步态传感网络 通讯协议

版本: 2.01

深 圳 绿 威 科 技 有 限 公 司

一. 协议简述

实现下位机(采集端)和上位机(PC 端)的正确信息交换,下位机采用响应命令的方式来回应上位机。下位机和上位机通过局域网内UDP点对点数据交换,上位机IP和Prot: 192.168.1.193: 5000

下位机Ground Truth: 192.168.1.50: 5000~192.168.1.250: 5000

下位机IP和Prot: 192.168.1.50: 5000~192.168.1.250: 5000

下位机组播IP和Prot:事件PTP消息端224.0.1.129:319(固定)

通用PTP 消息端224.0.0.107:320(固定)

二.协议内容

2.1、工作流程简述

- 1> 上位机保持在线,一旦有节点增加,该节点会向上位机发送在线消息,上位机将该节点保存并对其配置(AD放大倍数,采样速率配置)。上位机手动给下位机参数配置完成后,点击启/停控制按钮,下位机开始按照配置参数采集数据,下位机采集到600 个数据就上传一次。
- 2> 当需要对下位机的固件进行升级时,上位机发送升级命令,此时下位机停止给上位机发送数据,并接收上位机发送过来的数据进行固件升级。
- 3> 下位机使用IEEE 1588 标准的PTPv2 协议进行各节点同步:各个节点同步精度±10us。

Ground Truth节点与节点主机间采用2.4Ghz频率专用同步无线网络模块. 协议:采集到信号就上传(UDP上传),同步精度±10us。

4> 上位机和下位机使用UDP 通信(上位机不参与PTP 协议内容)。

2.2、流程图

上位机和下位机数据交换框图

三.指令

3.1、 指令格式:

指令由<mark>指令码+帧序号+数据长度+数据</mark>组成,上位或下位机发送指令后接收端必须应答,否则认为接收端并没有接收到指令,指令代码为一个ASCII字母,规定小写指令为发送,大写为应答指令。

指令格式如下:

命令 1byte (CMD) 帧序	茅号 2byte(Fn) 数据长度 2byte(Leng)	数据 nbyte (Data)
---------------------	-------------------------------	-------------------

3.2、传感器板指令表:

序	上位机		下位机	
号	命令	说明/数据	应答	说明/数据
	代码		代码	
1	't'	Teset命令,测试端点OK	'T'	应答主机能正常收到信息,否则主机收不到应答
		无数据		正常接收:不带数据应答
				接收错误或没收到:不应答
2	'r'	Reset复位指令:		
		无数据		
3	'M'	成功收到节点消息	'm'	上传在线消息,无数据
		接收到下位机在线消息应答不带数据指		
		\$		
4	's'	启动/停止数据采集	'S'	操作成功与否
		启动:数据 't'		启动:返回数据't'
		停止:数据 'p'		停止:返回数据'p'
				失败:返回数据'e'
5	'c'	配置采集控制板	'C'	配置是否成功
		1、以1dB精度,从0~80dB可调		成功:'o'
		方便数据传输 , 1dB用数值1 表示		失败:'e'
		数值n 则代表(n*1)dB ,		
		电压放大倍数Au=10(dB/20),		
		2 个字节表示。		
		2、2 个字节 bps		
6	ʻu'	更新MCU固件请求(带固件大小参数)	'U'	更新固件就绪与否
		4 个字节表示固件大小,		就绪:'o'
		以字节为单位		忙:'e'
7	'd'	固件数据下载	'D'	更新完成或帧代码接收正确
		Bin 代码数据		完成(整个固件代码接收完成):'c'
				正确接收帧:'o'
				接收失败:'e'
8	'A'	应答则表示收到数据,没收到数据不应	'a'	上传采集的数据给上位机
		答		8 个字节:时间戳
		成功接收到数据:指令A应答,无数据		2 个字节:转换速率(US)
		没接收到/或接收错误:不应答		2 个字节:放大倍数(dB)
				1200 个字节:一个AD 值由2 个字节表示,
				1200 存储 600 个数据

9	'G'	接收信号应答:	ʻg'	Ground Truth(脚踏信号)上传数据给上位机
		应答:"G>o"接收成功		1字节: 表示节点编号
		"G>e"接收失败		1字节: 0 表示左脚信号 1 表示右脚信号.
				4字节: 时间戳秒数据,小端在前.
				4字节: 时间戳纳秒数据,小端在前.

3.3、启停控制板数据采集('s'指令)

格式: 's' + Fn + Leng + 't' 和's' + Fn + Leng + 'p'

3.4、下位机上传数据包('a'指令)

下位机有一个1200byte 的缓冲,AD 采集的数据为2 个字节大小,所以可以缓存600 个数据。 数据均以小端格式保存发送,格式:

'a' + Fn + Leng + 4byte 时间戳秒 + 4byte 时间戳纳秒 + 2byteAD 转换速率(US) + 2byte 信号放大倍数(dB) + D0+...+D600

3.5、更新采集控制板配置,更改AD的放大倍数和AD的转换速率('c'指令)

说明:下位机收到该命令,一定要等待600个数据缓存满之后才能更改生效。

格式: 'c' + Fn + Leng + 2byteAD 转换速率 (US)+ 2byte 信号放大倍数(dB)

3.6、更新MCU固件('u' , 'd' 指令)

指令格式: 'u' + Fn + Leng + 4byte表示当前固件的大小 'd' + Fn + Leng + D0+...+D2048 (数据小端格式发送)

*注:Program update 请求命令中包含代码大小以字节(byte)为单位,这样可以方便下位机知道此时编程代码的大小。

3.7、脚踏信号(Ground Truth)上传指令 ('g' 指令)

格式: 'g' + Fn + Leng + 1byte 节点序号+1byte 左右脚指示+4bytes 时间戳秒+4bytes 时间戳纳秒


```
四、指令实例 (绿色表示PC端往下发,红色表示下位机往PC端发的指令)
1、测试命令
上位机->下位机: 't' + 0000H + 0000H
下位机->上位机: 正常接收: 'T' + 0000H + 0000H
接收错误或没接收到:不回应
2、下位机发送在线消息
下位机->上位机: 'm' + 0000H + 0000H
上位机->下位机: 'M' + 0000H + 0000H
3、启动/停止数据采集
上位机->下位机:启动:'s'+0000H+0001H+'t'
停止: 's' + 0000H + 0001H + 'p'
下位机->上位机: 如果是't'参数: 'S' + 0000H + 0001H + 't'
如果是'p'参数: 'S' + 0000H + 0001H + 'p'
参数位置或错误: 'S' + 0000H + 0001H + 'e'
4、配置采集控制板
上位机->下位机: 'c' + 0000H + 0004H +转换速率(US)+增益大小(dB)
下位机->上位机: 配置完成: 'C' + 0000H + 0001H + 'o'
配置失败或参数错误: 'C' + 0000H + 0001H + 'e'
5、更新MCU固件请求
上位机->下位机: 'u' + 0000H + 0004H + x (x: 表示固件文件的大小,以Byte为单位)
下位机->上位机:准备就绪:'U'+0000H+0001H+'o'
当前忙或不适合更新固件: 'U' + 0000H + 0001H + 'e'
6、固件数据下载
上位机->下位机: 'd' + n + x + xData
n:表示数据发送的帧序号
x:表示本帧数据大小
xData:实际的固件数据
下位机->上位机: 接收帧正确: 'D'+n+x+'o'
固件代码接收完成: 'D'+n+x+'c'
接收错误:'D'+n+x+'c'
7、下位机上传数据
下位机->上位机: 'a' + 0000H + 04B0H + 时间戳+速率(US)+放大倍数(dB)+数据
上位机->下位机: 'A' + 0000H + 0000H
8、下位机上传脚踏数据
下位机->上位机: 'g' + 0000H + 000AH + 节点序号(1byte)+左右脚指示(1byte)+时间戳秒(4bytes)+时间戳纳秒(4bytes)
上位机->下位机: 'G' + '>'+'o'
                              // 接收成功//
上位机->下位机: 'G' + '>'+'e'
                              // 接收失败//
```