6 Gram-Schimdt Process Jessica Wei

DEF | Inner Product Let \overrightarrow{x} , \overrightarrow{y} , $\in \mathbb{R}^n$, the inner product of \overrightarrow{x} with \overrightarrow{y}

$$\langle \overrightarrow{x}, \overrightarrow{y} \rangle = x_1y_1 + x_2y_2 + \dots + x_ny_n = \overrightarrow{x} \cdot \overrightarrow{y}$$

DEF | Normalized

A vector $\overrightarrow{x} \in \mathbb{R}^n$ is normalized if $||\overrightarrow{x}||_2 = 1$.

Example. Find $\langle \overrightarrow{x}, \overrightarrow{x} \rangle$ where $\overrightarrow{x} \in \mathbb{R}^n$. $\overrightarrow{x} = [x_1, x_2, ..., x_n]$

$$\overrightarrow{x}, \overrightarrow{x} >= x_1 \cdot x_1 + x_2 \cdot x_2 + \dots + x_n \cdot x_n = x_1^2 + x_2^2 + \dots + x_n^2$$

$$= ||\overrightarrow{x}||_2^2$$

*NOTE:

1.
$$||\overrightarrow{x}||_2 = \sqrt{\langle \overrightarrow{x}, \overrightarrow{x} \rangle}$$

2. For any vector $\overrightarrow{x} \in \mathbb{R}^n$, we can form the normalized vector \overrightarrow{y} of \overrightarrow{x} by $y = \frac{1}{||\overrightarrow{x}||_2} \overrightarrow{x}$ i.e. any vector of the form $\overrightarrow{y} = \frac{1}{||\overrightarrow{x}||_2} \overrightarrow{x}$ is a normalized vector.

Example. Normalize $\overrightarrow{x} = [1, 1]^T$

$$||\overrightarrow{x}||_2 = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\Rightarrow \overrightarrow{y} = \frac{1}{\sqrt{2} \overrightarrow{x}}$$

$$= \left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]^T$$

Verifying:

$$|\overrightarrow{y}||_2 = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2}$$
$$= \sqrt{\frac{2}{4} + \frac{2}{4}}$$
$$= \sqrt{1} = 1$$

Properties of Inner Product. Let $\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z} \in \mathbb{R}^n$

1.
$$\langle \overrightarrow{x}, \overrightarrow{x} \rangle > 0$$

2.
$$\langle \overrightarrow{x}, \overrightarrow{x} \rangle = 0$$
 if and only if $\overrightarrow{x} = \overrightarrow{0}$

$$3. <> \overrightarrow{x}m, \overrightarrow{y} = < \overrightarrow{y}, \overrightarrow{x} >$$

4.
$$\lambda < \overrightarrow{x}, \overrightarrow{y} > = <\lambda \overrightarrow{x}, \overrightarrow{y} >$$
 Proof E.C.

5.
$$\langle \overrightarrow{x} + \overrightarrow{z}, \overrightarrow{y} \rangle = \langle \overrightarrow{x} + \overrightarrow{y} \rangle + \langle \overrightarrow{z}, \overrightarrow{y} \rangle$$
 Proof E.C.

6.
$$\langle \overrightarrow{0}, \overrightarrow{y} \rangle = 0$$

CLAIM. Let $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^n$

$$<\overrightarrow{u},\overrightarrow{v}=||\overrightarrow{u}||_2\cdot||\overrightarrow{v}||_2\cos\theta>$$

Where θ is the angle between the vectors.

Proof. E.C. (Hint: Consider Law of Cosines)

Gram-Schimdt Process

DEF | Orthogonal

Let \overrightarrow{x} , $\overrightarrow{y} \in \mathbb{R}^n$. We say \overrightarrow{x} is orthogonal to \overrightarrow{y} if $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = 0$ i.e. graphically $\overrightarrow{x} \perp \overrightarrow{y}$. A set of vectors is orthogonal if the vectors are orthogonal to each other.

Example. Determine if the set of vectors are orthogonal.

1.
$$M = \left[\frac{1}{\sqrt{2}}, \left[\frac{1}{\sqrt{2}}, 0\right]^T, \left[\left[\frac{1}{\sqrt{2}}, -\left[\frac{1}{\sqrt{2}}, 0\right]^T, [0, 0, 1]\right]\right] < \overrightarrow{m_1}, \overrightarrow{m_2} > = \left(\left[\frac{1}{\sqrt{2}}\right)^2 - \frac{1}{2} + 0 = \frac{1}{2} - \frac{1}{2} + 0 = 0\right] < \overrightarrow{m_1}, \overrightarrow{m_3} > = 0 + 0 + 0 = 0$$
 $< m_2, m_3 > = 0 + 0 + 0 = 0$

 \Rightarrow The vectors are orthogonal, the set is orthogonal

DEF | Orthonormal

A set of vectors in \mathbb{R}^n is orthonormal if the vectors are orthogonal and they are normalized. i.e. they have a magnitude of 1

3

Example. Determine if the set M from the previous example is orthonormal. Ans:

1. The vectors are orthogonal

2.
$$||\overrightarrow{m}_1||_2 = \sqrt{([\frac{1}{\sqrt{2}})^2 + ([\frac{1}{\sqrt{2}})^2 + 0^2)} = \sqrt{\frac{1}{2} + \frac{1}{2} + 0} = 1 = ||\overrightarrow{m}_2||_2$$

 $||\overrightarrow{m}_3^2||_2 = \sqrt{0^2 + 0^2 + 1^2} = \sqrt{1} = 1$

Hence, M is orthonormal.

DEF | Kronecker Delta

The Kronecker delta, d_{ij} , is a relation defined by

$$d_{ij} = 1 \text{ if } i = j$$

 $d_{ij} = 0$ if otherwise *Remarks:

1. The set $\overrightarrow{x}_1, \overrightarrow{x}_2, ..., \overrightarrow{x}_n$ is orthonormal if

(a)
$$\langle \overrightarrow{x}_i, \overrightarrow{x}_j \rangle = d_{ij}$$
 for all $i, j \in [1, n]$

(b)
$$||\overrightarrow{x}_i|| = 1i = 1, 2, ..., n$$

(c)
$$= \langle \overrightarrow{x_i}, \overrightarrow{x_i} \rangle = ||x_i||^2 = 1^2 = 1$$
 when $i - j$

(d)
$$\langle \overrightarrow{x_i}, \overrightarrow{x_j} \rangle = 0$$
 when $i \neq j$

(e) =
$$d_{ij}$$

- 2. A set of orthogonal vectors can be made orthonormal by normalizing each vector $\left(\frac{1}{\|\overrightarrow{x}\|}\overrightarrow{x}\right)$
- 3. Any orthogonal/orthonormal set that spans a vector space V is a bases for V. Proof: E.C.

Motivation for Gram-Schimdt Process

- * The Grow Algorithm allows us to find a basis from a set of vectors T, for some vector space.
- * What if we want the basis to be orthonormal?
 - (a) i.e. $B = \overrightarrow{u}, \overrightarrow{x}$ is a basis for \mathbb{R}^2
 - (b) Notice, $\overrightarrow{x} = \overrightarrow{x}_{\parallel} + \overrightarrow{x}_{\perp}$ where $\overrightarrow{x}_{\parallel} = \alpha \overrightarrow{u}$ for $\alpha \in \mathbb{R}$
 - (c) If we can find α , then $\overrightarrow{x}_{\perp} = \overrightarrow{x} \overrightarrow{x}_{\parallel}$ and $\overrightarrow{x}_{\perp} = \overrightarrow{x} \alpha \overrightarrow{u}$
 - (d) In such a case $\overrightarrow{x}_{\perp}$, \overrightarrow{u} would be an orthogonal basis
 - (e) and if we normalize the vectors, we obtain an orthonormal basis: $\frac{1}{\|\overrightarrow{x}_{\perp}\|}\overrightarrow{x}_{\perp}$, $\frac{1}{\|\overrightarrow{u}_{\perp}\|}\overrightarrow{u}$

Goal. Find α .

Notice:

$$\langle \overrightarrow{x}_{\perp}, \overrightarrow{x}_{\parallel} \rangle = 0$$

$$\langle \overrightarrow{x} - \overrightarrow{x}_{\parallel}, \overrightarrow{x}_{\parallel} \rangle = 0$$

$$\langle \overrightarrow{x} - \alpha \overrightarrow{u}, \alpha \overrightarrow{u} \rangle = 0$$

$$\langle \overrightarrow{x} + (-\alpha \overrightarrow{u}, \alpha \overrightarrow{u}), \alpha u \rangle = 0$$

$$\langle \overrightarrow{x}, \alpha \overrightarrow{u} \rangle + \langle (-\alpha \overrightarrow{u}), \alpha \overrightarrow{u} \rangle = 0$$

$$\langle \overrightarrow{x}, \alpha \overrightarrow{u} \rangle + \langle (-\alpha \overrightarrow{u}), \alpha \overrightarrow{u} \rangle = 0$$

$$\langle \overrightarrow{x}, \alpha \overrightarrow{u} \rangle + \langle (-\alpha \overrightarrow{u}), \alpha \overrightarrow{u} \rangle = 0$$

$$\langle \overrightarrow{x}, \alpha \overrightarrow{u} \rangle - \alpha \langle \overrightarrow{u}, \alpha \overrightarrow{u} \rangle = 0$$

$$\alpha \langle \overrightarrow{x}, \overrightarrow{u} \rangle - \alpha^2 \langle \overrightarrow{u}, \overrightarrow{u} \rangle = 0$$

$$\alpha \langle \overrightarrow{x}, \overrightarrow{u} \rangle - \alpha \langle \overrightarrow{u}, \overrightarrow{u} \rangle = 0$$

$$\alpha [\langle \overrightarrow{x}, \overrightarrow{u} \rangle - \alpha \langle \overrightarrow{u}, \overrightarrow{u} \rangle] = 0$$

Case: If $\alpha = 0$

$$\overrightarrow{x} = \overrightarrow{x}_{\parallel} + \overrightarrow{x}_{\perp} = \alpha \overrightarrow{u} + \overrightarrow{x}_{\perp}$$

$$\overrightarrow{x} = \overrightarrow{x}_{\perp}$$

 \overrightarrow{x} is already to \overrightarrow{u} Case: $\langle \overrightarrow{x}, \overrightarrow{u} \rangle - \alpha \langle \overrightarrow{u}, \overrightarrow{u} \rangle = 0$

$$\alpha < \overrightarrow{u}, \overrightarrow{u} > = < \overrightarrow{x}, \overrightarrow{u} >$$

$$\alpha = \frac{\langle \overrightarrow{x}, \overrightarrow{u} >}{\langle \overrightarrow{u}, \overrightarrow{u} >}$$

Hence, given \overrightarrow{x} , \overrightarrow{u}

$$\overrightarrow{x} = \overrightarrow{x}_{\parallel} + \overrightarrow{x}_{\perp}$$

$$\overrightarrow{x}_{\parallel} = \alpha \overrightarrow{u} = \frac{\langle \overrightarrow{x}, \overrightarrow{u} \rangle}{\langle \overrightarrow{u}, \overrightarrow{u} \rangle} \overrightarrow{u} = proj_{\overrightarrow{u}\overrightarrow{x}}$$

 $\frac{<\overrightarrow{x},\overrightarrow{u}>}{<\overrightarrow{u},\overrightarrow{u}>}\overrightarrow{u}$ is also known as the projection of \overrightarrow{x} onto \overrightarrow{u}

Gram Schimdt Process in \mathbb{R}^2

- * INPUT: Basis $B = \overrightarrow{b}_1, \overrightarrow{b}_2$
- * OUTPUT: orthonormal basis $N = \overrightarrow{v}_1, \overrightarrow{v}_2$
- * Normalize the first vector $\overrightarrow{v}_1 = \frac{1}{||\overrightarrow{b_1}||} \overrightarrow{b_1}$
- * Form the vector $\overrightarrow{y} = \overrightarrow{b_1} proj_{\overrightarrow{b_1}} \overrightarrow{b_2} \Rightarrow \overrightarrow{v_2} = \frac{1}{||\overrightarrow{y}||} \overrightarrow{y}$

Example. Find an orthonormal basis given the basis for \mathbb{R}^2 where $B = \{[2,7], [-3,4]\}$.

$$||\overrightarrow{b_{1}}|| = \sqrt{-3^{2} + 4^{2}} = \sqrt{9 + 19} = 5$$

$$= \frac{1}{||\overrightarrow{b_{1}}||} \overrightarrow{b_{1}} = \frac{1}{5} [-3, 4] = [\frac{3}{5}, \frac{4}{5}]$$

$$*\overrightarrow{y} = \overrightarrow{b_{1}} - proj_{\overrightarrow{b_{2}}} \overrightarrow{b_{1}}$$

$$proj_{\overrightarrow{b_{2}}} \overrightarrow{b_{1}} = \frac{\langle \overrightarrow{b_{1}}, \overrightarrow{b_{2}} \rangle}{\langle \overrightarrow{b_{2}}, \overrightarrow{b_{2}} \rangle} \overrightarrow{b_{2}} = \frac{-6 + 28}{9 + 16} \overrightarrow{b_{2}}$$

$$= \frac{22}{25} [3, 2] = [\frac{-66}{25}, \frac{88}{25}]$$

$$\Rightarrow \overrightarrow{y} = [2, 7] - [\frac{-66}{25}, \frac{88}{25}] = [\frac{116}{25}, \frac{87}{25}]$$

$$\overrightarrow{v_{2}} = \frac{1}{||\overrightarrow{y}||} \overrightarrow{y} = \frac{1}{||\overrightarrow{y}||} [\frac{116}{25}, \frac{87}{25}]$$

 $\Rightarrow \text{ Orthonomral basis } N = \{\overrightarrow{v_1}, \overrightarrow{v_2}\} = \{ [\frac{3}{5}, \frac{4}{5}], \frac{1}{||\overrightarrow{y}||} [\frac{116}{25}, \frac{87}{25}] \}$