Network Delay Time LeetCode

You are given a network of n nodes, labeled from 1 to n. You are also given times, a list of travel times as directed edges times[i] = (u_i, v_i, w_i) , where u_i is the source node, v_i is the target node, and w_i is the time it takes for a signal to travel from source to target.

We will send a signal from a given node k. Return the **minimum** time it takes for all the n nodes to receive the signal. If it is impossible for all the n nodes to receive the signal, return -1.

Example:

N = 4, K = 2

Output: 2

Approach 1: Function to find the minimum time to receive a signal to all nodes in the network using Dijakstra's Algorithm

Explanation:

- The **networkDelayTime** function calculates the minimum time to receive a signal to all nodes in the network using Dijkstra's algorithm.
- It utilizes an adjacency list to represent the graph and a set to maintain nodes with their minimum distances.
- The distances are updated as shorter paths are discovered during traversal.
- The maximum distance among all nodes is returned as the result.

• Time Complexity:

- The time complexity is O((V + E) * log(V)), where V is the number of vertices and E is the number of edges in the graph.
 - Dijkstra's algorithm time complexity.
- Space Complexity:
 - The space complexity is O(V + E), where V is the number of vertices and E is the number of edges in the graph.
 - Storing adjacency list information and the set for Dijkstra's algorithm.