

ARMAX Lecture

Dr. Goutam Chakraborty

Note some of these slides are copyrighted by SAS® and used with permission. Reuse or redistribution is prohibited

Regression of Y on X

- Linear Regression Model: $Y_t = \beta_0 + \beta_1 X_t + \mathcal{E}_t$ * X_t is an external or *exogenous* predictor of Y_t .

Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

- Assumptions include:
 - The predictor variables are known and measured *without* error.
 - The functional relationship between inputs and target is linear.
 - The error term represents a set of random variables that are independent and identically distributed with a Gaussian normal distribution having a mean of 0 and a variance of σ^2 .

Time Series Regression Terminology

- Ordinary Regressor
 - an input variable that has only a concurrent influence on the target variable
 - X at time t is correlated with Y at time t.
 X at times before t is uncorrelated with Y at time t.
- Dynamic Regressor
 - an input variable that influences the target variable at current and past values
 - X at times t, t-1, t-2, ..., influences Y at time t.
- Transfer Function
 - a function that provides the mathematical relationship between a dynamic regressor and the target variable

Types of Regressors: Measurement Scale

- Binary (dummy) variables
 - take the value of zero or one
 - can be used to quantify nominal data
- Categorical variables
 - nominal scaled ⇒ nonquantitative categories
 - Ordinal scaled variables can be treated as categorical.
 - They must be coded into a quantitative input. Usually they use a form of dummy coding for each level (less one if a constant term is used in the model).
- Quantitative variables
 - interval or ratio scaled
 - can be transformed

Types of Regressors: Randomness

- Deterministic
 - controlled by experimenter
 - alternatively, can be perfectly predicted without error
- Stochastic
 - governed by unknown probability distributions
 - cannot be perfectly predicted

Types of Regressors

- Deterministic examples
 - dummy coding for
 - settings on a machine (for example, electric current, temperature, and pressure on production equipment)
 - intervention weights (for example, saturation for legislation that is phased in uniformly by month over a year: 1/12, 2/12, 3/12, ...,12/12)
 - advertising expenditures by your company when these are...

Types of Regressors

- Stochastic examples
 - ambient, outside, air temperature
 - competitor sales
 - interest rates
 - consumer price index
 - unemployment rate
 - rate per 1000 households of television viewership
 - stock market indices

4

The Cross-Correlation Function (CCF)

continued...

- CCF(k) is the cross-correlation of target Y with input X at lag k.
 - A significant value at lag k implies that Y_t and X_{t-k} are correlated.
 - Spikes and decay patterns in the cross-correlation function can help determine the form of the transfer function.
 - The sample CCF estimates an unknown population CCF.

