

1/3 ox 1/2. (4%) Show that if n is an integer and 3n + 2 is odd, then n is odd.

1

9. (4%) Determine whether each of these statements is true or false.

a) $\phi \subset \{0\}$ b) $\phi \in \{0\}$ c) $\phi \in \{\phi\}$ d) $0 \in \{0\}$ $(4\%) \text{ The domain is the set of integers, and } P(x) \text{ is "}|x| = 2"; Q(x) \text{ is "}x^2 = 8," \text{ and } P(x) \text{ is "}|x| = -x." \text{ Find the truth set of } P(x), Q(x), R(x) = ?$ 1. (4%) Determine function $f(x) = x^2$ from the set of integers to integers is one-to-one. $\sqrt{2}$ (4%) 證明 $\sum_{j=0}^{n} ar^{j} = \frac{dr^{n+1} - 1}{r-1}$ for $r \neq 1$. OK V13. (4%) How many functions are there for a Boolean function with degree 5? $\sqrt{(4\%)}$ Sum both sides of the identity $k^2-(k-1)^2=2k-1$ from k=1 to n and use the formula $\sum_{j=1}^{n} (a_j - a_{j-1}) = a_n - a_0 \quad \text{to find} \quad \sum_{k=1}^{n} (8k - 4) = ?$ wx d VIJ $\sqrt{17. (4\%)}$ How many different Boolean functions F(x, y, z) are there such that F(x, y, z) = F(x, y, z) for all values of the Boolean variables x, y, and z. (需說明原因) 0 C √18. (4%) Design a four switches control (四個開關一起控制同一燈光,全開時燈亮),畫出函 〈〈數表與函數即可,不需畫出線路。

19. (4%) Determine whether each of these functions is a bijection (one-to-one correspondence) from R to R. b) f(x) = x / 2c) $f(x) = X^4$ d) f(x) = |x| + 1 $\frac{1}{2}$ 0. (4%) Determine whether f is a function from the set of all bit strings to the set of integers if a) f(S) is the number of 0-bits in S. b) f(S) is the position of a 0 bit in S. √ 21. (4%) 使用 I (NAND) 函數,將下列函數都改為 NAND. 10100 (公式: $x = x \mid x$.; $xy = (x \mid y) \mid (x \mid y)$.; $x + y = (x \mid x) \mid (y \mid y)$) 21 6020 F(x,y,z) = x+y+z = ?V 22. (8%) 使用 Quine-McCluskey Method 化簡最簡函數 (寫出每一步驟) $xyz + x\overline{y}z + \overline{x}yz + \overline{x}yz + \overline{x}y\overline{z} + \overline{x}y\overline{z}$

- 1. Express each term in n variables by a n-bit string.(以 bit 表示)
- 2. Group the bit strings according to the number of 1s in them.(以 1 的數目分組)
- 3. Determine all products in n-1 variables (合併為 n-1 variables).
- 4. Determine all products in n-2 variables from n-1 variables (合併為 n-2variables).
- 5. Continue combining as long as possible (重複合併步驟)
- 6. Find all Boolean products (找出所有合併項)

例如:-11 and -01 => --1 則 取 z 代替 yz 與 $\overline{y}z$.

7. Find the solution from the products and original terms that can cover all original terms. (找 最小 product 集合,包含所有項目)

3. (8%) 若證明: The set of positive rational numbers (正有理數) is countable 其方式如下: 證明:正有理數: p/q: first row q=1 (first column p=1)

Second row q=2 (second column p=2), ... 可對應所有 正有理數 自然數對應正有理數方式(下圖)若為: 1->1/1, 2->1/2, 3->2/1, 4-> 1/3, 5->2/2, 6->3/1, 7->1/4, 8->2/3, 9->3/2, 10->4/1, 11->1/5,...,所以,

(1) 求自然數 5100 對應到何數? 反之,(2) 正有理數 31/43 被哪一自然數對應?

= (~puq) n(~qup) = [(~puq) n~q] u[(~puq) np]

= (2pn2q) U(qn2q) U(2pnp) U(qnp)

= (~pn~q) UFUFU(qnp)

= (npnxg) U(gnp)

= (png) U(~pn~g)

The state of the s

5,

tenchers (X, lee): - instructor (X.C), enrolled (lee, C)

X = sun, wang, (Instructor (sun, 1500)), enrolled (lee, 1500)) \

thun, lee (instructor (chan, EEnol), enrolled (lee, 1500))

ensurem (chan, EEnol), enrolled (lee, EE00))

6. 否 該 P: 有外围该照 q: 有国際親

A: P - q = ~ puq

B: ~p → ~q = ~(~p) ~~q = pv-q 不替於~~pvq

7. 該 = 3n+2 = 2k+1 = = 2k+1 - 3 = 2(k+1) - 1 為数 = 2k+1 - 3 = 2(k+1) - 1 為分數

8. 第一位玩家拿2個 剩20個 三後年次等完制於5的倍數即可必顧

9. (a) T 发光标识音

的下户不是元季至集合

(9 T Ht明 空华分為右邊军合中立元素

(四下 0两军8中元素

10. $P(x): \qquad y=2,-2$

Q(X): 夕海繁牧平沙是8

R(X): ○ ○ 2X O 是所有复整數

12,
$$\sum_{j=0}^{n} ar^{j} = qr^{o} + \alpha r' + ar^{2} + \cdots + ar^{n}$$

 $r_{j} \left[\sum_{j=0}^{n} ar^{j} \right] = qr' + \alpha r' + \alpha r'' + \cdots + \alpha r'' + \alpha r'''$

2式相減
$$1-r(\xi_{-}^{*}ai)=ar^{*}-ar^{**}=3$$
 $=\frac{\alpha-ar^{***}-1}{1-r}=\frac{\alpha(r^{**}-1)}{r-1}$

$$2^{\frac{13}{5}} = 2^{\frac{32}{5}} = 1073741824 \times 4$$

$$= \frac{1379183}{4294967196}$$

15.
$$1 = L \times J$$

(a) $1 = L \times J$
 $1 \le X < 3$
 $3 = L \times J$
 $3 \le X < 4$
 $1 \le g^{-1}(\{1, 2, 3\}\}) < 4$

(b) 1<9(x)<-1 但 g(x) 一定是整數, -1,-1即無整數

$$=W+Z+Xy$$

1

w) x	1Y	2	施香
1	1 - 1 0 0 - 1 0 0 0 0	10101010101	= wxyz + wxyz = + wxyz
1	×	0	

19 (4)
$$\frac{1}{2}$$
 $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

(b) 是
$$f(\lambda) = \frac{x}{\lambda}$$
 $\chi = 2f(\chi)$

的是 0-1/11/11 11 多對一函數

$$= x + (y+z) = (x + x) + (y+z) + (y+z)$$

$$= (x + x) + (y+z) = (x + x) + (y+z) + (y+z)$$

$$= (x + x) + (y+z) = (x + x) + (y+z) + (y+z)$$

$$= (x + x) + (y+z) = (x + x) + (y+z) + (y+z)$$

$$22$$
, xyz 111
 xyz 101
 $\bar{x}yz$ 010
 $\bar{x}y\bar{z}$ 010
 $\bar{x}y\bar{z}$ 010
 $\bar{x}y\bar{z}$ 000

23 (1) 5 100

$$N = 100 \qquad \frac{(1+n)h}{2} = 1000$$

PN = χ Qn = χ > χ Qn = χ