2-input 2-output Framework

2-input 2-output Framework

We introduce the control framework by separating internal signals from external signals.

Output Signals:

- z: Output to be controlled/minimized
 - ► Regulated output
- y: Output used by the controller
 - ▶ Must be measured in real-time by sensor
 - ▶ May replicate signals from regulated output

Input Signals:

- w: Disturbance, Tracking Signal, etc.
 - exogenous input
- u: Output from controller
 - Input to actuator
 - Not related to external input

M. Peet

Lecture 18:

...

Locture 19

The Optimal Control Framework

The controller closes the loop from y to u.

For a linear system P, we have 4 subsystems.

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}$$

All G_{ij} are MIMO

 $P_{11}: w \mapsto z$

 $P_{12}: u \mapsto z$

 $P_{21}: w \mapsto y$

 $P_{22}: u \mapsto y$

The Regulator

If we define

$$z_2 = u$$

$$q = w_1 + w_2$$

$$z_1 = y_p$$

$$u = r + w_0$$

The Regulator

The reconfigured plant P is given by

$$\begin{bmatrix} z_1(t) \\ z_2(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} P_0 & 0 & P_0 \\ 0 & 0 & I \\ P_0 & I & P_0 \end{bmatrix} \begin{bmatrix} w_1(t) \\ w_2(t) \\ u(t) \end{bmatrix}$$

If
$$P_0 = (A, B, C, D)$$
, then

$$P = \begin{bmatrix} A & B & 0 & B \\ \hline C & D & 0 & D \\ 0 & 0 & 0 & I \\ C & D & I & D \end{bmatrix}$$

Diagnostics

M. Peet

Lecture 18:

F / 20

M Post

1 . 10

Tracking Control

 $r = \ {\rm tracking \ input}$

 $w_2 = n_{proc}$

 $w_1 = r$

 $e = \ {\rm tracking \ error}$

 $w_3 = n_{sensor}$

u = u

 $n_{proc} = \,\, {
m process} \,\, {
m noise}$

 $z_1 = e$

 $y_1 = r$

 $n_{sensor} =$ sensor noise

 $z_2 = u$

 $y_2 = y_p$

Tracking Control

$$P = \begin{bmatrix} I & -P_0 & 0 & -P_0 \\ 0 & 0 & 0 & I \\ I & 0 & 0 & 0 \\ 0 & P_0 & I & P_0 \end{bmatrix}$$

$$z_1 = r - P_0(n_{proc} + u)$$

$$z_2 = u$$

$$y_1 = r$$

$$y_2 = w_3 + P_0(n_{proc} + u)$$

M. Peet

Lecture 18:

7 / 20

M. Peet

Lecture 18:

8 / 20

Linear Fractional Transformation

Close the loop

Plant:

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix} \quad \text{where} \quad P = \begin{bmatrix} A & B_1 & B_2 \\ \hline C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}$$

Controller:

$$u = Ky$$
 where $K = \begin{bmatrix} A_K & B_K \\ \hline C_K & D_K \end{bmatrix}$

M. Peet

Lecture 18:

0 / 00

Linear Fractional Transformation

$$z = P_{11}w + P_{12}u$$
$$y = P_{21}w + P_{22}u$$
$$u = Ky$$

Solving for u,

$$u = KP_{21}w + KP_{22}u$$

Thus

$$(I - KP_{22})u = KP_{21}w$$

 $u = (I - KP_{22})^{-1}KP_{21}w$

Now we solve for z:

$$z = [P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}] w$$

Linear Fractional Transformation

This expression is called the Linear Fractional Transformation of (P, K), denoted

$$S(P, K) := P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}$$

AKA: Lower Star Product

Other Fractional Transformations

Lower LFT:

$$\underline{\mathsf{S}}(P,K) := P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}$$

Upper LFT:

$$\bar{S}(P,K) := P_{22} + P_{21}Q(I - P_{11}Q)^{-1}P_{12}$$

M. Peet

Lecture 18:

11 / 20

M. Pee

Lecture 18:

Other Fractional Transformations

Star Product:

$$S(P,K) := \begin{bmatrix} \underline{S}(P,K_{11}) & P_{12}(I - K_{11}P_{22})^{-1}K_{12} \\ K_{21}(I - P_{22}K_{11})^{-1}P_{21} & \bar{S}(K,P_{22}) \end{bmatrix}$$

M. Peet

Lecture 18:

12 / 20

Well-Posedness

The interconnection doesn't always make sense.

Definition 1.

The interconnection $\underline{\mathsf{S}}(P,K)$ is **well-posed** if for any smooth w and any x(0) and $x_K(0)$, there exist functions x,x_K,u,y,z such that

$$\begin{split} \dot{x}(t) &= Ax(t) + B_1 w(t) + B_2 u(t) & \dot{x}_K(t) = A_K x_K(t) + B_K y(t) \\ z(t) &= C_1 x(t) + D_{11} w(t) + D_{12} u(t) & u(t) = C_K x_K(t) + D_K y(t) \\ y(t) &= C_2 x(t) + D_{21} w(t) + D_{22} u(t) \end{split}$$

Note: The solution does not need to be in L_2 .

• Says nothing about stability.

Well-Posedness

In state-space format:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{x}_K(t) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} w(t)$$
$$z(t) = \begin{bmatrix} C_1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} D_{12} & 0 \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} + D_{11}w(t)$$

From

$$u(t) = D_K y(t) + C_K x_K(t)$$

$$y(t) = D_{22} u(t) + C_2 x(t) + D_{21} w(t)$$

We have

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix} \begin{bmatrix} u(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_K(t) \end{bmatrix} + \begin{bmatrix} 0 \\ D_{21} \end{bmatrix} w(t)$$

Because the rest is state-space, the interconnection is well-posed if and only if the matrix $\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}$ is invertible.

Well-Posedness

Question: When is

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}$$

invertible?

Answer: 2x2 matrices have a closed-form inverse

$$\begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} = \begin{bmatrix} I + D_K Q D_{22} & D_K Q \\ Q D_{22} & Q \end{bmatrix}$$

where $Q = (I - D_{22}D_K)^{-1}$.

Proposition 1.

The interconnection $\underline{S}(P,K)$ is well-posed if and only if $(I-D_{22}D_K)$ is invertible.

- Equivalently $(I D_K D_{22})$ is invertible.
- Sufficient conditions: $D_K = 0$ or $D_{22} = 0$.
- ullet To optimize over K, we will need to enforce this constraint somehow.

 Peet
 Lecture 18:
 15 / 20
 M. Peet
 Lecture 18:

Optimal Control

Definition 2.

The Optimal H_{∞} -Control Problem is

$$\min_{K\in H_\infty} \lVert \underline{\mathsf{S}}(P,K) \rVert_{H_\infty} = \lVert \underline{\mathsf{S}}(P,K) \rVert_{\mathcal{L}(L_2)}$$

 \bullet Also Optimal H_{∞} dynamic-output-feedback Control Problem

Definition 3.

The **Optimal** H_2 -Control Problem is

$$\min_{K\in H_\infty} \|\underline{\mathsf{S}}(P,K)\|_{H_2} \quad \text{such that}$$

$$\underline{\mathsf{S}}(P,K)\in H_\infty.$$

Optimal Control

Choose K to minimize

$$||P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}||_{H_{\infty}}$$

Equivalently choose $\left[\begin{array}{c|c} A_K & B_K \\ \hline C_K & D_K \end{array} \right]$ to minimize

$$\left\| \begin{bmatrix} \begin{bmatrix} A & 0 \\ 0 & A_K \end{bmatrix} + \begin{bmatrix} B_2 & 0 \\ 0 & B_K \end{bmatrix} \begin{bmatrix} I & -D_K \\ -D_{22} & I \end{bmatrix}^{-1} \begin{bmatrix} 0 & C_K \\ C_2 & 0 \end{bmatrix} & B_1 + B_2 D_K Q D_{21} \\ B_K Q D_{21} \end{bmatrix} \right\|_{H_{\infty}}$$

where $Q = (I - D_{22}D_K)^{-1}$.

In either case, the problem is Nonlinear.

M. Peet

Lecture 18:

-- / --

M Post

Locturo 19

Optimal Control

There are several ways to address the problem of nonlinearity.

$$||P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}||_{H_{\infty}}$$

Variable Substitution: The easiest way to make the problem linear is by declaring a new variable $R:=(I-KP_{22})^{-1}K$

The optimization problem becomes: Choose ${\cal R}$ to minimize

$$||P_{11} + P_{12}RP_{21}||_{H_{\infty}}$$

Optimal Control

We optimize

$$||P_{11} + P_{12}(I - KP_{22})^{-1}KP_{21}||_{H_{\infty}} = ||P_{11} + P_{12}RP_{21}||_{H_{\infty}}$$

Once, we have the optimal R, we can recover the optimal K as

$$K = R(I + RP_{22})^{-1}$$

Problems:

- how to optimize $\|\cdot\|_{H_{\infty}}$.
- Is the controller stable?
 - ▶ Does the inverse $(I + RP_{22})^{-1}$ exist? Yes.
 - ► Is it a bounded linear operator?
 - ► In which space?
- An important branch of control.
 - Coprime factorization
 - ► Youla parameterization
- We will sidestep this body of work.

M. Peet Lecture 18: 19 / 20 M. Peet Lecture 18: 20 / 2