Семинар по функциональному анализу. 315 группа, 04.05.20 (49-ый день карантина)

"Спектр линейного оператора"

Перед решением задач по этой теме рекомендуется самостоятельно прочитать параграф 24 (стр. 254 – 261) из книги В.А. Треногина "Функциональный анализ".

Пусть X – банахово пространство (вообще говоря, комплексное), а $A: X \to X$ – линейный оператор. Число λ называется регулярной точкой оператора A, если оператор $A - \lambda I$ непрерывно обратим. Множество всех регулярных точек – резольвентное множество оператора – $\rho(A)$. Для любого $\lambda \in \rho(A)$ оператор $R_{\lambda}(A) = (A - \lambda I)^{-1}$ – резольвента оператора A. Дополнение регулярного множества $\sigma(A) = \mathbb{R} \backslash \rho(A)$ – спектр оператора A.

Теорема 1. *Множество* $\rho(A)$ *открыто* в \mathbb{C} .

Теорема 2. Пусть A – непрерывный линейный оператор. Тогда $\forall \lambda \in \mathbb{C}$: $|\lambda| > ||A|| \Rightarrow \lambda \in \rho(A)$.

Теорема 3. Пусть A – непрерывный линейный оператор в банаховом пространстве X. Тогда существует конечный предел

$$r_{\sigma}(A) = \lim_{n \to +\infty} ||A^n||^{1/n} \le ||A||,$$

который называется спектральным радиусом оператора A. Если $|\lambda| > r_{\sigma}(A)$, то $\lambda \in \rho(A)$.

Теорема 4. Если A – непрерывный линейный оператор в банаховом пространстве X, то $\sigma(A)$ – непустое множество.

Теорема 5. Пусть A – непрерывный линейный оператор в банаховом пространстве X. Тогда если $r_{\sigma}(A) < 1$, то оператор I - A непрерывно обратим, причем $(I - A)^{-1} = \sum_{k=0}^{+\infty} A^k$, и рад сходится абсолютно. Если же $r_{\sigma}(A) > 1$, то ряд $\sum_{k=0}^{+\infty} A^k$ расходится.

Точки спектра $\sigma(A)$ классифицируются следующим образом:

- $\ker(A \lambda I) \neq \{0\} \Rightarrow$ такие λ относятся к точечному спектру (собственные значения);
- $\exists (A \lambda I)^{-1}$, определенный на некотором множестве Y, плотном в X, но этот оператор не является непрерывным \Rightarrow такие λ относятся к непрерывному спектру;
- $\exists (A \lambda I)^{-1}$, определенный на некотором множестве Y, не плотном в X \Rightarrow такие λ относятся к остаточному спектру.

Замечание. Иногда используется другая классификация, которую мы не рассматриваем.

Задача 1 (ТПС, 19.4a). В пространстве $C[-\pi, \pi]$ найти собственные значения и собственные векторы оператора

$$A(x(t)) = x(-t).$$

Решение: Рассмотрим уравнение $A(x(t)) = \lambda x(t) \Rightarrow x(-t) \equiv \lambda x(t), \ \forall t \in [-\pi, \pi]$. Такое возможно либо если $x(t) \equiv 0$, либо если $\lambda^2 = 1$. Следовательно, может быть два собственных значения: $\lambda_1 = 1, \ \lambda_2 = -1$.

Собственному значению $\lambda_1 = 1$ соответствует функция x(t): x(t) = x(-t), $\forall t \in [-\pi, \pi]$. Т.е. собственные функции – это все непрерывные четные функции.

Собственному значению $\lambda_2 = -1$ соответствует функция x(t): x(t) = -x(-t), $\forall t \in [-\pi,\pi]$. Т.е. собственные функции – это все непрерывные нечетные функции.

Задача 2 (ТПС, 19.16). В пространстве C[0,1] рассмотрим оператор A(x(t)) = x(0) + tx(1). Найти $\sigma(A)$, $r_{\sigma}(A)$, $R_{\lambda}(A)$.

Решение: Сначала изучим точечный спектр оператора:

$$(A - \lambda I)(x(t)) = x(0) + tx(1) - \lambda x(t) = 0, \forall t \in [0, 1] \Rightarrow$$

При $\lambda=0$ это соотношение будет выполнено при любой непрерывной функции x(t) такой, что x(0)=x(1)=0.

При $\lambda \neq 0$ $x(t) = \frac{x(0) + tx(1)}{\lambda}$ — линейная, вида at + b. Подставляем в уравнение: $b + t(a + b) = \lambda(at + b) \Rightarrow \lambda = 1, \ b = 0, \ \forall a$.

Итак, точечный спектр содержит два значения: $\lambda = 0$ и $\lambda = 1$.

Теперь попробуем найти резольвенту при $\lambda \neq 0, \lambda \neq 1$. Для этого надо решить уравнение

$$x(0) + tx(1) - \lambda x(t) = y(t)$$

относительно $x(t) \in C[0,1]$ при заданной функции $y(t) \in C[0,1]$. Подставляя в это уравнение t=0, получаем: $x(0)(1-\lambda)=y(0)$, то есть $x(0)=\frac{y(0)}{1-\lambda}$. Теперь подставим t=1: $x(0)+x(1)(1-\lambda)=y(1)$, то есть

$$x(1) = \frac{y(1) - x(0)}{1 - \lambda} = \frac{y(1)(1 - \lambda) - y(0)}{(1 - \lambda)^2}.$$

Теперь легко получить итоговое выражение для функции x(t):

$$x(t) = R_{\lambda}(A)(y(t)) = \frac{1}{\lambda} \left(\frac{y(0)}{1-\lambda} + t \frac{y(1)(1-\lambda) - y(0)}{(1-\lambda)^2} - y(t) \right).$$

При $\lambda \neq 0$, $\lambda \neq 1$ полученная функция x(t) непрерывна на [0,1]. Резольвента определена при любых $y(\cdot) \in C[0,1]$. Резольвента является ограниченным линейным оператором:

$$||x(\cdot)||_{C[0,1]} \le \frac{1}{\lambda} \left(\frac{2}{|1-\lambda|} + \frac{1}{(1-\lambda)^2} + 1 \right) ||y(\cdot)||_{C[0,1]}.$$

Следовательно, непрерывного или остаточного спектра нет.

Задача 3 (ТПС, 19.23). Пусть $A, B \in \mathcal{X}$. Доказать, что ненулевые элементы $\sigma(AB)$ и $\sigma(BA)$ совпадают.

Решение: Ранее, при изучении обратных операторов, нами было доказано "волшебное" тождество

$$(I - \tilde{B}A)^{-1} = I + \tilde{B}(I - A\tilde{B})^{-1}A,$$

справедливое в том случае, если определен хотя бы один из обратных операторов. Пусть теперь $\tilde{B}=\lambda^{-1}B$. Тогда

$$-\lambda (BA - \lambda I)^{-1} = I - B(AB - \lambda I)^{-1}A.$$

Следовательно, при $\lambda \neq 0$ непрерывный оператор $(AB - \lambda I)^{-1}$ существует тогда, и только тогда, когда существует непрерывный оператор $(BA - \lambda I)^{-1}$.

Домашнее задание: № 19.46, 19.5, 19.13, 19.14, 19.18.