ORF525 - Problem Set 1

Bachir EL KHADIR

February 15, 2016

Q.1

1. The conversion is necessary because otherwise we would have an unwanted order relation. For three similar houses A, B, C in zipcodes 98001, 98002, 98003, a linear model would be forced to affect a price for the house A that lies between the price for house A and C, which is a bug and not a future of the data itself.

2.

Q.2

• $||Y - \theta||_2^2 + 4\tau^2 ||\theta||_0 = \sum (y_i - \theta_i)^2 + 4\tau^2 1_{\theta_i \neq 0} = \sum_i f(\theta_i) \text{ Where } f : \theta \to (y - \theta)^2 + 4\tau^2 1_{\theta \neq 0}, \text{ eg}$ $f(\theta) = \begin{cases} y^2 & \text{if } \theta = 0 \\ (y - \theta)^2 + 4\tau^2 & \text{if } \theta \neq 0 \end{cases}$

The problem is linearly separable, we can minimize on each variable θ_i independently:

- If $|y| > 2\tau$, then $y^2 \ge 4\tau^2$ and $(y \theta)^2 + 4\tau^2 \ge 4\tau^2 = f(y)$.
- If $|y| \le 2\tau$, then $f(0) = y^2 \le 4\tau^2 \le y^2 + (y \theta) = f(\theta) \forall \theta \ne 0$.

So $\arg \min ||Y - \theta||_2^2 + 4\tau^2 = \hat{\theta}^{hard}$.

$$||Y - \theta||_2^2 + 4\tau ||\theta||_1 = \sum_i (y_i - \theta_i)^2 + 4\tau |\theta_i| = \sum_i g(\theta_i)$$

The problem is linearly separable, we can minimize on each variable θ_i independently. $g: \theta \to (y-\theta)^2 + 4\tau |\theta|$, eg

$$g(\theta) = \begin{cases} g_1(\theta) = (y - \theta)^2 + 4\tau\theta &= (\theta - (-2\tau + y))^2 + 2\tau(\tau + y) & \text{if } \theta \ge 0\\ g_2(\theta) = (y - \theta)^2 - 4\tau\theta &= (\theta - (2\tau + y))^2 + 2\tau(\tau + y) & \text{if } \theta \le 0 \end{cases}$$

- * If $|y| \le 2\tau$, then g_1 is increasing on $[0, \infty)$, so it has a minimum at 0, and the minimum is $y^2 = g(0)$.
 - * g_2 is decreasing on $(-\infty, 0]$ so it has a minimum at 0.
 - * $c/c \arg \min g$ in this case is 0.
- * If $y \ge 2\tau$ then g_1 has minimum at $y 2\tau > 0$ and the minimum is $y^2 (2\tau y)^2$.
 - * g_2 is decreasing and has a minimum at 0, $g_2(0) = y^2 \ge g(y 2\tau)$ with equality only if $y 2\tau = 0$

- * c/c arg min g in this case is $y 2\tau$.
- if $y \leq -2\tau$, by a similar argument, arg min g in this case is $y 2\tau$.

So arg min $||Y - \theta||_2^2 + 4\tau\theta = \hat{\theta}^{hard}$.

Q.3

Figure 1: Set

- 1. (a) M(x, y, z) is of rank 1, so (xy) and (yz) are colinear, so $\exists \lambda \in \mathbb{R} \ (xy) = \lambda(yz)$ or $(yz) = \lambda(zy)$
 - i. Let's assume that $(xy) = \lambda(yz)$, and we can deduce the other case by symmetry. In this case $x = \lambda^2 z, y = \lambda z$. Which means that $y^2 = \lambda^2 zz = xz$.
 - ii. When $(yz) = \lambda(xy)$, by a similar argument, $y^2 = xz$

The op norm is the biggest eigen value in absolute value, in this case since one of the eigen values is 0 (because the determinant is 0) the op norm is: |tr(M(x,y,z))| = |x+z|, this is equal to 1 only if $1 = |x+z|^2 = x^2 + z^2 + 2xz = x^2 + z^2 + 2y^2$ Letting $t = \sqrt{y}$, we have that: $\{(x,\sqrt{2}y,z)|\operatorname{Rank}(M) = 1, ||M||_{op} = 1\} \subseteq \{(x,t,z): x^2 + t^2 + z^2 = 1, |x+z| = 1\}$

For a matrix M(x, y, z) such that $x^2 + z^2 + 2y^2 = 1$ and |x + z| = 1, it is easy to see that:

- $||M||_{op} = |\operatorname{tr}(M)| = |x + z| = 1$
- $y^2 = \frac{1-x^2+z^2}{2} = \frac{(x+z)^2-x^2-y^2}{2} = xz$, so $\det(M) = 0$, therefore M cannot have rank 2. It cannot have rank 0 either because $x^2 + 2y^2 + z^2 = 1 \implies$ one of the coefficient is not 0.

Therefore we have: $\{(x,\sqrt{2}y,z)|\operatorname{Rank}(M)=1,\|M\|_{op}=1\}=\{(x,t,z):x^2+t^2+z^2=1,|x+z|=1\}$

 $x^2 + t^2 + z^2$ describes the unit sphere, |x + z| = 1 describe the union of the two hyperplanes $x + z = \pm 1$. Therefore this set is the union of intersection of sphere with two hyperplanes, e.g a union of two circles.

Or in parametric form:

$$\begin{cases} x = \frac{1}{2} + \cos \theta \\ t = \frac{\sqrt{2}}{2} \sin \theta \\ z = -\frac{1}{2} - \cos \theta \end{cases}$$
$$\begin{cases} x = -\frac{1}{2} + \cos \theta \\ t = \frac{\sqrt{2}}{2} \sin \theta \\ z = -\frac{3}{2} - \cos \theta \end{cases}$$

(b) M := M(x, y, z) is symmetric, let's call σ_1, σ_2 its eigen values, we know that:

$$||M||^* = |\sigma_1| + |\sigma_2|$$

$$tr(M) = x + z = \sigma_1 + \sigma_2$$

$$tr(M^T M) = x^2 + z^2 - 2y^2 = \sigma_1^2 + \sigma_2^2$$

$$\det(M) = xz - y^2 = \sigma_1\sigma_2$$

Therefore $(\sigma_1 - \sigma_2)^2 = \sigma_1^2 + \sigma_2^2 - 2\sigma_1\sigma_2 = tr(M^TM) - 2\det(M) = x^2 + z^2 - 2y^2 - 2(xz - y^2) = (x - z)^2$ Since $||M||_*^2 = \max\{|\sigma_1 + \sigma_2|^2, |\sigma_1 - \sigma_2|^2\}, ||M||_*^2 = \max\{(x + z)^2, (x - z)^2\}, \text{ and therefore}$

$$||M||_* \le 1 \iff \left\{ \begin{array}{l} (x+z)^2 \le 1 \\ (x-z)^2 \le 1 \end{array} \right. \iff \left\{ \begin{array}{l} -1 \le x+z \le 1 \\ -1 \le x-z \le 1 \end{array} \right.$$

Which describes the square whose edges are (1,0), (0,1), (-1,0), (0,-1) in the plane (X,Z). In 3d it is the polyhedral obtained by extruding that square according to the Y-axis.

2. If $A = uv^T$ has rank ≤ 1 , A has at most one non null singular value, then $||A||_{op} = |\operatorname{tr}(A)| = |v^T u| = ||A||_*$, if $||A||_{op} \leq 1$, then $||A||_* \leq 1$. The nuclear norm is a norm (fact proven in the next exercise), so the unit ball is convex, and therefore: $\operatorname{conv}\{uv^T : ||uv^T||_{op} \leq 1\} \subseteq \{X : ||X||_* \leq 1\}$.

Let $X \in \mathbb{R}^{d_1 \times d_2}$ st $||X||_* \le 1$ and let $U\Lambda V^T$ be its SVD. Then $\Lambda = \sum_{i=1}^d \sigma_i(X) e_i^T e_i$ where $(e_i)_i$ is

the canonical basis of R^{d^2} . Therefore $X = \sum_{i=1}^d \sigma_i(X) \underbrace{Ue_i^T e_i V^T}_{\text{Rank}=1} + (1 - \underbrace{\sum_{i=1}^d \sigma_i(X)}_{\text{II}[X]}) 0 \in \text{conv}\{uv^T: X \in \mathbb{R}^d \}$

 $||uv^T||_{op} \le 1$. c/c conv $\{uv^T : ||uv^T||_{op} \le 1\} = \{X : ||X||_* \le 1\}$.

- 3. Two remarks:
 - For A, B square matrices of the same shape, $||AB||_F^2 = \operatorname{tr}(ABB^TA^T) = \operatorname{tr}(A^TABB^T) = \operatorname{tr}(BB^TA^TA) = ||B^TA^T||_F^2$
 - If O is orthogonal, the $||AO||_F^2 = \operatorname{tr}(AOO^TA^T) = \operatorname{tr}(AA^T) = ||A||_F^2$, $||OA||_F = ||A^TO^T||_F = ||A^T||_F = ||A||_F$.

$$\begin{split} \|X - XZ\|_F^2 &= \|X(I - Z)\|_F^2 &= \|U\Lambda V^T(I - Z)\|_F^2 &= \|\Lambda V^T(I - Z)\|_F^2 &= \|\Lambda V^T V(V^T V - V^T Z V)V^T\|_F^2 &= \|\Lambda (I - V^T Z V)\|_F^2. \end{split}$$

Since V is invertible, let's do the change of variable $Y = V^T Z V$. Moreover, V is orthogonal, so the singular values of Y and Z are the same as well as their nuclear norm. The problem can thus be reduced to:

$$\min_{Y} ||Y||_* + \frac{\tau}{2} ||\Lambda(I - Y)||_F^2$$

$$\|\Lambda(I - Y)\|_F^2 = \sum_{ij} [e_i^T \Lambda(I - Y)e_j]^2$$

$$= \sum_{ij} [\Lambda_i e_i^T (e_j - Y e_j)]^2$$

$$= \sum_{ij} [\Lambda_i (\delta_{ij} - Y_{ij})]^2$$

$$= \sum_{i \neq j} \underbrace{\Lambda_i^2 y_{ij}^2}_{\geq 0} + \sum_i \Lambda_i^2 (1 - y_{ii})^2$$

$$\geq \sum_i \Lambda_i^2 (1 - y_{ii})^2$$

Let
$$Y = \sum_{i} \sigma_{i}(Y) u_{i} v_{i}^{T}$$
 be the SVD of Y , then $\operatorname{tr}(Y) = \sum_{i} \sigma_{i}(Y) \operatorname{tr}(u_{i} v_{i}^{T}) = \sum_{i} \sigma_{i}(Y) \underbrace{v_{i}^{T} u_{i}}_{\leq \|u_{i}\| \|v_{i}\| \leq 1} \leq \|Y\|_{*}$ As a result $\|Y\|_{*} + \frac{\tau}{2} \|\Lambda - \Lambda Y\|_{F}^{2} \geq \sum_{i} y_{ii} + \frac{\tau}{2} \Lambda_{i}^{2} (1 - y_{ii})^{2}$ Minimizing the quadratic function $y \to y + \frac{\tau}{2} \Lambda_{i}^{2} (1 - y)^{2}$ leads to $y = (1 - \frac{1}{\tau \Lambda_{i}^{2}})^{+}$ Therefore $Y =$

Q.4

1. (a) Let
$$Y = U\Lambda V^T$$
 be the SVD decomposition of Y , then $\langle Y, UVT \rangle = \operatorname{tr}(V\Lambda U^T UV^T) = \operatorname{tr}(V\Lambda V^T) = \operatorname{tr}(\Lambda) = ||Y||_*.$

$$\langle Y, X \rangle = \operatorname{tr}(Y^T X) = \operatorname{tr}(V\Lambda U^T X) = \operatorname{tr}(\Lambda U^T X V) = \sum \Lambda_{ii} (U^T X V)_{ii} = \sum \Lambda_{ii} \underbrace{u_i^T X v_i}_{\leq ||X||_{op}} \leq ||X||_{op} ||\Lambda||_* \leq ||Y||_*.$$

$$c/c ||Y||_* = \max_{||X||_{op} \leq 1} \langle Y, X \rangle$$

- 2. for $\alpha \in (0,1)$, $\|\alpha Y + (1-\alpha)Z\|_* = \max_{\|X\|_{op} \le 1} \alpha \langle Y, X \rangle + (1-\alpha)\langle Z, X \rangle \le \alpha \max_{\|X\|_{op} \le 1} \langle Y, X \rangle + (1-\alpha) (1-\alpha)$
- 3. \Rightarrow Let's suppose $Z \in \partial ||A||_*$ Then $||B||_* \geq ||A||_* + \langle Z, B A \rangle$. For B = Z, $||Z||_* \geq ||A||_* + ||Z||_F^2 \langle Z, A \rangle$. For B = 0, $0 \geq ||A||_* \langle Z, A \rangle \implies \langle Z, A \rangle \geq ||A||_*$.
 - \Leftarrow Let Z, such that $||Z||_{op} = 1$ and $\langle Z, A \rangle = ||A||_*$, then $\forall X \langle Z, X \rangle \leq ||X||_*$ and: $||X||_* ||A||_* \geq \langle Z, X \rangle \langle Z, A \rangle$, which means that $Z \in \partial ||A||_*$
- 4. (a)

$$Z \in \partial ||A|| \implies ||Z||_{op} = 1, ||A||_* = ||\Lambda||_* = \langle Z, A \rangle$$

$$\implies ||\Lambda||_* = \operatorname{tr}(Z^T U \Lambda V^T) = \operatorname{tr}((U^T Z V)^T \Lambda) = \sum_i (U^T Z V)_{ii} \Lambda_i$$

$$\implies \sum_i \underbrace{\Lambda_i (1 - u_i^T Z v_i)}_{\geq 0} = 0 \qquad (|u_i^T Z v_i| \leq ||u_i|| ||v_i|| ||Z||_{op})$$

$$\implies \forall i \ u_i^T Z v_i = 1$$

Let's complete the family $(u_i)_{i \leq r}$ into $(u_i)_{i \leq d_1}$ an orthonormal basis of \mathbb{R}^{d_1} . Then, for $i \leq r$, $1 \geq ||Zv_i||^2 = \sum_{j=1}^{d_1} (u_j^T Z v_i)^2 \geq 1 + \sum_{j \neq i} \underbrace{(u_j^T Z v_i)^2}_{=0} \geq 1$

So $u_j^T Z v_i = \delta_{ij}$ and $Z v_i = \sum_{j=1}^{d_1} u_j^T Z v_i u_j = u_i^T Z v_i u_i = u_i$. In matrix form: ZV = U, and using a similar argument $U^T Z = V$.

Let $W := Z - UV^T$, then the last equations can be written as $U = (W + UV^T)V = WV + UV^TV = WV + U \implies WV = 0$ and similarly $U^TW = 0$ Let $x \in \mathbb{R}^{d_2}$, and let $x = x_1 + x_2$ be a decomposition according to $\mathbb{R}^{d_2} = im(V) + im(V)^{\perp}$, and let $y \in \mathbb{R}^r$ such that $x_1 = Vy$. (note that $||x||^2 = ||x_1|| + ||x_2||^2$)

Then
$$||Wx||^2 = ||\underbrace{ZV}_{U}y + Zx_2 - U\underbrace{V^TV}_{I_r}y - U\underbrace{V^Tx_2}_{=0}||^2 = ||Uy + Zx_2 - Uy||^2 = ||Zx_2||^2 \le ||x_2||^2 \le ||x_2||^2 \le ||x_2||^2$$

 $||x_2||^2 \le ||x||^2$ c/c $Z = U^T V + W, ||W||_{op} < 1.$

(b) Now take Z of the form $UV^T + W$, and let's prove that $||Z||_{op} \leq 1$ and $\langle Z, A \rangle = ||A||_*$.

$$\langle UV^T + W, A \rangle = \operatorname{tr}(VU^TU\Lambda V^T) + \operatorname{tr}(W^TU\Lambda V^T)$$

= $\operatorname{tr}(\Lambda)$
= $||A||_*$

Let $x \in \mathbb{R}^{d_2}$, then :

$$||UV^T x + Wx||^2 = ||UV^T x||^2 + ||Wx||$$
 (because $im(U) \perp im(W)$)
= $||V^T x||^2 + ||Wx||^2$ (Because *U* is an isometrie)

Let's write $x = x_1 + x_2$ according to the decomposition $\mathbb{R}^{d_2} = im(V) + im(V)^{\perp}$, and let $y \in \mathbb{R}^r$ such that $x_1 = Vy$. (note that $||x_1|| = ||y||$) $V^Tx = V^Tx_1 + V^Tx_2 = V^TVy = y$, $Wx = WVy + Wx_2 = Wx_2$ so $||(UV^T + W)x||^2 = ||y||^2 + ||Wx_2||^2 \le ||x_1||^2 + ||x_2||^2 = ||x||^2$, which proves that $||UV^T + W||_{op} \le 1$.

- 5. Let $Z \in \partial \|A\|_*$, then Z can be written as $Z = UV^T + W$ where $U^TW = WV = 0$ and $\|W\|_{op} \leq 1$ $UV^T = U\frac{V}{2}^T + \frac{U}{2}V^T \in T$ Let's now prove that $W \perp T$. Let $X \in \mathbb{R}^{d_1 \times r}, Y \in \mathbb{R}^{d_2 \times r}$: $\langle UX^T + Y^TV, W \rangle = \operatorname{tr}(UX^TW) + \operatorname{tr}(Y^TVW) = \operatorname{tr}(WUX^T) = 0$. As a conclusion $\Pi_T(Z) = UV^T, \Pi_{T^c}(Z) = W, \|\Pi_{T^c}(Z)\|_{op} = \|W\|_{op} \leq 1$
 - Let Z be such that $\Pi_T(Z) = UV^T$ and $\|\Pi_{T^c}(Z)\|_{op} \leq 1$ Let's note $W = Z UV^T$. To prove that $Z \in \partial \|W\|_*$, it is enough to prove that $W = \Pi_{T^c}(Z)$.