Tasks:

Task 1

Solve both versions of the model presented above. Use the parameter values in the calibration section of section 1 for both versions.

Answer: Our code is attached in the appendix.

Task 2

Compute the following model moments and fill in the table. Are they any different across model specifications? If yes, try to explain intuitively what drives the differences.

Answer: The table is the following.

variable	Standard	TV1 Shock α = 2.0	TV1 Shock α = 3.0	TV1 Shock α = 1.0
Price Level	0.739	0.725	0.728	0.713
Mass of Incumbents	8.321	8.829	8.207	10.336
Mass of Entrants	2.639	3.033	3.218	2.756
Mass of Exits	1.662	2.132	2.09	2.132
Aggregate Labor	179.834	183.024	181.198	187.775
Labor of Incumbents	142.627	142.497	137.744	152.541
Labor of Entrants	37.207	40.527	43.455	35.234
Fraction of Labor Entrants	0.207	0.221	0.24	0.188

Task 3

Plot the decision rules of exit in all model specifications you have solved. Are they any different? If yes, try to explain intuitively what drives the differences.

Answer: Figure 1 displays the results.

Figure 1: Decision Rules across Model Specifications

Task 4

How does the exit decision rule change if cf rises from 10 to 15?

Answer:

.

Appendix

The first code file runs the code.

```
# Loading Packages
using Parameters, LinearAlgebra, Plots, Latexify, DataFrames, LaTeXStrings
# Loadifng Programs
include("./hopenhayn_rogerson.jl")
# Set plot theme
theme (:vibrant)
default (fontfamily="Computer Modern", framestyle=:box) # LaTex-style
# Initialize the model's parameters and results struct
prim, res = Initialize();
# Create the structure for experiments 1 and 2 with random disturbances
_, res_1 = Initialize();
_, res_2 = Initialize();
_, res_3 = Initialize();
# First we solve for the case with no random disturbances
solve_model_no_dist(prim, res)
# and then we add random disturbances to the model
# Fist we will create a dictionary of that will index the result structure with the random disturbance
results = Dict(0.0 => res, 1.0 => res_1, 2.0 => res_2, 3.0 => res_3) \# \alpha = 0.0 means no disturbances
 then we iterate over the random disturbances and solve the model
for (\alpha, \text{ res\_struct}) in results
    if \alpha != 0.0
        find_equilibrium(prim, res_struct, \alpha)
    end
end
# Plot the results
p2 = plot(prim.s_vals, res.x_opt, size=(800,600),
            title="Decision Rules of Exit", label="Benchmark Model",
            linestyle =:dash, markershape = :auto, legend = :right)
xticks! (prim.s_vals)
yticks!(0:0.1:1)
xlabel!("Firm Productivity")
ylabel! ("Exit Probability")
for (\alpha, \text{ res struct}) in results
    if \alpha != 0.0
        plot! (prim.s_vals, res_struct.x_opt, size=(800,600),
                title="Decision Rules of Exit", label="TV1 Shocks \alpha = $\alpha ",
                linestyle =:dash, markershape = :auto)
    end
end
current()
# savefig(p2, "./PS6/Document/Figures/decision_rules_2.pdf")
savefig(p2, "../Document/Figures/decision_rules_2.pdf")
# Save results to a table
## Error for i.
fraction_labor_entrants = [n_entrants[i] ./ n_total[i] for i in 1:length(n_incumbents) ]
"Mass of Exits" \Rightarrow [sum(r.\mu .* r.x_opt) for (_, r) in results]
                "Aggregate Labor" => n_total
"Labor of Incumbents" => n_incumbents
                "Labor of Entrants" => n_entrants
"Fraction of Labor Entrants" => fraction_labor_entrants]
                df = round.(df, digits=3)
                colnames = names(df)
                df[!, :id] = [(\alpha == 0.0)] "Standard": "TV1 Shock \alpha = \$\alpha" for (\alpha, \alpha)
```

```
_) in results]
df = unstack(stack(df, colnames), :variable, :id, :value)

laetx_table = latexify(df; env=:table, latex=false)

open("./PS6/Document/Tables/table_1.tex", "w") do file
    write(file, laetx_table)
#open("../Document/Tables/table_2.tex", "w") do file
# write(file, laetx_table)
end
```

The second code file contains the relevant functions.

return prim, res

```
using Parameters, LinearAlgebra
# Structure that holds the parameters for the model
@with_kw struct Primitives
   β ::Float64
θ ::Float64
                                = 0.8
                                = 0.64
               ::Float64
              ::Array{Float64} = [3.98e-4, 3.58, 6.82, 12.18, 18.79]
   s_vals
            ::Array (...:Int64
   0.1997 0.7201 0.0420 0.0326 0.0056;
                                 0.2000 0.2000 0.5555 0.0344 0.0101;
                                 0.2000 0.2000 0.2502 0.3397 0.0101;
0.2000 0.2000 0.2500 0.3400 0.0100]
             ::Array{Float64} = [0.37, 0.4631, 0.1102, 0.0504, 0.0063]
              ::Float64 = 1/200
::Int64 = 10
::Int64 = 5
   Α
              ::Int64
   # Price grid
   p_min ::Float64 = 0.01
   # Optimal decision rules
                                = ( s , p ) -> (\theta * p * s) ^ (1/(1 - \theta))
   n_optim
             ::Function
              ::Function
                                = (s, p, n) \rightarrow (n > 0) ? p*s*(n)^{\theta} - n
- p * c_f : -p * c_f
    # Limits for the mass of entrants
   M_min ::Float64 = 1.0
              ::Float64 = 10.0
   M_max
end
# Structure that stores results
mutable struct Results
   W_val ::Array{Float64}
                                  # Firm value given state variables
   n_opt ::Array{Float64}
x_opt ::Array{Float64}
                              # Optimal labor demand for each possible state
                                   # Optimal firm decicion for each state
                                  # Market clearing price
# Distribution of Firms
          ::Float64
   p
          ::Array{Float64}
                                  # Mass of entrants
          ::Float64
   M
end
# Initialize model
function Initialize()
   prim = Primitives()
   W_val = zeros(prim.nS)
   n_opt = zeros(prim.nS)
x_opt = zeros(prim.nS)
   p = (prim.p_max + prim.p_min)/2
   \mu = ones(prim.nS) / prim.nS # Uniform distribution is the initial guess
   res = Results(W_val, n_opt, x_opt, p, \mu, M)
```

```
end
# Bellman operator for W
function W(prim::Primitives, res::Results)
    @unpack \Pi, n_optim,s_vals, nS, trans_mat, c_f, \beta = prim
    @unpack p = res
    temp val = zeros(size(res.W val))
   \label{eq:nopt} \begin{split} &\text{n\_opt = prim.n\_optim.(s\_vals, p)} \\ &\text{profit\_state = } \Pi.(\text{s\_vals, p, n\_opt}) \end{split}
    # Iterate over all possible states
    for s_i ∈ 1:nS
        prof = profit_state[s_i]
        # Calculate expected continuation value
        exp_cont_value = trans_mat[s_i, :]' * res.W_val
        \# Firm exit the market if next period's expected value of stay is negative x = ( <code>exp_cont_value > 0</code> ) ? 0 : 1
        temp_val[s_i] = prof + \beta * (1 - x) * (exp_cont_value )
        res.x_opt[s_i] = x
    end
    res.W_val = temp_val
end # W
#Value function iteration for W operator
function TW_iterate(prim::Primitives, res::Results; tol::Float64 = 1e-4)
    n = 0 \#counter
    err = 100.0 #initialize error
    while (err > tol) & (n < 4000) #begin iteration
        W_val_old = copy(res.W_val)
        W(prim, res)
        err = maximum( abs.(W_val_old - res.W_val ) ) #reset error level
        if n % 100 == 0
            println("Iter =", n , " Error = ", err)
    end
end # TW_iterate
Qunpack \Pi, nS, trans_mat, \nu, c_e, p_min, p_max = prim
    \theta = 0.99
    n = 0
    while n < n max
        TW iterate(prim, res)
         # W(prim, res)
        # Calculate EC
        \#EC = sum(res.W_val.* \nu) - res.p * c_e
        EC = sum(res.W_val .* \nu) /res.p - c_e
        # println("p = ", res.p," EC = ", EC, " tol = ", tol) if abs(EC) > tol * 10000
        # adjust tuning parameter based on EC \theta = 0.5
        elseif abs(EC) > tol * 5000
            \theta = 0.75
        elseif abs(EC) > tol * 1000
            \theta = 0.9
        else
             \theta = 0.99
        end
        if n % 10 == 0
          println(n+1, " iterations; EC = ", EC, ", p = ", res.p, ", p_min = ", p_min, ", p_max = ", p_max, ",
        {\tt if} abs( EC ) < tol
```

```
println("Price converged in $(n+1) iterations, p = $(res.p)")
              break
         end
         # adjust price toward bounds according to tuning parameter
         if EC > 0
              p_old = res.p
              res.p = \theta * \text{res.p} + (1-\theta) * \text{p_min}
              p_max = p_old
         else
              p_old = res.p
              res.p = \theta * res.p + (1-\theta) * p_max
              p_min = p_old
         end
         n += 1
    end
end
\textbf{function} \ \texttt{T}\mu (\texttt{prim}::\texttt{Primitives, x}::\texttt{Array}\{\texttt{Float64}\}, \ \texttt{M}::\texttt{Float64})
    @unpack \nu, nS, trans_mat = prim
     # Calculate B Matrix
    B = repeat((1 .- x)', nS) .* trans_mat' return M* (I - B)^(-1) * B * \nu
end
\ensuremath{\sharp} Calculate aggregate labor supply and demand for a given mass of entrants
function labor_supply_demand(prim::Primitives, res::Results; M::Float64=res.M)
    @unpack c_e, \nu = prim
    \texttt{res.}\mu = \texttt{T}\mu (\texttt{prim, res.x\_opt, M})
    # Calculate optimal labor demand for each firm (for each productivity level)
    n_opt = prim.n_optim.(prim.s_vals, res.p)
     # Calculate profit for each firm (for each productivity level)
    prof = prim.\Pi.(prim.s_vals, res.p, n_opt)
     # Calculate mass of firms in the market (for each productivity level)
    \texttt{mass} = \texttt{res.} \mu + \texttt{M} \star \texttt{prim.} \nu
    # Calculate Total labor demand
    tot_labor_demand = n_opt' * mass
    # Calculate total profits
    tot_profit = prof' * mass
# Calculate total supply of labor
    tot_labor_supply = 1/prim.A - tot_profit
    return tot_labor_supply, tot_labor_demand
end
# Iterate until labor market clears
function Tµ_iterate_until_cleared(prim::Primitives, res::Results; tol::Float64 =
1e-3, n_max::Int64 = 1000)
   Qunpack \Pi, n_optim , s_vals, \nu, A, M_min, M_max = prim
    \theta = 0.5
    n = 0 \#counter
    err = 100.0 #initialize error
     \begin{tabular}{lll} \begin{tabular}{lll} while & (abs(err) > tol) & (n < n\_max) \# begin iteration \\ \# & Calculate optimal labor demand for a given mass of entrants \\ \end{tabular} 
         tot_labor_supply, tot_labor_demand = labor_supply_demand(prim::Primitives, res::Results)
         # Labor MarketClearing condition
         LMC = tot_labor_demand - tot_labor_supply
          # adjust tuning parameter based on LMC
         if abs(LMC) > tol * 10000
              \theta = 0.5
         elseif abs(LMC) > tol * 5000
              \theta = 0.75
         elseif abs(LMC) > tol * 1000
              \theta = 0.9
         else
              \theta = 0.99
         end
```

```
if (n+1) % 10 == 0
          println(n+1, " iterations; LMC = ", LMC, ", M = ", res.M, ", M_min = ", M_min, ", M_max = ", M_max, "
= ", θ)
        end
        if abs( LMC ) < tol</pre>
             println("Labor Market Cleared in $(n+1) iterations, Mass of entrants = $(res.M)")
             break
        end
         # adjust price toward bounds according to tuning parameter
        if LMC > 0
            M_old = res.M

res.M = \theta * res.M + (1-\theta) * M_min
             M_max = M_old
        else
             M_{\min} = M_{\text{old}}
        end
        n += 1
    end
end # T\mu_iterate_until_cleared
# Solve model withoug random disturbances
function solve_model_no_dist(prim::Primitives, res::Results)
    println("\n",'='^135, "\n",'='^135, "\n", "Solving for price such that entrants make 0 profits, no random dis
    market_clearing(prim, res)
    println('='^135, "\n", "Solving for optimal mass of entrants, no random disturbances", "\n", '='^135)
    T\mu_iterate_until_cleared(prim, res)
    println('='^135, "\n", "Model Solved without random disturbances", "\n", '='^135, "\n", '='^135, "\n")
# Obtain values assocued with exit decicion for a given random disturvance variance
function find_Vx(prim::Primitives, res::Results, \alpha::Float64 ; tol::Float64 = 1e-3, n_max::Int64 =
   Qunpack \Pi, n_optim , nS, s_vals, \nu, A, M_min, M_max, \beta, trans_mat = prim
   # Initialize error and counter
    err = 100.0
    n = 0
    # Make initial guess of U(s;p)
    U_0 = zeros(nS)
    # Optimal labor demand and profits by productivity
    n_opt = n_optim.(s_vals, res.p)
    prof = \Pi. (s_vals, res.p, n_opt)
    # Initialize V_x
   V_x = ones(nS, nX) .* prof

\sigma_x = zeros(nS, nX)
    while (err > tol ) & (n < n_max)
        # Compute V_0(s;p), V_1(s;p) wont change V_x[:, 1] = prof + \beta * (trans_mat * U_0)
        c = maximum(\alpha * V_x, dims=2) # Define normalization constant
        log_sum = c .+ log.( sum( exp.( \alpha * V_x .- c), dims = 2 ) )
        \# Find U_1
        U_1 = 1/\alpha * ( 0.5772156649 .+ log_sum )
        err = maximum( abs.( \mathrm{U}_1 - \mathrm{U}_0 ) )
        # if n % 10 == 0
               println("Iter $n err = $err")
        # end
        U_0 = \text{copy}(U_1)

n += 1
        \mbox{\#} We can also calculate and return \sigma at this point
        \sigma_1 = \exp.(\alpha * V_x[:, 2] .- \log_sum)
        \sigma_0 = 1 \cdot \sigma_1
        \sigma_x = hcat(\sigma_0, \sigma_1)
    end # end while
```

```
# println("Iter $n err = $err")
         return V_x, \sigma_x
end # find Vx
# Find equilibrium objects given a \  variance indexer lpha for the shocks
function find_equilibrium(prim::Primitives, res::Results, \alpha::Float64; tol::Float64 =
1e-3, n_{max}::Int64 = 100)
         Qunpack \Pi\text{, n\_optim , nS, s\_vals, }\nu\text{, p\_min, p\_max, c\_e = prim}
         \theta = 0.99
        n = 0
println("\n",'='^135, "\n",'='^135, "\n", "Solving for price such that entrants make 0 profits, TV1 Shocks \alpha = \alpha", "\n", '='^135) while n < n_max
                  V_x, \sigma_x = find_Vx(prim, res, <math>\alpha);
                  # Calculate value of each firm
                  n_opt = n_optim.(s_vals, res.p)
                   \texttt{\#EC} = \texttt{sum} (\texttt{W\_vals} ~.*~ \nu) ~-~ \texttt{res.p} ~*~ \texttt{c\_e}
                 EC = sum(W_vals .* \nu) /res.p - c_e
                   # adjust tuning parameter based on EC
                   if abs(EC) > tol * 10000
                           \theta = 0.5
                   elseif abs(EC) > tol * 5000
                           \theta = 0.75
                   elseif abs(EC) > tol * 1000
                           \theta = 0.9
                           \theta = 0.99
                   if n % 10 == 0
                   println(n+1, "iterations; EC = ", EC, ", p = ", res.p, ", p_min = ", p_min, ", p_max = ", p_max, ",
                   if abs( EC ) < tol</pre>
                             # println("Market Cleared in $(n+1) iterations.")
                   # adjust price toward bounds according to tuning parameter
                         p_old = res.p
                            res.p = \theta * res.p + (1-\theta) * p_min
                           p_max = p_old
                   else
                           p_old = res.p
                           res.p = \theta * res.p + (1-\theta) * p_max
                           p_min = p_old
                   end
                  n += 1
                   res.x_opt = copy(\sigma_x[:,2])
         end # end while
         println("Price converged in $(n+1) iterations, p = $(res.p)")
         println('='^135, "\n", "Solving for optimal mass of entrants, TV1 Shocks \alpha = \$\alpha", "\n", '='^135)
         Tμ_iterate_until_cleared(prim, res)
         println('='^135, "\n", "Model Solved with random disturbances, TVl Shocks \alpha = \$\alpha", "\n", '='^135, "\n", '='^135, "\n", '='^135, "\n", '='\n", '='\n', '='\n
end # find_equilibrium
```