Detecting Blood Vessels in Retinal Images

SADHIRA WAGISWARA

Introduction

fundus photography

Glaucoma

- Increased intraocular pressure
- Damage to the optic nerve
- Potential loss of vision

 Clear progressive symptoms due to optic cupping

glaucoma progression

Convolution

zero padding

Filters

horizontal

-1	0	1
-1	0	1
-1	0	1

vertical

-1	-1	-1
0	0	0
1	1	1

3 x 3 x 1

Max Pooling

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Convolutional Neural Networks

Key concepts: Hidden Layers, Convolution, Pooling, Deconvolution, Scale Invariance

Deconvolution

Software

Fundus Datasets

MNIST Dataset

```
36030/139315049687\
056988414698124950
0437750542098124950
11747786518712356
10020844097936934318
246756658\687105383
2496304580040466693
4/14131234815507948
```

Augmented MNIST Dataset Input

black and white fundus

Segmentation Ground Truth

thresholding

segmentation ground truth 0.48 threshold

Detection Ground Truth

Masks for digit 8 crossing point

cross correlation

ground truth

MNIST overlayed by ground truth

Reference: Ubernet

Reference: U-net

Architecture Iterations

segmentation

Network	Architecture
1v1	relu, linear
1v2	relu, sig
1v3	relu, pool, up, relu, sig
1v4	relu, pool, up, relu, relu, sig
1v5	relu, relu, sig
1v6	relu, pool, up, relu, sig, sig
1v7	relu, pool, up, relu, sig, norm, sig
1v8	relu, pool, up, relu, sig, norm, sig, norm, sig

detection

Network	Architecture
2v1	relu, sig
2v2	relu, pool, up, relu, sig
2v3	relu, pool, relu, pool, relu, up, relu, sig
2v4	relu x2, pool, relu x2, pool, relu x2, up, relu x2, up, relu x2, sig
2v5	relu x3, pool, relu x3, pool, relu x3, up, relu x3, up, relu x3, sig
2v6	relu x4, pool, relu x4, pool, relu x4, up, relu x4, up, relu x4, sig
2v7	relu x3, pool, relu x3, pool, relu x3, up, relu x3, up, relu x3, sig, norm, sig

input _____ segmentation predictions

target

input

target over input

target

detection predictions

input

Branching

Branched Training Iteration

Architecture

Task	Architecture
segmentation	relu, pool, up, relu, sig, norm, sig
detection	relu x3, pool, relu x3, pool, relu x3, up, relu x3, up, relu x3, sig
common segmentation detection	relu, pool, > up, relu, sig, norm, sig > relu x3, pool, relu x3, up, relu x3, up, relu x3, sig

Training

Training	Epochs	Target
3v1	15	both
3v2	15	both
3v3	30	both
3v4	15 each, 75 total	both, seg, det, seg, det

input

segmentation

branched predictions

input

segmentation

detection

input input branched predictions segmentation segmentation 3v1 3v2 3v3 3v4 detection detection

Final Architectures

Fundus Dataset

original

black and white v1

lightened background v2

increased contrast v3

Fundus Training

original size 584L x 565

original segmentation

crop 128 x 128

segmentation crop

various predictions input

Thresholding

Prediction

Future Development

Augmented MNIST dataset

- refine ground truth
 - thinner segmentation masks
 - smaller detection masks
- train with partial ground truth

Fundus dataset

- test with full-sized fundus input
- train with RGB colour input

Expanded fundus dataset

- create detection masks from coordinates
- train with detection masks
- train branched network for segmentation and detection
- train with detection coordinates
- train branched network for all three outputs

Thank You

To

Dr Anil Bharath,

Antonia Creswell,

Cher Bachar,

and the audience.

