(12) UK Patent Application (19) GB (11) 2 388 218 (13) A

(43) Date of A Publication

05.11.2003

(21) Application No:

0302718.2

(22) Date of Filing:

06.02.2003

(30) Priority Data:

(31) 0202728

(32) 06.02.2002

(33) GB

(71) Applicant(s): **Transitive Limited** (Incorporated in the United Kingdom) 5th Floor Alder Castle, 10 Noble Street, LONDON, EC2V 7QJ, United Kingdom

- (72) Inventor(s): John Sandham **Geraint North**
- (74) Agent and/or Address for Service: Appleyard Lees 15 Clare Road, HALIFAX, West Yorkshire, HX1 2HY, United Kingdom

- (51) INT CL7: G06F 9/455
- (52) UK CL (Edition V): **G4A** AFP
- (56) Documents Cited: US 5903760 A
- (58) Field of Search: UK CL (Edition V) G4A INT CL⁷ G06F **Other** Online: WPi, EPODOC, JAPIO

- (54) Abstract Title: Low overhead flag emulation during code conversion
- (57) An emulator 30 allows subject code 10 written for a subject processor 12 having subject processor registers 14 and condition code flags 16 to run in a non-compatible computing environment 2. The emulator 3 identifies and records parameters of instructions in the subject code that affect the status of the condition code flags. When a flag using instruction, such as a branch or jump, in the subject code is encountered the flag status is resolved from the recorded parameters. The emulator may be used to perform dynamic code translation where, by emulating the flag statuses only when required, the emulation overhead is substantially reduced. The emulator may be used on systems having similar or highly incompatible flag architecture arrangements. The method may avoid generation of target code to explicitly calculate flag values, establish abstract registers representing unique flag parameters or generate an intermediate representation tree for an instruction sequence.

Fig. 1

Fig. 1

Fig. 2

Example 1

line	instruction	operands	flag(s)
1		R1, R2	
2	Bez		⇒ 7

Example 2

line	instruction	operands	flag(s)
1	Sub	R1, R2	⇒ z,s,o
2	Ble		⇒ 750

Fig 3

Fig. 4

	(Operation	Flags Affected	Туре	OperandA	OperandB
ī	sub	eax,\$1	of,sf,zf,af,pf,cf	SubLong	eax	\$1
2	inc	ebx	of,sf,zf,af,pf	Normalized	<i>,</i>	
3	sub	eax,ecx	of,sf,zf,af,pf,cf	SubLong	eax	ecx
4	inc	edx.	of,sf,zf,af,pf	Normalized		
5	sub	eax,ecx	of,sf,zf,af,pf,cf	SubLong	eax	ecx
6	ja	(eax > ecx)				

Fig 5

Subject code	Core IR	Target code	GDCE
cmp ecx,eax jne	operand_a = ecx operand_b = eax flag_status = SubLong branch_condition = (operand_a ? operand_b)	or rl-opA-,r6<-acx-,r6<-acx- or r2-opB-,r7<-aax-,r2<-aax- bne r6 <ecx-,r7<eax-< td=""><td>x x</td></ecx-,r7<eax-<>	x x

Fig 6

	Recor	ded instructio	Comment		
inst_1	typel	operand A ₁	operand B ₁	affects full flag-set	
inst_2	type₂	operand A ₂	operand B ₂	affects partial flag set	

Fig 7

Line	Instruction	Operands
1	add	%esi,%ecx
2	mov	•••
3	dec	%eax
4	jz	Label

Fig 8

0	Condition Fields (0-7)					31		
CF0	CF1	CF2	CF3	CF4	CF5	CF6	CF7	ĺ
LT ₀ GT ₀ EQ ₀ SO ₀	LT, GT, EQ, SO,	•••	•••				LT7 GT7 EQ7 SO7	

Fig 9

		Recor	ded instruction	Comment	
inst	ю	type ₀	operand A ₀	operand B ₀	instruction affecting CF ₀
inst	: l	typel	operand A ₁	operand B ₁	instruction affecting CF ₁
		•••			
ins	tn	typen	operand A _n	operand B _n	instruction affecting CF _n

Fig 10

Recorded Instruction Parameters

Fig 11

FIG. 12

FIG. 13

FIG. 14

NORMALIZED EXPLICIT RESOLUTION

FIG. 15

FIG. 16

FIG. 17

Condition Code Flag Emulation for Program Code Conversion

- The present invention relates in general to the field of program code conversion. In particular, the invention relates to a method and apparatus for emulation of condition code flags.
- In the field of computer processing, it is often desired to run program code written for a computer processor of a first type (a "subject" processor) on a processor of a second type (a "target" processor). Here, an emulator is used to perform program code translation, such that the subject program is able to run on the target processor. The emulator provides a virtual environment, as if the subject program were running natively on a subject processor, by emulating the subject processor.
- Most conventional computer processors comprise a set of registers, which are a small number of high-speed memory locations closely associated with the processor. The registers can be contrasted with general random access memory provided remote from the processor, which is slower but has a much larger capacity. Typically, a modern processor includes of the order of 32 to 144 registers. The limited size and high speed of the registers make them one of the most critical resources in almost all computer architectures.

30

The registers are usually augmented with a set of condition code flags. The condition code flags are set or cleared such as in response to the execution of

instructions in the processor and are used to represent the outcome of various operations. The value of one or more of the condition code flags is often used as the basis for a decision during execution of a sequence of instructions. Hence, in the context of program code conversion, it is critical to accurately emulate the condition code flags.

Whilst there tends to be some overlap between the set of condition code flags of a subject processor and the set 10 of condition code flags of a target processor, in almost all cases there is not an exact correspondence between the two sets of flags. Therefore, accurately emulating the subject condition code flags can be an expensive 15 operation. The degree to which flag emulation impacts upon the efficiency of the conversion process varies according to compatibility of the subject processor architecture with the target processor architecture, but in general the emulation of subject condition code flags 20 amounts to a significant proportion of overall performance.

A further problem arises in that some processor architectures are inherently highly incompatible. Some processors are strongly reliant on the use of condition code flags, whereas some other processors do not provide any condition code flags at all. For example, it is very expensive to provide an emulator able to convert subject code written for a subject processor which does use condition code flags to run on a target processor without any condition code flags.

25

30

An aim of the present invention is to provide a method for emulating condition code flags that addresses the problems of the prior art, particularly those problems set out above.

5

A preferred aim of the present invention is to provide a method for emulating condition code flags that is efficient and reduces overall cost of program code conversion.

10

15

According to a first aspect of the present invention there is provided a method for emulating condition code flags during program code conversion, comprising the steps of: (a) identifying a flag-affecting instruction in a sequence of subject code instructions; (b) recording parameters of the identified flag-affecting instruction; (c) detecting a flag-usage instruction in the sequence of subject code instructions; and (d) resolving a flag status with respect to the recorded parameters.

- 20

In a first preferred embodiment, preferably the step (d) comprises explicitly calculating a flag status by emulating effects of the identified flag-affecting instruction on one or more subject condition code flags. Preferably, the step (b) comprises setting a flag status indicator to a pending state to indicate that parameters have been recorded, and the step (d) comprises setting the flag status indicator to a normalised state to indicate that a flag status has been explicitly calculated.

30

In a second preferred embodiment, preferably the step (d) comprises implicitly determining flag status with reference to the recorded parameters. The first and second preferred embodiments can be used in combination. Preferably, the step (c) comprises determining a flag usage type with reference to a type of the detected flag-usage instruction, and the step (d) comprises resolving flag status either by explicitly calculating a flag status or by implicitly determining a flag status, according to the determined flag usage type.

10 Preferably, the step (a) comprises identifying second flag-identifying instruction in the sequence of subject code instructions, and the step (b) comprises replacing the recorded parameters with parameters of the second flag-affecting instruction. Here, the recorded 15 parameters are replaced as each new flag-affecting instruction is encountered. Alternatively, parameters are recorded for a plurality of instructions.

Preferably, the step (a) comprises identifying a type
of flag-affecting instruction as one of a plurality of
predetermined types, and the step (b) comprises recording
parameters for each type of flag-affecting instruction.

In one embodiment, preferably, the predetermined types include a first type instruction affecting a full set of condition code flags, and a second type instruction affecting a subset of the full set of condition code flags. Preferably, the step (d) comprises resolving flag status for a full set of condition code flags with respect to the recorded first-type parameters, and resolving flag status with respect to the subset of the condition code flags with respect to the recorded second-type parameters. Preferably, the step (d) comprises explicitly determining

flag status from the recorded first-type parameters, and modifying the explicitly determined flag status from the recorded second-type parameters.

- In a second embodiment, preferably the predetermined types include instruction types each affecting a condition code flag set amongst a plurality of condition code flag sets.
- 10 Preferably, the recorded parameters include an instruction type parameter and one or more instruction operand parameters. In one embodiment, the parameters are recorded in dedicated storage locations, such as predetermined locations in a main memory. The parameters are suitably copied to such location. 15 However, recording an instruction operand parameter may comprise storing a reference to a location containing an operand. recording an instruction operand parameter comprises determining that an operand remains available unmodified at an original location and storing a reference to the 20 original location as the instruction operand parameter, or else copying the operand from the original location to a dedicated operand parameter storage location. Preferably, the method comprises providing a plurality of abstract registers representing registers of a subject processor, and supplementing the abstract registers with one or more additional abstract registers each for storing an operand as an instruction operand parameter.
- According to a second aspect of the present invention there is provided a method for emulating condition code flags during program code conversion, comprising: selecting a sequence of subject code instructions;

identifying a flag-affecting instruction in the sequence of subject code instructions, the flag-affecting instruction specifying an operation that affects subject condition code flags of a subject processor; recording parameters of the identified flag-affecting instruction including an instruction type parameter and one or more operand parameters; detecting a flag-usage instruction in the sequence of subject code instructions, the flag-usage instruction specifying an operation with reference to a flag status of one or more of the subject condition code flags; and in response to detecting a flag-usage instruction, resolving a flag status of one or more of the subject condition code flags with respect to the recorded parameters.

15

20

10

The method preferably comprises updating the recorded parameters when a new flag-affecting instruction is encountered in the sequence of subject code instructions. Parameters may be recorded for a plurality of flag-affecting instructions. In one embodiment the plurality of instructions are each associated with differing sets of subject condition code flags.

Preferably, the method comprises resolving flag status

by at least one of (a) explicitly calculating a status for one or more subject condition code flags by emulating an effect of the recorded flag-affecting instruction, or (b) implicitly representing the flag-usage instruction using the recorded parameters, or (c) selecting between options

(a) and (b) according to a type of the flag-usage instruction.

Preferably, the recorded parameters include at least one instruction operand parameter, and wherein recording the instruction operand parameter comprises at least one of (a) copying an operand to a predetermined storage location, or (b) storing a reference to an original location containing the operand, or (c) selectively performing (a) or (b).

According to a third aspect of the present invention 10 there is provided an emulator apparatus for use in a target computing environment for emulating a subject processor of a subject computing environment translating subject code appropriate to the subject computing environment to produce target code appropriate 15 target computing environment, the emulator apparatus comprising: means for identifying а flagaffecting instruction in a sequence of subject instructions; an instruction parameter store for recording parameters of the identified flag-affecting instruction; means for detecting a flag-usage instruction 20 in sequence of subject code instructions; and means resolving a flag status with respect to the instruction parameters recorded in the instruction parameter store.

The invention also extends to a computing platform 25. the emulator apparatus and/or arranged perform the methods defined herein. The computing platform may take any suitable form including, example, a networked computing system; a server computer, 30 a desktop computer, or a portable computing device. invention also extends to a computer readable recording medium containing program code instructions for performing any of the methods defined herein.

For a better understanding of the invention, and to show how embodiments of the same may be carried into effect, reference will now be made, by way of example, to the accompanying diagrammatic drawings in which:

Figure 1 shows an example computing environment including subject and target computing environments;

10 Figure 2 outlines a preferred method for emulating condition code flags;

Figure 3 shows two examples of subject program code;

15 Figure 4 shows a preferred emulator;

Figure 5 shows an example of subject program code together with recorded instruction parameters;

20 Figure 6 shows program code during translation from a subject environment to a target environment;

Figure 7 shows a preferred arrangement for storing instruction parameters;

Figure 8 shows an example of subject program code;

Figure 9 shows a condition register of condition code flags in an example subject processor;

Figure 10 shows a preferred arrangement for storing instruction parameters;

30

id

25

Figure 11 shows another preferred arrangement for storing instruction parameters;

Figure 12 is a schematic diagram illustrating a translation process and corresponding IR generated during the process;

Figure 13 is a flow diagram illustrating the steps of condition code flag emulation process;

10

Figure 14 is a schematic diagram contrasting explicit and implicit flag resolution;

Figure 15 is a schematic diagram illustrating normalized explicit resolution;

Figure 16 is a schematic diagram illustrating pending explicit and pending implicit flag resolution; and

20 Figure 17 is a schematic diagram of an illustrative computing environment illustrating source code implementation of condition code flag emulation.

Referring to Figure 1, example computing an 25 environment is shown including a subject computing environment 1 and a target computing environment 2. the subject environment 1, subject code 10 is executable natively on a subject processor 12. The subject processor 12 includes a set of subject registers 14 and a set of subject condition code flags 16. 30 Here, the subject code 10 may be represented in any suitable language with intermediate layers (e.g., compilers) between the subject

code 10 and the subject processor 12, as will be familiar to the skilled person.

5

10

15

30

It is desired to run the subject code 10 in the target computing environment 2, which provides a target processor 22 using a set of target registers 24 and a set of target condition code flags 26. As a typical example, subject processor 12 is a member of the Intel (rtm) x86 family of processors, whilst the target processor 22 is a member of the PowerPC (rtm) processor family. These two processors are inherently non-compatible. Firstly, these two processors use different instruction sets. Secondly, an x86 processor uses two flags (the auxiliary flag and the parity flag) which are unique to that family and are not provided in the PowerPC (rtm) architecture. 30 is provided in the computing target environment 2, in order to run the subject code 10 in that non-compatible environment.

The emulator 30 performs a translation process on the subject code 10 and provides a translated target code 20 to the target processor 22. Suitably, the emulator 30 performs binary translation, wherein subject code 10 in the form of executable binary code appropriate to the subject processor 12 is translated into executable binary code appropriate to the target processor 22.

Translation can be performed statically, or dynamically. In static translation, an entire program is translated prior to execution of the translated program on the target processor. This involves a significant delay. Therefore, emulators have been developed which dynamically translate small sections of the subject code 10 for

execution immediately on the target processor 22. This is much more efficient, because large sections of the subject code 10 will not be used in practice, or will be used only rarely. The preferred embodiment of the present invention is particularly intended for use with an emulator 30 that performs dynamic binary translation of the subject code 10 into target code 20 executable on the target processor 22.

In executable form, the subject code 10 provides instructions that directly or indirectly make use of the 10 subject registers 14 and the subject condition code flags Hence, it is desired to emulate the effects of those instructions, in order to provide an accurate translation of the subject code 10. However, since the target condition code flags 26 are not directly compatible with 15 the subject condition code flags 16, emulation of the subject condition code flags 16 in the target computing environment is expensive in terms of both time resources.

20

25

5

It is desired to provide emulation of condition code flags in a manner which is cost efficient in the target processor. Further, it is desired that the emulation method can be performed efficiently in many different types of target processor. Ideally, it is desired to allow efficient emulation even in a target processor which does not provide any condition code flags.

Figure 2 shows a first preferred embodiment of a method for emulating condition code flags. In step 210, parameters of a flag-setting instruction are recorded. Conveniently, certain instructions are known to affect one or more of the condition code flags, whilst other

instructions are known to have no affect on the condition code flags. Hence, when translating a sequence of instructions in the subject code 10, an instruction which potentially affects flag settings is identified. Parameters of that flag-affecting instruction are then stored, to be available later.

In step 220, a flag usage is detected. That is, it is known that some instructions in the instruction set of the subject code 10 make use of one or more of the subject condition code flags 16, such as to make a branch or jump decision based on the value of a condition code flag. At this point, it is desired to know the real values of those flags.

15

10

Step 230 comprises resolving a value for the condition code flags, at least for the one or more flags where a usage has been detected, from the recorded parameters of the flag-affecting instruction.

20

25

30

In this method, flag emulation is deferred until the last possible moment. Instruction parameters are recorded for a potentially flag-affecting instruction. Then, when it is necessary to emulate the flag, such as when the flags are used as the basis for a decision, the recorded instruction parameters are used to resolve the necessary flag or flags at that point. Here, the flag-affecting instruction is emulated including explicit emulation of the effect of that instruction on the subject condition code flags. However, since full flag emulation is only performed when a flag-using instruction is encountered, overhead associated with flag emulation is significantly

reduced and emulator performance is substantially enhanced.

Once the flag values have been resolved, they remain valid until a new flag-affecting instruction is encountered. At that point, the parameters of the flag-affecting instruction are again recorded, as in step 210. Conveniently, the emulated condition code flags are marked as either being in a normalised, explicitly calculated state, or else in a pending state to be resolved with reference to a recorded flag-affecting instruction.

Figure 3 shows two example instruction sequences to illustrate the method of Figure 2. In a simple first example, the instruction at line 1 affects the subject 15 condition code flags "z," "s," and "o," with the "z" flag subsequently utilised by the conditional instruction at line 2. In this example, the first instruction (Sub) subtracts the value of register R2 from the value in register Rl, and the branch (Bez) is effected 20 if the result is equal to zero. The parameters of the instruction on line 1 are recorded, and are then used to determine the value of the flag "z" for the instruction on the second more complex example, 2. In instruction (Ble) on line 2 branches if the result of the 25 subtraction is less than or equal to zero, this decision being made with reference to the example condition code flags "z," "s," and "o."

As an enhancement of this first method, it has been found that for most flag-using instructions it is not necessary to explicitly calculate the value of each flag. That is, the value of a flag can be determined implicitly,

with reference to the stored parameters of the flagaffecting instruction.

Referring to the code examples of Figure 3, the branch decision in line 2 can be made simply based upon the 5 parameters of the preceding flag-affecting instruction in line 1. That is, the flag value "z" can be determined implicitly based upon the recorded instruction parameters and there is no need to explicitly determine the value of 10 the flag "z." Hence, the step 220 advantageously comprises determining a flag usage, and determining a flag usage type. The step 230 then comprises either explicitly determining flag values, or else implicitly determining flag values from recorded instruction parameters, based upon the determined flag usage type. 15

Instruction combinations similar to those shown in Figure 3 occur very frequently. Hence, this optimisation has a significant impact.

20

25

The example instruction sequences shown in Figure 3 provide a flag-affecting instruction (Sub) followed immediately by a flag-using instruction (Bez or Ble). However, it is also possible that one or more intervening sterile instructions are present between example lines 1 and 2, which do not affect or use the relevant flag or flags.

Referring now to Figure 4, the emulator 30 of the 30 preferred embodiment is illustrated in more detail, comprising a front end 31, a core 32 and a back end 33.

The front end 31 is configured specific to the subject processor 12 being emulated. The front end 31 takes a predetermined section of the subject code 10 and provides a block of a generic intermediate representation (an "IR block").

The core 32 optimises each IR block generated by the front end 31 by employing optimisation techniques, such as dead code elimination, which need not be described here in detail.

The back end 33 takes optimised IR blocks from the core 32 and produces target code 20 executable by the target processor 22.

15

20

25

30

10

Suitably, the front end 31 divides the subject code 10 into basic blocks, where each basic block is a sequential set of instructions between a first instruction at a unique entry point and a last instruction at a unique exit point (such as a jump, call or branch instruction). The core 32 may select a group block comprising two or more basic blocks which are to be treated together as a single unit. Further, the front end 31 may form iso-blocks representing the same basic block of subject code under different entry conditions.

In use, a first predetermined section of the subject code 10 is identified, such as a basic block, and is translated by the emulator 30 running on the target processor 22 in a translation mode. The target processor 22 then executes the corresponding optimised and translated block of target code 20.

The preferred emulator 30 includes a plurality of abstract registers 320, suitably provided in the core 32, which represent the physical subject registers 14 that would be used within the subject processor 12 to execute the subject code 10. The abstract registers define the state of the subject processor 12 being emulated by representing the expected effects of the subject code instructions on the subject processor registers.

Figure 4 also shows a preferred implementation of the 10 flag emulation method, suitable for use in the general emulator architecture described above. When a flagaffecting instruction is identified in the subject code 10, parameters of that instruction are recorded in an instruction parameter store 200. Most conveniently, the 15 stored instruction parameters include an instruction type and one or more instruction operands 202. For example, in a x86 type processor each instruction can operate on a maximum of two operands, and therefore two 20 operand parameters 202a and 202b are recorded. The instruction type parameter 201 together with the one or more operand parameters 202 provide sufficient information for each of the emulated subject condition code flags 16 to be resolved either explicitly, or implicitly.

25

30

The one or more operand parameters 202 are suitably represented as one or more abstract registers additional to the emulated set of subject registers 14. That is, the emulator 30 of target computing environment 2 emulates the set of subject registers 14, by using abstract registers, and supplements this set of abstract registers with one or more additional registers to store the instruction operand parameters. Hence, the operand parameters 202, which are

dynamic quantities, are available in the target processor 12 in a high speed memory location and the values of the subject condition code flags 16 are resolvable quickly and cheaply, such as via suitable dynamic target code. The instruction type parameter 201, which is a statically determinable quantity, is suitably stored in a slower or more remote location in the target computing environment 2, such as in main memory, and is associated with a corresponding section of code such as a basic block.

10

15

20

As in Figure 4, in this first preferred embodiment only the most recent flag-affecting instruction is recorded. As each new flag-affecting instruction is encountered in the sequence of instructions in the subject code 10, then the recorded parameters are replaced with those of the latest encountered flag-affecting instruction. That is, as each new flag-affecting instruction is encountered, the instruction parameters are replaced with those of that new flag-affecting instruction.

To further illustrate the preferred embodiments of the present invention, Figure 5 shows six lines of example subject code. Some of the instructions (Sub) affect the full set of condition code flags o,s,z,a,p & c, whilst 25 other instructions (Inc) affect only a subset of the condition code flags. The third column records the instruction type, whilst the fourth and the final columns record the two operands A & B referenced by 30 instruction. In this example, "Normalised" refers to the normalised status of the flag values, while "SubLong" refers to an instruction type, namely a long (32 bit)

subtraction operation in an example x86 processor. EAX, EBX, ECX and EDX are example subject registers.

In use, the emulator forms predetermined sections of subject code such as basic blocks, and records entry 5 conditions giving the status of the emulation when passing from one basic block into another. That is, the emulator records entry conditions which are used to define the current status of the emulation at entry into a new basic 10 block. These entry conditions include, for example, the status of each abstract register, and the status of the condition code flags. In Figure 5, the "Inc" instructions in lines 2 and 4 which affect a subset of the flags require the flags to be explicitly determined and the 15 status is shown as normalised. The "Sub" instructions on the other hand put the flags into the pending state and the parameters of that flag-affecting instruction are recorded. When it comes to the jump "JA" instruction in line 6, the condition code flags are emulated indirectly derived from recorded parameters the of instruction in line 5.

20

25

30

Figure 6 illustrates the preferred emulation method during translation of the subject code into target code. In the first column an example pair of instructions are shown, in this case a compare (Cmp) instruction and a jump if not equal to zero (Jne) instruction. The front end 31 of the emulator 30 determines that these instructions form basic block. The second column shows the instructions, set out as standardised intermediate representation in the core 32. The third column shows the resulting target code produced by the back end 33. example shows subject code appropriate to an x86 processor

being emulated by an MIPS processor. The architecture of a MIPS processor does not provide any target condition code flags. This example illustrates a worst case practical situation, because traditionally the condition code flags of the x86 processor are very expensive to emulate in the flagless MIPS processor. The fourth column of Figure 6 shows that two lines of target code produced from the intermediate representation can be removed by global dead code elimination during an optimisation phase performed by the emulator. Hence, the two lines of subject code in the first column result in a single line of target code in the third column.

As illustrated by the simple example in Figure 6, the 15 emulation method described herein can be efficiently implemented even for highly non-compatible environments. emulation is not required at all for a percentage of instructions, i.e. for sterile instructions. Further, in many instances flag status can be derived 20 implicitly from the recorded instruction parameters. a small percentage of the instructions in the source code require full normalised emulation of the subject condition code flags. As practical examples, instructions such as subtraction (Sub) or compare (Cmp) or test (Tst) which occur frequently in source code written such as for x86 25 subject processors can be emulated without any need for explicit resolution of the subject condition code flags.

In the implementation described above, the last flag-30 affecting instruction is recorded simply and easily by using additional abstract registers to represent each operand. In this architecture, an additional abstract register is provided for each potential operand. In the example of an x86 processor, each instruction can act on at most two operands, and therefore two additional operand parameter registers are employed. Sometimes, however, it is advantageous to record additional instruction parameters, as will now be described below.

5

10

Figure 7 shows a preferred implementation for recording multiple sets of instruction parameters. In this example, two sets of instruction parameters are provided, namely inst_1 and inst_2.

For some types of processor, there are instructions which affect only a subset of the subject condition code flags, whilst other instructions affect the full set of subject condition code flags. As one option, this problem is overcome by explicitly determining the full set of flag values from the last full set flag-affecting instruction, and then explicitly determining the flag values of the subset affected by the subset-affecting instruction. The full set of flag values can then be determined by combining the explicitly determined flag values of the last full-set flag affecting instruction with those of the newly encountered subset affecting instruction.

25 Figure 8 shows four lines of subject code illustrate the use of the first and second recorded instruction parameters of Figure 7. The add instruction (add) at line 1 affects the complete flag set, whereas the decrement instruction (dec) at line 3 affects only a subset of the flags. The embodiment described above would 30 require an explicit definition of the flags at line 3, by first normalising the flags with reference to the instruction parameters recorded for line 1. However, by

providing two sets of instruction parameters as shown in Figure 7, it is now possible to record both instructions, from lines 1 and 3, without needing to normalise the flags at either point. When the flag-using jump instruction is encountered at line 4, the values of the condition code flags are resolved explicitly or implicitly from the two sets of stored instruction parameters.

Figures 9 and 10 illustrate another preferred implementation of the emulation method for use with processors such as the PowerPC (rtm) family which make use of a number of identical flag sets.

Figure 9 shows the condition register used in a 15 typical PowerPC processor using eight 4-bit condition fields (CF) which each contain four flags, namely less than (LT), greater than (GT), equal to (EQ) and summary overflow (SO). In this processor architecture, a flagsetting operation is allowed to selectively modify one of 20 the eight sets of flags. Further, although most instructions will set every flag in the specified flag set, some operations exist which affect the status of specific flags. Hence, in traditional emulation systems, it is relatively expensive to emulate a processor of this 25 nature.

A majority of modifications to the condition code flags in the condition register are initiated by compare instructions, which perform a signed or unsigned comparison of two values. One of the three comparison flags within the specified condition field (LT_n, GT_n or EQ_n, where n=0 ... 7) is set, while the other two are cleared. In order to emulate this relatively complex set

30

of subject condition code flags, it is convenient to provide а set of recorded instructions such that instruction parameters are recorded for each of condition fields. In this example, as shown in Figure 10, instruction parameters are recorded for each of instructions, such that the last flag-affecting instruction can be recorded for each of the condition fields. If necessary, the embodiment of Figure 10 can be combined with the embodiment of Figure 8, to provide a plurality of recorded instructions for each condition fields.

Figure 11 shows a further preferred option to improve efficiency of emulation. In the embodiments discussed above, the operands of a flag affecting instruction are copied to operand registers so as to be available when it is necessary to resolve the flag status. However, in some circumstances it is possible to avoid this operation by referring instead to the original source location of that operand. That is, the operand value is validly recorded, for example, in an emulated subject register. Provided the value in that subject register remains unchanged, then the subject register itself can be used as the source of the value of that operand.

25

30

5

10

15

20

Figure 11 in this example is adapted for the architecture of a PowerPC processor. For each operand A_0 -n, B_{0-n} , two control fields are recorded. The first control field denotes whether the operand value has been copied to the dedicated operand register 202, or else denotes that the second field specifies the location which contains the value of this operand. That is, the second control field is used as a reference to a subject register

(i.e., one of the abstract registers held by the emulator) which contains the value of the desired operand parameter. Here, the first control field is a single bit in length, while the second field is five bits in length, which is sufficient to address the available subject registers of this example processor.

In another preferred embodiment, the recorded operand parameters are only a subset of the operand parameters employed by the flag-affecting instruction. Firstly, when 10 flag-affecting instruction performs a reversible transformation and the result of the operation is still available when it is desired to resolve flag status, then the result together with a first operand can be used to infer a second operand. Secondly, if the flag-affecting 15 operation has duplicate parameters, then it is sufficient to record just one of those parameters. These specialcase flag-affecting instructions allow optimisation of the target code and further reduce overhead associated with emulation of 20 condition code flags.

As indicated above, the advantages of the invention may be realized in translation code which performs run-25 translation using the approach of generating intermediate representation (IR) of the subject code from which target code is then generated. Accordingly, a discussion of such an implementation incorporating the inventive aspects discussed heretofore is now provided 30 together illustrations of particular with advantages realizable according to such representations.

IR Trees

As noted above, in the process of generating translated code, intermediate representation ("IR") is generated based on the subject instruction sequence. The IR comprises abstract representations of the expressions calculated and operations performed by the subject program. Subsequently, translated code is generated based on the IR.

10

30

For example, the subject instruction

add %r1, %r2, %r3

performs the addition of the contents of 15 registers %r2 and %r3 and stores the result in subject register %r1. Thus, this instruction corresponds to the abstract expression "%r1 = %r2 + %r3." This example contains a definition of the abstract register %rl with an add expression containing two subexpressions representing 20 the instruction operands %rl and %r2. In the context of a subject program, these subexpressions may correspond to other, prior subject instructions, or they may represent details of the current instruction such as immediate 25 constant values.

When the "add" instruction is parsed, a new "+" IR is generated, corresponding to the abstract mathematical operator for addition. The IR node stores references to other IR nodes that represent the operands (held in subject registers, represented subexpression trees). The "+" node is itself referenced the appropriate subject register definition by

abstract register for %r1, the instruction's destination register).

As those skilled in the art will appreciate, in one embodiment the translator is implemented using an object-5 oriented programming language such as C++. For example, an IR node is implemented as a C++ object, and references to other nodes are implemented as C++ references to the C++ objects corresponding to those other nodes. tree is therefore implemented as a collection of IR node objects, containing various references to each other. Prior to execution, the source code of the translator, whether implemented in C++ oranother programming language, must be compiled into native target consistent with the target architecture and target operating system.

10

15

structure employing such an implementation of condition code flag emulation as described herein illustrated in Figure 17. 20 As shown, compiled native subject code to be translated is shown residing appropriate memory storage 131, the particular and alternative memory storage mechanisms being well-known to those skilled in the art. The translator code, i.e., the compiled version of the source code implementing 25 translator, is similarly resident on appropriate computer storage medium 133. The translator runs in conjunction with a memory-stored operating system 135 such as, for example, running on the target processor UNIX typically a microprocessor or other suitable computer. 30 will be appreciated that the structure illustrated Figure 25 is exemplary only and that, for example, methods processes according and to the invention may be

implemented in code residing within an operating system. The subject code, translator code, operating system, and storage mechanisms may be any of a wide variety of types, as known to those skilled in the art.

5

10

15

collections of IR nodes described herein colloquially referred to as "trees". We note that, formally, such structures are in fact more appropriately referenced as directed acyclic graphs (DAGs). definition of a tree requires that each node have at most one parent. Because the embodiments described use common subexpression elimination during IR generation, nodes will often have multiple parents. For example, the IR of a flag-affecting instruction result may be referred to by abstract registers, those corresponding the destination subject register and the flag result parameter.

Abstract Registers

20

25

.30

In the embodiment under discussion, the generation of IR trees is implemented using a set of abstract registers. These abstract registers correspond to specific features of the subject architecture. For example, there is a unique abstract register for each physical register on the subject architecture. Similarly, there is a abstract register for each condition code flag present on the subject architecture. Abstract registers serve as placeholders for IR trees during IR generation. example, the value of subject register %r2 at a given point in the subject instruction sequence is represented by a particular IR expression tree, which is associated with the abstract register for subject register %r2.

In this example, the translator has already generated IR trees corresponding to the values of %r2 and %r3 while parsing the subject instructions that precede the "add" instruction. In other words, the subexpressions that calculate the values of r2 %r3 and are already represented as IR trees. When generating the IR tree for the "add %r1, %r2, %r3" instruction, the new "+" node contains references to the IR subtrees for %r2 and %r3. In a C++ source code embodiment, an abstract register is implemented as a C++ object, which is associated with a particular IR tree via a C++ reference to the root node object of the that tree.

15 Flag Parameter Abstract Registers

10

Special-purpose abstract registers are used to store the values of the parameters (operands) of the most recent flag-affecting instruction. These flag parameter abstract registers are limited in number, to the largest number of 20 operands used by any flag-affecting instruction on that subject architecture. For example, on the **x**86 architecture, all flag-affecting instructions operate on two operands so two flag parameter abstract 25 registers are used. The first flag parameter abstract register ("P1") holds the first operand of the most recent flag-affecting instruction, the second flag parameter abstract register ("P2") holds the second operand of the most recent flag-affecting instruction, and so forth. 30 semantic conventions of what constitutes the "first" and "second" parameters for a particular flag-affecting instruction type are defined internally by the translator. translator simply defines one set of The arbitrary

conventions and uses them consistently in both IR generation and translated code generation.

When subject flag-affecting instruction is during translation, the 5 encountered flag abstract registers are changed to refer to the IR trees of instruction's subject register operands. example, on the x87 architecture, when the instruction "add %r1, %r2, %r3" is parsed by the emulator, P1 and P2 are set to the IR trees currently held by the abstract 10 registers for subject registers %r2 and %r3, respectively. At the same time, the instruction type "add" is recorded as the most recent flag-affecting instruction type.

15 The key is that the IR trees corresponding to the instruction operands have already been created, so using their values does not require additional computation and additional IR trees are generated. This is computationally efficient as the emulator records the operand values by simply creating a reference to existing 20 IR trees, rather than creating new trees. By comparison, an explicit calculation of a flag value would require generation of а new IR tree (based on the parameters), which would ultimately result in the generation of additional instructions to implement that 25 calculation in the translated code.

Implicit Flag Resolution

In the embodiment under discussion, program code conversion is performed dynamically, at run-time, while the translated program is running. The emulator code runs inline with the translated program. The execution path of

the translated program is a control loop comprising the steps of: executing emulator code which translates a block of the subject code, and then executing that translated code block. The end of each block of translated code includes target instructions that return control to the emulator code. In other words, the steps of translating and then executing the subject code are interlaced, such that only portions of the subject program are translated at a time.

10

15

On architectures that contain condition code flags, the definitions and uses of flag values are an essential element of the instruction set semantics. As such, correct translation of a subject program to a different target architecture requires emulation of the semantics of condition code flags. Failure to do so results in a translated program that does not execute correctly, meaning the semantics are not the same as the subject program.

20

30

In some cases, the semantics of the subject flag-using instruction can be emulated without an explicit calculation of the flag value. In these cases, emulator can generate translated code to emulate a subject flag-using instruction based on the type and operand values of the previous flag-affecting instruction. condition code flags can be emulated more efficiently using translated code which does not explicitly calculate the values of those flags. Such emulation without explicit calculation is termed "implicit resolution." Implicit resolution of condition code values saves the execution cost of explicitly calculating a particular flag value.

subject flag-using instruction can be translated using target code that reproduces the semantics the flag-using instruction using the prior affecting instruction's operands rather than the explicit flag value. This is based on knowledge of the combined semantics of the flag-affecting and flag-using instructions, and emulation of those semantics using an appropriate target instruction idiom. This technique avoids an explicit calculation of the value of the flag itself. Hence, the semantics of subject flag-using instructions can be translated more efficiently.

For example, the following subject instruction 15 sequence might appear on the x86 architecture:

[instructions calculating the values of x86 registers \$eax and \$ebx]

20

10

sub \$eax, \$ebx
bz #NEXT

In this case, "sub" is a flag-affecting instruction

25 which affects the value of the zero flag and "bz" is a
flag-using instruction which uses the value of the zero
flag. Specifically, the "sub" instruction sets the zero
flag if the result of subtracting \$ebx from \$eax is zero,
and the "bz" instruction performs a branch if the zero

30 flag is set. The semantics of this instruction sequence
are: conditional branch to address "#NEXT" if the values
of registers \$eax and \$ebx are equal. In this example,

\$eax and \$ebx are the operand registers of the flagaffecting instruction "sub."

In this example, the MIPS "beq" (branch if equal) instruction can be used to emulate both subject instructions simultaneously, using the parameters of the flag-affecting instruction rather than the explicit flag value. For example, the implicit flag optimization may translate the above x86 instruction sequence as:

10

[instructions calculating the values of subject registers \$eax and \$ebx, and storing them in target registers \$rl and \$r2, respectively]

15

beq \$r1, \$r2

The flag instructions are therefore emulated without calculating the flag value explicitly. The target idiom thus reproduces the semantics of the subject instructions, based on the combined semantics of the flag-affecting and flag-using instructions, and the parameters of the flag-affecting instruction.

Figure 14 illustrates the difference between explicit 25 implicit condition code flag resolution for arbitrary flag-affecting and flag-using instruction In explicit flag resolution, the IR tree that sequence. emulates the flag-using instruction contains components. At the bottom of the figure are the IR sub-30 trees 101, 103 for the values of the subject register operands (i.e., parameters) used by the flag-affecting instruction, with root nodes labeled "P1" and "P2."

discussed above, these IR 101, 103 trees are already generated by the translator, independent of condition code flag emulation. In the middle of the figure is the IR sub-tree 105 for the explicit calculation of the flag value, with root node labeled "CF." The root node CF represents the value of the particular condition code flag (0 or 1).Because calculation of the condition flag is based on the values of the flag-affecting instruction parameters, tree CF includes sub-trees Pl and P2. top of the figure is the IR tree implementing semantics of the flag-using instruction. In the explicit resolution scenario, the implementation of the flag-using instruction is based on the explicitly calculated flag value, hence this tree includes sub-tree CF.

15

10

In the implicit flag resolution scenario, shown in the right-hand side of Figure 14, the IR tree that emulates the flag-using instruction contains only two components. At the bottom are the IR trees 101, 102 for the parameters P1, P2 of the flag-affecting instruction. 20 At the top is the IR tree 109 that implements the combined semantics of the flag-using and the flag-affecting instructions. tree 109 generally simpler than is its resolution counterpart 107. As such, the target code generated from such an implicit resolution tree 109 is more efficient. Often, an explicit calculation representation of the flag value itself is not necessary, either in the IR or in the translated code.

30 Propagation between Basic Blocks

In the embodiment under discussion, it proves useful to decode instructions in basic block units. State is

passed from one basic block to the next using a memory region which is accessible to all translated code sequences, namely, a global register store. At the end of a basic block, the values of each abstract register, each of which corresponds to a particular subject register, are stored from target registers into the global register store. At the beginning of each basic block, the abstract register values are loaded from the global register store into target registers, as the abstract register values are needed.

5

10

15

In embodiments where code is translated in basic block units, condition code flag emulation requires that flag state also be passed from one basic block to the next. As such, the global register store includes locations for condition code flag abstract registers and flag parameter abstract registers.

Figure 15 shows an example of the IR corresponding to explicit condition code flag resolution 20 where the flag-affecting instruction appears in different basic block than the flag-using instruction. way of a legend for Figures 15 and 16, a rectangular node represents an abstract register, whose value is recorded to the global register store at the end of a basic block; 25 an oval node labeled with the "@" symbol indicates a reference to a stored abstract register, whose value is retrieved from the global register store.

In the example of Figure 15, the IR (and corresponding translated code) to calculate the value of the condition flag is generated in a first basic block 115 where the flag-affecting instruction is encountered, while the IR to

emulate the flag-using instruction is generated in a second basic block 117 where the flag-using instruction is encountered.

5 The root node of the IR sub-tree calculating the value of the condition flag is represented in Figure 23 by the oval node labeled "CF." During generation of the IR, this tree is held by the corresponding condition flag abstract register, represented in Figure 23 by the rectangle labeled "CF." 10 This IR is used to generate translated code in the first basic block. At the end of the first basic block 115, the translator inserts (target) code to store the calculated flag value into the global register store location corresponding to the particular condition flag abstract register. When the flag is explicitly calculated 15 and recorded in the global register store it is said to be "normalized."

second basic block 117, the translator generates translated (target) 20 code from the IR emulates the flag-using instruction using the already calculated flag value. Prior to this operation, translator inserts (target) code to retrieve the calculated flag value from the global register store, which is represented in the figure by the IR node labeled 25 "@CF." Thus, in terms of the translated program, the flag value is calculated and stored in the first basic block 115, and the flag value is retrieved and used in the second basic block 117.

Lazy Evaluation

In the embodiment under discussion, condition code flag emulation is implemented using lazy evaluation, such that the requisite IR trees and translated code are 5 generated as late as possible. "Lazy evaluation" means that the generation of IR trees and translated code for condition code flag emulation is deferred until a flagusing instruction is encountered. Often, for a given flag, multiple flag-affecting instructions are encountered before a flag-using instruction is encountered, in which case all of the flag-affecting instructions except the last may be ignored. If flag values are normalized (calculated) every time a flag-affecting instruction is encountered, the translator will incur unnecessary costs in translation (generating IR and translated code) and execution (executing translated code).

As noted, lazy evaluation defers the generation of IR and translated code until a flag-using instruction is 20 encountered. When a flag-affecting instruction encountered, the information that will later be needed to emulate a flag-using instruction is recorded. embodiment under discussion, the information recorded is the instruction type and the subject register operand(s) 25 of the flag-affecting instruction. When the information recorded following a flag-affecting instruction is the explicitly calculated flag value, the flag is said to "normalized." When the information recorded following a flag-affecting instruction is the type and operands of 30 that instruction, the flag is said to be "pending," as no additional calculations have taken place and the flag values themselves have not been resolved.

The abstract registers used to store the condition flag value, on the one hand, and the flag parameter values, on the other hand, are used in a mutually exclusive manner. When a flag is normalized, the corresponding condition flag abstract register is defined but the corresponding flag parameter abstract registers are undefined. When a flag is pending, the corresponding condition flag abstract register is undefined and the corresponding flag parameter abstract registers are defined.

10

Figure 16 illustrates the generation of IR trees to explicitly and implicitly emulate a flag-using instruction using lazy evaluation. In the first basic block 121, the 15 parameter values are calculated. At the end of the first basic block 121, the parameter values are recorded into the global register store at the locations reserved for flag parameter abstract registers. In either of the second basic blocks 122, 123, the flag-using instruction 20 is emulated using the already calculated flag parameter values. Prior to this, the translator inserts target code to retrieve the flag parameter values from the global register store, which is represented in the figure by the IR nodes labeled "@P1" and "@P2." 25

As discussed above, when a flag value is normalized, the calculated flag value is saved across basic block boundaries. When a flag value is pending, the flag parameters and flag-affecting instruction type are saved across basic block boundaries. The flag parameters are saved in flag parameter abstract registers within the global register store, as they are dynamic values which

can only be determined during execution of the translated code. The flag-affecting instruction type is recorded within the translator, as the instruction type is a static value which can be determined during translation.

5

10

Whether a condition code flag is resolved explicitly (block 122) or implicitly (block 123) affects the configuration of the IR tree generated to implement the flag-affecting and flag-using instructions. Whether condition code flag resolution is pending or normalized determines when that IR tree (and corresponding translated code) is generated.

Figure 13 is a flowchart depicting the steps condition code flag emulation. 15 First, the translator encounters a flag-affecting instruction 201 in the subject In some cases, the flag-affecting instruction semantics are too complex 203 to resolve implicitly, in which case the translator normalizes the flag values 205, by generating target code to explicitly calculate and 20 record the flag values. "Recording" the flag values may consist of storing them in target registers, if a flagusing instruction occurs in the same basic block, storing them in memory in the global register store, if the next flag-using instruction occurs in a different 25 basic block. At this point, if another flag-affecting instruction is encountered, the translator returns to step If, however, a flag-using instruction is encountered 207, then the translator retrieves the flag values 209 and emulates the flag-using instruction semantics based on the 30 explicit flag values 211.

If the flag-affecting instruction is not too complex is a candidate for the implicit resolution optimization. When a candidate flag-affecting instruction is encountered, its operands are recorded 213 in the flag parameter abstract registers, and its static instruction type is recorded within the translator. At this point, if another flag-affecting instruction is encountered, the translator returns to step 201. If, however, a flag-using instruction is encountered 215, then the translator retrieves the flag parameters 217. 10 If the resolution optimization is available for that particular flag-using instruction 219, then the translator emulates the instruction's semantics implicitly 221 based on the flag parameters. For example, implicit resolution is generally available for conditional branch instructions. 15 If implicit resolution is not available for that flagusing instruction, then the flag parameters are used to calculate the flag values explicitly 223 and the flagusing instruction semantics are emulated based on the 20 explicit flag values 211.

Multiple Pending Instructions

While some flag-affecting instructions affect the full set of condition code flags, other instructions may affect only a subset of flags. For example, in the following x86 instruction sequence:

sub eax, ebx

30 dec eax

the "sub" (subtract) instruction affects the full set of condition flags, and the "dec" (decrement) instruction

affects a subset of flags. To resolve the values of a condition flag after such an instruction sequence potentially requires information from both instructions, as some flags are defined by the "dec" instruction but other flags are defined by the "sub" instruction. To avoid normalizing the flags, information from both instructions must be recorded. In one embodiment, two or more sets of flag parameters (i.e., the type, operands, and result of the flag-affecting instruction) are stored, such that flags can be left in a pending state even when multiple instructions are needed to resolve their values.

this example, when the "sub" instruction encountered, the first set of flag parameters is recorded 15 follows: "sub" is the instruction type, register "eax" is the first operand, and subject register "ebx" is the second operand. When the "dec" instruction is encountered, the second set of flag parameters is recorded as follows: "dec" is the instruction type, subject register "eax" is the first operand, and the 20 second operand is undefined. Ιf flag-affecting a instruction which affects the full set of condition code is then encountered, both (all) sets of flag parameters are cleared and the instruction's new parameters are recorded as the first set. 25

Lazy Propagation

10

Flag parameters correspond to the values of the subject registers used by the flag-affecting instruction, at the time the flag-affecting instruction is "executed" in the subject program. In terms of the subject program state, when the later flag-using instruction is

encountered, one or more of the flag parameters may still reside in subject registers. In this situation, the flag parameter is said to be "live" in the particular subject register. Whether this happens in a given case depends on the particular subject instruction sequences of the subject program.

5

As discussed above, if a flag is pending at the end of a basic block, the translator inserts code to record the values of the flag parameters into the global register store, so that they can be retrieved by later basic blocks In the embodiment under discussion, subject if needed. register values are always synchronized at the end of a basic block by saving them to the global register store. If a flag parameter is still live in a particular subject 15 register at the end of a basic block, then the values of the flag parameter abstract register and the register abstract register are identical. Instead of saving a duplicate value to the global register store, in this scenario the translator internally records which 20 subject register the flag parameter is stored in. avoids the execution cost of storing the flag parameter abstract register at the end of the first basic block.

In subsequent basic blocks, when the flag parameter value is needed, it is retrieved from the global register store at the location for the subject register holding it, rather than the location for the flag parameter abstract register. If value of the subject register changes such that the flag parameter is no longer live, then the translator inserts code to retrieve the flag parameter from the subject register (and re-record it at the flag parameter global register store location if necessary).

Result Parameter

10

30

In the embodiment under discussion, implicit condition code flag resolution is based on the result of the flag-affecting instruction, as well as the type and operands of the flag-affecting instruction. In this embodiment, an additional abstract register is used to hold the value of the result parameter. The global store includes a location to hold the value of the result parameter abstract register, which is saved to and restored from as necessary.

As with the flag operand parameters, the result parameter corresponds to the actual value of a subject register at some point in time. As such, the lazy evaluation optimization discussed above, applicable when a value happens to still be "live" in a subject register, is also applied to the saving and restoring of the result parameter abstract register.

Figure 12 shows the translation of two basic blocks of x86 instructions, and the corresponding IR trees that are generated in the process of translation. The left side of Figure 12 shows the execution path of the emulator during translation. The emulator translates 151 a first basic block of subject code 153 into target code and then executes 155 that target code. When the target code finishes execution, control is returned to the emulator 157. The emulator then translates 157 the next basic block of subject code 159 into target code and executes 161 that target code, and so on.

In the course of translating 151 the first basic block subject code 153 into target code, the emulator generates an IR tree 163 based on that basic block. this case, the IR tree 163 is generated from the source instruction "add %ecx, %edx," which is a flag-affecting instruction. In the course of generating the IR tree 163, four abstract registers are defined by this instruction: the destination subject register %ecx 167, the first flagaffecting instruction parameter 169, the second affecting instruction parameter 171, and the flagaffecting instruction result 173. The IR tree corresponding to the "add" instruction is simply a "+" (arithmetic addition) operator 175, whose operands are the subject registers %ecx 177 and %edx 179.

15

10

5

Thus, condition code flag emulation for the first basic block puts the flags in a pending state by storing the parameters and result of the flag-affecting instruction. The flag-affecting instruction is "add %ecx, 20 The parameters of the instruction are the current %edx." values of emulated subject registers %ecx 177 and %edx 179. The "@" symbol preceding the subject register uses 177, 179 indicate that the values of the subject registers are retrieved from the global register store, from the locations corresponding to %ecx and %edx, respectively, as 25 these particular subject registers were not previously loaded by the current basic block. These parameter values are then stored in the first 169 and second 171 flag parameter abstract registers. The result of the addition operation 175 is stored in the flag result abstract 30 register 173.

After the IR tree is generated, the corresponding target code is generated based on the IR. The process of target code from a generic IR understood in the art. Target code is inserted at the end of the translated block to save the abstract registers, including those for the flag result and 173 parameters 169, 171, to the global register store. After the target code is generated, it is then executed 155.

5

10 In the course of translating 157 the second basic block of subject code 159, the emulator generates an IR tree 165 based on that basic block. The IR tree 165 is generated from the source instruction "pushf," which is a flag-using instruction. The semantics of the "pushf" instruction are to store the values of all condition flags 15 stack, which requires that each flag explicitly calculated. As such, the abstract registers corresponding to four condition flag values are defined during IR generation: the zero flag ("ZF") 181, the sign flag ("SF") 183, the carry flag ("CF") 20 185. and the overflow flag ("OF") 187. Node 195 is the arithmetic comparison operator "unsigned less-than". The size of the IR tree 165 illustrates the complexity and computational expense o£ calculating explicit flaq values. The calculation of the condition flags is based on information 25 from the prior flag-affecting instruction, which in this case is the "add %ecx, %edx" instruction from the first basic block 153. The IR calculating the condition flag values 165 is based on the result 189 and parameters 191, 193 of the flag-affecting instruction. As above, the "@" 30 symbol preceding the the flag parameter labels indicates that the emulator inserts target code to load those values from the global register store prior to their use.

Thus, the second basic block forces the flag values to be normalized. After the flag values are calculated and (by the target code emulating the instruction), they will be stored into the global register Simultaneously, the pending flag abstract registers (parameters and result) are put into undefined state to reflect the fact that the flag values are explicitly (i.e., the flags stored normalized).

Sticky Flags

10

15

20

25

30

Some architectures include so-called "sticky flags," which are set when a particular event occurs, but can only be cleared by an explicit request. For example, in the PowerPC architecture, the summary overflow flag is set whenever an instruction sets the overflow flag. Unlike the overflow flag which is redefined (to 0 or 1) on every mathematical instruction, the summary overflow flag can only be cleared by special instructions provided for that explicit purpose. Thus, even if multiple flag-affecting instructions occur in sequence before the flag-using instruction, the sticky flag value may be need to evaluated for all such flag-affecting instructions.

In one embodiment, sticky flag values are explicitly for each flag-affecting calculated instruction. another preferred embodiment, sticky flag values emulated using a stack of flag-affecting instructions, all of which are evaluated when a sticky flag-using instruction is encountered. In another embodiment, the stack of sticky flag-affecting instructions is evaluated when the number of accrued instructions reaches a predetermined limit.

The emulation of sticky flags can be optimized from the observation that if evaluation of one flag-affecting instruction results in the sticky flag being set, then the other flag-affecting instructions need not be evaluated. In one embodiment, the stack of flag-affecting instructions is evaluated in order of simple instructions 10 meaning the subject flag-affecting instructions first, translation results in the fewest target instructions. In another embodiment, simple sticky flagaffecting instructions are evaluated as they encountered, only complex and sticky flag-affecting instructions are put on the instruction stack. 15

Non-Register Parameters

While flag parameters often correspond to subject 20 registers, some flag-affecting instructions may operands that are not held in subject registers. example, on the x86 architecture, shift instructions contain a shift magnitude field which is encoded directly into the instruction itself. In other words, while the shift magnitude field is a parameter of the flag-affecting 25 instruction, it is not held in a subject register. such non-register parameters can still represented as IR nodes, and can still be held in flag parameter abstract registers. In the example of the x86 30 shift instruction, because the shift magnitude value is encoded in the subject instruction, it can be statically determined at translation time. That value would be encoded as constant-type IR node, which can then be

associated with the appropriate flag parameter abstract register.

Selective Optimization

5

10

The implementation of implicit flag resolution is idiom-based, in the sense that there is often some target instruction or instruction sequence that captures the semantics of the subject instruction pair (the flag-affecting and flag-using instructions in combination) with particular efficiency. The effectiveness of this optimization thus depends on how closely instructions in the target architecture mirror the semantics of the particular subject flag-using instruction.

15

20

25

30

As with any idiomatic implementation, performance comes at the cost of complexity. As the number of target recognized by the translator qoes complexity and running time of the translator increases. Accordingly, a fully idiomatic translator, meaning one which exploits every possible target idiom, would generate the most optimal translated code but would also be very computationally expensive. Α fully idiomatic implementation also requires a significant implementation effort, most of which is not transferable to (i.e., reusable on) other target architectures.

Because of the constraints associated with performing code translation at run-time (i.e., algorithm simplicity and low translation cost) it is advantageous to identify a subset of target idioms which have the most significant impact on translated code performance, meaning that in practice they are encountered more frequently than others.

The judicious use of implicit flag resolution relies on the observation that in practice certain flag-using instructions are executed more frequently than others. Providing idiomatic implementations for only particular flag-using instructions can significantly reduce the execution cost of translated code without an explosion in translation cost (or in the cost implementing the translator). As such, it is advantageous to identify which subject flag-affecting and flag-using instructions occur the most frequently.

embodiment, In implicit condition code flag resolution is used only for particular flag-using instructions, or for particular combinations of 15 affecting and flag-using instructions. One embodiment of the present invention implements implicit condition code flag resolution only for the flag-affecting and flag-using instructions that occur the most frequently. For example, the subject instruction sequence of a logical comparison instruction followed by a conditional branch instruction - 20 occurs frequently. To say that an instruction sequence "occurs" frequently means that the sequence is often generated in the output of compilers for that particular subject architecture. In this case, the comparison and condition branch sequence is used frequently by compilers 25 because it is a concise implementation of a decision. For example, on the x86 architecture, the example instruction sequence shown above:

30 sub \$eax, \$ebx bz #NEXT

5

is a common instruction sequence, because the corresponding semantics, "branch if A equals B," are a common element of control flow used by computer programs.

noted, a considerable advantage accrues 5 As from avoiding explicit calculation of condition code flags, which can be very expensive in terms of execution cost (of target code generated). To illustrate, the bottom-right Figure 12 shows the IR needed to calculate the values of the four condition flags affected by the x86 flag-10 affecting instruction "add %ecx, %edx". The IR trees for the zero flag ("ZF"), sign flag ("SF"), carry flag ("CF"), and the overflow flag ("OF") contain logical expressions that are based on the parameters ("@P1" and "@P2") and the result ("@RES") of the flag-affecting instruction. 15 "@" symbol indicates that the respective values are loaded from the global register store, as the flag-affecting instruction in this example was encountered in a previous basic block; if the flag-affecting instruction occurred in the same basic block, those nodes would instead contain 20 references to IR subtrees.

The preferred embodiments of the invention have been described in the context of an emulator performing program code conversion for the purposes of translation between non-compatible computing environments. However, the principles of the invention are also applicable to fields such as program code conversion for the purposes of optimisation, wherein a subject processor and a target processor have a compatible architecture.

25

30

The emulation method described herein is apt to be recorded on a computer readable recording medium as a

computing program for performing the method. The invention also extends to an emulator apparatus, and to a computing platform, for performing the emulation method.

The present invention has many advantages as will be apparent from the description above, and as will be apparent to the skilled person through practice of the invention. In particular, flag emulation is performed efficiently and cost effectively, even for highly non-compatible subject and target processor environments.

Although a few preferred embodiments have been shown and described, it will be appreciated by those skilled in the art that various changes and modifications might be made without departing from the scope of the invention, as defined in the appended claims.

Claims

- 1. A method for emulating condition code flags during program code conversion, comprising the steps of:
- (a) identifying a flag-affecting instruction in a sequence of subject code instructions;
- (b) recording parameters of the identified flag-10 affecting instruction;
 - (c) detecting a flag-usage instruction in the sequence of subject code instructions; and
- (d) resolving a flag status with respect to the recorded parameters.
- 2. method of claim 1, wherein the step (d) explicitly calculating comprises а flag status 20 emulating effects of the identified flag-affecting instruction on one or more subject condition code flags.
- 3. The method of claim 2, wherein the step (b) comprises setting a flag status indicator to a pending state to indicate that parameters have been recorded, and the step (d) comprises setting the flag status indicator to a normalised state to indicate that a flag status has been explicitly calculated.
- 30 4. The method of any preceding claim, wherein the step (d) comprises implicitly determining flag status with reference to the recorded parameters.

- 5. The method of any preceding claim, wherein the step (c) comprises determining a flag usage type with reference to a type of the detected flag-usage instruction, and the step (d) comprises resolving flag status either by explicitly calculating a flag status or by implicitly determining a flag status, according to the determined flag usage type.
- 6. The method of any preceding claim, wherein the step (a) comprises identifying a second flag-identifying instruction in the sequence of subject code instructions, and the step (b) comprises replacing the recorded parameters with parameters of the second flag-affecting instruction.

- 7. The method of any preceding claim, wherein the step (a) comprises identifying a type of flag-affecting instruction as one of a plurality of predetermined types, and the step (b) comprises recording parameters for each type of flag-affecting instruction.
- 8. The method of claim 7, wherein the predetermined types include a first type instruction affecting a full set of condition code flags, and a second type instruction affecting a subset of the full set of condition code flags.
- 9. The method of claim 8, wherein the step (d) comprises resolving flag status for a full set of condition code flags with respect to the recorded first-type parameters, and resolving flag status with respect to the subset of the condition code flags with respect to the recorded second-type parameters.

- 10. The method of claim 9, wherein the step (d) comprises explicitly determining flag status from the recorded first-type parameters, and modifying the explicitly determined flag status from the recorded second-type parameters.
- 11. The method of any of claims 7 to 10, wherein the predetermined types include instruction types each affecting a condition code flag set amongst a plurality of condition code flag sets.
- 12. The method of any preceding claim, wherein the recorded parameters include an instruction type parameter and one or more instruction operand parameters.
 - 13. The method of claim 12, wherein recording an instruction operand parameter comprises storing a reference to a location containing an operand.

20

- 14. The method of claim 12 or 13, wherein recording an instruction operand parameter comprises determining that an operand remains available unmodified at an original location and storing a reference to the original location as the instruction operand parameter, or else copying the operand from the original location to a dedicated operand parameter storage location.
- 15. The method of claim 12, 13 or 14, comprising providing a plurality of abstract registers representing registers of a subject processor, and supplementing the abstract registers with one or more additional abstract

registers each for storing an operand as an instruction operand parameter.

16. A method for emulating condition code flags during 5 program code conversion, comprising:

selecting a sequence of subject code instructions;

identifying a flag-affecting instruction in the sequence of subject code instructions, the flag-affecting instruction specifying an operation that affects subject condition code flags of a subject processor;

recording parameters of the identified flag-affecting
instruction including an instruction type parameter and
one or more operand parameters;

detecting a flag-usage instruction in the sequence of subject code instructions, the flag-usage instruction specifying an operation with reference to a flag status of one or more of the subject condition code flags; and

in response to detecting a flag-usage instruction, resolving a flag status of one or more of the subject condition code flags with respect to the recorded parameters.

17. The method of claim 16, comprising updating the recorded parameters when a new flag-affecting instruction is encountered in the sequence of subject code instructions.

- 18. The method of claim 16 or 17, comprising recording parameters for a plurality of flag-affecting instructions.
- 19. The method of claim 18, wherein the plurality of 5 flag-affecting instructions are each associated with differing sets of subject condition code flags..
- 20. The method of any of claims 16 to 19, comprising resolving flag status by at least one of (a) explicitly calculating a status for one or more subject condition code flags by emulating an effect of the recorded flag-affecting instruction, or (b) implicitly representing the flag-usage instruction using the recorded parameters, or (c) selecting between options (a) and (b) according to a type of the flag-usage instruction.
- 21. The method of any of claims 16 to 20, wherein the recorded parameters include at least one instruction operand parameter, and wherein recording the instruction operand parameter comprises at least one of (a) copying an operand to a predetermined storage location, or (b) storing a reference to an original location containing the operand, or (c) selectively performing (a) or (b).
- 25 22. An emulator apparatus for use in a target computing environment for emulating a subject processor of a subject computing environment when translating subject code appropriate to the subject computing environment to produce target code appropriate to the target computing environment, the emulator apparatus comprising:

means for identifying a flag-affecting instruction in a sequence of subject code instructions;

an instruction parameter store f or recording parameters of the identified flag-affecting instruction;

means for detecting a flag-usage instruction in the sequence of subject code instructions; and

means for resolving a flag status with respect to the instruction parameters recorded in the instruction parameter store.

- 23. A computing platform comprising the emulator apparatus of claim 22.
- 15 24. A computer-readable recording medium containing program code instructions for performing the method of any of claims 1 to 15.
- 25. A computer-readable recording medium containing
 20 program code instructions for performing the method of any of claims 16 to 21.
- 26. Computer software resident on a tangible medium and operable when executed by a computer to perform the 25 steps of:

detecting a flag affecting instruction in a sequence of subject code instructions; and

emulating a flag using subject instruction based on the type and at least one operand value of said flag affecting instruction, thereby avoiding generation of target code to explicitly calculate the value of a flag normally used by the flag using subject instruction.

27. Computer software resident on a tangible medium 5 and operable when executed by a computer to perform the steps of:

establishing one or more second abstract registers, each corresponding to a unique flag parameter (operand);

10

generating an intermediate representation (IR) tree for a selected instruction sequence, said tree depending from one or more of said abstract registers; and

- responding to a first flag affecting instruction in said sequence to cause a flag parameter abstract register to refer to said IR.
- 28. The software of claim 27 further operable to 20 perform the step of recording the first flag affecting instruction as the most recent flag affecting instruction.
- 29. Computer software resident on a tangible medium and operable when executed by a computer to perform the 25 steps of:

generating intermediate representation for a sequence of instructions, said sequence including a plurality of flag affecting instructions followed by a flag using instruction; and

60 °, ' (w

deferring generation of intermediate representation for condition code flag emulation until said flag using instruction is encountered.

- 5 30. The software of claim 29 further operable to generate said IR in a basic block mode and to save the flag parameter(s) and flag affecting instruction type across a basic block boundary.
- 10 31. The software of claim 30 wherein the flag affecting instruction type is saved within the translator.
 - 32. The software of claim 31 wherein the flag parameters are saved in flag parameter abstract registers.
 - 33. The software of claim 32 wherein said flag parameter abstract registers reside in a global register store.
- 34. The software of claim 33 further including the steps of responding to the case where a flag parameter is still alive in a subject register at the end of a basic block by recording the identity of said subject register rather than saving a duplicate value.
 - 35. Computer software resident on a tangible medium and operable when executed by a computer to perform the steps of:
- translating a sequence of instructions, said sequence including a plurality of flag affecting instructions followed by a flag using instruction; and

15

deferring condition code flag translation until said flag using instruction is encountered.

- 36. The software of claim 35 wherein said computer performs the further steps of recording the type and each operand of a said flag affecting instruction.
 - 37. The software of claim 36 wherein said computer further resolves a flag value based on type and operand.

- 38. The software of claim 37 further including the step of using a stack of flag affecting instructions in emulation of sticky flags.
- 15 39. A method for emulating condition code flags during program code conversion, substantially as hereinbefore described with reference to any of the accompanying drawings.
- 20 40. An emulator apparatus substantially as hereinbefore described with reference to any of the accompanying drawings.
- 41. An computing platform comprising an emulator apparatus and/or arranged to perform the emulating method substantially as hereinbefore described with reference to the accompanying drawings.
- 42. A computer readable recording medium containing program code instructions for performing the method substantially as hereinbefore described with reference to any of the accompanying drawings.

43. Computer software resident on a tangible medium and operable when executed by a computer to perform the method substantially as hereinbefore described with reference to any of the accompanying drawings.

Application No:

GB 0302718.2

Claims searched:

1 - 25

Examiner:

Date of search:

Richard Baines 20 August 2003

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category	Relevant to claims	Identity of document and passage or figure of particular relevance	
Α	-	US 5,903,760	(INTEL)

Categories:

- X Document indicating tack of novelty or inventive step
- A Document indicating technological background and/or state of the art.
- Y Document indicating lack of inventive step if combined with one or more other documents of same category.
- P Document published on or after the declared priority date but before the filing date of this invention.

& Member of the same patent family

Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

G4A

Worldwide search of patent documents classified in the following areas of the IPC7:

G06F

The following online and other databases have been used in the preparation of this search report:

Keywords in EPODOC, WPI, JAPIO

THIS PAGE BLANK (USPTO)