Stock Price Prediction

Phase 2 Submission Document

INTRODUCTION:

- ✓ In recent years, the financial industry has witnessed a surge in the adoption of artificial intelligence and deep learning techniques to enhance decision-making processes, particularly in the domain of stock price prediction.
- ✓ Deep learning, a subset of machine learning, has proven to be exceptionally effective in handling complex and non-linear data patterns, making it a promising approach for forecasting stock prices.
- ✓ This research aims to explore the application of deep learning techniques, particularly recurrent neural networks (RNNs) and convolutional neural networks (CNNs), in predicting stock prices.
- ✓ RNNs excel at capturing sequential dependencies in time-series data, which is crucial in modeling stock price movements over

CNNs, with their ability to extract hierarchical features, can be employed to analyse various technical indicators and sentiment data.

- ✓ Briefly introduce the real estate market and the importance of accurate Stock price prediction.
- ✓ Emphasize the need for more advanced deep learning techniques like CNN-LSTM or attention mechanisms for improved accuracy in predicting stock prices.

Content for Project Phase 2:

Consider exploring more advanced deep learning techniques like CNN-LSTM or attention mechanisms for improved accuracy in predicting stockprices.

Data Source:

A good data source for stock price prediction using deep learning should be Accurate, Complete, Covering the geographic area of interest, Accessible.

Dataset Link: https://www.kaggle.com/datasets/prasoonkottarathil/microsoft-lifetime-stocks-dataset

Date		Open	High	Low	Close	Adj Close	Volume
	13/03/1986	0.08854	0.10156	0.08854	0.09722	0.06255	1031788800
	14/03/1986	0.09722	0.10243	0.09722	0.10069	0.06478	308160000
	17/03/1986	0.10069	0.1033	0.10069	0.10243	0.0659	133171200
	18/03/1986	0.10243	0.1033	0.09896	0.09983	0.06422	67766400
	19/03/1986	0.09983	0.10069	0.09722	0.09809	0.06311	47894400
	20/03/1986	0.09809	0.09809	0.09462	0.09549	0.06143	58435200
	21/03/1986	0.09549	0.09722	0.09115	0.09288	0.05976	59990400
	24/03/1986	0.09288	0.09288	0.08941	0.09028	0.05808	65289600
	25/03/1986	0.09028	0.09201	0.08941	0.09201	0.0592	32083200
	26/03/1986	0.09201	0.09549	0.09115	0.09462	0.06087	22752000
	27/03/1986	0.09462	0.09635	0.09462	0.09635	0.06199	16848000
	31/03/1986	0.09635	0.09635	0.09375	0.09549	0.06143	12873600
	01/04/1986	0.09549	0.09549	0.09462	0.09462	0.06087	11088000
	02/04/1986	0.09462	0.09722	0.09462	0.09549	0.06143	27014400
	03/04/1986	0.09635	0.09896	0.09635	0.09635	0.06199	23040000
	04/04/1986	0.09635	0.09722	0.09635	0.09635	0.06199	26582400
	07/04/1986	0.09635	0.09722	0.09288	0.09462	0.06087	16560000
	08/04/1986	0.09462	0.09722	0.09462	0.09549	0.06143	10252800
	09/04/1986	0.09549	0.09809	0.09549	0.09722	0.06255	12153600
	10/04/1986	0.09722	0.09896	0.09549	0.09809	0.06311	13881600
	11/04/1986	0.09896	0.10156	0.09896	0.09983	0.06422	17222400
	14/04/1986	0.09983	0.10156	0.09983	0.10069	0.06478	12153600
	15/04/1986	0.10069	0.10069	0.09722	0.10069	0.06478	9302400

Data Collection and Preprocessing:

- ✓ Data Preparation: Gathering historical stock price data, economic indicators, news sentiment scores, and other relevant features for model training and testing.
- ✓ Model Architecture: Designing and implementing deep learning models, including RNNs and CNNs, to learn and predict stock price movements.

Exploratory Data Analysis (EDA):

- ✓ EDA provides valuable insights into the data, and the visualizationshelp to communicate these insights effectively.
- ✓ By performing EDA, we can identify trends, patterns, and relationships that may not be immediately apparent from the data.
- ✓ This knowledge can then be used to inform further analysis and decision-making.

Feature Engineering:

- ✓ Create new features or transform existing ones to capture valuable information.
- ✓ Utilize domain knowledge to engineer features that may impact stock prices, such as proximity to schools, transportation, or crimerates.
- ✓ Explain the process of creating new features or transforming existing ones.
- ✓ Showcase domain-specific feature engineering, such as proximity scores or composite indicators.
- ✓ Emphasize the impact of engineered features on model performance.

Advanced Regression Techniques:

- 1) Convolutional Neural Networks (CNNs): Can take technical indicators' 2-D images as inputs and predict the stock price.
- 2) Long Short Term Memory Networks (LSTMs): Models are extremely powerful time-series models. They can predict an arbitrary number of steps into the future.
- 3) Recurrent Neural Networks (RNNs): is used on time-series data of the stocks.
- 4) Generative Adversarial Networks (GANs):Used for image and video generation, and even for style transfer.
- 5) Radial Basis Function Networks (RBFNs): A particular type of Artificial Neural Network used for function approximation problems.
- 6) Self-Supervised learning: Learning from unlabelled data using pretext tasks, e.g., contrastive learning.

Model Evaluation and Selection:

- ✓ Split the dataset into training and testing sets.
- ✓ Evaluate models using appropriate metrics
- ✓ Use cross-validation techniques to tune hyperparameters and ensure model stability.
- ✓ Compare the results with traditional Convolutional NeuralNetworks to highlight improvements.
- ✓ Select the best-performing model for further analysis.

Model Interpretability:

✓ Explain how to interpret feature importance from attention mechanisms for improved accuracy in predicting stock prices.

- ✓ Discuss the insights gained from feature importance analysis and their relevance to stock price prediction.
- ✓ Interpret feature importance from ensemble models advanced deep learning techniques like CNN-LSTM or attention mechanisms for improved accuracy in predicting stock prices.

.Deployment and Prediction:

- ✓ Deploy the chosen regression model to predict house prices.
- ✓ Develop a user-friendly interface for users to input propertyfeatures and receive price predictions.

Program:

Stock Price Prediction

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb

from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from xgboost import XGBClassifier from sklearn import metrics

import warnings
warnings.filterwarnings('ignore')

In[1]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset_train = pd.read_csv('D:\data\msft.csv')
print('shape is = {}'.format(dataset_train.shape))
print(dataset_train.head())
```

Out[1]:

```
shape is = (8525, 7)

Date Open High Low Close Adj Close Volume
0 3/13/1986 0.088542 0.101563 0.088542 0.097222 0.062549 1031788800
1 3/14/1986 0.097222 0.102431 0.097222 0.100694 0.064783 308160000
2 3/17/1986 0.100694 0.103299 0.100694 0.102431 0.065899 133171200
3 3/18/1986 0.102431 0.103299 0.098958 0.099826 0.064224 67766400
4 3/19/1986 0.099826 0.100694 0.097222 0.098090 0.063107 47894400
```

In[2]:

Print(df.shape)

Out[2]:

(8525, 7)

In[3]:

Print(df.describe())

Out[3]:

```
Adj Close
                                                           Volume
              0pen
                           High
count
       8525.000000
                    8525.000000
                                       8525.000000
                                                    8.525000e+03
         28.220247
                      28.514473
                                         23.417934
                                                    6.045692e+07
mean
         28.626752
                      28.848988
                                         28.195330
                                                    3.891225e+07
std
          0.088542
                       0.092014
                                          0.058081
                                                    2.304000e+06
min
25%
          3.414063
                                                    3.667960e+07
                       3.460938
                                          2.196463
50%
         26.174999
                      26.500000
                                                    5.370240e+07
                                         18.441576
75%
                     34.669998
                                                    7.412350e+07
         34.230000
                                         25.392508
        159.449997
                     160.729996
                                        160.619995
                                                    1.031789e+09
max
[8 rows x 6 columns]
```

In[4]:

```
df = pd.read_csv('D:\data\msft.csv')
print(df.head())
plt.figure(figsize=(15,5))
plt.plot(df['Close'])
plt.title('Stock price prediction ', fontsize=15)
plt.ylabel('Stock')
plt.show()
```

Out[4]:

In[5]:

```
df = pd.read_csv('D:\data\msft.csv')
print(df.head())
features = ['Open', 'High', 'Low', 'Close', 'Volume']
plt.subplots(figsize=(20,10))
for i, col in enumerate(features):
    plt.subplot(2,3,i+1)
    sb.distplot(df[col])
plt.show()
```

Out[5]:

In[6]:

```
df = pd.read_csv('D:\data\msft.csv')
df.head()
features = ['Open', 'High', 'Low', 'Close', 'Volume']
plt.subplots(figsize=(20,10))
for i, col in enumerate(features):
    plt.subplot(2,3,i+1)
    sb.boxplot(df[col])
plt.show()
```

Out[6]:

In[7]:

```
df = pd.read_csv('D:\data\msft.csv')
splitted = df['Date'].str.split('/', expand=True)
df['day'] = splitted[1].astype('int')
df['month'] = splitted[0].astype('int')
df['year'] = splitted[2].astype('int')
print(df.head())
```

Out[7]:

```
Date
                  0pen
                            High
                                       Low
                                                     Volume
                                                             day
                                                                          year
  3/13/1986 0.088542 0.101563
                                0.088542
                                                 1031788800
                                                              13
                                                                          1986
  3/14/1986 0.097222 0.102431 0.097222
                                                  308160000
                                                                         1986
                                                              14
  3/17/1986 0.100694
                        0.103299
                                 0.100694
                                                  133171200
                                                              17
                                                                         1986
  3/18/1986
            0.102431
                        0.103299
                                  0.098958
                                                   67766400
                                                                          1986
  3/19/1986 0.099826
                       0.100694
                                 0.097222
                                                   47894400
                                                              19
                                                                         1986
[5 rows x 10 columns]
```

In[8]:

```
data_grouped = df.groupby('year').mean()
plt.subplots(figsize=(20,10))
for i, col in enumerate(['Open', 'High', 'Low', 'Close']):
    plt.subplot(2,2,i+1)
    data_grouped[col].plot.bar()
plt.show()
```

Out[8]:

In[9]:

df['is_quarter_end'] = np.where(df['month']%3==0,1,0)
df.head()

Out[9]:

	Date	Open	High	Low	Close	Volume	day	month	year	is_quarter_end
0	6/29/2010	19.000000	25.00	17.540001	23.889999	18766300	29	6	2010	1
1	6/30/2010	25.790001	30.42	23.299999	23.830000	17187100	30	6	2010	1
2	7/1/2010	25.000000	25.92	20.270000	21.959999	8218800	1	7	2010	0
3	7/2/2010	23.000000	23.10	18.709999	19.200001	5139800	2	7	2010	0
4	7/6/2010	20.000000	20.00	15.830000	16.110001	6866900	6	7	2010	0

In[10]:

df.groupby('is_quarter_end').mean()

Out[10]:

	0pen	High	Low	Close	Volume	day	month	year
is_quarter_end								
0	130.813739	133.182620	128.257229	130.797709	4.461581e+06	15.686501	6.141208	2013.353464
1	135.679982	137.927032	133.455777	135.673269	3.891084e+06	15.657244	7.584806	2013.314488

In[11]:

Out[11]:

In[12]:

plt.figure(figsize=(10, 10))
sb.heatmap(df.corr() > 0.9, annot=True, cbar=False)
plt.show()

Out[12]:

In[13]:

```
models = [LogisticRegression(), SVC(
kernel='poly', probability=True), XGBClassifier()]
for i in range(3):
  models[i].fit(X_train, Y_train)
```

```
print(f'{models[i]}:')
print('Training Accuracy:', metrics.roc_auc_score(
Y_train, models[i].predict_proba(X_train)[:,1]))
print('Validation Accuracy:', metrics.roc_auc_score(
Y_valid, models[i].predict_proba(X_valid)[:,1]))
print()
```

Out[13]:

```
LogisticRegression():
Training Accuracy: 0.5191709844559586
Validation Accuracy: 0.5435330347144457

SVC(kernel='poly', probability=True):
Training Accuracy: 0.4718091537132988
Validation Accuracy: 0.4451987681970885

XGBClassifier():
Training Accuracy: 0.7829611398963732
Validation Accuracy: 0.5706187010078387
```

In[14]:

metrics.plot_confusion_matrix(models[0], X_valid, Y_valid)
plt.show()

Out[14]:

In[15]:

```
features = df[['open-close', 'low-high', 'is_quarter_end']]
target = df['target']
scaler = StandardScaler()
features = scaler.fit_transform(features)
X_train, X_valid, Y_train, Y_valid = train_test_split(
    features, target, test_size=0.1, random_state=2022)
print(X_train.shape, X_valid.shape)

Out[15]:
(1522, 3) (170, 3)
```

Conclusion and Future Work (Phase 2):

Project Conclusion:

- In the Phase 2 conclusion, we will summarize the key findings and insights from the advanced regression techniques. We will reiterate the impact of these techniques on improving the accuracy and robustness of stock price predictions.
- Future Work: We will discuss potential avenues for future work, such as incorporating additional data sources exploring deep learning models for prediction, or expanding the project into a web application with more features and interactivity

