 10^{-6} M PMA for 30 min in 5% CO₂ at 37 °C. The cells were collected and washed once with serum-free medium to remove PMA and resuspended in the same volume of RPMI-1640 with 1% FCS. After 2 hours incubation in 5% CO₂ at 37°C, the cell suspension was collected, centrifuged, and the cell-free supernatant was collected as the source of TRRE.

In order to measure the effect of TRRE on membrane-bound TNF-R in the COS-1 cell constructs, the following experiment was performed. C75R cells were seeded at a density of 2×10^5 cells/well in a 24-well cell culture plate and incubated for 12 to 16 hours at 37°C in 5% CO₂. The medium in the wells was
5 aspirated, replaced with fresh medium alone or with TRRE medium, and incubated for 30 min at 37°C. The medium was then replaced with fresh medium containing 30 ng/ml ¹²⁵I-labeled TNF. After 2 hours at 4°C, the cells were lysed with 0.1 N NaOH and the level of bound radioactivity was measured. The level of specific binding of C75R by ¹²⁵I-TNF was significantly decreased after
10 incubation with TRRE. The radioactive count was 1,393 cpm on the cells incubated with TRRE compared to 10,567 cpm on the cells not treated with TRRE, a loss of 87% of binding capacity.

In order to determine the size of the p75 TNF-R cleared from C75R by TRRE, the following experiment was performed. 15×10^6 C75R cells were
15 seeded in a 150 mm cell culture plate and incubated at 37°C in 5% CO₂ for 12 to 16 hours. TRRE medium was incubated with C75R cells in the 150 mm plate for 30 min and the resulting supernatant was collected and centrifuged. The concentrated sample was applied to 10% acrylamide SDS-PAGE and electrophoretically transferred to a polyvinylidene difluoride membrane
20 (Immobilon). Immunostaining resulted in a single band of 40 kDa, similar to the size found in biological fluids. Thus, transfected COS-1 cells expressed high levels of human p75 TNF-R in a form similar to native TNF-R.

The following assay method was adopted for routine measurement of TRRE activity. C75R cells and COS-1 cells were seeded into 24-well culture plates at a density of 2.5×10^5 cells/ml/well and incubated overnight (for 12 to 16 hours) in 5% CO₂ at 37°C. After aspirating the medium in the well, 300 µl of TRRE medium was incubated in each well of both the C75R and COS-1 plates for 30 min in 5% CO₂ at 37°C (corresponding to A and C mentioned below, respectively). Simultaneously, C75R cells in 24-well plates were also incubated
30 with 300 µl of fresh medium or buffer. The supernatants were collected,

centrifuged, and then assayed for the concentration of soluble p75 TNF-R by ELISA.

ELISA assay for released TNF-R (WO 9802140) was performed as follows: Polyclonal antibodies to human p75 TNF-R were generated by 5 immunization of New Zealand white female rabbits (Yamamoto et al. *Cell. Immunol.* 38:403-416, 1978). The IgG fraction of the immunized rabbit serum was purified using a protein G (Pharmacia Fine Chemicals, Uppsala, Sweden) affinity column (Ey et al. (1978) *Immunochemistry* 15:429-436, 1978). The IgG fraction was then labeled with horseradish peroxidase (Sigma Chemical Co., St. 10 Louis, MO) (Tijssen and Kurstok, *Anal. Biochem.* 136:451-457, 1984). In the first step of the assay, 5 µg of unlabeled IgG in 100 µl of 0.05 M carbonate buffer (pH 9.6) was bound to a 96-well ELISA microplate (Corning, Corning, NY) by overnight incubation at 4°C. Individual wells were washed three times with 300 µl of 0.2% Tween-20 in phosphate buffered saline (PBS). The 100 µl of samples 15 and recombinant receptor standards were added to each well and incubated at 37°C for 1 to 2 hours. The wells were then washed in the same manner, 100 µl of horseradish peroxidase-labeled IgG added and incubated for 1 hour at 37 °C. The wells were washed once more and the color was developed for 20 minutes (min) at room temperature with the substrates ABTS (Pierce, Rockford, IL) and 20 30% H₂O₂ (Fisher Scientific, Fair Lawn, NJ). Color development was measured at 405 nm.

When C75R cells were incubated with TRRE medium, soluble p75 TNF-R was released into the supernatant which was measurable by ELISA. The amount of receptors released corresponded to the amount of TRRE added 25. There was also a level of spontaneous TNF-R release in C75R cells incubated with just medium alone. It is hypothesized that this is due to an endogenous source of proteolytic enzyme, a homolog of the human TRRE of monkey origin.

The following calculations were performed. A = (amount of soluble p75 TNF-R in a C75R plate treated with the TRRE containing sample); i.e. the total 30 amount of sTNF-R in a C75R plate. B = (amount of soluble p75 TNF-R spontaneously released in a C75R plate treated with only medium or buffer

containing the same reagent as the corresponding samples but without exogenous TRRE); i.e. the spontaneous release of sTNF-R from C75R cells. C = (amount of soluble p75 TNF-R in a COS-1 plate treated with the TRRE sample or the background level of soluble p75 TNF-R released by THP-1.); i.e. the
5 degraded value of transferred (pre-existing) sTNF-R in the TRRE sample during 30 min incubation in a COS-1 plate. This corresponds to the background level of sTNF-R degraded in a C75R plate. The net release of soluble p75 TNF-R produced only by TRRE activity existing in the initial sample is calculated as follows: (Net release of soluble p75 TNF-R only by TRRE) = A - B - C.

10 **Unit activity** of TRRE was defined as follows: 1 pg of soluble p75 TNF-R net release (A-B-C) in the course of the assay is one unit (U) of TRRE activity.

Using this assay, the time course of receptor shedding by TRRE was measured in the following experiment. TRRE-medium was incubated with C75R and COS-1 cells for varying lengths of time. The supernatants were then
15 collected and assayed for the level of soluble p75 TNF-R by ELISA and the net TRRE activity was calculated. Detectable levels of soluble receptor were released by TRRE within 5 min and increased up to 30 min. Longer incubation times showed that the level of TRRE remained relatively constant after 30 min, presumably from the depletion of substrates. Therefore, 30 min was determined
20 to be the optimal incubation time.

The induction patterns of TRRE and known MMPs by PMA stimulation are quite different. In order to induce MMPs, monocytic U-937 cells, fibrosarcoma HT-1080 cells, or peritoneal exudate macrophages (PEM) usually have to be stimulated for one to three days with LPS or PMA. On the other hand, as
25 compared with this prolonged induction, TRRE is released very quickly in culture supernatant following 30 min of PMA-stimulation. The hypothesis that TRRE and sTNF-R form a complex *in vitro* was confirmed by the experiment that 25% TRRE activity was recovered from soluble p75 TNF-R affinity column. This means that free TRRE has the ability to bind to its catalytic product, sTNF-R.
30 The remaining 75% which did not combine to the affinity column may already be

bound to sTNF-R or may not have enough affinity to bind to sTNF-R even though it is in a free form.

Example 2: Characterization of TRRE obtained from THP-1 cells .

5 TRRE obtained by PHA stimulation of THP-1 cells was partially purified from the culture medium (WO 9802140). First, protein from the medium was concentrated by 100% saturated ammonium sulfate precipitation at 4°C. The precipitate was pelleted by centrifugation at 10,000 x g for 30 min and resuspended in PBS in approximately twice the volume of the pellet. This
10 solution was then dialyzed at 4°C against 10 mM Tris-HCl, 60 mM NaCl, pH 7.0. This sample was loaded on an anion-exchange chromatography, Diethylaminoethyl (DEAE)-Sephadex A-25 column (Pharmacia Biotech) (2.5 x 10 cm) previously equilibrated with 50 mM Tris-HCl, 60 mM NaCl, pH 8.0. TRRE was then eluted with an ionic strength linear gradient of 60 to 250 mM
15 NaCl, 50 mM Tris-HCl, pH 8.0. Each fraction was measured for absorbance at 280 nm and assayed for TRRE activity. The DEAE fraction with the highest specific activity (the highest value of TRRE units/A280) was pooled and used in the characterizations of TRRE described in this example.

In the next experiment, the substrate specificity of the enzyme was
20 elucidated using immunohistochemical techniques. Fluorescein isothiocyanate (FITC)-conjugated anti-CD54, FITC-conjugated goat anti-rabbit and mouse antibodies, mouse monoclonal anti-CD30, anti-CD11b and anti-IL-1R (Serotec, Washington D.C.) were used. Rabbit polyclonal anti-p55 and p75 TNF-R were obtained according to Yamamoto et al. (1978) *Cell Immunol.* 38:403–416. THP-
25 1 cells were treated for 30 min with 1,000 and/or 5,000 U/ml of TRRE eluted from the DEAE-Sephadex column, and then transferred to 12 x 75 mm polystyrene tubes (Fischer Scientific, Pittsburgh, PA) at 1×10^5 cells/100µl/tube. The cells were then pelleted by centrifugation at 350 x g for 5 min at 4°C and stained directly with 10µl FITC-conjugated anti-CD54 (diluted in cold PBS/0.5% sodium
30 aside), indirectly with FITC-conjugated anti-mouse antibody after treatment of

mouse monoclonal anti-CD11b, IL-1R and CD30 and also indirectly with FITC-conjugated anti-rabbit antibody after treatment of rabbit polyclonal anti-p55 and p75 TNF-R.

THP-1 cells stained with each of the antibodies without treatment of TRRE were used as negative controls. The tubes were incubated for 45 min at 4°C, agitated every 15 min, washed twice with PBS/2% FCS, repelleted and then resuspended in 200µl of 1% paraformaldehyde. These labeled THP-1 cells were analyzed using a fluorescence activated cell sorter (FACS) (Becton-Dickinson, San Jose, CA) with a 15 mW argon laser with an excitation of 488 nm. Fluorescent signals were gated on the basis of forward and right angle light scattering to eliminate dead cells and aggregates from analysis. Gated signals (10^4) were detected at 585 BP filter and analyzed using Lysis II software. Values were expressed as percentage of positive cells, which was calculated by dividing mean channel fluorescence intensity (MFI) of stained THP-1 cells treated with TRRE by the MFI of the cells without TRRE treatment (negative control cells).

To test the *in vitro* TNF cytolytic assay by TRRE treatment the L929 cytolytic assay was performed according to the method described by Gatanaga et al. (1990b). Briefly, L929 cells, an adherent murine fibroblast cell line, were plated (70,000 cells/0.1ml/well in a 96-well plate) overnight. Monolayered L929 cells were pretreated for 30 min with 100, 500 or 2,500 U/ml of partially-purified TRRE and then exposed to serial dilutions of recombinant human TNF for 1 hour. After washing the plate with RPMI-1640 with 10% FCS to remove the TRRE and TNF, the cells were incubated for 18 hours in RPMI-1640 with 10% FCS containing 1 µg/ml actinomycin D at 37°C in 5% CO₂. Culture supernatants were then aspirated and 50 µl of 1% crystal violet solution was added to each well. The plates were incubated for 15 min at room temperature. After the plates were washed with tap water and air-dried, the cells stained with crystal violet were lysed by 100 µl per well of 100 mM HCl in methanol. The absorbance at

550 nm was measured using an EAR 400 AT plate reader (SLT-Labinstruments, Salzburg, Austria).

To investigate whether TRRE also truncates the ~55 kDa size of TNF-R, partially-purified TRRE was applied to THP-1 cells which express low levels of
5 both p55 and p75 TNF-R (approximately 1,500 receptors/cell by Scatchard analysis). TRRE eluate from the DEAE-Sephadex column was added to THP-1 cells (5×10^6 cells/ml) at a final TRRE concentration of 1,000 U/ml for 30 min. The concentration of soluble p55 and p75 TNF-R in that supernatant was measured by soluble p55 and p75 TNF-R ELISA. TRRE was found to truncate
10 both human p55 and p75 TNF-R on THP-1 cells and released 2,382 and 1,662 pg/ml soluble p55 and p75 TNF-R, respectively.

Therefore, TRRE obtained by PHA stimulation of THP-1 cells is capable of enzymatically cleaving and releasing human p75 TNF-R on C75R cells, and both human p55 and p75 TNF-R on THP-1 cells.

15 Partial inhibition of TRRE activity was obtained by chelating agents such as 1,10-phenanthroline, EDTA and EGTA (% TRRE activity remaining were 41%, 67% and 73%, respectively, at 2 mM concentration). On the other hand, serine protease inhibitors such as PMSF, AEBSF and 3,4-DCI, and serine and cysteine protease inhibitors such as TLCK and TPCK had no effect on the inhibition of
20 TRRE. TRRE was slightly activated in the presence of Mn²⁺, Ca²⁺, Mg²⁺, and Co²⁺ (% TRRE activities remaining were 157%, 151%, 127%, and 123%, respectively), whereas partial inhibition occurred in the presence of Zn²⁺ and Cu²⁺ (% TRRE activities remaining were 23% and 47%, respectively) (WO 9802140).

TRRE fractions from the most active DEAE fraction (60 mM to 250 mM
25 NaCl) can be purified further. In one method (WO 9802140), the fractions were concentrated to 500 µL with a Centriprep-10 filter (10,000 MW cut-off membrane) (Amicon). This concentrated sample was applied to 6% PAGE under non-denaturing native conditions. The gel was sliced horizontally into 5 mm strips and each was eluted into 1 ml PBS. The eluates were then tested according to
30 the assay (Example 1) for TRRE activity.

Example 3: TRRE activity alleviates septic shock

The following protocol was used to test the effects of TRRE in preventing mortality in a model for septic shock. Mice were injected with lethal or sublethal levels of LPS, and then with a control buffer or TRRE. Samples of peripheral blood were then collected at intervals to establish if TRRE blocked TNF-induced production of other cytokines in the bloodstream. Animals were assessed for the ability of TRRE to block the clinical effects of shock, and then euthanized and tissues examined by histopathological methods.

Details were as follows: adult Balb/c mice, were placed in a restraining device and injected intravenously via the tail vein with a 0.1 ml solution containing 10 ng to 10 mg of LPS in phosphate buffer saline (PBS). These levels of LPS induce mild to lethal levels of shock in this strain of mice. Shock results from changes in vascular permeability, fluid loss, and dehydration, and is often accompanied by symptoms including lethargy, a hunched, stationary position, rumpled fur, cessation of eating, cyanosis, and, in serious cases, death within 12 to 24 hours. Control mice received an injection of PBS. Different amounts (2,000 or 4,000 U) of purified human TRRE were injected IV in a 0.1 ml volume within an hour prior to or after LPS injection. Serum (0.1 ml) was collected with a 27 gauge needle and 1 ml syringe IV from the tail vein at 30, 60 and 90 minutes after LPS injection. This serum was heparinized and stored frozen at -20°C. Samples from multiple experiments were tested by ELISA for the presence of sTNF-R, TNF, IL-8 and IL-6. Animals were monitored over the next 12 hours for the clinical effects of shock. Selected animals were euthanized at periods from 3 to 12 hours after treatment, autopsied and various organs and tissues fixed in formalin, imbedded in paraffin, sectioned and stained by hematoxalin-eosin (H and E). Tissue sections were subjected to histopathologic and immunopathologic examination.

Figure 3 shows the results obtained. (♦) LPS alone; (■) LPS plus control buffer; (●) LPS plus TRRE (2,000 U); (▲) LPS plus TRRE (4,000 U).

Mice injected with LPS alone or LPS and a control buffer died shortly after injection. 50% of the test animals were dead after 8 hours (LPS) or 9 hours (LPS plus control buffer), and 100% of the animals were dead at 15 hours. In contrast, animals treated with TRRE obtained as described in Example 1 did much better.

5 When injections of LPS were accompanied by injections of a 2,000 U of TRRE, death was delayed and death rates were lower. Only 40% of the animals were dead at 24 hours. When 4,000 U of TRRE was injected along with LPS, all of the animals had survived at 24 hours. Thus, TRRE is able to counteract the mortality induced by LPS in test animals.

10

Example 4: TRRE activity decreases tumor necrotizing activity

The following protocol was followed to test the effects of TRRE on tumor necrosis in test animals in which tumors were produced, and in which TNF was subsequently injected.

15

On Day 0, cutaneous Meth A tumors were produced on the abdominal wall of fifteen BALB/c mice by intradermal injection of 2×20^5 Meth A tumor cells. On Day 7, the mice were divided into three groups of five mice each and treated as follows:

20

- Group 1: Injected intravenously with TNF (1 μ g/mouse).
- Group 2: Injected intravenously with TNF (1 μ g/mouse) and injected intratumorally with TRRE obtained as in Example 1 (400 units/mouse, 6, 12 hours after TNF injection).
- Group 3: Injected intravenously with TNF (1 μ g/mouse) and injected intratumorally with control medium (6, 12 hours after TNF injection).

25

On Day 8, tumor necrosis was measured with the following results: Group 1: 100% of necrosis (5/5); Group 2: 20% (1/5); Group 3: 80% (4/5). Injections of TRRE greatly reduced the ability of TNF to induce necrosis in Meth A tumors in BALB/c mice.

Since adding TRRE activity ablates the beneficial necrotizing activity of TNF, blocking endogenous TRRE activity would promote the beneficial effects of TNF.

5 **Example 5: Nine new polynucleotide clones that affect TRRE activity**

A number of cells have been found to express high levels of TRRE activity, especially after PMA stimulation. These include the cell lines designated THP-1, U-937, HL-60, ME-180, MRC-5, Raji, K-562. Jurkat cells have a high TRRE activity (850 TRRE U/mL at 10^{-2} PMA). In this experiment, the expression library of the Jurkat T cell (ATCC #TIB-152) was obtained and used to obtain 9 polynucleotide clones that augment TRRE activity.

Selection of expression sequences in the library was done by repeated cycles of transfection into COS-1 cells, followed by assaying of the supernatant as in Example 1 for the presence of activity cleaving and releasing the TNF receptor. Standard techniques were used in the genetic manipulation. Briefly, the DNA of 10^6 Jurkat cells was extracted using an InVitrogen plasmid extraction kit according to manufacturer's directions. cDNA was inserted in the ZAP Express™/EcoRI vector (cat. no. 938201, Stratagene, La Jolla CA. The library was divided into 48 groups of DNA and transformed into COS-1 cells using the CaCl transfection method. Once the cells were grown out, the TRRE assay was performed, and five positive groups were selected. DNA from each of these five groups was obtained, and transfected into *E. coli*, with 15 plates per group. DNA was prepared from these cells and then transfected into COS-1 cells once more. The cells were grown out, and TRRE activity was tested again. Two positive groups were selected and transfected into *E. coli*, yielding 98 colonies. DNA was prepared from 96 of these colonies and transfected into COS-1 cells. The TRRE activity was performed again, and nine clones were found to substantially increase TRRE activity in the assay. These clones were designated 2-8, 2-9, 2-14, 2-15, P2-2, P2-10, P2-13, P2-14, and P2-15.

30 **Figure 4** is a bar graph showing the TRRE activity observed when the 9 clones were tested with C75 cells in the standard assay (Example 1).

These nine clones were then sequenced according to the following procedure:

1. Plasmid DNA was prepared using a modified alkaline lysis procedure.
2. DNA sequencing was performed using DyeDeoxy termination reactions (ABI). Base-specific fluorescent dyes were used as labels.
- 5 3. Sequencing reactions were analyzed on 5.75% Long Ranger™ gels by an ABI 373A-S or on 5.0% Long Ranger™ gels by an ABI 377 automated sequencer.
4. Subsequent data analysis was performed using Sequencher™ 3.0 software.

10 Standard primers T7X, T3X, -40, -48 Reverse, and BK Reverse (BKR) were used in sequencing reactions. For each clone, several additional internal sequencing primers (listed below) were synthesized.

15 NCBI BLAST (Basic Local Alignment Search Tool) sequence analysis (Altschul et al. (1990) *J. Mol. Biol.* 215:403-410) was performed to determine if other sequences were significantly similar to these sequences. Both the DNA sequences of the clones and the corresponding ORFs (if any) were compared to sequences available in databases.

The following clones were obtained and sequenced:

20

TABLE 1: DNA sequences affecting TRRE activity

Clone	Sequence Designation	SEQ ID NO:	Approx Length (bp)	Expression Designation	Related sequences (potential homology)
2-9	AIM2	1	4,047		—
2-8	AIM3T3 (partial sequence)	2	739		<i>M. musculus</i> 45S pre-rRNA gene
	AIM3T7 (partial sequence)	3	233		
2-14	AIM4	4	2,998	Mey3	human arfaptin 2 and others (see below)
2-15	AIM5	5	4,152		—
P2-2	AIM6	6	3,117	Mey5	—
P2-10	AIM7	7	3,306	Mey6	Human Insulin-like Growth factor II Receptor
P1-13	AIM8	8	4,218		—
P2-14	AIM9	9	1,187	Mey8	—
P2-15	AIM10	10	3,306		E1b-55kDa-associated protein

Clone 2-9 (AIM2): The internal primers used for sequencing are shown in SEQ. ID NOS:11-38. The sequence of AIM2 is presented in SEQ ID NO:1. The complementary strand of the AIM2 sequence is SEQ ID NO:147. The longest open reading frame (ORF) in the AIM2 sequence is 474 AA long and represented in SEQ ID NO:148.

Clone 2-8 (AIM3): Two partial sequences of length 739 and 233 were obtained and designated AIM3T3 and AIM3T7. The internal primers used for sequencing are shown in SEQ. ID NOS:39-46. The sequences of AIM3T3 and

AIM3T7 are presented in SEQ ID NOs:2 and 3, respectively. The BLAST search revealed that the AIM3T3 sequence may be homologous to the mouse (*M. musculus*) 28S ribosomal RNA (Hassouna et al. *Nucleic Acids Res.* 12:3563-3583, 1984) and the *M. musculus* 45S pre-rRNA genes (Accession No. X82564. 5 The complementary sequence of the AIM3T3 sequence showed 99% similarity over 408 bp beginning with nt 221 of SEQ ID NO:2 to the former and 97% similarity over the same span to the latter.

Clone 2-14 (AIM4). The internal primers used for sequencing are shown in SEQ. ID NOS:14-65. The sequence of AIM4 is presented in SEQ ID NO:4. The 10 complementary strand of the AIM4 sequence is SEQ ID NO:149. The longest ORF in the AIM4 sequence is 236 AA long and represented in SEQ ID NO:150. AIM4 has significant alignments to human sequences arfaptin 2, ADE2H1 mRNA showing homologies to SAICAR synthetase, polypyrimidine tract binding protein (heterogeneous nuclear ribonucleoprotein I) mRNA, several PTB genes for 15 polypyrimidine tract binding proteins, mRNA for por1 protein. Human arfaptin 2 is a putative target protein of ADP-ribosylation factor that interacts with RAC1 by binding directly to it. RAC1 is involved in membrane ruffling. Arfaptin 2 has possible transmembrane segments, potential CK2 phosphorylation sites, PKC phosphorylation site and RGD cell attachment sequence.

20 Clone 2-15 (AIM5): The internal primers used for sequencing are shown in SEQ. ID NOS:66-80. The sequence of AIM5 is presented in SEQ ID NO:5. The BLAST search revealed that the AIM5 sequence displays some similarity to Human Initiation Factor 5A (eIF-5A) Koettitz et al. (1995) *Gene* 159:283-284, 1995 and Human Initiation Factor 4D (eIF 4D) Smit-McBride et al. (1989) *J. Biol.* 25 *Chem.* 264:1578-1583, 1989.

Clone P2-2 (AIM6): The internal primers used for sequencing are shown in SEQ. ID NOS:81-93. The sequence of AIM6 is presented in SEQ ID NO:6. The longest ORF in the AIM6 sequence is 1038 AA long and represented in SEQ ID NO:151.

30 Clone P2-10 (AIM7): The internal primers used for sequencing are shown in SEQ. ID NOS:94-106. The sequence of AIM7 is presented as SEQ ID NO:7.

The longest ORF in the AIM7 sequence is 849 AA long and represented in SEQ ID NO:152. The BLAST search revealed that this clone may be related to the Human Insulin-like Growth Factor II Receptor (Morgan et al. *Nature* 329:301-307, 1987 or the Human Cation-Independent Mannose 6-Phosphate Receptor mRNA (Oshima et al. *J. Biol. Chem.* 263:2553-2562, 1988). The AIM7 sequence showed roughly 99% identity to both sequences over 2520 nucleotides beginning with nt 12 of SEQ ID NO:7 and 99% similarity to the latter over the same span.

Clone P2-13 (AIM8): The internal primers used for sequencing are shown in SEQ. ID NOS:107-118. The sequence of AIM8 is presented as SEQ ID NO:8.
10 The longest ORF in the AIM8 sequence is 852 AA long and represented in SEQ ID NO:153.

Clone P2-14 (AIM9): The internal primers used for sequencing are shown in SEQ. ID NOS:119-124. The sequence of AIM9 is presented as SEQ ID NO:9. The longest ORF was about 149 amino acids in length.

15 Clone P2-15 (AIM10): The internal primers used for sequencing are shown in SEQ. ID NOS:125-146. The sequence of AIM10 is presented as SEQ ID NO:10. The longest ORF in the AIM10 sequence is 693 AA long and represented in SEQ ID NO:154. Sequence 10 on BLASTN search of non-redundant databases at NCBI aligns with Human mRNA for E1b-55kDa-associated protein, locus HSA7509 (Accession AJ007509, NID g3319955).

20 Clonal DNA may be directly injected into test animals in order to test the ability of these nucleic acids to induce TRRE activity, counteract septic shock and/or affect tumor necrosis, as is described in detail in Examples 3 and 4. Alternatively, proteins or RNA can be generated from the clonal DNA for similar
25 testing.

Example 6: Expression of newly obtained clones

Example 5 describes 9 new clones which enhance TRRE activity in a cell surface assay system. The clones were obtained in the pBK-CMB Phagemid
30 vector .

The following work was done on contract through the commercial laboratory Lark Technologies, Houston, TX. The clones were removed from shuttle vectors and inserted into expression vectors in the following manner. Recombinant plasmid (pBK-CMV containing insert) was digested with 5 appropriate restriction enzyme(s) such as Spe I, Xba I, EcoR I or others, as appropriate. The Baculovirus Transfer Vector (pAcGHLT-A Baculovirus Transfer Vector, PharMingen, San Diego, CA, Cat. No. 21460P) was also cut with appropriate restriction enzyme(s) within or near the multiple cloning site to receive the insert removed from the shuttle vector.

10 The fragment of interest being subcloned was isolated from the digest using Low-Melting agarose electrophoresis and purified from the gel using a Qiaquick Gel Extraction Kit following Lark SOP MB 020602. If necessary, the receiving vector was treated with alkaline phosphatase according to Lark SOP MB 090201. The fragment was ligated into the chosen site of the vector 15 pAcGHLT-A. The recombinant plasmid was transformed into *E. coli* XL1 Blue MRF' cells and the transformed bacterial cells were selected on LB agar plates containing ampicillin (100 μ g/ml). Ampicillin resistant colonies were picked and grown on LB broth containing ampicillin for plasmid preparation.

Plasmid DNA was prepared using Alkaline Minilysate Procedure (Lark 20 SOP MB 010802 and digested with appropriate restriction enzyme(s). Selected subclones were confirmed to be of the correct size. Subclones were digested with other appropriate restriction enzyme(s) to ascertain correct orientation of the insert by confirming presence of fragments of proper size(s). A subclone was grown in 100 ml of LB broth containing ampicillin (100 μ g/ml) and the plasmid 25 DNA prepared using Qiagen Midi Plasmid Preparation Kit (Lark SOP MB 011001). The DNA concentration was determined by measuring the absorbance at 260 nm and the DNA sample was verified to be originated from correct subclone by restriction digestion.

Thus were produced the expression constructs for Mey3, Mey5, Mey6, 30 Mey8 now with the coding sequence of interest fused to GST gene with polyhistididine tag, protein kinase A site and thrombin cleavage site. The GST

gene and now the fusion protein are under the polyhedrin promotor. PharMingen (San Diego, CA) incorporated the vector with insert into functional baculovirus particles by co-inserting the transfer vector (pAcGHLT) into susceptible insect cell line S along with linearized virus DNA (PharMingen, San Diego, CA, 5 BaculoGold viral DNA, Cat. No. 21100D). The functional virus particles were grown again on the insect cells to generate a high titer stock. Protein production was then done by infecting a large culture of cells in Tini cell. The cells were harvested when the protein yield reached a maximum and before the virus killed the cells. Fusion proteins were collected on a glutathione-agarose column, 10 washed and released with glutathionine.

Proteins collected from the affinity column were quantified by measuring OD₂₈₀ and were assayed on gels using SDS-PAGE and Western blotting with labeled anti-GST (PharMingen, San Diego, CA, mAbGST Cat. No. 21441A) to confirm that all the bands present included the GST portion.

15 Four of the ten sequences have been cloned, expressed in baculovirus infected insect cells, and then purified.

TABLE 2: Expressed protein from Jurkat library clones		
Name	Sequence in insert	Amount of protein (mg/mL)
Mey3	AIM4	4.7, 5.0
Mey5	AIM6	1.36, 1.50
Mey6	AIM7	0.33
Mey8	AIM9	1.53

Gels indicated the presence of the GST protein in addition to larger proteins that were also positive with the anti-GST antibody in Western analyses. 20 Mey3 repeatedly exhibited the presence of proteins around 32kDa, 56kDa, bands around 60-70kDa and another larger than 70kDa. Mey5 consistently had proteins migrating as approximately 34kDa, 38kDa, 58kDa, around 60-70kDa, and others larger than 70kDa. Mey6 had protein bands around 34kDa, 56kDa,

58kDa, and bands around 60-70kDa. Mey8 had protein bands around 36kDa, 58kDa and bands around 60-70kDa. All of the indicated bands were positive for GST. The bands may represent the desired fusion protein or degradation/cleavage product generated during growth and purification.

5

Example 7: Assay of expression products for effect on TNF-R cleaving activity

The following method was used to measure TRRE activity of Mey 3, 5, 6 and 8. C75R cells and COS-1 cells were seeded into 24-well culture plates at a density of 2.5×10^5 cells/ml/well and incubated overnight (for 12 to 16 hours) in 10 5% CO₂ at 37°C. After aspirating the medium in the well, 300µl of 1 ug of Mey 3, 5 and 8 were incubated in each well of both the C75R and COS-1 plates for 30 min in 5% CO₂ at 37°C (corresponding to A and C mentioned below, respectively). Simultaneously, C75R cells in 24-well plates were also incubated with 300µl of fresh medium or buffer (corresponding to B mentioned below). The 15 supernatants were collected, centrifuged, and then assayed for the concentration of soluble p75 TNF-R by ELISA as described in Example 1.

The following results were obtained:

TABLE 3: Enzymatic activity of expressed clones

Clone No.	TNF-receptor releasing activity U/mg
Mey-3	341
Mey-5	671
Mey-6	452
Mey-8	191

20

Example 8: Effectiveness of expression products in treating septic shock

The protocol outlined in Example 3 was used to test the effects of the expression products from the new clones in preventing mortality in the septic shock model.

5 Different amounts of recombinant Mey 3, 5, and 8 (10 – 100 ug/mouse) were injected i.v. in a 0.05 ml volume within an hour prior to or after injection of a lethal dose of LPS. Serum (0.1ml) was collected using a 27 gauge needle and 1 ml syringe from the tail vein at 30, 60 and 90 minutes after LPS injection. This serum was heparinized and stored frozen at -20°C. Samples from multiple
10 experiments were tested by ELISA for the presence of solubilized TNR-R, the TNR ligand, IL-8, and IL-6. Animals were monitored over the next 12 hours for the clinical effects of shock. Selected animals were euthanized from 3 to 12 hours after treatment, autopsied and various organs and tissues fixed in formalin, imbedded in paraffin, sectioned and stained by hematoxalin-eosin (H and E).
15 Tissue sections were subjected to histopathologic and immunopathologic examination.

Figure 5 shows the results obtained. (♦) saline; (■) BSA; (△) Mey-3 (100 µg); (X) Mey-3 (10 µg); (*) Mey-5 (10 µg); (●) Mey-8 (10 µg).

20 Mice injected with LPS alone or LPS, a control buffer or control protein (BSA) died rapidly. All of the animals in this group were dead at 24 hours. In contrast, when injections of LPS were accompanied by injections of a 10 – 100 ug of Mey 3, 5 and 8, death was delayed and death rates were lower. None of the animal were dead at 24 hours that had been treated with Mey 3 and Mey 5. Only 66 % of the animals were dead at 24 hours that had been treated with Mey
25 8. Thus, Mey 3, 5 and 8 were able to counteract the mortality induced by LPS in test animals.

ART 34 AMDT

CLAIMS

1. An isolated polynucleotide comprising a nucleotide sequence expressed at the mRNA level in human mononuclear leukocytes having cell-surface TNF receptor, thereby increasing cleavage and release of the receptor from the surface of the cell.
2. The polynucleotide of claim 1, wherein the nucleotide sequence is contained in a sequence selected from the group consisting of
 - a) SEQ. ID NO:1;
 - b) SEQ. ID NO:2 and SEQ. ID NO:3;
 - c) SEQ. ID NO:4;
 - d) SEQ. ID NO:5;
 - e) SEQ. ID NO:6;
 - f) SEQ. ID NO:7;
 - g) SEQ. ID NO:8;
 - h) SEQ. ID NO:9; and
 - i) SEQ. ID NO:10.
3. An isolated polynucleotide comprising at least 30 consecutive nucleotides in said nucleotide sequence of a polynucleotide according to any of claims 1-2.
4. An isolated polynucleotide comprising a linear sequence of at least 50 consecutive nucleotides at least 90% identical to a sequence contained in said nucleotide sequence of the polynucleotide of claim 1.
5. An isolated polynucleotide of at least 50 nucleotides capable of hybridizing specifically to said nucleotide sequence of a polynucleotide according to any of claims 1-3 at 68°C in 0.5 M phosphate buffer pH 7, 7% SDS, and 100 µg/mL salmon sperm DNA, followed by washing in a buffer containing 3X SSC.
6. An antisense polynucleotide or ribozyme comprising at least 10 consecutive nucleotides in said nucleotide sequence of a polynucleotide according to claim 1 or 2, which inhibits the expression of a TRRE modulator.
7. An isolated polypeptide comprising an amino acid sequence encoded by a polynucleotide according to any of claims 1-5.

ART 34 AMDT

8. The polypeptide of claim 7, selected from the group consisting of SEQ. ID NOS: 147-154.
9. An isolated polypeptide, comprising at least 10 consecutive residues in said amino acid sequence of a polypeptide according to claim 7 or 8.
10. An isolated polypeptide, comprising at least 15 consecutive amino acids which are at least 80% identical to a sequence contained in said amino acid sequence of the polypeptide according to claim 7 or 8.
11. The polypeptide of claim 7-10, which when incubated with COS-1 cells expressing TNF receptor, promotes enzymatic cleavage and release of the receptor.
12. The polypeptide of claims 7-11, which either:
 - a) lacks a membrane spanning sequence; or
 - b) is produced by a process comprising recombinant expression in a host cell followed by purification of the polypeptide from medium in which the cell is cultured.
13. A method of producing the polypeptide according to any of claims 7 to 11, comprising the steps of:
 - a) culturing host cells genetically altered to express the polynucleotide according to claim 3; and subsequently
 - b) purifying the polypeptide from the cells.
14. The method according to claim 13, comprising harvesting culture medium following step a); and purifying the polypeptide from the culture medium by a process comprising affinity chromatography.
15. An isolated polynucleotide encoding the polypeptide of claim 8 or 9.
16. An isolated antibody specific for a polypeptide according any of claims 7-11.
17. A method for producing the antibody according to claim 16, comprising immunizing a mammal or contacting an immunocompetent cell or particle with a polypeptide according to claim 9 or 10.

ART 34 AMDT

18. An assay method of determining altered TRRE activity in a cell or tissue sample, comprising the steps of:

- contacting the sample with the polynucleotide of claim 4 or 5 under conditions that permit the polynucleotide to hybridize specifically with nucleic acid that encodes a modulator of TRRE activity, if present in the sample, and
- determining polynucleotide that has hybridized as a result of step a), as a measure of altered TRRE activity in the sample.

19. An assay method for determining altered expression of a modulator of TRRE activity in a cell or tissue sample, comprising the steps of:

- contacting the sample with the antibody of claim 16 under conditions that permit the antibody to bind the modulator if present in the sample, thereby forming an antibody-antigen complex; and
- determining complex formed in step a), as a measure of the modulator.

20. A method for assessing a disease condition associated with altered TRRE activity in a subject, comprising determining altered TRRE activity in the sample from the subject according to claim 18, or determining altered expression of a TRRE modulator according to claim 19, and then correlating the extent of alteration with the disease condition.

21. A method for decreasing signal transduction from a cytokine into a cell, comprising contacting the cell with a polypeptide according to any of claims 7-8 and 11-12, or with a polynucleotide according to any of claims 1-3 and 15.

22. A method for increasing signal transduction from a cytokine into a cell, comprising contacting the cell with a polynucleotide according to claim 6, or with an antibody according to claim 18.

23. The method according to claim 21 or claim 22, wherein the cytokine is TNF.

24. A method for screening polynucleotides for an ability to modulate TRRE activity, comprising the steps of:

- providing cells that express both TRRE and the TNF-receptor;
- genetically altering the cells with the polynucleotides to be screened;
- cloning the cells genetically altered in step b); and
- identifying clones that enzymatically release the receptor at an altered rate.

ART 34 AMDT

25. A method for screening substances for an ability to affect TRRE activity, comprising the steps of:

- incubating cells expressing TNF receptor with a polypeptide according to claim 9 in the presence of the substance;
- incubating cells expressing TNF receptor with a polypeptide according to claim 9 in the absence of the substance;
- measuring any TNF receptor released from the cells in steps a) and b); and
- correlating an increase or decrease of the receptor released in step a) relative to that in step b) with an ability of the substance to enhance or diminish TRRE activity.

26. Use of a polypeptide according to any of claims 7-8 or 11-12, in the preparation of a medicament for treatment of the human or animal body by surgery or therapy.

27. Use of a polynucleotide according to any of claims 1-3, 6, or 15 in the preparation of a medicament for treatment of the human or animal body by surgery or therapy.

28. Use of an antibody according to claim 16, in the preparation of a medicament for treatment of the human or animal body by surgery or therapy.

29. Use of a polypeptide according to any of claims 7-8 and 11-12, a polynucleotide according to any of claims 1-3 and 15 or an antibody according to claim 16, in the preparation of a medicament for treatment of a disease selected from the group consisting of heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, and sepsis.

30. A method of treating cancer in a subject, comprising increasing signal transduction from TNF into cells at the site of the cancer in the subject according to claim 22 or 23.

31. A method of treating a disease selected from the group consisting of heart failure, cachexia, inflammation, endotoxic shock, arthritis, multiple sclerosis, and sepsis, comprising decreasing signal transduction from TNF into cells at the site of the disease in the subject according to claim 21 or 23.

32. The method of claim 31, comprising administering to the subject an effective amount of the polypeptide of any of claims 7-8 or 11-12.

ART 34 AND

33. The polynucleotide according to any of claims 1-5, wherein said nucleotide sequence is not contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.

34. The polypeptide according to any of claims 7-10, the sequence of which is not completely encoded by a polynucleotide sequence contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.

35. The polynucleotide according to claim 15, the sequence of which is not contained in any of the sequences of the following GenBank Accession Nos: AJ003355, AA806165; AI002979; T33896; U52522; AA779203; C06247; AA707194; AA599596; 5453538; U13369; and J03528.

36. The isolated polynucleotide of claim 1, wherein the nucleotide sequence is expressed at the mRNA level in Jurkat T cells; and when COS-1 cells expressing TNF receptor are genetically altered to express the sequence, the cells have increased enzymatic activity for cleaving and releasing the receptor.

1 / 5

1

Fig.

09/700354

PCT/US99/10793

WO 99/58559

2/5

2

Fig.

SUBSTITUTE SHEET (RULE 26)

3/5

Fig. 3

4/5

4

Fig.

09/700354

WO 99/58559

PCT/US99/10793

5/5

Fig. 5

COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY
(Includes Reference to PCT International Applications)

ATTORNEY'S DOCKET NUMBER

IRVN-007CIP2

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Factors Affecting Tumor Necrosis Factor Receptor Releasing Enzyme Activity

the specification of which (check only one item below):

is attached hereto.
 was filed as United States application

Serial No. _____

on _____,

and was amended

on _____ (if applicable).

was filed as PCT international application

Number US99/10793 ✓

on May 14, 1999 ✓,

and was amended under PCT Article 19

on January 28, 2000 (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

PRIOR FOREIGN/PCT APPLICATION(S) AND ANY PRIORITY CLAIMS UNDER 35 U.S.C. 119:

COUNTRY (if PCT, indicate "PCT")	APPLICATION NUMBER	DATE OF FILING (day, month, year)	PRIORITY CLAIMED UNDER 35 USC 119	
PCT	PCT/US99/10793	14 May 1999	<input checked="" type="checkbox"/> YES	<input type="checkbox"/> NO
			<input type="checkbox"/> YES	<input type="checkbox"/> NO
			<input type="checkbox"/> YES	<input type="checkbox"/> NO

COMBINED DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY
(Includes Reference to PCT International Applications)

ATTORNEY'S DOCKET NUMBER

IRVN-007CIP2

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Factors Affecting Tumor Necrosis Factor Receptor Releasing Enzyme Activity

the specification of which (check only one item below):

is attached hereto.
 was filed as United States application

Serial No. _____

on _____,

and was amended

on _____ (if applicable).

was filed as PCT international application

Number US99/10793

on May 14, 1999,

and was amended under PCT Article 19

on January 28, 2000 (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

PRIOR FOREIGN/PCT APPLICATION(S) AND ANY PRIORITY CLAIMS UNDER 35 U.S.C. 119:

COUNTRY (if PCT, indicate "PCT")	APPLICATION NUMBER	DATE OF FILING (day, month, year)	PRIORITY CLAIMED UNDER 35 USC 119	
PCT	PCT/US99/10793	14 May 1999	<input checked="" type="checkbox"/> YES	<input type="checkbox"/> NO
			<input type="checkbox"/> YES	<input type="checkbox"/> NO
			<input type="checkbox"/> YES	<input type="checkbox"/> NO

NOV-10-00 FRI 04:36 PM BOZICEVIC FIELD&FRANCIS FAX NO. 650 327+3231

4005

P. 04

Combined Declaration For Patent Application and Power of Attorney (Continued) (Includes Reference to PCT International Applications)		ATTORNEY'S DOCKET NUMBER IRVN-007CIP2																				
<p>I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) or PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application:</p>																						
PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120: <table border="1"> <thead> <tr> <th colspan="2">U.S. APPLICATIONS</th> <th colspan="3">STATUS (Check one)</th> </tr> <tr> <th>U.S. APPLICATION NUMBER</th> <th>U.S. FILING DATE</th> <th>PATENTED</th> <th>PENDING</th> <th>ABANDONED</th> </tr> </thead> <tbody> <tr> <td>09/081,385 -</td> <td>May 14, 1998 ✓</td> <td></td> <td>XX</td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>			U.S. APPLICATIONS		STATUS (Check one)			U.S. APPLICATION NUMBER	U.S. FILING DATE	PATENTED	PENDING	ABANDONED	09/081,385 -	May 14, 1998 ✓		XX						
U.S. APPLICATIONS		STATUS (Check one)																				
U.S. APPLICATION NUMBER	U.S. FILING DATE	PATENTED	PENDING	ABANDONED																		
09/081,385 -	May 14, 1998 ✓		XX																			
<p>POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. (List name and registration number)</p> <table border="1"> <tbody> <tr> <td>Karl Bozicevic, Reg. No. 28,807 Bret E. Field, Reg. No. 37,620 Dianne L. DeVore, Reg. No. 42,484 Alan W. Cannon, Reg. No. 34,977</td> <td>Carol L. Francis, Reg. No. 36,513 Pamela J. Sherwood, Reg. No. 36,677 Paula A. Borden, Reg. No. 42,344 Nicole Verona, Reg. No. P-47,153</td> </tr> </tbody> </table>			Karl Bozicevic, Reg. No. 28,807 Bret E. Field, Reg. No. 37,620 Dianne L. DeVore, Reg. No. 42,484 Alan W. Cannon, Reg. No. 34,977	Carol L. Francis, Reg. No. 36,513 Pamela J. Sherwood, Reg. No. 36,677 Paula A. Borden, Reg. No. 42,344 Nicole Verona, Reg. No. P-47,153																		
Karl Bozicevic, Reg. No. 28,807 Bret E. Field, Reg. No. 37,620 Dianne L. DeVore, Reg. No. 42,484 Alan W. Cannon, Reg. No. 34,977	Carol L. Francis, Reg. No. 36,513 Pamela J. Sherwood, Reg. No. 36,677 Paula A. Borden, Reg. No. 42,344 Nicole Verona, Reg. No. P-47,153																					
<p>Send Correspondence to: BOZICEVIC, FIELD & FRANCIS LLP 200 Middlefield Road, Suite 200 Menlo Park, CA 94025 Telephone: (850) 327-3400 Facsimile: (650) 327-3231</p>																						
<p>Direct Telephone Calls to: (name and telephone number) Name: Carol L. Francis Registration No. 36,513 Telephone: (650) 327-3400</p>																						
10/11/01	FULL NAME OF INVENTOR	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME																		
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP																		
	POST OFFICE ADDRESS	POST OFFICE ADDRESS	CITY	STATE & ZIP CODE/COUNTRY																		
20	FULL NAME OF INVENTOR	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME																		
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP																		
	POST OFFICE ADDRESS	POST OFFICE ADDRESS	CITY	STATE & ZIP CODE/COUNTRY																		
<p>I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.</p>																						
SIGNATURE OF INVENTOR 201		SIGNATURE OF INVENTOR 202		SIGNATURE OF INVENTOR 203																		
DATE	11/13/00	DATE		DATE																		

NOV-13-00 MON 09:19 AM BOZICEVIC FIELD&FRANCIS FAX NO. 650 327-3231

P. 08

Combined Declaration For Patent Application and Power of Attorney (Continued) (Includes Reference to PCT International Applications)			ATTORNEY'S DOCKET NUMBER IRVN-007CIP2	
<p>I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) or PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application(s) and the national or PCT international filing date of this application:</p>				
PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT UNDER 35 U.S.C. 120:				
U.S. APPLICATIONS		STATUS (Check one)		
U.S. APPLICATION NUMBER	U.S. FILING DATE	PATENTED	PENDING	ABANDONED
09/081,385	May 14, 1998		XX	
POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. (List name and registration number)				
Karl Bozicovic, Reg. No. 28,807 <u>Bret E. Field, Reg. No. 37,620</u> <u>Dianne L. DeVora, Reg. No. 42,484</u> <u>Alan W. Cannon, Reg. No. 34,977</u>				Carol L. Francis, Reg. No. 36,513 <u>Pamela J. Sherwood, Reg. No. 36,672</u> <u>Paula A. Borden, Reg. No. 42,344</u> <u>Nicole Vorona, Reg. No. P-47,153</u>
Send Correspondence to: BOZICEVIC, FIELD & FRANCIS LLP 200 Middlefield Road, Suite 200 Menlo Park, CA 94025 Telephone: (650) 327-3400 Faximile: (650) 327-3231				Direct Telephone Calls to: <i>(name and telephone number)</i> Name: Carol L. Francis Registration No. 36,513 Telephone: (650) 327-3400
201	FULL NAME OF INVENTOR	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME
		Gatanaga	Tetsuya	
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP
	Irvine	California	Japan	
	POST OFFICE ADDRESS	POST OFFICE ADDRESS	CITY	STATE & ZIP CODE/COUNTRY
		77 Wellesley	Irvine	California 92612
	FULL NAME OF INVENTOR	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME
202		Granger	Gale	A.
	RESIDENCE & CITIZENSHIP	CITY	STATE OR FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP
		Laguna Beach	California CA	United States ✓
POST OFFICE ADDRESS	POST OFFICE ADDRESS	CITY	STATE & ZIP CODE/COUNTRY	
	31562 Santa Rosa	Laguna Beach	California	
I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.				
SIGNATURE OF INVENTOR 201		SIGNATURE OF INVENTOR 202		SIGNATURE OF INVENTOR 203
DATE		DATE		DATE
13 NOV 00				

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Gatanaga, Tetsuya
Granger, Gale A.

(ii) TITLE OF INVENTION: Factors Altering Tumor Necrosis Factor Receptor Releasing Enzyme Activity.

(iii) NUMBER OF SEQUENCES: 154

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: BOZICEVIC, FIELD, & FRANCIS, LLP
(B) STREET: 200 MIDDLEFIELD ROAD, #200
(C) CITY: Menlo Park
(D) STATE: CA
(E) COUNTRY: USA
(F) ZIP: 94025

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: Windows
(D) SOFTWARE: FastSEQ for Windows Version 2.0b

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: 09/700,354
(B) FILING DATE: 13-NOV-2000
(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: 09/081,385
(B) FILING DATE: 14-MAY-1998

(A) APPLICATION NUMBER: PCT/US99/10793
(B) FILING DATE: 14-MAY-1999

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Francis, Carol L.
(B) REGISTRATION NUMBER: 36,513
(C) REFERENCE/DOCKET NUMBER: IRVN-007CIP2

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 650-327-3400
(B) TELEFAX: 650-327-3231
(C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4047 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AAGCTTTTG	CTTCCCTTCC	CCGGAAAGG	CCGGGCCAG	AGACCGCAC	TCGGACCAGG	60
CGGGGGCTGC	GGGGCCAGAG	TGGGCTGGGG	AGGGCTGGGA	GGCGCTCTGG	GGCCGGCTCC	120
TCCAGGCTGG	GGGCCGCCAG	CTCCGGGAAG	GCAGTCTGG	CCTGCAGATG	GGGCCGCCGCG	180
TGGGGCCCGG	CGGGCGGCC	TCGGGAGGCG	TCCAGGCTGC	GGGAGCGGGGA	GGAGCGGCCG	240
TGCGGGCGCC	AGCGCCGTGG	GTGGAGGTGCG	CCGTCCCTCC	TGAGGGGCAG	CCAGTGCCTT	300
TGGGACCCGG	GAGCAGAGCC	CGCCGCCTCCC	CAGCGGCCTC	CCCAGGGGTC	TCACCCGGTC	360
ACCCGAGAGC	GGAGGCCCG	GCTCCGCAGA	AACCCGGGGC	GGCCGCGGGG	AAGCAGCGCC	420
CTCAGGCGTC	GGAGGAGCCC	CCAGAAGGAC	CTCGCGCCTT	CCCAGCCGGGC	TCCGACCGCC	480
TGGGTTCGGT	CGGGGACGGC	CCAGGCCGCC	AGGACCCCCA	AGCGCAGCTC	AGTCTGCAGGG	540
GCACGACCCA	GAGGCCAGCA	GCAGAGGACG	GGGCCGGGGC	CGGGAGAGGG	CGGGGAGGGC	600
GCTCCTGGGA	GGTCAAGGCC	AGGGCTAGAC	TTTCAGGGTC	ATGGCCTGGC	CCCTCATCCC	660
CAGGGAGGTG	AGGGGGCTCT	GTGAGCAGAG	GGGGCCCGGG	TGGAGAAGGC	GCTGCTAGCC	720
AGGGGCGGGG	CAGGAGCCCA	GGTGGGGACT	TAAGGGTGGC	TGAAGGGACC	CTCAGGCTGC	780
AGGGATAGGG	AGGGAAAGCTA	GGGGTGTGGC	TTGGGGAGGT	GCTGGGGGAC	CGCGGGCGCC	840
CTTATTCTG	AAGCCGAATG	TGCTGCCGGA	GTCCCCAGTG	ACCTAGAAAT	CCATTCAAG	900
ATTTTCAGGA	GTTCAGGTG	GAGACAAAGG	CCAGGCCAG	GTGAAAATGT	GGCAGTGACA	960
GAGTATGGGG	TGAGAACAC	GGAGAGAGGA	AGTCCCCGAG	CGGGATGATG	GGACAGAGAG	1020
CGGGGACCAAG	AATTTTTAA	AACGCATCTG	AGATGCCTT	GGCAGACTCA	TAGTTGTTT	1080
CCTTCACGG	AGAAAGTGTG	GGCAGAAGCC	AGCTCTAAAG	CCCAGGCTGC	CCAGCCTGCA	1140
CTGGCAGAGC	TGACGGAAGG	CCAGGGCAGA	GCCTCCCTC	CCTGTCACAG	ACATGAGCCC	1200
TGGAGATCTG	GAATGAGGCA	GATGTGCCCA	GGGAAAGCTG	ATCCGCCCG	ACCCAGGGCC	1260
CCCCGGGTGC	CCCTTGAGC	GTGGAATCGT	TGCCAGGTCA	TGGCTCCCTG	CTATCGAAC	1320
CCGGACACGG	GTCGTGTGCT	GCACCTGGCA	GTTGCAGGAC	CGACACCCAC	AATGCCTTAA	1380
GAGGTGATGA	CTGCCTTCCA	GGGGCCTGGC	TGGCTGACAC	TTTGCATGGC	TCCTGGAGAA	1440
GAGGGATTGA	GTGGAGTCCA	CGGGTCATGG	CCACGTCTG	GGTGCCTGCCT	CTGAGGCAGG	1500
GCCCGGCTGG	GGTGAGAAGG	GGCTGGAGAC	AGGTTCTGC	CAGTCAGGCC	TCTAACCGGT	1560
GGTCTTCATG	CCTAGGAACC	CACTGGGGC	TTATGAAACT	GCAGGTGGCT	GAGTCCTTGC	1620
CATGGGGTCT	CTCCTTCAGG	AGGTCTGGGT	GGGGCCGGAG	ACTGTACCCC	ACAAAGGGTC	1680
CCAGGTGAGG	CGGATGTGGC	CTGGCGCTGT	GTGGCTCTGG	ACCTAGTCCT	TGGGCTTGGG	1740
CTGGCGCCCA	GGGCCTGGGC	TTGAGACAGC	TGTGACGCG	GCAAGCCATT	TACCCGTTT	1800
GTGGGGACAT	TACATCTTCC	TAGCTTGGAA	CACACAGGCA	GCCAGGGTTG	TTATCCACAT	1860
TCCTCCTCCA	TGTTCTTCTC	TTGAGAACTT	TTACCAAGGTA	TGTCAGGAGC	TGGGCTCCAC	1920
CAGGGAGACT	CAAGTGGAAA	GCCCTCATCC	TTGTCCTCCA	GGAGACAGGA	AAACCTATGG	1980
TTACAATTCC	AGGGACAAGA	GCGATGCATG	TGAGGTGTGG	CAAATCTCAC	TGTTCAACTG	2040
GAGAAATCAG	AGACAGCTC	CTGGAGGCA	TGACACCTGG	ACAGGTTCT	CCACAGGAGG	2100
AAGCGAGTGA	GAGAACCAA	CTGGGATGGA	CCCATCATGT	AGGGGAAACA	GTGCGCGCAG	2160
AACCAACAAC	CACCCCCACC	CTAGGCCAG	AGCTCACCGA	GAGAGCTGGG	CCTCTCGGGG	2220
TGACTACATA	GTTCCTGCT	GGATCTTAGG	TCTTGTCTT	GGGCAGCTCT	GCTGAGACCT	2280
CTATGCCTGT	TCCAGGCTGC	ACCAAGGTT	TGTGACTATT	GGTCTGGGGT	TGTTTGCA	2340
CAACTGAAGT	GTTCTGTTGT	AAAACAGGCA	CTTGATTTC	GGAAAGGAAT	GCTGTTGTT	2400
CTTGCTCGA	CAAACATTGA	GCAGCATTAA	GTGGGGGGT	TATATCTGT	GGAGTAATGG	2460
GTGTTTTGA	AGTCTGCTT	GGGTACTGCA	CATTAAAAGG	AAATATCATT	TCTGAAACAT	2520
TGCTATTTTC	CACACCAGAA	ATCATATCCT	CTTGCTGGC	CATGTCTGAA	GACCTTACAC	2580
GAGAAAGTCT	TAATGTAAGT	TTAGTAGAGT	CCTTGGATGG	AGAACTAATT	ATATCATACA	2640
TTGCCGCTTT	CTCACTCTGC	TCTTTTTCAT	CCTTGCTAA	TTTCATTTTC	TTCTGCTTCT	2700
TTTGTTCCT	TTCTGGAGAA	TCTAGCAAGA	TATCTGGTGG	AACATCTCGA	GGTGTGAAAC	2760
AAGGTAGAGA	CTGAGATTGT	AGGATTAAG	GTGGCTTGA	GCCTTTAGGA	GTTCCTTCAC	2820
TTCCAGCAGG	GGAGCATACT	GGCTGTGGAG	ATCTCAAGGG	AAAAGATGCA	GCATTCTCA	2880
TTGTTGAAGA	ATCTCCATCG	TCACTACTTA	GCCTGTGCAC	CATGTGTAGG	TAGTCCTCAC	2940
TTGAACCATG	TCTAGGATTA	TCAGCATGAT	GATTAGCTGA	ATTGCCAGAC	AACGGACCA	3000

AAACTTTATT	ATCATGTATG	TTTCTCAAAC	CACCTGCAAC	AATGGGACTT	GATACCGATG	3060
CTTGTGAT	CTGTGGATGT	TTGAGGTAA	GGAAATATGCC	ATGTATCCTG	3120	
CAGGGCTTTG	TGGGGCGTAT	GGACTAGGC	CTGGGCTATT	TTGCTGTGGC	3180	
TCCCCAGAGCT	TGTCTGTGGT	GGCACAAACC	GGCTGGAGGG	GCTATGTGAG	3240	
GTTGATAATT	GGAAGATGCA	GGACTACTGT	GCATGGAATT	CTGAGAAAGT	3300	
ACATCATCAT	TCCACTTGT	ACATATCTGT	TCTGCATGCT	TTCTCCCTG	3360	
GACTCCTTGC	CAGGACGGCC	TGCAACAAGA	CTGGTATGTC	ACCTTCTGGG	3420	
CAAGGTTATC	TTTCAACTCT	ATGTGATCTG	TTGATAACCTG	GTTGAGGCTA	3480	
GTGAAACCAA	ATTGTCATCC	CTACAAGCCA	AAAGGCAGTT	CACCTCTTCT	3540	
CATTAAGAG	AAGGCTCTT	GTAGTTGTAG	CAGGTAAGG	AGATGGAAGA	3600	
TCAGGAGGTC	TGTGAGACTA	GCAATCCCCG	CAAGAGTAGT	AATGGGGACA	3660	
CCCCATTATC	CCTGAATTTC	TGGAATGGTG	TTGCCTATAA	AAGTACTTAG	3720	
AGCTGTCATT	ACTTCCCATT	TCCCAAACAC	TGGGCGAAC	GGCGTCTGAA	3780	
GGCCGAGGCC	GCTGTGGCGA	GAGACTATAA	TCCGGGCCGG	GAGGGGGGGC	3840	
CCTCTTCCGT	CTCCTCAGTG	CGGGGAACAT	GTAGAGCCGG	GGGGAGACCA	3900	
CAAATCGTTG	CTTCTCTTC	CTCCTCCTCC	TCCTCTCCC	ACATAGAAAC	3960	
ACCCGACCAC	GGGCCCGAGC	TACCGGGGGG	GCATGCCGC	GGGCCCGGGG	4020	
CTGTCGGCGG	GGCGTCCTT	TGGATCC			4047	

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 739 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GGATCCAAAG	GTCAAACTCC	CCACCTGGCA	CTGTCCCCGG	AGCGGGTCCG	GCCCCGGCCGG	60
CGCGCGGCCG	GGCGCTTGGC	GCCAGAAGCG	AGAGCCCCTC	GGGGCTCGCC	CCCCCGCCTC	120
ACCGGGTCAG	TGAAAAAACG	ATCAGAGTAG	TGGTATTTCA	CCGGCGGCC	GCAGGGCCGG	180
CGGACCCCCG	CCCAGGGCCCC	TCGGGGGAC	ACCGGGGGGG	CGCCGGGGGC	CTCCCACTTA	240
TTCTACACCT	CTCATGTCTC	TTCACCGTGC	CAGACTAGAG	TCAAGCTCAA	CAGGGTCTTC	300
TTTCCCCGCT	GATTCCGCCA	AGCCCCTTCC	CTTGGCTGTG	GTTTCGCTGG	ATAGTAGGTA	360
GGGACAGTGG	GAATCTCGTT	CATCCATTCA	TGCGCGTCAC	TAATTAGATG	ACGAGGCATT	420
TGGCTACCTT	AAGAGAGTC	TAGTTACTCC	CGCCGTTAC	CCGCGCTTCA	TTGAATTCT	480
TCACTTTGAC	ATTCAAGAGCA	CTGGGCAGAA	ATCACATCGC	GTCAACACCC	GCCGCGGGCC	540
TTCGCGATGC	TTTGTGTTAA	TTAACACAGTC	GGATTCCCCT	GGTCCGCACC	AGTTCTAAGT	600
CGGCTGCTAG	GCGCCGGCCG	AAGCGAGGCG	CCGCGCGGAA	CCGCGGCC	CGGGCGGGAC	660
-	CCGCGGGGGG	GACCGGGCCG	CGGCCCTCC	GCCGCCCTGCC	CCGCCGCCGCG	720
CCGAAGAAGA	AGGGGGAAA					739

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CAAGAGTGGC GGCGCGAGCA GGCCCCCCC GGCCCCGGGC CCCCCTCGAG GGGGACAGTG	60
CCCCCGCCGC GGGGGCCCCG CGGCAGGGCG CCGCCGGCCC CTGCCGCC GACCCTCTC	120
CCCCCGCCGC CGCCCCCACG CGGCCTCCC CGGGGGAGGG GGGAGGACGG GGAGCGGGGG	180
AGAGAGAGAG AGAGAGAGGG CGCGGGGTGG CTCGTGCCGA ATTAAAAAG CTT	233

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2998 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GGATCCAAAG AATTGGCAC GAGGTAGTCA CGGCTCTTGT CATTGTTGTA CTTGACGTTG	60
AGGCTGGTGA GCTTGGAAA GTCGATGCGC AGCGTCAGC AGGCGTTGTA GATGTTCTGC	120
CCGTCCAGCG ACAGCTGGC GTGCTGGCG CTCACGGGT CCGCATACTG CAGCAGGGCC	180
TGGAACTGGT TGTTCTGGT GAAGGTGATG ATCTTCAACA CTGTGCCGAA CTTGGAGAAA	240
ATCTGGTGCA GCACATCCAG GGTACAGGG TAGAAGAGGT TCTCCACGAT GATCCTGAGC	300
ACGGGGCTCT GCCCGGCCAT CGCCATCCCT GCATCCACGG CCGCCGCCGA GGCAGCCAAG	360
GCCAGGGTCC CCGACTGGAC CGAGTTCACCC GCCTGCAGGG CCGCCTGGC CCGGCCCTGG	420
TTGGGAGAGC TGTCGGTCTT CAGCTCCTTG TGTTGGAGA ACTGGATGTA GATGGGCTGG	480
CCGCGCAGCA CAGGGGTCAC CGAGGTGATG TAGTTCACCA TGGTATTGGC AGCCTCCTCC	540
GTGTTCATCT CGATGAAGGC CTGGTTTTTC CCCTTCAGCA TCAGGAGGTT GGTGACCTTC	600
CCAAAGGGCA GCCCCAGGG GATGACTTCC CCCTCCGTGA CGTCGATGGG GAGCTTCCGG	660
ATGTGGATCA CTCTAGAGGG GACGCCGTCA CTTCGCTGT CACCTTGAA CTTCTGCTG	720
TCATTTCCGT TTGCTGCAGA AGCCGAGTTG CTGCTCATGA TAAACGGTCC GTTAGTGACA	780
CAAGTAGAGA AAAGCTCGTC AGATCCCCGC TTTGTACCAA CGGCTATATC TGGGACAATG	840
CCGTCCATGG CACACAGAGC AGACCCGCGG GGGACGGAGT GGAGGCGCCG GAATCCTGGA	900
GCTAGAGCTG CAGATTGAGT TGCTCGTGA GACGAAGCGC AAGTATGAGA GTGTCCGTCA	960
GCTGGGCCGG GCACTGACAG CCCACCTCTA CAGCCTGCTG CAGACCCAGC ATGCACTGGG	1020
TGATGCCCTT GCTGACCTCA GCCAGAACGCCCAGAGCTT CAGGAGGAAT TTGGCTACAA	1080
TGCAAGAGACA CAGAAAATAC TATGCAAGAA TGGGGAAACG CTGCTAGGAG CGGTGAACATT	1140
CTTGTCTCT AGCATCAACA CATTGGTCAC CAAGACCATG GAAGACACCG TCATGACTGT	1200
GAAACAGTAT GAGGCTGCCA GGCTGGAATA TGATGCCCTAC CGAACAGACT TAGAGGAGCT	1260
GAGTCTAGGC CCCCAGGATG CAGGGACACG TGGTCGACTT GAGAGTGCAGG AGGCCACTTT	1320
CCAGGCCCAT CGGGACAAGT ATGAGAAGCT GCGGGGAGAT GTGGCCATCA AGCTCAAGTT	1380
CCTGGAAGAA AACAAAGATCA AGGTGATGCA CAAGCAGCTG CTGCTCTTCC ACAATGCTGT	1440
GTCCGCCTAC TTTGCTGGGA ACCAGAAACA GCTGGAGCAG ACCCTGCAGC AGTTCAACAT	1500
CAAGCTGCGG CCTCCAGGAG CTGAGAAACC CTCCTGGCTA GAGGAGCAGT GAGCTGCTCC	1560
CAGCCCAACT TGGCTATCAA GAAAGACATT GGGAAAGGGCA GCCCCAGGGT GTGGGAGATT	1620
GGACATGGTA CATCCTTGT CACTTGCCT CTGGCTTGGG CTCCCTTTTC TGGCTGGGGC	1680
CTGACACCAAG TTTTGCCTAC ATTGCTATGG TGGGAAGAGG GCCTGGAGGC CCAGAACATTG	1740
CTGCCCTGTC TATCTTCCGT GCCACAGGGC TTCATCCCCA GATCTTTCC TTCCACTTCA	1800
CAGCCAACGG CTATGACAAA ACCACTCCCT GGCCAATGGC ATCACTCTTC AGGCTGGGGT	1860
GTGCTCCCTG ACCAATGACA GAGCCTGAAA ATGCCCTGTC AGCCAATGGC AGCTCTTCTC	1920
GGACTCCCCCT GGGCCAATGA TGTTGCGTCT AATACCTTT GTCTCTCTC TATGCGTGCC	1980
CATTGCAGAG AAGGGGACTG GGACCAAAGG GGTGGGATA ATGGGGAGCC CCATTGCTGG	2040
CCTTGCATCT GAATAGGCCT ACCCTCACCA TTTATTCACT AATACATTTC ATTTGTGTT	2100
TCTAATTAA AATTACCTTT TCATCTTGCT TGATTTCCT TCAGCTAAAT TAGAAATTG	2160
TAGTTTTCC CCTAAAAAAAT TCAATGGCAT TCTTCTTAT AAATTACATT CTCTGATTTT	2220
CTTGTCAAGC TGCTTCAAGG AAATCCATGT GTTCAAAATG CTGCTCGCA GTTGCTCCA	2280
TACCAAATGG TTGCTTAACC CAAATATCTG AGCAGCAAAT TGAGCTGATC CTTCTGGAGA	2340
AAGTACGGTT GAACAGCCAA GACCACTGGG TAGTCGAAGA GAAGACCAACATCCTGAAC	2400

TCCCCAGTCT	GGTGTGAGGG	GAGGACAGCT	GATAACTGGA	TATGCAGTGT	TCCCAGACAT	2460
CACTGGTCCC	AAACCATTAC	TTCTGCCTGC	CACTGCCACA	AATACAGTAG	GAATGCCATC	2520
CCCTTCATAC	TCAGCTTAA	TCCTCAGAGT	TTCATCTGGT	CCTTTATGCG	CAGATGTTAC	2580
TCGAAGTTCA	CATGGAATGC	CAAATTTCC	ACAGGCCTTC	TTGATTTTT	CACAGTGACC	2640
AAGATCAGAA	GTAGAGCCC	TCAACACTAC	AACCCTGCAC	TGACTTTCTG	ATTTCAAAAG	2700
CAACTCTACT	CTCTCTGCAA	CCCACTAAA	GTTCCTTCTT	ACCATTGGA	GCCCTTCAGG	2760
AGTACTTCT	TTGAGGTCCC	GATAAGACTG	TTTGTCTTC	TGTTGGCTTC	GATCTCCTGA	2820
TGGCCAGAGT	CTCCAGGAAT	CATTGTCAAT	AACATCAGCA	AGAACAAATT	CTTTGGTGGT	2880
TACATCAACA	CCAAATCAA	TCTTCATATC	AACCAGTGT	CAATTCTGGG	GCAACCAGGA	2940
TTTCTCCAGT	ATTTCAAATA	TAGCCTGTGT	AGCATCTCGT	GCCGAATTCA	AAAAGCTT	2998

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4152 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAGCTTTTTG	TGAAAACCT	AGGATATGTC	CCCTCCCTCA	CCACACCCAA	CCCCCCGCC	60
CTGCCCCAGG	ACATGACGAT	GCCTCACACA	CACACACACA	CACACATACA	CACAAGGCCG	120
TGAGCTGCAC	GCAGGAACAT	GGGCTGCACT	CACGACAACA	TTGAAAAAAAT	ATACATTATA	180
TATGTACACC	CGGGGCCCCC	ACGTCCCCTC	CCGTCCCCGC	AGCCTGGCCA	CACCAGGTCA	240
CGGAGGAGGG	GCCGGGGCTG	CAGGACCTCA	GGACTGCAAG	GGCAGGAAGG	GAAACAGGAC	300
AAGAAAGGAA	GGAAGTGG	AAGGAGGGAG	AAATGGGTC	CCCAGACTGA	AATGAAATG	360
AGGTGGGGCG	ATCATAAGAG	AAGCAGGGAC	GATGGTCCAG	CTGAGGGAGC	CCTGCAGAGG	420
GGGAAAAGCT	TCCCATGGAC	AGGAGAGAGA	AGGGAAAGGGG	AGAGGAGAGG	TTTCCCTCA	480
ATCCCACCCC	CAGCCCCAGC	CCCAGCCCCA	GCCATTGCAA	TCGTCACCC	CTCCCCAACAA	540
CAGT GAGTGC	TAAGGGGGCA	GCTGCCATTG	GGGGTAGAAA	GGCAGCTGAA	GTCCAGGCCA	600
CTTTCCAACC	CAGCCAGCCC	CAGTGCAAGG	GGCACACCAG	GAGCATGACA	GCCCAGAAAGT	660
GAGGGATGGG	GGGCCGGGG	AGGGGCAGGG	CGGACTCCAG	AGGGCCCGCT	GGGGTTTGA	720
AATGAAAGGA	GGACTGGTTC	TGAAGCCTCT	CTCCCTCTTG	GTCTCTGTGT	TCCCAGAAAG	780
TCCTCTCCC	ATGTCTGGAG	TGTCTGTTTC	ACCAGGGCAG	AATTCCCCCT	CTGCGTGGGG	840
AGAGGTGTAG	GCCTTAGTAG	CGGTGTGGGG	GGGTCTCGAT	GATGCGTCTC	TCGTCGCTGC	900
TGGGGGAATC	GGCCACCTCC	GAGTCACTGC	TGTCTCATC	CTCCTGCTGG	CCCCAACAG	960
CCCCCGTCAC	ACAGGACTGC	CGATTCTGGT	AGGACTCCAT	GGGGTTCACCA	ATGATGGTGA	1020
GAGCTGAGTC	ATCCCAGAAG	AGGTCTGGGT	CCTTGGGGTC	ACTGGAGGCC	CCTGGAGGCC	1080
CGCCGGCCCC	TGAGACGCGG	CGGTGAAGGG	AATGGATGCG	CACCAAGCCC	AGGACGACCA	1140
- TGAGCACCAG	GAAGCCCACG	CACACCACAA	TGATGAGGGT	TGCGGCGCTG	GGTATCATGG	1200
AGTTTCTGTG	GGAGCTGGCT	AGGCTGTGTC	CAGCCATCTC	AGGCGGGGGC	TGGTGACCAC	1260
GGTGCAGGAA	CTGCTGGGAG	CTGAGCACGT	GGCTGGGTG	GGCAACCCGG	TTCATGCTGT	1320
GCAGGACATT	GACCTCCACG	ATGAATTCAT	TGCTGGAGTA	ACGGCCATTTC	ATTTCCGAGC	1380
AGGAAAGCCG	GAACTCCCTG	GTGTAGAGGG	CAGCTCCGTG	TCGCAGCCGA	TAACCGACCT	1440
GCCTCAGGAT	CTCTTCATAC	ACAGTGTGTC	TCTCCACCCC	AGCAATAGTG	AGGTAGGCAG	1500
ATGTGTTGGT	GAGCTCCAGC	CCCCGCTGCT	GCAGAGAGGT	TGTGTCCAGG	AGCAGGCTTT	1560
CCCGCTCGGG	ATCCAGGTCA	TCCCCCACCA	GAGAAATTTC	ACAGCCATCC	AGGTTGTGCA	1620
CAATCTCATC	CGACATGCGT	GTGTCTGTCA	CTGTGCCCTG	CCAACCTCTA	TCCTTTTGG	1680
CCTCCACCTG	GTGAGAAATG	GAGCAGGTGA	TTTGAAGATC	AGGGAACAAA	GGGACGCCGT	1740
TGGTTCCCTC	AAAGTCCACA	GCTGGCGGG	CAAATGAGC	AGTGCCACTC	AGCAGGATCT	1800
GGGGGGCGTC	AGGCTGAAGG	ACGACCACGT	AGCCCTCCAC	TTCAGGGATG	GAGACGCAGG	1860
ACTCTTCGCT	GAAGCACTTG	ACAGCAGTGG	TGAGGCGCAG	GGGCCTGACG	CCGGCGTGG	1920
CAAAGCGCAG	AGTGTTCATG	TAAGCCACAT	GCTGCAGGGC	ATGGTTGAAG	GTCTCCACAT	1980
CATCCCCCTC	CAGGGTGAGC	AGGGACTGTG	AGGGGTTCAC	GTGGACCTTC	ATGCCTTTGC	2040

CCAGGCTCTC GAAATCCCTA TAGTCCAGCC CCTCCCGACA TGCATAGAGG CACTCGATGA 2100
 CCTCGCGCT CTCCAGCGA CCTGAGCGCA CGCTGAAACC AGCCAGGTAG CCATGGAAGT 2160
 AGTGGTGGAT CGACAAAGGG TCTCCTGGG TGGTGTCTGT ACTGTTGTCT CCCTTTCCCT 2220
 TCTCTTGTT CTTCTCCTCA GTCCAGCAGG CCCCAATCAT GAGAGCAGGC TCCCTTCGGG 2280
 GTGGGTGGAT GAGGCCATTG TCATGGATGA GGGCAGGGTC GAAGGAGATG CCGTCGGTAT 2340
 AGAGTGTGAC TGTGGGAAC TCGAGGTTCA GAGCGTAGTG GTGCCACTCA TCATCACAGA 2400
 CCTGCTCCAG CTTCCAGAGG AACTTGACTG GGCGGGCACT CTCAGGCAGG GGCCAGTAGA 2460
 GGAAGGCAAT CCTACAGCCG TGACAGTCA GCGAGTAGTG AGAGAAGCCG TCCTCATTCT 2520
 GGACAGTGTGTT ACATACGATG GTTCTCTCTT CCTTCTTGCC CTGTTGGGA GTTACGCCAT 2580
 GCTTCATCCA GAAGGACAGG GTGAAGTGGT CACTGAGGCT GTCTGGGGC CCAGAGCCCCA 2640
 GCCCACTGGG GCCACCCAGG GGCACTGCA CAGCCTGGGT GCCATTGAAC CAGTAGATCA 2700
 GGCTGCTGTC CTGGCTGTAG TGACCGAGA GTCTGCTGT CCAGTTGGCA TTGGGCCAG 2760
 GCATGGGCAA CAGATCCACT TCCCCAGTGG CAGCACCA GAGTTCCGC AGCGCCCGCT 2820
 CTGAGTAGTT GTCACGGTCA CAGCCCTGG CCACATGGCT GTCTGCAGC TCTATGGTGG 2880
 CCTGAATGTT CCAGAGTGGT TCATCACAGG TCTCCAGCG GATACCAGGG AACAAAGCCA 2940
 AGCTCCCAGC ACCTGGTGCA TATTCGATCC TTTTGTCCA GCCTTGCCAG CTGGGTTTAC 3000
 AGGTGGGCTT CACCTGAATC TCCACCTCA CATCATCTGC TGCCCGCTTC TTCCCACAGT 3060
 CATAAGCTGT CACTGTAAAC TTATAGAGCC TCTCACCAC GTACTGCAGC TTCTCTGTGT 3120
 TCTCAATGTT CCCGTCAATTG TCAATGAGGA AAGGGGTGGT GGGTGTGAGA ATCTCATAGT 3180
 ACCAGATCTG GCTGTACTGG GGGGAGCAGT CACCGTCAAT GGCTTCCACC CGCAGGATGC 3240
 GATCGTACAG CTTCCCCCTC GTCACAGCCG CACGATACAG CCGTTCCACA AACACTGGGG 3300
 CAAACTCGTT CACATCGTT ACCCGCACAT GCACAGTGGC CTTGTGGGAC TTCTTGGTGT 3360
 TGGCCCCGTC GGGGCCCTCG CCACAGTCAT AGGCCTGGAT GGTGAAGGTG TGTTCCITCT 3420
 GGGCCTCGCA GTCCACAGGC TCTTGGCCC GGATCAGCCC CTCTCCTGTC GCCTTGTCAA 3480
 GGATCACAGC CTCAAAGGGC ACCCCAGACC CATGGAGCCG GAAGCCGCAG ATCTCACCTG 3540
 CATAGCGCAG CGGGGCATCC TTGTCCAAGG CAAAGAGTGG TGGATTCACT AGGACCGTGT 3600
 TGTCAATTCTC CATGACGATG CCCTGGTACT CTGCCTCAAT CCATGGCTTG TGCTTGTGG 3660
 CTTTGTTCACA GGAGCAGGAC GCGAGCAGAG AGGCCAGCAG AACGGGCAGC AGCAGGAGGG 3720
 TCATGGTGC GCGTGGGCA GGGCAGGGCC AGGCCTTGC CTCCCCCTGGG AGCCTCCAGC 3780
 CTGCGGATTC CACCTTGCAG GAGGGATAACA GGGGGGAAA ACCAAAATAA AACGTCAAAT 3840
 AAATTGTGTA GGAGGAGTCC AGCTTAGGAC CGGGCCAGAG CCAGGCCAGG CTCGGGGAGG 3900
 GGGCCTCTGC AGGTTAGAG GATCACTGCT GCCACCACCG CCACCTGGG AGCCAGTTAT 3960
 TTTGCCATGG CCTTGATTGC AACAGCTGCC TCCTCTGTCA TGGCAGACAG CACCGTGATC 4020
 AGGATCTCTT CTCCACAGTC GTACTTCTGC TCAATCTCT TGCCAAGGTC TCCCTCAGGG 4080
 AGACGAAGGT CCTCTCGTAC CTCCCCGCTG TCCTGGAGCA GTGATAGGTA CCCATCCTGG 4140
 ATCTTGGAT CC 4152

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3117 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGATCCAAAG ATTGGCACG AGTGGCCACA TCATGAACCT CCAGGCCAG CCCAAGGCTC 60
 AGAACAAAGCG GAAGCGTTGC CTCTTTGGGG GCCAGGAACC AGCTCCCAAG GAGCAGCCCC 120
 CTCCCCCTGCA GCCCCCCCCAG CAGTCCATCA GAGTGAAGGA GGAGCAGTAC CTCGGGCACG 180
 AGGGTCCAGG AGGGGCAGTC TCCACCTCTC AGCCTGTGGA ACTGCCCCCT CCTAGCAGCC 240
 TGGCCCTGCT GAACTCTGTG GTGTATGGGC CTGAGCGGAC CTCAGCAGCC ATGCTGTCCC 300
 AGCAGGTGGC CTCAGTAAAG TGGCCCAACT CTGTGATGGC TCCAGGGCGG GGCCCGGAGC 360
 GTGGAGGAGG TGGGGGTGTC AGTGACAGCA GCTGGCAGCA GCAGCCAGGC CAGCCTCCAC 420
 CCCATTCAAC ATGGAACTGC CACAGTCTGT CCCTCTACAG TGCAACCAAG GGGAGCCCGC 480

ATCCTGGAGT GGGAGTCCCG ACTTACTATA ACCACCTGA GGCACGTGAA CGGGAGAAAG 540
 CGGGGGGCC ACAGCTGGAC CGCTATGTGC GACCAATGAT GCCACAGAAG GTGCAGCTGG 600
 AGGTAGGGCG GCCCCAGGCA CCCCTGAATT CTTTCCACGC AGCCAAGAAA CCCCCAAACC 660
 AGTCACTGCC CCTGCAACCC TTCCAGCTGG CATTGCGCCA CCAGGTGAAC CGGCAGGTCT 720
 TCCGGCAGGG CCCACCGCCC CCAAACCCGG TGGCTGCCTT CCCTCCACAG AAGCAGCAGC 780
 AGCAGCAGCA ACCACAGCAG CAGCAGCAGC AGCAGCAGGC AGCCCTACCC CAGATGCCGC 840
 TCTTGAGAA CTTCTATTCC ATGCCACAGC AACCTCGCA GCAACCCCCAG GACTTTGGCC 900
 TGCAGCCAGC TGGGCCACTG GGACAGTCCC ACCTGGCTCA CCACAGCATG GCACCCTACC 960
 CCTCCCCCCC CAACCCAGAT ATGAACCCAG AACTGCGCAA GGCCTTCTG CAGGACTCAG 1020
 CCCCGCAGCC AGCGCTACCT CAGGTCCAGA TCCCCTTCCC CGCCCGCTCC CGCCGCCCTCT 1080
 CTAAGGAGGG TATCCTGCCT CCCAGCGCCC TGGATGGGGC TGGCACCCAG CCTGGCAGG 1140
 AGGCCACTGG CAACCTGTT CTACATCACT GGCCCTGCA GCAGCCGCCA CCTGGCTCCC 1200
 TGGGGCAGCC CCATCCTGAA GCTCTGGGAT TCCCGCTGGA GCTGAGGGAG TCGCAGCTAC 1260
 TGCTGTATGG GGAGAGACTA GCACCCAATG GCCGGGAGCG AGAGGCTCCT GCCATGGGCA 1320
 GCGAGGAGGG CATGAGGGCA GTGAGCACAG GGGACTGTGG GCAGGTGCTA CGGGGCGGAG 1380
 TGATCCAGAG CACGCACGG AGGCGCCGGG CATCCCAGGA GGCCAATTG CTGACCCCTGG 1440
 CCCAGAAGGC TGTGGAGCTG GCCTCACTGC AGAATGCAA GGATGGCAGT GGTTCTGAAG 1500
 AGAACGGAA AAGTGTATTG GCCTCAACTA CCAAGTGTGG GGTGGAGTT TCTGAGCCTT 1560
 CCTTAGCCAC CAAGCGAGCA CGAGAAGACA GTGGGATGGT ACCCCTCATC ATCCCAGTGT 1620
 CTGTGCCCTGT GCGAACTGTG GACCCAACCTG AGGCAGCCCA GGCTGGAGGT CTTGATGAGG 1680
 ACGGGAAGGG TCTTGAACAG AACCTGCTG AGCACAAGCC ATCAGTCATC GTCACCCGCA 1740
 GGCGGTCCAC CCGAATCCCC GGACAGATG CTCAAGCTA GGCGGAGGAC ATGAATGTCA 1800
 AGTGGAGGG GGAGCCTTCC GTGCGGAAAC CAAAGCAGCG GCCCAGGCC GAGCCCTCA 1860
 TCATCCCCAC CAAGGGGGG ACTTTCATCG CCCCTCCCGT CTACTCCAAC ATCACCCCAT 1920
 ACCAGAGCCA CCTGCGCTCT CCCGTGCGCC TAGCTGACCA CCCCTCTGAG CGGAGCTTG 1980
 AGCTACCTCC CTACACGCCG CCCCCCATCC TCAGCCCTGT GCGGGAGGC TCTGGCCTCT 2040
 ACTTCAATGC CATCATATCA ACCAGCACCA TCCCTGCCCT TCCTCCCATC ACGCCTAAGA 2100
 GTGCCCATCG CACGCTGCTC CGGACTAACAGT GTGCTGAAGT AACCCCGCCT GTCCTCTCTG 2160
 TGATGGGGGA GGCCACCCCA GTGAGCATCG AGCCACGGAT CAACGTGGGC TCCCAGTTCC 2220
 AGGCAGAAAT CCCCTTGATG AGGGACCGTG CCCTGGCAGC TGCAGATCCC CACAAGGCTG 2280
 ACTTGGTGTG GCAGCCATGG GAGGACCTAG AGAGCAGCCG GGAGAAGCAG AGGCAAGTGG 2340
 AAGACCTGCT GACAGCCGCC TGCTCCAGCA TTTCCCTGG TGCTGGCACC AACCAAGGAGC 2400
 TGGCCCTGCA CTGTCTGCAC GAATCCAGAG GAGACATCCT GGAAACGCTG AATAAGCTGC 2460
 TGCTGAAGAA GCCCCTGCGG CCCCACAAACC ATCCGCTGGC AACTTATCAC TACACAGGCT 2520
 CTGACCAGTG GAAGATGGCC GAGAGGAAGC TGTCAACAA AGGCATTGCC ATCTACAAGA 2580
 AGGATTCTT CCTGGTGCAG AAGCTGATCC AGACCAAGAC CGTGGCCAG TGCGTGGAGT 2640
 TCTACTACAC CTACAAGAAG CAGGTAAAAA TCGGCCGCAA TGGGACTCTA ACCTTGGGG 2700
 ATGTGGATAC GAGCGATGAG AAGTCGGCC AGGAAGAGGT TGAAGTGGAT ATTAAGACTT 2760
 CCCAAAAGTT CCCAAGGGTG CCTCTTCCCA GAAGAGAGTC CCCAAGTGAAGAGGCTGG 2820
 AGCCCAAGAG GGAGGTGAAG GAGCCCAGGA AGGAGGGGA GGAGGAGGTG CCAGAGATCC 2880
 AAGAGAAGGA GGAGCAGGAA GAGGGGCGAG AGCGCAGCAG GCAGGAGCAG GCAGTCAAAG 2940
 CCACGCAGAC ACTACAGGCC AATGAGTCGG CCAGTGACAT CCTCATCCTC CGGAGCCACG 3000
 - AGTCCAACGC CCCTGGGTCT GCCGGTGGCC AGGCCTCGGA GAAGCCAAGG GAAGGGACAG 3060
 GGAAGTCACG AAGGGCACTA CCTTTTCAG AAAAAAAA AAAAAAACAA AAAGCTT 3117

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3306 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTGGCA CGAGGTCAGT TTCTGTGGA ACACAGAGGC TGCCTGTC	60
CGACGGATAC AGACCAGGCT TGCTCTATAA GGGATCCAA CAGTGGATT GTGTTAAC	120
TTAATCCGCT AAACAGTCG CAAGGATATA ACGTCTCTGG CATTGGGAAG ATTTTATGT	180
TTAATGTCG CGGCACAATG CCTGTCTGTG GGACCATCCT GGGAAAACCT GCTTCTGGCT	240
GTGAGGCAGA AACCCAAACT GAAGAGCTCA AGAATTGGAA GCCAGCAAGG CCAGTCGGAA	300
TTGAGAAAAG CCTCCAGCTG TCCACAGAGG GCTTCATCAC TCTGACCTAC AAAGGGCCTC	360
TCTCTGCCAA AGGTACCGCT GATGCTTTA TCGTCCGCTT TGTTGCAAT GATGATGTTT	420
ACTCAGGGCC CCTCAAATTC CTGCATCAAG ATATCGACTC TGGGCAAGGG ATCCGAAACA	480
CTTACTTGA GTTGAAACC GCCTTGGCCT GTGTTCTTC TCCAGTGGAC TGCCAAGTCA	540
CCGACCTGGC TGGAAATGAG TACGACCTGA CTGGCCTAAG CACAGTCAGG AAACCTTGGA	600
CGGCTGTTGA CACCTCTGTC GATGGGAGAA AGAGGACTTT CTATTTGAGC GTTTGCAATC	660
CTCTCCCTTA CATTCTGGA TGCCAGGGCA GCGCAGTGGG GTCTTGCTTA GTGTCAGAAG	720
GCAATAGCTG GAATCTGGT GTGGTGCAGA TGAGTCCCCA AGCCGCGGCC AATGGATCTT	780
TGAGCATCAT GTATGTCAAC GGTGACAAGT GTGGGAACCA GCGCTTCTCC ACCAGGATCA	840
CGTTTGAGTG TGCTCAGATA TCGGGCTCAC CAGCATTCA GCTTCAGGAT GGTTGTGAGT	900
ACGTGTTTAT CTGGAGAACT GTGGAAGCCT GTCCCCTGT CAGAGTGGAA GGGGACAAC	960
GTGAGGTGAA AGACCCAAAG CATGGCAACT TGTATGACCT GAAGCCCCTG GGCCTCAACG	1020
ACACCATCGT GAGCGCTGGC GAATACACTT ATTACTTCCG GGTCTGTGGG AAGCTTCCT	1080
CAGACGTCTG CCCAACAAAGT GACAAGTCCA AGGTGGTCTC CTCATGTCAG GAAAAGCGGG	1140
AACCGCAGGG ATTTCACAAA GTGGCAGGTC TCCTGACTCA GAAGCTAACT TATGAAAATG	1200
GCTTGTAAA AATGAACCTTC ACAGGGGGGG ACACCTGCCA TAAGGTTTAT CAGCGCTCCA	1260
CAGCCATCTT CTTCTACTGT GACCGCGGCC CCCAGCGGC AGTATTCTA AAGGAGACTT	1320
CAGATTGTTG CTACTTGTT GAGTGGCAGA CGCAGTATGC CTGCCACCT TTGATCTGA	1380
CTGAATGTT ATTCAAAGAT GGGGCTGGCA ACTCCTCGA CCTCTCGTCC CTGTCAGGT	1440
ACAGTGACAA CTGGGAAGCC ATCACTGGGA CGGGGGACCC GGAGCACTAC CTCATCAATG	1500
TCTGCAAGTC TCTGGCCCCG CAGGCTGGCA CTGAGCCGTG CCCTCCAGAA GCAGCCGCGT	1560
GTCTGCTGGG TGGCTCCAAG CCCGTGAACC TCGGCAGGGT AAGGGACGGA CCTCAGTGGA	1620
GAGATGGCAT AATTGTCCTG AAATACGTT ATGGCAGCTT ATGTCAGAT GGGATTGG	1680
AAAAGTCAAC CACCATCCGA TTCACCTGCA GCGAGAGCCA AGTGAACCTC AGGCCATGT	1740
TCATCAGCGC CGTGGAGGAC TGTGAGTACA CCTTTGCCTG GCCCACAGCC ACAGCCTGTC	1800
CCATGAAGAG CAACGAGCAT GATGACTGCC AGGTCAACCA CCCAACGCACA GGACACCTGT	1860
TTGATCTGAG CTCCTTAAGT GGCAGGGCGG GATTCACAGC TGCTTACAGC GAGAAGGGT	1920
TGGTTTACAT GAGCATTCTGT GGGGAGAATG AAAACTGCC CCCTGGCGTG GGGGCTGCT	1980
TTGGACAGAC CAGGATTAGC GTGGGCAAGG CCAACAAGAG GCTGAGATAC GTGGACCAGG	2040
TCCTCAGCT GGTGTACAAG GATGGGCTCC CTTGTCCTC CAAATCCGGC CTGAGCTATA	2100
AGAGTGTGAT CAGTTCTGT TGCAGGCCTG AGGCCGGGCC AACCAATAGG CCCATGCTCA	2160
TCTCCCTGGA CAAGCAGACA TGCACCTCTCT TCTTCCTCG GCACACGCCG CTGGCCTGCG	2220
AGCAAGCGAC CGAATGTTCC GTGAGGAATG GAAGCTCTAT TGTTGACTTG TCTCCCCTTA	2280
TTCATCGCAC TGGTGGTTAT GAGGCTTATG ATGAGAGTGA GGATGATGCC TCCGATAACCA	2340
ACCCCTGATT CTACATCAAT ATTGTCAGC CACTAAATCC CATGCACGGA GTGCCCTGTC	2400
CTGCCGGAGC CGCTGTGTGC AAAGTTCTTA TTGATGGTCC CCCCATAGAT ATCGGCCGG	2460
TAGCAGGACC ACCAATACTC AATCCAATAG CAAATGAGAT TTACTGAAT TTTGAAAGCA	2520
GTACTCCTTG CCAGGAATTG AGTTGTAAT AAAATGAAC CTGCTCAACA GCTGAGGGAG	2580
ACTAGAAATG ATGGGTCAT ATCCTGGTGC ATTGTCATAC AATTCAAACA ATGGTGCAGC	2640
TACCAGCTTG TAATTTTAG GGACTGCAA CAAGGCTTT TCTTGAAGCT GAACCAGAAA	2700
CAACTTCTTA TGTTCCCTAG GCTTGTAAAT ATGTGCAGGA ATATATGGAT ACTGAGGAGG	2760
TTCAAAATTG GGTCTCCACC AGTTACCAAT GCAATCGTCA ATGACCCAGT CTTGAAAAC	2820
TCCATCCTGA CGACCCAGTA TCTCTGTCA TAAGCGTTT AGTCCTTCAA CTTCATCTTC	2880
TCCGGGTTA AGTTCACCA CAGGTAGTT GAAGAAAGTT GTTCCAGCT GCAGCAGTAA	2940
CACATGGGGT AGCCGGTGCT CATGTACAAT CAGAACCCCT TCTACAGTCC TCCCTATTCC	3000
AATTTTATCA AATTCTTCCC TCATGCGCTG AAATCTGGCT GCAACAGAGC TGTCTTCTC	3060
GTAGAGGGC TCTTTGTAC CAAAAGTATA ATTGGTAAGA GGGTACAGGT TGATGGTGC	3120
CTCCAGGGTG AGGGGCTTCG TCTGCTGGAT GTACTTGTG CCGAACTGAG TGACCCCCCG	3180
GGGCCAGCCG GTCTGCGAGC GATTGGGCGG TACCACAGAC ATGCTGGGA GCTCCGGCGC	3240
TGACGGCGAG CAGAAAGTGG CAGGCAGGGT AGACTTCCC CGTGCAGGAA GCCTCGTGCC	3300
GAATT	3306

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4218 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GAATTCTGGCA	CGAGAATGGA	TCAACCTCAA	CAACACGTTA	AAGCTAGACG	AAAGAAGTAA	60
TACACAGTGT	ATGAGTCTCA	CATGAAATAC	CCGGATGTA	ATCCAAAGAA	ACAGGAAGCA	120
GATTGGTGGT	TGCCAGGGAC	AAGGGCGGTG	GGAGGGAGAAA	ATGGAGAGTA	ACGGGACTTT	180
ACTTTGGAG	TGATGAGAAT	GTGTTGGAGC	TAGATAGAAG	TGGTGGTTGT	ACACCATTGT	240
GGATGTACTA	CCACCTTAATT	GTTCACTTAA	AAAGTTAATT	TATGTGAATT	GCATCTTAAT	300
TAAAAACAAG	GATAACATTC	CAACTCCTGG	ACATTATCCT	TCCTTCCAT	TTGATGTCAG	360
GCCCGTGT	TAATTCTCAT	CCGGTTGGT	CACTGCACTT	AAGATGTGGA	GAAATTAGGA	420
CGCACAGTTA	AGAGGAAGGA	TAACACTGAT	TAAGGTAGTG	CTTTCTAGG	TTTCCCCTAA	480
ACAATTAAAC	AGATGGATAG	TGGCACCAC	TACGAGATGG	AAAAACCAAGC	GGAAGGAAGA	540
TTTGGGGAG	AAGTTAAGTT	TGTCTGGGC	CTGTGTTTG	CAACCTGAGT	GTAAAAGACA	600
TATGTTAAGT	CTTCAGTGGC	GAAACACTAA	AACTAGAAAT	GGATCAGAAT	TTTATCTTG	660
GATGTGACTT	CTCAAGGATG	GTCTTGTAC	TTCAGTGCCT	GGTCAAATGA	CAAGATGGGC	720
AATCTTTCC	TGAAGGTCCA	AGCACCTGAA	CGTGGCAGGG	TGACCCGATT	CCGATTTGCT	780
TAGAACAAATC	CTAGTTCATG	CCTATTGTCC	CTCATGTAAT	TAATATCACT	CTCAAAATGT	840
CTCATTGTTGT	GCAATAAATT	CTGCAACGTG	ATGGCGCGAC	TCTCGCGGCC	CGAGCGGCCG	900
GACCTTGTCT	TCGAGGAAGA	GGACCTCCCC	TATGAGGAGG	AAATCATGCG	GAACCAATT	960
TCTGTCAAAT	GCTGGCTTCA	CTACATCGAG	TCACAAACAGG	GCGCCCGAA	GCCCAGGCTC	1020
AATCAGCTAT	ACGAGCGGGC	ACTCAAGCTG	CTGCCCTGCA	GCTACAAACT	CTGGTACCGA	1080
TACCTGAAGG	CGCGTCGGGC	ACAGGTGAAG	CATCGCTGTG	TGACCGACCC	TGCCTATGAA	1140
GATGTCAACA	ACTGTATGA	GAGGGCCTTT	GTGTTCATGC	ACAAGATGCC	TCGTCTGTGG	1200
CTAGATTACT	GCCAGTCCCT	CATGGACCA	GGGCGCGTCA	CACACACCCG	CCGCACCTTC	1260
GACCGTGCC	TCCGGGCACT	GCCCACATCAG	CAGCACTCTC	GAATTGGCC	CCTGTATCTG	1320
CGCTTCCCTGC	GCTCACACCC	ACTGCCTGAG	ACAGCTGTG	GAGGCTATCG	GCGCTCCTC	1380
AAGCTGAGTC	CTGAGAGTGC	AGAGGAGTAC	ATTGAGTACC	TCAAGTCAG	TGACCGGCTG	1440
GATGAGGCCG	CCCAGGCC	GGCCACCGTG	GTGAACGACG	AGCGTTTCGT	GTCTAAGGCC	1500
GGCAAGTCCA	ACTACCAGCT	GGGGCACGAG	CTGTGCGACC	TCATCTCCC	GAATCCGGAC	1560
AAGGTACAGT	CCCTCAATGT	GGACGCCATC	ATCCGGGGGG	GCCTCACCCG	CTTCACCGAC	1620
CAGCTGGCA	AGCTCTGGT	TTCTCTCGCC	GACTACTACA	TCCGCAGCGG	CCATTTCGAG	1680
AAGGCTCGGG	ACGTGTACGA	GGAGGCCATC	CGGACAGTGA	TGACCGTGC	GGACTTCACA	1740
CAGGTGTTG	ACAGCTACGC	CCAGTCAGAG	GAGAGCATGA	TCGCTGAAA	GATGGAGACC	1800
GCCTCGGAGC	TGGGGCGCGA	GGAGGAGGAT	GATGTGGACC	TGGAGCTGC	CCTGGCCCGC	1860
- TTCGAGCAGC	TCATCAGCCG	GCGGCCCTG	CTCCTCAACA	GCGTCTTGCT	GCGCCAAAAC	1920
CCACACCACG	TGCACGAGTG	GCACAAGCGT	GTCGCCCTGC	ACCAGGGCCG	CCCCCGGGAG	1980
ATCATCAACA	CCTACACAGA	GGCTGTGCA	ACGGTGGACC	CCTTCAAGGC	CACAGGCAAG	2040
CCCCACACTC	TGTGGGTGGC	GTTTGCAAG	TTTATGAGG	ACAACGGACA	GCTGGACGAT	2100
GCCC GTGTCA	TCCTGGAGAA	GGCCACCAAG	GTGAACTTCA	AGCAGGTGGA	TGACCTGGCA	2160
AGCGTGTGGT	GTCAGTGC	AGAGCTGGAG	CTCCGACACG	AGAACTACGA	TGAGGCCTTG	2220
CGGCTGCTGC	GAAAGGCCAC	GGCGCTGCCT	GCCCCGCCGG	CCGAGTACTT	TGATGGTTCA	2280
GAGCCCGTGC	AGAACCGCGT	GTACAAGTCA	CTGAAGGTCT	GGTCCATGCT	CGCCGACCTG	2340
GAGGAGAGCC	TCGGCACCTT	CCAGTCCACC	AAGGCCGTG	ACGACCGCAT	CCTGGACCTG	2400
CGTATCGCAA	CACCCCAAGAT	CGTCATCAAC	TATGCCATGT	TCCTGGAGGA	GCACAAGTAC	2460
TTCGAGGAGA	GCTTCAAGGC	GTACGAGCGC	GGCATCTCGC	TGTTCAAGTG	GCCCAACGTG	2520
TCCGACATCT	GGAGCACCTA	CCTGACCAAA	TTCATTGCC	GCTATGGGGG	CCGCAAGCTG	2580
GAGCGGGCAC	GGGACCTGTT	TGAACAGGCT	CTGGACGGCT	GCCCCCCAAA	ATATGCCAAG	2640
ACCTTGTACC	TGCTGTACGC	ACAGCTGGAG	GAGGAGTGGG	GCCTGGCCCG	GCATGCCATG	2700
GCCGTGTACG	AGCGTGCCAC	CAGGGCGT	GAGCCGCC	AGCAGTATGA	CATGTTCAAC	2760

09/09/2014

ATCTACATCA	AGCGGGCGGC	CGAGATCTAT	GGGGTCACCC	ACACCCGC GG	CATCTACCAG	2820
AAGGCCATTG	AGGTGCTGTC	GGACGAGCAC	GCGCGTGAGA	TGTGCCTGCG	GTGGCAGAC	2880
ATGGAGTGCA	AGCTCGGGGA	GATTGACCGC	GCCC GG GCCA	TCTACAGCTT	CTGCTCCCAG	2940
ATCTGTGACC	CCCGGACGAC	CGGCGCGTTC	TGGCAGACGT	GGAAGGACTT	TGAGGTCCGG	3000
CATGGCAATG	AGGACACCAT	CAAGGAAATG	CTGCGTATCC	GGCGCAGCGT	GCAGGCCACG	3060
TACAACACGC	AGGTCAACTT	CATGGCCTCG	CAGATGCTCA	AGGTCTCGGG	CAGTGCCACG	3120
GGCACCGTGT	CTGACCTGGC	CCCTGGGCAG	AGTGGCATGG	ACGACATGAA	GCTGCTGGAA	3180
CAGCGGGCAG	AGCAGCTGGC	GGCTGAGGCG	GAGCGTGACC	AGCCCTTGCG	CGCCCAGAGC	3240
AAGATCCTGT	TCGTGAGGAG	TGACGCCCTC	CGGGAGGAGC	TGGCAGAGCT	GGCACAGCAG	3300
GTCAACCCCCG	AGGAGATCCA	GCTGGGCGAG	GACGAGGACG	AGGACGAGAT	GGACCTGGAG	3360
CCCAACGAGG	TTCGGCTGGA	GCAGCAGAGC	GTGCCAGCCG	CAGTGTGTTGG	GAGCCTGAAG	3420
GAAGACTGAC	CCGTCCCCCTC	GTGCCGAATT	CGGCACGAGC	AAGACCAGCC	CCCAGATCAT	3480
TTGCCCTAAA	GGTTTCCCT	CGAAGTCACA	AATGTTCAA	GGAATCTCAA	ATTTTACAAA	3540
GTTTGAAGTG	TGGGCATTGG	TGGCCTGTGG	CTGTGTCCCT	TCTCTGTAGC	TGTTTCTCC	3600
CTACATCCCT	GAAAGGAAGT	TGAGCCTGCT	CCTCCATCCG	CAGACCTCCC	TTTCCAGCGC	3660
CCAGGGCATG	GGGTGCTGTG	AGGGCAGCAT	GCTAGGTGTG	ACCGTGTCC	TGGCCTCCAG	3720
GCCCGTGTCC	CTCTGCTCTC	TAGCCC ACTA	AGGCCCTGGC	CCATTGTC	TAACACAGCA	3780
GTCGGACCTA	GAAAGAGCAG	ACAATCTCTC	TGGGTACCA	GTCTGGCTAG	GAGCTGGTCT	3840
CCTGACTGGG	ATCCAGGCCT	TCTCCCCTGC	CCATGTGAAT	TCCCAGGGGC	AGAGCCTGAA	3900
ATGTTGAACA	CAGCACTGGC	CAAAGAGATG	TCACCGTGGG	AACCGAGGCT	CTCTTCTCCT	3960
CCTGCCTGCT	TTCGTGGTT	CAGAGTAGCT	GAGGCTTGTG	TGAGAGGAGT	TGGAGTGCTG	4020
GTTTCACCC	TGGTTGGTGT	GCTTGCTTT	GAGGGCACTT	AGAAAGGCCA	GCCCAGCCCT	4080
TGCTCCTGCC	CTGCACACAG	CGGAGCGACT	TTCTAGGTA	TGCTCTTGAT	TTCTGCAGAA	4140
GCAGCAGGTG	GCATGGAGCC	AAGAGGAAGT	GTGACTGAAA	CTGTCCACTC	ATAGCCCGGC	4200
TGCCGTATTG	AGAGGGCT					4218

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1187 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAGCTCGCGC	GCCTGCAGGT	CGACACTAGT	GGATCCAAAG	AATTGGCAC	GAGGGAAACT	60
CAACGGTGT	CGAGTGGAGG	ACAGGGACAG	AGCCCTCTGT	GGTGGAACGA	CCCCACCTCG	120
AGGAGCTTCC	TGAGCAGGTG	GCAGAAAGATG	CGATTGACTG	GGGCGACTTT	GGGGTAGAGG	180
CAGTGTCTGA	GGGGACTGAC	TCTGGCATCT	CTGCCGAGGC	TGCTGGAATC	GACTGGGC	240
TCTTCCCGGA	ATCAGATTCA	AAGGATCCTG	GAGGTGATGG	GATAGACTGG	GGAGACGATG	300
CTGTTGCTT	GCAGATCACA	GTGCTGGAAG	CAGGAACCCA	GGCTCCAGAA	GGTGTGCCA	360
GGGGCCCGAGA	TGCCCTGACA	CTGCTTGAAT	ACACTGAGAC	CCGGAATCAG	TTCCCTGATG	420
AGCTCATGGA	GCTTGAGATC	TTCTTAGCCC	AGAGAGCAGT	GGAGTTGAGT	GAGGAGGCAG	480
ATGTCCTGTC	TGTGAGCCAG	TTCCAGCTGG	CTCCAGCCAT	CCTGCAGGGC	CAGACCAAAG	540
AGAAGATGGT	TACCATGGTG	TCAGTGTGG	AGGATCTGAT	TGGCAAGCTT	ACCAGTCTTC	600
AGCTGAAACA	CCTGTTTATG	ATCCTGGCCT	CACCAAGGTA	TGTGGACCGA	GTGACTGAAT	660
TCCCTCCAGCA	AAAGCTGAAG	CAGTCCCAGC	TGCTGGCTTT	GAAGAAAGAG	CTGATGGTGC	720
AGAAAGCAGCA	GGAGGCACCT	GAGGAGCAGG	CGGCTCTGGA	GCCTAAGCTG	GACCTGCTAC	780
TGGAGAAGAC	CAAGGAGCTG	CAGAAGCTGA	TTGAAGCTGA	CATCTCCAAG	AGGTACAGCG	840
GGCGCCCTGT	GAACCTGATG	GGAACCTCTC	TGTGACACCC	TCCGTGTTCT	TGCCTGCCA	900
TCTTCTCCGC	TTTGCGGATG	AAGATGATAG	CCAGGGCTGT	TGTTTGCGGG	CCCTCAAGG	960
CAAAAGACCA	GGCTGACTGG	AAGATGGAAA	GCCACAGGAA	GGAAGCGGCA	CCTGATGGTG	1020
ATCTGGCAC	TCTCCATGTT	CTCTACAAGA	AGCTGTGGTG	ATTGGCCCTG	TGGCTATCA	1080
GGCGAAAACC	ACAGATTCTC	CTTCTAGTTA	GTATAGCGCA	AAAAGCTCT	CGAGAGTACT	1140

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3306 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCCTCACTAA	AGGGAACAAA	AGCTGGAGCT	CGCGGCCCTG	CAGGTCGACA	CTAGTGGATC	60
GAAAGTCGT	TACGCCAAC	TCGAAATTAA	CTCTGGGCTG	ACCCATAAAC	ATTTGTCTGA	120
TCTAGGATAT	AGTTGCGTTT	CTTGCAGGCA	GCAATCTGGA	TGAGGCGGTT	GAGGCACTGG	180
GTGGCCTGCT	GGATCAGGAC	ATCCCAGCGG	CCAGCATAGT	TCCGCTGCCG	GCGTAGGCC	240
ATCACCCGCA	TCTTATCCAT	GATGGCATTG	GTACCCAGGA	TGTTGTACTT	CTTGGAAAGGG	300
TTGGAGGCTG	CATGTTGAT	GGCCCATGTG	GTCTGCCAG	CAGCAGGCA	GCCCCACCATC	360
ATCAGAACATCT	CACATTCTGC	CTTGCTCTT	GGTCCAACGG	TGCCCGGAT	ACGCTCACTA	420
AGGGGAAGGT	GCTGGATGAA	GGTAAACCCC	GGGAGGACAG	AACAGTAGGG	CTCTGCTCTC	480
TGTCCGAAGT	TGAACCTCAC	TGCGCAATT	TTCACCCAGGA	CATGAGGATA	GAGGGCCTGA	540
CCCCCCAAGG	CTTCCTCTG	GATTGGAAA	GCAATGCCA	TCCACTTTCC	ATTCTGGTA	600
AAAGACAGTT	CCACGTCATT	TCCACATTCA	AAATCCGAA	AGCAGCCAAT	CACCAGGAG	660
CTCTGCGGTG	CTAGGAGAGC	GGCTGGGCC	GCAGACTGGG	GGGAAAGCTC	CGCAGCCGCA	720
GTGGGCCCGA	GGATCAGGCC	CCGCCTGGCC	TGGAGAAGCC	CAGTCTGGG	TGGAGCAGG	780
GCTGGACAGT	GTGGCCTTG	GTTCGCCCC	GGGAGCGCTG	CGAGTGTGCG	GGCCTCGGGT	840
GGATTTGCTG	AGCACCAATA	CCTCACGGTT	GCCAACCTGG	GGTTTTAGCT	CCCTTGGTTT	900
TAATCCCCTA	GGGGCGGGTG	GGGGCACGGG	AGGAAGGATG	GGCCAGCTGG	GTGCAATCCT	960
GCTGTAAGCC	AGCCATTCTC	TGATTTCTTA	GAATTAAC	AACGGTCGCG	CCGGAGGCCG	1020
CGGGGGCCGG	AGCGGAGCAG	CCGCGGCTGA	GGTCCCGAG	TCGGCCGCTC	GGGGCTGCGC	1080
TCCGCCGCCG	GGACCCCGGC	CTCTGGCCGC	GCCGGCTCCG	GCCTCCGGGG	GGGCCGGGGC	1140
CGCCGGGACA	TGGTGCAGT	CGCACCCCTT	CCCCGGCGCC	GCTGAGCTCG	CCGGCCGCGC	1200
CCGGGCTGGG	ACGTCCGAGC	GGGAAGATGT	TTTCCGCC	GAAGAAGCTG	GTGGGGTCGG	1260
ACCAAGCCCC	GGGCCGGGAC	AAGAACATCC	CCGCGGGCT	GCAGTCCATG	AACCAGGCGT	1320
TGCAGAGGCG	CTTCGCCAAG	GGGGTGCAGT	ACAACATGAA	GATAGTGATC	CGGGGAGACA	1380
GGAACACAGGG	CAAGACAGCG	CTGTGGCACC	GCCTGCAGGG	CCGGCCGTT	GTGGAGGAGT	1440
ACATCCCCAC	ACAGGAGATC	CAGGTACCCA	GCATCCACTG	GAGCTACAA	ACCACGGATG	1500
ACATCGTCAA	GGTTGAAGTC	TGGGATGTAG	TAGACAAAGG	AAAATGCAA	AAGCGAGGCG	1560
ACGGCTAAA	GATGGAGAAC	GACCCCCAGG	AGNCGGAGTC	TGAAATGCC	CTGGATGCTG	1620
AGTTCTTGG	CGTGTACAAG	AACTGCAACG	GGGTGGTCAT	GATGTTGAC	ATTACCAAGC	1680
- AGTGGACCTT	CAATTACATT	CTCCGGGAGC	TTCCAAAAGT	GCCCACCCAC	GTGCCAGTGT	1740
GCGTGTGGG	GAACATACCGG	GACATGGGCG	AGCACCAGT	CATCCTGCCG	GACGACGTG	1800
GTGACTTCAT	CGACAACTCG	GACAGACCTC	CAGGTTCC	CTACTTCCG	TATGCTGAGT	1860
CTTCCATGAA	GAACAGCTTC	GGCCTAAAGT	ACCTTCATAA	GTTCTTC	ATCCCATT	1920
TGCAGCTTCA	GAGGGAGACG	CTGTTGCCG	AGCTGGAGAC	GAACCAGCTG	GACATGGACG	1980
CCACGCTGGA	GGAGCTGTCG	GTGCAGCAGG	AGACGGAGGA	CCAGAACTAC	GGCATCTTCC	2040
TGGAGATGAT	GGAGGCTCGC	AGCCGTGGCC	ATGCGTCCC	ACTGGCGGCC	AACGGGCAGA	2100
GCCCATCCCC	GGGCTCCAG	TCACCACTC	TGCCTGCACC	CGCTGTG	ACGGGGAGCT	2160
CCAGCCCCGG	CACACCCAG	CCCGCCCCAC	AGCTGCC	CAATGCTGCC	CCACCATCCT	2220
CTGTGCC	TGTACCA	TCAGAGGCC	TGCCCCACC	TGCCTGCC	TCAGCCCCG	2280
CCCCACGGCG	CAGCATCATC	TCTAGGCTGT	TTGGGACGTC	ACCTGCCACC	GAGGCAGCCC	2340
CTCCACCTCC	AGAGCCAGTC	CCGGCCGAC	AGGGCCAGC	AACGGTCCAG	AGTGTGGAGG	2400
ACTTTGTTCC	TGACGACCGC	CTGGACCGCA	GCTTCTGGA	AGACACAA	CCGCCAGGG	2460
ACGAGAAGAA	GGTGGGGGCC	AAGGCTGCC	AGCAGGACAG	TGACAGTGT	GGGGAGGCC	2520
TGGGCGGCAA	CCCGATGGTG	GCAGGGTCC	AGGACGATGT	GGACCTCGAA	GACCAGCCAC	2580

GTGGGAGTCC CCCGCTGCCT GCAGGCCCG TCCCCAGTCA AGACATCACT CTTTCGAGTG	2640
AGGAGGAAGC AGAAGTGGCA GCTCCCACAA AAGGCCCTGC CCCAGCTCCC CAGCAGTGCT	2700
CAGAGCCAGA GACCAAGTGG TCCTCCATAC CAGCTTCGAA GCCACGGAGG GGGACAGCTC	2760
CCACGAGGAC CGCAGCACCC CCCTGGCCAG GCGGTGTCTC TGTCGCACA GGTCCGGAGA	2820
AGCCGAGCAG CACCAGGCC CCGTCTGAGA TGGAGCCGGG GAAGGGTGAG CAGGCCTCCT	2880
CGTCGGAGAG TGACCCCGAG GGACCCATTG CTGCACAAAT GCTGTCCTTC GTCAATGGATG	2940
ACCCCGACTT TGAGAGCGAG GGATCAGACA CACAGCCAG GGCAGATGAC TTTCCCGTGC	3000
GAGATGACCC CTCCGATGTG ACTGACGAGG ATGAGGGCCC TGCCGAGCCG CCCCCCACCCC	3060
CCAAGCTCCC TCTCCCCGCC TTCAGACTGA AGAATGACTC GGACCTCTTC GGGCTGGGGC	3120
TGGAGGAGGC CGGACCAAG GAGAGCAGTG AGGAAGGTAAGGAGGCAAACCCCCCTCTA	3180
AGGAGAAGAA AAAAAGAACAAAAGCTTCT CGAGAGTACT TCTAGAGCGG CCGCGGGCCC	3240
ATCGATTTTC CACCCGGGTG GGGTACCAAG TAAGTGTACC CAATTGCCCT TATAAGTGAGT	3300
CGTATT	3306

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TGCGGGGCCA GAGTGGGCTG

20

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCAGTCCTGG CCTGCAGGATG

20

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GTGACAGGA GAATTGGTTC

20

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GCCTGGGTTC GGTGCGGGAC

20

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

TGGTCGGGTG TTTGTGAGTG

20

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CCTCTTCCGT CTCCTCAGTG

20

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GGATTGCTAG TCTCACAGAC

20

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

TTAAGGGTGG CTGAAGGGAC

20

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ACCTTCCCTC CCTGTACAG

20

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TGGTCGGGTG TTTGTGAGTG

20

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ACACCATTCC AGAAATTCAG

20

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

AAACTGCAGG TGGCTGAGTC

20

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GTCCTAATGT TTTCAGGGAG

20

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

AAACCTATG GTTACAATTG

20

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TCCTAGACAT GGTCAAGTG

20

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GATATAATTA GTTCTCCATC

20

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

ATGCCTGTT CAGGCTGCAC

20

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GGACGGCGAC CTCCACCCAC

20

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GGGCTCCTCC GACGCCTGAG

20

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

- AGTCTAGCCC TGGCCTTGAC

20

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GTCACTGGGG ACTCCGGCAG

20

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CAGCTTCCCC TGGGCACATG

20

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CACAGCTGTC TCAAGCCAG

20

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

ACTGTTCCCC CTACATGATG

20

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

ATCATATCCT CTTGCTGGTC

20

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GTTCCCAGAG CTTGTCTGTG

20

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GTTTGGCAGA CTCATAGTTG

20

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TAGCAGGGAG CCATGACCTG

20

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTTGGCGCCA GAAGCGAGAG

20

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

CCTCTCTCTC TCTCTCTCTC

20

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

TCCCCGCTGA TTCCGCCAAG

20

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

CTTTTGAAAT TCGGCACGAG

20

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CCCCTGGTCC GCACCAGTTC

20

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GAGAAGGGTC GGGGCGGCAG

20

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

AAATCACATC GCGTCAACAC

20

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TAAGAGAGTC ATAGTTACTC

20

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

GCTCTAGAAG TACTCTCGAG

20

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

ACTCTGGCCA TCAGGAGATC

20

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CAGGC GTTGT AGATG TTCTG

20

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

AGTGG CAGGC AGAAG TAATG

20

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GGTGG GAGAA CTGGAT GTAG

20

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CTATT CAGAT GCAAC GCCAG

20

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CCATGG CACA CAGAG CAGAC

20

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

GCTACCATGC AGAGACACAG

20

(2) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

CAGGCTGACA AGAAAATCAG

20

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

GGCACGCATA GAGGAGAGAC

20

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

TGGGTGATGC CTTTGCTGAC

20

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

AAAACAAGAT CAAGGTGATG

20

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

TTGCCACAT TGCTATGGTG

20

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

GACCAAGATC AGAAGTAGAG

20

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

- CCCCTGGGCC AATGATGTTG

20

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

TCTTCCCACC ATAGCAATG

19

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TGGTCTTGGT GACCAATGTG

20

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

ACACCTCGGT GACCCCTGTG

20

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

TCTCCAAGTT CGGCACAGTG

20

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

ACATGGGCTG CACTCACGAC

20

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GATCCTCTGA ACCTGCAGAG

20

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

GGAAATGAGG TGGGGCGATC

20

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

CTTGCCTTG GACAAGGATG

20

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

GCACCTGCCA TTGGGGGTAG

20

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

GGTGGAAAGCC ATTGACGGTG

20

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

TGCGTCTCTC GTCGCTGCTG

20

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

GCGGAAACTC TGTGGTGCTG

20

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

AGGATTGCCT TCCTCTACTG

20

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

TGTCTGTTTC ACCAGGGCAG

20

(2) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

CCAGTGCCTC TATGCATGTC

20

(2) INFORMATION FOR SEQ ID NO:77:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

AGGAAGCCCCA CGCACACCAAC

20

(2) INFORMATION FOR SEQ ID NO:78:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

CCCTTTGTTC CCTGATCTTC

20

(2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

CGCTCGGGAT CCAGGTCAATC

20

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

TCGAGGTTCA GAGCGTAGTG

20

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

TCTTGGATCT CTGGCACCTC

20

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

CCATCAGAGT GAAGGAGGAG

20

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

CCATCTTCCA CTGGTCAGAG

20

(2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

CTCCCTTCTCT TGGATCTCTG

20

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

TTACTTCAGC ACTGTTAGTC

20

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

AGGGAGGTAG CTCAAAGCTC

20

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

TGGGTCCACA GTTCGCACAG

20

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

CAACTCTGTG ATGGCTCCAG

20

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

AGCAGGGTTC TGTTCAAGAC

20

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

CCATTGGGTG CTAGTCTCTC

20

(2) INFORMATION FOR SEQ ID NO:91:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

CAGCCATGCT GTCCCAGCAG

20

(2) INFORMATION FOR SEQ ID NO:92:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

- CTGGACCTGA GGTAGCGCTG

20

(2) INFORMATION FOR SEQ ID NO:93:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

ATAACCACCC TGAGGCAGTG

20

(2) INFORMATION FOR SEQ ID NO:94:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

CCTGCAGGTC GACACTAGTG

20

(2) INFORMATION FOR SEQ ID NO:95:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

AATTGGAATG AGGAGGACTG

20

(2) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GCTCTAGAAG TACTCTCGAG

20

(2) INFORMATION FOR SEQ ID NO:97:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

ATTGTATGAC AATGCACCAAG

20

(2) INFORMATION FOR SEQ ID NO:98:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

TCCACAGAGG GCTTCATCAC

20

(2) INFORMATION FOR SEQ ID NO:99:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

CCTGACTGGC CTAAGCACAG

20

(2) INFORMATION FOR SEQ ID NO:100:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

AAGCCTCATA ACCACCAGTG

20

(2) INFORMATION FOR SEQ ID NO:101:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

TGTCAACGGT GACAAGTGTG

20

(2) INFORMATION FOR SEQ ID NO:102:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

TTGTACACCA GCTGCAGGTC

20

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

GGGTGTGGTG CAGATGAGTC

20

(2) INFORMATION FOR SEQ ID NO:104:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

ATCACACTCT TATAGCTCAG

20

(2) INFORMATION FOR SEQ ID NO:105:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

GTGGGAAGCT TTCCTCAGAC

20

(2) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

TGATGAACAT GGGCCTGGAG

20

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CATTGTGGAT GTACTACCAC

20

(2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

TGTGTTTGCG AACCTGAGTG

20

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

ATAGTGGCAC CACTTACGAG

20

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

AATTCTGCAA CGTGATGGCG

20

(2) INFORMATION FOR SEQ ID NO:111:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

CACAAGATGC CTCGTCTGTG

20

(2) INFORMATION FOR SEQ ID NO:112:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

AATCCGGACA AGGTACAGTC

20

(2) INFORMATION FOR SEQ ID NO:113:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

GCACGAGTGG CACAAGCGTG

20

(2) INFORMATION FOR SEQ ID NO:114:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

GCAAGCGTGT GGTGTCAGTG

20

(2) INFORMATION FOR SEQ ID NO:115:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

TGTTTGAACA GGCTCTGGAC

20

(2) INFORMATION FOR SEQ ID NO:116:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

CGGCATGGCA ATGAGGACAC

20

(2) INFORMATION FOR SEQ ID NO:117:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

AGGACGAGAT GGACCTCCAG

20

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

CCCTCTGTCC TCTAGCCCAC

20

(2) INFORMATION FOR SEQ ID NO:119:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

TCTTGAGGGG ACTGACTCTG

20

(2) INFORMATION FOR SEQ ID NO:120:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

TGAGTGAGGA GGCAGATGTC

20

(2) INFORMATION FOR SEQ ID NO:121:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

TGGCTTGAA GAAAGAGCTG

20

(2) INFORMATION FOR SEQ ID NO:122:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

GCAAAAGACC AGGCTGACTG

20

(2) INFORMATION FOR SEQ ID NO:123:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

TGCAGCTCCT TGGTCTTCTC

20

(2) INFORMATION FOR SEQ ID NO:124:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

GATTCACAGT CCCAAGGCTC

20

(2) INFORMATION FOR SEQ ID NO:125:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

ATCTGGATGA GGC GGTTGAG

20

(2) INFORMATION FOR SEQ ID NO:126:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

GGTCACTCTC CGACGAGGAG

20

(2) INFORMATION FOR SEQ ID NO:127:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

GGATCCAAAG TTCGTCTCTG

20

(2) INFORMATION FOR SEQ ID NO:128:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

CGCTGTGTGT CTGATCCCTC

20

(2) INFORMATION FOR SEQ ID NO:129:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

ATGAAGGTAA ACCCCGGGAG

20

(2) INFORMATION FOR SEQ ID NO:130:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

TGGTCTCTGG CTCTGAGCAC

20

(2) INFORMATION FOR SEQ ID NO:131:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

GCCTGGAGAA GCCCAGTCTG

20

(2) INFORMATION FOR SEQ ID NO:132:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

CACACTCTGG ACCGTTGCTG

20

(2) INFORMATION FOR SEQ ID NO:133:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

AAAGCTCCGC AGCCGCAGTG

20

(2) INFORMATION FOR SEQ ID NO:134:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

TCTTCCAGGA AGCTGCGGTC

20

(2) INFORMATION FOR SEQ ID NO:135:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

GATGGTGGGG CAGCATTGAG

20

(2) INFORMATION FOR SEQ ID NO:136:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

GTCACCAGTG GTGCCTGCAG

20

(2) INFORMATION FOR SEQ ID NO:137:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

ACCTCACGGT TGCCAACCTG

20

(2) INFORMATION FOR SEQ ID NO:138:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

CGAACACAGCG TCTCCCTCTG

20

(2) INFORMATION FOR SEQ ID NO:139:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

AGTACCTTCA TAAGTTCTTC

20

(2) INFORMATION FOR SEQ ID NO:140:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

TCCCAGACTT CAACCTTCAC

20

(2) INFORMATION FOR SEQ ID NO:141:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

AAACATCTTC CCGGTCGGAC

20

(2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

GCTGAGCACC TTTACCTCAC

20

(2) INFORMATION FOR SEQ ID NO:143:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

GACGTCCGTC CGGGAAAGATG

20

(2) INFORMATION FOR SEQ ID NO:144:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

ACACAGGAGA TGCAGGTCAC

20

(2) INFORMATION FOR SEQ ID NO:145:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

GAGTCTTCCA TGAAGAACAG

20

(2) INFORMATION FOR SEQ ID NO:146:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

GCAGTGAGGA AGGTAAGGAG

20

(2) INFORMATION FOR SEQ ID NO:147:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4047 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 378...1799
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

GGATCCAAAG GACGCCCG CCGACAGGAG AATTGGTTCC CGGGCCCGCG GCGATGCC	60
CCCGGTAGCT CGGGCCCGT GTGGGTGTT TGTGAGTGTT TCTATGTGGG AGAAGGAGGA	120
GGAGGAGGAA GAAGAACAA CGATTGTCT TCTCGGCTGG TCTCCCCCG GCTCTACATG	180
TTCCCCGCAC TGAGGAGACG GAAGAGGAGC CGTAGCCGCC CCCCTCCCG GCCCGGATTA	240
TAGTCTCTCG CCACAGCGGC CTGGCCTCC CCTTGGATTC AGACGCCGAT TCGCCCAGTG	300
TTTGGGAAAT GGGAAAGTAAT GACAGCTGGC ACCTGAACTA AGTACTTTA TAGGCAACAC	360
CATTCCAGAA ATTCAAGG ATG AAT GGG GAT ATG CCC CAT GTC CCC ATT ACT	410
Met Asn Gly Asp Met Pro His Val Pro Ile Thr	
1 5 10	
ACT CTT GCG GGG ATT GCT AGT CTC ACA GAC CTC CTG AAC CAG CTG CCT	458
Thr Leu Ala Gly Ile Ala Ser Leu Thr Asp Leu Leu Asn Gln Leu Pro	
15 20 25	
CTT CCA TCT CCT TTA CCT GCT ACA ACT ACA AAG AGC CTT CTC TTT AAT	506
Leu Pro Ser Pro Leu Pro Ala Thr Thr Lys Ser Leu Leu Phe Asn	
30 35 40	
GCA CGA ATA GCA GAA GAG GTG AAC TGC CTT TTG GCT TGT AGG GAT GAC	554
Ala Arg Ile Ala Glu Glu Val Asn Cys Leu Leu Ala Cys Arg Asp Asp	
45 50 55	
AAT TTG GTT TCA CAG CTT GTC CAT AGC CTC AAC CAG GTA TCA ACA GAT	602
Asn Leu Val Ser Gln Leu Val His Ser Leu Asn Gln Val Ser Thr Asp	
60 65 70 75	
CAC ATA GAG TTG AAA GAT AAC CTT GGC AGT GAT GAC CCA GAA GGT GAC	650
His Ile Glu Leu Lys Asp Asn Leu Gly Ser Asp Asp Pro Glu Gly Asp	
80 85 90	
ATA CCA GTC TTG TTG CAG GCC GTC CTG GCA AGG AGT CCT AAT GTT TTC	698
Ile Pro Val Leu Leu Gln Ala Val Leu Ala Arg Ser Pro Asn Val Phe	
95 100 105	
AGG GAG AAA AGC ATG CAG AAC AGA TAT GTA CAA AGT GGA ATG ATG ATG	746
Arg Glu Lys Ser Met Gln Asn Arg Tyr Val Gln Ser Gly Met Met Met	
110 115 120	
TCT CAG TAT AAA CTT TCT CAG AAT TCC ATG CAC AGT AGT CCT GCA TCT	794
Ser Gln Tyr Lys Leu Ser Gln Asn Ser Met His Ser Ser Pro Ala Ser	
125 130 135	
TCC AAT TAT CAA CAA ACC ACT ATC TCA CAT AGC CCC TCC AGC CGG TTT	842

Ser Asn Tyr Gln Gln Thr Thr Ile Ser His Ser Pro Ser Ser Arg Phe				
140	145	150	155	
GTG CCA CCA CAG ACA AGC TCT GGG AAC AGA TTT ATG CCA CAG CAA AAT				890
Val Pro Pro Gln Thr Ser Ser Gly Asn Arg Phe Met Pro Gln Gln Asn				
160	165	170		
AGC CCA GTG CCT AGT CCA TAC GCC CCA CAA AGC CCT GCA GGA TAC ATG				938
Ser Pro Val Pro Ser Pro Tyr Ala Pro Gln Ser Pro Ala Gly Tyr Met				
175	180	185		
CCA TAT TCC CAT CCT TCA AGT TAC ACA ACA CAT CCA CAG ATG CAA CAA				986
Pro Tyr Ser His Pro Ser Ser Tyr Thr Thr His Pro Gln Met Gln Gln				
190	195	200		
GCA TCG GTA TCA AGT CCC ATT GTT GCA GGT GGT TTG AGA AAC ATA CAT				1034
Ala Ser Val Ser Ser Pro Ile Val Ala Gly Gly Leu Arg Asn Ile His				
205	210	215		
GAT AAT AAA GTT TCT GGT CCG TTG TCT GGC AAT TCA GCT AAT CAT CAT				1082
Asp Asn Lys Val Ser Gly Pro Leu Ser Gly Asn Ser Ala Asn His His				
220	225	230	235	
GCT GAT AAT CCT AGA CAT GGT TCA AGT GAG GAC TAC CTA CAC ATG GTG				1130
Ala Asp Asn Pro Arg His Gly Ser Ser Glu Asp Tyr Leu His Met Val				
240	245	250		
CAC AGG CTA AGT AGT GAC GAT GGA GAT TCT TCA ACA ATG AGG AAT GCT				1178
His Arg Leu Ser Ser Asp Asp Gly Asp Ser Ser Thr Met Arg Asn Ala				
255	260	265		
GCA TCT TTT CCC TTG AGA TCT CCA CAG CCA GTA TGC TCC CCT GCT GGA				1226
Ala Ser Phe Pro Leu Arg Ser Pro Gln Pro Val Cys Ser Pro Ala Gly				
270	275	280		
AGT GAA GGA ACT CCT AAA GGC TCA AGA CCA CCT TTA ATC CTA CAA TCT				1274
Ser Glu Gly Thr Pro Lys Gly Ser Arg Pro Pro Leu Ile Leu Gln Ser				
285	290	295		
CAG TCT CTA CCT TGT TCA TCA CCT CGA GAT GTT CCA CCA GAT ATC TTG				1322
Gln Ser Leu Pro Cys Ser Ser Pro Arg Asp Val Pro Pro Asp Ile Leu				
300	305	310	315	
CTA GAT TCT CCA GAA AGA AAA CAA AAG AAG CAG AAG AAA ATG AAA TTA				1370
Leu Asp Ser Pro Glu Arg Lys Gln Lys Lys Gln Lys Lys Met Lys Leu				
320	325	330		
GGC AAG GAT GAA AAA GAG CAG AGT GAG AAA GCG GCA ATG TAT GAT ATA				1418
Gly Lys Asp Glu Lys Glu Gln Ser Glu Lys Ala Ala Met Tyr Asp Ile				
335	340	345		
ATT AGT TCT CCA TCC AAG GAC TCT ACT AAA CTT ACA TTA AGA CTT TCT				1466
Ile Ser Ser Pro Ser Lys Asp Ser Thr Lys Leu Thr Leu Arg Leu Ser				
350	355	360		
CGT GTA AGG TCT TCA GAC ATG GAC CAG CAA GAG GAT ATG ATT TCT GGT				1514
Arg Val Arg Ser Ser Asp Met Asp Gln Gln Glu Asp Met Ile Ser Gly				

365

370

375

GTG GAA AAT AGC AAT GTT TCA GAA AAT GAT ATT CCT TTT AAT GTG CAG		1562
Val Glu Asn Ser Asn Val Ser Glu Asn Asp Ile Pro Phe Asn Val Gln		
380	385	390
395		
TAC CCA GGA CAG ACT TCA AAA ACA CCC ATT ACT CCA CAA GAT ATA AAC		1610
Tyr Pro Gly Gln Thr Ser Lys Thr Pro Ile Thr Pro Gln Asp Ile Asn		
400	405	410
CGC CCA CTA AAT GCT GCT CAA TGT TTG TCG CAG CAA GAA CAA ACA GCA		1658
Arg Pro Leu Asn Ala Ala Gln Cys Leu Ser Gln Gln Glu Gln Thr Ala		
415	420	425
TTC CTT CCA GCA AAT CAA GTG CCT GTT TTA CAA CAG AAC ACT TCA GTT		1706
Phe Leu Pro Ala Asn Gln Val Pro Val Leu Gln Gln Asn Thr Ser Val		
430	435	440
GCT GCA AAA CAA CCC CAG ACC AAT AGT CAC AAA ACC TTG GTG CAG CCT		1754
Ala Ala Lys Gln Pro Gln Thr Asn Ser His Lys Thr Leu Val Gln Pro		
445	450	455
GGA ACA GCC ATA GAG GTC TCA GCA GAG CTG CCC AAG GAC AAG ACC TAAGA		1804
Gly Thr Gly Ile Glu Val Ser Ala Glu Leu Pro Lys Asp Lys Thr		
460	465	470
TCCAGCAGGG AACTATGTAG TCACCCCGAG AGGCCAGCT CTCTCCGTGA GCTCTGGGCC		1864
TAGGGTGGGG GTGGTTGTTG GTTCTGCGCG CACTGTTCCC CCTACATGAT GGGTCATCC		1924
CAGTTGGCTT CTCTCACTCG CTTCCTCCTG TGGAGAACCC TGTCAGGTG TCACTGCCTC		1984
CAGGAAGCTG TCTCTGATTCTCCAGTTGA ACAGTGAGAT TTGCCACACC TCACATGCAT		2044
CGCTCTTGTC CCTGGAATTG TAACCATAGG TTTTCTGTC TCCTGGAGGA CAAGGATGAG		2104
GGCTTCCAC TTGAGTCTCC CTGGTGGAGC CCAGCTCCTG ACATACCTGG TAAAAGTTCT		2164
CAAGAGAAGA ACATGGAGGA GGAATGTGGA TAACAACCC GGCTGCCTGT GTGTTCCAAG		2224
CTAGGAAGAT GTAATGTCCC CACAAACGGG GTAAATGGCT TGCCCTGCGTC ACAGCTGTCT		2284
CAAGCCCCAGG CCCTGGCGCG CAGCCCAAGC CCAAGGACTA GGTCCAGAGC CACACAGCGC		2344
CAGGCCACAT CCGCCTCACC TGGGACCTT TGTGGGGTAC AGTCTCCGGC CCCACCCAGA		2404
CCTCTGAAG GAGAGACCCC ATGGCAAGGA CTCAGCCACC TGCAGTTCA TAAGCCCCA		2464
GTGGGTTCCCT AGGCATGAAG ACCACCGGTT AGAGGCTGAA CTGGCAGGAA CCTGCTCTCA		2524
GCCCCCTCTC ACCCCAGCCG GCCCCTGCCT CAGAGGCAGC ACCCAGGAGC TGGCCATGAC		2584
CCGTGGACTC CACTCAATCC CTCTCTCCA GGAGCCATGC AAAGTGTCA CGAGCCAGGC		2644
CCCTGGAAGG CAGTCATCAC CTCTTAAGGC ATTGTGGGTG TCGGTCTGCA AACTGCCAGG		2704
TGCAGCACAC GACCCGTGTC CGGTGTTCGA TAGCAGGGAG CCATGACCTG GCAACGATT		2764
- CACGCTAAA GGGGCACCCG GGGGGCCCTG GGTGGGGCG GATCAGCTTT CCCTGGGCAC		2824
ATCTGCCTCA TTCCAGATCT CCAGGGCTCA TGTCTGTGAC AGGGAGGGAA GGCTCTGCC		2884
TGGCCTTCCG TCAGCTCTGC CAGTGCAGGC TGGGCAGCCT GGGCTTCTA GCTGGCTTCT		2944
GCCCCACACTT TCTCCGTGAA AGAAAAACAA CTATGAGTCT GCCAAACGCA TCTCAGATGC		3004
GTTTAAAAA ATTCTGGTCC CCGCTCTCTG TCCCACATC CGCCTGGGG ACTTCCTCTC		3064
TCCGTGGTTC TCACCCATA CTCTGTCACT GCCACATTT CACCTGGGCC TGGCCTTGT		3124
CTCCACCTGA AACTCTGAA AATCTTGAAA TGGATTCTA GGTCACTGGG GACTCCGGCA		3184
GCACATTCTGG CTTCAGAATA AAGGGCGCCC GCGGTCCCCC AGCACCTCCC CAAGCCACAC		3244
CCCTAGCTTC CCTCCCTATC CCTGCAGCCT GAGGGTCCCT TCAGCCACCC TTAAGTCCCC		3304
ACCTGGGCTC CTGCCCCGCC CCTGGCTAGC AGCGCCTCT CCACCGGGGC CCCCTCTGCT		3364
CACAGAGCCC CCTCACCTCC CTGGGGATGA GGGGCCAGGC CATGACCTG AAAGTCTAGC		3424
CCTGGCCTTG ACCTCCCTAGG AGCCCTCTC CGGCCCTCTC CGGGCCCCGG CCCCCCTC		3484
TGCTGCTGGC CTCTGGGTG TGCCCCGAG ACTGAGCTGC GCTTGGGGGT CCTGGCGGCC		3544
TGGGCCGTCC CGCACCGAAC CCAGGCGGTC GGAGCCCGGC GGGAAAGGCGC GAGGTCCCTTC		3604
TGGGGGCTCC TCCGACGCCT GAGGGCGCTG CTTCCCCGCG GCGCCCCCGG GTTTCTGCGG		3664

AGCCGGGGCC	TCCGCTCTCG	GGTGACCCGG	TGAGACCCCC	GGGGAGGCCG	CTGGGGAGGC	3724
GCGGGCTCTG	CTCCCAGGTC	CCAAACGCAC	TGGCTGCC	TCAGGAGGGA	CGCCGACCTC	3784
CACCCACGGC	GCTGGGCC	GCACGGCCGC	TCCTCCCGCT	CCCGCAGCCT	GGACGCCTCC	3844
CGAGGCCGCC	CCGCCGGGCC	CCACGCGCGG	CCCCATCCGC	AGGCCAGGAC	TGCCTTCCC	3904
GAGCTGGCGG	CCCCCAGCCT	GGAGGAGCCG	GCCCCAGACG	CCCTCCCAGC	CCTCCCCAGC	3964
CCACTCTGGC	CCCGCAGCCC	CCGCCTGGTC	CGAGTGCAGG	TCTCTGGCCC	CGGCCTTCC	4024
CGGGGAAGGA	AAGCAAAAG	CTT				4047

(2) INFORMATION FOR SEQ ID NO:148:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 474 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

Met	Asn	Gly	Asp	Met	Pro	His	Val	Pro	Ile	Thr	Thr	Leu	Ala	Gly	Ile	
1				5				10				15				
Ala	Ser	Leu	Thr	Asp	Leu	Leu	Asn	Gln	Leu	Pro	Leu	Pro	Ser	Pro	Leu	
					20			25				30				
Pro	Ala	Thr	Thr	Thr	Lys	Ser	Leu	Leu	Phe	Asn	Ala	Arg	Ile	Ala	Glu	
					35			40				45				
Glu	Val	Asn	Cys	Leu	Leu	Ala	Cys	Arg	Asp	Asp	Asn	Leu	Val	Ser	Gln	
					50			55				60				
Leu	Val	His	Ser	Leu	Asn	Gln	Val	Ser	Thr	Asp	His	Ile	Glu	Leu	Lys	
					65			70				75			80	
Asp	Asn	Leu	Gly	Ser	Asp	Asp	Pro	Glu	Gly	Asp	Ile	Pro	Val	Leu	Leu	
					85			90				95				
Gln	Ala	Val	Leu	Ala	Arg	Ser	Pro	Asn	Val	Phe	Arg	Glu	Lys	Ser	Met	
					100			105				110				
Gln	Asn	Arg	Tyr	Val	Gln	Ser	Gly	Met	Met	Met	Ser	Gln	Tyr	Lys	Leu	
					115			120				125				
Ser	Gln	Asn	Ser	Met	His	Ser	Ser	Pro	Ala	Ser	Ser	Asn	Tyr	Gln	Gln	
					130			135				140				
Thr	Thr	Ile	Ser	His	Ser	Pro	Ser	Ser	Arg	Phe	Val	Pro	Pro	Gln	Thr	
					145			150				155			160	
Ser	Ser	Gly	Asn	Arg	Phe	Met	Pro	Gln	Gln	Asn	Ser	Pro	Val	Pro	Ser	
					165			170				175				
Pro	Tyr	Ala	Pro	Gln	Ser	Pro	Ala	Gly	Tyr	Met	Pro	Tyr	Ser	His	Pro	
					180			185				190				
Ser	Ser	Tyr	Thr	Thr	His	Pro	Gln	Met	Gln	Gln	Ala	Ser	Val	Ser	Ser	
					195			200				205				
Pro	Ile	Val	Ala	Gly	Gly	Leu	Arg	Asn	Ile	His	Asp	Asn	Lys	Val	Ser	
					210			215				220				
Gly	Pro	Leu	Ser	Gly	Asn	Ser	Ala	Asn	His	His	Ala	Asp	Asn	Pro	Arg	
					225			230				235			240	
His	Gly	Ser	Ser	Glu	Asp	Tyr	Leu	His	Met	Val	His	Arg	Leu	Ser	Ser	
					245			250				255				
Asp	Asp	Gly	Asp	Ser	Ser	Thr	Met	Arg	Asn	Ala	Ala	Ser	Phe	Pro	Leu	
					260			265				270				
Arg	Ser	Pro	Gln	Pro	Val	Cys	Ser	Pro	Ala	Gly	Ser	Glu	Gly	Thr	Pro	
					275			280				285				

Lys Gly Ser Arg Pro Pro Leu Ile Leu Gln Ser Gln Ser Leu Pro Cys
 290 295 300
 Ser Ser Pro Arg Asp Val Pro Pro Asp Ile Leu Leu Asp Ser Pro Glu
 305 310 315 320
 Arg Lys Gln Lys Lys Gln Lys Lys Met Lys Leu Gly Lys Asp Glu Lys
 325 330 335
 Glu Gln Ser Glu Lys Ala Ala Met Tyr Asp Ile Ile Ser Ser Pro Ser
 340 345 350
 Lys Asp Ser Thr Lys Leu Thr Leu Arg Leu Ser Arg Val Arg Ser Ser
 355 360 365
 Asp Met Asp Gln Gln Glu Asp Met Ile Ser Gly Val Glu Asn Ser Asn
 370 375 380
 Val Ser Glu Asn Asp Ile Pro Phe Asn Val Gln Tyr Pro Gly Gln Thr
 385 390 395 400
 Ser Lys Thr Pro Ile Thr Pro Gln Asp Ile Asn Arg Pro Leu Asn Ala
 405 410 415
 Ala Gln Cys Leu Ser Gln Gln Glu Gln Thr Ala Phe Leu Pro Ala Asn
 420 425 430
 Gln Val Pro Val Leu Gln Gln Asn Thr Ser Val Ala Ala Lys Gln Pro
 435 440 445
 Gln Thr Asn Ser His Lys Thr Leu Val Gln Pro Gly Thr Gly Ile Glu
 450 455 460
 Val Ser Ala Glu Leu Pro Lys Asp Lys Thr
 465 470

(2) INFORMATION FOR SEQ ID NO:149:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2998 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence

- (B) LOCATION: 26...799

- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

AAGCTTTTG AATTGGCAC GAGAT GCT ACA CAG GCT ATA TTT GAA ATA CTG	52
Ala Thr Gln Ala Ile Phe Glu Ile Leu	
1 5	
GAG AAA TCC TGG TTG CCC CAG AAT TGT ACA CTG GTT GAT ATG AAG ATT	100
Glu Lys Ser Trp Leu Pro Gln Asn Cys Thr Leu Val Asp Met Lys Ile	
10 15 20 25	
GAA TTT GGT GTT GAT GTA ACC ACC AAA GAA ATT GTT CTT GCT GAT GTT	148
Glu Phe Gly Val Asp Val Thr Lys Glu Ile Val Leu Ala Asp Val	
30 35 40	
ATT GAC AAT GAT TCC TGG AGA CTC TGG CCA TCA GGA GAT CGA AGC CAA	196
Ile Asp Asn Asp Ser Trp Arg Leu Trp Pro Ser Gly Asp Arg Ser Gln	
45 50 55	

CAG AAA GAC AAA CAG TCT TAT CGG GAC CTC AAA GAA GTA ACT CCT GAA		244
Gln Lys Asp Lys Gln Ser Tyr Arg Asp Leu Lys Glu Val Thr Pro Glu		
60	65	70
GGG CTC CAA ATG GTA AAG AAA AAC TTT GAG TGG GTT GCA GAG AGA GTA		292
Gly Leu Gln Met Val Lys Lys Asn Phe Glu Trp Val Ala Glu Arg Val		
75	80	85
GAG TTG CTT TTG AAA TCA GAA AGT CAG TGC AGG GTT GTA GTG TTG ATG		340
Glu Leu Leu Leu Lys Ser Glu Ser Gln Cys Arg Val Val Val Leu Met		
90	95	100
105		
GGC TCT ACT TCT GAT CTT GGT CAC TGT GAA AAA ATC AAG AAG GCC TGT		388
Gly Ser Thr Ser Asp Leu Gly His Cys Glu Lys Ile Lys Lys Ala Cys		
110	115	120
GGA AAT TTT GGC ATT CCA TGT GAA CTT CGA GTA ACA TCT GCG CAT AAA		436
Gly Asn Phe Gly Ile Pro Cys Glu Leu Arg Val Thr Ser Ala His Lys		
125	130	135
GGA CCA GAT GAA ACT CTG AGG ATT AAA GCT GAG TAT GAA GGG GAT GGC		484
Gly Pro Asp Glu Thr Leu Arg Ile Lys Ala Glu Tyr Glu Gly Asp Gly		
140	145	150
ATT CCT ACT GTA TTT GTG GCA GTG GCA GGC AGA AGT AAT GGT TTG GGA		532
Ile Pro Thr Val Phe Val Ala Val Ala Gly Arg Ser Asn Gly Leu Gly		
155	160	165
CCA GTG ATG TCT GGG AAC ACT GCA TAT CCA GTT ATC AGC TGT CCT CCC		580
Pro Val Met Ser Gly Asn Thr Ala Tyr Pro Val Ile Ser Cys Pro Pro		
170	175	180
185		
CTC ACA CCA GAC TGG GGA GTT CAG GAT GTG TGG TCT TCT CTT CGA CTA		628
Leu Thr Pro Asp Trp Gly Val Gln Asp Val Trp Ser Ser Leu Arg Leu		
190	195	200
CCC AGT GGT CTT GGC TGT TCA ACC GTA CTT TCT CCA GAA GGA TCA GCT		676
Pro Ser Gly Leu Gly Cys Ser Thr Val Leu Ser Pro Glu Gly Ser Ala		
205	210	215
CAA TTT GCT GCT CAG ATA TTT GGG TTA AGC AAC CAT TTG GTA TGG AGC		724
Gln Phe Ala Ala Gln Ile Phe Gly Leu Ser Asn His Leu Val Trp Ser		
220	225	230
AAA CTG CGA GCA AGC ATT TTG AAC ACA TGG ATT TCC TTG AAG CAG GCT		772
Lys Leu Arg Ala Ser Ile Leu Asn Thr Trp Ile Ser Leu Lys Gln Ala		
235	240	245
GAC AAG AAA ATC AGA GAA TGT AAT TTA TAAGAAAGAA TGCCATTGAA TTTTTTA		826
Asp Lys Lys Ile Arg Glu Cys Asn Leu		
250	255	
GGGGAAAAAC TACAAATTTC TAATTTAGCT GAAGGAAAAT CAAGCAAGAT GAAAAGGTAA		886
TTTTAAATTA GAGAACACAA ATAAAATGTA TTAGTGAATA AATGGTGAGG GTAGGCCTAT		946
TCAGATGCAA GGCCAGCAAT GGGGCTCCCC ATTATCCCCA CCCCTTGTT CCCAGTCCCC		1006
TTCTCTGCAA TGGGCACGCA TAGAGGAGAG ACAAAAGGGTA TTAGACGCAA CATCATTGGC		1066

CCAGGGGAGT	CCGAGAAAGAG	CTGCCATTGG	CTGACAGGGC	ATTTCAAGGC	TCTGTCATTG	1126
GTCAAGGGAGC	ACACCCCAGC	CTGAAGAGTG	ATGCCATTGG	CCAGGGAGTG	GTTTGTCTAT	1186
AGCCGTTGGC	TGTGAAGTGG	AAGGAAAAGA	TCTGGGAATG	AAGCCCTGTG	GCCAGGAAGA	1246
TAGACAGGGC	AGCAACTTCT	GGGCCTCCAG	GCCCTCTTCC	CACCATAGCA	ATGTGGGCAA	1306
AACTGGTGTG	AGGCCCCAGC	CAGAAAAAAGG	AGCCCAAGCC	AGAGGGCAAG	TGACAAAGGA	1366
TGTACCATGT	CCAATCTCCC	ACACCCCTGGG	GCTGCCCTTC	CCAATGTCTT	TCTTGATAGC	1426
CAAGTTGGC	TGGGAGCAGC	TCACTGCTCC	TCTAGCCAGG	AGGGTTTCTC	AGCTCCTGGA	1486
GGCCGCAGCT	TGATGTTGAA	CTGCTGCAGG	GTCTGCTCCA	GCTGTTCTG	GTTCCCAGCA	1546
AAGTAGGCAGG	ACACAGCATT	GTGGAAGAGC	AGCAGCTGCT	TGTGCATCAC	CTTGATCTTG	1606
TTTCTTCCA	GGAAACTTGAG	CTTGATGGCC	ACATCTCCCC	GCAGCTTCTC	ATACTTGTCC	1666
CGATGGGCCT	GGAAAGTGGC	CTGGGCACTC	TCAAGTCGAC	CACGTGTCCC	TGCATCCCGG	1726
GGGCCTAGAC	TCAGCTCTC	TAAGTCTGTT	CGGTAGGCAT	CATATTCCAG	CCTGGCAGCC	1786
TCATACTGTT	TCACAGTCAT	GAGCGTGTCT	TCCATGGTCT	TGGTGACCAA	TGTGTTGATG	1846
CTAGAGACAA	AGAAGTTCAC	GGCTCCTAGC	AGCGTTCCC	CATTCTTGCA	TAGTAGTTTC	1906
TGTGTCCTG	CATTGTTAGCC	AAATTCTCC	TGAAGCTCTG	GGGACTTCTG	GCTGAGGTCA	1966
GCAAAGGCAT	CACCCAGTGC	ATGCTGGGT	TGCAGCAGGC	TGTAGAGGTG	GGCTGTCAGT	2026
GCCCCGCCA	GCTGCAGGAC	ACTCTCATA	TTGCGCTTCG	TCTCACGCAG	CAACTCAATC	2086
TGCAGCTCTA	GCTCCAGGAT	TCCGGCGCCT	CCACTCCGTC	CCCCGCGGGT	CTGCTCTGTG	2146
TGCCATGGAC	GGCATTGTCC	CAGATATAGC	CGTTGGTACA	AAGCAGGGGAT	CTGACCGAGCT	2206
TTTCTCTACT	TGTGTCACTA	ACGGACC GTT	TATCATGAGC	AGCAACTCGG	CTTCTGCAGC	2266
AAACGGAAAT	GACAGCAAGA	AGTTCAAAGG	TGACAGCCGA	AGTGCAGGCG	TCCCCTCTAG	2326
AGTGATCCAC	ATCCGGAAGC	TCCCCATCGA	CGTCACGGAG	GGGAAAGTCA	TCTCCCTGGG	2386
GCTGCCCTT	GGGAAGGTCA	CCAACCTCCT	GATGCTGAAG	GGGAAAACC	AGGCCTTCAT	2446
CGAGATGAAC	ACGGAGGAGG	CTGCCAATAC	CATGGTGAAC	TACTACACCT	CGGTGACCCC	2506
TGTGCTGCGC	GGCCAGCCC	TCTACATCCA	GTTCTCCAAC	CACAAGGAGC	TGAAGACCGA	2566
CAGCTCTCCC	AACCAGGC	GGGCCAGGC	GGCCCTGCAG	GCGGTGAACT	CGGTCCAGTC	2626
GGGGAACCTG	GCCTTGGCTG	CCTCGGCGGC	GGCGTGGAT	GCAGGGATGG	CGATGCCCGG	2686
GCAGAGCCCC	GTGCTCAGGA	TCATCGTGG	GAACCTCTTC	TACCCGTG	CCCTGGATGT	2746
GCTGCACCAG	ATTTTCTCCA	AGTTCGGCAC	AGTGTGAAG	ATCATCACCT	TCACCAAGAA	2806
CAACCAGTTC	CAGGCCCTGC	TGCAGTATGC	GGACCCCGTG	AGCGCCCGAC	ACGCCAAGCT	2866
GTCGCTGGAC	GGGCAGAAC	TCTACAACGC	CTGCTGCACG	CTGCGCATCG	ACTTTCCAA	2926
GCTACCAGC	CTCAACGTCA	AGTACAACAA	TGACAAGAGC	CGTGA	ACTACC	2986
TTCTTGGAT	CC					2998

(2) INFORMATION FOR SEQ ID NO:150:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 258 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

Ala	Thr	Gln	Ala	Ile	Phe	Glu	Ile	Leu	Glu	Ser	Trp	Leu	Pro	Gln	
1				5				10				15			
Asn	Cys	Thr	Leu	Val	Asp	Met	Lys	Ile	Glu	Phe	Gly	Val	Asp	Val	Thr
						20		25				30			
Thr	Lys	Glu	Ile	Val	Leu	Ala	Asp	Val	Ile	Asp	Asn	Asp	Ser	Trp	Arg
						35		40			45				
Leu	Trp	Pro	Ser	Gly	Asp	Arg	Ser	Gln	Gln	Lys	Asp	Lys	Gln	Ser	Tyr
					50		55			60					
Arg	Asp	Leu	Lys	Glu	Val	Thr	Pro	Glu	Gly	Leu	Gln	Met	Val	Lys	Lys
					65		70			75			80		

Asn Phe Glu Trp Val Ala Glu Arg Val Glu Leu Leu Leu Lys Ser Glu
 85 90 95
 Ser Gln Cys Arg Val Val Val Leu Met Gly Ser Thr Ser Asp Leu Gly
 100 105 110
 His Cys Glu Lys Ile Lys Lys Ala Cys Gly Asn Phe Gly Ile Pro Cys
 115 120 125
 Glu Leu Arg Val Thr Ser Ala His Lys Gly Pro Asp Glu Thr Leu Arg
 130 135 140
 Ile Lys Ala Glu Tyr Glu Gly Asp Gly Ile Pro Thr Val Phe Val Ala
 145 150 155 160
 Val Ala Gly Arg Ser Asn Gly Leu Gly Pro Val Met Ser Gly Asn Thr
 165 170 175
 Ala Tyr Pro Val Ile Ser Cys Pro Pro Leu Thr Pro Asp Trp Gly Val
 180 185 190
 Gln Asp Val Trp Ser Ser Leu Arg Leu Pro Ser Gly Leu Gly Cys Ser
 195 200 205
 Thr Val Leu Ser Pro Glu Gly Ser Ala Gln Phe Ala Ala Gln Ile Phe
 210 215 220
 Gly Leu Ser Asn His Leu Val Trp Ser Lys Leu Arg Ala Ser Ile Leu
 225 230 235 240
 Asn Thr Trp Ile Ser Leu Lys Gln Ala Asp Lys Lys Ile Arg Glu Cys
 245 250 255
 Asn Leu

(2) INFORMATION FOR SEQ ID NO:151:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1038 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

Ile Gln Arg Phe Gly Thr Ser Gly His Ile Met Asn Leu Gln Ala Gln
 1 5 10 15
 Pro Lys Ala Gln Asn Lys Arg Lys Arg Cys Leu Phe Gly Gly Gln Glu
 20 25 30
 Pro Ala Pro Lys Glu Gln Pro Pro Pro Leu Gln Pro Pro Gln Gln Ser
 35 40 45
 - Ile Arg Val Lys Glu Glu Gln Tyr Leu Gly His Glu Gly Pro Gly Gly
 50 55 60
 Ala Val Ser Thr Ser Gln Pro Val Glu Leu Pro Pro Pro Ser Ser Leu
 65 70 75 80
 Ala Leu Leu Asn Ser Val Val Tyr Gly Pro Glu Arg Thr Ser Ala Ala
 85 90 95
 Met Leu Ser Gln Gln Val Ala Ser Val Lys Trp Pro Asn Ser Val Met
 100 105 110
 Ala Pro Gly Arg Gly Pro Glu Arg Gly Gly Gly Gly Val Ser Asp
 115 120 125
 Ser Ser Trp Gln Gln Gln Pro Gly Gln Pro Pro Pro His Ser Thr Trp
 130 135 140
 Asn Cys His Ser Leu Ser Leu Tyr Ser Ala Thr Lys Gly Ser Pro His
 145 150 155 160
 Pro Gly Val Gly Val Pro Thr Tyr Tyr Asn His Pro Glu Ala Leu Lys

	165	170	175
Arg Glu Lys Ala Gly Gly Pro Gln Leu Asp Arg Tyr Val Arg Pro Met			
180	185	190	
Met Pro Gln Lys Val Gln Leu Glu Val Gly Arg Pro Gln Ala Pro Leu			
195	200	205	
Asn Ser Phe His Ala Ala Lys Lys Pro Pro Asn Gln Ser Leu Pro Leu			
210	215	220	
Gln Pro Phe Gln Leu Ala Phe Gly His Gln Val Asn Arg Gln Val Phe			
225	230	235	240
Arg Gln Gly Pro Pro Pro Pro Asn Pro Val Ala Ala Phe Pro Pro Gln			
245	250	255	
Lys Gln Gln Gln Gln Gln Pro Gln Gln Gln Gln Gln Gln Gln Gln			
260	265	270	
Ala Ala Leu Pro Gln Met Pro Leu Phe Glu Asn Phe Tyr Ser Met Pro			
275	280	285	
Gln Gln Pro Ser Gln Gln Pro Gln Asp Phe Gly Leu Gln Pro Ala Gly			
290	295	300	
Pro Leu Gly Gln Ser His Leu Ala His His Ser Met Ala Pro Tyr Pro			
305	310	315	320
Phe Pro Pro Asn Pro Asp Met Asn Pro Glu Leu Arg Lys Ala Leu Leu			
325	330	335	
Gln Asp Ser Ala Pro Gln Pro Ala Leu Pro Gln Val Gln Ile Pro Phe			
340	345	350	
Pro Arg Arg Ser Arg Arg Leu Ser Lys Glu Gly Ile Leu Pro Pro Ser			
355	360	365	
Ala Leu Asp Gly Ala Gly Thr Gln Pro Gly Gln Glu Ala Thr Gly Asn			
370	375	380	
Leu Phe Leu His His Trp Pro Leu Gln Gln Pro Pro Pro Gly Ser Leu			
385	390	395	400
Gly Gln Pro His Pro Glu Ala Leu Gly Phe Pro Leu Glu Leu Arg Glu			
405	410	415	
Ser Gln Leu Leu Pro Asp Gly Glu Arg Leu Ala Pro Asn Gly Arg Glu			
420	425	430	
Arg Glu Ala Pro Ala Met Gly Ser Glu Glu Gly Met Arg Ala Val Ser			
435	440	445	
Thr Gly Asp Cys Gly Gln Val Leu Arg Gly Gly Val Ile Gln Ser Thr			
450	455	460	
Arg Arg Arg Arg Ala Ser Gln Glu Ala Asn Leu Leu Thr Leu Ala			
465	470	475	480
Gln Lys Ala Val Glu Leu Ala Ser Leu Gln Asn Ala Lys Asp Gly Ser			
485	490	495	
Gly Ser Glu Glu Lys Arg Lys Ser Val Leu Ala Ser Thr Thr Lys Cys			
500	505	510	
Gly Val Glu Phe Ser Glu Pro Ser Leu Ala Thr Lys Arg Ala Arg Glu			
515	520	525	
Asp Ser Gly Met Val Pro Leu Ile Ile Pro Val Ser Val Pro Val Arg			
530	535	540	
Thr Val Asp Pro Thr Glu Ala Ala Gln Ala Gly Gly Leu Asp Glu Asp			
545	550	555	560
Gly Lys Gly Leu Glu Gln Asn Pro Ala Glu His Lys Pro Ser Val Ile			
565	570	575	
Val Thr Arg Arg Ser Thr Arg Ile Pro Gly Thr Asp Ala Gln Ala			
580	585	590	
Gln Ala Glu Asp Met Asn Val Lys Leu Glu Gly Glu Pro Ser Val Arg			
595	600	605	
Lys Pro Lys Gln Arg Pro Arg Pro Glu Pro Leu Ile Ile Pro Thr Lys			
610	615	620	

Ala Gly Thr Phe Ile Ala Pro Pro Val Tyr Ser Asn Ile Thr Pro Tyr
 625 630 635 640
 Gln Ser His Leu Arg Ser Pro Val Arg Leu Ala Asp His Pro Ser Glu
 645 650 655
 Arg Ser Phe Glu Leu Pro Pro Tyr Thr Pro Pro Pro Ile Leu Ser Pro
 660 665 670
 Val Arg Glu Gly Ser Gly Leu Tyr Phe Asn Ala Ile Ile Ser Thr Ser
 675 680 685
 Thr Ile Pro Ala Pro Pro Ile Thr Pro Lys Ser Ala His Arg Thr
 690 695 700
 Leu Leu Arg Thr Asn Ser Ala Glu Val Thr Pro Pro Val Leu Ser Val
 705 710 715 720
 Met Gly Glu Ala Thr Pro Val Ser Ile Glu Pro Arg Ile Asn Val Gly
 725 730 735
 Ser Arg Phe Gln Ala Glu Ile Pro Leu Met Arg Asp Arg Ala Leu Ala
 740 745 750
 Ala Ala Asp Pro His Lys Ala Asp Leu Val Trp Gln Pro Trp Glu Asp
 755 760 765
 Leu Glu Ser Ser Arg Glu Lys Gln Arg Gln Val Glu Asp Leu Leu Thr
 770 775 780
 Ala Ala Cys Ser Ser Ile Phe Pro Gly Ala Gly Thr Asn Gln Glu Leu
 785 790 795 800
 Ala Leu His Cys Leu His Glu Ser Arg Gly Asp Ile Leu Glu Thr Leu
 805 810 815
 Asn Lys Leu Leu Leu Lys Lys Pro Leu Arg Pro His Asn His Pro Leu
 820 825 830
 Ala Thr Tyr His Tyr Thr Gly Ser Asp Gln Trp Lys Met Ala Glu Arg
 835 840 845
 Lys Leu Phe Asn Lys Gly Ile Ala Ile Tyr Lys Lys Asp Phe Leu
 850 855 860
 Val Gln Lys Leu Ile Gln Thr Lys Thr Val Ala Gln Cys Val Glu Phe
 865 870 875 880
 Tyr Tyr Thr Tyr Lys Lys Gln Val Lys Ile Gly Arg Asn Gly Thr Leu
 885 890 895
 Thr Phe Gly Asp Val Asp Thr Ser Asp Glu Lys Ser Ala Gln Glu Glu
 900 905 910
 Val Glu Val Asp Ile Lys Thr Ser Gln Lys Phe Pro Arg Val Pro Leu
 915 920 925
 Pro Arg Arg Glu Ser Pro Ser Glu Glu Arg Leu Glu Pro Lys Arg Glu
 930 935 940
 Val Lys Glu Pro Arg Lys Glu Gly Glu Glu Val Pro Glu Ile Gln
 945 950 955 960
 - Glu Lys Glu Glu Gln Glu Gly Arg Glu Arg Ser Arg Arg Ala Ala
 965 970 975
 Ala Val Lys Ala Thr Gln Thr Leu Gln Ala Asn Glu Ser Ala Ser Asp
 980 985 990
 Ile Leu Ile Leu Arg Ser His Glu Ser Asn Ala Pro Gly Ser Ala Gly
 995 1000 1005
 Gly Gln Ala Ser Glu Lys Pro Arg Glu Gly Thr Gly Lys Ser Arg Arg
 1010 1015 1020
 Ala Leu Pro Phe Ser Glu Lys Lys Lys Lys Gln Lys Ala
 1025 1030 1035

(2) INFORMATION FOR SEQ ID NO:152:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 849 amino acids

(B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

Ile Arg His Glu Val Ser Phe Leu Trp Asn Thr Glu Ala Ala Cys Pro
 1 5 10 15
 Ile Gln Thr Thr Asp Thr Asp Gln Ala Cys Ser Ile Arg Asp Pro
 20 25 30
 Asn Ser Gly Phe Val Phe Asn Leu Asn Pro Leu Asn Ser Ser Gln Gly
 35 40 45
 Tyr Asn Val Ser Gly Ile Gly Lys Ile Phe Met Phe Asn Val Cys Gly
 50 55 60
 Thr Met Pro Val Cys Gly Thr Ile Leu Gly Lys Pro Ala Ser Gly Cys
 65 70 75 80
 Glu Ala Glu Thr Gln Thr Glu Glu Leu Lys Asn Trp Lys Pro Ala Arg
 85 90 95
 Pro Val Gly Ile Glu Lys Ser Leu Gln Leu Ser Thr Glu Gly Phe Ile
 100 105 110
 Thr Leu Thr Tyr Lys Gly Pro Leu Ser Ala Lys Gly Thr Ala Asp Ala
 115 120 125
 Phe Ile Val Arg Phe Val Cys Asn Asp Asp Val Tyr Ser Gly Pro Leu
 130 135 140
 Lys Phe Leu His Gln Asp Ile Asp Ser Gly Gln Gly Ile Arg Asn Thr
 145 150 155 160
 Tyr Phe Glu Phe Glu Thr Ala Leu Ala Cys Val Pro Ser Pro Val Asp
 165 170 175
 Cys Gln Val Thr Asp Leu Ala Gly Asn Glu Tyr Asp Leu Thr Gly Leu
 180 185 190
 Ser Thr Val Arg Lys Pro Trp Thr Ala Val Asp Thr Ser Val Asp Gly
 195 200 205
 Arg Lys Arg Thr Phe Tyr Leu Ser Val Cys Asn Pro Leu Pro Tyr Ile
 210 215 220
 Pro Gly Cys Gln Gly Ser Ala Val Gly Ser Cys Leu Val Ser Glu Gly
 225 230 235 240
 Asn Ser Trp Asn Leu Gly Val Val Gln Met Ser Pro Gln Ala Ala Ala
 245 250 255
 Asn Gly Ser Leu Ser Ile Met Tyr Val Asn Gly Asp Lys Cys Gly Asn
 260 265 270
 Gln Arg Phe Ser Thr Arg Ile Thr Phe Glu Cys Ala Gln Ile Ser Gly
 275 280 285
 Ser Pro Ala Phe Gln Leu Gln Asp Gly Cys Glu Tyr Val Phe Ile Trp
 290 295 300
 Arg Thr Val Glu Ala Cys Pro Val Val Arg Val Glu Gly Asp Asn Cys
 305 310 315 320
 Glu Val Lys Asp Pro Arg His Gly Asn Leu Tyr Asp Leu Lys Pro Leu
 325 330 335
 Gly Leu Asn Asp Thr Ile Val Ser Ala Gly Glu Tyr Thr Tyr Tyr Phe
 340 345 350 350
 Arg Val Cys Gly Lys Leu Ser Ser Asp Val Cys Pro Thr Ser Asp Lys
 355 360 365
 Ser Lys Val Val Ser Ser Cys Gln Glu Lys Arg Glu Pro Gln Gly Phe
 370 375 380
 His Lys Val Ala Gly Leu Leu Thr Gln Lys Leu Thr Tyr Glu Asn Gly
 385 390 395 400

Leu Leu Lys Met Asn Phe Thr Gly Gly Asp Thr Cys His Lys Val Tyr
 405 410 415
 Gln Arg Ser Thr Ala Ile Phe Phe Tyr Cys Asp Arg Gly Thr Gln Arg
 420 425 430
 Pro Val Phe Leu Lys Glu Thr Ser Asp Cys Ser Tyr Leu Phe Glu Trp
 435 440 445
 Arg Thr Gln Tyr Ala Cys Pro Pro Phe Asp Leu Thr Glu Cys Ser Phe
 450 455 460
 Lys Asp Gly Ala Gly Asn Ser Phe Asp Leu Ser Ser Leu Ser Arg Tyr
 465 470 475 480
 Ser Asp Asn Trp Glu Ala Ile Thr Gly Thr Gly Asp Pro Glu His Tyr
 485 490 495
 Leu Ile Asn Val Cys Lys Ser Leu Ala Pro Gln Ala Gly Thr Glu Pro
 500 505 510
 Cys Pro Pro Glu Ala Ala Ala Cys Leu Leu Gly Gly Ser Lys Pro Val
 515 520 525
 Asn Leu Gly Arg Val Arg Asp Gly Pro Gln Trp Arg Asp Gly Ile Ile
 530 535 540
 Val Leu Lys Tyr Val Asp Gly Asp Leu Cys Pro Asp Gly Ile Arg Lys
 545 550 555 560
 Lys Ser Thr Thr Ile Arg Phe Thr Cys Ser Glu Ser Gln Val Asn Ser
 565 570 575
 Arg Pro Met Phe Ile Ser Ala Val Glu Asp Cys Glu Tyr Thr Phe Ala
 580 585 590
 Trp Pro Thr Ala Thr Ala Cys Pro Met Lys Ser Asn Glu His Asp Asp
 595 600 605
 Cys Gln Val Thr Asn Pro Ser Thr Gly His Leu Phe Asp Leu Ser Ser
 610 615 620
 Leu Ser Gly Arg Ala Gly Phe Thr Ala Ala Tyr Ser Glu Lys Gly Leu
 625 630 635 640
 Val Tyr Met Ser Ile Cys Gly Glu Asn Glu Asn Cys Pro Pro Gly Val
 645 650 655
 Gly Ala Cys Phe Gly Gln Thr Arg Ile Ser Val Gly Lys Ala Asn Lys
 660 665 670
 Arg Leu Arg Tyr Val Asp Gln Val Leu Gln Leu Val Tyr Lys Asp Gly
 675 680 685
 Ser Pro Cys Pro Ser Lys Ser Gly Leu Ser Tyr Lys Ser Val Ile Ser
 690 695 700
 Phe Val Cys Arg Pro Glu Ala Gly Pro Thr Asn Arg Pro Met Leu Ile
 705 710 715 720
 Ser Leu Asp Lys Gln Thr Cys Thr Leu Phe Phe Ser Trp His Thr Pro
 725 730 735
 - Leu Ala Cys Glu Gln Ala Thr Glu Cys Ser Val Arg Asn Gly Ser Ser
 740 745 750
 Ile Val Asp Leu Ser Pro Leu Ile His Arg Thr Gly Gly Tyr Glu Ala
 755 760 765
 Tyr Asp Glu Ser Glu Asp Asp Ala Ser Asp Thr Asn Pro Asp Phe Tyr
 770 775 780
 Ile Asn Ile Cys Gln Pro Leu Asn Pro Met His Gly Val Pro Cys Pro
 785 790 795 800
 Ala Gly Ala Ala Val Cys Lys Val Pro Ile Asp Gly Pro Pro Ile Asp
 805 810 815
 Ile Gly Arg Val Ala Gly Pro Pro Ile Leu Asn Pro Ile Ala Asn Glu
 820 825 830
 Ile Tyr Leu Asn Phe Glu Ser Ser Thr Pro Cys Gln Glu Phe Ser Cys
 835 840 845
 Lys

(2) INFORMATION FOR SEQ ID NO:153:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 852 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

Met Ala Arg Leu Ser Arg Pro Glu Arg Pro Asp Leu Val Phe Glu Glu
1 5 10 15
Glu Asp Leu Pro Tyr Glu Glu Glu Ile Met Arg Asn Gln Phe Ser Val
20 25 30
Lys Cys Trp Leu His Tyr Ile Glu Phe Lys Gln Gly Ala Pro Lys Pro
35 40 45
Arg Leu Asn Gln Leu Tyr Glu Arg Ala Leu Lys Leu Leu Pro Cys Ser
50 55 60
Tyr Lys Leu Trp Tyr Arg Tyr Leu Lys Ala Arg Arg Ala Gln Val Lys
65 70 75 80
His Arg Cys Val Thr Asp Pro Ala Tyr Glu Asp Val Asn Asn Cys His
85 90 95
Glu Arg Ala Phe Val Phe Met His Lys Met Pro Arg Leu Trp Leu Asp
100 105 110
Tyr Cys Gln Phe Leu Met Asp Gln Gly Arg Val Thr His Thr Arg Arg
115 120 125
Thr Phe Asp Arg Ala Leu Arg Ala Leu Pro Ile Thr Gln His Ser Arg
130 135 140
Ile Trp Pro Leu Tyr Leu Arg Phe Leu Arg Ser His Pro Leu Pro Glu
145 150 155 160
Thr Ala Val Arg Gly Tyr Arg Arg Phe Leu Lys Leu Ser Pro Glu Ser
165 170 175
Ala Glu Glu Tyr Ile Glu Tyr Leu Lys Ser Ser Asp Arg Leu Asp Glu
180 185 190
Ala Ala Gln Arg Leu Ala Thr Val Val Asn Asp Glu Arg Phe Val Ser
195 200 205
Lys Ala Gly Lys Ser Asn Tyr Gln Leu Trp His Glu Leu Cys Asp Leu
210 215 220
Ile Ser Gln Asn Pro Asp Lys Val Gln Ser Leu Asn Val Asp Ala Ile
225 230 235 240
Ile Arg Gly Gly Leu Thr Arg Phe Thr Asp Gln Leu Gly Lys Leu Trp
245 250 255
Cys Ser Leu Ala Asp Tyr Tyr Ile Arg Ser Gly His Phe Glu Lys Ala
260 265 270
Arg Asp Val Tyr Glu Glu Ala Ile Arg Thr Val Met Thr Val Arg Asp
275 280 285
Phe Thr Gln Val Phe Asp Ser Tyr Ala Gln Phe Glu Glu Ser Met Ile
290 295 300
Ala Ala Lys Met Glu Thr Ala Ser Glu Leu Gly Arg Glu Glu Glu Asp
305 310 315 320
Asp Val Asp Leu Glu Leu Arg Leu Ala Arg Phe Glu Gln Leu Ile Ser
325 330 335
Arg Arg Pro Leu Leu Leu Asn Ser Val Leu Leu Arg Gln Asn Pro His
340 345 350

His Val His Glu Trp His Lys Arg Val Ala Leu His Gln Gly Arg Pro
 355 360 365
 Arg Glu Ile Ile Asn Thr Tyr Thr Glu Ala Val Gln Thr Val Asp Pro
 370 375 380
 Phe Lys Ala Thr Gly Lys Pro His Thr Leu Trp Val Ala Phe Ala Lys
 385 390 395 400
 Phe Tyr Glu Asp Asn Gly Gln Leu Asp Asp Ala Arg Val Ile Leu Glu
 405 410 415
 Lys Ala Thr Lys Val Asn Phe Lys Gln Val Asp Asp Leu Ala Ser Val
 420 425 430
 Trp Cys Gln Cys Gly Glu Leu Glu Leu Arg His Glu Asn Tyr Asp Glu
 435 440 445
 Ala Leu Arg Leu Leu Arg Lys Ala Thr Ala Leu Pro Ala Arg Arg Ala
 450 455 460
 Glu Tyr Phe Asp Gly Ser Glu Pro Val Gln Asn Arg Val Tyr Lys Ser
 465 470 475 480
 Leu Lys Val Trp Ser Met Leu Ala Asp Leu Glu Glu Ser Leu Gly Thr
 485 490 495
 Phe Gln Ser Thr Lys Ala Val Tyr Asp Arg Ile Leu Asp Leu Arg Ile
 500 505 510
 Ala Thr Pro Gln Ile Val Ile Asn Tyr Ala Met Phe Leu Glu Glu His
 515 520 525
 Lys Tyr Phe Glu Glu Ser Phe Lys Ala Tyr Glu Arg Gly Ile Ser Leu
 530 535 540
 Phe Lys Trp Pro Asn Val Ser Asp Ile Trp Ser Thr Tyr Leu Thr Lys
 545 550 555 560
 Phe Ile Ala Arg Tyr Gly Gly Arg Lys Leu Glu Arg Ala Arg Asp Leu
 565 570 575
 Phe Glu Gln Ala Leu Asp Gly Cys Pro Pro Lys Tyr Ala Lys Thr Leu
 580 585 590
 Tyr Leu Leu Tyr Ala Gln Leu Glu Glu Trp Gly Leu Ala Arg His
 595 600 605
 Ala Met Ala Val Tyr Glu Arg Ala Thr Arg Ala Val Glu Pro Ala Gln
 610 615 620
 Gln Tyr Asp Met Phe Asn Ile Tyr Ile Lys Arg Ala Ala Glu Ile Tyr
 625 630 635 640
 Gly Val Thr His Thr Arg Gly Ile Tyr Gln Lys Ala Ile Glu Val Leu
 645 650 655
 Ser Asp Glu His Ala Arg Glu Met Cys Leu Arg Phe Ala Asp Met Glu
 660 665 670
 Cys Lys Leu Gly Glu Ile Asp Arg Ala Arg Ala Ile Tyr Ser Phe Cys
 675 680 685
 Ser Gln Ile Cys Asp Pro Arg Thr Thr Gly Ala Phe Trp Gln Thr Trp
 690 695 700
 Lys Asp Phe Glu Val Arg His Gly Asn Glu Asp Thr Ile Lys Glu Met
 705 710 715 720
 Leu Arg Ile Arg Arg Ser Val Gln Ala Thr Tyr Asn Thr Gln Val Asn
 725 730 735
 Phe Met Ala Ser Gln Met Leu Lys Val Ser Gly Ser Ala Thr Gly Thr
 740 745 750
 Val Ser Asp Leu Ala Pro Gly Gln Ser Gly Met Asp Asp Met Lys Leu
 755 760 765
 Leu Glu Gln Arg Ala Glu Gln Leu Ala Ala Glu Ala Glu Arg Asp Gln
 770 775 780
 Pro Leu Arg Ala Gln Ser Lys Ile Leu Phe Val Arg Ser Asp Ala Ser
 785 790 795 800
 Arg Glu Glu Leu Ala Glu Leu Ala Gln Gln Val Asn Pro Glu Glu Ile

805	810	815
Gln Leu Gly Glu Asp Glu Asp Glu Asp		Glu Met Asp Leu Glu Pro Asn
820	825	830
Glu Val Arg Leu Glu Gln Gln Ser Val Pro Ala Ala Val Phe Gly Ser		
835	840	845
Leu Lys Glu Asp		
850		

(2) INFORMATION FOR SEQ ID NO:154:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 693 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

Met Phe Ser Ala Leu Lys Leu Val Gly Ser Asp Gln Ala Pro Gly			
1	5	10	15
Arg Asp Lys Asn Ile Pro Ala Gly Leu Gln Ser Met Asn Gln Ala Leu			
20	25	30	
Gln Arg Arg Phe Ala Lys Gly Val Gln Tyr Asn Met Lys Ile Val Ile			
35	40	45	
Arg Gly Asp Arg Asn Thr Gly Lys Thr Ala Leu Trp His Arg Leu Gln			
50	55	60	
Gly Arg Pro Phe Val Glu Glu Tyr Ile Pro Thr Gln Glu Ile Gln Val			
65	70	75	80
Thr Ser Ile His Trp Ser Tyr Lys Thr Thr Asp Asp Ile Val Lys Val			
85	90	95	
Glu Val Trp Asp Val Val Asp Lys Gly Lys Cys Lys Lys Arg Gly Asp			
100	105	110	
Gly Leu Lys Met Glu Asn Asp Pro Gln Glu Xaa Glu Ser Glu Met Ala			
115	120	125	
Leu Asp Ala Glu Phe Leu Asp Val Tyr Lys Asn Cys Asn Gly Val Val			
130	135	140	
Met Met Phe Asp Ile Thr Lys Gln Trp Thr Phe Asn Tyr Ile Leu Arg			
145	150	155	160
Glu Leu Pro Lys Val Pro Thr His Val Pro Val Cys Val Leu Gly Asn			
165	170	175	
Tyr Arg Asp Met Gly Glu His Arg Val Ile Leu Pro Asp Asp Val Arg			
180	185	190	
- Asp Phe Ile Asp Asn Leu Asp Arg Pro Pro Gly Ser Ser Tyr Phe Arg			
195	200	205	
Tyr Ala Glu Ser Ser Met Lys Asn Ser Phe Gly Leu Lys Tyr Leu His			
210	215	220	
Lys Phe Phe Asn Ile Pro Phe Leu Gln Leu Gln Arg Glu Thr Leu Leu			
225	230	235	240
Arg Gln Leu Glu Thr Asn Gln Leu Asp Met Asp Ala Thr Leu Glu Glu			
245	250	255	
Leu Ser Val Gln Gln Glu Thr Glu Asp Gln Asn Tyr Gly Ile Phe Leu			
260	265	270	
Glu Met Met Glu Ala Arg Ser Arg Gly His Ala Ser Pro Leu Ala Ala			
275	280	285	
Asn Gly Gln Ser Pro Ser Pro Gly Ser Gln Ser Pro Val Leu Pro Ala			
290	295	300	
Pro Ala Val Ser Thr Gly Ser Ser Pro Gly Thr Pro Gln Pro Ala			

305	310	315	320
Pro Gln Leu Pro Leu Asn Ala Ala Pro Pro Ser Ser Val Pro Pro Val			
325	330	335	
Pro Pro Ser Glu Ala Leu Pro Pro Pro Ala Cys Pro Ser Ala Pro Ala			
340	345	350	
Pro Arg Arg Ser Ile Ile Ser Arg Leu Phe Gly Thr Ser Pro Ala Thr			
355	360	365	
Glu Ala Ala Pro Pro Pro Glu Pro Val Pro Ala Ala Gln Gly Pro			
370	375	380	
Ala Thr Val Gln Ser Val Glu Asp Phe Val Pro Asp Asp Arg Leu Asp			
385	390	395	400
Arg Ser Phe Leu Glu Asp Thr Thr Pro Ala Arg Asp Glu Lys Lys Val			
405	410	415	
Gly Ala Lys Ala Ala Gln Asp Ser Asp Ser Asp Gly Glu Ala Leu			
420	425	430	
Gly Gly Asn Pro Met Val Ala Gly Phe Gln Asp Asp Val Asp Leu Glu			
435	440	445	
Asp Gln Pro Arg Gly Ser Pro Pro Leu Pro Ala Gly Pro Val Pro Ser			
450	455	460	
Gln Asp Ile Thr Leu Ser Ser Glu Glu Ala Glu Val Ala Ala Pro			
465	470	475	480
Thr Lys Gly Pro Ala Pro Ala Pro Gln Gln Cys Ser Glu Pro Glu Thr			
485	490	495	
Lys Trp Ser Ser Ile Pro Ala Ser Lys Pro Arg Arg Gly Thr Ala Pro			
500	505	510	
Thr Arg Thr Ala Ala Pro Pro Trp Pro Gly Gly Val Ser Val Arg Thr			
515	520	525	
Gly Pro Glu Lys Arg Ser Ser Thr Arg Pro Pro Ala Glu Met Glu Pro			
530	535	540	
Gly Lys Gly Glu Gln Ala Ser Ser Ser Glu Ser Asp Pro Glu Gly Pro			
545	550	555	560
Ile Ala Ala Gln Met Leu Ser Phe Val Met Asp Asp Pro Asp Phe Glu			
565	570	575	
Ser Glu Gly Ser Asp Thr Gln Arg Arg Ala Asp Asp Phe Pro Val Arg			
580	585	590	
Asp Asp Pro Ser Asp Val Thr Asp Glu Asp Glu Gly Pro Ala Glu Pro			
595	600	605	
Pro Pro Pro Pro Lys Leu Pro Leu Pro Ala Phe Arg Leu Lys Asn Asp			
610	615	620	
Ser Asp Leu Phe Gly Leu Gly Leu Glu Glu Ala Gly Pro Lys Glu Ser			
625	630	635	640
Ser Glu Glu Gly Lys Glu Gly Lys Thr Pro Ser Lys Glu Lys Lys Lys			
645	650	655	
Lys Thr Lys Ser Phe Ser Arg Val Leu Leu Glu Arg Pro Arg Ala His			
660	665	670	
Arg Phe Ser Thr Arg Val Gly Tyr Gln Val Ser Val Pro Asn Ser Pro			
675	680	685	
Tyr Ser Glu Ser Tyr			
690			