L19: Rank-nullity and spaces

Recall: If $A = \{v_1, \dots, v_n\}$ is linearly independent in a finite dimensional vector space V and $B = \{b_1, \dots, b_n\}$ is a basis.

Then after possibly reordering

$$C_i = \{v_1, \dots, v_i, b_{i+1}, \dots, b_n\}$$

is a basis for all $0 \le i \le k$ and in particular, $k \le n$.

Corollary 19.1

If $A = \{a_1, \dots, a_n\}$ is a linearly independent set in a finite dimensional F-vector space V, then there is a basis $B \supset A$.

Proof. Take any basis D for V and apply replacement to A and D.

Theorem 19.2

Let V be an F-vector space, $W \subset V$ a subspace. Then, in particular, V/W is an F-vector space and

$$\dim V/W + \dim W = \dim V$$

(if either side is infinite, then both are)

Proof. Suppose V is finite dimensional and $\dim V = n$ and $\dim W = m$.

Let $B = \{v_1, \ldots, v_m\} \subset W$ be a basis for W. Then $B \subset V$ is linearly independent and by the building up lemma there exists

$$B' = \{v_1, \dots, v_m, v_{m+1}, \dots, v_n\}$$

which is a basis for V.

Consider the quotient map

$$\phi: V \to V/W$$

Definition 19.3

If $\varphi: V \to W$ is an F-linear transformation, we sometimes refer to the kernel of φ as the **null space** of φ .

The **nullity** of φ is the dim Ker φ .

The **rank** of φ is the dim Im φ .

If $\operatorname{Ker} \varphi = 0$, then we say φ is **non-singular**, otherwise we say φ is **singular**.

The **cokernel** of φ is

 $\operatorname{Coker} \varphi \coloneqq W/\operatorname{Im} \varphi$

Corollary 19.4

If $\varphi: V \to W$ is an F linear transformation, then:

- (1) Ker $\varphi \subset V$ and Im $\varphi \subset W$ are subspaces.
- (2) (Rank-nullity) dim $V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.

Proof. First isomorphism theorem implies $\operatorname{Im} \varphi \cong V/\operatorname{Ker} \varphi$ and hence

$$\dim V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$$

Corollary 19.5

If $\varphi:V\to W$ is an F-linear transformation and $\dim V=\dim W,$ then the following are equivalent:

- (1) φ is an isomorphism
- (2) Ker $\phi = 0$ (i.e. φ is injective)
- (3) Im $\varphi = W$ (i.e. φ is surjective)
- (4) If $B \subset V$ is a basis, then

$$\phi(B) := \{ \phi(v_1), \dots, \phi(v_n) \mid v_1, \dots, v_n \in B \}$$

is a basis for W.

The dual of a vector space

Definition 19.6

Let V be an F-vector space. The **dual space** is

$$V^* := \operatorname{Hom}_F(V, F)$$

Elements of V^* are called **linear functionals**

Example 19.1. Let V be the vector space of continuous functions $f:[0,1] \to \mathbb{R}$, then the integral operator is a linear functional on V

$$\int : V \to \mathbb{R}$$
$$f \mapsto \int_0^1 f \, \mathrm{d} \mathrm{d} x$$

$\overline{\text{Lemma}}$ 19.7

If $B = \{v_1, \ldots, v_n\}$ is a basis for V, then any linear functional $f \in V^*$ is determined by its values on B.

Proof. If $v \in V$, then

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$$

$$\Longrightarrow f(a_1 + \dots + a_n v_n) = a_1 f(v_1) + \dots + a_n f(v_n)$$

$$\Longrightarrow a_1 \alpha_1 + \dots + a_n \alpha_n$$

given $\alpha_1 = f(v_1), \ldots, \alpha_n = f(v_n)$.

Definition 19.8

Let $B = \{v_1, \dots, v_n\}$ be a basis for V. Denote by $v_i^* \in V^*$ the linear functional

$$v_i^*(v_j) := \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Theorem 19.9

 $B^* = \{v_1^*, \dots, v_n^*\}$ is a basis for V^* . In particular, if dim V = n, then dim $V^* = n$.

Proof. Let $f \in V^*$, $v \in V$ with $v = a_1v_1 + \cdots + a_nv_n$.

Then

$$f(v) = f(a_1v_1 + \dots + a_nv_n) = a_1f(v_1) + \dots + a_nf(v_n)$$

On the other hand,

$$v_1^*(v) = v_1^*(a_1v_1 + \dots + a_nv_n) = a_1\underbrace{v_1^*(v_1)}_{-1} + a_2v_1^*(v_2) + \cdots + a_nv_1^*(v_n) + a_2v_1^*(v_n) + a_2v$$

Through this same logic it shown

$$v_i^*(v) = a_i \quad i = \{1, \dots, n\}$$

Returning to the first equation

$$f(v) = a_1 f(v_1) + \dots + a_n f(v_n)$$

= $v_1^*(v) f(v_1) + \dots + v_n^*(v) f(v_n)$
= $(f(v_1)v_1^* + \dots + f(v_n)v_n^*)(v)$

Hence $f = \sum_{i=1}^{n} f(v_i)v_i^*$ and B^* is spanning.

On the other hand, if $\alpha_1, \ldots, \alpha_n \in F$ such that

$$\alpha_1 v_1^* + \dots + \alpha_n v_n^*$$

Then

$$(\alpha_1 v_1^* + \dots + \alpha_n v_n^*)(v_i) = \alpha_i = 0 \,\forall i$$

Therefore, B^* is also linearly independent and we conclude B^* is a basis for V^* .

Note: If $\varphi: V \to W$ is a linear transformation, then there is an induced map

$$\varphi^* \colon W^* \to V^*$$
$$(f \colon W \to F) \mapsto (f \circ \varphi \colon V \to W \to F)$$

Theorem 19.10

If $\varphi: V \to W$ is a linear transformation of finite dimensional vector spaces inducing $\varphi^*: W^* \to V^*$. Then,

$$\operatorname{Ker} \varphi^* \cong \operatorname{Coker} \varphi$$
 $\operatorname{Coker} \varphi^* \cong \operatorname{Ker} \varphi$

as F-vector spaces.

Proof. Let $B = \{v_1, \ldots, v_n\}$ a basis for $\operatorname{Ker} \varphi$, $B' = \{v_1, \ldots, v_n, v_{n+1}, \ldots, v_m\}$ a basis for V and $\varphi(B') = \{\varphi(v_{n+1}), \ldots, \varphi(v_m)\}$ a basis for $\operatorname{Im} \varphi$. Since $\operatorname{Im} \varphi \subset W$ is a subspace then

$$C = \{\varphi(v_{n+1}), \dots, \varphi(v_m), w_1, \dots, w_k\}$$

is a basis for W.

Dualizing, we get the dual basis

$$C^* = \{\varphi(v_{n+1})^*, \dots, \varphi(v_m)^*, w_1^*, \dots, w_k^*\}$$

a basis for W^* .

Let $v \in V$ and consider

$$\varphi^*: W^* \to V^*$$
$$\varphi^*[\varphi(v_{n+i})^*](v) = \varphi(v_{n+i})^*(\varphi(v))$$

Since we can write $v = \sum_{j=1}^{m} a_j v_j$ then

$$\varphi^*[\varphi(v_{n+i})^*](v) = \varphi(v_{n+i})^* \left(\sum_{j=n+1}^m a_j \varphi(v_j)\right) = a_{n+i}$$

and hence

$$\varphi^*(w_j^*)(v) = w_j^*(\varphi(v)) = w_j^* \left(\sum_{j=n+1}^m a_j \varphi(v_j)\right) = 0$$

implying

$$\operatorname{Ker} \varphi^* = \operatorname{Span}\{w_1^*, \dots, w_k^*\}$$
$$\operatorname{Im} \varphi^* = \operatorname{Span}\{v_{n+1}^*, \dots, v_m^*\}$$

Therefore

$$\operatorname{Coker} \varphi = W/\operatorname{Im} \varphi = \frac{\operatorname{Span}\{\varphi(v_{n+1}), \dots, \varphi(v_m), w_1, \dots, w_k\}}{\operatorname{Span}\{\varphi(v_{n+1}), \dots, \varphi(v_m)\}} = \operatorname{Span}\{\overline{w}_1, \overline{w}_2, \dots, \overline{w}_k\}$$

and
$$\operatorname{Ker} \varphi = \operatorname{Span}\{v_1, \dots, v_n\}$$
 to give
$$\operatorname{Coker} \varphi^* = V^*/\operatorname{Im} \varphi^* = \frac{\operatorname{Span}\{v_1, \dots, v_n, v_{n+1}, \dots, v_m\}}{\operatorname{Span}\{v_{n+1}^*, \dots, v_m^*\}} = \operatorname{Span}\{\overline{v}_1, \overline{v}_2, \dots, \overline{v}_n\}$$

FOUR SUBSPACES GRAPHIC