The 3rd Vietnam-Korea Joint Workshop on Selected Topics in Mathematics

Duc A. Hoang

hoanganhduc@hus.edu.vn

VNU University of Science Hanoi, Vietnam

January 06-09, 2025

The Complexity of Some Reconfiguration Problems on Graphs with Distance Constraints

in collaboration with Niranka Banerjee (Kyoto University, Japan) Christian Engels (National Institute of Informatics, Japan)

Contents

- 1 Introduction to Reconfiguration
- 2 Distance Token-Set Reconf.

- 3 Distance Vertex-Coloring Reconf.
- 4 Concluding Remarks

Reconfiguration under Distance Constraints

- Introduction to Reconfiguration
 - Introduction
 - Example: Token-Set Reconfiguration
 - Example: Vertex-Coloring Reconfiguration
 - Example: Nondeterministic Constraint Logic
 - Online Wiki Page
- Distance Token-Set Reconf.
 - Distance-d Independent Set Reconfiguration
 - Distance-d Dominating Set Reconfiguration
- Distance Vertex-Coloring Reconf.
- Concluding Remarks

Reconfiguration Setting

- ➤ A description of what *states* (≡ *configurations*) are
- One or more allowed moves between states (≡ reconfiguration rule(s))

Figure: Reconfiguration Setting

Reconfiguration vs. Solution Space

For a computational problem $\mathcal P$ (e.g., INDEPENDENT SET, DOMINATING SET, VERTEX-COLORING, etc.)

Reconfiguration	Solution Space
States/Configurations	Feasible solutions of ${\mathcal P}$
Allowed Moves	Slight modifications of a solution without changing its feasibility

Algorithmic Questions

- ➤ REACHABILITY: Given two states S and T, is there a sequence of moves that *transforms S into T*?
- **SHORTEST TRANSFORMATION:** Given two states S and T and a positive integer ℓ , is there a sequence of moves that *transforms* S into T using at most ℓ moves?
- CONNECTIVITY: Is there a sequence of moves between any pair of states?
- and so on

TOKEN RECONFIGURATION

Each vertex has at most one token

Each state is a set of tokens satisfying certain property

Independent Set

Dominating Set

[Hearn and E. D. Demaine 2005]

TOKEN RECONFIGURATION (Example: INDEPENDENT SET RECONFIGURATION)
Token Sliding (TS)

[Kamiński, Medvedev, and Milanič 2012]

TOKEN RECONFIGURATION (Example: INDEPENDENT SET RECONFIGURATION)
Token Jumping (TJ)

[Ito et al. 2011]

TOKEN RECONFIGURATION (Example: INDEPENDENT SET RECONFIGURATION)
Token Addition/Removal (TAR)

TOKEN RECONFIGURATION (Example: INDEPENDENT SET RECONFIGURATION)

Token Sliding (TS) / Token Jumping (TJ) / Token Addition/Removal (TAR)

PSPACE-complete on general graphs under any rule

[Cereceda, van den Heuvel, and Johnson 2008]

VERTEX-COLORING RECONFIGURATION

Each vertex is colored by one of the k given colors

Each state is a k-coloring of all vertices such that no two adjacent vertices share the same color

[Cereceda, van den Heuvel, and Johnson 2008]

VERTEX-COLORING RECONFIGURATION

Recoloring using $\leq k$ colors

Example: k = 3

[Cereceda, van den Heuvel, and Johnson 2008]

VERTEX-COLORING RECONFIGURATION

Recoloring using $\leq k$ colors

PSPACE-complete on general graphs for $k \geq 4$

Example: k = 3

P on general graphs for $k \leq 3$

[Hearn and E. D. Demaine 2005]

Nondeterministic Constraint Logic (NCL)

Each state is a weighted, oriented graph

Total incoming weight at each vertex ≥ 2

[Hearn and E. D. Demaine 2005]

Nondeterministic Constraint Logic (NCL)

Reversing edge direction

Total incoming weight at each vertex ≥ 2

[Hearn and E. D. Demaine 2005]

Nondeterministic Constraint Logic (NCL)

Reversing edge direction

Total incoming weight at each vertex > 2

[Hearn and E. D. Demaine 2005]

Nondeterministic Constraint Logic (NCL)

Reversing edge direction

Total incoming weight at each vertex ≥ 2

[van der Zanden 2015]

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

Hoang

Introduction to Reconfiguration

Figure: Online Reconfiguration Wiki Page (https://reconf.wikidot.com/)

Figure: A word cloud of titles extracted from the current list of papers related to reconfiguration problems available at https://reconf.wikidot.com/ (Accessed on January 3, 2025)

Distance constraints for independent sets

	Independent Set (IS)	Distance- d Independent Set (D d IS)
Distance between any two tokens	≥ 2	$\geq d$

- ➤ DdIS was (first?) studied in [Kong and Zhao 1993]
- Dual to the <u>dispersion problem</u>, which has numerous applications in <u>facility location</u> and in <u>management decision science</u> [Agnarsson, Damaschke, and Halldórsson 2003]

(Distance-2) Independent Set

Distance 3 Independent Set

(Distance-2) Independent Set Distance-3 Independent Set

DISTANCE-d INDEPENDENT SET RECONFIGURATION (DdISR)

Reconfiguration Rule: Token Sliding (TS) and Token Jumping (TJ)

- > The case d=2 has been well-studied [Nishimura 2018]; [Bousquet et al. 2024]
- > The case $d \geq 3$ under TAR was first studied from the *parameterized* complexity persepective in [Siebertz 2018] (parameterized by the size of the independent set)
 - >> FPT on "nowhere dense graphs" for $d \geq 2$
 - >>> W[1]-hard on "somewhere dense graphs" that are closed under taking subgraphs for some value of $d\geq 2$
- We focus on the *classic complexity* for $d \ge 3$

Graph	d=2		$\mathbf{d} \geq 3$	
Grapii	TS	TJ	TS	TJ
planar	PSPACE-C		PSPACE-C	
pianar	[Hearn and E. D. Demaine 20	05]		
perfect	PSPACE-C		PSPACE-C	
periect	[Kamiński, Medvedev, and Milanič 2012]			
chordal	PSPACE-C	P	unknown	PSPACE-C if d is odd
Cilordai	(⊇ split)	(⊆ even-hole-free)		P if d is even
split	PSPACE-C	P	P	PSPACE-C if $d=3$
Split	[Belmonte et al. 2021]	(⊆ even-hole-free)		P if $d \geq 4$
comranh	P	P		P
cograph	[Kamiński, Medvedev, and Milanič 2012]	[Bonsma 2016]		
	P	P	unknown	P
tree	[E. D. Demaine, M. L. Demaine, et al. 2015]	(⊆ even-hole-free)		
interval	P	P	unknown	P
interval	[Bonamy and Bousquet 2017]	(⊆ even-hole-free)		

Table: Our Results for $d \geq 3$. We provide the status for d=2 for comparison. Here PSPACE-C stands for PSPACE-complete [Hoang 2024]

Theorem (Hoang 2024)

DdISR is PSPACE-complete for $d \geq 3$ on planar graphs of maximum degree 3 and bounded bandwidth.

Proof Sketch.

Reduction from Nondeterministic Constraint Logic

AND gadget

OR gadget

Reconfiguration under Distance Constraints

Distance Token-Set Reconfiguration

Theorem (Hoang 2024)

On split graphs,

		TS	TJ
	d=2	PSPACE-complete	P
u = 2	[Belmonte et al. 2021]	[Kamiński, Medvedev, and Milanič 2012]	
	d=3	D	PSPACE-complete
	$d \ge 4$	r	P

Proof Sketch.

- $d \geq 4$ Trivial. (Any connected split graph has diameter $\leq 3 \Rightarrow$ Any DdIS has size $< 1 \Rightarrow$ Reconfiguration is easy!)
- d=3 > Under TS: Trivial. (If there are more than two tokens then none of them can be moved.)
 - **Under** TJ: Reduction from the problem for d=1 on general graphs

Distance constraints for dominating sets

	Dominating Set (DS)	Distance- d Dominating Set (D d DS)
Distance that a token dominates	≤ 1	$\leq d$

- ▶ DdDS was first studied in [Meir and Moon 1975]
- ➤ Has applications in *facility location* [E. D. Demaine, Fomin, et al. 2005]

(Distance 1) Dominating Set Distance-2 Dominating Set

(Distance-1) Dominating Set Distance-2 Dominating Set

DISTANCE-d DOMINATING SET RECONFIGURATION (DdDSR)

Reconfiguration Rule: Token Sliding (TS) and Token Jumping (TJ)

- The case d=1 (DOMINATING SET RECONFIGURATION) has been well-studied [Nishimura 2018]; [Mynhardt and Nasserasr 2019]
- > The case $d \geq 2$ under TAR was first studied from the *parameterized* complexity persepective in [Siebertz 2018] (parameterized by the size of the dominating set)
 - >> FPT on "nowhere dense graphs" for $d \geq 2$
 - >> W[2]-hard on "somewhere dense graphs" that are closed under taking subgraphs for some value of $d\geq 2$
- We focus on the *classic complexity* for $d \ge 2$

Here PSPACE-C stands for PSPACE-complete [Banerjee and **Hoang** 2024]

17/28

Figure: Our Results for $d \ge 2$. We provide the status for d = 1 for comparison. Here PSPACE-C stands for PSPACE-complete [Banerjee and **Hoang** 2024] 17/28

Theorem (Banerjee and Hoang 2024)

AND gadget

DdDSR is PSPACE-complete for $d \geq 1$ on planar graphs of maximum degree 3 and bounded bandwidth.

Proof Sketch.

Reduction from Nondeterministic Constraint Logic

OR gadget

Theorem (Banerjee and Hoang 2024)

On split graphs,

	TS	TJ
d=1 PSPACE-complete		PSPACE-complete
u = 1	[Bonamy, Dorbec, and Ouvrard 2021]	[Haddadan et al. 2016]
$d \ge 2$	P	P

Proof Sketch.

- $d \ge 3$ Trivial. (Any connected split graph has diameter ≤ 3 \Rightarrow Any non-empty token-set is a DdDS \Rightarrow Reconfiguration is easy!)
- d=2 When doing reconfiguration, always keep at least one token in the clique side of the split graph

Distance constraints for vertex colorings

	k-Coloring	(d,k)-Coloring
Distance between two vertices having the same color	≥ 2	$\geq d+1$

- (d,k)-coloring was first studied in [F. Kramer and H. Kramer 1969]
- Has applications in frequency assignment problem (or radio channel assignment) [F. Kramer and H. Kramer 2008]

(d,k)-Coloring Reconfiguration ((d,k)-CR) Reconfiguration Rule: Recoloring a vertex

- The case d=1 (k-Coloring Reconfiguration (k-CR)) has been well-studied [Mynhardt and Nasserasr 2019]; [Heuvel 2013]
- We focus on the case $d \ge 2$

Graph	k-CR	(d,k) -CR $(d \ge 2)$
general	PSPACE-C $(k \ge 3)$ [Cereceda, Heuvel, and Johnson 2011]	
planar	PSPACE-C $(4 \le k \le 6)$ P $(k \ge 7)$ [Bonsma and Cereceda 2009]	
bipartite	PSPACE-C $(k \geq 4)$ [Bonsma and Cereceda 2009]	
planar ∩ bipartite	PSPACE-C $(k=4)$ P $(k\geq 5)$ [Bonsma and Cereceda 2009]	PSPACE-C $(k=\Omega(d^2))$
2-degenerate	P [Hatanaka, Ito, and Zhou 2019]	
planar ∩ bipartite ∩ 2-degenerate	$P \\ (\subseteq 2\text{-degenerate})$	
path	$ \begin{array}{c} {\tt P} \\ (\subseteq {\tt planar} \cap {\tt bipartite} \cap 2 \text{-degenerate}) \end{array} $	$\mathtt{P}\; (k \geq d+1)$
split	P [Hatanaka, Ito, and Zhou 2019]	PSPACE-C $(d = 2, \text{ large } k)$ P $(d \ge 3)$

Table: Our Results for $d \ge 2$. We provide the status for d = 1 for comparison.

Here PSPACE-C stands for PSPACE-complete [Banerjee, Engels, and **Hoang** 2024]

Theorem (Banerjee, Engels, and Hoang 2024)

(d,k)-CR is PSPACE-complete for $d\geq 2$ and $k=\Omega(d^2)$ on graphs which are planar, bipartite, and 2-degenerate.

Proof Sketch.

rozen-Coloring Graph F_i

First Phase

Restricted Sliding Tokens \Rightarrow List $(d, \Omega(d))$ -Coloring Reconfiguration

RESTRICTED SLIDING TOKENS

First Phase

Restricted Sliding Tokens \Rightarrow List $(d, \Omega(d))$ -Coloring Reconfiguration

First Phase

Restricted Sliding Tokens \Rightarrow List $(d, \Omega(d))$ -Coloring Recon-FIGURATION

Magnification of $(C_{t,e_1}, 1, 1)$ -forbidding path P_{t,e_1} , where $C_{t,e_1} = A \cup B$

Distance Vertex-Coloring Reconfiguration

Second Phase

List $(d,\Omega(d))\text{-Coloring Reconfiguration} \Rightarrow (d,\Omega(d^2))\text{-Coloring Reconfiguration}$

Key Ideas

- \blacksquare List Coloring \equiv Coloring with constraints on which colors can be used for each vertex
- Prozen-Coloring Graphs: Pre-colored graphs where no vertex can be recolored

Vertices are pre-colored

Containing all possible colors

No vertex can be recolored

Second Phase

List $(d, \Omega(d))$ -Coloring Reconfiguration $\Rightarrow (d, \Omega(d^2))$ -Coloring RECONFIGURATION

Figure: Construction of the frozen-coloring subgraph F_v for a vertex v. The colors used in this figure are just for illustration of paths. 26/28

Theorem (Banerjee, Engels, and Hoang 2024)

On split graphs,

	(d,k)-Coloring Reconfiguration
d=1	P for any k
	[Hatanaka, Ito, and Zhou 2019]
d=2	PSPACE- $complete$ for large k
$d \ge 3$	P for any k

Proof Sketch.

- $d \geq 3$ Trivial. (Any connected split graph has diameter $\leq 3 \Rightarrow$ Reconfiguration is easy!)
- d=2 Reduction from the problem for d=1 and $k \ge 4$ on general graphs (which is known to be PSPACE-complete [Bonsma and Cereceda 2009])

Concluding Remarks

Take-Home Messages

- Reconfiguration studies the "solution space" of a problem
 - >> Moving from one solution to another without violating feasibility
- 2 Under certain distance constraints,
 - >>> Reconfiguration problems can be hard for very restricted graph classes
 - Problems on graphs whose diameters are bounded by some constant c (e.g., split graphs) are interesting when restricted to distances close to c
- Nondeterministic Constraint Logic is a powerful tool for hardness reductions

Open Problems

The complexities of the following problems remain *open* for *trees*:

- ▶ DdISR ($d \ge 3$) under Token Sliding (TS)
- ▶ DdDSR ($d \ge 2$) under Token Sliding (TS)
- (d,k)-CR $(d \ge 2)$

The 3rd Vietnam-Korea Joint Workshop on Selected Topics in Mathematics

Partially supported by

Came to my talk, you did. Thank you, I must!

References I

- Banerjee, Niranka, Christian Engels, and **Duc A. Hoang** (2024). "Distance Recoloring". In: *arXiv preprint*. arXiv: 2402.12705.
- Banerjee, Niranka and **Duc A. Hoang** (2024). "The Complexity of Distance-r Dominating Set Reconfiguration". In: *Proceedings of COCOON 2024*. LNCS. arXiv: 2310.00241.
- Bousquet, Nicolas, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz (2024). "A survey on the parameterized complexity of reconfiguration problems". In: *Computer Science Review* 53. (article 100663). DOI: 10.1016/j.cosrev.2024.100663.
- Hoang, Duc A. (2024). "On the Complexity of Distance-d Independent Set Reconfiguration". In: *Theoretical Computer Science* 1009. (article 114682). DOI: 10.1016/j.tcs.2024.114682.
- Belmonte, Rémy, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and Florian Sikora (2021). "Token sliding on split graphs". In: *Theory of Computing Systems* 65.4, pp. 662–686. DOI: 10.1007/s00224-020-09967-8.

References II

- Bonamy, Marthe, Paul Dorbec, and Paul Ouvrard (2021). "Dominating sets reconfiguration under token sliding". In: *Discrete Applied Mathematics* 301, pp. 6–18. DOI:
 - 10.1016/j.dam.2021.05.014. arXiv: 1912.03127.
 - Hatanaka, Tatsuhiko, Takehiro Ito, and Xiao Zhou (2019). "The Coloring Reconfiguration Problem on Specific Graph Classes". In: *IEICE Transactions on Information and Systems* E102.D.3, pp. 423–429. DOI: 10.1587/transinf.2018FCP0005.
 - Mynhardt, C.M. and S. Nasserasr (2019). "Reconfiguration of Colourings and Dominating Sets in Graphs". In: 50 years of Combinatorics, Graph Theory, and Computing. Ed. by Fan Chung, Ron Graham, Frederick Hoffman, Ronald C. Mullin, Leslie Hogben, and Douglas B. West. 1st. CRC Press, pp. 171–191. DOI: 10.1201/9780429280092–10.
- Nishimura, Naomi (2018). "Introduction to Reconfiguration". In: Algorithms 11.4, p. 52. DOI: 10.3390/a11040052.
- Siebertz, Sebastian (2018). "Reconfiguration on Nowhere Dense Graph Classes". In: *The Electronic Journal of Combinatorics* 25.3. (article P3.24). DOI: 10.37236/7458. arXiv: 1707.06775.

References III

- Bonamy, Marthe and Nicolas Bousquet (2017). "Token sliding on chordal graphs". In: *Proceedings of WG 2017*. Vol. 10520. LNCS. Springer, pp. 127–139. DOI: 10.1007/978–3–319–68705–6_10.
 - Bonsma, Paul S. (2016). "Independent set reconfiguration in cographs and their generalizations". In: *Journal of Graph Theory* 83.2, pp. 164–195. DOI: 10.1002/jgt.21992.
 - Haddadan, Arash, Takehiro Ito, Amer E. Mouawad, Naomi Nishimura, Hirotaka Ono, Akira Suzuki, and Youcef Tebbal (2016). "The Complexity of Dominating Set Reconfiguration". In: *Theoretical Computer Science* 651, pp. 37–49. DOI: 10.1016/j.tcs.2016.08.016.
 - Demaine, Erik D., Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada (2015). "Linear-time algorithm for sliding tokens on trees". In: *Theoretical Computer Science* 600, pp. 132–142. DOI: 10.1016/j.tcs.2015.07.037.

References IV

- van der Zanden, Tom C. (2015). "Parameterized complexity of graph constraint logic". In: *Proceedings of IPEC 2015*. Vol. 43. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum für Informatik, pp. 282–293. DOI: 10.4230/LIPIcs.IPEC.2015.282.
 - Heuvel, Jan van den (2013). "The Complexity of Change". In: Surveys in Combinatorics. Vol. 409. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 127–160. DOI: 10.1017/cbo9781139506748.005.
 - Kamiński, Marcin, Paul Medvedev, and Martin Milanič (2012). "Complexity of independent set reconfigurability problems". In: *Theoretical Computer Science* 439, pp. 9–15. DOI: 10.1016/j.tcs.2012.03.004.
- Cereceda, Luis, Jan van den Heuvel, and Matthew Johnson (2011). "Finding Paths Between 3-Colorings". In: *Journal of Graph Theory* 67.1, pp. 69–82. DOI: 10.1002/jgt.20514.

References V

- Ito, Takehiro, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno (2011). "On the complexity of reconfiguration problems". In: *Theoretical Computer Science* 412.12-14, pp. 1054–1065. DOI: 10.1016/j.tcs.2010.12.005.
- Bonsma, Paul S. and Luis Cereceda (2009). "Finding Paths Between Graph Colourings: PSPACE-Completeness and Superpolynomial Distances". In: *Theoretical Computer Science* 410.50, pp. 5215–5226. DOI: 10.1016/j.tcs.2009.08.023.
- Cereceda, Luis, Jan van den Heuvel, and Matthew Johnson (2008). "Connectedness of the Graph of Vertex-Colourings". In: *Discrete Mathematics* 308.5-6, pp. 913–919. DOI: 10.1016/j.disc.2007.07.028.
- Kramer, Florica and Horst Kramer (2008). "A Survey on the Distance-Colouring of Graphs". In: *Discrete mathematics* 308.2-3, pp. 422–426. DOI: 10.1016/j.disc.2006.11.059.

References VI

- Demaine, Erik D., Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos (2005). "Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs". In: *ACM Transactions on Algorithms (TALG)* 1.1, pp. 33–47. DOI: 10.1145/1077464.1077468.
 - Hearn, Robert A. and Erik D. Demaine (2005). "PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation". In: *Theoretical Computer Science* 343.1-2, pp. 72–96. DOI: 10.1016/j.tcs.2005.05.008.
 - Agnarsson, Geir, Peter Damaschke, and Magnús M. Halldórsson (2003). "Powers of geometric intersection graphs and dispersion algorithms". In: *Discrete Applied Mathematics* 132.1-3, pp. 3–16. DOI: 10.1016/S0166-218X(03)00386-X.
- Kong, M. and Y. Zhao (1993). "On computing maximum *k*-independent sets". In: *Congressus Numerantium* 95, pp. 47–47.
 - Meir, A. and John Moon (1975). "Relations between packing and covering numbers of a tree". In: *Pacific Journal of Mathematics* 61.1, pp. 225–233. DOI: 10.2140/pjm.1975.61.225.

References VII

Kramer, Florica and Horst Kramer (1969). "Ein Färbungsproblem der Knotenpunkte eines Graphen bezüglich der Distanz p". In: *Rev. Roumaine Math. Pures Appl* 14.2, pp. 1031–1038.