CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9701	22

Question	Mark Scheme						Mark	Total
1 (a)	name of isotope	type of particle	charge	symbol	electron configuration			
	carbon-13	atom	0	¹³ ₆ C	1s ² 2s ² 2p ²			
	chloride(-37)	anion	1-	C1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶		[5]	[5]
	sulfur-34	atom	0	³⁴ ₁₆ S	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴			
	iron-54	cation	2+	⁵⁴ ₂₆ Fe ⁽²⁺⁾	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶			
(b) (i)	ability/tendency	/power of a	an atom/nu	cleus to attra	ct/pull electron(s)		[1]	
	in a covalent bor	nd/shared	pair of elect	trons/bonding	g pair of electrons		[1]	[2]
(ii)	Covalent overlap of orbital	ls OR share	ed <u>pair</u> (s) (c	of electrons)			[1] [1]	
	OR			,				[2]
	metallic positive ions/cat	tions surrou	ınded by de	elocalised ele	ctrons		[1] [1]	
(iii)	Ionic/electrovale (electrostatic) At		ween oppo	sitely charged	d/+ve and –ve <u>ions</u>		[1] [1]	[2]
(c) (i)	similar strength/ forces/LDF/disp			ermolecular f	orces/induced dipole/van	der Waals'/VdW/London	[1]	
							[41	[2]
	therefore similar	energy nee					[1]	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(ii)	M1 HCl polar/has a dipole AND F ₂ non-polar/has no dipole OR (permanent) dipole (-dipole) attractions/forces between HCl (molecules) AND induced dipole (-induced dipole) attractions/forces/LDFs between F ₂ (molecules)	[1]	
	M2 more energy needed for $HC1$ than F_2 OR pd-pd forces stronger than id-id forces OR IMFs/VdWs in $HC1$ stronger than in F_2	[1]	[2]
(iii)	Hydrogen bonding (between methanol molecules)	[1]	[0]
	Stronger than IMFs/van der Waals' in other three/is the strongest intermolecular force	[1]	[2]
			[17]
2 (a)	M1 Heat (energy) change (or H _{prod} – H _{react}) measured at constant pressure OR enthalpy change when the amount/moles of reactants as shown in a (reaction) equation react together to give products	[1]	
	M2 measured at standard conditions	[1]	[2]
(b) (i)	q = 2125.53	[1]	[1]
(ii)	amount = 0.025(0)	[1]	[1]
(iii)	-85.(0)	[1]	[1]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(iv)	$ (MgSO_4(s) + 7H_2O(I) \rightarrow MgSO_4.7H_2O(s)) $ $ -85.0 \ (kJ mol^{-1}) $ $ (+)9.60 \ (kJ mol^{-1}) $ $ MgSO_4(aq) $	[1]	[1]
(v)	$\Delta H + 9.6 = -85.0$ $\Delta H = -85.0 - 9.6 = -94.6 \text{ (kJ mol}^{-1}\text{)}$	[1]	[1]
			[7]
3 (a) (i)	Na ₂ O or Na ₂ O ₂ ; MgO; P ₄ O ₁₀ or P ₄ O ₆ ; SO ₂	[1] [1]	[2]
(ii)	Na: Yellow/orange/gold flame/white solid/powder/smoke $4Na + O_2 \rightarrow 2Na_2O$ or $2Na + O_2 \rightarrow Na_2O_2$	[1] [1]	
	S: Blue flame/(yellow) solid melts/turns red/amber/white fumes $S + O_2 \rightarrow SO_2$	[1] [1]	[4]
(b) (i)	acidic P and S amphoteric A <i>l</i> and basic Na and Mg	[1] [1]	[2]
(ii)	acidic: covalent (bonding) basic: ionic (bonding)	[1] [1]	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(iii)	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$ OR $Al_2O_3 + 6H^+ \rightarrow 2Al^{3+} + 3H_2O$	[1]	
	$Al_2O_3 + 2NaOH + 7H_2O \rightarrow 2NaAl (OH)_4 (H_2O)_2$ OR $Al_2O_3 + 2NaOH + 3H_2O \rightarrow 2NaAl (OH)_4$ OR $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$ OR $Al_2O_3 + 2OH^- + 7H_2O \rightarrow 2[Al(OH)_4 (H_2O)_2]^-$ OR $Al_2O_3 + 2OH^- + 3H_2O \rightarrow 2[Al(OH)_4]^-$ OR $Al_2O_3 + 2OH^- \rightarrow 2AlO_2^- + H_2O$	[1]	[2]
(c)	sulfur forms SO_2/SO_2 +/mixes $H_2O \rightarrow H_2SO_3$ or in words OR SO_2 +/mixes H_2O (\rightarrow acid) / or in words OR SO_2 +/mixes H_2O + (1/2O ₂) \rightarrow H ₂ SO ₄ /or in words	[1] [1]	[2]
			[14]
4 (a) (i)	Nucleophilic Substitution	[1]	[1]
(ii)	Has a chiral centre/carbon OR has a <u>carbon/C</u> attached to 4 different groups/atoms/chains OR has no plane/line of symmetry	[1]	[1]
(iii)	H ₃ C CH ₃ H ₃ C CH ₂ CH ₃	[1+1]	[2]
(iv)	Elimination	[1]	[1]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(v)	H ₃ C CH ₃ H ₃ C CH ₃	[1]	[2]
	cis-but-2-ene trans-but-2-ene	[1]	
(vi)	But-1-ene	[1]	
	2 Hs on one of the double-bonded Cs OR	[1]	[2]
	does not have 2 different groups on both atoms/each atom in C=C		
(b) (i)	ammonia/NH ₃	[1]	[1]
(ii)	propanoyl chloride / C ₂ H ₅ COC <i>l</i>	[1]	[1]
(iii)	CH ₃ CH(NHCOC ₂ H ₅)CH ₃	[1]	[1]
(iv)	Reduction LiA lH ₄ / NaBH ₄ / H ₂ and Ni / tin and concentrated HC l	[1] [1]	[2]
(v)	aluminium oxide	[1]	[1]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(vi)	M1 = correct structure of Y and curly arrow from double bond to H M2 = dipole and curly arrow from H-Br bond to Br M3 = correct intermediate M4 = Br ⁻ with lone pair and curly arrow from lone pair to C(+)	[1] [1] [1] [1]	[4]
(vii)	electrophilic addition	[1]	[1]
(viii)	secondary carbocation more stable than primary due to electron releasing character/(positive) inductive effect of alkyl groups	[1] [1]	[2]
			[22]