Linear System Theory Homework 9

Due date: 12/28/2023

You can use Matlab to help you solve the following problems.

1. Consider the 2-input 2-output system (with 2 actuators and 2 sensors)

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & -3 & -3 \\ -2 & -1 & -2 \\ 2 & 3 & 4 \end{bmatrix} \mathbf{x} + \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 2 & 0 \end{bmatrix} \mathbf{u}, \quad \mathbf{y} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix} \mathbf{x}$$

- (a) Compute the eigenvalues of the system.
- (b) Verify that the system is controllable, observable and unstable.
- (c) Is it possible to stabilize the system by state feedback using one actuator only? Explain.
- (d) Design a state feedback so that the closed-loop system has triple eigenvalues at $\lambda = -1$.
- (e) Is it possible to stabilize the system with dynamic output feedback (e.g. an observer-based controller) using one sensor only? Explain.
- 2. Assume that the system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, $\mathbf{y} = \mathbf{C}\mathbf{x}$ is observable. Show that if for all $\mathbf{x}(0)$ the corresponding output $\mathbf{y}(t) \to \mathbf{0}$ as $t \to \infty$, then the system is stable.
- 3. Consider the system

$$\dot{\mathbf{x}} = \begin{bmatrix} \mu & 1 & 0 & 0 \\ 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & -\omega \\ 0 & 0 & \omega & 0 \end{bmatrix} \mathbf{x}, \quad \mathbf{y} = \begin{bmatrix} c_{11} & c_{12} & 0 & \omega \\ c_{21} & c_{22} & -\omega & 0 \end{bmatrix} \mathbf{x}$$

where $\omega > 0$. Is the system observable? Of course your answer may depend on the parameters c_{ij} , μ and ω .

- 4. (a) Given the $n \times n$ matrix $\mathbf{Q} = \mathbf{Q}^T \ge 0$ with $\mathrm{rank}(\mathbf{Q}) = r$, show that there is a full rank $r \times n$ matrix \mathbf{C} such that $\mathbf{C}^T \mathbf{C} = \mathbf{Q}$. Such a \mathbf{C} is called a square root of \mathbf{Q} .
 - (b) Show that if **C** is a square root of **Q** and **O** is an $r \times r$ orthogonal matrix, that is, $\mathbf{O}^T \mathbf{O} = \mathbf{I}$, then \mathbf{OC} is also a square root of **Q**. Thus **Q** has many square roots.
 - (c) Show that if C_1 and C_2 are both full rank square roots of Q, then there is an $r \times r$ orthogonal matrix Q such that $C_1 = QC_2$.

- (d) Suppose C_0 is a square root of Q and that (C_0, A) is observable. Show that if C is any square roots of Q, then (C, A) is observable. Thus the phrase (\sqrt{Q}, A) is observable' makes sense, even though there are many square roots of Q.
- 5. Suppose the continuous-time system (\mathbf{A}, \mathbf{B}) is controllable. Let $\mathbf{K} = \mathbf{R}^{-1}\mathbf{B}^T\mathbf{P}$ be the optimal state feedback gain matrix obtained by solving the continuous-time LQR problem, with weighting matrices $\mathbf{Q} \geq 0$ and $\mathbf{R} > 0$. Show that $\mathbf{A} \mathbf{B}\mathbf{K}$ is stable provided that $(\sqrt{\mathbf{Q}}, \mathbf{A})$ is observable.