

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Tópicos de Mécanica Cuántica Tarea 8

Enrique Valbuena Ordonez

Nombre: Giovanni Gamaliel López Padilla

Matricula: 1837522

Encontrar las ecuaciones para ϕ y ϕ^* que satisfacen las ecuaciones de Euler-Lagrange para campos.

Sea la lagrangiana

$$\mathcal{L} = (D^{\mu}\phi)^* (D_{\mu}\phi) - m^2 \phi^* \phi$$

y las ecuaciones de euler-lagrange:

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = 0 \qquad \frac{\partial \mathcal{L}}{\partial \phi^*} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^*)} = 0$$

Calculando $\frac{\partial \mathcal{L}}{\partial \phi}$, se tiene que:

$$\frac{\partial \mathcal{L}}{\partial \phi} = -m^2 \phi^*$$

Calculado $\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}$

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = \partial_{\mu} \left(D^{\mu} \phi \right)^{*}$$

por lo tanto:

$$\partial_{\mu} \left(D^{\mu} \phi \right)^* + m^2 \phi^* = 0$$

Calculando $\frac{\partial \mathcal{L}}{\partial \phi^*}$, se tiene que:

$$\frac{\partial \mathcal{L}}{\partial \phi} = -m^2 \phi$$

Calculado $\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi^*)}$

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = \partial_{\mu} \left(D^{\mu} \phi \right)$$

por lo tanto:

$$\partial_{\mu} \left(D^{\mu} \phi \right) + m^2 \phi = 0$$