Scilab Textbook Companion for Modern Physics by R. A. Serway¹

Created by
Nusrat Ali
Modern Physics
Electronics Engineering
Model Institute of Engineering and Technology
College Teacher
Ms. Bhavna Sharma
Cross-Checked by
Lavitha Pereira

January 23, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Modern Physics

Author: R. A. Serway

Publisher: Thomson Learning, USA

Edition: 3

Year: 2005

ISBN: 0-534-49339-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Relativity I	8	
2	Relativity II	14	
3	The Quantum theory of light	21	
4	The particle nature of matter	29	
5	Matter waves	38	
6	Quantum mechanics in one dimension	43	
7	Tunnelling phenomena	52	
8	Quantum Mechanics in Three Dimensions	56	
9	Atomic Structure	60	
10	Statistical Physics	65	
11	Molecular Structure	71	
12	The Solid State	74	
13	Nuclear Structure	77	
11	Nuclear Physics Applications	84	

15 Elementary Particle	89
16 Cosmology	96

List of Scilab Codes

Exa 1.2	Period of the pendulum wrt different frames of references	8
Exa 1.3	Contraction of spaceship	9
Exa 1.4	Altitude of spaceship wrt different frames of references	9
Exa 1.5	Shape of spaceship seen from different frames of refer-	
	ences	10
Exa 1.6	Speed of recession of the galaxy Hydra	10
Exa 1.8	Relative velocity of spaceships	11
Exa 1.9	Velocity of ball wrt stationary observer	12
Exa 1.10	Relative velocity of recession of two gang leaders	12
Exa 2.1	Momentum of an electron	14
Exa 2.3	Energy of a speedy electron	15
Exa 2.4	Energy of a speedy proton	15
Exa 2.5	Increase in mass of colliding balls	16
Exa 2.7	A Fission Reaction	17
Exa 2.8	Energy conservation	18
Exa 2.9	Mass of Pion	19
Exa 3.1	Temperature of sun	21
Exa 3.2	Quantum oscillator vs classical oscillator	21
Exa 3.3	Stefan law from Planck distribution	23
Exa 3.4	Time lag between start of illumination and photocurrent generation	23
Exa 3.5	Time lag between start of illumination and photocurrent	20
	generation	24
Exa 3.6	Photoelectric effect for iron	24
Exa 3.7	Compton shift for carbon	25
Exa 3.8	Xray photons vs visible photons	26
Exa 3.9	Gravitational redshift for a white dwarf	27
Exa 4.1	Electrolysis of barium chloride	29

Exa 4.2	Deflection of electron beam by E and B Fields 3
Exa 4.3	Experimental determination of e
Exa 4.4	Collision of alpha particle with proton
Exa 4.5	Radius of Aluminium Nucleus
Exa 4.7	Collision of alpha particle with proton
Exa 4.8	series for Hydrgen
Exa 4.9	Hydrogen in its first excited state
Exa 5.1	Wave properties of a baseball
Exa 5.2	de Broglie wavelength of an electron
Exa 5.3	Diffraction of neutrons at the crystal lattice
Exa 5.8	Uncertainity principle for macroscopic objects 4
Exa 5.9	Kinetic energy of electron confined within the nucleus 4
Exa 5.10	Width of spectral lines
Exa 6.2	Probability from wave function
Exa 6.4	Dispersion of matter waves
Exa 6.5	Energy Quantization for Macroscopic Object 4
Exa 6.6	Model of an Atom
Exa 6.7	Probabilities for a particle in a Box
Exa 6.8	Ground state energy of an electron confined to a poten-
	tial well
Exa 6.12	The quantum oscillator in nonclassical region 4
Exa 6.13	Quantization of vibrational energy 4
Exa 6.14	Standard Deviations from Averages
Exa 6.15	Location of a particle in the box
Exa 7.1	Transmission coefficient for an oxide layer
Exa 7.2	Tunnelling current through an oxide layer
Exa 7.5	Tunnelling in a parallel plate capacitor
Exa 7.6	Estimating halflives of Thorium and Polonium 5
Exa 8.4	Orbital quantum number for a stone
Exa 8.6	Space quantisation for an atomic electron
Exa 8.7	Energy of Hydrogen atom at first excited state 5
Exa 8.8	Probabilities for the Electron in Hydrogen 5
Exa 9.1	Magnetic energy of electron in Hydrogen 6
Exa 9.2	Angles between z axis and the spin angular momentum
	vector
Exa 9.3	Zeeman Spectrum of Hydrogen Including Spin 6
Exa 9.4	Spin orbit energy of Sodium doublet 6
Exa 9.5	Ground state of Helium atom 6
$\mathbf{L}\mathbf{A}a$ $\mathbf{J}.\mathbf{J}$	Ground state of Hendin atom

Exa 9.6	Effective atomic number for 3s electron in Na 63
Exa 10.1	Population of excited states with respect to ground states
	in Hydrogen
Exa 10.2	Validity of Maxwell Boltzmann Statistics 66
Exa 10.3	Photons in a box
Exa 10.4	Specific Heat of Diamond
Exa 10.5	Fermi Energy of Gold
Exa 11.1	Rotation of CO molecule
Exa 11.2	Variation of CO molecule
Exa 12.1	Classical free electron model
Exa 12.2	Conduction in diamond
Exa 12.3	Forward and reverse currents in diode
Exa 13.1	The Atomic Mass Unit
Exa 13.2	The Volume and Density of Nucleus
Exa 13.3	Binding energy of the Deuteron
Exa 13.4	Left out sample during radioactive decay
Exa 13.5	The Activity of Radium
Exa 13.6	The Activity of Carbon
Exa 13.7	The Radiactive Isotope of Iodine 81
Exa 13.8	Energy Liberated during Decay of Radium 82
Exa 13.9	Probability of Alpha Decay
Exa 13.11	Radioactive Dating
Exa 14.1	Energy released in Fission
Exa 14.2	Neutron capture by Al
Exa 14.4	Energy released in the Fission of U235 85
Exa 14.5	A Rough Mechanism for Fission Process 86
Exa 14.6	The Fusion of Two Deutrons
Exa 14.7	Half value thickness
Exa 15.2	Checking Baryon Numbers
Exa 15.3	Checking Lepton Numbers
Exa 15.4	Conservation of strangeness
Exa 15.5	Making virtual particle real
Exa 16.1	Hubbles law
Exa 16.2	Critical density of universe 97

Chapter 1

Relativity I

Scilab code Exa 1.2 Period of the pendulum wrt different frames of references

```
1 // Scilab code Ex1.2: Pg.18 (2005)
2 clc; clear;
                   // Velocity of light, m/s
3 c = 3e + 08;
4 v = 0.95*c;
                  // Velocity of observer, m/s
5 T_proper = 3; // Proper time period of pendulum
     in rest frame, s
6 gama = 1/(sqrt(1 - (v/c)^2));
                                  // Multiplying
     factor
7 // From time-dilation formula, we have
8 T = gama*T_proper;
                                        // Time period
     of pendulum w.r.t to moving observer, s
9 printf("\nTime period of pendulum w.r.t to moving
     observer = \%3.1 \, \text{f s}, T);
10
11 // Result
12 // Time period of pendulum w.r.t to moving observer
     = 9.6 \text{ s}
```

Scilab code Exa 1.3 Contraction of spaceship

```
1 // Scilab code Ex1.3: Pg 20 (2005)
2 clc; clear;
3 c = 3e+08;
                                 // Velocity of light, m
     / s
                                // Proper length of
4 L_p = 100;
     spaceship, m
5 v = 0.99*c;
                                // Velocity of spaceship
      , m/s
6 // Using length contracction formula,
7 L = L_p*sqrt(1 - (v/c)^2);
                                                   //
     Observed length of spaceship, m
8 printf ("Observed length of spaceship = %2d m", L);
9
10 // Result
11 // Observed length of spaceship = 14 m
```

Scilab code Exa 1.4 Altitude of spaceship wrt different frames of references

```
1 // Scilab code Ex1.4: Pg 20 (2005)
2 clc; clear;
                                // Velocity of light, m
3 c = 3e+08;
    / s
                               // Proper altitude of
4 L_p = 435;
    spaceship, m
                                // Velocity of
5 v = 0.970*c;
     spaceship, m/s
6 // Using length contracction formula,
7 L = L_p*sqrt(1 - (v/c)^2);
                                                  //
     Observed altitude of spaceship, m
8 printf("Observed altitude of spaceship = %2d m",
     ceil(L));
9
```

```
10 // Result
11 // Observed altitude of spaceship = 106 m
```

Scilab code Exa 1.5 Shape of spaceship seen from different frames of references

```
1 // Scilab code Ex1.5: Pg 20 (2005)
2 clc; clear;
3 c = 3e + 08;
                                 // Velocity of light, m
     /s
4 L_p = 50;
                                // Proper distance
     between points x & y of spaceship, m
5 v = 0.950*c;
                                 // Velocity of
     spaceship, m/s
6 // Using length contracction formula,
7 L = L_p*sqrt(1 - (v/c)^2);
                                                   //
     Observed distance between points x & y of
      spaceship, m
8 printf("\nObserved distance between points x and y
      of spaceship = \%4.1 \,\mathrm{f} m", L);
9 printf("\nThe spaceship will get contracted in the
      direction of motion");
10
11 // Result
12 // Observed distance between points x and y of
      spaceship = 15.6 m
13 // The spaceship will get contracted in the
      direction of motion
```

Scilab code Exa 1.6 Speed of recession of the galaxy Hydra

```
1 // Scilab code Ex1.6: Pg 25 (2005)
2 clc; clear;
```

```
3 // For simplification assume velocity of light equal
      to unity
                         // Velocity of light, m/s
4 c = 1
                               // Wavelength measured
5 \quad lamda_obs = 474e-09;
     by observer, m
6 \quad lamda_source = 394e-09;
                                   // Wavelength measured
      in the source's rest frame, m
7 v = ((lamda_obs^2 - lamda_source^2)/(lamda_obs^2 +
      lamda_source^2))*c;
      Receding velocity of Hydra, m/s
8 printf("\nReceding velocity of Hydra = \%5.3 fc m/s",
     v);
9
10 // Result
11 // Receding velocity of Hydra = 0.183 \,\mathrm{c} m/s
```

Scilab code Exa 1.8 Relative velocity of spaceships

```
1 // Scilab code Ex1.8: Pg 30 (2005)
2 clc; clear;
3 // For simplification assume velocity of light equal
      to unity
                             // Velocity of light, m/s
4 c = 1;
                            // Velocity of spaceship A
5 v = 0.750*c;
     relative to S frame, m/s
                             // Velocity of spaceship B
6 u_x = (-0.850)*c;
     relative to S frame, m/s
7 // Using Lorentz velocity transformation
8 U_x = (u_x - v)/(1 - u_x*v/c^2);
     Velocity of spaceship B with respect to spaceship
      A, m/s
9 printf("\nVelocity of spaceship B with respect to
     spaceship A = \%6.4 \text{ fc m/s}, U_x);
10
11 // Result
```

```
12 // Velocity of spaceship B with respect to spaceship A = -0.9771\,\mathrm{c} m/s
```

Scilab code Exa 1.9 Velocity of ball wrt stationary observer

```
1 // Scilab code Ex1.9: Pg 30 (2005)
2 clc; clear;
3 // For simplification assume velocity of light equal
      to unity
                             // Velocity of light, m/s
4 c = 1;
                             // Velocity of motorcycle w
5 v = 0.800*c;
     .r.t stationary observer, m/s
                             // Velocity of ball in the
6 \ U_x = 0.700*c;
      reference frame of motorcyclist, m/s
7 // Using inverse Lorentz velocity transformation
8 u_x = (U_x + v)/(1 + U_x*v/c^2);
       Velocity of ball relative to stationary observer
      , m/s
9 printf("\nVelocity of ball relative to stationary
      observer = \%6.4 \text{ fc m/s}, u_x);
10
11 // Result
12 // Velocity of ball relative to stationary observer
     = 0.9615 \,\mathrm{c} \,\mathrm{m/s}
```

Scilab code Exa 1.10 Relative velocity of recession of two gang leaders

```
// Velocity of pack
5 \text{ ux} = 0.75*c;
     leader alpha, m/s
6 gama = 1/(sqrt(1 - (ux/c)^2));
7 u_x = 0;
                               // Velocity component of
     beta measured in S frame, m/s
8 U_x = (u_x - ux)/(1 - u_x*ux/c^2);
     Velocity component of beta along X-axis measured
     in S' frame, (Velocity Addition Rule), m/s
9 u_v = -0.90*c;
                                     // Velocity
     component of beta long Y-axis measured in S frame
10 U_y = u_y/(gama*(1 - u_x*ux/c^2)); // Velocity
     component of beta along Y-axis measured in S'
     frame, m/s
                               // Relative velocity of
11 U = sqrt(U_x^2+U_y^2);
     recession of two gang leaders, m/s
12 printf("\nThe relative velocity of recession of two
     gang leaders = \%4.2 \, \text{fc}, U);
13
14 // Result
15 // The relative velocity of recession of two gang
     leaders = 0.96c
```

Chapter 2

Relativity II

Scilab code Exa 2.1 Momentum of an electron

```
1 // Scilab code Ex2.1: Pg.44 (2005)
2 clc; clear;
              // Velocity of light, m/s
3 c = 3e08;
4 u = 0.750*c; // Velocity of electron, m/s 5 m = 9.11e-31; // Rest mass of electron, kg
6 p_r = m*u/(sqrt(1 - (u/c)^2)); // Relativistic
      momentum of electron, kgm/s
             // Classical momentum of electron, kg-m/s
8 printf("\nThe relativistic momentum of electron = \%4
      .2 \text{ fe} - 22 \text{ kg-m/s}", p_r*1e+22);
9 printf("\nThe classical momentum of electron = \%4.2
      fe -22 \text{ kg-m/s}", p*1e+22);
10 printf("\nThe relativistic result is 50 percent
      greater than the classical result.");
11
12 // Result
13 // The relativistic momentum of electron = 3.10e-22
      kg-m/s
14 // The classical momentum of electron = 2.05e-22 kg-
15 // The relativistic result is 50 percent greater
```

Scilab code Exa 2.3 Energy of a speedy electron

```
1 // Scilab code Ex2.3: Pg.47 (2005)
2 clc; clear;
3 c = 3e+08;
                  // Velocity of light, m/s
4 u = 0.85*c; // Velocity of electron, m/s
5 E_0 = 0.511; // Rest energy of electron, MeV
6 E = E_0/(sqrt(1-(u/c)^2)); // Total energy of
      electron, MeV
7 \text{ K} = \text{E} - \text{E}_0; // Kinetic energy of electron, MeV
8 printf("\nThe total energy of electron = \%5.3 \, \text{f MeV}",
      E);
9 printf("\nThe kinetic energy of electron = \%5.3 f MeV
     ", K);
10
11 // Result
12 // The total energy of electron = 0.970 MeV
13 // The kinetic energy of electron = 0.459 MeV
```

Scilab code Exa 2.4 Energy of a speedy proton

```
1 // Scilab code Ex2.4: Pg.47 (2005)
2 clc; clear;
3 c = 3e+08; // Velocity of light, m/s
4 u = 0.85*c; // Velocity of electron, m/s
5 m_p = 1.67e-27; // Rest mass of proton, kg
6
7 // Part (a)
8 E_o = m_p*c^2/1.602e-019; // Rest energy of proton, MeV
```

```
9 printf("\nRest energy of proton = \%3d MeV", E_o/1e
      +06);
10
11 // Part (b)
12 // Since given that E = 3*E_o = (3*m_p*c^2)/sqrt(1-(
      u/c)^2, solving for u
13 u = sqrt(8/9)*c; // Velocity of proton, m/s
14 printf("\nVelocity of proton = \%4.2 \text{ fe} + 08 \text{ m/s}", u*1e
      -08);
15
16 // Part (c)
17 // Since K = E - m_p*(c^2) = 3*m_p*(c^2) - m_p*(c^2)
       = 2*m_p*(c^2)
18 K = 2*E_o; // Kinetic energy of proton, MeV
19 printf("\nThe kinetic energy of proton = %4d MeV", K
      *1e-06);
20
21 // Part (d)
22 p = sqrt(8)*(E_o);
23 printf("\nThe momentum of proton = \%4d \text{ MeV/c}", p*1e
      -06);
24
25 // Result
26 // Rest energy of proton = 938 MeV
27 // \text{ Velocity of proton} = 2.83 \text{ e} + 08 \text{ m/s}
28 // The kinetic energy of proton = 1876 MeV
29 // The momentum of proton = 2653 \text{ MeV/c}
```

Scilab code Exa 2.5 Increase in mass of colliding balls

```
1 // Scilab code Ex2.5: Pg.49 (2005)
2 clc; clear;
3 u = 450; // Velocity of each ball, m/s
4 m = 5; // Mass of each ball, kg
5 c = 3e+08; // Velocity of light, m/s
```

Scilab code Exa 2.7 A Fission Reaction

```
1 // Scilab code Ex2.7: Pg.50 (2005)
2 clc; clear;
3 u = 1.660e-27;
                    // Atomic mass unit
4 M_U = 236.045563; // Atomic mass of Uranium, u
5 M_Rb = 89.914811; // Atomic mass of Rubidium, u
6 M_Cs = 142.927220; // Atomic mass of Caesium, u
7 m_n = 1.008665; // Mass of neutons, u
8
9 // Part (a)
10 printf("\nU(92,235) \longrightarrow Rb(37,90) + Cs(55,143) + 3n
      (0,1)");
11 printf("\nSo three neutrons are produced per fission
      .\n");
12
13 // Part (b)
14 \text{ delta_M} = (M_U - (M_Rb + M_Cs + 3*m_n))*u;
      Combined mass of all products, kg
15 printf ("\nCombined mass of all products = \%6.4 \, \text{fe} - 28
      kg n, delta_M*1e+28);
16
17 // Part (c)
18 // For simplification let velocity of light = 1 \text{ m/s}
19 c = 1; // Velocity of light, m/s
```

```
20 // Since 1u = 931.5 \text{ MeV/}(c^2), therefore
21 Q = (delta_M/u)*931.5*(c^2); // Energy given out
      per fission event, MeV
22 printf("\nEnergy given out per fission event = \%5.1 \,\mathrm{f}
       MeV \setminus n", Q);
23
24 // Part (d)
25 N = ((6.02e23)*1000)/236; // Number of nuclei
      present
26 efficiency = 0.40;
27 E = efficiency*N*Q*(4.45e-20); // Total energy
      released, kWh
28
  printf("\nTotal energy released = \%4.2 \text{ fe} + 06 \text{ kWh} \text{n}",
      E*1e-06);
29
30 printf("\nThis amount of energy will keep a 100-W
      lightbulb burning for %d years", E
      *1000/(100*24*365));
31
32 // Result
33 // U(92,235) --> Rb(37,90) + Cs(55,143) + 3n(0,1)
34 // So three neutrons are produced per fission.
35 // Combined mass of all products = 2.9471e-28 \text{ kg}
36 // Energy given out per fission event = 165.4 MeV
37 // Total energy released = 7.51e+06 kWh
38 // This amount of energy will keep a 100-W lightbulb
       burning for 8571 years
```

Scilab code Exa 2.8 Energy conservation

```
1 // Scilab code Ex2.8: Pg.52 (2005)
2 clc; clear;
3
4 // Part (a)
5 // Since 1 eV = 1.6e-19 J, therefore 3 eV = 3*1.6e
```

```
-19
6 \text{ BE} = 3*1.6e-19; // Binding energy of water, J
7 c = 3e+08; // Velocity of light, m/s
8 delta_m = BE/(c^2); // Mass difference of water
      molecule & it constituents, kg
9 printf("\nMass difference of water molecule & it
      constituents = \%3.1 \,\text{fe} - 36 \,\text{kg}, delta_m*1e+36);
10
11 // Part (b)
                 // Mass of water molecule, kg
12 M = 3.0e-26;
13 M_f = delta_m/M; // Fractional loss of mass per
      molecule
14 printf("\nThe fractional loss of mass per molecule =
       \%3.1 \, \mathrm{fe} - 10", M_f*1e+10);
15
16 // Part (c)
17 E = M_f*(c^2); // Energy released when 1 g of
      water is formed, kJ
18 printf("\nEnergy released when 1 g of water is
      formed = \%2.0 \, \text{f kJ}", E*1e-06);
19
20 // Result
21 // Mass difference of water molecule & it
      constituents = 5.3e-36 kg
22 // The fractional loss of mass per molecule = 1.8e
      -10
23 // Energy released when 1 g of water is formed = 16
     kJ
```

Scilab code Exa 2.9 Mass of Pion

```
1  // Scilab code Ex2.9: Pg.53 (2005)
2  clc; clear;
3  K_mu = 4.6;  // Kinetic energy of muon, MeV
4  // For convinience let m_mew*(c^2) = E_mew
```

Chapter 3

The Quantum theory of light

Scilab code Exa 3.1 Temperature of sun

Scilab code Exa 3.2 Quantum oscillator vs classical oscillator

```
1 // Scilab code Ex3.2: Pg 75 (2005)
```

```
2 clc; clear;
4 // Part (a)
5 h = 6.63e-34; // Plank's constant, Js
6 c = 3e+08; // Velocity of light, m/s
7 lamda_green = 540e-09; // Wavelength of green
     light, nm
8 delta_E_green = h*c/lamda_green/1.602e-19;
     Minimum energy change in green light, eV
  lamda_red = 700e-09;  // Wavelength of red light,
     nm
10 delta_E_red = h*c/lamda_red/1.602e-19; // Minimum
      energy change in red light, eV
11
12 printf("\nMinimum energy change in green light = \%4
      .2 f eV", delta_E_green);
13 printf("\nMinimum energy change in red light = \%4.2 \,\mathrm{f}
      eV", delta_E_red);
14
15 // Part (b)
16 f = 0.50; // Frequency, Hz
17 m = 0.1; // Mass of pendulum, kg
18 1 = 1;
              // Length of pendulum, m
19 theta = %pi/180*10; // Angle, radians
20 g = 9.8; // Acceleration due to gravity, m/s^2
21 E = m*g*l*(1-cos(theta));
22 delta_E = (h*f)/(1.6e-19);
                              // Minimum energy
     change in pendulum, eV
23 delta_E_f = (delta_E*1.6e-19)/E ; // Fractional
     energy change
24 printf("\nFractional energy change = \%3.1 \, \text{fe} - 32",
     delta_E_f*1e+32);
25
26 // Result
27 // Minimum energy change in green light = 2.30 eV
28 // Minimum energy change in red light = 1.77 eV
29 // Fractional energy change = 2.2e-32
```

Scilab code Exa 3.3 Stefan law from Planck distribution

```
1 // Scilab code Ex3.3: Pg 80 (2005)
2 clc; clear;
3 k_B = 1.381e-23; // Boltzmann's constant, J/K
4 c = 3e+08; // Velocity of light, m/s
5 h = 6.626e-34; // Plank's constant, Js
6 // Since e_total = sigma*(T^4) = (2*(%pi)^5*(k_B)^4) / (15*(c^2)*(h^3))*T^4
7 sigma = (2*(%pi)^5*(k_B)^4)/(15*(c^2)*(h^3));
8 printf("\nThe value of sigma = %3.2 fe -08 W/Sq.m/K^4", sigma*1e+08);
9
10 // Result
11 // The value of sigma = 5.67e-08 W/Sq.m/K^4
```

Scilab code Exa 3.4 Time lag between start of illumination and photocurrent generation

```
// Scilab code Ex3.4: Pg 83 (2005)
clc; clear;
phi = 2.38;  // Work function for sodium, eV
I = 1e-07;  // Absorbed light intensity, mJcm^2/s
A = %pi*1e-16;  // Cross-sectional area, m^2
t = phi*1.6e-16/(I*A)  // Time lag, days
printf("\nTime lag between start of illumination and photocurrent generation = %3.1 fe+07 s", t*1e-07);

// Result
// Time lag between start of illumination and photocurrent generation = 1.2 e+07 s
```

Scilab code Exa 3.5 Time lag between start of illumination and photocurrent generation

```
1 // Scilab code Ex3.5: Pg 85 (2005)
2 clc; clear;
3 e = 1.6e-19;
                      // Electric charge, C
4 V_s = 4.3; // Stopping potential, V
5 \text{ K_max} = e*V_s;
                     // Maximum kinetic energy attained
      by photoelectrons, J
6 \text{ m_e} = 9.11\text{e}-31 // Mass of electron, kg
7 // Since K.E = eV_s = 0.5 m_e(v_max^2), therefore
8 v_max = sqrt((2*K_max)/m_e); // Maximum velocity
      attained by photoelectron, m/s
9 printf("\nMaximum velocity attained by photoelectron
       = \%3.1 \, \mathrm{fe} + 06 \, \mathrm{m/\,s}", v_max*1e-06);
10
11 // Result
12 // Maximum velocity attained by photoelectron = 1.2e
      +06 \text{ m/s}
```

Scilab code Exa 3.6 Photoelectric effect for iron

```
9 // Part (b)
10 h = 6.6e-34; // Planck's constant, Js
11 c = 3e+08; // Velocity of light, m/s
12 lamda = 250e-09; // Wavelength, m
13 e_per_sec = (I*lamda*1e-06)/(h*c); // Number of
      electrons emitted per second
14 printf("\nNumber of electrons emitted per second =
      \%3.1e", e_per_sec);
15
16 // Part (c)
17 e = 1.6e-019; // Energy equivalent of 1 eV, C
18 i = (e_per_sec)*e; // Electric current in
      phototube, A
19 printf("\nElectric current in phototube = \%3.1e A",
20
21 // Part (d)
22 f_o = 1.1e+15; // Cut-off frequeny, Hz
23 phi = (h*f_o)/e; // Work function for iron, eV
24 printf("\nWork function for iron = \%3.1 \,\mathrm{f} eV", phi);
25
26 // Part (e)
27 \text{ V_s} = (h*c/(e*lamda))-phi; // Stopping
      voltage, V
28 printf("\nStopping voltage = \%4.2 \,\mathrm{f} V", V_s);
29
30 // Result
31 // Intensity available to produce photoelectric
      effect = 1.2 \text{ nW/cm}^2
32 // Number of electrons emitted per second = 1.5e-09
33 // Electric current in phototube = 2.4e-10 \text{ A}
34 // Work function for iron = 4.5 eV
35 // Stopping voltage = 0.41 V
```

Scilab code Exa 3.7 Compton shift for carbon

```
1 // Scilab code Ex3.7: Pg 93 (2005)
2 clc; clear;
3 h = 6.63e-34; // Plank's constant, Js
4 \text{ m_e} = 9.11\text{e}-31; // Mass of electron, kg
5 c = 3e+08; // Velocity of light, m/s
6 theta = ((\%pi)/180)*45; // Angle, radians
7 delta_lamda = (h/(m_e*c)*(1-cos(theta)));
     Compton shift, nm
                          // Wavelength of X-ray, nm
8 \quad lamda_o = 0.200e-09;
  lamda = delta_lamda+lamda_o // Increased
      wavelength of scattered X-ray, nm
10 printf("\nIncreased wavelength of scattered X-ray =
     \%8.6 \text{ f nm}, lamda*1e+09);
11
12 // Result
13 // Increased wavelength of scattered X-ray =
      0.200711 \text{ nm}
```

Scilab code Exa 3.8 Xray photons vs visible photons

```
12 f_dl_C = delta_lamda/ lamda_C; // Fractional
      change in wavelength of gamma rays from cobalt
13 printf("\nFractional change in wavelength of gamma
      rays from Cobalt = \%4.2 \,\mathrm{f} , f_dl_C*1e+10);
14 \quad lamda_Mo = 0.712;
                        // Wavelength of gamma-rays
      from Molybdenum, Angstrom
                                                        //
15 f_dl_Mo = delta_lamda/ lamda_Mo;
      Fractional change in wavelength of gamma rays
      from Molybdenum
16 printf("\nFractional change in wavelength of gamma
      rays from Molybdenum = \%6.4 \,\mathrm{f}", f_dl_Mo*1e+10);
                       // Wavelength of gamma-rays from
  lamda_Hg = 5461;
       Mercury, Angstrom
18 f_dl_Hg = delta_lamda/ lamda_Hg;
                                                        //
      Fractional change in wavelength of gamma rays
      from mercury
19 printf("\nFractional change in wavelength of gamma
      rays from Mercury = \%4.2 \, \text{fe} - 06", f_dl_Hg*1e+16);
20
21 // Part (b)
22 lamda = 0.712e-10; // Wavelength of X-rays,
      Angstrom
23 E = (h*c)/(q*lamda); // Energy of X-rays' photon,
24 printf("\nEnergy of X-rays photon = \%5.0 \,\mathrm{f} eV\n", E);
25
26 // Result
27 // Fractional change in wavelength of gamma rays
      from Cobalt = 2.29
28 // Fractional change in wavelength of gamma rays
     from Molybdenum = 0.0341
  // Fractional change in wavelength of gamma rays
      from Mercury = 4.45 \,\text{fe} - 06
30 // Energy of X-rays photon = 17460 \text{ eV}
```

Scilab code Exa 3.9 Gravitational redshift for a white dwarf

```
// Scilab code Ex3.9: Pg 96 (2005)
clc; clear;
M = 1.99e+30; // Mass of sun, kg
R_s = 6.37e+06; // Radius of earth, m
G = 6.67e-11; // Gravitational constant, Nm^2/kg^2
lamda = 300e-09; // Wavelength, m
C = 3e+08; // Velocity of light, m/s
delta_lamda = lamda*((G*M)/(R_s*c^2)); //
Gravitational redshift, angstrom
printf("\nGravitational redshift = %3.1f angstrom",
delta_lamda*1e+10);
// Result
// Gravitational redshift = 0.7 angstrom
```

Chapter 4

The particle nature of matter

Scilab code Exa 4.1 Electrolysis of barium chloride

```
1 // Scilab code Ex4.1: Pg 109 (2005)
2 clc; clear;
           // Electric current, A
3 I = 10;
4 t = 3600; // Time, s
5 q = I*t; // Electric charge liberated, C
8 valence_Ba = 2;  // Valence electrons of Barium
9 valence_Cl = 1;  // Valence electrons of
     Chlorine
10 // Using Faraday s law of electrolysis, we have
11 m_Ba = (q*mm_Ba)/(96500*valence_Ba);
                                        // Mass of
     Barium obtained, g
12 m_Cl = (q*mm_Cl)/(96500*valence_Cl);
                                        // Mass of
     Chlorine obtained, g
13 printf("\nMass of Barium obtained = \%4.1 \, \text{f} g", m_Ba);
14 printf("\nMass of Chlorine obtained = \%4.1 \, \mathrm{f} g", m_Cl
     );
15
16 // Result
17 // Mass of Barium obtained = 25.6 g
```

Scilab code Exa 4.2 Deflection of electron beam by E and B Fields

```
1 // Scilab code Ex4.2: Pg 113 (2005)
2 clc; clear;
              // Electro potential, V
3 \quad V = 200;
4 theta = 0.20;  // Angle, radians
5 1 = 0.050;  // Length of plates, m
6 d = 1.5e-02;
                 // Distance between two plates, m
7 c_m_r = 1.76e+11; // Charge-to-mass ratio, C/kg
8 // Since e/m_e = (V*theta)/(B^2*l*d), solving for B
9 B = sqrt((V*theta)/(1*d*c_m_r)); // Magnetic
      field, T
10 printf("\nThe magnetic field required to produce the
       deflection of \%4.2 \,\mathrm{f} rad = \%3.1 \,\mathrm{e} T", theta, B);
11
12 // Result
13 // The magnetic field required to produce the
      deflection of 0.20 \text{ rad} = 5.5 \text{e} - 04 \text{ T}
```

Scilab code Exa 4.3 Experimental determination of e

```
// Average speed of the falling
8 v = delta_y/t_av;
      droplet, cm/s
9 \text{ v_prime} = \text{zeros}(6);
10 \text{ for } i = 1:1:6
       v_prime(i) = delta_y/delta_t(i); // Successive
            speeds of the rising drops, cm/s
12 end
13
14 // Calculate charge ratios
15 q1byq2 = (v+v_prime(1))/(v + v_prime(2));
16 \text{ q2byq3} = (v+v_prime(2))/(v + v_prime(3));
17 q3byq4 = (v+v_prime(3))/(v + v_prime(4));
18 q4byq5 = (v+v_prime(4))/(v + v_prime(5));
19 q5byq6 = (v+v_prime(5))/(v + v_prime(6));
20 printf("\nq1/q2 = \%5.3 \, f", q1byq2);
22 printf("\nq3/q4 = \%5.3 \, f", q3byq4);
23 printf("\nq4/q5 = \%5.3 \, f", q4byq5);
24 printf("\nq5/q6 = \%5.3 \, f", q5byq6);
25 printf("\nThe charge ratios are ratios of small
      whole numbers\n");
26
27 // Part (b)
                                            // Viscosity of
28 \text{ eta} = 1.83e-05;
       air, kg/ms
29 \text{ rho} = 858;
                                         // Oil density, kg
      /\mathrm{m}^3
30 g = 9.81;
                                        // Acceleration due
      to gravity, m/s<sup>2</sup>
31 = \text{sqrt}((9*\text{eta}*v*1\text{e}-02)/(2*\text{rho}*g)); // \text{Radius of}
      oil droplet, m
                                         // Volume of oil
32 V = 4/3*(\%pi)*a^3;
      droplet, m<sup>3</sup>
33 m = rho*V;
                                        // Mass of oil
      droplet, kg
34 printf("\nRadius of oil droplet = \%4.2e m", a);
35 printf("\nVolume of oil droplet = \%4.2 \,\mathrm{em}^3", V);
36 printf("\nMass of oil droplet = \%4.2e kg", m);
```

```
37
38 // Part (c)
39 V = 4550;
                // Potential difference across the
      plates of the capacitor, volt
40 d = 0.0160; // Distance between the plates
41 E = V/d;
             // Electric field between plates, V/m
42 q = zeros(6), e = zeros(6);
43 for i=1:1:6
       q(i) = m*g/E*((v+v_prime(i))/v); // Charge on
44
           first drop, C
       printf("\nq\%d = \%4.2 e V/m", i, q(i));
45
46 end
47 e(1) = q(1)/5;
48 e(2) = q(2)/8;
49 e(3) = q(3)/6;
50 e(4) = q(4)/9;
51 e(5) = q(5)/5;
52 e(6) = q(6)/7;
53 e_{tot} = 0;
54 \text{ for } i = 1:1:6
       e_{tot} = e_{tot} + e(i);
55
56 end
57 e = e_tot/6;
58 printf("\nThe average charge on an electron = \%5.3e
     C", e);
59
60 // Result
61 // q1/q2 = 1.105
62 / q2/q3 = 0.958
63 // q3/q4 = 1.053
64 // q4/q5 = 0.899
65 // q5/q6 = 1.086
66 // The charge ratios are ratios of small whole
     numbers
67
68 // Radius of oil droplet = 1.67e-06 m
69 // Volume of oil droplet = 1.96e-17 \text{ m}^3
70 // Mass of oil droplet = 1.68e-14 kg
```

```
71  
72   // q1 = 8.44e-019   V/m  
73   // q2 = 1.36e-018   V/m  
74   // q3 = 1.01e-018   V/m  
75   // q4 = 1.52e-018   V/m  
76   // q5 = 8.48e-019   V/m  
77   // q6 = 1.19e-018   V/m  
78   // The average charge on an electron = 1.694e-019   C
```

Scilab code Exa 4.4 Collision of alpha particle with proton

```
1 // Scilab code Ex4.4: Pg 121 (2005)
2 clc; clear;
3
4 // Part (b)
5 // For easy calculations, assume all variables to be
       unity
6 \text{ m_p} = 1;
               // Mass of proton, a.m.u
7 \text{ m_a} = 4*\text{m_p};
                 // Mass of alpha particle, a.m.u
8 Valpha = 1; // Velocity of alpha particle before
      collision, m/s
9 \text{ v_p} = (2*m_a*Valpha)/(m_a + m_p); // Velocity of
      proton after collision, m/s
10 v_a = ((m_a - m_p)*(Valpha))/(m_a + m_p);
      Velocity of alph particle after collision, m/s
11 p_change = ((v_a - Valpha)/(Valpha))*100;
      Percentage change in velocity of alpha particle
12 printf("\nVelocity of proton after collision = \%4.2
     fVa m/s", v_p);
13 printf("\nVelocity of alpha particle after collision
      = \%4.2 \, \text{fVa m/s}, v_a);
14 printf("\nPercentage change in velocity of alpha
      particle = %2d percent", p_change);
15
16 // Result
```

```
17 // Velocity of proton after collision = 1.60 V_a m/s  
18 // Velocity of alph particle after collision = 0.60  
V_a m/s  
19 // Percentage change in velocity of alpha particle = -40 percent
```

Scilab code Exa 4.5 Radius of Aluminium Nucleus

Scilab code Exa 4.7 Collision of alpha particle with proton

```
10 f = c/lamda; // Frequency of emitted photon, Hz
            // Energy of emitted photon, eV
11 E = h*f;
12 printf("\nThe wavelength of emitted photon = \%5.1 \,\mathrm{f}
     nm", lamda/1e-09);
13 printf ("\nThe frequency of emitted photon = \%4.2 \,\mathrm{e} Hz
14 printf ("\nEnergy of emitted photon = \%4.1 \, \text{f eV}", E);
15
16 // Part (b)
17 mc_square = 938.8e+06; // Energy of recoil of
     hydrogen atom, eV
                             // Recoil kinetic
18 K = 0.5*(E^2/mc_square);
     energy of H atom, eV
19 E_difference = K/E; // Energy difference
20 printf ("\nRecoil kinetic energy of H atom = \%4.2 \,\mathrm{e} eV
21 printf("\nThe fraction of energy difference = \%3.1e"
      , E_difference);
22
23 // Result
24 // The wavelength of emitted photon = 121.5 \text{ nm}
25 // The frequency of emitted photon = 2.47e+15 Hz
26 // Energy of emitted photon = 10.2 eV
27 // Recoil kinetic energy of H atom = 5.55e-08 eV
28 // The fraction of energy difference = 5.4e-09
```

Scilab code Exa 4.8 series for Hydrgen

```
8 c = 3e + 08;
                    // Velocity of light, m/s
                    // Plank's constant, Js
9 h = 6.626e-34;
10 lamda_max = (n_i^2*n_f^2)/((n_i^2-n_f^2)*R);
       Maximum wavelength of emitted photon, m
11 E_{photon} = (h*c)/(lamda_max*1.6e-19);
      Energy of emitted photon, eV
12 printf("\nThe maximum wavelength of emitted photon =
       \%5.1 \, \text{f nm}, lamda_max/1e-09);
13 printf("\nEnergy of emitted photon = \%4.2 \text{ f eV}",
      E_photon);
14
15 // Part (b)
16 \text{ n_i} = \% \text{inf};
                 // Initial level of electron
17 lamda_min = 1/(R*(1/n_f^2-1/n_i^2));
18 printf("\nThe wavelength corresponding to the series
       limit = \%5.1 f nm which is in the ultraviolet
      region", lamda_min/1e-09);
19
20 // Result
21 // The maximum wavelength of emitted photon = 656.3
     nm
\frac{22}{2} // Energy of emitted photon =1.89 eV
23 /// The wavelength corresponding to the series
      limit = 364.6 nm which is in the ultraviolet
      region
```

Scilab code Exa 4.9 Hydrogen in its first excited state

```
atoms jump to first excited state, K
7 printf("\nThe temperature at which H-atoms jump to
      first excited state = \%5d K", T);
                       // Number ratio of population of
8 N_ratio = 0.10;
       first excited state relative to the ground state
9 // As N_{\text{ratio}} = \exp(-\det A_{\text{E}}/(k_{\text{B}}*T)), solving for T
10 T = -delta_E/(k_B*log(N_ratio)); // Temperature
      at which H-atoms jump to first excited state, K
11 printf("\nThe temperature of excitation from
      Boltzmann distribution = \%5d \text{ K}, T);
12
13 // Result
14 // The temperature at which H-atoms jump to first
      excited state = 78886 K
15 // The temperature of excitation from Boltzmann
      distribution = 51389 \text{ K}
```

Matter waves

Scilab code Exa 5.1 Wave properties of a baseball

```
1 // Scilab code Ex5.1: Pg 154 (2005)
2 clc; clear;
3 h = 6.63e - 34;
                     // Plank's constant, Js
                 // Mass of baseball, kg
4 m = 140e-03;
              // Velocity of baseball, m/s
6 p = m*v; // Momentum of baseball, kgm/s
  lamda = h/p;
                 // de Broglie wavelength associated
     with baseball, m
8 printf("\nde-Broglie wavelength associated with
     baseball = \%3.1e m", lamda);
9
10 // Result
11 // de-Broglie wavelength associated with baseball =
     1.8e - 34 \text{ m}
```

Scilab code Exa 5.2 de Broglie wavelength of an electron

```
1 // Scilab code Ex5.2: Pg 154 (2005)
```

```
2 clc; clear;
4 // Part (b)
                  // Plank's constant, Js
5 h = 6.63e - 34;
                    // Mass of electron , kg
6 \text{ m_e} = 9.11e-31;
7 q = 1.6e-19;
                 // Charge on electron , C
             // Electric potential applied, V
8 V = 50;
9 lamda = h/(sqrt(2*m_e*q*V));
                                     // de Broglie
      wavelength of an electron, m
10 printf("\nde Broglie wavelength of an electron = \%3
      .1f angstrom", lamda/1e-10);
11
12 // Result
13 // de Broglie wavelength of an electron = 1.7
     angstrom
```

Scilab code Exa 5.3 Diffraction of neutrons at the crystal lattice

```
1 // Scilab code Ex5.3: Pg 158 (2005)
2 clc; clear;
3 h = 6.63e - 34;
                       // Plank's constant, J-s
4 \text{ lamda} = 1e-10;
                        // de Broglie wavelength of
      neutron, m
5 p = h/lamda;
                      // Momentum associated with neutron
      , kg-m/s
6 \text{ m_n} = 1.66 \text{e} - 27;
                         // Mass of neutron, kg
7 e = 1.6e-19; // Energy equivalent of 1 eV, J/eV
8 K = p^2/(2*m_n); // Kinetic energy of neutron, eV
9 printf("\nThe momentum of neutrons = \%4.2 \,\mathrm{e} \,\mathrm{kg-m/s}",
      p)
10 printf ("\nThe kinetic energy of neutrons = \%4.2 fe -20
       J = \%6.4 f \text{ eV}", K*1e+20, K/e);
11
12 // Result
13 // The momentum of neutrons = 6.63 \,\mathrm{e} - 24 \,\mathrm{kg-m/s}
```

```
14 // The kinetic energy of neutrons = 1.32e-20~\mathrm{J} = 0.0828~\mathrm{eV}
```

Scilab code Exa 5.8 Uncertainty principle for macroscopic objects

```
1 // Scilab code Ex5.8: Pg 177 (2005)
2 clc; clear;
3 h_cross = 1.05e-34; // Reduced Plank's constant,
     J-s
4 delta_x = 15; // Uncertainity in position, m
5 v_x = 2; // Velocity of ball, m/s
6 m = 100e-03; // Mass of ball, kg
7 delta_p_x = h_cross/(2*delta_x); // Uncertainity
     in momentum, kg-m/s
8 delta_v_x = delta_p_x/m; // Minimum spread in
     velcoity, m/s
9 U_r = delta_v_x/v_x; // Relative uncertainity in
      velocity of ball
10 printf("\nThe minimum spread in velcoity of ball =
     \%3.1e \text{ m/s}, delta_v_x);
11 printf("\nThe relative uncertainity in velocity of
     ball = \%4.2e", U_r);
12
13 // Result
14 // The minimum spread in velcoity of ball = 3.5e-35
     m/s
15 // The relative uncertainity in velocity of ball =
     1.75e - 35
```

Scilab code Exa 5.9 Kinetic energy of electron confined within the nucleus

```
1 // Scilab code Ex5.9: Pg 178 (2005)
2 clc; clear;
```

```
3 \text{ delta_x} = 1.0e-14/2;
      Uncertainity in position of electron, m
4 = 1.6e-19;
                                              // Charge on
      electron, C
5 \text{ h\_cross} = 1.05e-34;
                                         // Reduced Plank'
      s constant, J-s
                                         // Velocity of
6 c = 3e + 08;
      light, m/s
7 delta_p_x = (h_cross*c)/(2*delta_x*q);
                           // Uncertainity in momentum,
      eV/c
8 E_r = 0.551e+06;
                                                // Rest
      mass energy if electron, eV
9 E = sqrt((delta_p_x)^2 + (E_r)^2);
10 K = E - E_r;
                                              // Kinetic
      energy of electron within nucleus, eV
11 printf("\nKinetic energy of electron within nucleus
     = \%4.1 \, \mathrm{f \ MeV}", K/1e+06);
12
13 // Result
14 // Kinetic energy of electron within nucleus = 19.1
     MeV
```

Scilab code Exa 5.10 Width of spectral lines

```
1 // Scilab code Ex5.10: Pg 178 (2005)
2 clc; clear;
3
4 // Part (a)
5 h_cross = 1.05e-34; // Reduced Plank's constant, J
-s
6 h = 6.63e-34; // Plank's constant, J-s
7 delta_t = 1.0e-08; // Average time to measure the excited state, s
8 delta_E = h_cross/(2*delta_t); // Uncertainty in
```

```
energy of the excited state, J
9 // Since delta_E = h*delta_f, solving for delta_f
10 delta_f = delta_E/h; // Line width of emitted
     light, Hz
11 printf("\nLine width of emitted light = \%2.0 \,\mathrm{e} Hz",
     delta_f);
12
13 // Part (b)
14 c = 3e+08; // Velocity of light, m/s
15 lamda = 500e-09; // Wavelength of spectral line
     , m
16 f_o = c/lamda; // Center frequency of spectral
     line, Hz
17 f_b = delta_f/f_o; // Fractional broadening of
     spectral line
18 printf("\nFractional broadening of spectral line =
     \%3.1e", f_b);
19
20 // Result
21 // Line width of emitted light = 8.0e+06 Hz
\frac{22}{\sqrt{Fractional}} broadening of spectral line = 1.3e-08
```

Quantum mechanics in one dimension

Scilab code Exa 6.2 Probability from wave function

```
1 // Scilab code Ex6.2: Pg 193 (2005)
2 clc; clear;
3 x0 = 1;  // For simplicity assume x0 = 1
4 C = 1/sqrt(x0);  // Normalization constant
5 P = 2*C^2*integrate('exp(-2*x/x0)', 'x', 0, x0);
6 printf("\nThe probability that the particle will be found in the interval -x0 <= x <= x0 is %6.4 f or %4.1 f percent", P, P*100);
7
8 // Result
9 // The probability that the particle will be found in the interval -x0 <= x <= x0 is 0.8647</pre>
```

Scilab code Exa 6.4 Dispersion of matter waves

```
1 // Scilab code Ex6.4: Pg 197 (2005)
```

```
2 clc; clear;
3 delta_x0 = 1e-010; // Initial width of the
     localized space, m
4 delta_xt = 10*delta_x0; // Final width at which
     the wave packet is dispersed, m
5 h_cross = 1.055e-034; // Reduced Planck's
     constant, Js
                   // Mass of the electron, kg
6 m = 9.11e-031;
7 // From Dispersion relation, delta_xt^2 - delta_x0^2
      = \operatorname{sqrt}(h_{cross*t}/(2*m*deltax0)^2), solving for t
8 t = 2*m*sqrt(delta_xt^2 - delta_x0^2)*delta_x0/
     h_cross; // Time which elapses before
     delocalization
9 printf("\nThe time which elapses before the
     localization of electron destroys = \%3.1e s", t);
10 m = 1e-03; // Mass of marble, kg
11 delta_x0 = 1e-004; // Initial width of the
     localized space, m
12 delta_xt = 10*delta_x0; // Final width at which
     the wave packet is dispersed, m
13 t = 2*m*sqrt(delta_xt^2 - delta_x0^2)*delta_x0/
     h_cross; // Time which elapses before
     delocalization
14 printf("\nThe time which elapses before the
     localization of marble destroys = \%3.1e s", t);
15 printf("\nFor all the practical purposes, the marble
      will remain localized for ever");
16 // Result
17 //
```

Scilab code Exa 6.5 Energy Quantization for Macroscopic Object

```
1 // Scilab code Ex6.5: Pg 202 (2005)
2 clc; clear;
3 h = 6.626e-034; // Planck's constant, Js
```

```
4 m = 1e-06; // Mass of the object, kg
5 n = 1; // Quantum number for minimum energy level
6 L = 1e-02; // Distance between two rigid walls,
7 E1 = n^2*h^2/(8*m*L^2); // Minimum energy of the
      object, J
8 \text{ v1} = \text{sqrt}(2*\text{E1/m}); // Minimum speed of the object
     , m/s
9 v = 3.00e-02; // Given speed of the objet, m/s
10 E = 1/2*m*v^2; // Energy of the object for given
      speed, J
11 n = sqrt(8*m*L^2*E)/h; // Quantum number
      corresponding to the given speed
12 printf ("\nThe minimum speed of the object = \%4.2 \,\mathrm{e} m/
      s", v1);
13 printf("\nThe quantum number corresponding to the
      speed of \%4.2 \,\mathrm{e} m/s is n = \%4.2 \,\mathrm{e}, v1, n);
14
15 // Result
16 // The minimum speed of the object = 3.31e-26 m/s
17 // The quantum number corresponding to the speed of
      3.31e-26 \text{ m/s} \text{ is } n = 9.06e+23
```

Scilab code Exa 6.6 Model of an Atom

```
state energy of atomic electron, eV
8 E2 = 2^2 \times E1;
                  // Excited state energy of the
      atomic electron, eV
9 delta_E = E2- E1; // Energy that must be applied
      to the electron to raise it from ground to the
      first excited state, eV
10 h = 2*%pi*h_cross; // Planck's constant, Js
11 lambda = h*c/delta_E; // Wavelength of the photon
      to cause the electron transition, nm
12 printf("\nThe energy that must be applied to the
      electron to raise it from ground to the first
      excited state = \%4.1 \, \text{f eV}", delta_E);
13 printf("\nThe wavelength of the photon to cause this
       electron transition = \%4.1 \, \text{f} \, \text{nm}, lambda);
14 printf("\nThis wavelength is in the far ultraviolet
      region.");
15
16 // Result
17 // The energy that must be applied to the electron
      to raise it from ground to the first excited
      state = 28.2 \text{ eV}
18 // The wavelength of the photon to cause this
      electron transition = 44.0 \text{ nm}
19 // This wavelength is in the far ultraviolet region.
```

Scilab code Exa 6.7 Probabilities for a particle in a Box

```
// Scilab code Ex6.7: Pg 205 (2005)
clc; clear;
L = 1; // For simplicity assume length of finite
    square well to be unity, m
P = 2/L*integrate('sin(%pi*x/L)^2', 'x', L/4, 3*L/4)
    ; // Probability that the particle will be found
    in the middle half of the well
printf("\nThe probability that the particle will be
```

```
found in the middle half of the well = %5.3f", P);

6
7 // Result
8 // The probability that the particle will be found in the middle half of the well = 0.818
```

Scilab code Exa 6.8 Ground state energy of an electron confined to a potential well

```
2 // Scilab code Ex6.8: Pg 211 (2005)
3 clc; clear;
4 c = 1;
              // Assume speed of light to be unity, m/
5 L = 0.200; // Width of the potential well, nm
6 h_cross = 197.3; // Reduced Planck's constant, eV
     . nm/c^2
7 m = 511e+03;
                  // Mass of an electron, eV/c^2
8 U = 100; // Height of potential well, eV
9 delta = h_cross/sqrt(2*m*U); // Decay length of
     electron, nm
10 L = L + 2*delta; // Effective length of the
     infinite potential well, nm
11 E = \%pi^2*(h_cross/c)^2/(2*m*L^2); // Ground state
     energy of the electron with effective length, eV
12 U = U - E; // New potential energy, eV
13 delta = h_cross/sqrt(2*m*U); // New decay length
     of electron, nm
14 printf("\nThe ground state energy of an electron
     confined to the potential well = \%4.2 \,\mathrm{f} eV", E);
15 printf("\nThe new decay length of the electron = \%6
     .4 f nm", delta);
16
17 // Result
```

```
18 // The ground state energy of an electron confined to the potential well = 6.58~\rm eV
19 // The new decay length of the electron = 0.0202~\rm nm
```

Scilab code Exa 6.12 The quantum oscillator in nonclassical region

Scilab code Exa 6.13 Quantization of vibrational energy

```
8 delta_E = h_cross*omega; // Energy spacing
     between quantum levels, eV
9 printf("\nThe energy spacing between quantum levels
     for spring-mass system = \%4.2e eV\nwhich is far
     below present limits of detection", delta_E);
10 // For vibrating hydrogen molecule
11 K = 510.5; // Force constant of the hydrogen
     molecule system, N/m
12 mu = 8.37e-028; // Reduced mass of the hydrogen
     molecule, kg
13 omega = sqrt(K/mu); // Angular frequency of
      oscillations, rad/s
14 delta_E = h_cross*omega; // Energy spacing
     between quantum levels, eV
15 printf("\nThe energy spacing between quantum levels
     for hydrogen molecule = \%5.3 \,\mathrm{f} eV\nwhich can be
     measured easily", delta_E);
16
17 // Result
18 // The energy spacing between quantum levels for
     spring-mass system = 2.08e-15 eV
19 // which is far below present limits of detection
20 // The energy spacing between quantum levels for
     hydrogen molecule = 0.514 eV
21 // which can be measured easily
```

Scilab code Exa 6.14 Standard Deviations from Averages

```
6 N = 18; // Total number of data points
7 	 for i = 1:1:N
      sum_x = sum_x + x(i); // Sum of data
       sum_x = sum_x = v(i)^2; // Sum of square
         of data
10 \text{ end}
11 x_{av} = sum_x/N; // Average of data
12 x_sq_av = sum_x_sq/N; // Mean square value
13 sigma = sqrt(x_sq_av-x_av^2); // Standard
     deviation from averages
14 printf("\nThe standard deviation from averages = %4
     .2 f", sigma);
15
16
17 // Result
18 // The standard deviation from averages = 1.93
```

Scilab code Exa 6.15 Location of a particle in the box

```
1 // Scilab code Ex6.15: Pg 219 (2005)
2 clc; clear;
3 L = 1; // For simplicity assume length of the box
     to be unity, unit
4 \text{ x\_av} = 2*L/\%pi^2*integrate('theta*sin(theta)^2', '
     theta', 0, %pi); // Average value of x
5 x_sq_av = L^2/%pi^3*(integrate('theta^2', 'theta',
     0, \%pi)-integrate('theta^2*\cos(2*theta)', 'theta'
     , 0, %pi)); // Average value of x square
6 delta_x = sqrt(x_sq_av - x_av^2); // Uncertainty
     in the position for this particle, unit
7 printf("\nThe average position of the particle in
     the box = L/\%1d", x_av*4);
8 printf("\nThe uncertainty in the position for the
     particle = \%5.3 \, \text{fL}", delta_x);
9
```

```
10 // Result  
11 // The average position of the particle in the box = L/2  
12 // The uncertainty in the position for the particle = 0.181L
```

Tunnelling phenomena

Scilab code Exa 7.1 Transmission coefficient for an oxide layer

```
1 // Scilab code Ex7.1: Pg 235 (2005)
2 clc; clear;
3 c = 3e+08; // Velocity of light, m/s
4 \text{ m_e} = 511e+03/(c^2);
                         // Mass of electron, eV
5 U = 3.00; // Ground state energy neglecting E, eV
6 \text{ h\_cross} = (1.973\text{e}+03)/\text{c}; // Reduced planck's
      constant, eV
7 alpha = sqrt(2*m_e*U)/h_cross;
               // Thickness of the layer, angstrom
9 T = 1/(1+1/4*10^2/(7*3)*sinh(alpha*L)^2);
10 printf("\nThe transmission coefficient for the layer
       thickness of");
11 printf("\n^{2}d angstrom = \%5.3e", L, T);
12 L = 10; // // Thickness of the layer, angstrom
13 T = 1/(1+1/4*10^2/(7*3)*sinh(alpha*L)^2);
14 printf("\n\%2d angstrom = \%5.3e", L, T);
15
16 // Result
17 // The transmission coefficient for the layer
      thickness of
18 // 50 \text{ angstrom} = 9.628 e - 39
```

Scilab code Exa 7.2 Tunnelling current through an oxide layer

Scilab code Exa 7.5 Tunnelling in a parallel plate capacitor

```
9 printf("\nTunelling current in parallel plate
        capacitor = %4.2 f pA", I/1e-12);
10 printf("\n");
11
12 // Result
13 // Tunelling current in parallel plate capacitor =
        0.21 pA
```

Scilab code Exa 7.6 Estimating halflives of Thorium and Polonium

```
1 // Scilab code Ex7.6: Pg 244 (2005)
2 clc; clear;
3 \ Z_T = 88;
              // Atomic number of daughter nucleus
Rydberg in Atomic Physics
  T_T = \exp(-4*\%pi*Z_T*sqrt(E_o/E_T) + 8*sqrt((Z_T*R)/
     r_o)); // Transmission factor in case of
     Thorium
9 f = 1e+21; // Frequency of collisions, Hz
10 lamda_T = f*T_T; // Decay rate in case of Thorium
    , s^{(-1)}
11 t_T = 0.693/lamda_T; // Half-life time of
     Thorium, s
12 Z_P = 82; // Atomic number of daughter nucleus
13 E_P = 8.95e+06;
                     // Energy of ejected alphas, eV
14 R = 9.00e-15; // Nuclear radius, m
15 r_o = 7.25e-15; // Bohr radius, m
16 E_o = 0.0993e+06; // Energy unit, eV
17 T_P = \exp(-4*\%pi*Z_P*sqrt(E_o/E_P) + 8*sqrt((Z_P*R)/
     r_o)); // Transmission factor in case of
     Polonium
18 f = 1e+21; // Frequency of collisions, Hz
```

Quantum Mechanics in Three Dimensions

Scilab code Exa 8.4 Orbital quantum number for a stone

Scilab code Exa 8.6 Space quantisation for an atomic electron

```
1 // Scilab code Ex8.6: Pg 272 (2005)
2 clc; clear;
3 // For simplicity let h_{cross} = 1
4 h_cross = 1; // Reduced planck's constant
5 1 = 3; // Given orbital quantum number
6 L = \mathbf{sqrt}(1*(1+1)*h\_cross); // Magnitude of total
      angular momentum, in h_cross units
7 \text{ m\_1} = [-3, -2, -1, 0, 1, 2, 3];
8 L_z = m_1*h_cross; // Allowed values of L_z
9 cos\_theta = L_z/L;
10 theta = acosd(L_z/L); // Orientations of L_z,
      degrees
11 \quad for \quad i = 1:1:7
       if theta(i) > 90 then
13
           theta(i) = theta(i)-180;
14
       end
15 end
16 printf("\nThe magnitude of total angular momentum =
      2*sqrt(%d)*h_cross\n", L^2/4);
17 printf("\nThe allowed values of L_z in units of
      h_cross are :");
18 disp(L_z);
19 printf("\nThe orientations of L_z in degrees are:");
20 disp(theta);
21
22 // Result
23 // The magnitude of total angular momentum = 2*sqrt
      (2) * h_cross
24
  // The allowed values of L<sub>z</sub> in units of h<sub>cross</sub> are
25
  // - 3. - 2. - 1. 0. 1.
26
                                           2.
                                                 3.
27
28 // The orientations of L<sub>z</sub> in degrees are:
29 \ // \ - 30. \ - 54.73561 \ - 73.221345
      73.221345 54.73561 30.
```

Scilab code Exa 8.7 Energy of Hydrogen atom at first excited state

```
1 // Scilab code Ex8.7: Pg 281 (2005)
2 clc; clear;
3 k = 9e+09; // Coulomb constant, N/Sq.m/C
4 e = 1.6e-019; // Electronic charge, C
5 a_0 = 0.529e-010; // Bohr's radius, m
6 n = 2; // Principal quantum number
7 1 = [0, 1]; // Orbital quantum number
8 \text{ m_l} = [-1, 0, 1]; // Orbital magnetic quantum
     number
9 Z = 1; // Atomic number of hydrogen
10 E2 = -k*e^2/(2*a_0)*Z^2/n^2; // Energy of first
      excited level of hydrogen,
11 printf("\nThe energy of first excited level of
      hydrogen = \%3.1 \,\mathrm{f} eV", E2/e);
12
13 // Result
14 // The energy of first excited level of hydrogen =
      -3.4 \text{ eV}
```

Scilab code Exa 8.8 Probabilities for the Electron in Hydrogen

```
1 // Scilab code Ex8.8: Pg 284 (2005)
2 clc; clear;
3 P = 1/2*integrate('z^2*exp(-z)', 'z', 2, 100); //
    Take some large value of upper limit
4 printf("\nP(electron in the ground state of hydrogen
    will be found outside the first Bohr radius) =
    %4.1f percent", P*100);
```

```
6 // Result
7 // P(electron in the ground state of hydrogen will be found outside the first Bohr radius) = 67.7 percent
```

Atomic Structure

Scilab code Exa 9.1 Magnetic energy of electron in Hydrogen

```
1 // Scilab code Ex9.1: Pg 300 (2005)
2 clc; clear;
3 // Since mu_B = (e*h_cross)/(2*m_e)
4 mu_B = 9.27e-24; // Bohr magneton, J/T
5 B = 1.00; // Magnetic flux, T
6 // Since 1 eV = 1.6e-19 J
7 \text{ eV} = 1.6e-19; // Energy, J
8 h_cross = 6.58e-16; // Reduced Plank's constant,
     eV-s
9 omega_L = (mu_B*B)/(eV*h_cross); // Larmor
     frequency, rad/s
10 printf("\nLarmour frequency at n = 2 is \%4.2 \text{ fe} + 10
     rad/s", omega_L*1e-10);
11
12 // Result
13 // Larmour frequency at n = 2 is 8.81e+10 rad/s
```

Scilab code Exa 9.2 Angles between z axis and the spin angular momentum vector

```
1 // Scilab code Ex9.2: Pg 307 (2005)
2 clc; clear;
3 h_cross = 6.58e-16; // Reduced Plank's constant,
4 S = h_cross*sqrt(3)/2; // Spin angular momentum,
     eV-s
                         // Z-component of spin angular
5 S_z = h_{cross/2};
     momentum, eV-s
6 \text{ theta_up = } acosd(S_z/S);
7 theta_down = acosd(-S_z/S);
8 printf("\nFor up spin state, theta = \%4.2 \,\mathrm{f} degrees",
      theta_up);
9 printf("\nFor down spin state, theta = \%5.1f degrees
     ", theta_down);
10
11 // Result
12 // For up spin state, theta = 54.74 degrees
13 // For down spin state, theta = 125.3 degrees
```

Scilab code Exa 9.3 Zeeman Spectrum of Hydrogen Including Spin

```
12
       if m_1(i) < 0 then
            sig = '-';
13
14
       else
            sig = '+';
15
16
       end
17
       printf(" (\%4.2 \text{ f } \%s \ \%4.2 \text{ e}) ", E2, sig, abs(E_Z*
          m_l(i));
18 end
19
20 // Result
21 // The energies of the electron (in eV) in n=2
      state are:
22 // (-3.40 - 1.16e - 04) (-3.40 - 5.79e - 05) (-3.40 +
      (-3.40 + 5.79e - 05) (-3.40 + 1.16e - 04)
```

Scilab code Exa 9.4 Spin orbit energy of Sodium doublet

```
1 // Scilab code Ex9.4: Pg 311 (2005)
2 clc; clear;
               // Product of plank's constant &
3 \text{ hc} = 1240;
      velocity of light, eV
4 lamda_1 = 588.995;
                        // Wavelength of first doublet
       of Na lines, nm
  lamda_2 = 589.592; // Wavelength of second
     doublet of Na lines, nm
6 delta_E = hc*(lamda_2 - lamda_1)/(lamda_1*lamda_2);
          // Spin orbit energy, eV
7 printf("\nSpin orbit energy from doublet spacing =
     \%4.2 \text{ fe} -03 \text{ eV}", delta_E*1e+03);
8
9 // Result
10 // Spin orbit energy from doublet spacing = 2.13e-03
      eV
```

Scilab code Exa 9.5 Ground state of Helium atom

```
// Scilab code Ex9.5: Pg 316 (2005)
clc; clear;
n = 1;    // Principal quantum number
Z = 2;    // Atomic number of Helium
E_a = (-13.6*Z^2)/n^2;    // Energy of the
        electron in state 'a', eV
E_b = (-13.6*Z^2)/n^2;    // Energy of the
        electron in state 'b', eV

E = E_a + E_b;    // Total electronic energy of
        Helium, eV
printf("\nTotal electronic energy of Helium = %5.1f
        eV", E);
// Result
// Total electronic energy of Helium = -108.8 eV
```

Scilab code Exa 9.6 Effective atomic number for 3s electron in Na

```
// Scilab code Ex9.6: Pg 317 (2005)
clc; clear;
E_i = 5.14; // Ionisation energy of Na, eV
n = 3; // Principal quantum number
Z_eff = sqrt((n^2*E_i)/13.6); // Effective atmic number
printf("\nEffective atomic number for 3s electron in Na = %4.2f", Z_eff);
// Result
// Effective atomic number for 3s electron in Na = 1.84
```

Statistical Physics

Scilab code Exa 10.1 Population of excited states with respect to ground states in Hydrogen

```
1 // Scilab code Ex10.1: Pg 340 (2005)
2 clc; clear;
3 // Part (a)
               // Energy of ground state, eV
4 E1 = -13.6;
5 E2 = -3.40; // Energy of first excited state, eV
6 E3 = -1.51; // Energy of second excited state, eV
7 g1 = 2; // Degeneracy for ground state
8 g2 = 8; // Degeneracy for first excited state
             // Degeneracy for second excited state
9 g3 = 18;
10 kB = 8.617e-05; // Boltzmann constant, eV/K
11 Ta = 300; // Temperature, K
12 // As n_2/n_1 = (g_2*A*e^(-E_2/(k_B*T)))/(g_1*A*e^(-E_2/(k_B*T)))
      E_{-1}/(k_{-}B*T)), on simplifying we get
13 N21 = (g2/g1)*exp((E1 - E2)/(kB*Ta));
      population of first excited state w.r.t ground
14 printf("\nThe population of first excited state w.r.
      t. ground state at \%3d K = \%1d, Ta, N21);
15
16 // Part (b)
```

```
17 Tb = 20000; // Temperature, K
18 n21 = (g2/g1)*exp((E1 - E2)/(kB*Tb)); // The
      population of first excited state w.r.t ground
      state
19 n31 = (g3/g1)*exp((E1 - E3)/(kB*Tb)); // The
      population of second excited state w.r.t ground
      state
20 printf("\nThe population of first excited state w.r.
      t. ground state at \%4d~K = \%6.4f", Tb, n21);
21 printf("\nThe population of second excited state w.r
      .t ground state at \%4d K = \%6.4 f", Tb, n31);
22
23 // Part (c)
24 E_strength = (g3/g2)*exp((E2 - E3)/(kB*Tb));
      Emission strength
25 printf("\nEmission strength of spectral lines = \%3.2
      f", E_strength);
26
27 // Result
28 // The population of first excited state w.r.t.
     ground state at 300 \text{ K} = 0
29 // The population of first excited state w.r.t.
      ground state at 20000 \text{ K} = 0.0108
30 // The population of second excited state w.r.t
      ground state at 20000 \text{ K} = 0.0081
31 // Emission strength of spectral lines = 0.75
```

Scilab code Exa 10.2 Validity of Maxwell Boltzmann Statistics

```
1 // Scilab code Ex10.2: Pg 345 (2005)
2 clc; clear;
3 // Part (a)
4 N = 6.02e+23; // Number of molecules at STP
5 m = 3.34e-27; // Mass of H-molecule, kg
6 h_cross = 1.055e-34; // Reduced Plank's constant,
```

```
J-s
7 V = 22.4e-03;
                 // Volume occupied by molecules at
      STP, m<sup>3</sup>
8 T = 273;
              // Absolute temperature, K
9 k_B = 13.8e-24; // Boltzmann constant, J/K
10 x_H = N/V*h_cross^3/(8*(m*k_B*T)^(3/2)); //
      Particle concentration at STP
11 printf("\nx_H = \%4.2e", x_H);
12 if (x_H < 1)
13 printf("\nThe criterion for the validity of
      Maxwell Boltzmann Statistics is satisfied in
     hydrogen.");
14
15 // Part (b)
16 d_Ag = 10.5; // Density of silver, g/m^3
17 M_Ag = 107.9; // Molar weight of silver, g
18 NV_Ag = (d_Ag/M_Ag)*(6.02e+023)*1e+06; // Density
       of free electrons in silver, electrons/m<sup>3</sup>
19 me = 9.109e-031; // Mass of an electron, kg
20 T = 300; // Room temperature, K
21 \text{ x_Ag} = ((NV_Ag)*h_cross^3)/(8*(me*k_B*T)^(3/2));
     // Particle concentration at STP
22 printf("\nx_Ag = \%4.2 \, \text{f}", x_Ag);
23 \text{ if } (x_Ag > 1)
24 printf("\nThe criterion for the validity of
      Maxwell Boltzmann Statistics does not hold for
      electrons in silver");
25
26 // Result
27 // x_H = 8.84 e - 08
28 // The criterion for the validity of
     Maxwell Boltzmann Statistics is satisfied in
     hydrogen.
29 // x_Ag = 37.13
30 // The criterion for the validity of
      Maxwell Boltzmann Statistics does not hold for
      electrons in silver
```

Scilab code Exa 10.3 Photons in a box

```
1 // Scilab code Ex10.3: Pg 352 (2005)
2 clc; clear;
3 // Part (b)
4 I = integrate('z^2/(exp(z)-1)', 'z', 0, 100); //
     Integral value
                   // Boltzmann constant, eV/K
5 \text{ k}_B = 8.62e-05;
6 T = 3000; // Temperature, K
7 h = 4.136e-15; // Plank's constant, eV
8 c = 3e+10; // Velocity of light, cm/s
9 N_V = 8*\%pi*((k_B*T)/(h*c))^3*I; // Number of
     photons/cc
10 printf("\nThe density of photons inside the cavity =
      \%4.2 \text{ fe} + 11 \text{ photons/cc}, N_V*1e-11);
11
12 // Result
13 // The density of photons inside the cavity = 5.47e
     +11 photons/cc
```

Scilab code Exa 10.4 Specific Heat of Diamond

```
1 // Scilab code Ex10.4: Pg 356 (2005)
2 clc; clear;
3
4 // Part (a)
5 k_B = 8.62e-05; // Boltzmann constant, eV/K
6 T_E = 1300; // Temperature, K
7 h_cross = 6.58e-16; // Reduced plank's constant, eV-s
8 omega = (k_B*T_E)/h_cross; // Frequency of vibration of carbon atom in diamond, Hz
```

```
9 spacing = (h_cross*omega); // Spacing between
      adjacent oscillator energy level, eV
10 printf("\nFrequency of vibration of carbon atom in
     diamond = \%4.2e Hz", omega);
11 printf("\nSpacing between adjacent oscillator energy
       level = \%5.3 f eV", spacing);
12
13 // Part (b)
14 \text{ T}_{R} = 300;
                 // Room temperature, K
15 p = \exp((h_{cross*omega})/(k_B*T_R)); // For
      simplication
16 E_R = (h_{cross*omega})/(p-1); // Average energy of
      oscillator at room temperature, eV
17 T = 1500; // Temperature, K
18 q = \exp((h_{cross*omega})/(k_B*T)); // For
      simplication
19 E_{bar} = (h_{cross*omega})/(q-1); // Average energy
      at 1500 K, eV
20 printf("\nAverage energy of oscillator at room
      temperature = \%7.5 \, \text{f eV}", E_R);
21 printf("\nAverage oscillator energy at %4d K = \%7.5 f
      eV", T, E_bar);
22
23
24 // Result
25 // Frequency of vibration of carbon atom in diamond
     = 1.70 e + 14 Hz
  // Spacing between adjacent oscillator energy level
     = 0.112 \text{ eV}
27 // Average energy of oscillator at room temperature
     = 0.00149 \text{ eV}
28 // Average oscillator energy at 1500 K = 0.0813 eV
```

Scilab code Exa 10.5 Fermi Energy of Gold

```
1 // Scilab code Ex10.5: Pg 360 (2005)
2 clc; clear;
4 // Part (a)
5 h = 6.625e-34; // Plank's constant, J-s
6 m_e = 9.11e-31; // Mass of electron, kg
7 density = 19.32/(1e-02)^3; // Density of gold, g/m
      ^3
8 weight = 197; // Molar weight, g/mol
9 N_V = (density/weight)*6.02e+23; // Number of
      electrons per mole
10 E_F = (h^2/(2*m_e*1.6e-19))*((3*(N_V))/(8*\%pi))
      ^(2/3); // Fermi energy of Gold at 0 K
11 printf("\nFermi energy of Gold at 0 \text{ K} = \%4.2 \text{ f eV}",
      E_F);
12
13 // Part (b)
14 v_F = sqrt((2*E_F*1.6e-19)/m_e); // Fermi speed of
       Gold at 0 K
15 printf("\nFermi speed of Gold at 0 \text{ K} = \%4.2 \text{ fe} + 06 \text{ m/s}
      ", v_F*1e-06);
16
17 // Part (c)
18 k_B = 8.62e-05; // Boltzmann constant, eV/K
19 T_F = (E_F)/(k_B); // Fermi temperature for Gold
      at 0 K, K
20 printf ("\nFermi temperature for Gold at 0 \text{ K} = \%5 \text{d K}"
      , T_F);
21
22 // Result
23 // Fermi energy of Gold at 0 \text{ K} = 5.53 \text{ eV}
24 // Fermi speed of Gold at 0 \text{ K} = 1.39 \text{ fe} + 06 \text{ m/s}
25 // Fermi temperature for Gold at 0 K = 64201 K
```

Molecular Structure

Scilab code Exa 11.1 Rotation of CO molecule

```
1 // Scilab code Ex11.1: Pg 380 (2005)
2 clc; clear;
3 // Part (a)
4 f = 1.15e+11; // Frequency of transitions, Hz
5 omega = 2*(%pi)*f; // Angular frequency of
      absorbed radiations, Hz
6 h_cross = 1.055e-34; // Reduced planks constant, J
7 // Since E = (h_cross)^2/I_CM = h_cross*omega,
     solving for LCM
8 I_CM = h_cross/omega; // Moment of inertia of
      molecule about its center of mass, kg-m<sup>2</sup>
9 printf("\nThe moment of inertia of molecule about
      its center of mass = \%4.2 \,\mathrm{e} kg-m<sup>2</sup>, I_CM);
10
11 // Part (b)
12 m_0 = 16; // Mass of oxygen atom, a.m.u
13 m_C = 12; // Mass of carbon atom, a.m.u
14 \text{ mu} = (m_0 * m_C * 0.166e-26)/(m_0 + m_C);
                                                      //
     Reduced mass, kg
15 // Since I_CM = \text{mew}*R_o^2, solving for R_o
```

Scilab code Exa 11.2 Variation of CO molecule

```
1 // Scilab code Ex11.2: Pg 383 (2005)
2 clc; clear;
3
4 // Part (a)
5 f = 6.42e+13; // Frequency of absorption, Hz
6 omega = 2*(%pi)*f; // Angular frequency of
     absorbed radiations, Hz
7 mu = 1.14e-26; // Reduced mass of CO molecule, kg
8 K = mu*(omega^2); // Effective force constant of
     CO molecule, N/m
9 printf("\nThe effective force constant of CO
     molecule = \%4.2 \,\mathrm{e} N/m", K);
10
11 // Part (b)
12 h_cross = 1.055e-34; // Reduced Planck's constant,
      J-s
13 A = sqrt(h_cross/(mu*omega)); // Amplitude of
      vibrations, m
14 printf("\nThe amplitude of vibrations = \%7.5 \,\mathrm{f} nm", A
     /1e-09);
15
16 // Result
```

```
17 // The effective force constant of CO molecule = 1.85\,\mathrm{e} + 003\,\mathrm{N/m} 18 // The amplitude of vibrations = 0.00479\,\mathrm{nm}
```

The Solid State

Scilab code Exa 12.1 Classical free electron model

```
1 // Scilab code Ex12.1: Pg 418 (2005)
2 clc; clear;
3 // Part (a)
4 k_B = 1.38e-23; // Boltzmann constat, J/K
5 \text{ m_e} = 9.11\text{e}-31; // Mass of electron, kg
6 T = 300; // Temperature, K
7 N_A = 6.023e+023; // Avogadro's number
8 \text{ v_rms} = \text{sqrt}((3*k_B*T)/m_e); // Root mean
     square velocity of electrons, m/s
9 I = 10; // Electric current, A
               // Area of cross-section of copper
10 A = 4e-06;
     wire, m<sup>2</sup>
11 J = I/A; // Current density, A-m^{(-2)}
12 d = 8.96; // Density of copper at room
     temperature, g/cc
13 M = 63.5; // Atomic mass of Cu, g
14 n = d*N_A/M*1e+06; // Number of electrons per
     metre cube
15 e = 1.6e-19; // Charge on electron, C
16 v_d = J/(n*e); // Drift velocity, m/s
17 v_d_rms = v_d/v_rms; // Ratio of drift speed to
```

```
rms speed
18 printf("\nThe ratio of drift speed to rms speed is =
      \%3.1e", v_d_rms);
19
20 // Part (b)
21 L = 2.6e-10;
22 tau = L/v_rms; // Average time between two
      collisions, s
23 printf("\nAverage time between two collisions = \%2.2
     e s", tau);
24
25 // Part (c)
26 \text{ sigma} = (n*e^2*L)/sqrt(3*k_B*T*m_e);
      Conductivity of copper, per ohm-m
27 printf("\nConductivity of copper at room temperature
      = %3.1e per ohm-m", sigma);
28
29
30 // Result
31 // The ratio of drift speed to rms speed is = 1.6e
     -009
32 // Average time between two collisions = 2.23e-015 s
33 // Conductivity of copper at room temperature = 5.3e
     +006 per ohm-m
```

Scilab code Exa 12.2 Conduction in diamond

```
1 // Scilab code Ex12.2: Pg 429 (2005)
2 clc; clear;
3 V = 7; // Energy gap, V
4 L = 5e-08; // Mean free path , m
5 E = V/L; // Electric field , V/m
6 printf("\nThe electric field strength required to produce conduction in diamond = %3.1 fe+08 V/m", E *1e-08);
```

```
7 printf("\n");
8
9 // Result
10 // The electric field strength required to produce conduction in diamond = 1.4e+08 V/m
```

Scilab code Exa 12.3 Forward and reverse currents in diode

```
// Scilab code Ex12.3: Pg 436 (2005)
clc; clear;
e_V = 1;  // Energy applied to diode, eV
k_B_T = 0.025;  // Product of Boltzmann constant
    and temperature, eV
// For simplicity let (q*V)/(k_B*T) = x
x = (e_V/(k_B_T));
I_f_r = (exp(x)-1)/(exp(-x)-1);  // Ratio of
    forward current to reverse current in diode
printf("\nThe ratio of forward current to reverse
    current in diode = %3.1 fe+17", I_f_r*1e-17);
// Result
// The ratio of forward current to reverse current
in diode = -2.4e+17
```

Nuclear Structure

Scilab code Exa 13.1 The Atomic Mass Unit

```
1  // Scilab code Ex13.1: Pg 466 (2005)
2  clc; clear;
3  M = 0.012;  // Atomic mass of carbon, kg
4  N_A = 6.02e+023;  // Avogadro's number
5  m = M/N_A;  // Mass of one Carbon-12 atom, kg
6  // As m = 12*u, twelve mass units, solving for u
7  u = m/12;  // The atomic mass unit, kg
8  printf("\nThe atomic mass unit = %4.2e kg", u);
9
10  // Result
11  // The atomic mass unit = 1.66e-27 kg
```

Scilab code Exa 13.2 The Volume and Density of Nucleus

```
1 // Scilab code Ex13.2: Pg 468 (2005)
2 clc; clear;
3 r0 = 1.2e-015; // Nuclear mean radius, m
4 m = 1.67e-027; // Mass of the nucleon, kg
```

```
5 rho_0 = 3*m/(4*%pi*r0^3);  // Density of the
    nucleus, kg per metre cube
6 printf("\nThe mass of the nucleus = Am approx.");
7 printf("\nThe volume of the nucleus = 4/3*pi*r0^3*A"
    );
8 printf("\nThe density of the nucleus = %3.1e kg per
    metre cube", rho_0);
9
10 // Result
11 // The mass of the nucleus = Am approx.
12 // The volume of the nucleus = 4/3*pi*r0^3*A
13 // The density of the nucleus = 2.3e+17 kg per metre
    cube
```

Scilab code Exa 13.3 Binding energy of the Deuteron

```
1  // Scilab code Ex13.3: Pg 473 (2005)
2  clc; clear;
3  M2 = 2.014102;  // Atomic mass of deuteron, u
4  M_H = 1.007825;  // Atomic mass of hydrogen, u
5  m_n = 1.008665;  // Mass of a neutron, u
6  E_b = (M_H + m_n - M2)*931.494;  // Binding energy of the deuteron, MeV/u
7  printf("\nThe binding energy of the Deuteron = %5.3 f MeV", E_b);
8  // Result
10  // The binding energy of the Deuteron = 2.224 MeV
```

Scilab code Exa 13.4 Left out sample during radioactive decay

```
1 // Scilab code Ex13.4: Pg 482 (2005)
2 clc; clear;
```

Scilab code Exa 13.5 The Activity of Radium

```
1 // Scilab code Ex13.5: Pg 483 (2005)
2 clc; clear;
                                // Half life of
3 \text{ T_half} = 1.6e + 03 * 3.16e + 07;
      radioactive nucleus Ra-226, s
4 lambda = 0.693/T_half; // Decay constant of Ra-226,
      per second
5 NO = 3.0e+016; // Number of radioactive nuclei at t
      = 0
6 RO = lambda*NO; // Activity of sample at t = 0,
      decays/s
7 t = 2.0e + 003 * 3.16e + 07; // Time during which the
     radioactive disintegration takes place, s
8 R = R0 \times exp(-1 \times lambda \times t); // Decay rate after 2.0e
     +003 years, decay/s
9 printf("\nThe decay constant of Ra-226 = \%3.1e per
      second", lambda);
10 printf("\nThe activity of sample at t = 0 = \%4.1 f
     micro-Ci", R0/(3.7e+010*1e-006));
11 printf("\nThe activity of sample after \%3.1e years =
      \%3.1e \text{ decays/s}", t, R);
```

```
12
13 // Result
14 // The decay constant of Ra-226 = 1.4e-11 per second
15 // The activity of sample at t = 0 = 11.1 micro-Ci
16 // The activity of sample after 6.3e+10 years = 1.7e
+05 decays/s
```

Scilab code Exa 13.6 The Activity of Carbon

```
1 // Scilab code Ex13.6: Pg 483 (2005)
2 clc; clear;
3 M = 11.0; // Atomic mass of C-11 isotope, g
4 NA = 6.02e+023; // Avogadro's number
5 \text{ m} = 3.50 \text{e} - 06; // Given mass of Cabon - 11, g
7 // Part (a)
8 \quad N = m/M*NA;
                   // Number of C-11 atoms in 3.50
     micro-g of sample
9 printf("\nThe number of C-11 atoms in %4.2 f micro-g
      of sample = \%4.2e nuclei", m/1e-06, N);
10
11 // Part (b)
12 \text{ T_half} = 20.4*60;
                      // Half life of radioactive
      nucleus C-11, s
  lambda = 0.693/T_half; // Decay constant of C-11,
13
      per second
14 RO = lambda*N; // Activity of sample at t = 0,
      decays/s
15 t = 8.00*60*60; // Time during which the
     radioactive disintegration takes place, s
16 R = R0*exp(-1*lambda*t); // Decay rate after 2.0e
     +003 years, decay/s
17
18 printf("\nThe activity of C-11 sample at t = 0 is %4
     .2e decays/s", RO);
```

Scilab code Exa 13.7 The Radiactive Isotope of Iodine

```
1 // Scilab code Ex13.7: Pg 484 (2005)
2 clc; clear;
3 RO = 5; // Activity of I-131 isotope at the time of
     shipment, mCi
4 R = 4.2;
              // Activity of I-131 isotope at the time
      of receipt by the medical laboratory, mCi
5 T_half = 8.04; // Half life of radioactive
     nucleus I-131, days
6 lambda = 0.693/T_half; // Decay constant of C-11,
     per second
7 // As \log (R/R0) = -lambda*t, solving for t
                             // Time that has elapsed
8 t = -1/lambda*log(R/R0);
      between two measurements, days
9 printf("\nThe time that has elapsed between two
     measurements = \%4.2 \, f days", t);
10
11 // Result
12 // The time that has elapsed between two
     measurements = 2.02 days
```

Scilab code Exa 13.8 Energy Liberated during Decay of Radium

```
1 // Scilab code Ex13.8: Pg 486 (2005)
2 clc; clear;
3 M_X = 226.025406; // Atomic mass of Ra-226, u
4 M_Y = 222.017574; // Atomic mass of Rn-222, u
5 M_alpha = 4.002603; // Mass of alpha particle, u
6 Q = (M_X - M_Y - M_alpha)*931.494; // Q-value for Radium Decay, MeV/u
7 printf("\nThe Q-value for Radium Decay = %4.2 f MeV", Q);
8
9 // Result
10 // The Q-value for Radium Decay = 4.87 MeV
```

Scilab code Exa 13.9 Probability of Alpha Decay

```
1 // Scilab code Ex13.9: Pg 487 (2005)
2 clc; clear;
              // Atomic number of radon
3 Z = 86;
              // Mass number of radon
4 A = 222;
              // Coulomb constant, N-metre square per
5 k = 9e + 09;
     C-square
6 = 1.6e-019; // Charge on an electron, C
7 r0 = 7.25e-015; // Bohr radius for alpha particle, m
8 E0 = k*e^2/(2*r0*1e+06*e); // Rydberg energy, MeV
9 R = 1.2e-015*A^(1/3); // Radius of radon nucleus,
10 E = 5;
           // Disintegration energy during alpha decay,
      MeV
11 T_E = \exp(-4*\%pi*Z*sqrt(E0/E)+8*sqrt(Z*R/r0));
     Decay probability for alpha disintegration
12 printf("\nThe decay probability for alpha
     disintegration at %d MeV energy = \%4.2e", E, T_E)
```

```
13  
14 // Result  
15 // The decay probability for alpha disintegration at  
5 MeV energy = 1.29e-34
```

Scilab code Exa 13.11 Radioactive Dating

```
1 // Scilab code Ex13.11: Pg 490 (2005)
2 clc; clear;
3 T_half = 5370*3.6e+07; // Half life of C-14, s
4 lambda = 0.693/T_half; ///Decay constant for C
      -14 disintegration, per sec
5 \text{ N_C12} = 6.02\text{e} + 023/12*25; // Number of C-12 nuclei
       in 25.0 g of carbon
6 \text{ NO\_C14} = 1.3e-012*N\_C12; // Number of C-14 nuclei
       in 25.0 g of carbon before decay
7 \text{ RO} = \text{NO}_{\text{C}14*3.83e-012*60}; // Initial activty of the
       sample, decays/min
8 R = 250; // Present activity of the sample
9 // As R = R0*exp(-lambda*t), solving for t
10 t = -1/lambda*log(R/R0); // Time during which the
       tree dies, s
11 printf("\nThe lifetime of the tree = \%3.1e yr", t
      /(365*24*60*60));
12
13 // Result
14 // The lifetime of the tree = 3.6\,\mathrm{e}{+03}~\mathrm{yr}
```

Nuclear Physics Applications

Scilab code Exa 14.1 Energy released in Fission

```
1 // Scilab code Ex14.1: Pg 513 (2005)
2 clc; clear;
3 // Part (a)
                 // Atomic mass unit, Mev
4 u = 931.5;
5 M_Li = 7.016003; // Mass of Lithium, kg
6 M_H = 1.007825; // Mass of Hydrogen, kg
7 M_He = 4.002603; // Mass of Helium, kg
8 Q = (M_Li + M_H - 2*M_He)*u; // Q-value of the
     reaction, MeV
9 // Part (b)
10 K_incident = 0.6; // Kinetic energy of the
     incident protons, MeV
11 K_products = Q + K_incident; // Kinetic energy of
      the products
12 printf("\nThe Q value of the reaction = \%4.1 \, \text{f MeV}",
     Q);
13 printf("\nThe kinetic energy of the products (two
      alpha \ particles) = \%4.1 f \ MeV", K_products);
14
15 // Result
16 // The Q value of the reaction = 17.3 \text{ MeV}
```

```
17 // The kinetic energy of the products (two alpha particles) = 17.9 \text{ MeV}
```

Scilab code Exa 14.2 Neutron capture by Al

```
1 // Scilab code Ex14.2: Pg 509 (2005)
2 clc; clear;
3 roh = 2.7e+06; // Density of Al, g/cm^3
4 A = 27; // Mass number of Al
5 n = (6.02e+23*roh)/A; // Number of nuclei/m<sup>3</sup>
6 sigma = 2.0e-31; // Effective area of nucleas
      normal to motion, m<sup>2</sup>
                         // Rate of incident particles
7 R_0 = 5.0e + 12;
      per unit area, neutrons/cm<sup>2</sup>-s
8 \times = 0.30e-03; // Thickness of foil, m
9 R = (R_0*sigma*n*x) // Number of neutrons captured
     by foil, neutrons/cm<sup>2</sup>-s
10 printf("\nThe number of neutrons captured by foil =
      \%3.1 \text{ fe} + 07 \text{ neutrons/Sq.cm-s}, R*1e-07);
11
12 // Result
13 // The number of neutrons captured by foil = 1.8e+07
       neutrons/Sq.cm-s
```

Scilab code Exa 14.4 Energy released in the Fission of U235

```
1 // Scilab code Ex14.4: Pg 513 (2005)
2 clc; clear;
3 m = 1; // Mass of Uranium taken, kg
4 Q = 208; // Disintegration energy per event, MeV
5 A = 235; // Mass number of Uranium
6 N = (6.02e+23*m)/A; // Number of nuclei
7 E = N*Q; // Disintegration energy, MeV
```

```
8 printf("\nThe total energy released if %1d kg of
        Uranium undergoes fission = %4.2 fe+26 MeV", m, E
     *1e-23);
9
10 // Result
11 // The total energy released if 1 kg of Uranium
        undergoes fission = 5.33e+26 MeV
```

Scilab code Exa 14.5 A Rough Mechanism for Fission Process

```
1 // Scilab code Ex14.5: Pg 513 (2005)
2 clc; clear;
3 \text{ A}_{Ba} = 141;
                 // Mass number of Barium
4 A_Kr = 92; // Mass number of Barium
5 \text{ r}_0 = 1.2e-15; // Separation constant, m
6 \text{ r_Ba} = \text{r_0*A_Ba^(1/3)}; // Nuclear radius of Barium
     , m
7 \text{ r_Kr} = \text{r_0*A_Kr^(1/3)}; // Nuclear radius of
     Krypton, m
8 r = r_Ba + r_Kr; // Separation between two atoms,
9 Z<sub>1</sub> = 56; // Atomic number of Barium
10 Z_2 = 36; // Atomic number of Barium
11 k = 1.440e-09; // Coulomb constant, eV-m
                                    // Coulomb Potential
12 \ U = k*Z_1*Z_2/r
      energy of two charges, MeV
13 printf("\nThe Coulomb potential energy for two
      charges = \%3d MeV", U/1e+06);
14 printf("\nThis shows that the fission mechanism is
      plausible");
15
16 // Result
17 // The Coulomb potential energy for two charges =
      248 MeV
18 // This shows that the fission mechanism is
```

Scilab code Exa 14.6 The Fusion of Two Deutrons

```
1 // Scilab code Ex14.6: Pg 519 (2005)
2 clc; clear;
3 // Part (a)
4 e = 1.6e-19; // Charge on electron, C
5 k = 8.99e-09; // Coulomb constant, N-m<sup>2</sup>/C<sup>2</sup>
6 r = 1.0e-14; // Distance between two duetrons, m
7 // We have U = (k*q1*q2)/r, for duetrons q1 = q2 = e
      , therefore we get
8 U = (k*e^2)/r; // Potential energy of duetrons, J
9 E_C = 1.1e-014; // The coulomb energy per deutron
     , J
10 k_B = 1.38e-023; // Boltzmann constant, J/mol/K
11 T = 2/3*E_C/k_B; // Effective temperature
      required for deutron to overcome the potential
      barrier, K
12 printf("\nThe potential energy of two duetrons
      separated by the distance of \%1.0 \,\mathrm{de} - 14 \,\mathrm{m} = \%4.2 \,\mathrm{f}
      MeV", r*1e+14, (U*1e+12)/e);
13 printf("\nThe effective temperature required for
      deutron to overcome the potential barrier = \%3.1e
       K", T);
14
15 // Result
16 // The potential energy of two duetrons separated by
       the distance of 1e-14 \text{ m} = 0.14 \text{ MeV}
17 // The effective temperature required for deutron to
       overcome the potential barrier = 5.3e+008 K
18 // Result
19 // The potential energy of two duetrons separated by
       the distance of 1e-14 \text{ m} = 0.14 \text{ MeV}
```

Scilab code Exa 14.7 Half value thickness

```
// Scilab code Ex14.7: Pg 530 (2005)
clc; clear;
mew = 55e-02;  // Linear absortion coefficient,
    per m
// In equation I(x) = I_o*exp(-mew*x), replacing I(x
    ) by I_o/2 & solving for x, we get
x = log(2)/mew;  // Half value thickness, m
printf("\nThe half value thickness for lead = %4.2fe
    _-02 cm", x);
// Result
// Result
// The half value thickness for lead = %1.26e-02 cm
```

Elementary Particle

Scilab code Exa 15.2 Checking Baryon Numbers

```
1 // Scilab code Ex15.2: Pg 560 (2005)
2 clc; clear;
3 // Data for Reaction 1
4 R1 = cell(6,2); // Declare a 6X2 cell
5 R1(1,1).entries = 'p';
6 \text{ R1}(2,1) . \text{entries} = 'n';
7 R1(3,1).entries = 'p';
8 R1(4,1).entries = 'p';
9 R1(5,1).entries = 'n';
10 R1(6,1).entries = 'p_bar';
11 R1(1,2).entries = 1;
12 R1(2,2).entries = 1;
13 R1(3,2).entries = 1;
14 R1(4,2).entries = 1;
15 R1(5,2).entries = 1;
16 \text{ R1}(6,2) \cdot \text{entries} = -1;
17 // Data for reaction 2
18 R2 = cell(5,2); // Declare a 5X2 cell
19 R2(1,1) entries = 'p';
20 R2(2,1).entries = 'n';
21 R2(3,1).entries = 'p';
```

```
22 R2(4,1).entries = 'p';
23 R2(5,1).entries = 'p_bar';
24 R2(1,2).entries = 1;
25 R2(2,2).entries = 1;
26 R2(3,2).entries = 1;
27 R2(4,2).entries = 1;
28 R2(5,2).entries = -1;
  // Check baryon number conservation for first
      reaction
30
  if (R1(1,2).entries+R1(2,2).entries) == (R1(3,2).entries)
      entries+R1(4,2).entries+R1(5,2).entries+R1(6,2).
      entries) then
31
       printf("\nThe reaction %s + %s \longrightarrow %s + %s + %s
          + %s can occur (B is conserved)", R1(1,1).
          entries, R1(2,1).entries, R1(3,1).entries, R1
          (4,1) entries, R1(5,1) entries, R1(6,1).
          entries);
32 else
       printf ("\nThe reaction %s + %s \longrightarrow %s + %s + %s
33
          + %s cannot occur (B is not conserved)", R1
          (1,1) entries, R1(2,1) entries, R1(3,1).
          entries, R1(4,1).entries, R1(5,1).entries, R1
          (6,1).entries);
34 end
  // Check baryon number conservation for second
35
      reaction
36 \text{ if } R2(1,2).entries+R2(2,2).entries == R2(3,2).
      entries+R2(4,2).entries+R2(5,2).entries then
       printf("\nThe reaction %s + %s \longrightarrow %s + %s + %s
37
          can occur (B is conserved)", R2(1,1).entries,
           R2(2,1) entries, R2(3,1) entries, R2(4,1).
          entries, R2(5,1).entries);
38 else
       printf ("\nThe reaction %s + %s \longrightarrow %s + %s + %s
39
          cannot occur (B is not conserved)", R2(1,1).
          entries, R2(2,1).entries, R2(3,1).entries, R2
          (4,1).entries, R2(5,1).entries);
40 \, \text{end}
```

```
41
42 // Result
43 // The reaction p + n ---> p + p + n + p_bar can occur (B is conserved)
44 // The reaction p + n ---> p + p + p_bar cannot occur (B is not conserved)
```

Scilab code Exa 15.3 Checking Lepton Numbers

```
1 // Scilab code Ex15.3: Pg 561 (2005)
 2 clc; clear;
 3 // Data for Reaction 1
 4 R1 = cell(4,3); // Declare a 4X3 cell
 5 R1(1,1).entries = 'mu';
 6 \text{ R1(2,1).entries} = 'e-';
 7 R1(3,1).entries = 'nue_bar';
 8 R1(4,1).entries = 'nu_mu';
 9 R1(1,2).entries = 1; // Muon number for mu
10 R1(2,2).entries = 0; // Muon number for e-
11 R1(3,2).entries = 0; // Muon number for nue_bar
12 R1(4,2).entries = 1; // Muon number for nu_mu
13 R1(1,3).entries = 0; // Lepton number for e-
14 R1(2,3).entries = 1; // Lepton number for e-
15 R1(3,3).entries = -1: // Lepton number for e-
                                      // Lepton number for
15 R1(3,3).entries = -1;
        nue_bar
16 \text{ R1}(4,3) \cdot \text{entries} = 0;
                                      // Lepton number for nu_mu
17 // Data for Reaction 2
18 R2 = cell(4,3); // Declare a 4X3 cell
19 R2(1,1).entries = 'Pi+';
20 R2(2,1).entries = 'mu+';
21 R2(3,1).entries = 'nu_mu';
22 R2(4,1).entries = 'nu_e';
23 R2(1,2).entries = 0; // Muon number for Pi+
24 R2(2,2).entries = -1; // Muon number for mu+
25 R2(3,2).entries = 1; // Muon number for nu_mu
```

```
// Muon number for nu_e
26 R2(4,2).entries = 0;
                            // Lepton number for Pi+
27 R2(1,3).entries = 0;
28 R2(2,3).entries = 0;
                            // Lepton number for mu+
29 R2(3,3).entries = 0;
                            // Lepton number for nu_mu
30 \text{ R2}(4,3).\text{entries} = 1;
                            // Lepton number for nu_e
31 // Check lepton number conservation for first
      reaction
32 if (R1(1,2).entries == R1(2,2).entries + R1(3,2).
      entries+R1(4,2).entries) & (R1(1,3).entries == R1
      (2,3).entries+R1(3,3).entries+R1(4,3).entries)
      then
       printf("\nThe reaction %s --> %s + %s + %s can
33
          occur (Both L_mu and L_e are conserved)", R1
          (1,1) entries, R1(2,1) entries, R1(3,1).
          entries, R1(4,1).entries);
34 else
       printf("\nThe reaction %s + %s \longrightarrow %s + %s + %s
35
          + %s cannot occur (L_mu and L_e are not
          conserved)", R1(1,1).entries, R1(2,1).entries
          , R1(3,1) entries, R1(4,1) entries);
36 end
  // Check lepton number conservation for second
      reaction
38 if (R2(1,2).entries = R2(2,2).entries + R2(3,2).
      entries+R2(4,2).entries) & (R2(1,3).entries == R2
      (2,3).entries+R2(3,3).entries+R2(4,3).entries)
      then
       printf("\nThe reaction %s --> %s + %s + %s can
39
          occur (Both L_mu and L_e are conserved)", R2
          (1,1) entries, R2(2,1) entries, R2(3,1).
          entries, R2(4,1).entries);
40 else
       printf("\nThe reaction %s --> %s + %s + %s
41
          cannot occur (L_mu is conserved but L_e is
          not conserved)", R2(1,1).entries, R2(2,1).
          entries, R2(3,1).entries, R2(4,1).entries);
42 end
43
```

Scilab code Exa 15.4 Conservation of strangeness

```
1 // Scilab code Ex15.4: Pg 563 (2005)
 2 clc; clear;
 3 // Data for Reaction 1
4 R1 = cell(4,2); // Declare a 4X2 cell
 5 R1(1,1).entries = 'Pi0';
 6 \text{ R1(2,1).entries} = 'n';
 7 R1(3,1).entries = 'K+';
 8 R1(4,1).entries = 'sigma-';
 9 R1(1,2).entries = 0; // Strangeness number for
       Pi0
10 R1(2,2).entries = 0; // Strangeness number for n
11 R1(3,2).entries = 1; // Strangeness number for K+
12 R1(4,2).entries = -1; // Strangeness number for
       sigma-
13 // Data for Reaction 2
14 R2 = cell(4,2); // Declare a 4X2 cell
15 R2(1,1).entries = 'Pi-';
16 R2(2,1).entries = 'p';
17 R2(3,1).entries = 'Pi-';
18 R2(4,1).entries = ' sigma+';
19 R2(1,2).entries = 0; // Strangeness number for Pi
20 R2(2,2).entries = -1; // Strangeness number for p 21 R2(3,2).entries = 1; // Strangeness number for pi
22 R2(4,2).entries = 0; // Strangeness number for
```

```
sigma+
23 // Check strangeness number conservation for first
      reaction
24 if R1(1,2) entries + R1(2,2) entries == R1(3,2).
      entries+R1(4,2).entries then
       printf("\nThe reaction %s + %s --> %s + %s can
25
          occur (Strangness is conserved)", R1(1,1).
          entries, R1(2,1) entries, R1(3,1) entries, R1
          (4,1).entries);
26 else
       printf ("\nThe reaction %s + %s \longrightarrow %s + %s
27
          cannot occur (Strangness is not conserved)",
          R1(1,1) entries, R1(2,1) entries, R1(3,1).
          entries, R1(4,1).entries);
28 end
  // Check strangeness number conservation for second
      reaction
  if R2(1,2) entries + R2(2,2) entries == R2(3,2).
      entries+R2(4,2).entries then
       printf("\nThe reaction %s + %s --> %s + %s can
31
          occur (Strangness is conserved)", R2(1,1).
          entries, R2(2,1).entries, R2(3,1).entries, R2
          (4,1).entries);
32 else
       printf ("\nThe reaction %s + %s \longrightarrow %s + %s
33
          cannot occur (Strangness is not conserved)",
          R2(1,1) entries, R2(2,1) entries, R2(3,1).
          entries, R2(4,1).entries);
34 end
35
36 // Result
37 // The reaction Pi0 + n \longrightarrow K+ + sigma - can occur (
      Strangness is conserved)
38 // The reaction Pi-+p \longrightarrow Pi-+ sigma+ cannot
      occur (Strangness is not conserved)
```

Scilab code Exa 15.5 Making virtual particle real

```
1 // Scilab code Ex15.5: Pg 570 (2005)
2 clc; clear;
3 m_pi = 135; // Mass of pion, MeV/c<sup>2</sup>
4 \text{ m_p} = 938.3; // Mass op proton, MeV/c<sup>2</sup>
5 // For simplification, let velocity of light be
      unity
6 c = 1;
                // Velocity of light, m/s
7 // Simplifying K_{th} = (m_{3} + m_{4} + m_{5} + ....)^{2}*c
      ^2 - (m_1 + m_2)^2 * c^2, we get
8 \text{ K_th} = 2*m_pi*c^(2) + ((m_pi*c)^2/(2*m_p));
      Required kinetic energy of proton, MeV
9 printf("\nRequired kinetic energy of proton = \%3d
      MeV", ceil(K_th));
10
11 // Result
12 // Required kinetic energy of proton = 280 MeV
```

Cosmology

Scilab code Exa 16.1 Hubbles law

```
1 // Scilab code Ex16.1: Pg 15 (2005)
2 clc; clear;
3 c = 3e+05; // Velocity of light, km/s
4 v = c/4; // Recessional velocity, km/s
5 \text{ H}_0 = 20e-06; // Hubble's constant, km/s/
     lightyear
  // From Hubble's law, v = H_o*R_max, solving for
     R<sub>max</sub>
7 R_max = v/H_0; // Maximum distance at which Hubble'
     s law applies without relativistic correction,
     lightyears
8 printf("\nThe maximum distance at which Hubbles law
      applies without relativistic correction = \%1.0e
     ly", R_max);
9 printf("\n");
10
11 // Result
12 // The maximum distance at which Hubbles law applies
      without relativistic correction = 4e+09 ly
```

Scilab code Exa 16.2 Critical density of universe

```
1 // Scilab code Ex16.2: Pg 22 (2005)
2 clc; clear;
3 H = 23e-03/(9.46e15); // Hubble's constant, km/s/
     lу
                // Gravitational constant, N-m^2/
4 G = 6.67e-11;
     kg^2
5 // Since H^2 = (8*\%pi*G*p_c)/3, solving for p_c
6 p_c = (3*H^2)/(8*\%pi*G); // Critical mass density
      of universe, kg/m^3
7 printf("\nCritical mass density of universe = %4.2e
     kg per metre cube", p_c);
8
9
10 // Result
11 // Critical mass density of universe = \%1.06e-27 kg/
     m^3
```