Distribution	probability mass fcn	Support	Parameters	Expectation	Variance
Bernoulli	$p^{y_i}(1-p)^{1-y_i}$	$y_i = 0, 1$	$0 \le p \le 1$	$E[Y_i] = p$	$Var[Y_i] = p(1-p)$
	(n)				
Binomial	$\binom{n}{y_i} p^{y_i} (1-p)^{n-y_i}$	$y_i = 0, 1, 2,, n$	$0 \le p \le 1$	np	np(1-p)
Geometric	$p(1-p)^{y_i-1}$	$y_i = 1, 2,$	0	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	1 (1)	, ,	-1 -	p	p-
Negative	$\binom{r+y_i-1}{y_i} p^r (1-p)^{y_i}$	$y_i = 0, 1, 2, \dots$	$0 \le p \le 1$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
Binomial	(),				
Poisson	$\lambda^{y_i} e^{-\lambda}/y_i!$	$y_i = 0, 1, 2, \dots$	$\lambda > 0$	λ	λ

Distribution	density function	Support	Parameters	Mean	Variance
Uniform (a, b)	$\frac{1}{b-a}$	$a \le y_i \le b$	$-\infty < a < b < \infty$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$
$\mathrm{Beta}(\alpha,\!\beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}y_i^{\alpha-1}(1-y_i)^{\beta-1}$	$0 < y_i < 1$	$\alpha > 0, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
$\mathrm{Normal}(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-(y_i - \mu)^2}{2\sigma^2}\right]$	$-\infty < y_i < \infty$	$-\infty < \mu < \infty$	μ	σ^2
Exponential(β)	$\frac{1}{\beta} \exp(\frac{-y_i}{\beta})$	$y_i \ge 0$	$\beta > 0$	eta	eta^2
$\mathrm{Gamma}(\alpha,\beta)$	$\frac{1}{\beta^{\alpha}\Gamma(\alpha)}y_i^{\alpha-1}\exp(\frac{-y_i}{\beta})$	$y_i \ge 0$	$\alpha > 0, \beta > 0$	lphaeta	$lphaeta^2$
Chi-squared (p) $\equiv \chi_p^2$	$\frac{1}{2^{\frac{p}{2}}\Gamma(\frac{p}{2})}y_i^{p/2-1}\exp(\frac{-y_i}{2})$	$y_i \ge 0$	$p=1,2,\dots$	p	2p
$= \chi_p$ Inverse $Gamma(\alpha, \beta)$	$\frac{1}{\beta^{\alpha}\Gamma(\alpha)}y_i^{-(\alpha+1)}\exp(\frac{-1}{y_i\beta})$	$y_i \ge 0$	$\alpha > 0, \beta > 0$	$\frac{1}{(\alpha-1)\beta}$	$\frac{1}{(\alpha-1)^2(\alpha-2)\beta^2}$
Inverse chi-square (p,q)	$\frac{\left(\frac{q}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})}y_i^{-(\frac{p}{2}+1)}\exp\left(\frac{-q}{2y_i}\right)$	$y_i \ge 0$	p > 0, q > 0	$\frac{q}{p-2}$	$\frac{2q^2}{(p-2)^2(p-4)}$
Pareto (α, β)	$\frac{\beta\alpha^\beta}{y_i^{\beta+1}}$	$y_i > \alpha$	$\alpha > 0, \beta > 0$	$\frac{eta lpha}{eta - 1}$	$\frac{\beta\alpha^2}{(\beta-1)^2(\beta-2)}$
Weibull (γ, β)	$\frac{\gamma}{\beta}y_i^{\gamma-1}\exp(\frac{-y_i^{\gamma}}{\beta})$	$y_i \ge 0$	$\gamma>0,\beta>0$	$\beta^{\frac{1}{\gamma}}\Gamma(1+\frac{1}{\gamma})$	$\beta^{\frac{2}{\gamma}} \times \left[\Gamma(1 + \frac{2}{\gamma}) - \Gamma^2(1 + \frac{1}{\gamma}) \right]$
$t_p(m,w)$	$\frac{1}{\sqrt{\pi w p}} \frac{\Gamma((p+1)/2)}{\Gamma(p/2)} \times \left[1 + \frac{(y_i - m)^2}{mw}\right]^{-(p+1)/2}$	$-\infty < y_i < \infty,$	$p=1,2,\dots$	m	$\frac{wp}{p-2}$

i)
$$(\mu, \tau) \sim \text{NIC}(p, q, m, v) : E[\mu] = m, \ Var[\mu] = \frac{qv}{p-2}, \ E[\tau] = \frac{q}{p-2}, \ Var[\tau] = \frac{2q^2}{(p-2)^2(p-4)}$$

$$f(\mu, \tau : p, q, m, v) = \frac{(q/2)^{\frac{p}{2}}}{\sqrt{2\pi v}\Gamma(\frac{p}{2})}\tau^{-(p+3)/2} \exp\left(-\frac{1}{2\tau}\{v^{-1}(\mu-m)^2 + q\}\right) \quad \tau > 0, -\infty < \mu < \infty$$

ii)
$$(\theta_1, ..., \theta_k) \sim \text{Dirichlet } (\alpha_1, ..., \alpha_k) \quad E[\theta_j] = \frac{\alpha_j}{\alpha_0} \quad \text{Var}[\theta_j] = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)} \quad \text{Cov}[\theta_i, \theta_j] = \frac{-\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$$

$$p(\boldsymbol{\theta}) = \frac{\Gamma(\alpha_1 + ... + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1}, \quad \text{where } \sum_{i=1}^k \theta_j = 1 \quad \alpha_0 = \sum_{i=1}^k \alpha_j$$