数学B問題

(120分)

【必答問題】 数学B受験者はB1, B2, B3, B4 を全問解答せよ。

B1 2次関数 $f(x) = x^2 - 4ax - 3a - 2$ がある。ただし、a は 0 < a < 1 を満たす定数とする。

- (1) y=f(x) のグラフの頂点の座標をaを用いて表せ。
- (2) $-2 \le x \le 2$ における f(x) の最大値を M,最小値を m とするとき, M, m を a を用いて表せ。また, M-m=8 を満たす a の値を求めよ。 (配点 20)

B2 α , β は $\cos \alpha = \frac{4}{\sqrt{17}}$, $\sin \beta = \frac{4}{5}$, $0 < \alpha < \frac{\pi}{2}$, $\frac{\pi}{2} < \beta < \pi$ を満たしている。

- (1) $\sin \alpha$, $\cos \beta$ の値をそれぞれ求めよ。また、 $\sin 2\alpha$ の値を求めよ。
- (2) $\sin(2\alpha+\beta)$ の値を求めよ。

3 -27 - -

(配点 20)

B3 立方体のさいころに 1, −1, *の目が 2 つずつ書かれている。点 P は最初, 数直線上の原点 O にある。このさいころを投げて,以下のルールに従い点 P を数直線上で移動させる。 【ルール】 1 の目が出たときは,点 P を正の向きに 1 だけ移動させる。

-1の目が出たときは、点Pを負の向きに1だけ移動させる。

*の目が出たときは、点 P を原点 O に移動させる。

•

- (1) さいころを2回投げたとき, 点Pの座標が2である確率と1である確率をそれぞれ求めよ。
- (2) さいころを3回投げたとき, 点 P の座標が2である確率と1である確率をそれぞれ求めよ。
- (3) さいころを3回投げたとき,点Pの座標が負となる確率を求めよ。また,さいころを3回投げて点Pの座標が負であるとき,2回目に*が出ていた条件付き確率を求めよ。

(配点 40)

- ${f B4}$ 座標平面上において、原点 O を中心とする半径 5 の円を C_1 とし、円 C_1 上の点 A (3, 4) における円 C_1 の接線を ℓ とする。また、円 C_1 と点 A で外接する半径 5 の円を C_2 とする。
 - (1) 接線ℓの方程式を求めよ。また,円 C2の方程式を求めよ。
 - (2) 円 C₁ と円 C₂ の両方に接する接線は、直線 ℓ を含めて 3 本ある。直線 ℓ 以外の接線の うち y 切片が正である接線 m の方程式を求めよ。
 - (3) (2)の接線 m と円 C_1 との接点を P, 円 C_2 との接点を Q とする。 \triangle OPQ を原点 Q の周りに 1 回転させる。このとき,辺 PQ が通過する領域のうち, $x \ge 0$, $y \ge 0$ を満たす部分を D とする。領域 D 内の点 (x, y) に対して,x+y の最大値および最小値を求めよ。

(配点 40)

【選択問題】 数学B受験者は,次のB5 \sim B8のうちから2題を選んで解答せよ。

- **B5** 等差数列 $\{a_n\}$: 94, x, 82, …… がある。また、数列 $\{b_n\}$ は $b_1=4$, $b_{n+1}=2b_n-2$ (n=1, 2, 3, ……) を満たしている。
 - (1) xの値を求めよ。また、数列 $\{a_n\}$ の一般項 a_n をnを用いて表せ。
 - (2) 数列 {b_n} の一般項 b_n を n を用いて表せ。
 - (3) 数列 $\{c_n\}$ は $\frac{c_1}{a_1} + \frac{c_2}{a_2} + \frac{c_3}{a_3} + \cdots + \frac{c_{n-1}}{a_{n-1}} + \frac{c_n}{a_n} = b_n \ (n = 1, 2, 3, \cdots)$ を満たしている。このとき、 c_1 を求めよ。また、一般項 c_n を n を用いて表せ。 (配点 40)

- **B6** 直方体 OADB-CEFG があり、OA = OB = 1、OC = 2、辺 EF の中点を M とする。また、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ と G する。
 - (1) \overrightarrow{OM} を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を用いて表せ。また、内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ の値を求めよ。
 - (2) 平面 ABC 上に点 P をとり、 $\overrightarrow{AP} = s \overrightarrow{AB} + t \overrightarrow{AC}$ (s, t は実数) とする。このとき、 \overrightarrow{OP} を s, t, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を用いて表せ。 B また、点 P が線分 OM 上にあるとき、s, t の値をそれぞれ求めよ。
 - (3) (2)の点 P が線分 OM 上にあるとき,頂点 B から線分 PD に垂線を引き交点を H とする。 \overrightarrow{OH} を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} を用いて表せ。 (配点 40)

B7 関数 $f(x) = x^3 + ax^2 + bx + 1$ (a, bは実数) は f(2) = 3, f'(3) = 0 を満たしている。

(1) a, bの値を求めよ。

- (2) $-1 \le x \le 4$ における f(x) の最大値、最小値とそのときのx の値を求めよ。
- (3) xについての 3 次方程式 $x^3 + ax^2 + bx + 1 = t$ が異なる 3 つの実数解をもつとき,定数 t のとり得る値の範囲を求めよ。またそのとき,3 つの解の整数部分を l, m, n とする。 l+m+n=4 となるような t の値の範囲を求めよ。ただし,実数 p の整数部分とは $k \leq p < k+1$ (k は整数)を満たす k の値である。 (配点 40)

B8 関数 $y = (\log_2 2x) \left(\log_4 \frac{x}{8}\right)$ がある。

- (1) x=32, x=2 のとき, yの値をそれぞれ求めよ。
- (2) $t = \log_2 x$ とするとき、 $\log_2 2x$ 、 $\log_4 \frac{x}{8}$ をそれぞれ t を用いて表せ。
- (3) a は $a>\frac{1}{8}$ を満たす定数とする。 $\frac{1}{8} \le x \le a$ におけるyの最小値が $-\frac{15}{8}$ であるとき,aの値を求めよ。