Queue Reconstruction by Height (View)

You are given an array of people, people, which are the attributes of some people in a queue (not necessarily in order). Each people [i] = $[h_i, k_i]$ represents the ith person of height h_i with **exactly** k_i other people in front who have a height greater than or equal to h_i .

Reconstruct and return the queue that is represented by the input array people. The returned queue should be formatted as an array queue, where $queue[j] = [h_j, k_j]$ is the attributes of the jth person in the queue queue[0] is the person at the front of the queue).

Example 1:

```
Input: people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
```

Output: [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]

Explanation:

Person 0 has height 5 with no other people taller or the same height in front.

Person 1 has height 7 with no other people taller or the same height in front.

Person 2 has height 5 with two persons taller or the same height in front, which is person 0 and 1.

Person 3 has height 6 with one person taller or the same height in front, which is person 1.

Person 4 has height 4 with four people taller or the same height in front, which are people 0, 1, 2, and 3.

Person 5 has height 7 with one person taller or the same height in front, which is person 1.

Hence [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] is the reconstructed queue.

Example 2:

```
Input: people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
```

Output: [[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]

Constraints:

- 1 <= people.length <= 2000
- $0 <= h_i <= 106$
- $0 \le k_i \le people.length$
- It is guaranteed that the queue can be reconstructed.