ISTM 6212 - Week 9 Hierarchies, Snapshots

Daniel Chudnov, dchud@gwu.edu

Agenda

- Schedule check
- Quick review
- Handling Hierarchies
- Snapshots
- Accumulating Snapshots
- Project 02 work session

Schedule check

Quick review

Facts and dimensions

- * Facts are instances of business processes worthy of measurement
- Dimensions are the contexts in which those processes occurred and through which their measurement may be framed

Facts are sparse; dimensions wide

- Facts represent individual events; no records for "all possible events", only what actually happened
- Dimensions represent possible contexts; records for many possible combinations of filter/aggregation attributions

Consistency in dimensions

- Same structure: same attributes, names, types
- Same content: same values, casing, abbreviations
- Queries can account for differences, but early planning and proper ETL can make drilling across easier
- * Attributes must match even if tables don't

Affinity in dimensions

- * salesperson + territory vs. salesperson + customer
- product + brand + model
- team + player
- is affinity natural, or process/event-based?
- is affinity within one context or several?

Addressing large dimensions

- * is it really more than one dimension? split them up.
- extract subtype specifics to new dimensions (e.g. related product types)
- mini-dimensions: split out possibilities

Avoid NULL in dimensions

Special-case roles for missing or bad data

	PRODUCT			
Used when a fact is supplied with an invalid product_code	product_ key	row_type	product_code	product_name
	0	Invalid	n/a	n/a
Used when a fact arrives prior to dimensional context	1	Unknown	n/a	n/a
	101	Product	B57330-1	Cardboard Box
	102	Product	B47770-2	Bubble Envelope

Fig. 6-11

Behavioral dimensions

- Read this closely!
- Use facts to create new dimensions:
 - categorize customers by sales level / frequency
 - categorize products by popularity / seasonality
- * A prelude to feature engineering in data mining

Handling Hierarchies

Hierarchies appear everywhere

- Many dimensions have inherent hierarchy
- Hierarchies play out in scoping context, summarization
- More than one hierarchy may be equally valid

Fig. 7-2

All Products (1) → Categories (25) → Brands (650) → Products (8000)

Instance (recursive) hierarchies

- Organizational structures
 - Departments / sections
 - Owners / subsidiaries
- Employee relationships (e.g. supervisor)
- Product components (parts / assemblies)

Instance hierarchy handling

- Recursive queries
- Flattened dimensions
- Bridge tables

Fig. 10-3

Recursive company dimension structure

Fig. 10-4

Flattened corporate hierarchy dimension

Fig. 10-5

Bridge structure for corporate ownership hierarchy

- these structures occur frequently!
- * see Star Schema, Chapter 10

Key tactics

- Document attribute hierarchies in dimensions
- Document dimension conformance
- Design to meet analysis needs, not all possible configurations

Fig. 7-4

Hierarchy diagram defines aggregate

Quick thoughts on Snowflakes

- Avoid urge to normalize in dimensional models
- Have a good reason:
 - BI products expect or benefit
 - Some database engines optimize for it
 - Multi-value / repeating groups
 - Cleaner ETL / modeling outweighs query / update penalty

Snapshots

So far: Transaction fact tables

- Facts as records of transaction / process / event at a specific granularity
- Facts are additive sums have useful meaning
- Each record / row represents measurable facts based on what actually occurred
- "Sparse" records of actualized activity, not theoretical possibilities

Transaction fact tables awkward for:

- Status (inventory levels)
- Sensor readings (changing state)
- Prices or balances (moving averages)

Not transactions, not additive, not events, not sparse

Bank accounts: txns vs. balances

- Reasonable to study transaction patterns: these fit the transaction fact table model well
- What about demographics or seasonality of balances?

Fig. 11-1

Account
transaction fact table
design
&
instances

Account: 7922-3002

Period: 2/1/2009 - 2/14/2009

Granular transaction data stored in star:

Day	Transaction Type	Transaction Amount
2/1/2009	Initial Deposit	2000.00
2/2/2009	Withdrawal	(20.00)
2/3/2009	Check	(35.50)
2/3/2009	Check	(17.02)
2/6/2009	Check	(75.00)
2/6/2009	Deposit	75.00
2/7/2009	Check	(800.00)
2/10/2009	Check	(68.29)
2/14/2009	Withdrawal	(100.00)

Issues with transactions

- Tells us nothing about account balances
- Balances are not additive
- Many days without transactions
- Many days with transactions

Fig. 11-2

Account: 7922-3002

Period: 2/1/2009 - 2/14/2009

Granular transaction data stored in account_facts:

Transaction Type	Transaction Amount
Initial Deposit	2000.00
Withdrawal	(20.00)
Check	(35.50)
Check	(17.02)
Check	(75.00)
Deposit	75.00
Check	(800.00)
Check	(68.29)
Withdrawal	(100.00)
	Type Initial Deposit Withdrawal Check Check Check Deposit Check Check

Periodic status data stored in account_snapshot_facts:

Day	Balance
2/1/2009	2000.00
2/2/2009	1980.00
2/3/2009	1927.48
2/4/2009	1927.48
2/5/2009	1927.48
2/6/2009	1927.48
2/7/2009	1127.48
2/8/2009	1127.48
2/9/2009	1127.48
2/10/2009	1059.19
2/11/2009	1059.19
2/12/2009	1059.19
2/13/2009	1059.19
2/14/2009	959.19

Two transactions occurred on this day

No transactions occurred on these days

Offsetting transactions occurred on this day

Account snapshot fact table design & instances

Fig. 11-3

Fig. 11-4

Additional snapshot facts fit well together - natural affinity

Snapshot fact tables - differences

- Dense, not sparse
- Periodic, not event-based
- Semi-additive (e.g. account balances, temperatures)
- Granularity aligns with dimensions, not events

Transactions and Snapshots

- * These two designs complement each other
- Each may be viable for different kinds of analysis
- To simplify ETL, transaction table should be source for snapshot tables
- In this way, snapshot tables derive from snapshots

Accumulating Snapshots

- Transaction fact tables support measuring simple processes (based on single events)
- Snapshot fact tables support measuring patterns in state over time (based on periodic observations)
- How do we measure complex processes?

What's a complex process?

- think "workflow" more than one service station,
 more than one role type, and transitions between each
- measure time at each step in the process intervals, not events
- use to find bottlenecks to feed into process modeling and simulation, among others

Fig. 11-6

Accumulating snapshot fact table design

Values accumulate over time

- Each row represents one process multiple steps
- Row is updated as time passes and processing continues at one stage or another
- Time may pass with little or no progress; time elapsed increases at one stage or another

On Day 1 (Submitted; under review by officer): day_key_ application_ application_ day_key_ day_key_ day_key_ day_key_ review. underwriting_ days_ days_ closing submitted reviewed processed underwritten amount reviewing processing amount amount 1011 1021 0000 0000 100,000 0 0 0 0 Day 2 (No status change): application_ day_key_ day_key_ day_key_ day_key_ day_key_ application_ days_ review_ underwriting_ days_ submitted reviewed processed underwritten closing amount reviewing processing amount amount 1011 1021 0000 0000 0000 0000 100,000 0 0 1 0 Days 3-9 (not shown)... Day 10 (Reviewed; documents being gathered by processor): application_day_key_day_key_day_key_ day_key_ day_key_application. underwriting_ days_ days_ review, submitted reviewed processed underwritten closing amount reviewing amount amount processing 1011 1021 1031 0000 0000 100,000 90,000 9 0 0 Day 11 (No status change): application_ day_key_ day_key_ day_key_ day_key_ day_key_ application_ review_ underwriting_ days_ days_ submitted reviewed processed underwritten closing amount amount amount reviewing processing 1011 1021 1031 0000 100,000 90,000 0 9 1

Fig. 11-7

Evolution of one accumulating snapshot record

Remaining steps...

Accumulating vs. transaction facts

- Accumulating snapshots excel at capturing / updating intervals
- Ideal for studying performance for each stage
- Complements transaction fact tables where volume, workloads, etc. may be more easily queried
- Like snapshots, transaction fact table should be source to simplify ETL

Project 02 work session