
1100 CC	1 6 25 .
HSP 65 - M.T.	MAKTI AYDEEARRGL ERGINALADA
HSP 60 - RAT	MLRLPTVLRQ MRPVSRALAP HLTRAYAKDV KFGADARALM LOGVDLLADA
HSP 60 - HUMAN	MLRLPTVFRQ MRPVSRVLAP HLTRAYAKDV KFGADARALM LQGVDLLADA
Consensus	
000000000	ARGLADA
	26 75
HSP 65 - M.T.	VKVTLGPKGR NVVLEKKWGA PTTTNDGUST AKETELEDBY EVICE ELITED
HSP 60 - RAT	VAVTMGPKCR TVIIEQSWGS PKVTKDGVTV AKSIDLKDKY KNTGAKLVOD
HSP 60 - HUMAN	VAVTMGPKGR TVIIEQSWGS PKVTKDGVTV AKSIDLKDKY KNIGAKLVQD
Congana	
Consensus	V-VT-GPKGR -VEWG- PT-DGV AK-I-L-D-YIGA-LV
	(7/2) 50
	6-7(31-52 AA)
UCD CC 14 -	76 125
HSP 65 - M.T.	VAKKTDDVAG DGTTTATVLA QALVREGLRN VAAGANPLGL KRGIEKAVEK
HSP 60 - RAT	VANNTNEEAG DGTTTATVLA RSIAKEGFEK ISKGANPVEI RRGVMLAVDA
HSP 60 - HUMAN	VANNTNEEAG DGTTTATVLA RSIAKEGFEK ISKGANPVEI RRGVMLAVDA
Consensus	
	VATAG DGTTTATVLAEGGANPRGAV
	21 (121-136 AA)
	[21 (121-130 AA)]
	100
HSP 65 - M.T.	126
HSP 60 - RAT	VTETLLKGAK EVETKEQIAA TAAISA.GDQ SIGDLIAEAM DKVGNEGVIT
HSP 60 - HUMAN	VIAELEKQSK PVTTPEEIAQ VATISANGDK DIGNIISDAM KKVGRKGVIT
MANAGE - OD SEEL	VIASLKKQSK PVTTPEEIAQ VATISANGDK EIGNIISDAM KKVGRKGVIT
Consensus	VL-KK -V-T-E-IAA-ISA-GDIGIAM -KVGGVIT
	- TO-TISH-GD- TIG-TI-AM -KVGGVIT
	•
ven ee	175 224
HSP 65 - M.T.	VEESNTFGLQ LELTEGMRFD KGYISGYFVT DPERQEAVLE DPYILLVSSK
HSP 60 - RAT HSP 60 - HUMAN	VKDGKTINDE LEITEGMRFD RGYISPYFIN TSKGOKCEFO DAYVLISERK
nse ou - HUMAN	VKDGKTLNDE LEITEGMKFD RGYISPYFIN TSKGQKCEFQ DAYVLLSEKK
Consensus	Vers-Trans I.P. POW TD GUTG ID
	VT LEEGM-FD -GYIS-YFQ D-Y-LLK
	31 (181-196 AA) 36 (211-226 AA)
UCD CC	225 274
HSP 65 - M.T.	VSTVKDLLPL LEKVIGAGKP LLIIAEDVEG EALSTLVVNK IRGTPKSVAV
HSP 60 - RAT	ISSVQSIVPA LEIANAHRKP LVIIAEDVDG EALSTLVLNR LKVGLOVVAV
HSP 60 - HUMAN	ISSIQSIVPA LEIANAHRKP LVIIAEDVDG EALSTLVLNR LKVGLQVVAV
Consensus	
	-SP- LEKP L-IIAEDV-G EALSTLV-NVAV
	40 (236-251 AA) 45 (265-280 AA)

Fig. 1

HSP 65 - M.T. HSP 60 - RAT HSP 60 - HUMAN Consensus	275. 323 KAPGFGDRRK AMLQDMAILT GGQVISEE.V GLTLENADLS LLGKARKVVV RAPGFGDNRK NQLKDMAIAT GGAVFGEEGL NLNLEDVQAH DLGKVGEVIV KAPGFGDRKL-DMAI-T GG-VEEL-LELGKV-V
HSP 65 - M.T. HSP 60 - RAT HSP 60 - HUMAN Consensus	373 TKDETTIVEG AGDTDAIAGR VAQIRQEIEN SDSDYDREKL QERLAKLAGG TKDDAMLLKG KGDKAHIEKR IQEITEQLDI TTSEYEKEKL NERLAKLSDG TKDDAMLLKG KGDKAQIEKR IQEIIEQLDV TTSEYEKEKL NERLAKLSDG TKDG -GDIRIS-YEKL -ERLAKLG
HSP 65 - M.T. HSP 60 - RAT HSP 60 - HUMAN	374 VAVIKAGAAT EVELKERKHR IEDAVRNAKA AVEEGIVAGG GVTLLQAAPT VAVLKVGGTS DVEVNEKKDR VTDALNATRA AVEEGIVLGG GCALLRCIPA VAVLKVGGTS DVEVNEKKDR VTDALNATRA AVEEGIVLGG GCALLRCIPA VAV-K-GVEE-K-RDAA AVEEGIV-GG GLLP- 63 (373-388 AA)
HSP 65 - M.T. HSP 60 - RAT HSP 60 - HUMAN Consensus	424 LDELK.LEGD EATGANIVKV ALEAPLKQIA FNSGLEPGVV AEKVRNLPAG LDSLKPANED QKIGIEIIKR ALKIPAMTIA KNAGVEGSLI VEKILQSSSE LDSLTPANED QKIGIEIIKR TLKIPAMTIA KNAGVEGSLI VEKIMQSSSE LD-LDGI-KLPIA -N-G-EEK
	473 HGLNAQTGVY EDLLAAGVAD PVKVTRSALQ NAASIAGLFL TTEAVVADKP VGYDAMLGDF VNMVEKGIID PTKVVRTALL DAAGVAPLLT TAEAVVTEIP VGYDAMAGDF VNMVEKGIID PTKVVRTALL DAAGVASLLT TAEVVVTEIP -GAG P-KV-R-ALAAA-L T-E-VVP 84 (499-514 AA)
HSP 60 - RAT HSP 60 - HUMAN	523 540 EKEKASVPGG GDMGGMDF KEEKD. PGM GAMGGMGGGM GGGMF KEEKD. PGM GAMGGMGGGM GGGMFEKPG- G-MGGM

Fig. 1(continued)

Fig. 2

Fig. 3A

Fig. 3B

Print Marie Real Ann. The first comparing the first first only and the first only the first only the first only the first that the first only are the first that the first only are the first that the fi

Fig. 4

QSWGSPKVTKDGVTV

ITNDG

GAPT

V V L E K K W

IIE

T ×

데

G B

The "Protective" Motif

GPKGRNVVLEKKW HSP Peptide 6- (31-46) MT

Rat HSP Peptide 5- (36-55)

G ≥ 田 » « **>**

Fig. 5

HSP Peptide 7- (37-52) MT

Common Motif

the first term that the first control of the first