TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS									TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM										
Signal			Alarman A	Fourier transform		Fourier series coefficients (if periodic)			Sect	ion	Property			Aperiodic signal				Fourier transform	
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$				$\sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega)$	a_k	. 18 November 1								<i>x</i> (<i>t</i>) <i>y</i> (<i>t</i>)				$X(j\omega)$ $Y(j\omega)$	
$e^{j\omega_0 t}$			2π	$2\pi\delta(\omega-\omega_0)$		$a_1 = 1$ $a_k = 0$, otherwise			4.3.1 4.3.2 4.3.6	3.2 Time Shifting3.6 Frequency Shifting			g	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t}x(t)$				$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$	
cos	$\omega_0 t$		π [$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$		$-1 = \frac{1}{2}$ otherwis	se "		4.3.3					$x^*(t)$ x(-t)				$X^*(-j\omega)$ $X(-j\omega)$	
			π	\$(\alpha - \alpha) - \$(\alpha	$a_1 = -$	$a_{-1} = \frac{1}{2i}$			4.3.5	Scaling				x(at)	()			$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$	
sin	$\omega_0 t$	- 1	$\overline{j}^{\mathrm{l}}$	$\delta(\omega-\omega_0)-\delta(\omega$	$a_k=0,$	otherwi		Y	4.4				x(t) * y(t) $x(t)y(t)$				$\frac{X(j\omega)Y(j\omega)}{\frac{1}{2\pi}} \int_{-\infty}^{+\infty} X(j\theta)Y(j(\omega-\theta))d\theta$		
x(t)) = 1		2π	$2\pi\delta(\omega)$		$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$			4.3.4 Differentiation in Time			$\frac{d}{dt}x(t)$				$j\omega X(j\omega)$			
I	Period	lic square	e wave	12 1 4 5 5 T	- C 1	0.636	1 4		4.3.4	4.3.4 Integration			$\int_{-\infty}^{t} x(t)dt$				$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$		
x(t)) = {	$0, T_1$	$ t \leq \frac{T}{2} \sum_{k=0}^{+\infty}$	$\frac{2\sin k\omega_0 T_1}{k}\delta(\omega_0)$	$\omega - k\omega_0$) $\frac{\omega_0 T_1}{\pi}$ si	$\frac{\omega_0 T_1}{\pi}$ sinc $\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$			4.3.6	4.3.6 Differentiation in Frequency			tx(t)				$j\frac{d}{d\omega}X(j\omega)$		
		= x(t)			56 g 70 70 house 10 common 100 com		rigular politik											$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \end{cases}$	
>= -	$\sum_{n=-\infty}^{+\infty} \delta(t-nT) \qquad \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right) \qquad a_k = \frac{1}{T} \text{ for all } k$						4.3.3	4.3.3 Conjugate Symmetry $x(t)$ real for Real Signals $ X(t) = 1$				$\begin{cases} \mathfrak{Gm}\{X(j\omega)\} = -\mathfrak{Gm}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \not \leq X(j\omega) = -\not \leq X(-j\omega) \end{cases}$							
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$				$\frac{2\sin\omega T_1}{\omega}$						4.3.3 Symmetry for Real and $x(t)$ real and even $X(j\omega)$ representation Even Signals					$X(j\omega)$ real and even				
sin	$\sin Wt \qquad X(i\omega) = \begin{cases} 1, & \omega < W \end{cases}$						4.3.3		Symmetry for Real and $x(t)$ real and odd Odd Signals $x(t) = 8v\{x(t)\}$ [x($X(j\omega)$ purely imaginary and odd $\Re e\{X(j\omega)\}$						
$\frac{\tau}{\delta(t)}$							4.3.3	4 3 3 Even-Odd Decompo-				$j\mathcal{G}m\{X(j\omega)\}$							
u(t)				$+\pi\delta(\omega)$	* _														
_	$\delta(t-t_0)$ $e^{-j\omega t_0}$ —						4.3.7	7			Relation				ls				
e^{-a}	u(t),	$\Re\{a\} >$		1 - <i>jω</i>						74	J∞	x(t)	$ t ^2 dt = \frac{1}{2}$	$\frac{1}{2\pi}$	_∞ X(je	$ \omega ^2 d\omega$			
_			a -	1	, ,		,			D	iscrete Fo						Propertie		
_		, Re{a} >	(a	$+j\omega)^2$	_				Let x		periodic D	T sig	gnal, wit	h per	iod N.				
	$\frac{1}{ a }e^{-at}$ $\{a\} >$		(a	$\frac{1}{+j\omega)^n}$							oint <u>Discre</u>								
									inv	l se Discre	le F	ouriel I	ansi	OHII	x[n] =	1	$\sum_{k=0}^{N-1} X[k]e^{j2\pi\frac{kn}{N}}$		
	lic)		,	1 ± 2N,	v, r ± 2N, dic		-2N,										$e^{j2\pi k_0}$	n	
	Fourier Series Coefficients (if periodic)		$k = m, m \pm N, m \pm 2N,$ otherwise \Rightarrow The signal is aperiodic	$=\frac{2\pi m}{N}$ $=\begin{cases} \frac{1}{2}, & k=\pm m, \pm m\pm N, \pm m\pm 2N, \\ 0, & \text{otherwise} \end{cases}$ irrational \Rightarrow The signal is aperiodic	$= \frac{2\pi r}{N}$ $= \begin{cases} \frac{1}{21}, & k = r, r \pm N, r \pm 2N \dots \\ -\frac{1}{27}, & k = -r, -r \pm N, -r \pm 2N \\ 0, & \text{otherwise} \end{cases}$ irrational \Rightarrow The signal is aperiodic		$\frac{\sin[(2\pi k l N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k l 2 N]}, \ k \neq 0, \pm N, \pm 2 N,$ $\frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2 N,$										cos($\frac{2\pi}{N} k_0 n$	
	ents (if		m ± N, se e signal	n, ±m = se	r, r ± A -r, -r rwise signal i], k≠ ±2N,.											-,	
	oefficie			$k = \pm i$ otherwi	k = 0 other	$k = 0, \pm N, \pm 2N, \dots$ otherwise	$\frac{\sin[(2\pi k N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k / 2N]}, \ k \neq 0,$ $\frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$											$((k-k_0))_N$	
4	ries C		N 1, 0,	$\begin{cases} \frac{2\pi m}{N} \\ \frac{1}{2}, \\ 0, \\ \text{ational} \end{cases}$	$\begin{cases} \frac{2\pi r}{N} \\ -\frac{1}{2j}, \\ -\frac{1}{2j}, \\ 0, \end{cases}$ rational \Rightarrow	$k = 0, \pm l$ otherwise	$\frac{\pi k/N}{\sin[2\pi k]}$	all k									$\frac{N}{2}$	$\delta[((k-k_0))_N] + \delta[((k+k_0))_N]$	$_{0}))_{N}]$
	ier Sei		$\begin{array}{ccc} \omega_0 & = & \\ a_k & = & \\ & & \\ & & \end{array}$	$a_k = \frac{\omega_0}{2\pi}$ irra	$\omega_0 = \frac{\omega_0}{2\pi}$ irra	$= \begin{cases} 1, & k \\ 0, & 0 \end{cases}$	$\frac{\log(2\pi)}{N}$ $\frac{Ns}{2N_1 + \frac{1}{N}}$	$\frac{1}{N}$ for all k									:TVI:	x(0)= im x(z)	
	Four	a_k	(a) a (b) 2	(a) a (b) 2 2	(a) a a (b) 2 a	$a_k = $	$a_k = a_k = a_k$	$a_k = \frac{1}{2}$	Œ	1	Ī	1	1	1	1	Ţ	FVT:	$\chi(0) = \lim_{z \to \infty} \chi(z)$ $\chi(0) = \lim_{z \to 1} \chi(z) ($	-Z [{])
AIRS				2πt)}	2π1)}												IV-	/	5)
RM P.				$\pi \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) \right\}$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$												FV	T: 2(100) = 1im SX	((5)
ANSFO		- 1		- δ(ω +	- 8(w +						W FF		2πk)				ļ., `	570	
R TR/	T.	$\left(\frac{2\pi k}{N}\right)$	- 2πl)	2πl) +	- 2тl) -		$\frac{(\pi k)}{N}$		*		$0 \le \omega \le W$ $W < \omega \le \pi$ with period 2π		· 9(m -						
OURIE	ansfor	$\left(\omega - \frac{2}{2}\right)$	- 00	- 00	- 000	- 2ml)	(e - 2	$v - \frac{2\pi}{N}$		$\frac{1}{2}$)]	0 s W <		8 _{\\ \ \ \ \ \ \ \ \ \ \ \ \ \		les				
ME FC	Fourier Transform	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	8(6)	φ(σ) {β(σ)	$\sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$\sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	e – jw	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$		$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$		$\frac{1}{(1-ae^{-j\omega})^2}$	$\frac{1}{(1-ae^{-j\omega})^r}$			
BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS	Four	2π	2π /	#	# <u> </u>	2π Σ	2π / κ=	2π N N N N N N N N N N N N N N N N N N N	$\frac{1}{1-ae^{-j\omega}}$	sin[ω	$X(\omega) = \begin{cases} X(\omega) & \text{erg} \\ X(\omega) & \text{period} \end{cases}$	-	1 1-6	e-jwn0	(1-6	11-6			
C DISC							N/2												
BASI							$ \mathbf{r} = \text{wave}$ $ \mathbf{n} \le N_1$ $N_1 < \mathbf{n} \le N/2$ $x[n]$			N ₁	$\left(\frac{Wn}{\pi}\right)$				a < 1	[n], a			
5.2		$a_k e^{jk(2nlN)n}$					square w $ \begin{bmatrix} 1, & n \\ 0, & N_1 \end{bmatrix} $ $ = x[n] $	- kN]	<i>a</i> < 1	<u>n</u> ×	w/π sinc					1)! a"u[
TABLE 5.2	Signal	$\sum_{k=\langle W\rangle} a_k e^j$	u0a	υ ⁰ ω soo	$\sin \omega_0 n$	x[n] = 1	e dic	$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	a''u[n],	$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	1]	1	$\delta[n-n_0]$	$(n+1)a^nu[n],$	$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n],$			
1	Sig	MĨ	ejwon	cos	sin	x[n	Peric x[n] and x[n.	±M [±]	a"ı	x[n]	sin 0 >	8[n]	[u]n	8[1	(n)	(n)			

TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

 $u_n(t) = \frac{d^n \delta(t)}{dt^n}$

 $u_{-n}(t) = \underbrace{u(t) * \cdots * u(t)}_{n \text{ times}}$

15

16

All s

 $\Re\{s\} > 0$

 $\frac{1}{s^n}$

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

TABLE 1	O.2 SOME COMMO	N z-TRANSFO	RM PAIRS		TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM								
Sig	nal T	ransform	ROC		Section	1	Property	Signal	Laplace Transform	ROC			
1. $\delta[n]$ 2. $u[n]$	$\frac{1}{1-z^{-1}}$	All z $ z > 1$						$x(t)$ $x_1(t)$ $x_2(t)$	$X(s)$ $X_1(s)$ $X_2(s)$	R R ₁ R ₂			
 -u[- δ[n - 	1-2	z < 1 All z, ex	9.5.1 9.5.2 9.5.3	Linearit Time sh Shifting	•	$ax_1(t) + bx_2(t)$ $x(t - t_0)$ $e^{s_0 t} x(t)$	$aX_1(s) + bX_2(s)$ $e^{-st_0}X(s)$ $X(s - s_0)$	At least $R_1 \cap R_2$ R Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)					
		$0 \text{ (if } n$ $\infty \text{ (if } n$	9.5.4	Time so	aling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)					
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$		$ z > \alpha $	9.5.5 9.5.6	Conjugation Convolution		$x^*(t) \\ x_1(t) * x_2(t)$	$X^*(s^*) \\ X_1(s)X_2(s)$	R At least $R_1 \cap R_2$				
6. $-\alpha^n u$	$1-\alpha z^{-1}$		$ z < \alpha $		9.5.7	Differentiation in the Time Domain		$\frac{d}{dt}x(t)$	sX(s)	At least R			
7. $n\alpha^n u$	$(1-\alpha z^{-1})$	1)2	$ z > \alpha $		9.5.8	Differentiation in the s-Domain		-tx(t)	$\frac{d}{ds}X(s)$	R			
8. $-n\alpha^n$	$u[-n-1] \qquad \frac{\alpha z^{-1}}{(1-\alpha z^{-1})}$	1)2	$ z < \alpha $		9.5.9	Integration in the Time Domain		$\int_{-\infty}^{\tau} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$			
 [cos ω₀ [sin ω₀ 	1 - [2 cos	z > 1 $ z > 1$		9.5.10	Initial- and Final-Value Theorems If $x(t) = 0$ for $t < 0$ and $x(t)$ contains no impulses or higher-order singularities at $t = 0$, then $x(0^+) = \lim_{s \to \infty} sX(s)$ If $x(t) = 0$ for $t < 0$ and $x(t)$ has a finite limit as $t \to \infty$, then								
11. [r" cos	1-	$[r\cos\omega_0]z^{-1}$	z > r	$\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s)$									
	$1 - \{2rcc$	$\frac{\cos \omega_0}{z^{-1}} + r^2 z$ $\frac{\sin \omega_0}{z^{-1}}$	-2	TABLE 10				C'1	. m	ROC			
12. [r ⁿ sin	$\frac{\omega_0 n \rfloor u[n]}{1 - [2r \cos \alpha]}$	$\cos \omega_0]z^{-1} + r^2z$		Section	Propert	y	x[n] x ₁ [n]	Signal	z-Transform X(z) X ₁ (z)	R R ₁			
TABLE 9.2	LAPLACE TRANSFORMS	S OF ELEMENTAR	RY FUNCTIONS				x ₂ [n]		X ₂ (z)	R ₂			
Transform pair	Signal	Transform	ROC	10.5.1 10.5.2	Linearity Time shifting		$ax_1[n] + bx_2[n]$ $x[n - n_0]$		$aX_1(z) + bX_2(z)$ $z^{-n_0}X(z)$	At least the intersection of R ₁ and R ₂ R, except for the possible addition or deletion of the origin			
1	$\delta(t)$	1	All s	10.5.3	Scaling in the z	-domain	$e^{j\omega_0 n}x[n]$		$X(e^{-j\omega_0}z)$	R			
2	u(t)	$\frac{1}{s}$	$\Re\{s\} > 0$				$z_0^n x[n]$ $a^n x[n]$		$X\left(\frac{z}{z_0}\right) \\ X(a^{-1}z)$	z_0R Scaled version of R (i.e., $ a R$ = the set of points { $ a z$ } for z in R)			
4	$-u(-t)$ t^{n-1}	$\frac{\frac{1}{s}}{\frac{1}{s^n}}$	$\Re\{s\} < 0$ $\Re\{s\} > 0$	10.5.4	Time reversal		x[-n]	n = rb	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R)			
_	$\frac{r^{n-1}}{(n-1)!}u(t)$		Ote(s) > 0	10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x_{(k)} \\ 0, \end{cases}$		n = rk $n \neq rk$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)			
5	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	Re{s} < 0				x*[n]		$X^*(z^*)$	R At least the intersection of R_1 and R_2			
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$	10.5.7	Convolution First difference		$x_1[n] * x_2[n]$ x[n] - x[n-1]		$X_1(z)X_2(z)$ $(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$			
7	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\Re\{s\} < -\alpha$	10.5.7	Accumulation		$\sum_{k=-\infty}^n x[k]$		$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$			
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$	10.5.8	Differentiation in the z-doma		nx[n]		$-z\frac{dX(z)}{dz}$	R			
9	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re\{s\} < -\alpha$	10.5.9				Initial Value Th	eorem				
10	$\delta(t-T)$	e^{-sT}	All s	10.5.5				If $x[n] = 0$ for $n - 1$	< 0, then				
11	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\Re\{s\}>0$	-				$x[0] = \lim_{z \to \infty} \lambda$	1(6)	10			
12	$[\sin \omega_0 t] u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\Re\{s\}>0$										
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$										
14	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re\{s\} > -\alpha$										