CSPB3202 Artificial Intelligence

Reasoning with Uncertainty

Bayes Net: Inference

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!

- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Review: Alarm Network

В	P(B)
+b	0.001
-b	0.999

Α	J	P(J A)
+a	+j	0.9
+a	<u>.</u>	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)
+e	0.002
-е	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

0.06

0.29

0.71

0.001

0.999

+b

+b

+b

+b

-b

-b

-e

+e

+e

-e

-e

+a

+a

$P(+b, -e, +a, -j, +m) = \frac{(+b)}{(-e)} \frac{(-e)}{(-e)} \frac{(+b)}{(-e)} \frac{(-e)}{(-e)} \frac{(+b)}{(-e)} (+$
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) = 0
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

Inference

 Inference: calculating some useful quantity from a joint probability distribution

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_{q} P(Q = q | E_{1} = e_{1} \dots)$$

Inference by Enumeration JPT: tabular method

- General case:
 - Evidence variables:

Query* variable:

Step 1: Select the

entries consistent with the evidence

• Hidden variables:

 $\underbrace{E_1 \dots E_k = e_1 \dots e_k}_{Q} \quad \{X_1, X_2, \dots X_n \}$ $\underbrace{Q}_{H_1 \dots H_r}$ All variables

Step 2: Sum out H to get joint of Query and evidence

 $X_1, X_2, \dots X_n$

* Works fine with We want: multiple query variables, too $P(Q|e_1 \dots e_k)$

Step 3: Normalize

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$= P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$= P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

	Т	W	Р
	hot	sun	0.4
	hot	rain	0.1
	cold	sun	0.2
4	cold	rain	0.3
•			

P(cold, W)

	/ /	W	Р
\int	/cold/	sun	0.2
	cold /	rain	0.3
	- 12		

Factor Zoo II

• Single conditional: P(Y | x)

• Entries P(y | x) for fixed x, all

• Sums to 1

P(W)	$ cold\rangle$
$I \setminus VV$	CO(a)

Т	W	Р	
cold	sun	0.4	
cold	rain	0.6	

• Family of conditionals:

 $P(Y \mid X)$

- Multiple conditionals
- Entries P(y | x) for all x, y
- Sums to |X|

P(W	T)
-			-

	Т	W	Р
	hot	sun	0.8
	hot	rain	0.2
\ \-	cold	sun	0.4
//	cold	rain	0.6

P(W|hot)

P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

Т	W	P	
hot	rain	0.2	ho P(rain hot)
cold	rain	0.6	P(rain cold)

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 ... y_N \mid x_1 ... x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

• R: Raining

• T: Traffic

• L: Late for class!

(\widehat{R}	
(
($\stackrel{\downarrow}{L}$	

P(R)			
+r	0.1		
-r	0.9	,	
		•	

P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

4	n		<i></i>
	+t	+	0.3
	+t	-	0.7
M	7 <u>~</u> {	+	0.1
	-t	-1	0.9

P(L|T)

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	7	0.7
-t	+	0.1
-t	-	0.9

- Any known values are selected
 - E.g. if we know $L=+\ell$, the initial factors are

P(R)		
0.1		
0.9		

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$$P(+\ell|T)$$

	·	
+t	+	0.3
-t	+	0.1

• Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

Example: Multiple Joins

Example: Multiple Joins

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

+t	0.17
-t	0.83

Multiple Elimination

Multiple Join, Multiple Eliminate = Inference by Enumeration

Marginalizing Early (= Variable Elimination)

Traffic Domain

Inference by Enumeration

$$=\sum_t\sum_r P(L|t)P(r)P(t|r)$$
Join on t

Eliminate r

Variable Elimination

Marginalizing Early! (aka VE)

General Variable Elimination

- Query: $P(Q|E_1 = e_1, ... E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H //
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

$$P(A|B,E)$$

$$P(j|A) \times P(j,m,A|B,E)$$

$$P(j,m,B,E)$$

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Example

Finish with B

$$P(B)$$
 $P(j,m|B)$
 $P(j,m|B)$
Normalize
 $P(B|j,m)$

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B) \qquad P(E)$$

P(E) P(A|B,E)

P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{a} P(B)P(e)f_1(B,e,j,m)$$

$$= P(B) \sum P(e) f_1(B, e, j, m)$$

$$= P(B)\widetilde{f_2(B,j,m)}$$

marginal obtained from joint by summing out

use Bayes' net joint distribution expression

use
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f₁

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f₂

Variable Elimination Ordering

• For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings : $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}, (Z)$ What is the size of the maximum factor generated for each of the orderings? X_1 Answer: 2ⁿ⁺¹ versus 2² (assuming binary) P(Y,, X, (Z) • In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!