Let's Recall,

We were predicting the price of sold cars for CARS24.

We already know about Sklearn's linear regression.

Introduction to Statsmodel

What is statsmodel?

A python module with statistical functionalities.

Stats model Library

OLS (Ordinary Least Squares)

 OLR refers to a method of estimating the parameters of a linear regression by minimizing the sum of square residuals.

How is OLS different from sklearn's Linear Regression?

OLS

 Focuses solely on estimating the parameters of a linear regression model

Sklearn

- Offers additional features and functionalities like :
 - Feature scaling
 - Regularization
 - Cross validation
 - Evaluation metrics

Assumptions of Linear Regression

Assumption of Linearity

No Multicollinearity

Normality of Residuals

No Heteroskedasticity

No Autocorrelation

Assumptions of Linearity

Assumption of linearity

There should be linear relationship between:

- Independent Variables {X}
- Dependent Variables {y}

Straight line fit between variables

No Multicollinearity

What is collinearity?

Say we have two features: f₁ and f₂

If,
$$\left[f_1 = \alpha f_2 + \Box \right]$$

Then f₁ and f₂ are collinear

Collinearity between multiple features

Example: $\overline{f_i} = f_1, f_2, f_3$

S.T.
$$f_1 = \alpha_1 + \alpha_2 f_2 + \alpha_3 f_3$$

Then f_1 , f_2 , f_3 are multicollinear

Why multicollinearity is a problem?

Say we found the optimal weights w* for a model with 3 features

$$w^*=[1,2,3]$$
 (corresponding to w_1 , w_2 , w_3) and $w_0 = 5$

So,
$$\hat{Y} = W_1 x_1 + W_2 x_2 + W_3 x_3 + W_0$$

= $x_1 + 2x_2 + 3x_3 + 5$

Now, let's say x_1 and x_2 are collinear.

Then,
$$x_2 = 1.5x_1$$

Hence,
$$\hat{Y} = 4x_1 + 3x_3 + 5$$

$$\begin{cases} \therefore w^* = \langle 4, 0, 3 \rangle \\ \therefore w^* = \langle 1, 2, 3 \rangle \end{cases}$$
 Same classifier

$$w^* = < 1, 2, 3 >$$

How to deal with multicollinearity?

We will use Variance Inflation Factor (VIF)

Say, we have 'd' features $\langle f_1, f_2, f_3, \dots, f_d \rangle$

one feature as 'y'

remaining features as 'x'

Now,

Train linear regression model with (x_i, y)

Find R² of the model

To Calculate VIF:

$$VIF = rac{1}{1-{R_j}^2}, {R_j}^2 \,$$
 : R 2 for j $^{ ext{th}}$ feature

Step 1: Start with a full regression model including all the independent variables.

Step 2: Calculate VIF for each independent variable by regressing it against all other

independent variables.

Step 3: Check for variable with highest VIF, [Thumb rule on next slide]

Step 4: Remove variable with highest VIF.

Step 5: Re-fit the model without the removed variable.

Repeat steps 2 - 5: Continue this until no variable has VIF above threshold.

Case 1

If
$$R^2 \approx 1$$

$$VIF = 1/1-1 = \infty$$

High R² means

Feature is highly collinear

Can be removed

Thumb Rule

- VIF > 10: Very high multicollinearity, drop
- 5<=VIF<=10: High multicollinearity
- VIF<5: Low multicollinearity

Case 2

If
$$R^2 \approx 0$$

$$VIF = 1-1/0 = 1$$

Low R² means

Feature is not collinear

Don't remove

**NOTE: We do this process for each feature.

Calculate the VIF and based on that we keep remove feature

Normality of Residuals

Residuals/ Errors follow multivariate normal distribution.

Every linear model has some error.

$$y^i = w_o + w_x^{t(i)} + \varepsilon$$

$$: \varepsilon^{(i)} = y^{(i)} - \hat{y}^{(i)}$$

Plotting 'ε'

ε is large, outliers are present.

What is the impact of outliers?

If we have outliers,

• The regression line gets pulled towards the outlier to minimize the squared loss.

Q: How to identify outliers?

A: Outliers will have high error (ε) .

Q: How to deal with outliers?

A: Remove the points will high error as many as you want and fit the model again.

No Heteroskedasticity

When we plot the two features along with the regression line, notice

As we go from left to right errors are increasing.

How to check Heteroskedasticity?

By plotting,

In maths/stats proof of linear regression, we assume the errors are normally distributed

ε⁽ⁱ⁾ 1

Spread of $\varepsilon^{(i)}$ is not same for all values of $y^{(i)}$, this is known as Heteroskedasticity.

What does it tells us?

Outliers in data

Linear model isn't right

No Autocorrelation

Autocorrelation plays a role only when "Time Series" data is involved

When we plot the error w.r.t. time, if some pattern is observed then autocorrelation exists.