

Chebyshev's Inequality

Prof. Uma D

Department of Computer Science and Engineering

Chebyshev's Inequality

Prof. Uma D

Normal Distribution

CABT Statistics & Probability - Grade 11 Lecture Presentation

Normal Distribution

68 – 95 -99.7 rule is when data is normally distributed.

When data is not normally distributed?

Chebyshev's inequality provides a way to know what fraction of data falls within **K standard deviations** from the mean for any data set.

Chebyshev's Inequality

PES UNIVERSITY

Statement of Chebyshev's Inequality

Chebyshev's inequality states that at least $1 - 1/K^2$ of data from a sample must fall within K standard deviations from the mean, where K is any positive real number greater than one.

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Chebyshev's Inequality is used to describe the percentage of values in a distribution within an interval centered at the mean.

Source Image:ThoughtCo.com

Chebyshev's Inequality

PES UNIVERSITY ONLINE

Illustration of the Inequality

For K = 2 we have 1-1/K2 = 1 - 1/4 = 3/4 = 75%.

Chebyshev's inequality says that at least 75% of the data values of any distribution must be within two standard deviations of the mean.

For K = 3 we have 1 - 1/K2 = 1 - 1/9 = 8/9 = 89%.

Chebyshev's inequality says that at least 89% of the data values of any distribution must be within three standard deviations of the mean.

Chebyshev's Inequality

Note:

Chebyshev's inequality is weaker, stating that a minimum of just 75% of values must lie within two standard deviations of the mean and 89% within three standard deviations.

Only the case k > 1 is useful.

When $k \le 1$ the right hand $1/k \ge 1$ and the inequality is trivial as all probabilities are ≤ 1 .

Chebyshev's Inequality

Statement of Chebyshev's Inequality

Chevyshev's Inequality can also be stated as follows:

Chebyshev's inequality relates mean and standard deviation by providing a bound on the probability that a Random Variable takes on a value that differs from its mean by K standard deviation or more is never greater than 1/k 2

Note:

Chebyshev's bound is generally much larger than the actual probability.

Hence should only be used when the distribution of the random variable is unknown.

Chebyshev's Inequality

Problem 1

Chebyshev's Inequality

Problem 2

What is the smallest number of standard deviations from the mean that we must go if we want to ensure that we have at least 50% of the data of a distribution?

Chebyshev's Inequality

Do It Yourself!!!

The length of a metal pin manufactured by a certain process has mean 50 mm and standard deviation 0.45mm.

What is the largest possible value for the probability that the length of the metal pin is outside the interval [49.1, 50.9] mm?

THANK YOU

Prof. Uma D

Department of Computer Science and Engineerin