Designing High Availability Database Systems Using Availability Groups

Anthony E. Nocentino aen@centinosystems.com

Anthony E. Nocentino

- Consultant and Trainer
- Founder and President of Centino Systems
 - Specialize in system architecture and performance
 - Masters Computer Science (almost a PhD)
 - Microsoft MVP Data Platform 2017
 - Friend of Redgate 2015-2017
- email: aen@centinosystems.com
- Twitter: @nocentino
- Blog: www.centinosystems.com/blog
- · Pluralsight Author: www.pluralsight.com

What is an Availability Group?

Is it hard?

- · YES!
- Impact performance
- Spinning plates
 - · It's a system, you need to be able to manage the whole thing
- Collaboration is key!

Who needs to participate?

- Networking Team
- Active Directory Team
- Server Team
- DBA Team
- Storage Team

The Most Important Design Goal!!!

- Recovery Objectives
 - Recovery Point Objective RPO
 - Recovery Time Objective RTO
- Availability
 - How much data can we lose?
 - How fast will the system fail over?
- Performance SLA
 - Do queries have to complete in a specified amount of time?
- Get it on paper!

Does It Really Need AGs?

- Once this phase is complete I find MANY databases don't need AGs!
 - Good operational practices
 - Backup/Restore
 - Point in time recovery

Design Objective

- For each application establish
 - · RPO
 - · RTO
 - Performance SLA

Application	Database	RPO	RTO	SLA
CRM	CRM_DB1	1 minute	5 minutes	10 ms
	CRM_DB2			
	CRM_DB3			
DOC MGMT	DM_DB1	1 minute	5 minutes	10 ms
	DM_DB2			

Availability Group Design

- Group databases into Availability Groups
 - The AG is the unit of failover
- Design considerations
 - Availability requirements HA and DR?
 - Application or database dependencies
 - Performance
 - Number of databases soft limit of around 50
 - Worker Threads http://bit.ly/2ddeyZf

Design Objective

Group Databases into AGs

Application	Availability Goup	Database	RPO	RTO	SLA
CRM	AG1	CRM_DB1	1 minute	5 minutes	10 ms
	AG1	CRM_DB2			
	AG1	CRM_DB3			
DOC MGMT	AG2	DM_DB1	1 minute	5 minutes	10 ms
	AG2	DM_DB2			

Availability Group Topology

Replica Placement

- Choose the location of the replicas
 - High Availability and Disaster Recovery
 - Multiple data centers?
- Number of replicas
 - Which replicas will run out of which data center?
 - Distributed active workload?
 - Read only routing?

Design Objective

AG Replica Placement

Application	Availability Goup	Data Center	Replica
CRM	AG1	DC1	DC1-SQL1
	AG1	DC1	DC1-SQL2
	AG1	DC2	DC2-SQL1
DOC MGMT	AG2	DC1	DC1-SQL1
	AG2	DC1	DC1-SQL2

Replica Placement

Establish Quorum Model

- AGs still use Windows Failover Clustering
 - Windows 2012 R2 > 2008 R2
 - Dynamic quorum periodically recalculates based on online voters

- Given the agreed upon replica placement, define a quorum model
 - Network topology
 - Multiple sites?
 - Where is the workload going to run?

Establish Quorum Model (con't)

- Node majority useful if there are odd number of nodes
- File share witness useful if there are an even number of nodes (Microsoft Rec'd)
 - Required for multi-site, choose a third location for file share

Design Objective

Establish Quorum Model and Voters

Servers	Quorum	Voter
DC1-SQL1	Node Majority + File Share	Yes
DC1-SQL2	Node Majority + File Share	Yes
DC2-SQL1	Node Majority + File Share	No
DC1-FILE1	Node Majority + File Share	Yes

Failover Model

- The Availability Group is the unit of failover
 - For each Availability Group and for each replica
 - Establish a failover policy
 - Automatic
 - Manual

Design Objective

Establish Failover Model

Application	Availability Goup	Replica	Failover	RPO	RTO	SLA
CRM	AG1	DC1-SQL1	Automatic	1 minute	5 minutes	10 ms
	AG1	DC1-SQL2	Automatic			
	AG1	DC2-SQL1	Manual			
DOC MGMT	AG2	DC1-SQL1	Automatic	1 minute	5 minutes	10 ms
	AG2	DC1-SQL2	Automatic			

Data Movement In Availability Groups

- Transaction log blocks are replicated to secondaries
- Replication mode
 - Synchronous
 - Required for automatic failover
 - Acknowledgements are sent from secondary to primary
 - Monitor replication latency carefully
 - Asynchronous
- Database mirroring endpoint
- Deep dive http://bit.ly/2cZnCof and http://bit.ly/1nixv0N

Data Movement In Availability Groups

- You can experience data loss in both synchronous and asynchronous modes
- You can experience delayed failover in both synchronous and asynchronous modes
 - · Why?
 - Due to replication latency!

Send Queue

- Queues log blocks to be sent to the secondaries
- Each replica maintains it's own view of the send queue
- Queued data is as risk to data loss in the event of a primary failure
- The send queue can grow due to an unreachable secondary, network outage, network latency and large amount of data change

Redo Queue

- Queues log blocks received on the secondary
- Each replica has it's own redo queue
- On failover, the redo queue must be completely processed
- The redo queue can grow due to a slow disk subsystem or resource contention or sustained outage and subsequent reconnection of a secondary

Design Objective

Establish Availability Mode

Application	Availability Goup	Replica	Failover	Availability Mode
CRM	AG1	DC1-SQL1	Automatic	Sync
	AG1	DC1-SQL2	Automatic	Sync
	AG1	DC2-SQL1	Manual	Async
DOC MGMT	AG2	DC1-SQL1	Automatic	Sync
	AG2	DC1-SQL2	Automatic	Sync

Availability Mode

Transaction Log Throughput

For each database

- What is the amount of transaction log generated?
- Include days when maintenance or large batch transactions run
- Add that up for each DB in each AG, this will be your network bandwidth requirements

Transaction Log Throughput

- Good We can use compressed log backup size as an approximation of log throughput.
 - 2016 uncompressed to sync, compressed to async
- Better If there's a monitoring package, review data or baseline a representative workload
 - Analyze Log Bytes Flushed/sec and Log Flushes/sec
- Best replay of a representative workload into an AG
 - Primary Log Bytes Flushed/sec, Bytes Sent to Replica/sec (c), Network Interface
 - Secondaries Bytes from Replica/sec (c), Redone Bytes/sec, Network Interface

Networking

- Bandwidth analysis for both local and remote replication
 - Log blocks are what's replicated
 - 2012/2014 compressed
 - 2016 uncompressed to sync, compressed to async
 - Replication to each replica
 - LAN shared/dedicated
 - WAN
- Redundant network interfaces and uplinks for each server
- What type of network interconnects?

Design Objective

Establish Per Replica Log Throughput

Application	Availability Goup	Database	Replica	Log Throughput
CRM	AG1	CRM_DB1	DC1-SQL1	8Mb/sec
	AG1	CRM_DB1	DC1-SQL2	8Mb/sec
	AG1	CRM_DB1	DC2-SQL1	8Mb/sec
	AG1	CRM_DB2	DC1-SQL1	2Mb/sec
	AG1	CRM_DB2	DC1-SQL2	2Mb/sec
	AG1	CRM_DB2	DC2-SQL1	2Mb/sec
	AG1	CRM_DB3	DC1-SQL1	20Kb/sec
	AG1	CRM_DB3	DC1-SQL2	20Kb/sec
	AG1	CRM_DB3	DC2-SQL1	20Kb/sec
DOC MGMT	AG2	DM_DB1	DC1-SQL1	1Mb/sec
	AG2	DM_DB2	DC1-SQL2	1Mb/sec

IP Addressing Requirements

- Provision static IP address for cluster management
- Provision static IP, port on each subnet you have replicas for each AG
- DNS name for each AG listener
 - DNS Aliases

Application Connectivity

- Applications connect to the Availability Group Listener
- How do applications connect to the databases
 - .NET data provider, ODBC, JDBC and more...

Application Connectivity

- Multi-subnet failover
 - .NET 4+ and JDBC http://bit.ly/2d4wjZv
 - MultiSubnetFailover=True
 - RegisterAllProviderIP
- Non .NET or < .NET4
 - Adjust TTL on DNS record (A or CNAME)

Readable Secondaries

- Will there be readable secondaries?
 - Where?
- Load balancing
 - 2012/2014 sequential list (hardware load balancer)
 - · 2016 Round robin
- Establish a routing policy http://bit.ly/2bdFfi9
 - Restricting workload to the "active" site
- ApplicationIntent=ReadOnly

Availability Group Topology (final)

Readable Secondaries (con't)

- Requires row versioning on secondary, uses RCSI
 - Monitor usage and disk pressure of TempDB on secondary
 - Additional 14 bytes on the row for versioning info
- Create supporting indexes on the primary
- Blocking of REDO on secondary can occur during schema changes
 - · sch-m, sch-s

Readable Secondaries (con't)

- A configured listener
- At least one replica is configure for read-only access
- Each secondary is configured with a URL
- Each replica has a confidured routing list
- WITH (PRIMARY ROLE (READ ONLY ROUTING LIST=(N'SQL14-The replica peing) routed to must be synchronized or synchronizing

```
ALTER AVAILABILITY GROUP [AG1]
MODIFY REPLICA ON N'SQL14-B'
WITH (PRIMARY_ROLE(READ_ONLY_ROUTING_LIST=(N'SQL14-A',N'SQL14-B')))
```


Design Objective

Application Availability Replica Readable RPO RTO Secondaries

AG1 DC1-SQL1 Yes 1 minute 5 minutes 1

AG1 DC2-SQL1 No DC2-SQL1 No DC3-SQL1 Yes 1 minute 5 minutes 1

AG2 DC1-SQL2 Yes 1 minute 5 minutes 1

AG2 DC1-SQL2 Yes

Backups!

- Availability Groups are only part of the HA/DR plan
- Required FULL recovery model
- Review the current database backup scheme
 - Current backup software (this can get hairy!)
 - Current backup routine
- Review the current enterprise backup scheme
 - Replication and archiving of backups
- Offloaded backups
 - Awesome, but look out! http://bit.ly/1N2LZN3
 - If availability and recovery are important to you, backup on the primary!

VLDBs

- Large Tables
- Poor Indexing Strategies
- Special backup considerations
 - Differentials
- Special networking considerations
 - Dedicated networking for replication
 - QOS between sites

Database Compatibility

- Does your vendor support AGs?
- Are you using?
 - Cross Database Transactions No!
 - Distributed Transaction Coordinator
 - 2012/2014 No http://bit.ly/2cSPATn
 - 2016 Yes! http://bit.ly/2d6Kd10
 - Transparent Data Encryption Painful

Database Objects

- Synchronization is up to you!
- SQL Agent Jobs
 - Use a SQL Agent Multi-server Management (MSX) http://bit.ly/2czyved
 - You'll need to build AG aware jobs
- Database logins (ensure the SIDs are the same)
- Linked servers

Operations

- Database maintenance
 - Index maintenance
 - Smart indexing
 - May need to increase the fragmentation thresholds
 - Can we reindex more frequently?
 - Fill factor
- Minimize log generation!!!
- Statistics maintenance
- · CHECKDB
 - All replicas if possible easiest
 - Where you take backups or any replica that could become a primary

Operations (con't)

- Non-Production testing
 - Need to have at least one production-like environment for testing
- Patching
 - Manual failover targets, active failover targets, then primary
- Scheduled downtime
 - Anything that makes a secondary unreachable
 - Network maintenance
 - Server maintenance
 - Agree on a schedule with operations team
- Reseeding a replica

Monitoring

- Monitoring and Trending
 - Establish a baseline for analysis
 - Are we meeting recovery and performance objectives?
 - Measure impact on resources
- What do we want to do for monitoring?
 - Roll your own
 - Third party package
 - SSMS AlwaysOn Dashboard

Monitoring (con't)

- Network throughput
- Page splits
- Log Bytes Flushed/sec and Log
- Send and redo queue size
- Send and redo throughput
- Send and redo latency
- Transaction Delay
- Failover
- Listener online

Hardware

- Physical placement of servers
 - Rack location
 - Power supply
- Servers
 - Can't use last year's hardware for secondaries or DR
 - Physical (CPU/Memory)
 - Virtualization (vCPU/Memory)
- Storage
 - Design for performance on all replica
 - No more using last years SAN or servers at DR

Disk Topology

- Design like any other tier 1 system
 - Establish a performance SLA and design to meet that
- RAID types
- Operating System
- Databases
- Logs
- System databases
- TempDB
 - TempDB configuration

Operating Systems

- Windows 2012 R2 (yes, please)
- Windows 2008 R2 (no, thanks)
 - Special circumstances for quorum
 - Becoming less of an issue
- Review base configuration of operating system
 - Power Management
 - Lock Pages in Memory
 - Instant File Initialization
 - Partition Alignment
 - 64k NTFS Allocation Units

Active Directory

- In 2012 and 2014 Active Directory is required
 - 2016 has domain-less and inter-domain clusters
- The user creating the cluster will need
 - Create computer account on OU servers are in
- Cluster Named Object (CNO) will need
 - Create computer account on OU servers are in
- SQL Service Accounts
 - Easy shared domain user per Windows cluster
 - Managed service accounts not supported but work

HA/DR Testing

- Planned failover
 - Within a data center
 - Between data centers
- Unplanned failover
 - Within a data center
 - Between data centers
- Did your applications reconnect? In time?

HA/DR Testing

- Planned failover
 - Within a data center
 - Between data centers
 - Change from async to sync then failover
 - Move quorum?
 - Backups take a full backup
 - Did your applications connect?...in time?

HA/DR Testing (con't)

- Unplanned failover
 - Within a data center
 - Between data centers
 - How much data did we loose?
 - Who decides when to failover?
 - Did your applications connect?...in time?
 - Move quorum?
 - Backups take a full backup
 - Reseeding replicas

Application Migration

- On-boarding of applications into the new environment
- Construct the new environment
 - Migrate databases onto the new environment
 - Add databases to Availability Groups
 - Use DNS aliases to manage the transition

Licensing

- How many replicas?
- Which secondaries are used for "SQL Workloads"?
 - Basic rule is, if you're connecting to the replica...it needs a license
- Second replica
 - If not used for anything other than failover and on premises (not cloud)
 - For free 2012
 - Free only with SA on 2014+
- Additional replicas
 - · Require license
- http://bit.ly/2b5RsSs Enjoy ;)

SQL Server 2016 Enhancements

- Basic Availability Groups
- Distributed Availability Groups
 - Easier quorum designs
 - Less pressure on inter-AG networks (WAN)
- Parallel redo
- Direct Seeding

Review

- Availability Group topology
- Application connectivity
- Operations
 - Backup
 - Monitoring
 - System and network maintenance
- It's hard!
 - Design
 - Test
- Review the hidden slides in this deck for deeper details and more info!

Hidden Slides!

- Advanced and multi-site quorum configs!
- More on Readable Secondaries
- More on monitoring...
- Database compatibility
- Server Hardware
- Operation System
- Active Directory
- HA/DR Test Patterns
- Application Migration
- Licensing

Need more data or help?

http://www.centinosystems.com/blog/talks/

Links to resources

Demos

Presentation

aen@centinosystems.com @nocentino www.centinosystems.com

Solving tough business challenges with technical innovation

Questions?

References

- http://www.centinosystems.com/blog/sql/designing-for-offloadedbackups-in-alwayson-availability-groups/
- http://www.centinosystems.com/blog/sql/designing-for-offloadedlog-backups-in-alwayson-availability-groups-monitoring/
- http://www.centinosystems.com/blog/sql/monitoring-availabilitygroups-with-redgates-sql-monitor
- https://msdn.microsoft.com/en-us/library/ff878537.aspx
- https://msdn.microsoft.com/en-us/library/ff877972.aspx

