Calcul différentiel et intégral II

R. Petit

année académique 2016 - 2017

Table des matières

I	F01	nction	s, series et integrales	1		
1						
	1.1	Rappe	els	2		
		1.1.1	Topologie métrique	2		
			1.1.1.1 Espaces métriques	2		
			1.1.1.2 Espaces vectoriels	3		
			1.1.1.3 Ouverts, fermés, compacts	4		
			1.1.1.4 Suites de Cauchy	5		
			1.1.1.5 Continuité	5		
	1.2	Conve	ergence de suites de fonctions	6		
		1.2.1	Convergence simple	6		
		1.2.2	Convergence uniforme	7		
		1.2.3	L'espace B(X, E)	8		
		1.2.4	Convergence uniforme sur tout compact	9		
	1.3		de fonctions et opérations d'intégration et de dérivation	10		
		1.3.1	Passage à la limite dans une intégrale de Riemann	10		
		1.3.2	Passage à la limite dans une dérivation ordinaire ou partielle	11		
	1.4		de fonctions	14		
		1.4.1	Retranscription des résultats sur les suites	14		
		1.4.2	Convergence normale	15		
		1.4.3	Transformation d'Abel	16		
		1.4.4	Exemple d'une fonction continue sur $\mathbb R$ nulle part dérivable $\dots \dots \dots \dots$	17		
	1.5		de puissances	18		
		1.5.1	Théorie du rayon	18		
		1.5.2	Étude sur le cercle de convergence	20		
		1.5.3	Fonctions réelles analytiques	22		
2	Inté	gration	1	25		
_	2.1		rales absolument convergentes	25		
		2.1.1	Rappels concernant l'intégrale de Riemann	25		
		2.1.2	Fonctions absolument intégrables sur un intervalle	26		
		2.1.3	Fonctions absolument intégrables vues comme fonction des bornes	28		
		2.1.4	Critères d'intégration absolue	30		
		2.1.5	Fonctions de référence de Riemann	31		
		2.1.6	Théorème du changement de variable	32		
	2.2		rales convergentes	33		
		2.2.1	Définitions et exemples	33		
		2.2.2	Rappel: deuxième formule de la moyenne	34		
		2.2.3	Critère d'Abel	36		

3	Inté	égrales à paramètres	38		
	3.1	Fonctions définies par une intégrale sur un segment fixe	38		
		3.1.1 Un résultat de continuité	38		
		3.1.2 Un résultat de dérivabilité	39		
	3.2	Fonction définies par des intégrales sur un segment variable	40		
		3.2.1 Un résultat de continuité	40		
		3.2.2 Un résultat de dérivabilité	41		
	3.3	Fonctions définies par des intégrales convergentes	42		
		3.3.1 Exemple	42		
		3.3.2 Notion d'intégrales uniformément convergentes	42		
		3.3.3 Théorème de Fubini	44		
		3.3.4 Critères de convergence uniforme d'intégrales	45		
	3.4	Application à la régularisation et à l'approximation à une dimension	46		
		3.4.1 Fonctions à support compact	46		
		3.4.2 Produit de convolution	47		
			52		
4		ritère de compacité en dimension infinie : le théorème d'Arzela-Ascoli			
	4.1	Rappels de topologie métrique	52		
		4.1.1 Densité et séparabilité	52		
	4.2	L'espace $C_b^0(X,\mathbb{R})$	54		
	4.3	Théorème d'Arzela-Ascoli	55		
		4.3.1 Motivation	55		
		4.3.2 Énoncé et démonstration	55		
	,				
II	Ec	quations différentielles	58		
5	Con	nditions suffisantes d'existence et d'unicité de solutions	59		
	5.1	Équations différentielles - forme normale - réduction à l'ordre 1	59		
		5.1.1 Généralités	59		
		5.1.2 Réduction à l'ordre 1	59		
		5.1.3 Problème de Cauchy	60		
		5.1.4 Formulation intégrale	60		
	5.2	Existence et unicité locales	61		
		5.2.1 Théorème du point fixe de Banach	61		
		5.2.2 Cylindres en espace-temps	62		
		5.2.3 Théorème d'existence et d'unicité locales	63		

Première partie Fonctions, séries et intégrales

Chapitre 1

Suites et séries de fonctions

1.1 Rappels

1.1.1 Topologie métrique

1.1.1.1 Espaces métriques

Définition 1.1. Soit X un ensemble. Une *distance* sur X est une application $d: X \times X \to \mathbb{R}^+$ telle que :

- 1. $\forall x, y \in X : d(x, y) = d(y, x)$ (symétrie);
- 2. $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$ (inégalité triangulaire);
- 3. $\forall x, y \in X : (d(x, y) = 0 \iff x = y)$ (séparation ¹).

Définition 1.2. On appelle *espace métrique* (X, d) un espace X muni d'une distance d sur X.

Définition 1.3. Soient (X, d) un espace métrique, $(x_n)_{n \in \mathbb{N}}$ et $x \in X$ La suite (x_n) converge vers x dans (X, d) lorsque :

$$\forall \epsilon>0: \exists N\in\mathbb{N} \text{ t.q. } \forall n\geqslant \mathbb{N}: d(x_n,x)<\epsilon.$$

Cela se note:

$$x_n \xrightarrow[n \to +\infty]{d} x$$
.

Proposition 1.4. Soit $(x_n)_{n\in\mathbb{N}}$ une suite dans (X,d), un espace métrique. Soient $x,y\in X$. Si :

$$x_n \xrightarrow[n \to +\infty]{d} x \qquad \qquad \textit{et} \qquad \qquad x_n \xrightarrow[n \to +\infty]{d} y,$$

alors x = y.

 $\textit{D\'{e}monstration}. \ \ Soit \ \epsilon>0. \ Puisque \ x_n \to x \ et \ x_n \to y, \ on \ sait \ qu'il \ existe \ N_1, N_2 \in \mathbb{N} \ tels \ que :$

$$\forall n\geqslant N_1: d(x_n,x)<\frac{\epsilon}{2} \qquad \qquad \text{et} \qquad \qquad \forall n\geqslant N_2: d(x_n,y)<\frac{\epsilon}{2}.$$

Dès lors, soit $N := max\{N_1, N_2\}$. On peut dire :

$$\forall n\geqslant N: d(x,y)\leqslant d(x,x_n)+d(x_n,y)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

On en déduit d(x, y) = 0 et donc x = y par séparation.

^{1.} Également appelé principe d'identité des indiscernables.

1.1.1.2 Espaces vectoriels

Définition 1.5. Soit \mathbb{K} , un sous-corps de \mathbb{C} . On appelle *norme* sur le \mathbb{K} -e.v. \mathbb{E} toute application $\mathfrak{n}: \mathbb{E} \to \mathbb{R}^+$ telle que :

- 1. $\forall x \in E : (n(x) = 02 \iff x = 0);$
- 2. $\forall x \in E : \forall \lambda \in \mathbb{K} : n(\lambda x) = |\lambda| n(x)$;
- 3. $\forall x, y \in E : n(x + y) \leq n(x) + n(y)$.

Proposition 1.6. Soit (E, n) un \mathbb{K} -espace vectoriel normé. L'application d suivante est une distance sur E (on l'appelle la distance associée à la norme n):

$$d: E \times E \to \mathbb{R}^+ : (x,y) \mapsto n(y-x).$$

Démonstration. EXERCICE.

Remarque. Si (E,n) est un espace vectoriel normé, $(x_n)_{n\in\mathbb{N}}$ est une suite de E, et si $x\in E$, alors on dit :

$$x_n\xrightarrow[n\to+\infty]{n} x$$

lorsque:

$$\chi_n \xrightarrow[n \to +\infty]{} \chi$$

au sens de la distance associée à la norme n.

Exemple 1.1. \mathbb{R} est un \mathbb{R} -e.v. normé avec pour norme $n: x \mapsto |x|$.

Exemple 1.2. Soient $d \in \mathbb{N}^*$, $p \in [1, +\infty)$. Pour $x = (x_i)_{1 \le i \le d} \in \mathbb{C}^d$, on définit :

$$n(x) = ||x||_p := \left(\sum_{k=0}^d |x_i|^p\right)^{\frac{1}{p}}.$$

On a alors $(\mathbb{C}^d, \mathfrak{n})$ est un \mathbb{C} -espace vectoriel normé. Également $(\mathbb{C}^d, \mathfrak{n})$ et $(\mathbb{R}^d, \mathfrak{n})$ sont des \mathbb{R} -espaces vectoriels normés.

Définition 1.7. Soit $x \in \mathbb{C}^d$. On définit la *norme infinie* de x dans \mathbb{C}^d par :

$$\|\mathbf{x}\|_{\infty} \coloneqq \max_{1 \leqslant i \leqslant d} |\mathbf{x}_i|.$$

Exemple 1.3. Soit $d \in \mathbb{N}^*$. $(\mathbb{C}^d, \|\cdot\|_{\infty})$ est un \mathbb{C} -espace vectoriel normé. Également, $(\mathbb{R}^d, \|\cdot\|_{\infty})$ et $(\mathbb{C}^d, \|\cdot\|_{\infty})$ sont des \mathbb{R} -espaces vectoriels normés.

Démonstration. EXERCICE. □

Définition 1.8. Soit $(x_n)_{n\in\mathbb{N}}$ une suite. On dit que la suite (x_n) est *presque nulle* s'il existe $N\in\mathbb{N}$ tel que $\forall n\geqslant N: x_n=0$.

Exemple 1.4. Soient $P \in \mathbb{C}[x]$ et $(a_k)_{k \in \mathbb{N}}$ la suite presque nulle des coefficients de P. On pose :

$$\|P\|_{\infty} \coloneqq \sup_{k \in \mathbb{N}} |a_k| = \max_{k \in \mathbb{N}} |a_k|.$$

Alors $\|\cdot\|_{\infty}$ est une norme sur $\mathbb{C}[x]$.

Démonstration. EXERCICE. □

1.1.1.3 Ouverts, fermés, compacts

Définition 1.9. Soit (X, d) un espace métrique. On appelle *boule ouverte* de centre $x \in X$ et de rayon $r \ngeq 0$ l'ensemble :

$$B(x,r[\coloneqq \left\{y \in X \text{ t.q. } d(x,y) \lessgtr r\right\}.$$

On définit également la boule fermée de centre x et de rayon r l'ensemble :

$$B(x, r] := \{y \in X \text{ t.q. } d(x, y) \leq r\}.$$

Définition 1.10. Soit (X, d) un espace métrique et soit $O \subset X$. On dit que O est une partie *ouvert* dans X lorsque :

$$\forall x \in O : \exists r \ngeq 0 \text{ t.q. } B(x,r) \subset O.$$

Remarque. Pour tout X, les ensembles \emptyset et X sont tous deux des ouverts de X.

Définition 1.11. Soit (X, d) un espace métrique. Une partie $F \subset X$ de X est dite *fermée* dans X lorsque $X \setminus F$ est ouvert.

Proposition 1.12. Dans un espace métrique (X, d), soit $(O_i)_{i \in I}$ une famille d'ouverts de X indicés par un ensemble $I \neq \emptyset$. Alors $(\bigcup_{i \in I} O_i)$ est un ouvert de X. Si de plus I est fini, alors $(\bigcap_{i \in I})$ est un ouvert de X.

Exemple 1.5. Prenons $X = \mathbb{R}$ et $O_i = (-1 - \frac{1}{i}, 1 + \frac{1}{i})$. Alors $\left(\bigcap_{i \in \mathbb{N}^*} O_i\right) = [-1, 1]$ qui n'est pas un ouvert de X.

Démonstration. EXERCICE. □

Définition 1.13 (Compacts par Borel-Lebesgue). Soit (X, d) un espace métrique. Une partie $K \subset X$ est dite *compacte* si $K \neq \emptyset$ et si, de tout recouvrement de K par des ouverts de X, on peut extraire un sous-recouvrement fini.

C'est-à-dire lorsque :

- 1. $K \neq \emptyset$;
- 2. $\forall I \neq \emptyset : \forall (O_i)_{i \in I}$ ouverts de X t.q. $K \subset \left(\bigcup_{i \in I} O_i\right) : \exists J \subset I$ fini t.q. $K \subset \left(\bigcup_{i \in J} O_i\right)$.

Proposition 1.14 (Compacts par Bolzano-Weierstrass). *Soit* (X, d) un espace métrique. Une partie K de X est compacte si et seulement si :

- 1. $K \neq \emptyset$;
- 2. de toute suite de points de K, on peut extraire une sous-suite convergente dans K.

Démonstration. Admis.

Exemple 1.6. L'ensemble [0,1] est un compact de \mathbb{R} .

Proposition 1.15. *Soit* (X, d), *un espace métrique et* $K \subset X$, *une partie compacte. Alors* K *est fermé et borné.*

Démonstration. EXERCICE. (Absurde) □

Proposition 1.16. Soit (E,n) un K-e.v. normé de dimension finie. Alors les parties compactes de E sont les parties fermées bornées non nulles.

Démonstration. Admis. □

1.1.1.4 Suites de Cauchy

Définition 1.17. Soit (X, d), un espace métrique. On dit que $(x_n)_{n \in \mathbb{N}}$ est *de Cauchy* dans X lorsque :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall m, n \geqslant N : d(x_n, x_m) < \varepsilon.$$

Proposition 1.18. $Si(x_n)_{n\in\mathbb{N}}$ est convergente dans l'espace métrique (X, d), alors elle est de Cauchy.

Démonstration. Si x est la limite de la suite (x_n) , on pose $\epsilon > 0$. Il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant \mathbb{N} : d(x, x_n) < \frac{\varepsilon}{2}.$$

Donc $\forall m, n \geqslant N : d(x_m, x_n) \leqslant d(x_m, x) + d(x, x_n) < \varepsilon$.

Définition 1.19. Un espace métrique (M, d) est dit *complet* quand toute suite de Cauchy de points de X converge dans X.

Définition 1.20. Un espace vectoriel E est dit *de Banach* lorsque toute suite de Cauchy de vecteurs de E converge dans E.

Remarque. On remarque que dans un espace métrique complet, une suite converge si et seulement si elle est de Cauchy (ce qui est entre autres le cas de \mathbb{R}).

De plus, les suites de Cauchy permettent, dans des espaces complets, de montrer que des suites convergent sans connaître leur limite.

Exemple 1.7. Les espaces métriques $(\mathbb{R},|\cdot|)$ et $(\mathbb{C},|\cdot|)$ sont des espaces de Banach. Et pour tout $\mathfrak{p} \in [1,+\infty)$ et $\mathfrak{q} \in \mathbb{N}$, les espaces métriques $(\mathbb{R}^q,\|\cdot\|_{\mathfrak{p}})$ et $(\mathbb{C}^q,\|\cdot\|_{\mathfrak{p}})$ sont des espaces de Banach.

1.1.1.5 Continuité

Définition 1.21. Soient (X, d_X) et (Y, d_Y) deux espaces métriques. Une application $f: X \to Y$ est dite continue en $x_0 \in X$ lorsque :

$$\forall \varepsilon > 0 : \exists \delta \geq 0 \text{ t.q. } \forall x \in X : (d_X(x, x_0) < \delta \Rightarrow d_X(f(x), f(x_0)) < \varepsilon).$$

On dit que f est continue sur $A \subset X$ lorsque f est continue en tout $a \in A$.

Proposition 1.22. *Une fonction* $f:(X,d) \to (Y,d)$ *est continue sur* X *lorsque l'image réciproque par* f *de* (Y,d) *est un ouvert de* (X,d).

Démonstration. Admis. □

Proposition 1.23. *Une fonction* $f:(X, d) \to (Y, d)$ *est continue en* $x_0 \in X$ *si et seulement si l'image par* f *de toute suite de points de* X *convergente en* x_0 *est une suite convergente en* $f(x_0)$.

Démonstration. Admis. □

Définition 1.24. Soit $f:(X,d)\to (Y,d)$. f est dite *lipschitzienne* de constante $K\geqslant 0$ lorsque

$$\forall (x,y) \in X^2 : d(f(x),f(y)) \leq d(x,y).$$

Proposition 1.25. Si $f:(X, d) \to (Y, d)$ est lipschitzienne, alors elle est continue sur X.

Démonstration. EXERCICE. □

Définition 1.26. Soit $(a_k)_{k \in \mathbb{N}}$, une suite dans un espace métrique (X, d). On dit que (a_k) est *presque nulle* lorsqu'il existe $N \in \mathbb{N}$ tel que $\forall n \geqslant N : a_n = 0$.

Exemple 1.8.

— Pour tout $i \in \mathbb{N}$, l'application $c_i : \mathbb{C}[x] \to \mathbb{C} : P = \sum_{k=0}^{+\infty} a_k x^k \mapsto a_i$ est continue de $(\mathbb{C}[x], \|\cdot\|_{\infty})$ dans $(\mathbb{C}, |\cdot|)$. En effet, pour $i \in \mathbb{N}$, $P = \sum_{k=0}^{+\infty} a_k x^k$, et $Q = \sum_{k=0}^{+\infty} b_k x^k$, on a :

$$\left|c_{\mathfrak{i}}(P)-c_{\mathfrak{i}}(Q)\right|=\left|a_{\mathfrak{i}}-b_{\mathfrak{i}}\right|\leqslant \left\|P-Q\right\|_{\infty}=\max_{k\in\mathbb{N}}\left|a_{k}-b_{k}\right|.$$

On en déduit que c_i est lipschitzienne sur $\mathbb{C}[x]$ et donc continue sur $\mathbb{C}[x]$.

— Soit $n \in \mathbb{N}$. Posons :

$$P_n = \sum_{k=0}^n \frac{1}{k!} x^k \in \mathbb{C}[x].$$

On observe que $(P_n)_{n\in\mathbb{N}}$ est de Cauchy dans $(\mathbb{C}[x],\|\cdot\|_{\infty})$ car :

$$\|P_n - P_m\|_{\infty} = \left\| \sum_{k=0}^n \frac{1}{k!} x^k - \sum_{k=0}^m \frac{1}{k!} x^k \right\|_{\infty}.$$

On a alors:

$$\|P_n - P_m\|_{\infty} = \left\| \sum_{k=\min\{m,n\}+1}^{\max\{m,n\}} \frac{1}{k!} x^k \right\|_{\infty} = \max_{\min\{m,n\}+1 \leqslant k \leqslant \max\{m,n\}} \frac{1}{k!} = \frac{1}{(\min\{m,n\}+1)!}.$$

Montrons que $(P_n)_{n\in\mathbb{N}}$ est de Cauchy. Supposons (par l'absurde) que $(P_n)_{n\in\mathbb{N}}$ converge vers $P\in (\mathbb{C}[x],\|\cdot\|_{\infty})$. Notons $(\alpha_k)\subset\mathbb{C}$, la suite presque nulle des coefficients de P. Pour $i\in\mathbb{N}$, on a $c_i(P)=\frac{1}{i!}$ quand $n\geqslant i$. Or par la propriété de Lipschitz, on sait que $c_i(P_n)\xrightarrow[n\to+\infty]{}c_i(P)=a_i$. Or (a_k) est presque nulle et $a_i=\frac{1}{i!}$. Il y a donc contradiction. Donc (P_n) ne converge pas dans $(\mathbb{C}[x],\|\cdot\|_{\infty})$. Dès lors, $(\mathbb{C}[x],\|\cdot\|_{\infty})$ n'est pas complet.

1.2 Convergence de suites de fonctions

1.2.1 Convergence simple ²

Définition 1.27. Soit X un ensemble et (Y, d) un espace métrique. On dit que la suite $(f_n(x))_{n \in \mathbb{N}}$ où $f_n: X \to (Y, d)$ converge simplement sur X lorsque :

$$\forall x \in X: \big(f_n\left(x\right)\big)_{n \in \mathbb{N}} \text{ converge dans } (Y,d).$$

Définition 1.28. Dans ce cas, la suite a pour limite simple la fonction :

$$f: X \to (Y, d): x \mapsto \lim_{n \to +\infty} f_n(x)$$

et est bien définie. Cela se note :

$$f_n \xrightarrow[n \to +\infty]{\text{CVS}} f \qquad \qquad \text{ou} \qquad \qquad f_n \xrightarrow[n \to +\infty]{\text{CVS}} \xrightarrow[n \to +\infty]{\text{CVS}} f.$$

Exemple 1.9. Soient X = [0,1] et $Y = \mathbb{R}$. On pose $f_n(x) = x^n$ pour tout $n \in \mathbb{N}$.

— Si $x \in [0,1)$, alors la suite $(f_n(x))_{n \in \mathbb{N}}$ est une suite géométrique de raison x avec|x| < 1 donc la suite converge vers 0;

^{2.} La convergence simple est la notion de convergence « minimale » que l'on va exiger. Il existe des convergences encore plus élémentaires (voir théorie de l'intégration de Lebesgue), mais qui se trouvent en dehors des objectifs du cours.

— si x = 1,a lors $f_n(x) = 1$ pour tout $n \in \mathbb{N}$. Donc la suite $(f_n(x))_{n \in \mathbb{N}}$ converge simplement sur [0,1]vers la fonction:

$$f: [0,1] \to \mathbb{R}: x \mapsto egin{cases} 0 & \text{si } x < 1 \\ 1 & \text{si } x = 1 \end{cases}.$$

Remarque.

- On a « perdu » la continuité des fonctions f_n par passage à la limite;
- ici, la convergence simple peut s'écrire ainsi, à l'aide de quantificateurs :

$$\forall \varepsilon > 0 : \forall x \in X : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : d(f_n(x), f(x)) < \varepsilon.$$

On remarque donc que N dépend de x (ordre des quantificateurs).

Convergence uniforme

Définition 1.29. Soient X un ensemble, (Y, d) un espace métrique, et $f_n : X \to (Y, d)$. On dit que (f_n) *converge uniformément* sur X vers $f: X \rightarrow (Y, d)$ lorsque :

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : \forall x \in X : d(f_n(x), f(x)) < \epsilon.$$

Cela se note:

$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X} f.$$

Remarque. La définition est très proche de la convergence simple. La différence étant que pour une convergence uniforme, il faut que $N \in \mathbb{N}$ ne dépende pas de la valeur de x.

Proposition 1.30. Soient X un ensemble, (Y, d) un espace métrique, $(f_n(x))_{n \in \mathbb{N}}$ une suite de fonctions de X dans (Y, d) et $f: X \to (Y, d)$. Si (f_n) converge uniformément sur X vers f, alors (f_n) converge simplement sur X vers f.

Démonstration. EXERCICE.

 $\textit{Exemple 1.10. Prenons } X = \mathbb{R} = Y \text{ et pour tout } n \geqslant 1, \text{ définissons } f_n(x) = \sqrt{x^2 + \frac{1}{n}}. \text{ Fixons } x \in \mathbb{R}. \text{ On trouve tout } n \geqslant 1, \text{ definissons } f_n(x) = \sqrt{x^2 + \frac{1}{n}}.$ alors:

$$\left(f_{n}\left(x\right)\right)_{n\in\mathbb{N}}=\left(\sqrt{x^{2}+\frac{1}{n}}_{n}\right)_{n\in\mathbb{N}}\rightarrow\sqrt{x^{2}}=\left|x\right|.$$

Donc:

$$f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} |\cdot|$$
.

Théorème 1.31. Soient (X, d), (Y, d) deux espaces métriques. Soient $f_n : X \to Y$, $a \in X$. On suppose : $- \exists f \text{ t.q. } f_n \xrightarrow[n \to +\infty]{CVU \text{ sur } X} f;$ $- \forall n \in \mathbb{N} : f_n \text{ est continue en } a.$

Alors f est continue en a.

Démonstration. Soit ε > 0. Par convergence uniforme des f_n , on sait :

$$\exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N : \forall x \in X : d(f_n(x), f(x)) < \frac{\epsilon}{3}.$$

De plus, la fonction f_N est continue en α par hypothèse. Dès lors, on sait qu'il existe δ tel que :

$$\forall x \in X : d(x, a) < \delta \Rightarrow d(f_N(x), f_N(a)) < \frac{\varepsilon}{3}.$$

Ainsi, prenons $x \in X$ tel que $d(x, a) < \delta$. On a alors :

$$d(f(x),f(\alpha))\leqslant d(f(x),f_N(x))+d(f_N(x),f(\alpha))\leqslant d(f(x),f_N(x))+d(f_N(x),f_N(\alpha))+d(f_N(\alpha),f(\alpha))\leqslant 3\frac{\epsilon}{3}=\epsilon.$$

Corollaire 1.32. Si $f_n \in C^0(X,Y)$ et $f_n \xrightarrow[n \to +\infty]{}$, alors $f \in C^0(X,Y)$.

Démonstration. Les fonctions f_n sont continues en tout point et $f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X}$ par hypothèse. Dès lors, pour tout point $a \in X$, par le théorème précédent, on peut dire f continue en a. Dès lors $f \in C^0(X, Y)$. □

1.2.3 L'espace B(X, E)

Définition 1.33. Soient $X \neq \emptyset$ et $(E, \|\cdot\|_E)$ un espace vectoriel normé. On note :

$$B(X, E) := \{f : X \to E \text{ t.q. } f \text{ est born\'ee sur } X\}.$$

Pour $f \in B(X, E)$, on définit :

$$\|f\|_{\infty} := \sup_{x \in X} \|f(x)\|_{E}$$
.

Proposition 1.34. $(B(X, E), ||\cdot||_{\infty})$ *est un espace vectoriel normé.*

Démonstration. EXERCICE. □

Théorème 1.35. $(B(X, E), ||\cdot||_{\infty})$ est complet si et seulement si $(E, ||\cdot||_{E})$ est complet.

Démonstration. Supposons d'abord $(B(X, E), \|\cdot\|_{\infty})$ complet et montrons que $(E, \|\cdot\|_{E})$ est complet.

Soit $(x_n)_n$ une suite de Cauchy d'éléments de E. Soit (f_n) une suite de fonctions de B(X, E) telle que :

$$\forall n \in \mathbb{N} : \forall x \in X : f_n(x) = x_n$$
.

Puisque (x_n) est de Cauchy, on sait que :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall m, n \geqslant N : d(x_m, x_n) < \varepsilon.$$

Or, avec $\alpha \in X$ fixé, on peut alors dire $\forall m, n \geqslant N : d(f_m(\alpha), f_n(\alpha)) < \epsilon$, et ce peu importe le α choisi (car les f_n sont constantes). On a donc (f_n) une suite de Cauchy dans B(X, E) car $d(f_m(\alpha), f_n(\alpha)) = \|f_m - f_n\|_{\infty}$. Or, par complétude de B(X, E), on sait qu'il existe $f \in B(X, E)$ telle que $f_n \to f$. La fonction f est également constante. Posons L la seule image de f. Soit f so f so f so f tel que f so f so f tel que f so f so

Or:

$$\epsilon > \|f_n - f\|_{\infty} = \sup_{x \in X} \|f_n(x) - f(x)\|_E = \|f_n(\alpha) - f(\alpha)\|_E = \|x_n - L\|.$$

Dès lors, on sait que (x_n) converge dans E.

Montrons maintenant que si $(E, ||\cdot||_F)$ est complet, alors $(B(X, E), ||\cdot||_{\infty})$ est complet également.

Soit $(f_n)_n$ une suite de Cauchy de fonctions de $(B(X,E),\|\cdot\|_{\infty})$. Fixons $\epsilon>0$. Il existe alors $N\in\mathbb{N}$ tel que :

$$\forall m, n \geqslant N : ||f_m - f_n||_{\infty} < \varepsilon.$$

Soit $x \in X$. On observe que :

$$\forall m, n \geqslant N : ||f_n(x) - f_m(x)||_F \leqslant ||f_n - f_m||_{\infty} < \varepsilon.$$

La suite $(f_n(x))_n$ est donc une suite de Cauchy dans $(E, \|\cdot\|_E)$. Par complétude de E, on sait qu'il existe $f(x) \in E$ tel que $f_n(x) \to f(x)$. Montrons maintenant que $f \in B(X, E)$.

La suite $(f_n)_n$ est de Cauchy et donc bornée. Soit $M \ngeq 0$ tel que $\forall n \in \mathbb{N} : \|f_n\|_{\infty} < M$. Passons à la limite dans (B(X, E). On a alors :

$$\forall n \in \mathbb{N} : \forall x \in X : ||f(x)||_F < M.$$

Ainsi, $f \in B(X, E)$ par définition.

Soit alors $\varepsilon > 0$. Pour tout $m, n \in \mathbb{N}$ et pour tout $x \in X$, on a :

$$\|f_n(x) - f_m(x)\|_F \le \|f_n - f_m\|_\infty \le \varepsilon.$$

Passons alors à la limite e m, ce qui donne :

$$\|f_n(x) - f(x)\|_{\mathsf{E}} \le \|f_n - f\|_{\infty} \le \varepsilon.$$

Dès lors:

$$\forall n \geqslant N : ||f_n - f||_{\infty} \leqslant \varepsilon.$$

Remarque. Quand $X \neq \emptyset$ et Y = E est un espace vectoriel normé, on a :

 $f_n \xrightarrow[n \to +\infty]{CVU \operatorname{sur} X} f \iff \left\{ \begin{array}{c} \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N : f_n - f \in B(X, E) \\ f_n - f \xrightarrow[n \to +\infty]{\| \cdot \|_{\infty}} 0 \end{array} \right..$

1.2.4 Convergence uniforme sur tout compact

Définition 1.36. Soit X, une partie non-vide d'un espace vectoriel norméde dimension finie $(E, \|\cdot\|_E)$. Soit (Y, d) un espace métrique. Une suite $f_n : X \to Y$ converge uniformément vers $f : X \to Y$ sur tout compact lorsque :

$$\forall \ compact \ K \subset X \colon f_n \bigg|_K \xrightarrow[n \to +\infty]{CVU \ sur \ K} f \bigg|_K \, .$$

Cela se note:

$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur tout cpct de } X} f.$$

Proposition 1.37. Si la suite f_n converge uniformément sur tout compact de X et si toutes les fonctions f_n sont continues en $a \in X$, alors f est continue en a.

Démonstration. EXERCICE. □

Exemple 1.11. Prenons $X = Y = \mathbb{R}$. On définit $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. On a alors $f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} \exp$.

De plus:

$$\|f_n - \exp\|_{\infty} = \sup_{x \in \mathbb{R}} \left| \sum_{k=0}^n \frac{x^k}{k!} - \exp(x) \right| = +\infty.$$

Donc f_n ne converge pas uniformément vers exp. Montrons maintenant que f_n converge uniformément vers exp sur tout compact de \mathbb{R} . Soit $K \subset \mathbb{R}$ un compact. On sait qu'il existe $a,b \in \mathbb{R}$, a < b tels que $K \subset [a, b]$. Pour $x \in [a, b]$, par Lagrange, on a :

$$\exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} = \frac{x^{n+1}}{(n+1)!} \exp(c_x),$$

avec $c_x \in [a, b]$.

Ainsi:

$$\left| exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} \right| \leqslant \frac{(b-a)^{n+1}}{(n+1)!} \sup_{x \in [a,b]} exp(x) \xrightarrow[n \to +\infty]{} 0.$$

D'où $f_n \xrightarrow[n \to +\infty]{[a,b]} f$ et donc la convergence uniforme sur tout compact de f_n vers f.

Suites de fonctions et opérations d'intégration et de dérivation 1.3

Passage à la limite dans une intégrale de Riemann

Soit X un pavé de \mathbb{R}^d (donc $X = \prod_{i=1}^d [a_i, b_i]$ avec $a_i < b_i \forall i \in \{1, \dots, d\}$).

Théorème 1.38. Soit $f_n: X \to \mathbb{R}$ intégrables au sens de Riemann sur X. Supposons $f_n \xrightarrow{CVU \, sur \, X} f$. Alors:

- $\begin{array}{ll} -- & f \ est \ intégrable \ au \ sens \ de \ Riemann \ ; \\ -- & la \ \left(\int_X f_n(x) \ dx\right)_n \ converge \ vers \ \int_X f(x) \ dx.^3 \end{array}$

Démonstration. On note $\mathcal{E}(X,\mathbb{R}) := \{f : X \to \mathbb{R} \text{ t.q. } f \text{ est élémentaire} \}$.

Soit $\varepsilon > 0$. Par la convergence uniforme, on sait qu'il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N : \|f_n - f\|_{\infty} \leqslant \frac{\varepsilon}{4|X|}$$

 $où |X| = \prod_{i=1}^{d} (b_i - a_i).$

Par intégrabilité de f_N , on sait qu'il existe $\varphi, \psi \in \mathcal{E}(X, \mathbb{R})$ telles que :

$$\psi\leqslant f_N\leqslant \phi \qquad \qquad \text{et} \qquad \qquad \int_X (\phi-\psi)<\frac{\epsilon}{2}.$$

On a alors:

$$\psi - f_N \leqslant f \leqslant \varphi + f_N$$

ou encore:

$$\psi - \frac{\epsilon}{4|X|} \leqslant f \leqslant \phi + \frac{\epsilon}{4|X|}.$$

$$\lim_{n \to +\infty} \int_X f_n(x) dx = \int_X \lim_{n \to +\infty} f_n(x) dx.$$

^{3.} Cela veut dire que:

En posant $\overline{\psi} \coloneqq \psi - \frac{\epsilon}{4X}$ et $\overline{\phi} \coloneqq \phi + \frac{\epsilon}{4X}$, on a $\overline{\psi}$, $\overline{\phi} \in \mathcal{E}(X,\mathbb{R})$. De plus :

$$\int_X (\psi - \phi) = \int_X \left(\psi + \frac{\epsilon}{4|X|} - \left(\phi - \frac{\epsilon}{4|X|} \right) \right) = \frac{\epsilon}{2|X|} |X| + \int_X \psi - \phi < 2\frac{\epsilon}{2} = \epsilon.$$

Dès lors, on en déduit f intégrable au sens de Riemann.

Fixons $\varepsilon > 0$. Par convergence uniforme de f_n vers f sur X, on sait que :

$$\exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : \left\| f_n - f \right\|_{\infty} < \frac{\epsilon}{|X|}$$

Et donc:

$$\left| \int_X f_n(x) dx - \int_X f(x) dx \right| = \left| \int_X (f_n - f)(x) dx \right| \le \left| \int_X \|f_n - f\|_{\infty} dx \right| = |X| \|f_n - f\|_{\infty} \le |X| \frac{\varepsilon}{|X|} = \varepsilon.$$

Finalement, la suite $(\int_X f_n(x) dx)_n$ converge dans \mathbb{R} vers $\int_X f(x) dx$. *Remarque*.

1. Il est possible d'avoir les résultats sans vérifier les hypothèses. Par exemple, $X = [0,1] \subset \mathbb{R} = Y$, avec $f_n(x) = x^n$. On sait que $f_n \xrightarrow[n \to +\infty]{CVS \text{ sur } X} 1_{\{x=1\}}$ et que la convergence n'est pas uniforme sur [0,1]. On remarque alors :

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, dx = \lim_{n \to +\infty} \frac{1}{n+1} = 0 = \int_0^1 \mathbf{1}_{\{x=1\}}(x) \, dx = \int_0^1 \lim_{n \to +\infty} f_n(x) \, dx \; ;$$

2. si les hypothèses ne sont pas vérifiées, la conclusion peut être fausse. Par exemple, $X = [0, 1] \subset \mathbb{R} = Y$. On définit $(n \ge 1)$:

$$f_n(x) = \begin{cases} 2n\alpha_n x & \text{si } 0 \leqslant x < \frac{1}{2n} \\ 2\alpha_n - 2n\alpha_n x & \text{si } \frac{1}{2n} \leqslant x < \frac{1}{n} \text{,} \\ 0 & \text{sinon} \end{cases}$$

où $\alpha_n \in \mathbb{R}^+_0$ t.q. $\forall n \in \mathbb{N}^* : \int_0^1 f_n(x) \, dx = 1$, donc $\alpha_n = 2n$.

On a alors $f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} 0 = f$. La fonction nulle 0(x) est intégrable au sens de Riemann sur [0,1].

Finalement, on a:

$$\int_0^1 \lim_{n \to +\infty} f_n(x) \, dx = \int_0^1 f(x) \, dx = 0 \qquad \text{ et } \qquad \lim_{n \to +\infty} \int_0^1 f_n(x) \, dx = 1.$$

Dans ce cas précis, on ne peut pas passer à la limite.

1.3.2 Passage à la limite dans une dérivation ordinaire ou partielle

Théorème 1.39. Soit $\emptyset \neq \Omega \subset \mathbb{R}^d$, un ouvert. Soient $f_n : \Omega \to \mathbb{R}$, toutes de classe C^1 sur Ω . Supposons :

$$- f_{n} \xrightarrow{\text{CVS sur tout cpct } de \ \Omega} f;$$

$$- \forall i \in [1, d] : \frac{\partial f_{n}}{\partial x_{i}} \xrightarrow{\text{CVU sur } \Omega} g_{i}.$$

Alors:

1. $f \in C^1(\Omega, \mathbb{R})$;

2.
$$\forall i \in [\![1,d]\!]: \frac{\partial \, f}{\partial x_i} = lim_{n \to +\infty} \, \frac{\partial \, f_n}{\partial x_i} \, \textit{dans} \; \Omega;$$

3.
$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur tout cpct de }\Omega} f$$
.

Démonstration. Soit $x \in \Omega$. Par ouverture de Ω , on sait qu'il existe $\delta \ngeq 0$ tel que $B(x, \delta[\subset \Omega)$. On en déduit que $B(x, \frac{\delta}{2}]$ est incluse dans $B(x, \delta[$. Or $B(x, \frac{\delta}{2}]$ est fermé et borné par définition. $B(x, \frac{\delta}{2}]$ est donc un compact de Ω .

Soient $i \in [\![1,d]\!]$ et $h \in [\pm \frac{\delta}{2}].$ On a alors :

$$\forall n \in \mathbb{N} : f_n(x + he_i) = f_n(x) + \int_0^h \frac{\partial f}{\partial x_i}(x + se_i) \, ds.$$

Or comme $f_n \xrightarrow[n \to +\infty]{\text{CVS sur tout cpct de }\Omega} f \text{ et pour tout i, } \frac{\partial f_n}{\partial x_i} \text{ converge uniformément vers } g_i \text{ sur } B(x, \frac{\delta}{2}], \text{ il vient : }$

$$f_n(x + he_i) = f_n(x) + \int_0^h g_i(x + se_i) ds,$$

où $\{e_1, \dots e_d\}$ est la base canonique de \mathbb{R}^d .

On en déduit alors que f admet une dérivée partielle par rapport à x_i en x:

$$\frac{\partial f}{\partial x_i}(x) = g_i(x).$$

De plus, les f_n sont $C^1(\Omega, \mathbb{R})$, et donc les dérivées partielles $\frac{\partial f_n}{\partial x_i}$ sont $C^0(\Omega, \mathbb{R})$ pour tout i et par convergence uniforme sur les compacts, $g_i \in C^0(\Omega, \mathbb{R})$ (Proposition 1.37).

On en déduit alors $f\in C^1(\Omega,\mathbb{R})$ avec $\frac{\partial\,f}{\partial x_i}=g_i$ pour tout i dans Ω (points 1 et 2 à montrer).

Il reste donc à montrer le point 3.

Soit $K \subset \Omega$, un compact. Par ouverture de Ω , on sait que pour tout $a \in K$, on a :

$$\exists r_{\mathfrak{a}} \ngeq 0 \text{ t.q. } B(\mathfrak{a}, r_{\mathfrak{a}} [\subset \Omega.$$

Dès lors, on sait que :

$$K \subset \bigcup_{\alpha \in K} B\left(\alpha, \frac{r_{\alpha}}{2}\right[.$$

Par complétude, on sait qu'il existe un sous-recouvrement fini de K, c'est-à-dire $\mathfrak{p}\in\mathbb{N}^*$ et $(\mathfrak{a}_i)_{i\in\llbracket 1,\mathfrak{p}\rrbracket}\in K^p$ tel que :

$$K \subset \bigcup_{i=1}^p B\left(\alpha_i, \frac{r_{\alpha_i}}{2}\right[.$$

Par convergence simple de f_n vers f, et puisque les a_i sont en nombre fini, on peut alors exprimer :

$$\forall \epsilon > 0: \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N: \forall k \in [\![1,p]\!] \big| f_n(\alpha_i) - f(\alpha_i) \big| < \epsilon.$$

Fixons donc $\varepsilon > 0$, soit N correspondant et soit $x \in K$. Il existe $k \in [1, p]$ tel que $x \in B(a_k, \frac{r_{a_k}}{2})$ car les boules ouvertes forment un recouvrement de K. On a alors :

$$f_n(x) = f_n(a_k) + \int_0^1 \langle \nabla f_n(a_k + t(x - a_k)), (x - a_k) \rangle dt,$$

et:

$$f(x) = f(\alpha_k) + \int_0^1 \left\langle \nabla f(\alpha_k + t(x - \alpha_k)), (x - \alpha_k) \right\rangle dt.$$

Par différence, on a :

$$\left|f_n(x) - f(x)\right| \leq \left|f_n(\alpha_k) - f(\alpha_k)\right| + \int_0^1 \left\|\nabla f_n(\alpha_k + t(x - \alpha_k)) - \nabla f(\alpha_k + t(x - \alpha_k))\right\| dt \cdot \|x - \alpha_k\|.$$

Par convergence uniforme sur $\left(\bigcup_{i=1}^p B(a_i, \frac{r_{a_i}}{2}]\right)$ de ∇f_n vers ∇f , on sait que :

$$\exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : \|\nabla f_n - \nabla f\|_{\infty,\bigcup_{i=1}^p B\left(\alpha_i,\frac{r_{\alpha_i}}{2}\right]} < \frac{2\epsilon}{\underset{i \in [\![1,p]\!]}{\text{max}} r_{\alpha_i}}.$$

Finalement, on a:

$$\forall x \in K : \forall n \geqslant N : \left\| f_n(x) - f(x) \right\| \leqslant \epsilon + \frac{r_{\alpha_k}}{2} \cdot \frac{2\epsilon}{\underset{i \in [\![1,d]\!]}{max}} r_{\alpha_i} \leqslant 2\epsilon.$$

Ainsi, pour $n \ge N$, on a :

$$\|f_n - f\|_{\infty,K} \leqslant 2\epsilon.$$

Remarque. Ce théorème est vrai en particulier pour d = 1, et Ω un segment de \mathbb{R} .

Exemple 1.12 (Contre-exemples ne vérifiant pas les hypothèses donc ne pouvant faire passer la limite dans la dérivation).
$$f_n(x) = \frac{\sin(n^2x)}{n}, n \geqslant 1, x \in X = \mathbb{R}. \text{ On a donc } f_n \xrightarrow[n \to +\infty]{CVU \text{ sur } \mathbb{R}} 0 = f \text{ car } \left| f_n(x) - f(x) \right| \leqslant \frac{1}{n} \to 0 \text{ avec } \frac{1}{n}$$
 ne dépendant pas de x . Les f^n sont $C^\infty(\mathbb{R})$ et sont donc dérivables :

$$\frac{df_n}{dx} = n\cos(n^2x),$$

et donc:

$$\left.\frac{df_n}{dx}\right|_{x=0}=n\to+\infty.$$

On en déduit :

$$\neg \left(\frac{df_n}{dx} \xrightarrow[n \to +\infty]{} \frac{df}{dx} \right).$$

2. $f_n(x) = \frac{x^n}{n}$, $n \geqslant 1$, $x \in X = [0,1]$. On a $f_n \xrightarrow[n \to +\infty]{CVU \text{ sur } X} 0$. Puisque les f_n sont $C^\infty(X,\mathbb{R})$, on a :

$$\frac{\mathrm{d}f_n}{\mathrm{d}x} = x^{n-1} \xrightarrow[n \to +\infty]{} 1_{\{x=1\}},$$

qui n'est pas une dérivée. À nouveau, la suite des dérivées des f_n ne tend pas vers la dérivée de f. **Corollaire 1.40.** Soient $p \in \mathbb{N}^*$, $\Omega \subset \mathbb{R}^d$, un ouvert non-vide. Soit $f_n : \Omega \to \mathbb{R}$ de classe $C^p(\Omega, \mathbb{R})$. Supposons :

$$\begin{split} & - \ \forall q \in [\![0,p-1]\!] : \forall (i_1,\ldots,i_q) \in [\![1,d]\!]^q : \frac{\partial^q f_n}{\partial x_{i_1}\ldots\partial x_{i_q}} \xrightarrow[n \to +\infty]{\text{$\rm CVU}\,{\rm sur}\,\Omega$}} g_{i_1,\ldots,i_q}; \\ & - \ \forall (i_1,\ldots i_p) \in [\![1,d]\!]^p : \frac{\partial^p f_n}{\partial x_{i_1}\ldots\partial x_{i_p}} \xrightarrow[n \to +\infty]{\text{$\rm CVU}\,{\rm sur}\,\Omega$}} g_{i_1,\ldots i_q}. \end{split}$$

Alors:

1.
$$f = g_{\emptyset} \in C^{p}(\Omega, \mathbb{R})$$
;

$$2. \ \forall q \in \llbracket 1, p \rrbracket : \forall (i_1, \ldots, i_q) \in \llbracket 1, d \rrbracket^q : \frac{ \eth^q f}{ \eth x_{i_1} \ldots \eth x_{i_q}} = g_{i_1, \ldots, i_q} \, ;$$

$$3. \ \forall q \in [\![0,p-1]\!]: \forall (i_1,\ldots,i_q) \in [\![1,d]\!]^q: \tfrac{\mathfrak{d}^q f_n}{\mathfrak{d} x_{i_1} \ldots \mathfrak{d} x_{i_q}} \xrightarrow{CVU \textit{ sur tout cpct de } \Omega} g_{i_1,\ldots,i_q}.$$

Démonstration. EXERCICE. (Récurrence sur p par le résultat précédent)

1.4 Séries de fonctions

1.4.1 Retranscription des résultats sur les suites

Définition 1.41. Soit $u_n : X \to Y$ où $X \neq \emptyset$ et Y est un espace vectoriel normé. On appelle *somme partielle d'ordre* n *de la série de terme général* u_n la fonction suivante :

$$S_n:X\to Y:x\mapsto \sum_{k=0}^n u_k(x).$$

On dit que la série de terme général u_n converge simplement sur X lorsque S_n converge simplement sur X. De même pour la convergence uniforme sur X et la convergence uniforme sur tout compact de X.

Théorème 1.42. Soient (X, d) un espace métrique et Y un espace vectoriel normé. Soit $u_n : X \to Y$. Si $\forall n \in \mathbb{N} : u_n$ est continue en $a \in X$ et si la série de terme général u_n converge uniformément sur X, alors :

$$S := \lim_{n \to +\infty} S_n$$
 est continue en a .

Démonstration. EXERCICE.

Théorème 1.43. Soit $X \neq \emptyset$, un pavé de \mathbb{R}^d et soit $u_n: X \to Y$ t.q. $\sum_{n \geqslant 0} u_n \xrightarrow[n \to +\infty]{CVU \ sur \ X} S$ avec u_n intégrable au sens de Riemann pour tout n. Alors :

- 1. S est intégrable au sens de Riemann sur X;
- 2. *la suite* $\int_X S_n(x) dx$ *converge vers* $\int_X S(x) dx$.

Démonstration. EXERCICE.

Théorème 1.44. Soit $\Omega \subset \mathbb{R}^d$, un ouvert non-nul et soit $\mathfrak{u}_{\mathfrak{n}}: \Omega \to \mathbb{R}$ de classe $C^{\mathfrak{p}}(\Omega,\mathbb{R})$ avec $\mathfrak{p} \in \mathbb{N}^*$. Supposons :

$$\begin{split} & - \sum_{n \geqslant 0} u_n \xrightarrow[n \to +\infty]{\text{CVS sur } \Omega} S \,; \\ & - \forall \alpha \in \mathbb{N}^d \text{ t.q. } |\alpha| \coloneqq \sum_{i=1}^d \alpha_i \leqslant p : \sum_{n \geqslant 0} \frac{\vartheta^{|\alpha|}}{\vartheta x_1^{\alpha_1} \dots \vartheta x_d^{\alpha_d}} u_n \xrightarrow[n \to +\infty]{\text{CVS sur } \Omega} s_\alpha \,; \end{split}$$

— $lorsque |\alpha| = p$, la convergence ci-dessus est uniforme sur les compacts de Ω .

Alors:

1. $S \in C^p(\Omega, \mathbb{R})$;

$$2. \ \forall \alpha \in \mathbb{N}^d: \frac{\vartheta^{|\alpha|}}{\vartheta x_1^{\alpha_1} \ldots \vartheta x_d^{\alpha_d}} S = \sum_{n \geq 0} \frac{\vartheta^{|\alpha|}}{\vartheta x_1^{\alpha_1} \ldots \vartheta x_d^{\alpha_d}} u_n \,;$$

3. Il y a convergence uniforme sur les compacts de Ω des séries de dérivées partielles d'ordre 0 à p-1.

1.4.2 Convergence normale

Définition 1.45. Soient $X \neq \emptyset$ et Y un espace vectoriel normé. On dit que la série de terme général $u_n : X \to Y$ converge normalement sur X lorsque :

$$\sum_{n\geqslant 0}\lVert u_{n}\rVert_{\infty,X}<+\infty.$$

Définition 1.46. On dit que la série de terme général $u_n : X \to Y$ vérifie le critère de Weierstrass lorsqu'il existe $(M_n)_{n \in \mathbb{N}}$ telle que :

$$\begin{array}{l} \text{existe } \left(M_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}} \text{ telle que :} \\ & - \left. \forall \mathfrak{n} \in \mathbb{N} : \forall x \in X : \left\|\mathfrak{u}_{\mathfrak{n}}(x)\right\|_{E} \leqslant M_{\mathfrak{n}} \text{ ;} \end{array}$$

$$-\sum_{n\geqslant 0}M_n<+\infty.$$

Remarque. $\sum_{n\geqslant 0} u_n$ converge normalement sur X si et seulement si elle vérifie le critère de Weierstrass. **Proposition 1.47.** Si $(E,\|\cdot\|_E)$ est un espace vectoriel normé complet, et si $\sum_{n\geqslant 0} u_n$ converge normalement sur X alors $\sum_{n\geqslant 0}$ converge uniformément sur X.

Démonstration. Écrivons $S_n = \sum_{k=0}^n u_k \in B(X,E)$. Par convergence normale, la suite $\sigma_n = \sum_{k\geqslant 0} \|u_k\|_{\infty,X}$ converge. De plus, (σ_n) est de Cauchy dans \mathbb{R}^+ . Donc :

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n, m \geqslant N : |\sigma_n - \sigma_m| < \epsilon.$$

Ainsi:

$$\begin{split} \left\|S_{n} - S_{m}\right\|_{\infty,X} &= \left\|\sum_{k=\min(m,n)+1}^{\max(m,n)} u_{k}\right\|_{\infty,X} \leqslant \sum_{k=\min(m,n)+1}^{\max(m,n)} \left\|u_{k}\right\|_{\infty,X} \\ &\leqslant \left|\sigma_{n} - \sigma_{m}\right| < \epsilon. \end{split}$$

Donc $(S_n)_n$ est de Cauchy dans $(B(X,E),\|\cdot\|_{\infty,X})$. Cet espace est complet car $(E,\|\cdot\|_E)$ l'est (Théorème 1.35). Et donc, $(S_n)_n$ converge uniformément sur X.

Remarque. On peut écrire :

$$CVN \Rightarrow CVU \Rightarrow CVS$$
,

mais les réciproques sont habituellement fausses.

Corollaire 1.48. Si $f_n: X \to Y$ (avec Y un espace vectoriel normé complet) est t.q. :

$$\left\{ \begin{array}{l} \forall n \in \mathbb{N} : \exists M_n \geqslant 0 \text{ t.q. } \|f_{n+1} - f_n\|_{\infty,X} \leqslant M_n \\ \sum_{m \geqslant 0} M_m < +\infty, \end{array} \right.$$

alors $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur X.

Démonstration. La série de terme général $u_n = f_{n+1} - f_n$ converge normalement sur X car elle vérifie le critère de Weierstrass sur X. Par complétude de Y, la série $\sum u_n$ converge uniformément sur X.

Pour $n \in \mathbb{N}$, on calcule :

$$S_n = \sum_{k=0}^n u_k = f_{n+1} - f_0.$$

Donc la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur X.

1.4.3 Transformation d'Abel

Théorème 1.49. Soient Y un espace vectoriel normé complet, $(g_n)_{n\in\mathbb{N}}\in Y^{\mathbb{N}}$, et $(f_n)_{n\in\mathbb{N}}\in (\mathbb{R}^+)^{\mathbb{N}}$. Supposons :

$$\begin{cases} \exists M \ngeq 0 \text{ t.q. } \forall n \in \mathbb{N} : \left\| \sum_{k=0}^{n} g_k \right\|_{Y} \leqslant M \\ f_n \xrightarrow[n \to +\infty]{} 0 \text{ en décroissant.} \end{cases}$$

Alors f_ng_n est le terme général d'une série convergente.

Démonstration. On pose :

$$\forall k \in \mathbb{N}^* : G_k = \sum_{m=0}^k g_m$$

Calculons, pour $n, p \in \mathbb{N}^*$:

$$\begin{split} S_{n+p} - S_n &= \sum_{k=n+1}^{n+p} f_k g_k = \sum_{k=n+1}^{n+p} f_k (G_k - G_{k-1}) = \sum_{k=n+1}^{n+p} f_k G_k - \sum_{k=n+1}^{n+p} f_k G_{k-1} = \sum_{k=n+1}^{n+p} f_k G_k - \sum_{k=n+1}^{n+p-1} f_k G_k - \sum_{$$

Ainsi:

$$\begin{split} \left\| S_{n+p} - S_n \right\|_{Y} & \leq M \sum_{k=n+1}^{n+p} (f_k - f_{k+1}) + M f_{n+p} + M f_{n+1} = M (f_{n+1} - f_{n+p}) + M (f_{n+p} + f_{n+1}) \\ & = 2M f_{n+1} \xrightarrow[n \to +\infty]{} 0, \end{split}$$

et la convergence de dépend pas de p. On a alors que la suite $(S_n)_{n\in\mathbb{N}}$ est de Cauchy, et par complétude de Y, S_n converge, ce qui implique que la série de terme général f_ng_n converge.

Théorème 1.50. Soient X un espace vectoriel normé completet $X \neq 0$. Soient :

$$g_n: X \to Y$$
,
 $f_n: X \to \mathbb{R}^+$.

Supposons

- qu'il existe $M \ngeq 0$ tel que $\forall n \in \mathbb{N} : \left\| \sum_{k=1}^{n} g_k \right\|_{\infty,X} \leqslant M$;
- que $f_n \xrightarrow[n \to +\infty]{\text{CVU sur X}} 0$ en décroissant.

Alors $f_n g_n$ est le terme général d'une série qui converge uniformément sur X.

Démonstration. Par la preuve précédente, on a :

$$||S_{n+p} - S_n||_{Y} \le 2Mf_{n+1}(x) \le 2M||f_{n+1}||_{\infty,X}$$
.

On déduit donc :

$$\left\|S_{n+p}-S_{n}\right\|_{\infty,X} \leqslant 2M\left\|f_{n+1}\right\|_{\infty,X}$$
.

On sait donc que $(S_n)_{n\in\mathbb{N}}$ est de Cauchy dans B(X,Y). Par complétude de Y, la série de terme général f_ng_n converge uniformément sur X.

On remarque en effet que les S_n sont bornés car $f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X} 0$, ce qui implique $\|f_n\|_{\infty,X}$ bornée, au moins à partir d'un certain $n \in \mathbb{N}.$ De plus, $\left\|\sum_k g_k\right\| < M$ assure que g_k est uniformément bornée.

Exemple d'une fonction continue sur \mathbb{R} nulle part dérivable

Considérons la fonction $\varphi : \mathbb{R} \to \mathbb{R} : x \mapsto |x|$ sur [-1,1] et 2-périodique. La fonction φ est continue sur \mathbb{R} .

$$\forall k \in \mathbb{N} : u_k : \mathbb{R} \to \mathbb{R} : x \mapsto \left(\frac{3}{4}\right)^k \phi(4^k x).$$

On sait que $\forall k \in \mathbb{N} : \|u_k\|_{\infty} = \left(\frac{3}{4}\right)^k \in [0,1]$. Ainsi, la série de terme général u_k converge normalement sur \mathbb{R} par le critère de Weierstrass. Par le Théorème 1.42, la fonction :

$$f:\mathbb{R}\to\mathbb{R}:x\mapsto\sum_{k\geqslant 0}u_k(x)$$

est continue sur \mathbb{R} .

Montrons maintenant la fonction f n'est jamais dérivable.

Construisons α_n et β_n tels que :

$$\left\{ \begin{array}{l} \forall n \in \mathbb{N} : \alpha_n \leqslant x \leqslant \beta_n, \\ \beta_n - \alpha_n \to 0, \\ \forall n \in \mathbb{N} : \left| \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} \right| \geqslant \frac{1}{2} 3^n. \end{array} \right.$$

Soit $n \in \mathbb{N}^*$. Choisissez $p \in \mathbb{Z}$ tel que $p = \lfloor 4^n x \rfloor$ (et donc $p \leqslant 4^n x < p+1$). Posons $\alpha_n = \frac{p}{4^n}$ et $\beta_n = \frac{p+1}{4^n}$. On a alors:

$$\mathsf{f}(\beta_{\mathfrak{n}}) - \mathsf{f}(\alpha_{\mathfrak{n}}) = \sum_{k \geqslant 0} \left(\phi(4^k \beta_{\mathfrak{n}}) \left(\frac{3}{4} \right)^k - \phi(4^k \alpha_{\mathfrak{n}}) \left(\frac{3}{4} \right)^k \right) = \sum_{k \geqslant 0} \left(\frac{3}{4} \right)^k \left(\phi(4^k \beta_{\mathfrak{n}}) - \phi(4^k \alpha_{\mathfrak{n}}) \right)$$

— si $k \lessgtr n$, alors $4^k \beta_n = 4^{k-n} (p+1)$ et $4^k \alpha_n = 4^{k-n} p$. Puisque ϕ est lipschitzienne de constante 1, on

$$\phi(4^k\beta_n)-\phi(4^k\alpha_n)\leqslant 4^{k-n}(p+1-p)=4^{k-n}$$
 ;

 $\begin{array}{l} -- \text{ si } k = n \text{, alors } \big| \phi(4^k\beta_n) - \phi(4^k\alpha_n) \big| = 1 \text{;} \\ -- \text{ si } k \gneqq n \text{, alors } 4^k\alpha_n = 4^{k-n}p \in 4\mathbb{Z} \subset 2\mathbb{Z} \text{ donc } \phi(4^k\alpha_n) = 0 \text{. De même, on a } \phi(4^k\beta_n) = 0. \end{array}$

Ainsi:

$$\mathsf{f}(\beta_{\mathfrak{n}}) - \mathsf{f}(\alpha_{\mathfrak{n}}) = \sum_{k=0}^{\mathfrak{n}-1} \left(\frac{3}{4}\right)^k \left(\phi(4^k\beta_{\mathfrak{n}}) - \phi(4^k\alpha_{\mathfrak{n}})\right) + \left(\frac{3}{4}\right)^{\mathfrak{n}} \left(\phi(4^{\mathfrak{n}}\beta_{\mathfrak{n}}) - \phi(4^{\mathfrak{n}}\alpha_{\mathfrak{n}})\right).$$

Or, par inégalité triangulaire inversée, on a :

$$\left|f(\beta_n)-f(\alpha_n)\right|\geqslant \left(\frac{3}{4}\right)^n\left|\phi(4^n\beta_n)-\phi(4^k\alpha_n)\right|-\sum_{k=0}^{n-1}\left(\frac{3}{4}\right)^k4^{k-n}\geqslant \frac{1}{2}\left(\frac{3}{4}\right)^n.$$

Et puisque $\beta_n-\alpha_n=4^{-n}$, il vient :

$$\left|\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}\right| \geqslant \frac{1}{2}3^n,$$

ce qui contredit la dérivabilité en x.

Séries de puissances 1.5

1.5.1 Théorie du rayon

On se donne $(Y, \|\cdot\|)$, un \mathbb{C} -ev complet.

Définition 1.51. On appelle série de puissance toute série de fonctions :

$$u_n: \mathbb{C} \to Y$$
,

dont le terme général est sous la forme $u_n(z) = a_n(z-z_0)^n$, avec $z_0 \in \mathbb{C}$ fixé et $(a_n) \subset Y$. Remarque. $Y = Mat_{n \times n}(\mathbb{C})$.

Définition 1.52. Définissons $\overline{\mathbb{R}^+} := \mathbb{R}^+ \cup \{+\infty\}$.

Théorème 1.53. Soit $R := \left(\limsup_{n \to +\infty} \|a_n\|_Y^{\frac{1}{n}}\right)^{-1}$. Quelque soit $z \in \mathbb{C}$:

- en norme dans Y).

Démonstration. Soit $z \in \mathbb{C}$ tel que $|z-z_0| < R$. Alors il existe $R' \ngeq 0$ t.q. $|z-z_0| < R' < R$ et :

$$\frac{1}{R} + \frac{1}{R'} < \frac{1}{|z - z_0|}.$$

Puisque $R^{-1}=\limsup_{n\to +\infty}\|\alpha_n\|_{\Upsilon}^{\frac{1}{n}}$, il existe $N\in\mathbb{N}$ t.q. :

$$\forall n\geqslant N: \|\alpha_n\|_Y^{\frac{1}{n}}\leqslant \limsup_{n\rightarrow +\infty} \|\alpha_n\|_Y^{\frac{1}{n}}=\frac{1}{R}\leqslant \frac{1}{R'}.$$

Dès lors : $\|a_n\|_Y \leqslant \frac{1}{(R')^n}$, ou encore $|z-z_0| \|a_n\|_Y \leqslant \frac{|z-z_0|^n}{(R')^n}$. On a donc :

$$\left\| (z-z_0)^n a_n \right\|_{Y} \leqslant \left(\frac{|z-z_0|}{R'} \right)^n.$$

Et comme $\left|\frac{|z-z_0|}{R'}\right| < 1$, on sait que la série de terme général $\frac{|z-z_0|}{R'}$ converge et donc de terme général $\left\|(z-z_0)^n\alpha_n\right\|_Y$ converge aussi.

Soit maintenant $z \in \mathbb{C}$ t.q. $|z - z_0| > R$. Il existe R' > 0 tel que $|z - z_0| > R' > R$ et $|z - z_0|^{-1} < (R')^{-1} + R^{-1}$. Soit $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que :

$$\forall n \in \mathbb{N} : \frac{1}{R'} \leqslant \left\| \alpha_{\phi(n)} \right\|_{\Upsilon}^{\frac{1}{\phi(n)}}.$$

On en déduit :

$$\left\|a_{\varphi(\mathfrak{n})}(z-z_0)^{\varphi(\mathfrak{n})}\right\|_{Y}=|z-z_0|^{\varphi(\mathfrak{n})}\left\|a_{\varphi(\mathfrak{n})}\right\|_{Y}\geqslant \left(\frac{|z-z_0|}{R'}\right)^{\varphi(\mathfrak{n})}\xrightarrow[\mathfrak{n}\to+\infty]{}+\infty.$$

Dès lors, $\sum_{n\geq 0} a_n (z-z_0)^n$ diverge grossièrement.

Théorème 1.54. Soit $a_n(z-z_0)^n$, le terme général d'une série de puissance. Alors :

— lorsque $0 < R < +\infty$, $\forall r \in (0, R)$: la série de série de terme général : $z \mapsto a_n(z-z_0)^n$ converge normalement sur $B(z_0, r]$;

— lorsque $R = +\infty$, la série de fonctions de terme général $z \mapsto a_n(z - z_0)^n$ converge normalement sur $B(z_0, r]$ pour tout r.

Démonstration. Si $0 < r < R < +\infty$, observons que $|z_0 + r - z_0| < R$. Ainsi, avec le Théorème 1.53, la série de terme général $a_n(z_0 + r)$ converge absolument. Or :

$$\|a_n(z_0+r)\|_Y = \|a_n\|_Y |z_0+r-z_0|^n = \|a_n\|_Y r^n.$$

Donc la série de terme général $\|a_n\|_Y$ r^n converge. Observons que :

$$\forall n \in \mathbb{N} : \forall z \in B(z_0, r] : ||u_n(z)||_Y = ||a_n||_Y |z - z_0|^n \le ||a_n||_Y r^n.$$

Ainsi $\|u_n\|_{\infty,B(z_0,r]} \le \|a_n\|_Y r^n$. Or $\|a_n\|_Y r^n$ est le terme général d'une série qui converge. Par le critère de Weierstrass, la série de terme général u_n converge normalement $B(z_0,r]$.

Si maintenant $R = +\infty$, on prend $r \in \mathbb{R}_0^+$, $|z_0 + r - z_0| = r < R = +\infty$. Avec le Théorème 1.53, on a : que $\sum_{n \geqslant 0} \mathfrak{u}_n(z_0 + r)$ converge absolument. Or $\|\mathfrak{u}_n(z_0 + r)\|_Y = \|\mathfrak{a}_n\|_R r^n$. Donc la série de terme général $\|\mathfrak{a}_n\|_Y r^n$ converge. Puisque l'on a toujours :

$$\|u_n\|_{\infty,B(z_0,r]}\leqslant \|\alpha_n\|_{\Upsilon}\,r^n,$$

on a donc $\sum_{n\geq 0} u_n$ converge normalement sur B(z_0 , r] par le critère de Weierstrass.

Corollaire 1.55. Soit $a_n(z-z_0)^n$ une série de puissance dans Y complet et R le rayon associé. Lorsque $R \ngeq 0$, la série converge normalement sur tout compact de B(0, r[.

Démonstration. Si $0 < R < +\infty$, soit K ⊂ B(z_0 , R[un compact. Il existe $r \in (0,R)$ tel que K ⊂ B(z_0 , r] ⊂ B(z_0 , R[. La convergence normale sur B(z_0 , r] implique la convergence normale sur K.

Si $R = +\infty$, on a $B(z_0, R[= \mathbb{C} \text{ Soit } K, \text{ un compact de } \mathbb{C}. \text{ Il existe } r > 0 \text{ tel que } K \subset B(z_0, r], \text{ et donc la convergence normale sur } K. <math>\square$

Corollaire 1.56. Lorsque R > 0, la fonction $S(z) = \sum_{k \ge 0} a_k (z - z_0)^k$ est une fonction continue sur $B(z_0, R[$.

Démonstration. Les fonctions $u_n : B(z_0, R[\to Y : z \mapsto a_n(z-z_0)^n \text{ sont continues sur l'ouvert } B(z_0, R[⊂ ℂ, et il y a convergence normale (et donc uniforme) de <math>\sum_{n\geqslant 0} u_n$ sur les compacts de $B(z_0, R[$. Par le Théorème 1.54, on sait que $S \in C^0(B(z_0, R[, Y))$.

Étude sur le cercle de convergence

Définition 1.57. On définit le cercle centré en $z_0 \in \mathbb{C}$ et de rayon R > 0 par :

$$C(z_0, R] = \{z \in \mathbb{C} \text{ t.q. } |z - z_0| = R\}.$$

Théorème 1.58. Lorsque $0 < R < +\infty$, s'il existe $z \in \mathfrak{C}(z_0,R]$ tel que $\sum_{n\geqslant 0} \mathfrak{a}_n (z-z_0)^n$ converge absolument, alors la série de fonctions : $u_n(z) = a_n(z-z_0)^n$ converge normalement sur $B(z_0,R]$.

Démonstration. Soit $z \in \mathcal{C}(z_0, R]$ tel que $\sum_{n \ge 0} a_n (z - z_0)^n$ converge absolument. On a :

$$\|a_n(z-z_0)^n\|_Y = |z-z_0|^n \|a_n\|_Y = R^n \|a_n\|_Y.$$

Puisque $\forall z \in B(z_0,R]: \forall n \in \mathbb{N}: \|u_n(z)\|_Y = |z-z_0| \|a_n\|_Y \leqslant R^n \|a_n\|_Y$, il vient que :

$$\forall n\geqslant 0: \|u_n\|_{\infty, B(z_0,R]}\leqslant R^n\|a_n\|_Y.$$

Et donc $\sum_{n\geq 0} u_n$ converge normalement sur $B(z_0,R]$ par le critère de Weierstrass.

Exemple 1.13. $Y = \mathbb{C}, \sum_{n \ge 1} \frac{z^n}{n^2}$. On a alors $a_n = \frac{1}{n^2}$, donc:

$$|a_n|^{\frac{1}{n}} = n^{\frac{-2}{n}} = \exp\left(-2\frac{\ln n}{n}\right) \xrightarrow[n \to +\infty]{} 1,$$

d'où R = 1, et il y a convergence en z = 1, donc il y a convergence absolue de la série :

$$\sum_{n\geq 1} \frac{\exp(in\theta)}{n^2} \ \forall \theta \in \mathbb{R},$$

et la convergence de $\sum_{n\geqslant 1}\frac{z^n}{n^2}$ est normale sur B(0,1]. Théorème 1.59 (Théorème d'Abel). $Si\ R\in (0,+\infty)$ et $\exists z\in \mathfrak{C}(z_0,R]\ t.q.\ \sum_{n\geqslant 0}\mathfrak{a}_n(z-z_0)^n$ converge, alors la série de fonctions de terme général $z\mapsto a_n(z-z_0)^n$ converge uniformément sur le segment reliant z_0 à z.

Démonstration. Prenons $z_0 = 0$ et $z \in \mathbb{R}_0^+$. Prenons $x \in [0, z]$, $n, p \in \mathbb{N}^*$. Écrivons :

$$\sum_{k=n}^{n+p} a_k x^k = \sum_{n=0}^{n+p} a_k z^k \left(\frac{x}{z}\right)^k.$$

Notons alors $S_m := \sum_{k=0}^m a_k z^k$, pour tout m. On obtient alors :

$$\begin{split} \sum_{k=n}^{n+p} \alpha_k x^k &= \sum_{k=n}^{n+p} (S_k - S_{k-1}) \left(\frac{x}{z}\right)^k = \sum_{k=n}^{n+p} (S_k - S_{n-1}) \left(\frac{x}{z}\right)^k - \sum_{k=n}^{n+p} (S_{k-1} - S_{n-1}) \left(\frac{x}{z}\right)^k \\ &= \sum_{k=n}^{n+p} (S_k - S_{n-1}) \left(\frac{x}{z}\right)^k - \sum_{k=n-1}^{n+p-1} (S_k - S_{n-1}) \left(\frac{x}{z}\right)^{k+1} \\ &= -(S_{n-1} - S_{n-1}) \left(\frac{x}{z}\right)^n + \sum_{k=n}^{n+p-1} (S_k - S_{n-1}) \left(\left(\frac{x}{z}\right)^k - \left(\frac{x}{z}\right)^{k+1}\right) + (S_{n+p} - S_{n-1}) \left(\frac{x}{z}\right)^{n+p}. \end{split}$$

Puisque la série de terme général $z \mapsto a_k |z-z_0|^k$ converge, la suite $(S_m)_n$ est de Cauchy dans Y. Soit $\varepsilon > 0$. On sait qu'il existe $N \in \mathbb{N}$ t.q. :

$$\forall k, n > N : ||S_k - S_{n-1}||_{V} \leq \varepsilon.$$

Soit un $n \ge N$, et $p \in \mathbb{N}^*$. Prenons $x \in [0, z]$. On a :

$$\begin{split} \left\| \sum_{k=n}^{n+p} a_k x^k \right\|_Y &\leqslant \sum_{k=n}^{n+p-1} \left\| (S_k - S_{n-1}) \left(\left(\frac{x}{z} \right)^{k+1} - \left(\frac{x}{z} \right)^k \right) \right\|_Y + \left\| (S_{n+p} - S_{n-1} \left(\frac{x}{z} \right)^{n+p} \right\| \\ &\leqslant \sum_{k=n}^{n+p-1} \left\| S_k - S_{n-1} \right\| \left(\left(\frac{x}{z} \right)^k - \left(\frac{x}{z} \right)^{k+1} \right) + \left\| S_{n+p} - S_{n-1} \right\| \left(\frac{x}{z} \right)^{n+p} \\ &\leqslant \epsilon \sum_{k=n}^{n+p-1} \left(\left(\frac{x}{z} \right)^k - \left(\frac{x}{z} \right)^{k+1} \right) + \epsilon \left(\frac{x}{z} \right)^{n+p} \\ &\leqslant \epsilon \left(\left(\frac{x}{z} \right)^n - \left(\frac{x}{z} \right)^{n+p} \right) + \epsilon \left(\frac{x}{z} \right)^{n+p} \\ &\leqslant \epsilon \left(\frac{x}{z} \right)^n \,. \end{split}$$

Par la suite, on peut dire que pour $n \ge N, p \in \mathbb{N}^*$:

$$\left\| \sum_{k=n}^{n+p} a_k \cdot ^k \right\|_{\infty,[0,z]} \leqslant \varepsilon.$$

On en déduit que la série de terme général $x \mapsto a_k x^k$ est de Cauchy dans B([0,z],Y), et donc, par complétude de Y, convergente.

Remarque. Soient (a_n) , $(b_n) \subset \mathbb{C}$. On appelle la *suite de Cauchy* de (a_n) et (b_n) la suite de terme général :

$$c_n \coloneqq \sum_{k=0}^n a_k b_{n-k}.$$

Théorème 1.60 (Théorème de Cauchy, version CDI 1). Si $\sum_{n\geqslant 0} a_n$ et $\sum_{n\geqslant 0} b_n$ convergent absolument, alors $\sum_{n\geqslant 0} c_n$ converge absolument, et on a :

$$\left(\sum_{n\geqslant 0}a_n\right)\left(\sum_{n\geqslant 0}b_n\right)=\sum_{n\geqslant 0}c_n.$$

Théorème 1.61 (Théorème de Cauchy, version CDI 2). $Si\sum_{n\geqslant 0}a_n$, $\sum_{n\geqslant 0}b_n$, $et\sum_{n\geqslant 0}c_n$ convergent, alors :

$$\left(\sum_{n\geqslant 0}a_n\right)\left(\sum_{n\geqslant 0}b_n\right)=\sum_{n\geqslant 0}c_n.$$

Démonstration. Par hypothèse de convergence des séries, on a :

$$R_{\alpha} := R\left(\sum_{n\geqslant 0} \alpha_n z^n\right), R_b := R\left(\sum_{n\geqslant 0} b_n z^n\right), R_c := R\left(\sum_{n\geqslant 0} c_n z^n\right) \geqslant 1.$$

Posons:

$$\begin{split} &A:[0,1]\to\mathbb{R}:x\mapsto\sum_{n\geqslant 0}a_nx^n,\\ &B:[0,1]\to\mathbb{R}:x\mapsto\sum_{n\geqslant 0}b_nx^n,\\ &C:[0,1]\to\mathbb{R}:x\mapsto\sum_{n\geqslant 0}c_nx^n. \end{split}$$

Si les R. sont > 1, alors [0,1] est un compact de B(0,R[et donc la somme de la série de terme général $\cdot_n z^n$ est C^0 sur [0,1], et si R=1, alors la série de puissance converge en $1 \in \mathcal{C}(0,1]$ et donc la série de terme général $\cdot_n z^n$ converge uniformément sur [0,1].

Puisque $z \mapsto a_n z^n$ (pareil pour b_n , c_n) est C^0 sur [0,1], il vient que A, B, $C \in C^0([0,1],\mathbb{C})$.

Pour $x \in [0,1),$ les séries $\sum_{n\geqslant 0} \cdot_n$ convergent absolument. De plus :

$$\sum_{k=0}^{n} a_k x^k \cdot b_{n-k} x^{n-k} = x^n \sum_{n=0}^{n} a_k b_{n-k} = x^n c_n.$$

Par le Théorème 1.60, on a :

$$\forall x \in [0,1) : A(x)B(x) = C(x).$$

De même, en passant à la limite (continuité) $x \rightarrow 1$, il vient :

$$\left(\sum_{n\geqslant 0}a_n\right)\left(\sum_{n\geqslant 0}b_n\right)=A(1)B(1)=C(1)=\sum_{n\geqslant 0}c_n.$$

1.5.3 Fonctions réelles analytiques

On considère la série de puissances $u_n(x) = a_n(x - x_0)^n$, avec $x, x_0 \in \mathbb{R}$ et x_0 fixé. **Définition 1.62.** On appelle *série dérivée formelle* de u_n la série de terme général :

$$u'_n(x) = na_n(x-x_0)^{n-1}, \quad n \geqslant 1$$

Remarque. La série dérivée formelle est toujours une série de puissances. **Proposition 1.63.** *Soient :*

$$R_{1} := R \left(\sum_{n \geqslant 0} a_{n} (x - x_{0})^{n} \right),$$

$$R_{2} := R \left(\sum_{n \geqslant 1} n a_{n} (x - x_{0})^{n-1} \right).$$

Alors $R_1 = R_2$.

Démonstration. On observe aisément que :

$$R_1^{-1} = \limsup_{n \to +\infty} \|a_n\|_Y^{\frac{1}{n}},$$

et donc:

$$R_2^{-1}=\limsup_{n\to +\infty}\lVert n\alpha_n\rVert_Y^{\frac{1}{n}}=\limsup_{n\to +\infty}n^{\frac{1}{n}}\lVert \alpha_n\rVert_Y^{\frac{1}{n}}=\limsup_{n\to +\infty}\lVert \alpha_n\rVert_Y^{\frac{1}{n}}=R_1^{-1},$$

$$\operatorname{car} n^{\frac{1}{n}} \xrightarrow[n \to +\infty]{} 1.$$

Proposition 1.64. *Soit* $x_0 \in \mathbb{R}$. *Supposons* $R \geq 0$, *et notons* :

$$f:(x_0-R,x_0+R)\to Y:x\mapsto \sum_{n\geqslant 0}a_n(x-x_0)^n.$$

Alors la fonction f est continue sur $(x_0 \pm R)$, et on a :

$$\forall p \in \mathbb{N}: \forall x \in (x_0 \pm R): f^{(p)}(x) = \sum_{n \geqslant p} \left(n(n-1)(n-2)\dots(n-p+1)\right) \alpha_n(x-x_0)^{n-p} = \sum_{n \geqslant p} \frac{n!}{(n-p)!} \alpha_n(x-x_0)^{n-p}.$$

Démonstration. On observe que le terme général $u_n(x) = a_n(x-x_0)^n$ est de classe C^∞ sur $(x_0 \pm R)$. La série $u_n'(x) = na_n(x-x_0)^{n-1}$ converge normalement sur les compacts de $(x_0 \pm R)$ par l'égalité des rayons. Donc $f \in C^1\left((x_0 \pm R)\right)$ et $f'(x) = \sum_{n \ge 1} na_n(x-x_0)^{-1}$.

Par récurrence, on obtient le résultat désiré.

Corollaire 1.65. Si f est une somme d'une série de puissances $\sum_{n\geqslant 0} a_n (x-x_0)^n$ de rayon $R \not \ge 0$ sur $(x_0 \pm R)$, alors :

$$\forall n \in \mathbb{N} : a_n = \frac{f^{(n)}(x_0)}{n!}.$$

Démonstration. Si f est somme de la série de puissance de terme général $a_n(x-x_0)^n$, alors $f \in C^{\infty}$ sur $(x_0 \pm R)$. Par la Proposition 1.64, on trouve :

$$\forall p \in \mathbb{N} : f^{(p)}(x_0) = \sum_{n \geq n} \frac{n!}{(n-)!} a_n (x_0 - x_0)^{n-p} = \frac{p!}{0!} a_p (x_0 - x_0)^{p-p} + 0 = p! a_p 1 = p! a_p,$$

et donc
$$a_p = \frac{f^{(p)}(x_0)}{p!}$$
.

Remarque. Les notations suivantes sont dues à Landau :

$$\begin{split} u_n \sim \nu_n &\iff \forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : |u_n - \nu_n| < \epsilon |u_n| \\ u_n &= o(\nu_n) \iff \forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : |u_n| < \epsilon |\nu_n| \\ u_n &= O(\nu_n) \iff \exists N \in \mathbb{N} \text{ t.q. } \forall M \ngeq 0 : \forall n \geqslant N : u_n < M |\nu_n| \end{split}$$

Définition 1.66. Soit $U \subset \mathbb{R}$, un ouvert. Une fonction $f: U \to \mathbb{R}$ est dite *réelle analytique* lorsque :

$$\forall x_0 \in U: \exists \epsilon > 0, (\alpha_n) \subset \mathbb{R} \text{ t.q. } (x_0 \pm \epsilon) \subset U \text{ et } \sum_{k=0}^n \alpha_k (x-x_0)^k \text{ converge simplement sur } (x_0 \pm \epsilon).$$

Définition 1.67 (Définition équivalente). $f: U \subset U \to \mathbb{R}$ est dite *réelle analytique* lorsque f est somme de sa série de Taylor sur un voisinage de chaque point de U.

Définition 1.68. Pour $\emptyset \neq U \subset \mathbb{R}$, on pose $A(U) := \{f : U \to \mathbb{R} \text{ t.q. } f \text{ est réelle analytique sur } U\}$.

Proposition 1.69. Soit $\emptyset \neq U \subset \mathbb{R}$. Alors $A(U) \subsetneq C^{\infty}(U, \mathbb{R})$.

Démonstration. Montrons d'abord l'inclusion. Soit $x_0 \in U$ et soit $\epsilon > 0$ tel que :

$$f(x) = \sum_{k \ge 0} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \text{ sur } (x_0 \pm \varepsilon).$$

On a donc $f\Big|_{(x_0\pm\epsilon)}\in C^\infty\left((x_0\pm\epsilon),\mathbb{R}\right)$.

Pour montrer l'inclusion stricte, soit :

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \begin{cases} exp(-x^{-1}) & \text{ si } x > 0 \\ 0 & \text{ sinon } \end{cases}.$$

On sait que $f \in C^{\infty}(\mathbb{R},\mathbb{R})$, et $\forall k \in \mathbb{N}: f^{(k)}(0) = 0$. Donc f n'est somme de sa série de Taylor sur aucun voisinage de 0. On a donc $f \notin \mathcal{A}(\mathbb{R})$.

Remarque. $f \in \mathcal{A}(\mathbb{R})$ peut avoir, en certains points, un rayon fini. Par exemple $f(x) = \frac{1}{1+x^2}$. Pour |x| < 1, on a :

$$f(x) = \frac{1}{1 - (-x^2)} = \sum_{k \ge 0} (-1)^k x^{2k},$$

$$\text{et R}\left(\textstyle\sum_{k\geqslant 0}(-1)^kx^{2k}\right)=\left(\limsup_{n\to+\infty}((-1)^n)^{\frac{1}{n}}\right)^{-1}=1.$$

Chapitre 2

Intégration

2.1 Intégrales absolument convergentes

2.1.1 Rappels concernant l'intégrale de Riemann

Définition 2.1. On se place sur un segment $[a,b] \subset \mathbb{R}$. On note :

$$\boldsymbol{\xi}\big([a,b],\mathbb{R}\big)\coloneqq \big\{\phi:[a,b]\to\mathbb{R} \text{ t.q. } \phi \text{ est en escaliers sur}[a,b]\big\}\,.$$

Remarque. \int est bien définie sur $\mathcal{E}([a,b],\mathbb{R})$.

Définition 2.2. La fonction $f : [a, b] \to \mathbb{R}$ est *R-int* (*Riemann intégrable*, ou encore *intégrable au sens de Riemann*) lorsque :

$$\begin{split} \forall \varepsilon > 0 : & \exists \phi, \psi \in \mathcal{E} \big([\mathfrak{a}, \mathfrak{b}], \mathbb{R} \big) \ \text{t.q.} \\ & (\mathfrak{i}) \quad \phi \leqslant \mathsf{f} \leqslant \psi \\ & (\mathfrak{i}\mathfrak{i}) \quad \int (\psi - \phi) < \varepsilon \end{split}$$

Proposition 2.3. De manière équivalente, $f : [a,b] \to \mathbb{R}$ est R-int sur [a,b] lorsque :

$$\overline{\int} f \coloneqq \inf_{f \leqslant \psi \in \mathcal{E}\left([\alpha,b],\mathbb{R}\right)} \int \psi = \sup_{f \geqslant \phi \in \mathcal{E}\left([\alpha,b],\mathbb{R}\right)} \int \phi \eqqcolon \underline{\int} f.$$

Définition 2.4. On note dans ce cas :

$$\int_{\alpha}^{b} f(x) dx = \overline{\int_{\alpha}^{b}} f(x) dx = \underline{\int_{\alpha}^{b}} f(x) dx.$$

Proposition 2.5. Si $f : [a, b] \to \mathbb{R}$ est R-int sur [a, b], alors f est bornée sur [a, b].

Proposition 2.6. *Soient* f, g *R-int*, et $\lambda, \mu \in \mathbb{R}$. *Alors les fonctions suivantes sont R-int* :

$$\begin{aligned} &\lambda f + \mu g \\ &\min(f,g) \\ &\max(f,g) \\ &|f| \end{aligned}$$

Et on a:

$$\left|\int_{a}^{b}f(x)\,dx\right|\leqslant\int_{a}^{b}\left|f(x)\right|dx\;;$$
 (ii)
$$\int_{a}^{b}\left(\lambda f+\mu g\right)(x)\,dx=\lambda\int_{a}^{b}f(x)\,dx+\mu\int_{a}^{b}g(x)\,dx.$$

Démonstration. montrons que min(f, g) est R-int sur [a, b].

Fixons $\epsilon > 0$. Soient $\phi_f, \phi_g, \psi_f, \psi_g \in \mathcal{E}([\mathfrak{a}, \mathfrak{b}], \mathbb{R})$ tels que :

$$\begin{split} \phi_f \leqslant f \leqslant \psi_f, & \int_a^b (\psi_f - \phi_f) < \epsilon \\ \phi_g \leqslant g \leqslant \psi_g, & \int_a^b (\psi_g - \phi_g) < \epsilon. \end{split}$$

Prenons $x \in [a, b]$, et remarquons que :

$$min(\phi_f, \phi_g) \leqslant f$$
 $min(\phi_f, \phi_g) \leqslant g$,

et donc $min(\varphi_f, \varphi_g) \leq min(f, g)$.

Posons $\mathcal{E}([\mathfrak{a},\mathfrak{b}],\mathbb{R})\ni\widetilde{\phi}\coloneqq min(\phi_f,\phi_g),\widetilde{\psi}\coloneq min(\psi_f,\psi_g).$ On remarque alors :

$$\widetilde{\varphi} \leqslant \min(f, g) \leqslant \widetilde{\psi}.$$

Prenons $x \in [a, b]$. On remarque :

— si
$$\varphi_f(x) \leq \varphi_g(x)$$
, on a :

$$\widetilde{\psi}(x) - \widetilde{\varphi}(x) \leqslant \psi_f(x) - \varphi_f(x)$$
;

— si
$$\varphi_q(x) < \varphi_f(x)$$
, on a:

$$\widetilde{\psi}(x) - \widetilde{\phi}(x) \leqslant \psi_g(x) - \phi_g(x).$$

Ainsi, en séparant les intégrales en un nombre fini où on a soit (i), soit (ii), on a :

$$\int_{a}^{b} (\widetilde{\psi} - \widetilde{\phi}) \leqslant \int_{a}^{b} (\psi_{f} - \phi_{f}) + \int_{a}^{b} (\psi_{g} - \phi_{g}) \leqslant 2\epsilon.$$

Corollaire 2.7. $\left|\int_a^b (\lambda f + \mu g)(x) \, dx\right| \le |\lambda| \int_a^b |f(x)| \, dx + |\mu| \int_a^b |g(x)| \, dx$.

2.1.2 Fonctions absolument intégrables sur un intervalle

Définition 2.8. Soit $I \neq \emptyset$, un intervalle de \mathbb{R} , et $f: I \to \mathbb{R}$. On dit que f est *abs-int* (*absolument intégrable*) sur I lorsque :

(i)
$$\forall [a,b] \subset U : f \Big|_{[a,b]}$$
 est R-int sur $[a,b]$;

(ii)
$$\sup_{[a,b]\subset I}\int_a^b |f|\leqslant +\infty$$
.

Remarque. La condition (ii) revient à dire que $\exists M>0$ t.q. $\forall [\mathfrak{a},\mathfrak{b}]\subset U:\int_{\mathfrak{a}}^{\mathfrak{b}}\lvert f\rvert\leqslant M.$

Définition 2.9. Soit $I \subset \mathbb{R}$, un intervalle. On appelle *suite exhaustive de segments de* I toute suite $([a_n, b_n])_{n \in \mathbb{N}}$ de segments de I tels que :

26

- (i) la suite est croissante (c-à-d $\forall n \in \mathbb{N} : [a_{n+1}, b_{n+1}] \supseteq [a_n, b_n]);$
- (ii) $\bigcup_{n\in\mathbb{N}}[a_n,b_n]=I$.

Proposition 2.10. *Soit* $I \neq \emptyset$, *un intervalle de* \mathbb{R} . I *admet une suite exhaustive.*

Démonstration. Si I est un fermé, prenons $a,b \in \mathbb{R}$ tels que I = [a,b]. La suite $([a_n,b_n])_n = ([a,b])_n$ est exhaustive.

Si I est un ouvert, prenons $a,b\in\mathbb{R}$ tels que I=(a,b). La suite $([a_n,b_n])_n=([a+\frac{1}{n},b-\frac{1}{n}])_n$ est exhaustive.

Si I est ouvert d'un côté, et fermé de l'autre, les suites exhaustives $([a,b-\frac{1}{n}])_n$ et $([a+\frac{1}{n},b])_n$ sont exhaustives.

Proposition 2.11. Soit $I \neq \emptyset$ un intervalle de \mathbb{R} . Soit $f: I \to \mathbb{R}$ abs-int sur I. Soit $([\mathfrak{a}_n, \mathfrak{b}_n])_n$ une suite exhaustive de segments de I. Alors :

(i) la suite définie par :

$$\left(\int_{a_n}^{b_n} f(x) \, dx\right)_n \subset \mathbb{R}$$

est convergente;

(ii) la limite de cette suite ne dépend pas de la suite exhaustive de segments de I choisie.

Définition 2.12. On appelle *intégrale de* f *sur* I cette valeur, et on la note :

$$\int_{I} f(x) dx.$$

Démonstration. Soit $([a_n,b_n])$ une suite exhaustive de segments de I. Posons pour $n\in\mathbb{N}$: $\alpha_n=\int_{a_n}^{b_n}|f|$. La suite $(\alpha_n)_n$ est croissante et majorée donc (α_n) converge vers un certain $\ell\in\mathbb{R}^+$. En particulier, (α_n) est de Cauchy dans \mathbb{R} . Considérons maintenant $(\beta_n)_n$, où $\beta_n\coloneqq\int_{a_n}^{b_n}f$. Observons que pour $p,n\in\mathbb{N}$:

$$\beta_{n+p} - \beta_n = \int_{a_{n+p}}^{b_{n+p}} f - \int_{a_n}^{b_n} f = \int_{a_{n+p}}^{a_n} f + \int_{a_n}^{b_n} f + \int_{b_n}^{b_{n+p}} f - \int_{a_n}^{b_n} f = \int_{a_{n+p}}^{a_n} f + \int_{b_n}^{b_{n+p}} f.$$

Ainsi:

$$\left|\beta_{n+p}-\beta_n\right|\leqslant \int_{\alpha_{n+p}}^{\alpha_n}|f|+\int_{b_n}^{b_{n+p}}|f|\leqslant \int_{\alpha_{n+p}}^{\alpha_n}|f|+\int_{a_b}^{b_n}|f|+\int_{b_n}^{b_{n+p}}|f|-\int_{a_n}^{b_n}|f|=\alpha_{n+p}-\alpha_n.$$

La suite $(\beta_n)_n$ est donc bornée par une suite de Cauchy (et est donc de Cauchy) dans \mathbb{R} . Par complétude de \mathbb{R} , $(\beta_n)_n$ converge dans \mathbb{R} .

Montrons maintenant que cette limite ne dépend pas de la suite exhaustive. Soit $[\widetilde{a}_n, \widetilde{b}_n]$ une suite exhaustive de I. On sait que $\widetilde{\beta}_n = \int_{\widetilde{a}_n}^{\widetilde{b}_n} f$ converge. On veut montrer que $\widetilde{\beta}_n$ a la même limite que β_n . On construit donc une nouvelle suite exhaustive de I. On choisit $[\bar{a}_0, \bar{b}_0] = [a_0, b_0]$. Il existe $N_1 \ngeq 0$ t.q. $\forall n \geqslant N_1$: $[a_0, b_0] \subset [\widetilde{a}_n, \widetilde{b}_n]$. On pose ensuite $[\bar{a}_1, \bar{b}_1] = [\widetilde{a}_{N_1}, \widetilde{b}_{N_1}]$. Il existe $N_2 \trianglerighteq N_1$ t.q. $\forall n \geqslant N_2$: $[\bar{a}_1, \bar{b}_1] \subset [a_n, b_n]$. On pose donc $[\bar{a}_2, \bar{b}_2] = [a_{N_2}, b_{N_2}]$.

On construit donc $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que pour tout p:

$$\begin{split} [\bar{a}_{2p},\bar{b}_{2p}] &= [a_{\phi(2p)},b_{\phi(2p)}],\\ [\bar{a}_{2p+1},\bar{b}_{2p+1}] &= [\widetilde{a}_{\phi(2p+1)},\widetilde{b}_{2p+1}]. \end{split}$$

Donc la suite $([\bar{a}_p,\bar{b}_p])_p$ est exhaustive. La suite $\left(\int_{\bar{a}_p}^{\bar{b}_p}f\right)_p$ converge vers $\bar{\beta}$ dans \mathbb{R} .

Puisque:

$$\begin{split} &\int_{\bar{\alpha}_{2p}}^{\bar{b}_{2p}} f = \int_{\alpha_{\phi(2p)}}^{b_{\phi(2p)}} f = \beta_{\phi(2p)} \xrightarrow[p \to +\infty]{} \beta = \bar{\beta} \\ &\int_{\bar{\alpha}_{2p+1}}^{\bar{b}_{2p+1}} f = \int_{\tilde{\alpha}_{\phi(2p+1)}}^{\tilde{b}_{\phi(2p+1)}} f = \widetilde{\beta}_{\phi(2p+1)} \xrightarrow[p \to +\infty]{} \widetilde{\beta} = \bar{\beta}, \end{split}$$

on déduit $\beta = \bar{\beta} = \widetilde{\beta}$. Les limites sont donc les mêmes, peu importe les suites exhaustives choisies.

 \Box

Proposition 2.13. *Soit* $f : [a,b] \to \mathbb{R}$ *R-int sur* [a,b]. *Alors* f *est abs-int sur* [a,b], *et on a* :

$$\int_{[a,b]} f = \int_a^b f.$$

Démonstration. f est R-int, et donc est R-int sur tout segment de [a,b]. Soit $([a_n,b_n])_n$, une suit exhaustive de segments de [a,b]. Il existe $N \in \mathbb{N}$ t.q. $\forall n \geq N$: $[a_n,b_n]=[a,b]$. Ainsi, pour $n \geq N$, on a :

$$\int_{a_n}^{b_n} f = \int_a^b f.$$

En passant à la limite pour $n \to +\infty$, on a :

$$\int_{[a,b]} f = \int_a^b f.$$

Proposition 2.14. L'ensemble $L^1(I) := \{f : I \to \mathbb{R} \text{ t.g. } f \text{ est abs-int sur } I\} \text{ est un } \mathbb{R} - \text{ev. } De \text{ plus, l'application } :$

$$\int \colon L^1(I) \to \mathbb{R} : f \mapsto \int_I f$$

est une forme linéaire sur $L^1(I)$.

Démonstration. EXERCICE. □

2.1.3 Fonctions absolument intégrables vues comme fonction des bornes

Proposition 2.15. *Soit* $I \subset \mathbb{R}$, *un intervalle non-vide de* \mathbb{R} . *Si la fonction* $f : I \to \mathbb{R}$ *est abs-int sur* I, *alors elle l'est sur* $I \cap (-\infty, \mathfrak{a}]$ *et* $[\mathfrak{a}, +\infty)$ *pour tout* $\mathfrak{a} \in \mathbb{R}$, *et on a* :

$$\int_I f = \int_{I\cap (-\infty,\alpha]} f + \int_{I\cap [\alpha,+\infty)} f.$$

Démonstration. Soit $[\alpha, \beta] \subset [\alpha, +\infty) \cap I$. $[\alpha, \beta]$ est un segment de I et f est abs-int sur I. f est donc abs-int sur tout segment de I, en particulier sur $[\alpha, \beta]$. De plus, il existe $M \ngeq 0$ tel que pour tout segment [u, v] de I, on a :

$$\int_{\mathfrak{u}}^{\nu} |f| \leqslant M.$$

Ainsi:

$$\int_{\alpha}^{\beta} |f| \leqslant M.$$

f est donc abs-int sur $I \cap [a, +\infty)$. On raisonne de manière similaire pour $(-\infty, a]$.

Montrons maintenant l'égalité. Soit $[\alpha_n, \beta_n]$, une suite de segments de I. Il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N : \alpha_n \leqslant \alpha \leqslant \beta_n$$
.

Il vient alors que $([\alpha_n, \mathfrak{a}])_n$ est une suite exhaustive de $I \cap (-\infty, \mathfrak{a}]$, et $([\mathfrak{a}, \beta_n])_n$ est une suite exhaustive de $I \cap [\mathfrak{a}, +\infty)$. Pour $n \geqslant N$, on a alors :

$$\int_{\alpha_n}^{\beta_n} f = \int_{\alpha_n}^{\alpha} f + \int_{\alpha}^{\beta_n} f.$$

En passant à la limite pour $n \to +\infty$, on trouve :

$$\int_I f = \int_{I \cap (-\infty,\alpha]} f + \int_{I \cap [\alpha,+\infty)} f.$$

Proposition 2.16. *Soient* $I \subset \mathbb{R}$, $a \in I$, *et* $f : I \to \mathbb{R}$. *Si* f *est abs-int sur* $I \cap (-\infty, a]$ *et sur* $I \cap [a, +\infty)$, *alors* f *est abs-int sur* I, *et on a* :

$$\int_I f = \int_{I\cap(-\infty,\alpha]} f + \int_{I\cap[\alpha,+\infty)} f.$$

Démonstration. Soit $[\alpha, \beta]$ un segment de I. Si $\alpha < \alpha$, ou $\alpha > \beta$, c'est trivial.

Supposons alors $\alpha \leqslant \alpha \leqslant \beta$. f est R-int sur $[\alpha,\alpha]$ et sur $[\alpha,\beta]$. f est donc R-int sur $[\alpha,\beta]$. De plus, il existe $M^+,M^->0$ tels que :

$$\sum_{[u,\nu]\subset (-\infty,\alpha]\cap I} \int_u^\nu f\leqslant M^- \qquad \quad et \qquad \qquad \sup_{[u,\nu]\subset I\cap [\alpha,+\infty)} \int_u^\nu |f|\leqslant M^+.$$

On peut donc dire que $\int_{\alpha}^{\beta} |f| \leqslant M^+ + M^-$. On a alors f abs-int sur I et on peut appliquer la proposition précédente pour :

$$\int_I f = \int_{I\cap(-\infty,\alpha]} f + \int_{I\cap[\alpha,+\infty)} f.$$

Proposition 2.17. Soient $I \subset \mathbb{R}$, un intervalle non-vide, et $f: I \to \mathbb{R}$ abs-int. La fonction $F: I \to \mathbb{R}: x \to \int_{I \cap (--\infty,x]} f$ est localement lipschitizenne.

 $D\'{e}monstration.$ Soit $x_0 \in I.$ Supposons que x_0 n'est pas un bord de I (sinon EXERCICE). Supposons qu'il existe $\delta > 0$ t.q. $(x_0 \pm \delta) \subset I.$ La fonction f est R-int sur $\left[x_0 \pm \frac{\delta}{2}\right]$ et donc sa valeur absolue est bornée sur ce segment par $M(x_0,\delta)$. Pour $x,y \in \left[x_0 \pm \frac{\delta}{2}\right]$, avec x < y, on déduit :

$$F(y)-F(x)=\int_{I\cap(-\infty,x]}f-\int_{I\cap(-\infty,x]}f=\int_{I\cap(-\infty,x]}f+\int_{x}^{y}f-\int_{I\cap(-\infty,x]}f=\int_{x}^{y}f.$$

D'où:

$$\left|F(y) - F(x)\right| = \int_{x}^{y} |f| \leqslant M(x_0, \delta)(y - x).$$

Corollaire 2.18. *Si* f *est abs-int sur* I*, alors* F *est continue sur* I.

Proposition 2.19. Si f est abs-int sur I, et continue en $x_0 \in I$, alors F est dérivable en x_0 et on a :

$$\mathsf{F}'(\mathsf{x}_0) = \mathsf{f}(\mathsf{x}_0).$$

Corollaire 2.20. Si f est abs-int sur I et de classe C^k sur un voisinage de $x_0 \in I$, alors F est de classe C^{k+1} sur un voisinage de x_0 et on a, sur ce voisinage :

$$\forall p \in \{0, \dots, k\} : F^{(p+1)}(x) = f^{(p)}(x).$$

Remarque. Si le voisinage est ouvert pour f, alors on a le même voisinage pour F.

Démonstration.
$$F(x) = F(x_0) + \int_{x_0}^{x} f(t) dt$$
.

Remarque. C'est donc le théorème fondamental du calcul différentiel et intégral qui est revu ici.

2.1.4 Critères d'intégration absolue

Proposition 2.21 (Critère de comparaison). *Soit* $I \subset \mathbb{R}$ *un intervalle non-vide et* $f, g : I \to \mathbb{R}$ *avec :*

- $\forall x \in X : |f(x)| \leq g(x);$
- f, g R-int sur tout segment de I.

Si q est abs-int sur I, alors f l'est aussi, et on a :

$$\int_{I} |f| \leqslant \int_{I} g.$$

Démonstration. Il existe $M_g \ngeq 0$ t.q. :

$$\forall [\mathfrak{u},\mathfrak{v}] \subset I: \int_{\mathfrak{U}}^{\mathfrak{v}} \mathfrak{g} \leqslant M_{\mathfrak{g}}.$$

Ainsi, si $[a, b] \subset I$ est un segment, on a f R-int sur [a, b] et :

$$\int_a^b |f| \leqslant \int_a^b g \leqslant M_g,$$

avec M_q donc indépendant de [a, b]. Ceci montre que f est abs-int sur I et que :

$$\int_{I} |f| \leqslant \int_{I} g.$$

Remarque. Soient f, g : $[a,b) \to \mathbb{R}$. On dit que f est *équivalent* à g en b^- lorsque :

$$\forall \varepsilon > 0 : \exists \eta > 0 \text{ t.q. } \forall x \in [b - \eta, b) : |f(x) - g(x)| \leq \varepsilon |f(x)|.$$

Proposition 2.22. *Soit* I = [a, b), *et soit* $f, g : I \to \mathbb{R}$, *R-int sur tout segment de* I. *Alors* :

- 1. $sif \sim g(x)$, alors f est abs-int sur I si et seulement si g l'est;
- 2. dans le cas abs-int, on a :

$$\int_{x}^{b} |f| \underset{b-}{\sim} \int_{x}^{b} g.$$

Dans le cas non-abs-int, on a :

$$\int_{a}^{x} |f| \sim \int_{a}^{x} g.$$

Démonstration.

— Supposons f abs-int. Pour $\varepsilon = 1$, il existe $\eta > 0$ tel que :

$$\forall x \in [b-\eta,b): \left| \left| f(x) \right| - g(x) \right| \leqslant \epsilon \left| f(x) \right| = \left| f(x) \right|.$$

On en déduit $(0 \le g(x) \le 2|f(x)|$ sur $[b-\eta,b)$. Ainsi, par le critère de comparaison, g est abs-int sur $[b-\eta,b)$. De plus, g est abs-int sur $[a,b-\eta]$ pour tout η , et donc g est abs-int sur [a,b). On montre que si g est abs-int, alors f est abs-int, de la même manière (critère de comparaison).

— Dans le cas abs-int, fixons $\varepsilon > 0$. Il existe $\eta > 0$ tel que pour $x \in [b - \eta, b)$, on a $||f(x)| - g(x)| \le \varepsilon g(x)$. Pour $x > b - \eta$, il vient :

$$\left| \int_{x}^{b} |f| - \int_{x}^{b} g \right| \leqslant \int_{x}^{b} ||f| - g|,$$

d'où $\int_{x}^{b} |f(t)| dt$ abs-int.

Dans le cas non-abs-int, fixons $\varepsilon > 0$. Il existe η_1 tel que pour $x \in [b - \eta_1, b)$, on a :

$$||f(x)| - g(x)| \le \varepsilon g(x).$$

Pour $X \ge b - \eta_1$, on a :

$$\left| \int_{a}^{x} |f| - \int_{a}^{x} g \right| \leqslant \int_{a}^{b-\eta} \left| |f(t)| - g(t)| dt + \int_{b-\eta}^{b} \left| |f(t)| - g(t)| dt.$$

Puisque g n'est pas abs-int sur [a,b), il existe $\eta_2 \in (b,b+\eta_1)$ tel que pour $x \geqslant b-\eta_2$, on a :

$$\frac{\int_{\alpha}^{b-\eta_1} ||f| - g|}{\int_{\alpha}^{x} g} \leqslant \varepsilon.$$

Par suite, on a pour $x \ge b - \eta_2$:

$$\left| \int_a^x |f| - \int_a^x g \right| \leqslant \epsilon \int_a^x g + \epsilon \int_{b-n_1}^x g \leqslant 2\epsilon \int_a^x g.$$

2.1.5 Fonctions de référence de Riemann

Proposition 2.23. *Soit* $\alpha \in \mathbb{R}$. $x \mapsto x^{-\alpha}$ *est abs-int sur* $[1, +\infty)$ *si et seulement si* $\alpha > 1$.

Démonstration. Remarquons que $x \mapsto x$ est continue sur $[1, +\infty)$, et donc R-int sur tout segment de $[1, +\infty)$. De plus, elle est positive sur $[1, +\infty)$. Pour $X \not\supseteq 1$, on a :

$$\int_1^X \left| \frac{1}{x^{\alpha}} \right| dx = \int_1^X \frac{dx}{x^{\alpha}} = \int_1^X x^{-\alpha} dx.$$

— si $\alpha \neq 1$, alors :

$$\int_{1}^{X} x^{-\alpha} dx = \frac{1}{1-\alpha} \left[x^{1-\alpha} \right]_{1}^{X} = \frac{X^{1-\alpha}}{1-\alpha} = \frac{1}{1-\alpha};$$

— si
$$\alpha \geq 1$$
, alors :

$$\int_{1}^{X} \frac{\mathrm{d}x}{x^{\alpha}} \xrightarrow[X \to +\infty]{} \frac{1}{1-\alpha'}$$

et:

$$\int_{1}^{X} \left| x^{-\alpha} \right| dx \leqslant \frac{1}{1 - \alpha}.$$

Donc l'intégrale de $x \mapsto x^{-\alpha}$ sur les segments de $[1, +\infty)$ est majorée indépendamment du segment, donc cette fonction est abs-int sur $[1, +\infty)$.

— si $\alpha \leq 1$, alors :

$$\int_{1}^{X} \frac{\mathrm{d}x}{x^{\alpha}} \xrightarrow[X \to +\infty]{} +\infty.$$

Donc l'intégrale de $x \mapsto x^{-\alpha}$ sur les segments de $[1, +\infty)$ n'est pas majorée indépendamment du segment, donc cette fonction n'est pas abs-int sur $[1, +\infty)$.

Finalement, si $\alpha = 1$, alors :

$$\int_{1}^{X} \frac{dx}{x} = [\ln x]_{1}^{X} = \ln X \xrightarrow[X \to +\infty]{} +\infty.$$

À nouveau, l'intégrale n'est pas bornée sur les segments de $[1, +\infty)$, indépendamment du segment, et donc $x \mapsto x^{-1}$ n'est pas abs-int sur $[1, +\infty)$.

Proposition 2.24. Soit $\alpha \in \mathbb{R}$. $x \mapsto x^{-\alpha}$ est abs-int sur (0,1] si et seulement si $\alpha \leq 1$.

Démonstration. EXERCICE. □

Exemple 2.1. La fonction $x \mapsto \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$ est absolument intégrable sur (0,1].

2.1.6 Théorème du changement de variable

Théorème 2.25. Soient I, J, deux intervalles non-vides de \mathbb{R} et non réduits à un point. Soit $\varphi: I \to J$ bijective et strictement croissante de classe C^1 sur I. Soit $f: J \to \mathbb{R}$ R-int sur tout segment de J. La fonction f est abs-int sur J si et seulement si $(f \circ \varphi) \cdot \varphi': I \to \mathbb{R}$ est abs-int sur I, et on a :

$$\int_{I} ((f \circ \varphi) \varphi') (x) dx = \int_{I} f(y) dy.$$

Démonstration. Soit $([a_n, b_n])_n$ une suite exhaustive de segments de I. La suite $([\phi(a_n), \phi(b_n)])_n$ est une suite exhaustive de segments de J (car ϕ est bijective). Puisque :

$$\forall n \in \mathbb{N} : \int_{\alpha_n}^{b_n} \left| (f \circ \phi) \phi' \right| = \int_{\alpha_n}^{b_n} \left| (f \circ \phi) \right| \phi' = \int_{\phi(\alpha_n)}^{\phi(b_n)} |f|,$$

par CDI 1, on conclut que $(f \circ \phi)\phi'$ est abs-int sur I si f l'est sur J.

On raisonne de manière similaire avec φ^{-1} (qui existe car φ est une bijection) pour montrer que f est abs-int sur J si $(f \circ \varphi)\varphi'$ l'est sur I.

Dans ce cas, si $([a_n, b_n])_n$ est une suite exhaustive de segments de I, on a :

$$\forall n \geqslant 0: \int_{a_n}^{b_n} (f \circ \varphi) \varphi \prime = \int_{\varphi(a_n)}^{\varphi(b_n)} f.$$

En passant à la limite pour $n \to +\infty$, on obtient :

$$\int_I (f\circ\phi)\phi\prime = \int_J f,$$

car $([\phi(a_n), \phi(b_n)])_n$ est une suite exhaustive de J.

2.2 Intégrales convergentes

Définitions et exemples 2.2.1

Définition 2.26. Soit $I \subset \mathbb{R}$, un intervalle non-vide, et soit $f: I \to \mathbb{R}$ R-int sur tous les segments de I. On dit que l'intégrale de f sur I converge lorsque :

- (i) $\forall ([a_n,b_n])_n$ exhaustive de $I: \left(\int_{a_n}^{b_n}f\right)_n$ converge dans \mathbb{R} ; (ii) la limite ne dépend pas de la suit exhaustive choisie.

On note cette limite $\int_{T} f$.

Proposition 2.27. Si f est abs-int sur I, alors son intégrale sur I converge et on a :

$$\int_{I} f(x) dx = \int_{I} f(x) dx,$$

c-à-d, les deux notions ont le même sens pour la même notation.

Démonstration. Par le résultat X

Exemple 2.2. La fonction $\mapsto \frac{\sin x}{x}$ a une intégrale convergente sur $[1, +\infty)$ mais n'est pas abs-int sur $[1, +\infty)$.

On remarque que $\frac{\sin x}{x}$ est continue sur $[1, +\infty)$ et donc R-int sur tout segment de I. Soit $([a_n, b_n])_n$, une suite exhaustive de segments de $[1, +\infty)$. Pour $n \in \mathbb{N}$, écrivons :

$$\int_{a_n}^{b_n} \frac{\sin x}{x} dx = \left[\frac{-\cos x}{x} \right]_{a_n}^{b_n} + \int_{a_n}^{b_n} \frac{\cos x}{x^2} dx.$$

On sait que $\left|\frac{\cos x}{x^2}\right| \leqslant \frac{1}{x^2}$ sur $[1, +\infty)$. Par le critère de comparaison, puisque $x \mapsto \frac{1}{x^2}$ est abs-int sur $[1, +\infty)$, on sait que $x \mapsto \frac{\cos x}{x^2}$ l'est également. Ainsi, la suite :

$$\left(\int_{a_n}^{b_n} \frac{\cos x}{x^2} \, \mathrm{d}x\right)_n$$

converge dans $\mathbb R$ vers une limite qui ne dépend pas de la suite $([a_n,b_n])_n$ choisie. Par ailleurs :

$$\left[-\frac{\cos x}{x}\right]_{a_n}^{b_n} = \frac{-\cos b_n}{b_n} + \frac{\cos a_n}{a_n} \xrightarrow[[a_n,b_n]\to[1,+\infty)]{} 0 + \cos 1.$$

Donc la suite $\left(\int_{a_n}^{b_n} \frac{\sin x}{x} dx\right)_n$ converge vers une limite indépendante de la suite exhaustive de segments choisie. Donc l'intégrale de $x \mapsto \frac{\sin x}{x}$ converge dans $[1, +\infty)$.

Montrons maintenant que la fonction n'est pas abs-int. Soit $n \in \mathbb{N}^*$. On sait :

$$\int_{\pi}^{n\pi} \left| \frac{\sin x}{x} \right| dx = \sum_{k=1}^{n-1} \int_{k\pi}^{(k+1)\pi} \left| \frac{\sin x}{x} \right| dx \geqslant \sum_{k=1}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{(k+1)\pi} dx \geqslant \sum_{k=1}^{n-1} \frac{\int_{0}^{\pi} |\sin x|}{(k+1)\pi} = \frac{\int_{0}^{\pi} |\sin x|}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1} \xrightarrow[n \to +\infty]{} + \infty.$$

On a donc bien $x \mapsto \frac{\sin x}{x}$ non-abs-int sur $[1, +\infty)$.

 $\textit{Exemple 2.3. sign}: x \mapsto \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x = 0 \text{ n'admet pas d'intégrale convergente dans } \mathbb{R}. \text{ Par exemple :} \\ -1 & \text{si } x < 0 \end{cases}$

$$\int_{-n}^{n^2} \operatorname{sign}(x) \, dx = n^2 - n \xrightarrow[n \to +\infty]{} +\infty.$$

Proposition 2.28. Soient $I \subset \mathbb{R}$, un intervalle non-vide, $f: I \to \mathbb{R}$, R-int sur tout segment de I. L'intégrale de f converge sur I si et seulement si pour toute suite exhaustive de segments $([\mathfrak{a}_n, \mathfrak{b}_n])_n$ de I, la suite $\left(\int_{\mathfrak{a}_n}^{\mathfrak{b}_n} f(x) \, dx\right)_n$ est de Cauchy.

Démonstration. TODO □

2.2.2 Rappel : deuxième formule de la moyenne

Pour rappel, la première formule de la moyenne et donnée par :

Soient f, g : [a, b] $\to \mathbb{R}$, de classe C^0 sur [a, b], avec $g \ge 0$. Il existe $c \in [a, b]$ tel que :

$$\int_{a}^{b} (fg)(t) dt = f(c) \int_{a}^{b} g(t) dt.$$

Proposition 2.29. Soit [a,b], un segment de \mathbb{R} , et soient $f,g:[a,b]\to\mathbb{R}$, avec f g:[a,b], et $g\geqslant$, décroissante sur [a,b]. Alors il existe g:[a,b] tel que :

$$\int_{a}^{b} (fg)(t) dt = g(a) \int_{a}^{c} f(t) dt.$$

Démonstration. On fixe $N \in \mathbb{N}^*$, et on pose $t_n \coloneqq \alpha + n \frac{b-\alpha}{N}$ pour $0 \leqslant n \leqslant N$. Écrivons :

$$I_N \coloneqq \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} f(t)g(t_k) dt.$$

On observe alors:

$$I_{N} - \int_{a}^{b} (fg)(t) dt = \sum_{k=0}^{N-1} f(t)(g(t_{k}) - g(t)).$$

On trouve donc:

$$\begin{split} \left| I_N - \int_a^b (fg)(t) \, dt \right| &\leqslant \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \big| f(t) \big| \big| g(t_k) - g(t) \big| \, dt = \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \big| f(t) \big| \left(g(t_k) - g(t) \right) dt \\ &\leqslant \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \big| f(t) \big| \left(g(t_k) - g(t_{k+1}) \right) dt. \end{split}$$

Rappelons que la fonction $K: [\mathfrak{a},\mathfrak{b}] \to \mathbb{R}: \mathfrak{x} \mapsto \int_{\mathfrak{a}}^{\mathfrak{x}} \left| f(t) \right| dt$ est lipschitzienne de constante $\|f\|_{\infty,[\mathfrak{a},\mathfrak{b}]} \eqqcolon M$. Ainsi:

$$\begin{split} \left| I_N - \int_a^b (fg)(t) \, dt \right| &\leqslant \sum_{k=0}^{N-1} \left| K(t_{k+1}) - K(t_k) \right| (g(t_k) - g(t_{k+1})) \leqslant M \sum_{k=0}^{N-1} (t_{k+1} - t_k) (g(t_k) - g(t_{k+1})) \\ &= \frac{M(b-a)}{N} \sum_{k=0}^{N-1} (g(t_k) - g(t_{k+1})) \leqslant \frac{M(b-a)}{N} (g(a) - g(b)) \xrightarrow[N \to +\infty]{} 0. \end{split}$$

On en déduit que $(I_N)_{N>1}$ converge, et :

$$\lim_{N\to +\infty} I_N = \int_a^b (fg)(t) \, dt.$$

Par ailleurs, pour $N \ge 1$, on a :

$$I_N = \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} f(x) \, dx g(t_k).$$

Posons ensuite:

$$F: [a,b] \to \mathbb{R}: x \mapsto \int_a^x f(t) \, dt.$$

On sait que F est continue sur le segment [a, b], donc minorée par m et majorée par M. En appliquant une transformation d'Abel, on trouve :

$$\begin{split} I_N &= \sum_{k=0}^{N-1} \left(F(t_{k+1}) - F(t_k) \right) g(t_k) = \sum_{k=0}^{N-1} F(t_{k+1}) g(t_k) - \sum_{k=0}^{N-1} F(t_k) g(t_k) \\ &= \sum_{k=1}^{N} F(t_k) g(t_{k-1}) - \sum_{k=0}^{N-1} F(t_k) g(t_k) \\ &= - F(t_0) g(t_0) + \sum_{k=1}^{N-1} F(t_k) \left(g(t_{k-1}) - g(t_k) \right) + F(t_N) g(t_{N-1}). \end{split}$$

Par suite, on sait que $F(t_0) = F(a) = \int_a^a f = 0$, on peut donc exprimer :

$$m\sum_{k=1}^{N-1}\left(g(t_k-1)-g(t_k)\right)g(t_k)+mg(t_{N-1})\leqslant I_N\leqslant M\sum_{k=1}^{N-1}\left(g(t_{k-1})-g(t_k)\right)+Mg(t_{N-1}).$$

En développant les sommes, on trouve :

$$mg(a) \leqslant I_N \leqslant Mg(a)$$
.

En passant à la limite pour $N \to +\infty$, on trouve :

$$mg(a) \leqslant \int_a^b (fg)(t) dt \leqslant Mg(a).$$

Distinguons alors deux cas :

- si g(a) = 0, alors $g \equiv 0$ sur [a, b], et donc tout $c \in [a, b]$ convient;
- si $g(a) \neq 0$, alors:

$$m \leqslant \frac{1}{g(a)} \int_{a}^{b} (fg)(t) dt \leqslant M.$$

La fonction F étant continue sur le segment [a,b], par le théorème des valeurs intermédiaires, il existe $c \in [a,b]$ tel que :

$$F(c) = \frac{1}{g(a)} \int_{a}^{b} (fg)(t) dt,$$

et donc en remultipliant par g(a) de par et d'autre, on obtient :

$$g(\alpha)F(c) = g(\alpha) \int_{a}^{c} f(t) dt = \int_{a}^{b} (fg)(t) dt.$$

2.2.3 Critère d'Abel

Proposition 2.30 (Critère d'Abel pour la convergence des intégrales). Soient $-\infty < a < b \leq +\infty$, f, b: $[a,b] \rightarrow \mathbb{R}$ telles que :

— f est R-int sur tout segment de [a, b] et il existe $M \ge 0$ tel que :

$$\forall x \in [a,b] : \left| \int_{a}^{x} f(t) dt \right| \leq M;$$

— g est positive et décroissante vers 0 en b^- sur [a,b]. Alors l'intégrale de fg converge sur I.

Démonstration. Soit $([a_n, b_n])_n$ une suite exhaustive de segments de [a, b). Posons, pour $n \in \mathbb{N}$:

$$\alpha_n := \int_{a_n}^{b_n} (fg)(t) dt.$$

Observons pour $n, p \in \mathbb{N}$:

$$\alpha_{n+p} - \alpha_n = \int_{\alpha_{n+p}}^{b_{n+p}} (fg)(t) dt - \int_{\alpha_n}^{b_n} (fg)(t) dt.$$

Puisque $a_n = a$ à partir d'un certain $N \in \mathbb{N}$, on peut écrire :

$$\alpha_{n+p} - \alpha_n = \int_{b_n}^{b_{n+p}} (fg)(t) dt = g(b_n) \int_a^{c_{n+p}} f(t) dt,$$

pour un certain $c_{n+p} \in [b_n, b_{n+p}]$ par la deuxième formule de la moyenne. On trouve finalement :

$$\left|\alpha_{n+p} - \alpha_n\right| \leqslant g(b_n) \leqslant \left|\int_a^{c_{n+p}} f(t) dt - \int_a^{b_n} f(t) dt\right| \leqslant 2Mg(b_n) \xrightarrow[n \to +\infty]{} 0,$$

par décroissance de q vers 0.

La suite (α_n) est donc une suite de Cauchy, ce qui implique que l'intégrale de (fg) converge sur [a,b), par le critère de Cauchy.

$$\left| \int_{1}^{x} \sin t \, dt \right| \leq 2;$$

— q est positive et décroissante vers 0 en $+\infty$.

La convergence est assurée par le critère d'Abel.

Exemple 2.5. Les fonctions $x \mapsto \sin(x^2)$ et $x \mapsto \cos(x^2)$ sont d'intégrale convergente sur \mathbb{R}^+ . Soit $([\alpha_n, \beta_n])_n$, une suite exhaustive de segments de \mathbb{R}^+ . Pour $n \ge 0$, écrivons :

$$\int_{\alpha_n}^{\beta_n} \sin(x^2) \, dx = \int_{\alpha_n^2}^{\beta_n^2} \sin t \frac{dt}{\sqrt{t}}$$

pour $t = x^2$, dt = 2x dx. On a donc:

$$\frac{1}{2}\int_{\alpha_n^2}^{\beta_n^2}\sin t\frac{dt}{\sqrt{t}} = \frac{1}{2}\int_{\alpha_n^2}^{\beta_n^2}\sin t\frac{dt}{\sqrt{t}} + \frac{1}{2}\int_{\alpha_n^2}^{\beta_n^2}\sin t\frac{dt}{\sqrt{t}}.$$

La fonction $t\mapsto \frac{\sin t}{\sqrt{t}}$ est C^0 sur (0,1] et prolongeable en 0 par continuité. Elle est donc abs-int sur (0,1]. Donc $\int_{\alpha_n^2}^1 \sin t \frac{dt}{\sqrt{t}}$ converge et la limite ne dépend pas de la suite $\alpha_n\to 0$ choisie. La fonction $t\mapsto \sin t$ est R-int sur tout segment de $[1,+\infty)$, avec :

$$\left| \int_{1}^{x} \sin t \, dt \right| \leq 2.$$

La fonction $t\mapsto \frac{1}{\sqrt{t}}$ est décroissante vers 0 en $+\infty$. Alors par le critère d'Abel, $\int_1^{\beta_\pi^2}\sin t\frac{dt}{\sqrt{t}}$ converge et la limite ne dépend pas de la suite $\beta\to+\infty$ choisie.

On en déduit que $x \mapsto \sin(x^2)$ est d'intégrale convergente sur \mathbb{R}^+ . On raisonne de manière similaire pour $x \mapsto \cos(x^2)$.

Chapitre 3

Intégrales à paramètres

3.1 Fonctions définies par une intégrale sur un segment fixe

3.1.1 Un résultat de continuité

Définition 3.1. L'ensemble X est dit *localement* compact lorsque :

$$\forall x \in X : \forall O \text{ ouvert } : x \in O \Rightarrow \exists V \in \mathcal{V}(x) \text{ t.q. } O \subset V.$$

Proposition 3.2. *Soit* [a, b] *un segment de* \mathbb{R} , *et* (X, d) *un espace métrique localement compact. Si* $f: X \times [a, b] \rightarrow \mathbb{R}: (x, t) \mapsto f(x, t)$ *est continue sur* $X \times [a, b]$, *alors* :

$$F: X \to \mathbb{R}: x \mapsto \int_a^b f(x, t) dt$$

est définie, et continue sur X.

Démonstration. Soit $x \in X$. $t \mapsto f(x,t)$ est continue sur [a,b], donc R-int sur [a,b]. La fonction F est donc en effet définie.

Soit $x \in X$ et soit $V \in \mathcal{V}(x)$ compact dans X. La fonction :

$$V \times [a, b] \rightarrow \mathbb{R} : (x, t) \mapsto f(x, t)$$

est continue sur $X \times [a,b]$. En particulier, par le théorème de Heine, elle est uniformément continue sur $V \times [a,b]$, car $V \times [a,b]$ est compact. Soit $\epsilon > 0$ et soit $x_0 \in X$. Il existe $\eta > 0$ et $\delta > 0$ tels que : $\forall x,y \in X$: $\forall t,t' \in [a,b]$, si $d(x,y) < \eta$ et $|t'-t| < \delta$, et $B(x_0,\eta \in X)$, alors $|f(x,t)-f(y,t')| \leqslant \epsilon$.

En particulier, pour $x \in B(x_0, \eta[$ et $t \in [a, b],$ on a :

$$|f(x,t)-f(x_0,t)|<\varepsilon.$$

Par intégration, on trouve :

$$\left| F(x) - F(x_0) \right| \leqslant \int_a^b \left| f(x, t) - f(x_0, t) \right| dt \leqslant \varepsilon(b - \alpha).$$

Remarque. Cette proposition est encore vraie pour un compact $\prod_{i=1}^{n} [a_i, b_i]$, au lieu de [a, b]. *Exemple* 3.1. Que dire de $\lim_{x\to 0^+} \int_0^1 \sin(\exp(-xt) - 1) dt$?

 $\begin{aligned} &f:[0,1]\times[0,1]\to\mathbb{R}:(x,t)\mapsto\sin(\exp(-xt)-1)\text{ est continue sur }[0,1]\times[0,1],\text{ d'où }F(x)=\int_0^1f(x,t)\,dt\text{ est de classe }C^0\text{ sur }[0,1],\text{ avec la proposition précédente. Donc }F(x)\xrightarrow[x\to0^+]{}0.\end{aligned}$

3.1.2 Un résultat de dérivabilité

Proposition 3.3. Soient $X \subset \mathbb{R}^d$, un ouvert non-vide, $[a,b] \subset \mathbb{R}$, un segment, et $f: X \times [a,b] \to \mathbb{R}$, continue sur $X \times [a,b]$ admettant une dérivée partielle par rapport à tout x_i en tout point de X tel que :

$$\forall i \in [\![1,d]\!]: X \times [\alpha,b] \to \mathbb{R}: \frac{\partial f}{\partial x_i}(x,t) \in C^0(X \times [\alpha,b],\mathbb{R}).$$

Alors la fonction $F:X\to\mathbb{R}:x\mapsto \int_{\alpha}^b f(x,t)\,dt$ est de classe C^1 sur $X\times [\alpha,b],$ et on a :

$$\forall i \in [1, d]: \frac{\partial F}{\partial x_i}(x) = \int_{\alpha}^{b} \frac{\partial f}{\partial x_i}(x, t) dt.$$

Démonstration. Pour $x_0 \in X$, $\delta > 0$ t.q. $B(x_0, \delta[\subset X, puisque x → f(x,t) est de classe <math>C^1$ sur $B(x_0, \delta[, pour t ∈ [a,b], on peut écrire :$

$$f(x_0 + he_i, t) - f(x_0, t) = \int_0^h \frac{\partial f}{\partial x_i}(x_0 + se_i, t) ds.$$

Ces fonctions étant continues, elles sont R-int, et on a :

$$\int_a^b \left(f(x_0+he_i,t)-f(x_0,t)\right)dt = \int_a^b \int_0^h \frac{\partial f}{\partial x_i}(x_0+se_i,t)\,ds\,dt = \int_a^b h \int_0^1 \frac{\partial f}{\partial x_i}(x_0+hse_i,t)\,ds\,dt.$$

Pour $h \in \left[-\frac{\delta}{2}, \frac{\delta}{2}\right] \setminus \{0\}$, et en posant :

$$g = \left[-\frac{\delta}{2}, \frac{\delta}{2} \right] \times \left([0,1] \times [a,b] \right) : (h,(s,t)) \mapsto \frac{\partial f}{\partial x_i}(x_0 + hse_i,t),$$

on a:

$$\frac{1}{h} \int_{a}^{b} \left(f(x_0 + he_i, t) - f(x_0, t) \right) dt = \int_{a}^{b} \int_{0}^{1} g(h, (s, t)) ds dt.$$

Or la fonction g est continue sur son compact de définition, par continuité de f. Par la Proposition 3.2, on sait que la fonction :

$$h \mapsto \int_0^b \int_0^1 g(h,(s,t)) \, ds \, dt \in C^0([-\frac{\delta}{2},\frac{\delta}{2}],\mathbb{R}).$$

Par cette continuité, on déduit que la fonction $h\mapsto \frac{1}{h}\left(F(x_0+he_\mathfrak{i})-F(x_0)\right)$ admet une limite finie en h=0 qui est $\int_a^b \int_0^1 g(0,(s,t))\,ds\,dt$. On en déduit que f admet une dérivée partielle par rapport à $x_\mathfrak{i}$ en x_0 , et on a :

$$\frac{\partial F}{\partial x_i} = \int_a^b \int_0^1 \frac{\partial f}{\partial x_i}(x_0+0,t) \, ds \, dt = \int_a^b \frac{\partial f}{\partial x_i}(x_0,t) \int_0^1 ds \, dt = \int_a^b \frac{\partial f}{\partial x_i}(x_0,t) \, dt.$$

À nouveau, par la Proposition 3.2 appliquée à $(x,t)\mapsto \frac{\partial\,f}{\partial x_i}(x,t)$, on obtient $\frac{\partial\,F}{\partial x_i}\in C^0(X,\mathbb{R})$, ce qui implique $F\in C^1(X,\mathbb{R})$, et on a bien la formule ci-dessus.

3.2 Fonction définies par des intégrales sur un segment variable

3.2.1 Un résultat de continuité

Théorème 3.4. *Soit* $f: [\alpha, \beta] \times [\alpha, b] \xrightarrow{C^0} \mathbb{R}$. *La fonction* $F: [\alpha, \beta] \times [\alpha, b] \rightarrow \mathbb{R}: (x, T) \mapsto \int_{\alpha}^{T} f(x, t) dt$ *est continue* $sur[\alpha, \beta] \times [\alpha, b]$.

Démonstration. Soient $(x,T) \in [\alpha,\beta] \times [\alpha,b]$, $(\Delta x,\Delta T) \in \mathbb{R}^2$ tels que :

$$(x + \Delta x, T + \Delta T) \in [\alpha, \beta] \times [\alpha, b].$$

Écrivons alors:

$$\begin{split} F(x+\Delta x,T+\Delta T)-F(x,T) &= \int_{\alpha}^{T+\Delta T} f(x+\Delta x,t) \, dt - \int_{\alpha}^{T} f(x,t) \, dt \\ &= \int_{\alpha}^{T} f(x+\Delta x,t) \, dt + \int_{T}^{T+\Delta T} f(x+\Delta x,t) \, dt - \int_{\alpha}^{T} f(x,t) \, dt \\ &= \int_{\alpha}^{T} \left(f(x+\Delta x,t) - f(x,t) \right) dt + \int_{T}^{T+\Delta T} f(x+\Delta x,t) \, dt. \end{split}$$

Par continuité de f sur le compact $[\alpha, \beta] \times [\alpha, b]$ et le théorème de Heine, on peut dire que f est uniformément continue sur ce compact. On a alors pour $\varepsilon > 0$, il existe $\eta > 0$ tel que $si|\Delta x| \nleq \eta$, alors :

$$\forall t \in [a,b] : \left| f(x + \Delta x, t) - f(x,t) \right| < \frac{\varepsilon}{b-a},$$

et donc:

$$\left| \int_{\alpha}^{T} \left(f(x + \Delta x, t) - f(x, t) \right) dt \right| \leqslant (T - \alpha) \max_{t \in [\alpha, b]} \left| f(x + \Delta x, t) - f(x, t) \right| \leqslant \epsilon.$$

Par ailleurs, la fonction f est bornée sur son compact de définition. Donc il existe M>0 tel que $\forall (y,t)\in [\alpha,\beta]\times [\alpha,b]: \left|f(y,t)\right|\leqslant M.$ Si $|\Delta T|<\frac{\epsilon}{M}$, on observe:

$$\left| \int_T^{T+\Delta T} f(x+\Delta x,t) \, dt \right| \leqslant M |\Delta T| < M.$$

Dès lors, pour $|\Delta x| < \eta$ et $|\Delta T| < \frac{\epsilon}{M}$, on a :

$$|F(x + \Delta x, T) - F(x, T)| < \varepsilon.$$

On a en effet trouvé un voisinage de (x, T) qui est envoyé sur un voisinage de F(x, T). La fonction F est donc continue.

Corollaire 3.5. Soit $f: [\alpha, \beta] \times [\alpha, b] \to \mathbb{R}$ continue. Soient $\varphi, \psi = [\alpha, \beta] \to [\alpha, b]$ continues sur $[\alpha, \beta]$. La fonction $F: [\alpha, \beta] \to \mathbb{R}: x \mapsto \int_{\varphi(x)}^{\psi(x)} f(x, t) \, dt$ est continue sur $[\alpha, \beta]$.

Démonstration. Posons $G: [\alpha,\beta] \times [\alpha,b] \to \mathbb{R}: (x,T) \mapsto \int_{\alpha}^T f(x,t) \, dt.$ Par le théorème précédent, on peut dire $G \in C^0([\alpha,\beta] \times [\alpha,b],\mathbb{R})$. De plus, pour $x \in [\alpha,b]$, on peut écrire :

$$F(x) = \int_{\alpha}^{\psi(x)} f(x,t) dt - \int_{\alpha}^{\varphi(x)} f(x,t) dt = G(x,\psi(x)) - G(x,\psi(x)).$$

Par continuité des fonctions G, ψ, φ , on sait que $x \mapsto G(x, \psi(x))$ et $x \mapsto G(x, \varphi(x))$ sont continues sur $[\alpha, \beta]$ par composition de fonctions continues. Ensuite, on peut dire que F est continue sur $[\alpha, \beta]$ par différence de fonctions continues.

3.2.2 Un résultat de dérivabilité

Théorème 3.6. Soit $f: [\alpha, \beta] \times [a,b] \to \mathbb{R}$ continue sur $[\alpha, \beta] \times [a,b]$ telle que $\frac{\partial f}{\partial x}$ existe en tout point de $[\alpha, \beta] \times [a,b]$ et $(x,t) \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $[\alpha, \beta] \times [a,b]$. Alors la fonction $F: [\alpha, \beta] \times [a,b] \to \mathbb{R}: (x,T) \mapsto \int_a^T f(x,t) \, dt$ est de classe C^1 sur $[\alpha, \beta] \times [a,b]$ avec:

$$\frac{\partial F}{\partial x}(x,t) = \int_0^T \frac{\partial f}{\partial x}(x,t) dt \qquad et \qquad \frac{\partial F}{\partial T}(x,T) = f(x,T).$$

Démonstration. Avec le résultat de dérivabilité sur segment fixe (Proposition 3.3), on sait que $\frac{\partial F}{\partial x}(x,T)$ existe en tout point et vaut $\frac{\partial F}{\partial x}(x,T) = \int_{\alpha}^{T} \frac{\partial f}{\partial x}(x,t) \, dt$, avec $\frac{\partial F}{\partial x}(x,T) \in C^{0}([\alpha,\beta] \times [\alpha,b],\mathbb{R})$ par le Théorème 3.4.

De plus, par CDI 1, on sait que $\frac{\partial F}{\partial T}(x,T)$ existe et vaut f(x,T) (continue par hypothèse) car $f(x,\cdot) \in C^0([a,b],\mathbb{R})$. On sait également que $T \mapsto \int_a^T \frac{\partial f}{\partial T}(x,t) \, dt \in C^1([\alpha,\beta] \times [a,b],\mathbb{R})$.

On a donc bien
$$F \in C^1([\alpha, \beta] \times [a, b], \mathbb{R})$$
.

Proposition 3.7. Soit $f: [\alpha, \beta] \times [a, b] \xrightarrow{C^0} \mathbb{R}$ telle que $\frac{\partial f}{\partial x}$ existe et est continue en tout point du compact de définition de f. Soient $\psi, \varphi: [\alpha, \beta] \xrightarrow{C^1} [a, b]$. La fonction $F: [\alpha, \beta] \to \mathbb{R}: x \mapsto \int_{\varphi(x)}^{\psi(x)} f(x, t) dt$ est de classe C^1 sur $[\alpha, \beta]$ et on a:

$$\forall x \in [\alpha, \beta] : F'(x) = \psi'(x)f(x, \psi(x)) - \varphi'(x)f(x, \varphi(x)) + \int_{\varphi(x)}^{\psi(x)} \frac{\partial f}{\partial x}(x, t) dt.$$

Démonstration. La fonction $G: [\alpha, \beta] \times [\alpha, b] \to \mathbb{R}: (x, T) \to \int_{\alpha}^{T} f(x, t) \, dt$ est de classe C^1 par le Théorème 3.6, et on a :

$$\frac{\partial G}{\partial x}(x,T) = \int_{0}^{T} \frac{\partial G}{\partial x}(x,t) dt \qquad \qquad \text{et} \qquad \qquad \frac{\partial G}{\partial T}(x,T) = f(x,T).$$

Par composition de fonctions de classe C^1 , on sait que $x \mapsto G(x, \phi(x))$ et $x \mapsto G(x, \psi(x))$ sont de classe C^1 sur $[\alpha, \beta]$. Par ailleurs, pour $x \in [\alpha, \beta]$, on a :

$$F(x) = G(x, \psi(x)) - G(x, \phi(x)).$$

Par différence, on trouve donc $F \in C^1([\alpha, \beta], \mathbb{R})$, et pour $x \in [\alpha, \beta]$, on trouve :

$$\begin{split} F'(x) &= \tfrac{\partial\,G}{\partial x}(x,\psi(x)) + \tfrac{\partial\,G}{\partial T}(x,\psi(x))\psi'(x) - \tfrac{\partial\,G}{\partial x}(x,\varphi(x)) - \tfrac{\partial\,G}{\partial T}(x,\varphi(x))\varphi'(x) \\ &= \int_{\alpha}^{\psi(x)} \tfrac{\partial\,f}{\partial x}(x,t)\,dt + \psi'(x)f(x,\psi(x)) - \int_{\alpha}^{\varphi(x)} \tfrac{\partial\,f}{\partial x}(x,t)\,dt - \varphi'(x)f(x,\varphi(x)) \\ &= \int_{\varphi(x)}^{\psi(x)} \tfrac{\partial\,f}{\partial x}(x,t)\,dt + \psi'(x)f(x,\psi(x)) - \varphi'(x)f(x,\varphi(x)). \end{split}$$

3.3 Fonctions définies par des intégrales convergentes

3.3.1 Exemple

Soit $f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ : (x,t) \mapsto x \exp(-xt)$. Que dire de $F(x) = \int_0^{+\infty} f(x,t) dt$?

Fixons $x \in \mathbb{R}^+$. La fonction $t \mapsto x \exp(-xt)$ est R-int sur tout segment de \mathbb{R}^+ . De plus, $\left|f(x,t)\right| t^2 \xrightarrow[t \to +\infty]{} 0$ si x > 0. Donc il existe $A_n \ngeq 0$ tel que :

$$\forall t \geqslant A_n : \left| f(x,t) \right| \leqslant \frac{1}{t^2}.$$

Par le critère de comparaison, la fonction $t \mapsto f(\cdot,t)$ est abs-int sur $[A_n,+\infty)$. Si la fonction est abs-int sur $[0,A_n]$, alors elle l'est sur $[0,+\infty)$. Lorsque x=0, alors la fonction $t\mapsto f(x,t)=0$, donc F(0)=0 est bien défini.

Pour tout $x \ge 0$, on trouve :

$$F(x) = \lim_{T \to +\infty} -\int_0^T x \exp(-xt) dt = \lim_{T \to +\infty} -\left[\exp(-xt)\right]_0^T = \lim_{T \to +\infty} -\left(\exp(-xT) - 1\right) = 1.$$

On en déduit que la fonction F est discontinue en 0. La fonction f est en fait de classe C^{∞} , mais $F(x) := \int_0^{+\infty} f(x,t) dt$ admet un point de discontinuité en x=0.

3.3.2 Notion d'intégrales uniformément convergentes

Définition 3.8. Soient $X \neq \emptyset$, $I \subset \mathbb{R}$, un intervalle non-vide. Soit $f: X \times I \to \mathbb{R}$ telle que :

$$\forall x \in X : t \mapsto f(x,t)$$
 est d'intégrale convergente sur I,

à savoir:

$$\forall x \in X: \forall \epsilon > 0: \exists K_{\epsilon,x} \subset I \text{ segment } t.q. \ \forall \widetilde{K} \subset I \text{ segment } : \left[K_{\epsilon,x} \subset \widetilde{K} \Rightarrow \left|\int_{\widetilde{K}} f(x,t) \, dt - \int_{I} f(x,t) \, dt \right| < \epsilon.\right]$$

On dit que l'intégrale de f sur I converge uniformément sur X lorsque $K_{\epsilon,x}$ ne dépend pas de x, c'est-à-dire lorsque :

$$\forall \epsilon > 0: \exists K_\epsilon \subset I \text{ segment } t.q. \ \forall \widetilde{K} \subset I \text{ segment } : \left\lceil K_\epsilon \subset \widetilde{K} \Rightarrow \forall x \in X: \left| \int_{\widetilde{K}} f(x,t) \, dt - \int_I f(x,t) \, dt \right| < \epsilon \right\rceil.$$

Remarque. Lorsque $I = [a, +\infty)$, cela revient à avoir :

$$\forall \epsilon > 0: \exists Y > 0 \text{ t.q. } \forall x \in X: \left| \int_{Y}^{+\infty} f(x,t) \, dt \right| < \epsilon.$$

Lorsque I = [a, b], avec $a < b < +\infty$, cela revient à avoir :

$$\forall \varepsilon > 0 : \exists \delta \in (0, b - a) \text{ t.q. } \forall x \in X : \left| \int_{b - \delta}^{b} f(x, t) dt \right| < \varepsilon.$$

Dans l'exemple 3.3.1, $f(x, t) = x \exp(-xt)$, $X = I = \mathbb{R}^+$, on pouvait dire :

$$\int_{Y}^{+\infty} f(x,t) dt = \begin{cases} -\exp(-xt) & \text{si } x > 0, \\ 0 & \text{sinon.} \end{cases}$$

On en déduit :

$$\sup_{x \in X} \left| \int_{Y}^{+\infty} f(x, t) dt \right| = 1.$$

On en déduit que l'intégrale de $t\mapsto x\exp(-xt)$ n'est pas convergente uniformément sur \mathbb{R}^+ .

Théorème 3.9. Soient (X, d) un espace métrique, $I \subset \mathbb{R}$, un intervalle non-vide Soit $f: X \times I \xrightarrow{C^0} \mathbb{R}$. On suppose que l'intégrale de $t \mapsto f(x,t)$ converge sur I uniformément sur X. Alors la fonction $F: X \to \mathbb{R}: x \mapsto \int_I f(x,t) \, dt$ est continue sur X.

Démonstration. Soit $([a_n, b_n])_n$, une suite exhaustive de segments de I. Pour tout $n \in \mathbb{N}$, on pose :

$$F_n:X\to\mathbb{R}:x\mapsto\int_{a_n}^{b_n}f(x,t)\,dt.$$

On observe que ces F_n sont sont continues par le Théorème 3.2 car $[a_n, b_n]$ est un segment fixe (compact) et $f \in C^0(X \times I, \mathbb{R})$ par hypothèse.

Prenons, $n, p \in \mathbb{N}, x \in X$. Calculons :

$$\begin{split} F_{n+p}(x) - F_n(x) &= \int_{a_{n+p}}^{b_{n+p}} f(x,t) dt - \int_{a_n}^{b_n} f(x,t) dt \\ &= \int_{a_{n+p}}^{b_{n+p}} f(x,t) dt - \int_{I} f(x,t) dt + \int_{I} f(x,t) dt - \int_{a_n}^{b_n} f(x,t) dt. \end{split}$$

Pour $\epsilon > 0$, il existe $N_{\epsilon} \in \mathbb{N}$ tel que pour $n, p \in \mathbb{N}$ et $x \in X$, par continuité des F_n et puisque $[a_n, b_n] \xrightarrow[n \to +\infty]{} I$, on peut dire :

$$\left|\mathsf{F}_{\mathfrak{n}+\mathfrak{p}}(x)-\mathsf{F}_{\mathfrak{n}}(x)\right| \leqslant \left|\int_{\mathfrak{a}_{\mathfrak{n}+\mathfrak{p}}}^{\mathfrak{b}_{\mathfrak{n}+\mathfrak{p}}}\mathsf{f}(x,t)\,dt-\int_{I}\mathsf{f}(x,t)\,dt\right| + \left|\int_{I}\mathsf{f}(x,t)\,dt-\int_{\mathfrak{a}_{\mathfrak{n}}}^{\mathfrak{b}_{\mathfrak{n}}}\mathsf{f}(x,t)\,dt\right| \leqslant 2\epsilon.$$

La suite $(F_n)_n$ est donc uniformément de Cauchy, on en déduit qu'elle converge uniformément sur X. Sa limite simple (limite de convergence simple) étant F, il vient que $f \in C^0(X,\mathbb{R})$.

Théorème 3.10. Soient $X \subset \mathbb{R}^d$, un ouvert non-vide, , $I \subset \mathbb{R}$, un intervalle non-vide, et $f: X \times I \xrightarrow{C^0} \mathbb{R}$ telle que pour tout $i \in [\![1,d]\!]$, f admet une dérivée partielle continue par rapport à x_i pour tout point de $X \times I$. Si l'intégrale sur I de $t \mapsto f(x,t)$ converge uniformément sur X et si pour tout $i \in [\![1,d]\!]$, l'intégrale sur I de $t \mapsto \frac{\partial f}{\partial x_i}(x,t)$ converge uniformément sur X, alors la fonction définie par :

$$F: X \times \mathbb{R} : x \mapsto \int_{\mathcal{I}} f(x, t) dt$$

est de classe C^1 sur X, et on a :

$$\frac{\partial F}{\partial x_i}(x) = \int_I \frac{\partial f}{\partial x_i}(x,t) \, dt.$$

Démonstration. EXERCICE.

3.3.3 Théorème de Fubini

Théorème 3.11 (Théorème de Fubini, version CDI 1). *Soit* $f : [\alpha, \beta] \times [a, b] \xrightarrow{C^0} \mathbb{R}$. *Les fonctions :*

$$\begin{cases} F: [\alpha, \beta] \to \mathbb{R}: x \mapsto \int_{\alpha}^{b} f(x, t) dt \\ G: [\alpha, b] \to \mathbb{R}: t \mapsto \int_{\alpha}^{\beta} f(x, t) dx \end{cases}$$

sont continues sur leur segment de définition, et on a :

$$\int_{\alpha}^{\beta} F(x) dx = \int_{\alpha}^{b} G(t) dt.$$

Démonstration. Par la Proposition 3.2, on sait que F, G sont continues sur leur segment de définition. On pose :

$$\begin{cases} H_1: [\alpha, \beta] \to \mathbb{R}: X \mapsto \int_{\alpha}^{X} F(x) dx \\ H_2: [\alpha, \beta] \to \mathbb{R}: X \mapsto \int_{\alpha}^{b} \int_{\alpha}^{X} f(x, t) dx dt \end{cases}$$

 $\begin{array}{l} \text{Par CDI 1, on sait que } H_1 \in C^1([\alpha,\beta],\mathbb{R}) \text{ avec } H_1'(x) = F(x). \text{ Par la Proposition 3.3, on trouve } H_2 \in C^1([\alpha,\beta],\mathbb{R}) \\ \text{avec } H_2'(X) = \int_a^b \frac{\partial}{\partial x_i} \int_{\alpha}^X f(x,t) \, dx \, dt = \int_a^b f(X,t) \, dt = F(X). \end{array}$

On en déduit $H_1'(x) = H_2'(x)$, ou encore $H_1'(x) - H_2'(x) = 0$, ce qui indique que la fonction $H_1 - H_2$ est constante sur le segment $[\alpha, \beta]$. De plus, on trouve :

$$H_1(\alpha) = \int_{\alpha}^{\alpha} F(x) dx = 0 = \int_{\alpha}^{b} 0 dt = H_2(\alpha).$$

On a donc $H_1-H_2=0$, ou encore $H_1=H_2$ sur $[\alpha,\beta]$. En particulier, $H_1(\beta)=H_2(\beta)$, ce qui est précisément :

$$\int_{\alpha}^{\beta} F(x) = H_1(\beta) = H_2(\beta) = \int_{\alpha}^{b} \int_{\alpha}^{\beta} f(x,t) dx dt = \int_{\alpha}^{b} G(t) dt.$$

Théorème 3.12 (Théorème de Fubini, version CDI 2). Soient $[\alpha, \beta]$, un segment, $I \subset \mathbb{R}$, un intervalle non-vide, et $f: [\alpha, \beta] \xrightarrow{C^0} \mathbb{R}$ telle que l'intégrale sur I de $t \mapsto f(x,t)$ converge uniformément sur $[\alpha, \beta]$. Alors :

- 1. *la fonction* $F : [\alpha, \beta] \to \mathbb{R} : x \mapsto \int_T f(x, t) dt$ *est continue sur* $[\alpha, \beta]$;
- 2. la fonction $G: I \to \mathbb{R}: t \mapsto \int_{\alpha}^{\beta} f(x,t) dx$ est continue sur I;
- 3. G est d'intégrale convergente sur I.

De plus, on a:

$$\int_{\alpha}^{\beta} F(x) dx = \int_{I} G(t) dt.$$

Démonstration. F et G sont continues sur $[\alpha, \beta]$ par la Proposition 3.2.Fixons $\varepsilon > 0$. Soit $([\alpha_n, b_n])_n$ une suite exhaustive de segments de I. Par convergence sur I uniforme sur $[\alpha, \beta]$ de l'intégrale de $t \mapsto f(x, t)$, il existe $N_\varepsilon \in \mathbb{N}$ tel que :

$$\forall n \geqslant N_{\epsilon} : \forall x \in [\alpha, \beta] : \left| \int_{\alpha_n}^{b_n} f(x, t) dt - \int_I f(x, t) dt \right| \leqslant \frac{\epsilon}{\beta - \alpha}.$$

On en déduit :

$$\left| \int_{\alpha}^{\beta} \int_{a_n}^{b_n} f(x,t) \, dt \, dx - \int_{\alpha}^{\beta} \int_{I} f(x,t) \, dt \, dx \right| \leqslant \int_{\alpha}^{\beta} \left| \int_{a_n}^{b_n} f(x,t) \, dt - \int_{I} f(x,t) \, dt \right| dx \leqslant (\beta - \alpha) \frac{\epsilon}{\beta - \alpha} = \epsilon.$$

Par le théorème 3.12, on peut écrire :

$$\int_{\alpha}^{\beta} \int_{a_n}^{b_n} f(x,t) dt dx = \int_{a_n}^{b_n} \int_{\alpha}^{\beta} f(x,t) dx dt.$$

Prenons alors $n \ge N_{\epsilon}$, on observe :

$$\epsilon\geqslant\left|\int_{\alpha}^{\beta}\int_{\alpha_{n}}^{b_{n}}f(x,t)\,dt\,dx-\int_{\alpha}^{\beta}\int_{I}f(x,t)\,dt\,dx\right|=\left|\int_{\alpha_{n}}^{b_{n}}\int_{\alpha}^{\beta}f(x,t)\,dx\,dt-\int_{\alpha}^{\beta}\int_{I}f(x,t)\,dt\,dx\right|=\left|\int_{\alpha_{n}}^{b_{n}}G(t)\,dt-\int_{\alpha}^{\beta}F(x)\,dx\right|.$$

Cela fournit la convergence de l'intégrale de G sur I, et le fait que :

$$\int_{I} G(t) dt = \int_{\alpha}^{\beta} F(x) dx.$$

3.3.4 Critères de convergence uniforme d'intégrales

Théorème 3.13 (Équivalent du critère de Weierstrass des séries sur les intégrales). *Soient* $X \neq \emptyset$, $I \subset \mathbb{R}$, *un intervalle non-vide, et* $f: X \times I \to \mathbb{R}$ *telle que pour tout* $x \in X$, *on a* $t \mapsto f(x,t)$ *R-int sur tout segment de* I. *On suppose qu'il existe une fonction* $\varphi: I \to \mathbb{R}$ *abs-int sur* I *telle que* :

$$\forall (x,t) \in X \times I : \big| f(x,t) \big| \leqslant \phi(t).$$

Alors l'intégrale de $t \mapsto f(x,t)$ converge sur I uniformément sur X.

Démonstration. Fixons $x \in X$. La fonction $t \mapsto f(x,t)$ est abs-int sur I par le critère de comparaison avec φ (Proposition 2.21). Puisque φ est abs-int sur I, pour $\varepsilon > 0$ fixé, il existe $K_{\varepsilon} \subset I$ segment tel que :

$$\forall K \subset I \text{ segment } : \left(K_\epsilon \subset K \Rightarrow \left| \int_K f(x,t) \, dt - \int_I f(x,t) \, dt \right| \leqslant \epsilon \right).$$

Pour $x \in X$, $K \subset I$ segment t.q. $K_{\varepsilon} \subset K$, écrivons :

$$\begin{split} \int_{K_{\epsilon}} f(x,t) \, dt - \int_{I} f(x,t) \, dt &= \left| \int_{\alpha_{\epsilon}}^{b_{\epsilon}} f(x,t) \, dt - \int_{I} f(x,t) \, dt \right| = \left| \int_{\inf I}^{\alpha_{\epsilon}} f(x,t) \, dt + \int_{b_{\epsilon}}^{\sup I} f(x,t) \, dt \right| \\ &\leqslant \int_{\inf I}^{\alpha_{\epsilon}} \left| f(x,t) \right| dt + \int_{b_{\epsilon}}^{\sup I} \left| f(x,t) \, dt \right| \leqslant \int_{\inf I}^{\alpha_{\epsilon}} \phi(t) \, dt + \int_{b_{\epsilon}}^{\sup I} \phi(t) \, dt \\ &= \left| \int_{I} \phi(t) \, dt - \int_{K_{\epsilon}} \phi(t) \, dt \right| \leqslant \epsilon, \end{split}$$

par choix de \mathbb{K}_{ε} . On a donc bien la convergence sur I uniforme sur X de $t \mapsto f(x,t)$.

Théorème 3.14 (Équivalent du critère d'Abel des séries sur les intégrales). *Soit* I = [a, b), où $a < b \le +\infty$. *Soient* $X \ne \emptyset$, *et* $I \subset \mathbb{R}$, *un intervalle non-vide*, *et* $f, g : X \times I \to \mathbb{R}$ *tels que* :

- $\forall x \in X : t \mapsto f(x,t)$ et $t \mapsto g(x,t)$ sont R-int sur tout segment de I;
- $-\exists M \geq 0, a \in I t.q. \forall T \in I : \forall x \in X : \left| \int_{a}^{T} f(x,t) dt \right| \leq M;$
- $t \mapsto g(x,t)$ converge vers 0 en décroissant en b^- uniformément par rapport à x.

Alors $t \mapsto f(x,t)g(x,t)$ est d'intégrale convergente sur I uniformément sur X.

Démonstration. Soit $([a_n,b_n])_n$ une suite exhaustive de segments de I. Puisque I=[a,b), il existe $N\in\mathbb{N}$ tel que pour $n\geqslant N$, on a $a_n\equiv a$. Pour $x\in X, n,p\in\mathbb{N}$, écrivons :

$$\int_{a}^{b_{n+p}} f(x,t)g(x,t) dt - \int_{a}^{b_{n}} f(x,t)g(x,t) dt = \int_{b_{n}}^{b_{n+p}} f(x,t)g(x,t) dt = g(x,b_{n}) \int_{b_{n}}^{c_{n,p}(x)} f(x,t) dt,$$

par la seconde formule de la moyenne. On en déduit alors :

$$\left| \int_{a}^{b_{n+p}} f(x,t)g(x,t) dt - \int_{a}^{b_{n}} f(x,t)g(x,t) dt \right| \leq 2g(x,b_{n})M.$$

Par hypothèse, on sait que $g(\cdot, b_n)$ converge vers 0 uniformément par rapport à x. On sait donc qu'il existe $N_{\varepsilon} \in \mathbb{N}$ tel que pour $x \in X$, $n \geqslant N_{\varepsilon}$, on a $0 \leqslant g(x, b_n) \leqslant \frac{\varepsilon}{2M}$. Finalement, on en déduit :

$$\forall n \geqslant N_{\epsilon}: \forall n, p \in \mathbb{N}: \forall x \in X: \left| \int_{\alpha}^{b_{n+p}} f(x,t)g(x,t) dt - \int_{\alpha}^{b_{n}} f(x,t)g(x,t) dt \right| \leqslant \epsilon.$$

En faisant tendre $p \to +\infty$, on obtient bien :

$$\forall n \geqslant N_{\varepsilon} : \forall x \in X : \left| \int_{I} f(x,t)g(x,t) dt - \int_{\alpha}^{b_{\pi}} f(x,t)g(x,t) dt \right| \leqslant \varepsilon.$$

On en déduit alors que $t \mapsto f(x,t)g(x,t)$ admet une intégrale convergente.

3.4 Application à la régularisation et à l'approximation à une dimension

3.4.1 Fonctions à support compact

Définition 3.15. Soient $\Omega \subset \mathbb{R}$ ouvert non-vide, $f : \Omega \to \mathbb{R}$. On appelle le *support de* f l'ensemble :

$$supp f := adh \{x \in \Omega \text{ t.q. } f(x) \neq 0\}$$

Remarque. Le support est le plus petit fermé contenant tous les points où f ne s'annule pas. De même, $\Omega \setminus \text{supp f}$ est le plus grand ouvert inclus dans l'ensemble dans l'ensemble des points de Ω où f s'annule. **Proposition 3.16.** *Il existe une fonction* $\phi : \mathbb{R} \to \mathbb{R}$ *de classe* C^{∞} *sur* \mathbb{R} , *définie positive sur* \mathbb{R} , *de support* [-1,1] *et telle que* :

$$\int_{\mathbb{R}} \varphi(x) \, \mathrm{d}x = 1.$$

Démonstration. Soit la fonction f définie par :

$$h: \mathbb{R} \to \mathbb{R}: x \mapsto \begin{cases} exp\left(-x^{-2}\right) & \text{ si } x > 0 \\ 0 & \text{ sinon} \end{cases}.$$

On observe que h est de classe C^{∞} sur \mathbb{R}_0^+ et \mathbb{R}_0^- . Également, on a :

$$h^{(k)}(x) = \frac{P_k(x)}{x^{3k}} \exp(-x^{-2}),$$

avec $P_k \in \mathbb{R}[x]$, et donc les dérivées sont telles que :

$$\forall k \geqslant 1 : h^{(k)} \xrightarrow[x \to 0^+]{} 0 = h^{(k)}(0^-)$$

De plus, on a supp $h = \mathbb{R}^+$. Posons alors :

$$\rho: \mathbb{R} \to \mathbb{R}: x \mapsto h(1-x)h(1+x).$$

 ρ est toujours C^{∞} sur \mathbb{R} , et est de support [-1,1]. Par positivité de ρ et par minoration de ρ par une fonction $\geqq 0$ sur un fermé contenu dans [-1,1], on peut dire que :

$$\alpha \coloneqq \int_{[-1,1]} \rho(x) \, \mathrm{d}x \ngeq 0.$$

Il suffit ensuite de poser :

$$\varphi \coloneqq \frac{\rho}{\alpha}$$
.

Corollaire 3.17. *Soit* $\alpha > 0$. *La fonction* ϕ_{α} *définie par :*

$$\varphi_{\alpha}: \mathbb{R} \to \mathbb{R}: x \mapsto \alpha \varphi(\alpha x)$$

est positive, de support $\left[-\frac{1}{\alpha},\frac{1}{\alpha}\right]$, de classe C^{∞} , et d'intégrale valant 1.

3.4.2 Produit de convolution

Proposition 3.18. *Soient* f, g : $\mathbb{R} \to \mathbb{R}$ *telles que* :

- f est R-int sur tout segment de \mathbb{R} ;
- g est C^0 sur $\mathbb R$ et à support compact.

Alors, pour tout x réel, les fonctions :

$$t\mapsto f(x-t)g(t) \qquad \text{ et } \qquad t\mapsto f(t)g(x-t)$$

sont abs-int, et on a:

$$\int_{\mathbb{R}} f(x-t)g(t) dt = \int_{\mathbb{R}} f(t)g(x-t) dt.$$

Démonstration. La fonction g est de support compact. Donc il existe un segment [a, b] tel que :

$$\forall x \in \mathbb{R} \setminus [a, b] : g(x) = 0.$$

La fonction g est de plus continue sur un compact, donc bornée par $M \ngeq 0$. On peut alors écrire pour tout $x, t \in \mathbb{R}$:

$$|f(x-t)g(t)| \leq M|f(x-t)| I_{[a \leq t \leq b]}.$$

Par comparaison, on en déduit que |g(t)f(x-t)| est R-int sur \mathbb{R} . On sait alors que f(x-t)g(t) est abs-int sur \mathbb{R} , et par changement de variable, on trouve :

$$\int_{\mathbb{R}} f(x-t)g(t) dt = \int_{\mathbb{R}} f(t)g(x-t) dt$$

Définition 3.19. On appelle *produit de convolution de* f *par* g la fonction définie par :

$$f * g : \mathbb{R} \to \mathbb{R} : x \mapsto \int_{\mathbb{R}} f(x - t)g(t) dt = \int_{\mathbb{R}} f(t)g(x - t) dt.$$

Proposition 3.20. Soient $k \in \mathbb{N}^*$ et $f : \mathbb{R} \xrightarrow{C^0} \mathbb{R}$, R-int sur tout segment. La fonction $(f * \phi_k)$ est de classe C^{∞} sur \mathbb{R} , et on a :

$$\forall n \in \mathbb{N} : (f * \phi_k)^{(n)} = f * (\phi_k)^{(n)}.$$

Démonstration. Fixons [a,b] un segment de \mathbb{R} . Prenons $x \in [a,b]$ et $k \in \mathbb{N}^*$. On peut écrire :

$$(f*\phi_k)(x) = \int_{\mathbb{R}} f(x-t)\phi_k(t) dt = \int_{\mathbb{R}} f(t)\phi_k(x-t) dt = \int_{a-\frac{1}{k}}^{b+\frac{1}{k}} f(t)\phi_k(x-t) dt.$$

On sait que $t\mapsto f(t)\phi_k(x-t)$ est de classe C^0 car f est C^0 par hypothèse, et ϕ_k est de classe C^∞ . De plus, on sait que $t\mapsto f(t)\phi_k(x-t)$ est dérivable en x, ce qui donne :

$$\frac{d}{dx}(f(t)\phi_k(x-t))\,\Big|_x=f(t)\phi_k'(x-t).$$

Par la Proposition 3.3, on sait que $(f * \phi_k)$ est de classe C^1 , et on peut écrire :

$$\frac{d}{dx} \left(\int_{a-\frac{1}{k}}^{b+\frac{1}{k}} f(t) \phi(x-t) dt \right) = \int_{a-\frac{1}{k}}^{b+\frac{1}{k}} f(t) \phi'_k(x-t) dt = (f * \phi'_k)(x).$$

En appliquant le résultat par récurrence, on obtient $(f*\phi_k)$ de classe C^∞ et :

$$(f * \varphi_k)^{(n)}(x) = \left(f * \left(\varphi_k^{(n)}\right)\right)(x).$$

Proposition 3.21. *Soit* $f : \mathbb{R} \xrightarrow{C^0} \mathbb{R}$. *Alors :*

$$f*\phi_k\xrightarrow[k\to+\infty]{\text{CVU sur tout cpct de }\mathbb{R}}f.$$

Démonstration. Fixons [a, b], un segment de \mathbb{R} . Prenons $x \in [a, b]$ et $k \ge 1$, et calculons :

$$(f*\phi_k)(x) - f(x) = \int_{\mathbb{R}} f(x-t)\phi_k(t) dt - f(x) \int_{\mathbb{R}} \phi_k(t) dt,$$

car $\phi_k(t)$ est d'intégrale valant 1 par le Corollaire 3.17. On sait donc :

$$(f * \varphi_k)(x) - f(x) = \int_{\mathbb{R}} \left(f(x - t) - f(x) \right) \varphi_k(t) dt.$$

On sait que f est C^0 sur $[a-1,b+1]\ni x-t$ par hypothèse. Par le théorème de Heine, on sait que f est uniformément continue sur [a-1,b+1]. Soit $\epsilon>0$. Il existe $\eta>0$ tel que :

$$\forall z_1, z_2 \in [a-1, b+1] : |z_1 - z_2| < \eta \Rightarrow |f(z_1) - f(z_2)| < \varepsilon.$$

On observe ensuite:

$$\left|(f*\phi_k)(x)-f(x)\right|=\left|\int_{-\frac{1}{k}}^{\frac{1}{k}}\left(f(x-t)-f(x)\right)\phi_k(t)\,dt\right|.$$

Pour k tel que $\frac{1}{k} < \eta$, on a :

$$\forall t \in \left(-\frac{1}{k}, \frac{1}{k}\right) : \left|f(x) - f(x-t)\right| < \epsilon.$$

Dès lors, pour de tels valeurs de k, on trouve :

$$\left|(f*\phi_k)(x)-f(x)\right|=\int_{-\frac{1}{k}}^{\frac{1}{k}}\left|f(x,t)-f(x)\right|\phi_k(t)\,dt\leqslant\epsilon\int_{-\frac{1}{k}}^{\frac{1}{k}}\phi_k(t)\,dt=\epsilon.$$

Ainsi, quel que soit $[a,b] \subset \mathbb{R}$, on sait :

$$\forall \epsilon > 0: \exists \mathsf{K}_\epsilon \in \mathbb{N} \text{ t.q. } \forall \mathsf{k} \geqslant \mathsf{K}_\epsilon: \sup_{x \in [\mathfrak{a}, b]} \left| (\mathsf{f} * \phi_k)(x) - \mathsf{f}(x) \right| \leqslant \epsilon.$$

Proposition 3.22. *Soit* $f : \mathbb{R} \xrightarrow{C^K} \mathbb{R}$. *Alors :*

$$\forall s \in [\![0,K]\!]: (f*\phi_k)^{(s)} \xrightarrow[k \to +\infty]{\text{CVU sur tout cpct de } \mathbb{R}} f^{(s)}.$$

Démonstration. Remarquons par un raisonnement similaire à la Proposition 3.20 que $(f*\phi_k)^{(s)} = f^{(s)}*\phi_k$, et appliquons la Proposition 3.21.

Théorème 3.23. *Soit* $[a,b] \subseteq \mathbb{R}$, *un segment et soit* $f \in C^0([a,b],\mathbb{R})$. *Alors* :

$$\forall \varepsilon > 0: \exists P \in \mathbb{R}[x] \text{ t.q. } \sup_{x \in [\mathfrak{a},\mathfrak{b}]} \left| f(x) - P(x) \right| < \varepsilon.$$

Démonstration. Premièrement, on étend f sur [a-1,b+1] en y ajoutant les segments définis par les couples ((a-1,0),(a,f(a))) et ((b,f(b)),(b+1,0)). Ensuite, par translation et homothétie, on envoie f sur le segment $\left[\pm\frac{1}{2}\right]$.

Pour $k \ge 1$, on pose :

$$g_k: \mathbb{R} \to \mathbb{R}: x \mapsto \begin{cases} \left(1-x^2\right)^k & \text{ si } |x| < 1 \\ 0 & \text{ sinon} \end{cases}.$$

On remarque que $g_k \in C^0(\mathbb{R},\mathbb{R})$ à support compact et $\int_\mathbb{R} g_k(x)\,dx \eqqcolon \alpha_k \gneqq 0$.

On peut alors définir :

$$h_k \coloneqq \frac{g_k}{\alpha_k}.$$

 h_k est continue sur \mathbb{R} , à support compact et d'intégrale valant 1. Étant donné que pour $x \in [-1,1]$, on a $x^2 \le x$, et donc $-x^2 \ge -x$, on peut écrire :

$$\alpha_k = \int_{-1}^1 (1-x^2)^k \, dx = 2 \int_0^1 (1-x^2)^k \, dx \geqslant 2 \int_0^1 (1-x)^k \, dx = \frac{2}{k+1}.$$

De plus:

$$\forall \delta \in (0,1): h_k \xrightarrow{CVU} 0$$

En effet, pour $|x| \in [\delta, 1]$, on a : $x^2 \in [\delta^2, 1^2] = [\delta^2, 1] \supset [\delta, 1]$, et donc $1 - x^2 \in [0, 1 - \delta^2]$. Et donc :

$$h_k(x) = \frac{(1-x^2)^k}{\alpha_k} \leqslant \frac{(1-\delta^2)^k}{\alpha_k} \leqslant \frac{k+1}{2} (1-\delta^2)^k \xrightarrow[k \to +\infty]{} 0,$$

avec le majorant $\frac{k+1}{2}(1-\delta^2)^k$ ne dépendant pas de x. La convergence est donc uniforme.

Pour $x \in \mathbb{R}$, $k \in \mathbb{N}^*$, posons :

$$f_k(x) = f * h_k(x).$$

Observons que si $x \in \left[\pm \frac{1}{2}\right]$, alors :

$$\forall t \in \left[\pm \frac{1}{2}\right] : (x-t) \in [-1,-1],$$

et donc:

$$\forall t, x \in \left[\pm \frac{1}{2} \right] : h_k(x - t) = \frac{\left(1 - (x - t)^2 \right)^k}{\alpha_k} = \sum_{k=0}^{2p} a_{kp}(t) x^p,$$

avec les $a_{kp}(t)$ venant des coefficients du binôme de Newton.

Ainsi, $f_k\Big|_{\left[\pm\frac{1}{2}\right]}$ est une fonction polynômiale de degré inférieur ou égal à 2k.

f est continue sur $\mathbb R$ et à support dans $\left\lceil \pm \frac{1}{2} \right\rceil$, donc elle est :

- bornée par $M \ge 0$ sur \mathbb{R} ;
- uniformément continue sur \mathbb{R}^{1} .

Fixons $\varepsilon > 0$. Il existe $\eta > 0$ tel que :

$$\forall x, y \in \mathbb{R} : |x - y| < \eta \Rightarrow |f(x) - f(y)| \leq \varepsilon.$$

^{1. ~} théorème de Heine.

Pour $x \in \left[\pm \frac{1}{2}\right]$ et $k \geqslant 1$, écrivons :

$$f_k(x)-f(x)=\int_{\mathbb{R}}f(x-t)h_k(t)\,dt-f(x)\int_{\mathbb{R}}h_k(t)\,dt=\int_{\mathbb{R}}\left(f(x-t)-f(x)\right)h_k(t)\,dt.$$

En prenant la valeur absolue, on trouve :

$$\begin{split} \left| f_k(x) - f(x) \right| &\leqslant \int_{-\infty}^{-\eta} \left| f(x-t) - f(x) \right| h_k(t) \, dt + \int_{-\eta}^{\eta} \left| f(x-t) - f(x) \right| h_k(t) \, dt + \int_{\eta}^{+\infty} \left| f(x-t) - f(x) \right| h_k(t) \, dt \\ &= \int_{-1}^{-\eta} \left| f(x-t) - f(x) \right| h_k(t) \, dt + \int_{-\eta}^{\eta} \left| f(x-t) - f(x) \right| h_k(t) \, dt + \int_{\eta}^{1} \left| f(x-t) - f(x) \right| h_k(t) \, dt \\ &\leqslant 2M \|h_k\|_{\infty, [-1, -\eta]} + \epsilon \int_{-\eta}^{\eta} h_k(t) \, dt + 2M \|h_k\|_{\infty, [\eta, 1]} \\ &\leqslant 4M \|h_k\|_{\infty, [\eta, 1]} + \epsilon, \end{split}$$

et le majorant ne dépend pas de $x \in \left[\pm \frac{1}{2}\right]$.

Dès lors, en choisissant k_ϵ tel que $\forall k\geqslant k_\epsilon: \|h_k\|_{\infty,[\eta,1]}\leqslant \frac{\epsilon}{4M}$, alors il vient que :

$$\forall k \geqslant k_{\varepsilon} : \sup_{x \in \left[-\frac{1}{2}, \frac{1}{2}\right]} \left| f_{k}(x) - f(x) \right| \leqslant 2\varepsilon.$$

Chapitre 4

Critère de compacité en dimension infinie : le théorème d'Arzela-Ascoli

4.1 Rappels de topologie métrique

4.1.1 Densité et séparabilité

Définition 4.1. Soit (X, d) un espace métrique, et soit $A \subseteq X$. On appelle *adhérence de* A l'ensemble :

$$adh A := \bigcap_{\substack{F \text{ fermé} \\ F \supset A}} F.$$

adh A est, par construction, le plus petit (au sens de l'inclusion) fermé de X qui contient A. *Remarque*.

- $x \in X$ est dans adh A si et seulement si $\forall \varepsilon > 0$: $B(x, \varepsilon \cap A \neq \emptyset)$;
- l'ensemble adh A peut également être défini par l'ensemble des limites de suites de A qui convergent dans X.

Définition 4.2. Soient $X \neq \emptyset$ et $A \subseteq X$. On dit que A est *dense* dans X lorsque adh A = X.

Définition 4.3. L'ensemble A est dit *dénombrable* lorsqu'il existe $\varphi : \mathbb{N} \to A$ bijective.

Définition 4.4. Soit $(x_n)_n$ une suit de X. On dit que x^* est une *valeur d'adhérence de* (x_n) lorsqu'il existe une sous-suite $(x_{\psi(n)})_n$ de (x_n) qui converge en x^* .

Définition 4.5. Une suite $(x_n)_n$ est dite *dense dans* X lorsque l'ensemble de ses valeurs d'adhérence dans X est X.

Définition 4.6. Un espace métrique (X, d) est dit *séparable* lorsqu'il possède une suite dense.

Proposition 4.7. *Soit* (X, d) *un espace métrique. Il est séparable si et seulement si il admet une partie dense finie ou dénombrable*

Démonstration. Soit $(x_n)_n$ une suite dense dans X. La partie A définie par :

$$A \coloneqq \bigcup_{n \in \mathbb{N}} \{x_n\} = \left\{x_n \text{ t.q. } n \in \mathbb{N}\right\}$$

est finie ou dénombrable, dense dans X par définition.

Soit maintenant A dense dans X. Différencions les cas où A est finie et où A est dénombrable.

- si $A = \{x_1, ..., x_N\}$ est finie, alors $X = \{x_0, ..., x_N\} = A$, et la suite $(x_0, ..., x_N, x_0, ..., x_N, x_0, ...)$ est dense dans X;
- si A = $\{x_1,\ldots,x_N,\ldots\}$ = $\bigcup_{n\in\mathbb{N}}\{x_n\}$ est dénombrable, alors la suite $(x_0,x_0,x_1,x_0,x_1,x_2,x_0,\ldots)$ est

Exemple 4.1.

- $A=\mathbb{Q}$ est dénombrable (et dense) dans \mathbb{R} , et donc $(\mathbb{R},|.|)$ est séparable ; $A=\mathbb{Q}^d$ est dénombrable (et dense) dans \mathbb{R}^d , et donc $(\mathbb{R},||.||)$ est séparable 1 .

Définition 4.8. Soit X dénombrable. On appelle *énumération* toute bijection $\phi: X \to \mathbb{N}$ **Proposition 4.9.** *Soit* $A \subset \mathbb{R}^d$. *Alors* A *est* $\hat{separable}$.

Démonstration. Montrons qu'il existe une partie dense dans A finie ou dénombrable. Soit $(x_q)_{q\in\mathbb{N}}$, une énumération de \mathbb{Q}^d . Pour $n \ge 1$, on a :

$$A \subset \bigcup_{q \in \mathbb{N}} B(x_q, n^{-1}[=\mathbb{R}^d,$$

par densité de \mathbb{Q}^d dans \mathbb{R}^d .

Pour $n \ge 1$, notons

$$C_{\mathfrak{n}} \coloneqq \left\{ \mathfrak{q} \in \mathbb{N} \text{ t.q. } B(x_{\mathfrak{q}}, \mathfrak{n}^{-1}[\, \cap A \neq 0 \right\} \subseteq \mathbb{N}.$$

On sait donc que $C_{\mathfrak n}$ est fini ou dénombrable. Pour tout $\mathfrak n\geqslant 1,$ et $\mathfrak q\in C_{\mathfrak n}$, on peut choisir :

$$y_{n,q} \in B(x_q, n^{-1}[\cap A.$$

Pour $n \ge 1$, on pose alors :

$$X_{n} := \bigcup_{q \in C_{n}} \{y_{n q}\} \neq \emptyset,$$

fini ou dénombrable, et donc :

$$X \coloneqq \bigcup_{n \in \mathbb{N}} X_n$$

est non-nul, fini ou dénombrable.

Il reste à montrer que X est dense dans A.

Soient $x \in A$ et $\varepsilon > 0$ fixés. Il existe $\mathfrak{n}_0 \in \mathbb{N}^*$ tel que $\mathfrak{n}_0 > \frac{2}{\varepsilon}$. Ainsi :

$$x \in A \subset \bigcup_{q \in \mathbb{N}} B(x_q, {n_0}^{-1}[.$$

Donc, il existe $q_0 \in \mathbb{N}$ t.q. $\|x - x_{q_0}\| < \frac{1}{n_0} < \frac{\varepsilon}{2}$. De plus, on peut dire que $y_{n_0 q_0} \in X_n \subset X$. De plus, pour $y_{nq} \in X$:

$$||x-y_{n\,q}|| \le ||x-x_{q_0}|| + ||x_{q_0}-y_{n\,q}|| < \frac{\epsilon}{2} + \frac{1}{n_0} < \epsilon.$$

1. La norme n'est pas précisée ici car dans \mathbb{R}^n , toutes les normes sont équivalentes.

4.2 L'espace $C_b^0(X, \mathbb{R})$

Définition 4.10. Soit $X \subset \mathbb{R}^d$ non-nul. On définit :

$$C_b^0(X,\mathbb{R}) := \{ f \in C^0(X,\mathbb{R}) \text{ t.q. } f \text{ est born\'ee} \}.$$

Proposition 4.11.

- 1. $\left(C_b^0(X,\mathbb{R}),\|\cdot\|_{\infty}\right)$ est un espace vectoriel normé;
- 2. $C_b^0(X, \mathbb{R})$ est un fermé de $(B(X, \mathbb{R}), ||\cdot||_{\infty})$;
- 3. $C_b^0(X, \mathbb{R})$ est complet.

Démonstration.

- 1. EXERCICE.
- 2. Soit $f_n \in C^0_b(X,\mathbb{R})$ t.q. :

$$\exists f \in B(X,\mathbb{R}) \text{ t.q. } f_n \xrightarrow[n \to +\infty]{\|\cdot\|_{\infty}} f.$$

f est limite sur X d'une suite de fonctions continues sur X. Donc $f \in C_b^0(X,\mathbb{R})$, et donc $C_b^0(X,\mathbb{R})$ est fermé dans $B(X,\mathbb{R})$.

3. $C_b^0(X,\mathbb{R})$ est fermé dans $(B(X,\mathbb{R}),\|\cdot\|_{\infty})$ qui est complet, donc $C_b^0(X,\mathbb{R})$ est complet.

Proposition 4.12. *Soit* $X \subset \mathbb{R}^d$. *Si* X *est compact, alors* $C^0(X,\mathbb{R}) = C^0(X,\mathbb{R})$.

Démonstration. On sait que $C_b^0(X,\mathbb{R}) \subseteq C^0(X,\mathbb{R})$ pour tout ensemble X. Prenons $f \in C^0(X,\mathbb{R})$. Une fonction continue sur un compact est bornée, du coup $f \in C_b^0(X,\mathbb{R})$, et donc $C^0(X,\mathbb{R}) \subseteq C_b^0(X,\mathbb{R})$. □

Définition 4.13. On note $\mathcal{P}([a,b])$ l'ensemble des fonctions polynômiales définies sur [a,b] à valeur dans \mathbb{R} .

Proposition 4.14.

- 1. $\mathcal{P}([a,b]) \subset C^0([a,b],\mathbb{R}) = C_b^0([a,b],\mathbb{R});$
- 2. $\mathcal{P}([a,b])$ est dense dans $\left(C^{0}\left([a,b],\mathbb{R}\right),\left\|\cdot\right\|_{\infty}\right)$.

Démonstration.

- 1. EXERCICE.
- 2. Weierstrass.

Corollaire 4.15. $\left(C^{0}\left([\mathfrak{a},\mathfrak{b}],\mathbb{R}\right),\left\|\cdot\right\|_{\infty}\right)$ est séparable.

 $D\acute{e}monstration.$ $\mathbb{Q}[x]$ est dénombrable et dense dans $\left(C^0\left([\mathfrak{a},\mathfrak{b}],\mathbb{R}\right),\lVert\cdot\rVert_{\infty}\right)$. En effet, si $f\in C^0([\mathfrak{a},\mathfrak{b}],\mathbb{R})$ et $\epsilon>0$ sont fixés, alors par Weierstrass, il existe $P\in\mathbb{R}[x]$ tel que :

$$\|f-P\|_{\infty}<rac{\varepsilon}{2}.$$

On peut écrire P sous la forme :

$$P = \sum_{k=0}^{d} \alpha_k x^k, \qquad \qquad \alpha_k \in \mathbb{R}.$$

Par densité de \mathbb{Q} dans \mathbb{R} , il existe $b_0, \ldots, b_k \in \mathbb{Q}$ tels que :

$$\max_{i \in [\![0,d]\!]} |\alpha_i - b_i| \leqslant \frac{\epsilon}{2 \sum_{x \in [\alpha,b]} \sum_{\gamma=0}^d \! |x|^k}.$$

Posons:

$$Q := \sum_{k=0}^{d} b_k x^k,$$

le polynôme associé à ces coefficients. On trouve alors :

$$\begin{split} \|P-Q\|_{\infty} &\leqslant \sum_{x \in [\mathfrak{a}, \mathfrak{b}]} |\mathfrak{a}_k - \mathfrak{b}_k| |x|^k \leqslant \sup_{x \in [\mathfrak{a}, \mathfrak{b}]} \sum_{k=0}^d \frac{\varepsilon}{2 \sup_{x' \in [\mathfrak{a}, \mathfrak{b}]} \sum_{\gamma=0}^d |x'|^{\gamma}} |x|^k \\ &= \frac{\varepsilon}{2 \sup_{x \in [\mathfrak{a}, \mathfrak{b}]} \sum_{k=0}^d |x|^k} \sup_{x \in [\mathfrak{a}, \mathfrak{b}]} \sum_{k=0}^d |x|^k = \varepsilon. \end{split}$$

Et finalement, on a :

$$\|f - Q\|_{\infty} \le \|f - P\|_{\infty} + \|Q - P\|_{\infty} \le \varepsilon.$$

4.3 Théorème d'Arzela-Ascoli

4.3.1 Motivation

Soit $X \subset \mathbb{R}^d$ non-vide. X est compact si et seulement si il est fermé et borné.

Dans l'espace vectoriel normé(E, $\|\cdot\|$) = $\left(C^0\left([\mathfrak{a},\mathfrak{b}],\mathbb{R}\right),\|\cdot\|_{\infty}\right)$, la suite :

$$f_k:[0,1]\to\mathbb{R}:x\mapsto x^k$$

est bornée car pour tout $k \in \mathbb{N}$, on a $\|f_k\|_{\infty} \leqslant 1$. Cependant, elle n'a pas de sous-suite convergente dans $\left(C^0\left([\mathfrak{a},\mathfrak{b}],\mathbb{R}\right),\|\cdot\|_{\infty}\right)$. En effet, s'il existe $\phi:\mathbb{N}\to\mathbb{N}$ strictement croissante, $f\in C^0$ telle que :

$$f_{\varphi(k)} \xrightarrow[k \to +\infty]{\|\cdot\|_{\infty}} f$$

alors $f:[0,1]\to\mathbb{R}:x\mapsto I_{[x=1]}\not\in C^0([0,1]),$ ce qui est une contradiction.

L'objectif du théorème d'Arzela-Ascoli est de donner un critère (condition suffisante) pour qu'une partie de $\left(C^0\left([0,1],\mathbb{R}\right),\left\|\cdot\right\|_{\infty}\right)$ soit d'adhérence compacte.

4.3.2 Énoncé et démonstration

Définition 4.16. Soient $X \subset \mathbb{R}^d$ non-vide, $B \subset \mathcal{F}(X,\mathbb{R})$, une partie de l'ensemble des fonctions $X \to \mathbb{R}$. On dit que B est *équicontinue* sur X lorsque :

$$\forall \epsilon > 0: \exists \eta > 0 \text{ t.q. } \forall f \in B: \forall x,y \in X: \left(\left\| x - y \right\| < \eta \Rightarrow \left| f(x) - f(y) \right| < \epsilon \right).$$

Remarque. Lorsque X = [0,1] et $B \subset (C^1(X,\mathbb{R}),\|\cdot\|_{\infty})$, si $\exists M \not\ge 0$ t.q. $\forall f \in B : \|f'\|_{\infty} < M$, alors B est équicontinue sur X. En effet :

$$\forall f \in B : \forall x, y \in X : |f(x) - f(y)| \leq M|x - y|$$
,

par le théorème des accroissements finis. Dès lors, $\eta=\frac{\epsilon}{M}$ convient.

Théorème 4.17 (Théorème d'Arzela-Ascoli). *Soient* $A \subset \mathbb{R}^d$ *compact et* $B \subset (C^0(A, \mathbb{R}), ||\cdot||_{\infty})$ *non-nul. Si* B *est bornée (pour* $||\cdot||_{\infty}$ A) *et équicontinue, alors* B *est d'adhérence compacte.*

Remarque. Cela amène que pour toute suite de points de B, on peut extraire une sous-suite qui converge dans adh $B \subset C^0(A, \mathbb{R})$.

Démonstration. $A \subset \mathbb{R}^d$ est compacte et donc séparable. Soit C une partie dénombrable ou finie dense dans A.

— Si C est finie, alors $C = \{x_1, \dots, x_k\}$ pour $k \in \mathbb{N}^*$ et A = C. Soit $(f_n)_n \subset \mathbb{B}$. La suite $(f_n(x_1))_n \subset \mathbb{R}$ est bornée (car B est bornée) et admet une sous-suite $(f_{\phi_1(n)}(x_1))_n \subset \mathbb{R}$ convergente dans \mathbb{R} . La suite $(f_{\phi_1(n)}(x_2))_n \subset \mathbb{R}$ est bornée donc admet une sous-suite $(f_{(\phi_1 \circ \phi_2)(n)}(x_2))$ convergente dans \mathbb{R} . En réitérant jusque k, on trouve $\phi_1, \dots, \phi_k : \mathbb{N} \to \mathbb{N}$ strictement croissantes et il existe $f(x_1), \dots, f(x_n) \in \mathbb{R}$ tels que :

$$\forall i \in [\![1,k]\!]: f_{(\phi_1 \circ \dots \circ \phi_k)(n)}(x_i) \xrightarrow[n \to +\infty]{} f(x_i).$$

On a alors $f \in C^0(A, \mathbb{R})$, et on a bien :

$$\left\|f_{(\phi_1\circ...\circ\phi_k)(\mathfrak{n})}-f\right\|_{\infty,A}=\underset{\mathfrak{i}\in[\![1,n]\!]}{\text{max}}\left|f_{(\phi_1\circ...\circ\phi_k)(\mathfrak{n})}(x_{\mathfrak{i}})-f(x_{\mathfrak{i}})\right|\xrightarrow[\mathfrak{n}\to+\infty]{}0.$$

— Si C est dénombrable, on pose (x_n) une énumération de C. Soit $(f_n) \subset B$. La suite $(f_n(x_0))$ est bornée dans $\mathbb R$ car B est bornée et donc admet une sous-suite convergente , que l'on note $(f_n^{(0)}(x_0))_n$. Cette sous-suite est réelle et bornée donc admet une sous-suite convergente que l'on note $(f_n^{(1)}(x_1))_n$. En réitérant, on trouve une suite d'extractions $(f_n^{(k)})_k$ telle que $f_n^{(k)} = f_{\phi_k(n)}^{(k-1)}$, avec ϕ_i strictement croissante pour $i \geqslant 0$. Pour tout k naturel, on pose :

$$g_k = f_k^{(k)}.$$

 $(g_k)_k$ est une extraction diagonale de Cantor. De plus, la suite $(g_k)_k$ est une suite extraite de $(f_n)_n$. Pour tout p naturel, la suite $(g_k(x_p))_k$ converge donc vers $f(x_p)$ car :

$$\forall \ell \geqslant p : g_{\ell}(x_p) = f_{\ell}^{(\ell)}(x_p),$$

et donc $(g_k(x_p))_k$ est extraite de $(f_k^{(p)}(x_p))_k$ avec :

$$f_k^{(p)}(x_p) \xrightarrow[k \to +\infty]{} f(x_p).$$

Montrons maintenant que la suite $(g_k)_k$ est uniformément de Cauchy sur A. Fixons $\epsilon > 0$. Soit $\eta > 0$ le module d'équicontinuité de B pour ϵ . Écrivons :

$$A \subset \bigcup_{y \in A} B\left(y, \frac{\eta}{2}\right[.$$

Par compacité de A, on sait qu'il existe un recouvrement fini, et donc $q \in \mathbb{N}$ et $y_1, \dots y_q \in A$ tels que :

$$A \subset \bigcup_{j=1}^{q} B\left(y_{j}, \frac{\eta}{2}\right[.$$

Par définition de C (séparabilité de A), on sait :

$$\forall j \in [1, q]: \exists x_{p_j} \text{ t.q. } \left\| x_{p_j} - y_j \right\| \leqslant \frac{\eta}{2}.$$

Les suites $(g_k(x_{p_i}))_k$ convergent dans $\mathbb R$ pour $i\in [\![1,q]\!]$ et donc de Cauchy. Puisqu'elles sont en nombre fini, il existe $N\in\mathbb N$ tel que :

$$\forall m, n \geqslant N : \left| g_m(x_{p_j} - g_n(x_{p_j}) \right| \leqslant \epsilon.$$

Soit $x\in A.$ Par compacité de A, il existe $j\in [\![1,q]\!]$ tel que $\left\|x-y_j\right\|\leqslant \frac{\eta}{2}$, et :

$$\|x - x_{p_j}\| \le \|x - y_j\| + \|y_j - x_{p_j}\| \le 2\frac{\eta}{2} = \eta.$$

Pour m, n > N, on trouve donc :

$$\left|g_{\mathfrak{m}}(x)-g_{\mathfrak{n}}(x)\right|\leqslant\left|g_{\mathfrak{m}}(x)-g_{\mathfrak{m}}(x_{\mathfrak{p}_{\mathfrak{f}}})\right|+\left|g_{\mathfrak{m}}(x_{\mathfrak{p}_{\mathfrak{f}}})-g_{\mathfrak{n}}(x_{\mathfrak{p}_{\mathfrak{f}}})\right|+\left|g_{\mathfrak{n}}(x_{\mathfrak{p}_{\mathfrak{f}}})-g_{\mathfrak{n}}(x)\right|\leqslant3\epsilon,$$

par Cauchy et équicontinuité. On en déduit que la suite $(g_n)_n$ est de Cauchy dans $(C^0(A,\mathbb{R}),\|\cdot\|_\infty)$.

Deuxième partie Équations différentielles

Chapitre 5

Conditions suffisantes d'existence et d'unicité de solutions

5.1 Équations différentielles - forme normale - réduction à l'ordre 1

5.1.1 Généralités

Définition 5.1. On appelle équation différentielle toute relation de la forme :

$$F(t,y(t),y^{(1)}(t),...,y^{(p)}(t)) = 0 t \in I, (*)$$

où:

- I est un intervalle de \mathbb{R} ;
- $F:I\times\Omega_0\times\Omega_1\times\dots\Omega_p\to\mathbb{R}$ est une fonction ;
- Ω_0 , Ω_1 ,..., Ω_p sont des ouverts de \mathbb{R}^d .

 $y:J\subset I\to\mathbb{R}^d$ est une fonction inconnue définie sur un intervalle J inconnu également et $\mathfrak p$ fois dérivable sur J, telle que :

$$\forall t \in J : \forall j \in [0,p] : y^{(j)}(t) \in \Omega_j,$$

et dont les dérivées sont liées par l'équation (*).

Définition 5.2. Une équation différentielle est dite *résoluble* lorsqu'elle peut être mise de manière équivalente sous forme normale :

$$y^{(p)}(t) - f(t, y(t), \dots, y^{(p-1)}(t)) = 0,$$
 (#)

où $f:I\times\Omega_0\times\ldots\times\Omega_{p-1}\to\Omega_p.$

5.1.2 Réduction à l'ordre 1

Remarque. Une équation sous forme normale (#) est équivalente à l'équation d'ordre 1 Y'(t) - G(t, Y(t)) = 0, où :

$$Y(t) = \begin{bmatrix} y(t) \\ y^{(1)}(t) \\ \vdots \\ y^{(p-1)}(t) \end{bmatrix} \qquad \text{et} \qquad G(t,Y(t)) = \begin{bmatrix} Y_0(t) \\ Y_1(t) \\ \vdots \\ Y_{p-1}(t) \\ f(t,Y_0(t),\ldots,Y_{p-1}(t) \end{bmatrix}.$$

Remarque. Toute équation différentielle résoluble étant équivalente à une équation différentielle d'ordre 1, on étudiera uniquement ces dernières, et cela permettra de résoudre les autres, sans perte de généralité.

5.1.3 Problème de Cauchy

Définition 5.3. On se donne un équation différentielle (ED) d'ordre 1 résoluble :

$$y'(t) = f(t, y(t)),$$

avec:

- $f: I \times \Omega \to \mathbb{R}^d$;
- $I \subset \mathbb{R}$ un intervalle;
- $\Omega \subset \mathbb{R}^d$, un ouvert.

On appelle donnée de Cauchy tout couple $(t_0, y_0) \in I \times \Omega$.

On appelle problème de Cauchy le fait de chercher $J\subset I$ un intervalle et $y:J\to \mathbb{R}^d$ tels que :

$$\begin{cases} \forall t \in J : y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$
 (PC)

5.1.4 Formulation intégrale

Proposition 5.4. Si $f \in C^0(I \times \Omega, \mathbb{R}^d)$, alors $y : J \xrightarrow{C^0} \Omega$, avec $t_0 \in J$ est solution de (PC) si et seulement si :

$$\forall t \in J : y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) ds.$$
 (5.1)

Démonstration. Supposons d'abord y solution de (PC). Alors :

$$\forall t \in J : y'(t) = f(t, y(t)).$$

Par dérivabilité de y sur J, on sait que $y \in C^0(J)$. Puisque y est à valeurs dans Ω , on sait que $f \in C^0(I \times \Omega)$ avec $J \subset I$. La fonction $t \mapsto f(t,y(t))$ est donc continue sur J. Ainsi, y' est continue sur J, et donc $y \in C^1(J,\mathbb{R}^d)$, et on a :

$$y(t) - y(t_0) = \int_{t_0}^{t} y'(t) dt$$

ou encore:

$$y(t) = y_0 + \int_{t_0}^t f(s, y(s)) \, ds.$$

Maintenant, supposons que y vérifie (5.1). Puisque $y \in C^0(J,\Omega)$, la fonction $s \mapsto f(s,y(s))$ est continue sur J. Elle est donc intégrable, et $t \mapsto \int_{t_0}^t f(s,y(s)) \, ds$ est de classe C^1 sur J. On a alors :

$$\frac{d}{dt}\int_{t_0}^t f(s,y(s))\,ds = f(t,y(t)).$$

Par hypothèse, on a :

$$y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) ds.$$

Dès lors, en dérivant terme à terme, on trouve :

$$y'(t) = f(t, y(t)),$$

et on a de plus:

$$y(t_0) = y_0 + \int_{t_0}^{t_0} f(s, y(s)) ds = y_0 + 0 = y_0.$$

y est donc bien solution de (PC).

5.2 Existence et unicité locales

5.2.1 Théorème du point fixe de Banach

Définition 5.5. Soient (X, d_X) et (Y, d_Y) deux espaces métriques. $f: X \to Y$ est dite *contractante* lorsque :

$$\exists k \in [0,1) \text{ t.q. } \forall x,y \in X : d_Y(f(x),f(y)) \leqslant kd_X(x,y).$$

Théorème 5.6 (Théorème du point fixe de Banach). *Soient* (X, d) *un espace métrique*, $A \subset X$ *une partie complète non-vide et* $f: A \to A$ *contractante sur* A. *Alors* :

- f admet un unique point fixe $a^* \in A$;
- $\forall x_0 \in A$, la suite $x_n = f(x_{n-1})$ converge dans A en a^* .

Démonstration.

— Montrons d'abord l'existence de a^* . Fixons $x_0 \in A$. La suite $x_n = f(x_{n-1})$ est bien définie dans A (car $f(A) \subseteq A$). Observons que :

$$\forall n \in \mathbb{N} : x_n = f^n(x_0).$$

Soient $n, p \in \mathbb{N}$. On calcule :

$$\begin{split} d(x_{n+p},x_n) &\leqslant d(x_{n+p},x_{n+p-1}) + d(x_{n+p-1},x_{n+p-2}) + \ldots + d(x_{n+1},x_n) \\ &\leqslant k^{p-1}d(x_{n+1},x_n) + k^{p-2}d(x_{n+1},x_n) + \ldots + d(x_{n+1},x_n) \\ &\leqslant \frac{1-k^p}{1-k}d(x_{n+1},x_n) \leqslant \frac{1}{1-k}d(x_{n+1},x_n) \\ &\leqslant \frac{1}{1-k}k^nd(x_1,x_0) \xrightarrow[n \to +\infty]{} 0, \end{split}$$

et ce, indépendamment de p. La suite $(x_n)_n$ est donc de Cauchy, et par complétude de A (hypothèse), on sait que $(x_n)_n$ converge dans A. Appelons cette limite \mathfrak{a}^* . On a alors :

$$a^* = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} f(x_{n-1}) = f(a^*).$$

Le point a* est donc un point fixe.

Montrons ensuite l'unicité de ce point fixe. Soient $x, y \in A$ deux points fixes de f. On sait alors :

$$x = f(x)$$
 et $y = f(y)$.

Or, puisque f est contractante, on sait :

$$d(x,y) = d(f(x), f(y)) \le kd(x,y),$$

ou encore:

$$(1-k)d(x,y) \leq 0.$$

Or on sait que $1 - k \ge 0$. Donc on a $d(x, y) \le 0$, et donc d(x, y) = 0, ce qui par séparabilité des points d'une métrique implique x = y.

— On a vu que $x_n = f(x_{n-1})$ était convergente pour toute valeur initiale de x_0 . Or, on sait également que le point fixe de f est unique, et donc pour tout x_0 , la suite $x_n = f(x_{n-1})$ converge vers a^* cet unique point fixe.

Corollaire 5.7. Soit A une partie non-vide et complète d'un espace métrique. Soit $f: A \to A$. Si f admet une puissance contractante, alors f admet un unique point fixe α^* dans A.

Démonstration. Soit $n \in \mathbb{N}^*$ tel que f^n est contractante. Par le théorème de Banach, on sait que f^n admet un unique point fixe a^* sur A. On peut alors écrire $f^n(f(a^*)) = f(f^n(a^*)) = f(a^*)$. Donc $f(a^*)$ est un point fixe de f^n . Et par unicité, on sait que $f(a^*) = a^*$.

Soit $a \in A$ un point fixe de f. Cela veut dire $a = f(a) = f(f(a)) = ... = f^n(a)$. Donc a est un point fixe de f^n . À nouveau, par unicité, $a = a^*$.

5.2.2 Cylindres en espace-temps

Définition 5.8. Soit $f: I \times \Omega \to \mathbb{R}^d$, où $I \subset \mathbb{R}$ est un intervalle et $\Omega \subset \mathbb{R}^d$ est un ouvert.

On dit que f est lipschitzienne en espace sur $I \times \Omega$ lorsqu'il existe $M \ngeq 0$ tel que :

$$\forall t \in I : \forall x, y \in \Omega : ||f(t, x) - f(t, y)|| \leq M||x - y||.$$

On dit que f est localement lipschitzienne en espace sur $I \times \Omega$ lorsque :

$$\forall J \times K \subset I \times \Omega \text{ compact } \exists M(J,K) \text{ t.q. } \forall t \in J : \forall x,y \in K : ||f(t,x) - f(t,y)|| \leq M(J,K)||x - y||.$$

Définition 5.9 (Définition équivalente de localement lipschitzien). $f: I \times \Omega \to \mathbb{R}^d$ est localement lipschitzienne en espace lorsque :

$$\forall (t,x) \in I \times \Omega: \exists M \gneqq 0, \widetilde{I} \times \widetilde{\Omega} \text{ compacts } \subset I \times \Omega \text{ t.q. } \forall t \in \widetilde{I}: \forall x,y \in \widetilde{\Omega}: \left\|f(t,x) - f(t,y)\right\| \leqslant M \|x - y\| \,.$$

Proposition 5.10. Si $f \in C^1(I \times \Omega, \mathbb{R})$, avec $I \subset \mathbb{R}$, et $\Omega \subset \mathbb{R}^d$, tous deux ouverts, alors f est localement lipschitzienne par rapport à x (en espace).

Démonstration. Soient $t \in I, x \in \Omega$. On choisit $\delta \ngeq 0$ tel que $(t - \delta, t + \delta) \subset I$ et $\epsilon > 0$ tel que $B(x, \epsilon [\subset \Omega].$ La fonction $(t, x) \mapsto d_x f(t, \cdot)$ ¹est continue sur $\left[t - \frac{\delta}{2}, t + \frac{\delta}{2}\right] \times B\left(x, \frac{\epsilon}{2}\right]$ compact car f est C^1 . En particulier, elle est bornée, donc il existe $M \ngeq 0$ tel que :

$$\left\|d_x\,f(t,\cdot)\right\|\leqslant M.$$

Soient $y_1,y_2\in B\left(x,\frac{\epsilon}{2}\Big[$ deux valeurs en espace, et $t\in \left[t_0\pm\frac{\delta}{2}\right]$ une valeur en temps. On a alors :

$$f(t,y_2) - f(t,y_1) = \int_{y_1}^{y_2} \frac{\partial f}{\partial x}(t,y) \, dy = \int_0^1 d_{sy_2 + (1-s)y_1} f(t,\cdot)(y_2 - y_1) \, ds,$$

que l'on peut majorer en norme par :

$$\left\| f(t,y_2) - f(t,y_1) \right\| \leqslant \int_0^1 \left\| d_{sy_2 + (1-s)y_1} f(t,\cdot) (y_2 - y_1) \, ds \right\| \leqslant \int_0^1 M \|y_2 - y_1\| \, ds = M \|y_2 - y_1\| \, ds$$

^{1.} La notation d_x $f(t, \cdot)$ correspond à la dérivée partielle de f par rapport à sa variable d'espace, évaluée en x. Donc d_{x_0} $f(t, \cdot) = \frac{\partial f}{\partial x}(t, x_0)$.

Définition 5.11. Pour tout $t_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}^d$, ℓ , $r \ngeq 0$, on appelle *cylindre* (*en espace-temps*) centré en (t_0, y_0) de rayon r et de demi-axe ℓ l'ensemble :

$$S(t_0,y_0,\ell,r) \coloneqq \left\{ (t,y) \in \mathbb{R} \times \mathbb{R}^d \ t.q. \ |t-t_0| \leqslant r, \lVert y-y_0 \rVert \leqslant \ell \right\}.$$

Remarque. $S(t_0, y_0, \ell, r)$ est un compact convexe de $\mathbb{R} \times \mathbb{R}^d$.

Proposition 5.12. Soit $f: I \times \Omega \to \mathbb{R}^d$ localement lipschitzienne en espace. Soient $(t_0, y_0) \in I \times \Omega, \ell, r \geq 0$ t.g. :

$$S(t_0,y_0,\ell,r)\subset I\times\Omega.$$

Alors f est localement lipschitzienne sur $S(t_0, y_0, \ell, r)$.

5.2.3 Théorème d'existence et d'unicité locales

Proposition 5.13. Soient $f:J\times\Omega\to\mathbb{R}^d$ localement lipschitzienne en espace, $(t_0,y_0)\in J\times\Omega$. Il existe $\ell,r\ngeq0$ tels que:

- (i) $S := S(t_0, y_0, \ell, r) \subset J \times \Omega$;
- (ii) $\ell \|f\|_{\infty,S} \leqslant r$.

Démonstration. Puisque $J \times \Omega$ est ouvert, il existe $\delta, \epsilon \ngeq 0$ tels que $S(t_0, y_0, \delta, \epsilon) \subset J \times \Omega$. Posons alors $\epsilon \eqqcolon r$, et:

$$\ell \coloneqq \min\left(\delta, \frac{\epsilon}{\|f\|_{\infty, S\left(t_0, y_0, \delta, \epsilon\right)}}\right).$$

Alors $\ell > 0$, et on a donc :

$$\ell \leqslant \frac{\epsilon}{\|f\|_{\infty,S(t_0,y_0,\delta,\epsilon)}} \leqslant \frac{\epsilon}{\|f\|_{\infty,S(t_0,y_0,\ell,r)}},$$

 $\operatorname{car} \ell \leqslant \delta$.