Assignment 1

Hetvi Jethwani
Mathematics Department
IIT Delhi
mt1180754@iitd.ac.in

Bhumika Chopra

Mathematics Department

IIT Delhi

mt1180748@iitd.ac.in

Abstract—This document details the experiments conducted by us for Assignment 1 of ELL409.

I. BINARY CLASSIFICATION

A. Training methods

Throughout, the "MLE prior" is used as the prior distribution unless stated otherwise, that is - the frequency of occurence of a particular class in the dataset. In subsections A and B we apply 7-fold cross validation.

B. Bayes Classifier; Maximum Likelihood Estimates

In this class of experiments, we approximate the class conditional density as 1. $f(X|y) \sim N(\mu, \Sigma)$, and 2. $f(X|y) \sim \Sigma \alpha_i N(\mu_i, \Sigma_i)$. Case one consistently outperforms case 2 - we speculate this might be happening because of the early stopping of EM algorithm due to computational constraints (the algorithm might stop due to hitting a predefined maximum number of iterations before convergence). In case 2, increasing the number of components results in roughly similar scores.

Model	Test accuracy	Precision	Recall	F	Val.	AUC
Gauss	0.85	0.902	0.897	0.9	0.854	0.956
GMM, 2	0.843	0.943	0.844	0.891	0.857	0.942
GMM, 3	0.843	0.943	0.844	0.891	0.857	0.942

Fig. 1. ROC curves

C. Naive Bayes Classifier; Maximum Likelihood Estimates and MAP Estimates

In this class of experiments, we use the Naive Bayes assumption, and approximate each feature vector as a univariate density function, chosen from a predefined array. Here, 0 corresponds to the univariate normal distribution, 1 to exponential, 2 to uniform, and 3 to a 2 component GMM. Each tuple indicates the density we've used to approximate that particular feature, like model '(0-0-1)' is such that first and

second feature are approximated using density corresponding to 0, and so on.

The first set of experiments is done using the 4 closed form MLE estimates, over all possible 64 permutations of individual feature density approximations. The next set of experiments is done using 2 closed form MAP estimates, the first where $f(X|Y,\theta) \sim Exp; f(\theta) \sim Exp(\mu=1/5)$, and the second $f(X|Y,\theta) \sim N(\theta,\sigma), \sigma$ var. of last indexed feat. column; $f(\theta) \sim N(3,4)$. We replace keys corresponding to 0 and 1 in table 1.1C with the respective MAP estimates. Experiments detailed in 1.1C and 2.1C collectively referred to as the "iid" case.

Table 1.1C for Section 1, C - iid, MLE							
Model	Test accura		,	Recall	F score	Val. score	AUC
321	0.857	0.854		1.0	0.921	0.746	0.874
301	0.843	0.811		0.953	0.876	0.816	0.783
201	0.836	0.878		0.949	0.912	0.855	0.759
202	0.836	0.875		0.925	0.899	0.857	0.759
Table 2.1	C for Section	on 1, C - iid,	MAP				
Model	Test acc	MLE acc	P	R	F	Val. score	AUC
321	0.857	0.857	0.833	1.0	0.909	0.85	0.872
011	0.85	0.829	0.854	1.0	0.921	0.859	0.878
012	0.843	0.814	0.846	0.951	0.896	0.852	0.866
001	0.843	0.829	0.816	1.0	0.899	0.846	0.868

Tables 3.1C and 4.1C highlight experiments mostly equivalent to the previous two tables respectively. The key difference here is in the density assumption. Suppose we have 2 features x_1,x_2 and we want the approximation of class conditional of both to distributed in a Gaussian manner. Then, in the previous case - we assume that $x_1 \sim N(\mu_1,\sigma_1)$ and $x_2 \sim N(\mu_2,\sigma_2)$ where the μ_i,σ_i are 2 distinct parameter sets. But, in the following cases, we assume $x_1 \sim N(\mu_1,\sigma_1)$ and $x_2 \sim N(\mu_1,\sigma_1)$ - that is, final parameters are equivalent to applying MLE on an $x \sim N(\mu_1,\sigma_1)$ where $x = x_1.extend(x_2)$.

Table 3.	Table 3.1C for Section 1, C - not iid, MLE							
Model	Test accuracy	Precision	Recall	F score	Val. score	AUC		
202	0.843	0.875	0.925	0.899	0.855	0.775		
001	0.836	0.821	1.0	0.901	0.862	0.868		
201	0.836	0.878	0.949	0.912	0.855	0.759		
301	0.836	0.875	0.925	0.899	0.796	0.812		

We note that in most cases approximating f(x|y) using the MAP estimate leads to an increase in the test accuracy. Due to lack of space, the tables are truncated to top 4, full tables there in the appendix. Also, the corresponding ROC plots, and traintest plots of the models corresponding to best test accuracy in each table can be found in appendix.

Table 4,	1C for Section	on 1, C - not	iid, MAF)		
Model	Test acc.	Test MLE	P	R	F	AUC
011	0.85	0.829	0.854	1.0	0.921	0.878
001	0.843	0.836	0.8	1.0	0.889	0.856
002	0.843	0.829	0.8	1.0	0.889	0.852
012	0.843	0.814	0.846	0.951	0.896	0.866

D. Parzen window estimates

In this class of experiments, we approximate f(X|y) by using the parzen window function method, and we use 2 kinds of kernels - gaussian, and hypercube. Clearly, the smooth gaussian kernel helps us get a much better classifier.

Kernel	Test acc	P	R	F	AUC
Gaussian	0.714	0.696	0.723	0.709	0.601
Hypercube	0.493	0.0	0.543	0.0	0

Fig. 2. ROC curve

Fig. 3. Test-train accuracy curve

E. K-Nearest Neighbours algorithm

It is a non-parametric algorithm that classifies points on the basis of a similarity measure (eg Distance function) with respect to known data points.

K Nearest Neighbours

	Euclidean Distance	L1 distance
Accuracy	0.8388	0.8386
Precision	0.8214	0.8461
Recall	0.7841	0.7632
F1 Score	0.8023	0.7951

Fig. 4. Accuracy vs K

Fig. 5. Precision vs K

Fig. 6. Recall vs K

F. Logistic regression (Binary Classification)

In this class of experiments, we use a logistic function to model a binary (or higher dimensional) dependent variable.

The model computes probability of output in terms of input, and then by choosing a threshold value and classifying inputs with probability greater than this threshold as one class, below this threshold as the other we make a binary classifier.

Logistic Regression								
	MSE	CE	L1+MSE	L2+MSE	ENet+MSE	L1+CE	L2+CE	ENet+CE
Acc	0.8483	0.8957	0.8341	0.8293	0.8767	0.8625	0.8578	0.8578
Prec	0.7723	0.8888	0.7388	0.7333	0.8125	0.8571	0.8636	0.8877
Rec	0.9595	0.8888	1.0	1.0	0.9811	0.9056	0.8962	0.8207
F1	0.8558	0.8888	0.8497	0.8461	0.8888	0.8765	0.8796	0.8529

Fig. 7. ROC (Cross Entropy)

Fig. 8. ROC (MSE)

Fig. 9. MSE loss vs Epochs

II. MULTI-CLASS CLASSIFICATION

A. Preprocessing

We apply PCA over the standardized dataset to reduce features because of computational limitations for subsections B,C, and D. For sections B,D we reduce data to 5 dimensions, and for C to 3.

B. Bayes Classifier; Maximum Likelihood Estimates

In this class of experiments, we approximate $f(X|y) \sim N(\mu, \Sigma)$, and $f(X|y) \sim \Sigma \alpha_i N(\mu_i, \Sigma_i)$, we restrict the GMM to 2 components.

Fig. 10. Confusion matrices for 2.A

Model	Test	Train	Validation	macroF
Multi. Gauss	0.644	0.643	0.147	0.629
2-GMM	0.55	0.542	0.513	0.488

C. Naive Bayes Classifier; Maximum Likelihood Estimates and MAP Estimates

In this class of experiments, we use the Naive Bayes assumption, and approximate each feature vector as a univariate density function, chosen from a predefined array. Due to large amount of data, we exclude $f(x_i|y)\ GMM$ from naive bayes. We proceed in a way similar to Section 1,C - all notation

Multivariate	e Gaussia	n				
Precision	0.903	0	0.986	0	0.951	0.933
Recall	0.922	0	0.99	0	0.978	0.889
F	0.913	0	0.988	0	0.964	0.91
2 componer	nt GMM					
Precision	0.866	1.0	0	0.278	0	0.964
Recall	0.921	0.581	0	0.983	0	0.786
F	0.893	0.735	0	0.433	0	0.866

is consistent with it, including hyper-parameters unless stated otherwise. Class-wise p,r,f values and confusion matrices for best performing of each table in appendix.

Table 1.2C - not iid **MLE** Model Test acc Train acc Valid. score macroF 202 0.873 0.871 0.871 0.872 0.866 022 0.863 0.865 0.86 200 0.826 0.828 0.83 0.832 220 0.826 0.825 0.827 0.814 020 0.817 0.818 0.819 0.814 MAP Test acc Train acc Valid. score macroF 022 0.849 0.851 0.84 0.836 202 0.832 0.834 0.834 0.829 020 0.801 0.801 0.796 0.798 0.799 0.798 220 0.798 0.762 200 0.779 0.776 0.778 0.776

Table 2.2	2C - iid			
	MLE			
Model	Test acc	Train acc	Valid. score	macroF
200	0.923	0.92	0.921	0.924
000	0.918	0.917	0.918	0.921
020	0.913	0.912	0.911	0.911
202	0.901	0.899	0.9	0.905
002	0.89	0.887	0.889	0.889
220	0.885	0.882	0.883	0.883
022	0.882	0.88	0.882	0.879
222	0.833	0.833	0.794	0.82
	MAP			
	Test acc	Train acc	Valid. score	macroF
000	0.907	0.904	0.905	0.91
200	0.901	0.897	0.898	0.901
020	0.899	0.896	0.899	0.9
202	0.888	0.887	0.885	0.884
220	0.886	0.882	0.883	0.884
022	0.875	0.875	0.876	0.873 002
0.869	0.868	0.87	0.865	

D. Parzen window estimates

In this class of experiments, we approximate f(X|y) by using the parzen window function method, and we use 2 kinds of kernels - gaussian, and hypercube.

E. Logistic regression (Multi Classification)

Multiclass classification with logistic regression is done using the one-vs-rest scheme in which for each class a binary classification problem subproblem is done according to whether the data point belongs to that class or not.

Fig. 11. Confusion matrices for 2.D

Gaussian Precision Recall F Hypercube Precision Recall F	Test acc: 0.914 0.986 0.948 Test acc: 0.981 0.971 0.976	0.977 1.0 1.0 1.0 0.549 0.249 1.0 0.399	Train acc: 0.994 0.993 0.994 Train acc: 1.0 0.001 0.001	0.983 1.0 1.0 1.0 0.997 1.0 0.985 0.993	macroF 0.991 0.983 0.987 macroF 1.0 0.014 0.028	0.978 0.973 0.906 0.938 0.486 0.968 0.358 0.523
--	--	--	---	--	--	--

We have used 2 different loss functions - Cross Entropy loss and Mean Squared Error loss to compute the Accuracy, Precision, Recall and F1 score corresponding to each class. The risk functions have been optmized using Stochastic Gradient Descent.

Fig. 12. MSE Loss vs Iterations

		N	ISE Loss			
Class	CXR	AbdomenCT	HeadCT	ChestCT	Hand	BreastMRI
Precision	0.96188	0.0	0.956	0.4855	0.9306	0.6979
Recall	0.9715	0.0	0.565	1.0	0.886	1.0
F1 Score	0.9666	0.0	0.7102	0.6537	0.9077	0.8221
3.6						c 1

Macro-F1 score will be an average of the F1 scores of each category. Macro-F1 score =

(0.9666+0.0+0.7102+0.6537+0.9077+0.8221)/6 = 0.6767

Fig. 13. Cross Entropy Loss vs Iterations

Cross Entropy Loss Class CXR BreastMRI AbdomenCT HeadCT ChestCT Hand Precision 0.9942 0.4914 0.9688 0.0 0.8659 0.8614Recall 0.9495 0.996 0.716 0.0 0.953 1.0 0.9716 0.8234 0.9074 0.9255 F1 Score 0.6581 0.0

Macro-F1 score will be an average of the F1 scores of each category. Macro-F1 score =

(0.9716 + 0.6581 + 0.8234 + 0.0 + 0.9074 + 0.9255)/6 = 0.7143

Confusion Matrix CXR			
True Not True			
Predicted	1912	16	
Not Predicted	88	9775	

Confusion Matrix AbdomenCT			
True Not True			
Predicted	0	2059	
Not Predicted	2000	7732	

Confusion Matrix HeadCT			
True Not True			
Predicted	1342	58	
Not Predicted	658	9733	

Confusion Matrix ChestCT			
True Not True			
Predicted	2000	35	
Not Predicted	0	9756	

Confusion Matrix Hand			
True Not True			
Predicted	1897	371	
Not Predicted	103	9420	

Confusion Matrix Breast MRI			
True Not True			
Predicted	1791	310	
Not Predicted	0	9690	

III. REGRESSION

In linear regression we attempt to model the relationship between two variables by obtaining a best fitting line to the observed data. In our experiments we have used Mean Squared Error loss (MSE) and Mean Absolute Error loss (MAE) along with different regularizers such as Ridge Regularization(L2), Lasso Regularization(L1) and Elastic Net Regularization

 Linear Regression

 No Regularization
 L1
 L2
 ElasticNet

 MSE
 3.51
 9.58
 11.84
 9.01

 MAE
 4.01
 4.013
 4.03
 6.91

Confusion Matrix CXR (Train)			
True Not True			
Predicted	7532	2432	
Not Predicted	468	38522	

Confusion Matrix AbdomenCT (Train)		
True Not True		
Predicted	5543	4000
Not Predicted	2457	36954

Confusion Matrix HeadCT (Train)		
True Not True		
Predicted	8000	5632
Not Predicted	0	35322

Confusion Matrix ChestCT (Train)			
True Not True			
Predicted	0	266	
Not Predicted	8000	40688	

Confusion Matrix Hand (Train)			
True Not True			
Predicted	6864	2485	
Not Predicted	1136	38469	

Confusion Matrix Breast MRI (Train)			
True Not True			
Predicted	7568	3246	
Not Predicted	432	37708	

IV. GENERALIZED LINEAR MODELS

In linear regression we assumed a linear dependence between the variables which is very unlikely, but it is highly likely that the on projecting to a higher dimensional space the data may become linearly separable.

In GLMs we make use of different feature maps for projecting data from a lower dimensional to a higher dimensional space. In our experiments we have used 3 different kernel functions (feature maps)- Gaussian, Quadratic, Exponential, 2 loss functions - Mean Squared Error loss (MSE) and Mean Absolute Error loss (MAE) along with different regularizers such as Ridge Regularization(L2), Lasso Regularization(L1) and Elastic Net Regularization.

Generalized Linear Models								
Kernel	MSE	MAE	L1+MSE	L2+MSE	EN+MSE	L1+MAE	L2+MAE	EN+MAE
Quadratic	0.0932	0.200	0.0853	0.0841	0.0834	0.1994	0.220	0.1996
Gaussian	0.0936	0.1831	0.08543	0.0821	0.0856	0.2091	0.2089	0.2092
Random	0.0935	0.2029	0.08543	0.0836	0.8658	0.1978	0.1977	0.1980

Fig. 14. GLM MAE Loss vs Epochs (Gaussian Kernel).png

Fig. 15. GLM MAE Loss vs Epochs (Quadratic Kernel).png

V. CONCLUSION

A. Binary Classification

The best results were obtained for the logistic classifier with cross entropy loss and no regularization. As a general

Fig. 16. GLM MAE Loss vs Epochs (Random Kernel).png

rule of thumb, cross entropy loss tends to outperform MSE loss for classification tasks because it penalizes the classifier more in case of incorrect classification in comparison to MSE loss. The logistic classifiers, Bayes classifiers, and top 4 Naive Bayes classifiers outperformed the non-parametric classifiers (K-NN and Parzen). Smoothening the kernel leads to a huge improvement in performance for Parzen windows.

B. Multi Class Classification

When using one-vs-all Logistic Regression, the best results were obtained for the classifier with cross entropy loss and Elastic net regularization with parameters $\lambda_1 = 0.01$ and $\lambda_2 = 0.4$. Among sectons A,B,C and D - the Parzen window with gaussian kernel is the best performing classifier (but also one of the most computationally intensive algorithms)we can see the Central Limit Thm. in play here (if we qualitatively compare it to the parzen estimates from section 1- which had relatively less training data pts). Naive Bayes classifiers perform surprisingly better (and faster!) than their Bayes counterparts- the multivariate Gaussian and GMM lead to some of the worst classifiers (since they have no true predicted labels for 2 categories each, the Abdomen and Chest CTs for mutli. gaussian; the Head and HandCT for 2 GMM). More compute is needed to understand if this is due to the feature reduction or if they're just bad models for this learning problem.

C. Regression

When using simple linear regression better results were obtained for MAE loss than MSE loss. This shows that the data must not have been linearly separable and therefore when we tried to fit a straight line, there were many outliers leading to higher MSE loss than MAE loss.

On projecting the data into a higher dimensional space using Gaussian Kernel (feature map) along with MSE loss and Ridge (L2) regularization we got much better results.

VI. REFERENCES (FOR CODE)

- https://towardsdatascience.com/ confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa
- https://matplotlib.org/tutorials/introductory/pyplot.html
- https://towardsdatascience.com/ the-kernel-trick-c98cdbcaeb3f

- https://xavierbourretsicotte.github.io/Kernel_feature_map.html
- https://developers.google.com/machine-learning/ crash-course/classification/roc-and-auc
- https://towardsdatascience.com/ gaussian-mixture-models-explained-6986aaf5a95
- http://gim.unmc.edu/dxtests/roc2.htm
- https://www.cs.cmu.edu/~tom/10601_sp08/slides/ recitation-mle-nb.pdf
- http://www.ccs.neu.edu/home/alina/classes/Fall2018/ Lecture7.pdf
- Pattern Classification (David G. Stork, Peter E. Hart, and Richard O. Duda)

VII. APPENDIX

A. Data visualization in classification

Fig. 17. Data visualization Q1

Fig. 18. Data visualization after PCA

- B. Binary classification, Section C
- C. Multiclass classification Naive Bayes P,R,F and matrices
- D. Omitted plots

Fig. 19. Feature-wise variance vs PCA

Table for Section 1, C - iid, MLE								
Model	Test accuracy	Precision	Recall	F score	Val. score	AUC		
321	0.857	0.854	1.0	0.921	0.746	0.874		
301	0.843	0.811	0.953	0.876	0.816	0.783		
201	0.836	0.878	0.949	0.912	0.855	0.759		
202	0.836	0.875	0.925	0.899	0.857	0.759		
001	0.829	0.875	0.925	0.899	0.864	0.745		
002	0.829	0.872	0.902	0.887	0.855	0.745		
011	0.829	0.923	0.902	0.913	0.864	0.815		
101	0.829	0.875	0.925	0.899	0.85	0.768		
102	0.829	0.875	0.925	0.899	0.852	0.764		
302	0.829	0.875	0.925	0.899	0.85	0.764		
021	0.821	0.846	0.951	0.896	0.861	0.789		
311	0.821	0.868	0.952	0.908	0.829	0.926		
012	0.814	0.878	0.897	0.888	0.854	0.799		
312	0.814	0.878	0.897	0.888	0.816	0.894		
022	0.807	0.919	0.86	0.889	0.855	0.774		
322	0.807	0.939	0.915	0.927	0.855	0.891		

Table for Section 1, C - iid, MAP								
Model	Test acc	MLE acc	P	R	F	Val. score	AUC	
321	0.857	0.857	0.833	1.0	0.909	0.85	0.872 011	
0.85	0.829	0.854	1.0	0.921	0.859	0.878		
012	0.843	0.814	0.846	0.951	0.896	0.852	0.866	
001	0.843	0.829	0.816	1.0	0.899	0.846	0.868	
022	0.836	0.807	0.846	0.951	0.896	0.854	0.842	
002	0.836	0.829	0.804	0.971	0.88	0.836	0.868	
021	0.836	0.821	0.85	0.975	0.908	0.857	0.851	
311	0.836	0.821	0.923	0.902	0.913	0.807	0.925	
202	0.829	0.836	0.822	0.971	0.891	0.841	0.83	
301	0.821	0.843	0.816	1.0	0.899	0.787	0.852	
302	0.821	0.829	0.804	0.971	0.88	0.829	0.852	
312	0.814	0.814	0.914	0.867	0.89	0.832	0.926	
201	0.814	0.836	0.809	1.0	0.894	0.841	0.837	
101	0.807	0.829	0.8	1.0	0.889	0.82	0.844	
102	0.793	0.829	0.769	1.0	0.87	0.812	0.832	

Table for Section 1, C - not iid, MLE								
Model	Test accuracy	Precision	Recall	F score	Val. score	AUC		
'(2- 0- 2)'	0.843	0.875	0.925	0.899	0.855	0.775		
'(0- 0- 1)'	0.836	0.821	1.0	0.901	0.862	0.868		
'(2- 0- 1)'	0.836	0.878	0.949	0.912	0.855	0.759		
'(3- 0- 1)'	0.836	0.875	0.925	0.899	0.796	0.812		
'(3- 0- 2)'	0.836	0.875	0.925	0.899	0.83	0.764		
'(0- 0- 2)'	0.829	0.821	1.0	0.901	0.857	0.862		
'(0- 1- 1)'	0.829	0.923	0.902	0.913	0.864	0.815		
'(1- 0- 1)'	0.829	0.875	0.925	0.899	0.85	0.768		
'(1- 0- 2)'	0.829	0.875	0.925	0.899	0.852	0.764		
'(0- 2- 1)'	0.821	0.846	0.951	0.896	0.861	0.789		
'(3- 1- 2)'	0.821	0.895	0.905	0.9	0.862	0.913		
'(0- 1- 2)'	0.814	0.878	0.897	0.888	0.854	0.799		
'(3- 1- 1)'	0.814	0.919	0.86	0.889	0.802	0.926		
'(3- 2- 1)'	0.814	0.868	0.952	0.908	0.857	0.899		
'(0- 2- 2)'	0.807	0.923	0.902	0.913	0.863	0.772		
'(3- 2- 2)'	0.807	0.941	0.935	0.938	0.812	0.926		

Table for Section 1, C - not iid, MAP									
Model	Test acc.	Test MLE	P	R	F	AUC			
011	0.85	0.829	0.854	1.0	0.921	0.878			
001	0.843	0.836	0.8	1.0	0.889	0.856			
002	0.843	0.829	0.8	1.0	0.889	0.852			
012	0.843	0.814	0.846	0.951	0.896	0.866			
311	0.836	0.814	0.923	0.902	0.913	0.925			
312	0.836	0.821	0.895	0.905	0.9	0.92			
021	0.836	0.821	0.85	0.975	0.908	0.851			
202	0.829	0.843	0.822	0.971	0.891	0.839			
302	0.821	0.836	0.804	0.971	0.88	0.852			
321	0.821	0.814	0.919	0.86	0.889	0.899			
301	0.821	0.836	0.745	1.0	0.854	0.852			
201	0.814	0.836	0.809	1.0	0.894	0.837			
022	0.814	0.807	0.923	0.902	0.913	0.84			
101	0.807	0.829	0.8	1.0	0.889	0.844			
102	0.793	0.829	0.769	1.0	0.87	0.832			

Model	202 (M	LE, not i	iid)						
P	0.734	0.875	0.975	0.999	0.844	0.882			
R	0.975	0.988	0.84	1.0	0.849	0.606			
F	0.838	0.928	0.902	0.999	0.847	0.718			
Model	122 (M	122 (MAP, not iid)							
P	0.587	0.995	0.964	1.0	0.892	0.861			
R	1.0	0.984	0.955	0.999	0.874	0.301			
F	0.739	0.989	0.96	1.0	0.883	0.446			

Fig. 20. Confusion matrices (upper 2 MLE, lower 2 MAP)

Model	200 (M	LE, iid)							
P	0.827	0.996	0.935	0.997	0.889	0.931			
R	0.974	0.999	0.922	0.999	0.903	0.748			
F	0.895	0.998	0.928	0.998	0.896	0.829			
Model	111 (MAP, iid)								
P	0.717	0.994	0.968	0.969	0.987	0.933			
R	1.0	0.989	0.943	1.0	0.864	0.658			
F	0.835	0.991	0.956	0.984	0.922	0.771			

Fig. 21. Confusion matrices (upper 2 MLE, lower 2 MAP)

Fig. 24. Train-test accuracies v/s size of train set, Naive Bayes - not iid, ML estimate

Fig. 22. Train-test accuracies v/s size of train set, Naive Bayes - iid, ML estimate

Fig. 23. Train-test accuracies v/s size of train set, Naive Bayes - iid, MAP

Fig. 25. Train-test accuracies v/s size of train set, Naive Bayes - not iid, MAP. Note that no k-fold was done before reporting test and train acc.

Fig. 26. Regularized MAE vs Epochs (Gaussian Kernel).png

Fig. 29. Naive Bayes plots, L - MLE; R - MAP

Fig. 27. Regularized MSE vs Epochs (Gaussian Kernel).png

Fig. 28. Naive Bayes plots, L - MLE; R - MAP

Fig. 30. L2 MSE vs Epochs

Fig. 33. Precision vs K

Fig. 31. L2 MAE vs Epochs

Fig. 32. ROC

Fig. 34. Recall vs K