

Aprendizado de Máquina e Deep Learning

Classificação de imagens

Prof. Dr. Thiago Meirelles Ventura

Discussão

- Já se sabe estimar valores com uma rede neural artificial
- E se for necessário realizar uma tarefa de classificação?
- E se os dados forem imagens?

Imagem vista pelo computador

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	255	255	255	255	255	255	255	255	255	255	255	0	0	0	255	255	255	255	255	255	255	255	255	255	255	255	0	0	0
0	0	0	255	255	255	255	255	255	255	255	255	255	255	0	0	0	255	255	255	255	255	255	255	255	255	255	255	255	0	0	0
0	0	0	255	255	255	255	255	255	255	255	255	255	255	0	0	0	255	255	255	255	255	255	255	255	255	255	255	255	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	255	255	255	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	255	255	255	255	255	255	255	255	255	255	255	0	0	0	255	255	255	255	255	255	255	255	255	255	255	255	0	0	0
0	0	0	255	255	255	255	255	255	255	255	255	255	255	0	0	0	255	255	255	255	255	255	255	255	255	255	255	255	0	0	0
0	0	0	255	255	255	255	255	255	255	255	255	255	255	0	0	0	255	255	255	255	255	255	255	255	255	255	255	255	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Imagem colorida vista pelo computador

[[156	39	176]	[156	39	176]	[156	39	176]	[0	0	255]	[0	0	255]	[0	0	255]	[156	39	176]	[156	39	176]
[156	39	176]	[0	0	255]	[(0	255]	[0	0	255]	[0	0	255]	[0	0	255]	[0	0	255]	[0	0	255]
[0	0	255]	[0	0	255]	[(0	255]	[0	0	255]	[156	39	176]	[156	39	176]	[156	39	176]	[0	255	0]
[0	255	0]	[0	255	0]	[(255	0]	[0	255	0]	[0	255	0]	[0	255	0]	[0	255	0]	[0	255	0]
[0	255	0]	[0	255	0]	[(255	0]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[0	0	255]	[(0	255]	[0	0	255]	[0	0	255]	[0	0	255]	[0	0	255]	[0	0	255]
[0	0	255]	[0	0	255]	[(0	255]	[0	0	255]	[156	39	176]	[156	39	176]	[156	39	176]	[0	255	0]
[0	255	0]	[0	255	0]	[(255	0]	[0	255	0]	[0	255	0]	[0	255	0]	[0	255	0]	[0	255	0]
[0	255	0]	[0	255	0]	[(255	0]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	0	255]	[0	0	255]	[0	0	255]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	255	0]
[0	255	0]	[0	255	0]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	0	255]	[0	0	255]	[0	0	255]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	255	0]
[0	255	0]	[0	255	0]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	0	255]	[0	0	255]	[0	0	255]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	255	0]
[0	255	0]	[0	255	0]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	0	255]	[0	0	255]	[0	0	255]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	255	0]
[0	255	0]	[0	255	0]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	0	255]	[0	0	255]	[0	0	255]
[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[0	255	0]
[0	255	0]	[0	255	0]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]	[156	39	176]

Flattening

Processo para converter vetores N
 dimensionais em um único vetor 1D

27

9

8

Flattening

Camada Flatten no Keras

```
model = keras.Sequential()
model.add( keras.layers.Flatten() )
```


Camadas

- Camadas Softmax
 - Gera probabilidades como resultados

$$S(y_i) = rac{e^{y_i}}{\sum_j e^{y_i}}$$

- Camadas Softmax
 - Gera probabilidades como resultados

$$S(y_i) = rac{e^{y_i}}{\sum_j e^{y_i}}$$

- Imaginando as saídas [4, 2, 0.5]
- Qual o resultado após a aplicação do Softmax?
 - Após Softmax: [0.86, 0.12, 0.02]

• Camadas – Softmax

Configuração do modelo

```
model.compile(
  optimizer = keras.optimizers.Adam(),
  loss = keras.losses.sparse_categorical_crossentropy,
  metrics = ['accuracy']
)
```


Treinamento e classificação

```
hist = model.fit(
         x train,
         y train,
         validation split=0.2,
         epochs=50)
classifications = model.predict(x test)
```


- O Keras facilita a obtenção de algumas bases para testes
 - CIFAR10
 - CIFAR100
 - IMDB Movie reviews
 - Reuters newswire topics
 - MNIST
 - Fashion-MNIST
 - Boston housing price

• O Keras facilita a obtenção de algumas bases para testes

```
dataset = keras.datasets.mnist
```

 $(x_{train}, y_{train}), (x_{test}, y_{test}) = dataset.load_data()$

• CIFAR-10

- CIFAR-10
 - 32x32 pixels
 - Em cores
 - 60.000 imagens
 - 50.000 para treinamento
 - 10.000 para teste

- CIFAR-10
 - 10 classes
 - Classes: Airplane, Automobile, Bird, Cat, Deer, Dog,
 Frog, Horse, Ship, Truck
 - 6.000 imagens por classe

Pré-visualização da imagem

O matplotlib consegue mostrar imagens

```
import matplotlib.pyplot as plt
plt.imshow(x train[700])
```


Demonstração

- Classificar as imagens do CIFAR-10
 - Carregar os dados de treinamento e de teste do CIFAR-10
 - Construir um modelo para classificar imagens
 - Testar o desempenho da rede criada
 - Mostrar algumas imagens que a rede está classificando de maneira incorreta

Exercício 8

Faça a classificação da base de dados
 MNIST

- Qual o desempenho?
- Por que foi tão diferente do desempenho do CIFAR-10?

