

Lecture 9 数据处理技术

- ■合并数据集
- ■数据转换

教学目标

• 了解数据处理技术的概念和特点

• 了解其基本原理、主要功能特点

• 让学生对数据处理技术有一个初步理解

数据处理技术

存放在文件或者数据库中的原始数据并不总能 满足数据分析应用的要求。

- 通常,原始数据中存在不符合规范的数据格式, 或者存在数据缺失的情况。
- 在这些情况下,必须对原始数据进行包括加载、 清理、转换和重塑等处理。

9.1 合并数据集

- 数据存储时,往往会按照数据的物理含义,将数据分别存储在不同的表中,以便于管理和操作。
- 在数据分析和数据建模时,往往需要将不同的数据表进行关联或合并,从而找出不同数据项之间的内在关联。

Pandas库

Pandas是python的一个数据分析包,是基于<u>NumPy</u>的一种数据分析工具,它包含大量库函数和一些标准的数据模型,提供了高效地操作大型数据集、快速便捷地处理数据的函数和方法。

Pandas网页: https://pandas.pydata.org/

Pandas源代码: https://github.com/pandas-dev/pandas

Pandas使用的数据结构

Series:一维数组,能保存不同数据类型如字符串、boolean值、数值等

DataFrame: 二维的表格型数据结构。可以将DataFrame理解为Series

的容器

Panel: 三维的数组,可以理解为DataFrame的容器

PanelND: 拥有factory集合,可以创建N维命名容器的模块

DataFrame是由一组数据和一对索引(行索引和列索引)组成的表格型数据结构,常用于表达二维数据,同时也可以表达多维数据,行列索引有自动索引和自定义索引。

Series数据, dataframe由多个Series数据组成

如果series索引跟datafarame索引相同,那么series的name值会被合理设置为dataframe的列名

df=pd.DataFrame(数据序列[, columns=序列, index=序列])

定义数据值

定义列名

定义索引。表面兄弟

もよけぬよず DataFrame数据结构

	Series 1			Series 2		Series 3		DataFrame					
_		Mango			Apple			Banana			Mango	Apple	Banana
	0	4		0	5		0	2		0	4	5	2
	1	5		1	4		1	3		1	5	4	3
	2	6	+	2	3	+	2	5	=	2	6	3	5
	3	3		3	0		3	2		3	3	0	2
	4	1		4	2		4	7		4	1	2	7

DataFrame 构造方法如下:

pandas. DataFrame (data, index, columns, dtype, copy)

参数:

data: 一组数据 (ndarray, series, map, lists, dict 等类型)

index:索引值,或者可以称为行标签

columns: 列标签, 默认为 RangeIndex (0, 1, 2, …, n)

dtype: 数据类型

copy: 拷贝数据, 默认为 False

实例 - 使用列表创建

```
import pandas as pd
```

```
data = [[ 'Google', 10], [ 'Runoob', 12], [ 'Wiki', 13]]

df = pd.DataFrame(data, columns=[ 'Site', 'Age'], dtype=float)

print(df)
```

输出结果如下:

```
Site Age
0 Google 10.0
1 Runoob 12.0
2 Wiki 13.0
```


实例 - 使用ndarrays创建

```
import pandas as pd
```

data = {'Site':['Google', 'Runoob', 'Wiki'], 'Age':[10, 12, 13]}

df = pd.DataFrame(data)

print (df)

输出结果如下:

```
Site Age
0 Google 10.0
1 Runoob 12.0
2 Wiki 13.0
```


9.1.1 索引上的合并

DataFrame的merge()函数

left: 拼接的左侧 DataFrame 对象

right: 拼接的右侧 DataFrame 对象

on: 要加入的列或索引级别名称。 必须在左侧和右侧 DataFrame 对象中找到。 如果未传递且 left_index 和 right_index 为 False,则 DataFrame 中的列的交集将被推断为连接键。

left_on: 左侧 DataFrame 中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于 DataFrame 长度的数组。一般用于当数据值相同但是列名不同的情况,需和right_on一起使用。

right_on: 左侧 DataFrame 中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于 DataFrame 长度的数组。

9.1.1 索引上的合并

pd.merge (left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)

left_index: 如果为 True,则使用左侧 DataFrame 的索引作为其连接键。

right_index:与 left_index 功能相似。

how: 'left', 'right', 'outer', 'inner'中四选一,默认 inner。inner 是取交集,outer 取并集,left是左连接,right是右连接。

sort: 按字典顺序通过连接键对结果 DataFrame 进行排序。 默认为 True, 设置为 False 将在很多情况下显着提高性能。

suffixes:用于重叠列的字符串后缀元组。默认为('x','y')。

copy: 始终从传递的 DataFrame 对象复制数据(默认为 True),即使不需要重建索引也是如此。

indicator: 将一列添加到名为_merge 的输出 DataFrame, 其中包含有关每行源的信息。

9.1.1 索引上的合并

在DataFrame中,两个或多个表的连接键有时会位于其索引中。在这种情况下,需要传入left_index
 True 或 right_index = True(两个都传)以说明索引应该被用作连接键。

4种版大学 索引上的合并

left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'], 'value':range(6)})
right1 = pd.DataFrame({'group_val':[3.5, 7]}, index=['a', 'b'])

	key	value
0	а	0
1	b	1
2	а	2
3	а	3
4	b	4
5	С	5

	group_val						
а	3.5						
b	7.0						

 pd.merge (left1, right1, left_on='key', right_index=True)

	key	value
0	а	0
1	b	1
2	а	2
3	а	3
4	b	4
5	С	5

	group_vai					
а	3.5					
b	7.0					

	key	value	group_val
0	а	0	3.5
2	а	2	3.5
3	а	3	3.5
1	b	1	7.0
4	b	4	7.0

- ·默认的merge方法是求取两张关联表的交集 部分(共有部分)。
- 如果需要求取关联表的并集部分(或有部分) 。 可通过外连接的方式得到它们的并集。

	key	value
0	а	0
1	b	1
2	а	2
3	а	3
4	b	4
5	С	5

	group_val
а	3.5
b	7.0

	key	value	group_val
0	а	0	3.5
2	а	2	3.5
3	а	3	3.5
1	b	1	7.0
4	b	4	7.0
5	С	5	NaN

一种比较复杂的情况,即某个表中的index是复合键进行索引的:

```
lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'key2': [2000, 2001, 2002, 2001, 2002], 'data': np.arange(5.)})
```

```
righth = pd.DataFrame(np.arange(12).reshape((6, 2)),
index=[['Nevada', 'Nevada', 'Ohio', 'Ohio', 'Ohio',
'Ohio'], [2001, 2000, 2000, 2000, 2001, 2002]],
columns=['event1', 'event2'])
```


● 两个表分别如下

lefth

	key1	key2	data
0	Ohio	2000	0.0
1	Ohio	2001	1.0
2	Ohio	2002	2.0
3	Nevada	2001	3.0
4	Nevada	2002	4.0

righth

		event1	event2
Nevada	2001	0	1
	2000	2	3
Ohio	2000	4	5
	2000	6	7
	2001	8	9
	2002	10	11

righth表中的index是由key1和key2两个键的复合键组成的,必须以列表的形式指明用作合并键的多个列(默认是交集):

pd. merge(lefth, righth, left_on=['key1',
 'key2'], right_index=True)

	key1	key2	data	event1	event2
0	Ohio	2000	0.0	4	5
0	Ohio	2000	0.0	6	7
1	Ohio	2001	1.0	8	9
2	Ohio	2002	2.0	10	11
3	Nevada	2001	3.0	0	1

4日科技大学 索引上的合并

pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True, how='outer') #明确是合集

	key1	key2	data	event1	event2
0	Ohio	2000	0.0	4.0	5.0
0	Ohio	2000	0.0	6.0	7.0
1	Ohio	2001	1.0	8.0	9.0
2	Ohio	2002	2.0	10.0	11.0
3	Nevada	2001	3.0	0.0	1.0
4	Nevada	2002	4.0	NaN	NaN
4	Nevada	2000	NaN	2.0	3.0

可以采用合并双方的索引,实现多个表之间的关联

```
left2 = pd. DataFrame([[1., 2.], [3., 4.],
        [5., 6.]], index=[ 'a', 'c', 'e'],
        columns=[ 'Ohio', 'Nevada'])

right2 = pd. DataFrame([[7., 8.], [9., 10.],
        [11., 12.], [13, 14]], index=['b', 'c',
        'd', 'e'], columns=['Missouri',
        'Alabama'])
```


left2

	Ohio	Nevada
а	1.0	2.0
С	3.0	4.0
е	5.0	6.0

right2

	Missouri	Alabama
b	7.0	8.0
С	9.0	10.0
d	11.0	12.0
е	13.0	14.0

pd.merge (left2, right2, how='outer', left_index=True, right_index=True)

Ohio	Nevada
1.0	2.0
3.0	4.0
5.0	6.0
	1.0

merge

	Missouri	Alabama
b	7.0	8.0
С	9.0	10.0
d	11.0	12.0
е	13.0	14.0

	Ohio	Nevada	Missouri	Alabama
а	1.0	2.0	NaN	NaN
b	NaN	NaN	7.0	8.0
С	3.0	4.0	9.0	10.0
d	NaN	NaN	11.0	12.0
е	5.0	6.0	13.0	14.0

DataFrame的join()函数

merge是基于columns来连接DataFrame, join函数是基于index连接DataFrame。

DataFrame.join (other, on=None, how='left', Isuffix=", rsuffix=", sort=False)

other: DataFrame,或者带有名字的Series,或者DataFrame的list。如果传递的是Series,那么其name属性应当是一个集合,并且该集合将会作为结果 DataFrame的列名

on: 列名称,或者列名称的list/tuple,或者类似形状的数组连接的列,默认使用索引连接

how: {'left', 'right', 'outer', 'inner'}, default:'left' 连接的方式,默认为左连接

Isuffix: string 左DataFrame中重复列的后缀

rsuffix: string 右DataFrame中重复列的后缀

sort: boolean, default=False 按照字典顺序对结果在连接键上排序。如果为 False,连接键的顺序取决于连接类型(关键字)。

left2

right2

	Ohio	Nevada
а	1.0	2.0
С	3.0	4.0
е	5.0	6.0

	Missouri	Alabama
b	7.0	8.0
С	9.0	10.0
d	11.0	12.0
е	13.0	14.0

join函数还可用于合并多个带有相同或相似索引的DataFrame对象,而不管它们之间有没有重叠的列。 left2.join(right2, how='outer')

	Ohio	Nevada
а	1.0	2.0
С	3.0	4.0
е	5.0	6.0

join

	Missouri	Alabama
b	7.0	8.0
С	9.0	10.0
d	11.0	12.0
е	13.0	14.0

	Ohio	Nevada	Missouri	Alabama
а	1.0	2.0	NaN	NaN
b	NaN	NaN	7.0	8.0
С	3.0	4.0	9.0	10.0
d	NaN	NaN	11.0	12.0
е	5.0	6.0	13.0	14.0

由于一些历史原因(早期版本pandas规定的), DataFrame 的join函数默认是通过连接键做左连接, 对多个表进行关联的

left1.join(right1, on='key')

	key	value
0	а	0
1	b	1
2	а	2
3	а	3
4	b	4
5	С	5

join

	group_var
а	3.5
b	7.0

aroun val

	key	value	group_val
0	а	0	3.5
1	b	1	7.0
2	а	2	3.5
3	a	3	3.5
4	b	4	7.0
5	С	5	NaN

轴向连接

Concat()连接函数

有行连接和列连接,默认是行连接,连接方法默认是外连接(并集), 连接的对象是pandas数据类型。

pd.concat (objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)

objs: series, dataframe或者是panel构成的序列Isit。

axis: 需要合并连接的轴, 0是行(默认), 1是列。

join: 连接的方式 inner (默认), 或者outer。

ignore_index: boolean, default False。如果为True, 请不要使用并置轴上的索引值。结果轴将被标记为0, ..., n-1。

join_axes: Index对象列表。用于其他n-1轴的特定索引,而不是执行内部/外部设置逻辑。

9.1.2 轴向连接

数据合并运算也被称作连接(concatenation)、 绑定(binding)或堆叠(stacking)。NumPy有一 个用于合并原始NumPy数组的concatenation函数 arr = np. arange(12). reshape((3, 4))

```
array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])
```


np.concatenate([arr, arr]) #默认 axis=0

```
array ([[ 0, 1, 2, 3],
      [4, 5, 6, 7],
      [8, 9, 10, 11],
      [0, 1, 2, 3],
      [4, 5, 6, 7],
      [8, 9, 10, 11]])
```


np.concatenate([arr, arr], axis=1)

```
array([ [ 0, 1, 2, 3, 0, 1, 2, 3],
      [4, 5, 6, 7, 4, 5, 6, 7],
      [8, 9, 10, 11, 8, 9, 10, 11]])
```

9.1.3 合并重叠数据

当两个数据集的索引全部或部分重叠时,它们的数据组合问题就不能用简单的合并(merge)或连接(concatenation)运算来处理

- a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan], index=['f', 'e', 'd', 'c', 'b', 'a'])
- b = pd.Series(np.arange(len(a), dtype=np.float64), index=['f', 'e', 'd', 'c', 'b', 'a'])

b[-1] = np.nan

合并重叠数据

```
f NaN
e 2.5
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
```

```
f 0.0
e 1.0
d 2.0
c 3.0
b 4.0
a NaN
dtype: float64
```

下面实现完全重叠的两个数据集的合并,当第 一个数据集非空时,取第一个数据集的值,否则取 第二个数据集的值

```
In [28]: np. where (pd. isnull(a), b, a)
```

Out[28]: array([0., 2.5, 2., 3.5, 4.5, nan])

9.2 数据转换

除了数据合并以外,数据处理工作还包括对数据进行转换。具体的工作包括对数据进行过滤、 清理以及其它的转换工作

在数据转换工作中,最常见的是移除重复数据的工作。通常来说,数据集中总会出现重复的数据行。

化分种板大学 9.2.1 移除重复数据

data = pd.DataFrame({'k1':['one'] * 3 + ['two'] * 4, 'k2':[1, 1, 2, 3, 3, 4, 4]})

	k1	k2
0	one	1
1	one	1
2	one	2
3	two	3
4	two	3
5	two	4
6	two	4

移除重复数据

上面的DataFrame中存在6个数据行,其中一部分是重复的。通常来说,我们可以通过duplicated方法返回一个布尔型Series,每行中的布尔值表示该行是否是重复的

data. duplicated()

0	False
1	True
2	False
3	False
4	True
5	False
6	True
dtyp	be: bool

4日科技大学 数据去重方法

第1、4、6行不是第一次出现的数据行,在后面的去重工作中可以考虑去除。如果想要直接去除数据中的重复行,可以考虑使用drop_duplicates方法,它用于返回一个移除了重复行的DataFrame。

とよけはよず 数据去重方法

上面的结果显示,重复的数据行的全部列都已 经被移除。在实际的数据处理案例中,可能只希望 根据某一列来过滤重复项:

data['v1'] = range(7)

	k1	k2	v1
0	one	1	0
1	one	1	1
2	one	2	2
3	two	3	3
4	two	3	4
5	two	4	5
6	two	4	6

data.drop_duplicates(['k1'])

	k1	k2	v1
0	one	1	0
3	two	3	3

上面的方法中,通过drop_duplicates(['k1'])可以将k1中的重复值去掉。此外,duplicated和drop_duplicates还可以通过多列的联合取值来筛选数据,并且通过keep= 'last'保留重复数据中的最后一个。

とよけはよず 数据去重方法

data.drop_duplicates(['k1', 'k2'], keep='last')

	k1	k2	v1
1	one	1	1
2	one	2	2
4	two	3	4
6	two	4	6

9.2.3 数据替换方法

利用fillna方法填充缺失数据可以看做值替换的一种特殊情况。在通常的值替换时,往往采用replace方法,它提供了一种实现替换功能的简单、灵活的方式。来看下面的Series:

data = pd.Series([1., -999, 2., -999, -1000., 3.])

```
0 1.0
1 -999.0
2 2.0
3 -999.0
4 -1000.0
5 3.0
dtype: float64
```


假设-999这个值是一个表示缺失数据的标记值。要将其替换为Pandas能够理解的NA值,可以利用replace来产生一个新的Series: data. replace(-999, np. nan)

0 1.0	0 1.0
1 -999.0	1 NaN
2 2.0	2 2.0
3 -999.0	3 NaN
4 -1000.0	4 -1000.0
5 3.0	5 3.0
dtype: float64	dtype: float64

当然,如果希望一次性替换多个值(例如-999和-1000替换为NaN),可以传入一个由待替换值组成的列表以及一个替换值:

data. replace ([-999, -1000], np. nan)

0 1.0	0 1.0
1 -999.0	1 NaN
2 2.0	2 2.0
3 -999.0	3 NaN
4 -1000.0	4 NaN
5 3.0	5 3.0
dtype: float64	dtype: float64

如果希望对不同的值进行不同的替换(例如-999替换为NaN,-1000替换为0),则传入一个由替换关系组成的列表即可:

data.replace([-999, -1000], [np. nan, 0])

0 1.0	0 1.0
1 -999.0	1 NaN
2 2.0	2 2.0
3 -999.0	3 NaN
4 -1000.0	4 0.0
5 3.0	5 3.0
dtype: float64	dtype: float64

9.2.6 检测异常值

- · 异常值(outlier)的过滤或变换运算在很大程度上其实就是数组运算。
- 我们首先来看一个含有正态分布数据的 DataFrame:

np.random.seed(12345)
data = pd.DataFrame(np.random.randn(1000, 4))
data.describe()

	0	1	2	3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	-0.067684	0.067924	0.025598	-0.002298
std	0.998035	0.992106	1.006835	0.996794
min	-3.428254	-3.548824	-3.184377	-3.745356
25%	-0.774890	-0.591841	-0.641675	-0.644144
50%	-0.116401	0.101143	0.002073	-0.013611
75%	0.616366	0.780282	0.680391	0.654328
max	3.366626	2.653656	3.260383	3.927528

下面要选出全部含有"超过3或-3的值"的行,可以利用布尔型DataFrame及any方法: data[(np. abs(data) > 3). any(1)]

	0	1	2	3
5	-0.539741	0.476985	3.248944	-1.021228
97	-0.774363	0.552936	0.106061	3.927528
102	-0.655054	-0.565230	3.176873	0.959533
305	-2.315555	0.457246	-0.025907	-3.399312
324	0.050188	1.951312	3.260383	0.963301
400	0.146326	0.508391	-0.196713	-3.745356
499	-0.293333	-0.242459	-3.056990	1.918403
523	-3.428254	-0.296336	-0.439938	-0.867165
586	0.275144	1.179227	-3.184377	1.369891
808	-0.362528	-3.548824	1.553205	-2.186301
900	3.366626	-2.372214	0.851010	1.332846

根据这些条件,我们可以轻松地对值进行设置。下面的代码将值限制在区间-3到3以内:

data[np. abs (data) > 3] = np. sign (data) * 3
data. describe()

	0	1	2	3
count	1000.000000	1000.000000	1000.000000	1000.000000
mean	-0.067623	0.068473	0.025153	-0.002081
std	0.995485	0.990253	1.003977	0.989736
min	-3.000000	-3.000000	-3.000000	-3.000000
25%	-0.774890	-0.591841	-0.641675	-0.644144
50%	-0.116401	0.101143	0.002073	-0.013611
75%	0.616366	0.780282	0.680391	0.654328
max	3.000000	2.653656	3.000000	3.000000

4·科技大学 9.2.7排列和随机采样

利用numpy. random. permutation函数可以实现对Series或DataFrame的排列工作。通过需要排列的轴的长度调用permutation,可产生一个表示新顺序的整数数组:

df = pd. DataFrame(np. arange(5 * 4). reshape(5, 4))

In: df
Out:

	0	1	2	3
0	0	1	2	3
1	4	5	6	7
2	8	9	10	11
3	12	13	14	15
4	16	17	18	19

sampler = np. random. permutation (5)

sampler 显示 array([1, 0, 2, 3, 4])

排列和随机采样

我们可以采用take函数操作来完成原数组行调换

df. take (sampler)

	0	1	2	3
1	4	5	6	7
0	0	1	2	3
2	8	9	10	11
3	12	13	14	15
4	16	17	18	19

排列和随机采样

如果不想用替换方式选取随机子集,则可以使用 permutation: 从permutation返回的数组中切下前k 个元素, k为期望的子集大小

df. take (np. random. permutation (len (df)) [:3])

	0	1	2	3
1	4	5	6	7
3	12	13	14	15
4	16	17	18	19