02.

2 Subjective Question [2 marks]

Design a two-input perceptron that implements the boolean function $A \wedge \neg B$.

3 Programming Question 12 marks

Sol the boolean function of AMB is

A	\mathcal{B}	B 1	A N B'
0	0	1	0
D	1	0	Ô
1	0	1	1
1	1	Ð	0

imput 1 0 wlimput,) + w2 (input 2) + bias

output

input 2 -6

We know that,
$$y'=1$$
 if what $b>0$ and $-(j)$

$$y'=-1$$
 if what $b\leq 0$ $-(2)$

For row1: - X, = 0 X2 = 1 Initialize w, , Wz and b as -1

In this case linear equation W1*x1+W2*x2+b

 $= \times_{1}(-1) + \times_{2}(-1) - 1$

 $= 0 - |-| = -2 \Rightarrow y' = 0 \text{ from } (2)$

This row is correctly classified

For row 2: $x_1 = 0$ $x_2 = 0$ and y = 0then $= x_1(-i) + x_2(-i) - 1 = 0 + 0 - 1$ again y = 0 from (2), classified correctly

For row3: $x_1 = 1$ $x_2 = 1$, y = 1then $x_1(-i) + x_2(-i) - 1 = -1 - 1 - 1 = -3$ y = 0, from ②, but this woonly clarified

set w2=1

(-i) + 1 - 1 = -1 still wrong y'=0 wrong forediction

Set $W_1 = 1$

 $x, (1) + x_2(1) - 1 = 1$ y'=1 from (1), now classified collectly

For rowy: $x_1 = 1$, $x_2 = 0$ b = -1 $x_1(1) + x_2(1) - 1 = 1$ fo -1 = 0 y'=0 from (2), classified correctly.

$$\begin{array}{c} \times_{1} & \times_{1}(1) + \times_{2}(1) - 1 \\ & & &$$

For, weights $w_1 = 1$, $w_2 = 1$ and b = -1