Fourfold Clusters of Rovibrational Energy Levels for H₂S Studied with a Potential Energy Surface Derived from Experiment

IGOR N. KOZIN¹ AND PER JENSEN

Physikalisch-Chemisches Institut, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany

We report here an optimization of the parameters in an analytical representation of the potential energy function for the electronic ground state of hydrogen sulfide H₂S on the basis of experimental data. The calculations are carried out with the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) computer program (P. Jensen, J. Mol. Spectrosc. 128, 478-501, 1988; J. Chem. Soc. Faraday Trans. 2 84, 1315-1340, 1988; in "Methods in Computational Molecular Physics" (S. Wilson and G. H. F. Diercksen, Eds.), Plenum, New York, 1992). In the least-squares fitting, we adjusted 14 parameters to fit a total of 548 rotation-vibration energy spacings involving $J \leq$ 5 for the four isotopic molecules H₂³²S, D₂³²S, HD³²S, and H₂³⁴S. The data were reproduced with root-mean-square deviations of 0.134 cm⁻¹ for the rotational energy spacings and 0.422 cm⁻¹ for the vibrational spacings. We have used the fitted potential energy surface as the starting point for a theoretical investigation of the nearly degenerate, four-member groups of energy levels formed in the rotation-vibration energy spectrum of H₂S. Toward this end, we have calculated the rovibrational energy levels in the vibrational ground state, the ν_2 vibrational state, and the $\nu_1/$ $v_3/2v_2$ interacting vibrational states of $H_2^{32}S$ for $J \le 40$. The rotational energy level patterns obtained for these vibrational states of H₂³²S are very similar in structure to those calculated previously for H₂⁸⁰Se (P. Jensen and I. N. Kozin, J. Mol. Spectrosc. 160, 39-57, 1993; I. N. Kozin and P. Jensen, J. Mol. Spectrosc. 161, 186-207, 1993), although there is some difference in detail. © 1994 Academic Press, Inc.

1. INTRODUCTION

In the traditional treatment of molecular rotation and vibration, it is assumed that the rotational energy levels are given essentially as those of a rigid rotor taken to be the molecule in its equilibrium configuration. The rotation-vibration interaction terms in the molecular Hamiltonian, which cause the rotational energy levels of the real molecule to differ from the rigid rotor levels, are treated as perturbations. It is known, however, that for some molecules rotation-vibration interaction leads to a qualitative change of the rotational energy level pattern relative to that of a rigid rotor. For example, it has been shown experimentally (I-3) that nearly degenerate, four-member groups of energy levels are formed in the vibrational ground state of the molecule H_2Se when the angular momentum quantum number J increases. Such clusters do not appear in the energy spectrum of a rigid rotor, and initially the phenomenon was investigated by means of semiclassical theory and simplified quantum mechanical models (4-8). Thus Zhilinskii and Pavlichenkov (4) first predicted the cluster formation in the vibrational ground state of the water molecule in a semiclassical study. More detailed discussions of the effect have been given by Makarewicz and Pyka (5-

¹ Present address: Applied Physics Institute, Russian Academy of Science, Uljanov Street 46, 603 600 Nizhnii Novgorod, Russia.

7). The formation of fourfold rovibrational energy clusters in isolated vibrational states (see Refs. (1-7)) is probably the most surprising phenomenon in H_2X molecules. It can be satisfactorily explained by rigid bender-type models which neglect the stretching vibrational motion of the molecule but account explicitly for the bending motion (4-7). Another type of fourfold energy clusters in H_2X molecules was predicted by Lehmann (8) in model quantum mechanical calculations using a specially designed local mode effective Hamiltonian. These clusters appear when two stretching vibrational states of the molecule are nearly degenerate due to local mode effects.

In two recent papers (9, 10), we have reported realistic quantum mechanical calculations of cluster energies and wavefunctions in the vibrational ground state and the ν_1 , ν_2 , ν_3 , and $2\nu_2$ states of H₂Se using the MORBID (Morse Oscillator Rigid Bender Internal Dynamics) Hamiltonian and computer program (11-13). As the initial step of that work, we determined the potential energy surface for the electronic ground state of H₂Se in a direct least-squares fitting to experimental data. We fitted a selection of 303 rotation-vibration energy spacings of H₂⁸⁰Se, D₂⁸⁰Se, and HD⁸⁰Se involving $J \le 5$ with a root-mean-square (RMS) deviation of 0.0975 cm⁻¹ for the rotational energy spacings and 0.268 cm⁻¹ for the vibrational spacings (9). The potential energy surface resulting from the fitting was used for investigating the cluster structures of the rotational energy levels in the vibrational ground state (9), in the three fundamental vibrational states, and in the $2\nu_2$ state (which is close to the ν_1 and ν_3 states) of H₂⁸⁰Se (10). The results of these calculations can be summarized as follows:

(1) For the vibrational ground state of H_2^{80} Se, our calculation of the cluster structure, which has been observed experimentally up to J=23 (I-3), is in good agreement with the experimental results [see Fig. 2 of Ref. (9)]. Further, we analyzed the wavefunctions for the cluster of highest energy in each J multiplet to show that of the four wavefunction components forming this cluster, two will have angular momentum projections of $-\hbar J$ and $\hbar J$, respectively, along a so-called *localization axis* A which lies approximately along one of the H-Se bonds (see Fig. 1), and the other two will have angular momentum projections of $-\hbar J$ and $\hbar J$, respectively, along the axis A' (Fig. 1) which can be obtained by subjecting A to a rotation around the C_2 symmetry

FtG. 1. The numbering of the nuclei and the molecule-fixed coordinate system used to describe the H_2S molecule in the MORBID approach. The molecule-fixed x axis is perpendicular to the plane of the molecule. The figure further shows the localization axes A and A' appropriate for the primitive cluster states (see text). The axis A forms the angle φ with the molecule-fixed z axis.

axis of the molecule in its equilibrium configuration. These results are in accordance with predictions from semiclassical theory.

- (2) For the ν_2 and $2\nu_2$ states our calculations predict a cluster formation entirely analogous to that in the vibrational ground state. In the $2\nu_2$ state, the clusters are sometimes distorted by interactions with the ν_1 and ν_3 states.
- (3) For the v_1/v_3 interacting vibrational states we found (10) that a "new" type of fourfold cluster arises through coalescence (with increasing J) of rotational energy doublets belonging to the v_1 vibrational state with doublets belonging to the v_3 state. In Ref. (10) we took credit for discovering this cluster type, but we subsequently have become aware of the work by Lehmann (8) mentioned above, in which he predicted the new clusters for vibrational levels of H_2 Se with $v_1 + v_3 = 3$. The wavefunctions corresponding to the new cluster states are fifty-fifty mixtures of v_1 and v_3 basis states. We showed that when the small energy differences between individual cluster components are neglected, so that each cluster is represented by a four-dimensional space of degenerate eigenfunctions for the rotation-vibration Hamiltonian, we can find basis vectors in this space which give a simple picture of the molecular motion in a cluster state: The stretching excitation is localized in one of the bonds, and the molecule rotates around this bond.

The two types of energy clusters described above represent two different mechanisms for cluster formation. The analyses reported in Refs. (4-8) have been very useful for understanding the new phenomena, and the conclusions drawn from them agree with those from our work on the H₂Se molecule (9, 10). However, Refs. (9, 10) have shown that in order to obtain realistic predictions of the cluster effects it is necessary to consider all vibrational modes of the molecule. For example, we found that even though the appearance of fourfold energy clusters can be predicted from a rigid bender-type model neglecting the stretching vibrations (4-7), the details of the cluster structure are very significantly influenced by the stretching motion (9, 10). Hence approaches like MORBID, which account explicitly for all motions of the molecule, are necessary to obtain a satisfactory description of the cluster phenomenon.

The present paper reports an analysis of the cluster structure in the vibrational ground state and the ν_1 , ν_2 , ν_3 , and $2\nu_2$ states of hydrogen sulfide H_2S , carried out in much the same way as the work on H_2S e described above. Below we see that the rotation-vibration energy spectrum of H_2S exhibits all the cluster effects already determined for H_2S e, but the cluster formation takes place at higher J values than those found for H_2S e so that it is less amenable to experimental observation. The paper is structured as follows: Section II describes a determination of the potential energy surface for the electronic ground state of H_2S by direct least-squares fitting to experimental data. In Section III, we describe an extensive calculation of the rotation-vibration energy levels in the vibrational ground state, the ν_2 vibrational state, and the $\nu_1/\nu_3/2\nu_2$ interacting vibrational states of $H_2^{32}S$ for $J \leq 40$. Section IV reports an analysis of the wavefunctions obtained from this calculation, and Section V offers conclusions.

II. THE FITTING

The fitting of the potential energy surface for H₂S described here was carried out with the MORBID computer program. This theoretical approach to calculating the rotation-vibration energies for a triatomic molecule directly from the potential energy

function has been extensively described in Refs. (11-13) and Ref. (9) gives a summary. We refer the reader to these publications for details. However, for completeness we give here the analytical representation of the potential energy function used in the present work,

$$V(\Delta r_{1}, \Delta r_{3}, \bar{\rho}) = V_{0}(\bar{\rho}) + \sum_{j} F_{j}(\bar{\rho}) y_{j} + \sum_{j \leq k} F_{jk}(\bar{\rho}) y_{j} y_{k}$$

$$+ \sum_{j \leq k \leq m} F_{jkm}(\bar{\rho}) y_{j} y_{k} y_{m} + \sum_{j \leq k \leq m \leq n} F_{jkmn}(\bar{\rho}) y_{j} y_{k} y_{m} y_{n}, \quad (1)$$

where all of the indices j, k, m, and n assume the values 1 or 3. The quantity y_j in Eq. (1) is given by

$$y_i = 1 - \exp(-a_i \Delta r_i), \tag{2}$$

where the a_j are molecular constants and $\Delta r_j = r_j - r_j^{\rm e}$, j = 1 or 3, is defined as a displacement from the equilibrium value $r_j^{\rm e}$ of the distance r_j between the "outer" nucleus j = 1 or 3 and the "center" nucleus 2. The quantity $\bar{\rho}$ is the instantaneous value of the bond angle supplement (see Fig. 1 of Ref. (11)). The F_{jkm} ... expansion coefficients of Eq. (1) are functions of $\bar{\rho}$ and defined as

$$F_{j}(\bar{\rho}) = \sum_{i=1}^{4} f_{j}^{(i)} (\cos \rho_{e} - \cos \bar{\rho})^{i}, \qquad (3)$$

and

$$F_{jk}...(\bar{\rho}) = f_{jk}^{(0)}... + \sum_{i=1}^{N} f_{jk}^{(i)}...(\cos \rho_{e} - \cos \bar{\rho})^{i},$$
 (4)

where ρ_e is the equilibrium value of $\bar{\rho}$ and the $f_{jk}^{(i)}$... are expansion coefficients. The function $F_{jk}(\bar{\rho})$ has N=3, $F_{jkl}(\bar{\rho})$ has N=2, and $F_{jklm}(\bar{\rho})$ has N=1. The function $V_0(\bar{\rho})$ is the potential energy for the molecule bending with bond lengths fixed at their equilibrium values, and here we parameterize it as

$$V_0(\bar{\rho}) = \sum_{i=2}^8 f_0^{(i)} (\cos \rho_e - \cos \bar{\rho})^i.$$
 (5)

We aim at optimizing the parameters of Eqs. (1-5) in a least-squares fitting to experimental spectroscopic data for $H_2^{32}S$ and its isotopic species. Even though these molecules have been the subjects of many experimental studies during the past 40 years (14-37), only a rather limited number of vibrational states have been spectroscopically characterized. The highest excited vibrational states which have been investigated with present-day spectroscopic techniques are the (2, 1, 0) and (1, 1, 1) states of $H_2^{32}S$ (36) at 6288 and 6289 cm⁻¹, respectively. Vibrational term values have been measured for some higher excited states of $H_2^{32}S$ up to the (3, 1, 1) state at 11 009 cm⁻¹ (15), but as these experimental values were obtained in 1956 they are probably of moderate precision. In addition to the data found in the literature (14–37), we used as input data for the fitting unpublished experimental term values kindly made available to us by Professor J.-M. Flaud (38).

In the construction of the input data points, we followed the strategy used in the water fitting of Ref. (39): we enter for each vibrational state the term value (relative to the $(v_1, v_2, v_3, J_{K_aK_c}) = (0, 0, 0, 0_{00})$ state of the isotopic molecule in question) of

the lowest measured rotation-vibration state together with the rotational spacings up to J=5 (see Table I). For most of the vibrational states, which have been spectroscopically investigated, no experimentally derived rotation-vibration term values are directly given in the literature. For these states, we calculated such term values from the published rotation-vibration constants. The input data for the fitting consist mainly of energy spacings for $H_2^{32}S$ and its deuterated isotopomers $D_2^{32}S$ and $HD^{32}S$. In addition to these data, we included the known vibrational spacings for $H_2^{34}S$ (32, 35, 36) only. Even though some data for $H_2^{33}S$ are available (28), we did not use them in the fitting since owing to the small relative mass difference between the sulphur isotopes, we do not expect that the inclusion of such data will supply information not already present in the $H_2^{32}S$ data. The input data set used for the fitting comprised a total of 548 data points.

In the energy calculations carried out during the least-squares fitting, we used the following basis sets:

- (1) For $H_2^{32}S$, we calculated the vibrational (J=0) energy spacings with a basis set in which the stretching problem was prediagonalized [see Ref. (11)] with Morse oscillator functions $|n_1n_3\rangle$ having $n_1+n_3\leq N_{Stretch}=12$. In constructing the final rotation-vibration matrices we used the $N_{Bend}=17$ lowest bending basis functions, the $N_A=25$ lowest stretching basis functions of A_1 symmetry and the $N_B=20$ lowest stretching basis functions of B_2 symmetry. The rotational spacings were calculated with a basis set having $N_{Stretch}=10$, $N_{Bend}=11$, and $(N_A, N_B)=(12, 9)$.
- (2) For D_2^{32} S, the vibrational energy spacings were calculated with a basis set defined by $N_{\text{Stretch}} = 10$, $N_{\text{Bend}} = 11$, and $(N_A, N_B) = (12, 9)$. The basis set used for the rotational spacings had $N_{\text{Stretch}} = 9$, $N_{\text{Bend}} = 9$, and $(N_A, N_B) = (9, 6)$.
- (3) For HD³²S, we calculated the rotation-vibration spacings used as input with the basis set $N_{\text{Stretch}} = 10$, $N_{\text{Bend}} = 9$, and $N_A = 10$.
- (4) Finally, for H_2^{34} S, the vibrational energy spacings were calculated with a basis set defined by $N_{\text{Stretch}} = 10$, $N_{\text{Bend}} = 13$, and $(N_A, N_B) = (16, 12)$.

In order to start the iterative nonlinear least-squares fitting procedure we need initial guesses for the values of the parameters in Eqs. (1)–(5). Following the procedure described for H_2Se in Ref. (9), we determined such values on the basis of the results obtained by Kauppi and Halonen (40) in a least-squares fitting to rotation-vibration energy spacings for H_2S using a drastically simplified model. In the MORBID fitting, we could usefully vary 14 parameters. No parameters were constrained. The input data were reproduced with an RMS deviation of 0.134 cm⁻¹ for the rotational energy spacings and 0.422 cm⁻¹ for the vibrational spacings. Table I gives the complete input data set with residuals (obs – calc) and weights. The fitted parameter values are presented in Table II.

From the analytical expressions given in Eqs. (1)-(4) and the parameter values of Table II we have obtained values for the conventional "force constants" of H_2S , defined as the derivatives of $V(\Delta r_1, \Delta r_3, \bar{\rho})$ [Eq. (1)] at equilibrium, e.g.,

$$f_{rr} = \left(\frac{\partial^2 V}{\partial \Delta r_1^2}\right)_{\rm c},\tag{6}$$

$$f_{r\alpha} = \left(\frac{\partial^2 V}{\partial \Delta r_1 \partial \alpha}\right)_c,\tag{7}$$

etc., $\alpha = \pi - \bar{\rho}$ being the bond angle. The resulting values are given in Table III which

 $\label{table I} TABLE\ I$ Observed and Calculated Vibrational and Rotational Term Values (cm $^{-1}$) for Hydrogen Sulfide

(01,02,03)	J' _{K'_e} K' _e - J'' _{K''_e} K'' _e	obs.a cm ⁻¹	oc. cm ⁻¹	weight	(v1, v2, v3)	$J'_{K'_{\bullet} \ K'_{c}} - J''_{K''_{\bullet} \ K''_{c}}$	obs.a cm ⁻¹	oc. cm ⁻¹	weig
H ₂ ³² S									
0,0,0)	000	0.0			$(0,2,0)^d$	221-000	58.4666	0.0180	10.0
0,0,0,	101-000	13.74631	0.00043	100.0	(0,2,0)	2 ₂₀ -0 ₀₀	61.9889	0.0144	10.0
	111-000	15.09011	0.00028	100.0		303 -000	72.0145	0.0844	10.0
	$1_{10} - 0_{00}$	19.37563	0.00061	100.0		313-000	72.0745	0.0815	10.0
	$2_{02} - 0_{00}$	38.01607	0.00098	100.0		$3_{12} - 0_{00}$	98.8268	0.1409	10.0
	$2_{12} - 0_{00}$	38.29775	0.00078	100.0		$3_{22} - 0_{00}$	100.6108	0.0943	10.0
	$2_{11} - 0_{00}$	51.14016	0.00153	100.0		$3_{21} - 0_{00}$	112.7911	0.1599	10.0
	221-000	55.16158	0.00170	100.0		331 -000	122.6640	0.0342	10.0
	2 ₂₀ - 0 ₀₀ 3 ₀₃ - 0 ₀₀	58.36884 71.42426	0.00175 0.00172	100.0 100.0		330 - 000	124.8276	0.0633	10.0
	313 -000	71.46515	0.00172	100.0		4 ₀₄ -0 ₀₀ 4 ₁₄ -0 ₀₀	114.4853 114.4939	0.1350 0.1344	10.0
	312-000	95.05630	0.00299	100.0		413-000	153.1725	0.1941	10.0
	322-000	96.39246	0.00264	100.0		423-000	153.5773	0.1763	10.0
	$3_{21} - 0_{00}$	107.36820	0.00221	100.0		422-000	178.1306	0.2659	10.0
	$3_{31} - 0_{00}$	115.34059	0.00448	100.0		432 - 000	182.9107	0.1531	10.0
	$3_{30} - 0_{00}$	117.39199	0.00386	100.0		431 -000	192.2964	0.2383	10.0
	404-000	114.17217	0.00291	100.0		441 -000	208.3298	0.0467	10.0
	414-000	114.17758	0.00289	100.0		440-000	209.4771	0.0690	10.0
	413-000	148.14058	0.00503	100.0		505-000	166.1306	0.2017	10.0
	4 ₂₃ -0 ₀₀ 4 ₂₂ -0 ₀₀	148.41831 170.33574	0.00472 0.00357	100.0 100.0		515-000	166.1316	0.2013	10.0
	4 ₃₂ -0 ₀₀	173.96726	0.00337	100.0		5 ₁₄ - 0 ₀₀ 5 ₂₄ - 0 ₀₀	216.1626 216.2382	0.2734 0.2687	10.0
	431 -000	182.64849	0.00176	100.0		5 ₂₃ -0 ₀₀	253.6457	0.3413	10.0
	441-000	195.66142	0.00977	100.0		5 ₃₃ - 0 ₀₀	255.1548	0.2799	10.0
	$4_{40} - 0_{00}$	196.80212	0.00851	100.0		532-000	276.4300	0.4059	10.0
	$5_{05} - 0_{00}$	166.34345	0.00465	100.0		$5_{42} - 0_{00}$	285.9776	0.2051	10.0
	$5_{15} - 0_{00}$	166.34417	0.00465	100.0		$5_{41} - 0_{00}$	292.4622	0.2965	10.0
	514-000	210.21727	0.00809	100.0		5 ₅₁ O ₀₀	315.3971	0.0537	10.0
	$5_{24} - 0_{00}$	210.26477	0.00796	100.0		$5_{50} - 0_{00}$	315.9475	0.0675	10.0
	$5_{23} - 0_{00}$	243.34344	0.00655	100.0	(1,0,0) ^d	000	2614.4074	-0.2541	10.0
	533 -000	244.39250	0.00638	100.0		1 ₀₁ 0 ₀₀	13.5500	-0.0265	10.0
	532-000	263.73895	0.00073	100.0		111-000	14.8604	0.0051	10.0
	5 ₄₂ 0 ₀₀ 5 ₄₁ 0 ₀₀	271.10604 277.33758	0.00586	100.0 100.0		110-000	19.0928	-0.0132	10.0
	5 ₅₁ -0 ₀₀	296.10442	0.00028	100.0		202-000	37.4603 37.7267	-0.0428 -0.0301	10.0
	5 ₅₀ 0 ₀₀	296.67760	0.01799	100.0		$2_{12} - 0_{00}$ $2_{11} - 0_{00}$	50.4016	-0.0865	10.0
,1,0)°	000	1182.5742	0.1361	10.0		221 -000	54.3176	0.0093	10.0
	$1_{01} - 0_{00}$	13.89027	0.01227	10.0		$2_{20} - 0_{00}$	57.5514	-0.0233	10.0
	$1_{11} - 0_{00}$	15.39011	0.00472	10.0		$3_{03} - 0_{00}$	70.3701	-0.0661	10.0
	$1_{10} - 0_{00}$	19.94299	0.01118	10.0		$3_{13} - 0_{00}$	70.4066	-0.0636	10.0
	202-000	38.29127	0.02657	10.0		$3_{12} - 0_{00}$	93.6816	-0.1274	10.0
	212-000	38.61890	0.02282	10.0		$3_{22} - 0_{00}$	94.9421	-0.0730	10.0
	$2_{11} - 0_{00}$ $2_{21} - 0_{00}$	52.26090 56.74608	0.04188	10.0		$3_{21} - 0_{00}$	105.8151	~0.1678	10.0
	2 ₂₀ -0 ₀₀	56.74698 60.10843	0.01993 0.02980	10.0 10.0		3 ₃₁ -0 ₀₀	113.5128	0.0192 -0.0072	10.0
	3 ₀₃ -0 ₀₀	71.68663	0.04699	10.0		3 ₃₀ - 0 ₀₀ 4 ₀₄ - 0 ₀₀	115.8173 112.4829	~0.1014	10.0
	313-000	71.73630	0.04601	10.0		414-000	112.4863	-0.1021	10.0
	312-000	96.86389	0.07282	10.0		413 -000	145.9687	-0.1534	10.0
	$3_{22} - 0_{00}$	98.41076	0.05665	10.0		423-000	146.2157	-0.1380	10.0
	$3_{21} - 0_{00}$	109.97559	0.08152	10.0		422 - 000	167.8817	-0.2618	10.0
	$3_{31} - 0_{00}$	118.85823	0.04058	10.0		$4_{32} - 0_{00}$	171.3030	-0.1226	10.0
	330 -000	120.96499	0.05090	10.0		431 000	180.0243	-0.2530	10.0
	404 -000	114.28395	0.07571	10.0		441-000	191.9318	0.0014	10.0
	414-000	114.29081	0.07551	10.0		440 - 000	194.2170	0.0398	10.0
	4 ₁₃ 0 ₀₀ 4 ₂₃ 0 ₀₀	150.54258 150.87871	0.10555 0.09937	10.0 10.0		5 ₀₅ - 0 ₀₀	163.8801	-0.1453	10.0
	4 ₂₃ 0 ₀₀	174.08437	0.09937	10.0		515 - 000 514 - 000	163.8806 207.1167	-0.1453 -0.1985	10.0
	432 000	178.25909	0.09530	10.0		$5_{14} - 0_{00}$ $5_{24} - 0_{00}$	207.1554	-0.1959	10.0
	431 -000	187.28845	0.12502	10.0		5 ₂₃ -0 ₀₀	239.8036	-0.2901	10.0
	441 -000	201.75232	0.06558	10.0		533 -000	240.7397	-0.2323	10.0
	$4_{40} - 0_{00}$	202.89606	0.07307	10.0		532-000	259.9379	-0.4324	10.0
	5 ₀₅ -0 ₀₀	166.17962	0.11262	10.0		$5_{42} - 0_{00}$	266.7874	-0.1730	10.0
	515-000	166.18057	0.11258	10.0		$5_{41} - 0_{00}$	273.4129	-0.3179	10.0
	514-000	213.04086	0.15138	10.0		$5_{51} - 0_{00}$	292.6414	0.1502	10.0
	524 -000	213.10089	0.14971	10.0	100114	550 -000	292.7896	0.1139	10.0
	523 -000	248.29024	0.17925	10.0	$(0,0,1)^d$	000	2628.4552	-0.1001	10.0
	5 ₃₃ - 0 ₀₀	249.55181	0.15829	10.0		101-000	13.6136	-0.0026	10.0
	5 ₃₂ - 0 ₀₀	269.84893 278.25270	0.20124 0.13454	10.0 10.0		111-000	14.8215	-0.0368	10.0
	5 ₄₂ 0 ₀₀ 5 ₄₁ 0 ₀₀	284.61247	0.16465	10.0		1 ₁₀ - 0 ₀₀	19.0782 37.5538	-0.0268	10.0
	5 ₅₁ 0 ₀₀	305.38982	0.09484	10.0		2 ₀₂ 0 ₀₀ 2 ₁₂ 0 ₀₀	37.7480	-0.0386 -0.0555	10.0 10.0
	5 ₅₀ - 0 ₀₀	305.95087	0.09887	10.0		$2_{11} - 0_{00}$ $2_{11} - 0_{00}$	50.5652	-0.0333	10.0
,2,0)d	000	2353.9655	0.1344	10.0		2 ₁₁ - 0 ₀₀ 2 ₂₁ - 0 ₀₀	54.1754	-0.1199	10.0
,	101-000	14.0496	0.0250	10.0		2 ₂₀ -0 ₀₀	57.4394	-0.0896	10.0
	111-000	15.7203	0.0032	10.0		303-000	70.5287	-0.0857	10.0
	110-000	20.5557	0.0181	10.0		313-000	70.5526	-0.0888	10.0
	202-000	38.6065	0.0493	10.0		312-000	93.8767	-0.0728	10.0
	$2_{12} - 0_{00}$	38.9864	0.0388	10.0		322-000	94.8348	-0.1440	10.0
	211-000	53.4736	0.0837	10.0		321-000	106.1697	-0.0489	10.0

TABLE I-Continued

(v_1, v_2, v_3)	$J'_{K'_{\bullet} K'_{\bullet}} - J''_{K''_{\bullet} K''_{\bullet}}$	obs.a	oc.	weight	(v_1, v_2, v_3)	$J'_{K'_{4} \ K'_{c}} - J''_{K''_{4} \ K''_{c}}$	obs.4	oc.	weig
·	N. N.	cm ⁻¹	cm ⁻¹			nane na Ne	cm ⁻¹	cm-1	
(0 0 1 \d	2 0	112 2051	0.0503	100	(0.1.1)		400.000	0.400	
(0,0,1) ^d	3 ₃₁ −0 ₀₀ 3 ₃₀ ∽0 ₀₀	113.2671 115.4345	-0.2503 -0.2062	10.0 10.0	(0,1,1) ^e	4 ₄₁ - 0 ₀₀ 4 ₄₀ 0 ₀₀	198.029 199.293	~0.400 ~0.350	1.0 1.0
	404 - 000	112.7576	-0.1403	10.0		5 ₀₅ - 0 ₀₀	164.151	-0.076	1.0
	414 000	112.7607	-0.1402	10.0		5 ₁₅ 0 ₀₀	164.156	-0.072	1.0
	413-000	146.1660	-0.1600	10.0		514-000	210.194	-0.084	1.0
	423 - 000	146.3294	-0.1810	10.0		5 ₂₄ - 0 ₀₀	210.225	-0.091	1.0
	422-000	168.3089	-0.0990	10.0		$5_{23} - 0_{00}$	245.043	~0.036	1.0
	432-000	171.0332	-0.2651	10.0		$5_{33} - 0_{00}$	245.895	-0.118	1.0
	431 000	181.1490	-0.0658	10.0		532-000	267.178	0.091	1.0
	441-000	192.1241	-0.4277	10.0		542-000	273.654	-0.254	1.0
	4 ₄₀ - 0 ₀₀ 5 ₀₅ - 0 ₀₀	193.3850 164.3095	-0.3864 -0.2055	10.0 10.0		541-000	280.345 299.718	-0.051	1.0
	5 ₁₅ - 0 ₀₀	164.3098	-0.2056	10.0		5 ₅₁ - 0 ₀₀ 5 ₅₀ - 0 ₀₀	300.370	-0.621 -0.584	1.0 1.0
	5 ₁₄ -0 ₀₀	207.4048	-0.2453	10.0	$(0,2,1)^f$	000	4939.23	-0.59	1.0
	5 ₂₄ -0 ₀₀	207.4270	-0.2501	10.0	(2,0,0)	000	5145.12	-0.40	1.0
	523 -000	240.1296	-0.2299	10.0	$(1,0,1)^f$	000	5147.36	0.24	1.0
	533 000	240.7634	-0.3034	10.0	(2,1,0)9	000	6288.14277	-0.22421	10.0
	532-000	260.8028	-0.1289	10.0	(-1-1-)	1 ₀₁ - Q ₀₀	13.51326	-0.02088	10.0
	$5_{42} - 0_{00}$	266.4658	-0.4201	10.0		111-000	15.05217	0.05536	10.0
	$5_{41} - 0_{00}$	272.7071	-0.2764	10.0		$1_{10} - 0_{00}$	19.35556	~0.01191	10.0
	$5_{51} - 0_{00}$	290.7215	-0.6518	10.0		$2_{02} - 0_{00}$	37.23290	~0.04014	10.0
	550 -000	291.3866	-0.6217	10.0		$2_{12} - 0_{00}$	37.46697	0.00630	10.0
1,1,0)*	000	3779.1710	-0.1165	10.0		211-000	50.75556	-0.07256	10.0
	1 ₀₁ -0 ₀₀	13.692 15.158	-0.012 0.021	1.0 1.0		2 ₂₁ - 0 ₀₀	55.13259 58.33656	0.01412	10.0 10.0
	1 ₁₁ 0 ₀₀ 1 ₁₀ 0 ₀₀	19.653	0.002	1.0		$2_{20} - 0_{00}$ $3_{03} - 0_{00}$	69.66905	-0.02930 -0.05489	10.0
	202-000	37.729	-0.007	1.0		313-000	69.69449	-0.04518	10.0
	212-000	38.036	0.002	1.0		312-000	94.12109	-0.11352	10.0
	$2_{11} - 0_{00}$	51.512	-0.034	1.0		$3_{22} - 0_{00}$	94.85002	0.19197	0.0
	$2_{21} - 0_{00}$	55.870	0.053	1.0		$3_{21} - 0_{00}$	106.76045	-0.14813	10.0
	$2_{20} - 0_{00}$	59.251	0.020	1.0		$3_{31} - 0_{00}$	115.40421	0.00907	10.0
	303-000	70.621	0.002	1.0		$3_{30} - 0_{00}$	117.40283	-0.03656	10.0
	313-000	70.664	0.003	1.0		404-000	111.06701	-0.07781	10.0
	312-000	95.471 96.926	-0.035	1.0 1.0		414-000	111.06734	-0.07792	10.0
	3 ₂₂ -0 ₀₀ 3 ₂₁ -0 ₀₀	108.393	0.011 0.063	1.0		$4_{13} - 0_{00}$ $4_{23} - 0_{00}$	146.24319 146.41318	-0.14796 -0.08029	10.0 10.0
	331 -000	116.736	0.067	1.0		4 ₂₂ -0 ₀₀	169.07466	-0.22957	10.0
	330 - 000	119.272	0.066	1.0		432-000	173.15648	-0.09910	10.0
	404 -000	112.575	0.008	1.0		431-000	181.77319	-0.23829	10.0
	414-000	112.578	0.005	1.0		441-000	195.86148	0.01723	10.0
	$4_{13} - 0_{00}$	148.339	0.013	1.0		$4_{40} - 0_{00}$	196.93597	-0.02189	10.0
	423 -000	148.641	0.004	1.0		505-000	161.51201	-0.11118	10.0
	422-000	171.593	-0.093	1.0		515-000	161.51104	-0.11204	10.0
	432 -000	175.506 184.596	0.031 -0.086	1.0 1.0		514-000	206.91704	-0.17242	10.0
	4 ₃₁ - 0 ₀₀ 4 ₄₁ - 0 ₀₀	199.228	0.139	1.0		5 ₂₄ 0 ₀₀ 5 ₂₃ 0 ₀₀	206.93537 241.17477	-0.15816 -0.27838	10.0 10.0
	440 -000	200.088	0.145	1.0		5 ₃₃ - 0 ₀₀	241.67051	-0.02959	10.0
	505 -000	163.693	0.020	1.0		5 ₃₂ - 0 ₀₀	262.00045	-0.38507	10.0
	515-000	163.694	0.020	1.0		542-000	270.12168	-0.18546	10.0
	514-000	209.898	0.009	1.0		$5_{41} - 0_{00}$	276.18989	-0.32675	10.0
	$5_{24} - 0_{00}$	209.948	0.012	1.0		551-000	296.46957	0.03559	10.0
	$5_{23} - 0_{00}$	244.699	-0.058	1.0		5 ₅₀ 0 ₀₀	296.98654	0.00661	10.0
	533 000	245.830	-0.001	1.0	$(1,1,1)^{g}$	000	6289.17385	0.18142	10.0
	532-000	265.979	-0.174	1.0		101-000	13.39959	-0.07006	10.0
	5 ₄₂ 0 ₀₀ 5 ₄₁ 0 ₀₀	273.526 280.547	0.052 -0.088	1.0 1.0		111-000	14.91255 19.34693	-0.00978 -0.02068	10.0 10.0
	5 ₅₁ -0 ₀₀	301.302	0.283	1.0		$1_{10} - 0_{00}$ $2_{02} - 0_{00}$	37.27361	-0.07490	10.0
	5 ₅₀ - 0 ₀₀	301.745	0.266	1.0		2 ₁₂ -0 ₀₀	37.49371	-0.03559	10.0
),1,1)*	000	3789.272	-0.385	10.0		211-000	50.70351	-0.08111	10.0
	$1_{01} - 0_{00}$	13.764	0.015	1.0		221-000	55.00287	-0.04219	10.0
	111-000	15.115	-0.028	1.0		$2_{20} - 0_{00}$	58.30436	~0.05506	10.0
	$1_{10} - 0_{00}$	19.635	-0.015	1.0		$3_{03} - 0_{00}$	69.70583	-0.08575	10.0
	$2_{02} - 0_{00}$	37.829	-0.008	1.0		$3_{13} - 0_{00}$	69.72859	-0.07722	10.0
	212-000	38.084	-0.023	1.0		$3_{12} - 0_{00}$	94.77078	-0.37823	0.0
	211 -000	51.697	0.030	1.0		322-000	95.44095	-0.10121	10.0
	2 ₂₁ −0 ₀₀ 2 ₂₀ ↔0 ₀₀	55.712 59.138	-0.108 -0.064	1.0 1.0		321-000	106.72522	-0.15079 -0.09131	10.0
	303 - 000	70.792	-0.030	1.0		3 ₃₁ - 0 ₀₀ 3 ₃₀ - 0 ₀₀	115.22311	~0.09131 ~0.09977	10.0
	3 ₁₃ 0 ₀₀	70.827	-0.031	1.0		404 - 000	111.13338	-0.12697	10.0
	312-000	95.677	0.007	1.0		414-000	111.13495	-0.12560	10.0
	$3_{22}-0_{00}$	96.886	-0.069	1.0		413-000	146.31450	~0.20742	10.0
	$3_{21} - 0_{00}$	108.999	0.075	1.0		423 - 000	146.46427	-0.14997	10.0
	$3_{31} - 0_{00}$	116.682	-0.226	0.1		422-000	168.91477	~0.24694	10.0
	330-000	118.914	-0.165	1.0		$4_{32} - 0_{00}$	172.85030	-0.18987	10.0
	404-000	112.870	-0.054	1.0		4 ₃₁ - O ₀₀	181.73833	-0.24307	10.0
	413-000	148.544	0.047	1.0		441-000	195.59795	-0.12726	10.0
	423-000	148.765	-0.072	1.0		440-000	196.74319	-0.14270	10.0
	422-000	172.063	0.042	1.0		5 ₀₅ - O ₀₀	161.62016	-0.18105	10.0
	432-000	175.374	-0.145	1.0		515-000	161.62081	-0.18025	10.0
	$4_{31} - 0_{00}$	184.429	0.056	1.0		$5_{14} - 0_{00}$	206.97828	-0.23600	10.0

TABLE I—Continued

(v1, v2, v3)	$J'_{K'_{\bullet} \ K'_{c}} - J''_{K''_{\bullet} \ K''_{c}}$	obs. ^a cm ⁻¹	oc. cm ⁻¹	weight	(v1, v2, v3)	$J'_{K'_{\bullet} \ K'_{e}} - J''_{K''_{\bullet} \ K''_{e}}$	obs.* cm ⁻¹	oc. cm ⁻¹	weight
(1,1,1)9	5 ₂₄ -0 ₀₀	206.99278	-0.22350	10.0	(3,0,0)	000	7576.3	-0.2	1.0
,	523-000	241.67698	-0.47937	10.0	$(2,0,1)^f$	000	7576.3	-0.1	1.0
	533-000	242.10667	-0.26081	10.0	$(1,0,2)^f$	000	7751.9	-0.5	1.0
	$5_{32} - 0_{00}$	261.92222	-0.36526	10.0	(0,0,3)	000	7779.2	-0.4	1.0
	$5_{42} - 0_{00}$	269.78961	-0.29257	10.0	$(2,1,1)^f$	000	8697.3	0.8	1.0
	$5_{41} - 0_{00}$	276.12066	-0.34872	10.0	(3,0,1)	000	9911.05	0.30	1.0
	$5_{51} - 0_{00}$	296.10542	-0.16993	10.0	$(2,0,2)^f$	000	10188.25	~0.61	1.0
	5 ₅₀ 0 ₀₀	296.67003	-0.18298	10.0	(1,0,3)	000	10194.48	1.04	1.0
(0,1,2)*	000	6388.7306	2.8411	0.0	$(3,1,1)^{f}$	000	11008.78	1.04	1.0
D ₂ 32S									
(0,0,0)'	000	0.0	0.00103	100.0	(0,1,0)	551-000	159.38024	0.09337	10.0
	$1_{01} - 0_{00}$ $1_{11} - 0_{00}$	6.95615 7.93561	0.00193 0.00282	100.0 100.0	(1,0,0)	550 - 000	159.50965 1896.43169	0.09380 0.58355	10.0 10.0
	1 ₁₀ -0 ₀₀	10.00356	0.00327	100.0	(1,0,0)-	0 ₀₀ 1 ₀₁ –0 ₀₀	6.88073	-0.00729	10.0
	202-000	19.50303	0.00583	100.0		111-000	7.85098	-0.00010	10.0
	212-000	19.78010	0.00622	100.0		110-000	9.90033	-0.00208	10.0
	$2_{11} - 0_{00}$	25.98049	0.00751	100.0		$2_{02} - 0_{00}$	19.28957	-0.01607	10.0
	$2_{21} - 0_{00}$	28.91573	0.01033	100.0		$2_{12} - 0_{00}$	19.56214	-0.01346	10.0
	220-000	30.27730	0.01021	100.0		$2_{11} - 0_{00}$	25.70554	-0.02032	10.0
	303 - 000	36.79272	0.01127	100.0		$2_{21} - 0_{00}$ $2_{20} - 0_{00}$	28.61247	0.00104	10.0
	313-000	36.84521	0.01136	100.0		220-000	29.95103	-0.01226	10.0
	312-000	48.51662 49.78228	0.01422	100.0		303 000	36.38505	-0.02967	10.0
	$3_{22} - 0_{00}$ $3_{21} - 0_{00}$	54.70730	0.01603 0.01600	100.0 100.0		$3_{13} - 0_{00}$ $3_{12} - 0_{00}$	36.43582 48.00092	-0.02938 -0.03614	10.0 10.0
	$3_{31} - 0_{00}$	60.51585	0.02202	100.0		3 ₂₂ -0 ₀₀	49.24599	-0.03514	10.0
	330 -000	61.23489	0.02156	100.0		321 -000	54.14869	-0.02630	10.0
	404 - 000	58.87438	0.01812	100.0		331-000	59.87758	0.00092	10.0
	$4_{14} - 0_{00}$	58.88283	0.01813	100.0		$3_{30} - 0_{00}$	60.51607	-0.05856	10.0
	$4_{13} - 0_{00}$	76.05674	0.02319	100.0		404 000	58.21723	-0.04899	10.0
	423-000	76.40554	0.02389	100.0		$4_{14} - 0_{00}$	58.22507	-0.04914	10.0
	422-000	86.71597	0.02456	100.0		413-000	75.24052	-0.05083	10.0
	432-000	89.97686	0.02937	100.0		423-000	75.57790	-0.04911	10.0
	$4_{31} - 0_{00}$ $4_{41} - 0_{00}$	93.43084 102.82961	0.02790 0.03842	100.0 100.0		422-000	85.80521 89.00772	-0.06294 -0.04227	10.0
	4 ₄₀ = 0 ₀₀	103.14890	0.03795	100.0		4 ₃₂ 0 ₀₀ 4 ₃₁ 0 ₀₀	92.55287	0.00800	10.0 10.0
	505 000	85.81837	0.02647	100.0		440 -000	101.58440	-0.33981	10.0
	515-000	85.81964	0.02647	100.0		5 ₁₅ -0 ₀₀	84.85678	-0.07383	10.0
	$5_{14} - 0_{00}$	108.17297	0.03362	100.0		$5_{14} - 0_{00}$	107.00010	-0.07319	10.0
	$5_{24} - 0_{00}$	108.24640	0.03379	100.0		$5_{24} - 0_{00}$	107.06932	-0.07346	10.0
	523 - 000	124.55923	0.03646	100.0		$5_{23} - 0_{00}$	123.24326	-0.08196	10.0
	533-000	125.81526	0.03923	100.0		$5_{33} - 0_{00}$	124.45944	-0.07625	10.0
	532-000	134.23405	0.03703	100.0		532-000	132.84279	-0.08602	10.0
	5 ₄₂ O ₀₀ 5 ₄₁ O ₀₀	140.50879 142.58619	0.04665 0.04420	100.0 100.0		542-000	138.96525	-0.07880	10.0
	5 ₅₁ - 0 ₀₀	155.91156	0.06020	100.0		$5_{41} - 0_{00}$ $5_{51} - 0_{00}$	141.39235 153.57053	0.10800 -0.45624	10.0 10.0
	5 ₅₀ - 0 ₀₀	156.03856	0.05986	100.0		5 ₅₀ - 0 ₀₀	154.96903	0.26828	10.0
0,1,0)	000	855.40420	-0.01381	10.0	(0,0,1)	000	1910.18406	0.05830	10.0
	$1_{01} - 0_{00}$	7.00738	0.00578	10.0	,	$1_{01} - 0_{00}$	6.91453	0.00573	10.0
	$1_{11} - 0_{00}$	8.04622	0.00470	10.0		$1_{11} - 0_{00}$	7.83209	-0.01223	10.0
	$1_{10} - 0_{00}$	10.21074	0.00694	10.0		$1_{10} - 0_{00}$	9.89155	-0.00720	10.0
	$2_{02} - 0_{00}$	19.59966	0.01480	10.0		$2_{02} - 0_{00}$	19.35224	0.00194	10.0
	212-000	19.89668	0.01400	10.0		212-000	19.61411	0.00265	10.0
	211-000	26.38640	0.02069	10.0		211-000	25.77928	0.01078	10.0
	$2_{21} - 0_{00}$ $2_{20} - 0_{00}$	29.49916 30.91729	0.01772 0.02009	10.0 10.0		$2_{21} - 0_{00}$	28.52850	-0.04308	10.0
	3 ₀₃ - 0 ₀₀	36.88411	0.02701	10.0		$2_{20} - 0_{00}$ $3_{03} - 0_{00}$	29.91417 36.49032	-0.02932 -0.00651	10.0 10.0
	313-000	36.94111	0.02685	10.0		313-000	36.51978	-0.00811	10.0
	312-000	49.16533	0.03821	10.0		312-000	48.12710	0.01040	10.0
	322-000	50.51957	0.03498	10.0		322-000	49.35523	0.03414	10.0
	$3_{21} - 0_{00}$	55.65837	0.04205	10.0		$3_{21} - 0_{00}$	54.25598	0.01933	10.0
	$3_{31} - 0_{00}$	61.81528	0.03676	10.0		$3_{31} - 0_{00}$	59.69166	-0.09141	10.0
	$3_{30} - 0_{00}$	62.55900	0.03865	10.0		$3_{30} - 0_{00}$	60.44694	-0.07578	10.0
	404-000	58.90940	0.04332	10.0		$4_{04} - 0_{00}$	58.39641	-0.01113	10.0
	414-000	58.91874	0.04329	10.0		$4_{14} - 0_{00}$	58.40123	-0.01297	10.0
	413-000	76.92092	0.05810	10.0		413-000	75.38351	-0.01399	10.0
	423 -000	77.29888	0.05638	10.0		423 -000	75.58043	-0.08851	10.0
	4 ₂₂ - 0 ₀₀ 4 ₃₂ - 0 ₀₀	88.07176 91.55293	0.06853 0.06174	10.0 10.0		422-000	86.03891	0.03385	10.0
	432 - 000 431 - 000	95.13824	0.06845	10.0		4 ₃₂ - 0 ₀₀ 4 ₃₁ - 0 ₀₀	89.50290 92.65316	0.29959	10.0
	4 ₃₁ -0 ₀₀ 4 ₄₁ -0 ₀₀	105.09138	0.06196	10.0		4 ₃₁ -0 ₀₀ 4 ₄₁ -0 ₀₀	101.40760	0.05513 -0.15856	10.0 10.0
	440 000	105.41900	0.06288	10.0		5 ₁₅ -0 ₀₀	85.13483	-0.13830 -0.01482	10.0
	5 ₁₅ -0 ₀₀	85.75150	0.06320	10.0		5 ₁₄ 0 ₀₀	107.19556	-0.03441	10.0
	5 ₁₄ -0 ₀₀	109.19171	0.08228	10.0		5 ₂₄ -0 ₀₀	107.23775	-0.05018	10.0
	5 ₂₄ -0 ₀₀	109.27234	0.08166	10.0		5 ₂₃ -0 ₀₀	123.49125	0.00084	10.0
	523-000	126.34371	0.09676	10.0		533 000	124.26807	-0.22407	10.0
	$5_{33} - 0_{00}$	127.70090	0.09151	10.0		532-000	133.21451	0.08010	10.0
	$5_{32} - 0_{00}$	136.46498	0.10377	10.0		$5_{41} - 0_{00}$	141.89126	0.46137	10.0
	$5_{42} - 0_{00}$	143.14903	0.09352	10.0		$5_{51} - 0_{00}$	153.72753	-0.24454	10.0
	$5_{41} - 0_{00}$	145.28957	0.09867	10.0		$5_{50} - 0_{00}$	153.87115	-0.23796	10.0

TABLE I—Continued

(v1, v2, v3)	$J'_{K'_{4} \ K'_{c}} - J''_{K''_{4} \ K''_{c}}$	obs.ª	oc. cm ⁻¹	weight	(v1, v2, v3)	$J'_{K'_{\bullet} \ K'_{c}} - J''_{K''_{\bullet} \ K''_{c}}$	obs. ^a cm ⁻¹	oc. cm ⁻¹	weight
(1,1,0)*	000	2742,77	0.43	1.0					
(0,1,1)*	000	2754.44	-0.27	1.0					
$(1,1,1)^{1}$	000	4592.32	0.59	1.0					
HD ³² S									
(0,0,0)	000	0.0			(0,1,0) ^m	000	1032.71523	0.04975	10.0
	$1_{01} - 0_{00}$	8,15749	0.00294	100.0		$1_{01} - 0_{00}$	8.21548	0.00877	10.0
	$1_{11} - 0_{00}$	12.97701	0.00021	100.0		111-000	13.21798	0.00464	10.0
	$1_{10} - 0_{00}$	14.68063	0.00173	100.0		$2_{02} - 0_{00}$	24.22830	0.02412	10.0
	$2_{02} - 0_{00}$	24.09399	0.00801	100.0		212-000	27.81310	0.01800	10.0
	$2_{12} - 0_{00}$	27.58315	0.00461	100.0		$2_{11} - 0_{00}$	33.30094	0.03002	10.0
	211-000	32.69265	0.00911	100.0		221 -000	48.30055	0.01771	10.0
	$2_{21} - 0_{00}$	47.14494	0.00097	100.0		$2_{20} - 0_{00}$	48.71612	0.01954	10.0
	$2_{20} - 0_{00}$	47.52133	0.00172	100.0		303 - 000	47.32739	0.04361	10.0
	303-000	47.15990	0.01409	100.0		$3_{13} - 0_{00}$	49.46908	0.03748	10.0
	313-000	49.27676	0.01078	100.0		$3_{12} \sim 0_{00}$	60.37908	0.06041	10.0
	$3_{12} - 0_{00}$	59.43847	0.01945	100.0		$3_{22} - 0_{00}$	72.91236	0.04472	10.0
	$3_{22} - 0_{00}$	71.58622	0.00998	100.0		321 ~000	74.86534	0.05229	10.0
	$3_{21} - 0_{00}$	73,36081	0.01321	100.0		331 ~000	102.69909	0.03384	10.0
	331 - 000	100,12980	0.00043	100.0		$3_{30} - 0_{00}$	102.75953	0.03418	10.0
	330 - 000	100.18304	0.00059	100.0		404-000	76.88416	0.06666	10.0
	$4_{04} - 0_{00}$	76.76626	0.02089	100.0		414-000	77.97501	0.06215	10.0
	414 000	77.86451	0.01844	100.0		413 000	95.83709	0.09732	10.0
	413-000	94.51811	0.03172	100.0		423 - 000	105.39894	0.07922	10.0
	423 000	103.87581	0.02132	100.0		422 - 000	110.62580	0.09684	10.0
	$4_{22} - 0_{00}$	108.64693	0.02886	100.0		432-000	136.13488	0.07345	10.0
	432-000	133.28383	0.01374	100.0		431 -000	136.54550	0.07565	10.0
	431 000	133,64612	0.01475	100.0		441 - 000	176.88971	0.05230	10.0
	441 -000	172.39006	-0.00126	100.0		440 - 000	176.89690	0.05235	10.0
	440 -000	172.39623	-0.00124	100.0		505 - 000	112.64832	0.09425	10.0
	505 000	112.66393	0.02890	100.0		5 ₁₅ O ₀₀	113.14324	0.09168	10.0
	$5_{15} - 0_{00}$	113.17190	0.02746	100.0		514-000	138.98943	0.13839	10.0
	$5_{14} - 0_{00}$	137.31294	0.04467	100.0		524 - 000	145.49340	0.12064	10.0
	$5_{24} - 0_{00}$	143,77034	0.03454	100.0		523 - 000	155.92872	0.15009	10.0
	523-000	153.34100	0.04732	100.0		533-000	177.98697	0.12204	10.0
	533 -000	174.78359	0.02997	100.0		532-000	179.52854	0.12944	10.0
	532-000	176.14884	0.03342	100.0		542-000	218.64840	0.10401	10.0
	$5_{42} - 0_{00}$	213,79797	0.01593	100.0		541 000	218.71195	0.10433	10.0
	541 000	213.85257	0.01612	100.0		$5_{51} - 0_{00}$	270.91963	0.07222	10.0
	$5_{51} - 0_{00}$	263.97724	-0.00398	100.0		550 -000	270.92033	0.07216	10.0
	550-000	263.97788	-0.00398	100.0					
H ₂ 34 S									
(0,1,0)"	000	1181.49820	0.15817	1.0	(2,1,0)9	000	6283.01238	-0.24514	1.0
(0,2,0) ^d	000	2351.83858	0.18222	1.0	(1,1,1)9	000	6283.95722	0.15636	1.0
(1,0,0)d	000	2612.36292	-0.30891	1.0	$(0,1,2)^h$	000	6383.885	3.417	0.0
(0,0,1) ^d	000	2626.12100	-0.09682	1.0	(3,1,2)	~00		J. 11.	V.V

Experimental energy spacings. Data labeled by (v_1, v_2, v_3) 0_{00} are vibrational term values measured relative to the (0,0,0) 0_{00} level of the isotopic molecule in question. Unless otherwise indicated, the other data are spacings within the particular (v_1, v_2, v_3) state. ^bCalculated from the rotation-vibration parameters of Ref. (28). ^cVibrational energy from Ref. (35); rotational spacings calculated from the parameters of Ref. (35). ^dRef. (32). ^eVibrational energy from Ref. (22). ^fRef. (35). ^hRef. (36). ^hRef. (36). Uncertain observation (only a few perturbation induced transitions observed). Given sero weight in the fitting. ^cCalculated from the rotation-vibration parameters of Ref. (34). ^jVibrational energy from Ref. (37); rotational spacings from Ref. (28). ^kRef. (16). ^lRef. (16). ^lRef. (14). ^mRef. (38). ⁿRef. (35).

also contains the force constant values obtained in a high-level ab initio calculation by Senekowitsch *et al.* (41) and those obtained by Kauppi and Halonen (40). For the second- and third-order force constants, there is clearly broad agreement between the three data sets in Table III, whereas the fourth-order ab initio constants show some discrepancy from the values obtained in the present work. In the calculation by Kauppi and Halonen (40), most fourth-order force constants were constrained to zero. The discrepancies between ab initio force constant values and MORBID values found here for H_2S are comparable to those obtained for H_2O (Table V of Ref. (39)) and H_2Se (Table III of Ref. (9)).

TABLE II Fitted Potential Energy Parameters for H_2S

^a Quantities in parentheses are standard errors in units of the last digit given.

Finally, we have used our fitted potential energy surface to calculate an extensive set of vibrational term values for $H_2^{32}S$, $D_2^{32}S$, and $HD^{32}S$. The results are given in Table IV. The basis sets were $N_{\text{Stretch}} = 12$, $N_{\text{Bend}} = 18$, and $(N_A, N_B) = (25, 20)$ for $H_2^{32}S$; $N_{\text{Stretch}} = 12$, $N_{\text{Bend}} = 20$, and $(N_A, N_B) = (30, 25)$ for $D_2^{32}S$; and $N_{\text{Stretch}} = 12$, $N_{\text{Bend}} = 22$, and $N_A = 55$ for $HD^{32}S$. The local mode behavior (42, 43) noted for $H_2^{80}Se$ in Refs. (9, 10) is also apparent for $H_2^{32}S$.

We have already pointed out that only rather few vibrational states of H_2S have been spectroscopically characterized. Clearly, Table I shows there to be even less data available for $D_2^{32}S$ and $HD^{32}S$. We hope that the predictions given in Table IV will encourage further experimental work on these molecules.

III. THE CALCULATION OF THE CLUSTER STATES

(a) Basis Set

We use the fitted potential energy function from Section II as input for a calculation of the cluster structure for $J \le 40$ in the vibrational ground state and the ν_1 , ν_2 , ν_3 , and $2\nu_2$ states of $H_2^{32}S$, again using the MORBID computer program (11-13). The calculation was done with a basis set defined by $N_{\text{Stretch}} = 7$, $N_{\text{Bend}} = 7$, and $(N_A, N_B) = (6, 4)$.

(b) Calculated Energies

The analysis given in the remainder of the present work is mainly concerned with the cluster formation in the vibrational ground state and the fundamental vibrational states of $H_2^{32}S$, and consequently we do not give lengthy tables of term values. As it was done for H_2Se (9, 10), the results are presented graphically in order to make the cluster structure apparent. However, all results from the calculation described here, as well as the results of calculations for other isotopic species of H_2S , are available from one of the authors (P.J.) on request.

The rotational energy level manifold in the vibrational ground state of $H_2^{32}S$ is shown in Fig. 2 for $J \le 40$. The term values are plotted relative to the highest term

TABLE III
Equilibrium Geometry and Force Constants for H₂S

	ab initio	KH ^b	This work
$r_{12}^{\epsilon}/{ m \AA}$	1.3376	1.3356	1.3366
$\alpha_e^{\rm c}/{\rm deg}$	92.335	92.12	92.226
$f_{rr}/\mathrm{aJ}~\mathrm{\AA}^{-2}$	4.299	4.285	4.284
$f_{\alpha\alpha}/\mathrm{aJ}$	0.765	0.763	0.759
$f_{rr'}$ /aJ Å ⁻²	-0.014	-0.020	-0.018
$f_{rlpha}/{ m aJ~\AA^{-1}}$	0.076	0.121	0.108
$f_{rrr}/{ m aJ~\AA^{-3}}$	-22.5	-22.58	-21.314
$f_{\alpha\alpha\alpha}/aJ$	-0.28	-0.222	-0.257
$f_{rrr'}/\mathrm{aJ}~\mathrm{\AA}^{-3}$	-0.02	0.0	-0.048
$f_{rra}/\mathrm{aJ}~\mathrm{\AA}^{-2}$	-0.04	0.0	-0.179
$f_{rr'\alpha}/{ m aJ~\AA^{-2}}$	-0.19	-0.207	0.0
$f_{r\alpha\alpha}/\mathrm{aJ}\ \mathrm{\AA}^{-1}$	-0.35	-0.267	-0.435
$f_{rrrr}/\mathrm{aJ}~\mathrm{\AA}^{-4}$	103.4	104.34	82.484
$f_{\alpha\alpha\alpha\alpha}/\mathrm{aJ}$	-0.04	-0.770	-0.457
$f_{rrrr'}/{\rm aJ~\AA^{-4}}$	-0.12		0.339
$f_{rrr'r'}/\mathrm{aJ}\ \mathrm{\AA}^{-4}$	0.23		0.209
$f_{rrr\alpha}/{\rm aJ~\AA^{-3}}$	-0.01		0.297
$f_{rrr'\alpha}/\mathrm{aJ}\ \mathrm{A}^{-3}$	0.06		0.0
$f_{rr\alpha\alpha}/\mathrm{aJ}\ \mathrm{A}^{-2}$	-0.46	-1.251	0.035
$f_{rr'\alpha\alpha}/{ m aJ~\AA^{-2}}$	0.49		0.399
f _{rααα} /aJ Å ⁻¹	0.53		-0.058

^aFrom Ref. (41). ^bFrom Ref. (40). ^cEquilibrium bond angle.

value for each J multiplet. The values calculated by the MORBID program (using the parameters from Table II) are given as horizontal lines, and experimentally derived term values are shown as circles. Filled circles represent term values that were included in the input data for the fitting ($J \le 5$); empty circles represent term values that were not included.

Figure 2 shows the same qualitative pattern as that already found for the vibrational ground state of H_2^{80} Se (see Fig. 2 of Ref. (9)). As J increases, the four highest energies in each J multiplet initially form two doublets, in agreement with the predictions from rigid rotor theory. However, from $J \approx 15$ the energy difference between the two doublets decreases with increasing J, and for high J values it tends toward zero so that fourfold clusters (referred to in Ref. (10) as Type I clusters) are formed. The so-called critical J value J_{CR} , at which the deviation from the customary rigid rotor picture becomes apparent (see Eq. (4) of Ref. (1)), is predicted by semiclassical theory as

$$J_{\rm CR} = \frac{\omega}{4A} \sqrt{\frac{A-B}{C}}, \qquad (8)$$

TABLE IV

Calculated Vibrational Levels

		H ₂ 32	S			D ₂ ³²	S		ı	HD ³²	s
v_1	v_2	v_3	/cm ⁻¹	v_1	v_2	v_3	$/cm^{-1}$	v_1	v_2	v_3	$/cm^{-1}$
0	1	0	1182.44	0	1	0	855.42	0	1	0	1032.66
0	2	0	2353.83	0	2	0	1705.35	0	0	1	1902.71
1	0	0	2614.66	1	0	0	1895.85	0	2	0	2056.87
0	0	1	2628.56	0	0	1	1910.13	1	0	0	2621.89
0	3	0	3513.17	0	3	0	2549.40	0	1	1	2924.88
1	1	0	3779.29	1	1	0	2742.34	0	3	0	3071.97
0	1	1	3789.66	0	1	1	2754.71	1	1	0	3635.47
0	4	0	4659.48	0	4	Ô	3387.21	0	0	2	3756.02
1	2	0	4932.91	1	2	0	3583.36	0	2	1	3938.67
0	2	1	4939.82	0	2	1	3593.85	0	4	0	4077.30
2	Õ	Ó	5145.52	2	0	Ó	3752.80	1	0	1	4523.20
1	0	1	5147.12	1	0	1	3756.61	1	2	0	4640.64
Ô	Ő	2	5243.38	Ô	0	2	3808.79	0	1	2	4767.10
0	5	0	5791.83	0	5	Õ	4218.41	0	3	1	4943.40
1	3	ő	6074.50	1	3	0	4418.52	0	5	Ô	5072.26
Ô	3	1	6078.05	Ô	3	1	4427.16	2	0	Õ	5147.97
2	1	Ô	6288.37	2	1	ō	4588.87	1	1	1	5526.28
1	1	1	6288.99	1	1	1	4591.73	0	Ô	3	5559.95
Ô	ì	2	6385.89	Ô	1	2	4643.56	1	3	0	5636.71
0	6	0	6909.29	ő	6	Õ	5042.66	Ô	2	2	5769.88
1	4	0	7203.10	1	4	ő	5247.45	Õ	4	1	5938.42
Ô	4	1	7203.39	Ô	4	1	5254.27	ŏ	6	Ô	6056.25
1	2	1	7419.92	2	2	ō	5419.40	2	1	Ö	6141.30
2	2	Ô	7420.03	1	2	1	5421.41	1	Ô	2	6375.04
0	2	2	7517.74	0	2	2	5473.03	1	2	1	6521.02
2	ō	ī	7576.42	3	ō	ō	5559.15	Ô	1	3	6559.34
3	ŏ	ō	7576.45	2	0	i	5559.57	1	4	0	6623.07
1	ŏ	2	7752.40	1	ő	2	5645.49	ō	3	2	6763.68
0	0	3	7779.60	0	0	3	5672.74	0	5	1	6923.14
0	7	Ō	8010.95	Ö	7	0	5859.62	Õ	7	0	7028.66
0	5	1	8314.90	1	5	0	6069.79	2	0	1	7047.88
1	5	0	8317.74	0	5	1	6074.84	2	2	0	7126.26
1	3	1	8538.93	2	3	0	6243.99	0	0	4	7314.45
2	3	0	8539.53	1	3	1	6245.29	1	1	2	7367.00
0	3	2	8637.92	ō	3	2	6296.81	1	3	1	7506.74
2	1	1	8696.48	3	1	0	6383.88	0	2	3	7550.55
3	1	Ô	8696.58	2	1	1	6384.12	3	0	Õ	7578.22
1	1	2	8877.73	1	1	2	6472.09	1	5	Ō	7599.09
0	1	3	8898.66	0	1	3	6496.01	0	4	2	7747.85
0	8	0	9095.86	0	8	Õ	6668.95	Õ	6	1	7896.93
0	6	1	9411.66	1	6	Ō	6885.17	0	8	ō	7988.92
1	6	0	9417.50	0	6	1	6888.50	2	1	1	8030.76
1	4	1	9645.06	2	4	0	7062.28	2	3	0	8102.18
2	4	0	9645.95	1	4	1	7062.98	1	0	3	8177.36
0	4	2	9745.45	0	4	2	7114.53	0	1	4	8301.57
2	2	1	9805.37	3	2	0	7203.10	1	2	2	8350.72
_	_	-		_				_	_	_	

TABLE IV—Continued

		H ₂ 32	S			D_2^{32}	S		I	HD ³²	S
v_1	v_2	v_3	/cm ⁻¹	v_1	v_2	v_3	/cm ⁻¹	v_1	v_2	v_3	/cm ^{−1}
3	2	0	9805.50	2	2	1	7203.22	1	4	1	8482.80
3	Õ	1	9910.75	1	2	2	7293.35	0	3	3	8532.86
4	0	ō	9910.77	ō	2	3	7313.92	3	1	0	8550.18
1	2	2	9992.23	4	0	ō	7314.47	1	6	Ō	8564.16
_	_	_		3	0	1	7314.50	0	5	2	8721.77
				2	Ō	2	7452.42	0	7	1	8859.22
				1	ō	3	7462.20	2	0	2	8898.33
				0	9	0	7470.32	0	9	0	8936.41
				0	Ô	4	7518.97	2	2	1	9005.35
				1	7	0	7693.26	0	0	5	9019.60
				0	7	1	7694.93	2	4	0	9068.43
				2	5	0	7873.90	1	1	3	9157.43
				1	5	1	7874.14	0	2	4	9280.65
				0	5	2	7925.83	1	3	2	9325.51
				3	3	0	8016.46	1	5	1	9448.58
				2	3	1	8016.49	3	0	1	9476.71
				1	3	2	8108.88	0	4	3	9505.62
				0	3	3	8126.12	3	2	0	9513.82
				4	1	0	8127.74	1	7	0	9517.71
				3	1	1	8127.75	0	6	2	9684.82
				0	10	0	8263.36	0	8	1	9809.41
				2	1	2	8268.70	2	1	2	9870.06
				1	1	3	8276.26	0	10	0	9870.52
				0	1	4	8331.87	4	0	0	9912.69
				1	8	0	8493.71	1	0	4	9929.81
				0	8	1	8493.78	2	3	1	9970.98
				1	6	1	8678.40	0	1	5	9994.33

where ω is the harmonic vibration wavenumber of the bending mode and A, B, and C are the rotational constants. Using the rotational constants from Ref. (34) and the bending fundamental energy from Ref. (37), we obtain $J_{CR} = 15$ for $H_2^{32}S$. Previously, Makarewicz (6) and Pyka (7) have obtained $J_{CR} = 16$ and 18, respectively. These results are in accordance with our observation from Fig. 2 that the energy distance between the two rigid rotor doublets at highest energy starts decreasing at J = 15. For $H_2^{80}Se$, the corresponding number is $J_{CR} = 12$ (1). For $H_2^{32}S$ at J > 33, the energy splitting between the two doublet components forming the cluster at highest energy is not visible on the scale of Fig. 2. This splitting is 0.26 cm^{-1} at J = 34 (where the two doublet components are calculated at 10.772.15 and $10.771.89 \text{ cm}^{-1}$, respectively, with the energy zero taken as the energy of the $J_{K_0K_C} = 0_{00}$ level of the vibrational ground state) and decreases to less than 0.001 cm^{-1} at J = 40, where the cluster components are calculated at $16.750.03 \text{ cm}^{-1}$. As J increases above 35, more fourfold clusters are formed in the J multiplets. At J > 38, the eight highest energies in each J multiplet form two fourfold clusters, and the energy difference between the two clusters increases linearly with J.

We may compare our calculated term values for the vibrational ground state of $H_2^{32}S$ at J = 40 with the results of Pyka (7) obtained in a rigid bender-type calculation

FIG. 2. The rotational energy level structure in the vibrational ground state of H_2^{32} S. Term values are plotted relative to the highest term value for each J multiplet. The term values calculated by the MORBID program (using the parameters from Table II) are given as horizontal lines, and experimental term values are shown as circles. Filled circles represent term values that were included in the input data for the MORBID fitting ($J \le 5$); empty circles represent experimental term values that were not included.

neglecting the stretching motion. We determine the energies in the J=40 multiplet to be systematically lower than those of Ref. (7), the difference increasing from approximately 100 cm^{-1} for the lowest energies of the multiplet to 1000 cm^{-1} for the highest energies. We attribute these deviations to the fact that we account explicitly for the stretching motion of H_2S . In Section IV we give estimates of the bond length displacements brought about by rotational excitation.

We do not give any results for the ν_2 state of $H_2^{32}S$ here. As already found for $H_2^{80}Se$ in Ref. (10), the cluster formation in this state is merely a repetition of that in the vibrational ground state.

Figure 3 is a term value diagram for $H_2^{32}S$ showing $\nu_1/\nu_3/2\nu_2$ energy levels with $J \le 40$. The three energies present for J=0 are the ν_3 (at 2628 cm⁻¹), ν_1 (at 2614 cm⁻¹), and $2\nu_2$ (at 2354 cm⁻¹) levels. We plot the energies relative to $E^{gs}(J_{J0})$ defined as the highest energy in each J multiplet of *vibrational ground state*. Careful comparison of Fig. 3 with Fig. 3 of Ref. (10) shows that the cluster formation in the ν_1/ν_3 interacting vibrational states of $H_2^{32}S$ follows exactly the same qualitative pattern as that described

FIG. 3. An overview of the rotation-vibration term values calculated for $H_2^{32}S$ in the $\nu_1/\nu_3/2\nu_2$ region. The term values are plotted relative to the highest energy for each J multiplet in the vibrational ground state. The three states present for J=0 are the ν_3 (at 2628 cm⁻¹), ν_1 (at 2614 cm⁻¹), and $2\nu_2$ (at 2354 cm⁻¹) levels.

in detail for H_2^{80} Se in Ref. (10). For moderate J values, doublets of ν_1 or ν_3 rovibrational levels are formed as predicted by rigid rotor theory. However, when J increases, the v_1 doublet at highest energy merges with the v_3 doublet at highest energy to form a fourfold cluster (referred to in Ref. (10) as a Type II cluster), and when J increases further more clusters of this type are formed by the doublets at lower energies in the J multiplets. The details of this cluster formation can be seen for H₂⁸⁰Se in Fig. 4a of Ref. (10). As already mentioned in Section I, Lehmann (8) discussed Type II clusters for the $v_1 + v_3 = 3$ vibrational states of H_2^{80} Se prior to our quantum mechanical calculation of them (10). In the $2\nu_2$ state of $H_2^{\bar{3}2}S$, whose rovibrational levels are interlaced with the v_1 and v_3 levels, Type I clusters are in principle formed exactly as in the vibrational ground state. However, their pattern is often distorted by local interactions with ν_1 and ν_3 . We note, for example, in Fig. 3 that the top cluster (the cluster at highest energy) in the ν_1/ν_3 state undergoes an avoided crossing with the top cluster in the $2\nu_2$ state at $J \approx 22$. At J = 20, the cluster at highest energy in Fig. 3 belongs to the ν_1/ν_3 state; the two doublets forming the cluster are calculated at 6618.48 and 6617.21 cm⁻¹, respectively, so they are split by 1.27 cm⁻¹ which is barely

visible on the scale of the figure. The two highest $2\nu_2$ doublets are found at 6595.93 and 6559.51 cm⁻¹, respectively; they are split by 36.42 cm⁻¹. In the crossing region, for J = 21 through 25, the v_1/v_3 cluster is destroyed through interactions with the components of the two highest $2\nu_2$ doublets. Each of the four near-degenerate components in the ν_1/ν_3 cluster interacts with a partner state (of the same symmetry) in the two highest $2\nu_2$ doublets, and since these two doublets are still far from being degenerate, the interactions split the ν_1/ν_3 cluster components apart. After the avoided crossing at J = 26, the cluster at highest energy in Fig. 3 belongs to the $2\nu_2$ state; the two doublets forming the cluster are calculated at 9222.77 and 9214.21 cm⁻¹, respectively, and the splitting is 8.56 cm⁻¹. The doublet components of the highest ν_1/ν_3 cluster are found at 9145.15 and 9143.88 cm⁻¹, respectively, with a splitting of 1.27 cm⁻¹. For H_2^{80} Se (Figs. 3 and 4a of Ref. (10)) the analogous avoided crossing takes place at around J = 29. At this J value, both the top cluster of the ν_1/ν_3 state and that of the $2\nu_2$ state are degenerate to within a fraction of a cm⁻¹, and the clusters are not destroyed by the avoided crossing. The interaction between the near-degenerate components of the ν_1/ν_3 cluster with their respective partner states in the $2\nu_2$ cluster displaces each component by the same amount of energy.

The v_1/v_3 cluster at highest energy experiences another less drastic avoided crossing with a partly formed $2v_2$ cluster around J=35. Eventually at J=38 (the last J value for which the top $2v_2$ cluster is visible on Fig. 3) the top v_1/v_3 cluster (calculated at 15 796.26 cm⁻¹) and the top $2v_2$ cluster (calculated at 16 085.76 cm⁻¹) are both degenerate to within 0.001 cm⁻¹.

IV. THE WAVEFUNCTION ANALYSIS

(a) Method

The ideas presented in the present section have been discussed previously at considerable length in Refs. (9, 10), and we only give a very brief summary here. We are concerned with rotation-vibration wavefunctions given as linear combinations of "primitive" basis functions $|n_1 n_3\rangle |v_2|$, $|k\rangle |J,k,M\rangle$:

$$\psi(r_1, r_3, \rho, \theta, \phi, \chi) = \sum_{n_1, n_3, v_2} \sum_{k=-J}^{J} c_{n_1, n_3, v_2, k} |n_1, n_3\rangle |v_2, |k|\rangle |J, k, M\rangle.$$
 (9)

The wavefunction depends on the internuclear distances r_j , j=1 or 3, defined in Section II, on the bending coordinate ρ defined in Ref. (11), and on the three Euler angles θ , ϕ , and X describing the molecular rotation (11). The bending coordinate ρ is the bond angle supplement of the so-called reference configuration (see Ref. (11) and references therein) which follows the rotation and the bending motion of the molecule. The angle ρ is almost, but not quite, equal to the instantaneous value of the bond angle supplement $\bar{\rho}$ defined in Section II. In Eq. (9), $|J, k, M\rangle$ is an eigenfunction for a rigid symmetric top, the function $|v_2|, |k|\rangle$ is a so-called rigid bender function obtained as an eigenfunction for the Hamiltonian \hat{H}_{Bend} given in Eq. (63) of Ref. (11), and

$$|n_1 n_3\rangle = \Phi_{n_1}^{(1)}(r_1)\Phi_{n_3}^{(3)}(r_3) \tag{10}$$

is the product of two Morse oscillator eigenfunctions $\Phi_{n_j}^{(j)}(r_j)$, one for each internuclear distance (see Ref. (11)).

In the present work, we are concerned with wavefunctions given by Eq. (9). These functions can be MORBID eigenfunctions, in which case the expansion coefficients $c_{n_1,n_2,v_2,k}$ of Eq. (9) are obtained directly as eigenvector coefficients from the MORBID program or they are the functions referred to in Ref. (10) as primitive cluster functions or primitive cluster states (PCSs). The primitive cluster states are introduced as follows: We neglect the small energy splittings between the individual states in a fourfold cluster and consider the four cluster states to be exactly degenerate. In this case the cluster is represented by a four-dimensional space of degenerate eigenfunctions for the rotation-vibration Hamiltonian. One possible set of basis vectors in this space consists of the four eigenfunctions obtained directly in the MORBID calculation. Each of these four eigenfunctions transforms according to one of the irreducible representations A_1 , A_2 , B_1 , and B_2 of the molecular symmetry group of H_2S , $C_{2v}(M)$ (44). We denote the MORBID eigenfunctions defining a cluster as $|i; A_1\rangle$, $|i; A_2\rangle$, |i; B_1 , and $|i; B_2$, where i symbolizes suitable quantum numbers characterizing the cluster. We showed in Ref. (9) that there exists another possible choice of basis vectors in the four-dimensional space of degenerate eigenfunctions, the primitive cluster states $|PCS_j\rangle$, j = 1, 2, 3, 4, suggested by semiclassical theory. These functions are obtained from the MORBID eigenfunctions through a unitary transformation (a rotation in the four-dimensional eigenfunction space),

$$|PCS j\rangle = c_{i;A_1}^{(j)}|i;A_1\rangle + c_{i;A_2}^{(j)}|i;A_2\rangle + c_{i;B_1}^{(j)}|i;B_1\rangle + c_{i;B_2}^{(j)}|i;B_2\rangle, \quad (11)$$

where the expansion coefficients $c_{i:\Gamma}^{(j)}(\Gamma = A_1, A_2, B_1, B_2; j = 1, 2, 3, 4)$ are obtained from group theory (3, 9, 10). The functions $|PCSj\rangle$ are not symmetrized in $C_{2v}(M)$. As already discussed in Section I, two of the four primitive cluster functions will have angular momentum projections of -hJ and hJ, respectively, along an axis A which lies approximately along one of the S-H bonds, and the other two functions will have angular momentum projections of -hJ and hJ, respectively, along an axis A' which lies approximately along the other S-H bond (see Fig. 1). The primitive cluster wavefunctions can be expressed by Eq. (9) since they are linear combinations of MORBID eigenfunctions, each of which is a linear combination of the primitive basis functions. For a primitive cluster wavefunction $|PCSj\rangle$, the expansion coefficients $c_{n_1,n_3,v_2,k}$ of Eq. (9) are linear combinations of MORBID eigenvector coefficients.

In order to analyze the rotational and vibrational motion governed by the wavefunctions under study, we determine three quantities from these wavefunctions:

(1) the k probability p_k given by

$$p_k = \sum_{n_1, n_3, v_2} |c_{n_1, n_3, v_2, k}|^2$$
 (12)

allows us to identify the localization axes A and A' (see Fig. 1). These axes are discussed extensively in Ref. (9). For a molecule, whose wavefunction is given by Eq. (9), p_k is the probability of finding the molecule with an angular momentum projection of $\hbar k$ on the molecule-fixed z axis (Fig. 1).

(2) the probability density in (r_1, r_3) space for the wavefunctions in Eq. (9), defined as

$$\mathcal{P}(r_1, r_3) = \int_0^{\pi} d\rho \int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} d\phi \int_0^{2\pi} d\chi |\psi(r_1, r_3, \rho, \theta, \phi, \chi)|^2$$
 (13)

so that the differential quantity

$$dP = \mathcal{P}(r_1, r_3) dr_1 dr_3 \tag{14}$$

is the probability of finding the molecule described by the wavefunction $\psi(r_1, r_3, \rho, \theta, \phi, \chi)$ in the volume element $dr_1 dr_3$ of (r_1, r_3) space.

(3) the quantum mechanical expectation values of the internuclear distances r_1 and r_3 (Fig. 1), obtained as

$$\overline{r_j} = \int_0^\infty dr_1 \int_0^\infty dr_3 r_j \mathcal{P}(r_1, r_3), \tag{15}$$

 $j \approx 1$ or 3.

(b) k Probabilities

Following Refs. (9, 10), we have calculated the k probabilities p_k (Eq. (12)) for the primitive cluster states $|PCS j\rangle$ of H_2S . The function $|PCS 1\rangle$ is obtained as (see Eq. (11) and Eq. (3) of Ref. (10))

$$|PCS 1\rangle = \frac{1}{2}(|i;A_1\rangle + |i;A_2\rangle + |i;B_1\rangle + |i;B_2\rangle). \tag{16}$$

In Fig. 4, the k probabilities calculated for the function |PCS| in the top cluster of the vibrational ground state at J=20, 30, and 40, respectively, are given as empty circles. The filled circles in Fig. 4 represent the k probabilities for the wavefunction $R_x^{(\varphi)}|PCS|$ obtained by rotating |PCS| through an angle φ around the molecule-fixed x axis (the axis perpendicular to the molecular plane; see Fig. 1). We determine the angle φ so that the rotated function $R_x^{(\varphi)}|PCS|$ has the "sharpest" possible k distribution, i.e.; by varying φ we aim at obtaining a rotated function $R_x^{(\varphi)}|PCS|$ which, for one particular k value, k_{Local} say, has a k probability $p_{k_{Local}} \approx 1$, and k probabilities $p_k \approx 0$ for $k \neq k_{Local}$. In this way, we obtained $\varphi = 20^\circ$ for J = 20, $\varphi = 32^\circ$ for J = 30, and $\varphi = 38^\circ$ for J = 40, where in all cases $k_{Local} = J$.

It is obvious from Fig. 4 that for the rotated function $R_x^{(\varphi)}|PCS \downarrow\rangle$, $p_J \approx 1$, and $p_k \approx 0$ for k < J. Hence the rotated function has a defined angular momentum projection of $\hbar J$ on the molecule-fixed z axis so that the original function $|PCS \downarrow\rangle$ must have a defined angular momentum projection of $\hbar J$ on the axis A defined in Fig. 1; this axis is close to the S-H₃ bond.

In the state $|PCS 1\rangle$, the total angular momentum has the largest possible projection on the A axis. Hence we can express the results of the rotational analysis described here in a less rigorous way by saying that the angular momentum is directed along the A axis, at least to the extent that quantum mechanics allows an angular momentum to have a defined direction. That is, the angular momentum is directed along the S-H₃ bond (Fig. 1). Classically one would now say that as the angular momentum is conserved in time, it has a constant direction in space and the molecule rotates around this direction. Consequently, our rotational analysis leads us to the conclusion that in the state $|PCS 1\rangle$, the molecule rotates around the S-H₃ bond.

A k-probability analysis for the primitive cluster state $|PCS 2\rangle$ (which can be obtained from Eq. (4) of Ref. (10)) shows that in this state, the molecule rotates around the S-H₁ bond. The primitive cluster states $|PCS 3\rangle$ and $|PCS 4\rangle$ can be obtained by letting the spatial inversion operation E^* (44) act on the functions $|PCS 1\rangle$ and $|PCS 2\rangle$. It can be straightforwardly shown that in the state $|PCS 3\rangle$, the

FIG. 4. The k distributions of localized rotational states in the vibrational ground state of $H_2^{32}S$. The figures show one state in the cluster at highest energy for (a) J = 20, (b) J = 30, and (c) J = 40, respectively. The empty circles show the k probabilities p_k for the localized wavefunction |PCS| > 1 and the filled circles show the analogous k probabilities for the function $R_x^{(\omega)}|PCS| > 1$ obtained by rotating |PCS| > 1 through an angle φ around the molecule-fixed x axis (the axis perpendicular to the molecular plane; see Fig. 1).

molecule rotates around the S-H₃ bond, and in the state $|PCS|4\rangle$ it rotates around the S-H₁ bond.

We have already pointed out that the formation of Type I clusters in the ν_2 vibrational state of $H_2^{32}S$ is a repetition of that in the vibrational ground state. Consequently, a k-probability analysis of the primitive cluster wavefunctions found in the ν_2 state yields basically the same results as those described here for the vibrational ground state. In Ref. (10) we showed that for the primitive cluster states of $H_2^{80}Se$ corresponding to the Type II clusters at highest energy in the ν_1/ν_3 vibrational state, the rotational motion could be interpreted as a rotation around one of the bonds, exactly as found for Type I clusters. We do not give here the results of the Type II analysis for $H_2^{32}S$. It leads to k-probability plots indistinguishable from Fig. 4.

(c) Probability Density Functions

In Refs. (9, 10) we studied the probability density functions $\mathcal{P}(r_1, r_3)$ (Eq. (13)) for a number of rotation-vibration wavefunctions of H_2^{80} Se, including

- (1) noncluster wavefunctions such as those representing the J=0 levels in the vibrational ground state and in the ν_1 and ν_3 vibrational states,
- (2) Type I cluster wavefunctions such as the primitive cluster function $|PCS 1\rangle$ for the cluster at highest energy at J = 20 in the vibrational ground state, and
- (3) Type II cluster wavefunctions such as the primitive cluster functions $|PCS 1\rangle$ and $|PCS 2\rangle$ for the cluster at highest energy in the ν_1/ν_3 vibrational state at J=20 and 30, respectively.

We concluded that the noncluster wavefunctions and the Type I cluster wavefunctions produced probability density functions very similar to those predicted by harmonic oscillator theory. For example, in the vibrational ground state both the noncluster function at J=0 and the primitive cluster function |PCS| > at J=20 yield probability density functions which are well approximated by a two-dimensional Gaussian (Fig. 6 of Ref. (10)). The noncluster wavefunction obtained for J=0 in the ν_1 vibrational state gives a probability density function which would be well approximated by that obtained from a wavefunction given as a product of two harmonic oscillator functions, one having $v_1=1$ and depending on a normal coordinate Q_1 proportional to $(r_1-r_1^e)+(r_3-r_3^e)$ and the other having $v_3=0$ and depending on a normal coordinate Q_3 proportional to $(r_1-r_1^e)-(r_3-r_3^e)$ (Fig. 7a of Ref. (10)). Similarly, the noncluster wavefunction obtained for J=0 in the ν_3 vibrational state has a probability density function which would be well approximated by that obtained from an analogous product, in which the harmonic oscillator function depending on Q_1 has $v_1=0$ and that depending on Q_3 has $v_3=1$ (Fig. 7b of Ref. (10)).

The Type II cluster wavefunctions obtained from the MORBID program produce probability density functions very different from those predicted by harmonic oscillator theory. For the MORBID eigenfunctions belonging to the top cluster in the ν_1/ν_3 vibrational state at J = 20, the probability density functions are "volcano"-shaped for H_2^{80} Se (Fig. 9 of Ref. (10)). At the equilibrium geometry the probability density is very small, but this point is surrounded by a "rampart" of probability. However, if we rotate the symmetrized MORBID eigenfunctions into the primitive cluster states | PCS j \rangle for this cluster, we obtain very simple probability density functions (Fig. 10) of Ref. (10)). These functions now have local mode character in that the stretching excitation is localized in one bond, and the other bond oscillator is in its ground state. From the rotational analysis of the primitive cluster states $|PCS_j\rangle$ in the top clusters of the ν_1/ν_3 vibrational state, we know that in these states, the molecule rotates around one of its bonds. The vibrational analysis outlined here shows that simultaneously, the stretching vibrational excitation is localized in one bond. This bond is in fact the one around which the molecule rotates. The other bond oscillator, which is in its ground state, is approximately perpendicular to the rotation axis and lengthens with increasing J due to centrifugal distortion (10).

For the noncluster wavefunctions and the Type I cluster functions of $H_2^{32}S$, the probability density functions are essentially repetitions of the corresponding functions for $H_2^{80}Se$ given in Ref. (10), and we do not report them here. For the top clusters in the ν_1/ν_3 vibrational state, there is some difference in detail between $H_2^{32}S$ and $H_2^{80}Se$, and we give here a few results for $H_2^{32}S$.

Figure 5 shows the probability density functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the MORBID eigenfunction with symmetry A_1 , and (b) the MORBID eigenfunction with symmetry A_2 belonging to the top cluster in the ν_1/ν_3 state at J=20 for $H_2^{32}S$.

FIG. 5. Probability density (Å⁻²) functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the MORBID eigenfunction with symmetry A_1 and (b) the MORBID eigenfunction with symmetry A_2 belonging to the cluster at highest energy in the ν_1/ν_3 state at J=20 for $H_2^{-32}S$.

This figure should be compared with Fig. 9 of Ref. (10), which is the analogous figure for H_2^{80} Se. The volcano shape found for H_2^{80} Se is not so pronounced for H_2^{32} S. Obviously the mixing between the ν_1 and the ν_3 basis states is less for H_2^{32} S, since the A_1 function is clearly predominantly a ν_1 vibrational function, and the A_2 function is predominantly a ν_3 vibrational function (cf. Fig. 7 of Ref. (10)). Further, it should be noted that as described above, in H_2^{32} S an avoided crossing of the cluster considered here with the top cluster of the $2\nu_2$ vibrational states takes place at $J \approx 22$. Hence at J = 20 there is already some mixing with the $2\nu_2$ basis states leading to a distortion of the probability density function.

In Fig. 6 we show the probability density functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the first primitive cluster state $|PCS 1\rangle$, and (b) the second primitive cluster state $|PCS 2\rangle$ belonging to the cluster at highest energy in the ν_1/ν_3 state at J=20 for $H_2^{32}S$. This figure is almost indistinguishable from Fig. 10 of Ref. (10) (apart from the fact that the probability density functions are somewhat displaced in the (r_1, r_3) plane to account for the difference in equilibrium bond length between H_2S and H_2Se). We see that the stretching excitation is localized in the $S-H_3$ bond for $|PCS 1\rangle$ and in the $S-H_1$ bond for $|PCS 2\rangle$.

In order to show that the probability density function for a Type II cluster state is significantly different from that of a noncluster state, we given in Fig. 7 the $H_2^{32}S$ probability density functions $\mathcal{P}(r_1, r_3)$ for (a) the ν_1 state of lowest energy in the J=20 manifold, $J_{K_aK_c}=20_{0.20}$, and (b) the ν_3 state of lowest energy for J=20, $J_{K_aK_c}=20_{0.20}$. These functions are indistinguishable from the $\mathcal{P}(r_1, r_3)$ functions for the J=0 levels of the ν_1 and ν_3 states, respectively (see Fig. 7 of Ref. (10)).

FIG. 6. Probability density (Å⁻²) functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the first primitive cluster state $|PCS| \geq 1$ and (b) the second primitive cluster state $|PCS| \geq 1$ belonging to the cluster at highest energy in the ν_1/ν_3 state at J = 20 for $H_2^{32}S$.

FIG. 7. Probability density (Å⁻²) functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the ν_1 state of lowest energy in the J=20 manifold, $J_{K_0K_c}=20_{0.20}$, and (b) the ν_3 state of lowest energy for J=20, $J_{K_0K_c}=20_{0.20}$, for H_2^{32} S.

Figures 8 and 9 give the probability density functions for the (a) A_1 and (b) A_2 MORBID eigenfunctions belonging to the cluster at highest energy in the ν_1/ν_3 state at J=30 and 40, respectively, for $H_2^{32}S$. The structures obtained are somewhat similar to those determined for the corresponding wavefunctions of $H_2^{80}Se$ (Fig. 11 of Ref. (10)), but for $H_2^{32}S$, a probability "crater" at the equilibrium geometry is maintained at J=30 and 40. For $H_2^{80}Se$, the avoided crossing between the top ν_1/ν_3 cluster and the top $2\nu_2$ cluster takes place at J=29, and the crater is filled at J=30 because of the interaction with $2\nu_2$ basis states. As already described, the analogous crossing is found at J=22 for $H_2^{32}S$, and consequently the J=30 and 40 states given here are not significantly influenced by this interaction.

Finally, in Fig. 10 we display the probability density functions for (a) the first primitive cluster state $|PCS 1\rangle$, and (b) the second primitive cluster state $|PCS 2\rangle$ belonging to the top cluster in the ν_1/ν_3 state at J=40 for $H_2^{32}S$. Even though the $\mathcal{P}(r_1, r_3)$ functions for the MORBID eigenstates at J=40 (Fig. 9) are somewhat different from those obtained at J=20 (Fig. 5), the probability density functions corresponding to the localized wavefunctions at these two J values (Figs. 6 and 10) have highly similar structures.

(d) Average Bond Lengths

We have discussed above that in the primitive cluster states $|PCS j\rangle$, the molecule rotates around one of its bonds. For Type II clusters in the ν_1/ν_3 state, this bond is vibrationally excited, whereas the other one is in its ground state. Since H₂S has an

Fig. 8. Probability density (Å⁻²) functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the MORBID eigenfunction with symmetry A_1 and (b) the MORBID eigenfunction with symmetry A_2 belonging to the cluster at highest energy in the ν_1/ν_3 state at J=40 for $H_2^{-32}S$.

FIG. 9. Probability density (Å⁻²) functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the MORBID eigenfunction with symmetry A_1 and (b) the MORBID eigenfunction with symmetry A_2 belonging to the cluster at highest energy in the ν_1/ν_3 state at J=40 for $H_2^{-32}S$.

equilibrium bond angle close to 90° the bond that does not coincide with the rotation axis is almost perpendicular to this axis. We showed in Ref. (10) that for H_2^{80} Se, this bond lengthens with increasing J because of centrifugal distortion. Table V demonstrates this effect for H_2^{32} S. The table gives average bond lengths (Eq. (15)) for the J = 0 wavefunction in the vibrational ground state and for the primitive cluster states |PCS| representing the J = 20 top cluster in the vibrational ground state and in the ν_1/ν_3 vibrational state, respectively. Further, Table V gives average bond lengths for the local mode function $|\psi_+\rangle$ given by

$$|\psi_{+}\rangle = \frac{1}{\sqrt{2}}(|\nu_{1}; 0_{00}\rangle + |\nu_{3}; 0_{00}\rangle),$$
 (17)

where $|\nu_1; 0_{00}\rangle$ and $|\nu_3; 0_{00}\rangle$ are the MORBID eigenfunctions obtained for J=0 in the ν_1 and ν_3 states, respectively. The function $|\psi_+\rangle$ represents a rotationless, localized excitation of the S-H₃ stretching motion.

For the wavefunction $|\psi_+\rangle$, $\overline{r_1}$ is unchanged relative to the vibrational ground state, but $\overline{r_3}$ is increased by 0.033 Å due to the vibrational excitation. For the first primitive cluster state $|PCS 1\rangle$ belonging to the "top" cluster in the ν_1/ν_3 vibrational state at J=20, the internuclear distance r_1 is lengthened by $\Delta r_1=0.026$ Å, and the distance r_3 is lengthened by $\Delta r_3=0.007$ Å relative to the average bond lengths found for the wavefunction $|\psi_+\rangle$. These results are almost equal to the elongations of $(\Delta r_1, \Delta r_3)=(0.024$ Å, 0.009 Å) determined for the first primitive cluster state $|PCS 1\rangle$ for the top cluster in the vibrational ground state at J=20 relative to the J=0 level of

FIG. 10. Probability density (Å⁻²) functions $\mathcal{P}(r_1, r_3)$ from Eq. (13) for (a) the first primitive cluster state |PCS| > 1 and (b) the second primitive cluster state |PCS| > 1 belonging to the cluster at highest energy in the ν_1/ν_3 state at J = 40 for $H_2^{32}S$.

TABLE V

Average Bond Length Values Calculated from Eq. (15) for Rotation-Vibration States of H₂ ³²S

	J = 0		J =	20°		
	$r_1/Å$	$\overline{r_3}/\mathrm{\AA}$	$\overline{r_1}/ ext{Å}$	r₃ /Å	$\Delta \overline{r_1}^b/\text{\AA}$	$\Delta \overline{r_3}^b/\text{\AA}$
V. g. s. ^c	1.355	1.355	1.379	1.364	0.024	0.009
$\nu_1/\nu_3{}^d$	1.355	1.388	1.381	1.395	0.026	0.007

- a Average bond lengths for the first primitive cluster function |PCS 1> in the "top" cluster.
- b $\Delta \overline{r_{j}} = \overline{r_{j}}(J=20) \overline{r_{j}}(J=0).$
- ^c Vibrational ground state.
- ^d For J=0, the average bond lengths are calculated for the local mode function $|\psi_{+}\rangle$ given by Eq. (17).

the vibrational ground state. We observe that both in the vibrational ground state and in the ν_1/ν_3 vibrational state, rotational excitation to J=20 causes the S-H₁ bond (r_1) , which is approximately perpendicular to the axis of rotation, to lengthen significantly due to centrifugal distortion, whereas the S-H₃ bond (r_3) , which lies along the rotation axis, is much less affected.

We can further illustrate this phenomenon by comparing the probability density functions for the primitive cluster states |PCS| and |PCS| belonging to the top cluster in the ν_1/ν_3 state at J=40 for $H_2^{32}S$ (Fig. 10) with the analogous functions for J=20 (Fig. 6). For the function |PCS| at J=40, we obtain $\overline{r_1}=1.464$ Å and $\overline{r_3}=1.393$ Å, so that the bond lengths are elongated by $(\Delta r_1, \Delta r_3)=(0.109$ Å, 0.005 Å) relative to the average bond lengths found for the wavefunction $|\psi_4\rangle$. Figure 11a shows the result of subtracting the probability density function for the wavefunction |PCS| belonging to the top cluster in the ν_1/ν_3 state at J=20 for $H_2^{32}S$ (Fig. 6a) from the corresponding function obtained for J=40 (Fig. 10a). Figure 11b shows the analogous difference for the probability density function |PCS|. It is seen that

FIG. 11. (a) The difference between the probability density (\mathring{A}^{-2}) functions for the first primitive cluster state $|PCS|_{\downarrow}$ belonging to the cluster at highest energy in the ν_1/ν_3 state at J=40 (Fig. 10a) and J=20 (Fig. 6a), respectively, for $H_2^{32}S$. (b) The difference between the probability density (\mathring{A}^{-2}) functions for the second primitive cluster state $|PCS|_{\downarrow}$ belonging to the cluster at highest energy in the ν_1/ν_3 state at J=40 (Fig. 10b) and J=20 (Fig. 6b), respectively, for $H_2^{32}S$.

for the function $|PCS 1\rangle$, centrifugal distortion causes a uniform displacement of the probability density function along the r_1 axis when J increases, whereas for $|PCS 2\rangle$, the probability distribution is displaced along the r_3 axis.

V. SUMMARY AND CONCLUSION

The present paper reports a theoretical investigation of the nearly degenerate, four-member groups of energy levels formed in the rotation-vibration energy spectrum of hydrogen sulfide H_2S . The calculations have been carried out with the MORBID computer program (11-13). As the initial step toward the characterization of the fourfold energy clusters we have optimized the parameters in an analytical representation of the potential energy function (Eq. (1)) for the electronic ground state of H_2S on the basis of experimental data. The input data set for this fitting comprised a total of 548 rotation-vibration energy spacings involving $J \leq 5$ for the four isotopic molecules $H_2^{32}S$, $D_2^{32}S$, $HD^{32}S$, and $H_2^{34}S$. We adjusted 14 parameters to reproduce the input data with root-mean-square deviations of 0.134 cm⁻¹ for the rotational energy spacings and 0.422 cm⁻¹ for the vibrational spacings. In the H_2S fitting reported in the present work, we have used almost twice as many input data points as in the analogous fitting carried out previously for the heavier H_2S molecule (9). For both molecules, 14 parameters were optimized. However, the values of the RMS deviations obtained for H_2S are only about 1.5 times larger than those obtained for H_2S e.

We have used the fitted potential energy function as basis for an extensive calculation of the rotation-vibration energy levels in the vibrational ground state, the ν_2 vibrational state, and the $\nu_1/\nu_3/2\nu_2$ interacting vibrational states of $H_2^{32}S$ for $J \le 40$. The rotational energy level spectra obtained for these vibrational states of $H_2^{32}S$ are highly similar in structure to those calculated previously for $H_2^{80}Se$ (9, 10), although there is some difference in detail.

We can summarize our analysis of the rotational energy manifolds as follows: For low J values, the rotational energy pattern is essentially given by the energy spectrum of a rigid rotor, but as J increases, we find a substantial deviation from the rigid rotor picture in that fourfold energy clusters form in the upper part of the J multiplets. There are two fundamentally different types of clusters: Type I clusters, which we have calculated in the vibrational ground state and in the ν_2 and $2\nu_2$ states of $H_2^{32}S$, involve only one vibrational state. In each cluster state, the molecule carries out a vibrational motion largely identical to that carried out in the J=0 level of the vibrational state in question. Type II clusters are formed by coalescence of rovibrational energy doublets belonging to two stretching vibrational states with different symmetries. We have calculated Type II cluster energies and wavefunctions for the ν_1 and ν_3 vibrational states of H₂³²S. In a Type II cluster state, the stretching vibrational motion is radically different from the motion carried out for J = 0 in the vibrational states involved. Our analysis of the Type II cluster wavefunctions obtained for the ν_1/ν_3 vibrational state offers a simple picture of the motion associated with them: The stretching excitation is localized in one bond, and the molecule rotates around this bond. The other bond, which is almost perpendicular to the rotation axis, is lengthened due to centrifugal distortion.

Comparison between the results of the present work and those of Refs. (9, 10) shows that the rovibrational energy spectrum of H₂S is extremely similar in structure to that of H₂Se. This is obviously due to the similarity between the potential energy functions of these two molecules and to the fact that for both molecules, the mass of

the central nucleus can, to a good approximation, be considered infinitely large in comparison with the masses of the "end" H nuclei. Hence it is very probable that at the "heavy" end of the H₂X "family," e.g., for H₂Te, analogous cluster formation will be found. From Eq. (8), we calculate $J_{CR} = 8$ for the most abundant H_2 Te isotopomer, H₂¹³⁰Te, using as input the rotational constants from Ref. (45) and the bending fundamental energy from Ref. (46). As described in Section III, semiclassical theory predicts the qualitative deviation of the rotational energies from the customary rigid rotor picture to become apparent at $J = J_{CR}$, and the low J_{CR} value found for H_2 Te (the corresponding values for H₂Se and H₂S are 12 and 15, respectively) indicates that for this molecule, clusters are found at low J values readily accessible to experimental spectroscopy. It is still an open question whether the cluster effects are present in the lighter H₂O molecule. If the rovibrational energies of the water molecule form clusters, the clusters appear at very high J and K values. The corresponding quantum states are hardly accessible to present-day experimental techniques, and their energies are difficult to calculate with methods such as MORBID due to the sizes of the Hamiltonian matrices involved. From the results of the present work and those of Refs. (9, 10) we can conclude, however, that in order to determine the high J, high K asymptotic behavior of the H₂O rovibrational energies by theoretical calculations, it is necessary to use theoretical methods which account explicitly for all motions of the molecule, and it is necessary to base the calculations on very accurate potential energy surfaces.

ACKNOWLEDGMENTS

We are grateful to J.-M. Flaud for supplying us with unpublished term values for D₂S and HDS, to W. J. Lafferty for helping us access Refs. (14, 16), and to K. K. Lehmann for alerting us to the existence of Ref. (8). This work was supported by Deutsche Forschungsgemeinschaft Grant Je 144/2-3 and by the Fonds der Chemischen Industrie. P.J. acknowledges further support from the Dr. Otto Röhm Gedächtnisstiftung and from the Fritz Thyssen-Stiftung. The present work has been possible only through the use of two supercomputers made available to us by the State of Hessen: the Siemens/Nixdorf S400/40 installation at the Technical University Darmstadt and the Siemens/Nixdorf S100/10 installation at the Justus Liebig University Giessen. The major part of the calculations reported here was carried out on these installations, and we are grateful for generous allotments of computer time. I.N.K. is grateful to the Institute of Physical Chemistry at the Justus Liebig University Giessen, and particularly to B. P. Winnewisser and M. Winnewisser, for hospitality. We thank P. R. Bunker and J. K. G. Watson for critically reading the manuscript and suggesting improvements.

RECEIVED: September 20, 1993

REFERENCES

- I. N. KOZIN, S. P. BELOV, O. L. POLYANSKY, AND M. YU. TRETYAKOV, J. Mol. Spectrosc. 152, 13–28 (1992).
- N. KOZIN, O. L. POLYANSKY, S. I. PRIPOLZIN, AND V. L. VAKS, J. Mol. Spectrosc. 156, 504-506 (1992).
- I. N. KOZIN, S. KLEE, P. JENSEN, O. L. POLYANSKY, AND I. M. PAVLICHENKOV, J. Mol. Spectrosc. 158, 409–422 (1993).
- 4. B. I. ZHILINSKII AND I. M. PAVLICHENKOV, Opt. Spectrosc. (USSR) 64, 688-690 (1988). [In Russian]
- 5. J. MAKAREWICZ AND J. PYKA, Mol. Phys. 68, 107-127 (1989).
- 6. J. MAKAREWICZ, Mol. Phys. 69, 903-921 (1990).
- 7. J. PYKA, Mol. Phys. 70, 547-561 (1990).
- 8. K. K. LEHMANN, J. Chem. Phys. 95, 2361-2370 (1991).
- 9. P. JENSEN AND I. N. KOZIN, J. Mol. Spectrosc. 160, 39-57 (1993).

- 10. I. N. KOZIN AND P. JENSEN, J. Mol. Spectrosc. 161, 186-207 (1993).
- 11. P. JENSEN, J. Mol. Spectrosc. 128, 478-501 (1988).
- 12. P. JENSEN, J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988).
- P. JENSEN, in "Methods in Computational Molecular Physics" (S. Wilson and G. H. F. Diercksen, Eds.), Plenum, New York, 1992.
- 14. H. C. ALLEN, R. E. NAYLOR, AND E. K. PLYLER, J. Res. Natl. Bur. Stand. 53, 321-323 (1954).
- 15. H. C. ALLEN AND E. K. PLYLER, J. Chem. Phys. 25, 1132-1136 (1956).
- 16. H. C. ALLEN, E. K. PLYLER, AND L. R. BLAINE, J. Res. Natl. Bur. Stand. 59, 211-214 (1957).
- 17. M. T. EMERSON AND D. F. EGGERS, JR., J. Chem. Phys. 37, 251-259 (1962).
- 18. C. Huiszoon and A. Dymanus, *Physica* 31, 1049–1052 (1965).
- 19. R. E. MILLER, G. E. LEROI, AND D. F. EGGERS, JR., J. Chem. Phys. 46, 2292-2297 (1967).
- 20. T. H. EDWARDS, N. K. MONCUR, AND L. E. SNYDER, J. Chem. Phys. 46, 2139-2142 (1967).
- 21. R. E. MILLER, G. E. LEROI, AND T. M. HARD, J. Chem. Phys. 50, 677-684 (1969).
- 22. L. E. SNYDER AND T. H. EDWARDS, J. Mol. Spectrosc. 31, 347-361 (1969).
- 23. R. L. COOK, F. C. DE LUCIA, AND P. HELMINGER, J. Mol. Spectrosc. 41, 123-136 (1972).
- 24. P. Helminger, R. L. Cook, and F. C. De Lucia, J. Chem. Phys. 56, 4581-4584 (1972).
- 25. R. L. COOK, F. C. DE LUCIA, AND P. HELMINGER, J. Mol. Struct. 28, 237-246 (1975).
- 26. J. R. GILLIS AND T. H. EDWARDS, J. Mol. Spectrosc. 85, 55-73 (1981).
- W. C. LANE, T. H. EDWARDS, J. R. GILLIS, F. S. BONOMO, AND F. J. MURCRAY, J. Mol. Spectrosc. 95, 365–380 (1982).
- 28. J.-M. FLAUD, C. CAMY-PEYRET, AND J. W. C. JOHNS, Can. J. Phys. 61, 1462-1473 (1983).
- 29. L. L. STROW, J. Mol. Spectrosc. 97, 9-28 (1983).
- 30. L. L. STROW, J. Quant. Spectrosc. Radiat. Transfer 29, 395-406 (1983).
- 31. P. Pokrowsky, Appl. Opt. 22, 2221-2223 (1983).
- L. LECHUGA-FOSSAT, J.-M. FLAUD, C. CAMY-PEYRET, AND J. W. C. JOHNS, Can. J. Phys. 62, 1889– 1923 (1984).
- 33. J. R. GILLIS, R. D. BLATHERWICK, AND F. S. BONOMO, J. Mol. Spectrosc. 114, 228-233 (1985).
- C. CAMY-PEYRET, J.-M. FLAUD, L. LECHUGA-FOSSAT, AND J. W. C. JOHNS, J. Mol. Spectrosc. 109, 300–333 (1985).
- 35. W. C. LANE, T. H. EDWARDS, J. R. GILLIS, F. S. BONOMO, AND F. J. MURCRAY, *J. Mol. Spectrosc.* 111, 320–326 (1985).
- L. LECHUGA-FOSSAT, J.-M. FLAUD, C. CAMY-PEYRET, P. ARCAS, AND M. CUISENIER, Mol. Phys. 61, 23–32 (1987).
- 37. C. CAMY-PEYRET, J.-M. FLAUD, A. N'GOM, AND J. W. C. JOHNS, Mol. Phys. 65, 649-657 (1988).
- 38. J.-M. FLAUD, private communication (1993).
- 39. P. JENSEN, J. Mol. Spectrosc. 133, 438-460 (1989).
- 40. E. KAUPPI AND L. HALONEN, J. Phys. Chem. 94, 5779-5785 (1990).
- J. SENEKOWITSCH, S. CARTER, A. ZILCH, H.-J. WERNER, N. C. HANDY, AND P. ROSMUS, J. Chem. Phys. 90, 783-794 (1990).
- 42. I. M. MILLS AND A. G. ROBIETTE, Mol. Phys. 56, 743-765 (1985).
- 43. L. HALONEN AND T. CARRINGTON, JR., J. Chem. Phys. 88, 4171-4185 (1988).
- 44. P. R. BUNKER, "Molecular Symmetry and Spectroscopy," Academic Press, London, 1979.
- A. V. Burenin, A. F. Krupnov, S. V. Mart'yanov, A. A. Mel'nikov, and L. I. Nikolayev, J. Mol. Spectrosc. 75, 333–337 (1979).
- R. A. HILL, T. H. EDWARDS, K. ROSSMANN, K. NARAHARI RAO, AND H. H. NIELSEN, J. Mol. Spectrosc. 14, 221–243 (1964).