Universidad Rafael Landívar.

Facultad De Ingeniería.

Licenciatura En Ingeniería En Informática Y Sistemas.

Laboratorio de Pensamiento Computacional, Sección 19.

Docente: Inga. Cindy García.

PROYECTO 02 (INCISO A)

"SISTEMA DE GESTIÓN DE ESTACIONAMIENTO"

Estudiante: Cucul Tut, Erik Carlos Omar

Carné: 1292625

I. ACCIONES DEL PROGRAMA

El jugador debe elegir una de las siguientes acciones para intentar sobrevivir hasta llegar a su destino:

1. Ingresar un vehículo manualmente:

Se registra un vehículo con los datos obligatorios.

• Tipo: Moto, Carro estándar o SUV.

• Placa: 6 caracteres alfanuméricos en mayúsculas.

Marca: Texto libre.Color: Texto libre.

• Hora de entrada: Entero entre 5 y 17.

- Asignación de espacio:
 - Muestra matriz con:
 - Códigos para espacios libres del tipo requerido.
 - "X" para ocupados/tipos no compatibles
 - · Valida que el código ingresado exista y esté libre.
- 2. Ingresar un lote de vehículos:

Genera 5 vehículos con datos aleatorios

- Tipo: Moto, Carro estándar o SUV.
- Placa: 6 caracteres alfanuméricos en mayúsculas.
- Marca: Honda, Nissan, Hyundai, Toyota y Kia.
- Color: Rojo, Azul, Negro, Gris y Blanco.
- Hora de entrada: Entero entre 5 y 17.
 - Registro automático:
 - Para cada vehículo:
 - Busca el primer espacio libre del tipo generado.
 - Si existe:
 - Asigna el espacio.
 - o Registra placa y ubicación.
 - Si no: Omite el vehículo.
 - Muestra matriz con:
 - Códigos para espacios libres del tipo requerido.
 - "X" para ocupados/tipos no compatibles
- 3. Buscar un vehículo:

Busca por placa exacta.

- Devuelve:
 - Todos los datos del vehículo
 - Datos de la ubicación.
 - Hora de ingreso

4. Retirar un vehículo:

Requiere código de parqueo válido y ocupado

- Calcula:
 - Tiempo de estadía "aleatorio 1 a [24 horaEntrada]".
 - **Monto** "precioPorHora × tiempo":
 - · Procesa pago efectivo o tarjeta
 - · Libera el espacio y actualiza matriz
- 5. Mostrar estado general del parqueo:
 - Proporciona:
 - Conteo numérico por tipo.
 - Representación matricial con "X" para los espacios ocupados y códigos para los espacios libres.
- 6. Generar reporte de vehículos estacionados:
 - Filtra vehículos por:
 - Tipo: Moto, Carro estándar o SUV.
 - Rango horario de ingreso.
 - Lista:
 - Placas, marcas, ubicaciones.
 - Horas de entradas
- 7. Fin del programa:

El programa termina cuando esta condición:

- Opción 7:
 - Finaliza la ejecución del sistema.

II. DATOS DE ENTRADA

1. Menú principal:

Cada iteración del sistema solicita.

- (1) Ingresar vehículo manual.
- (2) Ingresar lote de vehículos.
- (3) Buscar vehículo.
- (4) Retirar vehículo.
- (5) Mostrar estado del parqueo.
- (6) Generar reporte.
- (7) Salir.
- Tipo de datos: Número entero (Int / Integer).

2. Configuración inicial:

Si el sistema está iniciando, se le pedirá al usuario que ingrese.

- · Cantidad de pisos del estacionamiento
- · Cantidad de espacios por piso.
- Precio por hora de estacionamiento.
- Cantidad de espacios para motos.
- Cantidad de espacios para SUV's.
- Tipo de datos: Número entero (Int / Integer).

3. Ingreso manual de Vehículo:

Si el usuario elige registrar un vehículo, se le pedirá:

- Tipo de vehículo.
- Placa del vehículo.
- Marca del vehículo.
- Color del vehículo.
- Código de estacionamiento.
- Tipo de datos: Cadena de caracteres (String).
 - Hora de entrada.
- Tipo de dato: Número entero (Int / Integer).

4. Retiro de Vehículo:

Si el usuario quiere retirar un vehículo, se le pedirá:

- Código de estacionamiento.
- Método de pago.
- Tipo de datos: Cadena de caracteres (String).
 - Monto entregado.
- Tipo de dato: Número decimal (Float).

5. Para buscar un vehículo:

Si el usuario necesita encontrar un vehículo, se le pedirá:

- Placa del vehículo.
- Tipo de dato: Cadena de caracteres (String).

6. Para generar reporte:

Si el usuario solicita un reporte, se le pedirá:

- Criterio de filtrado.
- Tipo de dato: Número entero (Int / Integer).

III. VARIABLES

- 1. Configuración del sistema:
 - Cantidad de pisos: Almacena el número total de pisos del estacionamiento.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: Sin asignar.
 - Espacios por piso: Guarda cuántos espacios de parqueo hay en cada piso.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: Sin asignar.
 - **Precio por hora**: Registra el costo por hora de estacionamiento.
 - Tipo de dato: Número decimal (Float).
 - · Valor inicial: Sin asignar.
 - Espacios para motos: Cantidad de lugares reservados para motos.
 - Tipo de dato: Número entero (Int / Integer).
 - · Valor inicial: Sin asignar.
 - Espacios para SUV: Cantidad de lugares para vehículos SUV.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: Sin asignar.
- 2. Gestión de Vehículos:
 - Lista de vehículos: Registro de todos los vehículos estacionados.
 - Tipo de dato: List<Vehículo> Lista de objetos.
 - · Valor inicial: Vacía.
 - Vehículo actual: Almacena temporalmente el vehículo en proceso.
 - Tipo de dato: Vehículo Objeto.
 - Valor inicial: Sin asignar.
- 3. Temporales de Operación:
 - Código de espacio: Identificador de ubicación.
 - Tipo de dato: Cadena de caracteres (String).
 - Valor inicial: Vacío.
 - Monto calculado: Total a pagar al retirar vehículo.
 - Tipo de dato: Número decimal (Float).
 - Valor inicial: 0.00.
 - Tiempo de estadía: Duración en horas.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: Sin calcular.

4. Control del sistema:

- Opción del menú: Acción seleccionada por usuario.
 - Tipo de dato: Número entero (Int / Integer).
 - Valor inicial: 0.
- **Generador aleatorio**: Para datos/tiempos aleatorios.
 - Tipo de dato: Random.
 - Valor inicial: Nueva instancia.

5. Estructuras de Datos:

- Vehículo: Almacena toda la información de un vehículo estacionado.
 - Tipo de dato: Clase personalizada (Vehículo).
 - Contiene:
 - Tipo (string).
 - · Placa (string).
 - Marca (string).
 - · Color (string).
 - · HoraEntrada (int).
 - CodigoParqueo (string).
- Estacionamiento: Representa cada espacio físico del parqueo.
 - Tipo de dato: Clase personalizada (Estacionamiento).
 - Contiene:
 - · Codigo (string).
 - · Tipo (string).
 - Disponible (bool).

6. Estados del sistema:

- Placa Válida: Verificación de formato.
 - Tipo de dato: bool.
 - Valor inicial: false.
- Espacio libre: Confirmación de disponibilidad.
 - Tipo de dato: bool.
 - Valor inicial: false.

- 7. Variables por evento o funcionalidad:
 - Color: Color del vehículo registrado.
 - Tipo de dato: String.
 - Valor inicial: Sin asignar.
 - CodigoParqueo: Código del espacio asignado al vehículo.
 - Tipo de dato: String
 - Valor inicial: Sin asignar.
 - Marcas Disponibles: Marcas posibles para generación aleatoria.
 - · Tipo de dato: Lista de String
 - •Contiene: ["Honda", "Nissan", "Hyundai", "Toyota", "Kia"]
 - Colores Disponibles: Colores posibles para vehículos generados.
 - Tipo de dato: Lista de String
 - Contiene: ["Rojo", "Azul", "Negro", "Gris", "Blanco"]
 - ListaLoteVehiculos: Almacena temporalmente el lote generado.
 - Tipo de dato: Lista
 - Contiene: Vacía.
 - ResultadoBusqueda: Almacena el vehículo encontrado por búsqueda.
 - Tipo de dato: Vehículo
 - Valor inicial: Vacía.
 - FiltroTipoVehiculo: Tipo de vehículo seleccionado para el reporte.
 - Tipo de dato: String
 - Valor inicial: Sin asignar.
 - RangoHoralnicio: Hora inicial para el filtro del reporte.
 - Tipo de dato: Entero.
 - Valor inicial: 0.
 - RangoHoraFin: Hora final para el filtro del reporte.
 - Tipo de dato: Entero
 - Valor inicial: 0

IV. CONDICIONES Y CALCULOS

- 1. Configuración inicial:
 - Pisos del estacionamiento:
 - Fórmula: pisos = valor_ingresado.
 - Espacios por piso:
 - Fórmula: espaciosPorPiso = valor_ingresado.
 - Precio por hora:
 - Fórmula: precioPorHora = valor_ingresado.
- 2. Validaciones de entradas:
 - Placa de vehículo:
 - Formula: longitud(placa) == 6 & solo_letras_numeros(placa).
 - Hora de entrada:
 - Formula: horaEntrada >= 5 & horaEntrada <= 17.
 - Asignación de espacio:
 - Formula: espacio.tipo == vehiculo.tipo & espacio.disponible == true.
- 3. Cálculos principales:
 - Tiempo de estadía:
 - Fórmula: tiempoEstadia = random.Next(1, 25 horaEntrada).
 - Monto a pagar:
 - Fórmula: montoTotal = tiempoEstadia * precioPorHora.
 - Cambio en efectivo:
 - Fórmula: cambio = montoEntregado montoTotal.
 - Desglose:
 - Billetes: Q100, Q50, Q20, Q10, Q5, Q1
 - Monedas: Q0.50, Q0.25, Q0.10, Q0.05, Q0.01
 - Validación clave:
 - Placa:
 - Formula: longitud = 6 caracteres, solo letras/números.
 - Espacios:
 - Formula: disponible = true & tipo coincide.
 - Pago:
 - Formula: montoEntregado ≥ montoTotal.

- 4. Gestión de espacios:
 - Ocupación:
 - Al ingresar:
 - Formula: espacio.disponible = false.
 - Al retirar:
 - Formula: espacio.disponible = true.
 - Verificación de capacidad:
 - Fórmula: espacios_disponibles(tipo) > 0.
- 5. Reportes:
 - Filtrado por hora:
 - Fórmula: horaEntrada >= hora_inicio & horaEntrada <= hora_fin.
 - Filtrado por tipo:
 - Fórmula: vehículo.tipo == tipo_seleccionado.
- 6. Condiciones de terminación:
 - Salida del sistema:
 - Fórmula: opcion_menu == 7.

V. ALGORITMO

Enlace:

https://drive.google.com/file/d/1r0xbmh4sArciPQDpSA3wgffvFHBjXoFa/view?usp=sharing

Diagrama de flujo, Parte A:

