

Welcome to SENG 480B / CSC 485B / CSC 586B Self-Adaptive and Self-Managing Systems

Dr. Hausi A. Müller
Professor
Department of Computer Science
University of Victoria

http://courses.seng.uvic.ca/courses/2013/summer/seng/480b http://courses.seng.uvic.ca/courses/2013/summer/csc/485b http://courses.seng.uvic.ca/courses/2013/summer/csc/586b

- Midterm grading
 - 3/4 done ☺
 - Should be graded by Tue, July 16
- Group presentations of A3
 - Tue, July 16
 - Undergrads should present
- Grad student presentations
 - July 23 July 31
- Review for final exam
 - Wed, Aug 7

- Last day of classes
 - Wed, Aug 7

Final exam

- Tue, Aug 13, 9:00-12:00 am in ECS 124
- Closed books, closed notes
- Materials: entire course
- Format: like midterm

Graduate Student Research Paper Presentations

- Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure. *IEEE Computer* 37(10):46-54 (2004) — Angela Rook, July 23
- Kramer, J., Magee, J.: Self-Managed Systems: An Architectural Challenge. In: ACM /IEEE International Conference on Software Engineering 2007 Future of Software Engineering (ICSE), pp. 259-268 (2007) Pratik Jain, July 23
- Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime Software Adaptation: Framework, Approaches, and Styles. In: ACM/IEEE International Conference on Software Engineering (ICSE 2008), pp. 899-910 (2008) —Alessia Knauss, July 24
- Brun, Y., Di Marzo Serugendo, G., Gacek, C. Giese, H. Kienle, H.M., Litoiu, M., Müller, H.M., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops. SE for Self-Adaptive Systems, pp. 48-70 (2009) Samra Ramandeep, July 24
- Kaushik, R.T., Cherkasova, L., Campbell, R.H., Nahrstedt, K.: Lightning: self-adaptive, energy-conserving, multi-zoned, commodity green cloud storage system, ACM International Symposium on High Performance Distributed Computing (HPDC 2010), 332-335 (2010) Andi Bergen, July 26

Graduate Student Research Paper Presentations

- Villegas, N.M., Müller, H.A., Tamura, G., Duchien, L., Casallas, R.: A framework for evaluating quality-driven self-adaptive software systems. In: *Proc. 6th Int. Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2011)*, pp. 80-89 (2011) Lorena Castaneda, July 30
- Ebrahimi, S., Villegas, N.M., Müller, H.A., Thomo, A.: SmarterDeals: a context-aware deal recommendation system based on the SmarterContext engine. CASCON 2012: 116-130 (2012) Nina Taherimakhsousi, July 30
- McKinley, P.K., Sadjadi, M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive Software. *IEEE Computer* 37(7):56-64 (2004) — Carlos Gomez, July 31
- Tewari, V., Milenkovic, M.: Standards for Autonomic Computing, *Intel Technology Journal*, 10(4):275-284 (2006) Nitin Goyal, July 31

Guidelines for Grad Presentations

- Format of presentation
 - Presentation 15-20 mins
 - Q&A 5 mins
 - Practice talk (!)
- Slides
 - High quality
 - Submit slides 2 days before presentation to instructor for approval
 - Submit final slides 1 day after presentation for posting on website

- Talk outline
 - Motivation
 - Problem
 - Approach
 - Relation to what we heard in the course so far
 - Contributions of the paper

- The value chains of today are the result of linked individual business tasks that come together to form a valuable end product
 - Just like a physical assembly line, each participant in the value chain contributes something to increase the value of the end product for the end user
 - Although these value chains have become increasingly distributed, they still tend to be predictable, structured and linear
- The combination of participating service providers is changing dynamically based on who is in the best position to perform a given task at a given time
 - These service providers themselves are becoming interconnected with one another to the point that mapping their relationships yields more of a net than the traditional linear chain
 - Familiar value chains are morphing into dynamic value nets
- The workings of the value net are orchestrated by the organization that delivers the end product to market under its own brand name
 - Orchestration itself may very well be the lead brand organization's unique value add.

Steve Mills, VP IBM Software Group: The Future of Business, White Paper, June 2007

IBM Global Services Service Integration Maturity Model (SIMM)

Ultimate goal: dynamically configurable services

Service Integration Maturity Model	Silo	Integrated	Components	Service Integration	Composite Services	Virtualized Services	Dynamically Configurable Services
Business View of IT	Function Oriented	Function Oriented	Function Oriented	Service Oriented	Service Oriented	Service Oriented	Service Oriented
Methods	Structured	Object-Oriented	Component Based Development	Service Modeling	Service Modeling	Service Modeling	Grammar Modeling
Applications	Modules	Modules	Components	Services :	Process Integration via Services	Process Integration via Services	Dynamic Application Assembly
Architecture	Monolithic Architecture	Layered Architecture	Component Architecture	Emerging SOA	SOA	Grid Enabled SOA	Dynamically Re Configurable Architecture
Infrastructure	Platform Specific	Platform Specific	Platform Specific	Platform Specific	Platform Specific	Platform Neutral	Dynamic Sense & Respond
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Level 7

Architecture-centric vs. Control-centric SOA Orchestration

Key Performance Indicators (KPI) and quality-of-service Indicators

SOA Governance

- Governance has been rated as the main inhibitor of SOA adoption
- SOA governance provides a set of policies, rules, and enforcement mechanisms for developing, using and evolving service-oriented systems, and for analysis of their business value
- SOA governance includes policies, procedures, roles and responsibilities for design-time governance and runtime governance

SOA Governance Types

- Design-time governance
 - Includes elements such as rules for strategic identification of services, development, and deployment of services; reuse; and legacy system migration to services
 - Enforces consistency in use of standards, SOA infrastructure and processes
- Run-time governance
 - Enforces rules to ensure that services are executed only in ways that are legal and that important runtime data is logged
 - Service level agreements (SLAs) including runtime validation of contractual specifications on performance, throughput, and availability; the use of automated metrics for tracking and reporting; and problem management

Brief Side Note ... Compliance vs. Conformance

- Compliance implies adherence to a standard or regulation
 - You either pass or fail
 - A company can be in compliance with Sarbanes-Oxley auditing requirements
 - A browser can comply with a specific security requirement by providing 128-bit security and TLS encryption
 - Service delivery is compliant with an SLA
- Conformance describes how well a given implementation matches or does not match a standard or a reference
 - A conformance testing suite that returns results that certain aspects of an implementation match a reference implementation
 - A Web services implementation can conform with the WS-I basic interoperability profile
 - Service delivery is conformance with an SLA depends on the importance of the customer
- A lack of conformance does not necessarily imply a value judgment the way that lack of compliance with a law or regulation does

Keep in mind: Whenever we talk about "compliance," we often really mean "conformance."

Need For Governance & Adaptation in Service-Oriented Systems

- Great benefits can be realized when an enterprise transforms its architecture to SOA because of the distributed and flexible nature of services
- But chief architects have a hard time to manage the entire service portfolio across various business lines
- Understanding, controlling, and managing uncertainty and run-time dynamics is crucial given the ever-changing business environment
- As a result, service-oriented systems resort to self-adaptation and self-management for dynamic service management and service composition