

SIGNHELPER

Piegari Vito Gerardo

A.A. 2023/2024

LINGUAGGIO DEI SEGNI

DATASET

kaggle

BILANCIAMENTO

Divido i dati di training in:

- training 80%
- validation 20%


```
train_features, validation_features, train_labels, validation_labels = train_test_split(
    train_features, train_labels, test_size=0.2, random_state=42)
```


DATA AUGMENTATION

Migliora la generalizzazione del modello espandendo il dataset, attraverso operazioni sulle immagini già presenti sul dataset

originale

Ruotata e zoomata

```
datagen = ImageDataGenerator(
        rotation_range=10,
        zoom_range = 0.1,
        width_shift_range=0.1,
        height_shift_range=0.1)
datagen.fit(train_features)
train_dataset_augmented = datagen.flow(train_features, train_labels, batch_size=BATCH_SIZE)
```


Conv2d: fa passare un kernel(filtro) 2x2 sull'immagine per iniziarne a mappare le caratteristiche

MaxPooling2d:

Effettua feature extraction facendo passare un kernel 2x2 sull'immagine prendendo il pixel con il valore più alto

Altri layer: Sono stati usati altri layer come Dropout e Flatten

Dense: Ogni neurone è connesso a tutti i neuroni dello strato precedente. L'ultimo si occupa di creare una distribuzione di probabilità su tutte le classi di output

RISULTATI MODELLO

Il modello è stato allenato per **10** epoche producendo un accuracy dell'84% sui dati di training, 98% sui dati di validation e 97% sui dati di testing

MIGLIORAMENTI FINALI

Preprocessing sulle immagini: Le predizioni del modello sono migliorate significativamente dopo aver rimosso il background e messo uno sfondo grigio

GRAZIE PER L'ATTENZIONE

RETINEURALI

Le reti neurali costituiscono un potente strumento di apprendimento automatico, con le reti neurali convoluzionali specializzate per il trattamento efficace di dati strutturati come immagini.

Definizione Generale:

- Una rete neurale è un modello computazionale ispirato al cervello umano.
- Composto da neuroni artificiali collegati in strati, con capacità di apprendimento da dati.

Reti Neurali Convoluzionali (CNN):

Struttura Specifica:

- Strati convoluzionali, di pooling e densamente connessi.
- Adatte per dati grid-like come immagini.

Caratteristiche:

- Apprendimento delle caratteristiche mediante convoluzione.
- Condivisione dei pesi per ridurre il numero di parametri.

Applicazioni:

Visione artificiale, riconoscimento di immagini.

OVERFITING

Durante le prime fasi di progettazione del modello è stato osservato un enorme overfitting sui dati di training, per questo sono state applicate alcune tecniche per limitarlo:

- Aggiunti/rimossi layer convoluzionali
- Aggiunta di layer di dropout
- Riduzione dimensione di batch
- Riduzione delle epoche di training
- Split del dataset di training in training data e validation data
- Data augmentation (tenendo conto di non esagerare con le modifiche sulle immagini per evitare di confondere il modello con immagini di una classe che ruotate potrebbero diventare simili a immagini di altre classi)

Il problema è stato parzialmente ridotto, ma non completamente, per questo potrebbe essere necessario effettuare nuove operazioni sul modello atte a migliorarne le predizioni con dati diversi da quelli di allenamento