

AD-A043 335

ANALYTIC SCIENCES CORP READING MASS
GRADIOMETER-AIDED RAPID GRAVITY SURVEY SYSTEM. (U)

APR 77

F/G 17/7

UNCLASSIFIED

TASC-SP-957-1-1

ETL-0112

DAAG53-76-M-5899

NL

1 OF 1
AD-A043335

END
DATE
FILMED
9-77
DDC

AD A 043335

TASC

6 JACOB WAY/READING, MASSACHUSETTS 01867/(617) 944-6850

THE ANALYTIC SCIENCES CORPORATION

ETL-0112

SP-957-1-1

GRADIOMETER-AIDED RAPID
GRAVITY SURVEY SYSTEM

18 October 1976
Revised 22 April 1977

Prepared for:

U.S. ARMY ENGINEER TOPOGRAPHIC LABORATORIES
Fort Belvoir, Virginia 22060

Submitted in fulfillment of
Contract No. DAAG53-76-M-5899

Approved For Public Release
Distribution Unlimited

THE ANALYTIC SCIENCES CORPORATION
Six Jacob Way
Reading, Massachusetts 01867

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ETL-0112	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) GRADIOMETER-AIDED RAPID GRAVITY SURVEY SYSTEM		5. TYPE OF REPORT & PERIOD COVERED Contract Report
7. AUTHOR(s)		6. PERFORMING ORG. REPORT NUMBER SP-957-1-1
9. PERFORMING ORGANIZATION NAME AND ADDRESS The Analytic Sciences Corporation Six Jacob Way Reading, Massachusetts 01867		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060		12. REPORT DATE April 1977
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 30
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES <i>404 565</i>		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Rapid Gravity Survey System (RGSS) Gradiometry Zero Velocity Kalman Processing		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <i>This report considers a mobile vehicle equipped with both an inertial positioning system (IPS) and a gradiometer. For suitable gradiometer-aiding configurations, the following variables are determined: (1) Real-Time vs Post-Mission Data Processing, (2) Presence or absence of Terminal Calibration Data, (3) Continuous Time vs Halted Vehicle Gradiometer Operation, (4) Gradiometer Errors, (5) Zero Velocity and Gradiometer Calibration Stops, and (6) Gyro and accelerometer Errors. This report concluded that one sec or better gradiometer-aided</i>		
(continued) →		

4PZ

20. continued

RGSS performance in open traverse is unlikely without vertical deflection end calibration. In addition, the keynote of successful RGSS/Gradiometer integration will be control and compensation of system bias and low frequency error sources.

THE ANALYTIC SCIENCES CORPORATION

FOREWORD

This document contains material used in a presentation given by The Analytic Sciences Corporation. The material is not intended to be self-explanatory, but rather should be considered in the context of the overall presentation.

ACCESSION NO.	REF ID:	
NTIS	REF ID: Section	
DOC	B-1 Section	
UNANNOUNCED	<input type="checkbox"/>	
JUSTIFICATION	<input type="checkbox"/>	
BY		
DISTRIBUTION/AVAILABILITY CODES		
Dist.	Avail.	For SPECIAL
A		

OVERVIEW

R-25236

- RAPID GRAVITY SURVEY SYSTEM SCENARIO AND PERSPECTIVE ON GRADIOMETRY
- VERTICAL DEFLECTIONS FROM GRADIOMETER DATA ALONE
- GRADIOMETER-AIDED RGSS SIMULATION DESCRIPTION
- COVARIANCE SIMULATION RESULTS (FIRST PHASE)
- PRELIMINARY CONCLUSIONS AND A LOOK AHEAD

RAPID GRAVITY SURVEY SYSTEM (RGSS)
SCENARIO AND PERSPECTIVE ON GRADIOMETRY

R-25237

TASC
THE ANALYTIC SCIENTIFIC CORPORATION

PROBLEM STATEMENT

R-25238

CONSIDER A MOBILE VEHICLE EQUIPPED WITH BOTH AN INERTIAL POSITIONING SYSTEM (IPS)* AND A GRADIOMETER. FOR SUITABLE GRADIOMETER-AIDING CONFIGURATIONS, DETERMINE THE EFFECT OF THE FOLLOWING VARIABLES:

- REAL-TIME vs POST-MISSION DATA PROCESSING
- PRESENCE OR ABSENCE OF TERMINAL CALIBRATION DATA
- CONTINUOUS TIME vs HALTED VEHICLE GRADIOMETER OPERATION
- GRADIOMETER ERRORS
- ZERO VELOCITY AND GRADIOMETER CALIBRATION STOPS
- GYRO AND ACCELEROMETER ERRORS

*CURRENTLY CONFIGURED AS A LITTON LN15 INERTIAL NAVIGATION SYSTEM WITH IMPROVED (A-1000) VERTICAL CHANNEL ACCELEROMETER

REFERENCE: Huddle, J.R., "Navigation to Surveying Accuracy With an Inertial System," Bicentennial National Aerospace Symposium, Warminster, PA, April 1976.

TASC
THE ANALYTIC SCIENCE CORPORATION

TYPICAL SURVEY CONFIGURATION

R 21277

TASC
THE AMERICAN SYSTEMS CORPORATION

GRAVITY QUANTITY POWER SPECTRA

R 25274

- SECOND ORDER MARKOV CROSS-TRACK DEFLECTION MODEL
- GRADIENT AUTO SPECTRUM IS FOR ALONG TRACK, CROSS TRACK TENSOR ELEMENT
- RMS DEFLECTION = $8 \text{ sec}^{\frac{1}{2}}$
- DEFLECTION CORRELATION DISTANCE = 37 km

LONG-WAVELENGTH "LIMIT"
FOR 64 km (40 mile) TRAVERSE

TASC
THE AEROMARINE SURVEYING COMPANY

MULTISENSOR VIEW OF GRADIOMETER-AIDED RGSS

R 25239

- GRADIOMETER MEASURES SHORT WAVELENGTH FEATURES OF THE GRAVITY FIELD
- IPS MEASURES LONG WAVELENGTH FEATURES
- OPTIMAL COMBINATION OF BOTH SETS OF MEASUREMENTS (KALMAN FILTERING OR SMOOTHING) YIELDS BEST (IN A LEAST SQUARES SENSE) DEFLECTION RECOVERY

TASC
THE APPLIED SCIENCE CORPORATION

**VERTICAL DEFLECTIONS FROM
GRADIOMETER DATA ALONE**

R-25240

TASC
THE ANALYTIC SCIENTIFIC CORPORATION

NON-MOBILE, GRADIOMETER-ALONE VERTICAL DEFLECTION SURVEY

R-25241

- SIMPLEST IMAGINABLE GRADIOMETER SURVEY APPROACH
- DOES NOT TAKE ADVANTAGE OF LONG WAVELENGTH INFORMATION AVAILABLE FROM INERTIAL SYSTEM
- DEFLECTION RECOVERY RESULTS NOT LIMITED BY HIGH FREQUENCY GRADIOMETER ACCURACY

TASC
Technological Applications Services Corporation

**VERTICAL DEFLECTION RECOVERY WITH DISCRETE, NON-MOBILE
GRADIOMETER MEASUREMENTS ONLY**

R-25242

NUMBER OF DISCRETE GRADIOMETER MEASUREMENTS (Equally Spaced)	GRADIOMETER NOISE		RMS DEFLECTION ESTIMATION ERROR FOR ENTIRE TRAVERSE (sec)
	WHITE NOISE (EU)*	BIAS (EU)	
10 (7.1 km spacing)	0	0	4.9
10 (7.1 km spacing)	1.0	0	5.4
10 (7.1 km spacing)	0	1.0	6.9
41 (1.6 km spacing)	1.0	0	4.3
41 (1.6 km spacing)	0	0	3.8

- RMS VERTICAL DEFLECTION = $8 \sqrt{\text{sec}}$
- DEFLECTION CORRELATION DISTANCE = 37 km
- TRAVERSE DISTANCE = 64 km (40 mi)
- VEHICLE "DWELL TIME" AT EACH MEASUREMENT SITE = 100 seconds
- OPTIMAL, POST-MISSION DATA PROCESSING (SMOOTHING)

CONCLUSION: GRADIOMETER MUST OPERATE IN MULTISENSOR CONTEXT

*TEN SECOND MOVING WINDOW AVERAGE

TASC
THE AMERICAN SYSTEMS CORPORATION

TASC
THE ANALYTIC SCIENTIFIC CORPORATION

GRADIOMETER-AIDED RGSS SIMULATION DESCRIPTION

R-25243

SIMULATION FEATURES

- R-25244
- OPTIMAL KALMAN PROCESSING OF DATA
 - ERROR COVARIANCE HISTORY OF RESIDUAL GRAVITY, VELOCITY AND POSITION ERRORS ALONG SURVEY TRACK
 - SINGLE-CHANNEL, "QUICK-LOOK" ANALYSIS
 - PROVISION FOR INCLUSION OF GYRO ERRORS
 - PROVISION FOR ZERO VELOCITY UPDATES (VELOCITY AND GRADIOMETER "FIXES")
 - GRADIOMETER OUTPUT SUPPRESSED DURING ACCELERATION AND DECELERATION

TASC
THE ANALYTIC SYSTEMS CORPORATION

MISSION PROFILE

R 27278

TASC
THE ANALYST'S SOURCEBOOK

COVARIANCE SIMULATION MODEL FOR MOVING VEHICLE WITH MOBILE GRADIOMETER

β = DEFLECTION CORRELATION FREQUENCY
 Λ = GRAVITY
 δv = EARTH RADIUS
 δr = ESTIMATED QUANTITY
 ξ = CROSS-TRACK VERTICAL DEFLECTION

TASC
THE AMERICAN SYSTEMS CORPORATION

SIMULATION MODEL FOR STATIONARY VEHICLE AND GRADIOMETER

TASSC

THE AMERICAN SYSTEMS CORPORATION

SUMMARY OF SIMULATION CONSTANTS

SURVEY

TRAVERSE DISTANCE = 64 km (40 miles)
VEHICLE CRUISE SPEED = 30 km/hr
ACCELERATION PERIODS = 30 seconds each

BACKGROUND GRAVITY DISTURBANCE FIELD (MARKOV)

VERTICAL DEFLECTION = 8 sec rms
DEFLECTION CORRELATION DISTANCE = 37 km

SYSTEM FIELD CALIBRATION AND "FIXES" (When Applicable)

TERMINAL POINT DWELL TIME = 1000 seconds
ZERO VELOCITY UPDATE DWELL TIME = 60 seconds

TASC
THE ANALYSTS SYSTEMS CORPORATION

SUMMARY OF SIMULATION VARIABLES (FIRST PHASE SIMULATION RESULTS)

R-25246

GRADIOMETER ERRORS

WHITE NOISE = 10 EU*
BIAS = 0, 10 EU

IPS ERRORS

RESIDUAL CROSS-TRACK ACCELEROMETER ERROR = 4 sec
VERTICAL COMPONENT OF POLAR GYRO DRIFT RATE = 0

CALIBRATION AND FIX TAKING

CALIBRATION QUANTITIES AT END POINTS - POSITION, VELOCITY,
DEFLECTION, GRAVITY GRADIENT
NUMBER OF STOPS (VELOCITY AND GRADIENT FIXES) - 0

*TEN SECOND MOVING WINDOW AVERAGE

TASC
THE AMERICAN SYSTEM FOR COMPUTER APPLICATIONS

TASC
THE ANALYTIC SCIENTISTS CORPORATION

COVARIANCE SIMULATION RESULTS
(FIRST PHASE)

R-25247

FIRST PHASE SIMULATION STUDY CASES

R-25248

RGSS DEFLECTION RECOVERY AND NAVIGATION ACCURACY WITHOUT GRADIOMETER-AIDING (REAL-TIME AND POST-MISSION)

CASE	QUANTITIES INCLUDED IN HIGH QUALITY ENDPOINT CALIBRATION
1	δR , δV
2	δR , δV , ξ
3	δR , δV , ξ , $\partial \xi / \partial x^*$

RGSS DEFLECTION RECOVERY AND NAVIGATION ACCURACY WITH MOVING-BASE GRADIOMETER-AIDING (REAL-TIME AND POST-MISSION)

CASE	QUANTITIES INCLUDED IN HIGH QUALITY ENDPOINT CALIBRATION	GRADIOMETER ENDPOINT CALIBRATION† ASSUMED
4	δR , δV , ξ	NO
5	δR , δV	YES
6 (No bias errors)	δR , δV	NO

* $\partial \xi / \partial x$ = GRAVITY DISTURBANCE GRADIENT

† GRADIOMETER OUTPUT IS AVERAGED DURING 1000 SECOND CALIBRATION INTERVAL

TASC
THE ANALYTIC SCIENCE CORPORATION

RGSS SURVEY ERRORS FOR OPTIMAL KALMAN PROCESSING OF ENDPOINT CALIBRATION DATA

CASE 1

- NO GRADIOMETER AIDING
- PRECISION ENDPOINT CALIBRATION OF
 - POSITION
 - VELOCITY

RGSS SURVEY ERRORS FOR OPTIMAL KALMAN PROCESSING OF ENDPOINT CALIBRATION DATA

CASE 2

- NO GRADIOMETER AIDING
- PRECISION ENDPOINT CALIBRATION OF
 - POSITION
 - VELOCITY
 - VERTICAL DEFLECTION

RGSS SURVEY ERRORS FOR OPTIMAL KALMAN PROCESSING OF ENDPOINT CALIBRATION DATA

CASE 3

- NO GRADIOMETER AIDING
- PRECISION ENDPOINT CALIBRATION OF
 - POSITION
 - VELOCITY
 - VERTICAL DEFLECTION
 - GRAVITY GRADIENT

RGSS SURVEY ERRORS FOR OPTIMAL KALMAN PROCESSING OF GRADIOMETER AND ENDPOINT CALIBRATION DATA

RGSS SURVEY ERRORS FOR OPTIMAL KALMAN PROCESSING OF GRADIOMETER AND ENDPOINT CALIBRATION DATA

TASC
THE ANALYTIC SCIENTIFIC CORPORATION

RGSS SURVEY ERRORS FOR OPTIMAL KALMAN PROCESSING OF GRADIOMETER AND ENDPOINT CALIBRATION DATA

SUMMARY OF SIMULATION RESULTS

CASE	TYPE OF END POINT CALIBRATION	GRADIOMETER ERRORS	RMS ERRORS OVER ENTIRE SURVEY			OPTIMAL SMOOTHING		
			REAL-TIME DEFLECTION (sec)	OPTIMAL POSITION (m)	VELOCITY (m/sec)	DEFLECTION (sec)	POSITION (m)	VELOCITY (m/sec)
1	$\delta R, \delta V$	NO GRADIOMETER	8.0	381	1.1	6.6	252	0.7
2	$\delta R, \delta V, \xi$	NO GRADIOMETER	6.4	299	0.8	4.3	181	0.4
3	$\delta R, \delta V, \xi, \frac{\partial \xi}{\partial x}$	NO GRADIOMETER	6.1	287	0.8	3.5	167	0.3
4	$\delta R, \delta V, \xi$	$\left\{ \begin{array}{l} 10 \text{ EU} \\ \text{WHITE} \\ \text{NOISE*} \end{array} \right\}$ AND $\left\{ \begin{array}{l} 10 \text{ EU} \\ \text{BIAS} \end{array} \right\}$	2.8	174	0.4	0.2	8.3	0.02
5	$\delta R, \delta V, \frac{\partial \xi}{\partial x}$ FROM GRADIOMETER	GRADIOMETER BIAS	6.8	295	0.8	3.3	17.5	0.05
6 [†]	$\delta R, \delta V$	10 EU WHITE NOISE* ONLY	6.8	254	0.6	0.3	10.7	0.03

* 10 SECOND MOVING WINDOW AVERAGE

[†] NOMINAL, 4 sec BIAS ACCELEROMETER ERROR SET TO ZERO

OBSERVATIONS

R 25250

- PERFORMANCE OF MOBILE GRADIOMETER-AIDED IGSS VERY SENSITIVE TO ACCURACY OF TERMINAL DEFLECTION CALIBRATION
- VELOCITY AND GRAVITY GRADIENT FIXES ASSOCIATED WITH PERIODIC ZERO VELOCITY HOLDS EXPECTED TO PROVIDE SIGNIFICANT REDUCTION IN POSITION AND VELOCITY ERRORS; SMALL REDUCTION IN DEFLECTION ERRORS
- SIMILAR LOW FREQUENCY DYNAMICS OF DEFLECTIONS AND LOW FREQUENCY SYSTEM ERRORS CAUSE STRONG SENSITIVITY OF ESTIMATION ERROR TO BIAS-LIKE ERROR SOURCES

TASC
THE SOURCE FOR DEFENSE COMMUNICATIONS

TASC
THE ANALYTIC SCIENCE CORPORATION

PRELIMINARY CONCLUSIONS
AND A LOOK AHEAD

R-25249

PRELIMINARY CONCLUSIONS

R-25262

ONE SEC OR BETTER GRADIOMETER-AIDED RGSS PERFORMANCE
IN OPEN TRAVERSE IS UNLIKELY WITHOUT VERTICAL,
DEFLECTION END CALIBRATION

KEYNOTE OF SUCCESSFUL RGSS/GRADIOMETER INTEGRATION WILL
BE CONTROL AND COMPENSATION OF SYSTEM BIAS AND LOW
FREQUENCY ERROR SOURCES

TASC
THE AMERICAN SYSTEMS CORPORATION

A LOOK AHEAD

R-25251

CURRENT AND SOON-TO-BE-DEVELOPED SIMULATION SOFTWARE WILL PROVIDE A FIRST-LOOK UNDERSTANDING OF THE FOLLOWING EFFECTS

- ULTIMATE PERFORMANCE POSSIBLE WITH RGSS OPTIMALLY AIDED BY NON-MOBILE GRADIOMETER
- RGSS PERFORMANCE IMPROVEMENT WITH ZERO-VELOCITY HOLDS (FIXES) IN ADDITION TO MOVING-BASE GRADIOMETER-AIDING
- DEGRADATION DUE TO INSTRUMENT ERRORS
 - DIFFERENT GRADIOMETER NOISE LEVELS
 - GYRO DRIFT
- INSIGHT INTO DEGRADATION DUE TO IPS ERRORS NOT OBSERVABLE AT ZERO-VELOCITY (e.g., ACCELEROMETER SCALE FACTOR)

TASC
THE ANALYTIC SCIENTIFIC CORPORATION