Lesson 4.4: Linear Regression

Brooke Wenig/Conor Murphy Machine Learning Practice Lead/ Data Scientist, Databricks

Slide 2: Welcome Back!

Welcome Back!

Examine linear regression algorithm

Slide 3: Learning Objectives

Learning Objectives

Interpret machine learning models

Identify which use cases you can apply linear regression to

Slide 4: Model Training Lifecycle

Slide 5: How Do We Determine Which Model to Use?

Slide 6: Ask Key Stakeholders

Ask Key Stakeholders

Do they need an interpretable model?

Explain what independent variables contributed to end prediction

Slide 7: Opting for Interpretable Models Over Accurate Models

Opting for Interpretable Models Over Accurate Models

Algorithm predicts 80% success

Procedure fails, don't blame the algorithm

You must understand why the algorithm made the prediction

Slide 8: Opting for Interpretable Models Over Accurate Models

Slide 9: Accounting for Assumptions

Accounting for Assumptions

Algorithms have different assumptions about underlying distribution of data

Algorithms are like recipes – a set of stepby-step instructions

Linear Regression

Goal: Find line of best fit

$$y\approx \ \hat{y}=w_0+w_1x+\in$$

X: feature

y: label

Slide 11: Assumptions of Linear Regression

Assumptions of Linear Regression

There is a linear relationship between input features and the output

Slide 12: Multivariate Regression

Multivariate Regression

Use of linear regression with multiple variables

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_p X_p$$

p = total number of features in the dataset

Slide 13: Interpreting Linear Regression

Interpreting Linear Regression

A highly interpretable model

Examine coefficients to see how a prediction is made

E.g.: If the coefficient for number of calls is -0.5 – then the response time decreases by half a minute for every additional call received

Train a linear regression model

Apply the linear regression model in SQL using a custom function