MTH 100: Lecture 19

Last time:

We defined Basis for a Vector space and finite & infinite dimensional Vector space.

Recall that: A basis for a vector space V

is a linearly independent set 5 of

vectors such that Span(S) = V

Alternative Definition for Boesis:

Proposition: $B = \{v_1, v_2, ..., v_n\}$ is a basis of the vector space V if and only if every vector $v \in V$ is uniquely expressible as a linear Combination of the elements of B.

Note: In some books, the above is used as the definition of a Basis, and then it is shown that a Basis is a linearly independent spanning set.

Proof: exercise

Proposition (Steinitz Exchange Lemma).

Suppose v_1, v_2, \dots, v_n are linearly independent vectors in a vector space V and suppose $V = \text{Span Spee}_1, \omega_2, \dots, \omega_m$.

Then (a) $n \leq m$ (b) $S_1 v_1, v_2, \dots, v_n$, $e_{n+1}, \omega_{n+2}, \dots, e_m$ Span V after reordering the ω 's if necessary.

Proposition: If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof: Let B_1 and B_2 be two bases of V with K_1 and K_2 vectors respectively.

Want to show: $K_1 = K_2$

Now B_1 is a linearly independent set of vectors in V and B_2 is a spanning set of V.

So, by Steinitz exchange lemma, $K_1 \leq K_2$ Now B_2 is a linearly independent set of vectors in V and B_1 is a spanning set of V.

So, by Steinitz exchange lemma, $K_1 \leq K_2$. Hence $K_1 = K_2$ Definition: The dimension of a finite dimensional vector space is the number of elements in a basis for V. This is exsitten as $\dim(V)$ Note: The above proposition ensures that this is a proper definition.

(Recall: $e_1, e_2, ..., e_n$ is a)

Example: $dim(\mathbb{R}^n) = n$ (Recall: e_1, e_2, \dots, e_n is a basis of \mathbb{R}^n)

Special case: The dimension of the Zeso Subspace of any vector space is taken as Zeso.

(It doesn't have a basis)

Proof of Steinitz Exchange Lemma

Given: V is a vector space v_1, v_2, \dots, v_n is a linearly independent

set of vectors

and $V = Span \{ \omega_1, \omega_2, \dots, \omega_m \}$ Step I: Since $v_1 \in V$, we can write $v_1 = c_1 \omega_1 + c_2 \omega_2 + \dots + c_m \omega_m \dots$ where $c_1, c_2, \dots, c_m \in F$

If $C_i = 0 \ \forall i$, then $V_1 = 0$ which is not possible since $v_1, v_2, ..., v_n$ are linearly independent.

So, $c_i \neq 0$ for atleast one iRenumbering if necessary, we can assume $c_1 \neq 0$.

Then (1) $\Rightarrow c_1 \omega_1 = \mathcal{V}_1 - c_2 \omega_2 - \cdots - c_m \omega_m$ $\Rightarrow c_1^{-1} c_1 \omega_1 = c_1^{-1} v_1 - c_1^{-1} c_2 \omega_2 - \cdots - c_1^{-1} c_m \omega_m$ $\Rightarrow \omega_1 = d_1 \mathcal{V}_1 + d_2 \omega_2 + \cdots + d_m \omega_m - \cdots = 2$ where d_1, d_2, \cdots, d_m are scalars.

From here we can conclude $Span \{ v_1, w_2, w_3, ..., w_m \} = Span \{ w_1, w_2, w_3, ..., w_m \} = Span \{ w_1, w_2, ..., w_m \} = V$

Let $x \in V$. Then $x = f_1 \omega_1 + f_2 \omega_2 + \cdots + f_m \omega_m$ for scalars $= f_1 (d_1 v_1 + d_2 \omega_2 + \cdots + d_m \omega_m) + f_2 \omega_2 + \cdots + f_m \omega_m$ $= f_1 d_1 v_1 + (f_1 d_2 + f_2) \omega_2 + \cdots + (f_1 d_m + f_m) \omega_m$ $= f_1 v_1 + f_2 \omega_2 + \cdots + f_m \omega_m$ $\in \text{Span } \{v_1, \omega_2, \dots, \omega_m\}$ $\text{Span } \{v_1, \omega_2, \dots, \omega_m\} = V$

Step II: Since $v_2 \in V = Span \{v_1, \omega_2, \dots, \omega_m\}$, we can write $v_2 = l_1 v_1 + l_2 \omega_2 + \dots + l_m \omega_m$ where $l_1, l_2, \dots l_m \in F$

Now atleast one of l2, l3, ..., lm is nonzero. Otherwise $v_2 = l_1 v_1$ that contradicts the fact that v1, v2, ..., vn are linearly independent.

Renumbering if necessary, we can assume that 1,2 +0

Then $l_2 \omega_2 = -l_1 v_1 + v_2 - l_3 \omega_3 - \cdots - l_m \omega_m$ $\Rightarrow \omega_{2} = -\ell_{2}^{-1}\ell_{1}\nu_{1} + \ell_{2}^{-1}\nu_{2} - \ell_{2}^{-1}\ell_{3}\omega_{3} - \dots + \ell_{2}^{-1}\ell_{m}\omega_{m}$

Proceeding as before we can conclude

 $Span \{v_1, v_2, \omega_3, \ldots, \omega_m\} = Span \{v_1, \omega_2, \omega_3, \ldots, \omega_m\}$ = Span $\{ \omega_1, \omega_2, \omega_3, \dots, \omega_m \} = V$

This process will stop after the nth step atmost (Since there are only n vectors $v_1, v_2, ..., v_n$)

Now we can think of two situations.

Case1: n < m

Then we are in the following situation: $\begin{cases} \omega_1, \omega_2, \dots, \omega_n, \omega_{n+1}, \dots, \omega_m \end{cases}$

We have replaced n of the w-vectors and Span $\{v_1, v_2, \dots, v_n, \omega_{n+1}, \dots, \omega_m\} = V$

In this case we proved the lemma.

Note: If n=m, then the vectors wn+1, --- etc. are not there in the original spanning set.

case 2: n > m

Then we are in the following situation:

 $\begin{cases} v_1 & v_2 & \dots & v_m, v_{m+1}, \dots, v_n \\ v_1, & v_2, \dots, & v_m \end{cases}$

Now, $\{v_1, v_2, \dots, v_m\}$ is a Spanning set for V. Then $v_{m+1} \in Span\{v_1, v_2, \dots, v_m\}$

ie. $v_{m+1} = b_1 v_1 + b_2 v_2 + \cdots + b_m v_m$

where $\beta_1, \beta_2, ..., \beta_m$ are scalars.

But this contradicts the linear independence of $\{v_1, v_2, \dots, v_m, v_{m+1}, \dots, v_n\}$.

Thus <u>Case 2</u> cannot happen and in this case $n \le m$ and the lemma is broved.