Série A

GÉOMÉTRIE ALGÉBRIQUE. — Polarisations des catégories tannakiennes: cas gradué. Note (*) de M. Neantro Saavedra Rivano, transmise par M. Henri Cartan.

Introduction. — On développe ici la variante graduée de la notion de polarisation introduite dans une Note précédente (¹). C'est sous cette forme que cette structure se présente dans les exemples qui ont motivé la définition et l'étude des polarisations [voir (²), 1.5, 5.11 et le chapitre des exemples dans (³)].

On se donne une catégorie tannakienne algébrique C sur \mathbf{R} ; le lien de C sera noté \mathbf{L} , la \mathbf{L} -gerbe correspondant à C sera notée \mathcal{G} [voir (*) pour les généralités concernant les catégories tannakiennes], et le centre de \mathbf{L} sera noté \mathbf{Z}

$$Z = Aut^{\otimes} (id_c) = Aut (id_{\mathfrak{S}}).$$

On remarque que la donnée d'une \otimes -graduation de type \mathbf{Z} de C (ou plus précisément, du \otimes -foncteur id_c) revient à celle d'un morphisme de R-groupes $w: \mathbf{G}_m \to \mathbf{Z}$. De façon analogue, la donnée d'un objet inversible \mathbf{T} de C revient à celle d'un morphisme de gerbes $t: \mathcal{G} \to \mathrm{TORS}(G_m)$; elle détermine un morphisme, noté encore $t, t: \mathbf{Z} \to \mathbf{G}_m$. Si on dispose de deux telles données w, \mathbf{T} , le poids de \mathbf{T} pour la graduation w est l'entier n tel que $t \circ w$ (λ) = λ^n pour $\lambda \in \mathbf{G}_m$.

1. TRIPLES DE TATE.

DÉFINITION 1.1. — Un triple de Tate T est un triple $T = (C, \omega, T)$ constitué d'une catégorie tannakienne C sur R, une \otimes -graduation $\omega: G_m \to Z$ de type Z de id $_c$ et d'un objet inversible T de C qui soit de poids -2.

1.2. Si T est un triple de Tate, notons \mathcal{G}_0 la gerbe noyau du morphisme $t:\mathcal{G}\to \mathrm{TORS}\,(G_m)$; ses objets sont les couples (P,ξ) d'un objet P de \mathcal{G} et d'une trivialisation ξ du torseur t (P) sous G_m

$$\xi: P \stackrel{\sim}{\rightarrow} \mathbf{G}_m.$$

La gerbe \mathcal{G}_0 munie de $\mathcal{G}_0 \to \mathcal{G}$, correspond à une catégorie tannakienne C_0 munie d'un morphisme de catégories tannakiennes

$$Q: C \rightarrow C_0;$$

l'image de T par ce morphisme est un objet unité de C_0 et ce morphisme est universel pour cette propriété. Si Z_0 est le centre de C_0

$$Z_0 = Aut^{\otimes} (id_{C_0}) = Aut (id_{\mathcal{G}_0}),$$

(2)

on a $Z_0 = \operatorname{Ker}(t: Z \to G_m)$ et on voit aussitôt que $\varepsilon = \omega (-1) \in Z(R)$ se trouve dans le sous-groupe $Z_0(R)$. On peut aussi regarder ε comme un morphisme de R-groupes

$$\epsilon:\ \mu_2\to Z_0.$$

Proposition 1.3. — La correspondance $T \to (C_0, \varepsilon)$ établit une 2-équivalence de la 2-catégorie des triples de Tate avec celle des couples (C_0, ε) d'une catégorie tannakienne C_0 (sur \mathbf{R}) et d'un morphisme $\varepsilon: \mu_2 \to \mathbf{Z}_0$.

1.4. On dit qu'un triple de Tate (C, ω, T) est neutre si C l'est, i. e. s'il existe un foncteur fibre $\omega: C \to Mod f(\mathbb{R})$. On prouve que C est neutre si et seulement si C_0 l'est. La donnée d'un triple de Tate neutralisé (i. e. muni d'un foncteur fibre) revient à celle d'un triple (G, ω, t) d'un \mathbb{R} -groupe algébrique affine G, et des morphismes

$$\mathbf{G}_m \stackrel{\text{\tiny II}}{\rightarrow} \mathbf{G} \stackrel{\text{\tiny I}}{\rightarrow} \mathbf{G}_m$$

vérifiant $t \circ w = -2$ et w central. La catégorie tannakienne C_0 est la catégorie Rep_0 (G_0) des représentations linéaires de rang fini de $G_0 = \operatorname{Ker}(t)$. Le triple de Tate neutralisé se récupère à partir de (G_0 , ε) ($\varepsilon = w$ (-1)) par

$$G = \operatorname{Coker} (\tilde{\epsilon} : \mu_2 \to G_0 \times \mathbf{G}_m),$$

où

$$\tilde{\epsilon}(-1)=(\epsilon,-1),$$

la définition de w, t étant évidente.

2. Polarisations.

DÉFINITION 2.1. — Soit $T=(C, \omega, T)$ un triple de Tate. Une polarisation (graduée) π de T consiste en la donnée pour chaque objet V de C, homogène de poids n, d'une classe d'équivalence π (V) de formes de Weil $V \otimes V \to T^{\otimes -n}$ [(1), 1.2, 1.5] de parité (-1)ⁿ vérifiant les conditions suivantes :

PG 1. Soient V, W des objets homogènes de C, $\varphi \in \pi$ (V), $\psi \in \pi$ (W). Alors, $\varphi \otimes \psi \in \pi$ (V \otimes W) et si V, W sont de même poids, $\varphi \oplus \psi \in \pi$ (V \oplus W). PG 2. Le morphisme identité $T \otimes T \to T^{\otimes z}$ appartient à π (T). L'ensemble des polarisations du triple (C, φ, T) sera noté Pol (C, φ, T) .

Proposition 2.2. - Il y a une bijection canonique

Q: Pol
$$(C, w, T) \stackrel{\sim}{\rightarrow} Pol_{\varepsilon}(C_0)$$
,

où $\varepsilon = w$ (-1), obtenue en associant à $\pi \in Pol(C, w, T)$ l'unique ε -polarisation sur C_0 telle que si $V \in ob$ C est de degré n, et si $\varphi \in \pi$ (V), $Q(\varphi) \in Q(\pi)(Q(V))$.

(3)

Exemple 2.3. — Soit (G, w, t) un triple de Tate neutralisé (voir 1.4), et soit $C \in G_0(\mathbb{R})$ vérifiant

$$C^2 = \varepsilon = w \, (-1).$$

Si V est un G-module homogène de poids n une forme $\varphi: V \otimes V \to T^{\otimes -n}$ est appelée de C-polarisation si la forme bilinéaire φ_c sur le R-vectoriel V

$$\varphi_{\mathcal{C}}(x, y) = \varphi(x, \mathcal{C}y)$$

est symétrique définie positive. Si pour chaque V il existe une forme de C-polarisation, l'ensemble de ces formes définit une polarisation π_c du triple (G, w, t); ont dit alors que C est un élément hodgien de $G(\mathbf{R})$ et les polarisations obtenues ainsi sont appelées hodgiennes. Le triple (G, w, t) est dit hodgien s'il existe $C \in G(\mathbf{R})$ hodgien. On déduit facilement de 2.2 et de $[(^1), 2.5]$ que C est hodgien si et seulement si le \mathbf{R} -groupe $(G_0)_c$ (voir loc. cit.) est compact et que (G, w, t) est hodgien si et seulement si G_0 est réductif, est une forme tordue intérieure de sa forme compacte, et si l'invariant $\varepsilon_{C_0}(C_0 = \operatorname{Rep}_0(G_0), \operatorname{voir}[(^1), 3.2])$ est égal à ε modulo $\mathbf{Z}_0(\mathbf{R})^2$.

On déduit de 1.3, 2.2 et de (1) le résultat suivant, qui résume la théorie des polarisations dans le cas gradué:

Théorème 2.4. — Soient L un lien algébrique affine sur R de centre Z, $t: L \to G_m$, $w: G_m \to Z$ des morphismes vérifiant $t \circ w = -2$. Alors:

- (a) Si (C, w, T) est un triple de Tate lié par (L, w, T), Pol (C, w, T) est un pseudo-torseur sous ${}_{2}Z_{0}$ (R);
- (b) Si (C, w, T), (C', w, T') sont des triples de Tate liés par (L, w, t) munis de polarisations π , π' il existe une équivalence $(C, w, T) \simeq (C', w, T')$ unique à isomorphisme (non unique) près respectant les polarisations données.
- (c) Supposons que L soit connexe ou abélien. Alors (L, w, t) est polarisable [i. e. il existe (C, w, T) lié par (L, w, t) avec $Pol(C, w, T) \neq \emptyset$] si et seulement si $L_0 = Ker(L \rightarrow G_m)$ (on peut prouver l'existence de ce noyau) est le lien d'un R-groupe compact. S'il en est ainsi, le triple (C, w, T) est neutre si et seulement si $\varepsilon = w (-1)$ est un carré dans Z_0 (R) et, dans ce cas, toute polarisation de (C, w, T) est hodgienne.
 - (*) Séance du 8 décembre 1971.
 - (1) N. SAAVEDRA, Comptes rendus, 273, série A, 1971, p. 1114.
 - (2) P. Deligne. Travaux de Griffiths, Séminaire Bourbaki, 376 (mai-juin 1970).
- (3) Travail en cours de préparation sur les catégories tannakiennes (à paraître dans les Lectures Notes in Mathematics, Springer-Verlag).
 - (*) N. SAAVEDRA, Comptes rendus, 272, série A, 1971, p. 389.

Institut

des Hautes Études Scientifiques,
35, route de Chartres,
91-Bures-sur-Yvette,
Essonne.

67