Flow Algorithms

5/5 points (100%)

Quiz, 5 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Which vertices are in the minimum S-T cut in the network below?

Α

Un-selected is correct

В

Correct

The mincut below has size 4 and contains B.

Quiz, 5 questions

5/5 points (100%)

C

Un-selected is correct

D

Correct

The mincut below has size 4 and contains D.

Ε

Correct

Flow Algorith The mincut below has size 4 and contains E.

5/5 points (100%)

Quiz, 5 questions

S

Correct

The source is always in a cut.

T

Un-selected is correct

points

2.

What is the augmenting path that will be used by the Edmonds-Karp algorithm to increase the flow given below?

Flow Algorithms

Quiz, 5 questions

5/5 points (100%)

- S-A-C-T
- S-B-T
- S-B-A-C-T

Correct

Correct!

- S-B-D-C-T
- S-B-A-C-D-T

1/1 points

3.

Which of the statements below is true?

The Ford-Fulkerson algorithms runs in polynomial time on graphs with unit edge capacities.

Flow Algorithms

5/5 points (100%)

Quiz, 5 questions

Correct

True. For such graphs, the maximum flow is at most |V|.

The sum of the capacities of the edges of a network equals the sum of the capacities of the edges of any residual network.

Correct

True. The reduced capacity of any edge of the network is exactly compensated for the by the capacity of the reverse edge.

The Edmonds-Karp algorithm is always faster than the Ford-Fulkerson algorithm.

Un-selected is correct

1/1 points

4.

What is the size of the maximum matching of the following graph?

Flow Algorithms Quiz, 5 questions 4

5/5 points (100%)

Correct Response

1/1 points

5.

Consider the image segmentation problem on a picture that is given by an n by n grid of pixels. Suppose that separation penalties are imposed only for adjacent pairs of pixels. If we use the Edmonds-Karp algorithm to solve this problem as described in class, the final runtime is O(n^a) for some a. What is the best such a?

6

Correct Response

Correct. We need to compute maximum flow on a graph with $V=O(n^2)$ and $E=O(n^2)$. The runtime of Edmonds-Karp is at Flow Algorith St $O(E^2 V) = O(n^6)$.

5/5 points (100%)

Ouiz	5	questions
Quiz,	J	questions