Range, Null Space and the Least Squares solution

Definition 10: Let **A** be an arbitrary $m \times n$ $(m \ge n)$ matrix. The function $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is then said to be a **linear mapping** from $\mathbb{R}^n \to \mathbb{R}^m$. The **range** of the linear mapping is the set $B(\mathbf{A}) \subseteq \mathbb{R}^m$, that meets the condition that for any $\mathbf{y} \in B(\mathbf{A})$ exists an $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{y}$. **The null space** of the linear mapping is the set $N(\mathbf{A}) \subseteq \mathbb{R}^n$, that meets the condition that for any $\mathbf{x} \in N(\mathbf{A})$ it applies that $\mathbf{A}\mathbf{x} = 0$.

Theorem 5 Let $\mathbf{u}_1 \dots, \mathbf{u}_K$ be an arbitrary orthonormal basis for $B(\mathbf{A})$. Then the least squares solution \mathbf{x} that minimizes $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ satisfies

$$\mathbf{A}\mathbf{x} = \sum_{k=1}^{K} (\mathbf{b} \cdot \mathbf{u}_k) \mathbf{u}_k \equiv \mathbf{b}_{LS}$$

Singular Value Decomposition

Theorem 6 Consider an arbitrary $m \times n$ matrix **A**. Then we can write **A** as $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$, where **U** is an $m \times n$ column othonormal matrix, **V** is an $n \times n$ orthonormal matrix and **W** is an $n \times n$ diagonal matrix having non-negative diagonal elements $w_1, \ldots w_n$ ordered such that $w_1 \geq w_2 \geq \ldots \geq w_n$. This is said to be a **Singular Value Decomposition** (SVD) of **A**.

$$\begin{pmatrix} \mathbf{A} & \mathbf{A} & \mathbf{C} & \mathbf{V} & \mathbf{V} \end{pmatrix} = \begin{pmatrix} \mathbf{U} & \mathbf{V} & \mathbf{V} & \mathbf{V} \end{pmatrix} \cdot \begin{pmatrix} w_1 & \mathbf{W}_2 & \mathbf{V} \end{pmatrix}$$

 $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$, where \mathbf{U} is an $m \times n$ column othonormal matrix, \mathbf{V} is an $n \times n$ orthonormal matrix and \mathbf{W} is an $n \times n$ diagonal matrix having non-negative diagonal elements $w_1, \dots w_n$ ordered such that $w_1 \geq w_2 \geq \dots \geq w_n$.

Theorem 7 Consider an arbitrary $m \times n$ matrix **A** and assume that for **W** it applies that w_1, \ldots, w_K are positive and w_{K+1}, \ldots, w_n are equal to zero. Then it applies that

- i) $N(\mathbf{A})$ has dimension n-K and the last n-K columns of \mathbf{V} form an orthonormal basis for $N(\mathbf{A})$.
- ii) $B(\mathbf{A})$ has dimension K and the first K columns of \mathbf{U} form an orthonormal basis for $B(\mathbf{A})$.
- iii) The SVD solution $\mathbf{x} = \mathbf{V}\tilde{\mathbf{W}}^{-1}\mathbf{U}^T\mathbf{b}$, where $[\tilde{\mathbf{W}}^{-1}]_{jj} = 0$ if $\mathbf{W}_{jj} = 0$, otherwise $[\tilde{\mathbf{W}}^{-1}]_{jj} = 1/\mathbf{W}_{jj}$, is the least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. (Notice that it then follows that if all of the \mathbf{W}_{jj} 's are positive, i.e. \mathbf{A} has full rank it applies that $\mathbf{x} = \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^T\mathbf{b}$ is the least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$).

Error analysis for systems of linear equations. Residual errors

The residual error should be computed as a relative error, namely

$$\epsilon_{residual} = \frac{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|}{\|\mathbf{b}\|}$$

If m=n, the residual error should be very close to zero unless the matrix is near singular. For m>n, the linear equations are typically from some sort of fitting problem such as a Least Squares Problem. The value $\epsilon_{residual}$ indicates how good the fitting model is. It is easy to see that a random fitting model would produce $\epsilon_{residual} \simeq \sqrt{\frac{m-n}{m}}$. If your result is not much better than that, you should consider the quality of your model.

Error analysis for systems of linear equations. Errors on solution

Even though solving a set of linear equations seem very deterministic, it is relevant to consider the error $\delta \mathbf{x}$ on the result \mathbf{x} . In typical applications, there are two very different sources to this error.

The first source is the error on the right hand side $\delta \mathbf{b}$. The error $\delta \mathbf{b}$ is typically is some kind of measurement error and therefore may be quite large.

The second source is the error on the matrix $\delta \mathbf{A}$ which is typically due to the real number precision. Hence, $\|\delta \mathbf{A}\|$ is mostly of the order $\|\delta \mathbf{A}\| \simeq 10^{-18}$.

Error on solution. Impact from error on right hand side

$$\mathbf{A}_{ij} := \mathbf{A}_{ij}/\sigma_i \quad i = 1, \dots m, \quad j = 1, \dots n$$

 $\mathbf{b}_i := \mathbf{b}_i/\sigma_i \quad i = 1, \dots m$

where σ_i is the inaccuracy on \mathbf{b}_i .

The error estimate $\delta \mathbf{x}$ is then purely given by the SVD matrices using Eq.15.4.19

$$[\delta \mathbf{x}]_j \simeq \sqrt{\sum_{i=1}^n \left(\frac{V_{ji}}{w_i}\right)^2} \quad j = 1, \dots, n$$
 (4)

Error on solution. Impact from error on matrix

$$(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$$

For simplicity, we restrict ourselves to inaccuracies $\delta \mathbf{A}$ that are in the range of \mathbf{A} . Hence, $\delta \mathbf{A} = \mathbf{U}\mathbf{U}^T\delta \mathbf{A}$. Formulating using SVD, we get

$$\mathbf{U}\mathbf{W}\mathbf{V}^{T}(\mathbf{I} + \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^{T}\delta\mathbf{A})(\mathbf{x} + \delta\mathbf{x}) = \mathbf{b}$$

$$(\mathbf{x} + \delta \mathbf{x}) = (\mathbf{I} + \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{T} \delta \mathbf{A})^{-1} \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{T} \mathbf{b}$$
$$= (\mathbf{I} + \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{T} \delta \mathbf{A})^{-1} \mathbf{x}$$

and hence

$$(\mathbf{x} + \delta \mathbf{x}) = (\mathbf{I} + \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{T} \delta \mathbf{A})^{-1} \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{T} \mathbf{b}$$
$$= (\mathbf{I} + \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{T} \delta \mathbf{A})^{-1} \mathbf{x}$$

which yields

$$\delta \mathbf{x} = [(\mathbf{I} + \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^T\delta\mathbf{A})^{-1} - \mathbf{I}]\mathbf{x}$$

Using geometric series and approximations, we get (see notes):

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{\|\mathbf{W}^{-1}\| \|\delta \mathbf{A}\|}{1 - \|\mathbf{W}^{-1}\| \|\delta \mathbf{A}\|}$$

$$\tag{5}$$

If we compute $\mathbf{A}^T \mathbf{A}$ using SVD, we get

$$\mathbf{A}^T \mathbf{A} = (\mathbf{U} \mathbf{W} \mathbf{V}^T)^T (\mathbf{U} \mathbf{W} \mathbf{V}^T) = (\mathbf{V} \mathbf{W} \mathbf{U}^T) (\mathbf{U} \mathbf{W} \mathbf{V}^T) = \mathbf{V} \mathbf{W}^2 \mathbf{V}^T$$

which is itself the SVD of $\mathbf{A}^T \mathbf{A}$.

We then get the SVD solution to $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ as

$$(\mathbf{x} + \delta \mathbf{x}) = (\mathbf{I} + \mathbf{V} \mathbf{W}^{-2} \mathbf{V}^{T} \delta \mathbf{A})^{-1} \mathbf{V} \mathbf{W}^{-2} \mathbf{V}^{T} (\mathbf{V} \mathbf{W} \mathbf{U}^{T} \mathbf{b})$$

$$= (\mathbf{I} + \mathbf{V} \mathbf{W}^{-2} \mathbf{V}^{T} \delta \mathbf{A})^{-1} \mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{T} \mathbf{b}$$

$$= (\mathbf{I} + \mathbf{V} \mathbf{W}^{-2} \mathbf{V}^{T} \delta \mathbf{A})^{-1} \mathbf{x}$$

Performing the derivation completely equivalent to the above, we get

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \frac{\|\mathbf{W}^{-2}\| \|\delta \mathbf{A}\|}{1 - \|\mathbf{W}^{-2}\| \|\delta \mathbf{A}\|}$$

$$\tag{6}$$

Here we see the problem with the Normal Equations. If for example $w_n = 10^{-9}$ for \mathbf{A} , we get $\|\mathbf{W}^{-2}\| = 10^{-18}$ and hence $\|\mathbf{W}^{-2}\| \|\delta \mathbf{A}\|$ becomes around one for a double precision number representation. This is exactly the problem we see in Filip with the Normal Equations.