CIS 575. Introduction to Algorithm Analysis Material for April 10, 2024

Minimum-Cost Spanning Trees: Kruskal's Algorithm

©2020 Torben Amtoft

The topic of this note is presented in *Cormen's Section 21.2*.

1 Kruskal's Algorithm

The main idea behind this algorithm is to build the minimum spanning tree T "piecemeal". As it grows at various places, more and more nodes will be joined together into **connected components** where two nodes are in the same connected component if and only if there is a path between them using only edges from T. By the result stated and proved in the previous note, it is safe to repeatedly add a minimum-weight inter-component edge, as is done by the pseudo code

 $T \leftarrow \emptyset$ sort the edges so their weights are non-decreasing (lowest ones first) foreach edge e if e has end points in two different connected components $T \leftarrow T \cup \{e\}$

Example Recall our running example:

Kruskal's algorithm may examine the edges in the order:

edge	weight	pick?	non-singleton connected components
BC	2	Yes	BC
DE	3	Yes	BC, DE
FG	3	Yes	BC, DE, FG
$\overline{\mathrm{DG}}$	4	Yes	BC, DEFG
EG	5	No	BC, DEFG
EF	6	No	BC, DEFG
BE	7	Yes	BCDEFG
CF	8	No	BCDEFG
CE	8	No	BCDEFG
AD	8	Yes	ABCDEFG
AB	9	No	ABCDEFG
BD	9	No	ABCDEFG

We see that the first edge not to be included in the minimum spanning tree is the one between node E and node G; this is because these two nodes are already in the same connected component.

The resulting spanning tree has weight 27:

Implementation and Running Time One question remains: how to represent connected components so that one can efficiently

- 1. check if two nodes are in the same connected component
- 2. if they are in two different connected components, combine those into one.

But we have already seen that a *Union-Find* structure allows us (if we do "Union by Rank") to do both in time *logarithmic* in the number of nodes¹. We can thus

- 1. sort the edges in time $\Theta(a \lg(a))$ (for example by heapsort)
- 2. process the foreach loop in time $\Theta(a \lg(n))$.

Since we assume the graph to be connected, we have $n-1 \le a \le n(n-1)/2$ and thus $\lg(a) \in \Theta(\lg(n))$. We conclude that the **total running time** of Kruskal's algorithm is in $\Theta(\mathbf{a}\lg(\mathbf{n}))$. (This assumes that the graph is represented using adjacency lists; if an adjacency matrix representation is used then we must add $\Theta(n^2)$ to retrieve the edges, which is worse for sparse graphs.)

_

¹By "path compression" one can do even better, but that doesn't change the total asymptotic running time of Kruskal's algorithm.