C10 problems

Calculate V_1 and V_2 in the circuit shown in Fig. 10.6.

Practice Problem 10.2

Figure 10.6

For Practice Prob. 10.2.

Answer: $V_1 = 96.8 / 69.66^{\circ} \text{ V}, V_2 = 16.88 / 165.72^{\circ} \text{ V}.$

Calculate current I_o in the circuit of Fig. 10.11.

Answer: $6.089/5.94^{\circ}$ A.

Practice Problem 10.4

Figure 10.11
For Practice Prob. 10.4.

Practice Problem 10.6

Calculate v_o in the circuit of Fig. 10.15 using the superposition theorem.

Figure 10.15

For Practice Prob. 10.6.

Answer: $11.577 \sin(5t - 81.12^{\circ}) + 3.154 \cos(10t - 86.24^{\circ}) \text{ V}.$

Practice Problem 10.12

Figure 10.34

For Practice Prob. 10.12.

Obtain the closed-loop gain and phase shift for the circuit in Fig. 10.34. Let $R=10~\mathrm{k}\Omega$, $C=1~\mu\mathrm{F}$, and $\omega=1000~\mathrm{rad/s}$.

Answer: $1.0147, -5.6^{\circ}$.

Determine the equivalent capacitance of the op amp circuit in Fig. 10.41 if $R_1 = 10 \text{ k}\Omega$, $R_2 = 10 \text{ M}\Omega$, and C = 10 nF.

Answer: $10 \mu F$.

Figure 10.41

Capacitance multiplier.

In the Wien-bridge oscillator circuit in Fig. 10.42, let $R_1 = R_2 = 2.5 \text{ k}\Omega$, $C_1 = C_2 = 1 \text{ nF}$. Determine the frequency f_o of the oscillator.

Answer: 63.66 kHz.

Figure 10.42

Wien-bridge oscillator.

- 10.2 (s10.2)
- 10.4 (s10.3)
- 10.6 (s10.4)
- 10.12 (s10.7)
- 10.15 (s10.9)
- 10.16 (s10.9)