Раздел 2

Алгебраические структуры

Лекция 4-5 Группы

- 1. Алгебраические операции. Понятие алгебры.
- 2. Полугруппа. Моноид. Группа.
- 3. Теоремы о свойствах группы.

Литература

- 1. Белоусов А.И. Дискретная математика. М., 2002.
- 2. Бухштаб А.А. Теория чисел: учебное пособие. СПб., 2015.
- 3. Нестеренко Ю.В. Теория чисел. М., 2008.

В широком смысле алгебра – раздел математики, изучающий операции над элементами множеств произвольной природы.

Алгебраические структуры определяются множеством элементов и конечным набором заданных на этом множестве алгебраических операций.

Алгебраические операции. Понятие алгебры

 $X \neq \emptyset$, $n \in \mathbb{N}$.

Определение 1

Любое отображение

$$f: X^n \to X$$

называется n-арной (n-местной) алгебраической операцией на X.

Операция f называется:

- при n=0 нульарной (это произвольный фиксированный элемент множества X);
- при n=1 унарной;
- при n=2 бинарной.

Обозначение:
$$y = f(x_1, x_2, ..., x_n)$$

 $x_1, x_2, ..., x_n$ — аргументы операции f , $y \in X$ — результат применения операции f к аргументам.

ITMO University

Пусть на множестве X заданы несколько операций:

$$f_k: X^{n_k} \to X,$$

где $\kappa = 1, 2, ..., m$,

 n_k - натуральное число, зависящее от κ .

Множество X с такой структурой называется алгеброй.

Обозначение:
$$A = \langle X, f_1, f_2, \dots f_m \rangle$$
.

Множество X называется носителем алгебры;

множество операций $f_1, f_2, ..., f_m$ – сигнатурой алгебры.

Алгебра называется конечной, если X – конечное множество.

Множество $M \subseteq X$ называется системой образующих (порождающих) или базисом алгебры A, если любой элемент X можно получить из элементов M при помощи операций алгебры A.

Пусть $A = \langle X, * \rangle$, * – бинарная операция.

Определение 4

Операция * называется:

• ассоциативной, если

$$\forall x, y, z \in X \ (x * y) * z = x * (y * z);$$

• коммутативной, если

$$\forall x, y \in X \ x * y = y * x;$$

• идемпотентной, если

$$\forall x \in X \ x * x = x.$$

Ассоциативность операции * позволяет для любых элементов $x_1, x_2, ..., x_n \in X$ однозначно понимать результат выражения $x_1 * x_2 * ... * x_n$:

$$x_1 * x_2 * \dots * x_n = x_1 * (x_2 * \dots * x_n) =$$

$$= (x_1 * x_2) * (x_3 * \dots * x_n) = \dots =$$

$$= (x_1 * x_2 * \dots * x_{n-1}) * x_n$$

Элемент $e \in X$ называется нейтральным по операции *, если

$$\forall x \in X \ x * e = e * x = x.$$

Теорема 1

Если нейтральный элемент по операции * существует, то он единственный.

Если нейтральный элемент существует, то его можно задать как нульарную операцию и включить в сигнатуру.

$$X = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$$
 где $a,b \in \mathbb{R}$

$$A = \langle X, \cdot \rangle$$

Любая матрица
$$\begin{pmatrix} 1 & 0 \\ d & 0 \end{pmatrix}$$
 где $d \in \mathbf{R}$ –

правый нейтральный элемент:

$$\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ d & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix};$$

левый нейтральный элемент?

< X, *, e> – алгебра, причем существует нейтральный элемент относительно * ; $x \in X$.

Определение 6

Элемент $y \in X$ называется обратным к элементу x по операции *, если

$$x * y = y * x = e$$
.

Элемент x, для которого существует обратный элемент, называется обратимым.

Для *ассоциативной бинарной операции* * существует две формы записи:

1) аддитивная запись:

$$x * x * \dots * x = x + x + \dots + x = nx$$

здесь нейтральный элемент называют *нулем* и обозначают символом **0**, т.е.

$$x + 0 = 0 + x = x$$
;

обратный элемент к x называют противоположным и обозначают —x, т.е.

$$x + (-x) = (-x) + x = 0;$$

операция + называется *сложением алгебры*;

2) мультипликативная запись.

$$x * x * \dots * x = x \cdot x \cdot \dots \cdot x = x^n$$

здесь нейтральный элемент называют единицей и обозначают символом 1, т.е.

$$x \cdot \mathbf{1} = \mathbf{1} \cdot x = x$$

обратный элемент к x обозначают x^{-1} , т.е.

$$x \cdot x^{-1} = x^{-1} \cdot x = 1$$

ITMO University

операция · называется умножением алгебры. Пусть < X, *, ... >, $< Y, \circ, ... >$

- две алгебры с одинаковым числом соответствующих n-арных алгебраических операций.

Отображение $f: X \to Y$ называется изоморфизмом алгебр, если:

- *f* биективно: все операции первой алгебры поставлены в биективное соответствие всем операциям второй алгебры,
- при этом для соответствующих операций выполняется

$$f(x*y) = f(x) \circ f(y),$$

где $x,y \in X$; $f(x), f(y) \in Y.$

$$f: \mathbf{R} \to \mathbf{R}^+$$
, где $\mathbf{R}^+ = \{x \in \mathbf{R}: x > 0\}$ $f(x) = 10^x$, $x \in \mathbf{R}$ $f(x+y) = 10^{x+y} = 10^x \cdot 10^y$

f – биекция:

бинарной операции (+) поставлена в биективное соответствие бинарная операция (·)

• $f(x+y) = f(x) \cdot f(y)$

Вывод: f – изоморфизм алгебры $< {\it R}$,+ > на алгебру $< {\it R}^+$, $\cdot >$

2. Полугруппа. Моноид. Группа

< X, * > - алгебра.

Определение 8

Алгебра, сигнатура которой состоит из одной *ассоциативной* бинарной операции называется полугруппой.

Если заданная бинарная операция коммутативна, то полугруппа называется коммутативной (абелевой).

Полугруппу, операция которой

- коммутативна,
- идемпотентна называют полурешеткой.

Нильс Хенрик Абель 1802 - 1829

© I.Krivtsova ITMO University

Полугруппа с нейтральным элементом называется моноидом или полугруппой с единицей.

Алгебра называется группой, если она моноид, в котором каждый элемент обратим.

Обозначение: $G = \langle X, * \rangle$

Порядком конечной группы называется число элементов этой группы.

Если алгебра $G_1 = \langle X, * \rangle -$ группа, $Y \subseteq X$ и алгебра $G_2 = \langle Y, * \rangle -$ группа с той же операцией, что и в G_1 , то G_2 называется подгруппой группы G_1 .

3. Теоремы о свойствах группы

$$G = \langle X, * \rangle$$
 – группа.

Теорема 2

В любой группе $\forall x \in X$ элемент, обратный к x, единственный.

Аксиомы группы:

- (1) * ассоциативная бинарная операция
- (2) ∃! *нейтральный* элемент по операции *
- (3) $\forall x \in X \exists !$ обратный элемент по операции *

Теорема 3

Пусть $G = \langle X, \cdot, 1 \rangle$ – группа. $\forall x, y \in X$ верны тождества:

$$(x \cdot y)^{-l} = y^{-l} \cdot x^{-l},$$

 $(x^{-l})^{-l} = x.$

 $G = \langle X, \cdot, 1 \rangle$ – группа, $a, b \in X$ – фиксированные элементы X.

Теорема 4

В любой группе справедливы:

1) левый закон сокращения:

$$a \cdot x = a \cdot y \implies x = y$$

2) правый закон сокращения:

$$x \cdot a = y \cdot a \Rightarrow x = y$$

Рассмотрим уравнения:

$$a \cdot x = b \tag{1}$$

$$x \cdot a = b \tag{2}$$

Теорема 5

В любой группе каждое из уравнений (1), (2) имеет решение, и притом единственное:

$$x = a^{-1} \cdot b$$
$$x = b \cdot a^{-1}$$

В мультипликативной форме записи коммутативной группы решение обоих уравнений (1), (2):

$$x = b \cdot a^{-1}$$
.

Выражение вида $b \cdot a^{-1}$ называется частным от деления b на a и обозначается $\frac{b}{a}$; сама операция – операцией деления.

Решение уравнений записывают в виде: $_{x}$ _ $_{b}$

© I.Krivtsova ITMO University

В аддитивной форме записи коммутативной группы $G = \langle X, +, \mathbf{0} \rangle$ оба уравнения (1), (2) имеют вид:

$$a + x = b, (3)$$

которое имеет единственное решение

$$x = b + (-a),$$

где правая часть называется *разностью* элементов b и a и обозначается b-a.

Решение уравнения (3) записывают в виде:

$$x = b - a$$
.

