Fast Auxiliary Space Preconditioning 1.8.8 Dec/30/2016

Generated by Doxygen 1.8.12

Contents

1	Introduction	1
2	How to obtain FASP	3
3	Building and Installation	5
4	Developers	7
5	Doxygen	9
6	Todo List	11
7	Data Structure Index	13
	7.1 Data Structures	13
8	File Index	17
	8.1 File List	17
9	Data Structure Documentation	23
	9.1 AMG_data Struct Reference	23
	9.1.1 Detailed Description	24
	9.2 AMG_data_bsr Struct Reference	24
	9.2.1 Detailed Description	26
	9.3 AMG_param Struct Reference	26
	9.3.1 Detailed Description	28

ii CONTENTS

9.4	block_l	3SR Struct Reference		 	 	 	 	 	. 28
	9.4.1	Detailed Description		 	 	 	 	 	. 29
9.5	block_d	dvector Struct Referen	ice	 	 	 	 	 	. 29
	9.5.1	Detailed Description		 	 	 	 	 	. 29
9.6	block_i	CSRmat Struct Refere	ence	 	 	 	 	 	. 30
	9.6.1	Detailed Description		 	 	 	 	 	. 30
9.7	block_i	vector Struct Reference	ce	 	 	 	 	 	. 30
	9.7.1	Detailed Description		 	 	 	 	 	. 31
9.8	block_l	Reservoir Struct Refer	ence	 	 	 	 	 	. 31
	9.8.1	Detailed Description		 	 	 	 	 	. 31
9.9	dBLCm	nat Struct Reference		 	 	 	 	 	. 32
	9.9.1	Detailed Description		 	 	 	 	 	. 32
9.10	dBSRn	nat Struct Reference		 	 	 	 	 	. 32
	9.10.1	Detailed Description		 	 	 	 	 	. 33
	9.10.2	Field Documentation		 	 	 	 	 	. 33
		9.10.2.1 JA		 	 	 	 	 	. 33
		9.10.2.2 val		 	 	 	 	 	. 33
9.11	dCOOr	mat Struct Reference		 	 	 	 	 	. 33
	9.11.1	Detailed Description		 	 	 	 	 	. 34
9.12	dCSRL	mat Struct Reference		 	 	 	 	 	. 34
	9.12.1	Detailed Description		 	 	 	 	 	. 35
9.13	dCSRn	nat Struct Reference		 	 	 	 	 	. 35
	9.13.1	Detailed Description		 	 	 	 	 	. 36
9.14	ddenm	at Struct Reference		 	 	 	 	 	. 36
	9.14.1	Detailed Description		 	 	 	 	 	. 36
9.15	dSTRn	nat Struct Reference		 	 	 	 	 	. 37
	9.15.1	Detailed Description		 	 	 	 	 	. 37
9.16	dvector	Struct Reference .		 	 	 	 	 	. 38

CONTENTS

	9.16.1 Detailed Description	 	 	 	38
9.17	grid2d Struct Reference	 	 	 	38
	9.17.1 Detailed Description	 	 	 	39
	9.17.2 Field Documentation	 	 	 	39
	9.17.2.1 e	 	 	 	39
	9.17.2.2 edges	 	 	 	39
	9.17.2.3 ediri	 	 	 	39
	9.17.2.4 efather	 	 	 	39
	9.17.2.5 p	 	 	 	40
	9.17.2.6 pdiri	 	 	 	40
	9.17.2.7 pfather	 	 	 	40
	9.17.2.8 s	 	 	 	40
	9.17.2.9 t	 	 	 	40
	9.17.2.10 tfather	 	 	 	40
	9.17.2.11 triangles	 	 	 	41
	9.17.2.12 vertices	 	 	 	41
9.18	iCOOmat Struct Reference	 	 	 	41
	9.18.1 Detailed Description	 	 	 	42
9.19	iCSRmat Struct Reference	 	 	 	42
	9.19.1 Detailed Description	 	 	 	42
9.20	idenmat Struct Reference	 	 	 	43
	9.20.1 Detailed Description	 	 	 	43
9.21	ILU_data Struct Reference	 	 	 	43
	9.21.1 Detailed Description	 	 	 	44
9.22	ILU_param Struct Reference	 	 	 	45
	9.22.1 Detailed Description	 	 	 	45
9.23	input_param Struct Reference				
	9.23.1 Detailed Description	 	 	 	47

iv CONTENTS

9.23.2	Field Doc	cumentation	 47
	9.23.2.1	AMG_aggregation_type	 47
	9.23.2.2	AMG_aggressive_level	 47
	9.23.2.3	AMG_aggressive_path	 47
	9.23.2.4	AMG_amli_degree	 47
	9.23.2.5	AMG_coarse_dof	 48
	9.23.2.6	AMG_coarse_scaling	 48
	9.23.2.7	AMG_coarse_solver	 48
	9.23.2.8	AMG_coarsening_type	 48
	9.23.2.9	AMG_cycle_type	 48
	9.23.2.10	AMG_ILU_levels	 48
	9.23.2.11	AMG_interpolation_type	 49
	9.23.2.12	? AMG_levels	 49
	9.23.2.13	B AMG_max_aggregation	 49
	9.23.2.14	AMG_max_row_sum	 49
	9.23.2.15	AMG_maxit	 49
	9.23.2.16	S AMG_nl_amli_krylov_type	 49
	9.23.2.17	' AMG_pair_number	 50
	9.23.2.18	B AMG_polynomial_degree	 50
	9.23.2.19	AMG_postsmooth_iter	 50
	9.23.2.20	AMG_presmooth_iter	 50
	9.23.2.21	AMG_quality_bound	 50
	9.23.2.22	P. AMG_relaxation	 50
	9.23.2.23	B AMG_Schwarz_levels	 51
	9.23.2.24	AMG_smooth_filter	 51
	9.23.2.25	S AMG_smooth_order	 51
	9.23.2.26	S AMG_smoother	 51
	9.23.2.27	' AMG_strong_coupled	 51

CONTENTS

		9.23.2.28 AMG_strong_threshold	51
		9.23.2.29 AMG_tentative_smooth	52
		9.23.2.30 AMG_tol	52
		9.23.2.31 AMG_truncation_threshold	52
		9.23.2.32 AMG_type	52
		9.23.2.33 ILU_droptol	52
		9.23.2.34 ILU_lfil	52
		9.23.2.35 ILU_permtol	53
		9.23.2.36 ILU_relax	53
		9.23.2.37 ILU_type	53
		9.23.2.38 inifile	53
		9.23.2.39 itsolver_maxit	53
		9.23.2.40 itsolver_tol	53
		9.23.2.41 output_type	54
		9.23.2.42 precond_type	54
		9.23.2.43 print_level	54
		9.23.2.44 problem_num	54
		9.23.2.45 restart	54
		9.23.2.46 Schwarz_blksolver	54
		9.23.2.47 Schwarz_maxlvl	55
		9.23.2.48 Schwarz_mmsize	55
		9.23.2.49 Schwarz_type	55
		9.23.2.50 solver_type	55
		9.23.2.51 stop_type	55
		9.23.2.52 workdir	56
9.24	itsolver	_param Struct Reference	56
	9.24.1	Detailed Description	56
	9.24.2	Field Documentation	56

vi CONTENTS

	9.24.2.1	itsolver_typ	e	 	 	 	 	 	 	 . 56
	9.24.2.2	maxit		 	 	 	 	 	 	 . 57
	9.24.2.3	precond_ty	pe	 	 	 	 	 	 	 . 57
	9.24.2.4	print_level		 	 	 	 	 	 	 . 57
	9.24.2.5	restart		 	 	 	 	 	 	 . 57
	9.24.2.6	stop_type.		 	 	 	 	 	 	 . 57
	9.24.2.7	tol		 	 	 	 	 	 	 . 58
9.25 iv	vector Struct Ref	erence		 	 	 	 	 	 	 . 58
9	0.25.1 Detailed I	Description		 	 	 	 	 	 	 . 58
9.26 L	ink Struct Refere	ence		 	 	 	 	 	 	 . 58
9	0.26.1 Detailed I	Description		 	 	 	 	 	 	 . 59
9.27 lii	inked_list Struct	Reference .		 	 	 	 	 	 	 . 59
9	0.27.1 Detailed I	Description		 	 	 	 	 	 	 . 59
9.28 m	nallinfo Struct Re	eference		 	 	 	 	 	 	 . 60
9	0.28.1 Detailed I	Description		 	 	 	 	 	 	 . 60
9.29 m	malloc_chunk Str	uct Referenc	ce	 	 	 	 	 	 	 . 60
9	9.29.1 Detailed I	Description		 	 	 	 	 	 	 . 60
9.30 m	nalloc_params S	truct Refere	nce	 	 	 	 	 	 	 . 61
9	0.30.1 Detailed I	Description		 	 	 	 	 	 	 . 61
9.31 m	malloc_segment	Struct Refere	ence .	 	 	 	 	 	 	 . 61
9	9.31.1 Detailed I	Description		 	 	 	 	 	 	 . 61
9.32 m	nalloc_state Stru	ct Reference	e	 	 	 	 	 	 	 . 62
9	0.32.1 Detailed I	Description		 	 	 	 	 	 	 . 62
9.33 m	nalloc_tree_chur	nk Struct Ref	erence	 	 	 	 	 	 	 . 62
9	9.33.1 Detailed I	Description		 	 	 	 	 	 	 . 63
9.34 N	/umps_data Strւ	uct Reference	e	 	 	 	 	 	 	 . 63
9	0.34.1 Detailed I	Description		 	 	 	 	 	 	 . 63
9.35 m	mxv_matfree Stru	ıct Referenc	e	 	 	 	 	 	 	 . 63

CONTENTS vii

	9.35.1	Detailed I	Description	1			 	 	 	 	 	64
9.36	nedmal	llinfo Struc	t Referenc	е			 	 	 	 	 	64
	9.36.1	Detailed I	Description	1			 	 	 	 	 	64
9.37	' Pardisc	_data Stru	uct Refere	nce			 	 	 	 	 	64
	9.37.1	Detailed I	Description	1			 	 	 	 	 	65
9.38	precon	d Struct Re	eference .				 	 	 	 	 	65
	9.38.1	Detailed I	Description	ı			 	 	 	 	 	65
9.39) precond	d_block_da	ata Struct	Referer	nce		 	 	 	 	 	65
	9.39.1	Detailed I	Description	ı			 	 	 	 	 	66
	9.39.2	Field Doo	umentatio	n			 	 	 	 	 	66
		9.39.2.1	A_diag .				 	 	 	 	 	66
		9.39.2.2	Ablc				 	 	 	 	 	66
		9.39.2.3	amgpara	m			 	 	 	 	 	66
		9.39.2.4	LU_diag				 	 	 	 	 	67
		9.39.2.5	mgl				 	 	 	 	 	67
		9.39.2.6	r				 	 	 	 	 	67
9.40) precond	d_block_re	eservoir_d	ata Stru	ıct Refe	rence .	 	 	 	 	 	67
	9.40.1	Detailed I	Description	1			 	 	 	 	 	69
	9.40.2	Field Doo	umentatio	n			 	 	 	 	 	69
		9.40.2.1	diag				 	 	 	 	 	69
		9.40.2.2	diaginv .				 	 	 	 	 	69
		9.40.2.3	diaginvS				 	 	 	 	 	70
		9.40.2.4	order				 	 	 	 	 	70
		9.40.2.5	perf_idx				 	 	 	 	 	70
		9.40.2.6	pivot				 	 	 	 	 	70
		9.40.2.7	pivotS .				 	 	 	 	 	70
		9.40.2.8	PP				 	 	 	 	 	70
		9.40.2.9	r				 	 	 	 	 	71

viii CONTENTS

		9.40.2.10 RR	71
		9.40.2.11 scaled	71
		9.40.2.12 SS	71
		9.40.2.13 w	71
		9.40.2.14 WW	72
9.41 µ	precon	_data Struct Reference	72
Ç	9.41.1	Detailed Description	73
9.42 p	precon	_data_bsr Struct Reference	73
Ç	9.42.1	Detailed Description	75
9.43	precon	_data_str Struct Reference	75
9	9.43.1	Detailed Description	76
9.44 p	precon	_diagbsr Struct Reference	77
9	9.44.1	Detailed Description	77
9.45 p	precon	_diagstr Struct Reference	77
9	9.45.1	Detailed Description	78
9.46	precon	_FASP_blkoil_data Struct Reference	78
9	9.46.1	Detailed Description	79
ę	9.46.2	Field Documentation	80
		9.46.2.1 A	80
		9.46.2.2 diaginv	80
		9.46.2.3 diaginv_noscale	80
		9.46.2.4 diaginv_S	80
		9.46.2.5 LU_P	80
		9.46.2.6 LU_S	81
		9.46.2.7 maxit	81
		9.46.2.8 mgl_data	81
		9.46.2.9 neigh	81
		9.46.2.10 order	81

CONTENTS ix

	9.46.2.11 perf_idx	81
	9.46.2.12 perf_neigh	82
	9.46.2.13 pivot	82
	9.46.2.14 pivot_S	82
	9.46.2.15 PP	82
	9.46.2.16 r	82
	9.46.2.17 restart	82
	9.46.2.18 RR	83
	9.46.2.19 scaled	83
	9.46.2.20 SS	83
	9.46.2.21 tol	83
	9.46.2.22 w	83
	9.46.2.23 WW	84
9.47	precond_sweeping_data Struct Reference	84
	9.47.1 Detailed Description	84
	9.47.2 Field Documentation	85
	9.47.2.1 A	85
	9.47.2.2 Ai	85
	9.47.2.3 local_A	85
	9.47.2.4 local_index	85
	9.47.2.5 local_LU	85
	9.47.2.6 NumLayers	86
	9.47.2.7 r	86
	9.47.2.8 w	86
9.48	Schwarz_data Struct Reference	86
	9.48.1 Detailed Description	87
9.49	Schwarz_param Struct Reference	88
	9.49.1 Detailed Description	88

CONTENTS

10 File Documentation	89
10.1 amg.c File Reference	89
10.1.1 Detailed Description	89
10.1.2 Function Documentation	89
10.1.2.1 fasp_solver_amg()	89
10.2 amg_setup_cr.c File Reference	90
10.2.1 Detailed Description	91
10.2.2 Function Documentation	91
10.2.2.1 fasp_amg_setup_cr()	91
10.3 amg_setup_rs.c File Reference	92
10.3.1 Detailed Description	92
10.3.2 Function Documentation	92
10.3.2.1 fasp_amg_setup_rs()	92
10.4 amg_setup_sa.c File Reference	93
10.4.1 Detailed Description	93
10.4.2 Function Documentation	93
10.4.2.1 fasp_amg_setup_sa()	93
10.4.2.2 fasp_amg_setup_sa_bsr()	94
10.5 amg_setup_ua.c File Reference	95
10.5.1 Detailed Description	95
10.5.2 Function Documentation	95
10.5.2.1 fasp_amg_setup_ua()	95
10.5.2.2 fasp_amg_setup_ua_bsr()	96
10.6 amg_solve.c File Reference	96
10.6.1 Detailed Description	97
10.6.2 Function Documentation	97
10.6.2.1 fasp_amg_solve()	97
10.6.2.2 fasp_amg_solve_amli()	98

CONTENTS xi

	10.6.2.3 fasp_amg_solve_nl_amli()
	10.6.2.4 fasp_famg_solve()
10.7 amlired	cur.c File Reference
10.7.1	Detailed Description
10.7.2	Function Documentation
	10.7.2.1 fasp_amg_amli_coef()
	10.7.2.2 fasp_solver_amli()
	10.7.2.3 fasp_solver_nl_amli()
	10.7.2.4 fasp_solver_nl_amli_bsr()
10.8 array.c	File Reference
10.8.1	Detailed Description
10.8.2	Function Documentation
	10.8.2.1 fasp_array_cp()
	10.8.2.2 fasp_array_cp_nc3()
	10.8.2.3 fasp_array_cp_nc5()
	10.8.2.4 fasp_array_cp_nc7()
	10.8.2.5 fasp_array_invpermut_nb()
	10.8.2.6 fasp_array_null()
	10.8.2.7 fasp_array_permut_nb()
	10.8.2.8 fasp_array_set()
	10.8.2.9 fasp_iarray_cp()
	10.8.2.10 fasp_iarray_set()
10.9 blas_a	rray.c File Reference
10.9.1	Detailed Description
10.9.2	Function Documentation
	10.9.2.1 fasp_blas_array_ax()
	10.9.2.2 fasp_blas_array_axpby()
	10.9.2.3 fasp_blas_array_axpy()

xii CONTENTS

10.9.2.4 fasp_blas_array_axpyz()	
10.9.2.5 fasp_blas_array_dotprod()	
10.9.2.6 fasp_blas_array_norm1()	
10.9.2.7 fasp_blas_array_norm2()	
10.9.2.8 fasp_blas_array_norminf()	
10.10blas_blc.c File Reference	
10.10.1 Detailed Description	
10.10.2 Function Documentation	
10.10.2.1 fasp_blas_bdbsr_aAxpy()	
10.10.2.2 fasp_blas_bdbsr_mxv()	
10.10.2.3 fasp_blas_dblc_aAxpy()	
10.10.2.4 fasp_blas_dblc_mxv()	
10.11blas_bsr.c File Reference	
10.11.1 Detailed Description	
10.11.2 Function Documentation	
10.11.2.1 fasp_blas_dbsr_aAxpby()	
10.11.2.2 fasp_blas_dbsr_aAxpy()	
10.11.2.3 fasp_blas_dbsr_aAxpy_agg()	120
10.11.2.4 fasp_blas_dbsr_axm()	121
10.11.2.5 fasp_blas_dbsr_mxm()	121
10.11.2.6 fasp_blas_dbsr_mxv()	122
10.11.2.7 fasp_blas_dbsr_mxv_agg()	123
10.11.2.8 fasp_blas_dbsr_rap()	123
10.11.2.9 fasp_blas_dbsr_rap1()	124
10.11.2.10fasp_blas_dbsr_rap_agg()	125
10.12blas_csr.c File Reference	125
10.12.1 Detailed Description	126
10.12.2 Function Documentation	127

CONTENTS xiii

10.12.2.1 fasp_blas_dcsr_aAxpy()
10.12.2.2 fasp_blas_dcsr_aAxpy_agg()
10.12.2.3 fasp_blas_dcsr_add()
10.12.2.4 fasp_blas_dcsr_axm()
10.12.2.5 fasp_blas_dcsr_bandwith()
10.12.2.6 fasp_blas_dcsr_mxm()
10.12.2.7 fasp_blas_dcsr_mxv()
10.12.2.8 fasp_blas_dcsr_mxv_agg()
10.12.2.9 fasp_blas_dcsr_ptap()
10.12.2.10fasp_blas_dcsr_rap()
10.12.2.11fasp_blas_dcsr_rap4()
10.12.2.12fasp_blas_dcsr_rap_agg()
10.12.2.13fasp_blas_dcsr_rap_agg1()
10.12.2.14fasp_blas_dcsr_vmv()
10.13blas_csrl.c File Reference
10.13.1 Detailed Description
10.13.2 Function Documentation
10.13.2.1 fasp_blas_dcsrl_mxv()
10.14blas_smat.c File Reference
10.14.1 Detailed Description
10.14.2 Function Documentation
10.14.2.1 fasp_blas_array_axpy_nc2()
10.14.2.2 fasp_blas_array_axpy_nc3()
10.14.2.3 fasp_blas_array_axpy_nc5()
10.14.2.4 fasp_blas_array_axpy_nc7()
10.14.2.5 fasp_blas_array_axpyz_nc2()
10.14.2.6 fasp_blas_array_axpyz_nc3()
10.14.2.7 fasp_blas_array_axpyz_nc5()

xiv CONTENTS

10.14.2.8 fasp_blas_array_axpyz_nc7()
10.14.2.9 fasp_blas_smat_aAxpby()
10.14.2.10fasp_blas_smat_add()
10.14.2.11fasp_blas_smat_axm()
10.14.2.12fasp_blas_smat_mul()
10.14.2.13fasp_blas_smat_mul_nc2()
10.14.2.14fasp_blas_smat_mul_nc3()
10.14.2.15fasp_blas_smat_mul_nc5()
10.14.2.16fasp_blas_smat_mul_nc7()
10.14.2.17fasp_blas_smat_mxv()
10.14.2.18fasp_blas_smat_mxv_nc2()
10.14.2.19fasp_blas_smat_mxv_nc3()
10.14.2.20fasp_blas_smat_mxv_nc5()
10.14.2.21fasp_blas_smat_mxv_nc7()
10.14.2.22fasp_blas_smat_ymAx()
10.14.2.23fasp_blas_smat_ymAx_nc2()
10.14.2.24fasp_blas_smat_ymAx_nc3()
10.14.2.25fasp_blas_smat_ymAx_nc5()
10.14.2.26fasp_blas_smat_ymAx_nc7()
10.14.2.27/asp_blas_smat_ymAx_ns()
10.14.2.28fasp_blas_smat_ymAx_ns2()
10.14.2.29fasp_blas_smat_ymAx_ns3()
10.14.2.30fasp_blas_smat_ymAx_ns5()
10.14.2.31fasp_blas_smat_ymAx_ns7()
10.14.2.32fasp_blas_smat_ypAx()
10.14.2.33fasp_blas_smat_ypAx_nc2()
10.14.2.34fasp_blas_smat_ypAx_nc3()
10.14.2.35fasp_blas_smat_ypAx_nc5()

CONTENTS xv

10.14.2.36fasp_blas_smat_ypAx_nc7()
10.15blas_str.c File Reference
10.15.1 Detailed Description
10.15.2 Function Documentation
10.15.2.1 fasp_blas_dstr_aAxpy()
10.15.2.2 fasp_blas_dstr_mxv()
10.15.2.3 fasp_dstr_diagscale()
10.16blas_vec.c File Reference
10.16.1 Detailed Description
10.16.2 Function Documentation
10.16.2.1 fasp_blas_dvec_axpy()
10.16.2.2 fasp_blas_dvec_axpyz()
10.16.2.3 fasp_blas_dvec_dotprod()
10.16.2.4 fasp_blas_dvec_norm1()
10.16.2.5 fasp_blas_dvec_norm2()
10.16.2.6 fasp_blas_dvec_norminf()
10.16.2.7 fasp_blas_dvec_relerr()
10.17checkmat.c File Reference
10.17.1 Detailed Description
10.17.2 Function Documentation
10.17.2.1 fasp_check_dCSRmat()
10.17.2.2 fasp_check_diagdom()
10.17.2.3 fasp_check_diagpos()
10.17.2.4 fasp_check_diagzero()
10.17.2.5 fasp_check_iCSRmat()
10.17.2.6 fasp_check_symm()
10.18coarsening_cr.c File Reference
10.18.1 Detailed Description

xvi CONTENTS

10.18.2 Function Documentation	174
10.18.2.1 fasp_amg_coarsening_cr()	174
10.19coarsening_rs.c File Reference	175
10.19.1 Detailed Description	175
10.19.2 Function Documentation	175
10.19.2.1 fasp_amg_coarsening_rs()	175
10.20convert.c File Reference	176
10.20.1 Detailed Description	177
10.20.2 Function Documentation	177
10.20.2.1 endian_convert_int()	177
10.20.2.2 endian_convert_real()	177
10.20.2.3 fasp_aux_bbyteToldouble()	178
10.20.2.4 fasp_aux_change_endian4()	179
10.20.2.5 fasp_aux_change_endian8()	179
10.21doxygen.h File Reference	180
10.21.1 Detailed Description	180
10.22eigen.c File Reference	180
10.22.1 Detailed Description	180
10.22.2 Function Documentation	180
10.22.2.1 fasp_dcsr_eig()	180
10.23famg.c File Reference	181
10.23.1 Detailed Description	181
10.23.2 Function Documentation	181
10.23.2.1 fasp_solver_famg()	181
10.24fasp.h File Reference	182
10.24.1 Detailed Description	185
10.24.2 Macro Definition Documentation	185
10.24.2.1FASP_HEADER	185

CONTENTS xvii

	10.24.2.2 ABS
	10.24.2.3 DIAGONAL_PREF
	10.24.2.4 DLMALLOC
	10.24.2.5 FASP_GSRB
	10.24.2.6 FASP_USE_ILU
	10.24.2.7 FASP_VERSION
	10.24.2.8 GE
	10.24.2.9 GT
	10.24.2.10LU_C_VERSION
	10.24.2.11INT
	10.24.2.1 2 SNAN
	10.24.2.13LE
	10.24.2.14LONG
	10.24.2.15LONGLONG
	10.24.2.16LS
	10.24.2.17MAX
	10.24.2.18MIN
	10.24.2.19NEDMALLOC
	10.24.2.20PUT_INT
	10.24.2.21PUT_REAL
	10.24.2.22REAL
	10.24.2.23RS_C1
	10.24.2.24SHORT
10.24.3	Typedef Documentation
	10.24.3.1 dCOOmat
	10.24.3.2 dCSRLmat
	10.24.3.3 dCSRmat
	10.24.3.4 ddenmat

xviii CONTENTS

10.24.3.5 dSTRmat
10.24.3.6 dvector
10.24.3.7 grid2d
10.24.3.8 iCOOmat
10.24.3.9 iCSRmat
10.24.3.10denmat
10.24.3.11ivector
10.24.3.12LinkList
10.24.3.13ListElement
10.24.3.14pcgrid2d
10.24.3.15pgrid2d
10.24.4 Variable Documentation
10.24.4.1 count
10.24.4.2 IMAP
10.24.4.3 MAXIMAP
10.24.4.4 nx_rb
10.24.4.5 ny_rb
10.24.4.6 nz_rb
10.24.4.7 total_alloc_count
10.24.4.8 total_alloc_mem
10.25fasp_block.h File Reference
10.25.1 Detailed Description
10.25.2 Macro Definition Documentation
10.25.2.1FASPBLOCK_HEADER
10.25.2.2 SMOOTHER_BLKOIL
10.25.2.3 SMOOTHER_SPETEN
10.25.3 Typedef Documentation
10.25.3.1 block_BSR

CONTENTS xix

10.25.3.2 block_dvector
10.25.3.3 block_iCSRmat
10.25.3.4 block_ivector
10.25.3.5 block_Reservoir
10.25.3.6 dBLCmat
10.25.3.7 dBSRmat
10.25.3.8 precond_block_reservoir_data
10.26fasp_const.h File Reference
10.26.1 Detailed Description
10.26.2 Macro Definition Documentation
10.26.2.1 AMLI_CYCLE
10.26.2.2 ASCEND
10.26.2.3 BIGREAL
10.26.2.4 CF_ORDER
10.26.2.5 CGPT
10.26.2.6 CLASSIC_AMG
10.26.2.7 COARSE_AC
10.26.2.8 COARSE_CR
10.26.2.9 COARSE_MIS
10.26.2.10COARSE_RS
10.26.2.11COARSE_RSP
10.26.2.12CPFIRST
10.26.2.13DESCEND
10.26.2.14ERROR_ALLOC_MEM
10.26.2.15ERROR_AMG_COARSE_TYPE
10.26.2.16 ERROR_AMG_COARSEING
10.26.2.17ERROR_AMG_INTERP_TYPE
10.26.2.18ERROR_AMG_SMOOTH_TYPE

XX CONTENTS

10.26.2.19ERROR_DATA_STRUCTURE
10.26.2.20ERROR_DATA_ZERODIAG
10.26.2.21ERROR_DUMMY_VAR
10.26.2.22ERROR_INPUT_PAR
10.26.2.23ERROR_LIC_TYPE
10.26.2.24ERROR_MAT_SIZE
10.26.2.25ERROR_MISC
10.26.2.26ERROR_NUM_BLOCKS
10.26.2.27ERROR_OPEN_FILE
10.26.2.28ERROR_QUAD_DIM
10.26.2.29ERROR_QUAD_TYPE
10.26.2.30ERROR_REGRESS
10.26.2.31ERROR_SOLVER_EXIT
10.26.2.32ERROR_SOLVER_ILUSETUP
10.26.2.33ERROR_SOLVER_MAXIT
10.26.2.34ERROR_SOLVER_MISC
10.26.2.35ERROR_SOLVER_PRECTYPE
10.26.2.36ERROR_SOLVER_SOLSTAG
10.26.2.37ERROR_SOLVER_STAG
10.26.2.38ERROR_SOLVER_TOLSMALL
10.26.2.39ERROR_SOLVER_TYPE
10.26.2.40ERROR_UNKNOWN
10.26.2.41ERROR_WRONG_FILE
10.26.2.42FALSE
10.26.2.43FASP_SUCCESS
10.26.2.44FGPT
10.26.2.45FPFIRST
10.26.2.46G0PT

CONTENTS xxi

10.26.2.47LU_MC_OMP
10.26.2.48LUk
10.26.2.49LUt
10.26.2.50LUtp
10.26.2.51INTERP_DIR
10.26.2.52NTERP_ENG
10.26.2.53NTERP_STD
10.26.2.54SPT
10.26.2.55MAT_bBSR210
10.26.2.56MAT_BLC
10.26.2.57MAT_BSR
10.26.2.58MAT_CSR
10.26.2.59MAT_CSRL
10.26.2.60MAT_FREE
10.26.2.61MAT_STR
10.26.2.62MAT_SymCSR
10.26.2.63MAX_AMG_LVL
10.26.2.64MAX_CRATE
10.26.2.65MAX_REFINE_LVL
10.26.2.66MAX_RESTART
10.26.2.67MAX_STAG
10.26.2.68MIN_CDOF
10.26.2.69MIN_CRATE
10.26.2.70NL_AMLI_CYCLE
10.26.2.71NO_ORDER
10.26.2.720FF
10.26.2.73ON
10.26.2.74OPENMP_HOLDS

xxii CONTENTS

10.26.2.75PAIRWISE
10.26.2.76PREC_AMG
10.26.2.77PREC_DIAG
10.26.2.78PREC_FMG
10.26.2.79PREC_ILU
10.26.2.80PREC_NULL
10.26.2.81PREC_SCHWARZ
10.26.2.82PRINT_ALL
10.26.2.83PRINT_MIN
10.26.2.84PRINT_MORE
10.26.2.85PRINT_MOST
10.26.2.86PRINT_NONE
10.26.2.87PRINT_SOME
10.26.2.88SA_AMG
10.26.2.89SCHWARZ_BACKWARD
10.26.2.90SCHWARZ_FORWARD
10.26.2.91SCHWARZ_SYMMETRIC
10.26.2.92\$MALLREAL
10.26.2.93SMALLREAL2
10.26.2.94SMOOTHER_CG
10.26.2.95SMOOTHER_GS
10.26.2.96SMOOTHER_GSOR
10.26.2.97SMOOTHER_JACOBI
10.26.2.98SMOOTHER_L1DIAG
10.26.2.99SMOOTHER_POLY
10.26.2.108MOOTHER_SGS
10.26.2.103MOOTHER_SGSOR
10.26.2.10 2 MOOTHER_SOR

CONTENTS xxiii

10.26.2.10 S MOOTHER_SSOR
10.26.2.109OLVER_AMG
10.26.2.10 5 OLVER_BiCGstab
10.26.2.10% OLVER_CG
10.26.2.108OLVER_DEFAULT
10.26.2.108OLVER_FMG
10.26.2.109OLVER_GCG
10.26.2.11 \$ OLVER_GCR
10.26.2.11 \$ OLVER_GMRES
10.26.2.11 2 OLVER_MinRes
10.26.2.11 S OLVER_MUMPS
10.26.2.119OLVER_PARDISO
10.26.2.11 \$ OLVER_SBiCGstab
10.26.2.11 % OLVER_SCG
10.26.2.11\$OLVER_SGCG
10.26.2.11 8 OLVER_SGMRES
10.26.2.11 9 OLVER_SMinRes
10.26.2.129OLVER_SUPERLU
10.26.2.123OLVER_SVFGMRES
10.26.2.122OLVER_SVGMRES
10.26.2.123OLVER_UMFPACK
10.26.2.129OLVER_VBiCGstab
10.26.2.125OLVER_VFGMRES
10.26.2.126OLVER_VGMRES
10.26.2.123TAG_RATIO
10.26.2.128TOP_MOD_REL_RES
10.26.2.129TOP_REL_PRECRES
10.26.2.136TOP_REL_RES

xxiv CONTENTS

10.26.2.13TRUE	24
10.26.2.13 2 1A_AMG	25
10.26.2.133NPT	25
10.26.2.134SERDEFINED	25
10.26.2.136 CYCLE	25
10.26.2.136MB	25
10.26.2.13W_CYCLE	26
10.27fmgcycle.c File Reference	26
10.27.1 Detailed Description	26
10.27.2 Function Documentation	26
10.27.2.1 fasp_solver_fmgcycle()	26
10.28formats.c File Reference	27
10.28.1 Detailed Description	28
10.28.2 Function Documentation	28
10.28.2.1 fasp_format_dblc_dcsr()	28
10.28.2.2 fasp_format_dbsr_dcoo()	28
10.28.2.3 fasp_format_dbsr_dcsr()	29
10.28.2.4 fasp_format_dcoo_dcsr()	:29
10.28.2.5 fasp_format_dcsr_dbsr()	:30
10.28.2.6 fasp_format_dcsr_dcoo()	:31
10.28.2.7 fasp_format_dcsrl_dcsr()	:31
10.28.2.8 fasp_format_dstr_dbsr()	:32
10.28.2.9 fasp_format_dstr_dcsr()	:32
10.29givens.c File Reference	:33
10.29.1 Detailed Description	:33
10.29.2 Function Documentation	:33
10.29.2.1 fasp_aux_givens()	:33
10.30gmg poisson.c File Reference	34

CONTENTS XXV

10.30.1 Detailed Description	. 235
10.30.2 Function Documentation	. 235
10.30.2.1 fasp_poisson_fgmg_1D()	. 235
10.30.2.2 fasp_poisson_fgmg_2D()	. 236
10.30.2.3 fasp_poisson_fgmg_3D()	. 236
10.30.2.4 fasp_poisson_gmg_1D()	. 238
10.30.2.5 fasp_poisson_gmg_2D()	. 239
10.30.2.6 fasp_poisson_gmg_3D()	. 240
10.30.2.7 fasp_poisson_pcg_gmg_1D()	. 240
10.30.2.8 fasp_poisson_pcg_gmg_2D()	. 241
10.30.2.9 fasp_poisson_pcg_gmg_3D()	. 242
10.31 graphics.c File Reference	. 243
10.31.1 Detailed Description	. 243
10.31.2 Function Documentation	. 243
10.31.2.1 fasp_dbsr_plot()	. 243
10.31.2.2 fasp_dbsr_subplot()	. 244
10.31.2.3 fasp_dcsr_plot()	. 245
10.31.2.4 fasp_dcsr_subplot()	. 246
10.31.2.5 fasp_grid2d_plot()	. 246
10.32ilu.c File Reference	. 247
10.32.1 Detailed Description	. 247
10.32.2 Function Documentation	. 248
10.32.2.1 fasp_iluk()	. 248
10.32.2.2 fasp_ilut()	. 249
10.32.2.3 fasp_ilutp()	. 250
10.32.2.4 fasp_qsplit()	. 251
10.32.2.5 fasp_srtr()	. 251
10.32.2.6 fasp_symbfactor()	. 252

xxvi CONTENTS

10.33ilu_setup_bsr.c File Reference	55
10.33.1 Detailed Description	56
10.33.2 Function Documentation	56
10.33.2.1 fasp_ilu_dbsr_setup()	56
10.33.2.2 fasp_ilu_dbsr_setup_levsch_omp()	56
10.33.2.3 fasp_ilu_dbsr_setup_mc_omp()	57
10.33.2.4 fasp_ilu_dbsr_setup_omp()	58
10.34ilu_setup_csr.c File Reference	59
10.34.1 Detailed Description	59
10.34.2 Function Documentation	59
10.34.2.1 fasp_ilu_dcsr_setup()	59
10.35ilu_setup_str.c File Reference	30
10.35.1 Detailed Description	30
10.35.2 Function Documentation	30
10.35.2.1 fasp_ilu_dstr_setup0()	30
10.35.2.2 fasp_ilu_dstr_setup1()	31
10.36init.c File Reference	32
10.36.1 Detailed Description	32
10.36.2 Function Documentation	32
10.36.2.1 fasp_amg_data_bsr_create()	32
10.36.2.2 fasp_amg_data_bsr_free()	33
10.36.2.3 fasp_amg_data_create()	33
10.36.2.4 fasp_amg_data_free()	34
10.36.2.5 fasp_ilu_data_alloc()	35
10.36.2.6 fasp_ilu_data_free()	35
10.36.2.7 fasp_ilu_data_null()	36
10.36.2.8 fasp_precond_data_null()	36
10.36.2.9 fasp_precond_null()	36

CONTENTS xxvii

10.36.2.10fasp_Schwarz_data_free()
10.37input.c File Reference
10.37.1 Detailed Description
10.37.2 Function Documentation
10.37.2.1 fasp_param_check()
10.37.2.2 fasp_param_input()
10.38interface_mumps.c File Reference
10.38.1 Detailed Description
10.38.2 Macro Definition Documentation
10.38.2.1 ICNTL
10.38.3 Function Documentation
10.38.3.1 fasp_solver_mumps()
10.38.3.2 fasp_solver_mumps_steps()
10.39interface_pardiso.c File Reference
10.39.1 Detailed Description
10.39.2 Function Documentation
10.39.2.1 fasp_solver_pardiso()
10.40interface_samg.c File Reference
10.40.1 Detailed Description
10.40.2 Function Documentation
10.40.2.1 dCSRmat2SAMGInput()
10.40.2.2 dvector2SAMGInput()
10.41 interface_superlu.c File Reference
10.41.1 Detailed Description
10.41.2 Function Documentation
10.41.2.1 fasp_solver_superlu()
10.42interface_umfpack.c File Reference
10.42.1 Detailed Description

xxviii CONTENTS

10.42.2 Function Documentation
10.42.2.1 fasp_solver_umfpack()
10.43interpolation.c File Reference
10.43.1 Detailed Description
10.43.2 Function Documentation
10.43.2.1 fasp_amg_interp()
10.43.2.2 fasp_amg_interp1()
10.43.2.3 fasp_amg_interp_trunc()
10.44interpolation_em.c File Reference
10.44.1 Detailed Description
10.44.2 Function Documentation
10.44.2.1 fasp_amg_interp_em()
10.45io.c File Reference
10.45.1 Detailed Description
10.45.2 Function Documentation
10.45.2.1 fasp_dbsr_print()
10.45.2.2 fasp_dbsr_read()
10.45.2.3 fasp_dbsr_write()
10.45.2.4 fasp_dbsr_write_coo()
10.45.2.5 fasp_dcoo1_read()
10.45.2.6 fasp_dcoo_print()
10.45.2.7 fasp_dcoo_read()
10.45.2.8 fasp_dcoo_shift_read()
10.45.2.9 fasp_dcoo_write()
10.45.2.10fasp_dcsr_print()
10.45.2.11fasp_dcsr_read()
10.45.2.12fasp_dcsr_write_coo()
10.45.2.13fasp_dcsrvec1_read()

CONTENTS xxix

10.45.2.14fasp_dcsrvec1_write()
10.45.2.15fasp_dcsrvec2_read()
10.45.2.16fasp_dcsrvec2_write()
10.45.2.17fasp_dmtx_read()
10.45.2.18fasp_dmtxsym_read()
10.45.2.19fasp_dstr_print()
10.45.2.20fasp_dstr_read()
10.45.2.21fasp_dstr_write()
10.45.2.22fasp_dvec_print()
10.45.2.23fasp_dvec_read()
10.45.2.24fasp_dvec_write()
10.45.2.25fasp_dvecind_read()
10.45.2.26fasp_dvecind_write()
10.45.2.27fasp_hb_read()
10.45.2.28fasp_ivec_print()
10.45.2.29fasp_ivec_read()
10.45.2.30fasp_ivec_write()
10.45.2.31fasp_ivecind_read()
10.45.2.32fasp_matrix_read()
10.45.2.33fasp_matrix_read_bin()
10.45.2.34fasp_matrix_write()
10.45.2.35fasp_vector_read()
10.45.2.36fasp_vector_write()
10.45.3 Variable Documentation
10.45.3.1 dlength
10.45.3.2 ilength
10.46itsolver_blc.c File Reference
10.46.1 Detailed Description

CONTENTS

CONTENTS xxxi

10.49.1 Detailed Description
10.49.2 Function Documentation
10.49.2.1 fasp_solver_itsolver()
10.49.2.2 fasp_solver_itsolver_init()
10.49.2.3 fasp_solver_krylov()
10.50itsolver_str.c File Reference
10.50.1 Detailed Description
10.50.2 Function Documentation
10.50.2.1 fasp_solver_dstr_itsolver()
10.50.2.2 fasp_solver_dstr_krylov()
10.50.2.3 fasp_solver_dstr_krylov_blockgs()
10.50.2.4 fasp_solver_dstr_krylov_diag()
10.50.2.5 fasp_solver_dstr_krylov_ilu()
10.51lu.c File Reference
10.51.1 Detailed Description
10.51.2 Function Documentation
10.51.2.1 fasp_smat_lu_decomp()
10.51.2.2 fasp_smat_lu_solve()
10.52memory.c File Reference
10.52.1 Detailed Description
10.52.2 Function Documentation
10.52.2.1 fasp_mem_calloc()
10.52.2.2 fasp_mem_check()
10.52.2.3 fasp_mem_dcsr_check()
10.52.2.4 fasp_mem_free()
10.52.2.5 fasp_mem_iludata_check()
10.52.2.6 fasp_mem_realloc()
10.52.2.7 fasp_mem_usage()

xxxii CONTENTS

10.52.3 Variable Documentation	341
10.52.3.1 total_alloc_count	341
10.52.3.2 total_alloc_mem	341
10.53message.c File Reference	341
10.53.1 Detailed Description	342
10.53.2 Function Documentation	342
10.53.2.1 fasp_chkerr()	342
10.53.2.2 print_amgcomplexity()	342
10.53.2.3 print_amgcomplexity_bsr()	343
10.53.2.4 print_cputime()	343
10.53.2.5 print_itinfo()	344
10.53.2.6 print_message()	344
10.54mgcycle.c File Reference	345
10.54.1 Detailed Description	345
10.54.2 Function Documentation	345
10.54.2.1 fasp_solver_mgcycle()	345
10.54.2.2 fasp_solver_mgcycle_bsr()	346
10.55mgrecur.c File Reference	346
10.55.1 Detailed Description	347
10.55.2 Function Documentation	347
10.55.2.1 fasp_solver_mgrecur()	347
10.56ordering.c File Reference	348
10.56.1 Detailed Description	348
10.56.2 Function Documentation	348
10.56.2.1 fasp_aux_dQuickSort()	348
10.56.2.2 fasp_aux_dQuickSortIndex()	349
10.56.2.3 fasp_aux_iQuickSort()	
10.56.2.4 fasp_aux_iQuickSortIndex()	350

CONTENTS xxxiii

10.56.2.5 fasp_aux_merge()
10.56.2.6 fasp_aux_msort()
10.56.2.7 fasp_aux_unique()
10.56.2.8 fasp_BinarySearch()
10.56.2.9 fasp_dcsr_CMK_order()
10.56.2.10fasp_dcsr_RCMK_order()
10.56.2.11fasp_multicolors_independent_set()
10.56.2.12/asp_topological_sorting_ilu()
10.57 parameters.c File Reference
10.57.1 Detailed Description
10.57.2 Function Documentation
10.57.2.1 fasp_param_amg_init()
10.57.2.2 fasp_param_amg_print()
10.57.2.3 fasp_param_amg_set()
10.57.2.4 fasp_param_amg_to_prec()
10.57.2.5 fasp_param_amg_to_prec_bsr()
10.57.2.6 fasp_param_ilu_init()
10.57.2.7 fasp_param_ilu_print()
10.57.2.8 fasp_param_ilu_set()
10.57.2.9 fasp_param_init()
10.57.2.10fasp_param_input_init()
10.57.2.11fasp_param_prec_to_amg()
10.57.2.12/asp_param_prec_to_amg_bsr()
10.57.2.13fasp_param_Schwarz_init()
10.57.2.14fasp_param_Schwarz_print()
10.57.2.15fasp_param_Schwarz_set()
10.57.2.16fasp_param_set()
10.57.2.17fasp_param_solver_init()

XXXIV CONTENTS

10.57.2.18fasp_param_solver_print()
10.57.2.19fasp_param_solver_set()
10.58pbcgs.c File Reference
10.58.1 Detailed Description
10.58.2 Function Documentation
10.58.2.1 fasp_solver_dblc_pbcgs()
10.58.2.2 fasp_solver_dblc_pvbcgs()
10.58.2.3 fasp_solver_dbsr_pbcgs()
10.58.2.4 fasp_solver_dbsr_pvbcgs()
10.58.2.5 fasp_solver_dcsr_pbcgs()
10.58.2.6 fasp_solver_dcsr_pvbcgs()
10.58.2.7 fasp_solver_dstr_pbcgs()
10.58.2.8 fasp_solver_dstr_pvbcgs()
10.59pbcgs_mf.c File Reference
10.59.1 Detailed Description
10.59.2 Function Documentation
10.59.2.1 fasp_solver_pbcgs()
10.59.2.2 fasp_solver_pvbcgs()
10.60 pcg.c File Reference
10.60.1 Detailed Description
10.60.2 Function Documentation
10.60.2.1 fasp_solver_dblc_pcg()
10.60.2.2 fasp_solver_dbsr_pcg()
10.60.2.3 fasp_solver_dcsr_pcg()
10.60.2.4 fasp_solver_dstr_pcg()
10.61pcg_mf.c File Reference
10.61.1 Detailed Description
10.61.2 Function Documentation

CONTENTS XXXV

10.61.2.1 fasp_solver_pcg()
10.62pgcg.c File Reference
10.62.1 Detailed Description
10.62.2 Function Documentation
10.62.2.1 fasp_solver_dcsr_pgcg()
10.63pgcg_mf.c File Reference
10.63.1 Detailed Description
10.63.2 Function Documentation
10.63.2.1 fasp_solver_pgcg()
10.64pgcr.c File Reference
10.64.1 Detailed Description
10.64.2 Function Documentation
10.64.2.1 fasp_solver_dcsr_pgcr()
10.64.2.2 fasp_solver_dcsr_pgcr1()
10.65pgmres.c File Reference
10.65.1 Detailed Description
10.65.2 Function Documentation
10.65.2.1 fasp_solver_dblc_pgmres()
10.65.2.2 fasp_solver_dbsr_pgmres()
10.65.2.3 fasp_solver_dcsr_pgmres()
10.65.2.4 fasp_solver_dstr_pgmres()
10.66pgmres_mf.c File Reference
10.66.1 Detailed Description
10.66.2 Function Documentation
10.66.2.1 fasp_solver_pgmres()
10.67pminres.c File Reference
10.67.1 Detailed Description

xxxvi CONTENTS

10.67.2.1 fasp_solver_dblc_pminres()
10.67.2.2 fasp_solver_dcsr_pminres()
10.67.2.3 fasp_solver_dstr_pminres()
10.68pminres_mf.c File Reference
10.68.1 Detailed Description
10.68.2 Function Documentation
10.68.2.1 fasp_solver_pminres()
10.69precond_blc.c File Reference
10.69.1 Detailed Description
10.69.2 Function Documentation
10.69.2.1 fasp_precond_block_diag_3()
10.69.2.2 fasp_precond_block_diag_3_amg()
10.69.2.3 fasp_precond_block_diag_4()
10.69.2.4 fasp_precond_block_lower_3()
10.69.2.5 fasp_precond_block_lower_3_amg()
10.69.2.6 fasp_precond_block_lower_4()
10.69.2.7 fasp_precond_block_SGS_3()
10.69.2.8 fasp_precond_block_SGS_3_amg()
10.69.2.9 fasp_precond_block_upper_3()
10.69.2.10fasp_precond_block_upper_3_amg()
10.69.2.11fasp_precond_sweeping()
10.70precond_bsr.c File Reference
10.70.1 Detailed Description
10.70.2 Function Documentation
10.70.2.1 fasp_precond_dbsr_amg()
10.70.2.2 fasp_precond_dbsr_amg_nk()
10.70.2.3 fasp_precond_dbsr_diag()
10.70.2.4 fasp_precond_dbsr_diag_nc2()

CONTENTS xxxvii

10.70.2.5 fasp_precond_dbsr_diag_nc3()	 . 421
10.70.2.6 fasp_precond_dbsr_diag_nc5()	 . 422
10.70.2.7 fasp_precond_dbsr_diag_nc7()	 . 422
10.70.2.8 fasp_precond_dbsr_ilu()	 . 423
10.70.2.9 fasp_precond_dbsr_ilu_levsch_omp()	 . 424
10.70.2.10fasp_precond_dbsr_ilu_mc_omp()	 . 424
10.70.2.11fasp_precond_dbsr_nl_amli()	 . 425
10.71 precond_csr.c File Reference	 . 426
10.71.1 Detailed Description	 . 426
10.71.2 Function Documentation	 . 426
10.71.2.1 fasp_precond_amg()	 . 426
10.71.2.2 fasp_precond_amg_nk()	 . 427
10.71.2.3 fasp_precond_amli()	 . 427
10.71.2.4 fasp_precond_diag()	 . 429
10.71.2.5 fasp_precond_famg()	 . 429
10.71.2.6 fasp_precond_free()	 . 431
10.71.2.7 fasp_precond_ilu()	 . 432
10.71.2.8 fasp_precond_ilu_backward()	 . 432
10.71.2.9 fasp_precond_ilu_forward()	 . 433
10.71.2.10fasp_precond_nl_amli()	 . 433
10.71.2.11fasp_precond_Schwarz()	 . 434
10.71.2.12fasp_precond_setup()	 . 434
10.72precond_str.c File Reference	 . 435
10.72.1 Detailed Description	 . 436
10.72.2 Function Documentation	 . 436
10.72.2.1 fasp_precond_dstr_blockgs()	 . 436
10.72.2.2 fasp_precond_dstr_diag()	 . 436
10.72.2.3 fasp_precond_dstr_ilu0()	 . 437

xxxviii CONTENTS

10.72.2.4 fasp_precond_dstr_ilu0_backward()
10.72.2.5 fasp_precond_dstr_ilu0_forward()
10.72.2.6 fasp_precond_dstr_ilu1()
10.72.2.7 fasp_precond_dstr_ilu1_backward()
10.72.2.8 fasp_precond_dstr_ilu1_forward()
10.73pvfgmres.c File Reference
10.73.1 Detailed Description
10.73.2 Function Documentation
10.73.2.1 fasp_solver_dblc_pvfgmres()
10.73.2.2 fasp_solver_dbsr_pvfgmres()
10.73.2.3 fasp_solver_dcsr_pvfgmres()
10.74pvfgmres_mf.c File Reference
10.74.1 Detailed Description
10.74.2 Function Documentation
10.74.2.1 fasp_solver_pvfgmres()
10.75pvgmres.c File Reference
10.75.1 Detailed Description
10.75.2 Function Documentation
10.75.2.1 fasp_solver_dblc_pvgmres()
10.75.2.2 fasp_solver_dbsr_pvgmres()
10.75.2.3 fasp_solver_dcsr_pvgmres()
10.75.2.4 fasp_solver_dstr_pvgmres()
10.76pvgmres_mf.c File Reference
10.76.1 Detailed Description
10.76.2 Function Documentation
10.76.2.1 fasp_solver_pvgmres()
10.77quadrature.c File Reference
10.77.1 Detailed Description

CONTENTS xxxix

10.77.2 Function Documentation
10.77.2.1 fasp_gauss2d()
10.77.2.2 fasp_quad2d()
10.78 rap.c File Reference
10.78.1 Detailed Description
10.78.2 Function Documentation
10.78.2.1 fasp_blas_dcsr_rap2()
10.79schwarz_setup.c File Reference
10.79.1 Detailed Description
10.79.2 Function Documentation
10.79.2.1 fasp_dcsr_Schwarz_backward_smoother()
10.79.2.2 fasp_dcsr_Schwarz_forward_smoother()
10.79.2.3 fasp_Schwarz_get_block_matrix()
10.79.2.4 fasp_Schwarz_setup()
10.80smat.c File Reference
10.80.1 Detailed Description
10.80.2 Macro Definition Documentation
10.80.2.1 SWAP
10.80.3 Function Documentation
10.80.3.1 fasp_blas_smat_inv()
10.80.3.2 fasp_blas_smat_inv_nc()
10.80.3.3 fasp_blas_smat_inv_nc2()
10.80.3.4 fasp_blas_smat_inv_nc3()
10.80.3.5 fasp_blas_smat_inv_nc4()
10.80.3.6 fasp_blas_smat_inv_nc5()
10.80.3.7 fasp_blas_smat_inv_nc7()
10.80.3.8 fasp_blas_smat_invp_nc()
10.80.3.9 fasp_blas_smat_Linfinity()

xI CONTENTS

CONTENTS xli

10.82smoother_csr.c File Reference
10.82.1 Detailed Description
10.82.2 Function Documentation
10.82.2.1 fasp_smoother_dcsr_gs()
10.82.2.2 fasp_smoother_dcsr_gs_cf()
10.82.2.3 fasp_smoother_dcsr_gs_rb3d()
10.82.2.4 fasp_smoother_dcsr_ilu()
10.82.2.5 fasp_smoother_dcsr_jacobi()
10.82.2.6 fasp_smoother_dcsr_kaczmarz()
10.82.2.7 fasp_smoother_dcsr_L1diag()
10.82.2.8 fasp_smoother_dcsr_sgs()
10.82.2.9 fasp_smoother_dcsr_sor()
10.82.2.10fasp_smoother_dcsr_sor_cf()
10.83smoother_csr_cr.c File Reference
10.83.1 Detailed Description
10.83.2 Function Documentation
10.83.2.1 fasp_smoother_dcsr_gscr()
10.84smoother_csr_poly.c File Reference
10.84.1 Detailed Description
10.84.2 Function Documentation
10.84.2.1 fasp_smoother_dcsr_poly()
10.84.2.2 fasp_smoother_dcsr_poly_old()
10.85smoother_str.c File Reference
10.85.1 Detailed Description
10.85.2 Function Documentation
10.85.2.1 fasp_generate_diaginv_block()
10.85.2.2 fasp_smoother_dstr_gs()
10.85.2.3 fasp_smoother_dstr_gs1()

xlii CONTENTS

10.85.2.4 fasp_smoother_dstr_gs_ascend()	.96
10.85.2.5 fasp_smoother_dstr_gs_cf()	97
10.85.2.6 fasp_smoother_dstr_gs_descend()	97
10.85.2.7 fasp_smoother_dstr_gs_order()	199
10.85.2.8 fasp_smoother_dstr_jacobi()	500
10.85.2.9 fasp_smoother_dstr_jacobi1()	500
10.85.2.10fasp_smoother_dstr_schwarz()	501
10.85.2.11fasp_smoother_dstr_sor()	501
10.85.2.12fasp_smoother_dstr_sor1()	502
10.85.2.13fasp_smoother_dstr_sor_ascend()	503
10.85.2.14fasp_smoother_dstr_sor_cf()	503
10.85.2.15fasp_smoother_dstr_sor_descend()	05
10.85.2.16fasp_smoother_dstr_sor_order()	06
10.86sparse_block.c File Reference	506
10.86.1 Detailed Description	507
10.86.2 Function Documentation	507
10.86.2.1 fasp_dblc_free()	507
10.86.2.2 fasp_dbsr_getblk()	507
10.86.2.3 fasp_dbsr_getblk_dcsr()	508
10.86.2.4 fasp_dbsr_Linfinity_dcsr()	509
10.86.2.5 fasp_dcsr_getblk()	509
10.87sparse_bsr.c File Reference	510
10.87.1 Detailed Description	511
10.87.2 Function Documentation	511
10.87.2.1 fasp_dbsr_alloc()	511
10.87.2.2 fasp_dbsr_cp()	512
10.87.2.3 fasp_dbsr_create()	513
10.87.2.4 fasp_dbsr_diaginv()	513

CONTENTS xliii

10.87.2.5 fasp_dbsr_diaginv2()
10.87.2.6 fasp_dbsr_diaginv3()
10.87.2.7 fasp_dbsr_diaginv4()
10.87.2.8 fasp_dbsr_diagLU()
10.87.2.9 fasp_dbsr_diagLU2()
10.87.2.10fasp_dbsr_diagpref()
10.87.2.11fasp_dbsr_free()
10.87.2.12fasp_dbsr_getdiag()
10.87.2.13fasp_dbsr_getdiaginv()
10.87.2.14fasp_dbsr_null()
10.87.2.15fasp_dbsr_perm()
10.87.2.16fasp_dbsr_trans()
10.88sparse_coo.c File Reference
10.88.1 Detailed Description
10.88.2 Function Documentation
10.88.2.1 fasp_dcoo_alloc()
10.88.2.2 fasp_dcoo_create()
10.88.2.3 fasp_dcoo_free()
10.88.2.4 fasp_dcoo_shift()
10.89sparse_csr.c File Reference
10.89.1 Detailed Description
10.89.2 Function Documentation
10.89.2.1 fasp_dcsr_alloc()
10.89.2.2 fasp_dcsr_compress()
10.89.2.3 fasp_dcsr_compress_inplace()
10.89.2.4 fasp_dcsr_cp()
10.89.2.5 fasp_dcsr_create()
10.89.2.6 fasp_dcsr_diagpref()

XIIV CONTENTS

10.89.2.7 fasp_dcsr_free()
10.89.2.8 fasp_dcsr_getcol()
10.89.2.9 fasp_dcsr_getdiag()
10.89.2.10fasp_dcsr_multicoloring()
10.89.2.11fasp_dcsr_null()
10.89.2.12/asp_dcsr_perm()
10.89.2.13fasp_dcsr_permz()
10.89.2.14fasp_dcsr_regdiag()
10.89.2.15fasp_dcsr_shift()
10.89.2.16fasp_dcsr_sort()
10.89.2.17fasp_dcsr_sortz()
10.89.2.18 asp_dcsr_symdiagscale()
10.89.2.19fasp_dcsr_sympat()
10.89.2.20fasp_dcsr_trans()
10.89.2.21fasp_dcsr_transz()
10.89.2.22fasp_icsr_cp()
10.89.2.23fasp_icsr_create()
10.89.2.24fasp_icsr_free()
10.89.2.25fasp_icsr_null()
10.89.2.26fasp_icsr_trans()
10.90sparse_csrl.c File Reference
10.90.1 Detailed Description
10.90.2 Function Documentation
10.90.2.1 fasp_dcsrl_create()
10.90.2.2 fasp_dcsrl_free()
10.91sparse_str.c File Reference
10.91.1 Detailed Description
10.91.2 Function Documentation

CONTENTS xlv

10.91.2.1 fasp_dstr_alloc()
10.91.2.2 fasp_dstr_cp()
10.91.2.3 fasp_dstr_create()
10.91.2.4 fasp_dstr_free()
10.91.2.5 fasp_dstr_null()
10.92sparse_util.c File Reference
10.92.1 Detailed Description
10.92.2 Function Documentation
10.92.2.1 fasp_sparse_aat_()550
10.92.2.2 fasp_sparse_abyb_()
10.92.2.3 fasp_sparse_abybms_()
10.92.2.4 fasp_sparse_aplbms_()
10.92.2.5 fasp_sparse_aplusb_()
10.92.2.6 fasp_sparse_iit_()
10.92.2.7 fasp_sparse_MIS()
10.92.2.8 fasp_sparse_rapcmp_()
10.92.2.9 fasp_sparse_rapms_()
10.92.2.10fasp_sparse_wta_()
10.92.2.11fasp_sparse_wtams_()
10.92.2.12fasp_sparse_ytx_()
10.92.2.13fasp_sparse_ytxbig_()
10.93spbcgs.c File Reference
10.93.1 Detailed Description
10.93.2 Function Documentation
10.93.2.1 fasp_solver_dblc_spbcgs()
10.93.2.2 fasp_solver_dbsr_spbcgs()
10.93.2.3 fasp_solver_dcsr_spbcgs()
10.93.2.4 fasp_solver_dstr_spbcgs()

xlvi CONTENTS

10.94spcg.c File Reference
10.94.1 Detailed Description
10.94.2 Function Documentation
10.94.2.1 fasp_solver_dblc_spcg()
10.94.2.2 fasp_solver_dcsr_spcg()
10.94.2.3 fasp_solver_dstr_spcg()
10.95spgmres.c File Reference
10.95.1 Detailed Description
10.95.2 Function Documentation
10.95.2.1 fasp_solver_dblc_spgmres()
10.95.2.2 fasp_solver_dbsr_spgmres()
10.95.2.3 fasp_solver_dcsr_spgmres()
10.95.2.4 fasp_solver_dstr_spgmres()
10.96spminres.c File Reference
10.96.1 Detailed Description
10.96.2 Function Documentation
10.96.2.1 fasp_solver_dblc_spminres()
10.96.2.2 fasp_solver_dcsr_spminres()
10.96.2.3 fasp_solver_dstr_spminres()
10.97spvgmres.c File Reference
10.97.1 Detailed Description
10.97.2 Function Documentation
10.97.2.1 fasp_solver_dblc_spvgmres()
10.97.2.2 fasp_solver_dbsr_spvgmres()
10.97.2.3 fasp_solver_dcsr_spvgmres()
10.97.2.4 fasp_solver_dstr_spvgmres()
10.98threads.c File Reference
10.98.1 Detailed Description

CONTENTS xIvii

10.98.2 Function Documentation	583
10.98.2.1 FASP_GET_START_END()	583
10.98.2.2 fasp_set_GS_threads()	584
10.98.3 Variable Documentation	584
10.98.3.1 THDs_AMG_GS	584
10.98.3.2 THDs_CPR_gGS	585
10.98.3.3 THDs_CPR_IGS	585
10.99timing.c File Reference	585
10.99.1 Detailed Description	585
10.99.2 Function Documentation	585
10.99.2.1 fasp_gettime()	585
10.100ec.c File Reference	586
10.100. Detailed Description	586
10.100. Function Documentation	587
10.100.2.1fasp_dvec_alloc()	587
10.100.2.2asp_dvec_cp()	587
10.100.2.3fasp_dvec_create()	588
10.100.2.4fasp_dvec_free()	588
10.100.2.5fasp_dvec_isnan()	589
10.100.2.6fasp_dvec_maxdiff()	589
10.100.2.7asp_dvec_null()	590
10.100.2.8fasp_dvec_rand()	590
10.100.2.9fasp_dvec_set()	591
10.100.2.1 @ sp_dvec_symdiagscale()	592
10.100.2.1fasp_ivec_alloc()	592
10.100.2.1f2sp_ivec_create()	593
10.100.2.1fasp_ivec_free()	593
10.100.2.1f4sp_ivec_set()	594
10.10 wrapper.c File Reference	595
10.101. Detailed Description	595
10.101. Function Documentation	595
10.101.2.1fasp_fwrapper_amg_()	595
10.101.2.2asp_fwrapper_krylov_amg_()	596
10.101.2.3fasp_wrapper_dbsr_krylov_amg()	597
10.101.2.4fasp_wrapper_dcoo_dbsr_krylov_amg()	598
Index	599

Introduction

Over the last few decades, researchers have expended significant effort on developing efficient iterative methods for solving discretized partial differential equations (PDEs). Though these efforts have yielded many mathematically optimal solvers such as the multigrid method, the unfortunate reality is that multigrid methods have not been much used in practical applications. This marked gap between theory and practice is mainly due to the fragility of traditional multigrid (MG) methodology and the complexity of its implementation. We aim to develop techniques and the corresponding software that will narrow this gap, specifically by developing mathematically optimal solvers that are robust and easy to use in practice.

We believe that there is no one-size-for-all solution method for discrete linear systems from different applications. And, efficient iterative solvers can be constructed by taking the properties of PDEs and discretizations into account. In this project, we plan to construct a pool of discrete problems arising from partial differential equations (PDEs) or $P \leftarrow DE$ systems and efficient linear solvers for these problems. We mainly utilize the methodology of Auxiliary Space Preconditioning (ASP) to construct efficient linear solvers. Due to this reason, this software package is called Fast Auxiliary Space Preconditioning or FASP for short.

FASP contains the kernel part and several applications (ranging from fluid dynamics to reservoir simulation). The kernel part is open-source and licensed under GNU Lesser General Public License or LGPL version 3.0 or later. Some of the applications contain contributions from and owned partially by other parties.

For the moment, FASP is under alpha testing. If you wish to obtain a current version of FASP or you have any questions, feel free to contact us at faspdev@gmail.com.

This software distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

2 Introduction

How to obtain FASP

The most updated version of FASP can be downloaded from

```
http://fasp.sourceforge.net/download/faspsolver.zip
```

We use HG (Mecurial) as our main version control tool. HG is easy to use and it is available at all OS platforms. For people who is interested in the developer version, you can obtain the FASP package with hg:

\$ hg clone https://faspusers@bitbucket.org/fasp/faspsolver

will give you the developer version of the FASP package.

4 How to obtain FASP

Building and Installation

This is a simple instruction on building and testing. For more details, please refer to the README files and the short User's Guide in "faspsolver/doc/".

To compile, you need a Fortran and a C compiler. First, you can type in the "faspsolver/" root directory:

\$ make config

which will config the environment automatically. And, then, you can need to type:

\$ make install

which will make the FASP shared static library and install to PREFIX/. By default, FASP libraries and executables will be installed in the FASP home directory "faspsolver/".

There is a simple GUI tool for building and installing FASP included in the package. You need Tcl/Tk support in your computer. You may call this GUI by run in the root directory:

\$ wish fasp_install.tcl

If you need to see the detailed usage of "make" or need any help, please type:

\$ make help

After installation, tutorial examples can be found in "tutorial/".

Developers

Project leader:

• Xu, Jinchao (Penn State University, USA)

Project coordinator:

• Zhang, Chensong (Chinese Academy of Sciences, China)

Current active developers (in alphabetic order):

- Feng, Chunsheng (Xiangtan University, China)
- Hu, Xiaozhe (Tufts University, USA)
- · Li, Zheng (Kunming University of Science and Technology, China)
- Zhang, Chensong (Chinese Academy of Sciences, China)
- Zhang, Hongxuan (Penn State Univeristy, USA)

With contributions from (in alphabetic order):

- Brannick, James (Penn State University, USA)
- · Chen, Long (University of California, Irvine, USA)
- Huang, Feiteng (Sichuang University, China)
- · Huang, Xuehai (Shanghai Jiaotong University, China)
- · Qiao, Changhe (Penn State University, USA)
- Shu, Shi (Xiangtan University, China)
- · Sun, Pengtao (University of Nevada, Las Vegas, USA)

8 Developers

- Yang, Kai (Penn State University, USA)
- Yue, Xiaoqiang (Xiangtan University, China)
- Wang, Lu (LLNL, USA)
- Wang, Ziteng (University of Alabama, USA)
- Zhang, Shiquan (Sichuan University, China)
- Zhang, Shuo (Chinese Academy of Sciences, China)
- Zhang, Weifeng (Kunming University of Science and Technology, China)
- Zhou, Zhiyang (Xiangtan University, China)

Doxygen

We use Doxygen as our automatically documentation generator which will make our future maintainance minimized. You can obtain the software (Windows, Linux and OS X) as well as its manual on the official website

http://www.doxygen.org

For an ordinary user, Doxygen is completely trivial to use. We only need to use some special marker in the usual comment as we put in c-files.

10 Doxygen

Todo List

File sparse_util.c

Remove unwanted functions from this file. -Chensong

12 Todo List

Data Structure Index

7.1 Data Structures

Here are the data structures with brief descriptions:

AMG_data
Data for AMG solvers
AMG_data_bsr
Data for multigrid levels. (BSR format)
AMG_param
Parameters for AMG solver
block_BSR
Block REAL matrix format for reservoir simulation
block_dvector
Block REAL vector structure
block_iCSRmat
Block INT CSR matrix format
block_ivector
Block INT vector structure
block_Reservoir
Block REAL matrix format for reservoir simulation
dBLCmat
Block REAL CSR matrix format
dBSRmat
Block sparse row storage matrix of REAL type
dCOOmat
Sparse matrix of REAL type in COO (or IJ) format
dCSRLmat
Sparse matrix of REAL type in CSRL format
dCSRmat
Sparse matrix of REAL type in CSR format
ddenmat
Dense matrix of REAL type
dSTRmat
Structure matrix of REAL type
dvector
Vector with n entries of REAL type

14 Data Structure Index

grid2d			
.000	Two dimensional grid data structure		38
iCOOma	tt Sparse matrix of INT type in COO (or IJ) format		41
iCSRmat	• • • • • • • • • • • • • • • • • • • •		41
1001 iiilai	Sparse matrix of INT type in CSR format		42
idenmat	about the second		
	Dense matrix of INT type		43
ILU_data			
	Data for ILU setup		43
ILU_para			
	Parameters for ILU		45
input_pa	iram Input parameters		45
itsolver_p		•	40
11301701_	Parameters passed to iterative solvers		56
ivector			
	Vector with n entries of INT type		58
Link			
	Struct for Links		58
linked_lis			
	A linked list node		
mallinfo			60
	chunk		60
	params		
_	segment		
malloc_s	stateree chunk		
Mumps_0			02
wumps_	Parameters for MUMPS interface		63
mxv_mat			
	Matrix-vector multiplication, replace the actual matrix		63
nedmallir	nfo		64
Pardiso_	_data		
	Parameters for Intel MKL PARDISO interface		64
precond			
	Preconditioner data and action		65
precond_	_block_data		oe.
procend	Data passed to the preconditioner for block preconditioning for dBLCmat format block reservoir data		bb
precond_	_block_reservoir_data Data passed to the preconditioner for reservoir simulation problems		67
precond_	·	•	07
precenta_	Data passed to the preconditioners		72
precond	data bsr	•	_
	Data passed to the preconditioners		73
precond_	data_str		
	Data passed to the preconditioner for dSTRmat matrices		75
precond_			
	Data passed to diagnal preconditioner for dBSRmat matrices		77
precond_			
	Data passed to diagonal preconditioner for dSTRmat matrices		77
precond_	_FASP_blkoil_data		-
	Data passed to the preconditioner for preconditioning reservoir simulation problems		78

7.1 Data Structures 15

precond_	_sweeping_data	
	Data passed to the preconditioner for sweeping preconditioning	84
Schwarz	_data	
	Data for Schwarz methods	86
Schwarz	_param	
	Parameters for Schwarz method	88

16 Data Structure Index

File Index

8.1 File List

Here is a list of all documented files with brief descriptions:

amg.c
AMG method as an iterative solver (main file)
amg_setup_cr.c
Brannick-Falgout compatible relaxation based AMG: SETUP phase
amg_setup_rs.c
Ruge-Stuben AMG: SETUP phase
amg_setup_sa.c
Smoothed aggregation AMG: SETUP phase
amg_setup_ua.c
Unsmoothed aggregation AMG: SETUP phase
amg_solve.c
Algebraic multigrid iterations: SOLVE phase
amlirecur.c
Abstract AMLI multilevel iteration – recursive version
array.c
Simple array operations – init, set, copy, etc
blas_array.c
BLAS1 operations for arrays
blas_blc.c
BLAS2 operations for dBLCmat matrices
blas_bsr.c
BLAS2 operations for dBSRmat matrices
blas_csr.c
BLAS2 operations for dCSRmat matrices
blas_csrl.c
BLAS2 operations for dCSRLmat matrices
blas_smat.c
BLAS2 operations for <i>small</i> dense matrices
blas_str.c
BLAS2 operations for dSTRmat matrices
blas_vec.c
BLAS1 operations for vectors

18 File Index

checkmat	
	Check matrix properties
coarsenir	
	Coarsening with Brannick-Falgout strategy
coarsenir	
	Coarsening with a modified Ruge-Stuben strategy
convert.c	
	Some utilities for format conversion
dimalloc	
doxygen.	
	Main page for Doygen documentation
eigen.c	Subroutines for computing the extreme eigenvalues
	Subroutines for computing the extreme eigenvalues
famg.c	Full AMG method as an iterative solver (main file)
fasp.h	Tull / Wild motified as an iterative solver (main me)
	Main header file for FASP
fasp bloc	
. —	Header file for FASP block matrices
fasp cons	
. –	Definition of all kinds of messages, including error messages, solver types, etc
fmgcycle.	
	Abstract non-recursive full multigrid cycle
formats.c	
	Subroutines for matrix format conversion
givens.c	
	Givens transformation
gmg_pois	sson.c
	GMG method as an iterative solver for Poisson Problem
graphics.	
	Subroutines for graphical output
hb_io.h	??
ilu.c	
	Incomplete LU decomposition: ILUk, ILUt, ILUtp
ilu_setup	
	Setup incomplete LU decomposition for dBSRmat matrices
ilu_setup	
	Setup incomplete LU decomposition for dCSRmat matrices
ilu_setup	
	Setup incomplete LU decomposition for dSTRmat matrices
init.c	Initialize important data structures
	irilialize important data structures
input.c	Read input parameters
	mumps.c
	Interface to MUMPS direct solvers
	pardiso.c
	Interface to Intel MKL PARDISO direct solvers
interface_	
	Interface to SAMG solvers
interface	superlu.c
	Interface to SuperLU direct solvers
	_umfpack.c
	Interface to UMFPACK direct solvers

8.1 File List

interpolation.c	
Interpolation operators for AMG	77
interpolation_em.c	
Interpolation operators for AMG based on energy-min	80
Matrix/vector input/output subroutines	81
itsolver_blc.c	
Iterative solvers for dBLCmat matrices	09
itsolver_bsr.c	
Iterative solvers for dBSRmat matrices	13
Iterative solvers for dCSRmat matrices	20
itsolver_mf.c	
Iterative solvers using matrix-free spmv operations	27
itsolver_str.c	20
Iterative solvers for dSTRmat matrices	30
LU decomposition and direct solver for small dense matrices	34
malloc.c.h	
memory.c	
Memory allocation and deallocation subroutines	36
message.c Output some useful messages	41
mgcycle.c	
Abstract multigrid cycle – non-recursive version	45
mgrecur.c	
Abstract multigrid cycle – recursive version	
ordering.c	
Subroutines for ordering, merging, removing duplicated integers	48
parameters.c	
Initialize, set, or print input data and parameters	56
pbcgs.c Krylov subspace methods – Preconditioned BiCGstab	68
pbcgs_mf.c	00
Krylov subspace methods – Preconditioned BiCGstab (matrix free)	76
pcg.c	
Krylov subspace methods – Preconditioned conjugate gradient	80
pcg_mf.c Krylov subspace methods – Preconditioned conjugate gradient (matrix free)	85
pgcg.c	•
Krylov subspace methods – Preconditioned Generalized CG	87
pgcg_mf.c	
Krylov subspace methods – Preconditioned Generalized CG (matrix free)	88
pgcr.c Krylov subspace methods – Preconditioned GCR	90
pgmres.c	
Krylov subspace methods – Right-preconditioned GMRes	93
pgmres_mf.c	
Krylov subspace methods – Preconditioned GMRes (matrix free)	ಕರ
Krylov subspace methods – Preconditioned minimal residual	99
pminres_mf.c	
Krylov subspace methods – Preconditioned minimal residual (matrix free)	03

20 File Index

precond_	
	Preconditioners for dBLCmat matrices
precond_	
	Preconditioners for dBSRmat matrices
precond_	
precond	Preconditioners for dCSRmat matrices
precond_	Preconditioners for dSTRmat matrices
pvfgmres	
prigoc	Krylov subspace methods – Preconditioned variable-restarting flexible GMRes
pvfgmres	
	Krylov subspace methods – Preconditioned variable-restarting flexible GMRes (matrix free) 446
pvgmres.	c
	Krylov subspace methods – Preconditioned variable-restart GMRes
pvgmres	
	Krylov subspace methods – Preconditioned variable-restarting GMRes (matrix free)
quadratu	
ron 0	Quadrature rules
rap.c	Tripple-matrix multiplication R*A*P
schwarz_	
JOHWarz_	Setup phase for the Schwarz methods
smat.c	
	Simple operations for <i>small</i> dense matrices in row-major format
smoothe	
	Smoothers for dBSRmat matrices
smoothe	-
	Smoothers for dCSRmat matrices
smoothe	r_csr_cr.c
	Smoothers for dCSRmat matrices using compatible relaxation
smootne	r_csr_poly.c Smoothers for dCSRmat matrices using poly. approx. to A^{-1}
smoothe	
SHOOTHE	Smoothers for dSTRmat matrices
sparse_b	
	Sparse matrix block operations
sparse_b	
. –	Sparse matrix operations for dBSRmat matrices
sparse_c	00.C
	Sparse matrix operations for dCOOmat matrices
sparse_c	
	Sparse matrix operations for dCSRmat matrices
sparse_c	
cparco c	Sparse matrix operations for dCSRLmat matrices
sparse_s	Sparse matrix operations for dSTRmat matrices
sparse u	
000_0	Routines for sparse matrix operations
spbcgs.c	·
	Krylov subspace methods – Preconditioned BiCGstab with safety net
spcg.c	
	$ \textit{Krylov subspace methods} - \textit{Preconditioned conjugate gradient with safety net} \dots \dots \dots 565 $
spgmres	
	Krylov subspace methods – Preconditioned GMRes with safety net

8.1 File List 21

spminres	.C
	$ \textit{Krylov subspace methods} - \textit{Preconditioned minimal residual with safety net} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
spvgmres	s.c
	Krylov subspace methods – Preconditioned variable-restart GMRes with safety net 578
threads.c	
	Get and set number of threads and assign work load for each thread
timing.c	
	Timing subroutines
vec.c	
	Simple operations for vectors
wrapper.	
	Wrappers for accessing functions by advanced users

22 File Index

Chapter 9

Data Structure Documentation

9.1 AMG_data Struct Reference

Data for AMG solvers.

```
#include <fasp.h>
```

Data Fields

SHORT max levels

max number of levels

• SHORT num levels

number of levels in use <= max_levels

• dCSRmat A

pointer to the matrix at level level_num

dCSRmat R

restriction operator at level level_num

dCSRmat P

prolongation operator at level level_num

dvector b

pointer to the right-hand side at level level_num

dvector x

pointer to the iterative solution at level level num

void * Numeric

pointer to the numerical factorization from UMFPACK

• Pardiso_data pdata

data for Intel MKL PARDISO

· ivector cfmark

pointer to the CF marker at level level_num

• INT ILU_levels

number of levels use ILU smoother

• ILU_data LU

ILU matrix for ILU smoother.

INT near_kernel_dim

dimension of the near kernel for SAMG

• REAL ** near_kernel_basis

basis of near kernel space for SAMG

· INT Schwarz levels

number of levels use Schwarz smoother

• Schwarz_data Schwarz

data of Schwarz smoother

dvector w

temporary work space

Mumps_data mumps

data for MUMPS

• INT cycle_type

cycle type

• INT * ic

indices for different colors

• INT * icmap

mapping from vertex to color

· INT colors

number of colors

· REAL weight

weight for smoother

9.1.1 Detailed Description

Data for AMG solvers.

Note

This is needed for the AMG solver/preconditioner.

Definition at line 757 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.2 AMG_data_bsr Struct Reference

Data for multigrid levels. (BSR format)

#include <fasp_block.h>

Data Fields

· INT max levels

max number of levels

INT num_levels

number of levels in use <= max_levels

· dBSRmat A

pointer to the matrix at level level_num

· dBSRmat R

restriction operator at level level_num

dBSRmat P

prolongation operator at level level_num

· dvector b

pointer to the right-hand side at level level_num

dvector x

pointer to the iterative solution at level level_num

· dvector diaginv

pointer to the diagonal inverse at level level_num

dCSRmat Ac

pointer to the matrix at level level_num (csr format)

void * Numeric

pointer to the numerical dactorization from UMFPACK

Pardiso_data pdata

data for Intel MKL PARDISO

dCSRmat PP

pointer to the pressure block (only for reservoir simulation)

• REAL * pw

pointer to the auxiliary vectors for pressure block

dBSRmat SS

pointer to the saturation block (only for reservoir simulation)

• REAL * sw

pointer to the auxiliary vectors for saturation block

dvector diaginv_SS

pointer to the diagonal inverse of the saturation block at level level_num

• ILU_data PP_LU

ILU data for pressure block.

· ivector cfmark

pointer to the CF marker at level level_num

INT ILU levels

number of levels use ILU smoother

ILU data LU

ILU matrix for ILU smoother.

· INT near kernel dim

dimension of the near kernel for SAMG

REAL ** near_kernel_basis

basis of near kernel space for SAMG

dCSRmat * A nk

Matrix data for near kernal.

dCSRmat * P_nk

Prolongation for near kernal.

dCSRmat * R nk

Resriction for near kernal.

· dvector w

temporary work space

Mumps_data mumps

data for MUMPS

9.2.1 Detailed Description

Data for multigrid levels. (BSR format)

Note

This structure is needed for the AMG solver/preconditioner in BSR format

Definition at line 198 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.3 AMG_param Struct Reference

Parameters for AMG solver.

```
#include <fasp.h>
```

Data Fields

• SHORT AMG_type

type of AMG method

• SHORT print_level

print level for AMG

· INT maxit

max number of iterations of AMG

• REAL tol

stopping tolerance for AMG solver

SHORT max_levels

max number of levels of AMG

• INT coarse_dof

max number of coarsest level DOF

SHORT cycle_type

type of AMG cycle

· REAL quality_bound

quality threshold for pairwise aggregation

SHORT smoother

smoother type

· SHORT smooth order

smoother order

· SHORT presmooth_iter

number of presmoothers

• SHORT postsmooth_iter

number of postsmoothers

REAL relaxation

relaxation parameter for SOR smoother

SHORT polynomial_degree

degree of the polynomial smoother

· SHORT coarse solver

coarse solver type

· SHORT coarse_scaling

switch of scaling of the coarse grid correction

SHORT amli_degree

degree of the polynomial used by AMLI cycle

· REAL * amli_coef

coefficients of the polynomial used by AMLI cycle

SHORT nl_amli_krylov_type

type of Krylov method used by Nonlinear AMLI cycle

SHORT coarsening_type

coarsening type

SHORT aggregation_type

aggregation type

SHORT interpolation_type

interpolation type

REAL strong_threshold

strong connection threshold for coarsening

· REAL max row sum

maximal row sum parameter

· REAL truncation threshold

truncation threshold

INT aggressive level

number of levels use aggressive coarsening

INT aggressive_path

number of paths use to determine strongly coupled C points

· INT pair number

number of pairwise matchings

REAL strong_coupled

strong coupled threshold for aggregate

INT max_aggregation

max size of each aggregate

REAL tentative_smooth

relaxation parameter for smoothing the tentative prolongation

SHORT smooth filter

switch for filtered matrix used for smoothing the tentative prolongation

SHORT ILU levels

number of levels use ILU smoother

SHORT ILU_type

ILU type for smoothing.

• INT ILU Ifil

level of fill-in for ILUs and ILUk

• REAL ILU_droptol

drop tolerance for ILUt

REAL ILU_relax

relaxation for ILUs

• REAL ILU_permtol

permuted if permtol*|a(i,j)| > |a(i,i)|

• INT Schwarz_levels

number of levels use Schwarz smoother

· INT Schwarz mmsize

maximal block size

INT Schwarz_maxlvl

maximal levels

INT Schwarz_type

type of Schwarz method

INT Schwarz_blksolver

type of Schwarz block solver

9.3.1 Detailed Description

Parameters for AMG solver.

Note

This is needed for the AMG solver/preconditioner.

Definition at line 618 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.4 block_BSR Struct Reference

Block REAL matrix format for reservoir simulation.

#include <fasp_block.h>

Data Fields

dBSRmat ResRes

reservoir-reservoir block

dCSRmat ResWel

reservoir-well block

dCSRmat WelRes

well-reservoir block

dCSRmat WelWel

well-well block

9.4.1 Detailed Description

Block REAL matrix format for reservoir simulation.

Definition at line 172 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.5 block_dvector Struct Reference

Block REAL vector structure.

```
#include <fasp_block.h>
```

Data Fields

INT brow

row number of blocks in A, m

dvector ** blocks

blocks of dvector, point to blocks[brow]

9.5.1 Detailed Description

Block REAL vector structure.

Definition at line 120 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.6 block_iCSRmat Struct Reference

Block INT CSR matrix format.

```
#include <fasp_block.h>
```

Data Fields

• INT brow

row number of blocks in A, m

INT bcol

column number of blocks A, n

iCSRmat ** blocks

blocks of iCSRmat, point to blocks[brow][bcol]

9.6.1 Detailed Description

Block INT CSR matrix format.

Note

The starting index of A is 0.

Definition at line 103 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.7 block_ivector Struct Reference

Block INT vector structure.

```
#include <fasp_block.h>
```

Data Fields

INT brow

row number of blocks in A, m

ivector ** blocks

blocks of dvector, point to blocks[brow]

9.7.1 Detailed Description

Block INT vector structure.

Note

The starting index of A is 0.

Definition at line 136 of file fasp_block.h.

The documentation for this struct was generated from the following file:

• fasp_block.h

9.8 block_Reservoir Struct Reference

Block REAL matrix format for reservoir simulation.

```
#include <fasp_block.h>
```

Data Fields

dSTRmat ResRes

reservoir-reservoir block

dCSRmat ResWel

reservoir-well block

dCSRmat WelRes

well-reservoir block

• dCSRmat WelWel

well-well block

9.8.1 Detailed Description

Block REAL matrix format for reservoir simulation.

Definition at line 151 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.9 dBLCmat Struct Reference

Block REAL CSR matrix format.

```
#include <fasp_block.h>
```

Data Fields

INT brow

row number of blocks in A, m

INT bcol

column number of blocks A, n

dCSRmat ** blocks

blocks of dCSRmat, point to blocks[brow][bcol]

9.9.1 Detailed Description

Block REAL CSR matrix format.

Note

The starting index of A is 0.

Definition at line 84 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.10 dBSRmat Struct Reference

Block sparse row storage matrix of REAL type.

```
#include <fasp_block.h>
```

Data Fields

INT ROW

number of rows of sub-blocks in matrix A, M

• INT COL

number of cols of sub-blocks in matrix A, N

INT NNZ

number of nonzero sub-blocks in matrix A, NNZ

• INT nb

dimension of each sub-block

• INT storage_manner

storage manner for each sub-block

- REAL * val
- INT * IA

integer array of row pointers, the size is ROW+1

INT * JA

9.10.1 Detailed Description

Block sparse row storage matrix of REAL type.

Note

This data structure is adapted from the Intel MKL library. Refer to: http://software.intel.← com/sites/products/documentation/hpc/mkl/lin/index.htm

Some of the following entries are capitalized to stress that they are for blocks!

Definition at line 44 of file fasp_block.h.

9.10.2 Field Documentation

9.10.2.1 JA

INT* JA

Element i of the integer array columns is the number of the column in the block matrix that contains the i-th non-zero block. The size is NNZ.

Definition at line 74 of file fasp block.h.

9.10.2.2 val

REAL* val

A real array that contains the elements of the non-zero blocks of a sparse matrix. The elements are stored block-by-block in row major order. A non-zero block is the block that contains at least one non-zero element. All elements of non-zero blocks are stored, even if some of them is equal to zero. Within each nonzero block elements are stored in row-major order and the size is (NNZ*nb*nb).

Definition at line 67 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.11 dCOOmat Struct Reference

Sparse matrix of REAL type in COO (or IJ) format.

#include <fasp.h>

Data Fields

INT row

row number of matrix A, m

INT col

column of matrix A, n

• INT nnz

number of nonzero entries

• INT * rowind

integer array of row indices, the size is nnz

• INT * colind

integer array of column indices, the size is nnz

• REAL * val

nonzero entries of A

9.11.1 Detailed Description

Sparse matrix of REAL type in COO (or IJ) format.

Coordinate Format (I,J,A)

Note

The starting index of A is 0.

Change I to rowind, J to colind. To avoid with complex.h confliction on I.

Definition at line 214 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.12 dCSRLmat Struct Reference

Sparse matrix of REAL type in CSRL format.

#include <fasp.h>

Data Fields

INT row

number of rows

INT col

number of cols

• INT nnz

number of nonzero entries

INT dif

number of different values in i-th row, i=0:nrows-1

• INT * nz diff

nz_diff[i]: the i-th different value in 'nzrow'

• INT * index

row index of the matrix (length-grouped): rows with same nnz are together

• INT * start

j in {start[i],...,start[i+1]-1} means nz_diff[i] nnz in index[j]-row

• INT * ja

column indices of all the nonzeros

• REAL * val

values of all the nonzero entries

9.12.1 Detailed Description

Sparse matrix of REAL type in CSRL format.

Definition at line 270 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.13 dCSRmat Struct Reference

Sparse matrix of REAL type in CSR format.

```
#include <fasp.h>
```

Data Fields

INT row

row number of matrix A, m

INT col

column of matrix A, n

• INT nnz

number of nonzero entries

• INT * IA

integer array of row pointers, the size is m+1

INT * JA

integer array of column indexes, the size is nnz

REAL * val

nonzero entries of A

9.13.1 Detailed Description

Sparse matrix of REAL type in CSR format.

CSR Format (IA,JA,A) in REAL

Note

The starting index of A is 0.

Definition at line 153 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.14 ddenmat Struct Reference

Dense matrix of REAL type.

```
#include <fasp.h>
```

Data Fields

• INT row

number of rows

INT col

number of columns

• REAL ** val

actual matrix entries

9.14.1 Detailed Description

Dense matrix of REAL type.

A dense REAL matrix

Definition at line 113 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.15 dSTRmat Struct Reference

Structure matrix of REAL type.

```
#include <fasp.h>
```

Data Fields

• INT nx

number of grids in x direction

• INT ny

number of grids in y direction

• INT nz

number of grids in z direction

INT nxy

number of grids on x-y plane

• INT nc

size of each block (number of components)

INT ngrid

number of grids

• REAL * diag

diagonal entries (length is $ngrid*(nc^2)$)

INT nband

number of off-diag bands

• INT * offsets

offsets of the off-diagonals (length is nband)

REAL ** offdiag

off-diagonal entries (dimension is nband * [(ngrid-|offsets|) * nc 2])

9.15.1 Detailed Description

Structure matrix of REAL type.

Note

Every nc^2 entries of the array diag and off-diag[i] store one block: For 2D matrix, the recommended offsets is [-1,1,-nx,nx]; For 3D matrix, the recommended offsets is [-1,1,-nx,nx,nxy].

Definition at line 309 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.16 dvector Struct Reference

Vector with n entries of REAL type.

```
#include <fasp.h>
```

Data Fields

• INT row

number of rows

• REAL * val

actual vector entries

9.16.1 Detailed Description

Vector with n entries of REAL type.

Definition at line 347 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.17 grid2d Struct Reference

Two dimensional grid data structure.

```
#include <fasp.h>
```

Data Fields

- REAL(* p)[2]
- INT(* e)[2]
- INT(* t)[3]
- INT(* s)[3]
- INT * pdiri
- INT * ediri
- INT * pfather
- INT * efather
- INT * tfather
- INT vertices
- INT edges INT triangles

9.17.1 Detailed Description

Two dimensional grid data structure.

Note

The grid2d structure is simply a list of triangles, edges and vertices. edge i has 2 vertices e[i], triangle i has 3 edges s[i], 3 vertices t[i] vertex i has two coordinates p[i]

Definition at line 1174 of file fasp.h.

9.17.2 Field Documentation

9.17.2.1 e

INT(* e)[2]

Vertices of edges

Definition at line 1177 of file fasp.h.

9.17.2.2 edges

INT edges

Number of edges

Definition at line 1188 of file fasp.h.

9.17.2.3 ediri

INT* ediri

Boundary flags (0 <=> interior edge)

Definition at line 1181 of file fasp.h.

9.17.2.4 efather

INT* efather

Father edge or triangle

Definition at line 1184 of file fasp.h.

Definition at line 1185 of file fasp.h.

```
9.17.2.5 p
REAL(* p)[2]
Coordinates of vertices
Definition at line 1176 of file fasp.h.
9.17.2.6 pdiri
INT* pdiri
Boundary flags (0 <=> interior point)
Definition at line 1180 of file fasp.h.
9.17.2.7 pfather
INT* pfather
Father point or edge
Definition at line 1183 of file fasp.h.
9.17.2.8 s
INT(* s)[3]
Edges of triangles
Definition at line 1179 of file fasp.h.
9.17.2.9 t
INT(* t)[3]
Vertices of triangles
Definition at line 1178 of file fasp.h.
9.17.2.10 tfather
INT* tfather
Father triangle
```

9.17.2.11 triangles

```
INT triangles
```

Number of triangles

Definition at line 1189 of file fasp.h.

9.17.2.12 vertices

```
INT vertices
```

Number of grid points

Definition at line 1187 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.18 iCOOmat Struct Reference

Sparse matrix of INT type in COO (or IJ) format.

```
#include <fasp.h>
```

Data Fields

• INT row

row number of matrix A, m

INT col

column of matrix A, n

• INT nnz

number of nonzero entries

• INT * I

integer array of row indices, the size is nnz

• INT * J

integer array of column indices, the size is nnz

INT * val

nonzero entries of A

9.18.1 Detailed Description

Sparse matrix of INT type in COO (or IJ) format.

Coordinate Format (I,J,A)

Note

The starting index of A is 0.

Definition at line 244 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.19 iCSRmat Struct Reference

Sparse matrix of INT type in CSR format.

```
#include <fasp.h>
```

Data Fields

• INT row

row number of matrix A, m

INT col

column of matrix A, n

• INT nnz

number of nonzero entries

• INT * IA

integer array of row pointers, the size is m+1

• INT * JA

integer array of column indexes, the size is nnz

INT * val

nonzero entries of A

9.19.1 Detailed Description

Sparse matrix of INT type in CSR format.

CSR Format (IA,JA,A) in integer

Note

The starting index of A is 0.

Definition at line 183 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.20 idenmat Struct Reference

Dense matrix of INT type.

#include <fasp.h>

Data Fields

INT row

number of rows

• INT col

number of columns

• INT ** val

actual matrix entries

9.20.1 Detailed Description

Dense matrix of INT type.

A dense INT matrix

Definition at line 132 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.21 ILU_data Struct Reference

Data for ILU setup.

#include <fasp.h>

Data Fields

• INT row

row number of matrix LU, m

INT col

column of matrix LU, n

• INT nzlu

number of nonzero entries

• INT * ijlu

integer array of row pointers and column indexes, the size is nzlu

• REAL * luval

nonzero entries of LU

• INT nb

block size for BSR type only

• INT nwork

work space size

• REAL * work

work space

• INT ncolors

number of colors for multi-threading

• INT * ic

indices for different colors

INT * icmap

mapping from vertex to color

• INT * uptr

temporary work space

INT nlevL

number of colors for lower triangle

INT nlevU

number of colors for upper triangle

• INT * ilevL

number of vertices in each color for lower triangle

• INT * ilevU

number of vertices in each color for upper triangle

INT * jlevL

mapping from row to color for lower triangle

• INT * jlevU

mapping from row to color for upper triangle

9.21.1 Detailed Description

Data for ILU setup.

Definition at line 405 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.22 ILU_param Struct Reference

Parameters for ILU.

```
#include <fasp.h>
```

Data Fields

• SHORT print_level

print level

SHORT ILU_type

ILU type for decomposition.

• INT ILU_Ifil

level of fill-in for ILUk

REAL ILU_droptol

drop tolerance for ILUt

REAL ILU_relax

add the sum of dropped elements to diagonal element in proportion relax

REAL ILU_permtol

permuted if permtol*|a(i,j)| > |a(i,i)|

9.22.1 Detailed Description

Parameters for ILU.

Definition at line 379 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.23 input_param Struct Reference

Input parameters.

```
#include <fasp.h>
```

Data Fields

- SHORT print_level
- SHORT output_type
- char inifile [256]
- char workdir [256]
- INT problem num
- SHORT solver_type
- SHORT precond_type
- SHORT stop_type
- REAL itsolver tol
- INT itsolver maxit
- INT restart
- SHORT ILU_type
- INT ILU Ifil
- · REAL ILU droptol
- REAL ILU relax
- REAL ILU_permtol
- INT Schwarz_mmsize
- INT Schwarz maxlvl
- INT Schwarz_type
- INT Schwarz_blksolver
- SHORT AMG type
- SHORT AMG_levels
- SHORT AMG_cycle_type
- SHORT AMG_smoother
- SHORT AMG_smooth_order
- REAL AMG_relaxation
- SHORT AMG_polynomial_degree
- SHORT AMG_presmooth_iter
- · SHORT AMG postsmooth iter
- INT AMG_coarse_dof
- · REAL AMG tol
- INT AMG maxit
- SHORT AMG_ILU_levels
- · SHORT AMG coarse solver
- SHORT AMG_coarse_scaling
- SHORT AMG_amli_degree
- SHORT AMG nl amli krylov type
- INT AMG_Schwarz_levels
- SHORT AMG_coarsening_type
- SHORT AMG_aggregation_type
- SHORT AMG interpolation type
- REAL AMG_strong_threshold
- REAL AMG_truncation_threshold
- REAL AMG_max_row_sum
- INT AMG_aggressive_level
- INT AMG_aggressive_path
- · INT AMG pair number
- REAL AMG_quality_bound
- REAL AMG_strong_coupled
- INT AMG_max_aggregation
- · REAL AMG tentative smooth
- · SHORT AMG smooth filter

9.23.1 Detailed Description

Input parameters.

Input parameters, reading from disk file

Definition at line 1076 of file fasp.h.

9.23.2 Field Documentation

9.23.2.1 AMG_aggregation_type

```
SHORT AMG_aggregation_type
```

aggregation type

Definition at line 1130 of file fasp.h.

9.23.2.2 AMG_aggressive_level

```
INT AMG_aggressive_level
```

number of levels use aggressive coarsening

Definition at line 1135 of file fasp.h.

9.23.2.3 AMG_aggressive_path

```
INT AMG_aggressive_path
```

number of paths used to determine strongly coupled C-set

Definition at line 1136 of file fasp.h.

9.23.2.4 AMG_amli_degree

```
SHORT AMG_amli_degree
```

degree of the polynomial used by AMLI cycle

Definition at line 1124 of file fasp.h.

```
9.23.2.5 AMG_coarse_dof
```

```
INT AMG_coarse_dof
```

max number of coarsest level DOF

Definition at line 1118 of file fasp.h.

9.23.2.6 AMG_coarse_scaling

```
SHORT AMG_coarse_scaling
```

switch of scaling of the coarse grid correction

Definition at line 1123 of file fasp.h.

9.23.2.7 AMG_coarse_solver

```
SHORT AMG_coarse_solver
```

coarse solver type

Definition at line 1122 of file fasp.h.

9.23.2.8 AMG_coarsening_type

```
SHORT AMG_coarsening_type
```

coarsening type

Definition at line 1129 of file fasp.h.

9.23.2.9 AMG_cycle_type

```
SHORT AMG_cycle_type
```

type of cycle

Definition at line 1111 of file fasp.h.

9.23.2.10 AMG_ILU_levels

```
SHORT AMG_ILU_levels
```

how many levels use ILU smoother

Definition at line 1121 of file fasp.h.

9.23.2.11 AMG_interpolation_type

SHORT AMG_interpolation_type

interpolation type

Definition at line 1131 of file fasp.h.

9.23.2.12 AMG_levels

SHORT AMG_levels

maximal number of levels

Definition at line 1110 of file fasp.h.

9.23.2.13 AMG_max_aggregation

INT AMG_max_aggregation

max size of each aggregate

Definition at line 1142 of file fasp.h.

9.23.2.14 AMG_max_row_sum

REAL AMG_max_row_sum

maximal row sum

Definition at line 1134 of file fasp.h.

9.23.2.15 AMG_maxit

INT AMG_maxit

number of iterations for AMG used as preconditioner

Definition at line 1120 of file fasp.h.

9.23.2.16 AMG_nl_amli_krylov_type

SHORT AMG_nl_amli_krylov_type

type of Krylov method used by nonlinear AMLI cycle

Definition at line 1125 of file fasp.h.

```
9.23.2.17 AMG_pair_number
```

INT AMG_pair_number

number of pairs in matching algorithm

Definition at line 1137 of file fasp.h.

9.23.2.18 AMG_polynomial_degree

SHORT AMG_polynomial_degree

degree of the polynomial smoother

Definition at line 1115 of file fasp.h.

9.23.2.19 AMG_postsmooth_iter

SHORT AMG_postsmooth_iter

number of postsmoothing

Definition at line 1117 of file fasp.h.

9.23.2.20 AMG_presmooth_iter

SHORT AMG_presmooth_iter

number of presmoothing

Definition at line 1116 of file fasp.h.

9.23.2.21 AMG_quality_bound

REAL AMG_quality_bound

threshold for pair wise aggregation

Definition at line 1138 of file fasp.h.

9.23.2.22 AMG_relaxation

 ${\tt REAL} \ {\tt AMG_relaxation}$

over-relaxation parameter for SOR

Definition at line 1114 of file fasp.h.

9.23.2.23 AMG_Schwarz_levels

INT AMG_Schwarz_levels

number of levels use Schwarz smoother

Definition at line 1126 of file fasp.h.

9.23.2.24 AMG_smooth_filter

SHORT AMG_smooth_filter

use filter for smoothing the tentative prolongation or not

Definition at line 1144 of file fasp.h.

9.23.2.25 AMG_smooth_order

SHORT AMG_smooth_order

order for smoothers

Definition at line 1113 of file fasp.h.

9.23.2.26 AMG_smoother

SHORT AMG_smoother

type of smoother

Definition at line 1112 of file fasp.h.

9.23.2.27 AMG_strong_coupled

REAL AMG_strong_coupled

strong coupled threshold for aggregate

Definition at line 1141 of file fasp.h.

9.23.2.28 AMG_strong_threshold

 ${\tt REAL} \ {\tt AMG_strong_threshold}$

strong threshold for coarsening

Definition at line 1132 of file fasp.h.

```
9.23.2.29 AMG_tentative_smooth
```

REAL AMG_tentative_smooth

relaxation factor for smoothing the tentative prolongation

Definition at line 1143 of file fasp.h.

9.23.2.30 AMG_tol

REAL AMG_tol

tolerance for AMG if used as preconditioner

Definition at line 1119 of file fasp.h.

9.23.2.31 AMG_truncation_threshold

REAL AMG_truncation_threshold

truncation factor for interpolation

Definition at line 1133 of file fasp.h.

9.23.2.32 AMG_type

SHORT AMG_type

Type of AMG

Definition at line 1109 of file fasp.h.

9.23.2.33 ILU_droptol

REAL ILU_droptol

drop tolerance

Definition at line 1098 of file fasp.h.

9.23.2.34 ILU_lfil

INT ILU_lfil

level of fill-in

Definition at line 1097 of file fasp.h.

```
9.23.2.35 ILU_permtol
```

```
REAL ILU_permtol
```

permutation tolerance

Definition at line 1100 of file fasp.h.

9.23.2.36 ILU_relax

```
REAL ILU_relax
```

scaling factor: add the sum of dropped entries to diagonal

Definition at line 1099 of file fasp.h.

9.23.2.37 ILU_type

```
SHORT ILU_type
```

ILU type for decomposition

Definition at line 1096 of file fasp.h.

9.23.2.38 inifile

char inifile[256]

ini file name

Definition at line 1083 of file fasp.h.

9.23.2.39 itsolver_maxit

```
INT itsolver_maxit
```

maximal number of iterations for iterative solvers

Definition at line 1092 of file fasp.h.

9.23.2.40 itsolver_tol

REAL itsolver_tol

tolerance for iterative linear solver

Definition at line 1091 of file fasp.h.

Definition at line 1106 of file fasp.h.

```
9.23.2.41 output_type
SHORT output_type
type of output stream
Definition at line 1080 of file fasp.h.
9.23.2.42 precond_type
SHORT precond_type
type of preconditioner for iterative solvers
Definition at line 1089 of file fasp.h.
9.23.2.43 print_level
SHORT print_level
print level
Definition at line 1079 of file fasp.h.
9.23.2.44 problem_num
INT problem_num
problem number to solve
Definition at line 1085 of file fasp.h.
9.23.2.45 restart
INT restart
restart number used in GMRES
Definition at line 1093 of file fasp.h.
9.23.2.46 Schwarz_blksolver
INT Schwarz_blksolver
type of Schwarz block solver
```

9.23.2.47 Schwarz_maxlvl INT Schwarz_maxlvl maximal levels Definition at line 1104 of file fasp.h. 9.23.2.48 Schwarz_mmsize INT Schwarz_mmsize maximal block size Definition at line 1103 of file fasp.h. 9.23.2.49 Schwarz_type INT Schwarz_type type of Schwarz method Definition at line 1105 of file fasp.h. 9.23.2.50 solver_type SHORT solver_type type of iterative solvers Definition at line 1088 of file fasp.h. 9.23.2.51 stop_type

Definition at line 1090 of file fasp.h.

type of stopping criteria for iterative solvers

SHORT stop_type

9.23.2.52 workdir

```
char workdir[256]
```

working directory for data files

Definition at line 1084 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.24 itsolver_param Struct Reference

Parameters passed to iterative solvers.

```
#include <fasp.h>
```

Data Fields

- SHORT itsolver_type
- SHORT precond_type
- SHORT stop_type
- INT maxit
- REAL tol
- INT restart
- SHORT print_level

9.24.1 Detailed Description

Parameters passed to iterative solvers.

Definition at line 1152 of file fasp.h.

9.24.2 Field Documentation

9.24.2.1 itsolver_type

```
SHORT itsolver_type
```

solver type: see message.h

Definition at line 1154 of file fasp.h.

```
9.24.2.2 maxit
INT maxit
max number of iterations
Definition at line 1157 of file fasp.h.
9.24.2.3 precond_type
SHORT precond_type
preconditioner type: see message.h
Definition at line 1155 of file fasp.h.
9.24.2.4 print_level
SHORT print_level
print level: 0-10
Definition at line 1160 of file fasp.h.
9.24.2.5 restart
INT restart
number of steps for restarting: for GMRES etc
Definition at line 1159 of file fasp.h.
9.24.2.6 stop_type
SHORT stop_type
stopping criteria type
```

Generated by Doxygen

Definition at line 1156 of file fasp.h.

9.24.2.7 tol

REAL tol

convergence tolerance

Definition at line 1158 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.25 ivector Struct Reference

Vector with n entries of INT type.

```
#include <fasp.h>
```

Data Fields

• INT row

number of rows

INT * val

actual vector entries

9.25.1 Detailed Description

Vector with n entries of INT type.

Definition at line 361 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.26 Link Struct Reference

Struct for Links.

#include <fasp.h>

Data Fields

INT prev

previous node in the linklist

• INT next

next node in the linklist

9.26.1 Detailed Description

Struct for Links.

Definition at line 1201 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.27 linked_list Struct Reference

A linked list node.

```
#include <fasp.h>
```

Data Fields

• INT data

data

• INT head

starting of the list

INT tail

ending of the list

• struct linked_list * next_node

next node

struct linked_list * prev_node

previous node

9.27.1 Detailed Description

A linked list node.

Note

This definition is adapted from hypre 2.0.

Definition at line 1218 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.28 mallinfo Struct Reference

Data Fields

- MALLINFO FIELD TYPE arena
- MALLINFO_FIELD_TYPE ordblks
- MALLINFO FIELD TYPE smblks
- MALLINFO_FIELD_TYPE hblks
- MALLINFO_FIELD_TYPE hblkhd
- MALLINFO_FIELD_TYPE usmblks
- MALLINFO_FIELD_TYPE fsmblks
- MALLINFO_FIELD_TYPE uordblks
- MALLINFO_FIELD_TYPE fordblks
- MALLINFO_FIELD_TYPE keepcost

9.28.1 Detailed Description

Definition at line 69 of file dlmalloc.h.

The documentation for this struct was generated from the following files:

- · dlmalloc.h
- · malloc.c.h

9.29 malloc_chunk Struct Reference

Data Fields

- size_t prev_foot
- size_t head
- struct malloc_chunk * fd
- struct malloc_chunk * **bk**

9.29.1 Detailed Description

Definition at line 2177 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.30 malloc_params Struct Reference

Data Fields

- volatile size_t magic
- size_t page_size
- size_t granularity
- size_t mmap_threshold
- size_t trim_threshold
- flag_t default_mflags

9.30.1 Detailed Description

Definition at line 1494 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.31 malloc_segment Struct Reference

Data Fields

- char * base
- size_t size
- struct malloc_segment * next
- flag_t sflags

9.31.1 Detailed Description

Definition at line 2458 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.32 malloc_state Struct Reference

Data Fields

- binmap_t smallmap
- binmap_t treemap
- size_t dvsize
- size_t topsize
- · char * least_addr
- mchunkptr dv
- mchunkptr top
- · size_t trim_check
- size_t release_checks
- size_t magic
- mchunkptr smallbins [(NSMALLBINS+1) *2]
- tbinptr treebins [NTREEBINS]
- size_t footprint
- size_t max_footprint
- · flag_t mflags
- · msegment seg
- void * extp
- size_t exts

9.32.1 Detailed Description

Definition at line 2565 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.33 malloc_tree_chunk Struct Reference

Data Fields

- size_t prev_foot
- · size t head
- struct malloc_tree_chunk * fd
- struct malloc tree chunk * bk
- struct malloc_tree_chunk * child [2]
- struct malloc_tree_chunk * parent
- bindex_t index

9.33.1 Detailed Description

Definition at line 2382 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.34 Mumps_data Struct Reference

Parameters for MUMPS interface.

```
#include <fasp.h>
```

Data Fields

INT job

work for MUMPS

9.34.1 Detailed Description

Parameters for MUMPS interface.

Added on 10/10/2014

Definition at line 494 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.35 mxv_matfree Struct Reference

Matrix-vector multiplication, replace the actual matrix.

```
#include <fasp.h>
```

Data Fields

```
    void * data
        data for MxV, can be a Matrix or something else
    void(* fct )(void *, REAL *, REAL *)
        action for MxV, void function pointer
```

9.35.1 Detailed Description

Matrix-vector multiplication, replace the actual matrix.

Definition at line 1060 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.36 nedmallinfo Struct Reference

Data Fields

- size t arena
- · size_t ordblks
- size_t smblks
- size_t hblks
- size_t hblkhd
- size_t usmblks
- size t fsmblks
- size_t uordblks
- size_t fordblks
- · size t keepcost

9.36.1 Detailed Description

Definition at line 168 of file nedmalloc.h.

The documentation for this struct was generated from the following file:

· nedmalloc.h

9.37 Pardiso_data Struct Reference

Parameters for Intel MKL PARDISO interface.

```
#include <fasp.h>
```

Data Fields

void * pt [64]

Internal solver memory pointer.

9.37.1 Detailed Description

Parameters for Intel MKL PARDISO interface.

Added on 11/28/2015

Definition at line 512 of file fasp.h.

The documentation for this struct was generated from the following file:

fasp.h

9.38 precond Struct Reference

Preconditioner data and action.

```
#include <fasp.h>
```

Data Fields

void * data

data for preconditioner, void pointer

action for preconditioner, void function pointer

void(* fct)(REAL *, REAL *, void *)

9.38.1 Detailed Description

Preconditioner data and action.

Note

This is the preconditioner structure for preconditioned iterative methods.

Definition at line 1046 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.39 precond_block_data Struct Reference

Data passed to the preconditioner for block preconditioning for dBLCmat format.

```
#include <fasp_block.h>
```

Data Fields

- dBLCmat * Ablc
- dCSRmat * A_diag
- dvector r
- void ** LU_diag
- AMG_data ** mgl
- AMG_param * amgparam

9.39.1 Detailed Description

Data passed to the preconditioner for block preconditioning for dBLCmat format.

This is needed for the block preconditioner.

Definition at line 502 of file fasp_block.h.

9.39.2 Field Documentation

9.39.2.1 A_diag

```
dCSRmat* A_diag
```

data for each diagonal block

Definition at line 509 of file fasp_block.h.

9.39.2.2 Ablc

```
dBLCmat* Ablc
```

problem data, the blocks

Definition at line 507 of file fasp_block.h.

9.39.2.3 amgparam

AMG_param* amgparam

parameters for AMG

Definition at line 521 of file fasp_block.h.

9.39.2.4 LU_diag

void** LU_diag

LU decomposition for the diagonal blocks (for UMFpack)

Definition at line 517 of file fasp_block.h.

9.39.2.5 mgl

AMG_data** mgl

AMG data for the diagonal blocks

Definition at line 520 of file fasp_block.h.

9.39.2.6 r

dvector r

temp work space

Definition at line 511 of file fasp_block.h.

The documentation for this struct was generated from the following file:

• fasp_block.h

9.40 precond_block_reservoir_data Struct Reference

Data passed to the preconditioner for reservoir simulation problems.

#include <fasp_block.h>

Data Fields

block Reservoir * A

problem data in block_Reservoir format

• dBLCmat * Ablc

problem data in dBLCmat format

dCSRmat * Acsr

problem data in CSR format

INT ILU_Ifil

level of fill-in for structured ILU(k)

dSTRmat * LU

LU matrix for Reservoir-Reservoir block in STR format.

ILU data * LUcsr

LU matrix for Reservoir-Reservoir block in CSR format.

• AMG_data * mgl_data

AMG data for presure-presure block.

SHORT print_level

print level in AMG preconditioner

INT maxit AMG

max number of iterations of AMG preconditioner

SHORT max_levels

max number of AMG levels

REAL amg_tol

tolerance for AMG preconditioner

SHORT cycle_type

AMG cycle type.

SHORT smoother

AMG smoother type.

SHORT presmooth_iter

number of presmoothing

SHORT postsmooth_iter

number of postsmoothingSHORT coarsening_type

coarsening type

REAL relaxation

relaxation parameter for SOR smoother

· SHORT coarse_scaling

switch of scaling of coarse grid correction

INT maxit

max number of iterations

INT restart

number of iterations for restart

REAL tol

tolerance for convergence

• REAL * invS

inverse of the Schur complement (-I - Awr*Arr^{-1}*Arw)^{-1}, Arr may be replaced by LU

dvector * DPSinvDSS

Diag(PS) * inv(Diag(SS))

- SHORT scaled
- ivector * perf_idx
- dSTRmat * RR
- dCSRmat * WW
- dCSRmat * PP
- dSTRmat * SS
- precond_diagstr * diag
- dvector * diaginv
- ivector * pivot
- dvector * diaginvS
- ivector * pivotS
- ivector * order
- dvector r
- REAL * w

9.40.1 Detailed Description

Data passed to the preconditioner for reservoir simulation problems.

Note

This is only needed for the Black Oil model with wells

Definition at line 404 of file fasp_block.h.

9.40.2 Field Documentation

9.40.2.1 diag

precond_diagstr* diag

the diagonal inverse for diagonal scaling

Definition at line 484 of file fasp_block.h.

9.40.2.2 diaginv

dvector* diaginv

the inverse of the diagonals for GS/block GS smoother (whole reservoir matrix)

Definition at line 485 of file fasp_block.h.

Definition at line 481 of file fasp_block.h.

```
9.40.2.3 diaginvS
dvector* diaginvS
the inverse of the diagonals for GS/block GS smoother (saturation block)
Definition at line 487 of file fasp_block.h.
9.40.2.4 order
ivector* order
order for smoothing
Definition at line 489 of file fasp_block.h.
9.40.2.5 perf idx
ivector* perf_idx
variable index for perf
Definition at line 477 of file fasp_block.h.
9.40.2.6 pivot
ivector* pivot
the pivot for the GS/block GS smoother (whole reservoir matrix)
Definition at line 486 of file fasp_block.h.
9.40.2.7 pivotS
ivector* pivotS
the pivot for the GS/block GS smoother (saturation block)
Definition at line 488 of file fasp_block.h.
9.40.2.8 PP
dCSRmat* PP
pressure block after diagonal scaling
```

```
9.40.2.9 r
dvector r
temporary dvector used to store and restore the residual
Definition at line 492 of file fasp_block.h.
9.40.2.10 RR
dSTRmat* RR
Diagonal scaled reservoir block
Definition at line 479 of file fasp_block.h.
9.40.2.11 scaled
SHORT scaled
whether the matirx is scaled
Definition at line 476 of file fasp_block.h.
9.40.2.12 SS
dSTRmat* SS
saturation block after diaogonal scaling
Definition at line 482 of file fasp_block.h.
9.40.2.13 w
REAL* W
temporary work space for other usage
```

Generated by Doxygen

Definition at line 493 of file fasp_block.h.

9.40.2.14 WW

dCSRmat* WW

Argumented well block

Definition at line 480 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.41 precond_data Struct Reference

Data passed to the preconditioners.

```
#include <fasp.h>
```

Data Fields

SHORT AMG_type

type of AMG method

SHORT print_level

print level in AMG preconditioner

· INT maxit

max number of iterations of AMG preconditioner

SHORT max_levels

max number of AMG levels

· REAL tol

tolerance for AMG preconditioner

SHORT cycle_type

AMG cycle type.

SHORT smoother

AMG smoother type.

SHORT smooth_order

AMG smoother ordering.

SHORT presmooth_iter

number of presmoothing

SHORT postsmooth_iter

number of postsmoothing

REAL relaxation

relaxation parameter for SOR smoother

SHORT polynomial_degree

degree of the polynomial smoother

SHORT coarsening_type

switch of scaling of the coarse grid correction

SHORT coarse_solver

coarse solver type for AMG

SHORT coarse scaling

switch of scaling of the coarse grid correction

SHORT amli_degree

degree of the polynomial used by AMLI cycle

SHORT nl_amli_krylov_type

type of Krylov method used by Nonlinear AMLI cycle

· REAL tentative_smooth

smooth factor for smoothing the tentative prolongation

REAL * amli_coef

coefficients of the polynomial used by AMLI cycle

AMG_data * mgl_data

AMG preconditioner data.

• ILU data * LU

ILU preconditioner data (needed for CPR type preconditioner)

dCSRmat * A

Matrix data.

dCSRmat * A_nk

Matrix data for near kernel.

dCSRmat * P nk

Prolongation for near kernel.

dCSRmat * R_nk

Restriction for near kernel.

dvector r

temporary dvector used to store and restore the residual

• REAL * w

temporary work space for other usage

9.41.1 Detailed Description

Data passed to the preconditioners.

Definition at line 842 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.42 precond_data_bsr Struct Reference

Data passed to the preconditioners.

#include <fasp_block.h>

Data Fields

SHORT AMG_type

type of AMG method

SHORT print_level

print level in AMG preconditioner

· INT maxit

max number of iterations of AMG preconditioner

INT max_levels

max number of AMG levels

REAL tol

tolerance for AMG preconditioner

SHORT cycle type

AMG cycle type.

SHORT smoother

AMG smoother type.

· SHORT smooth_order

AMG smoother ordering.

· SHORT presmooth iter

number of presmoothing

SHORT postsmooth_iter

number of postsmoothing

SHORT coarsening_type

coarsening type

REAL relaxation

relaxation parameter for SOR smoother

SHORT coarse_solver

coarse solver type for AMG

SHORT coarse_scaling

switch of scaling of the coarse grid correction

SHORT amli_degree

degree of the polynomial used by AMLI cycle

REAL * amli_coef

coefficients of the polynomial used by AMLI cycle

REAL tentative_smooth

smooth factor for smoothing the tentative prolongation

SHORT nl_amli_krylov_type

type of krylov method used by Nonlinear AMLI cycle

AMG data bsr * mgl data

AMG preconditioner data.

AMG_data * pres_mgl_data

AMG preconditioner data for pressure block.

• ILU data * LU

ILU preconditioner data (needed for CPR type preconditioner)

dBSRmat * A

Matrix data.

dCSRmat * A nk

Matrix data for near kernal.

dCSRmat * P_nk

Prolongation for near kernal.

dCSRmat * R nk

Resriction for near kernal.

dvector r

temporary dvector used to store and restore the residual

• REAL * w

temporary work space for other usage

9.42.1 Detailed Description

Data passed to the preconditioners.

Note

This structure is needed for the AMG solver/preconditioner in BSR format

Definition at line 311 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.43 precond_data_str Struct Reference

Data passed to the preconditioner for dSTRmat matrices.

```
#include <fasp.h>
```

Data Fields

SHORT AMG_type

type of AMG method

SHORT print_level

print level in AMG preconditioner

INT maxit

max number of iterations of AMG preconditioner

SHORT max levels

max number of AMG levels

REAL tol

tolerance for AMG preconditioner

SHORT cycle_type

AMG cycle type.

· SHORT smoother

AMG smoother type.

SHORT presmooth_iter

number of presmoothing

· SHORT postsmooth_iter

number of postsmoothing

SHORT coarsening_type

coarsening type

· REAL relaxation

relaxation parameter for SOR smoother

SHORT coarse scaling

switch of scaling of the coarse grid correction

AMG_data * mgl_data

AMG preconditioner data.

• ILU_data * LU

ILU preconditioner data (needed for CPR type preconditioner)

SHORT scaled

whether the matrix are scaled or not

dCSRmat * A

the original CSR matrix

dSTRmat * A str

store the whole reservoir block in STR format

dSTRmat * SS str

store Saturation block in STR format

dvector * diaginv

the inverse of the diagonals for GS/block GS smoother (whole reservoir matrix)

ivector * pivot

the pivot for the GS/block GS smoother (whole reservoir matrix)

dvector * diaginvS

the inverse of the diagonals for GS/block GS smoother (saturation block)

ivector * pivotS

the pivot for the GS/block GS smoother (saturation block)

· ivector * order

order for smoothing

ivector * neigh

array to store neighbor information

· dvector r

temporary dvector used to store and restore the residual

REAL * w

temporary work space for other usage

9.43.1 Detailed Description

Data passed to the preconditioner for dSTRmat matrices.

Definition at line 938 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.44 precond_diagbsr Struct Reference

Data passed to diagnal preconditioner for dBSRmat matrices.

```
#include <fasp_block.h>
```

Data Fields

• INT nb

dimension of each sub-block

· dvector diag

diagnal elements

9.44.1 Detailed Description

Data passed to diagnal preconditioner for dBSRmat matrices.

Note

This is needed for the diagnal preconditioner.

Definition at line 293 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.45 precond_diagstr Struct Reference

Data passed to diagonal preconditioner for dSTRmat matrices.

```
#include <fasp.h>
```

Data Fields

• INT nc

number of components

dvector diag

diagonal elements

9.45.1 Detailed Description

Data passed to diagonal preconditioner for dSTRmat matrices.

Note

This is needed for the diagonal preconditioner.

Definition at line 1030 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.46 precond_FASP_blkoil_data Struct Reference

Data passed to the preconditioner for preconditioning reservoir simulation problems.

```
#include <fasp_block.h>
```

Data Fields

```
· block BSR * A
```

Part 1: Basic data.

SHORT scaled

Part 2: Data for CPR-like preconditioner for reservoir block.

- dvector * diaginv_noscale
- dBSRmat * RR
- ivector * neigh
- ivector * order
- dBSRmat * SS
- dvector * diaginv_S
- ivector * pivot_SILU_data * LU_S
- 1000
- dCSRmat * PP
- AMG_data * mgl_data
- ILU_data * LU_P
- SHORT print_level

print level in AMG preconditioner

INT maxit_AMG

max number of iterations of AMG preconditioner

SHORT max levels

max number of AMG levels

REAL amg_tol

tolerance for AMG preconditioner

SHORT cycle_type

AMG cycle type.

SHORT smoother

AMG smoother type.

SHORT smooth_order

AMG smoothing order.

· SHORT presmooth_iter

number of presmoothing

SHORT postsmooth_iter

number of postsmoothing

• SHORT coarsening_type

coarsening type

· INT coarse dof

coarset dof

SHORT coarse_solver

coarse level solver type

· REAL relaxation

relaxation parameter for SOR smoother

SHORT coarse_scaling

switch of scaling of coarse grid correction

SHORT amli degree

degree of the polynomial used by AMLI cycle

· REAL * amli coef

coefficients of the polynomial used by AMLI cycle

REAL tentative_smooth

relaxation parameter for smoothing the tentative prolongation

- dvector * diaginv
- ivector * pivot
- ILU data * LU

data of ILU for reservoir block

- ivector * perf idx
- ivector * perf_neigh
- dCSRmat * WW
- void * Numeric

data for direct solver for argumented well block

REAL * invS

inverse of the schur complement (-I - Awr*Arr^\{-1}*Arw)^\{-1}, Arr may be replaced by LU

- INT maxit
- INT restart
- REAL tol
- · dvector r
- REAL * w

9.46.1 Detailed Description

Data passed to the preconditioner for preconditioning reservoir simulation problems.

Note

This is only needed for the Black Oil model with wells

Definition at line 532 of file fasp block.h.

9.46.2 Field Documentation

9.46.2.1 A

block_BSR* A

Part 1: Basic data.

whole jacobian system in block_BSRmat

Definition at line 537 of file fasp_block.h.

9.46.2.2 diaginv

dvector* diaginv

inverse of the diagonal blocks of reservoir block

Definition at line 618 of file fasp_block.h.

9.46.2.3 diaginv_noscale

dvector* diaginv_noscale

inverse of diagonal blocks for diagonal scaling

Definition at line 544 of file fasp_block.h.

9.46.2.4 diaginv_S

dvector* diaginv_S

inverse of the diagonal blocks of saturation block

Definition at line 553 of file fasp_block.h.

9.46.2.5 LU_P

ILU_data* LU_P

ILU setup data for pressure block

Definition at line 564 of file fasp_block.h.

```
9.46.2.6 LU_S
ILU_data* LU_S
ILU setup data for saturation block
Definition at line 557 of file fasp_block.h.
9.46.2.7 maxit
INT maxit
max number of iterations
Definition at line 636 of file fasp_block.h.
9.46.2.8 mgl_data
AMG_data* mgl_data
AMG data for presure-presure block
Definition at line 561 of file fasp_block.h.
9.46.2.9 neigh
ivector* neigh
neighbor information of the reservoir block
Definition at line 548 of file fasp_block.h.
9.46.2.10 order
ivector* order
ordering of the reservoir block
Definition at line 549 of file fasp_block.h.
9.46.2.11 perf_idx
```

Generated by Doxygen

ivector* perf_idx

index of blocks which have perforation

Definition at line 625 of file fasp_block.h.

Definition at line 637 of file fasp_block.h.

```
9.46.2.12 perf_neigh
ivector* perf_neigh
index of blocks which are neighbors of perforations (include perforations)
Definition at line 626 of file fasp_block.h.
9.46.2.13 pivot
ivector* pivot
pivot for the GS smoothers for the reservoir matrix
Definition at line 619 of file fasp_block.h.
9.46.2.14 pivot_S
ivector* pivot_S
pivoting for the GS smoothers for saturation block
Definition at line 554 of file fasp_block.h.
9.46.2.15 PP
dCSRmat* PP
pressure block
Definition at line 560 of file fasp_block.h.
9.46.2.16 r
dvector r
temporary dvector used to store and restore the residual
Definition at line 641 of file fasp_block.h.
9.46.2.17 restart
INT restart
number of iterations for restart
```

```
9.46.2.18 RR
dBSRmat* RR
reservoir block
Definition at line 545 of file fasp_block.h.
9.46.2.19 scaled
SHORT scaled
Part 2: Data for CPR-like preconditioner for reservoir block.
scaled = 1 means the the following RR block is diagonal scaled
Definition at line 543 of file fasp_block.h.
9.46.2.20 SS
dBSRmat* SS
saturation block
Definition at line 552 of file fasp_block.h.
9.46.2.21 tol
REAL tol
tolerance
Definition at line 638 of file fasp_block.h.
9.46.2.22 w
REAL* w
temporary work space for other usage
Definition at line 642 of file fasp_block.h.
```

Generated by Doxygen

9.46.2.23 WW

```
dCSRmat* WW
```

Argumented well block

Definition at line 627 of file fasp_block.h.

The documentation for this struct was generated from the following file:

• fasp_block.h

9.47 precond_sweeping_data Struct Reference

Data passed to the preconditioner for sweeping preconditioning.

```
#include <fasp_block.h>
```

Data Fields

- INT NumLayers
- dBLCmat * A
- dBLCmat * Ai
- dCSRmat * local A
- void ** local_LU
- ivector * local_index
- dvector r
- REAL * w

9.47.1 Detailed Description

Data passed to the preconditioner for sweeping preconditioning.

Author

Xiaozhe Hu

Date

05/01/2014

Note

This is needed for the sweeping preconditioner.

Definition at line 655 of file fasp_block.h.

9.47.2 Field Documentation

9.47.2.1 A

dBLCmat* A

problem data, the sparse matrix

Definition at line 659 of file fasp_block.h.

9.47.2.2 Ai

dBLCmat* Ai

preconditioner data, the sparse matrix

Definition at line 660 of file fasp_block.h.

9.47.2.3 local_A

dCSRmat* local_A

local stiffness matrix for each layer

Definition at line 662 of file fasp_block.h.

9.47.2.4 local_index

ivector* local_index

local index for each layer

Definition at line 665 of file fasp_block.h.

9.47.2.5 local_LU

void** local_LU

Icoal LU decomposition (for UMFpack)

Definition at line 663 of file fasp_block.h.

9.47.2.6 NumLayers INT NumLayers number of layers Definition at line 657 of file fasp_block.h. 9.47.2.7 r dvector r temporary dvector used to store and restore the residual Definition at line 668 of file fasp_block.h. 9.47.2.8 w REAL* W temporary work space for other usage Definition at line 669 of file fasp_block.h. The documentation for this struct was generated from the following file: • fasp_block.h Schwarz_data Struct Reference

Data for Schwarz methods.

#include <fasp.h>

Data Fields

dCSRmat A

pointer to the matrix

INT nblk

number of blocks

• INT * iblock

row index of blocks

• INT * jblock

column index of blocks

• REAL * rhsloc

temp work space???

dvector rhsloc1

local right hand side

dvector xloc1

local solution

• REAL * au

LU decomposition: the U block.

• REAL * al

LU decomposition: the L block.

INT Schwarz_type

Schwarz method type.

INT blk_solver

Schwarz block solver.

INT memt

working space size

• INT * mask

mask

INT maxbs

maximal block size

• INT * maxa

maxa

• dCSRmat * blk_data

matrix for each partition

• Mumps_data * mumps

param for MUMPS

Schwarz_param * swzparam

param for Schwarz

9.48.1 Detailed Description

Data for Schwarz methods.

This is needed for the Schwarz solver/preconditioner/smoother.

Definition at line 540 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.49 Schwarz_param Struct Reference

Parameters for Schwarz method.

```
#include <fasp.h>
```

Data Fields

• SHORT print_level

print leve

SHORT Schwarz_type

type for Schwarz method

INT Schwarz_maxlvl

maximal level for constructing the blocks

• INT Schwarz_mmsize

maximal size of blocks

INT Schwarz_blksolver

type of Schwarz block solver

9.49.1 Detailed Description

Parameters for Schwarz method.

Added on 05/14/2012

Definition at line 469 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

Chapter 10

File Documentation

10.1 amg.c File Reference

AMG method as an iterative solver (main file)

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void fasp_solver_amg (dCSRmat *A, dvector *b, dvector *x, AMG_param *param)

Solve Ax = b by algebraic multigrid methods.

10.1.1 Detailed Description

AMG method as an iterative solver (main file)

10.1.2 Function Documentation

10.1.2.1 fasp_solver_amg()

Solve Ax = b by algebraic multigrid methods.

90 File Documentation

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
Х	Pointer to dvector: the unknowns
param	Pointer to AMG_param: AMG parameters

Author

Chensong Zhang

Date

04/06/2010

Note

Refer to "Multigrid" by U. Trottenberg, C. W. Oosterlee and A. Schuller Appendix A.7 (by A. Brandt, P. Oswald and K. Stuben) Academic Press Inc., San Diego, CA, 2001.

Modified by Chensong Zhang on 01/10/2012 Modified by Chensong Zhang on 07/26/2014: Add error handling for AMG setup

Definition at line 37 of file amg.c.

10.2 amg_setup_cr.c File Reference

Brannick-Falgout compatible relaxation based AMG: SETUP phase.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

SHORT fasp_amg_setup_cr (AMG_data *mgl, AMG_param *param)

Set up phase of Brannick Falgout CR coarsening for classic AMG.

10.2.1 Detailed Description

Brannick-Falgout compatible relaxation based AMG: SETUP phase.

Note

Setup A, P, R and levels using the Compatible Relaxation coarsening for classic AMG interpolation Refer to J. Brannick and R. Falgout "Compatible relaxation and coarsening in AMG"

Warning

Not working. Yet need to be fixed. -Chensong

10.2.2 Function Documentation

```
10.2.2.1 fasp_amg_setup_cr()
```

Set up phase of Brannick Falgout CR coarsening for classic AMG.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

James Brannick

Date

04/21/2010

Modified by Chensong Zhang on 05/10/2013: adjust the structure.

Definition at line 38 of file amg_setup_cr.c.

92 File Documentation

10.3 amg_setup_rs.c File Reference

Ruge-Stuben AMG: SETUP phase.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• SHORT fasp_amg_setup_rs (AMG_data *mgl, AMG_param *param)

Setup phase of Ruge and Stuben's classic AMG.

10.3.1 Detailed Description

Ruge-Stuben AMG: SETUP phase.

Note

Ref Multigrid by U. Trottenberg, C. W. Oosterlee and A. Schuller Appendix P475 A.7 (by A. Brandt, P. Oswald and K. Stuben) Academic Press Inc., San Diego, CA, 2001.

10.3.2 Function Documentation

```
10.3.2.1 fasp_amg_setup_rs()
```

```
SHORT fasp_amg_setup_rs (

AMG_data * mg1,

AMG_param * param )
```

Setup phase of Ruge and Stuben's classic AMG.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Chensong Zhang

Date

05/09/2010

Modified by Chensong Zhang on 04/04/2009. Modified by Chensong Zhang on 05/09/2010. Modified by Zhiyang Zhou on 11/17/2010. Modified by Xiaozhe Hu on 01/23/2011: add AMLI cycle. Modified by Chensong zhang on 09/09/2011 ←: add min dof. Modified by Xiaozhe Hu on 04/24/2013: aggressive coarsening. Modified by Chensong Zhang on 05/03/2013: add error handling in setup. Modified by Chensong Zhang on 05/10/2013: adjust the structure. Modified by Chensong Zhang on 07/26/2014: handle coarsening errors. Modified by Chensong Zhang on 09/23/2014: check coarse spaces.

Definition at line 47 of file amg setup rs.c.

10.4 amg_setup_sa.c File Reference

Smoothed aggregation AMG: SETUP phase.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "aggregation_csr.inl"
#include "aggregation_bsr.inl"
```

Functions

- SHORT fasp_amg_setup_sa (AMG_data *mgl, AMG_param *param)
- SHORT fasp_amg_setup_sa_bsr (AMG_data_bsr *mgl, AMG_param *param)

Set up phase of smoothed aggregation AMG (BSR format)

Set up phase of smoothed aggregation AMG.

10.4.1 Detailed Description

Smoothed aggregation AMG: SETUP phase.

Note

Setup A, P, PT and levels using the unsmoothed aggregation algorithm; Refer to P. Vanek, J. Madel and M. Brezina "Algebraic Multigrid on Unstructured Meshes", 1994

10.4.2 Function Documentation

```
10.4.2.1 fasp_amg_setup_sa()
SHORT fasp_amg_setup_sa (
```

```
SHORT fasp_amg_setup_sa (

AMG_data * mgl,

AMG_param * param )
```

Set up phase of smoothed aggregation AMG.

94 File Documentation

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

09/29/2009

Modified by Chensong Zhang on 04/06/2010. Modified by Chensong Zhang on 05/09/2010. Modified by Xiaozhe Hu on 01/23/2011: add AMLI cycle. Modified by Chensong Zhang on 05/10/2013: adjust the structure.

Definition at line 48 of file amg_setup_sa.c.

10.4.2.2 fasp_amg_setup_sa_bsr()

Set up phase of smoothed aggregation AMG (BSR format)

Parameters

mgl	Pointer to AMG data: AMG_data_bsr
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 85 of file amg_setup_sa.c.

10.5 amg_setup_ua.c File Reference

Unsmoothed aggregation AMG: SETUP phase.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "aggregation_csr.inl"
#include "aggregation_bsr.inl"
```

Functions

• SHORT fasp_amg_setup_ua (AMG_data *mgl, AMG_param *param)

Set up phase of unsmoothed aggregation AMG.

• SHORT fasp_amg_setup_ua_bsr (AMG_data_bsr *mgl, AMG_param *param)

Set up phase of unsmoothed aggregation AMG (BSR format)

10.5.1 Detailed Description

Unsmoothed aggregation AMG: SETUP phase.

Note

Setup A, P, PT and levels using the unsmoothed aggregation algorithm; Refer to P. Vanek, J. Madel and M. Brezina "Algebraic Multigrid on Unstructured Meshes", 1994

10.5.2 Function Documentation

```
10.5.2.1 fasp_amg_setup_ua()
```

```
SHORT fasp_amg_setup_ua (

AMG_data * mgl,

AMG_param * param)
```

Set up phase of unsmoothed aggregation AMG.

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

12/28/2011

Definition at line 38 of file amg_setup_ua.c.

```
10.5.2.2 fasp_amg_setup_ua_bsr()
```

```
INT fasp_amg_setup_ua_bsr (
          AMG_data_bsr * mgl,
          AMG_param * param )
```

Set up phase of unsmoothed aggregation AMG (BSR format)

Parameters

mgl	Pointer to AMG data: AMG_data_bsr
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

03/16/2012

Definition at line 69 of file amg_setup_ua.c.

10.6 amg_solve.c File Reference

Algebraic multigrid iterations: SOLVE phase.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

```
    INT fasp_amg_solve (AMG_data *mgl, AMG_param *param)
        AMG – SOLVE phase.
    INT fasp_amg_solve_amli (AMG_data *mgl, AMG_param *param)
        AMLI – SOLVE phase.
    INT fasp_amg_solve_nl_amli (AMG_data *mgl, AMG_param *param)
        Nonlinear AMLI – SOLVE phase.
    void fasp_famg_solve (AMG_data *mgl, AMG_param *param)
        FMG – SOLVE phase.
```

10.6.1 Detailed Description

Algebraic multigrid iterations: SOLVE phase.

Note

Solve Ax=b using multigrid method. This is SOLVE phase only and is independent of SETUP method used! Should be called after multigrid hierarchy has been generated!

10.6.2 Function Documentation

10.6.2.1 fasp_amg_solve()

```
INT fasp_amg_solve (
          AMG_data * mgl,
           AMG_param * param )
```

AMG - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

Iteration number if converges; ERROR otherwise.

Author

Xuehai Huang, Chensong Zhang

Date

04/02/2010

Modified by Chensong 04/21/2013: Fix an output typo

Definition at line 36 of file amg_solve.c.

10.6.2.2 fasp_amg_solve_amli()

```
INT fasp_amg_solve_amli (
          AMG_data * mgl,
          AMG_param * param )
```

AMLI - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/23/2011

Note

AMLI polynomial computed by the best approximation of 1/x. Refer to Johannes K. Kraus, Panayot S. Vassilevski, Ludmil T. Zikatanov, "Polynomial of best uniform approximation to x^{-1} and smoothing in two-level methods", 2013.

Modified by Chensong 04/21/2013: Fix an output typo

Definition at line 125 of file amg_solve.c.

10.6.2.3 fasp_amg_solve_nl_amli()

```
INT fasp_amg_solve_nl_amli (
          AMG_data * mgl,
          AMG_param * param )
```

Nonlinear AMLI - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

04/30/2011

Modified by Chensong 04/21/2013: Fix an output typo

Note

Nonlinear AMLI-cycle. Refer to Xiazhe Hu, Panayot S. Vassilevski, Jinchao Xu "Comparative Convergence Analysis of Nonlinear AMLI-cycle Multigrid", 2013.

Definition at line 209 of file amg_solve.c.

10.6.2.4 fasp_famg_solve()

FMG - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Author

Chensong Zhang

Date

01/10/2012

Definition at line 281 of file amg_solve.c.

10.7 amlirecur.c File Reference

Abstract AMLI multilevel iteration - recursive version.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "mg_util.inl"
```

Functions

- void fasp_solver_amli (AMG_data *mgl, AMG_param *param, INT level)

 Solve Ax=b with recursive AMLI-cycle.
- void fasp_solver_nl_amli (AMG_data *mgl, AMG_param *param, INT level, INT num_levels) Solve Ax=b with recursive nonlinear AMLI-cycle.
- void fasp_solver_nl_amli_bsr (AMG_data_bsr *mgl, AMG_param *param, INT level, INT num_levels) Solve Ax=b with recursive nonlinear AMLI-cycle.
- void fasp_amg_amli_coef (const REAL lambda_max, const REAL lambda_min, const INT degree, REAL *coef)

 Compute the coefficients of the polynomial used by AMLI-cycle.

10.7.1 Detailed Description

Abstract AMLI multilevel iteration – recursive version.

Note

AMLI and non-linear AMLI cycles

10.7.2 Function Documentation

10.7.2.1 fasp_amg_amli_coef()

Compute the coefficients of the polynomial used by AMLI-cycle.

Parameters

lambda_max	Maximal lambda
lambda_min	Minimal lambda
degree	Degree of polynomial approximation
coef	Coefficient of AMLI (output)

Author

Xiaozhe Hu

Date

01/23/2011

Definition at line 706 of file amlirecur.c.

10.7.2.2 fasp_solver_amli()

```
void fasp_solver_amli (
          AMG_data * mgl,
          AMG_param * param,
          INT level )
```

Solve Ax=b with recursive AMLI-cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param
level	Current level

Author

Xiaozhe Hu

Date

01/23/2011

Note

AMLI polynomial computed by the best approximation of 1/x. Refer to Johannes K. Kraus, Panayot S. Vassilevski, Ludmil T. Zikatanov, "Polynomial of best uniform approximation to x^{-1} and smoothing in two-level methods", 2013.

Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Zheng Li on 11/10/2014: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 45 of file amlirecur.c.

10.7.2.3 fasp_solver_nl_amli()

```
void fasp_solver_nl_amli (
          AMG_data * mgl,
          AMG_param * param,
          INT level,
          INT num_levels )
```

Solve Ax=b with recursive nonlinear AMLI-cycle.

Parameters

mgl	Pointer to AMG_data data
param	Pointer to AMG parameters
level	Current level
num_levels	Total number of levels

Author

Xiaozhe Hu

Date

04/06/2010

Note

Refer to Xiazhe Hu, Panayot S. Vassilevski, Jinchao Xu "Comparative Convergence Analysis of Nonlinear AML← I-cycle Multigrid", 2013.

Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Zheng Li on 11/10/2014: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 269 of file amlirecur.c.

10.7.2.4 fasp_solver_nl_amli_bsr()

```
void fasp_solver_nl_amli_bsr (
          AMG_data_bsr * mgl,
          AMG_param * param,
          INT level,
          INT num_levels )
```

Solve Ax=b with recursive nonlinear AMLI-cycle.

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param
level	Current level
num_levels	Total number of levels

Author

Xiaozhe Hu

Date

04/06/2010

Note

Nonlinear AMLI-cycle. Refer to Xiazhe Hu, Panayot S. Vassilevski, Jinchao Xu "Comparative Convergence Analysis of Nonlinear AMLI-cycle Multigrid", 2013.

Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 508 of file amlirecur.c.

10.8 array.c File Reference

Simple array operations - init, set, copy, etc.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_array_null (REAL *x)
```

Initialize an array.

• void fasp_array_set (const INT n, REAL *x, const REAL val)

Set initial value for an array to be x=val.

void fasp iarray set (const INT n, INT *x, const INT val)

Set initial value for an array to be x=val.

void fasp_array_cp (const INT n, REAL *x, REAL *y)

Copy an array to the other y=x.

void fasp_iarray_cp (const INT n, INT *x, INT *y)

Copy an array to the other y=x.

void fasp_array_cp_nc3 (REAL *x, REAL *y)

Copy an array to the other y=x, the length is 3.

void fasp_array_cp_nc5 (REAL *x, REAL *y)

Copy an array to the other y=x, the length is 5.

void fasp_array_cp_nc7 (REAL *x, REAL *y)

Copy an array to the other y=x, the length is 7.

void fasp_array_permut_nb (INT n, INT nb, REAL *x, INT *p, REAL *y)

Arrav mappina.

void fasp_array_invpermut_nb (INT n, INT nb, REAL *x, INT *p, REAL *y)

Array mapping.

10.8.1 Detailed Description

Simple array operations – init, set, copy, etc.

10.8.2 Function Documentation

10.8.2.1 fasp_array_cp()

Copy an array to the other y=x.

Parameters

n	Number of variables
Х	Pointer to the original vector
у	Pointer to the destination vector

Author

Chensong Zhang

Date

2010/04/03

Definition at line 165 of file array.c.

```
10.8.2.2 fasp_array_cp_nc3()
```

Copy an array to the other y=x, the length is 3.

Х	Pointer to the original vector
У	Pointer to the destination vector

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

Special unrolled routine designed for a specific application

Definition at line 205 of file array.c.

```
10.8.2.3 fasp_array_cp_nc5()
```

```
void fasp_array_cp_nc5 (
    REAL * x,
    REAL * y )
```

Copy an array to the other y=x, the length is 5.

Parameters

X	Pointer to the original vector
У	Pointer to the destination vector

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

Special unrolled routine designed for a specific application

Definition at line 226 of file array.c.

```
10.8.2.4 fasp_array_cp_nc7()
```

Copy an array to the other y=x, the length is 7.

Parameters

X	Pointer to the original vector
У	Pointer to the destination vector

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

Special unrolled routine designed for a specific application

Definition at line 249 of file array.c.

10.8.2.5 fasp_array_invpermut_nb()

Array mapping.

Parameters

n	Size of array
nb	Step size
Х	Pointer to the original vector
р	Pointer to index mapping
У	Pointer to the destination vector

Author

Zheng Li

Date

12/04/2016

Definition at line 312 of file array.c.

10.8.2.6 fasp_array_null()

Initialize an array.

Parameters

```
x Pointer to the vector
```

Author

Chensong Zhang

Date

2010/04/03

Definition at line 29 of file array.c.

10.8.2.7 fasp_array_permut_nb()

Array mapping.

Parameters

n	Size of array
nb	Step size
X	Pointer to the original vector
р	Pointer to index mapping
У	Pointer to the destination vector

Author

Zheng Li

Date

12/04/2016

Definition at line 276 of file array.c.

```
10.8.2.8 fasp_array_set()
```

Set initial value for an array to be x=val.

Parameters

n	Number of variables
X	Pointer to the vector
val	Initial value for the REAL array

Author

Chensong Zhang

Date

04/03/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 48 of file array.c.

10.8.2.9 fasp_iarray_cp()

Copy an array to the other y=x.

n	Number of variables
X	Pointer to the original vector
У	Pointer to the destination vector

Author

Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 185 of file array.c.

10.8.2.10 fasp_iarray_set()

Set initial value for an array to be x=val.

Parameters

n	Number of variables
Χ	Pointer to the vector
val	Initial value for the REAL array

Author

Chensong Zhang

Date

04/03/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/25/2012

Definition at line 107 of file array.c.

10.9 blas_array.c File Reference

BLAS1 operations for arrays.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_blas_array_ax (const INT n, const REAL a, REAL *x)

     x = a * x

    void fasp_blas_array_axpy (const INT n, const REAL a, REAL *x, REAL *y)

     y = a * x + y

    void fasp_blas_array_axpyz (const INT n, const REAL a, REAL *x, REAL *y, REAL *z)

     z = a * x + y

    void fasp_blas_array_axpby (const INT n, const REAL a, REAL *x, const REAL b, REAL *y)

     y = a*x + b*y
• REAL fasp_blas_array_dotprod (const INT n, const REAL *x, const REAL *y)
      Inner product of two arraies (x,y)

    REAL fasp_blas_array_norm1 (const INT n, const REAL *x)

     L1 norm of array x.
• REAL fasp_blas_array_norm2 (const INT n, const REAL *x)
     L2 norm of array x.

    REAL fasp_blas_array_norminf (const INT n, const REAL *x)

     Linf norm of array x.
```

10.9.1 Detailed Description

BLAS1 operations for arrays.

10.9.2 Function Documentation

x = a*x

Parameters

n	Number of variables
а	Factor a
Х	Pointer to x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

x is reused to store the resulting array.

Definition at line 35 of file blas_array.c.

10.9.2.2 fasp_blas_array_axpby()

```
y = a*x + b*y
```

Parameters

n	Number of variables
а	Factor a
Х	Pointer to x
b	Factor b
У	Pointer to y

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

y is reused to store the resulting array.

Definition at line 218 of file blas_array.c.

10.9.2.3 fasp_blas_array_axpy()

Parameters

n	Number of variables
а	Factor a
Χ	Pointer to x
у	Pointer to y

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

y is reused to store the resulting array.

Definition at line 87 of file blas_array.c.

10.9.2.4 fasp_blas_array_axpyz()

z = a*x + y

n	Number of variables
а	Factor a
Χ	Pointer to x
У	Pointer to y
Z	Pointer to z

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 167 of file blas_array.c.

```
10.9.2.5 fasp_blas_array_dotprod()
```

Inner product of two arraies (x,y)

Parameters

n	Number of variables
Х	Pointer to x
у	Pointer to y

Returns

Inner product (x,y)

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 267 of file blas_array.c.

```
10.9.2.6 fasp_blas_array_norm1()
```

L1 norm of array x.

Parameters

n	Number of variables
X	Pointer to x

Returns

L1 norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 307 of file blas_array.c.

10.9.2.7 fasp_blas_array_norm2()

L2 norm of array x.

Parameters

n	Number of variables
Х	Pointer to x

Returns

L2 norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 347 of file blas_array.c.

10.9.2.8 fasp_blas_array_norminf()

Linf norm of array x.

Parameters

n	Number of variables
X	Pointer to x

Returns

L inf norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Zheng Li on 06/28/2012

Definition at line 388 of file blas_array.c.

10.10 blas_blc.c File Reference

BLAS2 operations for dBLCmat matrices.

```
#include <time.h>
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_blas_dblc_aAxpy (const REAL alpha, dBLCmat *A, REAL *x, REAL *y)
    Matrix-vector multiplication y = alpha*A*x + y.
```

void fasp_blas_dblc_mxv (dBLCmat *A, REAL *x, REAL *y)

Matrix-vector multiplication y = A*x.

void fasp_blas_bdbsr_aAxpy (const REAL alpha, block_BSR *A, REAL *x, REAL *y)

Matrix-vector multiplication y = alpha*A*x + y.

void fasp_blas_bdbsr_mxv (block_BSR *A, REAL *x, REAL *y)

Matrix-vector multiplication y = A*x.

10.10.1 Detailed Description

BLAS2 operations for dBLCmat matrices.

10.10.2 Function Documentation

10.10.2.1 fasp_blas_bdbsr_aAxpy()

Matrix-vector multiplication y = alpha*A*x + y.

Parameters

alpha	REAL factor a
Α	Pointer to block_BSR matrix A
X	Pointer to array x
У	Pointer to array y

Author

Xiaozhe Hu

Date

11/11/2010

Definition at line 288 of file blas_blc.c.

10.10.2.2 fasp_blas_bdbsr_mxv()

```
void fasp_blas_bdbsr_mxv (
          block_BSR * A,
           REAL * x,
           REAL * y )
```

Matrix-vector multiplication y = A*x.

Α	Pointer to block_BSR matrix A
X	Pointer to array x
У	Pointer to array y

Author

Xiaozhe Hu

Date

11/11/2010

Definition at line 326 of file blas_blc.c.

```
10.10.2.3 fasp_blas_dblc_aAxpy()
```

Matrix-vector multiplication y = alpha*A*x + y.

Parameters

alpha	REAL factor a
Α	Pointer to dBLCmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Xiaozhe Hu

Date

06/04/2010

Definition at line 30 of file blas_blc.c.

10.10.2.4 fasp_blas_dblc_mxv()

Matrix-vector multiplication y = A*x.

Parameters

	Α	Pointer to dBLCmat matrix A
ĺ	Χ	Pointer to array x
ĺ	У	Pointer to array y

Author

Chensong Zhang

Date

04/27/2013

Definition at line 155 of file blas blc.c.

10.11 blas_bsr.c File Reference

BLAS2 operations for dBSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_blas_dbsr_axm (dBSRmat *A, const REAL alpha)
 - Multiply a sparse matrix A in BSR format by a scalar alpha.
- void fasp_blas_dbsr_aAxpby (const REAL alpha, dBSRmat *A, REAL *x, const REAL beta, REAL *y)
 Compute y := alpha*A*x + beta*y.
- void fasp_blas_dbsr_aAxpy (const REAL alpha, dBSRmat *A, REAL *x, REAL *y)

Compute y := alpha*A*x + y.

- void fasp_blas_dbsr_aAxpy_agg (const REAL alpha, dBSRmat *A, REAL *x, REAL *y)
 - Compute y := alpha*A*x + y where each small block matrix is an identity matrix.
- $\bullet \ \ void \ fasp_blas_dbsr_mxv \ (dBSRmat \ *A, \ REAL \ *x, \ REAL \ *y)\\$

Compute y := A*x.

- void fasp_blas_dbsr_mxv_agg (dBSRmat *A, REAL *x, REAL *y)
 - Compute y := A*x, where each small block matrices of A is an identity matrix.
- void fasp_blas_dbsr_mxm (dBSRmat *A, dBSRmat *B, dBSRmat *C)

Sparse matrix multiplication C=A*B.

void fasp_blas_dbsr_rap1 (dBSRmat *R, dBSRmat *A, dBSRmat *P, dBSRmat *B)

dBSRmat sparse matrix multiplication B=R*A*P

void fasp_blas_dbsr_rap (dBSRmat *R, dBSRmat *A, dBSRmat *P, dBSRmat *B)

dBSRmat sparse matrix multiplication B=R*A*P

• void fasp_blas_dbsr_rap_agg (dBSRmat *R, dBSRmat *A, dBSRmat *P, dBSRmat *B)

dBSRmat sparse matrix multiplication B=R*A*P, where small block matrices in P and R are identity matrices!

10.11.1 Detailed Description

BLAS2 operations for dBSRmat matrices.

10.11.2 Function Documentation

10.11.2.1 fasp_blas_dbsr_aAxpby()

Compute y := alpha*A*x + beta*y.

Parameters

alpha	REAL factor alpha
Α	Pointer to the dBSRmat matrix
X	Pointer to the array x
beta	REAL factor beta
У	Pointer to the array y

Author

Zhiyang Zhou

Date

10/25/2010

Modified by Chunsheng Feng, Zheng Li on 06/29/2012

Note

Works for general nb (Xiaozhe)

Definition at line 59 of file blas_bsr.c.

10.11.2.2 fasp_blas_dbsr_aAxpy()

Compute y := alpha*A*x + y.

Parameters

alpha	REAL factor alpha
Α	Pointer to the dBSRmat matrix
X	Pointer to the array x
У	Pointer to the array y

Author

Zhiyang Zhou

Date

10/25/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

Works for general nb (Xiaozhe)

Definition at line 339 of file blas_bsr.c.

10.11.2.3 fasp_blas_dbsr_aAxpy_agg()

Compute y := alpha*A*x + y where each small block matrix is an identity matrix.

Parameters

alpha	REAL factor alpha
Α	Pointer to the dBSRmat matrix
X	Pointer to the array x
У	Pointer to the array y

Author

Xiaozhe Hu

Date

01/02/2014

Note

Works for general nb (Xiaozhe)

Definition at line 613 of file blas_bsr.c.

```
10.11.2.4 fasp_blas_dbsr_axm()
```

Multiply a sparse matrix A in BSR format by a scalar alpha.

Parameters

Α	Pointer to dBSRmat matrix A
alpha	REAL factor alpha

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 30 of file blas_bsr.c.

10.11.2.5 fasp_blas_dbsr_mxm()

Sparse matrix multiplication C=A*B.

Α	Pointer to the dBSRmat matrix A
В	Pointer to the dBSRmat matrix B
С	Pointer to dBSRmat matrix equal to A*B

```
Author
```

Xiaozhe Hu

Date

05/26/2014

Note

This fct will be replaced! - Xiaozhe

Definition at line 4634 of file blas_bsr.c.

10.11.2.6 fasp_blas_dbsr_mxv()

Compute y := A*x.

Parameters

Α	Pointer to the dBSRmat matrix
X	Pointer to the array x
У	Pointer to the array y

Author

Zhiyang Zhou

Date

10/25/2010

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 898 of file blas_bsr.c.

10.11.2.7 fasp_blas_dbsr_mxv_agg()

Compute y := A*x, where each small block matrices of A is an identity matrix.

Parameters

Α	Pointer to the dBSRmat matrix
Χ	Pointer to the array x
у	Pointer to the array y

Author

Xiaozhe Hu

Date

01/02/2014

Note

Works for general nb (Xiaozhe)

Definition at line 2684 of file blas_bsr.c.

10.11.2.8 fasp_blas_dbsr_rap()

dBSRmat sparse matrix multiplication B=R*A*P

R	Pointer to the dBSRmat matrix
Α	Pointer to the dBSRmat matrix
Р	Pointer to the dBSRmat matrix
В	Pointer to dBSRmat matrix equal to R*A*P (output)

Author

Xiaozhe Hu, Chunsheng Feng, Zheng Li

Date

10/24/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 4938 of file blas_bsr.c.

10.11.2.9 fasp_blas_dbsr_rap1()

dBSRmat sparse matrix multiplication B=R*A*P

Parameters

R	Pointer to the dBSRmat matrix
Α	Pointer to the dBSRmat matrix
Р	Pointer to the dBSRmat matrix
В	Pointer to dBSRmat matrix equal to R*A*P (output)

Author

Chunsheng Feng, Xiaoqiang Yue and Xiaozhe Hu

Date

08/08/2011

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 4754 of file blas_bsr.c.

10.11.2.10 fasp_blas_dbsr_rap_agg()

```
void fasp_blas_dbsr_rap_agg (
    dBSRmat * R,
    dBSRmat * A,
    dBSRmat * P,
    dBSRmat * B)
```

dBSRmat sparse matrix multiplication B=R*A*P, where small block matrices in P and R are identity matrices!

Parameters

R	Pointer to the dBSRmat matrix
Α	Pointer to the dBSRmat matrix
Р	Pointer to the dBSRmat matrix
В	Pointer to dBSRmat matrix equal to R*A*P (output)

Author

Xiaozhe Hu

Date

10/24/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 5203 of file blas_bsr.c.

10.12 blas_csr.c File Reference

BLAS2 operations for dCSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    INT fasp blas dcsr add (dCSRmat *A, const REAL alpha, dCSRmat *B, const REAL beta, dCSRmat *C)

      compute C = alpha*A + beta*B in CSR format

    void fasp blas dcsr axm (dCSRmat *A, const REAL alpha)

      Multiply a sparse matrix A in CSR format by a scalar alpha.

    void fasp_blas_dcsr_mxv (dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = A*x.

    void fasp blas dcsr mxv agg (dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = A*x, where the entries of A are all ones.

    void fasp_blas_dcsr_aAxpy (const REAL alpha, dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = alpha*A*x + y.

    void fasp blas dcsr aAxpy agg (const REAL alpha, dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = alpha*A*x + y (the entries of A are all ones)

    REAL fasp_blas_dcsr_vmv (dCSRmat *A, REAL *x, REAL *y)

      vector-Matrix-vector multiplication alpha = y'*A*x

    void fasp_blas_dcsr_mxm (dCSRmat *A, dCSRmat *B, dCSRmat *C)

      Sparse matrix multiplication C=A*B.

    void fasp_blas_dcsr_rap (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *RAP)

      Triple sparse matrix multiplication B=R*A*P.

    void fasp_blas_dcsr_rap_agg (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *RAP)

      Triple sparse matrix multiplication B=R*A*P.

    void fasp_blas_dcsr_rap_agg1 (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *B)

      Triple sparse matrix multiplication B=R*A*P (nonzero entries of R and P are ones)
• void fasp_blas_dcsr_ptap (dCSRmat *Pt, dCSRmat *A, dCSRmat *P, dCSRmat *Ac)
      Triple sparse matrix multiplication B=P'*A*P.

    void fasp blas dcsr rap4 (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *B, INT *icor ysk)

      Triple sparse matrix multiplication B=R*A*P.

    void fasp_blas_dcsr_bandwith (dCSRmat *A, INT *bndwith)
```

10.12.1 Detailed Description

BLAS2 operations for dCSRmat matrices.

Get bandwith of matrix.

Note

Sparse functions usually contain three runs. The three runs are all the same but thy serve different purpose.

Example: If you do c=a+b:

- · first do a dry run to find the number of non-zeroes in the result and form ic;
- allocate space (memory) for jc and form this one;
- if you only care about a "boolean" result of the addition, you stop here;
- · you call another routine, which uses ic and jc to perform the addition.

10.12.2 Function Documentation

10.12.2.1 fasp_blas_dcsr_aAxpy()

Matrix-vector multiplication y = alpha*A*x + y.

Parameters

alpha	REAL factor alpha
Α	Pointer to dCSRmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Chensong Zhang

Date

07/01/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Definition at line 479 of file blas_csr.c.

10.12.2.2 fasp_blas_dcsr_aAxpy_agg()

Matrix-vector multiplication y = alpha*A*x + y (the entries of A are all ones)

alpha	REAL factor alpha
Α	Pointer to dCSRmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Xiaozhe Hu

Date

02/22/2011

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 593 of file blas_csr.c.

10.12.2.3 fasp_blas_dcsr_add()

compute C = alpha*A + beta*B in CSR format

Parameters

Α	Pointer to dCSRmat matrix
alpha	REAL factor alpha
В	Pointer to dCSRmat matrix
beta	REAL factor beta
С	Pointer to dCSRmat matrix

Returns

FASP_SUCCESS if succeed, ERROR if not

Author

Xiaozhe Hu

Date

11/07/2009

Modified by Chunsheng Feng, Zheng Li on 06/29/2012

Definition at line 48 of file blas_csr.c.

10.12.2.4 fasp_blas_dcsr_axm()

Multiply a sparse matrix A in CSR format by a scalar alpha.

Parameters

Α	Pointer to dCSRmat matrix A
alpha	REAL factor alpha

Author

Chensong Zhang

Date

07/01/2009

Modified by Chunsheng Feng, Zheng Li on 06/29/2012

Definition at line 201 of file blas_csr.c.

10.12.2.5 fasp_blas_dcsr_bandwith()

Get bandwith of matrix.

Parameters

Α	pointer to the dCSRmat matrix
bndwith	pointer to the bandwith

Author

Zheng Li

Date

03/22/2015

Definition at line 1999 of file blas_csr.c.

10.12.2.6 fasp_blas_dcsr_mxm()

Sparse matrix multiplication C=A*B.

Parameters

Α	Pointer to the dCSRmat matrix A
В	Pointer to the dCSRmat matrix B
С	Pointer to dCSRmat matrix equal to A*B

Author

Xiaozhe Hu

Date

11/07/2009

Note

This fct will be replaced! -Chensong

Definition at line 759 of file blas_csr.c.

10.12.2.7 fasp_blas_dcsr_mxv()

Matrix-vector multiplication y = A*x.

Α	Pointer to dCSRmat matrix A
Χ	Pointer to array x
У	Pointer to array y

Author

Chensong Zhang

Date

07/01/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Definition at line 225 of file blas_csr.c.

```
10.12.2.8 fasp_blas_dcsr_mxv_agg()
```

Matrix-vector multiplication y = A*x, where the entries of A are all ones.

Parameters

Α	Pointer to dCSRmat matrix A
Χ	Pointer to array x
у	Pointer to array y

Author

Xiaozhe Hu

Date

02/22/2011

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 423 of file blas_csr.c.

10.12.2.9 fasp_blas_dcsr_ptap()

Triple sparse matrix multiplication B=P'*A*P.

Parameters

Pt	Pointer to the restriction matrix
Α	Pointer to the fine coefficient matrix
Р	Pointer to the prolongation matrix
Ac	Pointer to the coarse coefficient matrix (output)

Author

Ludmil Zikatanov, Chensong Zhang

Date

05/10/2010

Modified by Chunsheng Feng, Zheng Li on 10/19/2012

Note

Driver to compute triple matrix product P'*A*P using Itz CSR format. In Itx format: ia[0]=1, ja[0] and a[0] are used as usual. When called from Fortran, ia[0], ja[0] and a[0] will be just ia(1),ja(1),a(1). For the indices, $ia_ltz[k] = ia_usual[k]+1$, $ja_ltz[k] = ja_usual[k]+1$, $ja_ltz[k]+1$, $ja_ltz[k]+$

Definition at line 1596 of file blas_csr.c.

```
10.12.2.10 fasp_blas_dcsr_rap()
```

Triple sparse matrix multiplication B=R*A*P.

Parameters

R	Pointer to the dCSRmat matrix R
Α	Pointer to the dCSRmat matrix A
Р	Pointer to the dCSRmat matrix P
RAP	Pointer to dCSRmat matrix equal to R*A*P

Author

Xuehai Huang, Chensong Zhang

Date

05/10/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 866 of file blas_csr.c.

```
10.12.2.11 fasp_blas_dcsr_rap4()
```

Triple sparse matrix multiplication B=R*A*P.

Parameters

R	pointer to the dCSRmat matrix
Α	pointer to the dCSRmat matrix
Р	pointer to the dCSRmat matrix
В	pointer to dCSRmat matrix equal to R*A*P
icor_ysk	pointer to the array

Author

Feng Chunsheng, Yue Xiaoqiang

Date

08/02/2011

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 1698 of file blas_csr.c.

10.12.2.12 fasp_blas_dcsr_rap_agg()

Triple sparse matrix multiplication B=R*A*P.

Parameters

R	Pointer to the dCSRmat matrix R
Α	Pointer to the dCSRmat matrix A
P	Pointer to the dCSRmat matrix P
RAP	Pointer to dCSRmat matrix equal to R*A*P

Author

Xiaozhe Hu

Date

05/10/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 1148 of file blas_csr.c.

10.12.2.13 fasp_blas_dcsr_rap_agg1()

Triple sparse matrix multiplication B=R*A*P (nonzero entries of R and P are ones)

Parameters

R	Pointer to the dCSRmat matrix R
Α	Pointer to the dCSRmat matrix A
P	Pointer to the dCSRmat matrix P
В	Pointer to dCSRmat matrix equal to R*A*P

Author

Xiaozhe Hu

Date

02/21/2011

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 1413 of file blas_csr.c.

```
10.12.2.14 fasp_blas_dcsr_vmv()
```

vector-Matrix-vector multiplication alpha = y'*A*x

Parameters

Α	Pointer to dCSRmat matrix A
Х	Pointer to array x
У	Pointer to array y

Author

Chensong Zhang

Date

07/01/2009

Definition at line 704 of file blas_csr.c.

10.13 blas_csrl.c File Reference

BLAS2 operations for dCSRLmat matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_blas_dcsrl_mxv (dCSRLmat *A, REAL *x, REAL *y)
    Compute y = A*x for a sparse matrix in CSRL format.
```

10.13.1 Detailed Description

BLAS2 operations for dCSRLmat matrices.

Note

For details of CSRL format, refer to "Optimizaing sparse matrix vector product computations using unroll and jam" by John Mellor-Crummey and John Garvin, Tech Report Rice Univ, Aug 2002.

10.13.2 Function Documentation

```
10.13.2.1 fasp_blas_dcsrl_mxv()
```

Compute y = A*x for a sparse matrix in CSRL format.

Parameters

Α	Pointer to dCSRLmat matrix A
Х	Pointer to REAL array of vector x
У	Pointer to REAL array of vector y

Date

2011/01/07

Definition at line 28 of file blas_csrl.c.

10.14 blas_smat.c File Reference

BLAS2 operations for small dense matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp blas smat axm (REAL *a, const INT n, const REAL alpha)

      Compute alpha*a, store in a.

    void fasp blas smat add (REAL *a, REAL *b, const INT n, const REAL alpha, const REAL beta, REAL *c)

      Compute c = alpha*a + beta*b.

    void fasp_blas_smat_mxv_nc2 (REAL *a, REAL *b, REAL *c)

      Compute the product of a 2*2 matrix a and a array b, stored in c.

    void fasp_blas_smat_mxv_nc3 (REAL *a, REAL *b, REAL *c)

      Compute the product of a 3*3 matrix a and a array b, stored in c.

    void fasp_blas_smat_mxv_nc5 (REAL *a, REAL *b, REAL *c)

      Compute the product of a 5*5 matrix a and a array b, stored in c.

    void fasp blas smat mxv nc7 (REAL *a, REAL *b, REAL *c)

      Compute the product of a 7*7 matrix a and a array b, stored in c.

    void fasp blas smat mxv (REAL *a, REAL *b, REAL *c, const INT n)

      Compute the product of a small full matrix a and a array b, stored in c.

    void fasp_blas_smat_mul_nc2 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 2* matrices a and b, stored in c.

    void fasp blas smat mul nc3 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 3*3 matrices a and b, stored in c.

    void fasp blas smat mul nc5 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 5*5 matrices a and b, stored in c.

    void fasp blas smat mul nc7 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 7*7 matrices a and b, stored in c.

    void fasp blas smat mul (REAL *a, REAL *b, REAL *c, const INT n)

      Compute the matrix product of two small full matrices a and b, stored in c.

    void fasp_blas_array_axpyz_nc2 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + v

    void fasp_blas_array_axpyz_nc3 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + v

    void fasp_blas_array_axpyz_nc5 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + y

    void fasp blas array axpyz nc7 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + y

    void fasp_blas_array_axpy_nc2 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 2

    void fasp_blas_array_axpy_nc3 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 3

    void fasp blas array axpy nc5 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 5

    void fasp_blas_array_axpy_nc7 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 7

    void fasp blas smat ypAx nc2 (REAL *A, REAL *x, REAL *y)

      Compute y := y + Ax, where 'A' is a 2*2 dense matrix.

    void fasp_blas_smat_ypAx_nc3 (REAL *A, REAL *x, REAL *y)

      Compute y := y + Ax, where 'A' is a 3*3 dense matrix.

    void fasp blas smat ypAx nc5 (REAL *A, REAL *x, REAL *y)
```

```
Compute y := y + Ax, where 'A' is a 5*5 dense matrix.

    void fasp_blas_smat_ypAx_nc7 (REAL *A, REAL *x, REAL *y)

          Compute y := y + Ax, where 'A' is a 7*7 dense matrix.

    void fasp_blas_smat_ypAx (REAL *A, REAL *x, REAL *y, const INT n)

          Compute y := y + Ax, where 'A' is a n*n dense matrix.

    void fasp blas smat ymAx nc2 (REAL *A, REAL *x, REAL *y)

          Compute y := y - Ax, where 'A' is a n*n dense matrix.

    void fasp_blas_smat_ymAx_nc3 (REAL *A, REAL *x, REAL *y)

          Compute y := y - Ax, where 'A' is a n*n dense matrix.

    void fasp blas smat ymAx nc5 (REAL *A, REAL *x, REAL *y)

          Compute y := y - Ax, where 'A' is a n*n dense matrix.

    void fasp blas smat ymAx nc7 (REAL *A, REAL *x, REAL *y)

          Compute y := y - Ax, where 'A' is a 7*7 dense matrix.

    void fasp_blas_smat_ymAx (REAL *A, REAL *x, REAL *y, const INT n)

          Compute y := y - Ax, where 'A' is a n*n dense matrix.

    void fasp blas smat aAxpby (const REAL alpha, REAL *A, REAL *x, const REAL beta, REAL *y, const INT n)

          Compute y:=alpha*A*x + beta*y.

    void fasp_blas_smat_ymAx_ns2 (REAL *A, REAL *x, REAL *y)

          Compute ys := ys - Ass*xs, where 'A' is a 2*2 dense matrix, Ass is its saturaton part 1*1.

    void fasp blas smat ymAx ns3 (REAL *A, REAL *x, REAL *y)

          Compute ys := ys - Ass*xs, where 'A' is a 3*3 dense matrix, Ass is its saturaton part 2*2.

    void fasp_blas_smat_ymAx_ns5 (REAL *A, REAL *x, REAL *y)

          Compute ys := ys - Ass*xs, where 'A' is a 5*5 dense matrix, Ass is its saturaton part 4*4.

    void fasp_blas_smat_ymAx_ns7 (REAL *A, REAL *x, REAL *y)

          Compute ys := ys - Ass*xs, where 'A' is a 7*7 dense matrix, Ass is its saturaton part 6*6.

    void fasp_blas_smat_ymAx_ns (REAL *A, REAL *x, REAL *y, const INT n)

          Compute ys := ys - Ass*xs, where 'A' is a n*n dense matrix, Ass is its saturaton part (n-1)*(n-1).
10.14.1
          Detailed Description
BLAS2 operations for small dense matrices.
Warning
     The rountines are designed for full matrices only!
10.14.2 Function Documentation
10.14.2.1 fasp blas array axpy nc2()
void fasp_blas_array_axpy_nc2 (
               const REAL a,
               REAL * x,
               REAL * y)
```

y = a*x + y, the length of x and y is 2

Parameters

а	REAL factor a
Х	Pointer to the original array
У	Pointer to the destination array

Author

Xiaozhe Hu

Date

18/11/2011

Definition at line 686 of file blas_smat.c.

10.14.2.2 fasp_blas_array_axpy_nc3()

y = a*x + y, the length of x and y is 3

Parameters

а	REAL factor a
Х	Pointer to the original array
У	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 709 of file blas_smat.c.

10.14.2.3 fasp_blas_array_axpy_nc5()

```
REAL * x,
REAL * y)
```

y = a*x + y, the length of x and y is 5

Parameters

а	REAL factor a
X	Pointer to the original array
У	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 738 of file blas_smat.c.

10.14.2.4 fasp_blas_array_axpy_nc7()

y = a*x + y, the length of x and y is 7

Parameters

а	REAL factor a
X	Pointer to the original array
У	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 785 of file blas_smat.c.

10.14.2.5 fasp_blas_array_axpyz_nc2()

```
REAL * x,
REAL * y,
REAL * z)
```

```
z = a*x + y
```

Parameters

а	REAL factor a
Х	Pointer to the original array 1
У	Pointer to the original array 2
Z	Pointer to the destination array

Author

Xiaozhe Hu

Date

18/11/2011

Note

z is the third array and the length of x, y and z is 2

Definition at line 501 of file blas_smat.c.

10.14.2.6 fasp_blas_array_axpyz_nc3()

z = a*x + y

Parameters

а	REAL factor a
X	Pointer to the original array 1
У	Pointer to the original array 2
Z	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

z is the third array and the length of x, y and z is 3

Definition at line 528 of file blas_smat.c.

10.14.2.7 fasp_blas_array_axpyz_nc5()

```
z = a*x + y
```

Parameters

а	REAL factor a
X	Pointer to the original array 1
У	Pointer to the original array 2
Z	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

z is the third array and the length of x, y and z is 5

Definition at line 561 of file blas_smat.c.

10.14.2.8 fasp_blas_array_axpyz_nc7()

z = a*x + y

Parameters

а	REAL factor a
X	Pointer to the original array 1
У	Pointer to the original array 2
Z	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

z is the third array and the length of x, y and z is 7

Definition at line 612 of file blas_smat.c.

10.14.2.9 fasp_blas_smat_aAxpby()

```
void fasp_blas_smat_aAxpby (
    const REAL alpha,
    REAL * A,
    REAL * x,
    const REAL beta,
    REAL * y,
    const INT n )
```

Compute y:=alpha*A*x + beta*y.

Parameters

alpha	REAL factor alpha
Α	Pointer to the REAL array which stands for a n*n full matrix
Χ	Pointer to the REAL array with length n
beta	REAL factor beta
У	Pointer to the REAL array with length n
n	Length of array x and y

Generated by Doxygen

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 1309 of file blas_smat.c.

```
10.14.2.10 fasp_blas_smat_add()
```

```
void fasp_blas_smat_add (
    REAL * a,
    REAL * b,
    const INT n,
    const REAL alpha,
    const REAL beta,
    REAL * c )
```

Compute c = alpha*a + beta*b.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix
alpha	Scalar
beta	Scalar
С	Pointer to the REAL array which stands a n*n matrix

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 55 of file blas_smat.c.

10.14.2.11 fasp_blas_smat_axm()

Compute alpha*a, store in a.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix
alpha	Scalar

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 26 of file blas_smat.c.

10.14.2.12 fasp_blas_smat_mul()

```
void fasp_blas_smat_mul (
    REAL * a,
    REAL * b,
    REAL * c,
    const INT n )
```

Compute the matrix product of two small full matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array which stands a n*n matrix
С	Pointer to the REAL array which stands a n*n matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/21/2010

Definition at line 449 of file blas_smat.c.

10.14.2.13 fasp_blas_smat_mul_nc2()

```
void fasp_blas_smat_mul_nc2 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the matrix product of two 2* matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array which stands a n*n matrix
С	Pointer to the REAL array which stands a n*n matrix

Author

Xiaozhe Hu

Date

18/11/2011

Definition at line 234 of file blas_smat.c.

```
10.14.2.14 fasp_blas_smat_mul_nc3()
```

```
void fasp_blas_smat_mul_nc3 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the matrix product of two 3*3 matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array which stands a n*n matrix
С	Pointer to the REAL array which stands a n*n matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 263 of file blas_smat.c.

```
10.14.2.15 fasp_blas_smat_mul_nc5()
```

Compute the matrix product of two 5*5 matrices a and b, stored in c.

Parameters

	а	Pointer to the REAL array which stands a 5*5 matrix
	b	Pointer to the REAL array which stands a 5*5 matrix
	С	Pointer to the REAL array which stands a 5*5 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 300 of file blas_smat.c.

```
10.14.2.16 fasp_blas_smat_mul_nc7()
```

```
void fasp_blas_smat_mul_nc7 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the matrix product of two 7*7 matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 7*7 matrix
b	Pointer to the REAL array which stands a 7*7 matrix
С	Pointer to the REAL array which stands a 7*7 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 359 of file blas_smat.c.

```
10.14.2.17 fasp_blas_smat_mxv()
```

```
void fasp_blas_smat_mxv (
    REAL * a,
    REAL * b,
    REAL * c,
    const INT n )
```

Compute the product of a small full matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array with length n
С	Pointer to the REAL array with length n
n	Dimension of the matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/21/2010

Definition at line 184 of file blas_smat.c.

10.14.2.18 fasp_blas_smat_mxv_nc2()

```
void fasp_blas_smat_mxv_nc2 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the product of a 2*2 matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 2*2 matrix
b	Pointer to the REAL array with length 2
С	Pointer to the REAL array with length 2

Author

Xiaozhe Hu

Date

18/11/2010

Definition at line 84 of file blas_smat.c.

10.14.2.19 fasp_blas_smat_mxv_nc3()

```
void fasp_blas_smat_mxv_nc3 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the product of a 3*3 matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 3*3 matrix
b	Pointer to the REAL array with length 3
С	Pointer to the REAL array with length 3

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 106 of file blas_smat.c.

10.14.2.20 fasp_blas_smat_mxv_nc5()

```
void fasp_blas_smat_mxv_nc5 ( \label{eq:real_mxv_nc5} \text{REAL } * \textit{a,}
```

```
REAL * b,
REAL * c )
```

Compute the product of a 5*5 matrix a and a array b, stored in c.

Parameters

ć	а	Pointer to the REAL array which stands a 5*5 matrix
Ł	5	Pointer to the REAL array with length 5
(2	Pointer to the REAL array with length 5

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 129 of file blas_smat.c.

10.14.2.21 fasp_blas_smat_mxv_nc7()

```
void fasp_blas_smat_mxv_nc7 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the product of a 7*7 matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 7*7 matrix
b	Pointer to the REAL array with length 7
С	Pointer to the REAL array with length 7

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 155 of file blas_smat.c.

10.14.2.22 fasp_blas_smat_ymAx()

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the n*n dense matrix
X	Pointer to the REAL array with length n
У	Pointer to the REAL array with length n
n	the dimension of the dense matrix

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 1208 of file blas_smat.c.

10.14.2.23 fasp_blas_smat_ymAx_nc2()

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the 2*2 dense matrix
Х	Pointer to the REAL array with length 3
У	Pointer to the REAL array with length 3

Author

Xiaozhe Hu

```
Date
```

18/11/2011

Note

Works for 2-component

Definition at line 1078 of file blas_smat.c.

```
10.14.2.24 fasp_blas_smat_ymAx_nc3()
```

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the 3*3 dense matrix
X	Pointer to the REAL array with length 3
У	Pointer to the REAL array with length 3

Author

Xiaozhe Hu, Zhiyang Zhou

Date

01/06/2011

Note

Works for 3-component

Definition at line 1106 of file blas_smat.c.

10.14.2.25 fasp_blas_smat_ymAx_nc5()

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the 5*5 dense matrix
Χ	Pointer to the REAL array with length 5
У	Pointer to the REAL array with length 5

Author

Xiaozhe Hu, Zhiyang Zhou

Date

01/06/2011

Note

Works for 5-component

Definition at line 1136 of file blas_smat.c.

10.14.2.26 fasp_blas_smat_ymAx_nc7()

Compute y := y - Ax, where 'A' is a 7*7 dense matrix.

Parameters

Α	Pointer to the 7*7 dense matrix
X	Pointer to the REAL array with length 7
У	Pointer to the REAL array with length 7

Author

Xiaozhe Hu, Zhiyang Zhou

Date

01/06/2011

Note

Works for 7-component

Definition at line 1170 of file blas_smat.c.

10.14.2.27 fasp_blas_smat_ymAx_ns()

```
void fasp_blas_smat_ymAx_ns (
    REAL * A,
    REAL * x,
    REAL * y,
    const INT n )
```

Compute ys := ys - Ass*xs, where 'A' is a n*n dense matrix, Ass is its saturation part (n-1)*(n-1).

Parameters

Α	Pointer to the n*n dense matrix
Х	Pointer to the REAL array with length n-1
У	Pointer to the REAL array with length n-1
n	the dimension of the dense matrix

Author

Xiaozhe Hu

Date

2010/10/25

Note

Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1483 of file blas_smat.c.

10.14.2.28 fasp_blas_smat_ymAx_ns2()

Compute ys := ys - Ass*xs, where 'A' is a 2*2 dense matrix, Ass is its saturaton part 1*1.

Parameters

Α	Pointer to the 2*2 dense matrix
X	Pointer to the REAL array with length 1
У	Pointer to the REAL array with length 1

Author

Xiaozhe Hu

Date

2011/11/18

Note

Works for 2-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1359 of file blas_smat.c.

10.14.2.29 fasp_blas_smat_ymAx_ns3()

Compute ys := ys - Ass*xs, where 'A' is a 3*3 dense matrix, Ass is its saturaton part 2*2.

Parameters

Α	Pointer to the 3*3 dense matrix
X	Pointer to the REAL array with length 2
У	Pointer to the REAL array with length 2

Author

Xiaozhe Hu

Date

2010/10/25

Note

Works for 3-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1383 of file blas_smat.c.

10.14.2.30 fasp_blas_smat_ymAx_ns5()

Compute ys := ys - Ass*xs, where 'A' is a 5*5 dense matrix, Ass is its saturaton part 4*4.

Parameters

Α	Pointer to the 5*5 dense matrix	
X	Pointer to the REAL array with length 4	
У	Pointer to the REAL array with length 4	

Author

Xiaozhe Hu

Date

2010/10/25

Note

Works for 5-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1411 of file blas_smat.c.

10.14.2.31 fasp_blas_smat_ymAx_ns7()

Compute ys := ys - Ass*xs, where 'A' is a 7*7 dense matrix, Ass is its saturation part 6*6.

Parameters

Α	Pointer to the 7*7 dense matrix
X	Pointer to the REAL array with length 6
У	Pointer to the REAL array with length 6

Author

Xiaozhe Hu

Date

2010/10/25

Note

Works for 7-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1445 of file blas_smat.c.

```
10.14.2.32 fasp_blas_smat_ypAx()
```

Compute y := y + Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the n*n dense matrix
X	Pointer to the REAL array with length n
У	Pointer to the REAL array with length n
n	Dimension of the dense matrix

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 977 of file blas_smat.c.

10.14.2.33 fasp_blas_smat_ypAx_nc2()

Compute y := y + Ax, where 'A' is a 2*2 dense matrix.

Parameters

Α	Pointer to the 3*3 dense matrix
Χ	Pointer to the REAL array with length 3
У	Pointer to the REAL array with length 3

Author

Xiaozhe Hu

Date

2011/11/18

Definition at line 858 of file blas_smat.c.

```
10.14.2.34 fasp_blas_smat_ypAx_nc3()
```

Compute y := y + Ax, where 'A' is a 3*3 dense matrix.

Parameters

Α	Pointer to the 3*3 dense matrix
X	Pointer to the REAL array with length 3
У	Pointer to the REAL array with length 3

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 884 of file blas_smat.c.

10.14.2.35 fasp_blas_smat_ypAx_nc5()

```
void fasp_blas_smat_ypAx_nc5 ( {\tt REAL} \ * \ \textit{A,}
```

REAL *
$$x$$
,
REAL * y)

Compute y := y + Ax, where 'A' is a 5*5 dense matrix.

Parameters

Α	Pointer to the 5*5 dense matrix
Χ	Pointer to the REAL array with length 5
У	Pointer to the REAL array with length 5

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 911 of file blas_smat.c.

10.14.2.36 fasp_blas_smat_ypAx_nc7()

Compute y := y + Ax, where 'A' is a 7*7 dense matrix.

Parameters

Α	Pointer to the 7*7 dense matrix
X	Pointer to the REAL array with length 7
У	Pointer to the REAL array with length 7

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 942 of file blas_smat.c.

10.15 blas_str.c File Reference

BLAS2 operations for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_blas_dstr_aAxpy (const REAL alpha, dSTRmat *A, REAL *x, REAL *y)
        Matrix-vector multiplication y = alpha*A*x + y.
    void fasp_blas_dstr_mxv (dSTRmat *A, REAL *x, REAL *y)
        Matrix-vector multiplication y = A*x.
```

INT fasp_dstr_diagscale (dSTRmat *A, dSTRmat *B)
 B=D^{-1}A.

10.15.1 Detailed Description

BLAS2 operations for dSTRmat matrices.

10.15.2 Function Documentation

```
10.15.2.1 fasp_blas_dstr_aAxpy()
```

Matrix-vector multiplication y = alpha*A*x + y.

Parameters

alpha	REAL factor alpha
Α	Pointer to dSTRmat matrix
X	Pointer to REAL array
У	Pointer to REAL array

Author

Zhiyang Zhou, Xiaozhe Hu, Shiquan Zhang

Date

2010/10/15

Definition at line 47 of file blas_str.c.

10.15.2.2 fasp_blas_dstr_mxv()

Matrix-vector multiplication y = A*x.

Parameters

Α	Pointer to dSTRmat matrix
Х	Pointer to REAL array
У	Pointer to REAL array

Author

Chensong Zhang

Date

04/27/2013

Definition at line 117 of file blas_str.c.

10.15.2.3 fasp_dstr_diagscale()

 $B=D^{-1}A$.

Parameters

Α	Pointer to a 'dSTRmat' type matrix A
В	Pointer to a 'dSTRmat' type matrix B

Author

Shiquan Zhang

Date

2010/10/15

Modified by Chunsheng Feng, Zheng Li

Date

08/30/2012

Definition at line 142 of file blas_str.c.

10.16 blas_vec.c File Reference

BLAS1 operations for vectors.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_blas_dvec_axpy (const REAL a, dvector *x, dvector *y)
```

```
y = a * x + y
```

void fasp_blas_dvec_axpyz (const REAL a, dvector *x, dvector *y, dvector *z)

```
z = a*x + y, z is a third vector (z is cleared)
```

REAL fasp_blas_dvec_dotprod (dvector *x, dvector *y)

Inner product of two vectors (x,y)

REAL fasp_blas_dvec_relerr (dvector *x, dvector *y)

Relative error of two dvector x and y.

REAL fasp_blas_dvec_norm1 (dvector *x)

L1 norm of dvector x.

• REAL fasp_blas_dvec_norm2 (dvector *x)

L2 norm of dvector x.

REAL fasp blas dvec norminf (dvector *x)

Linf norm of dvector x.

10.16.1 Detailed Description

BLAS1 operations for vectors.

10.16.2 Function Documentation

```
10.16.2.1 fasp_blas_dvec_axpy()
```

Parameters

а	REAL factor a
Х	Pointer to dvector x
У	Pointer to dvector y

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 33 of file blas_vec.c.

10.16.2.2 fasp_blas_dvec_axpyz()

z = a*x + y, z is a third vector (z is cleared)

Parameters

а	REAL factor a
Х	Pointer to dvector x
У	Pointer to dvector y
Z	Pointer to dvector z

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 85 of file blas_vec.c.

10.16.2.3 fasp_blas_dvec_dotprod()

Inner product of two vectors (x,y)

Parameters

Χ	Pointer to dvector x
У	Pointer to dvector y

Returns

Inner product

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 121 of file blas_vec.c.

10.16.2.4 fasp_blas_dvec_norm1()

L1 norm of dvector x.

Parameters

x Pointer to dvector x

```
Returns
     L1 norm of x
Author
     Chensong Zhang
Date
     07/01/209
Modified by Chunsheng Feng, Xiaoqiang Yue
Date
     05/23/2012
Definition at line 222 of file blas_vec.c.
10.16.2.5 fasp_blas_dvec_norm2()
REAL fasp_blas_dvec_norm2 (
              dvector * x )
L2 norm of dvector x.
Parameters
 x Pointer to dvector x
Returns
     L2 norm of x
Author
     Chensong Zhang
Date
     07/01/209
Modified by Chunsheng Feng, Xiaoqiang Yue
Date
     05/23/2012
```

Definition at line 265 of file blas_vec.c.

```
10.16.2.6 fasp_blas_dvec_norminf()
```

Linf norm of dvector x.

Parameters

```
x Pointer to dvector x
```

Returns

L_inf norm of x

Author

Chensong Zhang

Date

07/01/209

Definition at line 305 of file blas_vec.c.

10.16.2.7 fasp_blas_dvec_relerr()

Relative error of two dvector x and y.

Parameters

X	Pointer to dvector x
У	Pointer to dvector y

Returns

relative error ||x-y||/||x||

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 167 of file blas_vec.c.

10.17 checkmat.c File Reference

Check matrix properties.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

INT fasp_check_diagpos (dCSRmat *A)

Check positivity of diagonal entries of a CSR sparse matrix.

SHORT fasp_check_diagzero (dCSRmat *A)

Check wether a CSR sparse matrix has diagonal entries that are very close to zero.

INT fasp_check_diagdom (dCSRmat *A)

Check whether a matrix is diagonal dominant.

INT fasp_check_symm (dCSRmat *A)

Check symmetry of a sparse matrix of CSR format.

SHORT fasp_check_dCSRmat (dCSRmat *A)

Check whether an dCSRmat matrix is valid or not.

SHORT fasp_check_iCSRmat (iCSRmat *A)

Check whether an iCSRmat matrix is valid or not.

10.17.1 Detailed Description

Check matrix properties.

10.17.2 Function Documentation

10.17.2.1 fasp_check_dCSRmat()

Check whether an dCSRmat matrix is valid or not.

Parameters

A Pointer to the matrix in dCSRmat format

Author

Shuo Zhang

Date

03/29/2009

Definition at line 275 of file checkmat.c.

10.17.2.2 fasp_check_diagdom()

Check whether a matrix is diagonal dominant.

INT fasp_check_diagdom (dCSRmat *A)

Parameters

A Pointer to the dCSRmat matrix

Returns

Number of the rows which are diagonal dominant

Note

The routine chechs whether the sparse matrix is diagonal dominant on every row. It will print out the percentage of the rows which are diagonal dominant and which are not; the routine will return the number of the rows which are diagonal dominant.

Author

Shuo Zhang

Date

03/29/2009

Definition at line 108 of file checkmat.c.

10.17.2.3 fasp_check_diagpos()

Check positivity of diagonal entries of a CSR sparse matrix.

Parameters

A Pointer to dCSRmat matrix

Returns

Number of negative diagonal entries

Author

Shuo Zhang

Date

03/29/2009

Definition at line 27 of file checkmat.c.

10.17.2.4 fasp_check_diagzero()

Check wether a CSR sparse matrix has diagonal entries that are very close to zero.

Parameters

A pointr to the dCSRmat matrix

Returns

FASP_SUCCESS if no diagonal entry is clase to zero, else ERROR

Author

Shuo Zhang

Date

03/29/2009

Definition at line 64 of file checkmat.c.

```
10.17.2.5 fasp_check_iCSRmat()
```

Check whether an iCSRmat matrix is valid or not.

Parameters

A Pointer to the matrix in iCSRmat format

Author

Shuo Zhang

Date

03/29/2009

Definition at line 309 of file checkmat.c.

```
10.17.2.6 fasp_check_symm()
```

Check symmetry of a sparse matrix of CSR format.

Parameters

A Pointer to the dCSRmat matrix

Returns

1 and 2 if the structure of the matrix is not symmetric; 0 if the structure of the matrix is symmetric,

Note

Print the maximal relative difference between matrix and its transpose.

Author

Shuo Zhang

Date

03/29/2009

Definition at line 153 of file checkmat.c.

10.18 coarsening_cr.c File Reference

Coarsening with Brannick-Falgout strategy.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• INT fasp_amg_coarsening_cr (const INT i_0, const INT i_n, dCSRmat *A, ivector *vertices, AMG_param *param)

CR coarsening.

10.18.1 Detailed Description

Coarsening with Brannick-Falgout strategy.

10.18.2 Function Documentation

10.18.2.1 fasp_amg_coarsening_cr()

CR coarsening.

Parameters

i_0	Starting index
_i_n	Ending index
Α	Pointer to dCSRmat: the coefficient matrix (index starts from 0)
vertices	Pointer to CF, 0: fpt (current level) or 1: cpt
param	Pointer to AMG_param: AMG parameters

Generated by Doxygen

Returns

Number of coarse level points

Author

James Brannick

Date

04/21/2010

Modified by Chunsheng Feng, Zheng Li on 10/14/2012 CR STAGES

Definition at line 42 of file coarsening_cr.c.

10.19 coarsening_rs.c File Reference

Coarsening with a modified Ruge-Stuben strategy.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "linklist.inl"
```

Functions

• SHORT fasp_amg_coarsening_rs (dCSRmat *A, ivector *vertices, dCSRmat *P, iCSRmat *S, AMG_param *param)

Standard and aggressive coarsening schemes.

10.19.1 Detailed Description

Coarsening with a modified Ruge-Stuben strategy.

Note

Ref Multigrid by U. Trottenberg, C. W. Oosterlee and A. Schuller Appendix P475 A.7 (by A. Brandt, P. Oswald and K. Stuben) Academic Press Inc., San Diego, CA, 2001.

ATTENTION: Do NOT use auto-indentation in this file!!!

10.19.2 Function Documentation

10.19.2.1 fasp_amg_coarsening_rs()

```
SHORT fasp_amg_coarsening_rs (

dCSRmat * A,

ivector * vertices,

dCSRmat * P,

iCSRmat * S,

AMG_param * param )
```

Standard and aggressive coarsening schemes.

Parameters

Α	Pointer to dCSRmat: Coefficient matrix (index starts from 0)
vertices	Indicator vector for the C/F splitting of the variables
P	Interpolation matrix (nonzero pattern only)
S	Strong connection matrix
param	Pointer to AMG_param: AMG parameters

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xuehai Huang, Chensong Zhang, Xiaozhe Hu, Ludmil Zikatanov

Date

09/06/2010

Note

```
vertices = 0: fine; 1: coarse; 2: isolated or special
```

Modified by Xiaozhe Hu on 05/23/2011: add strength matrix as an argument Modified by Xiaozhe Hu on 04/24/2013: modify aggressive coarsening Modified by Chensong Zhang on 04/28/2013: remove linked list Modified by Chensong Zhang on 05/11/2013: restructure the code

Definition at line 61 of file coarsening_rs.c.

10.20 convert.c File Reference

Some utilities for format conversion.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

unsigned long fasp_aux_change_endian4 (unsigned long x)

Swap order for different endian systems.

• double fasp_aux_change_endian8 (double x)

Swap order for different endian systems.

double fasp aux bbyteToldouble (unsigned char bytes[])

Swap order of double-precision float for different endian systems.

INT endian_convert_int (const INT inum, const INT illength, const INT endianflag)

Swap order of an INT number.

REAL endian_convert_real (const REAL rnum, const INT vlength, const INT endianflag)

Swap order of a REAL number.

10.20.1 Detailed Description

Some utilities for format conversion.

10.20.2 Function Documentation

```
10.20.2.1 endian_convert_int()
```

Swap order of an INT number.

Parameters

inum	An INT value
ilength	Length of INT: 2 for short, 4 for int, 8 for long
endianflag	If endianflag = 1, it returns inum itself If endianflag = 2, it returns the swapped inum

Returns

Value of inum or swapped inum

Author

Ziteng Wang

Date

2012-12-24

Definition at line 105 of file convert.c.

10.20.2.2 endian_convert_real()

Swap order of a REAL number.

Parameters

rnum	An REAL value
ilength	Length of INT: 2 for short, 4 for int, 8 for long
endianflag	If endianflag = 1, it returns rnum itself If endianflag = 2, it returns the swapped rnum

Returns

Value of rnum or swapped rnum

Author

Ziteng Wang

Date

2012-12-24

Definition at line 137 of file convert.c.

10.20.2.3 fasp_aux_bbyteToldouble()

```
double fasp_aux_bbyteToldouble (
          unsigned char bytes[])
```

Swap order of double-precision float for different endian systems.

Parameters

bytes	A unsigned char

Returns

Unsigend long ineger after swapping

Author

Chensong Zhang

Date

11/16/2009

Definition at line 74 of file convert.c.

```
10.20.2.4 fasp_aux_change_endian4()
```

Swap order for different endian systems.

Parameters

```
x An unsigned long integer
```

Returns

Unsigend long ineger after swapping

Author

Chensong Zhang

Date

11/16/2009

Definition at line 25 of file convert.c.

10.20.2.5 fasp_aux_change_endian8()

```
double fasp_aux_change_endian8 ( \label{eq:change} \mbox{double $x$ )}
```

Swap order for different endian systems.

Parameters

```
x A unsigned long integer
```

Returns

Unsigend long ineger after swapping

Author

Chensong Zhang

Date

11/16/2009

Definition at line 43 of file convert.c.

10.21 doxygen.h File Reference

Main page for Doygen documentation.

10.21.1 Detailed Description

Main page for Doygen documentation.

10.22 eigen.c File Reference

Subroutines for computing the extreme eigenvalues.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

REAL fasp_dcsr_eig (dCSRmat *A, const REAL tol, const INT maxit)
 Approximate the largest eigenvalue of A by the power method.

10.22.1 Detailed Description

Subroutines for computing the extreme eigenvalues.

10.22.2 Function Documentation

```
10.22.2.1 fasp_dcsr_eig()
```

Approximate the largest eigenvalue of A by the power method.

Parameters

Α	Pointer to the dCSRmat matrix
tol	Tolerance for stopping the power method
maxit	Max number of iterations

Returns

Largest eigenvalue

Author

Xiaozhe Hu

Date

01/25/2011

Definition at line 29 of file eigen.c.

10.23 famg.c File Reference

Full AMG method as an iterative solver (main file)

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void fasp_solver_famg (dCSRmat *A, dvector *b, dvector *x, AMG_param *param)

Solve Ax=b by full AMG.

10.23.1 Detailed Description

Full AMG method as an iterative solver (main file)

10.23.2 Function Documentation

10.23.2.1 fasp_solver_famg()

Solve Ax=b by full AMG.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
Х	Pointer to dvector: the unknowns
param	Pointer to AMG_param: AMG parameters

Author

Xiaozhe Hu

Date

02/27/2011

Modified by Chensong Zhang on 01/10/2012 Modified by Chensong Zhang on 05/05/2013: Remove error handling for AMG setup

Definition at line 31 of file famg.c.

10.24 fasp.h File Reference

Main header file for FASP.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "fasp_const.h"
```

Data Structures

struct ddenmat

Dense matrix of REAL type.

struct idenmat

Dense matrix of INT type.

struct dCSRmat

Sparse matrix of REAL type in CSR format.

struct iCSRmat

Sparse matrix of INT type in CSR format.

struct dCOOmat

Sparse matrix of REAL type in COO (or IJ) format.

struct iCOOmat

Sparse matrix of INT type in COO (or IJ) format.

struct dCSRLmat

Sparse matrix of REAL type in CSRL format.

struct dSTRmat

Structure matrix of REAL type.

struct dvector

Vector with n entries of REAL type.

· struct ivector

Vector with n entries of INT type.

• struct ILU_param

Parameters for ILU.

• struct ILU_data

Data for ILU setup.

• struct Schwarz_param

Parameters for Schwarz method.

• struct Mumps_data

Parameters for MUMPS interface.

· struct Pardiso_data

Parameters for Intel MKL PARDISO interface.

· struct Schwarz_data

Data for Schwarz methods.

struct AMG param

Parameters for AMG solver.

• struct AMG_data

Data for AMG solvers.

struct precond_data

Data passed to the preconditioners.

struct precond_data_str

Data passed to the preconditioner for dSTRmat matrices.

• struct precond_diagstr

Data passed to diagonal preconditioner for dSTRmat matrices.

struct precond

Preconditioner data and action.

struct mxv_matfree

Matrix-vector multiplication, replace the actual matrix.

struct input_param

Input parameters.

struct itsolver_param

Parameters passed to iterative solvers.

struct grid2d

Two dimensional grid data structure.

• struct Link

Struct for Links.

struct linked_list

A linked list node.

Macros

- #define __FASP_HEADER__
- #define FASP_VERSION 1.8

FASP base version information.

• #define FASP_USE_ILU ON

For external software package support.

- #define ILU_C_VERSION ON
- #define DLMALLOC OFF
- #define NEDMALLOC OFF
- #define RS_C1 ON

Flags for internal uses.

- #define DIAGONAL PREF OFF
- #define SHORT short

FASP integer and floating point numbers.

- #define INT int
- #define LONG long
- #define LONGLONG long long
- #define REAL double
- #define MAX(a, b) (((a)>(b))?(a):(b))

Definition of max, min, abs.

- #define MIN(a, b) (((a)<(b))?(a):(b))
- #define ABS(a) (((a)>=0.0)?(a):-(a))
- #define GT(a, b) (((a)>(b))?(TRUE):(FALSE))

Definition of >, >=, <, <=, and isnan.

- #define GE(a, b) (((a)>=(b))?(TRUE):(FALSE))
- #define LS(a, b) (((a)<(b))?(TRUE):(FALSE))
- #define LE(a, b) (((a)<=(b))?(TRUE):(FALSE))
- #define ISNAN(a) (((a)!=(a))?(TRUE):(FALSE))
- #define PUT_INT(A) printf("### DEBUG: %s = %d\n", #A, (A))

Definition of print command in DEBUG mode.

- #define PUT_REAL(A) printf("### DEBUG: %s = %e\n", #A, (A))
- #define FASP_GSRB 1

Typedefs

- typedef struct ddenmat ddenmat
- typedef struct idenmat idenmat
- typedef struct dCSRmat dCSRmat
- typedef struct iCSRmat iCSRmat
- typedef struct dCOOmat dCOOmat
- · typedef struct iCOOmat iCOOmat
- typedef struct dCSRLmat dCSRLmat
- typedef struct dSTRmat dSTRmat
- · typedef struct dvector dvector
- typedef struct ivector ivector
- · typedef struct grid2d grid2d
- typedef grid2d * pgrid2d
- typedef const grid2d * pcgrid2d
- typedef struct linked_list ListElement
- typedef ListElement * LinkList

Variables

- unsigned INT total_alloc_mem
- unsigned INT total_alloc_count

Total allocated memory amount.

- INT nx rb
- INT ny rb
- INT nz_rb
- INT * IMAP
- INT MAXIMAP
- INT count

10.24.1 Detailed Description

Main header file for FASP.

This header file contains general constants and data structures for FASP.

Note

Only define macros and data structures, no function declarations.

Created by Chensong Zhang on 08/12/2010. Modified by Chensong Zhang on 12/13/2011. Modified by Chensong Zhang on 12/25/2011. Modified by Chensong Zhang on 01/25/2015: clean up code Modified by Chensong Zhang on 01/27/2015: remove N2C, C2N, ISTART Modified by Ludmil Zikatanov on 20151011: cosmetics.

Modified by Hongxuan Zhang on 11/28/2015: add Intel MKL PARDISO support.

10.24.2 Macro Definition Documentation

```
10.24.2.1 __FASP_HEADER__
#define __FASP_HEADER__
```

indicate fasp.h has been included before

Definition at line 36 of file fasp.h.

10.24.2.2 ABS

```
#define ABS( 
 a ) (((a)>=0.0)?(a):-(a))
```

absolute value of a

Definition at line 79 of file fasp.h.

10.24.2.3 DIAGONAL_PREF

```
#define DIAGONAL_PREF OFF
```

order each row such that diagonal appears first

Definition at line 63 of file fasp.h.

10.24.2.4 DLMALLOC

```
#define DLMALLOC OFF
```

use dimalloc instead of standard malloc

Definition at line 52 of file fasp.h.

10.24.2.5 FASP_GSRB

```
#define FASP_GSRB 1
```

MG level 0 use RedBlack Gauss Seidel Smoothing

Definition at line 1246 of file fasp.h.

10.24.2.6 FASP_USE_ILU

```
#define FASP_USE_ILU ON
```

For external software package support.

enable ILU in FASP

Definition at line 50 of file fasp.h.

10.24.2.7 FASP_VERSION

```
#define FASP_VERSION 1.8
```

FASP base version information.

faspsolver version

Definition at line 45 of file fasp.h.

```
10.24.2.8 GE
```

is $a \ge b$?

Definition at line 85 of file fasp.h.

10.24.2.9 GT

Definition of >, >=, <, <=, and isnan.

is a > b?

Definition at line 84 of file fasp.h.

10.24.2.10 ILU_C_VERSION

```
#define ILU_C_VERSION ON
```

use the C version of ILU functions

Definition at line 51 of file fasp.h.

10.24.2.11 INT

```
#define INT int
```

regular integer type: int or long

Definition at line 69 of file fasp.h.

10.24.2.12 ISNAN

is a == NAN?

Definition at line 88 of file fasp.h.

```
10.24.2.13 LE
```

is a \leq = b?

Definition at line 87 of file fasp.h.

10.24.2.14 LONG

```
#define LONG long
```

long integer type

Definition at line 70 of file fasp.h.

10.24.2.15 LONGLONG

```
#define LONGLONG long long
```

long integer type

Definition at line 71 of file fasp.h.

10.24.2.16 LS

is a < b?

Definition at line 86 of file fasp.h.

10.24.2.17 MAX

Definition of max, min, abs.

bigger one in a and b

Definition at line 77 of file fasp.h.

10.24.2.18 MIN

smaller one in a and b

Definition at line 78 of file fasp.h.

10.24.2.19 NEDMALLOC

```
#define NEDMALLOC OFF
```

use nedmalloc instead of standard malloc

Definition at line 53 of file fasp.h.

10.24.2.20 PUT_INT

```
#define PUT_INT(  A \ ) \ {\tt printf("\#\#\# \ DEBUG: \$s = \$d\n", \ \#A, \ (A))}
```

Definition of print command in DEBUG mode.

print an integer

Definition at line 93 of file fasp.h.

10.24.2.21 PUT_REAL

```
#define PUT_REAL(  A \ ) \ printf("### DEBUG: %s = %e\n", #A, (A))
```

print a real num

Definition at line 94 of file fasp.h.

10.24.2.22 REAL

```
#define REAL double
```

float type

Definition at line 72 of file fasp.h.

```
10.24.2.23 RS_C1
#define RS_C1 ON
Flags for internal uses.
Warning
     Change the following marcos with caution!CF splitting of RS: check C1 Criterion
Definition at line 61 of file fasp.h.
10.24.2.24 SHORT
#define SHORT short
FASP integer and floating point numbers.
short integer type
Definition at line 68 of file fasp.h.
10.24.3 Typedef Documentation
10.24.3.1 dCOOmat
typedef struct dCOOmat dCOOmat
Sparse matrix of REAL type in COO format
10.24.3.2 dCSRLmat
typedef struct dCSRLmat dCSRLmat
Sparse matrix of REAL type in CSRL format
10.24.3.3 dCSRmat
typedef struct dCSRmat dCSRmat
```

Sparse matrix of REAL type in CSR format

```
10.24.3.4 ddenmat
typedef struct ddenmat ddenmat
Dense matrix of REAL type
10.24.3.5 dSTRmat
typedef struct dSTRmat dSTRmat
Structured matrix of REAL type
10.24.3.6 dvector
typedef struct dvector dvector
Vector of REAL type
10.24.3.7 grid2d
typedef struct grid2d grid2d
2D grid type for plotting
10.24.3.8 iCOOmat
typedef struct iCOOmat iCOOmat
Sparse matrix of INT type in COO format
10.24.3.9 iCSRmat
typedef struct iCSRmat iCSRmat
Sparse matrix of INT type in CSR format
10.24.3.10 idenmat
typedef struct idenmat idenmat
Dense matrix of INT type
```

```
10.24.3.11 ivector
typedef struct ivector ivector
Vector of INT type
10.24.3.12 LinkList
typedef ListElement* LinkList
List of linkslinked list
Definition at line 1241 of file fasp.h.
10.24.3.13 ListElement
typedef struct linked_list ListElement
Linked element in list
10.24.3.14 pcgrid2d
typedef const grid2d* pcgrid2d
Grid in 2d
Definition at line 1195 of file fasp.h.
10.24.3.15 pgrid2d
typedef grid2d* pgrid2d
Grid in 2d
Definition at line 1193 of file fasp.h.
10.24.4 Variable Documentation
10.24.4.1 count
INT count
```

Counter for multiple calls

10.24.4.2 IMAP INT* IMAP Red Black Gs Smoother imap 10.24.4.3 MAXIMAP INT MAXIMAP Red Black Gs Smoother max DOFs of reservoir 10.24.4.4 nx_rb INT nx_rb Red Black Gs Smoother Nx 10.24.4.5 ny_rb INT ny_rb Red Black Gs Smoother Ny 10.24.4.6 nz_rb INT nz_rb Red Black Gs Smoother Nz 10.24.4.7 total_alloc_count unsigned INT total_alloc_count Total allocated memory amount. total allocation times

Definition at line 33 of file memory.c.

```
10.24.4.8 total_alloc_mem
```

```
unsigned INT total_alloc_mem
```

total allocated memory

Definition at line 32 of file memory.c.

10.25 fasp_block.h File Reference

Header file for FASP block matrices.

```
#include "fasp.h"
```

Data Structures

struct dBSRmat

Block sparse row storage matrix of REAL type.

struct dBLCmat

Block REAL CSR matrix format.

· struct block iCSRmat

Block INT CSR matrix format.

· struct block dvector

Block REAL vector structure.

· struct block ivector

Block INT vector structure.

· struct block Reservoir

Block REAL matrix format for reservoir simulation.

struct block BSR

Block REAL matrix format for reservoir simulation.

• struct AMG_data_bsr

Data for multigrid levels. (BSR format)

struct precond_diagbsr

Data passed to diagnal preconditioner for dBSRmat matrices.

• struct precond_data_bsr

Data passed to the preconditioners.

· struct precond block reservoir data

Data passed to the preconditioner for reservoir simulation problems.

· struct precond_block_data

Data passed to the preconditioner for block preconditioning for dBLCmat format.

· struct precond FASP blkoil data

Data passed to the preconditioner for preconditioning reservoir simulation problems.

• struct precond_sweeping_data

Data passed to the preconditioner for sweeping preconditioning.

Macros

- #define __FASPBLOCK_HEADER__
- #define SMOOTHER_BLKOIL 11

Definition of specialized smoother types.

#define SMOOTHER_SPETEN 19

Typedefs

- typedef struct dBSRmat dBSRmat
- typedef struct dBLCmat dBLCmat
- typedef struct block iCSRmat block iCSRmat
- typedef struct block_dvector block_dvector
- typedef struct block_ivector block_ivector
- typedef struct block_Reservoir block_Reservoir
- typedef struct block BSR block BSR
- typedef struct precond_block_reservoir_data precond_block_reservoir_data

10.25.1 Detailed Description

Header file for FASP block matrices.

Note

This header file contains definitions of block matrices, including grid-major type and variable-major type. In this header, we only define macros and data structures, not function declarations.

Created by Chensong Zhang on 05/21/2010. Modified by Xiaozhe Hu on 05/28/2010: add precond_block
_reservoir_data. Modified by Xiaozhe Hu on 06/15/2010: modify precond_block_reservoir_data. Modified by Chensong Zhang on 10/11/2010: add BSR data. Modified by Chensong Zhang on 10/17/2012: modify comments.

Modified by Ludmil Zikatanov on 20151011: cosmetics.

10.25.2 Macro Definition Documentation

```
10.25.2.1 __FASPBLOCK_HEADER__
```

#define ___FASPBLOCK_HEADER__

indicate fasp_block.h has been included before

Definition at line 22 of file fasp_block.h.

10.25.2.2 SMOOTHER_BLKOIL

#define SMOOTHER_BLKOIL 11

Definition of specialized smoother types.

Used in monolithic AMG for black-oil

Definition at line 27 of file fasp block.h.

```
10.25.2.3 SMOOTHER_SPETEN
#define SMOOTHER_SPETEN 19
Used in monolithic AMG for black-oil
Definition at line 28 of file fasp_block.h.
10.25.3 Typedef Documentation
10.25.3.1 block_BSR
typedef struct block_BSR block_BSR
Block of BSR matrices of REAL type
10.25.3.2 block_dvector
typedef struct block_dvector block_dvector
Vector of REAL type in Block format
10.25.3.3 block_iCSRmat
typedef struct block_iCSRmat block_iCSRmat
Matrix of INT type in Block CSR format
10.25.3.4 block_ivector
typedef struct block_ivector block_ivector
Vector of INT type in Block format
10.25.3.5 block_Reservoir
typedef struct block_Reservoir block_Reservoir
```

Special block matrix for Reservoir Simulation

```
10.25.3.6 dBLCmat
```

```
typedef struct dBLCmat dBLCmat
```

Matrix of REAL type in Block CSR format

10.25.3.7 dBSRmat

```
typedef struct dBSRmat dBSRmat
```

Matrix of REAL type in BSR format

10.25.3.8 precond_block_reservoir_data

typedef struct precond_block_reservoir_data precond_block_reservoir_data

Precond data for Reservoir Simulation

10.26 fasp_const.h File Reference

Definition of all kinds of messages, including error messages, solver types, etc.

Macros

- #define FASP_SUCCESS 0
 - Definition of return status and error messages.
- #define ERROR OPEN FILE -10
- #define ERROR_WRONG_FILE -11
- #define ERROR INPUT PAR -13
- #define ERROR_REGRESS -14
- #define ERROR_MAT_SIZE -15
- #define ERROR_NUM_BLOCKS -18
- #define ERROR MISC -19
- #define ERROR_ALLOC_MEM -20
- #define ERROR_DATA_STRUCTURE -21
- #define ERROR_DATA_ZERODIAG -22
- #define ERROR_DUMMY_VAR -23
- #define ERROR AMG INTERP TYPE -30
- #define ERROR_AMG_SMOOTH_TYPE -31
- #define ERROR_AMG_COARSE_TYPE -32
- #define ERROR_AMG_COARSEING -33
- #define ERROR_SOLVER_TYPE -40
- #define ERROR_SOLVER_PRECTYPE -41
- #define ERROR_SOLVER_STAG -42
- #define ERROR_SOLVER_SOLSTAG -43

- #define ERROR_SOLVER_TOLSMALL -44
- #define ERROR_SOLVER_ILUSETUP -45
- #define ERROR_SOLVER_MISC -46
- #define ERROR_SOLVER_MAXIT -48
- #define ERROR SOLVER EXIT -49
- #define ERROR QUAD TYPE -60
- #define ERROR QUAD DIM -61
- #define ERROR_LIC_TYPE -80
- #define ERROR_UNKNOWN -99
- #define TRUE 1

Definition of logic type.

- #define FALSE 0
- #define ON 1

Definition of switch.

- #define OFF 0
- #define PRINT NONE 0

Print level for all subroutines - not including DEBUG output.

- #define PRINT MIN 1
- #define PRINT SOME 2
- #define PRINT MORE 4
- #define PRINT_MOST 8
- #define PRINT ALL 10
- #define MAT FREE 0

Definition of matrix format.

- #define MAT_CSR 1
- #define MAT_BSR 2
- #define MAT_STR 3
- #define MAT BLC 4
- #define MAT bBSR 5
- #define MAT CSRL 6
- #define MAT_SymCSR 7
- #define SOLVER_DEFAULT 0

Definition of solver types for iterative methods.

- #define SOLVER CG 1
- #define SOLVER BiCGstab 2
- #define SOLVER VBiCGstab 9
- #define SOLVER_MinRes 3
- #define SOLVER GMRES 4
- #define SOLVER_VGMRES 5
- #define SOLVER_VFGMRES 6
- #define SOLVER GCG 7
- #define SOLVER GCR 8
- #define SOLVER SCG 11
- #define SOLVER SBiCGstab 12
- #define SOLVER_SMinRes 13
- #define SOLVER_SGMRES 14
- #define SOLVER_SVGMRES 15
- #define SOLVER_SVFGMRES 16
- #define SOLVER SGCG 17
- #define SOLVER AMG 21

- #define SOLVER_FMG 22
- #define SOLVER_SUPERLU 31
- #define SOLVER_UMFPACK 32
- #define SOLVER MUMPS 33
- #define SOLVER PARDISO 34
- #define STOP_REL_RES 1

Definition of iterative solver stopping criteria types.

- #define STOP_REL_PRECRES 2
- #define STOP MOD REL RES 3
- #define PREC_NULL 0

Definition of preconditioner type for iterative methods.

- #define PREC DIAG 1
- #define PREC_AMG 2
- #define PREC FMG 3
- #define PREC ILU 4
- #define PREC_SCHWARZ 5
- #define ILUk 1

Type of ILU methods.

- #define ILUt 2
- #define ILUtp 3
- #define SCHWARZ FORWARD 1

Type of Schwarz smoother.

- #define SCHWARZ BACKWARD 2
- #define SCHWARZ SYMMETRIC 3
- #define CLASSIC_AMG 1

Definition of AMG types.

- #define SA_AMG 2
- #define UA AMG 3
- #define PAIRWISE 1

Definition of aggregation types.

- #define VMB 2
- #define V CYCLE 1

Definition of cycle types.

- #define W_CYCLE 2
- #define AMLI CYCLE 3
- #define NL_AMLI_CYCLE 4
- #define SMOOTHER JACOBI 1

Definition of standard smoother types.

- #define SMOOTHER GS 2
- #define SMOOTHER SGS 3
- #define SMOOTHER_CG 4
- #define SMOOTHER_SOR 5
- #define SMOOTHER_SSOR 6
- #define SMOOTHER GSOR 7
- #define SMOOTHER SGSOR 8
- #define SMOOTHER POLY 9
- #define SMOOTHER_L1DIAG 10
- #define COARSE_RS 1

Definition of coarsening types.

- #define COARSE_RSP 2
- #define COARSE CR 3
- #define COARSE AC 4
- #define COARSE MIS 5
- #define INTERP DIR 1

Definition of interpolation types.

- #define INTERP STD 2
- #define INTERP ENG 3
- #define GOPT -5

Type of vertices (DOFs) for coarsening.

- #define UNPT -1
- #define FGPT 0
- #define CGPT 1
- #define ISPT 2
- #define NO_ORDER 0

Definition of smoothing order.

- #define CF_ORDER 1
- #define ILU MC OMP 1
- #define USERDEFINED 0

Type of ordering for smoothers.

- #define CPFIRST 1
- #define FPFIRST -1
- #define ASCEND 12
- #define DESCEND 21
- #define BIGREAL 1e+20

Some global constants.

- #define SMALLREAL 1e-20
- #define SMALLREAL2 1e-40
- #define MAX_REFINE_LVL 20
- #define MAX_AMG_LVL 20
- #define MIN_CDOF 20
- #define MIN CRATE 0.9
- #define MAX CRATE 20.0
- #define MAX_RESTART 20
- #define MAX STAG 20
- #define STAG RATIO 1e-4
- #define OPENMP HOLDS 2000

10.26.1 Detailed Description

Definition of all kinds of messages, including error messages, solver types, etc.

Note

This is internal use only. Do NOT change.

Created by Chensong Zhang on 03/20/2010. Modified by Chensong Zhang on 12/06/2011. Modified by Chensong Zhang on 12/25/2011. Modified by Chensong Zhang on 04/22/2012. Modified by Ludmil Zikatanov on 02/15/2013: CG -> SMOOTHER_CG. Modified by Chensong Zhang on 02/16/2013: GS -> SMOOTHER_GS, etc. Modified by Chensong Zhang on 04/09/2013: Add safe Krylov methods. Modified by Chensong Zhang on 09/22/2013: Clean up Doxygen.

Modified by Chensong Zhang on 09/17/2013: Filename changed from message.h.

10.26.2 Macro Definition Documentation

10.26.2.1 AMLI_CYCLE

#define AMLI_CYCLE 3

AMLI-cycle

Definition at line 178 of file fasp_const.h.

10.26.2.2 ASCEND

#define ASCEND 12

Ascending order

Definition at line 233 of file fasp_const.h.

10.26.2.3 BIGREAL

#define BIGREAL 1e+20

Some global constants.

A large real number

Definition at line 239 of file fasp_const.h.

10.26.2.4 CF_ORDER

#define CF_ORDER 1

C/F order smoothing

Definition at line 224 of file fasp_const.h.

10.26.2.5 CGPT

#define CGPT 1

Coarse grid points

Definition at line 217 of file fasp_const.h.

```
10.26.2.6 CLASSIC_AMG
#define CLASSIC_AMG 1
Definition of AMG types.
classic AMG
Definition at line 163 of file fasp_const.h.
10.26.2.7 COARSE_AC
#define COARSE_AC 4
Aggressive coarsening
Definition at line 201 of file fasp_const.h.
10.26.2.8 COARSE_CR
#define COARSE_CR 3
Compatible relaxation
Definition at line 200 of file fasp_const.h.
10.26.2.9 COARSE_MIS
#define COARSE_MIS 5
Aggressive coarsening based on MIS
Definition at line 202 of file fasp_const.h.
10.26.2.10 COARSE_RS
#define COARSE_RS 1
Definition of coarsening types.
Classical
Definition at line 198 of file fasp_const.h.
```

10.26.2.11 COARSE_RSP

#define COARSE_RSP 2

Classical, with positive offdiags

Definition at line 199 of file fasp_const.h.

10.26.2.12 CPFIRST

#define CPFIRST 1

C-points first order

Definition at line 231 of file fasp_const.h.

10.26.2.13 DESCEND

#define DESCEND 21

Descending order

Definition at line 234 of file fasp_const.h.

10.26.2.14 ERROR_ALLOC_MEM

#define ERROR_ALLOC_MEM -20

fail to allocate memory

Definition at line 37 of file fasp_const.h.

10.26.2.15 ERROR_AMG_COARSE_TYPE

#define ERROR_AMG_COARSE_TYPE -32

unknown coarsening type

Definition at line 44 of file fasp_const.h.

10.26.2.16 ERROR_AMG_COARSEING

#define ERROR_AMG_COARSEING -33

coarsening step failed to complete

Definition at line 45 of file fasp_const.h.

10.26.2.17 ERROR_AMG_INTERP_TYPE

#define ERROR_AMG_INTERP_TYPE -30

unknown interpolation type

Definition at line 42 of file fasp_const.h.

10.26.2.18 ERROR_AMG_SMOOTH_TYPE

#define ERROR_AMG_SMOOTH_TYPE -31

unknown smoother type

Definition at line 43 of file fasp_const.h.

10.26.2.19 ERROR_DATA_STRUCTURE

#define ERROR_DATA_STRUCTURE -21

problem with data structures

Definition at line 38 of file fasp_const.h.

10.26.2.20 ERROR_DATA_ZERODIAG

#define ERROR_DATA_ZERODIAG -22

matrix has zero diagonal entries

Definition at line 39 of file fasp_const.h.

10.26.2.21 ERROR_DUMMY_VAR

#define ERROR_DUMMY_VAR -23

unexpected input data

Definition at line 40 of file fasp_const.h.

10.26.2.22 ERROR_INPUT_PAR

#define ERROR_INPUT_PAR -13

wrong input argument

Definition at line 31 of file fasp_const.h.

10.26.2.23 ERROR_LIC_TYPE

#define ERROR_LIC_TYPE -80

wrong license type

Definition at line 60 of file fasp_const.h.

10.26.2.24 ERROR_MAT_SIZE

#define ERROR_MAT_SIZE -15

wrong problem size

Definition at line 33 of file fasp_const.h.

10.26.2.25 ERROR_MISC

#define ERROR_MISC -19

other error

Definition at line 35 of file fasp_const.h.

10.26.2.26 ERROR_NUM_BLOCKS

#define ERROR_NUM_BLOCKS -18

wrong number of blocks

Definition at line 34 of file fasp_const.h.

10.26.2.27 ERROR_OPEN_FILE

#define ERROR_OPEN_FILE -10

fail to open a file

Definition at line 29 of file fasp_const.h.

10.26.2.28 ERROR_QUAD_DIM

#define ERROR_QUAD_DIM -61

unsupported quadrature dim

Definition at line 58 of file fasp_const.h.

10.26.2.29 ERROR_QUAD_TYPE

#define ERROR_QUAD_TYPE -60

unknown quadrature type

Definition at line 57 of file fasp_const.h.

10.26.2.30 ERROR_REGRESS

#define ERROR_REGRESS -14

regression test fail

Definition at line 32 of file fasp_const.h.

10.26.2.31 ERROR_SOLVER_EXIT

#define ERROR_SOLVER_EXIT -49

solver does not quit successfully

Definition at line 55 of file fasp_const.h.

10.26.2.32 ERROR_SOLVER_ILUSETUP

#define ERROR_SOLVER_ILUSETUP -45

ILU setup error

Definition at line 52 of file fasp_const.h.

10.26.2.33 ERROR_SOLVER_MAXIT

#define ERROR_SOLVER_MAXIT -48

maximal iteration number exceeded

Definition at line 54 of file fasp_const.h.

10.26.2.34 ERROR_SOLVER_MISC

#define ERROR_SOLVER_MISC -46

misc solver error during run time

Definition at line 53 of file fasp_const.h.

10.26.2.35 ERROR_SOLVER_PRECTYPE

#define ERROR_SOLVER_PRECTYPE -41

unknown precond type

Definition at line 48 of file fasp_const.h.

10.26.2.36 ERROR_SOLVER_SOLSTAG

#define ERROR_SOLVER_SOLSTAG -43

solver's solution is too small

Definition at line 50 of file fasp_const.h.

10.26.2.37 ERROR_SOLVER_STAG

#define ERROR_SOLVER_STAG -42

solver stagnates

Definition at line 49 of file fasp_const.h.

10.26.2.38 ERROR_SOLVER_TOLSMALL

#define ERROR_SOLVER_TOLSMALL -44

solver's tolerance is too small

Definition at line 51 of file fasp_const.h.

10.26.2.39 ERROR_SOLVER_TYPE

#define ERROR_SOLVER_TYPE -40

unknown solver type

Definition at line 47 of file fasp_const.h.

10.26.2.40 ERROR_UNKNOWN

#define ERROR_UNKNOWN -99

an unknown error type

Definition at line 62 of file fasp_const.h.

```
10.26.2.41 ERROR_WRONG_FILE
#define ERROR_WRONG_FILE -11
input contains wrong format
Definition at line 30 of file fasp_const.h.
10.26.2.42 FALSE
#define FALSE 0
logic FALSE
Definition at line 68 of file fasp_const.h.
10.26.2.43 FASP_SUCCESS
#define FASP_SUCCESS 0
Definition of return status and error messages.
return from function successfully
Definition at line 27 of file fasp_const.h.
10.26.2.44 FGPT
#define FGPT 0
Fine grid points
Definition at line 216 of file fasp_const.h.
10.26.2.45 FPFIRST
#define FPFIRST -1
F-points first order
```

Definition at line 232 of file fasp_const.h.

```
10.26.2.46 G0PT
#define GOPT -5
Type of vertices (DOFs) for coarsening.
Cannot fit in aggregates
Definition at line 214 of file fasp_const.h.
10.26.2.47 ILU_MC_OMP
#define ILU_MC_OMP 1
Multi-colors Parallel smoothing
Definition at line 225 of file fasp_const.h.
10.26.2.48 ILUk
#define ILUk 1
Type of ILU methods.
ILUk
Definition at line 149 of file fasp_const.h.
10.26.2.49 ILUt
#define ILUt 2
ILUt
Definition at line 150 of file fasp_const.h.
10.26.2.50 ILUtp
#define ILUtp 3
ILUtp
Definition at line 151 of file fasp_const.h.
```

Generated by Doxygen

```
10.26.2.51 INTERP_DIR
#define INTERP_DIR 1
Definition of interpolation types.
Direct interpolation
Definition at line 207 of file fasp_const.h.
10.26.2.52 INTERP_ENG
#define INTERP_ENG 3
energy minimization interpolation
Definition at line 209 of file fasp_const.h.
10.26.2.53 INTERP_STD
#define INTERP_STD 2
Standard interpolation
Definition at line 208 of file fasp_const.h.
10.26.2.54 ISPT
#define ISPT 2
Isolated points
Definition at line 218 of file fasp_const.h.
10.26.2.55 MAT_bBSR
#define MAT_bBSR 5
block matrix of BSR for bordered systems
```

Definition at line 94 of file fasp_const.h.

10.26.2.56 MAT_BLC #define MAT_BLC 4 block matrix of CSR Definition at line 93 of file fasp_const.h. 10.26.2.57 MAT_BSR #define MAT_BSR 2 block-wise compressed sparse row Definition at line 91 of file fasp_const.h. 10.26.2.58 MAT_CSR #define MAT_CSR 1 compressed sparse row Definition at line 90 of file fasp_const.h. 10.26.2.59 MAT_CSRL #define MAT_CSRL 6 modified CSR to reduce cache missing Definition at line 95 of file fasp_const.h. 10.26.2.60 MAT_FREE #define MAT_FREE 0

Generated by Doxygen

Definition of matrix format.

matrix-free format: only mxv action

Definition at line 89 of file fasp_const.h.

10.26.2.61 MAT_STR

#define MAT_STR 3

structured sparse matrix

Definition at line 92 of file fasp_const.h.

10.26.2.62 MAT_SymCSR

#define MAT_SymCSR 7

symmetric CSR format

Definition at line 96 of file fasp_const.h.

10.26.2.63 MAX_AMG_LVL

#define MAX_AMG_LVL 20

Maximal AMG coarsening level

Definition at line 243 of file fasp_const.h.

10.26.2.64 MAX_CRATE

#define MAX_CRATE 20.0

Maximal coarsening ratio

Definition at line 246 of file fasp_const.h.

10.26.2.65 MAX_REFINE_LVL

#define MAX_REFINE_LVL 20

Maximal refinement level

Definition at line 242 of file fasp_const.h.

10.26.2.66 MAX_RESTART

#define MAX_RESTART 20

Maximal restarting number

Definition at line 247 of file fasp_const.h.

10.26.2.67 MAX_STAG

#define MAX_STAG 20

Maximal number of stagnation times

Definition at line 248 of file fasp_const.h.

10.26.2.68 MIN_CDOF

#define MIN_CDOF 20

Minimal number of coarsest variables

Definition at line 244 of file fasp_const.h.

10.26.2.69 MIN_CRATE

#define MIN_CRATE 0.9

Minimal coarsening ratio

Definition at line 245 of file fasp_const.h.

10.26.2.70 NL_AMLI_CYCLE

#define NL_AMLI_CYCLE 4

Nonlinear AMLI-cycle

Definition at line 179 of file fasp_const.h.

10.26.2.71 NO_ORDER

#define NO_ORDER 0

Definition of smoothing order.

Natural order smoothing

Definition at line 223 of file fasp_const.h.

```
10.26.2.72 OFF
#define OFF 0
turn off certain parameter
Definition at line 74 of file fasp_const.h.
10.26.2.73 ON
#define ON 1
Definition of switch.
turn on certain parameter
Definition at line 73 of file fasp_const.h.
10.26.2.74 OPENMP_HOLDS
#define OPENMP_HOLDS 2000
Smallest size for OpenMP version
Definition at line 250 of file fasp_const.h.
10.26.2.75 PAIRWISE
#define PAIRWISE 1
Definition of aggregation types.
pairwise aggregation
Definition at line 170 of file fasp_const.h.
10.26.2.76 PREC_AMG
#define PREC_AMG 2
with AMG precond
```

Definition at line 141 of file fasp_const.h.

```
10.26.2.77 PREC_DIAG
#define PREC_DIAG 1
with diagonal precond
Definition at line 140 of file fasp_const.h.
10.26.2.78 PREC_FMG
#define PREC_FMG 3
with full AMG precond
Definition at line 142 of file fasp_const.h.
10.26.2.79 PREC_ILU
#define PREC_ILU 4
with ILU precond
Definition at line 143 of file fasp_const.h.
10.26.2.80 PREC_NULL
#define PREC_NULL 0
Definition of preconditioner type for iterative methods.
with no precond
Definition at line 139 of file fasp_const.h.
10.26.2.81 PREC_SCHWARZ
#define PREC_SCHWARZ 5
with Schwarz preconditioner
```

Definition at line 144 of file fasp_const.h.

10.26.2.82 PRINT_ALL

#define PRINT_ALL 10

all: all printouts, including files

Definition at line 84 of file fasp_const.h.

10.26.2.83 PRINT_MIN

#define PRINT_MIN 1

quiet: print error, important warnings

Definition at line 80 of file fasp_const.h.

10.26.2.84 PRINT_MORE

#define PRINT_MORE 4

more: print some useful debug info

Definition at line 82 of file fasp_const.h.

10.26.2.85 PRINT_MOST

#define PRINT_MOST 8

most: maximal printouts, no files

Definition at line 83 of file fasp_const.h.

10.26.2.86 PRINT_NONE

#define PRINT_NONE 0

Print level for all subroutines - not including DEBUG output.

silent: no printout at all

Definition at line 79 of file fasp_const.h.

10.26.2.87 PRINT_SOME #define PRINT_SOME 2 some: print less important warnings Definition at line 81 of file fasp_const.h. 10.26.2.88 SA_AMG #define SA_AMG 2 smoothed aggregation AMG Definition at line 164 of file fasp_const.h. 10.26.2.89 SCHWARZ_BACKWARD #define SCHWARZ_BACKWARD 2 Backward ordering Definition at line 157 of file fasp_const.h. 10.26.2.90 SCHWARZ_FORWARD

#define SCHWARZ_FORWARD 1

Type of Schwarz smoother.

Forward ordering

Definition at line 156 of file fasp_const.h.

10.26.2.91 SCHWARZ_SYMMETRIC

#define SCHWARZ_SYMMETRIC 3

Symmetric smoother

Definition at line 158 of file fasp_const.h.

10.26.2.92 SMALLREAL

#define SMALLREAL 1e-20

A small real number

Definition at line 240 of file fasp_const.h.

10.26.2.93 SMALLREAL2

#define SMALLREAL2 1e-40

An extremely small real number

Definition at line 241 of file fasp_const.h.

10.26.2.94 SMOOTHER_CG

#define SMOOTHER_CG 4

CG as a smoother

Definition at line 187 of file fasp_const.h.

10.26.2.95 SMOOTHER_GS

#define SMOOTHER_GS 2

Gauss-Seidel smoother

Definition at line 185 of file fasp_const.h.

10.26.2.96 SMOOTHER_GSOR

#define SMOOTHER_GSOR 7

GS + SOR smoother

Definition at line 190 of file fasp_const.h.

10.26.2.97 SMOOTHER_JACOBI

#define SMOOTHER_JACOBI 1

Definition of standard smoother types.

Jacobi smoother

Definition at line 184 of file fasp_const.h.

10.26.2.98 SMOOTHER_L1DIAG

#define SMOOTHER_L1DIAG 10

L1 norm diagonal scaling smoother

Definition at line 193 of file fasp_const.h.

10.26.2.99 SMOOTHER_POLY

#define SMOOTHER_POLY 9

Polynomial smoother

Definition at line 192 of file fasp_const.h.

10.26.2.100 SMOOTHER_SGS

#define SMOOTHER_SGS 3

Symmetric Gauss-Seidel smoother

Definition at line 186 of file fasp_const.h.

10.26.2.101 SMOOTHER_SGSOR

#define SMOOTHER_SGSOR 8

SGS + SSOR smoother

Definition at line 191 of file fasp_const.h.

10.26.2.102 SMOOTHER_SOR

#define SMOOTHER_SOR 5

SOR smoother

Definition at line 188 of file fasp_const.h.

10.26.2.103 SMOOTHER_SSOR

#define SMOOTHER_SSOR 6

SSOR smoother

Definition at line 189 of file fasp_const.h.

10.26.2.104 SOLVER_AMG #define SOLVER_AMG 21 AMG as an iterative solver Definition at line 121 of file fasp_const.h. 10.26.2.105 SOLVER_BiCGstab #define SOLVER_BiCGstab 2 Bi-Conjugate Gradient Stabilized Definition at line 104 of file fasp_const.h. 10.26.2.106 SOLVER_CG #define SOLVER_CG 1 Conjugate Gradient Definition at line 103 of file fasp_const.h. 10.26.2.107 SOLVER_DEFAULT #define SOLVER_DEFAULT 0 Definition of solver types for iterative methods. Use default solver in FASP Definition at line 101 of file fasp_const.h. 10.26.2.108 SOLVER_FMG #define SOLVER_FMG 22

Full AMG as an solver

Definition at line 122 of file fasp_const.h.

Generated by Doxygen

10.26.2.109 SOLVER_GCG

#define SOLVER_GCG 7

Generalized Conjugate Gradient

Definition at line 110 of file fasp_const.h.

10.26.2.110 SOLVER_GCR

#define SOLVER_GCR 8

Generalized Conjugate Residual

Definition at line 111 of file fasp_const.h.

10.26.2.111 SOLVER_GMRES

#define SOLVER_GMRES 4

Generalized Minimal Residual

Definition at line 107 of file fasp_const.h.

10.26.2.112 SOLVER_MinRes

#define SOLVER_MinRes 3

Minimal Residual

Definition at line 106 of file fasp_const.h.

10.26.2.113 SOLVER_MUMPS

#define SOLVER_MUMPS 33

Direct Solver: MUMPS

Definition at line 126 of file fasp_const.h.

10.26.2.114 SOLVER_PARDISO

#define SOLVER_PARDISO 34

Direct Solver: PARDISO

Definition at line 127 of file fasp_const.h.

10.26.2.115 SOLVER_SBiCGstab

#define SOLVER_SBiCGstab 12

BiCGstab with safety net

Definition at line 114 of file fasp_const.h.

10.26.2.116 SOLVER_SCG

#define SOLVER_SCG 11

Conjugate Gradient with safety net

Definition at line 113 of file fasp_const.h.

10.26.2.117 SOLVER_SGCG

#define SOLVER_SGCG 17

GCG with safety net

Definition at line 119 of file fasp_const.h.

10.26.2.118 SOLVER_SGMRES

#define SOLVER_SGMRES 14

GMRes with safety net

Definition at line 116 of file fasp_const.h.

10.26.2.119 SOLVER_SMinRes

#define SOLVER_SMinRes 13

MinRes with safety net

Definition at line 115 of file fasp_const.h.

10.26.2.120 SOLVER_SUPERLU

#define SOLVER_SUPERLU 31

Direct Solver: SuperLU

Definition at line 124 of file fasp_const.h.

10.26.2.121 SOLVER_SVFGMRES

#define SOLVER_SVFGMRES 16

Variable-restart FGMRES with safety net

Definition at line 118 of file fasp_const.h.

10.26.2.122 SOLVER_SVGMRES

#define SOLVER_SVGMRES 15

Variable-restart GMRES with safety net

Definition at line 117 of file fasp_const.h.

10.26.2.123 SOLVER_UMFPACK

#define SOLVER_UMFPACK 32

Direct Solver: UMFPack

Definition at line 125 of file fasp_const.h.

10.26.2.124 SOLVER_VBiCGstab

#define SOLVER_VBiCGstab 9

VBi-Conjugate Gradient Stabilized

Definition at line 105 of file fasp_const.h.

10.26.2.125 SOLVER_VFGMRES

#define SOLVER_VFGMRES 6

Variable Restarting Flexible GMRES

Definition at line 109 of file fasp_const.h.

10.26.2.126 SOLVER_VGMRES

#define SOLVER_VGMRES 5

Variable Restarting GMRES

Definition at line 108 of file fasp_const.h.

```
10.26.2.127 STAG_RATIO
#define STAG_RATIO 1e-4
Stagnation tolerance = tol*STAGRATIO
Definition at line 249 of file fasp_const.h.
10.26.2.128 STOP_MOD_REL_RES
#define STOP_MOD_REL_RES 3
modified relative residual ||r||/||x||
Definition at line 134 of file fasp_const.h.
10.26.2.129 STOP_REL_PRECRES
#define STOP_REL_PRECRES 2
relative B-residual ||r||_B/||b||_B
Definition at line 133 of file fasp_const.h.
10.26.2.130 STOP_REL_RES
#define STOP_REL_RES 1
Definition of iterative solver stopping criteria types.
relative residual ||r||/||b||
Definition at line 132 of file fasp_const.h.
10.26.2.131 TRUE
#define TRUE 1
Definition of logic type.
```

logic TRUE

Definition at line 67 of file fasp_const.h.

Generated by Doxygen

10.26.2.132 UA_AMG #define UA_AMG 3 unsmoothed aggregation AMG Definition at line 165 of file fasp_const.h. 10.26.2.133 UNPT #define UNPT -1 Undetermined points Definition at line 215 of file fasp_const.h. 10.26.2.134 USERDEFINED #define USERDEFINED 0 Type of ordering for smoothers. User defined order Definition at line 230 of file fasp_const.h. 10.26.2.135 V_CYCLE #define V_CYCLE 1 Definition of cycle types. V-cycle Definition at line 176 of file fasp_const.h. 10.26.2.136 VMB #define VMB 2 VMB aggregation

Generated by Doxygen

Definition at line 171 of file fasp_const.h.

10.26.2.137 W_CYCLE

```
#define W_CYCLE 2
```

W-cycle

Definition at line 177 of file fasp_const.h.

10.27 fmgcycle.c File Reference

Abstract non-recursive full multigrid cycle.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "mg_util.inl"
```

Functions

```
• void fasp_solver_fmgcycle (AMG_data *mgl, AMG_param *param)

Solve Ax=b with non-recursive full multigrid K-cycle.
```

10.27.1 Detailed Description

Abstract non-recursive full multigrid cycle.

10.27.2 Function Documentation

10.27.2.1 fasp_solver_fmgcycle()

```
void fasp_solver_fmgcycle (
          AMG_data * mgl,
          AMG_param * param )
```

Solve Ax=b with non-recursive full multigrid K-cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Author

Chensong Zhang

Date

02/27/2011

Modified by Chensong Zhang on 06/01/2012: fix a bug when there is only one level. Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Zheng Li on 11/10/2014: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 34 of file fmgcycle.c.

10.28 formats.c File Reference

Subroutines for matrix format conversion.

```
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

SHORT fasp format dcoo dcsr (dCOOmat *A, dCSRmat *B)

Transform a REAL matrix from its IJ format to its CSR format.

SHORT fasp_format_dcsr_dcoo (dCSRmat *A, dCOOmat *B)

Transform a REAL matrix from its CSR format to its IJ format.

SHORT fasp_format_dstr_dcsr (dSTRmat *A, dCSRmat *B)

Transfer a 'dSTRmat' type matrix into a 'dCSRmat' type matrix.

dCSRmat fasp_format_dblc_dcsr (dBLCmat *Ab)

Form the whole dCSRmat A using blocks given in Ab.

dCSRLmat * fasp_format_dcsrl_dcsr (dCSRmat *A)

Convert a dCSRmat into a dCSRLmat.

dCSRmat fasp_format_dbsr_dcsr (dBSRmat *B)

Transfer a 'dBSRmat' type matrix into a dCSRmat.

dBSRmat fasp format dcsr dbsr (dCSRmat *A, const INT nb)

Transfer a dCSRmat type matrix into a dBSRmat.

dBSRmat fasp_format_dstr_dbsr (dSTRmat *B)

Transfer a 'dSTRmat' type matrix to a 'dBSRmat' type matrix.

dCOOmat * fasp_format_dbsr_dcoo (dBSRmat *B)

Transfer a 'dBSRmat' type matrix to a 'dCOOmat' type matrix.

10.28.1 Detailed Description

Subroutines for matrix format conversion.

10.28.2 Function Documentation

```
10.28.2.1 fasp_format_dblc_dcsr()
```

Form the whole dCSRmat A using blocks given in Ab.

Parameters

Ab Pointer to dBLCmat matrix

Returns

dCSRmat matrix if succeed, NULL if fail

Author

Shiquan Zhang

Date

08/10/2010

Definition at line 292 of file formats.c.

```
10.28.2.2 fasp_format_dbsr_dcoo()
```

Transfer a 'dBSRmat' type matrix to a 'dCOOmat' type matrix.

Parameters

B Pointer to dBSRmat matrix

Returns

Pointer to dCOOmat matrix

Author

Zhiyang Zhou

Date

2010/10/26

Definition at line 943 of file formats.c.

```
10.28.2.3 fasp_format_dbsr_dcsr()
```

Transfer a 'dBSRmat' type matrix into a dCSRmat.

Parameters

B Pointer to dBSRmat matrix

Returns

dCSRmat matrix

Author

Zhiyang Zhou

Date

10/23/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/24/2012

Note

Works for general nb (Xiaozhe)

Definition at line 495 of file formats.c.

10.28.2.4 fasp_format_dcoo_dcsr()

Transform a REAL matrix from its IJ format to its CSR format.

Parameters

Α	Pointer to dCOOmat matrix
В	Pointer to dCSRmat matrix

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xuehai Huang

Date

08/10/2009

Definition at line 27 of file formats.c.

10.28.2.5 fasp_format_dcsr_dbsr()

Transfer a dCSRmat type matrix into a dBSRmat.

Parameters

Α	Pointer to the dCSRmat type matrix
nb	size of each block

Returns

dBSRmat matrix

Author

Zheng Li

Date

03/27/2014

Note

modified by Xiaozhe Hu to avoid potential memory leakage problem

Definition at line 721 of file formats.c.

10.28.2.6 fasp_format_dcsr_dcoo()

Transform a REAL matrix from its CSR format to its IJ format.

Parameters

Α	Pointer to dCSRmat matrix
В	Pointer to dCOOmat matrix

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xuehai Huang

Date

08/10/2009

Modified by Chunsheng Feng, Zheng Li

Date

10/12/2012

Definition at line 80 of file formats.c.

10.28.2.7 fasp_format_dcsrl_dcsr()

Convert a dCSRmat into a dCSRLmat.

Parameters

A Pointer to dCSRLmat matrix

Returns

Pointer to dCSRLmat matrix

Author

Zhiyang Zhou

Date

2011/01/07

Definition at line 361 of file formats.c.

```
10.28.2.8 fasp_format_dstr_dbsr()
```

Transfer a 'dSTRmat' type matrix to a 'dBSRmat' type matrix.

Parameters

B Pointer to dSTRmat matrix

Returns

dBSRmat matrix

Author

Zhiyang Zhou

Date

2010/10/26

Definition at line 839 of file formats.c.

```
10.28.2.9 fasp_format_dstr_dcsr()
```

Transfer a 'dSTRmat' type matrix into a 'dCSRmat' type matrix.

Parameters

Α	Pointer to dSTRmat matrix
В	Pointer to dCSRmat matrix

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Zhiyang Zhou

Date

2010/04/29

Definition at line 117 of file formats.c.

10.29 givens.c File Reference

Givens transformation.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void fasp_aux_givens (const REAL beta, dCSRmat *H, dvector *y, REAL *tmp)

Perform Givens rotations to compute y | beta*e_1- H*y|.

10.29.1 Detailed Description

Givens transformation.

10.29.2 Function Documentation

10.29.2.1 fasp_aux_givens()

Perform Givens rotations to compute y |beta*e_1- H*y|.

Parameters

beta	Norm of residual r_0
Н	Upper Hessenberg dCSRmat matrix: (m+1)*m
У	Minimizer of beta*e_1- H*y
tmp	Temporary work array

Author

Xuehai Huang

Date

10/19/2008

Definition at line 28 of file givens.c.

10.30 gmg_poisson.c File Reference

GMG method as an iterative solver for Poisson Problem.

```
#include <time.h>
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "gmg_util.inl"
```

Functions

INT fasp_poisson_gmg_1D (REAL *u, REAL *b, const INT nx, const INT maxlevel, const REAL rtol, const SH
 — ORT prtlvl)

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method.

INT fasp_poisson_gmg_2D (REAL *u, REAL *b, const INT nx, const INT ny, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method.

 INT fasp_poisson_gmg_3D (REAL *u, REAL *b, const INT nx, const INT ny, const INT nz, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method.

 void fasp_poisson_fgmg_1D (REAL *u, REAL *b, const INT nx, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (Full Multigrid)

void fasp_poisson_fgmg_2D (REAL *u, REAL *b, const INT nx, const INT ny, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (Full Multigrid)

 void fasp_poisson_fgmg_3D (REAL *u, REAL *b, const INT nx, const INT ny, const INT nz, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (Full Multigrid)

 INT fasp_poisson_pcg_gmg_1D (REAL *u, REAL *b, const INT nx, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

• INT fasp_poisson_pcg_gmg_2D (REAL *u, REAL *b, const INT nx, const INT ny, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

INT fasp_poisson_pcg_gmg_3D (REAL *u, REAL *b, const INT nx, const INT ny, const INT nz, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

10.30.1 Detailed Description

GMG method as an iterative solver for Poisson Problem.

10.30.2 Function Documentation

10.30.2.1 fasp_poisson_fgmg_1D()

```
void fasp_poisson_fgmg_1D (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (Full Multigrid)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Author

Ziteng Wang

Date

06/07/2013

Definition at line 431 of file gmg_poisson.c.

```
10.30.2.2 fasp_poisson_fgmg_2D()
```

```
void fasp_poisson_fgmg_2D (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (Full Multigrid)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in Y direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Author

Ziteng Wang

Date

06/07/2013

Definition at line 524 of file gmg_poisson.c.

10.30.2.3 fasp_poisson_fgmg_3D()

```
const INT nz,
const INT maxlevel,
const REAL rtol,
const SHORT prtlvl )
```

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (Full Multigrid)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	NUmber of grids in y direction
nz	NUmber of grids in z direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Author

Ziteng Wang

Date

06/07/2013

Definition at line 632 of file gmg_poisson.c.

10.30.2.4 fasp_poisson_gmg_1D()

```
INT fasp_poisson_gmg_lD (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl)
```

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method.

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang

Date

06/07/2013

Definition at line 36 of file gmg_poisson.c.

10.30.2.5 fasp_poisson_gmg_2D()

```
INT fasp_poisson_gmg_2D (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method.

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in y direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang

Date

06/07/2013

Definition at line 160 of file gmg_poisson.c.

10.30.2.6 fasp_poisson_gmg_3D()

```
INT fasp_poisson_gmg_3D (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT nz,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method.

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang

Date

06/07/2013

Definition at line 296 of file gmg_poisson.c.

10.30.2.7 fasp_poisson_pcg_gmg_1D()

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang

Date

06/07/2013

Definition at line 741 of file gmg_poisson.c.

10.30.2.8 fasp_poisson_pcg_gmg_2D()

```
INT fasp_poisson_pcg_gmg_2D (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in y direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang

Date

06/07/2013

Definition at line 835 of file gmg_poisson.c.

10.30.2.9 fasp_poisson_pcg_gmg_3D()

```
INT fasp_poisson_pcg_gmg_3D (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT nz,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang

Date

06/07/2013

Definition at line 944 of file gmg poisson.c.

10.31 graphics.c File Reference

Subroutines for graphical output.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_dcsr_subplot (const dCSRmat *A, const char *filename, INT size)

 Write sparse matrix pattern in BMP file format.
- void fasp_dbsr_subplot (const dBSRmat *A, const char *filename, INT size)

Write sparse matrix pattern in BMP file format.

void fasp_grid2d_plot (pgrid2d pg, INT level)

Output grid to a EPS file.

INT fasp_dbsr_plot (const dBSRmat *A, const char *fname)

Write dBSR sparse matrix pattern in BMP file format.

INT fasp_dcsr_plot (const dCSRmat *A, const char *fname)

Write dCSR sparse matrix pattern in BMP file format.

10.31.1 Detailed Description

Subroutines for graphical output.

10.31.2 Function Documentation

10.31.2.1 fasp_dbsr_plot()

Write dBSR sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dBSRmat matrix
filename	File name

Author

Chunsheng Feng

Date

11/16/2013

Note

The routine fasp_dbsr_plot writes pattern of the specified dBSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Black zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 470 of file graphics.c.

10.31.2.2 fasp_dbsr_subplot()

Write sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dBSRmat matrix	
filename	File name	
size	size*size is the picture size for the picture	

Author

Chunsheng Feng

Date

11/16/2013

Note

The routine fasp_dbsr_subplot writes pattern of the specified dBSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Black zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 105 of file graphics.c.

10.31.2.3 fasp_dcsr_plot()

Write dCSR sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dBSRmat matrix
fname	File name to plot to

Author

Chunsheng Feng

Date

11/16/2013

Note

The routine fasp_dcsr_plot writes pattern of the specified dCSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Black zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 630 of file graphics.c.

10.31.2.4 fasp_dcsr_subplot()

Write sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dCSRmat matrix	
filename	File name	
size	size*size is the picture size for the picture	

Author

Chensong Zhang

Date

03/29/2009

Note

The routine fasp_dcsr_subplot writes pattern of the specified dCSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 44 of file graphics.c.

10.31.2.5 fasp_grid2d_plot()

```
void fasp_grid2d_plot (
          pgrid2d pg,
           INT level )
```

Output grid to a EPS file.

Parameters

pg	Pointer to grid in 2d
level	Number of levels

10.32 ilu.c File Reference 247

Author

Chensong Zhang

Date

03/29/2009

Definition at line 172 of file graphics.c.

10.32 ilu.c File Reference

Incomplete LU decomposition: ILUk, ILUt, ILUtp.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_qsplit (REAL *a, INT *ind, INT n, INT ncut)
 - Get a quick-sort split of a real array.
- void fasp_iluk (INT n, REAL *a, INT *ja, INT *ia, INT lfil, REAL *alu, INT *jlu, INT iwk, INT *ierr, INT *nzlu)

 Get ILU factorization with level of fill-in k (ilu(k)) for a CSR matrix A.
- void fasp_ilut (INT n, REAL *a, INT *ja, INT *ia, INT Ifil, REAL droptol, REAL *alu, INT *jlu, INT iwk, INT *ierr, INT *nz)

Get incomplete LU factorization with dual truncations of a CSR matrix A.

void fasp_ilutp (INT n, REAL *a, INT *ja, INT *ia, INT Ifil, REAL droptol, REAL permtol, INT mbloc, REAL *alu, INT *jlu, INT iwk, INT *ierr, INT *nz)

Get incomplete LU factorization with pivoting dual truncations of a CSR matrix A.

void fasp_srtr (INT num, INT *q)

Shell sort with hardwired increments.

void fasp_symbfactor (INT n, INT *colind, INT *rwptr, INT levfill, INT nzmax, INT *nzlu, INT *ijlu, INT *uptr, INT *ierr)

Symbolic factorization of a CSR matrix A in compressed sparse row format, with resulting factors stored in a single MSR data structure.

10.32.1 Detailed Description

Incomplete LU decomposition: ILUk, ILUt, ILUtp.

Note

This is a translation from SPARSEKIT Fortran version

Translated by Chunsheng Feng, 09/03/2016

10.32.2 Function Documentation

10.32.2.1 fasp_iluk()

Get ILU factorization with level of fill-in k (ilu(k)) for a CSR matrix A.

Parameters

n	row number of A
а	nonzero entries of A
ja	integer array of column for A
ia	integer array of row pointers for A
Ifil	integer. The fill-in parameter. Each row of L and each row of U will have a maximum of Ifil elements (excluding the diagonal element). Ifil must be .ge. 0.
alu,jlu	matrix stored in Modified Sparse Row (MSR) format containing the L and U factors together. The diagonal (stored in alu(1:n)) is inverted. Each i-th row of the alu, jlu matrix contains the i-th row of L (excluding the diagonal entry=1) followed by the i-th row of U.
jlu	integer array of length n containing the pointers to the beginning of each row of U in the matrix alu,jlu.
iwk	integer. The minimum length of arrays alu, jlu, and levs.
ierr	integer pointer. Return error message with the following meaning. 0 -> successful return. >0 -> zero pivot encountered at step number ierr1 -> Error. input matrix may be wrong. (The elimination process has generated a row in L or U whose length is .gt. n.) -2 -> The matrix L overflows the array al3 -> The matrix U overflows the array alu4 -> Illegal value for Ifil5 -> zero row encountered.
nzlu	integer pointer. Return number of nonzero entries for alu and jlu

Note

: All the diagonal elements of the input matrix must be nonzero.

Author

Chunsheng Feng

Date

09/06/2016

Definition at line 136 of file ilu.c.

10.32 ilu.c File Reference 249

10.32.2.2 fasp_ilut()

Get incomplete LU factorization with dual truncations of a CSR matrix A.

Parameters

n	row number of A
а	nonzero entries of A
ja	integer array of column for A
ia	integer array of row pointers for A
Ifil	integer. The fill-in parameter. Each row of L and each row of U will have a maximum of Ifil elements (excluding the diagonal element). Ifil must be .ge. 0.
droptol	real*8. Sets the threshold for dropping small terms in the factorization. See below for details on dropping strategy.
alu,jlu	matrix stored in Modified Sparse Row (MSR) format containing the L and U factors together. The diagonal (stored in alu(1:n)) is inverted. Each i-th row of the alu, jlu matrix contains the i-th row of L (excluding the diagonal entry=1) followed by the i-th row of U.
iwk	integer. The lengths of arrays alu and jlu. If the arrays are not big enough to store the ILU factorizations, ilut will stop with an error message.
ierr	integer pointer. Return error message with the following meaning. $0 ->$ successful return. $>0 ->$ zero pivot encountered at step number ierr. $-1 ->$ Error. input matrix may be wrong. (The elimination process has generated a row in L or U whose length is .gt. n.) $-2 ->$ The matrix L overflows the array al. $-3 ->$ The matrix U overflows the array alu. $-4 ->$ Illegal value for Ifil. $-5 ->$ zero row encountered.
nz	integer pointer. Return number of nonzero entries for alu and jlu

Note

All the diagonal elements of the input matrix must be nonzero.

Author

Chunsheng Feng

Date

09/06/2016

Definition at line 528 of file ilu.c.

10.32.2.3 fasp_ilutp()

```
void fasp_ilutp (
    INT n,
    REAL * a,
    INT * ja,
    INT * ia,
    INT lfil,
    REAL droptol,
    REAL permtol,
    INT mbloc,
    REAL * alu,
    INT * jlu,
    INT iwk,
    INT * ierr,
    INT * nz )
```

Get incomplete LU factorization with pivoting dual truncations of a CSR matrix A.

Parameters

n	row number of A	
а	nonzero entries of A	
ja	integer array of column for A	
ia	integer array of row pointers for A	
lfil	integer. The fill-in parameter. Each row of L and each row of U will have a maximum of Ifil elements (excluding the diagonal element). Ifil must be .ge. 0.	
droptol	real*8. Sets the threshold for dropping small terms in the factorization. See below for details on dropping strategy.	
permtol	tolerance ratio used to determine whether or not to permute two columns. At step i columns i and j are permuted when $abs(a(i,j))*permtol .gt. abs(a(i,i)) [0 -> never permute; good values 0.1 to 0.01]$	
mbloc	integer.If desired, permuting can be done only within the diagonal blocks of size mbloc. Useful for PDE problems with several degrees of freedom If feature not wanted take mbloc=n.	
alu,jlu	matrix stored in Modified Sparse Row (MSR) format containing the L and U factors together. The diagonal (stored in alu(1:n)) is inverted. Each i-th row of the alu,jlu matrix contains the i-th row of L (excluding the diagonal entry=1) followed by the i-th row of U.	
iwk	integer. The lengths of arrays alu and jlu. If the arrays are not big enough to store the ILU factorizations, ilut will stop with an error message.	
ierr	integer pointer. Return error message with the following meaning. $0 \rightarrow$ successful return. $>0 \rightarrow$ zero pivot encountered at step number ierr. $-1 \rightarrow$ Error. input matrix may be wrong. (The elimination process has generated a row in L or U whose length is .gt. n.) $-2 \rightarrow$ The matrix L overflows the array al. $-3 \rightarrow$ The matrix U overflows the array alu. $-4 \rightarrow$ Illegal value for Ifil. $-5 \rightarrow$ zero row encountered.	
nz	integer pointer. Return number of nonzero entries for alu and jlu	

Note

: All the diagonal elements of the input matrix must be nonzero.

10.32 ilu.c File Reference 251

Author

Chunsheng Feng

Date

09/06/2016

Definition at line 963 of file ilu.c.

```
10.32.2.4 fasp_qsplit()
```

```
void void fasp_qsplit (
    REAL * a,
    INT * ind,
    INT n,
    INT ncut )
```

Get a quick-sort split of a real array.

Parameters

а	a real array. on output a(1:n) is permuted such that its elements satisfy: abs(a(i)) .ge. abs(a(ncut)) for i .lt. ncut and abs(a(i)) .le. abs(a(ncut)) for i .gt. ncut.	
ind	is an integer array which permuted in the same way as $a(*)$.	
n	size of array a.	
ncut	integer.	

Author

Chunsheng Feng

Date

09/06/2016

Definition at line 31 of file ilu.c.

```
10.32.2.5 fasp_srtr()
```

Shell sort with hardwired increments.

Parameters

num	size of q
q	integer array.

Author

Chunsheng Feng

Date

09/06/2016

Implement shell sort, with hardwired increments. The algorithm for

sorting entries in A(0:n-1) is as follows:

inc = initialinc(n) while inc >= 1 for i = inc to n-1 j = i x = A(i) while j >= inc and A(j-inc) > x A(j) = A(j-inc) j = j-inc end while A(j) = x end for inc = nextinc(inc,n)

end while

The increments here are 1, 4, 13, 40, 121, ..., (3**i-1)/2, ... In this case, nextinc(inc,n) = (inc-1)/3. Usually shellsort would have the largest increment the largest integer of the form (3**i-1)/2 that is less than n, but here it is fixed at 121 because most sparse matrices have 121 or fewer nonzero entries per row. If this routine is expanded for a complete sparse factorization routine, or if a large number of levels of fill is allowed, then possibly it should be replaced with more efficient sorting.

Any set of increments with 1 as the first one will result in a true sorting algorithm.

Definition at line 1415 of file ilu.c.

10.32.2.6 fasp_symbfactor()

```
void fasp_symbfactor (
    INT n,
    INT * colind,
    INT * rwptr,
    INT levfill,
    INT nzmax,
    INT * nzlu,
    INT * ijlu,
    INT * uptr,
    INT * ierr )
```

Symbolic factorization of a CSR matrix A in compressed sparse row format, with resulting factors stored in a single MSR data structure.

10.32 ilu.c File Reference 253

Parameters

n	row number of A
colind	integer array of column for A
rwptr	integer array of row pointers for A
levfill	integer. Level of fill-in allowed
nzmax	integer. The maximum number of nonzero entries in the approximate factorization of a. This is the amount of storage allocated for ijlu.
nzlu	integer pointer. Return number of nonzero entries for alu and jlu
ijlu	integer array of length nzlu containing pointers to delimit rows and specify column number for stored elements of the approximate factors of A. the L and U factors are stored as one matrix.
uptr	integer array of length n containing the pointers to upper trig matrix
ierr	integer pointer. Return error message with the following meaning. 0 -> successful return. 1 -> not enough storage; check mneed.

Chunsheng Feng

Date

09/06/2016

Symbolic factorization of a matrix in compressed sparse row format, * with resulting factors stored in a single MSR data structure. *

This routine uses the CSR data structure of A in two integer vectors * colind, rwptr to set up the data structure for the ILU(levfill) * factorization of A in the integer vectors ijlu and uptr. Both L * and U are stored in the same structure, and uptr(i) is the pointer * to the beginning of the i-th row of U in ijlu. *

Method Used * ====== *

The implementation assumes that the diagonal entries are * nonzero, and remain nonzero throughout the elimination * process. The algorithm proceeds row by row. When computing * the sparsity pattern of the i-th row, the effect of row * operations from previous rows is considered. Only those * preceding rows j for which (i,j) is nonzero need be considered, * since otherwise we would not have formed a linear combination * of rows i and j. *

The method used has some variations possible. The definition * of ILU(s) is not well specified enough to get a factorization * that is uniquely defined, even in the sparsity pattern that * results. For s=0 or 1, there is not much variation, but for * higher levels of fill the problem is as follows: Suppose * during the decomposition while computing the nonzero pattern * for row i the following principal submatrix is obtained: * ______ * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | * | | * | * | | *

1. However, * other reasonable choices would have been min(s1,s2) or max(s1,s2). * Using the sum gives a more conservative strategy in terms of the * growth of the number of nonzeros as s increases. *

levels(n+2:nzlu) stores the levels from previous rows, * that is, the s2's above. levels(1:n) stores the fill-levels * of the current row (row i), which are the s1's above. * levels(n+1) is not used, so levels is conformant with MSR format. *

Vectors used: * ======= *

lastcol(n): * The integer lastcol(k) is the row index of the last row * to have a nonzero in column k, including the current * row, and fill-in up to this point. So for the matrix *

after step 1, lastcol() = $[1\ 0\ 0\ 0\ 1\ 0] *$ after step 2, lastcol() = $[2\ 2\ 0\ 0\ 2\ 2] *$ after step 3, lastcol() = $[2\ 3\ 3\ 3\ 2\ 3] *$ after step 4, lastcol() = $[4\ 3\ 4\ 4\ 4\ 3] *$ after step 5, lastcol() = $[4\ 5\ 4\ 5\ 5\ 5] *$ after step 6, lastcol() = $[4\ 6\ 4\ 5\ 5\ 6] *$

Note that on step 2, lastcol(5) = 2 because there is a * fillin position (2,5) in the matrix. lastcol() is used * to determine if a nonzero occurs in column j because * it is a nonzero in the original matrix, or was a fill. *

rowll(n): * The integer vector rowll is used to keep a linked list of * the nonzeros in the current row, allowing fill-in to be * introduced sensibly. rowll is initialized with the * original nonzeros of the current row, and then sorted * using a shell sort. A pointer called head * (what ingenuity) is initialized. Note that at any * point rowll may contain garbage left over from previous * rows, which the linked list structure skips over. * For row 4 of the matrix above, first rowll is set to * rowll() = [3 1 2 5 - -], where - indicates any integer. * Then the vector is sorted, which yields * rowll() = [1 2 3 5 - -]. The vector is then expanded * to linked list form by setting head = 1 and * rowll() = [2 3 5 - 7 -], where 7 indicates termination. *

ijlu(nzlu): * The returned nonzero structure for the LU factors. * This is built up row by row in MSR format, with both L * and U stored in the data structure. Another vector, uptr(n), * is used to give pointers to the beginning of the upper * triangular part of the LU factors in ijlu. *

levels(n+2:nzlu): * This vector stores the fill level for each entry from * all the previous rows, used to compute if the current entry * will exceed the allowed levels of fill. The value in * levels(m) is added to the level of fill for the element in * the current row that is being reduced, to figure if * a column entry is to be accepted as fill, or rejected. * See the method explanation above. *

levels(1:n): * This vector stores the fill level number for the current * row's entries. If they were created as fill elements * themselves, this number is added to the corresponding * entry in levels(n+2:nzlu) to see if a particular column * entry will * be created as new fill or not. NOTE: in practice, the * value in levels(1:n) is one larger than the "fill" level of * the corresponding row entry, except for the diagonal * entry. That is why the accept/reject test in the code * is "if (levels(j) + levels(m) .le. levfill + 1)". *

on entry:

n = The order of the matrix A. ija = Integer array. Matrix A stored in modified sparse row format. levfill = Integer. Level of fill-in allowed. nzmax = Integer. The maximum number of nonzero entries in the approximate factorization of a. This is the amount of storage allocated for ijlu.

on return:

nzlu = The actual number of entries in the approximate factors, plus one. ijlu = Integer array of length nzlu containing pointers to delimit rows and specify column number for stored elements of the approximate factors of a. the I and u factors are stored as one matrix. uptr = Integer array of length n containing the pointers to upper trig matrix

ierr is an error flag: ierr = -i -> near zero pivot in step i ierr = 0 -> all's OK ierr = 1 -> not enough storage; check mneed. ierr = 2 -> illegal parameter

mneed = contains the actual number of elements in Idu, or the amount of additional storage needed for Idu

work arrays:

lastcol = integer array of length n containing last update of the corresponding column. levels = integer array of length n containing the level of fill-in in current row in its first n entries, and level of fill of previous rows of U in remaining part. rowll = integer array of length n containing pointers to implement a linked list for the fill-in elements.

external functions:

```
ifix, float, min0, srtr
```

Definition at line 1528 of file ilu.c.

10.33 ilu_setup_bsr.c File Reference

Setup incomplete LU decomposition for dBSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp functs.h"
```

Functions

- void symbfactor_ (const INT *n, INT *colind, INT *rwptr, const INT *levfill, const INT *nzmax, INT *nzlu, INT *ijlu, INT *uptr, INT *ierr)
- SHORT fasp_ilu_dbsr_setup (dBSRmat *A, ILU_data *iludata, ILU_param *iluparam)

 Get ILU decoposition of a BSR matrix A.
- SHORT fasp_ilu_dbsr_setup_levsch_omp (dBSRmat *A, ILU_data *iludata, ILU_param *iluparam)
 - Get ILU decoposition of a BSR matrix A based on level schedule strategy.
- SHORT fasp_ilu_dbsr_setup_omp (dBSRmat *A, ILU_data *iludata, ILU_param *iluparam)

Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.

• SHORT fasp_ilu_dbsr_setup_mc_omp (dBSRmat *A, dCSRmat *Ap, ILU_data *iludata, ILU_param *iluparam)

Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.

10.33.1 Detailed Description

Setup incomplete LU decomposition for dBSRmat matrices.

10.33.2 Function Documentation

```
10.33.2.1 fasp_ilu_dbsr_setup()
```

```
SHORT fasp_ilu_dbsr_setup (

dBSRmat * A,

ILU_data * iludata,

ILU_param * iluparam)
```

Get ILU decoposition of a BSR matrix A.

Parameters

Α	Pointer to dBSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Shiquan Zhang, Xiaozhe Hu

Date

11/08/2010

Note

Works for general nb (Xiaozhe) Change the size of work space by Zheng Li 04/26/2015.

Definition at line 45 of file ilu_setup_bsr.c.

10.33.2.2 fasp_ilu_dbsr_setup_levsch_omp()

Get ILU decoposition of a BSR matrix A based on level schedule strategy.

Parameters

Α	Pointer to dBSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Zheng Li

Date

12/04/2016

Note

Only works for 1, 2, 3 nb (Zheng)

Definition at line 850 of file ilu_setup_bsr.c.

10.33.2.3 fasp_ilu_dbsr_setup_mc_omp()

Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.

Parameters

Α	Pointer to dBSRmat matrix
Ар	Pointer to dCSRmat matrix and provide sparsity pattern
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

```
Author
```

Zheng Li

Date

12/04/2016

Note

Only works for 1, 2, 3 nb (Zheng)

Definition at line 1084 of file ilu_setup_bsr.c.

```
10.33.2.4 fasp_ilu_dbsr_setup_omp()
```

Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.

Parameters

Α	Pointer to dBSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Zheng Li

Date

12/04/2016

Note

Only works for 1, 2, 3 nb (Zheng)

Definition at line 973 of file ilu_setup_bsr.c.

10.34 ilu_setup_csr.c File Reference

Setup incomplete LU decomposition for dCSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void iluk_ (const INT *n, REAL *a, INT *ja, INT *ia, INT *lfil, REAL *alu, INT *jlu, INT *iwk, INT *ierr, INT *nzlu)
- void ilut_ (const INT *n, REAL *a, INT *ja, INT *ia, INT *lfil, const REAL *droptol, REAL *alu, INT *jlu, INT *iwk, INT *ierr, INT *nz)
- void ilutp_ (const INT *n, REAL *a, INT *ja, INT *ia, INT *lfil, const REAL *droptol, const REAL *permtol, const INT *mbloc, REAL *alu, INT *jlu, INT *iwk, INT *ierr, INT *nz)
- SHORT fasp_ilu_dcsr_setup (dCSRmat *A, ILU_data *iludata, ILU_param *iluparam)

 Get ILU decomposition of a CSR matrix A.

10.34.1 Detailed Description

Setup incomplete LU decomposition for dCSRmat matrices.

10.34.2 Function Documentation

Get ILU decomposition of a CSR matrix A.

Parameters

Α	Pointer to dCSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP SUCCESS if successed; otherwise, error information.

Author

Shiquan Zhang Xiaozhe Hu

Date

12/27/2009

Definition at line 50 of file ilu_setup_csr.c.

10.35 ilu_setup_str.c File Reference

Setup incomplete LU decomposition for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_ilu_dstr_setup0 (dSTRmat *A, dSTRmat *LU)
        Get ILU(0) decomposition of a structured matrix A.
    void fasp_ilu_dstr_setup1 (dSTRmat *A, dSTRmat *LU)
        Get ILU(1) decoposition of a structured matrix A.
```

10.35.1 Detailed Description

Setup incomplete LU decomposition for dSTRmat matrices.

10.35.2 Function Documentation

```
10.35.2.1 fasp_ilu_dstr_setup0()
```

```
void fasp_ilu_dstr_setup0 (  \label{eq:dstrmat} \text{dSTRmat } * A, \\  \  \  \text{dSTRmat } * LU \; )
```

Get ILU(0) decomposition of a structured matrix A.

Parameters

Α	Pointer to dSTRmat
LU	Pointer to ILU structured matrix of REAL type

Author

Shiquan Zhang, Xiaozhe Hu

Date

11/08/2010

Note

Only works for 5 bands 2D and 7 bands 3D matrix with default offsets (order can be arbitrary)!

Definition at line 28 of file ilu_setup_str.c.

```
10.35.2.2 fasp_ilu_dstr_setup1()
```

```
void fasp_ilu_dstr_setup1 (  \label{eq:dstrmat} \text{dSTRmat} \, * \, A \text{,} \\  \  \  \text{dSTRmat} \, * \, LU \, )
```

Get ILU(1) decoposition of a structured matrix A.

Parameters

Α	Pointer to oringinal structured matrix of REAL type
LU	Pointer to ILU structured matrix of REAL type

Author

Shiquan Zhang, Xiaozhe Hu

Date

11/08/2010

Note

put L and U in a STR matrix and it has the following structure: the diag is d, the offdiag of L are alpha1 to alpha6, the offdiag of U are beta1 to beta6

Only works for 5 bands 2D and 7 bands 3D matrix with default offsets

Definition at line 322 of file ilu_setup_str.c.

10.36 init.c File Reference

Initialize important data structures.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_precond_data_null (precond_data *pcdata)

Initialize precond_data.

AMG_data * fasp_amg_data_create (SHORT max_levels)

Create and initialize AMG data for classical and SA AMG.

AMG_data_bsr * fasp_amg_data_bsr_create (SHORT max_levels)

Create and initialize AMG_data data sturcture for AMG/SAMG (BSR format)

void fasp_ilu_data_alloc (const INT iwk, const INT nwork, ILU_data *iludata)

Allocate workspace for ILU factorization.

void fasp_Schwarz_data_free (Schwarz_data *Schwarz)

Free Schwarz_data data memeory space.

void fasp_amg_data_free (AMG_data *mgl, AMG_param *param)

Free AMG_data data memeory space.

void fasp amg data bsr free (AMG data bsr *mgl)

Free AMG_data_bsr data memeory space.

void fasp_ilu_data_free (ILU_data *ILUdata)

Create ILU_data sturcture.

• void fasp_ilu_data_null (ILU_data *ILUdata)

Initialize ILU data.

void fasp_precond_null (precond *pcdata)

Initialize precond data.

10.36.1 Detailed Description

Initialize important data structures.

Note

Every structures should be initialized before usage.

10.36.2 Function Documentation

```
10.36.2.1 fasp_amg_data_bsr_create()
```

```
AMG_data_bsr * fasp_amg_data_bsr_create (
SHORT max_levels)
```

Create and initialize AMG_data data sturcture for AMG/SAMG (BSR format)

10.36 init.c File Reference 263

Parameters

max_levels Max number of levels allowed	
---	--

Returns

Pointer to the AMG_data data structure

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 86 of file init.c.

10.36.2.2 fasp_amg_data_bsr_free()

```
void fasp_amg_data_bsr_free ( {\tt AMG\_data\_bsr} \ * \ mgl \ )
```

Free AMG_data_bsr data memeory space.

Parameters

```
mgl Pointer to the AMG_data_bsr
```

Author

Xiaozhe Hu

Date

2013/02/13

Definition at line 257 of file init.c.

10.36.2.3 fasp_amg_data_create()

Create and initialize AMG_data for classical and SA AMG.

Parameters

max_levels Max number of leve	ls allowed
---------------------------------	------------

Returns

Pointer to the AMG_data data structure

Author

Chensong Zhang

Date

2010/04/06

Definition at line 56 of file init.c.

10.36.2.4 fasp_amg_data_free()

```
void fasp_amg_data_free (
          AMG_data * mgl,
          AMG_param * param )
```

Free AMG_data data memeory space.

Parameters

mgl	Pointer to the AMG_data
param	Pointer to AMG parameters

Author

Chensong Zhang

Date

2010/04/06

Modified by Chensong Zhang on 05/05/2013: Clean up param as well! Modified by Hongxuan Zhang on 12/15/2015: free internal memory for Intel MKL PARDISO.

Definition at line 185 of file init.c.

10.36 init.c File Reference 265

10.36.2.5 fasp_ilu_data_alloc()

Allocate workspace for ILU factorization.

Parameters

iwk	Size of the index array
nwork	Size of the work array
iludata	Pointer to the ILU_data

Author

Chensong Zhang

Date

2010/04/06

Definition at line 118 of file init.c.

```
10.36.2.6 fasp_ilu_data_free()
```

Create ILU_data sturcture.

Parameters

ILUdata	Pointer to ILU_data
---------	---------------------

Author

Chensong Zhang

Date

2010/04/03

Definition at line 301 of file init.c.

```
10.36.2.7 fasp_ilu_data_null()
```

Initialize ILU data.

Parameters

ILUdata Pointer to ILU_data

Author

Chensong Zhang

Date

2010/03/23

Definition at line 326 of file init.c.

10.36.2.8 fasp_precond_data_null()

Initialize precond_data.

Parameters

pcdata Preconditioning data structure

Author

Chensong Zhang

Date

2010/03/23

Definition at line 25 of file init.c.

10.36.2.9 fasp_precond_null()

Initialize precond data.

Parameters

Author

Chensong Zhang

Date

2010/03/23

Definition at line 342 of file init.c.

10.36.2.10 fasp_Schwarz_data_free()

Free Schwarz_data data memeory space.

Parameters

*Schwarz | pointer to the AMG_data data

Author

Xiaozhe Hu

Date

2010/04/06

Definition at line 147 of file init.c.

10.37 input.c File Reference

Read input parameters.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

SHORT fasp_param_check (input_param *inparam)

Simple check on input parameters.

void fasp_param_input (const char *fname, input_param *inparam)

Read input parameters from disk file.

10.37.1 Detailed Description

Read input parameters.

10.37.2 Function Documentation

```
10.37.2.1 fasp_param_check()
```

Simple check on input parameters.

Parameters

inparam Input parameters

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Chensong Zhang

Date

09/29/2013

Definition at line 25 of file input.c.

10.37.2.2 fasp_param_input()

Read input parameters from disk file.

Parameters

fname	File name for input file
inparam	Input parameters

Author

Chensong Zhang

Date

03/20/2010

Modified by Xiaozhe Hu on 01/23/2011: add AMLI cycle Modified by Chensong Zhang on 01/10/2012 Modified by Ludmil Zikatanov on 02/15/2013 Modified by Chensong Zhang on 05/10/2013: add a new input. Modified by Chensong Zhang on 03/23/2015: skip unknown keyword.

Definition at line 102 of file input.c.

10.38 interface_mumps.c File Reference

Interface to MUMPS direct solvers.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Macros

#define ICNTL(I) icntl[(I)-1]

Functions

- int fasp_solver_mumps (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl)

 Solve Ax=b by MUMPS directly.
- int fasp_solver_mumps_steps (dCSRmat *ptrA, dvector *b, dvector *u, Mumps_data *mumps)

 Solve Ax=b by MUMPS in three steps.

10.38.1 Detailed Description

Interface to MUMPS direct solvers.

Reference for MUMPS: http://mumps.enseeiht.fr/

10.38.2 Macro Definition Documentation

10.38.2.1 ICNTL

```
#define ICNTL( I \ ) \ \ \text{icntl}[\ (\text{I})-1]
```

macro s.t. indices match documentation

Definition at line 17 of file interface_mumps.c.

10.38.3 Function Documentation

10.38.3.1 fasp_solver_mumps()

Solve Ax=b by MUMPS directly.

Parameters

ptrA	Pointer to a dCSRmat matrix	
b	Pointer to the dvector of right-hand side term	
и	u Pointer to the dvector of solution	
prtlvl	Output level	

Author

Chunsheng Feng

Date

02/27/2013

Modified by Chensong Zhang on 02/27/2013 for new FASP function names.

Definition at line 39 of file interface_mumps.c.

10.38.3.2 fasp_solver_mumps_steps()

Solve Ax=b by MUMPS in three steps.

Parameters

ptrA	Pointer to a dCSRmat matrix
b	Pointer to the dvector of right-hand side term
и	Pointer to the dvector of solution
mumps	Pointer to MUMPS data

Author

Chunsheng Feng

Date

02/27/2013

Modified by Chensong Zhang on 02/27/2013 for new FASP function names. Modified by Zheng Li on 10/10/2014 to adjust input parameters.

Definition at line 169 of file interface_mumps.c.

10.39 interface_pardiso.c File Reference

Interface to Intel MKL PARDISO direct solvers.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

INT fasp_solver_pardiso (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl)
 Solve Ax=b by PARDISO directly. Each row of A should be in ascending order w.r.t. column indices.

10.39.1 Detailed Description

Interface to Intel MKL PARDISO direct solvers.

Reference for Intel MKL PARDISO: https://software.intel.com/en-us/node/470282

10.39.2 Function Documentation

10.39.2.1 fasp_solver_pardiso()

Solve Ax=b by PARDISO directly. Each row of A should be in ascending order w.r.t. column indices.

Parameters

ptrA	trA Pointer to a dCSRmat matrix	
b	Pointer to the dvector of right-hand side term	
и	u Pointer to the dvector of solution	
prtlvl	Output level	

Author

Hongxuan Zhang

Date

11/28/2015

Definition at line 38 of file interface_pardiso.c.

10.40 interface_samg.c File Reference

Interface to SAMG solvers.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void dvector2SAMGInput (dvector *vec, char *filename)

Write a dvector to disk file in SAMG format (coordinate format)

INT dCSRmat2SAMGInput (dCSRmat *A, char *filefrm, char *fileamg)

Write SAMG Input data from a sparse matrix of CSR format.

10.40.1 Detailed Description

Interface to SAMG solvers.

 $\label{lem:condition} \textbf{Reference for SAMG:} \ \texttt{http://www.scai.fraunhofer.de/geschaeftsfelder/nuso/produkte/samg.} \leftarrow \texttt{html}$

Warning

This interface has only been tested for SAMG24a1 (2010 version)!

10.40.2 Function Documentation

10.40.2.1 dCSRmat2SAMGInput()

Write SAMG Input data from a sparse matrix of CSR format.

Parameters

Α	Pointer to the dCSRmat matrix
filefrm	Name of the .frm file
fileamg	Name of the .amg file

Author

Zhiyang Zhou

Date

2010/08/25

Definition at line 59 of file interface_samg.c.

10.40.2.2 dvector2SAMGInput()

Write a dvector to disk file in SAMG format (coordinate format)

Parameters

vec	Pointer to the dvector
filename	File name for input

Author

Zhiyang Zhou

Date

08/25/2010

Definition at line 30 of file interface_samg.c.

10.41 interface_superlu.c File Reference

Interface to SuperLU direct solvers.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• int fasp_solver_superlu (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl)

Solve Au=b by SuperLU.

10.41.1 Detailed Description

Interface to SuperLU direct solvers.

Reference for SuperLU: http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

10.41.2 Function Documentation

10.41.2.1 fasp_solver_superlu()

Solve Au=b by SuperLU.

Parameters

ptrA	Pointer to a dCSRmat matrix
b	Pointer to the dvector of right-hand side term
и	Pointer to the dvector of solution
nrtlyl	Output level
Caparatad	Output level

Author

Xiaozhe Hu

Date

11/05/09

Modified by Chensong Zhang on 11/01/2012 for new FASP function names. Modified by Chensong Zhang on 02/27/2013 for new FASP function names.

Definition at line 40 of file interface superlu.c.

10.42 interface_umfpack.c File Reference

Interface to UMFPACK direct solvers.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

INT fasp_solver_umfpack (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl)
 Solve Au=b by UMFpack.

10.42.1 Detailed Description

Interface to UMFPACK direct solvers.

Reference for SuiteSparse: http://faculty.cse.tamu.edu/davis/suitesparse.html

10.42.2 Function Documentation

10.42.2.1 fasp_solver_umfpack()

Solve Au=b by UMFpack.

Parameters

ptrA	Pointer to a dCSRmat matrix
b	Pointer to the dvector of right-hand side term
и	Pointer to the dvector of solution
prtlvl	Output level

Author

Chensong Zhang

Date

05/20/2010

Modified by Chensong Zhang on 02/27/2013 for new FASP function names.

Definition at line 37 of file interface_umfpack.c.

10.43 interpolation.c File Reference

Interpolation operators for AMG.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_amg_interp (dCSRmat *A, ivector *vertices, dCSRmat *P, iCSRmat *S, AMG_param *param)

 Generate interpolation operator P.
- void fasp_amg_interp1 (dCSRmat *A, ivector *vertices, dCSRmat *P, AMG_param *param, iCSRmat *S, INT *icor_ysk)

Generate interpolation operator P.

void fasp_amg_interp_trunc (dCSRmat *P, AMG_param *param)

Truncation step for prolongation operators.

10.43.1 Detailed Description

Interpolation operators for AMG.

Note

Ref U. Trottenberg, C. W. Oosterlee, and A. Schuller "Multigrid (Appendix A: An Intro to Algebraic Multigrid)" Academic Press Inc., San Diego, CA, 2001 With contributions by A. Brandt, P. Oswald and K. Stuben.

10.43.2 Function Documentation

10.43.2.1 fasp_amg_interp()

Generate interpolation operator P.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix (index starts from 0)	
vertices	Indicator vector for the C/F splitting of the variables	
Р	Prolongation (input: nonzero pattern, output: prolongation)	
S	Strong connection matrix	
param	AMG parameters	

Author

Xuehai Huang, Chensong Zhang

Date

04/04/2010

Modified by Xiaozhe Hu on 05/23/2012: add S as input Modified by Chensong Zhang on 09/12/2012: clean up and debug interp_RS Modified by Chensong Zhang on 05/14/2013: reconstruct the code

Definition at line 48 of file interpolation.c.

10.43.2.2 fasp_amg_interp1()

Generate interpolation operator P.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix (index starts from 0)	
vertices	Indicator vector for the C/F splitting of the variables	
Р	Prolongation (input: nonzero pattern, output: prolongation)	
S	Strong connection matrix	
param	AMG parameters	
	•	

Returns

FASP_SUCCESS or error message

Author

Chunsheng Feng, Xiaoqiang Yue

Date

03/01/2011

Modified by Chensong Zhang on 05/14/2013: reconstruct the code

Definition at line 105 of file interpolation.c.

10.43.2.3 fasp_amg_interp_trunc()

Truncation step for prolongation operators.

Parameters

P	Prolongation (input: full, output: truncated)	
param	Pointer to AMG_param: AMG parameters	

Author

Chensong Zhang

Date

05/14/2013

Originally by Xuehai Huang, Chensong Zhang on 01/31/2009 Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012: add OMP support Modified by Chensong Zhang on 05/14/2013: rewritten

Definition at line 159 of file interpolation.c.

10.44 interpolation_em.c File Reference

Interpolation operators for AMG based on energy-min.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void fasp_amg_interp_em (dCSRmat *A, ivector *vertices, dCSRmat *P, AMG_param *param)

Energy-min interpolation.

10.44.1 Detailed Description

Interpolation operators for AMG based on energy-min.

Note

Ref J. Xu and L. Zikatanov "On An Energy Minimizing Basis in Algebraic Multigrid Methods" Computing and visualization in sciences, 2003

10.44.2 Function Documentation

10.44.2.1 fasp amg interp em()

Energy-min interpolation.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix (index starts from 0)	
vertices	Pointer to the indicator of CF splitting on fine or coarse grid	
Р	Pointer to the dCSRmat matrix of resulted interpolation	
param	Pointer to AMG_param: AMG parameters	

Author

Shuo Zhang, Xuehai Huang

Date

04/04/2010

Modified by Chunsheng Feng, Zheng Li on 10/17/2012: add OMP support Modified by Chensong Zhang on 05/14/2013: reconstruct the code

Definition at line 49 of file interpolation em.c.

10.45 io.c File Reference

Matrix/vector input/output subroutines.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "hb_io.h"
```

Functions

void fasp_dcsrvec1_read (const char *filename, dCSRmat *A, dvector *b)

Read A and b from a SINGLE disk file.

• void fasp_dcsrvec2_read (const char *filemat, const char *filerhs, dCSRmat *A, dvector *b)

Read A and b from two disk files.

void fasp_dcsr_read (const char *filename, dCSRmat *A)

Read A from matrix disk file in IJ format.

void fasp_dcoo_read (const char *filename, dCSRmat *A)

Read A from matrix disk file in IJ format – indices starting from 0.

void fasp_dcoo1_read (const char *filename, dCOOmat *A)

Read A from matrix disk file in IJ format – indices starting from 1.

void fasp_dcoo_shift_read (const char *filename, dCSRmat *A)

Read A from matrix disk file in IJ format - indices starting from 0.

void fasp_dmtx_read (const char *filename, dCSRmat *A)

Read A from matrix disk file in MatrixMarket general format.

void fasp_dmtxsym_read (const char *filename, dCSRmat *A)

```
Read A from matrix disk file in MatrixMarket sym format.

    void fasp dstr read (const char *filename, dSTRmat *A)

      Read A from a disk file in dSTRmat format.

    void fasp dbsr read (const char *filename, dBSRmat *A)

      Read A from a disk file in dBSRmat format.

    void fasp dvecind read (const char *filename, dvector *b)

      Read b from matrix disk file.

    void fasp_dvec_read (const char *filename, dvector *b)

      Read b from a disk file in array format.

    void fasp ivecind read (const char *filename, ivector *b)

      Read b from matrix disk file.

    void fasp ivec read (const char *filename, ivector *b)

      Read b from a disk file in array format.

    void fasp_dcsrvec1_write (const char *filename, dCSRmat *A, dvector *b)

      Write A and b to a SINGLE disk file.

    void fasp dcsrvec2 write (const char *filemat, const char *filerhs, dCSRmat *A, dvector *b)

      Write A and b to two disk files.

    void fasp_dcoo_write (const char *filename, dCSRmat *A)

      Write a matrix to disk file in IJ format (coordinate format)

    void fasp_dstr_write (const char *filename, dSTRmat *A)

      Write a dSTRmat to a disk file.

    void fasp_dbsr_write (const char *filename, dBSRmat *A)

      Write a dBSRmat to a disk file.

    void fasp dvec write (const char *filename, dvector *vec)

      Write a dvector to disk file.

    void fasp_dvecind_write (const char *filename, dvector *vec)

      Write a dvector to disk file in coordinate format.

    void fasp_ivec_write (const char *filename, ivector *vec)

      Write a ivector to disk file in coordinate format.

    void fasp_dvec_print (INT n, dvector *u)

      Print first n entries of a vector of REAL type.

    void fasp_ivec_print (INT n, ivector *u)

      Print first n entries of a vector of INT type.

    void fasp dcsr print (dCSRmat *A)

      Print out a dCSRmat matrix in coordinate format.

    void fasp_dcoo_print (dCOOmat *A)

      Print out a dCOOmat matrix in coordinate format.

    void fasp dbsr print (dBSRmat *A)

      Print out a dBSRmat matrix in coordinate format.
• void fasp_dbsr_write_coo (const char *filename, const dBSRmat *A)
      Print out a dBSRmat matrix in coordinate format for matlab spy.

    void fasp dcsr write coo (const char *filename, const dCSRmat *A)

      Print out a dCSRmat matrix in coordinate format for matlab spy.

    void fasp dstr print (dSTRmat *A)

      Print out a dSTRmat matrix in coordinate format.

    void fasp matrix read (const char *filename, void *A)
```

Read matrix from different kinds of formats from both ASCII and binary files.

void fasp_matrix_read_bin (const char *filename, void *A)

Read matrix in binary format.

- void fasp_matrix_write (const char *filename, void *A, INT flag)
 write matrix from different kinds of formats from both ASCII and binary files
- void fasp_vector_read (const char *filerhs, void *b)

Read RHS vector from different kinds of formats from both ASCII and binary files.

void fasp_vector_write (const char *filerhs, void *b, INT flag)

write RHS vector from different kinds of formats in both ASCII and binary files

void fasp_hb_read (const char *input_file, dCSRmat *A, dvector *b)

Read matrix and right-hans side from a HB format file.

Variables

- · INT ilength
- · INT dlength

10.45.1 Detailed Description

Matrix/vector input/output subroutines.

Note

Read, write or print a matrix or a vector in various formats.

10.45.2 Function Documentation

```
10.45.2.1 fasp_dbsr_print()
```

Print out a dBSRmat matrix in coordinate format.

Parameters

A Pointer to the dBSRmat matrix A

Author

Ziteng Wang

Date

12/24/2012

Modified by Chunsheng Feng on 11/16/2013

Definition at line 1439 of file io.c.

```
10.45.2.2 fasp_dbsr_read()
```

Read A from a disk file in dBSRmat format.

Parameters

filename	File name for matrix A
Α	Pointer to the dBSRmat A

Note

This routine reads a dBSRmat matrix from a disk file in the following format: File format:

- · ROW, COL, NNZ
- · nb: size of each block
- storage_manner: storage manner of each block
- ROW+1: length of IA
- IA(i), i=0:ROW
- · NNZ: length of JA
- JA(i), i=0:NNZ-1
- NNZ*nb*nb: length of val
- val(i), i=0:NNZ*nb*nb-1

Author

Xiaozhe Hu

Date

10/29/2010

Definition at line 690 of file io.c.

10.45.2.3 fasp_dbsr_write()

Write a dBSRmat to a disk file.

Parameters

filename	File name for A
Α	Pointer to the dBSRmat matrix A

Note

```
The routine writes the specified REAL vector in BSR format. Refer to the reading subroutine \r fasp_dbsr_read.
```

Author

Shiquan Zhang

Date

10/29/2010

Definition at line 1197 of file io.c.

10.45.2.4 fasp_dbsr_write_coo()

Print out a dBSRmat matrix in coordinate format for matlab spy.

Parameters

Ī	filename	Name of file to write to
Ī	Α	Pointer to the dBSRmat matrix A

Author

Chunsheng Feng

Date

11/14/2013

Modified by Chensong Zhang on 06/14/2014: Fix index problem.

Definition at line 1475 of file io.c.

10.45.2.5 fasp_dcoo1_read()

Read A from matrix disk file in IJ format – indices starting from 1.

Parameters

filename	File name for matrix
Α	Pointer to the COO matrix

Note

File format:

- nrow ncol nnz % number of rows, number of columns, and nnz
- i j a_ij % i, j a_ij in each line

difference between fasp_dcoo_read and this function is this function do not change to CSR format

Author

Xiaozhe Hu

Date

03/24/2013

Definition at line 369 of file io.c.

10.45.2.6 fasp_dcoo_print()

Print out a dCOOmat matrix in coordinate format.

Parameters

A Pointer to the dCOOmat matrix A

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1418 of file io.c.

```
10.45.2.7 fasp_dcoo_read()
```

Read A from matrix disk file in IJ format - indices starting from 0.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format:

- nrow ncol nnz % number of rows, number of columns, and nnz
- i j a_ij % i, j a_ij in each line

After reading, it converts the matrix to dCSRmat format.

Author

Xuehai Huang, Chensong Zhang

Date

03/29/2009

Definition at line 318 of file io.c.

10.45.2.8 fasp_dcoo_shift_read()

Read A from matrix disk file in IJ format - indices starting from 0.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format:

- nrow ncol nnz % number of rows, number of columns, and nnz
- i j a_ij % i, j a_ij in each line

i and j suppose to start with index 1!!!

After read in, it shifts the index to C fashin and converts the matrix to dCSRmat format.

Author

Xiaozhe Hu

Date

04/01/2014

Definition at line 419 of file io.c.

```
10.45.2.9 fasp_dcoo_write()
```

Write a matrix to disk file in IJ format (coordinate format)

Parameters

Α	pointer to the dCSRmat matrix
filename	char for vector file name

Note

```
The routine writes the specified REAL vector in COO format. Refer to the reading subroutine \r fasp_dcoo_read.
```

File format:

- The first line of the file gives the number of rows, the number of columns, and the number of nonzeros.
- Then gives nonzero values in i j a(i,j) format.

Author

Chensong Zhang

Date

03/29/2009

Definition at line 1098 of file io.c.

```
10.45.2.10 fasp_dcsr_print()
```

Print out a dCSRmat matrix in coordinate format.

Parameters

A Pointer to the dCSRmat matrix A

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1396 of file io.c.

```
10.45.2.11 fasp_dcsr_read()
```

Read A from matrix disk file in IJ format.

Parameters

*filename	char for matrix file name
* A	pointer to the CSR matrix

Author

Ziteng Wang

Date

12/25/2012

Definition at line 257 of file io.c.

```
10.45.2.12 fasp_dcsr_write_coo()
```

Print out a dCSRmat matrix in coordinate format for matlab spy.

Parameters

filename	Name of file to write to
Α	Pointer to the dCSRmat matrix A

Author

Chunsheng Feng

Date

11/14/2013

Definition at line 1525 of file io.c.

```
10.45.2.13 fasp_dcsrvec1_read()
```

Read A and b from a SINGLE disk file.

Parameters

filename	File name
Α	Pointer to the CSR matrix
b	Pointer to the dvector

Note

This routine reads a dCSRmat matrix and a dvector vector from a single disk file.

```
The difference between this and fasp_dcoovec_read is that this routine support non-square matrices.
```

File format:

- nrow ncol % number of rows and number of columns
- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value
- n % number of entries
- b(j), j=0:n-1 % entry value

Author

Xuehai Huang

Date

03/29/2009

Modified by Chensong Zhang on 03/14/2012

Definition at line 86 of file io.c.

```
10.45.2.14 fasp_dcsrvec1_write()
```

Write A and b to a SINGLE disk file.

Parameters

filename	File name
Α	Pointer to the CSR matrix
b	Pointer to the dvector

Note

This routine writes a dCSRmat matrix and a dvector vector to a single disk file. File format:

nrow ncol % number of rows and number of columns

- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value
- n % number of entries
- b(j), j=0:n-1 % entry value

Author

Feiteng Huang

Date

05/19/2012

Modified by Chensong on 12/26/2012

Definition at line 949 of file io.c.

10.45.2.15 fasp_dcsrvec2_read()

Read A and b from two disk files.

Parameters

filemat	File name for matrix
filerhs	File name for right-hand side
Α	Pointer to the dCSR matrix
b	Pointer to the dvector

Note

This routine reads a dCSRmat matrix and a dvector vector from a disk file.

CSR matrix file format:

- nrow % number of columns (rows)
- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value

RHS file format:

• n % number of entries

```
• b(j), j=0:nrow-1 % entry value Indices start from 1, NOT 0!!!
```

Author

Zhiyang Zhou

Date

2010/08/06

Modified by Chensong Zhang on 2011/03/01 Modified by Chensong Zhang on 2012/01/05

Definition at line 178 of file io.c.

10.45.2.16 fasp_dcsrvec2_write()

Write A and b to two disk files.

Parameters

filemat	File name for matrix
filerhs	File name for right-hand side
Α	Pointer to the dCSR matrix
b	Pointer to the dvector

Note

This routine writes a dCSRmat matrix and a dvector vector to two disk files.

CSR matrix file format:

- nrow % number of columns (rows)
- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value

RHS file format:

- n % number of entries
- b(j), j=0:nrow-1 % entry value

Indices start from 1, NOT 0!!!

Author

Feiteng Huang

Date

05/19/2012

Definition at line 1027 of file io.c.

10.45.2.17 fasp_dmtx_read()

Read A from matrix disk file in MatrixMarket general format.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format: This routine reads a MatrixMarket general matrix from a mtx file. And it converts the matrix to dCS Rmat format. For details of mtx format, please refer to http://math.nist.gov/MatrixMarket/. Indices start from 1, NOT 0!!!

Author

Chensong Zhang

Date

09/05/2011

Definition at line 471 of file io.c.

10.45.2.18 fasp_dmtxsym_read()

Read A from matrix disk file in MatrixMarket sym format.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format: This routine reads a MatrixMarket symmetric matrix from a mtx file. And it converts the matrix to dCSRmat format. For details of mtx format, please refer to http://math.nist.gov/MatrixMarket/.

```
Indices start from 1, NOT 0!!!
```

Author

Chensong Zhang

Date

09/02/2011

Definition at line 533 of file io.c.

10.45.2.19 fasp_dstr_print()

Print out a dSTRmat matrix in coordinate format.

Parameters

A Pointer to the dSTRmat matrix A

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1564 of file io.c.

10.45.2.20 fasp_dstr_read()

Read A from a disk file in dSTRmat format.

Parameters

filename	File name for the matrix
Α	Pointer to the dSTRmat

Note

This routine reads a dSTRmat matrix from a disk file. After done, it converts the matrix to dCSRmat format. File format:

- nx, ny, nz
- · nc: number of components
- · nband: number of bands
- n: size of diagonal, you must have diagonal
- diag(j), j=0:n-1
- offset, length: offset and length of off-diag1
- offdiag(j), j=0:length-1

Author

Xuehai Huang

Date

03/29/2009

Definition at line 610 of file io.c.

```
10.45.2.21 fasp_dstr_write()
```

Write a dSTRmat to a disk file.

Parameters

filename	File name for A
Α	Pointer to the dSTRmat matrix A

Generated by Doxygen

Note

```
The routine writes the specified REAL vector in STR format. Refer to the reading subroutine \r fasp_dstr_read.
```

Author

Shiquan Zhang

Date

03/29/2010

Definition at line 1138 of file io.c.

```
10.45.2.22 fasp_dvec_print()
```

Print first n entries of a vector of REAL type.

Parameters

	n	An interger (if n=0, then print all entries)
ĺ	и	Pointer to a dvector

Author

Chensong Zhang

Date

03/29/2009

Definition at line 1357 of file io.c.

10.45.2.23 fasp_dvec_read()

Read b from a disk file in array format.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- val_j, j=0:nrow-1

Author

Chensong Zhang

Date

03/29/2009

Definition at line 809 of file io.c.

10.45.2.24 fasp_dvec_write()

Write a dvector to disk file.

Parameters

vec	Pointer to the dvector
filename	File name

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1252 of file io.c.

10.45.2.25 fasp_dvecind_read()

Read b from matrix disk file.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- ind_j, val_j, j=0:nrow-1

Because the index is given, order is not important!

Author

Chensong Zhang

Date

03/29/2009

Definition at line 759 of file io.c.

10.45.2.26 fasp_dvecind_write()

Write a dvector to disk file in coordinate format.

Parameters

vec	Pointer to the dvector
filename	File name

Note

The routine writes the specified REAL vector in IJ format.

- The first line of the file is the length of the vector;
- · After that, each line gives index and value of the entries.

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1288 of file io.c.

```
10.45.2.27 fasp_hb_read()
```

Read matrix and right-hans side from a HB format file.

Parameters

input_file	File name of vector file
Α	Pointer to the matrix
b	Pointer to the vector

Note

Modified from the c code hb_io_prb.c by John Burkardt

Author

Xiaoehe Hu

Date

05/30/2014

Definition at line 2059 of file io.c.

10.45.2.28 fasp_ivec_print()

```
void fasp_ivec_print (  \begin{tabular}{ll} INT $n$, \\ ivector * $u$ ) \end{tabular}
```

Print first n entries of a vector of INT type.

Parameters

n	An interger (if n=0, then print all entries)	
и	Pointer to an ivector	

Author

Chensong Zhang

Date

03/29/2009

Definition at line 1377 of file io.c.

```
10.45.2.29 fasp_ivec_read()
```

Read b from a disk file in array format.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- val_j, j=0:nrow-1

Author

Xuehai Huang

Date

03/29/2009

Definition at line 899 of file io.c.

```
10.45.2.30 fasp_ivec_write()
```

Write a ivector to disk file in coordinate format.

Parameters

vec	Pointer to the dvector
filename	File name

Note

The routine writes the specified INT vector in IJ format.

- The first line of the file is the length of the vector;
- · After that, each line gives index and value of the entries.

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1323 of file io.c.

10.45.2.31 fasp_ivecind_read()

Read b from matrix disk file.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- ind_j, val_j ... j=0:nrow-1

Author

Chensong Zhang

Date

03/29/2009

Definition at line 859 of file io.c.

10.45.2.32 fasp_matrix_read()

Read matrix from different kinds of formats from both ASCII and binary files.

Parameters

filemat	File name of matrix file
Α	Pointer to the matrix

Note

Flags for matrix file format:

- fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
- formatflag % a 3-digit number for internal use, see below
- · matrix % different types of matrix

Meaning of formatflag:

- · matrixflag % first digit of formatflag
 - matrixflag = 1: CSR format
 - matrixflag = 2: BSR format
 - matrixflag = 3: STR format
 - matrixflag = 4: COO format
 - matrixflag = 5: MTX format
 - matrixflag = 6: MTX symmetrical format
- ilength % third digit of formatflag, length of INT
- · dlength % fourth digit of formatflag, length of REAL

Author

Ziteng Wang

Date

12/24/2012

Modified by Chensong Zhang on 05/01/2013

Definition at line 1598 of file io.c.

10.45.2.33 fasp_matrix_read_bin()

Read matrix in binary format.

Parameters

filemat	File name of matrix file
Α	Pointer to the matrix

Author

Xiaozhe Hu

Date

04/14/2013

Modified by Chensong Zhang on 05/01/2013: Use it to read binary files!!!

Definition at line 1704 of file io.c.

10.45.2.34 fasp_matrix_write()

write matrix from different kinds of formats from both ASCII and binary files

Parameters

filemat	File name of matrix file
Α	Pointer to the matrix
flag	Type of file and matrix, a 3-digit number

Note

Meaning of flag:

- fileflag % fileflag = 1: binary, fileflag = 0: ASCII
- · matrixflag
 - matrixflag = 1: CSR format
 - matrixflag = 2: BSR format
 - matrixflag = 3: STR format

Matrix file format:

- fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
- formatflag % a 3-digit number
- · matrixflag % different kinds of matrix judged by formatflag

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1778 of file io.c.

10.45.2.35 fasp_vector_read()

Read RHS vector from different kinds of formats from both ASCII and binary files.

Parameters

filerhs	File name of vector file
b	Pointer to the vector

Note

Matrix file format:

- fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
- formatflag % a 3-digit number
- · vector % different kinds of vector judged by formatflag

Meaning of formatflag:

- · vectorflag % first digit of formatflag
 - vectorflag = 1: dvec format
 - vectorflag = 2: ivec format
 - vectorflag = 3: dvecind format
 - vectorflag = 4: ivecind format
- · ilength % second digit of formatflag, length of INT
- · dlength % third digit of formatflag, length of REAL

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1872 of file io.c.

10.45.2.36 fasp_vector_write()

write RHS vector from different kinds of formats in both ASCII and binary files

Parameters

filerhs	File name of vector file
b	Pointer to the vector
flag	Type of file and vector, a 2-digit number

Note

Meaning of the flags

- fileflag % fileflag = 1: binary, fileflag = 0: ASCII
- · vectorflag

```
- vectorflag = 1: dvec format
             – vectorflag = 2: ivec format
             - vectorflag = 3: dvecind format
             - vectorflag = 4: ivecind format
     Matrix file format:
         • fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
         • formatflag % a 2-digit number
         · vectorflag % different kinds of vector judged by formatflag
Author
     Ziteng Wang
Date
      12/24/2012
Modified by Chensong Zhang on 05/02/2013: fix a bug when writing in binary format
Definition at line 1970 of file io.c.
10.45.3 Variable Documentation
10.45.3.1 dlength
INT dlength
Length of REAL in byte
Definition at line 14 of file io.c.
10.45.3.2 ilength
INT ilength
Length of INT in byte
```

Definition at line 13 of file io.c.

10.46 itsolver_blc.c File Reference

Iterative solvers for dBLCmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

- INT fasp_solver_dblc_itsolver (dBLCmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax = b by standard Krylov methods.
- INT fasp_solver_dblc_krylov (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam)

Solve Ax = b by standard Krylov methods.

INT fasp_solver_dblc_krylov_block_3 (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, dCSRmat *A_diag)

Solve Ax = b by standard Krylov methods.

INT fasp_solver_dblc_krylov_block_4 (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, dCSRmat *A_diag)

Solve Ax = b by standard Krylov methods.

• INT fasp_solver_dblc_krylov_sweeping (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam, INT NumLayers, dBLCmat *Ai, dCSRmat *local_A, ivector *local_index)

Solve Ax = b by standard Krylov methods.

10.46.1 Detailed Description

Iterative solvers for dBLCmat matrices.

10.46.2 Function Documentation

10.46.2.1 fasp_solver_dblc_itsolver()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

11/25/2010

Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver

Definition at line 38 of file itsolver_blc.c.

10.46.2.2 fasp_solver_dblc_krylov()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

07/18/2010

Definition at line 130 of file itsolver_blc.c.

10.46.2.3 fasp_solver_dblc_krylov_block_3()

```
INT fasp_solver_dblc_krylov_block_3 (
    dBLCmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    AMG_param * amgparam,
    dCSRmat * A_diag )
```

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG solvers
A_diag	Digonal blocks of A

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

07/10/2014

Note

only works for 3by3 block dCSRmat problems!! - Xiaozhe Hu

Definition at line 184 of file itsolver_blc.c.

10.46.2.4 fasp_solver_dblc_krylov_block_4()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG solvers
A_diag	Digonal blocks of A

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

07/06/2014

Note

only works for 4 by 4 block dCSRmat problems!! - Xiaozhe Hu

Definition at line 390 of file itsolver_blc.c.

10.46.2.5 fasp_solver_dblc_krylov_sweeping()

```
INT fasp_solver_dblc_krylov_sweeping (
    dBLCmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    INT NumLayers,
    dBLCmat * Ai,
    dCSRmat * local_A,
    ivector * local_index )
```

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
NumLayers	Number of layers used for sweeping preconditioner
Ai	Pointer to the coeff matrix for the preconditioner in dBLCmat format
local_A	Pointer to the local coeff matrices in the dCSRmat format
local_index	Pointer to the local index in ivector format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/01/2014

Definition at line 516 of file itsolver_blc.c.

10.47 itsolver bsr.c File Reference

Iterative solvers for dBSRmat matrices.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

- INT fasp_solver_dbsr_itsolver (dBSRmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax=b by preconditioned Krylov methods for BSR matrices.
- INT fasp_solver_dbsr_krylov (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam)

 Solve Ax=b by standard Krylov methods for BSR matrices.
- INT fasp_solver_dbsr_krylov_diag (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam) Solve Ax=b by diagonal preconditioned Krylov methods.
- INT fasp_solver_dbsr_krylov_ilu (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam)

Solve Ax=b by ILUs preconditioned Krylov methods.

• INT fasp_solver_dbsr_krylov_amg (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_param *amgparam)

Solve Ax=b by AMG preconditioned Krylov methods.

INT fasp_solver_dbsr_krylov_amg_nk (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, dCSRmat *A_nk, dCSRmat *P_nk, dCSRmat *R_nk)

Solve Ax=b by AMG with extra near kernel solve preconditioned Krylov methods.

INT fasp_solver_dbsr_krylov_nk_amg (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, const INT nk_dim, dvector *nk)

Solve Ax=b by AMG preconditioned Krylov methods with extra kernal space.

10.47.1 Detailed Description

Iterative solvers for dBSRmat matrices.

10.47.2 Function Documentation

10.47.2.1 fasp_solver_dbsr_itsolver()

Solve Ax=b by preconditioned Krylov methods for BSR matrices.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou, Xiaozhe Hu

Date

10/26/2010 Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver

Definition at line 38 of file itsolver bsr.c.

10.47.2.2 fasp_solver_dbsr_krylov()

Solve Ax=b by standard Krylov methods for BSR matrices.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou, Xiaozhe Hu

Date

10/26/2010

Definition at line 131 of file itsolver_bsr.c.

10.47.2.3 fasp_solver_dbsr_krylov_amg()

Solve Ax=b by AMG preconditioned Krylov methods.

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
Generated by Doxy	⁹ Pointer to parameters of AMG

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/16/2012

parameters of iterative method

Definition at line 353 of file itsolver_bsr.c.

10.47.2.4 fasp_solver_dbsr_krylov_amg_nk()

```
INT fasp_solver_dbsr_krylov_amg_nk (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    AMG_param * amgparam,
    dCSRmat * A_nk,
    dCSRmat * P_nk,
    dCSRmat * R_nk )
```

Solve Ax=b by AMG with extra near kernel solve preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters of AMG
A_nk	Pointer to the coeff matrix for near kernel space in dBSRmat format
P_nk	Pointer to the prolongation for near kernel space in dBSRmat format
R_nk	Pointer to the restriction for near kernel space in dBSRmat format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/26/2012

Definition at line 495 of file itsolver_bsr.c.

10.47.2.5 fasp_solver_dbsr_krylov_diag()

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou, Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Zheng Li on 10/15/2012

Definition at line 182 of file itsolver_bsr.c.

10.47.2.6 fasp_solver_dbsr_krylov_ilu()

```
INT fasp_solver_dbsr_krylov_ilu (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    ILU_param * iluparam )
```

Solve Ax=b by ILUs preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters of ILU

Returns

Iteration number if converges; ERROR otherwise.

Author

Shiquang Zhang, Xiaozhe Hu

Date

10/26/2010

Definition at line 286 of file itsolver_bsr.c.

10.47.2.7 fasp_solver_dbsr_krylov_nk_amg()

```
INT fasp_solver_dbsr_krylov_nk_amg (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    AMG_param * amgparam,
    const INT nk_dim,
    dvector * nk )
```

Solve Ax=b by AMG preconditioned Krylov methods with extra kernal space.

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters of AMG
nk_dim	Dimension of the near kernel spaces
nk	Pointer to the near kernal spaces

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/27/2012

parameters of iterative method

Definition at line 654 of file itsolver_bsr.c.

10.48 itsolver_csr.c File Reference

Iterative solvers for dCSRmat matrices.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver util.inl"
```

Functions

- INT fasp_solver_dcsr_itsolver (dCSRmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax=b by preconditioned Krylov methods for CSR matrices.
- INT fasp_solver_dcsr_krylov (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam)

Solve Ax=b by standard Krylov methods for CSR matrices.

INT fasp solver dcsr krylov diag (dCSRmat *A, dvector *b, dvector *x, itsolver param *itparam)

Solve Ax=b by diagonal preconditioned Krylov methods.

• INT fasp_solver_dcsr_krylov_Schwarz (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, Schwarz_param *schparam)

Solve Ax=b by overlapping Schwarz Krylov methods.

• INT fasp_solver_dcsr_krylov_amg (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_param *amgparam)

Solve Ax=b by AMG preconditioned Krylov methods.

INT fasp_solver_dcsr_krylov_ilu (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam)

Solve Ax=b by ILUs preconditioned Krylov methods.

• INT fasp_solver_dcsr_krylov_ilu_M (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam, dCSRmat *M)

Solve Ax=b by ILUs preconditioned Krylov methods: ILU of M as preconditioner.

INT fasp_solver_dcsr_krylov_amg_nk (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, dCSRmat *A_nk, dCSRmat *P_nk, dCSRmat *R_nk)

Solve Ax=b by AMG preconditioned Krylov methods with an extra near kernel solve.

10.48.1 Detailed Description

Iterative solvers for dCSRmat matrices.

10.48.2 Function Documentation

10.48.2.1 fasp_solver_dcsr_itsolver()

Solve Ax=b by preconditioned Krylov methods for CSR matrices.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009

Note

This is an abstract interface for iterative methods. Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver

Definition at line 40 of file itsolver_csr.c.

10.48.2.2 fasp_solver_dcsr_krylov()

Solve Ax=b by standard Krylov methods for CSR matrices.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Definition at line 149 of file itsolver_csr.c.

10.48.2.3 fasp_solver_dcsr_krylov_amg()

Solve Ax=b by AMG preconditioned Krylov methods.

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG methods

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009

Definition at line 344 of file itsolver_csr.c.

10.48.2.4 fasp_solver_dcsr_krylov_amg_nk()

Solve Ax=b by AMG preconditioned Krylov methods with an extra near kernel solve.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG methods
A_nk	Pointer to the coeff matrix of near kernel space in dCSRmat format
P_nk	Pointer to the prolongation of near kernel space in dCSRmat format
R_nk	Pointer to the restriction of near kernel space in dCSRmat format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 617 of file itsolver_csr.c.

```
10.48.2.5 fasp_solver_dcsr_krylov_diag()
```

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Definition at line 199 of file itsolver_csr.c.

10.48.2.6 fasp_solver_dcsr_krylov_ilu()

Solve Ax=b by ILUs preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters for ILU

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Definition at line 449 of file itsolver_csr.c.

10.48.2.7 fasp_solver_dcsr_krylov_ilu_M()

Solve Ax=b by ILUs preconditioned Krylov methods: ILU of M as preconditioner.

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters for ILU
М	Pointer to the preconditioning matrix in dCSRmat format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

09/25/2009

Note

This function is specially designed for reservoir simulation. Have not been tested in any other places.

Definition at line 533 of file itsolver_csr.c.

10.48.2.8 fasp_solver_dcsr_krylov_Schwarz()

Solve Ax=b by overlapping Schwarz Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
schparam	Pointer to parameters for Schwarz methods

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/21/2011

Modified by Chensong on 07/02/2012: change interface

Definition at line 263 of file itsolver_csr.c.

10.49 itsolver mf.c File Reference

Iterative solvers using matrix-free spmv operations.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "fasp_block.h"
#include "itsolver_util.inl"
```

Functions

- INT fasp_solver_itsolver (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax=b by preconditioned Krylov methods for CSR matrices.
- INT fasp_solver_krylov (mxv_matfree *mf, dvector *b, dvector *x, itsolver_param *itparam)

 Solve Ax=b by standard Krylov methods without preconditioner.
- void fasp_solver_itsolver_init (INT matrix_format, mxv_matfree *mf, void *A)
 Initialize itsovlers.

10.49.1 Detailed Description

Iterative solvers using matrix-free spmv operations.

10.49.2 Function Documentation

10.49.2.1 fasp_solver_itsolver()

Solve Ax=b by preconditioned Krylov methods for CSR matrices.

Parameters

mf	Pointer to mxv_matfree matrix-free spmv operation
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009

Note

This is an abstract interface for iterative methods.

Modified by Feiteng Huang on 09/19/2012: matrix free

Definition at line 50 of file itsolver_mf.c.

10.49.2.2 fasp_solver_itsolver_init()

Initialize itsovlers.

matrix_format	matrix format
mf	Pointer to mxv_matfree matrix-free spmv operation
Α	void pointer to matrix

Author

Feiteng Huang

Date

09/18/2012

Modified by Chensong Zhang on 05/10/2013: Change interface of mat-free mv

Definition at line 197 of file itsolver_mf.c.

10.49.2.3 fasp_solver_krylov()

Solve Ax=b by standard Krylov methods – without preconditioner.

Parameters

mf	Pointer to mxv_matfree matrix-free spmv operation
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Number of iterations if succeed

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Modified by Feiteng Huang on 09/20/2012: matrix free

Definition at line 150 of file itsolver_mf.c.

10.50 itsolver_str.c File Reference

Iterative solvers for dSTRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

- INT fasp_solver_dstr_itsolver (dSTRmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam) Solve Ax=b by standard Krylov methods.
- INT fasp_solver_dstr_krylov (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam)

Solve Ax=b by standard Krylov methods.

- INT fasp_solver_dstr_krylov_diag (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam) Solve Ax=b by diagonal preconditioned Krylov methods.
- INT fasp_solver_dstr_krylov_ilu (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam)

Solve Ax=b by structured ILU preconditioned Krylov methods.

• INT fasp_solver_dstr_krylov_blockgs (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ivector *neigh, ivector *order)

Solve Ax=b by diagonal preconditioned Krylov methods.

10.50.1 Detailed Description

Iterative solvers for dSTRmat matrices.

10.50.2 Function Documentation

10.50.2.1 fasp_solver_dstr_itsolver()

Solve Ax=b by standard Krylov methods.

Α	Pointer to the coeff matrix in dSTRmat format
ь	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009 Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver

Definition at line 35 of file itsolver_str.c.

10.50.2.2 fasp_solver_dstr_krylov()

Solve Ax=b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

04/25/2010

Definition at line 123 of file itsolver_str.c.

10.50.2.3 fasp_solver_dstr_krylov_blockgs()

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
neigh	Pointer to neighbor vector
order	Pointer to solver ordering

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

10/10/2010

Definition at line 330 of file itsolver_str.c.

10.50.2.4 fasp_solver_dstr_krylov_diag()

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format	
b	Pointer to the right hand side in dvector format	
Х	Pointer to the approx solution in dvector format	
itparam	Pointer to parameters for iterative solvers	

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

4/23/2010

Definition at line 171 of file itsolver_str.c.

10.50.2.5 fasp_solver_dstr_krylov_ilu()

Solve Ax=b by structured ILU preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters for ILU

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/01/2010

Definition at line 237 of file itsolver_str.c.

10.51 lu.c File Reference

LU decomposition and direct solver for small dense matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• SHORT fasp_smat_lu_decomp (REAL *A, INT pivot[], const INT n)

LU decomposition of A usind Doolittle's method.

• SHORT fasp_smat_lu_solve (REAL *A, REAL b[], INT pivot[], REAL x[], const INT n) Solving Ax=b using LU decomposition.

10.51.1 Detailed Description

LU decomposition and direct solver for small dense matrices.

10.51.2 Function Documentation

10.51.2.1 fasp_smat_lu_decomp()

LU decomposition of A usind Doolittle's method.

Α	Pointer to the full matrix
pivot	Pivoting positions
n	Size of matrix A

10.51 lu.c File Reference 335

Returns

FASP_SUCCESS if successed; otherwise, error information.

Note

Use Doolittle's method to decompose the n x n matrix A into a unit lower triangular matrix L and an upper triangular matrix U such that A = LU. The matrices L and U replace the matrix A. The diagonal elements of L are 1 and are not stored.

The Doolittle method with partial pivoting is: Determine the pivot row and interchange the current row with the pivot row, then assuming that row k is the current row, k = 0, ..., n - 1 evaluate in order the following pair of expressions U[k][j] = A[k][j] - (L[k][0]*U[0][j] + ... + L[k][k-1]*U[k-1][j]) for j = k, k+1, ..., n-1 L[i][k] = (A[i][k] - (L[i][0]*U[0][k] + ... + L[i][k-1]*U[k-1][k])) / U[k][k] for i = k+1, ..., n-1.

Author

Xuehai Huang

Date

04/02/2009

Definition at line 46 of file lu.c.

10.51.2.2 fasp_smat_lu_solve()

```
SHORT fasp_smat_lu_solve (

REAL * A,

REAL b[],

INT pivot[],

REAL x[],

const INT n)
```

Solving Ax=b using LU decomposition.

Parameters

Α	Pointer to the full matrix
b	Right hand side array
pivot	Pivoting positions
X	Pointer to the solution array
n	Size of matrix A

Returns

FASP_SUCCESS if successed; otherwise, error information.

Note

This routine uses Doolittle's method to solve the linear equation Ax = b. This routine is called after the matrix A has been decomposed into a product of a unit lower triangular matrix L and an upper triangular matrix U with pivoting. The solution proceeds by solving the linear equation Ly = b for y and subsequently solving the linear equation Ux = y for x.

Author

Xuehai Huang

Date

04/02/2009

Definition at line 117 of file lu.c.

10.52 memory.c File Reference

Memory allocation and deallocation subroutines.

```
#include "fasp.h"
```

Functions

void * fasp_mem_calloc (LONGLONG size, INT type)

1M = 1024 * 1024

void * fasp_mem_realloc (void *oldmem, LONGLONG tsize)

Reallocate, initiate, and check memory.

void fasp_mem_free (void *mem)

Free up previous allocated memory body.

void fasp_mem_usage ()

Show total allocated memory currently.

• SHORT fasp_mem_check (void *ptr, const char *message, INT ERR)

Check wether a point is null or not.

SHORT fasp_mem_iludata_check (ILU_data *iludata)

Check wether a ILU_data has enough work space.

SHORT fasp_mem_dcsr_check (dCSRmat *A)

Check wether a dCSRmat A has sucessfully allocated memory.

Variables

- unsigned INT total_alloc_mem = 0
- unsigned INT total_alloc_count = 0

Total allocated memory amount.

• const INT Million = 1048576

Total number of allocations.

10.52.1 Detailed Description

Memory allocation and deallocation subroutines.

10.52.2 Function Documentation

10.52.2.1 fasp_mem_calloc()

1M = 1024*1024

Allocate, initiate, and check memory

Parameters

size	Number of memory blocks
type	Size of memory blocks

Returns

Void pointer to the allocated memory

Author

Chensong Zhang

Date

2010/08/12

Modified by Chunsheng Feng on 12/20/2013 Modified by Chunsheng Feng on 07/23/2013 Modified by Chunsheng Feng on 07/30/2013 Modified by Chensong Zhang on 07/30/2013: print error if failed

Definition at line 58 of file memory.c.

10.52.2.2 fasp_mem_check()

Check wether a point is null or not.

Parameters

ptr	Void pointer to be checked
message	Error message to print
ERR	Integer error code

Returns

FASP_SUCCESS or error code

Author

Chensong Zhang

Date

11/16/2009

Definition at line 195 of file memory.c.

10.52.2.3 fasp_mem_dcsr_check()

Check wether a dCSRmat A has sucessfully allocated memory.

Parameters

A Pointer to be cheked

Returns

FASP_SUCCESS if success, else ERROR message (negative value)

Author

Xiaozhe Hu

Date

11/27/09

Definition at line 246 of file memory.c.

```
10.52.2.4 fasp_mem_free()
```

```
void fasp_mem_free (
     void * mem )
```

Free up previous allocated memory body.

Parameters

mem Pointer to the memory body need to be freed

Returns

NULL pointer

Author

Chensong Zhang

Date

2010/12/24

Definition at line 148 of file memory.c.

10.52.2.5 fasp_mem_iludata_check()

Check wether a ILU_data has enough work space.

Parameters

iludata Pointer to be cheked

Returns

FASP_SUCCESS if success, else ERROR (negative value)

Author

Xiaozhe Hu, Chensong Zhang

Date

11/27/09

Definition at line 220 of file memory.c.

```
10.52.2.6 fasp_mem_realloc()
```

Reallocate, initiate, and check memory.

Parameters

oldmem	Pointer to the existing mem block
type	Size of memory blocks

Returns

Void pointer to the reallocated memory

Author

Chensong Zhang

Date

2010/08/12

Modified by Chunsheng Feng on 07/23/2013 Modified by Chensong Zhang on 07/30/2013: print error if failed Definition at line 108 of file memory.c.

```
10.52.2.7 fasp_mem_usage()
```

```
void fasp_mem_usage ( )
```

Show total allocated memory currently.

Author

Chensong Zhang

Date

2010/08/12

Definition at line 173 of file memory.c.

10.52.3 Variable Documentation

```
10.52.3.1 total_alloc_count
```

```
unsigned INT total_alloc_count = 0
```

Total allocated memory amount.

total allocation times

Definition at line 33 of file memory.c.

```
10.52.3.2 total_alloc_mem
```

```
unsigned INT total_alloc_mem = 0
```

total allocated memory

Definition at line 32 of file memory.c.

10.53 message.c File Reference

Output some useful messages.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

 void print_itinfo (const INT ptrlvl, const INT stop_type, const INT iter, const REAL relres, const REAL absres, const REAL factor)

Print out iteration information for iterative solvers.

void print_amgcomplexity (AMG_data *mgl, const SHORT prtlvl)

Print complexities of AMG method.

void print_amgcomplexity_bsr (AMG_data_bsr *mgl, const SHORT prtlvl)

Print complexities of AMG method for BSR matrices.

void print_cputime (const char *message, const REAL cputime)

Print CPU walltime.

void print_message (const INT ptrlvl, const char *message)

Print output information if necessary.

• void fasp_chkerr (const SHORT status, const char *fctname)

Check error status and print out error messages before quit.

10.53.1 Detailed Description

Output some useful messages.

Note

These routines are meant for internal use only.

10.53.2 Function Documentation

```
10.53.2.1 fasp_chkerr()
```

Check error status and print out error messages before quit.

Parameters

status	Error status
fctname	Function name where this routine is called

Author

Chensong Zhang

Date

01/10/2012

Definition at line 199 of file message.c.

10.53.2.2 print_amgcomplexity()

```
void void print_amgcomplexity (
          AMG_data * mgl,
          const SHORT prtlvl )
```

Print complexities of AMG method.

mgl	Multilevel hierachy for AMG
prtlvl	How much information to print

Author

Chensong Zhang

Date

11/16/2009

Definition at line 79 of file message.c.

10.53.2.3 print_amgcomplexity_bsr()

Print complexities of AMG method for BSR matrices.

Parameters

mgl	Multilevel hierachy for AMG
prtlvl	How much information to print

Author

Chensong Zhang

Date

05/10/2013

Definition at line 122 of file message.c.

10.53.2.4 print_cputime()

Print CPU walltime.

message	Some string to print out
cputime	Walltime since start to end

Author

Chensong Zhang

Date

04/10/2012

Definition at line 165 of file message.c.

10.53.2.5 print_itinfo()

Print out iteration information for iterative solvers.

Parameters

ptrlvl	Level for output
stop_type	Type of stopping criteria
iter	Number of iterations
relres	Relative residual of different kinds
absres	Absolute residual of different kinds
factor	Contraction factor

Author

Chensong Zhang

Date

11/16/2009

Modified by Chensong Zhang on 03/28/2013: Output initial guess Modified by Chensong Zhang on 04/05/2013: Fix a typo

Definition at line 36 of file message.c.

10.53.2.6 print_message()

Print output information if necessary.

Parameters

ptrlvl	Level for output
message Error message to	

Author

Chensong Zhang

Date

11/16/2009

Definition at line 182 of file message.c.

10.54 mgcycle.c File Reference

Abstract multigrid cycle - non-recursive version.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "mg_util.inl"
```

Functions

- void fasp_solver_mgcycle (AMG_data *mgl, AMG_param *param)

 Solve Ax=b with non-recursive multigrid cycle.
- void fasp_solver_mgcycle_bsr (AMG_data_bsr *mgl, AMG_param *param)

 Solve Ax=b with non-recursive multigrid cycle.

10.54.1 Detailed Description

Abstract multigrid cycle – non-recursive version.

10.54.2 Function Documentation

10.54.2.1 fasp_solver_mgcycle()

Solve Ax=b with non-recursive multigrid cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Author

Chensong Zhang

Date

10/06/2010

Modified by Chensong Zhang on 12/13/2011 Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Chensong Zhang on 12/30/2014: update Schwarz smoothers.

Definition at line 40 of file mgcycle.c.

10.54.2.2 fasp_solver_mgcycle_bsr()

```
void fasp_solver_mgcycle_bsr (
          AMG_data_bsr * mgl,
          AMG_param * param )
```

Solve Ax=b with non-recursive multigrid cycle.

Parameters

mgl	Pointer to AMG data: AMG_data_bsr
param	Pointer to AMG parameters: AMG_param

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 264 of file mgcycle.c.

10.55 mgrecur.c File Reference

Abstract multigrid cycle – recursive version.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "mg_util.inl"
```

Functions

• void fasp_solver_mgrecur (AMG_data *mgl, AMG_param *param, INT level) Solve Ax=b with recursive multigrid K-cycle.

10.55.1 Detailed Description

Abstract multigrid cycle - recursive version.

Note

Not used any more. Will be removed! -Chensong

10.55.2 Function Documentation

```
10.55.2.1 fasp_solver_mgrecur()
```

```
void fasp_solver_mgrecur (
          AMG_data * mgl,
          AMG_param * param,
          INT level )
```

Solve Ax=b with recursive multigrid K-cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param
level	Index of the current level

Author

Xuehai Huang, Chensong Zhang

Date

04/06/2010

Modified by Chensong Zhang on 01/10/2012 Modified by Chensong Zhang on 02/27/2013: update direct solvers. Definition at line 33 of file mgrecur.c.

10.56 ordering.c File Reference

Subroutines for ordering, merging, removing duplicated integers.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- INT fasp_BinarySearch (INT *list, const INT value, const INT nlist)
 Binary Search.
- INT fasp_aux_unique (INT numbers[], const INT size)

Remove duplicates in an sorted (ascending order) array.

- void fasp_aux_merge (INT numbers[], INT work[], INT left, INT mid, INT right)
 Merge two sorted arrays.
- void fasp_aux_msort (INT numbers[], INT work[], INT left, INT right)

Sort the INT array in ascending order with the merge sort algorithm.

- void fasp_aux_iQuickSort (INT *a, INT left, INT right)
 - Sort the array (INT type) in ascending order with the quick sorting algorithm.
- void fasp_aux_dQuickSort (REAL *a, INT left, INT right)

Sort the array (REAL type) in ascending order with the quick sorting algorithm.

- void fasp_aux_iQuickSortIndex (INT *a, INT left, INT right, INT *index)
 - Reorder the index of (INT type) so that 'a' is in ascending order.
- void fasp_aux_dQuickSortIndex (REAL *a, INT left, INT right, INT *index)

Reorder the index of (REAL type) so that 'a' is ascending in such order.

- void fasp_dcsr_CMK_order (const dCSRmat *A, INT *order, INT *oindex)
 - Ordering vertices of matrix graph corresponding to A.
- void fasp_dcsr_RCMK_order (const dCSRmat *A, INT *order, INT *oindex, INT *rorder)

Resverse CMK ordering.

void fasp_topological_sorting_ilu (ILU_data *iludata)

Reordering vertices according to level schedule strategy.

void fasp_multicolors_independent_set (AMG_data *mgl, INT gslvl)

Coloring vertices of adjacency graph of A.

10.56.1 Detailed Description

Subroutines for ordering, merging, removing duplicated integers.

10.56.2 Function Documentation

10.56.2.1 fasp_aux_dQuickSort()

Sort the array (REAL type) in ascending order with the quick sorting algorithm.

Parameters

а	Pointer to the array needed to be sorted
left	Starting index
right	Ending index

Author

Zhiyang Zhou

Date

2009/11/28

Note

'left' and 'right' are usually set to be 0 and n-1, respectively where n is the length of 'a'.

Definition at line 241 of file ordering.c.

10.56.2.2 fasp_aux_dQuickSortIndex()

Reorder the index of (REAL type) so that 'a' is ascending in such order.

Parameters

а	Pointer to the array
left	Starting index
right	Ending index
index	Index of 'a' (out)

Author

Zhiyang Zhou

Date

2009/12/02

Note

'left' and 'right' are usually set to be 0 and n-1,respectively,where n is the length of 'a'. 'index' should be initialized in the nature order and it has the same length as 'a'.

Definition at line 322 of file ordering.c.

10.56.2.3 fasp_aux_iQuickSort()

Sort the array (INT type) in ascending order with the quick sorting algorithm.

Parameters

а	Pointer to the array needed to be sorted
left	Starting index
right	Ending index

Author

Zhiyang Zhou

Date

11/28/2009

Note

'left' and 'right' are usually set to be 0 and n-1, respectively where n is the length of 'a'.

Definition at line 203 of file ordering.c.

10.56.2.4 fasp_aux_iQuickSortIndex()

Reorder the index of (INT type) so that 'a' is in ascending order.

Parameters

а	Pointer to the array
left	Starting index
right	Ending index
index	Index of 'a' (out)

Author

Zhiyang Zhou

Date

2009/12/02

Note

'left' and 'right' are usually set to be 0 and n-1,respectively,where n is the length of 'a'. 'index' should be initialized in the nature order and it has the same length as 'a'.

Definition at line 281 of file ordering.c.

10.56.2.5 fasp_aux_merge()

Merge two sorted arrays.

Parameters

numbers	Pointer to the array needed to be sorted
work	Pointer to the work array with same size as numbers
left	Starting index of array 1
mid	Starting index of array 2
right	Ending index of array 1 and 2

Author

Chensong Zhang

Date

11/21/2010

Note

Both arrays are stored in numbers! Arrays should be pre-sorted!

Definition at line 110 of file ordering.c.

```
10.56.2.6 fasp_aux_msort()
```

Sort the INT array in ascending order with the merge sort algorithm.

Parameters

numbers	Pointer to the array needed to be sorted
work	Pointer to the work array with same size as numbers
left	Starting index
right	Ending index

Author

Chensong Zhang

Date

11/21/2010

Note

'left' and 'right' are usually set to be 0 and n-1, respectively

Definition at line 172 of file ordering.c.

10.56.2.7 fasp_aux_unique()

Remove duplicates in an sorted (ascending order) array.

Parameters

numbers	Pointer to the array needed to be sorted (in/out)
size	Length of the target array

Returns

New size after removing duplicates

Author

Chensong Zhang

Date

11/21/2010

Note

Operation is in place. Does not use any extra or temporary storage.

Definition at line 77 of file ordering.c.

10.56.2.8 fasp_BinarySearch()

Binary Search.

Parameters

list	Pointer to a set of values
value	The target
nlist	Length of the array list

Returns

The location of value in array list if succeeded; otherwise, return -1.

Author

Chunsheng Feng

Date

03/01/2011

Definition at line 32 of file ordering.c.

```
10.56.2.9 fasp_dcsr_CMK_order()
```

Ordering vertices of matrix graph corresponding to A.

Parameters

Α	Pointer to matrix
oindex	Pointer to index of vertices in order
order	Pointer to vertices with increasing degree

Author

Zheng Li, Chensong Zhang

Date

05/28/2014

Definition at line 358 of file ordering.c.

```
10.56.2.10 fasp_dcsr_RCMK_order()
```

Resverse CMK ordering.

Parameters

Α	Pointer to matrix
order	Pointer to vertices with increasing degree
oindex	Pointer to index of vertices in order
rorder	Pointer to reverse order

Author

Zheng Li, Chensong Zhang

Date

10/10/2014

Definition at line 407 of file ordering.c.

10.56.2.11 fasp_multicolors_independent_set()

```
void fasp_multicolors_independent_set ( {\rm AMG\_data} \ * \ mgl, \\ {\rm INT} \ gslvl \ )
```

Coloring vertices of adjacency graph of A.

Parameters

mgl	Pointer to input matrix
gslvl	Used to specify levels of AMG using multicolor smoothing

Author

Zheng Li, Chunsheng Feng

Date

12/04/2016

Definition at line 514 of file ordering.c.

10.56.2.12 fasp_topological_sorting_ilu()

Reordering vertices according to level schedule strategy.

Parameters

iludata	Pointer to iludata

```
Author
```

```
Zheng Li, Chensong Zhang
```

Date

12/04/2016

Definition at line 432 of file ordering.c.

10.57 parameters.c File Reference

Initialize, set, or print input data and parameters.

```
#include <stdio.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_param_set (int argc, const char *argv[], input_param *iniparam)

Read input from command-line arguments.

• void fasp_param_init (input_param *iniparam, itsolver_param *itsparam, AMG_param *amgparam, ILU_param *iluparam, Schwarz_param *schparam)

Initialize parameters, global variables, etc.

void fasp_param_input_init (input_param *iniparam)

Initialize input parameters.

void fasp_param_amg_init (AMG_param *amgparam)

Initialize AMG parameters.

void fasp_param_solver_init (itsolver_param *itsparam)

Initialize itsolver_param.

void fasp param ilu init (ILU param *iluparam)

Initialize ILU parameters.

void fasp_param_Schwarz_init (Schwarz_param *schparam)

Initialize Schwarz parameters.

void fasp_param_amg_set (AMG_param *param, input_param *iniparam)

Set AMG_param from INPUT.

void fasp_param_ilu_set (ILU_param *iluparam, input_param *iniparam)

Set ILU_param with INPUT.

void fasp_param_Schwarz_set (Schwarz_param *schparam, input_param *iniparam)

Set Schwarz_param with INPUT.

void fasp_param_solver_set (itsolver_param *itsparam, input_param *iniparam)

Set itsolver_param with INPUT.

void fasp_param_amg_to_prec (precond_data *pcdata, AMG_param *amgparam)

Set precond_data with AMG_param.

- void fasp_param_prec_to_amg (AMG_param *amgparam, precond_data *pcdata) Set AMG_param with precond_data.
- void fasp_param_amg_to_prec_bsr (precond_data_bsr *pcdata, AMG_param *amgparam)

 Set precond_data_bsr with AMG_param.
- void fasp_param_prec_to_amg_bsr (AMG_param *amgparam, precond_data_bsr *pcdata)
 Set AMG_param with precond_data.
- void fasp_param_amg_print (AMG_param *param)

Print out AMG parameters.

void fasp_param_ilu_print (ILU_param *param)

Print out ILU parameters.

void fasp_param_Schwarz_print (Schwarz_param *param)

Print out Schwarz parameters.

void fasp_param_solver_print (itsolver_param *param)

Print out itsolver parameters.

10.57.1 Detailed Description

Initialize, set, or print input data and parameters.

10.57.2 Function Documentation

10.57.2.1 fasp_param_amg_init()

Initialize AMG parameters.

Parameters

amgparam	Parameters for AMG

Author

Chensong Zhang

Date

2010/04/03

Definition at line 390 of file parameters.c.

10.57.2.2 fasp_param_amg_print()

```
void fasp_param_amg_print ( {\tt AMG\_param * param })
```

Print out AMG parameters.

Parameters

Author

Chensong Zhang

Date

2010/03/22

Definition at line 797 of file parameters.c.

```
10.57.2.3 fasp_param_amg_set()
```

Set AMG_param from INPUT.

Parameters

param	Parameters for AMG
iniparam	Input parameters

Author

Chensong Zhang

Date

2010/03/23

Definition at line 518 of file parameters.c.

```
10.57.2.4 fasp_param_amg_to_prec()
```

Set precond_data with AMG_param.

Parameters

pcdata	Preconditioning data structure
amgparam	Parameters for AMG

Author

Chensong Zhang

Date

2011/01/10

Definition at line 666 of file parameters.c.

```
10.57.2.5 fasp_param_amg_to_prec_bsr()
```

Set precond_data_bsr with AMG_param.

Parameters

pcdata	Preconditioning data structure
amgparam	Parameters for AMG

Author

Xiaozhe Hu

Date

02/06/2012

Definition at line 733 of file parameters.c.

```
10.57.2.6 fasp_param_ilu_init()
```

Initialize ILU parameters.

Parameters

iluparam	Parameters for ILU
----------	--------------------

Author

Chensong Zhang

Date

2010/04/06

Definition at line 476 of file parameters.c.

```
10.57.2.7 fasp_param_ilu_print()
```

Print out ILU parameters.

Parameters

Author

Chensong Zhang

Date

2011/12/20

Definition at line 898 of file parameters.c.

10.57.2.8 fasp_param_ilu_set()

Set ILU_param with INPUT.

Parameters

i	luparam	Parameters for ILU
i	niparam	Input parameters

Author

Chensong Zhang

Date

2010/04/03

Definition at line 593 of file parameters.c.

10.57.2.9 fasp_param_init()

```
void fasp_param_init (
          input_param * iniparam,
          itsolver_param * itsparam,
          AMG_param * amgparam,
          ILU_param * iluparam,
          Schwarz_param * schparam )
```

Initialize parameters, global variables, etc.

Parameters

iniparam	Input parameters
itsparam	Iterative solver parameters
amgparam	AMG parameters
iluparam	ILU parameters
schparam	Schwarz parameters

Author

Chensong Zhang

Date

2010/08/12

Modified by Xiaozhe Hu (01/23/2011): initialize, then set value Modified by Chensong Zhang (09/12/2012): find a bug during debugging in VS08 Modified by Chensong Zhang (12/29/2013): rewritten

Definition at line 270 of file parameters.c.

10.57.2.10 fasp_param_input_init()

Initialize input parameters.

Parameters

iniparam	Input parameters
----------	------------------

Author

Chensong Zhang

Date

2010/03/20

Definition at line 310 of file parameters.c.

10.57.2.11 fasp_param_prec_to_amg()

Set AMG_param with precond_data.

Parameters

amgparam	Parameters for AMG
pcdata	Preconditioning data structure

Author

Chensong Zhang

Date

2011/01/10

Definition at line 701 of file parameters.c.

10.57.2.12 fasp_param_prec_to_amg_bsr()

Set AMG_param with precond_data.

Parameters

amgparam	Parameters for AMG
pcdata	Preconditioning data structure

Author

Xiaozhe Hu

Date

02/06/2012

Definition at line 767 of file parameters.c.

10.57.2.13 fasp_param_Schwarz_init()

Initialize Schwarz parameters.

Parameters

schparam	Parameters for Schwarz method
----------	-------------------------------

Author

Xiaozhe Hu

Date

05/22/2012

Modified by Chensong Zhang on 10/10/2014: Add block solver type

Definition at line 498 of file parameters.c.

10.57.2.14 fasp_param_Schwarz_print()

Print out Schwarz parameters.

Parameters

param Paramete	ers for Schwarz
----------------	-----------------

Author

Xiaozhe Hu

Date

05/22/2012

Definition at line 928 of file parameters.c.

10.57.2.15 fasp_param_Schwarz_set()

Set Schwarz_param with INPUT.

Parameters

schparam	Parameters for Schwarz method
iniparam	Input parameters

Author

Xiaozhe Hu

Date

05/22/2012

Definition at line 615 of file parameters.c.

10.57.2.16 fasp_param_set()

```
void fasp_param_set (
    int argc,
    const char * argv[],
    input_param * iniparam )
```

Read input from command-line arguments.

Parameters

argc	Number of arg input	
argv	Input arguments	
iniparam	Parameters to be set	

Author

Chensong Zhang

Date

12/29/2013

Definition at line 27 of file parameters.c.

```
10.57.2.17 fasp_param_solver_init()
```

```
void fasp_param_solver_init (
          itsolver_param * itsparam )
```

Initialize itsolver_param.

Parameters

itsparam	Parameters for iterative solvers
----------	----------------------------------

Author

Chensong Zhang

Date

2010/03/23

Definition at line 455 of file parameters.c.

10.57.2.18 fasp_param_solver_print()

```
void fasp_param_solver_print (
    itsolver_param * param )
```

Print out itsolver parameters.

Parameters

param	Paramters for iterative solvers
-------	---------------------------------

Author

Chensong Zhang

Date

2011/12/20

Definition at line 957 of file parameters.c.

10.57.2.19 fasp_param_solver_set()

```
void fasp_param_solver_set (
          itsolver_param * itsparam,
          input_param * iniparam )
```

Set itsolver_param with INPUT.

Parameters

itsparam	Parameters for iterative solvers
iniparam	Input parameters

Author

Chensong Zhang

Date

2010/03/23

Definition at line 636 of file parameters.c.

10.58 pbcgs.c File Reference

Krylov subspace methods - Preconditioned BiCGstab.

```
#include <math.h>
#include <float.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_pbcgs (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

 INT fasp_solver_dcsr_pvbcgs (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

 INT fasp_solver_dbsr_pbcgs (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

 INT fasp_solver_dbsr_pvbcgs (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

INT fasp_solver_dblc_pbcgs (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned BiCGstab method for solving Au=b.

• INT fasp_solver_dblc_pvbcgs (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

INT fasp_solver_dstr_pbcgs (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

 INT fasp_solver_dstr_pvbcgs (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

10.58.1 Detailed Description

Krylov subspace methods – Preconditioned BiCGstab.

Abstract algorithm

PBICGStab method to solve A*x=b is to generate $\{x_k\}$ to approximate x

Note: We generate a series of $\{p \mid k\}$ such that $V \mid k=span\{p \mid 1,...,p \mid k\}$.

Step 0. Given A, b, x_0, M

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

Step 2. Initialization $z_0 = M^{-1}*r_0$, $p_0=z_0$;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: $x_{k+1} = x_k + alpha*p_k$;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- · perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- · prepare for next iteration;
- print the result of k-th iteration; END FOR

Convergence check: norm(r)/norm(b) < tol

Stagnation check:

- IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
 - 1. compute $r=b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check:

- IF norm(r_{k+1})/norm(b) < tol
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See spbcgs.c for a safer version

10.58.2 Function Documentation

10.58.2.1 fasp_solver_dblc_pbcgs()

```
INT fasp_solver_dblc_pbcgs (
    dBLCmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl)
```

A preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/24/2010

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 1452 of file pbcgs.c.

10.58.2.2 fasp_solver_dblc_pvbcgs()

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
pc	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 1792 of file pbcgs.c.

10.58.2.3 fasp_solver_dbsr_pbcgs()

Preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/09/2009

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 771 of file pbcgs.c.

10.58.2.4 fasp_solver_dbsr_pvbcgs()

```
INT fasp_solver_dbsr_pvbcgs (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 1111 of file pbcgs.c.

10.58.2.5 fasp_solver_dcsr_pbcgs()

Preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/09/2009

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 89 of file pbcgs.c.

10.58.2.6 fasp_solver_dcsr_pvbcgs()

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 430 of file pbcgs.c.

10.58.2.7 fasp_solver_dstr_pbcgs()

Preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

04/25/2010

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 2133 of file pbcgs.c.

10.58.2.8 fasp_solver_dstr_pvbcgs()

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 2473 of file pbcgs.c.

10.59 pbcgs_mf.c File Reference

Krylov subspace methods – Preconditioned BiCGstab (matrix free)

```
#include <math.h>
#include <float.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

INT fasp_solver_pbcgs (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

INT fasp_solver_pvbcgs (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

10.59.1 Detailed Description

Krylov subspace methods – Preconditioned BiCGstab (matrix free)

Abstract algorithm of Krylov method

Krylov method to solve A*x=b is to generate {x_k} to approximate x, where x_k is the optimal solution in Krylov space

V k=span{r
$$0,A*r 0,A^2*r 0,...,A^{k-1}*r 0$$
},

under some inner product.

For the implementation, we generate a series of $\{p_k\}$ such that $V_k = span\{p_1,...,p_k\}$. Details:

Step 0. Given A, b, x_0, M

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

Step 2. Initialization $z_0 = M^{-1}*r_0$, $p_0=z_0$;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- · perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- · prepare for next iteration;
- · print the result of k-th iteration; END FOR

Convergence check is: norm(r)/norm(b) < tol

Stagnation check is like following:

- IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
 - 1. compute $r=b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check is like following:

- IF $norm(r_{k+1})/norm(b) < tol$
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM

10.59.2 Function Documentation

10.59.2.1 fasp_solver_pbcgs()

Preconditioned BiCGstab method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/09/2009

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Feiteng Huang on 09/26/2012, (mmatrix free)

Definition at line 92 of file pbcgs_mf.c.

10.59.2.2 fasp_solver_pvbcgs()

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to the dvector of right hand side
и	Pointer to the dvector of DOFs
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 431 of file pbcgs_mf.c.

10.60 pcg.c File Reference

Krylov subspace methods - Preconditioned conjugate gradient.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

INT fasp_solver_dcsr_pcg (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

INT fasp_solver_dbsr_pcg (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

• INT fasp_solver_dblc_pcg (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

INT fasp_solver_dstr_pcg (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

10.60.1 Detailed Description

Krylov subspace methods – Preconditioned conjugate gradient.

Abstract algorithm

PCG method to solve A*x=b is to generate $\{x_k\}$ to approximate x

Step 0. Given A, b, x_0, M

Step 1. Compute residual r 0 = b-A*x 0 and convergence check;

Step 2. Initialization z $0 = M^{-1}*r 0$, p 0=z 0;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: $x_{k+1} = x_k + alpha*p_k$;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- · perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- · prepare for next iteration;
- · print the result of k-th iteration; END FOR

Convergence check: norm(r)/norm(b) < tol

Stagnation check:

- IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
 - 1. compute $r=b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check:

- IF norm(r_{k+1})/norm(b) < tol
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See specific specific specific space (2nd Edition), SIAM See specific specific specific space (2nd Edition), SIAM See specific specific specific specific space (2nd Edition), SIAM See specific specific specifi

10.60.2 Function Documentation

10.60.2.1 fasp_solver_dblc_pcg()

```
INT fasp_solver_dblc_pcg (
    dBLCmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlv1)
```

Preconditioned conjugate gradient method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/24/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Chensong Zhang on 03/28/2013

Definition at line 665 of file pcg.c.

10.60.2.2 fasp_solver_dbsr_pcg()

```
INT fasp_solver_dbsr_pcg (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned conjugate gradient method for solving Au=b.

Parameters

A Pointer to dBSRmat: the coefficient matrix b Pointer to dvector: the right hand side u Pointer to dvector: the unknowns pc Pointer to precond: the structure of precondition tol Tolerance for stopping MaxIt Maximal number of iterations		
u Pointer to dvector: the unknowns pc Pointer to precond: the structure of precondition tol Tolerance for stopping MaxIt Maximal number of iterations	Α	Pointer to dBSRmat: the coefficient matrix
pc Pointer to precond: the structure of precondition tol Tolerance for stopping MaxIt Maximal number of iterations	b	Pointer to dvector: the right hand side
tol Tolerance for stopping MaxIt Maximal number of iterations	и	Pointer to dvector: the unknowns
MaxIt Maximal number of iterations	рс	Pointer to precond: the structure of precondition
	tol	Tolerance for stopping
	MaxIt	Maximal number of iterations
stop_type Stopping criteria type	stop_type	Stopping criteria type
prtlvl How much information to print out	prtlvl	How much information to print out

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 373 of file pcg.c.

10.60.2.3 fasp_solver_dcsr_pcg()

Preconditioned conjugate gradient method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Xiaozhe Hu, Shiquan Zhang

Date

05/06/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Chensong Zhang on 03/28/2013

Definition at line 84 of file pcg.c.

```
10.60.2.4 fasp_solver_dstr_pcg()
```

Preconditioned conjugate gradient method for solving Au=b.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

04/25/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Chensong Zhang on 03/28/2013

Definition at line 957 of file pcg.c.

10.61 pcg_mf.c File Reference

Krylov subspace methods – Preconditioned conjugate gradient (matrix free)

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

• INT fasp_solver_pcg (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient (CG) method for solving Au=b.

10.61.1 Detailed Description

Krylov subspace methods – Preconditioned conjugate gradient (matrix free)

Abstract algorithm

PCG method to solve A*x=b is to generate $\{x_k\}$ to approximate x

```
Step 0. Given A, b, x 0, M
```

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

```
Step 2. Initialization z_0 = M^{-1}*r_0, p_0=z_0;
```

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- · perform stagnation check;
- update residual: $r_{k+1} = r_k alpha*(A*p_k)$;
- · perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- · prepare for next iteration;
- print the result of k-th iteration; END FOR

Convergence check is: norm(r)/norm(b) < tol

Stagnation check is like following:

```
• IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
```

- 1. compute $r=b-A*x_{k+1}$;
- 2. convergence check;
- 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check is like following:

- IF $norm(r_{k+1})/norm(b) < tol$
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM

10.61.2 Function Documentation

10.61.2.1 fasp_solver_pcg()

Preconditioned conjugate gradient (CG) method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Xiaozhe Hu, Shiquan Zhang

Date

05/06/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 09/19/2012: matrix free

Definition at line 86 of file pcg_mf.c.

10.62 pgcg.c File Reference

Krylov subspace methods – Preconditioned Generalized CG.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

INT fasp_solver_dcsr_pgcg (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

10.62.1 Detailed Description

Krylov subspace methods – Preconditioned Generalized CG.

Note

Refer to Concus, P. and Golub, G.H. and O'Leary, D.P. A Generalized Conjugate Gradient Method for the Numerical: Solution of Elliptic Partial Differential Equations, Computer Science Department, Stanford University, 1976

10.62.2 Function Documentation

10.62.2.1 fasp_solver_dcsr_pgcg()

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/01/2012

Modified by Chensong Zhang on 05/01/2012

Definition at line 44 of file pgcg.c.

10.63 pgcg_mf.c File Reference

Krylov subspace methods – Preconditioned Generalized CG (matrix free)

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

INT fasp_solver_pgcg (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

10.63.1 Detailed Description

Krylov subspace methods – Preconditioned Generalized CG (matrix free)

Note

Refer to Concus, P. and Golub, G.H. and O'Leary, D.P. A Generalized Conjugate Gradient Method for the Numerical: Solution of Elliptic Partial Differential Equations, Computer Science Department, Stanford University, 1976

10.63.2 Function Documentation

10.63.2.1 fasp_solver_pgcg()

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type – Not implemented
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/01/2012

Note

Not completely implemented yet! - Chensong

Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free

Definition at line 47 of file pgcg_mf.c.

10.64 pgcr.c File Reference

Krylov subspace methods - Preconditioned GCR.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

• INT fasp_solver_dcsr_pgcr (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

A preconditioned GCR method for solving Au=b.

INT fasp_solver_dcsr_pgcr1 (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

A preconditioned GCR method for solving Au=b.

10.64.1 Detailed Description

Krylov subspace methods – Preconditioned GCR.

10.64.2 Function Documentation

10.64.2.1 fasp_solver_dcsr_pgcr()

A preconditioned GCR method for solving Au=b.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
X	Pointer to the dvector of dofs
pc	Pointer to the structure of precondition (precond)
tol	Tolerance for stopage
MaxIt	Maximal number of iterations
restart	Restart number for GCR
stop_type	Stopping type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Note

Refer to YVAN NOTAY "AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD"

Author

Zheng Li

Date

12/23/2014

Definition at line 37 of file pgcr.c.

10.64.2.2 fasp_solver_dcsr_pgcr1()

A preconditioned GCR method for solving Au=b.

Parameters

Α	Pointer to the coefficient matrix
b	Pointer to the dvector of right hand side
X	Pointer to the dvector of dofs
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopage
MaxIt	Maximal number of iterations
restart	Restart number for GCR
stop_type	Stopping type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Lu Wang

Date

11/02/2014

Warning

Deprecated function. Remove it later!!! - Chensong

Definition at line 226 of file pgcr.c.

10.65 pgmres.c File Reference

Krylov subspace methods – Right-preconditioned GMRes.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_pgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dblc_pgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dbsr_pgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dstr_pgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

10.65.1 Detailed Description

Krylov subspace methods – Right-preconditioned GMRes.

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM Four subroutines use the same algorithm for different matrix types!

See also pvgmres.c for a variable restarting version.

See spgmres.c for a safer version

10.65.2 Function Documentation

10.65.2.1 fasp solver dblc pgmres()

Preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns

Parameters

рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/24/2010

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: add stop_type and safe check

Definition at line 356 of file pgmres.c.

10.65.2.2 fasp_solver_dbsr_pgmres()

```
INT fasp_solver_dbsr_pgmres (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT restart,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
pc	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
Gelblessteld by Do	y Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/21

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: add stop_type and safe check

Definition at line 659 of file pgmres.c.

10.65.2.3 fasp_solver_dcsr_pgmres()

Right preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/11/28

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: Add stop_type and safe check Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate Modified by Chensong Zhang on 07/30/2014: Make memory allocation size long int Modified by Chensong Zhang on 09/21/2014: Add comments and reorganize code

Definition at line 53 of file pgmres.c.

10.65.2.4 fasp_solver_dstr_pgmres()

Preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/11/28

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: add stop_type and safe check

Definition at line 963 of file pgmres.c.

10.66 pgmres_mf.c File Reference

Krylov subspace methods - Preconditioned GMRes (matrix free)

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

• INT fasp_solver_pgmres (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES (right preconditioned) iterative method.

10.66.1 Detailed Description

Krylov subspace methods – Preconditioned GMRes (matrix free)

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR← ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266.

10.66.2 Function Documentation

10.66.2.1 fasp_solver_pgmres()

Solve "Ax=b" using PGMRES (right preconditioned) iterative method.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to dvector: the right hand side
Х	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/11/28

Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 50 of file pgmres mf.c.

10.67 pminres.c File Reference

Krylov subspace methods – Preconditioned minimal residual.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_pminres (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

 INT fasp_solver_dblc_pminres (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

 INT fasp_solver_dstr_pminres (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

10.67.1 Detailed Description

Krylov subspace methods – Preconditioned minimal residual.

Abstract algorithm of Krylov method

Krylov method to solve A*x=b is to generate $\{x_k\}$ to approximate x, where x_k is the optimal solution in Krylov space V k=span $\{r \ 0,A*r \ 0,A^2*r \ 0,...,A^{\{k-1\}*r \ 0\}}$,

under some inner product.

For the implementation, we generate a series of {p_k} such that V_k=span{p_1,...,p_k}. Details:

Step 0. Given A, b, x 0, M

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

Step 2. Initialization z $0 = M^{-1}*r 0$, p 0=z 0;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- · perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- · prepare for next iteration;
- print the result of k-th iteration; END FOR

Convergence check: norm(r)/norm(b) < tol

Stagnation check:

- IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
 - 1. compute $r=b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check:

- IF $norm(r_{k+1})/norm(b) < tol$
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart number < Max Res Check) restart;
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See spminres.c for a safer version

10.67.2 Function Documentation

10.67.2.1 fasp_solver_dblc_pminres()

```
INT fasp_solver_dblc_pminres (
    dBLCmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl)
```

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

05/01/2012

Note

Rewritten based on the original version by Xiaozhe Hu 05/24/2010

Modified by Chensong Zhang on 04/09/2013

Definition at line 499 of file pminres.c.

10.67.2.2 fasp_solver_dcsr_pminres()

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

05/01/2012

Note

Rewritten based on the original version by Shiquan Zhang 05/10/2010

Modified by Chensong Zhang on 04/09/2013

Definition at line 92 of file pminres.c.

10.67.2.3 fasp_solver_dstr_pminres()

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 902 of file pminres.c.

10.68 pminres_mf.c File Reference

Krylov subspace methods - Preconditioned minimal residual (matrix free)

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_pminres (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

10.68.1 Detailed Description

Krylov subspace methods – Preconditioned minimal residual (matrix free)

Abstract algorithm of Krylov method

Krylov method to solve A*x=b is to generate $\{x_k\}$ to approximate x, where x_k is the optimal solution in Krylov space

$$V_k=span\{r_0,A*r_0,A^2*r_0,...,A^{k-1}*r_0\},$$

under some inner product.

For the implementation, we generate a series of {p_k} such that V_k=span{p_1,...,p_k}. Details:

Step 0. Given A, b, x_0, M

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

Step 2. Initialization z $0 = M^{-1}*r 0$, p 0=z 0;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- · perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- · prepare for next iteration;
- print the result of k-th iteration; END FOR

Convergence check is: norm(r)/norm(b) < tol

Stagnation check is like following:

- IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
 - 1. compute $r=b-A*x \{k+1\}$;

- 2. convergence check;
- 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check is like following:

- IF norm(r_{k+1})/norm(b) < tol
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM

10.68.2 Function Documentation

10.68.2.1 fasp_solver_pminres()

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to dvector: the right hand side
И	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Shiquan Zhang

Date

10/24/2010

Rewritten by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free

Definition at line 89 of file pminres_mf.c.

10.69 precond_blc.c File Reference

Preconditioners for dBLCmat matrices.

```
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

- void fasp_precond_block_diag_3 (REAL *r, REAL *z, void *data)
 - block diagonal preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_diag_3_amg (REAL *r, REAL *z, void *data)
 - block diagonal preconditioning (3x3 block matrix, each diagonal block is solved by AMG)
- void fasp_precond_block_diag_4 (REAL *r, REAL *z, void *data)
 - block diagonal preconditioning (4x4 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_lower_3 (REAL *r, REAL *z, void *data)
 - block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_lower_3_amg (REAL *r, REAL *z, void *data)
 - block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved by AMG)
- void fasp_precond_block_lower_4 (REAL *r, REAL *z, void *data)
 - block lower triangular preconditioning (4x4 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_upper_3 (REAL *r, REAL *z, void *data)
 - block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_upper_3_amg (REAL *r, REAL *z, void *data)
 - block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved AMG)
- void fasp precond block SGS 3 (REAL *r, REAL *z, void *data)
 - block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_SGS_3_amg (REAL *r, REAL *z, void *data)
 - block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_sweeping (REAL *r, REAL *z, void *data)
 - sweeping preconditioner for Maxwell equations

10.69.1 Detailed Description

Preconditioners for dBLCmat matrices.

Note

Need to be cleaned up. -Chensong

10.69.2 Function Documentation

10.69.2.1 fasp_precond_block_diag_3()

block diagonal preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 28 of file precond_blc.c.

10.69.2.2 fasp_precond_block_diag_3_amg()

block diagonal preconditioning (3x3 block matrix, each diagonal block is solved by AMG)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 112 of file precond_blc.c.

10.69.2.3 fasp_precond_block_diag_4()

block diagonal preconditioning (4x4 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 177 of file precond_blc.c.

10.69.2.4 fasp_precond_block_lower_3()

```
void fasp_precond_block_lower_3 ( {\tt REAL} \, * \, r,
```

```
REAL * z,
void * data )
```

block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 273 of file precond_blc.c.

10.69.2.5 fasp_precond_block_lower_3_amg()

block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved by AMG)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 355 of file precond_blc.c.

10.69.2.6 fasp_precond_block_lower_4()

```
void fasp_precond_block_lower_4 ( {\tt REAL} \, * \, r,
```

```
REAL * z,
void * data )
```

block lower triangular preconditioning (4x4 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 429 of file precond_blc.c.

10.69.2.7 fasp_precond_block_SGS_3()

block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/19/2015

Definition at line 690 of file precond_blc.c.

10.69.2.8 fasp_precond_block_SGS_3_amg()

```
void fasp_precond_block_SGS_3_amg ( {\tt REAL} \, * \, r,
```

```
REAL * z,
void * data )
```

block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/19/2015

Definition at line 806 of file precond_blc.c.

10.69.2.9 fasp_precond_block_upper_3()

block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/18/2015

Definition at line 527 of file precond_blc.c.

10.69.2.10 fasp_precond_block_upper_3_amg()

```
void fasp_precond_block_upper_3_amg ( {\tt REAL} \, * \, r,
```

```
REAL * z,
void * data )
```

block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved AMG)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/19/2015

Definition at line 609 of file precond_blc.c.

10.69.2.11 fasp_precond_sweeping()

sweeping preconditioner for Maxwell equations

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

05/01/2014

Definition at line 916 of file precond_blc.c.

10.70 precond_bsr.c File Reference

Preconditioners for dBSRmat matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "mg_util.inl"
```

Functions

- void fasp_precond_dbsr_diag (REAL *r, REAL *z, void *data)
 - Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_diag_nc2 (REAL *r, REAL *z, void *data)
 - Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_diag_nc3 (REAL *r, REAL *z, void *data)
 Diagonal preconditioner z=inv(D)*r.
- $\bullet \ \ void \ fasp_precond_dbsr_diag_nc5 \ (REAL *r, REAL *z, void *data) \\$
 - Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_diag_nc7 (REAL *r, REAL *z, void *data)
 - Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_ilu (REAL *r, REAL *z, void *data)
 ILU preconditioner.
- void fasp_precond_dbsr_ilu_mc_omp (REAL *r, REAL *z, void *data)
 - Multi-threads Parallel ILU preconditioner based on graph coloring.
- void fasp_precond_dbsr_ilu_levsch_omp (REAL *r, REAL *z, void *data)
 - Multi-threads Parallel ILU preconditioner based on level schedule strategy.
- void fasp_precond_dbsr_amg (REAL *r, REAL *z, void *data)
 - AMG preconditioner.
- void fasp_precond_dbsr_nl_amli (REAL *r, REAL *z, void *data)
 - Nonlinear AMLI-cycle AMG preconditioner.
- void fasp_precond_dbsr_amg_nk (REAL *r, REAL *z, void *data)
 - AMG with extra near kernel solve preconditioner.

10.70.1 Detailed Description

Preconditioners for dBSRmat matrices.

10.70.2 Function Documentation

10.70.2.1 fasp_precond_dbsr_amg()

AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 970 of file precond_bsr.c.

10.70.2.2 fasp_precond_dbsr_amg_nk()

AMG with extra near kernel solve preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 1050 of file precond_bsr.c.

10.70.2.3 fasp_precond_dbsr_diag()

```
void fasp_precond_dbsr_diag ( \label{eq:recond_dbsr_diag} \texttt{REAL} \, * \, r,
```

```
REAL * z,
void * data )
```

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/24/2012

Note

Works for general nb (Xiaozhe)

Definition at line 37 of file precond_bsr.c.

10.70.2.4 fasp_precond_dbsr_diag_nc2()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

11/18/2011

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/24/2012

Note

Works for 2-component (Xiaozhe)

Definition at line 111 of file precond_bsr.c.

10.70.2.5 fasp_precond_dbsr_diag_nc3()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

01/06/2011

Modified by Chunsheng Feng Xiaoqiang Yue

Date

05/24/2012

Note

Works for 3-component (Xiaozhe)

Definition at line 161 of file precond_bsr.c.

10.70.2.6 fasp_precond_dbsr_diag_nc5()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

01/06/2011

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/24/2012

Note

Works for 5-component (Xiaozhe)

Definition at line 211 of file precond_bsr.c.

10.70.2.7 fasp_precond_dbsr_diag_nc7()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

01/06/2011

Modified by Chunsheng Feng Xiaoqiang Yue

Date

05/24/2012

Note

Works for 7-component (Xiaozhe)

Definition at line 260 of file precond_bsr.c.

10.70.2.8 fasp_precond_dbsr_ilu()

ILU preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang, Xiaozhe Hu

```
Date
```

11/09/2010

Note

Works for general nb (Xiaozhe)

Definition at line 306 of file precond_bsr.c.

10.70.2.9 fasp_precond_dbsr_ilu_levsch_omp()

Multi-threads Parallel ILU preconditioner based on level schedule strategy.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

ZhengLi

Date

12/04/2016

Note

Only works for nb 1, 2, and 3 (Zheng)

Definition at line 764 of file precond_bsr.c.

10.70.2.10 fasp_precond_dbsr_ilu_mc_omp()

Multi-threads Parallel ILU preconditioner based on graph coloring.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

ZhengLi

Date

12/04/2016

Note

Only works for nb 1, 2, and 3 (Zheng)

Definition at line 566 of file precond_bsr.c.

10.70.2.11 fasp_precond_dbsr_nl_amli()

Nonlinear AMLI-cycle AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/06/2012

Definition at line 1014 of file precond_bsr.c.

10.71 precond_csr.c File Reference

Preconditioners for dCSRmat matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "mg_util.inl"
```

Functions

precond * fasp_precond_setup (const SHORT precond_type, AMG_param *amgparam, ILU_param *iluparam, dCSRmat *A)

Setup preconditioner interface for iterative methods.

void fasp_precond_diag (REAL *r, REAL *z, void *data)

Diagonal preconditioner z=inv(D)*r.

void fasp_precond_ilu (REAL *r, REAL *z, void *data)

ILU preconditioner.

• void fasp_precond_ilu_forward (REAL *r, REAL *z, void *data)

ILU preconditioner: only forward sweep.

void fasp_precond_ilu_backward (REAL *r, REAL *z, void *data)

ILU preconditioner: only backward sweep.

void fasp_precond_Schwarz (REAL *r, REAL *z, void *data)

get z from r by Schwarz

void fasp_precond_amg (REAL *r, REAL *z, void *data)

AMG preconditioner.

void fasp_precond_famg (REAL *r, REAL *z, void *data)

Full AMG preconditioner.

void fasp precond amli (REAL *r, REAL *z, void *data)

AMLI AMG preconditioner.

void fasp_precond_nl_amli (REAL *r, REAL *z, void *data)

Nonlinear AMLI AMG preconditioner.

void fasp_precond_amg_nk (REAL *r, REAL *z, void *data)

AMG with extra near kernel solve as preconditioner.

void fasp_precond_free (const SHORT precond_type, precond *pc)

free preconditioner

10.71.1 Detailed Description

Preconditioners for dCSRmat matrices.

10.71.2 Function Documentation

10.71.2.1 fasp_precond_amg()

AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Chensong Zhang

Date

04/06/2010

Definition at line 397 of file precond_csr.c.

10.71.2.2 fasp_precond_amg_nk()

AMG with extra near kernel solve as preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 532 of file precond_csr.c.

10.71.2.3 fasp_precond_amli()

```
void fasp_precond_amli ( REAL * r,
```

```
REAL * z,
void * data )
```

AMLI AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

01/23/2011

Definition at line 466 of file precond_csr.c.

10.71.2.4 fasp_precond_diag()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Chensong Zhang

Date

04/06/2010

Definition at line 156 of file precond_csr.c.

10.71.2.5 fasp_precond_famg()

```
void fasp_precond_famg ( REAL * r,
```

```
REAL * z,
void * data )
```

Full AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/27/2011

Definition at line 433 of file precond_csr.c.

10.71.2.6 fasp_precond_free()

free preconditioner

Parameters

precond_type		Preconditioner type
	*pc	precondition data & fct

Returns

void

Author

Feiteng Huang

Date

12/24/2012

Definition at line 616 of file precond_csr.c.

10.71.2.7 fasp_precond_ilu()

ILU preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/06/2010

Definition at line 182 of file precond_csr.c.

10.71.2.8 fasp_precond_ilu_backward()

ILU preconditioner: only backward sweep.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/06/2010

Definition at line 299 of file precond_csr.c.

```
10.71.2.9 fasp_precond_ilu_forward()
```

```
void fasp_precond_ilu_forward (
    REAL * r,
    REAL * z,
    void * data )
```

ILU preconditioner: only forward sweep.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu, Shiquang Zhang

Date

04/06/2010

Definition at line 246 of file precond_csr.c.

10.71.2.10 fasp_precond_nl_amli()

Nonlinear AMLI AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

04/25/2011

Definition at line 499 of file precond_csr.c.

10.71.2.11 fasp_precond_Schwarz()

get z from r by Schwarz

Parameters

* <i>r</i>	pointer to residual
*Z	pointer to preconditioned residual
*data	pointer to precondition data

Author

Xiaozhe Hu

Date

03/22/2010

Note

Change Schwarz interface by Zheng Li on 11/18/2014

Definition at line 352 of file precond_csr.c.

10.71.2.12 fasp_precond_setup()

Setup preconditioner interface for iterative methods.

Parameters

precond_type	Preconditioner type
amgparam	Pointer to AMG parameters
iluparam	Pointer to ILU parameters
Α	Pointer to the coefficient matrix

Returns

Pointer to preconditioner

Author

Feiteng Huang

Date

05/18/2009

Definition at line 30 of file precond_csr.c.

10.72 precond_str.c File Reference

Preconditioners for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_precond_dstr_diag (REAL *r, REAL *z, void *data)
 Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dstr_ilu0 (REAL *r, REAL *z, void *data)

Preconditioning using STR_ILU(0) decomposition.

void fasp_precond_dstr_ilu1 (REAL *r, REAL *z, void *data)

Preconditioning using STR_ILU(1) decomposition.

void fasp_precond_dstr_ilu0_forward (REAL *r, REAL *z, void *data)

Preconditioning using $STR_ILU(0)$ decomposition: Lz = r.

void fasp_precond_dstr_ilu0_backward (REAL *r, REAL *z, void *data)

Preconditioning using $STR_ILU(0)$ decomposition: Uz = r.

void fasp_precond_dstr_ilu1_forward (REAL *r, REAL *z, void *data)

Preconditioning using $STR_ILU(1)$ decomposition: Lz = r.

void fasp_precond_dstr_ilu1_backward (REAL *r, REAL *z, void *data)

Preconditioning using $STR_ILU(1)$ decomposition: Uz = r.

void fasp_precond_dstr_blockgs (REAL *r, REAL *z, void *data)

CPR-type preconditioner (STR format)

10.72.1 Detailed Description

Preconditioners for dSTRmat matrices.

10.72.2 Function Documentation

10.72.2.1 fasp_precond_dstr_blockgs()

CPR-type preconditioner (STR format)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

10/17/2010

Definition at line 1706 of file precond_str.c.

10.72.2.2 fasp_precond_dstr_diag()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/06/2010

Definition at line 27 of file precond_str.c.

```
10.72.2.3 fasp_precond_dstr_ilu0()
```

```
void fasp_precond_dstr_ilu0 (
    REAL * r,
    REAL * z,
    void * data )
```

Preconditioning using STR_ILU(0) decomposition.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 54 of file precond_str.c.

10.72.2.4 fasp_precond_dstr_ilu0_backward()

Preconditioning using $STR_ILU(0)$ decomposition: Uz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

06/07/2010

Definition at line 978 of file precond_str.c.

10.72.2.5 fasp_precond_dstr_ilu0_forward()

Preconditioning using $STR_ILU(0)$ decomposition: Lz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

06/07/2010

Definition at line 815 of file precond_str.c.

10.72.2.6 fasp_precond_dstr_ilu1()

```
void fasp_precond_dstr_ilu1 (
    REAL * r,
    REAL * z,
    void * data )
```

Preconditioning using STR_ILU(1) decomposition.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 336 of file precond_str.c.

10.72.2.7 fasp_precond_dstr_ilu1_backward()

Preconditioning using $STR_ILU(1)$ decomposition: Uz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 1425 of file precond_str.c.

10.72.2.8 fasp_precond_dstr_ilu1_forward()

Preconditioning using $STR_ILU(1)$ decomposition: Lz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 1159 of file precond str.c.

10.73 pvfgmres.c File Reference

Krylov subspace methods – Preconditioned variable-restarting flexible GMRes.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_pvfgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

 INT fasp_solver_dbsr_pvfgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

 INT fasp_solver_dblc_pvfgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES (right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

10.73.1 Detailed Description

Krylov subspace methods – Preconditioned variable-restarting flexible GMRes.

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM
Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR

ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266.
This file is modifed from pvgmres.c

10.73.2 Function Documentation

10.73.2.1 fasp_solver_dblc_pvfgmres()

Solve "Ax=b" using PFGMRES (right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

Parameters

*A	pointer to the coefficient matrix
*b	pointer to the right hand side vector
*X	pointer to the solution vector
MaxIt	maximal iteration number allowed
tol	tolerance
*pc	pointer to preconditioner data
prtlvl	How much information to print out
stop_type	default stopping criterion,i.e. $ r_k $ / $ r_0 $ <tol, is="" td="" used.<=""></tol,>
restart	number of restart for GMRES

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/04/2012

Note

Based on Zhiyang Zhou's pvgmres.c

Modified by Chunsheng Feng on 07/22/2013: Add adaptive memory allocate Modified by Chensong Zhang on 05/09/2015: Clean up for stopping types

Definition at line 712 of file pvfgmres.c.

10.73.2.2 fasp_solver_dbsr_pvfgmres()

```
INT fasp_solver_dbsr_pvfgmres (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT restart,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
pc	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

02/05/2012

Modified by Chensong Zhang on 05/01/2012 Modified by Chunsheng Feng on 07/22/2013: Add adaptive memory allocate Modified by Chensong Zhang on 05/09/2015: Clean up for stopping types

Definition at line 382 of file pvfgmres.c.

10.73.2.3 fasp_solver_dcsr_pvfgmres()

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/04/2012

Modified by Chensong Zhang on 05/01/2012 Modified by Chunsheng Feng on 07/22/2013: Add adaptive memory allocate Modified by Chensong Zhang on 05/09/2015: Clean up for stopping types

Definition at line 54 of file pvfgmres.c.

10.74 pvfgmres_mf.c File Reference

Krylov subspace methods - Preconditioned variable-restarting flexible GMRes (matrix free)

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_pvfgmres (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

10.74.1 Detailed Description

Krylov subspace methods - Preconditioned variable-restarting flexible GMRes (matrix free)

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM
Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR←
ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266.
This file is modifed from pvgmres.c

10.74.2 Function Documentation

10.74.2.1 fasp_solver_pvfgmres()

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration and flexible preconditioner can be used.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
pc	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/04/2012

Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 55 of file pvfgmres_mf.c.

10.75 pvgmres.c File Reference

Krylov subspace methods – Preconditioned variable-restart GMRes.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_pvgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

 INT fasp_solver_dblc_pvgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

 INT fasp_solver_dbsr_pvgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

• INT fasp_solver_dstr_pvgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

10.75.1 Detailed Description

Krylov subspace methods – Preconditioned variable-restart GMRes.

Note

Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR← ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266. See spvgmres.c for a safer version

10.75.2 Function Documentation

10.75.2.1 fasp_solver_dblc_pvgmres()

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 393 of file pvgmres.c.

10.75.2.2 fasp_solver_dbsr_pvgmres()

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
Х	Pointer to dvector: the unknowns
pc	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

12/21/2011

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/06/2013: Add stop type support Definition at line 738 of file pygmres.c.

10.75.2.3 fasp_solver_dcsr_pvgmres()

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
pc	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/14

Modified by Chensong Zhang on 12/13/2011 Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/06/2013: Add stop type support Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 51 of file pygmres.c.

10.75.2.4 fasp_solver_dstr_pvgmres()

```
INT fasp_solver_dstr_pvgmres (
    dSTRmat * A,
    dvector * b,
    dvector * x,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT restart,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during the iteration.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/14

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/06/2013: Add stop type support Definition at line 1083 of file pygmres.c.

10.76 pvgmres_mf.c File Reference

Krylov subspace methods – Preconditioned variable-restarting GMRes (matrix free)

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_pvgmres (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

10.76.1 Detailed Description

Krylov subspace methods – Preconditioned variable-restarting GMRes (matrix free)

Note

Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR← ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266.

10.76.2 Function Documentation

10.76.2.1 fasp_solver_pvgmres()

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

Parameters

mf	Pointer to mxv_matfree: the spmv operation
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
pc	Pointer to precond: the structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/14

Modified by Chensong Zhang on 12/13/2011 Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 54 of file pvgmres_mf.c.

10.77 quadrature.c File Reference

Quadrature rules.

```
#include <stdio.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_quad2d (const INT num_qp, const INT ncoor, REAL(*quad)[3])
 Initialize Lagrange quadrature points and weights.

 void fasp_gauss2d (const INT num_qp, const INT ncoor, REAL(*gauss)[3])
- void fasp_gauss2d (const INT num_qp, const INT ncoor, REAL(*gauss)[3])
 Initialize Gauss quadrature points and weights.

10.77.1 Detailed Description

Quadrature rules.

10.77.2 Function Documentation

10.77.2.1 fasp_gauss2d()

Initialize Gauss quadrature points and weights.

Parameters

num_qp	Number of quadrature points
ncoor	Dimension of space
gauss	Quadrature points and weight

Author

Xuehai Huang, Chensong Zhang, Ludmil Zikatanov

Date

10/21/2008

Note

```
gauss[*][0] - quad point x in ref coor <math>gauss[*][1] - quad point y in ref coor <math>gauss[*][2] - quad weight
```

Definition at line 210 of file quadrature.c.

10.77.2.2 fasp_quad2d()

Initialize Lagrange quadrature points and weights.

Parameters

num_qp	Number of quadrature points
ncoor	Dimension of space
quad	Quadrature points and weights

Author

Xuehai Huang, Chensong Zhang, Ludmil Zikatanov

Date

10/21/2008

Note

```
quad[*][0] - quad point x in ref coor <math>quad[*][1] - quad point y in ref coor <math>quad[*][2] - quad weight
```

Definition at line 31 of file quadrature.c.

10.78 rap.c File Reference

Tripple-matrix multiplication R*A*P.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    dCSRmat fasp_blas_dcsr_rap2 (INT *ir, INT *jr, REAL *r, INT *ia, INT *ja, REAL *a, INT *ipt, INT *jpt, REAL *pt, INT n, INT nc, INT *maxrpout, INT *ipin, INT *jpin)
    Compute R*A*P.
```

10.78.1 Detailed Description

Tripple-matrix multiplication R*A*P.

C-version by Ludmil Zikatanov 2010-04-08

tested 2010-04-08

10.78.2 Function Documentation

```
10.78.2.1 fasp_blas_dcsr_rap2()
```

Compute R*A*P.

```
Author
```

Ludmil Zikatanov

Date

04/08/2010

Note

It uses dCSRmat only. The functions called from here are in sparse util.c

Definition at line 33 of file rap.c.

10.79 schwarz_setup.c File Reference

Setup phase for the Schwarz methods.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "mg_util.inl"
```

Functions

- void fasp_Schwarz_get_block_matrix (Schwarz_data *Schwarz, INT nblk, INT *iblock, INT *jblock, INT *mask) Form Schwarz partition data.
- INT fasp_Schwarz_setup (Schwarz_data *Schwarz, Schwarz_param *param)

Setup phase for the Schwarz methods.

void fasp_dcsr_Schwarz_forward_smoother (Schwarz_data *Schwarz, Schwarz_param *param, dvector *x, dvector *b)

Schwarz smoother: forward sweep.

void fasp_dcsr_Schwarz_backward_smoother (Schwarz_data *Schwarz, Schwarz_param *param, dvector *x, dvector *b)

Schwarz smoother: backward sweep.

10.79.1 Detailed Description

Setup phase for the Schwarz methods.

10.79.2 Function Documentation

10.79.2.1 fasp_dcsr_Schwarz_backward_smoother()

Schwarz smoother: backward sweep.

Parameters

Schwarz	Pointer to the Schwarz data
param	Pointer to the Schwarz parameter
Х	Pointer to solution vector
b	Pointer to right hand

Author

Zheng Li, Chensong Zhang

Date

2014/10/5

Definition at line 404 of file schwarz_setup.c.

10.79.2.2 fasp_dcsr_Schwarz_forward_smoother()

Schwarz smoother: forward sweep.

Parameters

Schwarz	Pointer to the Schwarz data
param	Pointer to the Schwarz parameter
X	Pointer to solution vector
b	Pointer to right hand

Author

Zheng Li, Chensong Zhang

Date

2014/10/5

Definition at line 294 of file schwarz_setup.c.

10.79.2.3 fasp_Schwarz_get_block_matrix()

Form Schwarz partition data.

Parameters

Schwarz	Pointer to the Schwarz data
nblk	Number of partitions
iblock	Pointer to number of vertices on each level
jblock	Pointer to vertices of each level
mask	Pointer to flag array

Author

Zheng Li, Chensong Zhang

Date

2014/09/29

Definition at line 34 of file schwarz_setup.c.

10.79.2.4 fasp_Schwarz_setup()

Setup phase for the Schwarz methods.

Parameters

Schwarz	Pointer to the Schwarz data
param	Type of the Schwarz method

Returns

FASP_SUCCESS if succeed

10.80 smat.c File Reference 459

Author

Ludmil, Xiaozhe Hu

Date

03/22/2011

Modified by Zheng Li on 10/09/2014

Definition at line 125 of file schwarz_setup.c.

10.80 smat.c File Reference

Simple operations for *small* dense matrices in row-major format.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Macros

#define SWAP(a, b) {temp=(a);(a)=(b);(b)=temp;}

Functions

void fasp blas smat inv nc2 (REAL *a)

Compute the inverse matrix of a 2*2 full matrix A (in place)

void fasp blas smat inv nc3 (REAL *a)

Compute the inverse matrix of a 3*3 full matrix A (in place)

void fasp_blas_smat_inv_nc4 (REAL *a)

Compute the inverse matrix of a 4*4 full matrix A (in place)

void fasp blas smat inv nc5 (REAL *a)

Compute the inverse matrix of a 5*5 full matrix A (in place)

void fasp_blas_smat_inv_nc7 (REAL *a)

Compute the inverse matrix of a 7*7 matrix a.

void fasp_blas_smat_inv_nc (REAL *a, const INT n)

Compute the inverse of a matrix using Gauss Elimination.

void fasp_blas_smat_invp_nc (REAL *a, const INT n)

Compute the inverse of a matrix using Gauss Elimination with Pivoting.

INT fasp blas smat inv (REAL *a, const INT n)

Compute the inverse matrix of a small full matrix a.

REAL fasp_blas_smat_Linfinity (REAL *A, const INT n)

Compute the L infinity norm of A.

void fasp_iden_free (idenmat *A)

Free idenmat sparse matrix data memeory space.

```
    void fasp_smat_identity_nc2 (REAL *a)
```

Set a 2*2 full matrix to be a identity.

void fasp_smat_identity_nc3 (REAL *a)

Set a 3*3 full matrix to be a identity.

• void fasp_smat_identity_nc5 (REAL *a)

Set a 5*5 full matrix to be a identity.

void fasp_smat_identity_nc7 (REAL *a)

Set a 7*7 full matrix to be a identity.

void fasp_smat_identity (REAL *a, const INT n, const INT n2)

Set a n*n full matrix to be a identity.

10.80.1 Detailed Description

Simple operations for *small* dense matrices in row-major format.

10.80.2 Macro Definition Documentation

10.80.2.1 SWAP

swap two numbers

Definition at line 9 of file smat.c.

10.80.3 Function Documentation

10.80.3.1 fasp_blas_smat_inv()

Compute the inverse matrix of a small full matrix a.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix

10.80 smat.c File Reference 461

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/21/2010

Definition at line 554 of file smat.c.

10.80.3.2 fasp_blas_smat_inv_nc()

Compute the inverse of a matrix using Gauss Elimination.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 405 of file smat.c.

10.80.3.3 fasp_blas_smat_inv_nc2()

Compute the inverse matrix of a 2*2 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 2*2 matrix

```
Author
```

Xiaozhe Hu

Date

18/11/2011

Definition at line 25 of file smat.c.

10.80.3.4 fasp_blas_smat_inv_nc3()

Compute the inverse matrix of a 3*3 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 3*3 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 61 of file smat.c.

10.80.3.5 fasp_blas_smat_inv_nc4()

Compute the inverse matrix of a 4*4 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 4*4 matrix

Author

Xiaozhe Hu

10.80 smat.c File Reference 463

```
Date
```

01/12/2013

Modified by Hongxuan Zhang on 06/13/2014: Fix a bug in M23.

Definition at line 115 of file smat.c.

10.80.3.6 fasp_blas_smat_inv_nc5()

```
void fasp_blas_smat_inv_nc5 ( \label{eq:real_smat} \texttt{REAL} \, * \, a \, )
```

Compute the inverse matrix of a 5*5 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 5∗5 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 173 of file smat.c.

10.80.3.7 fasp_blas_smat_inv_nc7()

Compute the inverse matrix of a 7*7 matrix a.

Parameters

a Pointer to the REAL array which stands a 7*7 matrix

Note

This is NOT implemented yet!

```
Author
```

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 389 of file smat.c.

```
10.80.3.8 fasp_blas_smat_invp_nc()
```

```
void fasp_blas_smat_invp_nc ( \label{eq:real} \begin{tabular}{ll} REAL * a, \\ & const INT \ n \ ) \end{tabular}
```

Compute the inverse of a matrix using Gauss Elimination with Pivoting.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix

Author

Chensong Zhang

Date

04/03/2015

Note

This routine is based on gaussj() from "Numerical Recipies in C"!

Definition at line 472 of file smat.c.

10.80.3.9 fasp_blas_smat_Linfinity()

Compute the L infinity norm of A.

10.80 smat.c File Reference 465

Parameters

Α	Pointer to the n*n dense matrix
n	the dimension of the dense matrix

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 595 of file smat.c.

```
10.80.3.10 fasp_iden_free()
```

```
void fasp_iden_free (
         idenmat * A )
```

Free idenmat sparse matrix data memeory space.

Parameters

A Pointer to the idenmat matrix

Author

Chensong Zhang

Date

2010/04/03

Definition at line 628 of file smat.c.

10.80.3.11 fasp_smat_identity()

Set a n*n full matrix to be a identity.

Parameters

а	Pointer to the REAL vector which stands for a n*n full matrix
n	Size of full matrix
n2	Length of the REAL vector which stores the n∗n full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 728 of file smat.c.

10.80.3.12 fasp_smat_identity_nc2()

Set a 2*2 full matrix to be a identity.

Parameters

a Pointer to the REAL vector which stands for a 2*2 full matrix

Author

Xiaozhe Hu

Date

2011/11/18

Definition at line 648 of file smat.c.

10.80.3.13 fasp_smat_identity_nc3()

Set a 3*3 full matrix to be a identity.

10.80 smat.c File Reference 467

Parameters

a Pointer to the REAL vector which stands for a 3*3 full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 665 of file smat.c.

10.80.3.14 fasp_smat_identity_nc5()

Set a 5*5 full matrix to be a identity.

Parameters

a Pointer to the REAL vector which stands for a 5*5 full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 682 of file smat.c.

10.80.3.15 fasp_smat_identity_nc7()

```
void fasp_smat_identity_nc7 ( {\tt REAL} \, * \, a \, )
```

Set a 7*7 full matrix to be a identity.

Parameters

a Pointer to the REAL vector which stands for a 7*7 full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 703 of file smat.c.

10.81 smoother bsr.c File Reference

Smoothers for dBSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_smoother_dbsr_jacobi (dBSRmat *A, dvector *b, dvector *u)
 Jacobi relaxation.
- $\bullet \ \ void \ fasp_smoother_dbsr_jacobi_setup \ (dBSRmat \ *A, \ dvector \ *b, \ dvector \ *u, \ REAL \ *diaginv)$

Setup for jacobi relaxation, fetch the diagonal sub-block matrixes and make them inverse first.

- void fasp_smoother_dbsr_jacobi1 (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv)
 Jacobi relaxation.
- void fasp_smoother_dbsr_gs (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark)
 Gauss-Seidel relaxation.
- void fasp_smoother_dbsr_gs1 (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark, REAL *diaginv) Gauss-Seidel relaxation.
- void fasp_smoother_dbsr_gs_ascend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv) Gauss-Seidel relaxation in the ascending order.
- void fasp_smoother_dbsr_gs_ascend1 (dBSRmat *A, dvector *b, dvector *u)

Gauss-Seidel relaxation in the ascending order.

void fasp_smoother_dbsr_gs_descend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv)

Gauss-Seidel relaxation in the descending order.

void fasp_smoother_dbsr_gs_descend1 (dBSRmat *A, dvector *b, dvector *u)

Gauss-Seidel relaxation in the descending order.

- void fasp_smoother_dbsr_gs_order1 (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark)

 Gauss-Seidel relaxation in the user-defined order.
- void fasp_smoother_dbsr_gs_order2 (dBSRmat *A, dvector *b, dvector *u, INT *mark, REAL *work)

 Gauss-Seidel relaxation in the user-defined order.
- void fasp_smoother_dbsr_sor (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark, REAL weight)
 SOR relaxation.

void fasp_smoother_dbsr_sor1 (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark, REAL *diaginv, REAL weight)

SOR relaxation.

- void fasp_smoother_dbsr_sor_ascend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight) SOR relaxation in the ascending order.
- void fasp_smoother_dbsr_sor_descend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight) SOR relaxation in the descending order.
- void fasp_smoother_dbsr_sor_order (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, REAL weight)

SOR relaxation in the user-defined order.

• void fasp_smoother_dbsr_ilu (dBSRmat *A, dvector *b, dvector *x, void *data)

ILU method as the smoother in solving Au=b with multigrid method.

Variables

• REAL ilu solve omp = 0.0

10.81.1 Detailed Description

Smoothers for dBSRmat matrices.

10.81.2 Function Documentation

10.81.2.1 fasp_smoother_dbsr_gs()

Gauss-Seidel relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21: in descending order If mark != NULL: in the user-defined order
mark	Pointer to NULL or to the user-defined ordering

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/03/2012

Definition at line 413 of file smoother_bsr.c.

10.81.2.2 fasp_smoother_dbsr_gs1()

Gauss-Seidel relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21: in descending order If mark != NULL: in the user-defined order
mark	Pointer to NULL or to the user-defined ordering
diaginv	Inverses for all the diagonal blocks of A

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 533 of file smoother_bsr.c.

10.81.2.3 fasp_smoother_dbsr_gs_ascend()

```
void fasp_smoother_dbsr_gs_ascend (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv )
```

Gauss-Seidel relaxation in the ascending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 570 of file smoother_bsr.c.

10.81.2.4 fasp_smoother_dbsr_gs_ascend1()

Gauss-Seidel relaxation in the ascending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)

Author

Xiaozhe

Date

01/01/2014

Note

The only difference between the functions 'fasp_smoother_dbsr_gs_ascend1' and 'fasp_smoother_dbsr_gs_⇔ ascend' is that we don't have to multiply by the inverses of the diagonal blocks in each ROW since matrix A has been such scaled that all the diagonal blocks become identity matrices.

Definition at line 643 of file smoother_bsr.c.

```
10.81.2.5 fasp_smoother_dbsr_gs_descend()
```

```
void fasp_smoother_dbsr_gs_descend (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv )
```

Gauss-Seidel relaxation in the descending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 714 of file smoother_bsr.c.

10.81.2.6 fasp_smoother_dbsr_gs_descend1()

Gauss-Seidel relaxation in the descending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)

Author

Xiaozhe Hu

Date

01/01/2014

Note

The only difference between the functions 'fasp_smoother_dbsr_gs_ascend1' and 'fasp_smoother_dbsr_gs_\iff ascend' is that we don't have to multiply by the inverses of the diagonal blocks in each ROW since matrix A has been such scaled that all the diagonal blocks become identity matrices.

Definition at line 788 of file smoother_bsr.c.

10.81.2.7 fasp_smoother_dbsr_gs_order1()

```
void fasp_smoother_dbsr_gs_order1 (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark )
```

Gauss-Seidel relaxation in the user-defined order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A
mark	Pointer to the user-defined ordering

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 860 of file smoother_bsr.c.

```
10.81.2.8 fasp_smoother_dbsr_gs_order2()
```

```
void fasp_smoother_dbsr_gs_order2 (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    INT * mark,
    REAL * work )
```

Gauss-Seidel relaxation in the user-defined order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
mark	Pointer to the user-defined ordering
work	Work temp array

Author

Zhiyang Zhou

Date

2010/11/08

Note

The only difference between the functions 'fasp_smoother_dbsr_gs_order2' and 'fasp_smoother_dbsr_gs_order1' lies in that we don't have to multiply by the inverses of the diagonal blocks in each ROW since matrix A has been such scaled that all the diagonal blocks become identity matrices.

Definition at line 938 of file smoother_bsr.c.

10.81.2.9 fasp_smoother_dbsr_ilu()

ILU method as the smoother in solving Au=b with multigrid method.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
data	Pointer to user defined data

Author

Zhiyang Zhou, Zheng Li

Date

2010/10/25

NOTE: Add multi-threads parallel ILU block by Zheng Li 12/04/2016. form residual zr = b - Ax

solve LU z=zr

X=X+Z

Definition at line 1569 of file smoother_bsr.c.

10.81.2.10 fasp_smoother_dbsr_jacobi()

Jacobi relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/02/2012

Definition at line 35 of file smoother_bsr.c.

10.81.2.11 fasp_smoother_dbsr_jacobi1()

```
void fasp_smoother_dbsr_jacobi1 (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv )
```

Jacobi relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/03/2012

Definition at line 259 of file smoother_bsr.c.

10.81.2.12 fasp_smoother_dbsr_jacobi_setup()

Setup for jacobi relaxation, fetch the diagonal sub-block matrixes and make them inverse first.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
diaginv	Inverse of the diagonal entries

Author

Zhiyang Zhou

Date

10/25/2010

Modified by Chunsheng Feng, Zheng Li on 08/02/2012

Definition at line 150 of file smoother_bsr.c.

10.81.2.13 fasp_smoother_dbsr_sor()

```
void fasp_smoother_dbsr_sor (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    INT order,
    INT * mark,
    REAL weight )
```

SOR relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21: in descending order If mark != NULL: in the user-defined order
mark	Pointer to NULL or to the user-defined ordering
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/03/2012

Definition at line 1015 of file smoother_bsr.c.

10.81.2.14 fasp_smoother_dbsr_sor1()

```
void fasp_smoother_dbsr_sorl (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    INT order,
    INT * mark,
    REAL * diaginv,
    REAL weight )
```

SOR relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21:
	in descending order If mark != NULL: in the user-defined order
mark	Pointer to NULL or to the user-defined ordering
diaginv	Inverses for all the diagonal blocks of A
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 1137 of file smoother_bsr.c.

10.81.2.15 fasp_smoother_dbsr_sor_ascend()

```
void fasp_smoother_dbsr_sor_ascend (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    REAL weight )
```

SOR relaxation in the ascending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix]
b	Pointer to dvector: the right hand side	\vdash
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)	
diaginv	Inverses for all the diagonal blocks of A	
weight	Over-relaxation weight	

Generated by Doxygen

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 2012/09/04

Definition at line 1178 of file smoother_bsr.c.

10.81.2.16 fasp_smoother_dbsr_sor_descend()

```
void fasp_smoother_dbsr_sor_descend (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    REAL weight )
```

SOR relaxation in the descending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 2012/09/04

Definition at line 1307 of file smoother_bsr.c.

10.81.2.17 fasp_smoother_dbsr_sor_order()

```
void fasp_smoother_dbsr_sor_order (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark,
    REAL weight )
```

SOR relaxation in the user-defined order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A
mark	Pointer to the user-defined ordering
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 2012/09/04

Definition at line 1438 of file smoother_bsr.c.

10.81.3 Variable Documentation

10.81.3.1 ilu_solve_omp

```
REAL ilu_solve_omp = 0.0
```

ILU time for the SOLVE phase

Definition at line 15 of file smoother_bsr.c.

10.82 smoother_csr.c File Reference

Smoothers for dCSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_smoother_dcsr_jacobi (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L)

Jacobi method as a smoother.

void fasp_smoother_dcsr_gs (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L)

Gauss-Seidel method as a smoother.

- void fasp_smoother_dcsr_gs_cf (dvector *u, dCSRmat *A, dvector *b, INT L, INT *mark, const INT order)
 - Gauss-Seidel smoother with C/F ordering for Au=b.
- void fasp smoother dcsr sgs (dvector *u, dCSRmat *A, dvector *b, INT L)

Symmetric Gauss-Seidel method as a smoother.

void fasp_smoother_dcsr_sor (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L, const REAL w)

SOR method as a smoother.

void fasp_smoother_dcsr_sor_cf (dvector *u, dCSRmat *A, dvector *b, INT L, const REAL w, INT *mark, const INT order)

SOR smoother with C/F ordering for Au=b.

void fasp_smoother_dcsr_ilu (dCSRmat *A, dvector *b, dvector *x, void *data)

ILU method as a smoother.

void fasp_smoother_dcsr_kaczmarz (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L, const REAL w)

Kaczmarz method as a smoother.

void fasp_smoother_dcsr_L1diag (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L)

Diagonal scaling (using L1 norm) as a smoother.

void fasp_smoother_dcsr_gs_rb3d (dvector *u, dCSRmat *A, dvector *b, INT L, const INT order, INT *mark, const INT maximap, const INT nx, const INT nz)

Colored Gauss-Seidel smoother for Au=b.

10.82.1 Detailed Description

Smoothers for dCSRmat matrices.

10.82.2 Function Documentation

10.82.2.1 fasp_smoother_dcsr_gs()

Gauss-Seidel method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_←	
1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xuehai Huang, Chensong Zhang

Date

09/26/2009

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 195 of file smoother_csr.c.

10.82.2.2 fasp_smoother_dcsr_gs_cf()

Gauss-Seidel smoother with C/F ordering for Au=b.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
mark	C/F marker array
order	C/F ordering: -1: F-first; 1: C-first

Author

Zhiyang Zhou

Date

11/12/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/24/2012

Definition at line 364 of file smoother_csr.c.

10.82.2.3 fasp_smoother_dcsr_gs_rb3d()

Colored Gauss-Seidel smoother for Au=b.

Parameters

и	Initial guess and the new approximation to the solution
Α	Pointer to stiffness matrix
b	Pointer to right hand side
L	Number of iterations
order	Ordering: -1: Forward; 1: Backward
mark	Marker for C/F points
maximap	Size of IMAP
nx	Number vertex of X direction
ny	Number vertex of Y direction
OF THE STATE OF A STAT	

Author

Chunsheng Feng

Date

02/08/2012

Definition at line 1425 of file smoother_csr.c.

```
10.82.2.4 fasp_smoother_dcsr_ilu()
```

ILU method as a smoother.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
data	Pointer to user defined data

Author

Shiquan Zhang, Xiaozhe Hu

Date

2010/11/12

form residual zr = b - A x

Definition at line 1067 of file smoother_csr.c.

10.82.2.5 fasp_smoother_dcsr_jacobi()

Jacobi method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_← 1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xuehai Huang, Chensong Zhang

Date

09/26/2009

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 59 of file smoother_csr.c.

10.82.2.6 fasp_smoother_dcsr_kaczmarz()

Kaczmarz method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_←	
1	
i⊷	Ending index
_←	
n	
s	Increasing step
Generat A	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
W	Over-relaxation weight

Author

Xiaozhe Hu

Date

2010/11/12

Modified by Chunsheng Feng, Zheng Li on 2012/09/01

Definition at line 1145 of file smoother_csr.c.

10.82.2.7 fasp_smoother_dcsr_L1diag()

Diagonal scaling (using L1 norm) as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_←	
1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xiaozhe Hu, James Brannick

Date

01/26/2011

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 1286 of file smoother_csr.c.

10.82.2.8 fasp_smoother_dcsr_sgs()

Symmetric Gauss-Seidel method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 629 of file smoother_csr.c.

10.82.2.9 fasp_smoother_dcsr_sor()

SOR method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_←	
1	

Parameters

i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
W	Over-relaxation weight

Author

Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 745 of file smoother_csr.c.

10.82.2.10 fasp_smoother_dcsr_sor_cf()

SOR smoother with C/F ordering for Au=b.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
W	Over-relaxation weight
mark	C/F marker array
order	C/F ordering: -1: F-first; 1: C-first

Author

Zhiyang Zhou

Date

2010/11/12

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 873 of file smoother_csr.c.

10.83 smoother_csr_cr.c File Reference

Smoothers for dCSRmat matrices using compatible relaxation.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_smoother_dcsr_gscr (INT pt, INT n, REAL *u, INT *ia, INT *ja, REAL *a, REAL *b, INT L, INT *CF)
 Gauss Seidel method restriced to a block.

10.83.1 Detailed Description

Smoothers for dCSRmat matrices using compatible relaxation.

Note

Restricted-smoothers for compatible relaxation, C/F smoothing, etc.

10.83.2 Function Documentation

10.83.2.1 fasp_smoother_dcsr_gscr()

Gauss Seidel method restriced to a block.

Parameters

pt	Relax type, e.g., cpt, fpt, etc
n	Number of variables
и	Iterated solution
ia	Row pointer
ja	Column index
а	Pointers to sparse matrix values in CSR format
b	Pointer to right hand side – remove later also as MG relaxation on error eqn
L	Number of iterations
CF	Marker for C, F points

Author

James Brannick

Date

09/07/2010

Note

Gauss Seidel CR smoother (Smoother_Type = 99)

Definition at line 38 of file smoother_csr_cr.c.

10.84 smoother_csr_poly.c File Reference

Smoothers for dCSRmat matrices using poly. approx. to A^{-1} .

```
#include <math.h>
#include <time.h>
#include <float.h>
#include <limits.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_smoother_dcsr_poly (dCSRmat *Amat, dvector *brhs, dvector *usol, INT n, INT ndeg, INT L)
 poly approx to A^{-1} as MG smoother
- void fasp_smoother_dcsr_poly_old (dCSRmat *Amat, dvector *brhs, dvector *usol, INT n, INT ndeg, INT L)
 poly approx to A^{-1} as MG smoother: JK<Z2010

10.84.1 Detailed Description

Smoothers for dCSRmat matrices using poly. approx. to A^{-1} .

Refer to Johannes K. Kraus, Panayot S. Vassilevski, Ludmil T. Zikatanov "Polynomial of best uniform approximation to x^{-1} and smoothing in two-leve methods", 2013.

10.84.2 Function Documentation

10.84.2.1 fasp_smoother_dcsr_poly()

poly approx to A^{-1} as MG smoother

Parameters

Amat	Pointer to stiffness matrix, consider square matrix.
brhs	Pointer to right hand side
usol	Pointer to solution
n	Problem size
ndeg	Degree of poly
L	Number of iterations

Author

Fei Cao, Xiaozhe Hu

Date

05/24/2012

Definition at line 48 of file smoother csr poly.c.

10.84.2.2 fasp_smoother_dcsr_poly_old()

```
dvector * usol,
INT n,
INT ndeg,
INT L )
```

poly approx to A^{-1} as MG smoother: JK<Z2010

Parameters

Amat	Pointer to stiffness matrix
brhs	Pointer to right hand side
usol	Pointer to solution
n	Problem size
ndeg	Degree of poly
L	Number of iterations

Author

James Brannick and Ludmil T Zikatanov

Date

06/28/2010

Modified by Chunsheng Feng, Zheng Li on 10/18/2012

Definition at line 148 of file smoother_csr_poly.c.

10.85 smoother_str.c File Reference

Smoothers for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_smoother_dstr_jacobi (dSTRmat *A, dvector *b, dvector *u)
 - Jacobi method as the smoother.
- void fasp_smoother_dstr_jacobi1 (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv)

Jacobi method as the smoother with diag_inv given.

- void fasp_smoother_dstr_gs (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark)
 Gauss-Seidel method as the smoother.
- void fasp_smoother_dstr_gs1 (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark, REAL *diaginv)

 Gauss-Seidel method as the smoother with diag_inv given.
- void fasp_smoother_dstr_gs_ascend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv)

Gauss-Seidel method as the smoother in the ascending manner.

• void fasp_smoother_dstr_gs_descend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv)

Gauss-Seidel method as the smoother in the descending manner.

void fasp smoother dstr gs order (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark)

Gauss method as the smoother in the user-defined order.

void fasp_smoother_dstr_gs_cf (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, const INT order)

Gauss method as the smoother in the C-F manner.

void fasp_smoother_dstr_sor (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark, const REAL weight)

SOR method as the smoother.

void fasp_smoother_dstr_sor1 (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark, REAL *diaginv, const REAL weight)

SOR method as the smoother.

- void fasp_smoother_dstr_sor_ascend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight) SOR method as the smoother in the ascending manner.
- void fasp_smoother_dstr_sor_descend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight) SOR method as the smoother in the descending manner.
- void fasp_smoother_dstr_sor_order (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, REAL weight)

SOR method as the smoother in the user-defined order.

void fasp_smoother_dstr_sor_cf (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, const INT order, const REAL weight)

SOR method as the smoother in the C-F manner.

- void fasp_generate_diaginv_block (dSTRmat *A, ivector *neigh, dvector *diaginv, ivector *pivot)
 - Generate inverse of diagonal block for block smoothers.
- void fasp_smoother_dstr_schwarz (dSTRmat *A, dvector *b, dvector *u, dvector *diaginv, ivector *pivot, ivector *neigh, ivector *order)

Schwarz method as the smoother.

10.85.1 Detailed Description

Smoothers for dSTRmat matrices.

10.85.2 Function Documentation

10.85.2.1 fasp_generate_diaginv_block()

Generate inverse of diagonal block for block smoothers.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
neigh	Pointer to ivector: neighborhoods
diaginv	Pointer to dvector: the inverse of the diagonals
pivot	Pointer to ivector: the pivot of diagonal blocks

Author

Xiaozhe Hu

Date

10/01/2011

Definition at line 1521 of file smoother_str.c.

10.85.2.2 fasp_smoother_dstr_gs()

Gauss-Seidel method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND 21: in descending manner If mark != NULL USERDEFINED 0: in the user-defined manner CPFIRST 1: C-points first and then F-points FPFIRST -1: F-points first and then C-points
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 203 of file smoother_str.c.

10.85.2.3 fasp_smoother_dstr_gs1()

```
dvector * u,
const INT order,
INT * mark,
REAL * diaginv )
```

Gauss-Seidel method as the smoother with diag_inv given.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND
	21: in descending manner If mark != NULL USERDEFINED 0 : in the user-defined manner CPFIRST 1 :
	C-points first and then F-points FPFIRST -1: F-points first and then C-points
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 263 of file smoother_str.c.

10.85.2.4 fasp_smoother_dstr_gs_ascend()

Gauss-Seidel method as the smoother in the ascending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 308 of file smoother_str.c.

```
10.85.2.5 fasp_smoother_dstr_gs_cf()
```

```
void fasp_smoother_dstr_gs_cf (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark,
    const INT order )
```

Gauss method as the smoother in the C-F manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1
mark	Pointer to the user-defined order array
order	Flag to indicate the order for smoothing CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 663 of file smoother_str.c.

10.85.2.6 fasp_smoother_dstr_gs_descend()

```
dvector * b,
dvector * u,
REAL * diaginv )
```

Gauss-Seidel method as the smoother in the descending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 423 of file smoother_str.c.

```
10.85.2.7 fasp_smoother_dstr_gs_order()
```

```
void fasp_smoother_dstr_gs_order (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark )
```

Gauss method as the smoother in the user-defined order.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1
mark	Pointer to the user-defined order array

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 540 of file smoother_str.c.

10.85.2.8 fasp_smoother_dstr_jacobi()

Jacobi method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 31 of file smoother_str.c.

10.85.2.9 fasp_smoother_dstr_jacobi1()

```
void fasp_smoother_dstr_jacobi1 (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv )
```

Jacobi method as the smoother with diag_inv given.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 79 of file smoother_str.c.

```
10.85.2.10 fasp_smoother_dstr_schwarz()
```

```
void fasp_smoother_dstr_schwarz (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    dvector * diaginv,
    ivector * pivot,
    ivector * neigh,
    ivector * order )
```

Schwarz method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	Pointer to dvector: the inverse of the diagonals
pivot	Pointer to ivector: the pivot of diagonal blocks
neigh	Pointer to ivector: neighborhoods
order	Pointer to ivector: the smoothing order

Author

Xiaozhe Hu

Date

10/01/2011

Definition at line 1643 of file smoother_str.c.

10.85.2.11 fasp_smoother_dstr_sor()

```
void fasp_smoother_dstr_sor (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    const INT order,
    INT * mark,
    const REAL weight )
```

SOR method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
и	Pointer to dvector: the unknowns	
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND	
	21: in descending manner If mark != NULL USERDEFINED 0 : in the user-defined manner CPFIRST 1 :	
	C-points first and then F-points FPFIRST -1: F-points first and then C-points	
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)	
weight	Over-relaxation weight	

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 855 of file smoother_str.c.

10.85.2.12 fasp_smoother_dstr_sor1()

SOR method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND 21: in descending manner If mark != NULL USERDEFINED 0 : in the user-defined manner CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)
diaginv	Inverse of the diagonal entries
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 916 of file smoother_str.c.

10.85.2.13 fasp_smoother_dstr_sor_ascend()

SOR method as the smoother in the ascending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when $(A->nc)>1$, and NULL when $(A->nc)=1$
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 962 of file smoother_str.c.

10.85.2.14 fasp_smoother_dstr_sor_cf()

```
INT * mark,
const INT order,
const REAL weight )
```

SOR method as the smoother in the C-F manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
и	Pointer to dvector: the unknowns	
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1	
mark	Pointer to the user-defined order array Flag to indicate the order for smoothing CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points	
order		
weight	Over-relaxation weight	

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 1334 of file smoother_str.c.

10.85.2.15 fasp_smoother_dstr_sor_descend()

SOR method as the smoother in the descending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
и	Pointer to dvector: the unknowns	
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1	
weight	Over-relaxation weight	

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 1082 of file smoother_str.c.

```
10.85.2.16 fasp_smoother_dstr_sor_order()
```

SOR method as the smoother in the user-defined order.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
и	Pointer to dvector: the unknowns	
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1	
mark	Pointer to the user-defined order array	
weight	Over-relaxation weight	

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 1203 of file smoother_str.c.

10.86 sparse_block.c File Reference

Sparse matrix block operations.

```
#include <time.h>
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_dblc_free (dBLCmat *A)
```

Free block CSR sparse matrix data memory space.

- SHORT fasp_dcsr_getblk (dCSRmat *A, INT *Is, INT *Js, const INT m, const INT n, dCSRmat *B)
 Get a sub CSR matrix of A with specified rows and columns.
- SHORT fasp_dbsr_getblk (dBSRmat *A, INT *Is, INT *Js, const INT m, const INT n, dBSRmat *B)

Get a sub BSR matrix of A with specified rows and columns.

dCSRmat fasp_dbsr_getblk_dcsr (dBSRmat *A)

get dCSRmat block from a dBSRmat matrix

dCSRmat fasp_dbsr_Linfinity_dcsr (dBSRmat *A)

get dCSRmat from a dBSRmat matrix using L_infinity norm of each small block

10.86.1 Detailed Description

Sparse matrix block operations.

10.86.2 Function Documentation

```
10.86.2.1 fasp_dblc_free()
```

Free block CSR sparse matrix data memory space.

Parameters

A Pointer to the dBLCmat matrix

Author

Xiaozhe Hu

Date

04/18/2014

Definition at line 30 of file sparse_block.c.

10.86.2.2 fasp_dbsr_getblk()

```
SHORT fasp_dbsr_getblk (

dBSRmat * A,
```

```
INT * Is,
INT * Js,
const INT m,
const INT n,
dBSRmat * B )
```

Get a sub BSR matrix of A with specified rows and columns.

Parameters

Α	Pointer to dBSRmat BSR matrix	
В	Pointer to dBSRmat BSR matrix	
Is	Pointer to selected rows	
Js	Pointer to selected columns	
m	Number of selected rows	
n	Number of selected columns	

Returns

FASP_SUCCESS if succeeded, otherwise return error information.

Author

Shiquan Zhang, Xiaozhe Hu

Date

12/25/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 160 of file sparse_block.c.

10.86.2.3 fasp_dbsr_getblk_dcsr()

get dCSRmat block from a dBSRmat matrix

Parameters

*A Pointer to the BSR format matrix

Returns

dCSRmat matrix if succeed, NULL if fail

Author

Xiaozhe Hu

Date

03/16/2012

Definition at line 256 of file sparse_block.c.

```
10.86.2.4 fasp_dbsr_Linfinity_dcsr()
```

get dCSRmat from a dBSRmat matrix using L infinity norm of each small block

Parameters

```
*A Pointer to the BSR format matrix
```

Returns

dCSRmat matrix if succeed, NULL if fail

Author

Xiaozhe Hu

Date

05/25/2014

Definition at line 312 of file sparse_block.c.

10.86.2.5 fasp_dcsr_getblk()

```
SHORT fasp_dcsr_getblk (

dCSRmat * A,

INT * Is,

INT * Js,

const INT m,

const INT n,

dCSRmat * B)
```

Get a sub CSR matrix of A with specified rows and columns.

Parameters

Α	Pointer to dCSRmat matrix
В	Pointer to dCSRmat matrix
Is	Pointer to selected rows
Js	Pointer to selected columns
m	Number of selected rows
n	Number of selected columns

Returns

FASP_SUCCESS if succeeded, otherwise return error information.

Author

Shiquan Zhang, Xiaozhe Hu

Date

12/25/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 66 of file sparse_block.c.

10.87 sparse_bsr.c File Reference

Sparse matrix operations for dBSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

dBSRmat fasp_dbsr_create (const INT ROW, const INT COL, const INT NNZ, const INT nb, const INT storage
 —manner)

Create BSR sparse matrix data memory space.

 void fasp_dbsr_alloc (const INT ROW, const INT COL, const INT NNZ, const INT nb, const INT storage_manner, dBSRmat *A)

Allocate memory space for BSR format sparse matrix.

void fasp_dbsr_free (dBSRmat *A)

Free memory space for BSR format sparse matrix.

void fasp_dbsr_null (dBSRmat *A)

Initialize sparse matrix on structured grid.

void fasp_dbsr_cp (dBSRmat *A, dBSRmat *B)

copy a dCSRmat to a new one B=A

INT fasp_dbsr_trans (dBSRmat *A, dBSRmat *AT)

Find $A^{\wedge}T$ from given dBSRmat matrix A.

SHORT fasp_dbsr_diagpref (dBSRmat *A)

Reorder the column and data arrays of a square BSR matrix, so that the first entry in each row is the diagonal one.

dvector fasp_dbsr_getdiaginv (dBSRmat *A)

Get D^{\wedge} {-1} of matrix A.

dBSRmat fasp_dbsr_diaginv (dBSRmat *A)

Compute $B := D^{\wedge} \{-1\} * A$, where 'D' is the block diagonal part of A.

dBSRmat fasp_dbsr_diaginv2 (dBSRmat *A, REAL *diaginv)

Compute $B := D^{\wedge} \{-1\} * A$, where 'D' is the block diagonal part of A.

dBSRmat fasp_dbsr_diaginv3 (dBSRmat *A, REAL *diaginv)

Compute $B := D^{\wedge} \{-1\} * A$, where 'D' is the block diagonal part of A.

dBSRmat fasp dbsr diaginv4 (dBSRmat *A, REAL *diaginv)

Compute $B := D^{\{-1\}}*A$, where 'D' is the block diagonal part of A.

void fasp_dbsr_getdiag (INT n, dBSRmat *A, REAL *diag)

Abstract the diagonal blocks of a BSR matrix.

dBSRmat fasp_dbsr_diagLU (dBSRmat *A, REAL *DL, REAL *DU)

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and $DL = diag(L^{\{-1\}})$ and $DU = diag(U^{\{-1\}})$.

dBSRmat fasp_dbsr_diagLU2 (dBSRmat *A, REAL *DL, REAL *DU)

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and $DL = diag(L^{\{-1\}})$ and $DU = diag(U^{\{-1\}})$.

dBSRmat fasp_dbsr_perm (dBSRmat *A, INT *P)

Apply permutation of A, i.e. Aperm=PAP' by the orders given in P.

10.87.1 Detailed Description

Sparse matrix operations for dBSRmat matrices.

10.87.2 Function Documentation

10.87.2.1 fasp_dbsr_alloc()

Allocate memory space for BSR format sparse matrix.

Parameters

ROW	Number of rows of block
COL	Number of columns of block
NNZ	Number of nonzero blocks
nb	Dimension of each block
storage_manner	Storage manner for each sub-block
Α	Pointer to new dBSRmat matrix

Author

Xiaozhe Hu

Date

10/26/2010

Definition at line 87 of file sparse_bsr.c.

10.87.2.2 fasp_dbsr_cp()

copy a dCSRmat to a new one B=A

Parameters

Α	Pointer to the dBSRmat matrix	
В	Pointer to the dBSRmat matrix	

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 181 of file sparse_bsr.c.

10.87.2.3 fasp_dbsr_create()

Create BSR sparse matrix data memory space.

Parameters

ROW	Number of rows of block
COL	Number of columns of block
NNZ	Number of nonzero blocks
nb	Dimension of each block
storage_manner	Storage manner for each sub-block

Returns

A The new dBSRmat matrix

Author

Xiaozhe Hu

Date

10/26/2010

Definition at line 36 of file sparse_bsr.c.

```
10.87.2.4 fasp_dbsr_diaginv()
```

Compute B := $D^{-}\{-1\}*A$, where 'D' is the block diagonal part of A.

Parameters

A Pointer to the dBSRmat matrix

```
Author
```

Zhiyang Zhou

Date

2010/10/26

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 496 of file sparse_bsr.c.

10.87.2.5 fasp_dbsr_diaginv2()

Compute B := $D^{\{-1\}}*A$, where 'D' is the block diagonal part of A.

Parameters

Α	Pointer to the dBSRmat matrix
diaginv	Pointer to the inverses of all the diagonal blocks

Author

Zhiyang Zhou

Date

2010/11/07

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 660 of file sparse_bsr.c.

10.87.2.6 fasp_dbsr_diaginv3()

Compute B := $D^{-1}*A$, where 'D' is the block diagonal part of A.

Parameters

Α	Pointer to the dBSRmat matrix	
diaginv	Pointer to the inverses of all the diagonal blocks	

Returns

BSR matrix after diagonal scaling

Author

Xiaozhe Hu

Date

12/25/2010

Note

Works for general nb (Xiaozhe)

Modified by Xiaozhe Hu on 05/26/2012

Definition at line 762 of file sparse_bsr.c.

10.87.2.7 fasp_dbsr_diaginv4()

Compute B := $D^{\setminus}\{-1\}*A$, where 'D' is the block diagonal part of A.

Parameters

Α	Pointer to the dBSRmat matrix
diaginv Pointer to the inverses of all the diagonal be	

Returns

BSR matrix after diagonal scaling

Note

Works for general nb (Xiaozhe)

A is pre-ordered that the first block of each row is the diagonal block!

Author

Xiaozhe Hu

Date

03/12/2011

Modified by Chunsheng Feng, Zheng Li on 08/26/2012

Definition at line 1120 of file sparse_bsr.c.

10.87.2.8 fasp_dbsr_diagLU()

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and DL = diag(L^{-1}) and DU = diag(U^{-1}).

Parameters

Α	Pointer to the dBSRmat matrix
DL	Pointer to the diag($L^{\{-1\}}$)
DU	Pointer to the diag($U^{\{-1\}}$)

Returns

BSR matrix after scaling

Author

Xiaozhe Hu

Date

04/02/2014

Definition at line 1449 of file sparse_bsr.c.

10.87.2.9 fasp_dbsr_diagLU2()

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and DL = diag(L^{-1}) and DU = diag(U^{-1}).

Parameters

Α		Pointer to the dBSRmat matrix
DI	_	Pointer to the diag($L^{\{-1\}}$)
DI	IJ	Pointer to the diag(U^{-} {-1})

Returns

BSR matrix after scaling

Author

Zheng Li, Xiaozhe Hu

Date

06/17/2014

Definition at line 1677 of file sparse_bsr.c.

10.87.2.10 fasp_dbsr_diagpref()

```
SHORT fasp_dbsr_diagpref ( {\tt dBSRmat} \, * \, A \, )
```

Reorder the column and data arrays of a square BSR matrix, so that the first entry in each row is the diagonal one.

Parameters

A Pointer to the BSR matrix

Author

Xiaozhe Hu

Date

03/10/2011

Author

Chunsheng Feng, Zheng Li

Date

09/02/2012

Note

Reordering is done in place.

Definition at line 292 of file sparse_bsr.c.

```
10.87.2.11 fasp_dbsr_free()
```

Free memory space for BSR format sparse matrix.

Parameters

A Pointer to the dBSRmat matrix

Author

Xiaozhe Hu

Date

10/26/2010

Definition at line 133 of file sparse_bsr.c.

10.87.2.12 fasp_dbsr_getdiag()

Abstract the diagonal blocks of a BSR matrix.

Parameters

n	Number of blocks to get	
Α	Pointer to the 'dBSRmat' type matrix	
diag Pointer to array which stores the diagonal blocks in row by row r		

Author

Zhiyang Zhou

Date

2010/10/26

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 1411 of file sparse_bsr.c.

10.87.2.13 fasp_dbsr_getdiaginv()

Get D^{\land} {-1} of matrix A.

Parameters

A Pointer to the dBSRmat matrix

Author

Xiaozhe Hu

Date

02/19/2013

Note

Works for general nb (Xiaozhe)

Definition at line 392 of file sparse_bsr.c.

```
10.87.2.14 fasp_dbsr_null()
```

Initialize sparse matrix on structured grid.

Parameters

A Pointer to the dBSRmat matrix

Author

Xiaozhe Hu

Date

10/26/2010

Definition at line 158 of file sparse_bsr.c.

10.87.2.15 fasp_dbsr_perm()

Apply permutation of A, i.e. Aperm=PAP' by the orders given in P.

Parameters

Α	Pointer to the original dCSRmat matrix
Р	Pointer to the given ordering

Returns

The new ordered dCSRmat matrix if succeed, NULL if fail

Author

Zheng Li

Date

24/9/2015

Note

P[i] = k means k-th row and column become i-th row and column!

Definition at line 1878 of file sparse_bsr.c.

```
10.87.2.16 fasp_dbsr_trans()
```

Find A[^]T from given dBSRmat matrix A.

Parameters

Α	Pointer to the dBSRmat matrix	
ΑT	Pointer to the transpose of dBSRmat matrix A	

Author

Chunsheng FENG

Date

2011/06/08

Modified by Xiaozhe Hu (08/06/2011)

Definition at line 208 of file sparse_bsr.c.

10.88 sparse_coo.c File Reference

Sparse matrix operations for dCOOmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

dCOOmat fasp_dcoo_create (const INT m, const INT n, const INT nnz)

Create IJ sparse matrix data memory space.

void fasp_dcoo_alloc (const INT m, const INT n, const INT nnz, dCOOmat *A)

Allocate COO sparse matrix memory space.

void fasp_dcoo_free (dCOOmat *A)

Free IJ sparse matrix data memory space.

void fasp_dcoo_shift (dCOOmat *A, const INT offset)

Re-index a REAL matrix in IJ format to make the index starting from 0 or 1.

10.88.1 Detailed Description

Sparse matrix operations for dCOOmat matrices.

10.88.2 Function Documentation

10.88.2.1 fasp_dcoo_alloc()

Allocate COO sparse matrix memory space.

Parameters

m	Number of rows	
n	Number of columns	
nnz	Number of nonzeros	
Α	Pointer to the dCSRmat matrix	

Author

Xiaozhe Hu

Date

03/25/2013

Definition at line 62 of file sparse_coo.c.

10.88.2.2 fasp_dcoo_create()

Create IJ sparse matrix data memory space.

Parameters

т	Number of rows
n	Number of columns
nnz	Number of nonzeros

Returns

A The new dCOOmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 34 of file sparse_coo.c.

```
10.88.2.3 fasp_dcoo_free()
```

Free IJ sparse matrix data memory space.

Parameters

A Pointer to the dCOOmat matrix

Author

Chensong Zhang

Date

2010/04/03

Definition at line 94 of file sparse_coo.c.

```
10.88.2.4 fasp_dcoo_shift()
```

Re-index a REAL matrix in IJ format to make the index starting from 0 or 1.

Parameters

Α	Pointer to IJ matrix
offset	Size of offset (1 or -1)

Author

Chensong Zhang

Date

2010/04/06

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 116 of file sparse_coo.c.

10.89 sparse_csr.c File Reference

Sparse matrix operations for dCSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

 dCSRmat fasp dcsr create (const INT m, const INT n, const INT nnz) Create CSR sparse matrix data memory space. iCSRmat fasp_icsr_create (const INT m, const INT n, const INT nnz) Create CSR sparse matrix data memory space. void fasp dcsr alloc (const INT m, const INT n, const INT nnz, dCSRmat *A) Allocate CSR sparse matrix memory space. void fasp_dcsr_free (dCSRmat *A) Free CSR sparse matrix data memory space. void fasp_icsr_free (iCSRmat *A) Free CSR sparse matrix data memory space. void fasp_dcsr_null (dCSRmat *A) Initialize CSR sparse matrix. void fasp_icsr_null (iCSRmat *A) Initialize CSR sparse matrix. dCSRmat fasp dcsr perm (dCSRmat *A, INT *P) Apply permutation of A, i.e. Aperm=PAP' by the orders given in P. void fasp dcsr sort (dCSRmat *A) Sort each row of A in ascending order w.r.t. column indices. void fasp_dcsr_getdiag (INT n, dCSRmat *A, dvector *diag) Get first n diagonal entries of a CSR matrix A. void fasp_dcsr_getcol (const INT n, dCSRmat *A, REAL *col) Get the n-th column of a CSR matrix A. void fasp dcsr diagpref (dCSRmat *A) Re-order the column and data arrays of a CSR matrix, so that the first entry in each row is the diagonal. SHORT fasp dcsr regdiag (dCSRmat *A, REAL value) Regularize diagonal entries of a CSR sparse matrix. void fasp_icsr_cp (iCSRmat *A, iCSRmat *B) Copy a iCSRmat to a new one B=A. void fasp_dcsr_cp (dCSRmat *A, dCSRmat *B) copy a dCSRmat to a new one B=A void fasp_icsr_trans (iCSRmat *A, iCSRmat *AT) Find transpose of iCSRmat matrix A. INT fasp_dcsr_trans (dCSRmat *A, dCSRmat *AT) Find transpose of dCSRmat matrix A. • void fasp_dcsr_transpose (INT *row[2], INT *col[2], REAL *val[2], INT *nn, INT *tniz) void fasp dcsr compress (dCSRmat *A, dCSRmat *B, REAL dtol) Compress a CSR matrix A and store in CSR matrix B by dropping small entries abs(aij)<=dtol. SHORT fasp dcsr compress inplace (dCSRmat *A, REAL dtol) Compress a CSR matrix A IN PLACE by dropping small entries abs(aij)<=dtol. void fasp_dcsr_shift (dCSRmat *A, INT offset) Re-index a REAL matrix in CSR format to make the index starting from 0 or 1. void fasp_dcsr_symdiagscale (dCSRmat *A, dvector *diag) Symmetric diagonal scaling D^{\wedge} {-1/2} AD^{\wedge} {-1/2}.

dCSRmat fasp_dcsr_sympat (dCSRmat *A)
 Get symmetric part of a dCSRmat matrix.

• void fasp_dcsr_multicoloring (dCSRmat *A, INT *flags, INT *groups)

Use the greedy multi-coloring to get color groups of the adjacency graph of A.

void fasp_dcsr_transz (dCSRmat *A, INT *p, dCSRmat *AT)

Generalized transpose of A: (n x m) matrix given in dCSRmat format.

dCSRmat fasp_dcsr_permz (dCSRmat *A, INT *p)

Permute rows and cols of A, i.e. A=PAP' by the ordering in p.

void fasp_dcsr_sortz (dCSRmat *A, const SHORT isym)

Sort each row of A in ascending order w.r.t. column indices.

10.89.1 Detailed Description

Sparse matrix operations for dCSRmat matrices.

10.89.2 Function Documentation

10.89.2.1 fasp_dcsr_alloc()

Allocate CSR sparse matrix memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros
Α	Pointer to the dCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 125 of file sparse_csr.c.

10.89.2.2 fasp_dcsr_compress()

Compress a CSR matrix A and store in CSR matrix B by dropping small entries abs(aij)<=dtol.

Parameters

Α	Pointer to dCSRmat CSR matrix
В	Pointer to dCSRmat CSR matrix
dtol	Drop tolerance

Author

Shiquan Zhang

Date

03/10/2010

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 957 of file sparse_csr.c.

```
10.89.2.3 fasp_dcsr_compress_inplace()
```

Compress a CSR matrix A IN PLACE by dropping small entries abs(aij)<=dtol.

Parameters

Α	Pointer to dCSRmat CSR matrix
dtol	Drop tolerance

Author

Xiaozhe Hu

Date

12/25/2010

Modified by Chensong Zhang on 02/21/2013

Note

This routine can be modified for filtering.

Definition at line 1037 of file sparse_csr.c.

```
10.89.2.4 fasp_dcsr_cp()
```

copy a dCSRmat to a new one B=A

Parameters

Α	Pointer to the dCSRmat matrix
В	Pointer to the dCSRmat matrix

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 723 of file sparse_csr.c.

10.89.2.5 fasp_dcsr_create()

Create CSR sparse matrix data memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros

Returns

A the new dCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 34 of file sparse_csr.c.

```
10.89.2.6 fasp_dcsr_diagpref()
```

```
void fasp_dcsr_diagpref ( \frac{dCSRmat \ * \ A \ )}{}
```

Re-order the column and data arrays of a CSR matrix, so that the first entry in each row is the diagonal.

Parameters

A Pointer to the matrix to be re-ordered

Author

Zhiyang Zhou

Date

09/09/2010

Author

Chunsheng Feng, Zheng Li

Date

09/02/2012

Note

Reordering is done in place.

Modified by Chensong Zhang on Dec/21/2012

Definition at line 553 of file sparse_csr.c.

```
10.89.2.7 fasp_dcsr_free()
```

Free CSR sparse matrix data memory space.

Parameters

A Pointer to the dCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 166 of file sparse_csr.c.

10.89.2.8 fasp_dcsr_getcol()

Get the n-th column of a CSR matrix A.

Parameters

n		Index of a column of A (0 \leq n \leq A.col-1)
Α		Pointer to dCSRmat CSR matrix
C	οl	Pointer to the column

```
Author
```

Xiaozhe Hu

Date

11/07/2009

Modified by Chunsheng Feng, Zheng Li on 07/08/2012

Definition at line 474 of file sparse_csr.c.

```
10.89.2.9 fasp_dcsr_getdiag()
```

Get first n diagonal entries of a CSR matrix A.

Parameters

n	Number of diagonal entries to get (if n=0, then get all diagonal entries)
Α	Pointer to dCSRmat CSR matrix
diag	Pointer to the diagonal as a dvector

Author

Chensong Zhang

Date

05/20/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 410 of file sparse_csr.c.

10.89.2.10 fasp_dcsr_multicoloring()

Use the greedy multi-coloring to get color groups of the adjacency graph of A.

Parameters

Α	Input dCSRmat
flags	flags for the independent group
groups	Return group numbers

Author

Chunsheng Feng

Date

09/15/2012

Definition at line 1265 of file sparse_csr.c.

```
10.89.2.11 fasp_dcsr_null()
```

Initialize CSR sparse matrix.

Parameters

```
A Pointer to the dCSRmat matrix
```

Author

Chensong Zhang

Date

2010/04/03

Definition at line 204 of file sparse_csr.c.

```
10.89.2.12 fasp_dcsr_perm()
```

Apply permutation of A, i.e. Aperm=PAP' by the orders given in P.

Parameters

Α	Pointer to the original dCSRmat matri	
Р	Pointer to orders	

Returns

The new ordered dCSRmat matrix if succeed, NULL if fail

Author

Shiquan Zhang

Date

03/10/2010

Note

P[i] = k means k-th row and column become i-th row and column!

Deprecated! Will be replaced by fasp_dcsr_permz later. -Chensong

Modified by Chunsheng Feng, Zheng Li on 07/12/2012

Definition at line 247 of file sparse_csr.c.

```
10.89.2.13 fasp_dcsr_permz()
```

Permute rows and cols of A, i.e. A=PAP' by the ordering in p.

Parameters

Α	Pointer to the original dCSRmat matrix
р	Pointer to ordering

Note

This is just applying twice fasp_dcsr_transz(&A,p,At). In matlab notation: Aperm=A(p,p);

Returns

The new ordered dCSRmat matrix if succeed, NULL if fail

Author

Ludmil Zikatanov

Date

```
19951219 (Fortran), 20150912 (C)
```

Definition at line 1486 of file sparse_csr.c.

```
10.89.2.14 fasp_dcsr_regdiag()
```

```
SHORT fasp_dcsr_regdiag ( dCSRmat * A, REAL value )
```

Regularize diagonal entries of a CSR sparse matrix.

Parameters

Α	Pointer to the dCSRmat matrix
value	Set a value on diag(A) which is too close to zero to "value"

Returns

FASP_SUCCESS if no diagonal entry is close to zero, else ERROR

Author

Shiquan Zhang

Date

11/07/2009

Definition at line 659 of file sparse_csr.c.

```
10.89.2.15 fasp_dcsr_shift()
```

Re-index a REAL matrix in CSR format to make the index starting from 0 or 1.

Parameters

Α	Pointer to CSR matrix
offset	Size of offset (1 or -1)

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Zheng Li on 07/11/2012

Definition at line 1085 of file sparse_csr.c.

```
10.89.2.16 fasp_dcsr_sort()
```

```
void fasp_dcsr_sort ( \label{eq:dcsrmat} \mbox{dCSRmat } * \mbox{\it A} \mbox{\it )}
```

Sort each row of A in ascending order w.r.t. column indices.

Parameters

A Pointer to the dCSRmat matrix

Author

Shiquan Zhang

Date

06/10/2010

Definition at line 358 of file sparse_csr.c.

```
10.89.2.17 fasp_dcsr_sortz()
```

Sort each row of A in ascending order w.r.t. column indices.

Parameters

Α	Pointer to the dCSRmat matrix
isym	Flag for symmetry, =[0/nonzero]=[general/symmetric] matrix

Note

Applying twice fasp_dcsr_transz(), if A is symmetric, then the transpose is applied only once and then AT copied on A.

Author

Ludmil Zikatanov

Date

```
19951219 (Fortran), 20150912 (C)
```

Definition at line 1518 of file sparse_csr.c.

10.89.2.18 fasp_dcsr_symdiagscale()

Symmetric diagonal scaling $D^{-1/2}AD^{-1/2}$.

Parameters

Α	Pointer to the dCSRmat matrix
diag	Pointer to the diagonal entries

Author

Xiaozhe Hu

Date

01/31/2011

Modified by Chunsheng Feng, Zheng Li on 07/11/2012

Definition at line 1146 of file sparse_csr.c.

10.89.2.19 fasp_dcsr_sympat()

Get symmetric part of a dCSRmat matrix.

Parameters

*A pointer to the dCSRmat matrix

Returns

symmetrized the dCSRmat matrix

Author

Xiaozhe Hu

Date

03/21/2011

Definition at line 1232 of file sparse_csr.c.

10.89.2.20 fasp_dcsr_trans()

Find transpose of dCSRmat matrix A.

Parameters

Α	Pointer to the dCSRmat matrix
AT	Pointer to the transpose of dCSRmat matrix A (output)

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Zheng Li on 06/20/2012

Definition at line 826 of file sparse_csr.c.

```
10.89.2.21 fasp_dcsr_transz()
```

Generalized transpose of A: (n x m) matrix given in dCSRmat format.

Parameters

Α	Pointer to matrix in dCSRmat for transpose, INPUT
р	Permutation, INPUT
AT	Pointer to matrix AT = transpose(A) if p = NULL, OR AT = transpose(A)p if p is not NULL

Note

The storage for all pointers in AT should already be allocated, i.e. AT->IA, AT->JA and AT->val should be allocated before calling this function. If A.val=NULL, then AT->val[] is not changed.

performs AT=transpose(A)p, where p is a permutation. If p=NULL then p=I is assumed. Applying twice this procedure one gets At=transpose(transpose(A)p)p = transpose(p)Ap, which is the same A with rows and columns permutted according to p.

If A=NULL, then only transposes/permutes the structure of A.

For p=NULL, applying this two times A->AT->A orders all the row indices in A in increasing order.

Reference: Fred G. Gustavson. Two fast algorithms for sparse matrices: multiplication and permuted transposition. ACM Trans. Math. Software, 4(3):250–269, 1978.

Author

Ludmil Zikatanov

Date

```
19951219 (Fortran), 20150912 (C)
```

Definition at line 1366 of file sparse csr.c.

```
10.89.2.22 fasp_icsr_cp()
```

Copy a iCSRmat to a new one B=A.

Parameters

Α	Pointer to the iCSRmat matrix
В	Pointer to the iCSRmat matrix

Author

Chensong Zhang

Date

05/16/2013

Definition at line 698 of file sparse_csr.c.

10.89.2.23 fasp_icsr_create()

Create CSR sparse matrix data memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros

Returns

A the new iCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 80 of file sparse_csr.c.

Free CSR sparse matrix data memory space.

Parameters

A Pointer to the iCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 185 of file sparse_csr.c.

```
10.89.2.25 fasp_icsr_null()
```

Initialize CSR sparse matrix.

Parameters

A Pointer to the iCSRmat matrix

Author

Chensong Zhang

Date

2010/04/03

Definition at line 221 of file sparse_csr.c.

10.89.2.26 fasp_icsr_trans()

Find transpose of iCSRmat matrix A.

Parameters

Α	Pointer to the iCSRmat matrix A
AT	Pointer to the iCSRmat matrix A'

Returns

The transpose of iCSRmat matrix A

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Zheng Li on 06/20/2012

Definition at line 750 of file sparse_csr.c.

10.90 sparse_csrl.c File Reference

Sparse matrix operations for dCSRLmat matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- dCSRLmat * fasp_dcsrl_create (const INT num_rows, const INT num_cols, const INT num_nonzeros)
 Create a dCSRLmat object.
- void fasp_dcsrl_free (dCSRLmat *A)
 Destroy a dCSRLmat object.

10.90.1 Detailed Description

Sparse matrix operations for dCSRLmat matrices.

Note

For details of CSRL format, refer to Optimizing sparse matrix vector product computations using unroll and jam by John Mellor-Crummey and John Garvin, Tech Report Rice Univ, Aug 2002.

10.90.2 Function Documentation

10.90.2.1 fasp_dcsrl_create()

Create a dCSRLmat object.

Parameters

num_rows	Number of rows
num_cols	Number of cols
num_nonzeros	Number of nonzero entries

Author

Zhiyang Zhou

Date

01/07/2001

Definition at line 30 of file sparse_csrl.c.

10.90.2.2 fasp_dcsrl_free()

Destroy a dCSRLmat object.

Parameters

A Pointer to the dCSRLmat type matrix

Author

Zhiyang Zhou

Date

01/07/2011

Definition at line 58 of file sparse_csrl.c.

10.91 sparse_str.c File Reference

Sparse matrix operations for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_dstr_null (dSTRmat *A)

Initialize sparse matrix on structured grid.

- dSTRmat fasp_dstr_create (const INT nx, const INT ny, const INT nz, const INT nc, const INT nband, INT *offsets)

 Create STR sparse matrix data memory space.
- void fasp_dstr_alloc (const INT nx, const INT ny, const INT nz, const INT nxy, const INT ngrid, const INT nband, const INT nc, INT *offsets, dSTRmat *A)

Allocate STR sparse matrix memory space.

void fasp_dstr_free (dSTRmat *A)

Free STR sparse matrix data memeory space.

void fasp dstr cp (dSTRmat *A, dSTRmat *B)

Copy a dSTRmat to a new one B=A.

10.91.1 Detailed Description

Sparse matrix operations for dSTRmat matrices.

10.91.2 Function Documentation

10.91.2.1 fasp_dstr_alloc()

Allocate STR sparse matrix memory space.

Parameters

nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
nxy	Number of grids in x-y plane
ngrid	Number of grids
nband	Number of off-diagonal bands
nc	Number of components
offsets	Shift from diagonal
Α	Pointer to the dSTRmat matrix

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 109 of file sparse_str.c.

```
10.91.2.2 fasp_dstr_cp()
```

```
void fasp_dstr_cp ( \label{dstrmat} {\rm dSTRmat} \ * \ A, \\ {\rm dSTRmat} \ * \ B \ )
```

Copy a dSTRmat to a new one B=A.

Parameters

Α	Pointer to the dSTRmat matrix
В	Pointer to the dSTRmat matrix

Author

Zhiyang Zhou

Date

04/21/2010

Definition at line 181 of file sparse_str.c.

10.91.2.3 fasp_dstr_create()

Create STR sparse matrix data memory space.

Parameters

nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
nc	Number of components
nband	Number of off-diagonal bands
offsets	Shift from diagonal

Returns

The dSTRmat matrix

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 57 of file sparse_str.c.

10.91.2.4 fasp_dstr_free()

Free STR sparse matrix data memeory space.

Parameters

A Pointer to the dSTRmat matrix

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 152 of file sparse_str.c.

```
10.91.2.5 fasp_dstr_null()
```

Initialize sparse matrix on structured grid.

Parameters

A Pointer to the dSTRmat matrix

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 25 of file sparse_str.c.

10.92 sparse_util.c File Reference

Routines for sparse matrix operations.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_sparse_abybms_ (INT *ia, INT *ja, INT *ib, INT *jb, INT *nap, INT *map, INT *mbp, INT *ic, INT *jc)
 Multiplication of two sparse matrices: calculating the nonzero structure of the result if jc is not null. If jc is null only finds num of nonzeroes.
- void fasp_sparse_abyb_ (INT *ia, INT *ja, REAL *a, INT *ib, INT *jb, REAL *b, INT *nap, INT *map, INT *mbp, INT *ic, INT *jc, REAL *c)

Multiplication of two sparse matrices: calculating the numerical values in the result.

 $\bullet \ \ \text{void fasp_sparse_iit_} \ (\text{INT} * \text{ia, INT} * \text{ja, INT} * \text{na, INT} * \text{ma, INT} * \text{iat, INT} * \text{jat}) \\$

Transpose a boolean matrix (only given by ia, ja)

- void fasp_sparse_aat_ (INT *ia, INT *ja, REAL *a, INT *na, INT *ma, INT *iat, INT *jat, REAL *at)
 transpose a boolean matrix (only given by ia, ja)
- void fasp_sparse_aplbms_ (INT *ia, INT *ja, INT *ib, INT *jb, INT *nab, INT *mab, INT *ic, INT *jc)
 Addition of two sparse matrices: calculating the nonzero structure of the result if jc is not null. if jc is null only finds num of nonzeroes.

void fasp_sparse_aplusb_ (INT *ia, INT *ja, REAL *a, INT *ib, INT *jb, REAL *b, INT *nab, INT *mab, INT *ic, INT *jc, REAL *c)

Addition of two sparse matrices: calculating the numerical values in the result.

void fasp_sparse_rapms_ (INT *ir, INT *jr, INT *ia, INT *ja, INT *ip, INT *jp, INT *nin, INT *ncin, INT *iac, INT *jac, INT *maxrout)

Calculates the nonzero structure of R*A*P, if jac is not null. If jac is null only finds num of nonzeroes.

void fasp sparse wtams (INT *jw, INT *ia, INT *ja, INT *nwp, INT *map, INT *jv, INT *nvp, INT *icp)

Finds the nonzeroes in the result of $v^{\wedge}t = w^{\wedge}t$ A, where w is a sparse vector and A is sparse matrix. jv is an integer array containing the indices of the nonzero elements in the result.

void fasp_sparse_wta_ (INT *jw, REAL *w, INT *ia, INT *ja, REAL *a, INT *nwp, INT *map, INT *jv, REAL *v, INT *nvp)

Calculate $v^t = w^t A$, where w is a sparse vector and A is sparse matrix. v is an array of dimension = number of columns in A.

void fasp_sparse_ytxbig_ (INT *jy, REAL *y, INT *nyp, REAL *x, REAL *s)

Calculates $s = y^{\uparrow} t x$. y-sparse, x - no.

- void fasp_sparse_ytx_ (INT *jy, REAL *y, INT *jx, REAL *x, INT *nyp, INT *nxp, INT *icp, REAL *s)
 Calculates s = y^t x. y is sparse, x is sparse.
- void fasp_sparse_rapcmp_ (INT *ir, INT *jr, REAL *r, INT *ia, INT *ja, REAL *a, INT *ipt, INT *jpt, REAL *pt, INT *nin, INT *ncin, INT *iac, INT *jac, REAL *ac, INT *idummy)

Calculates R*A*P after the nonzero structure of the result is known. iac,jac,ac have to be allocated before call to this function.

ivector fasp sparse MIS (dCSRmat *A)

get the maximal independet set of a CSR matrix

10.92.1 Detailed Description

Routines for sparse matrix operations.

Note

Most algorithms work as follows: (a) Boolean operations (to determine the nonzero structure); (b) Numerical part, where the result is calculated.

: Parameter notation :I: is input; :O: is output; :IO: is both

C-version: by Ludmil Zikatanov 2010-04-08 tested 2010-04-08

: Modifed Xiaozhe Hu 2010-10-18

Todo Remove unwanted functions from this file. -Chensong

10.92.2 Function Documentation

```
INT * na,
INT * ma,
INT * iat,
INT * jat,
REAL * at )
```

transpose a boolean matrix (only given by ia, ja)

Parameters

ia	array of row pointers (as usual in CSR)
ja	array of column indices
а	array of entries of teh input
na	number of rows of A
ma	number of cols of A
iat	array of row pointers in the result
jat	array of column indices
at	array of entries of the result

Definition at line 272 of file sparse_util.c.

10.92.2.2 fasp_sparse_abyb_()

Multiplication of two sparse matrices: calculating the numerical values in the result.

Parameters

ia	array of row pointers 1st multiplicand
ja	array of column indices 1st multiplicand
а	entries of the 1st multiplicand
ib	array of row pointers 2nd multiplicand
jb	array of column indices 2nd multiplicand
b	entries of the 2nd multiplicand
ic	array of row pointers in c=a*b

Parameters

jc	array of column indices in c=a*b
С	entries of the result: c= a*b
nap	number of rows in the 1st multiplicand
тар	number of columns in the 1st multiplicand
mbp	number of columns in the 2nd multiplicand

Modified by Chensong Zhang on 09/11/2012

Definition at line 124 of file sparse_util.c.

10.92.2.3 fasp_sparse_abybms_()

Multiplication of two sparse matrices: calculating the nonzero structure of the result if jc is not null. If jc is null only finds num of nonzeroes.

Parameters

ia	array of row pointers 1st multiplicand
ia	array of row pointers 1st multiplicand
ja	array of column indices 1st multiplicand
ib	array of row pointers 2nd multiplicand
jb	array of column indices 2nd multiplicand
nap	number of rows of A
тар	number of cols of A
mbp	number of cols of b
ic	array of row pointers in the result (this is also computed here again, so that we can have a stand alone call of this routine, if for some reason the number of nonzeros in the result is known)
jc	array of column indices in the result c=a*b

Modified by Chensong Zhang on 09/11/2012

Definition at line 53 of file sparse_util.c.

10.92.2.4 fasp_sparse_aplbms_()

Addition of two sparse matrices: calculating the nonzero structure of the result if jc is not null. if jc is null only finds num of nonzeroes.

Parameters

ia	array of row pointers 1st summand
ia	array of row pointers 1st summand
ja	array of column indices 1st summand
ib	array of row pointers 2nd summand
jb	array of column indices 2nd summand
nab	number of rows
mab	number of cols
ic	array of row pointers in the result (this is also computed here again, so that we can have a stand alone call of this routine, if for some reason the number of nonzeros in the result is known)
jc	array of column indices in the result c=a+b

Definition at line 359 of file sparse_util.c.

10.92.2.5 fasp_sparse_aplusb_()

Addition of two sparse matrices: calculating the numerical values in the result.

Parameters

ia	array of row pointers 1st summand
ja	array of column indices 1st summand
а	entries of the 1st summand
ib	array of row pointers 2nd summand
jb	array of column indices 2nd summand
b	entries of the 2nd summand
nab	number of rows
mab	number of cols
ic	array of row pointers in c=a+b
jc	array of column indices in c=a+b
С	entries of the result: c=a+b

Definition at line 431 of file sparse_util.c.

10.92.2.6 fasp_sparse_iit_()

Transpose a boolean matrix (only given by ia, ja)

Parameters

ia	array of row pointers (as usual in CSR)
ja	array of column indices
na	number of rows
ma	number of cols
iat	array of row pointers in the result
jat	array of column indices

Note

For the concrete algorithm, see:

Definition at line 197 of file sparse_util.c.

10.92.2.7 fasp_sparse_MIS()

get the maximal independet set of a CSR matrix

Parameters

```
A pointer to the matrix
```

Note

: only use the sparsity of A, index starts from 1 (fortran)!!

Definition at line 909 of file sparse_util.c.

10.92.2.8 fasp_sparse_rapcmp_()

```
void fasp_sparse_rapcmp_ (
             INT * ir,
             INT * jr,
             REAL * r,
             INT * ia,
             INT * ja,
             REAL * a,
             INT * ipt,
             INT * jpt,
             REAL * pt,
             INT * nin,
             INT * ncin,
             INT * iac,
             INT * jac,
             REAL * ac,
             INT * idummy )
```

Calculates R*A*P after the nonzero structure of the result is known. iac,jac,ac have to be allocated before call to this function.

Note

:I: is input :O: is output :IO: is both

Parameters

ir	:I: array of row pointers for R
jr	:I: array of column indices for R
r	:I: entries of R
ia	:I: array of row pointers for A
ja	:I: array of column indices for A
а	:I: entries of A
ipt	:I: array of row pointers for P
jpt	:I: array of column indices for P
pt	:I: entries of P

Parameters

nin	:I: number of rows in R
ncin	:I: number of rows in
iac	:O: array of row pointers for P
jac	:O: array of column indices for P
ac	:O: entries of P
idummy	not changed

Note

compute R*A*P for known nonzero structure of the result the result is stored in iac,jac,ac!

Definition at line 788 of file sparse_util.c.

10.92.2.9 fasp_sparse_rapms_()

Calculates the nonzero structure of R*A*P, if jac is not null. If jac is null only finds num of nonzeroes.

Note

:I: is input :O: is output :IO: is both

Parameters

ir	:I: array of row pointers for R
jr	:I: array of column indices for R
J'	.i. array or column maices for re
ia	:I: array of row pointers for A
ja	:I: array of column indices for A
ip	:I: array of row pointers for P
jp	:I: array of column indices for P
nin	:I: number of rows in R
ncin	:I: number of columns in R
iac	:O: array of row pointers for Ac
jac	:O: array of column indices for Ac
maxrout	:O: the maximum nonzeroes per row for R

Note

Computes the sparsity pattern of R*A*P. maxrout is output and is the maximum nonzeroes per row for r. On output we also have is iac (if jac is null) and jac (if jac entry is not null). R is (n,n) A is (n,n) and P is (n,nc)!

Modified by Chensong Zhang on 09/11/2012

Definition at line 514 of file sparse_util.c.

10.92.2.10 fasp_sparse_wta_()

Calculate $v^t = w^t$ A, where w is a sparse vector and A is sparse matrix. v is an array of dimension = number of columns in A.

Note

:I: is input :O: is output :IO: is both

Parameters

jw	:I: indices such that w[jw] is nonzero
W	:I: the values of w
ia	:I: array of row pointers for A
ja	:I: array of column indices for A
а	:I: entries of A
nwp	:I: number of nonzeroes in w (the length of w)
тар	:I: number of columns in A
jv	:O: indices such that v[jv] is nonzero
V	:O: the result v^t=w^t A
nvp	:I: number of nonzeroes in v

Definition at line 648 of file sparse_util.c.

```
10.92.2.11 fasp_sparse_wtams_()
void fasp_sparse_wtams_ (
```

```
INT * jw,
INT * ia,
INT * ja,
INT * nwp,
INT * map,
INT * jv,
INT * nvp,
INT * icp )
```

Finds the nonzeroes in the result of $v^t = w^t A$, where w is a sparse vector and A is sparse matrix. jv is an integer array containing the indices of the nonzero elements in the result.

:I: is input :O: is output :IO: is both

Parameters

jw	:I: indices such that w[jw] is nonzero
ia	:I: array of row pointers for A
ja	:I: array of column indices for A
nwp	:I: number of nonzeroes in w (the length of w)
тар	:I: number of columns in A
jv	:O: indices such that v[jv] is nonzero
nvp	:I: number of nonzeroes in v
icp	:IO: is a working array of length (*map) which on output satisfies icp[jv[k]-1]=k; Values of icp[] at positions * other than (jv[k]-1) remain unchanged.

Modified by Chensong Zhang on 09/11/2012

Definition at line 595 of file sparse_util.c.

10.92.2.12 fasp_sparse_ytx_()

```
void fasp_sparse_ytx_ (
    INT * jy,
    REAL * y,
    INT * jx,
    REAL * x,
    INT * nyp,
    INT * nxp,
    INT * icp,
    REAL * s )
```

Calculates $s = y^{\wedge}t x$. y is sparse, x is sparse.

note :I: is input :O: is output :IO: is both

Parameters

ју	:I: indices such that y[jy] is nonzero
У	:I: is a sparse vector.

Parameters

nyp	:I: number of nonzeroes in y
jх	:I: indices such that x[jx] is nonzero
X	:I: is a sparse vector.
пхр	:I: number of nonzeroes in x
icp	???
s	:O: $s = y^t x$.

Definition at line 733 of file sparse_util.c.

10.92.2.13 fasp_sparse_ytxbig_()

Calculates $s = y^t x$. y-sparse, x - no.

Note

:I: is input :O: is output :IO: is both

Parameters

ју	:I: indices such that y[jy] is nonzero
У	:I: is a sparse vector.
пур	:I: number of nonzeroes in v
X	:I: also a vector assumed to have entry for any j=jy[i]-1; for i=1:nyp. This means that x here does not have to
	be sparse.
s	:O: $s = y^t x$.

Definition at line 699 of file sparse_util.c.

10.93 spbcgs.c File Reference

Krylov subspace methods – Preconditioned BiCGstab with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_spbcgs (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

 INT fasp_solver_dbsr_spbcgs (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

 INT fasp_solver_dblc_spbcgs (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

 INT fasp_solver_dstr_spbcgs (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

10.93.1 Detailed Description

Krylov subspace methods - Preconditioned BiCGstab with safety net.

Abstract algorithm

PBICGStab method to solve A*x=b is to generate {x k} to approximate x

Note: We generate a series of $\{p_k\}$ such that $V_k=span\{p_1,...,p_k\}$.

Step 0. Given A, b, x 0, M

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

Step 2. Initialization $z_0 = M^{-1}*r_0$, $p_0=z_0$;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- check whether x is NAN;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- if r_{k+1} < r_{best}: save x_{k+1} as x_{best};
- · perform residual check;
- obtain p_{k+1} using $\{p_0, p_1, ..., p_k\}$;
- · prepare for next iteration;
- · print the result of k-th iteration; END FOR

Convergence check: norm(r)/norm(b) < tol

Stagnation check:

- IF $norm(alpha*p_k)/norm(x_{k+1}) < tol_stag$
 - 1. compute $r=b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check:

- IF $norm(r_{k+1})/norm(b) < tol$
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

safety net check:

- IF $r_{k+1} > r_{best}$
 - 1. $x_{k+1} = x_{best}$
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See spbcgs.c for a safer version

10.93.2 Function Documentation

10.93.2.1 fasp_solver_dblc_spbcgs()

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 868 of file spbcgs.c.

10.93.2.2 fasp_solver_dbsr_spbcgs()

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 479 of file spbcgs.c.

10.93.2.3 fasp_solver_dcsr_spbcgs()

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
pc	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 90 of file spbcgs.c.

```
10.93.2.4 fasp_solver_dstr_spbcgs()
```

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 1257 of file spbcgs.c.

10.94 spcg.c File Reference

Krylov subspace methods – Preconditioned conjugate gradient with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

• INT fasp_solver_dcsr_spcg (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b with safety net.

INT fasp_solver_dblc_spcg (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b with safety net.

 INT fasp_solver_dstr_spcg (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b with safety net.

10.94.1 Detailed Description

Krylov subspace methods - Preconditioned conjugate gradient with safety net.

Abstract algorithm

PCG method to solve A*x=b is to generate $\{x_k\}$ to approximate x

```
Step 0. Given A, b, x_0, M
```

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

```
Step 2. Initialization z_0 = M^{-1}*r_0, p_0=z_0;
```

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r k,z k,p k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- · check whether x is NAN;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- if r_{k+1} < r_{best}: save x_{k+1} as x_{best};

- perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- · prepare for next iteration;
- print the result of k-th iteration; END FOR

Convergence check: norm(r)/norm(b) < tol

Stagnation check:

- IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
 - 1. compute $r=b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart number < Max Stag Check) restart;
- END IF

Residual check:

- IF $norm(r_{k+1})/norm(b) < tol$
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

safety net check:

- IF $r_{k+1} > r_{best}$
 - 1. $x_{k+1} = x_{best}$
- END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See pcg.c for a version without safety net

10.94.2 Function Documentation

10.94.2.1 fasp_solver_dblc_spcg()

```
INT fasp_solver_dblc_spcg (
    dBLCmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned conjugate gradient method for solving Au=b with safety net.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/28/2013

Definition at line 419 of file spcg.c.

10.94.2.2 fasp_solver_dcsr_spcg()

Preconditioned conjugate gradient method for solving Au=b with safety net.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type Generated by Do	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/28/2013

Definition at line 88 of file spcg.c.

```
10.94.2.3 fasp_solver_dstr_spcg()
```

```
INT fasp_solver_dstr_spcg (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned conjugate gradient method for solving Au=b with safety net.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
MaxIt	Maximal number of iterations
tol	Tolerance for stopping
рс	Pointer to the structure of precondition (precond)
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/28/2013

Definition at line 750 of file spcg.c.

10.95 spgmres.c File Reference

Krylov subspace methods - Preconditioned GMRes with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

• INT fasp_solver_dcsr_spgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

• INT fasp_solver_dblc_spgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

 INT fasp_solver_dbsr_spgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

 INT fasp_solver_dstr_spgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

10.95.1 Detailed Description

Krylov subspace methods – Preconditioned GMRes with safety net.

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See also pgmres.c for a variable restarting version.

See pgmres.c for a version without safety net

10.95.2 Function Documentation

10.95.2.1 fasp_solver_dblc_spgmres()

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
pc	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 386 of file spgmres.c.

10.95.2.2 fasp_solver_dbsr_spgmres()

```
INT fasp_solver_dbsr_spgmres (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    SHORT restart,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 726 of file spgmres.c.

10.95.2.3 fasp_solver_dcsr_spgmres()

```
precond * pc,
const REAL tol,
const INT MaxIt,
SHORT restart,
const SHORT stop_type,
const SHORT prtlvl )
```

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013 Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 46 of file spgmres.c.

10.95.2.4 fasp_solver_dstr_spgmres()

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
Х	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 1066 of file spgmres.c.

10.96 spminres.c File Reference

Krylov subspace methods – Preconditioned minimal residual with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_spminres (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

 INT fasp_solver_dblc_spminres (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

 INT fasp_solver_dstr_spminres (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

10.96.1 Detailed Description

Krylov subspace methods – Preconditioned minimal residual with safety net.

Abstract algorithm

Krylov method to solve A*x=b is to generate {x_k} to approximate x, where x_k is the optimal solution in Krylov space

 $V_k=span\{r_0,A*r_0,A^2*r_0,...,A^{k-1}*r_0\},$

under some inner product.

For the implementation, we generate a series of $\{p_k\}$ such that $V_k=span\{p_1,...,p_k\}$. Details:

Step 0. Given A, b, x_0, M

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

Step 2. Initialization $z_0 = M^{-1}*r_0$, $p_0=z_0$;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- check whether x is NAN;
- · perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- if r_{k+1} < r_{best}: save x_{k+1} as x_{best};
- · perform residual check;
- obtain p_{k+1} using {p_0, p_1, ..., p_k};
- prepare for next iteration;
- print the result of k-th iteration; END FOR

Convergence check: norm(r)/norm(b) < tol

Stagnation check:

- IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag
 - 1. compute $r=b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number $< {\tt Max_Stag_Check}$) restart;
- END IF

Residual check:

- IF $norm(r_{k+1})/norm(b) < tol$
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

safety net check:

```
IF r_{k+1} > r_{best}1. x_{k+1} = x_{best}
```

• END IF

Note

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See pminres.c for a version without safety net

10.96.2 Function Documentation

10.96.2.1 fasp_solver_dblc_spminres()

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 544 of file spminres.c.

10.96.2.2 fasp_solver_dcsr_spminres()

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 95 of file spminres.c.

10.96.2.3 fasp_solver_dstr_spminres()

```
INT fasp_solver_dstr_spminres (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
MaxIt	Maximal number of iterations
tol	Tolerance for stopping
рс	Pointer to the structure of precondition (precond)
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 993 of file spminres.c.

10.97 spvgmres.c File Reference

Krylov subspace methods - Preconditioned variable-restart GMRes with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "itsolver_util.inl"
```

Functions

 INT fasp_solver_dcsr_spvgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

 INT fasp_solver_dblc_spvgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dbsr_spvgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

 INT fasp_solver_dstr_spvgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

10.97.1 Detailed Description

Krylov subspace methods – Preconditioned variable-restart GMRes with safety net.

Note

Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR← ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266. See pvgmres.c a version without safety net

10.97.2 Function Documentation

10.97.2.1 fasp_solver_dblc_spvgmres()

```
const REAL tol,
const INT MaxIt,
SHORT restart,
const SHORT stop_type,
const SHORT prtlvl )
```

Preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013

Definition at line 425 of file spvgmres.c.

10.97.2.2 fasp_solver_dbsr_spvgmres()

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
eton tyne	Stopping criteria type

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013

Definition at line 803 of file spvgmres.c.

10.97.2.3 fasp_solver_dcsr_spvgmres()

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
pc	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013 Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 48 of file spvgmres.c.

10.97.2.4 fasp_solver_dstr_spvgmres()

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during the iteration.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013

Definition at line 1181 of file spvgmres.c.

10.98 threads.c File Reference

Get and set number of threads and assign work load for each thread.

```
#include <stdio.h>
#include <stdlib.h>
#include "fasp.h"
```

Functions

```
    void FASP_GET_START_END (INT procid, INT nprocs, INT n, INT *start, INT *end)

    Assign Load to each thread.

    void face, set CS threads (INT methysicals INT its)
```

void fasp_set_GS_threads (INT mythreads, INT its)

Set threads for CPR. Please add it at the begin of Krylov OpenMP method function and after iter++.

Variables

```
• INT THDs AMG GS =0
```

- INT THDs_CPR_IGS =0
- INT THDs_CPR_gGS =0

10.98.1 Detailed Description

Get and set number of threads and assign work load for each thread.

10.98.2 Function Documentation

```
10.98.2.1 FASP_GET_START_END()
```

Assign Load to each thread.

Parameters

procid	Index of thread
nprocs	Number of threads
n	Total workload
start	Pointer to the begin of each thread in total workload
end Generated by	Pointer to the end of each thread in total workload

Author

Chunsheng Feng, Xiaoqiang Yue and Zheng Li

Date

June/25/2012

Definition at line 83 of file threads.c.

10.98.2.2 fasp_set_GS_threads()

Set threads for CPR. Please add it at the begin of Krylov OpenMP method function and after iter++.

Parameters

threads	Total threads of solver
its	Current its of the Krylov methods

Author

Feng Chunsheng, Yue Xiaoqiang

Date

03/20/2011

TODO: Why put it here??? -Chensong

Definition at line 125 of file threads.c.

10.98.3 Variable Documentation

10.98.3.1 THDs_AMG_GS

INT THDs_AMG_GS =0

AMG GS smoothing threads

Definition at line 107 of file threads.c.

```
10.98.3.2 THDs_CPR_gGS
```

```
INT THDs_CPR_gGS =0
```

global matrix GS smoothing threads

Definition at line 109 of file threads.c.

```
10.98.3.3 THDs_CPR_IGS
```

```
INT THDs_CPR_1GS =0
```

reservoir GS smoothing threads

Definition at line 108 of file threads.c.

10.99 timing.c File Reference

Timing subroutines.

```
#include <time.h>
#include "fasp.h"
```

Functions

void fasp_gettime (REAL *time)
 Get system time.

10.99.1 Detailed Description

Timing subroutines.

10.99.2 Function Documentation

10.99.2.1 fasp_gettime()

```
\label{eq:continuous_post_set} \begin{array}{c} \text{fasp\_gettime (} \\ \text{REAL * time )} \end{array}
```

Get system time.

Author

Chunsheng Feng, Zheng LI

Date

11/10/2012

Modified by Chensong Zhang on 09/22/2014: Use CLOCKS_PER_SEC for cross-platform Definition at line 28 of file timing.c.

10.100 vec.c File Reference

Simple operations for vectors.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

INT fasp_dvec_isnan (dvector *u)

Check a dvector whether there is NAN.

dvector fasp_dvec_create (const INT m)

Create dvector data space of REAL type.

ivector fasp_ivec_create (const INT m)

Create vector data space of INT type.

void fasp_dvec_alloc (const INT m, dvector *u)

Create dvector data space of REAL type.

void fasp_ivec_alloc (const INT m, ivector *u)

Create vector data space of INT type.

void fasp_dvec_free (dvector *u)

Free vector data space of REAL type.

void fasp_ivec_free (ivector *u)

Free vector data space of INT type.

void fasp_dvec_null (dvector *x)

Initialize dvector.

void fasp_dvec_rand (const INT n, dvector *x)

Generate random REAL vector in the range from 0 to 1.

void fasp_dvec_set (INT n, dvector *x, REAL val)

Initialize dvector x[i]=val for i=0:n-1.

void fasp_ivec_set (const INT m, ivector *u)

Set ivector value to be m.

void fasp_dvec_cp (dvector *x, dvector *y)

Copy dvector x to dvector y.

REAL fasp_dvec_maxdiff (dvector *x, dvector *y)

Maximal difference of two dvector x and y.

void fasp_dvec_symdiagscale (dvector *b, dvector *diag)

Symmetric diagonal scaling D^{\wedge} {-1/2}b.

10.100.1 Detailed Description

Simple operations for vectors.

Note

All structures should be initialized before usage.

10.100 vec.c File Reference 587

10.100.2 Function Documentation

```
10.100.2.1 fasp_dvec_alloc()
```

Create dvector data space of REAL type.

Parameters

m	Number of rows
и	Pointer to dvector (OUTPUT)

Author

Chensong Zhang

Date

2010/04/06

Definition at line 99 of file vec.c.

10.100.2.2 fasp_dvec_cp()

Copy dvector x to dvector y.

Parameters

X	Pointer to dvector
У	Pointer to dvector (MODIFIED)

Author

Chensong Zhang

Date

11/16/2009

Definition at line 345 of file vec.c.

```
10.100.2.3 fasp_dvec_create()
```

Create dvector data space of REAL type.

Parameters

Returns

u The new dvector

Author

Chensong Zhang

Date

2010/04/06

Definition at line 56 of file vec.c.

```
10.100.2.4 fasp_dvec_free()
```

Free vector data space of REAL type.

Parameters

u Pointer to dvector which needs to be deallocated

Author

Chensong Zhang

Date

2010/04/03

Definition at line 139 of file vec.c.

10.100 vec.c File Reference 589

```
10.100.2.5 fasp_dvec_isnan()
```

Check a dvector whether there is NAN.

Parameters

```
u Pointer to dvector
```

Returns

Return TRUE if there is NAN

Author

Chensong Zhang

Date

2013/03/31

Definition at line 33 of file vec.c.

10.100.2.6 fasp_dvec_maxdiff()

```
REAL fasp_dvec_maxdiff ( \label{eq:dvector} \mbox{dvector} \, * \, x, \\ \mbox{dvector} \, * \, y \, )
```

Maximal difference of two dvector x and y.

Parameters

Х	Pointer to dvector
У	Pointer to dvector

Returns

Maximal norm of x-y

Author

Chensong Zhang

Date

11/16/2009

Modified by chunsheng Feng, Zheng Li

Date

06/30/2012

Definition at line 368 of file vec.c.

```
10.100.2.7 fasp_dvec_null()
```

Initialize dvector.

Parameters

x Pointer to dvector which needs to be initialized

Author

Chensong Zhang

Date

2010/04/03

Definition at line 177 of file vec.c.

10.100.2.8 fasp_dvec_rand()

```
void fasp_dvec_rand ( {\tt const\ INT\ } n, {\tt dvector\ } *\ x\ )
```

Generate random REAL vector in the range from 0 to 1.

Parameters

n	Size of the vector
X	Pointer to dvector

10.100 vec.c File Reference 591

Note

Sample usage:

dvector xapp;

fasp_dvec_create(100,&xapp);

fasp_dvec_rand(100,&xapp);

fasp_dvec_print(100,&xapp);

Author

Chensong Zhang

Date

11/16/2009

Definition at line 203 of file vec.c.

10.100.2.9 fasp_dvec_set()

Initialize dvector x[i]=val for i=0:n-1.

Parameters

n	Number of variables
X	Pointer to dvector
val	Initial value for the vector

Author

Chensong Zhang

Date

11/16/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 235 of file vec.c.

```
10.100.2.10 fasp_dvec_symdiagscale()
```

Symmetric diagonal scaling $D^{-1/2}b$.

Parameters

b	Pointer to dvector
diag	Pointer to dvector: the diagonal entries

Author

Xiaozhe Hu

Date

01/31/2011

Definition at line 421 of file vec.c.

```
10.100.2.11 fasp_ivec_alloc()
```

Create vector data space of INT type.

Parameters

т	Number of rows
и	Pointer to ivector (OUTPUT)

10.100 vec.c File Reference 593

```
Author
```

Chensong Zhang

Date

2010/04/06

Definition at line 119 of file vec.c.

```
10.100.2.12 fasp_ivec_create()
```

Create vector data space of INT type.

Parameters

```
m Number of rows
```

Returns

u The new ivector

Author

Chensong Zhang

Date

2010/04/06

Definition at line 78 of file vec.c.

```
10.100.2.13 fasp_ivec_free()
```

Free vector data space of INT type.

Parameters

u Pointer to ivector which needs to be deallocated

Author

Chensong Zhang

Date

2010/04/03

Note

This function is same as fasp_dvec_free except input type.

Definition at line 159 of file vec.c.

```
10.100.2.14 fasp_ivec_set()
```

Set ivector value to be m.

Parameters

m	Integer value of ivector
и	Pointer to ivector (MODIFIED)

Author

Chensong Zhang

Date

04/03/2010

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 304 of file vec.c.

10.101 wrapper.c File Reference

Wrappers for accessing functions by advanced users.

```
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

void fasp_fwrapper_amg_ (INT *n, INT *nnz, INT *ia, INT *ja, REAL *a, REAL *b, REAL *u, REAL *tol, INT *maxit, INT *ptrlvl)

Solve Ax=b by Ruge and Stuben's classic AMG.

void fasp_fwrapper_krylov_amg_ (INT *n, INT *nnz, INT *ia, INT *ja, REAL *a, REAL *b, REAL *u, REAL *tol, INT *maxit, INT *ptrlvl)

Solve Ax=b by Krylov method preconditioned by classic AMG.

INT fasp_wrapper_dbsr_krylov_amg (INT n, INT nnz, INT nb, INT *ia, INT *ja, REAL *a, REAL *b, REAL *u, REAL tol, INT maxit, INT ptrlvl)

Solve Ax=b by Krylov method preconditioned by AMG (dcsr - > dbsr)

INT fasp_wrapper_dcoo_dbsr_krylov_amg (INT n, INT nnz, INT nb, INT *ia, INT *ja, REAL *a, REAL *b, REAL
 *u, REAL tol, INT maxit, INT ptrlvl)

Solve Ax=b by Krylov method preconditioned by AMG (dcoo - > dbsr)

10.101.1 Detailed Description

Wrappers for accessing functions by advanced users.

10.101.2 Function Documentation

10.101.2.1 fasp_fwrapper_amg_()

Solve Ax=b by Ruge and Stuben's classic AMG.

Parameters

n	Number of cols of A
nnz	Number of nonzeros of A
ia	IA of A in CSR format
ja	JA of A in CSR format
а	VAL of A in CSR format
b	RHS vector
и	Solution vector
tol	Tolerance for iterative solvers
maxit	Max number of iterations
ptrlvl	Print level for iterative solvers

Author

Chensong Zhang

Date

09/16/2010

Definition at line 35 of file wrapper.c.

10.101.2.2 fasp_fwrapper_krylov_amg_()

```
void fasp_fwrapper_krylov_amg_ (
    INT * n,
    INT * nnz,
    INT * ia,
    INT * ja,
    REAL * a,
    REAL * b,
    REAL * tol,
    INT * maxit,
    INT * ptrlvl )
```

Solve Ax=b by Krylov method preconditioned by classic AMG.

Parameters

n	Number of cols of A
nnz	Number of nonzeros of A
ia	IA of A in CSR format
ja	JA of A in CSR format
а	VAL of A in CSR format
b	RHS vector
и	Solution vector
tol	Tolerance for iterative solvers
maxit	Max number of iterations
ptrlvl	Print level for iterative solvers

Author

Chensong Zhang

Date

09/16/2010

Definition at line 85 of file wrapper.c.

10.101.2.3 fasp_wrapper_dbsr_krylov_amg()

```
INT fasp_wrapper_dbsr_krylov_amg (
    INT n,
    INT nnz,
    INT nb,
    INT * ia,
    INT * ja,
    REAL * a,
    REAL * u,
    REAL * tol,
    INT maxit,
    INT ptrlvl )
```

Solve Ax=b by Krylov method preconditioned by AMG (dcsr - > dbsr)

Parameters

n	Number of cols of A
nnz	Number of nonzeros of A
nb	Size of each small block
ia	IA of A in CSR format
ja	JA of A in CSR format
а	VAL of A in CSR format
b	RHS vector
и	Solution vector
tol	Tolerance for iterative solvers
maxit	Max number of iterations
ptrlvl	Print level for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/05/2013

Definition at line 152 of file wrapper.c.

```
10.101.2.4 fasp_wrapper_dcoo_dbsr_krylov_amg()
```

Solve Ax=b by Krylov method preconditioned by AMG (dcoo - > dbsr)

Parameters

n	Number of cols of A
nnz	Number of nonzeros of A
nb	Size of each small block
ia	IA of A in COO format
ja	JA of A in COO format
а	VAL of A in COO format
b	RHS vector
и	Solution vector
tol	Tolerance for iterative solvers
maxit	Max number of iterations
ptrlvl	Print level for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/06/2013

Definition at line 238 of file wrapper.c.

Index

FASPBLOCK_HEADER	AMG_nl_amli_krylov_type
fasp_block.h, 195	input_param, 49
FASP_HEADER	AMG_pair_number
fasp.h, 185	input_param, 49
	AMG_param, 26
A	AMG_polynomial_degree
precond_FASP_blkoil_data, 80	input_param, 50
precond_sweeping_data, 85	AMG_postsmooth_iter
A_diag	input_param, 50
precond_block_data, 66	AMG_presmooth_iter
ABS	input_param, 50
fasp.h, 185	AMG_quality_bound
AMG_ILU_levels	input_param, 50
input_param, 48	AMG relaxation
AMG_Schwarz_levels	input_param, 50
input_param, 50	AMG_smooth_filter
AMG_aggregation_type	input param, 51
input_param, 47	AMG smooth order
AMG_aggressive_level	input_param, 51
input_param, 47	AMG_smoother
AMG_aggressive_path	input_param, 51
input_param, 47	AMG_strong_coupled
AMG_amli_degree	input_param, 51
input_param, 47	AMG_strong_threshold
AMG_coarse_dof	input_param, 51
input_param, 47	AMG_tentative_smooth
AMG_coarse_scaling	input_param, 51
input_param, 48	AMG tol
AMG_coarse_solver	input_param, 52
input_param, 48	AMG_truncation_threshold
AMG_coarsening_type	input_param, 52
input_param, 48	AMG_type
AMG_cycle_type	
input_param, 48	input_param, 52 AMLI CYCLE
AMG_data, 23	fasp_const.h, 201
AMG_data_bsr, 24	ASCEND
AMG_interpolation_type	
input_param, 48	fasp_const.h, 201 Ablc
AMG_levels	
input_param, 49	precond_block_data, 66 Ai
AMG_max_aggregation	
input_param, 49	precond_sweeping_data, 85
AMG_max_row_sum	amg.c, 89
input_param, 49	fasp_solver_amg, 89
AMG_maxit	amg_setup_cr.c, 90
input param, 49	fasp amg setup cr. 91

amg_setup_rs.c, 92	fasp_blas_dbsr_mxv, 122
fasp_amg_setup_rs, 92	fasp_blas_dbsr_mxv_agg, 122
amg_setup_sa.c, 93	fasp_blas_dbsr_rap, 123
fasp_amg_setup_sa, 93	fasp_blas_dbsr_rap1, 124
fasp_amg_setup_sa_bsr, 94	fasp_blas_dbsr_rap_agg, 124
amg_setup_ua.c, 95 fasp_amg_setup_ua, 95	blas_csr.c, 125 fasp_blas_dcsr_aAxpy, 127
fasp_amg_setup_ua, 95 fasp_amg_setup_ua_bsr, 96	fasp_blas_dcsr_aAxpy, 127 fasp_blas_dcsr_aAxpy_agg, 127
amg_solve.c, 96	fasp_blas_dcsr_add, 128
fasp_amg_solve, 97	fasp_blas_dcsr_axm, 128
fasp_amg_solve_amli, 98	fasp_blas_dcsr_bandwith, 129
fasp_amg_solve_nl_amli, 98	fasp_blas_dcsr_mxm, 129
fasp_famg_solve, 99	fasp_blas_dcsr_mxv, 130
amgparam	fasp_blas_dcsr_mxv_agg, 131
precond_block_data, 66	fasp_blas_dcsr_ptap, 131
amlirecur.c, 100	fasp blas dcsr rap, 132
fasp_amg_amli_coef, 100	fasp_blas_dcsr_rap4, 133
fasp_solver_amli, 101	fasp_blas_dcsr_rap_agg, 133
fasp_solver_nl_amli, 101	fasp_blas_dcsr_rap_agg1, 134
fasp_solver_nl_amli_bsr, 102	fasp_blas_dcsr_vmv, 135
array.c, 103	blas_csrl.c, 135
fasp_array_cp, 104	fasp_blas_dcsrl_mxv, 136
fasp_array_cp_nc3, 104	blas_smat.c, 136
fasp_array_cp_nc5, 105	fasp_blas_array_axpy_nc2, 138
fasp_array_cp_nc7, 105	fasp_blas_array_axpy_nc3, 139
fasp_array_invpermut_nb, 106	fasp_blas_array_axpy_nc5, 139
fasp_array_null, 106	fasp_blas_array_axpy_nc7, 141
fasp_array_permut_nb, 107	fasp_blas_array_axpyz_nc2, 141
fasp_array_set, 108	fasp_blas_array_axpyz_nc3, 142
fasp_iarray_cp, 108	fasp_blas_array_axpyz_nc5, 143
fasp_iarray_set, 109	fasp_blas_array_axpyz_nc7, 143
BIODEAL	fasp_blas_smat_aAxpby, 144
BIGREAL	fasp_blas_smat_add, 145
fasp_const.h, 201	fasp_blas_smat_axm, 145
blas_array.c, 109	fasp_blas_smat_mul, 146
fasp_blas_array_ax, 110	fasp_blas_smat_mul_nc2, 146 fasp_blas_smat_mul_nc3, 147
fasp_blas_array_axpby, 111	fasp blas smat mul nc5, 148
fasp_blas_array_axpy, 111 fasp_blas_array_axpyz, 112	fasp_blas_smat_mul_nc7, 148
fasp_blas_array_dotprod, 113	fasp_blas_smat_mut_nc7, 149
fasp_blas_array_norm1, 113	fasp_blas_smat_mxv_nc2, 149
fasp_blas_array_norm2, 114	fasp_blas_smat_mxv_nc3, 150
fasp blas array norminf, 114	fasp_blas_smat_mxv_nc5, 150
blas_blc.c, 115	fasp_blas_smat_mxv_nc7, 152
fasp_blas_bdbsr_aAxpy, 116	fasp blas smat ymAx, 152
fasp_blas_bdbsr_mxv, 116	fasp_blas_smat_ymAx_nc2, 153
fasp_blas_dblc_aAxpy, 117	fasp blas smat ymAx nc3, 154
fasp blas dblc mxv, 117	fasp_blas_smat_ymAx_nc5, 154
blas_bsr.c, 118	fasp_blas_smat_ymAx_nc7, 155
fasp_blas_dbsr_aAxpby, 119	fasp_blas_smat_ymAx_ns, 155
fasp_blas_dbsr_aAxpy, 119	fasp_blas_smat_ymAx_ns2, 156
fasp_blas_dbsr_aAxpy_agg, 120	fasp_blas_smat_ymAx_ns3, 157
fasp_blas_dbsr_axm, 121	fasp_blas_smat_ymAx_ns5, 157
fasp_blas_dbsr_mxm, 121	fasp_blas_smat_ymAx_ns7, 158

fasp_blas_smat_ypAx, 159	fasp_amg_coarsening_cr, 174
fasp_blas_smat_ypAx_nc2, 159	coarsening_rs.c, 175
fasp_blas_smat_ypAx_nc3, 160	fasp_amg_coarsening_rs, 175
fasp_blas_smat_ypAx_nc5, 160	convert.c, 176
fasp_blas_smat_ypAx_nc7, 162	endian_convert_int, 177
blas_str.c, 162	endian_convert_real, 177
fasp_blas_dstr_aAxpy, 163	fasp_aux_bbyteToldouble, 178
fasp_blas_dstr_mxv, 163	fasp_aux_change_endian4, 178
fasp_dstr_diagscale, 164	fasp_aux_change_endian8, 179
blas_vec.c, 165	count
fasp blas dvec axpy, 165	fasp.h, 192
fasp_blas_dvec_axpyz, 166	,
fasp_blas_dvec_dotprod, 166	dBLCmat, 32
fasp_blas_dvec_norm1, 167	fasp_block.h, 196
fasp_blas_dvec_norm2, 168	dBSRmat, 32
fasp_blas_dvec_norminf, 168	•
• — — —	fasp_block.h, 197
fasp_blas_dvec_relerr, 169	JA, 33
block_BSR, 28	val, 33
fasp_block.h, 196	dCOOmat, 33
block_Reservoir, 31	fasp.h, 190
fasp_block.h, 196	dCSRLmat, 34
block_dvector, 29	fasp.h, 190
fasp_block.h, 196	dCSRmat, 35
block_iCSRmat, 30	fasp.h, 190
fasp_block.h, 196	dCSRmat2SAMGInput
block_ivector, 30	interface_samg.c, 274
fasp_block.h, 196	DESCEND
	fasp_const.h, 203
CF ORDER	DIAGONAL PREF
fasp_const.h, 201	fasp.h, 185
CGPT	DLMALLOC
fasp_const.h, 201	fasp.h, 186
CLASSIC AMG	dSTRmat, 37
fasp_const.h, 201	fasp.h, 191
COARSE AC	ddenmat, 36
fasp_const.h, 202	fasp.h, 190
• —	•
COARSE_CR	diag
fasp_const.h, 202	precond_block_reservoir_data, 69
COARSE_MIS	diaginv
fasp_const.h, 202	precond_FASP_blkoil_data, 80
COARSE_RSP	precond_block_reservoir_data, 69
fasp_const.h, 202	diaginv_noscale
COARSE_RS	precond_FASP_blkoil_data, 80
fasp_const.h, 202	diaginv_S
CPFIRST	precond_FASP_blkoil_data, 80
fasp_const.h, 203	diaginvS
checkmat.c, 170	precond_block_reservoir_data, 69
fasp_check_dCSRmat, 170	dlength
fasp_check_diagdom, 171	io.c, 308
fasp_check_diagpos, 171	doxygen.h, 180
fasp_check_diagzero, 172	dvector, 38
fasp_check_iCSRmat, 173	fasp.h, 191
fasp_check_symm, 173	dvector2SAMGInput
coarsening_cr.c, 174	interface_samg.c, 274

е	ERROR_UNKNOWN
grid2d, 39	fasp_const.h, 207
ERROR ALLOC MEM	ERROR WRONG FILE
fasp_const.h, 203	fasp_const.h, 207
ERROR AMG COARSE TYPE	edges
fasp_const.h, 203	grid2d, 39
ERROR AMG COARSEING	ediri
fasp_const.h, 203	grid2d, 39
ERROR_AMG_INTERP_TYPE	efather
fasp_const.h, 203	grid2d, 39
ERROR AMG SMOOTH TYPE	eigen.c, 180
fasp_const.h, 204	_
• —	fasp_dcsr_eig, 180
ERROR_DATA_STRUCTURE	endian_convert_int
fasp_const.h, 204	convert.c, 177
ERROR_DATA_ZERODIAG	endian_convert_real
fasp_const.h, 204	convert.c, 177
ERROR_DUMMY_VAR	
fasp_const.h, 204	FALSE
ERROR_INPUT_PAR	fasp_const.h, 208
fasp_const.h, 204	FASP_GET_START_END
ERROR_LIC_TYPE	threads.c, 583
fasp_const.h, 204	FASP_GSRB
ERROR_MAT_SIZE	fasp.h, 186
fasp_const.h, 205	FASP_SUCCESS
ERROR_MISC	fasp_const.h, 208
fasp_const.h, 205	FASP_USE_ILU
ERROR_NUM_BLOCKS	fasp.h, 186
fasp_const.h, 205	FASP_VERSION
ERROR OPEN FILE	fasp.h, 186
fasp_const.h, 205	FGPT
ERROR QUAD DIM	fasp_const.h, 208
fasp_const.h, 205	FPFIRST
ERROR_QUAD_TYPE	fasp_const.h, 208
fasp const.h, 205	famg.c, 181
ERROR REGRESS	fasp_solver_famg, 181
fasp_const.h, 206	,
• —	fasp.h, 182
ERROR_SOLVER_EXIT	FASP_HEADER, 185
fasp_const.h, 206	ABS, 185
ERROR_SOLVER_ILUSETUP	count, 192
fasp_const.h, 206	dCOOmat, 190
ERROR_SOLVER_MAXIT	dCSRLmat, 190
fasp_const.h, 206	dCSRmat, 190
ERROR_SOLVER_MISC	DIAGONAL_PREF, 185
fasp_const.h, 206	DLMALLOC, 186
ERROR_SOLVER_PRECTYPE	dSTRmat, 191
fasp_const.h, 206	ddenmat, 190
ERROR_SOLVER_SOLSTAG	dvector, 191
fasp_const.h, 207	FASP_GSRB, 186
ERROR_SOLVER_STAG	FASP_USE_ILU, 186
fasp_const.h, 207	FASP_VERSION, 186
ERROR_SOLVER_TOLSMALL	GE, 186
fasp_const.h, 207	grid2d, 191
ERROR SOLVER TYPE	GT, 187
fasp_const.h, 207	iCOOmat, 191
P=* ** / **	

iCSRmat, 191	interpolation.c, 278
ILU_C_VERSION, 187	fasp_amg_interp_em
IMAP, 192	interpolation_em.c, 280
INT, 187	fasp_amg_interp_trunc
ISNAN, 187	interpolation.c, 279
idenmat, 191	fasp_amg_setup_cr
ivector, 191	amg_setup_cr.c, 91
LONGLONG, 188	fasp_amg_setup_rs
LONG, 188	amg_setup_rs.c, 92
LE, 187	fasp_amg_setup_sa
LinkList, 192	amg_setup_sa.c, 93
ListElement, 192	fasp_amg_setup_sa_bsr
LS, 188	amg_setup_sa.c, 94
MAXIMAP, 193	fasp_amg_setup_ua
MAX, 188	amg_setup_ua.c, 95
MIN, 188	fasp_amg_setup_ua_bsr
NEDMALLOC, 189	amg_setup_ua.c, 96
nx_rb, 193	fasp_amg_solve
ny_rb, 193	amg_solve.c, 97
nz_rb, 193	fasp_amg_solve_amli
PUT_INT, 189	amg_solve.c, 98
PUT_REAL, 189	fasp_amg_solve_nl_amli
pcgrid2d, 192	amg_solve.c, 98
pgrid2d, 192 REAL, 189	fasp_array_cp
RS C1, 189	array.c, 104
SHORT, 190	fasp_array_cp_nc3 array.c, 104
total_alloc_count, 193	fasp_array_cp_nc5
total_alloc_mem, 193	array.c, 105
fasp_BinarySearch	fasp_array_cp_nc7
ordering.c, 353	array.c, 105
fasp_Schwarz_data_free	fasp_array_invpermut_nb
init.c, 267	array.c, 106
fasp_Schwarz_get_block_matrix	fasp_array_null
schwarz_setup.c, 457	array.c, 106
fasp_Schwarz_setup	fasp_array_permut_nb
schwarz_setup.c, 458	array.c, 107
fasp amg amli coef	fasp_array_set
amlirecur.c, 100	array.c. 108
fasp_amg_coarsening_cr	fasp aux bbyteToldouble
coarsening cr.c, 174	convert.c, 178
fasp_amg_coarsening_rs	fasp_aux_change_endian4
coarsening_rs.c, 175	convert.c, 178
fasp amg data bsr create	fasp_aux_change_endian8
init.c, 262	convert.c, 179
fasp_amg_data_bsr_free	fasp_aux_dQuickSort
init.c, 263	ordering.c, 348
fasp_amg_data_create	fasp_aux_dQuickSortIndex
init.c, 263	ordering.c, 349
fasp_amg_data_free	fasp_aux_givens
init.c, 264	givens.c, 233
fasp_amg_interp	fasp_aux_iQuickSort
interpolation.c, 278	ordering.c, 350
fasp_amg_interp1	fasp_aux_iQuickSortIndex

ordering.c, 350	blas_bsr.c, 121
fasp_aux_merge	fasp_blas_dbsr_mxm
ordering.c, 351	blas_bsr.c, 121
fasp_aux_msort	fasp_blas_dbsr_mxv
ordering.c, 352	blas_bsr.c, 122
fasp_aux_unique	fasp_blas_dbsr_mxv_agg
ordering.c, 352	blas_bsr.c, 122
fasp_blas_array_ax	fasp_blas_dbsr_rap
blas_array.c, 110	blas_bsr.c, 123
fasp_blas_array_axpby	fasp_blas_dbsr_rap1
blas_array.c, 111	blas_bsr.c, 124
fasp_blas_array_axpy	fasp_blas_dbsr_rap_agg
blas_array.c, 111	blas_bsr.c, 124
fasp_blas_array_axpy_nc2	fasp_blas_dcsr_aAxpy
blas_smat.c, 138	blas_csr.c, 127
fasp_blas_array_axpy_nc3	fasp_blas_dcsr_aAxpy_agg
blas_smat.c, 139	blas_csr.c, 127
fasp_blas_array_axpy_nc5	fasp_blas_dcsr_add
blas_smat.c, 139	blas_csr.c, 128
fasp_blas_array_axpy_nc7	fasp_blas_dcsr_axm
blas_smat.c, 141	blas_csr.c, 128
fasp_blas_array_axpyz	fasp_blas_dcsr_bandwith
blas_array.c, 112	blas_csr.c, 129
fasp_blas_array_axpyz_nc2	fasp_blas_dcsr_mxm
blas_smat.c, 141	blas_csr.c, 129
fasp_blas_array_axpyz_nc3	fasp_blas_dcsr_mxv
blas_smat.c, 142	blas_csr.c, 130 fasp_blas_dcsr_mxv_agg
fasp_blas_array_axpyz_nc5 blas_smat.c, 143	blas_csr.c, 131
fasp_blas_array_axpyz_nc7	fasp_blas_dcsr_ptap
blas_smat.c, 143	blas_csr.c, 131
fasp_blas_array_dotprod	fasp_blas_dcsr_rap
blas_array.c, 113	blas_csr.c, 132
fasp_blas_array_norm1	fasp_blas_dcsr_rap2
blas array.c, 113	rap.c, 455
fasp_blas_array_norm2	fasp_blas_dcsr_rap4
blas_array.c, 114	blas_csr.c, 133
fasp blas array norminf	fasp_blas_dcsr_rap_agg
blas_array.c, 114	blas_csr.c, 133
fasp_blas_bdbsr_aAxpy	fasp_blas_dcsr_rap_agg1
blas blc.c, 116	blas csr.c, 134
fasp_blas_bdbsr_mxv	fasp_blas_dcsr_vmv
blas blc.c, 116	blas_csr.c, 135
fasp_blas_dblc_aAxpy	fasp blas dcsrl mxv
blas_blc.c, 117	blas csrl.c, 136
fasp_blas_dblc_mxv	fasp_blas_dstr_aAxpy
blas blc.c, 117	blas_str.c, 163
fasp_blas_dbsr_aAxpby	fasp_blas_dstr_mxv
blas bsr.c, 119	blas_str.c, 163
fasp_blas_dbsr_aAxpy	fasp_blas_dvec_axpy
blas_bsr.c, 119	blas_vec.c, 165
fasp_blas_dbsr_aAxpy_agg	fasp_blas_dvec_axpyz
blas bsr.c, 120	blas_vec.c, 166
fasp_blas_dbsr_axm	fasp_blas_dvec_dotprod
Idop_oldo_dbol_dxIII	idop_bido_dveo_dotpiod

blas_vec.c, 166	blas_smat.c, 152
fasp_blas_dvec_norm1	fasp_blas_smat_ymAx_nc2
blas_vec.c, 167	blas_smat.c, 153
fasp_blas_dvec_norm2	fasp_blas_smat_ymAx_nc3
blas_vec.c, 168	blas_smat.c, 154
fasp_blas_dvec_norminf	fasp_blas_smat_ymAx_nc5
blas_vec.c, 168	blas_smat.c, 154
fasp_blas_dvec_relerr	fasp_blas_smat_ymAx_nc7
blas_vec.c, 169	blas_smat.c, 155
fasp_blas_smat_Linfinity	fasp_blas_smat_ymAx_ns
smat.c, 464	blas_smat.c, 155
fasp_blas_smat_aAxpby	fasp_blas_smat_ymAx_ns2
blas_smat.c, 144	blas_smat.c, 156
fasp_blas_smat_add	fasp_blas_smat_ymAx_ns3
blas_smat.c, 145	blas_smat.c, 157
fasp_blas_smat_axm	fasp_blas_smat_ymAx_ns5
blas_smat.c, 145	blas_smat.c, 157
fasp_blas_smat_inv	fasp_blas_smat_ymAx_ns7
smat.c, 460	blas_smat.c, 158
fasp_blas_smat_inv_nc	fasp_blas_smat_ypAx
smat.c, 461	blas_smat.c, 159
fasp_blas_smat_inv_nc2	fasp_blas_smat_ypAx_nc2
smat.c, 461	blas_smat.c, 159
fasp_blas_smat_inv_nc3	fasp_blas_smat_ypAx_nc3
smat.c, 462	blas_smat.c, 160
fasp_blas_smat_inv_nc4	fasp_blas_smat_ypAx_nc5
smat.c, 462	blas_smat.c, 160
fasp_blas_smat_inv_nc5	fasp_blas_smat_ypAx_nc7
smat.c, 463	blas_smat.c, 162
fasp_blas_smat_inv_nc7	fasp_block.h, 194
smat.c, 463	FASPBLOCK_HEADER, 195
fasp_blas_smat_invp_nc	block_BSR, 196
smat.c, 464	block_Reservoir, 196
fasp_blas_smat_mul	block_dvector, 196
blas_smat.c, 146	block_iCSRmat, 196
fasp_blas_smat_mul_nc2	block_ivector, 196
blas_smat.c, 146	dBLCmat, 196
fasp_blas_smat_mul_nc3	dBSRmat, 197
blas_smat.c, 147	precond_block_reservoir_data, 197
fasp_blas_smat_mul_nc5	SMOOTHER_BLKOIL, 195
blas_smat.c, 148	SMOOTHER_SPETEN, 195
fasp_blas_smat_mul_nc7	fasp_check_dCSRmat
blas_smat.c, 148	checkmat.c, 170
fasp_blas_smat_mxv	fasp_check_diagdom
blas_smat.c, 149	checkmat.c, 171
fasp_blas_smat_mxv_nc2	fasp_check_diagpos
blas_smat.c, 149	checkmat.c, 171
fasp_blas_smat_mxv_nc3	fasp_check_diagzero
blas_smat.c, 150	checkmat.c, 172
fasp_blas_smat_mxv_nc5	fasp_check_iCSRmat
blas_smat.c, 150	checkmat.c, 173
fasp_blas_smat_mxv_nc7	fasp_check_symm
blas_smat.c, 152	checkmat.c, 173
fasp_blas_smat_ymAx	fasp_chkerr
	. —

message.c, 342	INTERP_STD, 210
fasp_const.h, 197	ISPT, 210
AMLI_CYCLE, 201	MAT_BLC, 210
ASCEND, 201	MAT_BSR, 211
BIGREAL, 201	MAT_CSRL, 211
CF_ORDER, 201	MAT_CSR, 211
CGPT, 201	MAT_FREE, 211
CLASSIC_AMG, 201	MAT_STR, 211
COARSE_AC, 202	MAT_SymCSR, 212
COARSE_CR, 202	MAT_bBSR, 210
COARSE_MIS, 202	MAX_AMG_LVL, 212
COARSE_RSP, 202	MAX_CRATE, 212
COARSE_RS, 202	MAX_REFINE_LVL, 212
CPFIRST, 203	MAX_RESTART, 212
DESCEND, 203	MAX STAG, 212
ERROR_ALLOC_MEM, 203	MIN CDOF, 213
ERROR AMG COARSE TYPE, 203	MIN_CRATE, 213
ERROR AMG COARSEING, 203	NL_AMLI_CYCLE, 213
ERROR_AMG_INTERP_TYPE, 203	NO ORDER, 213
ERROR AMG SMOOTH TYPE, 204	OFF, 213
ERROR DATA STRUCTURE, 204	OPENMP_HOLDS, 214
ERROR_DATA_ZERODIAG, 204	ON, 214
ERROR_DUMMY_VAR, 204	PAIRWISE, 214
ERROR INPUT PAR, 204	PREC AMG, 214
ERROR_LIC_TYPE, 204	PREC DIAG, 214
ERROR_MAT_SIZE, 205	PREC FMG, 215
ERROR_MISC, 205	PREC_ILU, 215
ERROR_NUM_BLOCKS, 205	PREC_NULL, 215
ERROR OPEN FILE, 205	PREC SCHWARZ, 215
ERROR_QUAD_DIM, 205	PRINT_ALL, 215
ERROR_QUAD_TYPE, 205	PRINT MIN, 216
ERROR REGRESS, 206	PRINT_MORE, 216
ERROR SOLVER EXIT, 206	
-	PRINT_MOST, 216
ERROR_SOLVER_ILUSETUP, 206 ERROR SOLVER MAXIT, 206	PRINT_NONE, 216
-	PRINT_SOME, 216
ERROR_SOLVER_MISC, 206	SA_AMG, 217
ERROR_SOLVER_PRECTYPE, 206	SCHWARZ_BACKWARD, 217
ERROR_SOLVER_SOLSTAG, 207	SCHWARZ_FORWARD, 217
ERROR_SOLVER_STAG, 207	SCHWARZ_SYMMETRIC, 217
ERROR_SOLVER_TOLSMALL, 207	SMALLREAL2, 218
ERROR_SOLVER_TYPE, 207	SMALLREAL, 217
ERROR_UNKNOWN, 207	SMOOTHER_CG, 218
ERROR_WRONG_FILE, 207	SMOOTHER_GSOR, 218
FALSE, 208	SMOOTHER_GS, 218
FASP_SUCCESS, 208	SMOOTHER_JACOBI, 218
FGPT, 208	SMOOTHER_L1DIAG, 218
FPFIRST, 208	SMOOTHER_POLY, 219
G0PT, 208	SMOOTHER_SGSOR, 219
ILU_MC_OMP, 209	SMOOTHER_SGS, 219
ILUk, 209	SMOOTHER_SOR, 219
ILUt, 209	SMOOTHER_SSOR, 219
ILUtp, 209	SOLVER_AMG, 219
INTERP_DIR, 209	SOLVER_BiCGstab, 220
INTERP_ENG, 210	SOLVER_CG, 220

SOLVER_DEFAULT, 220	sparse_bsr.c, 518
SOLVER_FMG, 220	fasp_dbsr_free
SOLVER_GCG, 220	sparse_bsr.c, 519
SOLVER_GCR, 221	fasp_dbsr_getblk
SOLVER_GMRES, 221	sparse_block.c, 507
SOLVER_MUMPS, 221	fasp_dbsr_getblk_dcsr
SOLVER_MinRes, 221	sparse_block.c, 508
SOLVER_PARDISO, 221	fasp_dbsr_getdiag
SOLVER_SBiCGstab, 221	sparse_bsr.c, 519
SOLVER_SCG, 222	fasp_dbsr_getdiaginv
SOLVER SGCG, 222	sparse bsr.c, 520
SOLVER_SGMRES, 222	fasp dbsr null
SOLVER_SMinRes, 222	sparse_bsr.c, 520
SOLVER_SUPERLU, 222	fasp_dbsr_perm
SOLVER SVFGMRES, 222	sparse_bsr.c, 521
— · · · · · · · · · · · · · · · · · · ·	· —
SOLVER_SVGMRES, 223	fasp_dbsr_plot
SOLVER_UMFPACK, 223	graphics.c, 243
SOLVER_VBiCGstab, 223	fasp_dbsr_print
SOLVER_VFGMRES, 223	io.c, 283
SOLVER_VGMRES, 223	fasp_dbsr_read
STAG_RATIO, 223	io.c, 284
STOP_MOD_REL_RES, 224	fasp_dbsr_subplot
STOP_REL_PRECRES, 224	graphics.c, 244
STOP_REL_RES, 224	fasp_dbsr_trans
TRUE, 224	sparse_bsr.c, 522
UA_AMG, 224	fasp_dbsr_write
UNPT, 225	io.c, 284
USERDEFINED, 225	fasp_dbsr_write_coo
V CYCLE, 225	io.c, 286
VMB, 225	fasp_dcoo1_read
W CYCLE, 225	io.c, 286
fasp_dblc_free	fasp_dcoo_alloc
sparse_block.c, 507	sparse_coo.c, 523
fasp dbsr Linfinity dcsr	fasp_dcoo_create
sparse_block.c, 509	sparse coo.c, 523
fasp_dbsr_alloc	fasp_dcoo_free
• — —	
sparse_bsr.c, 511	sparse_coo.c, 524
fasp_dbsr_cp	fasp_dcoo_print
sparse_bsr.c, 512	io.c, 287
fasp_dbsr_create	fasp_dcoo_read
sparse_bsr.c, 512	io.c, 288
fasp_dbsr_diagLU2	fasp_dcoo_shift
sparse_bsr.c, 517	sparse_coo.c, 525
fasp_dbsr_diagLU	fasp_dcoo_shift_read
sparse_bsr.c, 517	io.c, 288
fasp_dbsr_diaginv	fasp_dcoo_write
sparse_bsr.c, 513	io.c, 289
fasp_dbsr_diaginv2	fasp_dcsr_CMK_order
sparse_bsr.c, 514	ordering.c, 354
fasp_dbsr_diaginv3	fasp_dcsr_RCMK_order
sparse_bsr.c, 514	ordering.c, 354
fasp_dbsr_diaginv4	fasp_dcsr_Schwarz_backward_smoother
sparse_bsr.c, 516	schwarz_setup.c, 456
fasp_dbsr_diagpref	fasp_dcsr_Schwarz_forward_smoother

schwarz_setup.c, 457	sparse_csr.c, 539
fasp_dcsr_alloc	fasp_dcsr_write_coo
sparse_csr.c, 527	io.c, 291
fasp_dcsr_compress	fasp_dcsrl_create
sparse_csr.c, 527	sparse_csrl.c, 544
fasp_dcsr_compress_inplace	fasp_dcsrl_free
sparse_csr.c, 528	sparse_csrl.c, 545
fasp_dcsr_cp	fasp_dcsrvec1_read
sparse_csr.c, 529	io.c, 291
fasp_dcsr_create	fasp_dcsrvec1_write
sparse_csr.c, 529	io.c, 292
fasp_dcsr_diagpref	fasp_dcsrvec2_read
sparse_csr.c, 530	io.c, 293 fasp_dcsrvec2_write
fasp_dcsr_eig	io.c, 294
eigen.c, 180	fasp_dmtx_read
fasp_dcsr_free sparse_csr.c, 531	io.c, 295
fasp dcsr getblk	
sparse block.c, 509	fasp_dmtxsym_read io.c, 295
fasp_dcsr_getcol	fasp_dstr_alloc
sparse_csr.c, 531	sparse_str.c, 546
fasp_dcsr_getdiag	fasp dstr cp
sparse_csr.c, 532	sparse_str.c, 547
fasp_dcsr_multicoloring	fasp_dstr_create
sparse_csr.c, 532	sparse_str.c, 547
fasp_dcsr_null	fasp_dstr_diagscale
sparse_csr.c, 533	blas_str.c, 164
fasp_dcsr_perm	fasp_dstr_free
sparse_csr.c, 533	sparse_str.c, 548
fasp_dcsr_permz	fasp_dstr_null
sparse_csr.c, 534	sparse_str.c, 548
fasp_dcsr_plot	fasp_dstr_print
graphics.c, 245	io.c, 296
fasp_dcsr_print	fasp_dstr_read
io.c, 290	io.c, 296
fasp_dcsr_read	fasp_dstr_write
io.c, 290	io.c, 297
fasp_dcsr_regdiag	fasp dvec alloc
sparse csr.c, 535	vec.c, 587
fasp_dcsr_shift	fasp_dvec_cp
sparse_csr.c, 535	vec.c, 587
fasp_dcsr_sort	fasp_dvec_create
sparse csr.c, 536	vec.c, 587
fasp_dcsr_sortz	fasp_dvec_free
sparse_csr.c, 536	vec.c, 588
fasp_dcsr_subplot	fasp_dvec_isnan
graphics.c, 245	vec.c, 588
fasp_dcsr_symdiagscale	fasp_dvec_maxdiff
sparse_csr.c, 537	vec.c, 589
fasp_dcsr_sympat	fasp_dvec_null
sparse_csr.c, 537	vec.c, 590
fasp_dcsr_trans	fasp_dvec_print
sparse_csr.c, 538	io.c, 298
fasp_dcsr_transz	fasp_dvec_rand

vec.c, 590	sparse_csr.c, 540
fasp_dvec_read	fasp_icsr_free
io.c, 298	sparse_csr.c, 540
fasp_dvec_set	fasp_icsr_null
vec.c, 591	sparse_csr.c, 542
fasp_dvec_symdiagscale	fasp_icsr_trans
vec.c, 592	sparse_csr.c, 542
fasp_dvec_write	fasp_iden_free
io.c, 299	smat.c, 465
fasp_dvecind_read	fasp_ilu_data_alloc
io.c, 299	init.c, 264
fasp_dvecind_write	fasp_ilu_data_free
io.c, 300	init.c, 265
fasp_famg_solve	fasp_ilu_data_null
amg_solve.c, 99	init.c, 265
fasp_format_dblc_dcsr	fasp_ilu_dbsr_setup
formats.c, 228	ilu_setup_bsr.c, 256
fasp_format_dbsr_dcoo	fasp_ilu_dbsr_setup_levsch_omp
formats.c, 228	ilu_setup_bsr.c, 256
fasp_format_dbsr_dcsr formats.c, 229	fasp_ilu_dbsr_setup_mc_omp
•	ilu_setup_bsr.c, 257
fasp_format_dcoo_dcsr	fasp_ilu_dbsr_setup_omp
formats.c, 229	ilu_setup_bsr.c, 258
fasp_format_dcsr_dbsr formats.c, 230	fasp_ilu_dcsr_setup
fasp_format_dcsr_dcoo	ilu_setup_csr.c, 259 fasp_ilu_dstr_setup0
formats.c, 230	ilu_setup_str.c, 260
fasp_format_dcsrl_dcsr	fasp_ilu_dstr_setup1
formats.c, 231	ilu_setup_str.c, 261
fasp_format_dstr_dbsr	fasp_iluk
formats.c, 232	ilu.c, 248
fasp_format_dstr_dcsr	fasp_ilut
formats.c, 232	ilu.c, 248
fasp_fwrapper_amg_	fasp_ilutp
wrapper.c, 595	ilu.c, 249
fasp_fwrapper_krylov_amg_	fasp_ivec_alloc
wrapper.c, 596	vec.c, 592
fasp_gauss2d	
	tasp ivec create
•	fasp_ivec_create vec.c, 593
quadrature.c, 453	tasp_ivec_create vec.c, 593 fasp ivec free
•	vec.c, 593
quadrature.c, 453 fasp_generate_diaginv_block	vec.c, 593 fasp_ivec_free
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494	vec.c, 593 fasp_ivec_free vec.c, 593
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246 fasp_hb_read	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302 fasp_ivec_set
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246 fasp_hb_read io.c, 301	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302 fasp_ivec_set vec.c, 594
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246 fasp_hb_read io.c, 301 fasp_iarray_cp	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302 fasp_ivec_set vec.c, 594 fasp_ivec_write
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246 fasp_hb_read io.c, 301 fasp_iarray_cp array.c, 108	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302 fasp_ivec_set vec.c, 594 fasp_ivec_write io.c, 303
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246 fasp_hb_read io.c, 301 fasp_iarray_cp array.c, 108 fasp_iarray_set	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302 fasp_ivec_set vec.c, 594 fasp_ivec_write io.c, 303 fasp_ivecind_read
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246 fasp_hb_read io.c, 301 fasp_iarray_cp array.c, 108 fasp_iarray_set array.c, 109	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302 fasp_ivec_set vec.c, 594 fasp_ivec_write io.c, 303 fasp_ivecind_read io.c, 303
quadrature.c, 453 fasp_generate_diaginv_block smoother_str.c, 494 fasp_gettime timing.c, 585 fasp_grid2d_plot graphics.c, 246 fasp_hb_read io.c, 301 fasp_iarray_cp array.c, 108 fasp_iarray_set array.c, 109 fasp_icsr_cp	vec.c, 593 fasp_ivec_free vec.c, 593 fasp_ivec_print io.c, 301 fasp_ivec_read io.c, 302 fasp_ivec_set vec.c, 594 fasp_ivec_write io.c, 303 fasp_ivecind_read io.c, 303 fasp_matrix_read

in a 005	
io.c, 305	parameters.c, 365
fasp_matrix_write	fasp_param_solver_init
io.c, 305	parameters.c, 366
fasp_mem_calloc	fasp_param_solver_print
memory.c, 337	parameters.c, 366
fasp_mem_check	fasp_param_solver_set
memory.c, 337	parameters.c, 367
fasp_mem_dcsr_check	fasp_poisson_fgmg_1D
memory.c, 338	gmg_poisson.c, 235
fasp_mem_free	fasp_poisson_fgmg_2D
memory.c, 338	gmg_poisson.c, 236
fasp_mem_iludata_check	fasp_poisson_fgmg_3D
memory.c, 339	gmg_poisson.c, 236
fasp_mem_realloc	fasp_poisson_gmg_1D
memory.c, 340	gmg_poisson.c, 238
fasp_mem_usage	fasp_poisson_gmg_2D
memory.c, 340	gmg_poisson.c, 239
fasp_multicolors_independent_set	fasp_poisson_gmg_3D
ordering.c, 355	gmg_poisson.c, 239
fasp_param_Schwarz_init	fasp_poisson_pcg_gmg_1D
parameters.c, 364	gmg_poisson.c, 240
fasp_param_Schwarz_print	fasp_poisson_pcg_gmg_2D
parameters.c, 364	gmg_poisson.c, 241
fasp_param_Schwarz_set	fasp_poisson_pcg_gmg_3D
parameters.c, 365	gmg_poisson.c, 242
fasp_param_amg_init	fasp_precond_Schwarz
parameters.c, 357	precond_csr.c, 434
fasp_param_amg_print	fasp_precond_amg
parameters.c, 357	precond_csr.c, 426
fasp_param_amg_set	fasp_precond_amg_nk
parameters.c, 359	precond_csr.c, 427
fasp_param_amg_to_prec	fasp_precond_amli
parameters.c, 359	precond_csr.c, 427
fasp_param_amg_to_prec_bsr	fasp_precond_block_SGS_3
parameters.c, 360	precond_blc.c, 412
fasp_param_check	fasp_precond_block_SGS_3_amg
input.c, 268	precond_blc.c, 412
fasp_param_ilu_init	fasp_precond_block_diag_3
parameters.c, 360	precond_blc.c, 407
fasp_param_ilu_print	fasp_precond_block_diag_3_amg
parameters.c, 361	precond_blc.c, 407
fasp_param_ilu_set	fasp_precond_block_diag_4
parameters.c, 361	precond_blc.c, 408
fasp_param_init	fasp_precond_block_lower_3
parameters.c, 362	precond_blc.c, 408
fasp_param_input	fasp_precond_block_lower_3_amg
input.c, 268	precond_blc.c, 410
fasp_param_input_init	fasp_precond_block_lower_4
parameters.c, 362	precond_blc.c, 410
fasp_param_prec_to_amg	fasp_precond_block_upper_3
parameters.c, 363	precond_blc.c, 414
fasp_param_prec_to_amg_bsr	fasp_precond_block_upper_3_amg
parameters.c, 363	precond_blc.c, 414
fasp_param_set	fasp_precond_data_null

init.c, 266	init.c, 266
fasp_precond_dbsr_amg	fasp_precond_setup
precond_bsr.c, 417	precond_csr.c, 434
fasp_precond_dbsr_amg_nk	fasp_precond_sweeping
precond_bsr.c, 418	precond_blc.c, 416
fasp_precond_dbsr_diag	fasp_qsplit
precond_bsr.c, 418	ilu.c, 251
fasp_precond_dbsr_diag_nc2	fasp_quad2d
precond_bsr.c, 420	quadrature.c, 454
fasp_precond_dbsr_diag_nc3	fasp_set_GS_threads
precond_bsr.c, 421	threads.c, 584
fasp_precond_dbsr_diag_nc5	fasp_smat_identity
precond_bsr.c, 421	smat.c, 465
fasp_precond_dbsr_diag_nc7	fasp_smat_identity_nc2
precond_bsr.c, 422	smat.c, 466
fasp_precond_dbsr_ilu	fasp_smat_identity_nc3
precond_bsr.c, 423	smat.c, 466
fasp_precond_dbsr_ilu_levsch_omp	fasp_smat_identity_nc5
precond_bsr.c, 424	smat.c, 467
fasp_precond_dbsr_ilu_mc_omp	fasp_smat_identity_nc7
precond_bsr.c, 424	smat.c, 467
fasp_precond_dbsr_nl_amli	fasp_smat_lu_decomp
precond_bsr.c, 425	lu.c, 334
fasp_precond_diag	fasp_smat_lu_solve
precond_csr.c, 429	lu.c, 335
fasp_precond_dstr_blockgs	fasp_smoother_dbsr_gs
precond_str.c, 436	smoother_bsr.c, 469
fasp_precond_dstr_diag	fasp_smoother_dbsr_gs1
precond_str.c, 436	smoother_bsr.c, 470
fasp_precond_dstr_ilu0	fasp_smoother_dbsr_gs_ascend smoother_bsr.c, 470
precond_str.c, 437	
fasp_precond_dstr_ilu0_backward precond_str.c, 437	fasp_smoother_dbsr_gs_ascend1 smoother_bsr.c, 471
fasp_precond_dstr_ilu0_forward	fasp_smoother_dbsr_gs_descend
precond_str.c, 438	smoother bsr.c, 472
fasp precond dstr ilu1	fasp_smoother_dbsr_gs_descend1
precond_str.c, 438	smoother_bsr.c, 472
fasp precond dstr ilu1 backward	fasp smoother dbsr gs order1
precond str.c, 440	smoother bsr.c, 473
fasp_precond_dstr_ilu1_forward	fasp smoother dbsr gs order2
precond_str.c, 440	smoother bsr.c, 474
fasp_precond_famg	fasp_smoother_dbsr_ilu
precond_csr.c, 429	smoother bsr.c, 474
fasp precond free	fasp smoother dbsr jacobi
precond_csr.c, 431	smoother bsr.c, 475
fasp_precond_ilu	fasp_smoother_dbsr_jacobi1
precond_csr.c, 431	smoother bsr.c, 475
fasp_precond_ilu_backward	fasp_smoother_dbsr_jacobi_setup
precond_csr.c, 432	smoother bsr.c, 476
fasp_precond_ilu_forward	fasp_smoother_dbsr_sor
precond_csr.c, 433	smoother_bsr.c, 477
fasp precond nl amli	fasp smoother dbsr sor1
precond_csr.c, 433	smoother bsr.c, 477
fasp_precond_null	fasp_smoother_dbsr_sor_ascend

smoother_bsr.c, 478	smoother_str.c, 503
fasp_smoother_dbsr_sor_descend	fasp_smoother_dstr_sor_cf
smoother_bsr.c, 479	smoother_str.c, 503
fasp_smoother_dbsr_sor_order	fasp_smoother_dstr_sor_descend
smoother_bsr.c, 479	smoother_str.c, 505
fasp_smoother_dcsr_L1diag	fasp_smoother_dstr_sor_order
smoother_csr.c, 486	smoother_str.c, 506
fasp_smoother_dcsr_gs	fasp_solver_amg
smoother_csr.c, 482	amg.c, 89
fasp_smoother_dcsr_gs_cf	fasp_solver_amli
smoother_csr.c, 482	amlirecur.c, 101
fasp_smoother_dcsr_gs_rb3d	fasp_solver_dblc_itsolver
smoother_csr.c, 483	itsolver_blc.c, 309
fasp_smoother_dcsr_gscr	fasp_solver_dblc_krylov
smoother_csr_cr.c, 489	itsolver_blc.c, 310
fasp_smoother_dcsr_ilu	fasp_solver_dblc_krylov_block_3
smoother_csr.c, 484	itsolver_blc.c, 311
fasp_smoother_dcsr_jacobi	fasp_solver_dblc_krylov_block_4
smoother_csr.c, 484	itsolver_blc.c, 311
fasp_smoother_dcsr_kaczmarz	fasp_solver_dblc_krylov_sweeping
smoother_csr.c, 485	itsolver_blc.c, 312
fasp_smoother_dcsr_poly	fasp_solver_dblc_pbcgs
smoother_csr_poly.c, 491	pbcgs.c, 370
fasp_smoother_dcsr_poly_old	fasp_solver_dblc_pcg
smoother_csr_poly.c, 491	pcg.c, 381
fasp_smoother_dcsr_sgs	fasp_solver_dblc_pgmres
smoother_csr.c, 486 fasp_smoother_dcsr_sor	pgmres.c, 394
smoother_csr.c, 487	fasp_solver_dblc_pminres pminres.c, 401
fasp_smoother_dcsr_sor_cf	fasp_solver_dblc_pvbcgs
smoother_csr.c, 488	pbcgs.c, 370
fasp_smoother_dstr_gs	fasp_solver_dblc_pvfgmres
smoother_str.c, 495	pvfgmres.c, 443
fasp_smoother_dstr_gs1	fasp_solver_dblc_pvgmres
smoother_str.c, 495	pvgmres.c, 448
fasp_smoother_dstr_gs_ascend	fasp_solver_dblc_spbcgs
smoother_str.c, 496	spbcgs.c, 561
fasp_smoother_dstr_gs_cf	fasp_solver_dblc_spcg
smoother_str.c, 497	spcg.c, 566
fasp_smoother_dstr_gs_descend	fasp_solver_dblc_spgmres
smoother_str.c, 497	spgmres.c, 570
fasp_smoother_dstr_gs_order	fasp_solver_dblc_spminres
smoother str.c, 499	spminres.c, 575
fasp_smoother_dstr_jacobi	fasp_solver_dblc_spvgmres
smoother_str.c, 499	spvgmres.c, 578
fasp_smoother_dstr_jacobi1	fasp_solver_dbsr_itsolver
smoother str.c, 500	itsolver bsr.c, 314
fasp_smoother_dstr_schwarz	fasp_solver_dbsr_krylov
smoother_str.c, 501	itsolver_bsr.c, 314
fasp_smoother_dstr_sor	fasp_solver_dbsr_krylov_amg
smoother_str.c, 501	itsolver_bsr.c, 315
fasp_smoother_dstr_sor1	fasp_solver_dbsr_krylov_amg_nk
smoother_str.c, 502	itsolver bsr.c, 316
fasp_smoother_dstr_sor_ascend	fasp_solver_dbsr_krylov_diag
.acp_01100t1101_00t1_00t_a000110	iacp_convoi_aboi_in yiov_alag

itsolver_bsr.c, 317	pbcgs.c, 374
fasp_solver_dbsr_krylov_ilu	fasp_solver_dcsr_pvfgmres
itsolver_bsr.c, 317	pvfgmres.c, 445
fasp_solver_dbsr_krylov_nk_amg	fasp_solver_dcsr_pvgmres
itsolver_bsr.c, 319	pvgmres.c, 449
fasp_solver_dbsr_pbcgs	fasp_solver_dcsr_spbcgs
pbcgs.c, 371	spbcgs.c, 563
fasp_solver_dbsr_pcg	fasp_solver_dcsr_spcg
pcg.c, 382	spcg.c, 567
fasp_solver_dbsr_pgmres	fasp_solver_dcsr_spgmres
pgmres.c, 395	spgmres.c, 571
fasp_solver_dbsr_pvbcgs	fasp_solver_dcsr_spminres
pbcgs.c, 372	spminres.c, 576
fasp_solver_dbsr_pvfgmres	fasp_solver_dcsr_spvgmres
pvfgmres.c, 444	spvgmres.c, 581
fasp_solver_dbsr_pvgmres	fasp_solver_dstr_itsolver
pvgmres.c, 449	itsolver_str.c, 330
fasp_solver_dbsr_spbcgs	fasp_solver_dstr_krylov
spbcgs.c, 562	itsolver_str.c, 331
fasp_solver_dbsr_spgmres	fasp_solver_dstr_krylov_blockgs
spgmres.c, 570	itsolver_str.c, 331
fasp_solver_dbsr_spvgmres	fasp_solver_dstr_krylov_diag
spvgmres.c, 580	itsolver_str.c, 332
fasp_solver_dcsr_itsolver	fasp_solver_dstr_krylov_ilu
itsolver_csr.c, 321	itsolver_str.c, 333
fasp_solver_dcsr_krylov	fasp_solver_dstr_pbcgs
itsolver_csr.c, 321	pbcgs.c, 374
fasp_solver_dcsr_krylov_Schwarz	fasp_solver_dstr_pcg
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326	fasp_solver_dstr_pcg pcg.c, 384
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu M	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr pgcr.c, 391	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres spygmres.c, 582
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr pgcr.c, 391 fasp_solver_dcsr_pgcr1	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres spvgmres.c, 582 fasp_solver_famg
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr pgcr.c, 391 fasp_solver_dcsr_pgcr1 pgcr.c, 392	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres spvgmres.c, 582 fasp_solver_famg famg.c, 181
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr pgcr.c, 391 fasp_solver_dcsr_pgcr1 pgcr.c, 392 fasp_solver_dcsr_pgmres	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres spymres.c, 582 fasp_solver_famg famg.c, 181 fasp_solver_fmgcycle
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr pgcr.c, 391 fasp_solver_dcsr_pgcr1 pgcr.c, 392 fasp_solver_dcsr_pgmres pgmres.c, 396	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres spymres.c, 582 fasp_solver_famg famg.c, 181 fasp_solver_fmgcycle fmgcycle.c, 226
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr pgcr.c, 391 fasp_solver_dcsr_pgmres pgmres.c, 396 fasp_solver_dcsr_pminres	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres spygmres.c, 582 fasp_solver_famg famg.c, 181 fasp_solver_itsolver
fasp_solver_dcsr_krylov_Schwarz itsolver_csr.c, 326 fasp_solver_dcsr_krylov_amg itsolver_csr.c, 322 fasp_solver_dcsr_krylov_amg_nk itsolver_csr.c, 323 fasp_solver_dcsr_krylov_diag itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu itsolver_csr.c, 324 fasp_solver_dcsr_krylov_ilu_M itsolver_csr.c, 325 fasp_solver_dcsr_pbcgs pbcgs.c, 373 fasp_solver_dcsr_pcg pcg.c, 383 fasp_solver_dcsr_pgcg pgcg.c, 388 fasp_solver_dcsr_pgcr pgcr.c, 391 fasp_solver_dcsr_pgcr1 pgcr.c, 392 fasp_solver_dcsr_pgmres pgmres.c, 396	fasp_solver_dstr_pcg pcg.c, 384 fasp_solver_dstr_pgmres pgmres.c, 397 fasp_solver_dstr_pminres pminres.c, 402 fasp_solver_dstr_pvbcgs pbcgs.c, 375 fasp_solver_dstr_pvgmres pvgmres.c, 450 fasp_solver_dstr_spbcgs spbcgs.c, 564 fasp_solver_dstr_spcg spcg.c, 568 fasp_solver_dstr_spgmres spgmres.c, 572 fasp_solver_dstr_spminres spminres.c, 577 fasp_solver_dstr_spvgmres spymres.c, 582 fasp_solver_famg famg.c, 181 fasp_solver_fmgcycle fmgcycle.c, 226

itsolver_mf.c, 328	sparse_util.c, 555
fasp_solver_krylov	fasp_sparse_rapms_
itsolver_mf.c, 329	sparse_util.c, 556
fasp_solver_mgcycle	fasp_sparse_wta_
mgcycle.c, 345	sparse_util.c, 557
fasp_solver_mgcycle_bsr	fasp_sparse_wtams_
mgcycle.c, 346	sparse_util.c, 557
fasp_solver_mgrecur	fasp_sparse_ytx_
mgrecur.c, 347	sparse_util.c, 558
fasp_solver_mumps	fasp_sparse_ytxbig_
interface_mumps.c, 270	sparse_util.c, 559
fasp_solver_mumps_steps	fasp_srtr
interface_mumps.c, 270	ilu.c, 251
fasp_solver_nl_amli	fasp_symbfactor
amlirecur.c, 101	ilu.c, 252
fasp_solver_nl_amli_bsr	fasp_topological_sorting_ilu
amlirecur.c, 102	ordering.c, 355
fasp_solver_pardiso	fasp_vector_read
interface_pardiso.c, 272	io.c, 306
fasp_solver_pbcgs	fasp_vector_write
pbcgs_mf.c, 378	io.c, 307
fasp_solver_pcg	fasp_wrapper_dbsr_krylov_amg
pcg_mf.c, 386	wrapper.c, 597
fasp_solver_pgcg	fasp_wrapper_dcoo_dbsr_krylov_amg
pgcg_mf.c, 389	wrapper.c, 598
fasp_solver_pgmres	fmgcycle.c, 226
pgmres_mf.c, 398 fasp_solver_pminres	fasp_solver_fmgcycle, 226 formats.c, 227
pminres_mf.c, 405	fasp_format_dblc_dcsr, 228
fasp_solver_pvbcgs	fasp_format_dbsr_dcoo, 228
pbcgs_mf.c, 379	fasp_format_dbsr_dcsr, 229
fasp_solver_pvfgmres	fasp_format_dcoo_dcsr, 229
pvfgmres_mf.c, 446	fasp_format_dcsr_dbsr, 230
fasp_solver_pvgmres	fasp_format_dcsr_dcoo, 230
pvgmres mf.c, 452	fasp format dcsrl dcsr, 231
fasp_solver_superlu	fasp format dstr dbsr, 232
interface_superlu.c, 275	fasp_format_dstr_dcsr, 232
fasp_solver_umfpack	1409_10111141_4011_40011, 202
interface_umfpack.c, 276	G0PT
fasp_sparse_MIS	fasp_const.h, 208
sparse_util.c, 554	GE
fasp_sparse_aat_	fasp.h, 186
sparse util.c, 550	givens.c, 233
fasp_sparse_abyb_	fasp_aux_givens, 233
sparse_util.c, 551	gmg_poisson.c, 234
fasp_sparse_abybms_	fasp_poisson_fgmg_1D, 235
sparse_util.c, 552	fasp_poisson_fgmg_2D, 236
fasp_sparse_aplbms_	fasp_poisson_fgmg_3D, 236
sparse_util.c, 552	fasp_poisson_gmg_1D, 238
fasp_sparse_aplusb_	fasp_poisson_gmg_2D, 239
sparse_util.c, 553	fasp_poisson_gmg_3D, 239
fasp_sparse_iit_	fasp_poisson_pcg_gmg_1D, 240
sparse_util.c, 554	fasp_poisson_pcg_gmg_2D, 241
fasp_sparse_rapcmp_	fasp_poisson_pcg_gmg_3D, 242
	·

graphics.c, 243	fasp_const.h, 209
fasp_dbsr_plot, 243	INTERP_ENG
fasp_dbsr_subplot, 244	fasp_const.h, 210
fasp_dcsr_plot, 245	INTERP_STD
fasp_dcsr_subplot, 245	fasp_const.h, 210
fasp_grid2d_plot, 246	INT
grid2d, 38	fasp.h, 187
e, 39	ISNAN
edges, 39	fasp.h, 187
ediri, 39	ISPT
efather, 39	fasp_const.h, 210
fasp.h, 191	idenmat, 43
p, 39	fasp.h, 191
pdiri, 40	ilength
pfather, 40	io.c, 308
s, 40	ilu.c, 247
t, 40	fasp_iluk, 248
tfather, 40	fasp_ilut, 248
triangles, 40	fasp_ilutp, 249
vertices, 41	fasp_qsplit, 251
GT	fasp_srtr, 251
fasp.h, 187	fasp_symbfactor, 252
	ilu_setup_bsr.c, 255
ICNTL	fasp_ilu_dbsr_setup, 256
interface_mumps.c, 270	fasp_ilu_dbsr_setup_levsch_omp, 256
iCOOmat, 41	fasp_ilu_dbsr_setup_mc_omp, 257
fasp.h, 191	fasp_ilu_dbsr_setup_omp, 258
iCSRmat, 42	ilu_setup_csr.c, 259
fasp.h, 191	fasp_ilu_dcsr_setup, 259
ILU_C_VERSION	ilu_setup_str.c, 260
fasp.h, 187	fasp_ilu_dstr_setup0, 260
ILU_MC_OMP	fasp_ilu_dstr_setup1, 261
fasp_const.h, 209	ilu_solve_omp
ILU_data, 43	smoother bsr.c, 480
ILU_droptol	inifile
input param, 52	input param, 53
ILU_lfil	init.c, 262
input_param, 52	fasp_Schwarz_data_free, 267
ILU_param, 45	fasp_amg_data_bsr_create, 262
ILU_permtol	fasp_amg_data_bsr_free, 263
input_param, 52	fasp_amg_data_create, 263
ILU_relax	fasp_amg_data_free, 264
input param, 53	fasp ilu data alloc, 264
ILU type	fasp_ilu_data_free, 265
input_param, 53	fasp_ilu_data_null, 265
ILUk	fasp_precond_data_null, 266
fasp_const.h, 209	fasp precond null, 266
ILUt	input.c, 267
fasp_const.h, 209	fasp_param_check, 268
ILUtp	fasp_param_input, 268
fasp_const.h, 209	input_param, 45
IMAP	AMG_ILU_levels, 48
fasp.h, 192	AMG Schwarz levels, 50
INTERP_DIR	AMG_aggregation_type, 47
_	333

AMG_aggressive_level, 47	fasp_solver_pardiso, 272
AMG_aggressive_path, 47	interface_samg.c, 273
AMG_amli_degree, 47	dCSRmat2SAMGInput, 274
AMG_coarse_dof, 47	dvector2SAMGInput, 274
AMG_coarse_scaling, 48	interface_superlu.c, 275
AMG_coarse_solver, 48	fasp_solver_superlu, 275
AMG_coarsening_type, 48	interface_umfpack.c, 276
AMG_cycle_type, 48	fasp_solver_umfpack, 276
AMG_interpolation_type, 48	interpolation.c, 277
AMG_levels, 49	fasp_amg_interp, 278
AMG_max_aggregation, 49	fasp_amg_interp1, 278
AMG_max_row_sum, 49	fasp_amg_interp_trunc, 279 interpolation_em.c, 280
AMG_maxit, 49	
AMG_nl_amli_krylov_type, 49	fasp_amg_interp_em, 280
AMG_pair_number, 49 AMG_polynomial_degree, 50	io.c, 281 dlength, 308
AMG_postsmooth_iter, 50	fasp_dbsr_print, 283
AMG_postsmooth_iter, 50 AMG_presmooth_iter, 50	fasp_dbsr_read, 284
AMG_quality_bound, 50	fasp_dbsr_write, 284
AMG_quality_bound, 50 AMG_relaxation, 50	fasp_dbsr_write_coo, 286
AMG_smooth_filter, 51	fasp_dcoo1_read, 286
AMG_smooth_inter, 51 AMG smooth order, 51	fasp_dcoo_print, 287
AMG_smoother, 51	fasp_dcoo_read, 288
AMG_strong_coupled, 51	fasp_dcoo_shift_read, 288
AMG_strong_threshold, 51	fasp_dcoo_write, 289
AMG_tentative_smooth, 51	fasp_dcsr_print, 290
AMG_tol, 52	fasp_dcsr_read, 290
AMG_truncation_threshold, 52	fasp_dcsr_write_coo, 291
AMG type, 52	fasp_dcsrvec1_read, 291
ILU_droptol, 52	fasp_dcsrvec1_write, 292
ILU_lfil, 52	fasp_dcsrvec2_read, 293
ILU_permtol, 52	fasp_dcsrvec2_write, 294
ILU relax, 53	fasp dmtx read, 295
ILU type, 53	fasp dmtxsym read, 295
inifile, 53	fasp_dstr_print, 296
itsolver_maxit, 53	fasp dstr read, 296
itsolver_tol, 53	fasp_dstr_write, 297
output_type, 53	fasp_dvec_print, 298
precond_type, 54	fasp_dvec_read, 298
print_level, 54	fasp_dvec_write, 299
problem_num, 54	fasp_dvecind_read, 299
restart, 54	fasp_dvecind_write, 300
Schwarz_blksolver, 54	fasp_hb_read, 301
Schwarz_maxlvl, 54	fasp_ivec_print, 301
Schwarz_mmsize, 55	fasp_ivec_read, 302
Schwarz_type, 55	fasp_ivec_write, 303
solver_type, 55	fasp_ivecind_read, 303
stop_type, 55	fasp_matrix_read, 304
workdir, 55	fasp_matrix_read_bin, 305
interface_mumps.c, 269	fasp_matrix_write, 305
fasp_solver_mumps, 270	fasp_vector_read, 306
fasp_solver_mumps_steps, 270	fasp_vector_write, 307
ICNTL, 270	ilength, 308
interface_pardiso.c, 272	itsolver_blc.c, 309

fasp_solver_dblc_itsolver, 309	fasp.h, 188
fasp_solver_dblc_krylov, 310	LU_diag
fasp_solver_dblc_krylov_block_3, 311	precond_block_data, 66
fasp_solver_dblc_krylov_block_4, 311	LU_P
fasp_solver_dblc_krylov_sweeping, 312	precond_FASP_blkoil_data, 80
itsolver_bsr.c, 313	LU_S
fasp_solver_dbsr_itsolver, 314	precond_FASP_blkoil_data, 80
fasp_solver_dbsr_krylov, 314	LE
fasp_solver_dbsr_krylov_amg, 315	fasp.h, 187
fasp_solver_dbsr_krylov_amg_nk, 316	Link, 58
fasp_solver_dbsr_krylov_diag, 317	LinkList
fasp_solver_dbsr_krylov_ilu, 317	fasp.h, 192
fasp_solver_dbsr_krylov_nk_amg, 319	linked_list, 59
itsolver_csr.c, 320	ListElement
fasp_solver_dcsr_itsolver, 321	fasp.h, 192
fasp_solver_dcsr_krylov, 321	local_LU
fasp_solver_dcsr_krylov_Schwarz, 326	precond_sweeping_data, 85
fasp_solver_dcsr_krylov_amg, 322	local_A
fasp_solver_dcsr_krylov_amg_nk, 323	precond_sweeping_data, 85
fasp_solver_dcsr_krylov_diag, 324	local index
fasp_solver_dcsr_krylov_ilu, 324	precond_sweeping_data, 85
fasp_solver_dcsr_krylov_ilu_M, 325	LS
itsolver_maxit	fasp.h, 188
input_param, 53	lu.c, 334
itsolver_mf.c, 327	fasp_smat_lu_decomp, 334
fasp_solver_itsolver, 327	fasp_smat_lu_solve, 335
fasp_solver_itsolver_init, 328	1 /
fasp_solver_krylov, 329	MAT BLC
fasp_solver_krylov, 329 itsolver_param, 56	MAT_BLC fasp const.h. 210
· –	fasp_const.h, 210
itsolver_param, 56	fasp_const.h, 210 MAT_BSR
itsolver_param, 56 itsolver_type, 56	fasp_const.h, 210 MAT_BSR fasp_const.h, 211
itsolver_param, 56 itsolver_type, 56 maxit, 56	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_FREE
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SymCSR fasp_const.h, 212
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type itsolver_param, 56	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SymCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE fasp_const.h, 212
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type itsolver_param, 56 ivector, 58 fasp.h, 191	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE fasp_const.h, 212 MAX_REFINE_LVL
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type itsolver_param, 56 ivector, 58 fasp.h, 191 JA	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SymCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE fasp_const.h, 212 MAX_REFINE_LVL fasp_const.h, 212
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type itsolver_param, 56 ivector, 58 fasp.h, 191	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SymCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE fasp_const.h, 212 MAX_REFINE_LVL fasp_const.h, 212 MAX_RESTART
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type itsolver_param, 56 ivector, 58 fasp.h, 191 JA dBSRmat, 33	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE fasp_const.h, 212 MAX_REFINE_LVL fasp_const.h, 212 MAX_RESTART fasp_const.h, 212
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type itsolver_param, 56 ivector, 58 fasp.h, 191 JA dBSRmat, 33 LONGLONG	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SymCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE fasp_const.h, 212 MAX_REFINE_LVL fasp_const.h, 212 MAX_RESTART fasp_const.h, 212 MAX_RESTART fasp_const.h, 212 MAX_STAG
itsolver_param, 56 itsolver_type, 56 maxit, 56 precond_type, 57 print_level, 57 restart, 57 stop_type, 57 tol, 57 itsolver_str.c, 330 fasp_solver_dstr_itsolver, 330 fasp_solver_dstr_krylov, 331 fasp_solver_dstr_krylov_blockgs, 331 fasp_solver_dstr_krylov_diag, 332 fasp_solver_dstr_krylov_ilu, 333 itsolver_tol input_param, 53 itsolver_type itsolver_param, 56 ivector, 58 fasp.h, 191 JA dBSRmat, 33	fasp_const.h, 210 MAT_BSR fasp_const.h, 211 MAT_CSRL fasp_const.h, 211 MAT_CSR fasp_const.h, 211 MAT_FREE fasp_const.h, 211 MAT_STR fasp_const.h, 211 MAT_SYMCSR fasp_const.h, 212 MAT_bBSR fasp_const.h, 210 MAX_AMG_LVL fasp_const.h, 212 MAX_CRATE fasp_const.h, 212 MAX_REFINE_LVL fasp_const.h, 212 MAX_RESTART fasp_const.h, 212

fasp.h, 193	neigh
MAX	precond_FASP_blkoil_data, 81
fasp.h, 188	NumLayers
MIN_CDOF	precond_sweeping_data, 85
fasp_const.h, 213	nx_rb
MIN_CRATE	fasp.h, 193
fasp_const.h, 213	ny_rb
MIN	fasp.h, 193
fasp.h, 188	nz_rb
mallinfo, 60	fasp.h, 193
malloc_chunk, 60	OFF
malloc_params, 61	•
malloc_segment, 61	fasp_const.h, 213 OPENMP HOLDS
malloc_state, 62	-
malloc_tree_chunk, 62	fasp_const.h, 214 ON
maxit	_
itsolver_param, 56	fasp_const.h, 214
precond_FASP_blkoil_data, 81	order
memory.c, 336	precond_FASP_blkoil_data, 81
fasp_mem_calloc, 337	precond_block_reservoir_data, 70
fasp_mem_check, 337	ordering.c, 348
fasp_mem_dcsr_check, 338	fasp_BinarySearch, 353
fasp_mem_free, 338	fasp_aux_dQuickSort, 348
fasp_mem_iludata_check, 339	fasp_aux_dQuickSortIndex, 349
fasp_mem_realloc, 340	fasp_aux_iQuickSort, 350
fasp_mem_usage, 340	fasp_aux_iQuickSortIndex, 350
total_alloc_count, 341	fasp_aux_merge, 351
total_alloc_mem, 341	fasp_aux_msort, 352
message.c, 341	fasp_aux_unique, 352
fasp_chkerr, 342	fasp_dcsr_CMK_order, 354
print_amgcomplexity, 342	fasp_dcsr_RCMK_order, 354
print amgcomplexity bsr, 343	fasp_multicolors_independent_set, 355
print_cputime, 343	fasp_topological_sorting_ilu, 355
print_itinfo, 344	output_type
print_message, 344	input_param, 53
mgcycle.c, 345	n
fasp_solver_mgcycle, 345	p
fasp_solver_mgcycle_bsr, 346	grid2d, 39 PAIRWISE
mgl	
precond block data, 67	fasp_const.h, 214
mgl data	PREC_AMG
precond_FASP_blkoil_data, 81	fasp_const.h, 214 PREC DIAG
mgrecur.c, 346	-
fasp_solver_mgrecur, 347	fasp_const.h, 214
Mumps_data, 63	PREC_FMG
mxv matfree, 63	fasp_const.h, 215
mxv_mathee, 63	PREC_ILU
NEDMALLOC	fasp_const.h, 215
NEDMALLOC	PREC_NULL
fasp.h, 189	fasp_const.h, 215
NL_AMLI_CYCLE	PREC_SCHWARZ
fasp_const.h, 213	fasp_const.h, 215
NO_ORDER	PRINT_ALL
fasp_const.h, 213	fasp_const.h, 215
nedmallinfo, 64	PRINT_MIN

fasp_const.h, 216	fasp.h, 192
PRINT_MORE	pdiri
fasp_const.h, 216	grid2d, 40
PRINT_MOST	perf_idx
fasp_const.h, 216	precond_FASP_blkoil_data, 81
PRINT_NONE	precond_block_reservoir_data, 70
fasp_const.h, 216	perf_neigh
PRINT_SOME	precond_FASP_blkoil_data, 81
fasp_const.h, 216	pfather
PUT_INT	grid2d, 40
fasp.h, 189	pgcg.c, 387
PUT_REAL	fasp_solver_dcsr_pgcg, 388
fasp.h, 189	pgcg_mf.c, 388
parameters.c, 356	fasp_solver_pgcg, 389
fasp_param_Schwarz_init, 364	pgcr.c, 390
fasp_param_Schwarz_print, 364	fasp_solver_dcsr_pgcr, 391
fasp_param_Schwarz_set, 365	fasp_solver_dcsr_pgcr1, 392
fasp_param_amg_init, 357	pgmres.c, 393
fasp_param_amg_print, 357	fasp_solver_dblc_pgmres, 394
fasp_param_amg_set, 359	fasp_solver_dbsr_pgmres, 395
fasp_param_amg_to_prec, 359	fasp_solver_dcsr_pgmres, 396
fasp_param_amg_to_prec_bsr, 360	fasp_solver_dstr_pgmres, 397
fasp_param_ilu_init, 360	pgmres_mf.c, 398
fasp_param_ilu_print, 361	fasp_solver_pgmres, 398
fasp_param_ilu_set, 361	pgrid2d
fasp_param_init, 362	fasp.h, 192
fasp_param_input_init, 362	pivot
fasp_param_prec_to_amg, 363	precond_FASP_blkoil_data, 82
fasp_param_prec_to_amg_bsr, 363	precond_block_reservoir_data, 70
fasp_param_set, 365	pivot_S
fasp_param_solver_init, 366	precond_FASP_blkoil_data, 82
fasp_param_solver_print, 366	pivotS
fasp_param_solver_set, 367	precond_block_reservoir_data, 70
Pardiso_data, 64	pminres.c, 399
pbcgs.c, 368	fasp_solver_dblc_pminres, 401
fasp_solver_dblc_pbcgs, 370	fasp_solver_dcsr_pminres, 401
fasp_solver_dblc_pvbcgs, 370	fasp_solver_dstr_pminres, 402
fasp_solver_dbsr_pbcgs, 371	pminres_mf.c, 403
fasp_solver_dbsr_pvbcgs, 372	fasp_solver_pminres, 405
fasp_solver_dcsr_pbcgs, 373	PP
fasp_solver_dcsr_pvbcgs, 374	precond_FASP_blkoil_data, 82
fasp_solver_dstr_pbcgs, 374	precond_block_reservoir_data, 70
fasp_solver_dstr_pvbcgs, 375	precond, 65
pbcgs_mf.c, 376	precond_FASP_blkoil_data, 78
fasp_solver_pbcgs, 378	A, 80
fasp_solver_pvbcgs, 379	diaginv, 80
pcg.c, 380	diaginv_noscale, 80
fasp_solver_dblc_pcg, 381	diaginv_S, 80
fasp_solver_dbsr_pcg, 382	LU_P, 80
fasp_solver_dcsr_pcg, 383	LU_S, 80
fasp_solver_dstr_pcg, 384	maxit, 81
pcg_mf.c, 385	mgl_data, 81
fasp_solver_pcg, 386	neigh, 81
pcgrid2d	order, 81

perf_idx, 81	fasp_precond_dbsr_diag_nc5, 421
perf_neigh, 81	fasp_precond_dbsr_diag_nc7, 422
pivot, 82	fasp_precond_dbsr_ilu, 423
pivot_S, 82	fasp_precond_dbsr_ilu_levsch_omp, 424
PP, 82	fasp_precond_dbsr_ilu_mc_omp, 424
r, 82	fasp_precond_dbsr_nl_amli, 425
restart, 82	precond_csr.c, 426
RR, 82	fasp_precond_Schwarz, 434
scaled, 83	fasp_precond_amg, 426
SS, 83	fasp_precond_amg_nk, 427
tol, 83	fasp_precond_amli, 427
w, 83	fasp_precond_diag, 429
WW, 83	fasp_precond_famg, 429
precond_blc.c, 406	fasp_precond_free, 431
fasp_precond_block_SGS_3, 412	fasp_precond_ilu, 431
fasp_precond_block_SGS_3_amg, 412	fasp_precond_ilu_backward, 432
fasp_precond_block_diag_3, 407	fasp_precond_ilu_forward, 433
fasp_precond_block_diag_3_amg, 407	fasp_precond_nl_amli, 433
fasp_precond_block_diag_4, 408	fasp_precond_setup, 434
fasp_precond_block_lower_3, 408	precond_data, 72
fasp_precond_block_lower_3_amg, 410	precond_data_bsr, 73
fasp_precond_block_lower_4, 410	precond_data_str, 75
fasp_precond_block_upper_3, 414	precond_diagbsr, 77
fasp_precond_block_upper_3_amg, 414	precond_diagstr, 77
fasp_precond_sweeping, 416	precond_str.c, 435
precond_block_data, 65	fasp_precond_dstr_blockgs, 436
A_diag, 66	fasp_precond_dstr_diag, 436
Ablc, 66	fasp_precond_dstr_ilu0, 437
amgparam, 66	fasp_precond_dstr_ilu0_backward, 437
LU_diag, 66	fasp_precond_dstr_ilu0_forward, 438
mgl, 67	fasp_precond_dstr_ilu1, 438
r, 67	fasp_precond_dstr_ilu1_backward, 440
precond_block_reservoir_data, 67	fasp_precond_dstr_ilu1_forward, 440
diag, 69	precond_sweeping_data, 84
diaginv, 69	A, 85
diaginvS, 69	Ai, 85
fasp_block.h, 197	local_LU, 85
order, 70	local_A, 85
perf_idx, 70	local_index, 85
pivot, 70	NumLayers, 85
pivotS, 70	r, 86
PP, 70	w, 86
r, 70	precond_type
RR, 71	input_param, 54
scaled, 71	itsolver_param, 57
SS, 71	print_amgcomplexity
w, 71	message.c, 342
WW, 71	print_amgcomplexity_bsr
precond_bsr.c, 416	message.c, 343
fasp_precond_dbsr_amg, 417	print_cputime
fasp_precond_dbsr_amg_nk, 418	message.c, 343
fasp_precond_dbsr_diag, 418	print_itinfo
fasp_precond_dbsr_diag_nc2, 420	message.c, 344
fasp_precond_dbsr_diag_nc3, 421	print_level

input_param, 54	SMALLREAL2
itsolver_param, 57	fasp_const.h, 218
print_message	SMALLREAL
message.c, 344	fasp_const.h, 217
problem_num	SMOOTHER_BLKOIL
input_param, 54	fasp_block.h, 195
pvfgmres.c, 442	SMOOTHER_CG
fasp_solver_dblc_pvfgmres, 443	fasp_const.h, 218
fasp_solver_dbsr_pvfgmres, 444	SMOOTHER_GSOR
fasp_solver_dcsr_pvfgmres, 445	fasp_const.h, 218
pvfgmres_mf.c, 446 fasp_solver_pvfgmres, 446	SMOOTHER_GS
pvgmres.c, 447	fasp_const.h, 218
fasp_solver_dblc_pvgmres, 448	SMOOTHER_JACOBI
fasp_solver_dbsr_pvgmres, 449	fasp_const.h, 218 SMOOTHER L1DIAG
fasp_solver_dcsr_pvgmres, 449	fasp_const.h, 218
fasp_solver_dstr_pvgmres, 450	SMOOTHER POLY
pvgmres_mf.c, 451	fasp_const.h, 219
fasp solver pygmres, 452	SMOOTHER_SGSOR
	fasp_const.h, 219
quadrature.c, 453	SMOOTHER SGS
fasp_gauss2d, 453	fasp_const.h, 219
fasp_quad2d, 454	SMOOTHER_SOR
	fasp_const.h, 219
r proceed EACD bliceil data 80	SMOOTHER_SPETEN
precond_FASP_blkoil_data, 82 precond_block_data, 67	fasp_block.h, 195
precond_block_reservoir_data, 70	SMOOTHER_SSOR
precond_sweeping_data, 86	fasp_const.h, 219
REAL	SOLVER_AMG
fasp.h, 189	fasp_const.h, 219
RS C1	SOLVER_BiCGstab
fasp.h, 189	fasp_const.h, 220
rap.c, 455	SOLVER_CG
fasp_blas_dcsr_rap2, 455	fasp_const.h, 220
restart	SOLVER_DEFAULT
input_param, 54	fasp_const.h, 220 SOLVER_FMG
itsolver_param, 57	fasp_const.h, 220
precond_FASP_blkoil_data, 82	SOLVER GCG
RR	fasp const.h, 220
precond_FASP_blkoil_data, 82	SOLVER GCR
precond_block_reservoir_data, 71	fasp const.h, 221
S	SOLVER GMRES
grid2d, 40	fasp_const.h, 221
SA AMG	SOLVER_MUMPS
fasp const.h, 217	fasp_const.h, 221
SCHWARZ_BACKWARD	SOLVER_MinRes
fasp_const.h, 217	fasp_const.h, 221
SCHWARZ_FORWARD	SOLVER_PARDISO
fasp_const.h, 217	fasp_const.h, 221
SCHWARZ_SYMMETRIC	SOLVER_SBiCGstab
fasp_const.h, 217	fasp_const.h, 221
SHORT	SOLVER_SCG
fasp.h, 190	fasp_const.h, 222

SOLVER_SGCG	fasp_blas_smat_inv_nc4, 462
fasp_const.h, 222	fasp_blas_smat_inv_nc5, 463
SOLVER_SGMRES	fasp_blas_smat_inv_nc7, 463
fasp_const.h, 222	fasp_blas_smat_invp_nc, 464
SOLVER_SMinRes	fasp_iden_free, 465
fasp_const.h, 222	fasp_smat_identity, 465
SOLVER_SUPERLU	fasp_smat_identity_nc2, 466
fasp_const.h, 222	fasp_smat_identity_nc3, 466
SOLVER_SVFGMRES	fasp_smat_identity_nc5, 467
fasp_const.h, 222	fasp_smat_identity_nc7, 467
SOLVER_SVGMRES	SWAP, 460
fasp_const.h, 223	smoother_bsr.c, 468
SOLVER_UMFPACK	fasp_smoother_dbsr_gs, 469
fasp_const.h, 223	fasp_smoother_dbsr_gs1, 470
SOLVER_VBiCGstab	fasp_smoother_dbsr_gs_ascend, 470
fasp_const.h, 223	fasp_smoother_dbsr_gs_ascend1, 471
SOLVER_VFGMRES	fasp_smoother_dbsr_gs_descend, 472
fasp_const.h, 223	fasp_smoother_dbsr_gs_descend1, 472
SOLVER_VGMRES	fasp_smoother_dbsr_gs_order1, 473
fasp const.h, 223	fasp_smoother_dbsr_gs_order2, 474
STAG RATIO	fasp smoother dbsr ilu, 474
fasp_const.h, 223	fasp smoother dbsr jacobi, 475
STOP MOD REL RES	fasp_smoother_dbsr_jacobi1, 475
fasp_const.h, 224	fasp_smoother_dbsr_jacobi_setup, 476
STOP REL PRECRES	fasp_smoother_dbsr_sor, 477
fasp_const.h, 224	fasp_smoother_dbsr_sor1, 477
STOP_REL_RES	fasp_smoother_dbsr_sor_ascend, 478
fasp_const.h, 224	fasp_smoother_dbsr_sor_descend, 479
SWAP	fasp smoother dbsr sor order, 479
smat.c, 460	ilu_solve_omp, 480
scaled	smoother_csr.c, 481
precond FASP blkoil data, 83	fasp_smoother_dcsr_L1diag, 486
precond_block_reservoir_data, 71	fasp_smoother_dcsr_gs, 482
Schwarz blksolver	fasp_smoother_dcsr_gs_cf, 482
input_param, 54	fasp_smoother_dcsr_gs_rb3d, 483
Schwarz_data, 86	fasp_smoother_dcsr_ilu, 484
Schwarz maxlvl	fasp_smoother_dcsr_jacobi, 484
input_param, 54	fasp smoother dcsr kaczmarz, 485
Schwarz mmsize	fasp smoother dcsr sgs, 486
input_param, 55	fasp_smoother_dcsr_sor, 487
Schwarz_param, 88	fasp_smoother_dcsr_sor_cf, 488
schwarz_setup.c, 456	smoother_csr_cr.c, 489
fasp_Schwarz_get_block_matrix, 457	fasp smoother dcsr gscr, 489
fasp Schwarz setup, 458	smoother csr poly.c, 490
fasp_dcsr_Schwarz_backward_smoother, 456	fasp_smoother_dcsr_poly, 491
fasp dcsr Schwarz forward smoother, 457	fasp smoother dcsr poly old, 491
Schwarz_type	smoother_str.c, 493
input_param, 55	fasp_generate_diaginv_block, 494
smat.c, 459	fasp_smoother_dstr_gs, 495
fasp_blas_smat_Linfinity, 464	fasp_smoother_dstr_gs1, 495
fasp_blas_smat_inv, 460	fasp_smoother_dstr_gs_ascend, 496
fasp_blas_smat_inv_nc, 461	fasp_smoother_dstr_gs_cf, 497
fasp_blas_smat_inv_nc2, 461	fasp_smoother_dstr_gs_descend, 497
fasp_blas_smat_inv_nc3, 462	fasp_smoother_dstr_gs_order, 499

fasp_smoother_dstr_jacobi, 499	fasp_dcsr_shift, 535
fasp_smoother_dstr_jacobi1, 500	fasp_dcsr_sort, 536
fasp_smoother_dstr_schwarz, 501	fasp_dcsr_sortz, 536
fasp_smoother_dstr_sor, 501	fasp_dcsr_symdiagscale, 537
fasp_smoother_dstr_sor1, 502	fasp_dcsr_sympat, 537
fasp_smoother_dstr_sor_ascend, 503	fasp_dcsr_trans, 538
fasp_smoother_dstr_sor_cf, 503	fasp_dcsr_transz, 539
fasp_smoother_dstr_sor_descend, 505	fasp_icsr_cp, 539
fasp_smoother_dstr_sor_order, 506	fasp_icsr_create, 540
solver_type	fasp_icsr_free, 540
input_param, 55	fasp_icsr_null, 542
sparse_block.c, 506	fasp_icsr_trans, 542
fasp_dblc_free, 507	sparse_csrl.c, 543
fasp_dbsr_Linfinity_dcsr, 509	fasp_dcsrl_create, 544
fasp_dbsr_getblk, 507	fasp_dcsrl_free, 545
fasp_dbsr_getblk_dcsr, 508	sparse_str.c, 545
fasp_dcsr_getblk, 509	fasp_dstr_alloc, 546
sparse_bsr.c, 510	fasp_dstr_cp, 547
fasp_dbsr_alloc, 511	fasp_dstr_create, 547
fasp_dbsr_cp, 512	fasp_dstr_free, 548
fasp_dbsr_create, 512	fasp_dstr_null, 548
fasp_dbsr_diagLU2, 517	sparse_util.c, 549
fasp_dbsr_diagLU, 517	fasp_sparse_MIS, 554
fasp_dbsr_diaginv, 513	fasp_sparse_aat_, 550
fasp_dbsr_diaginv2, 514	fasp_sparse_abyb_, 551
fasp_dbsr_diaginv3, 514	fasp_sparse_abybms_, 552
fasp_dbsr_diaginv4, 516	fasp_sparse_aplbms_, 552
fasp_dbsr_diagpref, 518	fasp_sparse_aplusb_, 553
fasp_dbsr_free, 519	fasp_sparse_iit_, 554
fasp_dbsr_getdiag, 519	fasp_sparse_rapcmp_, 555
fasp_dbsr_getdiaginv, 520	fasp_sparse_rapms_, 556
fasp_dbsr_null, 520	fasp_sparse_wta_, 557
fasp_dbsr_perm, 521	fasp_sparse_wtams_, 557
fasp_dbsr_trans, 522	fasp_sparse_ytx_, 558
sparse_coo.c, 522	fasp_sparse_ytxbig_, 559
fasp_dcoo_alloc, 523	spbcgs.c, 559
fasp_dcoo_create, 523	fasp_solver_dblc_spbcgs, 561
fasp_dcoo_free, 524	fasp_solver_dbsr_spbcgs, 562
fasp_dcoo_shift, 525	fasp_solver_dcsr_spbcgs, 563
sparse_csr.c, 525	fasp_solver_dstr_spbcgs, 564
fasp_dcsr_alloc, 527	spcg.c, 565
fasp_dcsr_compress, 527	fasp_solver_dblc_spcg, 566
fasp_dcsr_compress_inplace, 528	fasp_solver_dcsr_spcg, 567
fasp_dcsr_cp, 529	fasp_solver_dstr_spcg, 568
fasp_dcsr_create, 529	spgmres.c, 569
fasp_dcsr_diagpref, 530	fasp_solver_dblc_spgmres, 570
fasp_dcsr_free, 531	fasp_solver_dbsr_spgmres, 570
fasp_dcsr_getcol, 531	fasp_solver_dcsr_spgmres, 571
fasp_dcsr_getdiag, 532	fasp_solver_dstr_spgmres, 572
fasp_dcsr_multicoloring, 532	spminres.c, 573
fasp_dcsr_null, 533	fasp_solver_dblc_spminres, 575
fasp_dcsr_perm, 533	fasp_solver_dcsr_spminres, 576
fasp_dcsr_permz, 534	fasp_solver_dstr_spminres, 577
fasp_dcsr_regdiag, 535	spvgmres.c, 578

fasp_solver_dblc_spvgmres, 578	dBSRmat, 33
fasp_solver_dbsr_spvgmres, 580	vec.c, 586
fasp_solver_dcsr_spvgmres, 581	fasp_dvec_alloc, 587
fasp_solver_dstr_spvgmres, 582	fasp_dvec_cp, 587
SS	fasp_dvec_create, 587
precond_FASP_blkoil_data, 83	fasp_dvec_free, 588
precond_block_reservoir_data, 71	fasp_dvec_isnan, 588
stop_type	fasp_dvec_maxdiff, 589
input_param, 55	fasp_dvec_null, 590
itsolver_param, 57	fasp_dvec_rand, 590
	fasp_dvec_set, 591
1	fasp_dvec_symdiagscale, 592
grid2d, 40	fasp_ivec_alloc, 592
THDs_AMG_GS	fasp_ivec_create, 593
threads.c, 584	fasp_ivec_free, 593
THDs_CPR_gGS	fasp_ivec_set, 594
threads.c, 584	vertices
THDs_CPR_IGS	grid2d, 41
threads.c, 585	
TRUE	W
fasp_const.h, 224	precond_FASP_blkoil_data, 83
tfather	precond_block_reservoir_data, 71
grid2d, 40	precond_sweeping_data, 86
threads.c, 583	W_CYCLE
FASP_GET_START_END, 583	fasp_const.h, 225
fasp_set_GS_threads, 584	workdir
THDs_AMG_GS, 584	input_param, 55
THDs_CPR_gGS, 584	wrapper.c, 595
THDs_CPR_IGS, 585	fasp_fwrapper_amg_, 595
timing.c, 585	fasp_fwrapper_krylov_amg_, 596
fasp_gettime, 585	fasp_wrapper_dbsr_krylov_amg, 597
tol	fasp_wrapper_dcoo_dbsr_krylov_amg, 598
itsolver_param, 57	WW
precond_FASP_blkoil_data, 83	precond_FASP_blkoil_data, 83
total_alloc_count	precond_block_reservoir_data, 71
fasp.h, 193	
memory.c, 341	
total_alloc_mem	
fasp.h, 193	
memory.c, 341	
triangles	
grid2d, 40	
UA_AMG	
fasp_const.h, 224	
UNPT	
fasp_const.h, 225	
USERDEFINED	
fasp_const.h, 225	
V CYCLE	
fasp_const.h, 225	
VMB	
fasp_const.h, 225	
val	