## Forma di Jordan

## Alessandro Giacchetto

## alessandro.giacchetto@gmail.com

**Teorema di Jordan.** Sia  $A \in M(n \times n, K)$  una matrice triangolarizzabile. Allora A è simile ad una matrice di Jordan J: esiste  $S \in GL(n, K)$  tale che

$$S^{-1}AS = J.$$

Inoltre e tale matrice è unica, a meno di permutazione dei blocchi.

Vediamo come procedere nella determinazione della matrice di Jordan J e della matrice del cambiamento di base S. Innanzitutto una matrice A è triangolarizzabile se e solo se il polinomio caratteristico è prodotto di fattori lineari:

$$p_A(x) = (\lambda_1 - x)^{\alpha_1} \cdots (\lambda_r - x)^{\alpha_r}.$$

Abbiamo quindi determinato la molteplicità algebrica  $m_a(\lambda_i) = \alpha_i$ . La molteplicità algebrica è pari al numero di volte che l'autovalore corrispondente comparirà sulla diagonale della forma canonica. A questo punto, passiamo a calcolare la molteplicità geometrica:

$$m_{\rm g}(\lambda_i) = \dim \ker (A - \lambda_i E_n).$$

Abbiamo che il numero di blocchi di Jordan relativi all'autovalore  $\lambda_i$  sono esattamente pari alla molteplicità geometrica  $m_g(\lambda_i)$ .

In generale, si hanno due possibilità.

• Molteplicità geometrica e algebrica coincidono:  $m_{\rm g}(\lambda_i) = m_{\rm a}(\lambda_i)$  per ogni  $i = 1, \ldots, r$ . Allora la matrice è diagonalizzabile e la matrice di Jordan sarà

$$J = \begin{pmatrix} \lambda_1 & \ddots & & \\ & \ddots & & \\ & & \lambda_1 & & \\ & & & \lambda_r & \\ & & & \ddots & \\ & & & \lambda_r & \\ \end{pmatrix}$$

• La molteplicità geometrica è strettamente minore di quella algebrica:  $m_{\rm g}(\lambda_i) < m_{\rm a}(\lambda_i)$  per qualche  $i=1,\ldots,r$ .

In certi casi particolari, questo ci permette di scrivere direttamente la forma canonica, senza ulteriori calcoli. Ad esempio, se  $\alpha_i = m_{\rm a}(\lambda_i) = m_{\rm g}(\lambda_i) + 1$ , allora il la parte relativa all'autovalore  $\lambda_i$  avrà necessariamente  $\alpha_i - 1$  blocchi di dimensione 1 ed un solo blocco di dimensione 2:



Vediamo ora come calcolare nel secondo caso il numero di blocchi di Jordan e la matrice S del cambio di coordinate. L'algoritmo si applica su ogni autovalore separatamente, andando a trovare dei vettori per una base dell'autospazio generalizzato

$$\operatorname{Aut}_{g}(\lambda_{i}) = \ker (A - \lambda_{i} E_{n})^{\alpha_{i}},$$

che ha dimensione  $\alpha_i$ . Fissiamoci sull'autovalore  $\lambda_i$  e chiamiamo  $B = A - \lambda_i E_n$ . Abbiamo che ker  $B \subset \ker B^3 \subset \ker B^3 \subset \cdots$ , poiché

$$v \in \ker B^m$$
  $\Longrightarrow$   $B^{m+1}v = B\underbrace{(B^m v)}_{=0} = B0 = 0.$ 

Ora, lo spazio ambiente ha dimensione finita, quindi le inclusioni non possono essere sempre strette. Ci sarà quindi una potenza k tale che ker  $B^k = \ker B^{k+1}$ .

1. Selezioniamo delle basi come segue:

$$w_1,\ldots,w_{l_1}$$
 base di ker  $B$  
$$w_1,\ldots,w_{l_1},w_{l_1+1},\ldots,w_{l_2}$$
 base di ker  $B^2$  
$$\vdots$$
 
$$w_1,\ldots,w_{l_1},w_{l_1+1},\ldots,w_{l_2},w_{l_2+1},\ldots,w_{l_k}$$
 base di ker  $B^k$ .

Nota: qui  $l_1 < l_2 < \cdots < l_k$ .

2. Iniziamo a costruire una base di  $\operatorname{Aut}_{\mathbf{g}}(\lambda_i)$ . Selezioniamo come primo vettore  $v_1 = w_{l_k}$  e costruiamone altri risalendo con B:

$$v_1 = w_{l_k} \in \ker B^k$$

$$v_2 = Bv_1 \in \ker B^2$$

$$\vdots$$

$$v_k = Bv_{k-1} = B^{k-1}v_1 \in \ker B.$$

Ripeto quindi il procedimento per  $v_{k+1} = w_{l_k-1}$ :

$$v_{k+1} = w_{l_k-1} \in \ker B^k$$
  
 $v_{k+2} = Bv_{k+1} \in \ker B^2$   
 $\vdots$   
 $v_{2k} = Bv_{k-1} = B^{k-1}v_{k+1} \in \ker B.$ 

E così via, fino ad arrivare a  $w_{l_{k-1}+1}$ , ovvero il primo vettore della base in  $\ker B^k \setminus \ker B^{k-1}$ .

- 3. Se i vettori ottenuti formano già una base di  $\operatorname{Aut}_{\mathbf{g}}(\lambda_i)$ , ci possiamo fermare. Altrimenti continuiamo con  $\ker B^{k-1}$ . Ora, abbiamo appena ottenuto dei vettori in  $\ker B^{k-1}$ : questi sono  $v_2, v_{k+2}, \ldots$  Tuttavia abbiamo già una base  $w_1, \ldots, w_{l_1}, \ldots, w_{l_{k-1}}$  di  $\ker B^{k-1}$ . Per il teorema di prolungamento ad una base, possiamo prolungare  $v_2, v_{k+2}, \ldots$  ad una base di  $\ker B^{k-1}$ . Ripetiamo ora il procedimento del punto (2) con i vettori aggiunti.
- 4. Se non abbiamo ancora una base, si passa poi a ker  $B^{k-2}$  eccetera, fino ad arrivare, se necessario, a ker B. In questo modo, avremo costruito una base  $v_1, \ldots, v_{\alpha_i}$  di  $\operatorname{Aut}_{\mathbf{g}}(\lambda_i)$ . La matrice di Jordan si otterrà quindi come

- 5. Le colonne della matrice S saranno semplicemente i vettori delle basi di  $\operatorname{Aut}_{g}(\lambda_{1}), \ldots, \operatorname{Aut}_{g}(\lambda_{r})$ . Vediamo alcuni esempi.
  - Prendiamo

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Il polinomio caratteristico è  $p_A(x)=(1-x)^3$ , da cui un autovalore di molteplicità algebrica  $m_{\rm a}(1)=3$ . La molteplicità geometrica sarà data dal nucleo di

$$B = A - E_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

che ha dimensione 2. L'unica forma di Jordan possibile (a meno di permutazioni) che presenta due blocchi ed il solo autovalore  $\lambda = 1$  è quindi

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Procediamo comunque a calcolare la matrice S. Dal punto (5), otteniamo che le colonne di S sono la base di  $Aut_g(1)$ , costruita nei punti (1-4). Selezioniamo innanzitutto una base di ker B:

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Avremo poi una base di  $B^2 = 0$  data da

$$w_1, w_2, \qquad w_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Procediamo col punto (2). Poniamo  $v_1 = w_3$ ,

$$v_2 = Bv_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Essendo  $B^2=0$ , ci fermiamo. Poiché abbiamo completato i vettori della base che stanno in  $\ker B^2 \setminus \ker B$ , passiamo al punto (3). Il vettore  $v_2$  è esattamente pari a  $w_1$ , quindi possiamo sostituirlo nella base di  $\ker B$ , ottenendo la nuova base  $v_2, w_2$ . A questo punto, non rimane che porre  $v_3=w_2$  e abbiamo trovato la base di  $\operatorname{Aut}_{\rm g}(1)$  come nell'algoritmo. Come avevamo già dedotto, la matrice di Jordan sarà data da

$$J - E_3 = \begin{pmatrix} \boxed{0} \\ \boxed{1} & 0 \\ \end{bmatrix} \begin{pmatrix} v_1 \\ Bv_1 = v_2 \\ v_3 \end{pmatrix}$$

$$\begin{vmatrix} Bv_1 & B^2v_1 & Bv_3 \\ \parallel & \parallel & \parallel \\ v_2 & 0 & 0 \\ \end{vmatrix}$$

La matrice S del cambiamento di base è invece

$$S = (v_1 | v_2 | v_3) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

• Prendiamo ora

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$

Il polinomio caratteristico è ancora  $p_A(x) = (1-x)^3$ , da cui un autovalore di molteplicità algebrica  $m_a(1) = 3$ . La molteplicità geometrica sarà data dal nucleo di

$$B = A - E_3 = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix},$$

che ha dimensione 1. L'unica forma di Jordan possibile (a meno di permutazioni) che presenta un solo blocco ed il solo autovalore  $\lambda=1$  è quindi

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Procediamo comunque a calcolare la matrice S. Dal punto (5), otteniamo che le colonne di S sono la base di  $Aut_g(1)$ , costruita nei punti (1-4). Selezioniamo innanzitutto una base di  $\ker B$ :

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Avremo poi una base di

$$B^2 = \begin{pmatrix} 0 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

data da

$$w_1, \qquad w_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Infine una base di  $B^3=0$ è data da

$$w_1, w_2, \qquad w_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Procediamo col punto (2). Poniamo  $v_1 = w_3$ ,

$$v_2 = Bv_1 = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \qquad v_3 = B^2 v_1 = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}.$$

Abbiamo trovato la base di  ${\rm Aut_g}(1)$  come nell'algoritmo. Come avevamo già dedotto, la matrice di Jordan sarà data da

$$J - E_3 = \begin{pmatrix} \begin{bmatrix} 0 \\ 1 & 0 \\ & 1 & 0 \end{bmatrix} & v_1 \\ & 1 & 0 \\ & Bv_1 & B^2v_1 & B^3v_1 \\ & \parallel & \parallel & \parallel \\ v_2 & v_3 & 0 \end{pmatrix} Bv_1 = v_2$$

La matrice S del cambiamento di base è invece

$$S = (v_1 | v_2 | v_3) = \begin{pmatrix} 0 & 1 & 6 \\ 0 & 3 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$