

Int. Cl.:

C 07 d

A 61 k

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT



Deutsche Kl.:

12 p. 4/01

30 h. 2/36

# Offenlegungsschrift 1810 561

Aktenzeichen: P 18 10 561.8

Anmeldestag: 23. November 1968

Offenlegungstag: 2. Juli 1970

Ausstellungsriorität: —

Unionspriorität

Datum: —

Land: —

Aktenzeichen: —

Bezeichnung: 3-Aryl-benzazine und Verfahren zu ihrer Herstellung

Zusatz zu: —

Ausscheidung aus: —

Anmelder: Merck-Anlagen-GmbH, 6100 Darmstadt

Vertreter: —

Als Erfinder benannt: Irmischer, Dr. Klaus; Krämer, Dr. Josef; Cimballek, Dr. Gerhard; Orth, Dr. Dieter; Nowak, Dr. Herbert; 6100 Darmstadt; Freisberg, Dr. Karl-Otto, 6720 Speyer

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):

BEST AVAILABLE COPY

DT 1810561

1810561

E. Merck  
Aktiengesellschaft  
Darmstadt

18. November 1968

**3-Aryl-benzazine und  
Verfahren zu ihrer Herstellung**

**Die Erfindung betrifft 3-Aryl-benzazine der allgemeinen Formel I**

worin

R<sup>1</sup> H, gegebenenfalls verestertes OH,  
Alkyl mit 1 - 4 C-Atomen, Alkoxy  
mit 1 - 4 C-Atomen oder Benzyloxy,

R<sup>2</sup> H, gegebenenfalls verestertes OH,  
Alkyl mit 1 - 4 C-Atomen oder  
Benzyloxy,

R<sup>3</sup> Alkyl mit 2 - 6 C-Atomen,

X O oder S,

Y H, Kohlenwasserstoff-Acyl mit 1 -  
C-Atomen oder zusammen mit Z eine  
zusätzliche C-N-Bindung und

Z H oder zusammen mit Y eine  
zusätzliche C-N-Bindung

bedeuten,



I

sowie ihre physiologisch unbedenklichen Säureadditionssalze.

009827/1968

1810561

- 2 -

Insbesondere betrifft die Erfindung 3-Aryl-2H-1,4-benzoxazine der allgemeinen Formel Ia, 3-Aryl-1,4-benzmorpholine der allgemeinen Formel Ib, 3-Aryl-2H-1,4-benzthiazine der allgemeinen Formel Ic und 3-Aryl-1,4-benzthiomorpholine der allgemeinen Formel Id sowie deren physiologisch unbedenkliche Säureadditions-salze:



Ia



Ib



Ic



Id

Es wurde gefunden, daß diese Verbindungen bei guter Verträglichkeit eine hervorragende cholesterinspiegelsenkende Wirkung besitzen. Beispielsweise ergaben orale Gaben verschiedener Dosen nachstehender Verbindungen an Ratten (Methodik vgl. Counsell et al., J. med. pharm. Chem. 5, 720, 1224 (1962)) folgende Senkungen des Cholesterinspiegels im Serum:

009827 / 1966

1810561

- 3 -

| Verbindung                                                    | Dosis<br>(mg/kg) | Cholesterinspiegel-<br>senkung |
|---------------------------------------------------------------|------------------|--------------------------------|
| 2-Aethyl-3-p-hydroxy-phenyl-2H-1,4-benz-thiazin-hydrochlorid  | 100              | 67 %                           |
|                                                               | 10               | 49 %                           |
| 2-n-Propyl-3-p-hydroxyphenyl-2H-1,4-benz-thiazin-hydrochlorid | 100              | 43 %                           |
|                                                               | 30               | 27 %                           |

Ferner treten bei den erfindungsgemäßen Verbindungen Östrogene, kontrazeptive, herzwirksame und antimykotische Wirkungen auf. Die erfindungsgemäßen Verbindungen können daher als Arzneimittel und auch als Zwischenprodukte zur Herstellung anderer Arzneimittel verwendet werden.

Gegenstand der Erfindung sind somit 3-Aryl-benzazine der allgemeinen Formeln I, Ia, Ib, Ic und Id, sowie ihre physiologisch unbedenklichen Säureadditionssalze.

Gegenstand der Erfindung sind ferner Verbindungen der nachstehenden Formeln Ie - I h, sowie deren physiologisch unbedenkliche Säureadditionssalze:

009827/1966

- 4 -

1810561

worin

$R^4$  H, OH, Acyloxy mit bis zu 8 C-Atomen oder  $OSO_3Na$ ,

$R^5$  H oder  $CH_3$ ,

$R^6$  H oder  $OCH_3$ ,

$Y^1$  H, Acetyl, Benzoyl oder zusammen mit  $Z^1$  eine zusätzliche C-N-Bindung und

$Z^1$  H oder zusammen mit  $Y^1$  eine zusätzliche C-N-Bindung bedeuten;



Ie



If

vorin

$R^7$  H oder OH,

$Y^2$  H oder zusammen mit  $Z^2$  eine zusätzliche C-N-Bindung und

$Z^2$  H oder zusammen mit  $Y^2$  eine zusätzliche C-N-Bindung

bedeuten;



Ig



Ih

vorin

$R^8$   $C_2H_5$  oder  $n-C_3H_7$

bedeutet.

In den Formeln I sowie Ie bis Ih bedeutet X vorzugsweise S.

009827/1966

1810561

- 5 -

Weiterhin ist Gegenstand der Erfindung ein Verfahren zur Herstellung von 3-Aryl-benzazinen der allgemeinen Formel I



worin

$R^1$  H, gegebenenfalls verestertes OH,  
Alkyl mit 1 - 4 C-Atomen, Alkoxy  
mit 1 - 4 C-Atomen oder Benzyloxy,

$R^2$  H, gegebenenfalls verestertes OH,  
Alkyl mit 1 - 4 C-Atomen oder  
Benzyloxy,

$R^3$  Alkyl mit 2 - 6 C-Atomen,

X O oder S,

Y H, Kohlenwasserstoff-Acyl mit  
1 - 8 C-Atomen oder zusammen mit  
Z eine zusätzliche C-N-Bindung und

Z H oder zusammen mit Y eine  
zusätzliche C-N-Bindung

bedeuten,

sowie von deren physiologisch unbedenklichen Säureadditionssalzen,  
dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen  
Formel II,



worin

$A^1$  NH<sub>2</sub> oder Hal

$A^2$  =O, =S, =NH, (H, NH<sub>2</sub>) oder (H, Hal)  
und

Hal Cl, Br oder J

bedeuten, worin aber mindestens einer  
der Reste  $A^1$  bzw.  $A^2$  ein Stickstoff-  
atom enthält,

oder eine Verbindung der allgemeinen Formel III,

009827 / 1966

1810561

- 6 -



worin  
 $B^1$  und  $B^2$  gegebenenfalls reaktionsfähig funktionalisiertes OH, gegebenenfalls reaktionsfähig funktionalisiertes SH, einer dieser Reste auch H oder Hal  
bedeuten

mit cyclisierenden Mitteln behandelt,

oder daß man eine Verbindung der allgemeinen Formel IV



worin  
W OH oder Z  
bedeutet

mit reduzierenden und/oder wasserabspaltenden Mitteln behandelt,  
oder daß man in einer sonst der Formel I entsprechenden Verbindung, die jedoch an Stelle der Reste  $R^1$  und/oder  $R^2$  funktionell abgewandelte OH-Gruppen enthält, diese durch Behandeln mit hydrolysierten oder hydrogenolysierten Mitteln in Freiheit setzt

und/oder daß man gegebenenfalls in einer Verbindung der allgemeinen Formel I in 3- und 4-Stellung des Azinringes vorhandene Wasserstoffatome mit dehydrierenden Mitteln entfernt und/oder freie OH-Gruppen mit veresternden Mitteln verestert und/oder eine

009827 / 1966

1810561

- 7 -

NH-Gruppe durch Behandeln mit acylierenden Mitteln acyliert und/oder Verbindungen der Formel I in ihre physiologisch unbedenklichen Säureadditionssalze überführt.

In den vorstehenden Verbindungen bedeutet "verestertes OH" bevorzugt eine mit einer gesättigten oder ungesättigten aliphatischen, cycloaliphatischen, aromatischen oder heterocyclischen substituierten oder unsubstituierten Carbonsäure oder Sulfonsäure mit jeweils bis zu 18, vorzugsweise jeweils bis zu 8, C-Atomen veresterte OH-Gruppe. Bevorzugte Carbonsäuren sind Fettsäuren mit 1 - 18, vorzugsweise 1 - 6, C-Atomen, wie Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Trimethylessigsäure, Capronsäure, Isocapronsäure, Önanthsäure, Caprylsäure, Pelargon-säure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure ferner Crotonsäure, Ölsäure, Cyclohexancarbonsäure, Cyclohexylessig- und -propionsäure, Benzoësäure, Phenylessig- und -propionsäure, Picolinsäure, Nicotinsäure, Isonicotinsäure oder Furan-2-carbonsäure.

Besondere Bedeutung kommt solchen Estern zu, die eine wasserlöslichmachende Gruppe, wie eine Carboxyl-, Hydroxyl- oder Aminogruppe aufweisen, da sie - besonders in Form ihrer Ester- salze - zur Herstellung von wässrigen Lösungen verwendet werden können, die therapeutisch besonders gut applizierbar sind. Die so erhältlichen Halbester bzw. Hydroxy- oder Aminoester leiten sich z.B. ab von Dicarbonsäuren wie Oxal-, Malon-, Bernstein-, Malein-, Glutar-, Dimethylglutar-, Adipin-, Pimelin-, Acetondicarbon-, Phthal-, Tetrahydronphthal-, Hexahydronphthal- oder Diglykolsäure, Hydroxycarbonsäuren wie Glykolsäure oder Aminocarbonsäuren wie Diäthylaminoessigsäure oder Asparaginsäure.

009827/1966

- 8 -

1810561

Bevorzugte Sulfonsäureester sind solche, die abgeleitet sind von Alkylsulfonsäuren mit 1 - 6 C-Atomen, z.B. Methan- oder Aethansulfonsäure, und Arylsulfonsäure mit 6 - 10 C-Atomen, z.B. Benzol-, p-Toluol-, 1- und 2-Naphthalinsulfonsäure.

R<sup>1</sup> bzw. R<sup>2</sup> kann auch eine mit einer anorganischen Säure wie Schwefelsäure oder Phosphorsäure veresterte OH-Gruppe bedeuten sowie auch eine von einem solchen Ester abgeleitete Estersalz- (z.B. Natriumsalz-)gruppe.

Der Ausdruck "Ester" soll im Rahmen der vorliegenden Anmeldung die physiologisch unbedenklichen Säureadditionssalze (insbesondere die Hydrochloride) basisch substituierter Ester und die physiologisch unbedenklichen Metall- (insbesondere Alkalimetall-, z.B. Natrium-) und Ammoniumsalze saurer Ester einschließen.

In den Resten R<sup>1</sup> bzw. R<sup>2</sup> steht Alkyl bevorzugt für Methyl, Aethyl und n-Propyl, Alkoxy bevorzugt für Methoxy oder Aethoxy. Die Reste R<sup>1</sup> und R<sup>2</sup> können aber auch Isopropyl, n-Butyl, Iso-butyl, sek.-Butyl, tert.-Butyl bedeuten, R<sup>1</sup> auch n-Propoxy, Isoproxy, n-Butoxy, Isobutoxy, sek.-Butoxy oder tert.-Butoxy.

R<sup>3</sup> ist vorzugsweise Aethyl oder n-Propyl; typische weitere für R<sup>3</sup> stehende Reste sind n-Butyl, Isobutyl, sek.-Butyl, tert.-Butyl, n-Pentyl, Isopentyl, n-Hexyl oder Isohexyl.

Y bedeutet bevorzugt H oder zusammen mit Z eine zusätzliche C-N-Bindung. Y kann weiterhin Kohlenwasserstoff-Acyl mit 1 - 8 C-Atomen bedeuten, insbesondere eine von einer Fettsäure mit 1 - 6 C-Atomen, wie Essigsäure, Propionsäure oder Buttersäure, oder von Benzoesäure abgeleitete Acylgruppe.

Die Schlangenlinie in den Formeln I und Ia - I<sub>h</sub> bedeutet, daß der Rest R<sup>3</sup> sowohl in cis- als auch in trans-Stellung zur Phenylgruppe stehen kann. Es sind demnach für jede Verbindung der Formel I zwei Isomere möglich. Bei dem erfindungsgemäßen Verfahren wird in der Regel nur das eine der beiden

009827 / 1966

1810561

- 9 -

Isomeren isoliert, da es in überwiegender Menge entsteht. Falls beide Isomere erhalten werden, können sie nach an sich bekannten Methoden, vorzugsweise durch fraktionierte Kristallisation oder durch chromatographische Methoden, getrennt werden. In manchen Fällen werden Produkte erhalten, in denen die stereochemische Stellung des Restes  $R^3$  noch nicht exakt festgelegt werden konnte.

Der Rest  $R^1$  steht vorzugsweise in 6- oder 7-Stellung des Benzazin-Ringes; er kann aber auch in 5- oder 8-Stellung stehen.

Die Benzazine der Formel I sind vorzugsweise durch Cyclisierung von Verbindungen der Formeln II oder III erhältlich.

In den Verbindungen der Formeln II bzw. III können OH-Gruppen bzw. SH-Gruppen auch in reaktionsfähig funktionalisierter Form vorliegen, insbesondere in Form von Estern oder Aethern. Bevorzugte reaktionsfähig funktionalisierte OH-Gruppen sind niederes Alkanoyloxy wie Acetoxy, Propionyloxy, Butyryloxy; Benzyloxy, Diphenylmethoxy, Triphenylmethoxy; Tetrahydropyranyl-(2)-oxy; tert.-Butoxy; ferner Methan-, Benzol- oder insbesondere p-Toluolsulfonyloxy. Bevorzugte reaktionsfähig funktionalisierte SH-Gruppen sind niederes Alkanoylmercapto wie Acetylmercapto; Benzylmercapto; SCl.

Bevorzugte Ausgangsverbindungen der Formel II sind die Amino-ketone (II;  $A^1 = NH_2$ ,  $A^2 = O$ ). Diese können durch Reduktion der entsprechenden Nitroketone (II,  $A^1 = NO_2$ ,  $A^2 = O$ ), z.B. mit Eisen oder mit Zinn(II)-chlorid in Salzsäure/Essigsäure, erhalten werden; man kann sie aber auch herstellen durch Umsetzung von (gegebenenfalls durch  $R^1$  substituiertem)  $\alpha$ -Amino-phenol mit einem (gegebenenfalls in p-Stellung durch  $R^2$  substituiertem)  $\alpha$ -Bromacylophenon, vorzugsweise in Aceton in Gegenwart von

009827 / 1966

1810561

- 10 -

Kaliumcarbonat. Die Nitroketone (II; X = O, A<sup>1</sup> = NO<sub>2</sub>, A<sup>2</sup> = O) können ihrerseits durch Umsetzung von entsprechenden o-Nitrophenolen mit α-Bromacylophenonen, die Nitroketone (II; X = S, A<sup>1</sup> = NO<sub>2</sub>, A<sup>2</sup> = O) durch Reaktion von entsprechenden o-Nitrophenyl-schwefelchloriden mit Acylophenonen hergestellt werden.

Weiterhin sind vor allem die Imine (II; A<sup>1</sup> = NH<sub>2</sub>, A<sup>2</sup> = NH) der oben genannten Aminoketone erhältlich z.B. durch Umsetzung von R<sup>3</sup>MgBr mit Benzonitrilen zu den entsprechenden Iminen, Reaktion mit o-Nitrophenylschwefelchloriden zum Nitroimin(II; A<sup>1</sup> = NO<sub>2</sub>, A<sup>2</sup> = NH) und Reduktion<sup>7</sup>, die Diamine (II, A<sup>1</sup> = NH<sub>2</sub>, A<sup>2</sup> = (H,NH<sub>2</sub>); erhältlich z.B. durch Umsetzung von gegebenenfalls substituierten o-Aminophenolen bzw. o-Aminothiophenolen mit einem gegebenenfalls p-substituiertem 1-Amino-1-phenyl-2-alkanol in saurer Lösung<sup>7</sup>, die Halogenamine (II; A<sup>1</sup> = NH<sub>2</sub>, A<sup>2</sup> = (H, Hal); erhältlich durch Reaktion von o-Aminophenolen bzw. o-Amino-thiophenolen mit 1,2-Dihalogen-1-aryl-alkanen<sup>7</sup>, die Halogenamine (II; A<sup>1</sup> = Hal, A<sup>2</sup> = (H,NH<sub>2</sub>); erhältlich durch Reaktion von o-Halogen-phenolen bzw. o-Halogen-thiophenolen mit 1-Aryl-1-amino-2-alkanolen<sup>7</sup> als Ausgangsstoffe geeignet.

Eine besonders bevorzugte Ausführungsform der Erfindung besteht darin, daß man ein Aminoketon der Formel II (A<sup>1</sup> = NH<sub>2</sub>, A<sup>2</sup> = O) durch Reduktion des entsprechenden Nitroketons der Formel II (A<sup>1</sup> = NO<sub>2</sub>, A<sup>2</sup> = O), z.B. mit Eisenpulver in Äthanolischer Salzsäure oder mit salzsaurer SnCl<sub>2</sub>-Lösung, *in situ* erzeugt; das Aminoketon wird nicht isoliert, sondern bereits unter den sauren Reduktionsbedingungen cyclisiert. Typische Nitroketone sind diejenigen der Formel V

009827 / 1966

1810561

- 11 -



worin  
 $R^4$ ,  $R^5$  und  $R^6$  die bei Formel  
 Ie angegebene Bedeutung  
 haben;

besonders bevorzugt sind solche der Formeln V ( $R^5 = R^6 = H$ ) und  
 V ( $R^4 = R^7$ ,  $R^5 = R^6 = H$ ).

Als Ausgangsstoffe der Formel III sind insbesondere geeignet:

die Dicole (III;  $B^1 = B^2 = OH$ ) bzw. die Hydroxy-thiole (III;  
 $B^1 = SH$ ,  $B^2 = OH$ ; erhältlich durch Umsetzung von  $\alpha$ -Amino-phenolen bzw.  $\alpha$ -Amino-thiophenolen mit 1-Aryl-1-brom-2-alkanolen;  
 die Hydroxy-thiole (III;  $B^1 = OH$ ,  $B^2 = SH$ ) bzw. die Dithiole (III;  $B^1 = B^2 = SH$ ; erhältlich durch Umsetzung von  $\alpha$ -Halogen-phenolen bzw.  $\alpha$ -Halogen-thiophenolen mit 1-Aryl-1-amino-2-alkanolen); die Halogen-phenole (III;  $B^1 = OH$ ,  $B^2 = Hal$ ; vorzugsweise erhältlich in situ durch Einwirkung von  $\alpha$ -Aminophenolen auf 1-Aryl-1,2-dihalogenalkane oder auch durch Umsetzung von  $\alpha$ -Amino-phenylacetaten mit 1-Aryl-1,2-dihalogenalkanen, vorzugsweise in Aceton in Gegenwart von  $K_2CO_3$ , und anschließende Hydrolyse);  
 die Halogen-thiophenole (III;  $B^1 = SH$ ,  $B^2 = Hal$ ; herstellbar durch Umsetzung von  $\alpha$ -Aminobenzolsulfonsäuren mit 1-Aryl-1,2-dihalogenalkanen zu entsprechenden Sulfonsäuren (III;  $B^1 = SO_3H$ ,  $B^2 = Hal$ ), nachfolgende Überführung der Sulfogruppe in das Sulfochlorid, z.B. mit  $PCl_5$ , und Reduktion desselben zum Mercaptan, z.B. mit Zink/ $HCl$ ; die Halogen-alkohole (III;  $B^1 = Hal$ ,  $B^2 = OH$ ) bzw. die Halogenmercaptane (III;  $B^1 = Hal$ ,  $B^2 = SH$ ; erhältlich durch Umsetzung von  $\alpha$ -Halogenanilinen mit 1-Aryl-1-brom-2-alkanolen bzw. 1-Aryl-1-brom-2-alkanthiolen; die Aryl-schweifelhalogenide (III;  $B^1 = SHal$ , insbesondere  $SCl$ ,  $B^2 = H$ ; erhältlich beispielsweise durch Umsetzung von  $\alpha,\alpha'$ -Diamino-

009827/1966

1810561

- 12 -

diaryl-disulfiden mit 2 Mol 1-Aryl-1-brom-alkanen zu den entsprechenden o,o'-(1-Aryl-1-alkylamino)-diphenyl-disulfiden und Aufspaltung der Disulfid-Brücke, z.B. mit Chlor in Tetrachlorkohlenstoff bei 0°; die Aralkylschwefelchloride /III; B<sup>1</sup> = H, B<sup>2</sup> = SHal, insbesondere SCl; erhältlich durch Bromierung von Bis-(1-aryl-2-alkyl)-disulfiden zu Bis-(1-aryl-1-brom-2-alkyl)-disulfiden, Umsetzung mit 2 Mol eines Arylamins und Spaltung der Disulfid-Brücke, z.B. mit Chlor in Tetrachlorkohlenstoff.

Die Verbindungen der Formeln II bzw. III können vor allem durch Einwirkung von basischen oder sauren Katalysatoren zu den Benzazinen der Formel I cyclisiert werden. Vorzugsweise verwendet man als Katalysatoren Alkalien wie Natrium- oder Kaliumhydroxid, Natriumamid, Natriumhydrid, basisch reagierende Salze wie Natrium- oder Kaliumacetat, Natrium- oder Kaliumcarbonat, organische Basen wie Tetramethylguanidin, Benzyltrimethylammoniumhydroxid, Mineralsäuren wie Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure; organische Sulfonsäuren wie Toluolsulfonsäure oder Camphersulfonsäure, Lewis-Säuren wie Aluminiumchlorid, Zinkchlorid; saure Salze wie Kaliumhydrogensulfat.

Die Cyclisierung kann in Gegenwart eines zusätzlichen inerten Lösungsmittels vorgenommen werden, z.B. in Gegenwart eines niederen Alkohols, wie Methanol, Aethanol; eines Aethers wie Dioxan, Tetrahydrofuran; eines Esters wie Aethylacetat; einer Carbonsäure wie Essigsäure; eines Kohlenwasserstoffs wie Tetralin, Benzol, Toluol; eines chlorierten Kohlenwasserstoffs wie Methylenechlorid, Chloroform, gegebenenfalls auch in Gemischen dieser Lösungsmittel untereinander. Es ist auch möglich, einen Ueberschuß des Cyclisierungsmittels als Lösungsmittel zu verwenden. Die Cyclisierung erfolgt bei Temperaturen zwischen 0 und 200°, in der Regel bereits bei Raumtemperatur; sie kann

009827 / 1966

13

1810561

durch Erwärmen, gegebenenfalls bis zum Siedepunkt des verwendeten Lösungsmittels, beschleunigt werden. Die Reaktionszeit beträgt einige Minuten bis mehrere Tage.

Die bevorzugten Cyclisierungs-Bedingungen hängen von der Konstitution der Ausgangsstoffe ab. So werden Aminoketone und deren Imine (II;  $A^1 = NH_2$ ,  $A^2 = O$  oder  $NH$ ) vorzugsweise in saurem Medium cyclisiert, z.B. durch mehrstündigtes Kochen mit wässriger, wässrig-alkoholischer oder alkoholischer Salzsäure oder Schwefelsäure. Das gleiche gilt für den Ringschluß der Mercaptane (III,  $B^1 = OH$  oder  $SH$ ,  $B^2 = SH$ ), die unter sauren Bedingungen 1 Mol  $H_2S$  abspalten, wobei cyclische Aether bzw. Thioäther entstehen. Diamine (II,  $A^1 = NH_2$ ,  $A^2 = (H, NH_2)$ ) werden vorzugsweise cyclisiert, indem man sie in Gegenwart katalytischer Mengen Jod ohne Lösungsmittel auf Temperaturen zwischen 50 und  $250^\circ$  erhitzt, vorzugsweise auf eine Temperatur dicht oberhalb des Schmelzpunktes des Diamins.

Die Halogenamine (II;  $A^1 = NH_2$ ,  $A^2 = (H, Hal)$ ), die Halogenphenole (III,  $B^1 = OH$ ,  $B^2 = Hal$ ) und Halogenthiophenole (III;  $B^1 = SH$ ,  $B^2 = Hal$ ) können vornehmlich durch Einwirkung von basischen Katalysatoren cyclisiert werden, da aus ihnen bei der Cyclisierung ein Molekül Halogenwasserstoff abgespalten wird. Auch die Halogenamine (II;  $A^1 = Hal$ ,  $A^2 = (H, NH_2)$ ) und die Halogenalkohole bzw. Halogenmercaptane (III;  $B^1 = Hal$ ,  $B^2 = OH$  oder  $SH$ ) werden vorzugsweise mit Hilfe basischer Katalysatoren umgesetzt, aber unter noch kräftigeren Bedingungen als die vorstehenden Halogenamine; als Cyclisierungsmittel sind für diese Ausgangsstoffe zweckmäßig starke Basen, wie KOH, NaH,  $NaNH_2$ , geeignet.

Amine der Formel III, in denen  $B^1 = OH$  oder  $SH$  und  $B^2 = OH$  ist, können auch unter Einwirkung von Dicyclohexylcarbodiimid, vorzugsweise in Methylenechlorid, cyclisiert werden.

009827 / 1966

1810561

- 14 -

Die Arylschwefelhalogenide (III;  $B^1 = S\text{Hal}$ ,  $B^2 = H$ ; Y und Z bedeuten vorzugsweise eine Doppelbindung) können zu den gewünschten Benzthiazinen cyclisiert werden, indem man sie ohne Zusatz eines Katalysators ohne Lösungsmittel auf Temperaturen zwischen 60 und 140°, vorzugsweise zwischen 90 und 110°; erhitzt; man kann sie jedoch auch in Gegenwart eines inerten Lösungsmittels bei Raumtemperatur einige Zeit stehen lassen oder kürzere Zeit, gegebenenfalls bis zum Siedepunkt des Lösungsmittels, erwärmen, wobei die Cyclisierung unter Abspaltung eines Mols Halogenwasserstoff leicht erfolgt. Als Lösungsmittel sind in diesem Fall insbesondere chlorierte Kohlenwasserstoffe geeignet, vor allem Trichloräthylen.

Die Cyclisierung von Aralkylschwefelhalogeniden (III;  $B^1 = H$ ,  $B^2 = S\text{Hal}$ ) gelingt unter den Bedingungen einer Friedel-Crafts-Reaktion in Gegenwart von Lewis-Säuren, vorzugsweise Aluminiumchlorid.

Die Benzazine der Formel I können auch durch Reduktion oder Dehydratisierung von Verbindungen der Formel IV erhalten werden.

Beispielsweise führt eine katalytische Hydrierung oder eine Reduktion mit komplexen Metallhydriden von Benzoxazinen bzw. Benzthiazinen der Formeln Ia bzw. Ic zu Benzmorpholinen bzw. Benzthiomorpholinen der Formeln Ib bzw. Id (Y = H). Als Katalysatoren für die Hydrierung sind beispielsweise Edelmetall-, Nickel- und Kobaltkatalysatoren geeignet, sowie auch Kupfer-Chrom-Oxid. Die Edelmetallkatalysatoren können als Trägerkatalysatoren, wie z.B. Palladium auf Kohle, Calciumcarbonat oder Strontiumcarbonat, als Oxidkatalysatoren, wie z.B. Platinoxid oder als feinteilige Metallkatalysatoren vorliegen. Nickel- und Kobaltkatalysatoren werden zweckmäßig als Raney-Metalle, Nickel auch auf Kieselgur oder Bimsstein als Träger eingesetzt. Die Hydrierung kann bei Raumtemperatur und Normaldruck oder auch bei

009827 / 1966

1810561

- 15 -

erhöhter Temperatur und/oder erhöhtem Druck durchgeführt werden. Vorzugsweise arbeitet man bei Drucken zwischen 1 und 100 at und bei Temperaturen zwischen -80 und +150°. Zweckmäßig wird die Umsetzung in Gegenwart eines Lösungsmittels, wie Methanol, Aethanol, Isopropanol, tert.-Butanol, Aethylacetat, Dioxan, Eisessig, Tetrahydrofuran, Wasser durchgeführt. In manchen Fällen empfiehlt sich ein Zusatz katalytischer Mengen Mineralsäure, beispielsweise Salz- oder Schwefelsäure. Zur Hydrierung können die freie Base IV (Y und W = Doppelbindung oder Y = H, W = OH) oder auch ein Salz dieser Base verwendet werden. Bei der Hydrierung muß darauf geachtet werden, daß die aromatischen Ringe nicht ebenfalls angegriffen werden. Vorzugsweise arbeitet man daher bei Normaldruck in der Weise, daß man die Hydrierung nach Aufnahme der berechneten Menge Wasserstoff abbricht. Werden Ausgangsprodukte der Formel IV verwendet, in denen phenolische Hydroxygruppen durch Benzylgruppen geschützt sind, so können diese Schutzgruppen bei der Hydrierung entfernt werden.

Als Reduktionsmittel können ferner komplexe Metallhydride, wie vor allem  $\text{LiAlH}_4$  und  $\text{NaBH}_4$ , gegebenenfalls unter Zusatz von Katalysatoren wie  $\text{BF}_3$ ,  $\text{AlCl}_3$  oder  $\text{LiBr}$ , zur Anwendung kommen. Diese Reduktionen werden zweckmäßig in Gegenwart eines inerten Lösungsmittels, wie Aether, Tetrahydrofuran, Aethylenglycoldimethyläther oder insbesondere Pyridin, vorgenommen; man kann bei Verwendung von  $\text{NaBH}_4$  jedoch auch in wässrigen oder alkoholischen Lösungen arbeiten. Die Reduktion wird vorteilhaft zwischen -80° und dem Siedepunkt des Lösungsmittels, insbesondere zwischen 0 und 100°, durchgeführt. Die gebildeten Metallkomplexe können z.B. mit feuchtem Aether oder einer wässrigen Ammoniumchloridlösung zersetzt werden.

009827 / 1966

1810561

- 16 -

Hydroxyverbindungen der Formel IV (W = OH) sind insbesondere durch Umsetzung einer Verbindung der allgemeinen Formel VI



VI

mit einer metallorganischen Verbindung der allgemeinen Formel VII

worin



M Li oder die Gruppe MgHal,  
bevorzugt MgBr,

VII

bedeutet

in einem inerten Lösungsmittel wie Tetrahydrofuran, zweckmäßig in der Siedehitze erhältlich.

Die Lactame VI sind beispielsweise zugänglich durch Umsetzung eines  $\alpha$ -Nitrophenols bzw.  $\alpha$ -Nitrothiophenols mit einem  $\alpha$ -Brom-alkansäure-äthylester der Formel  $R^3\text{CHBr-COOC}_2\text{H}_5$  zum  $\alpha$ -( $\alpha$ -Nitrophenoxy)- bzw.  $\alpha$ -( $\alpha$ -Nitrophenylmercapto)-alkansäureäthylester und Reduktion desselben mit Eisenpulver in wässrigem Methanol, wobei Verseifung und Ringschluß zu VI erfolgt.

Die Hydroxygruppe in IV (W = OH) läßt sich leicht hydrogenolytisch, z.B. an Palladium-Kohle bei Raumtemperatur, entfernen.

009827 / 1966

1810561

- 17 -

Es ist weiterhin möglich, die Hydroxyverbindungen der Formel IV ( $W = OH$ ) mit wasserabspaltenden Mitteln zu behandeln, wobei man Benzazine der Formeln Ia bzw. Ic erhält. Die Dehydratisierung erfolgt sehr leicht, z.B. schon bei der sauren Aufarbeitung des bei der Umsetzung von V mit VI erhaltenen Reaktionsgemisches mit Salzsäure oder Ammoniumchloridlösung. Falls man die Hydroxyverbindungen IV ( $W = OH$ ) isoliert, kann man auch die gebräuchlichen Dehydratisierungsmittel für die Wasserabspaltung verwenden, beispielsweise Schwefelsäure, Bromwasserstoffsäure, Kaliumbisulfat, p-Toluolsulfonsäure, Oxalsäure, Phosphorpentoxid, Phosphoroxychlorid, Zinkchlorid, Acetylchlorid, Dicyclohexylcarbodiimid, unter den in der Literatur beschriebenen, für solche Dehydratisierungen üblicherweise angewendeten Bedingungen.

In einer sonst der Formel I entsprechenden Verbindung, die jedoch an Stelle der Reste  $R^1$  und/oder  $R^2$  funktionell abgewandelte OH-Gruppen enthält, kann man diese durch Hydrolyse oder Reduktion wieder in Freiheit setzen. Beispielsweise kann man veresterte oder als Tetrahydropyanyl- oder Benzyläther geschützte Hydroxygruppen in basischem, neutralem oder saurem Medium hydrolysieren. Als Basen kommen vornehmlich wässriges, wässrig-alkoholisches oder alkoholisches Natrium- oder Kaliumhydroxid, als Säuren vor allem Salzsäure und Schwefelsäure in Betracht. Benzyloxygruppen können hydrogenolytisch gespalten werden.

Weiterhin kann man in einer Verbindung der Formel I ( $Y = Z = H$ ) die beiden in 3- und 4-Stellung des Azinringes vorhandenen Wasserstoffatome mit dehydrierenden Mitteln entfernen, wobei man Benzazine der Formeln Ia und Ic erhält. Diese Dehydrierung erfolgt sehr leicht, z.B. schon beim Stehenlassen einer Lösung der Verbindung I ( $Y = Z = H$ ) an der Luft oder beim Durchleiten von Luft oder Sauerstoff durch eine solche Lösung. Als Lösungsmittel sind die üblichen inerten geeignet, vorzugsweise niedere Alkohole wie Methanol, Aethanol oder Isopropanol. Die Dehydrierung gelingt bei Temperaturen zwischen  $0^\circ$  und  $120^\circ$ , vorzugsweise zwischen Raumtemperatur und dem Siedepunkt des verwendeten Lösungsmittels.

009827 / 1966

1810561

- 18 -

Die Dehydrierung lässt sich auch durch Einwirkung anderer milder Oxydationsmittel erzielen, z.B. mit Hilfe von  $\text{PtO}_2$ ,  $\text{PdO}_2$ ,  $\text{FeCl}_3$ , Nitrobenzol oder Kalium-eisen(III)cyanid unter den für derartige Dehydrierungen in der Literatur beschriebenen Bedingungen.

Es ist möglich, in dem erhaltenen Produkt gegebenenfalls vorhandene freie Hydroxygruppen zu verestern. Eine Veresterung von Hydroxygruppen kann z.B. durch Erhitzen mit einem Anhydrid oder Halogenid der Essig-, Propion-, Butter-, Isobutter-, Valerian-, Isovalerian-, Capron-, Benzoe-, Nicotin- oder Isonicotinsäure erfolgen, vorteilhaft in Gegenwart einer Base wie Pyridin oder eines Alkalisalzes der entsprechenden Säure oder auch einer geringen Menge Mineralsäure wie Schwefelsäure oder Salzsäure. Zur Herstellung der Schwefelsäure- und Phosphorsäureester von Verbindungen der Formel I, die mindestens eine OH-Gruppe enthalten, setzt man diese mit Schwefelsäure, Phosphorsäure oder einem zur Veresterung geeigneten Derivat dieser Säuren um, wobei man nach an sich aus der Literatur bekannten Methoden arbeitet. Es ist auch möglich, die Reaktion mit einem Schwefelsäure- bzw. Phosphorsäurederivat, in welchem eine bzw. zwei Hydroxygruppen blockiert sind, durchzuführen und in den so erhaltenen Estern die vorhandenen Schutzgruppen anschließend hydrolytisch oder hydrogenolytisch zu entfernen. Schließlich kann man die erhaltenen Schwefelsäure- bzw. Phosphorsäureester durch Behandeln mit Basen in ihre physiologisch verträglichen Metall- bzw. Ammoniumsalze überführen.

Gewünschtenfalls kann in einer Verbindung der Formel I ( $\text{Y} = \text{H}$ ) die NH-Gruppe acyliert werden, z.B. durch Umsetzung mit einem Anhydrid oder Halogenid (z.B. Chlorid oder Bromid) einer Carbonsäure, die 1 - 8 C-Atome besitzt, wie Essig-, Propion-, Butter-, Isobutter-, Valerian-, Isovalerian-, Capron-, Önanth-, Benzoe-, Capryl-,  $\alpha$ -,  $\beta$ - oder  $\gamma$ -Toluylsäure, bei Temperaturen zwischen 0 und  $200^\circ$ , vorzugsweise zwischen 20 und  $120^\circ$ , in Gegenwart oder in Abwesenheit eines inerten Lösungsmittels.

009827 / 1966

1810561

- 19 -

Schließlich ist es möglich, die Benzazine der Formel I durch Behandeln mit Säuren in ihre physiologisch verträglichen Säure-additionssalze überzuführen. Für diese Umsetzung kommen solche Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können organische und anorganische Säuren, wie z.B. aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon- oder Sulfonsäuren, wie Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylsuccinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Aminocarbon-säuren, Sulfaminsäure, Benzoësäure, Salicylsäure, Phenylpropionsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Isonicotinsäure, Methansulfonsäure, Naphthalinmono- und -disulfonsäure, Schwefelsäure, Salpetersäure, Halogenwasserstoffssäuren, wie Chlorwasserstoffssäure oder Bromwasserstoffssäure oder Phosphorsäuren wie Orthophosphorsäure verwendet werden.

Die neuen Verbindungen können im Gemisch mit festen und/oder flüssigen Arzneimittelträgern in der Human- oder Veterinär-medizin eingesetzt werden. Als Trägersubstanzen kommen solche organischen oder anorganischen Stoffe in Frage, die für die parentale, enterale oder topikale Applikation geeignet sind und die mit den neuen Verbindungen nicht in Reaktion treten, wie beispielsweise Wasser, pflanzliche Öle, Polyäthylenglykole, Gelatine, Milchzucker, Stärke, Magnesiumstearat, Talk, Vaseline, Cholesterin. Zur parenteralen Applikation dienen insbesondere Lösungen, vorzugsweise ölige oder wässrige Lösungen, sowie Suspensionen, Emulsionen oder Implantate. Für die enterale Applikation eignen sich ferner Tabletten, Dragees, Sirupe oder Säfte, für die topikale Anwendung Salben, Cremes oder Puder. Die angegebenen Zubereitungen können gegebenenfalls sterilisiert oder mit Hilfsstoffen, wie Konservierungs-, Stabilisierungs- oder Netzmitteln, Salzen zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb-, Geschmacks- und/oder Aromastoffen versetzt werden.

Die erfindungsgemüßen Substanzen werden vorzugsweise in einer Dosierung von 1 bis 500 mg pro Dosierungseinheit appliziert.

009827 / 1966

- 20 -

1810561

**Beispiel 1**

a) Eine Lösung von 5,7 g  $\alpha$ -(o-Nitrophenoxy)-butyrophenen (erhältlich aus  $\alpha$ -Brom-butyrophenon und dem K-Salz des o-Nitrophenols in Aceton in Gegenwart von Kaliumcarbonat) in 375 ml 70 %igem Aethanol wird mit 5 g Eisenpulver versetzt und zum Sieden erhitzt. Unter Röhren werden 0,32 ml konzentrierte Salzsäure in 5 ml 70 %igem Aethanol zugetropft und das Gemisch 6 Stunden gekocht. Nach dem Erkalten filtriert man, konzentriert das Filtrat und verteilt zwischen Wasser und Chloroform. Die Chloroformphase wird mit Wasser gewaschen, über Natriumsulfat getrocknet und eingedampft. Man erhält 2-Aethyl-3-phenyl-2H-1,4-benzoxazin.

Analog erhält man:

aus  $\alpha$ -(3-Methoxy-6-nitro-phenoxy)-butyrophenon (erhältlich aus dem K-Salz des 3-Methoxy-6-nitrophenols und  $\alpha$ -Brom-butyrophenon):

2-Aethyl-3-phenyl-7-methoxy-2H-1,4-benzoxazin;

aus p-Benzylxybutyrophenon- $\alpha$ -o-nitrophenyläther:

2-Aethyl-3-p-benzylxyphenyl-2H-1,4-benzoxazin;

aus p-Hydroxybutyrophenon- $\alpha$ -o-nitrophenyläther:

2-Aethyl-3-p-hydroxyphenyl-2H-1,4-benzoxazin.

b) 2,37 g 2-Aethyl-3-phenyl-2H-1,4-benzoxazin werden in 100 ml Methanol gelöst und an 0,5 g 5 %igem Pd/C hydriert. Nach Aufnahme der berechneten Menge Wasserstoff wird filtriert und eingedampft. Man erhält 2-Aethyl-3-phenyl-1,4-benzmorpholin.

Analog erhält man durch Hydrierung der entsprechenden 2H-1,4-Benzoxazine:

2-Aethyl-3-phenyl-7-methoxy-1,4-benzmorpholin,

2-Aethyl-3-p-hydroxyphenyl-1,4-benzmorpholin.

009927 / 1966

- 21 -

1810561

**Beispiel 2**

a) 3,91 g Kalium werden in 100 ml absolutem Aethanol gelöst. Man dampft ein, löst den Rückstand in 100 ml Tetrahydrofuran, versetzt mit 10,9 g o-Aminophenol und tropft unter Röhren eine Lösung von 29,2 g 1-Phenyl-1,2-dibrom-butan hinzu. Nach 4ständigem Kochen – wobei intermediär vermutlich 1-Phenyl-1-brom-2-(o-aminophenoxy)-butan entsteht, das nicht isoliert wird – wird eingedampft, der Rückstand zwischen Chloroform und Wasser verteilt, die Chloroformphase mit Wasser gewaschen, über Natriumsulfat getrocknet und erneut eingedampft. Man chromatographiert den Rückstand mit Chloroform an Kieselgel und erhält 2-Aethyl-3-phenyl-1,4-benzmorpholin.

Analog erhält man aus 1-p-Benzylxyphenyl-1,2-dibrom-butan:  
2-Aethyl-3-p-benzylxyphenyl-1,4-benzmorpholin.

b) 1 g 2-Aethyl-3-phenyl-1,4-benzmorpholin wird in 10 ml Nitrobenzol 30 Minuten gekocht. Man entfernt das Nitrobenzol mit Wasserdampf, extrahiert mit Chloroform, wäscht die Chloroformphase mit Wasser, dampft ein und erhält 2-Aethyl-3-phenyl-2H-1,4-benzoxazin.

c) 0,5 g 2-Aethyl-3-p-benzylxyphenyl-1,4-benzmorpholin werden in 100 ml Methanol in Gegenwart von 0,2 g 5 %iger Palladium-Kohle mit Wasserstoff bei Raumtemperatur und Normaldruck geschüttelt. Nach dem Filtrieren und Eindampfen erhält man 2-Aethyl-3-p-hydroxyphenyl-1,4-benzmorpholin.

**Beispiel 3**

a) 19 g α-(o-Nitrophenylmercapto)-p-benzylxybutyrophonen (erhältlich aus o-Nitrobenzolsulfenylchlorid und p-Benzylxybutyrophonen in Aethylenchlorid), werden mit 150 ml einer  $\text{SnCl}_2$ -Lösung (hergestellt durch Einleiten von trockenem Chlor-

009827 / 1966

- 22 -

1810561

wasserstoff in eine Suspension von 200 g  $\text{SnCl}_2 \cdot 2 \text{H}_2\text{O}$  in 380 ml Essigsäure) 6 Stunden gekocht. Man kühlt ab, macht mit verdünnter Natronlauge alkalisch und extrahiert mit Chloroform. Der Chloroformextrakt wird mit Wasser gewaschen, eingedampft und der Rückstand mit Chloroform an Kieselgel chromatographiert. Man erhält 2-Aethyl-3-p-benzyloxyphenyl-2H-1,4-benzthiazin.

Analog erhält man:

aus  $\alpha$ -(o-Nitrophenylmercapto)-butyrophenen:

2-Aethyl-3-phenyl-2H-1,4-benzthiazin;

aus  $\alpha$ -(o-Nitrophenylmercapto)-p-methyl-butyrophenen:

2-Aethyl-3-p-tolyl-2H-1,4-benzthiazin;

aus  $\alpha$ -(o-Nitrophenylmercapto)-p-ethyl-butyrophenen:

2-Aethyl-3-p-ethylphenyl-2H-1,4-benzthiazin;

aus  $\alpha$ -(o-Nitrophenylmercapto)-p-isopropyl-butyrophenen:

2-Aethyl-3-p-isopropylphenyl-2H-1,4-benzthiazin;

aus  $\alpha$ -(o-Nitrophenylmercapto)-p-isobutyl-butyrophenen:

2-Aethyl-3-p-isobutylphenyl-2H-1,4-benzthiazin;

aus  $\alpha$ -(2-Nitro-4-methyl-phenylmercapto)-p-benzyloxy-butyrophenen:

2-Aethyl-3-p-benzyloxyphenyl-6-methyl-2H-1,4-benzthiazin;

aus  $\alpha$ -(2-Nitro-5-methoxy-phenylmercapto)-p-benzyloxybutyrophenen:

2-Aethyl-3-p-benzyloxyphenyl-7-methoxy-2H-1,4-benzthiazin.

009827 / 1966

- 23 -

1810561

b) Eine Lösung von 6 g 2-Aethyl-3-p-benzylxyphenyl-2H-1,4-benzthiazin in 820 ml absolutem Aether werden mit einer Suspension von 2,9 g LiAlH<sub>4</sub> in 80 ml Aether versetzt und 6 Stunden bei 20° gerührt. Nach Zusatz von 65 ml 10 %iger Kalilauge filtriert man, trennt die Aetherphase ab, wäscht mit Wasser, trocknet über Natriumsulfat, dampft ein und chromatographiert den Rückstand mit Chloroform an Kieselgel. Man erhält 2-Aethyl-3-p-benzylxyphenyl-1,4-benzthiomorpholin.

Analog erhält man aus den entsprechenden Benzthiazinen:

2-Aethyl-3-p-benzylxyphenyl-5-methyl-1,4-benzthiomorpholin;  
2-Aethyl-3-p-benzylxyphenyl-7-methoxy-1,4-benzthiomorpholin.

c) 6 g 2-Aethyl-3-p-benzylxyphenyl-6-methyl-1,4-benzthiomorpholin werden mit 15 ml Acetanhydrid 4 Stunden auf 100° erhitzt, das Gemisch abgekühlt, in Wasser gegossen, 10 Minuten auf 70° erwärmt, abgekühlt und mit Chloroform extrahiert. Die Chloroform-Extrakte werden mit Natriumbicarbonat-Lösung und Wasser gewaschen, über Natriumsulfat getrocknet und eingedampft. Das erhaltene Öl wird platten-chromatographisch gereinigt. Man erhält 2-Aethyl-3-p-benzylxyphenyl-4-acetyl-6-methyl-1,4-benzthiomorpholin.

Analog erhält man mit Benzoylchlorid in Dioxan:

2-Aethyl-3-p-benzylxyphenyl-4-benzoyl-6-methyl-1,4-benzthiomorpholin.

Analog sind aus den entsprechenden 1,4-Benzmorpholinen bzw. 1,4-Benzthiomorpholinen mit geeigneten Säurehalogeniden oder Anhydriden erhältlich:

009827 / 1966

- 24 -

1810561

2-Aethyl-3-p-benzylxyphenyl-4-acetyl-1,4-benzmorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-propionyl-1,4-benzmorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-butyryl-1,4-benzmorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-benzoyl-1,4-benzmorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-acetyl-1,4-benzthiomorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-propionyl-1,4-benzthiomorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-butyryl-1,4-benzthiomorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-caproyl-1,4-benzthiomorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-octanoyl-1,4-benzthiomorpholin;  
 2-Aethyl-3-p-benzylxyphenyl-4-benzoyl-1,4-benzthiomorpholin.

**Beispiel 4**

a) 15 g  $\alpha$ -(o-Nitrophenylmercapto)-p-hydroxybutyrophonen (F. 136 - 138°; erhältlich durch Umsetzung von o-Nitrobenzolsulfenylchlorid mit p-Acetoxybutyrophonen, wobei gleichzeitig die Acetoxygruppe verseift wird) werden mit 150 ml einer  $\text{SnCl}_2$ -Lösung (hergestellt nach Beispiel 3) 6 Stunden gekocht. Man kühlt ab, filtriert die Zinnsalze ab und röhrt das Filtrat in etwa 1,5 l Eiswasser ein, wobei sich 2-Aethyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin-hydrochlorid abscheidet; F. 264 - 266° (aus Essigsäure).

Analog erhält man:

aus  $\alpha$ -(o-Nitrophenylmercapto)-p-hydroxy-valerophonen (F. 120 - 122°):

2-n-Propyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin-hydrochlorid, F. 225 - 227°;

009827 / 1966

- 25 -

1810561

aus  $\alpha$ -(o-Nitrophenylmercapto)-n-pentyl-(p-hydroxyphenyl)-keton:

2-n-Butyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin-hydrochlorid;

aus  $\nearrow$ -(o-Nitrophenylmercapto)-3-methyl-butyl7-(p-hydroxyphenyl)keton:

2-Isobutyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin-hydrochlorid;

aus  $\alpha$ -(o-Nitrophenylmercapto)-n-hexyl-(p-hydroxyphenyl)-keton:

2-n-Pentyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin-hydrochlorid;

aus  $\alpha$ -(o-Nitrophenylmercapto)-n-heptyl-(p-hydroxyphenyl)-keton:

2-n-Hexyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin-hydrochlorid;

aus  $\alpha$ -(2-Nitro-5-methoxyphenylmercapto)-p-hydroxybutyrophenon:

2-Aethyl-3-p-hydroxyphenyl-7-methoxy-2H-1,4-benzthiazin-hydrochlorid.

b) Man löst 10 g 2-Aethyl-3-(p-hydroxyphenyl)-2H-1,4-benzthiazin-hydrochlorid in 50 ml Pyridin, gibt 2 g NaBH<sub>4</sub> hinzu und röhrt etwa 3 Stunden bei 50°. Man gibt dann weitere 1,2 g NaBH<sub>4</sub> hinzu und röhrt über Nacht bei Raumtemperatur. Danach gießt man die Lösung in Wasser, extrahiert mit Chloroform, wäscht den Chloroformextrakt mit Wasser, trocknet über Natriumsulfat, dampft ein, chromatographiert mit Benzol an Kieselgel und erhält 2-Aethyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin, F. 152 - 154° (aus Benzol/Petroläther).

Analog erhält man aus den entsprechenden Benzthiazinen:

2-n-Propyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin,  
F. 116 - 117°;

2-n-Butyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin;

009827 / 1966

- 26 -

1810561

2-Isobutyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin;  
2-n-Pentyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin;  
2-n-Hexyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin;  
2-Aethyl-3-p-hydroxyphenyl-7-methoxy-1,4-benzthiomor-  
pholin.

c) 4 g 2-n-Propyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin werden mit 40 ml Pyridin und 2 g Nicotinsäurechlorid 17 Stunden bei Raumtemperatur gerührt. Man gießt anschließend in Wasser, saugt ab, wäscht mit Wasser und erhält 2-n-Propyl-3-p-nicotinoyloxyphenyl-1,4-benzthiomorpholin, F. 162 - 163° (aus Aceton).

Analog erhält man durch Umsetzung der entsprechenden freien Phenole mit den korrespondierenden Säurechloriden oder -anhydriden:

2-Aethyl-3-p-acetoxyphenyl-2H-1,4-benzoxazin  
2-Aethyl-3-p-acetoxyphenyl-1,4-benzmorpholin  
2-Aethyl-3-p-acetoxyphenyl-2H-1,4-benzthiazin  
2-n-Propyl-3-p-acetoxyphenyl-2H-1,4-benzthiazin  
2-Aethyl-3-p-acetoxyphenyl-1,4-benzthiomorpholin  
2-n-Propyl-3-p-acetoxyphenyl-1,4-benzthiomorpholin  
2-Aethyl-3-p-acetoxyphenyl-7-methoxy-2H-1,4-benzthiazin  
2-Aethyl-3-p-acetoxyphenyl-7-methoxy-1,4-benzthiomorpholin  
2-Aethyl-3-p-nicotinoyloxyphenyl-2H-1,4-benzoxazin  
2-Aethyl-3-p-nicotinoyloxyphenyl-1,4-benzmorpholin  
2-Aethyl-3-p-nicotinoyloxyphenyl-2H-1,4-benzthiazin  
2-n-Propyl-3-p-nicotinoyloxyphenyl-2H-1,4-benzthiazin  
2-Aethyl-3-p-nicotinoyloxyphenyl-7-methoxy-2H-1,4-benz-  
thiazin  
2-Aethyl-3-p-nicotinoyloxyphenyl-1,4-benzthiomorpholin  
2-Aethyl-3-p-nicotinoyloxyphenyl-7-methoxy-1,4-benzthio-  
morpholin

009827 / 1966

- 27 -

1810561

2-Aethyl-3-p-isonicotinoyloxyphenyl-2H-1,4-benzoxazin  
 2-Aethyl-3-p-isonicotinoyloxyphenyl-1,4-benzmorpholin  
 2-Aethyl-3-p-isonicotinoyloxyphenyl-2H-1,4-benzthiazin  
 2-n-Propyl-3-p-isonicotinoyloxyphenyl-2H-1,4-benzthiazin  
 2-Aethyl-3-p-isonicotinoyloxyphenyl-1,4-benzthiomorpholin  
 2-n-Propyl-3-p-isonicotinoyloxyphenyl-1,4-benzthiomorpholin  
 2-Aethyl-3-p-isonicotinoyloxyphenyl-7-methoxy-2H-1,4-benzthiazin  
 2-Aethyl-3-p-isonicotinoyloxyphenyl-7-methoxy-1,4-benzthiomorpholin.

d) 3 g 2-Aethyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin werden mit 30 ml Pyridin und 3 g Amidosulfonsäure 50 Minuten unter Röhren auf dem Dampfbad erhitzt. Man filtriert, schüttelt das Filtrat mit 2n-Natronlauge gut durch, trennt die Pyridiuphase ab und wäscht sie mehrfach mit Aether. Das erhaltene Sulfat des Natriumsalzes des 2-Aethyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin-schwefelsäureesters wird chromatographisch an Kieselgel (Elutionsmittel Chloroform/Methanol 9:1) gereinigt.

Analog erhält man aus den entsprechenden freien Phenolen die Sulfate von:

2-Aethyl-3-p-sulfatophenyl-2H-1,4-benzoxazin-Natriumsalz,  
 2-Aethyl-3-p-sulfatophenyl-1,4-benzmorpholin-Natriumsalz,  
 2-Aethyl-3-p-sulfatophenyl-2H-1,4-benzthiazin-Natriumsalz,  
 2-n-Propyl-3-p-sulfatophenyl-2H-1,4-benzthiazin-Natrium-  
 salz,  
 2-Aethyl-3-p-sulfatophenyl-7-methoxy-2H-1,4-benzthiazin-  
 Natriumsalz,  
 2-n-Propyl-3-p-sulfatophenyl-1,4-benzthiomorpholin-  
 Natriumsalz,  
 2-Aethyl-3-p-sulfatophenyl-7-methoxy-1,4-benzthiomorpho-  
 lin-Natriumsalz.

009827 / 1966

- 28 -

1810561

e) Eine Lösung von 2 g 2-Aethyl-3-p-hydroxyphenyl-2H-1,4-benzoxazin in 20 ml absolutem Pyridin wird bei - 25° mit 10 ml einer Lösung von Phosphorsäuredibenzylesterchlorid in absolutem Aether versetzt, 1 Stunde bei - 25° gerührt und über Nacht bei - 5° stehengelassen. Das Reaktionsgemisch wird in Eiswasser eingerührt, mit Salzsäure auf pH 4 angesäuert, mit Aether extrahiert und über Natriumsulfat getrocknet. Der aus der Aetherlösung erhaltene Rückstand wird in 100 ml Methanol gelöst. Nach Zugabe von 180 mg 10 %iger Palladiumkohle wird bis zum Stillstand der Wasserstoff-Aufnahme hydriert. Man filtert den Katalysator ab, dampft ein und erhält 2-Aethyl-3-p-phosphatophenyl-2H-1,4-benzoxazin.

Analog erhält man aus den entsprechenden freien Phenolen:

2-Aethyl-3-p-phosphatophenyl-1,4-benzmorpholin  
 2-Aethyl-3-p-phosphatophenyl-2H-1,4-benzthiazin  
 2-n-Propyl-3-p-phosphatophenyl-2H-1,4-benzthiazin  
 2-Aethyl-3-p-phosphatophenyl-1,4-benzthiomorpholin  
 2-n-Propyl-3-p-phosphatophenyl-1,4-benzthiomorpholin  
 2-Aethyl-3-p-phosphatophenyl-7-methoxy-2H-1,4-benzthiazin  
 2-Aethyl-3-p-phosphatophenyl-7-methoxy-1,4-benzthiomorpholin.

#### Beispiel 5

19,3 g 2-Aethyl-1,4-benzthiomorpholin-3-on werden in 250 ml absolutem Dioxan gelöst. Man tropft zu dieser Lösung eine aus 31,6 g p-Denzyloxybrombenzol und 3 g Magnesium in 250 ml Aether bereitete Grignard-Lösung unter Rühren, erhitzt noch etwa 20 Minuten auf dem Dampfbad, kühlt das Gemisch, das 2-Aethyl-3-p-benzyloxyphenyl-3-hydroxy-1,4-benzthiomorpholin enthält, auf Raumtemperatur ab und röhrt in halb-konzentrierte Salzsäure ein. Man wäscht die saure Lösung mehrfach mit Chloroform, gibt Natrium-

009827 / 1966

- 29 -

1810561

carbonatlösung bis zur alkalischen Reaktion hinzu und extrahiert mehrfach mit Chloroform. Der Extrakt wird mit Wasser gewaschen, das Chloroform abdestilliert und der Rückstand mit Chloroform an Kieselgel chromatographiert. Man erhält 2-Aethyl-3-p-benzyl-oxyphenyl-2H-1,4-benzthiazin.

#### Beispiel 6

1 g 1-Amino-1-p-benzylxyloxyphenyl-2-(o-amino-phenoxy)-butan (erhältlich durch Umsetzung von 1-p-Benzylxyloxyphenyl-2-äthyl-äthylenoxid mit methanolischem  $\text{NH}_3$  zu 1-Amino-1-p-benzylxyloxyphenyl-2-butanol und Kondensation mit o-Aminophenol in Gegenwart von  $\text{H}_2\text{SO}_4$ ) wird mit 20 mg Jod 4 Stunden lang auf 200° erhitzt. Nach dem Abkühlen nimmt man in Chloroform auf, filtriert die Lösung über basisches Aluminiumoxid, versetzt das Eluat mit Petroläther und erhält 2-Aethyl-3-p-benzylxyloxyphenyl-1,4-benzmorpholin.

#### Beispiel 7

Man löst 1 g 1-Phenyl-1-(o-hydroxyphenyl-imino)-2-butanol (erhältlich durch Kondensation von o-Aminophenol mit 1-Phenyl-2-propanol-1-on) in 20 ml Methylenchlorid und versetzt dann mit 1,6 g festem Dicyclohexylcarbodiimid. Nach kurzem Umschütteln lässt man 24 Stunden bei Raumtemperatur stehen. Man filtriert den gebildeten Dicyclohexylharnstoff ab, schüttelt die Methylenchloridphase mit 1 n NaOH durch, bis kein Dicyclohexylharnstoff mehr ausgeschieden wird, trennt die Methylenchloridphase ab, wäscht sie mit Wasser neutral, arbeitet wie in Beispiel 1 auf und erhält 2-Aethyl-3-phenyl-2H-1,4-benzoxazin.

#### Beispiel 8

1 g o-(1-Phenyl-butylidenamino)-phenylschwefelchlorid (erhältlich durch Kondensation von o,o'-Diamino-diphenyl-disulfid mit Butyrophenon und anschließende Spaltung der Disulfidbrücke mit

009827 / 1966

- 30 -

1810561

Chlor in  $\text{CCl}_4$ ) wird in 20 ml Trichloräthylen 6 Stunden gekocht. Nach dem Abkühlen wäscht man mit Wasser, trocknet über Natrium-sulfat, dampft ein und erhält 2-Aethyl-3-phenyl-2H-1,4-benz-thiazin.

#### Beispiel 9

Eine Lösung von 1 g 1-Phenylimino-1-phenyl-2-butylschwefelchlorid (erhältlich durch Kondensation von Anilin mit Bis-(1-phenyl-1-oxo-2-butyl)-disulfid und anschließende Spaltung der Disulfid-brücke mit Chlor in  $\text{CCl}_4$ ) in 20 ml Nitrobenzol wird unter Eiskühlung und Röhren mit 1 g Aluminiumchlorid versetzt und anschließend noch 2 Stunden gerührt. Man gießt auf ein Gemisch von Eis und Salzsäure, versetzt mit Chloroform, trennt ab, wäscht die Chloroformschicht mehrfach mit Wasser, entfernt die organischen Lösungsmittel mit Wasserdampf und erhält 2-Aethyl-3-phenyl-1,4-2H-benzthiazin.

#### Beispiel 10

- a) 0,5 g  $\alpha$ -(*o*-Nitrophenoxy)-*p*-acetoxybutyrophenen (erhältlich aus  $\alpha$ -Brom-*p*-acetoxybutyrophenen und dem K-Salz des *o*-Nitrophenols) werden in 50 ml Methanol suspendiert und bis zum Ende der Wasserstoffaufnahme an 0,1 g Raney-Nickel unter Schütteln hydriert. Man filtriert, dampft ein und erhält 2-Aethyl-3-*p*-acetoxyphenyl-1,4-benzmorpholin.
- b) 0,2 g 2-Aethyl-3-*p*-acetoxyphenyl-1,4-benzmorpholin werden mit 3 ml 10 %iger methanolischer Kalilauge über Nacht stehengelassen. Man säuert mit verdünnter Salzsäure an, kühlt ab und erhält 2-Aethyl-3-*p*-hydroxyphenyl-1,4-benzmorpholin.

009827/1966

Druck: 1966

- 31 -

1810561

**Beispiel 11**

Ein Gemisch von 1 g 1-Phenyl-1-o-hydroxyanilino-2-butanol (erhältlich aus o-Aminophenol und 1-Phenyl-1-brom-2-butanol) und 1 g p-Toluolsulfinsäure wird 4 Stunden lang auf 120 - 140° erhitzt. Nach dem Abkühlen wird mit Wasser versetzt, mit Natronlauge alkalisiert, mit Chloroform extrahiert und wie in Beispiel 2 a) aufgearbeitet. Man erhält 2-Aethyl-3-phenyl-1,4-benzmorpholin.

**Beispiel 12**

Man löst 1 g 1-Phenyl-1-o-hydroxyanilino-2-butanol in 50 ml absolutem Benzol, fügt 3 g Calciumchlorid hinzu, sättigt mit trockenem Chlorwasserstoff, kocht das Gemisch 6 Stunden und arbeitet wie in Beispiel 11 auf. Man erhält 2-Aethyl-3-phenyl-1,4-benzmorpholin.

009827 / 1966

- 32 -

1810561

Patentansprüche

## 1. Verfahren zur Herstellung von 3-Aryl-benzazinen der allgemeinen Formel I

worin



$R^1$  H, gegebenenfalls verestertes OH, Alkyl mit 1 - 4 C-Atomen, Alkoxy mit 1 - 4 C-Atomen oder Benzyloxy,

$R^2$  H, gegebenenfalls verestertes OH, Alkyl mit 1 - 4 C-Atomen oder Benzyloxy,

$R^3$  Alkyl mit 2 - 6 C-Atomen,

X O oder S,

Y H, Kohlenwasserstoff-Acyl mit 1 - 8 C-Atomen oder zusammen mit Z eine zusätzliche C-N-Bindung und

Z H oder zusammen mit Y eine zusätzliche C-N-Bindung bedeuten,

sowie von deren physiologisch unbedenklichen Säureadditions-salzen, dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel II,



worin

$A^1$   $NH_2$  oder Hal,

$A^2$  =O, =S, =NH, (H,  $NH_2$ ) oder (H, Hal) und

Hal Cl, Br oder J

bedeuten, worin aber mindestens einer der Reste  $A^1$  bzw.  $A^2$  ein Stickstoffatom enthält,

009827 / 1966

- 33 -

1810561

oder eine Verbindung der allgemeinen Formel III,



worin

$B^1$  und  $B^2$  gegebenenfalls reaktionsfähig funktionalisiertes OH oder gegebenenfalls reaktionsfähig funktionalisiertes SH, einer dieser Reste auch H oder Hal

bedeuten,

mit cyclisierenden Mitteln behandelt

oder daß man eine Verbindung der allgemeinen Formel IV



worin

W OH oder Z  
bedeutet,

mit reduzierenden und/oder wasserabspaltenden Mitteln behandelt

009827 / 1966

1810561

- 34 -

oder daß man in einer sonst der Formel I entsprechenden Verbindung, die jedoch an Stelle der Reste R<sup>1</sup> und/oder R<sup>2</sup> funktionell abgewandelte OH-Gruppen enthält, diese durch Behandeln mit hydrolysierten oder hydrogenolysierenden Mitteln in Freiheit setzt

und/oder daß man gegebenenfalls in einer Verbindung der allgemeinen Formel I in 3- und 4-Stellung des Azinringes vorhandene Wasserstoffatome mit dehydrierenden Mitteln entfernt und/oder freie OH-Gruppen mit veresterten Mitteln verestert und/oder eine NH-Gruppe durch Behandeln mit acylierenden Mitteln acyliert und/oder Verbindungen der Formel I in ihre physiologisch unbedenklichen Säureadditionssalze überführt.

009827/1966

- 35 -

1810561

## 2. 3-Aryl-benzazine der allgemeinen Formel I



worin

$R^1$  H, gegebenenfalls verestertes OH, Alkyl mit 1 - 4 C-Atomen, Alkoxy mit 1 - 4 C-Atomen oder Benzyloxy,

$R^2$  H, gegebenenfalls verestertes OH, Alkyl mit 1 - 4 C-Atomen oder Benzyloxy,

$R^3$  Alkyl mit 2 - 6 C-Atomen,

X O oder S,

Y H, Kohlenwasserstoff-Acyl mit 1 - 8 C-Atomen oder zusammen mit Z eine zusätzliche C-N-Bindung und

Z H oder zusammen mit Y eine zusätzliche C-N-Bindung bedeuten,

sowie ihre physiologisch unbedenklichen Säureadditionssalze.

3. Verbindungen der allgemeinen Formeln Ia bis IIa, sowie die physiologisch unbedenklichen Säureadditionssalze dieser Verbindungen.

4. 2-Aethyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin und dessen Hydrochlorid.

5. 2-n-Propyl-3-p-hydroxyphenyl-2H-1,4-benzthiazin und dessen Hydrochlorid.

6. 2-Aethyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin.

7. 2-n-Propyl-3-p-hydroxyphenyl-1,4-benzthiomorpholin.

009827 / 1966

- 36 -

1810561

8. 2-Aethyl-3-p-nicotinoyloxyphenyl-1,4-benzthiomorpholin.

9. 2-n-Propyl-3-p-nicotinoyloxyphenyl-1,4-benzthiomorpholin.

10. Pharmazeutische Zubereitung, enthaltend eine wirksame Dosis einer Verbindung der Formel I und/oder gegebenenfalls ihrer physiologisch unbedenklichen Säureadditionssalze neben üblichen Träger- und Zusatzstoffen.

11. Pharmazeutische Zubereitung, enthaltend zwischen 1 und 500 mg einer Verbindung der Formel I und/oder gegebenenfalls ihrer physiologisch unbedenklichen Säureadditionssalze neben üblichen Träger- und Zusatzstoffen.

12. Verfahren zur Erzielung einer cholesterinspiegelsenkenden Wirkung in Lebewesen, dadurch gekennzeichnet, daß man eine wirksame Dosis einer Verbindung der Formel I verabreicht.

009827 / 1986

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**