ĆËĖDĖ ĐËÆĖDĖDĖĖ PĖ

Sistema de Entrada e Saída

Prof. Otávio Gomes otavio.gomes@unifei.edu.br

Sistema de Entrada e Saída No Sistema Operacional

- SO controla todos os dispositivos de E/S, possuindo comandos para:
 - Emitir instruções (read, write, etc.);
 - Interceptar interrupções;
 - Tratar erros.

- Interface única (API *Application Program Interface*) para todos os dispositivos devido a(o):
 - Diferenças na construção dos dispositivos;
 - Tempo de processamento dos dispositivos;
 - Tempo de acesso aos dispositivos.

Podem ser classificados de acordo com os seguintes tipos:

- De Conexão;
- De Transferência de Dados;
- De Compartilhamento de Conexões.

1) Tipo de Conexão

- Natureza da conexão entre módulo de E/S e periférico
 - Serial versus Paralela

- a) Serial única linha de conexão.
- Vantagens: mais barata que a paralela
- Desvantagens: mais lenta que a paralela (contexto / tecnologia).
 - b) Paralela múltiplas linhas de conexão.
- Vantagens: mais rápida que a serial (contexto / tecnologia).
- Desvantagens: mais cara que a serial (barramentos).

2) Tipo de Transferência de E/S

- a) Dispositivos de **bloco** (*block devices*):
 - Blocos de tamanho fixo, cada um com seu endereço.
 - Tamanho de 128 a 1024 bytes.
 - Transferência com um ou mais blocos.
 - Referência de localidade Otimização da leitura.
 - E/S consome tempo.
 - Exemplos: HD, CD-ROM, Drive USB, etc.

2) Tipo de Transferência de E/S

- b) Dispositivos de caracter:
 - Acessam um fluxo de caracteres.
 - Não consideram blocos e não são endereçáveis.
 - Não possuem acesso aleatório (seek operațion).
 - Exemplo: interfaces de rede, mouse, etc.

3) Tipo de Compartilhamento de Conexões

a) Ponto a ponto

- Conexão mais simples
- Linha dedicada para a ligação entre o módulo de E/S e o periférico.
- Oferece maior grau de paralelismo e maior confiabilidade.
- Protocolo RTS/CTS (Request/Clear To Send).

3) Tipo de Compartilhamento de Conexões

b) Multiponto

- Compartilha um conjunto de linhas entre diversos periféricos.
- Maior escalabilidade que a ponto a ponto.
- Não permite paralelismo Escalonamento, token, etc.
- Usada para armazenamento.
- Exemplos: IDE, SCSI, USB, etc.

Sistema de Entrada/Saída

- As unidades de E/S
 - **Componente mecânico** o dispositivo.
 - Controladora de dispositivo:
 - eletrônico Componente Parte programável.
 - Órgãos de padronização: IEEE, ISO, ANSI, etc.

Input type	Prime examples	Other examples	Data rate (b/s)	Main uses
Symbol	Keyboard, keypad	Music note, OCR	10s	Ubiquitous
Position	Mouse, touchpad	Stick, wheel, glove	100s	Ubiquitous
Identity	Barcode reader	Badge, fingerprint	100s	Sales, security
Sensory	Touch, motion, light	Scent, brain signal	100s	Control, security
Audio	Microphone	Phone, radio, tape	1000s	Ubiquitous
Image	Scanner, camera	Graphic tablet	1000s-10 ⁶ s	Photos, publishing
Video	Camcorder, DVD	VCR, TV cable	1000s-10 ⁹ s	Entertainment
Output type	Prime examples	Other examples	Data rate (b/s)	Main uses
Symbol	LCD line segments	LED, status light	10s	Ubiquitous
Position	Stepper motor	Robotic motion	100s	Ubiquitous
Warning	Buzzer, bell, siren	Flashing light	A few	Safety, security
Sensory	Braille text	Scent, brain stimulus	100s	Personal assistance
Audio	Speaker, audiotape	Voice synthesizer	1000s	Ubiquitous
Image	Monitor, printer	Plotter, microfilm	1000s	Ubiquitous
Video	Monitor, TV screen	Film/video recorder	1000s-10 ⁹ s	Entertainment
Two-way I/O	Prime examples	Other examples	Data rate (b/s)	Main uses
Mass storage	Hard/floppy disk	CD, tape, archive	10 ⁶ s	Ubiquitous
Network	Modem, fax, LAN	Cable, DSL, ATM	1000s-10 ⁹ s	Ubiquitous

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only read-write	CD-ROM graphics controller disk

- O SO trata com a controladora Não lida com os dispositivos.
- Comunicação CPU e Controladoras:
 - Interface de alto nível utiliza os barramentos comuns.
 - Interface de baixo nível entre controladora e dispositivo.

- O SO trata com a controladora Não lida com os dispositivos.
- Comunicação CPU e Controladoras:
 - Interface de alto nível utiliza os barramentos comuns.
 - Interface de baixo nível entre controladora e dispositivo.

Sistema de Entrada e Saída Dispositivo de armazenamento

À Ë ĐÊ Ë Æ ĐE Ệ Z Ė Ë Ë

- Distância linear aumenta nas trilhas externas:
- Discos antigos tinham razão #setores/trilha fixa
- Discos modernos separam disco em zonas com razões
 - diferentes
 - ° Identificação de localização no disco mais complexa

Sistema de Entrada e Saída Dispositivo de armazenamento

Um disco com uma só zona, cada trilha com oito setores.

Trilhas em um CD.

Um disco com cinco zonas. Cada zona tem muitas trilhas.

- Recebe um fluxo de bits com:
 - Preâmbulo
 - Bits do setor
 - Checksum (ECC).
- Dispositivo:
 - Monta os bits em bloco e coloca-os em um buffer interno.
 - Após verificar *checksum*, copia o bloco na RAM.

Sistema de Entrada e Saída Dispositivo de armazenamento

À Ë ĐÈ Ë Æ ĐE Ệ Z Ė ĐỀ Ë

• Discos Winchester: alusão à numeração dos primeiros discos IBM

ÀËĐÈËÂÑÄ

- Interface baseada na BIOS IBM PC XT
- Controlador junto ao dispositivo (Integrated Drive Electronics)
- Barramento ATA (PC/AT Attachment)
- Ainda usa convenções da BIOS (PC XT)
- Barramento simples entre processador e controladores de disco
- Custo e desempenho reduzidos

ÄËÐÈËÆĆÀČÀ

- Nova geração do barramento ATA (serial)
- Interface mais simples
- Controladores mais poderosos
- Maior velocidade de transferência

ÄËÐÈËÆĆÃĆÂ

- Barramento padrão de alto desempenho
- Controladores complexos liberam o processador da maior parte do acesso
- Permitem a operação de vários dispositivos no mesmo barramento
- SCSI-1: 8 b, 5 MHz, 5 MB/s
- Wide Ultra2 SCSI: 16 b, 40 MHz, 80 MB/s

- Padrão denominado Next Generation Form Factor ou NGFF, posteriormente denominado
 M.2. Comumente o associamos a SSDs de alto desempenho, mas sua aplicação é universal, sendo compatível também com placas Wifi, Bluetooth e NFC.
- Quando falamos sobre M.2 em relação à tecnologia de armazenamento, normalmente falamos sobre um SSD em relação ao seu formato.
 - M.2 se refere a um **formato** SSD que se parece com um chiclete. Seu tamanho pequeno e fino é ideal para computadores que são leves e portáteis como laptops, notebooks, NUCs e ultrabooks.
 Eles ocupam menos espaço do que SSDs de 2,5 pol ou discos rígidos e podem chegar a até 2 TB de capacidade.
 - M.2 é um formato de SSD, com base em NVMe e SATA eles diferem em tecnologia de armazenamento e dependendo de suas necessidades e orçamento, cada um deles tem seus prós e contras.

- Non-Volatile Memory Express (NVMe) é um protocolo de transferência projetado para memória de estado sólido.
- Embora o SATA (*Serial Advanced Technology Attachment*) continue sendo o padrão do setor para protocolos de armazenamento, ele não foi criado especificamente para armazenamento Flash como SSDs e não pode oferecer as mesmas vantagens que o NVMe.
- Eventualmente, SSDs com NVMe irão substituir os SSDs SATA como o novo padrão do setor.

- Mais velocidade na transferência (55 a 180 IOPS para HDDs contra 3.000 a 40.000 IOPS com SSDs).
- Taxa de transferência de dados mais alta.
- Conexões sem bloqueio que fornecem a cada núcleo de CPU acesso dedicado à fila para cada SSD.
- Paralelismo em massa com mais de 64 mil filas para operações de E/S.

	3,5"	2,5"
5900 RPMs	50 IOPS	-
7200 RPMs	75 IOPS	95 IOPS
10000 RPMs	110 IOPS	140 IOPS
15000 RPMs	150 IOPS	180 IOPS
SSD	1500 IOPS	1500 IOPS

Fontes: https://www.kingston.com/br/community/articledetail/articleid/57715

O que é armazenamento SAS?

O SAS (Serial Attached SCSI) é uma evolução do padrão SCSI. Em resumo, podemos definir o SAS interface de como uma comunicação ponto a ponto (p2p), dispositivos conecta de que armazenamento em massa a uma placa mãe.

Fontes: https://razor.com.br/blog/tecnologia/qual-a-melhor-opcao-entre-hd-sata-e-sas/ https://www.kingston.com/br/community/articledetail/articleid/57715

Princípios de *Hardware* - Controladoras

- Cada controladora possui registradores controlados pela CPU para ler/escrever dados no dispositivo.
- O SO pode controlar o dispositivo escrevendo comandos e alterando parâmetros.
- Registradores são utilizados para saber o estado do dispositivo.

Formas de comunicação CPU x Controladora

1) Mapeada na memória

- Localizada dentro do espaço de endereçamento de memória.
- Utiliza um conjunto de endereços reservados.
- Registradores são tratados como posições de memória.
- Todos os registradores são mapeadas no espaço de memória.
- Geralmente se localiza no topo do espaço de endereçamento.

Formas de comunicação CPU x Controladora

2) Mapeada em E/S

- Controladora recebe um número de portas de E/S acessadas via instruções especiais utilizadas apenas pelo SO.
- Por exemplo:

IN REG, PORT

OUT PORT, REG

• Espaços de endereços diferentes para a memória e E/S.

Formas de comunicação CPU x Controladora

3) Mapeamento híbrido

- Buffers de dados na memória;
- Portas de E/S para controle.
- Exemplo Pentium
 - 640K a 1M-1 para *buffer* de dados
 - Portas de E/S de 0 a 64K-1 para controle

Formas de comunicação CPU x Controladora

- a) Mapeada em E/S
- b) Mapeada na memória

Princípios de Software

- Independência do dispositivo (CD, HD, Flash Drive, etc.) cabe ao SO cuidar das particularidades.
- Nomenclatura uniforme nomes independentes do dispositivo.
- Tratamento de erros Devem ser realizados o mais próximo possível do HW, sem que o usuário tome conhecimento.
 - Caso ocorra um erro de leitura, a mesma deverá ser repetida de modo que o erro não divulgado às camadas superiores.

Modos de Operação de E/S

- 1) E/S Programada
- 2) E/S via interrupções
- 3) E/S via acesso direto à memória (DMA)

- O que distingue as três formas?
 - Participação da CPU
 - Utilização das interrupções

Sistema de Entrada e Saída Modos de Operação de E/S

1) E/S Programada

- Forma mais simples de E/S tudo é feito pela CPU.
- Os dados são trocados entre a CPU e o módulo de E/S.

- A CPU executa um programa que:
 - 1) Verifica o estado do módulo de E/S;
 - 2) Envia o comando de operação;
 - 3) Aguardo o resultado;
 - 4) Efetua a transferência para o registrador da CPU.

1) E/S Programada

• Forma mais simples de E/S – **tudo é feito pela CPU.**

Os dados são trocados entre a CPU e o módulo de E/S.

Enter Check status of disk No Disk ready? Yes Send data from memory to disk (when writing) or from disk to memory (when reading). No Done? Yes Continue

Sistema de Entrada e Saída

1) E/S Programada

- Desvantagens
 - CPU é ocupada o tempo todo e realiza toda a E/S.
 - Realiza uma espera ocupada para a realização da tarefa, também chamada de *polling*.

2) E/S via Interrupção

- Supera o problema da espera ocupada.
- Interrupções são identificadas por números. Quanto menor, mais prioridade.

- A CPU executa um programa que:
 - 1) Envia um comando para E/S;
 - 2) CPU executa outra operação;
 - 3) Controladora envia sinal quando E/S finalizada;
 - 4) CPU lê os dados da controladora.

Emite comando de leitura ao módulo de E/S Lé registrador Interrupção de estado do E/S → CPU módulo E/S Verifica Condição estado Pronto Lé palavra do $E/S \rightarrow CPU$ módulo de E/S Grava palavra na memoria Terminou?

Sistema de Entrada e Saída

2) E/S via Interrupção

- Exemplo de interrupção:
 - 1) CPU requisita uma leitura no disco;
 - 2) Controladora lê os dados enquanto a CPU realiza outras tarefas;
 - 3) Controladora envia uma **interrupção** à CPU;
 - 4) CPU solicita os dados;
 - 5) Controladora envia os dados.

Below is a table showing the Interrupt Numbers and Names.

INT#	Normal Use	INT #	Normal Use	INT#	Normal Use
0	Divide by Zero (Internal)	12	BIOS Get Memory Size	24	Critical Error Handler *
1	Single Step Debug	13	BIOS Diskette Service	25	DOS Absolute Disk Read *
2	NMI *	14	BIOS Comm. Services *	26	DOS Absolute Disk Write *
3	Breakpoint *	15	BIOS Misc. System Services *	27	Terminate and Stay Resident (TSR)
4	Arithmetic Overflow	16	BIOS Keyboard Services	28	DOS safe *
5	Print Screen *	17	BIOS Printer Services	29	DOS TTY
6	Invalid Opcode	18	Execute	2A	MS Net
7	CPU Reserved	19	System Warm Reboot *	2F	"Multiplex" *
8	System Timer *	1A	BIOS Clock Services	33	Microsoft Mouse Services
9	Hardware Keyboard	1B	Ctrl-Break Handler *	67	EMS Services
A	Cascade to IRQ 9	1C	User Timer Tick Interrupt	70	Real Time Clock
В	COM 2*	1D	Video <u>Init</u> , Parameters	71	Redirect to IRQ 2
С	COM 1*	1E	Disk <u>Init.</u> Parameters *	72	USER HARDWARE
D	LPT 2	1F	Grap Display Char Table*	73	USER HARDWARE
E	Floppy Diskette Controller	20	DOS Terminate Program	74	IBM Mouse (Hardware) *
F	LPTI	21	DOS Services	75	Math Coprocessor
10	BIOS Video Services	22	DOS Termination Address	76	Hard Disk Controller
11	BIOS Get Equipment Status	23	CtrlC Handler *	77	USER HARDWARE

E/S via Interrupção

IRQ	Usage				
0	system timer (cannot be changed)				
1	keyboard controller (cannot be changed)				
2	cascaded signals from IRQs 8-15				
3	second RS-232 serial port (COM2: in Windows)				
4	first RS-232 serial port (COM1: in Windows)				
5	parallel port 2 and 3 or sound card				
6	floppy disk controller				
7	first parallel port				
8	real-time clock				
9	open interrupt				
10	open interrupt				
11	open interrupt				
12	PS/2 mouse				
13	math coprocessor				
14	primary ATA channel				
15	secondary ATA channel				

CPU I/O controller device driver initiates I/O initiates I/O CPU executing checks for interrupts between instructions CPU receiving interrupt, input ready, output 4 transfers control to complete, or error interrupt handler generates interrupt signal description divide error debug exception interrupt handler null interrupt breakpoint processes data, INTO-detected overflow returns from interrupt invalid opcode device not available coprocessor segment overrun (reserved) invalid task state segmen stack fault general protection page fault CPU resumes processing of alignment check 17 18 interrupted task 19-31 (Intel reserved, do not use) 32-255 maskable interrupts

Sistema de Entrada e Saída E/S via Interrupção

3) E/S via acesso direto à memória (DMA)

- Requer *software* e *hardware*.
- Esta solução retira a CPU do gerenciamento, mas necessita de uma controladora DMA (*Direct Memory Access*).
- A DMA realiza a E/S Programada em vez da CPU.
- Inconvenientes das técnicas anteriores:
 - Limitam a capacidade de transferência da CPU;
 - CPU fica ocupada no gerenciamento;
 - Desempenho cai para grande quantidade de dados.

3) E/S via acesso direto à memória (DMA)

- Requer *software* e *hardware*.
- Esta solução retira a CPU do gerenciamento, mas necessita de uma controladora DMA (*Direct Memory Access*).
- A DMA realiza a E/S Programada em vez da CPU.

- 3) E/S via acesso direto à memória (DMA)
- Informações necessárias:
 - a) Endereço de memória;
 - b) Quantidade de bytes;
 - c) Porta de E/S a ser utilizada;
 - d) Direção de transferência (do ou para o dispositivo)
 - e) Unidade de transferência (um byte ou palavra por vez)

Sistema de Entrada e Saída E/S via acesso direto à memória (DMA)

3) E/S via acesso direto à memória (DMA)

- Desvantagens:
 - A CPU pode ser mais rápida que a controladora DMA.
 - Arquitetura mais cara com DMA.
- Vantagens:
 - DMA executa E/S programada.
 - Controladora DMA realiza todo o trabalho e libera a CPU.

Sistema de Entrada e Saída Princípios de *software*

Princípio de camadas

- Facilita a independência dos dispositivos, fornecendo modularidade e coesão.
- Camadas mais baixas:
 - Detalhes do hardware;
 - *Drivers* e manipuladores de interrupção.
- Camadas mais altas:
 - Interface para o usuário;
 - Aplicações de usuário;
 - Chamadas de sistema parte independente de E/S.

Sistema de Entrada e Saída Princípios de *software*

Independência do dispositivo

- Fornecer interface uniforme ao software de usuário.
- Evitar que a cada novo dispositivo criado o SO tenha que ser modificado.
- Software de E/S há partes específicas e outras independentes de dispositivo.
- A parte independente:
 - Executa E/S comuns a todos os dispositivos;
 - Realiza o escalonamento de E/S;
 - Provê buffering ajuste de velocidade e da quantidade de dados transferidos.
 - Provê cache de dados armazena um conjunto de dados frequentemente acessados.

Sistema de Entrada e Saída Princípios de *software*

Independência do dispositivo

- Outras funções da parte independente:
 - Reportar erros e proteger contra acessos indevidos:
 - Erros de programação Ex.: leitura de um dispositivo de saída (vídeo).
 - Erros de E/S Ex.: imprimir em uma impressora sem papel.
 - Erros de memória Ex.: escrita em endereços inválidos (segmentation fault).
 - Definir tamanhos de blocas independentes do dispositivo.

Princípios de Software

- Fornecer interface uniforme (API) read, write, send, receive, etc.
- Padronizar as funções dos drivers cada fabricante fornece sua função.

Drivers – Parte dependente do dispositivo

• Escritos pelo fabricante do dispositivo, de acordo com a interface definida.

Drivers – Parte dependente do dispositivo

- Escritos pelo fabricante do dispositivo, de acordo com a interface definida.
- S.O.s diferentes requerem diferentes *drivers*:
 - Fazem parte do *kernel* e possuem acesso total ao dispositivo.
 - Podem causar problemas no SO.
- Código específico para E/S e para controle:
 - Disco Winchester (HD) com pratos e braço;
 - Disco de estado sólido (SSD).
- Processo de utilização:
 - Compila o código do driver
 - insmod instala o objeto do driver.
 - *rmmod* remove o *driver*.

Drivers kernel software kernel I/O subsystem SCSI keyboard PCI bus floppy ATAPI mouse device device device device device device driver driver driver driver driver driver SCSI keyboard PCI bus floppy ATAPI mouse device device device device device device controller controller controller controller controller controller hardware ATAPI floppydevices SCSI keyboard PCI bus disk mouse (disks, devices drives tapes, drives)

Drivers – Parte dependente do dispositivo

- Podem ser carregados dinamicamente (por exemplo, **DLL**s).
- São utilizados para as solicitações de leitura/escrita realizadas pelo software:
 - Verificam o pedido realizado check-up;
 - Inicializam o dispositivo, se necessário;
 - Gerenciam as necessidades de energia do dispositivo;
 - Criam um *log* de eventos.

Sistema de Entrada e Saída Device Tree

ÂĎŒEDŝĐ

• TANENBAUM, Andrew S; BOS, Herbert. Sistemas operacionais modernos. 4a ed. São Paulo:

Pearson Education do Brasil, 2016. Capítulo 5.

https://plataforma.bvirtual.com.br/Acervo/Publicacao/1233

ĆËĖDĖ ĐËÆĖDĖDĖĖ PĖ

Sistema de Entrada e Saída

Prof. Otávio Gomes otavio.gomes@unifei.edu.br

