

B2 - Analytische Geometrie

Im Material ist die Bühne eines Musicaltheaters schematisch dargestellt. Aus dem Zuschauerraum führt eine Rampe zur Bühne. Die Punkte $A(6\mid 0\mid -1), B(7\mid 2\mid -1), C(1\mid 5\mid 0, 25)$ und $D(0\mid 3\mid 0, 25)$ sind die Eckpunkte dieser Rampe. Eine Einheit entspricht einem Meter.

Material

1.1 Zeige, dass die Rampe ABCD ein Rechteck ist.

(3 BE)

1.2 Bestimme eine Parameter- sowie eine Koordinatengleichung der Ebene E, in der die Rampe liegt. [Zur Kontrolle: 2,5x-1,25y+15z=0 ist eine mögliche Koordinatengleichung von E.]

(6 BE)

1.3 Bestimme den Steigungswinkel der Rampe gegenüber der x-y-Ebene.

(2 BE)

- 2 Der Punkt $F(5 \mid -4,5 \mid -1)$ ist der Fußpunkt eines Masts, der Punkt $S(5 \mid -4,5 \mid 2,5)$ stellt die Mastspitze dar. Das Licht eines Scheinwerfers breitet sich vom Punkt $L(6 \mid -7,5 \mid 3,5)$ geradlinig aus, sodass der Mast einen Schatten auf die Rampe wirft.
- 2.1 Ermittle, ob der Schattenpunkt der Spitze ${\it S}$ des Mastes auf der Rampe ${\it ABCD}$ liegt.

(6 BE)

2.2 Gegeben ist die folgende Geradenschar g_a mit

$$g_a:\overrightarrow{x_a}=egin{pmatrix}6\-7,5\3,5\end{pmatrix}+r\cdot\left(egin{pmatrix}5\-4,5\-1+a\end{pmatrix}-egin{pmatrix}6\-7,5\3,5\end{pmatrix}
ight);0\leq a\leq 3,5;0\leq r.$$

Beschreibe die Bedeutung der einzelnen Vektoren sowie die Bedeutung der Geradenschar g_a jeweils im Sachzusammenhang.

(4 BE)

3 Durch weitere Beleuchtungsanlagen in dem Musicaltheater fallen zusätzlich parallel zueinander

verlaufende Lichtstrahlen in Richtung
$$\overrightarrow{v}=egin{pmatrix} -1\\2\\-0,5 \end{pmatrix}$$
 auf die Rampe.

3.1 Bestimme die Abbildungsmatrix ${m P}$ der Parallelprojektion durch die Lichtstrahlen auf die Rampenebene.

(7 BE)

3.2 Für die Projektionsmatrix P gilt: $P^2 = P$ Erläutere die geometrische Bedeutung dieser Gleichung.

(2 BE)