Image Matching System using Early Vision

Longbin Jin

Image Matching System

Image dataset

- Point processing
 - Gray scale / HSI
 - Contrast stretching
- Area processing
 - Noise filtering
 - Edge
 - Sharpening
 - Morphological
- Deep Learning

- Color
 - Color histogram
- Texture
 - LBP
 - GLCM
 - Law's texture
- Shape
 - Harris corner
 - SIFT
 - HoG
- Deep Learning

- Similarity
 - Distance
 - Cosine similarity
- ML classifier
 - KNN
 - SVM
 - •
- Deep Learning

Dataset - reCAPTCHA

reCAPTCHA v1 reCAPTCHA v2 reCAPTCHA v3

Dataset

- link
 - git clone https://github.com/folfcoder/recaptcha-dataset.git
- Classes (without mountain)

Bicycle (800)

Bridge (553)

Bus (1229)

Car (3578)

Chimney (56)

Crosswalk (1260)

Hydrant (972)

Motorcycle (101)

Palm (932)

Traffic Light (811)

Dataset

- Remove outlier
 - You don't have to use all the data to fit your model

Bicycle?

Car?

Traffic light?

- Multi-labels
 - Some images may have multi objects

Crosswalk + Car

Crosswalk + Car+ Traffic light

Bicycle + Car

Dataset Split

K-fold cross validation (k=5)

Dataset Split

K-fold cross validation (k=5)

fold 1	fold 2	fold 3	fold 4	fold 5
Bicycle	Bus	Chimney	Hydrant	Palm
Bridge	Car	Crosswalk	Motorcycle	Traffic Light

| Bicycle (20%) |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| Bridge (20%) |
| Bus (20%) |
| Car (20%) |
| Chimney (20%) |
| Crosswalk (20%) |
| Hydrant (20%) |
| Motorcycle (20%) |
| Palm (20%) |
| Traffic Light (20%) |

Test Data

Delayed delivery

• Test data will be made available at the end of the semester.

- Test data
 - 10 images per class
 - Total 100 images

Confusion matrix

		Predicted Condition		
Total = TP + TN + FP + FN		Positive	Negative	
ondition	Positive	True Positive (TP)	False Negative (FN)	
Actual Condition	Negative	False Positive (FP)	True Negative (TN)	

- TP: You predicted positive and it's true.
- TN: You predicted negative and it's true.
- FP: You predicted positive and it's false.
- FN: You predicted negative and it's false.

Accuracy

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision

$$Precision = \frac{TP}{TP + FP}$$

Recall (Sensitivity)

$$Recall = \frac{TP}{TP + FN}$$

• F1 score (Harmonic mean of precision and recall) $\frac{1}{F_1} = (\frac{1}{precision} + \frac{1}{recall})/2$

$$\frac{1}{F_1} = \left(\frac{1}{precision} + \frac{1}{recall}\right)/2$$

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

Confusion matrix

		Predicted		
Т	Total = P + TN + FP + FN	Positive	Negative	
ondition	Positive	True Positive (TP)	False Negative (FN)	Recall $\frac{TP}{TP + FN}$
Actual Condition	Negative	False Positive (FP)	True Negative (TN)	
		Precision $\frac{TP}{TP + FP}$		$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN + FP + FN}{TP + TN + FP + FN}$

Confusion matrix for Multi-class

		Predicted Condition			
		Bicycle	Bridge		Traffic Light
C	Bicycle	578	22		42
onditio	Bridge	34	363		93
Actual Condition					
A	Traffic Light	50	87		447

Image Matching System

Image dataset

- Point processing
 - Gray scale / HSI
 - Contrast stretching
- Area processing
 - Noise filtering
 - Edge
 - Sharpening
 - Morphological
- Deep Learning

Feature extraction

- Color
 - Color histogram
- Texture
 - LBP
 - GLCM
 - Law's texture
- Shape
 - Harris corner
 - SIFT
 - HoG
- Deep Learning

- Similarity
 - Distance
 - Cosine similarity
- ML classifier
 - KNN
 - SVM
 - •
- Deep Learning

Preprocessing

- Point processing
 - HIS
 - gray scale
 - contrast stretching (histogram equalization)
- Area processing
 - noise filtering (mean / gaussian / median)
 - edge (previtt / sobel / canny)
 - sharpening (high-boost filtering)
 - morphological operator (open / close)

Feature Extraction

- Color
 - color / gray scale histogram (3x256-d / 256-d or n-d)
- Texture
 - LBP histogram (256-d or n-d)
 - GLCM (6-d)
 - maximum probability, moments, contrast, homogeneity, entropy, correlation
 - Law's texture (9-d)
 - E5E5, S5S5, R5R5, E5L5, S5L5, R5L5, S5E5, R5E5, R5S5
- Shape
 - Harris
 - SIFT (128-d)
 - HOG

Dimensionality Reduction

- K-means for dimension reduction
 - n-dim -> k-dim
 - 1. Apply the K-means algorithm
 - 2. Calculate the distance of each data point from each cluster center
 - 3. We got k-dim features
 - Distance of point from cluster 1
 - Distance of point from cluster 2
 - ...
 - Distance of point from cluster k

Distance

$$P = [p_1, p_2, ..., p_n], \qquad Q = [q_1, q_2, ..., q_n]$$

Manhattan distance (L1 norm)

$$d(P,Q) = \sum_{i=1}^{n} (|p_i - q_i|) = |p_1 - q_1| + \dots + |p_n - q_n|$$

• Euclidean distance (L2 norm)

$$d(P,Q) = \left(\sum_{i=1}^{n} (|p_i - q_i|^2)\right)^{1/2} = \sqrt{|p_1 - q_1|^2 + \dots + |p_n - q_n|^2}$$

• Distance

$$P = [p_1, p_2, ..., p_n], \qquad Q = [q_1, q_2, ..., q_n]$$

• Mahalanobis Distance

$$d(P,Q) = \sqrt{(P-Q)\Sigma^{-1}(P-Q)^T}$$
$$\Sigma = \frac{1}{n}X^TX$$

Cosine Similarity

$$P = [p_1, p_2, ..., p_n], \qquad Q = [q_1, q_2, ..., q_n]$$

$$sim(P, Q) = cos(\theta) = \frac{P \cdot Q}{\|P\| \|Q\|}$$

- Extract feature from test image
- Find the most similar feature from train data
 - 1. Bus
 - 2. Car
 - 3. Car
 - 4. Bus
 - 5. Bus
 - 6. Bus
- Top-1 class: Bus, Top-3 class: Car, Top-6: Bus

Test image

K-Nearest Neighbors (KNN)

- Lazy model
 - Non-parametric supervised learning
 - it is helpful to choose *k* to be an odd number
- Find the optimal parameter k using train data and validation data

Image Matching System

Image dataset

- Point processing
 - Gray scale / HSI
 - Contrast stretching
- Area processing
 - Noise filtering
 - Edge
 - Sharpening
 - Morphological
- Deep Learning

Feature extraction

- Color
 - Color histogram
- Texture
 - LBP
 - GLCM
 - Law's texture
- Shape
 - Harris corner
 - SIFT
 - HoG
- Deep Learning

- Similarity
 - Distance
 - Cosine similarity
- ML classifier
 - KNN
 - SVM
 - •
- Deep Learning