Sequential Pattern Mining

Ritesh Yadav

May 2020

Content

- Sequential Pattern and its Applications
- Sequential Pattern Mining
- Terminology in Sequential Pattern Mining
- Understanding a Sequence Database
- Sequential Pattern Mining Algorithms
- GSP: Generalized Sequential Patterns
- SPADE : Sequential Pattern Mining in Vertical Data Format
- CloSpan: Mining Closed Sequential Patterns
- Association Rule Mining

Sequential Pattern and its Applications

- A sequence pattern consists of sequences of ordered elements or events, recorded with or without a concrete notion of time.
- Customer shopping sequences: Purchase a smartphone first, then a sim card, and then a bluetooth earphone, within 6 months
- Medical treatments, science processes, stocks and markets
- Weblog click streams, calling patterns
- Biological sequences
- Common databases used in study of sequential pattern
 - Transaction DB
 - Sequence DB
 - Time-Series DB

Sequential Pattern Mining

- Data mining consists of extracting information from data stored in databases to understand the data and/or take decisions.
- Sequential Pattern mining is one of the most fundamental task of data mining.
- It is the mining of frequently occurring ordered events or sub sequences as pattern in sequence database.
- A sequence database stores a number of records, where all records are sequences of ordered events, with or without concrete notions of time.
- Sequential Patterns are used for targeted marketing and customer retention.

Terminology in Sequential Pattern Mining

- Given a pattern A, support of the sequence pattern A is the number of sequences in the database containing the pattern A.
- A pattern with support greater than the support threshold i.e. min-sup is called a frequent pattern.
- A sequential pattern of length I is called an I-pattern.
- A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.
- An **element** may contain set of items. Items within an element are unordered and we list them alphabetically.
- Hence given a set of sequences, Sequential Pattern Mining find the complete set of frequent subsequences which satisfies the min-sup thresold.

5 / 17

Understanding a Sequence Database

A Sequence Database :

SID	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

A Sequence : < (ef) (ab) (df) c b >

- The red box in a sequence denotes a single element.
- Alphabets in these elements are called items of that element.
- $\bullet < a(ab)d(cf) >$ is a subsequence of < a(abc)(ac)d(cf) >
- For **support thresold** min-sup = 2, <(ab)c> is a sequential pattern.

Sequential Pattern Mining Algorithms

- A huge number of possible sequential patterns are hidden in databases.
- Sequential Pattern Mining Algorithms comes into play here to select the important sequential patterns.
- A sequential pattern mining algorithm should
 - find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
 - be highly efficient, scalable
 - be able to incorporate various kinds of user-specific constraints.
- Apriori Property: If a subsequence s is infrequent, none of s's super-sequences can be frequent.
- Representative Algorithms : GSP, SPADE, PrefixSpan
- Mining Closed sequential Patterns : CloSpan

GSP: Generalized Sequential Patterns

Apriori-Based Sequential Pattern Mining

- The GSP algorithm finds all the length-1 candidates (using one database scan) and orders them with respect to their support ignoring ones for which support < min-sup i.e support thresold.
- Then for each level (i.e., sequences of length-k), the algorithm scans database to collect support count for each candidate sequence and generates candidate length-(k+1) sequences from length-k frequent sequences using Apriori.
- This is repeated until no frequent sequence or no candidate can be found.

8 / 17

		<a>		<c></c>	<d></d>	<e></e>	<f></f>
-	<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
		<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
- 1	<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
	<d>></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
1	<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
	<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
cf5						

Intial Candidates of length-1 :

- Scanning DB and counting support of these singelton candidates
- Generating lenth-2 candidates after removing those < min-sup
- ullet Length-2 Candidates with Apriori Pruning : 36+15=51
- Without Apriori pruning: 8*8 + 8*7/2 = 92

Drawbacks of GSP:

- a huge set of candidate sequences are generated
- multiple scans of database are needed
- it is inefficient for mining long sequential patterns.

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- This is a vertical format sequential pattern mining method.
- In this algorithm a sequence database is mapped to : < SID, EID >
- Sequential pattern mining is performed by growing the subsequences (patterns) one item at a time by Apriori candidate generation.
- A sequence database:

SID	Sequence
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
2	<(ad)c(bc)(ae)>
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>
4	<eg(af)cbc></eg(af)cbc>

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	$^{\mathrm{d}}$
1	5	cf
2	1	ad
2	2	C
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	c

ž.	a		b		
SID	EID	$_{ m SID}$	EID		
1	1	1	2		
1	2	2	3		
1	3	3	2		
2	1	3	5		
2	4	4	5		
3	2				
4	3				

	ab			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

aba				
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	
2	1	3	4	

CloSpan: Mining Closed Sequential Patterns

- CloSpan is an algorithm for the mining of closed repetitive gapped subsequences.
- Closed Sequential Patterns : There exists no superpattern s' such that $s' \subsetneq s$, and s' and s have the same support.
- Open Sequential Patterns : There exists superpattern s' such that $s' \subseteq s$, and s' and s have the same support.
- Given < abc > : 20, < abcd > : 20, < abcde > : 15, we know that < abcd > is closed.
- Directly mining closed sequences reduces number of redundant patterns and attain same expressive power.
- Note : If $s \subsetneq s'$, s is closed iff two project DBs have the same size.
- CloSpan uses backward subpattern and backward superpattern pruning to prune redundant search space thereby preventing unnecessary computations.

May 2020

13 / 17

First one is backward super pattern pruning and second one is backward sub pattern pruning.

Association Rule Mining

- Association rule mining finds interesting associations and relationships among large sets of data items.
- This rule shows how frequently a itemset occurs in a transaction.
- Given a set of transactions, we can find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.
- **Support Count :** Frequency of occurrence of a itemset.
- Frequent Itemset: An itemset whose support is greater than or equal to minsup threshold.
- Association Rule : An implication expression of the form A -> B, where A and B are any 2 itemsets.

Rule Evaluation Metrics

- **Support**: The number of transactions that include items in the A and B parts of the rule as a percentage of the total number of transaction. It measures how frequently collection of items occur together as a percentage of all transactions.
- Confidence(A=>B) = Supp(A ∪ B)/ Sup(A): It is the ratio of the no of transactions that includes all items in B as well as the no of transactions that includes all items in A to the no of transactions that includes all items in A. It measures how often each item in B appears in transactions that contains items in A also.
- Lift(A=>B) = Conf(A=>B)/ Supp(B): Lift value near 1 indicates X and Y almost often appear together as expected, greater than 1 means they appear together more than expected and less than 1 means they appear less than expected. Greater lift values indicate stronger association.

The End