Transition-based Dependency Parsing

Slides thanks to Daniel Hershcovich

Natural Language Processing, 67658

Overview

- 1 Introduction
- 2 Transition systems
- 3 Greedy transition-based parsing
- 4 Dealing with error propagation
- 5 Broad-coverage parsing

Introduction

Introduction

Dependency parsing

Given sentence $w = (w_1, \dots, w_n)$, let $V_w = \{0, 1, \dots, n\}$ (the root node has index 0).

Derive dependency tree $T = (V_w, A)$ by finding the set of arcs

 $A \subset V_w \times \mathcal{L} \times V_w$, where \mathcal{L} is the set of possible edge labels.

Equivalently—for each i, find w_i 's head and dependency label.

Dependency parsing

Given sentence $w = (w_1, ..., w_n)$, let $V_w = \{0, 1, ..., n\}$ (the root node has index 0).

Derive dependency tree $T = (V_w, A)$ by finding the set of arcs $A \subset V_w \times \mathcal{L} \times V_w$, where \mathcal{L} is the set of possible edge labels.

Equivalently—for each i, find w_i 's head and dependency label.

$$w = (w_1, w_2, w_3)$$
 $\Rightarrow \sqrt[\operatorname{nsubj}]{\sqrt[\operatorname{dobj}]}$
 $w_1 \quad w_2 \quad w_3$

$$V_w = \{0, 1, 2, 3\}, \quad A = \{(0, \text{root}, 2), (2, \text{nsubj}, 1), (2, \text{dobj}, 3)\}$$

Dependency parsing

Given sentence $w = (w_1, \dots, w_n)$, let $V_w = \{0, 1, \dots, n\}$ (the root node has index 0).

Derive dependency tree $T = (V_w, A)$ by finding the set of arcs $A \subset V_w \times \mathcal{L} \times V_w$, where \mathcal{L} is the set of possible edge labels.

Equivalently—for each i, find w_i 's head and dependency label.

$$w = (w_1, w_2, w_3)$$
 $\Rightarrow \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{dobj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}} \sqrt{\frac{\mathsf{nsubj}}{\mathsf{msubj}}}} \sqrt{\frac{\mathsf{nsubj$

$$V_w = \{0, 1, 2, 3\}, \quad A = \{(0, \text{root}, 2), (2, \text{nsubj}, 1), (2, \text{dobj}, 3)\}$$

In transition-based parsing, the problem is decomposed to finding a sequence of transitions.

Example

Transition systems

Transition systems

Configurations

Transitions operate on the parser configuration (or state)

$$c = (\Sigma, B, A)$$

where

- lacksquare $\Sigma \in V_w^*$ is the stack of partially processed items.
- $B \in V_w^*$ is the buffer of remaining input tokens.
- $A \subset V_w \times \mathcal{L} \times V_w$ is the set of arcs constructed so far.

Configurations

Transitions operate on the parser configuration (or state)

$$c = (\Sigma, B, A)$$

where

- $\Sigma \in V_w^*$ is the stack of partially processed items.
- $B \in V_w^*$ is the buffer of remaining input tokens.
- $A \subset V_w \times \mathcal{L} \times V_w$ is the set of arcs constructed so far.

Common notation:

$$\Sigma = [\ldots, s_1, s_0] = \Sigma' |s_1| s_0$$

 $B = [b_0, b_1, \ldots] = b_0 |b_1| B'$

Transition systems

A transition system is defined as

$$S = (C, T, c_s, C_t)$$

where

- $lue{\mathcal{C}}$ is the set of possible configurations.
- ullet $\mathcal{T} \subset \mathcal{C}^{\mathcal{C}}$ is the set of *transitions*.
- c_s maps every sentence w to an initial configuration $c_s(w)$.
- $C_t \subset \mathcal{C}$ is the set of terminal configurations.

Transition sequence

A transition sequence is $(c_0, \ldots, c_m) \subseteq \mathcal{C}$ s.t.

- $c_0 = c_s(w)$
- $c_m = (\Sigma_m, B_m, A_m) \in C_t$
- For each i = 1, ..., m there exists $t \in \mathcal{T}$ s.t. $c_{i+1} = t(c_i)$.

The output of the system is then $T = (V_w, A_m)$.

Arc-standard transition system (Nivre, 2004)

Transition set \mathcal{T} :		
SHIFT	move one item from the buffer to the stack:	
	$(\Sigma, i B, A) \Rightarrow (\Sigma i, B, A)$	
$\mathrm{LEFT} ext{-}\mathrm{ARC}_\ell$	create arc $s_0 o s_1$ with label $\ell \in \mathcal{L}$ and remove s_1 :	
	$(\Sigma i j,\;B,\;A)\Rightarrow (\Sigma j,\;B,\;A\cup\{(j,\ell,i)\})$	
	Condition: $i \neq 0$	
$\mathrm{RIGHT} ext{-}\mathrm{ARC}_\ell$	create arc $s_1 o s_0$ with label $\ell \in \mathcal{L}$ and remove s_0 :	
	$(\Sigma i j,\;B,\;A)\Rightarrow (\Sigma i,\;B,\;A\cup\{(i,\ell,j)\})$	

Arc-standard transition system (Nivre, 2004)

```
Transition set \mathcal{T}: move one item from the buffer to the stack:  (\Sigma, \ i|B, \ A) \Rightarrow (\Sigma|i, \ B, \ A)  create arc s_0 \rightarrow s_1 with label \ell \in \mathcal{L} and remove s_1:  (\Sigma|i|j, \ B, \ A) \Rightarrow (\Sigma|j, \ B, \ A \cup \{(j, \ell, i)\})  Condition: i \neq 0  \text{RIGHT-ARC}_{\ell} \quad \text{create arc } s_1 \rightarrow s_0 \text{ with label } \ell \in \mathcal{L} \text{ and remove } s_0:  (\Sigma|i|j, \ B, \ A) \Rightarrow (\Sigma|i, \ B, \ A \cup \{(i, \ell, j)\})
```

Typically $|\mathcal{L}| \approx 50$, so there are 101 different transitions.

Arc-standard transition system (Nivre, 2004)

Typically $|\mathcal{L}|\approx$ 50, so there are 101 different transitions. Initial configuration:

$$c_s(w_1, w_2, w_3, \ldots,) = ([0], [1, 2, 3, \ldots], \emptyset)$$

Terminal configuration:

$$c_t = ([0], [], A)$$

Properties of the arc-standard system

Soundness. Every transition sequence outputs a projective tree.

Completeness. Every projective tree is output by some sequence.

Complexity. Input of length n requires exactly 2n transitions.

Bottom-up. Attaches a token's head only after all dependents.

¹http://aclweb.org/anthology/J08-4003

Projectivity

Projective tree (no crossing arcs \Leftrightarrow all sub-trees are sub-strings):

Non-projective tree (cannot be parsed by arc-standard):

Another example for arc-standard transition sequence

Another example for arc-standard transition sequence

Might be a good idea to attach $died \rightarrow years$ as soon as possible?

Arc-eager transition system (Nivre, 2004)

SHIFT	move one item from the buffer to the stack:
(same)	$(\Sigma, i B, A) \Rightarrow (\Sigma i, B, A)$
$\operatorname{LEFT-ARC}_{\ell}$	create arc $b_0 o s_0$ with label $\ell \in \mathcal{L}$ and remove s_0 :
	$(\Sigma i, j B, A) \Rightarrow (\Sigma, j B, A \cup \{(j, \ell, i)\})$
	Condition: $i \neq 0$ and i has no head
RIGHT-ARC $_\ell$	create arc $s_0 o b_0$ with label $\ell \in \mathcal{L}$ and shift b_0 :
	$(\Sigma i, j B, A) \Rightarrow (\Sigma i j, B, A \cup \{(i, \ell, j)\})$
REDUCE	remove s ₀ :
	$(\Sigma i, B, A) \Rightarrow (\Sigma, B, A)$
	Condition: i has a head

Arc-eager transition system (Nivre, 2004)

SHIFT	move one item from the buffer to the stack:
(same)	$(\Sigma, i B, A) \Rightarrow (\Sigma i, B, A)$
LEFT-ARC $_\ell$	create arc $b_0 o s_0$ with label $\ell \in \mathcal{L}$ and remove s_0 :
	$(\Sigma i,j B,A)\Rightarrow (\Sigma,j B,A\cup\{(j,\ell,i)\})$
	Condition: $i \neq 0$ and i has no head
RIGHT-ARC $_\ell$	create arc $s_0 o b_0$ with label $\ell \in \mathcal{L}$ and shift b_0 :
	$(\Sigma i, j B, A) \Rightarrow (\Sigma i j, B, A \cup \{(i, \ell, j)\})$
REDUCE	remove s ₀ :
	$(\Sigma i, B, A) \Rightarrow (\Sigma, B, A)$
	Condition: i has a head

Initial configuration: same as arc-standard.

Terminal configuration (Σ does not have to be [0]):

$$c_t = (\Sigma, [], A)$$

Properties of the arc-eager system

Soundness and completeness are the same as arc-standard. Complexity: at most 2n.

Properties of the arc-eager system

Soundness and completeness are the same as arc-standard. Complexity: at most 2n.

Builds left-dependents bottom-up and right-dependents top-down. Increased incrementality—no need to wait for the whole sub-tree to be complete before attaching it.

Example arc-eager transition sequence

Example arc-eager transition sequence

Shorter than 2n since we can skip the final REDUCE transitions.

Greedy transition-based parsing

Transition-based (shift-reduce) parsing

To actually parse text, we need to decide which transitions to take.

$$P(t_1,\ldots,t_m|w) = \prod_{i=1}^m P(t_i|t_1,\ldots,t_{i-1},w) = \prod_{i=1}^m P(t_i|c_{i-1})$$

so inference is

$$\underset{t_1,\ldots,t_m\in\mathcal{T}}{\operatorname{arg max}}\prod_{i=1}^m P(t_i|c_{i-1})$$

But training examples are trees, not sequences.

To learn this score, we need an *oracle* to tell the correct sequence:

$$o(T)=(t_1,\ldots,t_m)$$

Transition-based (shift-reduce) parsing

To actually parse text, we need to decide which transitions to take.

$$P(t_1,\ldots,t_m|w) = \prod_{i=1}^m P(t_i|t_1,\ldots,t_{i-1},w) = \prod_{i=1}^m P(t_i|c_{i-1})$$

so inference is

$$\underset{t_1,\ldots,t_m\in\mathcal{T}}{\operatorname{arg max}}\prod_{i=1}^m P(t_i|c_{i-1})$$

But training examples are trees, not sequences.

To learn this score, we need an *oracle* to tell the correct sequence:

$$o(T)=(t_1,\ldots,t_m)$$

⇒ SHIFT, SHIFT, LEFT-ARC_{nsubj}, SHIFT, RIGHT-ARC_{dobj}, RIGHT-ARC_{root}

Oracle for arc-standard

```
while B \neq [] and \Sigma \neq [0] do 
 if s_0 \stackrel{\ell}{\to} s_1 and s_1 has all its children and s_1 \neq 0 then 
 return LEFT-ARC_\ell else if s_1 \stackrel{\ell}{\to} s_0 and s_0 has all its children and s_0 \neq 0 then 
 return RIGHT-ARC_\ell else 
 return SHIFT 
 end if 
end while
```

Oracle for arc-eager

```
while B \neq [] do
  if b_0 \stackrel{\ell}{\rightarrow} s_0 then
     return LEFT-ARC
  else if s_0 \stackrel{\ell}{\to} b_0 then
     return RIGHT-ARC
   else if s<sub>0</sub> has all its children and a head then
     return REDUCE
   else
     return SHIFT
   end if
end while
```

Greedy transition-based parsing

In greedy parsing, instead of

$$(t_1,\ldots,t_m) = \operatorname*{arg\,max}_{t'_1,\ldots,t'_m \in \mathcal{T}} \prod_{i=1}^m P(t'_i|c_{i-1})$$

we select each transition separately and sequentially:

$$t_i = rg \max_{t_i' \in \mathcal{T}} P(t_i'|c_{i-1}) \quad i = 1, \dots, m$$

Greedy transition-based parsing

In greedy parsing, instead of

$$(t_1,\ldots,t_m) = \underset{t'_1,\ldots,t'_m \in \mathcal{T}}{\operatorname{arg \, max}} \prod_{i=1}^m P(t'_i|c_{i-1})$$

we select each transition separately and sequentially:

$$t_i = \underset{t_i' \in \mathcal{T}}{\operatorname{arg max}} P(t_i'|c_{i-1}) \quad i = 1, \dots, m$$

A score s(t, c) estimates this probability. Parsing algorithm:

$$c \leftarrow c_s(w)$$
while $c \notin C_t$ do
 $c \leftarrow \left(\operatorname{arg\,max}_{t \in \mathcal{T}} s(t,c) \right) (c)$
end while

Transition classifiers

Learn the score giving maximum probability to oracle transitions:

$$\arg\max_{s\in\mathcal{S}}\sum_{i=1}^m s(t_i^*,c_{i-1}^*)$$

where t_1^*, \ldots, t_m^* (and c_1^*, \ldots, c_m^*) are determined by the oracle.

Transition classifiers

Learn the score giving maximum probability to oracle transitions:

$$\underset{s \in \mathcal{S}}{\operatorname{arg\,max}} \sum_{i=1}^{m} s(t_i^*, c_{i-1}^*)$$

where t_1^*, \ldots, t_m^* (and c_1^*, \ldots, c_m^*) are determined by the oracle.

Possible hypothesis classes \mathcal{S} :

- Linear (perceptron, SVM)
- 2 Feedforward neural networks
- 3 Recurrent neural networks (RNN, LSTM, GRU)

And others

Linear transition classifier (Nivre, 2003)

Given features $\mathbf{f} = (f_1, \dots, f_K) : \mathcal{C} \to \mathbb{R}^K$, learn weights $W_{|\mathcal{T}| \times K}$:

$$s(t,c) = [W \cdot \mathbf{f}(c)]_t$$

Typically trained by the perceptron algorithm, with binary features: words, POS and existing arc labels of stack and buffer nodes, and their heads and dependents.

NN transition classifier (Chen and Manning, 2014)

Dense **embedding** features instead of sparse binary features. Trained with backpropagation and stochastic gradient descent.

Feedforward NN architecture:

Empirical comparison

Evaluation on PTB-SD1:

	UAS	LAS
Graph-based		
MSTParser	90.7	87.6
Transition-based		
Linear (Zhang and Nivre, 2011)	89.6	87.4
Feedforward NN (Chen and Manning, 2014)		89.6
BiLSTM (Kiperwasser and Goldberg, 2016)	93.9	91.9

¹Penn Treebank Wall-Street Journal (WSJ) with Stanford Dependencies

Dealing with error propagation

Dealing with error propagation

Error propagation

Greedy transition-based parsers do not recover well from errors.

Error propagation example

Correct parse:

Error propagation example

Error during parse:

Error propagation example

Results in a state never seen during training.

Solutions for error propagation

- Better transition classifier with context "look-ahead" (LSTM).
- Beam search and structured training.
- Dynamic oracle and training with exploration.

Solutions for error propagation

- Better transition classifier with context "look-ahead" (LSTM).
- Beam search and structured training.
- Dynamic oracle and training with exploration.

Beam search and structured training

Reminder—greedy parsing algorithm:

$$c \leftarrow c_s(w)$$
while $c \notin C_t$ do
$$c \leftarrow \Big(\arg\max_{t \in \mathcal{T}} s(t,c)\Big)(c)$$
end while

Beam search and structured training

Reminder—greedy parsing algorithm:

$$c \leftarrow c_s(w)$$

while $c \notin C_t$ do
 $c \leftarrow \left(\operatorname{arg\,max}_{t \in \mathcal{T}} s(t, c) \right) (c)$
end while

With *beam search*, we instead keep the k best transition sequences where k is the beam size.

Beam search and structured training

Reminder—greedy parsing algorithm:

$$c \leftarrow c_s(w)$$
while $c \notin C_t$ do
 $c \leftarrow \Big(\arg \max_{t \in \mathcal{T}} s(t, c) \Big)(c)$
end while

With *beam search*, we instead keep the k best transition sequences where k is the beam size.

k = 1 is greedy parsing.

Beam search algorithm

Maintain beam Q (of maximum magnitude k) of top-scoring configurations with their scores:

$$Q \leftarrow \left\{ \left(c_s(w), \ 0 \right) \right\}$$
 while there exists $(c, s) \in Q$ s.t. $c \not\in C_t$ do
$$Q \leftarrow \text{SELECT} \left(k, \ \left\{ \left(t(c), \ s + s(t, c) \right) \ \middle| \ (c, s) \in Q, t \in \mathcal{T} \right\} \right)$$
 end while return $\text{SELECT}(1, Q)$

Beam search algorithm

Maintain beam Q (of maximum magnitude k) of top-scoring configurations with their scores:

$$Q \leftarrow \left\{ \left(c_s(w), \ 0 \right) \right\}$$
 while there exists $(c,s) \in Q$ s.t. $c \not\in C_t$ do $Q \leftarrow \text{SELECT}\left(k, \ \left\{ \left(t(c), \ s+s(t,c) \right) \ \middle| \ (c,s) \in Q, t \in \mathcal{T} \right\} \right)$ end while return $\text{SELECT}(1,Q)$

If the top sequence has an error, a lower-scoring one might be better in the long run.

Beam search algorithm

Maintain beam Q (of maximum magnitude k) of top-scoring configurations with their scores:

$$\begin{aligned} &Q \leftarrow \left\{ \left(c_s(w), \ 0 \right) \right\} \\ &\text{while there exists } (c,s) \in Q \text{ s.t. } c \not\in C_t \text{ do} \\ &Q \leftarrow \text{SELECT} \bigg(k, \ \left\{ \left(t(c), \ s+s(t,c) \right) \ \middle| \ (c,s) \in Q, t \in \mathcal{T} \right\} \bigg) \\ &\text{end while} \\ &\text{return } \text{SELECT}(1,Q) \end{aligned}$$

If the top sequence has an error, a lower-scoring one might be better in the long run.

Early update (Collins and Roark, 2004): stop training if $c^* \notin Q$.

Training with exploration (Goldberg and Nivre, 2013)

Greedy parsing, but allow making errors during training. Options:

- Follow top-scoring transition.
- Sometimes follow second top-scoring transition.
- Sometimes follow top-scoring transition and sometimes oracle.
- Sample transition according to score.
- Sample transition according to smoothed score (p^{α}) .
- Follow oracle up to *k* training iterations and then sample.

Training with exploration (Goldberg and Nivre, 2013)

Greedy parsing, but allow making errors during training. Options:

- Follow top-scoring transition.
- Sometimes follow second top-scoring transition.
- Sometimes follow top-scoring transition and sometimes oracle.
- Sample transition according to score.
- Sample transition according to smoothed score (p^{α}) .
- Follow oracle up to *k* training iterations and then sample.

But learning is still by oracle—should support incorrect states. So far we saw only static oracles. **Dynamic oracles** return all optimal transitions at any state (Goldberg and Nivre, 2012).

Empirical comparison

Evaluation on PTB-SD:

	k	UAS	LAS
Greedy			
Linear (Zhang and Nivre, 2011)	1	89.6	87.4
Feedforward NN (Chen and Manning, 2014)	1	89.6 91.8	89.6
Beam search			
Linear (Bohnet and Nivre, 2012)	40	93.2	91.1
Feedforward NN+perceptron (Weiss et al., 2015)	8	93.9	91.1 92
Dynamic oracle			
BiLSTM (Kiperwasser and Goldberg, 2016)	1	93.9	91.9

Broad-coverage parsing

Broad-coverage parsing

Broad-coverage parsing

Extending the class of parsed graphs (not just projective trees).

- Non-projective trees.
- Directed acyclic graphs.
- Beyond bi-lexical dependencies.

Broad-coverage parsing

Extending the class of parsed graphs (not just projective trees).

- Non-projective trees.
- Directed acyclic graphs.
- Beyond bi-lexical dependencies.

Non-projective parsing

This tree cannot be parsed by either arc-standard or arc-eager:

Non-projective parsing

This tree cannot be parsed by either arc-standard or arc-eager:

The projectivity property does not hold (there are crossing arcs):

$$\left(i \rightarrow k \quad \text{or} \quad k \rightarrow i \right) \quad \text{and} \quad i < j < k \quad \Rightarrow \quad i \leadsto j \quad \text{or} \quad k \leadsto j$$

The sub-tree under after is not a sub-string.

Non-projectivity

Rare in English, but not in some other languages:

Language	% non-projective arcs	\mid % non-projective trees (≥ 1 arc)
Dutch	5.4	36.4
German	2.3	27.8
Czech	1.9	23.2
Slovene	1.9	22.2
Portuguese	1.3	18.9
Danish	1.0	15.6

Solutions for non-projective parsing

- Pre- and post-processing (Nivre and Nilsson, 2005).
- Transitions for non-adjacent nodes (Attardi, 2006).
- List-based algorithm (Nivre, 2008).
- SWAP transition (Nivre, 2009).

Solutions for non-projective parsing

- Pre- and post-processing (Nivre and Nilsson, 2005).
- Transitions for non-adjacent nodes (Attardi, 2006).
- List-based algorithm (Nivre, 2008).
- swap transition (Nivre, 2009).

Arc-standard with SWAP (Nivre, 2009)

Like arc-standard, but adding a SWAP transition:		
SHIFT	move one item from the buffer to the stack:	
	$(\Sigma, i B, A) \Rightarrow (\Sigma i, B, A)$	
LEFT-ARC $_\ell$	create arc $s_0 o s_1$ with label $\ell \in \mathcal{L}$ and remove s_1 :	
	$(\Sigma i j, B, A) \Rightarrow (\Sigma j, B, A \cup \{(j, \ell, i)\})$	
	Condition: $i \neq 0$	
RIGHT-ARC $_\ell$	create arc $s_1 o s_0$ with label $\ell \in \mathcal{L}$ and remove s_0 :	
	$(\Sigma i j, B, A) \Rightarrow (\Sigma i, B, A \cup \{(i,\ell,j)\})$	
SWAP	move s_1 back to the buffer:	
	$(\Sigma i j,\ B,\ A)\Rightarrow (\Sigma j,\ i B,\ A)$	

Arc-standard with SWAP (Nivre, 2009)

Like arc-standard, but adding a SWAP transition:		
SHIFT	move one item from the buffer to the stack:	
	$(\Sigma, i B, A) \Rightarrow (\Sigma i, B, A)$	
LEFT-ARC_{ℓ}	create arc $s_0 o s_1$ with label $\ell \in \mathcal{L}$ and remove s_1 :	
	$(\Sigma i j, B, A) \Rightarrow (\Sigma j, B, A \cup \{(j,\ell,i)\})$	
	Condition: $i \neq 0$	
RIGHT-ARC $_\ell$	create arc $s_1 o s_0$ with label $\ell \in \mathcal{L}$ and remove s_0 :	
	$(\Sigma i j, B, A) \Rightarrow (\Sigma i, B, A \cup \{(i,\ell,j)\})$	
SWAP	move s_1 back to the buffer:	
	$(\Sigma i j, B, A) \Rightarrow (\Sigma j, i B, A)$	

SWAP effectively swaps s_0 and s_1 , allowing non-projective arcs.

Arc-standard with SWAP (Nivre, 2009)

Like arc-standard, but adding a SWAP transition:		
SHIFT	move one item from the buffer to the stack:	
	$(\Sigma, i B, A) \Rightarrow (\Sigma i, B, A)$	
$ ext{LEFT-ARC}_{\ell}$	create arc $s_0 o s_1$ with label $\ell \in \mathcal{L}$ and remove s_1 :	
	$(\Sigma i j,\ B,\ A)\Rightarrow (\Sigma j,\ B,\ A\cup\{(j,\ell,i)\})$	
	Condition: $i \neq 0$	
RIGHT-ARC $_\ell$	create arc $s_1 o s_0$ with label $\ell \in \mathcal{L}$ and remove s_0 :	
	$(\Sigma i j, B, A) \Rightarrow (\Sigma i, B, A \cup \{(i,\ell,j)\})$	
SWAP	move s_1 back to the buffer:	
	$(\Sigma i j, B, A) \Rightarrow (\Sigma j, i B, A)$	

SWAP effectively swaps s_0 and s_1 , allowing non-projective arcs.

(Some details are simplified here. See paper for the full details.)

Example for arc-standard with SWAP

Properties of arc-standard system with SWAP

Soundness. Every transition sequence outputs a tree.

Completeness. Every tree is output by some sequence.

Complexity. Input of length n requires $O(n^2)$ transitions, but empirically the number of swaps is low \Rightarrow expected O(n) transitions.

References I

Attardi, G. (2006).

Experiments with a multilanguage non-projective dependency parser.

In Proceedings of the Tenth Conference on Computational Natural Language Learning, pages 166–170. Association for Computational Linguistics.

Bohnet, B. and Nivre, J. (2012).

A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing. In *Proc. of EMNLP-CoNLL*, pages 1455–1465.

Chen, D. and Manning, C. (2014).

A fast and accurate dependency parser using neural networks.

In Proc. of EMNLP, pages 740-750.

Collins, M. and Roark, B. (2004).

Incremental parsing with the perceptron algorithm.

In Proc. of ACL, pages 111-118.

Goldberg, Y. and Nivre, J. (2012).

A dynamic oracle for arc-eager dependency parsing.

In Proc. of COLING, pages 959-976.

Goldberg, Y. and Nivre, J. (2013).

Training deterministic parsers with non-deterministic oracles.

Transactions of the association for Computational Linguistics, 1:403-414.

References II

Kiperwasser, E. and Goldberg, Y. (2016).

Simple and accurate dependency parsing using bidirectional LSTM feature representations. TACL. 4:313-327.

Nivre, J. (2003).

An efficient algorithm for projective dependency parsing.

In Proc. of IWPT, pages 149-160.

Nivre, J. (2004).

Incrementality in deterministic dependency parsing.

In Keller, F., Clark, S., Crocker, M., and Steedman, M., editors, *Proceedings of the ACL Workshop Incremental Parsing: Bringing Engineering and Cognition Together*, pages 50–57, Barcelona, Spain. Association for Computational Linguistics.

Nivre, J. (2008).

Algorithms for deterministic incremental dependency parsing.

Computational Linguistics, 34(4):513-553.

Nivre, J. (2009).

Non-projective dependency parsing in expected linear time.

In Proc. of ACL, pages 351-359.

Nivre, J. and Nilsson, J. (2005).

Pseudo-projective dependency parsing.

In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 99–106. Association for Computational Linguistics.

References III

Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015).Structured training for neural network transition-based parsing.arXiv preprint arXiv:1506.06158.

Zhang, Y. and Nivre, J. (2011).

Transition-based dependency parsing with rich non-local features.

In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 188–193.