Kholle 20 filière MPSI/MP2I Planche 1

- 1. En dimension finie, caractérisation des bases à l'aide de la longueur des familles.
- 2. Dans $E=\mathbb{R}_2[X]$, montrer que $(X^2,(X-1)^2,(X+1)^2)$ est une base de E. Décomposer X^2+X+1 dans cette base.
- 3. Pour tout entier naturel, on note $f_n:[0,1]\to\mathbb{R}, x\mapsto x^n$. Montrer que la famille $(f_n)_{n\in\mathbb{N}}$ est libre dans $C^\infty([0,1],\mathbb{R})$. Qu'en déduire sur la dimension de $C^\infty([0,1],\mathbb{R})$?

Kholle 20 filière MPSI/MP2I Planche 2

- 1. Soit F, G deux sev de E de dimension finie. Que vaut $\dim(F+G)$? Le démontrer.
- 2. Dans $E = \mathbb{R}^3$, onse pose $e_1 = (-1,1,1)$, $e_2 = (1,-1,1)$ et $e_3 = (1,1,-1)$. Montrer qu'il s'agit d'une base de \mathbb{R}^3 . Décomposer le vecteur x = (8,4,2) dans cette base.
- 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\exists k \in \mathbb{N}^*, A^k = 0$. On note $p = \min\{k \in \mathbb{N}^*, A^k = 0\}$. Montrer que $p \le n$.

Indication : on pourra chercher une famille libre dans $\mathcal{M}_{n,1}(\mathbb{K})$.

Kholle 20 filière MPSI/MP2I Planche 3

- 1. Théorème de Heine.
- 2. Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, montrer que la famille $(x \mapsto \cos(x), x \mapsto \sin(x), x \mapsto \cosh(x), x \mapsto \sinh(x))$ est libre
- 3. Soit E de dimension finie, A et B deux sev de E de même dimension. Montrer qu'il existe un sev de E de E tel que

$$A \oplus S = B \oplus S = E$$

i.e qu'ils possèdent un supplémentaire commun.

Kholle 20 filière MPSI/MP2I Bonus

On note $\mathbb{K} = \{0, 1, 2, 3, 4\}$ muni des lois internes suivantes :

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Il s'agit d'un corps, on ne demande pas de le démontrer.

- 1. Dans $E = \mathbb{K}^2$, on note u = (1,2). Représenter Vect(u) et dénombrer les éléments de ce sev de E.
- 2. Compter les éléments de tout sev de $\it E$ de dimension 1.
- 3. Combien y a-t-il de sev de E de dimension 1?

