# Relatividade

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

8 de Fevereiro de 2021

### Sumário

- Abordagem histórica
- A relatividade restrita
- **Aplicações**
- **Apêndice**

Física moderna-REL

#### O conceito de referenciais inerciais

Referenciais inerciais são aqueles que não estão sujeitos a aceleração.



Exemplos de referencial inercial e não-inercial em um trem [2].

## Corollary

O estado do movimento de um objeto depende do referencial adotado.

Prof. Flaviano W. Fernandes IFPR-Irati

Abordagem histórica

•0

### Independência da velocidade da luz com o referencial

Uma análise mais cuidadosa das equações de Maxwell mostra que a luz é uma onda eletromagnética que viaja no vácuo a uma velocidade de  $c=\frac{1}{\sqrt{\mu_0 \epsilon_0}}=3$  ×  $10^8 \ m/s$ , independente do movimento do observador ou da fonte.



Onda eletromagnética produzido pela oscilação de uma carga q.

Prof. Flaviano W. Fernandes IFPR-Irati

Abordagem histórica

#### Postulados da teoria da relatividade especial

As leis físicas são as mesmas para quaisquer observadores em movimento uniforme:Todo movimento é relativo, ou seja, não existe na natureza algum referencial privilegiado (como o Éter).

A velocidade da luz no vácuo possui sempre o mesmo valor para quaisquer observador: A luz possui a mesma velocidade ( $c = 3 \times 10^8 \ m/s$ ) independente do movimento da fonte emissora ou da direção de propagação.



Espaco-tempo de Minkowski.

# Corollary

Qualquer evento que pode ocorrer no tempo deve estar inserido no cone de luz.

### Princípio da simultaneidade dos raios de luz

Os feixes de luz devem chegar simultaneamente ao observador independente do movimento das fontes.





Carros A e B parados.

Carro A parado e B em movimento.

## Contração da distância



Pela mecânica Newtoniana, o feixe B deveria chegar no observador com uma velocidade v' = v + c, enquanto que o feixe A chegaria a velocidade c, o que violaria os postulados da relatividade restrita. Para igualar as velocidades, sabendo que  $v = \frac{\Delta S}{\Delta t}$ , podemos dizer que haveria uma contração na distância  $\Delta S'$  percorrida pelo carro B em relação a distância  $\Delta S$  percorrida pelo carro A afim de ajustar a velocidade do feixe B para um valor igual a c.

## Corollary

A contração do espaço sempre ocorre na direção da velocidade.

## Dilatação do tempo



Como a velocidade c deve ser a mesma, independente do referencial, e pela relação  $c=\frac{\Delta S}{\Delta t}$ , tanto no referencial do carro A quanto no referencial do carro B, os feixes A ou B deveriam chegar ao mesmo tempo no observador. Podemos dizer que isso seria possível se o carro B percebese que o tempo marcado no relógio do carro A andasse mais rápido que o tempo marcado no seu relógio, ou seja, o tempo no carro A andaria mais rápido enquanto que o tempo no carro B andaria mais devagar.

## Corollary

Não existe referencial absoluto, ou seja, todo movimento é relativo.

#### Cinemática relativística

Einstein percebeu que a única maneira de dois observadores, com um movimento relativo entre si, conseguirem medir o mesmo valor para a velocidade da luz, seria se um deles achasse que a régua ou o relógio do outro não estava coincidindo com o seu.

O observador parado irá ver o comprimento L do objeto em movimento contraído por um valor  $L = \frac{L}{\gamma}$ , onde L' é o seu comprimento próprio.

O objeto em movimento irá ver o tempo do observador andar mais rápido que o seu, segundo a relação  $\Delta t = \gamma \Delta t'$ .

#### **Fator de Lorentz**

$$\gamma = rac{1}{\sqrt{1 - rac{v^2}{c^2}}}, \quad \gamma \geq 1$$

IFPR-Irati

#### Dinâmica relativística

Na mecânica newtoniana, o momento de um objeto é definido por  $\vec{p}=m\vec{v}$ , onde  $\vec{v}$  é a velocidade e m a massa. Porém, cálculos da velocidade relativa mostra que para a conservação do momento seja satisfeita na relatividade restrita, a massa deve mudar com a velocidade do objeto,

$$m(v) = \gamma(v)m_0,$$

onde  $m_0$  representa a massa do objeto

no seu estado de repouso. Portanto, a expressão que define o momento do objeto também muda, na forma

$$\vec{p} = \gamma(v) m_0 \vec{v}.$$

Na relatividade, a expressão da energia também depende do fator de Lorentz, na forma

$$E = \gamma(v) m_0 c^2.$$

Prof. Flaviano W. Fernandes

# Equação geral da relatividade

Considere o momento de um objeto dado pela equação  $p=\frac{m_0 v}{\sqrt{1-\frac{v^2}{c^2}}}$ . Elevando ao quadrado temos

$$ho^2 = \left(rac{1}{\sqrt{1 - rac{v^2}{c^2}}}
ight)^2 m_0^2 v^2,$$
 $ho^2 = rac{c^2}{(c^2 - v^2)} m_0^2 v^2.$ 

Somando e subtraindo o lado direito por

$$\frac{m_0^2c^2}{c^2-v^2}$$
 nos fornece

$$p^2 = c^2 \left(rac{m_0^2 v^2}{c^2 - v^2} + rac{m_0^2}{m_0^2} - rac{m_0^2}{m_0^2}
ight),$$
  $p^2 = c^2 \left(-m_0^2 + \gamma^2 m_0^2
ight).$ 

Mas 
$$\gamma^2 m_0^2 = \frac{E^2}{c^4}$$
, portanto

$$p^2 = -m_0^2 c^2 + \frac{E^2}{c^2}.$$

### Equivalência entre massa e energia

Considere a relação  $p^2 = -m_0^2 c^2 + \frac{E^2}{c^2}$ , se o objeto está em repouso, ou seja v=0, temos p=0, portanto

$$\frac{E^2}{c^2} = m_0^2 c^2,$$

$$E = \pm m_0 c^2.$$

A solução  $E = -m_0c^2$  revela que toda matéria de massa  $m_0$  possui a sua versão antimatéria, cuja massa tem a mesma quantidade  $m_0$ .

# Energia de repouso

$$E=m_0c^2$$

## Corollary

A combinação de matéria e antimatéria acarretaria na transformação de toda massa  $2m_0$  numa quantidade de energia equivalente a  $E = 2m_0c^2$ .

# Pressão de radiação

Se um objeto se move a velocidade da luz (v = c), temos  $\gamma \rightarrow \infty$ . Sabendo que  $E_c =$  $(\gamma - 1) m_0 c^2$ , necessitaríamos de uma energia infinita para levar um objeto de massa m a velocidade da luz

No caso da luz temos m=0, portanto

$$p^2 = \frac{E^2}{c^2} - m_0^2 c^2,$$

$$p = \pm \frac{E}{c}.$$



Prof. Flaviano W. Fernandes

#### Sistema de posicionamento global



Distância entre satélites e receptor [3].

O sistema GPS funciona através do método chamado "trilateração" de no mínimo três satélites que orbitam ao redor da Terra a velocidades elevadas. Para isso, os satélites enviam sinais de rádio para a Terra informando a sua localização e a distância da pessoa até o satélite através da fórmula  $\Delta S = c \cdot \Delta t$ Como eles estão em alta velocidade, cálculos relativísticos são necessários afim de corrigir o tempo de seus relógios internos, antes de serem enviados para a terra.

#### Buraco de verme



Buraco de verme ou buraco de minhoca.

Buraço de verme é uma conexão entre dimensões diferentes de uma dobra ou curva do mesmo espaço-tempo em que estamos, que é como um atalho e não uma máquina do tempo, o que há dentro dessa curva, podemos chamar de transespaco e o que há dentro do wormhole, podemos chamar de hiperespaço.

#### Transformar um número em notação científica

#### Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

## **Exemplo**

6 590 000 000 000 000.0 =  $6.59 \times 10^{15}$ 

Prof. Flaviano W. Fernandes

#### Conversão de unidades em uma dimensão



$$1~\text{mm} = 1\times 10^{(-1)\times \textcolor{red}{2}}~\text{dm} \rightarrow 1\times 10^{-2}~\text{dm}$$

$$2,5~g = 2,5 \times 10^{(1) \times 3}~\text{mg} \rightarrow 2,5 \times 10^{3}~\text{mg}$$

10 
$$\mu$$
C = 10 × 10<sup>[(-3)×1+(-1)×3]</sup> C  $\rightarrow$  10 × 10<sup>-6</sup> C

#### Conversão de unidades em duas dimensões



$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

10 
$$\mu$$
m<sup>2</sup> = 10 × 10<sup>[(-6)×1+(-2)×3]</sup> m<sup>2</sup>  $\rightarrow$  10 × 10<sup>-12</sup> m<sup>2</sup>

#### Conversão de unidades em três dimensões



$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10 
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

# Alfabeto grego

| Α | $\alpha$                | Ni                                                   | Ν                                                    | $\nu$                                                |
|---|-------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| В | $\beta$                 | Csi                                                  | Ξ                                                    | ξ                                                    |
| Γ | $\gamma$                | ômicron                                              | 0                                                    | 0                                                    |
| Δ | $\delta$                | Pi                                                   | П                                                    | $\pi$                                                |
| E | $\epsilon, \varepsilon$ | Rô                                                   | Р                                                    | ho                                                   |
| Z | ζ                       | Sigma                                                | Σ                                                    | $\sigma$                                             |
| Н | $\eta$                  | Tau                                                  | Τ                                                    | au                                                   |
| Θ | $\theta$                | Ípsilon                                              | Υ                                                    | v                                                    |
| 1 | $\iota$                 | Fi                                                   | Φ                                                    | $\phi, \varphi$                                      |
| K | $\kappa$                | Qui                                                  | X                                                    | $\chi$                                               |
| Λ | $\lambda$               | Psi                                                  | Ψ                                                    | $\psi$                                               |
| Μ | $\mu$                   | Ômega                                                | Ω                                                    | $\omega$                                             |
|   | B Γ Δ Ε Ζ Η Θ Ι Κ Λ     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

#### Referências

- A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)
- http://fisicacomentada.blogspot.com/2012/05/introducao-teoria-da-relatividade.html
- http://www.opensat.com.br/blog/outros/como-rastrear-um-celular.html

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education