NMRLipids VI: Polarizable Force Fields

Batuhan Kav*

Forschungszentrum Juelich, Germany

E-mail: b.kav@fz-juelich.de

Abstract

For the initial project description, please refer to https://github.com/batukav/NMRlipidsVIpolarizableFFs/blob/master/Manuscript/manuscript.pdf

Introduction

Methods

This project is performed using the "NMRLipids Databank" format and all related files, except the trajectories, are available under

"https://github.com/batukav/NMRlipidsVIpolarizableFFs/" Order parameters are calculated using the script "OrderParameters.py" under

"https://github.com/batukav/NMR lipids VI polarizable FFs/tree/master/scripts".

Dihedral distributions are calculated using the script "calcDihedral.py" under

 $"https://github.com/batukav/NMR lipids VI polarizable FFs/tree/master/scripts"\ .$

Simulation Details

${\rm Lipid/counter-ions}$	force field	Ion (M) N_l N_w N_{ion}	N_{l}	N_w	N_{ion}	T(K)	$\mathbf{t}_{sim} \; (\mathrm{ns})$	T (K) t_{sim} (ns) t_{-} {analysis} (ns) files	files
POPC	CHARMM-Drude	NA	NA	NA NA NA	NA	NA	NA	NA	NA
	CHARMM-Drude	0.350	144	6400	41	303	200	500	1
	CHARMM-Drude	0.450	144	6400	51	303	200	500	2
	${\rm CHARMM-Drude}$	0.650	144	6400	22	303	200	500	33
	CHARMM-Drude	1.0	144	6400	115	303	200	500	4
	CHARMM-Drude	0.350	144	6400	41	303	200	500	ಬ
$\mathrm{POPC:CaCl}_2$	CHARMM-Drude	0.450	144	6400	52	303	200	500	9
	CHARMM-Drude	0.650	144	6400	92	303	200	200	7

Results and discussion

Order Parameters

Figure 1: Order parameters calculated

Figure 2: Order parameters

Figure 3: change in the order parameters

Dihedral distributions

Figure 4: dihedral distributions

Figure 5: dihedral distributions

Density profiles

Figure 6: Na⁺ number density

Figure 7: Ca⁺² number density

References

Acknowledgement

Supporting Information Available

References

- (1) Kav, B. Pure POPC Membrane with 350mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4048180.
- (2) Kav, B. Pure POPC Membrane with 450mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4048171.
- (3) Kav, B. Pure POPC Membrane with 650mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4074903.
- (4) Kav, B. Pure POPC Membrane with 1000mM NaCl simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4074906.
- (5) Kav, B. Pure POPC Membrane with 350mM CaCl2 simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4048178.
- (6) Kav, B. Pure POPC Membrane with 450mM CaCl2 simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4048172.
- (7) Kav, B. Pure POPC Membrane with 650mM CaCl2 simulations using Drude Polarizable Force Field and OpenMM. 2020; https://doi.org/10.5281/zenodo.4048175.