Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Test 17

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$m_g = \sqrt{xy} = \sqrt{25 \cdot 144} =$	3p
	$=5\cdot 12=60$	2p
2.	f(1) = 1 + m	2p
	$1+m=0 \Leftrightarrow m=-1$	3 p
3.	x + 4 = 25	3p
	x = 21, care convine	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	În mulțimea A sunt 6 numere care nu sunt multipli de 3, deci sunt 6 cazuri favorabile	2 p
	nr. cazuri favorabile 6 2	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{9} = \frac{2}{3}$	1p
5.	M(3,4), unde M este mijlocul segmentului AB	2p
	$OM = \sqrt{3^2 + 4^2} = 5$	3p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 3 =$	3p
	=1-6=-5	2p
b)	$M(-1) = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}, A + M(-1) = \begin{pmatrix} 0 & 4 \\ 4 & 4 \end{pmatrix} \Rightarrow \det(A + M(-1)) = -16$	3 p
	$\det B = \begin{vmatrix} -4 & 0 \\ 0 & 4 \end{vmatrix} = -16, \det \left(A + M \left(-1 \right) \right) = \det B$	2p
c)	$M(x) \cdot A = \begin{pmatrix} x+2 & 3x+1 \\ 8 & 9 \end{pmatrix}, A \cdot M(x) = \begin{pmatrix} x+6 & 10 \\ 2x+2 & 5 \end{pmatrix}, M(x) \cdot A - A \cdot M(x) = \begin{pmatrix} -4 & 3x-9 \\ 6-2x & 4 \end{pmatrix}$	3 p
	$\begin{pmatrix} -4 & 3x - 9 \\ 6 - 2x & 4 \end{pmatrix} = \begin{pmatrix} -4 & 0 \\ 0 & 4 \end{pmatrix} \Leftrightarrow x = 3$	2p
2.a)	90*1 = 90+1-90 =	3 p
	= 0 + 1 = 1	2p

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

b)	(x*y)*z = (x+y-90)*z = x+y-90+z-90 = x+y+z-180, pentru orice numere reale	2p
	$x, y \neq i z$	_
	x*(y*z) = x*(y+z-90) = x+y+z-90-90 = x+y+z-180 = (x*y)*z, pentru orice	3p
	numere reale x , y și z	- 1
c)	$\left(x^{2}\right)*\left(2x+1\right) = x^{2} + 2x + 1 - 90 = x^{2} + 2x - 89$	2p
	$x^2 + 2x - 15 = 0 \Leftrightarrow x = -5 \text{ sau } x = 3$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 12x^2 - 12 =$	3p
	$=12(x^2-1)=12(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) - 4x^3}{x} = \lim_{x \to +\infty} \frac{-12x + 11}{x} =$	2p
	$= \lim_{x \to +\infty} \left(-12 + \frac{11}{x} \right) = -12$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in [-1,1]$, deci f este descrescătoare pe $[-1,1]$	2p
	Cum $f(-1)=19$, $f(1)=3$ și $f(1) \le f(x) \le f(-1)$, obținem $3 \le f(x) \le 19$, pentru orice $x \in [-1,1]$	3 p
	x ∈ [−1,1]	
2.a)	$\int_{2}^{4} \left(f(x) - \frac{1}{x} \right) dx = \int_{2}^{4} 5x dx = \frac{5x^{2}}{2} \Big _{2}^{4} =$	3 p
	$=\frac{5}{2}\cdot(16-4)=30$	2p
b)	$F'(x) = \left(\frac{5x^2 + 2020}{2} + \ln x\right)' =$	2p
	$=\frac{10x}{2}+\frac{1}{x}=5x+\frac{1}{x}=f\left(x\right)$, pentru orice $x\in\left(0,+\infty\right)$, deci F este o primitivă a funcției f	3 p
c)	$\int_{1}^{e} (f(x) - 5x) \ln x dx = \int_{1}^{e} \frac{1}{x} \ln x dx = \int_{1}^{e} (\ln x)' \ln x dx = \frac{\ln^{2} x}{2} \Big _{1}^{e} =$	3 p
	$=\frac{\ln^2 e}{2} - \frac{\ln^2 1}{2} = \frac{1}{2}$	2p