Idéias

► Encontrar matrix de fisher

- ► Encontrar matrix de fisher
 - Matriz Esperada não dá

- Encontrar matrix de fisher
 - Matriz Esperada não dá
- Encontrar hessiana ou Matriz Observada

- ► Encontrar matrix de fisher
 - Matriz Esperada não dá
- Encontrar hessiana ou Matriz Observada
 - Parece possível sem o efeito do nugget. Com nugget acho que não

- Encontrar matrix de fisher
 - Matriz Esperada não dá
- Encontrar hessiana ou Matriz Observada
 - Parece possível sem o efeito do nugget. Com nugget acho que não
 - ► Vantagens pra densidade normal [1] (não li tá kkkk)

- Encontrar matrix de fisher
 - Matriz Esperada não dá
- ► Encontrar hessiana ou Matriz Observada
 - Parece possível sem o efeito do nugget. Com nugget acho que não
 - Vantagens pra densidade normal [1] (não li tá kkkk)
- Faz como o artigo sugere

Para $\theta = (\sigma_1^2, \sigma_2^2, a, \rho)$, temos que

$$\log(\theta) = -\frac{1}{2} \left[\log(\det(\mathbf{\Sigma}_{\theta})) + (\mathbf{z} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}_{\theta}^{-1} (\mathbf{z} - \boldsymbol{\mu}) + 2N \log(2\pi) \right]. \tag{1}$$

Para $\theta = (\sigma_1^2, \sigma_2^2, a, \rho)$, temos que

$$\log(\theta) = -\frac{1}{2} \left[\log(\det(\mathbf{\Sigma}_{\theta})) + (\mathbf{z} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}_{\theta}^{-1} (\mathbf{z} - \boldsymbol{\mu}) + 2N \log(2\pi) \right]. \tag{1}$$

ightharpoonup Então a informação $\mathcal{I}(oldsymbol{ heta})$ é

$$\mathcal{I}_{ij}(\boldsymbol{\theta}) = \frac{\partial \log(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \log(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}^{T} \tag{2}$$

$$lacksquare$$
 Se $\dot{l}_k(oldsymbol{ heta}) = rac{\partial \log(oldsymbol{ heta})}{\partial heta_k}$ então

▶ Se
$$\dot{I}_k(\theta) = \frac{\partial \log(\theta)}{\partial \theta_k}$$
 então

$$\mathcal{I}_{ij}(oldsymbol{ heta}) = egin{pmatrix} \dot{l}_1^2(oldsymbol{ heta}) & \cdots & \dot{l}_1(oldsymbol{ heta})\dot{l}_4(oldsymbol{ heta}) \ dots & \ddots & dots \ \dot{l}_4(oldsymbol{ heta})\dot{l}_1(oldsymbol{ heta}) & \cdots & \dot{l}_4^2(oldsymbol{ heta}) \end{pmatrix}$$

Matriz de Fisher na entrada i = 1, j = 2

$$\dot{l}_{1}(\boldsymbol{\theta})\dot{l}_{2}(\boldsymbol{\theta}) = \frac{1}{4} \left\{ \left[tr(\boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\theta_{1}}) - \boldsymbol{z}^{T} (\boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\theta_{1}} \boldsymbol{\Sigma}^{-1}) \boldsymbol{z} \right] * \right. \\
\left[tr(\boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\theta_{2}}) - \boldsymbol{z}^{T} (\boldsymbol{\Sigma}^{-1} \frac{\partial \boldsymbol{\Sigma}}{\theta_{2}} \boldsymbol{\Sigma}^{-1}) \boldsymbol{z} \right] \right\}$$

$$\left\{ \left[tr(\mathbf{\Sigma}^{-1} \frac{1}{\theta_1}) - \mathbf{z}^{-1} (\mathbf{\Sigma}^{-1} \frac{1}{\theta_1} \mathbf{\Sigma}^{-1}) \mathbf{z} \right] * \right\}$$

Matriz de Fisher na entrada i = 1, j = 2

▶ Sem condições de encontrar a esperança disso, até tentei

Matriz de Fisher na entrada i = 1, j = 2

- ► Sem condições de encontrar a esperança disso, até tentei
- ightharpoonup Problema são as inversas $m \Sigma^{-1}$

Hessiana

Idéia

▶ Sem o efeito do nugget é possível isolar os parâmetros σ^2 e a, mas não rho.

Idéia

- ▶ Sem o efeito do nugget é possível isolar os parâmetros σ^2 e a, mas não rho.
- ► Com o nugget a coisa só piora.

Queremos calcular

$$\frac{\partial}{\partial \sigma_{1}^{2}} \left\{ tr \left(C_{11}^{*}(\mathbf{h}) M(\mathbf{h}|\nu_{1}, a) \right) + 2tr \left(C_{12}^{*}(\mathbf{h}) \frac{\rho \sigma_{2}}{2\sigma_{1}} M(\mathbf{h}|\nu_{3}, a) \right) + \frac{1}{\sigma_{1}^{2}} y_{1}^{T} \left[C_{11}(\mathbf{h}|\nu_{1}, a) y_{1} + C_{12}(\mathbf{h}|\nu_{3}, a) y_{2} \right] y_{1} \right\}$$
(5)

Problema

Extrair os parâmetro σ_1^2 da inversa Σ^{-1} . Ou seja:

Problema

- ightharpoonup Extrair os parâmetro σ_1^2 da inversa ightharpoonup. Ou seja:
- ightharpoonup Extrair parâmetros de C_{ii}^{\star} e C_{ij}^{\star}

$$C_{11}^{\star} = \left[C_{11} - C_{12} C_{22}^{-1} C_{11} \right]^{-1} = \left[\sigma_1^2 M(\mathbf{h}|a, \nu_1) - \frac{\rho \sigma_1^2 \sigma_2^2}{\sigma_2^2} M(\mathbf{h}|a, \nu_3) M(\mathbf{h}|a, \nu_2) M(\mathbf{h}|a, \nu_3) \right]^{-1} = \frac{1}{\sigma_1^2} \left[M(\mathbf{h}|a, \nu_1) - \rho M(\mathbf{h}|a, \nu_3) M(\mathbf{h}|a, \nu_2) M(\mathbf{h}|a, \nu_3) \right]^{-1}$$

(6)

Agora

$$C_{12}^{\star} = -C_{22}^{-1}C_{11}C_{11}^{\star}$$

$$= -\frac{\rho}{\sigma_1} C_{22} M(\mathbf{h}|\mathbf{a}, \nu_3) tr \left[M(\mathbf{h}|\mathbf{a}, \nu_1) - \rho M(\mathbf{h}|\mathbf{a}, \nu_3) M(\mathbf{h}|\mathbf{a}, \nu_2) M(\mathbf{h}|\mathbf{a}, \nu_3) \right]$$

$$\frac{\partial}{\partial \sigma_1^2} tr \left(C_{11}^{\star} M(\mathbf{h}|\mathbf{a}, \nu_1) \right) \\
= -\frac{1}{\sigma_1^4} tr \left[M(\mathbf{h}|\mathbf{a}, \nu_1) - \rho M(\mathbf{h}|\mathbf{a}, \nu_3) M(\mathbf{h}|\mathbf{a}, \nu_2) M(\mathbf{h}|\mathbf{a}, \nu_3) \right]^{-1} \tag{8}$$

Por outro lado

$$\frac{\partial}{\partial \sigma_1^2} \frac{1}{\sigma_1^2} y_1^T \left[C_{11}(\mathbf{h}|\nu_1, a) y_1 + C_{12}(\mathbf{h}|\nu_3, a) y_2 \right]
= \frac{\partial}{\partial \sigma_1^2} \frac{1}{\sigma_1^2} y_1^T \left[\sigma_1^2 M(\mathbf{h}|\nu_1, a) y_1 + \rho \sigma_1 \sigma_2 M(\mathbf{h}|\nu_3, a) y_2 \right]
= \frac{\partial}{\partial \sigma_1^2} y_1^T \left[\frac{\rho \sigma_2}{\sigma_1} M(\mathbf{h}|\nu_3, a) y_2 \right]
= \frac{\rho \sigma_2}{2\sigma_1^{2/3}} y_1^T \left[M(\mathbf{h}|\nu_3, a) y_2 \right]$$
(9)

► A conta parece correta

- ► A conta parece correta
- ightharpoonup Se eu não tivesse esquecido que $\mathbf{y} = \mathbf{\Sigma}_{\theta}^{-1}\mathbf{z}$

- ► A conta parece correta
- $lackbox{f P}$ Se eu não tivesse esquecido que ${f y}={f \Sigma}_{ heta}^{-1}{f z}$
- **....**

Conclusão

 Acho prudente tentar estimar o nugget e usar a abordagem do artigo

Refs

[1]. Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher Information