

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Autómatas y Lenguajes Formales Tarea Extra 1

PRESENTA

Castañon Maldonado Carlos Emilio Arriaga Santana Estela Monserrat Fernández Blancas Melissa Lizbeth

PROFESOR

Víctor Germán Mijangos de la Cruz

AYUDANTE

Teresa Becerril Torres

Autómatas y Lenguajes Formales Tarea Extra 1

1 Sea $G=(\Sigma,\Delta,S,R)$ una gramática, donde $\Sigma=\{a,b,c,d\}$, $\Delta\{S,A,B,C,D\}$, S es el símbolo inicial, y las reglas R están dadas por:

$$S \to AB$$

$$A \rightarrow aA|aB|C$$

$$B \rightarrow bA|bB|bD$$

$$C \to \epsilon | c$$

$$D \rightarrow dB|d$$

Obtener la derivación y el árbol de derivación de las siguientes cadenas:

abbacbd

 $S \Longrightarrow_G AB \Longrightarrow_G aBB \Longrightarrow_G abBB \Longrightarrow_G abbAB \Longrightarrow_G abbaAB \Longrightarrow_G abbaCB \Longrightarrow_G abbaCB$ $\Longrightarrow_G abbacbD \Longrightarrow_G abbacbd$

babdbac

 $S \Longrightarrow_G AB \Longrightarrow_G CB \Longrightarrow_G \epsilon B \Longrightarrow_G \epsilon bA \Longrightarrow_G babD \Longrightarrow_G babdB \Longrightarrow_G babdbA \Longrightarrow_G babdbaC \Longrightarrow_G babdbaC$

2 Demostrar que las siguientes expresiones regulares son equivalentes: $R=\epsilon+(0+1)^*1$ y $S=(0^*1)^*$. Indicar que propiedades utilizaron.

$$\begin{split} R = & \epsilon + (0+1)^*1 \\ = & \epsilon + (0^*1)^*0^*1 \quad \text{Propiedad 7.7 de la cerradura de Kleene con } R = 0, S = 1 \\ = & \epsilon + ((0^*1)^*0^*)1 \quad \text{Asociatividad} \\ = & \epsilon + (0^*(1 \cdot 0^*)^*)1 \quad \text{Propiedad 7.10 de la cerradura de Kleene con } R = 0^*, S = 1 \\ = & \epsilon + 0^*(1 \cdot 0^*)^*1 \\ = & (0^*1)^* \quad \text{Propiedad 7.8 de la cerradura de Kleene con } R = 0^*, S = 1 \\ = & S \end{split}$$