Lecture 5

Simple Linear Regression III

Reading: Chapter 11

STAT 8020 Statistical Methods II August 30, 2019

> Whitney Huang Clemson University

Agenda

- Review of Last Class
- 2 Analysis of Variance (ANOVA) Approach to Regression

NI	a t	1	0

Notes

Understanding Confidence Intervals

- Suppose $Y=\beta_0+\beta_1X+\varepsilon,$ where $\beta_0=3,$ $\beta_1=1.5$ and $\sigma^2\sim N(0,1)$
- We take 100 random sample each with sample size 20
- \bullet We then construct the 95% CI for each random sample (\Rightarrow 100 CIs)

Simple Linear Regression III					

Notes			

Confidence Intervals vs. Prediction Intervals

Notes

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

$$\mathsf{SST} = \sum_{i=1}^n (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

Regression III				
CLEMS N				
Analysis of				

Notes

-			
-			

Total Sum of Squares: SST

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The total mean square is ${\rm SST}/(n-1)$ and represents an unbiased estimate of σ^2 under the model (1).

Regression III
CLEMS N
Review of Last Class

Notes

Regression Sum of Squares: SSR

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

 \bullet "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Simple Linear Regression III

CLEMS Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

Error Sum of Squares: SSE

• SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- SSE large when |residuals| are "large" ⇒ Y_i's vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression

...

Notes

Notes

ANOVA Table and F test

- Goal: To test $H_0: \beta 1 = 0$
- Test statistics $F^* = \frac{MSR}{MSF}$
- If $\beta_1=0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where $F(d_1,d_2)$ denotes a F distribution with degrees of freedom d_1 and d_2

Notes

Correlation and Simple Linear Regression

- Pearson Correlation: r =
- $-1 \le r \le 1$ measures the strength of the **linear** relationship between Y and X
- $\bullet \ \ \text{We can show} \ r=\hat{\beta}_{1,\mathrm{LS}}\sqrt{\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{\sum_{i=1}^n(Y_i-\bar{Y})^2}}, \text{this implies}$

$$\beta_1 = 0$$
 in SLR $\Leftrightarrow \rho = 0$

Coefficient of Determination \mathbb{R}^2

• Defined as the proportion of total variation explained by SLR

$$\mathit{R}^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}$$

• We can show $r^2 = R^2$:

$$\begin{split} r^2 &= \left(\hat{\beta}_{1,\text{LS}} \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}\right)^2 \\ &= \frac{\hat{\beta}_{1,\text{LS}}^2 \sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} \\ &= \frac{\text{SSR}}{\text{SST}} \\ &= R^2 \end{split}$$

Notes

Notes

Residual Plot Revisited

⇒ Nonlinear relationship

 \Rightarrow Non-constant variance

Transform X

Transform Y

Nonlinear regression

Weighted least squares

Notes

Summary

In this lecture, we learned ANOVA Approach to Regression

Next time: Multiple linear regression

Notes			
Notes			
Notes			