Efficient Ground State Energy Calculation of LiCoO₂ using Variational Quantum Eigensolver

Mentor: Ran-Yu Chang

Chun-Yu Lu¹⁾, Yi-Kai Lee²⁾, Yuto Terashima³⁾, and Zi-Yan Shi⁴⁾

¹⁾ National Yang Ming Chiao Tung University

²⁾ National Taipei University

3) Keio University

⁴⁾ National Taiwan University

Group 9: Quantum Computer Aided Engineering (Q-CAE) Team

Yuto Terashima
Computational Mechanics

Conceptualization

Qubit Tapering

Yi-Kai Lee Statistics

Visualization
Data Assimilation

Chun-Yu LuComputer Science

Visualization
Active Space Calculation

Zi-Yan ShiEngineering Science

Programming Verification & Validation

We are here to implement quantum computing technologies into engineering problems!

Difficulty in Safe Utilization of Novel Batteries

Multi-physics Simulations for the Prediction of Long-term Influence of Batteries

- ✓ Batteries are one of the closest materials in our modern life.
- ✓ We are required to take control of it for safe utilization.
- ✓ Batteries require multi-physics and multi-scale simulations for safe utilization.

Source: [O'Hayre *et al.*, 2009; Yang *et al.*, 2013)

Voltage Calculation of Ion Batteries

Density Functional Theory (DFT) for Understanding Microscopic Properties of Batteries

- ✓ One of the core technologies of batteries should consider the micro-mechanics
- ✓ DFT analyzes electron interactions based on quantum physics
- ✓ Molecular dynamics analyzes the atomic interactions within a finite temperature

$$V \approx -\frac{E(\text{LiCoO}_2) - E(\text{CoO}_2) - E(\text{Li})}{e} \text{ [eV]}$$

Micro−physics can be incorporated in quantum physics!

→ In the scheme of quantum computer, too.

Computational Method: VQE-DFT

Governing Equation (Second Quantization)

$$\mathcal{H} = \sum_{p,q}^{M} h_{pq} c_p^{\dagger} c_q + \sum_{p,q,r,s}^{M} h_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s$$

Problem of VQE–DFT is that we cannot execute large systems, e.g., ion batteries ($LiCoO_2$) In the case of $LiCoO_2$:

2⁷⁶ states (76 qubits) are required!

We reduced the calculation costs in two points:

- 1. Physical Aspects of the Gates and Qubits
- 2. Mathematical **Tapering of the Hamiltonian**

Gate Reduction: Selection of the Ansatz for VQE

Unitary Coupled Cluster (UCC) Ansatz

Hardware Efficient Ansatz (HEA)

UCC is originated from the coupled cluster theory

- Accurate VQE-DFT calculation can be achieved
- Deep Gate might not be suitable to NISQ

Ansatz with shallow gates should be considered

Gate Reduction: Selection of the Ansatz for VQE

Unitary Coupled Cluster (UCC) Ansatz

Hardware Efficient Ansatz (HEA)

HEA is general ansatz developed for NISQ

Shallow gate contributes to the stable calculation

Consideration of the accuracy is required

We utilize HEA for VQE-DFT calculation

Qubit Reduction: Active Cite Calculation

Active Chemical Interaction

- ✓ DFT incorporates all of the electron interactions
- ✓ However, there are inactive cites, which can be cutoff
- ✓ We observed such active and inactive cites in the qubit interactions

```
Active space selection finished
```

```
-> Selected an active space of 14 electrons in 12 orbitals.
ActiveSpace: 14 electrons in 12 orbitals
   active M0 indices: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
```

We made a code for automatic selection of the active cite.

Tapering of Hamiltonian: Qubit Tapering with Z₂ Symmetry

Qubit Tapering against the Hamiltonian Operator in VQE

- ✓ Molecular simulation can be simply described in Z Gate (Qubits can be described in 0 or 1)
- ✓ Hamiltonian operator \mathcal{H} can be decomposed using Z_2 symmetry
 - ✓ We can cutoff the symmetric states from the calculation which stabilize in the same quantum state

For example, simulation results for H₂O:

```
# 2979: -74.696555: 3.1416
# 2980: -74.696555: 3.1416
# 2981: -74.696555: 3.1416
# 2982: -74.696555: 3.1416
# 2983: -74.696555: 3.1416
# 2984: -74.696555: 3.1416
# 2985: -74.696555: 3.1416
# 2986: -74.696555: 3.1416
# 2987: -74.696555: 3.1416
Energy: -74.69655465020367
```


Tapering of Hamiltonian: Qubit Tapering with Z₂ Symmetry

Qubit Tapering against the Hamiltonian Operator in VQE

- ✓ Molecular simulation can be simply described in Z Gate (Qubits can be described in 0 or 1)
- ✓ Hamiltonian operator \mathcal{H} can be decomposed using Z_2 symmetry
 - ✓ We can cutoff the symmetric states from the calculation which stabilize in the same quantum state

For example, other small molecule results:

```
H2O hea vqe before tapering
theoretical SCF energy = -74.8801743517023
iteration: 8323
nOrb:7
nElec: 10
hamiltonian SparsePauliOp numbers : 1086
approximated energy: -74.88017435152771
runtime: 40 minutes
H2O hea vge after tapering without picking active space
theoretical SCF energy = -74.8801743517023
iteration: 8323
n0rb : 7
nElec: 10
number of tapered operations: 16
SparsePauliOp numbers of each hamiltonian : 1035
approximated energy: -73.73967919953907
runtime: 22 seconds
```

```
C2H4 hea vqe before tapering
theoretical SCF energy = -77.0720875637473
nOrb : 14
nElec: 16
hamiltonian SparsePauliOp numbers : 8919
runtime : too complex and too long to run

C2H4 hea after tapering without picking active space
theoretical SCF energy = -77.0720875637474
iteration : 8323
nOrb : 14
nElec: 16
number of tapered operations : 32
SparsePauliOp numbers of each hamiltonian : 8914
approximated energy : -73.285786075257
```

LiCoO₂ Simulation without Qubit tapering

LiCoO₂ Simulation without Qubit tapering

We automatically selected the active cite, and the results show nice convergence.

LiCoO₂ Simulation with Qubit tapering

We utilized the Nelder–Mead sampling, and there were some differences in the result. The qubit tapering has accelerated the simulation.

LiCoO₂ Simulation with Qubit tapering

LiCoO₂ Simulation with Qubit tapering

We utilized the bfgs sampling with a nice convergence. The number of the shots decreased in 2 minutes.

Conclusion & Future Perspective

We reduced the calculation costs in two points:

- 1. Physical Aspects of the Gates and Qubits
- 2. Mathematical Tapering of the Hamiltonian

Through this activity, we were able to calculate a computationally expensive simulation of ion batteries by reducing its calculation costs in 2 minutes

We understand that

- > quantum computing is interesting in both physics and mathematical aspects
- > quantum algorithm itself can be passed down to

Future extension can be the VQE-DFT-MD simulation^[1] for observing dynamical influences.

[1] H. Kashihara, Y. Suzuki, and K. Yasuoka. "A Study on Quantum Car-Parrinello Molecular Dynamics with Classical Shadows for Resource Efficient Molecular Simulation." arXiv preprint arXiv:2406.18797 (2024).

We are open for new connections!

Yuto Terashima
Computational Mechanics

LinkedIn Account

Yi-Kai Lee Statistics

LinkedIn Account

Chun-Yu LuComputer Science

Zi-Yan ShiEngineering Science

