Family list 13 family members for: JP8070129 Derived from 9 applications.

Semiconductor circuit for electro-optical device and method of manufacturing the same

Publication info: CN1078386C C - 2002-01-23 CN1119789 A - 1996-04-03

Semiconductor circuit for electronic optical device and producing method

Publication info: CN1156913C C - 2004-07-07 CN1312587 A - 2001-09-12

Semiconductor circuit for electro-optical device and method of manufacturing the same

Publication info: CN1545144 A - 2004-11-10

SEMICONDUCTOR CIRCUIT

Publication info: JP3238581B2 B2 - 2001-12-17 JP8078690 A - 1996-03-22

5 SEMICONDUCTOR DEVICE AND ITS FABRICATION

Publication info: JP3326020B2 B2 - 2002-09-17 JP8070129 A - 1996-03-12

SEMICONDUCTOR CIRCUIT FOR ELECTO-OPTICAL DEVICE AND METHOD OF MANUFACTURING THE SAME

Publication Info: KR270367 B1 - 2000-11-01

7 No English title available

Publication info: TW395008 B - 2000-06-21

8 No English title available

Publication info: TW403993 B - 2000-09-01

Semiconductor circuit for electro-optical device and method of 9 manufacturing the same

Publication info: US5858823 A - 1999-01-12

Data supplied from the esp@cenet database - Worldwide

SEMICONDUCTOR DEVICE AND ITS FABRICATION

Patent number:

JP8070129

Publication date:

1996-03-12

Inventor:

YAMAZAKI SHUNPEI; TERAMOTO SATOSHI

Applicant:

SEMICONDUCTOR ENERGY LAB

Classification:
- international:

H01L21/20; H01L21/261; H01L21/268; H01L21/336; H01L23/15; H01L29/786; H01L21/02; H01L23/12;

H01L29/66; (IPC1-7): H01L29/786; H01L21/20; H01L21/261; H01L21/268; H01L21/336; H01L23/15

- european:

Application number: JP19940227358 19940829 Priority number(s): JP19940227358 19940829

Report a data error here

Abstract of JP8070129

PURPOSE: To obtain a thin film transistor having characteristics identical to those of a transistor employing single crystal silicon. CONSTITUTION: An amorphous silicon film formed on a glass substrate 101 is irradiated with laser light while being heated at 450 deg.C or above to form a mono-domain region 104. That region can be considered equivalent to a single crystal. When the region shown at 104 is employed in the formation of an active layer 106, a thin film transistor having characteristics identical to those of a transistor employing a single crystal silicon can be obtained.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-70129

(43)公開日 平成8年(1996)3月12日

(51) Int. Cl. 6 識別記号 FΙ H01L 29/786 21/336 21/20 9056-4M H01L 29/78 618 21/26 審査請求 未請求 請求項の数16 FD (全10頁) 最終頁に続く (71)出願人 000153878 (21)出願番号 特願平6-227358 株式会社半導体エネルギー研究所 神奈川県厚木市長谷398番地 (22)出願日 平成6年(1994)8月29日 (72)発明者 山崎 舜平 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72) 発明者 寺本 聡 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

(54) 【発明の名称】半導体装置およびその作製方法

(57) 【要約】

【目的】 単結晶珪素を用いた場合と同等の特性を有する薄膜トランジスタを提供する。

【構成】 ガラス基板101上に形成された非晶質珪素膜に対して、450℃以上の温度に加熱した状態で、レーザー光を照射することによって、モノドメイン領域104を形成する。この領域は、単結晶と同等と見なすことができる。そしてこの104で示される領域を用いて薄膜トランジスタの活性層106を構成することにより、単結晶珪素を用いた場合と同様の特性を有する薄膜トランジスタを得る。

1

【特許請求の範囲】

【請求項1】絶縁表面を有する基板上に形成された薄膜 半導体を用いた半導体装置であって、

前記薄膜半導体は結晶性を有しており、

かつ水素またはハロゲン元素を含有し、

前記半導体装置の活性層を形成する前記薄膜半導体中に は結晶粒界が存在していないことを特徴とする半導体装

【請求項2】絶縁表面を有する基板上に形成された薄膜 半導体を用いた半導体装置であって、

前記薄膜半導体は結晶性を有しており、

前記半導体装置の活性層を形成する前記薄膜半導体中に は結晶粒界が存在しておらず、かつ中和されるべき点欠 陥を1×101cm3以上有し、

前記点欠陥を中和すべき水素またはハロゲン元素を1× 10¹⁵~1×10¹⁰cm⁻¹の濃度で含有し、

ていることを特徴とする半導体装置。

【請求項3】請求項1または請求項2において、薄膜半 導体中には、炭素及び窒素の原子が1×10'6cm⁻¹~ 5×10¹⁸ c m⁻¹の濃度で含まれており、かつ酸素の原 20 子が1×10¹⁷cm⁻¹~5×10¹¹cm⁻¹の濃度で含ま れていることを特徴とする半導体装置。

【請求項4】請求項1または請求項2において、薄膜半 導体の厚さは200Å~2000Åであることを特徴と する半導体装置。

【請求項5】請求項1または請求項2において、薄膜半 導体中には、珪素の結晶化を助長する金属元素であるF e, Co, Ni, Ru, Rh, Pd, Os, Ir, P t、Cu、Zn、Ag、Auから選ばれた一種または複 数種類の元素が1×10¹⁶ c m⁻³~5×10¹⁹ c m⁻³の 30 **濃度で含まれていることを特徴とする半導体装置。**

【請求項6】絶縁表面を有する基板上に形成された薄膜 半導体で活性層を構成した半導体装置であって、

前記薄膜半導体は結晶性を有しており、

前記活性層はソース領域とドレイン領域とチャネル形領 域とを有し、

前記チャネル形成領域中には結晶粒界が存在していない ことを特徴とする半導体装置。

【請求項7】絶縁表面を有する基板上に形成された薄膜 半導体で活性層を構成した半導体装置であって、

前記薄膜半導体は結晶性を有しており、

前記活性層はソース領域とドレイン領域とチャネル形領 域とを有し、

前記チャネル形成領域中には結晶粒界が存在しておら ず、

前記チャネル形成領域中には点欠陥が1×1016cm-3 以上存在していることを特徴とする半導体装置。

【請求項8】請求項6または請求項7において、薄膜半 導体中には、炭素及び窒素の原子が1×10''cm-'~ 5×10''c m⁻¹の濃度で含まれており、かつ酸素の原 50

子が1×10¹⁷cm⁻³~5×10¹⁹cm⁻³の濃度で含ま れていることを特徴とする半導体装置。

【請求項9】請求項6または請求項7において、薄膜半 導体の厚さは200Å~200Åの厚さであることを 特徴とする半導体装置。

【請求項10】請求項6または請求項7において、実質 的に単結晶と見なせる結晶構造を有する領域には、珪素 の結晶化を助長する金属元素であるFe、Co、Ni、 Ru, Rh, Pd, Os, Ir, Pt, Cu, Zn, A g、Auから選ばれた一種または複数種類の元素が1× 10''~5×10''cm⁻'含まれていることを特徴とす る半導体装置。

【請求項11】絶縁表面を有する基板上に非晶質珪素膜 を形成する工程と、

450℃~750℃の温度に加熱した状態でレーザー光 または強光を照射し、スピン密度が1×10¹⁵~1×1 0''c m''の結晶性を有する薄膜珪素半導体を形成する 工程と、

を有することを特徴とする半導体装置の作製方法。

【請求項12】請求項11において、レーザー光の照射 を行う前に加熱処理を行う工程を有することを特徴とす る半導体装置の作製方法。

【請求項13】請求項11において、レーザー光の照射 を行った後に加熱処理を行う工程を有することを特徴と する半導体装置の作製方法。

【請求項14】請求項11において、

レーザー光の照射終了後に薄膜珪素半導体中に存在する 不対結合手を中和する工程を有することを特徴とする半 導体装置。

【請求項15】請求項11において、薄膜珪素半導体に は、炭素及び窒素の原子が1×10¹cm⁻¹~5×10 '゚c m-'の濃度で含まれており、かつ酸素の原子が1× 10''cm''~5×10''cm''の濃度で含まれている ことを特徴とする半導体装置。

【請求項16】請求項11において、薄膜珪素半導体に は、珪素の結晶化を助長する金属元素であるFe、C o, Ni, Ru, Rh, Pd, Os, Ir, Pt, C u、Zn、Ag、Auから選ばれた一種または複数種類 の元素が1×10''cm''~5×10''cm''の濃度で 40 含まれていることを特徴とする半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本明細書で開示する発明は、薄膜 半導体装置、特に薄膜トランジスタの構成およびその作 製方法に関する。

[0002]

【従来の技術】近年、ガラスや石英基板上に薄膜半導体 を用いたトランジスタ (薄膜トランジスタと称される) を形成する技術が研究されている。特に薄膜半導体とし て非晶質珪素(アモルファスシリコン)を用いた技術

は、実用化されており、アクティブマトリクス型の液晶 表示装置等に利用されている。

【0003】しかしながら、非晶質珪素を用いた薄膜トランジスタは、その特性が低いという問題がある。例えば、アクティブマトリクス型の液晶表示装置の表示機能としてより高い機能を求めようとする場合、非晶質珪素膜を用いた薄膜トランジスタでは、その特性が低すぎる。

【0004】また非晶質珪素膜を結晶化させた結晶性珪素膜を用いて薄膜トランジスタを構成する技術が知られ 10 ている。この技術は、非晶質珪素膜の形成後に加熱処理やレーザー光の照射を行うことにより、非晶質珪素膜を結晶性珪素膜に変成するものである。非晶質珪素膜を結晶化させることによって得られる結晶性珪素膜は、一般に多結晶構造あるいは微結晶構造を有している。

【0005】結晶性珪素膜を用いて薄膜トランジスタを構成した場合、非晶質珪素膜を用いた場合に比較して、はるかに高い特性を得ることができる。例えば、薄膜トランジスタの特性を評価する一つの指標である移動度で見た場合、非晶質珪素膜を用いた薄膜トランジスタでは 20移動度が1~2cm²/Vs以下であるが、結晶性珪素膜を用いた薄膜トランジスタでは、100cm²/Vs程度以上とすることができる。

【0006】しかしながら、非晶質珪素膜を結晶化することによって得られた結晶性珪素膜は、多結晶構造を有しており、結晶粒界に起因する数々の問題があった。例えば、結晶粒界を経由して移動してしまうキャリアが存在するために、薄膜トランジスタの耐圧が大きく制限されてしまうという問題である。また、高速動作を行わす場合等に特性の変化や劣化が起こりやすいという問題がある。また、結晶粒界を経由して移動してしまうキャリアが存在するために、薄膜トランジスタがOFF時におけるリーク電流(漏れ電流)が多くなってしまうという問題がある。

【0007】またアクティブマトリクス型の液晶表示装置をより集積化した形で構成しようとする場合、画素領域のみでなく、周辺回路をも1枚のガラス基板上に形成してしまうことが望まれる。このような場合、マトリクス状に数十万個配置された画素トランジスタを駆動するために、周辺回路に配置された薄膜トランジスタには大40電流を扱えることが要求される。

【0008】大電流を取り扱うことのできる薄膜トランジスタを得るには、チャネル幅を大きくした構造を採用する必要がある。しかしながら、多結晶珪素薄膜や微結晶珪素薄膜を用いた薄膜トランジスタでは、そのチャネル幅を広くしても耐圧の問題から実用にならないという問題があった。またしきい値の変動等が大きく、実用的ではないという問題がある。

[0009]

【発明が解決しようとする課題】本明細書で開示する発 50

明は、結晶粒界の影響を受けない薄膜トランジスタを提要することを目的とする。また、本明細書で開示する発明の他の目的は、耐圧が高く大電流を扱うことのできる薄膜トランジスタを提供することを目的とする。また、本明細書で開示する発明の他の目的は、特性の劣化や変動の無い薄膜トランジスタを提供することを目的とする。また、本明細書で開示する発明の他の目的は、単結晶半導体を用いた場合と同様な特性を有する薄膜トラン

ジスタを提供することを目的とする。

[0010]

【課題を解決するための手段】本明細書で開示する発明の一つは、絶縁表面を有する基板上に形成された薄膜半導体を用いた半導体装置であって、前記薄膜半導体は結晶性を有しており、かつ水素またはハロゲン元素を含有し、前記半導体装置の活性層を形成する前記薄膜半導体中には結晶粒界が存在していないことを特徴とする。

【0011】他の発明の構成は、絶縁表面を有する基板上に形成された薄膜半導体を用いた半導体装置であって、前記薄膜半導体は結晶性を有しており、前記半導体装置の活性層を形成する前記薄膜半導体中には結晶粒界が存在しておらず、かつ中和されるべき点欠陥を1×10''cm⁻¹以上有し、前記点欠陥を中和すべき水素またはハロゲン元素を1×10''〜1×10''cm⁻¹の濃度で含有し、ていることを特徴とする。

【0012】一般に溶融した珪素から作製される単結晶 珪素ウエハーに存在する点欠陥は、計測限界以下(1×10^{15} c m^{-3})以下である。この意味で本明細書で開示する薄膜状を有し、結晶粒界が存在しない領域(モノドメイン領域)は、従来より公知の単結晶珪素ウエハーとは異なるものであるといえる。

【0013】また本明細書で開示する薄膜珪素半導体には、炭素及び窒素の原子が 1×10^{16} c $m^{-3}\sim5\times10^{18}$ c m^{-3} の濃度で含まれており、かつ酸素の原子が 1×10^{17} c $m^{-3}\sim5\times10^{19}$ c m^{-3} の濃度で含まれている。

【0014】また本明細書で開示する薄膜珪素半導体は、その厚さが200Å~2000Åである。これは、プラズマCVD法や減圧熱CVD法で成膜された薄膜状の非晶質珪素膜を出発膜としてしていることに起因する。また前述の中和されるべき点欠陥の存在(不対結合手)の存在も出発膜がCVD法で成膜された薄膜珪素半導体であることに起因する。

【0015】また本明細書で開示する薄膜珪素半導体において、その作製工程において、珪素の結晶化を助長する金属元素を利用することは有効である。この金属元素としては、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Zn、Ag、Auから選ばれた一種または複数種類の元素を用いることができる。これらの元素は珪素に対して進入型の性質を有しており、加熱処理やレーザー光の照射を行うことによって珪素膜中

に拡散していく。上記元素の中で特に顕著な効果を得ることができる元素はNi(ニッケル)である。

【0016】これら金属元素を導入するには、非晶質珪素膜の上面または下面に接して金属元素単体または金属元素を含む層を形成し、しかる後に加熱しつつのレーザー光の照射を行えばよい。また、加熱処理をした後にレーザー光を照射するのでもよい。

【0017】最終的に膜中に残存する上記結晶化を助長する金属元素の濃度は、 1×10^{16} c $m^{-3}\sim5\times10^{19}$ c m^{-3} となるようにする必要がある。これは、この濃度 10 範囲よりも金属元素の濃度が高い場合、半導体としての特性が阻害され、デバイスとしての機能が損なわれてしまい、またこの濃度範囲よりも金属元素の濃度が低い場合、結晶化を助長する作用が得られないからである。

【0018】他の発明の構成は、絶縁表面を有する基板上に形成された薄膜半導体で活性層を構成した半導体装置であって、前記薄膜半導体は結晶性を有しており、前記活性層はソース領域とドレイン領域とチャネル形領域とを有し、前記チャネル形成領域中には結晶粒界が存在していないことを特徴とする半導体装置。

【0019】上記構成は、チャネル形成領域をモノドメイン領域とすることを特徴とするものである。上記構成のように、少なくともチャネル形成領域中において結晶粒界が存在しない構成とすることによって、高い特性を有する薄膜トランジスタを得ることができる。これは、結晶粒界の存在に起因するキャリアの散乱、特性の変動、特性の劣化が無くなるためである。

【0020】勿論、ソース領域およびドレイン領域をも 含めた活性層全体をモノドメイン領域とすることはより 好ましい。

【0021】他の発明の構成は、絶縁表面を有する基板上に形成された薄膜半導体で活性層を構成した半導体装置であって、前記薄膜半導体は結晶性を有しており、前記活性層はソース領域とドレイン領域とチャネル形領域とを有し、前記チャネル形成領域中には結晶粒界が存在しておらず、前記チャネル形成領域中には点欠陥が1×10" cm⁻¹以上存在していることを特徴とする。

【0022】他の発明の構成は、絶縁表面を有する基板上に非晶質珪素膜を形成する工程と、450 \mathbb{C} ~ 750 \mathbb{C} の温度に加熱した状態でレーザー光または強光を照射 40 し、スピン密度が $1\times10^{15}\sim1\times10^{19}$ c m⁻³ の結晶性を有する薄膜珪素半導体を形成する工程と、を有することを特徴とする。

【0023】本明細書で開示するモノデメイン領域を形成するには、加熱しつつレーザー光の照射を行うことが有用である。この際、加熱の温度を450 \mathbb{C} \mathbb

【0024】また前述の珪素の結晶化を助長する金属元素を導入した場合において、レーザー光の照射の前に加熱処理を行い、結晶化または結晶核の生成を行うことは有効である。またレーザー光の照射の後に加熱処理を行うことは、膜中の欠陥を減少させるために有効である。

【0025】また結晶化工程の終了後に水素化処理を行い、膜中の欠陥の中和を行うことは有効である。この水素化工程は、水素または水素を含む雰囲気中で加熱処理やプラズマ処理を行えばよい。

【0026】結晶粒界が存在しない領域は、一つのドメエン(モノドメイン)として見なすことができる。この単結晶と見なせる領域を用いて形成された薄膜トランジスタをモノドメインTFTという。

【0027】この単結晶と見なせる領域を珪素薄膜中に 形成するには、例えば、以下に示すような方法がある。 まず非晶質珪素膜をガラス基板や石英基板上に形成し、 しかる後に非晶質珪素膜の表面にニッケルを含む膜を形 成する。このニッケルを含む膜は、スパッタ法等によっ て、極薄いニッケル薄膜を形成するのでもよいし、ニッ ケルを含んだ溶液を非晶質珪素膜の表面に塗布すること により、ニッケル元素が非晶質珪素膜の表面に接して配 置される方法を採用するのでもよい。

【0028】非晶質珪素膜にニッケル元素を導入したら、加熱処理により、非晶質珪素膜を結晶化させる。この加熱処理は、ニッケル元素の作用によって750 $\mathbb C$ 以下の温度で行うことができる。基板としてガラス基板を用いた場合には、この加熱処理の温度を600 $\mathbb C$ 以下さることが好ましいが、結晶化工程の効率を考慮した場合、500 $\mathbb C$ 以上、好ましくは550 $\mathbb C$ 以上の温度で行うことが有用である。なお、基板として石英基板を用いた場合には、800 $\mathbb C$ さらにはそれ以上の温度でこの加熱処理を行うことができ、単時間で結晶性珪素膜を得ることができる。この工程で得られる結晶性珪素膜は、多結晶または微結晶状態を有しており、膜中には結晶粒界が存在している。

【0029】そこで、450 \mathbb{C} 以上の温度に試料を加熱した状態でレーザー光を照射することによって、レーザー光が照射された領域の結晶性を局所的に助長させる。この工程によって単結晶と見なせる領域を形成することができる。このレーザー光の照射を行う際に試料または被照射面を450 \mathbb{C} \mathbb

【0030】また単結晶と見なせる領域を形成する他の方法としては、非晶質珪素膜を形成し、結晶化を助長する金属元素を導入したら、加熱処理を行わないで、レーザー光を照射し、単結晶とみなせる領域を形成する方法を挙げることができる。この場合もレーザー光の照射時に試料を450 ∞ ~750 ∞ 、特に基板としてガラス基

>

板を用いる場合には、450 \mathbb{C} ~600 \mathbb{C} (基板の耐熱性が許すならば750 \mathbb{C})の温度で加熱することが重要である。

【0032】勿論、加熱処理、レーザー光照射、加熱処理と連続して処理することは最も高い効果を得ることができる。

【0033】また、膜中に存在する欠陥(不対結合手)を中和するために、レーザー光の照射終了後に水素雰囲気中で加熱処理を行うことは極めて有効である。

【0034】この単結晶と見なせる領域は、プラズマC VD法や減圧熱C VD法でもって成膜された珪素膜を出発膜としており、膜中には、炭素と窒素とが $1\times10^{17}\sim5\times10^{19}$ c m⁻³の濃度で含まれている。

【0035】また原理的に格子欠陥が存在しているので、珪素の不対結合手を中和するために水素を1×10 20 ''~5×10'0cm'の濃度で含んでいる。即ち、この単結晶と見なせる領域は、点欠陥を有してはいるが、線欠陥や面欠陥は有していないことが特徴である。なお、これら含有されている元素の濃度は、SIMS(2次イオン分析法)で計測される値の最低値として定義される。

【0036】図5、図6に従来より公知の単結晶MOS型トランジスタと多結晶珪素薄膜トランジスタ(P-SiTFT)と非晶質珪素薄膜トランジスタ(a-SiTFT)とモノドメイン薄膜トランジスタの諸特性お 30よび特徴を比較した表を示す。

[0037]

【作用】薄膜珪素半導体の単結晶と見なせる領域を活性層として用いて薄膜トランジスタを構成することで、耐圧が高く、また特性の変動や劣化の無い薄膜トランジスタを得ることができる。

[0038]

【実施例】

〔実施例1〕本実施例は、基板としてガラス基板を用いる。ガラス基板としては、ガラス歪点が350℃~700℃であるものを用いることができる。本実施例においては、ガラス基板として(コーニング7059)を用い、このガラス基板の歪点温度以下の温度で、薄膜トランジスタを作製する例である。コーニング7059ガラス基板の歪点は、593℃であり、この温度以上の温度での加熱処理は、ガラス基板の縮や変形を招くことになり好ましくない。特に大型の液晶表示装置に利用するために大面積を有するガラス基板を用いた場合には、ガラス基板の縮や変形の影響が顕著になってしまう。

【0039】そこで、本実施例で示す薄膜トランジスタ 50 さに成膜する。次にこのアルミニウムを主成分とする膜

は、加熱処理工程における最高温度を600℃以下、好ましくは550℃以下とすることによって、基板に対する熱の影響を大きく低減させることを特徴とする。

【0040】図1に本実施例で示す薄膜トランジスタの作製工程を示す。まずコーニング7059ガラス基板101上に下地膜として酸化珪素膜102を3000Åの厚さにスパッタ法によって形成する。次に非晶質珪素膜を500Åの厚さにプラズマCVD法または減圧熱CVD法によって成膜する。

10 【0041】非晶質珪素膜を形成した後、450℃~750℃、ここでは550℃の温度に試料を加熱した状態でレーザー光(KrFエキシマレーザー)を照射し、図1(A)に示すように単結晶と見なせるモノドメイン領域103、104、105を形成する。図1(A)に示す状態を上面から見た様子を図2(A)に示す。モノドメイン領域103~105は、結晶粒界100でもってお互いに接している。図2においては、3つのモノドメイン領域しか示していないが、実際には多数のモノドメインが形成される。なおモノデメインの形状は円形に限20定されるものではなく、多様な形状を挙げることができる。

【0042】本実施例に示すように、レーザー光の照射時に試料を550℃という高い温度に加熱して行うことによって、50μm以上の粒径を有するモノドメイン (単結晶と見なせる)領域を形成することができる。

【0043】上記工程において、非晶質珪素膜に結晶化を助長する金属元素を導入することは有効である。こうすることによって、より大きな面積に渡って単結晶と見なせる領域を形成することができる。

【0044】単結晶と見なせる領域103~105を得たら、この領域を用いて薄膜トランジスタの活性層をパターニングより形成する。活性層は、その全体が単結晶と見なせる領域内に形成されるのが最も好ましい。ここでは、104で示される領域に活性層106を形成する。こうして図1(B)に示す領域100を活性層として形成する。

【0045】モノドメイン104内には、結晶粒界が実質的に存在しておらず、従って単結晶を用いた場合に匹敵する特性を有する薄膜トランジスタを得ることができる。図7に示すのは、550℃の加熱をしながらKrFエキシマレーザー光を照射することによって得られた薄膜珪素半導体の結晶構造を示した写真である。そして、図7に示すようなモノドメイン領域を利用して、薄膜トランジスタの活性層を構成することで、モノデメインTFTを得ることができる。

【0046】活性層106を形成したら、ゲイト絶縁膜として酸化珪素膜112を1000Åの厚さにプラズマCVD法で成膜する。そして、スカンジウムが0.2%含まれたアルミニウムを主成分とする膜を6000Åの厚さに成時する。次にこのアルミニウムを主成分とする膜

をパターニングすることにより、ゲイト電極113を得る。

【0047】そして酒石酸を10%含んだエチレングルコール溶液中でゲイト電極113を陽極として陽極酸化を行うことで、酸化物層114を形成する。この酸化物層114の厚さは2000Å程度とする。この酸化物層114が存在することで、後の不純物イオン注入の工程において、オフセットゲイト領域を形成することができる。

【0048】次にNチャネル型の薄膜トランジスタであ 10 ればリンのイオンを、Pチャネル型の薄膜トランジスタであればボロンのイオンを不純物イオンとして活性層に注入する。この工程において、ゲイト電極113とその周囲の酸化物層114がマスクとなり、107と111で示される領域に不純物イオンが注入される。そして不純物イオンが注入された107の領域はソース領域に、また111の領域はドレイン領域として形成される。またゲイト電極113の周囲の酸化物層114がマスクとなり、オフセットゲイト領域108と110とが同時に形成される。またチャネル形成領域109も自己整合的 20 に形成される。(図1(C))

【0049】不純物イオンの注入工程の終了後、レーザー光を照射し、不純物イオンの注入によって損傷した活性層のアニールと注入された不純物の活性化を行う。この工程は、赤外光等の強光を照射することによって行ってもよい。

【0050】さらに層間絶縁膜として酸化珪素膜115をプラズマCVD法で7000Åの厚さに成膜する。さらに穴開け工程を経て、ソース電極116とドレイン電極117を形成する。さらに350℃の水素雰囲気中に 30おいて加熱処理を行うことにより、薄膜トランジスタを完成させる。(図1(D))

【0051】本実施例で示す薄膜トランジスタは、活性層が単結晶と見なせる構造を有した領域(モノドメイン領域)で構成されているので、結晶粒界に起因する耐圧の低さの問題やリーク電流が大きいという問題を解決することができる。

【0052】本実施例では、1つの薄膜トランジスタを設けた例を示したが、複数のモノドメイン領域を用いて複数の薄膜トランジスタを形成することは当然可能であ 40 る。

【0053】〔実施例2〕本実施例は、結晶化を助長する金属元素を非晶質珪素膜に導入することにより、単結晶と見なせる結晶領域を形成し、この結晶性を有する領域を用いて薄膜トランジスタを構成した例を示す。

【0054】本実施例の作製工程は、結晶化を助長する 金属元素を導入する工程以外は実施例1に示すものと同 様である。本実施例においては、まず非晶質珪素膜の形 成後に、非晶質珪素膜の表面にUV酸化法によって、極 薄い酸化膜(図示せず)を形成する。この酸化膜は後の 50

溶液塗布工程において、溶液の濡れ性を良くするためのものである。ここで行うUV酸化工程は、酸化性雰囲気中においてUV光を照射することによって、被照射面の表面に極薄い酸化膜を形成するものである。

【0055】次にニッケル酢酸塩溶液を極薄い酸化膜が 形成された非晶質珪素膜の表面にスピンコート法によっ てコーティングし、ニッケルを含有した被膜を形成す る。この被膜が存在することで、極薄い酸化膜を介して ニッケル元素が非晶質珪素膜に接して配置された状態と なる。

【0056】この状態で550℃、4時間の加熱処理を施し、非晶質珪素膜を結晶性珪素膜に変成させる。ここでは、結晶化を助長する金属元素であるニッケルが導入されているので、550℃、4時間程度の加熱処理で結晶性珪素膜を得ることができる。

【0057】加熱処理によって結晶性珪素膜に変成された珪素膜を得たら、レーザー光を照射することによって、図 $10103\sim104$ で示されるようなモノドメイン領域を形成する。本実施例の場合は、結晶化を助長する金属元素であるニッケルが導入されているので、より大きなモノドメイン領域を得ることができる。モノドメイン領域を得た後は、実施例1と同様にして薄膜トランジスタを形成する。

【0058】〔実施例3〕本実施例は、一つのモノドメインを用いて、薄膜トランジスタのチャネル形成領域を形成した例を示す。図3に本実施例で示す薄膜トランジスタの作製工程を示す。

【0059】まずガラス基板101上に下地膜として酸化珪素膜102を3000Åの厚さにスパッタ法で形成する。そしてプラズマCVD法または減圧熱CVD法を用いて、非晶質珪素膜を500Åの厚さに形成する。そして試料を550℃の温度に加熱した状態でレーザー光(KrFエキシマレーザー)を照射し、複数のモノデメイン領域 $103\sim105$ を形成する。(図3(A))

【0060】図3(A)の状態を上面から見た様子を図4(A)に示す。各モノドメイン103~105は、結晶粒界100のよって互い接している。結晶粒界100で仕切られる内部が単結晶と見なせる領域、即ちモノドメイン領域である。

【0061】そして、チャネル形成領域(図3(C)の109で示される領域)がモノデメイン領域104の内部に含まれるように、活性層106を形成する。(図3(B))

【0062】活性層106を形成したら、ゲイト絶縁膜として酸化珪素膜112を1000Åの厚さにプラズマCVD法で成膜する。そして、スカンジウムが0.2%含まれたアルミニウムを主成分とする膜を6000Åの厚さに成膜する。次にこのアルミニウムを主成分とする膜をパターニングすることにより、ゲイト電極113を得る

【0063】そして酒石酸を10%含んだエチレングルコール溶液中でゲイト電極113を陽極として陽極酸化を行うことで、酸化物層114を形成する。この酸化物層114の厚さは2000Å程度とする。この酸化物層114が存在することで、後の不純物イオン注入の工程において、オフセットゲイト領域を形成することができる。

【0064】次にNチャネル型の薄膜トランジスタであればリンのイオンを、Pチャネル型の薄膜トランジスタであればポロンのイオンを不純物イオンとして活性層に 10 注入する。この工程において、ゲイト電極113とその周囲の酸化物層114がマスクとなり、107と111で示される領域に不純物イオンが注入される。そして不純物イオンが注入された107の領域はソース領域に、また111の領域はドレイン領域として形成される。またゲイト電極113の周囲の酸化物層114がマスクとなり、オフセットゲイト領域108と110とが同時に形成される。またチャネル形成領域109も自己整合的に形成される。(図3(C))

【0065】不純物イオンの注入工程の終了後、レーザ 20 一光を照射し、不純物イオンの注入によって損傷した活性層のアニールと注入された不純物の活性化を行う。この工程は、赤外光等の強光を照射することによって行ってもよい。

【0066】さらに層間絶縁膜として酸化珪素膜115をプラズマCVD法で7000Åの厚さに成膜する。さらに穴開け工程を経て、ソース電極116とドレイン電極117を形成する。さらに350℃の水素雰囲気中において加熱処理を行うことにより、薄膜トランジスタを完成させる。(図3(D))

【0067】本実施例で示す薄膜トランジスタは、チャネル形成領域が単結晶と見なせる構造を有した領域(モノドメイン領域)で構成されているので、キャリアの移動に際して、障害となる存在が少なく、高い特性を得ることができる。

【0068】本実施例の構成を採用した場合、モノドメインの領域は、最低限チャネル形成領域の大きさがあればよいので、薄膜トランジスタを作製する際の自由度を高めることができる。

【0069】本実施例では、1つの薄膜トランジスタを 40 100

設けた例を示したが、複数のモノドメイン領域を用いて 複数の薄膜トランジスタを形成することは当然可能であ る。

[0070]

【発明の効果】本明細書で開示する発明を利用することで、結晶粒界の影響を受けない薄膜トタンジスタを得ることができる。そして耐圧が高く、特性の変動がなく、さらに大電流を扱うことのできる薄膜トランジスタを得ることができる。また薄膜トランジスタの動作が結晶粒界の影響を受けないものとすることができるので、OFF電流の小さな特性とすることができる。

【図面の簡単な説明】

101

1 1 7

【図1】 実施例の薄膜トランジスタの作製工程を示す図。

- 【図2】 モノドメインの形状と活性層を示す図。
- 【図3】 実施例の薄膜トランジスタの構成を示す図。
- 【図4】 モノドメインの形状と活性層を示す図。
- 【図5】 単結晶薄膜トランジスタとモノドメイン薄膜トランジスタとの比較表を示す図。

【図6】 単結晶薄膜トランジスタとモノドメイン薄膜トランジスタとの比較表を示す図。

【図7】 薄膜珪素半導体膜の結晶構造を示す写真。 【符号の説明】

ガラス基板

	101	パンパ亜版
	102	下地膜(酸化珪素膜)
	1 0 3~1 0 4	モノドメイン領域(単結晶と見な
	せる領域)	
	1 0 6	活性層
	1 0 7	ソース領域
30	1 0 8	オフセットゲイト領域
	1 0 9	チャネル形成領域
	1 1 0	オフセットゲイト領域
	1 1 1	ドレイン領域
	1 1 2	ゲイト絶縁膜
	1 1 3	ゲイト電極
	1 1 4	酸化物層
	1 1 5	層間絶縁膜
	1 1 6	ソース電極

ドレイン電極

結晶粒界(グレインバンダリ)

【図5】

	単結晶珪素トランジスタ	モノドメインTFT
結晶粒界	なし	なし
含有水荣	検出限界以下	1×10 ¹⁶ ~1×10 ²⁰ cm ⁻⁸
ESR	検出限界以下	1×10 ¹⁶ ~1×10 ¹⁷ cm ⁻³
結晶性	有する	有する
移動度 (Vs/cm²)	pチャネル型 300~500 nチャネル型 800~1200	pチャネル型 200~400 nチャネル型 500~1000
S値	0. 01~0. 1	0. 03~0. 3
形態	単結晶珪素ウエハー中に 作りこまれる。	ガラス等の絶縁基板上に形成 された薄膜半導体を用いる。
プロセス 温度	800~1100℃ 代表的には、 900~1000℃	450~700℃ 代表的には500~850℃

・モノドメインTFTに用いられるガラス基板としては、ガラス歪点が 550℃~700℃である材料が利用される。

【図2】

【図4】

【図3】

【図6】

	P-Si TFT	a-Si TFT
結晶粒界	有り	なし
含有水素	5×1018~5×1020	1×10 ³⁰ ~5×10 ³¹ cm-3
ESR	1 × 1 0 17~1 × 1 0 14 CB-3	1×1010~1×1010cm-8
結晶性	有する	#
移動度 (Vs/cm²)	pチャネル型 50 ~100 nチャネル型 100~200	pチャネル型 0.01 ~0.5 nチャネル型 0.5~2
S値	0. 1~0. 5	0. 3~0. 7
形態	ガラス等の絶縁基板上に形成 された薄膜半導体を用いる。	ガラス等の絶縁基板上に形成 された薄膜半導体を用いる。
プロセス 温度	300~600℃ 代表的には、 500~580℃	200~400℃ 代表的には、 300~350℃

[図7]

圆膨代用写真

フロントページの続き

 (51) Int. Cl. 6
 識別記号 庁内整理番号 F I 技術表示箇所

 H O 1 L 21/261
 21/268 Z

 23/15
 23/15