1. Consider the following training set, in which each example has two tertiary attributes (0, 1, or 2) and one of two possible classes (*X* or *Y* ).

| Example | A <sub>1</sub> | $A_2$ | Class |
|---------|----------------|-------|-------|
| 1       | 0              | 1     | X     |
| 2       | 2              | 1     | X     |
| 3       | 1              | 1     | X     |
| 4       | 0              | 2     | X     |
| 5       | 1              | 2     | Y     |
| 6       | 2              | 0     | Y     |

- 1) What feature would be chosen for the split at the root of a decision tree using the information gain criterion? Show the details. (Note: we split attributes at each value of the attributes, for example,  $A_1=0, A_1=1, A_1=2$ )
- 2) What would the Naïve Bayes algorithm predict for the class of the following new example? Show the details of the solution.

| Example | $A_1$ | $A_2$ | Class |
|---------|-------|-------|-------|
| 7       | 2     | 2     | ?     |

3) Draw the decision boundaries for the nearest neighbor algorithm assuming that we are using standard Euclidean distance to compute the nearest neighbors.



- 4) Which of these classifiers will be the least likely to classify the following data points correctly? Please explain the reason.
  - a. ID3.
  - b. Naïve Bayes
  - c. Logistic Regression
  - d. KNN
- 2. You have trained a logistic classifier y=sigmoid( $w_0+w_1x_1+w_2x_2$ ). Suppose  $w_0$ =6,  $w_1$ =-1, and  $w_2$ =0. Which of the following figures represents the decision boundary found by your classifier?



3. Suppose we are given a dataset  $D = \{(x^{(1)}, r^{(1)}), ..., (x^{(N)}, r^{(N)})\}$  and aim to learn some patterns using the following algorithms. Match the update rule for each algorithm.

## **Algorithms:**

## **A:** SGD for Logistic Regression $y = \text{sigmoid } (w^T x)$

**B:** Least Mean Squares for Linear Regression

$$y = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

C: Perceptron

4

5

0

1

2

2

X

Y Y

$$y = \text{sign}(\mathbf{w}^{T}x)$$

(where sign(a)=1 if a>0 else -1)

## **Update Rules:**

1. 
$$\mathbf{w}_{t} \leftarrow \mathbf{w}_{t} + (\mathbf{w}_{t}^{T} \mathbf{x}^{(l)} - r^{(l)})$$

2. 
$$w_t \leftarrow w_t + \frac{1}{1 + \exp \eta(y^{(l)} - r^{(l)})}$$

3. 
$$\mathbf{w}_{t} \leftarrow \mathbf{w}_{t} + \eta (y^{(l)} - r^{(l)}) x_{i}^{(l)}$$



Gainl 17, A1) = 1093-31012-31092 = 1093-31092 Gainl D. Az) = 1093-3/092-1092-1092 Therefore, we should split based on Az.

$$P(X | A_{1}=2, A_{2}=2) = \frac{P(A_{1}=2, A_{2}=2| \times) P(X)}{P(A_{1}=2, A_{2}=2)}$$

$$P(X | A_{1}=2, A_{2}=2) = \frac{P(A_{1}=2, A_{2}=2| \times) P(X)}{P(A_{1}=2, A_{2}=2| \times)}$$

$$P(A_{i=1}|X) P(A_{i=1}|X) P(X) = \frac{1}{9}, \frac{1}{9}, \frac{2}{3} = \frac{1}{24}$$

$$P(A_{i=1}|Y) P(A_{i=2}|Y) P(Y) = \frac{1}{2}, \frac{1}{2}, \frac{1}{3} = \frac{1}{12}$$

Therefore, example 7 is Y based on Naive Bayes.



(4): Logistic Regression will be least likely to classify the points. Because the data connot be classified by a linear classifier.

=74205

109((17),05

2. 
$$y = sigmoid(6 - x_1 + 0.x_2) = 1 + exp[-(6-x_1)]$$

Decision  $\log \frac{y}{1-y} = 6 - x_1$   $x = (6-x_1)$ 

boundary is  $\log \frac{y}{1-y} = (6-x_1)$ 
 $\log \frac{y}{1-y} = (6-x_1)$ 

]. M = Sigmod(wix) update rales;  $w_k \leftarrow w_k - \eta_1 r^{\prime\prime} \gamma_1 r^{\prime\prime} r$ 

 $W \in W + \eta r^{(l)} \chi^{(l)}$