ALTERNATE SCHEMA DIAGRAMMING METHODS DECISION SUPPORT SYSTEMS

CS121: Introduction to Relational Database Systems Fall 2014 – Lecture 23

E-R Diagramming

- E-R diagramming techniques used in book are similar to ones used in industry
 - Still, plenty of variation on how schemas are diagrammed
- Some books use a different diagramming technique
 - Attributes are represented as ovals attached to entity-set
 - Much harder to lay out!
 - Takes up a lot of room

These methods don't include types or other constraints

Unified Modeling Language

- A standardized set of diagrams for specifying software systems
- Focuses on three major areas:
 - Functional requirements:
 - What is the system supposed to do?
 - Who may interact with the system, and what can they do?
 - Static structure:
 - What subsystems comprise the system?
 - What classes are needed, and what do they do?
 - Dynamic behavior:
 - What steps are taken to perform a given operation?
 - What is the flow of control through a system, and where are the decision points?

UML Class Diagrams

- UML class diagrams are typically used to diagram database schemas
 - Classes are similar to schemas
 - Objects are similar to tuples
- Two kinds of class diagrams for data modeling:
 - Logical data models (which are also called "E-R diagrams")
 - Conceptual schema specification
 - Diagramming entity-sets and relationships, along the lines of the traditional E-R model, but not exactly like it
 - Physical data models
 - Implementation schema specification
 - Diagramming tables and foreign-key references
 - From a SQL perspective, is actually logical and view levels

UML Data Modeling

- Entity-sets and tables are represented as boxes
 - First line is entity-set name
 - Subsequent lines are attributes
 - First group of attributes usually the entity-set's primary key
 - Bolded, or marked with a *, +, or #
- Table diagrams often
 also include type details

location			
latitude			
longitude			
description			
last_visited			

location						
latitude	NUMERIC(8, 5)					
longitude	NUMERIC(8, 5)					
description	VARCHAR(1000)					
last_visited	TIMESTAMP					

UML Relationships

- Relationships are represented with a simple line
 - No diamond for the relationship
 - Relationship's name or role can be specified on line
- When modeling entity-sets (logical data model):
 - Don't include foreign-key columns
 - Foreign-key columns are implied by the relationship itself
- When modeling tables (physical data model):
 - Related tables actually include the foreign-key columns
 - Some relationships are modeled as separate tables
 - e.g. many-to-many relationships require a separate table

UML Relationship Examples

Logical data model:

- Physical data model:
 - (would normally include type information too)

Annotating Keys

- Sometimes keys are indicated with two-character annotations
 - PK = primary key
 - FK = foreign key
- Candidate keys are specified with:
 - AK = alternate key
 - SK = surrogate key
 - (No difference between the two terms...)

customer	borrower		loan	
PK cust_id cust_name street city	PK, FK1 PK, FK2		PK	loan_id branch_name amount

Mapping Cardinalities

- Can specify numeric mapping constraints on relationships, just as in E-R diagrams
 - Can specify a single number for an exact quantity
 - lower..upper for lower and upper bounds
 - Use * for "many"

- Example:
 - Each customer is associated with zero or more loans
 - Each loan is associated with one or more customers

Information Engineering Notation

- Can also use Information Engineering Notation to indicate mapping cardinalities
 - Also called "crow's foot notation"
- Symbols:
 - Circle means "zero"
 - □ Line means "one"
 - Crow's foot means "many"
- Can combine symbols together
 - circle + line = "zero or one"
 - □ line + line = "exactly one"
 - line + crow's foot = "one or more"

Barker's Notation

- A variant of Information Engineering Notation
- Symbols:
 - A solid line means "exactly one"
 - A dotted line means "zero or one"
 - Crow's foot + solid line means "one or more"
 - Crow's foot + dotted line means "zero or more"
- □ IE Notation:

Barker's Notation:

Examples

□ Information Engineering notation:

■ Barker's notation:

Generalization and Specialization

- Can represent generalization in UML class diagrams
 - Open arrow, pointing from child to parent
- Can specify "disjoint" for disjoint specialization

UML Diagramming Summary

- Very good idea to learn UML diagramming!
 - Used extensively in the software industry
 - You can create visual diagrams of software, and other people will actually understand you! ©
- Significant variation in details of how <u>data models</u> are diagrammed
 - Data modeling is still not yet a standard part of UML specification
 - Good to be familiar with all major techniques

OLTP and **OLAP** Databases

- OLTP: Online Transaction Processing
 - Focused on many short transactions, involving a small number of details
 - Database schemas are normalized to minimize redundancy
 - Most database applications are OLTP systems
- OLAP: Online Analytic Processing
 - Focused on analyzing patterns and trends in very large amounts of data
 - Database schemas are denormalized to facilitate better processing performance

Decision Support Systems

- Decision Support Systems (DSS) facilitate analyzing trends in large amounts of data
 - DSS don't actually identify the trends themselves
 - Are a tool for analysts familiar with what the data means
 - Analyze collected data to measure effectiveness of current strategies, and to predict future trends
 - Increasingly common for analysts to use data mining on a system to identify patterns and trends, too
- Decision support systems must provide:
 - Specific kinds of summary data generated from the raw input data
 - □ Ability to break down summary data along different dimensions, e.g. time interval, location, product, etc.

Decision Support Systems (2)

- OLAP databases are frequently part of decision support systems
 - Called data warehouses
 - Capable of storing, summarizing, and reporting on huge amounts of data
- Example data-sets presented via DSS:
 - Logs from web servers or streaming media servers
 - Sales records for a large retailer
 - Banner ad impressions and click-throughs
 - Very large data sets (frequently into petabyte range)
- □ Need to:
 - Generate summary information from these records
 - Facilitate queries against the summarized data

DSS Databases

- Example: sales records for a large retailer
 - Customer ID, time of sale, sale location
 - Product name, category, brand, quantity
 - Sale price, discounts or coupons applied
- Billions of sales records to process
 - Summary results may also include millions/billions of rows!
- Could fully normalize the database schema...
 - Information being analyzed and reported on would be spread through multiple tables
 - Analysis/reporting queries would require many joins
 - Often imposes a heavy performance penalty
- This approach is prohibitive for such systems!

Example Data Warehouses

- Starbucks figures from 2007:
 - 5TB data warehouse, growing by 2-3TB/year
- Wal-Mart figures from 2006:
 - 4PB data warehouse
- eBay figures from 2009:
 - Two data warehouses
 - Data warehouse 1: Teradata system
 - >2PB of user data
 - Data warehouse 2: Greenplum system
 - 6.5PB of user data
 - 17 trillion records 150 billion new records each day
 - >50TB added each day

Measures and Dimensions

- Analysis queries often have two parts:
- □ A <u>measure</u> being computed:
 - "What are the total sales figures..."
 - "How many customers made a purchase..."
 - "What are the most popular products..."
- □ A dimension to compute the result over:
 - "...per month over the last year?"
 - "...at each sales location?"
 - "...per brand that we carry?"

Star Schemas

- Decision support systems often use a <u>star schema</u> to represent data
 - A very denormalized representation of data that is well suited to large-scale analytic processing
- One or more fact tables
 - Contain actual measures being analyzed and reported on
- Multiple <u>dimension tables</u>
 - Provide different ways to "slice" the data in the fact tables
- Fact tables have foreign-key references to the dimension tables

Example Star Schema

Sales data-warehouse for a large retailer:

- □ Fact table is center of star
 - Dimension tables are referenced by the fact table

products

product_id

category
brand
prod_name
prod_desc
price
...

store_id
address
city
state
zipcode

stores

Dimensional Analysis

- □ This approach is called <u>dimensional analysis</u>
- Good example of denormalizing a schema to improve performance
 - Using a fully normalized schema will produce confusing and horrendously slow queries
- Decompose schema into a fact table and several dimension tables
 - Queries become very simple to write, or to generate
 - Database can execute these queries very quickly

Dimension Tables

- Dimension tables are used to select out specific rows from the fact table
 - Dimension tables should contain only attributes that we want to summarize over
 - Dimension tables can easily have many attributes
- Dimension tables are usually <u>very</u> denormalized
 - Specific values are repeated in many different rows
 - Only in 1NF
- Example: sale_dates dimension table
 - Year, quarter, month, day, and hour are stored as separate columns
 - Each row also has a unique ID column

sale_dates

date_id

date_value
year
quarter
month
mday
hour
...

Dimension Tables (2)

- Dimension tables tend to be relatively small
 - At least, compared to the fact table!
 - Can be as small as a few dozen rows
 - All the way up to tens of thousands of rows, or more
 - Sometimes see dimension tables in 100Ks to millions of rows for very large data warehouses
- Sometimes need to normalize dimension tables
 - Eliminate redundancy to reduce size of dimension table
 - Increases complexity of query formulation and processing
 - Yields a <u>snowflake schema</u>
 - Star schemas strongly preferred over snowflake schemas, unless absolutely unavoidable!

Example Snowflake Schema

categories category_id Could normalize product category_name and store details category_mgr_id products Can represent more details product id Queries become much more brand_id brands complex category id brand id prod name brand_name prod_desc sales_data sale_dates sale contact price date id date id date value product id year store id store_regions quarter inventory_sold stores month total revenue region_id store id mday city address hour state region_id zipcode

regional_mgr_id

Fact Tables

- Fact tables store aggregated values for the smallest required granularity of each dimension
 - Time dimension frequently drives this granularity
 - e.g. "daily measures" or "hourly measures"
- Fact tables tend to have fewer columns
 - Only contains the actual facts to be analyzed
 - Dimensional data is pushed into dimension tables
 - Each fact refers to its associated dimension values using foreign keys
 - All foreign keys in the fact table form its primary key
- Fact table contains the most rows, by far.
 - Well upwards of millions of rows (billions/trillions common)

Fact Tables (2)

- Not uncommon to have multiple fact tables in a data warehouse
 - Facts relating to different aspects of the enterprise, where it doesn't make sense to store in same table
 - Facts for a single aspect of the enterprise, but partitioned in different ways
 - Used in situations where combining into a single fact table would result in a huge, sparse fact table that is very slow to query
- Multiple fact tables frequently share dimension tables
 - e.g. date and/or time dimensions
 - May also have separate dimension tables only used by a particular fact-table

Analytic Queries

- Using a star schema, analytic queries follow a simple pattern
 - Query groups and filters rows from the fact table, using values in the dimension tables
 - Query performs simple aggregation of values contained within selected rows from fact table
- Queries contain only a few simple joins
 - Because dimension tables are (usually) small, joins can be performed very quickly
 - □ Fact table's primary key includes foreign keys to dimensions, so specific fact records can be located very quickly

Analytic Queries (2)

- Because only the fact tables are large, databases can provide optimized access
- Example: partitioned tables
 - Many databases can partition tables based on one or more attributes
 - Queries against the partitioned table are analyzed for which partitions are actually relevant to the query
- DSS schema design can partition the fact table to dramatically improve performance

Slowly-Changing Dimensions

- Frequently, data in dimension tables changes over time
 - e.g. a "user" dimension, where some user details change over time
 - e-mail address, rank/trust level within a community, last login time
- How do we represent slowly changing dimensions?
- Type 1 Slowly Changing Dimensions:
 - When a dimension value changes, overwrite the old values
 - Warehouse only maintains one row for each dimension value
 - Doesn't track any history of changes to dimension records
 - Can't analyze facts with respect to the change history!
 - e.g. "How do user behaviors change, with respect to how quickly their rank/trust level changes within their community?"

Slowly-Changing Dimensions (2)

- Type 2 Slowly Changing Dimensions:
 - Used to track change-history within a dimension
 - Rows in the dimension table are given additional attributes:
 - start_date, end_date specifies the date/time interval when the values in this dimension record are valid
 - version a count (e.g. starting from 0 or 1) indicating which version of the dimension record this row represents
 - is_most_recent a flag indicating whether this is the most recent version of the dimension record
- Updating a dimension record is more complicated:
 - □ Find current version of the dimension record (if there is one)
 - Set the end_date to "now" to indicate the old row is finished
 - Create a new dimension record with a start_date of "now"
 - Fill in new dimension values; update version, is_most_recent values too

Good and Bad Measures

- Not all measures are suitable for star schemas!
- Fact table contains partially aggregated results
 - Analysis queries must complete aggregation, based on desired dimension and grouping aspects of query
- Example measures to track:
 - Quantities of each product sold
 - Easy to aggregate just sum it up
 - Average per-customer sales totals
 - Fact table needs to store both the number of sales, and the total sale price, so that query can compute the average
 - Distinct customers over a particular time interval
 - Would need to store a list of actual customer IDs for each reporting interval! Much more complex.

Homework 7

- □ Includes a very simple data-warehouse exercise:
 - A simple OLAP database for analyzing web logs
 - Two months of access logs from NASA web server at Kennedy Space Center in Florida, from 1995
 - 3.6 million records, about 300MB storage size
 - Huge compared to what we have worked with so far!
 - <u>Microscopic</u> compared to most OLAP databases ©
 - Create an OLAP database schema
 - Star schema diagram will be provided
 - Populate the schema from raw log data
 - Write some OLAP queries to do some simple analysis
- Please start this assignment early!
 - □ 100 students vs. 1 DB server... it could get messy... ©