Ifi

Aprendizagem 2022

Lab 4: Linear Regression and kNN

Practical exercises

I. Lazy learning

1. Consider the following data:

	input		output	
	У1	У2	Уз	У4
\mathbf{x}_1	1	1	Α	1.4
\mathbf{x}_2	2	1	В	0.5
X 3	2	3	В	2
X 4	3	3	В	2.2
X 5	2	2	Α	0.7
\mathbf{x}_6	1	2	Α	1.2

Assuming a k-nearest neighbor with k=3 applied within a leave-one-out schema:

- a) Let y_3 be the output variable (*categoric*). Considering an Euclidean (l2) distance, provide the classification estimates for x_1 .
- b) Let y_4 be the output variable (*numeric*). Considering cosine similarity, provide the mean regression estimate for x_1 .
- c) Consider a weighted-distance *k*-nearest neighbor with Manhattan (I1) distance, identify the:
 - i. weighted mode estimate of x_1 for the y_3 outcome
 - ii. weighted mean estimate of x_1 for the y_4 outcome

II. Linear regression

 \mathbf{X}_1

X2

X3

1

output 1.4

0.5

2

2. Consider the following training data:

- a) Find the closed form solution for a linear regression. minimizing the sum of squared errors
- b) Predict the target value for $x_{new} = [2 \ 3]^T$
- c) Sketch the predicted three-dimensional hyperplane
- d) Compute the MSE and MAE produced by the linear regression
- e) Are there biases on the residuals against y1? And y2?
- f) Compute the closed form solution considering Ridge regularization term with $\lambda = 0.2$.
- g) Compare the hyperplanes obtained using ordinary least squares and Ridge regression.
- h) Why is Lasso regression suggested for data spaces of higher dimensionality?

3. Consider the following training data where *output* is an ordinal variable

- a) Find a linear regression using the closed form solution
- b) Assuming the output threshold θ =0.5, use the regression to classify $x_{\text{new}} = [2 \ 2.5]^T$
- **4.** Considering the following data to learn a model $z = w_1y_1 + w_2y_2 + \varepsilon$, where $\varepsilon \sim N(0,5)$

	У1	У2	output
X 1	3	-1	2
\mathbf{X}_2	4	2	1
X 3	2	2	1

Compare:

- a) $\mathbf{w} = [w_1 \ w_2]^T$ using the maximum likelihood approach
- b) w using the Bayesian approach, assuming $p(w) = N\left(w \mid u = [0 \ 0], \sigma = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix}\right)$
- 5. Identify a transformation to aid the linearly modelling of the following data points.
 Sketch the predicted surface.

	У1	У2	output
<i>x</i> ₁	-0.95	0.62	0
χ_2	0.63	0.31	0
χ_3	-0.12	-0.21	1
X4	-0.24	-0.5	0
χ_{5}	0.07	-0.42	1
x_{6}	0.03	0.91	0
χ_{7}	0.05	0.09	1
<i>X</i> 8	-0.83	0.22	0

6. Consider logarithmic and quadratic transformations:

$$\varphi_1(x_1) = log(x_1), \qquad \varphi_2(x_1) = {x_1}^2$$

- a) Plot both of the closed form regressions.
- b) Which one minimizes the sum of squared errors on the original training data

	input	output
X 1	3	1.5
\mathbf{X}_2	4	9.3
X 3	6	23.4
\mathbf{X}_4	10	45.8
\mathbf{X}_5	12	60.1

- **7.** Select the criteria that promotes a smoother regression model:
 - a) Applying Lasso and Ridge regularization to linear regression models
 - b) Increasing the depth of a decision tree regressor
 - c) Increasing the k of a kNN regressor
 - d) Parameterizing a kNN regressor with uniform weights instead of distance-based weights

Programming quest

- **8.** Consider the *housing* dataset available at https://web.ist.utl.pt/~rmch/dscience/data/housing.arff and the *Regression* notebook available at the course's webpage:
 - a) Compare the determination coefficient of the non-regularized, Lasso and Ridge linear regression
 - b) Compare the MAE and RMSE of linear, kNN and decision tree regressors on housing