unit2

practice1

见书本(中文版P38)

practice2

见书本(中文版P39)

practice3

不相同,不同的编译器可能采取不同的操作生成不同的代码

practice4

略

practice5

- 1. 8 * 3 = 24 bytes
- 2. 4 * 10 * 100 = 4000 bytes
- 3. 8 * 100 * 5 * 20 = 80000 bytes
- 4. 4 * 10 * 10 * 10 * 5 = 20000 bytes
- 5. 1 * 2 * 3 * 4 = 24 bytes
- 6. 4 * 3 * 3 * 3 * 3 = 324 bytes

practice6

设能找到,递归深度为 i ,则 i∈[1,n]; 找不到则递归深度为 n+1

假设概率都是相等的,此时

$$S_{rSequentialSearch}(n) = (12 + sizeof(T)) imes rac{1+2+...+(n+1)}{n+1} = rac{(12+sizeof(T)) imes (n+2)}{2}$$

注: 暂时没理解 $S_p(n)$ 和 $S_{rSequentialSearch}(n)$ 的区别

practice7

见 code/practice7

序号	操作(程序2-3)	
1	y(1) *= 2 value(7) += 2 * 6	
2	y(2) *= 2 value(19) += 4 * 5	
3	y(4) *= 2 value(39) += 8 * 4	
4	y(8) *= 2 value(71) += 16 * 3	

序号	操作(程序2-4)		
1	value(3) = 3 * 2 + 4		
2	value(10) = 10 * 2 + 5		
3	value(25) = 25 * 2 + 6		
4	value(56) = 56 * 2 + 7		

practice9

见 code/practice9

practice10

选择排序	
3265 9 4 8	
3265 84 9	
32 6 5 4 89	
324 5 689	
32 4 5689	
32 45689	
2 345689	

practice11

3265948

-	一次冒泡排序
	2 36 5948
	23 65 948
	235 69 48
	2356 94 8
	23564 98
	2365489

冒泡排序
3265948
236548 9
23546 89
2345 689
234 5689
23 45689
2 345689
2345689

practice13

插入		
1246789_		
124678_9		
12467_89		
1246_789		
124_6789		
12_46789		
12346789		

practice14

原地重排

原地重排 <u>6</u>78520<u>3</u>14 ghi fcadbe 378520614 <u>d</u>hi <u>f</u>cagbe <u>5</u>7832<u>0</u>614 fhidcagbe <u>0</u> 7 8 3 2 5 6 1 4 ahi dcfgbe 0 <u>7</u> 8 3 2 5 6 <u>1</u> 4 a h i d c f g b e 0 <u>1</u> **8** 3 **2** 5 6 7 **4** a<u>b</u>i d**c**f ghe 0 1 **8** 3 **2** 5 6 7 **4** abi dcfghe 01**4**3**2**5678 ab<u>e</u>d<u>c</u>f gh i 012345678 abcdefghi

practice15

1.

及时终止选择排序
<u>9</u> 87654321 <u>0</u>
0<u>8</u>765432<u>1</u>9
01<u>7</u>6543<u>2</u>89
012<u>6</u>54<u>3</u>789
0123<u>54</u>6789
01234 56789
0123456789

2. 略

practice16

及时终止冒泡排序

4267109853

及时终止冒泡排序
246107853 9
24106753 89
2104653 789
102453 6789
01243 56789
0123 456789
0123456789

插入排序		
4267109853		
24 67109853		
246 7109853		
2467 109853		
12467 09853		
012467 9853		
0124679 853		
01246789 53		
012456789 3		

practice18

$$n \quad (0 \sim n-1)$$

0123456789

practice19

$$n-1 \quad (n-1\sim 1)$$

practice20

[5,1,2,3,4]

practice21

1.
$$\sum_{i=0}^{rows-1}(rows-i-1)=rows imes(rows-1)-\sum_{i=0}^{rows-1}i=rac{rows imes(rows-1)}{2}$$

2.
$$\frac{rows^2}{2} - rows = \frac{rows \times (rows - 1)}{2}$$

practice23

1.
$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = n^3$$

$$2. n \times n \times n = n^3$$

practice24

1.
$$\sum_{i=0}^{m-1} \sum_{j=0}^{p-1} \sum_{k=0}^{n-1} 1 = m imes p imes n$$

2.
$$n \times m \times p$$

practice25

$$\sum_{k=0}^{m-1} \sum_{i=k}^m 2 = \sum_{k=0}^{m-1} 2(m-k) = m(m+1)$$

practice26

1. 程序2-24: 2(n-1)

2. 程序2-25: 1(最好) 2n(最坏)=1+n+(n-1)

3. 除去两者间相同的前两行和最后一行:

。 程序 2-24 总步数 = n + 2*n = 3n

。 程序 2-25 总步数 = n + n = 2n

。 结论: 程序 2-24 消耗时间大概是程序 2-25 的 1.5 倍

practice27

1. 不存在: 需要 n 次

2. 存在:设在 a[i] 处找到,则需要 n-i 次,假设没有重复的值且每个值的概率都是相同的,平均次数为

$$rac{1}{n} \sum_{i=0}^{n-1} (n-i) = rac{n+1}{2}$$

practice28

 $n \quad (0 \sim n-1)$

practice29

见 code/practice29

practice30

略

practice31

略

practice32

- 1. rSequentialSearch:
 - 1. n=0, stepCount = 2
 - 2. n>0
 - 1. 不存在: stepCount = 3n + 2
 - 2. 存在:设 a[i]==x, $stepCount_i = 3(n-i)$
 - $stepCount_{avg} = \frac{1}{n} \sum_{i=0}^{n-1} 3(n-i) = \frac{5n+1}{2}$

$$stepCount_{avg} = egin{cases} 2 & n = 0 \ 3n + 2 & notFound \ rac{5n + 1}{2} \end{cases}$$

- 2. sequentialSearch: 假设 n > 0,由代码可知,存不存在的步数一样,因此这里一起讨论
 - 。 假设不存在重复的值,且找到每个值的概率相同,则 $stepCount_i=i+5, a[i]==x$

$$stepCount_{avg} = rac{1}{n+1}\sum_{i=0}^{n}(i+5) = n+5, n>0$$

- 3. insert:
 - 。 假设不存在重复的值,且插入每个位置的概率相同。设插入的位置为 i (n>0),则

$$stepCount_i = 3 + (n - i + 1) + (n - i) = 2(n - i + 2)$$

$$stepCount_{avg} = rac{1}{n+1} \sum_{i=0}^{n} 2(n-i+2) = 2(n+2) - n = 3n+4, n > 0$$

经验证, n = 0, 满足上式,则

$$stepCount_{avg} = rac{1}{n+1} \sum_{i=0}^{n} 2(n-i+2) = 2(n+2) - n = 3n+4, n \geq 0$$

practice33

- 1. 略
- 2. 如果是像以下的方式交换最外层两个 for 循环,则只要保证 p 的行和 m 的列相等即可

```
for (int j = 0; j < p; j++)
for (int i = 0; i < m; i++)
```

practice34

1.

前提: swap = 2 次移动元素,这里忽略使用 t 的过程

排序	次数	举例
selectionSort	2(n-1)	[n,1,2,3,n-1]
insertionSort	$\sum_{i=1}^{n-1} (\sum_{j=0}^{i-1} 1 + 1) = \frac{(n+1) \times (n-1)}{2}$	[n,n-1,n-2,1]
bubbleSort	$\sum_{i=2}^{n} \left(\sum_{i=0}^{n-2} 2 ight) = 2(n-1)^2$	[n,n-1,n-2,1]

2. 见附录

practice35

同一个程序在最坏的情况下,所需时间和内存一定最大

证明:

- 如果该程序的时间与内存和实例特征有关,则最坏情况下,比较、移动的次数增加,递归深度增加, 导致最终的时间和内存增加
- 2. 如果时间与内存和实例特征无关,那么不存在最好、最坏情况,或者说最好、最坏情况下时间、内存都是相同的,即时间、内存都是最小或最大的

practice36

1.

$$t(n) = 2 + t(n - 1)$$

= $4 + t(n - 2)$
:
:
= $2n + t(0)$
= $2n + 2, n \ge 0$

2.

$$t(n) = 1 + t(n-2)$$

$$= 2 + t(n-4)$$

$$\vdots$$

$$= \begin{cases} \frac{n-1}{2} + 1 & mod(n,2) == 1\\ \frac{n}{2} & mod(n,2) == 0 \end{cases}$$

3.

$$t(n) = 2n + t(n - 1)$$
 $= 2(n + (n - 1)) + t(n - 2)$
 \vdots
 $= 2(n + (n - 1) + \dots + 1) + t(0)$
 $= \frac{n(n + 1)}{2}, n \ge 0$

4.

$$t(n) = 2 * t(n - 1)$$

= $4 * t(n - 2)$
:
= $2^n * t(0)$
= $2^n, n \ge 0$

5.

$$t(n) = 3 * t(n - 1)$$

= $9 * t(n - 2)$
:
: $= 3^n * t(0)$
= $3^n, n \ge 0$

附录

原地重排的计数排序

```
template < class T>
void rank(T a[], int n, int r[])
   for (int i = 0; i < n; i++)
        r[i] = 0;
    for (int i = 1; i < n; i++)
        for (int j = 0; j < i; j++)
            if (a[j] \le a[i]) r[i] ++;
            else r[j]++;
template < class T>
void rearrange(T a[], int n, int r[])
    for (int i = 0; i < n; i++)
        while (i != r[i])
        {
            int t = r[i];
            swap(a[i], a[t]);
            swap(r[i], r[t]);
```

及时终止的选择排序

```
}
}
```

及时终止的冒泡排序

```
template<typename T>
bool bubble(T a[], int n)
{
    bool sorted = true;
    for (int i = 0; i < n - 1; i++)
        if (a[i] > a[i + 1])
        {
            swap(a[i], a[i + 1]);
            sorted = false;
        }
    return sorted;
}

template<typename T>
void bubbleSort(T a[], int n)
{
    for (int i = n; i > 1 && !bubble(a, i); i--) {}
}
```

插入排序

```
template<typename T>
void insert(T a[], int n, const T &x)
{
    int i;
    for (i = n - 1; i >= 0 && a[i] > x; i--)
        a[i + 1] = a[i];
    a[i + 1] = x;
}

template<typename T>
void insertionSort(T a[], int n)
{
    for (int i = 1; i < n; i++)
    {
        T t = a[i]; // 因为 insert 中对 x 进行了引用, 如果直接传递 a[i], 会导致在a[i+1]=a[i] 的时候修改掉 x 的值, 导致数组的值被改变
        insert(a, i, t);</pre>
```

```
}
```