

GAM250: Advanced Games Programming 4: Graphics Programming

Learning outcomes

- Understand the modern Programmable Graphics
 Pipeline
- Understand Unity's Material System
- Write Subsurface and Image Processing Shaders in Unity

The Graphics Pipeline

The 3D graphics pipeline

 Geometry is provided to the GPU as a mesh of triangles

- Geometry is provided to the GPU as a mesh of triangles
- ► Each triangle has three vertices specified in 3D space (x, y, z)

- Geometry is provided to the GPU as a mesh of triangles
- Each triangle has three vertices specified in 3D space (x, y, z)
- Vertex processor transforms
 (rotates, moves, scales) vertices
 and projects them into 2D screen
 space (x, y)

- Geometry is provided to the GPU as a mesh of triangles
- Each triangle has three vertices specified in 3D space (x, y, z)
- Vertex processor transforms
 (rotates, moves, scales) vertices
 and projects them into 2D screen
 space (x, y)
- May also apply particle simulations, skeletal animations or deformations, etc.

 Determine which fragments are covered by the triangle

- Determine which fragments are covered by the triangle
- In practical terms, "fragment" = "pixel"

- Determine which fragments are covered by the triangle
- In practical terms, "fragment" = "pixel"
- Vertex processor can associate data with each vertex; this is interpolated across the fragments

 Determine the colour of each fragment covered by the triangle

- Determine the colour of each fragment covered by the triangle
- Textures are 2D images that can be wrapped onto a 3D object

- Determine the colour of each fragment covered by the triangle
- Textures are 2D images that can be wrapped onto a 3D object
- Colour is calculated based on texture, lighting and other properties of the surface being rendered (e.g. shininess, roughness)

 Combine these fragments with the existing content of the image buffer

- Combine these fragments with the existing content of the image buffer
- ▶ Depth testing: if the new fragment is "in front" of the old one, replace it; if it is "behind", discard it

- Combine these fragments with the existing content of the image buffer
- Depth testing: if the new fragment is "in front" of the old one, replace it; if it is "behind", discard it
- Alpha blending: combine the old and new colours for a semi-transparent appearance

The vertex processor and fragment processor are programmable

- The vertex processor and fragment processor are programmable
- Programs for these units are called shaders

- The vertex processor and fragment processor are programmable
- Programs for these units are called shaders
- Vertex shader: responsible for geometric transformations, deformations, and projection

- The vertex processor and fragment processor are programmable
- Programs for these units are called shaders
- Vertex shader: responsible for geometric transformations, deformations, and projection
- Fragment shader: responsible for the visual appearance of the surface

- The vertex processor and fragment processor are programmable
- Programs for these units are called shaders
- Vertex shader: responsible for geometric transformations, deformations, and projection
- Fragment shader: responsible for the visual appearance of the surface
- Vertex shader and fragment shader are separate programs, but the vertex shader can pass arbitrary values through to the fragment shader

Further Reading

- ► Game Programming Patterns http: //gameprogrammingpatterns.com/contents.html
- ► Game Programming Patterns in Unity http://www.habrador.com/tutorials/ programming-patterns/
- Unity Design Patterns https: //github.com/Naphier/unity-design-patterns