

TD 6 : Electronique Linéaire (Les Diodes)

Exercice 1

On considère le circuit de la figure 1 et on suppose la diode D idéale.

- 1- Dans le cas où $v(t) = V_m sin(\omega t)$, représenter graphiquement, en fonction du temps, la tension $v_d(t)$ aux bornes de la diode D, la tension de sortie $v_o(t)$, et le courant instantané i(t) dans la charge R_c .
- 2- Calculer la valeur moyenne et la valeur efficace de la tension de sortie v_{o} , en fonction de V_{m} .

On considère maintenant que la diode présente une tension de seuil de 0,6V. Représenter graphiquement en fonction du temps la tension de sortie v_o(t).

Fig. 1: Circuit 1

Exercice 2

On considère le circuit de la figure 2 avec $e_1(t) = 5\sin(\omega t)$, et $e_2(t) = -10\sin(\omega t)$. D_1 et D_2 sont supposées parfaites.

- 1- Représenter e₁(t), e₂(t) et u(t) dans le cas où Z est une résistance (Z=R).
- 2- Même question en remplaçant R par une capacité C. Conditions initiales : $e_1(0)=0$, $e_2(0)=0$ et u(0)=0.

Fig. 2: Circuit 2

Exercice 3

On suppose les diodes D_1 et D_2 idéales.

- 1- Donner les conditions de conduction de D_1 et de D_2 .
- 2- Tracer la fonction de transfert $v_s=f(v_e)$ pour v_e allant de -5 à 10V.
- 3- Tracer $v_s(t)$ si $v_e(t) = 10\sin(\omega t)$,

Fig. : Circuit 3

Exercice 4

On considère une diode Zener polarisée selon le schéma ci-dessous. La tension aux bornes de la diode Zener est donnée par : $V_z = E_z + R_z I_z$, où E_z et R_z sont des paramètres constants donnés par le constructeur.

- 1- Préciser la signification de ces deux paramètres.
- 2- Exprimez I_z en fonction de E, E_z , R et R_z .
- 3- On donne $R_z = 10\Omega$, $E_z = 8V$ et E = 15V. Déterminer la valeur de R pour avoir $I_z = 10$ mA.
- 4- Calculer ΔI_z et ΔV_z quand E passe de 15V à 18V. Conclusion?

Fig. 4: Circuit 4