

SDS 384 11: Theoretical Statistics

Lecture 12: Uniform Law of Large Numbers- VC

dimension

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

Rademacher Complexity for general function classes

Recall that for $|f(x)| \leq 1$,

$$\begin{split} \|\hat{P}_n - P\|_{\mathcal{F}} &\leq 2\mathcal{R}_{\mathcal{F}} + \epsilon = 2E[E[\sup_{f \in \mathcal{F}} \sum_{i} \epsilon_i f(X_i)/n]|X] + \epsilon \\ &\leq 2E\sqrt{\frac{2\log(|\mathcal{F}(X_1^n) \cup -\mathcal{F}(X)|)}{n}} + \epsilon \\ &\leq \sqrt{\frac{8\log 2|\mathcal{F}(X_1^n)|}{n}} + \epsilon \end{split}$$

- How do I control $|\mathcal{F}(X_1^n)|$?
- How big is $\max_{X} |\mathcal{F}(X_1^n)|$?
- Let us focus on binary functions, i.e. $f(X_i) \in \{0,1\}$

Growth function

Definition

For a binary valued function class \mathcal{F} , the growth function is:

$$\Pi_{\mathcal{F}}(n) = \max\{|\mathcal{F}(x_1^n)|x_1,\dots,x_n \in \mathcal{X}\}\$$

- \mathcal{X} could be \mathbb{R}^d .
- $\mathcal{R}_{\mathcal{F}} \leq \sqrt{\frac{2\log(2\Pi_{\mathcal{F}}(n))}{n}}$
- $\Pi_{\mathcal{F}}(n) \leq 2^n$ (which is not really useful)
- We are looking for $\Pi_{\mathcal{F}}(n)$ growing polynomially with n.
 - Because then $\|\hat{P}_n P\|_{\mathcal{F}} \stackrel{P}{\to} 0$

Vapnik-Chervonenkis Dimension

Definition

A dichotomy of a set S is a partition of S into two disjoint subsets.

Definition (In words)

A set of instances S is shattered by a binary function class \mathcal{F} iff for every dichotomy of S, there is some function in \mathcal{F} consistent with this dichotomy.

Definition (In math)

A binary function class $\mathcal F$ shatters $(x_1,\ldots,x_n)\subseteq\mathcal X$, implies that $|\mathcal F(x_1^d)|=2^d$.

3

Vapnik-Chervonenkis Dimension

Definition

The VC dimension of a binary function class \mathcal{F} is given by

$$\begin{aligned} d_{VC}(F) &= \max\{d: \text{some } x_1, \dots, x_d \in \mathcal{X} \text{ is shattered by } \mathcal{F}\} \\ &= \max\{d: \Pi_{\mathcal{F}}(d) = 2^d\} \end{aligned}$$

• If the VC dimension of a function class is small, then $\Pi_{\mathcal{F}}(n)$ is small.

Sauer's lemma

Theorem

If $d_{VC}(F) \leq d$, then

$$\Pi_F(n) \leq \sum_{i=0}^d \binom{n}{i}.$$

If $n \ge d$, the latter sum is no more than $(en/d)^d$.

 So we have the growth function is either polynomially growing with d, or 2ⁿ.

$$\Pi_{F}(n) = \begin{cases} = 2^{n} & \text{If } n \leq d \\ \leq \left(\frac{en}{d}\right)^{d} & \text{If } n > d \end{cases}$$

5

VC dimension-examples

Example

Let
$$\mathcal{F}=\{1_{(-\infty,t]}:t\in\mathbb{R}\}$$
 and $\mathcal{X}=\mathbb{R}.$ Then $d_{VC}(\mathcal{F})=1.$

- First show that there exists some configuration of one point, which can be shattered by F.
 - For any point x, if x has label 1, use t > x
 - If x has label 0, use t < x.
- Now show that there exists no two points which can be shattered by \mathcal{F} . (this takes a bit of an argument in more complex cases.)
 - For any two points (x, y) the labeling (0, 1) cannot be achieved by any function in \mathcal{F} .

VC dimension-examples

Example

Let \mathcal{F} be linear classifiers in $\mathcal{X} = \mathbb{R}^2$. Then $d_{VC}(\mathcal{F}) = 3$.

- First show that there exists some configuration of 3 points, which can be shattered by F.
 - Purna draws picture, and if you miss class, you can easily draw a
 picture to see this.
- Now show that there exists no 4 points which can be shattered by F. (this takes a bit of an argument.)

VC dimension-examples

Example

Let \mathcal{F} be linear classifiers in $\mathcal{X} = \mathbb{R}^2$. Then $d_{VC}(\mathcal{F}) = 3$.

- Now show that there exists no 4 points which can be shattered by F. (this takes a bit of an argument.)
 - Take 4 non-collinear points. If they are collinear, it is easy to find label configurations which cannot be shattered by a linear classifier.
 - The convex hull of these points will either be a triangle, or a quadrilateral.
 - In case the convex hull is a triangle, and there is a third point inside the convex hull, give all the points on the hull label 1 and the one inside label 0.
 - If three points are collinear or the convex hull is a quadrilateral, then just label the consecutive points with alternative labels.

VC dimension: rectangles

Example

Let $\mathcal F$ be classifiers which classify the interior (plus boundary) as one of axis aligned rectangles in $\mathcal X=\mathbb R^2$. Then $d_{VC}(\mathcal F)=4$.