Ejercicios MA-1006

Lista #1

Introducción al Análisis Numérico

Edición: Mario de León Urbina

19 de marzo de 2025

1. MATLAB

Operaciones y algoritmos: Introducción a MATLAB. Manipulación de matrices, vectores, operaciones y funciones de MATLAB.

Ejecución condicional, ciclos: Aplicación de los conceptos básicos de la programación y uso de condicionales y ciclos en MATLAB.

Graficación, programación y creación de scripts con MATLAB: Implementación de lo visto con anterioridad para crear rutinas, M-funciones y otros. Resolución de problemas que involucran programación con MATLAB. Uso de archivos integrados con extensión .mlx

1. Introduzca en MATLAB la matriz

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

y realice lo siguiente a dicha matriz:

- a) Extraiga la fila 2.
- b) Reemplace la fila 2 por el vector (-1, -2, 0, 1).
- c) Reemplace la columna 3 por el vector nulo.
- d) Extraiga el bloque **B** definido por $2 \le i \le 3$, $3 \le j \le 4$.
- e) Reemplace el bloque $2 \le i \le 3$, $3 \le j \le 4$ de **A** por $\begin{pmatrix} -10 & -20 \\ -30 & -40 \end{pmatrix}$.
- 2. Escriba un fragmento de código que cree para todo $n \in \mathbb{N}$ la matriz tridiagonal

$$\mathbf{T}_n = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

1

3. Considere la matriz

$$\mathbf{M} = \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix}$$

- a) Utilice el manejo de bloques para construir dicha matriz en MATLAB.
- b) programe una M-función llamada Megazord(n) que reciba n>1 natural que de como output la matriz de $3n\times 3n$

$$\begin{pmatrix} \mathbf{C} & -\mathbf{I} & \mathbf{Z} \\ -\mathbf{I} & \mathbf{C} & -\mathbf{I} \\ \mathbf{Z} & -\mathbf{I} & \mathbf{C} \end{pmatrix}$$

en donde las matrices de $n \times n$ son I la identidad, \mathbf{Z} la matriz nula, y

$$\mathbf{C} = \begin{pmatrix} 4 & -1 & 0 & \cdots & 0 \\ -1 & 4 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 4 & -1 \\ 0 & \cdots & 0 & -1 & 4 \end{pmatrix}$$

4. Sea $\bf A$ matriz de $n \times n$ la cual se descompone de la forma $\bf A = \bf L + \bf D + \bf U$, donde $\bf L$ es la parte estrictamente diagonal inferior, $\bf D$ la diagonal y $\bf U$ la parte estrictamente diagonal superior de $\bf A$. Escriba las instrucciones de MATLAB que le permitan obtener la matriz de iteración de GAUSS-SEIDEL

$$\mathbf{B} = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U},$$

para cualquier matriz A dada.

5. Dada A matriz real de $n \times n$, implemente en MATLAB la función

$$f_{\mathbf{A}} = \mathbf{x}^{\mathsf{t}} \mathbf{A} \mathbf{x} + \frac{1}{2} ||\mathbf{A} \mathbf{x}||^2$$

En particular, calcule $f_{\mathbf{A}}(\mathbf{x})$ para $x = (1, -1, -1, 1)^{\mathbf{t}}$, con $\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -6 & 1 & 8 & -15 \\ -4 & 1 & 6 & -10 \\ -2 & 0 & 2 & -5 \end{pmatrix}$

6. Cree la siguiente función en MATLAB:

Describa dicha función. Luego calcule $(mifun(0))^3 + \sqrt{|mifun(-3)|}$.

7. Escriba el siguiente código en un nuevo script:

```
1  n1=input('Escribe un numero : ');
2  n2=input('Escribe otro numero : ');
3  mayor=n2;
4   if (n1 > n2)
5      mayor=n1;
6   end
7  fprintf('El mayor es: %6.2f \n ',mayor);
```

Dicho código imprime en la pantalla el mayor número de dos números dados. Modifique el código y el mensaje de salida de tal forma que más bien se imprima el menor número de los dos.

8. Vamos a crear una M-función (función de MATLAB) tal que dados x, y reales distintos se muestre el vector ordenado $v = (\min\{x, y\}, \max\{x, y\})$. Cree la función Orden.m de la siguiente manera:

```
1 function [v] = Orden(n1, n2)
2 % v = Orden(n1, n2) es un vector que contiene los dos
3 % numeros n1 y n2 ordenados en orden creciente
4 %
5    if n1 > n2
6    v = [n2, n1];
7    else
8    v = [n1, n2];
9    end
```

Pruebe dicha función Orden(n1, n2) con algunas parejas de números. ¿Qué sucede si n1 = n2?

9. Vamos a escribir una M-función que determina cuándo un número natural n es un cuadrado perfecto:

```
function []=CuadradoPerfecto(n)
% Dicha funcion nos dice si n natural es
% cuadrado perfecto o no
4 m = sqrt(n);
if floor(m) == m
disp('es cuadrado perfecto');
else
disp('no es cuadrado perfecto');
end
end
```

Use dicha función para determinar si 225, 1000, 196, 289, 12769 son cuadrados perfectos o no.

10. Una matriz tridiagonal es una matriz cuadrada cuyos elementos son solo distintos de cero en la diagonal principal y las diagonales adyacentes por encima y por debajo de esta. En el caso de MATLAB sería que las diagonales k = −1, 0, 1 no son nulas. Escriba el siguiente código para crear la función Tridiag.m:

Compruebe dicha función con las siguientes matrices:

$$A = \begin{pmatrix} 1 & 4 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 & 0 & -5 \\ 3 & 4 & 1 & 0 \\ 0 & 2 & 3 & 4 \\ -5 & 0 & 1 & 3 \end{pmatrix}$$

- 11. Cree una función en MATLAB que identifique cuándo una matriz A es simétrica o no.
- 12. El Método de Horner se usa para evaluar polinomios en una variable de manera eficiente. Dado el polinomio

$$p(x) = a_1 x^{n-1} + a_2 x^{n-2} + a_3 x^{n-3} + \dots + a_{n-2} x^2 + a_{n-1} x + a_n$$

con $a_i \in \mathbb{R}$, la idea es calcular $p(x_0)$. Se puede reescribir el polinomio como

$$p(x) = x(x(...(x(a_1x + a_2) + a_3) + ... + a_{n-2}) + a_{n-1}) + a_n$$

Entonces el método se puede definir como

$$\begin{cases} v_1 &= a_1 \\ v_2 &= v_1 x_0 + a_2 \\ v_3 &= v_2 x_0 + a_3 \\ &\vdots \\ v_n &= v_{n-1} x_0 + a_n \end{cases}$$

donde $v_n = p(x_0)$. En MATLAB podemos implementarlo de la siguiente manera:

```
function [v] = Horner(a,x0)
  % La funcion evalua x0 en el polinomio [a1 a2 ... an]
3
  n=length(a);
5
  v=a(1);
6
     for k=2:n
         v=v*x0 + a(k);
7
8
      end
9
  end
```

Use dicha función para evaluar x_0 en los siguientes polinomios:

- a) $p(x) = -3x^2 + 2x + 100$; $x_0 = 2$ b) $p(x) = x^4 x^3 + 2x 12$; $x_0 = -1,5$ c) $p(x) = 0.3x^6 0.03x^3 + 0.21$; $x_0 = 0.01$ d) $p(x) = x^6 x^{11} 8x^2 x^9$; $x_0 = -1,1$
- 13. Escriba una M-función function [A] = AreaTri(a, b, c) que calcule el área de un triángulo a partir de las longitudes de sus lados:

$$A = \sqrt{p(p-a)(p-b)(p-c)}, \quad \text{con } p = \frac{a+b+c}{2}$$

La función debe emitir mensaje de error en los casos en que no se pueda calcular el área:

- a) Si alguna de las longitudes recibidas es menor o igual a cero;
- b) Si el radicando es negativo.
- 14. Escriba una M-función function [y] = Traza(A) que calcule la traza de una matriz cuadrada A. Debe emitir mensaje de error cuando la matriz no es cuadrada. Recuerde que la traza de $A \in \mathbb{R}^{n \times n}$ es igual a

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}.$$

15. Escriba una M-función en MATLAB para la siguiente función:

$$f(x) = \begin{cases} \log_2 |x^2 + 2x - 3|, & \text{si } x < 1 \\ \frac{1}{2} \tan(3x - 2), & \text{si } x \ge 1 \end{cases}$$

- 16. Escriba una M-función function Donde (x,a,b) que reciba como argumentos de entrada $x \in \mathbb{R}$ y los extremos de un intervalo [a,b], y escriba en la pantalla un mensaje indicando si $x < a, x \in [a,b]$ o x > b.
- 17. Escriba una M-función function [vmax] = Mayor(v) que reciba como argumento un vector v y devuelva el máximo entre los valores absolutos de todas sus componentes.
- 18. Escriba una M-función function [amax] = MayorM(A) que reciba como argumento una matriz A y devuelva el máximo entre los valores absolutos de todas sus componentes.
- 19. Programe de alguna forma la sucesión de Fibonacci con términos iniciales f_1, f_2 cualesquiera tales que pueda obtener el término n-ésimo f_n de dicha sucesión.
- 20. En MATLAB, un polinomio se representa mediante un vector que contiene los valores de sus coeficientes: el polinomio

$$p(x) = a_1 x^n + a_2 x^{n-1} + \dots + a_n x + a_{n+1}$$

se representa como el vector fila $c = [a_1, a_2, ..., a_n, a_{n+1}]$. Escriba una M-función function [dc] = derpol(c) que devuelva el vector dc de coeficientes de la derivada del polinomio.

21. Analice el siguiente script:

```
1 function B = MarkNull(A)
2
3 [m, n] = size(A);
4
5 A(1, :) = zeros(1, n);
6 A(m, :) = zeros(1, n);
7 A(2:m-1, 1) = zeros(m-2, 1);
8 A(2:m-1, n) = zeros(m-2, 1);
9
10 B = A;
11
12 end
```

- a) Describa qué es lo que hace la M-función MarkNull.
- b) Dado el input siguiente, determine el output MarkNull(M).
- 22. Analice el siguiente script:

```
1 function [v, C] = HMat(y)
2
3 s = length(y) - 1;
4 v = y + sign(y(1)) * [norm(y); zeros(s, 1)];
5 C = eye(s + 1) - 2*(v*v')/(v'*v);
6
7 end
```

a) Describa qué es lo que hace la M-función HMat(y).

- b) Dado el input siguiente, determine los outputs [u, H] = HMat(x).
- 23. Analice el siguiente script:

```
function output = ConvPoly(p, q)
   n = length(p) - 1; m = length(q) - 1;
   p = [p, zeros(1, m)];
   q = [q, zeros(1, n)];
   output = zeros(1, n + m + 1);
   for k = 1:n + m + 1
       suma = 0;
8
       for j = 1:k
9
            suma = suma + p(j) * q(k - j + 1);
11
       output(k) = suma;
12
   end
13
   end
```

- a) Describa qué es lo que hace la M-función ConvPoly.
- b) Dados los inputs siguientes, determine el output.Inputs: p = [1 -2 1], q = [3 5]

2. Precisión finita. Aproximaciones. Representaciones IEEE

Punto flotante: Representaciones de números máquina, estándares de la IEEE, números normales y subnormales. Épsilon máquina.

Error absoluto, error relativo, dígitos significativos: Cálculo y acotación de errores de las diferentes representaciones utilizadas. Determinación de dígitos significativos de aproximaciones numéricas.

Propagación del error: Uso del truncamiento y redondeo para obtención de valores representables en el conjunto de números reales de precisión finita. Estudio del error acumulado.

- 1. Sea $\xi = (257,0625)_{10}$. Transforme ξ a su representación binaria y luego a su representación en el sistema de precisión simple según el standard de la IEEE. Haga lo mismo pero representándo ξ en precisión doble.
- 2. Escriba explícitamente todos los elementos del conjunto $\mathbb{F}(2,4,-2,2)$. Luego dibújelos en la recta numérica. Calcule la cantidad total de elementos de este \mathbb{F} .
- 3. Calcule el error absoluto y relativo de las aproximaciones de ξ (busque representaciones con al menos 10 dígitos) mediante $\hat{\xi}$.

a)
$$\xi = \pi$$
, $\hat{\xi} = 3,1416$
b) $\xi = \pi$, $\hat{\xi} = \frac{22}{7}$
c) $\xi = e$, $\hat{\xi} = 2,8182$
d) $\xi = e$, $\hat{\xi} = \frac{65}{24}$

¿Cuántos dígitos significativos¹ hay en la representación del inciso b).

4. Determine una fórmula para convertir números en formato de precisión simple a números en base 10. Use dicha fórmula para mostrar que

 $^{^1}$ ¿Qué significa ue una aproximación $\hat{\xi}$ tenga p dígitos significativos con respecto al valor exacto ξ ?

3. Aproximación a raíces de ecuaciones no lineales

Métodos de bisección, punto fijo, Newton-Rhapson, secante, etc.: Aplicación del método respectivo para aproximar la solución de una ecuación. Acotación del error de aproximación. Implementación de algoritmos basados en el método de estudio o sus variantes.

Estudio de convergencia: Orden de convergencia de los métodos vistos y algunas modificaciones de sucesiones para aceleración de convergencia. Implementación.

3.1. Método de bisección

- 1. Justifique por qué $2x\cos(2x) (x-2)^2 = 0$ posee al menos un cero en [2, 3] y otro en [3, 4].
- 2. Encuentre la tercera iteración por el método de bisección de la función

$$f(x) = \sin(x) - \cos(1 + x^2) - 1$$

en el intervalo [1,8, 2]. [No olvide que se trabaja en radianes]

- 3. Considere la ecuación $x = 2^{-x}$. Proporcione un intervalo que contenga la solución de dicha ecuación. Además determine el número de iteraciones necesarias para alcanzar una tolerancia de 10^{-5} .
- 4. Aplique la iteración de bisección a la ecuación $\sin x = \frac{3}{4}$ en el intervalo [0,8, 0,9] y trate de determinar el cero actual con una tolerancia de 10^{-3} .
- 5. Encuentre una aproximación de $\sqrt{3}$ con un error menor a 10^{-4} , utilizando el método de bisección. [Sugerencia: utilice un polinomio adecuado]

3.2. Método del punto fijo

- 1. Utilice la iteración de punto fijo para determinar una aproximación de una solución de $x^4 3x^2 = 3$ en el intervalo [1, 2], utilizando $x_0 = 1$ y una tolerancia de 10^{-2} .
- 2. Considere la ecuación $8e^{\frac{-x}{5}} 2x = 5$. Compruebe que $\varphi(x) = 4e^{\frac{-x}{5}} \frac{5}{2}$ satisface las condiciones del teorema del punto fijo en [0,2]. Use $x_0 = 1$ y obtenga una aproximación de la solución de la ecuación con una tolerancia de 10^{-2} .
- 3. Considere la ecuación $x^2+10\cos x=0$ la cual posee dos raíces aproximadas que son 3,1619 y 1,9688. Determine la o las funciones auxiliares $\varphi(x)$ y un intervalo adecuado para que pueda utilizar las hipótesis del teorema del punto fijo de BROWER. Con lo anterior, ¿cuántas iteraciones se necesitan para obtener una aproximación con una tolerancia de 10^{-4} ?
- 4. Considere la ecuación $2x \ln(1 + e^x) = 0$. Usando que $x = \ln(1 + e^x) x = \varphi(x)$ muestre que φ satisface las hipótesis del teorema del punto fijo en el intervalo [0, 2]. Usando $x_0 = 1$ obtenga una aproximación de la solución de la ecuación con dos dígitos significativos.
- 5. Sea $f(x) = x^3 2x 5$. Muestre que la función $g(x) = \sqrt[3]{2x + 5}$, en el intervalo [2, 3] satisface las condiciones del teorema de unicidad del punto fijo. Además calcule 5 iteraciones de la sucesión $x_{k+1} := g(x_k)$ con $x_0 = 3$.

3.3. Método de Newton-Raphson

- 1. Use el método de Newton para calcular una aproximación de la solución de $x^6 = x + 1$ en [1, 2] con un error relativo de 10^{-4}
- 2. Realice 3 iteraciones de Newton para resolver la ecuación $x^2 = 2$ y verifique que

$$\sqrt{2} \approx 1 + \frac{1}{2} - \frac{1}{12} - \frac{1}{108}$$

- 3. Aplique el método de Newton para calcular el cero de $f(x) = x^3 3x^2 2^{-x} + 3x 4^{-x} 8^{-x}$ en [0, 1].
- 4. Use el método de Newton para aproximar una solución de $0 = \frac{1}{2} + \frac{x^2}{4} x \sin x \frac{\cos 2x}{2}$ con la aproximación inicial $x_0 = \frac{\pi}{2}$ y con un error relativo menor a 10^{-5} .
- 5. Muestre que $f(x) = x^2 x 2$ tiene una raíz única en [1,3] a la cual converge la sucesión del método de Newton para todo $x_0 \in [1,3]$.

3.4. Método de la secante

- 1. Aplique el método de la secante iniciando con $x_0 = 1$, $x_1 = 2$, $f(x_0) = 2$ y $f(x_1) = 1,5$. ¿Cuál es el valor de x_2 ?
- 2. Realice 4 iteraciones utilizando el método de la secante a $f(x) = x 2\cos x$ con $x_0 = 1$, $x_1 = 1.5$ como condiciones iniciales.
- 3. Utilice el método de la secante para aproximar un cero de $f(x) = e^x x^2$ utilizando 8 iteraciones y considerando que $x_0 = 1$ y $x_1 = 3$.
- 4. Considere la ecuación $\log(2) + \log(11 x^2) = 2\log(5 x)$. Use el método de la secante para aproximar las dos soluciones usando las aproximaciones iniciales $(x_0, x_1) = (0, 1)$ y $(x_0, x_1) = (2, 5, 3, 5)$. Calcule la solución exacta de la ecuación y determine el error absoluto y el error relativo de cada aproximación.

3.5. Adicionales

- 1. Aproxime la solución en [-1,0] de la ecuación $(x^3+0,1)\sin\left(\frac{3}{x^2+0,06}\right)=x$. Justifique la elección del método usado, indicando las ventajas que tiene sobre otros métodos para esta ecuación particular.
- 2. Un proyectil es lanzado con una velocidad inicial v_0 y con una inclinación α en un túnel de altura h, obtiene su máximo alcance cuando α es tal que $\sin(\alpha) = \sqrt{\frac{2gh}{v_0^2}}$, donde $g \approx 9.8 \text{ m/s}^2$ corresponde a la aceleración gravitatoria terrestre. Calcule el valor de α usando el método de Newton, cuando $v_0 = 10 \text{ m/s y } h = 1 \text{ m}$.
- 3. La velocidad de descenso de un paracaidista está dada por $v = \frac{mg}{k} \left(1 e^{\frac{-kt}{m}}\right)$, en donde k es el coeficiente de arrastre. Vamos a trabajar el caso v = 40 m/s, m = 68.1 kg, t = 10 s y g = 9.8 m/s².
 - a) Determine una función adecuada f(k) a partir de la fórmula anterior, tal que f(k) = 0. Grafique dicha función.
 - b) Postule un intervalo adecuado para utilizar el método de bisección y aproxime el coeficiente de arrastre a partir de f(k) = 0 con una tolerancia de $5 \times 10^{-3} = 0.5 \%$.
- 4. La función $f(x) = x^3 x^2 4x + 5$ tiene exactamente 3 puntos fijos. Uno de ellos es x = 1.
 - a) Calcule de manera exacta los otros dos puntos fijos.
 - b) Considere el intervalo $I = \left[\frac{9}{10}, \frac{11}{10}\right]$. Justifique si la sucesión por iteración de punto fijo converge o no a x_0 cercano a x = 1.

- 5. Considere la función $f(x) = -1 2x + \int_0^x e^{t^2} dt$. Vamos a calcular una aproximación de uno de sus puntos críticos, que de hecho es un mínimo local. (Nota: Use truncamiento a 6 dígitos después del punto decimal: si tiene N,1234567... con N entero, entonces lo escribe como N,123456)
 - a) Muestre que la ecuación f'(x) = 0 posee una raíz en el intervalo I = [0, 1].
 - b) Verifique si la función $\varphi(x) = \frac{x + \ln 2}{x + 1}$ satisface todas las condiciones del teorema de existencia y unicidad del punto fijo en el intervalo I. ¿Por qué no sirve tomar $\varphi(x) = \frac{\ln 2}{x}$?
 - c) Ahora utilice el método de iteración de punto fijo con $x_0 = 0$ para determinar una aproximación con 11 iteraciones (k = 10) de la raíz de la ecuación f'(x) = 0 en I. [Sugerencia: use MATLAB]
 - d) Determine el valor de $f(x_{10})$ para la aproximación encontrada con el método del punto fijo. Para ello puede usar el hecho de que $\int_0^x e^{t^2} dt \approx x + \frac{x^3}{3} + \frac{x^5}{10}$ cuando $x \approx 0$. ¿Cuál es el error relativo con respecto a la raíz exacta de f'(x) = 0?
- 6. Considere el polinomio $\frac{x}{8}(63x^4-70x^2+15)$, el cual tiene un cero en [0,6,1] dado por $\xi=\frac{1}{21}\sqrt{245+14\sqrt{70}}\approx 0,9061798459$. Determine la cantidad de iteraciones máximas que se necesitan para aproximar este cero por el método de bisección con una tolerancia de 10^{-10} . Luego utilice MATLAB para aproximar este cero.
- 7. Dada la ecuación $x \sin(x) + x^2 = 1$, utilice el método de la secante para aproximar un cero con tolerancia 10^{-3} tal que $x_0 = 0.1$ y $x_1 = 0.9$.
- 8. Muestre que la ecuación $e^x = 2x^2$ tiene una raíz negativa. Use el método de Newton con un valor apropiado de x_0 y determine una aproximación de la raíz negativa con una precisión de 10^{-5} .
- 9. Aplique el método de Newton para determinar una aproximación de una raíz de $f(x) = x^2 \cos x 6x \ln x 25 \cos x_0 = 23$ como condición inicial.
- 10. Considere la función $f(x) = e^x \sin(x) 4$ en [1, 2]. Determine
 - a) Una función $\varphi(x)$ que satisfaga las condiciones del teorema del punto fijo.
 - b) Deduzca la cota teórica para el número máximo de iteraciones necesarias que se requieren para que el método del punto fijo alcance una aproximación con exactitud de tol> 0:

$$\mathtt{iterMax} = \left\lceil\!\!\left\lceil \frac{\ln(\mathtt{tol}(1-L)) - \ln|x_1 - x_0|}{\ln(L)} \right\rceil\!\!\right\rceil + 1$$

Utilizando los datos del problema dado, calcule dicha cota con la aproximación inicial $x_0 = 1$, usando tol = 10^{-3} .

- c) Aplique el método del punto fijo y determine una aproximación para la solución de f(x) = 0, con una exactitud de 10^{-3} en el intervalo [1, 2] y con la aproximación inicial $x_0 = 1$. También calcule el error relativo en cada iteración.
- d) ¿La cantidad de iteraciones llevadas es igual a iterMax? Compruebe esto con MATLAB.
- 11. Considere la ecuación f(x) = 0, donde $f \in C^2(\mathbb{R})$, y el método de Halley definido por

$$x_k := x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1}) - \frac{1}{2}f''(x_{k-1})\frac{f(x_{k-1})}{f'(x_{k-1})}}, \qquad k = 1, 2, 3, \dots$$

- a) Muestre que el método de Halley se puede ver como una aplicación del método de Newton-Rhapson a la función $g(x) = \frac{f(x)}{\sqrt{f'(x)}}$, con g bien definida en un conjunto adecuado que contiene a la raíz de f.
- b) Sea $A \in \mathbb{R}^+$. Escriba de forma simplificada el método de Halley al cálculo de x_{k+1} , para una aproximación de \sqrt{A} , utilizando una función adecuada y tomando $x_0 := 1$. Use esto para aproximar $\sqrt{5}$. Implemente un algoritmo en MATLAB del método de Halley.