Package 'dggridR'

July 26, 2024

```
Type Package
Title Discrete Global Grids
Version 3.1.0
Date 2024-07-17
Author Richard Barnes [aut],
     Kevin Sahr [aut, cph],
     Gerald Evenden [cph],
     Angus Johnson [cph],
     Frank Warmerdam [cph],
     Even Rouault [cph],
     Lian Song [ctb],
     Sebastian Krantz [ctb, cre]
Maintainer Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>
NeedsCompilation yes
Depends R (>= 3.4.0)
Imports Rcpp (>= 0.12.12), collapse (>= 1.8.0), sf (>= 1.0), s2 (>=
     1.1)
LinkingTo Rcpp
RcppModules dgfuncs, gridgens, gridstats
Suggests ggplot2, knitr, rmarkdown, dplyr, maps, R.rsp, testthat
License AGPL (>= 3)
Description
     Spatial analyses involving binning require that every bin have the same area, but this is impossi-
     ble using a rectangular grid laid over the Earth or over any projection of the Earth. Dis-
     crete global grids use hexagons, triangles, and diamonds to overcome this issue, overlay-
     ing the Earth with equally-sized bins. This package provides utilities for working with dis-
     crete global grids, along with utilities to aid in plotting such data.
URL https://github.com/r-barnes/dggridR/
```

BugReports https://github.com/r-barnes/dggridR/

RoxygenNote 7.2.3

2 Contents

Encoding UTF-8
VignetteBuilder knitr, R.rsp
Language en-US
Repository CRAN
Date/Publication 2024-07-26 06:20:02 UTC

Contents

dgcellstogrid 3
dgconstruct
dgearthgrid
dgGEO_to_GEO 6
dgGEO_to_PLANE
dgGEO_to_PROJTRI
dgGEO_to_Q2DD 8
dgGEO_to_Q2DI
$dgGEO_to_SEQNUM 10$
dggetres
dginfo
dgmaxcell
dgPROJTRI_to_GEO
dgPROJTRI_to_PLANE
dgPROJTRI_to_PROJTRI
dgPROJTRI_to_Q2DD
dgPROJTRI_to_Q2DI
dgPROJTRI_to_SEQNUM
dgQ2DD_to_GEO
dgQ2DD_to_PLANE
dgQ2DD_to_PROJTRI
dgQ2DD_to_Q2DD
dgQ2DD_to_Q2DI
dgQ2DD_to_SEQNUM
dgQ2DI_to_GEO
dgQ2DI_to_PLANE
dgQ2DI_to_PROJTRI
dgQ2DI_to_Q2DD
dgQ2DI_to_Q2DI
dgQ2DI_to_SEQNUM
dgquakes
dgrectgrid
dgsavegrid
dgSEQNUM_to_GEO
dgSEQNUM_to_PLANE
dgSEQNUM_to_PROJTRI
dgSEQNUM_to_Q2DD
dgSEONUM to O2DI

dgcellstogrid	
ageenstognu	•

Index		41
	dg_shpfname_south_africa	40
	dg_process_polydata	
	dg_env	39
	dg_closest_res_to_spacing	
	dg_closest_res_to_cls	37
	dg_closest_res_to_area	36
	dg_closest_res	35
	dgverify	34
	dgshptogrid	33
	dgsetres	32
	dgSEQNUM_to_SEQNUM	32

dgcellstogrid

Return boundary coordinates for specified cells

Description

Returns the coordinates constituting the boundary of a specified set of cells. Duplicates are eliminated to reduce processing and storage requirements.

Usage

```
dgcellstogrid(dggs, cells, savegrid = NA, return_sf = TRUE)
```

Arguments

dggs	A dggs object from dgconstruct()
cells	The cells to get the boundaries of
savegrid	If savegrid is set to a file path, then a shapefile containing the grid is written to that path and the filename is returned. No other manipulations are done. Default: NA (do not save grid, return it)
return_sf	logical. If FALSE, a long-format data frame giving the coordinates of the vertices of each cell is returned. This is considerably faster and more memory efficient than creating an sf data frame.

Value

Returns an sf object. If !is.na(savegrid), returns a filename.

4 dgconstruct

Examples

dgconstruct

Construct a discrete global grid system (dggs) object

Description

Construct a discrete global grid system (dggs) object

Usage

```
dgconstruct(
  projection = "ISEA",
  aperture = 3,
  topology = "HEXAGON",
  res = NA,
  precision = 7,
  area = NA,
  spacing = NA,
  cls = NA,
  resround = "nearest",
 metric = TRUE,
  show_info = TRUE,
  azimuth_deg = 0,
 pole_lat_deg = 58.28252559,
 pole_lon_deg = 11.25
)
```

Arguments

projection Type of grid to use. Options are: ISEA and FULLER. Default: ISEA3H

aperture How finely subsequent resolution levels divide the grid. Options are: 3, 4. Not

all options work with all projections and topologies. Default: 3

topology Shape of cell. Options are: HEXAGON, DIAMOND, TRIANGLE. Default:

HEXAGON

dgearthgrid 5

res	Resolution. Must be in the range [0,30]. Larger values represent finer resolutions. Appropriate resolutions can be found with dg_closest_res_to_area(), dg_closest_res_to_spacing(), and dg_closest_res_to_cls(). Default is 9, which corresponds to a cell area of ~2600 sq km and a cell spacing of ~50 km. Only one of res, area, length, or cls should be used.
precision	Round output to this number of decimal places. Must be in the range [0,30]. Default: 7.
area	The desired area of the grid's cells. Only one of res, area, length, or cls should be used.
spacing	The desired spacing between the center of adjacent cells. Only one of res, area, length, or cls should be used.
cls	The desired CLS of the cells. Only one of res, area, length, or cls should be used.
resround	What direction to search in. Must be nearest, up, or down.
metric	Whether input and output should be in metric (TRUE) or imperial (FALSE)
show_info	Print the area, spacing, and CLS of the chosen resolution.
azimuth_deg	Rotation in degrees of grid about its pole, value in [0,360]. Default=0.
pole_lat_deg	Latitude in degrees of the pole, value in [-90,90]. Default=58.28252559.
pole_lon_deg	Longitude in degrees of the pole, value in [-180,180]. Default=11.25.

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
library(dggridR)
dggs <- dgconstruct(res=20)

dggs <- dgconstruct(area=5,metric=FALSE)</pre>
```

dgearthgrid	Return the coordinates constituting the boundary of cells for the entire Earth	
agearingria		

Description

Note: If you have a high-resolution grid this may take a very long time to execute.

```
dgearthgrid(dggs, savegrid = NA, return_sf = TRUE)
```

6 dgGEO_to_GEO

Arguments

dggs A dggs object from dgconstruct().

savegrid If savegrid is set to a file path, then a shapefile containing the grid is written to

that path and the filename is returned. No other manipulations are done. Default:

NA (do not save grid, return it)

return_sf logical. If FALSE, a long-format data frame giving the coordinates of the vertices

of each cell is returned. This is is considerably faster and more memory efficient

than creating an sf data frame.

Value

Returns an sf object. If !is.na(savegrid), returns a filename.

Examples

```
library(dggridR)
```

dggs <- dgconstruct(res=20)</pre>

res <- dg_closest_res_to_spacing(dggs,spacing=1000,round='down',metric=FALSE)

dggs <- dgsetres(dggs,res)</pre>

gridfilename <- dgearthgrid(dggs,savegrid=tempfile(fileext=".shp")) #Save directly to a file</pre>

dgGEO_to_GEO Convert from GEO to GEO

Description

Uses a discrete global grid system to convert between GEO and GEO (see vignette for details)

Usage

```
dgGEO_to_GEO(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

dgGEO_to_PLANE

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgGEO_to_GEO(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_PLANE

Convert from GEO to PLANE

Description

Uses a discrete global grid system to convert between GEO and PLANE (see vignette for details)

Usage

```
dgGEO_to_PLANE(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgGEO_to_PLANE(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

8 dgGEO_to_Q2DD

dgGEO_to_PROJTRI

Convert from GEO to PROJTRI

Description

Uses a discrete global grid system to convert between GEO and PROJTRI (see vignette for details)

Usage

```
dgGEO_to_PROJTRI(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgGEO_to_PROJTRI(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_Q2DD

Convert from GEO to Q2DD

Description

Uses a discrete global grid system to convert between GEO and Q2DD (see vignette for details)

```
dgGEO_to_Q2DD(dggs, in_lon_deg, in_lat_deg)
```

dgGEO_to_Q2DI

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgGEO_to_Q2DD(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_Q2DI

Convert from GEO to Q2DI

Description

Uses a discrete global grid system to convert between GEO and Q2DI (see vignette for details)

Usage

```
dgGEO_to_Q2DI(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgGEO_to_Q2DI(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_SEQNUM

Convert from GEO to SEQNUM

Description

Uses a discrete global grid system to convert between GEO and SEQNUM (see vignette for details)

Usage

```
dgGEO_to_SEQNUM(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgGEO_to_SEQNUM(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dggetres 11

dggetres

Get table of grid resolution information

Description

Gets a grid's resolution and cell property info as a data frame.

Usage

```
dggetres(dggs)
```

Arguments

dggs

A dggs object from dgconstruct()

Value

A data frame containing the resolution levels, number of cells, area of those cells, intercell spacing, and characteristic length scale of the cells. All values are in kilometres.

Examples

```
library(dggridR)
dggs <- dgconstruct(res=20)
dggetres(dggs)</pre>
```

dginfo

Print info about a dggs object to the screen

Description

dggs objects have many settings. This returns all of them, along with info about the grid being specified.

Usage

```
dginfo(dggs)
```

Arguments

dggs

A dggs object from dgconstruct()

Value

No return. All info is printed to the screen.

12 dgmaxcell

Examples

```
library(dggridR)
dggs <- dgconstruct(res=20)
dginfo(dggs)</pre>
```

dgmaxcell

Get largest cell id for a dggs

Description

Cells are labeled 1-N. This function returns N. This is useful if you want to choose cells from the dggs randomly.

Usage

```
dgmaxcell(dggs, res = NA)
```

Arguments

dggs A dggs object from dgconstruct()

res If NA, use the resolution specified by the dggs. Otherwise, override the resolu-

tion.

Value

The maximum cell id.

dgPROJTRI_to_GEO

ITRI to GEO	Convert from PROJTRI to G	dgPROJTRI_to_GEO
-------------	---------------------------	------------------

Description

Uses a discrete global grid system to convert between PROJTRI and GEO (see vignette for details)

Usage

```
dgPROJTRI_to_GEO(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs	A dggs object from dgconstruct()
in_tnum	Vector of triangle numbers
in_tx	Vector of triangle x values
in_ty	Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_GEO(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_PLANE

Convert from PROJTRI to PLANE

Description

Uses a discrete global grid system to convert between PROJTRI and PLANE (see vignette for details)

```
dgPROJTRI_to_PLANE(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs A dggs object from dgconstruct()
in_tnum Vector of triangle numbers
in_tx Vector of triangle x values
in_ty Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_PLANE(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_PROJTRI Convert from PROJTRI to PROJTRI

Description

Uses a discrete global grid system to convert between PROJTRI and PROJTRI (see vignette for details)

Usage

```
dgPROJTRI_to_PROJTRI(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs A dggs object from dgconstruct()
in_tnum Vector of triangle numbers
in_tx Vector of triangle x values
in_ty Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

dgPROJTRI_to_Q2DD

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_PROJTRI(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_Q2DD

Convert from PROJTRI to Q2DD

Description

Uses a discrete global grid system to convert between PROJTRI and Q2DD (see vignette for details)

15

Usage

```
dgPROJTRI_to_Q2DD(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs	A dggs object from dgconstruct()
in_tnum	Vector of triangle numbers
in_tx	Vector of triangle x values
in_ty	Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgPROJTRI_to_Q2DD(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_Q2DI

Convert from PROJTRI to Q2DI

Description

Uses a discrete global grid system to convert between PROJTRI and Q2DI (see vignette for details)

Usage

```
dgPROJTRI_to_Q2DI(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs A dggs object from dgconstruct()
in_tnum Vector of triangle numbers
in_tx Vector of triangle x values
in_ty Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgPROJTRI_to_Q2DI(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

 $dgPROJTRI_to_SEQNUM$

Convert from PROJTRI to SEQNUM

Description

Uses a discrete global grid system to convert between PROJTRI and SEQNUM (see vignette for details)

```
dgPROJTRI_to_SEQNUM(dggs, in_tnum, in_tx, in_ty)
```

dgQ2DD_to_GEO

Arguments

dggs	A dggs object from dgconstruct()
in_tnum	Vector of triangle numbers
in_tx	Vector of triangle x values
in_ty	Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_SEQNUM(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgQ2DD_to_GEO

Convert from Q2DD to GEO

Description

Uses a discrete global grid system to convert between Q2DD and GEO (see vignette for details)

Usage

```
dgQ2DD_to_GEO(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers
in_qx	Vector of quadrant x values
in_qy	Vector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_GEO(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

 $dgQ2DD_to_PLANE$

Convert from Q2DD to PLANE

Description

Uses a discrete global grid system to convert between Q2DD and PLANE (see vignette for details)

Usage

```
dgQ2DD_to_PLANE(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs A dggs object from dgconstruct()

in_quadin_qxVector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgQ2DD_to_PLANE(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

 $dgQ2DD_to_PROJTRI$

da03DD	tο	PROJTRI

Convert from Q2DD to PROJTRI

Description

Uses a discrete global grid system to convert between Q2DD and PROJTRI (see vignette for details)

Usage

```
dgQ2DD_to_PROJTRI(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs A dggs object from dgconstruct()

in_quadin_qxvector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_PROJTRI(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DD_to_Q2DD

Convert from Q2DD to Q2DD

Description

Uses a discrete global grid system to convert between Q2DD and Q2DD (see vignette for details)

```
dgQ2DD_to_Q2DD(dggs, in_quad, in_qx, in_qy)
```

20 dgQ2DD_to_Q2DI

Arguments

dggs A dggs object from dgconstruct()

in_quadin_qxvector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_Q2DD(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

 $dgQ2DD_to_Q2DI$

Convert from Q2DD to Q2DI

Description

Uses a discrete global grid system to convert between Q2DD and Q2DI (see vignette for details)

Usage

```
dgQ2DD_to_Q2DI(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs A dggs object from dgconstruct()

in_quadin_qxvector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgQ2DD_to_Q2DI(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DD_to_SEQNUM

Convert from Q2DD to SEQNUM

Description

Uses a discrete global grid system to convert between Q2DD and SEQNUM (see vignette for details)

Usage

```
dgQ2DD_to_SEQNUM(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers
in_qx	Vector of quadrant x values
in_qy	Vector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_SEQNUM(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

22 dgQ2DI_to_PLANE

dg02DI	tο	GEO
UZUZDI	LO	GEU

Convert from Q2DI to GEO

Description

Uses a discrete global grid system to convert between Q2DI and GEO (see vignette for details)

Usage

```
dgQ2DI_to_GEO(dggs, in_quad, in_i, in_j)
```

Arguments

dggs A dggs object from dgconstruct()

in_quadin_iVector of quadrant i valuesin_jVector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_GEO(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_PLANE

Convert from Q2DI to PLANE

Description

Uses a discrete global grid system to convert between Q2DI and PLANE (see vignette for details)

```
dgQ2DI_to_PLANE(dggs, in_quad, in_i, in_j)
```

dgQ2DI_to_PROJTRI 23

Arguments

dggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers

in_iVector of quadrant i valuesin_jVector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgQ2DI_to_PLANE(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_PROJTRI

Convert from Q2DI to PROJTRI

Description

Uses a discrete global grid system to convert between Q2DI and PROJTRI (see vignette for details)

Usage

```
dgQ2DI_to_PROJTRI(dggs, in_quad, in_i, in_j)
```

Arguments

dggs	A dggs object from dgconstruct()
ოგგა	Traggs object from ageomstract()

in_quadin_iVector of quadrant i valuesin_jVector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

24 dgQ2DI_to_Q2DD

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_PROJTRI(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_Q2DD

Convert from Q2DI to Q2DD

Description

Uses a discrete global grid system to convert between Q2DI and Q2DD (see vignette for details)

Usage

```
dgQ2DI_to_Q2DD(dggs, in_quad, in_i, in_j)
```

Arguments

dggs A dggs object from dgconstruct()
in_quad Vector of quad numbers
in_i Vector of quadrant i values

in_j Vector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgQ2DI_to_Q2DD(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_Q2DI 25

dgQ2DI	_to_Q2DI	Conv

Convert from Q2DI to Q2DI

Description

Uses a discrete global grid system to convert between Q2DI and Q2DI (see vignette for details)

Usage

```
dgQ2DI_to_Q2DI(dggs, in_quad, in_i, in_j)
```

Arguments

aggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers
in_i	Vector of quadrant i values
in_j	Vector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_Q2DI(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

```
dgQ2DI_to_SEQNUM
```

Convert from Q2DI to SEQNUM

Description

Uses a discrete global grid system to convert between Q2DI and SEQNUM (see vignette for details)

```
dgQ2DI_to_SEQNUM(dggs, in_quad, in_i, in_j)
```

26 dgquakes

Arguments

dggs A dggs object from dgconstruct()

in_quadin_iVector of quadrant i valuesin_jVector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgQ2DI_to_SEQNUM(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgquakes

All earthquakes with magnitude >= 3.0 earthquakes for 2015

Description

A data frame with 19914 observations on the following 4 variables.

time Time of the quake. Example: 2015-12-31T23:39:28.940Z lat Latitude of the epicenter. Example: -7.0711

lon Longitude of the epicenter. Example: -173.5178

mag Magnitude of the quake. Example: 3.2

Usage

```
data(dgquakes)
```

Format

data frame

Source

The USGS Earthquake Hazards Program (https://earthquake.usgs.gov/earthquakes/search/).

dgrectgrid 27

dgrectgrid	Return the coordinates constituting the boundary of cells within a specified region

Description

Note: This may generate odd results for very large rectangles, because putting rectangles on spheres is weird... as you should know, if you're using this package.

Usage

```
dgrectgrid(
  dggs,
  minlat = -1,
  minlon = -1,
  maxlat = -1,
  maxlon = -1,
  cellsize = 0.1,
  ...
)
```

Arguments

dggs	A dggs object from dgconstruct()
minlat	Minimum latitude of region of interest
minlon	Minimum longitude of region of interest
maxlat	Maximum latitude of region of interest
maxlon	Maximum longitude of region of interest
cellsize	Distance, in degrees, between the sample points used to generate the grid. Small values yield long generation times while large values may omit cells.
	Further arguments passed to dgcellstogrid.

Value

Returns an sf object. If !is.na(savegrid), returns a filename.

dgsavegrid

Saves a generated grid to a shapefile

Description

Saves a generated grid to a shapefile

Usage

```
dgsavegrid(grid, shpfname)
```

Arguments

grid Grid to be saved

shpfname File to save the grid to

Value

The filename the grid was saved to

dgSEQNUM_to_GEO

Convert from SEQNUM to GEO

Description

Uses a discrete global grid system to convert between SEQNUM and GEO (see vignette for details)

Usage

```
dgSEQNUM_to_GEO(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_GEO(dggs, in_seqnum)
## End(Not run)</pre>
```

dgSEQNUM_to_PLANE

Convert from SEQNUM to PLANE

Description

Uses a discrete global grid system to convert between SEQNUM and PLANE (see vignette for details)

Usage

```
dgSEQNUM_to_PLANE(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_PLANE(dggs, in_seqnum)
## End(Not run)</pre>
```

dgSEQNUM_to_PROJTRI Coa

Convert from SEQNUM to PROJTRI

Description

Uses a discrete global grid system to convert between SEQNUM and PROJTRI (see vignette for details)

Usage

```
dgSEQNUM_to_PROJTRI(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_PROJTRI(dggs, in_seqnum)
## End(Not run)</pre>
```

dgSEQNUM_to_Q2DD

Convert from SEQNUM to Q2DD

Description

Uses a discrete global grid system to convert between SEQNUM and Q2DD (see vignette for details)

```
dgSEQNUM_to_Q2DD(dggs, in_seqnum)
```

dgSEQNUM_to_Q2DI 31

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_Q2DD(dggs, in_seqnum)
## End(Not run)</pre>
```

dgSEQNUM_to_Q2DI

Convert from SEQNUM to Q2DI

Description

Uses a discrete global grid system to convert between SEQNUM and Q2DI (see vignette for details)

Usage

```
dgSEQNUM_to_Q2DI(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_Q2DI(dggs, in_seqnum)
## End(Not run)</pre>
```

32 dgsetres

dgSEQNUM_to_SEQNUM

Convert from SEQNUM to SEQNUM

Description

Uses a discrete global grid system to convert between SEQNUM and SEQNUM (see vignette for details)

Usage

```
dgSEQNUM_to_SEQNUM(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgSEQNUM_to_SEQNUM(dggs, in_seqnum)
## End(Not run)</pre>
```

dgsetres

Set the resolution of a dggs object

Description

Set the resolution of a dggs object

```
dgsetres(dggs, res)
```

dgshptogrid 33

Arguments

dggs A dggs object from dgconstruct().

res Resolution. Must be in the range [0,30]. Larger values represent finer reso-

lutions. Appropriate resolutions can be found with dg_closest_res_to_area(), dg_closest_res_to_spacing(), and dg_closest_res_to_cls(). Default is 9, which corresponds to a cell area of $\sim\!2600$ sq km and a cell spacing of $\sim\!50$ km. Default:

9.

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
library(dggridR)
dggs <- dgconstruct(res=20)
dggs <- dgsetres(dggs,10)</pre>
```

dgshptogrid

Return boundary coordinates for cells intersecting a shapefile

Description

Returns the coordinates constituting the boundary of a set of cells which intersect or are contained by a polygon (or polygons) specified in a shapefile. Note that grid cells are also generated for holes in the shapefile's polygon(s).

Note that coordinates in the shapefile must be rounded to check polygon intersections. Currently this round preserves eight decimal digits of precision.

The eighth decimal place is worth up to 1.1 mm of precision: this is good for charting the motions of tectonic plates and the movements of volcanoes. Permanent, corrected, constantly-running GPS base stations might be able to achieve this level of accuracy.

In other words: you should be just fine with this level of precision.

Usage

```
dgshptogrid(dggs, shpfname, cellsize = 0.1, ...)
```

Arguments

dggs	A dggs	object from	dgconstruct()

shpfname Either a sf data frame or the file name of the shapefile. Filename should end

with '.shp'.

cellsize Distance, in degrees, between the sample points used to generate the grid. Small

values yield long generation times while large values may omit cells.

... Further arguments passed to dgcellstogrid.

34 dgverify

Value

Returns an sf object. If !is.na(savegrid), returns a filename.

Examples

```
library(dggridR)

dggs <- dgconstruct(spacing=25, metric=FALSE, resround='nearest')
south_africa_grid <- dgshptogrid(dggs,dg_shpfname_south_africa())</pre>
```

dgverify

Verify that a dggs object has appropriate values

Description

Verify that a dggs object has appropriate values

Usage

```
dgverify(dggs)
```

Arguments

dggs

The dggs object to be verified

Value

The function has no return value. A stop signal is raised if the object is misspecified

```
library(dggridR)
dggs <- dgconstruct(res=20)
dgverify(dggs)</pre>
```

dg_closest_res 35

Яg	CI	osest	res

Determine an appropriate grid resolution based on input data.

Description

This is a generic function that is used to determine an appropriate resolution given an area, cell spacing, or correlated length scale. It does so by extracting the appropriate length/area column and searching it for a value close to the input.

Usage

```
dg_closest_res(
  dggs,
  col,
  val,
  round = "nearest",
  show_info = TRUE,
  metric = TRUE
)
```

Arguments

dggs	A dggs object from dgconstruct()
col	Column in which to search for a close value. Should be: area_km, spacing_km, or cls_km.
val	The value to search for
round	What direction to search in. Must be nearest, up, or down.
show_info	Print the area, spacing, and CLS of the chosen resolution.
metric	Whether input and output should be in metric (TRUE) or imperial (FALSE)

Value

A number representing the grid resolution

```
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res(dggs,'area_km',1)
dggs <- dgsetres(dggs,res)</pre>
```

```
dg_closest_res_to_area
```

Determine resolution based on desired area

Description

Determine an appropriate grid resolution based on a desired cell area.

Usage

```
dg_closest_res_to_area(
  dggs,
  area,
  round = "nearest",
  show_info = TRUE,
  metric = TRUE
)
```

Arguments

dggs	A dggs object from dgconstruct()
area	The desired area of the grid's cells
round	What direction to search in. Must be nearest, up, or down.
show_info	Print the area, spacing, and CLS of the chosen resolution.
metric	Whether input and output should be in metric (TRUE) or imperial (FALSE)

Value

A number representing the grid resolution

```
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res_to_area(dggs,1)
dggs <- dgsetres(dggs,res)</pre>
```

dg_closest_res_to_cls 37

Description

The characteristic length scale (CLS) is the diameter of a spherical cap of the same area as a cell of the specified resolution.

Usage

```
dg_closest_res_to_cls(
  dggs,
  cls,
  round = "nearest",
  show_info = TRUE,
  metric = TRUE
)
```

Arguments

dggs	A dggs object from dgconstruct()
cls	The desired CLS of the cells.
round	What direction to search in. Must be nearest, up, or down.
show_info	Print the area, spacing, and CLS of the chosen resolution.
metric	Whether input and output should be in metric (TRUE) or imperial (FALSE)

Value

A number representing the grid resolution

```
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res_to_cls(dggs,1)
dggs <- dgsetres(dggs,res)</pre>
```

```
dg_closest_res_to_spacing
```

Determine grid resolution from desired spacing.

Description

Determine an appropriate grid resolution based on a desired spacing between the center of adjacent cells.

Usage

```
dg_closest_res_to_spacing(
  dggs,
  spacing,
  round = "nearest",
  show_info = TRUE,
  metric = TRUE
)
```

Arguments

dggs	A dggs object from dgconstruct()
spacing	The desired spacing between the center of adjacent cells
round	What direction to search in. Must be nearest, up, or down.
show_info	Print the area, spacing, and CLS of the chosen resolution.
metric	Whether input and output should be in metric (TRUE) or imperial (FALSE)

Value

A number representing the grid resolution

```
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res_to_spacing(dggs,1)
dggs <- dgsetres(dggs,res)</pre>
```

dg_env 39

 dg_env

Control global aspects of the dggridR package

Description

This environment is used to control global features of the dggridR package. At the moment the only option is 'dg_debug' which, when set to TRUE provides extensive outputs useful for tracking down bugs.

Usage

dg_env

Format

An object of class environment of length 1.

dg_process_polydata

Load a KML file

Description

Convert data from internal dggrid functions into something useful: an sp object or a data frame

Usage

```
dg_process_polydata(polydata)
```

Arguments

polydata

Polygons generated by dggrid. These will be converted.

Value

Returns an sf object.

```
{\tt dg\_shpfname\_south\_africa} \\ {\tt \it National\ border\ of\ South\ Africa}
```

Description

This variable points to a shapefile containing the national border of South Africa

Usage

```
dg_shpfname_south_africa()
```

Value

A filename of a shapefile containing the national border of South Africa

Index

* datasets
dg_env, 39
dgquakes, 26
dg_closest_res, 35
dg_closest_res_to_area, 36
dg_closest_res_to_cls, 37
<pre>dg_closest_res_to_spacing, 38</pre>
dg_env, 39
dg_process_polydata, 39
${\tt dg_shpfname_south_africa,40}$
dgcellstogrid, 3, 27, 33
dgconstruct, 4
dgearthgrid, 5
dgGEO_to_GEO, 6
dgGEO_to_PLANE, 7
dgGEO_to_PROJTRI, 8
dgGEO_to_Q2DD, 8
dgGEO_to_Q2DI, 9
dgGEO_to_SEQNUM, 10
dggetres, 11
dginfo, 11 dgmaxcell, 12
dgPROJTRI_to_GEO, 13
dgPROJTRI_to_PLANE, 13
dgPROJTRI_to_PROJTRI, 14
dgPROJTRI_to_Q2DD, 15
dgPROJTRI_to_Q2DI, 16
dgPROJTRI_to_SEQNUM, 16
dgQ2DD_to_GEO, 17
dgQ2DD_to_PLANE, 18
dgQ2DD_to_PROJTRI, 19
dgQ2DD_to_Q2DD, 19
dgQ2DD_to_Q2DI, 20
dgQ2DD_to_SEQNUM, 21
dgQ2DI_to_GEO, 22
dgQ2DI_to_PLANE, 22
dgQ2DI_to_PROJTRI, 23
dgQ2DI_to_Q2DD, 24
dgQ2DI_to_Q2DI, 25

```
dgQ2DI_to_SEQNUM, 25
dgquakes, 26
dgrectgrid, 27
dgsavegrid, 28
dgSEQNUM_to_GEO, 28
dgSEQNUM_to_PLANE, 29
dgSEQNUM_to_PROJTRI, 30
dgSEQNUM_to_Q2DD, 30
dgSEQNUM_to_Q2DI, 31
dgSEQNUM_to_SEQNUM, 32
dgsetres, 32
dgshptogrid, 33
dgverify, 34
```