Limiting the Search Space in Optimal Quantum Circuit Mapping

Lukas Burgholzer¹, Sarah Schneider¹, and Robert Wille^{1,2}

¹Johannes Kepler University Linz, Austria

²Software Competence Center Hagenberg (SCCH), Austria {lukas.burgholzer, sarah.schneider, robert.wille}@jku.at

https://iic.jku.at/eda/research/quantum/

The Quantum Circuit Compilation Flow

Conceptional algorithm

Limited Gate Set

Synthesis

Limited Connectivity

Mapping

Limited Fidelity and Coherence

Optimizations

Actual Realization

Quantum Circuit Mapping

Different approaches for mapping offer trade-off between runtime vs quality of result

Naive Approach $q_0 \mapsto Q_0 \xrightarrow{q_1} q_2 \xrightarrow{q_2} q_2$ $q_1 \mapsto Q_1 \xrightarrow{q_2} q_2 \xrightarrow{q_3} q_3$ $q_3 \mapsto Q_3 \xrightarrow{q_3} q_3$

Optimal Quantum Circuit Mapping

Different Objectives: gate-count, depth, fidelity

- Valid mapping makes every gate executable
- Each permutation layer consists of *n*! possible choices
- Permutations are eventually realized as sequences of swaps
- Goal: minimize the number of swaps

Visualizing the Search Space

Limiting the Search Space

If K is the longest, direct path on the architecture, then only those permutations with up to K-1 swaps need to be considered!

Limiting the Search Space II

Considering subsets of qubits

Permutations not affecting the qubits of a gate can be ignored

Experimental Results

				Without Subgraphs					With Subgraphs				
Bench			JKQ QMAP [20]		Architecture Limit (Section V-A)			JKQ QMAP [20]		Subgraph Limit (Section V-B)			
Name	n	G	\overline{c}	$ \Pi $	t_{ref} [s]	$ \Pi' $	t_{prop} [s]	t_{ref}/t_{prop}	$ \Pi $	t_{ref} [s]	$\overline{ \Pi' }$	t_{prop} [s]	t_{ref}/t_{prop}
4_49_16	5	217	207	26 040	>1 h	3 472	171.15	-	26 040	>1 h	3 472	171.07	
hwb4_49	5	233	213	27 960	>1 h	3 728	198.45	-	27 960	>1 h	3 728	199.57	-
mod10_171	5	244	285	29 280	>1 h	3 904	291.04	-	29 280	>1 h	3 904	283.86	-
mini-alu_167	5	288	330	34 560	>1 h	4 608	477.25	-	34 560	>1 h	4 608	475.06	-
one-two-three-v0_97	5	290	234	34 800	>1 h	4 640	364.29	_	34 800	>1 h	4 640	363.97	-
alu-v2_31	5	451	375	54 120	>1 h	7 2 1 6	1 418.29	-	54 120	>1 h	7 2 1 6	1 413.01	-
decod24-v3 45	5	150	156	18 000	1750.86	2400	57.53	30.43	18 000	1738.25	2 400	58.65	29.64
aj-e11_165	5	151	129	18 120	1691.31	2416	47.90	35.31	18 120	1 689.52	2416	47.94	35.25
4mod7-v1 96	5	164	123	19680	1679.76	2 624	51.87	32.39	19680	1 655.91	2 624	51.49	32.16
alu-v2 32	5	163	117	19 560	1 481.97	2608	48.19	30.75	19 560	1 477.13	2608	47.59	31.04
4gt10-v1 81	5	148	111	17 760	1 319.27	2368	40.84	32.30	17760	1 347.52	2368	41.16	32.74
one-two-three-v0 98	5	146	108	17 520	1 227.19	2336	44.85	27.36	17 520	1 254.30	2336	46.91	26.74
one-two-three-v1_99	5	132	108	15 840	1071.84	2112	35.53	30.16	15 840	1 056.80	2112	35.24	29.99
4gt5_77	5	131	99	15 720	914.56	2 096	31.16	29.35	15 720	927.59	2 096	31.53	29.42
4gt13_91	5	103	93	12 360	632.21	1648	20.17	31.34	12 360	651.83	1648	20.27	32.15
miller 11	3	50	27	6 000	624.63	800	0.33	1880.11	300	0.11	150	0.06	1.91
alu-v4 36	5	115	87	13 800	594.61	1 840	20.36	29.20	13 800	586.32	1840	20.70	28.33
4gt5_76	5	91	84	10 920	444.35	1 456	0.35	1 254.61	10 920	458.90	1 456	0.35	1 298.82
decod24-v1 41	5	85	84	10 200	344.17	1 360	11.10	31.00	10 200	341.90	1 360	11.46	29.84
decod24-v1_41 decod24-v2_43	4	52	27	6240	254.36	832	0.24	1 047.78	1 248	26.65	468	0.32	83.75
4mod5-v1 23	5	69	66	8 280	198.41	1 104	6.55	30.31	8 280	210.68	1 104	6.56	32.11
	5		78	7 920							1 104		
4gt13_92		66 84	78 54		193.88	1 056	5.79	33.49	7 9 2 0	196.83		5.75 5.64	34.23
rd32_270	5			10 080	155.96	1 344	5.59	27.89	10 080	155.42	1 344		27.58
4mod5-v0_18	5	69	48	8 280	135.65	1 104	3.52	38.57	8 280	144.92	1 104	3.44	42.15
one-two-three-v2_100	5	69	48	8 280	133.85	1 104	0.23	577.65	8 280	131.56	1 104	0.23	580.92
mod5d2_64	5	53	42	6360	84.36	848	0.22	385.96	6360	83.82	848	0.22	381.36
alu-v1_28	5	37	30	4 440	65.02	592	0.13	506.02	4 440	65.82	592	0.13	508.11
3_17_13	3	36	18	4 3 2 0	35.31	576	0.26	137.53	216	0.08	108	0.04	1.92
rd32-v1_68	4	36	18	4 3 2 0	12.85	576	0.13	102.67	864	0.51	324	0.17	2.96
rd32-v0_66	4	34	18	4 080	12.83	544	0.12	103.10	816	0.51	306	0.17	2.97
4gt13_90	5	107	114	12 840	10.73	1712	0.30	35.36	12840	10.90	1712	0.30	36.02
mod5mils_65	5	35	24	4 200	2.53	560	0.12	21.51	4 200	2.49	560	0.12	21.13
alu-v4_37	5	37	30	4 440	2.26	592	0.15	14.71	4 440	2.25	592	0.16	14.47
one-two-three-v3_101	5	70	66	8 400	1.69	1 120	0.26	6.45	8 400	1.65	1 120	0.27	6.20
alu-v3_34	5	52	51	6 2 4 0	1.57	832	0.19	8.44	6 2 4 0	1.60	832	0.19	8.60
decod24-v0_38	4	51	27	6 1 2 0	1.33	816	0.31	4.26	1 224	35.77	459	0.82	43.49
qe_qft_5	5	107	9	12 840	0.99	1712	0.22	4.54	12840	0.97	1712	0.22	4.4
4mod5-v0 19	5	35	30	4 200	0.96	560	0.83	1.16	4 200	1.43	560	0.82	1.74
4gt11_82	5	27	45	3 240	0.93	432	0.24	3.92	3 240	1.37	432	0.24	5.79
alu-v3_35	5	37	30	4 440	0.87	592	0.15	5.63	4 440	1.07	592	0.15	6.93

JKQ QMAP

https://github.com/iic-jku/qmap or pip install jkq.qmap

```
map.py
from qiskit import *
from jkq import qmap
q = QuantumRegister(4, 'q')
circ = QuantumCircuit(q)
circ.cx(q[0], q[3])
circ.cx(q[1], q[3])
circ.cx(q[0], q[2])
circ.cx(q[0], q[1])
print(circ.draw())
results = qmap.compile(circ, arch='IBMQ_Bogota', method='exact')
m circ = QuantumCircuit.from qasm str(result.mapped circuit)
print(m_circ.draw())
```


Conclusion

