School Finder

Vincent Xie, Evan Amster

Audience

- Prospective students and their parents who are looking for colleges based upon their cost effectiveness.
- Would visit the site when choosing which schools to apply to
- Would return to the site when choosing between schools after application results
- Would like to visually distinguish good schools from not so good schools and compare them to the average
- Have a scoring system based upon how cost-effective the school is

Walkthrough

- There are two main pages
 - Map page
 - Browse page
- Map page for getting in-depth information about the school
- Browse page for getting information about many schools in a table for comparison

Button to the browse page

Map page

Search box

Clickable marker for the school

Map page notes

- To open up the sidebar, click on the marker for the school.
- Depending on the score for the school, the marker will have a different color
- The best schools will have a green marker, worst schools will get orange, red etc.

Side bar

Overall score Button to compare school

To close the side bar, click on the map

Side bar continued

Compare

Browse Page

Browse by state

Filters

Sample Workflow

- Student wants to gather a list of schools to apply to.
- Lives in New Jersey
- Has a budget of \$30,000 a year and wants to go to school in New Jersey
- Wants a salary of at least \$40,000 a year after graduation
- Goes to the browse page to get a list
- Can see how the cost for each school compares by inspecting the colors
- Wants to find the list of schools that are the best value

Sample Workflow

The student should apply to these schools.

Another sample workflow

- A student just got back application results
- Wants to choose between schools (Yale and Harvard)
- Can go to the map and check the surrounding area and get specific information about their schools
- Can compare schools that the student is accepted to
- Help the student make a decision

Another sample workflow

Yale is more expensive than Harvard

Scoring formula

- Return on investment score = 1 1 / ((school.salary_twentyfive + school.salary_seventyfive) / 2 / ((school.in_state_tuition + school.out_of_state_tuition) / 2)) / 5
- Cost score = 1 1 / (100000 / ((school.in_state_tuition + school.out_of_state_tuition + 2 * school.average_student_debt) / 4))
- State score is calculated based upon the average salary
- Graduation score = school.graduation_rate
- Retention score = school.retention_rate

Scoring formula continued

- Total score = .2 * return on investment score + .1 * cost score + .1 * state score + .3 * graduation score + .3
 * retention score
- The graduation and retention scores are weighted highly.
- This prevents cheap but low quality schools (low graduation and retention rate) from rising to the top.
- Takes into account average cost of the school, average student debt, average income of graduates, average income of location, retention rate, graduation rate

Architecture

- Standard HTML/CSS, Javascript front end
- AngularJS as a front end framework
- Bootstrap, Chart.JS for UI elements
- JQuery animations
- Google Maps API
- AJAX requests to PHP backend which communicates with MySQL database

Platform and Design

- Hosted on AWS using EC2
- MySQL instance run on AWS using RDS
- Simple design

Data Sources

School data:

https://catalog.data.gov/dataset/collegescorecard

State data:

https://en.wikipedia.org/wiki/ List of U.S. states by income

State codes:

https://www.census.gov/geo/reference/ansi_statetables.html

Database Schema

- SCHOOLS[name, latitude, longitude, city, locale, in_state_tuition, out_of_state_tuition, type, homepage, graudation_rate, retention_rate, admission_rate, average_student_debt, salary_ten, salary_twentyfive, salary_seventyfive, salary_ninety, drr_oneyr, drr_threeyr, drr_fiveyr, drr_sevenyr]
- LOCATED[school, state_code]
- STATES[name, code, avg_salary, score]

Queries

- To prevent SQL injection vulnerability, we use prepared queries
- '?' gets replaced with input

Some Queries

- To get information about a school:
 - SELECT * FROM schools WHERE name = ?;
- To get the state of a specific school:
 - SELECT * FROM located, states WHERE located.school = ? AND located.state_code = states.code;
- To calculate averages:
 - SELECT AVG(retention_rate) AS retention_rate,
 AVG(graduation_rate) AS graduation_rate,
 ROUND(AVG(in_state_tuition), 2) AS in_state_tuition,
 ROUND(AVG(out_of_state_tuition), 2) AS out_of_state_tuition,
 ROUND(AVG(average_student_debt), 2) AS
 average_student_debt, ROUND(AVG((salary_twentyfive + salary_seventyfive) / 2), 2) AS average_income FROM schools;

More Queries

Browse schools:

```
— SELECT s.name, .2 * (1 - 1 / ((s.salary_twentyfive +
s.salary seventyfive) / 2 / ((s.in state tuition +
s.out of state tuition) (2) (5) + .1 * (1 - 1) (100000)
((s.in state tuition + s.out_of_state_tuition + 2 *
s.average_student_debt) \overline{(4)} + .1 * st.score / 100 + .3 *
s.graduation rate + .3 * s.retention rate AS 'score', s.city,
s.in_state_tuition, s.out_of_state_tuition, (s.salary_twentyfive +
s.salary seventyfive) / 2 AS 'average salary', st.name AS 'state'
FROM schools s, located I, states st WHERE s.in state tuition
>= ? AND s.in state tuition <= ? AND s.out of state tuition
>= ? AND s.out_of_state_tuition <= ? AND (s.salary twentyfive
+ s.salary seventyfive) \sqrt{2} >= ? AND (s.salary twentyfive +
s.salary_seventyfive) / 2 <= ? AND s.name = l.school AND
l.state code = st.code AND l.state code = ? ORDER BY " .
\$sort \overline{b}y." ASC LIMIT?;
```

More Queries

- Browse by state:
 - SELECT st.name, st.score, AVG(.2 * (1 1 / ((s.salary_twentyfive)) + s.salary seventyfive) / 2 / ((s.in state tuition + s.out of state tuition) (2) (5) + (1 - 1) (100000)((s.in_state_tuition + s.out_of_state_tuition + 2 * s.average_student_debt) $(\overline{4})$) + .1 * st.score / 100 + .3 * s.graduation rate + .3 * s.retention rate) AS 'average school score', ROUND(AVG(s.in state tuition), 2) AS 'average in state tuition', ROUND(AVG(s.out of state tuition), 2) AS 'average_out_of_state_tuition', st.avg_salary FROM schools s, located I, states st WHERE s.name = I.school AND I.state code = st.code AND st.code = ? GROUP BY st.name ASC ORDER BY ". \$sort_by . " DESC LIMIT ?;