

Research and Development Technical Report

DELET-TR-78-0530-F

SAFETY STUDIES OF LITHIUM-SULFUR DIOXIDE CELLS

L. J. BLAGDON B. RANDALL

HONEYWELL POWER SOURCES CENTER 104 ROCK ROAD HORSHAM, PA. 19044

NOVEMBER 1979

FINAL REPORT for period 27 April 1978 - 27 October 1978

Distribution Statement Approved for Public Release, Distribution Unlimited

Prepared for

ELECTRONIC TECHNOLOGY AND DEVICES LABORATORY

ERADCOM

US ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND FORT MONMOUTH, NEW JERSEY 07703

79 12 14 080

HISA-FM 195-78

NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

(19) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT HUMBER 2. GOVT ACCES	SION NO. 3. RECIPIENT'S CATALOG NUMBER
DELET TR-78-0530-F	(9)
4. TITLE (and Subtitle)	STATE OF REPORT A PERIOD COVER
Safety Studies of Lithium-Sulfur Dioxide C	Final Report.
Darety Studies of Brentam Surfar Browne of	25 April 27 Oct 78,
	SERENBUING ORG. REPORT NUMBER
	8. CONTRACT OR GRANT NUMBER(s)
7. AUTHOR(a)	B. CONTRACT OR GRANT NUMBER(S)
L. J./Blagdon	DAAB07-78-C-0530 F
B./Randall	15 DARBOT-78-C-0530
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
Honeywell Power Sources Center	AREA & WORK UNIT NUMBERS
104 Rock Road	IF2637Ø2DG10+01-2111
Horsham, Pa. 19044	40
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Electronics Technology & Devices	Lab. November 1979
Attn: DELET-PB	13. NUMBER OF PAGES
Fort Monmouth, N.J. 07703	
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling	Office) 15. SECURITY CLASS. (of this report)
and	Unclassified
LIFE	
	15a. DECLASSIFICATION/DOWNGRADING
THE COPY FURNISM SIGNIFICANT NUMBER	BEST QUALITY PRACTICABLE. USD TO DOC CONTAINED A BER OF PAGES WHICH DO NOT
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIS	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIS	ED TO DECCENTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIS	ED TO DECCENTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIS	ED TO DESCRIPTIONED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIS	ED TO DESCRIPTIONED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 dif	ED TO DECCENTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 dif	ED TO DECCENTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 dif	ED TO DESCRIPTIONED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMBER REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 dif	ED TO DESCRIPTIONED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUM REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUM REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUM REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cells Cathode Process Lithium Safety	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY. Sterent from Report)
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cells Cathode Process Lithium Safety	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY. Sterent from Report)
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cells Cathode Process Lithium Safety	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY. Sterent from Report)
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cells Cathode Process Lithium Safety Sulfur Dioxide Hermetic Seal	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY. Sterent (tom Report)
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cells Cathode Process Lithium Safety Sulfur Dioxide Hermetic Seal Overdischarge Hermetic Seal	EED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY. Ident (tom Report)
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUM REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block Cathode Process Lithium Safety Sulfur Dioxide Overdischarge Hermetic Seal 10. ABSTRACT (Continue on reverse side if necessary and identity by block thermetically sealed So. Diff cells were fab	ED TO DEC CONTAINED A BER OF PAGES WHICH DO NOT LY. forent from Report) rumber) ricated and tested to improve
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cathode Process Lithium Safety Sulfur Dioxide Hermetic Seal 10. ABSTRACT (Continue on reverse side if necessary and identify by block Thermetically sealed Soa "D" cells were fab safety during use/abuse conditions. Catho	number) number) number) ricated and tested to improve des and anodes were optimized
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cells Cathode Process Lithium Safety Sulfur Dioxide Hermetic Seal 10. ABSTRACT (Continue on reverse side if necessary and identify by block Hermetically sealed Soa "D" cells were fab safety during use/abuse conditions. Catho to yield efficient and safe operation at —	number) recated and tested to improve des and anodes were optimized. 20°F. Explosions were eliminated.
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cathode Process Lithium Safety Sulfur Dioxide Overdischarge Hermetic Seal 10. ABSTRACT (Continue on reverse side if necessary and identify by block Thermetically sealed So. "D" cells were fab safety during use/abuse conditions. Cathod to yield efficient and safe operation at and venting was minimized when the cells were	number) rumber) rumber) recated and tested to improve des and anodes were optimized and tested to improve des and anodes were eliminated are discharged at 2A constant
Distribution Unlimited THIS DOCUMENT IS THE COPY FURNISH SIGNIFICANT NUMB REPRODUCE LEGIB 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diff 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block Cells Lithium Safety Sulfur Dioxide Hermetic Seal 10. ABSTRACT (Continue on reverse side if necessary and identify by block Hermetically sealed Soa "D" cells were fab safety during use/abuse conditions. Catho to yield efficient and safe operation at —	number) recated and tested to improve ides and anodes were optimized 20°F. Explosions were eliminated itent between -20°F and +130°F.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

408 995

TABLE OF CONTENTS

	!	Description		Page
Intr	oduct io	n		1
Dev	elopme	nt Program		4
a.	Task	I - Statistical Ver	ification of Baseline Cells	4
	(1)	Cell Design		4
	(2)	Cell Fabrication		4
	(3)	Discharge Tests		4
b.	Task	II - Cat hode Optim	ization	10
	(1)	Cell Design		10
	(2)	Cell Fabrication		10
	(3)	Test Results		13
	(4)	Porosimetry And	al ysi s	24
c.	Task	III - Li/SO ₂ Ratio	Evaluation for Safety	28
	(1)	Cell Design		28
	(2)	Lab Cell Test wit	th 10% Aluminum/90%	
	(3)	Lithium Alloy		28
	(4)	Cell Fabri cat ion		32
	(5)	Test Results		32
d.	Task	IV - Charact eri zat	tion of "Safe Design"	
			formance and Safety	40
	(1)	Optimized Design	n	40
	(2)	Cell Fabri cat ion		45
	(3)	Test Results	Accession For	45
			NTIS Global	
Disc	ussi on		DDC TAB Unemounced	72
Refe	rences		Justification	75
A =1	1 - 4		Бу	
ACKI	nowledg	ment s	Distribution/	75
Appe	endi ces		Availability Codes	76
			Dist special	
			0	
			I W	

LIST OF TABLES

Table No.	Title	Page
1	Baseline Cell Parameters	3
2	Build 6 Fabricat ion Statistics	5
3	Test Data Summary Build 6	7
4	Cathode Optimization Design Parameters	11
5	Design vs. Actual Cathode Parameters	12
6	Cathode Optimization Test Results	15
7	Cathode Analyzed for Porosimetry/Surface Area	26
8	Porosimetry Results	27
9	Li/SO ₂ Ratio Design Parameters	29
10	Current Voltage Scan - 10% Aluminum Anode	30
11	Li/SO ₂ Ratio Evaluation Build and Test Results, -20°F	33
12	" " Room Temp.	41
13	Const ruct ion Statistics	44
14	Constant Current Discharge Results for Unstored Cells	47
15	" Following 2 Weeks	
	at 165°F	48
16	Pulse Discharge Results	62
17	Short Circuit Results	70

LIST OF FIGURES

No.				tle	P
1	Baseline I	Performa	nce/Sa	ety Tests at Room Temperature	
2	11	11		" -20°F	
3	Cathode P	rocess La	yout		14
4	Performan		•	- DR89	18
5	tt	"	11	- DR111	19
6	11	11	11	- DR114	20
7	***	11	11	- DR 144	2
8	11	11	11	- DR 159	2:
9	"	11	**	- DR116	2:
10	Capacity v	s Carbon	Mix W		25
11				Aluminum Anode	3:
12	Performan				34
13	11	11	11	- DR195	35
14	tt.	11	11	- DR196	36
15	11	11	11	- DR186	37
16	11	11	11	- DR 188	38
17	11	11	11	- DR 193	39
18	Capacity a	s a Funct	ion o	Temperature and Rate	49
19				at 2.0A, -20°F	5(
20	11	11	- 11	" , Room Temperature	51
21	ff	11	11	" " , 130°F	52
22	11	11	***	" 3.5A, -20°F	53
23	11 .	11	11	" , Room Temperature	54
24	"	U	11	" ' 130°F	55
25	11	11	*1	5.0A20°F	56
26	11	11	11	" , Room Temperature	57
27		11	11	" ' , 130°F	58
28	"	,,	11	" 2.0A, 120°F,	50
-				(following 165°F store	age) 59
29		11	11	" , Room Temperature	-60)
-/				(following 165°F stora	ge) 60
30		- 11	11	" , 130. F,	60)
30				(following 165°F storage	70)
31	11	- 11	- 11	10.0A, 120°F	ge) 61 63
32	"	- 11	- 11	" , Room Temperature	64
33	11	- 11	11	, Room Temperature	65
34	11	**	11	20.0A, -20°F	
35	11	***	"	" , Room Temperature	66
36	11	"	11	, Room Temperature	67
37	Capacity v				68 73

INTRODUCTION

This report finalizes the results of work performed on Contract No. DAAB07-78-C-0530. The overall objective of the contract was to continue the exploration of the cause and effect relationship between Li/SO₂ cell performance and safety on the one hand and cell composition and design on the other. Initial efforts toward this objective were conducted under a previous contract (1).

A safe cell may be defined as one that undergoes no physical changes under use/ abuse conditions. For this program, this interpretation was extended to cover a cell that vents gases or liquids without expelling an associated flame or metal fragments.

The conditions of intensive use/abuse to be used include:

- . Forced discharge at high rate to 200% of SO₂ content
- . Short circuit

These use/abuse conditions are the most likely from a practical viewpoint. Short circuit testing has been a Honeywell safety standard since the inception of high rate SO_2 cells. It provides immediate information as to the reliability of the vent for undischarged cells under the highest rate discharge. Short circuit testing is used to verify the ability of new internal designs to vent without an associated fire or flame.

The high rate forced discharge regime serves a dual purpose. The capacity to 2.0 volts is determined before the cell is driven into the possible unsafe negative region. The current is maintained for 200% of the theoretical SO₂ content to simulate a poor cell in a series-connected battery.

Overall, greater than 90% of the -20°F and room temperature 2A performance goals of 4.0 and 8.0 Ahrs., respectively, were achieved without venting on extended discharge on the initial program. A drop to as low as a 50% performance level resulted in venting, but without flame, as long as the cells remained lithium limited. Undesirable flame resulted from venting under these use/abuse conditions at Li/SO₂ ratios between 1.2 and 1.4 but in no case for the designs considered did explosions result.

The effort on this contract attempts to statistically verify these improvements and determine the limits of the design variables on both performance and safety. Design refinements were incorporated in the final build which characterizes the design capability at and beyond the performance goals.

Table I

BASELINE CELL PARAMETERS

ANODE

Dimensions : 24.5" x 1.75" x 0.007"

Capacity : 10.5 Ahr

Collector : 0.200" x 0.005" diagonal through length

CATHODE

Dimensions : 28" x 1.75" x 0.032"

Teflon Content : 5%

Carbon & Teflon Wt/Density : 9.0 g/0.35 g/cc

Theoretical Low Rate Capacity: 13.0 Ahr*

ELECTROLYTE

% SO: : 68%

SO2 Theoretical Capacity : 10.6 Ahr

SEPARATOR

Type : Celgard

Layers between Electrodes : 1

WRAP

Configuration : Cathode Outside

Active Surface : 580 cm²

CELL BALANCE

Li/SO₂ : 1.0 C/SO₂ : 1.2*

* Based on 1. 44 Ahr/g mix theoretical.

DEVELOPMENT PROGRAM

a. TASK I - STATISTICAL VERIFICATION OF BASELINE CELLS

(1) Cell Design

Build and test data from Contract DAAB07-77-C-0459 was carefully reviewed. It was concluded the cells of 580 cm² surface area (and highest carbon loadings) represented the best efficiency and safety to date and would be the preferred baseline design. One intended change, a reduction of the diagonal nickel anode lead from 0.005 to 0.003" in thickness, was not implemented as it was not received in time for the build. The design parameters are shown in Table I.

(2) Cell Fabrication (Build 6)

A total of 42 cells were completed through the filling operation. The only difficulty encountered was in the wrapping operation which resulted in sporadic anode to cathode shorts. As expected from previous builds, the end of the 0.005" thick diagonal nickel lead was the source of the problem as it was too stiff to make the initial small radius bend at the beginning of the wrap without sometimes cutting through the separator. Several rewraps with added insulation over the end of the lead were necessary. Switching to 0.003" Ni for the next build alleviated this problem. The analysis of the average values, standard deviation and range for major build parameters for 30 randomly chosen cells from this build is shown in Table II. The low standard deviations indicate tight control on the materials and processing for the build.

(3) <u>Discharge Tests</u>

Table II Baseline Cell Fabrication Statistics

Sample Size: 30

Parameter	Average	Standard Deviation	R Range
Cathode Wt (Carbon & Teflon), g	9.07	0.24	8.63 - 9.5
Anode Theoretical Capacity, Ahr	10.47	0.08	10.30 - 10.65
SO ₂ Theoretical Capacity, Ahr	10.61	0.05	10.44 - 10.69
L1/SO ₂ Ratio	0.99	0.01	.96 - 1.00
(C & Tef)/SO ₂ Ratio *	1.23	0.03	1.17 - 1.29

^{*} Based on 1.44 Ahr/g mix theoretical.

Test Setup

Five cells were discharged at a time using one power supply through a series connection. The cells were contained in metal safety boxes, resting on insulation and separated by barriers to prevent sympathetic reactions. These cells were not clamped in a fixture which would act as a heat sink as were previous tests, but were open to air circulation. Voltage loads were connected to welded tabs and an insulated thermocouple was pressed against the case by glass tape. Individual cell voltages and temperatures were continuously monitored on chart recorders for 10 hours at 2A or nearly 200% of the theoretical SO₂ capacity.

Test Results

The 30 cells characterized in 2.2 were split into two equal groups and discharged at 2A at room temperature and -20°F for 10 hours each. The discharge times to 2.0V are shown in Table III. None of the 30 cells vented during the 10 hour discharge. Varying periods of voltage instability did occur after the voltage fell below zero and slight temperature increases were experienced during voltage instability. Representative discharges are shown in Figures 1 and 2.

The following reliability estimates were prepared from the above data:

- At room temperature, 95% of the baseline cells could be expected, at 90% confidence, to discharge longer than 4.03 hours to 2.0 V.
- At -20°F, 95% of the baseline cells could be expected, at 90% confidence, to discharge longer than 1.81 hours to 2.0V; or 75% could be expected to discharge, at 90% confidence, longer than 2.01 hours to 2.0V.
- . The reliability of a baseline cell to withst and a 2A discharge through 10 hours without venting is equal or greater than 85.76% at 90% confidence.

Table III

TEST DATA SUMMARY BASELINE CELLS

CONSTANT CURRENT DISCHARGE TO 2.0 VOLTS

Cell #	Test Temperature	Time to 2.0 Volts	
DR 46 48 50 54 58 61 64 66 68 70 72 75 77 81 83	Ambient	4.10 Hrs. 4.10 4.15 4.15 4.14 4.21 4.22 4.09 4.30 4.26 4.28 4.28 4.28 4.25 4.24 4.21	X = 4.20 Hours s = 0.0716 Hours R = 0.20 Hours n = 15
DR 47 49 51 57 60 67 69 71 73 74 76 79 80 82 84	-20°F	2.35 Hrs. 2.35 2.05 2.25 2.26 2.03 2.15 2.29 2.04 2.18 2.38 1.98 2.25 2.40 1.88	X = 2.19 Hours s = 0.161 Hours R = 0.50 Hours n = 15

Figure 1 . Performance/Safety Tests

Cell: DR83
Build: 6
Load: 2A
Temp: RT

THE CHARLES

The details of the above statistical analysis are shown in Appendix I.

b. TASK 2 - CATHODE OPTIMIZATION

(1) <u>Cell Design</u>

The cell design variables for this study were limited to the cathode. Table IV defines the design parameters of the test cells and the group numbers assigned. The obvious difficulty with this design matrix is in manufacturing cathodes that exactly meet the parameters. The combination of 5% Teflon, 0.032" thickness, 0.35 g/cc density and 9.0 g of cathode mix weight (Group 5) is the same as the baseline cells of Task I and was used as a control sample.

(2) Cell Fabrication

A total of 42 cells was manufactured for this evaluation (three cells of each design). As mentioned above, the difficulty encountered in this build was associated with processing various cathodes which nearly met the parameters set forth in Table IV.

Table V shows the details of the cathodes that were actually used in the tests. It was concluded that the mean and range of each group were isolated enough to allow test results to be significant. The only group which did not closely approximate the design objective was Group 14. Cathodes manufactured from the scaled-up blender were significantly more dense than cathodes from the slurry mix operation. However, it was concluded that testing of the high density cathodes from the full scale process would be valuable. Cells were manufactured and tested.

As noted in Section a. (2), the nickel diagonal anode lead was reduced from 0.005" to 0.003" for this build. This reduction was indeed effective in reducing shorting through the separator during the wrapping operation. In Group 5A, 0.005" nickel was added to the build as a control to ensure there were no performance effects from the material change.

Table IV Cathode Optimization Design Parameters

l Layer Celgard	24.5" x 1.75" x 0.007"	28" x 1,75" x T	Cathode Outside	68% SO2, 10.6 Ahr.	3 Cells Each
Separator:	Anode	Cathode	Wrap	Electrolyte	Quantity

				Cathode Mix Wt. (g)	/t. (g)
				Density (g/cc)	(၁၁
Process	Teflon (%)	Thickness (inch)	0.31	0.35	0.39
Slurry cake & blender	5	0.028 0.032	Ф 7.0 Ф 8.0	@ 7.9 © 9.0	Ø 8.8 Ø 10.0
Slurry cake & blender	7.5	0.028 0.032	7.0 (0 8.0	© 7.9	@ 8.8 (\$ 10.0
Slurry cake & blender	ĸ	0,032	:	0.6 🛈	;
Littleford Full Scale Mixer (25 lb. batch)	w	0.032	}	0.6	i

Note: Circled numbers are group numbers

Groups submitted for porosimetry analysis - 2, 4, 5, 6, 8, 10, 11, 12, 13 & 14.

Table V

Cathode Optimization Task

Design vs Actual Cathode Parameters

Cath		n Param					uild Data			
	Teflon	Thick.	Density	Cell		on/Teflon	Anode	SO ₂	- / *	
Group	%	in	gm/cc	No.	gm	gm/cc	Ahrs	Ahrs	C/SO ₂	Li/SO
1	5.0	0.028	0.31	DR 89	7.05	0.325	10.73	10.65	0.95	1.01
				DR 91	7.00	0.323	10.53	10.56	0.95	1.00
				DR 93	7.10	0.327	10.53	10.66	0.96	0.99
2	5.0	0.028	0.35	DR 94	8.05	0.358	10.37	10.67	1.09	0.97
				DR 96	8.10	0.360	10.37	10.60	1.10	0.98
				DR 97	7.85	0.349	10.65	10.59	1.07	1.01
3	5.0	0.028	0.39	DR 99	9.05	0.402	10.37	10.61	1.23	0.98
				DR 101	8.80	0.391	10.37	10.67	1.19	0.97
				DR 103	8.69	0.386	10.34	10.61	1.17	0.97
4	5.0	0.032	0.31	DR 104	8.10	0.315	10.30	10.62	1.10	0.97
				DR 105	8.00	0.302	10.34	10.38	1.10	1.00
				DR 106	8.00	0.302	10.30	10.68	1.09	0.97
5	5.0	0.032	0.35	DR 109	9.25	0.354	10.34	10.52	1.27	0.98
				DR110	8.95	0.343	10.30	10.63	1.21	0.97
				DR 111	9.21	0.347	10.34	10.61	1.25	0.97
5A	5.0	0.032	0.35	DR 114	9.10	0.348	10.45	10.61	1.24	0.99
	(0.005"	Ni anode	lead)	DR 115	9.05	0.347	10.45	10.51	1.24	0.99
				DR 117	8.84	0.355	10.37	10.61	1.20	0.98
6	5.0	0.032	0.39	DR119	9.70	0.366	10.34	10.68	1.31	0.97
				DR 121	9.70	0.366	10.37	10.49	1.33	0.99
				DR 123	9.70	0.383	10.30	10.65	1.31	0.97
7	7.5	0.028	0.31	DR 125	6.90	0.296	11.62	10.68	0.93	1.09
				DR 127	6.80	0.302	11.58	10.68	0.92	1.08
				DR 128	6.90	0.296	10.65	10.67	0.93	1.00
8	7.5	0.028	0.35	DR 129	7.95	0.346	10.34	10.50	1.09	0.98
				DR 130	7.89	0.364	10.34	10.60	1.07	0.98
				DR 132	8.16	0.376	10.34	10.53	1.12	0.98
9	7.5	0.028	0.39	DR 134	9.40	0.403	10.61	10.70	1.27	1.00
				DR 135	8.60	0.382	10.61	10.57	1.17	1.00
				DR 136	9.40	0.403	10.57	10.47	1.29	1.01
10	7.5	0.032	0.31	DR 139	7.75	0.311	10.49	10.57	1.06	0.99
				DR 140	7.80	0.303	10.45	10.63	1.06	0.98
				DR 142	7.90	0.307	10.45	10.66	1.07	0.99
11	7.5	0.032	0.35	DR 144	8.75	0.340	10.37	10.60	1.19	0.98
				DR 145	8.80	0.342	10.37	10.65	1.19	0.97
				DR 147	8.85	0.355	10.41	10.56	1.22	0.99
12	7.5	0.032	0.39	DR 149	10.39	0.404	10.30	10.58	1.41	0.97
				DR 150	9.92	0.386	10.37	10.60	1.35	0.98
				DR 152	10.26	0.399	10.45	10.49	1.41	1.00
13	3.0	0.032	0.35	DR 159	7.90	0.317	10.34	10.66	1.07	0.97
				DR 160	8. 15	0.327	10.34	10.61	1.11	0.97
				DR 161	8.35	0.315	10.49	10.46	1, 15	1.00
14	5.0	0.032	0.35	DR 164	11.96	0.480	10.41	10.63	1. 62	0.98
	(Scale-	up)		DR 166		0.466	11.42	10.65	1.57	1.07
		Ahr/g m		DR 168	11.16	0.463	10.92	10.58	1.52	1.03

Full Scale Cathode Process

The roll formed cathodes manufactured for this Task utilized a process concept developed under a Manufacturing Technology Contract for Li/SO₂ cells. (2) A concept drawing of this operation is shown in Figure 3. Laboratory equipment was used for most of the cathodes; however, Group 14 utilized full scale mixing and micronizing equipment.

The intent of this evaluation was to determine if any performance variation was introduced by full scale processing. The discussion in d.(1)-Cathodes, of the report indicates the problems and ultimate solutions.

(3) <u>Test Results</u>

The 42 cells manufactured were all discharged 10 hours at a 2 amp. constant current rate in a -20°F environment. Cell voltage and case wall temperature were recorded.

The results of the tests are shown in Table VI. Representative graphs are shown in Figures 4 thru 9. The cathode variations had no impact in the ability of the cells to carry the 2A load as evidenced by close range of the peak voltage. The introduction of the thinner diagonal nickel anode collector was also not a factor as Group 5 with the 0.003" collector compared favorably to Group 5A with the 0.005" collector. Teflon content and cathode thickness also proved to be statistically insignificant. Of minor significance was the density and the interaction between density and thickness. The significance was these parameters were interpreted as an indirect measure of the carbon mix weight which was once again determined to be the most significant variable.

The capacity vs carbon mix weight for this is shown in Figure 10. Using linear regression analysis and excluding Group 14 and another from Group 5A, a correlation coefficient of .72 was obtained.

-

Pagested

Parameter of the last of the l

None of the last o

-

-

parameter 2

Contractor of

Commence of the last

And and a second

Figure 3

Table VI

Cathode Optimization Test Results

For 0.39 g/cc Cathodes

Load: 2A Constant Current Discharge Time: 10 hrs. Temperature: -20°F

Cat	hode De	sign Par	Cathode Design Parameters	Actua	Actual Cath. Data	. Data			Test Results		
Group		Thick. in.	Teflon Thick. Density % in. gm/cc		Carbon gm	Cell Carbon/Teflon No. gm gm/cc	Peak Voltage	Time to 2V Hours	Venting Before 10 Hrs.	Vent Temp. oF	Porosimetry Analysis
6	5.0	0.028	0.393	DR101 8.80	9.05	0.402	2.51	2.3			
				DR103 8.69	8.69	0.386	2.52	2.3			
ص 15	5.0	5.0 0.032	0.372	DR119 9.70	9.70	0.366	2.52	2.6			
				DR121	9.70	0,366	2.50	2.4			Yes
				DR123 9.70	9.70	0.383	2.55	2,3			
6	7.5	0.028	0.028 0.390	DR134 9.40	9.40	0.403	2.53	2.3			
				DR135 8.60	8.60	0.382	2.49	2.1			
				DR136 9.40	9.40	0.403	2.52	2.4			
12	7.5	0.032	0.032 0.396	DR149 10.39	10,39		2.50	2.4			
				DR150 9.92	9.92	0.386	2.50	2.3			Yes
				DR152 10.26	10.26	0.399	2.50	2.5			
		Ave	Averages		9.47	0.389	2.51	2,35			

Table VI (continued)

Cathode Optimization Test Results

For 0.39 g/cc Cathodes

Load: 2A Constant Current Discharge Time: 10 hrs. Temperature: -20°F

	Cathode Design Parameters	sign Par	rameters	Actu	Actual Cath. Data	. Data			Test Results		
Group	Teflon oup %	Thick. in.	Density gm/cc	Ce11 9 No.	Carbon/gm	/Teflon gm/cc	Peak Voltage	Time to 2V Hours	Venting Before 10 Hrs.	Vent Temp.	Porosimetry Analysis
7	5.0	0.028	0.350	DR94	8.05						
					8.10	0.360	2.51	2, 15			Yes
					7.85						
5	5.0	0.032	0.348	DR109	9.25	0.354			Yes	72	
				DR110	8.95	0.343			Yes	37	Yes
				DR111	9.21	0.347		2.4			
5A	A 5.0	0.032	0.350	DR114	9.10						
	(0.005" Ni anode lead)	'i anode l	lead)	DR115	9.05	0.347					
16				DR117	8.84						
∞	7.5	0.028	0.362	DR129	7.95	1	2.53	1			
				DR130	7.89				Yes	89	Yes
				DR132	8.16	0.376		1.9			
-	1 7.5	0.032	0.345	•	8.75						
				DR145	8.80	0.342					Yes
				DR147	8.85	0.355	2,50	2.2			
13	3 3.0	0.032	0.320						Yes	32	
						0.327		1.85			Yes
				DR161	8.35	0.315	2, 47				
14	4 5.0	0.032	0.470	DR164	11.96	0,480	the news				
				DR166	11.62	0.466	2.58	2, 25			Yes
-				DR168	11.16	0.463	- 1		Yes	39	
		Ave	Average	-	8.51	0.347	2.50	2.08			
		(Exc	(Excluding Group 14)	onb 14)							
		Gro	Group 14 Average	rage	11.58	0.470	2.53	2,22			

-

. .

New York

- Comments

Distance of the last

-

.

- Comment

- Control of

Parameter of the last of the l

(Mercelland)

Parents of the last of the las

Table VI (continued)

Cathode Optimization Test Results

Load: 2A Constant Current Discharge Time: 10 hrs. Temperature: -200F For 0.39 g/cc Cathodes

Ca	thode Des	sign Paı	Cathode Design Parameters		Actual Cath. Data	h. Data			Test Results		
Group		Thick.	Teflon Thick, Density % in. gm/cc		Carbon gm	Cell Carbon/Tellon No. gm gm/cc	Peak Voltage	Time to 2V Hours	Venting Before 10 Hrs.	Vent Temp.	Porosimetry Analysis
-	5.0	0.028	0.028 0.310	DR89 DR91 DR93	7.05	0.325	2.55	1.7 1.85	Yes	60 186	
4	5.0	0.032	0.032 0.306	DR104 8.10	8, 10	0.315	2,50	2.1			
				DR105 8.00 DR106 8.00	8.00	0.302	2.50	1.9			
7	7.5	0.028	0.028 0.310	DR125 6.90	6.90	0.296	2.48	1.7			
				DR128 6.90	06.90	0.296	2.50	1.8			
01	7.5	0.032	0.032 0.307	DR139 7.75 DR140 7.80	7.75	0.311	2.51	1.9			
				DR142 7.90	7.90	0.307	2.48	2.0			
			Averages		7.44	0.309	2,51	1.87			

This linear fit projects an increase of 0.49 Ahr. per gram of carbon mix between 6.9 and 10.2 grams of carbon mix at a discharge of 2.0A at -20°F. Group 14 was excluded from this analysis due to its non-conformance with the trend of the data. A detri mental effect on the cathode due to the scale-up process and the limitation due to either lithium and/or SO₂ efficiency may be possible causes.

The cells were continued on the discharge until they vented or the 10 hrs. at 2A were completed. The pattern for venting remains unclear. Of the seven cells that vented, four were poor performers which is consistent with earlier tests (1) but two were essentially baseline cells which previously showed improved safety by not showing any venting (a. (3) Test Setup). Six of the seven cells vented with a case temperature of 72°F or less which is indicative of a low energy reaction without associated flame.

(4) Porosimetry Analysis

In addition to evaluating the performance of the various cathode configurations, the optimization of the cathode included porosimetry and surface area measurements of cathodes from Groups 2, 4, 5, 6, 8, 10, 11, 12, 13 & 14. The measurements were taken from the cathodes shown in Table VII by Micrometrics Instrument Corporation, Norcross, Georgia and the report results are included in Appendix 2 of this report. A summary of the results is shown in Table VIII.

Linear regression analysis was performed on each of the reported characteristics against the readily measured characteristics of Teflon percentage, cathode thickness, carbon/TFE mix weight and density, and discharge capacity to 2.0 volts. None of the analyses had significant correlation and it was concluded that the characteristics reported were not adequate in sample size or variable range to determine their importance.

Surface Area: 580 cm²

Load: 2A

Temp: -20°F

% SO₂: 68%

Table VII

CATHODES ANALYZED FOR POROSIMETRY/SURFACE AREA

Group	Teflon (%)	Thickness (in)	Density (gm/cc)
2	5.0	0.028	0.373
4	5.0	0.0325	0.318
5	5.0	0.033	0.348
6	5.0	0.0235	0.372
8	7.5	0.028	0.375
10	7.5	0.030	0.321
11	7.5	0.0315	0.349
12	7.5	0.033	0.371
13	3.0	0.032	0.315
14 (Scale-up)	5.0	0.0295	0.454

Table VIII

POROSIME TRY RESULTS

Sample Identification	Specific Surface Area (m²/g)	Net Pore Volume (cc/g)	Average Pore Diameter (microns)	Bulk Density (g/cc)	Density at 50,000 psi (g/cc)	Porosity (%)
Group 2	20.719	1.191	0.46	0.47	1.08	56.4
Group 4	29.903	1.322	0.48	0.52	1.66	68.8
Group 5	31.001	1.036	0.26	0.67	2.22	69.7
Group 6	31.171	1.593	0.36	0.44	1.46	6.69
Group 8	28.784	0.829	0.54	0.55	1.01	45.7
Group 10	27.190	1.502	0.62	0.48	1.77	72.7
Group 11	29.772	1.825	0.76	0.45	1.76	79.3
Group 12	30.068	1.483	0.39	0.46	1.45	68.2
Group 13	31.196	1.557	0.58	0.45	1.47	9.69
Group 14	32.077	1.309	0.32	0.47	1.24	61.8

c. TASK III - Li/SO₂ RATIO EVALUATION FOR SAFETY

(1) <u>Cell Design</u>

Cells with a Li/SO₂ ratio design range from 0.9 to 1.1 were evaluated for performance and safety. The chosen range was based on a nominal Li/SO₂ ratio of one from the baseline cell, the current tolerance of supplied lithium and an assumed close control of SO₂ content in a production operation. Two means of lithium content control were implemented: variation of the anode length and the alloying of the lithium with 10% aluminum. Varying the length results in a corresponding change in effective electrode surface area, while alloying can reduce the lithium content without affecting the total surface.

The matrix for the Li/SO₂ ratio evaluation tests are shown in Table IX. With the electrode length varying, it was attempted to maintain a constant carbon/Teflon weight of 9.0 gms. by adjusting the cathode thickness at the design density of 0.35 gm/cc.

(2) <u>Lab Cell Test with 10% Aluminum/90 Lithium Alloy</u>

Cell Construction

The lab cell (gasketed seals) consisted of a standard 0.030" thick, 5% Teflon, roll formed cathode, one layer of Celgard separator, an 0.007" thick anode of 90% lithium, 10% aluminum and an electrolyte of 64.4% SO₂. The electrode surface area was 0.5 in².

Test Results

Two current-voltage scans were performed with the results shown in Table X and Figure 11. A short through the separator following the scans prevented the planned 3 ma/cm² discharge for capacity. These results indicated that after an initial equalization period for wetting and lithium film removal, the lithium aluminum alloy performed exceptionally well to high current densities and no voltage problems were anticipated for Task III cells.

28

Table IX

Li/SO₂ Ratio Design Parameters

						1							
							1	Cathode	H	(in)	0.028		0.025
							1.		ı	(in)	30.5		34
elgard	× 0.007"	×	utside	10.6 Ahr	ch			Li	ı	(ii)	27		30.0
1 Layer Celgard	$L \times 1.75" \times 0.007"$	L x 1.75" x T	Cathode Outside	68% SO2, 10.6 Ahr	3 Cells Each				Wt	(gm)	0.6		9.0
	-		Ū	•		Li/SO2 Ratio	1.0	Cathode	Ţ	(in)	0.032		0.028
••		•				Li/SC			ı	(in)	28		30.5
				e H				Ŀi	า	(in)	24.5	- 1 ax	27.0
Separator	Anode	Cathode	Wrap	Electrolyte	Quantity				Wt	(gm)	9.0		9.0
							6.0	Cathode	H	(in)	0.036		0.032
							0		ı	(in)	.92		28
								Li	ı	(in)	22		24.5

Wt (gm) 0.6

9.0

10

8 T

Table X

Current Voltage Scan - 10% Al Anode

Load Ω	Current*	Current* Density mA/cm²	Scan 1 Voltage	Scan 2 Voltage V
1000	2.9	. 9	2.76	2.89
500	5.8	1.8	2.71	2.88
250	11.4	3.5	2.63	2.85
100	27.9	8.6	2.66	2.79
50	54.0	16.7	2.58	2.70
25	103.2	31.9	2.54	2.58
10	231.0	71.5	2.34	2.31

^{*}Based on Scan 2 Voltages

(3) Cell Fabrication

Anode

The build difficulties with the anode were in the variation in thickness of the lithium foil. The new lot of pure lithium used for this build was 0.0005" thicker than that used in the previous build resulting in a 7% increase in the planned Li/SO₂ ratio. The foil with 10% aluminum was thinner and considerably less uniform resulting in an overlapping of the Li/SO₂ ratio across the three groups without ever exceeding a Li/SO₂ ratio of 0.96. A 0.003" thick nickel diagonal collector, stacked to the anode was used.

Cathodes

Although it was attempted to hold the carbon/Teflon weight constant, some difficulty was encountered as the density of the cathode tended to increase with decreasing thickness and the thinner cathodes were as much as 15% over the nominal 0.35 gm/cc and as high as 10.0 grams in weight.

Activation

No further difficulties were encountered in the cell build. The longer electrodes and the aluminum addition to the anode were no more difficult to wrap. The individual cell parameters are shown together with results in Table XI.

(4) Test Results

The test results and actual build parameters are summarized in Table XI. Representative graphs are shown in Figures 12 - 17.

Table XI

Trouble of

L1/SO₂ Ratio Evaluation Build and Test Results Load: 2A Constant Current Temperature: -20°F

Marchine Parameters Marchine Parameters															The second second
All Area (math) Area (math) Cathod (math) All Area (math)<	De	sign Param	eters				Build	Data		,			Test Re	esults	
0 538 DR169 0.036 9.16 0.341 9.90 10.66 1.24 0.93 2.50 2.3 0 580 DR171 0.036 9.16 0.341 10.06 10.62 1.24 0.93 2.52 2.73 0 580 DR174 0.036 9.73 0.342 10.05 10.52 1.29 1.03 2.51 2.75 0 580 DR178 0.034 9.45 0.345 11.00 10.52 1.29 1.04 2.52 2.71 2.45 0 631 DR189 0.034 9.48 0.345 11.00 10.52 1.29 1.04 2.52 2.73 2.74 0 0.031 9.33 0.352 11.23 10.62 1.29 1.06 2.50 2.50 2.45 2.75 10 0.031 9.33 0.352 11.23 10.62 1.29 1.06 2.50 2.50 2.45 10	an of B	20	Surface Area	Ce II	Cathode Thick.	Carbo		Anode	SO ₂	C/SO2	Li/SO2	Peak Voltage Volts		Venting	Vent Temp.
DR171 0.036 9.16 0.341 10.06 10.62 1.24 0.95 2.51 2.45 2.	-		538	DR169		9.16	0.341	9.90	10.66	1.24	0.93	2.50			
DR174 0.036 9.73 0.362 10.53 10.59 1.32 0.99 2.51 2.75 2.				DR171	0.036	9.16	0.341	10.06	10.62	1.24	0.95	2.52	2.7		
1				DR174		9.73		10.53	10.59	1.32	66.0	. 2.51	2,45		
DR18 0.033 9.48 0.357 11.00 10.59 1.29 1.04 2.55 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.4 2.50 2.50 2.4 2.50 2.50 2.50 2.50 2.4 2.50 2.	2	0	580	DR175	0.034	9.45	0.345	10.84	10.52	1.29	1.03	2.51	2.7		
DR180 Course Co				DR178		9.48		11.00	10,59	1.29	1.04	2,52	2.2		
10 631 DR181 0.029 9.88 0.389 12.25 10.57 1.35 1.16 2.58 2.45 2.45 2.45 2.15 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.45 2.51 2.51 2.45 2.51 2.				DR180	0.033	9.33	0.352	11,23	10.62	1.27	1.06	2.50	2.4		
DR183 0.028 9.43 0.384 13.03 10.64 1.32 1.21 2.53 2.50 2.5 DR185 0.028 9.43 0.384 13.03 10.62 1.29 0.75 2.49 2.3 DR187 0.032 9.53 0.370 8.03 10.62 1.29 0.75 2.49 2.3 DR190 0.034 9.43 0.345 9.44 10.57 1.31 0.89 2.51 2.45 Xea DR191 DR192 0.028 9.43 0.385 9.44 10.66 1.27 0.86 2.50 2.51 2.45 DR194 0.028 9.53 0.389 9.69 10.67 1.29 0.91 2.52 2.6 Xea DR195 0.028 9.53 0.388 9.69 10.67 1.29 0.91 2.50 2.50 2.4 DR197 0.025 9.34 0.381 9.40 10.64 1.22 0.88 2.50 2.50 2.4 DR198 0.026 9.34 0.381 9.40 10.64 1.25 0.88 2.50 2.50 2.4 DR198 0.026 9.04 0.371 9.40 10.64 1.22 0.88 2.60 2.50 2.4 DR198 0.026 9.04 0.371 9.40 10.64 1.25 0.88 2.60 2.50 2.4 DR198 0.026 10.04 0.376 10.04 10.64 1.38 0.96 2.46	-	0	631	DR181	0.029	9.88	0.389	12.25	10.57	1,35	1.16	2.58	2.45		
10 580 DR185 0.028 9.43 0.384 13.03 10.61 1.28 1.23 2.50 2.5 10 580 DR187 0.032 9.53 0.370 8.03 10.62 1.29 0.75 2.49 2.3 DR192 0.034 9.43 0.363 9.44 10.62 1.27 0.86 2.51 2.45 DR194 0.034 9.43 0.385 9.13 10.66 1.27 0.86 2.50 2.5 Yes DR194 0.028 9.73 0.387 9.62 10.68 1.31 0.90 2.50 2.5 Yes 10 704 0.028 9.53 0.388 9.69 10.61 1.27 0.94 2.50 2.4 10 704 0.31 9.40 10.64 1.22 0.88 2.60 2.4 Yes 10 0.025 9.04 0.371 9.40 10.64 1.22 0.98 2.46				DR 183		9.78		12.91	10.64	1, 32	1.2.1	2.53	2.2		
580 DR187 0.032 9.53 0.370 8.03 10.62 1.29 0.75 2.49 2.3 Yes DR189 0.034 9.63 0.363 9.44 10.67 1.31 0.89 2.48 2.4 Yes 631 DR190 0.034 9.43 0.365 9.41 10.67 1.30 0.90 2.51 2.45 Yes DR194 0.028 9.43 0.385 9.13 10.66 1.27 0.96 2.50 2.5 Yes DR195 0.028 9.53 0.388 9.69 10.67 1.29 0.91 2.52 2.6 Yes DR196 0.025 9.34 0.383 10.00 10.61 1.27 0.94 2.50 2.4 DR197 0.025 9.04 0.31 9.40 10.64 1.22 0.88 2.60 2.3 DR198 0.026 10.04 0.396 10.04 10.64 1.22 0.88 <td< td=""><th>33</th><th>,</th><th></th><td>DR 185</td><td></td><td>9.43</td><td>0.384</td><td>13.03</td><td>10.61</td><td>1.28</td><td>1.23</td><td>2.50</td><td>2.5</td><td></td><td></td></td<>	33	,		DR 185		9.43	0.384	13.03	10.61	1.28	1.23	2.50	2.5		
631 DR199 0.033 9.63 0.363 9.44 10.57 1.31 0.89 2.48 2.48 2.4 Yee DR190 0.034 9.43 0.345 9.41 10.42 1.30 0.90 2.51 2.45 DR194 0.028 9.43 0.385 9.13 10.66 1.27 0.90 2.50 2.7 Yes DR195 0.028 9.53 0.388 9.69 10.67 1.29 0.41 2.55 2.6 Yes DR195 0.028 9.53 0.388 9.69 10.67 1.29 0.41 2.50 2.4 Yes DR197 0.025 9.34 0.383 10.06 10.64 1.22 0.88 2.60 2.3 DR198 0.026 10.04 0.048 1.38 0.96 2.46 2.46 2.46	1	10	580	DR187		9.53	0.370	8.03	10.62	1.29	0.75	2.49	2.3		
631 DR192 0.034 9.43 0.345 9.41 10.42 1.30 0.90 2.51 2.45 631 DR192 0.028 9.43 0.385 9.13 10.66 1.27 0.86 2.50 2.5 Yes DR194 0.028 9.73 0.388 9.69 10.67 1.29 0.91 2.52 2.6 Yes 704 DR195 0.025 9.34 0.383 10.00 10.61 1.27 0.94 2.50 2.4 DR197 0.025 9.04 0.371 9.40 10.64 1.22 0.88 2.60 2.3 DR198 0.026 10.04 0.396 10.04 10.48 1.38 0.96 2.46 2.4				DR 189	0.033	9.63		9.44	10.57	1.31	0.89	2.48	2.4	Yes	09
631 DR192 0.028 9.43 0.385 9.13 10.66 1.27 0.86 2.50 2.5 Yes DR194 0.028 9.73 0.387 9.62 10.68 1.31 0.90 2.50 2.7 Yes 704 DR195 0.028 9.53 0.383 10.06 10.61 1.27 0.94 2.50 2.4 DR197 0.025 9.04 0.371 9.40 10.64 1.22 0.88 2.60 2.3 DR198 0.026 10.04 0.396 10.04 10.48 1.38 0.96 2.46 2.46				DR 190		9.43	0.345	9.41	10.45	1.30	06.0	2.51	2.45		
DR194 0.028 9.73 0.397 9.62 10.68 1.31 0.90 2.50 2.7 Yes DR195 0.028 9.53 0.388 9.69 10.67 1.29 0.91 2.52 2.6 Yes DR196 0.025 9.34 0.383 10.00 10.61 1.27 0.94 2.50 2.4 DR197 0.025 9.04 0.371 9.40 10.64 1.22 0.88 2.60 2.3 DR198 0.026 10.04 0.396 10.04 10.48 1.38 0.96 2.46 2.4	5	10	631	DR 192	0.028	9.43	0.385	9.13	10.66	1.27	0.86	2.50	2.5	Yes	90
DR195 0.028 9.53 0.388 9.69 10.67 1.29 0.91 2.52 2.6 Yes DR196 0.025 9.34 0.383 10.00 10.61 1.27 0.94 2.50 2.4 DR197 0.025 9.04 0.371 9.40 10.64 1.22 0.88 2.60 2.3 DR198 0.026 10.04 0.396 10.04 10.48 1.38 0.96 2.46 2.46				DR194		9.73		9.65	10.68	1.31	06.0	2.50	2.7	Yes	88
DR196 0.025 9.34 0.383 10.00 10.61 1.27 0.94 2.50 DR197 0.025 9.04 0.371 9.40 10.64 1.22 0.88 2.60 DR198 0.026 10.04 0.396 10.04 10.48 1.38 0.96 2.46				DR 195		9.53	0.388	69.6	10.67	1.29	0, 91	2.52	2.6	Yes	99
0.025 9.04 0.371 9.40 10.64 1.22 0.88 2.60 0.026 10.04 0.396 10.04 10.48 1.38 0.96 2.46	9	10	704	DR 196		9.34	0.383	10.00	10.61	1.27	0.94	2.50	2.4		
0.026 10.04 0.396 10.04 10.48 1.38 0.96 2.46				DR197		9.04		9.40	10.64	1.22	0.88	2.60	2.3		
				DR198		10.04	0.396	10.04	10.48	1.38	96.0	2.46	2.4		

^{*} Based on 1.44 Ahr/g mix theoretical.

34

A SHOW THE STORY

The variation of lithium in the anodes did not affect the performance as all cells at -20°F exceeded the 2.0 hour requirement. The cells do not appear to be lithium limited at this temperature. In addition, alloying with 10% aluminum does not appear to cause performance reduction at -20°F even at a Li/SO₂ ratio as low as 0.75. The addition of aluminum did, however, make a difference in the safety tests. Four of nine -20°F cells with aluminum in the anode vented while the nine without aluminum showed no venting through the 10 hour discharge.

Several cells were tested at room temperature to evaluate the performance and the results are shown in Table XII. The two cells with the aluminum alloy that were low in capacity were also low in lithium and the resulting 68-75% lithium efficiency was consistent with cells with a Li/SO₂ ratio near one. These limited tests further indicated the hazardous nature of the aluminum alloy as one vented during the discharge and a second vented spontaneously 24 hours later. These safety results make suspect the presence of aluminum within the cell and suggest further work.

- d. TASK IV CHARACTERIZATION OF "SAFE DESIGN" CELL FOR PERFORMANCE AND SAFETY
- (1) Optimized Design

The overall baseline design as described in a. (1)-Cell Design, was retained for the characterization study. Data analysis had shown the baseline design attains the performance goals and offers adequate resistance to abuse test conditions. A reduction of the thickness of the diagonal anode collector to aid in the cell manufacture was the only recommended change.

Cathode

Data analysis of the cathode optimization, b. (3)-Test Results, indicated the best performing cathodes were those of highest carbon/Teflon weight irrespective of cathode density,

Table XII

TASK III - Li/SO2 RATIO EVALUATION TEST RESULTS

Load: 2A Constant Current

Temp: Room

			Build Data	Data					Test	Test Results	
Group	Cell No.	A1,	Surface Area,	Carbon/ Teflon, gm	SO ₂ , Ahrs	C/SO ₂	Li/SO ₂	Peak Voltage, V	Time to 2 V, hrs	Vent in Ten hrs	Vent Temp.,
7	DR179	0	580	9.33	10.62	1.27	1.04	2.71	3.9		
ю	DR186	0	631	9.43	10.65	1.28	1.19	2.72	4.45		
41	DR 188	10	580	8.75	10.68	1.18	0.75	2.78	3.0	Yes	186
5	DR 193	10	631	9.28	10.68	1.25	0.86	2.77	3.1	**	3/
9	DR 199	10	704	69.6	10.00	1.32	0.94	2.77	4.0		

^{*} Based on 1.44 Ahr/g theoretical.

^{**} Cell vented on standing at room temperature 24 hours after load was removed.

thickness and Teflon content. With an active cathode surface of 580 cm² for high rate capability, and a cathode thickness limited to 0.032" by the internal case diameter, an increased density was required to maximize the carbon/Teflon weight. Although several higher density groups were fabricated, achieving greater than 0.38 gm/cc was considered to be unsound for a production operation. Optimum for production was judged to be 0.35 gm/cc (9.0 gm of carbon/Teflon) or that of the baseline design.

Cathode Scale-up. The initial scale-up results as noted in section a. were not satisfactory in process control; especially for density, and cathode efficiency. The Ahr. capacity achieved at 2A and -20°F did not correlate with the development cathodes shown in Figure 10.

The low percentage of Teflon, required for performance, was difficult to process into the carbon uniformly without large quantities of water. This apparently reduced the quality of the mix from our large capacity mixer, which must limit the water content. We thus returned to our slurry process using somewhat larger and more concentrated batches to scale up the process. The slurry is filtered into a large cake before it is oven dried and micronized.

The capacity of the micronization process was increased by the use of a 10 cubic foot chopper type mixer. The larger micronizer produced acceptable mix when the chopper blades were modified to simulate the previously used low capacity laboratory blender. Micronization of up to 20 lbs. of carbon/Teflon mix was accomplished within minutes in this manner. It was noted that the storage of the larger quantities of micronized material would cause densification in both the mix and the milled material. Limiting the quantity per storage container and remicronizing when necessary has minimized this problem.

Continuous roll forming of the micronized carbon/Teflon mix was accomplished by hand feeding the mix onto the pre-slit grid as it passed through the rolls. The coated grid was cut to length, weighed, and measured as it emerged from the rolls.

Anode

A lithium thickness of 0.007" (toleranced from 0.0065 to 0.0080" by the supplier) was maintained throughout the development tests and was considered adequate for performance and safety within a Li/SO₂ ratio range of 0.9 to 1.1. For a nominal SO₂ content equivalent to 10.5 Ahr., the predicted theoretical lithium capacity for this material would range from 8.9 to 10.9 Ahr. If the electrolyte fill range could be minimized, the Li/SO₂ ratio would be held within the optimum range.

Anode Collector. The diagonal anode collector was maintained throughout the program to ensure lithium continuity during deep discharge. It was effective in providing high lithium efficiency and was retained even though it presents manufacturing problems. The main problem, shorting during the electrode wrapping process, was greatly minimized by reducing the nickel collector from 0.005" to 0.003" thick. This change was instituted following the baseline cell build and showed no voltage or capacity losses. The 0.003" thick diagonal anode collector then became the standard for "Safe Design" characterization cells.

Electrolyte

The SO₂ concentration was optimized at 68% in a previous contract (1) and was maintained through Builds 4 - 8. It continues to yield the design goals of 4 and 8 Ahr. at a 2A constant current discharge at -20°F and room temperature respectively.

Separator

One layer of Celgard between electrodes minimizes separator volume allowing cathode weight maximization for improved performance and safety. Although the thinness of one layer contributes to occasional shorting during the electrode wrapping process, this problem has been largely overcome by reducing the anode collector thickness and its advantages overshadow these manufacturing difficulties.

Table XIII Task IV Construction Statistics

_
_
250
0
0
N
9170
U,
1000
Q
-
2
1
ā
10
•

Parameter	Average	Standard Deviation	R Range
Cathode Wt (Carbon & Teflon) g	9.34	0.42	8.60 - 10.5
Anode Theoretical Capacity, Ahr	10.88	09.0	9.52 - 12.05
SO Theoretical Capacity, Ahr	10.51	0.09	10.30 - 10.69
Li/SO Ratio	1.04	1	0.93 - 1.12
(C & Tef)/SO Ratio*	1.28	1	1.14 - 1.46

* Based on 1.44 Ahr/g mix theoretical.

- Control of the last of the l

(2) Cell Fabrication

A total of 250 cells was manufactured for this build with 120 of these allocated for test and delivery for this contract. All raw materials were kept constant although there was no attempt to control them as single lots. The statistics for the measured parameters are shown in Table XIII. When compared to the similar statistics for the baseline cell, as shown in Table III, a significant increase in the standard deviation and range of all parameters was noted especially in the anode theoretical capacity. With relatively close control of the activation weights, the Li/SO₂ ratio nearly stayed within the desired 0.9 to 1.1 limits. The range of carbon weight larely increased in the positive direction would be beneficial for performance as noted in section a. (1). The lower end of the anode weight range could have a detrimental effect on capacity as up to 84% anode efficiency would be required to achieve the desired 8.0 Ahr. at 2A at room temperature.

(3) Test Results

Test Matrix

The tests were divided into four groups as follows:

- I. Constant Current
 - A. 2.0A
 - B. 3.5A
 - C. 5.0A
- II. Constant current following 2 week storage at 160°F
- III. Pulse (1 sec. duration)

	Pulse Load	Duty Cycle
A.	10, 0A	4:1
в.	20.0A	9:1

IV. Short Circuit

All tests were run at three temperatures: -20°F, room temperature, and 130°F. Groups I through III were discharged to 20 Ahr. (approx. 200% of the theoretical SO₂ equivalent capacity) where practical. The duty cycle for pulsing was regulated to produce an average current of 2A. Due to equipment limitations, we were able to discharge only four cells at a time and chose to run the room temperature and 130°F cells together (2 of each) and three each of the -20°F for each current profile.

All cells were heat soaked at 130°F for a minimum of 2 days to equilibrate the cells and weed out leakers.

Test Procedure

The test setup remained similar to that described in a. (3)-Test Setup. Voltage and case temperatures were monitored during the controlled discharges while current and case temperatures were monitored during the short circuit tests. Suspected vent occurrences were confirmed by visual examination following the test.

Performance Results. The constant current test results for unstored cells are shown in Table XIV. A plot of the capacity vs temperature for the varying discharge currents is shown in Figure 18. Representative graphs are shown in Figures 19 - 27. The performance data shows essentially no capacity difference between 2.0 and 3.5A, probably due to the added heating effect at the higher current. The same is true for 5.0A, -20°F test cells which yielded equivalent capacity to the 2.0A and 3.5A cells but at the two higher temperature points, considerable losses were noted. Cells discharged at 130°F showed no capacity loss as compared to the room temperature cells at the same current.

Name of Street

The discharge data following 2 weeks of storage at 165°F, Table XV, shows improvement in the room temperature capacity at 2A but a loss at -20°F and 130°F.

Table XIV

Constant Current Discharge Results for Unstored Cells

Vent Temp.	:. 	232	, i	97	194	198 190	99	178 205	190
Time To Vent (min.)	111	4,3	1 1	2.9	3.2	3,2	1,6	1,7	1,4
Capacity To 2.0V (Ahr)	4.0	7.4	7.0	4.7 3.9 4.2	7.8	7.6	4.5	6.4	6.4
Time (Hr) To 2V	22.0	3,7	3,5	1.33 1,10 1.20	2.22 2,08	2.17	.90 .82 .75	1.27	1.27
Peak (V)	2.50 2.48 2.50	2.80	2.79	2.47 2.43 2.43	2.75	2.78 2.71	2.40 2.40 2.40	2.65	2.69
Current (A)	2A	2A	2A	3,5	3.5	3.5	5,0	5.0	5.0
Temp. (°F)	-20	RT	130	-20	RT	130	-20	RT	130
Cell No.	DR320 329 327	328 330	321 323	312 313 311	325 326	317 318	307 306 308	316 319	315

Table XV

Constant Current Discharge Results Following 2 Weeks at 165°F

Ce11 No.	Temp. (^O F)	Current (A)	Peak (V)	Time (Hr) To 2V	Capacity To 2.0v (Ahr)	Time To Vent (min.)	Vent Temp.
DR292 291 293	-20	2.0	2.32 2.13 2.22	1.3 1.0 1.5	2.6	, , ,	t t t
298 297	RT		2.78	4.2	4.8		1.1
294	130		2.79	3.8	7.6	•	1

77年70年,新伊州中国的第三年

Table XVI

PULSE DISCHARGE RESULTS

o to vent nt Temp.						•		134			205	232	198	202
ty Time to											3.1	3.1	4.7	4.6
o Capacity V to 1.0V (Ahr)	4.4	4.6	4.0	5.5	5.5	8.9	8.2	3.2	3.0	2.7	5.3	5.2	5.8	5.8
Time t to 1.07 (Hr)	2.2	2.3	2.0	2.8	2.8	4.5	4.1	1.6	1.5	1.3	2.7	2.6	5.9	2.9
> 1	1.3					5.5					5.6	2.7	3.2	3.0
Time to 2V	7.	7.	. 5	2.3	2.2	8.2	3.0	•		•	1.3	1.4	1.6	1.5
Peak (V)	2.01	2.08	2.00	.2.49	2.43	2.49	2.46	1.62	1.60	1.60	2.10	2, 12	2.05	2.05
Duty Cycle	4:1							9:1						
Pulse	10A							20A						
Pulse Temp. (°F) Current	120			RT		130		-20			RT		130	
Cell No.	DR305	309	310	335	334	333	332	304	302	303	339	340	338	337

Representative graphs are shown in Figures 28 to 30. The pulse data (Table XVI and Figures 18) showed a greater dependence on temperature than the constant current tests with a continuing improvement up to the 130°F discharge. With all pulsing at an average current of 2A, there was no added heating benefit from the higher current pulses. Thus, the higher current pulses caused significantly more electrode polarization, especially at the lower temperature. At a 20A pulse current at -20°F, the voltage never reached the 2.0V minimum. Representative graphs are shown in Figures 31 - 36.

Safety Results

Venting During Discharge. The cells discharged at the base current of 2A had a low incidence of venting (Table XIV) as only one (at room temperature) of the 7 cells tested did vent after being forced to a negative voltage. This is consistent with the earlier builds of essentially baseline design where sporadic or no venting was observed. The trend continued with the storage cells as none of the seven cells, discharged at 2A following 2 weeks at 160°F storage, vented.

At 3.5 and 5A and the 10 and 20A pulses, (Tables XIV and XVI), the trend was reversed as 12 of the 14 cells tested vented on forced discharged to a negative voltage. Surprisingly, the 2 cells that did not vent were at the low temperature (-20°F) where venting was more prevalent in the early program (1).

In general, the cells that were pulse discharged vented at a higher case temperature and were considered to be less safe. Loud "pops" were heard on venting and the vent area was usually opened wider which would be more indicative of a more rapid and higher pressure expulsion of gases.

The case temperature at venting was usually close to 100°F for the -20°F test and 200°F for both the room temperature and 130°F tests. Although the actual

Table XVII

	Comment	Internal lead loss			Internal lead loss		Internal lead loss
ULTS	Case Temp. at Vent °F	64	42	129	134	150	166
SHORT CURCUIT TEST RESULTS	Time To Vent (min.)	2.1	2.9	1.0	6.0	0.7	, 8.0
SHORT CU	Time at Peak (min.)	1.3	2.0	0.7	0.7	0.1	0.3
	Peak Current (A)	53A 40	46	70	62 50	65	54
	Temp. (°F)	-20		RT		130	
	Cell No.	DR261 263	265	343	345 44	279	278

Townson of the last of the las

Parameter of the last of the l

I

-

-

Ī

venting was not observed for both safety and equipment limitations, the venting was considered safe as these relatively low temperatures were not indicative of violent venting or even venting with flame. Slight black discoloration was noted on some of the vented cells but it was more likely this was from expelled and decomposed electrolyte than from charring due to flame as the vented cases were no more distorted than those from standard short circuit tests.

Short Circuit Tests

Short circuiting the cells under the -20 to 130°F range of temperature indicated no safety problem with the cells venting without flame between 0.7 and 2.9 minutes (Table XVII). The 40 to 70A achieved by the cells did reveal a design weakness as one cell from each group failed to vent because of a loss of internal continuity. Post mortem analysis showed the 0.003" nickel anode lead was too thin to sustain the high currents and broke apart before the cell could heat sufficiently to cause venting. Although the lead loss did not appear to create a safety problem, a return to the 0.005" thick lead but not necessarily the diagonal collector, was recommended for future use.

DISCUSSION

The last build of our initial safety study contract (1) indicated we were nearing our performance goals and safety requirements with a new high rate "D" cell design. The start of this study showed that on the average, better than 4 and 8 Ahrs. at -20°F and room temperature, respectively, could be attained with a cell that did not vent through a 2A forced discharge of 200% of the theoretical SO₂ capability. This controlled build verified that, with the lithium limited design and improvements in the anode current collection and especially the cathode composition and processing technique, an efficient and safe high rate SO₂ cell could be fabricated. It was generally concluded that high cathode efficiency together with a lithium limited cell will maintain the safe nature of the cell. This generally supports the conclusions of an earlier study (3).

The most significant improvement from this study is the development of the high rate cathode. Combining a low level of Teflon with dry roll forming technique has produced a process that is readily adaptable to high rate production. Carbon and Teflon mix weight has remained as the key variable to achieving an optimum cathode. Figure 37 shows the correlation of capacity and carbon mix weight, as discussed in b. (3) (Figure 10), with data from all four builds from this study. The added data supports the correlation and again suggests maximizing the carbon mix weight for optimum performance.

The porosimetry measurements (Table VIII) concur with this direction as there appears to be no loss in surface area as the density increases. Unfortunately the limited porosimetry data gave no indication on the practical limit of density as a limiting pore size and volume must eventually be reached. Lack of repeatability of porosimetry measurements suggests non-uniformity of the cathode.

Areas of varying density and pore size throughout the cathode would tend to support the capacity to carbon/Teflon weight correlation and at the same time, explain

Surface Area: 580 cm²

Load: 2A

Temp: -20°F

% SO₂: 68%

O Table 6

the observed data spread. More work is definitely needed to understand the cathode structure and the relation to performance and safety.

Variation of the lithium content indicated that up to a Li/SO_2 ratio of 1.2 will not decrease the safety to forced discharge at 2 amperes. The sample size of this test was small and confined to one temperature and verification is suggested before conclusions are drawn. The $\pm 10\%$ thickness tolerance on the thin lithium required for high rate designs may require up to a Li/SO_2 ratio of 1.2 on high production "D" cells required to deliver 8 Ahr. at room temperature.

The addition of aluminum to the lithium as a means of lowering the lithium content while maintaining continuity under deep discharge produces a hazardous cell and should not be considered. Reference to hazardous reactions on aluminum have been discussed before (4). The acceptability of any form of aluminum in Li/SO₂ cells, such as the aluminum collector grid, from a safety viewpoint, requires further study.

One possible modification to our baseline design is in the anode lead. Maintaining the nickel at a thickness of 0.003" is necessary to minimize shorting during the wrapping operation. However, the extension of this lead beyond the lithium to the case weld has been shown to cause a problem during short circuit. Overheating and eventual disintegration of this lead at high currents is not recommended for safe operation. A nickel lead of at least 0.005", welded to the anode collector will be substituted in the future.

This study verified the baseline high rate design as acceptable for performance and safety on a 2A forced discharge to 200% of the theoretical SO₂ capacity. As the current is increased to 5A, however, there is an increased probability of venting if the cells are driven into reverse. Forced pulsing at 10 and 20A beyond a reasonable cutoff voltage can lead to rapid venting; however, the lithium limited configuration still alleviates the potential for explosion when a cell is forced into reverse.

REFERENCES

- (1) L. J. Blagdon, B. Randall, "Safety Studies of Lithium-Sulfur Dioxide Cells" ERADCOM Report, Contract DELET-TR-77-0459 February 1979.
- (2) "Manufacturing Methods for Lithium Batteries", Honeywell Power Sources Center, Technical Report AFML-TR-79-4084, 31 August 1979.
- (3) Gabriel J. DiMasi and John A. Christopolus, "The Effects of the Electrochemical Design Upon the Safety and Performance of the Lithium-Sulfur Dioxide Cells" Proc. 28th Power Sources Symposium, June 1978.
- (4) H. Taylor, William Bowden and J. Barrella, "Li/SO₂ Cells of Improved Stability" Proc. 28th Power Sources Symposium, June 1978.

SECTION 5.0 ACKNOWLEDGEMENTS

The continuing guidance and encouragement provided by G. J. DiMasi and E. S. Brooks is acknowledged and appreciated.

APPENDICES

APPENDIX I

STATISTICAL ANALYSIS OF BASELINE (G3091-B7) CELL DISCHARGE TESTS

A) Assuming (1) G3091-B7 discharge performance is normally distributed, and (2) the sample statistics at Ambient and -20°F are true estimates of the population parameters, the one-sided tolerance limit can be calculated for cell performance.

L1 =
$$\overline{X} - K_{(\gamma_i \ 1-\infty)}$$
 s

where:

Ll is the one-sided limit

X is the sample mean .

s is the sample standard deviation

K (4. 1-\alpha) is a factor based on a confidence level of 0.90 and probability of 0.95 for sample size "n"

At Ambient temperature,

$$n = 15$$

 $\overline{X} = 4.20 \text{ hours}$

s = 0.0716 hours

$$K_{(.90, .95)} = 2.329$$

$$L = \overline{X} - Ks = 4.20 - (2.329)(0.0716) = 4.03 \text{ hours}$$

$$n = 15$$

$$\overline{X}$$
 = 2.19 hours

$$K_{(.90, ..95)} = 2.329$$

$$L = \overline{X} - Ks = 2.19 - (2.329)(0.161) = 1.81 \text{ hours}$$

Therefore, we can state with 90% confidence that 95% of the G3091-Bl discharge times, at 2.0 Amperes Constant Current discharge to 2.0 volts, will be greater than:

4.03 hours @ Ambient temperature and 1.81 hours @ -20°F

Since 2.0 hours is the specified minimum discharge time at -20°F, we can calculate the value for K at 2.0 hours and find an approximate value for the proportion of cells expected to be discharged greater than 2.0 hours.

thus:
$$K = \frac{X - 2.0 \text{ hours}}{s} = \frac{2.19 - 2.0}{0.161} = 1.18$$

The closest table value (at 90% confidence) to a K of 1.18 is K = 1.119 a. corresponding to 75%.

therefore: L = X - Ks = 2.19 - (1.119)(0.161) = 2.01 hours

so, at 90% confidence 75% of G3091-Bl discharge times to 2.0 volts

at -20°F... will be greater than 2.01 hours

B) During forced discharge (at 2.0 Amperes) to 187% of theoretical capacity, a cell vent would be considered a failure of the G3091-B7 cell design to prevent venting.

Fifteen (15) cells were tested at each test temperature (i.e., Ambient and -20°F). No failures (r) were encountered. Estimates of Reliability can be calculated using the sample size (n) and number of failures (r) which will estimate the minimum reliability demonstrated by the tests:

$$R = \frac{1}{[1 + (\frac{r+1}{n-r} \cdot F (2r+2, 2n-2r))]}$$

where: R is the reliability estimate (Lower Limit)

n is the sample size

r is the number of failures

F_Q(2r +2, 2n - 2r) is F - distribution value corresponding to 2r + 2 and 2n - 2r degrees of Freedom for Q level of significance. (1 - Q is confidence level)

At both Ambient and -20°F temperatures:

= 0.8576 or 85.76%

$$n = 15$$

 $r = 0$
 $f_{C}(2, 30) = 2.49$
 $f_{C}(3, 30) = 2.49$
 $f_{C}(3, 30) = 2.49$
 $f_{C}(3, 30) = 2.49$
 $f_{C}(3, 30) = 2.49$

$$R = \frac{1}{[1 + (\frac{0+1}{15-0} \cdot 2.49)]} = \frac{1}{[1 + (0.166)]}$$

Therefore, the Minimum Reliability associated with no venting under conditions of 2.0 Amperes forced discharge to 187% of theoretical capacity is 85.76% at 90% confidence at Ambient and -20°F temperatures.

APPENDIX 2
POROSIMETRY DATA

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 POROSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 092878

SAMPLE IDENTIFICATION: HONEYWELL GROUP 2

CELL FACTOR: .000788 VC: 24.056 CC

CT; 119

WEIGHTS, WC: 42.5968 GRAMS

WS: .3718 GRAMS

WT: 356,64 GRAMS

Α	C	D	E	F
	CORRECTED		VOL_OF_PORES	
	COUNTER	PORE	OF INDICATED	PERCENT
APPLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY
1	0	176. 76	0	0
2	4	8 8. 38	. 00847767	. 711744
4	12	44. 19	. 025433	2. 13523
6	19	29. 46	. 040269	3, 38078
8	25	22. 095	. 0529855	4. 4484
10	33	17. 676	. 0699408	5. 87189
12	41	14. 73	. 0868962	7. 29537
14. 2	54	12. 4479	. 114449	9, 60854
20	56	8 . 838	. 118687	9. 96441
40	57	4. 419	120807	10, 1423
60	71	2. 946	. 150479	12, 6334
80	88	2. 2095	. 18227	15, 3025
100	180	1. 7676	. 381495	32. 0285
200	232	8838	. 491705	41. 2811
400	284	. 4419	. 601915	50, 5338
600	313	. 2946	. 663378	55. 6939
800	333	. 22095	. 705766	59. 2527
1000	360	. 17676	. 762991	64. 0569
2000	475	. 08838	1. 00672	84. 5196
4000	542	. 04419	1. 14872	96. 4413
6000	551	. 02946	1. 1678	98. 0427
8000	556	. 022095	1. 1784	98. 9324
10000	561	. 017676	1, 18899	99. 8221
15000	561	. 011784	1. 18899	99. 8221
20000	562	. 008838	1, 19111	100
25000	562	. 0070704	1. 19111	100
30000	562	. 005892	1, 19111	100
35000	562	. 00505028	1. 19111	100
40000	562	. 004419	1. 19111	100
45000	562	. 003928	1. 19111	100
50000	562	. 0035352	1. 19111	100

NET PORE VOLUME 1. 19111 CC/G 80

MOTERIALS ANALYSIS LABORATORY

MUDEL 900 AND 910 FURUSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 092978

SAMPLE IDENTIFICATION: HONEYWELL GROUP 4

CF | F POR: .000788

VC: 24.056 CC CT: 91

WEIGHTS, WC: 42.5919 GRAMS

WS: . 5359 GRAMS

WT: 353, 73 GRAMS

A				F
"	CORRECTED	n	VOL OF PORES	
	COUNTER	PORE	OF INDICATED	PERCENT
APPLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL
FRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY
FRESSORE	D-DIHMN NES	(2% EW 2)	(C*FHCTOR/WS)	FUNUSITY
1. 5	14	117. 84	. 0205859	1. 55729
2	42	88. 38	. 0617578	4. 67185
4	66	44. 19	. 097048	7. 34149
ć _	79	29, 46	116163	8. 78754
8	90	22. 095	. 132338	10, 0111
10	100	17. 676	. 147042	11, 1235
12	108	14. 73	. 158806	12, 0133
14. 2	122	12, 4479	. 179392	13, 5706
20	184 .	8. 838	. 270558	20, 4672
40	242	4. 419	. 355842	26, 9188
60	272	2. 946	. 399955	30, 2558
80	290	2, 2095	. 426423	32, 2581
100	313	1. 7676	. 460243	34, 8165
200	383	. 8838	. 563172	42. 6029
100	463	. 4419	. 680806	51, 5017
406	510	. 2946	. 749916	56, 7297
300	539	. 22095	. 792558	59, 9555
1000	573	. 17676	. 842553	63. 7375
2000	774	. 08838	1. 13811	86, 0957
4000	871	. 04419	1. 28074	96, 8854
6000	888	. 02946	1. 30574	98. 7764
8000	894	. 022095	1, 31456	99. 4438
10000	898	. 017676	1. 32044	99. 8887
15000	898	. 011784	1. 32044	99. 8887
21000	899	. 00841714	1, 32191	100
25000	. 899	. 0070704	1, 32191	100
30000	899	. 005892	1, 32191	100
25000	899	. 00505028	1. 32191	100
40000	899	. 004419	1, 32191	100
45000	899	. 003928	1, 32191	100
50000	899	. 0035352	1, 32191	100

NET PORE VOLUME 1, 32191 CC/G

THIS PAGE IS BEST QUALITY TO FROM COPY PURBISHED TO DOG

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 POROSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 100278

SAMPLE IDENTIFICATION: HONEYWELL GROUP 5

CF I THE FOR \$-000787

WEIGHTS,

WC: 42, 5911 GRAMS

WS: .8244 GRAMS

086 CC

WT: 351.03 GRAMS

Ą	c	D	E	F
	CORRECTED		VOL OF PORES	
	COUNTER	PORE	OF INDICATED	PERCENT
AFFLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY
1	0	176. 76	0	0
2	7	88, 38	. 00668243	. 645161
	20	44. 19	. 0190927	1. 84332
0	30	29. 46	. 028639	2. 76498
8	42	22. 095	. 0400946	3. 87097
10	54	17. 676	. 0515502	4. 97696
12	60	14. 73	. 057278	5. 52995
14. 2	81	12. 4479	. 0773253	7. 46544
20	158	8. 838	. 150832	14. 5622
40	213	4. 419	. 203337	19. 6313
60	232	2. 946	. 221475	21. 3825
80	265	2. 2095	. 252978	24. 424
100	278	1. 7676	. 265388	25. 6221
200	359	8838		33. 0875
· · · · · · · · · · · · · · · · · · ·	456	. 4419	. 435313	42. 0276
	517	. 2946	493546	47. 6498
800	557	. 22095	. 531731	51, 3364
1000	615	. 17676	5871	56, 682
2000	782	. 08838	. 746523	72. 0737
4000	1050	. 04419	1, 00237	96. 7742
6000	1070	. 02946	1. 02146	98. 6175
	1076	. 022095	1. 02719	99. 1705
j	1080	. 017676	1. 031	99. 5392
10000	1080	. 011784	1. 031	99. 5392
20000	1085	. 008838	1. 03578	100
25000	1085	. 0070704	1. 03578	100
30000	1085	. 005892	1. 03578	100
1.5000	1085	. 00505028	1. 03578	100
40000	1085	. 004419	1. 03578	100
45000	1085	. 003928	1.03578	100
50000	1085	. 0035352	1. 03578	100

NET PORE VOLUME 1, 03578 CC/G

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 PORUSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 092278

SAMPLE IDENTIFICATION: HONEYWELL GROUP 6

CELL FACTOR: . 000788

WEIGHTS,

WC: 42, 623 GRAMS

VC: 24, 056 CC

WS: . 459 GRAMS

CT: 124

WT: 353, 18 GRAMS

A	C	Ū	E	F
	CORRECTED		VOL OF PORES	
	COUNTER	PORE	OF INDICATED	PERCENT
APPLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY
1	Ö	176. 76	0	0
2	6	88. 38	. 0103006	. 646552
4	17	44. 19	. 0291852	1. 8319
6	25	29. 46	. 0429194	2. 69397
8	36	22. 095	. 0618039	3. 87931
10	47	17. 676	. 0806884	5. 06465
12	61	14. 73	. 104723	6. 57328
14. 2	63	12. 4479	. 108137	6. 78879
20	76	8, 838	. 130475	8. 18966
40	78	4. 419	. 133908	8. 40517
200	346	. 8838	. 594004	37, 2845
440	454	. 401727	. 779416	48. 9224
600	491	. 2946	. 842937	52, 9095
800	525	. 22095	. 901307	56, 5733
1000	546	. 17676	. 937359	58, 8362
2000	739	. 08838	1. 2687	79. 6336
4000	895	. 04419	1. 53651	96. 444
6000 .	913	. 02946	1. 56742	98, 3836
8000	923	. 022095	1. 58458	99. 4612
10000	923	. 017676	1, 58458	99. 4612
15000	924	. 011784	1. 5863	99. 569
20000 -	928	. 008838	1, 59317	100
25000	928	. 0070704	1. 59317	100
30000	928	. 005892	1, 59317	100
35000	928	. 00505028	1. 59317	100
40000	928	. 004419	1. 59317	100
45000	928	. 003928	1. 59317	100
50000	928	. 0035352	1. 39317	100

NET PORE VOLUME 1, 59317 CC/G

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 POROSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 081878

SAMPLE IDENTIFICATION: HONEYWELL GROUP 8

CELL FACTOR: . 000787

WEIGHTS, WC: 42,4831 GRAMS

VC: 24, 086 CC

WS: . 4355 GRAMS

CT: 45

WT: 357, 72 GRAMS

A	C	D	E	F	
	CORRECTED		VOL OF PORES		
	COUNTER	PORE	OF INDICATED	PERCENT	
APPLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL	
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY	
1	0	176. 76	0	0	
2	3	88. 38	. 00542135	. 653595	
4	9	44. 19	. 0162641	1. 96078	
6	16	29, 46	. 0289139	3, 48584	
8	23	22, 095	. 0415637	5. 01089	
10	29	17. 676	. 0524064	6, 31808	
12	37	14. 73	. 0668634	8. 061	~
14. 2	52	12, 4479	. 0939701	11. 329	
30	88	5. 892	. 159026	19. 1721	
40	91	4. 419	. 164448	19. 8257	
65	134	2. 71938	. 242154	29. 1939	
80	140	2. 2095	. 252997	30, 5011	
130	173	1. 35969	. 312631	37. 6906	
220	205	. 803454	. 370459	44. 6623	
400	241	. 4419	. 435515	52. 5054	
700	272	. 252514	. 491536	59, 2593	
800	274	. 22095	. 49515	59. 695	
1000	281	. 17676	. 5078	61. 22	
2000	380	. 08838	. 686705	82. 7887	
4000	431	. 04419	. 778868	93, 8998	
6000	440	. 02946	. 795132	95. 8605	
8000	443	. 022095	. 800553	96. 5141	3
10000	446	. 017676	. 805974	97. 1677	
15000	446	. 011784	. 805974	97. 1677	J.
20000	455	. 008838	. 822239	99, 1285	33
25000	455	0070704	. 822239	99. 1285	34
31000	459	. 00570193	. 829467	100	- 3
35000	459	. 00505028	. 829467	100	2 4
40000	459	. 004419	. 829467	100	23
45000	459	003928	. 829467	100	7.3
50000	459	. 0035352	. 829467	100	*

NET PORE VOLUME . 829467 CC/G SKELETAL DENSITY AT HIGHEST PRESSURE-11, 1896 G/CC

BULK DENSITY 550884 G/CC

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 POROSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 091878

SAMPLE IDENTIFICATION: HONEYWELL GROUP 10

CELL FACTOR: . 000787

WEIGHTS,

VC: 24, 086 CC

WS: . 57 GRAMS WT: 352, 47 GRAMS CT: 63

WC: 42,5269 GRAMS

A	<u> </u>	D	E	F
	CORRECTED		VOL OF PORES	
	COUNTER	PORE	OF INDICATED	PERCENT
APPLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY
1	2	176. 76	. 0027614	. 183823
2	10	88, 38	. 013807	. 919117
4	29	44. 19	. 0400403	2. 66544
8	43	29. 46	. 0593702	3. 9522
8	57	22, 095	. 0787	5, 23897
10	72	17. 676	. 0994105	6. 61765
12	93	14. 73	. 128405	8. 54779
14. 2	116	12. 4479	160161	10. 6618
25	203	7. 0704	. 280282	18. 6581
60	304	2. 946	. 419733	27. 9412
90	360	1. 964	. 497052	33, 0882
220	506	. 803454	. 698635	46, 5073
400	587	. 4419	. 810472	53. 9522
600	641	. 2946	. 88503	58. 9154
800	677	. 22095	. 934735	62. 2242
1200	732	. 1473	1. 01067	67. 2794
2000	910	. 08838	1. 25644	83. 6397
4000	1055	. 04419	1. 45664	96, 9669
6000	1070	. 02946	1. 47735	98. 3456
8000	1074	. 022095	1. 48287	98. 7132
10000	1077	. 017675	1. 48702	98. 9889
15000	1077	. 011784	1, 48702	98. 9889
20000	1082	. 008838	1. 49392	99. 4485
25000	1082	. 0070704	1. 49392	99. 4485
30000	1088	. 005892	1. 5022	100
35000	1088	. 00505028	1, 5022	100
40000	1088	. 004419	1. 5022	100
45000	1088	003928	1. 5022	100
50000	1088	. 0035352	1. 5022	100

NET FORE VOLUME 1, 5022 CC/G

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 POROSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 091878

SAMPLE IDENTIFICATION: HONEYWELL GROUP 11

CELL FACTOR: . 000778

WEIGHTS,

WC: 55.1315 GRAMS

VC: 27, 815 CC

WS: . 5273 GRAMS

CT: 50

WT: 414.51 GRAMS

APPLIED PRESSURE	CORRECTED COUNTER INDICATION B-BLANK RES 75	PORE DIAMETER (2X EQ 2)	VOL OF PORES OF INDICATED DIA. AND > (C*FACTOR/WS)	PERCENT OF TOTAL
PRESSURE	INDICATION B-BLANK RES	DIAMETER	DIA. AND >	
PRESSURE	B-BLANK RES			OF TOTAL
		(2X EQ 2)	(C&EACTOR /UC)	
1	75.		(C*FHCTOR/WS)	POROSITY
-	1.5	176. 76	. 110658	6. 06306
2	125	8 8. 38	. 18443	10, 1051
4	180	44. 19	. 265579	14, 5513
6	201	29. 46	. 296564	16, 249
8	. 220	22. 095	. 324597	17. 785
10	237	17. 676	. 349679	19, 1593
12	256	14. 73	. 377713	20. 6952
14. 2	277	12, 4479	. 408697	22, 3929
40	288	4. 419	. 424927	23. 2821
160	565	1. 10475	. 833624	45. 675
200	597	. 8 838	. 880838	48, 2619
500	717	. 35352	1. 05789	57. 9628
600	743	. 2946	1. 09625	60. 0647
800	788	. 22095	1. 16265	63, 7025
1000	819	. 17676	1. 20839	66. 2086
2000	1059	. 08838	1. 56249	85, 6103
4000	1179	. 04419	1. 73954	95. 3112
8000	1208	. 022095	1. 78233	97. 6556
11000	1213	. 0160691	1. 78971	98. 0598
15000	1221	. 011784	1. 80151	98. 7065
20000	1228	. 008838	1. 81184	99. 2724
25000	1228	. 0070704	1,81184	99. 2724
32000	1231	. 00552375	1. 81627	99. 5149
35000	1231	. 00505028	1. 81627	99, 5149
41000	1237	. 00431122	1. 82512	100
45000	1237	. 003928	1. 82512	100
50000	1237	. 0035352	1. 82512	100

NET PORE VOLUME 1. 82512 CC/G 86

TRUS PAGE IS PAST QUALITY FRAUE.

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 FOROSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 091878

SAMPLE IDENTIFICATION: HONEYWELL GROUP 12

CELL FACTOR: . 000788

VC: 24, 056 CC

CT: 212

WEIGHTS, WC: 42.6214 GRAMS

WS: .3056 GRAMS

WT: 357, 25 GRAMS

Α	C		E	F	
	CORRECTED		VOL OF PORES		
	COUNTER	PORE	OF INDICATED	PERCENT	
AFFLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL	
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY	
1	. 0	176. 76	0	0	
2	3	88, 38	. 0077356	. 521739	
4	11	44. 19	. 0283639	1. 91304	
6	17	29. 46	. 0438351	2, 95652	
8	25	22. 095	. 0644633	4. 34783	
10	33	17. 676	. 0850916	5. 73913	
12	42	14. 73	. 108298	7. 30434	
14. 2	54	12. 4479	. 139241	9. 3913	
30	94	5. 892	. 242382	16. 3478	
40	97	4. 419	. 250118	16, 8696	
65	144	2. 71938	. 371309	25. 0435	
80	152	2. 2095	. 391937	26, 4348	
130	189	1. 35969	. 487343	32, 8696	
220	228	. 803454	. 587906	39, 6522	
400	278	. 4419	. 716832	48. 3478	
700	320	. 252514	. 825131	. 55. 6522	
800	326	. 22095	. 840602	56, 6956	
1000	332	. 17676	. 856073	57. 7391	
2000	473	. 08838	1. 21965	82, 2609	
4000	545	. 04419	1. 4053	94. 7826	
6000	558	. 02946	1. 43882	97. 0434	
8000	563	022095	1. 45171	97. 913	
10000	566	. 017676	1. 45945	98. 4347	
15000	566	. 011784	1. 45945	98. 4347	
20000	575	. 008838	1. 48266	100	
25000	575	. 0070704	1. 48266	100	
31000	575	. 00570193	1. 48266	100	
35000	575	. 00505028	1. 48266	100	
40000	575	. 004419	1. 48266	100	
45000	575	. 003928	1. 48266	100	
50000	575	. 0035352	1. 48266	100	
			THIS PAGE TA R	EST ONALTHY TO AGOL	

NET PORE VOLUME 1, 48266 CC/G PROM COTY PURPLEMENT TO DO

SKELETAL DENSITY AT HIGHEST PRESSURE-, 373407 G/CC

BULK DENSITY . 46007 G/CC

tere researche se se se se se se per I L. H. COMERCI I I L. S. se st st

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 POROSINETER DATA AND CALCULATIONS

OPERATOR(S): MLB

DATE RUN: 100578

SAMPLE IDENTIFICATION: HONEYWELL GROUP 13

CELL FACTOR: . 000787 + VC: 24.086 CC

WEIGHTS, WC: 42.5007 GRAMS

WS: .5697 GRAMS

CT: 100

WT: 350, 75 GRAMS

е	c	D D	É	F
	CORRECTED		VOL OF PORES	
	COUNTER	PORE	OF INDICATED	PERCENT
APPLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY
1	3	176. 76	. 00414428	. 266193
2	8	88, 38	. 0110514	. 709849
4	27	44. 19	. 0372986	2. 39574
8	43	29. 46	. 0594014	3, 81544
8	60	22, 095	. 0828857	5. 32387
10	82	17. 676	. 113277	7. 27595
12	101	14. 73	. 139524	8. 96185
14. 2	134	12. 4479	. 185111	11. 89
20	134 .	8. 838	. 185111	11. 89
40	136	4. 419	. 187874	12. 0674
60	150	2. 946	. 207214	13. 3097
80	179	2. 2095	. 247276	15, 8829
100	445	1. 7676	. 614736	39, 4854
200	506	. 8838	. 699003	44. 898
500	637	. 35352	. 87997	56. 5217
800	696	. 22095	. 961474	61. 7569
1000	726	. 17676	1. 00292	64. 4188
2000	947	. 08838	1, 30821	84. 0284
4000	1102	. 04419	1. 52233	97. 7817
6000	1113	. 02946	1. 53753	98, 7578
8000	1124	. 022095	1. 55273	99. 7338
10000	1127	. 017676	1. 55687	100
16000	1127	. 0110475	1. 55687	100
20000	1127	. 008838	1. 55687	100
25000	1127	. 0070704	1. 35687	100
30000	1127	. 005892	1. 55687	100
35000	1127	. 00505028	1. 55687	100
40000	1127	. 004419	1. 55687	100
45000	1127	. 003928	1. 55687	100
50000	1127	.0035352	1. 55687	100

NET PORE VOLUME 1, 55687 CC/G

THIS PAGE IS BAST QUALITY PAGE 14 FROM COPY PURDISHED NO DOG

MATERIALS ANALYSIS LABORATORY

MODEL 900 AND 910 POROSIMETER DATA AND CALCULATIONS

OPERATOR(S): MLB DATE RUN: 100278

SAMPLE IDENTIFICATION: HONEYWELL GROUP 14

 VC: 24, 056 CC
 WS: . 7649 GRAMS

 CT: 176
 WT: 345, 01 GRAMS

A	C CORRECTED	D	E VOL OF PORES	F
	COUNTER	PORE	OF INDICATED	PERCENT
APPLIED	INDICATION	DIAMETER	DIA. AND >	OF TOTAL
PRESSURE	B-BLANK RES	(2X EQ 2)	(C*FACTOR/WS)	POROSITY
1	0	176. 76	0	0
2	8	88. 38	. 0082416	629426
4	29	44. 19	. 0298758	2. 28167
6	45	29. 46	. 046359	3. 54052
8	63	22. 095	. 0649026	4. 95673
10	87	17. 676	. 0896274	6, 845
12	103	14. 73	. 106111	8. 10386
14. 2	135	12. 4479	. 139077	10. 6216
20	161	8. 838	. 165862	12. 6672
40	247 .	4. 419	. 254459	19, 4335
60	271	2. 946	. 279184	21, 3218
80	318	2. 2095	. 327603	25, 0197
100	334	1. 7676	. 344087	26, 2785
200	451	. 8838	. 46462	35, 4839
400	583	. 4419	. 600606	45, 8694
600	657	. 2946	. 676841	51, 6916
800	707	. 22095	. 728351	55. 6255
1000	759	. 17676	. 781922	59, 7168
2000	1041	. 08838	1. 07244	81, 904
4000	1213	. 04419	1. 24963	95, 4367
6000	1238	. 02946	1. 27539	97. 4036
8000	1249	. 022095	1. 28672	98, 2691
10000	1253	. 017676	1. 29084	98, 5838
15000	1253	. 011784	1. 29084	98, 5838
20000	1257	. 008838	1. 29496	98. 8985
25000	1257	. 0070704	1. 29496	98, 8985
30000	1258	. 005892	1. 29599	98. 9772
35000	1258	. 00505028	1. 29599	98. 9772
40000	1258	. 004419	1. 29599	98. 9772
45000	1271	. 003928	1, 30938	100
50000	1271	. 0035352	1, 30938	100

NET PORE VOLUME 1. 30938 CC/G

FROM COPY PARKISHED TO DOG

PENETRATION VOLUME (CC/g)

7

Ausol.utr 1

PENETRATION VOLUME (CC/9)

- - each os biol

(psta)

PRESSURE

ABSOLUTE

mirromonitica

E.

Fold to Here - - - -

PENETRATION VOLUME (CC/9)

		MICROMER S.ANALYS	IS LA		
	SURF	MODEL 210 ACE_AREA DATA AN	OD	TION	
				DATE RUN	- 09-11-
SAMPLE IDENTIFI	CATION: HO	NEYWELL GROUP 2		·····	
MANIFULD VOLUM		ML (STP) E	XTRA VOLU	ME: 131, 270 ML	(STP)
STATION 3 FL	.ASK NO. 33 -	31 OUTGAS TEMP.	130 (C)	OUTGAS TIME	866. M
W1 19, 1357 G	6 H1				
W2 18. 4375 G	H2	140. 9900 MM HG		0. 000066 (MM	
WS 0.6982 G	TS	77. 2400 (K)		16. 2000 A	
VS 19.0180 M	IL.				
INPUT FOINT 2 INPUT FOINT 4 INPUT FOINT 5 INPUT FOINT 6 SLOFE = 0.2	N 150 N 170 N 190 N 210 N 230	P1 P2 M HG) (MM HG)	3. 1218 3. 9816 4. 5554 4. 9389 5. 2644 5. 5505	(P2/PS) (N	017778 025161 032490 039464
SURFACE AREA =	20, 7192	2 M /G			
STANDARD ERROR	OF_LEAST_S	QUARES LINE = _0. LINEAR REGION OF LEAST SQUARES CA	000075	%_ERROR_=_0.2	

	• • • • • • • • • • • • • • • • • • • •				• • • • • •			DEL 21		-CMCUTTAT	TON			
					SUKF	HUE F	HAEH	пили и	ואני נ	OMPUTA1		- Fallist	00.15	-,
											DATI	E RUN	09-13	-/
SAMFI	-E_11	ENIT!	TLA	TUN	HU	NE Y WE	با_ بابا:	ROUP 4			***************************************			
MAN.	ÍFÚLL	Volt	JME:	28.	050	ML	(STP)		EXTR	A VOLUM	ME: 131, 21	70 ML	(STP)	
ADS	JKEA I	E: N	ITRO	GEN							-1.			
STA	rion .	1 F	FLAS	K NO.	0-0		OUTG	AS TEM	F. 1	40 (C)	OUTGAS	TIME	1014.	11
WI	20.	0715	G		H1	550.	4000	MM HG		PS	751. 0350	MM (HG	
W2	19.	4102	G		H2	147.	4600	MM HG		ALF:HA	0. 00006	(MM	-1 HG)	
WS	Û.	6613	G		TS	77.	2500	(K)		s	16. 2000	2) A		
VS	17.	8074	ML		<u> </u>									
				EV		P1 M HG)				V ,STP)	X (P2/PS)		Y ML,STP)	
INF	JT PO	INT 1	1	N				•			****			
INF	JT PO	INT 2	2	N	180.	7100	51	3300	6.	1613	0, 0683	0	011906	
INF	JT PO	INT 3	3	N	200.	9800	88 (7100	6.	9910	0. 1155	0.	018670	
INPL	<u>JT PO</u>	INT 4	4	N	220.	8000	119	1600	7.	5767	0. 1587	0	024890	
INF	JT PO	INT 5	5	N	240.	0300	148	4100	_8.	0899	0, 1976	0	.030442	
LOPE	=	0.	143	5 .	INTE	RCEPT	=	0. 0	021					_
TEEZ	NCE A	KEA =		70 00	122 1	2								
										· · · · · · · · · · · · · · · · · · ·				_
TANI	AKL	ERROF	OF	LEAS	<u>ST S</u>	QUARE	S LI	NE_ =	0. 00	0013	%_ERROR_	=O	0600	
***	****									OTHERM, ULATION				

MATERIALS ANALYSIS LABORATORY MODEL 2100D SURFACE AREA DATA AND COMPUTATION DATE RUN 09-13-78 SAMPLE IDENTIFICATION: HONEYWELL GROUP 5 MANIFOLD VOLUME: 28.050 ML (STP) EXTRA VOLUME: 131.270 ML (STP) ADSUNBATE: NITROGEN STATION 2 FLASK NO. 1-1 OUTGAS TEMP. 140 (C) OUTGAS TIME 1014. MIN WI 19, 7291 6 H1 550, 3000 MM HG PS 751, 0350 MM HG ALPHA 0.000066 (MM HG) H2 140, 8000 MM HG 18, 9348 G TS 77, 2500 (K) S 16, 2000 A 0. 7943 G WS VS 19, 0477 ML EV F'1 P2 (MM HG) (MM HG) (ML,STP) (P2/PS) (ML,STP) INFUT FOINT 1 N 150, 2500 9, 4110 4, 6830 ******* ********* INPUT POINT 2 N 180,0800 42,9000 6,3104 0,0571 0,009600 INPUT FOINT 3 N 200, 4400 77, 7500 7, 1581 0, 1035 0, 016133 INPUT POINT 4 N 220, 1700 110, 0300 7, 7828 0, 1465 0, 022055 INPUT POINT 5 N 240, 6200 139, 7900 8, 3157 0, 1861 0, 027502 SLOPE = 0. 1387 INTERCEPT = 0. 0017 SURFACE AREA = 31,0008 M /G STANDARD ERROR OF LEAST SQUARES LINE = 0,000039 % ERROR = 0.2072 ****** = DATA OUT OF LINEAR REGION OF ISOTHERM, NOT USED FOR LEAST SQUARES CALCULATION

	M /	1 T	ERI	AL	s e	N A	LYS	IS L	ABORAT	ORY
				SUBE.	ACE (DEL 210	OOD ND COMPUTA	ATTON	
				30Ki i	100	INCH	DHIH N	AD COMPOSE		
									DATE	RUN 09-13-
SAMPL	E IDENTI	FIC	ATION	t: Hor	NEYWE	LL G	ROUP 6			
MANI	FOLD VOL	UME	- 28	₹ 050	ML (STP)		TTRA VOLU	IME: 131, 27	OTML (STP)
	IRLATE: N									
STAT	ION 3	FLAS	SK NO). 3–3 -		OUTG	AS TEMP	2. 160 (C)	OUTGAS T	IME 1014. M
W1	19, 8309) G		H1	550.	9000	MM HG	PS	751 , 0 350	
W2	18. 9269) G		H2	144.	2000	MM HG	ALF HA	A 0. 000066	
WS	0. 9040) G		TS	77.	2500	(K)	s	16. 2000	
VS	18. 4270) ML								
			EV		P1		P2		X	
			EV		1 HG)	(Mt	M HG)		(P2/PS)	Y - (ML,STP)
INPU	T POINT	1	N	150.	7100	7.	5020	4. 4263	****	*****
INPU	T POINT	2	N	180.	0500	39.	. 6300	6. 2219	0. 0528	0. 008953
	T POINT		N		2100		8600	7. 1375	0. 0997	0. 015511
	T POINT		N ·				9900			
								7. 7865	0. 1438	0. 021568
INPU	POINT	5	N	240.	7900	138.	4300	8, 3368	0. 1843	0. 027105
SLOPE	= 0	. 137	79	INTER	CEPT	=	0. 00	17		
				•						
	25/50				2					
UKFA	CE AREA	=	31. 1	705 M	1 /G					
TANL	ARD ERRO	R OF	LEA	ST SC	UARE	s LIN	NE = C	000637	% ERROR =	0 2000
								ISOTHERM		
777	(X * *,	NOT	USED	FOR	LEAS	T SQL	JARES C	ALCULATIO	N	

				SURF	ACE A		DEL 21 DATA A		OMPUTA	TION			
							-				ATE F	RUN_ C	9-1
SAMPL	E IDEN	NT1F1C	ATION	l: HOI	NEYWE	ELL GI	ROUP 8						
MAN	FOLD V	VOLUME	: 28	. 050	ML (STP)		EXTR	A VOLU	ME: 131.	270	ML (S	TP)
ADSC	RBATE:	NITE	OGEN										
STAT	ION 2	2 FLA	SK NO	1. 7-7		OUTG	AS TEM	P. 1	40 (C)	OUTGAS	MIT 8	1E 8	66.
W1	22. 08	334 G		H1	550.	7000	MM HG		PS	750. 16	605 M	IM HG	
W2	21. 58	373 G		H2	146.	8500	MM HG		ALPHA	0. 0000)66 (MM HG	-1
WS	0. 49	761 G		TS	77.	2400	(K)		S	16. 20	000 A		
VS	17. 92	288 ML											
			EV	(MI)	P1 1_HG)	(M)	P2 1_HG)	(ML	V ,STP)	X (P2/P3	3)	Y (ML,	
INPL	<u>IT PO1</u> N	VT 1	N		2800		5010			*****		****	
INF	II POIN	IT 2	N	150.	4000	50.	9900	5.	7806	0, 068	0	0. 01	261
INPL	II FOIN	4T_3	_N	170.	0300	79.	7300	6.	4808	0. 106	.3	0.01	835
INEL	IT POIN	IT 4	N	190.	5100	106.	9200		0048	0.142	5	0. 02	373
INPL	IT POIN	IT 5	N	210	0700	132	3400		4521	0.176	4	0. 02	874
CL ODE		0.14	0.7	TAITE	······································								
oLUFE	=	O. 148		INTE	NCEP I		0. 0	025					
SURFA	CE ARE	A =	28. 7	841 N	2 1 /G					•			

			.F. N.						ABOR			
				SURFA	ACE A		DEL 210 DATA AI	AD COMBO.	TATION			
									De	ATE RUI	N 09-13	3
SAMPL	E 1DEN	TIFIC	ATIO	N: HO	NEYWE	LL GI	ROUP 19)				
MÄNI	/ duo+.	/OLUME	:2	e. 050	ML (STF)	i	EXTRA VOL	UME: 131.	270 MI	LT(STP)	
ADSC	KEATE:	NITE	OGEN		····· - ··							
STAT	TUN Z	FLF	SK N	о. с-з		OUTG:	AS TEM	P. 160 ((OUTGA:	STIME	ĪÒ14.	Μ.
W1	19. 60)71 G		H1	550.	0000	MM HG	PS	7 51. 60	350 MM	HG -1	
W2	18, 85	569 G		H2	144.	6700	MM HG	ALPH	A 0. 0000	066 (MI 2		
WS	0. 75	502 G		TS	77.	2500	(K)	S	16. 20	000 A		
VS	18. 29	756 ML										
			EV		P1 1 HG)	(MI	P2 1 HG)	(ML,STP)	X (P2/P3	3)	Y (ML,STP))
INPU	T POIN	IT 1	N _	150.	3400	14.	7850	4. 1119	*****	** **	******	*
INPU	T POIN	IT 2	N	180.	3300	49.	5600	5, 5502	0, 066	50 (0. 012729	?
INPU	T POIN	пз	N	200.	4900	84.	4700	6. 3091	0, 112	25 (0. 020086	5
INPU	T POIN	IT 4	N	220.	2500	116.	6000	6. 8546	0. 155	53 (0. 026812	2
INPU	T POIN	IT 5	N	240.	2300	146.	0000	7. 3133	0. 194	14 (0. 032996	<u> </u>
SLOPE	=	0. 15	78	INTER	CEPT	=	0. 00	023				
SURFA	CE ARE	A =	27.	1899 M	2 1 /G							
STANL	ARD ER	ROR O	F LE	AST_SG	UARES	3_L,I1	NE = 0	000009		3_= 0.	0409	
*****	****	= DAT	A OU USE:	T OF L	INEA	R REC	GION OF JARES C	1SOTHER	M, ON	 •.		

	МАТ	E.R.J	LA L	S6	LN A	LYS	IS LA	BORAT	ORY.	
			SURF	ACE_A		DEL 210 DATA AN		rion		
								DATE	RUN - 09-0)9-
SAMEL	E IDENTIFIC	ATION	1:H01	NEYWE	LL . Gf	ROUP. 11		•••		
MANI	FOLD VOLUME	: 28	3, 050	ML ((STP)	• E	XTRA VOLUI	1E: 131, 270	ML (STP)	
ADSO	REATE: NITR	OGEN								
STAT	ION 4 FLA	SK NO), C-3	- ·	OUTG	AS TEMP	. 170 (C)	OUTGAS TI	ME 3501.	irl
-										
W1	19. 8497 G		Н1	550.	3000	MM HG	PS	749, 2868	MM HG	
W2	18, 8564 6		H2	146.	2100	MM HG	ALPHA	0. 000066	(MM HG)	
Ws	0. 9933 G		TS	77.	2300	(K)	S	16. 2000		
VS	18. 0229 ML									
	•	EV		P1 1_HG)		P2 1_HG)		X _(P2/PS)	Y (ML,STP	- (
INFU	IT_POINT_1	N	150.	5800	10.	1170	3.7129_3	******	****	* _
INFL	T POINT 2	_N	_180.	.2200	<u>40.</u>	2100	5.5795	0.0537	0_01016	4-
INF:U	T POINT 3	_N	200.	7300	74.	.5100	6. 5934	0.0994	001674	7
INFU	IT_EOINT_4_	_N	_220.	7200	107	£400	_7. 2686	0.:1437	0. 02308	:0
INFU	T POINT 5	_N	_240.	6700	L138.	3000	7_8073	0.1846	0_02899	·3_
SLOPE	i = 0. 14	38	INTER	ROEPT	=	0. 00	24			
									•••	
SURFA	ICE AREA =									
PIAND	ARD ERROR.O	r LEA	151 50	UARE	S LIN	NE = 0	. 000011	% ERROR =	0, 0582	

-

<u>M A T</u>	E R_	I A L S A	NALY	SI _s s L _i	ABORAT	ORY
		SURFACE A	MODEL 2	100D AND COMPUTA	ATION	
					DATE	RUN 09-14-
SAMPLE IDENTIFIC	ATIO	N: HONEYWE	LL GROUP	12		
MANIFOLD VOLUME	:2	STOSOTMET (STP)	EXTRA VOLU	JME: 131.27	0 ML (STF)
ADSORBATE: NITE	OGEN					
STATION 2 FLA	SK N	D. W-5	OUTGAS TE	MP. 170 (C	OUTGAS T	IME 1040. m
W1 19. 3953 6		H1 550,	5000 MM H	G PS	745. 7995	MM HG
W2 18. 6521 G		H2 140.	0000 MM H	G ALPHA	0. 000066	(MM HG)
WS 0. 7432 G		TS 77.	1900 (K)	s	16. 2000	2 A
VS 19. 2001 ML		-		•		
	EV	P1	P2			Υ -
				(ML,STP)		(ML, STP)
INPUT FOINT 1	_N	150, 7700	15, 3380	3. 9883	*****	****
INPUT POINT 2	N	150, 5900	40, 8600	5, 5149	0. 0548	0. 010510
INPUT FOINT 3	N	170, 3200	68. 5700	6, 3936	0. 0919	0, 015836
INPUT POINT 4	N	190, 9500	95, 9700	7. 0020	0. 1287	0. 021092
INPUT FOINT 5	N	210, 2700	122. 0200	7. 4789	0, 1636	0, 026156
INPUT FOINT 6	N	220, 7800	144, 0800	7. 9611	0. 1932	0. 030077
SLOPE = 0.14	20			0028		
		2				
SURFACE AREA =	30. (
STANDARD ERROR O	F. LE					
***** = DAT						

			SI	IREA	CE.		DEL :		D _COMPUTA	TION	
										DATE	_RUN09-0
SAMPLE	_IDEN	TIFICA	ATION:_	HQN	EYWE	ELL_G	RQUE.	13_			
)50 	ML (TRA VOLU	IME: 131. 27	O ML (STP)
ADSOR	BATE:	NITRO	JGEN								
STATI	ON 1	FLAS	5K NO. 1	-00	1	OUTG	AS TE	EMP.	200 (C)	OUTGAS T	IME 2641.
W1	18, 551	15 G	ŀ	11	559.	5000	MM H	4G	PS	746. 6702	MM HG
W2	18. 015	51 G	H	12	141.	6200	MM H	4G	ALPHA	0. 000066	(MM HG)
WS	0. 536	54 G	1	s	77.	2000	(K)		s	16, 2000	
VS	19 . 333	36 ML									
			EV		S. (1997)				V		Y
1.515.1.13										(P2/PS)_	

	_PQINT									0, 0663	
										0. 1045	
										0. 1377	
INPUT	POINT	_5	N1	.25_	3300	124.	3700	23	7_9607	0. 1666	0.02510
INPUT	POINT	<u>.</u> 6	N 1	90.	1600	139.	6600	28	<u> </u>	0. 1870	0. 02790
SLOPE		0. 137	73 IN	ITER	CEPT		0.	0022	2		
	···										
SURFAC	F AREA	<u> </u>	31. 195	6 M	2						
OUNT HU	E HNEF	· -	31. 195	10 M							

MANIFOLD VOLUME: 28.050 ML (STP) EXTRA VOLUME: 131.270 ML (STP) ADSORBATE: NITROGEN STATION 1 FLASK NO. J-88 OUTGAS TEMP. 140 (C) OUTGAS TIME 864. M W1 19.3589 G H1 550.7000 MM HG PS 750.1605 MM HG W2 18.7267 G H2 141.5800 MM HG ALPHA 0.000066 (MM HG) 2 WS 0.6322 G TS 77.2400 (K) S 16.2000 A VS 18.9132 ML EV P1 P2 V X Y - (MM HG) (MM HG) (ML,STP) (P2/PS) (ML,STP) INPUT POINT 1 N 150.5000 15.0960 4.7573 ***********************************	****								******* E O R A T	********* Ü R Y
AMPLE IDENTIFICATION: HONEYWELL GROUP 14. MANIFOLD VOLUME: 28.050 ML (STP) EXTRA VOLUME: 131.270 ML (STP) ADSORBATE: NITROGEN STATION 1 FLASK NO. J-88 OUTGAS TEMP. 140 (C) OUTGAS TIME 866. N W1 19.3589 G H1 550.7000 MM HG PS 750.1605 MM HG W2 18.7267 G H2 141.5800 MM HG ALPHA 0.000066 (MM HG) 2 WS 0.6322 G TS 77.2400 (K) S 16.2000 A VS 18.9132 ML EV P1 P2 (MM HG) (ML STP) (P2/PS) (ML STP) INPUT POINT 1 N 150.5000 15.0960 4.7573 ***********************************				SURF	ACE A				ION	
MANIFOLD VOLUME: 28.050 ML (STP) EXTRA VOLUME: 131.270 ML (STP) ADSORBATE: NITROGEN STATION 1 FLASK NO. J-88 OUTGAS TEMP. 140 (C) OUTGAS TIME 864. M W1 19.3589 G H1 550.7000 MM HG PS 750.1605 MM HG -1 W2 18.7267 G H2 141.5800 MM HG ALPHA 0.000066 (MM HG) 2 WS 0.6322 G TS 77.2400 (K) S 16.2000 A VS 18.9132 ML EV P1 P2 V X Y - (MM HG) (MM HG) (MM, STP) (P2/PS) (ML, STP) INPUT POINT 1 N 150.5000 15.0960 4.7573 ******** **************************									DATE	RUN 09-1
ADSORBATE: NITROGEN STATION 1 FLASK NO. J-88 OUTGAS TEMP. 140 (C) OUTGAS TIME 866. M W1 19. 3589 6 H1 550. 7000 MM HG PS 750. 1605 MM HG —1. W2 18. 7267 6 H2 141. 5800 MM HG ALPHA 0. 000066 (MM HG) —2. WS 0. 6322 G TS 77. 2400 (K) S 16. 2000 A VS 18. 9132 ML ———————————————————————————————————	SAMPL	E IDENI	IFILATIL	N: _HUI	NE Y WE	LL U				
STATION 1 FLASK NO. J-88 OUTGAS TEMP. 140 (C) OUTGAS TIME 864. M W1 19.3589 G H1 550.7000 MM HG PS 750.1605 MM HG W2 18.7267 G H2 141.5800 MM HG ALPHA 0.000064 (MM HG) WS 0.6322 G TS 77.2400 (K) S 16.2000 A VS 18.9132 ML EV P1 P2 V X Y P1 (MM HG) (MM, STP) (P2/PS) (ML, STP) INPUT POINT 1 N 150.5000 15.0960 4.7573 ******** **************************	MAN1	FOLD VOI	LUME: 2	8. 050	ML (STP)	E	XTRA VOLUM	1E: 131. 27	ML (STP)
W1 19.3589 6 H1 550.7000 MM HG PS 750.1605 MM HG —1 W2 18.7267 6 H2 141.5800 MM HG ALPHA 0.000066 (MM HG) 2 WS 0.6322 G TS 77.2400 (K) S 16.2000 A VS 18.9132 ML EV P1 P2 V X Y — (MM HG) (MM HG) (ML, STP) (P2/PS) (ML, STP) INPUT POINT 1 N 150.5000 15.0960 4.7573 ******** **************************	ADSO	RBATE: I	NITROGEN					***************************************		
W2 18.7267 G H2 141.5800 MM HG ALPHA 0.000066 (MM HG) WS 0.6322 G TS 77.2400 (K) S 16.2000 A VS 18.9132 ML EV P1 P2 V X Y - (MM HG) (MM HG) (ML,STP) (P2/PS) (ML,STP) INPUT POINT 1 N 150.5000 15.0960 4.7573 ******* ***************************	STAT	ION 1	FLASK N	0. J-8:	3	OUTG	AS TEMP	140 (C)	OUTGAS T	IME 866.
W2 18.7267 6 H2 141.5800 MM HG ALPHA 0.000066 (MM HG) WS 0.6322 6 TS 77.2400 (K) . S 16.2000 A VS 18.9132 ML EV P1 P2 V X Y - (MM HG) (MM HG) (ML,STP) (P2/PS) (ML,STP) INPUT P0INT 1 N 150.5000 15.0960 4.7573 ********** INPUT P0INT 2 N 180.0200 48.9200 6.4652 0.0652 0.010790 INPUT P0INT 3 N 200.0400 83.0700 7.3698 0.1107 0.016897 INPUT P0INT 4 N 220.7800 114.9200 8.0266 0.1532 0.022539 INPUT P0INT 5 N 240.1300 144.0300 8.5665 0.1921 0.027751 SLOPE = 0.1336 INTERCEPT = 0.0021										
WS 0.6322 G TS 77.2400 (K) . S 16.2000 A VS 18.9132 ML EV P1 P2 V X Y -	W1									1.
EV P1 P2 V X Y — (MM HG) (MM HG) (ML, STP) (P2/PS) (ML, STP) INPUT POINT 1 N 150, 5000 15, 0960 4, 7573 ******* **************************	W2									2
EV P1 P2 V X Y -	WS	0. 632:	2 G	TS	77.	2400	(K) .	S	16. 2000	Α
(MM HG) (MM HG) (ML, STP) (P2/FS) (ML, STF) INPUT POINT 1 N 150,5000 15.0960 4.7573 ******* ************ INPUT POINT 2 N 180,0200 48.9200 6.4652 0.0652 0.010790 INPUT POINT 3 N 200,0400 83.0700 7.3698 0.1107 0.016897 INPUT POINT 4 N 220,7800 114.9200 8.0266 0.1532 0.022539 INPUT POINT 5 N 240,1300 144.0800 8.5665 0.1921 0.027751 SLOPE = 0.1336 INTERCEPT = 0.0021	VS	18. 913:	2 ML					· · · · · · · · · · · · · · · · · · ·		
INPUT POINT 2 N 180,0200 48,9200 & 4652 0.0652 0.010790 INPUT POINT 3 N 200,0400 83,0700 7,3698 0.1107 0.016897 INPUT POINT 4 N 220,7800 114,9200 8,0266 0.1532 0.022539 INPUT POINT 5 N 240,1300 144,0300 8,5665 0.1921 0.027751 SLOPE = 0.1336 INTERCEPT = 0.0021			EV	(MI	A	(Mr				
INPUT POINT 3 N 200.0400 83.0700 7.3698 0.1107 0.016897 INPUT POINT 4 N 220.7800 114.9200 8.0266 0.1532 0.022539 INPUT POINT 5 N 240.1300 144.0800 8.5665 0.1921 0.027751 SLOPE = 0.1336 INTERCEPT = 0.0021 SURFACE AREA = 32.0774 M /G	-INEU	I FOINT	1N_	150.	5000	15.	_0960	47573 +	*******	********
INPUT_POINT 4 N 220,7800 114,9200 8,0266 0,1532 0,022539 INPUT_POINT 5 N 240,1300 144,0800 8,5665 0,1921 0,027751 SLOPE = 0.1336 INTERCEPT = 0.0021 SURFACE AREA = 32,0774 M /G	INFU	T FOINT	2_N_	180.	.0200	48.	9200	6. A652	0.0652	0_010790
INPUT_POINT 5 N 240, 1300 144, 0800 8, 5665 0, 1921 0, 027751 SLOPE = 0, 1336 INTERCEPT = 0, 0021 2 SURFACE AREA = 32, 0774 M /G	INFU	T. POINT	3_N_	200.	.0400	_83.	_0700	_7. 3698	01107	0_016897
SLOPE = 0.1336 INTERCEPT = 0.0021 2 SURFACE AREA = 32.0774 M /G	INFU	T_POINT	4_N	220.	7800	_114.	9200	8. 0266	01532_	0, 0 22539
SLOPE = 0.1336 INTERCEPT = 0.0021 2 SURFACE AREA = 32.0774 M /G	INPU	T_POINT	5 N	_240.	1300	_144.	_0800	8. 5665	0. 1921	0. 027751
2 SURFACE AREA = 32.0774 M /G	et ope		1224	INTE	OCEDT		0.00	71		
SURFACE AREA = 32.0774 M /G				114151						
	SURFA	CE AREA	= 32.	0774 1						
STANDARD ERROR OF LEAST SQUARES LINE = 0.000012 % ERROR = _0.0601										
	STANL	ARD ERRO	OR.OF.LE	AST .S	QUARE	S.LIN	NE = O.	000012	% ERROR =	-0. 0601

タテラ (NELTO 1998年)

Distribution List

Defense Technical Information Center Attn: DTIC-TCA		Cdr, US Army Signals Warfare Lab Attn: DELSW-OS	
Cameron Station (Bldg 5)		Vint Hill Farms Station	
Alexandria, VA 22314	(1)	Warrenton, VA 22186	(1)
Commander		Commander	
Naval Ocean Systems Center		US Army Mobility EQP RES & DEV CMD	
Attn: Library		Attn: DRDME-R	
San Diego, CA 92152	(1)	Fort Belvoir, VA 22060	(1)
Cdr, Naval Surface Weapons Center		Commander	
White Oak Laboratory		US Army Electronics R&D Command	
Attn: Library Code WX-21		Fort Monmouth, NJ 07703	
Silver Spring, MD 20910	(1)		
,		DELET-P	(1)
Commandant, Marine Corps		DELET-DD	(1)
HQ US Marine Corps		DELET-DT	(2)
Attn: Code LMC		DELSD-L (Tech Lib)	(1)
Washington, DC 20380	(1)	DELSD-L-S (Stinfo)	(2)
washington, be 20000	(1)	DELET-PB (Mr. DiMasi)	(53)
Rome Air Development Center			
Attn: Documents Library (TILD)		Commander	
Griffiss AFB, NY 13441	(1)	US Army Communications R&D Command Fort Monmouth, NJ 07703	
Air Force Geophysics Lab/SULL		USMC-LNO	(1)
Attn: S-29			(-,
Hanscom AFB, MA 01731	(1)	NASA Scientific & Tech Info. Facili	ity
		Baltimore/Washington Intl.Airport	
HQDA (DAMA-ARZ-D/Dr. F. D. Merderame)		PO Box 8757, MD 21240	(1)
Washington, DC 20310	(1)		
		Mr. Donald Mortel	
Cdr, Harry Diamond Laboratories		AF Aero Propulsion Lab.	
Attn: Library		Attn: AFAPL-POE-1	
2800 Powder Mill Road		Wright-Patterson AFB, Ohio 45433	(1)
Adelphi, MD 20783	(1)		. ,
		Mr. Richard E. Oderwald	
Director		Dept. of the Navy	
US Army Material Systems Analysis		Hqs., US Marine Corps	
Actv		Code LMC 4	
Attn: DRXSY-MP		Washington, DC 20380	(1)
Aberdeen Proving Ground, MD 21005	(1)	washington, be 20000	(1)
Aberdeen Floving Ground, rib 21005	(1)	Commandor	
Cd- UC A D		Commander	
Cdr, US Army Research Office		Harry Diamond Laboratories	
Attn: DRXROIP		Attn: DELHD-RDD (Mr. A.Benderly)	
P.O. Box 12211		2800 Powder Mill Rd.	
Research Triangle Park, NC 27709	(1)	Adelphi, MD 20783	(1)

Distribution List (cont'd)

(1)

(1)

ESB, Inc. Ray-O-Vac Division Attn: Mr. P. Albert 212 East Washington Ave. Madison, WI 53703	(1)	Dr. A. G. Hellfritzsch 608 Winona Court Silver Spring, MD 20902 Commander
Eagle-Picher Industries, Inc. Electronics Division Couples Department P. O. Box 47 Joplin, MO 64801	(1)	US Army Environmental Hygiene Agenc Attn: HSE-ES (Mr. J. Frick) Aberdeen Proving Grounds, MD 21010
Union Carbide Corporation Attn: Mr. R. Powers 12900 Snow Road Parma, OH 44130	(1)	
P. R. Mallory & Co., Inc. Attn: Mr. Eugene Errico South Broadway Tarrytown, NY 10591	(1)	
Power Conversion, Inc. Attn: Mr. B. Jagid 70 MacQuesten Parkway South Mount Vernon, NY 10550	(1)	
Commander, Naval Surface Weapons Center White Oak Laboratory Attn: Code WR-33 (Mr. D. Warburton)		
Silver Spring, MD 20910 GTE Laboratory, Inc. 40 Sylvan Road Waltham, MA 02154	(1)	
Director, US Army Scientific Liaison and Advisory Group Attn: T. Mahy WI Z3AA Forrestal Building		
Washington, DC 20314 Commander Air Force Aero Propulsion Lab Attn: AFAPL/POE-1 (Mr. Bishop)	(1)	
Wright-Patterson AFB, OH 45433	(1)	