Python - Analiza danych z modułem PANDAS

www.udemy.com (http://www.udemy.com) (R)

LAB - S05-L006 - pivot_table

1. Zaimportuj moduł pandas i numpy nadaj im standardowe aliasy. Zaimportuj też datetime, timedelta i time, możesz skorzystać z poniższych poleceń:

```
from datetime import datetime from datetime import timedelta import time
```

1. Do zmiennej df zaimportuj plik marathon_results_2016.csv. Jako indeks wybierz kolumnę Bip. Zaimportuj kolumny: 'Bib','40K','Half','Pace','Age','M/F','Country','State','City'. Znaczenie kolumn to kolejno: numer zawodnika, czas na 40 km, czas na 20 km, tempo liczone w minutach na milę, wiek, płeć, kraj, stan i miasto. Korzystając z poniższego kodu skonwertuj zawartość kolumn do typu timedelta:

```
df['40K'] = df['40K'].apply(pd.to_timedelta)
df['Half'] = df['Half'].apply(pd.to_timedelta)

df['TotalSeconds'] = df['40K'].apply(lambda x: timedelta.total_seconds(x))
df['HalfSeconds'] = df['Half'].apply(lambda x: timedelta.total_seconds(x))
```

- 3. Wyświetl tabelę przestawną, która pozwoli porównać średni czas biegu na dystansie 40 km dla zawodników w różnym wieku z podziałem na mężczyzn i kobiety: w wierszach ma być wiek zawodników (kolumna Age), w kolumnach informacja o płci (kolumna M/F), w komórkach średnia z czasu TotalSeconds
- 4. Do poprzedniej tabeli dodaj również dane o średnim czasie HalfSeconds
- 5. Zmień kolejność poziomów dla kolumn. Najpierw ma być dokonany podział na mężczyzn i kobiety, a dopiero potem rozróżnienie średnich czasów na dystansie 20 i 40 km
- 6. Zmień sortowanie kolumn w tabeli z poprzedniego przykładu tak, aby nagłówek dla kobiet i mężczyzn pojawił się tylko jeden raz.
- 7. A właściwie to ilu było zawodników? Zbuduj tabelę przestawną, która zaprezentuje w wierszach wiek uczestników, a w kolumnie ilość uczestników z podziałem na płeć. Do liczenia zawodników może być wykorzystane dowolne z dostępnych pól.
- 8. Zmień poprzednie polecenie tak, aby wartości były wyznaczane bez podziału na kobiety i mężczyzn
- 9. Zbuduj tabelę, która policzy ilość uczestników z różnych krajów. Kraje mają się znaleźć w wierszach.
- Zmien poprzednie polecenie tak, aby wiersze były posortowane wg ilości zawodników z poszczególnych krajów malejąco.
- 11. Zbuduj tabelę przestawną, która będzie prezentować średni czas biegu uzyskany przez reprezentatów poszczególnych miast. Tabela ma posiadać multiindeks w oparciu o kolumny **County, State, City**
- 12. Posortuj dane z poprzedniego polecenia wg czasu malejąco. W ten sposób wyznaczysz miasto z najgorszymi średnimi wynikami.

Dane pochodzą z https://github.com/llim/llib/bostonmarathon)
https://github.com/llim/llib/bostonmarathon)
https://github.com/llim/llib/bostonmarathon)
https://github.com/llim/llib/bostonmarathon)
https://github.com/llim/llib/bostonmarathon)
https://github.com/rojour/boston-marathon-2016-finishers-analysis/data (https://github.com/rojour/boston-marathon-2016-finishers-analysis/data (https://github.com/rojour/boston-marathon-2016-finishers-analysis/data)

Rozwiązania:

Poniżej znajdują się propozycje rozwiązań zadań. Prawdopodobnie istnieje wiele dobrych rozwiązań, dlatego jeżeli rozwiązujesz zadania samodzielnie, to najprawdopodobniej zrobisz to inaczej, może nawet lepiej :) Możesz pochwalić się swoimi rozwiązaniami w sekcji Q&A

```
In [1]: import pandas as pd
    import numpy as np
    from datetime import datetime
    from datetime import timedelta
    import time
```

Out[3]:

	Age	M/F	City	State	Country	Half	40K	Pace	TotalSeconds	HalfSeconds
Bib										
5	21	М	Addis Ababa	NaN	ETH	01:06:45	02:05:59	0:05:04	7559.0	4005.0
1	26	М	Ambo	NaN	ETH	01:06:46	02:05:59	0:05:06	7559.0	4006.0
6	31	М	Addis Ababa	NaN	ETH	01:06:44	02:06:47	0:05:07	7607.0	4004.0
11	33	М	Kitale	NaN	KEN	01:06:46	02:06:47	0:05:07	7607.0	4006.0
14	23	М	Eldoret	NaN	KEN	01:06:46	02:08:11	0:05:11	7691.0	4006.0
3	29	М	Eldoret	NaN	KEN	01:06:46	02:09:07	0:05:13	7747.0	4006.0
9	31	М	Eldoret	NaN	KEN	01:06:47	02:08:12	0:05:14	7692.0	4007.0
17	27	М	Nijmegen	NaN	NED	01:06:47	02:08:38	0:05:16	7718.0	4007.0
7	29	М	Addis Ababa	NaN	ETH	01:06:45	02:10:57	0:05:18	7857.0	4005.0
43	28	М	Dallas	TX	USA	01:07:57	02:12:47	0:05:25	7967.0	4077.0
16	33	М	Harare	NaN	ZIM	01:06:47	02:11:48	0:05:26	7908.0	4007.0
4	20	М	Addis Ababa	NaN	ETH	01:06:45	02:14:23	0:05:26	8063.0	4005.0
21	31	М	Colorado Springs	СО	USA	01:08:24	02:14:39	0:05:26	8079.0	4104.0
15	29	М	Kapchorwa	NaN	UGA	01:06:45	02:14:33	0:05:32	8073.0	4005.0
27	30	М	New Paltz	NY	USA	01:08:48	02:16:22	0:05:32	8182.0	4128.0
19	34	М	Penapolis, Sao Paulo	NaN	BRA	01:06:47	02:16:29	0:05:32	8189.0	4007.0
79	40	М	Boulder	СО	USA	01:10:15	02:16:51	0:05:32	8211.0	4215.0
30	32	М	Tokyo	NaN	JPN	01:06:47	02:17:06	0:05:33	8226.0	4007.0
23	30	М	Tokyo	NaN	JPN	01:09:42	02:18:19	0:05:36	8299.0	4182.0
12	32	М	Eldoret	NaN	KEN	01:06:47	02:17:51	0:05:37	8271.0	4007.0
38	28	М	Wolcottville	IN	USA	01:11:40	02:19:24	0:05:37	8364.0	4300.0
75	48	М	Belluno	NaN	ITA	01:10:45	02:19:33	0:05:38	8373.0	4245.0
103	26	М	Cambridge	MA	USA	01:12:27	02:19:56	0:05:39	8396.0	4347.0
104	23	М	Binghamton	NY	USA	01:12:02	02:19:59	0:05:39	8399.0	4322.0
976	26	М	Kearney	NE	USA	01:08:42	02:19:14	0:05:40	8354.0	4122.0
119	38	М	Mill Valley	CA	USA	01:12:34	02:20:27	0:05:40	8427.0	4354.0
24	29	М	Tokyo	NaN	JPN	01:09:06	02:20:02	0:05:41	8402.0	4146.0
177	24	М	Las Cruces	NM	USA	01:12:46	02:21:07	0:05:42	8467.0	4366.0
F6	29	F	Liteshoa	NaN	ETH	01:15:32	02:21:49	0:05:42	8509.0	4532.0
31	24	М	Ann Arbor	MI	USA	01:11:26	02:20:35	0:05:42	8435.0	4286.0
3183	34	М	Menlo Park	CA	USA	01:25:46	02:46:46	0:06:44	10006.0	5146.0
1558	48	М	Salt Lake City	UT	USA	01:27:28	02:46:43	0:06:44	10003.0	5248.0
3294	27	М	Washington	DC	USA	01:24:13	02:46:52	0:06:44	10012.0	5053.0
2043	41	М	Bassano Del Grappa	NaN	ITA	01:24:20	02:46:15	0:06:44	9975.0	5060.0

```
In [4]:
         df.pivot_table(index="Age",columns="M/F",values="TotalSeconds", aggfunc='mean').hea
Out[4]:
          M/F F
          Age
           18 16050.666667 14554.615385
           19 15351.958333 12156.529412
           20 13835.931818 12111.100000
           21 14681.027027 12408.360465
           22 14366.421053 11872.666667
In [4]: df.pivot_table(index="Age",columns="M/F",values=["HalfSeconds","TotalSeconds"]).hea
Out[4]:
               HalfSeconds
                                     TotalSeconds
          M/F F
          Age
           18 7999.888889 7078.538462 16050.666667 14554.615385
           19 7473.666667 5817.764706 15351.958333 12156.529412
           20 6871.045455 5716.800000 13835.931818 12111.100000
           21 7148.554054 5929.627907 14681.027027 12408.360465
           22 7091.097744 5751.000000 14366.421053 11872.666667
         df.pivot_table(index="Age",columns="M/F",values=["HalfSeconds","TotalSeconds"]
                         ).swaplevel(axis=1).head()
Out[5]:
          M/F F
                           М
                                                   М
               HalfSeconds HalfSeconds TotalSeconds
          Age
               7999.888889 7078.538462 16050.666667 14554.615385
               7473.666667
                           5817.764706 15351.958333 12156.529412
               6871.045455
                           5716.800000 13835.931818
                                                   12111.100000
               7148.554054
                           5929.627907 14681.027027 12408.360465
               7091.097744
                           5751.000000 14366.421053 11872.666667
         df.pivot table(index="Age",columns="M/F",values=["HalfSeconds","TotalSeconds"]
                         ).swaplevel(axis=1).sort index(axis=1).head()
Out[6]:
          M/F F
               HalfSeconds TotalSeconds HalfSeconds TotalSeconds
          Age
               7999.888889
                         16050.666667
                                      7078.538462 14554.615385
           18
                           15351.958333 5817.764706 12156.529412
           19 7473.666667
                                                  12111.100000
           20
               6871.045455
                           13835.931818 5716.800000
               7148.554054
                           14681.027027 5929.627907
                                                  12408.360465
           22 7091.097744 14366.421053 5751.000000
                                                  11872.666667
```

```
In [7]:
          df.pivot_table(index="Age",columns="M/F",aggfunc='count',values='City').head()
 Out[7]:
           M/F
              F
                     М
           Age
            18
                 9.0 13.0
            19
                24.0 17.0
            20
                44.0 40.0
                74.0 86.0
            21
            22 133.0 93.0
          df.pivot_table(index="Country", aggfunc='count', values='City').head()
 Out[8]:
                   City
           Country
              ALB
             AND
                     1
             ARG
                    26
              AUS
                   152
              AUT
                    27
 In [9]: df.pivot table(index="Country", aggfunc='count', values='City'
                          ).sort values('City', ascending=False).head()
 Out[9]:
                   City
           Country
              USA 21649
             CAN
                   2134
             GBR
                    366
              MEX
                    252
              JPN
                     185
          df.pivot table(index=["Country", "State", "City"], aggfunc='mean',
In [10]:
                           values='TotalSeconds').head()
Out[10]:
                                  TotalSeconds
           Country State
                             City
             CAN
                                  11211.000000
                    AB
                           Airdrie
                        Ardrossan
                                  12644.000000
                          Calgary
                                  12546.186813
                                  12879.500000
                         Cochrane
                           Devon 14414.500000
```

Out[11]:

TotalSeconds

Country	State	City	
USA	WI	Reedsburg	28461.0
	TX	Justin	23816.0
	MS	Olive Branch	21878.0
	FL	Estero	21468.0
	TX	Fresno	20919.0

In []: