Ve všech úlohách implicitně pracujeme nad tělesem reálných čísel.

Úloha 1 [5 bodů]

Napište si tabulku s čísly 1, 2, 3, 4 a 5. Ke každému číslu připište odpověď ANO či NE na otázku, zda je dané tvrzení pravdivé či nepravdivé. Odpovědi nemusíte zdůvodňovat. Správné odpovědi vs. získané body: (0,0),(1,0),(2,0),(3,1),(4,3),(5,5).

- 1. Matice se dvěma řádky a třemi sloupci může být monomorfismus.
- 2. Mějme matici $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. Pak nutně platí $\det(2 \cdot \mathbf{A}^2) = 4 \cdot \det(\mathbf{A})^2$.
- 3. Zdvojnásobením sloupce matice se nemůže změnit její obraz.
- 4. Jsou-li vektory \vec{u} , \vec{v} řešeními nějaké soustavy lineárních rovnic, pak je nutně řešením dané soustavy i vektor $\vec{u}-2\cdot\vec{v}$.
- 5. Mějme matice \mathbf{A} , \mathbf{B} typu 4x4, obě s determinantem 4. Jejich součin $\mathbf{A} \cdot \mathbf{B}$ musí mít defekt 0.

Úloha 2 [5 bodů]

U této úlohy nestačí pouze odpověď, svůj postup podrobně zdůvodňujte.

Nalezněte matici
$$\mathbf{A}: \mathbb{R}^3 \longrightarrow \mathbb{R}^1$$
, která má jádro $\operatorname{span}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$).

Úloha 3 [10 bodů]

U této úlohy nestačí pouze odpověď, svůj postup podrobně zdůvodňujte.

Je dáno lineární zobrazení $\mathbf{A}: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ a vektor $\mathbf{b} \in \mathbb{R}^4$. Nalezněte a popište množinu řešení soustavy $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$.

$$\mathbf{A} = \begin{pmatrix} 3 & 10 & 2 \\ 6 & 16 & 11 \\ 2 & -2 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 5 \\ -1 \\ -3 \\ -1 \end{pmatrix}$$

Rozhodněte, zda je zobrazení \mathbf{A} epimorfismus: pokud ano, dokažte to, pokud ne, nalezněte příklad vektoru z \mathbb{R}^3 neležícího v im (\mathbf{A}) .