

MERVE ALANYALI, PHD

Head Of Data Science Research Allianz Personal

Beyond Interpretability: An Interdisciplinary Approach to Communicate Machine Learning Outcomes

How to explain ML outcomes?

XAI often referred to as a solution to social, ethical and regulatory considerations of using ML models

XAI

Technical Socio-technical explanations

Data Science at Allianz Personal

Putting machine learning into practice

7+ years

since team inception

50+

decisions influenced by mid 2023

55+

team members

Where do we focus our effort?

.

Interpretability vs Explainability

Interpretability

"... to understand exactly why and how the model is generating predictions,... observe the inner mechanics of the model."

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Ex: Keeping everything else same, one unit increase in x_1 will make β_1 change on y.

Explainability

"... take an ML model and explain the behaviour in human terms."

Ex: Why does this model predict that I would find this film boring? (see the next slide for the model details³)

Interpretability vs Explainability

Interpretability

"... to understand exactly why and how the model is generating predictions,... observe the inner mechanics of the model."

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Ex: Keeping everything else same, one unit increase in x_1 will make β_1 change on y.

Explainability

"... take an ML model and explain the behaviour in human terms."

Ex: Why does this model predict that I would find this film boring? (see the next slide for the model details³)

Glass-box vs Black-box models

Glass-box (white-box) models

Models that are built directly for interpretability.

Examples include:

- Linear models (linear and logistic regression)
- Decision trees
- Explainable boosting machines (paper, code)
- Automatic piecewise linear regression (paper, code)

Great for interpretability however usually fall behind in performance comparison.

Is this film boring? (for me)

Black-box models

Models that we cannot directly extract how the model components and inner mechanics of the model impact its outcome.

Examples include:

- Ensemble methods (ex: Random forest, xgboost...)
- Deep learning models

Quite often performs better than glass-box models, however they are not easy to interpret. We need to use additional tools to provide "post-hoc" explanations.

Model-agnostic methods

Global model agnostic methods

Great at creating a summary of an ML model. Useful to provide high-level explanations when communicating with stakeholders

Methods include:

- Partial dependence plots (PDPs)
- Feature importance and interaction
- Global surrogate methods

Local model agnostic methods

Provide explanations for individual data points. Useful for live-models to provide explanations

Methods include:

- Individual conditional expectation (ICE)
- Local interpretable model-agnostic explanations (LIME)
- Shapley additive explanations (SHAP)

End-to-end process

Bristol Digital Futures Institute collaboration

Bristol Digital Futures Institute (BDFI), is one of the University of Bristol's five research institutes.

The institute is working to fundamentally **transform digital innovation**, and create more inclusive, sustainable and prosperous futures for all.

- Understand the implications of innovative technologies powered by ML
- Create new knowledge and understanding of sociotechnical innovation
- Shape new ways of working across disciplines and sectors through inclusive conversations

- Explainable AI decision making; Dr Marisela Gutierrez, Prof Susan Halford
- Machine learning "design" and "use"; Kate Byron, Prof Susan Halford

What makes AI explainable?

Reimagining "Explainable AI": de-centring ML models from explanations

Explaining ML models ———— Explaining "ML practices"

Research methodology:

- Organisational ethnography at AZP
- Co-produced with BDFI community partners

What makes AI explainable?

Reimagining "Explainable AI": de-centring ML models from explanations

Organisational ethnography – being a "fly on the wall"

- Shadowing different teams and employees and observing various meetings
- Interviews to gather qualitative data
- Review of internal documents, communications, and public information

Organisatio

Research met

Co-produce

The missing link

The missing link

Our academic partners **bridge the gap** between our AI Practitioners and the AI Public

Co-designed = better designed

Impact from qual work

Internal workshops and launched an open-source explainbility package.

Closer collaboration

End-users are co-designers, and open communication creates efficient feedback loops.

Enhanced and meaningful knowledge sharing between DS team and internal customers.

Why explain ML models?

Reasons beyond regulation include (but not limited to):

Sanity check

Identifying bias

Social acceptance

Resources and further reading

- AZP model explainer Python package (GitHub repo)
- BDFI Seminar Series Dr Marisela Gutierrez Lopez and LV= General Insurance (video)
- Interpretable Machine Learning (book)
- InterpretML package (<u>documentation</u>)
- Miller, T., 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial

intelligence, 267, pp.1-38 (paper)

Special thanks to Marisela and Kieran

Dr Marisela GutierrezSenior Research Associate
University of Bristol

Kieran Billingham

Senior Data Scientist

Allianz Personal

Our talk: <u>BDFI Seminar Series Dr Marisela Gutierrez Lopez and LV=General Insurance</u>

Thanks for listening!

