Support Vector Machines (SVM) Notes

Based on Professor Galletti's Medium Article

Core Concepts of Support Vector Machines (SVM)

- Objective: Identify the widest possible margin (or "street") that separates two classes in a dataset.
- Decision Boundary: A linear separator defined by:

$$w^T x + b = 0$$

- Classification Rule:
 - If $w^T x + b \ge 0$, classify as +1
 - If $w^T x + b < 0$, classify as -1
- Margin Width: Inversely proportional to ||w||; maximizing the margin equates to minimizing ||w||

Adjusting the Margin

- Multiplying both w and b by a positive constant c affects the margin width:
 - -0 < c < 1: Margin expands
 - -c > 1: Margin contracts
- **Support Vectors**: Points that lie exactly on the margin boundaries and are critical in defining the optimal hyperplane.

SVM via Perceptron Algorithm

Initialization

 \bullet Start with random w and b

Hyperparameters

- Learning rate lr
- \bullet Expanding rate < 1
- Retracting rate > 1

Training Loop

- 1. For each epoch:
 - (a) Pick random sample (x, y)
 - (b) Compute prediction: $y_{\text{pred}} = w^T x + b$
 - (c) Update based on:
 - Correctly classified and within margin: retract
 - Correctly classified and outside margin: expand
 - ullet Misclassified: update w and b to correct

Dual Formulation (Nonlinear Case)

- Introduce Lagrange multipliers α_i
- Prediction function becomes:

$$y_{\text{pred}} = \sum_{j} \alpha_{j}(x_{j}^{T}x) + b$$

• Training Loop (similar to above but update α_i instead of w)

Kernel Trick

- Purpose: To handle non-linearly separable data
- Replace dot product $x_j^T x$ with kernel $K(x_j, x)$
- Common Kernels: s
- Updated prediction function:

$$y_{\text{pred}} = \sum_{j} \alpha_{j} K(x_{j}, x) + b$$

Summary

- SVMs aim to find a maximum margin hyperplane separating two classes
- Perceptron algorithm can be adapted to enforce margin constraints
- Dual formulation allows for kernel-based non-linear classification

Reference: Professor Galletti's Medium article