#### Antonio Pucciarelli

Politecnico di Milano

April 21, 2022



- 1 Problem Description
- 2 Similitude

Problem Description

•0

- 3 Blade Modeling
- 4 Efficiency
- **5** CFD
- 6 References



Antonio Pucciarelli

#### tial collutions & constraints

## Inlet conditions

Problem Description

- $P_{T0} = 1bar$
- $T_{T0} = 300K$

#### Constraints

- $r_{max} = 0.45m$
- $\beta \tau \tau = 1.45$
- $\dot{m} = 100 \frac{kg}{s}$
- max  $\eta$

Due to the **course track** and **preference**, the turbomachinery design will be on an **axial** compressor.

- Problem Description
- 2 Similitude

 $V_{t_{mean}}$ ,  $V_{a_{mean}}$ ,  $U_{mean}$  & velocity triangles



Blade Modeling

- Problem Description
- Similitude

#### Problem setup

 $V_{t_{mean}}$ ,  $V_{a_{mean}}$ ,  $U_{mean}$  & velocity triangles



Antonio Pucciarelli

### Problem setup: hypothesis

#### **Hypothesis**

- not using an inlet guide vane for simplicity of design<sup>1</sup>
- keeping, in the similarity/adimensional analysis of the compressor,  $V_{a_{max}}$  constant<sup>2</sup>
- keeping the blade height,  $b_0$ , **constant** both in rotor and stator<sup>3</sup>
- using a free vortex model for the velocity triangles
- neglecting inlet entropy generation and assuming rotor inlet quantities constant

Politecnico di Milano Antonio Pucciarelli

 $<sup>^{1}</sup>V_{t0}=0\frac{m}{s}$  and  $\chi$  dictate the behaviour of  $\lambda$ .

 $<sup>^2\</sup>dot{m}$  corrections will be made later on in the **radial equilibrium** solution.

<sup>&</sup>lt;sup>3</sup>In order to keep each **blade streamtube section** as simple as possible.

#### Problem setup: solution steps

#### Main procedural steps:

- $\lambda$  and  $\psi$  computation from  $\chi$  and  $V_{t0}$
- $\phi$  and  $\eta$  computation
- $V_{a_{mean}}$  and  $L_{eu}$  computation from  $\phi$ ,  $eta_{TT}$  and  $\eta$
- computing mean velocity triangles, using the above hypothesis
- computing mean thermodynamic quantities
- computing blade height



- Problem Description
- 2 Similitude

Main design quantities

 $V_{t_{mean}}$ ,  $V_{a_{mean}}$ ,  $U_{mean}$  & velocity triangles



Antonio Pucciarelli

## Graph Analysis: $\chi$ & M





Antonio Pucciarelli

## Graph Analysis: $\alpha \& \beta$





Antonio Pucciarelli

#### From the previous graphs:

- $\chi = 0.55$
- $r_{mean} = 0.325 m$
- $\frac{V_{t0}}{U_{max}} = 0$

Taking into account the previous modeling **hypothesis**:

$$\lambda = \left(1 - \chi - rac{V_{t0}}{U_{mean}}
ight) \cdot 4$$
  $\psi = rac{\lambda}{2}$ 





From [?, Sec. 10.4] it is imposed that  $\frac{W_2}{W_1} \ge 0.7$  with a *safety* margin of 3%.





 $\eta$  is computed from an **Lieblein** efficiency chart<sup>4</sup> given  $\phi$  and  $\chi$ . This parameter will be used for the computation of  $L_{eu}$  given the  $\beta_{TT}$  target.



$$egin{align} L_{is} &= rac{\gamma \ R}{\gamma - 1} \ T_{in} \ (eta_{TT}^{rac{\gamma - 1}{\gamma}} - 1) \ L_{eu} &= rac{L_{is}}{\eta} \ \end{array}$$



<sup>&</sup>lt;sup>4</sup>This chart has been interpolated from the course slides charts.

- Problem Description
- 2 Similitude

 $V_{t_{mean}}$ ,  $V_{a_{mean}}$ ,  $U_{mean}$  & velocity triangles



Antonio Pucciarelli



$$egin{aligned} U_{mean} &= rac{L_{eu}}{\psi} \ V_{a_{mean}} &= \phi \ U_{mean} \ L_{eu} &= U_1 \ V_{t1} - U_0 \ V_{t0} \ &= U_{1_{mean}} \ V_{t1_{mean}} - U_{0_{mean}} \ V_{t0_{mean}} &= U_{mean} \ \Delta V_{t_{mean}} \ V_{t1} &= \Delta V_{t_{mean}} + V_{t0} \end{aligned}$$

- $\Delta V_{t_{mean}}$  computation allows to get a *first sketch* of the **velocity triangles**<sup>5</sup>
- The first analysis results are stored in compressor\_0.55\_0.325\_28\_28.txt



<sup>5</sup>Free vortex model based.

Antonio Pucciarelli Politecnico di Milano

References





- Problem Description
- Blade Modeling



17 / 31

- Blade Modeling

#### Losses modeling



Antonio Pucciarelli

#### Profile losses

The profile losses used are related to the **Leiblein modeling** approach<sup>6</sup>.

The model is based on the **equivalent diffusion factor**,  $D_{eq}$ :

$$rac{W_{max}}{W_1} = 1.12 + 0.61 \; rac{cos(eta_1)^2}{\sigma} \cdot rac{r_1 \; V_{t1} - r_2 \; V_{t2}}{r_1 \; V_{a1}}$$
 $D_{eq} = rac{W_{max}}{W_1} \cdot rac{W_1}{W_2}$ 

 $D_{eq}$  will be used for the computation of  $\bar{\omega}_{profile}$  as:

$$\bar{\omega}_{\textit{profile}} = \frac{0.004\,\left(1 + 3.1\,\left(D_{\textit{eq}} - 1\right)^2 + 0.4\,\left(D_{\textit{eq}} - 1\right)^8\right)\,2\,\,\sigma}{\cos(\beta_2)\,\left(\frac{W_1}{W_2}\right)^2}$$

POLITECNICO MILANO 1863

<sup>&</sup>lt;sup>6</sup>The following equations are interpolated data from [?, Ch. 6].

## Compressibility losses – I

This losses can be seen as a **correction** of the **profile** losses due to the compressibility of the gas along its *journey* in the stage.

The correction referres to a **Leiblein correction** model that uses the **positive** and **negative** blade section incidence angle,  $i_c$  and  $i_s$ .

These new stall incidence angles will build a new **mean** incidence angle,  $i_m$ , that can be seen as the **optimum** incidence angle related to the inlet Mach conditions<sup>7</sup>.



<sup>&</sup>lt;sup>7</sup>The implemented model follows [?, Ch. 10]

#### Compressibility losses - II

 $\bar{\omega}_{compressibility}$  setup:

•  $R_c$  &  $R_s$  computation:

$$R_c = 9 - \left[1 - \left(\frac{30}{\beta_1}\right)^{0.48}\right] \frac{\theta}{8.2}$$

$$R_s = 10.3 + \left(2.92 - \frac{\beta_1}{15.6}\right) \frac{\theta}{8.2}$$

•  $i_c \& i_s$  computation:

$$i_c = i^* - \frac{R_c}{1 + 0.5 M_1^3}$$
 $i_s = i^* + \frac{R_s}{1 + 0.5 (K_{sh} M_1)^3}$ 



Antonio Pucciarelli

### Compressibility losses – III

- $i_m$  computation:  $i_m = i_c + \left(i_s i_c\right) \frac{R_c}{R_c + R_s}$
- $ar{\omega}_m$  computation:  $ar{\omega}_m = ar{\omega}_{profile} \left[ 1 + rac{\left( i_m i^* 
  ight)^2}{R_s^2} 
  ight]$
- $\bar{\omega}_{compressibility}$  computation:

$$\bar{\omega}_{compressibility} = \bar{\omega}_m + \bar{\omega}_m \left[ \frac{i - i_m}{i_c - i_m} \right]^2, \text{ if } i \leq i_m$$

$$\bar{\omega}_{compressibility} = \bar{\omega}_m + \bar{\omega}_m \left[ \frac{i - i_m}{i_s - i_m} \right]^2, \text{ if } i \geq i_m$$



#### Shock losses – L

The **relative** Mach number at the rotor inlet is slightly above **sonic speed**; a **shock wave** will be present at the rotor tip. From [?], **shock pattern** are related to **Mach number** and **airfoil shape**.

The **shock** losses modeling is related to **König losses** modeling approach. This model describes a 2 shock waves loss using a single normal shock with respect to a computed Mach number.  $M_{in}$ .

**König model** depends mainly on **blade deflection angle**,  $\theta$ , and relative inlet Mach,  $M_1$ .



#### Shock losses – II

- computation of the **expansion wave** angle,  $\phi$ :  $\phi = \frac{s \cos(\psi)}{s \sin(\psi) R_u}$ , where  $\psi = \psi_{(\beta_1, \gamma, \theta)}$
- computation of  $W_s$  and  $M_s$  using the **Prandtl-Meyer** expansion:  $\phi = \int_{W_s}^{W_s} \sqrt{M^2 - 1} \frac{dW}{W}$
- $M_{in}$  computation:  $M_{in} = \sqrt{M_1} M_s$
- normal shock solution and computation of ΔP<sub>T</sub>
- from  $\Delta P_T$ , computation of  $\bar{\omega}_{shock}$



- Blade Modeling

#### Radial equilibrium

- 4 Efficiency



Antonio Pucciarelli

- 1 Problem Description
- 2 Similitude
- 3 Blade Modeling

Losses modeling Radial equilibrium

#### turboLTB

Section analysis & optimization .stl & .scad generation

- 4 Efficiency
- **6** CFE





- 1 Problem Description
- 2 Similitude
- 3 Blade Modeling
- 4 Efficiency
- G CFD
- 6 References



Antonio Pucciarelli

- 1 Problem Description
- 2 Similitude
- 3 Blade Modeling
- 4 Efficiency
- **5** CFD
- 6 References



- Problem Description
- 2 Similitude
- 3 Blade Modeling
- 4 Efficiency
- **6** CFD
- **6** References



Antonio Pucciarelli



References 0.0

POLITECNICO MILANO 1863

Antonio Pucciarelli

# Thank you!

Antonio Pucciarelli

974675

