Lezione del 27 Novembre tenuta dal Prof. Frigerio

Proposizione 0.1. Sia

$$U_i = \{ [x_0 : \dots : x_n] \in \mathbb{P}^n(\mathbb{K}) \mid x_i \neq 0 \}$$

allora esiste una biezione naturale tra U_i e \mathbb{K}^n che, nel caso $\mathbb{K} = \mathbb{R}$ è un omeomorfismo

Dimostrazione. Siano

$$\varphi: U_i \to \mathbb{K}^n \quad \varphi([x_0: \dots: x_n) = \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

e

$$\psi : \mathbb{K}^n \to U_i \quad \psi(x_1, \dots, x_n) = [x_1 : \dots : x_{i-1} : x_i : x_{i+1} : \dots : x_n]$$

Osserviamo che queste 2 funzioni sono una l'inversa dell'altra.

Supponiamo $\mathbb{K} = \mathbb{R}$.

 ψ è composizione di

$$\mathbb{R}^n \hookrightarrow \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{P}^n(\mathbb{R}) \quad (x_1, \dots, x_n) \hookrightarrow (x_1, \dots, 1, \dots, x_n) \to [x_1 : \dots : 1 : \dots : x_n]$$

dunque è continua.

 φ si ottiene per passaggio al quoziente da $\tilde{\varphi}: \pi^{-1}(U_i) \to \mathbb{R}^n$ ora $\tilde{\varphi}$ è continua dunque lo è anche φ .

Osservazione 1. Il proiettivo è unione degli U_i , inoltre gli U_i sono aperti in $\mathbb{P}^n(\mathbb{R})$. $\forall p \in \mathbb{P}^n(\mathbb{R})$ esiste U aperto omeomorfo a \mathbb{R}^n con $p \in U$

Definizione 0.1. Sia X topologico. X si dice varietà n-dimensionale se

- \bullet X è di Hausdorff
- $\forall p \in X \; \exists U \text{ aperto omeomorfo ad un aperto } V \text{ di } \mathbb{R}^n$
- \bullet X è a base numerabile

Osservazione 2. Poichè le palle aperte sono una base della topologia di \mathbb{R}^n e una palla aperta è omeomorfo a \mathbb{R}^n la propietà 2 è equivalente a richiedere che U sia omoemorfa ad una palla aperta oppure a \mathbb{R}^n

Osservazione 3. Per quanto osservato sul proiettivo $\mathbb{P}^n(\mathbb{R})$ è una *n*-varietà (manca da dimostrare che è a base numerabile)

Osservazione 4. Le 3 propietà che definiscono una varietà sono indipendenti. Se prendiamo $\stackrel{\mathbb{R}\times\{-1,1\}}{\sim}$ dove $(x,t)\sim(y,s)\Leftrightarrow(x,t)=(y,s)$ o $(x=y\ e\ x\neq 0)$. Tale spazio verifica la seconda propietà ma non è di Hausdorff.

Studiamo ora i proiettivi complessi.

Con le dimostrazioni analoghe possiamo dimostrare che $\mathbb{P}^n(\mathbb{C})$ è compatto di Hausdorff e viene ricoperto dagli U_i , inoltre è a base numerabile.

Ora essendo $\mathbb{C}^n \cong \mathbb{R}^{2n}$ $\mathbb{P}^n(\mathbb{C})$ è una varietà 2n dimensionale

Proposizione 0.2. $\mathbb{P}^1(\mathbb{C}) \cong S^2$

Dimostrazione.

$$\mathbb{P}^1(\mathbb{C}) = \{z_0 = 0\} \cup \{z_0 \neq 0\} = \{[0:1]\} \cup U_0$$

Poichè $\mathbb{P}^1(\mathbb{C})$ è compatto e di Hausdorff, per unicità della compattificazione di Alexandross si ha

$$\mathbb{P}^1(\mathbb{C}) \cong \hat{U_0} \cong \hat{\mathbb{R}^2} = S^2$$

Osservazione 5. In generale

$$\mathbb{P}^n(\mathbb{K}) = \{x_0 = 0\} \cup U_0 \cong \mathbb{P}^{n-1}(\mathbb{K}) \cup U_0 \cong P^{n-1} \cup \mathbb{K}^n$$

Consideriamo la mappa

$$f: S^{2n+1} \to \mathbb{P}^n(\mathbb{C})$$

ottenuta restringendo π .

Tale mappa è suriettiva perchè $\pi(v)=\pi\left(\frac{v}{||v||}\right)$ dunque $\mathbb{P}^n(\mathbb{C})$ è compatto.

 $\forall p \in \mathbb{P}^n(\mathbb{C}) \text{ si ha } f^{-1}(P) \subseteq S^{2n+1}.$

Ora se $v \in f^{-1}(p)$ si ha $f^{-1}(p) = \{\lambda v \mid \lambda \in \mathbb{C} \mid \lambda \mid = 1\}$ da cui $f^{-1}(p)$ è omeomorfo a S^1 tramite la mappa

$$S^1 = \{ \lambda \in \mathbb{C} \mid |\lambda| \} \to f^{-1}(p) \qquad \lambda \to \lambda v$$

tale mappa è continua, biettiva e chiusa (va da un compatto ad uno spazio di Hausdorff)

Esempio 0.3. Compatto per successione \Rightarrow compatto

Dimostrazione. Sia $X = [0,1]^{[0,1]}$ con la topologia prodotto (convergenza puntuale). Definiamo $supp(f) = \{x \in [0,1] \mid f(x) \neq 0\}$ e sia

$$Y = \{ f \in X \mid |supp(f)| \le |\mathbb{N}| \}$$

Osserviamo che

1. Y è denso.

Sia U un aperto di X allora posso prendere una funzione in Y che appartiene a tale aperto

2. XèT2.

Prodotto di T2 è T2

3. Y non è compatto.

Supponiamo Y compatto allora Y sarebbe chiuso, ma data la densità di Y si avrebbe Y=X ma ciò è assurdo

4. Y è compatto per successione.

Sia $\{f_n\}$ una successione in Y, devo trovare una sua estratta che converge puntualmente a $f \in Y$.

Sia
$$A = \bigcup_{n \in \mathbb{N}} supp(f_n)$$
 dunque $|A| \leq |\mathbb{N}|$, dunque

$$A = \{a_1, \dots, a_n, \dots\}$$

La successione $\{f_n(a_0)\}\subseteq [0,1]$ ammette una scelta crescente di indici $k_0(n)$ tale che $f_{k_0(n)}(a_0)\to l_0$ ([0,1] è compatto).

Analogamente considerando la successione $\{f_{k_0(n)}(a_1)\}\subseteq [0,1]$ dunque esiste una sottosuccessione $k_1(n)$ estratta da $k_0(n)$ con $f_{k_1(n)}(a_1)\to l_1$.

Iterando la costruzione $\forall m \in \mathbb{N}$ costruisco una sottosuccessione $k_{m+1}(n)$ estratta da $k_m(n)$ e tale che

$$\lim_{n \to +\infty} f_{k_{m+1}(n)}\left(a_{m+1}\right) \to l_{m+1}$$

Segue che $\forall m \in \mathbb{N} \lim_{i \to +\infty} f_{k_i(i)}(a_m) = l_m.$

Sia $f(a_i) = l_i$ dunque $f \in Y$ infatti il supporto di f è A che è numerabile inoltre $f_{k_i} \to f$