CLIPPEDIMAGE= JP403113365A

PAT-NO: JP403113365A

DOCUMENT-IDENTIFIER: JP 03113365 A

TITLE: SOLVENT CONCENTRATION SETTING DEVICE FOR LIQUID CHROMATOGRAPH

PUBN-DATE: May 14, 1991

INVENTOR-INFORMATION:

NAME

KONO, MINORU

ASSIGNEE-INFORMATION:

NAME COUNTRY SHIMADZU CORP N/A

APPL-NO: JP01251433

APPL-DATE: September 27, 1989

INT-CL (IPC): G01N030/34

US-CL-CURRENT: 73/61.55,73/61.56

ABSTRACT:

PURPOSE: To prevent a composition ratio which is different from a target value from being generated when the concentration of a solvent is varied by clocking a specific time after the concentration of one solvent is set and inputted by an input means.

CONSTITUTION: Assuming that respective solvents A - D having concentration values a<SB>1</SB> - d<SB>1</SB> are mixed and fed to a column, new concentration b<SB>2</SB> is set and inputted from an input part 7 when the solvents B and C are varied in concentration from b<SB>1</SB> and c<SB>1</SB> to b<SB>2</SB> and c<SB>2</SB>, and then the concentration b<SB>2</SB> is stored temporarily in a RAM 3. Then a timer 6 is set and starts counting a wait time. If concentration c<SB>2</SB> is set and inputted from the input part 7 before the timer 6 enters a time-up state, the concentration c<SB>2</SB> is stored in the RAM 3 together with the concentration b<SB>2</SB> which is set previously. Further, the timer 6 is set again and starts counting a wait time. When the timer 6 enters a time-up state, the concentration values b<SB>2</SB> and c<SB>2</SB> stored in the RAM 3 are transferred to a solenoid valve control circuit 5. The circuit 5 varies the opening quantities of solenoid valves V<SB>a</SB> - V<SB>c</SB> to vary the concentration values of the solvents A - C to a<SB>2</SB> - c<SB>2</SB>. At this time, a composition ratio which is not the target value is not generated.

COPYRIGHT: (C) 1991, JPO&Japio

02/03/2003, EAST Version: 1.03.0002

⑩ 日本国特許庁(JP)

⑩ 特許出願公開

@ 公 開 特 許 公 報 (A) 平3-113365

⑤Int.Cl. 5

識別記号

庁内整理番号

匈公開 平成3年(1991)5月14日

G 01 N 30/34

A 7621-2G

審査請求 未請求 請求項の数 1 (全4頁)

ᡚ発明の名称 液体クロマトグラフの溶媒濃度設定装置

②特 題 平1-251433

②出 願 平1(1989)9月27日

70発明者 河野

穣

京都府京都市中京区西ノ京桑原町1番地 株式会社島津製

作所三条工場内

勿出 願 人 株式会社島津製作所

京都府京都市中京区西ノ京桑原町 1 番地

四代 理 人 弁理士 中村 茂信

明知智

1. 発明の名称

液体クロマトグラフの溶媒濃度設定装置。

2. 特許請求の範囲

(1)複数の溶媒の濃度を設定入力する入力手段 と、この入力手段で設定された濃度に基づき各溶 媒の流量を制御する流量制御手段とを備えてなる 液体クロマトグラフの溶媒濃度設定装置において、

前記入力手段で1つの溶媒の濃度が設定入力されてから、所定時間を計時する計時手段と、この計時手段が作動している間、設定入力された濃度を記憶する濃度記憶手段と、前記計時手段が計時を終了した時、この濃度記憶手段に記憶されている濃度を前記流量制御手段に転送する濃度転送手段とを備えたことを特徴とする液体クロマトグラフの溶媒濃度設定装置。

3. 発明の詳細な説明・

(イ)産業上の利用分野

この発明は、液体クロマトグラフの内、グラジェント溶出装置に適用される溶媒濃度設定装置に

関する。

1

(ロ) 従来の技術

液体クロマトグラフのグラジェント溶出装置は、 複数の溶媒を混合し、移動相としてカラムへ送り、 分析の進行に伴い溶媒の組成を変化させていくも のであり、溶媒の濃度組成を設定するための溶媒 濃度設定装置が備えられている。この溶媒濃度設 定装置は、溶媒の濃度を設定入力する入力部と各 溶媒の流量を制御する電磁弁の閉口量を 制御する電磁弁制御回路とを備えている。

例えば4種類の溶媒A、B、C、Dが用いられる場合には、溶媒B、C、Dの濃度b(%)、c(%)、d(%)を入力部で設定入力する。溶媒Aの濃度a(%)は、100-b-c-dに自と定まる。

(ハ)発明が解決しようとする課題

上記溶媒濃度設定装置では、人力部で設定入力された濃度は、直ちに流量の制御に反映される。 例えば、溶媒B、Cの濃度b、cをそれぞれb'、 c'に変更する場合を考え、b'、c'の頃で入力部から設定入力するものとする。b'を設定入力後、すみやかにc'を設定入力したとしても、b'の設定入力との間のほんの短い時間、目的とする組成比とは異なる溶媒、すなわちA、B、C、Dの濃度が、100-b'-c-d、b'、c、dの溶媒がカラムへ送液されることとなり、測定結果として得られるクロマトグラムに影響を及ぼすおそれがあった。

この発明は、上記に鑑みなされたものであり、 溶媒の濃度を変更する際に、目的とは異なる組成 比が生じない、液体クロマトグラフの溶媒濃度設 定装置の提供を目的としている。

(二) 課題を解決するための手段

上記課題を解決するため、この発明の液体クロマトグラフの溶媒濃度設定装置は、複数の溶媒の濃度を設定入力する入力手段と、この入力手段で設定された濃度に基づき各溶媒の流量を制御する、放量制御手段とを備えてなるものにおいて、前記入力手段で1つの溶媒の濃度が設定入力されてか

明する。

第1図は、実施例溶媒濃度設定装置の構成を説明するプロック図である。CPU1には、バスライン8を介して、ROM2、RAM3、ポンプ制御回路4、電磁弁制御回路5、タイマ6、入力部7が接続されている。ROM2は、CPU1の動作プログラムを精納しており、またRAM3は、CPU1の作動領域として使用され、設定入力された濃度も一旦ここに記憶される。

ボンブ制御国路 4 は、吸引され、混合された溶 媒を送液するボンプ 9 を制御するためのもので、 溶媒が設定された流量でカラムへ送液されるよう にする。電磁弁制御国路 5 は、電磁弁 V。、V。、 V。、V。の間口量を調整し、溶媒 A、B、C、 Dが設定された濃度で混合されるよう、各溶媒の 流量を制御する。

タイマ6は、待ち時間をカウントするためのものであり、入力部では、各溶媒A、B、C、Dの 濃度a、b、c、d及びポンプ9の送液量を設定 入力するためのもので、例えばキーボード等が使 ら、所定時間を計時する計時手段と、この計時手段が作動している間、設定入力された減度を配位 する濃度記憶手段と、前記計時手段が計時を終了 した時、この濃度記憶手段に配位されている濃度 を前記流量制御手段に転送する濃度転送手段とを 備えたものである。

(水) 作用

この発明の液体クロマトグラフの溶媒濃度設定 装置では、1つの溶媒の濃度を設定入力してから、この設定入力された濃度が流量 関係に反映されるまで、所定のいわば待ち時間がとられている。この待ち時間の間に、同時に変更したい他の溶媒の濃度を設定入力できる。こうして設定入力された濃度は、濃度配位手段に記憶され、待ち時間終了後、まとめて流量制御手段へ転送される。従って、溶媒の組成比を目的とする値に直接変更することができ、間に目的とは異なる組成比を生じさせることはない。

(へ)実施例

この発明の一実施例を図面に基づいて以下に説

用される。タイマ6の待ち時間は、入力部7で一つの溶媒濃度を設定入力してから、他の溶媒の濃度の設定入力が十分に行えるように定められる。

次に、実施例溶媒濃度設定装置の濃度変更処理 について説明する。

今、各溶媒 A、B、C、Dが、濃度 a;(= 100 - b; - c; - d;)、b;、c;、d;で混合され、カラムへ送液されているものとし、溶媒 B、Cの濃度をそれぞれ b;、c;より、b;、c;に変更する場合を考える。

入力部6より、新たな濃度 b 。を設定入力すると、郊2図(a)に示す設定入力プログラムが起動され、この濃度 b 。 が R A M 3 に一旦配憶される(ステップ(以下 S T という)1)。 そして、タイマ6 がセットされて待ち時間のカウントが開始される(S T 2)。

タイマ6がタイムアップするまでに、入力部6 より、濃度 c . が設定入力されると、再び第2図 (a)の設定入力プログラムが起動される。そして、 濃度 c . が先に設定された濃度 b . と共にRAM 3 内に記憶される。さらに、タイマ 6 が再びセットされて待ち時間のカウントが開始される (ST2).

クイマ 6 がタイムアップすると第 2 図 (を)の転送プログラムが起動され、RAM 3 に記憶されていた濃度 bェ、cェを電磁弁制御回路 5 に転送する(ST3)。電磁弁制御回路 5 は、電磁弁 V。、V。、V。の閉口量を変更し、各溶媒 A、B、Cの濃度をaェ(=100-bェーcェーdェ)、bェ、cェに変更する(溶媒 Dの濃度 d・は、そのまま)。この時に、従来のように目的でない組成比、すなわちa・1 = (100-bェーc・ーdェ)、bェ、c・、d・が生じることはない。

なお、上記実施例では、4種の溶媒を混合する 例を示しているが、溶媒の数はこれに限定される ものではなく適宜設計変更可能である。

(ト) 発明の効果

以上説明したように、この発明の液体クロマトグラフの溶媒濃度設定装置は、入力手段で1つの 溶媒の濃度が設定入力されてから、所定時間を計 時する計時手段と、この計時手段が作動している 間、設定入力された講度を記憶する講度記憶手段 と、前記計時手段が計時を終了した時、この濃度 記憶手段に記憶されている濃度を流量制御手段に 転送する濃度転送手段とを備えてなるものであり、 濃度変更時に目的とは異なる組成比を生ずること がなくなり、分析の信頼性を向上することができ る。また、1つの溶媒濃度を設定入力できるから、 余裕をもって他の溶媒濃度を設定入力できるから、 操作性も向上する。

4. 図面の簡単な説明

第1図は、この発明の一実施例に係る液体クロマトグラフの溶媒濃度設定装置の構成を説明するブロック図、第2図(a)及び第2図(b)は、それぞれ同液体クロマトグラフの溶媒濃度設定装置における設定入力処理及び転送処理を説明するフロー図である。

1 : C P U \ 3 : R A M \

5:電磁弁制御国路, 、6:タイマ、

7:入力部、

A·B·C·D:溶媒、

V. · V. · V. · V. :電磁弁。

特許出願人 株式会社島津製作所 代理人 弁理士 中 村 茂 信

第 2 図(a)

第 2 図(b)

