Heap Priority Queue and Heapsort

CS 4231, Fall 2017

Mihalis Yannakakis

Priority Queue

- Max-Priority Queue: Data structure for a set S of items, each with a key (its "priority")
- Basic Operations:
 - Insert: insert item x (S := S $\bigcup \{x\}$)
 - Max: returns an item with maximum key
 - Extract-Max: returns and deletes a max-key item from S
- Other operations: Increase key, Delete
- Min-Priority Queue

Many Applications

- Scheduling jobs in computer systems
- Event-driven simulation: priority = event times
- Graph algorithms: shortest paths, min spanning tree ...
- Data compression: Huffman code
- Artificial intelligence: A* search

•

Sorting with a Priority Queue

Sorting A[1..n] with a Min-Priority Queue S

```
S = \emptyset

for i=1 to n do Insert(S,A[i])

for i=1 to n do A[i] = Extract-Min(S)
```

Sorting with a Max-Priority Queue

```
S = \emptyset

for i=1 to n do Insert(S,A[i])

for i=n down to 1 do A[i] = Extract-Max(S)
```

Simple Approaches

O(logn)

Would like

O(logn)

Heap

Binary tree, implemented via an array

Two properties:

- Shape property
- Order property

Shape property

Nearly complete binary tree:

All levels full, except possibly last level, which is filled partially from left

Shape property ⇒ Array representation

Order Property

- Max-Heap: key(i) ≤ key(parent(i))
- Hence, keys of ancestors at least as great
- Hence, maximum key at the root

Symmetrically:

- Min-Heap: key(i) ≥ key(parent(i))
- Hence, minimum key at the root

Restrict to max-heaps from now on; min-heaps symmetric

Insert

Add new leaf n+1 with new element

 If key(n+1) > key(parent(n+1)), then move new element up the tree exchanging with parent, till it satisfies the order property

Moving up the new key

Moving up the new key

Moving up the new key

- Order property still holds at all other nodes
- Complexity = O(logn)

Insert (A,x)

 Input: Array representation A of heap, new key x to be inserted

```
heap-size(A)=heap-size(A)+1
i=heap-size(A)
A[i]=x
while i >1 and A[i] > A[[i/2]]
{ exchange A[i] and A[[i/2]]
    i = [i/2]
}
```

Fixing a violation of the order property

- Suppose change the value of a key in a heap
- If increase key(i) then can fix the violation by moving key up exchanging with parent
- If decrease key(i) then can fix the violation by moving key(i) down the tree, exchanging with the child with maximum key: HEAPIFY(A,i)

HEAPIFY(A,i)

- Fixes a possible violation of order property between node i and a child
- If key(i) < key(child(i)), then move key(i) down the tree exchanging with child with maximum key

Complexity O(height(i))

HEAPIFY(A,i): Moving down a key

HEAPIFY(A,i): Moving down a key

- For every other node j≠i, if it satisfied the order property key(j)≤key(parent(j)) before, then it still satisfies it.
- Complexity O(height(i))

Extract-Max

- Max key at root = 18
- Delete last leaf to satisfy shape property, place its key at root

Extract-Max

- All nodes satisfy the order property except the root
- HEAPIFY(A,1) will restore the order property of heap at all nodes
- Complexity: O(logn)

Building a heap initially

BUILD-HEAP(A)

- Input: Array A[1..n]
- Output: Heap A[1..n] with same elements
 for i = [n/2] down to 1 do HEAPIFY(A,i)

Correctness of Build-Heap

 By induction: After HEAPIFY(A,i) the subtree rooted at i is a heap

Complexity of Build-Heap: O(n)

$$Time = O(\sum_{i=1}^{n} height(i))$$

height 1: 2^{h-1} nodes

height 2: 2^{h-2} nodes

Tree height h = # levels-1= $\lceil \log(n+1) \rceil - 1$

- - - -

height h: 1 node (the root)

Time
$$\simeq 1 \cdot 2^{h-1} + 2 \cdot 2^{h-2} + 3 \cdot 2^{h-3} \cdot \dots + h \cdot 2^0$$

= $\sum_{j=1}^h j \cdot 2^{h-j} = 2^h \sum_{j=1}^h \frac{j}{2^j} \le 2^h \sum_{j=1}^\infty \frac{j}{2^j} = 2^{h+1} = O(n)$

Heapsort

```
HEAPSORT(A)
Input: Array A[1..n]

    Output: Sorted array A[1..n]

  BUILD-HEAP(A)
  for i = n down to 2
   { exchange A[1] and A[i]
                                Extract-Max
     heap-size(A) = i-1
     HEAPIFY(A,1)
```


Progress of Heapsort

Time Complexity: $\Theta(n \log n)$

Top k (k largest) elements

- Compute k largest elements in sorted order in time O(n+klogn)
- Run phase 2 of Heapsort only for k passes

- Find k largest in online stream of n elements, where n>k using space O(k) in O(nlogk) time
- Keep k largest elements seen so far in a min-heap
- If |heap|=k, compare a new element with the min and if new > min, then extract-min and insert(new)
 - otherwise (if < k elements so far), insert(new)

Other Operations

- Delete an element
- Change (Increase/Decrease) a key

O(logn) per operation

- Join (=Merge, Union)
- Heaps do not support fast join
- Other priority queues can see chapter 19