

Redes de Computadores

Ricardo José Cabeça de Souza

ricardo.souza@ifpa.com.br

Ementa - PPC

- Introdução
- Conceitos Básicos Sobre Redes de Computadores
- Tecnologia de Redes
- Modelo OSI e TCP/IP
- IPv6
- Introdução aos Sistemas Operacionais de Redes
- Modelos de Segurança de Redes
- Redes Sem Fio

DADOS

 Informações apresentadas em qualquer forma que seja acordada entre as partes que criam e usam os dados

COMUNICAÇÃO DE DADOS

- São as trocas de dados entre dois dispositivos por intermédio de algum tipo de meio de transmissão
- Para que as comunicações de dados ocorram, os dispositivos de comunicação devem fazer parte de um sistema de comunicações
 - Composto por uma combinação de hardware (equipamentos físicos) e software (programas)

COMUNICAÇÃO DE DADOS

- A eficácia de um sistema de comunicações de dados depende de quatro características fundamentais:
 - Entrega
 - entregar dados no destino correto
 - Precisão
 - entregar os dados de forma precisa
 - Sincronização
 - entregar dados no momento certo
 - Jitter
 - variação no tempo de chegada dos pacotes

SISTEMA DE COMUNICAÇÃO DE DADOS - COMPONENTES

- 1. Mensagem
- 2. Emissor
- 3. Receptor

- 4. Meio de transmissão
- 5. Protocolo

SISTEMA DE COMUNICAÇÃO DE DADOS - COMPONENTES

Mensagem

- São as informações (dados) a serem transmitidas
 - Texto, números, figuras, áudio e vídeo

Emissor

- Dispositivo que envia a mensagem de dados
 - Um computador, estação de trabalho, aparelho telefônico, televisão etc.

Receptor

- Dispositivo que recebe a mensagem
 - Um computador, estação de trabalho, aparelho telefônico, televisão etc.

- SISTEMA DE COMUNICAÇÃO DE DADOS COMPONENTES
 - Meio de transmissão
 - Caminho físico pelo qual uma mensagem trafega do emissor ao receptor
 - Cabo de par trançado, cabo coaxial, cabo de fibra óptica e ondas de rádio

- Protocolo

Conjunto de regras que controla a comunicação de dados

REPRESENTAÇÃO DOS DADOS

- -Texto
- -Números
- -Imagens
- -Áudio
- -Vídeo

REPRESENTAÇÃO DOS DADOS

— TEXTO

- Sequência de bits (0s e 1s)
- Conjuntos de padrões de bits para representar símbolos
- Conjunto chamado de código
- Processo de representação é chamado codificação
- Mais usado hoje é chamado UNICODE, usa 32 bits para representar um símbolo ou caractere
- ASCII (American Standard Code for Information Interchange) ou Basic Latin constitui os primeiros caracteres do UNICODE

CÓDIGO ASCII

	0	1	2	3	4	5	6	7	8	9
30			sp	!	11	#	\$	양	&	1
40	()	*	+	,	_	•	/	0	1
50	2	3	4	5	6	7	8	9	:	;
60	<	=	>	?	@	А	В	С	D	E
70	F	G	Н	I	J	K	L	M	N	О
80	Р	Q	R	S	Т	U	V	M	X	Y
90	Ζ	[\]	^		`	а	b	C
100	d	е	f	g	h	i	j	k	1	m
110	n	0	р	q	r	S	t	u	V	W
120	X	У	Z	{		}	~			

Exemplo: ALT+90 → Z

 $sp \rightarrow space$

REPRESENTAÇÃO DOS DADOS

- NÚMEROS

- Sequência de bits (0s e 1s)
- Conjuntos de padrões de bits para representar símbolos
- Número é convertido diretamente em binário para simplificar operações matemáticas
- Baseado em um sistema de numeração

REPRESENTAÇÃO DOS DADOS

- Sistema de numeração:
 - Base decimal(10): Os números decimais usam dez símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9
 - No sistema decimal, cada peso equivale a 10 elevado à potência de sua posição. O peso do símbolo na posição $0 ext{ é } 10^{0}(1)$; o peso do símbolo na posição $1 ext{ é } 10^{1}(10)$; e assim por diante
 - Base binária(2): Os números binários usam dois símbolos: 0 e 1.
 - No sistema binário, cada peso equivale a 2 elevado à potência de sua posição. O peso do símbolo na posição 0 é 2º(1); o peso do símbolo na posição 1 é 2¹(2); e assim por diante
 - Base Hexadecimal(16): Os números hexadecimais usam 16 símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F.
 - No sistema hexadecimal, cada peso equivale a 16 elevado à potência de sua posição. O peso do símbolo na posição 0 é 16⁰(1); o peso do símbolo na posição 1 é 16¹(16); e assim por diante

REPRESENTAÇÃO DOS DADOS

Sistema de numeração

Conversão binário-decimal e decimal-binário

a. Binário para decimal

b. Decimal para binário

REPRESENTAÇÃO DOS DADOS

Sistema de numeração

Conversão de hexadecimal para decimal e de decimal para hexadecimal

a. Número hexadecimal

b. Decimal para hexadecimal

REPRESENTAÇÃO DOS DADOS

Conversão Binário x Hexadecimal

b. Hexadecimal para binário

Agrupamos os dígitos binários da direita em grupos de **quatro**. Em seguida, convertemos cada um desses grupos de 4 bits em seu equivalente **hexadecimal**, usando a Tabela abaixo:

Comparação entre os três sistemas

Decimal	Binário	Hexadecimal
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7

Decimal	Binário	Hexadecimal
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

REPRESENTAÇÃO DOS DADOS

Sistema de numeração

Comparação entre os três sistemas

Decimal	Binário	Hexadecimal
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7

Decimal	Binário	Hexadecimal
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

REPRESENTAÇÃO DOS DADOS

- IMAGENS

- Sequência de bits (0s e 1s)
- Conjuntos de padrões de bits para representar símbolos
- Composta por uma matriz de pixels (picture elements)
- Cada pixel é um pequeno ponto disposto na tela do computador formando uma matriz de pontos denominada de "Bit Map" ou "Mapa de Bits"
- O tamanho do pixel depende da resolução
- Após a imagem ser dividida em pixels, é atribuído a cada um deles um padrão de bits

- REPRESENTAÇÃO DOS DADOS
 - IMAGENS

Fonte: https://slideplayer.com.br/slide/67557/

REPRESENTAÇÃO DOS DADOS

- IMAGENS

REPRESENTAÇÃO DOS DADOS

- IMAGENS

Fonte: https://upload.wikimedia.org/wikipedia/commons/8/89/Representa%C3%A7%C3%A3o_de_uma_imagem_digital_-_Matriz_de_pixel.jpg

REPRESENTAÇÃO DOS DADOS

- IMAGENS

- Imagens coloridas são representadas pelo padrão RGB (Red, Green e Blue) ou YCM (Yellow, Cyan e Magenta)
- Cada cor é formada pela combinação das três cores básicas

A intensidade de cada cor é medida e atribuído um

padrão de bits

REPRESENTAÇÃO DOS DADOS

- ÁUDIO

- Transmissão (difusão) do som
- Som é contínuo, não discreto

Fonte: http://www.fq.pt/images/som/pressao.jpg

REPRESENTAÇÃO DOS DADOS

- Conversão Analógico Digital
 - Pulse Code Modulation (PCM)

1. O sinal analógico é amostrado.

2. O sinal amostrado é **quantizado**.

3. Os valores quantizados são codificados na forma de fluxos de

Sinal analógico

bits.

Sinal quantizado

REPRESENTAÇÃO DOS DADOS

- Conversão Analógico Digital
 - Taxa ou Frequência de amostragem
 - Teorema de Nyquist, para reproduzir um sinal analógico original, uma condição necessária é que a taxa de amostragem seja pelo menos o dobro da frequência mais elevada contida no sinal original

• REPRESENTAÇÃO DOS DADOS

Frequência ou taxa de amostragem Fa = número de amostras por segundo (Fa = 1/T)

REPRESENTAÇÃO DOS DADOS

- ÁUDIO

DSP - Digital Signal Processors

ADC - Analog-to-Digital Converters

REPRESENTAÇÃO DOS DADOS

- ÁUDIO

Computador ou dispositivo eletrônico

REPRESENTAÇÃO DOS DADOS

– VÍDEO

- Um vídeo é formado por uma sequência de quadros (frames)
- Se os quadros forem exibidos na tela de forma suficientemente rápida, teremos a impressão de movimento
- A razão para este fato é que nossos olhos não conseguem distinguir quadros individuais à medida que estes vão mudando rapidamente
- Não existe um número padrão universal para a quantidade ideal de quadros a serem exibidos por segundo

- REPRESENTAÇÃO DOS DADOS
 - VÍDEO

• REPRESENTAÇÃO DOS DADOS

- VÍDEO

Linhas em movimento

Fonte: https://autodemo.com/cnt/uploads/2015/07/FPScomparison400.gif

- REPRESENTAÇÃO DOS DADOS
 - VÍDEO

A bola de cima se movendo a 60fps e a de baixo a 30fps

REPRESENTAÇÃO DOS DADOS

- VÍDEO
 - Existe a necessidade de compressão para a transmissão de vídeo através da Internet
 - Podemos comprimir um vídeo comprimindo primeiramente suas imagens
 - Padrões predominam no mercado
 - » O JPEG (Joint Photographic Experts Group) para a compressão de imagens
 - » E o MPEG (Moving Picture Experts Group) para a compressão de vídeo
 - » MP3 (MPEG áudio layer 3) para compressão de áudio

REPRESENTAÇÃO DOS DADOS

- TRANSMISSÃO DE VÍDEO/ÁUDIO

- Utilização de um Servidor Web
 - Download de um arquivo de áudio/vídeo comprimido pode ser realizado como se fosse um arquivo de texto
 - Recebido completamente pelo cliente
 - Repassado para o tocador de mídia (transdutor)
 - Não envolve os conceitos de streaming (fluxo contínuo)
 - O download do arquivo precisa ser finalizado antes de iniciar sua reprodução

- REPRESENTAÇÃO DOS DADOS
 - TRANSMISSÃO DE VÍDEO/ÁUDIO

Fonte: http://slideplayer.com.br/slide/1246760/

REPRESENTAÇÃO DOS DADOS

- TRANSMISSÃO DE VÍDEO/ÁUDIO
 - Uso de um Servidor Web com Metafile
 - Abordagem com fluxo
 - O media player acessa diretamente o servidor Web para fazer download do arquivo de áudio/vídeo
 - O servidor Web armazena dois arquivos: um arquivo com o áudio/vídeo real e um metafile que armazena informações específicas sobre o arquivo de áudio/vídeo
 - Browser solicita metarquivo (contém informações sobre o arquivo áudio/vídeo)
 - Browser inicia o tocador passando o metarquivo
 - Tocador conecta o servidor
 - Servidor cria um fluxo de áudio/vídeo até o tocador

- REPRESENTAÇÃO DOS DADOS
 - TRANSMISSÃO DE VÍDEO/ÁUDIO
 - Uso de um Servidor Web com Metafile

REPRESENTAÇÃO DOS DADOS

- TRANSMISSÃO DE VÍDEO/ÁUDIO
 - Uso de um Servidor Web com Metafile e um Media Server
 - Abordagem com fluxo usando servidor específico
 - Utilizar um outro tipo de servidor, denominado de media server
 - Funcionamento:
 - 1. O cliente HTTP acessa o **servidor Web** enviando uma mensagem GET.
 - 2. As informações do **metafile** vêm junto com a resposta.
 - 3. O **metafile** é repassado para o **media player**.
 - 4. O media player usa a URL contida no arquivo de metafile para acessar **o media server** e baixar o arquivo. O download pode ser realizado por qualquer protocolo que use o **UDP**.
 - 5. O media server responde.

- REPRESENTAÇÃO DOS DADOS
 - TRANSMISSÃO DE VÍDEO/ÁUDIO
 - Uso de um Servidor Web com Metafile e um Media Server

REPRESENTAÇÃO DOS DADOS

- TRANSMISSÃO DE VÍDEO/ÁUDIO
 - Uso de um Media Server e do RTSP
 - RTSP (Real-Time Streaming Protocol) é um protocolo de controle projetado especialmente para melhorar a eficiência do processo de transferência de dados de fluxo contínuo
 - Usando o RTSP podemos controlar a execução de um arquivo de áudio/vídeo
 - O RTSP é um protocolo de controle out-of-band, de funcionalidades similares à conexão de controle do FTP (File Transfer Protocol)

- REPRESENTAÇÃO DOS DADOS
 - TRANSMISSÃO DE VÍDEO/ÁUDIO
 - Uso de um Media Server e do RTSP

- TRANSMISSÃO VÍDEO/ÁUDIO AO VIVO

- Uso RTMP (Real Time Messaging Protocol)
- Protocolo desenvolvido pela Macromedia para streaming de áudio,
 vídeo e dados para internet totalmente voltada para o Flash player

MODOS DE TRANSMISSÃO (FIAÇÃO)

- PARALELA
 - Vários bits são enviados a cada pulso de clock
- SERIAL
 - Somente 1 bit é enviado a cada pulso de clock

• MODOS DE TRANSMISSÃO (FIAÇÃO)

MODOS DE TRANSMISSÃO (FIAÇÃO)

Paralela

- MODOS DE TRANSMISSÃO (FIAÇÃO)
 - Serial

MODOS DE TRANSMISSÃO (FIAÇÃO)

- Transmissão Assíncrona
 - O intervalo de tempo entre mensagens não é importante, sem se preocupar com o ritmo no qual elas sejam enviadas

Transmissão assíncrona

MODOS DE TRANSMISSÃO (FIAÇÃO)

- Transmissão Síncrona
 - Os dados são transmitidos na forma de uma string ininterrupta de 1s e 0s e o receptor separa essa string em bytes, ou caracteres, que ela precise para reconstruir as informações

| Direção do fluxo | Frame | Frame | Receptor | 11111 | 11110111 |

MODOS DE TRANSMISSÃO (FIAÇÃO)

- Isócrona
 - Em áudio e vídeo em tempo real, no qual retardos desiguais entre frames não são aceitáveis, a transmissão síncrona falha
 - A transmissão isócrona garante que os dados cheguem a uma taxa fixa

MODOS DE TRANSMISSÃO (DIREÇÃO FLUXO DE DADOS)

- SIMPLEX

- Utiliza apenas um dos possíveis sentidos de transmissão
- A transmissão tem sentido unidirecional, não havendo retorno do receptor
- Exemplo: teclado, monitor, etc.

MODOS DE TRANSMISSÃO (DIREÇÃO FLUXO
 DE DADOS)

— HALF-DUPLEX

- Utiliza os dois sentidos de transmissão, porém apenas um por vez
- Toda a capacidade do canal pode ser utilizada em uma direção
- Exemplo: walkie-talkie

Half-duplex

53

MODOS DE TRANSMISSÃO (DIREÇÃO FLUXO DE DADOS)

- FULL-DUPLEX
 - Utiliza os dois sentidos de transmissão simultaneamente
 - Pode ocorrer de duas formas:
 - Link contém dois caminhos;
 - Capacidade do canal é dividida em dois sinais que trafegam em ambas as direções

Full-Duplex

Fluxo de dados (simplex, half-duplex e full-duplex)

a. Simplex

b. Half-duplex

c. Full-duplex

REDES DE COMPUTADORES

- Conjunto de computadores autônomos interconectados. Usuário "loga" explicitamente
- Conjunto de módulos processadores interligados por um sistema de comunicação
- Conjunto de dispositivos (nós) conectados por links de comunicação
- Nó pode ser um computador, impressora ou outro dispositivo de envio e/ou recepção de dados

Fonte: http://www.antunes.eti.br/ADSL/Rede1.jpg

- CRITÉRIOS ATENDIDOS POR REDES DE COMPUTADORES
 - Mais importantes:
 - Desempenho
 - Confiabilidade
 - Segurança

DESEMPENHO DAS REDES

- Medido de várias formas
- Trânsito: quantidade de tempo necessária para uma mensagem trafegar de um dispositivo a outro
- Tempo de resposta: tempo decorrido entre uma solicitação e sua resposta
- Desempenho também depende do número de usuários, tipos de meios de transmissão e capacidade do hardware de conexão
- Normalmente é avaliado por duas métricas:
 - Capacidade de vazão (throughput)
 - Atraso (delay)

CONFIABILIDADE DAS REDES

- É medida pela frequência de falhas, pelo tempo que um link leva para se recuperar de uma falha e pela robustez da rede em caso de uma catástrofe
- MTBF (Mean Time Between Failures) ou período médio entre falhas

Time Between Failures = { down time - up time}

$$MTBF = \frac{\sum (start \text{ of downtime} - start \text{ of uptime})}{number \text{ of failures}}$$

- CONFIABILIDADE DAS REDES
 - MTBF (Mean Time Between Failures) ou período médio entre falhas

Fonte: https://memoria.rnp.br/ceo/trafego/?local_graph_id=8650&rra_id=4

SEGURANÇA DAS REDES

- Proteção ao acesso não autorizado de dados
- Proteção dos dados contra danos e o desenvolvimento e a implementação de políticas e procedimentos para a recuperação de violação e perda de dados

SEGURANÇA DAS REDES

Fonte: https://image.slidesharecdn.com/notadeaula-segurancadainformacao-redes-120130140230-phpapp01/95/nota-de-aula-seguranca-da-informacao-redes-de-computadores-13-728.jpg?cb=1327932366

SEGURANÇA DAS REDES

Fonte: https://image.slidesharecdn.com/notadeaula-segurancadainformacao-redes-120130140230-phpapp01/95/nota-de-aula-seguranca-da-informacao-redes-de-computadores-14-728.jpg?cb=1327932366

PROCESSAMENTO DISTRIBUÍDO

- Uma tarefa é dividida entre vários computadores
- Computadores distintos processam um subconjunto de processos
- Em vez de uma única máquina grande ser responsável por todos os aspectos de um processo, computadores distintos (geralmente um computador pessoal ou estação de trabalho) processam um subconjunto de processos

SISTEMAS DISTRIBUÍDOS

- A existências de diversos computadores é transparente
- O Sistema Operacional define processador, localiza e transporta arquivos e define o local de armazenamento do resultado

Fonte: http://www.moviconx.com.br/MyImages/table1.gif

Hospedeiros ou Sistemas Finais ou Nó

- Dispositivos de computação conectados na internet ao redor do mundo
- Exemplo: computadores, TVs, laptops, consoles para jogos, telefones celulares, webcams, automóveis, dispositivos de sensoriamento ambiental, quadros de imagens, e sistemas internos elétricos e de segurança

LINK (ENLACE DE COMUNICAÇÃO)

- É um caminho de comunicação que transfere dados de um dispositivo a outro
- Usado nas conexões entre os sistemas finais
- Diferentes tipos de meios físicos: Cabos coaxiais, fios de cobre, fibra ótica e ondas de rádio
- Velocidade do enlace é chamada LARGURA DE BANDA
- Medida em bits por segundo (bps)

TIPOS DE CONEXÃO

- PONTO-A-PONTO
 - Fornece um link dedicado entre dois dispositivos
 - Toda capacidade do link é reservada para a transmissão entre os dois dispositivos

- MULTIPONTO

- Mais de dois dispositivos compartilham um único link
 - Canal Compartilhado
 - » Uso simultâneo: compartilhamento espacial
 - » Uso em revezamento: compartilhamento no **tempo**

TIPOS DE CONEXÃO

- Ponto-a-ponto
- Multiponto

TOPOLOGIA

- A topologia de uma rede descreve como é o layout do meio através do qual há o tráfego de informações, e também como os dispositivos estão conectados a ele
- Maneiras como hosts são interligados e o método de acesso
- Determina o caminho dos dados
- Pode ser lógica e física

TOPOLOGIA LÓGICA

- As topologias lógicas descrevem a maneira como a rede transmite informações de um equipamento para outro
- Ela determinará o formato do pacote de informações que passarão ao longo da rede, determinará também quanta informação ele conterá, o método de transferência, entre outras informações

TOPOLOGIA FÍSICA

- Descreve como os computadores se conectam fisicamente, ou seja, a parte da rede que pode ser tocada, como os cabos, os conectores, as placas de redes e outros equipamentos
- Configuração física

CLASSIFICAÇÃO DE ACORDO COM A TOPOLOGIA

- Rede em anel (Ring)
- Rede em barramento (Bus)
- Rede em estrela (Star)
- Rede Malha

Rede em anel

- Consiste em estações conectadas através de um circuito fechado, em série, formando um anel
- Cada dispositivo possui uma conexão ponto a ponto dedicada com outros dois dispositivos até atingir o destino
- O anel não interliga as estações diretamente, mas consiste de uma série de repetidores ligados por um meio físico, sendo cada estação ligada a estes repetidores

Rede em anel

BARRAMENTO

- É multiponto
- Todos os nós são conectados diretamente na barra de transporte (backbone), sendo que o sinal gerado por uma estação propaga-se ao longo da barra em todas as direções
- Pode ser empregada a comunicação com caminhos bidirecionais

Barramento

Rede em estrela

- Cada dispositivo tem um link ponto a ponto dedicado ligado apenas com o controlador central
- Toda a informação deve passar obrigatoriamente por uma estação central inteligente, que deve conectar cada estação da rede e distribuir o tráfego para que uma estação não receba, indevidamente, dados destinados às outras

Estrela

Rede Malha

- Cada dispositivo possui um link ponto-a-ponto dedicado com os demais dispositivos
- Tem como característica a disposição em série dos equipamentos, fazendo com que os dados passem por todas as estações que estiverem conectadas, mas apenas a receptora poderá reconhecê-los
- São redes montadas para compartilhar dispositivos ou dados e não serviços
- Também designadas por store-and-forward

Malha

Determinação do nº de links:

N (N-1)/2, onde:

N = nº de nós

Rede Híbrida

Utiliza características de duas ou mais topologias

Fonte: http://ritacris.com/redes/redes_10ano/introducao.html

Rede Híbrida

Referências

- Forouzan, Behrouz A. Comunicação de dados e redes de computadores. Tradução: Ariovaldo Griesi; revisão técnica: Jonas Santiago de Oliveira. – 4. ed. Porto Alegre: AMGH, 2010.
- Kurose, James F. Redes de computadores e a Internet: uma abordagem top-down. Tradução Daniel Vieira; revisão técnica Wagner Luiz Zucchi. – 6. ed. – São Paulo: Pearson Education do Brasil, 2013.
- TANENBAUM, Andrew S. **Redes de computadores**. 3. Ed. Rio de Janeiro: Campus, 1997.
- COMER, Douglas E. Internetworking with TCP/IP. Principal, Protocolos, and Architecture. 2.ed. New Jersey: Prantice Hall, 1991. v.1.
- OPPENHEIMER, Priscilla. Projeto de Redes Top-down. Rio de Janeiro: Campus, 1999.
- GASPARINNI, Anteu Fabiano L., BARELLA, Francisco Rogério. TCP/IP Solução para conectividade. São Paulo: Editora Érica Ltda., 1993.

Referências

- SPURGEON, Charles E. **Ethernet: o guia definitivo**. Rio de Janeiro: Campus, 2000.
- SOARES, Luiz Fernando G. Redes de Computadores: das LANs, MANs e WANs às redes ATM. Rio de Janeiro: Campus, 1995.
- CARVALHO, Tereza Cristina Melo de Brito (Org.). Arquitetura de Redes de Computadores OSI e TCP/IP. 2. Ed. rev. ampl. São Paulo: Makron Books do Brasil, Brisa; Rio de Janeiro: Embratel; Brasília, DF: SGA, 1997.
- COMER, Douglas E. Interligação em rede com TCP/IP. 2. Ed. Rio de Janeiro: Campus, 1998. v.1.
- ARNETT, Matthen Flint. Desvendando o TCP/IP. Rio de Janeiro: Campus, 1997. 543 p.
- ALVES, Luiz. **Comunicação de dados**. 2. Ed. rev. ampl. São paulo: Makron Books do Brasil, 1994.