Overview of this lecture

- Introduction to knowledge engineering
- Knowledge-based systems
- Different types of Knowledge representation

INTRODUCTION TO KNOWLEDGE ENGINEERING

Software development: conventional systems and KBS

Standard model of the software development life cycle. It is likely to be something like this:

- → Feasibility study
 - → Analysis
 - → Requirements definition
 - → Design
 - → Implementation
 - → Testing
 - → Maintenance & review

The software engineering process: waterfall model

Knowledge Engineering

- An engineering discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring a high level of human expertise (Feigenbaum and Pamela, 1983)
- It normally involves five distinct steps in transferring human knowledge into some form of knowledge based systems (KBS)

The knowledge engineering process: general methodology

Identify the task

Assemble the relevant knowledge

Decide on a vocabulary of predicates, functions and constants

Encode general knowledge about the domain

Encode a description of the specific problem instance

Pose queries to the inference procedure and get answers

Debug the knowledge base

Figure 11.1 Process of Knowledge Engineering

Knowledge Engineering Process

- Acquisition of knowledge
 - General knowledge or metaknowledge
 - From experts, books, documents, sensors, files
- Knowledge representation
 - Organized knowledge
- Knowledge validation and verification
- Inferences
 - Software designed to pass statistical sample data to generalizations
- Explanation and justification capabilities

Terminology

- ❖ Domain
 - some area of interest
 - banking, food industry, photocopiers, car manufacturing
- **∜**Task
 - something that needs to be done by an agent
 - monitor a process; create a plan; analyze deviant behavior
- **❖**Agent
 - the executor of a task in a domain
 - typically either a human or some software system

Terminology

> Application

➤ The context provided by the combination of a task and a domain in which this task is carried out by agents

Application domain

The particular area of interest involved in an application

knowledge system (KS)

> system that solves a real-life problem using knowledge about the application domain and the application task

KBS Stockholders

- ☐ Domain expert
 - The individual or group whose expertise and knowledge is captured for use in an expert system
- ☐ Knowledge user
 - The individual or group who uses and benefits from the expert system
- ☐ Knowledge engineer
 - Someone trained or experienced in the design, development, implementation, and maintenance of an expert system

Knowledge engineering

- Knowledge engineering is a process for developing special-purpose knowledge bases:
 - whose domain is carefully defined
- A knowledge engineer is someone who:
 - Investigates a particular domain
 - Learns what concepts are important in that domain
 - Creates a formal representation of the objects and relations in the domain

Knowledge Engineering

Participants in Expert Systems Development and Use

- ☐ Domain expert
 - The individual or group whose expertise and knowledge is captured for use in an expert system
- ☐ Knowledge user
 - The individual or group who uses and benefits from the expert system
- ☐ Knowledge engineer
 - Someone trained or experienced in the design, development, implementation, and maintenance of an expert system

What is Knowledge

- The facts, feelings, or experiences known by a person or group of people.
- Knowledge includes:
 - facts, concepts, procedures, models, heuristics, examples.
- Knowledge may be:
 - specific or general
 - exact or fuzzy
 - procedural or declarative

Data, Information, and Knowledge

- <u>Data</u>: Unorganized and unprocessed facts; static; a set of discrete facts about events
- Information: Aggregation of data that makes decision making easier
- Knowledge is derived from information in the same way information is derived from data; it is a person's range of information

Knowledge Pyramid

Knowledge Pyramid

Knowledge - assigns a purpose and/or action to information

Integration and Usage

Information - interpreted data "within a context set by a priori knowledge and the current environment"

Interpretation in Context

Data - raw digital material or the "artifacts which exist as a vehicle for conveying information"

Noise

Data Pyramid and Computer Based Systems

Convergence from data to intelligence

Quiz

- Data/information/knowledge
- A.A second language in which you are fluent.
- B. The content of a television news program.
- C.A close friend.
- D.Name of Al instructor
- E.A company's annual report.
- F. The weather on the other side of the world

Knowledge & KBS

- What is knowledge?
 - Knowledge is the sort of information that people use to solve problems.

- What is a knowledge-based system?
 - A system which is built around a knowledge base. i.e. a collection of knowledge, taken from a human, and stored in such a way that the system can *reason* with it.

KBS is ...

- Software system, which represents (explicit, declarative description of knowledge) and uses this knowledge to accomplish a task within the context of a certain application
- Behaves intelligent
- Automation and reuse of knowledge

Knowledge-based Systems: A definition

- A system that draws upon the knowledge of human experts captured in a knowledge-base to solve problems that normally require human expertise.
 - Heuristic rather than algorithmic
 - Specific domain knowledge
- Knowledge is separated from how it is used KBS = knowledge-base + inference engine

KBS Applications

- Medicine
 - diagnosis & solution
 - discovery & analysis
- Geology
 - analysis of data
- Justice
- Scheduling tasks
- Education and Training
- Decision Support Systems
 - less emphasis on autonomy

Main types of KBS:

- Expert systems
- Neural networks.
- Case-based reasoning.
- Genetic algorithms
- Intelligent agents
- Data mining
- Intelligent Tutoring systems.

Taxonomies of Knowledge

Five Types of Knowledge

- Declarative knowledge

 Know-about
- Procedural knowledge

 Know-how
- Causal knowledge

 Know-why
- Conditional knowledge

 Know-when
- Relational knowledge

 Know-with

Meta-knowledgeKnowledge about knowledge

Explicit Knowledge

- Formal and systematic:
 - easily communicated & shared in product specifications, scientific formula or as computer programs;
- Management of explicit knowledge:
 - management of processes and information
- Are the activities to the right information or knowledge dependent?

Tacit Knowledge Examples

- Highly personal:
 - □ hard to formalise;
 - difficult (but not impossible)to articulate;
 - □ often in the form of *know* how.
- Management of tacit knowledge is the management of people:
 - how do you extract and disseminate tacit knowledge.

Learning

- Learning by experience:
- a function of time and talent
- Learning by example:
- more efficient than learning by experience (case-based reasoning)
- Learning by sharing (education).
- <u>Learning by discovery</u>: explore a problem area.

Problems in knowledge engineering

- Complex information and knowledge is difficult to observe
- Experts and other sources differ
- Multiple representations:
 - >textbooks
 - > graphical representations
 - > heuristics
 - >skills