

Introduction to Robotic Group Project 2016

Dr Hongbin Liu

Course Outline

- Seven tutorials for two semesters
- Friday 10-11am, Lab:SW41

Autumn term

- ▶ I. General introduction to robotics and the group project
- ▶ 2. Kinematics modelling for a wheeled robot
- > 3. Feed forward control and feedback control

Spring term

- ▶ 4. Probability foundations in robotics
- ▶ 5. Robotic localisation- recursive Bayesian filter
- ▶ 6.Introduction to Kalman filter for speed estimation
- ▶ 7. Path planning for navigation

Course Outline

No text book needed

Recommend reading:

Probabilistic Robotics, Sebastian Thrun, Wolfram Burgard, Dieter Fox

Lab sessions!

Starts from week6, Wednesday 9-12pm, Lab:SW41

Assessment

Term - I

Practical Exam25%

15% individual coding practice +10% group robot building test

Term - 2

Group Presentation 25%

Group robot demonstration +presentation

Individual report 20%

Robot design, implementation and evaluation

Group management minutes 5%

Overall group evaluation 10%, individual member evaluation 5%

Peer evaluation 10%

Assessment

January

Written Exam 15%

Added a written exam on software systems development, to ensure students demonstrate an understanding of the relevant learning outcome beyond what they can demonstrate in the practical work.

Group and Meeting Minutes

- Form groups, each group has 2-3 members
- Weekly meeting minutes –(progress, problem, plan)
- ▶ Each group member take meeting minutes per week

Robot you will use

LEGO Mindstorms EV3

Sensors and actuators

Three DC motors

Sensors

- ▶ Touch sensor
- Light sensor
- Sound sensor
- Ultrasound range sensor
- Compass sensor
- Color sensor

Programming

EV3 runs Linux with Java Runtime Environment (JRE7)

Term 1 Line following + obstacle avoidance

Term 1: Line following obstacle avoidance

You will learn in tutorial sessions

- Kinematic modelling of mobile robot
- Open loop implementation
- Feed-back control
 - -bang-bang control
 - -PID control
- Obstacle avoidance and following

Term 2 Ball Picking Dropping Challenge

Term 2 Ball Picking Dropping Challenge

You will learn in tutorial sessions

- Probabilistic method for robot navigation
- Self localisation-Bayesian filtering
- A star planning
- Kalman filtering

Your action

- Form your group
- Report to Teaching Assistant by Week 7
- Students not in a group after Week 7 will be randomly assigned