NHẬP MÔN TRÍ TUỆ NHÂN TẠO

LOGIC MỆNH ĐỀ (PROPOSITIONAL LOGIC)

ThS. Vũ Hoài Thư

Ngày 8 tháng 3 năm 2024

Nội dung

- 1 Vấn đề biểu diễn tri thức và suy diễn logic
- Logic mệnh đề
- Suy diễn với logic mệnh đề

Vấn đề biểu diễn tri thức và suy diễn logic

Vấn đề biểu diễn tri thức và suy diễn logic

Sự cần thiết của tri thức và suy diễn

- Con người sống trong môi trường
 - Nhận thức được thế giới nhờ các giác quan (tai, mắt, ...)
 - Thông tin thu thập sẽ được tích lũy thành tri thức
 - Sử dụng tri thức tích lũy được và nhờ khả năng lập luận, suy diễn, từ đó đưa ra các hành động hợp lý.
- Một hệ thống thông minh cần phải có khả năng sử dụng tri thức và suy diễn
 - Tính mềm dẻo cao: Việc kết hợp tri thức và suy diễn cho phép tạo ra tri thức mới
 - Cho phép hệ thống hoạt động trong trường hợp thông tin không đầy đủ
 - Thuận lợi cho việc xây dựng hệ thống: Chỉ cần thay đổi cơ sở tri thức, giữ nguyên thủ tục suy diễn.

Ngôn ngữ biểu diễn tri thức

Ngôn ngữ biểu diễn tri thức = Cú pháp + Ngữ nghĩa + Cơ chế lập luân

- Cú pháp:
 - Bao gồm các ký hiệu và các quy tắc liên kết các ký hiệu (các luật cú pháp) để tạo thành các câu (công thức) trong ngôn ngữ
- Ngữ nghĩa:
 - Cho phép ta xác định ý nghĩa của các câu trong một miền nào đó của thế giới thực
- Cơ chế lập luân:
 - Là một quá trình tính toán
 - Input: tập các công thức (đặc tả hình thức của tri thức đã biết)
 - Output: tập các công thức mới (đặc tả hình thức của tri thức mới)

Ngôn ngữ biểu diễn tri thức tốt

- Khả năng biểu diễn tốt
 - Cho phép biểu diễn mọi tri thức cần thiết của bài toán
- Hiệu quả
 - Cho phép biểu diễn tri thức ngắn gọn
 - Để đi tới các kết luận, thủ tục suy diễn đòi hỏi ít thời gian tính toán và ít không gian nhớ
- Gần với ngôn ngữ tự nhiên
 - Thuận lợi cho người sử dụng trong việc mô tả tri thức

Logic mệnh đề

Cú pháp của logic mệnh đề (1/2)

- Các ký hiệu
 - ullet Các ký hiệu chân lý (hằng logic): True (T) và False (F)
 - ullet Các ký hiệu mệnh đề (biến mệnh đề): P,Q,\ldots
 - Các kết nối logic: ∨, ∧, ¬, ⇒, ⇔
 - Các dấu ngoặc: (và)
- Các quy tắc xây dựng công thức
 - Các ký hiệu chân lý và các biến mệnh đề là công thức
 - Nếu A, B là các công thức thì:
 - $A \vee B$: "A tuyển B" hoặc "A hoặc B"
 - $A \wedge B$: "A hôi B" hoặc "A và B"
 - $(\neg A)$: "phủ định A"
 - $A \Rightarrow B$: "A kéo theo B" hoặc "nếu A thì B"
 - $A \Leftrightarrow B$: "A và B kéo theo nhau"

là các công thức

Cú pháp của logic mệnh đề (2/2)

- Bỏ đi các dấu ngoặc không cần thiết
 - Ví dụ: $((A \lor B) \land C)$ sẽ được viết là $(A \lor B) \land C$
- Thứ tự thực hiện các phép kết nối: ¬, ∧, ∨, ⇒, ⇔
- Các câu là các ký hiệu mệnh đề được gọi là câu đơn (câu nguyên tử). Ví dụ: P,Q
- Nếu P là các ký hiệu mệnh đề thì P và ¬P được gọi là các literal (P: literal dương, ¬P: literal âm)
- Câu phức hợp có dạng $A_1 \lor A_2 \lor \dots A_m$ trong đó A_i là các literal được gọi là câu tuyển

Ngữ nghĩa của logic mênh đề (1/2)

- Mỗi ký hiệu mênh đề có thể tương ứng với một phát biểu mênh đề
 - P = "Paris là thủ đô của nước Pháp"
 - Q = Hằng số Pi là số nguyên"
- Môt phát biểu chỉ có thể đúng (True) hoặc sai (False)
 - P đúng, Q sai
- Một minh họa là một cách gán cho mỗi biến mệnh đề môt giá trị chân lý True hoặc False

A	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
True	True	False	True	True	True	True
True	False	False	False	True	False	False
False	True	True	False	True	True	False
False	False	True	False	False	True	True

Ngữ nghĩa của logic mệnh đề (2/2)

 Một công thức là thỏa được (satisfiable) nếu nó đúng trong một minh họa nào đó

•
$$(P \wedge Q) \vee \neg R$$

- Một công thức là không thỏa được nếu nó sai trong mọi minh họa
 - $\bullet P \land \neg P$
- Một công thức là vững chắc (valid) nếu nó đúng trong mọi minh hoa
 - \bullet $P \lor \neg P$
- Một mô hình (model) của một công thức là một minh họa sao cho công thức là đúng trong minh họa này
 - $\{P \leftarrow False, Q \leftarrow True, R \leftarrow False\}$

Các công thức tương đương (1/2)

- Hai công thức A và B được gọi là tương đương nếu chúng có cùng giá trị chân lý trong mọi minh họa.
 - \bullet $A \equiv B$
- Các công thức tương đương cơ bản
 - $A \Rightarrow B \equiv \neg A \lor B$
 - $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
 - $\neg (\neg A) \equiv A$
- Luật De Morgan
 - $\bullet \neg (A \lor B) \equiv \neg A \land \neg B$
 - $\bullet \neg (A \land B) \equiv \neg A \lor \neg B$

Các công thức tương đương (2/2)

- Luật giao hoán
 - $A \vee B \equiv B \vee A$
 - $A \wedge B \equiv B \wedge A$
- Luật kết hợp
 - $\bullet \ (A \lor B) \lor C \equiv A \lor (B \lor C)$
 - $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
- Luật phân phối
 - $\bullet \ A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$
 - $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Dạng chuẩn tắc hội (1/2)

- \bullet Một câu (mệnh đề) tuyển là tuyển của các mệnh đề nguyên thủy
 - ullet Câu tuyến có dạng $P_1 ee P_2 \ldots ee P_n$ là các mệnh đề nguyên thuỷ
- Một công thức ở dạng chuẩn tắc hội nếu nó là hội của các câu tuyển
 - Ví dụ $(A \lor E \lor F \lor G) \land (B \lor C \lor D)$

Dạng chuẩn tắc hội (2/2)

- Ta có thể biến đổi một công thức bất kỳ về dạng chuẩn tắc hội bằng cách biến đổi theo nguyên tắc sau:
 - Khử các phép tương đương: $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$
 - Khử các phép kéo theo: $A \Rightarrow B \equiv \neg A \lor B$
 - Chuyển các phép phủ định vào sát các ký hiệu mệnh đề bằng cách áp dụng luật De Morgan
 - Khử phủ định kép: $\neg(\neg A) \equiv A$
 - Áp dụng luật phân phối: $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

Sử dụng bảng giá trị chân lý, chứng minh các công thức tương đương cơ bản sau:

1.
$$A \Rightarrow B \equiv \neg A \lor B$$

2,
$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$$

3,
$$\neg(\neg A) \equiv A$$

4,
$$\neg (A \lor B) \equiv \neg A \land B$$

5,
$$\neg (A \land B) \equiv \neg A \lor B$$

6,
$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

7,
$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

Chứng minh các mệnh đề sau là vững chắc

a,
$$(P \wedge Q) \Rightarrow P$$

b,
$$P \Rightarrow (P \vee Q)$$

$$P \Rightarrow (P \Rightarrow Q)$$

$$\mathsf{d},\ (P \wedge Q) \Rightarrow (P \Rightarrow Q)$$

$$e, \neg (P \Rightarrow Q) \Rightarrow P$$

$$f_{\bullet} \neg (P \Rightarrow Q) \Rightarrow \neg Q$$

$$\mathbf{g}, \neg P \land (P \lor Q) \Rightarrow Q$$

$$h, (P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$$

Chứng minh các tương đương logic sau:

1,
$$(P \Leftrightarrow Q) \equiv (P \land Q) \lor (\neg P \land \neg Q)$$

2,
$$\neg P \Leftrightarrow Q \equiv P \Leftrightarrow \neg Q$$

3,
$$\neg (P \Leftrightarrow Q) \equiv \neg P \Leftrightarrow Q$$

Chuẩn hoá công thức sau về dạng chuẩn tắc hội:

$$(P \Rightarrow Q) \lor \neg (R \lor \neg S)$$

Suy diễn với logic mệnh đề

Suy diễn logic (1/2)

- Một công thức H được gọi là hệ quả logic của một tập công thức $G = \{G_1, \ldots, G_m\}$ nếu trong bất kỳ minh hoạ nào mà G đúng thì H cũng đúng.
- Thủ tục suy diễn gồm một tập các điều kiện và một kết luận

 $\frac{\text{tập các điều kiện}}{\text{kết luân}}$

Suy diễn logic (2/2)

- Tính chất của một thủ tục suy diễn
 - 1, Đúng đắn (sound): nếu kết luận là hệ quả logic của điều kiện
 - 2, Đầy đủ (complete): nếu tìm ra mọi hệ quả logic của điều kiện
- Một số ký hiệu
 - KB: cơ sở tri thức, tập các công thức đã có (Knowledge Base)
 - $KB \vdash \alpha$: α là hệ quả logic của KB

Suy diễn sử dụng bảng chân lý

- Sử dụng bảng chân lý có thế xác định một công thức có phải là hệ quả logic của một tập công thức trong cơ sở tri thức hay không.
 - Ví dụ: $KB = \{A \lor C, B \lor \neg C\}, \alpha = A \lor B$
- Tính chất của suy diễn với logic mệnh đề sử dụng bảng chân lý
 - Đúng đắn: Có
 - Đầy đủ: Có
 - Độ phức tạp tính toán lớn

Sử dụng các quy tắc suy diễn (1/3)

Luật Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

Luât Modus Tollens

$$\frac{\alpha \Rightarrow \beta, \neg \beta}{\neg \alpha}$$

Luât loai trừ và

$$\frac{\alpha_1 \wedge \ldots \wedge \alpha_i \wedge \ldots \wedge \alpha_m}{\alpha_i}$$

Luật nhập đề và

$$\frac{\alpha_1, \dots, \alpha_i, \alpha_m}{\alpha_1 \wedge \dots \wedge \alpha_i \wedge \dots \wedge \alpha_m}$$

Với α, β là các công thức

Sử dụng các quy tắc suy diễn (2/3)

Luật nhập đề hoặc

$$\frac{\alpha_i}{\alpha_1 \vee \ldots \vee \alpha_i \vee \ldots \vee \alpha_m}$$

Luật loại trừ phủ định kép

$$\frac{\neg(\neg\alpha)}{\alpha}$$

Luât bắc cầu

$$\frac{\alpha \Rightarrow \beta, \beta \Rightarrow \gamma}{\alpha \Rightarrow \gamma}$$

Sử dụng các quy tắc suy diễn (3/3)

• Phép giải đơn vị

$$\frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

• Phép giải

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

Sử dụng bảng giá trị chân lý chứng minh:

1,
$$\{A \Rightarrow B, A\} \vdash B$$

2,
$$\{A \Rightarrow B, \neg B\} \vdash \neg A$$

3,
$$\{A \Rightarrow B, B \Rightarrow C\} \vdash A \Rightarrow C$$

4,
$$\{A \lor B, \neg B\} \vdash A$$

Cho cơ sở tri thức KB:

$$Q \land S \Rightarrow G \land H$$
 (1)
 $P \Rightarrow Q$ (2)
 $R \Rightarrow S$ (3)

$$R$$
 (5)

Sử dụng các quy tắc suy diễn chứng minh: $KB \vdash G$