Treść zadań

Zadanie Układ automatycznego sterowania pracą pomp zasilających wodą zbiornik wieży ciśnień.

"Zbiornik wieży ciśnień zasilany jest wodą za pomocą pomp P1 i P2. Silniki asynchroniczne napędzające pompy załączane są do sieci poprzez styczniki Z1 i Z2. Poziom wody w zbiorniku kontrolują czujniki X1 i X2 (na wyjściu czujników pojawia się sygnał 1, gdy poziom, wody przekroczy wysokość zamocowania odpowiedniego czujnika).

Przeprowadzić syntezę automatu sterującego pracą pomp przy założeniach:

- załączenie danej pompy P1 lub P2 może nastąpić tylko wtedy, gdy poziom wody opadnie poniżej X2,
- wyłączenie pracującej pompy powinno nastąpić każdorazowo po zadziałaniu czujnika X1,
- pompy powinny działać na przemian.

Graf przejść dla automatu Moore'a:

Siatka przejść stanów układu:

X_1X_2 S^n	00	01	11	10	Z_1	Z ₂
1	1	1	2	-	0	1
2	3	2	2	1	0	0
3	3	3	4	-	1	10011
4	1	4	4		0	0

Żadnego ze stanów nie można zredukować.

 Q_1

Kodowanie stanów:

S

1	0.0	0
2	0	1
3	1	1
4	1	0

Sn+1

Zakodowana siatka przejść:

X_1X_2 $Q_1^nQ_2^n$	00	01	11	10	Z_1	Z_2
00	00	00	01		0	1
01	11	01	01		0	90
11	11	11	10		1	0
10	00	10	10	15/	90	0

 $Q_1^{n+1} Q_2^{n+1}$

Przy każdym przejściu zmienia się maksymalnie jeden element pamięci. Nie występuje wyścig.

Siatka Karnaugh'a dla wyjść:

$$Z_1 = q_1 q_1 = \overline{\overline{q_1 q_2}}$$

$$Z_2 = \overline{q_1} \overline{q_1} = \overline{\overline{\overline{q_1} q_2}} = \overline{q_1 + q_2}$$

Siatki Karnaugh'a dla pamięci:

$\begin{matrix} X_1X_2\\ {Q_1}^n{Q_2}^n\end{matrix}$	00	01	11	10
00	0	0	0	-
01	1	0	0	-
11	1	1	1	-
10	0	1	1	

O₁n+1

(SINOIDAINISHING

$$S_1 = a_2 \overline{x_2}$$

$$r_1 = \overline{q_2} \, \overline{x_2}$$

$$\overline{s_1} = \overline{q_2} \, \overline{x_2}$$

$$\overline{r_1} = \overline{\overline{q_2}} \, \overline{\overline{x_2}}$$

$\begin{matrix} X_1X_2\\ {Q_1}^n{Q_2}^n\end{matrix}$	00	01	11	10	
00	0	0	1	-	
01	1	1	1	-	
11	1	1	0	-	1981/10
10	0	0	0	-	CLS/IIION
$s_2 = \overline{q_1} x_1$ $r_2 = q_1 x_1$ $\overline{s_2} = \overline{\overline{q_1}} x_1$ $\overline{r_2} = \overline{q_1} x_1$		MIL		00/5/	Q ₂ n+1

$$s_2 = \overline{q_1} x_1$$

$$r_2 = q_1 x_1$$

$$\overline{s_2} = \overline{\overline{q_1}} \, \overline{x_1}$$

$$\overline{r_2} = \overline{q_1 x_1}$$

Wszystkie niezbędne funkcje:

$$\overline{s_1} = \overline{q_2 \overline{x_2}}$$

$$\overline{r_1} = \overline{\overline{q_2} \ \overline{x_2}}$$

$$\overline{s_2} = \overline{\overline{q_1} \ x_1}$$

$$\overline{r_2} = \overline{q_1 x_1}$$

$$Z_1=q_1q_2=\,\overline{\overline{q_1q_2}}$$

$$Z_2 = \overline{q_1} \overline{q_2} = \overline{\overline{\overline{q_1}} \overline{q_2}} = \overline{q_1 + q_2}$$

Schemat układu uzyskanego na podstawie funkcji:

Wnioski

Podczas laboratorium zbudowaliśmy, uruchomiliśmy i przetestowaliśmy układ. Działał poprawnie dla przewidzianych w zadaniu wejść, jednak zachowywał się nieregularnie dla wejść $X_1X_2 = 10$. Takie wejścia nie powinny się pojawić w przypadku prawidłowego działania automatu, dlatego w siatkach Karnaugh'a wpisaliśmy w te miejsca stany nieokreślone i wykorzystaliśmy je do optymalizacji układu.

