

Dynamic PageRank: Algorithms and Lower Bounds 2024

- \bullet Rajesh Jayaram
- Jakub Łącki
- Slobodan Mitrović
- Krzysztof Onak
- Piotr Sankowski

Zuzanna Szewczyk Piotr Kubicki

PageRank

Cel: stworzyć ranking oceniający wierzchołki grafu (strony internetowe)

PageRank

Proces stochastyczny ma rozkład stacjonarny jeżeli łańcuch markowa jest ergodyczny:

Proces stochastyczny ma rozkład stacjonarny jeżeli łańcuch markowa jest ergodyczny:

nieredukowalny
 jedna spójna składowa

Proces stochastyczny ma rozkład stacjonarny jeżeli łańcuch markowa jest ergodyczny:

- nieredukowalny jedna spójna składowa
- pozytywnie rekurencyjny
 Wszystkie stany pozytywnie rekurencyjne

Proces stochastyczny ma rozkład stacjonarny jeżeli łańcuch markowa jest ergodyczny:

- nieredukowalny jedna spójna składowa
- pozytywnie rekurencyjny Wszystkie stany pozytywnie rekurencyjne
- aperiodyczny brak okresowości

 ϵ prawdopodobieństwo losowego skoku

Proces stochastyczny ma rozkład stacjonarny jeżeli łańcuch markowa jest ergodyczny:

- nieredukowalny jedna spójna składowa
- pozytywnie rekurencyjny
 Wszystkie stany pozytywnie rekurencyjne
- aperiodyczny brak okresowości

 $1-\epsilon$ prawdopodobieństwo przejścia krawędzią grafu (damping factor)

 ϵ prawdopodobieństwo losowego skoku

Proces stochastyczny ma rozkład stacjonarny jeżeli łańcuch markowa jest ergodyczny:

- √ nieredukowalny jedna spójna składowa
- ✓ pozytywnie rekurencyjny Wszystkie stany pozytywnie rekurencyjne
- å aperiodyczny brak okresowości

 $1-\epsilon$ prawdopodobieństwo przejścia krawędzią grafu (damping factor)

Dla grafu G=(V,E) wektor PageRank $\pi\in\mathbb{R}^n$ to rozkład stacjonarny spaceru losowego, który w każdym kroku z prawdopodobieństwej ϵ skacze do dowolnego wierzchołka.

Dla grafu G=(V,E) wektor PageRank $\pi\in\mathbb{R}^n$ to rozkład stacjonarny spaceru losowego, który w każdym kroku z prawdopodobieństwej ϵ skacze do dowolnego wierzchołka.

Macierz przejścia M ma więc postać:

$$M_{i,j} = \begin{cases} \frac{\epsilon}{n} + (1 - \epsilon) \frac{1}{deg(i)}, & \text{if } (i, j) \in E\\ \frac{\epsilon}{n}, & \text{else} \end{cases}$$

Dla grafu G=(V,E) wektor PageRank $\pi\in\mathbb{R}^n$ to rozkład stacjonarny spaceru losowego, który w każdym kroku z prawdopodobieństwej ϵ skacze do dowolnego wierzchołka.

Macierz przejścia M ma więc postać:

$$M_{i,j} = \begin{cases} \frac{\epsilon}{n} + (1 - \epsilon) \frac{1}{deg(i)}, & \text{if } (i, j) \in E\\ \frac{\epsilon}{n}, & \text{else} \end{cases}$$

Obliczanie przybliżonej wartości π

Dla grafu G=(V,E) wektor PageRank $\pi\in\mathbb{R}^n$ to rozkład stacjonarny spaceru losowego, który w każdym kroku z prawdopodobieństwej ϵ skacze do dowolnego wierzchołka.

Macierz przejścia M ma więc postać:

$$M_{i,j} = \begin{cases} \frac{\epsilon}{n} + (1 - \epsilon) \frac{1}{deg(i)}, & \text{if } (i, j) \in E\\ \frac{\epsilon}{n}, & \text{else} \end{cases}$$

Obliczanie przybliżonej wartości π

• Metoda potęgowa

Dla grafu G=(V,E) wektor PageRank $\pi\in\mathbb{R}^n$ to rozkład stacjonarny spaceru losowego, który w każdym kroku z prawdopodobieństwej ϵ skacze do dowolnego wierzchołka.

Macierz przejścia M ma więc postać:

$$M_{i,j} = \begin{cases} \frac{\epsilon}{n} + (1 - \epsilon) \frac{1}{deg(i)}, & \text{if } (i, j) \in E\\ \frac{\epsilon}{n}, & \text{else} \end{cases}$$

Obliczanie przybliżonej wartości π

- Metoda potęgowa
- Samplowanie losowych spacerów

Rodzaje aproksymacji

Aproksymacja addytywna α

$$\|\tilde{\pi} - \pi\|_1 \le \alpha$$

Rodzaje aproksymacji

Aproksymacja addytywna α

$$\|\tilde{\pi} - \pi\|_1 \le \alpha$$

Aproksymacja multiplikatywna $1 + \alpha$

$$\tilde{\pi_v} \in [(1-\alpha)\pi_v, (1+\alpha)\pi_v]$$
 dla każdego wierzchołka v

Rodzaje aproksymacji

Aproksymacja addytywna α

$$\|\tilde{\pi} - \pi\|_1 \le \alpha$$

Aproksymacja multiplikatywna $1 + \alpha$

$$\tilde{\pi_v} \in [(1-\alpha)\pi_v, (1+\alpha)\pi_v]$$

dla każdego wierzchołka \boldsymbol{v}

$$(1 - \alpha)\pi_v \le \tilde{\pi_v} \le (1 + \alpha)\pi_v$$

$$-\alpha \pi_v \le \tilde{\pi_v} - \pi_v \le \alpha \pi_v$$

$$|\tilde{\pi_v} - \pi_v| \le \alpha \pi_v$$

$$\sum_{v \in V} |\tilde{\pi_v} - \pi_v| \le \alpha \sum_{v \in V} \pi_v = \alpha$$

Przybliżanie π za pomocą losowych spacerów

Algorytm 1

- 1: Sample a set W of $R = \lceil \frac{9 \ln n}{\epsilon \alpha^2} \rceil$ random walks starting from each vertex of G. Each walk length is chosen from geometric distribution with parameter 1ϵ .
- 2: Remove from W all walks longer than ℓ .
- 3: for $v \in V$ do
- 4: $\mathbf{X}_v \leftarrow$ the number of times the walks from W visit v.
- 5: $\tilde{\pi}(v) \leftarrow \frac{\mathbf{X}_v}{|W|/\epsilon}$.
- 6: end for
- 7: Return $\tilde{\pi}$

Proposition 1 ([BCG10, LMOS20]). Let π be the PageRank vector of a graph G. The estimate $\tilde{\pi}$ computed by Algorithm 1 (with $\ell = \infty$) satisfies (a) for all $v \in V$ we have $\mathbb{E}[\tilde{\pi}_v] = \pi_v$, and (b) with probability $1 - 1/\operatorname{poly}(n)$, simultaneously for all $v \in V$, we have $\tilde{\pi}_v = (1 \pm \alpha)\pi_v$.

Dany jest graf G wraz ze wszystkimi jego wierzchołkam, a jego krawędzie są wstawiane i usuwane. Celem jest utrzymanie przybliżonego wektora Page-Rank $\tilde{\pi}$.

Rozważamy głównie grafy skierowane

Dany jest graf G wraz ze wszystkimi jego wierzchołkam, a jego krawędzie są wstawiane i usuwane. Celem jest utrzymanie przybliżonego wektora Page-Rank $\tilde{\pi}$.

Rozważamy głównie grafy skierowane

W pracy rozważane jest jedynie jawne utrzymywanie wartości $\tilde{\pi}$ po każdej operacji wstawienia/usunięcia krawędzi

Dany jest graf G wraz ze wszystkimi jego wierzchołkam, a jego krawędzie są wstawiane i usuwane. Celem jest utrzymanie przybliżonego wektora Page-Rank $\tilde{\pi}$.

Rozważamy głównie grafy skierowane

W pracy rozważane jest jedynie jawne utrzymywanie wartości $\tilde{\pi}$ po każdej operacji wstawienia/usunięcia krawędzi

Rozróżniamy też trzy ustawienia ciągu operacji:

- inkrementacyjne (ciąg wstawień)
- dekrementacyjne (ciąg usunięć)
- w pełni dynamiczne

Dany jest graf G wraz ze wszystkimi jego wierzchołkam, a jego krawędzie są wstawiane i usuwane. Celem jest utrzymanie przybliżonego wektora Page-Rank $\tilde{\pi}$.

Rozważamy głównie grafy skierowane

W pracy rozważane jest jedynie jawne utrzymywanie wartości $\tilde{\pi}$ po każdej operacji wstawienia/usunięcia krawędzi

Rozróżniamy też trzy ustawienia ciągu operacji:

- inkrementacyjne (ciąg wstawień)
- dekrementacyjne (ciąg usunięć)
- w pełni dynamiczne

Stosowane podejścia:

- obliczanie PageRank za każdym razem od nowa
- utrzymywanie zbioru losowych spacerów i aktualizowanie go!

dynamiczna wersja Algorytmu 1 [Bahmani 2010]

Jesteśmy w stanie utrzymywać $\alpha+1$ multiplikatywną aproksymację dla ciągu losowych wstawień (bądź ciągu losowych usunięć) w czasie $poly\ log(n)$.

[Bahmani 2010]

Jesteśmy w stanie utrzymywać $\alpha + 1$ multiplikatywną aproksymację dla ciągu losowych wstawień (bądź ciągu losowych usunięć) w czasie poly log(n).

[Bahmani 2010]

Czy zachodzi też w ogólnym przypadku?

Jesteśmy w stanie utrzymywać $\alpha + 1$ multiplikatywną aproksymację dla ciągu losowych wstawień (bądź ciągu losowych usunięć) w czasie $poly \ log(n)$.

[Bahmani 2010]

Czy zachodzi też w ogólnym przypadku?

Jakie jest dolne ograniczenie na czas działania algorytmu utrzymującego α addytywną aproksymację dla ciągu wstawień krawędzi?

Jesteśmy w stanie utrzymywać $\alpha + 1$ multiplikatywną aproksymację dla ciągu losowych wstawień (bądź ciągu losowych usunięć) w czasie $poly \ log(n)$.

[Bahmani 2010]

Czy zachodzi też w ogólnym przypadku?

Jakie jest dolne ograniczenie na czas działania algorytmu utrzymującego α addytywną aproksymację dla ciągu wstawień krawędzi?

A jakie gdy utrzymujemy $\alpha+1$ multiplikatywą aproksymacją

Ograniczenie dolne dla utrzymywania α addytywnej aproksymacji

Zakłądając, że $(1/\alpha) = n^{o(1/\log \log n)}$

Koszt ciągu operacji: $n \cdot (\frac{1}{\alpha})^{\Omega(loglogn)}$

Ograniczenie dolne dla utrzymywania α addytywnej aproksymacji

Zakłądając, że $(1/\alpha) = n^{o(1/\log \log n)}$

Koszt ciągu operacji: $n \cdot (\frac{1}{\alpha})^{\Omega(loglogn)}$

Ograniczenie dolne dla utrzymywania $\alpha+1$ multiplikatywnej aproksymacji

Amortyzowany czas operacji jest rzędu $\Omega(n^{1-\delta}), \delta>0$

Ograniczenie dolne dla utrzymywania α addytywnej aproksymacji

Zakłądając, że $(1/\alpha) = n^{o(1/\log \log n)}$

Koszt ciągu operacji: $n \cdot (\frac{1}{\alpha})^{\Omega(loglogn)}$

Modyfikacja algorytmu utrzymującego losowe spacery

Analiza poprawności i złożoności dla α addytywnej aproksymacji w ciągu wstawień bądź ciągu usunięć

Czas działąnia dla ciągu operacji: $O(m) + n \cdot (\frac{1}{\alpha})^{O_{\epsilon}(loglogn)}$

Ograniczenie dolne dla utrzymywania $\alpha+1$ multiplikatywnej aproksymacji

Amortyzowany czas operacji jest rzędu $\Omega(n^{1-\delta}), \delta > 0$

Ograniczenie dolne dla utrzymywania α addytywnej aproksymacji

Zakłądając, że $(1/\alpha) = n^{o(1/\log \log n)}$

Koszt ciągu operacji: $n \cdot (\frac{1}{\alpha})^{\Omega(loglogn)}$

Modyfikacja algorytmu utrzymującego losowe spacery Analiza poprawności i złożoności dla α addytyw-

Analiza poprawności i złożoności dla α addytywnej aproksymacji w ciągu wstawień bądź ciągu usunięć

Czas działąnia dla ciągu operacji: $O(m) + n \cdot (\frac{1}{\alpha})^{O_{\epsilon}(loglogn)}$

Ograniczenie dolne dla utrzymywania $\alpha+1$ multiplikatywnej aproksymacji

Amortyzowany czas operacji jest rzędu $\Omega(n^{1-\delta}), \delta>0$

Analiza działania algorytmu dla grafów nieskierowanych w pełni dynamicznym ustawieniu

Utrzymanie $\alpha+1$ multiplikatywnej aproksymacji w czasie $O(\log^5 n/(\epsilon^2 \alpha^2))$ dla jednej operacji

Będziemy interpretowali PageRank w myśl propozycji 1:

 $\tilde{\pi}$ computed by Algorithm 1 (with $\ell = \infty$) satisfies (a) for all $v \in V$ we have $\mathbb{E}\left[\tilde{\pi}_v\right] = \pi_v$

Będziemy interpretowali PageRank w myśl propozycji 1:

Każdy wierzchołek ma pewną masę probabilistyczną, która generuje, bądź otrzymuje od innych wierzchołków.

 $\tilde{\pi}$ computed by Algorithm 1 (with $\ell = \infty$) satisfies (a) for all $v \in V$ we have $\mathbb{E}\left[\tilde{\pi}_v\right] = \pi_v$

Będziemy interpretowali PageRank w myśl propozycji 1:

Każdy wierzchołek ma pewną masę probabilistyczną, która generuje, bądź otrzymuje od innych wierzchołków.

Każdy wierzchołek generuje 1/n masy

 $\tilde{\pi}$ computed by Algorithm 1 (with $\ell = \infty$) satisfies (a) for all $v \in V$ we have $\mathbb{E}\left[\tilde{\pi}_v\right] = \pi_v$

Będziemy interpretowali PageRank w myśl propozycji 1:

Każdy wierzchołek ma pewną masę probabilistyczną, która generuje, bądź otrzymuje od innych wierzchołków.

Każdy wierzchołek generuje 1/n masy

 $(1-\epsilon)$ części masy każdego wierzchołka jest rozdzielona równomiernie między jego sąsiadów.

Page Rank wierzchołka do ϵ owa część jego masy prawdopodobieństwa. $\tilde{\pi}$ computed by Algorithm 1 (with $\ell = \infty$) satisfies (a) for all $v \in V$ we have $\mathbb{E}[\tilde{\pi}_v] = \pi_v$

Będziemy interpretowali PageRank w myśl propozycji 1:

Każdy wierzchołek ma pewną masę probabilistyczną, która generuje, bądź otrzymuje od innych wierzchołków.

Każdy wierzchołek generuje 1/n masy

 $(1-\epsilon)$ części masy każdego wierzchołka jest rozdzielona równomiernie między jego sąsiadów.

Page Rank wierzchołka do ϵ owa część jego masy prawdopodobieństwa.

Observation 3.1. Let v be a vertex, whose only outgoing edge is a self loop. Assume that v receives a probability mass of p along its incoming edges other than the self-loop. Then, the PageRank of v is p + 1/n.

 $\tilde{\pi}$ computed by Algorithm 1 (with $\ell = \infty$) satisfies (a) for all $v \in V$ we have $\mathbb{E}[\tilde{\pi}_v] = \pi_v$

$$\pi_x \in \Omega((\log n)/n) \quad x \in R$$

Wartości po usunięciu (u, v)

$$\pi'_u \in \Omega(1)$$
 $\pi'_v \in O(\epsilon/n)$
 $\pi'_x \in O(1/n)$ $x \in R$

Dla $\Omega(\frac{n}{\log n})$ wierzchołków wartości różnią się $\Omega(\log n)$ krotnie po jednej operacji usunięcia.

Dla $\Omega(\frac{n}{\log n})$ wierzchołków wartości różnią się $\Omega(\log n)$ krotnie po jednej operacji usunięcia.

Co ze złożonością amortyzowaną?

Twierdzenie 1

Twierdzenie 1

Theorem 1.1. Fix $\epsilon \in (0.01, 0.99)$. For any sufficiently large $n \ge 1$ and any α such that $1/\alpha = n^{o(1/\log\log n)}$, any algorithm which explicitly maintains α -additive approximation of PageRank must run in $n \cdot (1/\alpha)^{\Omega(\log\log n)}$ total time.

Twierdzenie 1

Theorem 1.1. Fix $\epsilon \in (0.01, 0.99)$. For any sufficiently large $n \ge 1$ and any α such that $1/\alpha = n^{o(1/\log\log n)}$, any algorithm which explicitly maintains α -additive approximation of PageRank must run in $n \cdot (1/\alpha)^{\Omega(\log\log n)}$ total time.

Zarys dowodu:

Pokażemy konstrukcję grafu, do którego będziemy wstawiać krawędzie. Wiele wstawień będzie wymagało aktualizacji liniowej liczby wartości $\tilde{\pi}$.

Po drodze potrzebne będą dwa lematy.

Graf Gbędzie składał się z 4 części: R,H,S_0,S_1

Graf G będzie składał się z 4 części: R, H, S_0, S_1

Podgraf H będzie drzewem o korzeniu r i głębokości d.

Każdy wierzchołek wewnętrzny będzie miał tdzieci numerowanych od 0 do $t-1\,$

Graf Gbędzie składał się z 4 części: R,H,S_0,S_1

Podgraf H będzie drzewem o korzeniu r i głębokości d.

Każdy wierzchołek wewnętrzny będzie miał tdzieci numerowanych od 0 do $t-1\,$

Do dziecka i-tego będzie prowadziło p^i równoległych krawędzi, dla $p=(1/\epsilon)\geq 2.$

Graf G będzie składał się z 4 części: R, H, S_0, S_1

Podgraf H będzie drzewem o korzeniu r i głębokości d.

Każdy wierzchołek wewnętrzny będzie miał tdzieci numerowanych od 0 do $t-1\,$

Do dziecka *i*-tego będzie prowadziło p^i równoległych krawędzi, dla $p=(1/\epsilon)\geq 2.$

Z każdego wierzchołka wewnętrznego Hwychodzi ${\cal O}(p^t)$ krawędzi.

W H jest $\Theta(t^d)$ wierzchołków oraz $\Theta(t^d \cdot p^t)$ krawędzi.

GrafGbędzie składał się z 4 części: R,H,S_0,S_1

Z każdego wierzchołka wewnętrznego H wychodzi $O(p^t)$ krawędzi. W H jest $\Theta(t^d)$ wierzchołków

oraz $\Theta(t^d \cdot p^t)$ krawędzi.

Graf G będzie składał się z 4 części: R, H, S_0, S_1

Podgraf R to n/4 wierzchołków. Z każdego z nich wychodzi jedna krawędź do r.

Z każdego wierzchołka wewnętrznego H wychodzi $O(p^t)$ krawędzi. W H jest $\Theta(t^d)$ wierzchołków oraz $\Theta(t^d \cdot p^t)$ krawędzi.

Graf G będzie składał się z 4 części: R, H, S_0, S_1

Podgraf R to n/4 wierzchołków. Z każdego z nich wychodzi jedna krawędź do r.

 S_0 i S_1 to gwiazdy o n/4 wierzchołkach, których centra to c_0 i c_1 , a liście mają pętle do samych siebie.

Z każdego wierzchołka wewnętrznego H wychodzi $O(p^t)$ krawędzi.

W H jest $\Theta(t^d)$ wierzchołków oraz $\Theta(t^d \cdot p^t)$ krawędzi.

Graf G będzie składał się z 4 części: R, H, S_0, S_1

Podgraf R to n/4 wierzchołków. Z każdego z nich wychodzi jedna krawędź do r.

 S_0 i S_1 to gwiazdy o n/4 wierzchołkach, których centra to c_0 i c_1 , a liście mają pętle do samych siebie.

Liście drzewa H będą nazwane kolejno l_1, l_2, \dots i są podpinane na

Z każdego wierzchołka wewnętrznego H wychodzi $O(p^t)$ krawędzi.

W H jest $\Theta(t^d)$ wierzchołków oraz $\Theta(t^d \cdot p^t)$ krawędzi.

Ciąg wstawień będzie odbywał się na podgrafie H.

Ciąg wstawień będzie odbywał się na podgrafie H.

Początkowo tylko dzieci z indeksem 0 będą podpięte do rodzica.

Ciąg wstawień będzie odbywał się na podgrafie H.

Początkowo tylko dzieci z indeksem 0 będą podpięte do rodzica.

Zgodnie z porządkiem pre-order będziemy chodzić po drzewie i podpinać wszystkie krawędzie od rodzica do aktualnego wierzchołka

Ciąg wstawień będzie odbywał się na podgrafie H.

Początkowo tylko dzieci z indeksem 0 będą podpięte do rodzica.

Zgodnie z porządkiem pre-order będziemy chodzić po drzewie i podpinać wszystkie krawędzie od rodzica do aktualnego wierzchołka

Za każdym razem gdy dojdziemy do liścia l_i połączymy go ze wszystkimi wierzchołkami z R

Intuicja: Łącząc dany liść z grafem R przekażemy mu znaczną część masy prawdopodobieństwa (duża liczba krawędzi prowadzi do nowo połączonego liścia), co wpłynie na wartość w liściach jednej z gwiazd S.

Intuicja: Łącząc dany liść z grafem R przekażemy mu znaczną część masy prawdopodobieństwa (duża liczba krawędzi prowadzi do nowo połączonego liścia), co wpłynie na wartość w liściach jednej z gwiazd S.

Lemat 1(3.2) Consider the graph G^{τ} obtained right after inserting all edges on the path from R to ℓ_i . Let m_i be the probability mass that reaches ℓ_i from R in G^{τ} . Then $m_i \geq (1 - \epsilon)^{2d+2}/4$.

Moreover, out of the probability mass that reaches the leaves of H from R, at least $(1 - 1/p)^d$ fraction reaches ℓ_i .

Intuicja: Łącząc dany liść z grafem R przekażemy mu znaczną część masy prawdopodobieństwa (duża liczba krawędzi prowadzi do nowo połączonego liścia), co wpłynie na wartość w liściach jednej z gwiazd S.

Lemat 1(3.2) Consider the graph G^{τ} obtained right after inserting all edges on the path from R to ℓ_i . Let m_i be the probability mass that reaches ℓ_i from R in G^{τ} . Then $m_i \geq (1 - \epsilon)^{2d+2}/4$.

Moreover, out of the probability mass that reaches the leaves of H from R, at least $(1 - 1/p)^d$ fraction reaches ℓ_i .

Docierając do wierzchołka l_i wszytkie krawędzie z lewej strony ścieżki są wstawione, a wszystkie z prawej puste.

Intuicja: Łącząc dany liść z grafem R przekażemy mu znaczną część masy prawdopodobieństwa (duża liczba krawędzi prowadzi do nowo połączonego liścia), co wpłynie na wartość w liściach jednej z gwiazd S.

Lemat 1(3.2) Consider the graph G^{τ} obtained right after inserting all edges on the path from R to ℓ_i . Let m_i be the probability mass that reaches ℓ_i from R in G^{τ} . Then $m_i \geq (1 - \epsilon)^{2d+2}/4$.

Moreover, out of the probability mass that reaches the leaves of H from R, at least $(1 - 1/p)^d$

Docierając do wierzchołka l_i wszytkie krawędzie z lewej strony ścieżki są wstawione, a wszystkie z prawej puste.

fraction reaches ℓ_i .

Dla każdego wierzchołka na ścieżce do l_i możemy obliczyć jaką część krawędzi kieruje w stronę l_i :

Intuicja: Łącząc dany liść z grafem R przekażemy mu znaczną część masy prawdopodobieństwa (duża liczba krawędzi prowadzi do nowo połączonego liścia), co wpłynie na wartość w liściach jednej z gwiazd S.

Lemat 1(3.2) Consider the graph G^{τ} obtained right after inserting all edges on the path from R to ℓ_i . Let m_i be the probability mass that reaches ℓ_i from R in G^{τ} . Then $m_i \geq (1 - \epsilon)^{2d+2}/4$.

Moreover, out of the probability mass that reaches the leaves of H from R, at least $(1-1/p)^d$

Docierając do wierzchołka l_i wszytkie krawędzie z lewej strony ścieżki są wstawione, a wszystkie z prawej puste.

fraction reaches ℓ_i .

Dla każdego wierzchołka na ścieżce do l_i możemy obliczyć jaką część krawędzi kieruje w stronę l_i :

$$p^{j-1} / \left(\sum_{k=0}^{j-1} p^k \right) = p^{j-1} \cdot \frac{p-1}{p^j - 1} \ge p^{j-1} \cdot \frac{p-1}{p^j} = 1 - 1/p.$$

Intuicja: Łącząc dany liść z grafem R przekażemy mu znaczną część masy prawdopodobieństwa (duża liczba krawędzi prowadzi do nowo połączonego liścia), co wpłynie na wartość w liściach jednej z gwiazd S.

Lemat 1(3.2) Consider the graph G^{τ} obtained right after inserting all edges on the path from R to ℓ_i . Let m_i be the probability mass that reaches ℓ_i from R in G^{τ} . Then $m_i \geq (1 - \epsilon)^{2d+2}/4$.

Moreover, out of the probability mass that reaches the leaves of H from R, at least $(1-1/p)^d$ fraction reaches ℓ_i .

Docierając do wierzchołka l_i wszytkie krawędzie z lewej strony ścieżki są wstawione, a wszystkie z prawej puste.

Dla każdego wierzchołka na ścieżce do l_i możemy obliczyć jaką część krawędzi kieruje w stronę l_i :

$$p^{j-1} / \left(\sum_{k=0}^{j-1} p^k \right) = p^{j-1} \cdot \frac{p-1}{p^j - 1} \ge p^{j-1} \cdot \frac{p-1}{p^j} = 1 - 1/p.$$

Ścieżka od R do l_i ma długość d+1. Na każdym jej kroku $(1-\epsilon)$ masy jest przekazywane dalej, z czego przynajmniej $(1-1/p)=(1-\epsilon)$ przekazywane jest w stronę l_i . R generuje masę 1/4 zatem teza zachodzi.

Lemat 2(3.3) Consider four vectors $v^1, \tilde{v}^1, v^2, \tilde{v}^2 \in \mathbb{R}^n$, such that $||v^1 - \tilde{v}^1||_1 \leq \alpha$, $||v^2 - \tilde{v}^2||_1 \leq \alpha$ and v^1 and v^2 differ by at least $100 \cdot \alpha/n$ on at least n/4 coordinates. Then \tilde{v}^1 and \tilde{v}^2 differ on $\Omega(n)$ coordinates.

Lemat 2(3.3) Consider four vectors $v^1, \tilde{v}^1, v^2, \tilde{v}^2 \in \mathbb{R}^n$, such that $||v^1 - \tilde{v}^1||_1 \leq \alpha$, $||v^2 - \tilde{v}^2||_1 \leq \alpha$ and v^1 and v^2 differ by at least $100 \cdot \alpha/n$ on at least n/4 coordinates. Then \tilde{v}^1 and \tilde{v}^2 differ on $\Omega(n)$ coordinates.

Dowód nie wprost. Zakładamy, że \tilde{v}^1 i \tilde{v}^2 różnią się na najwyżej n/1000 miejscach (promil).

Lemat 2(3.3) Consider four vectors $v^1, \tilde{v}^1, v^2, \tilde{v}^2 \in \mathbb{R}^n$, such that $||v^1 - \tilde{v}^1||_1 \leq \alpha$, $||v^2 - \tilde{v}^2||_1 \leq \alpha$ and v^1 and v^2 differ by at least $100 \cdot \alpha/n$ on at least n/4 coordinates. Then \tilde{v}^1 and \tilde{v}^2 differ on $\Omega(n)$ coordinates.

Dowód nie wprost. Zakładamy, że \tilde{v}^1 i \tilde{v}^2 różnią się na najwyżej n/1000 miejscach (promil).

Stworzymy zbiór I z takich współrzędnych, które spełnią wszystkie warunki:

- 1) $\tilde{v^1}$ i $\tilde{v^2}$ są takie same (przynajmniej 0.999n)
- 2) v^1 i v^2 różne o przynajmniej $100\alpha/n \ \ ({\rm przynajmniej} \ n/4)$
- 3) v^1 i $\tilde{v^1}$ różne o najwyżej $10\alpha/n \ \ (\text{przynajmniej } 0.9n)$
- 4) v^2 i $\tilde{v^2}$ różne o najwyżej $10\alpha/n$ (przynajmniej 0.9n)

Lemat 2(3.3) Consider four vectors $v^1, \tilde{v}^1, v^2, \tilde{v}^2 \in \mathbb{R}^n$, such that $||v^1 - \tilde{v}^1||_1 \leq \alpha$, $||v^2 - \tilde{v}^2||_1 \leq \alpha$ and v^1 and v^2 differ by at least $100 \cdot \alpha/n$ on at least n/4 coordinates. Then \tilde{v}^1 and \tilde{v}^2 differ on $\Omega(n)$ coordinates.

Dowód nie wprost. Zakładamy, że v^1 i v^2 różnią się na najwyżej n/1000 miejscach (promil).

Zbiór I jest niepusty. Możemy zauważyć, że:

$$|\tilde{v^1} - \tilde{v^2}| \ge |v^1 - v^2| - |v^1 - \tilde{v^1}| - |v^2 - \tilde{v^2}|$$

Stworzymy zbiór I z takich współrzędnych, które spełnią wszystkie warunki:

- 1) $\tilde{v^1}$ i $\tilde{v^2}$ są takie same (przynajmniej 0.999n)
- 2) v^1 i v^2 różne o przynajmniej $100\alpha/n \ \ ({\rm przynajmniej} \ n/4)$
- 3) v^1 i $\tilde{v^1}$ różne o najwyżej $10\alpha/n \ \ ({\rm przynajmniej} \ 0.9n)$
- 4) v^2 i $\tilde{v^2}$ różne o najwyżej $10\alpha/n$ (przynajmniej 0.9n)

Lemat 2(3.3) Consider four vectors $v^1, \tilde{v}^1, v^2, \tilde{v}^2 \in \mathbb{R}^n$, such that $||v^1 - \tilde{v}^1||_1 \leq \alpha$, $||v^2 - \tilde{v}^2||_1 \leq \alpha$ and v^1 and v^2 differ by at least $100 \cdot \alpha/n$ on at least n/4 coordinates. Then \tilde{v}^1 and \tilde{v}^2 differ on $\Omega(n)$ coordinates.

Dowód nie wprost. Zakładamy, że $\tilde{v^1}$ i $\tilde{v^2}$ różnią się na najwyżej n/1000 miejscach (promil).

Stworzymy zbiór I z takich współrzędnych, które spełnią wszystkie warunki:

- 1) $\tilde{v^1}$ i $\tilde{v^2}$ są takie same (przynajmniej 0.999n)
- 2) v^1 i v^2 różne o przynajmniej $100\alpha/n$ (przynajmniej n/4)
- 3) v^1 i $\tilde{v^1}$ różne o najwyżej $10\alpha/n \ \ ({\rm przynajmniej} \ 0.9n)$
- 4) v^2 i $\tilde{v^2}$ różne o najwyżej $10\alpha/n$ (przynajmniej 0.9n)

Zbiór I jest niepusty. Możemy zauważyć, że:

$$|\tilde{v^1} - \tilde{v^2}| \ge |v^1 - v^2| - |v^1 - \tilde{v^1}| - |v^2 - \tilde{v^2}|$$

 $\ge 100\alpha/n - 10\alpha/n - 10\alpha/n$
 $= 80\alpha/n$

Dostajemy sprzeczność z 1)._

Ustalamy, że:

$$t = 1/2 \cdot \log_p n$$

$$d = \frac{\log(101\alpha)}{2\log(1-\epsilon)} - 2 \ge 1 \qquad d = \Theta(\log(1/\alpha))$$

 ϵ jest ustalone $p = 1/\epsilon$

 ϵ jest ustalone $p = 1/\epsilon$

Ustalamy, że:

$$t = 1/2 \cdot \log_p n$$

$$d = \frac{\log(101\alpha)}{2\log(1-\epsilon)} - 2 \ge 1 \qquad d = \Theta(\log(1/\alpha))$$

Liczba liści podgrafu H:

$$t^d = (1/2 \cdot \log_{1/\epsilon} n)^d = \left(\frac{\log n}{2\log 1/\epsilon}\right)^{\Theta(\log(1/\alpha))} = \log^{\Theta(\log(1/\alpha))} n = (1/\alpha)^{\Theta(\log\log n)}$$

 ϵ jest ustalone $p = 1/\epsilon$

Ustalamy, że:

$$t = 1/2 \cdot \log_p n$$

$$d = \frac{\log(101\alpha)}{2\log(1-\epsilon)} - 2 \ge 1 \qquad d = \Theta(\log(1/\alpha))$$

Liczba liści podgrafu H:

$$t^d = (1/2 \cdot \log_{1/\epsilon} n)^d = \left(\frac{\log n}{2\log 1/\epsilon}\right)^{\Theta(\log(1/\alpha))} = \log^{\Theta(\log(1/\alpha))} n = (1/\alpha)^{\Theta(\log\log n)}$$

$$H$$
 ma $\Theta(t^d) = o(n)$ wierzchołków

 ϵ jest ustalone $p = 1/\epsilon$

Ustalamy, że:

$$t = 1/2 \cdot \log_p n$$

$$d = \frac{\log(101\alpha)}{2\log(1-\epsilon)} - 2 \ge 1 \qquad d = \Theta(\log(1/\alpha))$$

Liczba liści podgrafu H:

$$t^d = (1/2 \cdot \log_{1/\epsilon} n)^d = \left(\frac{\log n}{2\log 1/\epsilon}\right)^{\Theta(\log(1/\alpha))} = \log^{\Theta(\log(1/\alpha))} n = (1/\alpha)^{\Theta(\log\log n)}$$

$$H$$
 ma $\Theta(t^d) = o(n)$ wierzchołków

Liczba dzieci wierzchołka H

$$\Theta(p^t) = \Theta(p^{1/2 \cdot \log_p n}) = \Theta(n^{1/2})$$

 ϵ jest ustalone $p = 1/\epsilon$

Ustalamy, że:

$$t = 1/2 \cdot \log_p n$$

$$d = \frac{\log(101\alpha)}{2\log(1-\epsilon)} - 2 \ge 1 \qquad d = \Theta(\log(1/\alpha))$$

Liczba liści podgrafu H:

$$t^d = (1/2 \cdot \log_{1/\epsilon} n)^d = \left(\frac{\log n}{2\log 1/\epsilon}\right)^{\Theta(\log(1/\alpha))} = \log^{\Theta(\log(1/\alpha))} n = (1/\alpha)^{\Theta(\log\log n)}$$

$$H$$
 ma $\Theta(t^d) = o(n)$ wierzchołków

Liczba dzieci wierzchołka H

$$\Theta(p^t) = \Theta(p^{1/2 \cdot \log_p n}) = \Theta(n^{1/2})$$

Liczba krawędzi H

$$(1/\alpha)^{\Theta(\log\log n)} \cdot n^{1/2} = n^{o(1)} \cdot \Theta(n^{1/2}) = O(n)$$

Graf G ma n wierzchołków i O(n) krawedzi

Ustalmy, że właśnie l_j został osiągnięty. π^b będzie wartością sprzed chwili, a π^a po osiągnięciu l_j .

Ustalmy, że właśnie l_j został osiągnięty. π^b będzie wartością sprzed chwili, a π^a po osiągnięciu l_j .

Masa prawdopodobieństwa trafia do $\pi_{l_i}^b$ tylko z grafu H.

$$\pi_{\ell_i}^b \le (d+1)/n = \Theta(\log(1/\alpha))/n = o(\log n)/n.$$

Ustalmy, że właśnie l_i został osiągnięty. π^b będzie wartością sprzed chwili, a π^a po osiagnieciu l_i .

Masa prawdopodobieństwa trafia do $\pi_{l_i}^b$ tylko z grafu H.

$$\pi_{\ell_i}^b \le (d+1)/n = \Theta(\log(1/\alpha))/n = o(\log n)/n.$$

Z lematu 1(3.2):

$$\pi_{\ell_j}^a \ge \epsilon \cdot (1 - \epsilon)^{2d + 2} / 4 = \epsilon \cdot (1 - \epsilon)^{\frac{\log(101\alpha)}{\log(1 - \epsilon)} - 2} / 4 = 101 \cdot \epsilon \cdot \alpha \cdot (1 - \epsilon)^{-2}$$

$$\pi_{\ell_j}^a = \pi_{\ell_j}^b \ge 100 \cdot \epsilon \cdot \alpha (1 - \epsilon)^{-2}$$

$$\pi_{\ell_i}^a - \pi_{\ell_i}^b \ge 100 \cdot \epsilon \cdot \alpha (1 - \epsilon)^{-2}$$

Ustalmy, że właśnie l_j został osiągnięty. π^b będzie wartością sprzed chwili, a π^a po osiągnięciu l_j .

Masa prawdopodobieństwa trafia do $\pi_{l_i}^b$ tylko z grafu H.

$$\pi_{\ell_i}^b \le (d+1)/n = \Theta(\log(1/\alpha))/n = o(\log n)/n.$$

Z lematu 1(3.2):

$$\pi_{\ell_j}^a \ge \epsilon \cdot (1 - \epsilon)^{2d + 2} / 4 = \epsilon \cdot (1 - \epsilon)^{\frac{\log(101\alpha)}{\log(1 - \epsilon)} - 2} / 4 = 101 \cdot \epsilon \cdot \alpha \cdot (1 - \epsilon)^{-2}$$
$$\pi_{\ell_i}^a - \pi_{\ell_i}^b \ge 100 \cdot \epsilon \cdot \alpha (1 - \epsilon)^{-2}$$

s = |S| = n/4

Zatem każdy z liści jednej z gwiazd otrzyma przynajmniej tyle nowej masy prawdopodobieństwa:

$$100 \cdot \alpha \cdot (1 - \epsilon)^{-2} / 4 \cdot (1 - \epsilon)^{2} / s = 100 \cdot \alpha / (4s) = 100 \cdot \alpha / n$$

Ustalmy, że właśnie l_j został osiągnięty. π^b będzie wartością sprzed chwili, a π^a po osiągnięciu l_j .

Masa prawdopodobieństwa trafia do $\pi_{l_i}^b$ tylko z grafu H.

$$\pi_{\ell_j}^b \le (d+1)/n = \Theta(\log(1/\alpha))/n = o(\log n)/n.$$

Z lematu 1(3.2):

$$\pi_{\ell_j}^a \ge \epsilon \cdot (1 - \epsilon)^{2d + 2} / 4 = \epsilon \cdot (1 - \epsilon)^{\frac{\log(101\alpha)}{\log(1 - \epsilon)} - 2} / 4 = 101 \cdot \epsilon \cdot \alpha \cdot (1 - \epsilon)^{-2}$$
$$\pi_{\ell_i}^a - \pi_{\ell_i}^b \ge 100 \cdot \epsilon \cdot \alpha (1 - \epsilon)^{-2}$$

Zatem każdy z liści jednej z gwiazd otrzyma przynajmniej tyle nowej masy prawdopodobieństwa:

$$s = |S| = n/4$$

$$100 \cdot \alpha \cdot (1 - \epsilon)^{-2} / 4 \cdot (1 - \epsilon)^{2} / s = 100 \cdot \alpha / (4s) = 100 \cdot \alpha / n$$

Na podstawie lematu 2(3.3) wiemy, że wektor PageRank będzie musiał być update
owany na $\Omega(n)$ żeby zachować α addytywną aproksymację.

Liczba liści H to $(1/\alpha)^{\Theta(\log \log n)}$

Liczba liści H to $(1/\alpha)^{\Theta(\log \log n)}$

Po osiągnięciu każdego z nich należy zupdateować $\Omega(n)$ wierzchołków, co prowadzi nas do tezy.

Theorem 1.1. Fix $\epsilon \in (0.01, 0.99)$. For any sufficiently large $n \ge 1$ and any α such that $1/\alpha = n^{o(1/\log\log n)}$, any algorithm which explicitly maintains α -additive approximation of PageRank must run in $n \cdot (1/\alpha)^{\Omega(\log\log n)}$ total time.

Theorem 1.3. There exists a sequence of $\Theta(n)$ edge insertions applied to an initially empty graph on n vertices for which the following holds. For any constant $\delta > 0$, any algorithm that maintains a vector $\tilde{\pi} \in \mathbb{R}^n$ such that $(1/2)\pi_v < \tilde{\pi}_v \leq 2\pi_v$ at all time steps, must take time $\Omega(n^{2-\delta})$ to process the sequence. In particular, the amortized update time of any such algorithm is $\Omega(n^{1-\delta})$.

Theorem 1.3. There exists a sequence of $\Theta(n)$ edge insertions applied to an initially empty graph on n vertices for which the following holds. For any constant $\delta > 0$, any algorithm that maintains a vector $\tilde{\pi} \in \mathbb{R}^n$ such that $(1/2)\pi_v < \tilde{\pi}_v \leq 2\pi_v$ at all time steps, must take time $\Omega(n^{2-\delta})$ to process the sequence. In particular, the amortized update time of any such algorithm is $\Omega(n^{1-\delta})$.

Dla tej samej konstrukcji ustalamy odpowiednie parametry:

$$t = \delta/2 \log n / \log \log n$$

$$d = \log_t(n^{1-2\delta}) = \Theta(\log n / \log \log n)$$

Theorem 1.3. There exists a sequence of $\Theta(n)$ edge insertions applied to an initially empty graph on n vertices for which the following holds. For any constant $\delta > 0$, any algorithm that maintains a vector $\tilde{\pi} \in \mathbb{R}^n$ such that $(1/2)\pi_v < \tilde{\pi}_v \leq 2\pi_v$ at all time steps, must take time $\Omega(n^{2-\delta})$ to process the sequence. In particular, the amortized update time of any such algorithm is $\Omega(n^{1-\delta})$.

Dla tej samej konstrukcji ustalamy odpowiednie parametry:

$$t = \delta/2 \log n / \log \log n$$

$$d = \log_t(n^{1-2\delta}) = \Theta(\log n / \log \log n)$$

Liczba krawędzi z *i*-tego dziecka $(\log^2 n)^i \quad (p = \log^2 n)$

Theorem 1.3. There exists a sequence of $\Theta(n)$ edge insertions applied to an initially empty graph on n vertices for which the following holds. For any constant $\delta > 0$, any algorithm that maintains a vector $\tilde{\pi} \in \mathbb{R}^n$ such that $(1/2)\pi_v < \tilde{\pi}_v \leq 2\pi_v$ at all time steps, must take time $\Omega(n^{2-\delta})$ to process the sequence. In particular, the amortized update time of any such algorithm is $\Omega(n^{1-\delta})$.

Dla tej samej konstrukcji ustalamy odpowiednie parametry:

$$t = \delta/2 \log n / \log \log n$$

$$d = \log_t(n^{1-2\delta}) = \Theta(\log n / \log \log n)$$

Liczba krawędzi z *i*-tego dziecka $(\log^2 n)^i$ $(p = \log^2 n)$

Podgraf H otrzyma $n^{1-2\delta}$ wierzchołków

Z lematu 1(3.2) wynika, że w liściu jest następująca część masy z ${\cal R}$

$$(1 - 1/p)^d = (1 - 1/\log^2 n)^{\Theta(\log n/\log \log n)} \ge 1 - 1/\log n.$$

Theorem 1.3. There exists a sequence of $\Theta(n)$ edge insertions applied to an initially empty graph on n vertices for which the following holds. For any constant $\delta > 0$, any algorithm that maintains a vector $\tilde{\pi} \in \mathbb{R}^n$ such that $(1/2)\pi_v < \tilde{\pi}_v \leq 2\pi_v$ at all time steps, must take time $\Omega(n^{2-\delta})$ to process the sequence. In particular, the amortized update time of any such algorithm is $\Omega(n^{1-\delta})$.

Dla tej samej konstrukcji ustalamy odpowiednie parametry:

$$t = \delta/2 \log n / \log \log n$$

$$d = \log_t(n^{1-2\delta}) = \Theta(\log n / \log \log n)$$

Liczba krawędzi z *i*-tego dziecka $(\log^2 n)^i$ $(p = \log^2 n)$

Podgraf H otrzyma $n^{1-2\delta}$ wierzchołków

Z lematu 1(3.2) wynika, że w liściu jest następująca część masy z ${\cal R}$

$$(1 - 1/p)^d = (1 - 1/\log^2 n)^{\Theta(\log n/\log \log n)} \ge 1 - 1/\log n.$$

Stosunek mas w obu gwiazdach wyniesie

$$\frac{1 - 1/\log n}{1/\log n} = \Theta(\log n)$$

Theorem 1.3. There exists a sequence of $\Theta(n)$ edge insertions applied to an initially empty graph on n vertices for which the following holds. For any constant $\delta > 0$, any algorithm that maintains a vector $\tilde{\pi} \in \mathbb{R}^n$ such that $(1/2)\pi_v < \tilde{\pi}_v \leq 2\pi_v$ at all time steps, must take time $\Omega(n^{2-\delta})$ to process the sequence. In particular, the amortized update time of any such algorithm is $\Omega(n^{1-\delta})$.

Dla tej samej konstrukcji ustalamy odpowiednie parametry:

$$t = \delta/2 \log n / \log \log n$$

$$d = \log_t(n^{1-2\delta}) = \Theta(\log n / \log \log n)$$

Liczba krawędzi z *i*-tego dziecka $(\log^2 n)^i$ $(p = \log^2 n)$

Podgraf H otrzyma $n^{1-2\delta}$ wierzchołków

Z lematu 1(3.2) wynika, że w liściu jest następująca część masy z ${\cal R}$

$$(1 - 1/p)^d = (1 - 1/\log^2 n)^{\Theta(\log n/\log \log n)} \ge 1 - 1/\log n.$$

Stosunek mas w obu gwiazdach wyniesie

$$\frac{1 - 1/\log n}{1/\log n} = \Theta(\log n)$$

Liczba liści gwiazd:

 $n^{1-2\delta}$

Theorem 1.3. There exists a sequence of $\Theta(n)$ edge insertions applied to an initially empty graph on n vertices for which the following holds. For any constant $\delta > 0$, any algorithm that maintains a vector $\tilde{\pi} \in \mathbb{R}^n$ such that $(1/2)\pi_v < \tilde{\pi}_v \leq 2\pi_v$ at all time steps, must take time $\Omega(n^{2-\delta})$ to process the sequence. In particular, the amortized update time of any such algorithm is $\Omega(n^{1-\delta})$.

Dla tej samej konstrukcji ustalamy odpowiednie parametry:

$$t = \delta/2 \log n / \log \log n$$

$$d = \log_t(n^{1-2\delta}) = \Theta(\log n / \log \log n)$$

Liczba krawędzi z *i*-tego dziecka $(\log^2 n)^i$ $(p = \log^2 n)$

Podgraf H otrzyma $n^{1-2\delta}$ wierzchołków

Z lematu 1(3.2) wynika, że w liściu jest następująca część masy z R $(1-1/p)^d=(1-1/\log^2 n)^{\Theta(\log n/\log\log n)}\geq 1-1/\log n.$

Stosunek mas w obu gwiazdach wyniesie

$$\frac{1 - 1/\log n}{1/\log n} = \Theta(\log n)$$

Liczba liści gwiazd:

 $n^{1-2\delta}$

Zatem przy każdym z $\Omega(n^{1-\delta})$ podłączeń liści, potrzeba updateować $\Omega(n^{1-2\delta})$ wierzchołków z jednej z gwiazd.

Koszt ciągu operacji będzie rzędu $\Omega(n^{2-3\delta})$

Algorytm dynamiczny

- W ← ∅
- 2: Let ℓ be the length of longest generated walk.
- 2: Let \(\ell\) be the length of longest generated walk
- 3: for t = 1...ℓ do
 4: Sample each walk from S_{u,t} with probability 1/d_u in the following way. First, select an integer r_{u,t} from the binomial distribution with parameters |S_{u,t}| and 1/d_u. Second, select r_{u,t} integers uniformly at random and without repetition from [1, |S_{u,t}|]. Then, for each of those integers i select the i-th walk from S_{u,t}. If e is an undirected edge, apply the same steps for S_{v,t}.
- 5: For each walk w selected in the last step such that $w \notin W$, add w to W and label w by t.
- 6: end for

11: end for

- 7: for each w ∈ W do
 8: Let j be the label remembered for w on Line 5.
 - Generate walk w' with the following properties:
 - The walks w and w' have the same length.
 - The vertex-prefixes of length j of w and w' are the same.
 - After that prefix, if w has more than j vertices, w' walks along e.
 - The remaining edges of w' are chosen randomly, i.e., the rest of w' is a newly generated random walk.
- 0: Update the data structures by removing w and inserting w'.

Algorytm dynamiczny

1: W ← ∅

2: Let ℓ be the length of longest generated walk.

3: **for** $t = 1 \dots \ell$ **do**

Sample each walk from $S_{u,t}$ with probability $1/d_u$ in the following way. First,

If e is an undirected edge, apply the same steps for $S_{v,t}$.

select an integer $r_{u,t}$ from the binomial distribution with parameters $|S_{u,t}|$ and

For each walk w selected in the last step such that $w \notin W$, add w to W and

 $1/d_u$. Second, select $r_{u,t}$ integers uniformly at random and without repetition

from $[1, |S_{u,t}|]$. Then, for each of those integers i select the i-th walk from $S_{u,t}$.

prawimy

których t-ty wierzchołek to u.

W - zbiór ścieżek, które po-

 $S_{u,t}$ - drzewo binarne z krawędziami,

generowanie

odrzuconych spacerów

Wstawienie krawędzi (u, v)

rejection sampling

ponowne

- Let j be the label remembered for w on Line 5.
- Generate walk w' with the following properties:

 - The walks w and w' have the same length.

 - The vertex-prefixes of length j of w and w' are the same.
- After that prefix, if w has more than j vertices, w' walks along e. •
- The remaining edges of w' are chosen randomly, i.e., the rest of w' is a newly generated random walk.
- Update the data structures by removing w and inserting w'.
- 11: end for

label w by t.

7: for each $w \in W$ do

6: end for

Algorytm dynamiczny

- 1: Let $W_e \subseteq W$ be the list of walks passing through e.
- 2: for $w \in W_e$ do
- 3: Let w_p be the longest prefix of w not containing e.
- 4: Let w' be a walk of length |w| such that w' has w_p as its prefix, and the remainder of w' is a random walk.
- 5: To update W, remove w from W and the corresponding data structures, and insert w'.
- 6: end for

Dla każdej ścieżki z $W_{(u,v)}$ generujemy w' tak aby:

- miały ten sam prefiks do wieżchołka u
- dalsza część w' była spacerem losowym

Theorem 1.2. For any $\epsilon \in (0,1)$, there is an algorithm that with high probability explicitly maintains an α additive approximation of PageRank of any graph G in either incremental or decremental setting. The algorithm processes the entire sequence of updates in $O(m) + n \cdot (1/\alpha)^{O_{\epsilon}(\log \log n)}$ total time and works correctly against an oblivious adversary.

Theorem 1.2. For any $\epsilon \in (0,1)$, there is an algorithm that with high probability explicitly maintains an α additive approximation of PageRank of any graph G in either incremental or decremental setting. The algorithm processes the entire sequence of updates in $O(m) + n \cdot (1/\alpha)^{O_{\epsilon}(\log \log n)}$ total time and works correctly against an oblivious adversary.

Najpierw pokazane jest, że ograniczając maksymalną długość spacerów l otrzymujemy α addytywną aproksymację.

Lemma 5.1. Let π be the PageRank of a directed graph G. Then, with high probability, Algorithm 1 for $\ell = \lceil 2/\epsilon \cdot \log(2/(\alpha \epsilon)) \rceil$ outputs a vector π_{ADD} such that $\|\pi - \pi_{ADD}\|_1 \leq 5\frac{\alpha}{1-\epsilon}$.

Theorem 1.2. For any $\epsilon \in (0,1)$, there is an algorithm that with high probability explicitly maintains an α additive approximation of PageRank of any graph G in either incremental or decremental setting. The algorithm processes the entire sequence of updates in $O(m) + n \cdot (1/\alpha)^{O_{\epsilon}(\log \log n)}$ total time and works correctly against an oblivious adversary.

Najpierw pokazane jest, że ograniczając maksymalną długość spacerów l otrzymujemy α addytywną aproksymację.

Lemma 5.1. Let π be the PageRank of a directed graph G. Then, with high probability, Algorithm 1 for $\ell = \lceil 2/\epsilon \cdot \log(2/(\alpha\epsilon)) \rceil$ outputs a vector π_{ADD} such that $\|\pi - \pi_{ADD}\|_1 \leq 5\frac{\alpha}{1-\epsilon}$.

Kolejny lemat bazuje na obserwacji jak dużo razy możemy wpłynąć na daną krawędź, której wierzchołek bierze udział w dokładaniu kolejnych krawędzi do grafu

Lemma 5.2. Let G be a directed graph undergoing edge insertions (or deletions). The total number of times a random walk of length ℓ is being regenerated is bounded by $O(\log^{\ell} n)$ in expectation.

Twierdzenie 1.4

Dla dowolnego $\epsilon \in (0,1)$ istnieje algorytm, który z dużym prawdopodobieństwem jawnie utrzymuje $(1+\alpha)$ -multiplikatywne przybliżenie PageRanku dowolnego nieskierowanego grafu G w w pełni dynamicznym ustawieniu.

Algorytm przetwarza każdą aktualizację w czasie $O\left(\frac{\log^5 n}{\epsilon^2 \alpha^2}\right)$ i działa poprawnie przeciwko przeciwnikowi nieświadomemu.

Dziękujemy