

HEART as an ORGAN

- -hollow, muscular
- -location:
 mediastinum,
 resting on the
 diaphragm

LOCATION OF THE HEART

lies in the mediastinum

about two-thirds of the mass of the heart lies to the left of the body's midline

Its apex is the pointed, inferior part; its base is the broad, superior part.

HEART WALL

- Three Layers:
 - Endocardium
 - Myocardium
 - °Epicardium

HEART WALL

- Encased by the pericardium
 - Fibrous
 - ∘Serous
 - Visceral
 - ∘Parietal

Pericardial fluid:

- -20 ml
- -lubrication
- -friction reduction

OHEART CHAMBERS OANDYALVES

THE RESIDENCE OF THE PARTY OF T

DESCRIPTION OF THE PARTY OF THE

of the Personal Property lies

THE REAL PROPERTY IN CO.

THE RESERVE OF THE PARTY OF THE

and the said of the said.

HEART VALVES

Atrioventricular

- Tricuspid valve
- Bicuspid valve (mitral valve)

Semilunar

- Pulmonary valve
- Aortic valve

REVIEW OF ELECTRO-PHYSIOLOGY

- The cardiac conduction system generates and transmits electrical impulses that stimulate contraction of the myocardium.
- Sequence of Contraction:
 - ∘ I.Atria
 - 2. Ventricles

CHARACTERISTICS OF ELECTRIC CELLS

Automaticity: "initiation"

Excitability: "response"

Conductivity: "transmission"

CONDUCTION SYSTEM

PACEMAKER SITE	RATE
SA node	60 – 100 bpm
AV junction	40 - 60 bpm
Bundle branches	30 – 40 bpm
Purkinje network	30 – 40 bpm

Pre-contraction (resting or polarized state):

- \circ **Na**⁺ = primary extracellular cation
- ∘ **K**⁺ = primary intracellular cation
- Intracellular compartment = negatively charged
- Extracellular compartment = positively charged

- Phase 0: rapid depolarization
 - Na+ influx into the cells (myocytes)
 - Ca++ influx into the nodal cells (SA,AV)

- Phase I: early repolarization
 - K+ exits the intracellular compartment

- Phase 2: plateau phase
 - Slowing down of repolarization
 - Ca++ enters the intracellular compartment

- Phase 3: final repolarization
 - Completed repolarization
 - Cell returns to its resting state

- Phase 4: resting phase
 - Cell has returned to its pre-contraction state
 - Phase before the next depolarization

HEMODYNAMICS

REMEMBER!

- I. Pressure gradient causes blood to flow.
- Chamber pressures cause valves to either open or close.
 - High ventricular pressure (systole)= closure of AV valves,
 opening of SL valves
 - Low ventricular pressure (diastole)= closure of SL valves,
 opening of AV valves

CARDIAC CYCLE

- Consists of:
 - Atrial systole-Ventricular diastole
 - Atrial diastole-Ventricular systole
 - Relaxation Period

ATRIAL SYSTOLE

--- Caused by atrial dep.

Contributes 25 mL in addition to the 105 mL already in the ventricles

→ EDV = 130 mL

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **Atrial Systole Pulmonary** valve closed Aortic valve closed RA Atrial systole Tricuspid 2 Ventricular and bicuspid diastole valves open (a)

VENTRICULAR SYSTOLE

- Caused by ventricular dep.
- Ventricles push blood against AV valves, causing them to close
- LV (RV) ejects 70 mL of blood into the aorta (PA)
- \checkmark ESV = 60 mL

Copyright @The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **Atrial Diastole** Pulmonary -Aortic valve open valve open **Atrial** diastole Ventricular systole Tricuspid / and bicuspid valves closed (b)

VENTRICULAR DIASTOLE

Caused by ventricular rep.

Lasts for 0.4 sec

Cardiac output (CO)

 Amount of blood pumped by each side (ventricle) of the heart in one minute

Stroke volume (SV)

- Volume of blood pumped by each ventricle in one contraction (each heartbeat)
- Usually remains relatively constant
- About 70 mL of blood is pumped out of the left ventricle with each heartbeat

∘CO = HR × SV

 \circ CO = HR (75 bpm) \times SV (70 bpm)

∘CO = 5250 mL/min

• Starling's law of the heart—the more the cardiac muscle is stretched, the stronger the contraction

Changing heart rate is the most
 common way to change cardiac output

• Figure 11.9