Module 1: The Nature of Fluids/Pressure Measurement (CIVL 318)

Some useful results:

Table A: Properties of Water

Table B: Properties of Common Liquids (at 101 kPa and 25°C)

Temperature	Specific Weight	Density	Dynamic Viscosity
	γ	ho	η
(°C)	(kN/m^3)	(kg/m^3)	$(Pa \cdot s)$
0	9.81	1000	1.75×10^{-3}
5	9.81	1000	1.52×10^{-3}
10	9.81	1000	1.30×10^{-3}
15	9.81	1000	1.15×10^{-3}
20	9.79	998	1.02×10^{-3}
25	9.78	997	8.91×10^{-4}
30	9.77	996	9.00×10^{-4}
35	9.75	994	7.18×10^{-4}
40	9.73	992	6.51×10^{-4}
45	9.71	990	5.94×10^{-4}
50	9.69	988	5.41×10^{-4}
55	9.67	986	4.98×10^{-4}
60	9.65	984	4.60×10^{-4}
65	9.62	981	4.31×10^{-4}
70	9.59	978	4.02×10^{-4}
75	9.56	975	3.73×10^{-4}
80	9.53	971	3.50×10^{-4}
85	9.50	968	3.30×10^{-4}
90	9.47	965	3.11×10^{-4}
95	9.44	962	2.92×10^{-4}
100	9.40	958	2.82×10^{-4}

	Specific	Specific		Dynamic
Liquid	Gravity	Weight	Density	Viscosity
		γ	ho	η
		(kN/m^3)	(kg/m^3)	(Pa·s)
Acetone	0.787	7.72	787	3.16×10^{-4}
Alcohol, Ethyl	0.787	7.72	787	1.00×10^{-3}
Alcohol, Methyl	0.789	7.74	789	5.60×10^{-4}
Alcohol, Propyl	0.802	7.87	802	1.92×10^{-3}
Benzene	0.876	8.59	876	6.03×10^{-4}
Carbon Tetrachloride	1.590	15.60	1590	9.10×10^{-4}
Castor Oil	0.960	9.42	960	6.51×10^{-1}
Ethylene Glycol	1.100	10.79	1100	1.62×10^{-2}
Gasoline	0.68	6.67	680	2.87×10^{-4}
Glycerine	1.258	12.34	1258	9.60×10^{-1}
Kerosene	0.823	8.07	823	1.64×10^{-3}
Linseed Oil	0.930	9.12	930	3.31×10^{-2}
Mercury	13.54	132.8	13540	1.53×10^{-3}
Propane	0.495	4.86	495	1.10×10^{-4}
Seawater	1.030	10.10	1030	1.03×10^{-3}
Turpentine	0.870	8.53	870	1.37×10^{-3}
Fuel Oil, medium	0.852	8.36	852	2.99×10^{-3}
Fuel Oil, heavy	0.906	8.89	906	1.07×10^{-1}

Example 1:

A piston confines oil in a closed circular cylinder. The maximum operating pressure for the piston is 17.8 MPa. The piston has a diameter of 62.5 mm. What is the maximum load that the piston can support?

Exercise 1:

A press used to produce coins requires a force of $8.20\ \mbox{kN}.$

The hydraulic cylinder has a diameter of 63.5 mm.

What is the oil pressure needed to generate this force?

Example 2:

An empty barrel with an inside diameter of $900\ mm$ weighs $205\ N.$

What does the barrel weigh when it is filled to a depth of 750 mm with water at 25° C?

Example 3:

Calculate the density and the specific weight of benzene if it has a specific gravity of 0.876.

Example 4:

An open cylindrical tank with diameter $5.75~\mathrm{m}$ and depth $3.30~\mathrm{m}$ is filled to the top with water at $10^{\circ}\mathrm{C}$. The water is heated to $55^{\circ}\mathrm{C}$. Assuming that the tank dimensions remain constant and there are no losses due to evaporation, calculate the mass of water that overflows.

Example 5:

A tank, open to the atmosphere in the centre, contains medium fuel oil. Atmospheric pressure is 102.1 kPa. Calculate the gauge pressure and the absolute pressure for locations A, B, and D.

Exercise 2:

Calculate the gauge pressure and the absolute pressure for locations ${\it C}$ and ${\it E}$ for the previous example.

Example 6:

Determine the pressure at A given that the temperature of the water is $25^{\circ}\mathrm{C}$.

Example 7:

Find the pressure difference between \boldsymbol{A} and \boldsymbol{B}

