CONSTRUCTIBLE SETS

1. Constructible and locally constructible sets

Definition 1.1. Let X be a topological space. Suppose that Z is a subset of X such that the inclusion $Z \hookrightarrow X$ is quasi-compact. Then we say that Z is *retro-compact*.

Definition 1.2. Let *X* be a topological space. We define *the family of constructible subsets of X* as the smallest family of subsets of *X* that satisfy the following assertions.

- (1) Each retro-compact open subset of *X* is constructible.
- (2) If *E* is constructible subset of *X*, then $X \setminus E$ is constructible.
- (3) If E_1 , E_2 ,..., E_n are constructible subsets of X, then

$$\bigcup_{i=1}^{n} E_i$$

is constructible.

Rephrasing the definition above one can say that constructible subsets of a topological space *X* form an algebra of sets generated by retro-compact open subsets.

Fact 1.3. Let $f: X \to Y$ be a morphism of schemes and E be a constructible subset of Y. Then $f^{-1}(E)$ is constructible subset of X.

Proof. We set

$$\mathcal{F} = \left\{ E \subseteq Y \middle| f^{-1}(E) \text{ is constructible} \right\}$$

Obviously \mathcal{F} is an algebra of subsets of Y. By base change for quasi-compact morphisms, we derive that \mathcal{F} contains all retro-compact open subsets of Y. This implies that \mathcal{F} contains all constructible subsets of Y.

Definition 1.4. Let X be a topological space. A subset E of X is called *locally constructible in* X if for every point x in X there exists open neighbourhood U of x in X such that $U \cap E$ is constructible in U.

Theorem 1.5. Let X be a quasi-compact and quasi-separated scheme and E be a locally constructible subset of X. Then E is constructible and there exists a morphism of schemes $f: Z \to X$ of finite presentation such that E = f(Z). Moreover, one can choose Z to be an affine scheme.

First we characterize constructible subsets of an affine schemes.

Lemma 1.5.1. Let A be a ring and E be a subset of Spec A. Then the following are equivalent.

- (i) E is constructible subset of Spec A.
- (ii) There exists elements $a_1,...,a_n$ and finitely generated ideals $a_1,...,a_n$ such that

$$E = \bigcup_{i=1}^n D(a_i) \cap V(\mathfrak{a}_i)$$

Proof of the lemma. Consider the family

$$\mathcal{F} = \left\{ \bigcup_{i=1}^{n} D(a_i) \cap V(\mathfrak{a}_i) \middle| a_1, ..., a_n \in A \text{ and } \mathfrak{a}_1, ..., \mathfrak{a}_n \text{ are finitely generated ideals of } A \right\}$$

Since every retro-compact open subset of Spec A is quasi-compact, it belongs to $\mathcal F$ because it is a finite union of distinguished open subsets. Moreover, subsets in $\mathcal F$ are closed under complements and finite unions. Therefore, $\mathcal F$ contains all constructible subsets of Spec A. On the other hand each element of $\mathcal F$ is constructible in Spec A.

Lemma 1.5.2. *Let* X *be a quasi-separated scheme and* U *be its open affine subset. Then every constructible subset* E *of* U *is constructible in* X.

Proof of the lemma. For every $f \in \Gamma(U, \mathcal{O}_X)$ nonvanishing set U_f of f is affine. Since X is quasi-separated, we derive that U_f is retro-compact in X and hence constructible. Suppose now that $\mathfrak{I} \subseteq \Gamma(U, \mathcal{O}_X)$ is an ideal generated by $f_1,...,f_n \in \Gamma(U, \mathcal{O}_X)$ and $V(\mathfrak{I}) \subseteq U$ is a vanishing set of this ideal in U. Then

$$V(\mathfrak{I}) = \left(X \setminus \bigcup_{i=1}^n U_{f_i}\right) \setminus (X \setminus U)$$

Since X, U_{f_i} for $1 \le i \le n$ and U are constructible in X, we derive that $V(\mathfrak{I})$ is constructible in X. Now the assertion is a consequence of the Lemma 1.5.1 and the fact that constructible sets form an algebra of sets.

Proof of the theorem. Let *E* be a locally constructible subset of *X*. Since *X* is quasi-compact, there exists an open cover

$$X = \bigcup_{j=1}^{m} U_j$$

by open affines such that each $E \cap U_j$ is constructible in U_j . By Lemma 1.5.2 set $E \cap U_j$ is constructible in X. Hence

$$E = \bigcup_{j=1}^{m} \left(U_j \cap E \right)$$

is constructible in X. Denote $U_j = \operatorname{Spec} A_j$ for $1 \le j \le m$. Fix j. By Lemma 1.5.1 there exists $a_{ji} \in A$ and finitely generated ideals $\mathfrak{a}_{ji} \subseteq A_j$ for $1 \le i \le n_j$ such that

$$U_j \cap E = \bigcup_{i=1}^{n_j} D(a_j) \cap V(\mathfrak{a}_j)$$

Consider a scheme $Z_j = \coprod_{i=1}^{n_j} \operatorname{Spec} \left(A_j / \mathfrak{a}_{ij} \right)_{a_{ji}}$ together with a canonical morphism $f_j : Z_j \to U_j$. Next let Z be an affine scheme $\coprod_{j=1}^m Z_j$ with a morphism $f : Z \to X$ such that $f_{|Z_j}$ is defined as f_j composed with the inclusion $U_j \hookrightarrow X$ for every $1 \le j \le m$. Then f is a finitely presented morphism and E = f(Z).

Finally we discuss constructibility for noetherian and locally noetherian topological spaces.

Fact 1.6. Let X be a locally noetherian topological space. Then the algebra of constructible sets of X is generated by open subsets of X.

Proof. Every open subset of a locally noetherian topological space is retro-compact. \Box

Proposition 1.7. Let X be a noetherian topological space. Suppose that E is a subset of X such that for every irreducible closed subset F of X either $E \cap F$ contains open nonempty subset of F or $E \cap F = \emptyset$. Then E is constructible.

Proof. Note that by Fact 1.6 every closed subset of X is constructible. Assume that E is not constructible. We set

$$\mathcal{F} = \{ F \subseteq X \mid F \text{ is closed subset of } X \text{ and } F \cap E \text{ is not constructible in } X \}$$

First note that $X \in \mathcal{F}$. Since X is noetherian, there exists the minimal (with respect to inclusion) subset F in F. If F is not irreducible, then $F = F' \cup F''$ for some nonempty closed proper subsets

F', F'' of F. Since F is minimal in \mathcal{F} , we deduce that both $E \cap F'$ and $E \cap F''$ are constructible and hence $E \cap F = (E \cap F') \cup (E \cap F'')$ is constructible. This is a contradiction. Hence F must be irreducible. Since $E \cap F$ is not constructible, it is nonempty. Hence there exists nonempty subset $U \subseteq E \cap F$ open in F. According to $F \setminus U \subset F$ we infer that $E \cap (F \setminus U)$ is constructible. Thus

$$E \cap F = U \cup (E \cap (F \setminus U))$$

is constructible. This is a contradiction. Therefore, *E* is constructible.

2. NOETHER NORMALIZATION LEMMA

In this section we prove important theorem on the structure of commutative and finitely generated *k*-algebras.

Theorem 2.1 (Noether normalization lemma). Let k be a field and A be a finitely generated k-algebra. Then there exist elements $z_1,...,z_n$ in A algebraically independent over k such that

$$k[z_1,...,z_n] \subseteq A$$

is a finite extension of rings.

Proof. Let \mathcal{A} be a family of finitely generated k-subalgebras of A such that for every $B \in \mathcal{A}$ extension $B \subseteq A$ is finite. Clearly $A \in \mathcal{A}$ so \mathcal{A} is nonempty. Now suppose that $n \in \mathbb{N}$ is a minimal number of k-algebra generators of any element in \mathcal{A} . Then there exist $z_1,...,z_n \in A$ such that $k[z_1,...,z_n] \subseteq A$ is finite. We show now that $z_1,...,z_n$ are algebraically independent over k. Let $k[x_1,...,x_n]$ be a polynomial k-algebra and assume that there exists nonzero $f \in k[x_1,...,x_n]$ such that $f(z_1,...,z_n) = 0$. Write

$$f(x_1,...,x_n) = \sum_{(d_1,...,d_n) \in F} a_{d_1,...,d_n} \cdot x_1^{d_1} \cdot ... \cdot x_n^{d_n}$$

where $F \subseteq \mathbb{N}^n$ is a finite subset and $a_{d_1,...,d_n} \in k$ are nonzero. Since f is nonzero, we derive that F is nonempty. Define

$$m = 1 + \max_{(d_1, \dots, d_n) \in F} \max_{1 \le i \le n} d_i$$

Next define $g \in k[z_2,...,z_n][x]$ by formula

$$g(x) = f(x, z_2 - z_1^m + x^m, z_3 - z_1^{m^2} + x^{m^2}, ..., z_n - z_1^{m^{n-1}} + x^{m^{n-1}})$$

Now we prove that g is a monic polynomial of variable x. Let \leq be the lexographical order on \mathbb{N}^n that is

$$(d_1,...,d_n) \le (e_1,...,e_n)$$
 if $d_i \le e_i$ for $i = \max\{j \mid 1 \le j \le n \text{ and } d_j \ne e_j\}$

Since $F \subseteq \mathbb{N}^n$ is finite, there exists $(M_1, ..., M_n)$ in F that is the greatest with respect to lexographical order \leq restricted to F. This implies that

$$d_1 + d_2 \cdot m + d_3 \cdot m^2 + \ldots + d_n \cdot m^{n-1} < M_1 + M_2 \cdot m + M_3 \cdot m^2 + \ldots + M_n \cdot m^{n-1}$$

for every $(d_1,...,d_n) \in \mathbb{N}^n$. This fact and more precise investigation of how coefficients of powers of x in g are calculated show that g is monic. Note also that $h(z_1) = f(z_1,z_2,...,z_n) = 0$. This implies that z_1 is integral over $k[z_2,...,z_n]$ and hence $k[z_2,...,z_n] \subseteq A$ is a finite extension of rings. This proves that $k[z_2,...,z_n] \in A$ and contradicts the definition of n. Therefore, such f does not exists and this proves that $z_1,...,z_n$ are algebraically independent over k.

3. Chevalley's theorem on images

Theorem 3.1 (Chevalley's theorem on images). Let $f: X \to Y$ be a morphism of schemes of finite presentation. Then for every locally constructible subset E of X its image f(E) is locally constructible in Y

We start by a sequence of reductions. Since the question is local on Y, one can assume that Y is affine. Then X is quasi-compact and quasi-separated. Thus by Theorem 1.5 we may assume that E = X and hence it suffices to prove that f(X) is constructible in Y. Since f is of finite presentation and Y is affine, there exists a cartesian square

$$X \longrightarrow X'$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$Y \longrightarrow Y'$$

with Y' the spectrum of a finitely generated \mathbb{Z} -algebra and f' is of finite type. We have

$$f(X) = g^{-1} \left(f'(X') \right)$$

Since preimage of a constructible subset is constructible by Fact 1.3, it suffices to prove that f'(X') is constructible. Thus we may assume that Y is a noetherian affine scheme and f is of finite type. For the proof of the Chevalley's theorem in this simplified form we need the following interesting application of Theorem 2.1

Lemma 3.1.1. Let A be a domain and $f: A \to B$ be an injective morphism of finite type. Then there exists nonzero $s \in A$ such that the image of Spec $f: \operatorname{Spec} B \to \operatorname{Spec} A$ contains the distinguished set D(s) of Spec A.

Proof of the lemma. Let $S = A \setminus \{0\}$. Then $K = S^{-1}A$ is a field of fractions of A and $S^{-1}B$ is a finitely generated K-algebra. By Theorem 2.1 we derive that there exists $\frac{b_1}{s_1},...,\frac{b_n}{s_n} \in S^{-1}B$ algebraically independent over K such that

$$K\left[\frac{b_1}{s_1},...,\frac{b_n}{s_n}\right] \subseteq S^{-1}B$$

is a finite extension of rings. Here $b_1,...,b_n \in B$ and $s_1,...,s_n \in S$. It follows that

$$K[b_1,...,b_n] \subseteq S^{-1}B$$

is a finite extension of rings and $b_1,...,b_n$ are algebraically independent over K. There exists a finite set $c_1,...,c_m$ that generates B as an $A[b_1,...,b_n]$ -algebra and all these elements are integral over $K[b_1,...,b_n]$. This implies that for every $1 \le i \le m$ there exists a monic polynomial $f_i \in K[b_1,...,b_n][x]$ such that $f_i(c_i) = 0$. Now there are finitely many coefficients of each f_i and each of them is some algebraic expression in $b_1,...,b_n$ having coefficients in $K = S^{-1}A$. This implies that there exists nonzero $s \in A$ such that f_i is a monic polynomial in $A_s[b_1,...,b_n][x]$ for every $1 \le i \le n$. Hence the extension

$$A_s[b_1,...,b_n] \subseteq B_s$$

is finite. We also know that $b_1,...,b_n$ are algebraically independent over K. Thus $A_s \subseteq B_s$ can be decomposed as a polynomial extension followed by a finite extension

$$A_s \subseteq A_s[b_1,...,b_n] \subseteq B_s$$

Both polynomial extension and finite extension induce surjective morphism on prime spectra. Thus the morphism Spec $B_s \to \operatorname{Spec} A_s$ induced by Spec f is surjective. Hence $D(s) \subseteq \operatorname{Spec} A$ is in the image of Spec f.

Proof of the theorem. Let $f: X \to Y$ be a finite type morphism with Y affine and noetherian. As we explained above it suffices to prove that f(X) is constructible. Suppose that F is an irreducible closed subset of Y. We consider it as a subscheme of Y with integral structure. By Lemma 3.1.1 we deduce that either the image of a morphism $f^{-1}(F) \to F$ induced by f contains nonempty open subset of F or this image is empty. Thus for every irreducible closed subset F of Y either $f(X) \cap F$ contains nonempty open subset of F or $f(X) \cap F = \emptyset$. By Proposition 1.7 we derive that f(X) is constructible in Y.

Corollary 3.2 (characterization of constructible sets on qcqs schemes). *Let X be a quasi-compact and quasi-separated scheme. Then the following are equivalent.*

- (i) *E* is locally constructible.
- (ii) E is constructible.
- (iii) There exists an affine scheme Z and a morphism $f: Z \to X$ of finite presentation such that E = f(Z).

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) follow from Theorem 1.5 and (iii) \Rightarrow (i) follows from Theorem 3.1.

4. CLOSEDNESS CRITERION

In this section we prove important criterion for closedness of subsets of schemes.

Definition 4.1. Let *X* be a topological space and let η be a point of *X*. Every point $x \in \mathbf{cl}(\{\eta\})$ is called *a specialization of* η .

Definition 4.2. Let X be a topological space and let x be a point of X. Every point η such that x is a specialization of η is called a *generization of* x.

Definition 4.3. Let X be a topological space and Z be its subset. We say that Z is *closed under specialization (generization)* if Z contains all specializations (generizations) of its points.

Theorem 4.4. Let X be a scheme and $f: Z \to X$ be a quasi-compact morphism of schemes. Then the following are equivalent.

- (i) f(Z) is a closed subset of X.
- (ii) f(Z) is closed under specialization.

For the proof we need the following result.

Lemma 4.4.1. Let $f: A \to B$ be a morphism of rings. If the image of Spec $f: \operatorname{Spec} B \to \operatorname{Spec} A$ is closed under specialization, then it is closed.

Proof of the lemma. The image of Spec f is equal to the image of its factor Spec $B \to \operatorname{Spec}(A/\ker(f))$. Therefore, we may additionally assume that f is injective. We prove that under this extra assumption Spec f is surjective. For this assume that $\mathfrak{p} \in \operatorname{Spec} A$ is a prime ideal. Then f induces an injective map $A_{\mathfrak{p}} \to B_{\mathfrak{p}}$. Thus $B_{\mathfrak{p}}$ is nonzero. Hence $\operatorname{Spec} B_{\mathfrak{p}}$ is nonempty. We also have a commutative square

of topological spaces. This imply that there exists a prime ideal $\mathfrak{q} \in \operatorname{Spec} B$ such that \mathfrak{p} is a specialization of $(\operatorname{Spec} f)(\mathfrak{q})$. Since the image of $\operatorname{Spec} f$ is closed under specialization, we derive that \mathfrak{p} is contained in the image of $\operatorname{Spec} f$.

Proof. Closed subsets are closed under specialization. Hence (i) \Rightarrow (ii) holds. Now assume (ii) i.e. f(Z) is closed under specialization. Fix open affine U in X. Since f is quasicompact, we derive that $f^{-1}(U)$ is quasi-compact. Write $f^{-1}(U) = \bigcup_{j=1}^m W_j$ for open affine subsets W_j of $f^{-1}(U)$. Let $W = \coprod_{j=1}^m W_j$ and consider a morphism $g: W \to U$ given as the composition

$$\coprod_{j=1}^m W_j \longrightarrow f^{-1}(U) \longrightarrow U$$

where the first arrow is induced by inclusions $\{W_j \hookrightarrow f^{-1}(U)\}_{1 \le j \le m}$ and the second is the restriction of f. Note that $g(W) = f(Z) \cap U$ and hence g(W) is closed under specialization in U. By Lemma 4.4.1 we deduce that g(W) is closed in U and hence $f(X) \cap U$ is closed in U. Since this holds for any open affine U in X, we infer that f(Z) is closed in X. This is (i).