1 Pitman & Morgan Test

This test assess the equality of population variances of Y_1 and Y_2 where there are bivariate normally distributed. $E(Y_1) = \mu_1$ and $E(Y_2) = \mu_2$, $var(Y_1) = \sigma_1^2$ and $var(Y_1) = \sigma_2^2$. $(-1 \le \rho \le 1)$.

$$\sigma_1^2 = \sigma_2^2$$

Pitman's test tests for zero correlation between the sums and products. Correlation between differences and means is a test statistics for the null hypothesis of equal variances given bivariate normality.

1.1 The Pitman-Morgan Test

The test of the hypothesis that the variances σ_1^2 and σ_2^2 are equal, which was devised concurrently by Pitman and Morgan, is based on the correlation of D with S, the coefficient being $\rho_{DS} = (\sigma_1^2 - \sigma_2^2)/(\sigma_D\sigma_S)$, which is zero if, and only if, $\sigma_1^2 = \sigma_2^2$. Consequently a test of H": $\sigma_1^2 = \sigma_2^2$ is equivalent to a test of H": $\rho_{DS} = 0$ and the test statistic is the familiar t-test for a correlation coefficient with (n-2) degrees of freedom.