10 10			
CS	Int	HW	1
1	X	MIAI	m
6	1 11 1	1100	1

	CS 181 HWS
pg 355 1.	P. Turing Machine M: Turing Machine
	$F: \{0,1\}^* \rightarrow \{0,1\}$
	F(P,M) = { 1 x such that P halts on x, M does not halt on x
	At a high level, this is uncomputable because the function Fis
	checking of Pandfor M half on input x. This is in fact
	a variation of the halting problem, which we already
\\\.	Know is uncomputable.
	To prove this, we can reduce from HALTONZERO, which
	we showed was uncomprtable in class
	Say we have the function N(x) as follows
	def N(x):
	if (x == 0): while (1) {} # loop infinitely
	Return 1
	This program halts on all inputs that are not O.
	Now say we have an input "M" to HALTONZERO.
	R(M) = (M, N), and claim HALTONZERO(M) = F(R(M)).
	Case 1: HALTONZERO(M)=1
	· M halts on O · N does not halt on O
	F(R(M)) = F(M, N) = 1
	(ase 2: HALTONZERO (M) = 0
	. M does not halt on O, or N halts
	F(R(M)) = F(M, N) = 0
	This shows a reduction to F using HALTONZERO.
2 10 10 10 10	Fis therefore uncomprtable, because we know
	that HALTONZERO is uncomputable.

2. EMPTY: \(\)0,13\(^4 -> \)\(\)20,13 - returns 1 if OFA accepts nothing EQUIVALENT: Checks if DFAs D and D' are the same

Say we are given two DFA= D and D' f(x) = [NOT(D(x))] AND D'(x)] OR [NOT(D'(x))] AND D(x)]

This function f(x) has a DFA that exists to solve it. We know this because F(x) is regular, and:

- 1 DFA's are closed under NOT. This is regular
- @ DFA's are closed under AND, This is regular
- 3 OFA's are closed under OR. This is regular.

This DFA (called Z) can actually compute fix).

With this, we can say R(D, D') = Z

Also, there does exist some x such that Z(x) = 1 i.f. f there exists an x such that $D(x) \neq D'(x)$. This means that EQUIVALENT(D, D') = EMPTY(Z)

Note: If you think about it, EQUIVALENT can be reduced to EMPTY of you just do EQUIVALENT (D, E) where D is a DFA and E is just an empty language.

	m = m ant
	V = MI
3	1 = 80m10n101m-11; m n = 08
	L= { 0m10n0nn1 > 0m1 0m 10n
	Let G be L's corresponding CFG and G= (V, E, R, S)
	V = § A, B }
	5 = 80, 13
	$R \cdot A \rightarrow IB \mid OA$
	B -> 1 OB B O
	$S \rightarrow A$
	We can take the conversion in the first line
	to create a set of rules, If our A leads
100 m	to a 1, then we want it to use B. If it
	leads to 0, then we have it reuse A. Everything
	eventually leads to B.
4	

0	
4.	L= Ex = Eu, 13° : x hos equal number of 1's and 0's 3
	The idea here is to have the same number of 0's and
	l's. So we can expand s to include a Ol pair
	in all possible orientations before and after the
	symbol S. S shald also map to itself to aid in
	repetition. Therefore, we have:
	S -> SS SOI SIO OIS 105 E
	3-237301 (310) 013 (103) 2
	This can be simplified down to:
18mhz	THIS CHA WE SIMPLIFIED WARANT ID.
	S -> SS OS 150 E
A	
	This way no matter what gets added, there will be
	an equal number of 0's and 1's.