

Lecture 3 4CS015: Combinational Circuit

Prepared by: Uttam Acharya

1. Lecture 2 coverage

1.1 Review of Week 2

Boolean gates and logic

1.2 Mathematical functions in logic!

- Understanding addition
- Making our own truth tables
- Building a circuit that can perform maths
- Reducing logic

2. Circuit Design:

Three Steps starting from given circuit requirements in the form of a table.

- 1. Formulate a Boolean expression for the output function from the given table.
- 2. Simplify this expression as much as possible using Boolean algebra.
- 3. Draw the circuit corresponding to the simplified output function.

2.1 Example:

We will design a circuit corresponding to the following truth table. The output function is labelled X.

\mathbf{A}	В	X
1	1	1
1	0	1
0	1	0
0	0	1

Step 1. First scan the output column for occurrences of 1. In this example there are three (lines 1, 2 and 4).

For **each** of these lines construct a sub-expression involving A and B and the operations AND (·) and NOT (¯) only that will return the value 1 for the corresponding input values.

In row 1, A = 1 and B = 1 so $A \cdot B$ will return the value 1 for these input values and for no others.

In row 2, A = 1 and B = 0 so $A \cdot \overline{B}$ will return the required 1 for these values

Finally, with A = 0 and B = 0, row 4 will require $\overline{A} \cdot \overline{B}$

The three expression obtained are then combined together using OR (+) operations. The final expression

$$X = (A \cdot B) + (A \cdot B) + (A \cdot B)$$

Step 2: Simplify the Boolean Expression.

$$X = (A \cdot \overline{B}) + (\overline{A} \cdot \overline{B}) + (A \cdot B)$$

$$= A \cdot (B + \overline{B}) + (\overline{A} \cdot \overline{B}) \qquad (law 3)$$

$$= (A \cdot 1) + (\overline{A} \cdot \overline{B}) \qquad (law 5)$$

$$= A + (\overline{A} \cdot \overline{B}) \qquad (law 4)$$

$$= (A + \overline{A}) \cdot (A + \overline{B}) \qquad (law 3)$$

$$= 1 \cdot (A + \overline{B}) \qquad (law 5)$$

$$\therefore X = A + \overline{B}$$
 (laws1 and 4)

Step 3: The circuit for the simplified output function X requires only two gates:

Check that the truth table for X = A + B agrees with the original.

The method extends easily to three or more input pulses.

2.2 Another Example:

Design a Circuit corresponding to:

Α	В	С	X
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

Step 1 There is a 1 in lines 1, 3 and 5 of the output column.

The sub-expressions which will return 1 in these lines are, respectively $A \cdot B \cdot C$, $A \cdot \overline{B} \cdot C$ and $\overline{A} \cdot B \cdot C$

The Boolean Expression is therefore given by

$$X = (A \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C)$$

Step 2: Simplify
$$X = (A \cdot B \cdot C) + (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C)$$

$$X = (A \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C)$$

$$X = A.C (B + \overline{B}) + (\overline{A} \cdot B \cdot C)$$

$$X = A.C .1 + (\overline{A} \cdot B \cdot C)$$

$$X = A.C + (\overline{A} \cdot B \cdot C)$$

$$X = A.C + (\overline{A} \cdot B \cdot C)$$

$$X = C \cdot (A + \overline{A} \cdot B)$$

$$X = C \cdot (A + B)$$
(Distributive law)

The simplified Boolean Expression is therefore given by

$$X = C \cdot (A + B)$$

Step 3 The circuit for $(A + B) \cdot C$ is

3. Exercises

1.Design a Circuit corresponding to following truth tables:

Α	В	С	X
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	0

Α	В	С	X
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

3. Exercises

Simplify and construct the logic circuit:

$$1.A'.B' + (A.B)'$$

$$2.(A + B).(A + B) + A.(A + B')$$

$$3.(A'. B + A.B')'$$

$$4.((A + C).(AB)' + (BC + A')')'$$

4. Addition Rules as a Table

- Number 1 and Number 2 are the Inputs.
- o Sum and Carry are the results after addition.

Number 1	umber 1 Number 2 Result		Carry Over
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

5. Addition as Logical Functions

Input A Number 1	Input B Number 2	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

• Assume that SUM is now a truth table Entry then:

$$SUM = A \bullet \overline{B} + \overline{A} \bullet B = A \oplus B$$

• Doing the same for CARRY we get:

$$CARRY = A \bullet B$$

6. Half Adder

- Combinational logic circuits give us many useful devices.
- One of the simplest is the *half adder*, which finds the sum of two bits.
- We can gain some insight as to the construction of a half adder by looking at its truth table, shown at the right.

6. Half Adder

Input A	Input A Input B S (Sum)		C (Carry)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

7. Full Adder Function

Input A	Input B	Carry IN	Sum	Carry OUT
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

7.1 Full Adder

- We could derive the full Boolean expression for the Sum and Carry OUT.
- However, there is a great deal of symmetry associated with the half and full adder and we can simply build a FULL from two Halves.

7.2 Full Adder from Two Half Adders

• The Full Adder:

The Half Adder

7.3 Symbol for a Full Adder

Α	В	C _{in}	S	C _{ou}
				t
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

8. Reduction.

If you develop the sum of products for the full adder.

Sum =
$$ABC+\overline{A}BC+\overline{A}BC+\overline{A}B\overline{C}$$

Carry OUT =
$$ABC + \overline{A}BC + AB\overline{C} + A\overline{B}C$$

These show very little resemblance to the circuits we are using.

Α	В	C_{in}	S	C_out
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

By applying the laws and theorems of Boolean algebra we should be able to get from the above to our circuits.

8.1 Reduction Basics

AND relationship

$$0.X = 0$$

$$1.X = X$$

$$X.X = X$$

$$X.X = 0$$

OR relationship

$$0+X=X$$

$$1+X = 1$$

$$X+X=X$$

$$X + \overline{X} = 1$$

Theorem __

$$(X+Y)(X+Y) = X$$

because

$$(X+Y)(X+\overline{Y}) = X.(Y+\overline{Y})$$

and
$$Y+\overline{Y}=1$$

and
$$X.1 = X$$

Not

$$\overline{\overline{X}} = X$$

8.2 Reduction

As the outputs are same for all inputs we can use this to reduce XY+XZ
To X(Y+Z)

Absorption

8.2 Reduction

9. Carry: Sum of Products

Carry =
$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$Carry = A.B+B.C+A.C$$

10. Sum: sum of products

Sum =
$$\overline{A}\overline{B}C+\overline{A}B\overline{C}+A\overline{B}\overline{C}+ABC$$

- 1. Sum = $\overline{A}(BC+B\overline{C})+A(BC+BC)$
- 2. B̄C+BC̄ = B⊕C
- 3. $\overline{BC}+BC = \overline{B \oplus C}$
- 4. Substitute X for B⊕C
- 5. We get $\overline{A}X + A\overline{X}$
- 6. A + X
- 7 substitute $B \oplus C = X$
- 8. Sum = $A \oplus (B \oplus C)$

11. Summary

- We have looked at the basic logic gates:
 - Identifying OR, AND, NOT, NAND, NOR and XOR.
- We have seen that gates can be joined together to form Combinatorial Logic.

