RFMD + TriQuint = Qorvo

50 MHz to 4000 MHz, GaAs pHEMT LOW NOISE MMIC AMPLIFIER

Product Description

The SPF5043Z is a high performance pHEMT MMIC LNA designed for operation from 50MHz to 4000MHz. The on-chip active bias network provides stable current over temperature and process threshold voltage variations. The SPF5043Z offers ultra-low noise figure and high linearity performance in a gain block configuration. Its single-supply operation and integrated matching networks make implementation remarkably simple. The high maximum input power specification makes it ideal for high dynamic range receivers.

Features

- Ultra-Low Noise Figure = 0.8dB at 900MHz
- Gain = 18.2dB at 900 MHz
- High Linearity: OIP3=35dBm at 1900MHz
- P_{1dB}=22.7dBm at 1900MHz
- Single-Supply Operation: 5V at I_{DO}=46mA
- Flexible Biasing Options: 3V to 5V, Adjustable Current
- Broadband Internal Matching

Applications

- Cellular, PCS, W-CDMA, ISM, and LTE
- Low Noise, High Linearity Gain Block Applications

Min.	Tvp.	Max.	Unit			
40.7	Min. Typ.		Oilit	Condition		
16.7	18.2	19.7	dB	0.9GHz		
11.4	12.9	14.4	dB	1.96GHz		
17.4	22.6		dBm	0.9GHz		
	22.7		dBm	1.9GHz		
30.0	33.0		dBm	0.9GHz		
	35.0		dBm	1.9GHz		
	0.80	1.0	dB	0.9GHz		
	0.80		dB	1.9GHz		
13.0	16.0		dB	0.9GHz		
	17.5		dB	1.9GHz		
14.5	17.5		dB	0.9 GHz		
	16.5		dB	1.9GHz		
	23.5		dB	0.9 GHz		
	19.0		dB	1.9GHz		
	5	5.25	V			
28	46	54	mA			
	125		°C/W	junction to lead		
	11.4 17.4 30.0 13.0 14.5	11.4 12.9 17.4 22.6 22.7 30.0 35.0 0.80 0.80 0.80 13.0 16.0 17.5 16.5 23.5 19.0 5 28 46 125	11.4 12.9 14.4 17.4 22.6 22.7 30.0 33.0 35.0 0.80 1.0 13.0 16.0 17.5 14.5 16.5 23.5 19.0 5 28 46 54 125	11.4 12.9 14.4 dB 17.4 22.6 dBm 22.7 dBm 30.0 33.0 dBm 0.80 1.0 dB 0.80 dB dB 13.0 16.0 dB 14.5 17.5 dB 16.5 dB 19.0 dB 28 46 54 mA 125 °C/W		

Test Conditions: $V_D = 5V$, $I_{DO} = 46 \text{ mA}$, OIP_3 Tone Spacing = 1 MHz, P_{OIIT} per tone = -5 dBm, $Z_S = Z_I = 50 \Omega$, $25 \, ^{\circ}$ C, Broadband Application Circuit

RFMD + TriQuint = Qorvo

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	100	mA
Max Device Voltage (V _D)	5.5	V
Max RF Input Power	25	dBm
Max Dissipated Power	330	mW
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T _L)	-40 to + 85	°C
Max Storage Temperature	-65 to +150	°C
ESD Rating - Human Body Model (HBM)	Class 1A	
Moisture Sensitivity (MSL)	MSL 1	

Operation beyond any of these limits may cause permanent damage.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied. tions is not implied.

tions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Typical RF Performance - Broadband Application Circuit with V_D=5V, I_D=46mA

Parameter	Unit	0.1	0.4	0.9	1.5	1.9	2.2	2.5	3.5	3.8
		GHz*	GHz							
Small Signal Gain	dB	23.5	21.6	18.2	14.8	13.1	11.9	10.8	8.0	7.0
Noise Figure	dB	0.65	0.61	0.74	0.82	0.78	0.84	0.96	1.34	1.49
Output IP3	dBm	30.5	31.0	33.0	34.5	35.0	35.5	36.5	38.5	37.5
Output P1dB	dBm	na	22.5	22.6	22.7	22.7	23.0	22.8	23.1	22.8
Input Return Loss	dB	-13.0	-12.5	-15.5	-18.0	-17.5	-17.0	-16.0	-11.5	-10.5
Output Return Loss	dB	-22.0	-17.5	-20.0	-18.0	-17.0	-17.0	-16.5	-16.0	-13.5
Reverse Isolation	dB	-27.0	-26.0	-23.5	-20.5	-19.0	-18.0	-17.5	-15.0	-15.0

Test Conditions: $V_D = 5V$, $I_{DO} = 46$ mA, OIP₃ Tone Spacing = 1 MHz, P_{OUT} per tone = 0 dBm, $T_L = 25$ °C, $Z_S = Z_L = 50\Omega$, *Bias Tee Data @ 100 MHz

Typical RF Performance - Broadband Application Circuit with $V_D=3V$, $I_D=25mA$

Parameter	Unit	0.1	0.4	0.9	1.5	1.9	2.2	2.5	3.5	3.8
		GHz*	GHz							
Small Signal Gain	dB	22.6	20.9	17.7	14.4	12.7	11.5	10.5	7.6	6.7
Noise Figure	dB	0.60	0.61	0.73	0.82	0.78	0.85	0.93	1.28	1.48
Output IP3	dBm	26.5	27.0	28.5	30.0	30.5	30.5	32.0	33.5	33.0
Output P1dB	dBm	na	19.3	19.5	19.9	20.0	20.3	20.2	20.3	19.7
Input Return Loss	dB	-10.5	-11.0	-14.0	-16.5	-16.5	-16.0	-14.5	-10.5	-9.5
Output Return Loss	dB	-21.0	-21.5	-28.5	-24.5	-22.5	-22.5	-22.5	-20.0	-15.5
Reverse Isolation	dB	-26.0	-25.5	-22.5	-20.0	-18.0	-17.5	-16.5	-14.5	-14.0

Test Conditions: $V_D = 3V$, $I_{DO} = 25$ mA, OIP_3 Tone Spacing = 1 MHz, P_{OUT} per tone = 0 dBm, $T_L = 25$ °C, $Z_S = Z_L = 50\Omega$, *Bias Tee Data @ 100 MHz

Typical RF Performance - Broadband Application Circuit with V_D=5V, I_D=46mA

NF versus Frequency

OIP3 vs. Frequency (-5dBm/tone, 1MHz spacing)

P1dB versus Frequency

Device Current versus Voltage

Typical RF Performance - Broadband Application Circuit with $V_D = 5V$, $I_D = 46 \text{ mA}$

S21 versus Frequency

S12 versus Frequency

Frequency (GHz)

S22 versus Frequency

Typical RF Performance - Broadband Application Circuit with V_D=5V, I_D=46mA

Output Power versus Input Power (Vd=5V, 900 MHz)

Output Power versus Input Power (Vd=5V)

RFMD + TriQuint = Qorvo

Typical RF Performance - Broadband Application Circuit with V_D =3V, I_D =25mA

NF versus Frequency

OIP3 vs. Frequency (-5dBm/tone, 1MHz spacing)

P1dB versus Frequency

Typical RF Performance - Broadband Application Circuit with V_D=3V, I_D=25mA

S11 versus Frequency

S21 versus Frequency

S12 versus Frequency

S22 versus Frequency

RFMD + TriQuint = Qorvo

Typical RF Performance - Broadband Application Circuit with $V_D=3V$, $I_D=25mA$ OIP3 versus Power Out (Vd = 3V, 900MHz)

OIP3 versus Power Out (Vd = 3V, 25C)

Output Power versus Input Power (Vd=3V, 900 MHz)

Output Power versus Input Power (Vd=3V)

De-embedded Device S-parameters (Bias Tee Data)

Gmax versus Frequency (5V,46mA)

S11 versus Frequency (5V 46mA) S22 versus Frequency (5V 46mA) 0.5 2.0 0.2 0.2 8 GHz 5.0 6 GHz 5 GHz 8 GHz 4 GHz 3 GHz 0.5 GHz nf^{0.0} 1.0 1 GHz 2 GHz 0.0 1.0 1 GH 0.5 GHz 50 MHz 50 MHz 0.2 2.0 0.5 2.0 1.0 1.0

Gmax versus Frequency (3V, 25mA)

Evaluation Board Layout

Bill of Materials (SPF5043Z, 400MHz to 3000MHz)

C1	TAJB104KLRF, Rohm, 0.1uF
C2	MCH185A101JK, Rohm, 100pF
C3	MCH185A101JK, Rohm, 100pF
C4	MCH185A101JK, Rohm, 100pF
L1	LL1608-FSR10J, Toko, 100 nH

Application Schematic

Pin Names and Description

Pin	Function	Description
1	RF OUT/BIAS	RF Output Pin. This Pin is DC Coupled and Matched to 50Ω . An external DC block is required.
2	GND	Connection to ground.
3	RF IN	RF Input Pin. This Pin is DC Coupled and Matched to 50Ω . An external DC block is required.
4	GND	Connection to ground.

Suggested Pad Layout

Package Drawing

Dimensions in millimeters (inches)

Notes:

- 1. Lead Base Metal Copper Olin 194
- 2. Lead Finish 100% Matte Sn .010 (.0004) min thk

Seating Plane

Part Identification Marking - Trace Code Only

Ordering Information

Ordering Code	Description
SPF5043Z	7" Reel with 3000 pieces
SPF5043ZSQ	Sample bag with 25 pieces
SPF5043ZSR	7" Reel with 100 pieces
SPF5043ZPCK1	400MHz to 3000MHz PCBA with 5-piece sample bag