Best Neighborhood in Denver, Colorado based on Crime and Venues data

By Deryan Thimoti Yudianto

1. Introduction

Denver is one of the most well-known city in Colorado, United States, and it also known as the 'Mile High City' because of the city's altitude which is 1 mile above sea level. There are more than 200 parks in Denver. Denver also had four major professional sports teams: Denver Nuggets (Basketball), Denver Broncos (American Football), Denver Avalanche (Ice Hockey), and Colorado Rockies (Baseball). This city also considered as one of the top city for job prospects and business growth.

Because of those reasons, Denver became one of the most important city in United States. People who want to settle a move to Denver must consider a lot of things, such as tourist attractions, restaurants, public transportations, crime data, and much more. In this project, I'll use the data to cluster the best Denver neighborhood based on public venues and crime data. The stakeholders in this project are people who want to move to Denver, either they are university students, young executives, or families.

2. Data

2.1.Data Collection

There are several data that I'll be using in this project. First, I'll be using Denver Crime Data that I downloaded from Kaggle, then I'm also going to use Denver Neighborhoods that I took from Wikipedia. Overall, these are some of the data that I'm going to use in my project:

- 1. Denver Crime Data (taken from Denver Open Data Catalog)
- 2. List of neighborhoods in Denver (web scrapped from Wikipedia)
- 3. List of venues in Denver (taken with Foursquare API)

2.2.Data Cleaning and Preprocessing

2.2.1. Denver Neighborhood Data

In my project, I used Beautiful Soup to scrap the Neighborhoods in Denver from Wikipedia (https://en.wikipedia.org/wiki/List_of_neighborhoods_in_Denver). The next step is to collect all of the latitudes and longitudes of the neighborhoods with Geopy. In this step, I also changed some of the coordinates of the neighborhoods because some of those locations are wrong / inaccurate. The following step is putting the neighborhoods, latitude, and longitudes in a Data Frame called df_denver_neigh. I decided to remove Park Hill from my Data Frame because it didn't have any relevant data, and the location was quite close to both North Park Hill and South Park Hill. In the end, I map all the neighborhoods in a folium map to show the exact location of each neighborhoods.

2.2.2. Denver Crime Data

The csv file itself was quite large, and there were too many rows, because apparently there were traffic collision data in the csv file. I made a new Data Frame called **df_denver** and put the table in that Data Frame. In Figure 1 we can see the number of rows in the Data Frame.

```
df_denver = pd.read_csv('denver_crime.csv')
df_denver.shape

1]: (470859, 19)
```

Figure 1, the amount of rows in the denver_crime csv file

There are more than 470000 rows of data, and it was way too much. I decided to remove any traffic collision data, because they were shown to be irrelevant with the my project, as shown in Figure 2.

```
df_denver = df_denver[df_denver.IS_CRIME != 0]
df_denver.shape

2]: (348056, 19)
```

Figure 2, df_denver after traffic collision data was excluded

I managed to cut almost 25% of the whole data, however it turned out that I still have too many data. To increase the effectiveness, I decided to filter the data once again, this time I filtered the crimes that happened between January 1st 2018 and February 29th 2020 as shown in Figure 3.

```
start = "1/1/2018 12:00:01 AM"
end = "2/29/2020 23:59:59 AM"
mask = (df_denver['FIRST_OCCURRENCE_DATE'] > start) & (df_denver['FIRST_OCCURRENCE_DATE'] < end)

df_denver = df_denver.loc[mask]
df_denver.shape

(134913, 19)</pre>
```

Figure 3, df_denver after further reduction

Finally, I got the most optimal value. The table below shows 19 columns in the data frame, the status of each column, and the reason why I'm keeping it or dropping it.

	Table 1	l, df_denver o	columns
Nama		Statue	

Column Name	Status	Notes
INCIDENT_ID	Dropped	Dropped because no longer used
OFFENSE_ID	Dropped	Dropped because no longer used
OFFENSE_CODE	Active	
OFFENSE_CODE_EXTENSION	Dropped	Dropped because no longer used
OFFENSE_TYPE_ID	Active	
OFFENSE_CATEGORY_ID	Active	Used for grouping
FIRST_OCCURENCE_DATE	Active	The date of occurrence between
		2018 and 2020
LAST_OCCURENCE_DATE	Dropped	Dropped because no longer used
REPORTED_DATE	Dropped	Dropped because no longer used
INCIDENT_ADDRESS	Dropped	
GEO_X	Dropped	Dropped because no longer used
GEO_Y	Dropped	Dropped because no longer used
GEO_LON	Active	Longitude of the place where the
		crime took place

GEO_LAT	Active	Latitude of the place where the
		crime took place
DISTRICT_ID	Active	
PRECINCT_ID	Active	
NEIGHBORHOOD_ID	Active	Neighborhood names in Denver
IS_CRIME	Dropped	Dropped because no longer used
IS_TRAFFIC	Dropped	Dropped because no longer used

After removing some unnecessary columns, I changed the format of NEIGHBORHOOD_ID, OFFENSE_TYPE_ID, and OFFENSE_CATEGORY_ID to a more readable format. I used OFFENSE_CATEGORY_ID as the main column for clustering later. Because one of the category is too crowded with data, I decided to add some changes to OFFENSE_CATEGORY_ID based on OFFENSE_TYPE_ID. In the table 2 below are the changes of category that I made in this project.

Table 2, Changes in some categories

Old Category	Type of Crime	New Category			
All Other Crimes	Gambling Device	Gambling			
7 III Other Crimes	Gambling Gaming Operation	Gamoning			
All Other Crimes	Money Laundering	White Collar Crime			
	Wiretapping				
All Other Crimes	Eavesdropping	Privacy Violation			
	Criminal Trespassing				
All Other Crimes	Kidnap Adult Victim	Kidnapping			
All Other Crimes	Kidnap Dv				
	Explosive Incendiary Dev Pos				
	Explosive Incendiary Dev Use	Illegal Item Possession			
All Other Crimes	Explosives Posses				
	Contraband Possession				
	Fireworks Possession				
All Other Crimes	Extortion	Bribery and Extortion			
All Other Crimes	Bribery	Bribery and Extortion			
All Other Crimes	Animal Cruelty	Animal Cruelty			

	Other Environment Animal Violation				
	Police Disobey Lawful Order				
	Police False Information				
	Police Making A False Rpt				
All Other Crimes	Police Resisting Arrest	Police Related Events			
	Police Interference				
	Police Obstruct Investigation				
	Disarming A Peace Officer				
	Weapon Altering Serial Number				
	Weapon By Prev Offender Powpo				
	Weapon Carrying Concealed				
	Weapon Carrying Prohibited				
All Other Crimes	Weapon Flourishing	Weapon Related Violation			
	Weapon Other Violation				
	Weapon Poss Illegal Dangerous				
	Weapon Unlawful Discharge Of				
	Weapon Unlawful Sale				
	Littering				
	Public Fighting				
	Illegal Dumping				
All Other Crimes	Escape	Public Disorder			
7th Other Crimes	Escape Aiding	Tuble Disorder			
	Bomb Threat				
	Intimidation Of A Witness				
	Reckless Endangerment				
All Other Crimes	Traf Vehicular Assault	Aggravated Assault			

2.2.3. Denver Venues Data

In this project, I used Foursquare API to get all the venues near a specified neighborhood. I created a new Data Frame called **denver_venues** which consisted of Neighborhood name with its latitude and longitude, name of venue along with latitude and longitude, and also the venue's category. The venue's category column will play the key role in this project. I limited the number of venues fetch for each neighborhood to 50, and the radius of the neighborhood to 650. After all the venues data have been fetched, I looked at the number of different venue categories and I

was completely astonished. There were more than 270 categories of places. I decided to combine some of the nearly identical category in order to get more relevant results. Table 3 in the next page are the changes in some categories in venues data.

Table 3, Changes in Venue Categories

Venues Category	New Venues Category				
Whisky Bar					
Bar					
Dive Bar					
Beach Bar					
Cocktail Bar					
Juice Bar	Bar				
Wine Bar					
Sports Bar					
Hotel Bar					
Piano Bar					
Beer Bar					
Greek Restaurant					
German Restaurant					
Pizza Place					
Mediterranean Restaurant					
French Restaurant	European Restaurant				
Tapas Restaurant					
Modern European Restaurant					
Italian Restaurant					
Eastern European Restaurant					
Japanese Restaurant					
Ramen Restaurant	Japanese Restaurant				
Sushi Restaurant					
Middle Eastern Restaurant					
Cantonese Restaurant	Asian Restaurant				
Malay Restaurant	Asian Restaurant				
Vietnamese Restaurant					

M. II. B.				
Mongolian Restaurant	_			
Dim Sum Restaurant	_			
Israeli Restaurant	_			
Thai Restaurant	_			
Chinese Restaurant				
Asian Restaurant				
Indian Restaurant				
Hawaiian Restaurant				
Carribean Restaurant	North American Restaurant			
Cuban Restaurant				
Burrito Palace	Mexican Restaurant			
Tex-Mex Restaurant	Mexican Restaurant			
Basketball Court				
Tennis Court				
Volleyball Court				
Baseball Field	Sports Venue			
Stadium	Sports venue			
Paintball Field				
Athletic & Sports				
Football Stadium				
Gay Bar				
Strip Club	Adult Venue			
Hookah Bar				
Gym / Fitness Center				
Weight Loss Center	Hoolth & Eiters Courter			
Pilates Studio	Health & Fitness Center			
Martial Arts Dojo				
History Museum				
Art Museum	Museum			
Science Museum				
Donut Shop				
Ice Cream Shop				
Dessert				
Bagel Shop	Snack / Dessert			
Frozen Yogurt Place				
Snack Place				
	_			

Cupcake Shop
Candy Store

3. Methodology

3.1. Geopy

In this project I use Geopy to get latitudes and longitudes of Denver neighborhoods. However, because there are some neighborhood with incorrect / inaccurate locations, I changed some of the location data by searching it manually in Google, then I inserted it into the Data Frame.

Code Segment 1: Fetch location data using Geopy and then save it in a list

```
denver neighborhood = []
for x in table:
   locator = Nominatim(user agent="myGeocoder", timeout=10)
   location = locator.geocode(x.get text() + ", Denver, Colorado")
    if(hasattr(location, 'latitude')):
        if (x.get text() == "Indian Creek"):
            denver neighborhood.append([x.get text(), 39.6863898, -104.
9051744])
        elif(x.get text() == "Country Club"):
           denver neighborhood.append([x.get text(), 39.7201184, -104.
9749908])
        elif(x.get text() == "Rosedale"):
            denver neighborhood.append([x.get text(), 39.6731541, -104.
9849813])
        elif(x.get text() == "Park Hill"):
            denver neighborhood.append([x.get text(), 39.7655473, -104.
9572032])
        elif(x.get_text() =="University Park"):
            denver neighborhood.append([x.get text(), 39.6758905, -104.
9587653])
            denver neighborhood.append([x.get text(), location.latitude
 location.longitude])
        location2 = locator.geocode(x.get_text() + ", Denver")
        if (hasattr(location2, 'latitude')):
            if(x.get_text() == "Bear Valley"):
                denver neighborhood.append([x.get text(), 39.6601587, -
105.0848119])
            elif(x.get text() == "Virginia Village"):
               denver neighborhood.append([x.get text(), 39.6893186, -
104.939641])
            elif(x.get text() == "Washington Virginia Vale"):
                denver neighborhood.append([x.get text(), 39.6893186, -
104.9396411)
            else:
               denver neighborhood.append([x.get text(), location.lati
tude, location.longitude])
        else:
            if(x.get text() == "Cory-Merrill"):
                denver neighborhood.append([x.get text(), 39.6898585, -
104.9588103])
            elif(x.get text() == "Gateway / Green Valley Ranch"):
                denver neighborhood.append([x.get text(), 39.7867524, -
104.7901241])
            elif(x.get text() == "College View / South Platte"):
               denver neighborhood.append([x.get text(), 39.6707655, -
105.0247368])
               print("Neighborhood = {}, Latitude = Unknown, Longitude
= Unknown".format(x.get text()))
```

In the Code Segment on the, I used Geopy to fetch the location of each neighborhood. However after further inspection of each neighborhood, it turns out that some of the location data are inaccurate. In order to compensate for the error of the data, I looked through each and every single neighborhood, and then I searched the true latitudes and longitudes of the inaccurate neighborhood data. Finally, I inserted it to the same list.

3.2. Folium

I used Folium to visualize the location of each neighborhoods in Boston and the result of clustering. Code Segment 2 below shows the visualization of Denver Neighborhoods and Figure 4 shows the result of visualization using Folium.

Code Segment 2: Denver neighborhoods visualization using Folium

```
map denver = folium.Map(location=[39.7490235, -105.0103623], zo
om start=11)
for lt, lng, neighborhood, in zip(df denver neigh['LATITUDE'],
df denver neigh['LONGITUDE'], df denver neigh['NEIGHBORHOOD']):
    label = '{}'.format(neighborhood)
    label = folium.Popup(label, parse html=True)
    folium.CircleMarker(
        [lt, lng],
        radius=6,
        popup=label,
        color='purple',
        fill=True,
        fill color='#f5f12c',
        fill_opacity=0.7,
        parse html=False).add to(map denver)
map denver
```


Figure 4, Result of Denver Neighborhood visualization

3.3. One Hot Encoding

According to Wikipedia, One Hot is a group of bits among which the legal combinations of values are only those with 1 and 0. In One Hot Encoding, I

transformed the Data Frame to a categorical value. In short, I made a new Data Frame consisted of the neighborhoods along with the 'dummies', which are the transformed categorical data into 1 and 0. 1 indicates that the crime belong to that particular neighborhood, while 0 indicates otherwise. 1 row will always consist at least a value of 1. Code segment 3 shows the process of making a new Data Frame with One Hot Encoding.

Code Segment 3: One Hot Encoding in Denver's Crime Data Frame

```
denver onehot = pd.get dummies(df denver[['OFFENSE CATEGORY ID'
]], prefix="", prefix_sep="")

denver_onehot['NEIGHBORHOOD_ID'] = df_denver['NEIGHBORHOOD_ID']

fixed_columns = [denver_onehot.columns[-1]] + list(denver_onehot.columns[:-1])
denver_onehot = denver_onehot[fixed_columns]
```

	NEIGHBORHOOD_ID	Aggravated Assault	All Other Crimes	Arson	Auto Theft	Bribery and Extortion	Burglary	Drug Alcohol	Gambling	Illegal Items Possession	Larceny	Murder	Other Crimes Against Persons	Police Related Events	Privacy Violation	Public Disorder	Robbery	Theft From Motor Vehicle	Weapon Related Violation	
0	Stapleton	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
3	West Colfax	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4	Montbello	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	College View / South Platte	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
12	Five Points	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Figure 5, One Hot Encoding of Denver's Crime Data

3.4. Top 5 most occurred crimes in Denver Neighborhoods

I decided to pick only top 5 of the most occurred crimes in Denver Neighborhoods because it allowed me to analyze the result much easier. Besides, there were only 21 categories of Crime. Code segment 4 in the next page shows how I sorted the crime by occurrence and Figure 6 shows the result in a table.

Figure 6, the result of top 5 most occurred crimes in Denver Neighborhoods

Code Segment 4 : Getting top 5 most occurred crimes in each of Denver Neighborhoods

```
num top crime = 5
indicators = ['st', 'nd', 'rd']
# create columns according to number of crimes
columns = ['NEIGHBORHOOD']
for ind in np.arange(num top crime):
        columns.append('{}{} Most Occured Crime'.format(ind+1, indicat
ors[ind]))
    except:
        columns.append('{}th Most Occured Crime'.format(ind+1))
# create a new dataframe
denver neigh crime sorted = pd.DataFrame(columns=columns)
denver neigh crime sorted['NEIGHBORHOOD'] = denver grouped['NEIGHBORHO
OD ID']
for ind in np.arange(denver grouped.shape[0]):
    denver neigh crime sorted.iloc[ind, 1:] = return most common crime
(denver grouped.iloc[ind, :], num top crime)
denver neigh crime sorted.head()
```

3.5. Top 5 most common venues in Denver Neighborhoods

For Denver venues', I also decided to pick only top 5 of the most common venues in Denver for the same reason. However, there were more than 200 venue categories, so I reduced the number of categories by putting some of the venues in a similar categories as explained in Denver Venues Data. Code segment 5 shows how I sorted the top venues and Figure 7 shows the result in a table.

	Neighborhood	1st Most Common Venue	1st Most Common 2nd Most Common Venue Venue		4th Most Common Venue	5th Most Common Venue	
0	Athmar Park	Warehouse Store	Home Service	Park	Bakery	Discount Store	
1	Auraria	Theme Park	Theme Park Ride / Attraction	Bar	European Restaurant	Asian Restaurant	
2	Baker	Bar	Asian Restaurant	Mexican Restaurant	Marijuana Dispensary	Hardware Store	
3	Barnum	Home Service	Convenience Store	Marijuana Dispensary	Market	Gym	
4	Barnum West	Mexican Restaurant	Discount Store	Snack / Dessert	Convenience Store	American Restaurant	

Figure 7, the result of top 5 most common venues in Denver Neighborhoods

Code Segment 5 : Getting top 5 venues in each of Denver Neighborhoods

```
num top venues = 5
indicators = ['st', 'nd', 'rd']
# create columns according to number of top venues
columns = ['Neighborhood']
for ind in np.arange(num_top_venues):
        columns.append('{}{} Most Common Venue'.format(ind+1, indicato
rs[ind]))
    except:
        columns.append('{}th Most Common Venue'.format(ind+1))
# create a new dataframe
neighborhoods venues sorted = pd.DataFrame(columns=columns)
neighborhoods venues sorted['Neighborhood'] = denver grouped venue['Ne
ighborhood']
for ind in np.arange(denver_grouped_venue.shape[0]):
    neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_ven
ues(denver grouped venue.iloc[ind, :], num top venues)
neighborhoods venues sorted.head()
```

3.6. K-Means Clustering

In this project I'm using K-Means Clustering to segment neighborhoods based on Crime data and Venues data. I'm running K-Means twice in this project, once for each data. I also set a different number of k so that the result match what I expected. Code Segment 6 and 7 show the k-Means Clustering on both Denver Crime Data and Denver Venues Data.

Code Segment 6 : k-Means Clustering on Denver Neighborhoods based on Denver
Crime Data

```
kclusters = 4

denver_grouped_clustering = denver_grouped.drop('NEIGHBORHOOD_ID', 1)

# run k-means clustering
kmeans = KMeans(n clusters=kclusters, random state=0).fit(denver grouped_clustering)
```

Code Segment 7 : k-Means Clustering on Denver Neighborhoods based on Denver Venues Data

```
kclusters = 3

denver_grouped_clustering_venues = denver_grouped_venue.drop('N eighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(denve r_grouped_clustering_venues)
```

4. Results

The first thing I'm going to discuss is the result of k-Means clustering based on Denver's crime data.

	NEIGHBORHOOD	LATITUDE	LONGITUDE	CLUSTER_LABELS	1st Most Occurred Crime	2nd Most Occurred Crime	3rd Most Occurred Crime	4th Most Occurred Crime	5th Most Occurred Crime
0	Baker	39.711595	-104.993750	2	Larceny	All Other Crimes	Public Disorder	Theft From Motor Vehicle	Drug Alcohol
1	Capitol Hill	39.735875	-104.979921	3	Drug Alcohol	Public Disorder	Larceny	All Other Crimes	Theft From Motor Vehicle
2	Central Business District	39.747378	-104.992737	3	Larceny	Privacy Violation	Public Disorder	Drug Alcohol	All Other Crimes
3	Cherry Creek	39.663610	-104.877444	2	Larceny	Theft From Motor Vehicle	Burglary	Public Disorder	All Other Crimes
4	Cheesman Park	39.736027	-104.966402	3	Drug Alcohol	Public Disorder	Larceny	All Other Crimes	Theft From Motor Vehicle

Figure 8, the cluster result of each neighborhood based on crime data

Code Segment 8: Mapping the crime data cluster on Denver's map

```
map clusters = folium.Map(location=[39.7490235, -105.0103623], zoom st
art=11)
# set color scheme for the clusters
x = np.arange(kclusters)
ys = [i + x + (i*x)**2  for i  in range(kclusters)]
colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors array]
# add markers to the map
markers colors = []
for lat, lon, poi, cluster in zip(denver merged['LATITUDE'], denver me
rged['LONGITUDE'], denver merged['NEIGHBORHOOD'], denver merged['CLUST
ER LABELS']):
    label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse
html=True)
    folium.CircleMarker(
        [lat, lon],
        radius=5,
        popup=label,
        color=rainbow[cluster-1],
        fill=True,
        fill color=rainbow[cluster-1],
        fill opacity=0.7).add to (map clusters)
map_clusters
```


Figure 8, Cluster mapping result on Denver map based on crime data

Next is Denver venues' data. Quite similar to the crime data, however venues data have more categories.

Code segment 9: Mapping the venues data cluster on Denver's map

```
map venue clusters = folium.Map(location=[39.7490235, -105.0103623], z
oom start=11)
# set color scheme for the clusters
x = np.arange(kclusters)
ys = [i + x + (i*x)**2  for i  in range(kclusters)]
colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors array]
# add markers to the map
markers colors = []
for lat, lon, poi, cluster in zip(denver_venues_merged['LATITUDE'], de
nver_venues_merged['LONGITUDE'], denver_venues_merged['NEIGHBORHOOD'],
denver venues merged['CLUSTER LABELS']):
    label = folium.Popup(str(poi) + 'Cluster' + str(cluster), parse
html=True)
    folium.CircleMarker(
        [lat, lon],
        radius=5,
        popup=label,
        color=rainbow[cluster-1],
        fill=True,
        fill color=rainbow[cluster-1],
        fill opacity=0.7).add to(map venue clusters)
map venue clusters
```


Figure 9, Cluster mapping result on Denver map based on venues data

5. Discussion

First, I changed the number of cluster in Denver's crime data to level of safety.

• Cluster 0 : Safest

• Cluster 1 : The most unsafe

• Cluster 2 : Unsafe

• Cluster 3 : Neutral

	NEIGHBORHOOD	LATITUDE	LONGITUDE	Safety Level	1st Most Occurred Crime	2nd Most Occurred Crime		4th Most Occurred Crime	5th Most Occurred Crime
0	Baker	39.711595	-104.993750	Unsafe	Larceny	All Other Crimes	Public Disorder	Theft From Motor Vehicle	Drug Alcohol
1	Capitol Hill	39.735875	-104.979921	Neutral	Drug Alcohol	Public Disorder	Larceny	All Other Crimes	Theft From Motor Vehicle
2	Central Business District	39.747378	-104.992737	Neutral	Larceny	Privacy Violation	Public Disorder	Drug Alcohol	All Other Crimes
3	Cherry Creek	39.663610	-104.877444	Unsafe	Larceny	Theft From Motor Vehicle	Burglary	Public Disorder	All Other Crimes
4	Cheesman Park	39.736027	-104.966402	Neutral	Drug Alcohol	Public Disorder	Larceny	All Other Crimes	Theft From Motor Vehicle

Figure 10, The Dataframe after the clusters changed into safety level

Before I go to the venues data, let's discuss why I decided to change the cluster to level of safety. Cluster 0 contains the safest neighborhoods because most of the crimes that happened there were mainly minor crimes. I already changed some categories from All Other Crimes to some other categories to reduce the number of major crimes in All Other Crimes category. So, neighborhoods in cluster 0 were relatively safer than the neighborhoods in other clusters.

On the other hand, neighborhoods in cluster 1 and 2 considered unsafe thanks to the numbers of major crimes such as larceny, theft, burglary, and robbery. Those crimes are very threatening for people who lived in those neighborhoods. Cluster 1 was the most dangerous, because most of the crimes that happened there were extremely treacherous. For those reasons, I put 'Unsafe' label on cluster 2 and 'The most unsafe' label on cluster 1. Figure 12, 13, and 14 below show the neighborhoods with each respective cluster labels.

	NEIGHBORHOOD	LATITUDE	LONGITUDE	CLUSTER_LABELS	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
0	Baker	39.711595	-104.993750	0	Bar	Marijuana Dispensary	Asian Restaurant	Mexican Restaurant	Intersection
1	Capitol Hill	39.735875	-104.979921	0	European Restaurant	Bar	Sandwich Place	Coffee Shop	Museum
2	Central Business District	39.747378	-104.992737	0	Hotel	American Restaurant	European Restaurant	Steakhouse	Sandwich Place
4	Cheesman Park	39.736027	-104.966402	0	Bar	Snack / Dessert	Café	Nightclub / Pub	Mexican Restaurant
5	City Park	39.747340	-104.950285	0	Zoo Exhibit	Museum	American Restaurant	Park	Track
6	Congress Park	39.733720	-104.948367	0	European Restaurant	Coffee Shop	Snack / Dessert	New American Restaurant	Burger Joint
7	City Park West	39.745376	-104.966577	0	European Restaurant	Pharmacy	Mexican Restaurant	Bar	Brewery
8	Civic Center	39.738181	-104.987744	0	Yoga Studio	Nightclub / Pub	Museum	Marijuana Dispensary	Breakfast Spot
9	Country Club	39.720118	-104.974991	0	Bus Stop	Park	Coffee Shop	Assisted Living	Furniture / Home Store
10	Lincoln Park	39.733149	-105.005190	0	Café	Coffee Shop	Bar	Art Gallery	Arts & Entertainment
11	North Capitol Hill	39.745624	-104.981598	0	American Restaurant	Coffee Shop	Hotel	European Restaurant	Mexican Restaurant
12	Speer	39.719187	-104.989091	0	Bar	Nightclub / Pub	American Restaurant	Coffee Shop	Brewery
13	Union Station	39.754891	-105.001352	0	Bar	Hotel	Restaurant	American Restaurant	Japanese Restaurant
14	Belcaro	39.703094	-104.946730	0	Gym / Fitness Center	Bakery	Mexican Restaurant	Paper / Office Supplies Store	Snack / Dessert
16	East Colfax	39.740629	-104.897748	0	Bar	South American Restaurant	Theme Park Ride / Attraction	Snack / Dessert	Sandwich Place
17	Hale	39.733021	-104.931128	0	Pharmacy	Coffee Shop	Park	Bar	Snack / Dessert
18	Hilltop	39.783079	-104.993961	0	Steakhouse	Sporting Goods Shop	Restaurant	Rental Car Location	Shipping Store
20	Lowry	39.698220	-104.905175	0	Liquor Store	Snack / Dessert	Asian Restaurant	European Restaurant	Grocery Store
23	Virginia Village	39.689319	-104.939641	0	Asian Restaurant	Mexican Restaurant	Coffee Shop	Clothing Store	Bakery
24	Washington Virginia Vale	39.689319	-104.939641	0	Asian Restaurant	Mexican Restaurant	Coffee Shop	Clothing Store	Bakery
25	Windsor	39.750865	-104.995794	0	Bar	European Restaurant	American Restaurant	Hotel	Restaurant
27	Cole	39.765630	-104.966557	0	Beer Garden	Mexican Restaurant	Convenience Store	European Restaurant	Rental Car Location
28	Elyria-Swansea	39.782958	-104.958113	0	Farm	Intersection	Mexican Restaurant	Sports Venue	Food Truck
29	Five Points	39.754658	-104.977986	0	Mexican Restaurant	Brewery	Convenience Store	Coffee Shop	Activate Windews
30	Globeville	39.780732	-104.986972	0	Bar	Sporting Goods Shop	Intersection	Restaurant	Go to Se Rusiness Service /a
31	North Park Hill	39.756826	-104.921732	0	Brewery	Snack / Dessert	Bistro	Gym / Fitness Center	Liquor Store
32	South Park Hill	39.746650	-104.922043	0	European Restaurant	Gym / Fitness Center	Gym	Wine Shop	Auto Garage

Figure 12, Denver neighborhood in cluster 0 based on nearby venues

	NEIGHBORHOOD	LATITUDE	LONGITUDE	CLUSTER_LABELS	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
3	Cherry Creek	39.663610	-104.877444	1	Construction & Landscaping	Park	Trail	Farmers Market	Zoo
15	Cory-Merrill	39.689858	-104.958810	1	Sports Venue	Park	Big Box Store	Breakfast Spot	Fabric Shop
19	Indian Creek	39.686390	-104.905174	1	Park	Gym / Fitness Center	Dance Studio	Lawyer	Zoo
21	Montclair	39.731735	-104.912948	1	Mexican Restaurant	Park	Asian Restaurant	Snack / Dessert	European Restaurant
26	Clayton	39.766760	-104.950199	1	Park	Coffee Shop	Market	Marijuana Dispensary	Mexican Restaurant
34	Whittier	39.756363	-104.966558	1	Park	Bar	Café	Grocery Store	Dog Run
37	Montbello	39.784223	-104.831154	1	Park	Playground	Sports Venue	Liquor Store	Zoo
38	Northeast Park Hill	39.665239	-104.872474	1	Park	Construction & Landscaping	Gym	Auto Dealership	Deli / Bodega
56	Washington Park	39.702081	-104.971034	1	Park	Sports Venue	Botanical Garden	Bike Rental / Bike Share	Track
57	Washington Park West	39.702081	-104.971034	1	Park	Sports Venue	Botanical Garden	Bike Rental / Bike Share	Track
58	Wellshire	39.658484	-104.941353	1	Pharmacy	Park	Golf Course	Playground	Sports Venue
59	Goldsmith	39.643414	-104.894206	1	Asian Restaurant	Mexican Restaurant	Park	Liquor Store	Discount Store
65	Fort Logan	39.647734	-105.043810	1	Park	Z00	Dessert Shop	Farm	Fabric Shop
66	Harvey Park	39.674664	-105.039167	1	Historic Site	Park	Lake	Recreation Center	Mexican Restaurant
67	Harvey Park South	39.674664	-105.039167	1	Historic Site	Park	Lake	Recreation Center	Mexican Restaurant
69	Athmar Park	39.703682	-105.010741	1	Warehouse Store	Home Service	Park	Bakery	Construction & Landscaping
72	Mar Lee	39.689192	-105.039141	1	Fried Chicken Joint	Park	Grocery Store	Taco Place	Liquor Store
75	Valverde	39.718301	-105.015823	1	Park	Brewery	Gym / Fitness Center	Indie Theater	Dance Studio
76	Villa Park	39.730727	-105.039212	1	Park	Liquor Store	European Restaurant	Food & Drink Shop	Zoo

Figure 13, Denver neighborhood in cluster 1 based on nearby venues

	NEIGHBORHOOD	LATITUDE	LONGITUDE	CLUSTER_LABELS	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
36	Gateway / Green Valley Ranch	39.786752	-104.790124	2	Bus Station	Z00	Dessert Shop	Farm	Fabric Shop

Figure 14, Denver neighborhood in cluster 2 based on nearby venues

As you see from those clustering results, Cluster 0 is more suitable for workers and students because the amount of hangout places in the neighborhoods. Venues such as Coffee shops, bars, and restaurants are just the perfect spot for hangout. Meanwhile, venues in Cluster 1 are mostly parks, zoos, and historic sites which are perfect for families. Cluster 2 only consists of 1 neighborhood, and it can be suitable for everyone. For those reasons, I changed the number of cluster in venues data to the targeted groups of people. Here are the changes I made in the dataframe:

• Cluster 0 : Students / Workers

• Cluster 1 : Families

• Cluster 2 : Everybody

Figure 15 shows the dataframe after the change.

		NEIGHBORHOOD	LATITUDE	LONGITUDE	Targeted Groups	1st Most Common Venue		3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
-	0	Baker	39.711595	-104.993750	Students / Workers	Bar	Asian Restaurant	Mexican Restaurant	Marijuana Dispensary	Hardware Store
	1	Capitol Hill	39.735875	-104.979921	Students / Workers	European Restaurant	Bar	Sandwich Place	Breakfast Spot	Bookstore
:	2	Central Business District	39.747378	-104.992737	Students / Workers	Hotel	American Restaurant	Steakhouse	Coffee Shop	Sandwich Place
;	3	Cherry Creek	39.663610	-104.877444	Families	Construction & Landscaping	Park	Trail	Farmers Market	Z00
	4	Cheesman Park	39.736027	-104.966402	Students / Workers	Bar	Nightclub / Pub	Café	Snack / Dessert	Mexican Restaurant

Figure 15, The Dataframe after the clusters were changed into targeted groups

6. Conclusion

The aim of this project is to show which neighborhood in Denver is the safest and the most suitable for targeted groups of people. Because of that, I grouped the result into a new dataframe called **result** which held the safest neighborhoods in Denver along with the targeted groups. The result dataframe consisted of 29 neighborhoods, 7 were more suitable for families while the rest 22 were more suitable for workers / students. Figure 16 shows the result dataframe and figure 17 shows the safest Denver neighborhood in the map.

	NEIGHBORHOOD	LATITUDE_x	LONGITUDE_x	Targeted Groups	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	LATITUDE_y	LONGITUDE_y	Safety Level
8	Civic Center	39.738181	-104.987744	Students / Workers	Nightclub / Pub	Museum	Marijuana Dispensary	Yoga Studio	Breakfast Spot	39.738181	-104.987744	Safest
10	Lincoln Park	39.733149	-105.005190	Students / Workers	Café	Bar	Coffee Shop	Art Gallery	Steakhouse	39.733149	-105.005190	Safest
16	East Colfax	39.740629	-104.897748	Students / Workers	Bar	South American Restaurant	Tattoo Parlor	Latin American Restaurant	Fast Food Restaurant	39.740629	-104.897748	Safest
25	Clayton	39.766760	-104.950199	Students / Workers	Mexican Restaurant	Coffee Shop	Market	Marijuana Dispensary	Liquor Store	39.766760	-104.950199	Safest
26	Cole	39.765630	-104.986557	Students / Workers	Park	European Restaurant	Perfume Shop	Nightdub / Pub	Convenience Store	39.765630	-104.986557	Safest
27	Elyria-Swansea	39.782958	-104.958113	Students / Workers	Farm	Intersection	Sports Venue	Boxing Gym	Mexican Restaurant	39.782958	-104.958113	Safest
29	Globeville	39.780732	-104.986972	Students / Workers	Bar	Park	Metro Station	Sporting Goods Shop	Hotel	39.780732	-104.986972	Safest
30	North Park Hill	39.756826	-104.921732	Students / Workers	Clothing Store	Arts & Crafts Store	Snack / Dessert	Food	Brewery	39.756826	-104.921732	Safest
32	Skyland	39.755713	-104.950224	Students / Workers	Zoo Exhibit	Gift Shop	Snack / Dessert	American Restaurant	Exhibit	39.755713	-104.950224	Safest
33	Whittier	39.756363	-104.966558	Students / Workers	Sports Venue	Park	Grocery Store	Café	Bar	39.756363	-104.986558	Safest
36	Montbello	39.784223	-104.831154	Families	Park	Sports Venue	Business Service	Food	Spa	39.784223	-104.831154	Safest
37	Northeast Park Hill	39.665239	-104.872474	Families	Steakhouse	Gym	Park	Deli / Bodega	Auto Dealership	39.665239	-104.872474	Safest
41	Chaffee Park	39.788442	-105.010995	Students / Workers	Grocery Store	Clothing Store	Thrift / Vintage Store	Liquor Store	Mexican Restaurant	39.788442	-105.010995	Safest
43	Jefferson Park	39.750821	-105.019779	Students / Workers	Mexican Restaurant	Theme Park Ride / Attraction	Bar	Brewery	Asian Restaurant	39.750821	-105.019779	Safest
44	Regis	39.786779	-105.043968	Students / Workers	Convenience Store	Golf Course	Burrito Place	Liquor Store	Zoo	39.786779	-105.043968	Safest
46	Sunnyside	39.775880	-105.011696	Students / Workers	Coffee Shop	Mexican Restaurant	Bar	Park	Japanese Restaurant	39.775680	-105.011696	Safest
49	Overland	39.689988	-104.997874	Students / Workers	Coffee Shop	Furniture / Home Store	Miscellaneous Shop	Mexican Restaurant	Pharmacy	39.689988	-104.997874	Safest
58	Goldsmith	39.643414	-104.894206	Families	Asian Restaurant	Mexican Restaurant	Park	Liquor Store	Distillery	39.643414	-104.894206	Safest
65	Harvey Park	39.674664	-105.039167	Families	Mexican Restaurant	Lake	Construction & Landscaping	Recreation Center	Park	39.674664	-105.039167	Safest
67	Athmar Park	39.703882	-105.010741	Families	Warehouse Store	Home Service	Park	Bakery	Discount Store	39.703882	-105.010741	Safest
68	Barnum	39.717683	-105.032455	Students / Workers	Home Service	Convenience Store	Marijuana Dispensary	Market	Gym	39.717683	-105.032455	Safest
69	Barnum West	39.717155	-105.046497	Students / Workers	Mexican Restaurant	Discount Store	Snack / Dessert	Convenience Store	American Restaurant	39.717155	-105.046497	Safest
70	Mar Lee	39.689192	-105.039141	Students / Workers	Fried Chicken Joint	Business Service	Discount Store	Check Cashing Service	Park	39.689192	-105.039141	Safest
71	Ruby Hill	39.683598	-105.007205	Students / Workers	Ski Area	Park	Music Venue	Liquor Store	Marijuana Dispensary	39.683598	-105.007205	Safest
72	Sun Valley	39.736379	-105.021459	Students / Workers	Brewery	Gym / Fitness Center	Bar	Hot Dog Joint	Taco Place	39.736379	-105.021459	Safest
73	Valverde	39.718301	-105.015823	Families	Park	Brewery	Indie Theater	Gym / Fitness Center	Business Service	39.718301	-105.015823	Safest
74	Villa Park	39.730727	-105.039212	Families	Park	Liquor Store	Home Service	Food & Drink Shop	European Restaurant	39.730727	-105.039212	Safest
75	West Colfax	39.740093	-105.039202	Students / Workers	Coffee Shop	Convenience Store	Mexican Restaurant	Snack / Dessert	Bar	39.7/40093	V 2-105.0392027	○ V\$§fest
76	Westwood	39.704193	-105.039174	Students / Workers	Mexican Restaurant	Museum	Liquor Store	Distillery	Farm	39.704193	Se105,0391740	activ Safest V

Figure 16, Result dataframe

Figure 17, Denver safest neighborhood. Pink means suitable for workers / students while green means suitable for families