A quick guide to JSNMF algorithm with mouse brain (RNA+H3K4me3, Paired-Tag) data

Load data, including single-cell transcriptome and epigenomic proiles.

Data preprocessing using R package "Seurat 4.0", preprocessed data was used in the analysis below. We provide script "preprocessing.R" to conduct data preprocess, normalization and high variable gene selection steps in R environment

```
addpath('../data')
load('kidney_5k_10k.mat')
load('housekeeping_genes.mat')
load('Kidney_sciCAR_data.mat','RNA')
```

Preparing for computing RAGI

```
[~,ix1,ix2]=intersect(share_bd,RNA.Cells,'stable');
genes = RNA.Features; data = RNA.data;
data = data(:,ix2);
sM = sum(data,2); zero_row = find(sM==0);
data(zero_row,:) = []; genes(zero_row) = [];
data = data./repmat(sum(data),size(data,1),1)*10000;
data = log(data+1);

label_name = label;
num_clu = length(unique(label_name));
tag = unique(label_name); tag = cellstr(tag);
[~, label] = ismember(label_name,tag);
```

marker genes are given by the original publication; house-keeping genes are provided in the website "http://www.housekeeping.unicamp.br/"

```
marker_genes =
["Slc12a3";'Trpm6';'Abca13';'Klhl3';'Wnk1';'Tsc22d1';'Cadps2';'Egfem1';'Calb1';'K1';'
Temem72';'Dach1';'Ptprm';'Sgms2';'Tox3';'Frmpd4';'Rbms3';'Fxyd4';'Dnm3';'Cacnb2';'Pde
1c';'Pde8b'];
[~, ~, ind1] = intersect(marker_genes, genes,'stable');
[~, ~, ind2] = intersect(hp_genes, genes,'stable');
data = sparse(data);
clear ix1 ix2 sM zero_row tag share_bd RNA peaks marker_genes hp_genes genes
```

Parameter selection

```
addpath('../codes')
addpath('../external')
[alpha, gamma, Inits] = parameter_selection(X1, X2, label);

disp(['value of alpha:',num2str(alpha)]);
disp(['value of gamma:',num2str(gamma)]);

value of alpha:0.31629
value of gamma:3287.3936
```

Start time

```
tic
[W1,W2,H1,H2,S,iter,objs] = jsnmf(X1,X2,alpha,gamma,Inits);
disp('JSNMF runtime:');
toc

iteration starts!
number of iteration:10 obj:3730831.8015
number of iteration:20 obj:3720740.5389
number of iteration:30 obj:3717563.2642
number of iteration:40 obj:3715983.1244
number of iteration:50 obj:3715001.5325
number of iteration:60 obj:3714346.0563
number of iteration:70 obj:3713900.8529
converged!

JSNMF runtime:
Elapsed time is 157.382742 seconds.
```

Evaluating performance

```
% KNN on S, k is insensitive to the performance, here we suggested k=50
A = Wtrim(S,50);
% implement louvain clustering
[clust,~,~] = getNCluster(A,num_clu,0,3,20);
if length(unique(clust))== num_clu
        [ac, nmi_value, ~] = CalcMetrics(label, clust);
        [ave_mk_gini, ave_hk_gini, difgini] = RAGI(data,ind1,ind2,clust);
else
% using spectral clustering instead if number of clusering doesn't equals to the pointed number
        [~, clust, ~] = SpectralClustering(A, num_clu);
        [ac, nmi_value, ~] = CalcMetrics(label, clust);
        [ave_mk_gini, ave_hk_gini, difgini] = RAGI(data,ind1,ind2,clust);
```

```
ac: 0.6093 1857/4753 nmi:0.5430 ave marker gene: 0.5968 ave hk gini:0.1555 diff gini:0.4413
```

Downstream analysis including visualization

visualization on S obtained from JSNMF

```
% load UMAP package
addpath('../umapFileExchange/umap')
addpath('../umapFileExchange/util')
term = '.';
colors = generateColors(max(length(unique(label_name))),length(unique(term)));
D_jsnfm = 1 - S; D_jsnfm = D_jsnfm - diag(diag(D_jsnfm));
[reduction_jsnmf, ~, ~, ~] = run_umap(D_jsnfm, 'metric', 'precomputed');
gscatter(reduction_jsnmf(:,1), reduction_jsnmf(:,2), label_name, colors, [], 4);
set(gca,'xtick', [], 'ytick', []);
title('UMAP for JSNMF')
legend('Location', 'westoutside', 'Box', 'off', 'FontSize', 9.5);
legendmarkeradjust(16)
legend('boxoff')
Parallelizing UMAP with MATLAB's 8 assigned logical cores for
nn descent tasks, sgd tasks
Running basic (ub) reduction, v2.1.3
(ub=basic, us=supervised, ubt=template, ust=supervised template)
UMAP (method=MEX, n neighbors=15, n components=2, metric='precomputed',
n epochs=[], learning rate=1, init=spectral, min dist=0.3, spread=1,
set op mix ratio=1, local connectivity=1, repulsion strength=1,
negative sample rate=5, transform queue size=4, a=0.992174408960354,
b=1.11225576844318, randomize=true, target_n_neighbors=-1,
target metric='categorical', target metric kwds=[], target weight=0.5,
verbose=true, initial alpha=1, sparse data=false, small data=true,
distance func='precomputed', dist args=[]
```


UMAP reduction finished (cost 11.6 secs) Finished basic (ub) reduction

- Proximal tubule S1/S2 cells
- Proximal tubule S3 cells (type 1)
- Medullary collecting duct cells
- Collecting duct principal cells
- Proximal tubule S3 cells (type 2)
- Distal convoluted tubule cells
- Endothelial cells
- Collecting duct intercalated cell A
- Renal pericytes
- Paranephric body adipocyte
- Active proliferating cells (Ki-67+)
- Collecting duct intercalated cell B
- Podocyte

