LOAN DEFAULTER Case Study

Done By

ANUPAMA RAJEEV SUMITHA T

Problem Statement

Challenge:

The loan providing companies find it hard to give loans to the people due to their insufficient or non-existent credit history.

Consider a scenario where Mr. X is applying for loan in a bank .There are two possible errors that the bank can commit.

- 1. Credit loss: Bank will approve loan of Mr. X who could be a possible defaulter there by incurring loss of entire credit amount.
- 2. Interest loss: Bank rejects loan request of Mr. X who can make timely payments there by losing a good customer and interest on loan amount.

Solution:

This case study aims to identify patterns using EDA, from existing data available about the clients and past loan history of the clients. These patterns will provide insights, if client could be a possible loan defaulter and helps bank to take actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc

Analysis Approach

We have two different datasets.

- 1. Application Dataset The current information of the customer.
- 2. <u>Previous Application Dataset</u> The information about the previous loan data.

The datasets are subjected to below EDA processes for analysis.

- ✓ **Understanding the Dataset -** Reading the dataset, doing basic checks like datatypes of each column, shape, statistical description of numerical columns.
- ✓ **Data Cleaning -** Involves checking null/missing values ,fixing incorrect datatypes, analyzing the outliers and binning of continuous variables.
- ✓ Univariate Analysis Distribution of continuous variables and count of categorical variables.
- ✓ **Bivariate Analysis -** Discovering patterns between two variables which involve:
 - 1. Categorical and categorical e.g. Count plot
 - 2. Continuous to Continuous e.g. Scatter plot
 - 3. Categorical to Continuous e.g. Box plot
- ✓ Multivariate Analysis Using more than two variables to discover trends between features. E.g. Heatmap
- ✓ **Deriving conclusions** Getting insights.

Application Data set

- Below shows the first few records and columns of 'Application' data set.
- File is read and saved to data frame name 'appdata'.
- Data frame has 307511 rows and 122 columns.
- Column name 'TARGET' is the target variable with values 1 and 0. 1 being a defaulter and 0 being non-defaulter.

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CRE
0	100002	1	Cash loans	М	N	Υ	0	202500.0000	406597.5
1	100003	0	Cash loans	F	N	N	0	270000.0000	1293502.5
2	100004	0	Revolving loans	М	Υ	Υ	0	67500.0000	135000.0
3	100006	0	Cash loans	F	N	Υ	0	135000.0000	312682.5
4	100007	0	Cash loans	М	N	Υ	0	121500.0000	513000.0
4									•

#checking for number of rows and columns in the dataframe.

appdata.shape

(307511, 122)

DATA CLEANING: Application Data set

- Below shows the list of some columns that has null values greater than or equal to 50%. Such columns won't be of much use for analysis. So dropped them.
- There are other columns too, which are not useful for this point of analysis. So made a list, and dropped them as well.
- Final data frame, has 307511 rows and 41 columns

```
OWN CAR AGE
                           65.9908
                           56.3811
EXT SOURCE 1
                           50.7497
APARTMENTS_AVG
                          58.5160
BASEMENTAREA AVG
                          66.4978
YEARS BUILD AVG
COMMONAREA AVG
                          69.8723
                           53.2960
ELEVATORS AVG
ENTRANCES_AVG
                           50.3488
                           67.8486
FLOORSMIN AVG
LANDAREA AVG
                           59.3767
LIVINGAPARTMENTS AVG
                           68.3550
LIVINGAREA AVG
                          50.1933
NONLIVINGAPARTMENTS AVG
                          69.4330
                         55.1792
NONLIVINGAREA AVG
                          50.7497
APARTMENTS_MODE
BASEMENTAREA MODE
                           58.5160
YEARS BUILD MODE
                           66.4978
COMMONAREA MODE
                           69.8723
                           53.2960
ELEVATORS MODE
ENTRANCES_MODE
                           50.3488
FLOORSMIN MODE
```

```
#removing all unwanted columns
appdata.drop(labels=unwanted_cols, axis=1, inplace=True)
```

Data Imbalance

- As illustrated in the graph, the application data set has a very visible data imbalance in terms of defaulters and non- defaulters.,
 - 8.07% individuals are defaulters.
 - 91.93% are non-defaulters.
- The approach followed to deal with the data imbalance is divide and analyze the dataset based on defaulters and non-defaulters.
- In the following sections Target=1 stands for defaulters and Target =0 stands for non-defaulters.

- **Categorical Variable :** Distribution of Contract Type.
- **Conclusions**: Among defaulters and non-defaulters 'Cash Loans' category count is more compared to 'Revolving Loans.

- Categorical Variable : Distribution of Gender type.
- **Conclusions :** Among defaulters and non-defaulters 'Female' gender category count is more compared to males.

- Continuous Variable: Distribution of Credit Amount
- **Conclusions**: Most of the data falls to the right of the graph peak, it shows the presence of outliers.

Black dotted lines in the graph represents the median.

- **Continuous Variable :** Distribution of Age
- Conclusions: In target = 0 data set, age column has median value 43. In target = 1 data set, age column has median value 39. In both data set, there is no presence of outliers.

Black dotted lines in the graph represents the median.

- Categorical Categorical: NAME_INCOME_TYPE vs CODE_GENDER
- Conclusions:
- In target=0, Commercial associates are the highest category.
- In target = 1, Working category has the highest number of defaulters.

- Categorical Categorical: FLAG_OWN_RELATY vs CODE_GENDER
- **Conclusions**: Customers who own a realty tend to default more as shown in target=1.

- **Continuous Continuous :** AMT_CREDIT vs AMT_GOODS_PRICE
- Conclusions:
- AMT_GOODS_PRICE and AMT_CREDIT has a positive correlation.
- As the credit amount increases the Goods price also increases.

- **Continuous Continuous** : AMT_ANNUITY vs AMT_CREDIT
- Conclusions:
- AMT_ANNUITY and AMT_CREDIT has a positive correlation.
- As the credit amount increases the annuity also increases.

- Categorical Continuous: NAME_EDUCATION_TYPE
 vs AMT_CREDIT
- **Conclusions**: The median of 'Academic Degree' category is higher in both categories. Also, 'Academic Degree' has lesser number of outliers compared to other categories.

NAME_EDUCATION_TYPE vs. AMT_CREDIT

w.r.t Target = 1

- Categorical Continuous: Income_Range vs AMT_CREDIT
- **Conclusions:** In both dataset, it can be observed that, as the income range increases, amount applied for credit also increases

<u>Multivariate analysis for Non-Defaulters [target = 0]</u>

1.00

0.75

0.50

0.25

0.00

-0.25

Multivariate analysis for Defaulters [target = 1]

Major Insights from the Application Data Set

- 51 60 age group are highest in number for non-defaulters.
- 3L to 5.5L credit range have defaulted more whereas 1 3L range has the highest count in non-defaulters.
- More defaulters belong to the 'Female' category
- Males in 'Average` income type category have defaulted more compared to the females in the same category.
- Defaulters lies more in Secondary / Secondary special Education Type'. 'Incomplete higher' category group is the highest in non-defaulters
- Customers who own realty tend to default more

<u>Top 5 correlation variables from heat map presented in previous slides (top 10 mentioned in notebook).</u>

- OBS_60_CNT_SOCIAL_CIRCLE--OBS_30_CNT_SOCIAL_CIRCLE
- AMT_GOODS_PRICE--AMT_CREDIT
- CNT_FAM_MEMBERS--CNT_CHILDREN
- DEF_60_CNT_SOCIAL_CIRCLE--DEF_30_CNT_SOCIAL_CIRCLE
- AMT_ANNUITY--AMT_GOODS_PRICE

Segment 2: Previous Application Data set

NAME_CONTRACT_STATUS is the target variable in this data set.

Normalized counts:

Approved 0.6207 Canceled 0.1894 Refused 0.1740 Unused offer 0.0158

Name: NAME_CONTRACT_STATUS, dtype: float64

- Categorical Variable: NAME_CLIENT_TYPE
- Conclusions: 'Repeater' category client type is the highest.

Normalized counts: Repeater 0.7372 New 0.1804 Refreshed 0.0812 XNA 0.0012

Name: NAME_CLIENT_TYPE, dtype: float64

- Continuous Variable: AMT_CREDIT and AMT_ANNUITY
- **Conclusions:** Both variable have presence of outliers.


```
Statistical Description:
count
        1670213.0000
         196114.0212
mean
std
         318574.6165
min
              0.0000
25%
          24160.5000
50%
          80541.0000
75%
         216418.5000
        6905160.0000
Name: AMT_CREDIT, dtype: float64
```

- Categorical Variable: NAME_CLIENT_TYPE grouped by NAME_CONTRACT_STATUS
- **Conclusions**: 'Repeater' category client type has the highest number of approved loans and Rejected loans.

NAME_CONTRACT_STATUS	NAME_CLIENT_TYPE			
Approved	Repeater	0.6345		
	New	0.2713		
	Refreshed	0.0937		
	XNA	0.0006		
Canceled	Repeater	0.9239		
	Refreshed	0.0618		
	New	0.0112		
	XNA	0.0031		
Refused	Repeater	0.8974		
	Refreshed	0.0517		
	New	0.0496		
	XNA	0.0012		
Unused offer	Repeater	0.7688		
	Refreshed	0.1495		
	New	0.0804		
	XNA	0.0012		
	- 1. 63			

- Categorical Variable: NAME_YIELD_GROUP grouped by NAME_CONTRACT_STATUS
- Conclusions: middle' category client type has the highest number of approved loans; 'XNA' type has the highest Canceled and rejected loans.

NAME_CONTRACT_STATUS	NAME_YIELD_GROUP				
Approved	middle	0.3116			
	high	0.2884			
	low_normal	0.2373			
	XNA	0.0943			
	low_action	0.0684			
Canceled	XNA	0.9683			
	low_normal	0.0153			
	middle	0.0103			
	high	0.0032			
	low_action	0.0030			
Refused	XNA	0.3015			
	low_normal	0.2427			
	middle	0.2032			
	high	0.1832			
	low_action	0.0695			
Unused offer	XNA	0.9656			
	low_normal	0.0247			
	middle	0.0070			
	high	0.0027			
Name: NAME_YIELD_GROUP, dtype: float64					

- **Continuous Variable :** AMT_GOODS_PRICE *vs. AMT_APPLICATION*
- **Conclusions**: There is a high correlation between the two variables. This means that, as one increases, the other increases as well.

Correlation Value = 0.9998837157835986

- **Continuous Variable :** AMT_GOODS_PRICE *vs. AMT_CREDIT*
- **Conclusions**: There is a high correlation between the two variables. This means that, as one increases, the other increases as well.

Correlation Value = 0.9930870506319731

count

Statistical Description:

NAME_CONTRACT_STATUS						
Approved	1036780.0000	202564.1821	275302.6663	0.0000	47970.0000	
Canceled	316319.0000	24187.0571	162451.7509	0.0000	0.0000	
Refused	290678.0000	371689.8412	468119.1805	0.0000	60138.0000	
Unused offer	26436.0000	69783.9908	64248.0629	0.0000	34378.8750	

50% 75% max

mean

std

NAME_CONTRACT_STATUS

Approved 102208.5000 225000.0000 4509688.5000 Canceled 0.0000 0.0000 3847104.0000 Refused 182956.5000 497520.0000 6905160.0000 Unused offer 57960.0000 89955.0000 3511305.0000

- Continuous Categorical Variable: NAME_CONTRAT_STATUS vs. AMT_CREDIT
- **Conclusions:** Even though the count of approved loans is highest, Refused loans has the highest median. This is the result of a value in Rejected category which is around 69L

25%

Multivariate Analysis

Top 10 correlations:

- AMT_APPLICATION and AMT GOODS PRICE 0.9999
- AMT_CREDIT and AMT_GOODS_PRICE 0.9931
- AMT_APPLICATION and AMT_CREDIT 0.9758
- 4. DAYS_LAST_DUE and DAYS_TERMINATION 0.9280
- 5. AMT_ANNUITY and AMT_GOODS_PRICE 0.8209
- 6. AMT_CREDIT and AMT_ANNUITY 0.8164
- AMT_APPLICATION and AMT_ANNUITY 0.8089
- CNT_PAYMENT and AMT_APPLICATION 0.6806
- 9. AMT_CREDIT and CNT_PAYMENT 0.6743
- 10. CNT_PAYMENT and AMT_GOODS_PRICE 0.6721

Major Insights from the Previous Data Set

- 'Repeater' client type category have higher count of 'Approved' loans whereas 'Refreshed' category have the least.
- 'XAP' and 'XNA' categories have the highest 'Cancelled' loans across many variables.
- 'Middle' category in NAME_YIELD_GROUP have highest approved loans.
- 'Low action' group has the least count of 'Approved' as well as 'Refused' loans
- 'Mobile' category has the highest count for the good category that the client has applied followed by consumer electronics.
- 'HC' code reject reason is the most prominent reason for rejected loans.

<u>Top 5 correlation variables from heat map presented in previous slide (top 10 mentioned in notebook).</u>

- AMT_APPLICATION -- AMT_GOODS_PRICE
- AMT_CREDIT-- AMT_GOODS_PRICE
- AMT_APPLICATION--AMT_CREDIT
- DAYS_LAST_DUE--DAYS_TERMINATION
- AMT_ANNUITY--AMT_GOODS_PRICE