1991 FG6.1-2

某兩位數x之個位數字是M,十位數字是N。另一兩位數y之個位數字是N,十位數字是M。若x>y,且他們的和是他們的差的十一倍,求M 及N 的值。 A 2 digit number x has M as the units digit and N as the tank digit. Another

A 2-digit number x has M as the units digit and N as the tens digit. Another 2-digit number y has N as the units digit and M as the tens digit. If x > y and their sum is equal to eleven times their differences, find the values of M and N.

1993 FG8.1-2

已知方程 $x^2 + (m+1)x - 2 = 0$ 有兩整數根 $(\alpha + 1)$ 及 $(\beta + 1)$,且 $\alpha < \beta$ 及 $m \neq 0$ 。 設 $d = \beta - \alpha$ 。求 m 及 d 的值。

Given that the equation $x^2 + (m+1)x - 2 = 0$ has 2 integral roots $(\alpha + 1)$ and $(\beta + 1)$ with $\alpha < \beta$ and $m \ne 0$. Let $d = \beta - \alpha$. Find the values of m and d.

1995 FI3.3

已知方程 x+6+8k=k(x+8)有正整數解。求 k 的最小值 c。

It is given that the equation x + 6 + 8k = k(x + 8) has positive integral solution. Find c, the least value of k.

1996 HG8

若質數
$$a \cdot b$$
 為二次方程 $x^2 - 21x + t = 0$ 的根,求 $\left(\frac{b}{a} + \frac{a}{b}\right)$ 的值。

If prime numbers a, b are the roots of the quadratic equation $x^2 - 21x + t = 0$, find the value of $\left(\frac{b}{a} + \frac{a}{b}\right)$.

1996 FG7.1

若方程 $ax^2 - mx + 1996 = 0$ 的兩個不等根是質數,求 a 的值。

If the two distinct roots of the equation $ax^2 - mx + 1996 = 0$ are primes, find the value of a.

1999 FG2.4

設 d 為奇質數,若 $89 - (d+3)^2$ 是一整數之平方,求 d 之值。

Let *d* be an odd prime number.

If $89 - (d+3)^2$ is the square of an integer, find the value of d.

2001 HI6

88 張成人車票總值為 $\$ \Box 293 \Box$, 由於列印機壞了,五位數字的首尾兩個數字印不出來。已知每張車票的價值為 \$ P,其中 P 為一整數,求 P 的值。

The total cost for 88 tickets was $\square 293\square$. Because the printing machine was not functioning well, the first and the last digits of the 5-digit number were missing. If the cost for each ticket is P, where P is an integer, find the value of P.

2001 FG3.2

已知方程 $x^2y - x^2 - 3y - 14 = 0$ 只得一組正整數解 (x_0, y_0) 。

若 $x_0 + y_0 = b$, 求 b 的值。

Suppose the equation $x^2y - x^2 - 3y - 14 = 0$ has only one positive integral solution (x_0, y_0) . If $x_0 + y_0 = b$, find the value of b.

2001 FG4.4

方程 $x^2 - 45x + m = 0$ 的兩個根皆為質數。

已知雨根的平方和為 d,求 d 的值。

The roots of the equation $x^2 - 45x + m = 0$ are prime numbers. Given that the sum of the squares of the roots is d, find the value of d.

2004 FG3.2

已知質數 p 和 q 满足方程 18p + 30q = 186。

Given that p and q are prime numbers satisfying the equation 18p + 30q = 186.

If $\log_8 \frac{p}{3q+1} = b \ge 0$, find the value of b.

2005 FG1.2

設質數 $p \approx q$ 是方程 $x^2 - 13x + R = 0$ 的兩個不同的根,其中 R 是實數。 若 $b = p^2 + q^2$,求 b 的值。

Let p and q be prime numbers that are the two distinct roots of the equation $x^2 - 13x + R = 0$, where R is a real number. If $b = p^2 + q^2$, find the value of b.

2008 HI3

已知 x_0 及 y_0 為正整數且滿足方程 $\frac{1}{x} + \frac{1}{y} = \frac{1}{15}$ 。

若 $35 < y_0 < 50$ 及 $x_0 + y_0 = z_0$, 求 z_0 的值。

Given that x_0 and y_0 are positive integers satisfying the equation $\frac{1}{x} + \frac{1}{y} = \frac{1}{15}$.

If $35 \le y_0 \le 50$ and $x_0 + y_0 = z_0$, find the value of z_0 . **2009 HG3**

已知
$$p$$
 和 q 為整數。 若 $\frac{2}{p} + \frac{1}{q} = 1$, 求 $p \times q$ 的最大值。

Given that p and q are integers. If $\frac{2}{p} + \frac{1}{q} = 1$, find the maximum value of $p \times q$.

Last updated: 2021-08-06

2010 HI4

已知 x+y+z=3 及 $x^3+y^3+z^3=3$,且 x,y,z 為整數。 若 x<0,求 y 的值。

Given that x + y + z = 3 and $x^3 + y^3 + z^3 = 3$, where x, y, z are integers. If x < 0, find the value of y.

2010 HI5

已知 a, b, c, d 為正整數,且滿足 $\log_a b = \frac{1}{2}$ 及 $\log_c d = \frac{3}{4}$ 。

若 a-c=9, 求 b-d 的值。

Given that a, b, c, d are positive integers satisfying $\log_a b = \frac{1}{2}$ and $\log_c d = \frac{3}{4}$.

If a - c = 9, find the value of b - d.

2010 FG4.1

設 a 為整數及 $a \neq 1$ 。已知方程 $(a-1)x^2 - mx + a = 0$ 的兩根均為正整數。 求 m 的值。

Let a be an integer and $a \ne 1$. Given that the equation $(a-1)x^2 - mx + a = 0$ has two roots which are positive integers. Find the value of m.

2010 FG4.3

已知 $A \cdot B \cdot C$ 為正整數,且 $A \cdot B$ 和C的最大公因數等於 $1 \cdot$

若 $A \cdot B \cdot C$ 满足 $A \log_{500} 5 + B \log_{500} 2 = C$, 求 A + B + C 的值。

Given that A, B, C are positive integers with their greatest common divisor equal to 1. If A, B, C satisfy $A \log_{500} 5 + B \log_{500} 2 = C$, find the value of A + B + C.

2010 FGS.4

共有多少個正整數 m 使得通過點 A(-m, 0) 及點 B(0, 2) 的直綫亦通過 P(7, k),其中 k 為一正整數?

How many positive integers m are there for which the straight line passing through points A(-m, 0) and B(0, 2) and also passes through the point P(7, k), where k is a positive integer?

2011 FI2.1

若方程組 $\begin{cases} x+y=P\\ 3x+5y=13 \end{cases}$ 的解為正整數,求 P 的值。

If the solution of the system of equations $\begin{cases} x + y = P \\ 3x + 5y = 13 \end{cases}$ are positive integers,

find the value of P.

2011 FI2.3

2011 FGS.4

設 F 為方程 $x^2 + y^2 + z^2 + w^2 = 3(x + y + z + w)$ 的整數解的數目。求 F 的值。 Let F be the number of integral solutions of $x^2 + y^2 + z^2 + w^2 = 3(x + y + z + w)$. Find the value of F.

2012 HI6

已知 a 及 b 為不同質數,且 $a^2-19a+m=0$ 及 $b^2-19b+m=0$,

求
$$\frac{a}{b} + \frac{b}{a}$$
 的值。

Given that a and b are distinct prime numbers, $a^2 - 19a + m = 0$

and $b^2 - 19b + m = 0$. Find the value of $\frac{a}{b} + \frac{b}{a}$.

2012 HI8

若方程 $(k^2-4)x^2-(14k+4)x+48=0$ 有兩個相異的正整數根,求 k 的值。 If the quadratic equation $(k^2-4)x^2-(14k+4)x+48=0$ has two distinct positive integral roots, find the value(s) of k.

2012 HI9

已知 $x \cdot y$ 為正整數,且x > y,解 $x^3 = 2189 + y^3$ 。

Given that x, y are positive integers and x > y, solve $x^3 = 2189 + y^3$.

2012 HG1

已知 $x \cdot y$ 及z為三個連續正整數,且 $\frac{y}{x} + \frac{z}{x} + \frac{x}{y} + \frac{z}{z} + \frac{x}{z} + \frac{y}{z}$ 為整數,

求 x + y + z的值。

Given that x, y and z are three consecutive positive integers, and $\frac{y}{x} + \frac{z}{x} + \frac{x}{y} + \frac{z}{y} + \frac{x}{z} + \frac{y}{z}$ is an integer. Find the value of x + y + z.

2013 HI4

已知 $x^2 + 399 = 2^y$, 其中 $x \cdot y$ 為正整數。求 x 的值。

Given that $x^2 + 399 = 2^y$, where x, y are positive integers. Find the value of x.

2015 FG3.2

設p 為質數及m 為整數。若 $p(p+m)+2p=(m+2)^3$,找出m 的最大可能值。 Let p be a prime and m be an integer.

If $p(p+m) + 2p = (m+2)^3$, find the greatest possible value of m.

Last updated: 2021-08-06

Integral root (HKMO Classified Questions by topics)

2016 HI4

若 $x \cdot y$ 為整數,有多少對 $x \cdot y$ 且滿足 $(x+1)^2 + (y-2)^2 = 50$?

If x, y are integers, how many pairs of x, y are there which satisfy the equation $(x + 1)^2 + (y - 2)^2 = 50$?

2016 HG9

設整數 $a \cdot b$ 及 c 為三角形的邊長。已知 f(x) = x(x-a)(x-b)(x-c),且 x 為一個大於 $a \cdot b$ 及 x 的整數。若 x = (x-a) + (x-b) + (x-c) 及 $x \in \mathbb{R}$ 表 $x \in \mathbb{R}$ 的總和。

Let the three sides of a triangle are of lengths a, b and c where all of them are integers. Given that f(x) = x(x - a)(x - b)(x - c) where x is an integer of size greater than a, b and c.

If x = (x - a) + (x - b) + (x - c) and f(x) = 900,

find the sum of the lengths of the three altitudes of this triangle.

2017 HG10

已知方程 $a^2x^2 - (4a - 3a^2)x + 2a^2 - a - 21 = 0$ (其中 a > 0) 最少有一個整數根,求所有 a 的可能整數值之和。

It is given that the equation $a^2x^2 - (4a - 3a^2)x + 2a^2 - a - 21 = 0$ (where a > 0) has at least one integral root. Find the sum of all possible integral values of a.

2018 HG6

已知 $n^4 + 104 = 3^m$, 其中 $n \times m$ 為正整數。求 n 的最小值。

Given that $n^4 + 104 = 3^m$, where n, m are positive integers.

Find the least value of n.

Last updated: 2021-08-06

Last updated: 2021-08-06

Page 4

Answers

1991 FG6.1-2 M = 4, N = 5	1993 FG8.1-2 $m = -2, d = 3$	1995 FI3.3 2	1996 HG8 365 38	1996 FG7.1 2
1999 FG2.4	2001 HI6	2001 FG3.2	2001 FG4.4	2004 FG3.2
5	147	20	1853	0
2005 FG1.2	2008 HI3	2009 HG3	2010 HI4	2010 HI5
125	64	9	4	-3
2010 FG4.1	2010 FG4.3	2010 FGS.4	2011 FI2.1	2011 FI2.3
3	6	4	3	6
2011 FGS.4 208	2012 HI6 293 34	2012 HI8 4	2012 HI9 $x = 13, y = 2$	2012 HG1 6
2013 HI4 25	2015 FG3.2 0	2016 HI4 12	2016 HG9 281 13	2017 HG10 11
2018 HG6 5				

Created by Mr. Francis Hung