

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 2:Previsão de Carga e Divisão das Instalações Elétricas — Aula 04

Instalações Elétricas I Engenharia Elétrica

2.2- Quadro de Distribuição

• Definição:

- É o local onde se concentra a distribuição de toda a instalação elétrica, ou seja, onde se instalam os dispositivos de proteção, manobra e comando.
- Recebe os condutores do ponto de entrada (ramal de alimentação) que vem do medidor ou do centro de medição.
- Deste também partem os circuitos terminais que alimentam diversas cargas da instalação (lâmpadas, tomadas, chuveiros, torneira elétrica, ar- condicionado, etc.)

Fonte: Schneider-Electric

Fonte: Promatt Soluções em Engenharia

Entrada de Energia/QDC

Partes Componentes de um Quadro de Distribuição

Quadro de Distribuição Monofásico

Quadro de Distribuição Monofásico

Quadro de Distribuição Trifásico

Quadro de Distribuição

- Os dispositivos de proteção, manobra e comando devem ser instalados e ligados segundo as instruções dos fabricantes, respeitando as seguintes prescrições:
 - Acessibilidade;
 - Identificação dos componentes;
 - Independência dos componentes;
 - Componentes fixados na porta;
 - Espaço reserva.

Quantidade de circuitos efetivamente disponível N	Espaço mínimo destinado à reserva (em número de circuitos)							
Até 6	2							
7 a 12	3							
13 a 30	4							
N > 30	0,15 N							

Nota: A capacidade de reserva deve ser considerada no cálculo do alimentador do respectivo quadro de distribuição.

- Quantidade de Quadros de Distribuição
 - Número de centros de carga;
 - Aspecto econômico;
 - Versatilidade desejada.

Localização do(s) Quadro(s) de Distribuição(QD's)

- O quadro de distribuição deve ser instalado, observando os seguintes critérios:
 - Em local de fácil acesso, permitindo obter a maior funcionalidade possível da instalação, e ainda ser provido de identificação do lado externo, legível e não facilmente removível;
 - Proximidade geométrica das cargas, possibilitando uma simetria entre as cargas da instalação;
 - Os quadros de distribuição devem estar próximos ao centro de carga da instalação (Centro de carga é definido como o ponto ou região onde se verifica a maior concentração de potência);
 - Deve ser feita em local seguro, não permitindo o acesso de terceiros. Não devem ser submetidos a choques mecânicos.

2.3- Divisão da Instalação em Circuitos Terminais

- É de fundamental importância efetuar a divisão da instalação elétrica em circuitos, de acordo com as necessidades, em tantos circuitos quanto forem necessários, de forma a poder ser seccionado sem risco de realimentação inadvertida através de outro circuito.
- A divisão da instalação em circuitos elétricos deve ser de modo a atender:
 - A segurança;
 - Conservação de energia;
 - Funcionais;
 - A produção;
 - Manutenção.
- Cada circuito terminal deve ter um dispositivo de proteção.

2.3.1- Circuito Elétrico

Definição:

- É o conjunto de equipamentos e condutores, ligados a um mesmo dispositivo de proteção;
- É constituído basicamente dos seguintes elementos: fonte, condutores, proteção, dispositivos de comando (interruptores ou tomadas) e carga.
- São divididos em:
 - Circuito de distribuição (atende a várias cargas);
 - Circuitos terminais (atendem uma carga específica ponto de utilização).

Circuitos Terminais

Definição:

 Partem do quadro de distribuição e alimentam diretamente lâmpadas, tomadas de uso geral (TUG) e tomadas de uso específico (TUE);

Exemplo de Circuito TUE: 127V

Exemplo de Circuito TUE: 220V

2.3.2- Critérios para Divisão da Instalação em Circuitos

- Devem ser previstos circuitos terminais distintos para iluminação e tomadas, para qualquer tipo de edificação.
- Devem ser previstos circuitos independentes para equipamentos com corrente superior a 10 A (Tomada de uso exclusivo).
- Devem ser previstos circuitos individuais para pontos de tomada de cozinha, copas, copascozinhas, área de serviço, lavanderia e locais análogos.
- Devem ser previstos circuitos individuais para pontos de tomadas nos demais cômodos ou dependências.
- Limitar os circuitos de iluminação em:
 - 1270 VA/127V e 2200 VA/220V;
- Limitar os circuitos de tomada de uso geral (TUG) em:
 - 2100VA/127V e 4000 VA/220V;
- Nas instalações alimentadas por duas ou três fases, as cargas devem ser distribuídas entre as fases de modo a obter-se o maior equilíbrio possível. A EDP Escelsa sugere o máximo desequilíbrio em 5%.

Critérios para Divisão da Instalação em Circuitos

- A NBR 5410/2004 admite a união dos circuito de tomadas e iluminação somente em locais de habitação, desde que sejam atendidas simultaneamente as seguintes condições:
 - A corrente de projeto do circuito de iluminação e tomada não seja superior a 16A;
 - Os pontos de iluminação não sejam alimentados, em sua totalidade, por um só circuito (iluminação mais tomadas);
 - Os pontos de tomada de cozinhas, copas, copas-cozinhas, áreas de serviço, lavanderia e locais análogos devem ser atendidos por circuitos exclusivamente destinados a alimentação destes locais.
- Mas fica a pergunta, o que se ganha unindo os circuitos de iluminação e tomada?

Exemplo 2.2) Realizada a previsão de carga no exemplo 2.1, faça:

- a) A marcação dos pontos de luz, TUG e TUE na planta baixa, conforme o mínimo previsto em norma.
- b) Posicione o QDC e defina o caminho dos eletrodutos para condução dos fios.
- c) Divida as cargas em circuitos, e faça o diagrama de ligação dos condutores apropriados nos eletrodutos.

Quadro de cargas

	Iluminação		Tomada de uso geral (TUG)		TUE Pot. Total		Tensão	Corrente	Condutor	Disjuntor	Bala	nceam	ento
Circuito	100 VA	200 VA	100 VA	600 VA	(VA)	(VA)	(V)	(A)	(mm²)	(A)	Α	В	С
1- Iluminação (sala													
+quarto + BWC +	3	3	-	-	_	900	127	7,09					
cozinha+hall)													
2- TUG (sala + quarto +	-		8	1	-	1400	127	11,02					
banheiro + hall)													
3- TUG (cozinha)	_	-	1	3	_	1900	127	14,96					
4- TUE chuveiro	_	-	-	-	5400	5400	220	24,55					

O cálculo será apresentado nas próximas unidades.

Obs:

- Tomadas não cotadas são de 100VA.
- Circuito de iluminação não cotado tem bitola de 1,5 mm^{2.}
- Circuito de tomada não cotado tem bitola de 2,5 mm².

Exemplo 2.3) Repita o exemplo 2.2, porém agora fazendo a união dos circuitos de iluminação e tomada. Respeite todos critérios definidos pela NBR 5410/2004 para esta condição.

Quadro de cargas

	Iluminação		Tomada de uso geral (TUG)		TUE	Pot. Total	Tensão	Corrente	Condutor	Disjuntor	Balanceamento		ento
Circuito	100 VA	200 VA	100 VA	600 VA	(VA)	(VA)	(V)	(A)	(mm²)	(A)	Α	В	С
1- Iluminação + TUG (sala +quarto +hall)	1	3	8	-	-	1500	127	11,81					
2- Iluminação (BWC + cozinha) + TUG (BWC)	2	-		1	-	800	127	6,30					
3- TUG (cozinha)	-	-	1	3	-	1900	127	14,96					
4- TUE chuveiro	-	_	-	-	5400	5400	220	24,55					

O cálculo será apresentado nas próximas unidades.

Obs:

- Tomadas não cotadas são de 100VA.
- Circuito de iluminação e tomada não cotado tem bitola de 2,5 mm².
- Circuito de tomada não cotado tem bitola de 2,5 mm^{2.}

