ULTIMA CLASE - PRACTICA R

VECTORES Y MATRICES

```
#Genero vector
set.seed(99)
v = sample(1:100, 12)
#Genero matriz
M = matrix(v, 3, byrow = TRUE)
#Ultima columna
M[,ncol(M)]
#Maximo elemento impar
max(M[M\%\%2 == 1])
#Promedio x fila
apply(M, 1, mean)
#Maximo entre sumatorias x columna
max(apply(M, 2, sum))
#Multiplico x 2 (menos segunda columna)
M[,-2] = M[,c(1, 3, 4)]*2
Μ
#Armo nuevo vector c/ primera y segunda fila
V2 = as.vector(M[1:2,])
V2
#Elementos multiplos de 3
V2[V2%%3==0]
#Mayor numero par
max(V2[V2\%\%2 == 0])
#Reemplazo por 0 elementos no multiplos de 4
V2[V2\%\%4!=0] = 0
V2
#Contar multiplos de 2 y mayores que 40
sum(V2%%2 == 0 & V2>40)
```

DATA FRAMES

#Ejecuto acciones

library(ggplot2)

data(msleep)

View(msleep)

suenio = subset(data.frame(msleep), select = c(name, vore, sleep_total, bodywt))

suenio = na.omit(suenio)

eliminadas = na.action(suenio)

suenio\$vore = as.factor(suenio\$vore)

dim(suenio)

#Ejecuto head

head(suenio)

#Subconjunto con carnivoros y sin columna vore

CARNIS = subset(suenio, vore=="carni", select = -vore)

CARNIS

head(CARNIS)

#Total carnivoros > 10kg y 5-10hs de sueño

sum(CARNIS\$bodywt>10 & CARNIS\$sleep_total<10 & CARNIS\$sleep_total>5)

#Subconjunto > 100kg y -10hs de sueño

GRANDES = subset(suenio, suenio\$bodywt>100 & suenio\$sleep_total<10)
GRANDES

#Total carnivoros en GRANDES

sum(GRANDES\$vore == "carni")

#Total por tipo de alimentacion en "suenio"

summary(suenio\$vore)

#Nombre del animal que menos duerme en "suenio"

min(suenio\$sleep_total)

subset(suenio, suenio\$sleep_total == (min(suenio\$sleep_total)), select = "name")

#Nombre y forma de alimentación animal mas pesado en "GRANDES"

max(GRANDES\$bodywt)

subset(GRANDES, GRANDES\$bodywt == max(GRANDES\$bodywt), select = c("name", "vore"))

#Promedio de peso s/tipo alimentacion

tapply(suenio\$bodywt, suenio\$vore, mean)

#Grafico de torta de de animales s/tipo de alimentacion

summary(suenio\$vore)

pie(summary(suenio\$vore), main = "Alimentación: proporciones")

#Subconjunto sin "African elephant" y "Asian elephant"

suenio2 = subset(suenio, suenio\$name!="African elephant" & suenio\$name!="Asian elephant")

suenio2

sum(suenio\$name=="African elephant")

sum(suenio\$name=="Asian elephant")

#Grafico de dispersion que relacione el peso y la cantidad de horas de sueño en "suenio2"

plot(suenio2\$sleep_total, suenio2\$bodywt, type = "p", main = "Peso vs Horas de sueño")

#Agregar lineas al grafico de dispersión

abline(h = mean(suenio2\$bodywt), col = "red")
abline(v = mean(suenio2\$sleep_total), col = "green")

#Grafico de cajas de cuantas hs duermen segun tipo de alimentacion

boxplot(suenio\$sleep_total ~ suenio\$vore, main = "¿Duermen segun lo que comen?") # Los mas dormilones son los insectos

```
> set.seed(99)
> v = sample(1:100, 12)
> v
[1] 48 33 44 22 62 32 13 20 31 68 9 82
> M = matrix(v, 3, byrow = TRUE)
> M
   [,1] [,2] [,3] [,4]
[1,] 48 33 44 22
[2,] 62 32 13 20
[3,] 31 68 9 82
> M[, ncol(M)]
[1] 22 20 82
> \max(M[M%%2 == 1])
[1] 33
> M%%2 != 0
     [,1] [,2] [,3] [,4]
[1,] FALSE TRUE FALSE FALSE
[2,] FALSE FALSE TRUE FALSE
[3,] TRUE FALSE TRUE FALSE
> apply(M, 1, mean)
[1] 36.75 31.75 47.50
> apply(M, 2, sum)
[1] 141 133 66 124
> max(apply(M, 2, sum))
[1] 141
> M[,-2] = M[,c(1, 3, 4)]*2
> M
   [,1] [,2] [,3] [,4]
[1,] 96 33 88 44
[2,] 124 32 26 40
[3,] 62 68 18 164
> V2 = as.vector(M[1:2,])
> V2
[1] 96 124 33 32 88 26 44 40
> V2%%3==0
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE
```

```
> V2[V2%%3==0]
[1] 96 33
> \max(V2[V2\%\%2 == 0])
[1] 124
> V2[V2\%4!=0] = 0
> V2
[1] 96 124 0 32 88 0 44 40
> sum(V2\%\%2 == 0 \& V2>40)
[1] 4
##DATA FRAMES##
> library(ggplot2)
Aviso:
package 'ggplot2' was built under R version 4.4.2
> data(msleep)
> View(msleep)
> suenio = subset(data.frame(msleep), select = c(name, vore, sleep total,
bodywt))
> suenio = na.omit(suenio)
> eliminadas = na.action(suenio)
> suenio$vore = as.factor(suenio$vore)
> dim(suenio)
[1] 76 4
> head(suenio)
                      name vore sleep_total bodywt
1
                    Cheetah carni 12.1 50.000
                                        17.0 0.480
                  Owl monkey omni
           Mountain beaver herbi
                                        14.4 1.350
4 Greater short-tailed shrew omni
5 Cow herbi
6 Three-toed sloth herbi
                                        14.9 0.019
                                         4.0 600.000
                                        14.4 3.850
#Subconjunto con carnivoros y sin columna vore
> CARNIS = subset(suenio, vore=="carni", select = -vore)
> head(CARNIS)
                  name sleep total bodywt
               Cheetah 12.1 50.00
                              8.7 20.49
7
    Northern fur seal
                   Dog
                            10.1 14.00
18 Long-nosed armadillo
                             17.4 3.50
     Domestic cat 12.5 3.30
Pilot whale 2.7 800.00
31
```

```
#Total carnivoros > 10kg y 5-10hs de sueño
```

> sum(CARNIS\$bodywt>10 & CARNIS\$sleep_total<10 & CARNIS\$sleep_total>5)
[1] 4

#Subconjunto > 100kg y -10hs de sueño

- > GRANDES = subset(suenio, suenio\$bodywt>100 & suenio\$sleep_total<10)
- > GRANDES

	name	vore	sleep_total	bodywt	
5	Cow	herbi	4.0	600.000	
21	Asian elephant	herbi	3.9	2547.000	
23	Horse	herbi	2.9	521.000	
24	Donkey	herbi	3.1	187.000	
30	Giraffe	herbi	1.9	899.995	
31	Pilot whale	carni	2.7	800.000	
36	African elephant	herbi	3.3	6654.000	
77	Brazilian tapir	herbi	4.4	207.501	
80	Bottle-nosed dolphin	carni	5.2	173.330	

#Total carnivoros en GRANDES

> sum(GRANDES\$vore == "carni")
[1] 2

#Total por tipo de alimentacion en suenio

> summary(suenio\$vore)

carni herbi insecti omni 19 32 5 20

#Nombre del animal que menos duerme en "suenio"

> subset(suenio, suenio\$sleep_total == (min(suenio\$sleep_total)), select =
"name")

nani

30 Giraffe

#Nombre y forma de alimentacion animal mas pesado en "GRANDES"

> subset(GRANDES, GRANDES\$bodywt == max(GRANDES\$bodywt), select = c("name",
"vore"))

name vore

36 African elephant herbi

#Promedio de peso s/tipo alimentacion

> tapply(suenio\$bodywt, suenio\$vore, mean)
 carni herbi insecti omni
90.75111 366.87725 12.92160 12.71800

#Grafico de torta de de animales s/tipo de alimentacion

```
> summary(suenio$vore)
  carni herbi insecti omni
     19     32     5     20
> pie(summary(suenio$vore), main = "Alimentación: proporciones")
```

Alimentación: proporciones

#Subconjunto sin "African elephant" y "Asian elephant"

```
> suenio2 = subset(suenio, suenio$name!="African elephant" &
suenio$name!="Asian elephant")
> sum(suenio$name=="African elephant")
[1] 1
> sum(suenio$name=="Asian elephant")
[1] 1
```

#Grafico de dispersion que relacione el peso y la cantidad de horas de sueño en "suenio2"

```
> plot(suenio2$sleep_total, suenio2$bodywt, type = "p", main = "Peso vs Horas
de sueño")
> abline(h = mean(suenio2$bodywt), col = "red")
> abline(v = mean(suenio2$sleep total), col = "green")
```

Peso vs Horas de sueño

#Grafico de cajas de cuantas hs duermen segun tipo de alimentacion

> boxplot(suenio\$sleep_total ~ suenio\$vore, main = ";Duermen segun lo que comen?")

¿Duermen segun lo que comen?

