Cheat Sheet: Degeneracy for Triangle Counting in Graph Streams

1. Context & Motivation

- Why triangles?
 - Fundamental in network science (clustering, anomaly detection) and database join-size estimation
 - Streaming setting: edges arrive one by one, memory very limited.
- Prior space bounds: Worst-case for arbitrary-order, constant-pass streams is

 $\Theta(\min\{m^{3/2}/T, m/\sqrt{T}\})$ (McGregor et al. 2016; Bera et al. 2017) : contentReference[oaicite:0]index=0

2. Problem Statement

- Input: stream of m edges over n vertices.
- Goal: $(1 \pm \varepsilon)$ -approximation \hat{T} to true triangle count T.
- Constraints: constant passes, sublinear memory in m.

3. Graph Degeneracy & Core Number

- $\kappa(G) = \max_{G' \subseteq G} \{ \min \text{-degree}(G') \}$: largest minimum degree over all subgraphs :contentReference[oaicite:1]index=1.
- Equivalently, vertices can be ordered so each has $\leq \kappa$ later-neighbors.
- Real-world graphs (planar, minor-closed, preferential-attachment) often have constant κ :contentReference[oaicite:2]index=2.

4. High-Level Algorithm (Ideal Estimator)

- 3-pass procedure (no degree oracle): :contentReference[oaicite:3]index=3
 - (1) Pass 1: sample an edge e with probability $\frac{d_e}{d_E}$.
 - (2) Pass 2: pick a neighbor $w \in N(e)$ uniformly.
 - (3) Pass 3: check if $\{e, w\}$ closes a triangle; if so, run IsAssigned to ensure unique assignment; set Y = 1 if assigned, else 0.
 - (4) Return estimator $X = d_E \cdot Y$.
- Run $\tilde{O}(d_E/T)$ independent copies in parallel and take median-of-means.

5. Key Lemma & Space Bound

- $d_E = \sum_{e \in E} d_e \le 2m\kappa$ (Chiba–Nishizeki) :contentReference[oaicite:4]index=4.
- Hence estimator variance $[X] = d_E \cdot T = O(m\kappa T)$.
- Space: $\tilde{O}(d_E/T) = \tilde{O}(m\kappa/T)$.
- Accuracy: $(1 \pm \varepsilon)$ -approx. w.h.p. via Chernoff/Chebyshev bounds.

6. Lower Bound

• Any constant-pass streaming algo achieving constant-factor approx. on graphs with degeneracy κ requires $\Omega(m\kappa/T)$ space :contentReference[oaicite:5]index=5.

1

7. Experimental Evaluation

No empirical results reported in this theoretical work.

8. Key Takeaways

- Leverage low degeneracy to circumvent worst-case space lower bounds.
- For $\kappa = O(1)$, space becomes $\tilde{O}(m/T)$, beating $m^{3/2}/T$ and m/\sqrt{T} .
- Technique extends to other subgraph-counting problems under bounded degeneracy.

9. Future Directions

- Multi-pass refinements to further reduce dependence on T.
- Extensions to dynamic/weighted streams and larger motifs (cliques of size $\ell > 3$).
- Validate practical performance on real large-scale graph streams.