ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ

Αρχιτεκτονικές Διαχείρισης Δικτύων Υλοποιήσεις Client – Server Το Πρωτόκολλο SNMP SNMP MIB - Αντικείμενα & Ορισμοί Πινάκων NETCONF (Network Configuration Protocol)

Β. Μάγκλαρης

maglaris@netmode.ntua.gr www.netmode.ntua.gr

12/11/2018

ΔΙΑΧΕΙΡΙΣΤΙΚΌ MONTEΛΟ ΑΝΑΦΟΡΑΣ FCAPS (OSI – OSI)

- Fault Management (Διαχείριση Βλαβών)
- Configuration Management (Διαχείριση Διάρθρωσης)
- Accounting Management (Λογιστική Διαχείριση)
- Performance Management (Διαχείριση Επιδόσεων)
- Security Management (Διαχείριση Ασφαλείας)

MONTEΛΛΟ ΔΙΑΧΕΙΡΙΣΗΣ SNMP

ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ

Client (Manager) – Server (Agent)

Server:

- NE (Network Element, Στοιχεία Δικτύου: Δρομολογητές, Μεταγωγείς, Γραμμές, Υπολογιστές...)
- Agent (Management Information Base MIB για Διαχείριση SNMP,
 YANG Core Models για Διαχείριση NETCONF)

Client Applications:

- OSS (Operation Support System: Σύστημα Λειτουργίας στη τηλεφωνία)
- NMS (Network Management System: Διαχειριστική Πλατφόρμα SNMP, NETCONF Applications)
- EMS (Element Management System: Πλατφόρμα ενοποιημένου περιβάλλοντος Telecommunications Management Network -TMN)

Management Protocols:

- SNMP IETF RFC 1157; SNMPv2 RFC 1441/1452; SNMPv3 RFC 3411
 (Simple Network Management Protocol, UDP σε δίκτυα TCP/IP)
- NETCONF IETF RFC 6241 (Network Configuration Protocol, SSH/TCP για μεταβίβαση δεδομένων XML με RPC σε δίκτυα Internet/Intranet)
- CMIP ITU-T X.711 (Common Management Information Protocol, σε δίκτυα TMN με πρωτόκολλα επιπέδων 4, 5, 6 & 7 της στοίβας OSI)

ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΤΟΡ/ΙΡ

Simple Network Management Protocol - SNMP

- Πρωτόκολλο του στρώματος εφαρμογής για τη διαχείριση συσκευών συνδεδεμένων στο δίκτυο με TCP/IP stack (IP addressable Network Elements).
 - Οι συσκευές μπορεί να είναι routers, switches με 1 IP interface για management, H/Y, monitoring devices, sensors, έξυπνες συσκευές διαχειριζόμενες από το Internet ...
- Το SNMP υλοποιεί απλές διαχειριστικές λειτουργίες.
- Ακολουθεί το μοντέλο Manager (που ρωτά) Agent (που απαντά).
- Χρησιμοποιεί υπόβαθρο UDP στα Ports UDP 161 (agent daemon)
 και UDP 162 (manager daemon για αυτόνομα μηνύματα
 κοινοποιήσεις/notifications των agents SNMP traps)
 - Υπενθύμιση: το UDP είναι πρωτόκολλο χωρίς επιβεβαίωση.
- Προτυποποίηση: RFC (Request for Comments) της IETF (Internet Engineering Task Force):
 - RFC 1157 SNMPv1 και RFCs 1155,1212 SMIv1
 - RFCs 1905-1907 SNMPv2 και RFCs 2578-2580 SMIv2
 - RFC 1905-1907 & 2571-2575 SNMPv3

ΠΡΩΤΟΚΟΛΛΟ ΑΝΤΑΛΛΑΓΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΔΙΑΧΕΙΡΙΣΗΣ

- Χρειαζόμαστε ένα κοινό (standard) τρόπο για να ορίζουμε τα αντικείμενα που διαχειριζόμαστε και τη συμπεριφορά τους
- Χρειάζεται να γνωρίζουμε ποια αντικείμενα είναι διαθέσιμα στον agent και ποιες είναι οι ιδιότητες τους
 - π.χ. κατάσταση ενός Router Interface: Up, Down, Testing
- Τις πληροφορίες αυτές τις ορίζει η Βάση Πληροφοριών Διαχείρισης (Management Information Base MIB)
 - Η MIB δεν είναι βάση δεδομένων απλά τυποποιεί αντικείμενα / δείκτες ώστε να απευθύνεται σε αυτά ο manager ανεξάρτητα από κατασκευαστή, λειτουργικό κ.λπ.
- Η πληροφορία σε αυτή δομείται σύμφωνα με τους κανόνες Structure of Management Information - SMI
- Υπάρχουν πολλές ΜΙΒ ανάλογα με το είδος εργασιών
 - π.χ. ATM MIB (RFC 2515), DNS MIB (RFC 1611) κ.λπ.
- Όλοι οι agent σε routers στο Internet υλοποιούν τουλάχιστον την MIB II (RFC 1213)

ΟΡΙΣΜΟΣ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΗ ΜΙΒ

- Η MIB είναι δενδρική δομή δεδομένων (data structure) που ορίζει διαχειριζόμενα αντικείμενα (managed objects) με τυποποιημένο τρόπο
- Κάθε διαχειριζόμενο αντικείμενο έχει ορισμένο τύπο και θέση στη ΜΙΒ
 - Όπου & όταν χρειάζεται, ο agent αναλαμβάνει την αντιστοίχηση των αντικειμένων της MIB με μεταβλητές τιμές που του αποδίδει το συγκεκριμένο σύστημα - operating system, π.χ. χρόνος που το σύστημα είναι σε λειτουργία, System Uptime
 - Οι agents γίνονται compiled για κάθε operating system που υπάρχει στα στοιχεία του δικτύου
- Ο ορισμός κωδικοποίηση των αντικειμένων για να περιληφθούν στη MIB γίνεται με την συντακτική αφηρημένη γλώσσα ASN.1 (Abstract Syntax Notation) και τους κανόνες BER (Basic Encoding Rules)
- Ο διαχειριστής χρειάζεται να γνωρίζει μόνο το είδος τύπο της πληροφορίας και που θα τη βρει και όχι τον τρόπο που αυτή είναι εσωτερικά κωδικοποιημένη
- Σύνοψη των ορισμών
 - ASN.1: "αφηρημένη" γλώσσα περιγραφής δομών και τύπων ανεξάρτητα από την εφαρμογή
 - BER: Κανόνες κωδικοποίησης σε ASN.1 για τον ορισμό MIBs
 - SMI: Γενική περιγραφή της δομής που πρέπει να έχει μια MIB

ΔΕΝΔΡΙΚΗ ΔΟΜΗ MIB

 Τα διαχειριζόμενα αντικείμενα οργανώνονται σε μια δενδρική δομή, βάση της οποίας προκύπτει και το όνομα τους (που υποδηλώνει τη μοναδική τους θέση στο δένδρο)

ΠΑΚΕΤΑ - ΕΝΤΟΛΕΣ SNMP

- get-request (NMS → Agent, *UDP port 161*)
- get-response (Agent → NMS)
- get-next-request (NMS → Agent)
 - walk (NMS → Agent)
- get-bulk-request (NMS → Agent)
- set-request (NMS → Agent)
- trap (Agent → NMS, UDP port 162)

Παραδείγματα Εντολών SNMP v1/v2

ΤΥΠΟΙ ΜΗΝΥΜΑΤΩΝ SNMP

Client - Server UDP

Message	Manager UDP Port	Agent UDP Port
GET	Any →	→ 161
GET-RESPONSE	Any ←	← 161
GETNEXT	Any →	→ 161
SET	Any →	→ 161
TRAP	162 ←	← Any

Δ IAPΘΡΩΣΗ ENTΟΛΩΝ snmpget – snmpwalk (1/2)

- **snmpget:** είναι μια εφαρμογή του SNMP που χρησιμοποιεί SNMP **GET** αιτήσεις για να ζητήσει πληροφορίες από μια οντότητα του δικτύου. Ένα ή περισσότερα αναγνωριστικά αντικειμένων (**object identifiers OIDs**) μπορούν να δοθούν ως arguments στη γραμμή εντολών. Συντάσσεται ως εξής:
 - snmpget -c <community> <hostname or IP> <object ID>
- **snmpwalk:** είναι μια εφαρμογή του SNMP που χρησιμοποιεί SNMP **GETNEXT** αιτήσεις για να ζητήσει από μια οντότητα του δικτύου ένα δένδρο πληροφοριών. Ένα **OID** μπορεί να δοθεί στη γραμμή εντολών, το οποίο καθορίζει ποιό τμήμα του χώρου αντικειμένων της MIB θα αναζητηθεί από την **GETNEXT** αίτηση. Όλες οι μεταβλητές του υποδένδρου κάτω από το δοθέν **OID** εξετάζονται και οι τιμές τους δίνονται στο χρήστη. Η εντολή συντάσσεται ως εξής:
 - snmpwalk -c <community> <hostname or IP> <object ID>

Δ IAPΘΡΩΣΗ ENTΟΛΩΝ snmpget – snmpwalk (2/2)

- Ερώτημα: snmpget -c public mariana.netmode.ntua.gr system.sysDescr.0
- Απάντηση:

system.sysDescr.0 = OpenBSD mariana.netmode.ece.ntua.gr 3.8 GENERIC#632 sparc64

- Ερώτημα: snmpwalk -c public mariana.netmode.ntua.gr at
- Απάντηση:

```
at.atTable.atEntry.atIfIndex.1.1.0.0.0.0 = 1
at.atTable.atEntry.atPhysAddress.1.1.0.0.0.0 = "00 0E A6 D0 8D FC "
at.atTable.atEntry.atNetAddress.1.1.0.0.0.0 = 00:00:00:00:93:66:0D:01
```

ΣΥΝΤΑΞΗ ΑΝΤΙΚΕΙΜΕΝΩΝ ΤΗΣ ΜΙΒ-ΙΙ

Τα διαχειριζόμενα αντικείμενα κωδικοποιούνται στη μορφή (SNMPv2 SMI):

ΠΑΡΑΔΕΙΓΜΑ ΟΡΙΣΜΟΥ ANTIKEIMENOY MIB-II: sysUpTime

```
sysUpTime OBJECT-TYPE
               SYNTAX TimeTicks
               ACCESS read-only
               STATUS
                       mandatory
               DESCRIPTION
                       "The time (in hundredths of a
                       second) since the
                       network management portion of
                       the system was last
                       re-initialized."
               ::= { system 3 }
```

(Το αντικείμενο sysuptime είναι το 3° κάτω από τον κόμβο system της MIB-II)

ΤΥΠΟΙ ΑΝΤΙΚΕΙΜΕΝΩΝ

Syntax

- INTEGER (μπορεί να χρησιμοποιηθεί και για λίστα απαρίθμησης)
- Integer32
- Unsigned32
- Counter32 & Counter64
- Gauge32
- Timeticks (εκατοστά του δευτερολέπτου, όπως μετρούνται στο σύστημα)
- OCTET STRING
- OBJECT IDENTIFIER
- Opaque
- RowStatus (TC)
- DisplayString (TC)
- IpAddress (TC)

ΟΡΙΣΜΟΣ ΠΙΝΑΚΩΝ (1/3)

- Η **SMI** υποστηρίζει μόνο μια μορφή **δομημένων** δεδομένων, και πιο συγκεκριμένα έναν απλό **πίνακα** δύο διαστάσεων με βαθμωτές τιμές (π.χ. ο πίνακας δρομολόγησης, ο πίνακας των συνδέσεων του πρωτοκόλλου TCP)
- Ένας πίνακας είναι ένα μόνο αντικείμενο και επομένως χρειαζόμαστε κάποιο δείκτη (INDEX) για να καταλήξουμε σε μια συγκεκριμένη γραμμή του
- Η **SMI** δεν επιτρέπει το φώλιασμα δεδομένων, δηλαδή ένα στοιχείο του πίνακα να είναι πίνακας
- Για τη δημιουργία ενός πίνακα χρησιμοποιείται ο τύπος SEQUENCE OF (ταξινομημένη λίστα στοιχείων ίδιου τύπου)

ΟΡΙΣΜΟΣ ΠΙΝΑΚΩΝ (2/3)

❖ Παράδειγμα ορισμού πίνακα από την MIB-II RFC 1213 (SMIv1)

```
ifTable OBJECT-TYPE
   SYNTAX SEQUENCE OF IfEntry
   ::= { interfaces 2 }
ifEntry OBJECT-TYPE
           IfEntry
   SYNTAX
   INDEX { ifIndex }
   ::= { ifTable 1 }
IfEntry ::=
   SEQUENCE {
   ifIndex INTEGER,
   ifType INTEGER,
   ifInOctets Counter,
   ifOutOctets Counter}
```

ΟΡΙΣΜΟΣ ΠΙΝΑΚΩΝ (3/3)

❖ Παράδειγμα ορισμού πίνακα από την MIB-II RFC 1213 (συνέχεια)

```
ifIndex OBJECT-TYPE
   SYNTAX INTEGER
   ::= { ifEntry 1 }
ifType OBJECT-TYPE
   SYNTAX INTEGER {
   ethernet-csmacd(6)
    loopback(24)}
   ::= { ifEntry 2 }
ifInOctets OBJECT-TYPE
   SYNTAX Counter
   ::= { ifEntry 3 }
ifOutOctets OBJECT-TYPE
```

ifIndex	ifType	ifInOctets	ifOutOctets
1	loopback (24)	0	0
2	ethernet-csmacd (6)	25	40
3	ethernet-csmacd (6)	300	500

ΑΝΑΖΗΤΗΣΗ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΕ ΠΙΝΑΚΑ ΤΗΣ ΜΙΒ

ΤΟ ΠΡΩΤΟΚΟΛΛΟ ΔΙΚΤΥΑΚΗΣ ΔΙΑΡΘΡΩΣΗΣ

Network Configuration Protocol – NETCONF (1/3)

Tomas Cejka, NETCONF-layers: http://tools.ietf.org/html/rfc6241

Licensed under Public Domain via Commons: https://commons.wikimedia.org/wiki/File:NETCONF-layers.svg

Αντιστοίχιση:

SNMP NETCONF

RFC 6241 RFC 3411

MIB's YANG Core Models (datastore ~ configuration file)

SMI YANG Data Modelling Language

BER XML

UDP SSH, TLS, SOAP/HTTP/TLS

ΤΟ ΠΡΩΤΟΚΟΛΛΟ ΔΙΚΤΥΑΚΗΣ ΔΙΑΡΘΡΩΣΗΣ Network Configuration Protocol – NETCONF (2/3)

Αντιστοίχηση SNMPv2 SMI με NETCONF YANG

http://www.ieee802.org/802_tutorials/2014-07/Tutorial_Berman_1407.pdf

ΤΟ ΠΡΩΤΟΚΟΛΛΟ ΔΙΚΤΥΑΚΗΣ ΔΙΑΡΘΡΩΣΗΣ Network Configuration Protocol – NETCONF (3/3)

ΜΗΝΥΜΑΤΑ (XML) ΤΟΥ ΠΡΩΤΟΚΟΛΛΟΥ NETCONF

- Κλήση RPC: <rpc> messages (αντίστοιχα SNMP Protocol Data Units/PDUs: Set, Get, GetNext, GetBulk)
- Απάντηση RPC: <rpc-reply> messages (αντίστοιχο SNMP PDU: Get-Response)
- Κοινοποίηση γεγονότος: <notification> messages (αντίστοιχο SNMP PDU: *Trap*)

ΚΟΙΝΕΣ ΛΕΙΤΟΥΡΓΙΕΣ ΤΟΥ NETCONF

https://ripe68.ripe.net/presentations/181-NETCONF-YANG-tutorial-43.pdf

<get> Αναζήτηση πληροφοριών λειτουργίας και κατάστασης συσκευών

<get-config> Αναζήτηση datastore με πληροφορίες διάρθρωσης συσκευής (XML)

<edit-config> Επεξεργασία δεδομένων σε datastore διάρθρωσης συσκευής

<copy-config> Αντιγραφή datastore σε άλλο

<delete-config> Διαγραφή datastore

<lock> Κλείδωμα datastore συσκευής στο δίκτυο

<unlock> Ξεκλείδωμα datastore συσκευής

<close-session> Αίτηση για λήξη συνόδου NETCONF

<kill-session> Επιβολή διακοπής συνόδου NETCONF

<commit> Δέσμευση πόρων & υπηρεσιών

<cancel-commit> Αποδέσμευση πόρων & υπηρεσιών

<get-schema> Αναζήτηση μετρήσεων