CS 2233 Homework 3

1. Contrapositive and contradiction (4 points)

Consider the following claim:

For all integers m and n, if (m - n) is odd then m is odd or n is odd.

SET UP

$$p := (m-n \text{ is odd})$$
 ::::: $(m-n = 2c+1)$ for $c \in \mathbb{Z}$

$$x := (m \text{ is odd})$$
 $:::: (m = 2a+1) \text{ for } a \in \mathbb{Z}$

$$y := (n \text{ is odd})$$
 $:::: (n = 2b+1) \text{ for } b \in \mathbb{Z}$

$$q := (x \text{ or } y)$$

(1) (2 points) Prove the claim using a proof by contrapositive

$$p \rightarrow q$$

$$\neg q \rightarrow \neg p \qquad \qquad \text{(Contrapositive)}$$

$$\neg (x \ V \ y) \rightarrow \neg p \qquad \qquad \text{(Replace q with its definition)}$$

$$\neg (x \ V \ y) == \neg x \ \Lambda \ \neg y \qquad \qquad \text{(DeMorgan's Law)}$$

$$\neg x \ \Lambda \ \neg y \rightarrow \neg p \qquad \qquad \text{(Replace line 3 with the new DeMorgan's version)}$$

"if m is not odd and n is not odd, then m-n is not odd"

Extra:

$$\neg (m = 2a+1) \rightarrow m = 2a \text{ for } a \in \mathbb{Z}$$
 Showing that m is even $\neg (n = 2b+1) \rightarrow n = 2b \text{ for } b \in \mathbb{Z}$ Showing that n is even

m - n = 2a - 2b = 2(a-b) therefore m-n is even by the definition of an even number.

$$\neg (m-n=2c) \rightarrow (m-n=2c+1)$$

(2) (2 points) Prove the claim using a proof by contradiction

Assuming m-n is odd , if m and n are both even:

$$m = 2k$$
, k∈ℤ

n = 2g, g∈
$$\mathbb{Z}$$

$$m-n=2k-2g$$

$$a = k - g$$

$$m-n = 2a$$

m-n is even

Contradiction

$$\forall x \in \mathbb{R} : x \in \mathbb{Q} \Leftrightarrow x^{-}5 \in \mathbb{Q} \Leftrightarrow x/3 \in \mathbb{Q}$$

$$p := x \in \mathbb{Q}$$

$$q := x^{-}5 \in \mathbb{Q}$$

$$r := x/3 \in \mathbb{Q}$$

$$p \Leftrightarrow q \Leftrightarrow r \equiv (p \Rightarrow q) \land (q \Rightarrow r) \land (r \Rightarrow p)$$

$$(p \Leftrightarrow q) \Leftrightarrow r$$

$$s := (p \Leftrightarrow q) \equiv (x \in \mathbb{Q} \Rightarrow x - 5 \in \mathbb{Q}) \land (x - 5 \in \mathbb{Q} \Rightarrow x \in \mathbb{Q})$$

$$x \in \mathbb{Q} \Rightarrow x = \frac{a}{b}$$

$$x^{-}5 \in \mathbb{Q} \Rightarrow x^{-}5 \in \mathbb{Q} \Rightarrow x \in \mathbb{Q}) = true$$

$$s = true$$

$$t := (s \Leftrightarrow r) \equiv (s \Rightarrow x/3 \in \mathbb{Q}) \land (x/3 \in \mathbb{Q} \Rightarrow s)$$

$$x/3 \in \mathbb{Q} \Rightarrow \frac{(\frac{a}{b})}{3} = (\frac{a}{b}) * (\frac{1}{3})$$

$$r = true$$

$$(s \Rightarrow r) = true, (r \Rightarrow s) = true$$

$$(s \Rightarrow r) = true$$

$$(s \Rightarrow r) = true$$

$$(s \Rightarrow r) = true$$

$$(p \Rightarrow q) \Leftrightarrow r = true$$

$$p \Leftrightarrow q \Leftrightarrow r = true$$

$$x \in \mathbb{Q} \Leftrightarrow x^{-}5 \in \mathbb{Q} \Leftrightarrow x/3 \in \mathbb{Q} = true$$

3.

		А	В	С	D	Е	F	G	Н	I
Χ	Υ	Max(x,y)	Min(x,y)	(A+B) ²	A*B	C+D	X ²	Зху	y ²	F+G+H
z+1	z	z+1	z	4z ² +4z+1	z²+z	5z ² +5z+1	z ² +2z+1	3z ² +3z	Z ²	5z ² +5z+1

z	z+1	z+1	z	4z ² +4z+1	z²+z	5z ² +5z+1	Z ²	3z ² +3z	z ² +2z+1	5z ² +5z+1
z	z	Z	z	4z ²	Z ²	5z²	Z ²	3z²	Z ²	5z²

Link to the work spreadsheet:

https://docs.google.com/spreadsheets/d/1YMrbVXUFwMIAai-7e2hO3nYh69NKvHiTLki3-mS-cPqv/edit?usp=sharin

4.

(1)

X = 2, $y = \frac{1}{2}$, both $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$ but 2 to the power $\frac{1}{2}$ ($2^{(1/2)} = \sqrt{2}$, which is irrational, therefore it is false, disproven by case, since the result is irrational, but the neither base nor the exponent are irrational

(2)

Proof by contrapositive:

Assume x is rational, $x \in \mathbb{Q}$ x=p/q, $x^2 == p^2/q^2$, both $p,q \in \mathbb{Z}$ therefore, since x can be described by an integer over an integer, $x^2 \in \mathbb{Q}$

If x is not irrational, then the squaisenoft irrational as well

Work:

$$//x = a / b \rightarrow x^2 = (a/b)(a/b) = M, M \in \mathbb{Q}$$

 $//x \in \mathbb{Q} \rightarrow x = (p/q), p/q \in \mathbb{Z} :: p^2, q^2 \in \mathbb{Z}$
 $//x^2 = (p^2 / q^2) \in \mathbb{Q}$

5. Sets (6 points)

(1) (1.5 points) Use set builder notation to give a description of the set $\{-3, -2, -1, 0, 1, 2, 3, 4, 5\}$.

$$\{ x \mid -3 \le x \le 5, x \in \mathbb{Z} \}$$

(2) (2 points) Let
$$A = \{a, b, c\}, B = \{x, y\}, and C = \{5, 10\}.$$

Find $A \times B \times C$ and $C \times A \times B$.

A x B x C = { (a,x,5), (a,x,10), (a,y,5), (a,y,10), (b,x,5), (b,x,10), (c,x,5), (c,y,5), (b,x,10), (b,y,10), (c,x,10), (c,y,10)}

 $C \times A \times B = \{ (5,a,x), (5,a,y), (5,b,x), (5,b,y), (5,c,x), (5,c,y), (10,a,x), (10,a,y), (10,b,x), (10,b,y), (10,c,x), (10,c,y) \}$

(3) Let $A = \{1,4,8,16\}, B = \{2,4,16,32,64\}$

 $A \cup B = \{1,2,4,8,16,32,64\}$

 $A \cap B = \{4,16\}$

 $A \setminus B = \{1, 8\}$

 $B\setminus A = \{2, 32, 64\}$

| P(A) | = 2 to the power (|A|) $(2^{(|A|)}) = 2^4 = 16$

6: $A \cup (A \cap B) = A$

Work:

 $//x \in A \cap B \equiv x \in A \land x \in B$

 $//\{x \mid x \in A \land x \in B\}$

//x in A U B -> x in A or x in B

 $P == \{x \mid x \in A\}$

 $Q == \{x \mid x \in B\}$

 $A \cup (A \cap B)$ Original problem

 $A \cap B = P \wedge Q$ Definition of Intersection

 $A \cup (P \land Q)$ Replacing the Intersection with Definition

A
$$\cup$$
 $(P \land Q) = P \lor (P \land Q)$ Replacing the Union with the Definition of a Union $P \lor (P \land Q) = P$ Absorption Law

 $P = All \ x$'s in A, therefore P is equal to the set of A Therefore, A U (A \cap B) = P, P = A, AU (A \cap B) = A

$$(P:=A)$$

 $(Q:=B)$
 $(P \cup (P \cap Q) = P, \quad A \cup (A \cap B) = A)$