Correction d'exercices de TD

Automates finis

Exercice 5:

Soit L un langage quelconque. On dit que L est préfixe si et seulement si aucun préfixe d'un mot de L (autre que le mot lui même) n'est dans L. Plus formellement :

 $\forall w \in L, \forall w_1, w_2 \text{ tels que } w = w_1.w_2, \text{ si } w_1 \in L \text{ alors } w_2 = \epsilon$

Question 5.1 . Les langages suivants

- 1. a^*b
- 2. $(a+b)^*$
- 3. $\{a^nb^n, n > 0\}$

sont-ils préfices ? (justifier)

Correction: On sait que:

L est préfixe $\forall w \in L, \forall w_1, w_2$ tels que $w = w_1.w_2$, si $w_1 \in L$ alors $w_2 = \epsilon$

Par conséquent, pour montrer qu'un langage L est préfixe, il faut montrer que pour tout mot de $w \in L$, si $w = w_1.w_2$ et $w_1 \in L$, alors $w_2 = \epsilon$. Au contraire montrer qu'un langage L n'est pas préfixe revient à trouver trois mots w, w_1 et w_2 tels que $w \in L$, $w_1 \in L$ et $w_2 \neq \epsilon$.

1. $L_1 = a^*b$ est préfixe.

Démonstration:

Soit $w \in L_1$. Supposons que $w = w_1.w_2$, avec $w_1 \in L$. Montrons que $w_2 = \epsilon$.

Les mots de L_1 sont caractérisés par le fait qu'ils contiennent un seul et unique b, se situant à la fin du mot. Comme $w, w_1 \in L$, on a :

- $\exists k \in \mathbb{N} | w = a^k b;$
- $\exists l \in \mathbb{N} | w_1 = a^l b$;
- $w = w_1.w_2$, et donc $a^k b = a^l b.w_2$.

On a donc obligatoirement k = l, et $w_2 = \epsilon$.

2. $L_2 = (a+b)^*$ n'est pas préfixe.

Contre-exemple:

Posons w = abb, $w_1 = ab$ et $w_2 = b$. On a bien $w \in L_2$, $w_1 \in L_2$ et $w_2 \neq epsilon$

3. $L_3\{a^nb^n, n > 0\}$ est préfixe.

Démonstration:

Soit $w \in L_1$. Supposons que $w = w_1.w_2$, avec $w_1 \in L$. Montrons que $w_2 = \epsilon$. Comme $w, w_1 \in L$, on a :

- $\exists k \in \mathbb{N} | w = a^k b^k$;
- $\exists l \in \mathbb{N} | w = a^l b^l$;
- $w = w_1.w_2$, et donc $a^k b^k = a^l b^l w_2$.

On peut donc en déduire que $a^k=a^l$, et donc que k=l. Par conséquent, on a $a^kb^k=a^kb^kw_2$, et donc $w_2=\epsilon$

Question 5.2 . Donner une caractéristique d'un automate reconnaissant un langage reconnaissable préfixe.

Correction: Pour répondre à cette question, nous allons dans un premier temps écrire les automates reconnaissant les langages L_1 et L_2 .

Automate reconnaissant le langage L_1 a,b $q_0 \qquad b \qquad q_1$ Automate reconnaissant le langage L_2

On peut en déduire qu'un automate reconnaissant un langage préfixe ne contient pas la structure suivante :

 \boldsymbol{x} représente dans cet automate une lettre quelconque d'un alphabet.