COURSE 4

The Hermite interpolation formula is

$$f = H_n f + R_n f,$$

where $R_n f$ denotes the remainder term (the error).

Theorem 1 If $f \in C^n[\alpha, \beta]$ and $f^{(n)}$ is derivable on (α, β) , with $\alpha = \min\{x, x_0, ..., x_m\}$ and $\beta = \max\{x, x_0, ..., x_m\}$, then there exists $\xi \in (\alpha, \beta)$ such that

$$(R_n f)(x) = \frac{u(x)}{(n+1)!} f^{(n+1)}(\xi).$$
 (1)

Proof. Consider

$$F(z) = \begin{vmatrix} u(z) & (R_n f)(z) \\ u(x) & (R_n f)(x) \end{vmatrix}.$$

 $F \in C^n[\alpha, \beta]$ and there exists $F^{(n+1)}$ on (α, β) .

We have

$$F(x) = 0$$
, $F^{(j)}(x_k) = 0$, $k = 0, ..., m$; $j = 0, ..., r_k$;

because

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1} \Rightarrow u^{(j)}(x_k) = 0, \ j = 0, ..., r_k$$

and

$$(R_m f)^{(j)}(x_k) = f^{(j)}(x_k) - (H_n f)^{(j)}(x_k) = f^{(j)}(x_k) - f^{(j)}(x_k) = 0.$$

So, F and its derivatives have n+2 distinct zeros in (α,β) . Applying successively Rolle's theorem it follows that F' has at least n+1 zeros in $(\alpha,\beta) \Rightarrow ... \Rightarrow F^{(n+1)}$ has at least one zero $\xi \in (\alpha,\beta)$, $F^{(n+1)}(\xi) = 0$.

We have

$$F^{(n+1)}(z) = \begin{vmatrix} u^{(n+1)}(z) & (R_n f)^{(n+1)}(z) \\ u(x) & (R_n f)(x) \end{vmatrix},$$

with $u(z) = \prod_{k=0}^{m} (z - z_k)^{r_k + 1} \in \mathbb{P}_{n+1} \Rightarrow u^{(n+1)}(z) = (n+1)!$, and $(R_n f)^{(n+1)}(z) = f^{(n+1)}(z) - (H_n f)^{(n+1)}(z) = f^{(n+1)}(z)$ (as, $H_n f \in \mathbb{P}_n$). We get

$$F^{(n+1)}(\xi) = \begin{vmatrix} (n+1)! & f^{(n+1)}(\xi) \\ u(x) & (R_n f)(x) \end{vmatrix} = 0,$$

whence it follows (1).

Corollary 2 If $f \in C^{n+1}[a,b]$ then

$$|(R_n f)(x)| \le \frac{|u(x)|}{(n+1)!} ||f^{(n+1)}||_{\infty}, \quad x \in [a,b]$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm $(\|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|)$.

Remark 3 In case of m=0, i.e., $n=r_0$, (HIP) becomes Taylor interpolation problem. Taylor interpolation polynomial is

$$(T_n f)(x) = \sum_{j=0}^n \frac{(x - x_0)^j}{j!} f^{(j)}(x_0).$$

Hermite interpolation with double nodes

Example 4 In the following table there are some data regarding a moving car. We may estimate the position (and the speed) of the car when the time is t = 10 using Hermite interpolation.

Consider
$$f:[a,b] \to \mathbb{R}, x_0, x_1, ..., x_m \in [a,b]$$

and the values
$$f(x_0), f(x_1), ..., f(x_m), f'(x_0), f'(x_1), ..., f'(x_m)$$
.

The Hermite interpolation polynomial with double nodes, H_{2m+1} , satisfies the interpolation properties:

$$H_{2m+1}(x_i) = f(x_i), i = \overline{0, m},$$

 $H'_{2m+1}(x_i) = f'(x_i), i = \overline{0, m}.$

It is a polynomial of n = 2m + 1 degree.

For computation: use Lagrange polynomial written in Newton form, with divided differences table having each node x_i written twice.

Consider
$$z_0 = x_0$$
, $z_1 = x_0$, $z_2 = x_1$, $z_3 = x_1$, ..., $z_{2m} = x_m$, $z_{2m+1} = x_m$.

Form divided differences table: each node appear twice, in the first column write the values of f for each node twice; in the second column, at the odd positions put the values of the derivatives of f; the other elements are computed using the rule from divided differences.

We obtain the following table:

z_0	$f(z_0)$	$(\mathcal{D}^1 f)(z_0) = f'(x_0)$	$(\mathcal{D}^2 f)(z_0)$		$(\mathcal{D}^{2m}f)(z_0)$	$(\mathcal{D}^{2m+1}f)(z_0)$
z_1	$f(z_1)$	$(\mathcal{D}^1f)(z_1)$:		$(\mathcal{D}^{2m}f)(z_1)$	
z_2	$f(z_2)$	$(\mathcal{D}^1 f)(z_2) = f'(x_1)$				
z_3	$f(z_3)$	•••				
:	i i	$(\mathcal{D}^1f)(z_{2m-1})$	$(\mathcal{D}^2f)(z_{2m-1})$	٠		
z_{2m}	$f(z_{2m})$	$(\mathcal{D}^1 f)(z_{2m}) = f'(x_m)$				
z_{2m+1}	$f(z_{2m+1})$					

Newton interpolation polynomial for the nodes $x_0,...,x_n$ is

$$(N_n f)(x) = f(x_0) + \sum_{i=1}^n (x - x_0)...(x - x_{i-1})(\mathcal{D}^i f)(x_0),$$

and similarly, Hermite interpolation polynomial is

$$(H_{2m+1}f)(x) = f(z_0) + \sum_{i=1}^{2m+1} (x - z_0)...(x - z_{i-1})(\mathcal{D}^i f)(z_0),$$

where $(\mathcal{D}^i f)(z_0)$, i=1,...,2m+1 are the elements from the first line and columns 2,...,2m+1.

Example 5 Consider the double nodes $x_0 = -1$ and $x_1 = 1$, and f(-1) = -3, f'(-1) = 10, f(1) = 1, f'(1) = 2. Find the Hermite interpolation polynomial, that approximates the function f, in both forms, using the classical formula and using divided differences.

Sol.

We present here the method with divided differences. We have $m=1, r_0=r_1=1 \Rightarrow n=3$

$z_0 = -1$	f(-1) = -3	f'(-1) = 10	$\frac{\frac{f(1)-f(-1)}{2}-f'(-1)}{z_2-z_0} = -4$	$\frac{0 - (-4)}{z_3 - z_0} = 2$
$z_1 = -1$	f(-1) = -3	$\frac{f(1) - f(-1)}{z_2 - z_1} = 2$	$\frac{f'(1) - \frac{f(1) - f(-1)}{2}}{z_3 - z_1} = 0$	
$z_2 = 1$	$f\left(1\right)=1$	f'(1) = 2		
$z_3 = 1$	f(1) = 1			

The Hermite interpolation polynomial is

$$(H_3f)(x) = f(z_0) + \sum_{i=1}^{3} (x - z_0)...(x - z_{i-1})(\mathcal{D}^i f)(z_0)$$

= $f(z_0) + (x - z_0)(\mathcal{D}^1 f)(z_0) + (x - z_0)(x - z_1)(\mathcal{D}^2 f)(z_0)$
+ $(x - z_0)(x - z_1)(x - z_2)(\mathcal{D}^3 f)(z_0)$

i.e.,

$$(H_3f)(x) = f(-1) + (x+1)f'(-1) + (x+1)^2 \frac{f(1)-f(-1)-2f'(-1)}{4} + (x+1)^2 \frac{(x-1)^2 f'(1)-f(1)+f(-1)}{4}$$
$$= -3 + 10(x+1) - 4(x+1)^2 + 2(x+1)^2(x-1)$$
$$= 2x^3 - 2x^2 + 1.$$

2.4. Birkhoff interpolation

Let $x_k \in [a,b], \ k = 0,1,...,m, \ x_i \neq x_j \ \text{for} \ i \neq j, r_k \in \mathbb{N} \ \text{and} \ I_k \subset \{0,1,...,r_k\}, \ k = 0,1,...,m, \ f:[a,b] \to \mathbb{R} \ \text{s.t.} \ \exists f^{(j)}(x_k), \ k = 0,...,m, \ j \in I_k, \ \text{and denote} \ n = |I_0| + ... + |I_m| - 1, \ \text{where} \ |I_k| \ \text{is the cardinal of the set} \ I_k.$

The Birkhoff interpolation problem (BIP) consists in determining the polynomial P of the smallest degree such that

$$P^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j \in I_k.$$

Remark 6 If $I_k = \{0, 1, ..., r_k\}$, k = 0, ..., m, then (BIP) reduces to a (HIP). Birkhoff interpolation is also called lacunary Hermite interpolation.

In order to check if (BIP) has an unique solution, we consider the polynomial $P(x) = a_n x^n + ... + a_0$ and the $(n+1) \times (n+1)$ linear system

$$P^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j \in I_k,$$
 (2)

having as unknowns the coefficients of the polynomial. If the determinant of the system (2) is nonzero than (BIP) has an unique solution.

Definition 7 A solution of (BIP), if exists, is called **Birkhoff inter- polation polynomial**, denoted by B_nf .

Birkhoff interpolation polynomial is given by

$$(B_n f)(x) = \sum_{k=0}^{m} \sum_{j \in I_k} b_{kj}(x) f^{(j)}(x_k), \tag{3}$$

where $b_{kj}(x)$ denote the Birkhoff fundamental interpolation polynomials. They fulfill relations:

$$b_{kj}^{(p)}(x_{\nu}) = 0, \ \nu \neq k, \ p \in I_{\nu}$$

$$b_{kj}^{(p)}(x_{k}) = \delta_{jp}, \ p \in I_{k}, \quad \text{for } j \in I_{k} \text{ and } \nu, k = 0, 1, ..., m,$$

$$(4)$$

with
$$\delta_{jp} = \begin{cases} 1, & j = p \\ 0, & j \neq p. \end{cases}$$

Remark 8 Because of the gaps of the interpolation conditions, it is hard to find an explicit expression for b_{kj} , k = 0, ..., m; $j \in I_k$. They are found using relations (4).

Birkhoff interpolation formula is

$$f = B_n f + R_n f,$$

where $R_n f$ denotes the remainder term.

Example 9 Let $f \in C^2[0,1]$, the nodes $x_0 = 0$, $x_1 = 1$ and we suppose that we know f(0) = 1 and $f'(1) = \frac{1}{2}$. Find the corresponding interpolation formula.

Sol. We have m = 1, $I_0 = \{0\}$, $I_1 = \{1\}$, so n = 1 + 1 - 1 = 1.

We check if there exists a solution of the problem.

Consider $P(x) = a_1x + a_0 \in \mathbb{P}_1$ and the system

$$\begin{cases} P(0) = f(0) \\ P'(1) = f'(1) \end{cases} \iff \begin{cases} a_0 = f(0) \\ a_1 = f'(1) \end{cases}.$$

The determinat of the system is

$$\left|\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right| = -1 \neq 0,$$

so the problem has an unique solution.

The Birkhoff polynomial is

$$(B_1f)(x) = b_{00}(x)f(0) + b_{11}(x)f'(1) \in \mathbb{P}_1.$$

We have $b_{00}(x) = ax + b \in \mathbb{P}_1$ and

$$\begin{cases} b_{00}(x_0) = 1 \\ b'_{00}(x_1) = 0 \end{cases} \iff \begin{cases} b_{00}(0) = 1 \\ b'_{00}(1) = 0 \end{cases} \Leftrightarrow \begin{cases} b = 1 \\ a = 0 \end{cases},$$

whence

$$b_{00}(x) = 1.$$

For $b_{11}(x) = cx + d \in \mathbb{P}_1$ we have

$$\begin{cases} b_{11}(x_0) = 0 \\ b'_{11}(x_1) = 1 \end{cases} \iff \begin{cases} b_{11}(0) = 0 \\ b'_{11}(1) = 1 \end{cases} \Leftrightarrow \begin{cases} d = 0 \\ c = 1 \end{cases}$$

whence

$$b_{11}(x) = x.$$

So,

$$(B_1 f)(x) = f(0) + xf'(1) = 1 + \frac{1}{2}x.$$