Closed-loop optimization of hydrogel formulations using dynamic light scattering

Acceleration Consortium Team:

Owen Melville, Ilya Yakavets, Yimu Zhao, Nipun Gupta, Jeff Watchorn

Hydrogels are Awesome!

3D Printing

Drug Delivery

Hydrogels are Complicated!

Xu et al. (2020). Biomacromolecules

Li et al. (2020) Materials Science and Engineering

Measuring Hydrogel Properties

Rheology

Slow

Difficult to Automate

Video Particle Tracking

Mao et al. (2022). Front. Bioeng. Biotechnol.

Dynamic Light Scattering

Well plate compatible

Fast measurements

Krajina et al. (2017). ACS Central Science

A Hydrogel Self-Driving Lab!

2 Crosslinking

3 Dynamic Light Scattering characterization

Inputs:

- 1. Precursor descriptors (substance)
- 2. Precursor concentrations (discrete)

- 2. Gelation time
- 3. Viscosity
- 4. Viscoelasticity (G' and G")

BO Features:

- Precursor representation (mixture constraints)
- > Sequence optimization

BayBE package

The Future Needs Hydrogels!

Cell culture

3D Printing

Drug Delivery

Faster Data

Reliable Data

Self-Driving Labs

Healthy People

Happy Robots

Healthy Planet

SELF-DRIVING LABS ACCELERATING MATERIALS DISCOVERY

Various biological tissues show frequency-dependent viscoelastic features

Theory (Cai et al, 2021)

Incident light is scattered by embedded probe particles in a sample volume, and the scattering intensity is measured over time to derive the intensity autocorrelation function $g_2(\tau) = \langle I(t)I(t+\tau)\rangle\langle I(t)\rangle^{-2}$, where τ is the lag time between two time points and $\langle I(t)\rangle^{-2}$ is the normalization factor. This autocorrelation function relates to the mean-squared displacement Δr^2 (τ) of the probe particles through the intermediate scattering function

$$g_1(\tau) = \exp\left(\frac{-q^2 \Delta r^2(\tau)}{6}\right),\tag{1}$$

where the scattering vector $q = 4\pi n \sin(\theta/2)/\lambda$. The intermediate scattering function $g_1(\tau)$ for ergodic systems is derived from

$$g_2(\tau) = 1 + (g_0 - 1) |g_1(\tau)|^2,$$
 (2)

where $g_0 = g_2(0)$. From the mean-squared displacement, we then obtain the frequency-dependent complex modulus using the generalized Stokes-Einstein equation^{21,22}

$$G^*(\omega) = \frac{k_B T}{\pi a(i\omega) \mathcal{F}_u \{\langle \Delta r^2(t) \rangle\}}$$
(3)

where k_BT denotes the thermal energy, a is the particle radius, and $\mathcal{F}_u\{\langle \Delta r^2(r) \rangle\}$ is the unilateral Fourier transform of the mean-squared displacement. This relation is extended from the purely viscous regime to continuum viscoelastic fluids and connects macroscopic stress relaxations to microscopic stress relaxations.^{23,35} Besides the complex modulus, another interesting and valuable interpretation of the mean-squared displacement is the creep compliance, which directly relates to the mean-squared displacement.³⁶ It should be noted that Equation 3 assumes that there is negligible impact from inertia of the probe, which is very sensitive to probe size and material properties of both the probe and the fluid. For a particle in a fluid, the timescale at which inertial effects are non-negligible can be estimated using the ratio of $m/\zeta = 2\rho_p a^2/9 \eta_s$, where m is the mass of the particle, ζ is the drag coefficient, ρ_p is the density of the particle, a is the radius of the particle, and a is the viscosity of the fluid.³⁷ Particle sizes used in DLS μ R are on the order of 1 μ m, which requires a timescale of a 6 × 10⁻⁸ s for the inertia to dampen out in a material with a viscosity of 10⁻³ Pa·s. Thus, for the frequency range probed by DLS μ R (up to 10⁶ Hz), inertial effects can be neglected.²²

DLSµ R Workflow Scenarios Summary. (Cai et al, 2021)

Gelation Process of a Covalently Crosslinked PEGbased Gel.

Multi-day Rheology of a Living Composite of Human Breast Cancer Cells Encapsulated in Collagen I.

Relationship between Structure and Rheology of Hydrogels for Various Applications Stojkov et al, 2021

A Hydrogel Self-Driving Lab!

Precursor representation (mixture constraints)
- Sequence optimization

