BERNOIA, INFERENCIA CAUSAL

del Mazo Federico Dvorkin, Camila Faretta Yanina Mac Gaul, Pedro Rombolá, Juan Pablo

AGENDA

OI INTRODUCCIÓN	O2 MOTOR DE INFERENCIA	
03	04	
INFERENCIA CAUSAL	CONCLUSIONES	

Recomendador de cervezas 2023

INTRODUCCIÓN

ALGUNOS DATOS INTERESANTES DE LA CERVEZA

La cerveza se elaboraba ya en Mesopotamia alrededor del año 4000 a.C. El primer viernes de agosto de cada año se celebra el Día Internacional de la Cerveza La cerveza es la tercera bebida más consumida en el mundo, después del agua y el té.

Se cree que constructores de las pirámides egipcias recibían cerveza como compensación diaria.

En Austria, existe una piscina con 42,000 litros de cerveza que no tiene nada que envidiar al spa de cerveza argentino.

La cenosillicafobia es el miedo irracional a un vaso vacío y se suele asociar a la cerveza

TRABAJO PREVIO

Recomendador de cervezas 2023

02

MOTOR DE INFERENCIA

ELECCIÓN DE MECANISMO DE INFERENCIA

- ✓ intuitivo en problemas con información inicial
- vitil para reglas en función de los hechos iniciales
- 🔀 lento si hay muchas reglas
- ino es óptimo para soluciones específicas

ELECCIÓN DE MECANISMO DE INFERENCIA

- eficiente cuando se tiene un objetivo concreto en mente rápido en situaciones con muchas reglas
- no es intuitivo requiere más interacciones con el usuario

ATRÁS

MOTOR DE INFERENCIA

```
class ForwardChainingEngine {
  _countEqualConditionsMatched(conditions) {
   let count = 0;
       if (this.facts[condition.key] === condition.value) {
   return count;
  countAnyConditionsMatched(conditions) {
   let count = 0:
     .forEach((condition) => {
       if (values && values.some((v) => conditionvalues.includes(v))) {
  run(initialFacts) {
   return this._applicableRules(initialFacts);
```

Solución: encadenamiento hacia adelante, porque partimos de información inicial proporcionada por el usuario

Recomendador de cerveza 2023

DEMO

Recomendador de cervezas 2023

INFERENCIA CAUSAL

OBJETIVOS

- Utilizar DoWhy para estimar el efecto causal de nuestro set de datos.
- Modelar relaciones causales entre los atributos de la cerveza para comprender las preferencias de los usuarios.
- Realizar pruebas de placebo para refutar estimaciones iniciales y validar conclusiones causales.
- Analizar la correlación de los atributos de la cerveza (IA explicable)

DOWHY

GENERACIÓN DE DATOS SINTÉTICOS

	color	cuerpo	malta	IBU	ABV	maridaje	cerveza	treatment
0	0	2	3	1	1	3	4	True
1	0	2	3	1	1	5	4	True
2	0	2	3	1	1	1	4	True
3	0	2	3	1	1	0	4	True
4	0	2	3	1	1	2	4	True
11995	1	1	2	5	5	5	7	False
11996	1	1	2	5	5	1	7	True
11997	1	1	2	5	5	0	5	True
11998	1	1	2	5	5	2	5	True
11999	1	1	2	5	5	4	7	True
12000 rows × 8 columns								

True 9066 False 2934

MODELADO CAUSAL

Probamos varios modelos causales:

- 1) Utilizando cada atributo (color, cuerpo, malta, IBU, ABV, y maridaje) como una variable de tratamiento.
- 2) Excluyendo cada atributo a la vez para observar los cambios en la influencia de las otras características.

MODELADO CAUSAL

Por ejemplo 1)

MODELADO CAUSAL

Por ejemplo 2)

ESTIMACIÓN DE EFECTOS CAUSALES

Resultados: en todos los casos, el efecto estimado cambió significativamente tras aplicar una refutación

Conclusión: nuestros atributos de cerveza en las recomendaciones podrían no ser causales.

Refute: Use a Placebo Treatment Estimated effect:-1.342598720494154 New effect:0.004378998455768803 p value:0.47952148524809185

REFUTACIÓN DE ESTIMACIONES

Resultados: P values mayores a 0.21 en todos los casos

Conclusión:

- Ningún atributo, considerado individualmente, tiene un impacto significativo
- Podrían existir otros factores no capturados en el modelo

```
Refute: Use a Placebo Treatment
Estimated effect:-1.342598720494154
New effect:0.004378998455768803
p value:0.47952148524809185
```

ANÁLISIS DE FACTORES CON IA

La relevancia de cada una de las características es la esperada

ANÁLISIS DE FACTORES CON IA

Rendimiento del modelo extremadamente alto: overfitting

Recomendador de cervezas 2023

CONCLUSIONES

CONCLUSIONES

- Características de cerveza sin impacto causal claro.
- P values elevados que refutan causalidad directa.
- Modelo actual requiere refinamiento y más datos.
- Posiblemente existan factores adicionales influyentes.

GRACIAS!

PREGUNTAS?