FILE COPY

WATER QUALITY DATA
ONTARIO LAKES AND STREAMS
1990
VOLUME XXVI
SOUTHWESTERN REGION

AUGUST 1994

Ministry of Environment and Energy

WATER QUALITY DATA ONTARIO LAKES AND STREAMS

1990

VOLUME XXVI

SOUTHWESTERN REGION

AUGUST 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

Copyright: Queen's Printer for Ontario, 1992

Additional copies of this publication may be obtained by contacting the Ontario Ministry of Environment & Energy Public, Information Centre, 135 St. Clair Avenue West, Toronto, Ontario, M4V 1P3. Telephone (416) 323-4321.

Permission to republish must be obtained in writing from:

The Director
Environmental Monitoring & Reporting Branch
Ontario Ministry of Environment & Energy
125 Resources Road
Etobicoke, Ontario M9P 3V6

Parts of this publication may be quoted if credit is given. It is recommended that reference to this volume be made in the following form:

Ontario Ministry of Environment & Energy, 1992. Water Quality Data Ontario Lakes and Streams, 1990, Volume XXVI, Southwestern Region.

Every possible effort is made to ensure the accuracy of the information contained in this publication. Verification of any suspect data may be obtained by contacting the Surface Water Surveillance Section, Environmental Monitoring & Reporting Branch, Etobicoke, Ontario (235-6254)

TABLE OF CONTENTS

	Page
INTRODUCTION	V
NETWORK MAP SHEETS	
INTERPRETATION OF DATA	
A. Analyses and Measurements Conducted at the	
Sampling Site	XVII
B. Analyses and Measurements Conducted at the	
Laboratory	XIX
1) Microbiological Analyses	XIX
2) Chemical and Physical Analyses	XX ·
3) Radiochemical Analyses	XXXVII
4) Synthetic Organic Analyses	XLI
STATION IDENTIFIER CODES, QUALIFYING REMARK CODES AND	
ABBREVIATED PARAMETER HEADINGS	XLIV
OTHER ABBREVIATIONS	LII
GLOSSARY OF TERMS	LIV
SELECTED REFERENCES	LV
ABBREVIATIONS AND REMARKS USED ON REPORTS	XLVI
WARD AND THE PARTY	
WATER QUALITY DATA	1
SAMPLING STATION DIRECTORY (ALPHABETICAL INDEX)	317
AND THE PERSON DESCRIPTION TO THE TRUBE TO THE PARTY OF T	0 21

LIST OF FIGURES

FIGUE	RES	<u>Page</u>
1.	Regions and Offices in Ontario - Ministry of Environment & Energy	VI
2.	Southern Ontario Terminal Basins	IX
3.	Northern Ontario Terminal Basins	х
4.	Network Index Map of Southern Ontario	XII
5.	Network Index Map of Northern Ontario	XIII
6.	Southwestern Region Network Map SW-1	. XIV
7.	Southwestern Region Network Map SW-2	. xv
8.	Southwestern Region Network Map SW-3	. XVI

INTRODUCTION

"Water Quality Data Ontario Lakes and Streams, 1990, Volume XXVI, Southwestern Region", is one of an ongoing series published by the Environmental Monitoring & Reporting Branch of the Ontario Ministry of Environment & Energy. The data presented in this publication were collected by the Water Resources Assessment Units of this Ministry's six Regional Offices (Figure 1) with the assistance of local Conservation Authorities in some regions. The information provided in this publication is compiled and published by the Surface Water Surveillance Section of the Environmental Monitoring & Reporting Branch. The data result from a routine sampling program designed to provide a long-term record of the water quality information at specific points on rivers and inland lakes in Ontario.

Sampling station locations have been selected to meet one or more of the following requirements: (1) to measure quantitatively and qualitatively the materials discharged from tributary streams to the terminal basins; (2) to monitor the effects of wastewater discharges on a watercourse; (3) to provide data that can be considered generally representative of water quality conditions in a certain area.

The information is used by the Ontario Ministry of Environment & Energy to maintain surveillance over water quality conditions and to provide supporting data used in the analysis and prediction of water quality for planning and other purposes. The data are also made available to any person or agency concerned with the quality of Ontario's rivers and lakes. The booklet "Water Management Goals, Policies, Objectives and Implementation Procedures of the Ministry of the Environment", 1978 (Revised May, 1984) outlines the current policies including the Provincial Water Quality Objectives (PWQO) for many of the parameters in this report for water management in Ontario.

Samples are analyzed for some or all of the following parameters: counts of total and fecal coliforms, enterecoccus, Pseudomonas aeruginosa and escherichia coliforms, concentrations of biochemical oxygen demand, total phosphorus, filtered reactive phosphate, filtered ammonia, total Kjeldahl nitrogen, filtered nitrite and nitrate forms of nitrogen; total suspended and dissolved solids; levels of conductivity and turbidity; concentrations of chlorides, sulphates, unfiltered reactive silicates, acidity, alkalinity; units of pH; concentrations of total iron, phenols, hardness, calcium, magnesium; units of colour; concentrations of potassium, sodium, total organic carbon, chemical oxygen demand, solvent extractables, arsenic, mercury, aluminium, chromium, copper, lead, cadmium, zinc, manganese, nickel, fluoride, cyanide and cobalt.

In addition, radiochemical analyses are conducted on selected samples and the results are expressed as levels of ionizing radiation (i.e. the number of nuclear disintegrations per second). Selected samples are analyzed for some or all of the following radiochemical parameters: gross alpha, gross beta, radium-226, total uranium, cesium-137, cesium-134, cobalt-60, tritium and iodine 131.

Some samples are also analyzed for some or all of the following synthetic organic parameters: concentrations of PCB, PCP and 2,4,5-T.

The complete list of parameters are described in the section dealing with "station identifier codes qualifying remark codes and abbreviated parameter headings".

The water quality monitoring program commenced in July 1964 in Southern Ontario and currently consists of a total of 703 stations throughout Ontario. The following maps (figures 2 and 3) show the Southern and Northern Ontario Terminal Basins which are used to identify the sampling station locations. Definitions or brief descriptions are provided for the more common parameters of water quality under the section entitled Interpretation of Data.

Other ambient water quality monitoring programs such as the Sport Fish Contaminant Monitoring Program which is co-ordinated by the Ontario Ministry of Environment & Energy with participation by the Ministries of Natural Resources and Labour are not discussed in this publication. A summary of health implications of contaminants in fish with a listing of test results from each fish sampling location can be found in the Ministry publication, "Guide to Eating Ontario Sport Fish". This publication is updated annually and is available free of charge from the Ministry of Environment & Energy, Environmental Monitoring & Reporting Branch, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, telephone (416) 314-7886. Further, there are also additional ministry surveillance programs, including Drinking Water Surveillance, Great Lakes Surveillance and APIOS Programs.

The streamflow station network in Ontario is not discussed in this Whenever streamflow data exists at tributary locations which are coincident with the water quality monitoring station locations, data on mean daily discharges are available from Water Survey of Canada. The collection of hydrometric data in Ontario has been carried out under a Memorandum of Agreement between the Government of Canada and the Province of Ontario since The Province of Ontario is represented in the Agreement by the Ministry of Environment & Energy, the Ministry of Natural Resources and Ontario Hydro. These agencies meet at regular intervals with the Water Survey of Canada to administer the Streamflow data for Ontario are published annually, details of individual stations and related reocrds as well as recent data which have not yet been published, may be obtained upon application to:

> Water Resources Branch Federal Building 75 Farquhar Street Guelph, Ontario N1H 3N4 Tel: No. (519) 821-0110

FIGURE 3
NORTHERN ONTARIO TERMINAL BASINS
19-8ASIN IDENTIFICATION CODE

NETWORK MAP SHEETS

Individual station locations are identified on specially prepared network maps. These network maps have been drawn to conform approximately to the boundaries of the Ministry's Regions, and are grouped according to Regions. Two index maps (Figures 4 and 5) illustrate individual map sheet coverages within the Province.

The following procedures were used in the preparation of the maps. Individual base maps within a Region were assembled using the National Topographic Series maps at a scale of 1:250,000. In northern Ontario, this was reduced to a scale of 1:500,000 in the Lake Superior and Nelson River basins, and to a scale of 1:2,000,000 in the Hudson Bay basin. For each base map, an overlay of the river systems was prepared, showing major watershed and Ministry of Environment & Energy Regional boundaries. Numeric terminal basin and stream codes were added, and active water quality monitoring stations were located on each overlay and referenced with station numbers. The overlays were then reduced to approximately 40% of their original size for purposes of this publication.

The previously mentioned terminal basin and stream code, when combined in sequence with a given station number, together form a unique station identifier which appears as the "Station ID". The "Station ID" is listed for all active monitoring stations within the Region in the "Sampling Station Directory", an alphabetical listing of terminal streams monitored in Southwestern Region, (See Sampling Station Directory).

The location of stations in the Southwestern Region are shown in figures 6, 7 & 8. The locations of the other stations in the other regions and in other parts of Ontario such as those located on the Great Lakes or those operated by the Water Quality Branch, Ontario Region, Environment Canada, are not included.

FIGURE 5

INTERPRETATION OF DATA

The definition of the parameters measured in the Provincial Water Quality Monitoring Program are described in the following pages. The significance of each measurement in regard to specific water uses can be determined by referring to the booklet "Water Management, Goals, Policies, Objectives and Implementation Procedures of the Ministry of Environment, November, 1978". (Revised, May 1984).

A. ANALYSES AND MEASUREMENTS CONDUCTED AT THE SAMPLING SITE

Stream Condition

The physical condition of the body of water is described from an on-site examination at the time of sampling and is represented by a one-digit number from one to zero as follows:

- Stream dry
- Frozen to stream bed
- 3. Stream in flood condition
- Sampled through ice
- Suspended algae
- 6. No apparent algae
- 7. Profuse weed growth
- 8. Normal
- 9. Oil scum or floating matter
- Objectionable odours

Under some circumstances a combination of up to three of the above conditions may be shown for a given sample at an individual station.

Streamflow

Streamflow information at or near a water quality monitoring site is an important factor when interpreting and employing water quality data. The product of streamflow and concentration defines the mass of material passing a point. Streamflow is also a useful reference when comparing water quality data for different periods of the year (e.g., spring flood versus summer drought).

Flows in many of the streams sampled are measured by the Water Survey of Canada, Inland Waters Directorate, Environment Canada.

Temperature

Water temperature is an important factor when a number of water quality parameters are being evaluated. Temperature directly affects the solubility of gases (e.g., dissolved oxygen) and significantly affects biological and chemical reaction rates.

Temperature is measured at the sampling site with an electronic thermistor or a mercury thermometer.

Dissolved Oxygen

Dissolved oxygen in water originates directly from the atmosphere or through photosynthesis in aquatic plants. Ample dissolved oxygen is necessary to maintain satisfactory conditions for fish and other biological life in water. Organic wastes and some inorganic materials exert, upon decomposition, an oxygen demand which may deplete the dissolved oxygen below levels required by aquatic life.

Dissolved oxygen is measured at the sampling site with an electronic meter or by a chemical titration.

B. ANALYSES AND MEASUREMENTS CONDUCTED AT THE LABORATORY

1. MICROBIOLOGICAL ANALYSES

Total Coliform

The Membrane Filter (MF) technique is used to obtain an approximation of the concentration of total coliform organisms. These organisms are normal inhabitants of soils and the intestines of man and other warm-blooded animals. They are always present in large numbers in sewage and fecal matter, and are often found in watercourses adjacent to industrial, agricultural and other pollution sources.

Results are reported as MF count per 100 mL of sample.

Background Count

The background count estimates the number of organisms, other than coliforms, that occur in the total coliform analysis of a sample. The results are used in the interpretation of total coliform counts. High background counts are generally indicative of poor water quality.

Fecal Coliform and Fecal Streptococcus (Enterococcus) Organisms

Fecal coliform and Enterococcus organisms are generally found in the alimentary tract of warm-blooded animals. They are indicative of sanitary waste intrusion and/or fecal contamination from warm-blooded animals.

Pseudomonas aeruqinosa

<u>Pseudomonas aeruginosa</u> are pathogens found in sewage that can be readily isolated. These organisms are sometimes found in bathing

waters and are the major pathological agent in otitis externa (earaches) and skin infections.

Escherichia Coliform (E. Coli)

E. Coli is the predominant, facilitative bacterial species in the large bowel and is thus the coliform most directly related to fecal pollution. Some species of E. Coli are pathogenic to man (e.g., urinary tract infections) but is primarily an indicator organism in water bacteriology.

2. CHEMICAL AND PHYSICAL ANALYSES

Biochemical Oxygen Demand (BOD)

In itself, BOD is not a pollutant and presents no direct harm to the aquatic environment. It is, however, a measure of the unstable organic matter present in water which, through aerobic decomposition, oxidizes to a stable inorganic form utilizing the oxygen resources of a watercourse. The level of BOD is an important parameter in assessing the potential concentrations of dissolved oxygen in water.

Five-day biochemical oxygen demand (BOD₅) is a laboratory measurement of the amount of oxygen consumed in a sample incubated for five days at 20°C.

Total Phosphorus

Phosphorus is a primary nutrient for plant and animal life and like nitrogen passes through cycles of decomposition and photosynthesis. This element is commonly found in nature in the form of inorganic phosphates and organically bound phosphorus. Total phosphorus includes orthophosphate, condensed phosphates and organically bound phosphorus in both the dissolved and particulate form. Untreated

or treated sewage, some industrial wastes and agricultural and urban drainage contain significant concentrations of phosphorus.

Although there is no firm criterion for phosphorus, it is generally considered that to eliminate excessive plant growths in rivers and streams, total phosphorus should not exceed 0.03 mg/L. To avoid nuisance concentrations of algae in lakes, average total phosphorus concentrations for the ice-free period should not exceed 0.02 mg/L.

Filtered Reactive Phosphate

Filtered reactive phosphate is that phosphorus which passes through a 1-2 micrometre filter and responds to a colorimetric orthophosphate determination. It is a combination of simple orthophosphate and readily hydrolyzed phosphate primarily in the dissolved form.

Filtered reactive phosphate is generally considered to be readily available for aquatic plant growth.

Filtered Ammonia Nitrogen

Filtered ammonia nitrogen (ammonia NH_3 and ammonium NH_4^{\dagger}) is the soluble product in the anaerobic decomposition of nitrogenous organic matter. It is also formed when nitrites and nitrates are reduced either biologically or chemically. Small amounts of ammonia nitrogen may be taken out of the atmosphere by rain water.

Total Kjeldahl Nitrogen

Total Kjeldahl nitrogen is a measure of the total nitrogenous matter present, excluding nitrate and nitrite. The total Kjeldahl nitrogen concentration, less the ammonia nitrogen concentration, gives a measure of the organic nitrogen present.

Ammonia and organic nitrogen are important in assessing the availability of nitrogen for biochemical utilization.

Piltered Nitrite

Nitrite is an intermediate oxidation product of ammonia and also an intermediate form in the denitrification process from nitrate to nitrogen gas. The significance of nitrites, therefore, varies with their amount, source and relation to other constituents of samples (notably the relative magnitude of ammonia and nitrate present).

Since nitrite is rapidly and easily converted to nitrate, its presence in concentrations greater than a few micrograms per litre is generally indicative of active biological processes in the water.

Filtered Nitrate

Nitrate is the end product of the stabilization of organic nitrogen which occurs primarily through aerobic biochemical processes. Nitrate is usually found in polluted waters that have undergone some degree of self-purification. Nitrates can also occur in watercourses intercepting drainage from fertilized agricultural areas.

Nitrogen in the form of nitrate is readily utilized by aquatic plants and algae.

Inorganic Nitrogen

Inorganic nitrogen is a calculated value and represents the sum of the concentrations of filtered ammonia nitrogen and filtered (nitrate plus nitrite) nitrogen.

Organic Nitrogen

Organic nitrogen is a calculated value and represents the difference between the concentrations of total Kjeldahl nitrogen and filtered ammonia nitrogen.

Total Nitrogen

Total nitrogen is a calculated value and represents the sum of the concentrations of total Kjeldahl nitrogen and filtered (nitrate plus nitrite) nitrogen. Nitrogen is a common constituent of decomposition products, treated sewage, fertilizers and industrial discharges. Nitrogen compounds are present in most plant and animal materials.

Solids

Total solids, suspended and dissolved solids are presented as separate parameters in this report. The solids analyses are gross measurements of the amounts of particulate matter and dissolved materials found in water. Solids enter the watercourse from virtually every source, the most familiar being sewage treatment plant effluent, municipal storm drainage, industrial discharges and soil erosion.

Solids significantly affect water uses. Highly turbid water is undesirable for municipal and industrial supply, fish and aquatic life, recreation and aesthetics. Suspended solids can also transport significant quantities of organic and inorganic trace contaminants.

Conductivity

The conductivity test provides a measure of the electrolytic properties of water. The presence of dissolved ions (in solution) such as chlorides, sulphates and calcium, renders water conductive.

Conductance, the reciprocal of resistance, is recorded in the unit mho and in order to avoid inconvenient decimals, data are reported in micromhos per cubic centimetre. In many waters there is a direct linear relationship between dissolved solids concentrations and conductivity.

Conductivity serves as a control parameter and is an excellent indicator of water-quality changes since it is relatively sensitive to variations in dissolved-solids concentrations.

Turbidity

The turbidity of water is attributable to suspended and colloidal matter such as micro-organisms, detritus, clay and other mineral substances which reduce clarity and diminish the penetration of light.

Turbidity is undesirable in surface waters used for domestic and industrial supply and for recreation. Often some of the suspended matter has to be removed to prevent interference with disinfection processes and abrasion to equipment. By interfering with the penetration of light, turbidity does seriously affect aquatic biological communities.

Chlorides

Chlorides are found in practically all natural waters. They may be of natural mineral origin but in general the largest contributions can be traced to domestic sewage discharge, municipal storm drainage, road salting, and industrial wastes.

While not harmful to health in moderate quantities, high concentrations of chlorides make water unfit for municipal and industrial supplies and livestock watering. In addition to imparting an objectionable taste to water, high chloride levels are responsible for increased corrosiveness of water. Furthermore,

chloride, being toxic to many plants, may render water undesirable for irrigation.

Sulphate

Sulphates may occur naturally in waters and may be contained in industrial wastes. They are produced from the final oxidation stage of sulphides, sulphites and thiosulphates. Sulphates, under anaerobic conditions, can be reduced to hydrogen sulphide which is malodorous (the odour of rotten eggs) and highly corrosive.

Sulphide

Sulphide is formed by bacterial reduction of sulphate and organic sulphur compounds under anaerobic conditions. It is therefore, commonly found in domestic wastewater, industrial wastewater, sludge, hypolimnion of stratified lakes and any other aquatic systems where anaerobic conditions prevail. As a result, concentrations in surface waters are usually negligible.

Unfiltered Reactive Silicate

Silicon occurs in sand or quartz as silica and as silicates in feldspar, kaolinite and other minerals. Silicon dioxide, or silica, is insoluble in waters or acids, except hydrofluoric acid, but it may occur in natural waters as finely divided or colloidal suspended matter. Silica is widely employed in industry for making glass, silicates, ceramics, abrasives, enamels, petroleum products, etc.

In concentrations found in natural and treated waters, silica or silicates have no adverse physiological effects. Silicates are essential to the growth of many aquatic organisms.

The data which appear under the heading "Reactive Silicate" should properly be referred to as "Unfiltered Reactive Silicate" and are

reported as Silicon (Si). Data in this series of publications prior to 1975 were reported as Silica (SiO₂).

Acidity

Acidity in surface or ground waters may be attributable to natural causes, such as humic acids extracted from swamps or peat beds, or industrial wastes such as pickling liquors, effluent from the manufacture of explosives, acid mine drainage or sulphite waste liquors. It may also be affected by atmospheric inputs.

Acidity is best interpreted in conjunction with the pH and alkalinity, as well as any other analyses which identify the acidic components of water.

Alkalinity

Alkalinity in general, is the sum of all the components in the water system that act to buffer the water against changes in pH. The alkalinity of natural waters is caused by three major classes of materials which may be ranked in order of their effect on pH as follows:

- Hydroxides (rarely present in Ontario)
- 2. Carbonates
- 3. Bicarbonates and other salts of weak acids

The alkalinity of water has little sanitary significance but is of importance in water and waste treatment practices. Waters with high alkalinity under natural conditions are undesirable because of their associated excessive hardness.

pН

The symbol pH is used to designate the logarithm (base 10) of the reciprocal of the hydrogen-ion concentration. It is an index of

the acidity or alkalinity of the solution. The practical pH range extends from 0, very acidic, to 14, very alkaline, with the middle value of pH 7 corresponding to exact neutrality at 25°C.

The pH is important in determining the appropriate treatment of water supplies.

Iron

Iron is one of the most abundant elements in the earth's crust and it is a constituent of many industrial wastes.

When sufficient iron is added to water in the presence of salts (chlorides, nitrates, sulphates), ferrous or ferric oxide precipitates (iron hydroxides) causing low pH values which are toxic to aquatic life. Iron in water may also result in the growth of iron bacteria causing unpalatable taste, discolouration of cloths and plumbing fixtures, and the formation of scales in water mains.

Phenols

The phenolic compounds, collectively referred to as phenols, are those hydroxyl derivatives of benzene or its condensed nuclei, which are determined by the 4-amino antipyrine method. The results are reported from many industrial processes and may also be released from aquatic plants and decaying vegetation.

Depending on the concentration, the presence of phenolic compounds may be toxic to fish, and may taint the flesh of fish. Phenols in very minute concentrations will combine with chlorine to produce tastes and odours in water which are usually described as medicinal or chemical.

Hardness

Water hardness relates to a water's capability to produce lather from soap. The higher the hardness, the less lather will be formed. Hardness in water is caused by dissolved divalent metal ions, calcium and magnesium being the most common. Natural hardness occurs most frequently in limestone areas. The limestone is dissolved by contact with ground and surface water and releases calcium and magnesium ions and traces of contaminant metals.

Hard water, though not considered a health hazard, is undesirable for industrial and domestic water supplies because it has a number of detrimental effects, the most common being the formation of scale in boilers, pipes and water heaters, excessive soap consumption in home and commercial laundering, and adverse affects in textile, plating and canning industries.

Results appear under either the heading "Hardness" and "Calculated Hardness", depending on the analytical procedure. The former results are obtained through titration with ethylene-diamine-tetra acetic acid (EDTA), the latter by calculation from magnesium (Mg) and calcium (Ca) results determined by Atomic Absorption Spectrophotometry (AAS).

Calcium

Calcium is relatively abundant in the earth's crust and readily soluble in water so that calcium salts and calcium ions are among the most commonly encountered substances in water. They may result from the leaching of soil and may be contained in sewage and industrial wastes.

Excessive calcium and magnesium in drinking water have been implicated as factors pre-disposing to the formation of concretions in the body, such as kidney or bladder stones. On the other hand, there is also evidence of adverse physiological effects from an

insufficiency of calcium in water. The calcium ion is a major contributor to hardness and is often responsible for boiler scale deposits on cooking utensils and excessive soap requirements in washing and laundering. Where water is used for irrigation, calcium is beneficial to plant growth.

Magnesium

Magnesium is an abundant element and a common constituent of natural waters. Magnesium ranks with calcium as a major cause of hardness. The effects of magnesium of water used for consumption and irrigation are generally the same as those of calcium. Magnesium is considered relatively non-toxic to man and not a public health hazard because before toxic concentrations are reached in water, the taste becomes quite unpleasant.

Colour

Colour in water may be of natural mineral or vegetable origin caused by metallic substances such as iron and manganese compounds, humus material, peat, tannins, algae, weeds, and protozoa. Waters may also be coloured by inorganic or organic soluble wastes from industries, such as steelworks, mining, refining, pulp and paper, chemicals, and others. Returned irrigation water also contributes to colour.

Colour from natural origin is not considered harmful from a health standpoint. However, in domestic water, colour is undesirable because of aesthetic considerations.

Potassium

Potassium occurs in many minerals and potassium salts exist in natural waters as a result of contact with potassium-bearing soils and the introduction of certain industrial wastes. The common

salts of potassium are highly soluble in water. They resist separation from water by natural processes other than evaporation.

In limited concentrations, potassium is an essential nutrient. Excessive amounts of certain potassium salts in water may have detrimental effects on the digestive and nervous systems.

Sodium

Sodium salts are common to all natural waters and may be present in high concentrations in wash waters softened by exchanging calcium and magnesium ions for sodium. Sodium is also found in many industrial process effluents, domestic wastes and salts used in road de-icing.

Concentration of salts such as sodium chloride impact objectionable tastes and may render water unpalatable.

Total Organic Carbon (TOC)

Total organic carbon (TOC), the most significant carbon measurement from a water-quality assessment viewpoint, is the arithmetic difference between total carbon (TC) and total inorganic carbon (TIC).

Total organic carbon usually has a direct relationship with Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) values, but the relationship varies with the composition of the organic material present. The carbon tests are rapid and suitable for the evaluation of organic pollution levels, assessment of waste treatment efficiencies and to a limited extent, the potential demand of a waste discharge on the oxygen resources of a water body.

Dissolved Organic Carbon (DOC)

The organic content of lakes and rivers depends primarily on the products of plants and animals which those water bodies support. Most of the organic carbon in water is composed of humic substances and partly degraded plant and animal materials, some of which is resistant to microbial degradation. Runoff from agricultural land and industrial discharge from industries such as pulp and paper will add organic carbon to the water. The degradation of large amounts or organic matter causes depletion of the dissolved oxygen concentration and hence, organic carbon is also measured on sewage and industrial waste samples.

Chemical Oxygen Demand (COD)

The chemical oxygen demand is used in measuring the strength of sewage and industrial wastes. The major advantage of this test is that laboratory results can be obtained in about three hours compared to five days for the five-day biochemical oxygen demand test. The chief limitation of the COD analysis is its inability to differentiate between biologically oxidizable and biologically inert organic matter. The COD almost always exceeds the biochemical oxygen demand.

Solvent Extractables

The solvent extractable test measures the total quantity of substances present in a water sample that is readily soluble in an appropriate organic solvent. Such substances include fatty acids, petroleum products, oils, greases and resins. They are generally found in effluents of oil refineries, meat packing plants, slaughter houses, dairies, canneries, and a variety of other industries.

Solvent soluble materials greatly increase the oxygen depletion rate in receiving waters and will hinder oxygen exchange with the atmosphere by forming slicks.

Arsenic

Arsenic occur naturally, to a small extent, mostly as sulphides and as arsenides of metals. Elemental arsenic is insoluble in water; but many of the arsenates are highly soluble. Highest levels of arsenic in Ontario are found in watercourses downstream of wastewater discharges from metal smelting operations.

Arsenic is very toxic to humans and the trivalent forms are largely retained in the body tissues. Low concentrations of arsenic stimulate plant growth but higher concentrations destroy chlorophyll in the foliage.

Mercury

Mercury may occur naturally as a free metal or as mercuric salts, the most common being cinnabar, HgS. Both elemental mercury and HgS are insoluble in water and are not likely to occur as water pollutants. Many synthetic organic salts of mercury are used commercially and these salts are highly soluble in water.

Mercury is cumulative and toxic to humans and can be concentrated and transferred up the food chain to a point where commercial and game fish may become unsuitable for human consumption. Micro-organisms can methylate inorganic mercury under both aerobic and anaerobic conditions to produce a more toxic substance.

Aluminium

Aluminium occurs in many rocks and ores but never as a pure metal in nature. In streams, the presence of aluminium ions may result

from industrial wastes or more likely from wash water from water treatment plants.

Chromium

Few waters contain chromium from natural sources since chromium is generally present in rocks and soils as insoluble chromic oxide which is strongly sorbed to particulate matter. Chromate or dichromate salts are used extensively in metal pickling and plating operations, in anodizing aluminium, in the leather industry as a tanning agent, and in the manufacture of paints, dyes, explosives, ceramics, paper and many other substances. Chromic or chromite salts on the other hand, are used much less extensively, being employed as mordants in textile dyeing, in the ceramic and glass industry and in photography. Chromium compounds may be present in wastes from many of these industries or may be discharged in chromium-treated cooling waters where the chromium is used as a corresion inhibitor.

There is no evidence that chromium salts are essential or beneficial to human nutrition. Salts of trivalent chromium are not considered to be physiologically harmful; however, large doses of chromates lead to corrosive effects in the intestinal tract and to nephritis. Both the chromic and chromate ions are toxic to plants and interfere with the uptake of essential elements.

Copper

Copper salts occur in natural surface waters in trace concentrations and may occur in industrial waste discharges. Copper is used as an algicide for the control of undesirable algae growth and in the treatment of soils as a fungicide.

Copper compounds are toxic to plants and aquatic life.

Lead

Some natural waters contain lead in solution. Lead may be introduced into water as a constituent of various wastes including industrial and mining effluents, lead plumbing and automobile exhaust. Certain lead salts, such as acetate and chloride, are readily soluble. However, lead which occurs in the carbonate, hydroxide and sulphate forms is sparingly soluble and will not remain long in natural waters.

Lead is a cumulative poison that tends to be deposited in the bone. The intake that can be regarded as safe cannot be stated definitely because the sensitivity of individuals to lead differs considerably. Studies on fish indicate that in water containing lead salts, a film of coagulated mucus forms over the gills and then the entire body, probably as a result of a reaction between lead and an organic constituent of mucus. Subsequently, the fish will die due to suffocation. The toxic effects of lead on fish decreases with increasing hardness and dissolved oxygen.

Cadmium

In the elemental form, cadmium is insoluble in water. It occurs in nature largely as a sulphide salt, greenockite or as a cadmium blend and often as an impurity in zinc-lead ores.

Cadmium salts are cumulative and highly toxic to man, and have been implicated in some cases in the cause of food poisoning. Consumption of cadmium salts causes cramps, nausea, vomiting, and diarrhea. Cadmium affects reproduction in fish and zooplankton; however, the toxic effects vary with species and time of exposure.

Zinc

Generally, zinc occurs only in trace amounts in surface waters. The zinc ion is believed to adsorb strongly and permanently on particulate matter (e.g. silt) which settles out of suspension.

Zinc has no known adverse physiological effects upon man except at very high concentrations. At such concentrations, zinc gives water a milky appearance and causes a greasy film on boiling, thus making it unattractive for domestic water supply. Zinc is toxic to aquatic organisms and its toxicity decreases with increasing hardness.

Manganese

Manganese is similar to iron in that it is found in many industrial wastes and occurs in soils as manganic and manganous compounds. Under anaerobic conditions the manganic ion is reduced to soluble nitrate, sulphate, and chloride salts of manganese and is leached, along with iron, into ground and surface waters. Like iron, its presence may indicate domestic or industrial pollution.

Water with high manganese content is undesirable for its taste, colour and tendency to form deposits on cooking utensils.

Nickel

Nickel in ores and minerals is insoluble; but as a salt (nickel ammonium sulphate, nickel nitrate, nickel chloride) is highly soluble. Electroplating wastes may contain substantial amounts of nickel salts.

Nickel and its salts have generally proven to be non-toxic to man even at very high levels. Contact with nickel salt solutions may result in dermatitis and repeated inhalations of nickel compounds can cause lung cancer.

Fluoride

Fluorides in high concentrations are not a common constituent of natural surface waters, but may naturally occur in detrimental concentrations in ground waters.

Excess concentrations affect animal breeding efficiency and may have detrimental effects on some plants.

Cyanide

One of the major sources of cyanide in Northern Ontario is associated with the gold mining and milling industry. Also cyanide is likely to occur in effluent from gas works and coke ovens, from the scrubbing of gases produced from blast furnaces, in wastes from surface cleaning or various metals, in electroplating processes and other chemical industries.

Cyanide in water is toxic to biological life, the lethal concentration depending on water quality, temperature, type and size of organism. The toxicity of cyanide increases with decreases in dissolved oxygen below the saturation level.

Cobalt

Cobalt occurs naturally in the minerals cobaltite, smaltite and erythrite. It is widely used in the manufacture of alloys, the tungsten carbide tool industry and as pigments used in glass staining.

Cobalt is an essential element at trace levels for both animals and plant nutrition. It is known to be one of the main constituents of Vitamin B_{12} . Adverse effects due to cobalt are very slight even at high concentrations.

3. RADIOCHEMICAL ANALYSES

All elements are made up of atoms, each of which consists of a central nucleus surrounded by a number of electrons. Some nuclei are radioactive; they emit excess energy in the form of ionizing radiation as a result of nuclear disintegrations. The three types of ionizing radiations which are of principal interest in environmental studies are referred to as alpha, beta and gamma radiations.

- Alpha rays are streams of fast moving helium nuclei. These are particles which can travel only a few centimetres in air and can be stopped by a sheet of paper or a layer of skin.
- 2. Beta rays are streams of fast moving electrons which are very much lighter than helium nuclei. The maximum range of most common beta rays is a few metres in the air or one to two centimetres in the human body.
- 3. Gamma rays are highly penetrating electromagnetic radiation of the same family as radio waves and x-rays. Like x-rays, gamma mass rays can pass right through the human body.

The number of nuclear disintegrations occurring in a substance per second is a measure of its radioactivity. The unit of radioactivity used in this report is becquerel (Bq). One becquerel equals one nuclear transformation per second and corresponds to approximately 27 picocuries (a measure of radioactivity used in previous reports). Radiological half life is the length of time required for one half of the unstable atom to disintegrate or change (i.e., radioactive decay).

Exposure to radiation is characterized by the transfer of energy to molecules of the cells which make up body tissues and organs. This can affect the normal function of the cells, resulting in damage to the tissues and organs. Exposure to the small doses of radiation

which might be encountered in the environment will not result in immediate detectable damage; however, long-term effects may result. These effects are in the apparently random occurrence of induced cancers and genetic defects in a small proportion of the exposed population. The numbers of effects induced are considered to be directly proportional to the amount of absorbed radiation.

Gross-alpha

Gross-alpha is a measure of the total radioactivity of all the alpha emitting materials in a sample. Measurements of gross-alpha activity provide useful reference points to enable trends to be detected. However, the results cannot be used to determine radiation dose or health effects since the short range of alpha particles means that some will not be detected, thereby causing an underestimation of the total activity. Also, the alpha particles may be emissions from a mixture of materials that are radiologically and biologically different.

Gross-beta

Gross-beta is a measure of the total radiation of all the beta emitting materials in a sample. Measurements of gross-beta activity provide useful reference points to enable trends to be detected but cannot be used to determine radiation dose or health effects.

Radium-226

Radium-226 is a naturally occurring alpha-particle emitter formed from the decay of uranium-238 and has a radiological half life of 1602 years.

Uranium-total

Total uranium exists primarily as the isotope uranium-238 with less than 1% occurring as uranium-235. Uranium is a naturally occurring alpha-particle emitter which was formed at the same time as the earth (about 5 x 10^9 years) and is still present in significant quantities due to its extremely long radiological half-life (4.5 x 10^9 years).

Cesiumm-137

Cesium-137 is a beta-particle emitter formed as a fission product in nuclear weapons detonation and atomic reactor operation. Cesium-137 is readily adsorbed and retained by biological systems. Its radiological half life is 30 years.

Cesium-134

Cesium-134 is a beta-particle emitter also formed as a fission product in nuclear weapons detonation and atomic reactor operation. Cesium-134 is of less importance than Cesium-137 as its radiological half-life is only 72 hours.

Cobalt-60

Cobalt-60 is primarily formed in atomic reactor operation due to the neutron activation of trace quantities of cobalt-59 found in steel. Insignificant quantities are also formed from nuclear weapons detonation. Cobalt-60 has a radiological half life of 5.3 years and emits both beta and gamma radiation.

Tritium

Tritium exists fairly uniformly in the environment as a result of natural production by cosmic radiation and residual fallout from

nuclear weapons tests. This background level is gradually being increased by the use of nuclear reactors to generate electricity.

Current tritium from the nuclear power industry comprises a small proportion of environmental tritium in comparison with that from nuclear weapons fallout and naturally produced tritium. However, nuclear reactors and fuel-processing plants are localized sources of tritium because of discharges during normal operation. This industry is expected to become the major source of environmental tritium contamination some time in the future if present growth trends continue and nuclear explosion in the atmosphere is not resumed. Tritium is produced in light water nuclear reactors by ternary fission, neutron capture in coolant additives, control rods and plates, and activation of deuterium. About 1% of the tritium in the primary coolant is released in gaseous form to the atmosphere; the remainder is eventually released in liquid waste discharges. Most of the tritium produced in reactors remains in the fuel and is released when the fuel is reprocessed.

Naturally occurring tritium is most abundant in precipitation and lowest in aged water because of its physical decay by beta emission to helium.

Iodine

Iodine is a chemical oxidant. It disinfects in a manner similar to chlorine. Iodine is the least soluble of all the halogens, hence it is the least likely to be hydrolized by water. It also has the lowest oxidation potential, that is, it reacts more slowly with organic compounds than chlorine. Because of this stability, iodine does not react with nitrogenous compounds as does chlorine. Iodine remains effective through a wider range than chlorine; chlorine becomes less stable at pH of 8 as compared to iodine at pH of 10.

4. SYNTHETIC ORGANIC ANALYSES

The synthetic organic compounds referred to in this section are classified as pesticides and industrial chemicals. These compounds contain linked carbon atoms in their chemical structure and are, for the most part, synthesized from common chemicals. Furthermore, they may be subdivided into chemical families of compounds sharing common characteristics. For example, organochlorine compounds (chlorinated hydrocarbons) contain chlorine, hydrogen and carbon in their structure; they have a tendency to accumulate in the fatty tissues of animals and are stable compounds (i.e., persistent).

Until recently, only a few classes of synthetic organic compounds such as drugs, food additives and pesticides were controlled by legislation. For example, the only pesticides which may be offered for sale in Ontario are those which have been registered under the authority of the Pest Control Products Act which is administered by Agriculture Canada. The term pesticide includes insecticides, herbicides and fungicides which are chemical compounds used to control insects, weeds or fungi (i.e., "pests") that attack crops, animals and man. In contrast to the regulation of pesticides, thousands of unregistered synthetic organic chemicals are in daily use as raw materials, products and additives. Very little is known about their possible health and environmental effects because of their sheer number and diversity of use. Many are not hazardous, but the adverse effects already encountered by some have created concern for preventative measures of both known and potentially hazardous substances.

Polychlorinated Biphenyls (PCBs)

PCBs are a range of industrial chemicals produced by direct chlorination of biphenyl. The North American products in this family are sold under the name Aroclor. Aroclors are characterized by a four digit number, such as (Aroclor 1242, or Aroclor 1254, of which the last two digits refer to the weight percentage of

chlorine in the products. There are 208 possible compounds which could be formed by this reaction. Each product is a different mixture of up to 100 of these, each with its own unique physical, chemical and biological properties.

The main characteristics of PCBs are their chemical, physical, biological inertness and electrical insulating properties. They have been widely used in transformers and capacitors, as heat exchange fluids or plasticizers, and is present in inks, paint, lubricants, and many other products. Spills and waste disposal practices have resulted in very large inputs of these chemicals to all facets of the environment.

PCBs are lipophilic, and thus continuing environmental inputs have led to biological uptake and concentration. Of particular concern are the excessive levels detected in some fish. Levels in water and air to date have not demonstrated a threat to human health, as might arise from fish consumption. PCBs have been shown to be both acutely and chronically toxic, carcinogenic and teratogenic (to cause developmental malformations). Limits for human consumption have been set on the basis of tests on monkeys and rats. The present acceptable level of PCBs in fish is 2.0 ppm. However, 0.1 ppm has been suggested as a level for protection of the fisheries resource from reproductive failure. Long-term use of PCBs, at elevated temperatures, and inefficient incineration of these materials have been shown to produce the highly toxic chlorodibenzofurans, closely related to dioxins.

Trichlorophenoxyacetic Acid (2,4,5-T)

2,4,5-T is a chlorophenoxy acid herbicide. Other members of this family include 2,4-D and 2,4,5-TP which were introduced as selective weed killers at the end of World War II. Their uses include weed control in cereal crops, lawns, along roadsides, hydro and railroad rights-of-way, and control of aquatic weeds.

STATION IDENTIFIER CODES, QUALIFYING REMARKS CODES AND ABBREVIATED PARAMETER HEADINGS

Station Identifier Codes

The station identifier codes which appear in the index and the top right-hand corner of the data pages are numerical descriptions of the sampling station locations and are used primarily for electronic data processing of the water quality data. The eleven digit figure is decoded as follows: the first two digits refer to the terminal basins (see figures 2 and 3), the following four digits refer to the river basin (each river basin in a terminal basin is assigned a unique number), the next three digits refer to the station number within the river basin and the last two digits refer to the type of sample (e.g. 01-lake sample, 02-stream sample, 82 to 89-composite sample, e.g. 83 - 3 part composite across a station sampling range).

Qualifying Remark Codes

Distance

The distance in kilometres is measured along the centre line of a watercourse to the sampling station location from the junction of the related terminal stream and terminal basin.

Abbreviated Headings

BOW
STN NO
LAT
LONG
UTM
SAMP DTE DY MO YR
HOUR LMT

STN DIST FEET

STN BRG

SAMP DEPTH MTRS

body of water base station number latitude longitude

Universal Transverse Mercator Grid sample date; day, month, year hour(s) local mean time (2400 hour clock)

distance from base station (in feet) (not applicable)

bearing of sampling point (deg N) from base station (not

from base station (not applicable)

sample depth (in metres)
project (not applicable)

Abbreviated Parameter Headings

The following list are alphabetic codes, appearing as parameter headings, are a series of unique codes used for computer processing. Each alphabetic code identifies a particular water quality parameter analyzed by the laboratory.

TEST .		
NAME	DESCRIPTION OF TEST	UNITS OF MEASURE
ACDT	ACIDITY, TOTAL	MILLIGRAM PER LITRE AS CALCIUM CARBONATE
ALKT	ALKALINITY, TOTAL	MILLIGRAM PER LITRE AS CALCIUM CARBONATE
ALKTI	ALKALINITY, INFLECTION POINT	MILLIGRAM PER LITRE AS CALCIUM CARBONATE
ALUT	ALUMINIUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS ALUMINIUM
ASUT	ARSENIC, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS ARSENIC
B3001X	PHENANTHRENE	NANOGRAM PER LITRE
B3002X	ANTHRACENE	NANOGRAM PER LITRE
B3003X	FLUORANTHENE	NANOGRAM PER LITRE
83004X	PYRENE	NANOGRAM PER LITRE
B3005X	BENZ(A) ANTHRACENE	NANOGRAM PER LITRE
83006X	CHRYSENE	NANOGRAM PER LITRE
B3007X	DIMETH BENZ(A) ANTHRACENE	NANOGRAM PER LITRE
B3008X	BENZO(E) PYRENE	NANOGRAM PER LITRE
B3010X	BENZO(B) FLUORANTHENE	NANOGRAM PER LITRE
B3011X	PERYLENE	NANOGRAM PER LITRE
B3012X	BENZO(K) FLUORANTHENE	NANOGRAM PER LITRE
83013X	BENZO(A) PYRENE	NANOGRAM PER LITRE
B3014X	BENZO(G,H,I) PERYLENE	NANOGRAM PER LITRE
B3015X	DIBENZ(A,H) ANTHRACENE	NANOGRAM PER LITRE
83016X	INDENO(1,2,3-C,D) PYRENE	NANOGRAM PER LITRE
B3017X	BENZO(B) CHRYSENE	NANOGRAM PER LITRE
83019X	CORONENE	NANOGRAM PER LITRE
BAUT	BARIUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS BARIUM
B005	BOD, 5 DAY, TOTAL DEMAND	MILLIGRAM PER LITRE AS OXYGEN
CAUR	CALCIUM, UNFILTERED REACTIVE	MILLIGRAM PER LITRE AS CALCIUM
CCNAUR	CYANIDE, AVAIL, UNFIL.REAC	MILLIGRAM PER LITRE AS HYDROGEN CYANIDE
CCNFUR	CYANIDE, FREE, UNFIL.REACTIVE	MILLIGRAM PER LITRE AS HYDROGEN CYANIDE
CDUT	CADMIUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS CADMIUM
CLIDUR	CHLORIDE, UNFIL.REAC	MILLIGRAM PER LITRE AS CHLORIDE
COD	CHEMICAL OXYGEN DEMAND	MILLIGRAM PER LITRE AS OXYGEN
COLTR	COLOUR, TRUE	TRUE COLOUR UNITS (TCU)
COND25	CONDUCTIVITY, 25C	MICROMHOS/CM (CONDUCTIVITY)
CONDAM	CONDUCTIVITY, AMBIENT	MICROMHOS/CM AT AMBIENT TEMPERATURE
COUT	COBALT, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS COBALT
CRUT	CHROMIUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS CHROMIUM
CUUT	COPPER, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS COPPER (CUPRUM)
	- X	rvi -

NNO3FR

NNO3UR NNOTFR

TEST NAME D	ESCRIPTION	
TEST NAME	DESCRIPTION OF TEST	UNITS OF MEASURE
D10ACE	D10-ACENAPHTHENE	MICROGRAM PER LITRE
D10PHE	D10-PHENANTHRENE	MICROGRAM PER LITRE
D12CHR	D12-CHRYSENE	MICROGRAM PER LITRE
D12PER	D12-PERYLENE	MICROGRAM PER LITRE
DSNAPH	D8-NAPHTHALENE	MICROGRAM PER LITRE
DIC	CARBON, DISSOLVED INORGANIC	MILLIGRAM PER LITRE AS CARBON
DO	DISSOLVED OXYGEN	MILLIGRAM PER LITRE AS OXYGENM
DOC	CARBON, DISSOLVED ORGANIC	MILLIGRAM PER LITRE AS CARBON
ECIGMF	ESCHERICHIA COLI MFIG	COUNTS PER 100 ML
ECMF	ESCHERICHIA COLI MF	COUNTS PER 100 ML
ECMPN	E.COLI BY MPN	RESULT = 1 MEANS COMPOUND PRESENT
FCMF	FECAL COLIFORM MF	COUNTS PER 100 ML
FEUT	IRON, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS IRON AS (FERRUM)
FSMF	FECAL STREPTOCOCCUS MF	COUNTS PER 100 ML
FWPH	PH FIELD	
FWSTRC	STREAM CONDITION	
FWTEMP	TEMPERATURE, WATER	DEGREES CELCIUS
HARDT	HARDNESS, TOTAL	MILLIGRAM PER LITRE AS CALCIUM CARBONATE
HGUT	MERCURY, UNFILTERED TOTAL	MICROGRAM PER LITRE AS MERCURY (HYDRARGYRUM)
IONCAL	ION BALANCE CALCULATION	
KKUR	POTASSIUM, UNFILTERED REACTIVE	MILLIGRAM PER LITRE AS POTASSIUM (KALIUM)
MGUR	MAGNESIUM, FILTERED REACTIVE	MILL'LIGRAM PER LITRE AS MAGNESIUM
MNUT	MANGANESE, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS MANGANESE
MOIST	MOISTURE	PERCENT
MOUT	MOLYBDENUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS MOLYBDENUM
NAUR	SODIUM, UNFILTERED REACTIVE	MILLIGRAM PER LITRE AS SODIUM
NIUT	NICKEL, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS NICKEL
NNHTFR	AMMONIUM, TOTAL FILTER.REAC	MILLIGRAM PER LITRE AS NITROGEN
NNHTUR	AMMONIUM, TOTAL UNFIL.REAC	MILLIGRAM PER LITRE AS NITROGEN
NNO2FR	NITRITE, FILTERED REACTIVE	MILLIGRAM PER LITRE AS NITROGEN
NNO2UR	NITRITE, UNFILTERED REACTIVE	MILLIGRAM PER LITRE AS NITROGEN

NITRATE, UNFILTERED REACTIVE MILLIGRAM PER LITRE AS NITROGEN

MILLIGRAM PER LITRE AS NITROGEN

MILLIGRAM PER LITRE AS NITROGEN

NITRATE, FILTERED REACTIVE

NITRATES TOTAL, FILTER_REAC

TEST NAME	DESCRIPTION OF TEST	UNITS OF MEASURE
NNTKUR	NITROGEN, TOT, KJELDAHL/UNF.REA	MILLIGRAM PER LITRE AS NITROGEN
PIALDR	ALDRIN	NANOGRAM PER LITRE
P1BHCA	HEXACLOROCYCLOHEX, ALPHA-BHC	NANOGRAM PER LITRE
P1BHCB	HEXACLOROCYCLOHEX, BETA-BHC	NANOGRAM PER LITRE
P1BHCG	HEXACLOROCYCLOHEX, GAMMA-BHC	NANOGRAM PER LITRE
P1CHLA	CHLORDANE, ALPHA	NANOGRAM PER LITRE
P1CHLG	CHLORDANE, GAMMA	NANOGRAM PER LITRE
PIDIEL	DIELDRIN	NANOGRAM PER LITRE
P1DMDT	DMDT METHOXYCHLOR	NANOGRAM PER LITRE
P1END1	ENDOSULFAN I	NANOGRAM PER LITRE
P1END2	ENDOSULFAN II	NANOGRAM PER LITRE
P1ENDR	ENDRIN	NANOGRAM PER LITRE
PIENDS	ENDOSULFAN, SULPHATE	NANOGRAM PER LITRE
PIENDT	ENDOSULFAN, TOTAL (CACULATED)	NANOGRAM PER LITRE
PIHEPE	HEPTACHLOREPOXIDE	NANOGRAM PER LITRE
PIHEPT	HEPTACHLOR	NANOGRAM PER LITRE
P1MIRX	MIREX .	NANOGRAM PER LITRE
PIOCHL	OXYCHLORDANE	NANOGRAM PER LITRE
PIOPDI	OP-DDT	NANOGRAM PER LITRE
P1PCBT	PCB TOTAL	NANOGRAM PER LITRE
P1PPD0	PP-000	NANOGRAM PER LITRE
P1PPDE	PP-DDE	NANOGRAM PER LITRE
P1PPDT	PP-DDT	NANOGRAM PER LITRE
P1TOX	TOXAPHENE	NANOGRAM PER LITRE
P2ATRA	ATRAZINE	NANOGRAM PER LITRE
PZCYAN	CYANAZINE	NANOGRAM PER LITRE
PZCYPR	CYPRAZINE	NANOGRAM PER LITRE
PZDATR	ATRAZINE, DEETHYLATED	NANOGRAM PER LITRE
P2PROM	PROMETONE	NANOGRAM PER LITRE
PZSENC	SENCOR	NANOGRAM PER LITRE
P2SIM	SIMAZINE	NANOGRAM PER LITRE
P3245T	245 TRICHLOROPHNOXYACETIC	NANOGRAM PER LITRE
P324D	24 DICHLOROPHENOXYACETIC	NANOGRAM PER LITRE
P3240B	24 DICHLOROPHENOXYBUTYRIC	NANOGRAM PER LITRE
P324DP	24 DP	NANOGRAM PER LITRE

TEST		
NAME	DESCRIPTION OF TEST	UNITS OF MEASURE
P3DICA	DICAMBA	NANOGRAM PER LITRE
РЗМСРА	MCPA	NANOGRAM PER LITRE
РЗМСРВ	МСРВ	NANOGRAM PER LITRE
РЗМСРР	MECOPROP	NANOGRAM PER LITRE
P3PICL	PICLORAM	NANOGRAM PER LITRE
P3SILV	SILVEX	NANOGRAM PER LITRE
P4CLFN	CHLOROFENVINPHOS	NANOGRAM PER LITRE
P4DEMT	DEMETON	NANOGRAM PER LITRE
P4DIAZ	DIAZINON	NANOGRAM PER LITRE
P4D IME	DIMETHOAK	NANOGRAM PER LITRE
P4DURS	DURSBAN	NANOGRAM PER LITRE
P4ETHI	ETHION	NANOGRAM PER LITRE
P4GUTH	GUTHION	NANOGRAM PER LITRE
P4LEP0	LEPTOPHOS	NANOGRAM PER LITRE
P4MALA	MALATHION	NANOGRAM PER LITRE
P4PALO	PHOSALONE	NANOGRAM PER LITRE
P4PARA	PARATHION	NANOGRAM PER LITRE
P4PMET	PHOSMET	NANOGRAM PER LITRE
P6CARB	CARBOFURAN	NANOGRAM PER LITRE
P6CARY	CARBARYL	NANOGRAM PER LITRE
P6CYCL	CYCLOATE	NANOGRAM PER LITRE
P6EPTM	EPTAM	NANOGRAM PER LITRE
P6MOL1	MOLINATE	NANOGRAM PER LITRE
P6PEBU	PEBULATE	NANOGRAM PER LITRE
P6SUTN	SUTAN	NANOGRAM PER LITRE
P6VERN	VERNOLATE	NANOGRAM PER LITRE
PBUT	LEAD, UNFILTERED TOTAL	· MILLIGRAM PER LITRE AS LEAD (PLUMBUM)
PH	PH (-LOG H+ CONCN)	
PHNOL	PHENOLICS, UNFILERED REACTIVE	MICROGRAM PER LITRE AS PHINOL
PNACHE	ACENAPHTHENE	MICROGRAM PER LITRE
PNACNY	ACENAPHTHYLENE	MICROGRAM PER LITRE
PNANTH	ANTHRACENE ,	MICROGRAM PER LITRE
PNBAA	BENZO(A)ANTHRACENE	MICROGRAM PER LITRE
PNBBF	BENZO (B) FLUORANTHENE	MICROGRAM PER LITRE
PNBKF	BENZO (K) FLUORANTHENE	MICROGRAM PER LITRE
		V 1 T V

TEST		
NAME	DESCRIPTION OF TEST	UNITS OF MEASURE
PNCHRY	CHRYSENE	
PNDAHA	DIBENZO(AH)ANTHRACENE	MICROGRAM PER LITRE MICROGRAM PER LITRE
PNFLAN	FLUORANTHENE	MICROGRAM PER LITRE
PNFLUO	FLUORENE	
		MICROGRAM PER LITRE
PNGHIP	BENZO(G,H,I) PERYLENE	MICROGRAM PER LITRE
PNINP	INDENO(1,2,3-CD) PYRENE	MICROGRAM PER LITRE
PNNAPH	NAPHTHALENE	MICROGRAM PER LITRE
PNPHEN	PHENANTHRENE	MICROGRAM PER LITRE
PNPYR	PYRENE	MICROGRAM PER LITRE
POALA	ALACHLOR	NANOGRAM PER LITRE
POMET	METALACHLOR	NANOGRAM PER LITRE
PPO4FR	PHOSPHATE, FILTERED REACTIVE	MILLIGRAM PER LITRE AS PHOSPORUS
PPO4UR	PHOSPHATE, UNFILTERED REACTIVE	MILLIGRAM PER LITRE AS PHOSPORUS
PPUT	PHOSPHORUS, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS PHOSPORUS
PSAMF	PSEUDOMON.AERUGINOSA MF	CCUNTS PER 100 ML
RSF	RESIDUE, FILTERED	MILLIGRAM PER LITRE
RSP	RESIDUE, PARTICULATE	MILLIGRAM PER LITRE
RST	RESIDUE, TOTAL	MILLIGRAM PER LITRE
RSTLOI	RESIDUE, TOTAL, LOSS ON IGNIT.	MILLIGRAM PER LITRE
SBUT	ANTIMONY, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS ANTIMONY
SEUT	SELENIUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS SELENIUM
SIO3UR	SILICATES, UNFILTERED REACTIVE	MILLIGRAM PER LITRE AS SILICON
SCLEXT	SOLVENT EXTRACTABLES	MILLIGRAM PER LITRE
SOLSXT	SOLVENT EXTRACT SOXHLET	MILLIGRAM PER LITRE
SRUT	STRONTIUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS STNITIUM
SSO4UR	SULPHATE, UNFILTERED REACTIVE	MILLIGRAM PER LITRE AS NIOBIUM
TCMF	COLIFORM, TOTAL MF	COUNTS PER 100 MLM
TOC	CARBON, TOTAL ORGANIC	MILLIGRAM PER LITRE AS CARBON
TURB	TURBIDITY	FORMAZIN TURBIDITY UNIT
זטטט	URANIUM, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS THORIUM
X1HCSD	HEXACHLOROBUTADIENE	NANOGRAM PER LITRE
X1HCCP	HEXACHLORO CYCLO PENTADIENE	MICROGRAM PER LITRE
X2123	TRICHLOROBENZENE 1,2,3	NANOGRAM PER LITRE
X21234	TETRACHLOROBENZENE 1,2,3,4	NANOGRAM PER LITRE
X21235	TETRACHLOROBENZENE 1,2,3,5	NANOGRAM PER LITRE

TEST		
NAME	DESCRIPTION OF TEST	UNITS OF MEASURE
X2124	TRICHLOROBENZENE 1,2,4	NANOGRAM PER LITRE
X21245	TETRACHLOROBENZENE 1,2,4,5	NANOGRAM PER LITRE
X2135	TRICHLOROBENZENE 1,3,5	NANOGRAM PER LITRE
X2HCB	HEXACHLOROBENZENE	NANOGRAM PER LITRE
X2HCE	HEXACHLOROETHANE	NANOGRAM PER LITRE
X20CST	OCTACHLOROSTYRENE	NANOGRAM PER LITRE
X2PNCB	PENTACHLOROBENZENE	NANOGRAM PER LITRE
X2T236	TRICHLOROTOLUENE 2,3,6	NANOGRAM PER LITRE
X2T245	TRICHLOROTOLUENE 2,4,5	NANOGRAM PER LITRE
X2T26A	TRICHLOROTOLUENE 2,6,A	NANOGRAM PER LITRE
X3234	TRICHLOROPHENOL 2,3,4	NANOGRAM PER LITRE
X32345	TETRACHLOROPHENOL 2,3,4,5	NANOGRAM PER LITRE
X32356	TETRACHLOROPHENOL 2,3,5,6	NANOGRAM PER LITRE
X3245	TRICHLOROPHENOL 2,4,5	NANOGRAM PER LITRE
X3246	TRICHLOROPHENOL 2,4,6	NANOGRAM PER LITRE
ХЗРСРН	PENTACHLOROPHENOL	NANOGRAM PER LITRE
ZNUT	ZINC, UNFILTERED TOTAL	MILLIGRAM PER LITRE AS ZINC

OTHER ABBREVIATIONS

BLVD.

ML

arithmetic mean ARITH MEAN

AVE. avenue

arithmetic mean or geometric mean (denoted by *) AVG OR GEOM MN

boulevard

branch, bridge or brook BR.

corporation CORP. CAN. Canadian

Canadian National Railway C.N.R.

CO. county or company

concession CONC.

Canadian Pacific Railway C.P.R.

CR. Creek drive DR. FT. feet

GEOM MEAN

geometric mean highway HWY. JNT. junction L. left

MG milligram(s)

milligrams per litre MG/L or mg/L

millilitre(s)

N. north

NG/L nanogram(s) per litre number of samples NO/OF SAMPLES

part or point PT.

O.E.W. Oueen Elizabeth Way

R. river or right RD. road R.R. railroad RW. railway

S. standard deviation STD DEV sewage treatment plant S.T.P.

south

TWP.

township micrograms per litre UG/L

W.P.C.P. water pollution control plant

WW. water-works An "Exponent" is used to move the decimal point to the right when the result is greater than 7 digits or to the left if the result is measured to more than three decimal places.

GLOSSARY OF TERMS

Arithmetic Mean

- The nth quotient of the summation of n observations. The equation for the arithmetic mean (X) can be expressed as:

$$\bar{x} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

Detection Limit

The amount of analyte required to be present to ensure that when it is 'absent' it will not be reported as 'present'.

Geometric Mean

- The nth root of the product of n observations. The equation for the geometric mean (G_x) can be

expressed as:

$$G_x = {}^n$$
 $\sqrt{X_1 \times X_2 \times \ldots \times X_n}$

or

$$G_x = antilog$$

$$\frac{(\log X_1 + \log X_2 + \dots + \log X_n)}{n}$$

Standard Deviation - A measure of variability or dispersion. For a set of n observations, X_i ; i = 1, ..., n. The standard deviation is given as:

$$S = \sqrt{\Sigma(x_i - x) / (n - 1)}$$

SELECTED REFERENCES

- Environment Canada, Inland Waters Directorate, Water Survey of Canada "Surface Water Data, Ontario".
- Ontario Ministry of Environment, 1978. (Revised 1984) "Water Management Goals, Policies, Objectives and Implementation Procedures of the Ministry of Environment".
- Ontario Ministry of Environment, Laboratory Services Branch, 1981.

 "Outlines of Analytical Methods, A Guide to the Occurrence,
 Significance, Sampling and Analytical of Chemical and
 Microbiological Parameters in Water, Sediment, Soil, Vegetation and
 Air.".
- Ontario Ministry of Environment and Ministry of Natural Resources, 1988.

 "Guide to Eating Ontario Sport Fish."

ABBREVIATIONS USED:

CORE	BOTTON CORE SANPLE BACTERIA COUNT UNACCEPTABLE
DATA AVL DC DD	DATA NOT STORED IN THIS SYSTEM BUT IS AVAILABLE DEPTH COMPOSITE SAMPLE DAY
ET EXP GC	END TIME PRECIPITATING AT EXPOSURE (FOR PRECIP, SAMPLES) GAUGE DEPTH (FOR PRECIP, SAMPLES)
	DEPTH INTERVAL (IN METERS) WHEN ASSOCIATED WITH DC ITME INTERVAL (IN HOURS) WHEN ASSOCIATED WITH TC INITIAL DATE (SET-UP DATE FOR PRECIP, SAMPLES) INITIAL ITME (SET-UP TIME FOR PRECIP, SAMPLES)
LAT LONG LO1 LO2 HII N	LATITUDE LONGITUDE LOCAL HEAN TIME LOW VOLUME SEQUENTIAL SAMPLE LOW VOLUME NUTECH SAMPLE HOWTH NUMBER OF SAMPLES (USED FOR DC, TC AND CORE SAMPLES)
DRY WET BULK GRND REH	PRECIPITATION SAMPLE (DRY ONLY) PRECIPITATION SAMPLE (WET ONLY) PRECIPITATION SAMPLE (BULK) PRICIPITATION SAMPLE (ON GROUND SHOW COURSE) PRECIPITATING AT REHOVAL (FOR PC SAMPLES 0,1,2,3)
	7.1# 1E
SED CORE SED GRAB	SEDIMENT CORE SAMPLE (DEPTH FROM AND TO HEASURED IN CH) SEDIMENT GRAB SAMPLE (DEPTH FROM AND TO HEASURED IN CM)
WLE EPI HYP EUP GEN	MATER LAYER – MHOLE LAKE COHPOSITE WATER LAYER – EPILLHHION ZOHE WATER LAYER – NETALIHHION ZOHE WATER LAYER – HYPOLIHHION ZOHE WATER LAYER – EUPHOTIC ZOHE WATER LAYER – GENERAL LAYER
TC	TIME COMPOSITE SAMPLE BACTERIA TOO MUMEROUS TO COUNT
^^	VOLUME WHEN ASSOCIATED WITH LOI AND LO2 SAMPLES

- LVI -

DATE OF REPORT: 9 JAN 92

INDIVIDUAL TEST VALUES MAY BE QUALIFIED BY ONE OF THE FOLLOWING REMARKS:

	ACTUAL RESULT < THAN REPORTED VALUE APPROXIMATE RESULT REPORTED VALUE=HDL: MEASURE AMT <mdl (excess="" dil'n)="" hin.="" no="" non-detected<="" resp.:="" th="" value=""><th>, PF PF</th></mdl>	, PF PF
TECT TO THE ASUR MEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS	DETECT LINIT REPORT: VALUE < LIMIT TRACE RESP.: < THAN VALUE REPORTED LESS THAN-BASED ON SEMI-QUANT. METH A MEASURABLE TRACE AMOUNT MEASURABLE TRACE AFTER EXTRA DIL/CO NO HEASURABLE RESPONSE (0) <rep. (diln="" be="" conc)="" data="" measurable="" mill="" no="" reported:="" response="" see="" text<="" th="" v.=""><th></th></rep.>	
DAT DAT DAT	INTERNAL TEST: NOT INCLUDED IN REP. NO DATA: ANAL. REQ ABSENT-AMBIGUOUS NO DATA: ANOHALOUS DATA WITHDRAWN ADDITIONAL INFORMATION AVAIL AT LAB NO DATA: AL NOT DONE, PH > 5.5 NO DATA: PH > 7	
DAT DAT DAT DAT DAT	SEE ATTACHED REPT: NO NUMERIC VALUE NO DATA: ANALYSIS WITHDRAWN NO DATA: BACKGRND COLOUR INTERFERES NO DATA: UNRELIABLE BLANK NO DATA: BACKGROUND TOO NUMEROUS NO DATA: SAMPLE BROKEN IN TRANSIT NO DATA: CARBONATE NOT DONE, PH<5.0	

REMARK	MEANING OF REMARK	соммент сове
ICL	NO DATA: EXCESSIVE CHLORINE LEVEL	
ICR	COULD NOT PERFORM CONFIRMING REANAL	
Sol	NO DATA: CONTAMINATION SUSPECTED	
001	NO DATA: COLONY COUNT UNSUITABLE	
loo	NO DATA: DUPLICATES FOUND TO DIFFER	
IDI	NO DATA: SAMPLE DISCARDED IN ERROR	
lor.	NO DATA FOR LPA DUE TO SIZE DISTRIB	
sal	NO DATA FOR SPA DUE TO SIZE DISTRIB	
JEE	NO DATA: EMPTY ENVELOPE	
EF	NO DATA: LABORATORY EQUIP, FAILURE	
IEP	NO DATA: EXCESS. PRESERVATIVE USED	
FB	NO DATA: FROZEN CONTAINER BROKEN	
1FC	NO DATA: FOIL CAP CONTAMINATED SAMP	
FF	NO DATA: FIELD FILTERED SAMP REQURD	
lGL	NO DATA: GREEN LABEL REG ON BOTTLE	
IHB	NO DATA: HIGH BACKGROUND ABSORBANCE	
IHI	RERUN: NO VALUE, OFFSCALE HIGH	
lic	NO DATA: IMPROPER CONTAINER	
IF	NO DATA: INVALID FILTER-NO AIR VOL	
IIL	NO DATA: SAMPLE INCORRECTLY LABELED	
HIH	INTERNAL LAB NEMO; FOR LAB USE ONLY	
HII	NO DATA: INSUFFICIENT VOL/INSPECTED	
IIP	NO DATA: INSUFFICIENT PRESERVATIVE	
IIR	NO DATA: INSUFFICIENT FOR REPEAT AN	
113	NO DATA: INSUFFICIENT SAMPLE	

REMARK	MEANING OF REMARK COD	T COD
\II	NO DATA: INVALID SAMPLE	
ILA	SAMPLE SPOILED IN LAB ACCIDENT	
27	NO DATA: LAB CAPACITY EXCEEDED	
1.0	NO DATA: TEST QUEUED:SAMP DISCARDED	
110	RERUN: NO VALUE, OFFSCALE LOW	
I.P	NO DATA: PERISHABLE TEST QUEUE LATE	
IMS	NO DATA: TOO COMPLEX, REF TO MS GRP	
THX	RESULT FOR M-XYLENE = M- + P-XYLENE	
INA	NO DATA: NO AUTHORIZATION TO ANALYZ	
IND	NO DATA: NOT ANALYZED	
INE	SUBM SHEET MISPLACED - NOT ENTERED	
INF	NO DATA: INFORMATION NOT RECEIVED	
INI	NO DATA: SAMP NOT STORED IN ICE	
HN	NO DATA: NO DISCHARGE	
NN	NO DATA: TESTS REQ. IN LIS ERROR	
INP	NO DATA: NO APPROP, PROCEDURE AVAIL	
INR	NO DATA: SAMPLE NOT RECEIVED AT LAB	
INS	NO DATA: NOT EQUIP. TO ANALY SAFELY	
INT	NO DATA: NO TIME RECORDED	
100	NO DATA: ORGANIC CARBON CONTENT>17%	
IOF	SLUDGE SAMP DISCARD:BOTTLE OVERFILL	
10P	NO DATA: OBSCURED PLATE	
los	NO DATA: OPTIONAL SAMPLE	
lor	SAMPLE OVERTITRATD:NO REPEAT POSBLE	
IPE	PROCEDURE ERROR: SAMP NOW DISCARDED	

REMARK	MEANING OF REHARK	COMMENT CODE
Hd	NO DATA: PIECE MISSING	
PR	NO DATA: PRESERVATIVE REQUIRED	
IPU	NO DATA:VSAMPLE PRESUMED UNSTERILE	
Iqu	NO DATA: QUALITY CONTROL UNACCEPT.	
IRC	RESULT CHANGED: REPORT REVISED	
IRD	SEE ATTCH. REPT:NO NUM VALUE:DIOXIN	
IRE	NO DATA: SAMP CONTAINER RECV. EMPTY	
IRI	SEE ATTCH. REPT:NO NUM VALUE:ITCS	
JRL	RESULT FORTHCOMING FROM RAD. LAB	
IRM	SEE ATTCH. REPT:NO NUM VALUE:MICRO	
IRN	SEE ATTCH. REPT FOR NUMERIC RESULT	
IRO	SEE ATTCH. REPT:NO NUM VALUE:OTCS	
IRP	SEE ATTCH. REPT:NO NUM VALUE:PEST	
IRR	NO DATA: RERUM HAS BEEN INITIATED	
IRS	REPORT SENT TO PRIMARY CLIENT	
IRT	SAMPLE NOT REFRIGERATED IN TRANSIT	
IRW	SEE ATTCH. REPT:NO NUM VALUE:WQS	
ISD	NO DATA: SAMPLE DECOMPOSED	
SE	SAMPLE EXAMINED: SEE OTHER RESULTS	
SF	NO DATA: SAMPLE RECEIVED FROZEN	
IST	NO DATA: SAMP ARRIVED LATE FOR AMAL	
ISH	NO DATA: SAMPLE HISSING:LOST IN LAB	
22	SEPARATE SAMP, PROPER, PRESERVE REQ	
ST	NO DATA: SEE ATTACHED TEXTUAL INFO.	
110	NO DATA:TOTAL CR/PB LESS THAN 1 PPM	

INDIVIDUAL TEST VALUES MAY BE QUALIFIED BY ONE OF THE FOLLOWING REMARKS:

CODE

REMARK	MEANING OF REMARK	COMMENT
1	NO DATA: TORN FILTER	
ТН	TURBIDITY EXCEEDED INSTRUMENT RANGE	
ITM	NO DATA: TEST HEDIA NOT AVAILABLE	
H	NO DATA: TOO NUMEROUS TO COUNT	
110	NO DATA: HI ORGANIC PRECLUDED MICRO	
UTI	NO DATA: ANALY TEMPORARILY UNAVAIL.	
MAL	NO DATA: TARE WEIGHT >LOADED WEIGHT	
XTI	NO DATA: TIME LIMIT EXPIRED	
Io	NO DATA: UNSUITABLE FOR ANALYSIS	
lus	NO DATA: BROKEN SAMPLE CONTAINER	
lup	INSUFFICIENT SAMPLE	
IUE	NO DATA: UNCORRECTABLE ERROR	
. Iui	NO DATA: UNDETERMINED INTERFERENCE	
IUN	NO DATA: RESULTS UNRELIABLE	
lup	NO DATA: NO INFLECTION POINT DETECT	
IUR	NO DATA: UNPRESERVED SAMP REQUIRED	
IVE	INSUFFICIENT SAMP:VISUAL EST:RSP<15	
IVN	NO DATA: SAMPLE CONTAINER NOT FULL	
Ivu	NO DATA: VALUES USED IN CACL UNVAIL	
IMD	NO DATA: WRONG PRESERVATIVE USED	
HI!	NO DATA: SAMPLE AGE EXCEEDS 1 WK	
112	NO DATA: SAMPLE AGE EXCEEDS 12HR	
124	NO DATA: SAMPLE AGE EXCEEDS 24HR	
130	NO DATA: SAMPLE AGE EXCEEDS 30 HRS	•
148	NO DATA: SAMPLE AGE EXCEEDS 48 HRS	

сониемт соре											PE	PE	PT										Тd		
MEANING OF REMARK	N-NITROSODIPHENYLAHINE/DIPHENLYAMIN	CHECK: LIS PICKED PREVIOUS RERUN	CHECK: LIS PICKED FROM PREV. RERUNS	DEMO RESULT- DO NOT REPORT !!!!!!!	SAMPLE DECOMPOSITION NOTED	RERUN: READING TOO LOW- USE LG ALIQ	BAD READING. NO RESULT	RERUN: DILUTION READING TOO HIGH	RERUN: DILUTION READING TOO LOW	RERUN REQUESTED	ACTUAL RESULT > THAN REPORTED VALUE	ACTUAL MASS > SIZED FIBRE MASS	LATE DATA: DATA NOT YET AVAILABLE	APPROXIMATE VALUE	APROX RSLT:EXCEED NORMAL RNGE LIMIT	ADDITIONAL INFO AVAILABLE FROM LAB	SAMPLE AGE EXCEEDED NORMAL LIMIT	APPROX VALUE: INSUFFICIENT DILUTION	ANALYSIS IN PROGRESS	ANALYSIS BY IODINE TITRATION METHOD	TOO ORGANIC;4:1 SOL'N:SOIL RATIO	ANALYSIS PERFORMED AT DORSET LAB	ATTACHED REPORT	BOTTLE LABEL/SUBMISSION FORM DIFFER	BOTTLE NOT LABELLED- LOCATION?
REMARK	PA	*	*25	*DE	*DN	*L0	*RE	*RH	*RL	*RR	٨	>SF	¢~	A	A>	AAI	AGE	AID	AIP	AIT	ALO	APD	AR	grg	BML

COMMENT CODE																									
MEANING OF RENARK	BACKGROUND COUNT TOO NUMEROUS	POSSIBLE CONTAM DUE TO IMPROPER CAP	IONCAL FOR LAB USE ONLY	CONFIRMED BY LODINE TITRATION METH	IDENTITY CONFIRMED BY GC/MASS SPEC	TEMP CONTINGENCY: RSF = COND.* ,065	CALCULATED RESULT ONLY	DAILY AVERAGE	DANGER: SAMPLE CONTAINS CARCINGENS	DANGER: SAMPLE CONTAINS CYANIDE	DANGEROUS CONSTITUENTS PRESENT	DAILY HINIMUM	DAILY MAXIMUM	DUPLICATE	DRINKING WATER QUALITY POOR	DRINKING WATER QUALITY UNSAFE!	ANALYSIS DELAYED TO 29HR: OVERLOAD.	ANALYSIS DELAYED TO 48HR: OVERLOAD.	ESTIMATED OR COMPUTED VALUE STORED	NO RESULT: BOTTLE RECEIVED EMPTY	EXCEEDS 1978 DRINK WATER QUAL CRIT	EXCEEDS ONTARIO DRINGING WATER OBJ	ESTIMATED VALUE - TARE WT UNVAIL.	FRACTION ANALY: NON-AQUEOUS PHASE	FRACTION ANALY: PARTICULATE ONLY
REMARK	ပ	CIC	CID	CIT	CMS	CRC	CRO	DAV	DCC	DCN	DCP	DMN	DHX	DUP	DWP	DMG	D24	D48	m	EBR	EDC	EDO	EV	FAN	FAP

		HEANING OF REMARK	COMMENT CODE
STAFF:FILTER PRIOR TO ANALYSIS PECTED HIGH RESULT:IRON PRECIP ERFERENCE: SUSPECTED ERFERENCE: BACKGROUND ERFERENCE: COLOUR ERFERENCE: SAMPLE HATRIX UFFICIENT SAMPLE: PETBOTTLE LEAK ELS PROBABLY INTERCHANGED UALLY ANALYSED THLY ANALYSED THLY ANALYSED THLY HIMIMUH THLY HAXIMUH THLY SAMPLE SAMPLE SULT) EL CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE THE RECORDED: AMAYL, PERFORMED THE RECORDED: AMAY, STORMED THE RECORDED: AMAYL, PERFORMED THE RECORDED		AB STAFF:FILT.WHOLE SAMP BEFORE AN	
ERFERENCE SUSPECTED ERFERENCE: BACKGROUND ERFERENCE: COLOUR ERFERENCE: COLOUR ELS PROBABLY INTERCHANGED THLY AVERAGE 5+2346-TETRACHOLOR-PHENOL TOGETH THLY HINIMUM TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE THE ECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS HAX, STORAGE T.	7	AB STAFF:FILTER PRIOR TO ANALYSIS	
ERFERENCE: SUSPECTED ERFERENCE: BACKGROUND ERFERENCE: SAMPLE HATRIX UFFICIENT SAMPLE: PETBOTTLE LEAK ELS PROBABLY INTERCHANGED UALLY ANALYSED THLY ANALYSED THLY HINIHUM TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE THE RECORDED: ANAYL, PERFORMED 1: SAMPLE EXCEEDS MAX, STORAGE T.	S	JSPECTED HIGH RESULT:IRON PRECIP	
ERFERENCE: BACKGROUND ERFERENCE: COLOUR ERFERENCE: SAMPLE HATRIX UFFICIENT SAMPLE: PETBOTTLE LEAK ELS PROBABLY INTERCHANGED UALLY AVERAGE 5+2346-TETRACHOLOR-PHENOL TOGETH THLY AVERAGE THLY HINIHUH THLY HAXIMUH TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND EN CORRECTED VALUE SAMPLE DATA TANALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE TIME RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T.	H	NTERFERENCE SUSPECTED	
ERFERENCE: COLOUR ERFERENCE: SAMPLE MATRIX ELS PROBABLY INTERCHANGED UALLY ANALYSED THLY AVERAGE 5+2346-TETRACHOLOR-PHENOL TOGETH THLY HINIMUM TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW METHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE THE ECORDED: ANAYL, PERFORMED TS SAMPLE EXCEEDS MAX, STORAGE T.	-	NTERFERENCE: BACKGROUND	pt
ERFERENCE: SAMPLE MATRIX ELS PROBABLY INTERCHANGED UALLY ANALYSED THLY AVERAGE 5+2346-TETRACHOLOR-PHENOL TOGETH THLY HINIHUH TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND E: CORRECTED VALUE SAMPLE DATA THE RECORDED: AMAYL, PERFORMED THE RECORDED: AMAYL, STORAGE T, THE RECORDED THE RECORDE	-	NTERFERENCE: COLOUR	
UFFICIENT SAMPLE: PETBOTTLE LEAK ELS PROBABLY INTERCHANGED UALLY ANALYSED THLY AVERAGE 5+2346-TETRACHOLOR-PHENOL TOGETH THLY HINTHUH THLY HINTHUH THLY HAXIMUH TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND E: CORRECTED VALUE SAMPLE DATA TANALYZED BY NEW METHOD E: CORRECTED VALUE SAMPLE DATE INDICATED TITHE RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T.	-	MTERFERENCE: SAMPLE MATRIX	PT
ELS PROBABLY INTERCHANGED UALLY ANALYSED THLY AVERAGE 5+2346-TETRACHOLOR-PHENOL TOGETH THLY HINIMUH TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW METHOD E: CORRECTED VALUE SAMPLE DATE INDICATED THE RECORDED: ANAYL, PERFORMED THE RECORDED: ANAYL, PERFORMED TSAMPLE EXCEEDS MAX, STORAGE T.		HSUFFICIENT SAMPLE: PETBOTTLE LEAK	
UALLY ANALYSED THLY AVERAGE 5+2346-TETRACHOLOR-PHENOL TOGETH THLY HINIHUH TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SUITABLE SAMPLE THE RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T,	_	LABELS PROBABLY INTERCHANGED	
THLY AVERAGE 5+2346-TETRACHOLOR-PHEMOL TOGETH THLY MINIMUH THLY MAXIMUM TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T AMALYZED BY NEW METHOD E: CORRECTED VALUE SAMPLE DATE INDICATED TITHE RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T.	-	JANUALLY ANALYSED	
5+2346-TETRACHOLOR-PHENOL TOGETH THLY MAXIMUH TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW METHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SUITABLE SAMPLE THE RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T,	the	JONTHLY AVERAGE	
THLY MINIMUM THLY MAXIMUM TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T AMALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE TIME RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T,		2345+2346-TETRACHOLOR-PHENOL TOGETH	
THLY MAXIMUM TIPHASE SAMPLE(SUSPECTED RESULT) ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW METHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE TIME RECORDED: AMAYL, PERFORMED H: SAMPLE EXCEEDS MAX, STORAGE T.	_	чоитну мімімим	
ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SUITABLE SAMPLE THE RECORDED: AMAYL, PERFORMED SAMPLE EXCEEDS MAX, STORAGE T,	_	IONTHLY MAXIMUM	
ALL REQUIRED TESTS FOUND ENOUGH DATA T ANALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SULTABLE SAMPLE THE RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T,	-	AULTIPHASE SAMPLE(SUSPECTED RESULT)	Тd
ENOUGH DATA T ANALYZED BY NEW HETHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SUITABLE SAMPLE TIME RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T.	-	NOT ALL REQUIRED TESTS FOUND	
T ANALYZED BY NEW METHOD E: CORRECTED VALUE SAMPLE DATE INDICATED SUITABLE SAMPLE TIME RECORDED: AMAYL, PERFORMED I: SAMPLE EXCEEDS MAX, STORAGE T,	-	40T EMOUGH DATA	
E: CORRECTED VALUE SAMPLE DATE INDICATED SUITABLE SAMPLE TIME RECORDED: AMAYL, PERFORMED IS SAMPLE EXCEEDS MAX. STORAGE T.		TEST ANALYZED BY NEW METHOD	pt
SUITABLE SAMPLE SUITABLE SAMPLE TIME RECORDED: AMAYL, PERFORMED IS SAMPLE EXCEEDS MAX, STORAGE T, IS SAMPLE EXCEEDS MAX, STORAGE T,		NOTE: CORRECTED VALUE	
SUITABLE SAMPLE TIME RECORDED: AMAYL. PERFORMED 1: SAMPLE EXCEEDS MAX. STORAGE T. 1: SAMPLE EXCEEDS MAX. STORAGE T.	_	NO SAMPLE DATE INDICATED	
		SUITABLE	
		NO TIME RECORDED: AMAYL, PERFURMED	
EXCEEDS MAX. STORAGE T.		OLD: SAMPLE EXCEEDS MAX. STORAGE T.	PT
STORE OF THE PERSON NAMED AND ASSOCIATED TO STORE OF THE PERSON NAMED IN COLUMN 1		EXCEEDS MAX. STORAGE	1d
TEST PERFORMED ON PREV FROZEN SAMP		TEST PERFORMED ON PREV FROZEM SAMP	

INDIVIDUAL TEST VALUES HAY BE QUALIFIED BY ONE OF THE FOLLOWING REMARKS:

REMARK	MEANING OF REMARK	COMMENT CODE
PIL	PRESERVED IN LABORATORY	
PLD	PASSIVE LOADING	
PLT	PALUSTRIC+LEVOPIMARIC ACID TOGETHER	
PNF	TEST PERFORMED ON NON-FROZEN SAMPLE	
PNS	TEST PERFORMED ON UNPRESERVE SAMPLE	
PPS	TEST PERFORMED ON PRESEVERED SAMPLE	
ps1	PCB RESEM.MIX AROCLR 1248,1254,1260	
PS2	PCB RESEM.MIX AROCLR 1242 1245 1260	
P16	PCB RESEMBLED AROCLOR 1016	PT PT
P20	PCB RESEMBLED HIX AROCLOR 1242 1260	
P21	PCB RESEMBLED AROCLOR 1221	
P24	PCB RESEMBLED MIX:AROCLOR 1242,1254	
P28	PCM RESEMBLED HIX:AROCLOR 1242,1248	
P32	PCB RESEMBLED AROCLOR 1232	PT
D40	PCB RESEMBLED MIX:AROCLOR 1254,1260	
P42	PCB RESEMBLED AROCLOR 1242	
P48	PCB RESEMBLED AROCLOR 1248	
P54	PCB RESEMBLED AROCLOR 1254	
P60	PCB RESEMBLED AROCLOR 1260	
P80	PCB RESEMBLED MIX:AROCLOR 1248,1260	
P84	PCB RESEMBLED MIX:AROCLOR 1248,1254	
dcn	QUALITY CONTROL UNACCEPTABLE	
RID	IONCAL CALC. ON INCOMPL. DATA SET	
ROL	CAUTION:SAMP PREP RECVRY QC OUT/LHT	
RSP	REPEAT SAMPLE-DRINKING WATER POOR	

COMMENT CODE				00							pT														
MEANING OF REMARK	REPEAT: 24 HRS SAMPLING TO ANALYSIS	REPEAT: 48 HRS SAMPLING TO ANALYSIS	REPEAT: 72 HRS SAMPLING TO ANALYSIS	WHOLE FISH SUBMITTED - SBF ANALYZED	SAMPLE BOTTLE OVERFILLED	SAMPLE NOT COOLED DURING TRANSIT	SAMPLE DUPLICATES DIFFER IN APPEAR.	SAMPLE FROZEN IN TRANSIT	SAMPLE IDENTIFICATION QUESTIONABLE	SAMP INCORRECTLY LABELLED	SAMPLE IMPROPERLY PRESERVED	SATURATED PASTE PH REPT:HIGH ORGAN.	SEVERAL PEAKS, LARGE, NOT PRIORITY	SEVERAL PEAKS, SMALL, NOT PRIORITY	RESULT BASED ON SEMI-QUANT, METHOD	SPECIAL RESAMPLE- DRINKING H20 POOR	SPECIAL RESAMPLE- DRINK, H20 UNSAFE	SAMP TOO OLD FOR RE-ANALYSIS	SAMP TOO COMPLEX FOR THIS METHOD	TRACE AMOUNT FOUND	SOME TESTS REQUESTED NOT AVAILABLE	UNRELIABLE RESULT	UMRELIABLE: ANALYZER HALFUNCTION	UMRELÍABLE- SAMPLE AGE UMKHOWN	UNRELIABLE: SUSPECTED CL2 INTERFER.
REHARK	R24	R48	R72	SBF	280	SCT	SD	SFT	SID	SIL	SIP	SPH	SPL	SPS	SQT	SRP	SRU	STA	STC	TAF	THA	n	UAN	UAU	UCI

INDIVIDUAL TEST VALUES MAY BE QUALIFIED BY ONE OF THE FOLLOWING REMARKS:

UMF	UNRELIABLE: MULTIPLE FILTERS SUBMIT	
nac	DATA UNRELIABLE: POSSIBLE LAB QC P.	pt
URD	RESULT MAY BE LOW: UNDISOLVE PART.	
USF	UNRELIABLE: SAMPLE FROZEN IN TRANS.	
USM	ALUMINUM FOR METALS SAMPLE	pt
USP	PLASTIC ORGANICS SAMPLE	Td
UST	UNRELIABLE: PET BOTTLE LEAKED TRANS	
UTF	UNRELIABLE: TORN FILTER	
U24	UNRELIABLE: SAMPLE AGE EXCEEDS 24HR	
030	UNRELIABLE- SAMPLE AGE EXCEEDS 30HR	
048	UNRELIABLE- SAMPLE AGE EXCEEDS 48HR	
WAV	WEEKLY AVERAGE	
WFA	WHOLE FISH ANALYZED	0.0
MIN	WEEKLY MINIMUM	
MITX	WEEKLY MAXIMUM	
MSB .	MARNING-HEAVY SILT IN SAMP BIAS RES	·
MSD	WRONG SAMP DESCRIPTION ON BOTTLE	
WST	WET SAMP MASS USED: RESLT REPT MG/KG	
×1	DILUTD BY 10 DETECT LIMT 10X NORM	
X2	DILUTD BY 100 DETECT LIMT 100X NORM	
X3	DILUTD BY 1000 DECT.LIMT 1000X NORM	
24P	P-A BOTTLE POSITIVE AFTER 24 HOURS	
48b	P-A BOTTLE POSITIVE AFTER 48 HOURS	
72P	P-A BOTTLE POSITIVE AFTER 72 HOURS	
d96	P-A BOTTLE POSITIVE AFTER 96 HOURS	

110E - SAMPLE INFORMATION SYSTEM R4.5

ABBREVIATIONS AND REMARKS USED ON REPORTS

INDIVIDUAL TEST VALUES MAY BE QUALIFIED BY ONE OF THE FOLLOWING REMARKS:

REMARK

MEANING OF REMARK

COMMENT CODE

COMPUTED VALUES MAY BE QUALIFIED BY ONE OF THE FOLLOWING REMARKS:

٧

VALUE WITH A REMARK WHICH HAS A COMMENT CODE OF PT (AS ABOVE) USED IN COMPUTATIONS

NOTE: VALUES WITH CONMENT CODE OF PE ARE NOT USED IN COMPUTATIONS

REMARK CODES APPEAR TO THE RIGHT OF THE VALUE I.E. 435,56<T

LXVIII

This post This	B.O.W./ SI	B.O.W./ SITE: POTTAWATOMI RIVER	MI RIVER	TOO MILEN DO	411				ST	ATION ID: 0	STATION ID: 03-0015-002-02	
FHSADP FEDRAC ALKT CLIDUR CONDUCT COOPER CLICURE FEGAL	STATION TY	PE: RIVER		000		MAJOR BASIN MINOR BASIN TERM STREAM	N: GREAT LA N: LAKE HUR M: POTTAWAT	KES ON OMI RIVER			STORET CODE	
Fight Figh		LAT: 44	34 25.98		57 34.91	U T M: 17	0503200.0	4935400.0 4	REGION:	01	DISTANCE:	1.609
SAMPLE PROJECT TOTAL UNF.REA UNF.REA COMBUCT COMPRER DISOLVED COLTON FERAL FERAL FERAL LANGAL UNF.REA LANGAL UNF.ACT LANGAL LANGA	*=INTERIM	TEST-NAME:	FWSADP	FGPROJ	ALKT	CLIDUR	COND25	CUUT	DO	FCMF	FSMF	FWSTRC
DEPTH SUB-PROJ HG/L HG	147		SAMPLE	PROJECT	ALK TOTAL	CHLORIDE UNF.REAC	CONDUCT.	COPPER UNF.TOT.	DISOLVED	FECAL COLIFORM MF	FECAL STREPCUS MF	
0.30 0.101 144.0 59.200 572.0 0.0012cT 14.0 20 36 6 6 6 6 6 6 6 6	0		DEPTH	SUB-PROJ CODE	MG/L AS CACO3	MG/L AS CL	UMHO/CM AT 25 C	MG/L AS CU	MG/L AS 0	CNT /100ML	CNT /100ML	STREAM
Name		30550	0.30	0101	144.0	59,200	572.0	0.0012 <t< td=""><td>14.0</td><td>20</td><td>72</td><td></td></t<>	14.0	20	72	
5 0.30 0.101 2.9.90 490.0 0.0020 14.0 56.10 120 120 120 120 120 120 120 120 120 120 130 130 6 6 6 6 0.0030 13.5 100 130 130 6 6 0.0030 13.0			0.30	0101	167.0	26.800	432.0	0.0017 <t< td=""><td>11.5</td><td>2</td><td>12</td><td>2</td></t<>	11.5	2	12	2
2 0.30 0.101 247.0 29,200 541.0 0.0020 13.5 100 130 6 6 0.30 0.101 254.0 59,200 587.0 0.0030 14.0 20 30AID 6 6 0.30 0.101 254.0 59,200 587.0 0.0020 14.0 100 130 50ID 8 0.30 20 25,200 587.0 0.0020 14.0 100 130 50ID 58 56 58 56 58 14.0 100 130 58 56 58 56 58 56 58 56 58 56 58 56 58 <			0.30	0101	219.0	23,900	0.064	0.0020 <t< td=""><td>14.0</td><td>56</td><td>12</td><td>· /</td></t<>	14.0	56	12	· /
NATION N	900723 1250		0.30	0101	247.0	29.200	541.0	0,0020 <t< td=""><td>11.0</td><td>SOAID</td><td>130</td><td>. 9</td></t<>	11.0	SOAID	130	. 9
No. 30	900924 1315		0.30	0101	254.0	34.700	587.0	0.0030	13.5	100	130	9
Hareman	201126 1320	40226	0.30	1010				0.0030	14.0	20	SOAID	9
N		MAXIMUM	0.30		254.0	59.200	587.0	0.0030	14.0	100	130	
NATION NAME		ARITH MEAN	0.30		206.2	34.760	524.4	0.0021 <a< td=""><td>13.0</td><td>42</td><td>58</td><td></td></a<>	13.0	42	58	
FWIEHP WINHTUR NINGZUR NINGZUR NINTKUR PBUT PHU PPO4UR PPUT REACHED PRO5 PRO		GEOM MEAN	4		201.3	32.879	521.2	0.0020 <a< td=""><td>12.9</td><td>28</td><td>37</td><td></td></a<>	12.9	28	37	
FHTEHP RINHTURR NNOZUR NNOZUR NNTKURR PBUT PH PPOGGUR PPUT RE TOTAL NOZ-N NNOZUR NNTKURR PBUT PH PPOGGUR PPUT RE TOTAL NOZ-N TOTAL NOZ-N N	STD DE	TINITUM TO LEFON & 1	0.50		144.0	23.900	432.0	0.0012	11.0	4	12	
FHTEHP NNHTURR NNOZUR NNOZUR NNTKURR PBUT PH PPOGGUR PPUT RE TOTAL NOZ-N TOTAL LEAD PPOGGUR PPUT RE TOTAL NGZ-N NGZ-N NGZ-N PPOGGUR PPUT RE TOTAL NGZ-N NGZ-N PPOGGUR PPUT RE NGZ-N NGZ-N PPOGGUR PPUT RE TOTAL NGZ-N NGZ-N PPOGGUR PPUT RE NGZ-N NGZ-N PPOGGUR PPUT RE NGZ-N NGZ-N NGZ-N NGZ-N PPOGGUR PPUT RE NGZ-N	# SAND IN	STATISTICS	7		0.0	14.226	65.6	0.000/cA	1.4	×	×	
Harth	Z. SAMP	(EXCLUDED)	0		n	n	n	٥	9	9	9	
HOUR SAMPLE TEHP UNF.REAC UNF.	*=INTERIM 1	EST-NAME:	FWTEMP	NNHTUR NH3-N	NNO2UR	NNO3UR	NNTKUR K'DAHI N	PBUT	Н	PP04UR	PPUT	RSP
HOUR SAMPLE TEHP UNF.REAC UNF.				TOTAL	N02-N	N03-N	TOTAL	LEAD		POG	DHOSDHO	
HOUR SAMPLE TEMP MG/L	ш		MATER	UNF. REAC	UNF. REAC	UNF. REAC	UNF. REAC	UNF. TOT.		UNF . REAC	UNF. TOT.	RESIDUE
1345 30550 1.0 0.004 0.030 1.700 0.780 0.00544 8.00 0.008 0.028 1.354 40448 6.0 0.009 0.010 0.550 0.00544 8.23 0.0014 0.014 0.014 0.154 0.014 0.154 0.014	-	SAMPLE	TEMP	MG/L	MG/L	MG/L	MG/L	MG/L		MG/L	MG/L	PARTIC.
1356 30550 1.0 0.004 0.030 1.700 0.780 0.005544 8.00 0.008 0.028 1356 40448 6.0 0.008 0.0104 0.030 0.1700 0.550 0.005544 8.23 0.0014 0.014 1356 40562 21.0 0.015 0.010 0.030 0.500 0.005544 8.59 0.0014 0.010 1315 40562 21.0 0.016 0.020 0.500 0.550 0.005544 8.59 0.006 0.010 1315 40552 12.0 0.008 0.0104 0.500 0.550 0.005544 8.59 0.006 0.010 1315 40552 12.0 0.008 0.0104 0.050 0.500 0.005544 8.52 0.0014 0.013 1315 40552 3.5 0.008 0.0104 0.020 0.780 0.005544 8.52 0.0014 0.013 1315 40552 3.5 0.009 0.720 0.720 0.005544 8.52 0.000 0.013 1315 40552 3.5 0.009 0.720 0.720 0.00554 8.42 0.007 0.017 1315 40552 0.009 0.000 0.590 0.650 0.005 8.00 0.005 1315 40552 0.005 0.005 0.005 8.00 0.005 1315 40552 0.005 0.005 0.005 0.005 0.005 1315 40552 0.005 0.005 0.005 0.005 0.005 1315 40552 0.005 0.005 0.005 0.005 0.005 1315 40552 0.005 0.005 0.005 0.005 1315 40552 0.005 0.005 0.005 0.005 1315 40552 0.005 0.005 0.005 0.005 1315 40552 0.005 0.005 0.005 0.005 1315 40552 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 1315 40552 0.0052 0.00	200	HOUBER	DEG.C	AS N	AS N	AS N	AS N	AS PB	H	AS P	AS P	MG/L
1355 49448 6.0 0.0108 0.0104 0.600 0.550 0.00554 6.23 0.0014 0.014 1.155 49448 6.0 0.016 0.014 0		30550	1.0	900.0	0.030	1.700	0.780	0.005 <w< td=""><td>8.00</td><td>0.008</td><td>0,028</td><td>5.0<</td></w<>	8.00	0.008	0,028	5.0<
1515 40475 18.5 0.015 0.020 0.700 0.700 0.0055W 6.76 0.0014 0.010 1515 0.010 0.700 0.700 0.0055W 6.76 0.0014 0.010 0.010 1515 0.015		40448	0.9	0.008	0.010<	0.600	0.550	0.005 <w< td=""><td>8.23</td><td>0,001<</td><td>0.014</td><td>5.0<</td></w<>	8.23	0,001<	0.014	5.0<
1315 40552 21.0 0.016 0.020 0.550 0.0054W 8.59 0.006 0.019 1318 40556 3.5 1320 40556 3.5 1321 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40556 3.5 1320 40566 0.013 1320 4056 0.013 13		404/5	18.5	0.015	0.010	0.300	0.700	0.005 <w< td=""><td>8.76</td><td>0.001<</td><td>0.010</td><td>5.8</td></w<>	8.76	0.001<	0.010	5.8
40257 12.0 0.008 0.010< 0.520 0.05544 8.52 0.001< 0.013 40555 3.5 0.008 0.010< 0.520 0.005544 8.52 0.001< 0.013 0.013 0.005544 0.000 0.000 0.000 0.0005 0.0005 0.0005 0.000 0.		70505	10.0	0.016	0.020	0.500	0.650	M>500°0	8.59	900.0	0.019	5.0<
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	901126 1320	40556	3.5	0,008	0.010<	0.500	0.520	0.005 <w< td=""><td>8.52</td><td>0.001<</td><td>0.013</td><td>8.4</td></w<>	8.52	0.001<	0.013	8.4
10.3 0.010 0.020 0.720 0.640 0.005 8.76 0.008 0.028 0.028 0.009 0.028 0.028 0.009 0.028 0.028 0.009 0.029 0.053 0.0054 8.42 0.007 0.017 0.017 0.009 0.053 0.0054 8.42 0.007 0.017 0.017 0.006 0.017 0.005 8.00 0.006 0.017 0.016 0.005 8.20 0.005 8.00 0.006 0.016 0.016 0.016 0.016 0.017 0.005 8.00 0.006 0.010 0.055 8.00 0.005 0.016 0.017 0.006 0.017 0.006 0.017 0.007 0		MANTMIM	21.0	210 0	0 0 0	100	6	1	1			
6 5 6 0.005 0.025 0.027 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.016 0.016 0.006 0.006 0.016 0.016 0.016 0.017 0.006 0.007 0.016 0.017 0.006 0.007 0.016 0.017 0.006 0.017 0.007		ADITH MEAN	10.4	0.010	0.000	007.7	0.780	0.002	8.76	0.008	0.028	8.4
1.0 0.004 0.010 0.300 0.550 0.0054 8.00 0.006 0.016 0.016 8.2 0.005 1.00		GEOM MEAN	20.7	0.010	0.020	0.720	0.640	0.005 <a< td=""><td>8.42</td><td>0.007</td><td>0.017</td><td>7.1</td></a<>	8.42	0.007	0.017	7.1
8.2 0.005		MINIMUM	1.0	0.00	0100	0.270	0.000	0.005 <a< td=""><td>24.8</td><td></td><td>0.016</td><td>1</td></a<>	24.8		0.016	1
5 2 5 9 5 5 2 5 9	STD DE	(GEON *)	8.2	0.005		0.559	0.107	0.000 < A	0.30	0.006	0.010	5. 8
09	# SAMP IN	STATISTICS	9	un.	нı	125	LTI	9	2	P.	0	0
	Z SAMP	(EXCLUDED)			40				ı	09	1	09

STATION ID: 03-0015-002-02

1.609

DISTANCE:

REGION: 01

U T M: 17 0503200.0 4935400.0 4

STORET CODE: 02 002 2040

B.O.W./ SITE: POTTAWATOMI RIVER	: POTT	AWAT	DMI	RIVI	ER		
SAMPLE POINT	T: AT 1	4TH	STRE	==	BRIDGE	OMEN	SOUN
STATION TYPE: RIVER	: RIVE	α.					

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: POTTAWATOMI RIVER 9

LAT: 44 34 25,98 LONG: 080 57 34,91 ZNUT MG/L AS ZN UNF. TOT. SAMPLE *=INTERIM TEST-NAME: DATE HOUR SAMPLE

0.0030 0.0015<T 0.0005<W 0.0060 0.0023<A 0.0017<A 0.0005 0.0020<A MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *)

SAMP IN STATISTICS % SAMP (EXCLUDED)

STATION ID: 03-0016-003-02

		LAKE
		GREAT
		MAJOR BASIN: GREAT LAKE
		MAJOR
	FALLS	
	SAMPLE POINT: AT CONCESSION 18 ABOVE INGLIS FALLS	FLOW GAUGE FED 02FB007
	ABOVE	E FED
R	118	GAUG
IN RIVE	ESSION	FLOW
SYDENHA	AT CONC	STATION TYPE: RIVER
SITE:	POINT:	TYPE:
B.O.W./ SITE: SYDENHAM RIVER	SAMPLE	STATION

STORET CODE: 02	002 2050	DISTANCE: 7.403	FEUT	RM IRON	MF UNF. TOT.	CNT MG/L	ML. AS FE	0.065 <t< th=""><th></th><th>4< 0.031<t< th=""><th>0.150</th><th></th><th>30AID 0.130</th><th>70AID 0.090<t< th=""><th>1/0300</th><th></th><th>0.150</th><th></th><th></th><th>0.045<a< th=""><th></th><th></th><th>Н</th><th>40</th><th>Τ.</th><th>1/1</th><th>на вн</th><th></th><th></th><th></th><th>8.00 W 8 10</th><th></th><th></th><th>0</th></a<></th></t<></th></t<></th></t<>		4< 0.031 <t< th=""><th>0.150</th><th></th><th>30AID 0.130</th><th>70AID 0.090<t< th=""><th>1/0300</th><th></th><th>0.150</th><th></th><th></th><th>0.045<a< th=""><th></th><th></th><th>Н</th><th>40</th><th>Τ.</th><th>1/1</th><th>на вн</th><th></th><th></th><th></th><th>8.00 W 8 10</th><th></th><th></th><th>0</th></a<></th></t<></th></t<>	0.150		30AID 0.130	70AID 0.090 <t< th=""><th>1/0300</th><th></th><th>0.150</th><th></th><th></th><th>0.045<a< th=""><th></th><th></th><th>Н</th><th>40</th><th>Τ.</th><th>1/1</th><th>на вн</th><th></th><th></th><th></th><th>8.00 W 8 10</th><th></th><th></th><th>0</th></a<></th></t<>	1/0300		0.150			0.045 <a< th=""><th></th><th></th><th>Н</th><th>40</th><th>Τ.</th><th>1/1</th><th>на вн</th><th></th><th></th><th></th><th>8.00 W 8 10</th><th></th><th></th><th>0</th></a<>			Н	40	Τ.	1/1	на вн				8.00 W 8 10			0
STORET		DIST	FCMF	COLIFORM		S	/10011	8		4	40	2	30	70	126		124		8			16	PBUT	TAN I	UNF. TOT.	MG/L	AS PB	0.005 <w< td=""><td></td><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td></td></w<></td></w<></td></w<></td></w<>		0.005 <w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td></td></w<></td></w<></td></w<>	0.005 <w< td=""><td></td><td>0.005<w< td=""><td></td></w<></td></w<>		0.005 <w< td=""><td></td></w<>	
		01	CUUT	COPPER	UNF. TOT.	MG/L	AS CU	T>6000.0		0.0010 <t< td=""><td>D.0020<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0 0020</td><td>9 0</td><td>0.0030</td><td>0.0017<a< td=""><td>600000</td><td>0.0008<a< td=""><td>9</td><td></td><td>NNTKUR</td><td>K'DAHL N</td><td>UNF . REAC</td><td>MG/L</td><td>AS N</td><td>0.480</td><td>0.270</td><td>0.300</td><td>0.370</td><td>0.390</td><td>0.450</td><td>HY</td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	D.0020 <t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0 0020</td><td>9 0</td><td>0.0030</td><td>0.0017<a< td=""><td>600000</td><td>0.0008<a< td=""><td>9</td><td></td><td>NNTKUR</td><td>K'DAHL N</td><td>UNF . REAC</td><td>MG/L</td><td>AS N</td><td>0.480</td><td>0.270</td><td>0.300</td><td>0.370</td><td>0.390</td><td>0.450</td><td>HY</td></a<></td></a<></td></t<></td></t<></td></t<>		0.0020 <t< td=""><td>0.0020<t< td=""><td>0 0020</td><td>9 0</td><td>0.0030</td><td>0.0017<a< td=""><td>600000</td><td>0.0008<a< td=""><td>9</td><td></td><td>NNTKUR</td><td>K'DAHL N</td><td>UNF . REAC</td><td>MG/L</td><td>AS N</td><td>0.480</td><td>0.270</td><td>0.300</td><td>0.370</td><td>0.390</td><td>0.450</td><td>HY</td></a<></td></a<></td></t<></td></t<>	0.0020 <t< td=""><td>0 0020</td><td>9 0</td><td>0.0030</td><td>0.0017<a< td=""><td>600000</td><td>0.0008<a< td=""><td>9</td><td></td><td>NNTKUR</td><td>K'DAHL N</td><td>UNF . REAC</td><td>MG/L</td><td>AS N</td><td>0.480</td><td>0.270</td><td>0.300</td><td>0.370</td><td>0.390</td><td>0.450</td><td>HY</td></a<></td></a<></td></t<>	0 0020	9 0	0.0030	0.0017 <a< td=""><td>600000</td><td>0.0008<a< td=""><td>9</td><td></td><td>NNTKUR</td><td>K'DAHL N</td><td>UNF . REAC</td><td>MG/L</td><td>AS N</td><td>0.480</td><td>0.270</td><td>0.300</td><td>0.370</td><td>0.390</td><td>0.450</td><td>HY</td></a<></td></a<>	600000	0.0008 <a< td=""><td>9</td><td></td><td>NNTKUR</td><td>K'DAHL N</td><td>UNF . REAC</td><td>MG/L</td><td>AS N</td><td>0.480</td><td>0.270</td><td>0.300</td><td>0.370</td><td>0.390</td><td>0.450</td><td>HY</td></a<>	9		NNTKUR	K'DAHL N	UNF . REAC	MG/L	AS N	0.480	0.270	0.300	0.370	0.390	0.450	HY
		REGION: 01	COND25	CONDUCT.	25C	UMHO/CM	AT 25 C	425.0	491.0	398.0	501.0	516.0	513.0	532.0	517.0	243	226.0	484.3	398.0	46.2	10		NNOSUR	N-ZON	UNF. REAC	HG/L	AS N	1.000	006.0	0.400	0.400	0.500	0.300	000
KES	ON RIVER	U T M: 17 0505450.0 4929700.0 4	CLIDUR	CHLORIDE	UNF. REAC	MG/L	AS CL	11.200	13.300	10.000	11.600	12.600	11.400	13.900	12.300	17 000	12.158	12.109	10.000	1.135	10		NNO2UR	N-CON	UNF. REAC	NG/L	AS N	0.010	0.010	0.010<	0.010	0.030	0.020	0.020
MAJOR BASIN: GREAT LAKES	MINOR BASIN: LAKE HURON TERM STREAM: SYDENHAM RIVER	0505450.0	BODS	5 DAY	TOT.DEM.	MG/L	AS 0	0.55	0.89	1.28	0.40	0.65	0.50	0.80	0.20	90	0.59	0.45	0.05	0.35	10		NNHTUR	NH3-N TOTAL	UNF . REAC	MG/L	AS N	0.001<	0.058	0.001<	0.022	0.031	0.028	0.050
MAJOR BASIN	MINOR BASIN TERM STREAM	U T M: 17	ASUT	ARSENIC	UNF.TOT.	MG/L	AS AS	0.001 <w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>100</td><td>0.001<4</td><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>		0.001 <w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>100</td><td>0.001<4</td><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>100</td><td>0.001<4</td><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>		0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>100</td><td>0.001<4</td><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>100</td><td>0.001<4</td><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<>	0.001 <w< td=""><td>100</td><td>0.001<4</td><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<></td></a<></td></w<>	100	0.001<4	0.001 <a< td=""><td>0.001</td><td>0.000<a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<></td></a<>	0.001	0.000 <a< td=""><td>9</td><td></td><td>NIUT</td><td>NICKEL</td><td>UNF.TOT.</td><td>HG/L</td><td>AS NI</td><td>0.002<w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<></td></a<>	9		NIUT	NICKEL	UNF.TOT.	HG/L	AS NI	0.002 <w< td=""><td></td><td>0,002<w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<></td></w<>		0,002 <w< td=""><td>0,004<t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<></td></w<>	0,004 <t< td=""><td></td><td>0.004<t< td=""><td></td></t<></td></t<>		0.004 <t< td=""><td></td></t<>	
FALLS		55 53.11	ALKT	ALK	TOTAL	HG/L	AS CACO3	168.0	222.0	182.0	250.0	268.0	263.0	259.0	244.0	268 A	232.2	229.6	168.0	34.8	10		FWTEMP		MATER	TEMP	DEG.C	1.0	(2.0	17.0		19.5	
VE INGLIS		LONG: 080 55 53.11	FGPROJ		PROJECT	SUB-PROJ	CODE	1010	0101	0101	0101	0101	0101	0101	0101								FWSTRC			STREAM	COND.	9	,		9		9	
SION 18 ABO	•	LAT: 44 31 21.20	FWSADP		SAMPLE	DEPTH	Σ	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0 30	0.30		0.30	,	11		FSMF	STREPCUS	MF	CNT	/100ML	28	(_m	4		60AID	
AT CONCES		LAT: 44	TEST-NAME:		1	SAMPLE	NUMBER	30551	30562	40449	92505	40487	40503	40530	40541	MAXTHIM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	VCCODED)	TEST-NAME:			SAMPLE	NUMBER	30551	30562	40449	92505	40487	40503	1700
SAMPLE POINT: AT CONCESSION 18 ABOVE INGLIS FALLS STATION TYPE: RIVER FLOW GAUGE FED 02FB007			*=INTERIM TES		u	DATE HOUR	YYMINDD LMT	900122 1450	900227	900526 1416	900528 1415	900625	900723 1335 900827	900924 1420	901126 1405		AR	9		STD DEV	# SAMP IN STATISTICS	S CALLY LE	*=INTERIM TES		111	DATE HOUR	YYMMDD LMT	900122 1450	900227	900526 1416 90052	900528 1415		900723 1335	

1990 WATER QUALITY DATA REGION 1

STATION ID: 03-0016-003-02

SAMPLE POINT: AT CONCESSION 18 ABOVE INGLIS FALLS STATION TYPE: RIVER FLOW GAUGE FED 02FB007 SYDENHAM RIVER B.O.W./ SITE:

7.403 Ξ 8.30 8.01 8.00 7.54 0.24 2050 품 STORET CODE: DISTANCE: LEAD MG/L AS PB 0.005<A 0.005<A 0.000<A UNF. TOT. 0.005 PBUT MG/L AS N UNF. REAC NNTKUR K'DAHL N TOTAL 0.550 0.395 0.387 0.270 0.085 0 REGION: UNF.REAC MG/L AS N NNO3UR N03-N 0.530 0.492 0.300 0.236 U T M: 17 0505450.0 4929700.0 4 NO2-N UNF.REAC MG/L AS N NNO2UR 0.030 0.010 TERM STREAM: SYDENHAM RIVER 8 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS N NNHTUR UNF. REAC ZINC NH3-N MG/L AS ZN TOTAL 0.0005<W UNF. TOT. 0.0013<T 0.0005<W 0.028 ZNUT 0.058 0.011 8 20 MG/L AS NI 0.004 0.003<A 0.001<A NICKEL UNF. TOT. 0.003<A TURB'ITY 0.002 1.86 NIUT TURB 2.00 WATER FWTEMP DEG.C RESIDUE MG/L PARTIC. 5.0< 5.0 5.0 5.0 5.0 6.8 53,11 19.5 20.5 6.4 1.0 RSP LONG: 080 55 UNF.TOT. MG/L AS P FWSTRC STREAM PHOSPHOR COND. 0.044 900.0 0.015 PPUT 0.011 LAT: 44 31 21.20 CNT P04 STREPCUS PP04UR UNF. REAC MG/L FECAL /100ML 80 40 25 44 3* 0.001< FSMF 0,001< 0.001 0.003 SAMPLE 40460 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) SAMPLE NUMBER 30551 30562 65505 92505 *=INTERIM TEST-NAME: *=INTERIM TEST-NAME HOUR 1416 HOUR 900122 1450 900528 1415 LMT LMI YYMMDD YYMINDD 900326 SAMPLE 900423 900227 DATE DATE

0.0010<A

9 0

0.0005

2.55 2.42 2.42 1.86

0.0014<A 0.0011<A

20.5 1.3

0.044 0.014 0.006 0.010

0.005 0,003

> ARITH MEAN GEOM MEAN

0.001

MINIMUM

SAMP IN STATISTICS % SAMP (EXCLUDED) STD DEV (GEOM *)

0.0030 0.0030

0.0020<T 0.0010<T

> 2.60 2.00

0.018 0.017 0.016

0.001<

40541

901022

0.001< 0,003

> 40519 40530 40557 MAXIMUM

0.005

900625 900827

40487 40503

4.30

THE COURT IN THE PERSON IN THE
MINOR BASIN: LAKE HURON TERM STREAM: TELFER CREEK
LAT: 44 37 23.20 LONG: 080 52 30.75 U T M: 17 0509900.0 4940875.0 4
FWSADP FGPROJ ALKT ASUT
PROJECT
SUB-PROJ
M CODE AS CACOS
186.0
229.0
0101 222 0 0.001 <h< td=""></h<>
226.0
248.0
254.0
222.0
0101 275.0 0.001 <w< td=""></w<>
275.0 0.001
227.0 0.001 <a< td=""></a<>
26.7 0.0007
-
FCMF FEUT FSMF
DISOLVED COLIFORM IRON STREPCHS
MF UNF.TOT.
CNT
AS 0 /100ML AS FE /100ML
0.057 <t< td=""></t<>
0.090 <t< td=""></t<>
_
ID
70AID 0.070 <t< td=""></t<>

(CONTD)

40

STORET CODE:

STATION ID: 03-0017-002-02

0.483 MG/L AS N BHG GAMMA NG/L NNO3UR UNF . REAC 1 < W 1 1<A PIBHCG 124.000 0.890 0.100 38.978 2060 DISTANCE: UNF.REAC MG/L AS N BHC BETA NG/L 1<W 1 1<A NNO2UR P1BHCB 0.020 0.010 20 7 TOTAL MG/L AS N NH3-N BHC 1 < A MINHTUR UNF. REAC PIBHCA 1×W 0.034 0.005 6 0 REGION: 01 0.003<A 0.002 0.001<A 0.004 0.003<A MG/L AS NI ALDRIN NG/L 1<F NICKEL UNF. TOT. PIALDR 1<A NIUT U T M: 17 0509900.0 4940875.0 4 WATER TEMP DEG.C PSEUDOMN PSEUDOMN FWTEMP CNT /100ML AERUG 23.5 10.6 6.9 1.0 7.9 TERM STREAM: TELFER CREEK MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS P **FWSTRC** STREAM COND PHOSPHOR UNF. TOT 0.012 0.009 900.0 0,008 0.007 0.008 0.008 PPUT 0.018 0.013 0.018 0.010 MG/L AS P FECAL STREPCUS P04 ¥ UNF. REAC /100ML PP04UR 0.001< 0.001< 0.001< 0.001< FSMF 10 0.008 0.003 0.001 0.003 111 6 0.008 0.001 20 22 IRON UNF.TOT. AS FE 0.043 0.025<A MG/L 0.071<A 0.067<A 품 LAT: 44 37 23.20 LONG: 080 52 30.75 FEUT 0.130 8.04 8.30 8.44 8.31 8.42 8.42 8.28 8.28 8.44 8.31 8.31 8.04 0.13 Ŧ FECAL 0.005<W 0.005<W 0.005<W 0.005 0.000<A MG/L 포 CNT LEAD 0.005<W 0.005<W 0.005<W /100ML UNF. TOT. AS PB 0.005<W 0.005<W 0.005<W 0.005<W 0.005<A 0.005<A 390 9 PBUT DISOLVED MG/L AS 0 NNTKUR MG/L AS N OXYGEN K'DAHL N JNF . REAC 15.0 12.5 12.4 10.0 1.9 0.250 0.300 0.310 0.390 0.390 0.310 0.230 0.059 TOTAL 0.390 0.330 0.250 0.230 00 ARITH MEAN GEOM MEAN MINIMUM SAMPLE 40474 40540 MAXIMUM # SAMP IN STATISTICS NUMBER 30561 40513 40555 STD DEV (GEOM *) % SAMP (EXCLUDED) SAMPLE 30549 40447 40459 40486 40501 40528 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM * SAMP IN STATISTICS * SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: HOUR 1155 1110 1220 1120 1230 1135 HOUR YYMMDD LMT LMT *=INTERIM YYMMDD 900122 900625 900723 900924 SAMPLE SAMPLE 900326 900423 900528 900227 900827 DATE DATE

STATION ID: 03-0017-002-02

STORET CODE: 02 MAJOR BASIN: GREAT LAKES B.O.W./ SITE: TELFER CREEK SAMPLE POINT: AT THOMPSON MEMORIAL FOOTBRIDGE LEITH STATION TYPE: RIVER FLOW GAUGE HOE 02FB101

005	DISTANCE: 0.483	ЕРЕ РІНЕРТ	OR CIDE HEPACHOR NG/L NG/L	1 <w 1<w<="" th=""><th>1 1<a 1<a<="" th=""><th>1 1</th><th>1</th><th>TURB</th><th>SIDUE TURB'ITY MG/L FTU</th><th>0< 1.22</th><th></th><th>0><</th><th>0< 2.30</th><th></th><th>01.2</th><th>1.68</th><th>7 2.30</th><th></th><th></th><th>1.22</th><th></th></th></w>	1 1 <a 1<a<="" th=""><th>1 1</th><th>1</th><th>TURB</th><th>SIDUE TURB'ITY MG/L FTU</th><th>0< 1.22</th><th></th><th>0><</th><th>0< 2.30</th><th></th><th>01.2</th><th>1.68</th><th>7 2.30</th><th></th><th></th><th>1.22</th><th></th>	1 1	1	TURB	SIDUE TURB'ITY MG/L FTU	0< 1.22		0><	0< 2.30		01.2	1.68	7 2.30			1.22	
	DIS		CHLC					RSP	RES	5.0			5.0<	5.0	0.0	3.6	9.	5.6		3.6	-
	01	PIENDS	ENDOSULP II NG/L	55 <w< td=""><td>5 5<a< td=""><td>ស</td><td>1</td><td>P1TOX</td><td>TOXAPHEN NG/L</td><td></td><td>2002</td><td>000</td><td></td><td></td><td></td><td></td><td>200</td><td>500<a< td=""><td></td><td>200</td><td>1</td></a<></td></a<></td></w<>	5 5 <a< td=""><td>ស</td><td>1</td><td>P1TOX</td><td>TOXAPHEN NG/L</td><td></td><td>2002</td><td>000</td><td></td><td></td><td></td><td></td><td>200</td><td>500<a< td=""><td></td><td>200</td><td>1</td></a<></td></a<>	ស	1	P1TOX	TOXAPHEN NG/L		2002	000					200	500 <a< td=""><td></td><td>200</td><td>1</td></a<>		200	1
	REGION: 01	PIENDI	ENDOSULP I NG/L	2 < W	2 2 <a< td=""><td>2</td><td>1</td><td>PIPPDT</td><td>PP-DDT NG/L</td><td></td><td>n n</td><td>7</td><td></td><td></td><td></td><td></td><td>2</td><td>5<a< td=""><td></td><td>IN.</td><td>-</td></a<></td></a<>	2	1	PIPPDT	PP-DDT NG/L		n n	7					2	5 <a< td=""><td></td><td>IN.</td><td>-</td></a<>		IN.	-
EEK	940875.0 4	P1ENDS	ENDOSULP SULPHATE NG/L	5 <w< td=""><td>5 × A</td><td>TU.</td><td>Ħ</td><td>PIPPDE</td><td>PP-DDE NG/L</td><td></td><td>N/L</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1<a< td=""><td></td><td>П</td><td></td></a<></td></w<>	5 × A	TU.	Ħ	PIPPDE	PP-DDE NG/L		N/L	1						1 <a< td=""><td></td><td>П</td><td></td></a<>		П	
MINOR BASIN: LAKE HURON TERM STREAM: TELFER CREEK	U T M: 17 0509900.0 4940875.0 4	PLENDR	ENDRIN NG/L	M>2<	5 5 <a< td=""><td>ĽΩ</td><td>1</td><td>PIPPDD</td><td>PP-DDD NG/L</td><td></td><td>30</td><td>,</td><td></td><td></td><td></td><td></td><td>n</td><td>5<a< td=""><td>1</td><td>ស</td><td>-</td></a<></td></a<>	ĽΩ	1	PIPPDD	PP-DDD NG/L		30	,					n	5 <a< td=""><td>1</td><td>ស</td><td>-</td></a<>	1	ស	-
MINOR BASIN TERM STREAM	U T M: 17	PIDMDT	DMDT MTHXYLLR MG/L	32 < \$K	55 < A	ĸ	1	PIPCBT	PCB TOTAL NG/L	NO DATALIS	20 <w< td=""><td>NO DATALIS</td><td></td><td>20 < W</td><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20 0<a< td=""><td>7</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	NO DATALIS		20 < W	20 <w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20 0<a< td=""><td>7</td></a<></td></a<></td></a<></td></w<></td></w<>	20 <w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20 0<a< td=""><td>7</td></a<></td></a<></td></a<></td></w<>	20	20 <a< td=""><td>20<a< td=""><td>20 0<a< td=""><td>7</td></a<></td></a<></td></a<>	20 <a< td=""><td>20 0<a< td=""><td>7</td></a<></td></a<>	20 0 <a< td=""><td>7</td></a<>	7
	52 30.75	PIDIEL	DIELDRIN NG/L	2 < W	2 2 <a< td=""><td>2</td><td></td><td>Ploppt</td><td>OP-DDT NG/L</td><td></td><td>3>1</td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>5<a< td=""><td>1</td><td>Ð</td><td></td></a<></td></a<>	2		Ploppt	OP-DDT NG/L		3>1						5	5 <a< td=""><td>1</td><td>Ð</td><td></td></a<>	1	Ð	
	LONG: 080 52 30,75	PICHLG	CHLRDANE GAMMA NG/L	2 <w< td=""><td>2 2<a< td=""><td>2</td><td>1</td><td>P10CHL</td><td>OXCHLANE NG/L</td><td></td><td>2 < W</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>2<a< td=""><td>•</td><td>7</td><td>-</td></a<></td></a<></td></w<>	2 2 <a< td=""><td>2</td><td>1</td><td>P10CHL</td><td>OXCHLANE NG/L</td><td></td><td>2 < W</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>2<a< td=""><td>•</td><td>7</td><td>-</td></a<></td></a<>	2	1	P10CHL	OXCHLANE NG/L		2 < W						2	2 <a< td=""><td>•</td><td>7</td><td>-</td></a<>	•	7	-
	LAT: 44 37 23.20	PICHLA	CHLRDANE ALPHA NG/L	2 <w< td=""><td>2 2<a< td=""><td>2</td><td>1</td><td>PIMIRX</td><td>MIREX NG/L</td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>īU</td><td>5<a< td=""><td>ı</td><td>ų</td><td>-</td></a<></td></a<></td></w<>	2 2 <a< td=""><td>2</td><td>1</td><td>PIMIRX</td><td>MIREX NG/L</td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td>īU</td><td>5<a< td=""><td>ı</td><td>ų</td><td>-</td></a<></td></a<>	2	1	PIMIRX	MIREX NG/L		3						īU	5 <a< td=""><td>ı</td><td>ų</td><td>-</td></a<>	ı	ų	-
	LAT: 4	EST-NAME:	SAMPLE	40429	MAXIMUM ARITH HEAN	MINIMUM SID DEV (GEOM #)	AMP IN STATISTICS % SAMP (EXCLUDED)	EST-NAME:	SAMPLE	30549	40447	40424	40486	40501	40528	40540	MAXIMUM	ARITH HEAN	GEOR MEAN	STD DEV (GEOM *)	STATISTICS
		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900423 1110		STD DE	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYHHDD LHT		900326 1305		900625 1120	900827 1135		901022 1115				STD DE	# SAMP IN STATISTICS

(CONTD)

STATION ID: 03-0017-002-02

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: AT THOMPSON MEMORIAL FOOTBRIDGE LEITH B.O.W./ SITE: TELFER CREEK

REGION: 01 U T M: 17 0509900.0 4940875.0 4 TERM STREAM: TELFER CREEK MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON LONG: 080 52 30.75 FLOW GAUGE MOE 02FB101 LAT: 44 37 23.20 STATION TYPE: RIVER

1<W 1<A NG/L 0.483 X21234 1,2,3,4 TECHLORO BENZENE 2060 STORET CODE: DISTANCE: 1,2,3 2×K TRCHLORO BENZENE NG/L X2123 LO 2,6,A S<W TRCHLORO NG/L X2T26A TOLUENE L 2,4,5 TRCHLORO NG/L 5×W 5<A X2T245 TOLUENE r. ın X2T236 2,3,6 TRCHLORO 3×K 5 S A ZINC NG/L MG/L TOLUENE AS ZN 0.0009<T 0.0005<W 0.0005<W 0.0020<T 0.0010<T 0.0021<A 0.0014<A 0.0023<A 0.0016<T 0.0006<T 0.0020<T 0,0010<T UNF. TOT. ın ZNUT 0.0050 0.0080 0.0080 0.0005 PENTA 100<W 100<A 100<A X2PNCB CHLORO NG/L 1 × 1 1 < A 2,4,5 FRCHLORO NG/L 100<W 100<W 100<W 100<W 100<W BENZENE PHENOL 100<W X3245 100 NG/L 1<W 1 < A 1,3,5 2×8 5 A A TRCHLORO X20CST OCTCHLOR STYRENE BENZENE NG/L X2135 1 < W 1 < A 1 < W 1 1<A X21245 1,2,4,5 **TECHLORO** HCE NG/L BENZENE X2HCE 1,2,4 HCB NG/L 1 × E 1 < A TRCHLORD BENZENE S<W X2124 X2HCB Ŋ -1<4 X1HCBD 1 < W 1,2,3,5 1 1<A HXCHLORO 1 < A X21235 TECHLORO BUTADINE NG/L BENZENE 40447 40486 40528 SAMPLE MAXIMUM SAMPLE 30549 60474 40540 40459 ARITH MEAN GEOM MEAN # SAMP IN STATISTICS NUMBER 30561 40459 40555 MAXIMUM ARITH MEAN GEOM MEAN # SAMP IN STATISTICS NUMBER MINIMUM STD DEV (GEOM *) 40513 MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) 40501 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: HOUR 1220 1135 1240 1305 1120 HOUR 900423 1110 1300 1155 1110 1230 901126 1250 YYMMDD LMT **УУМИВВ LMT** *=INTERIM 900528 SAMPLE 900122 900827 900924 901022 SAMPLE 900227 900326 900423 900625 900723 DATE DATE

STORET CODE: 02

STATION ID: 03-0030-002-02

MAJOR BASIN: GREAT LAKES B.O.W./ SITE: BIGHEAD RIVER SAHPLE POINT: AT CONC ROAD 8 AND 9 SOUTH OF OXHEAD STATION TYPE: RIVER

LAT: 44 34 32.16 LONG: 080 38 54.97
FGPROJ
PROJECT SUB DEGI
CODE AS CACO3
0101 117.0
0101 219.0
0101 248.0
0101 260.0
0101 227 0
0101 234.0
260.0
215.9
211
112.0
38.8
21

STATION ID: 03-0030-002-02

1990 WATER QUALITY DATA REGION 1

AT CONC ROAD 8 AND 9 SOUTH OF OXMEAD B.O.W./ SITE: BIGHEAD RIVER SAMPLE POINT: AT CON STATION TYPE: RIVER

MG/L AS P 12.713 PHOSPHOR UNF. TOT. 0.024 0.019 0.008 0.020 0.078 0.014 0.017 0.013 0.017 0.031 0.010 0.012 0.009 0.008 0.013 0.013 0.027 0.081 2190 PPUT 0.040 0.024 0.018 0.020 0.081 0.032 STORET CODE: DISTANCE: UNF . REAC MG/L AS P P04 PP04UR 0.004 0.001 0.012 0.004 0.001< 0.007 0.001 0.001< 0.001< 0.007 0.001< 900.0 0.027 0.001 35 E 8.36 8.22 8.21 7.83 0.18 표 REGION: 01 0.049<T 0.007<A 0.005 0.009<A MG/L AS PB 0.005<W 0.005<W 0.005<W 0.005<W 0,005<W 0.005<W 0.005<W 0.005<W 0.005<W LEAD 0.005<W 0.005<W 0.005<W 0.005<W W>500.0 0.005<W 0.005<W 0.005<W 0.005<W UNF. TOT. PBUT 4 K'DAHL N TOTAL UNF.REAC MG/L AS N NNTKUR U T M: 17 0527900.0 4935650.0 0.600 0.399 0.240 0.089 0.600 0.400 0.340 0.240 0.550 0.440 0.310 0.280 0.300 0.390 0.410 0.460 0.430 0.430 TERM STREAM: BIGHEAD RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS N UNF. REAC NNOSUR N03-N 1.200 0.600 0.500 0.800 0.690 0.582 0.900 1.100 0.400 0.100 0.400 0.400 0.500 0.600 1.500 MG/L AS N UNF . REAC N02-N NN02UR 0.010 0.010< 0.010< 0.020 0.020 0.020 0.010 0.020 0.010 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.010 0.010 0.010 0.014 18 MG/L AS N NH3-N NNHTUR TOTAL UNF. REAC 0.001< 38 54.97 0.020 0.005 0.018 0.020 0.027 0.030 0.010 0.012 0.018 0.004 0.019 0.026 0.031 0.031 0.017 0.015 0.001 LONG: 080 TEMP WATER **FWTEMP** DEG.C 3.0 10.0 116.0 116.0 117.0 116.5 116.5 221.5 220.0 24.0 117.0 1.5 24.0 111.3 7.4 1.0 7.8 3.0 10.0 LAT: 44 34 32.16 STREAM COND. **FWSTRC** SAMPLE 40458 36707 36710 30548 36701 36702 36703 36704 40485 40512 36708 40527 36709 40539 40554 ARITH MEAN 40473 36705 36706 MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: 1415 1045 1000 1150 1015 1400 HOUR 1210 050 1145 1145 015 1057 1150 901126 0950 1115 901022 1045 LMT YYMMDD 900326 900403 900501 900528 900604 900625 9007009 900723 900813 900827 900918 900924 900118 900423 901002 SAMPLE 900122 900206 900227 300313 DATE 41

(CONTD)

11

02 002 2190	12.713																																		
STATION ID: 03-0030-002-02 STORET CODE: 02 21:	DISTANCE:																																		
STATION ID:	REGION: 01																																		
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BIGHEAD RIVER	U T M: 17 0527900.0 4935650.0 4	ZNUT	ZINC	UNF.TOT.	MG/L	AS ZN	0.0110	0.0012 <t< th=""><th>0.0069</th><th>0,0006<t< th=""><th>0.0093</th><th>0.0015<t< th=""><th>0.0083</th><th>0.0005<w< th=""><th>0.0083</th><th>0.0130</th><th>0.0050</th><th>0.0030</th><th>0.0000</th><th>0.0020<t< th=""><th>0.0110</th><th>0,0010<t< th=""><th>0.0020<t< th=""><th>0.0010<t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<></th></t<></th></t<></th></t<></th></w<></th></t<></th></t<></th></t<>	0.0069	0,0006 <t< th=""><th>0.0093</th><th>0.0015<t< th=""><th>0.0083</th><th>0.0005<w< th=""><th>0.0083</th><th>0.0130</th><th>0.0050</th><th>0.0030</th><th>0.0000</th><th>0.0020<t< th=""><th>0.0110</th><th>0,0010<t< th=""><th>0.0020<t< th=""><th>0.0010<t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<></th></t<></th></t<></th></t<></th></w<></th></t<></th></t<>	0.0093	0.0015 <t< th=""><th>0.0083</th><th>0.0005<w< th=""><th>0.0083</th><th>0.0130</th><th>0.0050</th><th>0.0030</th><th>0.0000</th><th>0.0020<t< th=""><th>0.0110</th><th>0,0010<t< th=""><th>0.0020<t< th=""><th>0.0010<t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<></th></t<></th></t<></th></t<></th></w<></th></t<>	0.0083	0.0005 <w< th=""><th>0.0083</th><th>0.0130</th><th>0.0050</th><th>0.0030</th><th>0.0000</th><th>0.0020<t< th=""><th>0.0110</th><th>0,0010<t< th=""><th>0.0020<t< th=""><th>0.0010<t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<></th></t<></th></t<></th></t<></th></w<>	0.0083	0.0130	0.0050	0.0030	0.0000	0.0020 <t< th=""><th>0.0110</th><th>0,0010<t< th=""><th>0.0020<t< th=""><th>0.0010<t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<></th></t<></th></t<></th></t<>	0.0110	0,0010 <t< th=""><th>0.0020<t< th=""><th>0.0010<t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<></th></t<></th></t<>	0.0020 <t< th=""><th>0.0010<t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<></th></t<>	0.0010 <t< th=""><th>0.0230</th><th>0.0010<t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<></th></t<>	0.0230	0.0010 <t< th=""><th>0.0350</th><th>0.0110</th><th>0.0350</th><th>0.0075<4</th><th>0.0040<</th><th>0.0005</th><th>0,0083<a< th=""><th>222</th><th></th></a<></th></t<>	0.0350	0.0110	0.0350	0.0075<4	0.0040<	0.0005	0,0083 <a< th=""><th>222</th><th></th></a<>	222	
	38 54.97	TURB			TURB'ITY	FIU	2.10		4.00	2.00	34.00		12.00		4.20			6.10	5.10		9.40	4.30			00.9	2.00	2.10		34.00	7.18	4.89	2.00	8.60	13	
9 SOUTH OF	LONG: 080 38 54.97	RSP		RESIDUE	PARTIC.	MG/L	30.5	>0.6	>0 < 9	>0.5	47.3	8.6	24.5	6.2	10.9	8.6	0.6	5.2	17.9	11.7	15.3	7.3		5.6	9.3	4.3	4.5	5.8	47.3	12.7		2.6		18	14
OAD 8 AND	LAT: 44 34 32.16	PSAMF	AERUG.	MF	CNT	/100ML		>4>	>4>	>4>	5	>5	>5	>4	>4	>4	>4>	4	8			>4	>4	>4	>4	>4>	>5	>4	8	5	1	4		M	84
BIGHEAD R AT CONC R RIVER	LAT: 44	ST-NAME:			SAMPLE	NUMBER	36700	30548	36701	30560	36702	95505	36703	40458	36704	40473	36705	40485	36706	40500	36707	40512	36708	40527	36709	40539	36710	40554	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	ATISTICS	(CODED)
B.O.W./ SITE: BIGHEAD RIVER SAMPLE POINT: AT CONC ROAD 8 AND 9 SOUTH OF OXMEAD STATION TYPE: RIVER		*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	YYRINDD LITT	900118 1030	$\overline{}$		900227 1115	900313		900403 1115	_	_	_	_	-	_	_				900924 1150		901022 1045	901121	901126 0950		AR	9		STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)

STATION ID: 03-0036-001-02

B.O.W./ SITE: BEAVER RIVER SAMPLE POINT: UPSTREAM FROM GEORGIAN BAY STATION TYPE: RIVER

70AID SOAID MG/L AS P CNT /100ML 0.161 FECAL STREPCUS 64 28 4 4< PHOSPHOR UNF. TOT. 2250 ÷ 54 180 0.018 0.015 0.038 0.016 0.013 50 0.013 10 PPUT STORET CODE: DISTANCE: IRON MG/L MG/L AS P P04 AS FE PP04UR UNF. REAC 0.001< 0.001< JNF . TOT . 0.001 0.001 0.007 0.008 0.001< 0,001< 0.220 0.210 0.120 0.150 0.166 0.000 FEUT 0.190 0.140 0.120 0.200 24 28 50AID 40AID H COLIFORM /100ML 99 8.14 8.33 8.35 8.37 8.37 8.37 8.30 8.30 7.94 51 H REGION: 01 MG/L AS 0 MG/L AS PB OXYGEN LEAD 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W DISOLVED UNF. TOT. 0.005<W 0.005<W 0.005<W 0.005<W 005<W 15.0 13.0 10.0 10.0 9.0 9.0 11.0 15.0 111.6 9.0 2.3 PBUT 00 4 MG/L 0.0015<A MG/L AS N 0.0005<W 0.0008<A K'DAHL N JNF . REAC COPPER AS CU 00100T T>9000.0 0.0005<W 0.0010<T 0.0020<T 0,0020<T 0.0020<T 0.0020<T 0.0020<T NNTKUR U T M: 17 0543700.0 4934400.0 UNF. TOT TOTAL 0.390 0.310 0.280 0.300 0.380 0.400 0.360 0.340 0.420 0.370 0.0030 0.0030 0.0005 TERM STREAM: BEAVER RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS N COND25 25C UMHO/CM AT 25 C N03-N UNF. REAC NNO3UR 0.400 CONDUCT 419.0 485.0 377.0 416.0 429.0 430.0 416.0 3399.0 485.0 420.1 419.2 377.0 426.0 28.9 1.100 0.200 0.200 0.100 0.200 MG/L UNF . REAC MG/L AS CL NO2-N UNF . REAC CLIDUR CHLORIDE NNO2UR 0,010< 0.010< AS 11.500 12.000 8.500 9.300 7.500 8.800 7.700 7.900 9.300 9.012 7.500 0.010 0.010 0.020 0.020 0.010 0.020 NNHTUR NH3-N ALK TOTAL MG/L TOTAL MG/L AS CACO3 JNF . REAC LONG: 080 26 58.98 2228.0 2228.0 203.0 210.0 2210.0 225.0 272.0 272.0 272.0 0.006 0.010 0.007 0.016 0.014 272.0 211.2 209.9 179.0 25.3 0.028 0.047 0.005 0.017 ALKT 0.015 CODE MATER FGPR0J SUB-PROJ FWTEMP TEMP DEG.C PROJECT 1.0 1.0 10.0 16.5 16.5 220.5 23.0 10.0 2.0 0101 0101 0101 0101 0101 0101 0101 0101 1010 0101 LAT: 44 33 48.82 SAMPLE DEPTH M COND. STREAM **FWSADP** FWSTRC 0.30 0.30 NUMBER 30559 40526 SAMPLE 30559 40445 40472 40484 40538 40445 40484 40511 GEOM MEAN 40457 40511 40526 SAMPLE 30547 40472 66505 40538 40553 MAXIMUM ARITH MEAN MINIMUM SAMP IN STATISTICS STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME: 1118 1045 1100 1010 1105 020 1118 1000 1010 045 1015 1020 HOUR 0001 1125 1105 H *=INTERIM YYMMDD 900528 900924 901022 YYMIDD 900122 900326 900528 900625 900924 900122 900227 900326 900423 900625 900723 900827 SAMPLE 900227 900423 900723 900827 901022 SAMPLE DATE DATE

STATION ID: 03-0036-001-02

1990 WATER QUALITY DATA REGION 1

B.O.M./ SITE: BEAVER RIVER SAMPLE POINT: UPSTREAM FROM GEORGIAN BAY STATION TYPE: RIVER

MA TOP BACTH - CDEAT

DE: 02 002 2250		<u>-</u>	PHOSPHOR UNF.TOT. MG/L AS P	0.038	0.015	0.008																				
STORET CODE: 02 003	DISTANCE:	PP04UR	PO4 UNF.REAC MG/L AS P	900.0	0.001	9 1	2																			
	01	Н	н	8.39	7.94	11																				
	REGION: 01	PBUT	LEAD UNF.TOT. MG/L AS PB	0.005 0.005 <a< td=""><td>0.005</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	0.005	11																				
(ES ON IVER	934400.0 4	NNTKUR K DAHI N	TOTAL UNF.REAC MG/L AS N	0.430	0.280	11																				
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BEAVER RIVER	U T M: 17 0543700.0 4934400.0 4	NNO3UR	NO3-N UNF.REAC MG/L AS N	1.100	0.100	10 9																				
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.020	0,010	9																				
	26 58.98	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.047	0.003	11	ZNUT	ZINC UNF.TOT.	MG/L AS ZN	0.0009 <t< td=""><td>0.0006<t< td=""><td>0.0010<t< td=""><td>0.0005<w< td=""><td>0.0005<w< td=""><td>0.0040 0 0020/T</td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<></td></t<></td></t<>	0.0006 <t< td=""><td>0.0010<t< td=""><td>0.0005<w< td=""><td>0.0005<w< td=""><td>0.0040 0 0020/T</td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0005<w< td=""><td>0.0005<w< td=""><td>0.0040 0 0020/T</td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<>	0.0005 <w< td=""><td>0.0005<w< td=""><td>0.0040 0 0020/T</td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<></td></w<>	0.0005 <w< td=""><td>0.0040 0 0020/T</td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<>	0.0040 0 0020/T	0.0020 <t< td=""><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0,0020<t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0,0020 <t< td=""><td>0.0000</td><td>0.0000</td><td>0.0021<a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<>	0.0000	0.0000	0.0021 <a< td=""><td>0.0014<a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<></td></a<>	0.0014 <a< td=""><td>0.0005</td><td>0.0025<a< td=""><td>11</td><td></td></a<></td></a<>	0.0005	0.0025 <a< td=""><td>11</td><td></td></a<>	11	
	LAT: 44 33 48.82 LONG: 080 26 58.98	FWTEMP	WATER TEMP DEG.C	23.0 10.4 6.3	1.0	11	TURB		TURB'ITY FTU		2.60			16 10	07.07	4.20		2.20		16.10	6.27	4.43	2.20	6.61	4 1	
	4 33 48.82	FWSTRC	STREAM COND.				RSP	RESIDUE	PARTIC. MG/L	5.0<	2.7	5.6	10.3	16.9	11.6	6.4	3.7	5.7	10.4	14.9	7.6		2.7		10	7
E. MIVER	LAT: 4	EST-NAME:	SAMPLE	MAXIHUM ARITH MEAN GEOM MEAN	STD DEV (GEOM *)	% SAMP (EXCLUDED)	ST-NAME:		SAMPLE	30547	30559	40445	40457	40484	66505	40511	40526	40538	40553	MAXIMUM	ARITH MEAN	GEOM MEAN	HINIMUM	STD DEV (GEOM *)	Z SAMP (EXCLINED)	CALLUNEDI
ONTO THE REAL PROPERTY.		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LHT		STD DE	* SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	LLI	YYMNDD LHT	900122 1125		900326 1118	900423 1000						901126 1125		A			STD DEV	# SAMP IN STATISTICS	T CHILL

STATION ID: 03-0036-005-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: BOYNE RIVER SAMPLE POINT: 1ST.BRIDGE DNSTR.FROM HWY.10 FLESHERTON STATION TYPE: RIVER HADOR

MG/L N02-N AS N 44.417 UNF. REAC 0.010 0.020 0.010< NNO2UR 0.010< 0.020 0.020 0.010 STORET CODE: DISTANCE: NNHTUR NH3-N MG/L AS N JNF . REAC TOTAL 0.043 0.009 0.004 0.043 0.014 0.010 0.010 LEMP DEG.C 1.0 5.0 14.0 17.0 9.0 17.0 8.0 5.3 1.0 6.5 REGION: 01 STREAM COND. FWSTRC RESIDUE PARTIC. MG/L >0.6 6.4 6.4 **4SP** 999999 U T M: 17 0536250,0 4902850,0 4 CNT FECAL STREPCUS PSEUDOMN CRI /100ML /100ML PSAMF AERUG FSMF 28 112 4 4 4 80 80 32 32 FERM STREAM: BEAVER RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS P COLIFORM FECAL /100ML PHOSPHOR UNF. TOT. 0.010 0.014 0.010 0.010 0.010 0.007 0.002 540 PPUT 0.014 MG/L AS P UMHO/CM AT 25 C COND25 25C PP04UR P04 UNF. REAC 0.001< 0.001< 0.001< 0.001< CONDUCT. 468.0 370.0 479.0 519.0 519.0 447.0 519.0 464.1 370.0 55.4 0.010 0.010 0.009 AS CL 풆 CLIDUR CHLORIDE UNF. REAC MG/L LONG: 080 32 44.63 16.200 20.700 29.200 26.700 29.200 20.275 16.200 5.779 8.11 8.28 8.38 8.30 8.28 8.38 8.25 8.11 0.10 H MG/L AS N UNF . REAC FGPR0.3 PROJECT SUB-PROJ CODE NNTKUR K'DAHL N 0.360 0.310 0.290 0.250 0.312 0.309 0101 TOTAL 0101 0101 0101 0101 LAT: 44 16 47.79 SAMPLE MG/L AS N UNF . REAC NNO3UR N03-N 0.200 0.300 0.400 0.300 0.30 0.30 0.30 0.30 0.30 0.30 0.500 0.500 0.300 0.267 0.100 40522 40468 40549 SAMPLE NUMBER 40441 40549 ARITH MEAN NUMBER 40441 ARITH MEAN # SAMP IN STATISTICS % SAMP (EXCLUDED) 30543 40468 40495 MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS SAMPLE 30543 40495 40522 MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 0950 1000 0950 0950 1035 1012 HOUR 1000 1012 LMT LMI *=INTERIM YYMMDD 900122 901126 YYMMDD 900924 900122 900326 900528 SAMPLE 900326 900528 900723 900723 900924 SAMPLE DATE DATE

STATION ID: 03-0036-006-02

_
VER
2
YPE
STATION TYPE: RIVER

SAMULE POINT: ALGAEY COUNTY AUAD NO Z FEVENSHAM STATION TYPE: RIVER	COUNTY ROAL	D NO 2 PEVE	.КЅНАМ	MAJOR BASIN MINOR BASIN TERM STREAM	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BEAVER RIVER	ES N VER			STORET CODE:	5: 02 002 2250
LAT: 4	LAT: 44 20 16.44	LONG: 080 22 43.55	22 43,55	U T M: 17	U T M: 17 0549525.0 4909375.0 4	909375.0 4	REGION: 01	10	DISTANCE:	56.969
*=INTERIM TEST-NAME:	FWSADP	FGPR03	CLIDUR	CONDICT	FCMF FECAL COLTEORM	FSMF FECAL STREPCHS	FWSTRC	FWTEMP	NHHTUR NH3-N	MNO2UR
	SAMPLE	PROJECT	UNF. REAC	25C	MF	MF		MATER	UNF . REAC	UNF. REAC
DATE HOUR SAMPLE	DEPTH	SUB-PROJ	MG/L	UMHO/CM	CNT	CNT	STREAM	TEMP DEC C	HG/L	MG/L
		7000	20 52		A TOOLE	TOOL	COMP	DEG.C	2	HO H
1040	0.30	0101	6.400	477.0	52	4	9	1.0	0.014	0.020
1041	0.30	0101	4.300	426.0	16	*	9	1.0	0.008	0.010<
1020	0.30	0101	5.300	475.0	84	8	8	12.0	0.012	0.010
1015	0.30	1010	5.400	487.0			7	14.0	0.029	0.020
1025	0.30	0101	6.600	503.0	280	36		7.0	0.008	0.010<
901126 1100 40551	0.30	0101	6.300	0.995	40AID	40AID	_	1.5	0.002	0.010
MAXIMUM	0.30		6,600	503.0	280	60		14.0	0.029	0.020
ARITH MEAN	0.30		5.717	472.3	96	18		6.1	0.012	0.015
GEOM MEAN			5,656	471.7	09	11		3.5	600.0	
MINIMUM	0.30		4.300	456.0	16	5		1.0	0.002	0.010
STD DEV (GEOM *)	,		0.880	26.0	×	×		5.9	600.0	
# SAMP IN STATISTICS % SAMP (EXCLUDED)	9		9	9	ın.			9	9	33
*=INTERIM TEST-NAME:	NNO3UR	NNTKUR	Н	PP04UR	PPUT	RSP				
	NO3-N	TOTAL		P04	PHOSPHOR					
	UNF. REAC	UNF REAC		UNF. REAC	UNF. TOT.	RESIDUE				
YYMMDD LMT NUMBER	MG/L AS N	MG/L AS N	Hd	AS P	MG/L AS P	PARTIC. MG/L				
900122 1040 30545	1.500	0.310	8.08	0.008	0.011	5.0<				
1041	1.100	0.270	8.10	0.001<	0.007	>0 <				
1020	1.100	0.360	8.10	0.001<	0.017	2.0<				
1015	1.000	0.330	8.20	0.009	0.015	5.0<				
1025	1.700	0.220	8.16	0.001<	0.007	5.0<				
901126 1100 40551	1.000	0.400	8.19	0.007	0.018	0.6				
MAXIMUM	1.700	0.400	8.20	0.000	0.018	0.6				
ARITH MEAN	1.233	0.315	8.14	0.008	0.012	0.6				
MINIMIM	1.20/	0.509	9 T 6	2000	0.012	0				
STD DEV (GEOM *)	0.594	0.064	0.05	100.0	0.007	0.6				
# SAMP IN STATISTICS	9	9	9	M	9	1				
% SAMP (EXCLUDED)				50		83				

STATION ID: 03-0036-007-02

B.O.W./ SITE: BEAVER RIVER SAMPLE POINT: AT COUNTY ROAD NO.10 OSPREY TOWNSHIP STATION TYPE: RIVER

TERM STREAM: U T M: 17 O CONDUCT. 25C UMHO/CH AT 25 C 486.0 470.	TERM STREAMS BACKER MINISTER UT H: 17 DESCREGO. 9911150.0 4 REGION: 01 DISTANCE: 19 DISTANCE: 1	TERM STREAM! BACK MANNER UT H: 17 0550250.0 4911150.0 4 REGION: 01 CONDUCT. COLIFORM STREPCUS HATER UNHTUR NUMTUR AT 25 C /100HL /100ML COND. DEG.C AS N 486.0 40 40 68 6 11.5 0.004 0.006 477.0 40 68 6 11.5 0.004 0.006 477.0 40 68 8 8 0.004 0.006 477.0 40 68 8 6 11.5 0.004 0.006 477.0 40 68 8 6 11.5 0.004 0.006 477.0 24 8 8 6.000 0.003 0.004 477.0 40 68 8 6 11.5 0.006 0.004 477.0 40 68 8 6 11.5 0.006 0.004 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 40 68 8 6 11.5 0.0006 477.0 50 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	SAMPLE POINT: AL COUNTY ROAD NO.10 OSPREY TOWNSHIP STATION TYPE: RIVER
COND25 FCHF FEMAL FEMALE FWSTRC FWTEMP NHMTUR FEMALE FEMALE FEMALE FEMALE FMSTRC FWTEMP NHMTUR FEMALE FEMALE FMSTRC FWTEMP NHMTUR FMSTRC FWTEMP NHMTUR FMSTRC FWTEMP FMSTRC FWTEMP FMSTRC FWTEMP FMSTRC FWTEMP FMSTRC FWTEMP FWTE	CONDUCT COLIFORM STRECAL FWSTRC FWTEMP NINHTUR FECAL F	U T H: 17 OSSO2SO. 0 4911150.0 4 REGION: 01 DISTANCE: 19 CONDUCT. COLIFORM STRECUS COLOR C	
CONDUCT. COLIFORM STREAM FEATER FWETER WINHTUR TOTAL STREAM STREA	CONDUCT. COLIFORM STREAM FEATER FWETER FWETER NINHTUR TOTAL STREAM STREA	CONDUCT. COLIFORM STREAL FWSTRC FWTEHP NNHTUR TOTAL STREAL CONDUCT. COLIFORM STREADS STREAM STREAC UNHACK CONDUCT. COLIFORM STREADS STREAM STREAC UNHACK CONDUCT. COLIFORM STREAM STATE STREAM STATE STREAM STATE STREAM STATE STREAM STATE STREAM STATE STATE STREAM STATE STATE STATE STREAM STATE STATE STREAM STATE STATE STATE STREAM STATE	LAT: 44 21 13.79 LONG: 080 22 10.19
CONDUCT. COLIFICATION TREPCUS TOTAL TOTAL TOTAL TOTAL STREAM STREPCUS TOTAL TOTAL TOTAL STREAM STREPCUS TOTAL TOTAL TOTAL STREAM STREPCUS TOTAL STREAM STREA	CONDUCT. COLITECT STREAM STREPCUS TOTAL TOTAL STREAM STREPCUS TOTAL STREAM STREPCUS TOTAL STREAM STREPCUS STREAM STREPCUS STREAM STREPCUS STREAM STRE	CONDUCT. COLITECTS TRECUS TOTAL TOTAL TOTAL TOTAL TOTAL STREAM STREPCUS TOTAL TOTAL TOTAL STREAM STREPCUS TOTAL TO	FWSADP FGPROJ
25C HF HATER UNF.REAC UNH. COMD. STREAH HATER UNF.REAC UNH. COMD.	25C HF HATER UNF.REAC UNHOCKE CHT CNT STREAM HATER UNF.REAC UNHOCKE CHT CNT STREAM TEMP HG/L CNND. DEG.C AS N HG/L CNND. O 0.003	25C HF HATER UNF.REAC UNIT. STREAH HATER UNF.REAC UNIT. CNT TEAP TEAP HG/L CND. CND. CND. CND. CND. CND. CND. CND.	
## AS P AS PURE RESIDUE ## AS P AS PURE AS PU	## AS P HISPHORM AS PRICE	## AS P AS PRINCE CAND. STREM TEMP MG/L AS N AS N AS P AS P AS P AS P AS P AS P	DEPTH SUR-PROJ
486.0	486.0 8 4 4 6 1.0 0.001 470.0 40 68 6 1.0 0.004 477.0 40 68 6 11.5 0.014 477.0 24 28 8 15.0 0.024 477.0 24 28 8 15.0 0.024 477.2 24 28 8 8 0.000 477.2 21 26 64 0.010 477.2 21 26 64 0.010 477.2 31 26 64 0.010 477.2 439.0 4 8 15.0 0.003 6 6 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6	486.0	
439.0 4 16 6 1.00 470.0 40 68 6 11.5 477.0 24 68 8 11.5 677.0 24 68 8 11.5 677.0 24 28 8 8.0 677.0 24 28 8 8.0 677.2 24 28 8 8.0 677.2 21 26 64 0.002 677.3 21 26 64 0.010 677.9 15 5 6 77.9 15 6 5 6 6 6 5 6 77.0 0.003 UNF.REAC UNF.TIC. H AS P HGAPHOR UNF.REAC UNF.TIC. HGAL PARTIC. HGAL PAR	439.0 4 16 6 1.00 470.0 40 68 6 11.5 477.0 24 68 8 11.5 646.0 40 68 8 15.0 677.2 24 28 8 8.0 677.2 24 28 8 8.0 677.2 21 26 64 0.002 677.3 21 26 64 0.010 677.9 15 6 5 670.9 44 8 15.0 670.9 10.0 6 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 6 0.0 1 5.0 670.0 1 5.0	439.0 4 16 6 1.00 470.0 40 68 6 11.5 477.0 24 68 8 11.5 677.0 24 68 8 11.5 677.0 24 28 8 8.0 677.2 24 28 8 8.0 677.2 21 26 68 6.4 677.3 21 26 6.4 677.9 15 26 6.4 670.9 40 68 15.0 670.9 15 5 6 70.00	
470.0 40 68 6 11.5 0.004 477.0 24 28 8 15.0 0.024 477.0 24 28 8 15.0 0.004 477.2 21 26 68 6.4 0.003 486.0 40 68 8 15.0 0.003 477.2 21 26 6.4 0.010 477.3 15 5 6.4 0.010 477.4 B 15.0 0.003 48.0 15 6.4 0.010 16.6 6 5 6 6 5 6 6.0 16 75.0 0.003 WF.REAC UNF.TOT. RESIDUE H AS P AS P HG/L H AS P AS P HG/L 0.006 0.011 5.0< 0.012 0.012 36.6 0.003 0.012 36.6 0.003 0.012 36.6	470.0 40 68 6 11.5 0.004 477.0 24 28 8 15.0 0.024 477.0 24 28 8 15.0 0.004 477.2 21 26 68 8 15.0 0.004 477.2 21 26 6.4 0.000 477.2 21 26 6.4 0.010 477.3 3	470.0 40 68 6 11.5 0.004 477.0 24 28 8 15.0 0.024 477.0 24 28 8 15.0 0.004 477.2 21 28 8 15.0 0.004 477.2 21 26 6.4 0.000 477.2 21 26 6.4 0.010 477.3 3 6 6 2.1	0101
477.0 40 68 8 15.0 0.024 477.0 24 28 8 15.0 0.004 477.0 24 28 8 15.0 0.004 477.0 24 28 8 15.0 0.004 477.2 21 26 6.4 0 0.003 477.3 21 26 6.4 0 0.002 477.9 15 26 6.4 0 0.010 477.9 15 26 6.4 0 0.003 16 6 6 5 5 6 5 PPO4UR PPUT RSP UNF.REAC UNF.TOT. RESIDUE HG/L AS P MG/L AS P MG/L AS P MG/L AS P MG/L O.001 0.018 36.6 0.013 0.012 36.6 0.003 0.012 14.7	477.0 40 68 8 15.0 0.024 477.0 24 28 8 15.0 0.004 477.0 24 28 8 15.0 0.004 477.0 24 28 8 15.0 0.004 477.2 21 26 6.4 0.000 477.2 21 26 6.4 0.010 477.3 21 26 6.4 0.010 PD4 PHOSPHOR UNF.REAC UNF.TOT. RESIDUE H AS P AS P AS P 0.005 0.001 2.006 0.001 2.006 0.001 3.001 3.6.6 0.000 0.001 3.6.6 0.000 0.001 3.6.6 0.000 0.000 0.001 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6 0.000 0.000 0.000 3.6.6	477.0 40 68 8 15.0 0.024 477.0 24 28 8 15.0 0.004 477.0 24 28 8 15.0 0.004 477.0 24 28 8 15.0 0.004 477.2 21 26 6.4 0 0.002 477.2 21 26 6.4 0 0.002 477.3 21 26 6.4 0 0.003 16 6 6 5 5 6 5 PPO4UR PPUT RSP PPO4UR PPUT RSP UNF.REAC UNF.TOT. RESIDUE HG/L PARTIC. HG/L	0101
477.0 24 28 8 8.00000000000000000000000000000000	477.0 24 28 8 8.00000000000000000000000000000000	477.0 24 28 8 8.00000000000000000000000000000000	0101
466.0	466.0 8 8 8 2.0 0.003 466.0 40 68 8 2.0 0.003 471.2 21 26 6.4 0.010 473.9 15 26 6.4 0.010 439.0 4 8 15.0 0.024 439.0 4 8 15.0 0.003 16.6 5 6 5 6 5 16 5 6 5 6 5 16 5 6 5 16 5 6 5 16 5 7 10 0.003 10 0.004 0.011 5.0< 10 0.005 0.001 5.0< 10 0.005 0.001 5.0< 10 0.005 0.001 3.6.6 10 0.003 0.013 36.6 10 0.006 0.001 3.6.6 10 0.006 0.001 14.7 10 0.006 0.006 2.1	466.0	0101
486.0 40 68 15.0 0.024 471.2 21 26 6.4 0.010 470.9 15 26 6.4 0.010 16.6 6 6 5 6 0.003 16.6 6 5 6 5 6 5 16 9P04UR PPUT RSP UNF.REAC UNF.TOT. RESIDUE H AS P AS P HG/L 0.006 0.011 5.0< 0.012 0.018 36.6 0.003 0.018 36.6 0.003 0.012 36.6	486.0 40 68 15.0 0.024 471.2 21 26 6.4 0.010 470.9 15 26 6.4 0.010 16.6 6 6 5 6 0.003 16.6 6 5 6 5 6 5 16 9P04UR PPUT RSP PP04 PHOSPHOR UNF.REAC UNF.TOT. RESIDUE HG/L AS P AS P HG/L 0.006 0.011 5.0< 0.001< 0.018 5.0< 0.001 0.006 5.0< 0.001 3.6.6 0.001 3.6.6 0.002 0.002 2.1 0.006 0.006 2.1	486.0 40 68 15.0 0.024 471.2 21 26 6.4 0.010 470.9 15 26 6.4 0.010 16.6 6 6 5 6 0.003 16.6 6 6 5 6 0.003 16.6 6 6 5 6 16 16 5 6 5 6 16 16 16 16 5 6 16 5 6 16 5 6 16 5 7 10 0.003 10.006 0.011 5.0< 0.001	0101
471.2 21 26 6.4 0.010 470.9 15 86 6.10 459.0 48 8 1.0 0.003 16.6 6 6 5 6.0 5 16 5 6 5 6 5 16 5 6 5 6 16 5 6 6 5 16 5 6 6 5 16 5 6 6 5 16 5 6 6 6 16 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	471.2 21 26 6.4 0.010 470.9 15 8 6.0 0.010 459.0 48 8 1.0 0.0003 16.6 6 5 6 6.0 5 16 9 9 15 6.0 6.003 WHY.REAC UNF.REAC UNF.TOT. RESIDUE HG/L H AS P HG/L O.006 0.011 5.0 < 0.001 0.006 5.0 < 0.001 0.006 5.0 < 0.001 0.006 5.0 < 0.001 0.006 5.0 < 0.001 0.006 5.0 < 0.001 0.006 0.001 3.6 6 0.001 0.006 0.001 3.6 6 0.000 0.001 14.7 0.000 0.000 0.000 2.1	471.2 21 26 6.4 0.010 470.9 15 86 6.10 459.0 48 8 1.0 0.003 16.6 6 6 5 6 6.0 PPOGUR PPUT RSP UNF.REAC UNF.TOT. RESIDUE H AS P AS P HG/L 0.006 0.011 5.0< 0.013 0.018 36.6 0.006 0.006 2.1 0.006 0.006 2.1 0.006 0.006 2.1 0.006 0.006 2.1	0.30 3.
470.9 15 439.0 4 8 3.7 16.6 5 6 6 16 6 6 5 16 0 0.003 PPO4UR PPUT RSP PO4 PHOSPHOR HG/L PARTIC, HG/L PARTIC, HG/L PARTIC, HG/L PARTIC, 0.001 5.0	470.9 15 3.7 0.003 16.6 6 6 5 16 16.6 6 6 5 16 16.0 0.003 16.0 0.003 16.0 0.001 16.0 0.001 16.0 0.001 16.0 0.001 16.0 0.001 16.0 0.001 16.0 0.001 16.0 0.001 16.0 0.001 16.0 0.003 16.0 0.0	470.9 15 3.7 0.003 16.6 5 6 6 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6	
16.6 5 8 1.0 0.003 16.6 6 5 6 16 6 5 6 16 7 6 5 6 16 8 1.0 0.003 PPO4UR PPUT RSP UNF.REC UNF.TOT RESIDUE HG/L HG/L PARTIC. H AS P AS P HG/L 0.001 0.006 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0 0.001 5.0<0	16.6 5 6 10 0.003 16.6 6 6 5 6 16 16 6 6 5 6 16 16 7 6 6 5 6 16 16 8 6 16 16 8 6 16 16 8 16 17 8 16 18	16.6 5 8 1.0 0.003 16.6 6 5 6 16 6 5 6 16 6 5 6 16 7 6 16 7 7 6 16 7 8 10 0.003 UNF.REA UNF.TO. RESIDUE HG/L MG/L PARTIC. HG/L AS P MG/L 0.001 0.006 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.001 5.0< 0.0	
16.6 3* 6.0 5 6.0 5 6.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	16.6 3* 6.0 5 6.0 5 6.0 5 6.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	16.6 3* 6.0 5 6.0 5 6.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.30
PPOGUR PPUT RSP PPOGUR PPUT RSP UNF.REAC UNF.TOT. RESIDUE HG/L AS P AS P HG/L 0.008 0.011 5.0< 0.001< 0.006 5.0< 0.001< 0.018 5.6 0.003 0.017 5.0< 0.005 0.008 36.6 0.001 36.6 0.003 0.012 14.7	6 6 5 5 6 5 5 16 16 16 16 16 16 16 16 16 16 16 16 16	6 6 5 6 5 PPO4UR PPD4 PHOSPHOR PPO4 PHOSPHOR UNF.REAC UNF.TOT. RESIDUE PMC/L PARTIC. H AS P MG/L PARTIC. PMC/L 0.008 0.011 5.0 PG/L 0.001 0.006 5.0 PG/L 0.012 0.018 5.5 PG/L 0.013 0.018 36.6 PG/L 0.006 0.007 2.1 PG/L 0.006 0.018 36.6 PG/L 0.006 0.018 36.6 PG/L 0.006 0.006 2.1 PG/L 0.006 0.006 2.1 PG/L 3 6 0.006 3	0
16 PPO4UR PPUT RSP PO4 PHOSPHOR WF.REAC UNF.TOT. RESIDUE MG/L MG/L PARTIC. HG/L PARTIC. AS P MG/L PARTIC. 0.006 0.011 5.0< 0.001< 0.006 5.0< 0.001< 0.018 5.6 0.001< 0.018 35.6 0.005 0.007 2.1 0.009 36.6 0.009 36.6 0.009 36.6 0.009 36.6	16 PPO4UR PPUT RSP PD4 PHOSPHOR WF.REAC UNF.TOT. RESIDUE MG/L MG/L PARTIC. HG/L PARTIC. H	16 PPO4UR PPUT RSP PO4 PHOSPHOR WF.REAC UNF.TOT. RESIDUE MG/L MG/L PARTIC. AS P MG/L PARTIC. 0.006 0.011 5.0< 0.001< 0.006 5.0< 0.013 0.017 5.0< 0.005 0.007 2.1 0.006 0.007 2.1 0.006 0.006 2.1 0.006 0.006 2.1 0.006 0.006 2.1	٠
PP04UR PPUT RE P04 PH05PH0R REI M6/L PA P P06 PH05PH0R REI M6/L PA P P06/L PA P P06/L PA P P06/L PA P P06/L	PP04UR PPUT RE	PP04UR PPUT RE P04 PH05PH0R RE M6/L PA P PH05PH0R RE M6/L PA P P0 PH05PH0R PPUT RE M6/L PA P P0 P	
DIAPPHOR PROSPHOR NF.REAC UNF.TOT. RE. MG/L PA AS P AS P AS P O.006 0.001 0.006 0.001 0.005 0.00	UNF.REAC UNF.TOT. REINGAL PASPHOR MG/L PASPHOR AS P AS	PD04 PHOSPHOR REAC UNF.TOT. RE. MG/L PAI MG/L PA	NNO3UR NNTKUR P
UNF.REAC UNF.TOT. RE. MG/L MG/L PA AS P AS P 0.008 0.011 0.001< 0.006 0.013 0.018 0.005 0.007 0.006 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.003 0.003 0.003	UNF.REAC UNF.TOT. RE. MG/L MG/L PA AS P AS P 0.008 0.011 0.001< 0.006 0.013 0.017 0.001< 0.018 0.005 0.007 0.006 0.007 0.006 0.006 0.006 0.006 0.006 0.006	UNF.REAC UNF.TOT. RE. MG/L PA AS P 0.008 0.011 0.0014 0.018 0.013 0.017 0.005 0.007 0.006 0.007 0.007 0.006 0.006 3 6 6	
MG/L MG/L PA MG/L MG/L PA 0.008 0.011 0.001< 0.006 0.013 0.018 36 0.005 0.007 0.009 0.013 11	MG/L MG/L PAI 0.008 AS P AS P 0.001< 0.0016 0.001< 0.018 0.001< 0.018 0.001< 0.018 0.000 0.007 0.000 0.001 0.000 0.0013 0.000 0.000	MG/L MG/L PAI 0.008 AS P AS P 0.001< 0.006 0.001< 0.006 0.001< 0.018 0.006 0.007 0.009 0.013 11 0.006 0.006 3.66	UNF. REAC UNF. REAC
0.006 0.011 0.001< 0.006 0.001< 0.018 0.013 0.017 0.006 0.007 0.009 0.018 2	0.008 0.011 0.001< 0.006 0.001< 0.018 0.013 0.017 0.006 0.008 0.008 0.008 0.008 0.009 0.018 0.009 0.018 0.009	0.006 0.011 0.001< 0.006 0.001< 0.018 0.013 0.017 0.003 0.018 3 0.009 0.018 3 0.006 0.018 3 0.006 0.018 3	AS N AS N
0.001< 0.006 0.0018 0.013 0.013 0.001< 0.018 0.006 0.006 0.006 0.007	0.001< 0.006 0.001< 0.018 0.013 0.013 0.001< 0.018 0.006 0.007 0.009 0.013 0.006 0.006	0.001< 0.006 0.0018 0.013 0.013 0.001< 0.018 0.006 0.007 0.009 0.018 0.006 0.006 3 6	0.200
0.001< 0.018 0.013 0.017 0.001< 0.018 3 0.006 0.007 0.013 0.018 3 0.009 0.013 1	0.001< 0.018 0.013 0.017 0.001< 0.018 0.006 0.007 0.009 0.013 0.006 0.006	0.001< 0.018 0.013 0.017 0.001< 0.018 0.006 0.007 0.013 0.018 0.006 0.013 0.006 0.006 3 6	0.250
0.013 0.017 0.001< 0.018 2 0.006 0.007 0.013 0.018 2 0.009 0.013	0.013 0.017 0.001< 0.018 2 0.006 0.007 0.013 0.018 3 0.009 0.013 1 0.006 0.016	0.013 0.017 0.001< 0.018 2 0.006 0.007 0.009 0.013 1 0.006 0.006 3 6	0.320
0.001< 0.018 2 0.006 0.007 0.018 0.018 0.009 0.018 0.013	0.001< 0.018 2 0.006 0.007 2 0.013 0.018 2 0.009 0.013 1 0.006 0.006	0.001< 0.018 2 0.006 0.007 0.013 0.018 2 0.009 0.013 1 0.006 0.006 3 6	0.270
0.006 0.007 0.013 0.018 0.009 0.013	0.013 0.018 0.013 0.018 0.009 0.013 0.006 0.006	0.013 0.018 0.013 0.018 0.009 0.013 0.006 0.006	0.250
0.013 0.018 0.009 0.013 0.012	0.013 0.018 0.009 0.013 0.006 0.012	0.013 0.018 0.009 0.013 0.006 0.006 3 6	1.200 0.210 8.
0.009 0.013	0.009 0.013 0.006 0.006	0.009 0.013 0.006 0.006 0.006 0.006	0.320
0.012	0.006 0.006	0.006 0.006 0.006 3 6	
	0.00 0.006	0.006 0.006 0.006 3 6	0.247 8.

STATION ID: 03-0036-008-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: BEAVER RIVER SAMPLE POINT: AT COUNTY ROAD NO.8 OSPREY TOWNSHIP STATION TYPE: RIVER

מבידור ביינו	- AI COOK	STATES THE PARTY OF THE COMMITTED TO STATE TO NOT THE TOWNS HIT PARTY TO STATE TO ST	O USPRET IU	MINSHIP							
STATION TYPE: RIVER	RIVER				MAJOR BASI MINOR BASI TERM STREAL	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BEAVER RIVER	KES ON IVER			STORET CODE: 02	002 002
	LAT:	LAT: 44 20 08.86	LONG: 080 21 50.57	21 50.57	U T M: 17	0550700.0	U T M: 17 0550700.0 4909150.0 4	REGION: 01	01	DISTANCE:	
*=INTERIM TEST-NAME:	ST-NAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSME	FWCTDC	Cureun	THE PERSON NAMED IN COLUMN 1	2000
						FECAL	FECAL			NH3-N	MNOZOR
CAHOUR		T COLUMN	1	CHLORIDE	CONDUCT.	COLIFORM	STREPCUS			TOTAL	N02-N
DATE HOLD	CAMBIE	DEDTU	PRUJECT	UNF . KEAC	25C	ME	HF.		WATER	UNF. REAC	UNF. REAC
0	MINAPED	N N	2007	1/9U	OMHO/CM	CNI	CNT	STREAM	TEMP	HG/L	MG/L
		=	CODE	AS CL	AI 25 C	/100ML	/100ML	COND.	DEG.C	AS N	AS N
900122 1025	30544	0.30	0101	5.700	458 O	7	12		1		
900326 1032	40442	0.30	0101	200	207.0	* <	75	0 4	6.0	0.004	0.020
900528 1015	69505	0.30	0101	0000	0.175	* 1	V + 0	9	1 2.0	0.001<	0.010<
900723 1005	90000	0 20	1010	003.0	0.000	9/	7.5	9	12.0	0.010	0.010
	COE27	00.00	1010	007.9	485.0	104	09	8	13.0	0.012	0.020
901136 1050	4000	0.50	1010	1.400	511.0	89	12	8	7.5	0.004	0.010<
0501 071106	40220	0.50	0101	7.200	451.0	89	80			0.003	0.010
	MAXIMUM	0.30		7.400	511.0	104	0,9				
*	ARITH MEAN	0.30		F 983	8 099	204	000		13.0	0.012	0.020
	GEOM MEAN			000	2000	* *	17		7.0	0.007	0.015
	MINIM	0 20		2000	40%.0	14			4.1		
CTD DEV	STD DEV (CEOM *)	0.50		4.500	597.0	4	80		0.5	0.003	0.010
# CAMP IN CTATECTION	TATIOTION	,		1.186	38.0	***			5.7		
* CALLY IN S	SCAMP (FYSTURES)	٥		9	9	9	2		z,	5	5
SAIIF	EVELODED						16			16	33
*=INTERIM TEST-NAME:	ST-NAME:	NNO3UR	MNTKIIB	DH	allyoud	Tilda	200 011				
			K'DAHL N		NOTO L	1044	DOELIDOMN	KSP			
		NO3-N	TOTAL		bod	punepung	ATRICO				
SAMPLE		UNF. REAC	UNE REAC		INE DEAC	INE TOT	AEROIS.	-			
DATE HOUR	SAMPLE	MG/L	MG/L		MG/I	MC /I	TE C	RESIDUE			
ҮҮМИДД ГИТ	NUMBER	AS N	AS N	Н	AS P	AS P	/100ML	MG/L			
900122 1025	30544	1.200	0.290	7.98	0000	000	*	L			
900326 1032	40442	0.500	0.250	8.02	0.001	0.00	/ /	>0.0			
900528 1015	69505	0.900	0.360	8.04	0.001<	0.00	7 3	, o .			
900723 1005	96505	1.100	0.300	8.16	0 008	0,00	1	0.0			
900924 1015	40523	1,900	0.190	8.08	0.001	0.000	17	, n			
901126 1050	40550	0.700	0 200	0 10	10000	00000	V +	50.0			
			00000	71.0	0.006	0.006	> 4	5.2			
	MAXIMUM	1.900	0.360	8,16	0.009	0.012		6			
A	ARITH MEAN	1.050	0.282	8.07	0.006	0 008		u r			
	GEOM MEAN	0.961	0.276	8.07		0.008		2.0			
	MINIMUM	0.500	0.190	7.98	0.001	0.005		6 2			
STD DEV	STD DEV (GEOM *)	0.489	0.057	0.07		0.003		1			
# SAMP IN STATISTICS	TATISTICS	9	9	9	4	9		1			
7. SAMP	A SAMP (EXCLUDED)				33			83			

STATION ID: 03-0036-009-02

1990 WALER OF B.O.W./ SITE: BEAVER RIVER SAMPLE POINT: AT COUNTY ROAD NO.30 SOUTH OF KIMBERLEY

ODE: 02 002 2250	CE: 37.175	FSMF	STREPCUS	¥ !	/100ML	,	97	* 4	× × × ×	, 4y	~					>4	G	20	00	4		4 6 r.		PPO4UR	P04	UNF.REAC	AS P		0.011	0.000	0.001	7,000	70000	2000	0.001<	0.001<	77000
STORET CODE:	DISTANCE:	FCMF	COLIFORM	AF.	/100ML	c	0 3	7 7	· **	4	SOAID	60AID	SOAID	20	20AID	>4	9	200	3	4	1	36	i	Ē			H	0	10.0	20.00	8 42	8 77	14.8	8.36	8,35	8.38	0 0
	10	CUUT	COPPER	. 101.	AS CU	0 0005/10	T/8000	0.0005 <w< td=""><td>0.0005<w< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0,0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<>	0.0005 <w< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0,0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<>	0.0010 <t< td=""><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0,0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0,0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0020<t< td=""><td>0,0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0020 <t< td=""><td>0,0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0,0010 <t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0020<t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0020</td><td>0.0012<a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<>	0.0020	0.0012 <a< td=""><td>0.0010<a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	0.0010 <a< td=""><td>0.0005</td><td>0.0007<a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0.0005	0.0007 <a< td=""><td>11</td><td>+1100</td><td>1094</td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td>17/200</td><td>M/2000</td><td>0.000 C</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	11	+1100	1094	LEAD	UNF. TOT.	AS PB	17/200	M/2000	0.000 C	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>000</td></w<></td></w<>	0.005 <w< td=""><td>000</td></w<>	000
	REGION: 01	COND25	CONDUCT.	CSC IIMHO /CM	AT 25 C	478 D	512.0	394.0	426.0	426.0	445.0	419.0	387.0	367.0	383.0	410.0	512,0	422.2	420.3		42.9		MINTELLE	K'DAHL N	TOTAL	UNF . REAC	AS N	0 360	0.250	0.330	0.290	0.340	0.370	0.290	0.380	0.380	0 750
ES NN VER	910200.0 4	CLIDUR	CHLORIDE	ME/I	AS CL	10.800	12.900	8.800	9.100	7.800	10.400	8.800	8.000	7.900	8.300	9.200	12,900	9.273	9.167	7.800	1.545	1	MNOZIID		N03-N	UNF . REAC	AS N	1.000	1.300	0.700	1.200	0.500	0.300	0.200	0.200	0.200	0 200
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BEAVER RIVER	U T M: 17 0536700.0 4910200.0 4	CDUT	CADMIUM	MG/1	AS CD	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0004<t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<></td></w<>	0.0004 <t< td=""><td>0.0002<w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<></td></t<>	0.0002 <w< td=""><td>0.0004</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<></td></w<>	0.0004	0.0002 <a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<></td></a<>	0.0002 <a< td=""><td>0.0002</td><td>0.0001<a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<></td></a<>	0.0002	0.0001 <a< td=""><td></td><td>NNOSHB</td><td></td><td>N02-N</td><td>UNF . KEAC</td><td>AS N</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0 010</td></a<>		NNOSHB		N02-N	UNF . KEAC	AS N	0.020	0.010	0.010	0.010	0.010	0.020	0.010	0.010	0.010	0 010
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	ASUT	ARSENIC	MG/L	AS AS	0.001 <w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<></td></w<>	0.001 <w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<></td></w<>	0.001	0.001 <a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<></td></a<>	0.001 <a< td=""><td>0.001</td><td>0.000<a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<></td></a<>	0.001	0.000 <a< td=""><td></td><td>MINHTIIR</td><td>NH3-N</td><td>TOTAL</td><td>ONF . REAC</td><td>AS N</td><td>0.077</td><td>0.037</td><td>0.048</td><td>0.043</td><td>0.030</td><td>0.029</td><td>0.007</td><td>0.022</td><td>0.030</td><td>0 041</td></a<>		MINHTIIR	NH3-N	TOTAL	ONF . REAC	AS N	0.077	0.037	0.048	0.043	0.030	0.029	0.007	0.022	0.030	0 041
	32 22.47	ALKT	ALK	MG/L	AS CACO3	222.0	250.0	186.0	213.0	209.0	224.0	209.0	353.0	179.0	183.0	202.0	353.0	220.9	217.0	179.0	48.4	:	NIUT		NICKEL	MG/1	AS NI	0.002 <w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.004<t< td=""><td>0,003<t< td=""><td>0.002<w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<></td></t<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.004<t< td=""><td>0,003<t< td=""><td>0.002<w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<></td></t<></td></t<></td></w<></td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.004<t< td=""><td>0,003<t< td=""><td>0.002<w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<></td></t<></td></t<></td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.002<w< td=""><td>0.004<t< td=""><td>0,003<t< td=""><td>0.002<w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<></td></t<></td></t<></td></w<></td></w<>	0.002 <w< td=""><td>0.004<t< td=""><td>0,003<t< td=""><td>0.002<w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<></td></t<></td></t<></td></w<>	0.004 <t< td=""><td>0,003<t< td=""><td>0.002<w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<></td></t<></td></t<>	0,003 <t< td=""><td>0.002<w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<></td></t<>	0.002 <w< td=""><td>0.003<t< td=""><td>0.000 W</td></t<></td></w<>	0.003 <t< td=""><td>0.000 W</td></t<>	0.000 W
	LONG: 080 32 22.47	FGPROJ	PROJECT	SUB-PROJ	CODE	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	1010							FWTEMP		WATED	TEMP	DEG.C	1.0	1.0	4.0		14.5	16.5	18.0	20.5	12.0	10.0
	LAT: 44 20 45.92	FWSADP	SAMPLE	DEPTH	E	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.50	0.30	0.30	1	0.50	11		FWSTRC			STREAM	COND.	9	9	9		9	9	9	9 ,	0	9
RIVER	LAT: 44	ST-NAME:		SAMPLE	NUMBER	30542	30558	40440	40456	40467	40483	40434	40510	1750t	40557	40248	MAXIMUM	ARITH MEAN	GEOM MEAN	CID DEV (CEOM *)	TATISTICS	EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	30542	30558	40440	40456	40467	40483	40404	40510	17504	40537
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE		ҮҮМИББ ГИТ	900122 0940					900625 0935	000123 0933						A		CID DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	УУМИВВ СИТ	-	_				900625 0935		900827 0935		901022 0925

(CONTD)

STATION ID: 03-0036-009-02

		LAKES
		GREAT LAKES
		HAJOR BASIN:
		MAJOR
	SAMPLE POINT: AT COUNTY ROAD NO.30 SOUTH OF KIMBERLEY	
	OF	
	SOUTH	
	NO.30	
VER	ROAD	
BEAVER RIVER	COUNTY	/ER
BE	AT	RIVER
SITE	POINT:	TYPE:
B.0.W./	SAMPLE	STATION TYPE

SAMPLE POINT: AT COI STATION TYPE: RIVER	SAMPLE POINT: AT COUNTY ROAD NO.30 SOUTH OF KIMBERLEY STATION TYPE: RIVER	ROAD NO.3	O SOUTH OF	KIMBERLEY	MAJOR BASIN MINOR BASIN TERM STREAN	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BEAVER RIVER	KES DN IVER			STORET CODE: 02 003	: 02 002 2250
	LAT: 44	LAT: 44 20 45.92	LONG: 080 32 22.47	32 22.47	U T M: 17	0.007520	U T M: 17 0536700.0 4910200.0 4	REGION: 01	01	DISTANCE:	37.175
*=INTERIM TEST-NAME:	TEST-NAME:	FWSTRC	FWTEMP	NIUT	NNHTUR NH3-N	NNO2UR	NNOSUR	NNTKUR K'DAHL N	PBUT	Н	PP04UR
SAMPLE DATE HOUR YYMMDD LMT	SAMPLE	STREAM COND.	WATER TEMP	UNF.TOT. MG/L AS NT	UNF.REAC MG/L AS N	NO2-N UNF.REAC MG/L	NO3-N UNF.REAC MG/L	TOTAL UNF.REAC MG/L	LEAD UNF.TOT. MG/L	2	PO4 UNF.REAC MG/L
							2	2	S. C.	E.	A A
	ARITH MEAN		9.9	0.004 0.003 <a< td=""><td>0.035</td><td>0.020</td><td>1,300</td><td>0.380</td><td>0.005 0.005<a< td=""><td>8.42</td><td>0.011</td></a<></td></a<>	0.035	0.020	1,300	0.380	0.005 0.005 <a< td=""><td>8.42</td><td>0.011</td></a<>	8.42	0.011
	GEOM MEAN		6.2	0.002 <a< td=""><td>0.031</td><td>0</td><td>0.460</td><td>0.333</td><td>0.005<a< td=""><td>8.29</td><td></td></a<></td></a<>	0.031	0	0.460	0.333	0.005 <a< td=""><td>8.29</td><td></td></a<>	8.29	
STD D	STD DEV (GEOM *)		7.5	0.001 <a< td=""><td>0.018</td><td>0.010</td><td>0.412</td><td>0,040</td><td>0.000<a< td=""><td>0.16</td><td>0.001</td></a<></td></a<>	0.018	0.010	0.412	0,040	0.000 <a< td=""><td>0.16</td><td>0.001</td></a<>	0.16	0.001
# SAMP IN % SAMP	# SAMP IN STATISTICS % SAMP (EXCLUDED)		10	11	11	10	11	11	11		54
*=INTERIM TEST-NAME:	TEST-NAME:	PPUT	RSP	TURB	ZNUT						
SAMOLE		PHOSPHOR	2107.070		ZINC						
DATE HOUR	SAMPLE	MG/1	PARTIC.	TUBRITTY	. 101.						
0		AS P	MG/L	FTU	AS ZN						
900122 0940		0.012	5,0<		0.0035						
		0.010	2.4	2.00	0.0100						
		0.008	5.0<		0.0041						
900423 0920	40456	0.008	>0.5		0.0005 <w< td=""><td></td><td></td><td>•</td><td></td><td></td><td></td></w<>			•			
		0.012	20.0	2.00	0.0005×W						
		0.013	6.7		0.0040						
		0.010	3.5	1.34	0.0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
		0.008	5.0<		0,0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
		900.0	3.1	1.14	0.0020 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
901126 1020	40548	0.007	1.6		0.0000						
	MAXIMUM	0.013	6.7	2,00	0.0100						
	ARITH MEAN	600.0	3.5	1.62	0.0034 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td></a<>						
	GEON MEAN	600.0		1.57	0.0023 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td></a<>						
	MINIMUM	0.006	1.6	1.14	0.0005						
A CAMP TH	* SAMP IN CTATISTICS	0.002	L	0.45	0.0030 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td></a<>						
Y SAMP	7 SAMP (EXCHIDED)	11	n o	3	11						
	(EACLODED)		2								

MAJOR BASIN: GREAT LAKES

STATION TYPE: RIVER

STATION ID: 04-0001-001-02

STORET CODE:

100AID SOAID 0.161 CNT H FECAL COLIFORM /100ML 2750 5900 1500> FCMF 5000 0000 7.54 7.54 7.63 7.42 8.00 7.78 7.72 7.72 7.50 5800 5200 3300 2800 44000 10 44000 8215 DISTANCE: 0.005<W 0.006<T 0.006<T MG/L AS 0 0.005<W AS PB 0.005<W 0.005<W 0.005<W MG/L 0.005<W 0.008<T DISOLVED OXYGEN JNF. TOT. J.007<T 0.0 13.0 7.4 6.8 3.0 3.0 PBUT 00 0.0100 0.0055<A 0.0020 0.0023<A MG/L AS N 0.0050<A K'DAHL N JNF . REAC COPPER UNF. TOT. MG/L AS CU 0.0020<T NNTKUR 0.0065 0.0044 0.0060 0.0081 0.0040 2.060 0.950 1.260 1.580 2.800 0.470 0.0100 0.0030 TOTAL REGION: 01 0.0020<T 0.0040 0.0020<T 0.0044<A 0.0010 0.0051<A AS CR MG/L AS N 0.0061<A MG/L 0.0020<T N03-N UNF . REAC CHROMIUM UNF. TOT. 0.0010<T NNOSUR 0.0081 0.0180 0.0110 8.400 6.500 13.300 11.500 1.500 2.700 3.900 3.100 CRUT 0.0180 U T M: 17 0339950.0 4688950.0 4 MG/L AS N JNF . REAC COND25 25C UMHO/CM AT 25 C 1123.0 1193.0 911.0 802.0 798.0 836.0 581.0 619.0 492.0 NNO2UR N02-N CONDUCT 1193.0 738.6 395.0 246.1 0.340 0.250 0.250 0.080 0.170 0.590 0.010 0.160 0.190 TERM STREAM: LITTLE RIVER MINOR BASIN: LAKE ERIE MG/L MG/L AS N CLIDUR AS CL TOTAL UNF. REAC CHLORIDE UNF. REAC NNHTUR NH3-N 96.300 77.646 21.500 44.618 0.059 0.011 0.362 0.571 0.666 0.058 0.157 127.000 97.700 .400 83.500 89.200 47. 5 DAY MG/L AS 0 MG/L AS NI 0.018 0.007<T 0.020 0.018 0.009<T 0.019 0.014 BOD UNF. TOT. NICKEL 0.006<T rot. DEM. 7.44 3.66 2.58 0.10 2.15 8008 4.92 3.76 1.82 7.44 3.16 2.26 0.10 3.16 6.32 3.64 0.036 0.026 NIUT MG/L TOTAL CAC03 TEMP FWTEMP DEG.C LAT: 42 20 17.81 LONG: 082 56 34.06 108.0 161.0 147.0 122.0 128.0 86.7 86.7 104.0 112.0 161.0 125.5 123.7 86.7 21.8 1.0 15.0 15.0 18.5 23.0 220.0 11.0 11.0 ALKT AS STREAM FGPR03 SUB-PROJ CODE PROJECT FWSTRC COND. 0101 0101 0101 0101 0101 0101 0101 1010 0101 0101 1010 820 330 20000 500AID SAMPLE DEPTH M **FWSADP** CRI STREPCUS /100ML FECAL 1500> 8600 2700 1000 100 2200 0,30 0.30 FSMF 380 SAMPLE 40814 40827 SAMPLE 40801 30849 40765 40789 30849 40729 40765 40777 40789 40827 40729 40741 40777 MAXIMUM ARITH MEAN GEOM MEAN # SAMP IN STATISTICS 30861 40741 40753 40753 MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 900514 1210 901011 1145 901119 1430 901211 1055 1215 1210 1230 901011 1145 901119 1430 901211 1055 HOUR 1130 1230 1130 1200 1215 055 1125 1055 1125 LMT LHT 116006 YYMMDD 900110 900214 900313 900411 900514 900613 900709 900814 YYMMDD 900110 900214 900313 900411 9007009 900814 900911 SAMPLE SAMPLE DATE DATE

STATION ID: 04-0001-001-02

B.O.W./ SITE: LITTLE RIVER SAMPLE POINT: AT RIVERSIDE DRIVE WINDSOR STATION TYPE: RIVER

: 02 003 2750	0.161	Н		Н	8.00	7.60	7.59	7.42	0.18	11																								
STORET CODE: 02 003 279	DISTANCE:	PBUT	LEAD UNF.TOT.	AS PB	0.008	0.006 <a< td=""><td>0.006<a< td=""><td>0.005</td><td>0.001<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.006 <a< td=""><td>0.005</td><td>0.001<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.001 <a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	11																								
	01	NNTKUR K * DAH! N	TOTAL UNF.REAC	AS N	2.800	1.555	1.417	0.470	0.642	11	ZNUT	ZIMC	UNF. TOT.	MG/L	AS ZN	0.0350	0.0200	0.0170	0.0220	0.0200		0.0040	0.0170	0.0370	0,0200	0.0170	0.0240	0 0370	0.0212	0.0189	0.0040	0.0000	11	
	REGION: 01	NNO3UR	NO3-N UNF.REAC	AS N	13.300	6.891	5.685	1.500	3.985	11	TURB			TURB'ITY	FTU								22.00					22.00	22.00		22.00		=	
ES	588950.0 4	NNO2UR	ND2-N UNF.REAC	AS N	0.590	0.206	0.143	0.010	0.162	11	RSP		RESIDUE	PARTIC.	MG/L	51.0	14.8		9.62	41.5	48.6	5.0<	21.1	85.0	73.4	21.7		85.0	48.5		14.8		6	10
GREAT LAKI LAKE ERIE LITTLE RI	U T M: 17 0339950.0 4688950.0 4	NNHTUR NH3-N	UNF.REAC	AS N	0.666	0.212	0.081	0.001	0.230	11	PSAME	AFRUG.	MF	DISINTEG	/100ML												120	120	120		120		1	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: LITTLE RIVER	U T M: 17	NIUT	NICKEL UNF.TOT.	AS NI	0.036	0.018 <a< td=""><td>0.016<a< td=""><td>900.0</td><td>0.009<a< td=""><td>11</td><td>PSAME</td><td>AERUG.</td><td>MF</td><td>CNT</td><td>/100ML</td><td>216</td><td>95</td><td>52</td><td>552C</td><td></td><td>20AID</td><td>>4</td><td>59</td><td>204C</td><td>420C</td><td>220</td><td></td><td>552</td><td>204</td><td></td><td>20</td><td></td><td>6</td><td>OT</td></a<></td></a<></td></a<>	0.016 <a< td=""><td>900.0</td><td>0.009<a< td=""><td>11</td><td>PSAME</td><td>AERUG.</td><td>MF</td><td>CNT</td><td>/100ML</td><td>216</td><td>95</td><td>52</td><td>552C</td><td></td><td>20AID</td><td>>4</td><td>59</td><td>204C</td><td>420C</td><td>220</td><td></td><td>552</td><td>204</td><td></td><td>20</td><td></td><td>6</td><td>OT</td></a<></td></a<>	900.0	0.009 <a< td=""><td>11</td><td>PSAME</td><td>AERUG.</td><td>MF</td><td>CNT</td><td>/100ML</td><td>216</td><td>95</td><td>52</td><td>552C</td><td></td><td>20AID</td><td>>4</td><td>59</td><td>204C</td><td>420C</td><td>220</td><td></td><td>552</td><td>204</td><td></td><td>20</td><td></td><td>6</td><td>OT</td></a<>	11	PSAME	AERUG.	MF	CNT	/100ML	216	95	52	552C		20AID	>4	59	204C	420C	220		552	204		20		6	OT
	36 34.06	FWTEMP	WATER	DEG.C	23.0	12.2	8.8	1.0	7.1	12	PPUT	PHOSPHOR	UNF. TOT.	MG/L	AS P	0.238	0.114	0,178	0.328	0.182	0.210	0.036	0.125	0.254	0.325	0.204		0.328	0.199	0.175	0.036	0.088	11	
	LONG: 082 56 34.06	FWSTRC	STREAM	COND.							PPO4UR	P04	UNF. REAC	MG/L	AS P	0.135	0.016	0.058	0.158	980.0	0.063	0.018	0.039	0.134	0.143	0.105		0.158	0.087	0.068	0.016	0.052	11	
	LAT: 42 20 17.81	FSMF	STREPCUS MF CNT	/100ML	20000	3663	9	100		10	PHNOL	PHENOLS	UNF-REAC	7/90	PHENOL	5.000	2,000	1.500	2.500	2.000	3.000	1.000<	7.000<		20.500	3.000		20,500	4.937		1.500	,	20	0.3
E: RIVER	LAT: 4	ST-NAME:	SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MUNITAL	SID DEV (GEOM *)	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	30849	30861	40729	40741	40753	40765	40777	40/86	40801	40814	4082/	40839	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	SID DEV (GEOM *)	Z SAMP (EXCLINED)	- Constant
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR	YYMMDD LMT		4		4	SID DEV	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-MAME:		ш		YYMNDD LMI										Shii 110106		501 117106		4			SID DEV	2 SAMP (EXCHINED)	

**	2770	Z	NH3-N TOTAL	UNF.REAC MG/L	AS N	0.262	0.001	0.064	0.461	0.021	0.085	0.020	0.113	601.0			0.461	0.053	0.001	0.141	10	TURB			TURB'ITY FTU								83.00		
STATION ID: 04-0005-003-02 STORET CODE:	DISTANCE:	FWTEMP		WATER	DEG.C	1.5	1.0	11.0 B.0	13.0	21.0	21.0	20.0	19.0	0.11	2.0		11.0	7.4	1.0	7.9	12	RSP		RESIDUE	PARTIC. MG/L	17.8	23.6	55.7	135.0	107.0	49.5	56.6	54.2	140.0	29.5
TION ID: 04	01	FWSTRC		STREAM	COND.	9	9 (9	6	9	9	9	9 2	2 4	9							PSAME	PSEUDOMN	MF	CNT /100ML							;	5900	2040	
STA	REGION: 01	FSMF	FECAL	CNT	/100ML	2200	100AID	4500	2400	100<	490	380	1500>	10041	160	2000	1633		100	•	16	PPUT	PHOSPHOR	UNF. TOT.	MG/L AS P	0.435	0.070	0.258	0.465	0.430	0.105	0.089	0.195	0.375	0.126
g .	681925.0 4	FCMF	COLIFORM	CN	/100ML	1200	ZOOAID	1000	1200	200AID	390	1500>	2500	900410	3800	2800	1289		200	•	16	PP04UR	P04	UNF . REAC	MG/L AS P	0.220	0.015	0.099	0.190	0.206	0.036	0.032	0.083	0.136	0.020
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE	U T M: 17 0352500.0 4681925.0 4	DOC	DISOLVED	UKGANIC MG/L	AS C	11.1	5.5	10.7	12.6		8.1	10.6	19.0	7.6		19.0	10.6	10.0	5.5	1.0	0	PHNOL	PHENOLS	UNF-REAC	DE/L PHENOL	3.500	1.000	2.500	1.500	2.500	1.500	1.000<	/000.T	26.500	
MAJOR BASIN: MINOR BASIN:	U T M: 17	COND25	CONDUCT.	UMHO/CM	AT 25 C	491.0	874.0	497.0	621.0	0.667	663.0	814.0	319.0	844.0		874.0	6.969	622.9	319.0	113.7	=	н			E	7.67	8.10	7.72	7.61	7.74	8.35	8.12 7 80	7.76	7.34	8.20
OF PUCE	47 19.46	CLIDUR	CHLORIDE	MG/L	AS CL	64.100	51.800	39.800	47.100	62.800	85.300	117.000	21.000	75.600		117.000	64.127	59.063	21.000	11	:	NNTKUR	TOTAL	UNF. REAC	MG/L AS N	2.150	1.020	1.660	2.650	3.040	1.350	1.050	1.820	2.050	2.250
PUCE RIVER AT ESSEX COUNTY ROAD 42 SOUTH OF PUCE RIVER	LONG: 082 47 19.46	FGPROJ	1000	SUB-PROJ	CODE	0101	1010	0101	1010	0101	0101	0101	0101	0101	0101							NNOSUR	N03-N	UNF.REAC	AS N	5.800	7.700	6.700	11.800	16.400	0.00	8.300	1.800	1.700	1.200
COUNTY ROA	LAT: 42 16 39.08	FWSADP	D AMDI	DEPTH	Ξ	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30	12	:	NNO2UR	N02-N	UNF. REAC	AS N	0.140	0.050	0.090	0.380	0.240	0.140	0.100	0.000	0.100	0.120
: PUCE RIVE : AT ESSEX : RIVER	LAT: 42	ST-NAME:		SAMPLE	NOMBER	30850	40730	40742	40754	40766	40778	40790	40813	40826	40838	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM CID DEV (CEDM X)	TATISTICS	XCLUDED)	ST-NAME:		r inna	NUMBER	30850	30862	40730	40/42	40/24	40/08	40790	40802	40813	40826
B.O.M./ SITE: PUCE RIVER SAMPLE POINT: AT ESSEX CO STATION TYPE: RIVER		*=INTERIM TEST-NAME:	S AMDI F	DATE HOUR	TTIMBD CHI	900110 1130					900/09 I200			901119 1405	901211 1030		AF		CID DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	0				900411 1250						901119 1405

1990 HATER QUALITY DATA REGION 1

02 003 2770	3.380	TURB	TURB ITY	83.00	83,00	83.00	1
STATION ID: 04-0005-003-02 STORET CODE:	DISTANCE:	RSP	RESIDUE PARTIC. T	,	56.8	17.8	11
TION ID: 04	01	PSAMF PSEUDOMN AERUG.	CNT CNT	204	134	64	2
STA	REGION: 01	PHOSPHOR	UNF.TOT. MG/L AS P	0.465	0.260	0.070	11
R ES	681925.0 4	PPO4UR PO4	UNF.REAC MG/L AS P	0.220	0.109 0.077	0.015	11
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: PUCE RIVER	U T M: 17 0352500.0 4681925.0 4	PHNOL	UNF-REAC UG/L PHENOL	26.500	5.571	1,000	7 22
MAJOR BASIN: GREAT MINOR BASIN: LAKE TERM STREAM: PUCE	U T M: 17	Н	Hd	8.35	7.86	7.34	11
OF PUCE	47 19,46	NNTKUR K'DAHL N TOTAL	UNF.REAC MG/L AS N	3.040	1.897	1.020	11
PUCE RIVER AT ESSEX COUNTY ROAD 42 SOUTH OF PUCE RIVER	LONG: 082 47 19,46	NNO3UR	UNF.REAC MG/L AS N	16.400	6.409	0.400	11
COUNTY ROA	LAT: 42 16 39.08	NNO2UR NO2-N	UNF.REAC MG/L AS N	0.380	0.135	0.030	11
B.O.W./ SITE: PUCE RIVER SAMPLE POINT: AT ESSEX CO STATION TYPE: RIVER	LAT: 4	TEST-NAME:	SAMPLE	HAXIMUM	GEOM MEAN	STD DEV (GEOM *)	SAMP IN STATISTICS 2 SAMP (EXCLUDED)
B.O.W./ SITE: SAMPLE POINT: STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LHT			STD D	# SAMP IN

STATION ID: 04-0007-002-02

1990 WATER B.O.W./ SITE: BELLE RIVER SAHPLE POINT: AT FIRST ROAD SOUTH OF HIGHWAY 401 STATION TYPE: RIVER

Test-Hame; First-Hame; F	STATION TYPE: RIVER				MAJOR BASIN MINOR BASIN TERM STREAM	MAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERIE TERM STREAM: BELLE RIVER	res rer			STORET CODE: 02 003 28(: 02 003 2800
Participa Part	T: 42 1	3 37.28	LONG: 082	43 10.04	U T M: 17	0358100.0 4	676200.0 4	REGION:	01	DISTANCE	9.978
SAMPLE PROJECT CHILORIDE COMDUCT. DISOLVED Tread		FWSADP	FGPROJ	CLIDUR	COND25	00	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR
Name			1000	CHLORIDE	CONDUCT.	DISOLVED	COLIFORM	STREPCUS		1	TOTAL
1 0.30 0.101 55.400 514.0 4.0 4.00 4400 6 1.0 0.5 2 0.30 0.101 55.400 514.0 4.0 4.0 4400 6 1.0 0.5 3 0.30 0.101 55.400 514.0 4.0 4.0 4400 6 1.0 0.5 4 0.30 0.101 28.400 5474.0 10.0 4400 6 1.0 0.5 5 0.30 0.101 28.400 5474.0 10.0 4400 6 1.0 0.5 5 0.30 0.101 28.400 5474.0 10.0 4400 6 13.0 0.5 6 0.30 0.101 28.400 5474.0 10.0 4400 6 13.0 0.5 7 0.30 0.101 28.400 5474.0 10.0 4400 6 13.0 0.5 8 0.30 0.101 28.400 5474.0 10.0 4400 6 2.0 0.5 9 0.30 0.101 28.400 5474.0 10.0 12.0 3304 1004 6 21.0 0.5 9 0.30 0.101 19.800 625.0 7.5 3004 1004 6 21.0 0.5 9 0.30 0.101 19.800 625.0 625.0 3400 6 22.0 0.5 9 0.30 0.101 19.800 625.0 625.0 3400 6 22.0 0.5 9 0.30 0.101 19.800 625.0 625.0 3400 6 22.0 0.5 9 0.30 0.101 19.800 625.0 625.0 3400 6 22.0 0.5 9 0.30 0.101 19.800 625.0 625.0 3400 6 22.0 0.5 9 0.30 0.101 19.800 625.0 625.0 3400 6 22.0 0.5 9 0.30 0.101 19.800 625.0 625.0 3400 6 22.0 0.5 9 0.30 0.101 19.800 625.0 625.0 4400 1004 6 22.0 0.5 9 0.30 0.30 1.400 1.500 2.500 1.400 1.400 1.400 1.500 1.400	PLF	DEPTH	SUB-PROJ	ONF . REAL	UMHOZCM	OXYGEN MG/I	CNT	CNT	STREAM	TEMD	UNF . REAC
1	BER	Ε	CODE	AS CL	AT 25 C	AS 0	/100ML	/100ML	COND.	DEG.C	AS N
3 0.30 0.101 66,600 892.0 10.0 400AID 500AID 6 2.0 3 0.30 0.101 36,600 892.0 10.0 600AID 500AID 6 0.0 5 0.30 0.101 28.200 374.0 10.0 4600 100ID 6 0.0 9 0.30 0.101 28.200 709.0 12.0 4600 100ID 6 20.0 3 0.30 0.101 128.000 700.0 12.0 300D 400AID 6 20.0 4 0.30 0.101 128.000 892.0 7.5 300D 400AID 6 20.0 5 0.30 0.101 44.000 626.0 7.5 400AID 6 20.0 6 0.30 0.101 44.000 892.0 7.5 400AID 6 20.0 7 0.30 0.101 44.000 825.0 7.5 400AID 1		0.30	0101	55.400	514.0	4.0	1700	4400	9	1.0	0.502
1		0.30	0101	64.600	892.0	10.0	400AID	100<	_	2.0	0.011
3 0.30 0.101 28.200 374.0 10.0 1800 3400 6 6.0 7 0.30 0.101 28.4200 374.0 10.0 4600 13000 6 20.0 9 0.30 0.101 42.200 779.0 12.0 3004ID 6.0 20.0 9 0.30 0.101 128.000 775 3000 6 20.0 3 0.30 0.101 14.800 65.0 7.5 3000 7400 6 20.0 5 0.30 0.101 61.200 892.0 7.5 3000 7400 6 20.0 6 0.30 0.101 61.200 892.0 7.5 3000 7001 6 20.0 7 0.30 0.101 61.200 892.0 7.5 3000 700 6 20.0 8 0.30 1.004ID 61.200 892.0 7.5 3000 700 20.0		0.30	0101	38.700	557.0		BOOMID	SOOAID	_	14.0	0.074
5 0.30 0101 28.400 475.0 10.0 4600 13000 9 13.0 9 0.30 0101 62.200 475.0 10.0 4600 13000 9 13.0 9 0.30 0101 128.000 62.0 12.0 3304D 480 6 25.0 2 0.30 0101 128.000 626.0 7.5 400AID 440 20.0 2 0.30 0101 19.800 293.0 7.5 400AID 100ID 4.0 20.0 <td></td> <td>0.30</td> <td>1010</td> <td>28.200</td> <td>374.0</td> <td>10.0</td> <td>1800</td> <td>3400</td> <td>_</td> <td>0.9</td> <td>0.079</td>		0.30	1010	28.200	374.0	10.0	1800	3400	_	0.9	0.079
7 0.30 0.101 62.200 709.0 8.0 300AID 100AID 6 20.0 1 0.30 0.101 128.000 631.0 12.0 300AID 100AID 6 20.0 2 0.30 0.101 128.000 631.0 10.0 1500 6 21.0 2 0.30 0.101 128.000 635.0 7.5 300AID 100AID 6 21.0 2 0.30 0.101 61.200 689.0 7.5 400AID 100AID 6 21.0 2 0.30 0.101 61.200 689.0 7.5 400AID 6 21.0 3 0.30 0.101 61.200 6.0 13000 6 21.0 4 0.30 1.280 6.2 13000 6 20.0 5 0.30 1.1 1.1 1.0 13000 6 21.0 4 0.30 1.1 4.0 <t< td=""><td></td><td>0.30</td><td>0101</td><td>28.400</td><td>475.0</td><td>10.0</td><td>4600</td><td>13000</td><td>_</td><td>13.0</td><td>0.467</td></t<>		0.30	0101	28.400	475.0	10.0	4600	13000	_	13.0	0.467
9 0.30 0101 73.700 700.0 12.0 330 80AID 6 25.0 3 0.30 0101 12.000 626.0 10.0 1500> 480 6 25.0 2 0.30 0101 19.800 626.0 7.5 400AID 1400 6 20.0 2 0.30 0101 61.200 626.0 7.5 400AID 100ID 6.0 100 6.0 10.0 6.0 10.0 6.0 10.0 10.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 6.0 10.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 </td <td></td> <td>0.30</td> <td>0101</td> <td>62.200</td> <td>709.0</td> <td>8.0</td> <td>SOOAID</td> <td>100AID</td> <td>_</td> <td>20.0</td> <td>0.099</td>		0.30	0101	62.200	709.0	8.0	SOOAID	100AID	_	20.0	0.099
1		0.30	0101	73.700	700.0	12.0	330	BOAID	9	25.0	0.417
3 0.30 0101 44.800 626.0 7.5 930 1100 6 20.0 2 0.320 0101 19.800 293.0 7.5 400A1D 100A1D 6 20.0 7 0.30 0101 61.200 899.0 12.0 4600 15010 6 2.0 8 0.30 0101 128.000 892.0 12.0 4600 15010 6 2.0 8 0.30 128.000 892.0 12.0 46.0 13000 6 2.0 9 0.30 128.000 892.0 12.0 46.0 1500 6 2.0 1 0.30 2.2 4.0 300 80 11.0		0.30	0101	128.000	831.0	10.0	1500>	480	9	21.0	0.306
2 0.30 0101 19.800 293.0 7.5 3000 7400 3 11.0 5 0.30 0101 61.200 889.0 7.5 400AID 100AID 6 4.0 8 0.30 0101 61.200 889.0 12.0 4600 13000 6 4.0 8 0.30 48.551 590.6 8.5 1442 2792 11.6 4.0 9 0.30 48.551 590.6 8.5 1442 2792 11.6 4.0 1 0.30 19.800 223.0 2.4 300 80 11.6 <td></td> <td>0.30</td> <td>0101</td> <td>44.800</td> <td>626.0</td> <td></td> <td>930</td> <td>1100</td> <td>9</td> <td>20.0</td> <td>0.081</td>		0.30	0101	44.800	626.0		930	1100	9	20.0	0.081
5 0.30 0101 61.200 689.0 7.5 400AID 100AID 6 4.0 H 0.30 0101 128.000 692.0 12.0 4600 13000 5.0 H 0.30 128.000 692.0 12.0 460 13000 25.0 H 0.30 19.800 293.0 4.0 300 80 11.6 H 0.30 19.800 293.0 4.0 300 80 11.6 S 12 19.800 293.0 4.0 300 80 11.6 H 0.30 12 11 10 11 11 11.6 H 0.30 12 11 10 11 11 11.6 H 0.30 1 11 10 11 11 11.6 H 0.30 1 1 10 11 11 11.6 11.6 11.6 11.6 11.6 11.6 </td <td></td> <td>0.30</td> <td>0101</td> <td>19.800</td> <td>293.0</td> <td>7.5</td> <td>3000</td> <td>7400</td> <td>2</td> <td>11.0</td> <td>0.095</td>		0.30	0101	19.800	293.0	7.5	3000	7400	2	11.0	0.095
7 0.30 0101 6.0 1600 150 6 2.0 N 0.30 128.000 892.0 12.0 4600 13000 25.0 N 0.30 46.0 12.0 4600 2792 11.6 N 0.30 19.800 292.0 4.0 300 80 11.6 N 0.30 19.800 292.2 2.4 300 80 11.6 N 0.30 19.800 29.2.2 2.4 30 80 11.6 N 0.30 19.800 29.2.2 2.4 30 80 11.6 N 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 8.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		0.30	0101	61.200	889.0	7.5	400AID	100AID	9	6.0	0.135
NIOZUR		0.30	0101			0.9	1600	150	9	2.0	
NIOLUR NIOSUR NIOSUR NIOLUR N		0.30		128.000	892.0	12.0	4600	13000		25.0	0.502
NHOZUR N		0.30		55.000	623.6	8,5	1442	2792		11.6	0.206
NINOZUR NINO				48.551	590.6	8.2				7.7	0.131
NINOZUR		0.30		19.800	293.0	4.0	300	80		1.0	0.011
NINOZUR NINO				29.826	202.2	2.4				8.5	0.181
NNOZUR NNOZUR NNOZUR NNYTKUR PH PP04UR PPUT RSP TUR		2		11	11	10	11	11		12	11
NNOZUR NNOZUR NNOTUR NNOTUR NNOTUR NNOTUR NNOTUR NOTUR	DED)						60	80			
NO2-N NO3-N TOTAL NO3-N TOTAL NO4 NO3-N NO3-N TOTAL NO4 NO5-N NO3-N TOTAL NO5/N TOTAL NO5/N TOTAL NO5/N TOTAL NO5/N TOTAL NO5/N NOS/N NOS/		NNO2UR	NNO3UR	NNTKUR	H	PP04UR	PPUT	RSP	TURB		
UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.TOT. RESIDUE MG/L MG/L MG/L MG/L PRITC. TURB AS N AS N AS N AS P AS P AS P AS P 0.140 5.200 0.930 7.48 0.240 0.470 11.8 0.120 5.600 1.550 7.69 0.046 0.095 5.0 0.260 1.550 7.69 0.140 0.275 43.0 0.260 1.500 2.850 7.48 0.292 0.660 142.0 0.240 1.500 3.240 7.49 0.286 0.575 43.0 0.240 6.100 1.600 7.80 0.105 0.280 54.7 0.090 0.200 1.720 8.34 0.146 0.238 41.9 57.0 0.110 2.000 1.700 7.29 0.233 0.4605 90.4 0.040 0.0405		N02-N	N-3-N	TOTAL		P04	PHOSPHOR				
MG/L MG/L MG/L MG/L MG/L PARTIC. TURB AS N AS N AS N PH AS P AS P MG/L TURB 0.140 5.200 2.600 7.48 0.240 0.470 11.8 MG/L MG/L TURB 0.120 5.600 1.550 7.69 0.046 0.055 43.0 5.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 43.0 0.275 0.260 142.0 0.275 0.280 54.7 0.280 0.280 54.7 0.280 0.280 0.280 23.4 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.290 0.080 0.280 0.280 0.280 0.280		IF . REAC	UNF. REAC	UNF. REAC		UNF. REAC	UNF.TOT.	RESIDUE			
1		MG/L	MG/L	MG/L	i	MG/L	MG/L	PARTIC.	TURB'ITY		
0.140 5.200 2.600 7.48 0.240 0.470 11.8 0.220 6.200 0.930 7.89 0.046 0.095 5.0 0.120 5.600 1.550 7.48 0.292 0.660 142.0 0.260 8:400 2.560 7.48 0.292 0.660 142.0 0.260 12.000 3.240 7.49 0.286 0.530 125.0 0.340 0.200 1.700 7.49 0.102 0.280 125.0 0.340 0.200 1.700 8.34 0.142 0.280 125.0 0.990 0.200 1.700 8.34 0.146 0.236 23.4 0.110 3.000 1.700 7.71 0.140 0.235 41.9 0.110 2.000 1.700 7.71 0.140 0.236 90.4 0.100 1.000 1.900 8.04 0.055 0.146 15.8	1BER	AS N	AS N	AS N	H	AS P	AS P	MG/L	FTU		
0.220 6.200 0.930 7.89 0.046 0.095 5.0 0.120 5.600 1.550 7.60 0.140 0.275 43.0 0.260 8:400 2.650 7.49 0.295 0.660 142.0 0.260 12:00 3.240 7.49 0.286 0.530 125.0 0.340 0.200 1.600 7.49 0.020 0.50 125.0 0.990 0.200 1.700 8.34 0.146 0.280 54.7 0.150 6.800 2.550 7.56 0.182 0.235 21.9 0.110 3.000 1.700 7.71 0.140 0.248 49.4 0.110 2.000 1.500 7.71 0.140 0.248 49.4 0.10 2.000 1.500 8.04 0.055 0.148 15.8		0.140	5.200	2.600	7.48	0.240	0.470	11.8			
0.120 5.600 1.550 7.60 0.140 0.275 43.0 0.260 18,400 2.850 7,48 0.292 0.660 142.0 0.260 12.000 3.240 7,80 0.102 0.530 125.0 0.340 6.100 1.600 7,80 0.102 0.286 54.7 0.090 0.200 1.720 8.34 0.146 0.238 22.4 0.110 3.000 1.700 7.58 0.182 0.355 41.9 0.110 2.000 1.950 7.29 0.233 0.405 90.4 0.040 1.100 1.400 8.04 0.055 0.146 15.8		0.220	6.200	0.930	7.89	950.0	0.095	5.0<			
0.260 8:400 2.850 7.48 0.292 0.660 142.0 0.260 12.000 3.240 7.49 0.286 0.530 125.0 0.340 6.100 1.600 7.49 0.102 0.286 54.7 0.090 0.200 1.720 8.34 0.146 0.238 23.4 0.150 6.800 2.550 7.58 0.146 0.235 41.9 0.110 3.000 1.700 7.71 0.140 0.246 49.4 0.110 2.000 1.950 7.29 0.233 0.405 90.4 0.040 1.100 1.400 8.04 0.055 0.148 15.8		0.120	2.600	1.550	7.60	0.140	0.275	43.0			
0.260 12.000 3.240 7.49 0.286 0.530 125.0 0.340 6.100 1.600 3.74 0.102 0.280 54.7 0.090 0.200 1.720 8.34 0.142 0.280 54.7 0.150 6.800 2.550 7.58 0.182 0.35 21.9 0.110 2.000 1.700 7.71 0.140 0.248 49.4 0.110 2.000 1.500 7.72 0.233 0.405 90.4 0.040 1.100 1.400 8.04 0.055 0.148 15.8		0.260	8:400	2.850	7.48	0.292	0,660	145.0			
0.340 6.100 1.600 7.80 0.102 0.280 54.7 0.090 0.200 1.720 8.34 0.146 0.238 23.4 0.150 6.800 2.550 7.58 0.182 0.335 41.9 0.110 3.000 1.700 7.71 0.140 0.248 49.4 0.110 2.000 1.950 7.29 0.233 0.405 90.4 0.040 1.100 1.400 8.04 0.055 0.148 15.8		0.260	12.000	3.240	7.49	0.286	0.530	125.0			
0.090 0.200 1.720 8.34 0.146 0.238 22.4 0.150 6.800 2.550 7.56 0.182 0.335 41.9 0.110 3.000 1.700 7.71 0.140 0.246 49.4 0.110 2.000 1.950 7.29 0.233 0.405 90.4 0.040 1.100 1.400 8.04 0.055 0.148 15.8		0.340	6.100	1.600	7.80	0.102	0.280	24.7			
0.150 6.800 2.550 7.58 0.182 0.335 41.9 0.110 3.000 1.700 7.71 0.140 0.248 49.4 0.110 2.000 1.500 7.29 0.233 0.405 90.4 0.040 1.100 1.400 8.04 0.055 0.148 15.8		060.0	0.200	1.720	8.34	0.146	0.238	23.4			
0.110 3.000 1.700 7.71 0.140 0.248 0.110 2.000 1.950 7.29 0.233 0.405 0.040 1.100 1.400 8.04 0.055 0.148		0.150	008.9	2.550	7.58	0.182	0.335	41.9	57.00		
0.110 2.000 1.950 7.29 0.233 0.405 0.040 0.040 1.100 1.400 8.04 0.055 0.148		0.110	3.000	1.700	7.71	0.140	0.248	49.64			
0.040 1.100 1.400 8.04 0.055 0.148		0.110	2.000	1.950	7.29	0.233	0.405	90.4			
		0.040	1.100	1.400	8.04	0.055	0.148	15.8			

(CONTD)

1990 WATER QUALITY DATA REGION 1

02 003 2800	9.978											
STATION ID: 04-0007-002-02 STORET CODE: 02 003	DISTANCE:											
ATION ID: 04	10	TURB		TURB'ITY	FTU	57.00	57.00		57.00		1	
31,	REGION: 01	RSP	RESIDUE	PARTIC.	MG/L	142.0	59.7		11.8		10	6
(ES	U T M: 17 0358100.0 4676200.0 4	PPUT	PHOSPHOR UNF.TOT.	MG/L	AS P	0.660	0.335	0.294	0.095	0.168	11	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BELLE RIVER	0358100.0	PP04UR	PO4 UNF.REAC	MG/L	AS P	0.292	0.169	0.146	9,000	0.085	11	
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	Н			H	8.34	7.70	7.69	7.29	0.30	11	
7 401	43 10.04	K'DAHL N	TOTAL UNF.REAC	MG/L	AS N	3.240	2.008	1.894	0.930	0.704	11	
и оғ итсима	LAT: 42 13 37,28 LONG: 082 43 10.04	NNO3UR	NO3-N UNF.REAC	MG/L	AS M	12.000	5,145	3.510	0.200	3,433	11	
VER ROAD SOUTH	2 13 37.28	NNO2UR	NO2-N UNF.REAC	MG/L	AS N	0.340	0.167	0.144	0.040	0.090	11	
B.O.W./ SITE: BELLE RIVER SAMPLE POINT: AT FIRST ROAD SOUTH OF HIGHMAY 401 STATION TYPE: RIVER	LAT: 4	TEST-NAME:		~	NUMBER	MAXIHUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: SAMPLE POINT: STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	YYMNDD LHT					STD	# SAMP IN	% SAME

STORET CODE:

STATION ID: 04-0010-002-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: RUSCOM RIVER SAMPLE POINT: 1 MILE EAST OF EXIT 6 ON HIGHWAY 401

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE FLOW GAUGE FED 02GH002 STATION TYPE: RIVER

UNF.REAC MG/L AS N 9.978 NNHTUR NH3-N TOTAL 0.035 2830 0.001 0.062 0.047 0.022 0.066 0.099 0.052 0.001 0.111 0.052 0.389 DISTANCE: TEMP DEG.C FWTEMP MATER 0.5 3.0 11.0 6.0 12.0 220.0 220.0 220.0 20.0 20.0 2.0 STREAM -WSTRC COND. TURB'ITY 62.00 REGION: 01 4500 100< 100AID 1300 1800 100< 100AID CNT FECAL STREPCUS PARTIC. /100ML RESIDUE MG/L 220 540 2100 5400 15.6 33.0 56.7 147.0 77.1 66.3 49.0 70.8 75.2 210 5400 100 10 1627 RSP 260 1500> 670 1200 200AID 380 1000 1300 100AID LOOAID MG/L AS P COLIFORM 100ML 100< PHOSPHOR UNF. TOT. U T M: 17 0366600.0 4676625.0 1300 0.470 0.076 0.215 0.525 0.500 1300 100 PPUT 0.128 0.155 0.220 651 TERM STREAM: RUSCOM RIVER MG/L AS 0 MG/L AS P DISOLVED OXYGEN P04 JNF . REAC PP04UR 7.0 10.0 9.0 0.240 0.070 0.224 2.0 15.0 4.0 9.5 2.0 8.5 0.007 0.113 0.153 0.047 UMHO/CM AT 25 C 표 COND25 25C CONDUCT, 627.1 340.0 193.7 475.0 867.0 616.0 430.0 545.0 714.0 941.0 687.0 340.0 941.0 7.56 8.10 7.64 7.52 7.52 8.02 8.32 7.20 7.20 F AS N MG/L AS CL K'DAHL N JNF . REAC MG/L CLIDUR CHLORIDE UNF. REAC NNTKUR LONG: 082 36 59.75 1.600 2.750 2.800 1.150 1.480 1.250 1.700 2.100 0.720 45.100 56.700 38.100 28.100 31.400 54.900 69.900 154.000 53.818 46.629 20.500 36.071 TOTAL 2.150 20.500 44.800 MG/L AS N FGPR0.3 SUB-PROJ NNO3UR N03-N UNF . REAC PROJECT 6.100 8.500 7.700 9.200 13.400 1.300 2.200 0101 0101 0101 0.900 0101 0101 0101 0101 0101 LAT: 42 13 56.44 SAMPLE MG/L AS N **FWSADP** NNO2UR N02-N UNF. REAC 0.140 0.070 0.080 0.260 0.190 0.050 0.30 0.050 0.000 0.30 12 40756 40792 30864 40732 40792 40811 40824 ARITH MEAN 30852 30864 40756 40804 40811 40824 SAMPLE NUMBER 30852 99709 40768 40780 40804 40836 MAXIMUM GEOM MEAN MINIMUM SAMP IN STATISTICS SAMPLE NUMBER 40732 40744 40768 40780 STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME: 901011 1020 901119 1320 1220 1315 1240 1230 1325 1020 1320 HOUR 1220 1315 1240 1230 1255 HOUR 1255 1325 LMT LMT *=INTERIM YYMMDD 900110 900313 900514 900613 900700 900911 YYMMDD 900411 900814 900110 900214 900313 900514 900613 900709 900814 116006 301211 SAMPLE 900214 SAMPLE 900411 901011 DATE DATE

1990 WATER QUALITY DATA REGION 1

	02 003 2830	9.978											
STATION ID: 04-0010-002-02	STORET CODE: 02 003 283	DISTANCE:											
TION ID: 04		01	TURB		TURB'ITY	FTU	62.00	62.00		62.00		1	•
STA		REGION: 01	RSP	RESIDUE	PARTIC.	MG/L	147.0	64.7	52.1	12.2	39.4	-	
	ES VER	676625.0 4	PPUT	PHOSPHOR UNF. TOT.	MG/L	AS P	0.525	0.257	0.195	0.037	0.179	11	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: RUSCOM RIVER	U T M: 17 0366600.0 4676625.0 4	PPO4UR	PO4 UNF.REAC	MG/L	AS P	0.312	0.110	0.056	0.007	0.108	11	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	ьн			E.	8.33	7.81	7.80	7.20	0.35	11	
AY 401		36 59.75	NNTKUR K'DAHI N	TOTAL UNF.REAC	MG/L	AS N	2.800	1.693	1.560	0.720	0.693	11	
6 ON HIGHW	FLOW GAUGE FED 02GH002	LAT: 42 13 56,44 LONG: 082 36 59,75	NNO3UR	NO3-N UNF.REAC	MG/L	AS N	13.400	5.782	4.437	0.900	3.778	11	
IVER AST OF EXIT	FLOW GAUGE	2 13 56.44	NNO2UR	NO2-N UNF.REAC	HG/L	AS N	0.260	0,098	0.072	0.010	0.074	11	
B.O.W./ SITE: RUSCOM RIVER SAMPLE POINT: 1 MILE EAST OF EXIT 6 ON HIGHWAY 401	E: RIVER	LAT: 4	EST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SIT	STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	YYMMDD LIIT					STD DE	# SAIIP IN	% SAMP

STATION ID: 04-0013-007-82

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT BRIDGE COUNTY RD 34 PRAIRIE SIDING

Mainteil					MINOR BASIN: TERM STREAM:	MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	E IVER				2870
SAHPLE PROJECT TOTAL UNIFFER COMPLET	LAT: 4			19 16.72	U T M: 17	0391175.0	4689600.0 4	REGION:	01	DISTANCE	
National Property Action 14th Column Actional Property Act	IAME:	FWSADP	FGPROJ	ALKT	ASUT	CCNAUR	CDUT	CLIDUR	COND25	CUUT	DO
CODE AS CACO AS AS AS HEN AS CACO	SAMPLE	SAMPLE	PROJECT SUB-PROJ	ALK TOTAL MG/I	ARSENIC UNF.TOT. MG/I	AVAIL UNF.REAC	CADMIUM UNF.TOT.	CHLORIDE UNF.REAC	CONDUCT.	COPPER UNF.TOT.	DISOLVED
0.30 0103 128.0 0 0.001c4H 0.0002c4H 34.100 521 0.0056 0.30 0103 195.5 0.0001c4H 0.0002c4H 0.0002c4H 0.0002c4H 0.0002c4H 0.00002c4H 0.0002c4H 0.	UMBER	Σ	CODE	AS CACO3	AS AS	AS HCN	AS CD	AS CL	AT 25 C	AS CU	MG/L AS 0
0.30 0103 195.5 0.0002 0.30 0103 195.6 0.0002 0.30 0103 195.7 0.0002 0.30 0103 195.0 0.0002 	39701	0.30	0103	128.0	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w< td=""><td>34.100</td><td>521</td><td>0.0056</td><td>19.5</td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w< td=""><td>34.100</td><td>521</td><td>0.0056</td><td>19.5</td></w<></td></w<>	0.0002 <w< td=""><td>34.100</td><td>521</td><td>0.0056</td><td>19.5</td></w<>	34.100	521	0.0056	19.5
0.30 0103 189.2 0.0002cM 660 0.0002cM 0	43000	0.30	0103	145.5			0.0002 <w< td=""><td></td><td>525</td><td>0.0039</td><td></td></w<>		525	0.0039	
0.30 0.103 186.2 0.00024M 449 0.00024M 646 0.00291 0.30 0.103 131.3 0.00024M 0.00024M 449 0.00264M 0.00024M 0.0	43002	0.50	0103	159.8			0.0002 <w< td=""><td></td><td>602</td><td>0.0040</td><td></td></w<>		602	0.0040	
0.30 0103 111.3 0.00024H 0.00024H 449 0.02034 0.30 0103 116.9 0.0014H 0.0014H 0.00024H 24.900 400 0.0052 0.30 0103 156.4 0.0014H 0.0014H 0.00024H 24.900 613 0.0052 0.30 0103 126.4 0.00014H 0.0014H 0.00024H 48.200 631 0.0052 0.30 0103 126.5 0.00014H 0.0014H 0.00024H 48.200 631 0.0052 0.30 0103 126.5 0.00014H 0.0014H 0.00024H 48.200 635 0.0060 0.30 0103 126.5 0.00014H 0.0014H 0.00024H 48.200 655 0.0060 0.30 0103 126.7 0.00014H 0.0014H 0.00024H 25.200 655 0.0060 0.30 0103 126.7 0.00014H 0.0014H 0.00024H 25.200 655 0.0060 0.30 0103 126.7 0.00024H 26.00024H 26.00024H 26.00020 0.30 0103 126.7 0.00024H 26.00024H 26.00024H 26.00020 0.30 0103 126.7 0.00024H 0.00024H 26.00024H 26.00024H 26.00020 0.30 0103 126.7 0.00024H 0.00024H 26.00024H 26.00024H 26.000204H 26.000204H 26.000204H 26.000204H 26.000204H 26.00024H 26.000204H 26.000204	43003	0.30	0103	188.2			0.0002 <w< td=""><td></td><td>716</td><td>0.0029</td><td></td></w<>		716	0.0029	
0.30 0103 1111.1 0.001<84 0.00264K 24.900 347 0.0050 CFF 0.0050 CFF 0.000 C	43004	0.30	0103	131.3			0.0002 <w< td=""><td></td><td>677</td><td>0.0031</td><td></td></w<>		677	0.0031	
0.30 0103 176.9 0.001 0.30 0103 176.6 0.001 0.30 0103 176.7 0.001	43005	0.30	0103	111.1			0.0020 <we< td=""><td></td><td>347</td><td>0.0150<te< td=""><td></td></te<></td></we<>		347	0.0150 <te< td=""><td></td></te<>	
0.50 0103 154.4 0.001<84 0.0002<44 616 0.0040 0.50 0103 154.4 0.001<84 0.001<84 0.0002<44 640 0.0005<47 651 0.0002<47 651 0.0002<47 651 0.0002<47 651 0.0002<47 651 0.0002<47 651 0.0002<47 651 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002<47 652 0.0002	39717	0.30	0103	108.0	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w< td=""><td>24.900</td><td>400</td><td>0.0042</td><td>13.5</td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w< td=""><td>24.900</td><td>400</td><td>0.0042</td><td>13.5</td></w<></td></w<>	0.0002 <w< td=""><td>24.900</td><td>400</td><td>0.0042</td><td>13.5</td></w<>	24.900	400	0.0042	13.5
0.30 0103 187.0 0.0014M 0.0014M 0.00024M 48.200 631 0.0065 0.30 01013 210.1 0.0014M 0.0014M 0.00024M 48.200 651 0.0062 0.30 01013 195.1 0.0014M 0.0014M 0.00024M 48.200 655 0.0060 0.30 01013 195.1 0.0014M 0.0014M 0.00024M 68.200 655 0.0060 0.30 0102 186.6 0.0014M 0.0014M 0.00024M 68.200 652 0.0060 0.30 0103 186.5 0.0014M 0.0014M 0.00024M 6.050 674 0.0060 0.30 0103 17.18 0.0014M 0.0024M 57.700 655 0.0060 0.30 0103 121.4 0.0014M 0.00024M 39.000 625 0.0060 0.30 0103 121.4 0.0014M 0.00024M 39.000 625 0.0060 0.30 0103 192.0 0.0014M 0.00024M 55.200 655 0.0060 0.30 0103 192.0 0.0014M 0.00024M 55.200 655 0.0060 0.30 0103 192.0 0.0014M 0.00024M 55.200 655 0.0060 0.30 0103 249.7 0.0014M 0.00024M 59.400 688 0.0060 0.30 0103 249.7 0.0014M 0.00024M 59.400 688 0.0060 0.30 0103 249.7 0.0014M 0.00024M 59.400 688 0.0060 0.30 0103 249.4 0.0014M 0.00024M 59.400 688 0.0060	42002	0.50	0103	176.9			0.0002 <w< td=""><td></td><td>618</td><td>0.0000</td><td></td></w<>		618	0.0000	
0.30 0103 210.1 0.001c4 0.0002c4 48.200 631 0.002c4 1.0002c4 1.000	39731	0.30	0103	187.0	2/100 0	0 004/10	0.0002 <w< td=""><td>000</td><td>480</td><td>0.0075</td><td></td></w<>	000	480	0.0075	
0.30 0103 210.1 0.0014W 0.00024W 48.200 655 0.0022 0.0022 0.0030 0.0032	43008	0.30	0103		W- TOO : 0	MATON O	0.0003	28.700	631	0.0066	17.0
0.30 0101 204.0 0.001 0.30 0103 186.6 0.001 0.30 0103 187.0 0.001 0.30 0103 186.6 0.001 0.30 0103 186.0 0.00	63008	0.30	0103	210.1			0.0002 <w< td=""><td></td><td>649</td><td>0.0027</td><td></td></w<>		649	0.0027	
0.30 0.103 195.1 0.0002 0.30 0.103 196.6 0.0014W 0.0014W 0.0008 0.30 0.103 196.6 0.0014W 0.0014W 0.0008 0.30 0.103 196.5 0.0014W 0.0014W 0.0006 0.30 0.103 177.0 0.0014W 0.002 0.30 0.103 177.0 0.0014W 0.0014W 0.0002 0.30 0.103 177.0 0.0014W 0.002 0.30 0.103 177.0 0.0014W 0.0002 0.30 0.103 177.0 0.0014W 0.0003 0.30 0.1	39747	0.30	0101	204.0	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w< td=""><td>48.200</td><td>655</td><td>0.0080</td><td>13.5</td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w< td=""><td>48.200</td><td>655</td><td>0.0080</td><td>13.5</td></w<></td></w<>	0.0002 <w< td=""><td>48.200</td><td>655</td><td>0.0080</td><td>13.5</td></w<>	48.200	655	0.0080	13.5
0.30 0103 168.6 0.001 0.30 0103 198.0 0.001 0.30 0103 198.0 0.001 0.30 0103 198.0 0.001 0.30 0103 198.0 0.001 0.30 0103 171.8 0.001 0.30 0103 171.8 0.001 0.30 0103 175.0 0.001 0.30 0103 175.1 0.001 0.30 0103 175.0 0.001	43011	0.30	0103	186.6			0.0002 <w< td=""><td></td><td>633</td><td>0.0027</td><td></td></w<>		633	0.0027	
0.30 0103 199.0 0.001 0.30 0103 122.2 0.01 0.30 0103 122.2 0.001 0.30 0103 122.2 0.001 0.30 0103 127.0 0.001 0.30 0103 249.7 0.001<	43012	0.30	0103	168.6			0.0008 <t< td=""><td></td><td>614</td><td>0.0040</td><td></td></t<>		614	0.0040	
0.30 0103 125.2 0.0002 0.30 0103 177.0 0.0014W 0.002 0.30 0103 177.0 0.0014W 0.002 0.30 0103 177.0 0.0014W 0.002 0.30 0103 177.0 0.0014W 0.0014W 0.0003 0.30 0103 173.1 0.0014W 0.0014W 0.0002 0.30 0103 175.1 0.0004W 0.0002 0.30 0103 192.0 0.0014W 0.002 0.30 0103 192.0 0.0014W 0.0014W 0.0002 0.30 0103 249.7 0.0004W 0.0004W 55.200 693 0.30 0103 246.1 0.0014W 0.0014W 0.0002 0.30 0103 246.1 0.0014W 0.0004W 0.0002 0.30 0103 246.1 0.0014W 0.0014W 0.0002 0.30 0103 246.1 0.0014W 0.0004W 0.0002 0.30 0103 246.1 0.0014W 0.0014W 0.0002 0.30 0103 246.1 0.0014W 0.0014W 0.0002 0.30 0103 246.1 0.0014W 0.0003 0.30 0103 246.1 0.0014W 0.0003	39762	0.30	0103	198.0	0.001 <w< td=""><td>0.001<w< td=""><td>0.0006<t< td=""><td>40.500</td><td>674</td><td>0.0080</td><td>14.0</td></t<></td></w<></td></w<>	0.001 <w< td=""><td>0.0006<t< td=""><td>40.500</td><td>674</td><td>0.0080</td><td>14.0</td></t<></td></w<>	0.0006 <t< td=""><td>40.500</td><td>674</td><td>0.0080</td><td>14.0</td></t<>	40.500	674	0.0080	14.0
0.30 0.103 186.5 0.001 0.30 0.103 186.5 0.001 0.30 0.103 17.8 0.001 0.30 0.103 12.4 0.001 0.30 0.103 12.4 0.001 0.30 0.103 12.4 0.001 0.30 0.103 12.5 0.001 0.30 0.103 12.5 0.001 0.30 0.103 12.5 0.001 0.30 0.103 12.6 0.001 0.30 0.103 12.6 0.001 0.30 0.103 12.8 0.001 0.30 0.103 12.8 0.001 0.30 0.103 12.8 0.001 0.30 0.103 12.8 0.001 0.30 0.103 12.9 0.001 0.30 0.103 12.6 0.001 0.30 0.103 12.9 0.001 0.30 0.30 0.30 0.30	43013	0.30	0103	212.2			0.0002 <w< td=""><td></td><td>199</td><td>0,0000</td><td></td></w<>		199	0,0000	
0.30 0.103 17.18 0.0014H 0.0004H 57.700 655 0.0060 0.30 0.103 17.18 0.0014H 0.0014H 0.00024H 57.700 655 0.0060 0.30 0.103 12.14 0.0014H 0.00024H 59.000 625 0.0060 0.30 0.103 125.7 0.00024H 0.00024H 55.200 625 0.30 0.103 192.4 0.00024H 0.00024H 55.200 655 0.0050 0.30 0.103 192.4 0.00024H 0.00024H 55.200 655 0.0050 0.30 0.103 125.7 0.00024H 0.00024H 55.200 655 0.0050 0.30 0.103 225.0 0.0014H 0.0014H 0.00024H 55.200 655 0.0050 0.30 0.103 2249.7 0.00024H 0.00024H 645 0.0050 0.30 0.103 2240.1 0.0014H 0.00024H 29.400 668 0.0050 0.30 0.103 2240.1 0.0014H 0.00024H 29.400 688 0.0050 0.30 0.103 2240.1 0.0014H 0.00024H 29.400 688 0.0050 0.30 0.103 2240.1 0.0014H 0.00024H 29.400 688 0.0050 0.30 0.103 2240.1 0.00024H 0.00024H 29.400 688 0.0050 0.30 0.103 2249.4 0.00024H 0.00024H 29.400 688 0.0050	47054	0.30	0103	186.5	0 001/10	1,000	0.0002 <w< td=""><td></td><td>627</td><td>0.0040</td><td></td></w<>		627	0.0040	
0.30 0103 121.4 0.001<84 0.0013 0.30 0103 121.4 0.001<84 0.001 0.30 0103 125.1 0.0001 0.30 0103 125.1 0.0001 0.30 0103 125.2 0.0001 0.30 0103 125.2 0.0001 0.30 0103 125.4 0.001 0.30 0103 125.0 0.001 0.30 0103 255.0 0.001 0.30 0103 256.0 0.001 <td>43015</td> <td>0.30</td> <td>0103</td> <td>171.8</td> <td>M-Ton-o</td> <td>0.002<1</td> <td>0.0004<1</td> <td>27.700</td> <td>655</td> <td>0.0060</td> <td>15.5</td>	43015	0.30	0103	171.8	M-Ton-o	0.002<1	0.0004<1	27.700	655	0.0060	15.5
0.30 0.101 148.0 0.001 0.30 0.103 120.1 1.6.7 0.001 0.30 0.103 1.75.1 0.000 0.30 0.103 1.90.1 1.6.7 0.001 0.30 0.103 1.90.1 0.001 	43017	0.30	0103	121.4			0.0013		408	0.0000	
0.30 0103 120.1 0.0002 0.30 0103 156.7 0.0014 0.30 0103 156.7 0.0014 0.30 0103 156.7 0.0014 0.30 0103 192.0 0.0014 0.30 0103 192.8 0.0014 0.30 0103 249.7 0.0014 0.30 0103 249.7 0.0014 0.30 0103 240.1 0.00024 0.30 0103 240.1 0.00044 0.000244 0.00024 0.000274 0.00064 0.00044 0.000374 0.00054 0.00044 0.00054 0.000374 0.00054 0.00044 0.00054 0.00064 0.00	39793	0.30	0101	148.0	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w< td=""><td>39.000</td><td>515</td><td>0,0000</td><td>14.0</td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w< td=""><td>39.000</td><td>515</td><td>0,0000</td><td>14.0</td></w<></td></w<>	0.0002 <w< td=""><td>39.000</td><td>515</td><td>0,0000</td><td>14.0</td></w<>	39.000	515	0,0000	14.0
0.30 0.003 156.7 0.0002 0.30 0.003 156.7 0.0002 0.30 0.003 192.4 0.0014W 0.002 0.30 0.003 192.4 0.0002 0.30 0.003 192.4 0.0002 0.30 0.003 249.7 0.0002 0.30 0.003 249.7 0.0002 0.30 0.003 246.1 0.0014W 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 249.7 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 249.7 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 249.7 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 246.1 0.0002 0.30 0.003 249.4 0.0002 0.30 0.003 249.4 0.0002 0.30 0.003 249.4 0.0002 0.30 0.003 249.4 0.0003 0.30 0.0003 0.30 0.003 249.4 0.0003	45018	0.30	0103	200.1			0.0002 <w< td=""><td></td><td>625</td><td>0.0050</td><td></td></w<>		625	0.0050	
0.30 0.103 192.0 0.0014W 0.002 <t 0.0002="" 0.0002<="" 0.0002<wh="" 0.0003<wh="" 0.0004<t="" 0.0014w="" 0.002<t="" 0.005="" 0.0050="" 0.103="" 0.30="" 192.0="" 192.8="" 2240.1="" 2240.4="" 2249.7="" 225.0="" 645="" td=""><td>43020</td><td>0.30</td><td>0103</td><td>1/5.1</td><td></td><td></td><td>0.0002<w< td=""><td></td><td>595</td><td>0.0050</td><td></td></w<></td></t>	43020	0.30	0103	1/5.1			0.0002 <w< td=""><td></td><td>595</td><td>0.0050</td><td></td></w<>		595	0.0050	
0.30 0103 192.0 0.001 0.30 0103 192.4 0.001 0.30 0103 192.6 0.001 0.30 0103 225.0 0.001 0.30 0103 249.7 0.001 0.30 0103 240.1 0.001 0.0002 0.30 0103 240.1 0.001 0.0002 0.30 0103 240.1 0.001 0.0002 0.30 0103 240.1 0.001 0.0002 0.0002 0.0002 0.0003 0.0	43021	0.30	0103	180.0			0.0002 <w< td=""><td></td><td>556</td><td>0.0050</td><td></td></w<>		556	0.0050	
0.30 0103 192.4 0.0014W 0.00154T 551 0.0050 0.30 0103 249.7 0.0015W 0.00024W 571 0.0050 0.30 0103 249.7 0.0015W 0.00024W 693 0.0080 0.30 0103 231.7 0.00024W 693 0.0080 0.30 0103 246.1 0.0015W 0.0015W 0.00024W 645 0.0060 0.30 0103 246.1 0.0015W 0.0015W 0.00024W 645 0.0060 0.30 0103 246.1 0.0015W 0.0015W 0.00024W 616 0.0030 0.30 0103 249.9 0.0015W 0.00024W 721 0.0050 0.30 0103 249.9 0.00024W 0.00025W 29.400 688 0.0050 0.30 0103 249.9 0.00024W 645 0.0070	39808	0.30	0103	192.0	0.001 <w< td=""><td>0.002<t< td=""><td>0.0002</td><td>55 200</td><td>019</td><td>0.0050</td><td>;</td></t<></td></w<>	0.002 <t< td=""><td>0.0002</td><td>55 200</td><td>019</td><td>0.0050</td><td>;</td></t<>	0.0002	55 200	019	0.0050	;
0.30 0103 192.8 0.0014W 0.00024W 39.400 675 0.0002 0.30 0103 229.7 0.00024W 0.0004T 693 0.0002 0.30 0103 249.1 0.00024W 0.0004T 645 0.0002 0.30 0103 246.1 0.00024W 0.00024W 0.00020 0.30 0103 246.1 0.0014W 0.0014W 0.00024W 0.00020 0.30 0103 199.9 0.00024W 0.00024W 0.00020 0.30 0103 249.4 0.00024W 0.00024W 0.00020 0.30 0103 249.4 0.00024W 0.00034T 645 0.0070	43022	0.30	0103	192.4			0.0003 <t< td=""><td>2003</td><td>551</td><td>0.7400</td><td>0.11</td></t<>	2003	551	0.7400	0.11
0.30 0.103 225.0 0.001 0.30 0.103 224.7 0.001 0.30 0.103 224.7 0.001 0.30 0.103 226.0 0.001 0.30 0.103 226.0 0.001 0.30 0.103 260.0 0.001 0.30 0.103 260.0 0.001 0.30 0.103 260.0 0.001 0.30 0.103 260.0 0.002 0.30 0.103 269.4 0.002 0.30 0.103 269.4 0.002 0.30 0.003 0.30 0.003 0.30 0.003 0.30 0.003 0.30 0.003 0.30 0.003 0.30 0.003 0.30 0.003 0.30 0.003 0.0002 0.0003 0.0003 0.0003 0.0003 	43023	0.30	0103	192.8			0.0002 <w< td=""><td></td><td>571</td><td>0.0070</td><td></td></w<>		571	0.0070	
0.30 0.103 249.7 0.0002 0.30 0.103 240.1 0.001 0.30 0.103 240.1 0.001 0.30 0.103 260.0 0.001 0.30 0.103 280.0 0.001 0.30 0.103 280.0 0.002 0.30 0.103 280.0 0.0002 0.30 0.003 0.30 0.003 0.0003 <td>39824</td> <td>0.30</td> <td>0103</td> <td>225.0</td> <td>0.001<w< td=""><td>0.001<w< td=""><td>0.0002<w< td=""><td>39.400</td><td>675</td><td>0.0080</td><td></td></w<></td></w<></td></w<></td>	39824	0.30	0103	225.0	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w< td=""><td>39.400</td><td>675</td><td>0.0080</td><td></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w< td=""><td>39.400</td><td>675</td><td>0.0080</td><td></td></w<></td></w<>	0.0002 <w< td=""><td>39.400</td><td>675</td><td>0.0080</td><td></td></w<>	39.400	675	0.0080	
0.30 0.103 2.31.7 0.0004<7 645 0.0060 0.30 0.103 2.40.1 0.001<4 0.0002<4 636 0.0120 0.30 0.103 2.40.1 0.001<4 0.0002<4 636 0.0120 0.30 0.103 2.60.0 0.001<4 0.0002<4 686 0.0030 0.30 0.103 1.99.9 0.0002<4 0.0002<4 0.0002 0.30 0.103 2.49.4 0.0003<7 645 0.0070	45024	0.30	0103	249.7			0.0002 <w< td=""><td></td><td>693</td><td>0.0050</td><td></td></w<>		693	0.0050	
0.30 0.103 246.1 0.001 0.30 0.103 246.1 0.001 0.30 0.103 286.0 0.001 0.30 0.103 199.9 0.000 0.30 0.103 249.4 0.000 	42025	0.50	0103	251.7			0.0004 <t< td=""><td></td><td>645</td><td>0.0000</td><td></td></t<>		645	0.0000	
0.30 0103 260.0 0.001 0.30 0103 190.9 0.001 0.30 0103 190.9 0.002 0.30 0103 249.4 0.0002 0.30 0103 249.4 0.0002 0.30 0103 249.4 0.0002 0.0003 <br< td=""><td>43027</td><td>0.30</td><td>0103</td><td>246.1</td><td></td><td></td><td>0.0002<w< td=""><td></td><td>636</td><td>0.0120</td><td></td></w<></td></br<>	43027	0.30	0103	246.1			0.0002 <w< td=""><td></td><td>636</td><td>0.0120</td><td></td></w<>		636	0.0120	
0.30 0103 280.0 0.0002 0.30 0103 199.9 0.0002 0.30 0103 249.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00070	39840	0.30	0103	260.0	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w< td=""><td>29.400</td><td>688</td><td>0.0030</td><td>4</td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w< td=""><td>29.400</td><td>688</td><td>0.0030</td><td>4</td></w<></td></w<>	0.0002 <w< td=""><td>29.400</td><td>688</td><td>0.0030</td><td>4</td></w<>	29.400	688	0.0030	4
0.30 0.103 199.9 0.0002 <h 535<br="">0.30 0.103 249.4 0.0003<t 645<="" td=""><td>43028</td><td>0.30</td><td>0103</td><td>280.0</td><td></td><td></td><td>0.0002<w< td=""><td></td><td>721</td><td>0.0050</td><td>0.</td></w<></td></t></h>	43028	0.30	0103	280.0			0.0002 <w< td=""><td></td><td>721</td><td>0.0050</td><td>0.</td></w<>		721	0.0050	0.
U.SU 0103 Z49.4 0.0003 <t 645<="" td=""><td>43029</td><td>0.30</td><td>0103</td><td>199.9</td><td></td><td></td><td>0.0002<w< td=""><td></td><td>535</td><td>0.0170</td><td></td></w<></td></t>	43029	0.30	0103	199.9			0.0002 <w< td=""><td></td><td>535</td><td>0.0170</td><td></td></w<>		535	0.0170	
	45050	06.0	5010	249.4			0.0003 <t< td=""><td></td><td>645</td><td>0.0000</td><td></td></t<>		645	0.0000	

(CONTD)

2	E: 02 003 2870	: 14.484	DQ	DISOLVED OXYGEN MG/L AS O	7.0	19.5 13.4 13.0 7.0 3.6	NNO2UR NO2-N UNF.REAC MG/L AS N	0.070	0.030	0.050	0.110	0.080
STATION ID: 04-0013-007-82	STORET CODE:	DISTANCE:	CUUT	COPPER UNF.TOT. MG/L AS CU	0.0040 0.0050 0.0020 <t< td=""><td>0,7400 0.0234<a 0.0061<a 0.0020 0,1120<a< td=""><td>NNO2FR NO2-N FIL.REAC MG/L AS N</td><td>0.0240 0.0440 0.0430 0.0370 0.2420</td><td>0.0460</td><td>0.0460</td><td>0.0840</td><td>0.0740</td></a<></a </a </td></t<>	0,7400 0.0234 <a 0.0061<a 0.0020 0,1120<a< td=""><td>NNO2FR NO2-N FIL.REAC MG/L AS N</td><td>0.0240 0.0440 0.0430 0.0370 0.2420</td><td>0.0460</td><td>0.0460</td><td>0.0840</td><td>0.0740</td></a<></a </a 	NNO2FR NO2-N FIL.REAC MG/L AS N	0.0240 0.0440 0.0430 0.0370 0.2420	0.0460	0.0460	0.0840	0.0740
TION ID: 04		01	COND25	CONDUCT. 25C UMH0/CM AT 25 C	694.0 693 720	721 606 599 347 88 43	NNOTFR NO2+NO3N FIL.REAC MG/L AS N	11.300 11.400 10.100 0.935 6.200 4.950	8.500	9.150	6.490	8.850
STA		REGION: 01	CLIDUR	CHLORIDE UNF.REAC MG/L AS CL	37,900	57.700 40.455 39.345 24.900 9.961	NNHTUR NH3-N TOTAL UNF.REAC MG/L AS N	0.296	0.181	0.032	0.007	0.020
	ES	689600.0 4	CDUT	CADMIUM UNF.TOT. MG/L AS CD	0.0004 <t 0.0002<w 0.0002<w< td=""><td>0.0020 0.0003<a 0.0003<a 0.0002 0.0003<a< td=""><td>HGUT MERCURY UNF.TOT. UG/L AS HG</td><td>0.03<t 0.02<w 0.02<w 0.02<w 0.02<v 0.05<t< td=""><td>0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w< td=""></w<></w </td></w<></w </w </td></w<></w </w </td></w<></td></t<></v </w </w </w </t </td></a<></a </a </td></w<></w </t 	0.0020 0.0003 <a 0.0003<a 0.0002 0.0003<a< td=""><td>HGUT MERCURY UNF.TOT. UG/L AS HG</td><td>0.03<t 0.02<w 0.02<w 0.02<w 0.02<v 0.05<t< td=""><td>0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w< td=""></w<></w </td></w<></w </w </td></w<></w </w </td></w<></td></t<></v </w </w </w </t </td></a<></a </a 	HGUT MERCURY UNF.TOT. UG/L AS HG	0.03 <t 0.02<w 0.02<w 0.02<w 0.02<v 0.05<t< td=""><td>0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w< td=""></w<></w </td></w<></w </w </td></w<></w </w </td></w<></td></t<></v </w </w </w </t 	0.02 <w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w< td=""></w<></w </td></w<></w </w </td></w<></w </w </td></w<>	0.02 <w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w< td=""></w<></w </td></w<></w </w </td></w<></w </w 	0.02 <w 0.02<w 0.02<w< td=""><td>0.02<w 0.02<w< td=""></w<></w </td></w<></w </w 	0.02 <w 0.02<w< td=""></w<></w
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0391175.0 4689600.0 4	CCNAUR	AVAIL UNF.REAC MG/L AS HCN	0.001 <w< td=""><td>0.002 0.001<a 0.001<a 0.001 0.000</a </a </td><td>FWTEMP WATER TEMP DEG.C</td><td>o v</td><td>0.5</td><td>9.0</td><td>15.0</td><td>17.0</td></w<>	0.002 0.001 <a 0.001<a 0.001 0.000</a </a 	FWTEMP WATER TEMP DEG.C	o v	0.5	9.0	15.0	17.0
	MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	ASUT	ARSENIC UNF.TOT. MG/L AS AS	0.001 <w< td=""><td>0.001 0.001<a 0.001<a 0.001 0.000</a </a </td><td>FWSTRC STREAM COND.</td><td>**************************************</td><td>10 00 00 00 00</td><td></td><td>9 8 8 8 0</td><td>9889</td></w<>	0.001 0.001 <a 0.001<a 0.001 0.000</a </a 	FWSTRC STREAM COND.	**************************************	10 00 00 00 00		9 8 8 8 0	9889
CIDING	DNIGTO	19 16.72	ALKT	ALK TOTAL MG/L AS CACO3	251.0 266.7 272.8	280.0 193.4 188.3 108.0 44.1	FSMF FECAL STREPCUS MF CNT /100ML	520	1080		SOAID	999
THAMES RIVER	24 FRAIRIE	LONG: 082 19 16.72	FGPROJ	PROJECT SUB-PROJ CODE	0103 0103 0103		FEUT IRON UNF.TOT. MG/L AS FE	1.400	1.500	1.000	1.000	3.400
VER COUNTY DD	POSITE	LAT: 42 21 10.74	FWSADP	SAMPLE DEPTH	0.30	0.30	FCMF FECAL COLIFORM MF CNT /100ML	210	062		20AID	12
: THAMES RI		LAT: 42	ST-NAME:	SAMPLE	39856 43031 43032	HAXTHUH ARITH HEAN GEON HEAN MINIHUH STD DEV (GEON #) AMP IN STATISTICS % SAMP (EXCLUDED)	TEST-NAME: SAMPLE NUMBER	39701 43000 43002 43003 43004 43006	39717 43006	39731 43008 43009	39747 43009 43011 43012	39762 43013 43014
B.O.W./ SITE: THAMES RIVER	STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	901126 0950 1430 901210 1330	HAXIMUM ARITH MEAN GEON MEAN HINHUM SID DEV (GEON *) ** SAMP IN STATISTICS % SAMP (EXCLUBED)	*=INTERIM TES SAMPLE DATE HOUR YYMMDD LHT	900122 0916 900123 1445 900125 1315 900206 1430 900223 0845 900224 0945	900226 0947 900303 1000 900315 0845		900423 0924 900430 0900 900514 0825 900517 1230	900528 0946 900530 0820 900612 0820

STATION ID: 04-0013-007-82

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT BRIDGE COUNTY RD 34 PRAIRIE SII STATION TYPE: RIVER COMPOSITE

DE: 02 003 2870	E: 14.484	NNO2UR	NO2-N	MG/L	AS N			0.110				0.060			0.070					0.080			0 050			0.260	0.088	0.075	0.030	0.062	1
STORET CODE:	DISTANCE:	NNO2FR	NO2-N FIL.REAC	MG/L	AS N	0.1560	0.1540		0.0450	0.0820	0.0700		0.1210	0.0590		0.0270	0.0490	0.0420	0.0550		0.0310	0.0540	0.0340	0.0530	0.0400	0.3300	0.0867	0.0676	0.0240	0.0725	1
	10	NNOTFR	NO2+NO3N FIL.REAC	HG/L	AS N	4.160	2.740		6.070	5.840	4.140		4.130	4.740		2.000>	7.300	6.680	6.190		7.600	4.970	006.7	7.030	7.350	11.400	6.561		0.935	7.1	5 M1
	REGION: 01	NHTUR NH3-N	TOTAL UNF.REAC	HG/L	AS N			0.068				0.001			0.014					0.004			0.043			0.296	0.072	0.027	0.001	11	:
ES /ER	9 0.009689	HGUT	MERCURY UNF.TOT.	UG/L	AS HG	0.02 <w< td=""><td>0.02<w< td=""><td>0.03<t< td=""><td>0.02<w< td=""><td>0.02 VM</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></w<>	0.02 <w< td=""><td>0.03<t< td=""><td>0.02<w< td=""><td>0.02 VM</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<>	0.03 <t< td=""><td>0.02<w< td=""><td>0.02 VM</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<>	0.02 <w< td=""><td>0.02 VM</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 VM	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0,02<w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0,02 <w< td=""><td>0.02<w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>MU DATATES</td><td>0.02<w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	MU DATATES	0.02 <w< td=""><td>0.02<w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<></td></w<>	0.02 <w< td=""><td>0.02<w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<></td></w<>	0.02 <w< td=""><td>0.05</td><td>0.02<a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<></td></w<>	0.05	0.02 <a< td=""><td>0.02<a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<></td></a<>	0.02 <a< td=""><td>0.02</td><td>42 .U.A</td><td>!</td></a<>	0.02	42 .U.A	!
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	391175.0 46	FWTEMP	WATER	TEMP	DEG.C			26.0				27.0			17.0				L	15.0		-	10.0			27.0	14.0	7.0		11	ŀ
MAJOR BASIN: GREAT LAKE MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIV	U T M: 17 0391175.0 4689600.0 4	FWSTRC		STREAM	COND.	8	6	9	x 0	0 00	0 00	9	89	8	9	8	00 1	5 6	, ,	ه و	1 02	n a	9	8	89						
		FSMF FECAL	STREPCUS	CNT	/IOUML			200AID				100AID			200								100			1080	123	141	02	× 6	
34 PRAIRIE	LONG: 082 19 16.72	FEUT	IRON UNF.TOT.	HG/L	AS FE		•	1.100				0.570			0.610				017	0.450			0.500			3.400	200	0.700	0.430	11	
COUNTY RD	LAT: 42 21 10.74	FCMF FECAL	COLIFORM	CNT	/ TOOME			SUCAID				200AID			120								300			790	106	907	77	6	
: AT BRIDGE : RIVER COMF	LAT: 42	ST-NAME:		SAMPLE	NUMBER	43015	43017	59793	45018	43020	43021	39808	43022	43023	39824	43024	43025	45026	12064	20040	42020	43027	39856	43031	43032	MAXIMUM	CEOM MEAN	MINIM	STD DEV (GEOM *)	TATISTICS	% SAMP (EXCLUDED)
SAHPLE POINT: AT BRIDGE COUNTY RD 34 PRAIRIE SIDING STATION TYPE: RIVER COMPOSITE		*=INTERIM TEST-NAME:	ш	DATE HOUR	TAMBUD CHI			900/23 1043	900/25 1520							900926 0820	-	901012 1515							901210 1330	•			STD DEV	# SAMP IN STATISTICS	% SAMP (

.O.W./ SITE: THAMES RIVER

STATION ID: 04-0013-007-82

		MAJOR BASIN:	
B.O.W./ SITE: THAMES RIVER	4 PRAIRIE SIDING		
~	JUNTY RD 34	SITE	
THAMES RIVER	AT BRIDGE CC	RIVER COMPOS	
B.O.W./ SITE:	SAMPLE POINT:	STATION TYPE:	

: 02 003 2870	14.484	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.130 0.108 0.058	2.920 0.259 0.159 0.042 0.454	PIHIRX	MIREX NG/L	W>04 W>04	40 c M	40	40 <a< th=""><th>40</th><th>0<a< th=""><th>r.</th></a<></th></a<>	40	0 <a< th=""><th>r.</th></a<>	r.
STORET CODE:	DISTANCE:	PP04UR	PO4 UNF.REAC MG/L AS P	0.071	1,000 0,144 0,068 0,019 0,285 11	PIHEPT	HEPACHOR NG/L	M>07	M>05	40	40.4 40.4	40	0 <a< td=""><td>ın</td></a<>	ın
	01	PP04FR	P04 FIL.REAC MG/L AS P	0.0170	0.4700 0.0801 0.0428 0.0070 0.1091	PIHEPE HEPTA CHLOR	EPOXIDE NG/L	* * * *	× × ×	20	2 < A	2	0 <a< td=""><td>ď</td></a<>	ď
	REGION: 01	POMET	METALA- CHLOR NG/L		2300 540 <a 187<a 100 984<a 5</a </a </a 	PIENDT	TOTAL NG/L	X X X	2 × × × × × × × × × × × × × × × × × × ×	יטי	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ហ	0 <a< td=""><td>Δ.</td></a<>	Δ.
ES	9 0.009689	POALA	ALACHLOR NG/L	7	100 100 <a 100<a 100 0<a 5</a </a </a 	PIENDR	ENDRIN NG/L	20 <w 20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20</td><td>0<a< td=""><td>'n</td></a<></td></a<></td></w<></td></w<></w 	20 <w< td=""><td>20</td><td>20<a< td=""><td>20</td><td>0<a< td=""><td>'n</td></a<></td></a<></td></w<>	20	20 <a< td=""><td>20</td><td>0<a< td=""><td>'n</td></a<></td></a<>	20	0 <a< td=""><td>'n</td></a<>	'n
IAJOR BASIN: GREAT LAKES IINOR BASIN: LAKE ERIE TERH STREAM: THAMES RIVE	U T M: 17 0391175.0 4689600.0 4	PHNOL	PHENOLS UNF-REAC UG/L PHENOL	1.000<	4.500 1.786 1.000 7	PIDMDT	MTHXYLLR NG/L	M>05	W>04	40	40 <a< td=""><td>40</td><td>0 < A</td><td>ภ</td></a<>	40	0 < A	ภ
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17	Н	Н	8.14 8.32 8.29	8.40 8.11 8.11 7.78 0.15	PIDIEL	DIELDRIN NG/L	1 < W H	1 < W	-1 -	1 < A	1	0 <a< td=""><td>n</td></a<>	n
	19 16.72	PBUT	LEAD UNF.TOT. MG/L AS PB	0.008 <t 0.005<w 0.005<w< td=""><td>0.340 0.014<a 0.007<a 0.005 0.052<a< td=""><td>PICHLA</td><td>ALPHA NG/L</td><td>10<w 10<w< td=""><td>10<w< td=""><td>10</td><td>10<a< td=""><td>10</td><td>0<a< td=""><td>'n</td></a<></td></a<></td></w<></td></w<></w </td></a<></a </a </td></w<></w </t 	0.340 0.014 <a 0.007<a 0.005 0.052<a< td=""><td>PICHLA</td><td>ALPHA NG/L</td><td>10<w 10<w< td=""><td>10<w< td=""><td>10</td><td>10<a< td=""><td>10</td><td>0<a< td=""><td>'n</td></a<></td></a<></td></w<></td></w<></w </td></a<></a </a 	PICHLA	ALPHA NG/L	10 <w 10<w< td=""><td>10<w< td=""><td>10</td><td>10<a< td=""><td>10</td><td>0<a< td=""><td>'n</td></a<></td></a<></td></w<></td></w<></w 	10 <w< td=""><td>10</td><td>10<a< td=""><td>10</td><td>0<a< td=""><td>'n</td></a<></td></a<></td></w<>	10	10 <a< td=""><td>10</td><td>0<a< td=""><td>'n</td></a<></td></a<>	10	0 <a< td=""><td>'n</td></a<>	'n
	LONG: 082 19 16.72	NNTKUR K. TAHI N	TOTAL UNF.REAC MG/L AS N	0.870	1.820 1.068 1.038 0.710 0.289	PIBHCG	GAMMA NG/L	M>05	40 < W	40	40 <a< td=""><td>40</td><td>W>0</td><td>c.</td></a<>	40	W>0	c.
4POSITE	LAT: 42 21 10.74	NNO3UR	NO3-N UNF.REAC MG/L AS N	5.500	10.400 6.709 6.421 3.600 2.026	PIALDR	ALDRIN NG/L	M>04 M>04	M>04	40	40 <a< td=""><td>40</td><td>0 < A</td><td>in.</td></a<>	40	0 < A	in.
E: RIVER CON	LAT: 4	TEST-NAME:	SAMPLE	39856 43031 43032	HAXINUH ARITH HEAN GEOM MEAN MINIHUH STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED)	EST-NAME:	SAMPLE	43020 43021 43022	43023	MAXIMUM	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	% SAMP IN STATISTICS % SAMP (EXCLUDED)
STATION TYPE: RIVER COMPOSITE		*=INTERIM TE	SAMPLE DATE HOUR YYMMDD LMT	901126 0950 1430 901210 1330	STD DEV	*=INTERIM TEST-NAME:	DATE HOUR	900814 1500 900820 0950 900907 1630	900917 1130 900926 0820				STD DE	* SAMP IN

2	E: 02 003 2870	: 14.484	P2SENC	SENCOR NG/L	20 < W	20 <w< th=""><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>20</th><th>20<a< th=""><th>20<a< th=""><th>20</th><th>0 < A</th><th>in</th><th>P3245T</th><th>2.4.5-T</th><th>NG/L</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>20<w< th=""><th>20<w< th=""><th>20</th><th>20<a< th=""><th>20<a< th=""><th>20</th><th>0 < A</th><th>in</th><th>P3245T</th><th>2.4.5-T</th><th>NG/L</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<></th></w<></th></w<></th></w<>	20 <w< th=""><th>20<w< th=""><th>20</th><th>20<a< th=""><th>20<a< th=""><th>20</th><th>0 < A</th><th>in</th><th>P3245T</th><th>2.4.5-T</th><th>NG/L</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<></th></w<></th></w<>	20 <w< th=""><th>20</th><th>20<a< th=""><th>20<a< th=""><th>20</th><th>0 < A</th><th>in</th><th>P3245T</th><th>2.4.5-T</th><th>NG/L</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<></th></w<>	20	20 <a< th=""><th>20<a< th=""><th>20</th><th>0 < A</th><th>in</th><th>P3245T</th><th>2.4.5-T</th><th>NG/L</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<>	20 <a< th=""><th>20</th><th>0 < A</th><th>in</th><th>P3245T</th><th>2.4.5-T</th><th>NG/L</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<>	20	0 < A	in	P3245T	2.4.5-T	NG/L	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<></th></w<>	100 <w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<></th></w<>	100	100 <a< th=""><th>100<a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<></th></a<>	100 <a< th=""><th>100</th><th>0<a< th=""><th>in.</th></a<></th></a<>	100	0 <a< th=""><th>in.</th></a<>	in.
STATION ID: 04-0013-007-82	STORET CODE:	DISTANCE:	P2PROM	PROMETON NG/L	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	20 <w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	20	20 <a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	20 <a< td=""><td>20</td><td>0<a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	20	0 <a< td=""><td>Ω.</td><td>P324DP</td><td>2,4-DP</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	Ω.	P324DP	2,4-DP	NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<></td></a<>	100 <a< td=""><td>100</td><td>0<a< td=""><td>un</td></a<></td></a<>	100	0 <a< td=""><td>un</td></a<>	un
10N ID: 04-		10	P2DATR	DE-ETYLT ATRAZINE NG/L	680	1000	760	1800	460	1800	056	844	460	518	ru.	P324DB	2,4-DB	NG/L	500 <w< td=""><td>M>005</td><td>B00<w< td=""><td>500<w< td=""><td>M>009</td><td>200</td><td>500<a< td=""><td>500<a< td=""><td>200</td><td>0<a< td=""><td>2</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	M>005	B00 <w< td=""><td>500<w< td=""><td>M>009</td><td>200</td><td>500<a< td=""><td>500<a< td=""><td>200</td><td>0<a< td=""><td>2</td></a<></td></a<></td></a<></td></w<></td></w<>	500 <w< td=""><td>M>009</td><td>200</td><td>500<a< td=""><td>500<a< td=""><td>200</td><td>0<a< td=""><td>2</td></a<></td></a<></td></a<></td></w<>	M>009	200	500 <a< td=""><td>500<a< td=""><td>200</td><td>0<a< td=""><td>2</td></a<></td></a<></td></a<>	500 <a< td=""><td>200</td><td>0<a< td=""><td>2</td></a<></td></a<>	200	0 <a< td=""><td>2</td></a<>	2
STA		REGION: 01	P2CYPR	CYPRAZIN NG/L	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>rs.</td><td>P324D</td><td>2,4-D</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>rs.</td><td>P324D</td><td>2,4-D</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>rs.</td><td>P324D</td><td>2,4-D</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>rs.</td><td>P324D</td><td>2,4-D</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></td></w<>	20 <w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>rs.</td><td>P324D</td><td>2,4-D</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<>	20	20 <a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>rs.</td><td>P324D</td><td>2,4-D</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	20 <a< td=""><td>20</td><td>0 < A</td><td>rs.</td><td>P324D</td><td>2,4-D</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	20	0 < A	rs.	P324D	2,4-D	NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<></td></a<>	100 <a< td=""><td>100</td><td>0<a< td=""><td>z)</td></a<></td></a<>	100	0 <a< td=""><td>z)</td></a<>	z)
	VER	689600.0 4	P2CYAN	CYNAZINE NG/L	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>100<w< td=""><td>20<w< td=""><td>100</td><td>36<a< td=""><td>28<a< td=""><td>20</td><td>36<a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>100<w< td=""><td>20<w< td=""><td>100</td><td>36<a< td=""><td>28<a< td=""><td>20</td><td>36<a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>100<w< td=""><td>20<w< td=""><td>100</td><td>36<a< td=""><td>28<a< td=""><td>20</td><td>36<a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>20<w< td=""><td>100</td><td>36<a< td=""><td>28<a< td=""><td>20</td><td>36<a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	20 <w< td=""><td>100</td><td>36<a< td=""><td>28<a< td=""><td>20</td><td>36<a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	100	36 <a< td=""><td>28<a< td=""><td>20</td><td>36<a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	28 <a< td=""><td>20</td><td>36<a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	20	36 <a< td=""><td>5</td><td>PSSILV</td><td>SILVEX</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	5	PSSILV	SILVEX	NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<></td></a<>	100 <a< td=""><td>100</td><td>D<a< td=""><td>5</td></a<></td></a<>	100	D <a< td=""><td>5</td></a<>	5
	HAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	0391175.0 4689600.0 4	PZATRA	ATRAZINE NG/L	1100	1900	3200	1400	450	3200	1610	1333	. 450	1032	ហ	РЗМСРР	MCPP	NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>īŪ</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>īŪ</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>īŪ</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>īŪ</td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>īŪ</td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>īŪ</td></a<></td></a<></td></a<>	100 <a< td=""><td>100</td><td>0<a< td=""><td>īŪ</td></a<></td></a<>	100	0 <a< td=""><td>īŪ</td></a<>	īŪ
	MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	PIPPDI	PP-DDT NG/L	2 < W	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>ES.</td><td>2 < A</td><td>2<a< td=""><td>2</td><td>0 < A</td><td>in.</td><td>РЗИСРВ</td><td>МСРВ</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>ES.</td><td>2 < A</td><td>2<a< td=""><td>2</td><td>0 < A</td><td>in.</td><td>РЗИСРВ</td><td>МСРВ</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>ES.</td><td>2 < A</td><td>2<a< td=""><td>2</td><td>0 < A</td><td>in.</td><td>РЗИСРВ</td><td>МСРВ</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></w<></td></w<>	2 <w< td=""><td>ES.</td><td>2 < A</td><td>2<a< td=""><td>2</td><td>0 < A</td><td>in.</td><td>РЗИСРВ</td><td>МСРВ</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></w<>	ES.	2 < A	2 <a< td=""><td>2</td><td>0 < A</td><td>in.</td><td>РЗИСРВ</td><td>МСРВ</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	2	0 < A	in.	РЗИСРВ	МСРВ	NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<>	100 <a< td=""><td>100</td><td>0<a< td=""><td>ın</td></a<></td></a<>	100	0 <a< td=""><td>ın</td></a<>	ın
STUTNE	outro.	19 16.72	PIPPDE	PP-DDE NG/L	1 < W	1 <w< td=""><td>1<f< td=""><td>1<w< td=""><td>1 < W</td><td>-</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>in.</td><td>P3MCPA</td><td>MCPA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></td></f<></td></w<>	1 <f< td=""><td>1<w< td=""><td>1 < W</td><td>-</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>in.</td><td>P3MCPA</td><td>MCPA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></td></f<>	1 <w< td=""><td>1 < W</td><td>-</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>in.</td><td>P3MCPA</td><td>MCPA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<>	1 < W	-	1 <a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>in.</td><td>P3MCPA</td><td>MCPA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	1 <a< td=""><td>1</td><td>0 < A</td><td>in.</td><td>P3MCPA</td><td>MCPA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	1	0 < A	in.	P3MCPA	MCPA	NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<></td></a<>	100 <a< td=""><td>100</td><td>0<a< td=""><td>ET .</td></a<></td></a<>	100	0 <a< td=""><td>ET .</td></a<>	ET .
34 DRAIDIE	Trusten A	LONG: 082 19 16.72	PIPCBT	PCB TOTAL NG/L	₩>9	M>9	M>9	M>9	M>9	9	6 <a< td=""><td>6<a< td=""><td>9</td><td>0<a< td=""><td>EN.</td><td>P3DICA</td><td>DICAMBA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	6 <a< td=""><td>9</td><td>0<a< td=""><td>EN.</td><td>P3DICA</td><td>DICAMBA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	9	0 <a< td=""><td>EN.</td><td>P3DICA</td><td>DICAMBA</td><td>NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	EN.	P3DICA	DICAMBA	NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<></td></a<>	100 <a< td=""><td>100</td><td>0<a< td=""><td>a</td></a<></td></a<>	100	0 <a< td=""><td>a</td></a<>	a
THAMES RIVER AT MOTDEE COUNTY BD 34 DBAIDTE STOTING	POSITE	LAT: 42 21 10.74	Ploppr	OP-DDT NG/L	2 < W	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>23</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0<a< td=""><td>20</td><td>P2SIM</td><td>SIMAZINE</td><td>NG/L</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>23</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0<a< td=""><td>20</td><td>P2SIM</td><td>SIMAZINE</td><td>NG/L</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>23</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0<a< td=""><td>20</td><td>P2SIM</td><td>SIMAZINE</td><td>NG/L</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	2 < W	23	2 <a< td=""><td>2<a< td=""><td>2</td><td>0<a< td=""><td>20</td><td>P2SIM</td><td>SIMAZINE</td><td>NG/L</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	2 <a< td=""><td>2</td><td>0<a< td=""><td>20</td><td>P2SIM</td><td>SIMAZINE</td><td>NG/L</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	2	0 <a< td=""><td>20</td><td>P2SIM</td><td>SIMAZINE</td><td>NG/L</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	20	P2SIM	SIMAZINE	NG/L	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<></td></w<>	20 <w< td=""><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<></td></w<>	20	20 <a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<></td></a<>	20 <a< td=""><td>20</td><td>0 < A</td><td>r.</td></a<>	20	0 < A	r.
: THAMES RIVER	: RIVER COMPOSITE	LAT: 42	ST-NAME:	SAMPLE	43020	43021	43022	43023	43054	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	ST-NAME:	SAMPLE	NUMBER	43020	43021	43022	43023	43024	MAXIMUM	ARITH MEAN	GEOM MEAN	HINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS
B.O.W./ SITE:	STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMIIDD LMT	900814 1500				900926 0820		4			STD DEV	# SAMP IN S	*=INTERIM TEST-NAME:	SAMPLE DATE HOUR	YYHHDD LMT					900926 0820		4			STD DE	# SAMP IN

STATION ID: 04-0013-007-82

500×W 500<W 500×W 500×W M>0001 500 500<A 500<A 500 L000< 1000<A 14.484 PSPALO 500×W 0 × A VERNLATE NG/L M>0001 M>0001 W>0001 M>000 0<A PHOSLONE P6VERN 000 2870 STORET CODE: DISTANCE: M>001 100<W 100<W 100<W 100<W 100 100<A L00<A M>0001 0 < A 1000 1000<A 1000<A PAMALA MALTHION P6SUTN M>000 M>000 SUTAN NG/L M>000 0×A 001 M>0001 1000<W 1000<A P4LEPO LEPTPHOS M>0001 M>0001 0 < A NG/L 1000cW 1000 1000<A M>000 M>0001 1000cA 1000<A PEPEBU PEBULATE 1000×W 1000×W 1000 000 REGION: 01 M>0005 B0000 M>0009 M>0001 5000cA 5000<A M>000 A>000 P4GUTH GUTHION M>0005 M>0005 0 < A 1000 1000<A NG/L PEMOLI MOLINATE NG/L M>000 M>000 0<A 2000 5000 000 U T M: 17 0391175.0 4689600.0 4 100×W 100<W 100×W 100 100<A 100<A M>0001 M>0001 0<A A>0001 ETHION M>001 100<W P6EPTM 1000 1000<A NG/L EPTAM NG/L M>0001 M>0001 000 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE M>001 100<W 100<W 100<A 100<A P4DURS NG/L 100<W 0<A 1000×W DURSBAN 100<W P6CYCL CYCLOATE NG/L 1000cW M>0001 1000<W 1.000 < W L00001 L000< 1000 0001 250<W 250<W 250<W 250<A 250<A 250 P4DIME 0 < A DIMETHOK NG/L 250<W 0<A PECARY CARBARYL NG/L M>000 M>000 M>000. M>000 M>000 A>000. 1000<A 250 1000 000 50<W 50×W 50<A 50<A 50<A PGDIAZ M>05 A>0001 1000×A DIAZINON 0 < A P6CARB M>0001 M>0001 FURAN M>0001 M>000 M>0001 CARBO-NG/L LONG: 082 19 16.72 000 000 M>0001 M>0001 2000×W L000 L000<A 1000<A 2000sA PADEMT DEMETON M>000 M>000 M>000 0<A NG/L 2000<W 2000×W 2000×W 2000×W 2000< 0<A NG/L PAPMET PHOSMET 000 1000 2000 LAT: 42 21 10.74 P4CLFN CHLORO M>0001 1000<W 50 < W 50 < W 50 < W PHOS 1000 1000<A 1000<A FENVIN NG/L M>000 M>000 0<A 50 50<A 50<A P4PARA PARTHION NG/L STATION TYPE: RIVER COMPOSITE 43020 43022 43024 SAMPLE 43020 43023 SAMPLE NUMBER 43021 ARITH MEAN NUMBER 43021 43022 43024 GEOM MEAN # SAMP IN STATISTICS
% SAMP (EXCLUDED) GEOM MEAN SAMP IN STATISTICS ARITH MEAN MAXIMUM MINIMUM STD DEV (GEOM *) MAXIMUM MINIMOM % SAMP (EXCLUDED TEST-NAME: *=INTERIM TEST-NAME 1630 1500 1130 HOUR 0960 900926 0820 HOUR 1630 YYMMDD LMT **УУММОВ LMT** *=INTERIM 900820 900814 716006 900814 900820 900917 900926 SAMPLE 706006 SAMPLE 706006 DATE DATE

B.O.W./ SITE: THAMES RIVER

STATION ID: 04-0013-007-82

DISTANCE: 14.484

1990 WATER QUALITY DATA REGION 1

STATION ID: 04-0013-007-82	STORET CODE: 02 003 2070	
	1AJOR BASIN: GREAT LAKES 1INOR BASIN: LAKE ERIE FERM STREAM: THAMES RIVER	
B.O.W./ SITE: THAMES RIVER SAHPLE POINT: AT BRIDGE COUNTY RD 34 PRAIRIE SIDING	~ ~ ~	

	01				
	REGION: 01				
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0391175.0 4689600.0 4				
	19 16.72	ZNUT	ZINC UNF.TOT. MG/L AS ZN		0.0570 0.0209 0.0174 0.0070 0.0143
	LONG: 082	RSP	RESIDUE PARTIC. MG/L	16.7	1001.6 139.7 71.8 11.0 212.7 42
MPOSITE	LAT: 42 21 10.74 LONG: 082 19 16.72	RSF	RESIDUE FILTERED MG/L		451.0 398 394 262.0 59
STALLON LYPE: KIVER COMPOSITE	LAT: 4	TEST-NAME:	SAMPLE	43032	HAXIMUM ARITH MEAN GEOM MEAN STD DEV (GEOM *) # SAMP (EXCLUDED)
STALLON		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	901210 1330	STD DE ** SAMP IN % SAMP

STATION ID: 04-0013-015-02

B.O.W./ SITE: NORTH THAMES RIVER SAMPLE POINT: AT PARK STREET BRIDGE, ST MARYS STATION TYPE: RIVER FLOW GAUGE FED 02GD005

Feth	CALLON LIVE: ALVER		TLOW GAUGE	FLOW GAUGE FED OZGDOUS	0	MAJOR BASI MINOR BASI TERM STREA	MAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	(ES EVER			STORET CODE: 02 00:	DE: 02 003 2870
Hour		LAT: 4	13 15 18.72	LONG: 081	08 43.33	U T M: 17	0488200,0	4788950.0 4	REGION: 0	_	DISTANCE	DISTANCE: 254.752
HOUR SAMPLE PROJECT CHLORIDE CONDUCT. COLIFICAL FECAL HIS STREED FECAL HIS STREED HIS S	NTERIM TI	ST-NAME:	FWSADP	FGPR03	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	MNHTUR	NNO2UR
HOUNE SAMPLE SA					CHLORIDE	CONDUCT.	COLIFORM	FECAL			NH3-N TOTAL	M-COM
NATION N	ш	1	SAMPLE	PROJECT	UNF. REAC	25C	MF	AF		WATER	UNF REAC	INF BEAL
100 100	0	SAMPLE	DEPTH	SUB-PROJ	MG/L	UMHO/CM	CNT	CNT	STREAM	TEMP	HG/I	MG/1
1920 39326 0.30 0.101 43.800 712.0 0.00 70AID 6 1.0		NUMBER	Ξ	CODE	AS CL	AT 25 C	/100ML	/100HL	COND.	DEG.C	AS N	AS N
1000 33530 0.30 0.101 37.900 668.0 669.0 679.0	900116 1040	39305	0.30	0101	43.800	712.0	100	ZOAID	9	0.	272 0	070
7 1020 33555 0.30 0.101 25.6 800 565.0 46 3.6 5.5 7 1020 33585 0.30 0.101 33.600 656.0 76 44 6 5.5 3 1020 33496 0.30 0.101 31.100 650.0 36 6 18.0 3 1020 33436 0.30 0.101 20.200 593.0 366 6 18.0 3 1020 33480 0.30 0.101 20.200 590.0 36 6 18.0 4 1020 33480 0.30 0.101 20.200 570.0 160 6 18.0 8 1010 3550 0.101 20.200 570.0 160 6 18.0 8 1010 3550 0.30 0.101 24.300 700.0 40 6 18.0 6 1010 3550 0.30 0.101 24.300 700.0 40 6 18.0 1 1005 3550 0.30<	220 1030	39330	0.30	0101	37.900	668.0	09	20	9		2000	0000
1020 39388 0 .30 0 101 33.800 654.0 76 44 6 6 6 6 6 6 6 6		39355	0.30	0101	26.800	565.0	48	3.6	9	4 K	102.0	0.050
1020 394405 0.30 0.101 31.100 650.0 96 20 6 12.0 1020 394405 0.30 0.101 30.200 553.0 2.66 64 6 12.0 1020 39450 0.30 0.101 30.200 553.0 2.66 64 6 18.0 1020 39550 0.30 0.101 30.200 557.0 350 590 6 18.0 1020 39550 0.30 0.101 20.300 50.00 50.00 50.00 1020 39550 0.30 0.101 24.300 70.00 160 244 6 10.0 1020 39550 0.30 0.101 24.300 70.00 160 244 6 10.0 1020 39550 0.30 0.101 24.300 70.00 46 60.01 6 10.0 1020 39550 0.30 0.101 24.300 70.00 46 60.01 6 10.0 1020 39550 0.30 0.101 24.300 70.00 46 60.01 6 10.0 1020 39550 0.30 0.30 32.564 62.8 159 146 6 10.0 1020 39550 0.30 0.30 32.564 62.8 159 146 6 10.0 1020 39550 0.30 0.30 0.30 0.30 0.30 0.30 1020 39500 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1020 39500 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1020 39500 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1020 39500 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1020 39500 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1020 39500 0.30		39380	0.30	0101	33.800	634.0	92	55	9	i r	0.00	0.000
1025 39420 0.30 0.1011 48.600 593.0 268 64 6 12.0 1025 39420 0.30 0.1011 29.000 559.0 330 290 6 12.0 1026 39420 0.30 0.1011 29.000 570.0 1500.> 590 6 18.0 1026 39520 0.30 0.1011 29.000 636.0 400AID 170 6 18.0 1005 39520 0.30 0.1011 21.200 619.0 48 60AID 6 10.0 1005 39520 0.30 0.1011 21.200 619.0 48 60AID 6 10.0 1005 39520 0.30 0.1011 21.200 619.0 48 60AID 6 10.0 1005 39520 0.30 0.1011 21.200 625.8 159 146 10.3 1005 39520 0.30 0.1011 21.200 559.0 48 60AID 6 10.0 1006 2007 21.200 259.0 48 20 20 10.0 1007 2007 21.200 259.0 48 20 20 20 1007 2007 2007 2007 2007 2007 2007 1007 2007 2007 2007 2007 2007 2007 1007 2007 2007 2007 2007 2007 2007 1007 2007 2007 2007 2007 2007 2007 1007 2007 2007 2007 2007 2007 2007 1007 2007 2007 2007 2007 2007 2007		39405	0.30	0101	31.100	650.0	96	20		10.5	7,000	0.030
1015 39455 0.30 0.101 30.200 559.0 330 290 6 21.0 1010 39550 0.30 0.101 30.200 636.0 160 290 6 18.0 1010 39550 0.30 0.101 20.900 636.0 160 244 6 10.0 1010 39550 0.30 0.101 24.300 700.0 160 244 6 10.0 1010 39550 0.30 0.101 24.300 700.0 160 244 6 10.0 1010 39550 0.30 0.101 24.300 700.0 160 244 6 10.0 1010 39550 0.30 0.101 24.300 700.0 160 244 6 10.0 1010 39550 0.30 0.101 24.300 700.0 48 60.10 627.8 627.8 63 6.8 1010 1010 10.30 10.101 10.30 10.3 10.3 1010 29550 0.400 0.950 1.280 8.25 0.050 2.0 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.050 0.050 0.050 0.050 0.050 0.050 1010 39550 0.100 0.950 0.000 0.000 0.000 0.000 1010 39550 0.100 0.950 0.000 0.000 0.000 0.000 1010 39550 0.100 0.950 0.000 0.000 0.000 0.000 0.000 1010 39550 0.100 0.950 0.000	-	39430	0.30	0101	48.600	593.0	268	59	9	18.0	700.0	0.120
1002 39505 0.30 0.101 29.600 570.0 1500 590 6 18.0 18.0 1001 29.900 0.30 0.001 20.900 0.30 0.001 20.900 0.30 0.001 20.900 0.30 0.001 20.900 0.30 0.001 20.900 0.30 0.001 20.900 0.30 0.001 20.200 0.30 0.001 20.200 0.30 0.001 20.200 0.30 0.30 0.001 20.200 0.30 0.		39455	0.30	0101	30.200	559.0	330	290	9	010	7,000	0.130
NOTE SAPER NOTE	1821 1020	39480	0.30	0101	29,600	570.0	1500>	590	9 4	18.0	\T00.0	0.000
NATHUM	0101 816	39505	0.30	0101	30.900	636.0	400AID	170	9 4	18.0	0.000	0.000
NOTE MAXIMUM 0.30 49.600 712.0 49. 60AID 6 4.0 4.0	0101 910	39530	0.30	0101	24.300	700.0	160	244	o 4	10.0	0.010	0.050
NOTE	121 1005	39555	0.30	0101	21,200	619.0	48	60AID	9	4.0	0.002	0.070
STATE HEAM 0.30 32.564 627.8 190 590 21.0		MAXIMUM	0.30		48 600	710 0	000					
STATISTICS 11 11 12 13 140 10.3 10.3	A	RITH MEAN	0.30		72 F66	627 0	004	266		21.0	0.373	0.130
HIMINUM 0.30 21.200 550.0 48 20 0.08		GEOM MEAN			31.687	625.B	404	140		10.3	0.124	690.0
STD DEV (GEOM *) 8,145 52.7 3* 7.5 7		MINIMUM	0.30		21.200	559.0	4.8	00		, o	0	0.063
STATISTICS 11	STD DEV	(GEOM *)			8.145	52.7		1 × 1		9 14	200.0	0.030
FRIM TEST-MAME: NNO3UR NNTKUR PH PPOGAUR PPUT PSAMF RSP FRIM TEST-MAME: NNO3UR NNTKUR PH PPOGAUR PPUT PSAMF RSP FROM NO3-N TOTAL POG PHOSPHOR AEROG. HOUR SAMPLE HG/L MG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/L H	SAMP IN S	TATISTICS	11		11	11	10	11			0	0.051
FRIM TEST-MAME: NNO3UR RNNTKUR PH PP04UR PPUT PSAMF RSP RSEUDOMN RCDAHL N TOTAL PO34UR PH0SPHOR AERUG. PR05HOR AERUG. AERUG. PR05HOR AERUG. A	% SAMP (EXCLUDED)					6	1		11	27	11
NOTE	ITERIM TE	ST-NAME:	NNOZIE	MINITALIO	100	2000	1					
HOUR SAMPLE HOLF REAC UNF.REAC UNF.REAC UNF.TOT. HF REAC UNF.TOT. UNF				K'DAHL N	E	PPO40K	PPOI	PSAMF	RSP			
HOUR SAMPLE HOLE AS IN THE CONF.REAC UNF. REAC UNF. TOT. HF REACTION HE REACTI	L		N-20N	TOTAL		P04	PHOSPHOR	AERUG.				
HUNG SAMPLE NG/A HG/A HG/A HG/A HG/A HG/A HG/A HG/A H	1.1		UNF . REAC	UNF. REAC		UNF. REAC	UNF. TOT.	MF.	RESIDUE			
LMI RUHBER AS N AS N PH AS P AS P AS D		SAMPLE	MG/L	NG/L		MG/L	MG/L	CNT	PARTIC.			
1040 39305 9.900 0.950 7.95 0.054 0.058 4 1030 33350 9.400 0.040 8.06 0.034 0.043 4 1040 33355 9.400 0.750 8.11 0.035 0.050 24 1020 33950 7.600 0.790 8.13 0.010 0.039 24 1020 339430 7.600 0.790 8.19 0.010 0.035 4 1025 339430 2.600 1.280 8.02 0.011 0.033 4 1025 339450 7.400 1.000 8.18 0.011 0.089 20 1020 339455 7.400 1.000 8.18 0.023 0.081 100 1010 35956 4.600 0.940 8.18 0.023 0.081 106 1010 35956 5.100 0.890 8.26 0.041 0.054 4 2 1005 3	100 LMI	NUMBER	AS N	AS N	Hd	AS P	AS P	/100ML	MG/L			
103.0 3335.0 9,400 0.840 8.06 0.034 0.043 4 1040 3335.0 9,400 0.750 8.11 0.035 0.050 24 1020 33405 15.00 0.370 8.13 0.015 0.059 24 1022 33405 13.100 0.790 8.19 0.010 0.033 4 24		39305	9.900	0.950	7.95	0.054	0.058	4	0			
1040 39355 9,400 0.750 8,11 0.035 0.050 24 1020 39380 7,600 0.970 8.13 0.001 0.039 24 1020 39405 13.100 0.790 8.19 0.010 0.033 4 1025 33455 7.400 11.280 8.02 0.021 0.124 4 5 1020 33465 7.400 1.000 8.21 0.001 0.033 4 5 1021 33465 7.400 1.000 8.21 0.024 0.081 20 20 1020 35909 6.100 0.930 8.26 0.023 0.081 10c 20c 10c 20c	-	39330	9.400	0.840	8.06	0.034	0.062	10	, o . u			
1020 39280 7,600 0,970 8.23 0,001 0,035 4 1021 39405 13.100 0,790 8.19 0,010 0,033 4 1025 39405 2.600 1,280 8.02 0,010 0,033 4 1015 39455 7.400 1,000 8.21 0,011 0,033 4 1020 39466 4.800 0.940 8.22 0,012 0,012 20 2 1010 39506 6.100 0.930 8.26 0,024 0.066 16 1 1010 39559 9.100 0.880 8.26 0,041 0,074 4		39355	9,400	0.750	8.11	0.035	0.00	76	0.0			
102 39405 13.100 0.790 8.19 0.010 0.033 4 102 39430 2.600 1.280 8.02 0.011 0.033 4 1015 39450 2.600 1.000 8.21 0.012 0.124 4 9 1020 39460 4.800 0.940 8.18 0.001 0.089 20 1010 39500 4.800 0.940 8.18 0.023 0.081 100 1010 39500 9.100 0.930 8.26 0.024 0.066 16 1005 39555 5.100 0.880 8.26 0.041 0.074 4 6 1005 39555 5.100 0.880 8.26 0.041 0.069 4 6	-	39380	7.600	0.970	8.23	0.001<	0.039	-	, e			
1015 39452 2.600 1.280 8.02 0.021 0.124 4< 10.125 39455 2.400 1.000 8.21 0.001< 0.0899 20 10.20 39465 2.000 0.940 0.940 0.032 0.001 1.0009 9.20 0.001 0.000 1.000		39405	13.100	0.790	8.19	0.010	0.033	>4	7.0			
1015 39455 7,400 1,000 8.21 0.001 0.089 20 1020 39460 4,800 0.940 8.18 0.023 0.081 100C 1010 39505 6,100 0.930 8.26 0.024 0.066 16 1010 39550 9,100 0.870 8.20 0.041 0,074 4 1005 39555 5,100 0.880 8.26 0.004 0.059 4	_	39430	2,600	1.280	8,02	0.021	0.124	>99	8.05			
1020 39460 4.800 0.940 8.18 0.023 0.081 100C 1010 39505 6.100 0.930 8.26 0.024 0.066 16 1010 39550 9.100 0.870 8.20 0.041 0.074 4 1005 39555 5.100 0.880 8.26 0.004 0.059 4	_	39455	7.400	1.000	8.21	0.001<	0.089	20	20.7			
1010 359505 6.100 0.930 8.26 0.024 0.066 16 1010 359530 9.100 0.870 8.20 0.041 0.074 4< 1005 35955 5.100 0.880 8.26 0.004 0.059 4<		39480	4.800	0.940	8,18	0.023	0.081	1000	13.3			
1010 39550 9.100 0.870 8.20 0.041 0.074 4< 1005 39555 5.100 0.880 8.26 0.004 0.059 4<		39505	6.100	0.930	8.26	0.024	990.0	16	6.6			
1005 59555 5.100 0.880 8.26 0.004 0.059 4<		39550	9.100	0.870	8.20	0.041	0.074	>5	43.4			
		39555	5.100	0.880	8.26	0.004	0.059	>5	27.2			

STATION ID: 04-0013-015-02

2870

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: AT PARK STREET BRIDGE, ST MARYS STATION TYPE: RIVER FLOW GAUGE FED 02GD005 B.O.W./ SITE: NORTH THAMES RIVER

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER

DISTANCE: 254.752 STORET CODE: 02 REGION: 01 MG/L RESIDUE PARTIC. 50.8 5.1 RSP 7 2 U T M: 17 0488200.0 4788950.0 4 PSAMF PSEUDOMN CNT AERUG. /100HL 100 20 20 4 UNF.TOT. MG/L AS P PHOSPHOR 0.124 0.065 0.061 0.033 0.026 PPUT UNF.REAC MG/L P04 AS P PP04UR 0.054 0.004 9 H LAT: 43 15 18.72 LONG: 081 08 43.33 8.26 8.15 8.15 7.95 0.10 H NNTKUR K'DAHL N MG/L AS N UNF. REAC 1.280 0.927 0.919 0.750 0.140 TOTAL MG/L AS N NNOSUR N03-N UNF . REAC 13.100 7.682 7.090 2.600 2.925 SAMPLE MAXIMUM ARITH MEAN # SAMP IN STATISTICS // SAMP (EXCLUDED) GEOM MEAN MINIMUM STD DEV (GEOM *) *=INTERIM TEST-NAME: HOUR **УУМИВВ ЦМТ** SAMPLE DATE

STATION ID: 04-0013-016-02

02 003 2870	258.132	FSMF	FECAL	STREPCUS	TEL	/100ML	055	12	52	140	32	112	670	140	450	60AID	140	670	186	112	12	*	11		PPUT	1000	PHUSPHUR INF TOT	MG/1	AS P	166	0.1.0	0.160	0.131	0.072	0.170	0 158	0.187		1 62
STORET CODE: 02 003 283	DISTANCE: 258.132	FCMF		COLIFORM S	CNT	/100HL	950	12	308	<009	80	200	260	430	380	240	120	950	298		12		10	6	PPO4UR		INF PEAC III		AS P	920 0		0.067							
	01	00		DISOLVED	MG/I	AS 0	12.0	10.0	12.0	12.0	10.0	7.0	8.0	8.0	8.0	7.0	11.0	12.0	9.5	9.3	7.0	2.0	11		Hd				Н	7 71	4	7.92	7.84	8.09	8,00	7.74	7.92	7 07	0601
	REGION: 01	CUUT		COPPER INF TOT	MG/1	AS CU	0.0038	0.0017 <t< td=""><td>0.0028</td><td>0.0021<t< td=""><td>0.0030</td><td>0.0000</td><td>0.0020<t< td=""><td>0.0040</td><td>0.0030</td><td>0.0030</td><td>0.0050</td><td>0,0050</td><td>0.0032<a< td=""><td>0.0030<a< td=""><td>0.0017</td><td>0.0011<a< td=""><td>11</td><td></td><td>PBUT</td><td>-</td><td>UNF. TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005cW</td><td>0,005<w< td=""><td>0,005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0028	0.0021 <t< td=""><td>0.0030</td><td>0.0000</td><td>0.0020<t< td=""><td>0.0040</td><td>0.0030</td><td>0.0030</td><td>0.0050</td><td>0,0050</td><td>0.0032<a< td=""><td>0.0030<a< td=""><td>0.0017</td><td>0.0011<a< td=""><td>11</td><td></td><td>PBUT</td><td>-</td><td>UNF. TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005cW</td><td>0,005<w< td=""><td>0,005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0030	0.0000	0.0020 <t< td=""><td>0.0040</td><td>0.0030</td><td>0.0030</td><td>0.0050</td><td>0,0050</td><td>0.0032<a< td=""><td>0.0030<a< td=""><td>0.0017</td><td>0.0011<a< td=""><td>11</td><td></td><td>PBUT</td><td>-</td><td>UNF. TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005cW</td><td>0,005<w< td=""><td>0,005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<>	0.0040	0.0030	0.0030	0.0050	0,0050	0.0032 <a< td=""><td>0.0030<a< td=""><td>0.0017</td><td>0.0011<a< td=""><td>11</td><td></td><td>PBUT</td><td>-</td><td>UNF. TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005cW</td><td>0,005<w< td=""><td>0,005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	0.0030 <a< td=""><td>0.0017</td><td>0.0011<a< td=""><td>11</td><td></td><td>PBUT</td><td>-</td><td>UNF. TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005cW</td><td>0,005<w< td=""><td>0,005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0.0017	0.0011 <a< td=""><td>11</td><td></td><td>PBUT</td><td>-</td><td>UNF. TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005cW</td><td>0,005<w< td=""><td>0,005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	11		PBUT	-	UNF. TOT.	MG/L	AS PB	0.005cW	0,005 <w< td=""><td>0,005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0,005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>O ODENE</td><td>N/C0000</td></w<></td></w<>	0.005 <w< td=""><td>O ODENE</td><td>N/C0000</td></w<>	O ODENE	N/C0000
ES	774700.0 4	COND25		COMBUCI.	UMHO/CM	AT 25 C	941.0		577.0	823.0	0.569	785,0	681.0	651.0	0.6/9	749.0	792.0	941.0	737.3	730.9	577.0	103.1	10		NNTKUR	K'DAHL N	UNF REAC	MG/L	AS N	1. 380)	1.400	0.650	0.830	1.400	1,400	1.520	1 180	COTIT
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0517950.0 4774700.0 4	CLIDUR	400	INF. PFAC	MG/L	AS CL	106.000		37.300	77.700	53.400	72.000	60.800	56.200	58.900	44.200	42.100	106.000	60.860	58.154	37.300	20,306	10		NNO3UR	MOZON	UNF REAC	MG/L	AS N	7.800)	8.700	9.200	6.500	7,900	6,000	3.800	2 200	2000
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	8005	800	TOT DEM.	MG/L	AS 0	3.34		3.62	1.23	2.21	3.49	2.60		87.9	19.70	2.36	19.70	4.98	3.54	1.23	5.69	6		NND2UR	M_COM	UNF . REAC	MG/L	AS N	0.150		0.210	0.140	0.220	0.130	0.140	0.120	0 280	004.0
	46 45.59	ALKT	2	TOTAL	MG/L	AS CACO3	200.0		158.0	216.0	176.0	201.0	158.0	158.0	167.0	242.0	275.0	275.0	197.1	193.9	158.0	38.9	10		NNHTUR	NH3-N	UNF . REAC	MG/L	AS N	0.415		0.146	0.001<	0.026	990.0	0.117	0.148	0 014	40.0
FLOW GAUGE FED 02GD012	LONG: 080 46 45.59	FGPROJ		PROJECT	SUB-PROJ	CODE	0101	0101	0103	0103	0103	0103	0103	0103	2010	0103	0103								FWTEMP		MATER	TEMP	DEG.C	6.0	1.5	4.5	5.0	13.0	17.5	20.5	19.0	15.0	
LOW GAUGE	LAT: 43 07 36.34	FWSADP		SAMPLE	DEPTH	M	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.50	0.30	0.30	0.30	0.30		0.30		11		FWSTRC			STREAM	COND.	9	9	9	9	9	9	9	9	9	
	LAT: 4	ST-NAME:			SAMPLE	NUMBER	39314	39339	39364	39389	39414	39439	39464	39489	20014	59559	39564	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	39314	39339	39364	39389	39414	39439	29464	39489	39514	
STATION TYPE: RIVER		*=INTERIH TEST-NAME:		SAMPLE	DATE HOUR	YYMMDD LMT								900822 0920			901120 0915		¥			STD DEV	# SAMP IN STATISTICS	Z SAMP (*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	ТИНИВВ СИТ	900117 0910					900620 0920			900919 0925	

STATION ID: 04-0013-016-02

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: AT DUNDAS STREET WOODSTOCK B.O.W./ SITE: THAMES RIVER

STATION TYPE: RIVER FLOW GAUGE FED 02GD012

UNF.TOT. MG/L AS P PHOSPHOR DISTANCE: 258.132 0.132 2870 0,137 PPUT 0.187 STORET CODE: MG/L AS P P04 PP04UR UNF. REAC 0.076 0.053 0.050 0.020 0.016 H 7.95 7.95 7.71 0.16 H REGION: 01 0.005<A 0.005<A 0.005 0.005 LEAD MG/L AS PB UNF. TOT. 0.005 PBUT ¢ MG/L AS N K'DAHL N UNF. REAC NNTKUR U T M: 17 0517950.0 4774700.0 1.128 TOTAL 1.167 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N NO3-N UNF. REAC NNO3UR 9.200 7.070 6.708 3.300 MG/L AS N NNO2UR N02-N UNF. REAC 0.184 0.120 0.177 0.280 MG/L AS N NNHTUR NH3-N UNF. REAC ZINC MG/L TOTAL UNF. TOT. AS ZN LONG: 080 46 45,59 0.122 0.0050 0.0074 0.0040 0.0049 0.014 0.0150 0.0080 0.415 ZNUT 0.0050 9900.0 0.0070 0.0000 0.0050 0,000,0 0.0200 0.0074 0.0200 0.0084 WATER TEMP DEG.C RESIDUE FWTEMP MG/L PARTIC. 20.5 10.6 8.2 1.5 6.9 21.0 5.4 26.8 29.1 19.6 18.9 16.8 5.4 7.8 22.1 RSP LAT: 43 07 36.34 STREAM COND. H FWSTRC PSEUDOMN CNT 4444040044 AERUG. /100ML PSAMF 6 SAMPLE SAMPLE 39314 39364 39389 39464 39514 39539 ARITH MEAN 39414 39439 39564 MAXIMUM ARITH MEAN GEOM MEAN MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 0915 0920 0920 0920 0920 0925 0915 HOUR HOUR 0160 0920 0920 LMT YYMMDD LMT *=INTERIM SAMPLE YYMMDD 900117 900221 900320 900620 900919 901120 SAMPLE 900418 900524 900718 900822 901017 DATE DATE

J 7 29

MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)

STATION ID: 04-0013-025-02

		02GD018
	ORD	FED
	STRATFOR	GAUGE
ER	AVE	FLOW
AVON RIVER	AT LORNE	RIVER
SITE	OINT:	TYPE:
B.O.W./	SAMPLE POINT:	STATION

LAT:										
	LAT: 43 21 53.73	LONG: 081 01 04.42	01 04.42	U T M: 17	U T M: 17 0498550.0 4801125.0 4	801125.0 4	REGION: 01	01	DISTANCE:	: 278.570
*=INTERIM TEST-NAME:	FWSADP	FGPROJ	ALKT	80D5 80D	CLIDUR	CONDES	CRUT	CUUT	00	FCMF
<u>.</u>	SAMPLE	PROJECT	TOTAL	TOT. DEM.	UNF. REAC	250	UNF. TOT.	UNF. TOT.	OXYGEN	CULLFURN
DATE HOUR SAMPLE YYMMDD LMT NUMBER	DEPTH	SUB-PROJ CODE	AS CACO3	MG/L AS 0	AS CL	AT 25 C	AS CR	AS CU	MG/L AS 0	/100ML
0915	0.30	0101	255.0	7.30	151,000	1151.0	0.0028	0,0038	13.0	350
0920	0.30	0101	235.0	4.37	90.100	933.0	0.0031	0.0035	0.6	840
900319 0930 39352	0.30	0103	205.0	2.70	57.200	712.0	0.0031	0.0036	13.0	424
0260	0.50	0102	0.622	4.400	56.600	782.0	0.001/<	0.0055	13.0	<0009
0920	0.30	0103	314.0	6.23	266.000	1820.0	D.0005 <w< td=""><td>0.0050</td><td>4.0</td><td>075</td></w<>	0.0050	4.0	075
0915		0103	238.0	6.32 >	85,500	938.0	0.0005 <w< td=""><td>0.0030</td><td>7.0</td><td>280</td></w<>	0.0030	7.0	280
		0103	232.0		77.200	857.0	0.0005 <w< td=""><td>0.0050</td><td>7.0</td><td>760</td></w<>	0.0050	7.0	760
0160	0.30	0103	242.0	7.16	63.700	795.0	0.0010 <t< td=""><td>0.0060</td><td>7.0</td><td>330</td></t<>	0.0060	7.0	330
	0.30	0101	283.0	2.65	46.500	785.0	0.0010 <t< td=""><td>0,0060</td><td>0.6</td><td>420</td></t<>	0,0060	0.6	420
901121 0910 39552	0.30	0103	315.0	00.9	57.900	875.0	0.0005 <w< td=""><td>0.0050</td><td>10.0</td><td>980</td></w<>	0.0050	10.0	980
MAXIMUM	0.30		315.0	7.30	266,000	1820.0	0.0031	0,0060	13.0	980
ARITH MEAN	0.30		252.1	5.11	91.600	946.1	0.0014 <a< td=""><td>0.0045</td><td>9.5</td><td>513</td></a<>	0.0045	9.5	513
GEOM MEAN			249.8		78.922	911.9	0.0010 <a< td=""><td>0.0044</td><td>8.9</td><td></td></a<>	0.0044	8.9	
MINIMOM	0.30		205.0	2,65	46.500	712.0	0.0005	0.0030	4.0	280
SID DEV (GEOM #)	•		36.4	(64.679	313.8	0.0011 <a< td=""><td>0.0011</td><td>3.0</td><td>1</td></a<>	0.0011	3.0	1
# SAMP IN STATISTICS	11		11	10	11	11	11	11	11	10
A SAMP (EACLODED)				0.1						7
*=INTERIM TEST-NAME:	FSMF	FWSTRC	FWTEMP	NIUT	NNHTUR	MNO2UR	NNOSUR	NNTKUR	PBUT	Н
	STREPCUS			NTCKE	TOTAL	M-20N	N-ZUN	TOTAL N	LEAD	
SAMPLE	MF		WATER	UNF. TOT.	UNF. REAC	UNF. REAC	UNF. REAC	UNF. REAC	UNF. TOT.	
DATE HOUR SAMPLE	CNT	STREAM	TEMP	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	
YYMMDD LMT NUMBER	/100ML	COND.	DEG.C	AS NI	AS N	AS N	AS N	AS N	AS PB	Hd
0915	320	9	0.6	0.007 <t< td=""><td>0.198</td><td>0.290</td><td>4.700</td><td>2.860</td><td>0.007<t< td=""><td>7.90</td></t<></td></t<>	0.198	0.290	4.700	2.860	0.007 <t< td=""><td>7.90</td></t<>	7.90
0920	250	9	2.0	0.007 <t< td=""><td>0.003</td><td>0.140</td><td>4.900</td><td>2.740</td><td>0.005<w< td=""><td>7.85</td></w<></td></t<>	0.003	0.140	4.900	2.740	0.005 <w< td=""><td>7.85</td></w<>	7.85
0930	164	9	4.0	0.002 <w< td=""><td>0.895</td><td>0.050</td><td>5,500</td><td>1.830</td><td>0.005<w< td=""><td>7.98</td></w<></td></w<>	0.895	0.050	5,500	1.830	0.005 <w< td=""><td>7.98</td></w<>	7.98
0350	<009	9	6.5	0.002 <w< td=""><td>0.110</td><td>0.050</td><td>4.600</td><td>0.830</td><td>0.005<w< td=""><td>8.03</td></w<></td></w<>	0.110	0.050	4.600	0.830	0.005 <w< td=""><td>8.03</td></w<>	8.03
0920	120	9	12.0	0.005 <t< td=""><td>0.001<</td><td>1.620</td><td>10.300</td><td>1.500</td><td>0.005<w< td=""><td>7.83</td></w<></td></t<>	0.001<	1.620	10.300	1.500	0.005 <w< td=""><td>7.83</td></w<>	7.83
0950		8	16.0	0.016	4.800	1.090	1.500	1.400	0.009 <t< td=""><td>7.62</td></t<>	7.62
0915	•	6	20.0	0.008 <t< td=""><td>0.001<</td><td>0.930</td><td>000.9</td><td>1.300</td><td>0.005<w< td=""><td>7.90</td></w<></td></t<>	0.001<	0.930	000.9	1.300	0.005 <w< td=""><td>7.90</td></w<>	7.90
900821 0915 594//	EDDATE	9 4	12.0	0.006 <t< td=""><td>1.400</td><td>0.500</td><td>3.100</td><td>000</td><td>M>500.0</td><td>7.76</td></t<>	1.400	0.500	3.100	000	M>500.0	7.76
0770	360	9	11.0	0.000×1	0.732	0.040	4.500	1 770	W > 00000	1.8/
0100	260	9	7.4	0.00 C	0.001<	0.170	5.000	0 480	0.005×W	8 00

(CONTD)

STATION ID: 04-0013-025-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: AVON RIVER SAMPLE POINT: AT LORNE AVE STRATFORD STATION TYPE: RIVER FLOW GAUGE FED 02GD018

02 003 2870 STORET CODE: MAJOR BASIN: GREAT LAKESI MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER

570

PH

	AT: 43	21 53.73	LAT: 43 21 53.73 10NG: 081 01 04.42	01 04.42	U T M: 17	0498550:0	U T M: 17 0498550:0 4801125:0 4	DECTON: 01	10	DICTANCE: 270 E20	270 E70
			100	31:10		0.000000	40.6311004	REGIONS	70	DISTANCE	0/6.8/2
*=INTERIM TEST-NAME	ME:	FSMF	FWSTRC	FWTEMP	NIUT	NHTUR NH3-N	NNO2UR	NNO3UR	NNTKUR K'DAHL N	PBUT	Н
		STREPCUS		WATER	NICKEL UNF.TOT.	TOTAL UNF.REAC	NO2-N UNF.REAC	NO3-N UNF.REAC	TOTAL UNF.REAC	LEAD UNF.TOT.	
DATE HOUR SAI YYMMDD LMT NUI	SAMPLE	/100ML	STREAM COND.	TEMP DEG.C	MG/L AS NI	MG/L AS N	MG/L AS N	MG/L AS N	MG/L AS N	MG/L AS PB	H
MAX	MAXIMUM	500		20.0	0.016	4.800	1.620	10.300	2.860	0.009	8,03
ARITH MEAN	MEAN	303		10.1	0.007 <a< td=""><td>1.163</td><td>0.552</td><td>5.209</td><td>1.733</td><td>0.006<a< td=""><td>7.88</td></a<></td></a<>	1.163	0.552	5.209	1.733	0.006 <a< td=""><td>7.88</td></a<>	7.88
CEON MEAN	ON MEAN	120		8.1	0.006 <a< td=""><td>200 0</td><td>0.332</td><td>4.740</td><td>1.613</td><td>0.005<a< td=""><td>7.88</td></a<></td></a<>	200 0	0.332	4.740	1.613	0.005 <a< td=""><td>7.88</td></a<>	7.88
STD DEV (GEOM *)	(* *			9	0.004 <a< td=""><td>100.0</td><td>0.497</td><td>2.238</td><td>0.681</td><td>0.005</td><td>7.62</td></a<>	100.0	0.497	2.238	0.681	0.005	7.62
# SAMP IN STATISTICS	TICS	8 27		11	11	7 26	11	11	10	11	11
*=INTERIM TEST-NAME:	ME:	PP04UR	PPUT	PSAMF	RSP	SSO4IIR	ZNIIT				
				PSEUDOMN							
		P04	PHOSPHOR	AERUG.		SULPHATE	ZINC				
SAMPLE DATE HOLD SAL	CAMDIE	UNF. REAC	UNF. TOT.	E E	RESIDUE	UNF.REAC	UNF. TOT.				
_	NUMBER	AS P	AS P	/100ML	MG/L	AS S04	AS ZN				
0915	39302	0.089	0.128	. 16	10.9		0.0200				
900220 0920 3	39327	0.072	0.108	>4	5.0<	97.000	0,0150				
0930	39352	0.045	0.076	4	9.5	58.500	0.0091				
0920	39377	0.032	0.083	40	18.3	69.500	0.0130				
0360	39402	0.032	0.097	>4	17.3	70.000	0.0110				
0350	39427	0.021	0.088	>4	5.0<	265.000	0.0660				
0915	39452	0.001<	0.078	48	16.6	118.000	0.0000				
0915	39477	0.028	0.110	52	10.5	90.500	0.0070				
0610	39502	0.054	0.132	12	14.4	79.500	0.0130				
0915	39527	0.056	0.111	12	83.8	59,000	0.0140				
901121 0910 3	39552	0.057	0.116	12	20.3	74.500	0.0130				
MAX	MAXIMUM	0.089	0.132	52	83.8	265.000	0.0660				
ARITH MEAN	MEAN	0.049	0.102	25	22.4	98.150	0.0173				
GEOM MEAN	MEAN		0.101			87.825	0.0139				
MIN	MINIMOM	0.021	9.000	4	9.2	58.500	0.0070				
STD DEV (GEOM *)			0.019			61.389	0.0165				
# SAMP IN STATISTICS		10	11	80	6	10	11				
2 SAMP (FYCIUDED)	ושע	0		20	4						

9

8 27

0.021 10

* SAMP IN STATISTICS
% SAMP (EXCLUDED)

STATION ID: 04-0013-026-02

B.O.W./ SITE: TILBURY CREEK SAHPLE POINT: 1 HILE SOUTHWEST OF TILBURY STATION STATION TYPE: RIVER

Figure F	STATION TYPE: RIVER	IVER		RIVER		MAJOR BASIN MINOR BASIN TERN STREAM	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	KES E IVER			STORET CODE:	:: 02 003 2870
Fire control Fire color F		LAT: 4	2 16 34.52		26 51.52	U T M: 17	0380625.0	4681250.0 4	REGION:	01	DISTANCE:	
Column C	*=INTERIM TEST-	NAME:	FWSADP	FGPR0J	BODS	CLIDUR	COND25	CUUT	00	FCMF	FSHF	FWSTRC
E DEPTH SUB-PROJ HG/L UMHQ/CH MG/L CH/T			SAMPLE	PROJECT	5 DAY TOT.DEM.	CHLORIDE UNF.REAC	CONDUCT.	COPPER UNF.TOT.	DISOLVED	COLIFORM	STREPCUS	
Colored Color Colo	HOUR	SAMPLE	DEPTH	SUB-PROJ CODE	MG/L AS 0	MG/L AS CL	UMHO/CM AT 25 C	MG/L AS CU	MG/L AS 0	CNT /100ML	CNT /100ML	STREAM COND.
Color Colo		39702	0.30	2010	2 06	76 600	782 0	22000	2			
Color Colo	-	39718	0.30	0103	2 16	28 200	760.0	0.0037	14.0	400410	ZUDAID	9 ,
Color Colo	-	39732	0.30	0103	8.44	69.700	871.0	0.0000	10.0	1041	10470	9
1.0 1.0		39748	0.30	0101	8,84	42,400	662.0	0.0130	12.0	ZOUATO	TOURTE	0 4
1.0 1.0	_	39763	0.30	0103	31.90	64.900	755.0	0.0000	11.0	20410	SOAID	9
	_	39778	0.30	0103	11.00	61.400	728.0	0.0070	13.0	30AID	30ATD	9
1.0.10 1.0.0 1.0	_	39794	0.30	0101	99.9	55.300	597.0	0,0060	12.5	100<	100<	9
5 0.30 0103 1.80 18.600 424.0 0.0110 6.0 480 1500> 6 7 0.35 0103 1.96 23.600 493.0 0.0050 7.0 1500 5 7 0.30 0101 1.40 49.200 738.0 0.0050 15.0 460 370 6 8 0.30 31.90 74.400 871.0 0.0052 15.0 460 370 6 8 0.30 1.40 2.20 646.6 0.0072 16.0 10 <t< td=""><td></td><td>39809</td><td>0.30</td><td>0103</td><td>5.40</td><td>2.200</td><td>0.569</td><td>0.0080</td><td>12.0</td><td>100AID</td><td>100<</td><td>9</td></t<>		39809	0.30	0103	5.40	2.200	0.569	0.0080	12.0	100AID	100<	9
1 0.30		39825	0.30	0103	1.80	18.600	424.0	0.0110	0.9	480	1500>	9
7 0.30 0101 1.40 49.200 738.0 0.0050 8.0 210 250 6 N 0.30 31.90 74.400 871.0 0.0150 15.0 460 200		39841	0.30	0103	1.96	23.600	493.0	0.0050	7.0	SOUATR	SOUATO	9
H 0.30		39857	0.30	0101	1,40	49.200	738.0	0.0050	8.0	210	250	9
NATION NAMITON NAMIT												,
No.30 7.51 44.536 646.6 0.0072 11.0 205 160 No.30 1.40 2.200 369.0 0.0037 2.9 11.0 10 No.30 1.40 2.200 369.0 0.0037 2.9 11 10 10 No.30 1.40 2.200 369.0 0.0037 2.9 10.6 10 10 No.30 1.40 2.200 369.0 0.0037 2.9 10.6 10 10 No.30 1.40 2.200 369.0 0.0037 2.9 11 11 11 11 11 11 11	Ξ	AXIMUM	0.30		31.90	74.400	871.0	0.0150	15.0	480	370	
NATION NAME NAME	AKIII	H MEAN	0.30		7.51	44.536	9.959	0.0079	11.0	205	160	
NIMITUR	GEOI	MINEAN	0		64.79	33.760	626.6	0.0072	10.6			
FWTEMP	OTD DEV (OR	TOWARD AND	0.50		0 b. T	2.200	369.0	0.0037	0.9	10	10	
FWTEMP	S CAMP TH CTATA	CALLOS	*		67.9	23.530	158.3	0.0037	5.9			
HATER NNHTUR NNOZUR NNOZUR NNTKUR PBUT PH PPOGUR PPUT PSEU PSEU PSEU PNOZAH PNOZAH	Y CAMP (EVE	COLLEGE	11		11	11	11	11	11	10	8	
HATER NINHTUR	A SAMP LEAL	LODEDI								6	27	
HUUR SAMPLE TEHP UNF.REAC UNF.REAC UNF.REAC UNF.TOTAL LEAD HOLD NO. 1707AL HG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/	*=INTERIM TEST-h	VAME:	FWTEMP	NNHTUR	NNO2UR	NNO3UR	NNTKUR	PBUT	ЬН	PPOGUR	PPIIT	DSAME
HOUR SAMPLE TEMP NF.REAC UNF.REAC UNF.TOT. NUMBER DEG.C AS N AS N AS PB PP				NH3-N			K'DAHL N					PSEUDOMN
HOUR SAMPLE TEH UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.TOT. HOUR NUMBER DEG. AS N AS				TOTAL	N02-N	N03-N	TOTAL	LEAD		P04		AERUG.
HOUR SAMPLE TERP HG/L NG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/L H		-	MATER	UNF. REAC	UNF. REAC	UNF. REAC	UNF. REAC	UNF.TOT.		UNF. REAC	UNF. TOT.	MF
UNIDAREA DEG.C AS N AS N AS N AS N AS PB PH AS P	HOUR	SAMPLE	TEMP	HG/L	MG/L	MG/L	HG/L	MG/L		MG/L	MG/L	CNT
0945 39702 0.5 0.649 0.090 9.900 1.920 0.00554M 7.76 0.116 0.186 1039 39728 0.5 0.5392 0.090 6.200 3.303 0.01047 7.52 0.300 0.0116 1049 39728 9.0 0.095 0.090 6.200 3.000 0.00647 7.52 0.300 0.0166 1055 39748 17.0 0.011 0.320 8.700 2.700 0.0064 7.52 0.189 0.386 1003 3976 17.0 0.041 0.460 0.100 5.200 0.0054 7.52 0.189 0.386 1107 39794 24.0 0.440 0.100 0.100 1.550 0.0054 7.59 0.185 0.136 1103 39809 25.0 0.471 0.240 4.300 2.520 0.0054 7.48 0.056 0.230 1020 39809 15.0 0.040 1.600 2.100		NUMBER	DEG.C	AS N	AS N	AS N	AS N	AS PB	Н	AS P	AS P	/100ML
10.39 397.18 0.5 0.392 0.090 6.200 3.303 0.01047 7.52 0.300 0.0165 10.99 39732 9.0 0.0995 0.070 3.000 5.000 0.00947 7.52 0.300 0.0165 1055 39748 17.0 0.011 0.320 8.700 5.200 0.00547 7.30 0.485 0.385 1007 39774 21.0 0.400 0.100 5.200 0.00544 7.52 0.189 0.385 1107 39794 24.0 0.400 0.100 1.950 0.00544 7.55 0.118 0.390 1103 39784 24.0 0.471 0.240 0.100 2.500 0.00544 7.65 0.118 0.350 1020 39829 15.0 0.016 1.600 2.100 0.00544 7.48 0.056 0.235 0955 39824 15.0 0.016 2.400 1.900 0.00647 7.48 0.016 <td>_</td> <td>39702</td> <td>0.5</td> <td>659.0</td> <td>0.000</td> <td>9.900</td> <td>1.920</td> <td>0.005<w< td=""><td>7.76</td><td>0.116</td><td>0.186</td><td>œ</td></w<></td>	_	39702	0.5	659.0	0.000	9.900	1.920	0.005 <w< td=""><td>7.76</td><td>0.116</td><td>0.186</td><td>œ</td></w<>	7.76	0.116	0.186	œ
1019 39732 9.0 0.095 0.0700 3.000 5.000 0.0094T 6.23 0.700 0.860 0957 39746 17.0 0.011 0.220 8.700 2.700 0.036 7.52 0.199 0.385 1050 39746 17.0 0.450 1.600 5.200 0.0054 7.59 0.199 0.385 1107 39794 24.0 0.400 0.100 1.950 0.0054M 7.59 0.189 0.385 1037 39609 25.0 0.471 0.240 4.300 2.520 0.0054M 7.65 0.119 0.316 0950 39825 15.0 0.076 4.300 2.100 0.0054M 7.48 0.056 0.230 0955 39844 15.0 0.016 0.050 2.400 1.900 0.006 7.74 0.100 0.336 1020 39857 9.0 0.125 0.090 2.000 1.550 0.008 0.108		39718	0.5	0.392	0.000	6.200	3.303	0.010 <t< td=""><td>7.52</td><td>0.300</td><td>0.815</td><td>7</td></t<>	7.52	0.300	0.815	7
0957 39748 17.0 0.011 0.320 8,700 2.700 0.036 7.52 0.189 0.385 1053 39763 19.0 1.370 0.460 1.200 0.00747 7.30 0.189 0.385 1007 39763 21.0 0.040 0.100 3.200 0.00747 7.30 0.445 1.160 1107 39794 24.0 0.400 0.120 0.100 1.950 0.0054H 7.65 0.119 0.350 1037 39809 25.0 0.471 0.220 2.520 0.0054H 7.65 0.119 0.315 0950 39829 15.0 0.471 0.100 1.600 2.100 0.0054H 7.48 0.056 0.230 0955 39824 15.0 0.016 0.050 2.400 1.900 0.006 7.49 0.109 0.330 1020 39857 9.0 0.125 0.090 2.000 1.550 0.008 7.48		39732	0.6	0.095	0.070	3.000	5.000	0,009 <t< td=""><td>8.23</td><td>0.700</td><td>0.860</td><td>>9</td></t<>	8.23	0.700	0.860	>9
1055 3976.3 19.0 1.370 0.456 1.600 5.200 0.007 7.30 0.465 1.160 1007 39794 21.0 0.040 0.100 0.100 1.950 0.005 7.59 0.1185 0.139 1107 39794 24.0 0.400 0.120 0.100 1.950 0.005 7.65 0.119 0.319 11037 39809 25.0 0.471 0.240 4.300 2.520 0.005 7.48 0.230 0950 39827 15.0 0.058 0.100 1.600 2.100 0.005 7.48 0.036 0.230 0955 39841 15.0 0.016 0.050 2.400 1.900 0.005 7.74 0.100 0.330 1020 39857 9.0 0.125 0.090 2.000 1.550 0.008 7.74 0.100 0.330		39748	17.0	0.011	0.320	8.700	2.700	0.036	7.52	0.189	0.385	TOAID
1000 39778 21.0 0.0400 0.100< 3.200 0.005 <m 0.005<m="" 0.100="" 0.1020="" 0.119="" 0.185="" 0.315="" 0.390="" 0.400="" 1.950="" 1039<="" 1107="" 24.0="" 39794="" 7.59="" 7.65="" td=""><td></td><td>39763</td><td>19.0</td><td>1.370</td><td>0.420</td><td>1.600</td><td>5.200</td><td>0.007<t< td=""><td>7.30</td><td>0.445</td><td>1.160</td><td>10<</td></t<></td></m>		39763	19.0	1.370	0.420	1.600	5.200	0.007 <t< td=""><td>7.30</td><td>0.445</td><td>1.160</td><td>10<</td></t<>	7.30	0.445	1.160	10<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		39778	21.0		0.040	0.100<	3.200	0.005 <w< td=""><td>7.59</td><td>0.185</td><td>0.390</td><td>>4</td></w<>	7.59	0.185	0.390	>4
10.57 398.09 25.0 0.471 0.240 4,300 2.520 0.005-M 7,48 0.056 0.230 0950 398.25 15.0 0.056 0.100 1,600 2.100 0.006 7,48 0.036 0.086 0955 3994.1 15.0 0.016 0.050 2,400 1,900 0.006 7,74 0.100 0.386 1020 39857 9.0 0.125 0.090 2.000 1,550 0.008 8.02 0.108 0.245		59799	24.0	0.400	0.120	0.100	1.950	0.005 <w< td=""><td>7.65</td><td>0.119</td><td>0.315</td><td>10<</td></w<>	7.65	0.119	0.315	10<
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		39809	25.0	0.471	0.240	4.300	2.520	0.005 <w< td=""><td>7.48</td><td>0.056</td><td>0.230</td><td>>4</td></w<>	7.48	0.056	0.230	>4
0,555 5,594, 15.0 0,016 0,050 2,400 1,900 0,005 M 2,00 0,125 0,090 2,000 1,550 0,008 M 3,02 0,108 0,245		27852	15.0	0.058	0.100	1.600	2.100	D.006 <t< td=""><td>7.48</td><td>0.086</td><td>0.285</td><td>LOAID</td></t<>	7.48	0.086	0.285	LOAID
1.550 0.008<7 8.02 0.108 0.245		14065	15.0	0.016	0.050	2.400	1.900	0.005 <w< td=""><td>7.79</td><td>0.100</td><td>0.330</td><td></td></w<>	7.79	0.100	0.330	
		22000	0.6	0.165	0.090	2.000	1.550	0,008 <t< td=""><td>8.02</td><td>0.108</td><td>0.245</td><td>12</td></t<>	8.02	0.108	0.245	12

STATION ID: 04-0013-026-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: TILBURY CREEK SAMPLE POINT: 1 MILE SOUTHWEST OF TILBURY STATION

: 02 003 2870	7.725	PSAMF PSEUDOMN AERUG. MF CNT	
STORET CODE: 02 003 2870	DISTANCE: 7.725	PHOSPHOR UNF.TOT. MG/L AS P	
	11	PPO4UR PO4 UNF.REAC MG/L AS P	
	REGION: 01	н	
(ES E IVER	U T M: 17 0380625.0 4681250.0 4	PBUT LEAD UNF.TOT. MG/L AS PB	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	0380625.0	NNTKUR K'DAHL N TOTAL UNF.REAC MG/L AS N	
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NO3-N NO3-N UNF.REAC MG/L AS N	
N T T T T T T T T T T T T T T T T T T T	LAT: 42 16 34.52 LONG: 082 26 51.52	NNO2UR NO2-N UNF.REAC MG/L AS N	
I LEGUKT S	LONG: 082	NNHTUR NH3-N TOTAL UNF.REAC MG/L AS N	
O I WEST	2 16 34.52	FWTEMP WATER TEMP DEG.C	
E: RIVER	LAT: 4	ST-NAME: SAMPLE NUMBER	
STATION TYPE: RIVER		*=INTERIM TEST-NAME: SAMPLE DATE HOUR SAMPLE YYHNDD LMT NUMBER	

12

1.160 0.473 0.396 0.186 0.321

0.219 0.219 0.164 0.056 0.196

8.23 7.66 7.66 7.30 0.27

0.036 0.009<A 0.005 0.005 0.009<A

5.200 2.849 2.639 1.550 1.242

0.450 0.151 0.114 0.040 0.130

1.370 0.359 0.155 0.011 0.418

25.0 14.1 8.6 0.5 8.5

ARITH MEAN GEOM MEAN MINIMUM

MAXIMUM

3.980 0.100 10

S D 4

007.0		10	ъ																
0.0.0	0.130	11		ZNUT	UNF. TOT.	MG/L	AS ZN	0.0150	0.0830	0.0380	0.0480	0.0370	0,0200	0.0200	0.0870	0.0290	0,0020 <t< td=""><td>0.0350</td><td></td></t<>	0.0350	
110.0	0.418	10		TURB		TURB'ITY	FTU				180.00								
0.0	8.5	11		RSP	RESIDUE	PARTIC.	HG/L	15.1	64.4	65.0	153.0	23.2	6.92	78.2	92.8	99.5	152.0	47.6	
TO THE PERSON	STD DEV (GEOM *)	# SAMP IN STATISTICS	CACCODED	*=INTERIM TEST-NAME:		SAMPLE	NUMBER	39702	39718	39732	39748	39763	39778	39794	39809	39825	39841	39857	
	STD DEV	S NI di	1	NIM TE		HOUR		966	1039	1019	2560	1053				0960	9820	1020	
	V	# SAF	:	*=INTER	SAMPLE	DATE	YYMINDD	900122	900226	900326	900423	900528	900625	900723	900827	900924	901022	901126	

0.0870 0.0376<A 0.0272<A 0.0020 0.0020

153.0 78.9 65.2 15.1 44.7

MINIMUM

ARITH MEAN GEOM MEAN

MAXIMUM

* SAMP IN STATISTICS * SAMP (EXCLUBED)

180.00 180,00 STORET CODE: 02 003 2870

STATION ID: 04-0013-027-02

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER B.O.W./ SITE: NORTH THAMES RIVER SAMPLE POINT: AT HIDDLESEX COUNTY ROAD 42 LONDON STATION TYPE: RIVER FLOW GAUGE FED 026E003

	IAT. GZ	72 00 00	LONG: DOI	11 61 61	1	0.000000	0 100171				
	LAI: 45	LAI: 45 UZ 29.54	LUNG: USI 11 41.61	11 41.61	0 I M: 1/	U M: 1/ U484125.U 4/65225.U 4	1/65225.0 4	REGION: 01	10	DISTANCE	DISTANCE: 217.416
*=INTERIM TEST-NAME:	NAME:	FWSADP	FGPROJ	CLIDUR	COND25	DO	FCMF	FSMF	FWSTRC	FWTEMP	NUHTUR
		a laws	1931 000	CHLORIDE	CONDUCT.	DISOLVED	COLIFORM	STREPCUS		1 1	TOTAL
HOUR	SAMPLE	DEPTH	SUB-PROJ	MG/L	UMHO/CM	MG/L	CMI	CNT	STREAM	TEMP	UNF REAC
YYMNDD LMT	NUMBER	E	CODE	AS CL	AT 25 C	AS 0	/100ML	/100ML	COND.	DEG.C	AS N
	39310	0.30	0101	42,100	0.699	12.0	LOAID	10AID	9	2.0	0.221
	39335	0.30	0101	28.500	568.0	10.0	32	8	9	1.0	0.098
	39360	0.30	0101	18.900	481.0	12.0	16	>4	9	3.5	960.0
900417 1200	39385	0.30	0101	30.700	590.0	14.0	89	4	9	7.0	0.041
	39410	0.30	0101	35.800	586.0		SOAID	10<			0.075
	39435	0.30	0101	35.200	558.0	13.0	40	05	9	21.0	0.078
900717 1200	39460	0.30	0101	23.000	518.0	10.0	144	84	9	23.0	0.001<
	39485	0.30	1010	32.900	493.0	0.6	1190	680	9	16.0	0.168
	39510	0.30	0101	27.800	548.0	. 8.0	290	230	9	12.0	0.083
901016 1150	39535	0.30	0101	19.600	638.0	0.6	150	110	9	12.0	0.002
1135	39560	0.30	0101	24.600	651.0	13.0	60AID	40	9	2.5	900.0
X	MAXIMUM	0.30		42.100	0.699	14.0	1190	089		23.0	0.221
ARIT	ARITH HEAN	0.30		29,009	572.7	11.0	181	134		10.0	0.087
GEO	GEON MEAN			28.180	569.6	10.8	09			6.5	
Σ	MININUM	0.30		18.900	481.0	8.0	8	4		1.0	0.002
STD DEV (GEOM *)	EOM *)			7.224	62.2	2.1	*			8.1	
SAMP IN STATISTICS	STICS	11		11	11	10	11	6		10	10
% SAMP (EXCLUDED)	.UDED)							18			6
*=INTERIM TEST-NAME:	IAME:	NNO2UR	NNO3UR	NNTKUR K'DAHI N	ЬН	PPO4UR	PPUT	PSAME	RSF	RSP	RST
		NO2-N	NO3-N	TOTAL		P04	PHOSPHOR	AERUG.			
GILON	P ANDIE	MEAC	OMF . REAL	UNT REAL		UNF . KEAC	. 101.	AM C	KESIDUE	RESIDUE	RESIDUE
	NUMBER	AS N	AS N	AS N	Hd	AS P	AS P	/100ML	FILIERED MG/L	PARTIC. MG/L	TOTAL MG/L
	39310	0.050	10.500	0.790	7.99	0.051	0.059	>4		5.0<	434.0
-	39335	0.050	9,800	0.730	8.06	0.040	0.060	>4	369.0	5.0<	
900319 1210	39360	0,060	8.400	0.900	8.15	0.055	0.091	>4	331.4	12.6	344.0
1200	39385	0.020	7.100	0.680	8.32	0.001<	0.043	>5	407.0	13.0	420.0
	39410	0.120	8.500	0.870	8.33	0.004	950.0	>4		5.0<	514.0
_	39435	0.100	005.9	0.880	8.40	0.007	0.031	>5	362.0	4.3	357.7
900717 1200	39460	0.140	10.500	1.020	8.26	0.031	0.082	>5	358.0	14.0	372.0
-	39485	0.000	3.900	1.090	8.12	0.020	0.063	84	366.0	8,5	374.0
	39510	0.080	5.300	1.080	8.13	0.051	0.114	4	379.0	16.7	396.0
	39535	0.100	9.100	0.990	8.20	0.064	0.111	12	406.1	35.9	442.0
901121 1135	29560	0.050	6.100	0.800	8.31	0.001<	0.054	>4	415.0	38.6	454.0

(CONTD)

STATION ID: 04-0013-027-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: NORTH THAMES RIVER SAMPLE POINT: AT MIDDLESEX COUNTY ROAD 42 LONDON STATION TYPE: RIVER FLOW GAUGE FED 02GEOOX

	-	116			UE	LAL	3/1	_						
	: 02 003 2870	217.	RST		RESII	T0	HG/L	514.	410.8	407.9	344	52.	10	
	STORET CODE:	DISTANCE: 217.416	RSP		RESIDUE	PARTIC.	MG/L	38.6	17.9		5.4		60	2.2
		01	RSF		RESIDUE	FILTERED	MG/L	415.0	377.1	376.2	331.4	27.5	6	
		REGION: 01	PSAMF	AERUG.	MF	CNT	/100ML	84	33		4		м	72
	(ES E IVER	4765225.0 4	PPUT	PHOSPHOR	UNF. TOT.	MG/L	AS P	0.114	0.069	0.064	0.031	0.027	11	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0484125.0 4765225.0 4	PP04UR	P04	UNF.REAC	HG/L	AS P	0.064	0.036		0.004		6	18
	MAJOR BASI MINOR BASI TERM STREA	U T M: 17	н				ЬН	8.40	8.21	8.21	7.99	0.13	11	
NOGNO	м	11 41.61	K-DAHL N	TOTAL	UNF. REAC	MG/L	AS N	1.090	0.894	0.884	0.680	0.138	11	
Y ROAD 42 L	FLOW GAUGE FED 02GE003	LAT: 43 02 29.34 LONG: 081 11 41.61	NNOSUR	N-SON	UNF. REAC	MG/L	AS N	10.500	7.782	7.467	3.900	2.189	11	
LESEX COUNT	FLOW GAUGE	43 02 29.34	NNOZUR	NO2-N		MG/L		0.140	0.078	690.0	0.020	0.036	11	
SAMPLE POINT: AT MIDDLESEX COUNTY ROAD 42 LONDON	PE: RIVER	LAT:	TEST-NAME:			SAMPLE		MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
SAMPLE POI	STATION TYPE: RIVER		*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	УУМИВВ СМТ					STD D	# SAMP IN	% SAMP

B.O.W./ SITE: DINGHAN CREEK SAMPLE POINT: 1ST.CONC.DOWNSTREAM OF LAMBERT STATION TYPE: RIVER FLOW GAUGE FED 02GE005

STATION ID: 04-0013-029-02

DISTANCE: 196.013 CHT MG/L AS P STREPCUS PHOSPHOR UNF. TOT. /100ML 274 0.078 2870 3600 48 32 220 270 270 1020 520 689 0.100 0.162 FSMF 3600 0.120 PPUT 0.174 0.148 002 STORET CODE: P04 MG/L FECAL JNF . REAC COLIFORM /100ML PP04UR * 6 FCMF 120 1000 4400 3200 AS 0.077 0.010 2000 0055 1387 682 52 0.078 52 0.040 0.030 0.063 0.062 MG/L AS 0 Ξ DISOLVED OXYGEN 113.0 111.0 123.0 14.0 9.0 9.0 7.0 9.0 14.0 9.8 9.5 6.0 7.76 8.11 7.85 7.93 7.82 7.97 8.06 8.21 Ξ REGION: 01 MG/L COPPER AS CU 0.0023<T VA 0.005 <A VA LEAD AS PB 0.005<W M>500'0 0,005<W 0.005<W W>500.0 0.005<W MG/L 0.0025<T M>500.0 0.005<W UNF. TOT. UNF. TOT. CUUT 0.0023 0.0180 0,0026 0,000,0 0,0050 0.0050 0.0000 0,0050 0.0050 0.050 0.031 600.0 0.050 4 25C MG/L Z COND25 UMH0/CM AT 25 C NNTKUR UNF. REAC 0474400.0 4751100.0 CONDUCT 844.0 818.0 838.0 768.0 768.0 848.0 847.0 847.0 852.0 768.0 81.8 AS 0.980 855.1 K ' DAHL .050 .040 1077.0 TOTAL 1.850 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE AS N CLIDUR MG/L N03-N JNF. REAC MG/L CHLORIDE UNF . REAC AS CL NNO3UR 4.600 5.900 238,000 02,000 83.900 80,900 89,600 95.100 71.000 65.700 65,000 238,000 100.320 65,000 4.000 6.800 U T M: 17 BOD MG/L 5 DAY MG/L N02-N TOT. DEM. NNO2UR UNF. REAC AS 8005 2.06 0.45 1.37 2.41 1.53 4.36 1.66 AS 0.030 0.250 0.130 0.040 090 080 2.05 0.000 TOTAL MG/L MG/L CACOS NNHTUR NH3-N UNF . REAC TOTAL LAT: 42 54 50.48 LONG: 081 18 49.08 207.0 225.0 225.0 225.0 225.0 225.0 259.0 310.0 0.001< 310.0 241.6 236.3 0.037 0.083 0.072 ALKT 147.0 268 0.026 FGPROJ PROJECT SUB-PROJ CODE FWTEMP WATER TEMP DEG.C 3.5 2.0 4.0 6.0 14.0 18.0 23.0 23.0 14.0 13.0 0101 0103 0103 0103 0103 1010 0103 1010 SAMPLE FWSADP FWSTRC STREAM COND 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 SAMPLE 39499 SAMPLE 39449 39349 39454 39449 39549 39374 39399 39374 39399 39474 ARITH MEAN GEOM MEAN SAMP IN STATISTICS 39349 39929 39499 39524 39324 59574 MAXIMUM HINIMUM STD DEV (GEOM *) 39474 % SAMP (EXCLUDED) TEST-NAME: TEST-NAME: 1245 245 1245 1300 240 1300 1300 1245 HOUR 1240 1300 1245 HOUR 240 245 245 245 LMI LHT *=INTERIH *=INTERIM 900919 /YERIDD 900117 900320 900418 900524 900620 900718 901017 YYHHDD 900418 900524 900620 900718 900822 900919 301017 900822 900320 900221 900117 SAMPLE 900221 DATE DATE

CONTD)

STATION ID: 04-0013-029-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: DINGMAN CREEK SAMPLE POINT: 1ST.CONC.DOWNSTREAM OF LAMBERT

STATION TYPE: RIVER FLOW GAUGE FED 02GE005

STORET CODE: REGION: 01 U T M: 17 0474400.0 4751100.0 4 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER LAT: 42 54 50.48 LONG: 081 18 49.08

MG/L AS P UNF. TOT. DISTANCE: 196,013 PHOSPHOR 0.200 0.108 0.082 0.008 0.063 PPUT 2870 MG/L AS P PP04UR P04 UNF . REAC 0.078 0.036 0.036 0.026 PH 8.21 7.97 7.97 7.76 7.76 0.15 E 0.006<A 0.005 0.008<A MG/L AS PB 0.007<A LEAD UNF. TOT. PBUT 0.031 MG/L AS N NNTKUR K DAHL N UNF . REAC 1.850 1.099 1.054 0.680 0.351 TOTAL MG/L AS N NNOSUR N03-N UNF. REAC 4.650 4.436 2.400 1.422 MG/L AS N NNO2UR NO2-N UNF. REAC 0.250 0.073 0.030 MG/L AS N NNHTUR UNF. REAC NH3-N TOTAL 0.268 0.005 ZNUT 80 WATER TEMP FWTEMP DEG.C 23.0 10.9 8.4 2.0 7.2 RSP PSEUDOMN FWSTRC STREAM COND. AERUG. SAMPLE NUMBER MINIMUM MAXIMUM ARITH MEAN GEOM MEAN STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: HOUR **УУМИВВ ЦИТ** *=INTERIM SAMPLE DATE

MG/L AS ZN

0.0042 0.0050 0.0090 0.0110

13.7 8.0 40.2 37.7 74.7 49.6 65.1

4 4

39424

1245

900620 900718 900919 901017

900524

39374 39399 39449 39474 39499 39524

240 1245 1245 1300 1300

900221

900117

900320

900418

0.0085

0.0900 0.0065

179.0

0.0040

95.1 179.0

> 8 24 ¢

39549

1245

900822

39574 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM

0.0100

0.0900 0.0152 0.0090 0.0040 0.0250

69.1 49.4 8.0 53.0

33

SAMP IN STATISTICS .: SAMP (EXCLUBED)

UNF. TOT.

RESIDUE PARTIC. MG/L

CNT

/100ML 200

NUMBER 39324 39349

SAMPLE

HOUR

DATE

SAMPLE

LMT

YYMMDD

STATION ID: 04-0013-031-02

B.O.W./ SITE: LOCK DRAIN SAHPLE POINT: AT CONCESSION ROAD 22 HARMICH TWP

LATE MATCHIN LATE	STATION TYPE: RIVER	RIVER	TO T	77		MAJOR BASIN: MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	VER			STORET CODE: 02 003 287	E: 02 003 2870
FMSADP FGPROJ ALKT BODE CLIDUR CONDUCT CON		LAT: 42	21 04.38		04 53,36	U T M: 17	0410925.0 4	689125.0 4	REGION:	01	DISTANCE	
Marie Mari	*=INTERIM TES	T-NAME:	FWSADP	FGPROJ	ALKT	8005	CLIDUR	COND25	CUUT	DO	FCMF	FSMF
1145 39764 0.30 0.103 146.0 0.66 39.000 738.0 0.00069 12.0	ш		SAMPLE	PROJECT	ALK	5 DAY TOT.DEM.	CHLORIDE UNF.REAC	CONDUCT. 25C	COPPER UNF.TOT.	DISOLVED	COLIFORM	STREPCUS
1145 39704 0.30 0.103 146.0 0.66 39.000 738.0 0.0028 16.5 6.04D 1210	DATE HOUR	SAMPLE	рертн	SUB-PROJ CODE	MG/L AS CACO3	MG/L AS 0	MG/L AS CL	UMHO/CM AT 25 C	AS CU	MG/L AS 0	/100HL	CNT /100ML
11.5 39726 0.30 0.103 13.6 0.24 0.64 0.0169 12.0 0.1015 12.0 0.1029 13.5 0.2041D 12.0 0.244		39704	0.30	0103	146.0	0.68	39.000	738.0	0.0028	16.5	GOAID	100
1155 39734 0.30 0.1013 131.0 0.24 41.900 0.3103 0.1130 141.0 0.20AID 1220 39756 0.300 0.1013 131.0 0.134 41.900 0.20450 0.10460 12.0 250 12.0 250 12.0 250 2		39720	0.30	0103	138.0	3.16	30.800	641.0	6900.0	12.0	1210	620
1151 33750 0.30 0.101 1.55 0.100 0.54 0.0040 14.5 520 0.250 0.250 0.250 0.250 0.250 0.250 0.103 0.103 1.44 0.1		39734	0.30	0103	191.0	0.24	41.900	827.0	0.0130	14.0	ZOAID	LOAID
125 239766 0.30 0.103 94,7 1.14 37.300 613.0 0.10040 13.5 548 131 131 139.0 0.1037 13.5 548 13.5		39750	0.30	0101	136.0	19.2	56.800	0.969	0.0160	12.0	250	TOAID
1325 39780 0.530 0.1015 149.0 0.1084 51.700 0.745.0 0.0000 12.0 410 1134 1134 1134 1135 39827 0.300 0.1013 180.0 0.188 129.000 948.0 0.0060 11.5 40A1D 1134 1134 1135 39827 0.300 0.103 180.0 0.188 129.000 948.0 0.0060 11.5 40A1D 1134 1135 39827 0.300 0.103 180.0 0.184 41.000 771.0 0.0060 7.5 2.200 2.200 2.24.0 0.184 41.000 771.0 0.0060 7.5 2.200 2.24.0 2.24.0 0.184 2.24.0 0.0060 771.0 0.0060 7.5 2.200 2.24.0 2.24.0 0.184 2.24.0 0.0060 11.5 2.200 2.24.0		39765	0.30	0103	7.96	1.19	37.300	613.0	0.0040	14.5	55	16
135 39475 0.30 0.103 1.59 1.79 0.005 0		39780	0.30	0103	144.0	0.64	120,000	1072	0.0070	15.5	248	217
1		39/96	0.30	0101	159.0	1.58	179.000	0.4.01	0.0020	11.0	410	107
HAXINGH 0.30 0.103 224.0 0.04 44.000 771.0 0.0000 7.5 2200 2200 224.0 0.04 44.000 0.04 0.0000 7.5 2200 2200 2200 224.0 0.04 224.0 0.04 224.0 0.04 224.0 0.04 224.0		11865	0.30	0103	100.0	0.00	21 000	946.0	0.0000	17:0	HOALD	707
HAXTMUH 0.30 224.0 19.2 179.000 1074.0 0.0060 16.5 2200 2200 224.0 224.0 25.440 25.		12865	0.30	0103	180.0	1.80	31.900	0.110	0.0080	0 1	049	7007
HAXTHWH 0.30 224.0 19.2 179.000 179.0 10.0 16.5 2200 2200 1.0		39843	0.30	0103	224.0	> 0.04<	44.000	771.0	0.0060	7.5	2200	LOGAID
NATIONAL		MAXIMUM	0.30		224.0	19.2	179,000	1074.0	0.0160	16.5	2200	720
This is a constant between the man between t	AH	RITH MEAN	0.30		157.3	3.2	64.140	759.6	0.0075	11.6	543	228
The part of the	9	SEOM MEAN			153.4		53.114	747.2	9900.0	10.7	218	
TEST-NAME TEST TE		MINIMUM	0.30		2.46	0.24	30.800	613.0	0.0028	3.0	20	10
The statistics 10	STD DEV	(GEOM *)			36.5		49.455	151.7	0.0041	3.8	5,4	
The teach of teach	# SAMP IN ST	TATISTICS	10		10	6	10	10	10	10	10	6
Hamilton	% SAMP (E	EXCLUDED)				10						10
HATER HATER HATER HOFF	*=INTERIM TES	ST-NAME:	FWSTRC	FWTEMP	NNHTUR	NNO2UR	NNOSUR	NNTKUR	PBUT	на	PP04UR	PPUT
HOUR SAMPLE STREAM TEMP MG/L MF.REAC UNF.REAC UN					NH3-N TOTAL	N-CON	N-FON	K'DAHL N	FEAN		900	aunasuna
HOUR SAMPLE STREAM TEND MGAL MGAL MGAL MGAL MGAL MGAL MGAL MGAL	SAMOLE			WATED	IIME DEAL	IIME DEAD	INE DEAC	HINE DEAD	IINE TOT		TIME DEAD	TOT TOT
LHT HUHBER COHD. DEG.C AS N AS N AS PS PB PH AS P AS P 1145 339704 6 0.5 0.167 0.050 1.100 1.160 0.0054H 7.95 0.056 0.400 1151 339720 6 5.0 0.058 0.050 9.200 2.000 0.0055H 7.45 0.066 0.460 1152 33720 6 18.0 0.010 0.010 11.400 0.085H 7.45 0.069 0.06 1152 33750 6 19.0 0.010 11.400 0.085H 7.45 0.009 0.0 1225 33780 6 19.0 0.010 0.100 0.100 0.010 </td <td></td> <td>SAMPLE</td> <td>STREAM</td> <td>TEMP</td> <td>MG/L</td> <td>MG/L</td> <td>MG/L</td> <td>MG/L</td> <td>MG/L</td> <td></td> <td>MG/L</td> <td>MG/L</td>		SAMPLE	STREAM	TEMP	MG/L	MG/L	MG/L	MG/L	MG/L		MG/L	MG/L
1151 39720 6 0.5 0.167 0.050 1.100 1.160 0.00544 7.90 0.056 0.056 1.159 39720 6 0.5 0.058 0.056 0.050 0.050 0.056 7.45 0.060 0.056 1.150 0.056 0	YYHHOD LMT	NUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	PH	AS P	AS P
115 39720 6 0.5 0.058 0.050 9.200 2.000 0.0054 7.45 0.060 0.0054 1.159 39720 6 0.005		39704	9	0.5	0.167	0.050	1.100	1.160	0.005 <w< td=""><td>7.90</td><td>0.056</td><td>0.092</td></w<>	7.90	0.056	0.092
1159 39734 6 5.0 0.005 0.040 19.400 0.880 0.008 0.008 0.009 0.009 1151 39750 6 18.0 0.010 0.010 11.400 0.056 0.010 0.010 11.400 0.056 0.095 0.097 1225 39780 6 19.0 0.018 0.056 0.010 0.010 0.100 0.100 0.100 0.100 0.005 0.005 1310 39796 6 22.0 0.037 0.010 0.100 0.100 0.100 0.005 0.005 7.97 0.003 1145 39817 6 15.0 0.044 0.110 0.100 0.106 0.005 0.005 7.71 0.001 1125 39817 6 15.0 0.008 0.141 0.120 3.900 1.650 0.005 0.005 7.85 0.11 1125 39843 6 15.0 0.008 0.130 3.900 1.020 0.005 0.005 0.005 0.005		39720	9	0.5	0.058	0.050	9.200	2,000	0.005 <w< td=""><td>7.45</td><td>0.060</td><td>0.430</td></w<>	7.45	0.060	0.430
1151 23750 6 18.0 0.010 0.010 11.900 11.400 0.026 7.30 0.097 1220 33765 6 19.0 0.085 0.010 0.010 0.1000 0.0954 8.40 0.003 1210 23780 6 22.0 0.085 0.010 0.1000 0.01967 8.15 0.003 1211 23881 6 22.0 0.037 0.010 0.100 0.900 0.0954 7.97 0.013 1220 33827 6 15.0 0.141 0.120 0.130 1.650 0.0654 7.65 0.135 1220 38843 6 15.0 0.008 0.130 3.900 1.020 0.00564 8.03 0.045 1220 33843 0.008 0.008 0.130 3.900 1.020 0.00564 8.03 0.045 1220 33843 0.008 0.008 0.008 0.00564 0.00564 0.00564 1220 0.008 0.008 0.008 0.00864 0.00564 0.045 1220 0.008 0.008 0.008 0.00864 0.00864 0.045 1220 0.008 0.008 0.008 0.00864 0.00864 0.00864 0.045 1220 0.008 0.008 0.008 0.00864 0.00864 0.045 0.045 1220 0.008 0.008 0.008 0.00864 0.00864 0.045 0.045 1220 0.008 0.008 0.008 0.00864 0.00864 0.045 0.045 0.045 1220 0.008 0.008 0.008 0.00864 0.00864 0.045 0.0		39734	9	5.0	0.005	0.040	19.400	0.880	0.008 <t< td=""><td>8.14</td><td>600.0</td><td>0.070</td></t<>	8.14	600.0	0.070
1220 39765 6 19.0 0.018 0.060 4.600 0.900 0.0055H 8.40 0.003 1225 39780 6 19.0 0.085 0.010 0.100 1.000 0.0197 8.15 0.009 1310 3976 6 22.0 0.037 0.010 0.100 0.095H 7.77 0.003 1145 39811 6 25.0 0.041 0.010 0.990 0.0055H 7.71 0.001 1130 39827 6 15.0 0.141 0.120 3.900 1.650 0.0055H 7.05 0.112 125 39843 6 15.0 0.008 0.130 3.900 1.020 0.0055H 7.05 0.045		39750	9	18.0	0.010	0.010	11.900	11.400	0.026	7.30	0.097	0.370
1225 339780 6 19.0 0.085 0.010 0.100< 1.000 0.019<7 8.15 0.009 0.009 1.000 0.109<7 1.000 0.005<44 7.97 0.013 0.010 0.100 0.100<7 0.005<44 7.97 0.013 0.013 0.100 0.100 0.005<44 7.97 0.013 0.013 0.103 0.103 0.005<44 7.97 0.013 0.013 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.005<44 0.103 0.103 0.103 0.103 0.103 0.103 0.005<44 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.005<44 0.103 0.		39765	9	19.0	0.018	090.0	4.600	0.900	0.005 <w< td=""><td>8.40</td><td>0.003</td><td>0.040</td></w<>	8.40	0.003	0.040
1310 39796 6 22.0 0.037 0.010 0.100 0.400 0.0055W 7.97 0.013 1135 39827 6 15.0 0.141 0.120 3.900 1.650 0.0055W 7.85 0.115 1125 39843 6 15.0 0.008 0.130 3.900 1.020 0.0055W 7.65 0.145 125 39843 6 15.0 0.008 0.130 3.900 1.020 0.0055W 8.03 0.045		39780	9	19.0	0.085	0.010	0.100<	1.000	0.019 <t< td=""><td>8,15</td><td>0.009</td><td>0.025</td></t<>	8,15	0.009	0.025
1145 39811 6 25.0 0.041 0.010 0.100 0.990 0.005 <pre>4 7.71 0.001</pre> 1130 39827 6 15.0 0.141 0.120 3.900 1.650 0.005 1125 39843 6 15.0 0.008 0.130 3.900 1.020 0.005 1126 0.005		39796	9	22.0	0.037	0.010	0.100<	0.400	0.005 <w< td=""><td>7.97</td><td>0.013</td><td>0.056</td></w<>	7.97	0.013	0.056
1130 39827 6 15.0 0.141 0.120 3.900 1.650 0.005 <n 0.112<br="" 7.05="">1125 39843 6 15.0 0.008 0.130 3.900 1.020 0.005<n 0.045<="" 8.03="" td=""><td></td><td>39811</td><td>9</td><td>25.0</td><td>0.041</td><td>0.010</td><td>0.100</td><td>0.990</td><td>0.005<w< td=""><td>7.71</td><td>0.001<</td><td>0.054</td></w<></td></n></n>		39811	9	25.0	0.041	0.010	0.100	0.990	0.005 <w< td=""><td>7.71</td><td>0.001<</td><td>0.054</td></w<>	7.71	0.001<	0.054
1125 39843 6 15.0 0.008 0.130 3.900 1.020 0.005 <w 0.045<="" 8.03="" td=""><td></td><td>39827</td><td>9</td><td>15.0</td><td>0.141</td><td>0.120</td><td>3.900</td><td>1.650</td><td>0.005<w< td=""><td>7.85</td><td>0.112</td><td>0.195</td></w<></td></w>		39827	9	15.0	0.141	0.120	3.900	1.650	0.005 <w< td=""><td>7.85</td><td>0.112</td><td>0.195</td></w<>	7.85	0.112	0.195
		39843	9	15.0	0.008	0.130	3.900	1.020	0.005 <w< td=""><td>8.03</td><td>0.045</td><td>0.086</td></w<>	8.03	0.045	0.086

STATION ID: 04-0013-031-02

B.O.W./ SITE: LOCK DRAIN SAMPLE POINT: AT CONCESSION ROAD 22 HARWICH TWP

STATION ID: 04-0013-033-02

B.O.W./ SITE: BIG CREEK SAMPLE POINT: CONC.10 W.TILBURY TWP.W.OF STRANGFIELD

				TERM STREAM: THAMES RIV	TERM STREAM: THAMES RIVER	VER				2870
LAT:	LAT: 42 11 33.66	LONG: 082 31 01.22	31 01.22	U T M: 17	U T M: 17 0374740.0 4672070.0 4	672070.0 4	REGION: 01	10	DISTANCE:	16.737
*=INTERIM TEST-MAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NMHTUR	NNO2UR
			CHLORIDE	CONDUCT	COLIFORM	STREPCUS			TOTAL	N02~N
HOUR SAMPLE	SAMPLE DEPTH	SUB-PROJ	UNF. REAC	UMHO/CM	CNT	CNT	STREAM	MATER	UNF. REAC	UNF REAC
		CODE	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG.C	AS N	AS N
1210 30853		0101	58,900	453.0	095	5200	9	1.0	0.277	0.150
	5 0.30	0101	58.600	862.0	100	100	9	2.0	0.001	0.080
		0101	37.800	559.0	100AID	200AID	9	12.0	0.032	0.000
		0101	25.400	381.0	700AID	2400	9	8.0	0.086	0.330
		0101	31.400	489.0	2100	006	6	14.0	0.341	0.200
1250 40769		0101	71.000	740.0	72	SOAID	7	22.0	0.021	0.010
1250 40781		0101	82,000	733.0	910	120	9	26.0	0.040	0.010<
		0101	184.000	1121.0	1500>	290	9	22.0	0.008	0.180
		0101	50.800	522.0	1200	4100	9	20.0	0.094	0.130
		0101	17.300	273.0		5300	· M	11.0	0.135	001.0
		0101	52,500	905.0	3300	ZOOAID	9	0.8	0.866	0.060
		0101			1600	40AID	9	2.0		
MAXIMUM ARITH MEAN	M 0.30		184.000	1121.0	3300	5300		26.0	0.866	0.330
GEOM MEAN			50.237	593.0		431		7.7	0.057	0.100
MINIMUM	4 0.30		17.300	273.0	72	30		1.0	0.001	0.010
STD DEV (GEOM *)	-		45,219	254.9		7*		0.6	0.255	
# SAMP IN STATISTICS	5 12		11	11	10	12		12	11	10
% SAMP (EXCLUDED)					6					6
*=INTERIM TEST-WAME:	NNO3UR	NNTKUR	Н	PP04UR	PPUT	RSP	TURB			
	N03-N	TOTAL		P04	PHOSPHOR					
	UNF. REAC	UNF. REAC		UNF . REAC	UNF. TOT.	RESIDUE				
HOUR SAMPLE	E MG/L	MG/L		MG/L	MG/L	PARTIC.	TURB'ITY			
		AS N	PH	AS P	AS P	MG/L	FTU			
1210 30853	3 6,400	2.300	7.40	0.258	0.540	142.0				
1215 30865	5 8.400	0.810	8.04	0.010	0,062	11.7				
1230 40733		1.680	7.59	0,098	0.296	10.8				
1335 40745		3.200	7.50	0.284	0.655	127.0				
1325 40757		2.900	7.55	0,260	0.620	83.6				
1250 40769	001.00 6	0.900	8.78	0,007	0.024	5.0<				
1250 40781		1,120	8.40	0.007	0.042	17.1				
1305 40793	3 4.400	1.110	8,06	0.005	0.061	12.5	16.40			
1335 40805		2.100	7.66	0.183	0.368	70.8				
		2.300	7.07	0.151	0.420	92.0				

1990 WATER QUALITY DATA REGION 1

20	02 003 2870	16.737					
STATION ID: 04-0013-033-02	STORET CODE: 02 003 287	DISTANCE:					
TION ID:		10					
STA		REGION: 01	TURB	TURB'ITY FTU	16.40	16.40	-
	ES	672070.0 4	RSP	RESIDUE PARTIC. MG/L	142.0 58.1	10.8	10
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0374740.0 4672070.0 4	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.655	0.024	11
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PP04UR	P04 UNF.REAC MG/L AS P	0.284	0.002	11
ANGETELD		31 01.22	н	Ħ	8.78 7.85 7.83	7.07	11
WP.W.OF STE		LAT: 42 11 33.66 LONG: 082 31 01.22	NNTKUR K DAHI N	TOTAL UNF.REAC MG/L AS N	3.200 1.860 1.690	0.810	11
K W.TILBURY 1		2 11 33.66	NNO3UR	NO3-N UNF.REAC MG/L AS N	11.500 5.930	0.100	10
B.O.W./ SITE: BIG CREEK SAMPLE POINT: CONC.10 W.TILBURY TWP.W.OF STRANGEIELD	PE: RIVER	LAT: 4	TEST-NAME:	SAMPLE	MAXIMUM ARITH MEAN GEOM MEAN	STD DEV (GEOM *)	# SAMP IN STATISTICS
B.O.W./ SI	STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LHT		STD DE	# SANP IN

STATION ID: 04-0013-037-02

B.O.W./ SITE: DINGMAN CREEK SAMPLE POINT: AT WELLINGTON ROAD STATION TYPE: RIVER

AS N MG/L 1 < T DISTANCE: 208,726 MNO2UR JNF . REAC NG/L 3 3 3 X X X M>1 P1BHCG GAMMA 0.053 0.030 0.036 0.030 0.030 0.110 0.050 0.030 0.040 2870 0.061 0.040 0.080 0.130 STORET CODE: NH3-N HG/L AS N NUHTUR TOTAL JNF . REAC ***** PIBHCB BETA NG/L 3 3 3 0.001< 0.029 0.025 0.146 0.051 0.102 0.002 0.023 0.043 0.146 0.053 8 TEMP ALPHA ***** DEG.C P1BHCA BHC NG/L 2.0 1.0 3.0 14.0 119.0 12.5 13.5 5.0 22.0 10.6 7.2 1.0 7.7 REGION: 01 STREAM COND. FWSTRC 3 3 3 3 3 3 3 PIALDR ALDRIN NG/L ¥ × 999999999 0483050,0 4750850.0 4 SOAID CNI STREPCUS /100ML CNT PSEUDOMN /100ML AERUG. 1500> FSMF PSAMF 80 210 7900 10 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE AS P COLIFORM ¥ MG/L /100ML PHOSPHOR JNF. TOT. <009 09 001 055 400 1400 0.026 0.048 0.128 0.100 481 10 6 PPUT 0.580 0.052 U T M: 17 25C COND25 UMHO/CM AT 25 C MG/L P04 CONDUCT. PP04UR . REAC 791.0 792.0 842.0 811.0 775.0 831.0 808.0 657.0 818.0 842.0 792.2 657.0 51.9 AS 0.034 0.040 0.188 0,005 0.010 031 0.058 0.048 MG/L AS CL CLIDUR UNF . REAC CHLORIDE Hd LONG: 081 12 27.55 81.400 61.200 81.035 58.400 20.451 10 120,000 97.400 107.000 77.900 88.800 61.800 83.240 7.86 8.04 8.32 8.01 8.08 8.80 7.94 8.08 20,000 7.63 8.07 HH CODE MG/L AS N FGPROJ PROJECT SUB-PROJ NNTKUR K'DAHL N JNF. REAC 0101 0103 0103 0103 0103 0.920 0,840 1.500 0.940 0103 0101 TOTAL 1.540 1.040 LAT: 42 59 43.24 DEPTH Z MG/L AS N FWSADP SAMPLE N-20N NNOSUR UNF. REAC 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 6.300 1.200 6.600 2,300 7.800 7.900 SAMPLE 39397 39472 39522 39547 39422 39322 39347 39447 MAXIMUM ARITH MEAN # SAMP IN STATISTICS NUMBER 39372 39472 39497 39547 39572 59372 GEOM MEAN MINIMUM STD DEV (GEOM *) SAMPLE 39322 39397 39447 39522 39347 *=INTERIM TEST-NAME: % SAMP (EXCLUDED) TEST-NAME: 1130 1120 HOUR 1125 1125 1130 1135 901017 1125 1125 1130 1135 1130 1120 HOUR 1140 1125 LMI LMT *=INTERIM YYHIIDD 900919 900117 900221 900320 900418 900524 900620 900718 900822 916006 TYHINDD 901120 900117 900320 900418 900524 900620 900718 900822 901017 SAMPLE 900221 DATE DATE

0.016

DATE OF REPORT: 9 JAN 92 PAGE: STATION ID: 04-0013-037-02

54

B.O.W./ SITE: DINGMAN CREEK SAMPLE POINT: AT WELLINGTON BOAD

**	2870	DISTANCE: 208.726	PIBHCG		BHC	GAMMA NG/L	H	1 <a< th=""><th>1<a< th=""><th>=</th><th>0<a< th=""><th>11</th><th></th><th>PIHEPT</th><th></th><th>20104071</th><th>HEPACHUK</th><th>NG/L</th><th>3>1</th><th>3</th><th>3/1</th><th>37</th><th>3</th><th>3 1</th><th>1</th><th>1</th><th>1 7</th><th>X 3 7 7</th><th>1 1</th><th>1</th><th></th><th>1<a< th=""><th>1<a< th=""><th></th><th>0<4</th><th>11</th><th></th></a<></th></a<></th></a<></th></a<></th></a<>	1 <a< th=""><th>=</th><th>0<a< th=""><th>11</th><th></th><th>PIHEPT</th><th></th><th>20104071</th><th>HEPACHUK</th><th>NG/L</th><th>3>1</th><th>3</th><th>3/1</th><th>37</th><th>3</th><th>3 1</th><th>1</th><th>1</th><th>1 7</th><th>X 3 7 7</th><th>1 1</th><th>1</th><th></th><th>1<a< th=""><th>1<a< th=""><th></th><th>0<4</th><th>11</th><th></th></a<></th></a<></th></a<></th></a<>	=	0 <a< th=""><th>11</th><th></th><th>PIHEPT</th><th></th><th>20104071</th><th>HEPACHUK</th><th>NG/L</th><th>3>1</th><th>3</th><th>3/1</th><th>37</th><th>3</th><th>3 1</th><th>1</th><th>1</th><th>1 7</th><th>X 3 7 7</th><th>1 1</th><th>1</th><th></th><th>1<a< th=""><th>1<a< th=""><th></th><th>0<4</th><th>11</th><th></th></a<></th></a<></th></a<>	11		PIHEPT		20104071	HEPACHUK	NG/L	3>1	3	3/1	37	3	3 1	1	1	1 7	X 3 7 7	1 1	1		1 <a< th=""><th>1<a< th=""><th></th><th>0<4</th><th>11</th><th></th></a<></th></a<>	1 <a< th=""><th></th><th>0<4</th><th>11</th><th></th></a<>		0<4	11	
STORET CODE: 02		DISTANCE	P1BHCB		BHC	NG/L	1	1 <a< td=""><td>1<a< td=""><td>н</td><td>D<a< td=""><td>11</td><td></td><td>PIHEPE</td><td>HEPIA</td><td>CHLOR</td><td>NO.11</td><td>MO/ L</td><td>1 < W</td><td>1<w< td=""><td>3>1</td><td>3 > 1</td><td>3</td><td>3 > 1</td><td>3/1</td><td>1 1</td><td>17</td><td>3 7</td><td>3 ></td><td></td><td>-1</td><td>1<a< td=""><td>1<a< td=""><td>=</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></a<></td></a<></td></a<>	1 <a< td=""><td>н</td><td>D<a< td=""><td>11</td><td></td><td>PIHEPE</td><td>HEPIA</td><td>CHLOR</td><td>NO.11</td><td>MO/ L</td><td>1 < W</td><td>1<w< td=""><td>3>1</td><td>3 > 1</td><td>3</td><td>3 > 1</td><td>3/1</td><td>1 1</td><td>17</td><td>3 7</td><td>3 ></td><td></td><td>-1</td><td>1<a< td=""><td>1<a< td=""><td>=</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></a<></td></a<>	н	D <a< td=""><td>11</td><td></td><td>PIHEPE</td><td>HEPIA</td><td>CHLOR</td><td>NO.11</td><td>MO/ L</td><td>1 < W</td><td>1<w< td=""><td>3>1</td><td>3 > 1</td><td>3</td><td>3 > 1</td><td>3/1</td><td>1 1</td><td>17</td><td>3 7</td><td>3 ></td><td></td><td>-1</td><td>1<a< td=""><td>1<a< td=""><td>=</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></a<>	11		PIHEPE	HEPIA	CHLOR	NO.11	MO/ L	1 < W	1 <w< td=""><td>3>1</td><td>3 > 1</td><td>3</td><td>3 > 1</td><td>3/1</td><td>1 1</td><td>17</td><td>3 7</td><td>3 ></td><td></td><td>-1</td><td>1<a< td=""><td>1<a< td=""><td>=</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<>	3>1	3 > 1	3	3 > 1	3/1	1 1	17	3 7	3 >		-1	1 <a< td=""><td>1<a< td=""><td>=</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<>	1 <a< td=""><td>=</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<>	=	0 <a< td=""><td>11</td><td></td></a<>	11	
STORET CODE		01	PIBHCA		BHC	NG/L	1	1 <a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td><td>P1END2</td><td>- Triboonia</td><td>ENDOSOLP</td><td>NG/1</td><td>100</td><td>5<w< td=""><td>N>2</td><td>34</td><td>3</td><td>33</td><td>34</td><td>3</td><td>3</td><td>3/4</td><td>3</td><td>30</td><td></td><td>n.</td><td>5<a< td=""><td>5<a< td=""><td>ı,</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></a<></td></a<></td></a<>	1 <a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td><td>P1END2</td><td>- Triboonia</td><td>ENDOSOLP</td><td>NG/1</td><td>100</td><td>5<w< td=""><td>N>2</td><td>34</td><td>3</td><td>33</td><td>34</td><td>3</td><td>3</td><td>3/4</td><td>3</td><td>30</td><td></td><td>n.</td><td>5<a< td=""><td>5<a< td=""><td>ı,</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></a<></td></a<>	-	0 <a< td=""><td>11</td><td></td><td>P1END2</td><td>- Triboonia</td><td>ENDOSOLP</td><td>NG/1</td><td>100</td><td>5<w< td=""><td>N>2</td><td>34</td><td>3</td><td>33</td><td>34</td><td>3</td><td>3</td><td>3/4</td><td>3</td><td>30</td><td></td><td>n.</td><td>5<a< td=""><td>5<a< td=""><td>ı,</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></a<>	11		P1END2	- Triboonia	ENDOSOLP	NG/1	100	5 <w< td=""><td>N>2</td><td>34</td><td>3</td><td>33</td><td>34</td><td>3</td><td>3</td><td>3/4</td><td>3</td><td>30</td><td></td><td>n.</td><td>5<a< td=""><td>5<a< td=""><td>ı,</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<>	N>2	34	3	33	34	3	3	3/4	3	30		n.	5 <a< td=""><td>5<a< td=""><td>ı,</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>ı,</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<>	ı,	0 <a< td=""><td>11</td><td></td></a<>	11	
5		REGION: 01	PIALDR		1410014	NG/L	1	1 <a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td><td>PIENDI</td><td>PAINOCILI D</td><td>ENDOSOLP</td><td>NG/I</td><td></td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	1 <a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td><td>PIENDI</td><td>PAINOCILI D</td><td>ENDOSOLP</td><td>NG/I</td><td></td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	-	0 <a< td=""><td>11</td><td></td><td>PIENDI</td><td>PAINOCILI D</td><td>ENDOSOLP</td><td>NG/I</td><td></td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	11		PIENDI	PAINOCILI D	ENDOSOLP	NG/I		2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>2 < W</td><td>2<k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></w<>	2 < W	2 < W	2 <k< td=""><td>3 > 2</td><td>2 < W</td><td>•</td><td>7</td><td>2<a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<>	3 > 2	2 < W	•	7	2 <a< td=""><td>2<a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<></td></a<>	2 <a< td=""><td>22</td><td>W>0</td><td>11</td><td></td></a<>	22	W>0	11	
ES		750850.0 4	PSAMF	AERUG.	FINA	/100ML	22	80		4		in:	24	PIENDS	ENIDOCITIO	SUI PHATE	NG/1		5 <w< td=""><td>5<w< td=""><td>5<f< td=""><td>12 < 12</td><td>55<</td><td>2×W</td><td>5<f< td=""><td>15 × W</td><td>W>5</td><td>32</td><td>34 > 10</td><td></td><td></td><td>5<a< td=""><td>5<a< td=""><td>M</td><td>0<a< td=""><td>=======================================</td><td></td></a<></td></a<></td></a<></td></f<></td></f<></td></w<></td></w<>	5 <w< td=""><td>5<f< td=""><td>12 < 12</td><td>55<</td><td>2×W</td><td>5<f< td=""><td>15 × W</td><td>W>5</td><td>32</td><td>34 > 10</td><td></td><td></td><td>5<a< td=""><td>5<a< td=""><td>M</td><td>0<a< td=""><td>=======================================</td><td></td></a<></td></a<></td></a<></td></f<></td></f<></td></w<>	5 <f< td=""><td>12 < 12</td><td>55<</td><td>2×W</td><td>5<f< td=""><td>15 × W</td><td>W>5</td><td>32</td><td>34 > 10</td><td></td><td></td><td>5<a< td=""><td>5<a< td=""><td>M</td><td>0<a< td=""><td>=======================================</td><td></td></a<></td></a<></td></a<></td></f<></td></f<>	12 < 12	55<	2×W	5 <f< td=""><td>15 × W</td><td>W>5</td><td>32</td><td>34 > 10</td><td></td><td></td><td>5<a< td=""><td>5<a< td=""><td>M</td><td>0<a< td=""><td>=======================================</td><td></td></a<></td></a<></td></a<></td></f<>	15 × W	W>5	32	34 > 10			5 <a< td=""><td>5<a< td=""><td>M</td><td>0<a< td=""><td>=======================================</td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>M</td><td>0<a< td=""><td>=======================================</td><td></td></a<></td></a<>	M	0 <a< td=""><td>=======================================</td><td></td></a<>	=======================================	
GREAT LAK LAKE ERIE THAMES RI		483050.0 4	PPUT	PHOSPHOR	MG/1	AS P	0.580	0.125	0.083	0.026	0.163	10		PIENDR		ENDRIN	NG/L		5 <w< td=""><td>5<k< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td>2×W</td><td>5<₩</td><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></k<></td></w<>	5 <k< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td>2×W</td><td>5<₩</td><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></k<>	5 <w< td=""><td>5<w< td=""><td>5<w< td=""><td>2×W</td><td>5<₩</td><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>5<w< td=""><td>2×W</td><td>5<₩</td><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>2×W</td><td>5<₩</td><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	2×W	5<₩	5 <w< td=""><td>5<w< td=""><td>5<w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>5<w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<>	5 <w< td=""><td>5<w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<>	5 <w< td=""><td></td><td>n :</td><td>D < A</td><td>5<a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<>		n :	D < A	5 <a< td=""><td>īu</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<>	īu	0 <a< td=""><td>11</td><td></td></a<>	11	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER		U T M: 17 0483050.0 4750850.0 4	PP04UR	PO4	MG/I	AS P	0.188	0.046	620.0	0.005	0.055	10		PIDMDT	DMDT	MTHXYLLR	NG/L		34>5	2 <k< td=""><td>2<k< td=""><td>34>5</td><td>5<w< td=""><td>2<k< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></k<></td></w<></td></k<></td></k<>	2 <k< td=""><td>34>5</td><td>5<w< td=""><td>2<k< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></k<></td></w<></td></k<>	34>5	5 <w< td=""><td>2<k< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></k<></td></w<>	2 <k< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></k<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>5<w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<></td></w<>	5 <w< td=""><td>5<w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<></td></w<>	5 <w< td=""><td>ı</td><td>י ב</td><td>or i</td><td>5<a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></w<>	ı	י ב	or i	5 <a< td=""><td>un e</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<>	un e	0 <a< td=""><td>11</td><td></td></a<>	11	
		12 27.55	Hd			Hd	8.80	8.08	8.08	7.05	10.31	10		PIDIEL		DIELDRIN	NG/L		2 <w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<></td></w<>	2 <w< td=""><td>e</td><td>4/6</td><td>4/3</td><td>Z < A</td><td>2 5</td><td>0<a< td=""><td>=</td><td></td></a<></td></w<>	e	4/6	4/3	Z < A	2 5	0 <a< td=""><td>=</td><td></td></a<>	=	
		LONG: 081 12 27.55	NNTKUR K'DAHL N	TOTAL	MG/L	AS N	1.540	1.064	1.050	0.740	107.0	70		PICHLG	CHLRDANE	GAMMA	NG/L		2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<></td></w<>	2 <w< td=""><td>0</td><td>3 C A</td><td>4 4 7 6</td><td>4/7</td><td>2 0</td><td>N V</td><td>=</td><td></td></w<>	0	3 C A	4 4 7 6	4/7	2 0	N V	=	
NGTON ROAD		LAI: 42 54 43.24	NNOSUR	NO3-N	MG/L	AS N	7.900	5.220	000	2 807	100.1	70		PICHLA	CHLRDANE	ALPHA	NG/L		2 <w< td=""><td>2<1</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<#</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2<1	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<#</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<#</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<#</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<#</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<></td></w<></td></w<></td></w<>	2<#	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>2<w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<></td></w<>	2 < W	2 <w< td=""><td>٥</td><td>2 < A</td><td>2 / 0</td><td>¥ / 5 c</td><td>4/0</td><td>¥/0 **</td><td>1</td><td></td></w<>	٥	2 < A	2 / 0	¥ / 5 c	4/0	¥/0 **	1	
F: AT WELLI E: RIVER		LAI: 4	ST-NAME:		SAMPLE	NUMBER	MAXIMUM	CEOM MEAN	MINIM	STD DEV (GEOM *)	TATISTICS	Y SAMD (EVCILINED)	EVELOPED	ST-NAME:		SAMPLE	NUMBER		39322	59547	39372	39397	39422	39447	39472	39497	39522	39547	39572	MAXIMUM	ARITH MEAN	CEOM MEAN	MINIMIN	STD DEV (CEOM &)	10001 × 1	% SAMP (EXCLUDED)	
SAMPLE POINT: AT WELLINGTON ROAD STATION TYPE: RIVER			*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	YYMMDD LMT				STD DEV	# SAMP IN STATISTICS	J CAMD Y	- 200	*=INTERIM TEST-NAME:	SAMPLE		YYMMDD LMT			900221 1125	900320 1130		900524 1125	900620 1125	900/18 1130	900822 1135			901120 1105		4			STD DEV	* CAMP THE	* SAMP (EXCLUDED)	

(CONTD)

B.O.W./ SITE: DINGHAN CREEK SAMPLE POINT: AT WELLINGTON ROAD STATION TYPE: RIVER

STATION ID: 04-0013-037-02

Maintenin Test-table Maintenin Test-table Maintenin Test-table Maintenin Test-table Maintenin Test-table Maintenin	STATION TYPE: RIVER	ER				MAJOR BASIN MINOR BASIN TERM STREAM	1AJOR BASIN: GREAT LAKES TINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	(ES EVER			STORET CODE: 02 003 283	E: 02 003 2870
HOLE FEST-MARE PLOCHE		AT: 42 54	43.24	LONG: 081 13	2 27.55	U T M: 17	0483050.0 4	4750850.0 4	REGION:	10	DISTANCE	: 208.726
1146 39322 5c4 2c4 5c4 2c6 5c4 1c4 5c4 5c6 5c6 1c4 5c4 5c6 5c6 1c4 5c4 5c6 5c6 5c6 5c4 1c4 5c4 5c6 5c6 5c6 5c6 5c4 1c4 5c4 5c6 5	ITERIM TEST-NA		THIRX	PIOCHL	PloppT	PIPCBT	PIPPDD	PIPPDE	PIPPDT	P1T0X	RSP	X1HCBD
100 5.9192 1.000	ш					PCB					RESIDUE	HXCHLORO
1176 59322 554 264 564 204 564 144 564 5004 133.0 133.0 133.2 134.0 134.	HOUR		MIREX	OXCHLANE	OP-DDT	TOTAL	PP-DDD	PP-DDE	PP-DDT	TOXAPHEN	PARTIC.	RIITANTNE
1126 39347 554 264 564 2064 564 164 564 5064 133.0 1126 39347 554 264 264 2064 564 164 564 5004 10.7 1126 39347 554 264 264 264 2664 564 164 564 164 564 160 1126 39347 554 264 264 264 264 164 564 2064 20.7 1126 39347 554 264 564 2064 564 2064 20.7 1125 39347 554 264	LMT	MBER	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	HG/L	NG/L
1125 39372 554 254 554 564 5	1140	9322	5 <w< td=""><td>2<w< td=""><td>15 × W</td><td>20 < W</td><td>3>1</td><td>3>1</td><td>3/1</td><td>27/00/2</td><td>0 400</td><td>4</td></w<></td></w<>	2 <w< td=""><td>15 × W</td><td>20 < W</td><td>3>1</td><td>3>1</td><td>3/1</td><td>27/00/2</td><td>0 400</td><td>4</td></w<>	15 × W	20 < W	3>1	3>1	3/1	27/00/2	0 400	4
1130 33372 554 264 264 264 564 164 564 560 560 560 167 1	1125	79267	5 <f< td=""><td>2<w< td=""><td>2×W</td><td>20<w< td=""><td>30</td><td>1 < 1</td><td>3</td><td>H-000</td><td>753.0</td><td>1</td></w<></td></w<></td></f<>	2 <w< td=""><td>2×W</td><td>20<w< td=""><td>30</td><td>1 < 1</td><td>3</td><td>H-000</td><td>753.0</td><td>1</td></w<></td></w<>	2×W	20 <w< td=""><td>30</td><td>1 < 1</td><td>3</td><td>H-000</td><td>753.0</td><td>1</td></w<>	30	1 < 1	3	H-000	753.0	1
1126 33937 5 ck 2 ck 5 ck 20 ck 5 ck 1 ck 5 ck 5 ck 1 ck 5 ck 5 ck 1 ck 5 ck 5 ck 5 ck 1 ck 5 ck 5 ck 5 ck 1 ck 5 ck 1 ck 5 ck 5 ck 1 ck	1130	9372	5 <w< td=""><td>2<w< td=""><td>N>K</td><td>20 < W</td><td>No.</td><td>3/1</td><td>1</td><td>2/002</td><td></td><td>1</td></w<></td></w<>	2 <w< td=""><td>N>K</td><td>20 < W</td><td>No.</td><td>3/1</td><td>1</td><td>2/002</td><td></td><td>1</td></w<>	N>K	20 < W	No.	3/1	1	2/002		1
1125 39422 5544 244 5544 2044 5544 144 544 5004 10.7 1135 39422 5544 244 5544 2044 5544 144 544 5004 32.3 1135 39522 5544 244 5544 2044 5544 144 544 5004 32.3 1135 39522 5544 244 5544 2044 5544 144 5544 5004 32.3 1135 39522 5544 244 5544 2044 5544 144 5544 5004 10.7 1135 39522 5544 244 5544 2044 5544 144 5544 5004 13.5 1135 39522 5544 244 244 244 244 244 244 244 244 244 1135 39522 544 244 244 244 244 244 244 244 244 244 244 1135 39522 144	1120	9397	5 <w< td=""><td>2<w< td=""><td>30</td><td>20<w< td=""><td>3</td><td>3>1</td><td></td><td>M/000</td><td>\ 0°C</td><td>dy T</td></w<></td></w<></td></w<>	2 <w< td=""><td>30</td><td>20<w< td=""><td>3</td><td>3>1</td><td></td><td>M/000</td><td>\ 0°C</td><td>dy T</td></w<></td></w<>	30	20 <w< td=""><td>3</td><td>3>1</td><td></td><td>M/000</td><td>\ 0°C</td><td>dy T</td></w<>	3	3>1		M/000	\ 0°C	dy T
1125 33947 5c4	1125	9422	5 <w< td=""><td>2 < K</td><td>3</td><td>20 CM</td><td>3/1</td><td>11/1</td><td>1 3 1</td><td>W/000</td><td>\n. c. c.</td><td>M>T</td></w<>	2 < K	3	20 CM	3/1	11/1	1 3 1	W/000	\n. c. c.	M>T
135 3947 544 244 544	1125	2556	3×K	300	3	E/00	3 4	1 T		Mynng	10.7	1<4
1135 39497 5c4 2c4 5c4 5c4 5c4 5c4 5c4 5c6 1c4 5c4 5c4 5c6 1c4 5c4 5c6 1c5 1	1130	625	3	1 C	2 2	2000	1 1	M/H	N I	M>nne	29.7	
1125 39522 5cH 2cH 5cH 5	1115	2000	3/11	11/6		M-02	0 1	MyT	2 × 3	M>005	32.3	1
1125 39542 5544 5544 5544 5644	1175	0000		M/2	K .	M>0Z	M>C	M>T	2 <f< td=""><td>500×W</td><td>10.7</td><td>1<4</td></f<>	500×W	10.7	1<4
MAXIMUM 5 2 4 5 4 2 0 4 5 4 5 4 5 4 5 5 5	1100	2255	10	MSZ	M>C	20 <w< td=""><td>N>N</td><td>I < M</td><td>2<w< td=""><td>M>00€</td><td>28.1</td><td>1 <</td></w<></td></w<>	N>N	I < M	2 <w< td=""><td>M>00€</td><td>28.1</td><td>1 <</td></w<>	M>00€	28.1	1 <
HAXIHUH 5 2 4 2 2 2 2 2 3 1 5 5 5 5 2 2 2 4 5 4 5 5 5 5 5 5 5	5711	1456	MyG	M>2	2 < W	20 <w< td=""><td>2<×</td><td>1<w< td=""><td>2<₹</td><td>M>005</td><td>13.5</td><td>1<</td></w<></td></w<>	2<×	1 <w< td=""><td>2<₹</td><td>M>005</td><td>13.5</td><td>1<</td></w<>	2<₹	M>005	13.5	1<
HAXIHUH S	1105	9572	20 × W	2 < JY	2 × E	20 <w< td=""><td>2<₩</td><td>1<w< td=""><td>5<w< td=""><td>H>005</td><td>26.2</td><td>1<1</td></w<></td></w<></td></w<>	2<₩	1 <w< td=""><td>5<w< td=""><td>H>005</td><td>26.2</td><td>1<1</td></w<></td></w<>	5 <w< td=""><td>H>005</td><td>26.2</td><td>1<1</td></w<>	H>005	26.2	1<1
Number State Sta	MAXI	MUM	ru	2	Ŋ	20	140	1	ц	200	102 0	-
Figure F	ARITH P	1EAN	5 <a< td=""><td>2<4</td><td>E<a< td=""><td>SACA</td><td>4/4</td><td>4/4</td><td>1</td><td>000</td><td>7 7 7</td><td>4</td></a<></td></a<>	2<4	E <a< td=""><td>SACA</td><td>4/4</td><td>4/4</td><td>1</td><td>000</td><td>7 7 7</td><td>4</td></a<>	SACA	4/4	4/4	1	000	7 7 7	4
HIMINUM	GEOM P	1EAN	5 <a< td=""><td>2<4</td><td>5 × 5</td><td>200</td><td>T C</td><td>4/4</td><td>4 4</td><td>5000<a< td=""><td>54.5</td><td>1<1</td></a<></td></a<>	2<4	5 × 5	200	T C	4/4	4 4	5000 <a< td=""><td>54.5</td><td>1<1</td></a<>	54.5	1<1
The provide bold The provide	MIMI	ими	ır		u	200	ו ו ו	¥/ + +	× / n ı	5000 A	4	1>1
FILE STATISTICS 1	STD DEV (GEOF	(*)	0.0	A / O	4/0	0 0	0 0	-	0	200	10.7	Н
Test	SAMP TH CTATICA	1100			*	4/0	A > 0	N A	0 < A	0 <a< td=""><td></td><td>0<4</td></a<>		0<4
The teach color of	" CAMP (EVELLE)	202	77	11	11	11	11	11	11	11	80	11
HOUR SAIPLE FITADIER MCK NCZTCHOR NCZTCHOR NCZTCZ36	A SAIR LEACEUL) ED)									20	
HEXACHLO HEXA	FERIM TEST-NAM		1HCCP	X2HCB	X2HCE	X20CST	X2PNCB	X21236	X2T245	NOTOK	V0107	V21176
HOUR SAIPLE ENTADIEN HGE HGE STYRENE BENZENE TOLUGNE TRCHLORO TECHLORO TECHNORO TECH		HEX	ACHLO				PENTA	2.3.6	2.4.5	2.6.0	1 2 7	1 2 7 6
HOUR SAMPLE ENTADIEN HGB HGE STYRENE BENZENE TOLOGNE TROUDON HGALLON H	1	ROC	YCLOP			OUTCHIOD	CHIDDO	Thruinba	Themony	40000	700111000	T)C, 23,4
LHT NUMBER NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	HOUR		ADTEN	HCR	HUE	STYDENE	DENIZENE	TOTILITIES	TOLLICE	TOTTE	INCHLORO	LECHLORO
1140 23522 15W 16W 1	D IMT		11.71	200	1000	SILVENE	DENZENE	DELOEME	IOLUENE	TOLUENE	BENZENE	BENZENE
1125 33527 154		IDER	HO/ F	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L
1125 33347 144 154 154 154 5	1140	322		1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>35 < W</td><td>3</td><td>3>4</td><td>3/1</td><td>1/1</td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1 < W</td><td>35 < W</td><td>3</td><td>3>4</td><td>3/1</td><td>1/1</td></w<></td></w<>	1 <w< td=""><td>1 < W</td><td>35 < W</td><td>3</td><td>3>4</td><td>3/1</td><td>1/1</td></w<>	1 < W	35 < W	3	3>4	3/1	1/1
1120 33372 1cH 1	1125	1347		1 <w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>3>5</td><td>3</td><td>3/4</td><td></td><td>4</td></w<></td></w<></td></w<>	1 < W	1 <w< td=""><td>1<w< td=""><td>3>5</td><td>3</td><td>3/4</td><td></td><td>4</td></w<></td></w<>	1 <w< td=""><td>3>5</td><td>3</td><td>3/4</td><td></td><td>4</td></w<>	3>5	3	3/4		4
1125 39397 144 144 144 144 5	1130	372		3 < W	30	3>1	1/1	1 4	1 1	10 1	K	W/T
1125 39472 1ch 1ch<	1120	1207		100	1 / 13	4 4 6 6	17 T	H/0	My CI	2<#	2 <w< td=""><td>1 < W</td></w<>	1 < W
1125 35947 144 144 144 544 544 544 544 544 544 1125 35947 144 144 144 144 144 544 544 544 544 544	1100	1000		M/T	MIT	MoT	M>T	2 × X	2×K	2 <w< td=""><td>2<k< td=""><td>1 < W</td></k<></td></w<>	2 <k< td=""><td>1 < W</td></k<>	1 < W
1125 39447 144 144 144 144 544 544 544 544 544 1135 39472 144 144 144 144 144 544 544 544 544 544	1125	7756		M>1	N>I	1 <w< td=""><td>1<w< td=""><td>3<</td><td>2<w< td=""><td>5<w< td=""><td>S<w< td=""><td>1 < W</td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>3<</td><td>2<w< td=""><td>5<w< td=""><td>S<w< td=""><td>1 < W</td></w<></td></w<></td></w<></td></w<>	3<	2 <w< td=""><td>5<w< td=""><td>S<w< td=""><td>1 < W</td></w<></td></w<></td></w<>	5 <w< td=""><td>S<w< td=""><td>1 < W</td></w<></td></w<>	S <w< td=""><td>1 < W</td></w<>	1 < W
1135 39472 154 154 154 154 554 554 554 554 1135 39522 154 154 154 154 154 554 554 554 1135 39527 154 154 154 154 154 554 554 554 554 1135 39527 554 154 154 154 154 554 554 554 554 554	1125	2556		1 <w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>5×K</td><td>5<w< td=""><td>2×W</td><td>1 N N</td><td>1/1</td></w<></td></w<></td></w<></td></w<>	1 < W	1 <w< td=""><td>1<w< td=""><td>5×K</td><td>5<w< td=""><td>2×W</td><td>1 N N</td><td>1/1</td></w<></td></w<></td></w<>	1 <w< td=""><td>5×K</td><td>5<w< td=""><td>2×W</td><td>1 N N</td><td>1/1</td></w<></td></w<>	5×K	5 <w< td=""><td>2×W</td><td>1 N N</td><td>1/1</td></w<>	2×W	1 N N	1/1
1135 33997 1 1135 33952 1 1135 33957 5 1105 3357 5 1105 3357 5 1106 1 1107 3357 5 1108 3357 5 1108 3357 5 1108 3357 5 1109 3357 5 	1130	3472		1 <w< td=""><td>1 < W</td><td>1 < W</td><td>1<w< td=""><td>5<w< td=""><td>3>1</td><td>N/S</td><td>3/1</td><td>17/1</td></w<></td></w<></td></w<>	1 < W	1 < W	1 <w< td=""><td>5<w< td=""><td>3>1</td><td>N/S</td><td>3/1</td><td>17/1</td></w<></td></w<>	5 <w< td=""><td>3>1</td><td>N/S</td><td>3/1</td><td>17/1</td></w<>	3>1	N/S	3/1	17/1
11135 33522 1 11135 33527 5 1105 33577 5 1106 33577 5 1107 33577 5 1108 33577 5 1109 33577	1135	2656		1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>No.</td><td>E S</td><td>3/4</td><td></td><td>1</td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1 < W</td><td>No.</td><td>E S</td><td>3/4</td><td></td><td>1</td></w<></td></w<>	1 <w< td=""><td>1 < W</td><td>No.</td><td>E S</td><td>3/4</td><td></td><td>1</td></w<>	1 < W	No.	E S	3/4		1
1125 39547 5<4 1<4 1<4 1<4 5<4 5<4 5<4 5<4 5<4	1135	9522		1 <w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>3</td><td>3</td><td>3/4</td><td></td><td>M/1</td></w<></td></w<></td></w<>	1 < W	1 <w< td=""><td>1<w< td=""><td>3</td><td>3</td><td>3/4</td><td></td><td>M/1</td></w<></td></w<>	1 <w< td=""><td>3</td><td>3</td><td>3/4</td><td></td><td>M/1</td></w<>	3	3	3/4		M/1
1105 39572 55W 55W 55W	1125	3547	5 <k< td=""><td>1<w< td=""><td>1 < W</td><td>1 < W</td><td>1 CW</td><td>3/4</td><td>11/11</td><td>7 1</td><td>2 :</td><td>M/T</td></w<></td></k<>	1 <w< td=""><td>1 < W</td><td>1 < W</td><td>1 CW</td><td>3/4</td><td>11/11</td><td>7 1</td><td>2 :</td><td>M/T</td></w<>	1 < W	1 < W	1 CW	3/4	11/11	7 1	2 :	M/T
	1105	3572	300	1<10	3/1	1/1	No. of	0 1	M>O	X > 0	2×W	1 <w< td=""></w<>

STATION ID: 04-0013-037-02

B.O.W./ SITE: DINGMAN CREEK SAMPLE POINT: AT WELLINGTON ROAD STATION TYPE: RIVER

W 0	.726	X21234	ECHLORO BENZENE	NG/L	-	1 <a< th=""><th>1<a< th=""><th>1</th><th>0<a< th=""><th>=</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></a<></th></a<></th></a<>	1 <a< th=""><th>1</th><th>0<a< th=""><th>=</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></a<></th></a<>	1	0 <a< th=""><th>=</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></a<>	=																						
E: 02 003 2870	: 208	X21234 1,2,3,4	TECHI	-																												
STORET CODE: 02 003 287	DISTANCE: 208.726	X2123 1,2,3	RCHLORO	NG/L	L	5 <a< td=""><td>5<a< td=""><td>ស</td><td>V>0</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	5 <a< td=""><td>ស</td><td>V>0</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	ស	V>0	11																						
	0.1	X2T26A 2,6,A	TOLUENE	NG/L	ru	5 <a< td=""><td>5<a< td=""><td>r.</td><td>0<a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>r.</td><td>0<a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	r.	0 <a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	=																						
	REGION: 01	X2T245 2,4,5	TOLUENE	NG/L	រហ	5 <a< td=""><td>5<a< td=""><td>TO.</td><td>V>0</td><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	5 <a< td=""><td>TO.</td><td>V>0</td><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	TO.	V>0	=																						
VER	750850.0 4	X2T236 2,3,6	TOLUENE	NG/L	ĸ	5 <a< td=""><td>5<a< td=""><td>in .</td><td>0<a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>in .</td><td>0<a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	in .	0 <a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	=																						
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0483050.0 4750850.0 4	X2PNCB PENTA	BENZENE	NG/L	1	1 <a< td=""><td>1<a< td=""><td>H</td><td>0 < A</td><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	1 <a< td=""><td>H</td><td>0 < A</td><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	H	0 < A	=																						
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	X20CST	STYRENE	NG/L	-	1 <a< td=""><td>1<a< td=""><td> ·</td><td>0<a< td=""><td>=</td><td>X2135</td><td>1,3,5</td><td>TRCHLORO</td><td>NG/L</td><td>5<w< td=""><td>5<k< td=""><td>2×W</td><td>2<w< td=""><td>5<w< td=""><td>2<w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<></td></w<></td></w<></td></k<></td></w<></td></a<></td></a<></td></a<>	1 <a< td=""><td> ·</td><td>0<a< td=""><td>=</td><td>X2135</td><td>1,3,5</td><td>TRCHLORO</td><td>NG/L</td><td>5<w< td=""><td>5<k< td=""><td>2×W</td><td>2<w< td=""><td>5<w< td=""><td>2<w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<></td></w<></td></w<></td></k<></td></w<></td></a<></td></a<>	·	0 <a< td=""><td>=</td><td>X2135</td><td>1,3,5</td><td>TRCHLORO</td><td>NG/L</td><td>5<w< td=""><td>5<k< td=""><td>2×W</td><td>2<w< td=""><td>5<w< td=""><td>2<w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<></td></w<></td></w<></td></k<></td></w<></td></a<>	=	X2135	1,3,5	TRCHLORO	NG/L	5 <w< td=""><td>5<k< td=""><td>2×W</td><td>2<w< td=""><td>5<w< td=""><td>2<w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<></td></w<></td></w<></td></k<></td></w<>	5 <k< td=""><td>2×W</td><td>2<w< td=""><td>5<w< td=""><td>2<w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<></td></w<></td></w<></td></k<>	2×W	2 <w< td=""><td>5<w< td=""><td>2<w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<></td></w<></td></w<>	5 <w< td=""><td>2<w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<></td></w<>	2 <w< td=""><td>2<k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<></td></w<>	2 <k< td=""><td>S<w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<></td></k<>	S <w< td=""><td>2<f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<></td></w<>	2 <f< td=""><td>Z < ₹</td><td>2 < W</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></f<>	Z < ₹	2 < W	in.	5 <a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>ın</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<>	ın	0 <a< td=""><td>11</td><td></td></a<>	11	
	12 27.55	X2HCE	HCE	NG/L	e	1 <a< td=""><td>1<a< td=""><td>; H (</td><td>0<a< td=""><td>:</td><td>X21245</td><td>1,2,4,5</td><td>TECHLORO</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	1 <a< td=""><td>; H (</td><td>0<a< td=""><td>:</td><td>X21245</td><td>1,2,4,5</td><td>TECHLORO</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	; H (0 <a< td=""><td>:</td><td>X21245</td><td>1,2,4,5</td><td>TECHLORO</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	:	X21245	1,2,4,5	TECHLORO	NG/L	1 < W	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<>	1 <w< td=""><td>H</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<>	H	1 <a< td=""><td>1<a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<>	1 <a< td=""><td>-</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<>	-	0 <a< td=""><td>11</td><td></td></a<>	11	
	LONG: 081 12 27.55	Х2НСВ	HCB	NG/L	Ħ	1 <a< td=""><td>1<a< td=""><td> 0</td><td>0 < A</td><td>:</td><td>X2124</td><td>1,2,4</td><td>TRCHLORO</td><td>NG/L</td><td>3×5</td><td>5<w< td=""><td>5<w< td=""><td>2<w< td=""><td>5<w< td=""><td>¥>5</td><td>Z ∨ S</td><td>2<k< td=""><td>Z<₹</td><td>2<k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></k<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	1 <a< td=""><td> 0</td><td>0 < A</td><td>:</td><td>X2124</td><td>1,2,4</td><td>TRCHLORO</td><td>NG/L</td><td>3×5</td><td>5<w< td=""><td>5<w< td=""><td>2<w< td=""><td>5<w< td=""><td>¥>5</td><td>Z ∨ S</td><td>2<k< td=""><td>Z<₹</td><td>2<k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></k<></td></w<></td></w<></td></w<></td></w<></td></a<>	0	0 < A	:	X2124	1,2,4	TRCHLORO	NG/L	3×5	5 <w< td=""><td>5<w< td=""><td>2<w< td=""><td>5<w< td=""><td>¥>5</td><td>Z ∨ S</td><td>2<k< td=""><td>Z<₹</td><td>2<k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></k<></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>2<w< td=""><td>5<w< td=""><td>¥>5</td><td>Z ∨ S</td><td>2<k< td=""><td>Z<₹</td><td>2<k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></k<></td></w<></td></w<></td></w<>	2 <w< td=""><td>5<w< td=""><td>¥>5</td><td>Z ∨ S</td><td>2<k< td=""><td>Z<₹</td><td>2<k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></k<></td></w<></td></w<>	5 <w< td=""><td>¥>5</td><td>Z ∨ S</td><td>2<k< td=""><td>Z<₹</td><td>2<k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></k<></td></w<>	¥>5	Z ∨ S	2 <k< td=""><td>Z<₹</td><td>2<k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<></td></k<>	Z<₹	2 <k< td=""><td>3× × ×</td><td>in.</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<></td></k<>	3× × ×	in.	5 <a< td=""><td>5<a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<></td></a<>	5 <a< td=""><td>ın</td><td>W>0</td><td>11</td><td></td></a<>	ın	W>0	11	
RIVER	LAT: 42 54 43.24	X1HCCP HEXACHLO	ENTADIEN	NG/L	ĽΩ	5 <a< td=""><td>5<a< td=""><td>ru c</td><td>0 < A</td><td>ı</td><td>X21235</td><td>1,2,3,5</td><td>TECHLORO</td><td>NG/L</td><td>1<w< td=""><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>1<w< td=""><td>1<k< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></w<></td></w<></td></a<></td></a<>	5 <a< td=""><td>ru c</td><td>0 < A</td><td>ı</td><td>X21235</td><td>1,2,3,5</td><td>TECHLORO</td><td>NG/L</td><td>1<w< td=""><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>1<w< td=""><td>1<k< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></w<></td></w<></td></a<>	ru c	0 < A	ı	X21235	1,2,3,5	TECHLORO	NG/L	1 <w< td=""><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>1<w< td=""><td>1<k< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></w<></td></w<>	1 < W	1 < W	1 < W	1 < W	1 <w< td=""><td>1<k< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></w<>	1 <k< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<>	1 <w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	1 < W	1 <w< td=""><td>1<w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<></td></w<>	1 <w< td=""><td>Ħ</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></w<>	Ħ	1 <a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<></td></a<>	1 <a< td=""><td>1</td><td>0<a< td=""><td>11</td><td></td></a<></td></a<>	1	0 <a< td=""><td>11</td><td></td></a<>	11	
E: RIVER	LAT: 4	EST-NAME:	SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMOM	MP IN STATISTICS	% SAMP (EXCLUDED)	EST-NAME:		SAMPLE	NUMBER	39322	39347	39372	39397	39422	39447	39472	29497	39522	39547	39572	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	DATE HOUR	үүмирр смт				20 070	# SAMP IN STATISTICS	% SAMP	*=INTERIM TEST-NAME:	1	SAMPLE DATE HOUR	-	900117 1140	900221 1125	900320 1130			900620 1125	900718 1130	900822 1135	900919 1135	901017 1125	901120 1105					STD DE	# SAMP IN STATISTICS	% SAMP

STATION ID: 04-0013-038-02

SAMPLE POINT: AT COUNTY ROAD 48 WOODSTOCK B.O.W./ SITE: THAMES RIVER

MG/L AS N DISTANCE: 261,028 HNO2UR NO2-N UNF. REAC 2870 0.240 0.100 0.110 0.000 0.340 0.040 0.040 0.290 0.180 0.130 0.300 0.182 0.152 STORET CODE: NH3-N TOTAL AS N NNHTUR MG/L UNF. REAC 0.149 0.050 0.670 0.041 0.115 0.164 0.017 0.227 0.041 0.164 017 0.670 0.095 WATER FEMP DEG.C 0.00 19.0 21.0 19.0 16.0 5.0 21.0 10.3 6.6 0.5 7.9 REGION: 01 **FWSTRC** STREAM COMD. RSP 9 9 9 0518850.0 4776700.0 4 10AID 70AID FECAL STREPCUS CNT /100ML PSEUDOMN FSMF PSAMF 16 00 370 00 700 58 8 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE 70AID COLIFORM CHI /100ML FECAL PHOSPHOR 74 FCMF 28 630 029 240 670 10 PPUT U T M: 17 COND25 25C UMHO/CM AT 25 C P04 CONDUCT PP04UR 654.0 654.0 550.0 566.0 733.0 766.0 895.0 547.0 895.0 547.0 111.4 10 654.1 CLIDUR MG/L CHLORIDE UNF. REAC AS CL LONG: 080 46 05.51 41.200 39.800 35.400 75,400 44.080 42.807 29.200 12.308 75.400 29.200 48.600 45.100 40,900 96.000 39.200 PH STATION TYPE: RIVER FLOW GAUGE FED 02GD012 FGPR0.3 SUB-PRO.1 CODE PROJECT NNTKUR K'DAHL N 0101 0101 1010 0101 1010 1010 0101 1010 0101 0101 TOTAL LAT: 43 08 41.10 SAMPLE FWSADP Z NNOSUR N03-N 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 39363 39413 39438 39463 39513 NUMBER 39488 39538 SAMPLE 39338 39388 39313 39563 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS *=INTERIM TEST-NAME: STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: 0060 0160 HOUR 0855 0905 0060 0905 0905 0910 YYMINDD LMT *=INTERIM 900117 900320 900620 SAMPLE 900418 900718 900919 901017 901120 900221 900524 900822 DATE

CONTDI

RESIDUE MG/L PARTIC.

HF CNT /100ML

AS P

0.081

0.051

7.75

1.380 1.010

5.900

39338 39363 39388 39413 39463

0060

900221 900524

0855 9060 0905 0905

900117 900320 900418

MG/L

MG/L

UNF. REAC

AS P

H

MG/L AS N

AS N MG/L

UNF. REAC

UNF. REAC

SAMPLE JUMBER 39313

HOUR

DATE

SAMPLE

LMT

YYHHDD

UNF. TOT.

AERUG.

22.7

0.070

0.004 0.010 0.015 0.036 0.006 0.021

8,09

1.360 0.960 1.500

8.500 7.100 5.800 009 7.800

6.500 .700 100 8.700

9438 9488 9513

> 9060 0160 0060

900822

0160

900718 900919 901017

900620

0.057 960.0

0.084

8.18 8.22 7.98 8.08 8.11

9.1

22.9 9.6 21.7 18.0

0.119

0.108

1.500 1.530 1.300 1.020

39538

0060

0.087 0.087 STATION ID: 04-0013-038-02

1990 WATER QUALITY DATA REGION 1

	SAMPLE POINT: AT COUNTY ROAD 48 WOODSTOCK	CALCADO TOTAL DESIGNATION OF THE PARTY OF TH
	48	1
ER	ROAD	
RIV	1TY	i
THAMES	AT COUR	20000
SITE	POINT:	-
B.O.W./ SITE: THAMES RIVER	SAMPLE	1104444

STORET CODE: C	DISTANCE: 26
	REGION: 01
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THANES RIVER	U T M: 17 0518850.0 4776700.0 4
STATION TYPE: RIVER FLOW GAUGE FED 026D012	LAT: 43 08 41.10 LONG: 080 46 05.51 U T M: 17 0518850.0 4776700.0 4

STORET CODE: 02 003 2870	DISTANCE: 261.028												
	REGION: 01	RSP		RESIDUE	PARTIC.	MG/L	36.6	17.9	16.0	7.1	6.60	10	
KES E IVER	U T M: 17 0518850.0 4776700.0 4	PSAMF	AERUG.	MF	CNT	/100ML							
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	0518850.0	PPUT	PHOSPHOR	UNF.TOT.	HG/L	AS P	0.136	0.092	0.000	0.057	0.023	10	
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	PP04UR	P04	UNF. REAC	MG/L	AS P	0.064	0.027	0.020	0.004	0.020	10	
2	46 05.51	Н				Н	8.23	8.07	8.07	7.75	0.15	6	
FLOW GAUGE FED 02GD012	LAT: 43 08 41.10 LONG: 080 46 05.51	K'DAHL N	TOTAL	UNF. REAC	MG/L	AS N	1.530	1.257	1.237	0.960	0.233	10	
	43 08 41.10	NNO3UR	N-20N	UNF	HG/L			5.670				10	
STATION TYPE: RIVER	LAT:	*=INTERIM TEST-NAME:			HOUR SAMPLE	LMT NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
STATION		*=INTERI		SAMPLE		YYMMDD L					STI	# SAMP	'S 'X

STATION ID: 04-0013-039-02

02

STORET CODE: MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

	I AT: 6										
		LAT: 43 02 43.48	LONG: 080 52	52 38.01	U T M: 17	U T M: 17 0510000.0 4765650.0 4	765650.0 4	REGION: 01	11	DISTANCE: 245.257	245.257
*=INTERIM TEST-NAME:	NAME:	FWSADP	FGPR0J	ALKT	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	MINHTUR
SAMPLE		A AMD	DBO 1ECT	ALK	CHLORIDE	CONDUCT.	COLIFORM	FECAL STREPCUS			NH3-N TOTAL
HOUR	SAMPLE	DEPTH	SUB-PROJ	MG/L	MG/L	UMHOZEM	CNT	E L	CTDEAM	WATER	UNF.REAC
YYMNDD LMT	NUMBER	Σ	CODE	AS CACO3	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG.C	AS N
	39317	0.30	0101	192.0	112.000	941.0	006	1080	9	3.0	0.372
	39345	0.30	0101				09	4	9	0.0	1
	39367	0.30	0101	167.0	43.400	617.0	150	SOAID	9	6.0	0.142
900418 0955	39392	0.30	0101		79.900	745.0	320	32	9	5.0	0.050
	39417	0.30	0101	191.0	58.000	725.0	112	96			0,001<
_	39445	0.30	0101	208.0	78.200	898.0	208	128	9	18.0	0,032
	39467	0.30	0101	188.0	71.800	810.0	1410	1500>	9	20.5	0.048
	39492	0.30	0101	189.0	71.900	787.0	069	340	9	18.0	0.041
	39517	0.30	0101	212.0	67.100	777.0	170	150	9	14.0	0.002
901017 0950	39542	0.30	0101	241.0	47.800	791.0	140	100	9	12.0	
901120 0945	39567	0.30	0101	258.0	45.900	811.0	110	SOAID	9	5.0	0.012
H	MAXIMUM	0.30		258.0	112.000	941.0	1410	1080		20 5	0 272
ARITH	ARITH MEAN	0.30		205.1	67.600	790.2	388	201		0.0	2000
GEO	GEON MEAN			203.4	64.964	785,5	240	4		9.9	0.001
H	MINIMUM	0.30		167.0	43.400	617.0	60	7		. c	0 000
STD DEV (GEOM *)	(* MO3			28.5	20.581	89.2	×	•		7.3	1000
# SAMP IN STATISTICS	ISTICS	11		6	10	10	11	10		10	60
% SAMP (EXCLUDED)	LUDED)							6			11
*=INTERIM TEST-NAME:	VAME:	NHOZUR	NNO3UR	NNTKUR	ЬН	PP04UR	PPUT	PSAMF	RSP		
		NO2-N	ND3-N	TOTAL		pud	DHOCDHOD	PSEUDOMN			
SAMPLE		UNF. REAC	UNF. REAC	UNF . REAC		UNF. REAC	UNE TOT	MERUG.	DECTUIE		
DATE HOUR	SAMPLE	1/9W	MG/L	MG/I		MG/I	MC / 1	CALT	DANTIO		
	NUMBER	AS N	AS N	AS N	ЬН	AS P	AS P	/100ML	HG/L		
900117 1005	39317	0.150	6.500	1.560	7.98	0.067	0.172	7	a 12		
	39345							>4			
	39367	0.240	7.900	1.340	8.09	0.059	0.112	>5	9.6		
900418 0955	39392	0.000	006.9	0.670	7.79	0.014	0.036	>4	5.0<		
	39417	0.210	009.9	0.830	8.14	0.020	0.085	>4>	19.7		
_	39445	0.100	000.9	0.840	8.45	0.044	0.084	>4>	13.1		
	39467	0.110	5.300	1,020	8,15	9,000	0.122	00	30.3		
	39492	0.070	3.600	1.020	8.04	0.035	0.133	4	24.6		
	39517	0.000	3,400	0.910	8.18	0.038	0.113	>4	18.0		
	39545	0.020	8,000	0.920	8.19	0.047	0.132	>4	26.3		
901120 0945	1000	1 1 1							2		

(CONTD)

	INGERSO	En 0261		
	STREET			
THAMES RIVER	AT PEMBERTON			
B.O.W./ SITE: THAMES RIVER	SAMPLE POINT: AT PEMBERTON STREET	CTATION TVDE: DIVED		

STATION ID: 04-0013-039-02 STORET CODE: 02 003 2870	DISTANCE: 245.257							
ATION ID: C	01	RSP	RESIDUE	MG/L	51.8	24.4	9.6	10
118	REGION: 01	PSAMF PSEUDOMN	MF MF	/100ML	æ	. 9	æ.	63
res Iver	765650.0 4	PPUT	UNF TOT.	AS P	0.172	0.107	0.036	10
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0510000.0 4765650.0 4	PPO4UR	UNF.REAC	AS P	0.067	0.039	0.014	10
MAJOR BASIF MINOR BASIF TERM STREAT	U T M: 17	Н		H	8.45	8,15	7.79	10
90	52 38.01	NNTKUR K'DAHL N	UNF. REAC	AS N	1.560	0.991	0.670	10
IVER RTON STREET INGERSOLL FLOW GAUGE FED 02GD016	LONG: 080 52 38.01	NNO3UR	UNF.REAC	AS N	8,600	6.280	3.400	10
IVER RTON STREET FLOW GAUGE	LAT: 43 02 43.48	NNO2UR	UNF. REAC	AS N	0.240	0.125	0.020	10
88	LAT: 4	TEST-NAME:	CAMDI	NUMBER	MAXIMUM	GEOM MEAN	MINIMUM STD DEV (GEOM *)	SAMP IN STATISTICS % SAMP (EXCLUDED)
B.O.W./~SITE: THAMES SAMPLE POINT: AT PER STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE	_			STD DE	# SAMP IN

1 560
0.991 0.962 0.670 0.268

STATION ID: 04-0013-041-02

B.O.W./ SITE: HIDDLE THAMES RIVER SAMPLE POINT: AT 2ND.CONC.RD.SOUTH OF THAMESFORD STATION TYPE: RIVER FLOW GAUGE FED 026D004

70AID 20AID HG/L STREPCUS CNT P04 UNF. REAC DISTANCE: 239,786 FECAI /100ML PP04UR 64 32 28 28 60 60 56 120 210 490 20 2870 540 163 87 AS FSMF 900.0 0.008 0.018 0.026 0.067 0.036 0.010 0.010 003 STORET CODE: AS FE 0.050 0.196<A IRON 0.147<A 0.101<A PHENOLS UG/L MG/L 0.054<T 0.088<T 0.070<T 0.100<T UNF-REAC 0.080<T 0.050<T 0,060<T PHENOL TOT. 0.110 PHNOL >0000 >000°1 >0000 >000'1 0.130 0.140 0.730 2,500 >000 >000 0.730 000.1 FEUT INE 40AID Hd COLIFORM CNT FECAL /100ML 94 12 3* 110 88 88 116 00, 430 7.70 8.10 8.30 8.31 8.37 8.38 24 200 174 8.24 PH REGION: 01 AS 0 MG/L DISOLVED OXYGEN AS PB 0.005<W 0.005<W LEAD MG/L M>500 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 005<W UNF. TOT. 12.0 10.0 111.0 113.0 110.0 10.0 8.0 8.0 14.0 10.9 10.7 8.0 2.1 PBUT 00 U T M: 17 0500000.0 4764125.0 4 MG/L AS N 0.0005<W K'DAHL N COPPER MG/L AS CU 0.0020<7 0.0017<T 0.0023<T 0.0012<T 0.0020<T 0.0020<T 0.0023<A 0.0021<A 0.0011<A NNTKUR UNF. REAC UNF. TOT CUUT 0.0030 0.0040 0.0030 0.0005 1.140 0.610 0.630 0.680 0.710 0.650 0.0040 0.0040 TOTAL TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N COND25 25C UMHO/CM AT 25 C NO3-N CONDUCT. NNO3UR UNF . REAC 636.0 649.0 698.0 635.0 662.0 750.0 784.0 793.0 793.0 653.3 609.3 164.0 164.0 9.500 4.400 7.800 9.600 22,000 0.400 12.500 9.200 AS CL MG/L AS N CLIDUR CHLORIDE UNF. REAC MG/L NNO2UR N02-N UNF. REAC 33.200 34.300 34.300 36.500 35.000 32.400 31.000 36.500 7.600 0.040 0.060 0.040 0.040 7.600 31.700 020 28,541 0.000 090.0 0 TOTAL TOTAL HG/L Z CAC03 NH3-N UNF. REAC MG/I NNHTUR LAT: 43 01 54,28 LONG: 080 59 60.00 201.0 235.0 217.0 217.0 281.0 296.0 305.0 ALKT 44.2 305.0 230.8 209.2 44.2 76.2 AS 0.027 0.022 0.024 0.427 0.050 0.038 CODE DEG.C FGPROJ SUB-PROJ PROJECT FWTEMP WATER TEMP 0101 0103 0103 1.0 0.5 3.0 3.0 13.5 5.0 13.5 13.0 12.0 0103 1010 0103 1010 SAMPLE DEPTH FWSADP FWSTRC STREAM COMD. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 999999 SAMPLE 39370 39520 SAMPLE 39345 39420 39445 39470 39370 39445 39520 39320 39395 39495 39545 39570 ARITH MEAN 39470 36468 39545 HAXIMUM GEOM MEAN MINIMUM SAMP IN STATISTICS 39320 39345 39395 39420 STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: HOUR 1045 050 040 1045 1050 1040 045 1045 1040 040 050 1040 01120 1030 HOUR 1045 1050 040 1045 045 045 LMT *=INTERIM SAMPLE YYHIDD 900117 900320 900418 900524 900620 900718 900919 901017 /YMHDD 900221 900822 900620 900919 901120 900117 900320 900418 900524 900718 900822 301017 SAMPLE 900221 DATE

STATION ID: 04-0013-041-02

1990 WATER QUALITY DATA REGION

B.O.W./ SITE: MIDDLE THAMES RIVER SAMPLE POINT: AT 2ND.CONC.RD.SOUTH OF THAMESFORD STATION TYPE: RIVER FLOW GAUGE FED 02GD004

2870 STORET CODE: REGION: 01 U T M: 17 0500000.0 4764125.0 4 MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES LAT: 43 01 54.28 LONG: 080 59 60.00

MG/L AS P UNF . REAC DISTANCE: 239.786 P04 PP04UR 0.015 0.006 0.019 0.020 0.067 UG/L PHENOLS UNF-REAC PHENOL PHNOL 2.500 1,000 202 표 8.38 8.22 8.22 7.70 0.20 H LEAD MG/L AS PB 0.005 0.005<A 0.005<A 0.005 0.000<A UNF. TOT. PBUT NNTKUR K'DAHL N TOTAL UNF.REAC MG/L AS N 1.140 0.692 0.675 0.530 0.179 NO3-N AS N MG/L NNO3UR UNF. REAC 22.000 10.580 9.822 4.400 4.589 MG/L AS N NNO2UR N02-N UNF. REAC 0.070 0.046 0.020 0.015 UNF.REAC MG/L AS N TOTAL NNHTUR NH3-N 0.427 0.027 0.006 0.135 WATER FWTEMP DEG.C 23.0 10.3 6.3 0.5 8.0 FWSTRC STREAM COND. SAMPLE MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: HOUR YYMNDD LMT N-TAITEDIM SAMPLE DATE

ZNUT		ZINC	UNF. TOT.	MG/L	AS ZN	0000	0.0000	0.0022<1	0.0005	F/00000	0.0000	0.0020×1	0.0010 <t< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0030</th><th>0.000</th><th>0.0021<4</th><th>0.0014<4</th><th>0.0005</th><th>0.0026<a< th=""><th>11</th><th></th></a<></th></w<></th></w<></th></t<>	0.0005 <w< th=""><th>0.0005<w< th=""><th>0.0030</th><th>0.000</th><th>0.0021<4</th><th>0.0014<4</th><th>0.0005</th><th>0.0026<a< th=""><th>11</th><th></th></a<></th></w<></th></w<>	0.0005 <w< th=""><th>0.0030</th><th>0.000</th><th>0.0021<4</th><th>0.0014<4</th><th>0.0005</th><th>0.0026<a< th=""><th>11</th><th></th></a<></th></w<>	0.0030	0.000	0.0021<4	0.0014<4	0.0005	0.0026 <a< th=""><th>11</th><th></th></a<>	11	
RSP			RESIDUE	PARTIC.	HG/L	603	4.00	70	, ,	, a	, r	7	4.	9.9	3.6	35.8	50.2	15.5		3.6		80	20
PSAMF	PSEUDOMN	AERUG.	A.F.	CNT	/100ML	9	10	7 3	25	9	>7	152	12	100	>4	>#	152	31		4		9	45
PPUT		PHOSPHOR	UNF. TOT.	HG/L	AS P	0.154	1	0.05%	0.021	0.038	0.040	0.031	0.050	0.040	0.033	0.027	0.154	0.049	0.041	0.021	0.038	10	
*=INTERIM TEST-NAME:				SAMPLE	NUMBER	39320	30262	39370	39395	39420	39445	39470	39495	39520	39545	39570	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS	% SAMP (EXCLUDED)
RIM				HOUR	LMT	1055								1050	1040	1030					STD DE	NI de	SAMP
*=INTE			SAMPLE	DATE	YYMMDD	900117	900221	900320	900418	900524	900620	900718	900822	900919	901017	901120						# SA	

STATION ID: 04-0013-042-02

AS P MG/L FECAL DISTANCE: 239,786 STREPCUS CNT PHOSPHOR UNF. TOT. /100ML FSMF 164 1260 290 310 150 0.082 2870 124 64 199 0.122 0.198 0.150 68 140 1260 347 PPUT 0.222 STORET CODE: SOOAID GOAID MG/L P04 COLIFORM PP04UR . REAC /100ML 108 220 1500> <009 176 400 240 AS FCMF 1400 455 09 6 18 0.016 0.045 0.056 0.040 0.078 MG/L 0 DISOLVED OXYGEN PH AS 13.0 10.5 10.4 8.0 2.1 13.0 13.0 13.0 13.0 10.0 9.0 8.0 8.0 9.0 8.00 8.02 8.13 8.13 8.02 8.02 8.05 8.14 8.28 풊 REGION: 01 0.0050 0.0033<A AS CU 0.0043 0.0019<T 0.005<W 0.005<W 0.005<W 0.005<W 0.0031<A AS PB COPPER MG/L 0.0017<T 0.0010<A LEAD MG/L 0.005<W M>500.0 0.005<W 0.005<W UNF. TOT. D.006<T 0,005<W UNF. TOT. 0.0030 0.0030 0.0030 0,0040 0.0030 0.0040 CUUT 0.0030 0.0017 PBUT 0502875.0 4762650.0 4 25C UMHO/CH AT 25 C MG/L AS N COND25 NNTKUR K'DAHL N JNF . REAC CONDUCT 645.0 838.0 745.0 892,0 790.0 791.0 0.477 796.0 900.00 796.7 645.0 73.5 1.340 0.940 1.060 1.250 1.140 0.006 1.800 1.380 1.100 TOTAL TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L CLIDUR CHLORIDE UNF. REAC MG/L AS CL AS N NNO3UR N03-N UNF. REAC 75.600 68.300 50.600 64.441 46.200 15.742 10 006.9 66.080 6.400 6.100 5.100 93.300 57.600 6.700 46.200 56.700 86.900 8,000 U T M: 17 AS 0 BOD MG/L MG/L AS N 5 DAY NN02UR N02-N JNF. REAC TOT DEM. 4.90 3.04 8008 1.82 2.02 2.06 1.67 4.90 2.51 2.18 0.59 1.29 0.230 0.000 0.060 3.96 0.130 0.070 0.020 TOTAL MG/L AS N ALK MG/L AS CACO3 NNHTUR NH3-N TOTAL UNF. REAC LONG: 080 57 52,98 173.0 221.0 197.0 227.0 173.0 30.5 10 193.0 183.0 221.0 247.0 271.0 212.6 210.7 0.012 ALKT 193.0 0.134 0.033 494 001 0 STATION TYPE: RIVER FLOW GAUGE FED 02GD016 CODE DEG.C FGPROJ SUB-PROJ TEMP PROJECT **FWTEMP** MATER 3.5 2.0 4.0 5.0 13.0 17.5 21.0 18.0 12.0 0101 0103 0103 0103 0103 0103 0101 01 06.44 SAMPLE FWSTRC STREAM COND. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 999999999 LAT: 43 39368 39418 39468 39493 39543 39568 39368 39443 39518 39343 39393 39443 39418 39468 39493 39543 SAMPLE NUMBER 39318 39518 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS SAMPLE NUMBER 59318 39343 39393 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: H=INTERIM TEST-NAME: 1010 1010 HOUR 015 1020 1015 1015 1015 1020 1015 1010 1015 1020 1020 1000 HOUR 1020 1015 1010 1020 LMT LMT 900620 YYMMDD 900718 901017 /YHIDD 710106 900117 900320 900418 900919 900524 616006 900221 900524 900822 SAMPLE 900117 900221 900320 900418 900620 900718 900822 DATE 41

NTD

0

ں

STATION ID: 04-0013-042-02

INGERSOLL
OF.
DOWNSTREAM OF
BRIDGE
POINT: AT FIRST
POINT: 4
SAMPLE

TEST - LAT: 43 OL 06.44 LONG: 080 57 52.96 U T H: 17 0502075.0 4762650.0 4 REGION: 01 DISTANCE: 2 TEST - LATE TRANSPER FROM TEST - LATE TEST - LATE TRANSPER FROM TEST - LATE TEST - LAT	SAMPLE POINT: AT FIRST BRIDGE DOWNSTREAM OF INGERSOLI STATION TYPE: RIVER FLOW GAUGE FED 02GD016	FLOW GAUGE FED 02GD016	FED 02GD01	INGERSOLL 6	MAJOR BASIN: GREAT LAKES MINOD BASIN: LAKE EDIE	GREAT LAN	(ES			STORET CODE: 02	E: 02
RTH TEST-NAME: FASTRC FAFTER MINITUR MINOZUR MINOZUR MINOZUR MINITUR MINOZUR MINITUR MINOZUR					TERM STREAM	THAMES RI	IVER				2870
Fig. 10 Fig.	LAT:	43 01 06.44	LONG: 080	57 52.98	U T M: 17	0502875.0	4762650.0 4	REGION:	01	DISTANCE	: 239.786
HOUR SAMPLE STREAM TEMP NOS-N NOS-	*=INTERIM TEST-NAME:	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR	NNOSUR	NNTKUR K'DAHL N	PBUT	H	PP04UR	PPUT
The color of the			WATER TEMP DEG.C	TOTAL UNF.REAC MG/L AS N	NO2-N UNF.REAC MG/L AS N	NO3-N UNF.REAC MG/L AS N	TOTAL UNF.REAC MG/L AS N	LEAD UNF.TOT. MG/L AS PB	Ŧ	PO4 UNF.REAC MG/L AS P	PHOSPHOR UNF.TOT. MG/L
PSAMF RSP	MAXIMUM ARITH MEAN GEOM MEAN		21.0	0.494	0.230 0.111 0.079	8.900 6.280 6.022	1.144	0.006 0.005 <a< td=""><td>8.28 8.11 8.11</td><td>0.078</td><td>0.222 0.139 0.127</td></a<>	8.28 8.11 8.11	0.078	0.222 0.139 0.127
PSAMF RSP PSEUDOMN AERUG. E CNT PARTIC. CN	STD DEV (GEON *) * SAMP IN STATISTICS % SAMP (EXCLUDED)		6.8	0.160	0.010	3.500 1.779 10	0.620 0.329 10	0.005 0.000 <a 11</a 	8.00 0.09 10	0.016 0.017 10	0.050 0.056 10
MUMBER /100ML PARILL. 39318 20C 56.9 39368 4 25.5 39368 4 25.5 39473 4 20.3 39473 4 20.3 3948 4 42.9 3948 4 42.9 3958 4 42.9 3958 4 42.9 48.3 MAXIMUM 20 56.9 ARITH MEAN 9 31.1 GEOM MEAN 9 31.1	ERIM TEST-	PSA PSEUD AER	RESIDUE	ZNUT ZINC UNF.TOT.							
1020 39318 20C 56.9 1015 39343 4< 25.5 1020 39363 4< 25.5 1010 39343 4< 5.0	LMT	/10	PAKIIC. MG/L	AS ZN							
1010 39333 4< 5.0	1020 1015 1020		56.9	0.0170 0.0055 0.0048							
1015 39443 4 20.3 1015 39463 4 42.9 1015 39493 12 33.3 1020 39518 12 19.8 1000 39543 4< 42.9 1000 39568 4< 18.3 1000 GEOM MAXIMUM 20 56.9 RITH MEAN 9 31.1 CEOM MEAN 4 18.3 TO DEV (GEOM #) FIN STATISTICS SAMP (EXCLUDED) 45 10	1010		5.0<	T>60000.0							
1015 39493 14 4.27 1020 39518 12 19.8 1005 39543 4< 42.9 1000 39568 4< 18.3 1000 3956 4< 18.3 10 ARITH MEAN 9 31.1 10 DEV (GEOM #EAN HINHUM 4 18.3 10 PIN STATISTICS 6 9 544.9	1010		20.3	0.0050							
35518 12 19.8 35543 4< 42.9 35568 4< 18.3 ARITH HEAN 9 31.1 GEON HEAN 4 18.3 HINIMUM 4 18.3 EV (GEOM *) 6 9 (EXCLUDED) 45 10	1015		33.3	0.0000							
1000 39566 4< 18.3 1000 39566 4< 18.3 1000 39566 4< 18.3 MAXIMUM 20 56.9 GEOM MEAN 9 31.1 GEOM MEAN 4 18.3 TD DEV (GEOM **) P IN STATISTICS 6 9 SAMP (EXCLUDED) 45 10			19.8	0,0000							
20 56.9 9 31.1 4 18.3 6 9 45 10	1000		18.3	0.0050							
9 31.1 4 18.3 6 9 45 10	MAXIMUM		56.9	0.0170							
4 18.3 6 9 45 10	ARITH MEAN GEOM MEAN		31.1	0.0062 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
6 9 45 10	MUMINIM		18.3	0.0009							
45 10	SAMP IN STATISTICS		o	0.0040 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
	% SAMP (EXCLUDED)		10	;							

B.O.W./ SITE: NORTH THAMES RIVER SAMPLE POINT: AT HIGHWAY 7 STATION TYPE: RIVER

STORET CODE: 02 003 STATION ID: 04-0013-043-02 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM SIRFAM: THAMES DIVED

						TERM STREAM	TERM STREAM: THAMES RIVER	IVER				2870
Fight Figh		LAT:	43 12 29.81	LONG: 081	12 28.50	U T M: 17	0483110.0	4783750,0 4		0.1	DISTANC	E: 243,326
Record R	*=INTERIH TES	ST-NAME:	FWSADP	FGPR03	ALKT	8005	CLIDUR	COND25	CUUT	00	FCMF	FSMF
SAMPLE PROJECT TOTAL TOT.DEH. UNF.REAC ZEC UNF.TOT. OVVCER TOTAL TOT.DEH. UNF.REAC AS CL AS					ALK	5 DAY	CHLORIDE	CONDUCT.	COPPER	DISOLVED	COLIFORM	FECAL
Color Colo	ш	CAMBIE	SAMPLE	PROJECT	TOTAL	TOT. DEM.	UNF. REAC	25C	UNF. TOT.	OXYGEN	MF	MF
Color Colo	-	MIMBED	DEPIN	SUB-PRUJ	T/9W	MG/L	HG/L	UMHO/CM	MG/L	MG/L	CNT	CNT
10 10 10 10 10 10 10 10		MONDER		CODE	AS CACOS	AS 0	AS CL	AT 25 C	AS CU	AS 0	/100HL	/100ML
1.2 1.2		39308	0.30	1010	223.0	96.0	46.200	710.0	0.0010 <t< td=""><td>14.0</td><td>110</td><td>DOCTO</td></t<>	14.0	110	DOCTO
1.2 1.2		39333		0101	223.0	66.0	43.400	681.0	0.0016 <t< td=""><td>0.6</td><td>7</td><td>40410</td></t<>	0.6	7	40410
1.00 1.00		39358		0103	177.0	1.30	29.800	554.0	0,0020 <t< td=""><td>14.0</td><td>42</td><td>9.0</td></t<>	14.0	42	9.0
10 10 10 10 10 10 10 10		39383		0103	208.0	1.23	33.200	617.0	0.0016 <t< td=""><td>10.0</td><td>108</td><td>2 2 2</td></t<>	10.0	108	2 2 2
1.00 1.00		39408		0103	215.0	0.59	30.800	628.0	0.0030	13.0	76	100
10.30 0.103 190.0 1.08 33.400 570.0 0.0010ct 12.0 12.0 12.0 13.0 13.0 13.3 13.0 10.3 13.3 13.0 10.0 13.0		39433		0103	159.0	1.13	52.300	601.0	0.0020 <t< td=""><td>10.0</td><td>55</td><td>60</td></t<>	10.0	55	60
1.0 2.0 0.0103 2.11.0 33.300 577.0 0.0030 9.0 1500 1.0 1		39458		0103	190.0	1.08	33,400	570.0	0.0010 <t< td=""><td>12.0</td><td>128</td><td>88</td></t<>	12.0	128	88
13		39483		0103	211.0		33.300	577.0	0.0030	0.6	1500>	1200
National Color 1.88 22,600 680,0 0.0030 9.0 13	900916 1100	29508		0103	1				0.0020 <t< td=""><td></td><td></td><td></td></t<>			
H	901101 1105	59553	0.30	0101	283.0	99.0	24.000	680.0	0.0030	0.6	130	150
H 0.30 283.0 1.88 52.300 710.0 0.0040 14.0 152 1.9 1.9 1.0	901121	59558	0.30	0103	263.0	1.88	22,600	626.0	0.0040	12.0	152	192
No.30 215.2 1.09 34.900 624.4 0.0022.4 11.2 87 1		MAXIMUM	0.30		283.0	1 88	52 200	710 0	0,000	,	į	
H	AR	ITH MEAN	0.30		215.2	1 00	26.300	0.017	0.0040	14.0	152	1200
1	0	FOM MEAN			210 6	200	1100	4.420	0.00cc×A	7.11	8/	181
The color The		MINITHIM	0 20		150.0	1.03	55.768	622.5	0.0020 <a< td=""><td>11.0</td><td></td><td>52</td></a<>	11.0		52
FWSTRC	STD DEV	(GEOM &)	2		127.0	66.0	22.600	554.0	0.0010	0.6	4	5
FHSTRC	TO NI CAMP TH ST	ATTETTE	1.1		27.0	0.38	495.65	52.1	0.0009 <a< td=""><td>2.0</td><td></td><td>24</td></a<>	2.0		24
FMSTRC FMTEMP NINTUR NINOSUR NINOSUR NINTKUR PBUT PHOTOLUR	Z SAMP (F	XCI IIDED	77		٦٥	6	10	10	11	10	6	10
FHSTRC	11000	VCCODED									10	
HOUR SAMPLE STREAM TEMP NO. 10 O. 10	*=INTERIM TES	T-NAME:	FWSTRC	FWTEMP	NNHTUR	NNO2UR	NNO3UR	NNTKUR	PBUT	HH	PP04UR	PPUT
HOUR SAMPLE STREAM TEHP UNF.REAC UNF.RE					NH3-N			K DAHL N				
HOUR SAMPLE STREAM FEILP OF ST	SAMPLE			CATED	TOTAL	N02-N	N03-N	TOTAL	LEAD		P04	PHOSPHOR
		SAMPLE	STREAM	TEHD	ONF . REAL	UNF . KEAC	UNF . REAC	UNF . REAC	UNF. TOT.		UNF. REAC	UNF. TOT.
1135 239208 4 1.5 0.305 0.060 9.500 0.840 0.005544 7.98 0.055		NUMBER	COMD.	DEG C	AS N	MG/L	MG/L	MG/L	HG/L	į	MG/L	MG/L
1135 23336 4 1.5 0.305 0.060 9.500 0.840 0.005<44 7.98 0.055 1130 39323 6 2.0 0.186 0.055 9.100 0.730 0.005<44 6.12 0.032 1131 39328 6 4.5 0.065 0.055 0.055 0.005<44 8.21 0.035 1115 39328 6 14.0 0.011 0.070 12.300 0.780 0.005<44 8.21 0.035 1116 39438 6 14.0 0.040 0.030 0.210 0.056 0.005<44 8.21 0.001 1110 39438 6 14.0 0.047 0.010 0.047 0.010 0.056 0.005<44 8.25 0.001 1110 39438 6 14.0 0.047 0.010 1.600 0.930 0.005<44 8.26 0.018 1110 39438 6 14.0 0.047 0.110 1.600 0.930 0.005<44 8.26 0.018 1110 39538 6 14.0 0.004 0.030 0.030 0.005<44 8.25 0.004 1110 39538 6 11.0 0.004 0.030 0.030 0.005<44 8.32 0.001 1110 39538 6 11.0 0.004 0.030 0.005 0.005<44 8.32 0.001 1110 39538 6 0.004 0.030 0.005 0.005<44 0.005 0.005<44 0.005 1110 39538 0.005 0.005 0.005 0.005 0.005 1110 39538 0.005 0.005 0.005 0.005 0.005 1110 39538 0.005 0.005 0.005 0.005 0.005 1110 39538 0.005 0.005 0.005 0.005 0.005 1110 0.005 0.005 0.005 0.005 0.005 0.005 1110 0.005 0.005 0.005 0.005 0.005 0.005 1110 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 1110 0.005 0.0						200	NO N	AS N	AS PB	Hd	AS P	AS P
1150 35533 6 2.0 0.186 0.050 9.100 0.730 0.00554 9.12 0.032 1115 35635 6 4.5 0.065 0.055 0.055 0.0554 9.12 0.035 1115 35605 6 7.0 0.115 0.030 7.900 0.780 0.00554 9.21 0.035 1115 35463 6 14.0 0.011 0.070 12.300 0.780 0.00554 9.22 0.001 1110 35463 6 23.0 0.004 0.030 2.100 0.750 0.00554 9.26 0.002 1110 35463 6 14.0 0.047 0.110 1.600 0.930 0.00554 9.25 0.001 1110 3550 6 11.0 0.002 0.030 0.030 0.00554 9.25 0.005 1110 3555 6 5.0 0.004 0.030 5.200 0.910 0.00554 9.35 0.001 1105 3555 6 5.0 0.004 0.030 5.200 0.910 0.00554 9.35 0.001 1105 3555 6 5.0 0.004 0.030 5.200 0.910 0.00554 9.35 0.001 1105 3555 6 5.0 0.004 0.030 5.200 0.910 0.00554 9.35 0.001 1105 3555 6 5.0 0.004 0.030 0.00554		39308	4	1.5	0.305	0,060	9.500	0.840	0.005 <w< td=""><td>7.98</td><td>0.055</td><td>0 058</td></w<>	7.98	0.055	0 058
1150 23558 6 4,5 0.065 0.050 8,700 0.850 0.00564 8.21 0.055 0.0554 1.0		39333	9	2.0	0.186	0.050	9.100	0.730	0.005 <w< td=""><td>8.12</td><td>0 025</td><td>0.000</td></w<>	8.12	0 025	0.000
1115 39383 6 7.0 0.115 0.030 7.900 0.870 0.005 c/4 8.12 0.001 c/1 1126 39433 6 14.0 0.041 0.070 12.300 0.780 0.005 c/4 8.12 0.000 c/1 1116 39433 6 23.0 0.040 0.030 2.100 0.950 0.005 c/4 8.46 0.008 c/4 1110 39433 6 18.0 0.047 0.110 1.600 0.930 0.005 c/4 8.46 0.018 1110 39550 6 14.0 0.047 0.110 1.600 0.840 0.095 c/4 8.26 0.048 1110 39558 6 11.0 0.002 0.050 8.600 0.840 0.005 c/4 8.26 0.030 1110 39558 6 5.0 0.004 0.030 5.200 0.910 0.005 c/4 8.35 0.001		39358	9	4.5	0.065	0.050	8.700	0.850	0.005 <w< td=""><td>8.21</td><td>0.035</td><td>0 067</td></w<>	8.21	0.035	0 067
1115 39458 6 14, 0 0.011 0.070 12.300 0.780 0.005544 8.41 0.008 1115 39458 5 20.0 0.044 0.030 2.100 0.950 0.005544 8.45 0.002 0.022 1115 39458 6 23.0 0.0014 0.047 0.010 0.950 0.05544 8.26 0.022 0.022 1110 39458 6 14.0 0.047 0.110 1.600 0.930 0.005544 8.26 0.018 0.		39383	9	7.0	0.115	0.030	7.900	0.870	0.005 <w< td=""><td>8 32</td><td>71000</td><td>0.000</td></w<>	8 32	71000	0.000
1115 39433 6 20.0 0.040 0.030 2.100 0.950 0.005 1116 39463 6 23.0 0.001 1110 39508 6 14.0 0.007 0.110 1.600 0.930 0.005 1110 39558 6 11.0 0.002 0.050 8.600 0.940 0.005 1110 39558 6 5.0 0.004 0.030 5.200 0.910 0.005 1110 39558 6 5.0 0.004 0.030 5.200 0.910 0.005 1110 39558 6 5.0 0.004 0.030 5.200 0.910 0.005 1110 39558 6 5.0 0.004 0.030 5.000 0.910 0.005 1110 39558 6 5.0 0.004 0.030 5.000 0.910 0.005 1110 39558 6 5.0 0.004 0.030 5.000 0.910 0.005 1110 39558 6 5.0 0.004 0.030 5.0 0.910 0.005 1110 39558 6 5.0 0.004		39408	9	14.0	0.011	0.070	12.300	0.780	0.005 <w< td=""><td>8.41</td><td>0 008</td><td>0.040</td></w<>	8.41	0 008	0.040
1115 39458 6 23.0 0.001< 0.040 7.200 0.870 0.005<4 8.46 0.018 1110 39508 6 16.0 0.047 0.110 1.600 0.930 0.005<4 8.22 0.040 1110 39508 6 14.0 0.002 0.050 8.600 0.840 0.005<4 8.26 0.038 1110 39558 6 5.0 0.004 0.030 5.200 0.910 0.005<4 8.35 0.001		59433	9	20.0	0.040	0.030	2.100	0.950	0.005 <w< td=""><td>8.26</td><td>0.022</td><td>050.0</td></w<>	8.26	0.022	050.0
1110 35943 6 16.0 0.047 0.110 1.600 0.930 0.005<4 8.22 0.040 1110 35953 6 11.0 0.002 0.050 8.600 0.840 0.005<4 8.26 0.038 1105 35958 6 5.0 0.004 0.030 5.200 0.910 0.005<4 8.33 0.001		39458	9	23.0	0.001<	0.040	7.200	0.870	0.005 <w< td=""><td>8.46</td><td>0.018</td><td>00000</td></w<>	8.46	0.018	00000
1110 39508 6 14.0 0.002 0.050 8.600 0.840 0.005<4 8.26 0.038 1.050 39558 6 5.0 0.004 0.030 5.200 0.910 0.005<4 8.33 0.001		39483	9	18.0	0.047	0.110	1.600	0.930	0.005 <w< td=""><td>8.22</td><td>0.040</td><td>0.030</td></w<>	8.22	0.040	0.030
1105 39558 6 11.0 0.004 0.030 8.600 0.840 0.005 <n 0.001<="" 0.004="" 0.005<n="" 0.030="" 0.038="" 0.910="" 1050="" 39558="" 5.0="" 5.200="" 6="" 8.26="" 8.33="" td=""><td></td><td>39508</td><td>9 ,</td><td>14.0</td><td></td><td></td><td></td><td></td><td>0.005<w< td=""><td></td><td></td><td></td></w<></td></n>		39508	9 ,	14.0					0.005 <w< td=""><td></td><td></td><td></td></w<>			
1050 57558 6 5.0 0.004 0.030 5.200 0.910 0.005 <w 0.001<="" 8.33="" td=""><td></td><td>20000</td><td>0</td><td>0.11</td><td>0.002</td><td>0.050</td><td>8.600</td><td>0.840</td><td>0.005<w< td=""><td>8.26</td><td>0.038</td><td>0.077</td></w<></td></w>		20000	0	0.11	0.002	0.050	8.600	0.840	0.005 <w< td=""><td>8.26</td><td>0.038</td><td>0.077</td></w<>	8.26	0.038	0.077
		27226	o.	5.0	0.004	0.030	5,200	0.910	0.005 <w< td=""><td>8.33</td><td>0.001</td><td>0.045</td></w<>	8.33	0.001	0.045

STATION ID: 04-0013-043-02

B.O.W./ SITE: NORTH THAMES RIVER SAMPLE POINT: AT HIGHWAY 7

MG/L AS P UNF. TOT. DISTANCE: 243.326 PHOSPHOR 0.089 0.055 0.053 0.030 0.018 PPUT 2870 02 STORET CODE: P04 UNF.REAC MG/L AS P PP04UR 0.055 0.001 6 10 H 8.26 7.98 0.14 품 REGION: 01 0.005 0.005<A 0.005 0.005 LEAD MG/L AS PB UNF. TOT. PBUT J MG/L AS N NNTKUR K'DAHL N UNF. REAC U T M: 17 0483110.0 4783750.0 0.855 TOTAL 0.950 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE UNF.REAC MG/L AS N ZINC NNO3UR N03-N 7.220 6.163 1.600 3.350 ZNUT MG/L AS N NNO2UR N02-N UNF. REAC 0.048 0.030 0.024 0.110 RST TOTAL MG/L NH3-N AS N NNHTUR UNF. REAC LONG: 081 12 28.50 0.305 0.002 RSP 01 WATER TEMP FWTEMP DEG.C 23.0 10.9 8.0 1.5 7.5 RSF LAT: 43 12 29.81 FWSTRC PSEUDOMN STREAM COND. PSAMF AERUG SAMPLE MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS *=INTERIM TEST-NAME: % SAMP (EXCLUDED STATION TYPE: RIVER *=INTERIM TEST-NAME: HOUR YYMMDD LMT SAMPLE DATE

MG/L AS ZN

MG/L RESIDUE TOTAL

MG/L RESIDUE PARTIC.

FILTERED MG/L RESIDUE

/100ML

SAMPLE

HOUR

DATE

SAMPLE

YYMMDD 900116

NUMBER 39308 39358

HF CNT 0.0005<W

0.0010<T 0.0010<T 0,0010<T

0.0310

380.6

392.0 395.0 433.1

28

39433

900619 900717 900018 901016 901121

900821

1480

0.0030 0.0030 0.0000

388.0

466.0

32.9

4

4

1110 1105 1050

0.0018<T

410.0

5.0< 5.0< 11.4 7.0

410.0<

443.0 369.7

16

39333 39383 39408 39458 39483 39508 59533 39558

1130 1115 1115 1120 1115 1110

900220 900319 900417 900523

1130 1135 LMT

>5

>4

0.0034 0.0026

> 376.0 440.0 566.0

6.3

UNF. TOT.

0.0310 0.0048<A 0.0023<A 0.0005 0.0088<A

48.2

443.0 369.7

35

MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)

566.0 430.3 427.0 376.0 59.0

6.3

20

11

9 0 4

B.O.W./ SITE: NORTH THAMES RIVER		NORTH THAMES RIVER AT CONCESSION DOAD 2 COUTH OF MITCHES	o courtin or	MITCHELL				ST	ATION ID: 0	STATION ID: 04-0013-044-02	2
STATION TYPE:		FLOW GAUGE FED 026D014	FED 02GD01	4	MAJOR BASIN: MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	(ES E IVER			STORET CODE: 02 00 28	E: 02 003 2870
	LAT: 43	3 26 50.47	LONG: 081 12 27.43	12 27.43	U T M: 17	U T M: 17 0483200.0 4810300.0 4	810300.0 4	REGION: 01	01	DISTANCE	DISTANCE: 279.374
*=INTERIM TEST-MAME:	ST-NAME:	FWSADP	FGPROJ	ALKT	8005	CLIDUR	COND25	CUUT	DO	FCMF	FSMF
SAMPLE		SAMPLE	PROJECT	ALK	5 DAY	CHLORIDE	CONDUCT.	COPPER	DISOLVED	COLIFORM	STREPCUS
DATE HOUR	SAMPLE	DEPTH	SUB-PROJ	MG/L	MG/L	MG/L	UMH0/CM	MG/L	MG/L	CNT	THU
YYMIDD LMT	NUMBER	E	CODE	AS CACO3	AS 0	AS CL	AT 25 C	AS CU	AS 0	/100ML	/100ML
	39303	0.30	1010	232.0	1.86	35.400	681.0	0.0035	13.0	065	170
900220 0950	39328	0.30	0101		69.0	28.200	652.0	0.0012 <t< td=""><td>12.0</td><td>150</td><td>10<</td></t<>	12.0	150	10<
900519 1000	29555	0.30	0103	201.0	0.35	24.300	581.0	0.0016 <t< td=""><td>12.0</td><td>80</td><td>16</td></t<>	12.0	80	16
	292/0	0.50	0103	229.0	1.47	32.400	0.959	0.0015 <t< td=""><td>10.0</td><td><009</td><td>254</td></t<>	10.0	<009	254
	39428	0.30	0103	169.0	0.40	21,000	0.44.0	0.0030	12.0	172	95
	39453	0.30	0103	239.0	1.42	29.000	621 0	0.0020<1	0.0	180	98
900821 0940	39478	0.30	0103	199.0		41.600	540.0	0.0020	0.0	200	404
900918 0935	39503	0.30	0103	291.0	2.74	35.000	703.0	0.0050	0.6	000	230
	39528	0.30	0101	304.0	0.79	22.200	730.0	0.0030	7.0	246	255
901121 0930	39553	0.30	0103	323.0	1.48	25.500	745.0	0,0000	9.0	TOAID	LOAID
	MAXIMIM	0 30		707	L.	000	1		!		
A	ARITH MEAN	0.30		261.6	1 29	920 02	0.547	0.0050	13.0	830	484
	GEOM MEAN			237.1	1.13	29.554	634.9	0.0027 <a< td=""><td>0.0</td><td>295</td><td>214</td></a<>	0.0	295	214
	HINIHUM	0.30		169.0	0.35	22.200	483.0	0.0012	7.7	01	01
STD DEV	STD DEV (GEOM *)	,		9.65	0.87	5.753	79.5	0.0012 <a< td=""><td>2.3</td><td>07</td><td>07</td></a<>	2.3	07	07
# SAMP IN STALISTICS	Y CAME (EVELINEED)	11		10	10	11	11	11	11	10	10
S CALLE	EVELONED									6	6
*=INTERIM TE	TEST-NAME:	FWSTRC	FWTEMP	NHHTUR NHX-N	NNO2UR	NNO3UR	NNTKUR	PBUT	Н	PP04UR	PPUT
				TOTAL	NO2-N	N-FON	TOTAL	LEAD		200	dollacolla
ш			MATER	UNF. REAC	UNF. REAC	UNF . REAC	UNF . REAC	UNF. TOT.		INF. REAL	LINE TOT
DATE HOUR	SAMPLE	STREAM	TEMP	NG/L	MG/L	HG/L	MG/L	HG/L		T/9W	MG/1
YYMUDD CHI	RUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	Н	AS P	AS P
	39303	4	1.0	0.149	0.130	11.800	1.300	0.006 <t< td=""><td>7.79</td><td>0.061</td><td>0.194</td></t<>	7.79	0.061	0.194
	39328	5	1.5	0.048	0.040	11.700	0.590	0.005 <w< td=""><td>7.96</td><td>0.035</td><td>0.046</td></w<>	7.96	0.035	0.046
	39353	9	3.0	0.018	0.040	11.400	0.620	0.005 <w< td=""><td>8.08</td><td>0.027</td><td>0.040</td></w<>	8.08	0.027	0.040
	39378	9	6.0	0.344	0.020	9.200	1.210	0.005 <w< td=""><td>8.17</td><td>0.012</td><td>0.099</td></w<>	8.17	0.012	0.099
900619 0950	39403	9 \	12.0	0.001<	0.050	14.200	0.680	0.005 <w< td=""><td>8.21</td><td>900.0</td><td>0.026</td></w<>	8.21	900.0	0.026
900717 0960	20458	p v	19.0	0.084	0.080	1.800	0.920	0.005 <w< td=""><td>7.86</td><td>0.015</td><td>0.049</td></w<>	7.86	0.015	0.049
	20670	0	50.5	>100.0	0.080	8.800	0.980	0.005 <w< td=""><td>8.18</td><td>0.001<</td><td>0.049</td></w<>	8.18	0.001<	0.049
	29503	ی م	13.0	0.038	0.020	006.0	0.920	0.005 <w< td=""><td>8.00</td><td>0.013</td><td>0.072</td></w<>	8.00	0.013	0.072
	39528	9 4	10.0	0.027	0.050	6.500	1.160	0.005 <w< td=""><td>8.20</td><td>0.029</td><td>0.083</td></w<>	8.20	0.029	0.083
	39553	9	40.0	0.003	0.040	006.11	0.750	0.005 <w< td=""><td>8.12</td><td>0.033</td><td>0.057</td></w<>	8.12	0.033	0.057
	1	,	-	3	57.5	0.200	0./10	W>SUUSOM	8.20	600.0	0.032

1990 WATER QUALITY DATA REGION 1

-044-02	STORET CODE: 02 003 2870	DISTANCE: 279.374	PP04UR PPUT	PO4 PHOSPHOR REAC UNF.TOT.	MG/L MG/L AS P AS P	Š			06 0.026	0.047	1																				
STATION ID: 04-0013-044-02	STOR	DIS	dd	PO4 UNF.REAC	H	0			900°0		01																				
TION ID		01	H		Ī	6	8.07	8.07	7.79	0.15	1																				
STA		REGION: 01	PBUT	LEAD UNF.TOT.	MG/L AS PB	200	0.005 <a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.000<a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.005</td><td>0.000<a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.000 <a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	=																				
	ES	810300.0 4	NNTKUR K'DAHL N	TOTAL UNF.REAC	MG/L AS N	1 700	0.895	0.864	0.590	0.247	11																				
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERN STREAM: THAMES RIVER	U T M: 17 0483200.0 4810300.0 4	NNOSUR	NO3-N UNF.REAC	MG/L AS N	16. 200	8.827	7.013	0.900	4.240	17																				
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNOZUR	NO2-N UNF.REAC	MG/L AS N	110	0.062	0.052	0.020	0.039	=																				
11011011	T T T T T T T T T T T T T T T T T T T	12 27.43	NNHTUR NH3-N	TOTAL UNF.REAC	MG/L AS N	0 200	0.085		0.003		18	ZNUT	TING	UNF. TOT.	MG/L	AS ZN	0.0098	0.0024 <t< td=""><td>0.0018<1</td><td>0.0020<t< td=""><td>0.0320</td><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0020</td><td>0.0040</td><td>0 0200</td><td>0.0055<0</td><td>0.0027<a< td=""><td>0,0005</td><td>11</td><td></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0018<1	0.0020 <t< td=""><td>0.0320</td><td>0.0010<t< td=""><td>0,0020<t< td=""><td>0.0020</td><td>0.0040</td><td>0 0200</td><td>0.0055<0</td><td>0.0027<a< td=""><td>0,0005</td><td>11</td><td></td></a<></td></t<></td></t<></td></t<>	0.0320	0.0010 <t< td=""><td>0,0020<t< td=""><td>0.0020</td><td>0.0040</td><td>0 0200</td><td>0.0055<0</td><td>0.0027<a< td=""><td>0,0005</td><td>11</td><td></td></a<></td></t<></td></t<>	0,0020 <t< td=""><td>0.0020</td><td>0.0040</td><td>0 0200</td><td>0.0055<0</td><td>0.0027<a< td=""><td>0,0005</td><td>11</td><td></td></a<></td></t<>	0.0020	0.0040	0 0200	0.0055<0	0.0027 <a< td=""><td>0,0005</td><td>11</td><td></td></a<>	0,0005	11	
THE STATE OF	FLOW GAUGE FED 02GD014	LAT: 43 26 50.47 LONG: 081 12 27.43	FWTEMP	WATER	TEMP DEG.C	2	7.6	9.9	1.0	7.7	‡	RSP		RESIDUE	PARTIC.	MG/L	86.4	>0	5.0 8.71	5.0	14.8	12.0	8.7	2.02	11.1	2 48	2000	1	6.2	60	27
AMES RIVER	FLOW GAUGE	3 26 50.47	FWSTRC		STREAM COND.							PSAMF	PSEUDOMN	MF.	CNT	/100ML	>4	5	ý a	>5	>4	20	× ,	. a	o 4-	0.0	9 0		4	ī	54
NORTH TH	RIVER F	LAT: 43	ST-NAME:		SAMPLE	MAX	ARITH MEAN	GEOM MEAN	MINIMUM	SID DEV (GEOM *)	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	39303	39328	59555	39403	39428	39453	39478	20002	39553	MAXTMIM	MEAN HEAN	GEOM MEAN	MINIMUM STD DEV (CEOM *)	STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: NORTH THAMES RIVER	STATION TYPE: RIVER		*=INTERIM TEST-NAME:		DATE HOUR YYMMDD LMT		đ		4	SID DEV (GEOM *)	% SAMP IN	*=INTERIM TEST-NAME:		ш	DATE HOUR	YYMMDD LMT			900319 1000				900821 0940				7		cto ne	# SAMP IN STATISTICS	% SAMP

B.O.W./ SITE: NORTH THAMES RIVER

STATION ID: 04-0013-045-02

GOATD BOAID MG/L AS P FECAL ¥ CHT STREPCUS /100ML 139 75 12 3# PHOSPHOR JNF. TOT. DISTANCE: 251.051 16 24 12 56 80 200 620 170 0.055 0.052 0.040 0.069 0,080 0.063 0,040 2870 620 PPUT STORET CODE: GOAID SOOAID FECAL MG/L AS P P04 COLIFORM CNT PP04UR REAC /100ML 0.026 500> 160 290 FCMF 48 28 99 204 210 500 æ 10 6 0.052 0.011 0.027 0.026 154 0.025 UNF. MG/L AS 0 DISOLVED OXYGEN Hd 12.0 13.0 13.0 113.0 111.0 111.0 111.0 9.0 8.0 13.0 11.1 11.0 8.0 1.6 8.12 8.14 8.31 8.26 8.16 8.38 8.28 8.00 00 PH REGION: 01 AS CU 0.005<W 0.005<W 0.005<W 0.006<T 0.005<W AS PB COPPER 0.0012<T 0.0010<A LEAD MG/L 0.005<W 0.005<W MG/L 0017<T 0.0023<T 0.0017<T 0.0010<T 0.0025<A 0.0023<A M>500 UNF. TOT. UNF. TOT 0.0030 0030 0.0010 CUUT 0.0030 0.0030 PBUT 043 0.0040 0,000,0 0,0000 0 U T M: 17 0486200.0 4787100.0 4 MG/L AS N 25C UMHO/CM AT 25 C NNTKUR K'DAHL N UNF . REAC COND25 CONDUCT 579.0 630.0 652.0 638.0 586.0 673.0 710.0 695.0 651.1 579.0 51.5 733.0 733.0 0.900 0.810 0.790 0.930 0.850 1.000 0.840 0.910 0.860 0.830 TOTAL TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N MG/L CLIDUR AS CL CHLORIDE UNF. REAC NNO3UR N-20N UNF. REAC 32.700 58.700 36.800 35.900 26.800 27.300 26.800 49.000 35.900 36.100 9,300 9.300 8.100 12.800 6.500 9.500 6.500 3.400 7.400 5.300 37.800 30.700 36.768 5 DAY MG/L AS 0 UNF. REAC BOD N02-N TOT. DEM. NNO2UR 0.010< 8005 1.42 0.79 0.80 1.08 0.54 1.37 1.12 1.05 0.54 0.45 AS 0.070 0.050 0.100 0.100 0.050 0.040 90 20 MG/L MG/L AS N TOTAL CAC03 NNHTUR NH3-N TOTAL UNF. REAC LAT: 43 14 18.63 LONG: 081 10 11.86 222.0 222.0 166.0 185.0 0.001< 0.001< 212.0 218.0 265.0 292.0 291.0 292.0 222.6 166.0 41.5 0.339 0.063 0.016 960.0 0.027 AS SAMPLE POINT: 1.4 MILES DOWNSTREAM OF ST MARYS STATION TYPE: RIVER FLOW GAUGE FED 02GD005 CODE FGPROJ SUB-PROJ FWTEMP MATER TEMP DEG.C PROJECT 0101 0101 0103 0103 1.5 1.5 4.0 7.0 19.0 19.0 18.0 13.0 3.5 0103 0103 0103 0103 SAMPLE DEPTH M FWSADP STREAM FWSTRC COND. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 00000000000 39406 SAMPLE 39356 39356 39456 39506 39456 39506 SAMPLE NUMBER 39306 39331 39381 39568 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS 39331 39381 39406 39431 39556 18968 19531 STD DEV (GEOM *) 184681 19531 % SAMP (EXCLUDED) K=INTERIM TEST-NAME: *=INTERIM TEST-NAME: HOUR 1045 1050 1030 1040 1030 1030 HOUR 1045 1050 030 1040 1030 1030 1025 1025 1035 1035 1055 LMT THI 901121 SAMPLE YYMMDD 900116 900220 900319 900417 300523 900619 900717 900018 901016 CYMMDD 900116 900220 900319 900417 300523 900619 717006 900918 910106 901121 SAMPLE 300821 900821 DATE DATE

STATION ID: 04-0013-045-02

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: 1.4 MILES DOWNSTREAM OF ST MARYS STATION TYPE: RIVER FLOW GAUGE FED 02GD005 B.O.W./ SITE: NORTH THAMES RIVER

표 REGION: 01 PBUT U T M: 17 0486200.0 4787100.0 4 NNTKUR TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE NNO3UR NNO2UR NNHTUR LONG: 081 10 11.86 FLOW GAUGE FED 02GD005 FWTEMP LAT: 43 14 18.63 FWSTRC *=INTERIM TEST-NAME:

MG/L AS P DISTANCE: 251,051 PHOSPHOR UNF. TOT 0.054 0.040 0.014 0.055 2870 PPUT STORET CODE: MG/L AS P PP04UR P04 UNF. REAC 0.024 0.052 0.001 9 5 표 8.28 8.23 8.22 8.00 0.11 LEAD MG/L AS PB 0.005 0.011<A UNF. TOT. 0.009<A 0.006<A 0.043 K'DAHL N TOTAL MG/L AS N UNF. REAC 1.000 0.856 0.853 0.700 0.079 MG/L AS N NO3-N UNF. REAC 8.027 7.601 3.400 2.585 MG/L AS N N02-N UNF. REAC 0.058 0.100 0.030 010 MG/L AS N TOTAL NH3-N UNF. REAC 0.339 0.001 ZNUT 8 WATER TEMP DEG.C 22.0 10.4 7.3 7.4 RSP STREAM PSEUDOMN COND PSAMF SAMPLE ARITH MEAN GEOM MEAN MAXIMUM MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: HOUR YYMMDD LMT SAMPLE DATE

MG/L 0.0010<T ZINC 0.0010<T 0.0020<T UNF. TOT. AS ZN 0.0020<T 0.0038 0900.0 0,000.0 0.0038 0.0027 0.0027 MG/L RESIDUE 5.0 PARTIC. 6.3 20.4 7.6 0.6 14.5 36.9 CMT /100ML 4 4 >4 1680 AERUG 4 8 4 16 4 SAMPLE 39306 39356 39381 39431 39456 39506 39481 39531 39556 901016 1025 901121 1015 1050 1040 1025 HOUR 1045 1035 1030 1030 1030 1055 LMT YYMMDD 900116 900220 900319 900417 900523 900619 900821 900918 SAMPLE 900717 DATE

0.0055<A 0.0032<A

0.0320

66.9

168

MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS // SAMP (EXCLUDED)

0.0089<A

0.0010

6.3

6 8

8

STATION ID: 04-0013-046-02

B.O.W./ SITE: TILBURY CREEK SAHPLE POINT: AT HIGHWAY 2 WEST OF TILBURY STATION TYPE: RIVER

: 02 003 2870	9.012	NWHTUR	TOTAL	ME/I	AS N	0.094	0.107	0.060	0.010	0.229	0.234	0.326	0.298	0.018	0.009	0.154	0.326	0.140	0.079	0.000	0,116	11																	
STORET CODE:	DISTANCE:	FWTEMP	MATED		DEG.C	0.5	o. 53	8.0	17.0	19.0	22.0	25.0	28.0	15.0	15.0	0.6	28.0	14.5	9.8	0.5		11 1		TURB			TURB'ITY	FTU				133.00							
	11	FWSTRC		STRFAM	COND.	9	9.	.9	9	9	9	9	9	9	9	9								RSP		RESTONE	PARTIC.	MG/L	15.1	114.0	30.0	109.0	41.3	85.2	85.9	73.8	79.1	76.0	43.2
	REGION: 01	FSMF	STREPCUS MF	CNT	/100ML	SOOAID	200	60AID	110	>4>	SOAID	ZOOAID	>001	1400	700AID	150	1400	356		09		6 ,	18	PSAMF	PSEUDOMN	ACROG.	CNT	/100ML	16	3	8	12C	12	32C	400	20AID	SOAID	20	20
S ER	79850.0 4	FCMF	COLIFORM :	CHT	/100ML	900AID	220	1060	049	130	750	BOOMID	400AID	1100	BOOMID	095	1100	099	560	130	2*	11		PPUT	DUOCDUOD	UNF. TOT.	MG/L	AS P	0.206	0.680	0.000	0.206	0.162	0.330	0.760	0.208	0.220	0.180	0.105
GREAT LAKE LAKE ERIE THAMES RIV	380450.0 46	COND25	CONDUCT.	UMHO/CM	AT 25 C	761.0	0.925	899.0	662.0	196.0	684.0	509.0	659.0	0.799	585.0	738.0	0.668	657.8	644.3	0.794	138.6	11		PP04UR	200			AS P	0.156	0.300	0.023	0.081	0.038	0.138	0.128	950.0	0.070	0.061	0.033
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0380450.0 4679850.0 4	CLIDUR	CHLORIDE	MG/L	AS CL	59.400	44.800	59,100	34,300	38.000	51.600	43.500	51.900	21.700	23.400	36.100	29.400	42,164	40.156	21.700	12.897	11		Н				Н	7.83	7.63	8.07	7.67	7.64	7.80	7.57	7.54	7.59	7.83	7.92
EEF	6 58.12	ALKT	ALK	MG/L	AS CACO3	129.0	38.2	162.0	139.0	173.0	148.0	100.0	149.0	135.0	162.0	198.0	198.0	139.4	130.3	38.2				NNTKUR	TOTAL N	UNF . REAC	MG/L	AS N	1.240		0.960	1.540	1.240	1.300	3.900	2.220	0.206	1.300	1.250
LIEBUKT	LONG: 082 26 58.12	FGPR0J	PROJECT	SUB-PROJ	CODE	0101	0101	0101	0101	0101	1010	0101	1010	0101	1010	0101								NNO3UR	NO3-N	UNF. REAC	MG/L	AS M	10.700	0000.9	3.900	7.700	3.100	0.800	0.900	8,000	2.000	2.200	2.200
7 4 60	LAT: 42 15 49.05	FWSADP	SAMPLE	DEPTH	E	0.30	0.30	0.30	0.30	0.30	0.30	0.50	0.30	0.30	0.50	0.30	0.30	0.30		0.30		11		MNO2UR	NO2-N	UNF. REAC	MG/L	AS N	0.070	0.160	0.030	0.130	0.150	0.150	0.000	0.220	0.070	0.030	0.030
RIVER	LAT: 42	ST-NAME:		SAMPLE	NUMBER	39703	39719	39733	39749	39/64	20705	29195	20002	39826	24845	39858	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	ATISTICS	VACCORED !	T-NAME:				NUMBER	39703	39719	39733	39749	39764	39779	39795	39810	39826	39842	39858
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	YYMMDD LMT						900625 1050			0101 626100		901126 1050		AR	9		STD DEV	# SAMP IN STATISTICS	THE STATE OF	*=INTERIM TEST-NAME:		SAMPLE		YYMMDD LMT											901126 1030

(CONTD)

1990 WATER QUALITY DATA REGION 1

02 003 2870	9.012	
STATION ID: 04-0013-046-02 STORET CODE:	DISTANCE:	TURB.1TY FTU FTU 133.00
TION ID: 0	01	RESIDUE PARTIC. MG/L NG/L 114.0 59.4 59.4 15.1 11.1
STA	REGION: 01	PSAMF PSEUDOMN AERUG. CNT 7100ML 400 52 20 4 4 4 4
KES IVER	4679850.0 4	PHOSPHOR UNF.TOT. MG/L AS P 0.760 0.286 0.286 0.090 0.022
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0380450.0 4679850.0 4	PP04UR P04 UNF. FEAC HG/L AS P 0.300 0.098 0.074 0.023 0.081
MAJOR BASII MINOR BASII TERM STREAI	U T M: 17	PH 8.07 7.74 7.73 7.54 0.17
	26 58.12	NNTKUR N DAHL N TOTAL UNFACL MG/L AS N 3,900 1,516 1,240 0,206 0,206
F TILBURY	LAT: 42 15 49.05 LONG: 082 26 58.12	NNOSUR NOS-N UNF.REAC HG/L AS N 10.700 4.318 3.177 0.800 0.800 11
TILBURY CREEK AT HIGHWAY 2 WEST OF TILBURY RIVER	2 15 49.05	NNO2UR NO2-N UNF. REAC HG/L AS N 0.220 0.133 0.033 0.034
TILBURY (LAT: 4	RIH TEST-NAME: HOUR SAHPLE LMT NUMBER ARITH MEAN GEOM MEAN MINIUM STD DEV (GEOM *) MP IN STATISTICS SAMP (EXCLUDED)
B.O.W./ SITE: TILBURY CREEK SAMPLE POINT: AT HIGHMAY 2 STATION TYPE: RIVER		*=INTERIH TEST-NAME: SAMPLE DATE HOUR SAMPLE YYMMDD LMT NUMBER HAXINUM ARITH MEAN GEOM MEAN STD DEV (GEOM *) ** SAMP IN STATISTICS '', SAMP (EXCLUDED)

STATION ID: 04-0013-047-02

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT COUNTY ROAD 16 KOMOKA STATION TYPE: RIVER

DE: 02 003 2870	DISTANCE: 184.748	CRUT	CHROMIUM	MG/1	AS CR	0.0040	0.0021 <t< th=""><th>0.0029</th><th>0.0013<t< th=""><th>0.0005<w< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0005<w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<></th></t<></th></t<></th></t<></th></t<></th></w<></th></t<></th></t<>	0.0029	0.0013 <t< th=""><th>0.0005<w< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0005<w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<></th></t<></th></t<></th></t<></th></t<></th></w<></th></t<>	0.0005 <w< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0005<w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<></th></t<></th></t<></th></t<></th></t<></th></w<>	0.0010 <t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0005<w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<></th></t<></th></t<></th></t<></th></t<>	0.0010 <t< th=""><th>0.0010<t< th=""><th>0.0010<t< th=""><th>0.0005<w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<></th></t<></th></t<></th></t<>	0.0010 <t< th=""><th>0.0010<t< th=""><th>0.0005<w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<></th></t<></th></t<>	0.0010 <t< th=""><th>0.0005<w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<></th></t<>	0.0005 <w< th=""><th></th><th>0 0000</th><th>0.0015<a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<></th></w<>		0 0000	0.0015 <a< th=""><th>0.0012<a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<></th></a<>	0.0012 <a< th=""><th>0.0005</th><th>0.0011<a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<></th></a<>	0.0005	0.0011 <a< th=""><th>10</th><th>NNO2UR</th><th></th><th>N02-N</th><th>UNF . KEAC</th><th>AS N</th><th>0.120</th><th></th><th>0.190</th><th>0.180</th><th>0.260</th><th>0.050</th><th>0.070</th><th>0.060</th><th>0.080</th><th>0.060</th></a<>	10	NNO2UR		N02-N	UNF . KEAC	AS N	0.120		0.190	0.180	0.260	0.050	0.070	0.060	0.080	0.060
STORET CODE: 02 00: 28	DISTANC	COND25	CONDUCT.	UMHO/CM	AT 25 C	820.0		578.0	633.0	0.079	685.0	627.0	595.0	654.0	0.907	720.0	820.0	668.8	665.6	578.0	70.0	10	NNHTUR	NH3-N	TOTAL	MEAC MG/1	AS N	0.201		0.097	0.001<	0.001<	0.036	0.018	0.064	0.001	
	01	CLIDUR	CHLORIDE	MG/L	AS CL	98.100		35.200	39.100	41.200	62.600	45.900	45.900	37.100	32.400	37.100	98,100	47.160	44.519	32.400	19.768	10	NIUT		INE TOT	MG/L	AS NI	0,004 <t< td=""><td>0.003<t< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.005<t< td=""><td>0.007<t< td=""><td>0.007<t< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<></td></t<>	0.003 <t< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.005<t< td=""><td>0.007<t< td=""><td>0.007<t< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<>	0.002 <w< td=""><td>0.002<w< td=""><td>0.005<t< td=""><td>0.007<t< td=""><td>0.007<t< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<>	0.002 <w< td=""><td>0.005<t< td=""><td>0.007<t< td=""><td>0.007<t< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<>	0.005 <t< td=""><td>0.007<t< td=""><td>0.007<t< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.007 <t< td=""><td>0.007<t< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.007 <t< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<></td></t<>	0.005 <t< td=""><td>0.004<t< td=""><td>0.005<t< td=""></t<></td></t<></td></t<>	0.004 <t< td=""><td>0.005<t< td=""></t<></td></t<>	0.005 <t< td=""></t<>
	REGION: 01	CDUT	CADMIUM	MG/L	AS CD	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003<t< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003<t< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0003<t< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0003<t< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<>	0.0003 <t< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0003</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<></td></w<>	0.0003	0.0002 <a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<></td></a<>	0.0002 <a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<></td></a<>	0.0002	0.0000 <a< td=""><td>11</td><td>FWTEMP</td><td></td><td>WATED</td><td>TEMP</td><td>DEG.C</td><td>4.0</td><td>2.5</td><td>5.5</td><td>0.9</td><td>16.0</td><td>21.0</td><td>24.0</td><td>20.0</td><td>15.0</td><td>14.0</td></a<>	11	FWTEMP		WATED	TEMP	DEG.C	4.0	2.5	5.5	0.9	16.0	21.0	24.0	20.0	15.0	14.0
ES	753450.0 4	CYANIDE	AVAIL UNF. REAC	MG/L	AS HCN	0,001 <w< td=""><td>0.001</td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.004<7</td><td>0.002<1</td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001	0.001 <w< td=""><td>0.001<w< td=""><td>0.004<7</td><td>0.002<1</td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.004<7</td><td>0.002<1</td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.004<7	0.002<1	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<></td></w<>	0.001 <w< td=""><td>0.004</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<></td></w<>	0.004	0.001 <a< td=""><td>0.001<a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<></td></a<>	0.001 <a< td=""><td>0.001</td><td>.001<a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<></td></a<>	0.001	.001 <a< td=""><td>11</td><td>FWSTRC</td><td></td><td></td><td>STREAM</td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 '</td></a<>	11	FWSTRC			STREAM	COND.	9	9	9	9	9	9	9	9	9	9 '
GREAT LAK	U T M: 17 0465550.0 4753450.0 4	B0D5 B0D	5 DAY TOT. DEM.	MG/L	AS 0	4.04		2.76	1.08	1.53	12.2	79.7		4.56	1.18	3.24	4.36	2.47	2.21	1.08	1.21	6	FSMF	FECAL	MF	CNT	/100ML	1500>	<009	564	B	89	260	72	90AID	210	270
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 (ASUT	ARSENIC UNF. TOT.	MG/L	AS AS	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.002<t< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001/W</td><td>0.001 ×W</td><td>0.001<w< td=""><td>U. UUI SW</td><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.002<t< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001/W</td><td>0.001 ×W</td><td>0.001<w< td=""><td>U. UUI SW</td><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></w<>	0.001 <w< td=""><td>0.002<t< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001/W</td><td>0.001 ×W</td><td>0.001<w< td=""><td>U. UUI SW</td><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<>	0.002 <t< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001/W</td><td>0.001 ×W</td><td>0.001<w< td=""><td>U. UUI SW</td><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></t<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001/W</td><td>0.001 ×W</td><td>0.001<w< td=""><td>U. UUI SW</td><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001/W</td><td>0.001 ×W</td><td>0.001<w< td=""><td>U. UUI SW</td><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.001/W	0.001 ×W	0.001 <w< td=""><td>U. UUI SW</td><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<></td></w<>	U. UUI SW	0.001 <w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<></td></w<>	0.002	0.001 <a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<></td></a<>	0.001 <a< td=""><td>0.001</td><td>0.000<a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<></td></a<>	0.001	0.000 <a< td=""><td>11</td><td>FEUT</td><td>TDON</td><td>UNF. TOT.</td><td>MG/L</td><td>AS FE</td><td>0.620</td><td>0.170</td><td>0.320</td><td>0.170</td><td>0.190</td><td>0.080<t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<></td></a<>	11	FEUT	TDON	UNF. TOT.	MG/L	AS FE	0.620	0.170	0.320	0.170	0.190	0.080 <t< td=""><td>0.3/0</td><td>0.280</td><td>0.440</td><td>0.270</td></t<>	0.3/0	0.280	0.440	0.270
	25 19.91	ALKT	ALK	MG/L	AS CACO3	197.0	1	1/4.0	207.0	191 0	100.0	187.0	0.707	270.0	0.072	0.892	270.0	209.9	207.6	174.0	34.2	10	FCMF	COI TEORM	MF	CNT	/100ML	4200	128	84	40	201	32	196 196	1070	1400	097
	LONG: 081 25 19.91	FGPROJ	PROJECT	SUB-PROJ	CODE	1010	0101	0103	0103	0103	0103	0103	0101	0103	0103	TOTO							DQ	DISOLVED	OXYGEN	MG/L	AS 0	13.0	15.0	14.0	14.0	0.11	12.0	9.0	0.6	9.0	10.0
	LAT: 42 56 05.41	FWSADP	SAMPLE	DEPTH		0.30	0.30	0.50	0.50	0.50	02.00	0.30	01.0	0 20	0000	00.00	0.30	0.30		0.30		1	CUUT	COPPER	UNF. TOT.	MG/L	AS CU	0.0089	0.0025<1	0.0035	0.0025 <t< td=""><td>0.0020</td><td>0.0040</td><td>0.0000</td><td>0.0040</td><td>0.00.0</td><td>0.00.0</td></t<>	0.0020	0.0040	0.0000	0.0040	0.00.0	0.00.0
: RIVER	LAT: 42	ST-NAME:		SAMPLE	NUMBER	39323	39348	20202	20002	29468	39473	39498	29522	29563	20572	2/2/2	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM CTD ATD	TATIOTIES	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER		39548		29598			20000	29498	20560	39573
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE		YYMMDD LMT		900221 1205		-						901120 1125	2000		A		OTO OTO	A CAMP THE	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-MAME:		SAMPLE		YYTHOD LMT	-	7 7	- "	900418 1205	-	-	-	-		

STATION ID: 04-0013-047-02

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT COUNTY ROAD 16 KOMOKA

MG/L AS N BHC DISTANCE: 184.748 UNF. REAC I VE I < K 1 × × 1<T ¥ ₹ ₹ NNO2UR NO2-N NG/L 1<T 1 < A 1 < A P1BHCA 0.118 0.102 2870 STORET CODE: ¥ ₹ ₹ NNHTUR UNF . REAC MG/L H>1 1 × 1 * * * NH3-N TOTAL PIALDR ALDRIN NG/L 1 < A 0.201 0.001 9 0.004<A 0.002 0.002<A 0.007 0.005<A MG/L AS NI NICKEL UNF. TOT. CNT PSEUDOMN AERUG. /100ML >6 4 407040 PSAMF NIUT REGION: 01 WATER AS P FWTEMP DEG.C PHOSPHOR MG/L 24.0 12.2 9.6 2.5 7.7 UNF. TOT 0.063 0.099 0.134 0.149 0.126 0.113 0.160 0.116 0.113 PPUT 0.160 0.063 0.108 U T M: 17 0465550.0 4753450.0 4 MG/L AS P **FWSTRC** STREAM PP04UR P04 UNF. REAC COND. 0.058 0,040 0.098 0.056 0.018 0.055 0.048 0.074 0.026 0.098 TERM STREAM: THAMES RIVER 1AJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE FSMF STREPCUS 포 CRT /100ML PHENOLS UNF-REAC UG/L PHENOL 1.000< 1,000< 270 PHNOL 1.000< 1.000< 1.000< 18 1.500 1.500 3.500 3.500 1.700 000 000.1 1,000 0.244<A IRON MG/L AS FE 0.280<A 0.153<A H UNF. TOT. 0.620 8.46 8.28 8.18 8.15 8.25 FEUT 8.46 8.24 8.24 8.02 0.12 8.02 H FECAL CNT LEAD 0.005<W 0.005 0.002<A COLIFORM /100ML AS PB 0.005<W 0.005<W 0.005<W 0.005<A UNF. TOT. MG/L 0.011<T 0.005<W 0.005<W 0.005<W 0.005<W 0.006<A LONG: 081 25 19.91 32 5* FCMF 783 4200 0.011 MG/L AS 0 MG/L AS N DISOLVED OXYGEN NNTKUR K'DAHL N UNF. REAC 15.0 11.5 11.3 9.0 2.3 0.940 0.921 0.670 0.213 TOTAL 0.670 0.930 1.050 0.810 1.000 0.830 1.460 1.460 0.800 0.930 0.920 8 LAT: 42 56 05.41 COPPER MG/L AS N MG/L 0.0038<A 0.0019<A AS CU 0.0036<A N03-N UNF. TOT. NNO3UR UNF. REAC CUUT 0.0025 5.100 7.800 4.400 4.400 1.438 0.0089 8.500 6.200 8.200 8.500 6:939 8,300 8.100 7.600 ARITH MEAN GEOM MEAN SAMPLE MAXIMUM MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS SAMPLE 39323 39398 39498 39573 NUMBER 39348 39423 39473 39523 39548 ARITH MEAN GEOM MEAN % SAMP (EXCLUDED) 39373 39448 MAXIMUM MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS // SAMP (EXCLUDED) TEST-NAME: STATION TYPE: RIVER *=INTERIM TEST-NAME: HOUR 1215 1205 1210 1215 1235 HOUR 1230 1205 YYMMDD LMT LMT *=INTERIM **УУМИДД** SAMPLE 900117 900320 900418 900524 900620 900718 900919 901017 SAMPLE 900221 900822 DATE DATE

STORET CODE:

STATION ID: 04-0013-047-02

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT COUNTY ROAD 16 KOMOKA STATION TYPE: RIVER

HAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

N X X BAN S 5<F B<W N>5 S<W 3 3 3 5<A DISTANCE: 184.748 P1END2 ENDOSULP NG/L 5 < A M>005 500 < W B00<W M>005 M>009 500×W 500<A **FOXAPHEN** 500×W 500 < W 500×W M>009 0<A 500<A PITOX 2870 500 200 002 N>2 M>Z M>Z NV2 2<W 2<W 2<W S VE 2 < A P1END1 ENDOSULP NG/L 5<W B<W 5<H 5<W B<W B<K 2×W 5 < A S PIPPDI PP-DDT NG/L 0<A 0 PIENDS ENDOSULP NG/L M>5 B<W B<W N>S X × X 3 3 3 5 CA A XV M> 3 3 V XV X X 1 × H SULPHATE *×1 1<A 1 0<A PIPPDE PP-DDE 1<A REGION: 01 X X X PLENDR NY S S<W S X X 5<A ENDRIN NG/L 5 < A NY S 3 3 3 N X 5<A 5<A 0<A PIPPDD pp-DDD NG/L 0 0465550.0 4753450.0 4 MTHXYLLR NG/L 3 × K 5<W S<W B<W N×S S<W 5<A 0×A 20<W 20<W DMDT 20<A 20 0<A 10 PIDMDT TOTAL 20<W 20<W 20<W 20<W 20<W 20<W PCB NG/L 20 < W 20 < W 20 20<A PIPCBT TERM STREAM: THAMES RIVER 2 < W 2<W 2<W 2<W PIDIEL DIELDRIN NG/L 2 < W 2 < A 2<A 2 0<A B<W N>S SAW 5<W 3××× M>5 3 × E 5<A 5 0<A 10 Ploppt TGG-GO NG/L U T M: 17 NG/L N>Z 2 < W 2<W 2<¥ * * * * PICHLG GAMMA 2 < A 2 < W 2<W 2 < W E E E 2<A 2 < A CHLRDANE PIOCHL OXCHLANE NG/L 2 < W X × X PICHLA NG/L E E E E E E 2 < A 2<A B<W SKY 3 × × 5×W X X X 5<A 0<A 10 CHLRDANE ALPHA PIMIRX MIREX 5×1 NG/L 5<A LAT: 42 56 05.41 LONG: 081 25 19.91 PIBHCG BHC GAMMA 1 < M 1 × 1 1×H 2<T 3<T 3×T 2<A 2<A 0<A NG/L 2<T 3×T PIHEPT HEPACHOR NG/L 1 < W I < M N>I 3 3 1 < W 1 × M 1 < W MV. 1 < A 1 < A PIBHCB BETA NG/L XVI 1 < F 3 3 XV. 1 × M 1 < A 1×W M>1 N. 1 < A XV. ¥. 3 1 × E 1 × N 1<A PIHEPE X. NG/L 1 < A EPOXIDE HEPTA SAMPLE 39348 39398 39498 39548 39573 39348 NUMBER 39373 39423 39523 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM SAMPLE 39373 39423 39548 39573 39323 39473 STD DEV (GEOM *) SAMP IN STATISTICS NUMBER 39323 39398 39473 39498 MAXINUM ARITH MEAN GEON MEAN HINIHUM SAMP IN STATISTICS % SAMP (EXCLUDED) 39523 STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: TEST-NAME: 1220 HOUR 1215 1205 1210 1235 1215 1210 1235 1220 1205 1215 901017 1210 1205 HOUR 1205 901120 1135 1230 LMT #=INTERIM LMT *=INTERIM YYHIDD SAMPLE 900117 900320 900418 900524 900718 900919 YYMMDD 900117 900320 900418 900718 900919 901017 901120 900221 900822 900524 900822 SAMPLE 900221 DATE DATE 92

0

(CONT

STATION ID: 04-0013-047-02

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT COUNTY ROAD 16 KOMOKA STATION TYPE: RIVER

T: AT COUNTY ROAD 16 KOHOKA
E: RIVER
MAJOR BASIN: GREAT LAKES

2,6,A S<W N V NG/L 3 × × 3 3 3 3 3 3 3 3 3 × X DISTANCE: 184.748 X2T26A TRCHLORO TOLUENE 55<A 2870 STORET CODE: X2T245 2,4,5 TRCHLORO S < K 3 3 3 8×W B<W N X X MG/L TOLUENE 5<A 5<A 5<A 0<A 2,3,6 TRCHLORO M>S N×S X > X 8×W 3 × × X2T236 TOLUENE REGION: 01 1 × 1 1<W 1 × W KZPNCB PENTA CHLORO BENZENE 1 × W 1 × W 1 < W 1 < A 1<A ZINC AS ZN NG/L MG/L 0.0014<T 0.0020<T UNF. TOT. 0 0.0050 0.0240 0.0054 9500.0 0,0040 0.0040 0.0000 U T M: 17 0465550.0 4753450.0 4 1 × N OCTCHLOR STYRENE X V 1×K 1 × X X20CST NG/I 1 < A TRCHLORO S<W N N 1,3,5 S<W 2×¥ 2×K 3 3 3 X2135 MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER 1 < W 1 < W 1 < F 1 < W 1 < W 1<W 1 < W 1 × E 1 < A 1 < A X21245 1,2,4,5 TECHLORO ₹ ¥ 3 3 3 3 3 BENZENE NG/L X2HCE 0 1,2,4 TRCHLORO 1×W 3 × V HCB NG/L X>1 1 < W × 1 × E X2HCB 1<A MG/L X × X X × X 3 X X BENZENE X2124 HEXACHLO ROCYCLOP N N X1HCCP ENTADIEN 5 5 A A 0<A ¥ × N×1 3 3 * * * * * X21235 1,2,3,5 **LECHLORO** BENZENE LAT: 42 56 05.41 LONG: 081 25 19.91 X1HCBD HXCHLORO NG/L 1 < F N> 1 × × 1 < W 1×W 1 < W 1 × K 1 × ¥ 1 < A 1 < A 1,2,3,4 TECHLORO 1 × K ¥ ₹ ₹ 3 3 3 3 BUTADINE X21234 BENZENE NG/L 1,2,3 TRCHLORO RESIDUE PARTIC. X × 8 S<W 5 × × × MG/L BENZENE NG/L 3×8 5,0< 37.9 12.0 13.8 19.5 17.1 22.8 90.4 20.0 X2123 90.4 8.4 9 SAMPLE 39348 39373 39448 39498 39548 GEOM MEAN 39323 39398 39423 39473 39573 39373 39398 39423 39473 39498 39548 39573 MINIMUM NUMBER 39323 NUMBER MAXINUM # SAMP IN STATISTICS % SAMP (EXCLUDED) SAMPLE 39348 STD DEV (GEOM *) *=INTERIM TEST-NAME: TEST-NAME: 1215 1235 1220 1210 1135 1205 1215 1205 1210 1205 1210 HOUR 1230 1215 1205 1215 1220 1210 1135 HOUR 1230 1205 MT LMT *=INTERIM YYMMDD 901120 900320 900418 900524 900620 900718 900919 901017 YYMMDD SAMPLE 900117 900221 900822 900620 901120 900117 900221 900320 900418 900524 900718 900822 900919 901017 SAMPLE PATE DATE

STORET CODE:

STATION ID: 04-0013-047-02

1990 WATER QUALITY DATA REGION 1

	KOMOKA	
	16	
THAMES RIVER	AT COUNTY ROAD 16	: RIVER
-	4	2
3.0.W./ SITE:	AMPLE POINT:	STATION TYPE:
B.0.4	SAMPL	STATI

DISTANCE: 184,748 02 003 2870 REGION: 01 ZINC UNF.TOT. MG/L 0.0240 0.0058<A 0.0014 0.0062<A 0.0043<A AS ZN ZNUT U T M: 17 0465550.0 4753450.0 4 55 A 5 C A 5 1,3,5 TRCHLORO BENZENE NG/L X2135 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE 1,2,4,5 TECHLORO 1 0<A 10 X21245 1 1<A 1<A NG/L BENZENE X2124 1,2,4 TRCHLORO BENZENE 5 × A 5 × A 5 × A 5 × A 5 × A 5 × A 10 × A 10 NG/L X21235 1,2,3,5 TECHLORO BENZENE NG/L 1<A 1 1<A LAT: 42 56 05.41 LONG: 081 25 19.91 X21234 1,2,3,4 TECHLORO NG/L 1 1<A 1<A BENZENE 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A 5 < A X2123 1,2,3 TRCHLORO NG/L BENZENE MAXIMUM ARITH MEAN SAMPLE GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) TEST-NAME: HOUR *=INTERIM YYMMDD LMT SAMPLE

STORET CODE: 02

B.O.W./ SITE: MC GREGOR CREEK SAMPLE POINT: AT HARWICH-HOWARD TOWNLINE STATION TYPE: RIVER

STATION ID: 04-0013-049-02 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE FRIF

NATE OF TAIL O	Hour						MINOR BASIN TERM STREAM	MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	IVER				003 2870
HULE FINALPHE FI	HUNTER FIRSTOP FGPRO		LAT:	42 26 43.87	LONG: 081	59 07.90	U T M: 17	0418950.0	4 0.0056694		01	DISTANCE:	
Houre Sample Barber Houre Sample Houre Houre Sample Houre	HUNE SARPLE DEPTH SUP-PROJECT 1014 1014	TERIM T	EST-NAME:	FWSADP	FGPR03	ALKT	8005	CLIDUR	COND25	CUUT	DQ	FCMF	FSMF
HOUR SAMPLE DEPTH SUB-PRO1 HG/L	HOUR SIMPLE DEPTH SIB-PRO	E.		SAMPLE	PROJECT	ALK	5 DAY	CHLORIDE	CONDUCT.	COPPER	DISOLVED	FECAL	FECAL
1.551 39708 0.30 0.105 1.2 0.2 0.4 0.2 0.4	1551 39708 0.30 0.105 12.0 1.47 0.105 0.005 10.5 2.00 1.05 1.0		SAMPLE	рертн	SUB-PROJ	HG/L	MG/L	MG/L	UMHO/CM	MG/L	OXYGEN MG/I	A L	AM P
1351 39708 0.30 0.003 122.0 1.47 1.40 0.0030 0.0030 10.5 10.00	1455 3978 0.30 0.103 122.0 1.47 1.613.0 0.0030 10.5 2400 1346 1356 1352 13578 0.30 0.103 135.0 135		NUMBER	E	CODE	AS CACO3	AS 0	AS CL	AT 25 C	AS CU	AS 0	/100ML	/100ML
1350 33758 0.30	1350 37736 0.300 0.003 176.0 3.96 37.90 0.002 16.0 0.005 16.0 0.005 15.0 0.005 0.005 15.0 0.005 15.0 0.005		39708		0103	122.0	1.47		1013.0	0.0030	10.5	2400	240
1350 37754 0.30 0.101 1997.0 0.200 50.300 684.0 0.0027 7.0 1011 1312 13754 0.300 0.101 131.0 3.00 54.300 684.0 0.0060 13.0 7.0 1011 131.0 13.	1326 37754 0.30		20170	0.30	0103	176.0	3.96	37.800	701.0	0.0052	16.0	1060	280
1356 3976 0.100 0.101 1.010 1.010 2.000 284.0 0.0055 0.100 1.0	1356 3976 0.10	, ,	29756	0.50	0103	199.0	0.20	50.300	885.0	0.0027	19.5	SOAID	SOAID
1356 39784 0.30	1376 3978 0.150 0.101 190.0 2.004 46.600 829.0 0.0060 15.0 15.0 15		40762		0101	100	3.00	54.300	884.0	0.0250	7.0	10AID	ZOAID
1320 39915 0.30	1320 39915 0.30 0.101 199.0 2.104 49.600 884.0 0.0060 17.0 5004ID 1320 1320 239915 0.30 0.103 274.0 1.404 45.800 922.0 0.0060 17.0 5004ID 1320 239915 0.30 0.103 274.0 1.20 2.20 66.0 0.0060 17.0 1500 10000 13.0 1320 239915 0.30 0.103 274.0 1.20 2.20 66.0 0.0060 17.0 1500 10000 13.0 13.0 13.0 13.0 1.20 0.0050 1.20 1.20 0.0050 1.20 1.20 1.20 0.0050 1.20 1.20 0.0050 1.20 1.20 0.0050 1.20 1.20 0.0050 1.20 1.20 0.0050 0.0050		29784		0103	100.0	1.28	43.200	829.0	0900.0	11.0	72	32
1320 39915 0.30 0.103 244-0 1.48 45.800 915.0 0.0060 15.0 1500 1500 1300 1320 1320 39847 0.300 0.103 257.0 0.044 47.900 925.0 0.0060 15.0 1000 1300 1300 121.0 257.0 0.044 47.900 915.0 0.0060 15.0 1000 10	1325 39915 0.30 0.103 244.0 1.48 45.800 915.0 0.0060 15.0 500AID 1.50		39799	0.50	0101	130.0	2.00<	48.600	824.0	0.0060	15.0	150	60AID
1320 39331 0.30 0.103 274.0 1.00 49.00 912.0 0.0060 4.5 1500 1320 1320 39647 0.200 0.103 274.0 1.20 49.900 922.0 0.0060 4.5 1500 1320 1320 39647 0.200 0.103 274.0 1.20 27.00	1326 39831 0.33 0.103 276.0 2.20 49.900 912.0 0.0066 4.5 1500 1500 1530		39815	0.30	0102	0 996	1 40		1	0,0060	17.0	SOOAID	009
1320 39457 0.30 0.103 212.0 1.00 24.5 0.0060 9.5 1500 1350 1350 3962 0.20 0.1033 257.0 0.0044 47.900 86.4 0.0060 9.5 1500 13	1320 39847 0.30 0.103 221.0 1.00 47.500 86.0 0.0060 9.5 1500 10050 1.0060		39831	0.30	0103	276.0	1.40	45.800	915.0	0.0060	15.0	1500	260
HAXTHUH 0.30 276.0 0.005 257.0 0.005 0.0	HAXTHUM 0.30 276.0 276.0 3.96 54.300 1013.0 0.0040 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 1500 100000 9.5 100000 9.5 1500 100000 9.5 1000000 9.5 1000000 9.5 100000 9.5 1000000 9.5 100000 9.5 100000 9.5 10000		39847	0,30	0103	221.0	1 20	19.900	922.0	0,0060	2.		
HAXIMUM 0.30 276.0 3.96 54.300 1013.0 0.0250 19.5 2400 1000	HAXIMHH 0.30 276.0 3.96 54.300 1013.0 0.0250 19.5 2400 110		39862	0.30	0103	257.0	1.50	52.700	860.0	0.0060	9.5	1500	1000
HAZIMUM 0.30 276.0 3.96 54.300 1013.0 0.0250 19.5 2400 11.1 10 10	HAXIMILA 0.30 2.76.0 3.96 54.300 1013.0 0.0250 19.5 2400 19.5 2400 19.5 2400 19.5 2400 19.5 2400 19.5 2400 19.5 2400 19.5 2400 19.5 2400 20.5 24				1010	0.763	0.04	47.900	86.4	0.0040	8.0	1000>	310
Thirting	NINTENT FLANT FL		MAXIMUM	0.30		276.0	3.96	54.300	1013.0	0.0250	19.5	2400	1000
HINTING Color Family Color Color Family Color Family Color Family Color Family Color Family Color Color Family Color Family Color Family Color Family Fam	SAMPLE STREAM COND. CO		ARITH MEAN	0.30		208.2	1.85	47.833	791.9	0,0069	12.1	801	200
SAMPLE STREAM COND. SAMPLE STREAM STREAM STATISTICS STREAM STATISTICS SAMPLE STREAM STATISTICS STATISTICS STATISTICS STATISTICS SAMPLE STREAM STATISTICS STATI	TEST-NAME TEST-NAME TEST-NAME TEST-NAME TEST-NAME TEST-NAME TEST-NAME TEST NUMBER COND. TEST NUMBER TEST N		GEOR MEAN	0		203.5		47.583	688.1	0.0057	11.1	4	15.6
The tensor of	Test-name Test	STD DE	CEDM X)	0.50		122.0	0.20	37.800	86.4	0.0027	4.5	10	20
Test-Ware Fastre	Test-Name Test	AMD TN	TATIOTICS	11		44.5		5.034	560.6	0.0061	4.7		**
The test-hame The test had been been been been been been been bee	TEST-NAME; FWSTRC FWTEHP NNHTUR NNOSUR NNOSUR NNTKUR PBUT PBUT PH PPOGAUR PROGRESSION NNOSUR NNOSUR NNOSUR NNTKUR PBUT PH PPOGAUR PH PPOGAUR PROGRESSION NNOSUR N	SAMD X	(EXCITINED)	77		10	80	6	10	11	11	6	10
HOUR SAMPLE STREAM HATER WINFREAD	HOUR SAMPLE FHSTRC FHTEHP NINHTUR NINOZUR NI		Truckonen i				20					10	
HOUR SAMPLE STREAM TEMP OF AS NO SAMPLE STREAM OF	HOUR SAMPLE STREAM TEHP UNF.REAC UNF.REAC UNF.REAC UNF.TOT. LHT NUMBER COND. DEG.C AS N AS	ERIM TE	EST-NAME:	FWSTRC	FWTEMP	NNHTUR NHZ-N	NNO2UR	NNOSUR	NNTKUR	PBUT	Н	PP04UR	PPUT
HOUR SAMPLE STREAM TEMP UNF.REAC UNF.RE	HOUR SAMPLE STREAM TEMP UNF.REAC UNF.RE					TOTAL	N-CUN	MOZON	TOTAL N				
HOUR SAMPLE STREAM TEMP HG/L HG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L M	HOUR SAMPLE STREAM TEHP HG/L HG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L M				MATER	UNF . REAC	UNF. REAC	UNE BEAC	INE DEAC	HINE TOT		_	HOSPHOR
LHT NUMBER COND. DEG.C AS N AS N AS N AS PB PH AS PB 1351 39708 6 0.5 0.105 0.050 11.300 1.460 0.005 H 7.69 0.006 0.11 1460 39724 6 0.5 0.105 0.050 11.300 1.460 0.005 H 7.69 0.006 0.11 1350 39724 6 19.0 0.012 0.050 12.000 0.055 0.005 H 7.69 0.006 0.01 1352 39754 6 19.0 0.014 0.070 8.800 1.350 0.005 H 7.92 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 <td< td=""><td>LHT NUMBER COND. DEG.C AS N AS N AS N AS PB PH AS PB 1351 39708 6 0.5 0.105 0.050 11.300 1.460 0.005 H 7.69 0.010 1400 39724 6 0.5 0.012 0.030 10.800 0.550 0.005 H 7.69 0.010 1352 39734 6 19.0 0.012 0.030 12.000 3.550 0.005 H 7.69 0.056 0.05</td><td>HOUR</td><td>SAMPLE</td><td>STREAM</td><td>TEMP</td><td>MG/L</td><td>MG/L</td><td>MG/L</td><td>MG/I</td><td>. 101.</td><td></td><td></td><td>JNF. TOT.</td></td<>	LHT NUMBER COND. DEG.C AS N AS N AS N AS PB PH AS PB 1351 39708 6 0.5 0.105 0.050 11.300 1.460 0.005 H 7.69 0.010 1400 39724 6 0.5 0.012 0.030 10.800 0.550 0.005 H 7.69 0.010 1352 39734 6 19.0 0.012 0.030 12.000 3.550 0.005 H 7.69 0.056 0.05	HOUR	SAMPLE	STREAM	TEMP	MG/L	MG/L	MG/L	MG/I	. 101.			JNF. TOT.
1351 39708 6 0.5 0.105 0.050 11.300 1.460 0.005 4 7.69 0.080 0.085 4 7.69 0.080 0.085 4 7.69 0.080 0.085 4 7.69 0.080 0.085	1351 39708 6 0.5 0.105 0.050 11.300 1.460 0.005 cm 7.69 0.080 0.085 cm 1.460 0.005 cm 1.460 0.0		NUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	Н	AS P	AS P
1350 39724 6 0.5 0.105 0.050 11.300 1400 0.005 7.69 0.006 1350 39754 6 9.0 0.012 0.030 12.000 3.850 0.005 4 7.69 0.006 1352 39754 6 19.0 0.014 0.070 8.800 1.350 0.005 4 0.004 1410 39784 6 24.0 0.008 0.080 1.350 0.005 7.92 0.004 1410 39799 6 24.0 0.008 0.080 4.300 0.05 0.005 4 0.014 1320 38915 6 11.0 0.003 0.040 4.300 0.690 0.005 4 0.014 1320 38912 6 14.0 0.003 9.700 1.220 0.005 0.014 1330 38962 6 10.00 0.020 0.030 8.600 0.080 0.005 9.700 0.0	1340 39724 6 0.5 0.105 0.105 0.1130 1.400 0.005 7.69 0.006 1350 39754 6 9.0 0.012 0.030 10.800 0.550 0.005 9.0 0.004 1352 39754 6 19.0 0.016 0.020 12.00 0.055 0.005 9.05 0.005 1352 39759 6 21.0 0.014 0.070 8.800 1.750 0.005 0.005 1125 39815 6 24.0 0.003 0.040 4.300 0.690 0.005 0.005 1320 39816 6 11.0 0.003 0.040 4.300 0.690 0.005 0.005 1330 39862 6 10.0 0.003 0.090 9.700 1.220 0.005 0.024 1330 39862 6 10.0 0.027 0.030 8.600 0.005 0.005 0.005 0.005 0.005		39708	9	0.5				1.460	0.005 <w< td=""><td>8.03</td><td></td><td>110</td></w<>	8.03		110
1354 397.88 6 9.0 0.012 0.030 10.800 0.550 0.005 0.005 1352 397.89 6 19.0 0.016 0.020 12.000 3.850 0.005 0.056 1346 39784 6 21.0 0.014 0.070 8.800 1.350 0.005 4.792 0.007 13410 39789 6 21.0 0.008 0.080 1.750 0.010 7.92 0.007 1320 39815 6 21.0 0.008 0.040 4.300 0.690 0.005 4.79 0.014 1320 39831 6 17.0 0.084 0.090 9.700 1.220 0.005 4.97 0.013 1320 39847 6 14.0 0.003 0.090 9.700 1.030 0.005 9.004 1330 39862 6 10.00 0.027 0.030 8.600 0.005 0.005 9.004	1354 39748 6 9.0 0.012 0.030 10.800 0.550 0.005 H 8.01 0.000 1352 33759 6 19.0 0.014 0.070 12.000 1.350 0.005 H 7.92 0.007 1352 39789 6 21.0 0.008 0.080 1.750 0.0105 H 7.92 0.007 1325 39815 6 11,0 0.008 0.009 9.700 1.220 0.005 H 7.99 0.013 1326 39817 6 11,0 0.003 0.090 8.100 1.000 0.005 H 7.95 0.013 1330 39817 6 11,0 0.003 0.003 8.600 0.005 H 8.15 0.005		39/23	۰ م	0.5	0.105	0.050	11.300	1.400	0.005 <w< td=""><td>7.69</td><td>0 080</td><td>0.114</td></w<>	7.69	0 080	0.114
1350 39754 6 19.0 0.006 0.020 12.000 3.850 0.083 7.85 0.005 1345 39784 6 19.0 0.014 0.070 8.800 1.350 0.0054H 7.92 0.007 1320 39799 6 21.0 0.008 0.080 0.080 1.750 0.01057H 7.92 0.007 1321 39815 6 31.0 0.003 0.040 4.300 0.690 0.0057H 7.99 0.013 1320 39847 6 14.0 0.003 0.090 8.100 1.030 0.0057H 7.95 0.017 1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.0057H 8.16 0.013	1350 39754 6 19.0 0.006 0.020 12.000 3.850 0.083 7.85 0.055 1350 1350 39784 6 19.0 0.014 0.070 8.800 1.350 0.0054W 7.92 0.007 1410 33799 6 24.0 0.008 0.006 8.800 1.750 0.00554W 7.92 0.007 1320 39815 6 31.0 0.003 0.094 0.090 9.700 0.690 0.00554W 7.99 0.014 1322 39815 6 17.0 0.084 0.090 9.700 1.220 0.00554W 8.07 0.017 1320 39847 6 14.0 0.003 0.090 8.100 1.030 0.00554W 8.07 0.017 1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.00554W 8.16 0.013		39738	9 '	0.6	0.012	0.030	10.800	0.550	0.005 <w< td=""><td>8.01</td><td>0000</td><td>0.100</td></w<>	8.01	0000	0.100
1340 39769 6 19.0 0.014 0.070 8.800 1.350 0.005 7.92 0.005 1340 39769 6 24.0 0.008 0.080 8.800 1.750 0.016 8.13 0.014 1320 39915 6 24.0 0.003 0.040 4.300 0.690 0.005 7.99 0.014 1320 39815 6 17.0 0.084 0.090 9.700 1.20 0.005 8.00 0.017 1320 39867 6 14.0 0.003 0.030 8.600 0.806 7.95 0.027 1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.005 8.16 0.013	13.50 2376.9 6 19.0 0.014 0.070 8.800 1.350 0.005< 7.92 0.005 13.61 3376.9 6 21.0 0.008 0.080 8.800 1.750 0.010< 8.13 0.014 13.22 3381.5 6 24.0 0.003 0.040 4.300 0.690 0.005< 4 7.99 0.013 13.22 3383.1 6 17.0 0.084 0.090 9.700 1.220 0.005< 4 8.07 0.013 13.20 3386.2 6 10.0 0.027 0.030 8.600 0.800 0.005< 4 8.16 0.024 13.20 3386.2 6 10.0 0.027 0.030 8.600 0.800 0.005< 4 8.16 0.013 13.20 3.886.2 6 10.0 0.027 0.030 8.600 0.800 0.005< 4 8.16 0.013 13.20 3.886.2 6 10.0 0.027 0.030 8.600 0.800 0.005< 4 8.16 0.013 13.20 3.886.2 6 10.0 0.027 0.030 8.600 0.800 0.005< 4 8.16 0.013 13.20 3.886.2 6 10.0 0.027 0.030 0.800 0.005< 4 8.16 0.013 13.20 3.886.0 0.005< 4 8.16 0.013 13.20 3.886.0 0.005< 4 8.16 0.013 13.20 3.886.0 0.005< 4 8.16 0.013 13.20 3.886.0 0.005< 4 8.16 0.013 13.20 3.886.0 0.005< 4 8.16 0.013 13.20 3.886.0 0.005< 4 8.16 0.013 13.20 3.886.0 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.16 0.013 13.20 0.005< 4 8.1		96766	۰۵	19.0	900.0	0.020	12,000	3.850	0.083	7.85	0.056	0.020
13.0 35754 6 24.0 0.008 0.080 8.800 1.750 0.010< 7 8.13 0.014 13.0 35959 6 24.0 0.003 0.040 4.300 0.690 0.005< 4 7.99 0.013 13.0 3.8847 6 14.0 0.003 0.090 8.100 1.220 0.005< 4 7.95 0.017 13.0 3.9862 6 10.0 0.027 0.030 8.600 0.800 0.005< 4 8.16 0.023 13.0 3.003 0.030 8.600 0.005< 4 8.16 0.023 13.0 3.003 0.030 0.030 0.005< 4 8.16 0.023 13.0 3.003 0.030 0.030 0.005< 4 8.16 0.023 13.0 3.003 0.030 0.030 0.005< 4 8.16 0.023 13.0 3.003 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0 0.003 0.003 13.0	1410 37704 6 21.0 0.008 0.080 8.800 1.750 0.010 <t 0.003="" 0.004="" 0.005<h="" 0.013="" 0.013<="" 0.017="" 0.027="" 0.030="" 0.040="" 0.084="" 0.090="" 0.690="" 0.800="" 1.030="" 1.220="" 10.0="" 11.0="" 1120="" 14.0="" 24.0="" 35815="" 35827="" 35862="" 35915="" 4.300="" 6="" 7.99="" 8.07="" 8.100="" 8.13="" 8.16="" 8.600="" 9.700="" td=""><td></td><td>20705</td><td>٥</td><td>19.0</td><td>0.014</td><td>0.000</td><td>8.800</td><td>1.350</td><td>0.005<w< td=""><td>7.92</td><td>0.007</td><td>0 200</td></w<></td></t>		20705	٥	19.0	0.014	0.000	8.800	1.350	0.005 <w< td=""><td>7.92</td><td>0.007</td><td>0 200</td></w<>	7.92	0.007	0 200
1320 39915 6 31.0 0.003 0.040 4.300 0.690 0.005< 4 7.99 0.013 1325 39831 6 17.0 0.084 0.090 9.700 1.220 0.005< 4 8.07 0.017 1320 39847 6 14.0 0.003 0.090 8.100 1.030 0.005< 4 7.95 0.027 1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.005< 4 8.16 0.013 1330 39862 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 1330 0.005< 4 8.16 0.013 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4 8.16 1330 0.005< 4	1320 39815 6 31.0 0.003 0.040 4.300 0.690 0.005544 7.99 0.013 1325 39831 6 17.0 0.084 0.090 9.700 1.220 0.005544 8.07 0.017 1320 39847 6 14.0 0.003 0.090 8.100 1.030 0.005544 7.95 0.024 1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.005544 8.16 0.013 1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.005544 8.16 0.013		29799	9 4	21.0	0.008	0.080	8.800	1.750	0.010 <t< td=""><td>8.13</td><td>0.014</td><td>0.390</td></t<>	8.13	0.014	0.390
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1325 39831 6 17.0 0.003 0.090 9.700 1.220 0.005 1320 39862 6 10.0 0.027 0.030 8.600 0.800 \times 0.005 1320 39862 6 0.003 0.007 0.030 8.600 0.005 1320 39862 6 0.003 0.003 0.003 8.600 0.005 1330 39862 6 0.003 0.027 0.030 8.600 0.005 1330 39862 6 0.003 0.027 0.030 8.600 0.005 1330 39862 6 0.003 0.027 0.030 8.600 0.005 1330 39862 6 0.003 0.003 0.003 8.600 0.005 1330 39862 6 0.003 0.003 0.003 0.003 0.003 0.003		39815	2	21.0	100		,		0.005 <w< td=""><td></td><td></td><td></td></w<>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		19841	9	24.0	0.003	0.040	4.300	0.690	0.005 <w< td=""><td>7.99</td><td>0.013</td><td>0.075</td></w<>	7.99	0.013	0.075
1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.005 <h 0.024<="" 7.95="" td=""><td>1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.005<h 0.013<="" 8.16="" td=""><td></td><td>39867</td><td>9</td><td>10.00</td><td>0.084</td><td>060.0</td><td>9.700</td><td>1.220</td><td>0.005<w< td=""><td>8.07</td><td></td><td>0.094</td></w<></td></h></td></h>	1330 39862 6 10.0 0.027 0.030 8.600 0.800 0.005 <h 0.013<="" 8.16="" td=""><td></td><td>39867</td><td>9</td><td>10.00</td><td>0.084</td><td>060.0</td><td>9.700</td><td>1.220</td><td>0.005<w< td=""><td>8.07</td><td></td><td>0.094</td></w<></td></h>		39867	9	10.00	0.084	060.0	9.700	1.220	0.005 <w< td=""><td>8.07</td><td></td><td>0.094</td></w<>	8.07		0.094
2000 0.005 <h 0.013<="" 8.16="" td=""><td>37002 0 10:0 0.027 0.030 8.600 0.800 0.005<w 0.013<="" 8.16="" td=""><td></td><td>2005</td><td>0</td><td>14.0</td><td>0.003</td><td>0.000</td><td>8.100</td><td>1.030</td><td>0.005<w< td=""><td>7.95</td><td></td><td>0.121</td></w<></td></w></td></h>	37002 0 10:0 0.027 0.030 8.600 0.800 0.005 <w 0.013<="" 8.16="" td=""><td></td><td>2005</td><td>0</td><td>14.0</td><td>0.003</td><td>0.000</td><td>8.100</td><td>1.030</td><td>0.005<w< td=""><td>7.95</td><td></td><td>0.121</td></w<></td></w>		2005	0	14.0	0.003	0.000	8.100	1.030	0.005 <w< td=""><td>7.95</td><td></td><td>0.121</td></w<>	7.95		0.121
			23005	٥	10.0	0.027	0.030	8.600	0.800	0.005 <w< td=""><td>8.16</td><td></td><td>0.074</td></w<>	8.16		0.074

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: HC GREGOR CREEK SAMPLE POINT: AT HARWICH-HOWARD TOWNLINE STATION TYPE: RIVER

STATION ID: 04-0013-049-02 FERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

2870

STORET CODE:

MG/L AS P 50,693 PHOSPHOR UNF. TOT. 0.137 0.024 0.269 PPUT AS 0.221 DISTANCE: MG/L PP04UR P04 UNF . REAC AS P 0.025 0.017 0.004 0.026 H 8.16 7.98 7.98 7.69 0.14 PH REGION: 01 0.013<A 0.007<A 0.005 0.023<A LEAD MG/L AS PB UNF. TOT. PBUT AS N MG/L U T M: 17 0418950.0 4699500.0 NATKUR K'DAHL N UNF. REAC TOTAL 3.850 1.410 1.216 0.550 0.936 MG/L AS N N03-N NNO3UR UNF. REAC 12.000 9.156 8.840 4.300 2.262 9 AS N N02-N UNF. REAC MG/L NN02UR 0.090 0.049 0.020 0.027 HG/L AS N NNHTUR NH3-N TOTAL UNF. REAC 59 07.90 0.014 0.003 0.038 0.105 LONG: 081 WATER TEMP FWTEMP DEG.C 31.0 9.0 LAT: 42 26 43.87 FWSTRC STREAM COND. SAMPLE ARITH MEAN GEON MEAN MAXIMUM MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: HOUR YYMMDD LMT SAMPLE DATE

MG/L ZINC UNF. TOT. AS ZN 0.0740 0.0183 0.0122 0.0038 0.0250 ZNUT 0,0073 0.0210 0.0038 0.0740 0.0140 0,0060 0.0080 0,0120 0.0040 0.0260 0.0202 FTU TURB'ITY TURB 325.00 325.00 325.00 _ MG/L RESIDUE PARTIC. 36.5 504.0 280.0 647.9 0.00 86.4 504.0 0.001 36.6 153.2 9 RSP CMT PSEUDOMN HF. /100ML PSAMF AERUG. 12 4 3 55 39769 39723 39815 39847 39862 NUMBER ARITH MEAN SAMPLE 39708 39738 39754 39784 39799 39831 MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) 1320 1325 HOUR 1400 1346 1350 1352 1345 1410 1351 LMT YYIIIDD 900122 SAMPLE 900226 900326 900423 900528 900625 900723 900924 901022 900827 DATE

STATION ID: 04-0013-050-02

B.O.W./ SITE: NORTH THAMES RIVER

FLOW GAUGE FED 02GE015 AT MIDDLESEX COUNTY ROAD 28 STATION TYPE: RIVER SAMPLE POINT:

MG/L AS N TOTAL DISTANCE: 229,003 NUHTUR NH3-N UNF. REAC TOTAL RESIDUE MG/L 0.001< 0.038 2870 0.107 0.051 0.008 0.037 0.012 900.0 0.004 0.241 366.0 424.0 554.0 347.8 366.0 432.0 472.0 0.051 0.002 410.0 9 6 STORET CODE: FWTEMP TEMP DEG.C RESIDUE MG/L PARTIC. 6.2 5.5 5.0< 10.2 7.9 13.4 20.7 15.5 5.0 5.00 21.0 23.0 18.0 13.0 11.0 4.5 23.0 10.4 6.6 0.5 8.1 STREAM **FWSTRC** COND. MG/L RESIDUE -ILTERED 410.0< 430.0 359.8 418.5 358.0 419.0 445.0 465.5 426.0 358.1 RSF 22.00 REGION: 01 20AID SOOAID FECAL CRI /100ML STREPCUS SEUDOMN CRI 1500> /100ML AERUG 396 16 8 12 24 PSAMF FSMF 44 9 300 55 10 16 36 0486250.0 4771300.0 4 100AID FCMF FECAL MG/L AS P ¥ COLIFORM /100ML PHOSPHOR 1500> UNF. TOT 0.051 84 0.036 152 12 18 0.050 0.031 950.0 63 PPUT 0.020 0.081 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE DISOLVED MG/L AS 0 P04 MG/L PP04UR JNF . REAC 0.030 0.023 14.0 13.0 10.0 14.0 10.0 8.0 9.0 AS 0.025 0.010 11.5 0.039 00 U T M: 17 25C COND25 UMHO/CM AT 25 C CONDUCT. Ξ 710.0 662.0 539.0 603.0 632.0 551.0 577.0 602.0 680.0 710.0 621.9 539.0 52.6 8.24 8.37 8.37 8.37 8.16 8.16 8.19 8.24 8.24 H MG/L AS CL MG/L AS N CLIDUR CHLORIDE UNF. REAC NNTKUR K'DAHL N UNF. REAC LONG: 081 10 08.23 46.800 34.600 22.600 30.900 43.300 34.800 46.800 31.709 30.846 22.300 7.950 31.100 22.300 TOTAL 0.730 0.740 0.750 0.730 0.730 0.760 0.750 SUB-PROJ CODE N-20N MG/L AS N PROJECT UNF. REAC NNOSUR 0101 0101 0101 0101 0101 0101 9.600 8.700 7.900 12.500 1.500 0101 0101 0101 6.100 8.400 LAT: 43 05 46.43 DEPTH **FWSADP** SAMPLE MG/L AS N NNO2UR N02-N UNF . REAC 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.050 0.020 0.050 0.020 0.020 030 39334 39359 39384 39459 39509 SAMPLE NUMBER 39309 39434 39484 39534 59359 NUMBER 39559 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM SAMP IN STATISTICS SAMPLE \$9334 39384 39409 39434 39459 39484 39559 STD DEV (GEOM *) % SAMP (EXCLUDED) 39534 *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 900918 1130 901016 1125 901121 1110 1150 1150 HOUR 1210 1140 1140 1140 1150 1135 1130 1125 1110 HOUR 1210 1150 1140 1140 EMI LMT YYMMDD 900116 900220 900619 900319 900417 900717 900523 900821 YYMMDD 900116 900220 900319 900417 900619 900717 9000918 901016 SAMPLE 900523 900821 901121 DATE DATE

0.	2870 2870	: 229.003	RST		RESIDUE	MG/L	0 22	0.400	422 2	347.8	6 99	. 0	
STATION ID: 04-0013-050-02	STORET CODE: 02 00: 28:	DISTANCE:	RSP		RESIDUE	MG/L	20 7	11 7		ru ru		60	27
TION ID: 04		01	RSF		RESIDUE	MG/L	465.5	408.9		358.0		6	10
STA		REGION: 01	PSAMF	PSEUDOMN AERUG.	MF	/100ML	196	51		5		LT.	54
£	VER	771300.0 4	PPUT	PHOSPHOR	UNF.TOT. MG/L	AS P	0.081	0.047	0.044	0.020	0.017	11	
	MINOR BASIN: CARE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0486250.0 4771300.0 4	PP04UR	P04	UNF.REAC MG/L	AS P	0.039	0.023		0.002		6	18
MA 100 DACTM	MINOR BASIN: TERM STREAM:	U T M: 17	Н			РН	8.42	8.23	8.23	7,93	0.13	11	
		10 08.23	NNTKUR	K'DAHL N TOTAL	UNF.REAC MG/L	AS N	0,940	0.758	0.755	0.690	0.072	11	
IAMES RIVER -ESEX COUNTY ROAD 28 -ELOW GALIGE FED 02001E		LAT: 43 05 46.43 LONG: 081 10 08.23	NND3UR	N03-N	UNF.REAC MG/L	AS N	12.500	7,655	806.9	1.500	2.830	11	
ESEX COUNTY		3 05 46.43	NNO2UR	NO2-N	UNF.REAC MG/L	AS N	0.050	0.031	0.028	0.020	0.014	11	
F 6		LAT: 4	TEST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: NORTH SAMPLE POINT: AT MIC STATION TYPE: RIVER			*=INTERIM 1			YYMMDD LMT					STD DE	# SAMP IN	% SAMP

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT MIDDLESEX COUNTY ROAD

4

STATION ID: 04-0013-051-02

TEMP FILTERED MG/L DEG.C 215.002 FWTEMP RESIDUE 453.0< 567.0 515.0 416.1 22.0 24.0 118.5 14.0 12.0 5.0 24.0 111.2 7.7 1.0 8.2 506.5 506.0 528.1 2870 1.0 2.0 5.5 8.0 0.965 RSF STORET CODE: DISTANCE: FWSTRC STREAM PSEUDOMN CNT COND. /100ML AERUG, 444 PSAMF BOAID 20AID MG/L AS P STREPCUS /100ML PHOSPHOR UNF. TOT 860 134 59 20 0.095 0.090 0.037 0.095 90 360 PPUT 0.106 0.087 0.071 REGION: 01 AS FE 0.580 0.219<A 0.189<A 0.080 0.141<A MG/L AS P IRON MG/L P04 0,080<T 0.100<T PP04UR UNF. REAC 0.045 UNF. TOT, 0.210 0.240 0.580 0.230 0.035 0.020 0.033 0.034 FEUT 0.190 0.180 0.031 4 FECAL COLIFORM /100ML H 0487750.0 4757150.0 500> 8.03 8.08 8.20 8.46 8.16 8.38 8.38 8.24 72 56 132 208 9 24 H TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE 0.0050 0.0028<A 0.0024<A 0.0006 0.0013<A 0.0016<T 0.0024<T 0.0006<T 0.0021<T 0.0030 0.0020<T 0.0040 MG/L LEAD MG/L 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W AS PB 0.005<W COPPER 0.005<W 0.005<W 0.005<W AS CU UNF. TOT. UNF. TOT. 0.0030 CUUT PBUT U T M: 17 K'DAHL N TOTAL MG/L AS N COND25 25C UMHO/CM AT 25 C NNTKUR JNF . REAC CONDUCT. 853.0 793.0 609.0 697.0 508.0 758.0 735.0 853.0 724.3 717.1 508.0 801.0 0.850 1.080 0.610 0.850 0.900 0.830 10 MG/L MG/L AS N UNF . REAC AS CL N-20N UNF . REAC CLIDUR CHLORIDE NNOSUR 92.00 60 69.800 62.700 39.000 48.700 47.400 64.600 53.700 51.750 50.799 39.000 10.664 7.800 8.100 7.400 9.600 4.500 48.100 40.200 6.400 9.800 43.300 .800 LONG: 081 UNF.REAC MG/L AS N SUB-PROJ FGPROJ CODE PROJECT N02-N NNO2UR 0.070 0.070 0.060 0.010 0.050 0101 0101 0103 0103 0101 0103 0103 0.060 0103 0103 LAT: 42 58 07.81 DEPTH NH3-N MG/L AS N TOTAL SAMPLE NNHTUR UNF. REAC 0.006 0.001< 0.001< 0.30 0.279 0.095 0.019 0.30 SAMPLE 39436 39536 SAMPLE 39536 39336 39361 39386 39411 39461 39486 39511 39336 39361 39386 39411 39436 39486 39511 39311 39561 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS % SAMP (EXCLUDED) STD DEV (GEOM *) STATION TYPE: RIVER *=INTERIM TEST-NAME: TEST-NAME: 1310 1310 1300 HOUR 1335 1300 1300 1310 HOUR 1300 1300 1310 1310 1300 LMT LM1 *=INTERIM YYMINDD 901016 901121 YYMMDD 900619 900319 900619 900918 900116 900220 900319 900417 900821 901016 SAMPLE 900116 900220 900417 900523 900717 900821 SAMPLE 900523 900717 900918 901121 DATE DATE

STATION ID: 04-0013-051-02

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT MIDDLESEX COUNTY BOAD 4

STORET CODE: 02 003 2870 DISTANCE: 215.002 8PHOR PSAHF RSF 1-107. CMT FILTERED AS P /100HL HG/L	
T TT.	
NHOS NHOS 00.00	
REGION: 01 PP04UR P04UR NHG/L AS P 0.073 0.025 0.020	
FER F7150.0 4 PH PH 8.46 8.25 8.25 8.03 10.13	
GREAT LAKE LAKE ERIE THAMES RIV 487750.0 47 PBUT LEAD UNF.TOT. AS PB 0.005 <a 0.005<a="" 10.000<a<="" td=""><td></td>	
HAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER U T M: 17 0487750.0 4757150.0 4 NNTKUR PBUT PH TOTAL LEAD UNF. REAC UNF. 101. HG/L AS PB 8.46 0.650 0.005 <a 0.0005="" 0.005="" 0.005<a="" 0.131="" 0.134="" 0.610="" 0.640="" 8.25="" 8<="" a="" td=""><td></td>	
W 2017 0 117 3	0.0030 0.0040 0.0030
ROAD 4 LONG: 081 09 00.76 NNO2UR NNO3U NO2-N NO3-L AS N AS 1 O.160 9.800 O.063 7.660 O.063 7.660 O.070 1.656 I.090 1.656 IRST ZNUT RST ZNUT RST RST LOTAL HG/L AS 1 AS 1 AS 1 AS 2 AS 0.00052 490.0 0.00530 490.0 0.00540 526.0 0.00540 526.0 0.00540 526.0 0.00550 526.0 0.00550 526.0 0.00550 526.0 0.00550 526.0 0.005050 526.0 0.00500 526.0 0.00500 526.0 0.00500 526.0 0.00500 526.0 0.00500	550.0
HIDDLESEX COUNTY AHE: HHI3-H TOTAL UNF. REAC HEAN 0.083 HEAN 0.083 HEAN 0.002 OH *) SITCS AME: RESIDUE AMPLE PARTIC. UNBER) SITCS AME: RESIDUE AMPLE PARTIC. AMPLE PARTIC. AMPLE PARTIC. AMPLE PARTIC. 39336 5.0< 39341 5.0< 39341 5.0< 39441 5.0< 39441 5.0< 39441 2.15	21.9
LAT: 42	39511 39536 39561
TYP IN TY	900918 1300 901016 1355 901121 1300

0.0300 0.0060<A 0.0037<A 0.0005 0.0085<A

568.0 512.6 511.1 430.0 40.6

GEOM MEAN

* SANP IN STATISTICS % SANP (EXCLUBED)

MAXIMUM ARITH MEAN

21.9 34.5 8.7 7 30 STATION ID: 04-0013-052-02

B.O.W./ SITE: BIG SWAMP DRAIN

SOAID DISTANCE: 224.819 CNT /100ML FECAL STREPCUS MG/L AS P PHOSPHOR JNF. TOT. 10< 2870 24 84 264 264 590 140 104 1180 10 0.016 0.014 264 PPUT 0.032 0.255 0.018 STORET CODE: TOAID FECAL COLIFORM CNT /100ML . REAC MG/L PP04UR 10< 4900 24 108 300 190 220 260 œ 10 603 0.109 0.001 0.017 0.017 0.014 0.004 UNF. MG/L 0 DISOLVED OXYGEN 표 7.0 112.0 113.0 111.0 9.0 8.0 9.0 9.0 13.0 9.9 9.7 7.0 2.0 7.99 8.14 8.20 8.06 8.06 7.94 8.06 7.82 7.87 표 REGION: 01 AS CU 0.0035 0.0009<T 0.0009 0.0010<A COPPER MG/L 0.0016<T 0.0015<T 0.0010<T 0.0020<A AS PB 0.0020<T 0.0010<T 0.005<W 0.0010<T 0.0017<A LEAD MG/L 0.005<W 0.005<W 0.005<W 0.005<W UNF. TOT. 0.006<T 0.005<W 0.005<W 0.005<W 0.005<W UNF. TOT CUUT 0,0030 0.0030 0.0030 0.0035 UNF.REAC MG/L AS N COND25 UMHO/CM AT 25 C U T M: 17 0495500.0 4757925.0 NNTKUR K'DAHL N CONDUCT 659.0 686.0 711.0 729.0 725.0 673.0 773.0 616.0 548.0 773.0 679.1 676.3 548.0 TOTAL 0.410 0.680 .400 440 0.630 0.490 0.640 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE CHLORIDE MG/L AS CL CLIDUR UNF . REAC N-20N NNOSUR JNF . REAC MG/L 58.900 73.100 78.100 69.500 128.000 63,400 61.800 63.200 72.070 70.127 58.900 20.554 10 1.700 AS 0.600 1.000 128.000 1.200 1.900 BOD 5 DAY MG/L TOT . DEM. MG/L AS N NNOZUR N02-N UNF . REAC AS 0.69 BODS 4.32 1.28 1.68 0.99 2.26 .32 1.03 040 0.010 0.050 0.030 0.030 0.020 0.020 0.010 0.020 SAMPLE POINT: AT COUNTY ROAD NO.32 SOUTH OF DORCHESTER STATION TYPE: RIVER TOTAL ALK MG/L CAC03 NH3-N MG/L AS N TOTAL LONG: 081 03 18.67 NNHTUR UNF. REAC 0.019 0.001< 0.030 146.0 214.0 229.0 227.0 242.0 253.0 2548.0 ALKT 148.0 253.0 211.7 207.8 146.0 40.5 0.060 0.310 0.005 0.007 SUB-PROJ CODE TEMP PROJECT FWTEMP MATER DEG.C 0103 0103 0101 0101 0103 0103 0103 0103 3.0 2.5 2.5 12.0 11.0 11.0 4.5 58 33.24 SAMPLE DEPTH FWSADP STREAM COND. **FWSTRC** 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 LAT: 42 39346 39446 39471 MAXIMUM ARITH MEAN SAMPLE NUMBER 39371 39396 39421 39521 39546 SAMPLE 39321 GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS 39346 39396 39446 39496 39546 39421 39521 *=INTERIM TEST-NAME: % SAMP (EXCLUDED) 39371 TEST-NAME: 1105 1110 1100 1110 1110 1105 1105 1110 1110 HOUR 1110 11100 1100 1100 1105 LMT LMT *=INTERIM 900320 YYMMDD 900117 900418 901120 SAMPLE 900524 900620 900718 900919 901017 900221 900822 YYMMDD 900117 900221 900320 900524 900620 901017 SAMPLE 900418 900718 900822 900919 DATE DATE

STATION ID: 04-0013-052-02

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: AT COUNTY ROAD NO.32 SOUTH OF DORCHESTER B.O.W./ SITE: BIG SWAMP DRAIN

MG/L AS P DISTANCE: 224.819 PHOSPHOR UNF. TOT. 2870 PPUT STORET CODE: 02 AS P HG/L PP04UR P04 UNF. REAC H H REGION: 01 LEAD UNF . TOT . MG/L AS PB PBUT U T M: 17 0495500.0 4757925.0 4 MG/L AS N K'DAML N UNF . REAC NNTKUR TOTAL TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N N-20N NNO3UR UNF. REAC NO2-N UNF.REAC MG/L AS N NN02UR MG/L AS N UNF. REAC NNHTUR NH3-N TOTAL LAT: 42 58 33.24 LONG: 081 03 18.67 WATER TEMP DEG.C **FWTEMP** FWSTRC STREAM COND. SAMPLE STATION TYPE: RIVER *=INTERIM TEST-NAME: HOUR YYMMDD LMT SAMPLE DATE

0.255 0.051 0.031 0.014 0.077

0.109 0.020 0.009 0.001 0.032

8.20 8.03 8.03 7.82 0.13

0.006 0.005 <a 0.005<a 0.005 11</a </a 							
2,400 0.727 0.619 0.410 0.596							
1.900 1.130 1.065 0.600 0.419							
0.050 0.026 0.023 0.010 0.013							
0.310 0.061 0.005 8	ZNUT	MG/L AS ZN	0.0120 0.0017 <t< td=""><td>0.0016<t< td=""><td>0.0010<t< td=""><td>0.0010<t 0.0005<w 0.0005<w 0.0040</w </w </t </td><td>0.0120 0.0023<a 0.0014<a 0.0005 0.0034<a< td=""></a<></a </a </td></t<></td></t<></td></t<>	0.0016 <t< td=""><td>0.0010<t< td=""><td>0.0010<t 0.0005<w 0.0005<w 0.0040</w </w </t </td><td>0.0120 0.0023<a 0.0014<a 0.0005 0.0034<a< td=""></a<></a </a </td></t<></td></t<>	0.0010 <t< td=""><td>0.0010<t 0.0005<w 0.0005<w 0.0040</w </w </t </td><td>0.0120 0.0023<a 0.0014<a 0.0005 0.0034<a< td=""></a<></a </a </td></t<>	0.0010 <t 0.0005<w 0.0005<w 0.0040</w </w </t 	0.0120 0.0023 <a 0.0014<a 0.0005 0.0034<a< td=""></a<></a </a
19.0 9.3 7.2 2.0 6.1	RSP	PARTIC. MG/L	55.53	5.0	6.2		55.3 14.1 3.6 8
	PSAMF PSEUDOMN AERUG.	CNT /100ML	28 4	444	3 × .	3 4 4 4	8 m 4 4 k
HAXIMUM ARITH HEAN GEON WEAN HINIMUM STD DEV (GEON *) AMP IN STATISTICS % SAMP (EXCLUDED)	EST-NAME:	SAMPLE	39321	39396	39446	39521 39521 39546 39571	MAXIHUM ARITH HEAN GEOTH MEAN MINITHUH STD DEV (GEOH *) SAMP IN STATISTICS Z SAMP (EXCLUDED)
ARITH MEAN GEOM MEAN HINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS Z SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	DATE HOUR	900117 1120 900221 1105		900620 1100 900718 1105	900919 1110 900919 1110 901017 1100 901120 1045	STD DEV # SAMP IN S

1990 WATER QUA

HAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERE TERH STREM: LAKE RIVER 55.15 U T N: 17 0512275.0 4794600.0 4 CLIDUR CONDUCT. COLIZOR: FECAL HG/L UNHO/CH CNT CNT AS CL T25 C /100HL /100HL 1.600 623.0 72 20 64 6 1.700 633.0 72 240 6 1.700 639.0 352 600 6 1.800 616.0 640 1040 6 1.800 616.0 60AID 1000 6 1.800 719.0 600AID 1000 6	HAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERIE TERH STREM: LAKE ERIE TERH STREM: THAHES RIVER SECONDUCT. CONDUCT FORM STREPCUS SECONDUCT. COLFORM STREPCUS HF. RECAL HOCK. UMHO/CM COLFORM STREPCUS HF. CMT COLFORM STATE COLFOR	HAJOR BASIN: GREAT LAKES HING BASIN: TAMES RIVER	HAJOR BASIN: GREAT LAKES HIRD RIVER	HAJOR BASIN: GREAT LAKES HIRD RIVER	HAJOR BASIN: GREAT LAKE SHURE	HAJOR BASIN: GREAT LAKES HAJOR BASIN: LAKE ERIE TENNOR BASIN: LONDOR TECAL	HAJOR BASIN: GREAT LAKE HAJOR BASIN: LAKE ERIE TERM STREAM: THANES RIVER FERM STREAM: THANES RIVER FERM STREAM: THANES RIVER FERM STREAM STREAM STREAM STREAM STATE CONDUCT. COLIFORM STREAM STREAM STATE CONDUCT. COLIFORM STATE STREAM STATE STREAM STATE STREAM STATE STATE STREAM STATE	HAJOR BASIN: GREAT LAKES HINGR BASIN: LAKE ERIE TERN STREAN: THANES RIVER CLIDUR CONDUCT. COLIFORM STRECOLS FECAL FECAL HSTR HT SC. /100HL /100HL CONDUCT. COLIFORM STRECOLS FECAL OWHO/CH CNT	HAJOR BASIN: GREAT LAKE SHEER	HAJOR BASIN: GREAT LAKES HIVER STERM STREAM: THAKE STIVER FINER TERM STREAM: THAKE STIVER STORE STOR	HAJOR BASIN: GREAT LAKE SHERE TERM STREAM: THANES RIVER FOLLOW CLIDUR STREAM: THANES RIVER FERM STREAM: THANES RIVER FERM STREAMS STREAMS STREAMS STREAMS STREAMS STREAMS STREAMS STREAMS STREAM STREEOUS FECAL CONDUCT. COLITORM STREEOUS FECAL WHO/CH CNT	HAJOR BASIN: GREAT LAKE STHER FRICAL HINGR BASIN: LAKE ERIE TERN STREAM: THANES RIVER TERN STREAM: THANES RIVER FULL STREAM STRECUS STATE FECAL FECAL FECAL HINGLE CONDUCT. COLIFORM STRECUS HINGL AND CHILD CONDUCT. COLIFORM STRECUS HINGL AND CHILD CONDUCT. COLIFORM STRECUS STATE STREAM STATE CONDUCT. COLIFORM STATE STREAM STATE ST	HAJOR BASIN: GREAT LAKE RIEF HAJOR BASIN: LAKE ERIEF	LVE							VIO	TTON THE O		
7 NA.	7 NA.	T CLIDUR CHLORIDE CHLORIDE UNF. REAC HG/L S 23.600 22.700 26.300 26.300 26.4500 26.4500 26.4500 26.4500 26.4500 26.4500 26.4500 26.4500 26.4500 26.4500 26.4500 27.4500 27.4500 28.450	CHLORIDE AS CL 23.600 22.700 26.800 24.500 24.500 26.800 26.800 26.800 26.800 27.191 14.100 27.191 14.100 28.500 27.191 14.100 28.500	T CLIDUR CHLORIDE CHLORIDE CHLORIDE CHLORIDE CHLORIDE AS CL 23.600 22.700 26.800 26.800 26.800 26.800 26.800 26.800 26.800 26.191 14.100 26.800 26.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 14.100 27.191 27.19	CHLORIDE CHLORIDE CHLORIDE UNF. REAC E	20.50 55.15 CLIDUR CHLORIDE UNF. REAC HG/L 23.600 22.700 22.700 24.500 24.500 24.500 22.700 24.500 22.700	CHLORIDE CHL	CHLORIDE UNF. REAC CHLORIDE UNF. REAC 23.600 20.300 22.700 26.800 24,500 24,500 24,500 26.800 26,800 26,800 27,500 21,800 27,64 7,64 7,64 7,64 7,64 7,64 7,64 7,64	CHLORIDE UNF. REAC HG/L AS CL 23.600 22.700 26.800 22.700 26.800 22.700 26.800 22.700 26.800 22.700 26.800 22.700 26.800 22.700 26.800 22.700 26.800 22.700 26.800 27.500	CHLORIDE CHL	CHLIDUR CHLCHIDE UNF. REAC CHLCHIDE UNF. REAC 23. 600 22. 700 26. 800 26. 800 27. 400 27. 400	20.50 55.15 CLIDUR CHLORIDE UNF. REAC UNF. REAC 14,100 22,700 22,700 24,500 22,700 24,500 22,700 24,500 22,700 22,700 24,500 22,700 22,700 24,500 22,700 24,500 22,700 24,500 26,800 27,64 7,82 8,08 8,03 7,64 7,82 8,08 8,12 7,63	CHLOUR CHLORIDE UNF. REAC HG/L S CL 23, 600 26, 800 22, 700 24, 400 24, 400 26, 800 26, 800 26, 800 26, 800 26, 800 26, 800 27, 100 28, 100 28	STATION TYPE: RIVER	H OF TAN	/IST	CK	MAJOR BAST	N: GRFAT IA	(FC		5	STALLON LD: 0	STALTON ID: 04-0013-055-02
U T M: 17 0512275.0 4794600.0 4 COND25 FCMF FEAL FEAL E CONDUCT. COLIFORM STREPCUS WHOVEN CH CNT AT 25 C /100HL /100HL 623.0 72 20 551.0 116 64 579.0 324 240 549.0 352 600 549.0 550.0 1500.0 719.0 600AID 1000.0	U T H: 17 0512275.0 4794600.0 4 COND25 FCHF FSHF CONDUCT. COLIFORM STREPCUS 25C HF MF MF UNHO/CH / 100HL / 100HL 47 25 C / 100HL / 100HL 578.0 116 64 578.0 1500 646.0 640 1040 1000 646.0 640 1000 1500 6757.0 1500 6001 1500 6757.0 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 1500 6901 6901 1500 6901 1500 6901 6901 6901 6901 6901 6901 6901 69	CLIDUR COND25 FCHF FSME	CLIDUR COND25 FECH FERAL	CLIDUR COND25 FCHF FSME	CLIDUR COND25 FECH FERAL	CLIDUR COND25 FCHF FSHF	CLIDUR COND25 FCHF FSME	CLIDUR COND25 FECH FERAL	CLIDUR COND25 FCHF FSNF	CLIDUR COND25 FCHF FERAL	22.700 G23.0 TH: 17 0512275.0 4794600.0 4 CHLORIDE CONDUCT. COLIFORM STREPCUS LWF.REAC LWHO/CH COLIFORM STREPCUS LS.600 623.0 TZ 22.700 553.0 TZ 22.700 553.0 TZ 24.100 549.0 TZ 24.500 700.0 TZ 24.500 700.0 TZ 25.800 755.0 TZ 26.800 755.0 TZ 26.800 755.0 TZ 27.500 644.5 TZ 27.500 644.5 TZ 28.800 755.0 TZ 29.800 755.0 TZ 20.800 755.0	22.500 623.0 This is conditional condition	CLIDUR COND25 FECH FERAL					MINOR BASI	N: LAKE ERI H: THAMES R	res rver				STORET CODE:
CLIDUR COND25 FCHF FSHF CHLORIDE CONDUCT. COLIFORM STREPCUS LMF MG/L UMHO/CH CNT	CLIDUR COND25 FCHF FSHF CHLORIDE CONDUCT. COLIFORM STREPCUS UNF.REAC LHIOCH COLIFORM STREPCUS LHIOCH COLIFORM STREPCUS LHIOCH CNT	CLIDUR COND25 FCMF FSMF FECAL LALLORIDE CONDUCT. COLIFORM STREPCUS MF MG/L UNH-REAC 25C MP CNT	CLIDUR COND25 FCHF FSMF FECAL FECAL FECAL STREPCUS MVF. REAC CONDUCT. COLIFORM STATE COLIFORM STATE COLIFORM STATE COLIFORM STATE COLIFORM STATE COLOF	CLIDUR COND25 FCMF FSMF FECAL CHLORIDE CONDUCT. COLIFORM STREPCUS UNF.REAC 25.000 623.0 72 20.000L 22.700 558.0 116 64 64 65 22.700 558.0 104 84 64 64 64 64 64 64 64 64 64 64 64 64 64	CHLORIDE CONDUCT. COLIFORM STREPCUS FECAL CHICAGO CONDUCT. COLIFORM STREPCUS CONDUCT. COLIFORM STREPCUS CONDUCT. COLIFORM STREPCUS CONDUCT. COLIFORM STREPCUS COLIFORM STREPCUS CONDUCT. COLIFORM STREPCUS CONDUCT. COLIFORM STREPCUS COLIFORM STATE C	CLIDUR COND25 FCHF FSMF FECAL FECAL FECAL CHLORIDE CONDUCT. COLIFORM STREPCUS MF MG/L UNHO/CH CNT	CLIDUR COND25 FCHF FSMF FECAL LANG CHORDS CONDUCT. COLIFORM STREPCUS CONDUCT. COLIFORM STREPCUS CONDUCT. COLIFORM STREPCUS COLIFORM STREPC	CLIDUR COND25 FCHF FSMF FECAL LALLORIDE CONDUCT. COLIFORM STREPCUS LINEAC LAT 25 C /100ML /10	CHLORIDE CONDUCT. COLIFORM STREPCUS UNF.REAC 25.0 UNF.REAC CHOUCT. COLIFORM STREPCUS MG/L UNHO/CH CNT CNT CNT 23.600 623.0 20.3000 623.0 20.3000 623.0 20.3000 639.0 20.4500 579.0 20.800 616.0 24.500 700.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 26.800 757.0 27.640 1040 22.1500 644.5 22.1500 644.5 22.1500 644.5 22.1500 644.5 22.1800 773.0 24.000 773.0 26.800 757.0 26.800 757.0 26.800 757.0 27.640 1040 28.1500 644.5 27.800 757.0 28.1800 778.0 28.1800 778.0 29.9 99.9 10.100 PH PPD04UR PPUT PSAHF PREUDOHN PM PPUT PSAHF PREUDOHN PRE	CLIDUR CONDES FECHF FSMF FECAL CHLORIDE CONDUCT. CLIFORM STREPCUS MG/L UNHO/CH CMT	CLIDUR CONDES FECHE FSMF FECAL CHLORIDE CONDUCT. COLIFORM STREPCUS MG/L UNHO/CH CMT	CLIDUR COND25 FCHF FSMF FCAL LUNT. COLIDUR STREPCUS NIT. FECAL CHIONIL STREPCUS NIT. FECAL CHIONIL STREPCUS NIT. CMT AS CL AT 25 C /100HL /100HL /100HL 22.3000 623.0 324 240 64 64 64 64 64 64 64 64 64 64 64 64 64	CHLORIDE CONDUCT. COLIFORM STREPCUS NIF. REAL LECAL CHLORIDE CONDUCT. COLIFORM STREPCUS NIF. REAL LECAL COLIFORM STREPCUS NIF. REAL LECAL CONDUCT. COLIFORM STREPCUS NIF. CMT AT 25 C /100ML /100ML /100ML 22.700 5570.0 104 84 65 64 66 653.0 5570.0 104 84 66 64 66 653.0 5570.0 104 84 66 64 66 64 66 64 64 64 64 64 64 64 64	LAT: 43 18 21.85 LON		G: 080	50 55.15	U T M: 17	0512275.0	4794600.0 4	_	REGION:	REGION: 01	REGION: 01 DISTANCE: 298.847
CHLORIDE CONDUCT. CLIFORM STREECUL LHCAL UNHO/CH CNT CNT AS CL UHHO/CH CNT CNT AS CL AT 25 C /100HL /100HL 23.600 623.0 72 20 4 26.000 639.0 352 600 6 24.500 73.0 600AID 1000 6 64.50 600 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CHLORIDE CONDUCT, COLIFORM STREPGIS UNF. REAC 25C MF MF CNT CNT AS CL 25.00 623.00 551.00 116 64 65.00 551.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00 116 64 65.00 651.00	CHLORIDE CONDUCT, COLFCAL FECAL ING/L UMHO/CH CNT CNT CNT 23.600 623.0 72 20 4 22.700 553.0 104 84 6 22.700 553.0 324 240 6 14.100 559.0 352 600 64 24.500 700.0 1500> 640 1000 6 24.500 700.0 1500> 6500 6 24.500 700.0 1500> 6500 6 24.500 700.0 1500> 6500 6 24.500 700.0 1500> 6 24.500 700.0 1500> 6 24.500 700.0 1500> 6 24.500 700.0 1500> 6 24.500 700.0 1500> 6 24.500 757.0 640 1000 6 22.191 640.7 72 20 14.100 549.0 72 20 3.627 74.2 99 10 10 10 10 PM PPO4UR PPUT PSAMF FREDOMINERAL UNF.REA CUNF.ROT CNT PREDOMINERAL UNF.REA CUNF.ROT CNT PREDOMINERAL UNF.REA CUNF.REA	CHLORIDE CONDUCT, COLFORM STREPCED HE MACL UNH-REAC 25C MF MF MF MCL UNHOWCH CNT COLFORM STREPCED STATE CNT	CHLORIDE CONDUCT, COLFORM STREPCED HE	CHLORIDE CONDUCT, COLFORM STREPCED HE	CHLORIDE CONDUCT, COLFCAL FECAL UNF.REAC 25C HF H STREPCAL 23.600 623.0 72 20 4 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 551.0 116 64 6 26.000 779.0 600AID 1000 600AID 1000 26.000 775.0 1500> 6 26.000 775.0 1500> 6 26.000 775.0 1600 600AID 1000 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10 10 9 9 10 10 PH PPOQ4UR PPUT PSAMF RE HIGH AS POQ4 AS 7.100HL AS PAS AS PATION HIGH AS PAS PAS PAS PAS PAS PAS PAS PAS PAS	CHLORIDE CONDUCT, COLFORM STREPCED HE	CHLORIDE CONDUCT. COLFORM STREPCED HE HE ALL MHG/L UNHO/CH CNT	CHLORIDE CONDUCT, COLFORM STREPCED HE AS CL AT 25 C CLIFORM STREPCED HE AS CL AT 25 C CLIFORM CNT	CHLORIDE CONDUCT, COLFORM STREPCED HE AS CL A T25 C TIOML TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	CHLORIDE CONDUCT. COLFORM STREPCED LINE REAC	CHLORIDE CONDUCT. COLFCAL FECAL MF REACL LAND LAND CH COLFCAL CONTENT STREACL LASC. COLFCAL CONTENT STREACL LASC. COLFCAL CONTENT STREACL LASC. COLFCAL CONTENT STATE CONT	CHLORIDE CONDUCT, COLFORM STREPCED HE AS CL AT 25 C CLIFORM STREPCED AS CL AT 25 C CLIFORM STREPCED STATE COLFORM STREPCED STATE COLFORM STATE	FWSADP	ii.	GPROJ	CLIDUR	COND25	FCMF	FSMF	ī	WSTRC	WSTRC FWTEMP	FWTEMP
AS CL AT 25 C /100HL /1	AS CL AT 25 C /100HL /1	##G/L UMHO/CH CHIT CHIT 23.600 623.0 72 20 4 26.300 5551.0 116 64 6 26.300 5551.0 116 64 6 26.300 559.0 324 240 26.300 559.0 352 600 6 24.500 700.0 1500> 1500> 624.500 24.500 779.0 60AID 1000 6 24.500 779.0 60AID 1000 6 24.500 779.0 640 1040 6 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 16.100 549.0 72 20 3.627 74.2 9 9 16.100 549.0 72 20 3.627 74.2 9 9 16.100 549.0 72 20 3.627 74.2 9 9 10.10 749.0 72 72 70 10.10 749.0 72 72 72 72 72 72 72 72 72 72 72 72 72	##5/L UMHO/CH CHIT CHIT CHIT CHIT CHIT CHIT CHIT CH	##\$7L UMHO/CH CHIT CITE 23.600 623.0 72 20 4 26.000 639.0 324 26.000 639.0 324 26.000 639.0 324 26.000 639.0 104 24.500 770.0 1500> 1500> 6 24.500 770.0 1500> 1500> 6 24.500 779.0 600AID 1000 6 24.500 779.0 600AID 1000 6 22.500 644.5 100 590B 22.191 640.7 72 20 3.627 740.0 640 1040 22.191 640.7 72 20 3.627 74.2 9 3.627 74.2 9 3.627 74.2 9 3.627 74.2 20 3.627 74.2	##57L UMH07CH CNT CNT 23.600 623.0 72 20 4 20.300 551.0 116 64 6 22.700 553.0 324 240 64 26.000 633.0 352 600 64 26.000 719.0 640 1040 64 24.500 719.0 600AID 1000 6 24.500 719.0 600AID 1000 6 24.400 757.0 130 590 6 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 14.100 549.0 72 20 3.627 74.2 9 9 9 10. PH PP04UR PPUT PSAHF F PHGAL MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/	#\$\text{A} \text{C} \text{A} \text{A} \text{C} \text{A} \text{A} \text{C} \text{A} \text{C} \text{A} \text{C} \text{A} \text{C} \text{A} \text{C} \text{A} \	##5/L UMHO/CH CNT CNT 23.600 623.0 72 20 4 20.300 5531.0 116 64 64 22.700 5531.0 116 64 64 22.700 5531.0 116 64 64 22.700 5531.0 104 84 66 22.700 6339.0 324 240 22.500 6439.0 352 600 66 24.500 779.0 600AID 1000 6 24.500 779.0 600AID 1000 6 22.1800 7757.0 640 1040 62 22.191 640.7 72 20 3.627 74.2 640 1040 4.800 757.0 644.5 271 408 22.191 640.7 72 20 3.627 74.2 640 1040 FM PP04UR PPUT PSAMF F PM PP04UR PPUT PSAMF F PM PP04UR PPUT PSAMF F 7.64 0.048 0.074 4< 7.64 0.048 0.075 4< 1.000 66 44 6	23.600 623.0 72 20 4 20.300 551.0 116 64 6 20.300 551.0 104 84 6 20.300 551.0 104 84 6 20.300 559.0 324 240 20.400 559.0 104 84 6 20.400 5719.0 600AID 1000 6 20.400 713.0 130 590 6 20.400 757.0 100 590 6 20.500 644.5 271 408 22.500 644.5 20	#\$\text{AS CL} AT 25 C \text{AT DOML} AT DOML	23.600 623.0 72 20 4 20.300 553.0 116 64 64 20.300 553.0 104 84 66 20.300 553.0 104 84 66 20.300 553.0 104 84 66 20.300 559.0 324 240 20.300 559.0 1000 640 24.500 779.0 600AID 1000 6 24.500 779.0 600AID 1000 6 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 640 1040 22.191 640.7 72 20 3.627 10 640 1040 22.191 640.7 72 20 3.627 10 640 1040 22.191 640.7 72 20 3.627 10 640 1040 22.191 640.7 72 20 3.627 10	23.600 623.0 72 20 4 20.300 553.0 116 64 6 20.300 553.0 116 64 6 20.300 553.0 104 84 6 20.300 553.0 104 84 6 20.300 559.0 104 84 6 20.300 559.0 1004 84 6 20.300 54.00 1500> 1500> 6 20.300 54.00 1500> 1500> 6 20.300 719.0 600AID 1000 6 20.400 713.0 130 590 6 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 74.2 9 9 16.100 549.0 72 20 3.627 7.82 0.036 0.066 4< 100ML 7.64 0.036 0.065 4< 100ML 7.82 0.036 0.065 4< 100ML 8.08 0.027 0.039 4< 16 8.02 0.001 0.120 46 5	23.600 623.0 72 20 4 20.500 551.0 116 64 6 20.500 551.0 104 84 6 20.500 553.0 324 240 20.500 553.0 326 600 64 20.500 559.0 352 600 6 24.500 515.0 104 84 6 24.500 510.0 510.0 500 6 24.500 719.0 600AID 1000 6 24.500 719.0 600AID 1000 6 22.500 644.5 271 408 22.500	High Uhhold Chi	SAMPLE PR	PR	OJECT	CHLORIDE	CONDUCT.	COLIFORM	STREPCUS				
23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 104 84 26.000 639.0 324 240 14.100 549.0 352 60 20.800 616.0 640 1040 24.500 700.0 1500> 66.80 26.800 719.0 600AR 1000	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 104 84 26.000 639.0 324 240 14.100 549.0 352 600 20.800 616.0 640 1040 24.500 700.0 1500> 26.800 719.0 600AID 1000 24.400 757.0 130 590	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 116 64 26.000 639.0 324 240 24.500 616.0 640.0 1500> 24.400 757.0 1500> 24.400 757.0 640 1000 21.800 757.0 640 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10. 10 549.0 72 20 3.627 74.2 9 9 10. 10 549.0 72 20 3.627 74.2 9 9 10. 10 549.0 72 20 3.627 74.2 9 9 10. 10 74.2 9 9 10. 10 74.2 9 9 10. 10 74.2 9 9 10. 10 74.2 9 9 10. 10 1000 100000000000000000000000000	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 1164 84 22.700 549.0 324 240 24.500 646.0 352 600 24.500 719.0 640 11040 24.500 719.0 600AID 11000 24.400 757.0 600AID 1000 22.500 644.5 120 590 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 408 22.1500 640.7 72 20 3.627 74.2 271 PSEUDOHN PH PPO4UR PPUT PSEUDOHN HG/L CRIT	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 1164 84 22.000 559.0 324 240 14.100 549.0 352 600 24.500 719.0 600AID 1000 24.500 719.0 600AID 1000 24.400 719.0 600AID 1000 22.1500 644.5 130 590 22.1500 644.5 271 408 22.1501 640.7 72 20 3.627 74.2 77.2 20 3.627 74.2 9 9 9 10 PH PP04UR PPUT PSEUDONN PM PP04UR PPUT PSEUDONN PM PP04UR AS P 7100HL AS P AS P 7100HL	23.600 623.0 72 20 20.300 551.0 116 64 22.700 579.0 324 640 14.100 549.0 352 600 24.500 719.0 600AID 11000 24.400 757.0 600AID 10000 24.400 757.0 600AID 10000 22.500 644.5 271 6408 22.101 640.7 72 20 3.627 74.2 9 9 14.100 549.0 72 20 3.627 040 PPO4UR PPUT PSAHF PH PPO4UR PPUT PSAHF PH AS P AS P AS P 7100H 7.64 0.048 0.074 46 7.82 0.036 0.066 46	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 104 84 26.000 639.0 324 240 24.500 616.0 640 11500> 24.500 719.0 600AID 11500> 24.500 719.0 600AID 1000 24.400 757.0 1500> 22.500 644.5 130 590 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 14.100 549.0 72 20 3.627 74.2 271 678 10 PH PP044UR PPUT PSAMF PH PP044UR PPUT PSAMF T HG/L UNF.TOT CHT T AS P AS P 7.100HL	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 1104 84 22.700 578.0 1104 84 22.700 579.0 324 240 14.100 549.0 352 600 24.500 719.0 600AID 1000 24.500 719.0 600AID 1000 24.400 757.0 640 1040 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10. HP REAC UNF.TOT HF HSLUC. HG/L AS PH AS P AS P /100HL 7.64 0.048 0.074 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4<	23.600 623.0 72 20 20.300 551.0 116 64 22.700 579.0 324 240 24.500 645.0 660AID 1000 24.500 757.0 600AID 1000 24.400 757.0 600AID 1000 22.500 644.5 271 408 22.191 640.7 757.0 640 1040 22.191 640.7 77.2 20 3.627 74.2 271 408 3.627 74.2 271 408 4.100 PH PPO4UR PPUT PSAHF PH PPO4UR PPUT AS P AS P 7.00H 7.64 0.036 0.066 46 7.82 0.036 0.066 46 7.82 0.036 0.066 46 8.03 0.027 46 8.03 0.025 0.067 46 8.03 0.025 0.067 46	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 116 64 22.700 579.0 324 240 14.100 549.0 352 600 24.500 719.0 600AID 1500> 24.500 719.0 600AID 1000 24.500 719.0 600AID 1000 24.400 757.0 1500> 590 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 271 698 10 PH PP04UR PPUT PSEUDOHN PP04 PHOSPHOR AERUG. PH PP04UR PUT PSEUDOHN AERUG. 7.64 0.048 0.074 4< 7.82 0.035 0.011 0.065 4< 8.03 0.011 0.065 4< 8.03 0.017 0.065 4< 8.02 0.002 0.039 6< 8.12 0.002 0.039	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 116 64 22.700 578.0 116 64 22.700 579.0 324 240 14.100 549.0 352 600 24.500 719.0 6004D 11500> 26.500 719.0 6004D 11500> 24.400 757.0 130 1500> 22.500 773.0 100 590 22.500 644.5 271 408 22.191 640.7 72 20 3.627 72 72 72 20 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 72 72 3.627 72 72 72 3.627 72 72 72 72 3.627 72 72 72 72 3.627 72 72 72 72 3.627 72 7	23.600 623.0 72 20 20.300 551.0 116 64 22.700 579.0 324 240 26.000 639.0 324 240 26.000 646.0 1500> 1600 24.500 700.0 1500> 1600 24.500 700.0 1500> 1600 24.400 757.0 640 1040 22.500 644.5 271 408 22.191 640.7 757.0 640 1040 22.191 640.7 77.2 20 3.627 74.2 271 408 14.100 549.0 72 20 3.627 74.2 271 408 14.100 FREAC UNF. TOT. HF HG/L PD4 PP04UR PPUT PSAHF PP04 PH05PHOR ARBOG. NP FREAC UNF. TOT. HG/L AS P 0.036 0.065 44 7.82 0.036 0.065 44 7.82 0.025 0.067 8.03 0.027 0.053 44 7.83 0.001 0.053 44 7.84 0.0087 0.129 16	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 116 64 22.700 579.0 324 240 14.100 549.0 352 600 24.500 719.0 60041D 1000 24.500 719.0 60041D 1000 24.400 757.0 1300 590 22.500 757.0 130 590 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 3.627 74.2 271 408 4.100 549.0 72 20 3.627 74.2 271 408 4.100 PH PP04UR PPUT PSAMF PH PP04UR PPUT PSAMF AS P 7.004L 7.64 0.048 0.074 4< 7.82 0.015 0.066 4< 8.03 0.011 0.065 4< 8.03 0.011 0.065 4< 8.03 0.011 0.065 4< 8.03 0.001<0.003 0.035 4< 8.08 0.027 0.035 4< 8.08 0.027 0.035 4< 8.08 0.027 0.035 16	23.600 623.0 72 20 20.300 551.0 116 64 22.700 578.0 116 64 22.000 659.0 324 240 24.500 616.0 660 11500> 24.500 719.0 60041D 15000 24.500 719.0 60041D 10000 24.500 719.0 60041D 10000 22.500 757.0 130 590 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 10. HP. REAC UNF. TOT RECUDON AERUG. PH PP044UR PPUT PSEUDONN AERUG. 7.82 0.035 0.0014 4.0065 4.0045 8.03 0.0014 0.065 4.0045 8.02 0.0014 0.0039 4.0077 7.83 0.0071 0.056 4.0077 7.83 0.0071 0.056 4.0077 7.95 0.0071 0.0039 16 8.02 0.0014 0.0056 4.0077 7.95 0.0071 0.056 4.0077 7.95 0.0071 0.0056 4.0077 7.95 0.0071 0.0056 4.0077 7.95 0.0071 0.0056 4.0077 7.95 0.0071 0.0056 4.0077 7.95 0.0071 0.0056 4.0077	DEPTH SUB	SUB	-PROJ CODE	MG/L AS CL	UMHO/CM AT 25 C	CNT /100ML	CNT /100ML	ST	REAM DND.	REAM TEMP OND. DEG.C	
20.300 551.0 116 64 22.700 578.0 104 84 26.000 639.0 324 240 14.100 549.0 352 640 20.800 616.0 640 1040 24.500 719.0 600AR 1000	20.300 551.0 116 64 22.700 578.0 104 84 26.000 639.0 324 240 20.600 616.0 640 1040 24.500 719.0 600AID 1000 24.400 757.0 130 590	20.300 551.0 116 64 22.700 578.0 116 64 22.700 579.0 116 64 22.700 559.0 324 240 24.500 700.0 1500.0 1500.0 24.500 700.0 1500.0 1500.0 24.500 700.0 1500.0 1500.0 24.400 713.0 1000 1500.0 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 22.500 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 1040 644.5 27.0 640 640.7 27.0 640 6	20.300 551.0 116 64 22.700 579.0 116 64 26.00 63.00 63.00 63.00 64	20.300 551.0 116 64 22.700 578.0 116 64 26.00 639.0 324 26.00 639.0 324 26.00 639.0 326 640 24.500 700.0 1500.> 26.800 709.0 1500.> 26.800 709.0 1500.> 26.800 709.0 1500.> 26.800 709.0 1500.> 26.800 709.0 1500.> 26.800 755.0 130 1000 22.500 644.5 27.0 640 1040 22.101 640.7 72 20 14.100 549.0 72 20 14.100 549.0 72 20 10.0 540.0 540.0 54	20.300 551.0 116 64 22.700 578.0 116 64 22.700 578.0 104 64 22.700 559.0 324 240 24.500 646.0 1500 24.500 719.0 640 1040 24.500 719.0 1500 1500 21.800 757.0 640 1000 22.500 644.5 27.1 640.7 22.500 644.5 27.1 640.7 22.101 640.7 7.4.2 10 100 100 1000 1000 1000 1000 1000 1	20.300 551.0 116 64.2 22.700 578.0 104 64.2 26.000 639.0 324 240 24.500 616.0 600AID 1060 24.400 757.0 1500 24.400 757.0 1000 24.400 757.0 600AID 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 271 408 14.100 549.0 72 20 3.627 74.2 271 408 10 PH PPD44UR PPUT PSAMF PH PPD44UR PPUT PSAMF PH PPD44UR PPUT AS PHISPHOR AERUGO, NH REAC UNF.TOT HF TH AS P AS P /100HL	20.300 551.0 116 64 22.700 578.0 116 64 22.700 659.0 324 24 24 24 24 24 24 24 24 24 24 24 24 2	20.300 551.0 116 64 22.700 578.0 116 64 22.700 578.0 104 84 26.000 559.0 324 240 20.800 616.0 616.0 616.0 54.50 106.0 24.500 709.0 1500> 26.800 709.0 1500> 26.800 709.0 1500> 26.800 757.0 600AID 1000 20.800 757.0 640 1000 20.20.500 644.5 27.1 408 22.191 640.7 74.2 271 408 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	20.300 551.0 116 64 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.300 551.0 116 64 22.700 579.0 116 64 22.700 659.0 324 240 26.800 659.0 352 600 20.800 709.0 352 600 24.500 709.0 1500 549.0 1500 524.800 709.0 1500 524.800 709.0 1500 524.800 755.0 644.5 21.800 755.0 644.5 271 408 22.191 640.7 72 20 3.627 74.2 74.2 72 20 14.100 549.0 72 20 3.627 74.2 74.2 74.2 74.2 72 20 10.0 549.0 72 20 3.627 74.2 74.2 74.2 74.2 74.2 72 72 72 74.2 74.	20.300 551.0 116 64 22.700 578.0 116 64 22.700 6539.0 324 240 24.500 600.0 1500.0 24.500 700.0 1500.0 1500.0 24.500 700.0 1500.0 1500.0 24.500 700.0 1500.0 1500.0 24.400 757.0 640 1000 22.500 644.5 27.0 100 500.0 22.101 640.7 74.2 20 14.100 549.0 72 20 3.627 74.2 20 10.0 10.0 10.0 10.0 10.0 10.0 10.0	20.300 551.0 116 64 22.700 578.0 116 64 22.700 578.0 116 64 22.700 559.0 324 240 24.500 700.0 352 600 24.500 700.0 1500.> 26.800 700.0 1500.> 26.800 700.0 1500.> 26.800 757.0 640 1000 22.500 644.5 27.1 000 22.500 644.5 27.1 000 22.101 640.7 74.2 271 408 22.101 640.7 74.2 271 408 22.101 100 99 9 9 90 100 1000 1000 1000 10	20.300 551.0 116 64 62 22.700 578.0 116 64 64 65 600 22.700 559.0 324 240 26.000 646.0 1500 24.500 779.0 1500 569.0 1500 24.500 779.0 600AID 1000 24.500 775.0 600AID 1000 22.500 773.0 130 590 22.500 640.5 77.0 640 1040 22.191 640.7 74.2 20 14.100 549.0 772 20 14.100 549.0 72 20 100 100 100 100 100 100 100 100 100	0.30	0	1010	23.600	623.0	72	2.0	٥		L	
22.700 578.0 104 84 26.000 639.0 324 240 14.100 549.0 352 640 20.800 616.0 640 1040 24.500 700.0 1500> 1500> 26.800 719.0 600ARD 1000	26.000 639.0 324 240 14.100 639.0 324 240 20.800 616.0 640 1040 24.500 700.0 1500> 26.800 719.0 600AID 1000 24.400 757.0 130 590	22.700 578.0 104 84 22.700 578.0 104 84 26.000 549.0 324 240 20.800 616.0 660 1040 24.500 70.0 1500> 1500> 26.800 719.0 600AID 1000 22.1500 644.5 130 590 22.1500 644.5 271 408 22.151 640.7 72 20 3.627 74.2 9 9 10 PH PP04UR PPUT PSAMF PD4 PHOSPHOR AERUG, HFREAC UNF.TOT HF	22.700 578.0 104 84 22.700 578.0 104 84 26.000 645.0 352 600 20.800 645.0 1500> 1500> 26.800 719.0 600AID 1000 24.400 757.0 600AID 1000 22.500 644.5 271 408 22.500 644.5 271 408 22.1500 644.5 271 408 22.1500 644.5 271 80	22.700 578.0 104 84 22.700 578.0 104 84 26.000 645.0 3524 640 20.800 616.0 660 11400 26.800 719.0 600AID 1000 21.800 713.0 130 590 22.150 644.5 271 408 22.150 644.5 271 408 22.151 640.7 72 20 3.627 74.2 74.2 9 9 10 PH PP04UR PPUT PSAHF PH PP04UR PPUT PSAHF PH PP04UR PPUT ASEUDONN PH PP04UR PPUT ASEUDONN PH PP04UR PPUT ASEUG. THE AS P AS P /100HL	22.700 578.0 104 84 22.700 559.0 324 240 14.100 549.0 352 600 24.500 700.0 1500> 1500> 24.500 700.0 1500> 15000 24.400 757.0 600AID 1000 22.500 644.5 130 590 22.101 640.7 72 20 3.627 74.2 271 408 14.100 549.0 72 20 3.627 74.2 9 9 10 HP PPO4UR PPUT PSAHF PH PPO4UR PPUT ARBUG. UNF.REAC UNF.TOT. HG/L HG/L AS P 0.036 0.056 4	22.700 578.0 104 84 22.700 539.0 324 240 14.100 549.0 352 600 24.500 700.0 1500> 1500> 24.500 700.0 1500> 1500> 24.400 757.0 1500> 1500 22.800 757.0 640 1000 22.191 640.7 22.191 640.7 3.627 74.2 271 408 22.191 640.7 72 20 3.627 74.2 271 640 10 PH PP04UR PPUT PSAMF PH PP04UR PUT PSAMF PH PP04UR PPUT PSAMF PH PD04UR PPUT PSAMF PH PP04UR PPUT PPUT PSAMF PH PP04UR PPUT PUT PSAMF PH PP04UR PPUT PUT PSAMF PH PP04UR PPUT PUT PUT PUT PUT PUT PUT PUT PUT PU	22.700 578.0 104 84 22.700 539.0 324 240 14.100 549.0 352 600 24.500 719.0 660 1140 26.800 719.0 600AID 1000 24.400 757.0 1500> 1500> 22.500 644.5 130 590 22.500 644.5 271 408 22.151 640.7 72 20 3.627 74.2 9 9 10. 10 9H PPDQ4UR PPUT PSEUDONN PH PPDQ4UR PPUT PSEUDONN PH PPDQ4UR PPUT PSEUDONN PH PPDQ4UR PPUT PSEUDONN PH PG04UR PUSEUDONN PH PG04UR PET PSEUDONN PH PSEUDONN PS	26.700 578.0 104 84 26.700 559.0 324 240 14.100 549.0 352 640 24.500 700.0 1500> 1500> 24.500 700.0 1500> 1500> 24.400 757.0 600AID 1000 22.500 644.5 130 590 22.101 640.7 72 20 3.627 74.2 271 408 14.100 549.0 72 20 3.627 74.2 9 9 10 HP PPO4UR PPUT PSAHF PHO5US. UNF. REAC UNF. TOT. HF. CMT AS P AS P 7.00HL. 7.64 0.036 0.066 467 7.82 0.036 0.066 467 7.82 0.036 0.066 467 7.82 0.036 0.066 467 7.82 0.036 0.066 467 7.83 0.011 0.065 467 7.84 0.025 0.067 7.64 0.025 0.065 0.067	22.700 578.0 104 84 22.700 5379.0 104 84 24.500 645.0 352 600 24.600 719.0 6600 11500> 24.400 727.0 600410 1000 24.400 757.0 1300 590 22.500 644.5 130 590 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 14.100 549.0 72 20 3.627 74.2 271 648 10 PH PP044UR PPUT PSAMF PM PP044UR PPUT PSAMF NH REAC UNF.TOT CHT AS P AS P / 100HL 7.64 0.048 0.074 4< 7.82 0.035 0.041 0.065 4< 8.03 0.011 0.065 4< 8.03 0.017 0.065 4< 8.02 0.002 0.039 4< 8.12 0.002 0.039	22.700 578.0 104 84 22.700 5379.0 104 14.100 549.0 3524 240 24.500 700.0 1500> 1500> 24.600 719.0 6004D 1000 24.400 757.0 1500> 2000 21.800 757.0 130 590 22.500 644.5 271 408 22.150 640.7 72 20 3.627 74.2 271 408 22.150 640.7 72 20 14.100 549.0 72 20 16.100 10040R PPUT PSEUDONN PM PREAC UNF.TOT. PSEUDONN PM PREAC UNF.TOT. CMT MG/L MG/L MG/L 7.64 0.048 0.074 4< 7.82 0.025 0.045 4< 8.03 0.011 0.065 4< 8.03 0.011 0.065 4< 7.82 0.027 0.053 4< 8.02 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.03 0.0077 0.053 4< 8.04 0.0077 0.053 4< 8.05 0.0077 0.053 4< 8.05 0.0077 0.053 4< 8.05 0.0077 0.053 4< 8.05 0.0077 0.053 4< 8.05 0.0077 0.053 4< 8.05 0.0077 0.053 4< 8.05 0.0077 0.053 4< 8.05 0.0077 0.053 16	22.700 578.0 104 84 22.700 539.0 324 240 14.100 549.0 352 640 24.500 700.0 1500> 1500> 24.500 700.0 1500> 1500> 24.400 757.0 130 590 21.800 757.0 640 1040 22.500 644.5 271 408 22.191 640.7 72 20 3.62.7 74.2 271 408 14.100 549.0 72 20 3.62.7 74.2 20 3.62. 10 640.7 72 20 3.62.7 74.2 271 408 10 PH PPO4UR PPUT PSAHF PH PPO4UR PPUT AS P 7.100HL 7.64 0.048 0.0074 4< 7.82 0.035 0.065 4< 7.82 0.025 0.065 4< 8.03 0.027 0.053 4< 7.83 0.001 0.065 4< 8.08 0.027 0.053 4< 7.83 0.001 0.053 4< 7.84 0.087 0.129 16	22.700 578.0 104 84 22.700 539.0 324 240 14.100 549.0 352 600 24.500 719.0 6600 11500> 24.600 719.0 60041D 1000 24.400 757.0 130 590 22.500 757.0 640 1040 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 3.627 74.2 271 408 10 HPD4 PHOSPHOR AERUG, HF AS P 7.00HL 7.64 0.036 0.055 44 8.08 0.011 0.065 44 8.08 0.027 0.053 44 8.12 0.001< 0.035 44 7.92 0.037 0.035 44 7.92 0.0074 0.039 44 7.92 0.0074 0.039 16	22.700 578.0 104 84 22.700 5379.0 104 84 24.500 646.0 352 600 24.600 719.0 6600 11500> 24.600 719.0 60041D 10000 24.400 713.0 1500> 15000 24.400 713.0 1000 22.500 644.5 130 590 22.191 640.7 72 20 3.627 74.2 271 408 22.191 640.7 72 20 3.627 74.2 271 640 PH PP04UR PPUT PSAMF PM PP04UR PPUT PSAMF T R NFL UNF.TOT CHT T AS P AS P 7.100HL T AS P 0.035 640 8.02 0.011 0.065 44 7.82 0.025 0.045 646 8.03 0.011 0.065 44 7.82 0.027 0.035 646 8.02 0.0014 0.039 16 8.02 0.0014 0.039 16 8.02 0.0014 0.036 44 7.95 0.0021 0.056 44		0 0	101	20.300	551.0	116	. 49	. 9		2.0	2.0 0.158
20,000 639,0 324 240 14,100 549,0 352 600 20,800 616,0 640 1040 24,500 700,0 1500> 1500> 26,800 719,0 600AID 1000	20.000 649.0 324 240 14.100 549.0 352 600 20.800 616.0 640 1040 24.500 700.0 1500> 26.800 719.0 600AID 1000 24.400 757.0 130 590	26.000 20.800 20.800 20.800 20.800 24.500 26.400 26.400 27.00 21.800 21.800 22.500 22.500 22.500 22.500 22.500 22.500 22.6000 22.6000 22.6000 22.6000 22.6000 22.6000 22.6000 22.6000 22.60000 22.60000000000	26.000 659.0 324 600 20.800 616.0 552 600 20.800 616.0 640 1040 26.800 709.0 1500> 1500> 26.800 757.0 6400 1000 26.800 757.0 640 1000 22.500 644.5 271 408 22.500 644.5 271 408 22.50 644.5 271 99 14.100 549.0 72 20 3.627 74.2 9 9 10 10 10 100 PH PP04UR PPUT PSAMF HG/L CHT HG/L CHT	26.000 20.800 20.800 20.800 20.800 20.800 24.500 700.0 25.800 21.800 713.0 26.800 22.500 640.7 22.500 640.7 22.500 640.7 22.100 22.100 22.100 23.10 30.10 30.10 30.10 40.8 30.27 40.8 30.27 40.8 40.8 40.8 40.8 40.8 40.8 40.8 40.8	26.000 20.800 20.800 26.800 24.500 27.000 26.800 27.000 26.800 27.000 27.000 22.1500 22.1500 22.1500 22.201 24.200 27.201 26.800 27.200 27.201 27.64 27.64 27.64 27.64 27.82 20.0056 20.0056 20.0056 20.0056 20.0056 20.0056 20.0056 20.0056 20.0056 20.0056 20.0056 20.0056 20.0050 2	20.800 649.0 3524 640 20.800 616.0 640 1040 24.500 700.0 1500> 1500> 26.800 719.0 600AID 1000 22.1800 713.0 100 30AID 22.191 640.7 27.0 640 14.100 549.0 72 24.500 757.0 640 22.191 640.7 20 3.627 0 644.5 271 408 22.191 640.7 72 20 3.627 0 72 20 3.627 0 74.2 9 9 9 10 PH PPOQUR PPUT PSEUDOHN PPOQUR PPUT PSEUDOHN ARROC UNF.TOT CHT AS P AS P /100HL 7.64 0.036 0.056 4< 7.82 0.036 6.066 4< 7.82 0.036 6.066 4< 7.84 0.068 0.066 4< 7.85 0.036 6.066 4< 7.85 0.036 6.066 4< 7.85 0.036 6.066 4< 7.85 0.036 6.066 4< 7.85 0.036 6.066 4< 7.85 0.036 6.066 4< 7.85 0.036 6.066 4< 7.85 0.001 0.065 4< 7.85 0.001 0.065 6.066	26.000 20.800 20.800 20.800 20.800 20.800 20.800 20.800 20.900 20.800 20.9000 20.900	26.100 659.0 324 600 20.800 616.0 640 1040 26.800 700.0 1500> 1500> 26.800 757.0 600AID 22.100 549.0 757.0 640 1000 22.100 644.5 271 408 22.100 640.7 72 20 3.627 74.2 271 408 3.627 74.2 20 10. 10 99 9 10. 10 PM PP04UR PPUT PSAMF PP4 PP04UR PPUT PSAMF PP4 PP04UR PPUT PSAMF PP4 PP04UR PPUT PSAMF PP4 PP04UR PPUT PSAMF PP5 PH0SPHOR AERUG, UNF.REAC UNF.TOT. HG/L CMT AS P AS P AS P /100ML 7.64 0.036 0.065 4< 8.03 0.025 0.047 4< 7.82 0.035 0.065 4< 8.08 0.027 0.053 4< 8.08	20.800 649.0 3524 640 20.800 616.0 640 1040 24.500 700.0 1500> 1500> 26.800 719.0 600AID 1000 22.1500 644.5 100 500AID 22.150 644.5 271 408 22.150 644.5 271 408 22.150 644.5 271 408 22.150 644.5 271 640 22.150 644.5 271 648 22.150 644.5 271 648 22.150 1040 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 22.150 644.5 271 648 23.150 671 671 671 24.100 671 671 671 25.150 671 671 25.150 671 671 671 25.150 671 671 25.150 671 671 25.150 671 671 25.150 671 671 25.150 671 671 25.150 671 671 25.150 671 25	26.100 569.0 324 240 20.800 616.0 640 1040 26.800 700.0 1500> 1500> 26.800 757.0 600AID 1000 22.1500 644.5 271 408 22.151 640.7 72 20 3.627 74.2 271 408 3.627 74.2 20 3.627 10 400AIP PPUT PSAHF PH PP04UR PPUT PSAHF PH PR04UR PPUT PSAHF PT PA PHOSPHOR AERUG. HG/L 7.64 0.048 0.074 4 AS P / 100HL 7.82 0.011 0.065 4 7.82 0.011 0.065 4 4 8.08 0.027 0.013 0.065 4 8.08 0.027 0.013 0.053 4 8.08 0.007 0.003 9.04 4 7.82 0.001 0.065 4 8.08 0.007 0.065 4 7.83 0.007 0.063 7.83 0.007 0.063 7.83 0.007 0.063 7.83 0.007 0.063 7.84 0.007 0.063 8.08 0.007 0.063 7.83 0.007 0.063 7.83 0.007 0.063 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129 10.007 0.129	26.100 569.0 324 240 20.800 616.0 640 1040 26.800 70.0 1500> 1500> 26.800 719.0 60AID 1000 26.400 757.0 640 1000 22.1500 644.5 271 408 22.150 640.7 72 20 3.627 74.2 271 408 3.627 10 9 9 10 10 10 10 10 PH PP04UR PPUT PSAMF PM PP04UR PPUT PM PP04UR PM PP04UR PPUT PM PP04	20.800 649.0 352 640 24.500 616.0 640 640 24.500 700.0 1500> 1500> 26.800 719.0 600AID 1000 22.1800 713.0 100 500AID 22.191 640.7 72 20 3.627 649.0 72 20 3.627 640.7 72 20 3.627 74.2 9 9 10 10 10 94 H PPOQUR PPUT PSEUDOHN PM PREAC UNF.TOT CHT T.82 0.036 0.056 4 7.54 0.036 0.053 0.057 4 8.03 0.011 0.066 4 8.03 0.001 0.027 0.053 4 8.12 0.001 0.034 0.035 4 8.02 0.037 0.025 0.037 0.025 0.047 4 7.58 0.001 0.027 0.025 0.047 4 7.92 0.011 0.029 0.077 4 7.92 0.011 0.120 4 7.92 0.011 0.120 4 7.92 0.011 0.120 4 7.92 0.011 0.120 4	20.800 649.0 352 600 20.800 616.0 640 1040 24.500 700.0 1500> 1500> 26.800 719.0 600AID 1000 22.1500 644.5 100 500AID 22.1501 640.7 72 20 3.627 74.2 9 9 9 10. 10 10 944 PHOSPHOR AFRUG. PH PPDQ4UR PPUT PSEUDONN PDQ4 PHOSPHOR AFRUG. NF. REAC UNF. TOT. CHT AS P 0.048 0.057 646 8.02 0.0012 0.055 467 7.82 0.0027 0.055 467 8.12 0.0017 0.029 16 8.12 0.0017 0.129 16 8.02 0.011 0.056 467 7.83 0.0017 0.129 16 8.02 0.011 0.056 467 7.95 0.001 0.005 467		0 0	101	22.700	578.0	104	84	9		70.	
20.800 616.0 640 1040 24.500 700.0 1500> 26.800 719.0 600AID 1000	20.800 616.0 640 1040 24.500 700.0 1500> 1500> 26.800 719.0 600AID 1000 24.400 757.0 130 590	20.800 616.0 640 1040 24.500 700.0 1500> 1500> 24.500 757.0 1500> 1500> 24.400 757.0 130 590 22.800 757.0 640 1040 22.191 640.7 72 20 3.627 74.2 72 20 3.627 74.2 74.2 74.2 10 PH PP04UR PPUT PSAEUG, UNF.REAC UNF.TOT. HF	20.800 616.0 6400 1000 26.800 719.0 1500> 1500> 26.800 757.0 130 30AID 26.800 757.0 640 1000 22.150 644.5 271 408 22.150 644.5 271 408 22.151 640.7 72 20 3.627 74.2 72 20 3.627 74.2 74.2 72 10 PH PP04UR PPUT PSAEUG, HF HGSPHOR AERUG, HF HGSPHOR AERUG, HF HGSPHOR AERUG, HF HGSPL CONF.TOT.	20.800 616.0 6400 1000 24.500 700.0 1500> 1500> 24.500 719.0 6400 1000 24.800 757.0 130 30AID 26.800 757.0 640 1040 22.150 644.5 271 408 22.150 644.7 72 20 14.100 549.0 72 20 3.627 74.2 9 9 10 PH PP04UR PPUT PSAMF PM PM PP04UR PPUT PSAMF PM P	20.800 616.0 640 1040 26.800 719.0 660AID 1000 26.800 757.0 1500> 1500> 26.800 757.0 150 500 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 99 14.100 549.0 72 20 3.627 74.2 99 19 10 10 10040UR PPUT PSAHF PH PPOQUR PPUT PSEUDONN HG/L HG/L CNI T HG/L HG/L CNI T AS P 0.036 0.066 4	20.000 64.0 6400 1000 26,4500 700.0 1500> 1500> 26,400 700.0 1500> 1500> 26,400 709.0 1500> 1500> 26,400 757.0 1500 500 22,400 757.0 100 30AID 22,500 644.5 271 408 22,150 640.7 72 20 3,627 74.2 271 640 10 10 549.0 72 20 10 10 640.7 72 20 14,100 549.0 72 20 16,100 549.0 72 20 16,100 644.5 271 408 16,00 644.5 201 1000 22,150 640.7 100 99 9 10 10 PH PPDQ4UR PPUT PSEUDOHN PDQ4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. CHT HG/L HG/L CHT AS P AS P /100HL 7,64 0.048 0.074 4< 7,82 0.036 94< 7,82 0.036 94< 7,83 0.011 0.065 4<	20.800 616.0 640 1040 24.500 700.0 1500> 1500> 24.500 719.0 640 1060 24.800 757.0 130 30AID 26.800 757.0 640 1040 22.150 644.5 271 408 22.150 644.5 271 408 22.150 549.0 72 20 3.627 74.2 9 9 10 PH PP04UR PPUT PSAMF PM PP	20.800 616.0 640 1040 26.800 719.0 6400 1500> 26.800 719.0 600AID 1000 26.800 757.0 130 5040 22.191 640.7 72 008 14.100 549.0 72 20 3.627 74.2 72 20 3.627 74.2 9 9 10 HP PPOQUR PPUT PSEUDONN PM PPOQUR PPUT SEUDONN PM PPOGUR PPUT SEUDONN PM PHOSPHOR ARRUG, NNF.REC UNF.TOT. HF HG/L CMT 7.64 0.048 0.055 4< 8.03 0.025 0.047 4< 8.08 0.025 0.047 4< 8.08 0.025 0.053 4< 8.08 0.027 0.053 4<	20.000 616.0 640 1040 26,400 700.0 1500> 1500> 26,400 700.0 1500> 1500> 26,400 719.0 1000 26,400 757.0 100 500 22,1800 757.0 100 500 22,1800 757.0 640 100 22,191 640.7 72 20 3,627 74.2 9 9 9 10 10 10 90 HOSPHOR FRUG. PH PPD4UR PPUT PSAHF PPG4UR	20.000 64.0 640 1040 26.800 70.0 15.00 15.00 26.400 757.0 15.00 26.400 757.0 15.00 26.800 757.0 15.00 10.00 30AID 22.1500 644.5 27.1 640 1040 22.1500 644.5 27.1 640 1040 22.1500 644.5 27.1 640.7 72 20 14.100 549.0 72 20 10.00 549.0 549.0 72 20 10.00 549.0 72 20 10	20.800 616.0 640 1040 26.800 757.0 1500> 1500> 26.800 757.0 1500> 1500> 26.800 757.0 130 5000 22.150 644.5 271 408 22.151 640.7 72 20 3.627 74.2 72 20 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	20.000 64.0 6400 1000 26.400 700.0 640.0 1500> 26.400 700.0 1500> 1500> 26.400 700.0 1500> 1500> 26.400 700.0 1500> 1500> 26.400 700.0 1500> 1500> 26.400 700.0 1500> 1000 26.400 700.0 1000 7000 700.0 1000 700.	20.000 616.0 640 1040 26.400 700.0 1500> 1500> 24.400 757.0 1500> 1500> 24.400 757.0 1500> 1500> 26.800 757.0 1500 500AID 26.800 757.0 100 500AID 22.1500 644.5 27.1 408 22.1500 644.5 27.1 408 22.1500 644.5 27.1 408 22.1500 644.5 27.1 408 22.1500 644.5 27.1 408 22.1500 644.5 27.1 408 22.1500 644.5 27.1 408 22.1500 644.5 27.1 408 21.0 100 100 100 100 100 100 100 100 100		0	101	14.100	639.0	324	240	9		10.0	
24.500 700.0 1500> 1500> 26.800 719.0 600AID 1000	24.500 700.0 1500> 1500> 26.800 719.0 600AID 1000 24.400 757.0 130 590	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 24,400 713.0 130 590 21,800 757.0 640 1040 22,500 644.5 27.1 408 14,100 549.0 72 20 3,627 72 20 3,627 72 20 3,627 72 20 4,00 549.0 72 20 4,0 549.0 72 20 4,0 648.5 649.5 649.0 72 20 4,0 648.5 6	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 24,400 713.0 130 5900 21,800 757.0 640 22,500 644.5 271 408 14,100 549.0 72 10. 10 10 10 10 10 PH PP04UR PPUT PSAEUG, UNF.REAC UNF.TOT. HF HG/L CHT	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 24,400 713.0 130 5001 21,800 713.0 100 30AID 26,800 757.0 640 1040 22,500 644.5 271 408 14,100 549.0 72 20 3,627 74.2 20 10 10 HPPD4UR PPUT PSAMF PPH PPD4UR PPUT PSAUG, HG/L CMT AS P AS P /100ML 7,64 0.048 0.074 4<	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 21,800 713.0 100 500 21,800 757.0 640 1000 22,500 644.5 271 408 14,100 549.0 72 20 3,627 74.2 9 9 10. 10 10 10 10 PH PPOQUR PPUT PSAHF PH HG/L HG/L T,PH AS P AS P 7100HL	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 24,400 757.0 130 590 21.800 757.0 640 1000 22.500 644.5 271 640 14,100 549.0 72 20 3,627 74.2 271 648 10 PH PPO4UR PPUT PSAHF PH PPO4UR PPUT PSAHF PH PPO4UR PPUT ARBODIN 1,004 8.03 0.036 6 45 2,500 0.036 6 45 2,500 640.5 271 648 3,627 7,64 0.036 6 45 2,640 0.036 6 64 2,640 0.036	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 26,800 713.0 130 5001 22,500 644.5 27.1 408 22,191 640.7 72 20 3,627 72 20 14,100 549.0 72 20 10. 10 HPPD4UR PPUT PSAEUG, HG/L CHIT HPPUT HSEC UNF.REAC UNF.REAC UNF.REAC UNF.ROT NF.GT, T.82 0.035 0.047 4< 27,82 0.025 0.047 4< 24,400	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 26,800 757.0 130 590 22,500 644.5 27.1 408 14,100 549.0 72 10 10 549.0 72 10 540.7 72 10 10 549.0 72 10 10 10 10 10 10 10 10 10 10 10 10 10 1	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 24,400 757.0 130 590 21.800 757.0 640 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 21 10. 100 PH PPO4UR PPUT PSAHF PH PPO4UR PPUT PSAHF NH. REAC UNF.TOT. HF T AS P AS P 7100HL T AS P 0.036 46 8.03 0.011 0.065 46 8.02 0.002 0.037 46 8.01 0.002 0.037 46 8.02 0.002 0.035 46	24,500 700.0 1500> 1500> 24,600 719.0 600AID 1000 24,600 713.0 130 500> 21,800 757.0 640 1000 22,500 644.5 271 408 22,191 640.7 72 20 3,627 74.2 72 20 10. 10 549.0 72 20 14,100 549.0 72 20 14,100 549.0 72 20 10 HP PP04UR PPUT PSAMF PP4 PP04UR PPUT PSAMF PR4 OVNF. REAC UNF. TOT. MF HG/L CMT TAS 0.036 0.056 4< 8.03 0.011 0.065 4< 8.08 0.027 0.053 4< 8.08 0.027 0.053 4< 8.08 0.007 0.053 4< 8.12 0.0017 0.053 4< 8.12 0.0017 0.053 4< 8.12 0.0017 0.053 4< 8.12 0.0017 0.053 16	24,500 700.0 1500> 1500> 2500> 25,800 719.0 600AID 1000 254,400 713.0 100 1000 254,400 713.0 100 1000 25.800 713.0 1000 25.800 757.0 640 1000 22.150 644.5 27.1 408 14.100 549.0 72 20 3.627 10 549.0 72 20 3.627 10 10 10 10 10 10 10 10 10 10 10 10 10	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 26,800 713.0 100 500AID 1000 22,800 757.0 640 1000 22,500 644.5 271 408 14,100 549.0 72 20 3,627 74.2 21 10 54,900 72 20 3,627 74.2 20 10 FPUT PEUT PSAHF PPU PROGUN PRUT PSAHF PH PROGUN TOT. HG/L T.82 0.036 0.066 4 8.03 0.011 0.065 4 8.08 0.027 0.053 4 8.12 0.001< 0.039 16 8.02 0.001 7.92 0.004 0.005 4 8.02 0.001< 0.003 16	24,500 700.0 1500> 1500> 26,800 719.0 600AID 1000 26,800 713.0 100 500AID 1000 22,800 757.0 640 1000 22,500 644.5 271 408 14,100 549.0 72 20 3,627 74.2 21 10 10 9 9 9 10 10 1000 PH PPO4UR PPUT PSAHF PH PRO4UR PPUT AS POT 7,64 0.048 0.074 4 PSEUDONN AS POT AS DO 0.025 0.065 4 7,82 0.036 0.066 4 4 8,03 0.001 0.027 0.055 0.057 4 8,03 0.001 0.027 0.055 0.057 4 8,02 0.001 0.027 0.055 0.057 4 8,02 0.001 0.027 0.057 4 7,82 0.001 0.027 0.057 4 8,03 0.001 0.027 0.057 4 8,02 0.001 0.027 0.057 4 8,02 0.001 0.027 0.057 4 7,82 0.001 0.007 0.057 4 8,02 0.001 0.007 4 7,82 0.007 0.047 0.057 4 8,02 0.001 0.057 0.057 4 7,82 0.007 0.047 0.077 4 8,02 0.001 0.057 0.057 4 7,92 0.001 0.057 0.056 4 7,95 0.021 0.056 4		0	101	20.800	616.0	255	1060	9		17.0	
26.800 719.0 600AID 1000	26.800 719.0 600AID 1000 24.400 757.0 130 590	26.800 719.0 600AID 1000 24.400 757.0 130 590 21.800 757.0 640 1040 22.500 644.5 271 408 14.100 549.0 72 20 3.627 10 640.7 72 20 3.627 10 9 9 10 10 10 10 PH PPOQUR PPUT PSEUDONN PO4 PHOSPHOR ARRUG. HG/L HG/L FITT	26.800 719.0 600AID 1000 24.400 757.0 130 590 21.800 713.0 100 590 22.500 644.5 271 408 22.150 640.7 72 20 3.627 74.2 9 9 10. 10 904UR PPUT PSEUDONN PD4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF	26.800 719.0 600AID 1000 24.400 757.0 130 590 21.800 713.0 100 590 22.800 757.0 640 1040 22.191 640.7 72 20 3.627.9 644.5 271 408 22.191 640.7 72 20 14.100 549.0 72 20 10. 10 9 9 10 HPPQ4UR PPUT PSAHF PPG HOSPHOR AERUG. UNF.TOT. HF HPPG. 7.64 0.048 0.074 4<	26.800 719.0 600AID 1000 21.800 757.0 130 590 22.800 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10.0 PH PP04UR PPUT PSAHF PH PP04UR PPUT PSAHF PH PP04UR PPUT ASENDONN HG/L HG/L T, PH AS P AS P / 100HL	26.800 719.0 600AID 1000 21.800 757.0 130 590 21.800 757.0 640 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 10 10 10 100 PH PP04UR PPUT PSAMF PP04 PHOSPHOR AERUGO, WNF.REAC UNF.TOT HF HG/L MG/L CNT AS P AS P /100HL	26.800 719.0 600AID 1000 24.400 757.0 130 590 21.800 757.0 130 590 22.800 757.0 640 1040 22.191 640.7 72 20 3.627 74.2 9 9 10 10 10 10 PH PPDQ4UR PPUT PSEUDONN PDQ4 PHOSPHOR AFRUG. UNF.REAC UNF.TOT. HF HF HF HG/L T.84 0.048 0.074 4 HF HF HF HG/L T.00H HG/L T.82 0.025 0.047 4	26.800 719.0 600AID 1000 21.800 757.0 130 590 22.800 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 10.100 PH PP04UR PPUT PSAHF PP04 PH0SPHOR AERUG. UNF. REAC UNF. TOT. HG/L 7.64 0.036 0.066 45 7.82 0.036 0.066 45 7.82 0.036 0.066 45 8.08 0.027 0.053 45	26.800 719.0 600AID 1000 21.800 757.0 130 590 21.800 757.0 640 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 10 10 10 10 PH PP04UR PPUT PSAMF PP04 PHOSPHOR AERUDOHN PP04 PHOSPHOR AERUDOHN TREAC UNF.TOT CNT HG/L MG/L CNT 7.64 0.036 0.0076 4< 8.03 0.011 0.065 4< 8.02 0.0025 0.053 4< 8.12 0.0027 0.039 4< 8.12 0.0027	26.800 719.0 600AID 1000 24.400 757.0 130 590 21.800 757.0 130 590 22.800 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10 10 9H PP04UR PPUT PSEUDOHN PD4 PHOSPHOR AERUG. HG/L HG/L HG/L CHT HG/L HG/L CHT 7.64 0.048 0.074 4< 7.82 0.025 0.045 4< 8.03 0.011 0.065 4< 7.82 0.025 0.047 4< 8.03 0.011 0.065 4< 8.08 0.007 0.039 4< 7.83 0.007 0.039 4< 7.83 0.007 0.129 16	26,800 719.0 600AID 1000 21,800 757.0 130 590 21,800 757.0 130 590 22,500 644.5 271 408 22,191 640.7 72 20 3,627 74.2 9 9 9 10.100 549.0 72 20 3,627 74.2 9 9 9 10.100 PH PPO4UR PPUT PSAHF PH PPO4UR PPUT PSAHF PH HG/L MF.TOT. HG/L T.82 0.035 0.065 4 PH HG/L CMT HG/L MS P T.82 0.035 0.065 4 7,64 0.048 0.065 4 0.065 4 8,03 0.027 0.025 0.067 4 8,02 0.071 0.129 16	26.800 719.0 600AID 1000 21.800 757.0 130 590 21.800 757.0 640 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10 10 10 10 PH PP04UR PPUT PSAHF PH PP04UR PPUT ASPHOG. UNF.REAC UNF.TOT. HG/L AS P 7.82 0.036 0.066 4 7.64 0.036 0.057 4 7.64 0.001 0.053 8.02 0.001 0.035 9 4 9 9 9 9 10 10 10 4 10 10 10 4 10 10 10 4 10 10 10 4 10 10 10 4 10 10 10 4 10 10 10 10 10 4 10 10 10 4 10 10 10 4 10 4 10 4 10 4 10 12 </td <td>26.800 719.0 600AID 1000 21.800 757.0 130 590 21.800 757.0 640 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 10 10 10 10 100 PH PP04UR PPUT PSAMF PP04 PHOSPHOR AERUDOHN PP04 PHOSPHOR AERUDOHN AS P AS P 7.20 7.64 0.036 0.0077 4< 8.08 0.027 0.035 4< 8.12 0.001</td> 0.049 0.077 4< 4	26.800 719.0 600AID 1000 21.800 757.0 130 590 21.800 757.0 640 1000 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 10 10 10 10 100 PH PP04UR PPUT PSAMF PP04 PHOSPHOR AERUDOHN PP04 PHOSPHOR AERUDOHN AS P AS P 7.20 7.64 0.036 0.0077 4< 8.08 0.027 0.035 4< 8.12 0.001	0.30 00	0	101	24.500	700.0	1500>	1500>	9 4		19.0	
	24.400 757.0 130 590	24,400 757.0 130 590 21,800 713.0 100 30AID 26,800 757.0 640 1040 22,1500 644.5 271 408 22,191 640.7 72 20 3,627 74.2 9 9 10 10 10 10 10 PH PP04UR PPUT PSAMF PD4 PH0SPHOR AERUG, HFREAC UNF.TOT HF	24,400 757.0 130 590 21,800 713.0 100 30AID 26,800 644.5 271 408 22,1500 644.5 271 408 14,100 549.0 72 20 3,627 74.2 9 9 9 10 10 PH PP04UR PPUT PSEUDONN PD4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CHT	24,400 757.0 130 590 21,800 713.0 100 30AID 26,800 644.5 271 408 22,150 640.7 72 20 3,627 74.2 9 9 10 10 PH PP04UR PPUT PSEUDONN P04 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CMT T,64 0.048 0.074 4<	24.400 757.0 130 590 21.800 713.0 100 590 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 10 10 10 10 PH PP04UR PPUT PSAMF PP04 PHOSPHOR AERUGO. UNF.REAC UNF.TOT. HG/L 7.64 0.036 0.066 4	24,400 757.0 130 590 21,800 713.0 100 590 22,800 644.5 271 408 22,191 640.7 72 20 3,627 9 9 9 10 10 10 10 PH PP04UR PPUT PSEUDOHN PP04 PHOSPHOR AERUG, HF.REAC UNF.TOT. CHT HG/L HG/L CHT 7,64 0.036 0.056 4< 7,82 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 4< 7,800 0.036 0.066 0.066	24,400 757.0 130 590 21,800 713.0 100 30AID 26,800 644.5 271 408 22,150 640.7 72 20 3,627 74.2 9 9 10. 10 9H PPDQ4UR PPUT PSAHF PH PPDQ4UR PPUT PSAHF PH PPDQ4UR PPUT RERUG. UNF.REAC UNF.TOT. HF HG/L HG/L HG/L 7.64 0.048 0.074 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.83 0.025 0.047 4< 7.84 0.025 0.047 4< 7.84 0.025 0.047 4< 7.85 0.041 0.065 0.047 4< 7.85 0.041 0.065 0.047 0.	24.400 757.0 130 590 21.800 713.0 100 590 22.500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 9 10 10 10 10 PH PP04UR PPUT PSAMF PP4 PHOSPHOR ARRUG. UNF.REAC UNF.TOT. HG/L 7.64 0.036 0.066 44 7.82 0.036 0.066 44 8.03 0.027 0.053 44	24,400 757.0 130 590 21,800 713.0 100 590 22,500 644.5 271 408 22,150 640.7 72 20 3,627 74.2 9 9 10 10 10 10 PH PP04UR PPUT PSEUDOHN PP04 PHOSPHOR AERUG. UNF.REAC UNF.TOT. THE HG/L HG/L T.64 0.048 0.074 4 PA 7,64 0.048 0.074 4 AS P 4 8,03 0.011 0.065 4 4 8,12 0.001 0.039 4 20,036 0.035 0.039 4 4,400 0.036 4 50,001 0.037 4 6,002 0.037 4 8,12 0.001 0.039 4	24,400 757.0 130 590 21,800 713.0 100 590 26,800 644.5 271 408 22,150 640.7 72 20 3,627 74.2 9 9 10. 10 94 PHOSPHOR PEUT PSEMF PH PPOQUR PPUT PSEMF PH PGA HOSPHOR AERUG. UNF.REAC UNF.TOT. CMT HG/L HG/L CMT 7.64 0.048 0.074 4< 7.82 0.025 0.045 4< 8.03 0.011 0.065 4< 8.03 0.011 0.065 4< 8.03 0.011 0.065 4< 8.03 0.011 0.065 4< 8.03 0.011 0.065 4< 8.03 0.007 0.053 4< 8.12 0.0077 0.053 4< 8.12 0.0077 0.053 4< 8.12 0.0077 0.053 4< 8.12 0.0077 0.053 4< 8.12 0.0077 0.053 4< 8.12 0.0077 0.053 16	24,400 757.0 130 590 21.800 713.0 100 30AID 26.800 644.5 271 408 22.500 644.5 271 408 3.627 74.2 20 10. 10 549.0 72 20 10. 10 9 9 9 10 10 PH PP04UR PPUT PSAHF PH PP04UR PPUT PSAHF PG NHF.TOT. HF.TOT. HF.TOT. HF.TOT. HG.L. CMT 7.64 0.048 0.074 4 AS P 4 4	24,400 757.0 130 590 21,800 713.0 100 590 22,800 644.5 271 408 22,191 640.7 72 20 3,627 74.2 272 408 10. 10. 9 9 10. 10. 10. 9 9 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	24,400 757.0 130 590 21,800 713.0 100 26,800 757.0 640 1040 22,500 644.5 271 408 22,191 640.7 72 20 3,627 74.2 9 9 10 10 10 10 PH PPOQUR PPUT PSEUDOHN PPQ PHOSPHOR AERUG. NF.REAC UNF.TOT. CHT HG/L HG/L CHT 7.64 0.048 0.057 4< 8.02 0.001		0	101	26.800	719.0	600AID	1000	9		12.0	12 6 0.038
21.800 713.0 100 30AID		22.550 644.5 271 408 22.191 640.7 72 408 14.100 74.2 72 20 3.627 74.2 9 9 10 10 10 10 PH PP04UR PPUT PSEUDOHN PO4 PHOSPHOR AERUG, UNF.REAC UNF.TOT. HF	22.550 644.5 271 908 22.191 640.7 72 908 14.100 549.0 72 20 3.627 74.2 20 10 10 9 9 9 10 10 10 10 PH PP04UR PPUT PSEUDORN PD4 PH0SPHOR AERUG, HG/L CHT PH AS P AS P /1000HL	22.550 644.5 271 908 22.191 640.7 3.627 74.2 10 3.627 72 20 3.627 10 9 9 10 10 10 PH PP04UR PPUT PSAUF PSCHOONN PD4 PHOSPHOR AERUG, HG/L CHT AS P AS P /100ML	22.550 644.5 271 408 22.191 640.7 3.627 74.2 10. 10 9 9 10. 10 10 PH PPOQUR PPUT PSEUDONN PO4 PHOSPHOR AFROG UNF.REAC UNF.TOT. HG.L FRAC UNF.TOT. HG.L T.84 0.036 0.066 4<	22.550 644.5 271 408 22.191 640.7 3.627 74.2 10. 10 9 9 10. 10 10 10 PH PPD4UR PPUT PSAHF PPG4UR PPUT PSAHF PSEUDONN PD4 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HG/L HG/L AS P /100HL 7.64 0.036 0.056 4< 7.82 0.036 64.5	22.550 644.5 271 908 22.191 640.7 3.627 74.2 10 3.627 72 20 3.627 74.2 20 3.627 72 20 3.627 74.2 20 40 PH PP04UR PPUT PSAUFF PSEUDONIN PO4 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HG/L CMT AS P AS P /100HL 7.64 0.048 0.056 4 7.82 0.025 0.047 4<	22.550 644.5 271 908 22.191 640.7 3.627 74.2 10 3.627 72 20 3.627 10 9 9 10 10 10 PH PP04UR PPUT PSEUDONN PP4 PH0SPHOR AERUG. UNF.REC UNF.TOT. HF. HG/L CMT AS P AS P //100HL 7.64 0.036 0.065 4 7.64 0.036 0.065 4 8.03 0.027 0.053 4 8.08 0.027 0.053 4	22.550 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10. 10 10 10 PH PP04UR PPUT PSAHF PP04 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HG/L AS P AS P 7.00HL 7.64 0.036 0.066 4 7.64 0.036 0.067 4 4 8.03 0.011 0.065 4 0.047 4 8.12 0.002 0.039 9	22.5500 644.5 271 908 22.191 640.7 3.627 74.2 10 10 549.0 72 20 3.627 10 72 20 10	22.550 644.5 271 908 22.191 640.7 3.627 74.2 10 3.627 72 20 3.627 10 9 9 10 10 10 PH PP04UR PPUT PSAHF PSCHOONN PO4 PH0SPHOR AERUG, UNF. REC UNF. TOT. HG/L AS P /100HL 7.64 0.048 0.074 4 10 0H1 HG/L CHT HG/L CHT AS P 0.056 0.065 4 7.64 0.027 0.053 0.065 4 4 8.08 0.027 0.053 0.074 4 4 8.02 0.071 0.053 0.053 4 4 8.02 0.071 0.053 0.053 4 4 8.02 0.071 0.053 0.053 4 4 6.027 0.051 0.053 4 4 7.82 0.025 0.047 4 4 8.02 0.075 0.053 0.053 4 4 8.02 0.077 0.129 16 4	22.550 644.5 271 408 22.191 640.7 3.627 74.2 10 3.627 72 20 3.627 10 9 9 9 10 10 10 10 PH PPOQUR PPUT PSAHF PH HG/L MF.TOT. HG/L HG/L MS P AS P / 100HL 7.64 0.036 0.066 4 7.82 0.036 0.066 4 7.82 0.036 0.066 4 7.82 0.037 0.053 4 8.08 0.027 0.053 4 8.12 0.001< 0.053 4 7.82 0.001< 0.053 0.054 8.12 0.001< 0.053 0.057 7.92 0.0049 0.077 4 8.00 0.007 0.053 0.053 0.053 0.055 0.	22.550 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10.10 10 9 9 9 10.10 10 10 10 PH PPO4UR PPUT PSAHF PH HG/L HG/L CNT HG/L HG/L CNT T.82 0.036 0.066 44 8.03 0.011 0.065 44 8.03 0.011 0.065 44 8.03 0.011 0.065 44 8.03 0.012 0.067 44 8.08 0.027 0.037 44 7.82 0.001< 0.053 44 8.02 0.001< 0.039 16 8.02 0.001 0.005 44 7.92 0.001 0.005 44 7.92 0.001 0.005 44 7.92 0.001 0.005 44 7.92 0.001 0.005 44 7.92 0.001 0.005 44 7.95 0.001 0.005 44 7.95 0.001 0.005 44	0.30			26.800	757.0	640	1060				
21.800 713.0 100 30AID 26.800 757.0 640 1000	757.0 640	22.191 640.7 72 20 3.627 74.2 9 9 10.10 10	22.191 640.7 3.627 72 20 3.627 10 9 9 10 10 10 10 PH PPDQ4UR PPUT PSAHF POQ PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CNT PH AS P AS P /100HL	22.191 640.7 3.627 72 20 3.627 74.2 10 10 9 9 9 10 10 10 PH PPO4UR PPUT PSEUDONN PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HG/L HG/L CNT TPH AS P AS P /100HL	22.191 640.7 3.627 74.2 10.059.0 10.10 10.	14.100 549.0 72 20 3.627 14.200 549.0 72 20 10.10 10 9 9 9 10 10 10 10 PH PPDGUR PPUT PSAHF PDG PHOSPHOR AFRUGONN PDG PHOSPHOR AFRUG	22.191 640.7 3.627 72 20 3.627 10 9 9 10 10 10 10 10 PH PP04UR PPUT PSAMF PO4 PHOSPHOR ARRUG, UNF.REAC UNF.TOT. CNT HG/L HG/L CNT 7.64 0.048 0.074 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047	22.191 640.7 3.627 74.2 10.59.0 10.1	14.100 549.0 72 20 3.627 14.100 549.0 72 20 10.00 10 10 10 10 PH PPOGUR PPUT PSAHF PSEUDOHN POG PHOSPHOR AFRUG. UNF.REAC UNF.TOT. HG/L FRA AS P AS P /100HL 7.64 0.036 0.056 4 7.64 0.036 0.056 4 8.03 0.027 0.053 4 8.12 0.002 0.039 42 3.627 7.63 0.027 0.033 4	22.191 640.7 3.627 74.2 2 3.627 72 20 3.627 10 9 9 10 10 10 10 PH PP04UR PPUT PSAMF PD4 PH0SPHOR AERUDOHN NF.REAC UNF.TOT RP5LUDOHN APAC ONF. TOT CHT AS P AS P /100ML 7.64 0.036 0.056 4 4 7.64 0.036 0.0054 4 0.055 0.057 4 4 8.03 0.011 0.065 4 4 8.03 0.005 0.005 0.005 4 4 7.82 0.025 0.007 0.053 0.007 7.33 0.007 4 7.83 0.007 0.039 4 7.83 0.007 0.037 0.023 0.053	14,100 549.0 72 20 3,627 14,100 549.0 72 20 3,627 10 9 9 9 10 10 10 10 PH PPOQUR PPUT PSAHF PH HG/L UNF.REAC UNF.TOT. HG. T.64 0.048 0.074 4 PSCUDONN HG/L HG/L CNT T.64 0.036 0.065 4 7,64 0.025 0.065 4 0.065 4 8,03 0.027 0.053 4 8,02 0.071 0.051 0.052 4 8,02 0.071 0.070 4 4 8,02 0.071 0.072 4 8,02 0.071 0.072 4 6,027 0.072 4 7,88 0.077 0.053 4	22.191 640.7 3.627 74.2 20 3.627 10 5.99 9 10 10 10 10 10 10 10 10 10 10 10 10 10	22.191 640.7 3.627 3.627 3.627 14.100 549.0 74.2 10 10 10 10 10 10 10 10 10 10 10 10 10	0.30			22.500	644.5	271	408			19.0	19.0 0.158
26.800 757.0 640 1040 22.500 644.5 271 408	757.0 640 644.5 271	14.100 549.0 72 20 3.627 74.2 9 9 10 10 10 10 10 10 10 PH PPO4UR PPUT PSAHF PO4 PHOSPHOR AERUG, UNF.REAC UNF.TOT, HF	14.100 549.0 72 20 3.627 74.2 9 9 10 10 10 10 10 10 10 PH PPDQ4UR PPUT PSAHF PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CNT HG/L CNT TOT AS P AS P /100ML	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	10. 10. 14.2 20 10. 10. 10. 10. 10 PH PPO4UR PPUT PSAHF PH PRAC UNF.TOT. HG/L PH HG/L HG/L PH AS P AS P /100HL 7.64 0.036 0.066 4<	10. 14.100 549.0 72 20 10. 10. 10 9 9 10. 10. 10 10 10. 10. 10 10. 10. 10 10. 10. 10 10. 10. 10.	10. 10. 549.0 72 20 10. 10. 10. 10 10. 10. 10 10. 10. 10 10. 10. 10 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10. 10. 10 10. 10. 10. 10 1	13.627 74.2 20 10.10.10.10.10.10.10.10.10.10.10.10.10.1	10. 14.100 549.0 72 20 10. 10. 9 9 10 1	10. 10. 549.0 72 20 10. 10. 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10. 10 10. 10. 10. 10. 10 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	10. 10. 14.2 20 10. 10. 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10 10. 10. 10. 10. 10 10. 10. 10. 10. 10 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	10. 10. 549.0 72 20 10. 10. 9 9 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	0 20			22.191	640.7					6.2	
26.800 757.0 640 1040 22.500 644.5 271 408	757.0 640 644.5 271 640.7	10 10 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 9 9 10 10 10 10 10 10 PH PP04UR PPUT PSAHF PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CNT AS P AS P /100ML	10 10 10 10 10 10 10 PH PPDQ4UR PPUT PSAHF PSEUDOHN PG4 PHOSPHOR AERUG. UNF. REAC UNF.TOT. HF HG/L CHT AS P AS P /100HL 7.64 0.048 0.074 4<	10 10 10 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1				3.627	249.0	72	20			0.5	0.5 0.013
26.800 757.0 640 1040 22.500 644.5 271 408 22.191 640.7 72.0 72 20 3.67.7 72 20 3.67.7 72 20	757.0 640 644.5 271 640.7 72 549.0 72	10 10 10 10 10 10 PH PP04UR PPUT PSAMF PSEUDONN PD4 PHOSPHOR AERUG, UNF.REAC UNF.TOT. HF	10 10	10 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10			10	10	σ	e			6.7	
21.800 713.0 100 30AID 26.800 757.0 640 1040 22.191 640.7 72 408 3.627 72 20 10.10 1	757.0 640 644.5 271 640.7 549.0 72 74.2 9	PH PP04UR PPUT PSAHF PSEUDOHN P04 PH0SPHOR AERUG, UNF.REAC UNF.TOT, HF HG/L HG/L CNT	РИ РРОФИИ РРОТ РЅЕШООНИ P04 PHOSPHOR AERUG. UNF.REAC UNF.10T. MF HG/L CNT PH AS P AS P /100HL	РН РРОФ4UR РРUT РSAMF P04 PHOSPHOR AERUG. UNF.REAC UNF.TOT. MF HG/L HG/L CNT PH AS P /1000HL 7.64 0.048 0.074 4	PH PP04UR PPUT PSAHF PSEUDOHN UNF.REAC UNF.TOT. HF HG/L HG/L CHT AS P AS P /100ML 7.64 0.036 0.066 4<	PH PP04UR PPUT PSAHF PO4 PH0SPHOR AERUG, UNF.REAC UNF.TOT, HG/L CNT HG/L CNT AS P AS P /100ML 7.64 0.048 0.056 4	PH PP04UR PPUT PSAHF PO4 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CHT HG/L CHT 7.64 0.048 0.074 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4<	РИ РРОФИИВ РРОТОВНИЕ РРОТОВИНИЕ РОТОВИНИЕ РОТОВИНИЕ РОТОВИТИТЕ	PH PP04UR PPUT PSAHF PG4 PH0SPHOR AERUG. UNF.REAC UNF.TOT. CMT HG/L AS P /100ML 7.64 0.036 0.074 4< 7.82 0.035 0.045 4< 8.03 0.012 0.065 4< 8.05 0.025 0.053 4< 8.12 0.0014 0.039 4<	PH PP04UR PPUT PSAHF PO4 PH0SPHOR AERUG. UNF REAC UNF.TOT. HF HG/L HG/L AS P /100HL 7.64 0.048 0.074 4 AS P /100HL 7.82 0.036 0.066 4 4 7.82 0.011 0.065 0.066 4 4 8.03 0.011 0.065 4 4 8.08 0.027 0.065 4 4 8.18 0.007 0.053 0.047 0.065 0.	РН РРО4UR РРUT PSAHF P04 РНОSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L HG/L CMT 7.64 0.048 0.074 4 AS P // 100HL 7.82 0.035 0.006 4 4 7.82 0.025 0.065 4 4 4 8.02 0.027 0.037 0.039 4 4 4 8.02 0.071 0.129 16 4 4	РИ РРОФИИ РРОФИИ РРОФИН РРЗЕВИООНИ UNF.REAC UNF.TOT. MF HG/L HG/L CNT 7.64 0.048 0.074 4 7.82 0.036 0.065 4 8.03 0.011 0.065 4 7.82 0.027 0.055 4 8.03 0.011 0.065 4 8.08 0.027 0.057 4 8.12 0.001 0.053 4 7.83 0.001 0.039 4 7.83 0.001 0.129 4 8.08 0.027 0.053 4 7.83 0.001 0.129 4 7.92 0.071 0.129 4 7.92 0.071 0.120 4 7.92 0.074 0.077 4	РН РРОДЧИR РРОТ РSAHF PDG 4 PHOSPHOR AERUG. UNF REAC UNF .TOT. AFRUG. T. 64 0.036 0.074 4 7. 64 0.036 0.074 4 7. 82 0.013 0.065 4 8. 03 0.01 0.065 4 8. 03 0.025 0.065 4 8. 03 0.027 0.053 4 8. 0 0.027 0.053 4 8. 0 0.0027 0.053 4 7. 82 0.001 0.039 4 7. 83 0.007 0.129 4 8. 0 0.071 0.129 4 7. 95 0.021 0.077 4 7. 95 0.021 0.056 4					;	10	10			TO	10 7
21.800 713.0 100 30AID 26.800 757.0 640 1040 22.191 640.7 72 408 3.627 72 20 3.627 74.2 9 9 10 10 10 10	757.0 640 644.5 271 640.7 27 549.0 72 74.2 9	PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L HG/L CNT	PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L HG/L CNT 'PH AS P AS P /100HL	PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF MG/L HG/L CNT TPH AS P AS P /100HL 7.64 0.048 0.074 4<	P04 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L HG/L CNT T.84 0.048 0.074 4< 7.82 0.036 0.666 4<	PD4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HG/L HG/L CHT HG/L AS P AS P /100HL 7.64 0.048 0.074 4< 7.82 0.036 0.066 4< 8.03 0.011 0.065 4<	P04 PHOSPHOR AERUG. UNF.REAC UNF.TOT. CNT HG/L MG/L CNT T.64 0.048 0.074 4< T.82 0.025 0.047 4< T.83 0.025 0.047 4< T.83 0.025 0.047 4<	PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HF HG/L AS P /100ML 7.64 0.048 0.074 4 AS P /100ML 7.82 0.036 0.065 4 8.03 0.027 0.053 4 4 8.08 0.027 0.053 4	PD4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HG/L HG/L CHT AS P AS P /100HL 7.64 0.036 0.056 4< 7.82 0.035 0.047 4< 7.82 0.035 0.047 4< 7.82 0.035 0.056 4< 8.03 0.027 0.053 4< 8.12 0.001< 0.039 4<	PO4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HF AS P /100HL 7.64 0.048 0.074 4< 7.82 0.025 0.066 4< 7.82 0.025 0.065 4< 7.82 0.025 0.065 4< 7.82 0.025 0.057 4< 8.08 0.027 0.053 4< 8.12 0.001	PO4 PHOSPHOR AFRUG. UNF.REAC UNF.TOT. CMT MG/L MG/L MG/L 7.64 0.048 0.074 4< 7.82 0.035 0.065 4< 8.03 0.011 0.065 4< 8.08 0.027 0.065 4< 8.08 0.027 0.053 4< 8.08 0.027 0.053 4< 8.02 0.0014 0.053 4< 8.02 0.0014 0.053 4< 8.02 0.0014 0.053 4< 8.02 0.0014 0.129 16	PD4 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HG/L HG/L CHT AS P AS P /100HL 7.64 0.036 0.056 4 7.64 0.036 0.066 4 8.03 0.011 0.065 4 7.82 0.025 0.047 4 7.82 0.025 0.047 4 7.82 0.025 0.047 4 7.82 0.027 4 8.03 0.017 0.057 4 8.02 0.027 0.047 4 8.12 0.001 7.83 0.007 0.039 4 7.92 0.074 0.129 4 7.92 0.074 0.120 4	NNF.REAC UNF.TOT. HG/L	NNO3UR NN	N.	TKUR	Н	PP04UR	PPUT	PSAMF	RSP			
21.800 713.0 100 30AID 6 26.800 757.0 640 1040 22.500 644.5 271 408 14.100 549.0 72 20 3.627 74.2 9 9 10 10 PP04UR PPUT PSAMF	26.800 757.0 640 1040 22.500 644.5 271 408 14.100 549.0 72 20 3.627 74.2 9 9 10 10 PP04UR PPUT PSAMF	DO4 PHOSPHOR AERUG. UNF.REAC UNF.10T. MF MG/L MG/L MG/L	P04	P04 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L HG/L CNT	P04 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CNT AS P AS P /100HL 7.64 0.048 0.074 4< 7.82 0.036 0.66 4<	P04 PH0SPHOR AERUG. UNF.REAC UNF.TOT. MF HG/L CHT AS P AS P /100ML 7.64 0.048 0.074 4< 7.82 0.036 0.066 4< 8.03 0.011 0.065 4<	P04 PH0SPHOR AERUG. UNF REAC UNF.TOT. HF HG/L CMT T.64 0.048 0.074 4< 7.82 0.011 0.065 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4<	P04 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L CNIT 7.64 0.048 0.074 4< 7.82 0.036 0.065 4< 8.03 0.027 0.053 4< 8.09 0.027 0.053 4<	P04 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L HG/L CNT 7.64 0.048 0.074 4< 7.82 0.036 0.066 4< 8.03 0.011 0.065 4< 8.08 0.025 0.047 4< 8.08 0.027 4< 8.08 0.027 6< 8.12 0.001< 0.039 4<	P04 PHOSPHOR AERUG. UNF REAC UNF.TOT. HF HG/L HG/L CNT 7.64 0.048 0.074 4< 7.82 0.036 0.066 4< 8.03 0.011 0.065 4< 8.08 0.027 0.065 4< 8.08 0.027 0.065 4< 8.08 0.027 0.065 4< 8.08 0.027 0.065 4< 8.08 0.027 0.065 4< 8.08 0.027 0.065 4< 8.08 0.027 0.065 4< 8.12 0.001< 0.053 4< 8.13 0.097 0.129 16	P04 PHOSPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L KINT. 7.64 0.048 0.074 4< 7.82 0.035 0.006 4< 8.03 0.011 0.065 4< 8.08 0.027 0.055 4< 7.82 0.025 0.047 4< 7.82 0.027 0.057 4< 8.02 0.097 0.129 16	P04 PH0SPHOR AERUG. UNF.REAC UNF.TOT. HF HG/L NF.TOT. AS P /100ML 7.64 0.048 0.074 4< 7.82 0.036 0.065 4< 8.03 0.027 0.065 4< 7.82 0.025 0.047 4< 7.82 0.025 0.047 4< 7.82 0.001 0.065 4< 7.82 0.001 0.065 4< 7.82 0.001 0.065 4< 7.82 0.001 0.065 4< 8.08 0.027 0.067 4< 8.08 0.027 0.053 4< 7.92 0.001 0.129 16	P04 PHOSPHOR AERUG. UNF REAC UNF.TOT. HF HG/L HG/L HG/L 7.64 0.048 0.074 4< 7.82 0.035 0.066 4< 8.03 0.011 0.065 4< 8.03 0.012 0.065 4< 8.08 0.027 0.053 4< 8.12 0.0027 0.053 4< 8.12 0.0017 0.053 4< 7.83 0.087 0.129 16 8.02 0.071 0.120 4 7.92 0.049 0.077 44< 7.95 0.021 0.056 4<	K'DA KOZ W TOX	K'DA	z Z				PSEUDOMN				
26.800 713.0 100 30AID 6 26.800 757.0 640 1040 22.1500 644.5 271 408 22.191 640.7 72 20 3.627 74.2 9 9 10 10 10 10 10 10 10 10 10 PH PPO4UR PPUT PSEUDONN	26.800 757.0 640 1040 22.150 644.5 271 408 22.191 640.7 72 20 3.627 74.2 72 20 10. 10 9 9 9 10 PH PP04UR PPUT PSEUDONIN	MG/L MG/L CNT	PH AS P AS P /100ML	7.64 0.048 0.074 4<	7.64 0.036 0.066 4<	7.64 0.048 0.074 4 7.82 0.036 0.066 4 8.03 0.011 0.065 4 9.04	7.64 0.048 0.066 4 7.82 0.011 0.065 4 7.82 0.025 0.047 4	7.64 0.048 0.074 4 7.64 0.048 0.074 4 7.82 0.036 0.065 4 8.03 0.027 0.053 4 8.09 0.027 0.053 4	7.64 0.048 0.074 4 7.64 0.048 0.074 4 7.82 0.036 0.066 4 4 8.03 0.011 0.065 4 6 8.08 0.025 0.047 4 4 7.82 0.011 0.055 4 6 8.08 0.027 4 6 8.12 0.001 0.033 4	7.64 0.048 0.074 4<7.82 0.011 0.065 4<7.82 0.012 0.066 4<7.82 0.011 0.065 4<7.82 0.012 0.065 4<7.82 0.012 0.065 4<7.82 0.012 0.065 4<7.82 0.012 0.065 4<7.82 0.013 0.065 4<7.82 0.013 0.065 4<7.82 0.013 0.065 4<7.82 0.013 0.065 4<7.82 0.014 0.027 0.053 4<7.82 0.001<7.83 0.001<7.83 0.001	7.64 0.048 0.074 4<7.82 0.035 0.065 4<7.82 0.025 0.065 4<7.82 0.027 0.065 4<7.82 0.027 0.065 4<7.82 0.027 0.065 4<7.82 0.027 0.065 4<7.82 0.027 0.065 4<7.82 0.027 0.065 4<7.82 0.027 0.065 4<7.82 0.027 0.027 0.057 4<7.82 0.001<7.82 0.077 0.129 16	7.64 0.048 0.074 4 7.64 0.048 0.074 4 7.82 0.036 0.065 4 4 8.03 0.011 0.065 4 4 8.08 0.027 0.057 4 4 7.82 0.010 0.065 4 4 8.03 0.011 0.065 4 4 7.82 0.027 0.057 4 4 8.08 0.027 0.057 4 4 8.12 0.001 0.059 4 7.83 0.007 0.129 16 8.02 0.07 0.129 16 7.92 0.049 0.07 4	7.64 0.048 0.074 4 7.82 0.036 0.065 4 8.03 0.027 0.055 4 8.08 0.027 0.053 4 8.12 0.001 7.83 0.071 0.053 4 8.09 0.071 0.053 4 7.83 0.001 7.92 0.049 0.077 4 7.95 0.021 0.056 4 8.07 0.059 0.077 4 8.08 0.071 0.129 16 8.09 0.071 0.120 4 7.95 0.021 0.056 4 8.45		UNF	REAC		PO4	PHOSPHOR	AERUG.				
26.800 713.0 100 30AID 26.800 757.0 640 1040 22.150 644.5 271 408 22.151 640.7 72 20 3.627 74.2 9 9 10 10 10 10 10 PH PP04UR PPUT PSAMF PENDAM PHOSPHOR AERUG.	26.800 757.0 640 1040 22.150 644.5 271 408 22.110 640.7 72 20 3.627 74.2 9 9 10 10 10 10 10 10 PH PP04UR PPUT PSAMF PENDAM PROBINE PENDONN PD64 PHOSPHOR AERUG.		PH AS P AS P /100ML	N PH ASP ASP /100ML 78 7.564 0.048 0.074 4<	7.64 0.048 0.074 4< E	7.64 0.048 0.074 4< 12 9.03 0.011 0.065 4< 12	7.64 0.048 0.074 4< 7.82 0.036 0.066 4< 7.82 0.011 0.065 4< 7.82 0.025 0.047 4< 7.82	7.64 0.048 0.074 4 7.82 0.036 0.066 4 8.03 0.011 0.065 4 7.82 0.027 0.057 44 8.08 0.027 0.053 4 8.08 0.027 0.053 4 8.08	7.64 0.048 0.074 4< 17.82 0.036 0.065 4< 12.83 0.011 0.065 4< 12.83 0.011 0.065 4< 12.83 0.011 0.065 4< 12.83 0.011 0.065 4< 12.83 0.011 0.065 4< 13.83 0.011 0.065 4< 13.83 0.027 0.053 4< 13.83 0.001	7.64 0.048 0.074 4< 12 7.82 0.036 0.065 4< 12 7.82 0.011 0.065 4< 12 7.82 0.025 0.047 4< 12 8.08 0.027 0.053 4< 13 8.12 0.001	7.64 0.048 0.074 4< 7.00ML 7.0	7.64 0.048 0.074 4< 5 7.82 0.036 0.065 4< 5 7.82 0.036 0.065 4< 5 7.82 0.025 0.065 4< 7 7.82 0.027 0.047 4< 7 7.82 0.027 0.047 4< 7 7.82 0.027 0.047 4< 7 7.83 0.087 0.129 16 9.05 0.071 0.120 4 5 12 7.92 0.049 0.077 4< 48	7.64 0.048 0.074 4< 127.82 0.036 0.065 4< 128.00 0.011 0.065 4< 128.00 0.011 0.065 4< 128.00 0.027 0.027 0.027 4< 128.00 0.027 0.027 0.039 4< 128.00 0.001< 0.039 0.039 16 99.001< 0.039 0.070 0.039 0.059 16 99.001< 0.001 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 4< 128.00 0.021 0.025 0.02		_	1/9/		MG/L	MG/1	TE C	RESIDU	ta I	hi	

STATION ID: 04-0013-055-02

TERM STOPESS THESE

Threese
TENN

STORET CODE: 02 003 2870	DISTANCE: 298.847									
	REGION: 01	RSP	RESIDUE PARTIC. MG/L	c .	10.7	17.3	0 9	6.0	œ	20
KES E IVER	U T M: 17 0512275.0 4794600.0 4	PSAMF	AERUG. MF CNT /100ML	16	10	9	3		0	80
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	0512275.0	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0 120	0.073	0.068	0.039	0.030	10	
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	PP04UR	PO4 UNF.REAC MG/L AS P	0.087	0.042		0.011		6	10
	50 55.15	ЬН	Hd	8.12	7.92	7.92	7.64	0.15	10	
	LAT: 43 18 21.85 LONG: 080 50 55.15	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L AS N	1.030	0.829	0.821	0.650	0.124	10	
	43 18 21.85	NNO3UR	NO3-N UNF.REAC MG/L AS N	12.500	7.310	5.814	0.500	3.555	10	
STATION TYPE: RIVER	LAT:	TEST-MAME:	SAMPLE	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	7. SAMP (EXCLUDED)
STATION TY		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMHDD LMT					STD D	# SAMP IN	Z. SAHP

STATION ID: 04-0013-058-02

1990 WATER QUALITY DATA REGION 1

.O.W./ SITE: THAMES RIVER

SAMPLE POINT:

130 10AID BOAID 40AID UNF.TOT. MG/L AS P CNT 49.084 STREPCUS FECAL /100ML PHOSPHOR 1000 FSMF 650 09 210 2870 820 88 294 0.680 000 10 PPUT 0.225 0.128 0.202 0.264 0.157STORET CODE: DISTANCE: 70AID BOAID 20AID LOOAID SOAID ODAID FECAL MG/L AS P COLIFORM /100ML PP04UR P04 UNF. REAC J 188 240 960 0.094 0.059 0.026 0.018 0.005 0.040 0.047 0.067 0.036 MG/L AS 0 DISOLVED OXYGEN 13.55 6.55 111.55 13.55 9.00 9.00 9.00 14.5 9.8 9.2 5.0 3.4 7.87 7.71 7.97 7.88 8.08 8.14 8.25 8.18 8.07 8.27 풊 REGION: 01 MG/L MG/L AS PB 0.005<W 0.005<W COPPER AS CU UNF. TOT. LEAD 0.005<T 0.016<T 0.005<W 0.007<T 0.005<W D.006<T 0.005<W 0.024<T UNF. TOT. 0,0000 0.0000 0.0100 CUUT 0.0057 0.0040 0,0060 0.0032 0.0024 0.0049 0.0032 0.0000 0.0100 0,0060 ¢ UNF.REAC MG/L AS N ,25C COND25 UMHO/CM AT 25 C NNTKUR K'DAHL N U T M: 17 0411900.0 4707150.0 CONDUCT. 560.0 641.0 690.0 826.0 597.0 639.0 678.0 826.0 647.1 480.0 94.9 10 TOTAL 2.150 1.240 1.120 0.660 1.480 1.020 1.020 1.280 0.890 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L MG/L CLIDUR CHLORIDE UNF. REAC AS CL NNOSUR N03-N JNF . REAC 32.900 50.200 44.600 48.200 33.700 46.500 29.300 50.200 41.230 40.557 29.300 7.614 10 AS 7.000 8.500 6.700 8.100 8.800 4.500 5.400 7.900 6.500 45.000 BOD 5 DAY MG/L MG/L AS N N02-N TOT. DEM. NNO2UR UNF. REAC 1.40< AS 1.60 2.56 0.24 4.92 8005 4.92 2.36 0.24 0.050 0,060 0.230 0.060 0.030 0.050 0.060 TOTAL MG/L AS N ALK MG/L NNHTUR AS CACO3 NH3-N TOTAL UNF. REAC LONG: 082 04 20.70 132.0 134.0 184.0 198.0 209.0 187.0 200.0 243.0 258.0 275.0 ALKT 275.0 196.7 132.0 47.5 0.170 0.135 0.019 0.006 0.043 0.039 0.019 0.003 0.028 AT COUNTY ROAD NO 15 NEAR KENT BRIDGE 10 STATION TYPE: RIVER FLOW GAUGE FED 02GE003 DEG.C CODE FGPROJ SUB-PROJ TEMP PROJECT **FWTEMP** WATER 0103 0103 0103 0101 0103 0.5 0.5 17.0 17.0 22.0 23.0 27.0 117.0 0103 0103 0101 0103 LAT: 42 30 49.09 DEPTH SAMPLE STREAM COND. FWSTRC 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 01 .0 39709 39739 39755 39785 39832 39863 39739 39770 39800 SAMPLE NUMBER 39816 ARITH MEAN 39724 39755 39785 39816 39832 39848 89770 39800 39848 MAXIMUM GEOM NEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED) SAMPLE NUMBER *=INTERIM TEST-NAME: TEST-NAME: 1340 1340 1335 HOUR 1420 400 1407 402 1430 HOUR 1450 1400 1407 1430 1340 1340 1335 1345 1405 LMT *=INTERIM 901022 901126 SAMPLE YYMMDD 900122 900226 900423 900528 900625 900723 900924 901022 YYMMDD 900122 900226 900326 900625 900723 900924 900326 900827 SAMPLE 900423 900528 900827 DATE DATE

STATION ID: 04-0013-058-02

		MAJOR BASIN: GREAT LAKES	MANUAL PARTY . ALLE PROPERTY
W./ SITE: THAMES RIVER	SAMPLE POINT: AT COUNTY ROAD NO 15 NEAR KENT BRIDGE	TION TYPE: RIVER FLOW GAUGE FED 02GE003	

	REGION: 01	рвит рн	LEAD	UNF. 101.	AS PB PH	0.026 8.27		0.008 <a 8.04<="" th=""><th></th><th></th><th>11 10</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th>			11 10																					
VER	707150.0 4	NNTKUR K'DAHL N	TOTAL	UNF. REAC	AS N	2.150	1 107	1 122	0 660		10																					
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0411900.0 4707150.0 4	NNO3UR	NO3-N	UNF. KEAC	AS N	10.700	7 610	7 210	6.500	1.785	10																					
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNOZUR	NO2-N	UNF . KEAC	AS N	0.230	0 077	0.066	0.030	0.057	10	ZNUT	ZINC	UNF. TOT.	MG/L AS ZN		0.0110	0.0110	0.0250	0.0050	0.0210	0.0000	0.0110	0.0130	0.0470	0.0300	0.0470	0.0175	0.0144	0.0050	0.0124	11
	04 20.70	NNHTUR NH3-N	TOTAL	MG/I	AS N	0.170	0 048	0.026	0.003	0.057	10	TURB			TURB'ITY FTU				32.00								32.00	32,00		32.00		1
00350	LONG: 082 04 20.70	FWTEMP	MATER	TEMP	DEG.C	27.0	14.2	8.7	0.0	8,5	11	RSP		RESIDUE	PARTIC.		3 00	68.1	43.9	29.9	358.0		113.0	55.1	131.0	71.0	358.0	106.6	81.9	29.9	9.66	6
COLUMN TO THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF TH	LAT: 42 30 49.09	FWSTRC		STREAM	COND.							PSAMF	AERUG.	H.	/100ML		/ L	4<	>4	>4	>4>	>5	>5	>4	>5	8	80	8		8		2
i	LAT: 42	*=INTERIM TEST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:			NUMBER	, 00	20102	39729	39755	39770	39785	39800	39816	39832	39848	39863	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS
		-		HOUR	УУНИОВ СИТ					ID DE	SAMP	IM T			LMT	10.00	1420	1405	1400	1407	1402	1430	1340	1340	1335	1345					TD DE	P IN

2870

STORET CODE:

STATION ID: 04-0013-061-02

1990 WATER GUALITY DATA REGION 1

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER

B.O.W./ SITE: TURKEY CREEK

BOUNTY STEEN UNTER LABOR SOUTH OF SOUTHWOLD STATION TYPE: RIVER

NH3-N MG/L AS N TOTAL 163,344 NNHTUR UNF. REAC 0.030 0.015 0.005 0.001 0.029 0.308 0.308 0.012 0.308 0.001 6 01 DISTANCE: TEMP FTU FWTEMP MATER DEG.C TURB'ITY 1.0 1.0 3.0 119.0 221.0 222.0 9.0 22.0 11.8 7.5 1.0 8.3 12.10 TURB STREAM 5.0< 9.4 5.1 16.6 51.1 48.9 64.5 **FWSTRC** COND. RESIDUE PARTIC. MG/L RSP REGION: 01 20AID 10AID 10AID SOOAID 200AID CNT PSEUDOMN CRI /100ML STREPCUS FECAL /100ML 15600> PSAMF AERUG 450 2200 10 FSMF 170 2200 0470300.0 4739250.0 4 70AID 700AID MG/L AS P FECAL CNT ROHOSOHO COLIFORM /100ML 100< 3800 10< JNF. TOT 0.025 3800 0.067 0.165 0.046 0.068 250 200 0.278 2200 9 33 PPUT MG/L AS P P04 250 JNF. REAC COND25 UMHO/CM AT 25 C PP04UR CONDUCT. 922.0 530.0 684.0 595.0 825.0 910.0 875.0 801.0 605.0 530.0 170.4 10 0.005 0.045 0.053 0.146 0.024 0.037 780.3 763.0 0.039 U T M: 17 MG/L AS 0 표 DEMAND CHEM. OX 25 15 15 32 32.5 32.5 24 23 15 9 7.78 7.64 8.05 8.05 8.26 7.80 7.67 8.26 8.26 풊 TOTAL UNF.REAC MG/L AS N MG/L UNF . REAC AS CL K'DAHL N CLIDUR CHLORIDE NNTKUR LONG: 081 21 47.65 80,410 72.854 43.600 40.324 1.050 0.720 0.920 1.850 1.350 45.100 58.900 53.500 64.100 105.000 164.000 82.400 57.500 43.600 0.820 30,000 64,000 MG/L AS N PROJECT SUB-PROJ UNF . REAC CODE NNOSUR NO3-N FGPROJ 5.800 4.400 2.800 3.300 1.200 1.900 1.500 5.000 0101 0101 0101 0101 0101 0101 0101 LAT: 42 48 25.78 SAMPLE MG/L AS N NNO2UR N02-N JNF . REAC FWSADP 0.010 0.020 0.010 0.160 0.30 0.070 0.030 0.010 0.30 0.30 0.30 0.30 0.30 0.30 0.030 10 MAXIMUM ARITH MEAN SAMPLE 39745 39715 39729 39745 39761 39805 39854 39715 39729 39791 39805 39838 39854 39791 SAMPLE NUMBER 39838 GEOM MEAN MINIMUM # SAMP IN STATISTICS STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST -- NAME: *=INTERIM TEST-NAME: 1110 HOUR 1130 1200 040 1100 1110 1130 1200 1040 1400 HOUR 1330 LMT 901023 900626 901023 YYMMDD 900925 YYMMDD 900123 900226 900328 900423 900626 900724 900828 900925 SAMPLE 900123 900226 900328 900423 900724 900828 SAMPLE DATE DATE

91		02 003 2870	163.344											
	STATION ID: 04-0013-061-02	STORET CODE:	DISTANCE: 163.344	TURB		TURB'ITY	FTU	12.10	12.10		12,10		1	
	TION ID: 04		01	RSP	RESIDUE	PARTIC.	MG/L	93.0	47.5		5.1		89	11
	STA		REGION: 01	PSEUDOMN	AERUG.	CNT	/100ML	140	95		4		\$	09
GION 1		ES	739250.0 4	PPUT	PHOSPHOR UNF. TOT.	MG/L	AS P	0.278	0.120	0.091	0.025	0.089	10	
1990 WAIER QUALITY DATA REGION I		MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0470300.0 4739250.0 4	PP04UR	PO4 UNF.REAC	MG/L	AS P	0.146	0.047	0.029	0.002	0.041	10	
MATER QUAL		MAJOR BASIN MINOR BASIN TERM STREAN	U T M: 17	Н			H	8.41	7.96	7.96	7.64	0.28	10	
1990	HOLD		21 47.65	NNTKUR K'DAHL N	TOTAL UNF.REAC	1/9H	AS N	1.860	1.167	1.097	0.720	0.443	10	
	TURKEY CREEK AT COUNTY RD 19 SOUTH OF SOUTHWOLD		LONG: 081 21 47.65	NNO3UR	NO3-N UNF.REAC	T/9W	AS N	16,900	4.450	3.209	1.200	6.649	10	
	REEK Y RD 19 SOL		LAT: 42 48 25.78	NNO2UR	NO2-N UNF.REAC	MG/L	ASN	0.290	990.0	0.033	0.010	0.091	10	
		PE: RIVER	LAT: 4	TEST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
	B.O.W./ SITE: SAMPLE POINT:	STATION TYPE:		*=INTERIM TEST-NAME:	111	DATE HOUR	үүнирр сит					STD DI	# SAMP IN	Z. SAHP

STATION ID: 04-0013-064-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: TROUT CREEK SAMPLE POINT: AT PERTH COUNTY ROAD NO 28 ST.MARY'S STATION TYPE: RIVER FLOW GAUGE FED 026D009

STORET CODE: 02 003 2870 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: THAMES RIVER

	LAT: 4	LAT: 43 16 17.26	LONG: 081 05 46.02	05 46.02	U T M: 17	U T M: 17 0492200.0 4790750.0 4	790750.0 4	REGION: 01	01	DISTANCE	DISTANCE: 258.936
*=INTERIM TEST-NAME:	EST-NAME:	FWSADP	FGPROJ	CLIBUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR	NNO2UR
SAMPLE		SAMPLE	PROJECT	CHLORIDE UNF.REAC	CONDUCT.	COLIFORM	STREPCUS		WATED	TOTAL	NO2-N
DATE HOUR	SAMPLE	DEPTH	SUB-PROJ	MG/L AS CI	UMHO/CM	CNT	CNT	STREAM	TEMP	MG/L	MG/L
0111	*0202			2000					DEG .	2 .	2
	2022	0.50	0101	20.500	0.100	190	360	. 0	2.0	0.465	0.050
	39357	0.30	0101	13.400	320.0	20	12	9 4	0.0	0.406	0.060
	39382	0.30	0101	16.200	430.0	112	12	9 9	9	0.037	0.030
900523 1045	39407	0.30	0101	17.000	428.0	176	132	9	14.0	0.032	0,100
	39432	0.30	0101	16.100	440.0	<009	288	9	18.0	0.225	0.190
	39457	0.30	1010	15.300	421.0	099	720	9	21.5	0.001<	0.160
	39482	0.30	0101	15.600	377.0	240	150	9	16.0	0.173	0.050
	39507	0.30	0101	17.400	387.0	390	130	9	13.5	0.137	0.190
	39532	0.30	0101	16.600	508.0	380	120	9	12.0	0.003	0.240
901121 1025	39557	0.30	0101	14.500	485.0	40AID	09	9	5.0	0.053	0.000
	MAXIMUM	0.30		22:900	601.0	099	720		21.5	0.465	0.240
	ARITH MEAN	0.30		16.873	453.1	252	185		10.4	0.170	0.109
	GEOM MEAN	1		169.91	448.4		100		7.9		980.0
	MINIMOM	0.30		13.400	377.0	10	12		2.0	0.003	0.020
SID DE	SID DEV (GEOM *)	;		2.710	4.07		***		8.9		9.00
# SAMP IN	# SAMP IN STATISTICS	11		=	11	10	11		11	. 01	11
A SAITE	(EVCTODED)					5				6	
*=INTERIM TEST-NAME:	EST-NAME:	NNOSUR	NNTKUR	H	PP04UR	PPUT	RSF	RSP	RST		
		NO3-N	K'DAHL N TOTAL		P04	PHOSPHOR					
tu:		UNF. REAC	UNF. REAC		UNF. REAC	UNF. TOT.	RESIDUE	RESIDUE	RESIDUE		
DATE HOUR	SAMPLE	MG/L AS N	MG/L AS N	Н	MG/L AS P	MG/L AS P	FILTERED MG/L	PARTIC. MG/L	TOTAL MG/L		
900116 1110	39307	5.700	1.200	7.84	0.035	0,060	397.4	10.6	408.0		
	39332	006.9	1.080	7.77	0.033	0.058	343.0	>0 < 2			
	39357	5.600	1.080	8.04	0.053	0.108	254.9	11.1	266.0		
	39382	5.200	0.890	8.45	0.001<	0.064	316.6	9.6	326.0		
	39407	4.300	0.710	8.35	0.004	0.031	286.3	3.7	290.0		
	39432	3.800	1.000	8.23	0.010	0.027	282.0	3.5	278.5		
	39457	2.300	1.360	8.04	0.032	0.052	263.0	0.6	272.0		
	39482	5.300	1.300	8.01	0.025	0.088	267.0	26.7	294.0		
	39507	0.800	1.090	8.05	0.012	0.088	280.0	32.0	312.0		
	39532	4.100	1.080	7.95	0.033	0.099	336.3	23.7	360.0		
901121 1025	74465	3.000	1.160	8.42	0.004	0.080	328.0	19.9	348.0		

	02 003 2870	258.936													
STATION ID: 04-0013-064-02	STORET CODE: 02 00:	DISTANCE: 258,936													
VIION ID: 04		10	RST		RESIDUE	TOTAL	MG/L		408.0	315.4	312.7	266.0	45.4	10	
ST		REGION: 01	RSP		RESIDUE	PARTIC.	MG/L		32.0	15.0		3.5		10	6
	(ES DN IVER	U T M: 17 0492200.0 4790750.0 4	RSF		RESIDUE	FILTERED	MG/L		397.4	305.0	302.3	254.9	43.4	11	
	4AJOR BASIN: GREAT LAKES TINOR BASIN: LAKE HURON TERM STREAM: THAMES RIVER	0492200.0	PPUT	PHOSPHOR	UNF. TOT.	MG/L	AS P		0.108	690.0	0.063	0.027	0.026	11	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PP04UR	P04	UNF. REAC	MG/L	AS P	1 1	0.053	0.024		0.004		10	6
MARY'S		05 46.02	Н				Н		8.45	8,10	8.10	7.77	0.23	11	
AT PERTH COUNTY ROAD NO 28 ST.MARY'S	FED 02GD009	LONG: 081 05 46.02	NNTKUR	TOTAL	UNF. REAC	MG/L	AS N		1.360	1.086	1.071	0.710	0.181	11	
COUNTY ROA	FLOW GAUGE	LAT: 43 16 17.26	NNO3UR	N03-N	UNF. REAC	MG/L	AS N	000	6.900	4.273	3.779	0.800	1.745	11	
		LAT: 4	TEST-NAME:				NUMBER	2000	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: SAMPLE POINT:	STATION TY		*=INTERIM TEST-NAME:		SAMPLE		УУМИВВ СИТ						STD DE	# SAIIP IN	% SAMP

DATE OF REPORT: 9 JAN 92 PAGE: STATION ID: 04-0013-065-02 STORET CODE: 02

MAJOR BASIN: GREAT LAKES B.O.W./ SITE: SHARON CREEK SAMPLE POINT: AT SHARON RESERVOIR OUTLET STATION TYPE: RIVER

					MINOR BASIN TERM STREAM	MINOR BASIN: LAKE HURON TERM STREAM: THAMES RIVER	VER				2870
	LAT: 4	LAT: 42 53 05.75	LONG: 081 24 05.95	24 05.95	U T M: 17	U T M: 17 0467200.0 4747900.0 4	747900.0 4	REGION: 01	01	DISTANCE	DISTANCE: 172,517
*=INTERIM TEST-NAME:	ST-NAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR NHT-N	NNOZUR
		1		CHLORIDE	CONDUCT.	COLIFORM	STREPCUS			TOTAL	NO2-N
SAMPLE DATE HOUR	SAMPLE	SAMPLE	SUB-PROJECT	UNF.REAC	25C UMHO/CM	CNI	CNT	STRFAM	WATER	UNF.REAC	UNF.REAC
_	NUMBER	Σ	CODE	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG.C	AS N	AS N
900123 1125	39716	0.30	0101	30.400	397.0	1120	1500>	9	1.0	0.208	0.060
	39730	0.30	0101	23.500	300.0	1500	2100	4	1.0	0.240	0.040
	39746	0.30	0101	26.600	416.0	10<	10<	9	7.0	0.230	0.040
	39762	0.30	0101	40.500	424.0	>4	>4	9	16.0	0.214	0.050
	39770	0.30	0101	39.800	646.0	24	28	9	19.0	0.313	0.000
	39792	0.30	0101	42.300	493.0	28	40	9	22.0	0.186	0.120
	39806	0.30	0101	45.900	502.0		;	9	25.0	0.057	0.100
	39823	0.30	0101	46.200	0.674	ZOAID	-	9 '	25.0	0.051	0.140
	39839	0.30	0101	39.500	495.0	40AID		9 ,	17.0	0.243	0.110
	59855	0.30	0101	37.900	550.0	UNID	ZUAID	9	13.0	0.004	0.100
901127 1130	39870	0.30	0101	34.500	565.0	100	192	9	7.0	0.084	090.0
	MAXIMUM	0.30		46.200	565.0	1500	2100		25.0	0.313	0.140
•	ARITH MEAN	0.30		36.991	9.095	363	359		13.9	0.166	0.083
	GEOM MEAN			36.230	454.5				9.3	0.112	920.0
	MINIMUM	0.30		23.500	300.0	20	10		1.0	0.004	0,040
STD DEV	STD DEV (GEOM *)			7.472	75.2				8.8	0.100	0.034
# SAMP IN S	SAMP IN STATISTICS	11		11	11	&			11	11	11
Z SAMP (% SAMP (EXCLUDED)					20	30				
*=INTERIM TE	TEST-NAME:	NNO3UR	NNTKUR	¥	PP04UR	PPUT	PSAMF	RSP	TURB		
		MOZOM	K'DAHL N		200	dondagua	PSEUDOMN				
SAMPLE		LINE REAC	UNF REAC		INF REAC	INF. TOT.	AEROG.	BESTRIE			
DATE HOUR	SAMPLE	MG/L	MG/L		MG/L	MG/L	CNT	PARTIC.	TURB'ITY		
УУММОО СМТ	NUMBER	AS N	AS N	H	AS P	AS P	/100ML	MG/L	FTU		
	39716	009.9	1.620	7.67	0.198	0.342	40	21.4			
	39730	3.500	1.560	7.63	0.198	0.047	280	58.7			
	39746	4.300	1.030	7.86	0.155	0.200	>4	6.9			
	39762	4.100	1.290	8.24	0.010	0.081	>4	13.4	14.60		
	39770	4.200	1.540	8.21	0.020	0.088	>4	8.6			
	39792	4.000	1.120	8.34	0.011	0.042	>4	6.1			
	39806	4.200	1.000	8.53	0.016	0.024		2.0			
900828 1125	39823	2.700	0.810	8.23	0.008	0.028	4 ,	6.5			
	39859	2.700	1.140	7.95	0.023	0.068	> 7	14.5			
901127 1130	39870	2.900	1.020	8.12	0.066	0.105	4 4	7.9			

STATION ID: 04-0013-065-02	STORET CODE: 02 003 2870	DISTANCE: 172.517											
ATION ID: 0		01	TURB		TURB'ITY	FTU	14.60	14.60		14.60		1	
ST		REGION: 01	RSP	RESIDUE	PARTIC.	MG/L	58.7	16.0		6.1		6	10
	ES IN VER	747900.0 4	PSAMF PSEUDOMN	AERUG. MF	CNT	/100ML	28	12		4		M	7.0
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: THAMES RIVER	U T M: 17 0467200.0 4747900.0 4	PPUT	PHOSPHOR UNF.TOT.	MG/L	AS P	0.342	0,102	0.075	0.024	0.093	11	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PP04UR	PO4 UNF.REAC	MG/L	AS P	0.198	690.0	0.036	0.008	0.077	11	
		24 05.95	Н			H	8.53	90.8	8.06	7.63	0.28	11	
OUTLET		LONG: 081 24 05.95	K'DAHL N	TOTAL UNF.REAC	HG/L	AS N	1.620	1.217	1.192	0.810	0.263	11	
SHARON CREEK AT SHARON RESERVOIR OUTLET		LAT: 42 53 05.75	MNOSUR	NO3-N UNF.REAC	HG/L	AS N	009.9	3.755	3.590	2.100	1.214	11	
SHARON C	: RIVER	LAT: 4	ST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	EXCLUDED)
B.O.W./ SITE: SHARON CREEK SAMPLE POINT: AT SHARON RE	STATION TYPE: RIVER		*=INTERIM TEST-MAME:	SAMPLE	DATE HOUR	YYHNDD LMT		A	_		STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)

STATION ID: 04-0013-066-02

B.O.W./ SITE: TROUT CREEK

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON SAMPLE POINT: AT WEST ZORRA TWP, CONC. ROAD 2-3 RIVER STATION TYPE:

MG/L AS N DISTANCE: 269,880 NNO2UR N02-N JNF . REAC 0.030 0.010 0.070 0.080 0.030 0.040 0.032 0.010 0.021 0.010 2870 0.038 02 STORET CODE: MG/L AS N TOTAL NNHTUR NH3-N UNF. REAC 0.011 0.001< 0.097 0.001< 0.027 0.011 0.001< 0.392 0.095 0.011 WATER TEMP FWTEMP DEG.C 1.0 0.5 3.0 6.0 10.0 17.0 118.0 14.0 9.0 3.0 18.0 8.9 5.6 0.5 6.6 REGION: 01 FWSTRC STREAM COND. RESIDUE MG/L PARTIC. 5.9 13.5 13.5 14.2 13.4 9.7 44.2 47.4 9 9 SOAID U T M: 17 0501200.0 4790650.0 4 100AID 38AID 90AID PSEUDOMN FECAL STREPCUS /100ML 340 /100ML ×4 4×4 AERUG. 340 PSAMF FSMF 951 340 10 123 TERM STREAM: THAMES RIVER SOAID MG/L AS P CNT FECAL COLIFORM /100ML PHOSPHOR UNF. TOT. 440 PPUT 0.066 9/0.0 0.045 0.053 0.059 0.042 0.196 1200 1200 300 10 MG/L AS P COND25 250 JMH0/CM AT 25 C PP04UR P04 UNF . REAC CONDUCT. 660.0 623.0 5554.0 5584.0 624.0 629.0 619.0 690.0 690.0 628.4 554.0 0.046 0.031 0.021 0.005 0.042 0.002 0.026 0.087 MG/L CLIDUR AS CL UNF . REAC H CHLORIDE LAT: 43 16 14.16 LONG: 080 59 06.77 23.800 17.500 16.800 18.700 20.800 12.400 15.900 19.600 17.400 17.400 18.064 17.839 12.400 2.947 7.90 8.05 7.96 7.96 8.18 7.93 8.07 8.00 7.84 23.800 H NNTKUR MG/L AS N FGPROJ PROJECT SUB-PROJ CODE K'DAHL N UNF. REAC TOTAL 1.060 0.960 0.680 0.700 0.720 0.700 1.260 0.790 0.720 0101 1010 0101 0101 0101 1010 0101 1010 0101 рертн М N-20N MG/L AS N SAMPLE NNOSUR UNF. REAC FWSADP 0.30 0.30 6.500 6.700 8.000 5.300 10.300 2.500 5.500 0.30 0.30 0000.9 0.30 39426 39476 39526 GEOM MEAN MINIMUM 39326 39376 39476 39301 39326 39351 39376 39401 39451 39551 RITH MEAN SAMPLE 39301 39401 39426 39451 39501 SAMPLE NUMBER STD DEV (GEOM *) MAXIMUM JUMBER % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 0840 0840 0835 0840 0840 0830 0835 0835 0830 0835 0845 0830 HOUR 0835 0825 **УУМИВВ СМТ** LMT 900619 YYMMDD 900319 900116 900220 900319 900523 900018 900116 900220 900523 900619 900018 SAMPLE 900417 900717 900821 SAMPLE 900417 900717 900821 DATE DATE

(CONTD)

0.076

0.041

8.000

39526

0835

901016

0.087

STORET CODE: 02

STATION ID: 04-0013-066-02

MAJOR BASIN: GREAT LAKES

B.O.W./ SITE: TROUT CREEK SAHPLE POINT: AT MEST ZORRA TWP.CONC.ROAD 2-3 STATION TYPE: RIVER

**INTERIM TEST-NAME: NO.3-N TO.4-L NO.3-N TO.3-N TO.4-L NO.3-N TO.3-N TO	003 2870	DISTANCE: 269.880												
43 16 14.16 LONG: 080 59 06.77 U T H: 17 0501200.0 4790650.0 4 NNO3UR NUTUUR PH PP04UR PPUT PSAMF N03-N TOTAL HG/L UNF.REAC UNF.REAC UNF.TOT. HG/L NG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/L H		REGION: 01	RSP		RESIDUE	ARTIC.	HG/L	47.4	22.3		5.9		10	6
43 16 14.16 LONG: 080 59 06.77 NNO3-N	/ER	790650.0 4	PSAMF					36	15		5		м	20
43 16 14.16 LONG: 080 59 06.77 NNO3-N	1: LAKE HURON	0501200.0 4	PPUT	PHOSPHOR	UNF. TOT.	HG/L	AS P	0.196	0.000	0.062	0.037	0.045	11	
43 16 14.16 LONG: 080 59 06.7 NNO3UR K'DAHL N NO3-N TOTAL UNF.REAC UNF.REAC HG/L MG/L R AS N AS N H 10.300 1.260 8.18 N 6.300 0.785 8.00 N 6.300 0.284 0.10	MINOR BASIN TERM STREAM	U T M: 17	P904UR	P04	UNF. REAC	MG/L	AS P	0.087	0.030	0.020	0.002	0.024	11	
#=INTERIM TEST-NAME: RN03UR NNTKUR ND3-N TOTAL NO3-N TOTAL NO3-N TOTAL NO3-N TOTAL NUMBER AS N AS		59 06.77	Н				Н	8.18	8.00	8.00	7.84	0.10	11	
#=INTERIH TEST-NAME: NNO3UR NO3-N SAMPLE HOUR SAMPLE HG/L YYMMDD LHT NUMBER AS N HAXINUH 10.300 GEOH HEAN 6.300 GEOH HEAN 6.300 GEOH HEAN 6.300 GEOH HEAN 6.300 ASAMP IN STATISTICS 11 2.500 % SAMP IN STATISTICS 11 2.500 % SAMP (EXCLUDED)		LONG: 080	NNTKUR K'DAHL N	TOTAL	UNF . REAC	HG/L	AS N	1.260	0.785	0.759	0.520	0.224	11	
*=INTERIH TEST-NAHE: SAMPLE DATE HOUR SAMPLE YVHMDD LHT NUMBER MAXIMUM ARITH HEAN GEOM HEAN GEOM HEAN STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLODED)		3 16 14.16	NNO3UR	N03-N	UNF. REAC	MG/L	AS N	10.300	6.300	5.973	2.500	2.012	11	
*=INTERIH T SAMPLE DATE HOUR YYMMDD LMT STD DE \$ SAMP IN % SAMP IN % SAMP IN		LAT: 4	EST-NAME:			SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	HINIHUM	(CEOM *)	STATISTICS	(EXCLUDED)
			*=INTERIM T		SAMPLE		УУНИВВ СМТ					STD DE		% SAMP

STORET CODE:

STATION ID: 04-0013-067-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: NORTH THAMES RIVER

1AJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE SAMPLE POINT: 2 MILES UPSTREAM FROM ST.MARY'S STATION TYPE: RIVER

MG/L AS N NO2-N JNF. REAC 258.775 NNO2UR 090.0 0.080 0.040 0,050 0.250 0.040 0.050 0.040 0.000 0.069 0101 0.120 0.060 0.073 DISTANCE: NNHTUR MG/L AS N TOTAL NH3-N UNF . REAC 0.001< 0.001< 1.260 0.153 0.021 0.005 0.004 0.450 0.015 0.239 6 8 DEG.C TEMP FWTEMP 1.0 1.0 3.0 6.0 12.0 18.0 18.0 17.0 11.0 3.5 22.0 9.5 6.2 1.0 7.3 REGION: 01 STREAM COND. RESIDUE MG/L **FWSTRC** PARTIC. 5.0< 5.0 6.4 10.2 7.0 7.0 26.1 13.0 RSP 40AID U T M: 17 0486300.0 4792500.0 4 /100ML FSMF /100ML CNT 4444 STREPCUS CNT PSEUDOMN 4 4 4 AERUG, 44 PSAMF 910 54 220 910 276 157 09 168 150 24 192 290 TERM STREAM: THAMES RIVER SOOAID BOAID /100ML MG/L FECAL PHOSPHOR COLIFORM <000 420 JNF. TOT AS 420 0.053 0.052 0.045 0.045 0.041 0.066 FCMF 880 180 96 44 8 20 PPUT MG/L AS P 25C AT 25 C PP04UR P04 JNF . REAC 0.001< 0.012 0.001< 0.026 COND25 UMHO/CM CONDUCT. 0.034 0.043 761.0 708.0 594.0 682.0 688.0 725.0 693.0 681.0 704.0 766.0 701.0 594.0 46.3 0.099 0.023 AS CL F CLIDUR UNF . REAC CHLORIDE MG/L 8.23 8.23 8.20 8.10 8.33 8.20 8.23 8.23 LONG: 081 10 07.91 50.600 43.900 32.300 45.900 38.500 86.200 86.200 37.600 37.600 36.100 86.200 45.182 43.225 29.400 115.733 8.04 Ξ UNF.REAC MG/L AS N NNTKUR K'DAHL N CODE FGPR0J SUB-PROJ PROJECT 0.910 0.960 0.830 0.840 040 910 0101 0101 0101 0101 0101 1010 0101 TOTAL 0101 0. LAT: 43 17 13.69 MG/L AS N **FWSADP** SAMPLE DEPTH NNO3UR N03-N UNF . REAC 9.100 7.000 12.800 1.100 9.100 6.500 9.600 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 9.700 0.30 39529 39329 39354 39429 39504 39529 SAMPLE 39304 39354 39379 39429 39454 39504 39554 39304 39379 39454 MAXIMUM ARITH MEAN NUMBER 39479 GEOM MEAN MINIMUM # SAMP IN STATISTICS // SAMP (EXCLUDED) SAMPLE 39404 STD DEV (GEOM *) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 1025 1005 1010 1000 9860 1015 1010 1015 1025 010 1010 1000 1005 0955 HOUR 1005 HOUR 1025 005 LMT LMT 900116 /YMMDD 900220 900319 900523 900619 900918 901016 YYMMDD 900018 901016 900116 900417 900717 900319 900417 900523 900619 900717 900821 SAMPLE 900821 SAMPLE DATE DATE

		0	
STATION ID: 04-0013-067-02	STORET CODE:	DISTANCE: 2	
STATION		REGION: 01	RSP
	LAKES RIE RIVER	U T M: 17 0486300.0 4792500.0 4 REGION: 01	PSAMF
	GREAT LAKE E THAMES	486300.	PPUT
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0	PP04UR
		07.91	ЬН
3.0.W./ SITE: MORTH THAMES RIVER SAMPLE POINT: 2 HILES UPSTREAM FROM ST.MARY'S		LAT: 43 17 13.69 LONG: 081 10 07.91	NNTKUR PH
HAMES RIVER		43 17 13.69	NNOSUR
: NORTH T	STATION TYPE: RIVER	LAT:	*=INTERIM TEST-NAME:
L./ SITE E POINT	ON TYPE		RIH TE
B.O.W	STATI		*=INTE

	02 003 0101	258.77													
	STORET CODE: 02 003 010	DISTANCE: 258.77													
		01													
		REGION: 01	RSP			RESIDUE	PARTIC.	HG/L	45.5	15.8		5.0		6	18
	VER	792500.0 4	PSAMF	PSEUDOMN	AERUG.	MF	CNT	/100ML	24	14		4		2	80
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0486300.0 4792500.0 4	PPUT		PHOSPHOR	UNF. TOT.	MG/L	AS P	0.170	0.061	0.055	0.038	0.037	11	
	MAJOR BASII MINOR BASII TERM STREAI	U T M: 17	PP04UR		P04	UNF. REAC	MG/L	AS P	0.099	0.035		0.012		6	18
0		10 07.91	Н					ЬН	8.33	8.15	8.15	7.86	0.12	11	
OF STREET		LAT: 43 17 13.69 LONG: 081 10 07.91	NNTKUR	K'DAHL N	TOTAL	UNF . REAC	T/9H	AS N	1.900	0.972	0.939	0.720	0.320	11	
UPSTREAM FR		3 17 13.69	NNOSUR		N-20N	UNF . REAC	11G/L	AS N	12.800	7.882	6.931	1.100	3.009	11	
SAMPLE POINT : MILES OFSTREAM PROM STUMENTS	pe: RIVER	LAT: 4	TEST-NAME:					NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
SAILFLE PULL	STATION TYPE:		*=INTERIH TEST-NAME:			SAMPLE	DATE HOUR	УУМИВВ СИТ					STD DE	# SAMP IN	% SAMP

STATION ID: 04-0013-068-02

B.O.W./ SITE: REYNOLD'S CREEK SAMPLE POINT: AT C/A AREA SOUTH OF HIGHWAY 401 STATION TYPE: RIVER

MAJOR BASIN: GREAT LAKES
MINOR BASIN: LAKE HURON
TERM STREAM: THAMES RIVER

MG/L AS N 237,533 NNO2UR JNF . REAC 0.130 0.060 0,060 0.160 0.080 0.129 0.000 0.210 0.000 DISTANCE: NNHTUR MG/L AS N NH3-N TOTAL UNF. REAC 0.001< 0.026 0.001< 0.120 0.017 0.017 0.592 0.592 0.129 0.001 7 2 TEMP DEG.C **FWTEMP** 21.0 9.8 6.5 1.0 7.7 19.0 21.0 18.0 13.0 12.0 3.0 REGION: 01 **FWSTRC** STREAM RESIDUE MG/L COMD PARTIC. 22.6 6.8 6.8 41.9 42.0 34.6 224.5 38.4 60.3 RSP 4 STREPCUS MF FECAL CNT PSEUDOMN CNT U T M: 17 0503900.0 4757450.0 /100ML /100ML AERUG. 52C 12 8 PSAMF 500> 32 132 520 910 910 550 420 660 910 FSMF 80 10 312 32 FECAL MG/L AS P COLIFORM 보 /100ML PHOSPHOR 1500> <0051 <009 UNF. TOT 2500 3700 PPUT 0.082 0.050 0.110 0.146 0.106 FCMF 160 92 284 1300 92 27 0.685 COND25 25C JMH0/CM AT 25 C PP04UR P04 UNF. REAC MG/L CONDUCT. 625.0 662.0 713.0 698.0 751.0 7712.0 775.0 800.0 559.0 800.0 703.9 559.0 75.8 AS 0.179 0.043 0.041 0.053 0.052 0.020 0.032 CHLORIDE UNF.REAC MG/L 품 CLIDUR AS CL LONG: 080 57 07.83 7.71 7.93 8.06 8.06 8.00 8.00 7.89 27.400 27.300 32.700 31.200 33.100 28.700 28.000 27.300 33.100 28.960 28.865 25.600 2.512 28.300 7.57 25.600 품 MG/L AS N SUB-PROJ NNTKUR K'DAHL N UNF. REAC FGPROJ PROJECT CODE 3.200 1.300 1.040 1.300 1.280 1.280 1.420 2.220 1.120 0101 0101 0101 0101 0101 0101 0101 0101 0101 TOTAL LAT: 42 58 17.85 DEPTH MG/L AS N UNF . REAC **FWSADP** SAMPLE NNOSUR N-20N 8.700 10.500 7.000 7.300 2.600 6.200 9.900 6.900 0.30 0.30 0.30 9.700 0.30 SAMPLE 39319 39369 39394 39419 39444 39494 39519 39544 39569 NUMBER 39319 39369 39394 39444 39469 39494 39544 39344 39344 39569 ARITH MEAN GEOM MEAN SAMPLE 39419 MAXIMUM MINIMUM # SAMP IN STATISTICS STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 1025 1020 1025 1030 1020 1025 1025 1030 1010 1030 1010 1025 1030 1020 HOUR 1030 HOUR 1025 LMT LMT *=INTERIM 900919 YYMMDD 900620 900919 YYMMDD 900320 900418 900620 900718 901017 900320 900718 901017 SAMPLE 900117 900221 900822 SAMPLE 900117 900221 900418 900524 900822 900524 DATE DATE

_

CONID

STATION ID: 04-0013-068-02	STORET CODE: 02 003 2870	DISTANCE: 237,533			
TATION ID		: 01			
S		REGION: 01	RSP	RESIDUE PARTIC. MG/L	60.3 30.7 26.4 6.8 15.7
	KES ON IVER	U T M: 17 0503900.0 4757450.0 4	PSAME	AERUG. MF CNT /100ML	52 12 4 4 7
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: THAMES RIVER	0.0062020	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.685 0.148 0.102 0.043 0.191
	MAJOR BASI MINOR BASI TERM STREA	U T M: 17	PP04UR	PO4 UNF.REAC MG/L AS P	0.179 0.048 0.034 0.005 10
101		57 07.83	Н	Н	8.23 7.95 7.95 7.57 0.19
OF HIGHWAY 4		LAT: 42 58 17.85 LONG: 080 57 07.83	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L AS N	3.200 1.507 1.403 0.910 0.691
S CREEK REA SOUTH (2 58 17.85	NNO3UR	NO3-N UNF.REAC MG/L AS N	10.500 7.640 7.209 2.600 2.290
B.O.W./ SITE: REYNOLD'S CREEK SAMPLE POINT: AT C/A AREA SOUTH OF HIGHWAY 401	rype: RIVER	LAT: 4	*=INTERIM TEST-NAME:	IR SAMPLE NUMBER	HAXIMUH ARITH MEAN GEOH MEAN HINIMUH STD DEV (GEOH *) SAHP IN STATISTICS Z SAHP (EXCLUDED)
SAMPLE PC	STATION TYPE:		*=INTERIM	SAMPLE DATE HOUR YYMMDD LHT	STD # SAMP I

STATION ID: 04-0013-069-02

SAMPLE POINT: AT CONG. RD. NO. 3 WEST DXFORD TWP.

	STORET CODE: 0		0 00
	MAJOR BASIN: GREAT LAKES	MINOR BASIN: LAKE ERIE	TERM STREAM: THAMES RIVER
ייייי בייייי בייייי בייייי בייייי בייייי ביייייי	STATION TYPE: RIVER		

Figure F						MINOR BASIN	MINOR BASIN: GREAI LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	res E IVER			STORET CODE: 02	DE: 02 003 2870
HULL FASAPHE		LAT: 4	3 02 36.72		49 10.30	U T M: 17	0514700.0 4	4765450.0 4	REGION: C	01	DISTANCE	5: 250.085
Hour Sample Hour	*=INTERIM	TEST-NAME:	FWSADP	FGPR03	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR	NNO2UR
HOUNE SAMPLE PROPICATION					CHLORIDE	CONDUCT.	COLIFORM	STREPCUS			NH3-N TOTAL	M_COM
	LLI		SAMPLE	PROJECT	UNF . REAC	25C	MF	MF		WATER	UNF. REAC	UNF. REAC
0950 39354 0.30 0101 36.600 746.0 1500> 1500> 6 4.0 0.164 0.09 0945 39354 0.30 0101 34.500 775.0 46.0 72 46 5 2.0 0.016 0945 39354 0.30 0101 34.500 775.0 75.0 24 22 6 5.0 0.012 0945 39341 0.30 0101 31.500 774.0 600 600 0.009 0945 39341 0.30 0101 31.500 774.0 600 600 0.009 0950 39546 0.30 0101 31.000 774.0 1500> 6 11.0 0.009 0950 39546 0.30 0101 35.200 774.0 1200 540 6 11.0 0.009 0950 39546 0.30 0101 35.200 774.0 1200 540 6 11.0 0.009 0950 39546 0.30 0101 36.200 774.0 1200 540 6 11.0 0.009 0950 39546 0.30 0101 36.200 774.0 1200 540 6 11.0 0.009 0950 39546 0.30 0101 36.200 774.0 1200 774.0 1200 0950 39546 0.30 0101 36.200 774.0 1200 774.0 1200 0950 39546 0.30 0101 36.200 774.0 1200 0950 39546 0.30 0101 36.200 774.0 1200 0950 39546 0.30 0101 36.200 774.0 1200 0950 39546 0.30 0.500 0.500 7.50 0.009 0.005 0.005 0.009 0950 39546 0.30 0.500 0.500 7.50 0.009 0.005 0	0		H	CODE CODE	AS CL	AT 25 C	CNT /100ML	CNT /100ML	STREAM COND.	TEMP	MG/L	HG/L NS N
150 150		,	0 20	*******	000						2	200
0950 33956 0.30 0.001 33.600 715.0 74 35 0 0.002 0945 33941 0.30 0.0101 33.600 745.0 24 24 6 6 9.000 0956 33941 0.30 0.0101 35.600 771.0 600 244 6 0.000 0950 33951 0.30 0.0101 35.200 771.0 1200 540 0 0.000 0950 33951 0.30 0.0101 35.200 773.0 12300 540 0 0.000 0950 33951 0.30 0.0101 35.200 773.0 12300 540 0 0.000 0950 33951 0.30 0.0101 35.200 773.0 12300 540 0 0.010 0950 33951 0.30 0.0101 35.200 773.0 12300 540 0 0.010 0950 33951 0.30 0.0101 35.200 773.0 12300 540 0 0.010 0950 33951 0.30 0.0101 35.200 773.0 12300 540 0 0.010 0950 33951 0.30 0.0101 35.200 773.0 12300 540 0 0.010 0950 3951 0.30 0.0101 35.200 773.0 12300 540 0 0.010 0950 3951 0.30 0.0101 35.200 773.0 12300 540 0 0.010 0950 3951 0.30 0.0101 0.30 0.0101 0.000 0950 3951 0.000 0.0	_		0.30	0101	26.600	748.0	1500>	1500>	9 (4.0	0.164	0.040
0945 39391 0.30 0101 32.600 745.0 24 24 6 0.006 0946 39441 0.30 0101 32.600 777.0 600 244 6 0.006 0950 39441 0.30 0101 31.000 777.0 600 244 6 0.006 0950 39461 0.30 0101 31.000 777.0 600 600 1500 6 0.003 0950 39461 0.30 0101 31.000 777.0 600 600 600 1500 6 0.003 0950 39461 0.30 0101 31.000 777.0 600 600 600 600 1500 600 1000 0950 39461 0.30 0101 35.200 779.0 6200 540 6 11.0 0.003 0950 39516 0.30 0101 35.200 779.0 6200 540 6 11.0 0.003 0950 39516 0.30 0101 34.200 603.0 1230 540 6 11.0 0.003 0950 39516 0.30 0101 34.200 603.0 1230 540 6 11.0 0.003 0950 39516 0.30 0101 34.200 603.0 1230 1230 6 11.0 0.003 0950 39516 0.30 0101 34.200 603.0 1230 1230 6 11.0 0.003 0950 39516 0.30 0101 34.200 603.0 1230 1230 6 11.0 0.003 0950 39516 0.30 0101 34.200 603.0 1230 1230 6 11.0 0.003 0950 39516 0.000			0.30	0101	34.500	715.0	7,	4 4 4	0 4	4.5		
10 10 10 10 10 10 10 10			0.30	1010	33.600	745.0	24	24	2 0	0 0	0.012	0.030
0955 3944 0.30 0101 31.000 771.0 1500> 1500> 6 12.0 0.031 0956 3946 0.30 0101 32.300 773.0 12300 3100 6 0.030 0956 3946 0.30 01101 36.200 753.0 12300 3100 6 0.003 0957 39541 0.30 01101 36.200 753.0 12300 3400 6 0.003 0958 39541 0.30 01101 36.200 763.0 12300 3400 6 0.003 0958 39541 0.30 01101 36.200 803.0 12500 904D 6 0.003 0958 39541 0.30 01101 36.200 803.0 1250 904D 6 0.003 0958 39541 0.30 01101 36.200 803.0 1250 904D 6 0.003 0958 39541 0.30 01101 36.200 803.0 12300 13100 6 0.003 0958 39541 0.30 01101 36.200 7.90 01101 36.200 803.0 12200 0958 39541 0.30 0.500 0.500 7.90 0.004 0.003 6 0.003 0958 39541 0.30 0.500 0.500 0.500 0.004 0958 39541 0.30 0.500 0.500 0.500 0.004 0958 39541 0.30 0.500 0.500 0.500 0.004 0958 39541 0.30 0.500 0.500 0.500 0.004 0958 39541 0.30 0.500 0.500 0.500 0.004 0959 39541 0.30 0.500 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.500 0.004 0959 39541 0.300 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.500 0.004 0950 39551 0.500 0.500 0.50	900524	•••	0.30	1010	32.500	774.0	009	244	,		600.0	0.020
0950 3946 0.30 0101 36.200 753.0 0200 3400 6 16.0 0.000 0050 0050 3946 0.30 0101 36.200 753.0 0200 3400 6 0.101 36.200 0050 0050 3941 0.30 0101 36.200 779.0 6200 520 540 6 11.0 0.000 0050 39516 0.30 0101 36.200 779.0 6200 520 6 11.0 0.000 0050 39516 0.30 0101 36.200 779.0 6200 520 6 11.0 0.000 0050 39516 0.30 0101 36.200 803.0 120 0045 90AID 6 11.0 0.000 0050 0050 0050 0050 0050 005	900620 0945		0.30	1010	31.000	771.0	1500>	1500>	9	12.0	0.031	0.000
10,000,000,000,000,000,000,000,000,000,	900718 0950		0.30	0101	32.300	739.0	12300	3100	9	16.0	0.008	0.030
NOS SAPE Color	900822 0950		0.30	0101	36.200	763.0	6200	540	9	14.0	0.013	0.020
HAXIMIN 0.30 0.101 36.300 843.0 120 90AID 6 11.0	0560 616006		0.30	0101	35.200	779.0	2500	520	9	11.0	0.008	0.010
HANTHUM 0.30 36.600 843.0 12300 3100 6 6.5 0.010 16.0 0.164 18.0 0.30	901017 0940		0.30	0101	36.300	843.0	120	90AID	9	11.0		0.030
HAXTHUH 0.30 34.240 768.0 2768 520 84.4 0.0144 0.000 24.240 768.0 2768 520 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.4 0.029 8.2 0.014 0.029 8.2 0.014 0.029 0	901120 0935		0.30	0101	34.200	803.0	330	SOAID	9	6.5	0.010	0.030
NOTICE SAMPLE NOTICE SAMPLE S		MAXIMUM	0.30		36.600	843.0	12300	2100				
TEST NAME RIAN RI		ARITH MEAN	0.30		34.240	768.0	2768	2500		0.01	60 C	0.050
HINTEND HINT		GEOM MEAN			34.192	767.3		22		4.0	0.029	0.029
Test		MINIMUM	0.30		31,000	715.0	56	24		о с 5 п	0.0I4	0.027
TEST-NAME: NNOSUR NNIKUR	STD D	EV (GEOM *)			1.896	35.9				2.0	0.051	0.010
SAMP (EXCLUDED) SAMP (EXCL	# SAMP IN	STATISTICS	11		10	10	100	6		101	000	10.01
NOS OF STATE NOS	% SAMP	(EXCLUDED)					27	18)		2
NOS-NOS-NOS-NOS-NOS-NOS-NOS-NOS-NOS-NOS-	*=INTERIM	TEST-NAME:	NNOSUR	NNTKUR	H	PP04UR	PPUT	PSAME	a va			
HOUR SAMPLE HG/L UNF.REAC UNF.REAC UNF.TOT. HF FALL NUMBER AS N HG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/L				K'DAHL N				PSEUDOMN				
HOUR SAMPLE MICH AS N AS N PH AS P AS P /100HL ON950 S9316 8.800 1.400 7.51 0.091 0.176 46 945 S9341 7.400 0.550 7.79 0.001 0.015 46 945 S9391 7.400 0.570 7.87 0.001 0.015 9.46 9.46 9.46 9.46 9.46 9.46 9.46 9.46	SAMPLE		NOS-N	TOTAL		PO4	PHOSPHOR	AERUG.				
LMT NUMBER AS N AS N PH AS P N PH AS P NO PH P NO PH AS P NO PH P NO PH AS P NO PH P N			MG/I	MG/1		ONF . KEAC	.101.	AH C	RESIDUE			
0950 39316 8.800 1.400 7.51 0.091 0.176 16 0950 39341 7.600 0.700 7.65 0.049 0.065 4 0945 39346 7.400 0.570 7.79 0.004 0.053 4 0945 39341 7.700 0.570 7.87 0.001 0.015 4 0950 39441 7.700 0.640 7.87 0.012 0.028 4 0950 39466 6.300 0.640 7.86 0.024 0.036 4 0950 35461 5.500 0.540 7.86 0.016 0.036 4 0950 35491 5.500 0.540 7.86 0.016 0.036 4 0940 35916 5.300 0.650 7.90 0.014 0.027 4 0952 35946 7.200 0.530 7.84 0.008 0.016 4	YYMMDD LMT	NUMBER	AS N	AS N	Н	AS P	AS P	/100ML	MG/L			
0956 39341 7.65 0.049 0.055 4 0950 3936 7.600 0.570 7.65 0.049 0.065 4 0945 39341 7.400 0.550 7.79 0.004 0.055 4 0945 39441 7.700 0.570 7.87 0.011 0.015 4 0950 39466 6.300 0.640 7.96 0.024 0.028 4 0950 39461 5.700 0.540 7.86 0.024 0.036 4 0950 39516 5.500 0.540 7.86 0.016 0.336 4 0940 39516 5.500 0.540 7.86 0.014 0.037 4 0952 39546 7.200 0.530 7.60 0.191 0.215 4 0953 39546 7.200 0.530 7.64 0.008 0.016 4		39316	8,800	1.400	7.51	0.091	0.176	16	10 6			
0950 39366 7,600 0,700 7,65 0,049 0,065 4 0945 39391 7,400 0,550 7,79 0,004 0,034 4 0945 39416 8,330 0,570 7,87 0,001 0,015 4 0950 3946 6,300 0,680 7,96 0,012 0,028 4 0950 39491 5,500 0,680 7,96 0,016 0,030 4 0950 39516 5,900 0,540 7,96 0,016 0,030 20 0950 39518 9,300 0,530 7,60 0,191 0,215 4 0952 3956 7,200 0,530 7,84 0,008 0,016 4 0953 3956 7,200 0,530 7,84 0,008 0,016 4 0950 0,500 0,500 0,500 0,500 0,019 0,010		39341					2	70	17.0			
0945 39391 7,400 0.550 7,79 0.004 0.034 4 9946 39416 8,300 0.570 7,87 0.012 0.015 4 0950 39446 6,300 0,680 7,96 0.024 0.036 4 0950 39491 5,500 0,680 7,96 0.024 0.036 4 0950 33941 5,500 0,540 7,86 0.016 0.030 20 0950 35941 5,900 0,540 7,90 0.014 0,027 4 0940 35941 9,300 0,530 7,60 0,191 0,215 4 0952 3556 7,20 0,530 7,84 0,008 0,016 4		39268	7.600	0.700	7.65	0.049	0.065	>4	5.0<			
39416 8.300 0.4570 7.87 0.001 0.015 4 0950 39441 7.700 0.440 8.02 0.012 0.028 4 0950 39461 6.300 0.640 7.96 0.024 0.036 4 0950 39491 5.500 0.540 7.86 0.016 0.036 4 0950 39516 5.900 0.540 7.90 0.014 0.027 4 0940 39541 9.300 0.650 7.89 0.019 0.215 4 0955 39566 7.200 0.530 7.84 0.008 0.016 4		39391	7.400	0.550	7.79	0.004	0.034	>4	5.0			
0945 39441 7,700 0,440 8.02 0.012 0.028 4 0950 39466 6,300 0,680 7,96 0,024 0,036 4 0950 39491 5,500 0,540 7,96 0,016 0,030 20 0950 39516 5,900 0,640 7,90 0,014 0,027 4 0940 39541 9,300 0,630 7,60 0,191 0,215 4 0935 39566 7,200 0,530 7,84 0,008 0,016 4		39416	8.300	0.570	7.87	0.001	0.015	>4	6.6			
0950 39466 6.300 0.680 7.96 0.024 0.036 4< 0950 39491 5.500 0.540 7.96 0.016 0.030 20 0950 39516 5.900 0.540 7.90 0.014 0.027 4< 0940 39541 9.300 0.630 7.60 0.191 0.215 4< 0935 39566 7.200 0.530 7.84 0.008 0.016 4<		39441	7.700	0.440	8.02	0.012	0.028	>4	5.0<			
0950 39491 5.500 0.540 7.86 0.016 0.030 20 0950 39516 5.900 0.540 7.90 0.014 0.027 4< 0940 39541 9.300 0.650 7.60 0.191 0.215 4< 0935 39566 7.200 0.530 7.84 0.008 0.016 4<		39466	6.300	0.680	7.96	0.024	0.036	>4	7.8			
0950 39516 5,900 0,540 7,90 0,014 0,027 4< 0940 39541 9,300 0,630 7,60 0,191 0,215 4< 0935 39566 7,200 0,530 7,84 0,008 0,016 4<		39491	5.500	0.540	7.86	0.016	0.030	20	5.0<			
0940 59941 9.300 0.630 7.60 0.191 0.215 4< 0935 39566 7.200 0.530 7.84 0.008 0.016 4<		39516	2.900	0.540	7.90	0.014	0.027	>4	16.1			
0.550 7.84 0.008 0.016 4<		29541	9.300	0.630	7.60	0.191	0.215	>4	4.2			
		27300	1.500	0.530	7.84	0.008	0.016	>+	11.7			

	:: 02 003 2870	250.085									
STATION ID: 04-0013-069-02	STORET CODE:	DISTANCE: 250.085									
STATION ID:		REGION: 01	RSP	RESIDUE PARTIC. MG/L	19.6	11.5		4.2		9	
	(ES E IVER	4765450.0 4	PSAMF	AERUG. AERUG. MF CNT /100ML	20	18		16		2	10
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0514700.0 4765450.0 4	PPUT	PHOSPHOR UNF.TOT MG/L AS P	0.215	0.064	0.042	0.015	0.071	10	
	MAJOR BASI MINOR BASI TERM STREA	U T M: 17	PP04UR	PO4 UNF.REAC MG/L AS P	0.191	0.041	0.017	0.001	0.059	10	
1100		49 10.30	ЬН	Н	8.02	7.80	7.80	7.51	0.16	10	
WEST OVEOR	200	LAT: 43 02 36.72 LONG: 080 49 10.30	NNTKUR	TOTAL UNF.REAC HG/L AS N	1.400	0.658	0.624	0.440	0.272	10	
CREEK PD NO 3		3 02 36.72	NNOSUR	NO3-N UNF.REAC HG/L AS N	9,300	7.400	7.305	5.500	1.230	10	
: FOLDENS	RIVER	LAT: 4	ST-NAME:	SAMPLE	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMOM	STD DEV (GEOM *)	TATISTICS	EXCLUDED
B.O.W./ SITE: FOLDENS CREEK SAMPLE POINT: AT CONC. BD. NO. 2 WEST OVEROR TWO	STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT		ď,			STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)

STATION ID: 04-0013-072-02

B.O.W./ SITE: CEDER CREEK SAMPLE POINT: AT EAST OXFORD TWP.RD.NO.5 STATION TYPE: RIVER

STORET CODE: 02 003 2870 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER

	AAT	17 00 00 T	10000	-							
		41.01 to ct	LAI: 43 04 IO:14 LONG: U8U 44 U4.94	44 04.94	U T M: 17	U T M: 17 0521600.0 4768350.0 4	4768350.0 4	REGION: 01	11	DISTANCE	DISTANCE: 257.256
*=INTERIM TEST-NAME:	FEST-NAME:	FWSADP	FGPR0J	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR	NNO2UR
				CHLORIDE	CONDUCT.	COLIFORM	STREPCIS			NH3-N	
DATE UNID	P. Marie	SAMPLE	PROJECT	UNF. REAC	25C	MF	MF		WATER	INF BEAC	NO2-N
0		DEPLE	SUB-PROJ	MG/L	UMHO/CM	CNT	CNT	STREAM	TEMP	MG/L	MG/L
		:	2002	AS CL	AI 25 C	/100ML	/100ML	COND.	DEG.C	AS N	AS N
	39315	0.30	0101	36.000	570.0	1500>	4500		1		
	39340	0.30	0101			220	73007	٥	2.0	0.559	0.080
	39365	0.30	0101	30.400	578 O	110	120	۰۵	0.5		
900418 0930	39390	0.30	0101	33.900	653.0	120	150	9 ,	3.0	0.050	0.070
900524	39415	0.30	0101	32.500	0.259	200	1402	9	8.0	0.008	0.030
	39440	0.30	0101	33.300	710 0	1500	050	,		0.008	0.050
900718 0935	39465	0.30	0101	26 200	77.7 0	70007	1060	9	15.0	0.094	0.160
900822 0935	39490	0.30	0101	42.000	717.0	<20005	2800	9	23.5	0.029	0.050
900919 0935	29515	0 20	1010	75.000	0.007	1150	530	9	16.0	0.051	0.070
	29540	200	1010	41.600	0.66/	280	460	9	12.0	0.007	0.050
_	2002	0 0	0101	37.400	821.0	360	240	9	11.0		020.0
	COCCO	0000	0101	33.700	0.697	140	20AID	9	5.5	0.002	0.020
	MANTMIM	02.0									
	APITH MEAN	0.50		42.000	821.0	1120	5800		23.5	0.559	0.160
	CEOM MEAN	00.00		55.720	6.607	323	872		9.6	0.00	0 061
	MINIMIN	0 10		55.541	705.0				6.3	0.025	0.00
ern ne	CID DEV CCEON ST	0.30		30.400	570.0	110	20		0.5	0.00	2000
A CAMP TH	SAMP IN CTATIONES	;		3.822	86.0				7.7	179	0.020
" CAMP	Y SAMP (FYCHIPPE)	11		10	10	80	10		10.		0.040
ALINO S	(EACLUDED)					27	6) (,	70
*=INTERIM TEST-NAME: -	EST-NAME:	NNOTIR	NNTKIID	200	2112000	1					
			K'DAH! N		PP040K	PPUI	PSAMF	RSP			
		N-ZON	TOTAL		200		PSEUDOMN				
SAMPLE		UNF REAC	INF BEAL		tier pres	PHOSPHOR	AERUG.				
DATE HOUR	SAMPLE	MG/L	MG/L		MEZI	. 101.	¥ ;	RESIDUE			
YYMMDD LMT	NUMBER	AS N	AS N	Hd	AS P	AS P	/100ML	MG/L			
_	39315	9.400	2.500	7.62	960.0	0.315	900	1			
	39340						2	6.07			
	39365	8.000	1.150	7.83	0.045	0.105	9	3 76			
900418 0930	39390	7.700	0.850	8.02	0.008	0.057	, ,	20.0			
	39415	11.200	1.200	8.17	0.001	0.028	/ A	0.00			
	39440	7.500	1.050	8.25	0.083	0 126	/ Y	70.0			
	39465	6.600	1.030	7.90	090	0.100	/ ·	16.8			
900822 0935	39490	3,300	0.820	7 06	200.0	0.001	× + ·	10.5			
900919 0935	39515	4.700	0.660	90.8	0.100	247.0	4	9.9			
301017 0925	39540	11.100	0.770	7 00	0.07	0.105	>4	5.2			
301120 0925	39565	8.200	0 880	0,00	0.031	0.050	54	26.4			
		>	200.0	00.00	970.0	0.031	>4	30.0			

STATION ID: 04-0013-072-02	STORET CODE: 02 003 2870	DISTANCE: 257.256										
STATION ID:		REGION: 01	RSP	RESIDUE	PARTIC. MG/L	78.9	25.7	c u	3.5	0	10	
	KES	768350.0 4	PSEUDOMN	AERUG.	CNT /100ML	44	20	3		4	63	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	U T M: 17 0521600.0 4768350.0 4	PPUT	PHOSPHOR UNF. TOT.	MG/L AS P	0.315	0.106	0.083	0.086	10		
	MAJOR BASII MINOR BASII TERM STREAI	U T M: 17	PP04UR	PO4 UNF.REAC	AS P	0.105	0.052	0.001	0.037	10		
		46 04 94	Н		PH	8.25	7.97	7.62	0.18	10		
.RD.NO.5		LAT: 43 04 10.14 LONG: 080 44 04.94	NNTKUR K'DAHL N	TOTAL UNF.REAC	AS N	2,500	1.091	0.660	0.524	10		
REEK OXFORD TWP		13 04 10.14	NNO3UR	NOS-N UNF.REAC	AS N	11.200	7.770	3.300	2.508	10		
B.O.W./ SITE: CEDER CREEK SAMPLE POINT: AT EAST OXFORD TWP.RD.MO.5	STATION TYPE: RIVER	LAT:	*=INTERIM TEST-NAME:	SAMDIE	,	MAXIMUM	GEOM NEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)	
B.O.W./ S SAMPLE PO	STATION T		*=INTERIM	SAMPLE DATE HOUR	уунирр Сит				STD 1	# SAMP IL	% SAM	

STATION ID: 04-0013-073-02

	HWY.2
	OF
	SOUTH
	LINE
	THE
NEMBIGGIN CREEK	MOSA-EKFRID
MEM	AT
SITE:	POINT:
B.O.W./	SAMPLE

700AID SOAID MG/L AS P FECAL CNT DISTANCE: 116,192 STREPCUS /100ML PHOSPHOR JNF. TOT. 10< 2870 FSMF 400 400 240 0.116 0.234 0.138 0.324 0.397 0.187 0.037 00009 400 60000 7829 PPUT 0.166 0.037 0.718 200 STORET CODE: AID MG/L AS P CNT P04 FECAL COLIFORM /100ML PD4UR JNF. REAC 0.010 9 0.120 0.010 0.048 0.072 950.0 FCMF 990.0 078 0.044 260 1330 45000 280 10 o 380 Ö 8 2800 45000 6306 MG/L AS 0 DISOLVED OXYGEN 표 14.5 12.5 12.5 14.5 8.0 7.0 7.0 6.0 15.5 111.1 10.6 6.0 3.5 8.02 7.96 8.17 7.83 8.19 7.50 8.24 7.98 8.24 8.00 8.00 7.50 8 H REGION: 01 0.006<A 0.005 0.003<A COPPER MG/L AS CU LEAD AS PB 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.006<A MG/L 0.011<T UNF. TOT. 0.012<T UNF. TOT 0.0031 0.0039 0150 CUUT 0.0028 0.0033 0,0060 0.0150 0,0060 0.0050 0.0030 0.0053 0.0045 0.0028 4 MG/L AS N AT 25 C 25C UMHO/CM JNF . REAC COND25 NNTKUR K'DAHL N U T M: 17 0445150.0 4729500.0 CONDUCT 832.0 727.0 719.0 930.0 451.0 896.0 808.0 930.0 751.3 451.0 140.8 0.670 1.100 1.400 0.930 3.220 0.860 3.180 1.080 1.257 0.670 0.997 TOTAL 860 478 TERM STREAM: THAMES RIVER 1AJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N CLIDUR UNF. REAC MG/L AS CL CHLORIDE N03-N JNF. REAC NNOSUR 66.800 50.900 48.800 58.100 51.200 56.300 54.800 9.400 9.500 30.700 3.700 9.370 3.700 7.975 53.432 6.385 13.900 8.100 6.500 53.756 66.800 11.133 30.700 5 DAY MG/L AS N BOD MG/L AS 0 102-N NNO2UR JNF. REAC OT.DEM. 0.49 0.90 2.16 1.27 7.08 1.96 4.32 7.08 2.25 1.54 0.40 2.16 0.240 0.050 0.110 0.030 0.192 8005 0.050 0.030 0.490 0.500 MG/L AS N MG/L TOTAL UNF. REAC TOTAL CAC03 NNHTUR NH3-N 0.001< 0.001< 0.009 LONG: 081 40 11,50 238.0 200.1 87.0 65.5 ALKT 187.0 178.0 205.0 305.0 238.0 205.0 0.169 0.049 0.146 0.641 .641 0.1060.001 65. AS SUB-PROJ CODE FGPROJ TEMP FWTEMP DEG.C PROJECT 21.0 8.8 5.4 7.3 0103 1.0 1.0 3.0 17.0 17.0 21.0 12.0 9.0 0103 0101 0103 0103 0103 0103 0103 LAT: 42 43 04.71 DEPTH FWSADP SAMPLE **FWSTRC** STREAM COND. 0.30 0.30 0.30 GEOM MEAN MINIMUM SAMPLE 39726 39741 39757 39818 39834 SAMPLE 39726 39741 39757 39787 39850 39711 MAXIMUM * SAMP IN STATISTICS * SAMP (EXCLUDED) 39850 39865 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED) 39711 39818 39834 39865 ARITH MEAN TEST-NAME: *=INTERIM TEST-NAME: STATION TYPE: RIVER 1020 0750 1230 0805 0800 0820 0060 1020 0800 HOUR HOUR 0745 1230 3805 0800 0820 LMT EM1 *=INTERIM YYMMDD 901023 900123 900228 900423 900626 900828 900925 901023 901127 YYMMDD 900123 900228 900423 900626 900828 900925 SAMPLE 900327 SAMPLE 900327 DATE DATE

CONTOO

DISTANCE: 116.192																			
REGION: 01				-															
U T M: 17 0445150.0 4729500.0 4	ZNUT	UNF.TOT. MG/L	AS ZN	0.0041	0.0037	0.0034	0.0024	0.0070	0.0610	0.0040	0.0180	0.0230 .	0.0610	0.0141	0.0076	0.0024	0.0191	6	
40 11.50	TURB	TURB'ITY	FTU				35.00						35.00	35.00		35.00		-	
	RSP	RESIDUE PARTIC.	MG/L	25.7	13.9	21.8	45.6	77.2	385.0	61.5		102.0	385.0	91.6	53.4	13.9	122.3	80	
2 43 04.71	PSAMF PSEUDOMN AFRIG	MF	/100HL	12	8	>4	>4	32	260	>4	20AID	>4	260	126		8		D.	55
LAT: 4	INTERIM TEST-NAME:	HOUR	MMDD LMT NUMBER	0220	0745	1230	0060	0805	0800	1020	1023 0800 39850	1127 0820 39865	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS	% SAMP (EXCLUDED)
	REGION: 01	LONG: 081 40 11.50 U T M: 17 0445150.0 4729500.0 4 REGION: 01 RSP TURB ZNUT	42 43 04.71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF RSP TURB ZNUT PSEUDOWN AERUG. THE RESIDUE WH. TOT. E CHT PARTIC. TURB: 1TY MG/L	42 43 04.71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF RSP TURB ZNUT AERUG. E CMT PARIC. TURB'ITY HG/L R /100ML HG/L FTU AS ZN	42 43 04.71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF PSEUDOWN AERUG. H RESIDUE CMT PARTIC. TURB:1TY MG/L R /100ML HG/L FTU AS ZN 1 12 25.7 0.0041	42 43 04.71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF RSP TURB ZNUT AERUG. HF RESIDUE C CHT PARTIC: TURB'ITY MEGALL R /100HL HG/L FTU AS ZN 1 12 25.7 0.0037 6 8 13.9 0.0037	42 43 04.71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF PSEUDOHN AEROG. E CHT PARTIC. TURB:ITY HG/L R /100ML HG/L FTU AS ZN 1 12 25.7 0.0041 6 8 13.9 0.0034 1 4< 21.8	42 43 04.71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSEMPH PSEUDOWN AERUG. F CHT PARTIC. TURB.ITY HG/L R /100HL HG/L FTU AS ZN 1 12 25.7 0.0041 6 8 13.9 0.0037 7 4< 45.6 35.00 0.0024	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF RSP TURB ZNUT AERUG. FF CMT PARTIC: TURB'ITY MF_LONG. R /100HL HG/L FTU AS ZN 1 12 25.7 0.0034 1 4< 21.8 0.0037 7 32 77.2 0.0024 7 32 77.2 0.0024	42 43 04,71 LONG: 081 40 11,50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF PSEUDOHN AEROG. E CHT PARTIC. TURB 1TY HG/L FTU AS ZN 1 12 25,7 0.0041 6 8 13.9 0.0037 7 4< 45.6 35.00 0.0024 8 560 385.0 0.0070 8 56 385.0 0.0070	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSEMPH PSEUDOWN AERUG. F CMT PARTIC. TURB.1TY MF./L R /100ML HG/L FTU AS ZN 1 1 2 25.7 0.0041 6 8 13.9 0.0037 7 4< 21.8 0.0034 7 4< 45.6 35.00 0.0024 7 4< 61.5 0.00610	42 43 04.71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF RSP TURB ZNUT AERUG. F //100 II	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF AERUG. TH RESIDUE C TH PARTIC: TURB.TITY MG/L R /100HL HG/L FTU AS ZN 1 12 25.7 0.0041 4 44 45.6 35.00 0.0034 7 32 77.2 0.0040 8 560 385.0 0.00540 6 0.0037 7 44 45.6 0.0040 8 564 61.5 0.0040 9 0.0030 9 0.0040 9 0.0040 9 0.0024 4 4 61.5 0.0040 9 0.0020 9 0.0040 9 0.0040 9 0.0040 9 0.0040 9 0.0040	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF AERUG. THE RESIDUE CUT H: 17 0445150.0 4729500.0 4 REGION: 01 ZINC HF RESIDUE CUT H: 17 04671 AS ZN 10 12 25.7 AS ZN 11 12 25.7 AS ZN 12 44 45.6 AS ZN AS	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSAMF PSEUDOHN AERIOG. E CHT PARTIC. TURB: 1TY HG/L F /100ML HG/L F /100ML HG/L F /100ML	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSEMPH AERUG. TH RESIDUE CMT PARTIC. TURB.1TY MF./L AS ZN 1 12 25.7 0.0041 6 8 13.9 0.0037 7 4< 45.6 35.00 0.0034 7 4< 45.6 385.0 0.0024 8 560 385.0 0.0024 9 6.050 1 10.0070 1 10	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSEMDONN AERUG. H RESIDUE CHT PARTIC: TURB.TITY MF/LL CHT PARTIC: TURB.TITY MF/LL CHT PARTIC: TURB.TITY MF/LL CHT 12 25,7 U 0.0041 1 4< 45.6 35.0 0.0034 4 4< 45.6 35.0 0.0040 0 20410 4 4< 45.6 35.0 0.0040 1 12 25,7 U 0.0041 1 2 25,7 U 0.0044 1 32 77.2 0.0040 0 0.0024 1 4< 45.6 35.0 0.0040 0 0.0230 1 4 56 0.0040 1 12 0.0040 0 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040 1 12 0.0040	42 43 04,71 LONG: 081 40 11,50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSEMPH PSEMPH AERIOL CHT PARTIC. TOWNL HG/L H 76 21.8	42 43 04,71 LONG: 081 40 11.50 U T H: 17 0445150.0 4729500.0 4 REGION: 01 PSEUDOWN AERUG. H RESIDUE CMT PARTIC. TURB.1TY MG/L AS ZN 1 12 25.7 0.0041 6 8 13.9 0.0037 7 4< 45.6 35.0 0.0034 7 4< 45.6 385.0 0.0034 6 4 4< 61.5 0.0040 8 550 385.0 0.0024 7 6 4 5 6 385.0 0.0024 8 560 385.0 0.0024 8 102.0 385.0 0.0024 9 4 6 61.5 0.0024 9 6 7 6 102.0 0.0024 9 7 7 2 0.0024 9 8 0.0024 9 8 0.0024 9 12.9 35.00 0.0024 9 12.9 35.00 0.0024 9 12.9 35.00 0.0024 9 12.9 35.00 0.0024 9 12.9 35.00 0.0024 9 12.9 35.00 0.0024 9 12.2 3 9 0.0024 9 12.2 3 9 0.0024

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: AT MIDDLESEX CO.ROAD NO.45 STATION TYPE: RIVER

STATION ID: 04-0013-075-02

STORET CODE: 02 MAJOR BASIN: GREAT LAKES

					MINOR BASII TERM STREA	MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	VER			310KE1 CODE: 02 00 28	003 2870
	LAT: 4	LAT: 42 41 56.74	LONG: 081 39 52.09	39 52.09	U T M: 17	U T M: 17 0445575.0 4727400.0 4	727400.0 4	REGION: 01	01	DISTANCE	DISTANCE: 112.455
*=INTERIM TEST-NAME:	EST-NAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR	NNO2UR
				CHLORIDE	CONDUCT.	COLIFORM	FECAL STREPCUS			NH3-N TOTAL	M-com
DATE HOUR	CAMDIE	SAMPLE	PROJECT	UNF . REAC	25C	MF	MF		WATER	UNF. REAC	UNF. REAC
٥	NUMBER	M	SUB-PRUJ	MG/L	UMHO/CM	CNT	CNT	STREAM	TEMP	MG/L	MG/L
			7000	¥3 CF	A1 25 C	/TOOM	/100ML	COND.	DEG.C	AS N	AS N
900123 0730	39710	0.30	0101	37.100	563.0	280	360	9	1.0	0.182	0.070
900222 1200	29/25	0.30	0101	35.500	528.0	840	260	9	1.0	0.237	0.060
	39740	0.30	0101	33.400	601.0	40AID	110	9	4.0	0.068	0.050
	39771	02.00	0101	46.800	639.0	10<	TOAID	9	14.0	0.003	0.000
	29786	0.50	0101	46.400	695.0	32	16	9	19.0	0.017	0.080
	39801	0.30	0101	000.00	298.0	750	220	9	19.0	0.038	0.100
	39817	0.30	0101	49.800	665 0	2007	SUCAID	9 (22.0		
900925 1005	39833	0.30	0101	45.700	200	042	024	9	24.0	0.015	0.020
901023 0730	39849	0.30	0101	30.300	694.0	220	150	9 (14.0	0.016	0.060
901127 0800	39864	0.30	0101	22 000	0.100	220	150	9	11.0	0.002	0,060
		1	1010	22.000	0.669	410	380	9	0.9	0.027	0.070
	MAXIMUM	0.30		50,800	704.0	840	560		0 90	0	9
	ARITH MEAN	0.30		40.880	636.4	339	246		12.2	0.00	0.100
	GEOM MEAN			40.208	633.6		153		1 0	0000	0.066
1	MINIMOM	0.30		30.300	528.0	32	10			0.024	190.0
SID DE	SAMP TH STATISTICS	•		7.746	62.3		**5		8,3	0.082	0.02
W CAND	Y CAMP (EVELIDED)	11		10	10	6	11		11	10	10
SAILE SAILE	(EXCLONED)					18					
*=INTERIM TEST-NAME:	EST-NAME:	NNOSUR	NNTKUR	Н	PP04UR	PPUT	DSAME	Don	41100		
			K'DAHL N				PSEUDOMN	2	gan.		
SAMPLE		NO3-N	TOTAL		P04	PHOSPHOR	AERUG.				
DATE HOUR	SAMPLE	MEAL MEZI	ONF . REAC		UNF REAC	UNF. TOT.	MF	RESIDUE			
Q	NUMBER	AS N	AS N	Hd	1/9/L	MG/L	CNT	PARTIC.	TURB'ITY		
					2	A CH	/ TOUNT	MG/L	FTU		
	39710	10.900	1.040	7.89	0.088	0.170	œ	40.1			
	39725	7.600	1.060	7.94	0.080	0.156	24	38.3			
900527 1200	39740	8.400	0.820	8.08	0.041	0.099	>4	41.4			
	39756	006.9	0.830	8.08	0.014	0.067	>5	34.9	21.00		
	59771	7.900	1.160	8.11	0.031	0.150	>4	70.2			
900626 0740	29/86	000.9	1.360	8.18	0.091	0.246	16	129.0			
	29817	000	010		;		>4				
	29822	4.500	0.950	8.29	0.044	;	>4	88.7			
	39849	7.500	0.240	07.0	0.039	0.128	4	81.1			
	39864	6.300	0.800	8 26	0.076	0.152	>4				
)		07.0	0.022	0.098	20	29.7			

STATION ID: 04-0013-075-02

	CO.ROAD NO.45
THAMES RIVER	AT MIDDLESEX
SITE:	POINT:
B.0.W./	SAMPLE

STORET CODE: 02 E E 1.VER 2870	4727400.0 4 REGION: 01 DISTANCE: 112.455	PSAMF RSP TURB	PSEUDONN AERO HF RESIDUE	PARTIC, TURB	/looml MG/L FTU	129.0	14 61.5 21.00	54.6	4 29.7 21.00		- L	4
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERH STREAM: THAMES RIVER	U T M: 17 0445575.0 4727400.0 4	PPO4UR PPUT	PHO	HG/L MG/L				0.045 0.132				
	LONG: 081 39 52.09	TKUR PH		MG/L	1 CH			79 8.13			10 1	
בטבא כט. מטאט אט.	LAT: 42 41 56,74 LONG	NNO3UR NNTKUR		MG/L AS N				6.947 0.979		1.800 0.173	10 10	
STATION TYPE: RIVER	LAT: 42	*=INTERIM TEST-NAME:		VYMMDD IMT NIMBER		MAXIMUM	ARITH MEAN	GEON MEAN	HINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS	" CAND (CVPIINER)

B.O.W./ SITE: THAMES RIVER SAMPLE POINT: OXFORD CO.RD. 4, INNERKIP

STATION TYPE:

RIVER FLOW GAUGE FED 02D021

STORET CODE: STATION ID: 04-0013-080-02 TERM STREAM: THAMES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

MG/L AS N NNO2UR N02-N JNF . REAC 273.733 0.055 0.050 0.020 0.025 0.110 0.060 0.060 0.050 0.070 0.020 0.040 2870 0.110 0.050 DISTANCE: NNHTUR NH3-N TOTAL UNF. REAC MG/L AS 0.639 0.029 0.022 0.035 0.026 0.100 0.003 0.030 0.124 0.003 0.639 MATER TEMP DEG.C **FWTEMP** 0.5 5.0 8.0 15.0 21.0 17.0 13.0 4.0 21.0 9.5 6.0 7.0 REGION: 01 9.6 5.0 5.0 7.2 7.2 7.2 7.2 7.2 7.3 FWSTRC STREAM RESIDUE MG/L COND PARTIC. 9.6 RSP 300 999999 0525100.0 4784600.0 4 FECAL ¥ CNT PSEUDOMN SN A STREPCUS /100ML /100ML AERUG. 1500> PSAMF 76 44 108 252 252 330 330 150 230 230 330 10 44 MG/L FECAL COLIFORM CNT PHOSPHOR /100ML JNF. TOT. 500> 640 AS 0.081 0.059 0.036 0.038 0.026 0.041 224 260 400 640 200 160 10 PPUT FCMF 108 108 0.160 U T M: 17 MG/L AS P 25C P04 UMHO/CM AT 25 C . REAC COND25 CONDUCT. PP04UR 0.010 0.001< 733.0 770.0 796.0 951.0 775.0 856.0 905.0 896.0 840.6 733.0 70.8 10 0.026 0.003 0.056 951.0 0.096 863.0 MG/L AS CL CLIDUR CHLORIDE UNF. REAC 丟 LONG: 080 41 27.53 42.200 51.100 38.400 41.000 46.200 37.900 36.900 58.600 44.060 43.632 36.900 6.727 8.20 8.18 8.10 7.98 7.98 8.11 8.10 8.06 46.100 58.600 7.78 42.200 H K'DAHL N MG/L AS N SUB-PROJ CODE NNTKUR UNF . REAC FGPROJ PROJECT 1.620 0.930 0.780 0.700 0.840 0.810 0.630 TOTAL 0101 0101 0101 0101 0101 0101 0101 LAT: 43 12 56.54 DEPTH MG/L AS N SAMPLE N03-N FWSADP NNOSUR UNF. REAC 6.700 10.700 8.200 13.300 2.200 3.600 6.600 0.30 SAMPLE 39337 39362 39412 39437 39487 39362 39462 39512 39537 39312 39512 39537 39562 39312 MAXIMUM ARITH MEAN SAMP IN STATISTICS SAMPLE NUMBER 39412 39437 39487 **GEOM MEAN** MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 0880 0850 0855 0850 0840 HOUR 0845 0880 0850 0855 0850 0855 0840 HOUR 0840 0850 0880 LMT EH *=INTERIM 901017 901120 YYMINDD YYMIDD 900117 900320 900418 900620 900718 900822 900919 901017 900117 900320 900418 900524 900620 900718 900822 900919 SAMPLE 900221 900524 SAMPLE DATE DATE

STORET CODE: 02 003

STATION ID: 04-0013-080-02

	G. TRINEDVID
RIVER	Du
RI	CO
THAMES	OVEDBR
SITE:	
B.0.W./	SAMPLE DOTAT:

		LAKES
		GREAT LAKES
		MAJOR BASIN:
		MAJOR
	. 4, INNERKIP	RIVER FLOW GAUGE FED 020021
KIVER	CO.RD	FLOW G
HAMES	OXFORD CO.RD. 4	RIVER
B.U.W./ SILE: IMAMES KIVEN	SAMPLE POINT:	STATION TYPE:

SIONEI CODE: 02 003 2870	DISTANCE: 273.733										
	REGION: 01	RSP	RESIDUE	PARTIC. MG/L		17.4		5.0		6	10
IVER	U T M: 17 0525100.0 4784600.0 4	PSAMF	AERUG.	/100ML	16	8	•	4		М	7.0
MINOR BASIN: LAKE ERIE TERM STREAM: THAMES RIVER	0525100.0	PPUT	UNF. TOT.	MG/L AS P	0 160	0.062	0.052	0.026	0.042	10	
MINOR BASI TERM STREA	U T M: 17	PP04UR	UNF.REAC	AS P	9000	0.035		0.003		8	20
	41 27.53	Н		Hd	800	8.08	8.08	7.78	0.14	6	
	LAT: 43 12 56.54 LONG: 080 41 27.53	K'DAHL N	UNF.REAC	AS N	1.620	0.862	0.825	0.570	0.302	10	
	43 12 56.54	MOSUR	UNF. REAC	AS N	13.300		7.089	2.200	3.582	10	
	LAT:	TEST-NAME:	2 AMDI E		MAXIMUM	ARITH MEAN	GEON MEAN	MINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS	% SAMP (EXCLUDED)
		*=INTERIM TEST-NAME:	SAMPLE DATE HOLD						STD D.	# SAMP IN	% SAMP

STATION ID: 04-0027-001-83

2980

1990 WATER QUALITY DATA REGION 1

AT HIGHWAY 40 WALLACEBURG B.O.W./ SITE: SYDENHAM RIVER

SAMPLE POINT: AT HIGHWAY 40 W/ STATION TYPE: RIVER COMPOSITE

STORET CODE: FERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

CLIDUR MG/L 4.506 CHLORIDE UNF. REAC AS CL 29.900 39.500 30.900 31.417 30.257 16.500 8.231 37.900 31.700 17.300 34.600 28.600 31.800 53.000 16.500 45.300 45.300 DISTANCE: 0.0002<W 0.0002<W 0.0002 0.0001<A 0.0002<W CADMIUM UNF. TOT. MG/L AS CD 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0003<T 0.0002<W 0,0006<T 0.0004<T 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0007<T 0.0003<A 0.0002<A CDUT 0.0007 UG/L AS CD CADMIUM UNF. TOT. 0.05<W 0.05 0.05<A 0.05 REGION: 01 0.001<W 0.001<W 0.001<W NO DATAISM CCNAUR CYANIDE UNF. REAC AS HCN 0.001<W 0.004 0.001<A AVAIL MG/L 0.001<A 0.002<T 0.001<W 0.001<W 0.001<W 0.004<T 0.001<A 0.001 4 MG/L AS 0 BOD 5 DAY U T M: 17 0386125.0 4716225.0 TOT. DEM. B005 2.11 1.67 0.79 2.23 1.46 1.36 0.68 0.57 1.52 89.0 2.23 1.48 0.89 MG/L 0.001<W ARSENIC AS AS 0.001<A UNF. TOT. 0.001<W 0.001 0.000<A 0.001<W 0.001<W 0.001<W 0.001<W 0.002<T ASUT 0.002 ARSENIC UG/L AS AS UNF. TOT. 0.83 <T 7 VV 0.001<W VY ٧V ASUT 1.00 0.61 < 0.09 < 0.001 1.00 TOTAL ALK MG/L AS CACO3 LONG: 082 23 16.43 ALKT 94,9 167.0 1140.0 1160.0 1160.0 1192.0 1173.0 1173.0 1173.0 1173.0 1173.0 1166.0 1166.0 1166.0 1164.0 1139.0 113.6 122.4 151.0 115.8 121.4 109.0 114.0 222.0 197.0 222.0 152.2 148.2 94.9 35.1 1.98 CODE FGPROJ SUB-PROJ PROJECT 0103 0103 0103 0101 0101 0103 0103 0101 0103 0103 0101 1010 0103 0101 0103 0101 0103 0101 0103 0101 LAT: 42 35 31.11 DEPTH FWSADP SAMPLE 0.30 0.30 0.30 0.30 0.30 27 SAMPLE 42600 42602 40121 40131 42603 42604 40144 40151 42608 42609 42610 42601 42606 40161 40171 40181 42611 40201 40211 ARITH MEAN 12607 12612 0191 42614 # SAMP IN STATISTICS 12613 MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: 1300 HOUR 1012 0859 0845 0830 0815 1230 1330 1230 1130 0828 0815 230 0820 0730 1230 1207 1118 0060 1245 LMT YYMMDD 900103 900314 900320 900411 900418 900502 900510 909006 900719 900006 901003 901031 SAMPLE 900206 900306 900404 900405 900006 9007006 900823 901017 900006 900911 901004 901204 901106 DATE

B.O.W./ SITE: SYDENHAM RIVER SAMPLE POINT: AT HIGHWAY 40 WALLACEBURG STATION TYPE: RIVER COMPOSITE

STATION ID: 04-0027-001-83

E: 02 003 2980	4.506	FWTFMD		WATER	TEMD	DEG.C	•		0.1	7.0		7					15.0	2	18.0	2	22.0	63.0		22.0		23.0			17.0			2.0	0.3	23.0	10.3	7 2		10.1	12	
STORET CODE: 02 00:	DISTANCE:	FWSTRC			STREAM	COMD.		re	7 1	า		N	า				9	•	9	,	9)		9	>	9			9		,	4 6	n							
	01	FSMF	FECAL	MF	CMT	/100ML	ZOATB	100	120	24							10AID		20AID		20410			24		32			80AID		000	4900	000	4900	558	62	10	*9	11	
	REGION: 01	FEUT	IRON	UNF. TOT.	MG/L	AS FE	0.260	1.500	1 700			0.650					0.360		0.640		0,440			0.420		1.370					000	6.200		6.800	1.849	1,005	0.260	2,356	11	
ES RIVER	716225.0 4	FCMF	FECAL	MF	CNT	/100ML	70410	40ATD	170								10<		SOAID		12					SOAID		1	240		0200	220	2	4300	909		12		6	1
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER	U T M: 17 0386125.0 4716225.0 4	DO	DISOLVED	OXYGEN	MG/L	AS 0	13.0	12.0	13.0			15.0					13.0		12.0		0.6			10.0		10.0		•	0.9		14.0	7.0		15.0	11.2	10.8	0.9	2.8	12	
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	CUUT	COPPER	UNF.TOT.	MG/L	AS CU	0.0032	0.0064	0.0050	0.0085	0.0040	0.0026 <t< td=""><td>0.0035</td><td>0.0046</td><td>0.0033</td><td>0.0023<t< td=""><td>0.0010<t< td=""><td>0.0042</td><td>0,0040</td><td>0.0030</td><td>0.0030</td><td>0,000,0</td><td>0.0010<t< td=""><td></td><td>0.0030</td><td>0.0050</td><td>0.0030</td><td>0.00.0</td><td>0,00</td><td>0.0060</td><td>0.000</td><td>0.0080</td><td></td><td>0.0110</td><td>0.0042<a< td=""><td>0.0037<a< td=""><td>0.0010</td><td>0.0023<a< td=""><td>25</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0035	0.0046	0.0033	0.0023 <t< td=""><td>0.0010<t< td=""><td>0.0042</td><td>0,0040</td><td>0.0030</td><td>0.0030</td><td>0,000,0</td><td>0.0010<t< td=""><td></td><td>0.0030</td><td>0.0050</td><td>0.0030</td><td>0.00.0</td><td>0,00</td><td>0.0060</td><td>0.000</td><td>0.0080</td><td></td><td>0.0110</td><td>0.0042<a< td=""><td>0.0037<a< td=""><td>0.0010</td><td>0.0023<a< td=""><td>25</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0042</td><td>0,0040</td><td>0.0030</td><td>0.0030</td><td>0,000,0</td><td>0.0010<t< td=""><td></td><td>0.0030</td><td>0.0050</td><td>0.0030</td><td>0.00.0</td><td>0,00</td><td>0.0060</td><td>0.000</td><td>0.0080</td><td></td><td>0.0110</td><td>0.0042<a< td=""><td>0.0037<a< td=""><td>0.0010</td><td>0.0023<a< td=""><td>25</td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0042	0,0040	0.0030	0.0030	0,000,0	0.0010 <t< td=""><td></td><td>0.0030</td><td>0.0050</td><td>0.0030</td><td>0.00.0</td><td>0,00</td><td>0.0060</td><td>0.000</td><td>0.0080</td><td></td><td>0.0110</td><td>0.0042<a< td=""><td>0.0037<a< td=""><td>0.0010</td><td>0.0023<a< td=""><td>25</td><td></td></a<></td></a<></td></a<></td></t<>		0.0030	0.0050	0.0030	0.00.0	0,00	0.0060	0.000	0.0080		0.0110	0.0042 <a< td=""><td>0.0037<a< td=""><td>0.0010</td><td>0.0023<a< td=""><td>25</td><td></td></a<></td></a<></td></a<>	0.0037 <a< td=""><td>0.0010</td><td>0.0023<a< td=""><td>25</td><td></td></a<></td></a<>	0.0010	0.0023 <a< td=""><td>25</td><td></td></a<>	25	
	23 16.43	CUUT	COPPER	UNF.TOT.	7/90	AS CU																		1.90 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.90</td><td>1.90<a< td=""><td></td><td>1.90</td><td></td><td>1</td><td></td></a<></td></t<>										1.90	1.90 <a< td=""><td></td><td>1.90</td><td></td><td>1</td><td></td></a<>		1.90		1	
	LONG: 082 23 16.43	CRUT	CHROMIUM	UNF. TOT.	MG/L	AS CR	0.0026	0.0040	0.0034			0.0011 <t< td=""><td></td><td></td><td></td><td></td><td>0.0020<t< td=""><td></td><td>0.0010<t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td>0.001 <t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td></td><td></td><td>0.0070</td><td>0.0080</td><td>0000</td><td>0,000</td><td>0.003 <a< td=""><td>0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>					0.0020 <t< td=""><td></td><td>0.0010<t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td>0.001 <t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td></td><td></td><td>0.0070</td><td>0.0080</td><td>0000</td><td>0,000</td><td>0.003 <a< td=""><td>0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<>		0.0010 <t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td>0.001 <t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td></td><td></td><td>0.0070</td><td>0.0080</td><td>0000</td><td>0,000</td><td>0.003 <a< td=""><td>0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>		0.0010 <t< td=""><td></td><td></td><td>0.001 <t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td></td><td></td><td>0.0070</td><td>0.0080</td><td>0000</td><td>0,000</td><td>0.003 <a< td=""><td>0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>			0.001 <t< td=""><td></td><td>0.0010<t< td=""><td></td><td></td><td></td><td></td><td>0.0070</td><td>0.0080</td><td>0000</td><td>0,000</td><td>0.003 <a< td=""><td>0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<></td></t<>		0.0010 <t< td=""><td></td><td></td><td></td><td></td><td>0.0070</td><td>0.0080</td><td>0000</td><td>0,000</td><td>0.003 <a< td=""><td>0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<></td></a<></td></t<>					0.0070	0.0080	0000	0,000	0.003 <a< td=""><td>0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<></td></a<>	0.002 <a< td=""><td>0.0010</td><td>0.003 <a< td=""><td>11</td><td></td></a<></td></a<>	0.0010	0.003 <a< td=""><td>11</td><td></td></a<>	11	
MPOSITE	LAT: 42 35 31.11	COND25	CONDUCT.	25C	UMHO/CM	AT 25 C	326.0	629.0	549.0	369.0	522.0	675.0	680.0	0.409	577.0	0.909	558.0	538.0	525.0	524.0	519.0	473.0	348.0	321.0	387.0	526.0	767.0	262.0	540 0	318.0	692.0	634.0	0 003	0.250	502.0	487.1	318.0	120.5	27	
E: RIVER CO	LAT: 4	EST-NAME:			SAMPLE	NUMBER	40101	40111	40121	42600	42601	40131	42602	42603	45604	45605	40144	45606	40151	42607	40161	45608	45609	40171	42610	40181	42611	40191	42612	42614	40201	40211	MANTHIM	THANKING TO THE PART OF THE PA	AKIIH MEAN	GEOM MEAN	HINIHUM	SID DEV (GEOM *)	Y SAME STATISTICS	L'Att. tillerin
STATION TYPE: RIVER COMPOSITE		*=INTERIM TEST-NAME:		ш		YYMHDD LMT	900103 1012	_	900305 0845	900314 0830		_	-	_							900704 0815				_	900905 1207					901106 0830	901204 0830			4		1	SID DEV	* SAMP IN STATISTICS	C. UMINT

B.O.W./ SITE: SYDENHAM RIVER SAMPLE POINT: AT HIGHWAY 40 W STATION TYPE: RIVER COMPOSITE

STATION ID: 04-0027-001-83	STORET CODE: 02 003
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE
.O.W./ SITE: SYDENHAM RIVER AMPLE POINT: AT HIGHWAY 40 WALLACEBURG	TATION TYPE: RIVER COMPOSITE

						MINOR BASI TERM STREA	MINOR BASIN: GREAL LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER	E RIVER			STORET CODE: 02 003 290	: 02 003 2980
		LAT:	LAT: 42 35 31.11	LONG: 082 23 16.43	23 16.43	U T M: 17	U T M: 17 0386125.0 4716225.0 4	4716225.0 4	REGION: 01	10	DISTANCE:	4.506
*=INTER	IM TE	*=INTERIM TEST-NAME:	HGUT	NIUT	NNHTUR	NNOTFR	NNO2FR	NNO2UR	NNO3UR	NNTKUR	PBUT	Hd
SAMPLE			MERCURY	NICKEL	TOTAL	NO2+NO3N	NO2-N	N02-N	N-20N	K'DAHL N TOTAL	LEAD	
DATE	HOUR	SAMPLE	UG/L	MG/L	MG/L	MG/I	FIL. KEAC	UNF . REAC	UNF.REAC	UNF . REAC	UNF. TOT.	
YYMMDD LMT	TMT	NUMBER	AS HG	AS NI	AS N	AS N	AS N	AS N	AS N	AS N	AS PB	Н
	1012	40101	0.04 <t< td=""><td>0.002<t< td=""><td>0.110</td><td></td><td></td><td>020</td><td>13 000</td><td>017.0</td><td></td><td></td></t<></td></t<>	0.002 <t< td=""><td>0.110</td><td></td><td></td><td>020</td><td>13 000</td><td>017.0</td><td></td><td></td></t<>	0.110			020	13 000	017.0		
	0859	40111	T>90.0	0.004 <t< td=""><td>0.000</td><td></td><td></td><td>0.040</td><td>8 100</td><td>0.4.0</td><td>0.005<w< td=""><td>7.88</td></w<></td></t<>	0.000			0.040	8 100	0.4.0	0.005 <w< td=""><td>7.88</td></w<>	7.88
	0845	40121	0.02 <w< td=""><td>0.003<t< td=""><td>0.074</td><td></td><td></td><td>0.050</td><td>8 400</td><td>1 160</td><td>W>500.0</td><td>7.92</td></t<></td></w<>	0.003 <t< td=""><td>0.074</td><td></td><td></td><td>0.050</td><td>8 400</td><td>1 160</td><td>W>500.0</td><td>7.92</td></t<>	0.074			0.050	8 400	1 160	W>500.0	7.92
	0830	42600	0.02 <w< td=""><td></td><td></td><td>6.250</td><td>0.1100</td><td></td><td>0.10</td><td>001.1</td><td>0.005×W</td><td>7.80</td></w<>			6.250	0.1100		0.10	001.1	0.005×W	7.80
	1	42601	0.02 <w< td=""><td></td><td></td><td>8.750</td><td>0.0490</td><td></td><td></td><td></td><td>0.007</td><td>20.7</td></w<>			8.750	0.0490				0.007	20.7
900404	0815	40131	0.06 <t< td=""><td>0.002<w< td=""><td>0.032</td><td></td><td></td><td>0.100</td><td>7.700</td><td>0.710</td><td>0.082</td><td>0.07</td></w<></td></t<>	0.002 <w< td=""><td>0.032</td><td></td><td></td><td>0.100</td><td>7.700</td><td>0.710</td><td>0.082</td><td>0.07</td></w<>	0.032			0.100	7.700	0.710	0.082	0.07
	1250	42602	0.02 <w< td=""><td></td><td></td><td>7.450</td><td>0.0380</td><td></td><td></td><td></td><td>0.005<w< td=""><td>8 22</td></w<></td></w<>			7.450	0.0380				0.005 <w< td=""><td>8 22</td></w<>	8 22
	1250	42603	0.02 <w< td=""><td></td><td></td><td>8.400</td><td>0.0600</td><td></td><td></td><td></td><td>0.006<t< td=""><td>8.22</td></t<></td></w<>			8.400	0.0600				0.006 <t< td=""><td>8.22</td></t<>	8.22
	1020	42604	0.02 <w< td=""><td></td><td></td><td>7.050</td><td>0.0380</td><td></td><td></td><td></td><td>0,005<w< td=""><td>8.10</td></w<></td></w<>			7.050	0.0380				0,005 <w< td=""><td>8.10</td></w<>	8.10
	1000	42605	0.02 <w< td=""><td></td><td></td><td>6.520</td><td>0.0530</td><td></td><td></td><td></td><td>0,005<w< td=""><td>8.22</td></w<></td></w<>			6.520	0.0530				0,005 <w< td=""><td>8.22</td></w<>	8.22
	1130	45704	0.00 M	0.002 <w< td=""><td>0.146</td><td></td><td></td><td>0.000</td><td>4.000</td><td>0.930</td><td>0.005<w< td=""><td>8.22</td></w<></td></w<>	0.146			0.000	4.000	0.930	0.005 <w< td=""><td>8.22</td></w<>	8.22
	0828	40151	0.02 <t< td=""><td>T/200 0</td><td>200 0</td><td>3.540</td><td>0.1540</td><td>;</td><td></td><td></td><td>0.006<t< td=""><td>8.15</td></t<></td></t<>	T/200 0	200 0	3.540	0.1540	;			0.006 <t< td=""><td>8.15</td></t<>	8.15
	1230	42607	0.02×W	0.00.0	0.086	000	0000	0.110	6.400	0.920	0.007 <t< td=""><td>8.15</td></t<>	8.15
9007009	0815	40161	0.03 <t< td=""><td>D.005<t< td=""><td>0.111</td><td>1.000</td><td>0.0020</td><td>010</td><td></td><td></td><td>0.005<w< td=""><td>8.22</td></w<></td></t<></td></t<>	D.005 <t< td=""><td>0.111</td><td>1.000</td><td>0.0020</td><td>010</td><td></td><td></td><td>0.005<w< td=""><td>8.22</td></w<></td></t<>	0.111	1.000	0.0020	010			0.005 <w< td=""><td>8.22</td></w<>	8.22
	1230	42608	0.02 <w< td=""><td></td><td></td><td>6. 320</td><td>0 0250</td><td>0.070</td><td>7.200</td><td>0.840</td><td>0.005<w< td=""><td>8.08</td></w<></td></w<>			6. 320	0 0250	0.070	7.200	0.840	0.005 <w< td=""><td>8.08</td></w<>	8.08
	1230	42609	0.02 <w< td=""><td></td><td></td><td>2.350</td><td>0.070</td><td></td><td></td><td></td><td>0.005<w< td=""><td>8.28</td></w<></td></w<>			2.350	0.070				0.005 <w< td=""><td>8.28</td></w<>	8.28
	0820	40171	0.03 <t< td=""><td>0.130<t< td=""><td>0.013</td><td></td><td>0000</td><td>000 0</td><td>007 0</td><td>0 770</td><td>0.005<w< td=""><td>8.25</td></w<></td></t<></td></t<>	0.130 <t< td=""><td>0.013</td><td></td><td>0000</td><td>000 0</td><td>007 0</td><td>0 770</td><td>0.005<w< td=""><td>8.25</td></w<></td></t<>	0.013		0000	000 0	007 0	0 770	0.005 <w< td=""><td>8.25</td></w<>	8.25
	0730	42610	0.02 <w< td=""><td></td><td></td><td>2.090</td><td>0.0360</td><td>0.030</td><td>0.000</td><td>0.460</td><td>0.001</td><td>7.85</td></w<>			2.090	0.0360	0.030	0.000	0.460	0.001	7.85
	1207		NO DATAISS	0.008 <t< td=""><td>0.125</td><td></td><td></td><td>0.070</td><td>2 000</td><td>0 0 0</td><td>0.005<w< td=""><td>8.11</td></w<></td></t<>	0.125			0.070	2 000	0 0 0	0.005 <w< td=""><td>8.11</td></w<>	8.11
	0830	42611	0.02 <w< td=""><td></td><td></td><td>1.660</td><td>0.0350</td><td></td><td>200.5</td><td>0.750</td><td>0.000×X</td><td>8.18</td></w<>			1.660	0.0350		200.5	0.750	0.000×X	8.18
901003 1	1300	42612	0.02 <w< td=""><td></td><td></td><td>1.350</td><td>0.0210</td><td></td><td></td><td></td><td>0.005/W</td><td>60.03</td></w<>			1.350	0.0210				0.005/W	60.03
	8111	16105			600.0			0.040	1.200	0.490		8 30
	1265	42613	0.02 <w< td=""><td></td><td></td><td>6.670</td><td>0.0650</td><td></td><td></td><td></td><td>0.005<w< td=""><td>8.15</td></w<></td></w<>			6.670	0.0650				0.005 <w< td=""><td>8.15</td></w<>	8.15
	0830	40201	0 02VW	0	0,00	1.190	0.0160				0.005 <w< td=""><td>8.27</td></w<>	8.27
	0830	40211	0.02 N	0.012	0.030			0.100	2.900	1.800	0.007 <t< td=""><td>7.86</td></t<>	7.86
		1000	H > 20 • 0	0.011	0.020			0.060	6.100	1.300	0.005 <w< td=""><td>8.05</td></w<>	8.05
		MAXIMUM	0.06	0.130	0.146	8.750	0.1540	0.110	12.000	1.800	0.087	22
	4	ARITH MEAN	0.03 <a< td=""><td>0.017<a< td=""><td>690.0</td><td>4.965</td><td>0.0579</td><td>0.069</td><td>5.883</td><td>0.902</td><td>0.008<4</td><td>8.11</td></a<></td></a<>	0.017 <a< td=""><td>690.0</td><td>4.965</td><td>0.0579</td><td>0.069</td><td>5.883</td><td>0.902</td><td>0.008<4</td><td>8.11</td></a<>	690.0	4.965	0.0579	0.069	5.883	0.902	0.008<4	8.11
		MINITEDIA	0.02 <a< td=""><td>0.006<a< td=""><td>0.050</td><td></td><td>0.0493</td><td>990.0</td><td>4.601</td><td>0.833</td><td></td><td>8.11</td></a<></td></a<>	0.006 <a< td=""><td>0.050</td><td></td><td>0.0493</td><td>990.0</td><td>4.601</td><td>0.833</td><td></td><td>8.11</td></a<>	0.050		0.0493	990.0	4.601	0.833		8.11
L	D. DEV	STD DEV (CEOM X)	0.02	0.002	0.00		0.0160	0.030	0.600	0.460		7.80
# SAMP	INS	FATISTICS	25	11	12	2.684	0.0360	0.026	3.243	0.386	Y.	0.15
20	AMP (F	% SAMP (EXCLUDED))		45		15	12	12	12		27

003

STORET CODE:

STATION ID: 04-0027-001-83

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

SYDENHAM RIVER B.O.W./ SITE:

SAMPLE POINT: AT HIGHWAY 40 WALLACEBURG STATION TYPE: RIVER COMPOSITE

4.506 2980 DISTANCE: ZINC AS ZN 0.0097<A MG/L UNF. TOT. 0.0020<T 0.0104<A 0.0074<A 0.0110 ZMUT 0.0020 0.0068 0.0000 0.0040 0.0035 0.0290 0.0290 0.0290 0.0050 REGION: 01 SULPHATE UNF.REAC SS04UR MG/L AS S04 28.500 70.500 59.500 84.000 65,000 45,500 28,000 49.797 28.000 18.113 45.500 50,500 29,500 62,500 000.99 84.000 52.917 J U T M: 17 0386125.0 4716225.0 RESIDUE PARTIC. MG/L 5.0< 47.5 33.6 227.6 40.5 89.2 22.4 15.1 47.6 29.2 23.5 13.8 15.4 25.9 17.8 8.6 16.2 0.651 63.4 28.4 18.7 227.6 46.1 8.6 TERM STREAM: SYDENHAM RIVER 3 2 FILTERED RESIDUE MG/L 212.0 357.0 527.5 341.0 337.0 525.0 527.5 342.0 209.0 106.9 384.9 209.0 353.0 222.0 RSF MG/L AS P PHOSPHOR UNF. TOT. 0.126 PPUT 0.024 0.120 0.072 0.078 0.095 0.120 0.060 0.056 0.064 0.030 950.0 0.040 0.024 0.091 27 0.054 0.052 0.390 0.103 0.045 0.390 0.076 0.061 0.032 0.205 0.055 MG/L AS P P04 UNF . REAC PP04UR LAT: 42 35 31.11 LONG: 082 23 16.43 0.005 0.148 0.034 0.020 0.005 0.016 0.148 0.024 0.020 0.017 0.010 0.006 0.007 MG/L AS P 0.0087<A 0.0010 0.0421<A PPOGFR P04 FIL, REAC 0.0015<T 0.0274<A 0.0010<T 0.0010<T 0.1430 0.0110 0.0925 0.0070 0.0070 0.0035 0,000.0 0.1430 0.0025 0.0295 NO DATAINR PHENOLS UNF-REAC 1/9n PHMOL PHENOL 42601 NUMBER 40111 42602 42603 42604 42605 40144 42606 42607 42608 40181 40191 SAMPLE 40121 42600 40161 40201 40131 42610 42612 42614 40211 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS 40101 40151 40171 42611 42613 STD DEV (GEOM *) *=INTERIM TEST-NAME: 1230 1230 1230 1045 1230 1230 0828 0815 0820 0730 0830 HOUR 900103 1012 0859 0845 0830 0815 900510 1130 1230 1207 1300 1118 0060 YYMMDD LMT 901106 900314 SAMPLE 9002006 900308 900320 900404 900405 900418 900502 900006 900006 900719 900507 909006 900000 900823 901003 901004 900411 306006 116006 901017 901031 DATE

STATION ID: 04-0027-004-02

20AID 10AID 70AID FECAL STREPCUS ¥ MG/L AS P 62.441 /100ML 212 10 9* P04 UNF. REAC PP04UR 2980 170 350 168 230 13000 2100 13000 1791 0.044 0.081 0.038 0.034 0.042 0.032 0.130 0.156 STORET CODE: DISTANCE: SOAID FECAL COLIFORM CNT UG/L PHENOL /100ML PHENOLS UNF-REAC 2300 310 130 FCMF PHNOL 220 320 28 1.000 3.500 2.000 1.000 1.000 1.000< 300 2.000 MG/L 0 DISOLVED OXYGEN 111.1 12.0 13.0 13.0 12.0 8.0 10.0 9.0 7.0 14.0 10.1 9.4 3.0 3.2 7.93 7.79 8.10 8.18 7.95 7.74 7.74 7.86 7.58 Ħ REGION: 01 0.0020 0.0033<A COPPER MG/L AS CU 0.0029<T 0.0020<T 0.0052<A 0.0045<A MG/L AS PB UNF. TOT. ₹ V ₹ 3 LEAD UNF. TOT. ۲ V 0.0036 0.0040 0.0018 CUUT 0.0035 0.0050 0.0070 0.0054 0.0140 0.005 0.005 0.005 0.008 0.015 0.010 UNF.REAC MG/L AS N 25C AT 25 C COND25 UMHO/CM U T M: 17 0404475.0 4746150.0 CONDUCT. NNTKUR K'DAHL N 579.0 711.0 841.0 1107.0 732.0 732.0 775.0 705.0 508.0 1500.0 862.0 848.5 848.5 806.2 508.0 299.7 0.970 0.840 1.320 1.000 1.360 1.300 1.300 1.750 TOTAL 1.000 TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L CLIDUR CHLORIDE UNF . REAC AS CL MG/L AS N NNO3UR N-20N UNF. REAC 41.800 56.600 86.400 197.000 37.400 235.000 74.800 44.100 04.827 79.853 32.000 84.603 6.100 7.800 7.100 6.500 7.000 6.600 10.200 1.300 3.300 3.000 0.400 MG/L AS 0 5 DAY Bob UNF.REAC MG/L AS N NNO2UR N02-N TOT. DEM. B005 3.29 2.56 1.18 1.96 3.06 1.80 2.06 6.86 6.86 2.79 2.48 1.18 1.66 0.260 0.050 0.070 0.110 0.110 0.120 TOTAL MG/L NH3-N CACOS LONG: 082 10 09.66 NNHTUR TOTAL UNF . REAC ALKT 249.0 209.0 143.0 188.0 206.0 209.0 236.0 1188.0 1182.0 249.0 194.3 191.6 141.0 33.3 0.071 0.063 0.171 0.010 0.051 0.066 0.035 0.019 0.052 SAMPLE POINT: AT FIRST CONCESSION WEST OF PETROLIA STATION TYPE: RIVER FGPROJ SUB-PROJ CODE DEG.C PROJECT WATER FWTEMP TEMP 0101 0101 0101 0101 0101 0101 0101 0101 0.1 1.0 1.0 0.7 15.0 18.0 23.0 23.0 22.0 2.0 0.3 LAT: 42 51 50.05 SAMPLE DEPTH M STREAM COND. FWSTRC 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 4 M M O O M O 40114 40134 40147 40154 40204 SAMPLE 40104 40124 40174 SAMPLE NUMBER MAXIMUM 40184 ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS 40104 40124 40134 40147 40154 40164 40174 40184 40204 % SAMP (EXCLUDED) *=INTERIM TEST-NAME; *=INTERIM TEST-NAME: 1016 1010 0921 1204 0938 0953 1337 1036 1035 0939 1016 1010 0921 1204 0938 0939 HOUR LMT 1337 1036 LMT YYMMDD 900006 900103 900009 900006 901204 SAMPLE 900309 900404 900507 900006 900006 900006 YYMMDD 900103 9002006 900404 901106 SAMPLE 900305 900006 908006 206006 DATE

B.O.W./ SITE: BEAR CREEK SAMPLE POINT: AT FIRST CONCESSION WEST OF PETROLIA	BEAR CRE	CONCESSION	WEST OF PE	TROLIA				STI	ATION ID: 04	STATION ID: 04-0027-004-02	•
STATION TYPE: RIVER	RIVER				MAJOR BASIN: MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER	KES E RIVER			STORET CODE:	:: 02 003 2980
	LAT: 4	LAT: 42 51 50.05	LONG: 082 10 09.66	10 09.66	U T M: 17	U T M: 17 0404475.0 4746150.0 4	4746150.0 4	REGION: 01	01	DISTANCE:	62,441
*=INTERIM TEST-NAME:	-NAME:	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR	NNO3UR	NNTKUR K'DAHL N	PBUT	Н	PHNOL	PP04UR
SAMPLE DATE HOUR	SAMPLE	STREAM	WATER	TOTAL UNF.REAC MG/L	MO2-N UNF.REAC MG/L	NO3-N UNF.REAC MG/L	TOTAL UNF.REAC MG/L	LEAD UNF.TOT. MG/L		PHENOLS UNF-REAC UG/L	PO4 UNF.REAC MG/L
YYHIDD LHT	NUMBER	COND.	DEG.C	AS N	AS N	AS M	AS N	AS PB	ЬН	PHENOL	AS P
	MAXIMUM		29.0	0.171	0.260	10.200	1.750	0.015	8.18	11.000	0.330
ARI	GEOM MEAN		10.2	0.050	0.114	5.391	1,159	0.006 <a< td=""><td>7.90</td><td>2.600</td><td>0.091</td></a<>	7.90	2.600	0.091
	HINIMUM		0.1	900.0	0.040	0.400	0.790	0.0018	7.58	1,000	0.032
# SAMP IN STATISTICS	GEOM *)		11.3	0.046	0.059	2.989	0.277	0.004 <a< td=""><td>0.18</td><td>10</td><td>0.089</td></a<>	0.18	10	0.089
% SAMP (EXCLUDED)	CLUDED)									6	
*=INTERIM TEST-MAME:	-NAME:	PPUT	PSAMF PSEUDOMN	RSF	RSP	SS04UR	TURB	ZNUT			
SAMPLE		PHOSPHOR UNF. TOT.	AERUG.	RESIDUE	RESIDUE	SULPHATE UNF. REAC		ZINC UNF. TOT.			
DATE HOUR	SAMPLE	HG/L	CNT	FILTERED	PARTIC.	J/9W	TURB'ITY	1/9H			
THE PARTY OF THE	HOUDER	T CH	LOUIL	M6/L	MG/L	AS 504	FIG	AS ZN			
900103 1130	40104	0.092	16	884	37.6	130.000		0.0180			
	40124	0.146	7 7	376.0	27.6	54.000		0.0073			
_	40134	0.120		494.2	61.8	77.500		0.0081			
	40147	0,132	>4	572.8	59.5	78.000		0.0000			
900605 0938	40159	0.148	40	614.0	128.0	000.96		0.0110			
	40174	0.285	4		73.4	97.000		0.0016			
	40184	0.262	>4	415.0	6.49	60.500		0.0080			
	40204	0.525	355 44C	0.055	194.0	46.500		0.0450			
901204 1035	40214	0.194	54	397.0	112.0	65.500	152.00	0.0190			
	MAXIMUM	0.525	55	884	194.0	130.000	152.00	0.0450			
ARI	ARITH MEAN	0.190	18	523	77.5	78.955	152,00	0.0128			
39	GEOM MEAN	0.162	,	507	63.4	75.774		0.0093			
STD DEV (GEOM *)	GEON *)	0.074	•	376.0	17.2	46.500	152.00	0.0016			
# SAMP IN STATISTICS	TISTICS	11	ц	100	11.0	11		11 0.0119			
% SAMP (EXCLUDED)	CLUDED)	4	44	> 4	•	**	4	11			

	1 02 003 2980	22.530	FWSTRC		STREAM COND.	4	5 M	מו	9	9 (9	9	9	м	м							PP04UR	P04	UNF.REAC	AS P	0.023	0.033	0.055	0.00	0.018	0.016	0.025	200	0.025	0.049
0027-006-02	STORET CODE:	DISTANCE:	FSMF	STREPCUS	CNT /100ML	110	FOAID		20AID	20AID	12AID 600>	280	2900	2900	350	7900	1170	¢	77	10	6	PHNOL		UNF-REAC 1	PHENOL	1.000	1.000	1.000	1.000	1.000	1.000<	1.000<	1.500	4.000	1,000<
STATION ID: 04-0027-006-02		11	FCMF	COLIFORM	CNT /100ML	110	100		SOAID	20AID	<009	40AID	360	2000	200	2000	303		77	10	or.	Н			Н	7.64	7.90	7./8 17	86.8	8.10	8.09	7.74	8.14		8.15
STAI		REGION: 01	00	DISOLVED	MG/L AS 0	13.0	12.0	12.0	11.5	12.0	10.0	10.0	0.9	14.0	7.0	14.0	10.8	10.5	, v	12		PBUT	LEAD	UNF. TOT.	AS PB	0.0050 <w< td=""><td>0.0050×W</td><td>0.0050<</td><td>M> 200.0</td><td>0.005 <w< td=""><td></td><td></td><td>M> 500.0</td><td>0.010 <t< td=""><td>0.005 <w< td=""></w<></td></t<></td></w<></td></w<>	0.0050×W	0.0050<	M> 200.0	0.005 <w< td=""><td></td><td></td><td>M> 500.0</td><td>0.010 <t< td=""><td>0.005 <w< td=""></w<></td></t<></td></w<>			M> 500.0	0.010 <t< td=""><td>0.005 <w< td=""></w<></td></t<>	0.005 <w< td=""></w<>
	ES	715600.0 4	CUUT	COPPER UNF. TOT.	AS CU	0.0029	0.0039	0.0024 <t< td=""><td>0.0010<t< td=""><td>0.0040</td><td>0.0018<t< td=""><td>0.0050</td><td></td><td>0.0100</td><td>0.0030</td><td>0.0100</td><td>0.0038<a< td=""><td>0.0033<a< td=""><td>0.0024<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF.TOT.</td><td>AS PB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.82</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0040</td><td>0.0018<t< td=""><td>0.0050</td><td></td><td>0.0100</td><td>0.0030</td><td>0.0100</td><td>0.0038<a< td=""><td>0.0033<a< td=""><td>0.0024<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF.TOT.</td><td>AS PB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.82</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0040	0.0018 <t< td=""><td>0.0050</td><td></td><td>0.0100</td><td>0.0030</td><td>0.0100</td><td>0.0038<a< td=""><td>0.0033<a< td=""><td>0.0024<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF.TOT.</td><td>AS PB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.82</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<>	0.0050		0.0100	0.0030	0.0100	0.0038 <a< td=""><td>0.0033<a< td=""><td>0.0024<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF.TOT.</td><td>AS PB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.82</td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.0033 <a< td=""><td>0.0024<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF.TOT.</td><td>AS PB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.82</td><td></td><td></td><td></td></a<></td></a<>	0.0024 <a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF.TOT.</td><td>AS PB</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.82</td><td></td><td></td><td></td></a<>	11		PBUT	LEAD	UNF.TOT.	AS PB							0.82			
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER	U T M: 17 0407325.0 4715600.0 4	COND25	CONDUCT.	AT 25 C	774	569.0	0.469	631.0	663.0	530.0	615.0	683.0	557.0	708.0	774	633	628	78	12		NNTKUR K'DAHL N	TOTAL	UNF . REAC	AS N	1.900	1 170	0.710	0.810	0.970	0.850	0.930	0.780	2.050	1.300
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	CLIDUR	CHLORIDE UNF.REAC	AS CL	40.900	31.900	37.600	29,900	34.900	29.700	33.300	31.400	37.900	36.300	41.500	34.775	29.561	4.066	12		NNOSUR	N03-N	UNF . REAC	AS N	5.200	000.0	8.100	6.100	8.400	7.100	1.100	200	5,900	7.000
DBECDEN		07 46.08	ALKT	ALK TOTAL	AS CACO3	259.0	147.0	201.0	202.0	127 0	179.0	211.0	230.0	175.0	239.0	259.0	196.7	135.7	35.9	12		NNO2UR	N02-N	UNF . REAC	AS N	0.060	00.0	0.030	0.020	0.100	0.100	0.230	010	0.120	0.050
SYDENHAM RIVER AT DOWN MILLS ROAD LIDSTDEAM OF DDESDEN	FLOW GAUGE FED 02GG007	LONG: 082 07 46.08	FGPROJ	PROJECT	CODE	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101							NNHTUR NH3-N	TOTAL	MG/L	AS N	0.153	0.000	0.013	0.041	0.136	0.079	090.0	900 0	0.030	0.023
RIVER	LOW GAUGE	35 21.07	FWSADP	SAMPLE	DEPIH	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.50	0.30	0.30	0.20		12		FWTEMP	4	TEMP	DEG.C	1.0		0.7	14.0	18.0	23.0	22.0	15.0	2.0	0.3
	RIVER	LAT: 42	T-NAME:	1	NUMBER	40100	40110	40130	40143	40150	40170	40180	40190	40200	40210	MAXIMUM	ARITH MEAN	MINIMIM MEAN	STD DEV (GEOM *)	ATISTICS	XCLUBED)	T-NAME:		SAMPLE	NUMBER	40100	40110	40130	40143	40150	40160	40170	40180	40200	40210
B.O.W./ SITE:	STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE	YYMMDD LMT	900103 0940	_			900605 0725					901204 0730		AR	9	STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	1	DATE HOUR	YYMMDD LMT	900103 0940							900905 1128		

B.O.W./ SITE: SYDENHAM RIVER

12	E: 02 003 2980		PPO4UR	PO4 UNF.REAC MG/L AS P	0.144 0.037 0.027 0.006 0.038				
-0027-006-0	STORET CODE: 02 003 296	DISTANCE:	PHNOL	PHENOLS UNF-REAC UG/L PHENOL	13.000 3.214 1.000	41			
STATION ID: 04-0027-006-02		01	ЬН	Н	8.28 7.97 7.96 7.96 7.46 0.26				
ST/		REGION: 01	PBUT	LEAD UNF.TOT. MG/L AS PB	0,010 0.005 <a 0.005 <a 0.0011 0.002 <a< td=""><td></td><td></td><td></td><td></td></a<></a </a 				
	(ES E RIVER	715600.0 4	PBUT	LEAD UNF.TOT. UG/L AS PB	0.82 0.82 0.82				
	GREAT LAN	407325.0 4	NNTKUR K DAHL N	TOTAL UNF.REAC MG/L AS N	2.050 1.107 1.044 0.710 0.437				
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER	U T M: 17 0407325.0 4715600.0 4	NNO3UR	NO3-N UNF.REAC MG/L AS N	8,800 6,509 5,863 1,100 2,206	ZNUT	ZINC UNF.TOT. MG/L AS ZN	0.0086 0.0053 0.0053 0.0057 0.0020 <t 0.0020 0.0020 0.0020 0.00220 0.00220 0.00220 0.00220</t 	
" DRESDEN		07 46.08	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.230 0.078 0.059 0.010 0.060	TURB	TURB'ITY FTU		
UPSTREAM OF	FED 02GG00	LONG: 082 07 46.08	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.153 0.064 0.045 0.006 0.006	RSP	RESIDUE PARTIC. MG/L	44.5 21.4 40.5 33.0 22.3 22.3 24.0 22.3 24.0 60.3 315.0 65.6 65.6 65.6 45.6 81.2	
MILLS ROAD	FLOW GAUGE FED 02GG007	LAT: 42 35 21.07	FWTEMP	WATER TEMP DEG.C	23.0 10.1 4.0 0.3 9.9	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.076 0.067 0.129 0.052 0.062 0.062 0.063 0.109 0.119 0.119 0.120 0.130 0.127 0.093	
2		LAT: 4	EST-NAME:	SAMPLE	HAXIMUH ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) AMP IN STATISTICS % SAMP (EXCLUDED)	EST-NAME:	SAMPLE	35 0940 40100 56 0745 40110 57 0958 40120 77 0958 40145 57 0725 40150	LACEUDEU
SAMPLE POIN	STALLON LYPE: KIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	HAXINUM ARITH HEAN GEON HEAN STD DEV (GEON *) # SAIP IN STATISTICS % SAIP (EXCLUDED)	*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMNDD LNT	900105 0940 40100 900206 0745 40111 900205 0730 40120 900507 0958 40139 900605 0725 40150 900605 0725 40150 900605 1128 40180 900905 1128 40180 900905 1128 40180 901004 1038 40190 901106 0800 402100 901204 0730 40210 901204 0730 40210 #MAXIMUM STD DEV (EEON %) \$ \$ANP IN MINIMUM	

STATION ID: 04-0027-007-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: SYDENHAM RIVER SAMPLE POINT: 1ST.CONC SOUTH OF HWY.22 STRATHROY STATION TYPE: RIVER FLOW GAUGE FED 026G005

STORET CODE: 02 003 2980 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER

2980	DISTANCE: 130.675	FSMF	STREPCUS	FIND	/100ML	130	10AID	LOAID	10475	110	90AID		610	390		400AID	610	196	42	10	2,4	6		PHNOL	DHENDIS	UNF-REAC	UG/L	PHENOL	3.000	1.000		2.500	1.000<	1,000<	1.000<	1.000<	1.500	000	17.000	
	DISTANCE	FCMF	COLIFORM	CNT	/100ML	10<	10<	10<	21402	ZOAID	BOAID		190	160	1300	1200	1300	436		20		7	30	Н				Н	7.94	7.98	7.98	8.14	8.19	8.02	8.03	8.02	8.08	3.07	8.10	
	10	00	DISOLVED	OXYGEN MG/L	AS 0	13.0	12.0	13.0	14.0	10.0	0.6	9.0	11.0	0.9	14.0	0.6	14.0	10.9	10.6	0.9	2.5	11		PBUT	LEAD	UNF. TOT.	MG/L	AS PB	0,005 <t< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td></td><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>7 002/T</td><td>0.005<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<>	0.005 <w< td=""><td>0.005<w< td=""><td></td><td></td><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>7 002/T</td><td>0.005<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td></td><td></td><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>7 002/T</td><td>0.005<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<>			0.005 <w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>7 002/T</td><td>0.005<w< td=""><td></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td></td><td>0.005<w< td=""><td>7 002/T</td><td>0.005<w< td=""><td></td></w<></td></w<></td></w<>		0.005 <w< td=""><td>7 002/T</td><td>0.005<w< td=""><td></td></w<></td></w<>	7 002/T	0.005 <w< td=""><td></td></w<>	
	REGION:	CUUT	COPPER	MG/L	AS CU	0,0000	0.0020 <t< td=""><td>0.0019<t< td=""><td>0.0021<1</td><td>0.0030</td><td>0,0040</td><td>0.0021<t< td=""><td>0.6200</td><td></td><td>0.0080</td><td>0.0020<t< td=""><td>0.6200</td><td>0.0651<a< td=""><td>0.0051<a< td=""><td>0.0019</td><td>0.1950<a< td=""><td>10</td><td></td><td>PBUT</td><td>FAD</td><td>UNF. TOT.</td><td>NG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.74</td><td></td><td></td><td></td><td>0.89</td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0019 <t< td=""><td>0.0021<1</td><td>0.0030</td><td>0,0040</td><td>0.0021<t< td=""><td>0.6200</td><td></td><td>0.0080</td><td>0.0020<t< td=""><td>0.6200</td><td>0.0651<a< td=""><td>0.0051<a< td=""><td>0.0019</td><td>0.1950<a< td=""><td>10</td><td></td><td>PBUT</td><td>FAD</td><td>UNF. TOT.</td><td>NG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.74</td><td></td><td></td><td></td><td>0.89</td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0021<1	0.0030	0,0040	0.0021 <t< td=""><td>0.6200</td><td></td><td>0.0080</td><td>0.0020<t< td=""><td>0.6200</td><td>0.0651<a< td=""><td>0.0051<a< td=""><td>0.0019</td><td>0.1950<a< td=""><td>10</td><td></td><td>PBUT</td><td>FAD</td><td>UNF. TOT.</td><td>NG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.74</td><td></td><td></td><td></td><td>0.89</td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.6200		0.0080	0.0020 <t< td=""><td>0.6200</td><td>0.0651<a< td=""><td>0.0051<a< td=""><td>0.0019</td><td>0.1950<a< td=""><td>10</td><td></td><td>PBUT</td><td>FAD</td><td>UNF. TOT.</td><td>NG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.74</td><td></td><td></td><td></td><td>0.89</td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<>	0.6200	0.0651 <a< td=""><td>0.0051<a< td=""><td>0.0019</td><td>0.1950<a< td=""><td>10</td><td></td><td>PBUT</td><td>FAD</td><td>UNF. TOT.</td><td>NG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.74</td><td></td><td></td><td></td><td>0.89</td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.0051 <a< td=""><td>0.0019</td><td>0.1950<a< td=""><td>10</td><td></td><td>PBUT</td><td>FAD</td><td>UNF. TOT.</td><td>NG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.74</td><td></td><td></td><td></td><td>0.89</td><td></td><td></td><td></td><td></td></a<></td></a<>	0.0019	0.1950 <a< td=""><td>10</td><td></td><td>PBUT</td><td>FAD</td><td>UNF. TOT.</td><td>NG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.74</td><td></td><td></td><td></td><td>0.89</td><td></td><td></td><td></td><td></td></a<>	10		PBUT	FAD	UNF. TOT.	NG/L	AS PB				0.74				0.89				
KIVER	753175.0 4	COND25	CONDUCT.	UMHO/CM	AT 25 C	673.0	675.0	0.959	0 327	631.0	621.0	617.0	0.649	687.0	467.0	661.0	687.0	633.8	630.8	0.794	59.8	.11		NNTKUR	TOTAL N	UNF . REAC	MG/L	AS N	1.920	1.100	1.180	0.790	0.760	0.740	00.700	0.720	0.780	1 550	0.650	
ERM SIREAM: STDENHAM KIVER	U T M: 17 0445450.0 4753175.0 4	CLIDUR	CHLORIDE	UNF . REAC	AS CL	37,600	37.300	35.800	000.75	32.700	25.400	30.400	29.200	27.800	30.000	37.500	37.600	32.542	32.273	25.400	4.333	12		NNO3UR	N-ZON	UNF . REAC	HG/L	AS N	0.040	6.200	5.300	000.9	3.300	3.500	3.800	3.300	3.600	5.700	3.700	
LEMM SINEAM	U T M: 17	8005	5 DAY	MG/L	AS 0	3.84	1.96	1.04	1 52	2.46	1.43	2.80	0.83	2.46			3.84	5.09	1.90	0.83	0.92	10		NNO2UR	NO2-N	UNF . REAC	MG/L	AS N	0.010	0.040	0.040	0.150	0.180	0.090	0.100	0.080	0.030	0.020	0.070	
	40 06.57	ALKT	ALK	MG/L	AS CACOS	226.0	235.0	222.0	195.0	221.0	228.0	229.0	247.0	271.0	162.0	249.0	271.0	226.4	224.8	162.0	27.3	12		NNHTUR	TOTAL	UNF . REAC	HG/L	AS N	0.632	0.492	0.504	0.093	0.027	0.061	0.004	0.001<	0.002	0.009	0.012	
	LONG: 081 40 06.57	FGPROJ		SUB-PROJ	CODE	0101	0101	0101	0101	0101	0101	1010	1010	0101	0101	0101								FWTEMP		WATER	TEMP	DEG.C	0.1	1.0	1.0	7.0	,	18.0	23.0	23.0	20.0	74.0	0.3	
	55 52.27	FWSADP		DEPTH	Σ	0.30	0.30	0.30	0.00	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30		12		FWSTRC			STREAM	COND.	4	M	M	M	,	9 1	9 '	۰ و	9	0 14	n m	
	LAT: 42	ST-NAME:		SAMPLE	NUMBER	40109	40119	40129	40159	40159	40169	40179	40189	40199	40209	40219	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	40109	40119	40129	40139	40140	40159	40169	401/9	40189	40199	40219	
		*=INTERIM TEST-NAME:	1	DATE HOUR	-	_	_	900305 1304	-		-		_	_		901204 1345		A	_		STD DEV	# SAMP IN STATISTICS	% SAMP (*=INTERIM TEST-NAME:		SAMPLE		УУМИВВ ТМТ		_			_		900/04 1515		900905 0910			

STATION ID: 04-0027-007-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: SYDENHAM RIVER SAMPLE POINT: 1ST.CONG SOUTH OF HWY.22 STRATHROY STATION TYPE: RIVER FLOW GALGE FED OSGENE

DISTANCE: 130,675 PHENOLS UNF-REAC UG/L PHENOL PHNOL 2980 17.000 5,000 1.000 003 25 55 STORET CODE: Hd 8.00 8.00 7.46 0.18 H 0.005<A LEAD 0.005 0.001<A MG/L AS PB UNF. TOT. PBUT 0.007 REGION: 01 UG/L LEAD AS PB 0.0023<T UNF. TOT. MG/L ZINC AS ZN 0.0024<7 UNF. TOT. 0.0063<A 0.0083<A 0.0068<A PBUT 0.89 0.81 0.0061 ZNUT 0.0200 0.0040 0,0060 0.0210 0,0060 0.0210 0.0023 U T M: 17 0445450.0 4753175.0 4 AS N NNTKUR K'DAHL N UNF . REAC MG/L TURB'ITY FTU 0.978 0.921 0.650 0.395 TOTAL TURB 26,00 26.00 26.00 26.00 TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N N03-N NNO3UR UNF. REAC PARTIC. RESIDUE MG/L 2.821 3.953 16.0 6.200 36.6 29.1 56.8 26.4 24.2 21.8 20.8 98.0 5.1 226.0 30.4 5.1 60.9 20.0 RSP N02-N UNF. REAC AS N NMO2UR MG/L RESIDUE FILTERED MG/L 0.380 0.064 437.0 434.9 393.0 369.2 410.0 404.0 416.0 446.0 340.0 430.0 0.955 408.8 910.0 RSF MG/L AS N NNHTUR NH3-N UNF . REAC TOTAL PSEUDOMN H. CMT 40 06.57 /100ML PSAMF AERUG >5 4.5 >6 0.171 4 4 200 0.632 >5 0.004 20 80 FLOW GAUGE FED 02GG005 LONG: 081 TEMP **FWTEMP** MATER DEG.C HG/L AS P PHOSPHOR UNF. TOT. 23.0 9.9 3.5 0.1 PPUT 0.170 0.068 0.060 0.132 0.118 0.127 0.115 0.420 0.060 0.081 0.120 0.071 0.071 0.450 0.129 0.110 0.097 LAT: 42 55 52.27 FWSTRC AS P STREAM P04 COND. PP04UR MG/L UNF. REAC 0.052 0.034 0.029 690.0 0.061 0.036 0.029 0.069 0.047 0.060 0.075 0.059 0.270 0.034 0.270 0.056 NUMBER SAMPLE HAXIMUM ARITH MEAN GEOM MEAN HIHIHUM STD DEV (GEOM *) # SAMP IN STATISTICS 40109 SAMPLE NUMBER 40159 40189 *= INTERIM TEST-NAME: % SAMP (EXCLUDED) 40119 40129 40139 40140 40169 40179 40199 40209 40219 MAXIMUM ARITH HEAN GEOM HEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: HOUR 0910 1304 0820 HOUR 1420 1357 1300 1315 1307 1400 YYMMDD LIIT 1345 **УУМИВВ ЕМТ** SAMPLE SAMPLE 900103 9002006 900309 900006 900507 908006 900006 001204 DATE 900006 900006 901004 901106 DATE Rt

STATION ID: 04-0027-008-02

BEAR CREEK B.O.W./ SITE:

SAMPLE POINT: AT TOWNSHIP LINE N-E OF AVONRY STP STATION TYPE: RIVER

TEMP 34.278 -WTEMP DEG.C -ILTERED MG/L RESIDUE 980 1.0 1.0 1.0 7.0 7.0 18.0 23.0 22.0 23.0 10.4 5.4 1.0 3.0 406.0 514.7 611.0 565.0 671.0 424.0 484.0 414.0 361.0 898.0 RSF STORET CODE: DISTANCE: STREAM **FWSTRC** COND. PSAMF PSEUDOMN AERUG. CNT /100ML 4 4 4 >5 52C 600> 44 212 10AID 20AID CNT MG/L AS P STREPCUS /100ML FECAL 10< PHOSPHOR 10< 170 120 UNF. TOT 5100 16000 2733 10 20 0.166 0.131 0.194 0.240 0.318 00091 PPUT 0.585 REGION: 01 SOAID 20AID SOOAID COLIFORM MG/L AS P FECAL CNT /100ML PP04UR UNF. REAC >001 10< 240 FCMF 100 009 8 0.048 0.036 0.033 0.061 0.043 0.033 20 990.0 0.060 ¢ COND25 JMHO/CM AT 25 C U T M: 17 0390200.0 4735250.0 1/90 PHENOLS JNF-REAC 1480.0 866.0 625.0 750.0 856.0 926.0 1002.0 PHENOL CONDUCT 1.000< 761.0 PHNOL 439.0 556.0 2050.0 921.2 846.3 439.0 441.1 1.000< 1.000< 1.000 2.000 2.500 MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES CLIDUR CHLORIDE MG/L AS CL JNF. REAC Ξ 65.200 85.000 103.000 129.000 534.000 44.200 26.300 34.900 83,600 84.252 26.300 140.193 12 42.400 7.62 7.96 8.08 8.14 8.00 8.00 8.02 7.75 7.75 7.39 7.39 534.000 22.717 표 5 DAY Bob MG/L AS 0 NNTKUR MG/L AS N K'DAHL N JNF . REAC TOT . DEM. 8005 2.75 0.80 1.38 2.06 2.96 2.66 4.14 3.72 2.16 4.52 2.71 2.44 0.80 1.18 TOTAL 1.320 0.940 1.020 1.600 1.300 2.000 1.760 1.760 1.760 1.700 TOTAL MG/L CACO3 MG/L z UNF. REAC LONG: 082 20 30,93 NNOSUR N03-N 240.0 1164.0 1182.0 1195.0 2220.0 1194.0 1164.0 1165.0 2249.0 ALKT 249.0 189.5 186.2 125.0 36.4 AS 6.700 7.900 7.300 6.400 8.900 6.600 13.500 0.200 0.400 3.900 4.600 AS CODE FGPROJ SUB-PROJ MG/L AS N PROJECT NNOZUR NO2-N JNF. REAC 0101 0101 0101 0.040 0101 0101 0101 0101 1010 0.110 0.110 0.0500.100 LAT: 42 45 49.87 DEPTH FWSADP MG/L AS N SAMPLE . REAC NNHTUR NH3-N TOTAL 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.236 0.070 0.093 0.035 0.072 0.065 0.056 0.115 0.011 40112 40145 40202 SAMPLE 40102 40122 40132 40152 40162 40172 40122 40145 40162 40172 40202 NUMBER MAXIMUM # SAMP IN STATISTICS 40112 40192 40182 40192 40212 ARITH MEAN GEOM MEAN MINIMUM NUMBER STD DEV (GEOM *) % SAMP (EXCLUDED) 40132 40152 *=INTERIM TEST-NAME: TEST-NAME: 0918 0849 1117 0900 0060 HOUR 0060 1250 1153 HOUR 0918 0925 0849 1117 0900 0060 1250 1153 0060 1043 LMT LMT *=INTERIM YYMMDD 900206 900305 901004 SAMPLE 900006 900305 900103 900404 900507 900006 900006 908006 901004 901106 YYMMDD 900103 900006 900006 900006 506006 901204 SAMPLE 900507 908006 DATE DATE

STORET CODE:

STATION ID: 04-0027-008-02

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

B.O.W./ SITE: BEAR CREEK

SAMPLE POINT: AT TOWNSHIP LINE N-E OF AVONRY STP STATION TYPE: RIVER

34.278 RESIDUE FILTERED MG/I 596.3 557.4 361.0 254.8 02 RSF DISTANCE: PSEUDOMN PSAMF MF CNT /100MJ AERUG 89 99 3 MG/L AS P PHOSPHOR UNF. TOT 0.211 0.079 0.134 PPUT 0.585 REGION: 01 AS P PP04UR P04 UNF. REAC MG/L 0.290 690.0 0.033 U T M: 17 0390200.0 4735250.0 4 PHENOLS JNF-REAC UG/L PHENOI PHNOL 1,000 3.500 13,000 TERM STREAM: SYDENHAM RIVER 8 27 Ξ 8.14 7.89 7.89 7.39 0.22 Hd AS N NNTKUR K'DAHL N MG/L UNF . REAC 2.250 1.448 1.388 0.790 0.434 TOTAL MG/L AS N NNO3UR N03-N UNF. REAC TURB'ITY LONG: 082 20 30,93 13.500 5.925 3.922 0.200 3.618 TURB 120.00 120,00 120,00 MG/L AS N NNO2UR MG/L N02-N UNF. REAC UNF. REAC SSO4UR SULPHATE AS 504 0.030 0.051 960.0 0.20089,000 85,000 85.500 138.000 0.081 145,000 98.000 67,500 62,500 69,000 40.500 145,000 40,500 59.69 85.5 30.6 80.7 LAT: 42 45 49.87 TOTAL 1/9H AS N NNHTUR NH3-N UNF. REAC RESIDUE MG/L PARTIC. 0.066 0.008 0.236 30.4 38.5 129.0 127.0 179.0 145.0 140.0 140.0 232.0 120.6 17.6 69.3 12 232.0 6.96 RSP SAMPLE NUMBER SAMPLE MAXIMUM ARITH MEAN GEOM MEAN 40132 40162 STD DEV (GEOM *) # SAMP IN STATISTICS 40192 MINIMUM % SAMP (EXCLUDED) NUMBER 40112 40172 40202 *=INTERIN TEST-NAME: 40102 40122 40145 40152 40182 40212 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) #=INTERIM TEST-NAME: HOUR HOUR 1153 0060 1043 0918 0925 0849 1117 0060 0060 1250 YYMHDD LMT LIII SAMPLE 900103 YYIIIIDD 506006 SAMPLE 9002006 900308 900404 900507 900006 900006 908006 901004 901106 901206 DATE DATE

STATION ID: 04-0027-009-02

B.O.W./ SITE: BLACK CREEK SAMPLE POINT: AT COUNTY ROAD 9 WEST OF OIL SPRINGS STATION TYPE: RIVER

60AID 200AID 90AID 40AID STREPCUS CNT 49,406 FECAL /100ML PHENOLS UG/L PHENOL UNF-REAC 100< PHNOL 1,000< FSMF 100 13000 2980 140 13000 1.000 000.1 1.500 1.500 000.1 4300 2006 40 10 2.000 STORET CODE: DISTANCE: 100AID 20AID 100AID FECAL COLIFORM CNT 100ML 표 150 FCMF 800 110 4800 000 270 20 7.28 7.76 7.71 7.92 8.15 7.30 7.92 MG/L AS 0 DISOLVED OXYGEN MG/L AS PB 3 0.0050<W 0.0130<T 0.0050<W V 3 3 **₩** JNF. TOT. 13.0 14.0 14.0 3.5 11.0 8.0 9.0 8.0 14.0 14.0 10.3 9.7 3.5 3.5 PBUT 0.033 0.005 900'0 0.005 0.010 0.005 REGION: 01 0.0049<A COPPER UNF. TOT. AS CU 0.0020<T 0.0077<A 0.0064<A LEAD .TOT. UG/L 0.0032 0.0040 0.0063 0.0050 0.0020 0.0061 0.0130 0.0091 0,0160 4.40 INE COND25 AT 25 C NNTKUR K'DAHL N MG/L AS N 25C UMHO/CM U T M: 17 0404100.0 4737700.0 JNF . REAC CONDUCT 823.0 823.0 559.0 594.0 1430.0 2280.0 1550.0 2330.0 915.0 372.0 412.0 2330.0 988.4 372.0 740.9 TOTAL 1.800 2.750 1.220 2.000 0.920 0.920 1.320 1.640 TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE CLIBUR AS CL MG/L AS N CHLORIDE UNF. REAC MG/L NNOSUR N03-N UNF. REAC 397.000 58.000 49.200 279.000 597.000 311.000 692.000 32.300 692,000 248,118 149,753 32,300 232,014 11 5.300 6.600 1.300 61,000 5.500 0.900 0.100 1.400 5 DAY MG/L AS 0 MG/L AS N N02-N TOT . DEM. **NNO2UR** JNF . REAC 8.53 5.52 0.90 3.16 0.99 0.98 1.68 3.62 2.52 0.90 3.17 090.0 0.010 BODS 0.150 0.000 0.110 0.040 TOTAL MG/L MG/L AS N ALK TOTAL UNF. REAC CAC03 NNHTUR NH3-N LONG: 082 10 21.00 291.0 154.0 100.0 113.0 169.0 157.0 155.0 101.0 93.1 131.1 85.4 58.2 11 291.0 0.613 0.026 0.046 0.018 0.024 ALKT 0.145 0.047 0.035 AS FLOW GAUGE MOE 02GG101 PROJECT SUB-PROJ FGPR03 CODE DEG.C TEMP FWTEMP 0.1 1.0 0.7 1.0 0.7 15.0 18.0 25.0 22.0 22.0 0.3 0101 0101 0101 0101 0101 0101 1010 1101 47 15.99 SAMPLE **FWSADP** FWSTRC STREAM COND. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0,30 * M M O O D O O M M LAT: 42 40123 40146 SAMPLE 40113 40153 40163 40173 40183 40203 40113 40146 40173 40213 40203 NUMBER 10103 40213 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) NUMBER 40133 40163 40153 40183 *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 1010 1000 HOUR 1056 0947 1000 1143 0917 0923 1042 1010 HOUR 1000 0060 1143 0923 1042 1000 LMT Ξ YYMINDD 901106 900103 900905 YYMMDD 900309 SAMPLE 900006 900309 900404 900507 900006 900006 908006 901106 SAMPLE 900103 900206 900404 900605 9007006 900006 901204 900507 900006 DATE DATE

STATION ID: 04-0027-009-02

SAMPLE POINT: AT COUNTY ROAD 9 WEST OF OIL SPRINGS BLACK CREEK B.O.W./ SITE:

UG/L PHEMOLS JNF-REAC 49.406 PHNOL 2980 STORET CODE: DISTANCE: PH LEAD UNF. TOT. MG/L PBUT REGION: 01 UG/L UNF. TOT. PBUT U T M: 17 0404100.0 4737700.0 4 K'DAHL N TOTAL MG/L JNF . REAC NNTKUR TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE NNO3UR N03-N UNF. REAC NNO2UR NO2-N UNF . REAC NH3-N MG/L NNHTUR UNF. REAC TOTAL LAT: 42 47 15.99 LONG: 082 10 21.00 STATION TYPE: RIVER FLOW GAUGE MOE 0266101 TEMP **FWTEMP** WATER FWSTRC STREAM *=INTERIM TEST-NAME: HOUR YYMINDD LMT SAMPLE DATE

PHENOL 3.056 1,000 14.000 6 8 H 7.73 7.73 7.28 0.27 0.007 <A 0.0050 0.009 <A MG/L AS PB A> 600.0 ZINC UNF. TOT. AS ZN 0.0560 0.0149 0.0082 0.0022 0.0181 0.0120 0.0440 0.0150 0.0022 0.0030 0.0060 0.0022 0.0022 0.0030 ZNUT 0,033 AS PB TURB'ITY FTU 4.40 4.40 TURB 170.00 170.00 170.00 170.00 AS N SS04UR SULPHATE UNF . REAC MG/L AS 504 1.517 0.920 0.584 11 2.750 89.000 150.000 152.000 290.000 138.000 93.000 43.500 106.613 43.500 70.588 122.200 290.000 MG/L AS N RESIDUE MG/L PARTIC. 1.709 0.100 2.645 35.8 113.0 37.3 16.9 22.1 224.0 7.400 59.2 42.6 671.0 76.4 RSP MG/L AS N RESIDUE FILTERED MG/1 0.150 0.072 0.059 0.010 0.041 114.5 535.0 363.0 519.0 1521.0 1972.0 547.0 445.0 268.0 1972.0 587.8 114.5 583.1 777.4 RSF AS N PSEUDOMN CNT ¥ /100ML 40 40 0.110 0.059 0.018 0.172 AERUG PSAMF 160 0.613 MG/L AS P DEG.C PHOSPHOR UNF. TOT. 24.0 9.7 2.9 0.1 10.5 0.285 990.0 0.056 0.580 0.125 0.190 0,062 0.282 0,102 0.180 0.056 0.610 0.610 0.253 0.430 MG/L AS P PP04UR P04 UNF. REAC COMD 0.035 0.013 0.045 0.009 0.061 0.009 0.021 0.400 0,085 0.035 0.026 0.116 0.400 0.080 SAMPLE SAMPLE 40153 HAXIMUM ARITH MEAN GEOM MEAN MINIMUM NUMBER 40133 95105 40163 40173 40183 40203 MAXIMUM ARITH MEAN GEOM MEAN STD DEV (GEOM *) # SAMP IN STATISTICS 40113 40123 40213 HIMIMUM 40103 % SAMP (EXCLUDED) TEST-NAME: 0060 1000 901106 1010 HOUR 900103 1056 0947 1143 0917 0923 1042 *=INTERIM **ҮҮММДД ЦИТ** SAMPLE 9002006 9003006 900404 900507 900006 900006 900006 908006 DATE

-

STD DEV (GEOM *) # SAMP IN STATISTICS

% SAMP (EXCLUDED)

STATION ID: 04-0027-011-02

B.O.W./ SITE: BROWN CREEK SAMPLE POINT: FIRST CONCESSION SOUTH OF WATFORD STATION TYPE: RIVER FLOW GAUGE FED 026A105

40AID 40AID BOAID LEAD 0.010<T 0.005<W CNT MG/L 0.005<W 0.005<W 0.005<W 0.005<W D.006<T 0.005<W 0.005<W FECAL COLIFORM /100ML JNF. TOT. DISTANCE: 117,157 10< 200 1,20 160 6100 PBUT FCMF 40 11 980 02 STORET CODE: MG/L AS 0 LEAD UG/L DISOLVED OXYGEN UNF. TOT. 13.0 12.0 13.0 13.0 12.0 7.0 7.0 9.0 9.0 14.0 11.0 10.8 7.0 7.0 1.40 PBUT 96.0 00 0.0022<T 0.0029<T 0.0010<T AS CU 0.0140 0.0049<A 0.0010 0.0036<A MG/L UNF . REAC HG/L COPPER 0.0033<T 0.0040<A K'DAHL N JNF. TOT. 0.730 1.330 1.210 0.0140 1.060 1.240 1.480 2.600 TOTAL 0.0049 0.0029 0,0040 0.0050 0.0080 0 REGION: 0.0010 33.203 <A 10 UNF.REAC MG/L AS N NO3-N CHROMIUM MG/L AS CR 0.0018<T 0.0063<T 0.0010<T 0.0020<T 0.0021<T 10.504 <A 0.009 <A NNOSUR UNF. TOT 9.200 8.000 10.900 3.800 7.000 7.200 7.200 3.300 5.800 0.0050 0.0120 000.501 0.0037 0.0032 12.000 CRUT 105,000 J. MG/L UMHO/CM AT 25 C NNO2UR N02-N JNF. REAC COND25 25C U T M: 17 0429140.0 4753275.0 CONDUCT 658.0 584.0 574.0 557.0 706.0 592.2 374.0 122.8 0.060 0.060 0.140 0.080 0.170 723.0 607.0 374.0 790.0 0.260 790.0 TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L MG/L AS N AS CL CLIDUR CHLORIDE JNF. REAC NNHTUR NH3-N TOTAL UNF. REAC 32.800 36.100 29.400 31.700 44.900 40.100 30.200 49.600 37.242 9,000 905.0 0.102 0.091 0.003 0.003 49.600 49.600 26.700 0.015 0.002<W 0.002<W 0.005<T 0.021 0.014 0.009<T 5 DAY MG/L AS NI 0.003<T MG/L 0.009<T FOT DEM. NICKEL UNF. TOT. AS 3.06 0.011 1.58 2.86 3.94 1.96 4.62 4.72 6.68 6.68 3.42 3.03 1.40 NIUT 0.013 BODS MG/L TOTAL MATER TEMP DEG.C FWTEMP CACOZ 52 06.09 219.0 208.0 210.0 152.0 162.0 169.0 214.0 94.8 129.0 219.0 175.2 170.5 94.8 39.0 0.1 1.0 1.0 1.0 12.0 18.0 25.0 23.0 23.0 3.0 ALKT 5 LONG: 081 FGPROJ SUB-PROJ CODE FWSTRC STREAM COND. PROJECT 0101 0101 0101 0101 0101 0101 0101 1010 0101 9 LO. MMQQ 10~ 50AID 220 19000 10AID 30AID SOAID 55 50,68 SAMPLE CNT /100ML 10 FWSADP FECAL STREPCUS ×01 170 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 FSMF LAT: 42 SAMPLE 40127 40157 40187 40107 40137 40141 40177 40207 40217 SAMPLE NUMBER 40107 40117 40127 40141 40157 40177 ARITH MEAN GEOM MEAN # SAMP IN STATISTICS 40117 40167 40207 40217 HAXIMUM MINIMUM 40137 40167 STD DEV (GEOM *) % SAMP (EXCLUDED *=INTERIM TEST-NAME: TEST-NAME: 1110 1240 1234 1140 1124 0847 1122 1124 0847 0935 1234 HOUR 1140 HOUR 1207 1122 LMT *=INTERIM YYMMDD YYMMDD 900103 900605 908006 901106 908006 SAMPLE 900506 900305 900404 200500 900006 900006 901204 900103 900206 900404 900507 900006 900006 SAMPLE 900309 9007009 DATE DATE

CONTOO

1990 WATER QUALITY DATA REGION 1

STATION ID: 04-0027-011-02 B.O.W./ SITE: BROWN CREEK SAMPLE POINT: FIRST CONCESSION SOUTH OF WATFORD STATION TYPE: RIVER FLOW GAUGE FED OSGAIOS

PSEE PARENTE	LAT: 42 55 50,68 LONG: 001 52 06.09
NICKEL TOTAL NOZ-N NOZ-N K'DAHL N LEAD NOZ-N N	FWSTRC
AS NI	STRFAM
0.021 0.506 0.620 17.700 2.600 1.40 0.009<4 0.118 0.177 8.191 1.550 1.17 0.006<4 0.049 0.136 7.233 1.462 1.15 0.006<4 0.147 0.159 4.166 0.541 0.33 0.006<4 0.147 0.159 4.166 0.561 0.33 0.006<4 0.147 0.159 4.166 0.561 0.33 0.006<4 0.147 0.159 4.166 0.561 0.33 0.006<4 0.147 0.159 4.166 0.561 0.33 0.007 0.031 0.33 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007	
0.009 0.009 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 	25.0
0.007 0.005 0.006 0.006 0.006 0.107 0.006 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.107 0.108 0.108 0.108 0.108 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.103 0.109 0.103 0.109 0.103 0.103 0.103 0.1040 0.103 0.103 0.103 0.1040 0.103 0.103 0.103 0.1040 0.1039 0.1033 0.1034 0.1033 0.1033 0.1033 	.6
December	3.5
10 11 11 11 11 11 11 11	10.2
PSAHF PSEUDONN AERUG. AINTERIOR ONF.REAC CMT PARTIC. AS SO4 UR FTU MG/L MG/L AS SO4 4 48.9 77.500 4 4 88.9 77.500 4 6 5.000 4 6 55.4 57.000 6 6 6 57.000 12 6 5.6 157.00 12 157.0 12 157.0 12 157.0 12 157.0 12 157.0 105.00 0.00 0.00 0.00 0.00 0.00 0.00	11
AERUG. MF RESIDUE UNF.REAC CNT PATTIC. AS SO4 4< 48.9 4< 9.5 67.000 4< 9.5 67.000 4< 9.5 67.000 64 65.4 55.4 55.000 65.000 67.000 68.6 67.000 69.000 60.0000 60.000 60.0000 60.0000 60.00	PP04UR PPUT
CNIT PARTIC. MG/L TURB.TTY ONF 4	DO4 PHOSPHOR UNF.REAC UNF.TOT.
48.9 77.500 0.0 13.9 64.500 0.0 40.2 45.000 0.0 67.000 0.0 63.6 57.000 0.0 63.6 57.000 0.0 157.0 35.500 0.0 157.0 26.500 0.0 157.0 77.500 105.00 0.0 68.5 51.909 105.00 0.0 68.5 51.909 105.00 0.0 68.5 51.909 105.00 0.0 68.5 51.909 105.00 0.0 68.5 51.909 105.00 0.0 68.5 51.909 105.00 0.0 68.5 51.909 105.00 0.0 68.5 51.909 105.00 0.0 68.5 11.2 49.391 105.00 0.0	
40.5 67.000 40.2 64.500 40.2 64.500 40.2 64.500 63.6 67.000 63.6 67.500 63.8 67.500 63.8 67.500 126.0 26.500 107.0 33.500 107.0 33.500 107.0 105.00 68.5 51.909 105.00 68.7 16.326 10 11 11	0.110 0.206
40.2 45.000 40.2 45.000 63.6 57.000 63.6 57.500 63.8 44.000 157.0 35.500 107.0 35.500 107.0 33.500 107.0 77.500 68.5 51.909 51.2 49.391 10.300 47.7 16.326 10.300 11.300	
40.2 45.000 63.6 57.000 63.6 57.500 63.8 44.000 157.0 35.500 107.0 33.500 105.00 168.5 51.909 105.00 51.2 49.301 68.5 51.909 105.00 68.5 51.909 105.00 68.7 16.326 105.00 47.7 16.326 10	
55.4 67.000 63.6 57.000 63.8 64.000 157.0 35.500 107.0 33.500 105.00 157.0 77.500 105.00 64.5 51.909 105.00 51.2 6.500 105.00 647.7 16.326 105.00	0.129 0.205
63.6 57.500 63.8 64.000 157.0 35.500 107.0 33.500 107.0 77.500 105.00 68.5 51.909 51.2 49.391 9.5 26.500 105.00 47.7 16.326 10 10 1	
63.8 44.000 157.0 35.500 107.0 33.500 107.0 77.500 105.00 68.5 51.909 105.00 51.2 49.391 67.7 16.326 10 11 1	0.043 0.156
157.0 35.500 126.0 26.500 107.0 33.500 105.00 157.0 77.500 105.00 68.5 51.999 105.00 51.2 49.391 9.5 26.500 105.00 47.7 16.326 10 11 1	
126.0 26.500 107.0 33.500 105.00 157.0 77.500 105.00 68.5 51.909 105.00 51.2 49.391 9.5 26.500 105.00 47.7 16.326 10 11 1	
107.0 33.500 105.00 157.0 77.500 105.00 68.5 51.999 105.00 51.2 49.391 105.00 9.5 26.500 105.00 47.7 16.326 1	
157.0 77.500 105.00 68.5 51.909 105.00 51.2 49.391 105.00 9.5 26.500 105.00 47.7 16.326 1	0.246 0.375
68.5 51.909 105.00 51.2 49.391 105.00 9.5 26.500 105.00 47.7 16.326 1	0.440 0.725
51.2 49.391 51.2 49.391 9.5 26.500 105.00 47.7 16.326 10 11 1	0.117 0.233
9.5 26.500 105.00 47.7 16.326 1 1 1	
47.7 16.326 103.00 10 11 1	
10 11 1 1	125
63	11

STATION ID: 04-0027-012-02

199 B.O.W./ SITE: SYDENHAM RIVER SAMPLE POINT: 1ST.CONC.NORTH OF ALVINSTON

20AID 40AID MG/L 0.009<T 0.005<W FECAL CNT AS PB COLIFORM /100ML LEAD JNF. TOT. 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 97.041 10 100< 2980 110 110 170 400 6500 1000 6500 20 20 PBUT STORET CODE: DISTANCE: MG/L UG/L AS PB DISOLVED OXYGEN .TOT. AS 13.0 13.0 9.5 8.8 6.0 4.9 0.9 0.95 PBUT 1.50 20 UNF 0.0150 0.0042<A 0.0034<A 0.0010 0.0038<A 0.0023<T 0.0026<T 0.0010<T 0.0030 0.0024<T MG/L AS N MG/L D 0.0039<T K'DAHL N JNF . REAC COPPER UNF. TOT. NNTKUR 0.0150 1.270 0.970 0.940 0.730 0.800 0.910 TOTAL 0.890 0.890 REGION: 01 UNF.REAC MG/L AS N COND25 JMHO/CM AT 25 C NNOSUR N03-N CONDUCT 757.0 657.0 627.0 632.0 641.0 614.0 632.0 656.0 539.0 757.0 618.6 443.0 78.4 12 6.900 10.900 4.100 5.600 5.600 6.100 6.100 U T M: 17 0430400.0 4742200.0 4 MG/L AS N AS CL CLIDUR CHLORIDE UNF . REAC MG/L NNO2UR N02-N JNF. REAC 26.700 31.700 27.500 0.060 0.090 54.000 33.100 36.100 27.800 27.100 54,000 31.257 23.100 7.855 0.100 0.020 31.200 31.000 TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS 0 MG/L AS N BOD 5 DAY JNF . REAC FOT . DEM. NNHTUR NH3-N TOTAL 0.001< BODS 0.112 0.189 0.502 0.024 0.053 0.004 0.004 2.86 2.86 2.86 0.009 MG/L 0.001<W AS AS 0.001 0.000<A 0.001<W 0,001<W 0.001<W 0.001<W D.001<A **LEMP** DEG.C 0.001<W 0.001<W 0.002<T 0.001<A ARSENIC UNF. TOT. **FWTEMP** 0.1 1.0 7.0 12.0 12.0 24.0 26.0 2.3 20.0 15.0 ASUT 0.002 UG/L 1.22<A 0.78 COND. ARSENIC 1.34<A STREAM UNF. TOT. 0.78<T FWSTRC LONG: 081 51 05,56 ASUT 1.90 STATION TYPE: RIVER FLOW GAUGE FED 02GG002 60AID 90AID 20AID 10AID CNT /100ML FGPR0J PROJECT SUB-PROJ CODE STREPCUS FECAL 240 14000 1000 130 0101 0101 0101 FSMF 1010 0101 0101 0101 0101 0101 LAT: 42 49 52.09 DEPTH UNF.TOT. MG/L AS FE FWSADP SAMPLE IRON 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.440 0.440 0.350 0.560 0.500 2.000 2.900 FEUT 12 SAMPLE 40178 40198 SAMPLE 40108 40138 40142 40158 40168 40198 40208 40118 40128 40142 40158 40188 NUMBER 40128 40178 40188 40218 MAXIMUM ARITH MEAN GEOM MEAN MINIMIN SAMP IN STATISTICS 40108 40138 40168 40218 40118 STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 1135 0910 1210 1200 1135 1210 1215 1012 0958 1247 1250 1215 1218 1200 1200 HOUR 1218 1200 1012 LMT LMT *=INTERIM YYMINDD 901004 900404 900006 900006 900006 YYMMDD 900103 900206 900306 900404 900507 900605 9007009 908006 900905 901004 901106 900103 900206 900305 900507 900706 SAMPLE SAMPLE DATE DATE

(CONID)

B.O.W./ SITE: SYDENHAM RIVER SAMPLE POINT: 1ST.CONC.NORTH OF ALVINSTON STATION TYPE: RIVER FLOW GAUGE FED 02GG002

STATION ID: 04-0027-012-02

LEAD AS PB 0.001<A 0.005<A 0.005<A MG/L 97.041 UNF. TOT. 0.005 2980 PBUT STORET CODE: DISTANCE: AS PB LEAD UNF. TOT. UG/L 1.50 1.22 1.19 0.95 0.39 PBUT 0.0056 0.0020<T 0.0040 MG/L AS N K'DAHL N JNF . REAC ZINC 0.0053<A 0.0012 0.0127<A MG/L NNTKUR 0.0089<A UNF. TOT. AS ZN 1.026 0.730 0.486 2.550 0.0041 0.0080 TOTAL ZNUT 0.0062 0.0033 0,0050 0,0460 0.0120 0,0460 REGION: 01 MG/L AS N NNO3UR N03-N UNF. REAC SSO4UR SULPHATE UNF. REAC MG/L AS S04 5.892 5.499 3.200 2.327 77.500 64.500 56.000 69.000 56.000 55.500 45.500 0.900 60,000 57,909 56.375 U T M: 17 0430400.0 4742200.0 4 AS N N02-N NNO2UR UNF. REAC MG/L MG/L RESIDUE PARTIC. 0.160 0.066 0.052 0.020 0.047 38.6 14.2 40.2 21.5 18.5 70.8 82.4 47.9 52.5 244.0 108.0 244.0 65.4 48.2 14.2 62.5 RSP TERM STREAM: SYDENHAM RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE NNHTUR NH3-N TOTAL UNF. REAC MG/L z ¥ CNT PSEUDOMN /100ML PSAMF AERUG. >4 >5 >5 0.094 0.004 0.502 4 4 4 5 4 72 11 MG/L AS P **FWTEMP** TEMP DEG.C WATER PHOSPHOR UNF. TOT. 24.0 8.6 3.3 0.1 8.8 0.065 0.126 PPUT 0.112 0.054 0.138 0.111 0.155 0.930 0.181 0.147 0.930 MG/L AS P STREAM P04 FWSTRC PP04UR UNF. REAC LAT: 42 49 52.09 LONG: 081 51 05.56 COND 0.129 0.013 0.080 0.059 0.013 0.083 0.000 0.042 0.051 0.050 0.056 0.059 0.059 0.035 0.330 FECAL STREPCUS MF PHENOLS UNF-REAC 1/9n /100ML PHENOL 8 PHNOL 4.899 1.500 10.253 FSMF 1572 10 10 141 14000 1.500 16.000 8.750 0000.9 IRON MG/L AS FE Hd UNF. TOT. FEUT 2.031 1.074 3.099 7.97 8.06 8.23 8.03 8.21 8.12 7.42 8.05 8.23 8.04 3.05 8.23 11,000 Hd SAMPLE NUMBER GEOM MEAN MINIMUM 40142 40168 40198 40218 MAXIMUM ARITH MEAN STD DEV (GEOM *) # SAMP IN STATISTICS SAMPLE NUMBER 40108 40118 40128 40138 40158 40178 40188 40208 MAXIMUM ARITH MEAN GEOM MEAN HINIHUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: HOUR 1135 1218 1200 1210 1215 1315 1200 1012 0958 1247 HOUR 901204 1250 LMI YYHINDD LMT *=INTERIM 900103 901106 YYIIIDD 900006 SAMPLE SAMPLE 900305 900006 900507 900605 900709 908006 506006 901004 DATE DATE

STATION ID: 04-0027-014-02

B.O.W./ SITE: BEAR CREEK SAMPLE POINT: NEXT BRIDGE UPSTR AT FED GAUGE STATION TYPE: BIVER

DE: 02 003 2980		FWSTRC		STREAM	COND.	4	4	м		٥	يا م	n 4	. 4	9 10	n M								PSAME	PSEUDOMN	AERUG.	MF	CNT		>4	>4	4 <		>4	4	c -	20	400	160
STORET CODE:		FSMF	FECAL	CNT	/100ML	390	60AID	120	70440	DIADO	CONTR	552	370		4300		4300	738	222	30	ν *		PPUT		PHOSPHOR	UNF. TOT.	MG/L AS P		0.158	0.060	0.118	0.109	0.112	0.108	0.112	0.136	0.600	0.222
	01	FCMF	FECAL	CNT	TOOLI	220	SOAID	130	70410	Na Andrea	5	1500	490	0069	1000		0059	1103	308	200	* o		PPO4UR		P04	UNF . REAC	AS P		0.094	0.045	0.067	0.039	2000	0.023	0.040	0.067	0.350	0.094
	REGION: 01	DQ	DISOLVED	MG/L AG/L	2							0.9				•	0.0	0.9	9	0.0	1		PHNOL		PHENOLS	UNF-REAC	PHENOL		4.500	4.000	1.500	1.000	1.000		1.000<	2.500	13.500	1,000<
(ES E RIVER	4750700.0 4	COND25	CONDUCT.	UMHO/CM AT 25 C		1265.0	625.0	645.0	698.0	672.0	732.0	479.0	568.0	0.965	580.0	1007.0	0.5031	681.6	479.0	211.6	11		Н				Н	;	7.00	7 90	A 17	22.8	8.01	8.04	7.78	7.90	7.47	8.05
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SYDENHAM RIVER	U T M: 17 0310050.0 4750700.0 4	CLIDUR	CHLORIDE	MG/L AS CL	200000	67 800	36.300	39,900	45.400	40.700	36.900	37.900	49.800	35.300	23.100	000 07	77.000	36.255	20.000	9.253	11		NNTKUR	K'DAHL N	INE DEAC	MG/1	AS N	1 550	0.830	1.040	0.900	1.070	1.000	0.930	0.980	1.060	2.200	1.280
MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	BODS	5 DAY TOT.DEM.	MG/L AS 0	24	1.20	1.13	2.46	3.06	2.16	2.08	4.62	1.40			6.62	2 40	2.17	1.13	1.16	6		NNO3UR	107	INE DEAL	MG/L	AS N	6.100	8.600	8,700	8.300	7.600	000.9	10.100	0.800	0.800	000.9	2,600
	19 33.86	ALKT	ALK TOTAL	MG/L AS CACO3	187 0	215.0	180.0	182.0	206.0	200.0	222.0	136.0	157.0	145.0	207.0	222.0	185.2	183.0	136.0	28.7	11		NNO2UR	M-COM	UNF REAC	HG/L	AS N	0.080	0.050	0.050	0.100	0.080	090.0	0.050	0.030	0.030	0.160	0.090
	LONG: 083 19 33.86	FGPR0J	PROJECT	SUB-PROJ CODE	0101	0101	0101	0101	0101	0101	0101	0101	1010	0101	1010								NNHTUR	TOTAL	UNF . REAC	MG/L	AS N	0.563	0.135	0.200	600.0	0.081	0.054	0.005	0.007	0.010	0.030	0.019
	LAT: 42 53 13.96	FWSADP	SAMPLE	DEPTH	0,30	0.30	0.30	0.30	0.30	0.30	0.30	0.50	0.00	0.50	05.0	0.30	0.30		0.30	;	11		FWTEMP		WATER	TEMP	DEG.C	1.0	1.0	1.0	7.0	16.0	18.0	24.0	23.0	2 0	2 6	1
E: RIVER	LAT: 4	ST-NAME:		SAMPLE	40105	40115	40125	40135	40148	40155	40105	401/3	20202	40203	770	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	Z SAMP (EXCLINED)	LACTORED	ST-NAME:			SAMPLE	NUMBER	40105	40115	40125	40135	40148	40155	40165	401/5	40205	40215	
STATION TYPE: RIVER		*=INTERIM TEST-NAME	113	DATE HOUR				900404 0943	900507 1237			900905 1400					A			STD DEV	# SAMP IN STATISTICS		*=INTERIM TEST-NAME:		ш		YYMMDD LMT				_	900507 1237	90000 0020					

STATION ID: 04-0027-014-02

B.O.W./ SITE: BEAR CREEK SAMPLE POINT: NEXT BRIDGE UPSTR AT FED GAUGE

STATION TYPE: RIVER

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE

CMT /100ML PSEUDOMN AERUG. PSAMF 002 STORET CODE: MG/L AS P PHOSPHOR UNF. TOT. PPUT P04 MG/L AS P PP04UR UNF. REAC REGION: 01 PHENOLS UNF-REAC UG/L PHENOL PHNOL U T M: 17 0310050.0 4750700.0 4 PH TERM STREAM: SYDENHAM RIVER K'DAHL N TOTAL MG/L AS N NNTKUR UNF. REAC AS N NNOSUR N03-N UNF. REAC MG/L N02-N MG/L AS N NN02UR UNF. REAC LAT: 42 53 13.96 LONG: 083 19 33.86 MG/L AS N NNHTUR NH3-N TOTAL UNF. REAC TEMP FWTEMP WATER DEG.C SAMPLE *=INTERIM TEST-NAME: HOUR **УУНИВВ ЦИТ** SAMPLE DATE

0.350 0.055 0.011 0.098 13.500 1.000 20 4 8.27 7.94 7.93 7.47 0.22 1.121 0.830 0.397 2.200 1.168 FURB'ITY FTU 10.100 6.236 4.882 0.800 3.039 TURB 113.00 MG/L SS04UR SULPHATE AS 504 UNF. REAC 0.160 0.071 0.063 0.030 0.038 78.000 72.500 97.500 59.500 50.000 50,500 48,000 RESIDUE MG/L PARTIC. 0.033 44.7 19.4 49.2 63.8 57.6 70.1 97.6 73.7 103.0 0.101 0.563 RSP FILTERED RESIDUE MG/L 406.0 464.8 440.2 437.0 476.0 24.0 10.7 5.5 1.0 9.8 711.0 368.0 425.0 311.0 RSF SAMPLE 40125 40155 40185 ARITH MEAN GEOM MEAN STD DEV (GEOM *) 40148 MAXIMUM MINIMUM # SAMP IN STATISTICS % SAMP (EXCLUDED) 40105 40115 40135 40165 40175 40205 40215 TEST-NAME: 1400 HOUR 1033 1029 1237 9560 0001 1015 1100 900103 1208 YYMYDD LMT *=INTERIM 901106 900006 901204 SAMPLE 900308 900404 900006 908006 900507 900006 306006

113.00

97.500 62,900 37.500

711.0 435.4 102.4

MAXIMUM GEOM MEAN

ARITH MEAN HINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)

113.00

60.607 18.176

179.0 71.3 60.4 19.4 44.1 4

10 4

40 4

0.600 0.175 0.144 0.060 0.148

B.O.W./ SITE: HICKORY CREEK
SARELL CORRESS OF TABLED IN TABLED IN TROPES OF FOREST STATION LYPE: RIVER

E: 02 002 0100	8.529	FSMF	STREPCUS	AF.	/100ML	130	10<	70AID		055	140	06	552	220	BOOODID	2100	8000	1305		70		er ;	10	PHNOL		INF-PFAC	1/90	PHENOL	1.500										
STORET CODE:	DISTANCE:	FCMF	COLIFORM	HE C	/100ML	110	90AID	210		140	360	290	1500	009	1400	1200	1500	590	368	06	**	10		Ħ				Hd	7.91	8.06	8.02	8.11	8.33	8.12	8.24	7.77	8.16	7.38	16.1
	01	DO	DISOLVED	OXYGEN	AS O		7.0	12.0	13.0	18.5	12.0	0.6	10.0	14.0	14.0	0.6	18.5	11.8	11.4	7.0	w.	10		PBUT		UNF. TOT.	MG/L	AS PB	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<t< td=""><td>U. 000 N</td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<t< td=""><td>U. 000 N</td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td></td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<t< td=""><td>U. 000 N</td></t<></td></w<></td></w<></td></w<></td></w<></td></w<>		0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<t< td=""><td>U. 000 N</td></t<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<t< td=""><td>U. 000 N</td></t<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td></td><td>0.005<w< td=""><td>0.006<t< td=""><td>U. 000 N</td></t<></td></w<></td></w<>		0.005 <w< td=""><td>0.006<t< td=""><td>U. 000 N</td></t<></td></w<>	0.006 <t< td=""><td>U. 000 N</td></t<>	U. 000 N
	REGION: 01	CUUT	COPPER	UNF.TOT.	AS CU	0.0057	0.0032	0.0038	0,0022 <t< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.0040</td><td>0.0051</td><td>0.0000</td><td>0.0120</td><td>0.0050</td><td>0.0120</td><td>0.0047<a< td=""><td>0.0042<a< td=""><td>0.0020</td><td>0.0027<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>UG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.65</td><td></td><td></td><td></td><td>2.80</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0040</td><td>0.0040</td><td>0.0051</td><td>0.0000</td><td>0.0120</td><td>0.0050</td><td>0.0120</td><td>0.0047<a< td=""><td>0.0042<a< td=""><td>0.0020</td><td>0.0027<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>UG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.65</td><td></td><td></td><td></td><td>2.80</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></t<>	0.0040	0.0040	0.0051	0.0000	0.0120	0.0050	0.0120	0.0047 <a< td=""><td>0.0042<a< td=""><td>0.0020</td><td>0.0027<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>UG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.65</td><td></td><td></td><td></td><td>2.80</td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.0042 <a< td=""><td>0.0020</td><td>0.0027<a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>UG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.65</td><td></td><td></td><td></td><td>2.80</td><td></td><td></td><td></td></a<></td></a<>	0.0020	0.0027 <a< td=""><td>11</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>UG/L</td><td>AS PB</td><td></td><td></td><td></td><td>0.65</td><td></td><td></td><td></td><td>2.80</td><td></td><td></td><td></td></a<>	11		PBUT	LEAD	UNF. TOT.	UG/L	AS PB				0.65				2.80			
CES ON CREEK	4772325.0 4	COND25	CONDUCT.	250	AT 25 C	858.0	884.0	721.0	0.449	744.0	722.0	747.0	1005.0	677.0	522.0	610.0	1005.0	739.5	728.4	522.0	135.4	11		NNTKUR	K'DAHL N	UNF . REAC	MG/L	AS N	1.240	0.910	0.770	0.940	6.050	1.180	0.660	1.080	1.760	2.300	7
HAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: HICKORY CREEK	U T M: 17 0416010.0 4772325.0 4	CLIDUR	CHLORIDE	UNF . REAC	AS CL	115.000	91.800	52.500	35.700	67.000	55.800	62.100	197.000	90.300	21.700	35.700	197.000	77.691	68.298	35.700	46.538	11		NNOSUR	N-ZUN	UNF. REAC	MG/L	AS N	11.200	12,300	13.100	14.800	9.100	12.700	17.100	1.500	0.100	9.000	
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	8005	5 DAY	IOI.DEM.	AS 0	2.41	1.76	1.09	2.56	15.30	98.0	1.58	> 0.05	2.08			15.30	3.43		0.84		z	11	NNOZUR	N-CON	UNF . REAC	MG/L	AS N	0.190	0.060	0.050	0.000	1.610	0.290	0.150	0.000	0.190	0.110	
	01 55.58	ALKT	ALK	MG/1	AS CACO3	177.0	218.0	192.0	176.0	182.0	1/8.0	168.0	164.0	155.0	147.0	201.0	218.0	178.0	177.0	147.0	50.3	11		NNHTUR	TOTA!	UNF. REAC	MG/L	AS N	0.033	0.180	0.036	0.028	0.100<	0.362	0.043	0.027	0.172	0.012	
	LONG: 082 01 55.58	FGPROJ	1000	SUB-PRO.1	CODE	0101	0101	0101	0101	0101	0101	0101	0101	0101	1010	0101								FWTEMP		WATER	TEMP	DEG.C	1.0	1.0	1.0	0.7	17.0	18.0	24.0	23.0	0.42	2.0	
	LAT: 43 06 03.35	FWSADP	PAUDIC	DEPTH	Ε	0.30	0.30	0.30	0.50	0.50	0.50	0.50	0.50	0.30	0.50	0.30	0.30	0.30		0.30	11	1		FWSTRC			STREAM	COND.	4	MI	۱ ۲۰	M	۰ م	9 ,	9 ,	0 1	4 0	0 100	
RIVER	LAT: 4	ST-NAME:		SAMPLE	NUMBER	40106	40116	40126	40156	40149	40156	40100	401/0	40186	40204	40216	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM CTD DEV (CEOM x)	TATICTICS	Z SAMP (EXCLUDED)		ST-NAME:			SAMPLE	NUMBER	40106	40116	40126	40136	66106	40156	40166	401/6	40106	40206	
STATION LYPE: RIVER		*=INTERIM TEST-NAME:	10000	DATE HOUR	_				900404 1056					901106 1450		901204 1145		4		ern nev	# SAMP IN STATISTICS	X SAMP		*=INTERIM TEST-NAME:		ш	DATE HOUR	YYMNDD LMI		900206 1109		900404 1036			900/04 1050	900906 1620			

	002	8.529	PHNOL	PHENOLS UNF-REAC	PHENOL	1.500	1.500	1.500	1																			
STATION ID: 08-0010-001-02	STORET CODE:	DISTANCE:	Н	2	Н	8.33	8.01	7.38	0.26																			
TION ID: 08		01	PBUT	LEAD UNF.TOT.	AS PB	900.0	0.005 <a< td=""><td>0.005</td><td>0.000<a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.000 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>																			
STA		REGION: 01	PBUT	LEAD UNF.TOT.	AS PB	2.80	1.35	0.65	2 2																			
	ES IN REEK	772325.0 4	NNTKUR K'DAHI N	TOTAL UNF.REAC	AS N	6.050	1.326	0.660	11	ZNUT	ZINC	MG/L AS ZN	0.0200	0.0068	0.0061	0.0068	0.0040	0.0030	0.0012	0.0080	0.0280	0.0160	0.0280	0.0097	0.0070	0.0012	11	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: HICKORY CREEK	U T M: 17 0416010.0 4772325.0 4	NNO3UR	NO3-N UNF.REAC	AS N	17.100	6.252	0.100	11	TURB		TURB'ITY FTU										104.00	104.00	104.00		104.00	1	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNO2UR	NO2-N UNF.REAC	AS N	1.610	0.144	0.050	11	RSP	RESIDUE	PARTIC.	118.0	21.5	20.3	48.1	40.4	21.6	95.1	62.1	131.0	119.0	131.0	6.99	51.8	20.3	11	
1.0F FOREST		01 55.58	NNHTUR NH3-N	TOTAL UNF.REAC	AS N	0.362	1010	0.012	10	PSAME	AERUG.	CNT /100ML	16	>4	4		ا ا ا	>4	12	28	144C	58	144	33	,	\$	7	30
NO.14 DNSTR		LONG: 082 01 55.58	FWTEMP	WATER	DEG.C	24.0	3.7	10.3	11	PPUT	PHOSPHOR UNF. TOT.	MG/L AS P	0.216	0.089	0.081	0.110	0.158	0.037	0.154	0,118	0.465	0.232	0.770	0.221	0.158	0.03/	11	
CREEK TON TWP.RD.		LAT: 43 06 03.35	FWSTRC	STREAM	COND.					PPO4UR	PO4 UNF. REAC	MG/L AS P	0.077	0.065	0.048	0.053	0.039	0.008	0.028	0.025	0.230	0.099	0.330	0.091	0.057	0.008	11	
B.O.W./ SITE: HICKORY CREEK SAMPLE POINT: AT PLYMPTON TWP.RD.NO.14 DNSTR.OF FOREST	E: RIVER	LAT: 4	TEST-NAME:	SAMPLE	NUMBER	MAXIMUM ARTH MEAN	GEOM MEAN	SID DEV (CEDM #)	# SAMP IN STATISTICS	EST-NAME:		SAMPLE	40106	40116	40126	40136	40156	40166	40176	40186	40206	40216	MAXIMUM	ARITH MEAN	GEUM MEAN	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SIT SAMPLE POIN	STATION TYPE:		*=INTERIM T	SAMPLE DATE HOUR	9			STD DE	# SAMP IN	*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR YYMHDD LMT	900103 1240			900404 1036						901204 1145				STD DE	# SANP IN	% SAMP

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: THE CUT AUSABLE RIVER SAMPLE POINT: AT LAMPTON CO.ROAD NO.18 STATION TYPE: RIVER

MG/L AS 0 12,069 DISOLVED OXYGEN 13.0 8.50 14.5 10.50 11.50 14.0 9.0 90 STORET CODE: DISTANCE: 0.0005<W COPPER 0.0012<T MG/L AS CU 0.0025<T 0.0022<T 0.0024<T 0.0023<T 0.0023<T UNF. TOT. 0.0024<T 0.0005<W 0.0020<T 0.0028 0.0040 CUUT 0.000.0 0.0029 0.0026 0.0059 0.0030 0.0030 0.0030 0.0030 0.0030 0,0000 0.0050 0.0040 0.0030 0.0040 0.0050 0.0030 0.0050 0.0050 0.0050 0,0060 0.0000 0.0040 25C UMHO/CM AT 25 C COND25 CONDUCT. 520 375 536 550 595 989 552 548 538 540 610 009 5530 552 552 552 552 566 545 514 473 563 528 542 520 520 528 984 0 REGION: MG/L CLIDUR UNF . REAC CHLORIDE AS CL 19,600 17.300 23.600 25.500 24.400 24.600 d MG/L 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0004<T 0.0002<W 0.0002<W 0.0003<T CADMIUM AS CD D.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W U T M: 17 0433800.0 4782350.0 JNF. TOT. 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W D.0003<T 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0003<T TERM STREAM: AUSABLE RIVER CUT CDUT 1AJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON 0.001<W CCNAUR CYANIDE UNF . REAC AVAIL MG/L AS HCN 0.001<W 0.001<W 0.001<W 0.002<T 0.001<W 0.001<W 0.001<W ARSENIC MG/L JNF. TOT. 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W ASUT CACO3 TOTAL MG/L LAT: 43 11 34.66 LONG: 081 48 52.98 106.0 208.0 200.8 227.8 224.0 209.0 117.4 183.0 221.9 215.9 212.3 214.2 233.8 201.9 204.8 200.0 206.0 207.6 197.2 164.0 182.4 208.5 181.8 233.0 194.0 206.7 245.8 249.7 202.1 201.9 214.6 FGPROJ SUB-PROJ CODE PROJECT 0103 0103 1010 0103 0103 0103 0103 0103 0103 0103 0103 0103 0101 0103 0103 0101 0103 0103 0101 0103 0103 0103 0103 0103 0103 0103 SAMPLE DEPTH M FWSADP 32839 37549 SAMPLE NUMBER 32836 32837 37523 32838 32840 32842 32843 32844 32846 32848 32850 37536 32845 32847 37575 32852 32853 32854 37588 32855 32856 32857 32858 32859 37601 32860 32826 32863 37614 32861 32864 32866 32841 32867 *=INTERIM TEST-NAME: HOUR 0925 1415 1640 1615 1805 0945 1500 1625 1100 1430 1515 1845 1930 1840 1015 515 2030 0960 1800 810 1930 520 1645 0930 1015 1710 1745 1920 1445 YYMMDD LMT 900120 900515 900206 900318 900408 900415 900006 SAMPLE 900213 900312 900325 900402 900410 900422 900429 900513 900610 900527 509006 900624 900710 900722 900729 900611 900617 900702 900006 900716 908006 900812 900814 900819 900826 900903 606006 900915 900917 01008 DATE

S S					TERM STREAM: AUSABLE RIVER CUT	TERM STREAM: AUSABLE RI	RIVER CUT				0180
TEST-	LAT: 43	LAT: 43 11 34.66	LONG: 081 48 52.98	48 52.98	U T M: 17	0433800.0	U T M: 17 0433800.0 4782350.0 4	REGION: 01	10	DISTANCE:	12.069
	AME:	FWSADP	FGPROJ	ALKT	ASUT	CVANTDE	CDUT	CLIDUR	COND25	CUUT	00
	SAMPLE	SAMPLE DEPTH M	PROJECT SUB-PROJ CODE	ALK TOTAL MG/L AS CACO3	ARSENIC UNF.TOT. MG/L AS AS	AVAIL UNF.REAC MG/L AS HCN	CADMIUM UNF.TOT. MG/L AS CD	CHLORIDE UNF.REAC MG/L AS CL	CONDUCT. 25C UMHO/CM AT 25 C	COPPER UNF.TOT. MG/L AS CU	DISOLVED OXYGEN MG/L AS O
0925 1645 1745	32868 37627 32869 32870	0.30 0.30 0.30 0.30	0103 0101 0103 0103	262.0 275.0 263.8 294.4	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w 0.0002<w 0.0002<w 0.0002<w< td=""><td>18.500</td><td>578 637.0 582 657</td><td>0,0010<t 0,0060 0,0030 0,0040</t </td><td>4.0</td></w<></w </w </w </td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w 0.0002<w 0.0002<w 0.0002<w< td=""><td>18.500</td><td>578 637.0 582 657</td><td>0,0010<t 0,0060 0,0030 0,0040</t </td><td>4.0</td></w<></w </w </w </td></w<>	0.0002 <w 0.0002<w 0.0002<w 0.0002<w< td=""><td>18.500</td><td>578 637.0 582 657</td><td>0,0010<t 0,0060 0,0030 0,0040</t </td><td>4.0</td></w<></w </w </w 	18.500	578 637.0 582 657	0,0010 <t 0,0060 0,0030 0,0040</t 	4.0
	32873 32873 32874	0.30	0101 0103 0103	283.0 291.6 278.6	0.001 <w< td=""><td>0.001<w< td=""><td>0.0002<w 0.0002<w 0.0002<w< td=""><td>21.400</td><td>664.0 663 630</td><td>0.0060</td><td>6.5</td></w<></w </w </td></w<></td></w<>	0.001 <w< td=""><td>0.0002<w 0.0002<w 0.0002<w< td=""><td>21.400</td><td>664.0 663 630</td><td>0.0060</td><td>6.5</td></w<></w </w </td></w<>	0.0002 <w 0.0002<w 0.0002<w< td=""><td>21.400</td><td>664.0 663 630</td><td>0.0060</td><td>6.5</td></w<></w </w 	21.400	664.0 663 630	0.0060	6.5
HAXINUM ARITH HEAN GEON HEAN HITHINUM SID DEV (GEON *) # SAHP IN SYATISTICS % SAHP (EXCLUDED)	MAXIMUM ARITH MEAN GEON MEAN MINIMUM V (GEOM *) STATISTICS	0.30 0.30 0.30		297.5 221.4 217.3 106.0 41.3	0.001 0.001 <a 0.001<a 0.001 0.000</a </a 	0,002 0,001 <a 0,001<a 0,001 0,000</a </a 	0.0004 0.0002 <a 0.0002<a 0.0002 48</a </a 	27.500 22.489 22.244 17.300 3,462 9	664.0 558 554 341 66	0.0100 0.0039 <a 0.0034<a 0.0005 0.0018<a< td=""><td>14.5 10.5 4.0 3.5</td></a<></a </a 	14.5 10.5 4.0 3.5
*=INTERIM TEST-NAME: SAMPLE DATE HOUR SAMPL YYMMDD LMT NUMBE	mе	FCMF FECAL COLIFORM MF CNT /100ML	FEUT IRON UNF.TOT. MG/L AS FE	FSMF FECAL STREPCUS MF CNT /100ML	FWSTRC STREAM COND.	FWTEMP WATER TEMP DEG.C	HGUT MERCURY UNF.TOT. UG/L AS HG	NNHTUR NH3-N TOTAL UNF.REAC MG/L AS N	NNOTFR NO2+NO3N FIL.REAC HG/L AS N	NNO2FR NO2-N FIL,REAC MG/L AS N	NNO2UR NO2-N UNF.REAC MG/L AS N
1045 1605 1055 1100 1700 1430	32836 32837 37523 37536 32838 32838 32839	180 400AID	0.670	190	9 9	3.5.5	0.02 0.02 0.02 0.02 0.04 0.04 0.02 0.0	0.004	3.630 9.500 7.680 8.760 7.100	0.0670 0.0300 0.0380 0.0460 0.0230	0.120
1515 0925 1415 1845 1440 1615	32841 37549 32842 32843 32844 32846	10<	0.500	20AID	٠	6.5	0,02 kW 0,02 kW 0,02 kW 0,02 kW 0,02 kW 0,02 kW	0.010	8.200 8.400 7.650 6.500 4.790	0.0250 0.0380 0.0330 0.0420 0.0280	0.030
1500	37562	230	0.540	30AID	9	14.5	NO DATAISS 0.02 <w< td=""><td>0.029</td><td>17.700</td><td>0.4900</td><td>0.040</td></w<>	0.029	17.700	0.4900	0.040

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: THE CUT AUSABLE RIVER SAMPLE POINT: AT LAMPTON CO.ROAD NO.18

MG/L AS N JNF . REAC 12.069 NNO2UR N02-N 0.040 0.020 0.052 0.020 0.045 0180 0.000 0.000 0.020 990.0 STORET CODE: DISTANCE: N02-N MG/L AS N NNOZFR FIL. REAC 0.0420 0,0160 0.0220 0.0360 0.0260 0.0230 0.0300 0.0510 0.0250 0.0670 0.1120 0.0220 0.0230 0,0180 0.0220 0.0650 0.1000 0.0360 0.0240 0.0320 0.0170 0.0270 0.0220 0.4900 0.0481 0.0344 0.0160 0.0766 MG/L NNOTFR N02+N03N FIL. REAC 1.810 6.439 1.810 3.055 7.750 4.740 4.840 4.050 8.070 9.150 8.850 6.400 069.4 4.270 6.000 6.700 6.700 6.640 6.470 15.400 5.930 966.9 5.700 0 REGION: NH3-N TOTAL UNF.REAC MG/L NNHTUR 0.032 0.004 0.050 9 0.052 0.019 0.080 0.050 0.073 0.037 4 0.02<W 0.02<A 0.02<A 0.02 0.02 0.00<A 0.02<W 0.02<W 0.02<W 0.02<W 0.02<W 0.02<W 0.02<W 0.02<W 0.03<T UG/L AS HG 0.02<W 0.02<W MERCURY UNF. TOT. 0,02<W 0.02<W 0.02<W 0.02<W 0.04<T U T M: 17 0433800.0 4782350.0 TERM STREAM: AUSABLE RIVER CUT HGUT MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TEMP WATER DEG.C FWTEMP 11.6 8.9 2.5 7.5 19.0 22.5 20.0 14.0 11.0 3.0 FWSTRC STREAM COND. 9 9 9 9 10AID 10 7* FECAL STREPCUS CNT /100ML LONG: 081 48 52,98 FSMF 1500 488 149 150 1500 1390 100 IRON AS FE MG/L UNF. TOT. 0.816 0.370 0.749 0.760 1.008 FEUT 0.370 0.600 1.500 0.540 2.400 LAT: 43 11 34.66 FECAL COLIFORM 분 CNT /100ML 800 FCMF 1800 150 140 498 1000 8 1800 SAMPLE 32859 32860 32861 32864 32865 37627 32848 52849 32850 37575 32851 32852 32853 32854 37588 32855 32857 32858 32863 32866 32868 32870 32873 32872 37640 32874 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED) STATION TYPE: RIVER *=INTERIM TEST-NAME: 1515 0960 1645 1015 1710 1745 HOUR 1840 1730 1945 1800 810 930 520 1920 1445 1345 415 0925 645 1205 745 LHT 900814 SAMPLE YYMMDD 900710 900716 908006 900812 900826 900903 900915 901118 901125 509006 900610 900611 900617 900624 900702 900700 900722 900729 900819 606006 900917 900922 900930 901008 901014 901015 901021 901027 901111 901113 DATE

B.O.W./ SITE: THE CUT AUSABLE RIVER SAMPLE POINT: AT LAMPTON CO.ROAD NO.18 STATION TYPE: RIVER

STORET CODE: 02 002 0180	DISTANCE: 12,069	RSF RSP	in Decimie protein	FILTERED 1		293.0	178 O	303.0	80.8	63.7	31.8	390.0	29.8	40.5	31.0	23.2	376.0	104.0	446.3		352.0	33.3	41.2	45.7	334.0 57.9	58.4	92.5	41.7	1.24	243.0 24.8		47.5	51.3	162 0	
	REGION: 01	PPUT PSAMF	PHOSPHOR AERUG	7100		0.345		>01 2650	0.105	0.131	0.048	> 9 850.0	0.059	0.058	0,047	0.030	0.041 4<	0.157	0.042	950.0	0.048	0.046	0.059	250.0	0.087	0.162	0.165	0.042	0.046	0.052	0.065	0.098	0.109	0.030	000
KES DN RIVER CUT	4782350.0 4	PPO4UR	PO4	MG/L AS P			0.057	0.184									0.011				0.004				0,020					0.011					
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: AUSABLE RIVER CUT	U T M: 17 0433800.0 4782350.0 4	PPO4FR	PO4	MG/L AS P	1	0.0555			0.0125	0.0470	0.0050		0.0000	0.0050	0,0000	0.0025	0010	0.0000	0.0075	0.0005 <w< td=""><td>1</td><td>0.0035</td><td>0.0030</td><td>0.0035</td><td></td><td>0.0780</td><td>0.0380 0.0380</td><td>0.002051</td><td>0.0010<t< td=""><td></td><td>0.0040</td><td>0.0105</td><td>0.0245</td><td>0.0880</td><td></td></t<></td></w<>	1	0.0035	0.0030	0.0035		0.0780	0.0380 0.0380	0.002051	0.0010 <t< td=""><td></td><td>0.0040</td><td>0.0105</td><td>0.0245</td><td>0.0880</td><td></td></t<>		0.0040	0.0105	0.0245	0.0880	
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	PH		PH		8.28	8.00	7.89	8.30	8.3/	8.39	8.20	8.42	8.27	8.43	8.33	8.32	8.28	8.32	8.30	8.59	69.27	8.29	8.28	8.10	8.13	8.21	8.41	8.29	8.12	8.37	8.25	8,48	8.23	
	LONG: 081 48 52,98	PBUT	LEAD UNF. TOT.	MG/L AS PB	0 00 0	0.005 <w< td=""><td>0.005<w< td=""><td>0.006<f< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></f<></td></w<></td></w<>	0.005 <w< td=""><td>0.006<f< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></f<></td></w<>	0.006 <f< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></f<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>500°0	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0,005<w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<>	0,005 <w< td=""><td>0.005×W</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<></td></w<>	0.005×W	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<></td></w<>	0.005 <w< td=""><td>0.006<t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<></td></w<>	0.006 <t< td=""><td>M>500°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<></td></t<>	M>500°0	0.005 <w< td=""><td>0.005<w< td=""><td>D DOECE</td></w<></td></w<>	0.005 <w< td=""><td>D DOECE</td></w<>	D DOECE
NO.18		NNTKUR K DAHI N	TOTAL UNF. REAC	MG/L AS N			0.840	1.850				0.062					0.820				0.900				0.080					0.820					
ON CO.ROAD	LAT: 43 11 34.66	NNO3UR	NO3-N UNF.REAC	MG/L AS N			9.100	5.200				7.500				1	4.600			6	5.800				2,600					3.700					
I: AT LANPI E: RIVER	LAT: 4	EST-MAME:		SAMPLE	72062	32837	37523	37536	32838	32840	32841	37549	32842	32844	32845	32846	3/562	32848	32849	32850	37575	32852 32852	32853	32854	37588	32855	32030	32858	32859	37601	32860	19975	32863	32864	37614
SANPLE POINT: AT LAMPTON CO.ROAD NO.18 STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	SOUT SOUTH				900318 1700				900415 1415				900515 0945				900611 1015					900/16 1800			-		900819 1015	900826 1/10			900917 0840

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: THE CUT AUSABLE RIVER SAMPLE POINT: AT LAMPTON CO.ROAD NO.18 STATION TYPE: RIVER

02 002 0180	12.069	RSP	RESIDUE PARTIC. MG/L	75.3	88.7	103.0	37.0	73.7	54.9	44.4	293.0	58.2	49.6	23.2	64.5	47			
STORET CODE:	DISTANCE:		RESIDUE FILTERED MG/L		414.0			432.0			432.0	353.6	349.0	243.0	58.1	6			
	01	PSAMF PSEUDOMN AERUG.	CNT /100ML		>4			>4			80	31		4		м	99		
	REGION: 01	PHOSPHOR	MG/L AS P	0.170	0.159	0.230	0.120	0.084	0.045	0.120	0.595	0.105	0.083	0.030	960.0	47			
CES ON RIVER CUT	782350.0 4	PP04UR	ONF. KEAC MG/L AS P		0.072			0.045			0.184	0.050	0.028	0.004	0.059	10			
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVER CUT	U T M: 17 0433800.0 4782350.0 4	PPO4FR	FIL. KEAC MG/L AS P	0.0810		0.0875	0.0510		0.0025	0.0315	0.1110	0.0282 <a< td=""><td>0.0124<a< td=""><td>0.0005</td><td>0.0305<a< td=""><td>38</td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.0124 <a< td=""><td>0.0005</td><td>0.0305<a< td=""><td>38</td><td></td><td></td><td></td></a<></td></a<>	0.0005	0.0305 <a< td=""><td>38</td><td></td><td></td><td></td></a<>	38			
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	н	PH	8.31	8.16	8.29	8.42	8.24	8.33	8.33	8.59	8.29	8.29	7.89	0.12	47			
	48 52.98	PBUT	MG/L AS PB	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500.0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.011</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>M>500.0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.011</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>M>500.0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.011</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	M>500.0	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.011</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.011</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></w<></td></w<>	0.005 <w< td=""><td>0.011</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<></td></a<></td></w<>	0.011	0.005 <a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.005</td><td>0.001<a< td=""><td>48</td><td></td><td></td><td></td></a<></td></a<>	0.005	0.001 <a< td=""><td>48</td><td></td><td></td><td></td></a<>	48			
	LONG: 081 48 52.98	NNTKUR K'DAHL N TOTAL	MG/L MG/L AS N		1.000			0.740			1,850	0.790	0.533	0.062	0.527	6			
	LAT: 43 11 34.66	NNO3UR NO3-N	MG/L AS N		6.800			5.100			9.100	5.933	5.744	3.700	1.634	6		ZNUT	TINC
DE: RIVER	LAT:	TEST-NAME:	SAMPLE	32868	37627	32869	32872	37640	32873	32874	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)	rest-NAME:	
STATION TYPE: RIVER		*=INTERIM 1	DATE HOUR	901014 1415		901021 1645		901113 0945		901125 1415					STD DI	# SAMP IN	Z SAMP	*=INTERIM TEST-NAME:	

"ATTH HEAN 0.0490
GEOW HEAN 0.0158<A
GEOW HEAN 0.0100<A
HINTHUM 0.0024
STD DEV (GEOM *) 0.0172<A
* SAMP (EXCLUDED)

MG/L AS ZN

SAMPLE

SAMPLE DATE HOUR YYMMDD LMT

UNF. TOT.

0.0041 0.0150 0.0024<T

37523 37536 37549

0.0050 0.0070 0.0140 0.0490 0.0460

37562 37575 37588 37601 37614 37627 37627

900515 0945 900611 1015 900710 0950 900814 0930 900917 0840 901015 0925 901113 0945 MAJOR BASIN: GREAT LAKES
MAJOR BASIN: LAKE HURON
TEDN STREAM ALGADIA OVICED

BOOAID MG/L AS P STREPCUS CRT /100ML PHOSPHOR 10,300 FECAL UNF. TOT. 8 6 116 \$29 0.093 0.335 0.049 0.120 0.074 0180 FSMF 220 069 320 280 900 116 0,062 0.280 0.920 0.270 960.0 DISTANCE: SOOAID MG/L AS P COLIFORM PP04UR P04 UNF. REAC FECAL /100ML 120 FCMF 260 330 800 282 120 0.078 0.160 208 331 0.082 0.092 0.037 0.185 AS O H DISOLVED OXYGEN MG/L 8.0 8.0 112.5 113.0 112.5 7.0 8.0 7.5 7.5 6.0 13.0 9.2 8.9 6.0 2.5 7.91 7.76 7.76 7.87 8.25 8.37 8.09 7.89 8.20 8.12 8.18 00 H REGION: 01 MG/L AS PB COPPER MG/L AS CU LEAD 0.005<W 0.005<W 0.006<T M>500.0 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W JNF. TOT. 007<T UNF. TOT 0.0040 0.0060 0.0048 0.0048 0.0036 0.0047 0.0060 PBUT 0.0053 CUUT 0.0045 0.0050 0.0050 0,0060 U T M: 17 0430475.0 4780600.0 4 MG/L AS N K'DAHL N UNF. REAC 25C JMH0/CM AT 25 C NNTKUR COND25 CONDUCT. 925.0 431.0 741.0 707.0 713.0 719.0 760.0 860.0 886.0 948.0 772.7 758.2 431.0 143.0 0.660 1.350 1.900 0.550 0.900 2.060 0.900 0.860 TOTAL 1.450 TERM STREAM: AUSABLE RIVER MG/L AS N MG/L AS CL CLIDUR CHLORIDE UNF. REAC NNO3UR N03-N JNF . REAC 59,600 11.600 7.300 7.700 5.400 4.500 6.300 6.800 000 32.300 68.663 32.300 28.071 008.01 500 62,000 68.200 57.100 000,60 69.500 33.000 73.291 83. 5 DAY TOT.DEM. MG/L AS N MG/L 0 N02-N 800 JNF. REAC NNO2UR 4.52 3.34 2.56 1.18 0.64 2.96 1.68 0.59 1.20 0.050 0.050 0.100 0.060 0.080 0.080 0.140 8005 1.55 TOTAL MG/L MG/L AS N CAC03 ALK NNHTUR NH3-N UNF. REAC 0.136 0.035 0.057 0.001< 0.001< 0.001< TOTAL LONG: 081 51 19.48 176.0 184.0 95.0 162.0 206.0 216.0 187.0 304.0 325.0 306.0 325.0 215.4 204.4 95.0 0.014 ALKT 0.520 CODE FGPROJ SUB-PROJ FWTEMP WATER TEMP DEG.C PROJECT 1.0 4.0 4.5 7.0 14.5 222.0 16.0 10.5 3.0 0101 0101 0101 0101 0101 0101 0101 1010 LAT: 43 10 36.86 DEPTH FWSADP SAMPLE STREAM COND. FWSTRC 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 99999999 37509 37613 37626 SAMPLE 37548 37574 37587 37600 37613 37626 37639 37522 37535 37548 37574 37587 ARITH MEAN 37509 37535 SAMPLE NUMBER 37561 37600 MAXIMUM GEOM MEAN MINIMUM # SAMP IN STATISTICS STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 0160 0910 0905 0925 0950 0930 0825 0910 1030 0905 0925 0950 0860 1030 HOUR 900116 1140 HOUR 900116 1140 0825 LMT YYMINDD LMT 901016 716006 901015 900410 900515 900710 900814 716006 900312 900410 900515 119006 900710 900814 SAMPLE YYHINDD 900312 119006 SAMPLE DATE DATE

00

4. T. A

B.O.W./ SITE: DECKER CREEK SAMPLE POINT: NEAR BRICK YARD, THEDFORD STATION TYPE: RIVER

STORET CODE: 02 002 0180 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVEM

1	10.30	PPUT	DHOSPHO UNF.TOT	AS	0.920	0.217	0.142	0.049	0.254	11						
	DISTANCE:	PP04UR	UNF. REAC		0.185	0.092	0.075	0.017	0.057	10						
	0.1	H		H	8.37	8.04	8.04	7.76	0.20	11						
	REGION: 01	PBUT	LEAD UNF.TOT.	AS PB	0.007	0.005 <a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.001<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.005</td><td>0.001<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.001 <a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	11						
	U T M: 17 0430475.0 4780600.0 4	WNTKUR K'DAHL N	TOTAL UNF.REAC	AS N	2.060	1.151	1.062	0.550	0.493	11						
	0430475.0	NNO3UR	NO3-N UNF.REAC	ASN	11.600	7.191	6.639	2.300	2.711	11						
	U T M: 17	NNO2UR	NO2-N UNF.REAC	AS N	0.140	0.073	0.068	0.040	0.029	11						
	LAT: 43 10 36.86 LONG: 081 51 19.48	NNHTUR NH3-N	TOTAL UNF.REAC MG/L	ASN	0.520	0.101		0.003		6	18	ZNUT	ZINC	UNF.TOT. MG/L	AS ZN	0.0440
	LONG: 081	FWTEMP	WATER	DEG.C	22.0	6.6	7.4	1.0	6.5	11		RSP		PARTIC.	HG/L	70.4
	3 10 36.86	FWSTRC	STREAM	COND.								PSEUDOMN	AERUG.	CNT	/100ML	
	LAT: 4	*=INTERIM TEST-NAME:	SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS	A SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	NUMBER	37509
		T HIS	HOUR	LMT					TD DE	ID IN	SAMP	T HIS		HOUR	LMT	1140
		*=INTER	SAMPLE	YYMMDD					S	# SAM	*	*=INTER	1	DATE	YYMMDD	900116 1140

0.0230 0.0200 0.0800 0.0030 0.0100

24.1 13.2 42.9 5.0< 23.0 33.5 40.0 90.0

37522 37535 37548 37548 37561 37574 37587 37600 37626 37626

900312 1030 900410 0905 900611 0925 900611 0950 900814 0910 900814 0910 901017 0825 901015 0910

900213 1030

0.0200 0.0080 0.0400 0.0490

12 4 4 4

0.0800

90.0 13.2

12 4

MAXIMUM ARITH MEAN GEOM MEAN MINIMUM

0.0195 0.0030 0.0232 11

10

* SAMP IN STATISTICS * SAMP (EXCLUBED)

STORET CODE:

STATION ID: 08-0022-007-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: HENSALL CREEK SAMPLE POINT: AT CONCESSION ROAD 2, WEST OF HENSALL STATION TYPE: RIVER FLOW GAUGE MOE 02FF105

UNF.TOT. MG/L AS P DISTANCE: 139.204 PHOSPHOR 0.079 0.054 0.018 0.081 0180 PPUT MG/L AS P P04 PP04UR UNF. REAC 0.122 0.040 0.022 0.002 0.042 H 8.54 8.09 8.08 7.90 0.18 Hd 0 REGION: 0.005 0.005<A 0.005<A 0.005 1.1 AS PB UNF. TOT. MG/L PBUT U T M: 17 0457675.0 4808250.0 4 TOTAL UNF.REAC MG/L AS N NNTKUR K'DAHL N 1.130 0.736 0.723 0.540 0.157 TERM STREAM: AUSABLE RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON UNF.REAC MG/L AS N N-20N NNOSUR 7.767 4.000 2.832 8.227 N02-N MG/L AS N NNOZUR UNF. REAC 0.320 0.062 0.010 0.0590 0.0149<A 0.0020 0.0169<A 11 AS N 0.0190 0.0096 0.0020<T TOTAL UNF.REAC MG/L MG/L NNHTOR NH3-N AS ZN 0.0090<A UNF. TOT. 31 22.44 0.0040 0.0290 0.0100 0.433 0,0060 0.0180 0.001 ZNUT 0.0590 01 LONG: 081 TEMP DEG.C 33.9 10.4 5.0< 5.0< FWTEMP WATER RESIDUE MG/L PARTIC. 5.0 5.0 18.0 8.6 6.3 1.0 5.8 31.6 66.5 180.0 55.2 8.7 ٠ 5 م LAT: 43 25 40.39 PSAMF STREAM Ή CNT FWSTRC /100ML COND. AERUG. 44 4 44 37 4 4 4 15 ¢ PRESENT SAMPLE SAMPLE 37518 37570 37609 37505 37531 37557 37596 MAXIMUM GEOM MEAN # SAMP IN STATISTICS 37635 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) ARITH MEAN MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME: 0855 HOUR HOUR 0910 0810 0820 0800 0755 0710 0220 0955 LMT YYMMDD LMT *=INTERIM YYMINDD 900116 900213 900410 900515 900710 900814 901015 901113 SAMPLE 900312 900917 SANPLE 900611 DATE DATE

B.O.W./ SITE: LITTLE AUSABLE RIVER SAMPLE POINT: AT BRIDGE, TWP LINE WEST OF LUCAN

2.000 0.312<A 0.020 0.604<A 0.123<A 1/9n IRON MG/L AS FE 0.100<T 0.056<T 0.050<T PHENOLS JNF-REAC DISTANCE: 109,915 0.067<T PHENOL UNF. TOT. 1.500 1.000< 0.450 0.140 0.020 PHNOL 1,000< 1.000 >0000 >0000'1 2.000 >0000.1 0.120 FEUT 2.000 0.150 STORET CODE: SOAID 600AID PH ¥ E CNT COLIFORM FECAL 200 7.96 7.90 8.08 100 68 1500 150 376 8.23 8.57 7.78 8.07 FCMF 500 8.01 8.03 Hd 0.005<W 0.005<W 0.005<W MG/L AS 0 AS PB MG/L 0,005<W OXYGEN LEAD 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W DISOLVED UNF. TOT. 12.5 8.6 8.3 4.5 11 5.5 9.5 9.5 111.0 9.0 7.0 7.5 7.5 4.5 8.5 PBUT 00 REGION: 01 MG/L AS N MG/L 0.005 <W 0.003 <A 0.002 <A K'DAHL N COPPER AS CU 0020<T 0.0018<T 0.0013<T 0.0020<T 0,0020<T 0.003 <A NNTKUR UNF. REAC UNF. TOT. 0.570 1.070 1.010 0.510 0.0013 0.670 0.670 0.810 0.0050 .680 CUUT 0.0026 0.0030 0.0050 0.0050 0.0050 TOTAL 0463600.0 4780750.0 4 MG/L AS N 25C N03-N JMH0/CM AT 25 C NNOSUR UNF. REAC COND25 CONDUCT. 242.0 581.0 443.0 574.0 522.0 470.0 547.1 528.7 242.0 130.0 586.0 553.0 678.0 0.679 10.300 8.900 6.400 3.400 7.500 6.200 0.069 14.800 TERM STREAM: AUSABLE RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HUROM MG/L HG/L z AS CL NO2-N UNF . REAC CLIDUR UNF. REAC NNO2UR CHLORIDE 31.500 24.200 16.900 24.400 31.200 26.600 15.500 35.200 22.200 20.200 24,464 23,745 15,500 AS 0.000 0.110 0,040 0.080 0.150 6.215 0.030 21,200 0.010 0.040 U T M: 17 HG/L 5 DAY MG/L NH3-N Z 008 0 FOT . DEM. NNHTUR TOTAL UNF . REAC 0.132 0.007 0.157 0.027 0.028 0.017 0.032 0.027 0.048 0.048 AS 0.83 0.30 1.72 0.55 0.84 AS 1.14 0.35 1.78 0.54 0.97 1.01 8005 EMP ALK TOTAL MG/L CAC03 FWTEMP MATER DEG.C LONG: 081 26 52.37 225.0 203.0 151.0 135.0 199.0 296.0 296.0 216.3 209.9 135.0 55.2 205.0 199.0 294.0 1.0 3.0 6.5 8.0 13.5 18.0 22.0 20.0 112.5 111.0 3.5 STREAM SUB-PROJ FGPROJ CODE FWSTRC COND. PROJECT 0101 0101 0101 1010 0101 0101 0101 0101 0101 0101 0101 M 999999 99 99 LAT: 43 10 50.08 SOAID LOAID DEPTH CNT /100ML 0. MF FWSADP SAMPLE STREPCUS FECAL 116 99 099 680 230 0.30 0.30 0.30 0.30 0.30 0.30 16 0.30 0.30 0.30 FSMF. 37629 SAMPLE 37538 37590 37629 37590 37551 37564 37577 37512 37525 37538 37564 37577 37603 37642 SAMPLE NUMBER 37551 37616 MAXIMUM ARITH MEAN GEOM MEAN SAMP IN STATISTICS 37512 37525 37603 37616 MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-MAME: STATION TYPE: RIVER 1010 1025 1100 HOUR 1155 1155 1010 1100 1025 0915 HOUR 1245 1155 1005 9160 1030 1035 1005 901113 1030 LMT LMI *=INTERIM 901113 YYHINDD 900917 900116 900312 900410 900515 900710 900814 716006 901015 YYMMDD 900116 900213 900312 900410 900515 900611 900710 9000814 901015 SAMPLE 900213 119006 SAMPLE DATE DATE

STORET CODE: 02

B.O.W./ SITE: LITTLE AUSABLE RIVER

STATION ID: 08-0022-010-02	STORET CODE:
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON
B.O.W./ SITE: LITTLE AUSABLE RIVER SAMPLE POINT: AT BRIDGE, TWP LINE WEST OF LUCAN	STATION TYPE: RIVER

002	109,915	PHNOL	PHENOLS	UNF-REAC	PHENOL		2,000	1.500		1.000		м	99																								
	DISTANCE: 109.915	ЬН			ЬН		8.57	8.09	8.08	7.78	0.21																										
	01	PBUT	LEAD	MG/L	AS PB		0.005	0.005 <a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.000<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.005</td><td>0.000<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.000 <a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	11																									
	REGION: 01	NNTKUR K DAHI N	TOTAL	MG/L	AS N		1.520	0.800	0.754	0.460	0.306	11																									
IVER	780750.0 4	NNO3UR	NO3-N	MG/L	AS N		14.800	8,255	7.753	3.400	2.993	11																									
MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVER	U T M: 17 0463600.0 4780750.0 4	NNO2UR	NO2-N	MG/L	AS N		0.150	0.064	0.050	0.010	0.042	=======================================		ZNUT		ZINC	UNF. TOT.	AC 2M	NO CH	0.0041	0.0024 <t< td=""><td>0.0067</td><td>0.0005<w< td=""><td>0.0010<t< td=""><td>0.0040</td><td>0.0130</td><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0460</td><td>0330</td><td>0.0400</td><td>0.0081<a< td=""><td>0.0039<a< td=""><td>0.0005</td><td>11</td><td></td></a<></td></a<></td></t<></td></t<></td></w<></td></t<>	0.0067	0.0005 <w< td=""><td>0.0010<t< td=""><td>0.0040</td><td>0.0130</td><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0460</td><td>0330</td><td>0.0400</td><td>0.0081<a< td=""><td>0.0039<a< td=""><td>0.0005</td><td>11</td><td></td></a<></td></a<></td></t<></td></t<></td></w<>	0.0010 <t< td=""><td>0.0040</td><td>0.0130</td><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0460</td><td>0330</td><td>0.0400</td><td>0.0081<a< td=""><td>0.0039<a< td=""><td>0.0005</td><td>11</td><td></td></a<></td></a<></td></t<></td></t<>	0.0040	0.0130	0.0040	0.0050	0.0020 <t< td=""><td>0.0460</td><td>0330</td><td>0.0400</td><td>0.0081<a< td=""><td>0.0039<a< td=""><td>0.0005</td><td>11</td><td></td></a<></td></a<></td></t<>	0.0460	0330	0.0400	0.0081 <a< td=""><td>0.0039<a< td=""><td>0.0005</td><td>11</td><td></td></a<></td></a<>	0.0039 <a< td=""><td>0.0005</td><td>11</td><td></td></a<>	0.0005	11	
MINOR BASIN TERM STREAM	U T M: 17	NNHTUR NH3-N	UNF. REAC	MG/L	AS N		0.157	750.0	0.032	0.007	0.050	11		RSP		1	RESIDUE	MEZI	10/1	5.0<	5.0<	33.3	20.1	5.0<	8.0	54.1	9.5	10.4	31.7	71.3	7 17	9 6	29.8	0	0.0	89	
	26 52.37	FWTEMP	WATER	TEMP	DEG.C	:	22.0	8.07	0.8	0.41	7.1	11		PSAMF	Pacoborne	AERUG.	THE	/100MI	1004		4	24	>4	>4	>4	132C		20	>4	>4	132	1 1	44	7	•	4	22
	LAT: 43 10 50.08 LONG: 081 26 52.37	FWSTRC		STREAM	COND.									PPUT		PHOSPHOR	MG / 1	AS P		0.060	0.054	0.255	0.031	0.031	0.020	0.258	0.053	0.110	0.075	0.037	0.258	000	0.062	0.00	0.086	11	
	3 10 50.08	FSMF	STREPCUS	CNT	/100ML	0000	4300	120	104	101	* 0	4		PP04UR	, 00	HINE DEAL	MG/I	AS P		0.057	0.039	0.154		0.004	0.003	0.137	0.008	0.081	0.051	0.010	0.154	0.054	0.027	0.003	0.055	10	
	LAT: 4	EST-NAME:		SAMPLE	NUMBER	7	ADITH MEAN	GEOM MEAN	MINIMIM	STD DEV (CEOM *)	CTATICITICS	% SAMP (EXCLUDED)		EST-NAME:			SAMPIF	NUMBER		37512	37525	37538	37551	37564	37577	37590	37603	37616	37629	37642	MAXIMUM	ARTTH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)
		*=INTERIM TEST-NAME:		DATE HOUR	TTERMED LAI					CTD DE	# SAMD IN STATISTICS	% SAMP		*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	0		900116 1245	900213 1155	900312 1155	900410 1010	900515 1035	900611 1100	900710 1025		900917 0915	901015	901113 1030					STD DE	# SAMP IN STATISTICS	% SAMP

AUSABLE RIVER

B.O.W./ SITE:

STATION ID: 08-0022-011-02

STATION ID: 08-0022-011-02

8.0.W./ SITE: AUSABLE RIVER

FWSTRC FWSTRC COND. S STREAM COND. S S STREAM FRERUGHN A FRERUGH A FR CONT P P SAMF PSERUGHN A FR CONT P P SAMF P SAMF PSERUGHN A FR CONT P SAMF P SA	FHSTRC FMTEHP FMTHUR FMOZUR F	SAMPLE POINT: AT TOWNLINE DNSTR.FROM CENTRALIA BASE STATION TYPE: RIVER	INE DNSTR.F	ROM CENTRA	IA BASE	MAJOR BASII MINOR BASII TERM STREAI	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: AUSABLE RIVER	KES ON RIVER			STORET CODE: 02 000	E: 02 002 0180
FWSTRC FWIEND NINHTUR NNOZUR NNOZUR NNTKUR PBUT PH PP044UR PP04 E STREAH THER UNF.REAC UNF.R	F-W-STRC F-WTEHP NWHITUR NW02UR NW03UR NW103UR NW104TUR NW104TUR NW03UR NW03UR NW104TUR	LAT: 4	3 15 50.65	LONG: 081	31 40.23	U T M: 17	0457160.0	4790060.0 4	REGION:	01	DISTANCE	: 120.698
Figure F	Figure F	T-NAME:	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR	NNOSUR	NNTKUR K'DAHL N	PBUT	Ħ	PP04UR	PPUT
COND. DEG.C AS N AS N AS N AS N AS P AS P	R COND. DEG.C AS N AS N AS N AS PB PH AS P R COND. DEG.C AS N AS N AS N AS N AS PB PH AS P R COND. DEG.C AS N AS N AS N AS N AS PB PH AS P R COND. DEG.C AS N AS N AS N AS PB PH AS P R COND. DEG.C AS N AS N AS N AS PB PH AS P R COND. DEG.C D.213 0.190 12.100 1.950 0.006 0	SAMPLE	STREAM	WATER	TOTAL UNF.REAC MG/L	NO2-N UNF.REAC MG/L	NO3-N UNF.REAC MG/L	TOTAL UNF.REAC MG/L	LEAD UNF.TOT. MG/L		UNF.	PHOSPHOR UNF.TOT. MG/L
H	Harry Fig. 10 Fig. 1	NUMBER	COND.	DEG.C	ASN	AS N	AS	ASN	AS PB	۵.		AS P
Name	N	MAXIMUM		20.5	0.213	0.190	12.100	1.950	900.0	8.45	0.189	0.500
No. 1.0 0.054 0.057 0.056 0.056 No. 1.0 0.014 0.057 0.057 0.056 No. 1.0 0.015 0.047 2.814 0.571 0.056 No. 1.0 0.059 0.047 2.814 0.571 0.049 No. 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 PSEMPH RSP ZNUT	No. 1.0 0.054 0.055 0.065 0.065 0.065 1	TH MEAN		6.6	0.072	0.071	6.836	0.942	0.005 <a< td=""><td>7.98</td><td>0.065</td><td>0.132</td></a<>	7.98	0.065	0.132
PSAMF RSP ZNUT PSEUDONN RESIDUE UNF.TOT. CMT PARTIC. AS ZN 4 < 10.14 0.00504 4 < 25.4 0.0258-A H 60 180.0 0.1500 A 4 5.7 6 0.0058 H 60 180.0 0.1500 A 5.7 6 0.0058 A 6 10.1 0.00207 A 7 6 5.0 0.0030 A 7 7 6 5.0 0.0030 A 8 10.2 0.0050 A 9 10.1 0.00204 A 10.1 0.00204 A 10.1 0.00204 A 25.4 0.0258-A H 60 180.0 0.1500 N 7 6 5.0 0.0059 A 10.1 0.0009-A H 7 7 0.0009 H 7 8 10.1 0.0009-A H 7 9 0.0009 H 7 9 10.1 0.0009	PSAMF RSP ZNUT PSEUDONN AERUG. R /100ML MG/L R /100ML R /100ML R /100ML A /	MINIMIM		6.0	0.054	0.057	1 200	0.893	200	7 .98	0.053	0.101
PSAMF RSP ZNUT PSEUDONN AFRIG. R /100ML MF.TOT. R /100ML MS ZN A (11.6 0.0054 A (11.6 0.00564 A (11.6 0.00656 A (11.6 0.00564 A (11.6 0.00656 A (11.6 0	PSAMF RSP ZNUT 11 11 11 11 11 11 11	GEOM *)		0 0	0.059	0.047	2.814	0.371	600.0	0.22	0.029	0.046
PSAMF RSP PSEUDONN AFRUG. RESIDUE CNT PARTIC. 7 5.0< 4< 11.6 4< 10.1 2 60 19.3 60 19.3 60 19.3 60 19.3 60 19.3 60 19.3 60 180.0	PSAMF RSP PSEUDONN AERUG. R /100ML MG/L 7 5.0< 7 5.0< 7 6.4< 11.6 6 4< 11.6 6 4< 10.1 2 60 19.3 5 24C 180.0 8 36 17.1 4 4< 55.6 H 60 180.0	TISTICS CLUDED)		11	11	11	11	11	10	11	11	11
AERUG. ALONIAL PARTIC. ALONIAL MG/L 5.0 4 4 11.6 4 10.1 60 19.3 24C 180.0 4 25.4 4 4 26 180.0 40 42.4 27 10.1 36 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 27 4 28 4 29 10.1	ARRUGA PRESIDUE ON TOTAL PARTIC. /100ML PARTIC. /100ML PARTIC. 5.0	-NAME:	PSAME	RSP	ZNUT							
CHT PARTIC. /100ML HG/L 5.0 4 11.6 4 10.1 60 19.3 24C 180.0 36 17.1 4 57.6 60 180.0 4 57.6 60 42.4 24 10.1 33 9 103 33 9 104 24 10.1	CHI PARTIC. /100ML HG/L HG/L 4 5.0 4 11.6 4 10.1 60 19.3 24C 180.0 36 17.1 4 57.6 60 180.0 4 57.6 60 180.0 40 42.4 24 10.1 65 18		AERUG.	DECTORE	ZINC ZINC							
7100ML MG/L 64 11.6 44 11.6 47 18.2 46 19.3 24C 180.0 41 25.4 42 25.4 44 25.4 44 25.4 46 180.0 40 42.4 24 10.1	7100ML MG/L 5.0 4 4 11.6 4 10.1 60 10.1 4 10.1 10.1 10.1 4 4 4 4 5.0 4 10.1 60 180.0 40 42.4 24 10.1 25 40 42.4 26 180.0 40 42.4 42.4	SAMDIF	THO	DAPTIC	MG/1							
5.0 4 	5.0 4 	NUMBER	/100ML	MG/L	AS ZN							
5.06 4< 11.6 4< 18.2 4< 10.1 60 19.3 24C 180.0 41.9 36 17.1 4< 25.4 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1	5.0 4 	37507		5.0<	0.1500							
4	4	37520	4	5.0<	0.0035							
4	4	77566	/ *	10.0	0.0004							
60 19.3 24C 180.0 36 17.1 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1	60 19.3 24C 180.0 36 17.1 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1	37559	7 7	10.1	0.0020 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
24C 180.0 36 17.1 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1	24C 180.0 36 17.1 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 3 9 1	37572	09	19.3	0.0070							
36 17.1 4< 25.4 4< 25.6 60 180.0 40 42.4 24 10.1	36 17.1 4< 25.4 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1	37585	24C	180.0	0.0310							
36 17.1 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1	36 17.1 4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1	37598		41.9	0.0080							
4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1	4< 25.4 4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1 62 18	37611	36	17.1	0.0050							
4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1	4< 57.6 60 180.0 40 42.4 24 10.1 3 9 1 62 18	37624	>4	25.4	0.0230							
60 180.0 40 42.4 24 10.1 3 9 1	60 180.0 40 42.4 24 10.1 3 9 1 62 18	37637	>4	57.6	0.0470							
40 42.4 24 10.1 3 9 1	40 42.4 24 10.1 3 9 1 62 18	MAXIMUM	09	180.0	0.1500							
24 10.1	24 10.1 3 9 1 62 18	ITH MEAN	40	42.4	0.0258 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
24 10.1 3 9 1	24 10.1 3 9 1 62 18	EOM MEAN			0.0090 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
3 9 1	3 9 1 62 18	MINIMUM	54	10.1	0.0005							
7 0	62 18	SEON A)	1	c	11 0.045/ A							
	70	ALISTICS MOUNTED	0 5	, ·	1							

֡	Voc. bruch		STATION TYPE: DIVER								
STATION LINE	YPE: KIVER				MAJOR BASI MINOR BASI TERM STREA	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVEM	KES ON RIVER			STORET CODE:	E: 02 002 0180
	LAT: 4	LAT: 43 11 05.93	LONG: 081 43 46.93	43 46.93	U T M: 17	0.0070940	U T M: 17 0440700.0 4781400.0 4	REGION: 01	10	DISTANCE:	: 19,955
= INTERIM	*=INTERIM TEST-NAME:	FWSADP	FGPR0J	ALKT	8005	CLIBUR	COND25	CUUT	90	FCMF	FSMF
				ALK	5 DAY	CHLORIDE	CONDICT	CODDED	DICOLVED	FECAL	FECAL
SAMPLE DATE MOUD	C AMD	SAMPLE	PROJECT	TOTAL	TOT. DEM.	UNF. REAC	25C	UNF. TOT.	OXYGEN	MF	SIREPLUS
0		M	CODE	AS CACO3	AS 0	AS CL	AT 25 C	MG/L AS CU	MG/L AS 0	CNT	CNT
900116 1205	5 27511	02.0	1010	0 001						71004	TOOLI
		0.30	0101	165 0	1 00	26.400	603.0	0.0030	11.5	1	
900312 1110		0.30	0101	148.0	3.64	17.100	905.0	0.0032	10.0	130	390
		0.30	0101	194.0	2.46	20.400	559.0	0.0026	10.0	310	1600
		0.30	0101	230,0	1.43	25,100	596.0	0.0030	14.0	100	COAID
		0.30	0101	209.0	0.94	23.200	581.0	0.0030	11.0	SOATO	ZOAID
		0.30	1010	210.0	4.92	30.200	608.0	0.0050	2.6	1500>	460
		0.30	0101	219.0		30.300	579.0	0.0050	10.0		
		0.30	0101	206.0	5.06	24.400	524.0	0.0050	12.0	1500	3500
		0.30	0101	210.0	0.83	15.900	507.0	0.0050	5.5	120	300
901115 0955	5 5/641	0.30	0101	225.0	3.96	17.700	246.0	0.0060	11.0	600AID	ZODAID
	MAXIMUM	0.30		230.0	4.92	30.300	0.809	0,0000	14.5	1500	2500
	ARITH MEAN	0.30		200.5	2.34	22.691	551.7	0.0039<4	11 1	202	1000
	GEOM MEAN			199.0	1.97	22.173	549.8	0.0038 <a< td=""><td>10.8</td><td></td><td>283</td></a<>	10.8		283
040	MUNIMUM COLON	0.30		148.0	0.83	15.900	0.595	0.0025	5.5	40	40
* CAMP T	SID DEV (GEOM *)	*		25.0	1.41	5.089	47.3	0.0013 <a< td=""><td>2.5</td><td></td><td>*5</td></a<>	2.5		*5
# SAMP IN	2 SAMP IN STATISTICS	11		11	10	11	11	11	11	ю	6
2 2 2 2	L CENCEONED !									11	
=INTERIM	*=INTERIM TEST-NAME:	FWSTRC	FWTEMP	NNHTUR	NNO2UR	NNOSUR	NNTKUR	PBUT	Hd	PP04UR	PPUT
				TOTAL	MOSON	MOZ M	K DAHL N	1			
SAMPLE			WATER	UNE REAC	INE DEAL	HALE DEAC	INIC DEAD	LEAD		P04	PHOSPHOR
DATE HOUR	R SAMPLE	STREAM	TEMP	MG/L	MG/I	MG/I	ONF . REAC	UNF. IOI.		UNF. REAC	UNF. TOT.
YMMDD LMT	NUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	ЬН	AS P	AS P
900116 1205		9	1.0	0.112	0.040	12 100	1 020	177000	e e		
900213 1105	5 37524	9	2.0	0.011	0 190	0 600	1 120	W>0000	61.1	760.0	0.124
900312 1110		9	3.0	0.127	0.000	7.100	0.120	0.005 <w< td=""><td>7.82</td><td>0.114</td><td>0.162</td></w<>	7.82	0.114	0.162
900410 0935	5 37550	9	7.0	0.003	0.040	7.500	0.010	M 200 0	16.7	0.119	0.210
		9	14.0	0.024	0.000	5.900	0.930	0.003×M	0°.00	0.032	0.089
		9	16.0	0.040	0.140	10.900	1.090	D.005cW	0 2 8	0.000	0.085
		9	20.5	0.012	0.130	8.900	1.700	0.005 <w< td=""><td>7.94</td><td>0000</td><td>0.097</td></w<>	7.94	0000	0.097
		9	18.0	0.032	0.030	4.600	1.360	0.005 <w< td=""><td>7.83</td><td>0.056</td><td>0.230</td></w<>	7.83	0.056	0.230
		9	15.0	0.063	0.110	5.100	1.660	0.005 <w< td=""><td>7,89</td><td>0.129</td><td>0.246</td></w<>	7,89	0.129	0.246
901015 0955	5/628	9 ,	11.0	0.050	090.0	5.000	0.900	0.005 <w< td=""><td>7.80</td><td>0.137</td><td>0.205</td></w<>	7.80	0.137	0.205
		-	U 7		-						

(CONTD)

STATION ID: 08-0022-012-02

1990 WATER QUALITY DATA REGION 1

	PARKHILL
	OF
	WEST
	15216
CREEK	LOTS
PARKHILL C	RD.BETWEEN
SITE:	POINT:
B.O.W./	SAMPLE

DE: 02 002 0180	E: 19,955	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.256 0.167 0.156 0.085 0.062												
STORET CODE: 02 003	DISTANCE:	PP04UR	PO4 UNF.REAC MG/L AS P	0.137 0.087 0.075 0.026 0.041												
	11	H.	Н	8.38 7.96 7.96 7.79 0.18												
	REGION: 01	PBUT	LEAD UNF.TOT. MG/L AS PB	0.005 0.005 <a 0.005<a 0.005 11</a </a 												
ES IN IVER	781400.0 4	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L AS N	1.700 1.192 1.158 0.900 0.309												
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVER	U T M: 17 0440700.0 4781400.0 4	NNO3UR	NO3-N UNF.REAC MG/L AS N	12.100 7.373 6.950 4.400 2.677										•		
MAJOR BASIN MINOR BASIN TERM STREAN	U T M: 17	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.190 0.085 0.072 0.030 0.051												
	43 46.93	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.195 0.061 0.035 0.003 11	ZNUT	ZINC UNF.TOT. MG/L AS ZN	0.0047	0.0020 <t< td=""><td>0.0080</td><td>0.0000</td><td>0.0100</td><td>0.0410</td><td>0.0410</td><td>0.0123<a< td=""><td>0.0020</td><td>0.0137<a< td=""></a<></td></a<></td></t<>	0.0080	0.0000	0.0100	0.0410	0.0410	0.0123 <a< td=""><td>0.0020</td><td>0.0137<a< td=""></a<></td></a<>	0.0020	0.0137 <a< td=""></a<>
	LONG: 081	FWTEMP	WATER TEMP DEG.C	20.5 10.0 6.9 1.0 7.1	RSP	RESIDUE PARTIC. MG/L	11.6	30.8	30.8	53.1	72.6	33.5	121.0	37.3	11.6	30.0 11
	LAT: 43 11 05.93 LONG: 081 43 46.93	FWSTRC	STREAM COND.		PSAME	AERUG. MF CNT /100ML	4 4	3 3	>4 > 000		840	10AID	48	38	10	99
: RIVER	LAT: 43	ST-NAME:	SAMPLE	HAXIMUM ARITH MEAN GEOM MEAN HINIMUM SID DEV (GEOM *) SAMP IN STATISTICS X SAMP (EXCLUDED)	ST-NAME:	SAMPLE NUMBER	37511	37550	37576	37602	37615	37641	MAXIMUM	GEOM MEAN	MINIMUM	SID DEV (GEUN *) SAMP IN STATISTICS % SAMP (EXCLUDED)
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	HAXIHUM ARITH HEAN GEOM HEAN HINIMUM SID DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900116 1205 900213 1105 900312 1110	900410 0935			900917 0850			ď	4	SID DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)

STATION ID: 08-0022-013-02

LATI ALE	STATION TYPE: RIVER	SAMPLE POINT: AT HIGHWAY 21 GRAND BEND STATION TYPE: RIVER	IY ZI GRAML	BEND		MAJOR BASIN: MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVER	CES DN RIVER			STORET CODE: 02 00; 010	E: 02 002 0180
SAMPLE PASADP PEPRO		LAT: 43	18 40.75	LONG: 081	45 25.59	U T M: 17	0438600.0 4	795450.0 4	REGION:	01	DISTANCE	
14 14 14 14 14 14 14 14	*=INTERIM T	EST-NAME:	FWSADP	FGPROJ	ALKT	CLIDUR	COND25	CRUT	CUUT	DQ	FCMF	FSMF
	AMDIE		E E	1231 000	ALK	CHLORIDE	CONDUCT.	CHROMIUM	COPPER	DISOLVED	COLIFORM	STREPCUS
	11	CAMDIE	DEDIN	SIIR-DRO 1	MG/I	ONF . REAL	JC2	MG/1	MG/1	MG/I	THO	TNJ
10.30 0.101 196.0 30.400 678.0 0.0032 0.0032 10.5 140 140 140 140 148.0 248.0 0.0031 0.0032 10.5 140 140 140 148.0 248.0 248.0 0.0031 0.0031 13.5 2.5 140	0	NUMBER	E	CODE	AS CACO3	AS CL	AT 25 C	AS CR	AS CU	AS 0	/100ML	/100ML
1		37508	0.30	0101	196.0	30.400	678.0	0.0033	0.0036	10.5		
4 0.30 0.10 1.3.0 438.0 0.0021-T 0.0035 10.5 580 17 0 0.30 0.101 2.66.0 24.800 632.0 0.0020-T 0.0050 13.0 180 1 0 0.30 0.101 223.0 25.800 632.0 0.0020-T 0.0050 13.0 180 3 0 0.30 0.101 221.0 24.800 655.0 0.0020-T 0.0050 7.5 590 3 0 0.30 0.101 221.0 24.600 550.0 0.0020-T 0.0050 7.5 590 3 0 0.30 0.101 222.0 24.700 6.50 0.0020-T 0.0050 7.5 590 150 9<		37521	0.30	0101	183.0	22.700	581.0	0.0027	0.0032	11.5	140	055
7 0.30 0.01 24,800 634,0 0.0012 12.5 3ANID 3 0.30 0.101 223.0 24,800 634,0 0.0020 13.0 18.0 18.0 4 0.30 0.101 227.0 29,200 656.0 0.0020 1.0050 9.0		37534	0.30	0101	132.0	17.300	438.0	0.0021 <t< td=""><td>0.0035</td><td>10.5</td><td>580</td><td>1700</td></t<>	0.0035	10.5	580	1700
0 0 30 0 101 23.5.0 25.800 632.0 0 002007T 0 00500 13.0 180 13.0 180 13.0 180 13.0 180 13.0 180 13.0 180 13.0 180 13.0 180 13.0 180 13.0 180 13.0 180 13.0 13.0 180 13.0 180 13.0 180 19.0 180 0.00207T 0.0050 17.0 100 23.0 100 25.0 19.0 66.0 0.00207T 0.0050 17.0 100 23.0 1100 25.0 1100 25.0 1100 25.0 1100 25.0 1100 25.0 1100 25.0 1100 6.5 1100 6.5 1100 6.5 1100 6.5 1100 6.5 1100 6.5 1100 6.5 1100 6.5 1100 6.5 1100 6.5 1100 6.0 1100 6.5 1100 6.0 1100 6.0 110		37547	0.30	0101	206.0	24.800	634.0	0.0012 <t< td=""><td>0.0031</td><td>12.5</td><td>SOAID</td><td>GOAID</td></t<>	0.0031	12.5	SOAID	GOAID
3 0.30 0.101 227.0 29.200 656.0 0.0020 7 0.0050 7.5 590 3.0 6 0.30 0.101 227.0 27.460 556.0 0.0020 7 0.0050 7.5 590 3.0 8 0.30 0.101 242.0 2.460 550.0 0.0020 7 0.0050 7.5 590 3.0 8 0.30 0.101 242.0 19.00 664.0 0.0020 7 0.0170 6.5 1100 23 8 0.30 0.101 242.0 2.1700 654.0 0.0020 7 0.0170 6.5 1100 23 1 0.30 2.00 2.1700 654.0 0.0020 9.0 6.5 111 1100 23 1 0.30 2.00 2.000 6.00 0.0020 0.0010 8.5 5.0 1100 23 1 0.30 2.00 2.000 6.00 0.0020 0.0010 8.5 5.0 1100 23 2.64 4.045 6.1 11	_	37560	0.30	1010	233.0	25.800	632.0	0.0020 <t< td=""><td>0.0050</td><td>13.0</td><td>180</td><td>120</td></t<>	0.0050	13.0	180	120
6 0.30 0101 183.0 27.400 588.0 0.00207 0.0050 7.5 590 33 0.30 0101 183.0 24.600 550.0 0.00207 0.0070 7.0 5.5 150 24.600 550.0 0.00107 0.0070 7.0 10.5 1100 23 0.30 0101 262.0 19.900 616.0 0.00207 0.0070 6.5 150 44 0.005 0.0010 263.0 0.0101 262.0 19.900 616.0 0.00207 0.0070 6.5 150 44 0.005 0.0101 262.0 19.900 616.0 0.00207 0.010 6.5 150 1100 23 0.000 0.001 262.0 0.0010 13.0 0.011 13.0 1100 23 0.011 13.0 1100 23 0.001 13.0 1100 23 0.001 0.30 132.0 17.300 678.0 0.0035 0.0017 0.0031 6.5 130 44 0.005 132.0 17.300 4.005 0.0017 0.0013 0.0031 6.5 130 1100 23 0.001 0.30 132.0 17.300 4.300 602.9 0.0017 0.0013 0.0031 6.5 130 0.001 0.		37573	0.30	1010	227.0	29.200	656.0	0.0020 <t< td=""><td>0.0050</td><td>0.6</td><td></td><td></td></t<>	0.0050	0.6		
9 0.30 0101 251.0 24.600 550.0 0.00105.M 0.0070 7.0 1.00 23 2 0.30 0101 251.0 28.100 616.0 0.00105.M 0.0070 7.0 1.05 1100 23 8 0.30 0101 242.0 19.900 616.0 0.0020 <t 0.0010="" 0.0015="" 0.0015<a="" 0.0020<t="" 0.0023="" 0.0070="" 0.30="" 0101="" 1100="" 132.0="" 150="" 17.300="" 19.900="" 23="" 242.0="" 415="" 6.5="" 616.0="" 654.0="" 8="" 8.5="" 9.7="" e="" nht.="" nihtur="" niut="" nno2ur="" nntkur="" pbut="" ph="" pp="" reac="" streah="" td="" un<="" unf.=""><td></td><td>37586</td><td>0.30</td><td>1010</td><td>183.0</td><td>27.400</td><td>588.0</td><td>0.0020<t< td=""><td>0.0050</td><td>7.5</td><td>290</td><td>350</td></t<></td></t>		37586	0.30	1010	183.0	27.400	588.0	0.0020 <t< td=""><td>0.0050</td><td>7.5</td><td>290</td><td>350</td></t<>	0.0050	7.5	290	350
2 0.30 0.101 251.0 28.100 647.0 0.00056W 0.0050 10.5 1100 23 8 0.30 0.101 242.0 19.900 645.0 0.00056W 0.0050 6.5 1100 23 8 0.30 0.101 263.0 21.700 654.0 0.0023 0.0110 8.5 550 111 8 0.30 210.7 24.716 606.7 0.00174 0.00174 9.5 264 415 8.6 9 20.74 24.739 602.9 0.00174 0.0023 9.7 415 8.6 41 1 0.30 37.6 4.045 62.9 0.00174 0.0023 2.2 2.64 4 4 4.045 67.5 0.00034 9.5 264 4 4 4 67.5 0.00034 9.5 264 4 4 4 6.5 9.00034 9.5 264 4 4 6 7 9.000		37599	0.30	1010	202.0	24.600	550.0	0.0010 <t< td=""><td>0.0070</td><td>7.0</td><td></td><td></td></t<>	0.0070	7.0		
5 0.30 0.101 242.0 19,900 616.0 0.0020 <r></r> 0.0020 7 6.5 150 44 8 0.30 0.101 263.0 21,700 654.0 0.0020 0.0110 13.0 1100 23 8 0.30 210.7 24,716 606.7 0.00174 0.0013 9.7 415 64 8 207.4 24,339 602.9 0.00174 0.0049 9.5 264 4 9 207.4 24,339 602.9 0.00174 0.0049 9.5 264 4 1 1.1 1.1 1.1 1.1 1.1 1.1 8 3.0 6.0023 3.0 6.0 6.0 9.5 6.6 9.7 4.45 6.6 9.0 9.5 264 4.45 6.6 9.0 9.5 264 4.45 6.6 9.0 9.5 264 4.45 6.6 9.0 9.5 264 4.45 6.75 0.00063 <td></td> <td>37612</td> <td>0.30</td> <td>0101</td> <td>251.0</td> <td>28.100</td> <td>0.799</td> <td>0.0005<w< td=""><td>0.0050</td><td>10.5</td><td>1100</td><td>2300</td></w<></td>		37612	0.30	0101	251.0	28.100	0.799	0.0005 <w< td=""><td>0.0050</td><td>10.5</td><td>1100</td><td>2300</td></w<>	0.0050	10.5	1100	2300
No.30 0.101 263.0 21.700 654.0 0.0020<1 0.0110 13.0 1100 233 1100 233 220.7 24.718 606.7 0.0019<4 0.0053 9.7 415 86 44 24.329 602.9 0.0017<4 0.0053 9.5 264 44 24.329 602.9 0.0017<4 0.0053 9.5 2.64 44 45 20.7 2.4.718 606.7 0.0005<4 0.0023 2.2 3.0 4.045 67.5 0.0006<4 0.0023 2.2 3.0		37625	0.30	0101	242.0	19,900	616.0	0.0020 <t< td=""><td>0.0070</td><td>6.5</td><td>150</td><td>450</td></t<>	0.0070	6.5	150	450
No.30 265.0 30.400 678.0 0.0033 0.0110 13.0 1100 238 132.0 210.7 24.718 606.7 0.0019<8 0.0053 9.5 264 44 41 42.439 602.9 0.0017<8 0.0053 9.5 264 44 44 44.24 24.329 602.9 0.0017<8 0.0053 21.0 20.4 4.045 24.718 606.7 0.0008<8 0.0023 22.2 3* 3.0 3		37638	0.30	0101	263.0	21.700	654.0	0.0020 <t< td=""><td>0.0110</td><td>8.5</td><td>550</td><td>1100</td></t<>	0.0110	8.5	550	1100
No.30 12.0.7 24.718 606.7 0.0019<4 0.0053 9.7 415 8 8 4 4 4 4 4 5 5 5 5 5		MAXIMUM	0.30		263.0	30.400	678.0	0.0033	0.0110	13.0	1100	2300
Hatel Hate		ARITH MEAN	0.30		210.7	24.718	606.7	0.0019 <a< td=""><td>0.0053</td><td>9.7</td><td>415</td><td>815</td></a<>	0.0053	9.7	415	815
HATER NIUT NINHTUR NIO2UR NIO3UR NIOTER NIUT NINHTUR NIOTER NIOT		GEOM MEAN			207.4	24.399	602.9	0.0017 <a< td=""><td>0.0049</td><td>9.5</td><td>264</td><td>464</td></a<>	0.0049	9.5	264	464
S 11		MINIMUM	0.30		132.0	17.300	438.0	0.0005	0.0031	6.5	30	09
FHSTRC FMTEHP NIUT NINGUR NINGSUR NINTKUR PBUT PHOT PMINTKUR PMINTKU	STD DE	V (GEOM *)			37.6	4.045	67.5	0.0008 <a< td=""><td>0.0023</td><td>2.2</td><td>3*</td><td>*5</td></a<>	0.0023	2.2	3*	*5
FWSTRC FHTEMP NIUT NNHTUR NNOSUR NNOSUR NNTKUR PBUT PH PPU PH PPU PH PPU PH PPU PP	# SAMP IN	(EXCLUDED)	11		11	11	11	11	11	11	∞	80
HATER HATE	=INTEDIM T	FCT-NAME:	PWSTBC	FWTEMD	TILL	MAHTIID	MNOSTIB	MNOZHB	NNTKUB	THE	Н	PPOGIIE
HOUR SAMPLE STREAM TEMP MICKEL TOTAL HOLP	-					NH3-N			K DAHL N			
HUNG SAHPLE STREAM TEHP LOT. UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.REAC UNF.TOT. UNF.REAC UNF.TOT. UNF.REAC U					NICKEL	TOTAL	N02-N	NO3-N	TOTAL	LEAD		P04
HOUR SAMPLE STREAM TEMP	ш			WATER	UNF. TOT.	UNF. REAC	UNF. REAC	UNF. REAC	UNF. REAC	UNF. TOT.		UNF. REAC
LHT NUMBER COND. DEG.C AS NI AS N AS N AS N AS PB PH 1115 37508 4 1.0 0.003 0.079 0.040 15.100 1.180 0.005 7.72 0.0 1000 37524 6 2.0 0.002 0.110 8.200 1.120 0.005 7.86 0.0 0845 3754 6 2.0 0.002 0.010 8.200 1.260 0.005 7.89 0.0 0950 3754 6 13.5 0.002 0.010 8.200 1.260 0.005 7.89 0.1 0990 3756 6 13.5 0.002 0.05 0.120 10.90 1.260 0.005 0.05 0.05 090 3756 6 12.5 0.007 0.120 11.90 1.780 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005			STREAM	TEMP	HG/L	MG/L	HG/L	MG/L	NG/L	HG/L		HG/L
1115 37508 4 1.0 0.003 0.049 0.040 15.100 1.180 0.005 7.72 1010 37524 6 2.0 0.002 0.002 0.110 8.20 0.005 7.86 0965 37547 6 3.0 0.002 0.002 0.0110 8.20 0.005 7.89 0970 37547 6 13.5 0.002 0.001 8.00 0.260 0.005 7.89 0990 37547 6 13.5 0.002 0.005 6.400 1.260 0.005 8.13 0990 37547 6 13.5 0.002 0.005 0.000 8.600 0.260 0.005 8.13 0920 37586 6 17.0 0.008 0.199 0.190 1.760 0.005 8.34 0755 3761 6 13.5 0.006 0.116 0.050 1.740 0.005 8.34 085 37586 6<		NUMBER	COND.	DEG.C	AS NI	AS N	AS N	AS N	AS N	AS PB	ЬН	AS P
1010 37521 6 2.0 0.002-4 0.002 0.150 11.400 1.120 0.005-4 7.86 1020 37534 6 3.0 0.002-4 0.065 0.0150 0.1100 1.120 0.005-4 7.89 1030 37547 6 3.0 0.002-4 0.065 0.010 0.140 0.1240 0.005-4 7.89 1030 37547 6 13.5 0.002-4 0.003-4 0.005 0.005-4 0.005-4 0.005-4 1030 37556 6 13.5 0.008-7 0.008-7 0.169 0.120 1.090 1.760 0.005-4 0.005-4 1030 37556 6 22.5 0.007-7 0.199 0.120 11.900 1.780 0.005-4 0.005-4 1030 37558 6 13.5 0.006-7 0.118 0.050 7.500 1.440 0.005-4 0.005-4 1030 37555 6 11.5 0.004-7 0.043 0.060 7.500 1.340 0.005-4 7.97 1030 37558 6 2.5 0.006-7 0.043 0.043 0.050 0.050-4 7.500 0.005-4 7.97 1030 37558 6 2.5 0.006-7 0.043 0.045 0.050 0.005-4 7.97 1030 37558 0.006-7 0.006-7 0.005-7 0.005-7 0.005-4 0.005-4 0.005-4 0.005-4 1030 0.005-4 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 1030 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 1030 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 1030 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 1030 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 1030 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 0.005-7 1030 0.005-7 0.005-		37508	4	1.0	0.003 <t< td=""><td>0.079</td><td>0.040</td><td>15.100</td><td>1.180</td><td>0.005<w< td=""><td>7.72</td><td>0.074</td></w<></td></t<>	0.079	0.040	15.100	1.180	0.005 <w< td=""><td>7.72</td><td>0.074</td></w<>	7.72	0.074
1000 37534 6 3.0 0.002cH 0.060 0.110 8.200 1.240 0.005cH 7.89 0940 37547 6 8.5 0.002cH 0.001c 0.040 8.600 0.065cH 8.06 0990 37573 6 13.5 0.008cH 0.085 0.1260 0.005cH 8.16 0900 37586 6 22.5 0.007cT 0.199 0.130 11.900 1.460 0.005cH 8.10 0850 37599 6 22.5 0.006cT 0.118 0.050 5.700 1.440 0.005cH 8.10 0755 37625 6 13.5 0.006cT 0.118 0.050 7.500 1.500 0.005cH 8.06 0900 37638 6 22.5 0.006cT 0.043 0.060 7.500 1.500 0.005cH 7.99 0900 37638 6 13.5 0.006cT 0.043 0.050 7.500 1.340 0.005		37521	9	2.0	0.002 <t< td=""><td>0.002</td><td>0.150</td><td>11.400</td><td>1.120</td><td>0.005<w< td=""><td>7.86</td><td>0.082</td></w<></td></t<>	0.002	0.150	11.400	1.120	0.005 <w< td=""><td>7.86</td><td>0.082</td></w<>	7.86	0.082
0945 37547 6 8.5 0.002 <m< th=""> 0.016 0.040 6.800 0.660 0.005<m< th=""> 8.06 0990 37560 6 13.5 0.005<t< td=""> 0.035<t< td=""> 0.036 0.126 0.005<m< td=""> 8.13 0920 37563 6 12.5 0.008<t< td=""> 0.069 0.130 11.900 1.760 0.005<m< td=""> 8.13 0920 37586 6 22.5 0.007<t< td=""> 0.199 0.130 11.900 1.760 0.005<m< td=""> 8.14 0850 3759 6 20.0 0.006<t< td=""> 0.118 0.050 5.700 1.740 0.005<m< td=""> 8.06 0755 37612 6 12.5 0.006<t< td=""> 0.118 0.050 5.700 1.740 0.005<m< td=""> 8.06 0755 3762 6 11.5 0.006<t< td=""> 0.043 0.060 7.500 1.340 0.005<m< td=""> 7.99 0900 37638 6 2.5 0.006<t< td=""> 0.713 0.050 6.100<</t<></m<></t<></m<></t<></m<></t<></m<></t<></m<></t<></m<></t<></t<></m<></m<>		37534	9	3.0	0.002 <w< td=""><td>090.0</td><td>0.110</td><td>8.200</td><td>1.240</td><td>0.005<w< td=""><td>7.89</td><td>0.104</td></w<></td></w<>	090.0	0.110	8.200	1.240	0.005 <w< td=""><td>7.89</td><td>0.104</td></w<>	7.89	0.104
0900 37560 6 13.5 0.005		37547	9	8.5	0.002 <w< td=""><td>0.001<</td><td>0,040</td><td>8.800</td><td>0.860</td><td>0.005<w< td=""><td>8.06</td><td>0.023</td></w<></td></w<>	0.001<	0,040	8.800	0.860	0.005 <w< td=""><td>8.06</td><td>0.023</td></w<>	8.06	0.023
0920 37573 6 17.0 0.008 <rt></rt> 0.007 0.120 0.120 10.900 1.460 0.005 8.34 0900 37586 6 22.5 0.007 0.119 0.130 11.900 1.780 0.005 8.10 0850 37582 6 20.0 0.006 0.118 0.050 5.700 1.440 0.005 8.06 08545 37625 6 11.5 0.004 0.043 0.100 7.300 1.500 0.005 7.99 0900 37638 6 2.5 0.006 0.713 0.050 6.100 2.200 0.005 7.99			9	13.5	0.005 <t< td=""><td>0.035</td><td>0.080</td><td>6.400</td><td>1.260</td><td>0.005<w< td=""><td>8.13</td><td>0.029</td></w<></td></t<>	0.035	0.080	6.400	1.260	0.005 <w< td=""><td>8.13</td><td>0.029</td></w<>	8.13	0.029
0900 37586 6 22.5 0.007<7 0.199 0.130 11.900 1.780 0.005 <n 0.055="" 0.055<="" 8.10="" n="" td=""><td></td><td></td><td>9</td><td>17.0</td><td>0.008<t< td=""><td>0.069</td><td>0.120</td><td>10.900</td><td>1.460</td><td>0.005<w< td=""><td>8.34</td><td>0.014</td></w<></td></t<></td></n>			9	17.0	0.008 <t< td=""><td>0.069</td><td>0.120</td><td>10.900</td><td>1.460</td><td>0.005<w< td=""><td>8.34</td><td>0.014</td></w<></td></t<>	0.069	0.120	10.900	1.460	0.005 <w< td=""><td>8.34</td><td>0.014</td></w<>	8.34	0.014
00550 37599 6 20.0 0.006 0755 37612 6 13.5 0.006 0756 37625 6 11.5 0.006 0750 37638 6 2.5 0.006 0750 0.005 0750 0.005 			9	22.5	1>700.0	0,199	0.130	11.900	1.780	0.005 <w< td=""><td>8,10</td><td>0.047</td></w<>	8,10	0.047
0755 37612 6 13.5 0.004 <t 0.005<w="" 0.043="" 0.060="" 1.500="" 7.500="" 7.97<br="">0845 37625 6 11.5 0.006<t 0.005<w="" 0.043="" 0.100="" 1.340="" 7.300="" 7.89<br="">0900 37638 6 2.5 0.006<t 0.005<w="" 0.050="" 0.713="" 2.200="" 6.100="" 7.90<="" td=""><td></td><td></td><td>9</td><td>20.0</td><td>D.006<t< td=""><td>0.118</td><td>0.050</td><td>5.700</td><td>1.440</td><td>0.005<w< td=""><td>8.06</td><td>0.012</td></w<></td></t<></td></t></t></t>			9	20.0	D.006 <t< td=""><td>0.118</td><td>0.050</td><td>5.700</td><td>1.440</td><td>0.005<w< td=""><td>8.06</td><td>0.012</td></w<></td></t<>	0.118	0.050	5.700	1.440	0.005 <w< td=""><td>8.06</td><td>0.012</td></w<>	8.06	0.012
0845 37625 6 11.5 0.006 <t 0.005<h="" 0.043="" 0.100="" 1.340="" 7.300="" 7.89<br="">0900 37638 6 2.5 0.006<t 0.005<h="" 0.050="" 0.713="" 2.200="" 6.100="" 7.90<="" td=""><td></td><td></td><td>9</td><td>13.5</td><td>0.004<t< td=""><td>0.043</td><td>0.000</td><td>7.500</td><td>1.500</td><td>0.005<w< td=""><td>7.97</td><td>0.131</td></w<></td></t<></td></t></t>			9	13.5	0.004 <t< td=""><td>0.043</td><td>0.000</td><td>7.500</td><td>1.500</td><td>0.005<w< td=""><td>7.97</td><td>0.131</td></w<></td></t<>	0.043	0.000	7.500	1.500	0.005 <w< td=""><td>7.97</td><td>0.131</td></w<>	7.97	0.131
0900 37638 6 2.5 0.006 <t 0.005<w="" 0.050="" 0.713="" 2.200="" 6.100="" 7.90<="" td=""><td>_</td><td></td><td>9</td><td>11.5</td><td>1>900°0</td><td>0.043</td><td>0.100</td><td>7.300</td><td>1.340</td><td>0.005<w< td=""><td>7.89</td><td>660.0</td></w<></td></t>	_		9	11.5	1>900°0	0.043	0.100	7.300	1.340	0.005 <w< td=""><td>7.89</td><td>660.0</td></w<>	7.89	660.0
	_	37638	9	2.5	0.006 <t< td=""><td>0.713</td><td>0.050</td><td>6.100</td><td>2.200</td><td>0.005<w< td=""><td>7.90</td><td>0.118</td></w<></td></t<>	0.713	0.050	6.100	2.200	0.005 <w< td=""><td>7.90</td><td>0.118</td></w<>	7.90	0.118

STATION ID: 08-0022-013-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: AUSABLE RIVER SAMPLE POINT: AT HIGHWAY 21 GRAND BEND STATION TYPE: RIVER

02 002 0180	0.805	PP04UR
STORET CODE: 02 002 018	DISTANCE: 0.805	Н
		PBUT
	LAT: 43 18 40.75 LONG: 081 45 25.59 U T H: 17 0438600.0 4795450.0 4 REGION: 01	NNHTUR NNOZUR NNOZUR NBUT
KES ON RIVER	4795450.0 4	NNOSUR
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVER	0438600.0	MNOZUR
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	NNHTUR
	45 25.59	NIUT
	LONG: 081	FWSTRC FWTEMP NIUT
TO THE PERSON OF	18 40.75	FWSTRC
RIVER	LAT: 43	ST-NAME:
SAMPLE POINT: AT MISHWAT 21 GRAND BEND STATION TYPE: RIVER		*=INTERIM TEST-NAME:

O. BOS		PP04UR	P04 UNF.REAC MG/L AS P	0.131 0.067 0.050 0.012 0.044				
DISTANCE	DISTANCE.	Н	H	8.34 7.99 7.99 7.72 0.17				
10	70	PBUT	LEAD UNF.TOT. MG/L AS PB	0.005 0.005 <a 0.005<a 0.005</a </a 				
DECTON: 01	AEGTON.	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L AS N	2.200 1.398 1.360 0.860 0.356				
705650 0 6	4 0.064667	NNO3UR	NOS-N UNF.REAC MG/L AS N	15.100 9.027 8.624 5.700 2.947				
H T M: 17 0428600 0 4795650 0 4	0.0000000	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.150 0.085 0.076 0.040 0.039				
II T M. 17	77 . 11 . 0	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.713 0.136 0.002	ZNUT	UNF.TOT. MG/L AS ZN	0,0580 0,0076 0,0059 0,0028 0,0100 0,0100 0,0010 <t< td=""><td>0.0580 0.0181<a 0.0095<a 0.0010 0.0213<a< td=""></a<></a </a </td></t<>	0.0580 0.0181 <a 0.0095<a 0.0010 0.0213<a< td=""></a<></a </a
20 20 20	45 25.59	NIUT	NICKEL UNF.10T. MG/L AS NI	0.008 0.005 <a 0.004<a 0.002 1.002<a< td=""><td>RSP</td><td>RESIDUE PARTIC. MG/L</td><td>24.7 31.1 12.1 44.8 62.2 54.2 54.2 52.7 34.7</td><td>89.7 45.7 40.8 12.1 20.8</td></a<></a </a 	RSP	RESIDUE PARTIC. MG/L	24.7 31.1 12.1 44.8 62.2 54.2 54.2 52.7 34.7	89.7 45.7 40.8 12.1 20.8
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TONG: ORT	FWTEMP	MATER TEMP DEG.C	22.5 10.5 7.0 1.0 7.6	PSAMF PSEUDOMN	AERUG. MF CNT /100ML	0 1 6 6 7 7 7 7 7 7 7 7	68 31 8 8 62
7 0 7	5 18 40.75	FWSTRC	STREAM COND.		PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.112 0.132 0.0520 0.076 0.116 0.1182 0.092 0.222 0.178	0.620 0.188 0.156 0.076 0.153
	LAI: 4	EST-NAME:	SAMPLE	MAXIMUM ARITH MEAN GEOTH MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS 'S SAMP (EXCLUDED)	EST-NAME:	SAMPLE	37508 37521 37521 37547 37560 37560 37586 37586 37589 37625	MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEON *) # SAMP IN STATISTICS % SAMP (EXCLUDED)
		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	HAXIMUM ARITH HEAN GEOM HEAN HINIMUM STD DEV (GEON *) # SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900116 1115 900213 1010 900312 1000 900515 0900 900515 0900 900814 0850 900917 0755 911015 0845	STD DE # SAMP IN % SAMP

1990 WATER QUALITY DATA REGION 1

NATKUR PBUT PH PP04UR (**DAL NF-REAC UNF-REAC U	B.O.W./ SITE: AUSABLE RIVER SAMPLE POINT: AT FIRST CONC STATION TYPE: RIVER FLOW (B.O.W./ SITE: AUSABLE RIVER SAMPLE POINT: AT FIRST CONC.WEST OF HIGHWAY 4 EXETER STATION TYPE: RIVER FLOW GAUGE MOE 02FF103	IGHWAY 4	+ EXETER	MAJOR BASIN	MAJOR BASIN: GREAT LAKES	(ES	STA	TION ID: 08	STATION ID: 08-0022-016-02 STORET CODE: 02	2 E: 02
U T H: 17 0458700.0 4800950.0 4 REGION: 01 NOZ-N NO3-N TOTAL LEAD UNF.REAC UNF.REAC UNF.REAC UNF.TOT. HG/L AS N AS N AS PB 0.350 10,900 1,680 0,007 8,41 0 0.135 7.555 0.956 0.005 <a 0="" 0.005<a="" 0.092="" 0.099="" 0.105="" 0.372="" 1.010="" 1.1="" 1.11="" 11="" 2.615="" 6,934="" 8.07="" a="" a<="" ii="" th=""><th></th><th></th><th></th><th></th><th>MINOR BASIN TERM STREAM</th><th>MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIV</th><th>NER</th><th></th><th></th><th></th><th></th>					MINOR BASIN TERM STREAM	MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIV	NER				
NHHUR NNOZUR NNOZUR NNOZUR PBUT PH PP04UR NHHUR NNOZUR NNOZUR NNOZUR PBUT PH PP04UR TOTAL NG-N NOZ-N N NOZ-N N N N N N N N N N N N N N N N N N N	43.97 L	O	G: 081 3	30 34.87	U T M: 17	0,0078200	4800950.0 4	REGION:	01	DISTANCE	
UNF. REAC UNF.	FWSTRC	1	WTEMP	NNHTUR NH3-N	NNO2UR	NNOSUR	NNTKUR K'DAHL N	PBUT	H	PPO4UR	
MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L		_	WATER	UNF. REAC	NOZ-N UNF.REAC	NO3-N UNF.REAC	TOTAL UNF.REAC	LEAD UNF.TOT.		P04 UNF.REAC	<u>م</u> ک
0.644 0.360 10.900 1.680 0.007 8.41 0.179 0.189 0.133 7.555 0.956 0.005<4 8.07 0.057 0.130 0.099 6.934 0.892 0.005<4 8.07 0.030 0.038 0.040 1.900 0.430 0.005 7.72 0.002 0.038 0.040 1.900 0.430 0.005 7.72 0.002 11.	COND.		DEG.C	MG/L AS N	MG/L AS N	MG/L AS N	AS N	MG/L AS PB	Н	MG/L AS P	
0.189 0.133 7.555 0.956 0.005<8 8.07 0.180 0.039 0.934 0.035 0.005<8 8.07 0.038 0.049 0.934 0.005<8 8.07 0.183 0.049 0.937 0.005<8 0.005 11 11 11 11 11 11 11 11 11 11 11 11 ZNUT ZNUT ZNUT AS ZN 0.0025<7 0.0025 0.0020 0.0010 0.0020 0.0050	8		0.5	0.644	0.360	10.900	1.680	0.007	8.41	0.179	
0.130 0.099 6.934 0.092 0.005 0.130 0.099 1.949 0.092 0.0065 7.72 0.002 0.103 0.105 2.615 0.372 0.005 11. 11 11 11 11 11 11 11 11 11 11 11 11			0.6	0.189	0.133	7.555	0.956	0.005 <a< td=""><td>8.07</td><td>0.057</td><td></td></a<>	8.07	0.057	
0.183 0.105 2.615 0.372 0.0014 0.19 0.058 ZNUT ZINC UNF.TOT. HG/L AS ZN 0.0025 T 0.0026 C 0.0050 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 11			1.0	0.130	0.099	1.900	0.892	0.005 <a< td=""><td>8.07</td><td>0.030</td><td></td></a<>	8.07	0.030	
2NUT ZNUT ZNUT ZINC UNF.TOT. HG/L AS ZN 0.0042 0.0055 0.0055 0.0050			6.7	0.183	0.105	2.615	0.372	0.001 <a< td=""><td>0.19</td><td>0.058</td><td></td></a<>	0.19	0.058	
F 1 10000000000000000000000000000000000	1		1	11	11	11	11	11	11	11	
PN 000000000000000000000000000000000000	PSAMF RS	S	a.	ZNUT							
e4				ZINC							
	CNT PA		SIDUE RTIC.	UNF.TOT.							
H			MG/L	AS ZN							
			5.0<	0.0042							
H	4		5.0<	0.0023 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
	8	2	3.9	0.0055							
	>4		7.8	0.0025 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
	4		2.0<	0.0030							
	>+	Ħ	1.9	0.0100							
	209	æ	1.2	0.0220							
4			> 0 <	0900.0							
т		2	3.2	0.0050							
4	× 4 × 4	NO	6.2	0.0260							
#		00	1.2	0.0680							
4	21		9.5	D.0140 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
8 1				0.0076 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
1	4		7.8	0.0023							
	r.			11							

STATION ID: 08-0022-017-02

	EXETER
	OF
	EAST
R	DAM
RIVER	ISON
AUSABLE	MORRISON
AU	AT
SITE	POINT:
B.0.W./	AMPLE
8	S

FHSADP FGPRO3 CLIDUR CONDUZ FFCAL FECAL FRATRC FMTERP FMTER	STATION TYPE: RIVER	IVER F	LOW GAUGE	STATION TYPE: RIVER FLOW GAUGE HOE O2FF104		MAJOR BASIN MINOR BASIN TERM STREAN	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: AUSABLE RIVER	ES DN NIVER			STORET CODE: 02 003	002 002 0180
FMSADP FGRR0J CLIDUR CONDUCT COLIFORM FREAL FRATRC FWITEH FWITE FW		LAT: 43	21 31.82	LONG: 081	27 21.52	U T M: 17	0463050.0 4		REGION:	01	DISTANCE	DISTANCE: 136.630
SAMPLE PROJECT CHICARDE COMPOCT FOLFORM STREPULS PROJECT CHICARDE COMPOCT FOLFORM STREPULS PROJECT CHICARDE COMPOCT FOLFORM STREPULS FEER	*=INTERIM TEST-	NAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NHHTUR NH3-N	NNO2UR
E DEPTH SUB-PROJ MG/L UMHO/CH CNT CNT CNT TERP 0 0.33 0101 25.900 45.10 950 6 2.0 0.0 6 0.30 0101 25.900 451.0 950 6 2.0 0.0 6 0.30 0101 20.400 451.0 40A1D 10 6 2.0 0.0 7 0.30 0101 20.400 494.0 40A1D 10 6 2.0 0.0 8 0.30 0101 20.400 494.0 40A1D 4 10 6 2.0 0.0 1 0.30 0101 20.200 491.0 1500 1500 19.0 0.0 19.0 0.0<			SAMPLE	PROJECT	CHLORIDE UNF.REAC	CONDUCT. 25C	COLIFORM	STREPCUS		WATER	TOTAL UNF.REAC	NO2-N UNF.REAC
Column C	~	SAMPLE	DEPTH	SUB-PROJ CODE	MG/L AS CL	AT 25 C	/100ML	CNT	STREAM COND.	TEMP DEG C	MG/L	1/9W
10 10 10 10 10 10 10 10		1										
No. 20 N		37500	0.30	0101	24.900	620.0	0	000	4	1.0	0.154	0.010<
10 10 10 10 10 10 10 10	900312 0640	27529	0.30	0101	20 600	650.0	10/	800	9	1 2 0	0.215	0.060
S	900518 0625	37552	0.30	0101	20.300	0.696	40ATD	100	0 4	0.7	0.024	0.040
1		37565	0.30	0101	20,200	481.0	4	7 7 7	9	19.0	0.079	0.000
NAME	900710 0625	37578	0.30	0101	13.200	371.0	1500>	1500>		21.0	0.060	0.160
4 0.30 0.101 12.700 592.0 600> 236 6 14.5 14.5 15.0 0.30 0.301 16.200 673.0 156 100 6 12.0 12.0 0.30 0.30 0.301 17.500 673.0 950		37591	0.30	0101	24.800	497.0				22.0	0,110	0.130
7 0.30 0101 18.200 673.0 156 100 6 12.0 10 0.30 0101 17.500 673.0 156 100 6 12.0 11 0.30 19.710 673.0 950 600 22.0 11 0.30 19.326 532.7 4 100 22.0 11 0.30 13.200 371.0 4 100 11.6 13 10 10 37 50 4 100 11.6 13 10 10 37 50 4 100 11.6 10 10 10 37 50 4 10 11.6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		37604	0.30	0101	21.700	592.0	<009	236	9	14.5	0.078	090.0
H 0.30 24.900 673.0 950 800 22.0 11.6 13.200 19.710 541.1 262 387 111.6		37617	0.30	0101	18,200	673.0	156	100	9	12.0	0.063	0.050
H 0.30 19.710 541.1 262 367 11.6 11.6 10.30 19.710 541.1 262 367 11.6		37630	0.30	0101	17.500	663.0	160	410	9	3,5	0.025	0.010
NHOZUR NHYKUR PH PPO4UR PRUT PSAMF PRUT PRUT PARTIC.	Ť	AXIMUM	0.30		24,900	673.0	950	800		22.0	712	0 160
NHOSUR NHYKUR PH PPO4UR PPUT PSAMF RESIDUE NHS. REAC UNF. RE	ARITI	HEAN	0.30		19.710	541.1	696	787		11 6	2000	0000
NHO3UR	GE01	1 MEAN			19,385	532.7	707	100		8.0	0.007	0.082
S 10	M	TNIMUM	0.30		13.200	371.0	4	100		1.0	0.024	0.010
NHOSUR	STD DEV (G)	EOM *)			3,681	98.1				7.9	0.059	
NHO3UR	# SAMP IN STAT	ISTICS	10		10	10	Z	4		10	10	6
NHOZUR	% SAMP (EXC	(ODED)					37	50				10
NO3-N TOTAL NO4-N TOTAL NO5-N NO5-N NO5-N TOTAL NO5-N NO5-	*=INTERIM TEST-	VAME:	NNO3UR	NNTKUR	Н	PP04UR	PPUT	PSAMF	RSP			
HOUR SAMPLE NG/L UNF.REAC UNF.			N-Z-N	TOTAL N		pud	риосриор	PSEUDOMN				
HOUR SAMPLE MG/L HG/L	SAMPLE		UNF. REAC	UNF . REAC		UNF.REAC	UNF. TOT.	MF MF	RESTONE			
LHT HUMBER AS N AS N PH AS P AS P AS P AS DOUGH 0750 3750 0.100* 0.590 7.83 0.024 0.046 12 2 0640 37526 7.200 0.770 7.87 0.072 0.135 12 2 0650 37526 7.200 0.500 8.33 0.014 0.016 4 0650 37569 9.100 0.500 8.33 0.014 0.036 4 0640 37568 9.100 0.650 8.43 0.001 0.036 4 0655 37578 10.000 1.440 7.62 0.166 0.336 60C 7 0655 37591 4.000 1.010 8.11 0.012 0.029 0.148 20C 0650 37664 7.800 1.000 7.76 0.035 0.148 20C 1 0620 37617 8.900 0.610 8.13 0.036<	HOUR		HG/L	MG/L		MG/L	HG/L	CNT	PARTIC.			
0750 37500 0.100 0.590 7.83 0.024 0.046 12 0640 37526 7.200 0.770 7.87 0.072 0.135 12 0650 37539 9.100 0.500 8.33 0.014 0.016 4 0640 37565 5.300 0.800 8.43 0.001 0.036 4 0625 37578 9.100 0.850 8.43 0.001 0.036 4 0625 37578 10.000 1.440 7.62 0.166 0.338 60C 0625 37591 4.000 1.010 8.11 0.012 0.029 0.029 0645 37694 7.800 1.000 7.76 0.095 0.148 20C 0620 37617 8.900 0.610 8.13 0.030 0.066 4 0620 37630 0.100 2.250 8.04 0.001 4 4	YYMNDD LMT	NUMBER	AS N	AS N	PH	AS P	AS P	/100ML	MG/L			
0640 37526 7.200 0.770 7.87 0.072 0.135 12 0630 37529 9.100 0.6500 8.33 0.014 0.016 4 0640 37565 5.300 0.800 8.43 0.001 0.036 4 0625 37578 9.100 0.850 8.43 0.001 0.036 4 0625 37578 10.000 1.440 7.62 0.166 0.338 60C 0525 37591 4.000 1.010 8.11 0.012 0.029 0.029 0545 37647 7.800 1.000 7.76 0.095 0.146 20C 0620 37647 8.900 0.610 8.13 0.030 0.066 4 0620 37630 0.100 2.250 8.04 0.001 0.051 4		37500	0.100<	0.590	7,83	0.024	0.046		5,0<			
06350 37559 9.100 0.500 8.33 0.014 0.016 4 0640 37552 5.300 0.800 8.24 0.008 0.036 4 0640 37563 9.100 0.680 8.24 0.008 0.036 4 0622 37578 10.000 1.440 7.62 0.166 0.336 60C 0625 37591 4.000 1.010 8.11 0.022 60C 0545 37664 7.800 1.000 7.76 0.035 0.148 20C 0620 37617 8.900 0.610 8.13 0.030 0.066 4 0620 37630 0.100 2.250 8.04 0.014 0.051 4		37526	7.200	0.770	7.87	0.072	0.135	12	25.9			
06.25 37552 5.300 0.800 8.24 0.008 0.036 4 0640 27565 9.100 0.650 6.43 0.001 0.036 4 0625 37578 10.000 1.440 7.62 0.166 0.336 60 0625 37591 4.000 1.010 8.11 0.012 0.029 6 0645 37604 7.800 1.000 7.76 0.055 0.146 20 0620 37617 8.900 0.640 8.13 0.030 0.066 4 0620 37630 0.100 2.250 8.04 0.001 0.051 4		37539	9.100	0.500	8.33	0.014	0.016	>4	5,0<			
0640 37565 9.100 0.050 8.43 0.001 0.036 4 0625 37578 10.000 1.440 7.62 0.166 0.336 60C 0625 37578 4.000 1.010 8.11 0.029 60C 0545 37694 7.800 1.000 7.76 0.095 0.146 20C 0620 37617 8.900 0.610 8.13 0.030 0.066 4 0620 37630 0.100 2.250 8.04 0.001 0.051 4		37552	5.300	0.800	8.24	0.008	0.036	>4>	5.0<			
0625 37578 10,000 1,440 7,62 0,166 0,338 60C 0625 37591 4,000 1,010 8.11 0.012 0,029 60C 0545 37647 7,800 1,000 7,76 0,095 0,148 20C 0620 37637 8,900 0,610 8.13 0,030 0,066 4 0620 37630 0,100 2,250 8.04 0,001 0,051 4			9.100	0.850	8.43	0,001<	0.036	> 5	5.0			
0625 37591 4,000 11,010 8,111 0,012 0,029 0545 37604 7,800 1,000 7,76 0,095 0,146 20C 0620 37617 8,900 0,610 8,13 0,030 0,066 4 0620 37630 0,100 2,250 8,04 0,001< 0,051 4<			10.000	1,440	7.62	0.166	0.338	209	6.92			
0545 37604 7.800 1.000 7.76 0.095 0.148 20C 0620 37617 8.900 0.610 8.13 0.030 0.066 4 0620 37630 0.100 2.250 8.04 0.001< 0.051 4<		37591	4.000	1.010	8.11	0.012	0.059		5.0<			
0620 37617 8.900 0.610 8.13 0.030 0.066 4 0620 37630 0.100 2.250 8.04 0.001< 0.051 4<		37609	7.800	1,000	7.76	0.095	0.148	200	14.8			
062U 5/63U U.1UU 2.25U 8.04 0.001< 0.051 4<		3/61/	8.900	0.610	8.13	0.030	990.0	4	33.8			
		2/630	0.100	2.250	8.04	>100.0	0.051	>4	51.6			

0180

STORET CODE:

STATION ID: 08-0022-017-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: AUSABLE RIVER SAMPLE POINT: AT MORRISON DAM EAST OF EXETER STATION TYPE: RIVER FLOW GAUGE MOE 02FF104

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON

DISTANCE: 136.630 REGION: 01 PARTIC. MG/L RESIDUE 34.3 5.0 829 9 0 9 U T M: 17 0463050.0 4800550.0 4 PSAMF PSEUDOMN CNT /100ML AERUG. 60 4 50 TERM STREAM: AUSABLE RIVER UNF.TOT. MG/L AS P PHOSPHOR 0.338 0.090 0.060 0.016 0.098 PPUT PO4 UNF.REAC MG/L AS P PP04UR 0.166 0.008 8 20 H LONG: 081 27 21,52 8.43 8.04 8.03 7.62 0.26 표 NNTKUR K'DAHL N MG/L AS N UNF . REAC 2.250 0.982 0.889 0.500 0.521 TOTAL LAT: 43 21 31.82 MG/L AS N NNO3UR N03-N UNF . REAC 6.833 0.100 10.000 SAMPLE MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS 2 SAMP (EXCLUDED) STD DEV (GEOM *) *=INTERIM TEST-NAME: HOUR **УУМИВВ СМТ** SAMPLE DATE

STATION ID: 08-0040-006-02

B.O.W./ SITE: BAYFIELD RIVER SAMPLE POINT: FIRST CONCESSION DOWNSTREAM FROM CLINTON

FORMOJ ALK	The color 1				MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BAYFIELD RIVER	KES ON RIVER			STORET CODE: 02	DE: 02 002 0370
ALKT BODS CLIDUR CONDES CUUT DO FECH FRAL LINE REAL CONDUCT COPPER DISOLVED COLIFORN STR FRAL TOTAL TO	ALKT BODS CLIDUR COND25 CUUT DO FERAL FREAL LINE, REAC CONDUCT. COPPER DISOLVED COLIFORN STREAM FIG. 1 107.DEH. WIF. REAC CONDUCT. COPPER DISOLVED COLIFORN STREAM FIG. 1 107.DEH. WIF. REAC CONDUCT. COPPER DISOLVED COLIFORN STREAM FIG. 1 10.0 C.55.0 C.0015 197.0 0.54 35.200 672.0 C.0015 198.0 0.54 25.200 672.0 C.0015 198.0 0.65 3.32 15.800 641.0 C.005 208.0 0.65 3.32 46.900 737.0 C.005 209.0 0.60 3.32 46.900 737.0 C.005 209.0 0.005 40 10.294 10.005 209.0 0.005 40 10.294 10.005 209.0 0.005 40 10.005 	LAT: 43 35 18.42	LONG: 081	33 28.95	U T M: 17	0454950.0	4826100.0 4		01	DISTANC	
ALK 5 DOD THE CONDUCT. COPPER DISQUED COLIFORN TREASON TOTAL HG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/	Total	FWSADP	FGPROJ	ALKT	8005	CLIDUR	COND25	CUUT	DO	FCMF	
March Marc	March Marc	SAMPLE	DRO JECT	ALK	5 DAY	CHLORIDE	CONDUCT.	COPPER	DISOLVED	FECAL	FECAL
AS CACOS AS O ASCL OTMODER HOLT IS O 1997 OCOS AS O ASCL OTMODER AS CACOS AS O ASCL OTMODER HOLT IS O 1997 OCOS AS O 0.0016 T 13.0 292 156.0 0.002 T 13.0 292 156.0 1.42 46.900 672.0 0.002 T 13.0 292 156.0 1.42 46.900 672.0 0.002 T 13.0 292 156.0 1.42 46.900 672.0 0.002 T 13.0 292 156.0 1.72 42.800 632.0 0.002 T 13.0 20.00 T 1.72 42.800 632.0 0.002 T 13.0 2.00	AS CAĞOĞ AĞ Ö AŞ CL ATĞ CL AĞ CU O.0046-T 13.0 CMT AĞ CU AĞ CO O.0016-T 13.0 CMT AĞ CU AĞ CO O.0016-T 13.0 CM AĞ CO O.0016-T	DEPTH	SUB-PROJ	MG/L	MG/I	UNF. REAC	250	UNF. TOT.	OXYGEN	MF	MF
218.0 0.54 35.200 672.0 0.0016 <t 0.0016="" 0.0020="" 0.0023<t="" 0.0026="" 0.0050="" 0.0060="" 0.0064="" 0.59="" 0.60="" 1.03="" 1.30="" 1.42="" 1.6="" 1.72="" 10="" 11="" 123.0="" 13.0="" 15.800="" 156.0="" 162.0="" 2.16="" 20.700="" 202.0="" 202.4="" 206.0="" 208.0="" 209.0="" 26.000="" 28.328="" 292="" 3.2="" 30.045="" 30.500="" 33.800="" 4="" 411.0="" 42.800="" 46.900="" 586.0="" 592.4="" 601.9="" 668.0="" 672.0="" 737.0="" 8.5="" 828="" 840="" 882="" 8990="" 9.0="" 96="" nihs-reac="" nno3ur="" nnozur="" nntkur="" pbut="" ph="" pinhtur="" pp="" ppoquir="" td="" unf-re<="" unf-reac=""><td> 18-0 0.54 35.200 672.0 0.0016<7 13.0 292 292 256.0 0.0026<7 13.0 292 296.0 1.72 46.900 556.0 0.0026<7 13.0 292 296.0 2.16 20.700 586.0 0.0026<7 13.0 292 292.0 2.16 20.700 586.0 0.0026<7 2.15 20.700 2.16 20.700 2.16 2.10 2.20 </td><td>E</td><td>CODE</td><td>AS CACOS</td><td>AS 0</td><td>AS CL</td><td>AT 25 C</td><td>AS CU</td><td>MG/L</td><td>CNT</td><td>CNT</td></t>	18-0 0.54 35.200 672.0 0.0016<7 13.0 292 292 256.0 0.0026<7 13.0 292 296.0 1.72 46.900 556.0 0.0026<7 13.0 292 296.0 2.16 20.700 586.0 0.0026<7 13.0 292 292.0 2.16 20.700 586.0 0.0026<7 2.15 20.700 2.16 20.700 2.16 2.10 2.20	E	CODE	AS CACOS	AS 0	AS CL	AT 25 C	AS CU	MG/L	CNT	CNT
197.0 0.54 25.200 672.0 0.0016<7 13.0 156.0 2.16 26.100 566.0 0.0025<7 13.0 156.0 1.42 26.100 566.0 0.0025<7 13.0 156.0 1.42 46.900 575.0 0.0020<7 13.0 156.0 1.72 42.800 524.0 0.0020<7 7.5 168.0 0.60 36.900 524.0 0.0020<7 7.5 168.0 0.60 36.900 524.0 0.0020<7 7.5 168.0 0.60 36.900 645.0 0.0020<7 7.5 168.0 0.59 26.000 737.0 0.0060 9.0 298.0 0.59 26.000 737.0 0.0050 8.5 298.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 26.000 737.0 0.0050 8.5 208.0 0.59 10.294 10.294 0.0050 8.5 208.0 0.40 15.800 411.0 0.0050 8.5 208.0 0.40 10.294 10.294 10.005 4 10.294 10.294 10.294 10.005 4 11	197.0 0.544 25.200 672.0 0.0016< Till.0 197.0 0.464 25.200 672.0 0.0026< Till.0 197.0 0.40 25.100 566.0 0.0026< Till.0 198.0 0.40 26.100 566.0 0.0026< Till.0 198.0 0.60 36.900 527.0 0.0020< Till.0 198.0 0.60 36.900 527.0 0.0020< Till.0 198.0 0.60 36.900 527.0 0.0020< Till.0 202.0 1.68 33.800 646.0 0.0060 9.0 208.0 0.59 26.000 737.0 0.0050 9.0 208.0 0.59 26.000 737.0 0.0050 9.0 208.0 0.59 26.000 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 9.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 737.0 0.0050 40.0 208.0 3.32 46.900 0.0050 40.0 208.0 0.400 11.0 40.200 0.0050 40.0 208.0 0.400 13.000 0.640 0.0056 0.0050 208.0 0.000 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 208.0 0.000 0.000 0.000 0.000 208.0 0.000 0.00	1							2	/ TOOLIL	THOOK
156.0 1.42 26.100 586.0 0.0023<1 13.0 292 156.0 2.14 26.100 586.0 0.0026 8.0 1360 11 162.0 1.72 46.900 572.0 0.0026 8.0 1360 13 162.0 1.72 46.900 572.0 0.0020<1 7.5 16 162.0 1.72 46.900 572.0 0.0020<1 7.5 16 123.0 0.60 36.900 572.0 0.0020<1 7.5 16 298.0 0.59 26.000 737.0 0.0050 8.5 96 298.0 3.32 46.900 737.0 0.0050 8.5 96 298.0 3.32 46.900 737.0 0.0050 8.5 96 298.0 3.32 46.900 737.0 0.0050 8.5 96 298.0 3.32 46.900 737.0 0.0050 8.5 96 298.0 3.32 46.900 737.0 0.0050 8.5 96 298.0 3.32 46.900 737.0 0.0050 8.5 96 298.0 3.32 46.900 737.0 0.0050 8.5 9.0 298.0 3.32 46.900 737.0 0.0050 8.5 9.0 298.0 1.30 28.328 592.4 0.004 4 8.8 582 202.4 1.03 28.328 592.4 0.004 4 8.5 202.4 1.03 28.328 592.4 0.004 4 8.5 11	156.0 1.42 26.100 586.0 0.0023 156.0 1.42 26.100 586.0 0.0026 168.0 1.42 26.100 586.0 0.0026 168.0 1.42 46.900 523.0 0.0026 158.0 0.60 3.4.800 668.0 0.0056 208.0 0.59 26.000 737.0 0.0050 8.5 96 208.0 0.60 3.4.800 668.0 0.0050 8.5 96 208.0 0.60 3.4.800 668.0 0.0050 8.5 96 208.0 0.59 26.000 737.0 0.0050 8.5 96 208.0 0.40 1.5.800 737.0 0.0050 8.5 96 208.0 1.30 3.4.500 737.0 0.0050 8.5 263 1.30 3.4.500 737.0 0.0050 8.5 263 1.30 3.4.500 737.0 0.0050 8.5 263 1.30 10.294 10.294 10.005 411.0 0.005 4 8.8 5.5 263 1.30 1.4.540 10.294 10.005 411.0 0.005 4 8.8 5.5 16 1.30 1.4.540 10.294 10.005 4 8.8 5.5 16 1.30 1.30 10.005 4 11.0 0.005 0.005	0.50	0101	218.0	0.54	35.200	672.0	0.0016 <t< td=""><td>13.0</td><td></td><td></td></t<>	13.0		
152.0 1.45 20.700 460.0 0.0026 8.0 1360 1360 1362.0 1.42 42.800 525.0 0.0020 162.0 1.72 42.800 525.0 0.0020 123.0 2.58 2.5800 616.0 0.0020 123.0 2.58 2.5800 616.0 0.0060 5.5 1400 2.280.0	Table	05.00	0101	197.0	0.40	26.100	586.0	0.0023 <t< td=""><td>13.0</td><td>292</td><td>68</td></t<>	13.0	292	68
1.42	1.42	0.00	0101	0.951	2.16	20.700	460.0	0.0026	8.0	1360	1080
198.0 0.050 0.000	123.0 1.77 45.800 537.0 0.020 < T.5 16 123.0 3.32 15.800 537.0 0.020 < T.5 16 123.0 3.32 15.800 646.0 0.0000 5.5 1400 220.0 1.68 33.800 646.0 0.0000 5.5 1400 220.0 0.59 26.000 737.0 0.0050 8.5 96 220.0 0.60 30.500 737.0 0.0050 8.5 96 220.0 0.60 30.500 737.0 0.0050 8.5 96 220.0 0.60 30.500 737.0 0.0050 8.5 96 220.0 0.40 1.30 30.645 601.9 0.0056 8.5 8.8 230.0 0.40 15.800 411.0 0.0016 5.5 1400 11 230.0 0.40 15.800 411.0 0.0016 5.5 16 24.8 0.94 1.0294 10.294 100.6 0.0016 5.5 5 11	02.0	0101	200.0	1.42	006 95	675.0	0,0019 <t< td=""><td>8.5</td><td>890</td><td>170</td></t<>	8.5	890	170
128.0 0.660 524,0 0.0020 128.0 0.660 524,0 0.0020 128.0 0.560 616,0 0.0060 9.0 840 616,0 0.0060 9.0 840 616,0 0.0060 9.0 840 616,0 0.0060 9.0 840 616,0 0.0060 9.0 840 616,0 0.0060 9.0 840 616,0 0.0060 9.0 840 616,0 0.0060 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 96 9.0 840 96 9.0 96 9.0 96 9.0 9.0 96 9.0 96 9.0	123.0 0.660 524,0 0.0020 123.0 0.560 524,0 0.0020 1.06	01.0	0101	162.0	1.72	42.800	537.0	0,020 <t< td=""><td>8.5</td><td>SOAID</td><td>30410</td></t<>	8.5	SOAID	30410
125.0 3.32 15.800 411.0 0.0060 5.5 1400 22.0 20.0 3.32 15.800 616.0 0.0060 5.5 1400 20.0 20.0 3.3 2.800 616.0 0.0060 5.5 1400 20.0 3.8 3.8 840 840 840 840 840 850 0.050 30.500 737.0 0.0050 8.5 9.6 96 840 850 0.050 1.3 0.050 737.0 0.0050 8.5 9.6 96 840 850 0.050 1.3 0.050 737.0 0.0050 8.5 9.6 96 840 850 0.050 1.3 0.045 61.9 0.0050 8.5 9.8 850 1.3 0.045 1.3 0.045 61.9 0.0050 4 8.8 5.8 263 1.3 0.045 1.0 0.9 4 1.0 0.005 4 1.0	125.0 3.32 15.800 411.0 0.0060 5.5 1400 220.0 2.58 15.800 688.0 0.0060 9.0 840 280.0 0.659 26.000 737.0 0.0050 8.5 96 290.0 0.650 33.800 688.0 0.0050 8.5 96 290.0 0.590 26.000 737.0 0.0050 8.5 96 200.4 1.30 28.328 601.9 0.005 <	0.00	1010	188.0	09.0	36.900	524.0	0.0020 <t< td=""><td>7.5</td><td>16</td><td>0</td></t<>	7.5	16	0
298.0 0.59 26.000 646.0 0.0060 9.0 840 840 2280.0 0.59 26.000 737.0 0.0050 8.5 96.00 840 2280.0 0.660 30.500 737.0 0.0050 8.5 9.0 840 850 2280.0 0.600 3.32 46.900 737.0 0.0050 8.5 96.00 13.0 1400 1400 1400 1400 1400 1400 1400 14	298.0 0.59 26.000 616.0 0.0050 9.0 840 840 2298.0 0.669 0.59 26.000 737.0 0.0050 8.5 9.0 840 8.5 96.00 737.0 0.0050 8.5 9.0 840 8.5 96.00 737.0 0.0050 8.5 9.0 840 8.5 96.00 737.0 0.0050 8.5 9.0 9.0 840 8.5 96.00 737.0 0.0050 8.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	00.00	0101	123.0	3.32	15.800	411.0	0,0060	5.5	1400	450
298.0 0.569 25.800 668.0 0.0060 9.0 840 840 268.0 0.056 26.000 737.0 0.0050 10.0 310 310 209.0 1.30 30.500 737.0 0.0050 10.0 310 310 310 310 310 310 310 310 310 31	Control Cont	0.30	0101	202.0		15.800	616.0		5.5		
298.0 0.559 26.000 737.0 0.0050 8.5 96 208.0 3.32 46.900 737.0 0.0050 10.0 310 209.0 1.30 30.645 601.9 0.0056 4 8.8 582 202.4 1.03 20.645 601.9 0.0056 4 8.8 582 202.4 1.03 20.645 601.9 0.0056 4 8.8 582 202.4 1.03 20.645 601.9 0.0056 4 8.8 582 202.4 1.02 9.15.800 411.0 0.0016 5.5 16 54.8 0.94 10.294 108.6 0.0016 4 5.5 16 54.8 0.94 10.294 108.6 0.0016 4 2.5 5.8 TOTAL NOZ-N NNO3UR NNTKUR PBUT PH PPO4UR PHOTOLIC POTAL LEAD HG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/L	298.0 0.559 26.000 737.0 0.0050 8.5 96	00.00	0101	0.197	1.68	33.800	0.899	0,0060	0.6	840	480
298.0 3.32 46.900 737.0 0.020 13.0 1400 1.0 20.4 1.0 2.9 1.0 0.06 4 8.5 502 2.0 2.0 1.0 0.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	298.0 3.32 46.900 737.0 0.020 13.0 1400 1.0 299.0 3.32 46.900 737.0 0.020 13.0 1400 1.0 200.4 1.03 28.328 592.4 0.004	0.00	0101	298.0	0.59	26.000	737.0	0.0050	8.5	96	388
298.0 3.32 46.900 737.0 0.020 13.0 1400 1 2209.0 1.30 30.045 601.9 0.005 <a 0.004="" 0.005="" 0.094="" 0.095="" 0.095<="" 10.005="" 10.294="" 16="" 2.5="" 4="" 5.5="" 5.80="" 582="" 583="" 6="" 601.9="" 8.8="" <a="" td=""><td> 13.0 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 15.800 10.294 10.294 108.6 0.005 <4 2.5 16 5.800 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.5 1.5 5.8 1.6 1.5 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 5.8 1.5 5.8 5.</td><td>00:00</td><td>7070</td><td>0.882</td><td>09.0</td><td>30.500</td><td>735.0</td><td>0.0050</td><td>10.0</td><td>310</td><td>200</td>	13.0 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 1400 1.30 15.800 10.294 10.294 108.6 0.005 <4 2.5 16 5.800 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.5 1.5 5.8 1.6 1.5 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 1.5 5.8 5.8 1.5 5.8 5.	00:00	7070	0.882	09.0	30.500	735.0	0.0050	10.0	310	200
209.0 1.30 30.045 601.9 0.005 A 8.8 1400 11 202.4 1.03 28.328 592.4 0.004 A 8.5 263 123.0 0.494 10.294 10.004 A 8.5 263 11 10 0.404 10.294 10.005 A 2.5 16 11 10 0.402 10.204 10.005 A 2.5 16 11 10 0.402 10.005 A 2.5 10 11 10 0.402 10.400 10.600 0.005 A 2.5 10 11 10 0.402 10.400 0.400	209.0 1.30 30.045 601.9 0.005 cA 8.8 582 582 123.0 0.005 cA 8.8 582 582 4 0.004 cA 8.5 5.5 16 582 123.0 0.005 cA 8.8 582 582 4 0.004 cA 8.5 5.5 16 582 123.0 0.005 cA 8.8 5.5 263 123.0 0.004 cA 8.5 5.5 16 5.8 16 5.8 0.004 cA 8.5 5.5 16 5.8 16 5.8 0.005 cA 8.5 5.5 16 5.8 16 5.8 10 5.8 1	0.30		298.0	3.32	46.900	727 0	000			
202.4 1.03 28.328 592.4 0.0034 < 8.5 263 263 263 263 263 263 263 263 263 263	TOTAL NUMBER NU	0.30		209.0	1.30	30.045	601.9	0.020	13.0	1400	1080
123.0 0.40 15.800 411.0 0.0016 5.5 16 54.8 0.94 10.294 108.6 0.005 <a 0.0016="" 0.005="" 10="" 11="" 12="" 13="" 14="" 15="" 16="" 17="" 18="" 2.5="" 5.5="" 5.6="" 5.8="" 58="" <a="" <a<="" td=""><td> 123.0 0.40 15.800 411.0 0.0016 5.5 16 11 10 11 11 11 11 11</td><td></td><td></td><td>202.4</td><td>1.03</td><td>28.328</td><td>592.4</td><td>A 200.0</td><td>0 0</td><td>285</td><td>319</td>	123.0 0.40 15.800 411.0 0.0016 5.5 16 11 10 11 11 11 11 11			202.4	1.03	28.328	592.4	A 200.0	0 0	285	319
11 10 11 10 10.594 10.616 10.005 < A 2.5 10.594 10.294 10.616 10.005 < A 2.5 10.516 10.616	The color of the	0.30		123.0	0,40	15.800	411.0	0.0016	o ra	502	155
11 10 11 10 11 9 9 9 9 9 9 9 9	11 10 11 10 11 11 11 11	;		54.8	96.0	10.294	108,6	0.005 <4	0 0	P U	0 2
NINTUR	NHHTUR	11		11	10	11	11	10	11	K 6	å o
NHS-M NO2-M NO3-M NO3-	NHS-M NO2-M NO3-M NO3-	FWSTRC	FWTEMP	NNHTUR	NNO2UR	NNO3UR	NNTKUR	PBUT	Hd	DDOGILD	-
R	R			NH3-N			K'DAHL N			2010	201
Part	Part		WATED	INE DEAC	NOZ-N	NO3-N	TOTAL	LEAD		P04	PHOSPHOR
0.128 0.050 13.000 0.640 0.00547 7.91 0.036 0.009 0.050 12.700 0.660 0.00547 7.87 0.064 0.0054 0.0055 0.005 0.0054 0.0055 0.0054 0.0055	Color Colo	STRFAM	TEMD	MC /	ONF . KEAL	UNF . KEAC	UNF . REAC	UNF. TOT.		UNF. REAC	UNF. TOT.
0.128 0.050 13.000 0.640 0.005 0.055 13.000 0.640 0.005 0.055 13.000 0.640 0.005 0.005 0.025 0.025 0.025 0.025 0.025 0.118 0.020 12.700 0.510 0.005 0.005 12.700 0.550 0.005 0.005 0.025 0.025 0.120 0.050 2.300 0.050 0.050 0.055 0.055 0.055 0.015 0.015 0.049 0.040 3.400 0.750 0.005 0.005 0.005 0.018 0.018 0.035 0.150 10.400 1.600 0.015 0.015 0.015 0.016 0.016 0.034 0.010 2.100 0.015 0.015 0.015 0.016 0.016 0.051 0.021 0.010 0.010 1.400 0.056 0.005 0.005 0.006 0.006 0.051 0.050 0.010 0.010 0.050 0.005 0.005 0.006 0.006 0.051 0.050 0.050 0.050 0.005 0.005 0.006 0.006	0.128 0.050 13.000 0.640 0.005 0.0128 0.050 13.000 0.640 0.005 0.120 0.050 12.700 0.540 0.005 0.120 0.050 12.700 0.550 0.005 0.049 0.040 3.400 0.710 0.005 0.017 0.030 11.400 0.560 0.005 0.033 0.030 11.400 0.560 0.005 0.033 0.030 11.400 0.560 0.005 0.033 0.030 11.400 0.560 0.005 0.033 0.030 11.400 0.660 0.005 0.033 0.030 11.400 0.660 0.005 0.031 0.060 0.005 0.035 0.030 11.400 0.660 0.005 0.031 0.006 0.005 0.032 0.030 0.030 0.660 0.005 0.033 0.030 0.030 0.660 0.005 0.033 0.030 0.030 0.660 0.005 0.031 0.006 0.005 0.033 0.030 0.030 0.060 0.060 0.031 0.006 0.005 0.032 0.032 0.030 0.060 0.060 0.033 0.030 0.030 0.060 0.060 0.005 0.031 0.006 0.000 0.000 0.031 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000	COND.	DEG	NO W	AC N	116/1	MG/L	MG/L		MG/L	HG/L
0.128 0.050 13.000 0.640 0.005 <rt 0.036<="" 7.91="" td=""> 0.108 0.050 12.700 0.510 0.005 0.005 0.005 0.025 0.109 0.020 12.700 0.510 0.005 0.005 0.005 0.005 0.500 0.030 8.500 0.560 0.005 0.005 0.005 0.005 0.049 0.040 3.400 0.710 0.005 0.005 0.005 0.005 0.035 0.160 10.400 1.680 0.013 0.013 0.013 0.016 0.021 0.030 6.000 1.440 0.005 0.005 0.006 0.031 0.030 1.400 0.550 0.005 0.005 0.005 0.171 0.030 0.030 11.400 0.550 0.005 0.005 0.005</rt>	0.128 0.050 13.000 0.640 0.005 7.91 0.036 0.009 0.020 12.700 0.510 0.005 9.06 0.025 0.110 0.120 7.700 0.590 0.005 7.87 0.065 0.500 0.049 0.040 3.400 0.760 0.005 8.06 0.066 0.017 0.036 3.400 0.750 0.005 8.11 0.066 0.021 0.036 0.160 1.780 0.005 8.42 0.001 0.024 0.040 2.100 0.660 0.035 8.02 0.014 0.051 0.050 1.600 0.056 8.02 0.014 0.051 0.050 1.140 0.056 0.005 8.12 0.051 0.033 0.070 8.70 0.690 0.005 8.24 0.032				202	AD N	AS N	AS PB	Н	AS P	AS P
0.009 0.050 12.700 0.510 0.0054 8.06 0.025 0.118 0.120 7.700 0.890 0.0054 7.87 0.064 0.500 0.080 8.500 0.750 0.0054 8.06 0.018 0.017 0.030 3.000 0.750 0.0054 8.11 0.006 0.035 0.160 10.400 0.710 0.0054 8.42 0.001 0.021< 0.010 1.600 0.710 0.0054 8.12 0.001 0.021< 0.010 1.400 0.600 0.0184 7.80 0.114 0.021< 0.010 1.400 0.600 0.0054 8.12 0.001 0.033 0.030 11.400 0.560 0.00554 8.18 0.001	0.009 0.050 12.700 0.510 0.005 0.116 0.120 7.700 0.560 0.005 0.500 0.080 8.500 0.560 0.005 0.017 0.030 3.400 0.700 0.005 0.037 0.010 1.600 1.680 0.013 0.017 0.010 0.100 0.660 0.005 0.018 0.005 0.019 0.006 0.000 1.680 0.005 0.0051 0.000 11.40 0.005 0.0053 0.005 0.000 0.005 0.0051 0.000 0.005 0.0051 0.000 0.005 0.0051 0.000 0.005 0.0051 0.005 0.005 0.0051 0.005 0.005 0.0051 0.005 0.0051 0.005 0.005 0.0051 0.005 	5	1.0	0.128	0.050	13.000	0.640	0.005 <t< td=""><td>7 91</td><td>0 076</td><td>0</td></t<>	7 91	0 076	0
0.518 0.120 7.700 0.890 0.005 0.500 0.080 8.500 0.560 0.005 0.049 0.060 8.500 0.560 0.005 0.017 0.030 3.000 0.710 0.005 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.020 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.030 11.400 0.560 0.005 0.030 0.140 0.050 0.031 0.030 0.030 0.050 0.050 0.031 0.030 0.030 0.050 0.050 0.031 0.030 0.030 0.050 0.050 0.005 0.031 0.030 0.030 0.050 0.050 0.005 0.031 0.030 0.030 0.050 0.050 0.005 0.031 0.030 0.030 0.030 0.050 0.005 0.031 0.030 0.030 0.030 0.050 0.005 0.031 0.030 0.030 0.030 0.030 0.005 0.031 0.030 0.030 0.030 0.030 0.005 0.031 0.030 0.030 0.030 0.030 0.005 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.005 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.005 0.030 0	0.118 0.120 7.700 0.890 0.005 0.049 0.069 8.500 0.560 0.005 0.049 0.060 3.400 0.560 0.005 0.017 0.030 3.400 0.710 0.005 0.021 0.021 0.021 0.021 0.033 0.030 11.400 0.560 0.005 0.031 0.171 0.040 8.70 0.009 0.050 0.171 0.040 0.080 0.080 0.080 0.050 0.051 0.052 0.055 0.055 0.055 0.056 0.056 0.056 0.057 0.058 0.058 0.059 0.050 0.051 0.051 0.052 0.052 0.053 0.053 0.054 0.055 0.056 0.056 0.057 0.057 0.057 0.056 0.057 0.057 0.057 0.056 0.056 0.056 0.057 0.057 0.057 0.057 0.0	9	5.0	600.0	0.050	12.700	0.510	0.005 <w< td=""><td>80.8</td><td>0.00</td><td>0.049</td></w<>	80.8	0.00	0.049
0.550 0.080 8.500 0.560 0.005 0.049 0.040 3.400 0.760 0.005 0.017 0.030 1.040 1.040 0.015 0.021 0.035 0.040 2.100 0.050 0.005 0.035 0.040 1.040 1.040 0.005 0.051 0.051 0.051 0.050 0	0.550 0.080 8.500 0.560 0.005 0.049 0.040 3.400 0.750 0.005 0.017 0.030 3.400 0.750 0.005 0.054 0.040 3.400 0.700 0.005 0.054 0.040 1.400 1.460 0.005 0.053 0.030 11.400 0.660 0.005 0.054 0.050 8.700 0.660 0.005 0.055 0.050 0.050 0.050 0.051 0.060 0.055 0.051 0.060 0.055 0.051 0.060 0.055 0.051 0.050 0.055 0.051 0.050 0.055 0.051 0.050 0.055 0.051 0.050 0.055 0.052 0.050 0.055 0.053 0.050 0.055 0.051 0.050 0.055 0.052 0.055	9	2.5	0.118	0.120	7.700	0.890	0.005cW	7 8 7	0.000	0.035
0.049 0.040 3.400 0.750 0.005×W 8.10 0.018 0.017 0.030 3.400 0.710 0.005×W 8.11 0.006 0.035 0.160 10.400 1.680 0.013 <t 0.114<br="" 7.80="">0.021< 0.010 2.100 0.660 8.02 0.006 0.061 0.080 6.000 1.140 0.005×W 8.12 0.001 0.171 0.060 8.10 0.560 0.005×W 8.12 0.001</t>	0.049 0.040 3.400 0.750 0.0054W 8.11 0.008 0.037 0.035 3.000 0.770 0.00554W 8.12 0.001 0.035 0.0160 10.400 1.680 0.013 <t 0.114<br="" 7.80="">0.021< 0.010 2.100 0.660 0.00554W 8.12 0.001 0.061 0.080 6.000 1.140 0.00554W 8.12 0.005 0.035 0.030 11.400 0.560 0.00554W 8.12 0.051 0.171 0.040 8.70 0.690 0.00554W 8.18 0.021</t>	9	6.5	0.500	0.080	8.500	0 560	W. COO. O	10.7	690.0	0.156
0.017 0.030 3.000 0.700 0.0055W 8.11 0.006 0.035 0.160 10.400 1.680 0.013 <t 0.114<br="" 7.80="">0.031 0.030 1.400 0.560 0.0055W 8.12 0.006 0.031 0.030 11.400 0.560 0.0055W 8.12 0.051 0.171 0.040 8.10 0.560 0.0055W 8.12 0.051</t>	0.017 0.030 3.000 0.710 0.0055W 8.11 0.006 0.005	9	14.0	0.049	0.040	3.400	0.000	W>500.0	8.06	0.018	0.030
0.036 0.166 10.400 1.680 0.013<7 7.80 0.114 0.021< 0.010 2.100 0.660 0.013<7 7.80 0.114 0.051 0.080 6.000 1.140 0.005<4 8.12 0.051 0.033 0.030 11.400 0.560 0.005<4 8.12 0.051 0.171 0.040 8.20 0.051	0.036 0.160 10.00 1.680 0.0135W 8.42 0.001 0.021 0.026 0.036 0.030 1.140 0.0055W 8.12 0.051 0.033 0.030 11.400 0.660 0.0055W 8.12 0.051 0.171 0.060 8.700 0.690 0.0055W 8.24 0.032	9	15.5	0.017	0.030	2 000	0.710	My COO O	8.11	900.0	0.052
0.021< 0.010 2.100 0.640 0.015<1 7.80 0.114 0.021< 0.010 2.100 0.660 0.005 <w 0.005<w="" 0.006="" 0.021="" 0.021<="" 0.030="" 0.033="" 0.040="" 0.171="" 0.560="" 11,400="" 8.12="" 8.18="" 8.70="" td=""><td>0.021< 0.010 2.100 0.600 0.013<1 7.80 0.114 0.061 0.080 6.000 1.140 0.005<w 0.006<br="" 8.02="">0.033 0.030 11.400 0.560 0.005<w 0.051<br="" 8.12="">0.171 0.040 8.700 0.690 0.005<w 0.021<="" 8.18="" td=""><td>6 3</td><td>20.5</td><td>0.036</td><td>0.160</td><td>10 600</td><td>047.5</td><td>M/COO O</td><td>24.8</td><td>0.001<</td><td>0.018</td></w></w></w></td></w>	0.021< 0.010 2.100 0.600 0.013<1 7.80 0.114 0.061 0.080 6.000 1.140 0.005 <w 0.006<br="" 8.02="">0.033 0.030 11.400 0.560 0.005<w 0.051<br="" 8.12="">0.171 0.040 8.700 0.690 0.005<w 0.021<="" 8.18="" td=""><td>6 3</td><td>20.5</td><td>0.036</td><td>0.160</td><td>10 600</td><td>047.5</td><td>M/COO O</td><td>24.8</td><td>0.001<</td><td>0.018</td></w></w></w>	6 3	20.5	0.036	0.160	10 600	047.5	M/COO O	24.8	0.001<	0.018
0.061 0.080 0.11400 0.005 W 8.12 0.006 0.005 W 8.12 0.006 0.007 0.11400 0.500 0.005 W 8.12 0.021 0.171 0.000 0.500 0.005 W 8.18 0.021	0.061 0.080 6.000 1.140 0.005 0.053 0.030 11.400 0.560 0.005 0.171 0.060 8.70 0.690 0.055 0.690 0.005 0.172	9	17.5	0 0017	0000	004.01	1.680	0.013 <t< td=""><td>7.80</td><td>0.114</td><td>0.346</td></t<>	7.80	0.114	0.346
0.03 0.030 11.400 0.560 0.005<4W 8.12 0.051 0.171 0.060 8.70 0.560 0.005<4W 8.18 0.021	0.033 0.030 11.400 0.560 0.005 <w 0.051<br="" 8.12="">0.171 0.040 8.700 0.690 0.005<w 0.032<="" 8.24="" td=""><td>9</td><td>12.5</td><td>0.061</td><td>0.010</td><td>001.2</td><td>0.660</td><td></td><td>8.02</td><td>900.0</td><td>0.024</td></w></w>	9	12.5	0.061	0.010	001.2	0.660		8.02	900.0	0.024
0.171 0 060 a 200 0.550 0.0554 8.18 0.021	0.171 0.040 8.700 0.690 0.005 <w 0.021<="" 8.18="" td=""><td>9</td><td>11.0</td><td>0.033</td><td>0.000</td><td>11 600</td><td>1.190</td><td>0.005<w< td=""><td>8.12</td><td>0.051</td><td>0.100</td></w<></td></w>	9	11.0	0.033	0.000	11 600	1.190	0.005 <w< td=""><td>8.12</td><td>0.051</td><td>0.100</td></w<>	8.12	0.051	0.100
The state of the s	0.005 W 8.24 0.032	9	2.5	0.171	0000	200	0.500	W>500.0	8.18	0.021	0.054

(CONTD)

1990 WATER QUALITY DATA REGION 1

-02 ODE: 02 002 0370	ICE: 21.243		UNF.TOT. MG/L AS P	0.346 0.081 0.053 0.018 0.097																	
8-0040-006-02 STORET CODE: 02 00	DISTANCE:	PPO4UR	PO4 UNF.REAC MG/L AS P	0.114 0.037 0.006																	
STATION ID: 08-0040-006-02 Storet code	01	H	H	8.42 8.07 8.07 7.80 0.18																	
STA	REGION: 01	PBUT	LEAD UNF.TOT. MG/L AS PB	0.013 0.006 <a 0.006<a 0.005 0.003<a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></a </a 																	
ES IN RIVER	826100.0 4	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L AS N	1.680 0.800 0.751 0.510 0.341																	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BAYFIELD RIVER	U T M: 17 0454950.0 4826100.0 4	NNO3UR	NOS-N UNF.REAC MG/L AS N	13.000 7.900 6.798 2.100 3.874																	
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.160 0.063 0.050 0.010 0.044																	
OM CLINTON	33 28,95	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.500 0.112 0.009	ZNUT	ZINC UNF.TOT. MG/I	AS ZN	0.0020<1	0.0083	0.0014 <t< td=""><td>0.0050</td><td>0.0220</td><td>0.00</td><td>0.0020</td><td>0.0460</td><td>0.0460</td><td>0.0125<a< td=""><td>0.0065<a< td=""><td>0.0150<a< td=""><td>10</td><td></td></a<></td></a<></td></a<></td></t<>	0.0050	0.0220	0.00	0.0020	0.0460	0.0460	0.0125 <a< td=""><td>0.0065<a< td=""><td>0.0150<a< td=""><td>10</td><td></td></a<></td></a<></td></a<>	0.0065 <a< td=""><td>0.0150<a< td=""><td>10</td><td></td></a<></td></a<>	0.0150 <a< td=""><td>10</td><td></td></a<>	10	
ANSTREAM FR	LONG: 081	FWTEMP	WATER TEMP DEG.C	20.5 9.6 6.5 1.0 7.0	RSP	RESIDUE	MG/L	5.0	61.4	7.3	, o. c.	104.0	ri c	26.7	102.0	104.0	45.6	r.	1	7	36
RIVER CESSION DOV	LAT: 43 35 18.42 LONG: 081 33 28.95	FWSTRC	STREAM COND.		PSEUDOMN	AERUG. MF	/100ML	ç	36	28	4 4	209	ì	36	, ,	09	36	00	2	ιń	55
: BAYFIELD : FIRST CON : RIVER	LAT: 43	ST-NAME:	SAMPLE	HAXIHUM ARITH MEAN GEOM MEAN MINIMUM SID DEV (GEOM *) AMP IN STATISTICS % SAMP (EXCLUDED)	ST-NAME:	A MAD	NUMBER	37503	37529	37542	37568	37581	37594	3/60/	37633	MAXIMUM	ARITH MEAN	GEOM MEAN	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: BAYFIELD RIVER SAMPLE POINT: FIRST CONCESSION DOWNSTREAM FROM CLINTON STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	HAXIMUM ARITH MEAN GEOM MEAN HINIMUM SID DEV (GEOM *) ** SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	SAMPLE DATE HOUD	0	900116 0915			900515 0750			900917 0640			~		STD DE	# SAMP IN STATISTICS	% SAMP

B.O.W./ SITE: BAYFIELD RIVER

STATION ID: 08-0040-008-02

STATION ID: 08-0040-008-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: BAYFIELD RIVER SAMPLE POINT: AT HURON COUNTY ROAD 31 NORTH OF VARNA

STORET CODE: TERM STREAM: BAYFIELD RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON STATION TYPE: RIVER FLOW GAUGE FED 02FF007

MG/L AS P UNF. REAC 14.162 PP04UR 0.123 0370 0.003 01 DISTANCE: UG/L PHENOLS UNF-REAC PHENOL PHNOL 6.000 1.000 8 3 Hd 8.12 8.12 7.83 0.18 H REGION: 01 UNF.TOT. MG/L AS PB 0.006 0.005<A 0.005<A 0.005 111 PBUT U T M: 17 0452400.0 4821925.0 4 MG/L NNTKUR K'DAHL N UNF . REAC AS N 1.700 0.749 0.694 0.470 0.357 TOTAL MG/L AS N NNOSUR UNF. REAC N03-N 13.500 7.855 6.980 2.200 3.514 MG/L AS N AS ZN NNO2UR UNF. REAC MG/L N02-N ZINC UNF. TOT. 0.150 0.0046 0.020 ZNUT 0.0079 0 NNHTUR NH3-N MG/L AS N RESIDUE PARTIC. TOTAL UNF. REAC MG/L LAT: 43 33 02.52 LONG: 081 35 21.34 0.099 0.043 0.030 0.005 0.034 5.0 RSP WATER DEG.C PSAMF FWTEMP Ŧ CNT AERUG. /100ML 19.5 9.3 6.4 1.0 6.5 16 MG/L AS P FWSTRC STREAM COND. PHOSPHOR UNF. TOT. PPUT 0.035 SAMPLE SAMPLE 37517 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS 37504 STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: HOUR HOUR 0880 0935 YYMMDD LMT LMT SAMPLE YYMMDD 900116 900213 SAMPLE DATE DATE

0.0005<W

0.0030

17.7 5.0 5.0

46.3

 $0.150 \\ 0.019$ 0.025 0.011 0.356 0.071 0.049

37530

0830 0745 0755 0740 0735 0650

900410 900515 900710 900814 901015

900611

900312

37556 37569 37595 37608

37582

0,0070 0.0240

> 136.0 10.3 43.6

4× 4× 96C 4

0.0050 0.0040

0.0460 0.0460 0.0005

36

0.0115<A 0.0066<A 0.0133<A

136.0 19.9 45.6 10.3

> 96 16 53.4

0.356 0.042 0.102

0.042

37621 37634 MAXIMUM ARITH MEAN **GEON MEAN** STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)

900917

0.073

0.011

MINIMUM

ত থি

B.O.W./ SITE: BAYFIELD RIVER

STATION ID: 08-0040-009-02

0

STATION ID: 08-0040-009-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: BAYFIELD RIVER SAMPLE POINT: AT FIRST CONCESSION WEST OF SEAFORTH STATION TYPE: RIVER FLOW GAUGE FED O2FF007

STORET CODE: 02 002 0370	DISTANCE: 45.382	4UR PPUT	PO4 PHOSPHOR	MG/L MG/L AS P AS P	107				10																							
STORE	DIST	PP04UR	PO4 UNF.REAC	PH AS	8.38 0.100			19 0.006	4	10																						
	: 01	H			œ																											
	REGION: 01	PBUT	LEAD UNF.TOT.	MG/L AS PB	0.005	0.005 <a< td=""><td>0.005<a< td=""><td>0.005</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005 <a< td=""><td>0.005</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	0.005	10																							
KES ON RIVER	U T M: 17 0465200.0 4821300.0 4	NNTKUR K DAHI N	TOTAL UNF.REAC	MG/L AS N	1.170	0.797	0.763	0.490	10																							
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BAYFIELD RIVER	0465200,0	NNOSUR	NO3-N UNF.REAC	MĠ/L AS N	13.500	7.133	002.0	00/.0	6	10																						
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	NNO2UR	NO2-N UNF.REAC	MG/L AS N	0.000	0.057	010	0.010	6	10																						
7	25 50.77	NNHTUR NH3-N	TOTAL UNF.REAC	MG/L AS N	0.446	0.097	0.039	0.142	10		ZNUT	TIME	UNF. TOT.	HG/L	AS ZN	0.0041	0.0027	0.0052	0.0012 <t< td=""><td>0.0020<t< td=""><td>0.0050</td><td>0.0120</td><td>0.0070</td><td>0.0040</td><td>0.0450</td><td>0.0450</td><td>0.0088<a< td=""><td>0.0050<a< td=""><td>0.0012</td><td>0.0131<a< td=""><td>10</td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0050</td><td>0.0120</td><td>0.0070</td><td>0.0040</td><td>0.0450</td><td>0.0450</td><td>0.0088<a< td=""><td>0.0050<a< td=""><td>0.0012</td><td>0.0131<a< td=""><td>10</td><td></td></a<></td></a<></td></a<></td></t<>	0.0050	0.0120	0.0070	0.0040	0.0450	0.0450	0.0088 <a< td=""><td>0.0050<a< td=""><td>0.0012</td><td>0.0131<a< td=""><td>10</td><td></td></a<></td></a<></td></a<>	0.0050 <a< td=""><td>0.0012</td><td>0.0131<a< td=""><td>10</td><td></td></a<></td></a<>	0.0012	0.0131 <a< td=""><td>10</td><td></td></a<>	10	
FED OZFFOO	LONG: 081 25 50.77	FWTEMP	WATER	TEMP DEG.C	19.0	8.9	. c	6.9	10		RSP		RESIDUE	PARTIC.	HG/L	7.5	5.0<	35.8	7.6	5.0	>0.9	30.9	7.4	8.6	6.69	6.69	24.0		7.4		7	
CONCESSION FLOW GAUGE	LAT: 43 32 44.80	FWSTRC		STREAM COND.							PSAMF	AFBIG	MF.	CNT	/100ML		>4	8	>4	>4	>4	20		36	>4	36	21		8		м	
I: AI FIKSI E: RIVER	LAT: 4	EST-NAME:		SAMPLE	MAXIMUM	ARITH MEAN	GEOM MEAN	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)	EST-NAME:			SAMPLE	NUMBER	37502	37515	37528	37541	37554	37567	37580	37593	37606	37632	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	
SAMPLE POINT: ALFIRST CONCESSION MEST OF SEAFORTH STATION TYPE: RIVER FLOM GAUGE FED OZFFOO7		*=INTERIM TEST-NAME:	111	DATE HOUR YYNNDD LMT				STD DE	# SAMP IN STATISTICS	% SAMP	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	УУМИВВ СМТ	900116 0850	900213 0805							900917 0625	901113 0705					STD DE	# SAMP IN STATISTICS	

B.O.W./ SITE: SILVER CREEK SAMPLE POINT: HWY 8,SEAFORTH STATION TYPE: RIVER

STORET CODE: 02 002 0370 STATION ID: 08-0040-011-02 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BAYFIELD RIVER

Mainte M												
HOUNE SAMPLE PROJECT TOTAL UNF.REAC CONDUCT. COLFORM STREPOLD PROJECT TOTAL UNF.REAC CONDUCT. COLFORM STREPOLD PROJECT TOTAL UNF.REAC CONDUCT. COLFORM STREPOLD PROJECT TOTAL UNF.REAC COLFORM STREPOLD STREP	*=INTERIM TE	EST-NAME:	FWSADP	FGPR03	ALKT	CLIDUR	COND25	FUMF	FSMF	FWSTRC	FWTEMP	NNHTUR
HOURE SAMPLE PROJECT 101AL UNF.RRAC 255 HF MF COMD. LHT HUMBER 10.30 1001 212.0 34.700 656.0 124 C010L C010					ALK	CHLORIDE	CONDUCT.	COLIFORM	STREPCUS			TOTAL
Mainter Main	al l	SAMPLE	DEPTH	SUB-PROJ	MG/L	UNF.REAC MG/L	25C UMHO/CM	CNT	CNT	STREAM	MATER	UNF.REAC
0830 37501 0.30 0101 212.0 34.700 737.0 0600 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THIDD LHT	NUMBER	I	CODE	AS CACO3	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG.C	AS N
OTSEQ 37514 0.30 0101 257.0 28.00 666.0 124 20 6 0705 37524 0.30 0101 257.0 28.400 667.0 667.0 1450 6 0700 37540 0.30 0101 223.0 28.400 672.0 100 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	0116 0830	37501	0.30	0101	212.0	34,700	737.0			4	1.0	0.445
1.00 1.00		37514	0.30	0101	207.0	28.800	0.999	124	20	_9	2.0	0.013
7700 37554 0.30 0101 22.0.0 672.0 10 20A1D 6 7710 37554 0.30 0101 223.0 23.0 104 26.0 104 26.0 104 26.0 104 26.0 104 26.0 104 26.0 104 12.0 104 10.0 <td></td> <td>37527</td> <td>0.30</td> <td>0101</td> <td>153.0</td> <td>17.200</td> <td>480.0</td> <td>680</td> <td>1450</td> <td>9</td> <td>3.0</td> <td>0.123</td>		37527	0.30	0101	153.0	17.200	480.0	680	1450	9	3.0	0.123
0700 37565 0.30 01011 223.0 34.00 764.0 32 104 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		37540	0.30	0101	202.0	28,400	672.0	10<	20AID	9	5.5	0.015
0.010 37566 0.30 0.001 233.0 37.700 778.0 446 128 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		37553	0.30	0101	223.0	34,800	0.697	32	104	9	11.0	0.034
National Part National Par		37566	0.30	0101	223.0	37.700	778.0	416	128	9	11.0	0.017
No.		37579	0.30	0101	231.0	22.400	713.0	<009	<009	9	15.5	0.00
Note	0814 0655	37592	0.30	0101	239.0	53.600	934.0			9	14.0	0.047
NATION N		37605	0.30	0101	291.0	41.900	847.0	210	100	9	6	0.013
HAXTHUM 0.30 294.0 53.600 934.0 600 90410 90A1D 90A1D 6 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1015 0645	37618	0.30	0101	294.0	28.600	807.0	176	208	9	11.0	0.032
HANTHUM	1113 0650	37631	0.30	0101	280.0	26.100	787.0	BOAID	90AID	9	N. N.	0.019
ARTTH HEAM 0.30 232.3 32.200 744.1 245 265 265 266 260 MEAM 0.30 153.0 17.200 754.6 32 20 20 20 20 20 20 20		HAXIMUM	0.30		294.0	53.600	934.0	680	1450		7. 7.	2000
FEON HIGH O .30 153.0 17 .20 400.0 32 20	•	ARITH MEAN	0.30		232.3	32.200	744.1	245	265		7.9	0.077
HIMTHUM		GEOM MEAN			228.6	30.846	734.8				5.9	0.038
No.		HININUM	0.30		153.0	17.200	480.0	32	20		1.0	0.013
TEST-MAHE: THOSUR	STD DE	V (GEOM *)			42.4	9.963	116.6					0.127
Name Caccuded Ca	# SAMP IN	STATISTICS	11		11	11	11	7	100		11	11
Hander H	% SAMP	(EXCLUDED)						22	11			
HOUR SAMPLE HEAC UNF.REAC UNF.ROW. HIG/L AS M AS	INTERIM TI	EST-NAME:	NNO2UR	NNO3UR	K'DAHI. N	ЬН	PPO4UR	PPUT	RSP			
HOUR SAMPLE HGAL UNF.REAC UNF.			N02-N	N-50M	TOTAL		PUG	риосриор				
HOUR SAHPLE HG/L <	HPLE		UNF. REAC	UNF. REAC	UNF . REAC		UNF . REAC	UNF. TOT.	RESTRUE			
LHT HUMBER AS N AS N AS N PH AS P AS P 083 O 37501 0.030 11.800 0.960 7.67 0.046 0.053 0750 37514 0.050 14.500 0.450 7.74 0.079 0.020 0750 37527 0.090 10.400 0.580 7.74 0.079 0.200 0700 37540 0.060 10.600 0.540 7.99 0.020 0.200 0700 37553 0.090 5.800 0.600 7.99 0.007 0.015 0700 37549 0.120 18.600 0.600 7.99 0.007 0.015 0655 37579 0.120 18.600 0.800 7.72 0.005 0.015 0655 37579 0.100 0.600 7.72 0.005 0.035 1 0655 37649 0.010 0.710 7.96 0.035 3 0.055 3 06		SAMPLE	MG/L	HG/L	HG/L		MG/L	MG/L	PARTIC			
0830 37501 0.030 11.800 0.960 7.67 0.046 0.050 0.750 2751 0.050 14.500 0.450 7.95 0.018 0.023 0.750 27527 0.090 10.400 0.450 7.74 0.018 0.023 0.200 0.700 3754 0.060 1.0400 0.450 7.74 0.079 0.020 0.700 2.7553 0.090 5.800 0.600 7.99 0.001 0.021 0.023 0.700 37556 0.100 0.470 0.470 0.18 0.001 0.015 0.015 0.655 37579 0.120 18.600 0.470 0.18 0.007 0.015 0.015 0.655 37579 0.120 18.600 0.680 7.72 0.006 0.033 0.085 0.655 37580 0.100 0.440 0.440 0.009 0.003 0.034 0.055 0.056 3.7518 0.040 0.440 0.009 0.003 0.034 0.054		NUMBER	AS M	AS N	AS N	Н	AS P	AS P	MG/L			
0750 37514 0.050 14.500 0.450 7.95 0.018 0.023 3752 37527 0.090 10.400 0.850 7.74 0.079 0.200 0700 37540 0.060 0.600 0.640 7.99 0.021 0.020 0700 37546 0.10 6.300 0.600 7.99 0.001 0.015 0710 37566 0.110 6.300 0.470 6.18 0.001 0.012 0655 37579 0.120 18.600 0.680 7.72 0.005 0.003 0655 37579 0.10 6.000 0.680 7.72 0.006 0.033 0655 37592 0.10 6.000 0.710 7.98 0.032 0.035 0645 37648 0.040 12.200 0.440 8.04 0.003 0.035 0650 37648 0.020 0.032 0.035 0.035 0.334		37501	0.030	11.800	0.960	7.67	0.046	0.050	5.0<			
0735 37527 0.090 10.400 0.850 7.74 0.079 0.200 6.200 0700 37540 0.060 10.600 0.540 7.80 0.021 0.023 0710 37553 0.090 5.800 0.600 7.80 0.007 0.015 0710 37563 0.110 6.300 0.470 8.18 0.001 0.015 0655 37579 0.120 18.600 0.830 7.82 0.073 0.085 0655 37579 0.110 6.000 0.680 7.72 0.006 0.035 0610 37605 0.110 6.000 0.740 7.96 0.032 0.059 0645 37618 0.040 12.200 0.440 8.04 0.003 0.093 0650 37618 0.020 10.600 0.440 8.04 0.003 0.034 3.34		37514	0.050	14.500	0.450	7.95	0.018	0.023	5.0<			
0700 37540 0.060 10.600 0.540 7.80 0.021 0.023 0710 37553 0.090 58.600 0.4600 7.99 0.007 0.015 0710 37564 0.110 6.300 0.470 8.18 0.007 0.015 0655 37579 0.120 10.600 0.680 7.72 0.005 0.085 0640 37605 0.110 6.000 0.710 7.96 0.032 0.059 0645 37618 0.040 12.200 0.450 7.96 0.032 0.095 0650 37618 0.040 12.200 0.450 7.96 0.003 0.095 0650 37618 0.020 10.600 0.440 8.04 0.003 0.034 3.34		37527	0.090	10.400	0.850	7.74	0.079	0.200	62.6			
07/10 37/55a 0.090 5.600 0.600 7.99 0.007 0.015 07/10 37/566 0.110 6.300 0.470 6.18 0.001 0.012 0655 37/579 0.120 10.600 0.680 7.72 0.073 0.065 0655 37/505 0.110 6.000 0.710 7.72 0.006 0.035 0645 37/645 0.140 12.200 0.710 7.98 0.003 0.053 0645 37/648 0.040 12.200 0.440 8.04 0.003 0.095 3.040 0650 37/641 0.020 0.095 0.033 0.093 0.034 3.34		37540	0.060	10.600	0.540	7.80	0.021	0.023	5,0<			
0655 37566 0.110 6.300 0.470 8.18 0.001< 0.012 0655 37579 0.120 10.600 0.830 7.82 0.073 0.085 0655 37592 0.050 2.900 0.680 7.72 0.006 0.039 0610 37605 0.110 6.000 0.710 7.98 0.032 0.055 0645 37618 0.040 12.200 0.450 7.98 0.003 0.046 0650 37631 0.020 10.600 0.440 8.04 0.009 0.034		37553	0.000	5.800	0.600	7.99	0.007	0.015				
0655 37579 0.120 18.600 0.830 7.82 0.073 0.085 0.055 37592 0.105 22.900 0.680 7.72 0.006 0.039 1 0.001 0.110 6.000 0.450 7.98 0.032 0.035 1 0.055 37618 0.040 12.200 0.450 7.98 0.003 0.003 0.045 0.055 37631 0.020 10.600 0.440 8.04 0.009 0.034 3.040		37566	0.110	6.300	0.410	8.18	0.001<	0.012	5.0<			
0655 37592 0.056 2.900 0.680 7.72 0.006 0.039 1 0610 37605 0.010 6.000 0.710 7.98 0.002 0.055 3 0.665 37648 0.040 12.200 0.450 7.98 0.003 0.093 0.090 0.650 37631 0.020 10.600 0.440 8.04 0.009 0.034 3		37579	0.120	18,600	0.830	7.82	0.073	0.085	5.0<			
0610 37605 0.110 6.000 0.710 7.98 0.032 0.055 0.0645 37618 0.040 12.200 0.450 7.98 0.003 0.040 0.050 37631 0.020 10.600 0.440 8.04 0.009 0.034		37592	0.050	2.900	0.680	7.72	900.0	0.039	12.8			
0645 37618 0.040 12.200 0.450 7.96 0.003 0.040 0650 37631 0.020 10.600 0.440 8.04 0.009 0.034		37605	0.110	00009	0.710	7.98	0.032	0.055	39.5			
0650 37631 0.020 10.600 0.440 8.04 0.009 0.034		37618	0.040	12.200	0.450	7.98	0.003	0.040	33.1			
		37631	0.020	10.600	0.440	8.04	600.0	0.034	30.0			

(CONTD)

STATION ID: 08-0040-011-02

1990 WATER GUALITY DATA REGION 1

B.O.W./ SITE: SILVER CREEK SAMPLE POINT: HWY 8,SEAFORTH STATION TYPE: RIVER

STORET CODE: REGION: 01 RESIDUE PARTIC. MG/L RSP U T M: 17 0469100.0 4821800.0 4 PPUT MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: BAYFIELD RIVER PO4 UNF.REAC PP04UR 표 TOTAL UNF.REAC MG/L AS N K'DAHL N NNTKUR LONG: 081 22 57.09 UNF.REAC MG/L AS N NNOSUR N03-N LAT: 43 33 01.63 UNF.REAC MG/L AS N N02-N NNO2UR SAMPLE *=INTERIM TEST-NAME:

48.430

DISTANCE:

0370

PHOSPHOR UNF.TOT. MG/L AS P

62.6 12.8 50 0.200 0.052 0.038 0.012 0.053 MG/L AS P 0.079 0.003 10 8.18 7.90 7.90 7.67 0.16 H

0.960 0.635 0.611 0.440 0.185

18.600 9.973 8.931 2.900 4.482

0.061 0.020 0.035 0.120

> ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS // SAMP (EXCLUDED)

MAXIMUM

HOUR YYMIIDD LMT SAMPLE DATE

STATION ID: 08-0056-002-02

B.O.W./ SITE: BLYTH BROOK SAMPLE POINT: AT SIDE ROAD, WEST OF BLYTH STATION TYPE: RIVER FLOW GAUGE HOE O2FE105

MG/L AS N 51,015 NNHTUR NH3-N FOTAL UNF. REAC 0.001< 0.040 0.013 0.096 0.005 0.081 0.003 0.033 0530 0.051 960.0 0.002 0.001 0.001 8 STORET CODE: DISTANCE: TURB'ITY FTU TEMP FWTEMP MATER DEG.C 1.0 1.0 1.0 13.0 12.5 19.0 19.0 11.0 5.0 19.0 8.9 5.1 1.0 7.4 FURB 1.38 FWSTRC STREAM COND. RESIDUE PARTIC. RSP 44888888888 5 REGION: FECAL CNT PSEUDOHN CNT STREPCUS /100ML /100ML AERUG. <009 PSAMF 080 92 1500> 308 8 20 FSMF 308 79 4 MG/L AS P PHOSPHOR U T M: 17 0464100.0 4843875.0 CNT FECAL COLIFORM /100ML UNF. TOT. 0.036 0.043 0.012 0.066 184 24 268 272 172 88 <0001 396 6 10 0.026 0.046 0.044 0.173 FCMF PPUT TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS 0 MG/L AS P DISOLVED P04 OXYGEN PP04UR UNF. REAC 113.0 14.0 16.0 114.0 112.5 112.0 111.0 111.0 111.5 111.5 16.0 12.3 12.2 8.0 2.1 0.021 0.019 0.019 0.020 0.013 0.080 0.020 DO COND25 UMH0/CM AT 25 C Hd 25C CONDUCT. 618.0 577.0 554.0 554.0 610.0 564.0 560.0 0.669 462.0 462.0 63.0 7.94 7.94 7.99 8.27 8.13 8.13 8.13 8.10 7.56 7.56 570.1 0.669 573.2 Hd MG/L AS N MG/L AS CL NNTKUR K'DAHL N CLIDUR CHLORIDE UNF . REAC JNF . REAC 26 45.19 0.610 0.970 19.700 17.300 11.400 13.800 17.200 19.700 14.450 14.109 10.200 3.308 0.790 0.850 1.080 1.010 2.900 1.600 11,000 TOTAL 6.400 2.900 LONG: 081 MG/L AS N FGPROJ NO3-N PROJECT SUB-PROJ COBE NN03UR UNF. REAC 9.800 6.300 6.100 2.600 4.000 1.000 1010 0101 0101 0101 0101 0101 0101 1010 0101 44 56.36 SAMPLE MG/L AS N FWSADP NNO2UR N02-N UNF . REAC 0.040 0.040 0.070 0.30 0.30 040 080 0.150 0.020 0,040 0.030 0.050 LAT: 43 38424 SAMPLE 38376 38424 38360 38376 38408 38440 38472 28585 38344 38392 38408 38440 38456 38472 SAMPLE NUMBER 28601 38344 38392 38456 38488 MAXIMUM ARITH MEAN GEON MEAN 28601 28585 MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: STATION TYPE: RIVER 1146 HOUR 1225 1159 219 1220 1200 1159 1212 1200 1219 1155 1140 1220 212 1200 HOUR 1155 1140 THI LINT YMIIDD 900102 900006 300300 900006 300703 900006 901203 YYHMDD 900102 9002006 900507 9000€ 9009006 900402 901106 SAMPLE 900306 900402 900807 SAMPLE 900507 900807 901001 DATE

	02 002 0530	51.015				
STATION ID: 08-0056-002-02	STORET CODE:	DISTANCE:	TURB	TURB'ITY FTU	1.38	1.38
VIION ID: 08		0.1	RSP	RESIDUE PARTIC. MG/L	41.4	3.9 7 41
STA		REGION: 01	PSAMF	AERUG. MF CNT /100ML	108	4 40
	(ES DN RIVER	843875.0 4	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.173 0.052 0.043	0.012 0.041 12
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER	U T M: 17 0464100.0 4843875.0 4	PP04UR	PO4 UNF.REAC MG/L AS P	0.080 0.021 0.012	0.001 0.021 12
	MAJOR BASII MINOR BASII TERM STREAI	U T M: 17	Н	Ħ	8.27 8.00 8.00	7.56 0.22 12
	10	26 45.19	NNTKUR K DAHI N	TOTAL UNF.REAC MG/L AS N	1.290 0.892 0.876	0.610 0.176 12
OF BLYTH	FLOW GAUGE MOE 02FE105	LAT: 43 44 56.36 LONG: 081 26 45.19	NNOSUR	NO3-N UNF.REAC MG/L AS N	9.800	0.700 2.764 12
BLYTH BROOK AT SIDE ROAD, WEST OF BLYTH	FLOW GAUGE	3 44 56.36	NNOZUR	NO2-N UNF.REAC MG/L AS N	0.150	0.020 0.037 12
TE: BLYTH BROOK		LAT: 4	TEST-NAME:	SAMPLE	MAXIMUM ARITH MEAN GEOM MEAN	STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)
SAMPLE POINT:	STATION TYPE: RIVER		*=INTERIM T	SAMPLE DATE HOUR YYMMDD LMT		STD DE # SAMP IN % SAMP

STATION ID: 08-0056-003-02

MG/L AS P /100ML P04 77.246 FECAL STREPCUS CNT PPO4UR JNF . REAC 20 44 1500> 0.013 900.0 0.002 0.008 212 24 16 112 212 0.007 0.008 FSMF 3 \sim 22 STORET CODE: DISTANCE: PH COLIFORM FECAL /100HL 1000> 8.21 8.39 8.29 8.43 FCMF 36 12 28 20 20 36 384 4 6 10 8,05 8.54 PH MG/L AS 0 0.005<W 0.005<W 0.005<W M>500'0 W>500.0 DISOLVED OXYGEN MG/L AS PB 0.005<W 0.005<W 0.005<W 0.005<W M>500'0 UNF. TOT. 14.0 15.5 15.0 14.5 11.5 12.5 10.5 12.0 13.0 15.5 12.9 10.5 1.5 PBUT 00 REGION: 01 0.0010 0.0009<A MG/L 0.0010<T 0.0019<T MG/L AS N C 0.0020<T 0.0020<T 0.0021<A K'DAHL N UNF. REAC COPPER 0.0023<T 0.0020<T 0.0010<T 0.0019<A NNTKUR UNF. TOT. 0.0030 0,000.0 0,000.0 TOTAL 0.710 0.680 0.840 0.820 0.760 1.250 CUUT 870 0.690 0.880 0.820 U T M: 17 0471550.0 4860150.0 4 UNF.REAC MG/L AS N N03-N COND25 25C UMHO/CM AT 25 C NNO3UR CONDUCT. 665.0 584.0 544.0 506.0 477.0 0.625 0.599 477.0 7.200 6.300 6.000 2.800 3.800 530.0 558.5 555.5 60.3 0.600 0 500 572.0 519.0 575.0 537. TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L UNF.REAC MG/L CLIDUR AS CL CHLORIDE UNF. REAC NNO2UR N02-N 19.200 18.800 17.600 17.500 27.200 30.100 21.275 16.300 AS 0.040 0.040 0.040 0.010 0.050 0.010 20,900 0.080 26.600 16.300 \$0.100 5 DAY MG/L AS 0 Bob TOTAL HG/L Z TOT. DEM. NNHTUR NH3-N JNF . REAC 0.006 0.74 0.210 0.034 0.058 0.028 0.045 0.028 0.017 0.089 8005 0.93 1.88 0.93 1.58 1.23 0.93 1.82 2.40 3.36 3.36 1.54 1.38 0.74 0.79 TOTAL MG/L ALK CACO3 TEMP FWTEMP MATER DEG.C LONG: 081 21 15,20 260.0 233.0 239.0 2210.0 211.0 185.0 222.0 222.0 260.0 220.4 218.9 171.0 26.3 1.0 1.0 1.0 15.0 17.0 24.5 222.0 ALKT 12.0 5.0 1.0 AS FLOW GAUGE FED 02FE005 CODE STREAM FGPROJ SUB-PROJ PROJECT FWSTRC COND 1010 0101 0101 0101 0101 1010 1010 1010 ***** LAT: 43 53 45.06 DEPTH SAMPLE FWSADP PFU FECAL STREPCUS H /100ML 0.30 0.30 0.30 4 0.30 0.30 FSMF 12 38349 38413 38429 38445 SAMPLE 38349 38397 38429 38445 28606 38397 NUMBER 38381 38477 GEOM MEAN 38381 38461 38493 SAMPLE 28590 MAXIMUM ARITH MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS 28590 28606 38365 38413 38477 38493 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: STATION TYPE: RIVER *= INTERIM TEST-NAME: 1450 510 1456 HOUR 1449 1450 1435 1515 1450 1510 9551 1504 HOUR 6551 1450 1435 1510 1515 1504 1505 LINT YYIHIDD LIIT 901106 901203 YYMINDD 901106 901203 SAMPLE 900102 900006 900309 900402 90006 900703 708006 900006 901001 SAMPLE 900102 900200 900306 900402 702009 509006 900703 900006 DATE DATE

NTD

0

ن

B.O.W./ SITE: MAITLAND RIVER SAMPLE POINT: HWY 86 2 MILES N-W OF WINGHAM STATION TYPE: RIVER FLOW GAUGE FED 02FE005

STORET CODE: 02 STATION ID: 08-0056-003-02 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON

002	NCE: 77.246	PPO4UR	PO4 UNF.REAC	PH AS P		0.026	0.010	0.002																								
	DISTANCE:	E		а.	i	8.54	8.21	7.76	0.23	75																						
	01	PBUT	LEAD UNF.TOT.	MG/L AS PB	6	0.005	0.005 <a< td=""><td>0.005</td><td>0.000<a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.000 <a< td=""><td>=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	=																						
	REGION: 01	NNTKUR K'DAHL N	TOTAL UNF.REAC	MG/L AS N	•	1.5/0	0.850	0.680	0.217	77																						
NARIVER	860150.0 4	NNOSUR	NO3-N UNF.REAC	MG/L AS N	4	7 275	2.541	0.100	2.314	7																						
MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER	U T M: 17 0471550.0 4860150.0 4	NNOZUR	NO2-N UNF.REAC	MG/L AS N	0	0.080	0.025	0.010	0.020	4	ZNUT	TIME	UNF. TOT.	MG/L	AS ZN	0.0092	0.0013 <t< td=""><td>0.0012<t< td=""><td>0.0024<t< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.00.0</td><td>0,000</td><td>0.0030</td><td>0.0000</td><td>0.0000</td><td>0.0092</td><td>0.0043<a< td=""><td>0.0034<a< td=""><td>0.0012</td><td>U.00325A</td><td>11</td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0012 <t< td=""><td>0.0024<t< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.00.0</td><td>0,000</td><td>0.0030</td><td>0.0000</td><td>0.0000</td><td>0.0092</td><td>0.0043<a< td=""><td>0.0034<a< td=""><td>0.0012</td><td>U.00325A</td><td>11</td></a<></td></a<></td></t<></td></t<></td></t<>	0.0024 <t< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.00.0</td><td>0,000</td><td>0.0030</td><td>0.0000</td><td>0.0000</td><td>0.0092</td><td>0.0043<a< td=""><td>0.0034<a< td=""><td>0.0012</td><td>U.00325A</td><td>11</td></a<></td></a<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0040</td><td>0.00.0</td><td>0,000</td><td>0.0030</td><td>0.0000</td><td>0.0000</td><td>0.0092</td><td>0.0043<a< td=""><td>0.0034<a< td=""><td>0.0012</td><td>U.00325A</td><td>11</td></a<></td></a<></td></t<>	0.0040	0.00.0	0,000	0.0030	0.0000	0.0000	0.0092	0.0043 <a< td=""><td>0.0034<a< td=""><td>0.0012</td><td>U.00325A</td><td>11</td></a<></td></a<>	0.0034 <a< td=""><td>0.0012</td><td>U.00325A</td><td>11</td></a<>	0.0012	U.00325A	11
MINOR BASIN TERM STREAM	U T M: 17	NNHTUR NH3-N	TOTAL UNF.REAC	MG/L AS N	6	0.210	200	0.005	11	0	TURB			TURB'ITY	FTU	2.10											2.10	2.10		2.10	1	
	21 15.20	FWTEMP	WATER	TEMP DEG.C	200	101	5.6	1.0	9.2	:	RSP		RESIDUE	PARTIC.	MG/L	5.0<	5.0	2.5	2.0	5.0<	4.0	11.8	6.7	18.2	30.0	7.3	30.0	10.6		2.5	6	
	LONG: 081 21 15.20	FWSTRC		STREAM COND.							PSAMF	PSEUDOMN	MF	CNT	/100HL	100	>4	8	>4	× 5	V \	/ V	· 4		44C		99	20		œ	м	
	LAT: 43 53 45.06	FSMF	STREPCUS	7100ML	d	Þ	•	3	H	'	PPUT	рнозриов	UNF. TOT.	MG/L	AS P	0.030	0.032	0.030	0.020	0.026	0.023	0.040	0.062	0.038	0.118	0.039	0.118	0.041	0.036	0.020	12	
	LAT: 4	EST-NAME:		SAMPLE	MANTMIM	ARTTH MEAN	GEOM MEAN	MINIMIM	MP IN STATISTICS	% SAMP (EXCLUDED)	EST-NAME:			SAMPLE	NUMBER	28590	28606	38349	38365	58581	28597	38429	38445	38461	38477	38493	MAXIMUM	ARITH MEAN	GEOM MEAN	SID DEV (GEOM *)	STATISTICS	
		*=INTERIM TEST-NAME:	***	YYMMDD LMT				4	# SAMP IN STATISTICS	% SAMP	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	YYMMDD LMT	900102 1449				900507 1515				901001 1504		901203 1505				CTD DE	# SAMP IN STATISTICS	11.00

STATION ID: 08-0056-004-02

B.O.W./ SITE: MAITLAND RIVER SAMPLE POINT: ONE MILE NORTH EAST OF WROXETER STATION TYPE: RIVER

002 002 0530	DISTANCE: 100.420	NNHTUR	NH3-N	TOTAL	UNF . KEAU	AS N	0.23	2000	0.015	0.013	0.037	0.031	0.053	0.052	0.041	0.054	0.001<	0.001		0.232	0.053	*00	0.00	11	120																		
SIUREI CODE: 02 00	DISTANCE	FWTEMP		LIATED	TEMD	DEG.C	1.0			2	11.5	16.0	20.5	20.0	19.0	12.0	6.0	1.0		20.5	. v.	n -	- a	120.1	1	TURB				TURB'ITY		1.95											
	01	FWSTRC			STREAM	COND.	4	7	. 2	. 80	8	8	8	8	8	8	89	8								RSP			RESIDUE	PARTIC.	1/61	2.0<	3.8	2.2	9.9	2.7	5.0<	5.0<	5.6	2.3	5,3	61.4	
	REGION: 01	FSMF	FECAL	SIREPCUS	TNO	/100ML	80	>9	16	216	5	12	>4	4	>4		1500>		, ,	917	CC	9		9	40	PSAMF	PSEUDOMN	AERUG.	¥ !	/100MI		>4	>4	16	>4>	>4	>4>	>4	>4>	>5		100	
N RIVER	857075.0 4	FCMF	FECAL	COLIFORN	CNT	/100ML	140	>4>	16	112	8	100	16	8	16		1000>		120	OhT	26	00		8	20	PPUT		PHOSPHOR	. 101.	AS P		0.037	0.017	0.014	0.021	0.016	0.025	0.024	0.033	0.022	0.022	0.170	0 071
TINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RI	U T M: 17 0487150.0 4857075.0 4	00	DISOLVED	OXYGEN	MG/L	AS 0	15.0	11.5	12.5	14.5	11.5	10.0	0.6	8.0	7.0	10.5	10.0	13.5	0	11.0	10.1	7.0	2,5	12		PP04UR		PO4	UNT . REAL	AS P		0.013	0.013	0.002	0.001	0.007	900.0	0.015	900.0	0.010	0.005	0.018	0,000
MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER	U T M: 17	COND25	COMPLICT	250	UMHO/CM	AT 25 C	0.699	618.0	597.0	565.0	550.0	514.0	502.0	475.0	480.0	535.0	512.0	599.0	0 077	551.2	548.4	475.0	59.8	12		Н				Н	7	1.67	7.97	7.97	8.04	8.37	8.29	8.22	7.98	8.06	8.12	7.95	A 15
	09 35.71	CLIDUR	CHLORIDE	UNF. REAC	MG/L	AS CL	29.400	17.200	18.600	18.400	17.300	18.900	14.100	18.400	20.100	17.700	13.800	15.300	29 400	18.267	17.928	13.800	4.004	12		NNTKUR	K'DAHL N	TOTAL	MC/1	AS N	0	0.970	0.650	0,640	0.760	0.720	0.840	0.600	0.800	0.690	0.850	1.660	0 810
	LONG: 081 09 35.71	FGPROJ		PROJECT	SUB-PROJ	CODE	0101	1010	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101								NNO3UR		NO3-N	MG/I	AS N	000	000.0	007.9	6.100	5.300	3.200	004.2	2.600	0.800	0.500	1.200	3.600	4.600
	LAT: 43 52 06.96	FWSADP		SAMPLE	DEPTH	E	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30		12		NNO2UR		NOZ-N	MG/I	AS N	120	0.1.0	0.020	0.030	0.030	0.010	0.000	0.060	0.040	0.040	0.020	0.020	0.020
	LAT: 43	ST-MAME:			SAMPLE	NUMBER	28576	28592	38335	38351	38367	38383	38399	38415	58431	38447	38463	38479	MAXIMUM	ARITH MEAN	GEON MEAN	MININUM	STD DEV (GEOM *)	TATISTICS	EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	29576	00000	76607	20000	38551	70707	20200	26599	20413	70007	70707	28465	58479
		*=INTERIM TEST-NAME:		SAMPLE		YYMIDD LIIT												901203 0815		AF	9		STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	0	מבשט כטוטטט					000000000000000000000000000000000000000							901203 0815

(CONTD)

STATION ID: 08-0056-004-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: MAITLAND RIVER SAMPLE POINT: ONE MILE NORTH EAST OF WROXETER STATION IVPE: RIVER

DISTANCE: 100.420 0530 STORET CODE: REGION: 01 4 U T M: 17 0487150.0 4857075.0 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER LAT: 43 52 06.96 LONG: 081 09 35.71

TURB'ITY FTU TURB $\frac{1.95}{1.95}$ 1,95 MG/L PARTIC. RESIDUE 61.4 2.2 9 PSAMF PSEUDOMN CNT /100ML 포 AERUG. 100 58 16 80 UNF.TOT. MG/L AS P PHOSPHOR 0.170 0.036 0.027 0.014 0.043 PPUT PO4 UNF.REAC PP04UR MG/L AS P 0.018 0.009 0.007 0.001 0.005 H 8.37 8.07 8.06 7.67 0.18 표 K'DAHL N TOTAL MG/L AS N NNTKUR UNF. REAC 1.660 0.832 0.801 0.600 0.281 MG/L AS N NNO3UR N03-N UNF. REAC 3.458 2.713 0.500 2.010 MG/L AS N NNO2UR N02-N UNF. REAC 0.120 0.039 0.032 0.010 0.030 SAMPLE ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS % SAMP (EXCLUDED) MAXIMUM *=INTERIM TEST-NAME: HOUR **УУМИДД ТМТ** SAMPLE DATE

STATION ID: 08-0056-006-02

B.O.W./ SITE: LITTLE MAITLAND RIVER SAMPLE POINT: HWY.23 3 MILES S-W OF PALMERSTON STATION TYPE: RIVER

LOAID MG/L AS P CNT DISTANCE: 131.963 FECAL STREPCUS /100ML PHOSPHOR UNF. TOT. 1500> 0.056 0.049 0.088 0.058 0.110 0.130 09 454 0.165 0.354 92 æ 344 148 184 268 424 10 PPUT STORET CODE: MG/L AS P P04 PP04UR UNF. REAC COLIFORM /100ML <009 <009 <0000 FCMF 0.055 0.049 0.038 0.015 0.029 0.060 0.056 0.051 0.110 530 148 16 055 339 16 30 0.170 MG/L AS 0 PH DISOLVED OXYGEN 14.0 11.0 10.7 6.0 2.4 13.0 111.0 14.0 10.5 10.5 10.0 6.0 6.0 11.0 7.52 7.68 7.75 7.94 7.94 7.94 7.94 7.94 Hd REGION: 01 AS CU 0.0015<A AS PB M>500.0 0.005<W 0.005<W 0.0005<W UNF.TOT. MG/L 0.005<W 0.005<W 0.005<W 0.005<W M>500'0 MG/L 0.0020<T 0,0022<T 0.0023<T 0.0031<A LEAD 0.005<W 0.005<W COPPER D.0020<T 0.0027<A UNF. TOT. 0,0033 0.0030 0,0060 0.0050 0900.0 CUUT 0.0030 0.0005 PBUT 0.0050 0509060.0 4851090.0 4 TOTAL UNF.REAC MG/L 25C UMHO/CM AT 25 C NNTKUR K'DAHL N COND25 CONDUCT. 786.0 697.0 789.0 783.0 841.0 1018.0 885.0 555.0 555.0 152.0 1.250 0.670 0.840 0.650 0.940 1.100 1.150 1.240 825.3 1.660 1148.0 1148.0 741.0 TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS N AS CL UNF . REAC CLIDUR CHLORIDE UNF. REAC MG/L NN03UR N03-N 50.700 39.300 53.900 75.000 71.700 1134.000 48.800 19.700 42.107 12 8.500 6.200 7.700 19.700 8,200 12,900 46.000 55,614 0.800 63.000 65,225 8.300 7.400 8.400 U T M: 17 MG/L AS N 800 N-20N MG/L JNF . REAC 5 DAY TOT. DEM. NNO2UR 1.28 0.90 0.79 0.79 0.79 0.79 4.32 2.06 1.78 4.32 1.49 1.12 0.34 1.22 0.050 0.030 0.070 0.160 AS 0.600 0.080 0.080 8005 090.0 MG/L AS N ALK TOTAL HG/L CAC03 UNF. REAC NNHTUR NH3-N TOTAL LONG: 080 53 14.46 278.0 2269.0 2269.0 2254.0 275.0 276.0 226.0 226.0 2256.0 2315.0 315.0 269.0 267.5 208.0 28.8 0.040 0.072 0.036 0.007 0.022 0.001 ALKT AS CODE WATER FGPROJ SUB-PROJ **FWTEMP** TEMP DEG.C PROJECT 1.0 1.0 1.0 8.0 8.0 9.5 9.5 4.5 4.5 11.0 11.0 0101 0101 0101 0101 0101 0101 1010 0101 1010 1010 LAT: 43 48 53.16 DEPTH 13. **FWSADP** SAMPLE FWSTRC STREAM COMD. 0.30 0.30 0.30 4 8 8 8 8 8 8 8 8 8 8 SAMPLE 38353 38385 38433 38449 SAMPLE 38337 38449 38401 38417 38465 38401 38337 MAXIMUM ARITH MEAN 38417 28578 28594 38369 GEOM MEAN HINIMUM SAMP IN STATISTICS % SAMP (EXCLUDED) 28578 28594 38369 38385 38433 38465 38481 STD DEV (GEOM *) TEST-NAME: *=INTERIM TEST-NAME: 0917 0920 0855 0060 0910 0915 0917 0920 0855 0060 0902 0902 HOUR 0855 0902 HOUR 0060 0855 LMT LHT *=INTERIM YYMMDD YYHHDD 900102 901203 900102 900209 900306 900402 900006 901106 SAMPLE 900205 900306 900402 705006 900006 900703 708006 900906 100106 901106 SAMPLE 900006 900703 900807 901001 DATE DATE

38481

9060

901203

STATION ID: 08-0056-006-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: LITTLE MAITLAND RIVER SAMPLE POINT: HWY.23 3 MILES S-W OF STATION TYPE: RIVER

E: 02 002 0530	: 131.963	PPUT	PHOSPHOR UNF. TOT.	AS P	0.354	0.114	0.092	0.046	12	
STORET CODE:	DISTANCE:	PP04UR	PO4 UNF.REAC	AS P	0.170	0.060	0.050	0.015	12	
	01	Н		Н	8.06	7.77	7.77	0 17	12	
	REGION: 01	PBUT	LEAD UNF.TOT.	AS PB	0.005	0.005 <a< td=""><td>0.005<a< td=""><td>0.000<0</td><td>12</td><td></td></a<></td></a<>	0.005 <a< td=""><td>0.000<0</td><td>12</td><td></td></a<>	0.000<0	12	
ES N RIVER	851090.0 4	NNTKUR K DAHL N	TOTAL UNF.REAC	AS N	1.660	1.017	0.979	0.296	12	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER	U T M: 17 0509060.0 4851090.0 4	NNO3UR	NO3-N UNF.REAC	AS N	12.900	8.183	7.985	1.994	12	
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNO2UR	NO2-N UNF.REAC	AS N	0.600	0.137	0.090	0.159	12	
NO.	53 14.46	NNHTUR NH3-N	TOTAL UNF.REAC	AS N	0.075	0.028	0.016	0.025	12	
OF PALMERST	LONG: 080 53 14.46	FWTEMP	WATER	DEG.C	16.0	7.2	9 -	5.7	12	
MILES S-W	LAT: 43 48 53,16	FWSTRC	STREAM	COND.						
SAMPLE POINT: MWY.23 3 MILES S-W OF PALMERSTON STATION TYPE: RIVER	LAT: 4	EST-NAME:	SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS % SAMP (EXCLUDED)	
SAMPLE POINT: STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR	үүмирр сит				STD DE	# SAMP IN	

ZNUT	ZINC	UNF. TOT.	MG/L	AS ZN	0.0054	0.0037	0.0033	0.0045	0.0030	0.0040	0,0040	0.0040	0.0070	0.0040	0.0140	0.0110	0.0140	0.0057	0.0050	0.0030	0.0034	12	
TURB			TURB'ITY	FTU	7.00												7.00	7.00		7.00		1	
RSP		RESIDUE	PARTIC.	HG/L	11.5	6.8	1.8	5.0<	5.7	>0.5	5.0<	7.5	31.7	5.5	36.5	9.7	36.5	12.7		1.8		6	25
PSAMF PSEUDOMN	AERUG.	MF	CNT	/100ML	>4	>4	>4>	>4	>4	>4	4	>4	>4		224C		224	114		4		2	80
TEST-NAME:				NUMBER	28578	28594	38337	38353	38369	38385	38401	38417	38433	38449	38465	38481	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	(EXCLUDED)
*=INTERIM 1		ш		УУМИВВ СМТ	900102 0915	900205 0900	900305 0855					900807 0910		901001 0902	901106 0855	901203 0905					STD DE	# SAMP IN	% SAMP

B.O.W./ SITE: MIDDLE MAITLAND RIVER SAMPLE POINT: HAMLET OF TROWBRIDGE

STATION ID: 08-0056-009-02

LOAID MG/L AS P FECAL UNF. TOT. DISTANCE: 140.975 STREPCUS CNT PHOSPHOR /100ML >5 510 40 12 24 4 1500> 0.055 0.042 0.040 0.190 0.360 FSMF 09 0.165 510 84 4 en. 20 PPUT STORET CODE: MG/L AS P P04 FECAL PP04UR JNF. REAC COLIFORM /100ML 0.022 0.020 0.010 0.006 0.024 0.065 0.112 <0001 0.071 16 500 210 12 6 10 FCMF 24 MG/L AS 0 H DISOLVED OXYGEN 7.93 8.04 8.06 8.24 8.40 8.21 8.40 12.0 17.0 13.5 14.0 9.5 10.0 10.0 9.0 9.0 9.0 9.0 11.6 11.4 9.0 2.5 Hd REGION: 01 0.012<T 0.005<W 0.005<W MG/L 0.0042<A AS PB 0.005<W 0.005<W 0.005<W 0.0021<A 0.005<W 0.005<W 0.005<W 0.0020<T 0.0005<W 0.0032<A LEAD MG/L COPPER AS CU T>6000 0.0016<T 0.0015<T 0.0018<T 0.0020<T 0,0010<T UNF. TOT. UNF. TOT. 0.0030 0.0160 0,0160 0.0005 CUUT PBUT 4 MG/L K'DAHL N AS N 25C UMHO/CM NNTKUR JNF . REAC COND25 AT 25 C CONDUCT. 0497720.0 4841750.0 761.0 636.0 612.0 926.0 735.0 739.0 446.0 1.310 0.610 0.660 1.020 0.840 0.970 613.0 450.0 146.0 541.0 639.4 625.1 TOTAL 1.450 508.0 0.907 926.0 TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS N UNF . REAC N03-N CLIDUR MG/L AS CL NNOSUR UNF. REAC CHLORIDE 14.200 31.746 1.900 70.700 26.000 25.800 29.700 28.800 41.900 35.900 85.600 30.800 14.200 45.200 500 8.000 9.300 0.500 0.100 9.200 3.700 7.700 0.700 23.000 0.200 30.000 U T M: 17 MG/L AS N N02-N UNF . REAC BOD MG/L AS 0 NNO2UR 5 DAY TOT . DEM . 1.23 0.200 0.030 0.050 0.050 0.79 0.88 0.030 0.050 0.260 0.040 0.59 1.42 3.92 0.030 8005 1.64 0.55 0.010 0 MG/L AS N TOTAL MG/L CACO3 ALK NNHTUR NH3-N FOTAL UNF. REAC LONG: 081 01 41.91 265.0 251.0 234.0 213.0 183.0 294.0 298.0 224.9 220.5 156.0 46.5 0.615 0.027 0.025 0.040 0.073 0.126 232.0 156.0 171.0 298.0 0.344 0.051 0.003 ALKT 185.0 TEMP SUB-PROJ CODE FWTEMP MATER DEG.C FGPR0J PROJECT 1.0 1.0 1.0 11.0 11.0 13.0 13.0 13.0 14.0 4.0 4.0 0101 0101 0101 0101 0101 0101 0101 0101 1010 1010 1010 LAT: 43 43 50.60 DEPTH SAMPLE STREAM FWSADP Z **FWSTRC** COND. 0.30 0.30 0.30 0.30 0.30 0.30 12 8 8 8 8 8 8 8 8 SAMPLE 28580 38419 38435 38451 38467 SAMPLE 38355 38403 38435 38483 38339 38387 38451 38467 38371 38387 28580 38419 28596 38339 38355 38403 38483 MAXIMUM ARITH MEAN GEOM MEAN HINIMUM SAMP IN STATISTICS 28596 STD DEV (GEOM *) % SAMP (EXCLUDED) 38371 *=INTERIM TEST-NAME: TEST-NAME: STATION TYPE: RIVER 0560 1035 1010 1010 1004 1015 1010 1015 1012 HOUR 1022 0960 1035 1010 9001 1015 1010 7560 1012 HOUR 1002 LMI LMT *=INTERIM YYMMDD YYMIDD 901203 900306 900604 900703 900006 901106 901203 SAMPLE 900102 900206 900006 900402 900507 900006 900703 900807 900006 100106 901106 SAMPLE 900102 900209 900402 900507 708006 DATE DATE

O L N

0

U

STATION ID: 08-0056-009-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: MIDDLE MAITLAND RIVER SAMPLE POINT: HAMLET OF TROWBRIDGE

STATION TYPE: RIVER

STORET CODE: TERM STREAM: MAITLAND RIVER HAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON

0530

MG/L AS P DISTANCE: 140.975 PHOSPHOR UNF. TOT. 0.112 0.084 0.031 0.097 PPUT PO4 UNF.REAC MG/L PP04UR AS P 0.192 0.055 0.035 0.006 0.054 Hd 8.40 8.06 8.05 7.61 0.24 Ξ REGION: 01 0.012 0.006<A 0.005<A 0.005 1.002<A LEAD UNF.TOT. AS PB PBUT U T M: 17 0497720.0 4841750.0 4 NNTKUR K'DAHL N TOTAL UNF.REAC MG/L 1.730 1.135 1.081 0.610 0.354 MG/L AS N NNO3UR N03-N UNF. REAC 9.300 4.233 2.060 0.100 3.602 MG/L AS N MG/L AS ZN UNF. REAC 0.0084<A 0.0052<A 0.0118<A NNO2UR N02-N ZINC 0.0021<T 0.0024<T UNF. TOT. 0.260 0.067 0.045 0.010 0.078 0.0440 0.0030 ZNUT 0.0040 0.0028 0,0060 0.0050 0.0150 0.0000 0.0440 0.0021 UNF.REAC MG/L AS N NNHTUR NH3-N TOTAL TURB'ITY LAT: 43 43 50.60 LONG: 081 01 41.91 0.615 0.150 0.003 2.00 2.00 TURB 2.00 TEMP RESIDUE PARTIC. DEG.C MG/L FWTEMP MATER 6.6 2.2 5.0 1.9 5.0< 5.0 22.0 8.9 5.0 1.0 7.8 40.0 16.0 55.8 36.2 55.8 RSP 8 8 PSAMF PSEUDOMN 포 CNT FWSTRC STREAM COND. /100ML AERUG. 16C 16 16 106 SAMPLE SAMPLE 38339 38387 38435 38483 38371 ARITH MEAN 28596 38355 38419 38451 MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS 7: SAMP (EXCLUBED) MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS 28580 38403 38467 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 1010 1010 0960 1015 1010 HOUR HOUR 1005 1035 1004 1015 0957 1022 LMT YYMMDD LMT YYMMDD SAMPLE SAMPLE 900102 900200 900309 900402 900507 900006 900703 900807 900006 901001 901106 DATE DATE

STORET CODE: 02 STATION ID: 08-0056-010-02 MAJOR BASIN: GREAT LAKES B.O.W./ SITE: DRAINAGE DITCH SAHPLE POINT: AT SIDE RD.3-4 1MI.WEST OF MILVERTON STATION TYPE: RIVER

Color Colo												
FMSABP FGPR0J ALKT B005		LAT: 42	3 34 24.11	LONG: 080	56 34,92	U T M: 17	0504600.0 4	824275.0 4	REGION:	01	DISTANCE	153.688
SAIPLE PROJECT TOTAL T	ITERIH	TEST-NAME:	FWSADP	FGPROJ	ALKT	8005	CLIDUR	COND25	CUUT	00	FCMF	FSMF
Name					ALK	BOD 5 DAY	CHLORIDE	CONDUCT	COPPER	DISOLVED	COI TEORH	FECAL
Definity Course Prince March M	ш		SAMPLE	PROJECT	TOTAL	TOT. DEM.	UNF. REAC	25C	UNF. TOT.	OXYGEN	MF	MF
0.30	0	_	М	SUB-PROJ	AS CACO3	AS 0	AS CL	AT 25 C	AS CU	MG/L AS 0	/100ML	/100ML
0.30 0.101 302.0 4.32 147,000 1109.0 0.0051 144.5 600 0.30 0.101 266.0 2.44 157,000 1109.0 0.0051 15.0 500 0.30 0.101 266.0 3.96 0.003 11.0 600 10.0 0.30 0.101 256.0 0.48 100 125.0 0.003 11.0 600 0.30 0.101 258.0 0.11.4 1.28 265.0 1470.0 0.0030 11.0 600 0.30 0.101 258.0 0.11.40 265.0 1470.0 0.0050 9.0 1500 0.30 0.101 250.0 3.12 7.000 175.00 0.0050 14.5 60AID 0.30 0.101 250.0 1.140 260.0 1470.0 0.0050 14.5 50AID 0.30 0.101 250.0 1.140 265.0 1470.0 0.0050 11.5 20AID 1.20 </td <td></td> <td></td> <td>0.30</td> <td>0101</td> <td>248.0</td> <td>1.77</td> <td>147.000</td> <td>1008.0</td> <td>0.0024<t< td=""><td>12 5</td><td>770</td><td>1500></td></t<></td>			0.30	0101	248.0	1.77	147.000	1008.0	0.0024 <t< td=""><td>12 5</td><td>770</td><td>1500></td></t<>	12 5	770	1500>
Control Cont	-		0.30	0101	302.0	4.32	147.000	1108.0	0.0051	14.7	<0009	2005
Color Colo	-	123	0.30	0101	269.0	2.41	157.000	1063.0	0.0016 <t< td=""><td>15.0</td><td>220</td><td>220</td></t<>	15.0	220	220
Color Colo			0.30	0101	260.0	3,96	98.300	890.0	0.0031	16.0	600>	6000
1.0 1.0	-		0.30	0101	295.0	1.67	191,000	1219.0	0.0030	17.5	60AID	50ATD
4 0.30 0.101 314.0 1.36 145.000 1175.0 0.0030 9.0 680 0.30 0.101 328.0 1.140 175.000 10015 9.0 1500> 0.30 0.101 328.0 1.140 27.600 10050 9.5 6AID 0.30 0.101 325.0 3.16 7.600 10050 9.5 6AID 0.30 0.101 325.0 3.16 7.600 10050 9.5 6AID 0.30 0.101 325.0 3.16 7.790 62.0 1.0050 11.00 1 0.30 3.001 3.22.0 3.22 135.1 1007.3 12.0 1000 1 0.30 3.001 3.000 3.003 4.75 0.0036 9.0 601D 1 0.30 0.01 3.22 135.1 12.0 12.0 0.0036 9.0 601D 1 0.30 3.00 0.0036 3.00			0.30	0101	156.0	0.88	148.000	939.0	0.0030	11.0	<009	<009
0.30 0.001 283.0 11.40 175.000 1079.0 0.00054M 9.0 1500> 1500> 1.28 265.0 1470.0 0.00054 9.0 1500> 1500> 1.28 0.30 0.101 354.0 0.128 265.0 0.00050 0.00050 9.5 0.00050 11.0 0.0005 0.0005 11.0			0.30	0101	314.0	1.38	145,000	1175.0	0.0030	9.0	680	192
6 0.30 01011 338.0 1.28 265.0 1470.0 0.0050 9.5 60AID 31 8 0.30 0101 358.0 0.01 358.0 0.01 3.26.0 1.06 0.0050 19.5 1000 11.0 11.0 1000 11.0 11.0 1000 11.0 1000 11.0 11.0 1000 11.0 11.0 1000 11.0 11.0 11.0 11.0 <			0.30	0101	283.0	11.40	175,000	1079.0	0.0005 <w< td=""><td>0.6</td><td>1500></td><td><009</td></w<>	0.6	1500>	<009
1.00			0.30	0101	338.0	1.28	265.0	1470.0	0.0040	8.0	60AID	548
1.00 1.00			0.30	0101	354.0	0.01<	27.600	1006.0	0.0050	9.5		
0.30 322.0 47.900 823.0 0.0030 14.5 0.30 354.0 11.40 265.0 1470.0 0.0051 17.5 770 0.30 282.6 3.22 135.1 1047.3 0.00324 12.4 356 0.30 282.6 3.22 135.1 1047.3 0.00324 12.4 356 12 27.4 0.88 27.60 788.0 0.0005 4 0.30 12 12 10 12 12 12 12 10 12 12 12 12 13 14.5 14.7 12 12 12 14 15 10 12 12 12 12 15 10 12 12 12 12 15 10 12 12 12 12 15 10 12 12 12 12 15 10 12 12 12 12 15 10 12 12 12 12 15 10 12 12 12 12 15 10 12 12 12 12 15 15 10 12 12 12 15 10 12 12 12 12 15 10 12 12 12 12 15 15 12 12 12 15 15 10 12 12 12 15 15 10 12 12 12 15 15 15 12 12 15 15 15 12 12 15 15 15 12 12 15 15 15 12 12 15 15 15 15 15 15 15			0.30	0101	250.0	3.16	72,800	788.0	0,0050	11.0	1000>	1000>
0.30 354.0 11.40 265.0 1470.0 0.0051 17.5 770 0.30 282.6 3.22 135.1 1047.3 0.003244 12.4 356 0.30 156.0 0.88 27.60 786.0 0.00054 12.0 0.30 156.0 0.88 27.60 786.0 0.00054 12.0 12 12 10 12 12 10 12 12			0.30	0101	322.0		47.900	823.0	0.0030	14.5		
0.30 292.6 3.22 135.1 1047.3 0.0032<4 12.4 358 358 16.5 10.5 1		MAXIMUM	0.30		354.0	11.40	265.0	1470.0	0.0051	17.5	770	548
Hatematical Properties Hatematical Propert		ARITH MEAN	0.30		282.6	3.22	135.1	1047.3	0.0032 <a< td=""><td>12.4</td><td>358</td><td>280</td></a<>	12.4	358	280
0.30 156.0 0.88 27.600 788.0 0.0005 8.0 60		GEOM MEAN			277.3		116.3	1032.7	0.0028 <a< td=""><td>12.0</td><td></td><td></td></a<>	12.0		
FMSTRC FWTEMP NNHTUR HNU2UR NND3UR NNTKUR PBUT PH PPOGUR PROTON 12		MINIMUM	0.30		156.0	0.88	27.600	788.0	0.0005	8.0	09	20
FMSTRC FMTEMP NNHTUR HNOZUR NND3UR NNTKUR PBUT PH PPOGUR PH POGUR PH PHOSE STREAM TEMP HOSE OF TOTAL NOS-N TOTAL NOS-N TOTAL NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/	STD	EV (GEOM *)			52.4		65.4	187.5	0.0014 <a< td=""><td>3.2</td><td></td><td></td></a<>	3.2		
FWSTRC FWTEMP NNHTUR HN02UR NNTKUR PBUT PBUT PH PPOGUR PPOGUR PROGUCE NT PALL LEAD POGUR PPOGUR PPOGUR PROGUR PROG	SAMP IN	STATISTICS	12		12	10	12	12	12	12	5	4
FWSTRC FWIENP NINHTUR HNOZUR NINDJUR NINTKUR PBUT PHOTOLUR PPOGAUR PPOGAUR PRINTKUR PBUT PHOTOLUR PPOGAUR PPOGAUR PPOGAUR PRINTKUR NINTKUR PBUT PHOTOLUR PPOGAUR PPOGAUR PRINTKUR PBUT LEAD POGAUR PPOGAUR PRINTKUR PBUT LEAD PPOGAUR PPOGAUR PRINTKUR PBUT LEAD PPOGAUR PPOGA	SAMP	(EXCLUDED)				6					20	09
HOUR SAHPLE STREAM TOTAL HO2-N NO3-N TOTAL LEAD HO4-N HO4-	TERIM	TEST-MAME:	FWSTRC	FWTEMP	NNHTUR	MNO2UR	NNO3UR	NATKUR K DAHI N	PBUT	Н	PPO4UR	PPUT
HOUR SAHPLE STREAM TERAC UNF.REAC UNF.R					TOTAL	N02-N	N03-N	TOTAL	LEAD		P04	PHOSPHOR
HOUR SAMPLE STREAM TEMP MG/L HG/L HG/				WATER	UNF. REAC	UNF. REAC	UNF . REAC	UNF . REAC	UNF. TOT.		UNF. REAC	UNF. TOT.
UNITEDER COMD. DEG.C AS N AS PB PH AS P AS P			STREAM	TEMP	MG/L	HG/L	MG/L	NG/L	HG/L		NG/L	MG/L
1055 28581 4 2.0 0.005 0.430 6.400 1.750 0.005 W 7.64 0.096 0.005 W 7.79 0.098 0.005 W 7.79 0.095 0.005		NUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	ЬН	AS P	AS P
1046 28597 4 1.0 0.036 0.060 7.800 5.090 0.00554 7.79 0.098 11025 38340 4 1.0 0.044 0.080 8.100 1.20 0.00554 7.84 0.035 11025 38356 8 5.0 0.662 0.090 10.20 1.20 0.00554 7.81 0.135 1040 38376 8 5.0 0.662 0.090 1.20 0.00554 7.81 0.135 1040 38376 8 10.0 0.116 0.100 1.850 0.00554 8.32 0.330 1040 38470 8 11.0 0.100 0.160 1.600 0.00554 8.24 0.980 1040 38470 5 16.5 0.089 0.230 1.600 0.00554 8.09 1.600 1045 38470 5 16.0 0.007 0.110 2.600 0.0654 7.85 0.180 1045 <td>-</td> <td></td> <td>4</td> <td>2.0</td> <td>0.005</td> <td>0.430</td> <td>6.400</td> <td>1.750</td> <td>0.005<w< td=""><td>7.64</td><td>960.0</td><td>1.080</td></w<></td>	-		4	2.0	0.005	0.430	6.400	1.750	0.005 <w< td=""><td>7.64</td><td>960.0</td><td>1.080</td></w<>	7.64	960.0	1.080
1025 35340 4 1.0 0.241 0.080 8.100 1.240 0.095 7.84 0.035 11402 38356 8 5.0 0.662 0.090 10.200 1.020 0.005 7.81 0.138 11402 38372 8 10.0 0.115 0.100 5.500 0.052 0.005 4 0.138 11640 38372 8 10.0 0.115 0.100 5.500 0.052 0.005 4 0.980 11035 38640 8 11.0 0.100 0.120 1.600 0.005 4 0.095 1046 38436 5 16.0 0.007 0.110 1.060 0.005 4 0.095 1046 38436 5 16.0 0.007 0.110 1.300 0.005 0.005 0.180 1036 36464 8 6.5 0.014 0.024 0.050 0.005 4 0.065 1040 <td>-</td> <td></td> <td>4</td> <td>1.0</td> <td>0.036</td> <td>090'0</td> <td>7.800</td> <td>5.090</td> <td>0.005<w< td=""><td>7.79</td><td>0.098</td><td>1.410</td></w<></td>	-		4	1.0	0.036	090'0	7.800	5.090	0.005 <w< td=""><td>7.79</td><td>0.098</td><td>1.410</td></w<>	7.79	0.098	1.410
1102 38356 8 5.0 0.662 0.090 10.200 1.020 0.005 7.81 0.138 11440 38356 8 10.0 0.116 0.100 15.500 0.005 8 0.330 1040 38388 8 11.0 0.100 0.160 16.80 0.005 8 2.4 0.98 1051 38464 8 11.0 0.079 0.210 1.600 0.005 8 8.24 0.98 1051 38464 8 16.0 0.007 0.107 0.11 2.600 0.055 8 0.161 1046 38444 8 1.0 0.014 0.024 0.250 0.105 9.00 0.065 9.469 0.160	-		4	1.0	0.241	0.080	8.100	1.240	0.005 <w< td=""><td>7.84</td><td>0.035</td><td>0.364</td></w<>	7.84	0.035	0.364
1046 38372 8 10.0 0.115 0.100 5.500 0.0820 0.005 4 6.32 0.330 1040 38388 8 11.0 0.100 0.160 1.650 0.005 8.24 0.980 1051 38430 8 16.0 0.079 0.210 10.000 0.065 4 7.63 0.980 1046 38430 5 16.0 0.007 0.110 2.600 0.860 0.005 0.161 1045 38436 5 16.0 0.007 0.110 2.600 0.860 0.005 1.680 1045 38446 8 6.5 0.024 0.650 7.700 2.500 0.005 1.80 1048 35648 8 1.0 0.014 0.024 0.029 9.400 1.140 0.005 0.165	-		8	5.0	0.662	0.000	10.200	1.020	0.005 <w< td=""><td>7.81</td><td>0.138</td><td>0.003</td></w<>	7.81	0.138	0.003
1035 34646 8 1.0 0.104 0.164 0.165 0.005 0.0	_		8	10.0	0.115	0.100	5.500	0.820	0.005 <w< td=""><td>8.32</td><td>0.330</td><td>0.430</td></w<>	8.32	0.330	0.430
1055 36404 8 16.0 0.079 0.210 10.800 0.860 0.005< H 8.06 0.181 11551 36436 5 16.5 0.089 0.230 3.300 1.400 0.005< H 8.06 0.181 1050 36436 5 16.0 0.007 0.110 2.600 0.660 0.005< H 8.09 1.680 1050 36436 8 6.5 0.005 0.100 11.300 0.900 0.005< H 7.85 0.180 1030 36446 8 6.5 0.024 0.024 0.70 0.110 1.440 0.005< H 7.97 0.049 1049	_		8	11.0	0.100	0.160	16.800	1.850	0.005 <w< td=""><td>8.24</td><td>0.980</td><td>1.150</td></w<>	8.24	0.980	1.150
1051 33420 5 16.5 0.089 0.230 3.300 1.400 0.005 <n 0.005<n="" 0.007="" 0.014="" 0.020="" 0.024="" 0.095="" 0.110="" 0.163="" 0.163<="" 0.650="" 0.860="" 1.0="" 1.140="" 1.680="" 1.80="" 1040="" 1045="" 1048="" 16.0="" 2.500="" 2.600="" 336436="" 33648="" 5="" 6.5="" 7.55="" 7.63="" 7.700="" 7.97="" 8="" 8.09="" 9.400="" td=""><td>Smell</td><td></td><td>B</td><td>18.0</td><td>0.079</td><td>0.210</td><td>10,800</td><td>0.860</td><td>0.005<w< td=""><td>8.06</td><td>0.181</td><td>0.270</td></w<></td></n>	Smell		B	18.0	0.079	0.210	10,800	0.860	0.005 <w< td=""><td>8.06</td><td>0.181</td><td>0.270</td></w<>	8.06	0.181	0.270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		2	16.5	0.089	0.230	3.300	1.400	0,005 <w< td=""><td>7.63</td><td>0.095</td><td>1.180</td></w<>	7.63	0.095	1.180
1030 39452 8 10.5 0.005 0.100 11.300 0.900 0.005 <w 0.005<w="" 0.014="" 0.020="" 0.024="" 0.049<="" 0.163="" 0.165="" 0.180="" 0.650="" 1.0="" 1.140="" 1030="" 1038="" 2.500="" 38484="" 39468="" 6.5="" 7.55="" 7.700="" 7.86="" 7.97="" 8="" 9.400="" td=""><td>-</td><td></td><td>L)</td><td>16.0</td><td>0.007</td><td>0.110</td><td>2.600</td><td>0,860</td><td>0.005<w< td=""><td>8.09</td><td>1.680</td><td>1.950</td></w<></td></w>	-		L)	16.0	0.007	0.110	2.600	0,860	0.005 <w< td=""><td>8.09</td><td>1.680</td><td>1.950</td></w<>	8.09	1.680	1.950
1030 39468 8 6.5 0.024 0.650 7.700 2.500 0.005 <n 0.005<n="" 0.014="" 0.020="" 0.049<="" 0.1058="" 0.163="" 1.0="" 1.140="" 36484="" 7.55="" 7.97="" 8="" 9.400="" td=""><td></td><td></td><td>8</td><td>10.5</td><td>0.005</td><td>0.100</td><td>11.300</td><td>006.0</td><td>0.005<w< td=""><td>7.86</td><td>0.180</td><td>0.314</td></w<></td></n>			8	10.5	0.005	0.100	11.300	006.0	0.005 <w< td=""><td>7.86</td><td>0.180</td><td>0.314</td></w<>	7.86	0.180	0.314
1048 38484 8 1.0 0.014 0.020 9.400 1.140 0.005 <n 0.049<="" 7.97="" td=""><td></td><td></td><td>8</td><td>6.5</td><td>0.024</td><td>0.650</td><td>7.700</td><td>2.500</td><td>0.005<w< td=""><td>7.55</td><td>0.163</td><td>0.325</td></w<></td></n>			8	6.5	0.024	0.650	7.700	2.500	0.005 <w< td=""><td>7.55</td><td>0.163</td><td>0.325</td></w<>	7.55	0.163	0.325
			8	1.0	0.014	0.020	9.400	1.140	0.005 <w< td=""><td>7.97</td><td>0.049</td><td>0.246</td></w<>	7.97	0.049	0.246

(CONTD)

STATION ID: 08-0056-010-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: DRAINAGE DITCH

PHOSPHOR DISTANCE: 153.688 0530 PPUT STORET CODE: PP04UR P04 PH REGION: 01 UNF.TOT. MG/L AS PB LEAD PBUT ¢ TOTAL UNF.REAC NNTKUR K'DAHL N U.T M: 17 0504600,0 4824275,0 TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON UNF.REAC MG/L N03-N NNO3UR UNF.REAC MG/L NNO2UR N02-N NNHTUR NH3-N UNF . REAC TOTAL LAT: 43 34 24,11 LONG: 080 56 34,92 SAMPLE POINT: AT SIDE RD.3-4 1MI. WEST OF MILVERTON WATER **FWTEMP** FWSTRC *=INTERIM TEST-NAME: STATION TYPE: RIVER SAMPLE

MG/L AS P

MG/L AS P

Ĭ

MG/L

AS N

AS N

MG/L

TEMP

STREAM

COND

SAMPLE

HOUR

DATE

УУМИВВ ЦМТ

DEG.C

1.950 0.727 0.391 0.003 0.602

0.171 0.035 0.494 1.680

8.32 7.90 7.90 7.55 0.24

1.374 0.820 1.205 5.090

0.005 0.005<A 0.005<A 0.005 0.000<A 12

UNF. TOT.

UNF. REAC

16.800 8.325 7.443 2.600 3.836 UNF.TOT. MG/L AS ZN ZINC 0.650 0.129 0.182 0.0082 0.0095 0.0070 0.0100 0.0150 ZNUT 0.0160 TURB'ITY FTU 0.042 0.005 0.185 0.662 2.20 TURB 25.9 5.0 8.2 8.5 RESIDUE PARTIC. MG/L 24.4 28.2 5.0< 5.0 18.0 8.2 5.2 1.0 6.4 11.2 76.9 RSP CNT PSEUDOMN /100ML PSAMF AERUG. 128C 84C 4 4 32C 12 J 8 16 SAMPLE 38340 28597 38356 38388 38404 38452 ARITH MEAN GEOM MEAN MINIMUM 28581 38420 38436 38468 MAXIMUM STD DEV (GEOM *) # SAMP IN STATISTICS 38372 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: 1055 040 1040 HOUR 025 102 035 1045 1051 LMT YYMMDD 900807 900006 901001 900102 900200 SAMPLE 900305 900402 900507 900006 900703 DATE

0.0101

9.9 38.4

> 4 30

25

SAMP IN STATISTICS

44

0.0250 0.0112

2.20 2.20 2.20

156.0

128

MAXIMUM ARITH MEAN

38484

GEOM MEAN

MINIMOM STD DEV (GEOM *) % SAMP (EXCLUDED)

41

0.0250

B.O.W./ SITE: MIDDLE MAITLAND RIVER

STATION ID: 08-0056-013-02

STATION ID: 08-0056-013-02

1990 WATER QUALITY DATA REGION 1

		2
	LISTOWEL	200
	FROM	OSEE
B.O.W./ SITE: MIDDLE MAITLAND RIVER	SAMPLE POINT: HIGHWAY 23, DOWNSTREAM FROM LISTOWEL	DIVED FLOW CALLE EED
B.O.W./ SITE:	SAMPLE POINT:	STATION TYPE:

	_													
: 02 002 0530	147.090	RSP	RESIDUE PARTIC.	MG/L	9.5	5,0		2.0		9	40			
STORET CODE: 02	DISTANCE: 147.090	PSAMF	AERUG. MF CNT	/100ML	16	6		4		4	09			
	10	PPUT	UNF.TOT. MG/L	AS P	0.340	0.110	0.087	0.038	0.000	12				
	REGION: 01	PPO4UR	UNF.REAC	AS P	0.187	0.069	0.051	0.013	0.057	12				
(ES)N RIVER	4841350.0 4	E		Ē	8.18	7.93	7.92	7.59	0.17	12				
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERH STREAM: MAITLAND RIVER	U T M: 17 0502160.0 4841350.0 4	NNTKUR K'DAHL N	UNF.REAC	AS A	1.580	0.829	0.793	0.600	0.290	12				
MAJOR BASII MINOR BASII TERM STREAL	U T M: 17	NNOSUR	UNF.REAC	AS N	10.200	4.350	2.465	0.200	3.587	12				
M	58 23,46	NNOSUR	UNF.REAC	A S	0.230	0.065	0.044	0.010	0.070	12				
FLOW GAUGE FED 02FE003	LONG: 080 58 23,46	NNHTUR NH3-N	UNF.REAC	N N	0.091	0.040	0.030	0.004	0.026	12				
FLOW GAUGE	LAT: 43 43 37.64	FWTEMP	MATER	nee.c	19.0	8.2	8.4	1.0	6.8	12		TURB		TURB'ITY FTU
E: RIVER	LAT: 9	EST-NAME:	SAMPLE	NOTIBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMOM	STD DEV (GEOM *)	STATISTICS	A SAMP (EXCLUDED)	EST-NAME:		SAMPLE
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR						STD DE	# SAMP IN STATISTICS	A SAITH	*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR YYNMDD LMT

4.60 4.60 4.60

28579

900102 1006

MAXIMUM
ARITH MEAN
GEOM MEAN
HINIMUM
STD DEV (GEOM *)
SAMP IN STATISTICS
% SAMP (EXCLUDED)

STATION ID: 08-0056-015-02

B.O.W./ SITE: SOUTH MAITLAND RIVER SAMPLE POINT: HIGHWAY 4, LONDESBOROUGH STATION TYPE: RIVER

: 02 002 0530	43,451	FWSTRC		COND.	4	4	4	eo e	ο α	0 00	8	8	8	8	8							PPUT	College	UNF. TOT.	MG/L	AS P	0.042	0.020	0.017	0.019	0.016	0.013	0.023	0.023	0.041	0.300	0.041
STORET CODE:	DISTANCE:	FSMF	STREPCUS	/100ML	260	12	>5	09	20	>4	16	>4		1500>		260	134	•	12	127	20	PP04UR	200			AS P	0.022	0.015	0.001<	0.005	0.001	0.003	0.010	0.009	0.001	0.111	0.014
	10	FCMF	COLIFORM	/100ML	192	4	4	16	36	20	09	12		1000>		192	39	,	Ť	6	10	PHNOL	DUENDIC	UNF-REAC	UG/L	PHENOL	1.500	1.000<	1.000<	1.000<	1.500	1	1.500	1 500		7.500	
	REGION: 01	DO	DISOLVED	AS 0	14.0	0.6	18.0	14.5	10.5	11.0	11.5	10.0	12.0	13.0	13.0	18.0	12.5	12.3	0.6	12.4		Н				Н	7.80	8.00	8.06	8.14	8.34	8.20	8.28	8.1.1	8.22	7.76	8.14
ES 4 RIVER	337710.0 4	CUUT	COPPER UNF.TOT.	AS CU	0.0007 <t< td=""><td>0.0012<t< td=""><td>0.0017<t< td=""><td>0.0014<i< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></w<></td></t<></td></i<></td></t<></td></t<></td></t<>	0.0012 <t< td=""><td>0.0017<t< td=""><td>0.0014<i< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></w<></td></t<></td></i<></td></t<></td></t<>	0.0017 <t< td=""><td>0.0014<i< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></w<></td></t<></td></i<></td></t<>	0.0014 <i< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></w<></td></t<></td></i<>	0.0020 <t< td=""><td>0.0030</td><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></w<></td></t<>	0.0030	0.0005 <w< td=""><td>0.0020<t< td=""><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></w<>	0.0020 <t< td=""><td>0.0040</td><td>0.0050</td><td>0.0020<t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0040	0.0050	0.0020 <t< td=""><td>0.0050</td><td>0.0021<a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<>	0.0050	0.0021 <a< td=""><td>0.0018<a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	0.0018 <a< td=""><td>0.0005</td><td>U.UUIS<a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0.0005	U.UUIS <a< td=""><td></td><td>PBUT</td><td>LEAD</td><td>UNF . TOT.</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>		PBUT	LEAD	UNF . TOT.	MG/L	AS PB	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<></td></w<>	0.005 <w< td=""><td>M>500'0</td><td>0.005<w< td=""></w<></td></w<>	M>500'0	0.005 <w< td=""></w<>
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERH STREAM: MAITLAND RIVER	U T M: 17 0461000.0 4837710.0 4	COND25	CONDUCT.	AT 25 C	611.0	572.0	562.0	558.0	435.0	528.0	454.0	429.0	672.0	488.0	0.419	672.0	531.2	526.1	429.0			NNTKUR	K'DAHL N	UNF . REAC	MG/L	AS N	0.820	0.550	0.700	0.570	0.//0	0.770	0.850	0.630	0,860	1.440	0.580
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	CLIDUR	CHLORIDE UNF.REAC	AS CL	31.800	20.200	21.700	19.500	18,000	18,100	22.200	22.500	26.000	14.500	15.800	31,800	20.558	20.089	14.500	4.80/		NNOSUR	N-Z-N	UNF . REAC	MG/1.	AS N	11.200	11.200	9.800	8.100	004.4	4.800	006.7	0.200	7.300	5.700	6.500
	29 02.19	ALKT	ALK TOTAL	AS CACOS	212.0	211.0	200.0	197 0	156.0	203.0	182.0	171.0	270.0	186.0	272.0	272.0	205.8	203.3	126.0	34.6		NNO2UR	N=2UN	UNF. REAC	MG/L	AS N	0.080	0.080	0.040	0.030	0.020	0.060	0.040	0.030	0.030	0.030	0.020
ROUGH	LONG: 081 29 02.19	FGPROJ	PROJECT	CODE	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	1010							NNHTUR	NH3-N	UNF. REAC	MG/L	AS M	0.164	0.008	0.075	0.030	0.026	0.016	0.023	0.022	0.011	0.004	0.001
, LONDESBOI	LAT: 43 41 35.97	FWSADP	SAMPLE		0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	40	0.50	12		FWTEMP		WATER	TEMP	DEG.C	1.0	1.0	1.0	0.9	15.0	15.0	20.5	19.5	12.5	. rs	1.0
HIGHWAY 4 RIVER	LAT: 43	T-NAME:	O TOTAL	NUMBER	28586	28602	38345	2836I	38393	38409	38425	38441	38457	38473	58489	MAXIMUM	ARITH MEAN	GEOM MEAN	TOTAL SEV CECH XI	ATISTICS	(CODED)	T-NAME:			SAMPLE	NUMBER	28586	28602	38345	38361	11585	38393	20409	38441	38457	38473	38489
SAMPLE POINT: HIGHMAY 4, LONDESBORGOGH STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE	0				900402 1235			900807 1240				901203 1253	•	HA (9	CID DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	YYMMDD LMT	900102 1258	-			7 .	900604 1215					901203 1233

(CONTD)

002

STORET CODE:

STATION ID: 08-0056-015-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: SOUTH MAITLAND RIVER SAMPLE POINT: HIGHWAY 4, LONDESBOROUGH STATION TYPE: RIVER

ILE POINT: HIGHWAY 4, LONDESBORDUGH
MAJOR BASIN: GREAT LAKES
HINOR BASIN: LAKE HURON

MG/L AS P PHOSPHOR UNF. TOT. 43.451 0.300 0.048 0.029 0.013 0.080 0530 PPUT DISTANCE: PO4 UNF.REAC MG/L AS P PP04UR 0.111 0.001 10 UNF-REAC UG/L PHENOLS PHENOL PHINOL 2.700 1.500 37 REGION: 01 H 8.34 8.11 8.10 7.76 0.18 표 0.005 0.000<A MG/L AS PB LEAD 0.005<A JNF . TOT . 0.005<A U T M: 17 0461000.0 4837710.0 TERM STREAM: MAITLAND RIVER UNF.REAC MG/L AS N NNTKUR K'DAHL N TOTAL 1.440 0.745 N03-N MG/L AS N AS ZN MG/L 0.0010<T NNOSUR UNF. REAC ZINC 0.0021<T 0.0016<T 0.0047<A 0.0036<A 0.0039<A UNF. TOT. 6.683 5.530 0.700 3.256 0.0035 0.0130 0.0010 0.0080 0.0030 0.0030 0.0030 ZNUT 0.0030 0.0130 AS N MG/L NNO2UR N02-N UNF. REAC FURB'ITY LONG: 081 29 02.19 4.40 05.4 0.039 0.033 4.40 TURB MG/L AS N TOTAL NHHTUR NH3-N UNF . REAC RESIDUE MG/L 5.0 5.0 5.0 5.0 5.0 7.0 14.7 PARTIC. 35.5 0.001 66.8 0.034 0.017 LAT: 43 41 35.97 PSAMF PSEUDOMN TEMP DEG, C FWTEMP MATER 포 CNT AERUG. /100ML 28C 10.0 5.5 1.0 8.3 18 8 80 SAMPLE 38345 28602 38377 38393 38441 38457 38489 ARITH MEAN MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS SAMPLE NUMBER 38361 38409 38425 38473 MAXIMUM GEOM MEAN MINIMOM STD DEV (GEOM *) # SAMP IN STATISTICS 28586 STD DEV (GEOM *) % SAMP (EXCLUDED) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: HOUR 1200 1235 215 1214 1234 1204 1220 1245 1215 1240 HOUR 900102 1258 901203 1233 YYMMDD LMT YYMINDD LMT 900006 901106 SAMPLE 900209 900306 900402 900507 900703 900807 900006 901001 DATE DATE

MAJOR BASIN: GREAT LAKES

STATION ID: 08-0056-020-02

SAMPLE POINT: DOWNSTREAM FROM HENFRYN STATION TYPE: RIVER

MG/L AS N NNO2UR N02-N UNF. REAC DISTANCE: 131.802 0.050 0.040 0.150 0.010 0.180 0.220 0.066 0530 0.360 0.050 0.106 0.030 002 STORET CODE: MG/L AS N TOTAL UNF . REAC NNHTUR NH3-N 0.025 0.024 0.004 0.024 0.053 0.031 0.007 0.051 0.002 0,063 0.275 TEMP **FWTEMP** DEG.C 6.0 1.0 7.7 1.0 5.0 13.5 20.0 20.0 19.5 11.5 5.0 1.0 20.0 1.0 01 REGION: FWSTRC STREAM TURB'ITY COND. rurb 10.80 4 BOAID CNT MG/L 11.9 7.8 8.5 5.0< 7.8 U T M: 17 0492525.0 4837575.0 FECAL STREPCUS /100ML RESIDUE PARTIC. 10.4 21.6 5.0< >4 1500> >5 1500> FSMF 296 52 81.0 596 89 RSP TERM STREAM: MAITLAND RIVER MINOR BASIN: LAKE HURON 6000AID FECAL MG/L AS P COLIFORM CMT PHOSPHOR /100ML UNF. TOT. >5 0.048 0.150 170 172 172 52 52 950.0 0.110 0.185 0.410 FCMF 0009 835 6 10 PPUT 0.078 MG/L AS P COND25 UMHO/CM AT 25 C P04 UNF , REAC PP04UR CONDUCT 756.0 620.0 638.0 592.0 504.0 706.0 5561.0 794.0 785.0 794.0 628.7 620.5 485.0 0.109 0.022 0.015 0.016 0.002 0.025 0.059 0.132 0.160 0.039 MG/L Hd CLIDUR CHLORIDE UNF. REAC AS CL 05 33.92 14.600 8.756 7.43 7.61 7.87 8.25 8.08 8.22 8.22 8.22 8.22 7.89 36.500 25.400 42.800 27.600 14.600 42.800 27.636 26.346 22,400 21.600 26,100 32.200 Hd LONG: 081 MG/L AS N UNF , REAC FGPROJ PROJECT SUB-PROJ CODE HNTKUR K'DAHL N 0.770 1.200 1.200 1.300 TOTAL 1,600 0101 0101 0101 0101 0101 0101 0101 050 .650 0101 0101 0101 0101 0101 LAT: 43 41 35.15 UNF.REAC MG/L AS N DEPTH **FWSADP** SAMPLE NNO3UR N03-N 0.30 0.30 5.800 9.200 0.400 0.30 0.100 11.700 12 38389 38405 38453 38453 38485 NUMBER 28598 38357 38373 38437 38469 38485 GEOM MEAN NUMBER 38341 38357 38389 38405 38421 38437 SAMPLE 28582 38341 38421 MAXIMUM ARITH MEAN HINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) SAMPLE 28582 38373 *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 1130 1106 1120 1109 1130 1132 1125 1105 1106 1120 1130 1057 050 1132 1130 1050 1117 HOUR 1057 HOUR LMT LMT /YMMDD 900206 900402 901001 /YHMDD 901106 901203 900006 900006 901203 900102 900305 900703 900807 901106 SAMPLE 900102 900306 900402 900507 900006 900807 900904 901001 SAMPLE DATE DATE

STATION ID: 08-0056-020-02

180

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: BOYLE DRAIN SAMPLE POINT: DOWNSTREAM FROM HENFRYN STATION TYPE: RIVER

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON

STORET CODE: TERM STREAM: MAITLAND RIVER DISTANCE: 131,802

REGION: 01 TURB'ITY FTU TURB 10.80 10.80 U T M: 17 0492525.0 4837575.0 4 MG/L PARTIC. RESIDUE 118.0 33.4 7.8 RSP 8 MG/L AS P PHOSPHOR UNF. TOT. 0.410 0.114 0.085 0.036 0.109 PPUT PO4 UNF.REAC MG/L AS P PP04UR 0.160 0.056 0.033 0.002 0.053 표 LAT: 43 41 35.15 LONG: 081 05 33.92 8.26 7.94 7.93 7.43 0.29 Н TOTAL UNF.REAC MG/L AS N NNTKUR K'DAHL N 1.800 1.291 1.253 0.770 MG/L AS N NNO3UR NO3-N UNF . REAC 11.700 5.627 2.731 0.100 4.340 SAMPLE ARITH MEAN GEOM MEAN MAXIMUM STD DEV (GEOM *) MINIMUM % SAMP (EXCLUDED) *=INTERIM TEST-NAME: DATE HOUR YYMMDD LMT SAMPLE

B.O.W./ SITE: MAITLAND RIVER SAMPLE POINT: AT HIGHWAY 21 GODERICH

STATION ID: 08-0056-023-83

0.0010 0.0008<A 0.0020<T MG/L AS N MG/L 0.0020<T 0.0023<A 0.0021<A NO2-N UNF. REAC COPPER AS CU 0,0018<T 0.0019<T 0.0022<T 0.0020<T 0,0020<T 0.0010<T MNO2UR 2.736 UNF. TOT. 0.010< 0.030 0530 CUUT 0.0030 0.0040 0,000,0 0.010 0.030 0.030 0.010 0.010 0.020 0,020 0.040 STORET CODE: DISTANCE: 0.0005 0.0015<A 0.0046 0.0018<A AS CR 0.0010<T NH3-N CHROMIUM UNF. TOT. 0.0005<W 0.0010<T 0.0005<W 0.0010<T 0.0010<T 0.0014<A NNHTUR JNF . REAC MG/L AS N MG/L TOTAL 0.029 CRUT 0.134 0.014 0.025 0.016 0.020 0,019 0.042 0.0026 9,0000 0.0038 0.0033 0.038 UMHO/CM 0.002<W COND25 25C AT 25 C MG/L 0.002<W 0.002<W 0.002<W 0.005<T 0.005<T 0.004<T 0.004<T 0.005<T CONDUCT. MICKEL UNF. TOT. AS NI 0.003<T D.004<T 1490.0 735.0 2510.0 759.0 653.0 862.0 845.0 1057.7 578.0 657.0 1105.0 2510.0 951.4 NIUT REGION: 01 0.02<W DATA|SS 0.02<W DATAISS 0.02<W NO DATAISS CLIDUR MG/L AS CL UG/L 0.02<W 0.02<W 0.02<W CHLORIDE UNF. REAC MERCURY AS HG UNF. TOT. 172.375 99.281 17.300 193.439 42.600 27.800 330.000 98.300 72.800 513.000 168,000 166.000 116.000 58.200 17.300 513.000 HGUT 20 2 Ť 0.0002<A 0.0002 0.0000<A 0.0002<W 0.0002<W 0,0002<W 0.0002<A MG/L 0.0002<W 0,0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W TEMP CADMIUM UNF. TOT. AS CD 0.0002<W 0.0002<W FWTEMP MATER DEG.C U T M: 17 0442600,0 4844450,0 1.5 6.5 17.0 17.0 14.0 22.0 22.5 13.0 5.0 1.0 CDUT 0.0002 TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON AVAIL UNF . REAC 0.001<W W>100.0 0.001<W 0.001<W 0.001<W 0.001<A 0.000<A CCNAUR CYANIDE MG/L AS HCN 0,001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001<A STREAM FWSTRC COND. 0.001 0.001 ***** 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001 0.000<A 0.001<W 0.001<A 0.001<A ARSENIC MG/L AS AS 0.001<W W>100.0 STREPCUS CNT FECAL /100ML 4× 8 8 20 >5 JNF. TOT 1 >5 1500> 156 ASUT 0.001 FSMF 1.100 0.080<T MG/L ALK TOTAL IRON AS FE MG/L CAC03 0.043<T 0.063<T 0.047<T 0.029<T 0.030<T 0.080<T UNF. TOT. 0.052<1 LONG: 081 42 46.68 267.0 258.0 229.0 232.0 228.0 182.0 200.0 136.0 202.0 9.602 206.1 136.0 38.3 12 0.130 ALKT FEUT 0.140 SH FGPROJ SUB-PROJ CODE MF PROJECT FECAL COLIFORM CHT /10011 1000> 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 FCMF LAT: 43 45 10,13 DEPTH DISOLVED FWSADP SAMPLE OXYGEN HG/L 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 AS 15.5 15.5 16.0 11.0 12.0 12.0 10.5 12.5 15.0 0.30 RIVER COMPOSITE 00 12 38346 38362 38394 38426 38442 38474 SAMP IN STATISTICS 38346 38362 38378 38394 38410 38442 38458 38474 38490 SAMPLE NUMBER \$8378 38410 58490 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM SAMPLE NUMBER 28603 38426 28603 28587 28587 STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME STATION TYPE: 1326 1232 330 310 1330 1330 245 310 1326 1327 1330 245 HOUR 1232 1310 HOUR 1327 1335 252 LIII **УУНИВВ СМТ** *=INTERIM YYMMDD SAMPLE 900102 900906 901203 SAMPLE 900102 900206 900402 300507 900604 900807 900006 901106 900205 900306 900402 900507 900604 900703 900807 901001 901106 900306 900703 301001 901203 DATE DATE 8t

Q L N

0

MAJOR BASIN: GREAT LAKES

STATION ID: 08-0056-023-83

SAMPLE POINT: AT HIGHWAY 21 GODERICH STATION TYPE: RIVER COMPOSITE B.O.W./ SITE: MAITLAND RIVER

MG/L AS N N02-N 2.736 NNO2UR JNF. REAC MG/L RESIDUE PARTIC. 0.040 12.1 5.4 5.7 26.9 77.2 0530 77.2 1.8 0.010 02 RSP 6 2 111 STORET CODE: DISTANCE: NH3-N TOTAL UNF.REAC MG/L AS N NNHTUR FILTERED MG/L RESIDUE 493.0 493.0 440.8 377.7 870.0 478.0 493.0 439.0 665.2 514.0 956.3 0.134 0.002 956.3 542.2 377.7 186.6 11 RSF 0.005 0.003<A 0.002 0.001<A MG/L AS NI 0.003<A CNT UNF. TOT. **PSEUDOMN** NICKEL /100ML AERUG. PSAMF 44C NIUT 44 55 REGION: 01 0.02 0.02<A 0.02<A 0.02 0.00<A MG/L AS P UG/L MERCURY UNF. TOT. AS HG PHOSPHOR UNF. TOT. HGUT 0.009 0.015 0.013 0.008 0.029 0.023 0.031 0.033 0.008 0.048 0.021 0.031 0.183 PPUT 0.021 0.011 U T M: 17 0442600.0 4844450.0 4 WATER MG/L AS P TEMP P04 **FWTEMP** DEG. C PP04UR UNF. REAC 0.001< 0,001< 0.003 24.0 10.8 5.9 1.0 9.2 0.018 0.001 0.001 0.001 0.022 0.022 0.001 0.008 0.001 TERM STREAM: MAITLAND RIVER 10 MINOR BASIN: LAKE HURON FWSTRC UG/L STREAM PHENOLS UNF-REAC COND. PHENOL >000° >000° PHNOL >000° 1.500 7.500 7.500 2.400 000 000.1 1,000 1.000 3 5 /100ML H AF CNT FECAL STREPCUS FSMF 156 8.34 8.36 8.53 8.53 8.54 8.64 8.43 8.64 8.35 8.35 7.88 0.21 09 8.22 8.32 H IRON UNF.TOT. MG/L AS FE 0.163<A 0.079<A 0.313<A LEAD MG/L 0.005<W 0.005<W 0.005<W 0.000<A 0.005<W 0.005<W 0.005<W 0.005<W 0,005<W 0.005<W 0.005<W 0.005<W 0.005<A 0.005<A UNF. TOT. AS PB LONG: 081 42 46,68 1.100 0.005 FEUT 0.005 PBUT MG/L AS N UNF . REAC FECAL COLIFORM CNT NNTKUR K'DAHL N /100ML 0.590 1.280 669.0 FCMF 0.650 0.800 0.780 0.630 0.780 96 40 0.610 TOTAL 0.610 0.730 0.570 LAT: 43 45 10.13 MG/L AS 0 MG/L AS N DISOLVED N-20N UNF. REAC OXYGEN NNOSUR 2.780 0.200 2.227 18.0 13.4 13.2 10.5 2.4 5.900 7.300 6.100 5.500 2.500 3.900 0.700 2.400 4.900 7.300 20 SAMPLE 38458 38474 38490 28587 38346 38362 38394 38442 STD DEV (GEOM *) MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS SAMPLE NUMBER 28603 38410 38426 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) 38378 % SAMP (EXCLUDED) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 1310 1330 1245 1327 1330 1232 1310 1326 HOUR HOUR 1252 1304 LMT YYMMDD LMT *=INTERIM YYMMDD 900006 900006 901203 900102 900205 900309 900402 900507 900703 900807 901001 SAMPLE SAMPLE DATE DATE

B.O.W./ SITE: MAITLAND RIVER SAMPLE POINT: AT HIGHWAY 21 GODERICH

STATION TYPE: RIVER COMPOSITE

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER

STORET CODE: STATION ID: 08-0056-023-83

2.736

DISTANCE:

REGION: 01

U T M: 17 0442600.0 4844450.0 4

LAT: 43 45 10.13 LONG: 081 42 46.68

AS ZN

TURB'ITY FTU

SAMPLE

HOUR

DATE

SAMPLE

0.0024<T 0.0010<T 0.0010<T

1232 1310 1330 1245 1330

0.0032

0.0030

3.60

28587 38346

1335 **УУНИВВ СИТ** 900102

9002009 900305 900402 900507 900006 900703

28603 38362 38394

ZINC MG/L UNF. TOT.

ZNUT

TURB

*=INTERIM TEST-NAME:

0.0120 0.0040<A

3.60 3.60

0.0030 0.0030 0.0120 0.0080

0,000,0

38410

252

38458 38474 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM

0.0031<A 0.0032<A

0.0010

SAMP IN STATISTICS

STD DEV (GEOM *) % SAMP (EXCLUDED)

STATION ID: 08-0056-026-02

1990 WATER QUALITY DATA REGION 1

.O.W./ SITE: MIDDLE MAITLAND RIVER SAMPLE POINT: 0.7 MILES OF ETHEL

STATION TYPE: RIVER

AS N N02-N MG/L DISTANCE: 127.135 NNO2UR JNF . REAC 0.020 0.040 0.050 0.040 0.050 0.110 0.040 0.210 0.050 0.055 0530 0.072 0.180 0.030 STORET CODE: NH3-N TOTAL MG/L AS N NNHTUR UNF . REAC 0.545 0.122 0.043 0.002 0.021 0.024 0.037 0.545 0.046 0.002 TEMP DEG.C 1.0 1.0 1.0 12.0 12.0 15.0 22.0 22.0 19.0 11.5 5.0 21.0 9.3 4.9 0.5 8.0 REGION: 01 FWSTRC STREAM COND. TURB'ITY TURB U T M: 17 0489775.0 4840350.0 4 FECAL STREPCUS CNT /100ML RESIDUE PARTIC. 4 4 FSMF 32 1500> 620 620 214 œ 55 RSP TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS P COLIFORM FECAL 분 /100ML PHOSPHOR JNF. TOT. 1000> FCMF 0.063 950.0 240 68 124 48 324 324 0.099 0.067 0.042 0.048 0.103 0.192 PPUT MG/L AS P COND25 25C JMH0/CM AT 25 C PP04UR P04 UNF. REAC CONDUCT. 771.0 669.0 604.0 630.0 513.0 669.0 619.0 634.0 769.0 771.0 640.4 635.0 501.0 86.1 0.055 0.012 900.0 0.071 0.021 0.091 0.033 0.023 0.096 AS CL E CLIDUR CHLORIDE UNF . REAC MG/L LAT: 43 43 04.98 LONG: 081 07 36.95 49.400 22.400 20.300 22.800 28.000 25.400 48.000 49.400 30.800 16.200 30.142 28.157 16.200 12.079 7.74 7.75 7.88 8.11 7.86 8.18 8.11 8.11 8.25 7.94 7.57 49.400 ž MG/L AS N SUB-PROJ NNTKUR K'DAHL N UNF . REAC FGPR0J CODE PROJECT 1.470 0.900 0.900 0.800 1.040 1.080 0.950 1.050 1.500 1.760 0.960 TOTAL 0101 0101 0101 0101 0101 0101 0101 0101 1010 1010 1010 DEPTH MG/L AS N **FWSADP** SAMPLE NNOSUR N03-N JNF . REAC 0.30 0.30 0.30 0.30 0.30 0.30 0.30 5.500 8.800 8.100 8.500 2.300 0.700 0.700 0.400 10.300 5.800 6.000 38390 38406 38454 38470 28583 28599 38342 38358 38374 38406 38438 38454 28583 28599 38342 38358 38374 38390 UMBER GEOM MEAN MINIMUM SAMPLE NUMBER SAMPLE 38422 38470 38486 MAXIMUM ARITH MEAN STD DEV (GEOM *) # SAMP IN STATISTICS 58422 58438 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 1118 1130 1120 1138 1107 HOUR 1100 1142 1115 1118 1130 1120 1115 1142 1140 1115 HOUR LMT LMT YYMMDD 901001 YYMMDD 900604 901203 900306 900507 900006 900904 901106 901203 SAMPLE 900102 900206 900309 900402 900507 900703 900807 900904 901001 901106 SAMPLE 300102 900209 900402 900703 708006 DATE DATE

STATION ID: 08-0056-026-02	STORET CODE: 02 002 0530	DISTANCE: 127.135											
TION		01											
STA		REGION: 01	TURB		TURB'ITY	FTU	4.20	4.20		4.20		1	
	ES NN RIVER	840350.0 4	RSP	RESIDUE	PARTIC.	MG/L	6.99	16.8		N. E		7	41
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER	U T M: 17 0489775.0 4840350.0 4	PPUT	PHOSPHOR UNF. TOT.	HG/L	AS P	0.400	0.111	0.086	0.042	0.102	12	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PP04UR	PO4 UNF.REAC	MG/L	AS P	0.240	0.067	0.043	900.0	990.0	12	
		07 36.95	Н			ЬН	8.25	7.90	7.90	7.45	0.24	12	
ER		LAT: 43 43 04.98 LONG: 081 07 36.95	NNTKUR K DAHI N	TOTAL	MG/L	AS N	1.760	1.120	1.089	0.800	0.294	12	
AITLAND RIV		3 43 04.98	NNO3UR	NO3-N UNF.REAC	HG/L	AS N	10.300	5.408	3.564	0.400	3.536	12	
E: MIDDLE M	E: RIVER	LAT: 4	EST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEON MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: MIDDLE MAITLAND RIVER	STATION TYPE: RIVER		*=INTERIH TEST-NAME:	SAMPLE	DATE HOUR	YYMMDD LMT		_			STD DE	# SAMP IN STATISTICS	% SAMP

STATION ID: 08-0056-031-02

B.O.W./ SITE: MIDDLE MAITLAND RIVER SAMPLE POINT: AT COUNTY ROAD NO.16 WEST OF BRUSSELS

DISTANCE: 104.283 MG/L AS P STREPCUS CNT FECAL PHOSPHOR UNF. TOT. /100ML 12 88 4< 1500> FSMF 001 24 100 0.043 0.053 0.035 0.039 0.011 7 0.019 0.055 3 PPUT 0.270 STORET CODE: FECAL COLIFORM CNT . REAC MG/L AS P /100ML P04 4< 12 68 PP04UR >5 FCMF 1000> 0.001< 0.020 0.010 68 4 3 68 0.011 0.004 0.012 0.011 0.001 UNF. MG/L AS 0 OXYGEN DISOLVED PH 13.0 16.5 16.0 14.0 11.0 11.5 11.5 10.0 10.0 16.5 12.2 12.0 10.0 2.4 7.95 7.94 8.03 8.24 8.12 8.35 8.31 8.31 7.73 8.08 7.67 Hd 01 REGION: 0.0005 0.0013<A AS CU 0.0005<W 0.0050 0.0020<T 0.0050 0.0025<A COPPER MG/L 0.0022<T 0.0017<T 0.0016<T 0.0020<T 0,0020<T 0.0020<T 0.0022<A LEAD MG/L AS PB 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0,005<W UNF. TOT. UNF. TOT. CUUT 0.0034 0.000.0 0.0000 PBUT ¢ UNF.REAC MG/L AS N 25C COND25 UMH0/CM AT 25 C K'DAHL N 0475100.0 4846350.0 CONDUCT. NNTKUR 635.0 637.0 586.0 606.0 569.0 542.0 620.0 246.0 679.0 673.0 TOTAL 679.0 595.3 536.0 52.0 0.780 0.950 0.740 0.980 0.730 1.010 0.980 TERM STREAM: MAITLAND RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON AS CL N-20N CLIDUR UNF. REAC MG/L . REAC MG/L AS N z CHLORIDE NNOSUR 22.000 19.400 18.400 19.800 18.700 17.900 23.200 37.600 44.000 36.500 24.358 24.358 23.011 16.700 9.380 8.500 3.000 8.600 2.200 4.100 8.400 8.000 UNF. U T M: 17 5 DAY BOD MG/L AS 0 HG/L AS N FOT . DEM. NNO2UR NO2-N UNF . REAC 0.01< 65.0 1.18 0.90 1.13 0.74 4.92 0.060 8005 1.04 1.59 65.0 170 0.040 0.040 0.020 0.050 0.040 ALK CAC03 MG/L MG/L AS N TOTAL NNHTUR NH3-N UNF. REAC LONG: 081, 18 33,77 255.0 221.0 221.0 245.0 228.0 228.0 228.0 190.0 190.0 180.0 254.0 254.0 299.0 232.7 230.7 180.0 32.0 0.194 0.064 0.080 0.017 0.034 0.145 0.044 0.005 0.112 0.042 FGPROJ SUB-PROJ CODE PROJECT TEMP FWTEMP DEG.C 0101 0101 0101 0101 0101 0101 LAT: 43 46 18.21 DEPTH FWSADP SAMPLE STREAM COND. **FWSTRC** 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 28600 38343 38359 38439 38455 SAMPLE NUMBER 38375 38407 38423 SAMPLE 38391 58471 38487 28584 28600 38343 38375 38423 38439 28584 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS NUMBER 38391 38455 38471 38487 \$8407 STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: STATION TYPE: RIVER TEST-NAME: HOUR 120 1150 1140 200 202 1138 1158 1128 1159 HOUR 1130 1120 1150 1202 1135 1138 1158 1158 1128 1159 LMT LMT K=INTERIM YYMMDD 900309 900102 900209 900402 900507 900006 900703 900006 901001 901106 901203 /YMMDD 900006 901001 SAMPLE 900807 900102 900209 900305 900507 100703 90600 01203 SAMPLE 900402 100800 DATE DATE

ONIO

	. 0	283	11	HOR OT.	MG/L AS P	c	5	65	1 6																				
12	0530 0530	: 104.	PPUT	PHOSPHOR UNF. TOT.	_ q	0.270	0.055	0.039	0.0	12																			
STATION ID: 08-0056-031-02	STORET CODE: 02 003 05	DISTANCE: 104.283	PP04UR	PO4 UNF.REAC	MG/L AS P	0.118	0.025		100.0	11 8																			
TON ID: 08		11	ЬН		H	8,36	8.07	8.07	0.23	12																			
STAT		REGION: 01	PBUT	LEAD UNF.TOT.	MG/L AS PB	0.005	0.005 <a< td=""><td>0.005<a< td=""><td>0.000<a< td=""><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.000<a< td=""><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.000 <a< td=""><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	12																			
	ES N RIVER	846350.0 4	MNTKUR K DAHI N	TOTAL UNF.REAC	MG/L AS N	1.660	0.951	0.927	0.251	12																			
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: MAITLAND RIVER	U T M: 17 0475100.0 4846350.0 4	NNO3UR	NO3-N UNF.REAC	MG/L AS N	8.600	5.283	4.105	2.787	12																			
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNO2UR	NO2-N UNF.REAC	MG/L AS N	0.170	0.051	0.040	0.042	12	ZNUT	ZINC	UNF . 101 .	AS ZN	0,0068	0.0030	0.0027	0.0027	0.0020 <t< td=""><td>0.0030</td><td>0.0030</td><td>0.0040</td><td>0.0040</td><td>0.00000</td><td>0.0120</td><td>0.0047<a< td=""><td>0.0040<a< td=""><td>0.0020</td><td>A 00700 0</td></a<></td></a<></td></t<>	0.0030	0.0030	0.0040	0.0040	0.00000	0.0120	0.0047 <a< td=""><td>0.0040<a< td=""><td>0.0020</td><td>A 00700 0</td></a<></td></a<>	0.0040 <a< td=""><td>0.0020</td><td>A 00700 0</td></a<>	0.0020	A 00700 0
200	KUSSELS	18 33.77	NNHTUR NH3-N	TOTAL UNF. REAC	MG/L AS N	0.194	0.070	0.049	0.056	12	TURB		Transport Contra	FTU	6.60	,									6.60	4.60		4.60	
ER	o MEST OF	LAT: 43 46 18.21 LONG: 081 18 33.77	FWTEMP	WATER	DEG.C	22.0	1.6	ы -	8.3	12	RSP	1	RESIDUE	MG/L	>0.5	7.5	>0.0	5.00	5,0	5.0	5.0<	1.6	13.1	5.6	46.1	14.8		1.6	
ITLAND RIV	NOAD NO.1	46 18.21	FWSTRC	3 8 9	COND.						PSEUDOMN	AERUG.	1114	/100ML	4	>4	× 4	/ V	>4		>4	>4	1265	2	124	124	200	124	
MIDDLE MA	RIVER	LAT: 43	T-NAME:	1	NUMBER	MAXIMUM	ARITH MEAN	GEON MEAN	(GEOM *)	ATISTICS KCLUDED)			CAMPIE	NUMBER	28584	28600	38343	38375	38391	38407	38423	38439	38455	38487	MAXIMUM	ARITH MEAN	GEON MEAN	MINIMA	CEUM &)
B.O.W./ SITE: MIDDLE MAITLAND RIVER	STATION TYPE:		*=INTERIM TEST-NAME:	ш	YYMMDD LMT		AR	19	STD DEV (GEOM *)	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIH TEST-NAME:	SAMBIE	DATE DOID	0			900305 1120			900703 1138			901001 1158			ARI	GE	MUNIMINIA WITE WITE	VIII III-V

188

02 002 0530

STORET CODE: STATION ID: 08-0056-035-02 B.O.W./ SITE: LITTLE MAITLAND RIVER SAMPLE POINT: GREY TWP. CONC II,2.5 KM.EAST OF JAMES- TOWN NINOR BASIN: GREAT LAKES STATION TYPE: RIVER TERM STREAM: MAITLAND RIVER

	NNO2UR	N02-N	UNF.REAC	AS N	000	000.0	0.040	0.040	0.040	0.020	0.000		0.020	0.020	0.000	0.020	0.020	,	060.0	0.041	0.035	0.020	0.025	11																		
	NNHTUR	NH3-N TOTAL	UNF.REAC	AS N	220	00000	0.055	0.014	0.044	0.018	0.024		0.062	0.038	0,001<	0.013	0,001<	1	0.738	0.110		0.013		6	18																	
11	FWTEMP		WATER	DEG.C	-		۹°0	1.0	2.0	15.5	17.0	24.5	22.0	23.0	12.0	5.0	1.0	;	54.5	10.6	5.3	0.5	9.5	12																		
REGION: 01	FWSTRC		CTDEAM	COND.	4		÷ ,	4	x	80	8	8	8	8	8	80	8									TURB			TIIDDITT	FTU	1.24											
849350.0 4	FSMF	STREPCUS	AH C	/100ML	376		*	>+	152	>4	4	æ	>4	>4		1500>		ì	9/2	89		4		2	20	RSP		1101010	DADTIC	HG/L	5.0<	6.7	0.9	5.0<	5.0	5.0<	5.3	6.0	4.3	41.5	28.4	7.3
U T M: 17 0486300.0 4849350.0	FCMF	COLIFORM	T T	/100ML	129	1	* <	*	09	æ	20	8	32	54		1000>			132	32		4		6	10	TUQ4.		PHOSPHOR	MG/1	AS P	0.050	0.032	0.021	0.027	0.018	0.023	0.032	0.029	0.020	0.074	0.172	0.044
U T M: 17	COND25	CONDUCT.	25C	AT 25 C	668.0	0.635	0.140	605.0	595.0	543.0	533.0	558.0	679.0	0.965	700.0	517.0	637.0	0 001	0.007	581.0	577.1	0.625	6.07	12		PP04UR		PO4	MEAL MEAL	AS P	0.021	0.018	0.001	0.005	900.0	0.002		900.0	0.001<	0.014	990.0	0.022
10 13.08	CLIDUR	CHLORIDE	UNF.REAC	AS CL	20.400	1000	12 700	17.700	18.500	17.300	19.400		20.500	24.400	26.600	13.300	15.300	00, 00	009.97	19.218	18.890	13.300	3.779	11		Ħ				Н	7,61	8.02	8.08	8.12	8.49	8.43	8.59	8.56	8.71	8.14	7.84	8.16
LONG: 081 10 13.08	FGPROJ		SHR-PROJECT	CODE	1010	1010	0101	1010	1010	0101	0101	0101	0101	0101	1010	0101	1010									NNTKUR	M'DAHL N	INE DEAC	MG/1	AS N	2.220	0.640	0.600	0.710	0.740	1.050	0.880	0.860	1.010	1.520	1.430	0.680
LAT: 43 47 56.51	FWSADP		SAMPLE	Σ	0.30	0 20	0.00	0.30	0.50	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	40	00.00	0.30		0.30		12		NNOSUR		NOS-N	MG/I	AS N	6.100	7.400	009.9	6.500	3.200	2.500		1.000	0.700	5.800	4.700	5.300
LAT: 43	ST-NAME:		SAMPLE	NUMBER	28591	20706	10007	20200	28266	38382	38398	38414	38430	38446	38462	38478	38494	MANTAIN	LINVENDI	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	FATISTICS	EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	28591	28607	38350	38366	38382	38398	38414	38430	38446	38462	38478	38494
	*=INTERIM TEST-NAME:	1	DATE HOUR	0	900102 1516		٠.	, ,			,						901203 1533			4			STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMDIE	DATE HOUR	0	900102 1516	900205 1515		900402 1530	_				٠.			901203 1533

STATION ID: 08-0056-035-02 STORET CODE: 02 002 0530				
STATION II	REGION: 01	TURB	TURB'ITY FTU	1.24
KES DN RIVER	U T M: 17 0486300.0 4849350.0 4	RSP	RESIDUE PARTIC. MG/L	41.5 13.2 4.3 8 33
OWN MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: MAITLAND RIVER	0.0059890	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.172 0.045 0.035 0.018 12
TOWN MAJOR BASIN MINOR BASIN TERM STREAN	U T M: 17	PP04UR	PO4 UNF.REAC MG/L AS P	0.005 0.001 0.001
OF JAMES- 1	10 13.08	ЬН	Н	8.71 8.23 8.22 7.61 0.33
ER .5 KM.EAST	LONG: 081 10 13.08	MNTKUR	TOTAL TOTAL UNF.REAC MG/L AS N	2.220 1.028 0.949 0.600 0.478
AITLAND RIV. . CONC II,2	LAT: 43 47 56.51	NNO3UR	NO3-N UNF.REAC MG/L AS N	7,400 4,527 3,657 0,700 2,326
: LITTLE M F: GREY TWP E: RIVER	LAT: 4	ST-NAME:	SAMPLE	HAXIMUM ARITH MEAN GEOM HEAN SID DEV (GEOM *) SAMP IN STATISTICS Z SAMP (EXCLUDED)
B.O.W./ SITE: LITTLE MAITLAND RIVER SAMPLE POINT: GREY TWP. CONC II,2.5 KM.EAST OF JAMES- TOWN STATION TYPE: RIVER TERN		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	STD DE ** SAMP IN % SAMP

STATION ID: 08-0076-001-02

B.O.W./ SITE: LUCKNOW RIVER

SAMPLE POINT: HIGHWAY 21, PORT ALBERT

DATE

MAJOR BASIN: GREAT LAKES

MG/L AS P FECAL 1.287 STREPCUS CNT JNF . REAC /100ML PP04UR 0.001< 4 4 0.001< 0.014 0.001 160 4 4 312 20 1500> 0.008 0730 FSMF 312 30 002 STORET CODE: DISTANCE: IRON MG/L AS FE PHENOLS JNF-REAC 1/9n UNF. TOT. PHENOL .0000 >000 PHNOL 0.130 0.270 0.130 0.110 0.110 0.960 0.243 0.188 0.110 1.000 6.500 FEUT .000 .000 LOAID H COLIFORM /100ML 52 8 88 44 44 20 1000> 8.16 8.32 8.32 8.45 8.40 8.44 8.44 8.44 8.46 8.04 8.26 34 8 20 표 REGION: 01 MG/L AS 0 0.005<W 0.005<W DISOLVED MG/L AS PB OXYGEN 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W UNF. TOT. N>500°C 16.0 17.5 16.5 16.5 12.0 11.5 11.5 11.5 12.0 14.0 17.5 113.9 111.5 2.4 PBUT 00 J K'DAHL N TOTAL MG/L 0.0021<A 0.0008<A NNTKUR JNF . REAC MG/L COPPER AS CU 0017<T 0.0016<T 0.0014<T 0.0020<T 0,0020<T 0.0020<T 0.0020<T 0.0010<T 0.0020<A U T M: 17 0442590.0 4858390.0 UNF. TOT 0.0027 AS 0.600 CUUT 0.0030 0.0040 0.000.0 0.0010 0.640 0.013 0.490 0.540 0.770 0.550 1.380 0.710 FERM STREAM: LUCKNOW RIVER MINOR BASIN: LAKE HURON MG/L AS N COND25 25C UMHO/CM AT 25 C NO3-N JNF . REAC CONDUCT. **NNO3UR** 516.0 516.0 512.0 4.200 3.400 3.200 2.900 594.0 541.0 492.0 522.0 500.0 569.0 496.0 594.0 492.0 525.6 1.600 1.800 1.300 1.000 MG/L MG/L AS N UNF . REAC AS CL CLIDUR CHLORIDE NNO2UR V02-N UNF. REAC 0.020 0.010< 23.200 20.500 15.200 18.700 15.200 13.700 3.622 12 0.040 0.030 0.030 0.010 0.030 17.500 22.800 23.500 22.700 0.030 13.700 18.808 18,486 TOTAL TOTAL MG/L AS N MG/L AS CACO3 NNHTUR NH3-N JNF . REAC LONG: 081 42 52.51 226.0 222.0 227.0 216.0 247.0 230.0 233.0 218.0 218.0 205.0 205.0 264.0 228.4 227.8 203.0 17.4 0.042 0.014 0.019 ALKT 0.031 0.026 0.024 0.025 FLOW GAUGE MOE 02FD103 FGPROJ SUB-PROJ PROJECT CODE FWTEMP TEMP DEG.C 0101 1010 0101 0101 0101 0101 1010 0101 0101 LAT: 43 52 41.94 DEPTH STREAM COND. SAMPLE **FWSADP** FWSTRC 0.30 0.30 0.30 12 **** SAMPLE SAMPLE 28604 38379 38443 38475 38379 38395 38427 38443 38459 28588 38363 38395 38427 38459 38491 # SAMP IN STATISTICS 28604 38347 38411 38491 58411 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) 38363 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: STATION TYPE: RIVER 1410 1400 1420 1418 1348 1400 1418 1400 1348 1353 1407 1352 1419 HOUR 1341 1407 HOUR 420 1341 LMT 표 /YMMDD YMMDD. 901106 900604 900006 901106 900205 SAMPLE 900102 900200 900305 900402 900507 900703 900807 901203 SAMPLE 900102 900309 300402 900507 900006 300703 900807 900904 01203 901001 901001

DATE

(G L N O O)

STATION ID: 08-0076-001-02

SAMPLE POINT: HIGHWAY 21, PORT ALBERT B.O.W./ SITE: LUCKNOW RIVER

FLOW GAUGE MOE 02FD103 STATION TYPE: RIVER

MG/L AS P P04 PP04UR UNF. REAC 1.287 0730 0.022 0.001 10 STORET CODE: DISTANCE: PHENOLS UNF-REAC UG/L PHENOL PHNOL 6.500 2,200 1.000 PH 8.30 7.89 0.19 8.31 PH REGION: 01 LEAD 0.005 0.000<A UNF.TOT. MG/L AS PB 0.005<A 0.005<A PBUT Ġ K'DAHL N NNTKUR UNF. REAC MG/L AS N U T M: 17 0442590.0 4858390.0 1.380 0.609 0.457 0.013 0.309 TOTAL TERM STREAM: LUCKNOW RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON 0.0010 0.0035<A N03-N UNF. REAC MG/L AS N ZINC AS ZN 0.0017<T 0.0010<T NNOSUR 0.0037<A 0.0027<A MG/L 0.0021<T 0.0023<T 0.0010<T 0,0020<T UNF. TOT. 0.0024<T 4.200 2.325 2.110 1.000 1.048 0,000,0 0.0030 0.0100 0.0110 0.0110 ZNUT MG/L AS N N02-N NN02UR UNF. REAC IURB'ITY 0.010 3.70 TURB 0.040 0.024 0 MG/L AS N TOTAL NNHTUR NH3-N UNF . REAC MG/L RESIDUE PARTIC. 5.0< LONG: 081 42 52.51 0.012 0.001 0.012 5.0< 0.018 22.1 19.7 22.8 13.6 104.0 12.0 12.6 0.90 7.7 0.042 25.1 RSP 9 WATER DEG.C FWTEMP TEMP ¥ CMT PSEUDOMN /100ML PSAMF AERUG. 366 25.0 10.7 5.7 1.0 9.4 55 55 1 90 LAT: 43 52 41.94 STREAM AS P FWSTRC COND. PHOSPHOR MG/L UNF. TOT. 0.024 0.034 0.159 0.011 0.159 0.041 PPUT 0.014 0.013 0.016 0.017 0.021 0.011 0.017 0.031 0.022 SAMPLE 38395 38443 NUMBER 38347 38363 38379 38411 38427 38459 38491 HAXIMUM ARITH MEAN GEOM NEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS SAMPLE MAXIMUM # SAMP IN STATISTICS 28588 28604 38475 ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: HOUR 1352 1418 1400 1353 HOUR 1402 1400 1341 1420 1348 1410 1407 YYMMDD LMT YYMINDD LMT 901203 900102 901106 SAMPLE 9002009 900306 900402 900507 90006 900703 900807 900006 901001 DATE DATE

% SAMP (EXCLUDED)

STATION ID: 08-0076-002-02

SAMPLE POINT: CANNING STREET, VILLAGE OF LUCKNOW RIVER B.O.W./ SITE: LUCKNOW

FLOW GAUGE MOE 02FD102 STATION TYPE: RIVER

MG/L AS N NH3-N 25.749 NNHTUR TOTAL UNF. REAC 0730 600.0 0.013 0.041 0.020 0.020 0.014 0.018 0.014 0.002 0.001 0.087 0.013 0.001 0.023 STORET CODE: DISTANCE: EMP. TURB'ITY FTU FWTEMP DEG.C 23.0 10.1 5.8 1.0 8.4 1.0 2.0 1.0 15.0 15.0 16.0 23.0 23.0 19.5 11.5 5.0 2.30 TURB STREAM **FWSTRC** COND. RESIDUE PARTIC. MG/L 5.0 4.8 RSP REGION: 01 PSEUDOMN STREPCUS CNT CNT /100ML FECAL /100ML AERUG. 4 1500> 4 6 60 184 820 FSMF U T M: 17 0458490,0 4866900,0 4 MG/L AS P COLIFORM CNT PHOSPHOR FECAL /100ML 250 104 236 288 400 510 150 600> UNF. TOT. 1000> 0.013 0.012 0.016 0.017 0.031 0.024 0.148 552 8 104 PPUT 0.027 TERM STREAM: LUCKNOW RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON DISOLVED MG/L 0 MG/L OXYGEN PP04UR JNF. REAC 0.001< 0.004 0.001 0.002 0.009 0.001< 0.007 AS 13.5 15.0 17.0 12.0 12.0 112.0 10.0 112.5 113.0 14.0 17.0 113.4 113.3 10.0 11.9 00 Ξ COND25 25C AT 25 C UMHO/CM CONDUCT. 607.0 582.0 570.0 552.0 569.0 569.0 587.0 586.0 598.0 649.0 649.0 649.0 567.8 472.0 45.4 12 7.76 7.94 8.06 8.41 8.41 8.34 8.34 7.81 8.22 8.22 8.22 8.22 Ξ MG/L AS N AS CL NNTKUR K'DAHL N JNF . REAC CLIDUR CHLORIDE UNF. REAC MG/L LONG: 081 31 02,46 24,300 27,600 24,000 21,300 21,300 24,900 24,900 32,500 32,500 32,900 14,300 17,100 0.560 0.500 0.570 0.670 0.600 32.900 25.050 24.343 14.300 5.938 TOTAL 0.590 0.500 0.610 0.870 840 MG/L AS N FGPR03 SUB-PROJ NNO3UR NO3-N JNF . REAC PROJECT 2.900 2.700 2.200 1.900 0.900 0.800 0.800 0.800 0.800 0.700 2.600 0101 0101 0101 0101 0101 0101 LAT: 43 57 21.61 SAMPLE MG/L AS N FWSADP **NNO2UR** N02-N UNF. REAC 0.020 0.080 0.030 0.050 0.020 0.020 0.30 12 38364 NUMBER 28605 38348 38364 38396 38412 38444 38476 SAMPLE 28589 28605 38348 38396 38412 38428 38444 38476 38492 28589 38428 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS SAMPLE % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 1447 420 428 415 1447 1420 448 1423 HOUR 430 415 1445 1448 HOUR DATE HOUR LMT *=INTERIM 900006 YYMMDD 900102 900306 900402 900507 900604 900703 900807 900006 901001 901106 901203 900102 900205 900305 900402 900507 900006 900703 900807 900904 901001 901106 901203 SAMPLE SAMPLE DATE

	02 002 0730	25.749											
STATION ID: 08-0076-002-02	STORET CODE:	DISTANCE:	TURB		TURB'ITY	FTU	2.30	2.30		2.30		_	
TION ID: 08		01	RSP	RESIDUE	PARTIC.	MG/L	43.7	11.5		3.6		7	41
STA		REGION: 01	PSEUDOMN	AERUG.	CNT	/100ML	55	16		4		4	09
	ES N IVER	866900.0 4	PPUT	PHOSPHOR UNF.TOT.	MG/L	AS P	0.148	0.033	0.025	0.012	0.037	12	
	HAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE HURON TERN STREAM: LUCKNOW RIVER	U T M: 17 0458490.0 4866900.0 4	PP04UR	PO4 UNF.REAC	MG/L	AS P	0.052	0.010		0.001		10	16
	MAJOR BASIN HINOR BASIN TERM STREAM	U T M: 17	Н			Н	8.41	8.14	8.13	7.76	0.23	12	
2000		31 02.46	K DAHL N	TOTAL	MG/L	AS N	1.340	0.698	0.670	0.500	0.235	12	
RIVER	FLOW GAUGE MOE O2FD102	LONG: 081 31 02.46	NNOSUR	NO3-N	NG/L	AS N	2.900	1.567	1.352	0.700	0.864	12	
RIVER	FLOW GAUGE	LAT: 43 57 21.61	NNO2UR	NO2-N	HG/L	AS N	0.080	0.027		0.010		11	10
LUCKNOW	RIVER F	LAT: 4	TEST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: LUCKNOW RIVER	STATION TYPE: RIVER		*=INTERIM TE	CAMDIE	DATE HOUR	-		A			STD DEV	# SAMP IN S	% SAMP (

STATION ID: 08-0113-001-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: LITTLE SAUBLE RIVER SAMPLE POINT: AT INVERHURON PROVINCIAL PARK MOE SWAI

1.931 GROSS ALPHA CT FILTERED B0/L 0.04< 7.96 8.09 8.09 8.02 8.02 7.96 0.07 0.05 0.05 0.05 1110 8.01 GACF 표 20 STORET CODE: DISTANCE: MG/L NNTKUR K'DAHL N JNF . REAC AS N CNT STREPCUS /100ML FECAL 0.720 0.460 0,460 0.700 0.614 290 290 173 160 96 156 TOTAL 0.627 MG/L AS N N03-N JNF . REAC CNT NNO3UR COLIFORM /100ML 5.100 4.100 4.100 5.100 4.433 4.409 4.100 0.577 530 530 233 152 48 REGION: 01 AS N MG/L BQ/L NNO2UR N02-N UNF. REAC CESIUM 137 0.3 0.010< 0.3< 0.010 CS137 0.000 0.010 0.040 0,025 4 TERM STREAM: LITTLE SAUBLE RIVER MG/L AS N ANHTUR NH3-N TOTAL UNF . REAC CESIUM BQ/L 0.3 0.001< U T M: 17 0453825.0 4904950.0 0.3 0.009 0.019 0.019 600.0 0.014 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON 9 BQ/L BQ/L COBALT 0.3< ODINE 0.3< 11131 25C HYDROG-3 COND25 BQ/L UMH0/CM AT 25 C TRITIUM CONDUCT. 469.0 526.0 533.6 469.0 74.1 616.0 537.0 60 520 107 51 143 0.919 MG/L GROSS CLIDUR UNF . REAC AS CL BETA CT UNDISSOL BQ/L CHLORIDE 0.04< LONG: 081 34 43.77 0.05 25.400 22.967 22.903 21.500 2.122 3 0.05 22.000 GBCP 25.400 PROJECT SUB-PROJ CODE GROSS FILTERED FGPROJ BQ/L BETA CT 0.07 0.11 0.10 0.07 0.06 0101 0101 0101 0101 0101 LAT: 44 17 53.83 DEPTH ALPHA CT UNDISSOL BQ/L FWSADP SAMPLE GROSS 0.04< 0.30 0.30 0.30 0.30 0.30 GACP SAMPLE SAMPLE 44 MINIMUM MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) MAXIMUM ARITH MEAN GEOM MEAN STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME: STATION TYPE: RIVER HOUR HOUR LMT **УУМИВВ ЦМТ** *=INTERIM DATE P SAMPLE 900124 900731 900124 900628 900731 SAMPLE DATE

	02 002 1110	1.931																
STATION ID: 08-0113-001-02	STORET CODE:	DISTANCE:																
STATION ID:		REGION: 01																
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: LITTLE SAUBLE RIVER	U T M: 17 0453825.0 4904950.0 4	TURB		TURB'ITY	FTU	8.30	.1.61			2.80	8.30	4.24	3.34	1.61	3.57	M	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17 (RSP	RESIDUE	PARTIC.	HG/L	14.8	5.0<				14.8	14.8		14.8		1	50
MOE SWAT		39 43.77	PSAMF	AERUG.	CNT	/100ML	>4		>5	>6	>4							
NCIAL PARK		LONG: 081 34 43.77	PPUT	PHOSPHOR UNF. TOT.	MG/L	AS P	0.123	0.036			0.040	0.123	990.0	0.056	0.036	0.049	M	
AUBLE RIVER		LAT: 44 17 53.83	PP04UR	PO4 UNF.REAC	MG/L	AS P	0.095	0.016			0.030	0.095	0.047	0.036	0.016	0.042	м	
B.O.W./ SITE: LITTLE SAUBLE RIVER SAMPLE POINT: AT INVERHURON PROVINCIAL PARK MOE SWAI	TYPE: RIVER	LAT: 4	*=INTERIM TEST-NAME:		HOUR SAMPLE	LIIT NUMBER	1	1	1	1	5	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./	STATION TYPE:		*=INTERIF	SAMPLE	DATE HO	YYMMDD LE	900124	900228	900628	900731	901025					STE	# SAHP	% S.

B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: YONGE STREET, TOWN OF WALKERTON

STATION ID: 08-0123-002-02

E: 02 002 1260	: 76.603	NNO2UR	NO2-N	UNF. REAC	AS N	0.010<	0.020	0.020	0.020	0.010	0.020	0.010	0.010<	0.020	0.020	0.010<	0.020	0.017		0.010		8	27																
STORET CODE: 02 002 1260	DISTANCE:	NNHTUR	TOTAL	UNF.REAC	AS N	0.025	0.013	0.012	0.029	0,001<	0.023	0.021	0.014	0.008	0.022	0.009	0.029	0.018		0.008		10	6																
	0.1	FWTEMP		MATER	DEG.C	1.0	1.0	3.5	5.0	13.0	22.0	20.0	20.0	13.0	11.0	3.0	22.0	10.2	6.5	1.0	8.0	11																	
	REGION: 01	FWSTRC		CTDEAM	COND.	9	9	4	9	9	9	9	9	9	9	9								RSP		RESIDUE	PARTIC.	MG/L	14.1	5.0<	21.4	8.2	56.6	5.0	5.0<	5.0<	>0.9	8.7	3.5
SS VER	386625.0 4	FSMF	STREPCUS	T T	/100ML	SOAID	12	LOAID	89	108	09	24		12	176	80	176	53	32	Ø	**	10		PSAMF	AFRUG	MF	CNT	/100ML	4	>4	>4	4	>4	>4	4		8	œ	>6
GREAT LAKE LAKE HURON SAUGEEN RJ	U T M: 17 0487675.0 4886625.0 4	FCMF	COLIFORM	¥ E	/100ML	SOAID	20	20AID	152	164	9/	48		92	116	BOAID	164	80	9	20	**	10		PPUT	риозрнов	UNF. TOT.	MG/L	AS P	0.021	0.012		0.024	0.028	0.012	0.010	0.013	0.010	0.015	0.008
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17	COND25	CONDUCT.	25C	AT 25 C	615.0	559.0	396.0	495.0	450.0	572.0	643.0	593.0	603.0	536.0	510.0	643.0	542.9	537.9	396.0	6.42	11		PP04UR	P04	UNF. REAC	MG/L	AS P	0,001<	900.0	0.007	0.002	0.001<	0.003	0.005	0.005	0.001<	0.001<	0.001<
	99 14.66	CLIDUR	CHLORIDE	UNF.REAC	AS CL	18.100	11.800	7.400	10.600	8.400	10.000	10.700	10.800	11.800	10.400	8.800	18.100	10.800	10.525	7.400	2.783	11		Hd				Н	8.12	8.16	8.08	8.22	8.22	8.27	8.37	8.29	8.30	8.31	8.25
FLOW GAUGE FED 02FC002	LAT: 44 08 04.79 LONG: 081 09 14.66	FGPROJ		PROJECT CHP-DB01	CODE	0101	0101	0101	0101	0101	0101	0101	1010	0101	0101	1010								NNTKUR	TOTAL	UNF . REAC	HG/L	AS N	0.490	0.400	0.480	0.480	0.660	0.440	0.400	0.390	0.360	099.0	0.490
LOW GAUGE	08 04.79	FWSADP		SAMPLE	E	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30		11		NNOSUR	N-3-N	UNF. REAC	MG/L	AS N	0.150	1.700	1.300	1.300	1.100	0.800	0.500	0.500	0.600	1.200	0.900
	LAT: 44	ST-NAME:		CAMDIE	NUMBER	38810	38829	38848	38867	38886	38905	38924	38943	38962	38981	39000	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	38810	38829	38848	38867	38886	38905	38924	38943	38962	38981	39000
STATION TYPE: RIVER		*=INTERIM TEST-NAME:		SAMPLE	Q	900115 1327	900219 1200	900319 1245	900417 1130	900522 1330	900618 1310	900716 1340	900820 1305	900917 1317	901015 1330	901119 1305		A			STD DEV	# SAMP IN STATISTICS	% SAMP (*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	0	900115 1327	900219 1200						900820 1305	900917 1317	901015 1330	901119 1305

(CONTD)

STATION ID: 08-0123-002-02

	02 002 1260	76.603											
STATION ID: 08-0123-002-02	STORET CODE:	DISTANCE:											
ATION ID:		01					•						
ST		REGION:	RSP		RESIDUE	PARTIC. MG/L	56.6	13.7		3.5		9	45
	ES N IVER	886625.0 4	PSAMF	PSEUDOMN	AERUG.	/100ML	8	9		4		2	20
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0487675.0 4886625.0 4	PPUT		UNF. TOT.	MG/L AS P	0.028	0.015	0.014	0.008	0.007	10	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PPO4UR		PO4 UNF.REAC	MG/L AS P	0.007	0.005		0.002		9	45
	z	99.41 60	Н			Н	8.37	8.24	8.24	8.08	0.00	11	
	FREET, TOWN OF WALKERION FLOW GAUGE FED O2FCOO2	LONG: 081 09 14.66	NNTKUR	K'DAHL N	TOTAL UNF, REAC	MG/L AS N	0,660	0.477	0.468	0.360	0.101	11	ł
RIVER	REET, TOWN FLOW GAUGE	LAT: 44 08 04.79	NNO3UR		NO3-N UNF. REAC	MG/L AS N	1.700	0,914	0.776	0.150	0.455	11	:
B.O.W./ SITE: SAUGEEN RIVER	SAMPLE POINT: YONGE STREET, TOWN OF WALKERTON STATION TYPE: RIVER FLOW GAUGE FED O2FCOO2	LAT: 4	TEST-NAME:			SAMPLE NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SI	STATION TY		*=INTERIM TEST-NAME:		SAMPIE	DATE HOUR					STD	A CAMP TE	% SAMI

STATION ID: 08-0123-003-02

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: HIGHWAY 4, HANOVER SAUGEEN RIVER STATION TYPE: RIVER D.W./ SITE:

30AID 12 24 100 60AID UNF.TOT. MG/L AS P /100ML FECAL STREPCUS CNT PHOSPHOR 94,627 104 49 39 12 2* 0.012 02 002 1260 PPUT FSMF 24 76 0.017 STORET CODE: DISTANCE: 224 80AID 48 72 40AID 40AID UNF.REAC MG/L AS P P04 FECAL COLIFORM CNT 100ML PP04UR 0.006 0.002 0.001< 40 80 296 FCMF HG/L AS 0 표 DISOLVED OXYGEN 13.0 111.3 111.3 9.0 1.4 8.11 8.05 8.18 8.27 8.33 8.32 8.32 8.35 8.35 13.0 13.0 12.5 12.5 11.5 9.0 10.0 10.0 표 REGION: 01 0.0017<A 0.0005 0.0050<A 0.005<W 0.007<T HG/L 0,0010<T 0,0020<T AS PB 0.005<W 0.005<W COPPER MG/L AS CU 0015<T 0.0011<T 0.0005<W 0,0010<T 0.0010<T 0.0020<T 0.0030<A UNF. TOT. UNF. TOT. 0.0020 0.0180 CUUT 0.0180 0.0030 4 TOTAL UNF.REAC MG/L z UMHO/CM AT 25 C NNTKUR 25C COND25 :ONDUCT. 0496850.0 4888475.0 498.0 484.0 349.0 428.0 472.0 477.0 485.0 4485.0 498.0 452.7 450.5 349.0 45.2 K DAHL 0.440 0.350 0.400 0.390 0.500 0.430 0.430 FERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON UNF.REAC MG/L AS N MG/L AS CL N03-N CLIDUR CHLORIDE UNF. REAC 9.621 0.900 0.900 0.500 0.700 0.300 0.800 0.600 0.600 11.200 7.200 9.200 7.600 9.600 10.400 11.500 9:700 8,600 9.727 U T M: 17 UNF.REAC MG/L AS N TOT.DEM. MG/L AS 0 800 5 DAY NNO2UR N02-N 0.010
0.020
0.020
0.020
0.020
0.010
0.010
0.010
0.010
0.010 0.01< 1.18 0.83 1.09 1.38 1.38 0.20 8005 ALK TOTAL MG/L NH3-N MG/L AS N z TOTAL UNF. REAC AS CACO3 NNHTUR 0.013 0.005 0.013 0.019 LONG: 081 02 21.80 2225.0 2225.0 1151.0 2201.0 1196.0 2234.0 2222.0 2220.0 2230.0 2233.0 234.0 213.5 212.1 151.0 24.3 ALKT PROJECT SUB-PROJ WATER CODE DEG.C FGPR03 **FWTEMP** 1.0 1.0 3.5 3.5 5.0 13.0 22.0 20.0 18.0 0101 0103 0101 0101 0103 0103 0101 0101 1010 LAT: 44 09 05.10 SAMPLE DEPTH M STREAM COND. FWSADP **FWSTRC** 0.30 0.30 99999999999 38849 SAMPLE 38849 38868 38906 38925 38944 38982 SAMPLE 38830 38811 38830 39001 ARITH MEAN 38811 MAXIMUM MINIMUM SAMP IN STATISTICS 58887 GEOM MEAN STD DEV (GEOM *) % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME: 1325 1348 1348 1325 1305 1145 1345 HOUR 1350 1040 1305 1145 1345 1335 1400 HOUR LMT LMT *=INTERIM 900319 900417 900618 900820 900917 901015 YYMMDD 900115 900219 900319 YYMINDD 900219 900716 SAMPLE 300115 900522 SAMPLE DATE DATE **

0.012 0.010 0.013

0.001< 0.005 0.001<

0.005<W

0.011 0.004 0.015 0.007

38906

1335 1325 1348 1348 1325

38944 38963 38982 39001

900917

901015

900820 01110

38887

900522

900417 900618 900716

0.005<W

0.005<W

0.005<W

0.310

M>500°0

0.017

STATION ID: 08-0123-003-02

SAMPLE POINT: HIGHWAY 4, HANOVER STATION TYPE: RIVER SAUGEEN RIVER B.O.W./ SITE:

MAJOR BASIN: GREAT LAKES

MG/L AS P PHOSPHOR UNF. TOT. 94.627 0.028 0.014 PPUT 900.0 1260 STORET CODE: DISTANCE: MG/L AS P P04 PP04UR UNF. REAC 0.006 0.002 45 H 8.24 8.24 8.24 8.05 0.12 PH REGION: 01 MG/L AS PB 0.001<A LEAD UNF. TOT. 0,005<A 0.005<A PBUT 0.007 0.005 U T M: 17 0496850.0 4888475.0 4 AS N MG/L NNTKUR K'DAHL N UNF. REAC 0.490 0.310 0.290 1,350 0,448 TOTAL TERM STREAM: SAUGEEN RIVER MINOR BASIN: LAKE HURON MG/L AS N NNO3UR N03-N UNF. REAC 959.0 0.300 0.900 0.678 AS N MG/L NNO2UR N02-N UNF. REAC 0.020 0.010 7 AS N NH3-N MG/L MG/L 0.0020<T 0.0010<T 0.0010<T 0.0058<A 0.0022<A 0.0127<A NNHTUR UNF. REAC UNF. TOT. AS ZN 0.0014<T 0.0010<T 0,0010<T 0.0010<T TOTAL LAT: 44 09 05.10 LONG: 081 02 21.80 0.0010 0.0440 0.0047 0.0030 0.0440 0,000,0 0.019 0.004 ZNUT 0.011 8 WATER RESIDUE FWTEMP DEG.C PARTIC. MG/L >0.9 5.0< 10.3 22.0 10.5 6.8 1.0 7.8 10.3 10.3 RSP H. CNT **FWSTRC** STREAM PSEUDOMN /100ML >4 > 5 >5 AERUG. COND PSAMF 38982 SAMPLE 38868 38925 38963 38906 MAXIMUM MINIMUM # SAMP IN STATISTICS % SAMP (EXCLUDED) ARITH MEAN GEOM MEAN STD DEV (GEOM *) SAMPLE NUMBER MAXIMUM ARITH MEAN GEOM MEAN MINIMUM 38830 38849 38887 38944 39001 STD DEV (GEOM *) # SAMP IN STATISTICS 38811 % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME: HOUR 1145 1345 1335 1400 1325 1348 900115 1350 1305 HOUR 900219 1040 901119 1325 YYMMDD LMT YYHIIDD LIIT *=INTERIM 901019 900319 900618 900820 716006 900522 900716 SAMPLE 900417 SAMPLE DATE

SIATION ID: 08-0123-004-02	STORET CODE: C
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER
B.O.W./ SITE: TEESWATER RIVER SAMPLE POINT: DOWNSTREAM FROM DAM, WEST OF TEESWATER	RIVER FLOM GAUGE MOE 02FC104
B.O.W./ SITE: SAMPLE POINT: 1	STATION TYPE: I

: 02	1260	99.938	FWSTRC		STREAM COND.	9	9	9	9 4	9 40	9	9	9	9	9							RSP		DECTRIE	PARTIC.	MG/L		2.0<	5.0<					2.0<			
SIATION ID: 08-0123-004-02 STORET CODE:		DISTANCE:	FSMF	STREPCUS	CNT /100ML	æ	4	16	52	60	72		80	104	55	408	85	45	4	***	. 10	PSAMF	PSEUDOMN	AERUG.	CNT	/100ML	>4	4 <	>4	>4	>4	>4	4		₹	>4	
710N 1D: 08-		01	FECAL	COLIFORM	CNT /100ML	36	54	24	112	120	204		68	260	SOAID	8448	133	82	24	* 1	10	PPUT		PHOSPHOR	MG/L	AS P	!	0.030	0.026		0.037	0.051	0.035	0.036	0.063	0.015	
N N		REGION: 01	00	DISOLVED	MG/L AS 0	12.5	13.0	13.0	12.5	0.6	14.0	10.5	11.0	10.0	12.5	14.0	11.8	11.7	0.6	1.5	1	PP04UR		HINE DEAC	MG/L	AS P			0.014		0.008		0.022	0.033	0.022	0.001<	
S	IVER	871625.0 4	COND25	CONDUCT.	UMHO/CM AT 25 C	578.0	562.0	505.0	521.0	537.0	530.0	542.0	553.0	0.809	0.009	0.809	551.7	550.9	505.0	52.5	=	H				PH	8.06	8.05	8.05	8.10	8.15	8.12	8.54	8.22	0.12	8.22	
: GREAT LAKES : LAKE HURON		U T M: 17 0475450.0 4871625.0 4	CLIDUR	CHLORIDE UNF.REAC	MG/L AS CL	10.500	12.300	9.800	10.300	10.600	10.800	11.500	11.500	13.000	12.100	13.000	11.136	11.095	9.800	1.019		NNTKUR	K'DAHL N	INE DEAC	MG/L	AS N		0.520	0.670	0.620	0.820	0.560	0.520	0.5/0	0.000	0.570	
MAJOR BASIN: MINOR BASIN:	TERM STREAM	U T M: 17	8005	5 DAY TOT.DEM.	MG/L AS 0	0.25	09.0	0.98	0.59	0.70	69.0		0.79	0.79	0.20	0.98	0.60	0.54	0.20	62.0	10	NNO3UR	14 5-014	INF REAC	MG/L	AS N			4.600		4.200	2.800	2.600	2.300	0000	3.900	
EESWATER		18 22.31	ALKT	TOTAL	MG/L AS CACO3	246.0	246.0	218.0	255.0	247.0	251.0	239.0	262.0	270.0	278.0	278.0	248.9	248.4	218.0	10.0	=	NNO2UR	14 0014	INF BEAC	MG/L	AS N			0.040	1	0.050	0.080	0.040	0.010	0.030	0.020	
ER KIVEK EAM FROM DAM, WEST OF T FLOW GAUGE MOE 02FC104		LONG: 081 18 22.31	FGPROJ	PROJECT	SUB-PROJ CODE	1010	0101	0101	0101	0101	0101	0101	1010	0101	0101							NNHTUR	NH3-N	INF BEAC	MG/L	AS N			0.018		0.004	0.001	0.013	0.015	0.000	0.001<	
K KIVEK MM FROM DAM LOW GAUGE		LAT: 43 59 57.50	FWSADP	SAMPLE	DEPTH М	0.30	0.30	0.30	0.50	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.50	*	=	FWTEMP		WATER	TEMP	DEG.C	1.0	0.1	3.0	9.0	12.0	17.0	17.0	0.0	10.0	3.0	
: DOWNSTREAM FROM : RIVER FLOW GA		LAT: 43	TEST-NAME:		SAMPLE	38801	38820	38839	28877	38896	38915	38934	38953	38972	38991	MAXIMUM	ARITH MEAN	GEOM MEAN	MUMINIM	SID DEV (GEOM *)	X SAMP (EXCLUDED)	TEST-NAME:			SAMPLE	NUMBER	38801	38820	38839	38858	78887	20075	20015	70057	28972	38991	
B.O.W., SIIE: IEESWAIEK KIYEK SAMPLE POINT: DOWNSTREAM FROM DAM, WEST OF TEESWATER STATION TYPE: RIVER FLOW GAUGE MOE O2FC104			*=INTERIM TE	ш	YYMMDD LMT			900319 0910	_						901119 0915		M .		ATO OTO		# SAMP IN STALLSTICS % SAMP (EXCLUDED)	*=INTERIM TE		SAMPLE	DATE HOUR	YYMMDD LMT		_	_	_	900522 0915	900016 0925			_		

	02 002 1260	99.938	RSP		RESIDUE	PARTIC.	MG/L							
STATION ID: 08-0123-004-02	STORET CODE:	DISTANCE:	PSEUDOMN	AERUG.	MF	CNT	/100ML	4	4		4			88
ATION ID: 08		01	PPUT	PHOSPHOR	UNF. TOT.	MG/L	AS P	0.063	0.036	0.034	0.015	0.014	6	
ST		REGION: 01	PP04UR	P04	UNF. REAC	MG/L	AS P	0.033	0.020		0.008		5	16
	ES N IVER	871625.0 4	ЬН				ЬН	8.34	8.15	8.15	8.05	0.09	11	
	IAJOR BASIN: GREAT LAKES IINOR BASIN: LAKE HURON ERM STREAM: SAUGEEN RIVER	U T M: 17 0475450.0 4871625.0 4	NNTKUR K'DAHL N	TOTAL	UNF. REAC	MG/L	AS N	0.820	0.579	0.569	0.370	0.116	10	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIV	U T M: 17	NNO3UR	N03-N	UNF . REAC	MG/L	AS N	4.600	3.271	3,161	2.300	0.934	7	
FESWATED		18 22,31	NNO2UR	N02-N	UNF. REAC	MG/L	AS N	0.080	0.039	0.033	0.010	0.023	7	
TEESWATER RIVER	FLOW GAUGE MOE 02FC104	LONG: 081 18 22.31	NNHTUR NHX-N	TOTAL	UNF. REAC	MG/L	AS N	0,028	0.016		0.004		127	28
RIVER M EDOM DAM	LOW GAUGE	LAT: 43 59 57,50	FWTEMP		WATER	TEMP	DEG.C	20.0	9.3	6.2	1.0	6.7	11	
		LAT: 43	TEST-NAME:			SAMPLE	_	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE:	STATION TY		*=INTERIM		SAMPLE	DATE HOUR						STD D	# SAMP IN	% SAMP

STATION ID: 08-0123-005-02

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: HIGHWAY 4, TOWN OF DURHAM O.W./ SITE: SAUGEEN RIVER

FLOW GAUGE FED 02FC014 STATION TYPE: RIVER

10AID CNT /100ML MG/L AS P STREPCUS PHOSPHOR DISTANCE: 125.847 FECAL 60 31 26 10 2* JNF. TOT. 0.009 0.010 FSMF 0.011 0.009 1260 36 16 16 40 60 60 20 48 PPUT STORET CODE: SOAID MG/L AS P FECAL P04 COLIFORM CNT PP04UR JNF . REAC /100ML 3* 0.001< 0.001< 0.005 80 180 52 37 0.005 FCMF 4 28 28 28 28 36 0.005 MG/L AS 0 품 DISOLVED OXYGEN 112.0 113.5 112.0 112.0 112.0 9.0 9.0 9.5 9.5 13.5 11.0 10.8 8.0 1.8 8.05 8.02 8.23 8.23 8.24 8.41 8.31 8.31 돐 REGION: 01 0.0006<T 0.0011<T 0.0005 0.0047<A UNF.TOT. MG/L AS PB 0.005<W LEAD AS CU 0.0028<A 0.0015<A 0.005<W W>500.0 0.005<W 0.005<W M>500 0.0005<W 0.0020<T 0.005<W D.007<T 0.005<W COPPER HG/L 0.0010<T 0.0010<T 0.0020<T 0.0010<T UNF. TOT 0.0160 0.0030 0.0160 PBUT CUUT U T M: 17 0512950.0 4891650.0 4 NNTKUR K'DAHL N MG/L AS N 250 UMHO/CH UNF . REAC COND25 AT 25 C CONDUCT 311.0 380.0 368.0 435.0 464.0 464.0 463.0 423.0 464.0 419.6 416.9 311.0 47.7 443.0 TOTAL 0.450 0.370 0.480 0.490 0.410 570 TERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS N AS CL UNF . REAC MG/L N-3-N JNF. REAC CLIDUR CHLORIDE NNOSUR 0.400 0.400 8.800 7.200 8.900 13.800 14.300 9.910 6.700 0.400 0.400 8.400 8.300 10.255 6.700 0.10014.300 MG/L AS N 5 DAY MG/L AS 0 BOD NO2-N UNF . REAC NNOZUR 0.010< 0.010 0.010 0.010< 0.020 0.020 TOT DEM. 0.54 1.58 0.88 0.84 0.45 0.89 0.79 0.010 0.010 1.58 8005 TOTAL MG/L NH3-N MG/L NNHTUR UNF. REAC CACOS TOTAL 0.001< LONG: 080 50 16.77 209.0 198.0 135.0 179.0 184.0 221.0 221.0 223.0 231.0 AS 231.0 202.1 200.1 135.0 27.5 900.0 0.029 0.013 0.014 0.022 0.006 0.006 ALKT 0.008 AS A TEMP FGPR0J SUB-PROJ CODE FWTEMP MATER DEG.C PROJECT 1.0 1.0 5.0 6.0 12.0 19.0 19.0 9.0 9.0 0103 0103 0101 0101 0101 1010 0101 LAT: 44 10 47.62 SAMPLE STREAM FWSTRC COND. FWSADP 0.30 0.30 11 9999 SAMPLE 38851 38889 38908 38965 38889 38927 38946 38984 ARITH MEAN GEOM MEAN 38813 38832 38927 38946 38984 SAMPLE NUMBER 38813 38851 38870 38965 39003 MAXIMUM MINIMUM # SAMP IN STATISTICS 59003 38832 STD DEV (GEOM *) % SAMP (EXCLUDED TEST-NAME: *=INTERIM TEST-NAME: 0829 0810 0940 0829 0748 0810 0815 0940 0745 0820 0825 0820 0825 0805 HOUR 0805 0820 **УУМИВВ LMT** LMT *=INTERIM YYMMDD 901016 900619 900820 901016 901120 900116 900219 900320 900418 900523 900619 900716 900820 900918 900116 900219 900320 900418 900523 900716 900918 SAMPLE SAMPLE DATE

	: 02 002 1260	125.847	PPUT	UNF.TOT. MG/L AS P	0.011 0.010 0.010 0.008 0.001		
STATION ID: 08-0123-005-02	STORET CODE: 02 003 120	DISTANCE: 125.847	PP04UR	PO4 UNF.REAC MG/L AS P	0.005 0.005 0.005 4		
ION ID: 08-		1	н	Н	8.41 8.21 8.21 7.99 0.14		
STAT		REGION: 01	PBUT	LEAD UNF.TOT. MG/L AS PB	0.007 0.005 <a 0.005<a 0.005</a </a 		
	is IVER	91650.0 4	NNTKUR K*DAHL N	TOTAL UNF.REAC MG/L AS N	0.570 0.467 0.463 0.370 0.068		
	GREAT LAKE LAKE HURON SAUGEEN RI	U T M: 17 0512950.0 4891650.0 4	NNOSUR	NO3-N UNF.REAC MG/L AS N	0.400 0.322 0.100 0.100		
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: SAUGEEN RIVER	U T M: 17 0	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.020 0.014 0.010		
		50 16.77	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.029 0.012 0.001	ZINC ZINC MS_1C AS_ZN AS_ZN 0.0012 0.0180 0.0012 0.0012 0.002 0.002 0.0030 0.0030 0.0010 0.0030 0.0010 0.0220 0.0010 0.0030 0.0010 0.0320 0.0010 0.0030 0.0010 0.0030 0.0030 0.0030 0.0030 0.0320 0.0030 0.0030 0.0030 0.0330 0.0030 0.0030 0.0330 0.0030 0.0030 0.0330 0.0030 0.0030 0.0330 0.0030 0.0030 0.01037 0.0010 0.0030 0.01037 0.0010 0.0030 0.0010 0.0010	0.1
HDRAM	FLOW GAUGE FED 02FC014	LAT: 44 10 47.62 LONG: 080 50 16.77	FWTEMP	WATER TEMP DEG.C	20.0 9.0 5.8 1.0 7.0	RESIDUE PARTIC. HG/L 5.0<	
IVER TOWN OF P	LOW GAUGE F	10 47.62	FWSTRC	STREAM COND.		PSAMF PSEUDONN AERUG. CNT / 100ML 4 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 <	
: SAUGEEN R	RIVER F	LAT: 44	ST-NAME:	SAMPLE	MAXIMUM ARITH MEAN GEOW HEAN MINIMUM SYD DEV (GEON *) ANP IN SYTISS	医食 医克里马奇姓氏哈德森拉 医斑点斑形成	% SAMP (EXCLUDED)
B.O.W./ SITE: SAUGEEN RIVER	STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LHT	HAXINUM ARITH MEAN GEON HEAN HINIHUM STD DEV (GEOH *) X SANP (EXCLUDED)	*=INTERIM TEST-MAME: SAMPLE DATE HOUR SAMPLE 900116 0820 38813 900219 0820 38852 900529 0820 38859 900520 0820 38869 900530 0810 38869 900530 0810 38869 900530 0810 38869 9001016 0746 38964 901010 0748 38964 901120 0746 488784 MAXIMUM ARITH MAM REAL STD DEV (GEOM #AB GEOM HEAM GEOM HEAM GEOM HEAM REAL STD DEV (GEOM #AB HEAL STD STD STD STD STD STD STD HEAL STD STD STD STD STD HEAL STD STD STD HEAL STD	% SAMP (

1990 WATER QUALITY DATA REGION 1

	1260	143.389	CRUT	CHROMIUM	MG/L	AS CR	0.0019 <t< th=""><th>0.0031</th><th>0.0021×1</th><th>0.0005<w< th=""><th>0.0005<w< th=""><th></th><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0031</th><th>0.0011<a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></t<>	0.0031	0.0021×1	0.0005 <w< th=""><th>0.0005<w< th=""><th></th><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0031</th><th>0.0011<a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	0.0005 <w< th=""><th></th><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0031</th><th>0.0011<a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<></th></w<>		0.0005 <w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0031</th><th>0.0011<a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<>	0.0005 <w< th=""><th>0.0005<w< th=""><th>0.0005<w< th=""><th>0.0031</th><th>0.0011<a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<></th></w<></th></w<></th></w<>	0.0005 <w< th=""><th>0.0005<w< th=""><th>0.0031</th><th>0.0011<a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<></th></w<></th></w<>	0.0005 <w< th=""><th>0.0031</th><th>0.0011<a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<></th></w<>	0.0031	0.0011 <a< th=""><th>0.0008<a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<></th></a<>	0.0008 <a< th=""><th>0.0005</th><th>0.0010<a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<></th></a<>	0.0005	0.0010 <a< th=""><th>_</th><th>NNOSUR</th><th></th><th>N02-N</th><th>UNF. REAC</th><th>MG/L AS N</th><th>0.010<</th><th>0.020</th><th>0.010</th><th>0.010</th><th>0.010</th><th>0.020</th><th>0.010</th><th>0.010<</th><th>0.020</th><th>0.010<</th><th>\0.010.U</th></a<>	_	NNOSUR		N02-N	UNF. REAC	MG/L AS N	0.010<	0.020	0.010	0.010	0.010	0.020	0.010	0.010<	0.020	0.010<	\0.010.U
-0123-006-02 STORET CODE:		DISTANCE: 143.389	COND25	CONDUCT. C		AT 25 C		528.0								501.0					4	11 10	NNHTUR	NH3-N		_	MG/L AS N	0.014	0.005	0.008	0.014	0.016	0.028	0.017	0.016	0.00	0.015	0.004
STATION ID: 08-0123-006-02 STORET CODE		10	CLIDUR	CHLORIDE	MG/L	AS CL	10.200	000	9.200	10,600	10.300	11.500	11.400	11.000	10.300	10.600	11.900	10.591	10.560	000.6	0.837	=	NIUT		NICKEL	UNF. TOT.	MG/L AS NI	0.002 <w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td></td><td>0.003<t< td=""><td>0.003<t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.002<w< td=""><td>0.002<w< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td></td><td>0.003<t< td=""><td>0.003<t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<></td></w<>	0.002 <w< td=""><td>0.002<w< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td></td><td>0.003<t< td=""><td>0.003<t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<>	0.002 <w< td=""><td>0.005<t< td=""><td>0.004<t< td=""><td></td><td>0.003<t< td=""><td>0.003<t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<></td></t<></td></t<></td></t<></td></w<>	0.005 <t< td=""><td>0.004<t< td=""><td></td><td>0.003<t< td=""><td>0.003<t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<></td></t<></td></t<></td></t<>	0.004 <t< td=""><td></td><td>0.003<t< td=""><td>0.003<t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<></td></t<></td></t<>		0.003 <t< td=""><td>0.003<t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<></td></t<>	0.003 <t< td=""><td>0.003<t< td=""><td>1,100.0</td></t<></td></t<>	0.003 <t< td=""><td>1,100.0</td></t<>	1,100.0
STA		REGION: 01	CDUT	CADMIUM	MG/L	AS CD	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td></td><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td></td><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td></td><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td></td><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td></td><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>		0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002<w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<></td></w<>	0.0002 <w< td=""><td>0.0002</td><td>0.0002<a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<></td></w<>	0.0002	0.0002 <a< td=""><td>0.0002<a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<></td></a<>	0.0002 <a< td=""><td>0.0002</td><td>0.0000<a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<></td></a<>	0.0002	0.0000 <a< td=""><td>10</td><td>FWTEMP</td><td></td><td></td><td>WATER</td><td>DEG.C</td><td>0.5</td><td>1.0</td><td>1.0</td><td>4.0</td><td>11.0</td><td>17.0</td><td>18.0</td><td>15.0</td><td>9.0</td><td>D C</td><td></td></a<>	10	FWTEMP			WATER	DEG.C	0.5	1.0	1.0	4.0	11.0	17.0	18.0	15.0	9.0	D C	
S	IVER	905475.0 4	CCNAUR	AVAIL AVAIL	MG/L	AS HCN	0.001 <w< td=""><td>0.001/W</td><td>0.002<t< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<></td></w<>	0.001/W	0.002 <t< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></t<>	0.001 <w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>		0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<></td></w<>	0.001 <w< td=""><td>0.002</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<></td></w<>	0.002	0.001 <a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<></td></a<>	0.001 <a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<></td></a<>	0.001	0.000 <a< td=""><td>10</td><td>FWSTRC</td><td></td><td></td><td></td><td>COND.</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9 ,</td><td>9</td><td>پ و</td><td>•</td></a<>	10	FWSTRC				COND.	9	9	9	9	9	9	9	9 ,	9	پ و	•
GREAT LAK	SAUGEEN R	U T M: 17 0526700.0 4905475.0 4	8005	5 DAY	MG/L	AS 0	0.01<	0.69	0.01	0.89	0.84	0.98		1.86	0.98	0.69	1.86	0.87		0.01	,	11	FSMF	FECAL	STREPCUS	AF.	/100ML	10<	>5	12	16	48	09	16		120	16	?
HAJOR BASIN: GREAT LAKES MYND RASIN: IAKE HIDON	TERM STREAM: SAUGEEN RIVER	U T M: 17	ASUT	ARSENIC INF TOT	MG/L	AS AS	0.001 <w< td=""><td>0.001/W</td><td>0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001/W	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td></td><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>		0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	0.001 <w< td=""><td>0.001<w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<></td></w<>	0.001 <w< td=""><td>0.001</td><td>0.001<a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<></td></w<>	0.001	0.001 <a< td=""><td>0.001<a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<></td></a<>	0.001 <a< td=""><td>0.001</td><td>0.000<a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<></td></a<>	0.001	0.000 <a< td=""><td>10</td><td>FEUT</td><td></td><td>IRON</td><td>UNF.TOT.</td><td>AS FE</td><td>0.030<t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></a<>	10	FEUT		IRON	UNF.TOT.	AS FE	0.030 <t< td=""><td>0.020<w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<>	0.020 <w< td=""><td>0.022<t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></w<>	0.022 <t< td=""><td>0.032<t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	0.032 <t< td=""><td>0.058<t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<></td></t<>	0.058 <t< td=""><td>0.050<t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<></td></t<>	0.050 <t< td=""><td>1</td><td>0.040<t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<></td></t<>	1	0.040 <t< td=""><td>0.050<1</td><td>0.040<1</td><td></td></t<>	0.050<1	0.040<1	
		39 54.97	ALKT	ALK	MG/L	AS CACO3	256.0	216.0	240.0	234.0	266.0	263.0	186.0	272.0	249.0	251.0	272.0	244.5	243.3	186.0	25.1	=	FCMF	FECAL	COLIFORM	¥	/100ML	80AID	28	4	36	55	132	25	***	156	107	<u> </u>
ROCKY SAUGEEN RIVER AT CONCESSION ROAD SOUTHWEST OF MARKDALE RIVER FLOW GAUGE FED 02FC005		LONG: 080 39 54.97	FGPR0J	DD0 1ECT	SUB-PROJ	CODE	0101	0103	0101	0101	0101	0101	0103	0101	0101	1010							00		DISOLVED	OXYGEN	AS O	11.0	12.0	13.0	12.5	11.0	8.0	0.0	0.6	0.01	11.5	
ROCKY SAUGEEN RIVER AT CONCESSION ROAD S RIVER FLOW GAUGE		LAT: 44 18 14.36	FWSADP	PIOMPO	DEPTH	Σ	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	1	0.30	į	11	CUUT		COPPER	UNF. TOT.	AS CU	0.0005 <w< td=""><td>0.0013<t< td=""><td>0.0005<w< td=""><td>0.0008<t< td=""><td>0.0010<t< td=""><td>0,0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<1</td><td>0.0020</td><td></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<></td></w<>	0.0013 <t< td=""><td>0.0005<w< td=""><td>0.0008<t< td=""><td>0.0010<t< td=""><td>0,0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<1</td><td>0.0020</td><td></td></t<></td></t<></td></t<></td></t<></td></w<></td></t<>	0.0005 <w< td=""><td>0.0008<t< td=""><td>0.0010<t< td=""><td>0,0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<1</td><td>0.0020</td><td></td></t<></td></t<></td></t<></td></t<></td></w<>	0.0008 <t< td=""><td>0.0010<t< td=""><td>0,0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<1</td><td>0.0020</td><td></td></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0,0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<1</td><td>0.0020</td><td></td></t<></td></t<></td></t<>	0,0010 <t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<1</td><td>0.0020</td><td></td></t<></td></t<>		0.0020 <t< td=""><td>0.0020<1</td><td>0.0020</td><td></td></t<>	0.0020<1	0.0020	
		LAT: 44	ST-NAME:		SAMPLE	NUMBER	38815	28852	38872	38891	38910	38929	38948	38967	38986	39005	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMOM	STD DEV (GEOM *)	X SAMP (EXCLUDED)	ST-NAME:			-	NUMBER	38815	38834	38853	38872	38891	38910	38929	38948	20005	39005	
B.O.W./ SITE: SAMPLE POINT: STATION TYPE:			*=INTERIM TEST-NAME:	CAMBIE	DATE HOUR	УУМИВВ СИТ	900116 0918		-	_		_			901016 0850	7480 UZIIU6		•			STD DEV	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		1	ш	YYMMDD LMT	900116 0918	900220 0925	_	_				900820 1051	900916 0645		

STATION ID: 08-0123-006-02

B.O.W./ SITE:

DATAILA 500×W DATAILA NO DATAILA 3 × X M>005 500×W 500×W 500×W 500×W 500 500<A 500<A X X X SKE 5 5 A A M>009 B00<W 3 3 3 NG/L M>005 0<A NG/L TOXAPHEN DISTANCE: 143.389 ENDOSULP P1END2 PITOX 1260 2 STORET CODE: DATALLA N>S M × S H>S N×S N×S N×S 5<A 2<W S<W 2<H 2 KM 2 < A 2×A PP-DDT NG/L N×S 2 < W 2<W P1END1 ENDOSULP NG/L PIPPDT 2 9 DATAILA NO DATAILA 3 3 3 X>1 N N MV. XV. M×1 I < A 1<A A>0 5 A A 0<A **3** S<W ¥>5 B<W M>S 2×W FNDOSULP SKE PIPPDE PP-DDE PLENDS SULPHATE 2 REGION: 01 NO DATA LA DATAILA S<W N X 5 A Y 2×1 2×K 2×E 3×8 2×1 2<# 5<A 5×A N S S<W 5×W B<W 5×W ртрррр NG/L PLENDR ENDRIN QQQ-dc NG/L 2 DATAILA DATAILA 20<A 20 0<A 8 U T M: 17 0526700.0 4905475.0 4 20<W NY S B<W S < K 5 × A 20 < W 20<W 20×W 20<W 20<W 20 20<A 5 < A TOTAL 20<W MTHXYLLR P1PCBT NG/L DMDT P1DMDT TERM STREAM: SAUGEEN RIVER 2 웆 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON DATALLA DATALLA 3333 3 3 3 3 S 5 × A 5 < A 2 < W 2 < W 2<W 2<W 2 × W 2 < A 0 < A X × X 2×W DIELDRIN Ploppt OP-DDT NG/L PIDIEL DATA LA NO 2 DATAILA 2<W 2×W 2<1 2 × E 2<A 2 < A 2<W 2 < W 2<W 2<W 2 < W 2 < A 2 < A 2 < W N×2 N>Z PICHLG GAMMA PIOCHL NG/L NG/L OXCHLANE CHLRDANE 욷 DATA LA NO DATALLA ROCKY SAUGEEN RIVER AT CONCESSION ROAD SOUTHWEST OF MARKDALE S<W 2×W 5<W 5 < A 5<A 0<A 2×K S<F 5×W 2 < K Z VE 2<F 2 × K 2 < A S<W S<W ALPHA NG/L 2 × W PIMIRX 11REX PICHLA CHLRDANE LAT: 44 18 14.36 LONG: 080 39 54.97 2 2 FLOW GAUGE FED 02FC005 DATAILA DATALLA 3 3 3 1 × E 3 3 M>1 ₹ ₹ 1 < A 1 < A GAMMA I < K 3 **3** ∨ 1 ¥>1 3 1 < F 1<A 1<A 1 < W PIBHCG PIHEPT HEPACHOR NG/L BHC NG/L 9 2 DATALLA DATAILA **₹** ¥ 3 3 3 I < A A>0 X>1 ¥. I < K 1<W 1 × F 1 < A 3 3 X V V BETA NG/L **X**∨ ₹ ∨ 3 **X** ∨ PIHEPE NG/L P1BHCB BHC EPOXIDE HEPTA CHLOR 2 38948 NO 38948 38910 38986 NUMBER 38853 38872 38967 SAMP IN STATISTICS % SAMP (EXCLUDED) SAMPLE 39005 38834 38891 38986 GEOM MEAN 38815 38834 38853 38872 38891 38967 ARITH MEAN GEOM MEAN SAMP IN STATISTICS SAMPLE 38910 39005 MAXIMUM ARITH MEAN MINIMUM STD DEV (GEOM *) MAXIMUM MINIMUM STD DEV (GEOM *) 38815 % SAMP (EXCLUDED) TEST-NAME: K=INTERIM TEST-NAME: RIVER SAMPLE POINT: STATION TYPE: 0880 0918 0920 0925 0920 0845 HOUR 0925 0845 0920 0920 900523 0920 900820 1051 901016 0850 HOUR 0925 0925 1051 LMT FM *=INTERIM 900116 900320 900418 900220 901120 YYMMDD 900320 900619 900820 900918 901016 901120 YYMMDD 900018 900116 900220 900418 900523 SAMPLE SAMPLE DATE #

STATION ID: 08-0123-006-02

1990 MATER QUALITY DATA REC B.O.W./ SITE: ROCKY SAUGEEN RIVER SAMPLE POINT: AT CONCESSION ROAD SOUTHWEST OF MARKDALE

STATION TYPE: RIVER	AT CONCE:	AT CONCESSION ROAD SOUTHWEST OF MARKDALE RIVER FLOW GAUGE FED 02FC005	SOUTHWEST OFED 02FC005	F MARKDALE	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	GREAT LAKE LAKE HUROF SAUGEEN R	IVER			STORET CODE:	: 02 002 1260
	LAT: 4	LAT: 44 18 14.36	LONG: 080 39 54.97	39 54.97	U T M: 17 (U T M: 17 0526700.0 4905475.0 4	905475.0 4	REGION: 01	01	DISTANCE: 143.389	143.389
*=INTERIM TEST-NAME:	T-NAME:	RSP	TURB	X1HCBD	XIHCCP	X2HCB	X2HCE	X20CST	XZPNCB	X2T236 2,3,6	X2T245 2,4,5
SAMPLE DATE HOUR YYMMDD LMT	SAMPLE	RESIDUE PARTIC. MG/L	TURB'ITY FTU	HXCHLORO BUTADINE NG/L	ROCYCLOP ENTADIEN NG/L	HCB NG/L	HCE NG/L	OCTCHLOR STYRENE NG/L	CHLORO BENZENE NG/L		TRCHLORO TOLUENE NG/L
	38815	5.0<	1.02	1 <w< td=""><td></td><td>1<w< td=""><td>1 < W</td><td>1 < W</td><td>100</td><td>77 TO 10</td><td>34 3</td></w<></td></w<>		1 <w< td=""><td>1 < W</td><td>1 < W</td><td>100</td><td>77 TO 10</td><td>34 3</td></w<>	1 < W	1 < W	100	77 TO 10	34 3
900220 0925	38834	,0°		X 7		1 × 2	3 7	X 3 V	M V	35	13. V VI
900520 0920	38855	, n		M>1		1 < 1	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 < K</td><td>5<w< td=""></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>3 < K</td><td>5<w< td=""></w<></td></w<></td></w<>	1 <w< td=""><td>3 < K</td><td>5<w< td=""></w<></td></w<>	3 < K	5 <w< td=""></w<>
	38891	5.6		1 <w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>1<1</td><td>1 < W</td><td>34 > 51</td><td>34 5</td></w<></td></w<></td></w<>		1 <w< td=""><td>1<w< td=""><td>1<1</td><td>1 < W</td><td>34 > 51</td><td>34 5</td></w<></td></w<>	1 <w< td=""><td>1<1</td><td>1 < W</td><td>34 > 51</td><td>34 5</td></w<>	1<1	1 < W	34 > 51	34 5
	38910	5.2		1 < W		1<¥	1<1	1 <w< td=""><td>I < W</td><td>N>5</td><td>N>C</td></w<>	I < W	N>5	N>C
900716 0900	38929	, 0°, 1°,		NO DATAILA		NO DATALLA	NO DATALLA	NO DATAILA	NO DATAILA	NO DATAILA NO DATAILA NO DATAILA NO DATAILA NO DATAILA	O DATALLA
	38967	4.7		1 <w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>2<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>		1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>2<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>2<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>2<w< td=""></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>2<w< td=""></w<></td></w<></td></w<>	5 <w< td=""><td>2<w< td=""></w<></td></w<>	2 <w< td=""></w<>
	38986	3.4	1.18	1 <w< td=""><td>2<k< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>2<f< td=""><td>1 × 1</td></f<></td></w<></td></w<></td></w<></td></k<></td></w<>	2 <k< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>2<f< td=""><td>1 × 1</td></f<></td></w<></td></w<></td></w<></td></k<>	1 <w< td=""><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>2<f< td=""><td>1 × 1</td></f<></td></w<></td></w<></td></w<>	1 < W	1 <w< td=""><td>1<w< td=""><td>2<f< td=""><td>1 × 1</td></f<></td></w<></td></w<>	1 <w< td=""><td>2<f< td=""><td>1 × 1</td></f<></td></w<>	2 <f< td=""><td>1 × 1</td></f<>	1 × 1
	39005			1 <w< td=""><td>5<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>5 < N</td><td>5<14</td></w<></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>5 < N</td><td>5<14</td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td>5 < N</td><td>5<14</td></w<></td></w<></td></w<>	1 <w< td=""><td>1 < W</td><td>1<w< td=""><td>5 < N</td><td>5<14</td></w<></td></w<>	1 < W	1 <w< td=""><td>5 < N</td><td>5<14</td></w<>	5 < N	5<14
	MAYTMIM	r,	1.18	1	ru	1	1	1	1	ĸ	ស
4	ADTTH MEAN	7.5	1.10	1 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<>	5 <a< td=""><td>5<a< td=""></a<></td></a<>	5 <a< td=""></a<>
	GEON MEAN		1.10	1 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<>	5 <a< td=""><td>5<a< td=""></a<></td></a<>	5 <a< td=""></a<>
	MINIMUM	3.4	1.02	1	J.	1	7	1	-	LO !	2
STD DEV	STD DEV (GEOM *)		0.11	0 <a< td=""><td>0<a< td=""><td>0×A</td><td>0<a< td=""><td>0<a< td=""><td>0<a< td=""><td>0<a< td=""><td>0 < A</td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	0 <a< td=""><td>0×A</td><td>0<a< td=""><td>0<a< td=""><td>0<a< td=""><td>0<a< td=""><td>0 < A</td></a<></td></a<></td></a<></td></a<></td></a<>	0×A	0 <a< td=""><td>0<a< td=""><td>0<a< td=""><td>0<a< td=""><td>0 < A</td></a<></td></a<></td></a<></td></a<>	0 <a< td=""><td>0<a< td=""><td>0<a< td=""><td>0 < A</td></a<></td></a<></td></a<>	0 <a< td=""><td>0<a< td=""><td>0 < A</td></a<></td></a<>	0 <a< td=""><td>0 < A</td></a<>	0 < A
# SAMP IN STATISTICS % SAMP (EXCLUDED)	(XCLUDED)	60	2	6	2	\$	D.	6	T.	7	
*=INTERIM TES	TEST-NAME:	X2T26A	X2123	X21234	X21235	X2124	X21245	X2135	ZNUT		
		2,6,A	1,2,3	1,2,3,4	1,2,3,5	1,2,4	1,2,4,5	1,3,5	ZINC INSE TOT		
ш		TRCHLORO	TRCHLORO	ECHLORO	PERHEURO	BENZENE	DENIZENE	BENZENE	MG/I		
YYMMDD LHT	SAMPLE	TOLUENE NG/L	NG/L	NG/L	NG/L NG/L	NG/L NG/L	NG/L	NG/L	AS ZN		
900116 0918	38815	5 <k< td=""><td>S < K</td><td>1<w< td=""><td>1 < W</td><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0027</td><td></td><td></td></w<></td></w<></td></w<></td></w<></td></k<>	S < K	1 <w< td=""><td>1 < W</td><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0027</td><td></td><td></td></w<></td></w<></td></w<></td></w<>	1 < W	5 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0027</td><td></td><td></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>0.0027</td><td></td><td></td></w<></td></w<>	5 <w< td=""><td>0.0027</td><td></td><td></td></w<>	0.0027		
900220 0925	38834	5 <w< td=""><td>5<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3<k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0029</td><td></td><td></td></w<></td></w<></td></k<></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>3<k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0029</td><td></td><td></td></w<></td></w<></td></k<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>3<k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0029</td><td></td><td></td></w<></td></w<></td></k<></td></w<></td></w<>	1 <w< td=""><td>3<k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0029</td><td></td><td></td></w<></td></w<></td></k<></td></w<>	3 <k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0029</td><td></td><td></td></w<></td></w<></td></k<>	1 <w< td=""><td>2<w< td=""><td>0.0029</td><td></td><td></td></w<></td></w<>	2 <w< td=""><td>0.0029</td><td></td><td></td></w<>	0.0029		
	38853	5 <w< td=""><td>N>5</td><td>1<w< td=""><td>1<w< td=""><td>2<w< td=""><td>1<w< td=""><td>2<k< td=""><td>0.0034</td><td></td><td></td></k<></td></w<></td></w<></td></w<></td></w<></td></w<>	N>5	1 <w< td=""><td>1<w< td=""><td>2<w< td=""><td>1<w< td=""><td>2<k< td=""><td>0.0034</td><td></td><td></td></k<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>2<w< td=""><td>1<w< td=""><td>2<k< td=""><td>0.0034</td><td></td><td></td></k<></td></w<></td></w<></td></w<>	2 <w< td=""><td>1<w< td=""><td>2<k< td=""><td>0.0034</td><td></td><td></td></k<></td></w<></td></w<>	1 <w< td=""><td>2<k< td=""><td>0.0034</td><td></td><td></td></k<></td></w<>	2 <k< td=""><td>0.0034</td><td></td><td></td></k<>	0.0034		
900418 0925	38872	5 <w< td=""><td>5×K</td><td>1<w< td=""><td>1<w< td=""><td>S<e< td=""><td>1<w< td=""><td>2×E</td><td>0.0016<t< td=""><td></td><td></td></t<></td></w<></td></e<></td></w<></td></w<></td></w<>	5×K	1 <w< td=""><td>1<w< td=""><td>S<e< td=""><td>1<w< td=""><td>2×E</td><td>0.0016<t< td=""><td></td><td></td></t<></td></w<></td></e<></td></w<></td></w<>	1 <w< td=""><td>S<e< td=""><td>1<w< td=""><td>2×E</td><td>0.0016<t< td=""><td></td><td></td></t<></td></w<></td></e<></td></w<>	S <e< td=""><td>1<w< td=""><td>2×E</td><td>0.0016<t< td=""><td></td><td></td></t<></td></w<></td></e<>	1 <w< td=""><td>2×E</td><td>0.0016<t< td=""><td></td><td></td></t<></td></w<>	2×E	0.0016 <t< td=""><td></td><td></td></t<>		
900523 0920	38891	5 <w< td=""><td>2<k< td=""><td>1<w< td=""><td>1 < W</td><td>3</td><td>1<f< td=""><td>2<w< td=""><td>0.0040</td><td></td><td></td></w<></td></f<></td></w<></td></k<></td></w<>	2 <k< td=""><td>1<w< td=""><td>1 < W</td><td>3</td><td>1<f< td=""><td>2<w< td=""><td>0.0040</td><td></td><td></td></w<></td></f<></td></w<></td></k<>	1 <w< td=""><td>1 < W</td><td>3</td><td>1<f< td=""><td>2<w< td=""><td>0.0040</td><td></td><td></td></w<></td></f<></td></w<>	1 < W	3	1 <f< td=""><td>2<w< td=""><td>0.0040</td><td></td><td></td></w<></td></f<>	2 <w< td=""><td>0.0040</td><td></td><td></td></w<>	0.0040		
900619 0920	38910	5 <w< td=""><td>N>S</td><td>1<w< td=""><td>1<w< td=""><td>2<w< td=""><td>1<w< td=""><td>2<w< td=""><td></td><td></td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	N>S	1 <w< td=""><td>1<w< td=""><td>2<w< td=""><td>1<w< td=""><td>2<w< td=""><td></td><td></td><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>2<w< td=""><td>1<w< td=""><td>2<w< td=""><td></td><td></td><td></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>1<w< td=""><td>2<w< td=""><td></td><td></td><td></td></w<></td></w<></td></w<>	1 <w< td=""><td>2<w< td=""><td></td><td></td><td></td></w<></td></w<>	2 <w< td=""><td></td><td></td><td></td></w<>			
900820 1051	38948	NO DATALLA	NO DATAILA	NO DATALLA	NO DATAILA	NO DATAILA	NO DATAILA	NO DATAILA			
	38967	N > N	2 <k< td=""><td>M>1</td><td>1 × N</td><td>3 3</td><td>X V</td><td>3 2 2</td><td>0.0010<1</td><td></td><td></td></k<>	M>1	1 × N	3 3	X V	3 2 2	0.0010<1		
901016 0850	38986	M>5	200	M>T	M>T	S S	N N	0 10	0.0020<1		
901120 0847	39005	2 < M	M > C	M>T	M>T	N/O	K / 1	r n	0.0000		
	MAXIMUM	5	75	1	1	N	e	5	0.0040		
A	ARITH MEAN	5 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0026<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0026<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0026<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0026<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0026<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>0.0026<a< td=""><td></td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>0.0026<a< td=""><td></td><td></td></a<></td></a<>	0.0026 <a< td=""><td></td><td></td></a<>		
	GEOM MEAN	5 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>1 < A</td><td>S < A</td><td>0.0024<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>1 < A</td><td>S < A</td><td>0.0024<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>1 < A</td><td>S < A</td><td>0.0024<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>1 < A</td><td>S < A</td><td>0.0024<a< td=""><td></td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>1 < A</td><td>S < A</td><td>0.0024<a< td=""><td></td><td></td></a<></td></a<>	1 < A	S < A	0.0024 <a< td=""><td></td><td></td></a<>		
	HIMIMUM	n.	2	-	-	ລີ	-	0 0	0.0000		
STD DEV	STD DEV (GEOM *)	0 <a< td=""><td>0<a< td=""><td>0<a< td=""><td>U<a< td=""><td>0 < A</td><td>W/0</td><td>4/0</td><td>10.000374</td><td></td><td></td></a<></td></a<></td></a<></td></a<>	0 <a< td=""><td>0<a< td=""><td>U<a< td=""><td>0 < A</td><td>W/0</td><td>4/0</td><td>10.000374</td><td></td><td></td></a<></td></a<></td></a<>	0 <a< td=""><td>U<a< td=""><td>0 < A</td><td>W/0</td><td>4/0</td><td>10.000374</td><td></td><td></td></a<></td></a<>	U <a< td=""><td>0 < A</td><td>W/0</td><td>4/0</td><td>10.000374</td><td></td><td></td></a<>	0 < A	W/0	4/0	10.000374		
# SAMP IN STATISTICS	AMP IN STATISTICS	6	6	6	2	T.	6		70		

STATION ID: 08-0123-007-02

B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: AT TOWNSHIP ROAD, DOWNSTREAM OF PAISLEY STATION TYPE: RIVER

STORET CODE: 02 MAJOR BASIN: GREAT LAKES

Figure F						MINOR BASIN: TERM STREAM:	HINDR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	N IVER			126	002 1260
SAMPLE PROJECT ALKT BODE CILIDUR CONDUCT COPPER DISOLVED CILICUR FEB. F		LAT: 44	19 06.74	LONG: 081	16 48.95	U T M: 17	0477650.0 4	907075.0 4	REGION:	10	DISTANCE	
SAMPLE PROJECT TOTALE	ERIM TEST-N	AME:	FWSADP	FGPROJ	ALKT	8005	CLIDUR	COND25	CUUT	DQ	FCMF	FSMF
Column C	L		2000	DDO 1ECT	ALK	5 DAY	CHLORIDE	CONDUCT.	COPPER	DISOLVED	COLIFORM	STREPCUS
National Color Nati	HOUR	AMPLE	DEPTH	SUB-PROJ	MG/L	MG/L	MG/L	UMHO/CM	MG/L	UXYGEN MG/L	CNT	CNT
Column C	LMT	UMBER	Σ	CODE	AS CACO3	AS 0	AS CL	AT 25 C	AS CU	AS 0	/100ML	/100ML
4 0.30 0.103 214,0 13.300 549,0 0.00014 13.0 8 2 0.30 0.103 145.0 2.16 0.55 0.00054 12.5 10 2 0.30 0.101 199.0 0.55 10.600 491.0 0.01026 12.5 96 9 0.30 0.101 200.0 1.23 10.900 555.0 0.00026 12.0 246 9 0.30 0.101 211.0 1.04 11.700 575.0 0.00026 12.0 246 6 0.30 0.101 221.0 0.45 13.00 510.0 0.00026 13.2 142 6 0.30 0.101 221.0 0.45 13.00 559.0 0.00026 12.0 244 1 8 0.30 0.101 221.0 0.45 11.30 0.0026 12.0 0.0036 1 1 1 1 1 1 1 1 1<		38805	0.30	0101	221.0	92.0	14.200	585.0	0.0011 <w< td=""><td>13.0</td><td>20AID</td><td>10<</td></w<>	13.0	20AID	10<
3 0.30 0103 145.0 0.516 7.700 375.0 0.0005c4 12.5 944 1 0.30 0101 1290.0 0.55 0.0005c4 12.5 0.446 0.0005c4 12.5 0.446 0.0005c4 12.5 0.446 0.0005c4 12.5 0.0005c4 12.5 0.446 0.0005c4 12.5 0.0005c4 12.5 0.446 0.0005c4 12.5 0		38824	0.30	0103	214.0		13.300	549.0	0.0011 <t< td=""><td>13.0</td><td>100</td><td>>4</td></t<>	13.0	100	>4
Color Colo		38843	0.30	0103	145.0	2.16	7.700	375.0	0.0005 <w< td=""><td>12.5</td><td>>01</td><td>SOAID</td></w<>	12.5	>01	SOAID
1.0.50 0.101 2.08.0 0.088 9.4.500 945.0 0.002077 8.0 244 0.30 0.103 2.02.0 0.084 13.700 555.0 0.002077 8.0 244 0.30 0.101 2.11.0 0.84 13.700 555.0 0.0030 10.5 244 0.30 0.101 2.23.0 0.98 13.700 555.0 0.0030 10.5 244 0.30 0.101 2.23.0 0.98 13.300 530.0 0.0030 10.5 244 0.30 0.101 2.29.0 0.45 9.800 515.0 0.0030 10.5 244 0.30 0.201 2.29.0 0.45 9.800 520.0 0.0030 10.5 244 0.30 0.202 0.099 13.356 529.1 0.0030 12.0 904ID 0.30 0.202 0.099 13.356 529.1 0.0030 13.0 368 0.30 0.301 0.45 0.45 0.45 0.0030 0.0034 11.1 144 0.30 0.30 0.45 0.45 0.45 0.0032 4 11.0 4 0.30 0.30 0.45 0.45 0.45 0.0032 4 0.30 0.003 0.45 0.45 0.0034 0.0035 8 0.30 0.003 0.45 0.003 0.0035 11.0 0.0035 11		38862	0.30	0101	199.0	0.55	10.600	481.0	0.0120	12.5	84	128
1.0 1.0		28881	0.30	0101	208.0	0.88	9.300	463.0	0.0020 <t< td=""><td>12.0</td><td>368</td><td>172</td></t<>	12.0	368	172
9 0.30 0101 211.0 1.04 11.700 575.0 0.0010 6 0.30 0103 202.0 0.84 13.900 615.0 0.0030 9.0 172 6 0.30 0101 221.0 0.84 13.900 615.0 0.0030 10.5 68 6 0.30 0101 222.0 0.99 11.300 530.0 0.0030 10.5 244 8 0.30 0101 222.0 0.99 11.300 530.0 0.0040 12.0 90AID 9 0.30 0101 222.0 0.99 11.336 529.1 0.0030 9 0.40 0.30 14.20 0.89 11.736 529.1 0.0030 9 0.10 14.20 0.89 11.170 524.6 0.0032 9 0.10 14.20 0.99 11.170 524.6 0.0032 9 0.10 14.20 0.003 		38900	0.30	0103	216.0	1.23	10.900	555.0	0.0020 <t< td=""><td>8.0</td><td>544</td><td>48</td></t<>	8.0	544	48
6 0.30 0.103 202.0 12.000 582.0 0.0030 9.0 6 0.30 0.101 221.0 0.98 13.900 615.0 0.0030 10.5 544 6 0.30 0.101 223.0 0.98 13.900 615.0 0.0030 10.5 244 8 0.30 0.101 223.0 0.99 11.336 529.1 0.0040 12.0 9.01 9 0.50 0.99 11.336 529.1 0.0024 11.1 144 1 0.50 0.45 7.700 375.0 0.0024 11.1 144 1 0.50 0.45 7.700 375.0 0.0024 1.0 1.0 1 0.50 0.45 7.700 375.0 0.0024 1.0 1.0 1.0 1 0.50 0.45 1.700 375.0 0.0024 1.0 0.0024 1.0 0.0024 1.0 0.0024 1.0 0.0024 <td></td> <td>38919</td> <td>0.30</td> <td>0101</td> <td>211.0</td> <td>1.04</td> <td>11.700</td> <td>575.0</td> <td>0.0010<t< td=""><td>0.6</td><td>172</td><td>92</td></t<></td>		38919	0.30	0101	211.0	1.04	11.700	575.0	0.0010 <t< td=""><td>0.6</td><td>172</td><td>92</td></t<>	0.6	172	92
7 0.30 0101 221.0 0.84 13.300 615.0 0.0030 10.5 68 6 0.30 0101 223.0 0.98 13.300 530.0 0.0030 10.5 244 8 0.30 0101 229.0 0.45 9,800 510.0 0.0030 10.5 244 9 0.30 207.2 0.99 11.336 529.1 0.0036 11.1 144 9 145.0 0.45 11.170 524.6 0.0036 11.0 368 11 22.4 0.50 11.992 68.8 0.0032 11.0 144 11 9 11 11 11 11 11 10 11 9 11 11 11 11 11 10 11 9 11 11 11 11 11 10 11 9 11 11 11 11 11 10		38938	0.30	0103	202.0		12.000	582.0	0.0030	9.0		
6 0.30 0101 223.0 0.98 11.300 530.0 0.0030 10.5 244 N 0.30 0101 229.0 0.45 9.800 510.0 0.0030 12.0 90AID N 0.30 207.2 0.99 11.336 529.1 0.0036 <a< td=""> 11.1 144 N 0.30 145.0 0.45 11.30 524.6 0.0032<a< td=""> 11.1 144 N 0.30 145.0 0.45 11.30 524.6 0.0032<a< td=""> 11.1 144 N 0.30 145.0 0.45 11.99 68.8 8.0 8 9 N 0.30 1.10 0.45 1.70 11.99 11.0 0.0024 1.10 0.004 0.005 0.005 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000</a<></a<></a<>		38957	0.30	0101	211.0	0.84	13,900	615.0	0.0030	10.5	68	32
5 0.30 0.101 229.0 0.45 9.800 510.0 0.0040 12.0 90AID N 0.30 229.0 2.16 14,200 615.0 0.0020 13.0 368 N 0.30 207.2 0.99 11.336 529.1 0.00320 11.1 144 N 0.30 145.0 0.45 7.700 375.0 0.00052 8.0 8 1 0.30 11 22.4 0.50 1.992 68.8 0.0032 1.1 144 1 0.30 1.1 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.1 1.1		38976	0.30	0101	223.0	0.98	11.300	530.0	0.0030	10.5	244	196
No.30 229.0 2.16 14.200 615.0 0.0120 13.0 368 144 144 144 144 144 145.0 145.9 11.356 529.1 0.0030 11.356 529.1 0.003011.356 529.1 0.003011.30 358.9 368 369		38995	0.30	0101	229.0	0.45	9.800	510.0	0.0040	12.0	90AID	52
N	MA	XIMUM	0.30		229.0	2.16	14.200	615.0	0.0120	13.0	368	196
Name	ARITH	MEAN	0.30		207.2	0.99	11.336	529.1	0.0030<4	11.11	144	65
Hastr	GEOM	MEAN			205.9	0.89	11.170	524.6	0.0021 <a< td=""><td>11.0</td><td></td><td>2</td></a<>	11.0		2
FWSTRC FWIEHP NINHTUR NIO2UR NIO3UR NIVEMB PBUT PBUT PPO4UR	IM	NIMUM	0.30		145.0	0.45	7.700	375.0	0.0005	8.0	æ	30
The color of the	STD DEV (GE	(* MO			22.4	05.0	1.992	8.89	0.0032 <a< td=""><td>1.8</td><td></td><td></td></a<>	1.8		
FWSTRC FWIEHP NNHTUR NNOZUR NNOZUR NNTKUR PBUT PBUT PP04UR PP04UR PP04UL	MP IN STATI	STICS	11		11	6	11	11	11	11	6	100
FWSTRC FWIEHP NINHTUR NINOSUR NINTKUR PBUT PHO PHOGUR PHO NINHTUR NI	SAMP (EXCL	UDED)									10	50
HOUR SAMPLE STREAM TEMP OF AS N TOTAL NOS-N TOTAL LLAD NOS-N TOTAL NOS-N TOTAL LLAD NOS-N TOTAL LLAD NOS-N TOTAL LLAD NOS-N TOTAL NOS-N TOTAL LLAD NOS-N TOTAL	RIM TEST-N	AME:	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR	NNO3UR	NNTKUR K'DAHL N	PBUT	Ħ	PP04UR	PPUT
HOUR SAMPLE STREAM TEHP UNF.REAC UNF.RE					TOTAL	NO2-N	N03-N	TOTAL	LEAD		P04	PHOSPHOR
HOUR SAMPLE STREAM TEMP MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L				WATER	UNF. REAC	UNF. REAC	UNF.REAC	UNF.REAC	UNF. TOT.		UNF . REAC	UNF.TOT.
LMT NUMBER COND. DEG.C AS N AS P PH AS P 1100 38805 6 1.0 0.031 0.010 1.900 0.560 0.005 7.98 0. 1100 38824 6 1.0 0.012 0.020 1.400 0.590 0.005 8.12 0.007 0. 0955 38624 6 5.0 0.012 0.020 1.400 0.590 0.005 8.12 0.007 0. 0955 3862 6 5.0 0.004 0.020 1.400 0.590 0.005 0.008 0. 0.008 0.00	HOUR	AMPLE	STREAM	TEMP	MG/L	MG/L	HG/L	MG/L	MG/L		MG/L	MG/L
1100 38805 6 1.0 0.031 0.010< 1.900 0.560 0.005 1.0 0.038 0.020 1.900 0.450 0.005 1.0 0.008 0.020 1.900 0.450 0.005 1.0 0.008 0.020 1.900 0.450 0.005 1.0 0.008 0.000 1.0 0.008 0.000 1.0 0.008 0.000 1.0 0.008 0.000 1.0 0.000 1	LMI	UMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	H	AS P	AS P
1030 38824 6 1.0 0.008 0.020 1.900 0.450 0.0054M 8.12 0.007 1100 38843 4 4.0 0.012 0.020 1.400 0.590 0.0084M 8.12 0.008 1110 38842 6 5.0 0.004 0.020 1.400 0.760 0.0084M 8.20 0.008 1110 38841 6 12.0 0.004 0.020 1.400 0.760 0.0054M 8.20 0.001 1105 38919 6 22.0 0.035 0.010 0.460 0.4650 0.0054M 8.22 0.003 1120 38937 6 21.0 0.016 0.010 0.300 0.380 0.0054M 8.27 0.009 1112 38937 6 14.0 0.019 0.020 0.500 0.380 0.0054M 8.26 0.009 1110 38937 6 10.0 0.019 0.010 0.050 0		38805	9	1.0	0.031	0.010<	1.900	0.560	0.005 <w< td=""><td>7.98</td><td></td><td>0.025</td></w<>	7.98		0.025
1100 38843 4 4.0 0.012 0.020 1.400 0.590 0.005 28862 6 5.0 2.0 0.004 0.020 1.400 0.760 0.008 28862 6 5.0 2.0 0.004 0.020 0.400 0.440 0.005 1105 38900 6 22.0 0.025 0.010 0.400 0.440 0.005 1120 38938 6 21.0 0.016 0.010 1120 38936 6 14.0 0.016 0.010 1120 38936 6 14.0 0.019 0.020 0.500 0.605 	-	38824	9	1.0	0.008	0.020	1.900	0.450	0.005 <w< td=""><td>8.12</td><td>0.007</td><td>0.013</td></w<>	8.12	0.007	0.013
0955 38862 6 5.0 0.004 0.020 1.400 0.760 0.005 8.20 0.001 11110 38881 6 12.0 0.020 0.020 0.080 0.440 0.005 8.20 0.001 1130 38910 6 20.0 0.020 0.010 0.400 0.450 0.005 8.22 0.003 1150 38919 6 20.0 0.035 0.010 0.460 0.450 0.005 8.22 0.006 1152 38936 6 21.0 0.016 0.010 0.500 0.380 0.005 8.27 0.006 1112 38997 6 14.0 0.019 0.020 0.500 0.450 0.005 8.26 0.001 1100 38997 6 4.0 0.005 0.005 0.050 0.005 8.21 0.001	•	38843	4	4.0	0.012	0.020	1.400	0.590	0.005 <w< td=""><td>8.01</td><td>0.008</td><td>0.039</td></w<>	8.01	0.008	0.039
1105 38816 6 12.0 0.004 0.020 0.406 0.760 0.005544 8.20 0.001 1105 38919 6 22.0 0.035 0.010 0.460 0.640 0.005544 8.22 0.003 1120 38919 6 21.0 0.016 0.010 0.460 0.450 0.005544 8.32 0.006 1121 38957 6 14.0 0.016 0.010 0.500 0.450 0.005544 8.27 0.009 1116 38995 6 4.0 0.005 0.005 0.005544 8.26 0.001 1110 38995 6 4.0 0.005 0.010 0.010 0.005544 8.20 0.001 1110 38995 6 4.0 0.005 0.010 0.010 0.005544 8.20 0.001 1110 38995 6 4.0 0.005 0.010 0.010 0.005544 8.20 0.001 1110 38995 6 4.0 0.005 0.010 0.010 0.005544 8.20 0.001 1110 38995 6 4.0 0.005 0.010 0.010 0.005544 8.20 0.001 1110 38995 6 4.0 0.005 0.010 0.010 0.005544 8.20 0.001 1110 38995 6 4.0 0.005 0.010 0.010 0.005544 8.20 0.001	_	38862	9	5.0					0.008 <t< td=""><td>8.20</td><td></td><td></td></t<>	8.20		
1105 33990 6 22.0 0.020 0.020 0.800 0.440 0.005 0.005 8.22 0.003 1120 38919 6 20.0 0.035 0.010 0.400 0.400 0.405 0.005 0.005 0.005 0.006 1120 38919 6 21.0 0.016 0.010 0.010 0.400 0.450 0.005 0.005 0.005 1120 38926 6 10.0 0.010 0.020 0.500 0.405 0.005 0.005 0.006 1116 38976 6 10.0 10.0 0.005 0.005 0.005 0.005 0.005 1110 38995 6 4.0 0.005 0.005 0.010 0.010 0.010 0.005 0.005		38881	9	12.0	0.004	0.020	1.400	0.760	0.005 <w< td=""><td>8.20</td><td>0.001<</td><td>0.085</td></w<>	8.20	0.001<	0.085
1130 35919 6 20.0 0.035 0.010 0.400 0.450 0.005 0.006 8.32 0.006 11055 35938 6 21.0 0.016 0.010 0.010 0.500 0.580 0.005 0.056 8.27 0.009 1116 3597 6 10.0 10.0 0.010 0.500 0.500 0.055 0.500 0.005 8.26 0.001 1116 3597 6 10.0 10.0 0.005 0.005 8.30 0.005 1110 3599 6 4.0 0.005 0.005 0.010 1.100 0.560 0.005 0.005 8.21 0.001		38900	9	22.0	0.020	0.020	0.800	0.440	0.005 <w< td=""><td>8.22</td><td>0.003</td><td>0.019</td></w<>	8.22	0.003	0.019
1055 38938 6 21.0 0.016 0.010< 0.300 0.380 0.005<		38919	9	20.0	0.035	0.010	0.400	0.450	0.005 <w< td=""><td>8.32</td><td>900.0</td><td>0.017</td></w<>	8.32	900.0	0.017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		38938	9	21.0	0.016	0.010<	0.300	0.380	0.005 <w< td=""><td>8.27</td><td>600.0</td><td>0.014</td></w<>	8.27	600.0	0.014
1116 38996 6 10.0 0.005 0.010 1.100 0.560 0.005 <w 0.001<br="" 8.21=""></w> 1100 38995 6 4.0 0.005 0.010 1.100 0.560 0.005 <w 0.001<br="" 8.21=""></w>		38957	9	14.0	0.019	0.020	0.500	0.450	0.005 <w< td=""><td>8.26</td><td>0.001<</td><td>0.030</td></w<>	8.26	0.001<	0.030
1100 38995 6 4.0 0.005 0.010 1.100 0.560 0.005 <w 0.001<<="" 8.21="" td=""><td></td><td>38976</td><td>9</td><td>10.0</td><td></td><td></td><td></td><td>0.690</td><td>0.005<w< td=""><td>8.30</td><td></td><td>0.025</td></w<></td></w>		38976	9	10.0				0.690	0.005 <w< td=""><td>8.30</td><td></td><td>0.025</td></w<>	8.30		0.025
		38995	9	4.0	0.005	0.010	1.100	0.560	0.005 <w< td=""><td>8.21</td><td>0.001<</td><td>0.017</td></w<>	8.21	0.001<	0.017

STATION ID: 08-0123-007-02

	PATSIE	
	OF	
	DOWNSTREAM OF PATSIF	
SAUGEEN RIVER	AT TOWNSHIP ROAD,	
SAUGE	AT TO	RIVER
/ SITE:	POINT:	TYPE:
B.O.W./	SAMPLE POINT:	STATION TYPE:

HOUR TEST-HAME: FMSTRC FMTEHP NMHTUR NMOZNE NMTRUN N	STATION TYPE: RIVER				MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	GREAT LAI LAKE HURG SAUGEEN	KES ON RIVER			STORET CODE: 02	DE: 02 002
The color of the	LAT: 4	44 19 06.74	LONG: 081	16 48.95	U T M: 17	0477650.0	4907075.0 4	REGION:	01	DISTANCE	
HOUR SAMPLE STREAM TEMP HOUR HOU	*=INTERIM TEST-NAME:	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR	NNO3UR	NNTKUR	PBUT		PP04UR	
HAXTHUH HEAM 22.0 0.035 0.020 1.900 0.760 0.008 8.32 0.0099		STREAM COND.	WATER TEMP DEG.C	TOTAL UNF.REAC MG/L AS N	NO2-N UNF.REAC MG/L AS N	NO3-N UNF.REAC MG/L AS N	TOTAL UNF.REAC MG/L AS N	LEAD UNF.TOT. MG/L AS PB	H	PO4 UNF.REAC MG/L AS P	PHOSPHOR UNF.TOT. MG/L AS P
SAMP	MAXIMUM ARITH MEAN		22.0	0.035	0.020	1.900	0.760	0.008	8.32	0.009	0.085
SAMP (EXCLUDED) 8.0	GEOM MEAN MINIMUM		1.0	0.013	0.010	0.896	0.521	0.005 <a< td=""><td>8.19</td><td>700.0</td><td>0.028</td></a<>	8.19	700.0	0.028
TEST-NAME: PSAMF RSP ZNUT	# SAMP IN STATISTICS % SAMP (EXCLUDED)		8.0	0.011	7 22	0.616	0.122	0.001 <a< td=""><td>0.11 11</td><td>0.003 5</td><td>0.013 0.021 10</td></a<>	0.11 11	0.003 5	0.013 0.021 10
HOUR SAMPLE CNT PARTIC. UNF. LHT NUMBER /100ML MG/L J 1100 38805 4< 5.00 1100 38843 4< 5.00 1110 38843 4< 0.00 1110 38843 4< 0.00 1110 38843 4< 0.00 1110 38891 4< 0.00 1110 38990 4< 0.00 1110 38990 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 4< 0.00 1110 38995 110 1110 38995 110	*=INTERIM TEST-NAME:	PSAMF PSEUDOMN	RSP	ZNUT						5	
1100 38805 4< 5.0		AERUG. NF CNT /100ML	RESIDUE PARTIC. MG/L	ZINC UNF.TOT. MG/L AS ZN							
1100 38824 4< 5.0		>4		0.0001							
1100 38843 4< 34.5 1110 38843 4< 34.5 1110 38861 4< 11105 38900 4< 11120 38910 4< 1120 38957 4< 1120 38957 4< 1100 38995 4< 1100 38995 4< 1100 38995 4< 1100 38995 4< 1100 38995 4< 1100 38995 5 4< 1100 38995 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1030	>5	5.0<	0.0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1110 38881 4< 11105 38900 4< 1130 38910 4< 1105 38910 4< 1105 38910 4< 1106 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1110 38910 4< 1	0955	y 4	34.5	0.0024 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1105 38900 4< 1130 38919 4< 1055 38938 4< 1120 38976 4< 1110 38976 4< 1110 38995 4< 1110 38996 4< 1110 38996 4< 1110 38996 4< 1110 38996 4< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 1110 38996 5< 11	1110	>4		0.0210							
113.0 38919 4< 1055 38938 4< 1120 38937 4< 1116 38976 4 1110 38995 4< 1110 38995 4< 1110 BAYIHUH 4 34.5 GEOH HEAN 4 20.2 GEOH HEAN 4 6.0 TD DEV (GEOH *) P IN STATISTICS 2 2 1 SAMP (EXCLUDED) 80 22	1105	>4		0.0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1120	1130	>4		0.0010<7							
1116 38976 4 1100 38995 4 1100 38995 4 ARITH HEAN 4 20.2 GEOH HEAN 4 6.0 TD DEV (GEOH *) 7 2 1 SAMP (EXCLUBED) 80 72	1120	13	0.9	0.0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1100 38995 4< HAXTHUM 4 34.5 ARITH HEAN 4 20.2 GEOM HEAN 4 6.0 TD DEV (GEOM *) PLIN STATISTICS 2 1 SAMP (EXCLUDED) AN 22 1	1116	7 3		0.0020<1							
4 34.5 4 20.2 4 6.0 80 2 2 1		>4		0.0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
4 20.2 4 6.0 2 2 1	MAXIMUM	4	34.5	0.0210							
4 6.0 2 2 1 80 22 1	ARITH MEAN	4	20.2	0.0031 <a< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td></a<>		•					
4 6.0 2 2 1 80 zz 1	GEOM MEAN			0.0015 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
2 2 1	MINIMUM STD DEV CCEON SY	*	0.9	0.0005							
80 33	SAMO IN STATISTICS	•		0.0060 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>							
	% SAMP (EXCLUDED)	80	2 2 2	11							

STATION ID: 08-0123-009-02

B.O.W. A SITE: NORTH SAUGEEN RIVER SAMPLE POINT: AT ELDERSLIE TOWNSHIP ROAD 25 AND 26 STATION TYPE: RIVER FLOW GAUGE FED 02FC013

STORET CODE: 02 002 1260 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER

VCE: 55.360	_	L FECAL		r CNT	L /100ML	ID 20AID		16	36	108	224	965			236	10<	965	142		16		6	10	TUGG &	4 PHOSPHOR	UNF	1/9W 7		0.028	0.015			0.020	0.019	0.010	0.017	0.011	0
DISTANCE:	FCMF	COI TEODM	MF	CNT	/100ML	SOAID	54	24	32	184	488	500		90AID	172	54	200	159	83	24	34	10		PP04UR	P04	UNF. REAC	MG/L	2	0.024	0.007			>T00.0	200 0	500.0	0.001		
01	00	DISOLVED	OXYGEN	MG/L	AS 0	13.0	13.0	13.0	12.5	12.0	9.0	11.0	8.5	11.0	11.0	13.5	13.5	11,6	11.5	8.5	1.7	11		Н			2	E	7.95	8.14		97.8	8 21	8.47	8 28	8.41	8.43	
REGION: 01	CUUT	COPPER	UNF. TOT.	MG/L	AS CU	0.0005 <w< td=""><td></td><td>0.0062</td><td>0.0140</td><td>0.0010</td><td>0.0010<t< td=""><td>0.0005<w< td=""><td>0.0030</td><td>0.0020<t< td=""><td>0.0030</td><td>0.0030</td><td>0.0140</td><td>0.0034<a< td=""><td>0.0020<a< td=""><td>0,0005</td><td>0.0041<a< td=""><td>10</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>MG/L</td><td>2</td><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></w<></td></t<></td></w<>		0.0062	0.0140	0.0010	0.0010 <t< td=""><td>0.0005<w< td=""><td>0.0030</td><td>0.0020<t< td=""><td>0.0030</td><td>0.0030</td><td>0.0140</td><td>0.0034<a< td=""><td>0.0020<a< td=""><td>0,0005</td><td>0.0041<a< td=""><td>10</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>MG/L</td><td>2</td><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></w<></td></t<>	0.0005 <w< td=""><td>0.0030</td><td>0.0020<t< td=""><td>0.0030</td><td>0.0030</td><td>0.0140</td><td>0.0034<a< td=""><td>0.0020<a< td=""><td>0,0005</td><td>0.0041<a< td=""><td>10</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>MG/L</td><td>2</td><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></w<>	0.0030	0.0020 <t< td=""><td>0.0030</td><td>0.0030</td><td>0.0140</td><td>0.0034<a< td=""><td>0.0020<a< td=""><td>0,0005</td><td>0.0041<a< td=""><td>10</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>MG/L</td><td>2</td><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<>	0.0030	0.0030	0.0140	0.0034 <a< td=""><td>0.0020<a< td=""><td>0,0005</td><td>0.0041<a< td=""><td>10</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>MG/L</td><td>2</td><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	0.0020 <a< td=""><td>0,0005</td><td>0.0041<a< td=""><td>10</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>MG/L</td><td>2</td><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0,0005	0.0041 <a< td=""><td>10</td><td></td><td>PBUT</td><td>LEAD</td><td>UNF. TOT.</td><td>MG/L</td><td>2</td><td>0.005<w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	10		PBUT	LEAD	UNF. TOT.	MG/L	2	0.005 <w< td=""><td></td><td>0.005<w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>		0.005 <w< td=""><td>0.006<1</td><td>0.005<</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<></td></w<>	0.006<1	0.005<	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>-</td></w<></td></w<>	0.005 <w< td=""><td>-</td></w<>	-
904200.0 4	COND25	CONDICT	250	UMHO/CM	AT 25 C	481.0	466.0		421.0	427.0	423.0	421.0	423.0	0.905	439.0	445.0	481.0	435.2	434.7	406.0				NNTKUR K'DAHL N	TOTAL	UNF.REAC	MG/L AS N	2	0.490	0.310		200	0.420	0.400	0.510	0.360	0.360	
U I N: 1/ 0490550.0 4904500.0 4	CLIDUR	CHIORIDE	UNF. REAC	MG/L	AS CL	7.200	7.400		6.300	5.800	5.600	5.900	8.700	5.700	7.000	6.200	8.700	6.580	6.518	5.600	986.0	10		NNO3UR	N03-N	UNF . REAC	MG/L	2	1.700	0.700		000	0000	0.100<	0.100<	0.100		
11. 17	8005	5 DAY	TOT. DEM.	HG/L	AS 0	0.25	0.69		0.79	0.99	1.14	69.0		0.99	0.99	0.59	1.14	0.79	0.73	0.25	0.28	6		NNOZUR	N02-N	UNF.REAC	MG/L AS N	2	0.010<	0.020		010	20.0	0.010	0.010<	0.020		
04.61 /0	ALKT	ALK	TOTAL	MG/L	AS CACO3	231.0	231.0		205.0	217.0	217.0	204.0	215.0	214.0	223.0	229.0	231.0	218.6	218.4	204.0	8.6	10		NNHTUR NH3-N	TOTAL	UNF . REAC	MG/L AS N	2	0.038	0.026		7100 0	10000	0.002	0.037	0.012		
COURT OF TO: 10: 10: 10	FGPROJ		PROJECT	SUB-PROJ	CODE	0101	0103	0103	0101	0101	0103	1010	0103	0101	1010	0101								FWTEMP		WATER	DFG.C		1.0	1.0	4. n	י אַ רּ	22.0	21.0	20.0	15.0	11.0	•
7711	FWSADP		SAMPLE	DEPTH	Ε	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30		11		FWSTRC		100	COND.		9	9	9 4	9	9	9	9	9	9	,
	ST-NAME:			SAMPLE	NUMBER	38806	38825	38844	38863	38882	38901	38920	38939	38958	38977	38996	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	EXCLUDED	ST-NAME:			NUMBER		38806	38825	38844	28882	38901	38920	38939	38958	38977	20002
	*=INTERIM TEST-NAME:		ш		YYMMDD LMT					900522 1135		900716 1150				001119 1127		AR	9		STD DEV	# SAMP IN STATISTICS	A SAMP LEXCLUDED	*=INTERIM TEST-NAME:		SAMPLE	YMMDD LMT			,	900319 1125		000618 1135		900820 1115			1110 1107

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: NORTH SAUGEEN RIVER

MG/L AS P 55.360 PHOSPHOR UNF. TOT. 1260 0.018 0.017 PPUT STORET CODE: DISTANCE: STATION ID: 08-0123-009-02 MG/L AS P P04 PP04UR UNF. REAC 0.005 0.024 0.011 5 Hd 8.31 8.30 7.95 0.16 Hd REGION: 01 UNF.TOT. MG/L 0,005 0,000<A 0.005<A 0.005<A LEAD AS PB PBUT 900.0 U T M: 17 0490350.0 4904500.0 4 MG/L AS N NNTKUR K'DAHL N UNF . REAC 0.510 0.396 0.310 0.065 TOTAL TERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS N UNF . REAC HNOSUR N03-N 1.700 0.100 28 MG/L AS N NNO2UR MO2-N UNF. REAC 0.020 0.010 28 AS N MG/L MG/L NNHTUR NH3-N TOTAL UNF. REAC ZINC AS ZN 0.0010<T 0.0005<W 0.0049<A UNF. TOT. 0.0017<T 0.0022<T 0.0020<T 0.0010<T 0,0020<T LAT: 44 17 44.29 LONG: 081 07 15.46 0.038 0.002 ZNUT 0.0300 0.0010 0.0080 0.0300 SAMPLE POINT: AT ELDERSLIE TOWNSHIP ROAD 25 AND 26 9 14 STATION TYPE: RIVER FLOW GAUGE FED 02FC013 WATER FWTEMP DEG.C RESIDUE MG/L PARTIC. 5.0< 22.0 10.5 6.7 1.0 8.2 11.4 11.4 11.4 RSP FWSTRC STREAM COND. PSEUDOHN ¥ CNT /100ML >5 PSAMF AERUG. >1 4 SAMPLE 38958 GEOM MEAN HINIMUM # SAMP IN STATISTICS % SAMP (EXCLUDED) NUMBER 38844 38901 38996 MAXIMUM ARITH MEAN STD DEV (GEOM *) SAMPLE 38825 38863 38882 38920 38939 HAXINUM ARITH MEAN 38806 38977 *=INTERIN TEST-NAME: *=INTERIN TEST-NAME: HOUR 1124 1125 1135 1148 HOUR 1020 1135 900716 1150 900820 1115 901015 1140 901119 1127 YYMMDD LMT LHT 900219 YYMINDD 900115 900319 900522 SAMPLE SAMPLE 900417 900618 716006 DATE DATE

0.0021<A 0.0091<A

0.0005

11.4

GEOM MEAN STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED)

50

1 88

82

STATION ID: 08-0123-010-02

B.O.W./ SITE: OTTER CREEK SAMPLE POINT: AT BRUCE COUNTY ROAD 16 NORTH OF MILDMAY STATION TYPE: RIVER FLOW GAUGE MOE 02FC108

E: 02 002 1260	87.868	FSMF	STREPCUS	ENT	/100ML	TOAID	20	4	292	140	256	<009		26	<009	130	242	121		4		80	20	PPUT		PHOSPHOR	MG/1	AS P		0.014	0.019		0.034	0.020	0.020	0.020	į	0.030	0.015
STORET CODE:	DISTANCE:	FCMF	COLIFORM	CNT	/100ML	SOAID	28	26	524	450	288	188		40	<005	SOAID	450	150		28		6	10	PP04UR		PO4	MG/I	AS P			0.012		0.001<		0.001<	0.001<	0.001<	,,,,,	0.001<
	10	00	DISOLVED	MG/1	AS 0	12.5	12.0	12.5	13.0	11.5	0.6	9.5	9.5	10.0	10.0	12.0	13.0	11.0	11.0	0.6	1.5	11		Н				Н	8.02	8.00	8.05	8.08	8.08	8.09	8.27	8.18	8.13	8.08	01.8
	REGION: 01	CUUT	COPPER	MG/1	AS CU	0.0012 <t< td=""><td>0.0010<t< td=""><td>0.0005<w< td=""><td>0.0012<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<1</td><td>0.0030</td><td>0.0000</td><td>0.0030</td><td>0.0050</td><td>0.0050</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0005<w< td=""><td>0.0012<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<1</td><td>0.0030</td><td>0.0000</td><td>0.0030</td><td>0.0050</td><td>0.0050</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<></td></t<>	0.0005 <w< td=""><td>0.0012<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<1</td><td>0.0030</td><td>0.0000</td><td>0.0030</td><td>0.0050</td><td>0.0050</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<>	0.0012 <t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<1</td><td>0.0030</td><td>0.0000</td><td>0.0030</td><td>0.0050</td><td>0.0050</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0010<t< td=""><td>0.0010<1</td><td>0.0030</td><td>0.0000</td><td>0.0030</td><td>0.0050</td><td>0.0050</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0010<1</td><td>0.0030</td><td>0.0000</td><td>0.0030</td><td>0.0050</td><td>0.0050</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<>	0.0010<1	0.0030	0.0000	0.0030	0.0050	0.0050	0.0022 <a< td=""><td>0.0017<a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	0.0017 <a< td=""><td>0,0005</td><td>0.0016<a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0,0005	0.0016 <a< td=""><td>11</td><td></td><td>PBUT</td><td></td><td>INE TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	11		PBUT		INE TOT	MG/L	AS PB	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>U.005<w< td=""></w<></td></w<></td></w<>	0.005 <w< td=""><td>U.005<w< td=""></w<></td></w<>	U.005 <w< td=""></w<>
ES N IVER	873375.0 4	COND25	CONDUCT.	UMHOZCM	AT 25 C	634.0	621.0	542.0	550.0	541.0	581.0	571.0	0.809	608.0	620.0	620.0	634.0	590.5	589.6	541.0	34.8	11		NNTKUR	K DAHL N	INE DEAC	MG/1	AS N		0.400	0.500	0.580	0.650	0.510	0.450	0.380		0.640	0.490
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERH STREAM: SAUGEEN RIVER	U T M: 17 0489800.0 4873375.0 4	CLIDUR	CHLORIDE	MG/L	AS CL	20.100	19.400	16.300	15.400	14.800	15.700	13.000	14.400	14.900	18.800	16.000	20.100	16.255	16.119	13.000	2.242	11		NNO3UR	1014	NOS-N	MG/L	AS N			3.800		2.900		2.000	2,000	1,900	000	2.600
MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	8005	5 DAY	MG/L	AS 0	95.0	69.0		0.29	0.74	1.09	0.89		0.59	0.99	0.40	1.09	0.69	99.0	0.29	0.27	6		NNO2UR		HINE DEAL	MG/L	AS N			0.020		0.020		0.020	0.010<	0.030	,010	>010.0
OF MILDMAY	07 38.11	ALKT	ALK	HG/L	AS CACO3	273.0	269.0	221.0	237.0	247.0	255.0	268.0	243.0	279.0	277.0	285.0	285.0	259.5	258.7	221.0	20.3	11		NNHTUR	NH3-N	TINE DEAL	MG/L	AS N			0.009		0.001<		0.001<	0.017	0.011	000	0.008
D 16 NORTH MOE 02FC108	LONG: 081 07 38.11	FGPR0J	DBO.TECT	SUB-PROJ	CODE	0101	0103	0103	0101	0101	0103	0101	0103	0101	0101	0101								FWTEMP		WATED	TEMP	DEG.C	1.0	1.0	3.0	8.0	10.0	20.0	17.0	14.0	10.0	10.0	î,
COUNTY ROA	LAT: 44 00 55.44	FWSADP	SAMDIE	DEPTH	Σ	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30		11		FWSTRC			STREAM	COND.	9	9	9	9	9	9	9	9	9	9 (٥
: AT BRUCE : RIVER F	LAT: 44	ST-NAME:		SAMPLE	NUMBER	38800	38819	38838	38857	38876	38895	38914	38933	38952	38971	38990	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	38800	38819	38838	38857	38876	38895	38914	38933	38952	28971	28990
SAMPLE POINT: AT BRUCE COUNTY ROAD 16 NORTH OF MILDMAY STATION TYPE: RIVER FLOW GAUGE WOE O2FC108		*=INTERIM TEST-NAME:	< 3MDI E	DATE HOUR	Q	_	_	_								901119 0850		W.			STD DEV	# SAMP IN STATISTICS	% SAMP (*=INTERIM TEST-NAME:		CAMDIF	DATE HOUR	0		_	_	_						901015 0850	

STATION ID: 08-0123-010-02

B.O.W./ SITE: OTTER CREEK

SAMPLE POINT: AT BRUCE COUNTY ROAD 16 NORTH OF MILDMAY STATION TYPE: RIVER FLOW GAUGE MOE 02FC108

MG/L AS P 87.868 PHOSPHOR UNF. TOT. 1260 PPUT 0.021 STORET CODE: DISTANCE: MG/L AS P P04 UNF. REAC PP04UR 0.012 Hd 8.27 8.10 8.10 8.00 0.08 H REGION: 01 LEAD 0.005<A UNF. TOT. AS PB MG/L PBUT U T M: 17 0489800.0 4873375.0 4 MG/L AS N NNTKUR K'DAHL N UNF . REAC 0.511 0.503 0.380 0.096 TOTAL TERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINDR BASIN: LAKE HURON MG/L AS N NNO3UR UNF . REAC N03-N 3.800 MG/L AS N NN02UR N02-N UNF. REAC 0.030 MG/L AS N NNHTUR NH3-N TOTAL UNF , REAC LAT: 44 00 55.44 LONG: 081 07 38.11 0.017 TEMP FWTEMP MATER DEG.C 20.0 8.9 6.1 1.0 6.3 FWSTRC STREAM COND. SAMPLE MAXIMUM ARITH MEAN *=INTERIM TEST-NAME: HOUR YYMINDD LMT SAMPLE DATE

0.021

0.012

0.005<A

2.453 1.900

> 0.050 ¢

0.008

GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP. IN STATISTICS // SAMP (EXCLUDED)

5 33

0.000<A

ZINC 0.0005<W UNF. TOT. MG/L AS ZN 0,0018<T 0,0018<T 0,0014<T 0.0020<T 0.0010<T 0,0020<T 0,0020<T 0.0020<T ZNUT 0.0030 0,0060 RESIDUE MG/L 5.0 PARTIC. 5.0< 8.1 21.7 RSP 4 CNT PSEUDOMN /100ML PSAMF AERUG, y 8 > 5 >4 >4 7 55 38819 SAMPLE NUMBER 38838 38857 38876 38895 38914 38933 38952 38971 38990 38800 MAXIMUM *=INTERIM TEST-NAME: 0880 0740 0845 0840 0060 0845 HOUR 0840 0830 0854 0850 901119 0850 LMT SAMPLE YYMMDD 900115 900219 900319 900417 900522 900618 900716 900820 901015 716006 DATE

0.0021<A 0.0018<A 0.0014<A

0,0005

8.1

0,0060

21.7

44 26

ARITH HEAN

GEOM MEAN STD DEV (GEON *) # SAMP IN STATISTICS % SAMP (EXCLUDED) HAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON

STORET CODE:

STATION ID: 08-0123-015-02

B.O.W./ SITE:

SAMPLE POINT: DURHAM CONSERVATION AREA STATION TYPE: RIVER SAUGEEN RIVER

NO DATAISM AS CR 0.0011<A MG/L AS N MG/L 0.0005<W 0.0005<W 0.0017<T 0.0005<W 0.0005<W 0.0018<T 0.0005<W 0.0005<W 0.0011<A 0.000B<A NO2-N UNF. REAC DISTANCE: 131,158 CHROMIUM UNF. TOT. NNO2UR 0.010< 0,010 0.010 0.020 0.010 0.020 0.020 002 0.0038 0.0005 0.010 CRUT 0.0038 MG/L AS N 250 UMHO/CM AT 25 C NH3-N UNF. REAC COND25 MINITOR TOTAL CONDUCT. 429.0 435.0 448.0 0.008 444.0 302.0 368.0 457.0 435.0 411.0 302.0 46.1 0.003 0.015 0.014 0.010 457.0 408.4 0.021 NO DATAISM 0.003<T MG/L 0.002<W 0.002<W CLIDUR AS CL MG/L 0.004<T 0.003<T 0.003<T CHLORIDE UNF. REAC NICKEL UNF. TOT. AS NI 0.005<T 0.003<T 5.600 6.400 7.500 8.700 8.800 9.300 8.300 7.714 1.107 7.791 REGION: 01 0.0002<W 0.0002<W NO DATAISM 0.0002<W 0.0002 0.0000<A 9 MG/L AS CD 0.0002<W TEMP DEG.C 0.0002<W 0.0002<W 0.0002<A 0.0002<A CADMIUM UNF. TOT. FWTEMP 1.0 1.0 3.0 11.0 17.0 20.0 10.0 8.0 CDUT 0.0002 U T M: 17 0516050.0 4891650.0 4 0.001<W 0.001<W 0.001<W 0.001<A 0.001<A 0.001 0.000<A 0.001<W STREAM COND. 0.001<W AVAIL JNF . REAC MG/L AS HCN 0.001<W 0.001<W 0.001<W 0.001<W CYANIDE **FWSTRC** 0.001 TERM STREAM: SAUGEEN RIVER 0000000000 MG/L AS 0 5 DAY 800 CNT /100ML STREPCUS TOT . DEM. FECAL 44 10 0.79 69.0 36 BODS 96.0 0.21 0.81 NO DATAISM 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001 0.000<A 10 3.700 0.086<T 0.060<T 0.040<T 0.060<T 0.050<T AS AS 0.001<W 0.001 0.001<A AS FE MG/L 0.001<A IRON MG/L 0,026<T 0.050<T ARSENIC UNF. TOT. 0.046<T UNF. TOT. ASUT 50AID 4< MG/L CAC03 TOTAL ME CNT FECAL COLIFORM /100ML LAT: 44 10 47.40 LONG: 080 47 57.15 207.0 198.0 132.0 176.0 183.0 219.0 218.0 230.0 240.0 215.0 210.0 200.2 132.0 30.0 240.0 544 8 9 8 ALKT FCMF 5 MG/L AS 0 CODE FGPROJ DISOLVED OXYGEN SUB-PROJ PROJECT AS 111.0 113.0 113.0 112.5 111.0 8.0 7.0 7.0 9.0 10.0 11.5 0103 0101 0103 0101 0101 0101 0101 NO DATAISM SAMPLE COPPER 0,0006<T 0.0010<T 0,0020<T FWSADP MG/L AS CU 0.0006<T 0.0010<T 0.0020<T 0.0020<T 0.0020<T UNF. TOT. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 CUUT 0.0050 0.30 NUMBER 38833 38890 38928 38947 38985 38814 38909 38928 38985 JUMBER 38852 38871 38947 ARITH MEAN 38852 38909 SAMPLE 38890 39004 MAXIMUM GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS SAMPLE 38814 38871 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 0849 0880 0800 0810 0840 0825 1010 0800 0810 HOUR 0840 0849 0825 0830 HOUR 0880 900820 1010 LMT LM1 *=INTERIM 900820 YYMMDD 900418 901016 YYMMDD 900116 900619 900018 901016 900116 900220 900320 900619 900716 900918 SAMPLE 900220 900320 900418 900523 900716 DATE DATE

STATION ID: 08-0123-015-02

B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: DURNAM CONSERVATION AREA

MG/L AS N DATALLA N02-N ALPHA 3×1 3 3 3 DISTANCE: 131.158 UNF. REAC PIBHCA 1 < W M>1 1 < W VV ICA 0 < A NNO2UR NG/L 0.020 0.014 0.010 30 NO STORET CODE: NO DATAILA AS N 1 < M 1<H MG/L 3 I < M 1 × W 0<A NNHTUR NH3-N UNF. REAC PIALDR ALDRIN I < A 1 < A TOTAL NG/L 0.021 0.011 0.010 0.003 0.003<A 0.003<A 0.001<A MG/L PSEUDOMN CNT NICKEL UNF. TOT. AS MI /100ML AERUG. >5 4 PSAMF d 1 06 0 REGION: 01 MG/L AS P TEMP FWTEMP MATER DEG.C PHOSPHOR 20.0 8.5 5.5 1.0 6.7 JAF. TOT 0.016 0.010 0.013 0.008 900.0 900.0 0.016 0.008 0.005 PPUT 0.009 0.007 0.007 0.008 0.009 U T M: 17 0516050.0 4891650.0 4 P04 MG/L AS P FWSTRC STREAM PP04UR UNF. REAC COND 0.001< 0.001< 0.001< 0.001< 900.0 0.004 0.005 0.005 0.005 0.001 0.001 TERM STREAM: SAUGEEN RIVER R 4 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON STREPCUS CNT PHENOLS UNF-REAC UG/L FECAL /100ML PHENOL >000'1 PHNOL 000.1 2.000 >000.1 >0000 >0000 FSMF 000.1 1.500 000. 2.143 61 7.000 7.000 1.000 26 7 MG/L 1.216<A IRON 0.458<A Hd AS FE 0.080<A UNF. TOT 0.026 8.06 8.03 8.19 8.43 8.29 8.26 8.26 8.16 8.18 FEUT 3.700 μH NO DATAISM 0.005<W CNT MG/L 0.005<W 0.005<W 0.005<W 0.005<A 0.000<A COLIFORM /100ML AS PB 0.005<W 0.005<W 0.005<W FECAL UNF. TOT. LONG: 080 47 57.15 FCMF 20 0.005 0.005 PBUT MG/L AS 0 MG/L AS N DISOLVED OXYGEN NNTKUR K'DAHL N UNF. REAC 13.0 10.5 10.4 7.0 2.0 TOTAL 0.370 0.380 0.560 0.490 0.310 0.440 0.430 0.310 0.360 0.520 0.370 0.380 0.441 0.670 DO LAT: 44 10 47.40 0.0006 0.0013<A AS N 0.0015<A MG/L COPPER MG/L AS CU 0.0018<A N03-N MMOSUR UNF. REAC UNF. TOT CUUT 0.0050 0.500 0.400 0.100 0.300 0.280 0.248 0.100 0.132 0.200 0.200 0.400 0.100 0.300 0.500 SAMPLE GEOM MEAN 38890 38985 MAXIMUM ARITH MEAN HINIMUM STD DEV (GEOM *) # SAHP IN STATISTICS SAMPLE HUMBER 58814 38852 38928 38947 39004 MAXIMUM ARITH MEAN GEOM MEAN STD DEV (GEOM *) 38833 38871 38909 38966 MINIMIN # SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: % SAMP (EXCLUDED *=INTERIM TEST-NAME: STATION TYPE: RIVER HOUR HOUR 0849 0825 0800 0840 0840 0850 900820 1010 0810 0800 LHI **УУМИВВ ЦМТ** SAMPLE SAMPLE /YHIIDD 900116 900220 900320 900418 900619 900918 901016 901120 900523 900716 DATE DATE

B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: DURHAM CONSERVATION AREA STATION TYPE: RIVER

STATION ID: 08-0123-015-02

STORET CODE: 02

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER

DATALLA DATAILA NO DATAILA 500×W 500×W 5×W S<W 5<W 2<W N X X X 5<A 5<A 500×W 500<W 500×W 500 500<A 500<A 500×W 500×W M>005 NG/L TOXAPHEN DISTANCE: 131.158 ENDOSULP P1END2 P1TOX 200 1260 ş DATAILA S<W Z<W 2<W 2<A N>S N>5 3 3 3 5<A S<W 2<# Z<W 2×W B<W B<W ENDOSULP NG/L 2×W PIPPDT PP-DDT NG/L X×8 P1END1 DATA LA NO 2 DATALLA 3 × 8 3 3 3 N X X 3 1 × M I < W * * * S X 5<A ₹. M>I 1<A 1×4 0<A ENDOSULP NG/L DIPPDE PP-DDE PIENDS SULPHATE 욷 2 REGION: 01 DATALLA NO DATAILA 5 < A S<F 2×8 S<W NVS S<W 2×K 3 3 5<A 5 < A SKE 5<W 5×W N>S 5<W X X X 5×A PLENDR ENDRIN PIPPDD QQQ-dc NG/L 9 NO DATAILA NO DATALLA U T M: 17 0516050.0 4891650.0 4 20<W 20<W 20<W N>S X × X 0 × A × A TOTAL X × X 5<W B<W B<W 3×8 20<W 20<W 20<W 20<W 20 20<A 20<A 20 PIDMDT DMDT MTHXYLLR PIPCBT NG/L NO DATA LA NO DATALLA 2<W 2<W X X X X X S<W 3 3 3 3 A A A S VE 2<W 2×W 2<A ¥ ₹ DIELDRIN NG/L NG/L PIDIEL PlopDT OP-DDT DATAILA DATAILA 2<W 2<W 2 < W 2<W S K PICHLG 2<W 2<H 2 < A 2 < A > 0 < A > 9 2 < E 2 < F 2×W GAMMA NG/L CHLRDANE Plochl OXCHLANE 9 욷 DATALLA DATALLA 2 < W 2 < W 5<W 5<W N X X 5 < A > 5 2<W 2<W 2<W 2<W 2 < A 5<W 5<W 5×W 5<F NG/L 2<W 2<A NG/L PICHLA CHLRDANE ALPHA PIMIRX MIREX LAT: 44 10 47.40 LONG: 080 47 57.15 2 2 DATALLA DATAILA 1 × F * * * * * 3 3 3 N×1 I < K X X X 1<4 1<A 1<W 1<A 1<A PIBHCG BHC NG/L ₹ PIHEPT HEPACHOR NG/L GAMMA 2 2 DATAILA NO DATAILA 3 X > 1 < M 3 **₹** ₹ 1 < W 1 0<A 3. **₹ ₹** 3 **3**€ 3 3 V V 4×0 BETA V 1 < A PIHEPE 3 P1BHCB NG/L EPOXIDE HEPTA 2 38890 ARITH MEAN GEOM MEAN 38947 38985 NUMBER 38852 38890 38947 38833 38852 38909 39004 38833 38871 39004 # SAMP IN STATISTICS % SAMP (EXCLUDED) 38814 38871 ARITH MEAN GEOM MEAN SAMPLE 38909 38985 MINIMUM SAMPLE NUMBER MAXIMUM MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS 38814 38966 MAXIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 1010 0880 0800 0810 HOUR 0840 0840 0849 0850 0825 0830 1010 0800 0810 HOUR 0840 0840 0849 0825 0830 LMT Ή *=INTERIM 900820 901120 YYMMDD 900820 900918 901016 VYMMDD 900116 901016 900116 900220 900320 900418 900619 SAMPLE 900220 900320 900418 900523 900619 SAMPLE 900523 DATE DATE

B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: DURHAM CONSERVATION AREA STATION TYPE: RIVER

STATION ID: 08-0123-015-02

STORET CODE: 02 MAJOR BASIN: GREAT LAKES

STALION	STALLUM IYPE: KIVER				MINOR BASI	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	CES ON SIVER			STORET CODE: 02 00: 120	E: 02 002 1260
	LAT: 4	LAT: 44 10 47.40 LONG: 080 47 57.15	LONG: 080	47 57.15	U T M: 17	U T M: 17 0516050.0 4891650.0 4	4891650.0 4	REGION: 01	01	DISTANCE	DISTANCE: 131.158
*=INTERIM	*=INTERIM TEST-NAME:	RSP	TURB	X1HCBD	X1HCCP	хгнсв	X2HCE	X20CST	X2PNCB	X2T236	X2T245
SAMPLE DATE HOUR YYHMDD LHT	JR SAMPLE T NUMBER	RESIDUE PARTIC. MG/L	TURB'ITY FTU	HXCHLORO BUTADINE NG/L	ROCYCLOP ENTADIEN NG/L	HCB NG/L	HCE NG/L	OCTCHLOR STYRENE NG/L	CHLORO CHLORO BENZENE NG/L	TRCHLORO TOLUENE NG/L	TRCHLORO TOLUENE
900116 0840	40 38814	, 6		1 < W		1 < W	1 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	M>	1 <w< td=""><td>3>50</td><td>34</td></w<>	3>50	34
		5.0		1 × N		T VE	1 L W	X X	M N	¥ 3× \u00e4	N N
				1 <w< td=""><td></td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>2 < M</td><td>2< 2< 2< 2<</td></w<></td></w<></td></w<></td></w<>		1 < W	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>2 < M</td><td>2< 2< 2< 2<</td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>2 < M</td><td>2< 2< 2< 2<</td></w<></td></w<>	1 <w< td=""><td>2 < M</td><td>2< 2< 2< 2<</td></w<>	2 < M	2< 2< 2< 2<
900523 0825	25 38890	0,0		NO DATAILA		NO DATALLA	NO DATAILA NO DATAILA NO DATAILA NO DATAILA	NO DATAILA		-	NO DATAILA
900716		, 0° c		N/T		MyT	M>T	M>T	M ∨ T	M>q	N>S
900820 1010		5.0<		1 <w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>5<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>		1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>5<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>5<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>5<w< td=""></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>5<w< td=""></w<></td></w<></td></w<>	5 <w< td=""><td>5<w< td=""></w<></td></w<>	5 <w< td=""></w<>
		0.9		1 < W		1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>3<k< td=""></k<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>3<k< td=""></k<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>3<k< td=""></k<></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>3<k< td=""></k<></td></w<></td></w<>	5 <w< td=""><td>3<k< td=""></k<></td></w<>	3 <k< td=""></k<>
901016 0810		8,5	1.55	1 < W	3 :	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>5 × W</td><td>2 × K</td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>1 < W</td><td>5 × W</td><td>2 × K</td></w<></td></w<>	1 <w< td=""><td>1 < W</td><td>5 × W</td><td>2 × K</td></w<>	1 < W	5 × W	2 × K
901120 0800	39004	5.8		I < M	M>9	1 < M	1 <w< td=""><td>1 < W</td><td>1 < W</td><td>2<k< td=""><td>55 < X</td></k<></td></w<>	1 < W	1 < W	2 <k< td=""><td>55 < X</td></k<>	55 < X
	HAXIMUM	0.9	1.55	1	S	1	1	1	1	រេ	ī
	ARITH MEAN	5.1	1.55	1 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<>	5 <a< td=""><td>5<a< td=""></a<></td></a<>	5 <a< td=""></a<>
	GEON MEAN	1	1	1 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>5<a< td=""></a<></td></a<></td></a<>	5 <a< td=""><td>5<a< td=""></a<></td></a<>	5 <a< td=""></a<>
6	MUNIMUM AND THE	5.8	1.55	-	ים מ	-	7	1	-	ស	n.
OIS .	SID DEV (GEOM *)	*		0 < A	0 < A	0 <a< td=""><td>0<a< td=""><td>0<a< td=""><td>V>0</td><td>0 < A</td><td>D<a< td=""></a<></td></a<></td></a<></td></a<>	0 <a< td=""><td>0<a< td=""><td>V>0</td><td>0 < A</td><td>D<a< td=""></a<></td></a<></td></a<>	0 <a< td=""><td>V>0</td><td>0 < A</td><td>D<a< td=""></a<></td></a<>	V>0	0 < A	D <a< td=""></a<>
	7. SAMP (EXCLUDED)	09	4	T.	Ŋ	7	J.		D.	Ď	5
		}									
*=INTERIM	TEST-NAME:	X2T26A	X2123	X21234		X2124	X21245	X2135	ZNUT		
		2,6,A	1,2,3	1,2,3,4		1,2,4	1,2,4,5	1,3,5	ZINC		
1.1		RCHLORD	RCHLURO	ECHLORO	_	LKCHLORO	TECHLORO	TRCHLORO	UNF. TOT.		
YYMMDD LMT	JR SAMPLE T NUMBER	TOLUENE NG/L	BENZENE NG/L	BENZENE NG/L	BENZENE NG/L	BENZENE NG/L	BENZENE NG/L	BENZENE NG/L	MG/L AS ZN		
900116 0840	40 38814		5 <k< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0350</td><td></td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></k<>	1 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0350</td><td></td><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0350</td><td></td><td></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0350</td><td></td><td></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>0.0350</td><td></td><td></td></w<></td></w<>	5 <w< td=""><td>0.0350</td><td></td><td></td></w<>	0.0350		
900220 0840	40 38833	5 <w< td=""><td>5<w< td=""><td>1<w< td=""><td>1 < W</td><td>2<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0006<t< td=""><td></td><td></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>1<w< td=""><td>1 < W</td><td>2<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0006<t< td=""><td></td><td></td></t<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1 < W</td><td>2<w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0006<t< td=""><td></td><td></td></t<></td></w<></td></w<></td></w<></td></w<>	1 < W	2 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>0.0006<t< td=""><td></td><td></td></t<></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>0.0006<t< td=""><td></td><td></td></t<></td></w<></td></w<>	5 <w< td=""><td>0.0006<t< td=""><td></td><td></td></t<></td></w<>	0.0006 <t< td=""><td></td><td></td></t<>		
		14>S	5 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>NO DATAISM</td><td></td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>NO DATAISM</td><td></td><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>1<w< td=""><td>5<w< td=""><td>NO DATAISM</td><td></td><td></td></w<></td></w<></td></w<></td></w<>	5 <w< td=""><td>1<w< td=""><td>5<w< td=""><td>NO DATAISM</td><td></td><td></td></w<></td></w<></td></w<>	1 <w< td=""><td>5<w< td=""><td>NO DATAISM</td><td></td><td></td></w<></td></w<>	5 <w< td=""><td>NO DATAISM</td><td></td><td></td></w<>	NO DATAISM		
900418 0850		8×8	N>5	1 <w< td=""><td></td><td>2<w< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0110</td><td></td><td></td></w<></td></w<></td></w<></td></w<>		2 <w< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0110</td><td></td><td></td></w<></td></w<></td></w<>	1 <w< td=""><td>2<w< td=""><td>0.0110</td><td></td><td></td></w<></td></w<>	2 <w< td=""><td>0.0110</td><td></td><td></td></w<>	0.0110		
		38890 NO DATAILA NO DATAILA NO DATAILA	NO DATAILA	NO DATAILA		_	NO DAT	NO DAT	0.0020 <t< td=""><td></td><td></td></t<>		
900619 0830		N>2	2 < K		1<\	20 < N	1 <w< td=""><td>2<w< td=""><td>0.0010<t< td=""><td></td><td></td></t<></td></w<></td></w<>	2 <w< td=""><td>0.0010<t< td=""><td></td><td></td></t<></td></w<>	0.0010 <t< td=""><td></td><td></td></t<>		
900820 1010		2 <k< td=""><td>2 < N</td><td>1<w< td=""><td>N V</td><td>2×W</td><td>1<f< td=""><td>2<k< td=""><td>0.0000</td><td></td><td></td></k<></td></f<></td></w<></td></k<>	2 < N	1 <w< td=""><td>N V</td><td>2×W</td><td>1<f< td=""><td>2<k< td=""><td>0.0000</td><td></td><td></td></k<></td></f<></td></w<>	N V	2×W	1 <f< td=""><td>2<k< td=""><td>0.0000</td><td></td><td></td></k<></td></f<>	2 <k< td=""><td>0.0000</td><td></td><td></td></k<>	0.0000		
900918 0800		N > S	2×2	1 <w< td=""><td>1<w< td=""><td>2<k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0010<t< td=""><td></td><td></td></t<></td></w<></td></w<></td></k<></td></w<></td></w<>	1 <w< td=""><td>2<k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0010<t< td=""><td></td><td></td></t<></td></w<></td></w<></td></k<></td></w<>	2 <k< td=""><td>1<w< td=""><td>2<w< td=""><td>0.0010<t< td=""><td></td><td></td></t<></td></w<></td></w<></td></k<>	1 <w< td=""><td>2<w< td=""><td>0.0010<t< td=""><td></td><td></td></t<></td></w<></td></w<>	2 <w< td=""><td>0.0010<t< td=""><td></td><td></td></t<></td></w<>	0.0010 <t< td=""><td></td><td></td></t<>		
901016 0810	38985	E E	34 3	- X	1 × 1	34 34	1 × E	10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	0.0005 <w< td=""><td></td><td></td></w<>		
					4	1	1	500	20000		
	MAXIMUM		2	1	1	Ŋ	1	ហ	0.0350		
	ARITH HEAN		5 <a< td=""><td>1<a< td=""><td>1<a< td=""><td>5<a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0066<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0066<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0066<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<></td></a<>	5 <a< td=""><td>1<a< td=""><td>5<a< td=""><td>0.0066<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<>	1 <a< td=""><td>5<a< td=""><td>0.0066<a< td=""><td></td><td></td></a<></td></a<></td></a<>	5 <a< td=""><td>0.0066<a< td=""><td></td><td></td></a<></td></a<>	0.0066 <a< td=""><td></td><td></td></a<>		
	GEOM MEAN		5 <a< td=""><td>1 < A</td><td>1 < A</td><td>5<a< td=""><td>1<4</td><td>5<a< td=""><td>0.0023<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></a<>	1 < A	1 < A	5 <a< td=""><td>1<4</td><td>5<a< td=""><td>0.0023<a< td=""><td></td><td></td></a<></td></a<></td></a<>	1<4	5 <a< td=""><td>0.0023<a< td=""><td></td><td></td></a<></td></a<>	0.0023 <a< td=""><td></td><td></td></a<>		
CTO	CID DEV CECM *1	u c	n o	7	7	200	- 0	TU G	0.0005		
# CAMD	SAMP TH STATISTICS		000	4/0	*/O C	4/0	4 0	0 × A	0.0115 <a< td=""><td></td><td></td></a<>		
	7. SAMP (EXCLUDED)		n		4	7	χ.	5	7		

SAMPLE POINT: BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6

0.005<W 0.005<W 0.005<W LEAD MG/L AS PB 0.005<W 0.005<W 0,005<W 0.005<W M>500'0 0.005<W 0.005<W 0.005<W 0.005<W 0.008<T 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<T 0.005<W 0.005<T 0.005<W 0.005<W 0.005<W 0.005<W 0.007<T D.006<T DISTANCE: 11.909 UNF. TOT. 0.018<T 0,016<T 1260 PBUT STORET CODE: MG/L AS N 0.0070 0.0040<T 0.0230 N02-N NNO2FR FIL. REAC 0.0400 0.0340 0.0230 0.0140 0.0110 0.0120 0.0120 0.0560 0.0220 0.0050 0.0320 0.0120 0.0110 0.0070 0.0070 0.0060 0.0060 0.0140 0.0150 0.0110 0.0090 0.0700 0.0500 MG/L AS N NNOTFR N02+N03N FIL. REAC 2.700 2.540 3.220 2.750 2.570 2.570 2.670 2.810 2.440 2.380 2.280 2.250 2.130 1.930 2.000 1.980 1.640 1.400 1.330 6.880 1.350 1.470 1.470 1.470 1.470 1.780 1.650 1.590 1.240 0.980 1.110 2.040 1.640 1.260 01 REGION: 0.02<W 0.02<W 0.02<W 0.02<W 0.02<W 0.02<W 0.02 cm 0.02<W 0.02<W 0.02<W 0.02<W 0.02<W AS HG 0.01<W 0.02<W 0.07<T 0.02<W 0.02<W 0.02<W UG/L 0.02<W 0.02<W 0.02<W 0.02<W MERCURY JNF. TOT. HGUT 4 0.0016<T 0.0017<T 0.0012<T 0.0017<T 0.0013<T COPPER MG/L 0.0025<T 0.0005<W 0.0005<W U T M: 17 0474075.0 4922390.0 UNF. TOT. AS CU 0.0019<T 0.0016<T 0.0018<T 0.0022<T 0.0023<T J.0017<T 0.0021<T 0.0018<T 0.0021<T 0.0017<T D.0005<W 0.0005<W 0.0020<T D.0009<T 0.0011<T 0.0019<T 0.0013<T 0.0012<T 0.0015<T 0.0020<T 0.0020<T 0.0026 0.0071 0.0045 0.0044 0.0030 CUUT 0.0028 0.0041 0.0030 FERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON 25C UMHO/CM AT 25 C COND25 CONDUCT 62 72 72 90 88 88 88 88 88 418 442 462 461 461 481 481 AS CD MG/L 0.0002<W 0.0002<W CADMIUM 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0.0002<W 0,0002<W 0.0002<W 0002<W 0.0002<W JNF. TOT. 0.0004<T CDUT MG/L CACO3 ALK TOTAL LAT: 44 27 22.68 LONG: 081 19 33.09 ALKT 202.3 112.0 136.0 175.8 182.8 185.6 186.1 186.1 177.8 200.2 200.2 198.8 202.6 212.4 207.2 214.0 234.1 234.5 201.8 207.1 206.0 FLOW GAUGE FED 02FC001 FGPROJ SUB-PROJ CODE PROJECT 5010 0103 0103 0103 0103 0103 0103 0103 0103 0103 0101 5010 0103 Ξ **FWSADP** SAMPLE DEPTH SAMPLE 42407 42410 42411 42412 42413 42414 42416 42417 42418 42419 42420 42422 42424 42423 42425 42426 42427 42428 42429 42430 42431 42435 42436 42438 42400 42402 42403 42404 42405 42406 42408 42432 42433 STATION TYPE: RIVER *=INTERIM TEST-NAME: 1500 0800 1430 1430 0830 0830 1100 0815 009 1600 1600 1400 HOUR 0060 1300 0830 0830 3815 900312 1700 0800 0091 0800 009 1030 009 1600 1600 1000 1600 1600 0800 0800 0800 1600 0800 0800 H 900509 900523 YYMMDD 900124 900319 900425 900503 900109 900118 900119 900123 900125 900129 900214 900308 900314 900315 900317 900321 300327 900328 900419 900522 SAMPLE 900122 900201 900202 900206 900222 900228 900313 900320 900326 900405 900411 DATE

STATION ID: 08-0123-030-82		STORET CODE:	
		MAJOR BASIN: GREAT LAKES	MINOR RASTN: LAKE HIRON
B.O.W./ SITE: SAUGEEN RIVER	: BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6	: RIVER FLOW GAUGE FED 02FC001	
B.O.W./ SITE	SAMPLE POINT	STATION TYPE	

The color of the						TERM STREAM: SAUGEEN RIVER	I: LAKE HURON I: SAUGEEN RI	RIVER				1260
FHSADP FGPROJ ALKT CDUT CONIDES CUNT HIGUT		LAT:	44 27 22.68		19 33.09	U T M: 17	0474075.0	4922390.0 4	REGION:		DISTANCE:	11.909
Marine M	итевти	TEST-NAME:			ALKT	CADMITIM	COND25	COUNT	HGUT	NOOTER	NNOZFR	PBUT
The color The	ш				TOTAL	UNF. TOT.	250	UNF. TOT.	UNF. TOT.	FIL. REAC	FIL. REAC	UNF. TOT.
1000 42441 0.30 0.103 222.9 0.0005c4 535 0.0020c7 0.0244 0.970 0.01110 0.0005c4 0.30 0.0103 222.2 0.0005c4 0.002c4 0.970 0.002c4 0.0005c4 0.0005c	0	~		SUB	AS CACO3	AS CD	AT 25 C	AS CU	AS HG	AS N	MG/L AS N	AS PB
1200 42442 0.30 0.103 225.2 0.0002c4 553 0.0030 0.0244 0.970 0.0170 1200 42444 0.30 0.103 225.2 0.0002c4 552 0.0030 0.0244 0.970 0.0170 1200 42444 0.30 0.103 2.05.2 0.0002c4 552 0.0030 0.0244 0.750 0.0290 1200 42446 0.30 0.103 2.05.2 0.0002c4 552 0.0030 0.0244 0.750 0.0290 1200 42446 0.30 0.103 2.04.4 0.0002c4 553 0.0002c4 0.024 0.050 1200 42446 0.30 0.103 2.04.4 0.0002c4 553 0.0002c4 0.0002c4 0.0002c4 1200 42446 0.30 0.103 2.04.5 0.0002c4 554 0.0002c4 0.0002c4 0.0002c4 1200 42446 0.30 0.103 2.04.5 0.0002c4 554 0.0002c4 0.0002c4 0.0002c4 1200 42446 0.30 0.103 2.04.5 0.0002c4 556 0.0003c4 0.0002c4 0.0002c4 1200 42450 0.30 0.103 2.04.5 0.0002c4 556 0.0003c4 0.0002c4 0.0002c4 1200 42450 0.30 0.103 2.04.5 0.0002c4 556 0.0003c4 0.0002c4				0103	222.9	0.0005 <t< td=""><td>909</td><td>0.0020<t< td=""><td>0.02<w< td=""><td>1.880</td><td>0.0110</td><td>0.005<</td></w<></td></t<></td></t<>	909	0.0020 <t< td=""><td>0.02<w< td=""><td>1.880</td><td>0.0110</td><td>0.005<</td></w<></td></t<>	0.02 <w< td=""><td>1.880</td><td>0.0110</td><td>0.005<</td></w<>	1.880	0.0110	0.005<
1100 92444 0.30 0.103 225.2 0.0002c44 535 0.0020c7 0.02c4 0.2090 0.0090 0.002c4 0.30 0.103 0.0002c4 0.30 0.0002c4 0.200				0103	223.2	0.0002 <w< td=""><td>533</td><td>0.0030</td><td>0.02<w< td=""><td>0.970</td><td>0.0170</td><td>0.005<h< td=""></h<></td></w<></td></w<>	533	0.0030	0.02 <w< td=""><td>0.970</td><td>0.0170</td><td>0.005<h< td=""></h<></td></w<>	0.970	0.0170	0.005 <h< td=""></h<>
1400 42446 0.30 0.103 2.09.2 0.0002c44 532 0.0003c 0.02c44 0.575 0.0290 0.1000 42446 0.30 0.103 2.10.7 0.0002c44 532 0.0003c 0.02c44 0.580 0.01010 0.0000c 0.0				0103	225.2	0.0002 <w< td=""><td>535</td><td>0,0020<t< td=""><td>0.02<w< td=""><td>0.810</td><td>0.0000</td><td>0.005<</td></w<></td></t<></td></w<>	535	0,0020 <t< td=""><td>0.02<w< td=""><td>0.810</td><td>0.0000</td><td>0.005<</td></w<></td></t<>	0.02 <w< td=""><td>0.810</td><td>0.0000</td><td>0.005<</td></w<>	0.810	0.0000	0.005<
1400 42446 0.30 0.103 210.7 0.0002c44 499 0.0030 0.0244 0.560 0.0110 0.0005	_			0103	209.2	0.0002 <w< td=""><td>532</td><td>0.0030</td><td>0.02<w< td=""><td>0.775</td><td>0.0290</td><td>0.005<</td></w<></td></w<>	532	0.0030	0.02 <w< td=""><td>0.775</td><td>0.0290</td><td>0.005<</td></w<>	0.775	0.0290	0.005<
1330 42447 0.33 0.103 2.04,4 0.0000244 533 0.0005644 0.0244 0.0569 0.0009 0.00069				0103	210.7	0.0002 <w< td=""><td>665</td><td>0.0030</td><td>0.02<w< td=""><td>0.580</td><td>0.0110</td><td>0.005<4</td></w<></td></w<>	665	0.0030	0.02 <w< td=""><td>0.580</td><td>0.0110</td><td>0.005<4</td></w<>	0.580	0.0110	0.005<4
1400 42448 0.30 0.103 2.04, 4 0.000244 543 0.000544 0.0244 0.0254 0.0465 0.00066 0.0244 0.455 0.0006 0.000644 0.0244 0.455 0.0006 0.000644 0.0244 0.455 0.0006 0.000644 0.0244 0.455 0.0006 0.000644				0103	204.8	0.0002 <w< td=""><td>539</td><td>0.0020<t< td=""><td>0.02<w< td=""><td>0.600</td><td>0.0000</td><td>0.005<</td></w<></td></t<></td></w<>	539	0.0020 <t< td=""><td>0.02<w< td=""><td>0.600</td><td>0.0000</td><td>0.005<</td></w<></td></t<>	0.02 <w< td=""><td>0.600</td><td>0.0000</td><td>0.005<</td></w<>	0.600	0.0000	0.005<
100 42449 0.30 0.103 203.9 0.000244 544 0.000544 0.456 0.000694 0.456 0.000691 0.0044 0.456 0.000601 0.0044 0.000601 0.0044 0.456 0.000601 0.0044 0.456 0.000601 0.0044 0.000601 0.0044 0.456 0.00601 0.0044 0.000601 0.0044 0.456 0.00601 0.0044 0.000601 0.0044 0.006	900716 1400			0103	204.4	0.0002 <w< td=""><td>533</td><td>0.0005<w< td=""><td>0.02<w< td=""><td>0.575</td><td>0.0080</td><td>0.005<4</td></w<></td></w<></td></w<>	533	0.0005 <w< td=""><td>0.02<w< td=""><td>0.575</td><td>0.0080</td><td>0.005<4</td></w<></td></w<>	0.02 <w< td=""><td>0.575</td><td>0.0080</td><td>0.005<4</td></w<>	0.575	0.0080	0.005<4
1450 42450 0.30 0.101 192.5 0.000244 554 0.0030 0.0244 0.465 0.00090 1500 42450 0.30 0.103 204.7 0.000244 525 0.0030 0.0244 0.465 0.00090 1520 42452 0.30 0.103 192.5 0.000244 558 0.0030 0.0244 0.465 0.00090 1520 42452 0.30 0.103 192.5 0.000244 558 0.0030 0.0244 0.575 0.00090 1520 42455 0.30 0.103 192.8 0.000244 593 0.0030 0.0244 0.550 0.00090 1520 42455 0.30 0.103 192.8 0.000244 593 0.0030 0.0244 0.550 0.00070 1520 42455 0.30 0.103 2.16.7 0.000244 593 0.0030 0.0244 0.550 0.00070 1500 42456 0.30 0.103 2.16.7 0.000244 593 0.0030 0.0244 0.550 0.00070 1500 42456 0.30 0.103 2.24.2 0.000244 593 0.0030 0.0244 0.550 0.00070 1500 42456 0.30 0.103 2.24.2 0.000244 593 0.0030 0.0244 0.550 0.00404 1400 42456 0.30 0.103 2.24.2 0.000244 593 0.0030 0.0244 1.410 0.0070 1500 42456 0.30 0.103 2.24.2 0.000244 593 0.00050 0.0244 1.410 0.0070 1500 42461 0.30 0.103 2.24.2 0.000244 499 0.0030 0.0244 1.540 0.0070 1500 42465 0.30 0.103 2.24.8 0.000244 499 0.0030 0.0244 1.540 0.0070 1500 42465 0.30 0.103 2.24.8 0.000244 479 0.0030 0.0244 1.540 0.0070 1500 42465 0.30 0.103 2.24.8 0.000244 479 0.0030 0.0244 1.540 0.0180 1500 42466 0.30 0.103 2.24.5 0.000244 479 0.0030 0.0244 1.540 0.0180 1500 42466 0.30 0.103 2.24.5 0.000244 479 0.0030 0.0244 1.540 0.0180 1500 42466 0.30 0.103 2.24.3 0.000244 479 0.0030 0.0244 1.540 0.0180 1500 42466 0.30 0.103 2.14.3 0.000244 474 0.00244 1.550 0.0264 1500 42466 0.30 0.103 2.14.3 0.000244 445 0.00104 0.0244 1.550 0.0030 1500 42466 0.30 0.103 2.14.3 0.000244 445 0.00104 0.0244 1.550 0.0030	-			0103	203.9	0.0002 <w< td=""><td>546</td><td>0.0005<w< td=""><td>0.02<w< td=""><td>0.555</td><td>0900.0</td><td>0.005<</td></w<></td></w<></td></w<>	546	0.0005 <w< td=""><td>0.02<w< td=""><td>0.555</td><td>0900.0</td><td>0.005<</td></w<></td></w<>	0.02 <w< td=""><td>0.555</td><td>0900.0</td><td>0.005<</td></w<>	0.555	0900.0	0.005<
11100 42450 0.30 0103 203.9 0.000244 556 0.0030 0.0244 0.675 0.00900 11230 42451 0.30 0103 203.9 0.000244 556 0.0030 0.0244 0.675 0.00900 11230 42452 0.30 0103 196.9 0.000244 556 0.0030 0.0244 0.655 0.0090 11230 42455 0.30 0103 197.8 0.000244 559 0.0030 0.0244 0.520 0.00000 11230 42455 0.30 0103 197.8 0.000244 599 0.0030 0.0244 0.550 0.00000 11230 42455 0.30 0103 219.7 0.000244 593 0.0030 0.0244 0.550 0.00000 11230 42455 0.30 0103 219.7 0.000244 593 0.0030 0.0244 0.550 0.00000 11230 42455 0.30 0103 219.7 0.000244 574 0.0030 0.0244 0.550 0.00000 11230 42456 0.30 0103 224.2 0.0000244 574 0.0030 0.0244 0.550 0.000000 11230 42456 0.30 0103 224.2 0.0000244 574 0.0030 0.0244 0.550 0.00000000000000000000000000000				0101	192.5	0,0002 <w< td=""><td>. 543</td><td>0.0030</td><td>0.02<w< td=""><td>0.485</td><td>0.0000</td><td>0.005<</td></w<></td></w<>	. 543	0.0030	0.02 <w< td=""><td>0.485</td><td>0.0000</td><td>0.005<</td></w<>	0.485	0.0000	0.005<
12.0 42452 0.30 0.103 203.9 0.0002~44 571 0.0040 0.0244 0.0369 0.00990 0.0959 0.2044 0.0369 0.00990 0.0959 0.00990 0.0959 0.00990 0.09545 0.0090 0.00990 0.00990 0.0244 0.0360 0.00964 0.0090 0.00964 0.00				0103	204.7	0.0002 <w< td=""><td>526</td><td>0.0030</td><td>0.02<w< td=""><td>0.430</td><td>0,0040<t< td=""><td>0,005<</td></t<></td></w<></td></w<>	526	0.0030	0.02 <w< td=""><td>0.430</td><td>0,0040<t< td=""><td>0,005<</td></t<></td></w<>	0.430	0,0040 <t< td=""><td>0,005<</td></t<>	0,005<
1230	0 .			0103	203.9	0.0002 <w< td=""><td>571</td><td>0.0040</td><td>0.02<w< td=""><td>0.675</td><td>0.0000</td><td>0.005<</td></w<></td></w<>	571	0.0040	0.02 <w< td=""><td>0.675</td><td>0.0000</td><td>0.005<</td></w<>	0.675	0.0000	0.005<
1350 42454 0.30 0103 194.7 0.0002c44 593 0.0030 0.02c48 0.540 0.0050 0.02c48 0.545 0.0060 0.002c48 593 0.0030 0.02c48 0.545 0.0060 0.002c48 593 0.0030 0.02c48 0.545 0.0060 0.002c48 594 0.0030 0.02c48 0.555 0.0060 0.002c48 594 0.0030 0.02c48 0.555 0.0060 0.002c48 594 0.0030 0.02c48 0.655 0.0060 0.002c48 594 0.0030 0.02c48 0.655 0.0060 0.002c48 594 0.0030 0.02c48 0.02c48 0.0002c48 591 0.0030 0.02c48 0.02c48 0.0002c48 591 0.0030 0.02c48 0.02c48 0.0002c48 591 0.0030 0.02c48 0.0002c48 591 0.0002c48 591 0.0002c48 591 0.0002c48 0.0002c48 591 0.0002c48 0.0002c48 591 0.0002c48 0.0002c48 591 0.0002c48 1.350 0.0002c48 591 0.0002c48 1.350 0.0002c48 591 0.0002c48 1.350 0.0002c48 591 0.0002c48 1.350 0.0002c				0103	196.9	0.0002 <w< td=""><td>200</td><td>0.0030</td><td>0.02 W</td><td>0.580</td><td>0.0050</td><td>0.005</td></w<>	200	0.0030	0.02 W	0.580	0.0050	0.005
1300 42455 0.30 0.103 2.00.2 0.0002 42456 0.30 0.103 2.10,7 0.0002 42456 0.30 0.103 2.10,7 0.0002 42456 0.30 0.103 2.10,7 0.0002 				0103	194.7	0.0002 <w< td=""><td>065</td><td>0.0030</td><td>0.02<w< td=""><td>0.540</td><td>0.0120</td><td>0.005<</td></w<></td></w<>	065	0.0030	0.02 <w< td=""><td>0.540</td><td>0.0120</td><td>0.005<</td></w<>	0.540	0.0120	0.005<
0900 42456 0.30 0103 216.7 0.0002 0900 42458 0.30 0103 219.7 0.0002 0900 42458 0.30 0103 229.2 0.0002 0900 42459 0.30 0103 229.2 0.0002 0900 42459 0.30 0103 229.2 0.0002 0900 42460 0.30 0103 229.8 0.0002 0900 42461 0.30 0103 229.8 0.0002 0900 42462 0.30 0103 225.8 0.0002 0900 42465 0.30 0103 220.8 0.0002 0900 42466 0.30 0103 220.8 0.0002 0900 42465 0.30 0103 220.8 0.0002 0900 42466 0.30 0103 220.8 0.0002 0900 42469 0.30 0103 220.8 0.0002 0900 42460 0.30 0103 20.8 0.0002 0900 42460 0.30 0103 0103 20.8 0.0002 0900 42460 0.30 0103 0103 0103 0103 0103 0103 0900 42471 0.30 0103 0103 0103 0103 0103 0900 42471 0.30 0103 0103 0103 0103 0103 0103 0900 42471 0.30 0103 0103 0103 0103 0103 0103 010	-			0103	200.2	0,0002 <w< td=""><td>593</td><td>0,0030</td><td>0.02<w< td=""><td>0.635</td><td>0,0000</td><td>0.005<</td></w<></td></w<>	593	0,0030	0.02 <w< td=""><td>0.635</td><td>0,0000</td><td>0.005<</td></w<>	0.635	0,0000	0.005<
0900 42457 0.30 0.013 219.7 0.0002 4 574 0.0030 0.02 4 0.0550 0.0560 14000 42459 0.30 0.103 224.2 0.0004 4 551 0.0005 0.02 1.410 0.0070 900 42469 0.30 0.103 224.2 0.0002 4 1.410 0.0070 990 42460 0.30 0.103 223.5 0.0002 4 0.02 1.410 0.0070 990 42461 0.30 0.103 223.5 0.0002 4 0.002 1.350 0.0070 990 42462 0.30 0.103 222.8 0.0002 4 0.002 1.350 0.0070 0830 42465 0.30 0.103 221.5 0.0002 4 497 0.0030 0.024 1.540 0.0070 0800 42465 0.30 0.103 221.5 0.0002 4 497 0.00	_			0103	216.7	0.0002 <w< td=""><td>509</td><td>0.0030</td><td>0.02<w< td=""><td>0.695</td><td>0.0040<t< td=""><td>0.005<</td></t<></td></w<></td></w<>	509	0.0030	0.02 <w< td=""><td>0.695</td><td>0.0040<t< td=""><td>0.005<</td></t<></td></w<>	0.695	0.0040 <t< td=""><td>0.005<</td></t<>	0.005<
1400 42458 0.30 0.103 230.6 0.000447 551 0.00054 0.0224 1.410 0.00090 1400 42460 0.30 0.103 224.2 0.000244 519 0.00054 1.410 0.00990 142460 0.30 0.103 224.2 0.000244 519 0.0035 0.0224 1.350 0.0070 142460 0.30 0.103 243.8 0.000047 572 0.0050 0.0224 1.350 0.0070 142461 0.30 0.103 243.8 0.000244 499 0.0050 0.0244 1.930 0.0070 142462 0.30 0.103 222.8 0.000244 499 0.0030 0.0224 1.540 0.0110 142464 0.30 0.103 222.5 0.000244 499 0.0030 0.0244 1.540 0.0110 142465 0.30 0.103 221.5 0.000244 479 0.0030 0.0244 1.540 0.0114 142465 0.30 0.103 221.5 0.000244 479 0.00207 0.0244 1.540 0.0140 142466 0.30 0.103 221.5 0.000244 479 0.00207 0.0244 1.540 0.0140 142468 0.30 0.103 221.3 0.000244 479 0.00207 0.0244 1.550 0.0240 142469 0.30 0.103 221.3 0.000244 479 0.00207 0.0244 1.580 0.0140 142404 0.30 0.103 221.3 0.000244 452 0.00207 0.0244 1.580 0.0050 142468 0.30 0.103 221.3 0.000244 452 0.00207 0.0244 1.580 0.0050 142469 0.30 0.103 214.3 0.000244 452 0.002047 0.0244 1.580 0.0050 142404 0.30 0.103 214.3 0.000244 465 0.00204 0.0244 1.580 0.01564 144411 0.30 214.3 0.000244 465 0.00204 0.0244 1.580 0.01564 144411 0.30 214.3 0.00024 466 0.00204 0.0244 1.580 0.01564 144411 0.30 3.00 3.00024 465 0.00204 0.0244 1.580 0.01564 144411 0.30 0.30 0.00024 465 0.00024 0.00144 0.0044 0.0044 14441 0.30 0.30 0.00024 465 0.00024 0.014 0.0044	_			0103	219.7	0.0002 <w< td=""><td>574</td><td>0.0030</td><td>0.02<w< td=""><td>0.550</td><td>0.0540</td><td>0.005<</td></w<></td></w<>	574	0.0030	0.02 <w< td=""><td>0.550</td><td>0.0540</td><td>0.005<</td></w<>	0.550	0.0540	0.005<
0900 42459 0.30 0103 224;2 0.00024W 509 0.00056M 0.0224W 1.350 0.00990 09900 42460 0.30 0103 228;5 0.00024W 511 0.0050 0.0224W 1.350 0.0070 09900 42461 0.30 0103 228.5 0.00024W 511 0.0050 0.0224W 1.350 0.0070 09830 42462 0.30 0103 243.8 0.00024W 499 0.0050 0.0224W 1.350 0.0070 0.0024W 1.350 0.0070 0.0024W 1.350 0.0070 0.0024W 1.350 0.0070 0.0024W 1.350 0.0026W 42465 0.30 0103 222.5 0.00024W 499 0.0030 0.0224W 1.540 0.0140 0.00024W 42465 0.30 0103 220.7 0.00024W 499 0.0030 0.0224W 1.540 0.0140 0.0024W 42467 0.30 0103 220.7 0.00024W 429 0.0030 0.0224W 1.540 0.0140 0.024W 42467 0.30 0103 220.3 0.00024W 429 0.0030 0.0224W 1.520 0.0140 0.024W 42467 0.30 0103 220.3 0.00024W 424 0.00024W 42447 0.0024W 42447 0.00024W 42447 0				0103	230.6	0.0004 <t< td=""><td>551</td><td>0.0030</td><td>0.02<w< td=""><td>1.010</td><td>0.0000</td><td>0,005<</td></w<></td></t<>	551	0.0030	0.02 <w< td=""><td>1.010</td><td>0.0000</td><td>0,005<</td></w<>	1.010	0.0000	0,005<
900 42466 0.30 0103 233.5 0.0002-W 511 0.0030 0.02-W 1.350 0.00070 930 42462 0.30 0103 243.8 0.0003-T 572 0.0050 0.02-W 1.350 0.0070 930 42462 0.30 0103 243.0 0.0002-W 499 0.0030 0.02-W 1.350 0.0070 930 42465 0.30 0103 222.8 0.0002-W 499 0.0030 0.02-W 1.350 0.0110 930 42465 0.30 0103 222.8 0.0002-W 497 0.0030 0.02-W 1.350 0.0110 930 42465 0.30 0103 221.5 0.0002-W 497 0.0030 0.02-W 1.350 0.0110 930 42465 0.30 0103 221.5 0.0002-W 499 0.0030 0.02-W 1.350 0.0140 930 42466 0.30 0103 221.5 0.0002-W 499 0.0030 0.02-W 1.540 0.0140 930 42469 0.30 0103 201.3 0.0002-W 429 0.0020-T 0.02-W 1.540 0.0140 930 42469 0.30 0103 201.3 0.0002-W 429 0.0020-T 0.02-W 1.540 0.0140 930 42469 0.30 0103 201.3 0.0002-W 429 0.0020-T 0.02-W 1.540 0.0140 930 42471 0.30 0103 201.3 0.0002-W 474 0.0010-T 0.02-W 1.580 0.0200 930 42471 0.30 0103 201.3 0.0002-W 474 0.0010-T 0.02-W 1.580 0.0200 930 42471 0.30 0103 201.3 0.0002-W 475 0.002-T 0.02-W 1.580 0.0175-W 930 930 930 930 930 930 930 930 930 930	_			0103	224.2	0.0002 <w< td=""><td>509</td><td>0.0005<w< td=""><td>0.02<w< td=""><td>1.410</td><td>0.0000</td><td>0.005<</td></w<></td></w<></td></w<>	509	0.0005 <w< td=""><td>0.02<w< td=""><td>1.410</td><td>0.0000</td><td>0.005<</td></w<></td></w<>	0.02 <w< td=""><td>1.410</td><td>0.0000</td><td>0.005<</td></w<>	1.410	0.0000	0.005<
900 42461 0.30 0.103 243.8 0.00044T 572 0.0050 0.0244 0.990 0.0070 9030 42463 0.30 0.103 243.8 0.00024H 599 0.0050 0.0244 0.990 0.0050 9030 42464 0.30 0.103 222.8 0.00024H 499 0.0030 0.024H 1.540 0.0110 9030 42465 0.30 0.103 226.8 0.00024H 499 0.0030 0.024H 1.540 0.01140 9030 42465 0.30 0.103 221.5 0.00024H 499 0.0030 0.024H 1.540 0.0140 9030 42465 0.30 0.103 221.5 0.00024H 479 0.00207T 0.024H 1.540 0.0140 9030 42469 0.30 0.103 221.3 0.00024H 479 0.00207T 0.024H 1.540 0.0140 9030 42469 0.30 0.103 201.3 0.00024H 479 0.00207T 0.024H 1.550 0.0240 9030 42469 0.30 0.103 201.3 0.00024H 472 0.00207T 0.024H 1.550 0.0240 9030 42470 0.30 0.103 221.3 0.00024H 452 0.00207T 0.024H 1.550 0.0250 9030 42471 0.30 0.103 214.3 0.00024H 453 0.00104T 0.024H 1.550 0.0050 9030 42471 0.30 0.103 214.3 0.00024H 465 0.0027H 1.550 0.0126A 9030 9030 42471 0.30 9030 9030 9030 90304H 953 0.0026A 0.024H 1.550 0.0050	_			0103	233.5	0.0002 <w< td=""><td>511</td><td>0.0030</td><td>0.02<w< td=""><td>1.350</td><td>0.0070</td><td>0.005<</td></w<></td></w<>	511	0.0030	0.02 <w< td=""><td>1.350</td><td>0.0070</td><td>0.005<</td></w<>	1.350	0.0070	0.005<
0830 42462 0.30 0103 243.0 0.00034T 586 0.0060 0.0244 0.990 0.0050 0.0830 42464 0.30 0113 222.8 0.00024W 497 0.0030 0.024W 1.540 0.0110 0.0830 42464 0.30 0103 222.8 0.00024W 497 0.0030 0.024W 1.540 0.0110 0.00024W 497 0.0030 0.024W 1.540 0.0110 0.00024W 42465 0.30 0103 221.5 0.00024W 497 0.0030 0.024W 1.540 0.0110 0.00024W 42467 0.30 0103 220.7 0.00024W 479 0.0030 0.024W 1.540 0.0140 0.024W 1.540 0.0024W 1.540 0.0024W 42467 0.30 0103 201.3 0.00024W 472 0.00204T 0.024W 1.520 0.0240 0.024W 0.024W 42470 0.03 0.013 201.3 0.00024W 472 0.00204T 0.024W 1.580 0.0260 0.02				0103	243.8	0.0004 <t< td=""><td>572</td><td>0.0050</td><td>0.02<w< td=""><td>1.030</td><td>0.0000</td><td>0.005<</td></w<></td></t<>	572	0.0050	0.02 <w< td=""><td>1.030</td><td>0.0000</td><td>0.005<</td></w<>	1.030	0.0000	0.005<
0830 42465 0.30 0.003 222.8 0.00024W 499 0.0030 0.024W 1.554 0.01010 0830 42465 0.30 0.013 222.8 0.00024W 490 0.0030 0.024W 1.554 0.0110 1400 42465 0.30 0.103 221.5 0.00024W 490 0.0030 0.024W 1.550 0.0140 0900 42466 0.30 0.103 221.5 0.00024W 479 0.0030 0.024W 1.540 0.0140 0800 42468 0.30 0.103 201.3 0.00024W 479 0.0030 0.024W 1.540 0.0140 0800 42468 0.30 0.103 201.3 0.00024W 479 0.00207T 0.024W 1.540 0.0140 0800 42469 0.30 0.103 201.3 0.00024W 477 0.00207T 0.024W 1.520 0.0350 0800 42470 0.30 0.103 201.3 0.00024W 477 0.00207T 0.024W 1.550 0.0350 0800 42471 0.30 0.103 201.3 0.00024W 473 0.00107T 0.024W 1.580 0.0020 0800 42471 0.30 0.103 201.3 0.00024W 463 0.00107T 0.024W 1.580 0.01200 0800 42471 0.30 0.103 201.3 0.00024W 463 0.00107T 0.024W 1.580 0.01200 0800 42471 0.30 0.103 201.3 0.00024W 463 0.00107T 0.024W 1.580 0.01200 0800 42471 0.30 0.103 201.3 0.00024W 463 0.0024A 1.589 0.01754A 0800 42471 0.30 0.0024W 473 0.00024W 465 0.0024A 1.589 0.01764A 0800 42471 0.30 0.00024W 466 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024W 466 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024W 466 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 475 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 475 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 466 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 466 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 455 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 466 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 466 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 455 0.00024A 0.024A 1.589 0.01764A 0800 42471 0.30 0.00024A 0.0	-			0103	243.0	0.0003 <t< td=""><td>586</td><td>0.0060</td><td>0.02<w< td=""><td>0.66.0</td><td>0.0050</td><td>0.005<</td></w<></td></t<>	586	0.0060	0.02 <w< td=""><td>0.66.0</td><td>0.0050</td><td>0.005<</td></w<>	0.66.0	0.0050	0.005<
00300 424645 0.30 0.103 226.8 0.000024N 497 0.0030 0.024N 1.550 0.0140 0900 42466 0.30 0.103 220.7 0.000024N 479 0.0030 0.024N 1.550 0.0140 0900 42466 0.30 0.103 120.7 0.000024N 479 0.0020 <t 0.000024n="" 0.0002="" 0.00024m="" 0.0004m="" 0.0010<t="" 0.0020<t="" 0.0026a="" 0.0090="" 0.00<="" 0.0126a="" 0.0140="" 0.0150="" 0.024="" 0.0240="" 0.024a="" 0.024m="" 0.024n="" 0.0320="" 0.103="" 0.30="" 000024m="" 0900="" 1.530="" 1.540="" 1.550="" 1.580="" 1.590="" 120.3="" 20.3="" 214.3="" 221.3="" 42466="" 42469="" 42470="" 42471="" 432="" 445="" 452="" 455="" 465="" td=""><td></td><td></td><td></td><td>0103</td><td>222.8</td><td>0.0002<w< td=""><td>665</td><td>0.0030</td><td>0.02<w< td=""><td>1.540</td><td>0.0110</td><td>0.005<</td></w<></td></w<></td></t>				0103	222.8	0.0002 <w< td=""><td>665</td><td>0.0030</td><td>0.02<w< td=""><td>1.540</td><td>0.0110</td><td>0.005<</td></w<></td></w<>	665	0.0030	0.02 <w< td=""><td>1.540</td><td>0.0110</td><td>0.005<</td></w<>	1.540	0.0110	0.005<
1400 42466 0.30 0.103 221.5 0.00024H 480 0.0030 0.0284 1.540 0.0180 0800 42467 0.30 0.103 220.7 0.00024H 479 0.00207T 0.0224H 1.540 0.0140 0800 42467 0.30 0.103 220.7 0.00024H 479 0.00207T 0.024H 1.630 0.0240 0800 42468 0.30 0.103 2.03.3 0.00024H 472 0.00207T 0.024H 1.630 0.0240 0800 42470 0.30 0.103 2.03.3 0.00024H 474 0.00207T 0.024H 1.580 0.0030 0800 42471 0.30 0.103 2.1.3 0.00024H 473 0.00107T 0.024H 1.580 0.0030 0800 42471 0.30 0.103 2.1.3 0.00024H 463 0.00107T 0.024H 1.580 0.0030 0800 42471 0.30 0.103 2.1.3 0.00024H 463 0.00107T 0.024H 1.580 0.0030 0800 42471 0.30 0.103 2.1.3 0.00024H 463 0.00107T 0.024H 1.580 0.01756A 0800 42471 0.30 0.103 2.1.3 0.00024 466 0.00234H 0.024H 1.580 0.01756A 0800 42471 0.30 0.103 2.1.3 0.00024H 463 0.00107T 0.024H 1.390 0.01756A 0800 42471 0.30 0.103 2.1.3 0.00024H 463 0.0024A 1.580 0.01756A 0800 0.0024H 0.30 0.00024H 463 0.0024A 0.024 1.580 0.01756A 0800 0.0024H 0.30 0.00024H 464 0.00035A 0.024 0.0360 0.01756A 0800 0.00024H 0.30 0.00024H 465 0.00024H 0.0005 0.01756A 0800 0.00024H 0.30 0.00024H 465 0.00025A 0.0124H 0.0005A 0.0126A 0800 0.00024H 0.0005A 0.00024H 0.0005A 0.0124H 0.0005A 0.0126A 0800 0.00024H 0.0005A 0.00024H 0.0005A 0.0124H 0.0005A 0.0124H 0.0005A 0.0124H 0.0005A 0.0126A				0103	226.8	0.0002 <w< td=""><td>465</td><td>0.0030</td><td>0.02<w< td=""><td>1.350</td><td>0.0140</td><td>0.005<</td></w<></td></w<>	465	0.0030	0.02 <w< td=""><td>1.350</td><td>0.0140</td><td>0.005<</td></w<>	1.350	0.0140	0.005<
0900 42466 0.30 0103 220.7 0.00024M 479 0.00224T 0.0224M 1.540 0.0140 0800 42468 0.30 0103 220.7 0.00024M 429 0.00230T 0.0224M 1.540 0.0240 0800 42468 0.30 0103 201.3 0.00024M 429 0.0020 <t 0.00024m="" 0.000<="" 0.0010<t="" 0.0020<t="" 0.0024m="" 0.00250="" 0.0124m="" 0.01250="" 0.01264m="" 0.01464m="" 0.014m="" 0.024m="" 0.0250="" 0.030="" 0.0320="" 0.0350="" 0.30="" 0103="" 0800="" 1.390="" 1.520="" 1.580="" 1.590="" 201.3="" 21.4="" 42470="" 42471="" 453="" 463="" 465="" 474="" td=""><td></td><td></td><td></td><td>0103</td><td>221.5</td><td>U.0002<w< td=""><td>084</td><td>0.0030</td><td>0.02<w< td=""><td>1.540</td><td>0.0180</td><td>0.005<</td></w<></td></w<></td></t>				0103	221.5	U.0002 <w< td=""><td>084</td><td>0.0030</td><td>0.02<w< td=""><td>1.540</td><td>0.0180</td><td>0.005<</td></w<></td></w<>	084	0.0030	0.02 <w< td=""><td>1.540</td><td>0.0180</td><td>0.005<</td></w<>	1.540	0.0180	0.005<
0800 4246 0.30 0103 181.5 0.00024H 396 0.0035 0.0224 1.400 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02240 0.02241 0.0				0103	220.7	0.0002 <w< td=""><td>614</td><td>0.0020<1</td><td>0.02<w< td=""><td>1.540</td><td>0.0140</td><td>0.005<</td></w<></td></w<>	614	0.0020<1	0.02 <w< td=""><td>1.540</td><td>0.0140</td><td>0.005<</td></w<>	1.540	0.0140	0.005<
42476 0.50 0.105 201.5 0.000244 429 0.002041 0.02244 1.550 0.0350 42470 0.50 0.103 220.3 0.000244 474 0.001047 0.0244 1.550 0.0350 0800 42470 0.30 0.103 221.3 0.000244 474 0.001047 0.0244 1.580 0.0030 0800 42471 0.30 0.103 214.3 0.000244 463 0.001047 0.0244 1.580 0.0090 0.0000 42471 0.30 0.103 214.3 0.000244 465 0.001047 0.0244 1.590 0.0090 0.0000 42471 0.30 243.8 0.000244 465 0.001047 0.0244 1.580 0.01200 0.0000 0.0000 0.1200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				0103	181.5	0.0002 <w< td=""><td>396</td><td>0.0030</td><td>0.02<w< td=""><td>1.400</td><td>0.0240</td><td>0.005<</td></w<></td></w<>	396	0.0030	0.02 <w< td=""><td>1.400</td><td>0.0240</td><td>0.005<</td></w<>	1.400	0.0240	0.005<
9800 42469 0.30 0.103 221.3 0.00024W 432 0.0024 1.520 0.02330 9800 42471 0.30 0.103 221.3 0.00024W 463 0.00104T 0.024W 1.590 0.0090 9800 42471 0.30 0.103 221.3 0.00024W 463 0.00104T 0.024W 1.590 0.0090 9800 42471 0.30 243.8 0.00024W 465 0.00104T 0.024W 1.590 0.0090 9800 42471 0.30 243.8 0.00024 466 0.00234 0.024 1.599 0.01754 9800 0.00024 455 0.0024 0.024 1.589 0.01754 9800 0.00024 455 0.0026 0.024 1.589 0.01754 9800 0.00024 455 0.0026 0.0024 0.0024 9800 0.00024 455 0.0026 0.0024 0.0024 9800 0.0002 0.0002 0.0036 0.014 0.390 0.00864 9800 0.0002 0.0002 0.0036 0.014 0.390 0.00864	_	7		0103	201.3	0.0002 <w< td=""><td>424</td><td>0.0020<1</td><td>0.02<w< td=""><td>1.630</td><td>0.0360</td><td>0.005<</td></w<></td></w<>	424	0.0020<1	0.02 <w< td=""><td>1.630</td><td>0.0360</td><td>0.005<</td></w<>	1.630	0.0360	0.005<
0800 42470 0.30 0103 221.5 0.0002cW 474 0.0010cT 0.02cW 1.580 0.0090 0800 42471 0.30 0103 214.3 0.0002cW 463 0.0010cT 0.02cW 1.580 0.0090 0800 42471 0.30 0103 214.3 0.0002cW 463 0.0010cT 0.02cW 1.390 0.0080 MAXINUM 0.30 243.8 0.0005 604 0.0071 0.07 6.880 0.12c0 0.0105cA 456 0.0023cA 0.02cA 1.589 0.0175cA 0.0002 456 0.0023cA 0.02cA 1.589 0.0175cA 0.0002 456 0.0002 0.01 0.380 0.0040 0.015cA 0.016cA				0103	205.3	0.0002 <w< td=""><td>432</td><td>0.0020<t< td=""><td>0.02<w< td=""><td>1.520</td><td>0.0230</td><td>0.005<</td></w<></td></t<></td></w<>	432	0.0020 <t< td=""><td>0.02<w< td=""><td>1.520</td><td>0.0230</td><td>0.005<</td></w<></td></t<>	0.02 <w< td=""><td>1.520</td><td>0.0230</td><td>0.005<</td></w<>	1.520	0.0230	0.005<
0000 42471 0.30 0103 214.3 0.0002 HAXINUH 0.30 243.6 0.0005 ARITH HEAN 0.30 193.3 0.0002 GEON HEAN 0.30 0.0002 SID DEV (GEOM #) 37.3 0.0001 APINTHINIUM 0.30 37.3 0.0001 SAPP CEXCHINEDA SAPP CEXCHINEDA TO SAPP CEXCHINEDA TO SA			0.30	0103	221.3	0.0002 <w< td=""><td>424</td><td>0.0010<t< td=""><td>0.02<w< td=""><td>1.580</td><td>0.0000</td><td>0.005<</td></w<></td></t<></td></w<>	424	0.0010 <t< td=""><td>0.02<w< td=""><td>1.580</td><td>0.0000</td><td>0.005<</td></w<></td></t<>	0.02 <w< td=""><td>1.580</td><td>0.0000</td><td>0.005<</td></w<>	1.580	0.0000	0.005<
HAXINUM 0.30 243.6 0.0005 604 0.0071 0.07 6.880 0.1200			0.30	0103	214.3	0.0002 <w< td=""><td>463</td><td>0.0010<t< td=""><td>0.02<w< td=""><td>1.390</td><td>0.0080</td><td>0.005<</td></w<></td></t<></td></w<>	463	0.0010 <t< td=""><td>0.02<w< td=""><td>1.390</td><td>0.0080</td><td>0.005<</td></w<></td></t<>	0.02 <w< td=""><td>1.390</td><td>0.0080</td><td>0.005<</td></w<>	1.390	0.0080	0.005<
ARTH HEAM 0.30 193.3 0.0002 <a 0.0023<a="" 0.0126<="" 0.0126<a="" 0.0175<a="" 0.02<a="" 1.372="" 1.559="" 466="" 666="" td=""><td></td><td>MAXIMU</td><td></td><td></td><td>243.8</td><td>0.0005</td><td>604</td><td>0.0071</td><td>0.07</td><td>6.880</td><td>0.1200</td><td>0.018</td>		MAXIMU			243.8	0.0005	604	0.0071	0.07	6.880	0.1200	0.018
STOP DEV (GEOM #)		ARITH HEA			193.3	0.0002 <a< td=""><td>995</td><td>0.0023<a< td=""><td>0.02<a< td=""><td>1.589</td><td>0.0175<a< td=""><td>0.006<a< td=""></a<></td></a<></td></a<></td></a<></td></a<>	995	0.0023 <a< td=""><td>0.02<a< td=""><td>1.589</td><td>0.0175<a< td=""><td>0.006<a< td=""></a<></td></a<></td></a<></td></a<>	0.02 <a< td=""><td>1.589</td><td>0.0175<a< td=""><td>0.006<a< td=""></a<></td></a<></td></a<>	1.589	0.0175 <a< td=""><td>0.006<a< td=""></a<></td></a<>	0.006 <a< td=""></a<>
STD DEV (GEOM *)		GEOM HEA			188.9	0.0002 <a< td=""><td>455</td><td>0.0020<a< td=""><td>0.02<a< td=""><td>1.372</td><td>0.0126<a< td=""><td>0.005<a< td=""></a<></td></a<></td></a<></td></a<></td></a<>	455	0.0020 <a< td=""><td>0.02<a< td=""><td>1.372</td><td>0.0126<a< td=""><td>0.005<a< td=""></a<></td></a<></td></a<></td></a<>	0.02 <a< td=""><td>1.372</td><td>0.0126<a< td=""><td>0.005<a< td=""></a<></td></a<></td></a<>	1.372	0.0126 <a< td=""><td>0.005<a< td=""></a<></td></a<>	0.005 <a< td=""></a<>
STD DEV (GEDM *) ST. 3 0.0001 <a 0.0013<a="" 0.0186<a="" 0.01<a="" 0.932="" 34hp="" 71="" 71<="" 73="" 94="" in="" statistics="" td=""><td></td><td>MINIM</td><td></td><td></td><td>98.3</td><td>0.0002</td><td>546</td><td>0.0005</td><td>0.01</td><td>0.380</td><td>0,0000</td><td>0,005</td>		MINIM			98.3	0.0002	546	0.0005	0.01	0.380	0,0000	0,005
SAMP IN STATISTICS 73 71 71 71 71 71 71 71 71 71 71 71 71 71		EV (GEOM \$			37.3	0.0001 <a< td=""><td>56</td><td>0.0013<a< td=""><td>0.01<a< td=""><td>0.932</td><td>0.0186<a< td=""><td>0.002<</td></a<></td></a<></td></a<></td></a<>	56	0.0013 <a< td=""><td>0.01<a< td=""><td>0.932</td><td>0.0186<a< td=""><td>0.002<</td></a<></td></a<></td></a<>	0.01 <a< td=""><td>0.932</td><td>0.0186<a< td=""><td>0.002<</td></a<></td></a<>	0.932	0.0186 <a< td=""><td>0.002<</td></a<>	0.002<
		STATISTIC			71	71	71	71	71	71	71	71

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: BRUCE CO ROAD 3, NORTH OF BURGOVNE SR-6 STATION TYPE: RIVER FLOW GAUGE FED 02FC001

002 1260	11.909	PLDMDT	DMDT MTHXYLLR NG/L	400k W>04	M>05	40 <w< th=""><th>W>04 W>04 W>04</th><th>M>04</th><th></th><th></th><th>40<w 40<w< th=""><th>M>05</th></w<></w </th></w<>	W>04 W>04 W>04	M>04			40 <w 40<w< th=""><th>M>05</th></w<></w 	M>05
120	DISTANCE:	PIDIEL	DIELDRIN NG/L	1 < W	1 <k< td=""><td>1 < K</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>₹</td><td></td><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1 ¢ W</td></k<>	1 < K	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₹			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 ¢ W
	01	P1CHLA	CHLRDANE ALPHA NG/L	10 <w< td=""><td>10<w< td=""><td>10<w< td=""><td>10 < W</td><td>10 K</td><td></td><td></td><td>10<w< td=""><td>10<w 10<w< td=""></w<></w </td></w<></td></w<></td></w<></td></w<>	10 <w< td=""><td>10<w< td=""><td>10 < W</td><td>10 K</td><td></td><td></td><td>10<w< td=""><td>10<w 10<w< td=""></w<></w </td></w<></td></w<></td></w<>	10 <w< td=""><td>10 < W</td><td>10 K</td><td></td><td></td><td>10<w< td=""><td>10<w 10<w< td=""></w<></w </td></w<></td></w<>	10 < W	10 K			10 <w< td=""><td>10<w 10<w< td=""></w<></w </td></w<>	10 <w 10<w< td=""></w<></w
	REGION: 01	PIBHCG	BHC GAMMA NG/L	W>04 W>04	M>05	40 <w< td=""><td>M>04 M>04 M>04</td><td>M>06</td><td></td><td></td><td>40 4 40 4 40 4</td><td>M>04</td></w<>	M>04 M>04 M>04	M>06			40 4 40 4 40 4	M>04
IVER	922390.0 4	PIALDR	ALDRIN NG/L	M>05	M>05	M>05	M>04 M>04	M>04			W > 0 4 W > 0 4	M>05
MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0474075.0 4922390.0 4	PPUT	UNF.TOT. MG/L AS P	0.253 0.220 0.095 0.029 0.030	0.028 0.025 0.029	0.050 0.021 0.022	0.019	0.015 0.009 <t 0.465 0.275</t 	0.168 0.178 0.128 0.128 0.075 0.036 0.028 0.028	0.014 0.014 0.004 0.009 <t< td=""><td>0.017</td><td>0.023 0.053 0.041</td></t<>	0.017	0.023 0.053 0.041
MINOR BASIN TERM STREAM	U T M: 17	PPO4FR	FIL.REAC MG/L AS P	0.0050 0.0330 0.0340 0.0020 <t< td=""><td>0.0005<w 0.0030 0.0115</w </td><td>0.0135 0.0015<t 0.0020<t< td=""><td>0.0055</td><td>0.0025 0.0005<t 0.1200 0.0775</t </td><td>0.0280 0.0240 0.0140 0.0160 0.0750 0.0025 0.0015 0.00164</td><td>0.0005<t 0.0005<w 0.0025 0.0005<t 0.0005<t< td=""><td>0.0010<t< td=""><td>0.0005<w 0.0070 0.0015<t< td=""></t<></w </td></t<></td></t<></t </w </t </td></t<></t </td></t<>	0.0005 <w 0.0030 0.0115</w 	0.0135 0.0015 <t 0.0020<t< td=""><td>0.0055</td><td>0.0025 0.0005<t 0.1200 0.0775</t </td><td>0.0280 0.0240 0.0140 0.0160 0.0750 0.0025 0.0015 0.00164</td><td>0.0005<t 0.0005<w 0.0025 0.0005<t 0.0005<t< td=""><td>0.0010<t< td=""><td>0.0005<w 0.0070 0.0015<t< td=""></t<></w </td></t<></td></t<></t </w </t </td></t<></t 	0.0055	0.0025 0.0005 <t 0.1200 0.0775</t 	0.0280 0.0240 0.0140 0.0160 0.0750 0.0025 0.0015 0.00164	0.0005 <t 0.0005<w 0.0025 0.0005<t 0.0005<t< td=""><td>0.0010<t< td=""><td>0.0005<w 0.0070 0.0015<t< td=""></t<></w </td></t<></td></t<></t </w </t 	0.0010 <t< td=""><td>0.0005<w 0.0070 0.0015<t< td=""></t<></w </td></t<>	0.0005 <w 0.0070 0.0015<t< td=""></t<></w
	60 33 61	POMET	METALA- CHLOR NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w 100<w< td=""><td>160 100<w< td=""><td>100 < W 100 <</td><td>100<%</td><td>100<w< td=""></w<></td></w<></td></w<></w </td></w<></w </w </td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w 100<w< td=""><td>160 100<w< td=""><td>100 < W 100 <</td><td>100<%</td><td>100<w< td=""></w<></td></w<></td></w<></w </td></w<></w </w </td></w<></td></w<>	100 <w< td=""><td>100<w 100<w 100<w< td=""><td>100<w 100<w< td=""><td>160 100<w< td=""><td>100 < W 100 <</td><td>100<%</td><td>100<w< td=""></w<></td></w<></td></w<></w </td></w<></w </w </td></w<>	100 <w 100<w 100<w< td=""><td>100<w 100<w< td=""><td>160 100<w< td=""><td>100 < W 100 <</td><td>100<%</td><td>100<w< td=""></w<></td></w<></td></w<></w </td></w<></w </w 	100 <w 100<w< td=""><td>160 100<w< td=""><td>100 < W 100 <</td><td>100<%</td><td>100<w< td=""></w<></td></w<></td></w<></w 	160 100 <w< td=""><td>100 < W 100 <</td><td>100<%</td><td>100<w< td=""></w<></td></w<>	100 < W 100 <	100<%	100 <w< td=""></w<>
	LAT: 44 27 22.68 LONG: 081 19 33.09	POALA	ALACHLOR NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w< td=""><td>100 < W 100 < W 100 < W</td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></w </w </td></w<></w </w </td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w< td=""><td>100 < W 100 < W 100 < W</td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></w </w </td></w<></w </w </td></w<></td></w<>	100 <w< td=""><td>100<w 100<w 100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w< td=""><td>100 < W 100 < W 100 < W</td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></w </w </td></w<></w </w </td></w<>	100 <w 100<w 100<w< td=""><td>100<w 100<w 100<w< td=""><td>100<w< td=""><td>100 < W 100 < W 100 < W</td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></w </w </td></w<></w </w 	100 <w 100<w 100<w< td=""><td>100<w< td=""><td>100 < W 100 < W 100 < W</td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></w </w 	100 <w< td=""><td>100 < W 100 < W 100 < W</td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<>	100 < W 100 < W 100 < W	100 <w< td=""><td>100<w< td=""></w<></td></w<>	100 <w< td=""></w<>
	27 22.68	Н	Æ	8.26 8.12 8.15 8.16 8.17	8.23 8.18 8.25	8.18 8.31 8.31	8.30 8.43 8.45	8.26 8.44 8.00 8.02 8.01	8.06 8.10 8.12 8.12 8.24 8.24 8.24	8.32 8.38 8.44 8.44	8.50 8.70	8.45 8.23 8.29
	LAT: 44	T-NAME:	SAMPLE NUMBER	42400 42401 42402 42403 42404	42405 42406 42408	42407 42409 42410	42411 42412 42413	42414 42415 42415 42417 42417	42419 42420 42420 42424 42424 42425 42425 42426	42429 42430 42431 42432 42433	42435 42435 42436	42437 42438 42439 42440
		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT		900124 1300 900125 0830 900129 0900			900228 0815 900308 1500 900312 1700 900313 0800 1600		900327 1600 900328 1600 900405 0800 900411 0800 900419 0800		100516 0800 100522 1400 100523 0900 100524 1400

B.O.W./ SITE: SAUGEEN RIVER

M>05 40×W M>05 40 40<4 40 40 0<4 36 M>05 M>05 M>05 M>05 M>05 40×W 40×W M>05 M>05 M>05 M>05 M>05 M>05 M>05 M>05 M>05 MTHXYLLR 11,909 DMDT PIDMOI 1260 STORET CODE: DISTANCE: 3 3 3 3 3 M>I 3 3 3 I < M X×1 I < M I < M 1 < M 1 < W I < M I < H PIDIEL DIELDRIN 10 < W 10 < W 10 10 10 10 10 36 10 < W 10 < W10 ALPHA CHLRDANE REGION: 01 M>05 M>05 40 40<A 40<A 40 0<A PIBHCG BHC GAMMA MG/L M>05 M>05 M>05 M>05 M>05 M>05 M>05 M>05 M>0+ M>05 M>05 U T M: 17 0474075.0 4922390.0 4 M>05 M>05 M>05 M>05 M>05 M>05 M>05 M>05 40<W M>0+ M>05 M>Ot M>05 40<W 40 < A 40 < A 40 < A 40 < A 60 M>0+ NG/L PIALDR ALDRIN TERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L AS P 0.008<T 0.012 0.027 0.079<A 0.007<T 0.054<A 0.030<A PHOSPHOR UNF. TOT. 0.0100 0.012 0.019 0.015 0.012 0.013 0.030 0.007 0.018 0.016 0.016 0.035 0.016 0.029 0.182 0.013 0.017 0.011 0.115 0.465 0.037 PPUT 0.055 0.020 <A MG/L AS P P04 0.0005<W 0.0015<W 0.0005<W 0.0020<T D.009 <A 0.003 <A PP04FR FIL. REAC 0.0005<W 0.0005<T 0.0005<W 0.0015<T 0,0015<T 0.0005<W 0.0005<T 0.0020<T 0.0020<T 0.0020<T 0.0010<T 0.0010<T 0.0015<T 0.0010<T 0.0015<T 0,0005<T D.0010<T 0.0005<T 0.005 <T 0.01250 0.0030 0.0005 0,0025 0.0325 0.0030 0.0080 0.1200 0.0030 0.0225 9×A 100<W 100×W 100×W 101<A 101<A 100 SAMPLE POINT: BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6 STATION TYPE: RIVER FLOW GAUGE FED 02FC001 M>001 M>00 M>00 M>00 M>001 M>001 M>001 M>001 M>001 100<W 100<W 100<W 100×W 100×W 100×W 100×W 100×W 100×W CHLOR NG/L METALA-LONG: 081 19 33.09 POMET 09 0<A 100<W M>001 M>001 M>001 M>001 M>001 M>001 M>001 M>001 100<A M>001 M>001 M>001 M>001 M>001 M>001 M>001 M>001 100 100<A ALACHLOR NG/L M>00 M>00 M>00 M>00 POALA LAT: 44 27 22.68 Hd 8.33 8.33 8.33 8.00 8.26 8.43 8.49 0.15 42459 42445 42448 42449 42450 45454 42456 42461 42465 42470 42443 42444 42447 42448 42451 42453 42455 42457 42460 45464 45467 42468 42469 42471 HAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS SAMPLE NUMBER 42441 42442 42458 42463 42466 7. SAMP (EXCLUDED) *=INTERIM TEST-NAME: 1210 1230 1130 1300 0060 0060 0830 1400 1100 0930 140b 1200 0060 1100 1030 1430 0060 1400 0060 0060 0830 0830 0060 0800 0800 HOUR 0800 900529 1000 LMT 901106 YMMDD 900730 900816 900006 900910 900918 900925 901015 901022 901029 901119 901126 901128 901129 901203 901210 900617 900710 9000116 901011 901112 901127 SAMPLE 900604 900612 900626 9007006 900725 900807 900821 901001

02 002 1260	11,909	PZATRA		AIRAZINE NG/L	20 <w< th=""><th>20<w< th=""><th>20<w< th=""><th>150</th><th>20 c</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>180</th><th>906</th><th>430</th><th>400</th><th>20<w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>20<w< th=""><th>150</th><th>20 c</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>180</th><th>906</th><th>430</th><th>400</th><th>20<w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>150</th><th>20 c</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>180</th><th>906</th><th>430</th><th>400</th><th>20<w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	150	20 c	20 <w< th=""><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>180</th><th>906</th><th>430</th><th>400</th><th>20<w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>20<w< th=""><th>20<w< th=""><th>180</th><th>906</th><th>430</th><th>400</th><th>20<w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>20<w< th=""><th>180</th><th>906</th><th>430</th><th>400</th><th>20<w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>180</th><th>906</th><th>430</th><th>400</th><th>20<w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	180	906	430	400	20 <w< th=""><th>20<w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>130</th><th>20<w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	130	20 <w< th=""><th>410</th><th>300</th><th>09</th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	410	300	09	20 <w< th=""><th>20<w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>20<w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>170</th><th>150</th><th>20<w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	170	150	20 <w< th=""><th></th><th>20<w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<></th></w<>		20 <w< th=""><th>20<w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<></th></w<>	20 <w< th=""><th>20<w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<></th></w<>	20 <w< th=""><th>MANA</th><th>20<w< th=""><th>80</th><th>300</th><th>1700</th></w<></th></w<>	MANA	20 <w< th=""><th>80</th><th>300</th><th>1700</th></w<>	80	300	1700
STORET CODE:	DISTANCE:	PIPPDT		NG/L	2 < W	2 <w< td=""><td>2 < W</td><td>X > 2</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2<w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>2<w< td=""><td>N S</td><td>2 < N</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W	X > 2	300	2 < K	2 <w< td=""><td>2<w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>2<w< td=""><td>N S</td><td>2 < N</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>2<w< td=""><td>N S</td><td>2 < N</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>						2 <w< td=""><td>2 < W</td><td></td><td>2<w< td=""><td>N S</td><td>2 < N</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W		2 <w< td=""><td>N S</td><td>2 < N</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	N S	2 < N	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>2<w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W	2 <w< td=""><td>2 × 2 × 2</td><td>M>2</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 × 2 × 2	M>2	2 < W	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>MV2</td><td>H > 7</td><td>2<w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<></td></w<>	MV2	H > 7	2 <w< td=""><td>2<w< td=""><td>27.0</td></w<></td></w<>	2 <w< td=""><td>27.0</td></w<>	27.0
	1	PIPPDE	i 6	PP-DDE NG/L	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>X V</td><td>301</td><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td></td><td></td><td></td><td></td><td></td><td>1<w< td=""><td>1 < W</td><td></td><td>M :</td><td>1 × 1</td><td>3 7 1</td><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>X V</td><td>301</td><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td></td><td></td><td></td><td></td><td></td><td>1<w< td=""><td>1 < W</td><td></td><td>M :</td><td>1 × 1</td><td>3 7 1</td><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>X V</td><td>301</td><td>1<w< td=""><td>1 < W</td><td>1<w< td=""><td></td><td></td><td></td><td></td><td></td><td>1<w< td=""><td>1 < W</td><td></td><td>M :</td><td>1 × 1</td><td>3 7 1</td><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	X V	301	1 <w< td=""><td>1 < W</td><td>1<w< td=""><td></td><td></td><td></td><td></td><td></td><td>1<w< td=""><td>1 < W</td><td></td><td>M :</td><td>1 × 1</td><td>3 7 1</td><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 < W	1 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>1<w< td=""><td>1 < W</td><td></td><td>M :</td><td>1 × 1</td><td>3 7 1</td><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>						1 <w< td=""><td>1 < W</td><td></td><td>M :</td><td>1 × 1</td><td>3 7 1</td><td>1<w< td=""><td>1<w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 < W		M :	1 × 1	3 7 1	1 <w< td=""><td>1<w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1 < W</td><td>X :</td><td>X 7</td><td>3 > 1</td><td>1 < 12</td><td>1<w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1 < W	X :	X 7	3 > 1	1 < 12	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>3 7</td><td>174</td><td></td><td>1<w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<></td></w<>	3 7	174		1 <w< td=""><td>1<w< td=""><td>2/</td></w<></td></w<>	1 <w< td=""><td>2/</td></w<>	2/
	REGION: 01	PIPCBT	PCB	NG/L	M>9	M>9	W > 9	W > 0	300	W>9	M>9	M>9						M>9	M>9	;	M>9	E A	M>9	M>9	M>9	M>9	M>9	M N	30 00	M > 9	M>9	M>9	M>9	X > 9	M/0		M>9	M>9	6.14
ren	2390.0 4	P10PDT	4	NG/L	2 <w< td=""><td>2 < W</td><td>2 < W</td><td>M V</td><td>3 < 5</td><td>2<w< td=""><td>2 < W</td><td>2 < W</td><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2<w< td=""><td></td><td>2 × K</td><td>X > 0</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N N</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W	2 < W	M V	3 < 5	2 <w< td=""><td>2 < W</td><td>2 < W</td><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2<w< td=""><td></td><td>2 × K</td><td>X > 0</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N N</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W	2 < W						2 <w< td=""><td>2<w< td=""><td></td><td>2 × K</td><td>X > 0</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N N</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td></td><td>2 × K</td><td>X > 0</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N N</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>		2 × K	X > 0	2 < W	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N N</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>N N</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>N N</td><td>300</td><td>2 < K</td><td>2<w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W	N N	300	2 < K	2 <w< td=""><td>2 < W</td><td>2<w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<></td></w<>	2 < W	2 <w< td=""><td>Z 2</td><td>300</td><td></td><td>2<w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<></td></w<>	Z 2	300		2 <w< td=""><td>2<w< td=""><td>0 -13</td></w<></td></w<>	2 <w< td=""><td>0 -13</td></w<>	0 -13
GREAT LAKES LAKE HURON SAUGEEN RIV	74075.0 492	PIMIRX	2	NG/L	40 <w< td=""><td>M>05</td><td>M>05</td><td>M>Ob</td><td>M>04</td><td>M>05</td><td>40<w< td=""><td>M>04</td><td></td><td></td><td></td><td></td><td></td><td>M>05</td><td>M>05</td><td>;</td><td>M>04</td><td>M > 04</td><td>M>05</td><td>M>05</td><td>M>05</td><td>M>05</td><td>M>04</td><td># C C Z</td><td>M>04</td><td>M>05</td><td>M>05</td><td>M>05</td><td>40<w< td=""><td>M>04</td><td>40cm</td><td>2</td><td>M>05</td><td>M>05</td><td>1000</td></w<></td></w<></td></w<>	M>05	M>05	M>Ob	M>04	M>05	40 <w< td=""><td>M>04</td><td></td><td></td><td></td><td></td><td></td><td>M>05</td><td>M>05</td><td>;</td><td>M>04</td><td>M > 04</td><td>M>05</td><td>M>05</td><td>M>05</td><td>M>05</td><td>M>04</td><td># C C Z</td><td>M>04</td><td>M>05</td><td>M>05</td><td>M>05</td><td>40<w< td=""><td>M>04</td><td>40cm</td><td>2</td><td>M>05</td><td>M>05</td><td>1000</td></w<></td></w<>	M>04						M>05	M>05	;	M>04	M > 04	M>05	M>05	M>05	M>05	M>04	# C C Z	M>04	M>05	M>05	M>05	40 <w< td=""><td>M>04</td><td>40cm</td><td>2</td><td>M>05</td><td>M>05</td><td>1000</td></w<>	M>04	40cm	2	M>05	M>05	1000
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T H: 17 0474075.0 4922390.0 4	PIHEPT	4010	NG/L	W>04	M>05	M>05	M>OV	W>05	M>05	M>05	M>05						40 <w< td=""><td>M>04</td><td></td><td>M>05</td><td>304</td><td>M>05</td><td>M>05</td><td>M>05</td><td>M>05</td><td>M>05</td><td>40×M</td><td>40×M</td><td>M>04</td><td>40<w< td=""><td>M>05</td><td>40×M</td><td>M>04</td><td>M>05</td><td>2</td><td>M>05</td><td>M>05</td><td>2000</td></w<></td></w<>	M>04		M>05	304	M>05	M>05	M>05	M>05	M>05	40×M	40×M	M>04	40 <w< td=""><td>M>05</td><td>40×M</td><td>M>04</td><td>M>05</td><td>2</td><td>M>05</td><td>M>05</td><td>2000</td></w<>	M>05	40×M	M>04	M>05	2	M>05	M>05	2000
	60 33 61	PIHEPE	CHLOR	NG/L	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>N S C</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>Z < N</td><td>3 2 2</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>N S C</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>Z < N</td><td>3 2 2</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>N S C</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>Z < N</td><td>3 2 2</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	N S C	2 < W	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>Z < N</td><td>3 2 2</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>Z < N</td><td>3 2 2</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>2<w< td=""><td>2 < W</td><td></td><td>Z < N</td><td>3 2 2</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>						2 <w< td=""><td>2 < W</td><td></td><td>Z < N</td><td>3 2 2</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 < W		Z < N	3 2 2	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>M > Z</td><td>3 > 2</td><td>2 < W</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<></td></w<>	M > Z	3 > 2	2 < W	2 < W	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>X > X</td><td>3 0</td><td></td><td>2<w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<></td></w<>	2 < W	X > X	3 0		2 <w< td=""><td>2<w< td=""><td>27.43</td></w<></td></w<>	2 <w< td=""><td>27.43</td></w<>	27.43
FLOW GAUGE FED 02FC001	LONG: 081 19 33.09	PIENDT	ENDOSULP	NG/L	12 <w< td=""><td>5<k< td=""><td>M> C</td><td>M 3</td><td>3 \</td><td>2<w< td=""><td>2 < W</td><td>15 < W</td><td></td><td></td><td></td><td></td><td></td><td>5<w< td=""><td>N > 5</td><td></td><td>3 2 2</td><td>0 K</td><td>34 > 5</td><td>5<w< td=""><td>2×K</td><td>¥>5</td><td>M N</td><td>2 3 7 V 0 L</td><td>3</td><td>. ¥>S</td><td>Z<₩</td><td>15< 15< 15</td><td>N V</td><td>N V</td><td>33</td><td>:</td><td>2<k< td=""><td>2<k< td=""><td>E/10</td></k<></td></k<></td></w<></td></w<></td></w<></td></k<></td></w<>	5 <k< td=""><td>M> C</td><td>M 3</td><td>3 \</td><td>2<w< td=""><td>2 < W</td><td>15 < W</td><td></td><td></td><td></td><td></td><td></td><td>5<w< td=""><td>N > 5</td><td></td><td>3 2 2</td><td>0 K</td><td>34 > 5</td><td>5<w< td=""><td>2×K</td><td>¥>5</td><td>M N</td><td>2 3 7 V 0 L</td><td>3</td><td>. ¥>S</td><td>Z<₩</td><td>15< 15< 15</td><td>N V</td><td>N V</td><td>33</td><td>:</td><td>2<k< td=""><td>2<k< td=""><td>E/10</td></k<></td></k<></td></w<></td></w<></td></w<></td></k<>	M> C	M 3	3 \	2 <w< td=""><td>2 < W</td><td>15 < W</td><td></td><td></td><td></td><td></td><td></td><td>5<w< td=""><td>N > 5</td><td></td><td>3 2 2</td><td>0 K</td><td>34 > 5</td><td>5<w< td=""><td>2×K</td><td>¥>5</td><td>M N</td><td>2 3 7 V 0 L</td><td>3</td><td>. ¥>S</td><td>Z<₩</td><td>15< 15< 15</td><td>N V</td><td>N V</td><td>33</td><td>:</td><td>2<k< td=""><td>2<k< td=""><td>E/10</td></k<></td></k<></td></w<></td></w<></td></w<>	2 < W	15 < W						5 <w< td=""><td>N > 5</td><td></td><td>3 2 2</td><td>0 K</td><td>34 > 5</td><td>5<w< td=""><td>2×K</td><td>¥>5</td><td>M N</td><td>2 3 7 V 0 L</td><td>3</td><td>. ¥>S</td><td>Z<₩</td><td>15< 15< 15</td><td>N V</td><td>N V</td><td>33</td><td>:</td><td>2<k< td=""><td>2<k< td=""><td>E/10</td></k<></td></k<></td></w<></td></w<>	N > 5		3 2 2	0 K	34 > 5	5 <w< td=""><td>2×K</td><td>¥>5</td><td>M N</td><td>2 3 7 V 0 L</td><td>3</td><td>. ¥>S</td><td>Z<₩</td><td>15< 15< 15</td><td>N V</td><td>N V</td><td>33</td><td>:</td><td>2<k< td=""><td>2<k< td=""><td>E/10</td></k<></td></k<></td></w<>	2×K	¥>5	M N	2 3 7 V 0 L	3	. ¥>S	Z<₩	15< 15< 15	N V	N V	33	:	2 <k< td=""><td>2<k< td=""><td>E/10</td></k<></td></k<>	2 <k< td=""><td>E/10</td></k<>	E/10
LOW GAUGE F	27 22.68	PIENDR	N. C. C.	NG/L	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>20<w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>20<w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>20<w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>02	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>20<w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>20<w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>20<w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>20<w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>						20 <w< td=""><td>20<w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td></td><td>20<w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>		20 <w< td=""><td>20×W</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20×W	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>M>02</td><td>M>02</td><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>02	M>02	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>M>OC</td><td>20 × M</td><td></td><td>20<w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<></td></w<>	M>OC	20 × M		20 <w< td=""><td>20<w< td=""><td>30 cm</td></w<></td></w<>	20 <w< td=""><td>30 cm</td></w<>	30 cm
RIVER	LAT: 44	T-NAME:	I GM C	NUMBER	42400	42401	42405	10424	42411	42412	42413	42414	42415	42422	42425	42431	42452	42434	42435	42436	42457	42441	42442	42443	45444	42445	95555	42448	42448	42449	42450	42451	42452	42455	42455	42456	42457	42458	037C7
SAMPLE POINT: STATION TYPE:		K=INTERIM TEST-NAME:	SAMPLE	0		_		900129 1300			900222 0815		900308 1500				900419 0800				900516 0800				_		900704 I400			-				900905 1230			_	901011 1400	001015 0900

The color of the	Handre Basin: Great Lakes Station Idea	Name	Name	The property of the property	FERT STREAM STREAM LAKE HURON LAKE LAK
HEPACHOR	HEPACHOR	HEPACHOR	HEPACHOR	HEPACHOR HIREX OP-DDT TOTAL NG/L	HEPACHOR HIREX OP-DDT TOTAL NG/L
Fee	Particular Pihter	PEPECHOR PIMIRX PIOPDT PIPOBE PIPOBE PIPOBT	PEPECHOR PIMIRX PIOPDT PIPOBE PIPOBE PIPOPT PIPOBE PIPOPT PIPOBE PIPOPT PIPOBE PIPOPT PIPOBE PIPOBE PIPOPT PIPOBE	Particular Par	PEP PIHEPT PIMIRX PIOPDT PIPCBT PIPDBE PIPDDT ATR
Feather Feat	Feedung Feed	Feed to be decided by the composition of the comp	FEMERACHOR HIREX OP-DDT TOTAL OP-DDE OP-DDT TOTAL OP-DDT TOTAL OP-DDT OF-DDT TOTAL OP-DDT OF-DDT OF	Feedbach	Feedbachor Fee
NG/L	NG/L	NG/L	NG/L	NG/L	NG/L
40 c W 40 c W 2 c W 6 c W 1 c W 2 c W 6 c W 2 c W 2 c W 2 c W 3 c W 3 c W 3 c W 3 c W 3 c W 3 c W 3 c W 3 c W 3 c W <	40°H 40°H 2°H 6°H 1°H 2°H 6°H 1°H 2°H 4°C	40°H 40°H 2°H 6°H 1°H 2°H 6°H 1°H 2°H 40°H 40°H 2°H 6°H 1°H 2°H 2°H 1°H 2°H 2°H 1°H 1°H 2°H 1°H 1°H 1°H 1°H 1°H 1°H 1°H 1°H 1°H 1	40°FW 40°FW 2°FW 6°FW 1°FW 2°FW 40°FW 40°FW 2°FW 6°FW 1°FW 2°FW 2°FW 40°FW 2°FW 2°FW 6°FW 1°FW 2°FW 2°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 2°FW 100°FW 100°FW 100°FW 2°FW 2°FW 2°FW 2°FW 2°FW 2°FW 2°FW 2	40°FW 40°FW 2°FW 6°FW 1°FW 2°FW 40°FW 40°FW 2°FW 6°FW 1°FW 2°FW 40°FW 2°FW 6°FW 1°FW 2°FW 40°FW 40°FW 2°FW 6°FW 1°FW 2°FW 2°FW 40°FW 2°FW 2°FW 2°FW 2°FW 100°FW 20°FW 100°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 100°FW 100°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 100°FW 20°FW 20°FW 20°FW 20°FW 100°FW 100°FW 100°FW 20°FW 20°	40°FW 40°FW 2°FW 6°FW 1°FW 1°FW 2°FW 6°FW 1°FW 1°FW 2°FW 1°FW 1°FW 1°FW 1°FW 1°FW 1°FW 1°FW 1
40 40 2 6 1 1 2 4 5 4 6 4 1 4 6 4 6 4 1 4 6 4 1 4 5 4 4 4 4 4 4 4 4 4 4 6 4 1 4 5 4 6 4 1 4 5 4 4 4 4 4 4 4 4 4 4 6 4 1 4 5 4 4 6 4 1 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40ch 40ch 2ch 6ch 1ch 2ch 4 40ch 40ch 2ch 6ch 1 2ch 5ch 1 2ch 2ch 1 2ch 2ch 1 2ch 2ch 2ch 1 2ch	40cM 40cM 2cM 6cM 1cM 2cM 40cM 40cM 40cM 40cM 2cM 6cM 1cM 2cM 5cM 5cM 3cM 3	40 40 2 6 1 2 4 5 4 6 4 1 4 6 4 1 4 6 4 1 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 1 4 6 4 1	40¢H 40¢H 2¢H 6¢H 1¢H 2¢H 6¢H 1¢H 2¢H 6¢CH 40¢H 2¢CH 6¢CH 1¢H 2¢CH 40¢CH 40¢CH 2¢CH 6¢CH 1¢CH 1¢CH 2¢CH 40¢CH 40¢CH 2¢CH 6¢CH 1¢CH 2¢CH 2¢CH 2¢CCH 2¢CCH 2¢CCH 100¢CH 100¢CH 100¢CH 2¢CCH 2¢CCH 100¢CH 100¢CH 100¢CH 2¢CCH 2¢CCH 100¢CH 100¢CH 100¢CH 2¢CCH 2¢CCCH 100¢CH 100¢CH 100¢CH 2¢CCH 2¢CCCH 100¢CH 100¢CH 100¢CH 2¢CCCH 2¢CCCH 100¢CH 100¢CH 100¢CH 2¢CCCH 2¢CCCH 100¢CH 100¢CH 100¢CC 2¢CCCH 2¢CCCH 100¢CH 100¢CH 100¢CC 2¢CCCC 2¢CCCC 2¢CCCCCCCCCCCCCCCCCC	40 40 2 6 1 2 4 5 4 5 4 5 4 5 4 6 4 1 4 5 4
40 cM 40 cM 2 cM 6 cM 1 cM 2 cM 40 cM 40 cM 2 cM 6 cM 1 cM 2 cM 5 cM 2 cM 6 cM 1 cM 2 cM 2 cM 1 cM 2 cM 2 cM 3 cM <t< td=""><td>40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 2 CM 3 CM</td><td>40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM</td><td>40cM 40cM 2cM 6cM 1cM 2cM 6cM 1cM 2cM 6cM 40cM 2cM 6cM 1cM 1cM 6cM 1cM 6cM 1cM 6cM 1cM 1cM 1cM 1cM 1cM 1cM 1cM 1cM 1cM 1</td><td>40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM</td><td>40cH 40cH 2cH 6cH 1cH 2cH 6cH 1cH 2cH 6 40 40 40 2 4 6 4 1 4 2 4 4 6 4 4 6 4 1 4 4 6 4 4 1 4 6 4 4 6 4 4 1 4 6 4 4 1 4 6 4 4 6 4 4 1 4 6 4 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 4 6</td></t<>	40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 2 CM 3 CM	40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM	40cM 40cM 2cM 6cM 1cM 2cM 6cM 1cM 2cM 6cM 40cM 2cM 6cM 1cM 1cM 6cM 1cM 6cM 1cM 6cM 1cM 1cM 1cM 1cM 1cM 1cM 1cM 1cM 1cM 1	40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 40 CM 40 CM 2 CM 6 CM 1 CM 2 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 5 CM 3 CM 3 CM 3 CM 3 CM 3 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM 10 CM	40cH 40cH 2cH 6cH 1cH 2cH 6cH 1cH 2cH 6 40 40 40 2 4 6 4 1 4 2 4 4 6 4 4 6 4 1 4 4 6 4 4 1 4 6 4 4 6 4 4 1 4 6 4 4 1 4 6 4 4 6 4 4 1 4 6 4 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 4 6
400 400 2 6 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40 40 40 2 6 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	400 400 2 6 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	400 40 6 40 2 6 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	400 400 2 6 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	400 400 2 6 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40 40 2cA 6cA 1cA 2cA 40 40 0cA 0cA 0cA 0cA 0cA 5 36 36 36 36 36 36 36 8 36 36 36 36 36 36 36 36 9 36	40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40cA 0cA 0cA 0cA 0cA 0cA 0cA 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c PPROMETON SENCOR STHAZINE DICAHBA HCPA HCPB HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L 20cW 20cW 20cW 100cW 100cW 100cW 20cW 20cW<	40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 0cA 0cA 0cA 0cA 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c PRDHETON SENCOR STHAZINE DICAHBA HCPA HCPB NG/L NG/L NG/L NG/L NG/L NG/L 2cw 2cw 100cw 100cw 100cw 2cw 2cw 100cw <	40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40 40 6cA 1cA 2cA 9cA 40 6cA 1cA 2cA 10cA 40 6cA 1cA 2cA 2cA 6cA 3cA 3cA 3cA 3cA 3cA 3cA 3cA 3cA	40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40cA 40cA 2cA 6cA 1cA 2cA 40 40 6cA 1cA 2cA 3cA	40eA 40eA 2eA 6eA 1cA 2eA 6 3e 3e 3e 3eA 3eA 3e 3e 3e 3e 3eA 3eA 6eA 3eA 3eA 3eA 3eA 3eA 6eA 3eA 3eA 3eA 3eA 3eA 6eA 3eA 3eA 3eA 3eA 3eA 3eA 6eA 3eA 3eA </td
40 40 2 4 6 3 5 3 6	40 40 2 6 1 2 40 40 2 6 1 2 0 40 2 6 1 2 0 36 36 36 36 36 36 36 36 36 36 36 20 0 0 0 0 36 36 20 0 0 0 0 0 0 0 0 0 20 0	40 40 2 4 4 2 4 6 4	90 40 40 2 40 4 6 4 1 4 2 4 0 4 0 4 4 0 4 0 4 4 0 4 0 4 4 0 4 0 4 4 0 4 0 4 4 0	40<4 40<4 2<4 64 1 14 2 24 404 404 404 2 24 64 14 2 2 4 604 40 004 40 004 36 36 36 36 36 36 36 36 36 36 36 36 36	40 40 2 6 1 2 40 40 2 6 1 2 0 40 0 6 1 2 0 40 0 6 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 30 4 36 36 36 36 36 30 4 36 36 36 36 36 36 30 4 36 36 36 36 36 36 36 </td
100 cm 1	90 40 2 6 1 2 36 36 36 36 36 36 36 36 36 36 36 36 PPROHETON PROMETON PROMETON PRINCE	10	10 cm 10 c	100 cm	90 40<
36 36<	36 36<	DCA DCA <td>26 36<</td> <td>DCA DCA DCA<td>36 36<</td></td>	26 36<	DCA DCA <td>36 36<</td>	36 36<
P2PROH P2SENC P2SIH P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PPHCPB PPHCPB </td <td>P2PROH P2SENC P2SIM P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROHETON SENCOR SIMAZINE DICAMBA HCPA HCPB HCPB 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW</td> <td>PZPROH PZSENC PZSICA PSDICA PSHCPA PSHCPB PSHCPB<</td> <td>P2PROH P2SENC P2SIH P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROHETON SFRCOR STHAZINE DICAHBA HCPA HCPB HCCPB HCCPB HCCPB HCCPB HCCPB HCCPB HCCPB</td> <td>P2PROH P2SENC P2SIH P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROHETON SFRCOR STHAZINE DICAHBA HCPA HCPB HCCPB HCCPB<!--</td--><td>P2PROH P2SENC P2SICA P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROMETON SENCOR SIMAZINE DICAMBA HCPA HCPB HCPB 20 < W</td> 20 < W</td> 20 < W	P2PROH P2SENC P2SIM P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROHETON SENCOR SIMAZINE DICAMBA HCPA HCPB HCPB 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW	PZPROH PZSENC PZSICA PSDICA PSHCPA PSHCPB PSHCPB<	P2PROH P2SENC P2SIH P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROHETON SFRCOR STHAZINE DICAHBA HCPA HCPB HCCPB HCCPB HCCPB HCCPB HCCPB HCCPB HCCPB	P2PROH P2SENC P2SIH P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROHETON SFRCOR STHAZINE DICAHBA HCPA HCPB HCCPB HCCPB </td <td>P2PROH P2SENC P2SICA P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROMETON SENCOR SIMAZINE DICAMBA HCPA HCPB HCPB 20 < W</td> 20 < W	P2PROH P2SENC P2SICA P3DICA P3HCPA P3HCPA P3HCPB P9HCPB PROMETON SENCOR SIMAZINE DICAMBA HCPA HCPB HCPB 20 < W
P2PROM P2SENC P2SIM P3DICA P3HCPA P3HCPA P3HCPB P9HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW	PROMETON PRSENC PRSIN PRSDICA PRHCPA PRHCP	PROMETON PRSENC PRSIN PROLEMA PRHCPA PRHCPA PRHCPA PRHCPB PRHCP	PROMETON SENCOR STHAZINE DICAMBA HCPA HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	P2PROM P2SENC P2SIM P3DICA P3HCPA P3HCPA P3HCPB P3HCPB P9HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW	PROPEROM PRSENC PRSIN PRODEC PRHCPA
PROMETON SFNCOR STHAZINE DICAMBA HCPA HCPB NG/L NG/L NG/L NG/L NG/L 20 20 20 100 100 100 20 20 20 100 100 100 100 20 20 20 20 100 100 100 100 20 20 20 20 100 100 100 100 20 20 20 20 100 100 100 100 20 20 20 20 100 100 100 100 20 20 20 20 100 100 100 100 20 20 20 20 100 100 100 100 20 20 20 20 100 100 100 100 20 20 20 20 20 100 100 10	PROMETON SENCOR STHAZINE DICAMBA HCPA HCPB HCPB 106/L NG/L NG/L NG/L NG/L NG/L NG/L 206/H 206/H 206/H 1006/H 1006/H 1006/H 1006/H 206/H 206/H 206/H 206/H 1006/H 1006/H 1006/H 206/H 206/H 206/H 1006/H 1006/H 1006/H 1006/H 206/H 206/H 206/H 206/H 1006/H 1006/H 1006/H 206/H <td>PROMETON SENCOR SIMAZINE DICAMBA HCPA HCPA HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L 20 NG/L NG/L NG/L NG/L NG/L NG/L 20 SO SO NG/L 100 100 100 20 <</td> <td>PROMETON SENCOR SIMAZINE DICAMBA HCPA HCPA HCPB 06/L NG/L NG/L NG/L NG/L NG/L NG/L 20 B 20 B 20 B 100 B 100 B 20 B 20 B 20 B 100 B 100</td> <td>PROMETON SFNCOR SIMAZINE DICAMBA HCPA HCPA HCPB 20 MG/L NG/L NG/L NG/L NG/L NG/L 20 20 20 20 100 100 100 100 20 20 20 20 20 100 100 100 100 20 20 20 20 20 100 100 100 100 100 20 20 20 20 20 20 100</td> <td>PROMETON SFNCOR STHAZINE DICAHBA HCPA HCPA HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L 20°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 100°H 100°H 100°H</td>	PROMETON SENCOR SIMAZINE DICAMBA HCPA HCPA HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L 20 NG/L NG/L NG/L NG/L NG/L NG/L 20 SO SO NG/L 100 100 100 20 <	PROMETON SENCOR SIMAZINE DICAMBA HCPA HCPA HCPB 06/L NG/L NG/L NG/L NG/L NG/L NG/L 20 B 20 B 20 B 100 B 100 B 20 B 20 B 20 B 100	PROMETON SFNCOR SIMAZINE DICAMBA HCPA HCPA HCPB 20 MG/L NG/L NG/L NG/L NG/L NG/L 20 20 20 20 100 100 100 100 20 20 20 20 20 100 100 100 100 20 20 20 20 20 100 100 100 100 100 20 20 20 20 20 20 100	PROMETON SFNCOR STHAZINE DICAHBA HCPA HCPA HCPB NG/L NG/L NG/L NG/L NG/L NG/L NG/L 20°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 100°H 100°H 100°H 20°H 20°H 20°H 100°H 100°H 100°H
NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L
H 20 cH 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH H 20 cH 20 cH	H 20 < H 20 < H 20 < H 100 < H 100 < H 100 < H H 20 < H	H 20 cH 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH 100 cH H 20 cH 20 cH 100 cH 100 cH	H 20 C	H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H	H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 20 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H H 20 c H 20 c H 100 c H 100 c H 100 c H 100 c H
M 20°KW 20°KW 100°KW 100°KW 100°KW M 20°KW 20°KW 20°KW 100°KW 100°KW 100°KW M 20°KW 20°KW 20°KW 100°KW 100°KW 100°KW M 20°KW 20°KW 100°KW 100°KW 100°KW 100°KW M 20°KW 20°KW 20°KW 100°KW 100°KW 100°KW M 20°KW 20°KW 100°KW	W 20°KW 20°KW 100°KW 100°KW 100°KW W 20°KW 20°KW 100°KW 100°KW 100°KW 100°KW W 20°KW 20°KW 20°KW 100°KW 100°KW 100°KW W 20°KW 20°KW 100°KW 100°KW 100°KW 100°KW W 20°KW 20°KW 20°KW 100°KW 100°KW 100°KW 20°KW 20°KW 20°KW 100°KW 100°KW 100°KW 20°KW 20°KW 20°KW 100°KW 1	M	M	M	M 20°CM 20°CM 100°CM 100°CM 100°CM M 20°CM 20°CM 100°CM 100°CM 100°CM 100°CM M 20°CM 20°CM 10
H 20°H 20°H 20°H 100°H 1	H 20°4H 20°4H 100°4H 10	H 20°H 20°H 20°H 100°H 1	H 20°4H 20°4H 100°4H 10	H 20°H 20°H 20°H 100°H 1	H 20°CH 20°CH 100°CH 10
H 20¢H 20¢H 20¢H 100¢H 1	H 20°H 20°H 20°H 100°H 1	H 20°H 20°H 20°H 100°H 1	M	H 20¢H 20¢H 20¢H 100¢H 100	H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H H 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H B 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H B 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H B 20 c/H 20 c/H 20 c/H 100 c/H 100 c/H 100 c/H
W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW C 0 cW 20 cW 20 cW 100 cW 100 cW 100 cW	W 20 20 20 100	W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW X 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW X 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW X 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW X 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW	M 20¢W 20¢W 20¢W 100¢W	W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW	W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW
M 20°W 20°W 100°W	W 20°W 20°W 20°W 100°W 100°W 100°W W 20°W 20°W 20°W 100°W 100°W 100°W 100°W W 20°W 20°W 20°W 100°W 20°W 20°W 20°W 20°W 20°W 20°W 20°W	M 20°W 20°W 20°W 100°W 1	M 20°4W 20°4W 100°4W	W 20°KW 20°KW 100°KW	M 20°CW 20°CW 100°CW 100°CW 100°CW M 20°CW 20°CW 100°CW 100°CW 100°CW 100°CW M 20°CW 20°CW 20°CW 100°CW 100°CW 100°CW M 20°CW 20°CW 20°CW 100°CW 100°CW 100°CW M 20°CW 20°CW 20°CW 100°CW 100°CW 100°CW M 20°CW 20°CW 100°CW 100°CW 100°CW 100°CW M 20°CW 20°CW 20°CW 100°CW 100°CW 100°CW M
W 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W W 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W W 20¢W 20¢W 20¢W 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 20¢W 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W 100¢W 100¢W 100¢W	H 20¢H 20¢H 100¢H	No.	No.	No.	No.
W 20 <w 100<w="" 1<="" 20<w="" td=""><td>W 20 c/W 20 c/W 20 c/W 100 c/W</td><td>W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW A 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW</td><td>M 20<w 100<w="" 1<="" 20<w="" td=""><td>W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW C 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW C 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW</td><td>M 20 cM 20 cM 20 cM 100 cM 100 cM 100 cM M 20 cM 20 cM 20 cM 100 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM 100 cM S 0 cM 20 cM 100 cM 100 cM 100 cM S 0 cM 20 cM 20 cM 100 cM 100 cM S 0 cM 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 20 cM 100 cM M 20 cM 20 cM 20 cM 20 cM</td></w></td></w>	W 20 c/W 20 c/W 20 c/W 100 c/W	W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW A 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW B 20 cW 20 cW 100 cW 100 cW	M 20 <w 100<w="" 1<="" 20<w="" td=""><td>W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW C 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW C 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW</td><td>M 20 cM 20 cM 20 cM 100 cM 100 cM 100 cM M 20 cM 20 cM 20 cM 100 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM 100 cM S 0 cM 20 cM 100 cM 100 cM 100 cM S 0 cM 20 cM 20 cM 100 cM 100 cM S 0 cM 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 20 cM 100 cM M 20 cM 20 cM 20 cM 20 cM</td></w>	W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW C 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW C 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW M 20 cW 20 cW 100 cW 100 cW 100 cW	M 20 cM 20 cM 20 cM 100 cM 100 cM 100 cM M 20 cM 20 cM 20 cM 100 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM 100 cM S 0 cM 20 cM 100 cM 100 cM 100 cM S 0 cM 20 cM 20 cM 100 cM 100 cM S 0 cM 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 100 cM 100 cM M 20 cM 20 cM 20 cM 100 cM M 20 cM 20 cM 20 cM 20 cM
M 20 <w 100<<="" 100<w="" 20<w="" td=""><td>M 20¢W 20¢W 20¢W 100¢W 20¢W 20¢W 20¢W 100¢W 100¢W</td><td>M 20¢W 20¢W 20¢W 100¢W 100¢W</td><td>M 20¢W 20¢W 20¢W 100¢W 100¢W</td><td>M 20¢W 20¢W 20¢W 100¢W 100¢W</td><td>M 20¢W 20¢W 20¢W 100¢W 100¢W</td></w>	M 20¢W 20¢W 20¢W 100¢W 20¢W 20¢W 20¢W 100¢W	M 20¢W 20¢W 20¢W 100¢W	M 20¢W 20¢W 20¢W 100¢W	M 20¢W 20¢W 20¢W 100¢W	M 20¢W 20¢W 20¢W 100¢W
20 <w 100<="" 100<w="" 20<w="" td=""><td>20 W 20 W 20<br <="" td=""/><td>20¢W 20¢W 20¢W 100¢W 100¢W</td><td>20cW 20cW 20cW 100cW 100cW 100cW 100cW 20cW 20cW 20cW 20cW 100cW 20cW 20cW 20cW 20cW 100cW 100cW</td><td>20cW 20cW 20cW 100cW 100cW 100cW 100cW 20cW 20cW 20cW 20cW 100cW 1</td><td>20cW 20cW 100cW 10</td></td></w>	20 W 20 <td>20¢W 20¢W 20¢W 100¢W 100¢W</td> <td>20cW 20cW 20cW 100cW 100cW 100cW 100cW 20cW 20cW 20cW 20cW 100cW 20cW 20cW 20cW 20cW 100cW 100cW</td> <td>20cW 20cW 20cW 100cW 100cW 100cW 100cW 20cW 20cW 20cW 20cW 100cW 1</td> <td>20cW 20cW 100cW 10</td>	20¢W 20¢W 20¢W 100¢W	20cW 20cW 20cW 100cW 100cW 100cW 100cW 20cW 20cW 20cW 20cW 100cW 20cW 20cW 20cW 20cW 100cW	20cW 20cW 20cW 100cW 100cW 100cW 100cW 20cW 20cW 20cW 20cW 100cW 1	20cW 20cW 100cW 10
W 20 <w 100<f="" 1<="" 20<f="" td=""><td>W 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W</td><td>M 20<w 100<w="" 1<="" 20<w="" td=""><td>M 20<w 100<w="" 100<w<="" 20<w="" td=""><td>M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M</td><td>W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW</td></w></td></w></td></w>	W 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W	M 20 <w 100<w="" 1<="" 20<w="" td=""><td>M 20<w 100<w="" 100<w<="" 20<w="" td=""><td>M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M</td><td>W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW</td></w></td></w>	M 20 <w 100<w="" 100<w<="" 20<w="" td=""><td>M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M</td><td>W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW</td></w>	M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W M 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M 20¢W 20¢W 20¢W 100¢W 100¢W 100¢W 100¢W M	W 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW 20 cW 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 100 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW W 20 cW 20 cW 20 cW 100 cW 100 cW
20 <w 100<w="" 100<w100<w<="" 20<w="" td=""><td>20 20 20 20 20 20 20 20 20 30 20 30</br></td><td>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr 20<hr=""/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr 20<hr=""/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr 20<hr=""/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr 20<hr=""/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr 20<hr=""/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr 20<hr=""/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr 20<hr=""/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20<hr/>20</td><td>20 20 20<br <="" td=""/><td>20 20 20 20 20 20<br <="" td=""/><td>20 20 20 100</td></br></td></td></w>	20 20 20 20 	20 <hr/> 20 <hr 20<hr=""/> 20 <hr/> 20 <hr 20<hr=""/> 20 <hr/> 20 <hr 20<hr=""/> 20 <hr/> 20 <hr 20<hr=""/> 20 <hr/> 20 <hr 20<hr=""/> 20 <hr/> 20 <hr 20<hr=""/> 20 <hr/> 20 <hr 20<hr=""/> 20 <hr/> 20	20 <td>20 20 20 20 20 20<br <="" td=""/><td>20 20 20 100</td></br></td>	20 20 20 20 	20 20 20 100
20 <w 100<w="" 100<w<="" 20<w="" td=""><td>20<w 100<="" 100<w="" 20<w="" td=""><td>20 20 20 20 20 20<br <="" td=""/><td>20°4W 20°4W 20°4W 100°4W 100°4</td><td>20°4W 20°4W 100°4W 100°</td><td>20¢W 20¢W 100¢W 10</td></br></td></w></td></w>	20 <w 100<="" 100<w="" 20<w="" td=""><td>20 20 20 20 20 20<br <="" td=""/><td>20°4W 20°4W 20°4W 100°4W 100°4</td><td>20°4W 20°4W 100°4W 100°</td><td>20¢W 20¢W 100¢W 10</td></br></td></w>	20 20 20 20 	20°4W 20°4W 20°4W 100°4W 100°4	20°4W 20°4W 100°4W 100°	20¢W 20¢W 100¢W 10
	20°W 20°W 20°W 100°W 100°W 100°W	20 <w 100<="" 100<w="" 20<w="" td=""><td>20°W 20°W 20°W 100°W 100</td><td>20cW 20cW 100cW 100cW 100cW 100cW 100cW W 20cW 20cW 100cW 100cW 100cW 100cW W 20cW 20cW 100cW 10</td><td>20¢W 20¢W 100¢W 10</td></w>	20°W 20°W 20°W 100°W 100	20cW 20cW 100cW 100cW 100cW 100cW 100cW W 20cW 20cW 100cW 100cW 100cW 100cW W 20cW 20cW 100cW 10	20¢W 20¢W 100¢W 10

B.O.W./ SITE: SAUGEEN RIVER

1000 KW 1000 K 100<W 100<W 100<W 100 < W 100 < W 100 < W 100 100<A 100<A 0<A M>00 M>001 11.909 P3MCPP 100 1260 STORET CODE: DISTANCE: M>00 M>00 100 < W 100 < W 100 < W M>001 M>001 M>001 000 < A < 000 < M>00 PSMCPB M>001 100<W M>001 100 c W 100 c 100 < W 100 < W 100 < W 100<W M>00 M>001 100 < W 100 < W 100 < W 100 100 100 43 43 **P3MCPA** REGION: 01 M>001 100<W 100 < W 100×W 100×W 100×W 100×W 100×W 100×W M>001 M>001 100×W 100 < W M>001 100 100<A 100<A 0<A PSDICA 100×W M>001 M>001 100×W 100<W DICAMBA 100<W M>00 100×W M>00 NG/L U T M: 17 0474075.0 4922390.0 4 · 20 kW 20 kW 20 kW 3000 20<W 20<W 20<W 20×W 20<W 20<W 20<W 20×W 20 < W 20<W 20<W 20<W M>02 20<W 217<A 25<A 20 958<A 44 SIMAZINE **P2SIM** 5700 5700 MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES 20<W 20<W 20 < W 20 < W20 20<W M>02 20 < W 20 < W 20 < W 20×W 20 < W 20<W 20<A P2SENC SENCOR NG/L 20<W 20 20<A 20×W 20 < W 20<W 20 20<A 20<A 20 20<W P2PROM PROMETON DE-ETYLT ATRAZINE 160 20<W 590 160 120 20<W 20 < W 90 590 90<A 42<A 20 143<A SAMPLE POINT: BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6 STATION TYPE: RIVER FLOW GAUGE FED 02FC001 20<W 20<W P2DATR NG/L LONG: 081 19 33.09 120 09 110 M>02 20<W 20<W 20 < W 20<W 20<W 20 < A 64 64 64 P2CYPR CYPRAZIN LAT: 44 27 22.68 20 < W 20 < W 20 < W 20<W 20<W 20<W 20<W 20<W 20<W 20×W 20<W 20<W 20<W 20<W 20<W 20<W 20<W 20<W 20<W 20 < A 20 < A 20 < A 20 < A 0 < A 44 P2CYAN CYNAZINE NUMBER 42444 42445 42446 42447 42448 42448 42449 42450 42451 42454 42455 42456 42459 SAMPLE 42441 42443 42453 42457 42458 42463 42464 42465 MAXIMUM GEOM MEAN MINIMUM * SAMP IN STATISTICS * SAMP (EXCLUBED) ARITH MEAN *=INTERIM TEST-NAME: 1130 1300 0900 1430 1100 0930 1210 1400 0900 1100 1400 1030 1400 1045 1230 0060 0060 0830 HOUR 1100 1000 900730 YYMINDD 900529 900626 900006 900710 900716 900821 206006 900910 900918 900925 901001 901015 900612 901022 901119 900006 900617 900725 901011 901112 SAMPLE

82 DE: 02 002 1260	E: 11.909	P4DURS		DURSBAN NG/L	100<	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th></th><th></th><th></th><th></th><th></th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th></th><th></th><th></th><th></th><th></th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th></th><th></th><th></th><th></th><th></th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th></th><th></th><th></th><th></th><th></th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>M>001</th><th></th><th></th><th></th><th></th><th></th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>M>001</th><th></th><th></th><th></th><th></th><th></th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	M>001						100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100×W</th><th>100cm</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100×W	100cm	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<></th></w<>	100 <w< th=""><th>M>001</th><th>M>001</th><th>M>DOT</th><th>100<w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<></th></w<>	M>001	M>001	M>DOT	100 <w< th=""><th>100<w< th=""><th>100<w< th=""></w<></th></w<></th></w<>	100 <w< th=""><th>100<w< th=""></w<></th></w<>	100 <w< th=""></w<>
STATION ID: 08-0123-030-82 STORET CODE:	DISTANCE:	P4DIME		DIMETHOK NG/L	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>Z50<w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>Z50<w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>Z50<w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>Z50<w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>Z50<w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>Z50<w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>Z50<w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	Z50 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>						250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250cM</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250cM	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250×W</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250×W	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	250 <w< td=""><td>M>052</td><td>M>062</td><td>250<w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<></td></w<>	M>052	M>062	250 <w< td=""><td>250<w< td=""><td>250<w< td=""></w<></td></w<></td></w<>	250 <w< td=""><td>250<w< td=""></w<></td></w<>	250 <w< td=""></w<>
ATION ID: 0	01	P4DIAZ		DIAZINON NG/L	50 <w< td=""><td>50<w< td=""><td>50 < W</td><td>50<w< td=""><td>50 c M</td><td>50<w< td=""><td>50<w< td=""><td>M>05</td><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 <w< td=""><td>50 < W</td><td>50<w< td=""><td>50 c M</td><td>50<w< td=""><td>50<w< td=""><td>M>05</td><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 < W	50 <w< td=""><td>50 c M</td><td>50<w< td=""><td>50<w< td=""><td>M>05</td><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 c M	50 <w< td=""><td>50<w< td=""><td>M>05</td><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 <w< td=""><td>M>05</td><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>05						50 <w< td=""><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 <w< td=""><td>50<w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 <w< td=""><td>50<w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 <w< td=""><td>300 K</td><td>50 < M</td><td>50×W</td><td>50<w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	300 K	50 < M	50×W	50 <w< td=""><td>NOON NOON</td><td>M>05</td><td>M>05</td><td>50<w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<></td></w<>	NOON NOON	M>05	M>05	50 <w< td=""><td>M>05</td><td>50<w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<></td></w<>	M>05	50 <w< td=""><td>N>05</td><td>M>05</td><td>MVO S</td><td>M/00</td><td>M>05</td><td>H>05</td><td>50<w< td=""></w<></td></w<>	N>05	M>05	MVO S	M/00	M>05	H>05	50 <w< td=""></w<>
ST	REGION:	P4DEMT		DEMETON NG/L	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>M>DOOT</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>M>DOOT</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>M>DOOT</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>M>DOOT</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000×W</td><td>M>DOOT</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000×W</td><td>M>DOOT</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000×W	M>DOOT						1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000×W	1000<	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>10000</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<>	10000	1000cM	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000cm</td><td>TOOOL</td><td>TOOOL</td><td>MARONT</td><td>1000cW</td><td>1000<w< td=""><td>1000cW</td></w<></td></w<>	1000cM	1000cm	TOOOL	TOOOL	MARONT	1000cW	1000 <w< td=""><td>1000cW</td></w<>	1000cW
KES ON RIVER	4922390.0 4	PACLFN	FENVIN	PHOS NG/L	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000 KM</td><td>1000cM</td><td>1000<w< td=""><td>M>0001</td><td>Monnor</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000 KM</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000 KM</td><td>1000cM</td><td>1000<w< td=""><td>M>0001</td><td>Monnor</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000 KM</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000 KM</td><td>1000cM</td><td>1000<w< td=""><td>M>0001</td><td>Monnor</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000 KM</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 KM	1000cM	1000 <w< td=""><td>M>0001</td><td>Monnor</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000 KM</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>0001	Monnor						1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000 KM</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000 KM</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000 KM	1000×M	1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000 <w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000×W	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>M>000T</td><td>M>000T</td><td>1000cm</td><td>10000</td><td>W-0004</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<></td></w<>	M>000T	M>000T	1000cm	10000	W-0004	1000 <w< td=""><td>1000<w< td=""><td>1000cW</td></w<></td></w<>	1000 <w< td=""><td>1000cW</td></w<>	1000cW
I: GREAT LAKES I: LAKE HURON I: SAUGEEN RIVER	0474075.0 4922390.0	P3245T		2,4,5-T NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100<	100 <w< td=""><td>100<w< td=""><td>100×W</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100×W</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100×W	1000	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>TOOCH</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	TOOCH	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100 < W</td><td>M>00T</td><td>1000</td><td>1000</td><td>100<w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<></td></w<>	100 < W	M>00T	1000	1000	100 <w< td=""><td></td><td>100<w< td=""><td>M>001</td></w<></td></w<>		100 <w< td=""><td>M>001</td></w<>	M>001
MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	P324DP		2,4-DP NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×M</td><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100×M</td><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100×M</td><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100×M	100 <w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 < W	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100×W</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100×W	100cm	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>M>001</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>001	100<	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100×W</td><td>M>001</td><td>1000 t</td><td>10004</td><td>100<</td><td>100<w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<></td></w<>	100×W	M>001	1000 t	10004	100<	100 <w< td=""><td></td><td>100<w< td=""><td>100<w< td=""></w<></td></w<></td></w<>		100 <w< td=""><td>100<w< td=""></w<></td></w<>	100 <w< td=""></w<>
OVNE SR-6	19 33.09	P324DB		2,4-DB NG/L	500 <w< td=""><td>500<w< td=""><td>500<w< td=""><td>M>000</td><td>B00<w< td=""><td>500<w< td=""><td>M>005</td><td>M>005</td><td>800<w< td=""><td>500<w< td=""><td>500<w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	500 <w< td=""><td>500<w< td=""><td>M>000</td><td>B00<w< td=""><td>500<w< td=""><td>M>005</td><td>M>005</td><td>800<w< td=""><td>500<w< td=""><td>500<w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	500 <w< td=""><td>M>000</td><td>B00<w< td=""><td>500<w< td=""><td>M>005</td><td>M>005</td><td>800<w< td=""><td>500<w< td=""><td>500<w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>000	B00 <w< td=""><td>500<w< td=""><td>M>005</td><td>M>005</td><td>800<w< td=""><td>500<w< td=""><td>500<w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<></td></w<></td></w<></td></w<></td></w<>	500 <w< td=""><td>M>005</td><td>M>005</td><td>800<w< td=""><td>500<w< td=""><td>500<w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<></td></w<></td></w<></td></w<>	M>005	M>005	800 <w< td=""><td>500<w< td=""><td>500<w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<></td></w<></td></w<>	500 <w< td=""><td>500<w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<></td></w<>	500 <w< td=""><td>500<f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<></td></w<>	500 <f< td=""><td>500cW</td><td>M>005</td><td>M>005</td><td>M>005.</td><td>SOUCH SOUCH</td><td>M>005</td><td>M>005</td><td>B00<w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<></td></f<>	500cW	M>005	M>005	M>005.	SOUCH SOUCH	M>005	M>005	B00 <w< td=""><td>500×W</td><td>M>000</td><td>500<w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<></td></w<>	500×W	M>000	500 <w< td=""><td>N>005</td><td>500<w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<></td></w<>	N>005	500 <w< td=""><td>M>005</td><td>M>005</td><td>M>000</td><td>37005</td><td>3000×</td><td>M>005</td><td></td><td>200×M</td><td>M>005</td></w<>	M>005	M>005	M>000	37005	3000×	M>005		200×M	M>005
SAUGEEN RIVER BRUCE CO ROAD 3, NORTH OF BURGOVNE SR-6 RIVER FLOW GAUGE FED 02FC001	LONG: 081 19	P324D	,	2,4-D NG/L	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100 < W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 < W	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100cM</td><td>1000</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100cM	1000	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>1000</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000	100×W	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100×W</td><td>100<1</td><td>1000</td><td>1000</td><td>100×W</td><td>100<w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<></td></w<>	100×W	100<1	1000	1000	100×W	100 <w< td=""><td></td><td>100×W</td><td>100<w< td=""></w<></td></w<>		100×W	100 <w< td=""></w<>
RIVER ROAD 3, NO FLOW GAUGE	4 27 22.68	PSSILV		SILVEX NG/L	100 <w< td=""><td>100<w< td=""><td>100<₩</td><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<₩</td><td>100<w< td=""><td>100<w< td=""><td>100×W</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100<₩	100 <w< td=""><td>100<w< td=""><td>100×W</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100×W</td><td>100×W</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100×W	100×W	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100cM</td><td>100 KM</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100cM	100 KM	100 <w< td=""><td>100<w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100cm</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100cm	100cm	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>M>001</td><td>100cm</td><td>10004</td><td>100cm</td><td>100<w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<></td></w<>	M>001	100cm	10004	100cm	100 <w< td=""><td>100<w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<></td></w<>	100 <w< td=""><td></td><td>100<w< td=""><td>1000k</td></w<></td></w<>		100 <w< td=""><td>1000k</td></w<>	1000k
	LAT: 44	TEST-NAME:		NUMBER	42400	42401	42405	42409	42411	42412	42413	42415	42422	42425	42428	42451	42433	42434	42435	4243/	42441	42442	42443	42444	45445	42447	42448	45448	42449	42450	TS424	75434	42454	42455	42456	42457	42458	42429
B.O.W./ SITE: SAMPLE POINT: STATION TYPE:		*=INTERIM TE	SAMPLE	YYMMDD LMT	900109 0830		900124 1500	. —	_		900222 0815			-		900405 0800			900503 1600	900516 0800			-	_	9000206 1100			_		900807 1100	900816 0950	-			_	_		901015 0900

. 02 002 1260	11.909	P4DURS	DURSBAN NG/L	100 <w< th=""><th>100<w 100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>A>0</th><th>36</th><th>PECYCL</th><th>CYCLOATE NG/L</th><th>1000<w< th=""><th>1000cM</th><th>1000cM</th><th>1000cm</th><th>1000×W</th><th>1000<w< th=""><th>1000×W</th><th>1000×M</th><th>1000<</th><th>1000×W</th><th>1000cW</th><th>1000<w< th=""><th>1000×M</th><th>1000<w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<></th></w<></w </th></w<>	100 <w 100<w< th=""><th>100</th><th>100<a< th=""><th>100<a< th=""><th>A>0</th><th>36</th><th>PECYCL</th><th>CYCLOATE NG/L</th><th>1000<w< th=""><th>1000cM</th><th>1000cM</th><th>1000cm</th><th>1000×W</th><th>1000<w< th=""><th>1000×W</th><th>1000×M</th><th>1000<</th><th>1000×W</th><th>1000cW</th><th>1000<w< th=""><th>1000×M</th><th>1000<w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<></th></w<></w 	100	100 <a< th=""><th>100<a< th=""><th>A>0</th><th>36</th><th>PECYCL</th><th>CYCLOATE NG/L</th><th>1000<w< th=""><th>1000cM</th><th>1000cM</th><th>1000cm</th><th>1000×W</th><th>1000<w< th=""><th>1000×W</th><th>1000×M</th><th>1000<</th><th>1000×W</th><th>1000cW</th><th>1000<w< th=""><th>1000×M</th><th>1000<w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<></th></a<>	100 <a< th=""><th>A>0</th><th>36</th><th>PECYCL</th><th>CYCLOATE NG/L</th><th>1000<w< th=""><th>1000cM</th><th>1000cM</th><th>1000cm</th><th>1000×W</th><th>1000<w< th=""><th>1000×W</th><th>1000×M</th><th>1000<</th><th>1000×W</th><th>1000cW</th><th>1000<w< th=""><th>1000×M</th><th>1000<w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<></th></a<>	A>0	36	PECYCL	CYCLOATE NG/L	1000 <w< th=""><th>1000cM</th><th>1000cM</th><th>1000cm</th><th>1000×W</th><th>1000<w< th=""><th>1000×W</th><th>1000×M</th><th>1000<</th><th>1000×W</th><th>1000cW</th><th>1000<w< th=""><th>1000×M</th><th>1000<w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<></th></w<></th></w<></th></w<>	1000cM	1000cM	1000cm	1000×W	1000 <w< th=""><th>1000×W</th><th>1000×M</th><th>1000<</th><th>1000×W</th><th>1000cW</th><th>1000<w< th=""><th>1000×M</th><th>1000<w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<></th></w<></th></w<>	1000×W	1000×M	1000<	1000×W	1000cW	1000 <w< th=""><th>1000×M</th><th>1000<w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<></th></w<>	1000×M	1000 <w< th=""><th>1000<w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<></th></w<>	1000 <w< th=""><th>1000cW</th><th>10000</th><th>TOOOL</th><th>1000<w< th=""></w<></th></w<>	1000cW	10000	TOOOL	1000 <w< th=""></w<>
STATION ID: 08-0123-030-82 STORET CODE:	DISTANCE:	P4DIME	DIMETHOK NG/L	250 <w< td=""><td>250<w 250<w< td=""><td>250</td><td>250<a< td=""><td>250<a< td=""><td>A>0</td><td>36</td><td>PECARY</td><td>CARBARYL NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></w </td></w<>	250 <w 250<w< td=""><td>250</td><td>250<a< td=""><td>250<a< td=""><td>A>0</td><td>36</td><td>PECARY</td><td>CARBARYL NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></w 	250	250 <a< td=""><td>250<a< td=""><td>A>0</td><td>36</td><td>PECARY</td><td>CARBARYL NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	250 <a< td=""><td>A>0</td><td>36</td><td>PECARY</td><td>CARBARYL NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	A>0	36	PECARY	CARBARYL NG/L	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000cW	1000 <w< td=""><td>1000×W</td><td>1000×M</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000×W	1000×M	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<></td></w<>	1000 <w< td=""><td>1000¢</td><td>1000CM</td><td>1000<w< td=""></w<></td></w<>	1000¢	1000CM	1000 <w< td=""></w<>
TION ID: 08	01	P4DIAZ	DIAZINON NG/L	50 <w< td=""><td>50<w 50<w< td=""><td>20</td><td>50<a< td=""><td>50<a< td=""><td>0 < A</td><td>36</td><td>PECARB</td><td>CARBO- FURAN NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></w </td></w<>	50 <w 50<w< td=""><td>20</td><td>50<a< td=""><td>50<a< td=""><td>0 < A</td><td>36</td><td>PECARB</td><td>CARBO- FURAN NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></w<></w 	20	50 <a< td=""><td>50<a< td=""><td>0 < A</td><td>36</td><td>PECARB</td><td>CARBO- FURAN NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	50 <a< td=""><td>0 < A</td><td>36</td><td>PECARB</td><td>CARBO- FURAN NG/L</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	0 < A	36	PECARB	CARBO- FURAN NG/L	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000<	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000×W</td><td>1000×M</td><td>1000cW</td><td>1000<w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	1000×W	1000×M	1000cW	1000 <w< td=""><td>1000<</td><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<></td></w<>	1000<	1000 <w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<></td></w<>	1000×W	1000 <w< td=""><td>1000cM</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""></w<></td></w<>	1000cM	1000cm	1000cm	1000 <w< td=""></w<>
STR.	REGION: 01	P4DEMT	DEMETON NG/L	1000 <w< td=""><td>1000<w 1000<w< td=""><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>0<a< td=""><td>36</td><td>P4PMET</td><td>PHOSMET NG/L</td><td>Z000<w< td=""><td>2000×W</td><td>2000×W</td><td>2000×W</td><td>2000<w< td=""><td>2000<w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></w </td></w<>	1000 <w 1000<w< td=""><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>0<a< td=""><td>36</td><td>P4PMET</td><td>PHOSMET NG/L</td><td>Z000<w< td=""><td>2000×W</td><td>2000×W</td><td>2000×W</td><td>2000<w< td=""><td>2000<w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></w 	1000	1000 <a< td=""><td>1000<a< td=""><td>0<a< td=""><td>36</td><td>P4PMET</td><td>PHOSMET NG/L</td><td>Z000<w< td=""><td>2000×W</td><td>2000×W</td><td>2000×W</td><td>2000<w< td=""><td>2000<w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	1000 <a< td=""><td>0<a< td=""><td>36</td><td>P4PMET</td><td>PHOSMET NG/L</td><td>Z000<w< td=""><td>2000×W</td><td>2000×W</td><td>2000×W</td><td>2000<w< td=""><td>2000<w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0 <a< td=""><td>36</td><td>P4PMET</td><td>PHOSMET NG/L</td><td>Z000<w< td=""><td>2000×W</td><td>2000×W</td><td>2000×W</td><td>2000<w< td=""><td>2000<w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	36	P4PMET	PHOSMET NG/L	Z000 <w< td=""><td>2000×W</td><td>2000×W</td><td>2000×W</td><td>2000<w< td=""><td>2000<w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2000×W	2000×W	2000×W	2000 <w< td=""><td>2000<w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	2000 <w< td=""><td>2000<w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	2000 <w< td=""><td>M>0002</td><td></td><td></td><td></td><td></td><td></td><td>2000<w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<></td></w<>	M>0002						2000 <w< td=""><td>2000<w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<></td></w<>	2000 <w< td=""><td>11/0000</td><td>2000×W</td><td>M/0000</td><td>2000<w< td=""></w<></td></w<>	11/0000	2000×W	M/0000	2000 <w< td=""></w<>
VER	22390.0 4	P4CLFN CHLORO FENVIN	PHOS NG/L	1000 <w< td=""><td>1000<w 1000<w< td=""><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>0<a< td=""><td>36</td><td>P4PARA</td><td>PARTHION NG/L</td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></w </td></w<>	1000 <w 1000<w< td=""><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>0<a< td=""><td>36</td><td>P4PARA</td><td>PARTHION NG/L</td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></w 	1000	1000 <a< td=""><td>1000<a< td=""><td>0<a< td=""><td>36</td><td>P4PARA</td><td>PARTHION NG/L</td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	1000 <a< td=""><td>0<a< td=""><td>36</td><td>P4PARA</td><td>PARTHION NG/L</td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0 <a< td=""><td>36</td><td>P4PARA</td><td>PARTHION NG/L</td><td>50<w< td=""><td>50<w< td=""><td>50<w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	36	P4PARA	PARTHION NG/L	50 <w< td=""><td>50<w< td=""><td>50<w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 <w< td=""><td>50<w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	50 <w< td=""><td>300</td><td>50<w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	300	50 <w< td=""><td>N>05</td><td>50<w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<></td></w<>	N>05	50 <w< td=""><td>20<w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>50<w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<></td></w<>						50 <w< td=""><td>50<w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<></td></w<>	50 <w< td=""><td>1701</td><td>300 X</td><td>EDVE T</td><td>M>05</td></w<>	1701	300 X	EDVE T	M>05
GREAT LAKE LAKE HURON SAUGEEN RI	U T M: 17 0474075.0 4922390.0 4	P3245T	2,4,5-T NG/L	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4PALO</td><td>PHOSLONE NG/L</td><td>500<w< td=""><td>500×W</td><td>500<w< td=""><td>M>000</td><td>M>005</td><td>M>005</td><td>₩>005</td><td>M>005</td><td></td><td></td><td></td><td></td><td></td><td>M>005</td><td>500<w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4PALO</td><td>PHOSLONE NG/L</td><td>500<w< td=""><td>500×W</td><td>500<w< td=""><td>M>000</td><td>M>005</td><td>M>005</td><td>₩>005</td><td>M>005</td><td></td><td></td><td></td><td></td><td></td><td>M>005</td><td>500<w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4PALO</td><td>PHOSLONE NG/L</td><td>500<w< td=""><td>500×W</td><td>500<w< td=""><td>M>000</td><td>M>005</td><td>M>005</td><td>₩>005</td><td>M>005</td><td></td><td></td><td></td><td></td><td></td><td>M>005</td><td>500<w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	100 <a< td=""><td>0<a< td=""><td>43</td><td>P4PALO</td><td>PHOSLONE NG/L</td><td>500<w< td=""><td>500×W</td><td>500<w< td=""><td>M>000</td><td>M>005</td><td>M>005</td><td>₩>005</td><td>M>005</td><td></td><td></td><td></td><td></td><td></td><td>M>005</td><td>500<w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0 <a< td=""><td>43</td><td>P4PALO</td><td>PHOSLONE NG/L</td><td>500<w< td=""><td>500×W</td><td>500<w< td=""><td>M>000</td><td>M>005</td><td>M>005</td><td>₩>005</td><td>M>005</td><td></td><td></td><td></td><td></td><td></td><td>M>005</td><td>500<w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<></td></w<></td></w<></td></a<>	43	P4PALO	PHOSLONE NG/L	500 <w< td=""><td>500×W</td><td>500<w< td=""><td>M>000</td><td>M>005</td><td>M>005</td><td>₩>005</td><td>M>005</td><td></td><td></td><td></td><td></td><td></td><td>M>005</td><td>500<w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<></td></w<></td></w<>	500×W	500 <w< td=""><td>M>000</td><td>M>005</td><td>M>005</td><td>₩>005</td><td>M>005</td><td></td><td></td><td></td><td></td><td></td><td>M>005</td><td>500<w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<></td></w<>	M>000	M>005	M>005	₩>005	M>005						M>005	500 <w< td=""><td>197002</td><td>M>000</td><td>3000</td><td>500<w< td=""></w<></td></w<>	197002	M>000	3000	500 <w< td=""></w<>
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0	P324DP	2,4-DP NG/L	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4MALA</td><td>MALTHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4MALA</td><td>MALTHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4MALA</td><td>MALTHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	100 <a< td=""><td>0<a< td=""><td>43</td><td>P4MALA</td><td>MALTHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0 <a< td=""><td>43</td><td>P4MALA</td><td>MALTHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100cm</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	43	P4MALA	MALTHION NG/L	100 <w< td=""><td>100<w< td=""><td>100cm</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100cm</td><td>100<</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100cm	100<	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<>						100 <w< td=""><td>100<w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<></td></w<>	100 <w< td=""><td>1000</td><td>1000</td><td>1000</td><td>100<w< td=""></w<></td></w<>	1000	1000	1000	100 <w< td=""></w<>
	19 33.09	P324D8	2,4-DB NG/L	500 <w< td=""><td>500<w< td=""><td>200</td><td>500<a< td=""><td>500<a< td=""><td>0<a< td=""><td>43</td><td>P4LEP0</td><td>LEPTPH0S NG/L</td><td>1000<w< td=""><td>1000cW</td><td>10000</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	500 <w< td=""><td>200</td><td>500<a< td=""><td>500<a< td=""><td>0<a< td=""><td>43</td><td>P4LEP0</td><td>LEPTPH0S NG/L</td><td>1000<w< td=""><td>1000cW</td><td>10000</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	200	500 <a< td=""><td>500<a< td=""><td>0<a< td=""><td>43</td><td>P4LEP0</td><td>LEPTPH0S NG/L</td><td>1000<w< td=""><td>1000cW</td><td>10000</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	500 <a< td=""><td>0<a< td=""><td>43</td><td>P4LEP0</td><td>LEPTPH0S NG/L</td><td>1000<w< td=""><td>1000cW</td><td>10000</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0 <a< td=""><td>43</td><td>P4LEP0</td><td>LEPTPH0S NG/L</td><td>1000<w< td=""><td>1000cW</td><td>10000</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	43	P4LEP0	LEPTPH0S NG/L	1000 <w< td=""><td>1000cW</td><td>10000</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cW	10000	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>M>000T</td><td></td><td></td><td></td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<></td></w<>	M>000T						1000 <w< td=""><td>1000<w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<></td></w<>	1000 <w< td=""><td>100001</td><td>1000×m</td><td>10000</td><td>1000×M</td></w<>	100001	1000×m	10000	1000×M
RIVER) ROAD 3, NORTH OF BURG FLOW GAUGE FED 02FC001	LONG: 081 19 33.09	P324D	2,4-D NG/L	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>Р460ТН</td><td>GUTHION NG/L</td><td>M>0005</td><td>M>0005</td><td>5000<w< td=""><td>5000cm</td><td>5000<w< td=""><td>N>0005</td><td>5000<w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>Р460ТН</td><td>GUTHION NG/L</td><td>M>0005</td><td>M>0005</td><td>5000<w< td=""><td>5000cm</td><td>5000<w< td=""><td>N>0005</td><td>5000<w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>Р460ТН</td><td>GUTHION NG/L</td><td>M>0005</td><td>M>0005</td><td>5000<w< td=""><td>5000cm</td><td>5000<w< td=""><td>N>0005</td><td>5000<w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	100 <a< td=""><td>0<a< td=""><td>43</td><td>Р460ТН</td><td>GUTHION NG/L</td><td>M>0005</td><td>M>0005</td><td>5000<w< td=""><td>5000cm</td><td>5000<w< td=""><td>N>0005</td><td>5000<w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<></td></w<></td></w<></td></a<></td></a<>	0 <a< td=""><td>43</td><td>Р460ТН</td><td>GUTHION NG/L</td><td>M>0005</td><td>M>0005</td><td>5000<w< td=""><td>5000cm</td><td>5000<w< td=""><td>N>0005</td><td>5000<w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<></td></w<></td></w<></td></a<>	43	Р460ТН	GUTHION NG/L	M>0005	M>0005	5000 <w< td=""><td>5000cm</td><td>5000<w< td=""><td>N>0005</td><td>5000<w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<></td></w<></td></w<>	5000cm	5000 <w< td=""><td>N>0005</td><td>5000<w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<></td></w<>	N>0005	5000 <w< td=""><td>M>nnns</td><td></td><td></td><td></td><td></td><td></td><td>N>0005</td><td>M>0005</td><td>170001</td><td>M>0006</td><td>M>0000</td><td>M>0005</td></w<>	M>nnns						N>0005	M>0005	170001	M>0006	M>0000	M>0005
IVER ROAD 3, NOF LOW GAUGE F	LAT: 44 27 22.68	P3SILV	SILVEX NG/L	100 <w< td=""><td>100<w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4ETHI</td><td>ETHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100 × M</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	100 <w< td=""><td>100</td><td>100<a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4ETHI</td><td>ETHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100 × M</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	100	100 <a< td=""><td>100<a< td=""><td>0<a< td=""><td>43</td><td>P4ETHI</td><td>ETHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100 × M</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	100 <a< td=""><td>0<a< td=""><td>43</td><td>P4ETHI</td><td>ETHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100 × M</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0 <a< td=""><td>43</td><td>P4ETHI</td><td>ETHION NG/L</td><td>100<w< td=""><td>100<w< td=""><td>100 × M</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	43	P4ETHI	ETHION NG/L	100 <w< td=""><td>100<w< td=""><td>100 × M</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100 × M</td><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 × M	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>100<w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	100 <w< td=""><td>M>DOT</td><td></td><td></td><td></td><td></td><td></td><td>100<w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<></td></w<>	M>DOT						100 <w< td=""><td>100<w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<></td></w<>	100 <w< td=""><td>100/10</td><td>100<</td><td>100<</td><td>100<w< td=""></w<></td></w<>	100/10	100<	100<	100 <w< td=""></w<>
: SAUGEEN RIVER : BRUCE CO ROAD : RIVER FLOW	LAT: 44	ST-NAME:	SAMPLE	42463	42464	MAXIMUM	ARITH MEAN	GEOM MEAN	STD DEV (GEOM *)	AMP IN STATISTICS % SAMP (EXCLUDED)	ST-NAME:	SAMPLE	42400	42401	42405	42409	42411	42412	42413	42414 42415	42422	42425	42428	42451	42433	42434	42435	42436	42438	42441	42442
B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: BRUCE CO ROAD 3, NORTH OF BURGOVNE SR-6 STATION TYPE: RIVER FLOW GAUGE FED 02FC001		*=INTERIM TEST-NAME:	DATE HOUR		901119 0830 901126 1400		A		STD DEV	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	_	٠,	900124 1300	. –	_		_	900228 0815			900326 1000		_	900425 1600		900509 0800		•	

B.O.W./ SITE: SAUGEEN RIVER

0<A NG/L M>000 M>000 M>000 W>000 M>000 M>000 M>000 M>000 M>000 M>0001 M>0001 M>0001 M>0001 M>0001 M>0001 M>0001 M>000 M>0001 M>0001 M>000 M>0001 M>000 11,909 CYCLOATE M>000 W>000 D000< 1000cA PECYCL 000 1260 1000 STORET CODE: DISTANCE: STATION ID: 08-0123-030-82 M>000 1000×W M>0001 M>0001 M>0001 M>0001 M>0001 M>0001 0<A M>000 M>000 M>000 M>0001 M>0001 M>000 M>0001 M>0001 M>0001 M>000 1000×W M>000 M>000 M>000 M>000 M>000 PECARY CARBARYL NG/L 000cA A>000 000 000 0<A M>0001 M>0001 M>0001 M>000 M>000 M>000 M>000 M>000 M>0001 M>000 PECARB FURAN M>000 M>000 M>000 W>000 M>000 M>000 1000×W M>000 M>000 M>000 M>000 W>000 M>000 M>000 1000<A 1000cA NG/L CARBO 1000 1000 REGION: 01 2000<W 2000<W 2000<W 2000<W 2000×W M>0002 2000×W 2000×W M>0003 2000×W 2000SW 2000×W W>0002 2000×W M>0002 2000×W 2000cW M>0002 M>0002 2000×W PAPMET PHOSMET NG/L \$>000; 2000cA 0<A 2000 2000 J M>05 50<W 50 < W 50<W 50<W 50<W 50<W M>05 M>09 50<W 50<W 50 0<A 36 M>05 M>05 50 < W M>05 50<A 50<A PSPARA PARTHION U T M: 17 0474075.0 4922390.0 20 TERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON 500×W 500×W B00<W M>009 500×W 500×W 500<W B00<W 500×W 500×W M>005 M>005 M>009 500<W 500<W 500×W 500<A 500<A P4PALO NG/L S00<W W>005 M>009 0<A PHOSLONE 200 200 M>001 100 < W 100 < W 100 < W 100°W 100°W 100°W 100<A 100<A PHMALA MALTHION M>001 NG/L 0<A 001 35 0<A M>000 M>0001 M>000 M>000 SAMPLE POINT: BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6 STATION TYPE: RIVER FLOW GAUGE FED 02FC001 M>000 M>000 W>000 M>000 A>000. P4LEP0 LEPTPHOS M>000 M>000 M>000 M>000 W>000 M>000 M>000 M>000 M>000 M>000 M>000 M>000 M>000 1000cA NG/1 LONG: 081 19 33.09 0001 000 M>0005 0<A 36 M>0005 P4GUTH M>0009 M>0005 5000×W M>0005 5000×W B0000 M>0009 M>0005 M>0005 N>0005 5000<A GUTHION M>0005 M>0005 5000cW M>0005 M>0005 M>0005 M>0009 M>0005 NG/L 5000 5000 27 22.68 M>00 100×W 100 < W M>00 M>00 100 < W M>00 M>00 100×W 100<W 100 < W M>00 100×W 100<A 100<A NG/L M>00 M>00 M>00 100<W M>001 M>00 0<A PAETHI ETHION 100 < W 001 36 100 LAT: 44 42448 42450 42457 42460 45444 42446 42447 42451 42453 42454 42456 JUNBER 42443 42445 42459 42462 42463 MAXIMUN ARITH MEAN GEOM MEAN # SAMP IN STATISTICS SAMPLE 42464 42465 MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: 0900 1100 1400 1100 1130 1300 0900 0830 HOUR 1030 1045 1430 1210 1230 0060 1400 0060 0060 1400 0060 0830 0830 900612 1100 YMMDD LMT 901112 SAMPLE 900617 900626 900006 900710 900716 900725 900730 900807 900816 900821 906006 900910 816006 300925 901011 901015 901022 901029 901106 301001

4	c	
۲		
9		
_	۰	
>	•	
OIJAI TT	ï	
_	i	
9	5	
7	ř	
	ì	
EATED S		
Ë	:	
⊴	2	
3		
1990	,	
₫	•	
9	:	
	•	

02	002 1260	11.909																				
STATION ID: 08-0123-030-82 STORET CODE:		DISTANCE:																				
STATION ID: 0		REGION: 01																				
S.	IVER	922390.0 4	RSP	RESIDUE PARTIC. MG/L	269.0 154.0 28.3 12.5	12.7	12.8	M 6	2:02	. w	427.5 229.3	151.7	101.2	31.3	14.9	14.7	12.1	1 10	و. اور اور اور	6.7	39.1	16.8
MAJOR BASIN: GREAT LAKES	MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0474075.0 4922390.0	P6VERN	VERNLATE NG/L	1000 <w< td=""><td>1000<w< td=""><td>1000<w 1000<w< td=""><td>1000<w< td=""><td>1000cH</td><td>1000cM</td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<></td></w<>	1000 <w< td=""><td>1000<w 1000<w< td=""><td>1000<w< td=""><td>1000cH</td><td>1000cM</td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<>	1000 <w 1000<w< td=""><td>1000<w< td=""><td>1000cH</td><td>1000cM</td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w 	1000 <w< td=""><td>1000cH</td><td>1000cM</td><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cH	1000cM			1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td></w<></td></w<>	1000 <w< td=""><td></td></w<>	
MAJOR BASIN	MINOR BASIN TERM STREAM	U T M: 17	P6SUTN	SUTAN NG/L	1000 <w 1000<w< td=""><td>1000<w< td=""><td>1.000<w 1.000<w< td=""><td>1000<w< td=""><td>1000 < W</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<></td></w<></w 	1000 <w< td=""><td>1.000<w 1.000<w< td=""><td>1000<w< td=""><td>1000 < W</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<>	1.000 <w 1.000<w< td=""><td>1000<w< td=""><td>1000 < W</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w 	1000 <w< td=""><td>1000 < W</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 < W	1000 <w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>			1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<></td></w<>	1000 <w< td=""><td>M>0001</td><td>1000×W</td><td></td></w<>	M>0001	1000×W	
OYNE SR-6		19 33.09	P6PEBU	PEBULATE NG/L	1000 <w 1000<w< td=""><td>1000<w< td=""><td>1000<w 1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<></td></w<></w 	1000 <w< td=""><td>1000<w 1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<>	1000 <w 1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w 	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>			1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td></w<></td></w<>	1000 <w< td=""><td></td></w<>	
SAUGEEN RIVER BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6 RIVER FLOW GAUGE FED 02FC001		LONG: 081 19 33.09	P6MOLI	MOLINATE NG/L	1000 <w< td=""><td>1000<w< td=""><td>1000<w 1000<w< td=""><td>1000<w< td=""><td>1000¢H</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<></td></w<>	1000 <w< td=""><td>1000<w 1000<w< td=""><td>1000<w< td=""><td>1000¢H</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w </td></w<>	1000 <w 1000<w< td=""><td>1000<w< td=""><td>1000¢H</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w 	1000 <w< td=""><td>1000¢H</td><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000¢H	1000 <w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>			1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000×M</td><td></td></w<></td></w<>	1000 <w< td=""><td>1000×M</td><td></td></w<>	1000×M	
ROAD 3, NO FLOW GAUGE		4 27 22.68	РБЕРТМ	EPTAM NG/L	1000 < W	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<h< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></h<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<h< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></h<></td></w<></td></w<>	1000 <w< td=""><td>1000<h< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></h<></td></w<>	1000 <h< td=""><td>1000<w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></h<>	1000 <w< td=""><td></td><td></td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>			1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td></w<></td></w<>	1000 <w< td=""><td></td></w<>	
E: SAUGEEN RIVER T: BRUCE CO ROAD E: RIVER FLOW		LAT: 44	EST-NAME:	SAMPLE	42400 42401 42402 42403 42403	42405 42406 42408	42407 42409 42410	42411	42413	42415	42416 42417 42417	42419 42420 42421	42422	42425	42428	42431	42432	42434	42435	42437	42438	42440
B.O.W./ SITE: SAUGEE SAMPLE POINT: BRUCE , STATION TYPE: RIVER			*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900109 0830 900118 0830 900119 0830 900122 1430		1300 900201 0830 900202 0830				900312 1700 900313 0800 1600	900314 0800 1600 900315 0800					900411 0800		900503 1600		900523 0900	

B.O.W./ SITE: SAUGEEN RIVER

02 002 1260	11.909																																				
STORET CODE:	DISTANCE:																																				
	REGION: 01																																				
ES N IVER	922390.0 4	RSP	RESIDUE PARTIC. MG/L	10.1	14.3		9.6	11.2	7.3	8.5	6.5	11.2	12.8	5.8	14.4	9.6	7.0	1.7	16.7	4.2	3.9	9.5	8.0	8.7	16.5	83.9	63.1	46.8	9.6	20.6	427.5	39.9	17.2	м. м	72.8	71	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: SAUGEEN RIVER	U T M: 17 0474075.0 4922390.0 4	P6VERN	VERNLATE NG/L	1000 <w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cW	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000×W	1000 <w< td=""><td>1000cM</td><td>M>0001</td><td>1000cm</td><td>1000×W</td><td>1000<w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	M>0001	1000cm	1000×W	1000 <w< td=""><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1000cW	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<>	1000 <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<>							1000	1000 <a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<>	1000 <a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<>	1000	0 < A	47	
MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	PESUTN	SUTAN NG/L	1000 <w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>M>0001</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>0001	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000cM</td><td>M>0001</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000cM	M>0001	1000×W	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<></td></w<>	1000 <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<></td></w<>							1000	1000 <a< td=""><td>1000<a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<></td></a<>	1000 <a< td=""><td>1000</td><td>0<a< td=""><td>47</td><td></td></a<></td></a<>	1000	0 <a< td=""><td>47</td><td></td></a<>	47	
OYNE SR-6	19 33.09	P6PEBU	PEBULATE NG/L	1000 <w 1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w 	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000×W</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000×W	1000 <w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000 <w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>M>0001</td><td>1000KW</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	M>0001	1000KW	1000 <w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<>	1000 <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<>							1000	1000 <a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<>	1000 <a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<>	1000	0 < A	47	
RTH OF BURG FED 02FC001	LONG: 081 19 33.09	PEMOLI	MOLIMATE NG/L	1000 <w 1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cM</td><td>1000×M</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></w 	1000 <w< td=""><td>1000cM</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cM</td><td>1000×M</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000cW	1000 <w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cM</td><td>1000×M</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cW</td><td>1000cM</td><td>1000<w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cM</td><td>1000×M</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cW	1000cM	1000 <w< td=""><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cM</td><td>1000×M</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000 <w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cM</td><td>1000×M</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000×W</td><td>1000cM</td><td>1000×M</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000×W	1000cM	1000×M	1000×W	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<>	1000 <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<></td></w<>							1000	1000 <a< td=""><td>1000<a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<></td></a<>	1000 <a< td=""><td>1000</td><td>0 < A</td><td>47</td><td></td></a<>	1000	0 < A	47	
ROAD 3, NO	LAT: 44 27 22.68	P6EPTM	EPT AM NG/L	1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000×W</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000×W	1000 <w< td=""><td>1000<w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cM</td><td>1000×W</td><td>1000<</td><td>1000cM</td><td>1000<w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cM	1000×W	1000<	1000cM	1000 <w< td=""><td>1000<w< td=""><td>1000cW</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000cW</td><td>1000cm</td><td>1000cm</td><td>1000<w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	1000cW	1000cm	1000cm	1000 <w< td=""><td>1000<w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1000 <w< td=""><td>1000×W</td><td>1000cW</td><td>1000<w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<></td></w<>	1000×W	1000cW	1000 <w< td=""><td>1000<w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<></td></w<>	1000 <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1000</td><td>1000<a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<></td></w<>							1000	1000 <a< td=""><td>1000<a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<></td></a<>	1000 <a< td=""><td>1000</td><td>A>0</td><td>47</td><td></td></a<>	1000	A>0	47	
F: BRUCE CO	LAT: 44	ST-NAME:	SAMPLE	42441	42443	42445	42446	42447	42448	45449	42450	42451	42453	42454	42455	45456	42457	42458	42460	42461	42462	42463	45464	42465	45466	42467	42468	42469	42470	42471	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	SAMP (EXCLUDED)
SAMPLE POINT: BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6 STATION TYPE: RIVER FLOW GAUGE FED 02FC001		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYHNDD LMT	900529 1000	900612 1100			900710 1030				900816 0930					901001 0900								_		901129 0800	901130	901203 0800	901210 0800		-4			STD DE	# SAMP IN STATISTICS	A SAITE

B.O.W./ SITE: SAUGEEN RIVER

	02 002 126	63.0
STATION ID: 08-0123-038-02	STORET CODE: 02 002 126	DISTANCE: 63.
STATION		REGION: 01
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0484400,0 4894500,0 4
B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: AT CONC.ROAD 2.5 MILES EAST OF CARGILL	STATION TYPE: RIVER	LAT: 44 12 19.81 LONG: 081 11 42.89 U T H: 17 0484400.0 4894500.0 4 REGION: 01

					TERM STREAM	TERM STREAM: SAUGEEN RIVER	RIVER				1260
	LAT:	LAT: 44 12 19.81	LONG: 081 11 42.89	11 42.89	U T M: 17	U T M: 17 0484400.0 4894500.0 4	4894500.0 4	REGION: 01	10	DISTANCE:	63.889
*=INTERIM	*=INTERIM TEST-NAME:	FWSADP	FGPR03	ALKT	ASUT	8008	CLIDUR	COND25	CUUT	DO	FCMF
				ALK	ARSENIC	80 <u>0</u>	CHIORIDE	CONDICT	CODDER	DISOLVED	FECAL COLTEORM
SAMPLE		SAMPLE	PROJECT	TOTAL	UNF. TOT.	TOT. DEM.	UNF . REAC	250	UNF. TOT.	OXYGEN	MF
DATE HOUR	~	E DEPTH	SUB-PROJ	HG/L	MG/L	MG/L	HG/L	UMHO/CM	MG/L	MG/L	CNT
УУМИОВ СМТ	NUMBER		CODE	AS CACO3	AS AS	AS 0	AS CL	AT 25 C	AS CU	AS 0	/100ML
900219 1130			0103	225.0	0.001 <w< td=""><td>1.18</td><td>12.600</td><td>590.0</td><td>0.0010<t< td=""><td>13.0</td><td>55</td></t<></td></w<>	1.18	12.600	590.0	0.0010 <t< td=""><td>13.0</td><td>55</td></t<>	13.0	55
			0103	159.0	0.001 <w< td=""><td>1.68</td><td>7.900</td><td>401.0</td><td>W>5000°0</td><td>10.0</td><td>SOAID</td></w<>	1.68	7.900	401.0	W>5000°0	10.0	SOAID
900417 1100		5 0,30	0101	211.0	0.001 <w< td=""><td>0.45</td><td>10.500</td><td>507.0</td><td>0,0093</td><td>12.5</td><td>1240</td></w<>	0.45	10.500	507.0	0,0093	12.5	1240
			0101	205.0	0.001 <w< td=""><td>0.98</td><td>8.800</td><td>457.0</td><td>0.0020<t< td=""><td>12.0</td><td>200</td></t<></td></w<>	0.98	8.800	457.0	0.0020 <t< td=""><td>12.0</td><td>200</td></t<>	12.0	200
			0103	217.0	0.001 <w< td=""><td>1.18</td><td>10.500</td><td>574.0</td><td>0,0020<t< td=""><td>8.0</td><td>100</td></t<></td></w<>	1.18	10.500	574.0	0,0020 <t< td=""><td>8.0</td><td>100</td></t<>	8.0	100
900716 1320	28923		0101	209.0	0.001 <w< td=""><td>0.98</td><td>11.700</td><td>632.0</td><td>0,0020<t< td=""><td>10.0</td><td>09</td></t<></td></w<>	0.98	11.700	632.0	0,0020 <t< td=""><td>10.0</td><td>09</td></t<>	10.0	09
900820 1240			0103	212.0	0.001 <w< td=""><td></td><td>12.200</td><td>633.0</td><td>0,0060</td><td>10.0</td><td></td></w<>		12.200	633.0	0,0060	10.0	
900917 1300			0101	223.0	0.001 <w< td=""><td>1.68</td><td>12.100</td><td>612.0</td><td>0.0030</td><td>11.5</td><td>40AID</td></w<>	1.68	12.100	612.0	0.0030	11.5	40AID
901015 1301	11 38980		0101	228.0	0.001 <w< td=""><td>1.13</td><td>11.100</td><td>551.0</td><td>0.001 <w< td=""><td>11.5</td><td>228</td></w<></td></w<>	1.13	11.100	551.0	0.001 <w< td=""><td>11.5</td><td>228</td></w<>	11.5	228
901119 1235			0101	229.0	0.001 <w< td=""><td>1.03</td><td>9.100</td><td>519.0</td><td>0.0040</td><td>13.0</td><td>SOAID</td></w<>	1.03	9.100	519.0	0.0040	13.0	SOAID
	MAXIMUM			229.0	0.001	1.68	12.600	633.0	0.0093	13.0	1240
	ARITH MEAN	0.30		211.8	0.001 <a< td=""><td>1.14</td><td>10.650</td><td>547.6</td><td>0.003 <a< td=""><td>11.1</td><td>213</td></a<></td></a<>	1.14	10.650	547.6	0.003 <a< td=""><td>11.1</td><td>213</td></a<>	11.1	213
	GEOM MEAN			210.8	0.001 <a< td=""><td>1.08</td><td>10.535</td><td>542.4</td><td>0.002 <a< td=""><td>11.0</td><td>79</td></a<></td></a<>	1.08	10.535	542.4	0.002 <a< td=""><td>11.0</td><td>79</td></a<>	11.0	79
	MINIMUM	1 0.30		159.0	0.001	0.45	7.900	401.0	0.0005	8.0	8
STD	STD DEV (GEOM *)			20.4	0.000 <a< td=""><td>0.38</td><td>1.600</td><td>6.92</td><td>0.003 <a< td=""><td>1.6</td><td>*5</td></a<></td></a<>	0.38	1.600	6.92	0.003 <a< td=""><td>1.6</td><td>*5</td></a<>	1.6	*5
# SAMP I	# SAMP IN STATISTICS	3 10		10	10	6	10	10	10	10	6
% SAM	% SAMP (EXCLUDED)										
*=INTERIM	*=INTERIM TEST-NAME:	FEUT	FSMF	FWSTRC	FWTEMP	NNHTUR	NNOZUR	NNOSUR	NNTKUR	PBUT	Hd
			FECAL			NH3-N			K'DAHL N		
		IRON	STREPCUS			TOTAL	N02-N	N03-N	TOTAL	LEAD	
11.2		ONF.	AF.		WATER	UNF. REAC	UNF REAC	UNF. REAC	UNF . REAC	UNF. TOT.	
DAIE HOUR			CNI	SIREAM	1EMP	MG/L	MG/L	MG/L	MG/L	MG/L	1
YYMNDD LMI	NONBER	AS PE	LIDUML	COND.	DEG.C	AS N	AS N	AS N	ASS	AS PB	Ŧ.
	**	Ī	20	9	1.0	0.014	0.020	1.800	0.490	M>500.0	8.14
			10AID	4	6.0	0.010	0.020	1.300	0.540	0.005 <w< td=""><td>8.07</td></w<>	8.07
		6 5.500	40	9	5.0	0.013	0.020	1.400	0.490	0.005 <w< td=""><td>8.22</td></w<>	8.22
	1.4	_	84	9	13.0	0.001<	0.010	1.100	0.720	0.005 <w< td=""><td>8.24</td></w<>	8.24
	,	_	100	9	22.0	0.016	0.020	0.800	0.440	0.005 <w< td=""><td>8.25</td></w<>	8.25
		_	40	9	21.0	600.0	0.010	0.600	0.390	0.005 <w< td=""><td>8.36</td></w<>	8.36
	,,,	_		9	20.0	0.011	0.010<	0.500	0.370	0.005 <w< td=""><td>8.25</td></w<>	8.25
		_	20	9	13.0	0.011	0.020	0.600	0.350	0.005 <w< td=""><td>8.29</td></w<>	8.29
	38980	_	80	9	11.0				0.820	0.013 <t< td=""><td>8.25</td></t<>	8.25
901119 1235		1>070.0 6	28	9	4.0				0.520	0.005 <w< td=""><td>8.27</td></w<>	8.27

B.O.W./ SITE: SAUGEEN RIVER SAHPLE POINT: AT CONC.ROAD 2.5 MILES EAST OF CARGILL STATION TYPE: RIVER

MAJOR B HINOR B TERM ST LONG: 081 11 42.69 U T H:	⊕ ⊕	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERH STREAH: SAUGER RIVER U T H: 17 0484400.0 4894500.0 4	AES DN RIVER 4894500.0 4	REGION: 01	01	STORET CODE:	02 002 1260 63.889
FSMF FWSTRC FWTEMP FECAL	EMP	NNHTUR NH3-N	NNO2UR	NNO3UR	NNTKUR K'DAHI N	PBUT	Н
_	TER	UNF	NO2-N UNF.REAC	NO3-N UNF.REAC	TOTAL UNF. REAC	LEAD UNF.TOT.	
/100ML COND. DEG.C	G.C	MG/L AS N	AS N	MG/L AS N	MG/L AS N	MG/L AS PB	Н
84 22.0	0	0.016	0.020	1.800	0.820	0 013	2
	4	0.012	0.017	1.012	0.513	0.006<4	20.00
	2			0.921	0.495	0.006 <a< td=""><td>8.23</td></a<>	8.23
1.0	0	0.009	0.010	0.500	0.350	0.005	8.07
2*	8			995.0	0.151	0.003 <a< td=""><td>0.08</td></a<>	0.08
9 10		7 12	7	ø	10	10	10
PPO4UR PPUT PSAMF DSEUDOMN	ME	RSF	RSP	RST	ZNUT		
DO4 PHOSPHOR AERUG, UNF.REAC UNF.TOT. MF	UG.	BESTRIE	DESTRIE	DECTORE	ZINC		
MG/L	CNT	FILTERED	PARTIC.	TOTAL	MG/L		
AS P AS P /100ML	OML	T/9W	MG/L	MG/L	AS ZN		
	¥		5.0<	388.0	0.0012 <t< td=""><td></td><td></td></t<>		
0.009 0.042 4<	> 6	267.5	48.5	316.0	0,0025 <t< td=""><td></td><td></td></t<>		
	> 5	330.0			0.0160		
< 0.038	> 5				0.0030		
	> 6	371.0			0.0020 <t< td=""><td></td><td></td></t<>		
0.006 0.015 4<	V 5	411.0			0.0010 <t< td=""><td></td><td></td></t<>		
	v4	478.U	0.00	204.0	0.0030		
0.021		358.0	,		0.0000		
>6	V	337.0			0.0010cT		
					04000		
	~	498.0	48.5	504.0	0.0160		
	8	371.3	27.2	402.7	0,0035 <a< td=""><td></td><td></td></a<>		
		366.0		395.4	0.0023 <a< td=""><td></td><td></td></a<>		
0.003 0.010 4		267.5	0.9	316.0	0.0010		
0.013	œ.	67. B		6.96	0.0045 <a< td=""><td></td><td></td></a<>		
2 2		0.10					
	+ N		м	M	10		

B.O.W./ SITE: TEESWATER RIVER SAMPLE POINT: AT COUNTY ROAD 1 STATION TYPE: RIVER

STORET CODE: 02 STATION ID: 08-0123-039-02 MAJOR BASIN: GREAT LAKES

002 1260	39.589	FWSTRC	STREAM COND.	0040 00000		PPUT PHOSPHOR UNF.TOT. MG/L AS P	0.020 0.012 0.029 0.034 0.034 0.015 0.015 0.014 0.010
	DISTANCE:	FSMF	STREPCUS MF CNT /100ML	40AID 8 8 80 104 84 80 124 52 16	124 60 41 8 3* 10	PPO4UR PO4 F UNF.REAC L MG/L AS P	0.005 0.007 0.010 0.002 0.001< 0.007 0.012 0.001< 0.001<
	01	FEUT	IRON UNF.TOT. MG/L AS FE	0.074 <t 0.060<t 0.150 0.250 0.250 0.090<t 0.090<t 0.080<t 0.050<t< td=""><td>0.250 0.115<a 0.100<a 0.050 0.068<a< td=""><td>PHNOL PHENOLS UNF-REAC UG/L PHENOL</td><td>1.000 1.000 1.000 1.500 2.000 1.000 1.000 1.000 7.500</td></a<></a </a </td></t<></t </t </t </t </t 	0.250 0.115 <a 0.100<a 0.050 0.068<a< td=""><td>PHNOL PHENOLS UNF-REAC UG/L PHENOL</td><td>1.000 1.000 1.000 1.500 2.000 1.000 1.000 1.000 7.500</td></a<></a </a 	PHNOL PHENOLS UNF-REAC UG/L PHENOL	1.000 1.000 1.000 1.500 2.000 1.000 1.000 1.000 7.500
	REGION: 01	FCMF	COLIFORM MF CNT /100ML	20AID 16 4 32 228 100 112 32 44	228 61 36 4 4 3*	Ħ	7.81 7.98 7.98 8.11 8.11 8.17 8.24 8.24 8.21 8.21
IVER	905100.0 4	CUUT	COPPER UNF.TOT. MG/L AS CU	0.0016 <t 0.0015<t 0.0005<w 0.0018<t 0.0020<t 0.0020<t 0.0020<t 0.0020<t 0.0020<t 0.0020<t 0.0020<t 0.0020<t< td=""><td>0.0040 0.0019<a 0.0017<a 0.0005 0.0009<a< td=""><td>PBUT LEAD UNF.TOT. MG/L AS PB</td><td>M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0</td></a<></a </a </td></t<></t </t </t </t </t </t </t </t </w </t </t 	0.0040 0.0019 <a 0.0017<a 0.0005 0.0009<a< td=""><td>PBUT LEAD UNF.TOT. MG/L AS PB</td><td>M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0</td></a<></a </a 	PBUT LEAD UNF.TOT. MG/L AS PB	M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0 M>500°0
MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0477600.0 4905100.0 4	COND25	CONDUCT. 25C UMHO/CM AT 25 C	542.0 346.0 447.0 447.0 536.0 512.0 517.0 578.0 531.0	578.0 501.8 497.1 346.0 67.5	NNTKUR K*DAHL N TOTAL UNF.REAC MG/L AS N	0.750 0.680 0.690 0.650 0.920 0.610 0.490 0.450 0.950
MINOR BASIN TERM STREAM	U T M: 17	CLIDUR	CHLORIDE UNF.REAC MG/L AS CL	17.200 16.700 8.900 11.700 11.700 17.200 22.700 22.900 17.900	22.900 16.655 16.119 8.900 4.216	NNO3UR NO3-N UNF.REAC MG/L AS N	2.600 2.900 2.100 2.100 1.400 0.500 0.400 0.400
	16 50.90	ALKT	ALK TOTAL MG/L AS CACO3	200.0 198.0 132.0 199.0 227.0 221.0 202.0 273.0 273.0	243.0 206.6 204.3 132.0 30.4	NO2-N UNF. REAC MG/L AS N	0.010 0.020 0.020 0.020 0.020 0.020 0.010 0.010 0.020
	LONG: 081 16 50.90	FGPROJ	PROJECT SUB-PROJ CODE	0101 0103 0103 0101 0101 0103 0101 0101		NNHTUR NH3-N TOTAL UNF. REAC MG/L AS N	0.024 0.005 0.013 0.027 0.022 0.028 0.028 0.014 0.019
	LAT: 44 18 02.73	FWSADP	SAMPLE DEPTH M	0.30	0.30 0.30 0.30	MATER TEMP DEG.C	1.0 1.0 4.0 4.0 5.0 22.0 22.0 113.0 113.0
	LAT: 44	ST-NAME:	SAMPLE	28802 28841 28841 38860 38860 38878 38917 38955 38955 38955	MAXIMUM ARITH HEAN GEOM HEAN MINIMUM STD DEV (GEOM *) AMP IN STATISTICS % SAMP (EXCLUDED)	ST-NAME: SAMPLE NUMBER	38822 38841 38841 38860 38879 38936 38917 38955 38955 38955
		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900115 1024 900219 0955 9005219 1000 900477 0910 900522 1025 900518 1025 900501 1025 900917 1024 901015 1029	AAZIMUM ARTH HEAN GEOM HEAN GEOM HEAN STD DEV (GEOM *) ** SAMP IN STATISTICS ** SAMP (EXCLUDED)	*=INTERIM TEST-NAME: SAMPLE DATE HOUR SAMPL YYHMDD LHT MUMBE	900115 1024 900219 0955 900319 1000 900512 1000 900518 1015 900716 1015 900917 1024 901015 1029

B.O.W./ SITE: TEESWATER RIVER SAMPLE POINT: AT COUNTY ROAD 1 STATION TYPE: RIVER

0	589	þe	SPHOR TOT.	AS P	*	8	2	0	00																		
E: 02 002 1260	: 39.589	PPUT	PHOSPHOR UNF.TOT,	A	0.034	0.018	0.017	0.010	0.00	11																	
STORET CODE: 02 000 120	DISTANCE:	PP04UR	PO4 UNF.REAC MG/L	AS P	0.012	0.007		0.002		36																	
	01	PHNOL	PHENDLS UNF-REAC UG/L	PHENOL	7.500	2.125		1.000		27																	
	REGION: 01	Н		Hd	8.24	8.09	8.09	7.81	0.15	11																	
(ES DN RIVER	905100.0 4	PBUT	LEAD UNF.TOT. MG/L	AS PB	0.005	0.005 <a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.000<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.005</td><td>0.000<a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.000 <a< td=""><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	11																	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: SAUGEEN RIVER	U T M: 17 0477600.0 4905100.0 4	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L	AS N	0.950	0.691	0.675	0.450	0.155	11																	
MAJOR BASIN MINOR BASIN TERM STREAM	U T H: 17	NNO3UR	NO3-N UNF, REAC MG/L	AS N	2.900	1.700	1.347	0.300	0.923	11	ZNUT		ZINC	UNF. TOT.	MG/L	AS ZN	0.0018 <t< td=""><td>0.0017<t< td=""><td>0.0035</td><td>0.0017<t< td=""><td>0.0005<w< td=""><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<></td></t<></td></t<>	0.0017 <t< td=""><td>0.0035</td><td>0.0017<t< td=""><td>0.0005<w< td=""><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<></td></t<>	0.0035	0.0017 <t< td=""><td>0.0005<w< td=""><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<></td></t<>	0.0005 <w< td=""><td>0.0005<w< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></w<></td></w<>	0.0005 <w< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></w<>	0.0020 <t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0020<t< td=""><td>0.0010<t< td=""></t<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0010<t< td=""></t<></td></t<>	0.0010 <t< td=""></t<>
	16 50.90	NNO2UR	NO2-N UNF.REAC MG/L	AS N	0.030	0.020		0.010		18	TURB				TURB'ITY	FTU	2.30									2.30	
	LONG: 081 16 50.90	NNHTUR NH3-N	TOTAL UNF.REAC MG/L	AS N	0.028	0.020	0.018	0.005	00.00	11	RSP			RESIDUE	PARTIC.	MG/L	5.0<	5,0<	12.8	8.2	10.2	5.0<	>0.5	>0.5	14.4	6.2	4.4
ROAD 1	LAT: 44 18 02.73	FWTEMP	WATER	DEG.C	22.0	8.6	0.9	1.0	2.8	10	PSAME	SEUDUMN	AERUG.	MF	CNT	/100HL	>4	>4>	>4	>+>	>5	>4>	>4>		>4>	>4	>4
SAMPLE POINT: AT COUNTY ROAD 1 STATION TYPE: RIVER	LAT: 44	TEST-NAME:	SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	SID DEV (GEUM *)	SAMP IN STATISTICS % SAMP (EXCLUDED)						NUMBER	38803	38822	38841	38860	38879						38993
SAMPLE POINT: AT COU STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR	YYMHDD LHT				94 010	SID DE	# SAMP IN	*=INTERIM TEST-NAME:			ш		YYMIDD LMT	900115 1024	900219 0955	900319 1000	900417 0910	900522 1025						901119 11110

0.0035 0.0015<A 0.0013<A 0.0005 0.0009<A

2.30 2.30 2.30 2.30 0.00

HAXIMUH
ARITI HEAN
GEOM HEAN
HINIMUM
STD DEV (GEON *)
SAMP IN STATISTICS
% SAMP (EXCLUDED)

HANDER BASIN: GREAT LARGES STATION Type: RIVER RIVER HANDER BASIN: GREAT LARGES STATION GO CONTINGE CON	STATION TYPE: DIVED		֡			TO TOTAL					
FMSADP FCPROD CLIDUR CONDECT CLICUR CONDECT CLICUR CONDECT CLICUR CONDECT CLICUR CONDECT CLICUR CONDECT CLICUR CLICUR CONDECT CLICUR CLICUR CLICUR CONDECT CLICUR CL					MAJOR BASIN MINOR BASIN TERM STREAM	GREAT LAN	ES IN LIVER			STORET CODE	: 02 002 1260
FMSADP FGPR03 CLIDUR COMDUCT. CLICURA FECAL FECA	LAT: 4	14 14 42.56		10 15.44	U T M: 17	0486350.0	898900.0 4	REGION:	10	DISTANCE:	
Columb C	-NAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR	NNO2UR
SAMPLE PROJECT UNI-REAC MF REAC MF REA				CHLORIDE	CONDUCT.	COLIFORM	STREPCUS			TOTAL	N02-N
Columbia C	CAMDIE	SAMPLE	PROJECT SUB-DD0.1	UNF.REAC	250	HE C	AF C	-	WATER	UNF.REAC	UNF . REAC
6 0.30 0101 19.200 593.0 100 30AID 4 1.0 0.014 6 0.30 0101 12.900 582.0 32 28AID 6 1.0 0.059 2 0.30 0101 12.900 582.0 32 28AID 6 1.0 0.059 3 0.30 0101 12.100 473.0 132 690 6 5.0 0.029 3 0.30 0101 17.600 551.0 643.0 650 6 5.0 0.029 3 0.30 0101 17.600 551.0 643.0 52 6 12.0 0.033 4 0.30 0101 18.500 551.0 651.0 640 6 23.0 0.033 5 0.30 0101 18.500 551.0 652.0 60 11.0 0.003 6 0.30 0101 18.500 657.0 600 67.0 600 67.0 0.003 6 0.30 0101 13.600 667.0 600 690 67.0 0.003 6 0.30 0101 13.600 667.0 600 690 67.0 0.003 6 0.30 0101 13.600 667.0 600 690 690 67.0 0.003 6 0.30 0101 13.600 667.0 600 690 690 67.0 0.003 6 0.30 0101 13.600 667.0 600 690 690 67.0 0.003 6 0.30 0101 13.600 667.0 600 690 690 690 690 690 690 690 690 69	NUMBER	E	CODE	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG,C	MG/L AS N	MG/L AS N
6 0.30 0101 12.900 582.0 32 28 6 1.0 0.059 5 0.30 0101 12.900 473.0 332 28 6 1.0 0.059 5 0.30 0101 13.500 559.0 630 6410 6 5.0 0.009 5 0.30 0101 13.500 559.0 630 640.0 6 5.0 0.009 5 0.30 0101 13.500 559.0 630 66 5.0 0.003 5 0.30 0101 13.500 567.0 36 52 6 23.0 0.003 6 0.30 0101 13.500 567.0 36 52 6 23.0 0.003 6 0.30 0101 13.600 667.0 400> 600> 6 11.0 0.003 7 0.30 0101 13.600 667.0 6000 667.0 600> 6 11.0 0.009 8 0.30 0101 13.600 667.0 6000 667.0 600> 6 11.0 0.009 8 0.30 0101 13.600 667.0 6000 667.0 600> 6 11.0 0.009 8 0.30 0101 13.600 667.0 6000 0.009 8 0.30 0.30 0.30 0.008 0.008 0.0025 4< 5.0 0.009 8 0.30 0.30 0.30 0.008 0.008 0.0025 4< 5.0 0.009 8 0.30 0.30 0.30 0.001 0.000 0.000 0.000 8 0.30 0.30 0.30 0.001 0.000 0.000 0.000 8 0.30 0.30 0.30 0.000 0.000 0.000 0.000 8 0.30 0.000 0.000 0.000 0.000 0.000 0.000 8 0.30 0.000 0.000 0.000 0.000 0.000 0.000 8 0.000	38807	0.30	0101	19.200	593.0	100	SOAID	4	1.0	0.016	2010
Colored Colo	38826	0.30	0101	12,900	582.0	32	28	. 9	1.0	0.059	0.010
4 0.30 0101 12.100 473.0 132 690 6 5.0 0.020 0.032 0.033 0.030 11.500 551.0 64 44 6 6 12.0 0.001 2 0.30 0101 1.5.00 551.0 64 44 6 6 12.0 0.001 2 0.30 0101 1.5.00 551.0 64 0 6 12.0 0.001 3 0.30 0101 1.5.00 543.0 543.0 52 0 0.033 9 0.30 0101 1.5.00 543.0 543.0 540 0 0.033 9 0.30 0101 1.5.00 543.0 540 0 0.030 0.030 9 0.30 0101 1.5.00 667.0 400 0 0.030 0.030 9 0.30 0101 1.5.00 667.0 800 0 0.000 0.030 0.030 10 0.30 11.5.00 667.0 800 0 0.000 0.030 0.030 10 0.30 11.5.00 667.0 800 0 0.030 0.030 0.030 10 0.30 11.5.00 0.030 0.030 0.030 0.030 0.030 0.030 0.030 11 0 0.30 11.5.00 0.030 0.0	38845	0.30	0101	9.700	473.0	330	40AID	9	4.0	0,099	0.120
3 0.30 01011 13.500 559.0 830 140 6 12.0 0.001 2 0.30 01011 7.600 541.0 64 44 6 23.0 0.083 0 0.30 0101 8.500 561.0 36 5 14.0 0.013 0 0.30 0101 16.800 667.0 400> 6 11.0 0.013 0 0.30 0101 16.800 667.0 400> 6 11.0 0.013 0 0.30 0101 16.800 667.0 400> 6 11.0 0.013 0 0.30 0101 13.600 667.0 80410 10410 6 23.0 0.009 0 0.30 11.260 867.0 184 126 6.0 10.009 0 0.30 11.84 126 6.0 11.0 0.009 0 0.30 11.84 126 6.0 <td>38864</td> <td>0.30</td> <td>0101</td> <td>12.100</td> <td>473.0</td> <td>132</td> <td>069</td> <td>9</td> <td>5.0</td> <td>0.020</td> <td>0.100</td>	38864	0.30	0101	12.100	473.0	132	069	9	5.0	0.020	0.100
2 0.30 0.101 7.600 511.0 64 44 6 23.0 0.083 0.30 0.101 7.700 543.0 567.0 52 96 6 23.0 0.013 0.30 0.101 8.500 567.0 400> 60> 6 23.0 0.013 7 0.30 0.101 16.800 667.0 400> 60> 6 21.0 0.013 8 0.30 0.101 13.600 667.0 830 690 4.0 0.009 9 0.101 13.600 667.0 830 690 4.0 0.009 1 0.20 11.264 557.5 184 126 4.0 0.009 1 0.30 11.264 557.5 184 126 6.0 0.009 1 0.30 11.60 667.0 830 690 10.0 0.009 1 0.30 11.80 667.0 830 69	38883	0.30	0101	13.500	559.0	830	140	9	12.0	0.001<	0.000
1	38902	0.30	0101	7.600	511.0	99	55	9	23.0	0.083	0.050
0 0.30 0101 8.500 561.0 36 52 6 51.0 0.010 0 0.30 0101 16.800 667.0 400> 600> 6 11.0 0.010 0 0.30 0101 15.600 667.0 400> 600> 6 11.0 0.009 0 0.30 0101 15.600 667.0 804D 10AID 6 4.0 0.009 0 0.30 11.264 557.5 184 126 10.8 0 0.30 11.264 557.5 184 126 10.8 0 0.30 11.264 557.5 184 126 10.8 0 0.30 11.264 557.5 184 126 10.8 0 0.30 11.264 557.5 184 126 10.8 0 0.30 11.264 557.5 19 9 0 1.00 1.004	38921	0.30	0101	7.700	543.0	52	96	9	23.0	0,033	0.030
9 0.30 0101 8.300 567.0 36 52 6 14.0 0.013 7 0.30 0101 13.600 667.0 400> 600> 60 11.0 0.008 7 0.30 0101 13.600 667.0 607.0 600> 600> 600 8 0.30 0101 13.600 667.0 820 600> 600> 600 8 0.30 11.809 560.5 184 126 6.00 8 0.30 11.809 560.5 184 126 10.8 0.039 8 11.864 573.5 184 126 6.9 8 11.864 573.6 32 10 10.8 8.6 8 11 11.864 573.5 10 10.8 8 11 1 11.864 573.6 32 10 10.8 8 11 1 11.864 573.6 32 10 10.8 8 11 1 11.864 573.6 32 10 10.8 8 11 1 11 11 11 11 10 11 10 11 8 11 11 11 11 11 10 11 9 11 10 11 9 11 10 11 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38940	0.30	1010	8.500	561.0			9	21.0	0.010	0.010
8 0.30 0101 16.800 667.0 400> 6 11.0 0.008 7 0.30 0101 13.600 636.0 804ID 104ID 6 11.0 0.009 M 0.30 11.809 560.5 184 126 6.9 6.9 0.039 M 0.30 11.809 560.5 184 126 6.9 <td>38959</td> <td>0.30</td> <td>0101</td> <td>8.300</td> <td>567.0</td> <td>36</td> <td>52</td> <td>9</td> <td>14.0</td> <td>0.013</td> <td>0.030</td>	38959	0.30	0101	8.300	567.0	36	52	9	14.0	0.013	0.030
NOSON NATKUR NA	38978	0.30	0101	16.800	0.799	<004	<009	9	11.0	0.008	0.070
NOS	38997	0.30	0101	13.600	636.0	SOAID	10AID	9	4.0	600.0	0.010
NO 30 11.809 560.5 184 126 10.8 0.035 1.064 577.5 32 10 1.0 1.084 577.5 32 10 1.0 3.862 60.6 60.6 11 10 11 10 1	AXIMUM	0.30		19.200	0.299	830	069		23.0	0.099	0.120
NIOSUR NINTKUR PH PPO4UR PPUT PSAHF RSP PST.	H MEAN	0.30		11.809	5.095	184	126		10.8	0.035	0.054
1	M MEAN			11.264	557.5				6.9		
NINOZUR NINTKUR PH PPO4UR PPUT PSAHF RSP PRO4UR PRO4UR PRO4UR PRO4UR PRO4UR PRO5UDNIN	EOM X	0.30		7.600	473.0	32	10		1.0	0.008	0.010
NNO3UR NNTKUR PH PPOQUR PPUT PSAHF RSP PPOTAL PP	TSTICS	11		3.002	111	c	c		9.6		
NNO3UR NNTKUR PH PP04UR PPUT PSAMF	LUDED)	:		1	1	10	10		1	01	01
NO3-N TOTAL UNF. FEAC UNF. REAC UNF. REAC UNF. TOT. MG/L HG/L HG/L HG/L HG/L CMT AS N AS N PH AS P AS P /100HL 4.700 0.650 7.78 0.018 0.025 4 4.700 0.650 7.96 0.008 0.025 4 4.2.600 0.740 8.02 0.016 0.049 4 4.700 0.250 0.041 0.154 4 4.700 0.250 0.016 0.045 4 4.700 0.250 0.016 0.054 4 4.700 0.250 0.016 0.055 4 4.700 0.250 0.016 0.055 4 4.700 0.250 0.016 0.055 4 4.700 0.250 0.011 0.055 4 4.700 0.001 0.055 0.001 0.055 4 4.700 0.001 0.055 0.001 0.055 4 4.700 0.001	NAME:	NNOSUR	NNTKUR K DAHI N	H	PP04UR	PPUT	PSAME	RSP			
UNF.REAC UNF.REAC UNF.REAC UNF.TOT. HF MG/L HG/L HG/L HG/L CMT AS N AS N PH AS P 7100HL 4.700 0.650 7.78 0.018 0.039 4 2.600 0.740 8.02 0.016 0.025 4 2.600 0.740 8.02 0.016 0.049 4 0.100 1.100 7.95 0.016 0.059 4 0.100 0.730 8.08 0.011 0.054 4 0.500 0.730 8.08 0.001 0.064 4 0.730 0.740 8.26 0.007 0.036 4 0.730 0.740 8.26 0.007 0.036 4 0.200 0.750 8.26 0.007 0.036 4 0.500 0.650 8.05 0.007 0.036 4 0.500 0.650 0.601 0.036 4		N03-N	TOTAL		P04	PHOSPHOR	AERUG.				
MG/L MG/L MG/L MG/L MG/L CNT PAI AS N AS N PH AS P AS P /100HL CNT PAI 4.700 0.650 7.78 0.018 0.025 4 2 2 6 2 6 0.00 0.025 4 2 2 2 6 0.01 0.025 4 2 2 2 2 2 2 4 2 2 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 3 4 2 2 2 4 2 2 3 4 2 2 2 2 3 4 2 2 2 2 3 4 2 2 3 4 2 2 3 4 3 3 4		UNF. REAC	UNF. REAC		UNF. REAC	UNF. TOT.	¥	RESIDUE			
4,700 0,650 7,78 0,018 0,039 4 3,500 0,560 7,96 0,008 0,025 4 2 2,600 0,740 8,02 0,016 0,049 4 2 0,100 1,100 7,95 0,041 0,049 4 2 0,200 0,340 8,02 0,041 0,054 4 2 0,900 0,730 8,08 0,005 0,048 4 2 0,200 0,530 8,12 0,005 0,048 4 1 0,600 0,470 8,25 0,001 0,036 4 1 3,300 0,910 8,23 0,001 0,036 4 1 3,300 0,910 8,07 0,020 0,061 6 4	SAMPLE	MG/L AS N	MG/L AS N	H	MG/L AS P	MG/L AS P	CNT /100ML	PARTIC.			
3.500 0.580 7.96 0.008 0.025 4 2.600 0.740 8.02 0.016 0.049 4 6 5.200 0.940 8.02 0.011 0.054 4 6	38807	4.700	0.650	7.78	0.018	0.039	44	1			
2.600 0.740 8.02 0.016 0.049 4 5.200 1.100 7.95 0.041 0.154 4C 5.200 0.940 8.02 0.041 0.054 4 0.900 0.730 8.08 0.005 0.054 4 0.300 0.780 8.26 0.005 0.028 4 0.500 0.530 8.12 0.007 0.028 4 0.600 0.470 8.23 0.001 0.036 4 3.300 0.810 8.07 0.020 0.054 4	38826	3.500	0.580	7,96	0.008	0.025	, 4	7.0			
0.100 1.100 7.95 0.041 0.154 9C 5.200 0.940 8.02 0.011 0.054 4 0.900 0.730 8.08 0.005 9.048 4 0.300 0.480 8.26 0.007 0.048 4 0.500 0.530 8.12 0.007 0.028 4 0.600 0.470 8.25 0.007 0.036 4 3.300 0.810 8.25 0.001 0.036 4 3.300 0.810 8.07 0.020 0.061 8C	38845	2.600	0.740	8.02	0.016	0.049	>4	21.2			
5.200 0.940 8.02 0.011 0.054 4 0.900 0.730 8.08 0.005 0.048 4 0.300 0.460 8.26 0.007 0.028 4 0.200 0.530 8.12 0.007 0.036 4 0.600 0.470 8.23 0.001 0.036 4 3.300 0.810 8.07 0.020 0.061 8C	38864	0.100	1.100	7.95	0.041	0.154	24	71.1			
0.300 0.730 8.08 0.005 0.046 4< 0.300 0.480 8.26 0.007 0.026 4< 0.200 0.530 8.12 0.007 0.036 4< 0.600 0.470 8.23 0.001< 0.034 4< 3.300 0.810 8.07 0.020 0.061 8C	38883	5.200	0.940	8.02	0.011	0.054	>4	20.2			
0.300 0.480 8.26 0.007 0.028 4< 0.200 0.530 8.12 0.007 0.036 0.600 0.470 8.23 0.001< 0.034 4< 3.300 0.810 8.07 0.020 0.061 8C	38902	0.900	0.730	8.08	0.005	0.048	>4	14.3			
0.200 0.530 8.12 0.007 0.036 0.600 0.470 8.23 0.001< 0.034 4< 2 3.300 0.810 8.07 0.020 0.061 8C 4	38921	0.300	0.480	8.26	0.007	0.028	>4	7.4			
0.600 0.470 8.23 0.001< 0.034 4< 3.300 0.810 8.07 0.020 0.061 8C	38940	0.200	0.530	8.12	0.007	0.036		11.4			
3.300 0.810 8.07 0.020 0.061 80	38959	0.600	0.410	8.23	0.001<	0.034	>5	25.8			
	38978	3.300	0.810	8.07	0.020	0.061	38	47.8			

1990 WATER QUALITY DATA REGION 1

	: 02 002 1260	56.165										
STATION ID: 08-0123-042-02	STORET CODE: 02 002 126	DISTANCE:										
TION		10										
STA		REGION: 01	RSP		PARTIC.	MG/L	71.1	25.3	7.6		10	6
	ES N IVER	898900.0 4	PSAMF	PSEUDOMN AERUG.	CNT	/100ML	හ	9	4		2	80
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0486350.0 4898900.0 4	PPUT	PHOSPHOR	MG/L	AS P	0.154	0.050	0.043	0.036	11	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PP04UR	PO4	UNF. REAL	AS P	0.041	0.013	0.005		10	6
SRANT TWP.		10 15.44	H			H	8.26	8.05	7.78	0.13	11	
PEARL CREEK AT CONCESSION ROAD 12 AND 13 BRANT TWP.		LAT: 44 14 42.56 LONG: 081 10 15.44	MNTKUR	K'DAHL N TOTAL	MG/L	AS N	1.100	0.695	0.470	0.196	11	
SSION ROAD		4 14 42.56	NNO3UR	NO3-N	MG/L	AS N	5.200	2.200	0.100	1.869	11	
B.O.W./ SITE: PEARL CREEK SAMPLE POINT: AT CONCESSION	PE: RIVER	LAT: 4	TEST-NAME:			NUMBER	MAXIMUM	ARITH MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: SAMPLE POINT:	STATION TYPE:		*=INTERIM TEST-NAME:	SAMDIE	DATE HOUR	YYMNDD LMT				STD D	# SAMP IN	% SAMP

B.O.W./ SITE: SAUGEEN RIVER SAPPLE POINT: AT CONC.ROAD 4 AND 5 SAUGEEN TOWNSHIP STATION TYPE: RIVER

72 8 20AID MG/L AS P STREPCUS CNT PHOSPHOR UNF. TOT. 27.358 FECAL /100ML 44 44 44 83 83 83 84 0.011 FSMF 112 1260 16 36 120 28 PPUT STORET CODE: DISTANCE: 40AID MG/L AS P FECAL P04 JNF. REAC COLIFORM /100ML PP04UR 0.004 8 × 0 FCMF 84 984 90 90 0.005 0.010 24 92 76 MG/L AS 0 표 DISOLVED OXYGEN 13.0 13.0 12.0 12.5 11.5 9.0 10.0 11.0 11.0 13.0 111.4 111.3 9.0 11.4 8.28 8.13 7.98 8.24 8.27 8.35 8.35 8.35 PH REGION: 01 0.0005 0.0014<A 0.0050 0.0022<A AS CU MG/L AS PB 0.005<W COPPER MG/L 0.0020<T 0.0005<W 0.0024<T 0.0020<T 0.0010<T 0.0005<W 0.0018<A 0.005<W 0.005<W 0.005<W UNF. TOT. UNF. TOT. 0.0030 0.0050 0.0030 CUUT 0.0030 U T M: 17 0474950.0 4912400.0 4 UNF.REAC MG/L AS N K'DAHL N COND25 UMHO/CM AT 25 C 25C NNTKUR CONDUCT. 480.0 465.0 556.0 566.0 548.0 616.0 521.1 373.0 66.4 11 0.620 577.0 373.0 538.0 616.0 TOTAL 0.530 TERM STREAM: SAUGEEN RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON UNF.REAC MG/L AS N HG/L CHLORIDE UNF.REAC AS CL CLIDUR NNO3UR N03-N 11.249 7.900 1.917 1.400 1.400 1.500 0.800 14.200 7.900 9.900 11.100 11.100 13.700 9.700 11.400 1.700 13.800 0 MG/L MG/L AS N 5 DAY NNO2UR N02-N UNF. REAC TOT. DEM. 0.01< 0.010< 0.030 0.030 0.020 AS 1.68 0.59 0.93 B005 0.74 0.94 2.26 99.0 MG/L ALK TOTAL CAC03 NH3-N MG/L AS N TOTAL NNHTUR UNF. REAC 0.016 0.004 0.014 0.016 0.001< LONG: 081 18 51.76 250.0 147.0 201.0 217.0 210.0 202.0 193.0 207.0 225.0 250.0 207.2 147.0 25.9 ALKT WATER SUB-PROJ TEMP DEG.C FGPR03 CODE PROJECT 0103 0101 0103 1.0 1.0 1.0 12.0 23.0 23.0 21.0 20.0 20.0 114.0 0101 0103 0103 0101 0101 1010 0101 LAT: 44 21 59.01 DEPTH STREAM COND. SAMPLE **FWSADP FWSTRC** 0.30 0.30 40000 38880 38956 38994 MAXIMUM ARITH MEAN SAMPLE 38823 38842 38880 49303 38823 38861 38918 38937 38975 38861 SAMPLE GEOM MEAN JUMBER 38842 \$8899 MINIMUM # SAMP IN STATISTICS 19303 STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME 1055 1045 1040 0935 1055 1045 1040 1030 1020 HOUR 1020 0935 1105 1046 HOUR 1100 1036 LMT YYMMDD 716006 901015 YYMMDD 900319 900319 900716 900820 900219 900417 900522 SAMPLE 900121 900219 900417 900522 900618 SAMPLE 900121 DATE DATE

(CONTD)

0.015 0.014 0.012 0.016

0.005<W 0.005<W 0.005<W 0.005<W 0.005<W M>500

0.460 0.380

0.300

0.010<

0.010

0.016 0.017

38899 38918

900618 912006 900820 900917 901119

38937 38956 38975 38994

1030

1105

901015

0.014

001<

0.001

B.O.W./ SITE: SAUGEEN RIVER SAMPLE POINT: AT CONC.ROAD 4 AND 5 SAUGEEN TOWNSHIP STATION TYPE: BTVER
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER
LONG: 081 18 51.76 U T H: 17 0474950.0 4912400.0 4
FWTEMP NNHTUR NNOZUR NNOZUR
TOTAL NOTE:
DEG.C AS N AS N AS N
0.004 0.010 0.300
8 7 9 11 22
ZNUT
ZINC
RESIDUE UNF.TOT.
MG/L AS ZN
0.0025 <t< td=""></t<>
0.0027
0.0020 <t< td=""></t<>
0,0020 <t< td=""></t<>
0.0010 <t< td=""></t<>
0.0020<1
0.0010<1
0.0005 <w< td=""></w<>
0.0027
0.0017 <a< td=""></a<>
0.0015 <a< td=""></a<>
0.0005 0.0007 <a< td=""></a<>
10
> 6

B.O.W./ SITE: TEESWATER RIVER SAMPLE POINT: AT CHEPSTOW STATION TYPE: RIVER

STORET CODE: 02 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON

	LAT: 9	9 09 07.88	LAT: 44 09 07.86 LONG: 081 17 10.87	17 10.87	TERM STREAM	TINOK BASIN: LAKE HUKUN TERM STREAM: SAUGEEN RIVER . U T M: 17 0477100.0 4888600.0 4	IIVER .	REGION: 01	=	DICTOR	002 1260 67 E91
			100	10.01		0.001///0	4 0.000000	REGIONS		DISTANCE	
IEKIM	*=INIEKIM IEST-NAME:	FWSADP	FGPR03	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR
SAMPLE		SAMDIF	DOD JELT	CHLORIDE	CONDUCT.	COLIFORM	STREPCUS		CHARLE	TOTAL	NO2-N
DATE HOUR		DEPTH	SUB-PROJ	MG/L	UMHO/CM	CNT	CNT	STREAM	TEMP	ONF. KEAU	UNF.KEAC
үүмирр смт	NUMBER	Σ	CODE	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG.C	AS N	AS N
	,	0.30	1010	18.300	538.0	10<	SOAID	9	1.0	0.015	0.010<
		0.30	0101	17.500	515.0	>4	89	9	1.0	0.007	0.030
			0101	10.300	359.0	50	8	9	4.0	0.030	0.030
		0.30	0101	14.700	466.0	48	64	9	0.9	0.027	0.020
		0.30	0101	12.200	463.0	112	28	9	12.0	0.020	0.030
			0101	18.500	553.0	09	20	9	21.0	0.031	0.040
			0101	21.500	573.0	40	48	9	19.0	0.000	0.040
		0.30	0101	24.700	599.0			9	19.0	0.018	0.010<
		0.30	0101	26.300	591.0	89	40	9	13.0	0.020	0.030
		0.30	0101	19.200	590.0	55	100	9	10.0	0.020	0.030
901119 0948	8 38992	0.30	0101	16.500	539.0	55	24	9	4.0	0.013	0.010
	MAXIMUM	0.30		26.300	599.0	112	100		21.0	0.070	0.040
	ARITH MEAN	0.30		18.155	526.0	52	37		10.0	0.025	0.029
	GEOM MEAN			17.543	520.9		28		6.7	0.021	
	MINIMUM	0.30		10.300	359.0	20	8		1.0	0.007	0.010
STD	STD DEV (GEON *)			4.836	72.4		2*		7.4	0.017	
SAMPI	# SAMP IN STATISTICS	11		11	11	Φ,	10		11	11	6
Z SAL	" SAMP (EXCLUDED)					20					18
TERIM	*=INTERIM TEST-NAME:	NNOSUR	NNTKUR	Н	PP04UR	PPUT	PSAMF	RSP			
		M TON	K DAHL N		200		PSEUDOMN				
SAMPLE		INF REAC	INF PEAC		INE DEAL	HINE TOT	AERUG.	DECTRIE			
DATE HOUR	SAMPLE	MG/1	MG/1		ME/I	MG/1	THE	DADITO			
Ω		AS N	AS N	Н	AS P	AS P	/100ML	MG/L			
900115 0958	8 38802	2.800	0.800	7.57	0.006	0.019	4	7.6			
900219 0930	0 38821	3.200	0.670	7.66	0.007	0.014	>4	7.0<			
900319 0941	1 38840		0.630	7.63	0.009	0.026	>4	7.2			
_			0.700	7.97	0.001<	0.024	>4	8.5			
			0.770	7.78	900.0	0.028	5	10.9			
			0.730	8.06	0.005	0.029	>4	6.5			
			0.780	8.15	0.013	0.033	>4	7.8			
	1.1	1.300	0.620	8.04	0.016	0.029		0.6			
	.,		0.620	8.11	0.001<	0.030	>4	9.1			
	.,	2.200	1.020	7.87	0.001	0.028	>4	8.2			
901119 0948	38992	2.100	0.800	7.90	0.001<	0.013	>4	3,7			

TEESWATER RIVER	AT CHEPSTOW	RIVER
B.O.W./ SITE:	SAMPLE POINT:	STATION TYPE:

02 002 1260	67.591													
STORET CODE:	DISTANCE:													
	Ħ													
	REGION: 01	RSP			RESIDUE	PARTIC.	MG/L	10.9	7.6		3.7		10	6
ES N IVER	888600.0 4	PSAMF	PSEUDOMN	AERUG.	MF	CNT	/100ML	4	4		4		2	80
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0477100.0 4888600.0 4	PPUT		PHOSPHOR	UNF. TOT.	T/9M	AS P	0.033	0.025	0.024	0.013	0.007	11	
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PP04UR		P04	UNF. REAC	NG/L	AS P	0.016	0.008		0.001		8	27
	17 10.87	Н					ЬН	8.15	7.89	7.88	7.57	0.20	11	
	LONG: 081 17 10.87	NNTKUR	K'DAHL N	TOTAL	UNF . REAC	MG/L	AS N	1.020	0.740	0.732	0.620	0,116	11	
5	LAT: 44 09 07.88	NNO3UR		N03-N	UNF. REAC	HG/L	AS N	3.200	2.064	1.956	0.900	0.656	11	
STATION TYPE: RIVER	LAT: 44	*=INTERIM TEST-NAME:					NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
STATION T		*=INTERIM			SAMPLE	DATE HOUR	YYMMDD LMT					STD	# SAMP II	% SAM

B.O.W./ SITE: PEARL CREEK SAMPLE POINT: AT 10TH CONC BRANT TOWNSHIP STATION TYPE: RIVER

STATION ID: 08-0123-045-02

02 002 1260	60.671
STORET CODE: 02 002 126	DISTANCE: 60.671
	REGION: 01
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	LAT: 44 13 50.82 LONG: 081 08 51.90 UTM: 17 0488200.0 4897300.0 4
	LONG: 081 08 51.90
YPE: RIVER	LAT: 44 13 50.82

: 60.671	NNO2UR	NO2-N	UNF.REAC	AS N	0.010<	0.270	0.270	0,060	090.0	0.030	0.010<	0.020	0.040	0.010	0.270	200	0.00	010		80	20															
DISTANCE:	NNHTUR	NH3-N TOTAL	UNF.REAC	AS N	0.074	0.820	0.265	0.001<	0.050	0.026	0.004	0.013	0.012	0.003	0.820	0 141	4	200 0		6	10															
0,1	FWTEMP		WATER	DEG.C	1.0	0.4	5.0		21.0	23.0	17.0	11.0	11.0	4.0	23.0	10.8	7.5		8.0	6																
REGION: 01	FWSTRC		STREAM	COND.	•	9	9		9	9	9	9	9	9																						
897300.0 4	FSMF	FECAL STREPCUS	CNT	/100ML	28	454	272	110	360	<009		390	324	SOAID	424	242	!	28	}	හ	11	RSP		DESTRIE	PARTIC	MG/L	15.4	9.9	14.9	39.8	26.3	18.7	25.3	44.0	11.8	7.0
U T M: 17 0488200.0 4897300.0 4	FCMF	FECAL COLIFORM	CNT	/100ML	32	<009	<009	1100	172	<009		200	<004	ZOAID	1100	305		20		ĽΩ	55	PPUT	риосриор	UNF TOT	MG/1	AS P	0.031	0.076	0.058	0.052	0.056	0.034	0.047	0.023	0.034	0.012
U T M: 17	COND25	CONDUCT.	25C UMHO/CM	AT 25 C	664.0	580.0	580.0	634.0	645.0	637.0	642.0	0.899	726.0	725.0	726.0	650.1	648.4	580.0	49.7	10		PP04UR	D04	INF. REAC	MG/L	AS P	0.025	0.027	0.014	0.007	0.003	0.010	0.008	0.001<	0.001	0.001<
08 51.90	CLIDUR	CHLORIDE	UNF.REAC	AS CL	25.400	17.300	17.900	18.000	11.200	10.300	11.600	15.000	20.000	20.500	25.400	16.720	16.093	10.300	4.768	10	,	Æ				Н	7.97	8.01	7.94	8.06	8.12	8.36	8.21	8.21	8.10	8.14
LAT: 44 13 50.82 LONG: 081 08 51.90	FGPROJ		PROJECT SUB-PROJ	CODE	0101	0101	0101	0101	0101	0101	1010	0101	0101	0101								NNTKUR	K'DAHL N	UNF. REAC	MG/L	AS N	0.580	1.660	1.170	0.760	0.710	0.600	0.510	0.480	0.750	0.500
4 13 50.82	FWSADP		SAMPLE	Ξ	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30		10		NNO3UR	N03-N	UNF. REAC	MG/L	AS N	4.300	4.000	3.000	5.600	2.800	2.400	2.300	2.100	4.000	2.000
LAT: 4	ST-NAME:		SAMPLE	NUMBER	38808	38846	38865	38884	38903	38922	38941	38960	38979	38998	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	% SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	38808	38846	38865	38884	38903	38922	38941	38960	38979	38998
	*=INTERIM TEST-NAME:		SAMPLE DATE HOUR	YYMMDD LMT	900115 1245	900319 1145			900618 1230	900716	900820 1150	900917 1040	901015 1248	901119 1200		4			STD DEV	# SAMP IN STATISTICS	% SAMP (*=INTERIM TEST-NAME:		SAMPLE		YYMMDD LMT		900319 1145			900618 1230	900716	900820 1150	900917 1040	901015 1248	901119 1200

1990 WATER QUALITY DATA REGION 1

241 STATION ID: 08-0123-045-02	STORET CODE: 02 002	REGION: 01 DISTANCE: 60.671				
	KES DN RIVER	4897300.0 4	RSP	RESIDUE PARTIC. MG/L	44.0 21.0 17.5 6.6	12.9
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN RIVER	U T M: 17 0488200.0 4897300.0 4	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.076 0.042 0.038 0.012	0.019
	MAJOR BASI MINOR BASI TERM STREA	U T M: 17	PP04UR	PO4 UNF.REAC MG/L AS P	0.027 0.012 0.001	8 20
		08 51.90	Н	H	8.36 8.11 8.11 7.94	0.13
TOWNSHIP		LONG: 081	NNTKUR K'DAHI N	TOTAL TOTAL UNF.REAC MG/L AS N	1.660 0.772 0.712 0.480	0.372
REEK CONC BRANT		LAT: 44 13 50.82 LONG: 081 08 51.90	NNO3UR	NO3-N UNF.REAC MG/L AS N	5.600 3.550 3.368 2.100	1.208
B.O.W./ SITE: PEARL CREEK SAMPLE POINT: AT 10TH CONC BRANT TOWNSHIP	STATION TYPE: RIVER	LAT:	TEST-NAME:	SAMPLE	MAXIMUM ARITH MEAN GEOM MEAN MINIMUM	# SAMP IN STATISTICS % SAMP (EXCLUDED)
B.O.W./ S.	STATION T		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	o d d	# SAMP IN

STORET CODE: 02 002

STATION ID: 08-0123-046-02

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON B.O.W./ SITE: SOUTH SAUGEEN RIVER SAMPLE POINT: AT 7TH.AVE SOUTH OF HANOVER STATION TYPE: RIVER

1260	96,880	FWSTRC		COND.	9	9	9	9	9 49		9	9	9	9								PPUT		PHOSPHOR	HG/L	AS P	0.009	0.012	0.024	0.022	0.024		0.014	0.027	0.016	0.013	0.022
	DISTANCE:	FSMF	STREPCUS	/100ML	ZOAID	æ	24	80	168	24		28	88	12	168	09	37	80	**	10		PPO4UR		INF PEAC		AS P	0.002	0.005	900.0	0.002	0.001<		0.001<	0.008	0.001<	0.001<	0.001<
	10	FEUT	IRON UNF. TOT.	MG/L AS FE	0.068 <t< td=""><td>0.064<t< td=""><td>0.180</td><td>6.800</td><td>0.060<t< td=""><td>0.130</td><td>0.050<t< td=""><td>0.050<t< td=""><td>0.100<t< td=""><td>0.070<t< td=""><td>6.800</td><td>0.712<a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.064 <t< td=""><td>0.180</td><td>6.800</td><td>0.060<t< td=""><td>0.130</td><td>0.050<t< td=""><td>0.050<t< td=""><td>0.100<t< td=""><td>0.070<t< td=""><td>6.800</td><td>0.712<a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.180	6.800	0.060 <t< td=""><td>0.130</td><td>0.050<t< td=""><td>0.050<t< td=""><td>0.100<t< td=""><td>0.070<t< td=""><td>6.800</td><td>0.712<a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.130	0.050 <t< td=""><td>0.050<t< td=""><td>0.100<t< td=""><td>0.070<t< td=""><td>6.800</td><td>0.712<a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.050 <t< td=""><td>0.100<t< td=""><td>0.070<t< td=""><td>6.800</td><td>0.712<a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.100 <t< td=""><td>0.070<t< td=""><td>6.800</td><td>0.712<a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<></td></t<></td></t<>	0.070 <t< td=""><td>6.800</td><td>0.712<a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<></td></t<>	6.800	0.712 <a< td=""><td>0.131<a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<></td></a<>	0.131 <a< td=""><td>0.050</td><td>2.020<a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<></td></a<>	0.050	2.020 <a< td=""><td>11</td><td></td><td>PHNOL</td><td>0</td><td>INF-BEAC</td><td>UG/L</td><td>PHENOL</td><td>1.000</td><td>1.000</td><td></td><td>1.500</td><td>1.500</td><td>1.500</td><td>1.000<</td><td>1.000<</td><td>1.000<</td><td>6.500</td><td>2.000</td></a<>	11		PHNOL	0	INF-BEAC	UG/L	PHENOL	1.000	1.000		1.500	1.500	1.500	1.000<	1.000<	1.000<	6.500	2.000
	REGION: 01	FCMF	COLIFORM	/100ML	10<	16	00	12	124	52		24	120	52	124	56		80		6	10	Н				Н	8.07	8.13	8.06	8.19	8.20	8.22	8.33	8.23	8.27	8.29	8.24
VER	86550.0 4	CUUT	COPPER UNF.TOT.	AS CU	0.0012 <t< td=""><td>0.0022<t< td=""><td>0.0005<w< td=""><td>0.0160</td><td>0.0020<1</td><td>0.0020<t< td=""><td>0,0000</td><td>0.0040</td><td>0.0040</td><td>0.0040</td><td>0.0160</td><td>0.0040<a< td=""><td>0.0027<a< td=""><td>0.0005</td><td>0.0043<a< td=""><td>11</td><td></td><td>PBUT</td><td>4</td><td>IINF TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></w<></td></t<></td></t<>	0.0022 <t< td=""><td>0.0005<w< td=""><td>0.0160</td><td>0.0020<1</td><td>0.0020<t< td=""><td>0,0000</td><td>0.0040</td><td>0.0040</td><td>0.0040</td><td>0.0160</td><td>0.0040<a< td=""><td>0.0027<a< td=""><td>0.0005</td><td>0.0043<a< td=""><td>11</td><td></td><td>PBUT</td><td>4</td><td>IINF TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></w<></td></t<>	0.0005 <w< td=""><td>0.0160</td><td>0.0020<1</td><td>0.0020<t< td=""><td>0,0000</td><td>0.0040</td><td>0.0040</td><td>0.0040</td><td>0.0160</td><td>0.0040<a< td=""><td>0.0027<a< td=""><td>0.0005</td><td>0.0043<a< td=""><td>11</td><td></td><td>PBUT</td><td>4</td><td>IINF TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<></td></w<>	0.0160	0.0020<1	0.0020 <t< td=""><td>0,0000</td><td>0.0040</td><td>0.0040</td><td>0.0040</td><td>0.0160</td><td>0.0040<a< td=""><td>0.0027<a< td=""><td>0.0005</td><td>0.0043<a< td=""><td>11</td><td></td><td>PBUT</td><td>4</td><td>IINF TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></t<>	0,0000	0.0040	0.0040	0.0040	0.0160	0.0040 <a< td=""><td>0.0027<a< td=""><td>0.0005</td><td>0.0043<a< td=""><td>11</td><td></td><td>PBUT</td><td>4</td><td>IINF TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	0.0027 <a< td=""><td>0.0005</td><td>0.0043<a< td=""><td>11</td><td></td><td>PBUT</td><td>4</td><td>IINF TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0.0005	0.0043 <a< td=""><td>11</td><td></td><td>PBUT</td><td>4</td><td>IINF TOT</td><td>MG/L</td><td>AS PB</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></a<>	11		PBUT	4	IINF TOT	MG/L	AS PB	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>1>900°0</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	1>900°0	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""></w<></td></w<>	0.005 <w< td=""></w<>
SAUGEEN RI	U T M: 17 0497700.0 4886550.0 4	COND25	CONDUCT.	OMHO/CM AT 25 C	0.999	631.0	450.0	548.0	759.0	968.0	931.0	870.0	586.0	551.0	968.0	675.8	654.5	450.0	181.4	11		NNTKUR	K'DAHL N	HNF PFAC	MG/L	AS N	0.370	0.380	0.560	0.560	0.740	0.520	0.420	0.400	0.380	0.710	0.440
FERM STREAM: SAUGEEN RIVER	U T M: 17 0	CLIDUR	CHLORIDE UNF.REAC	AS CL	11.600	11.100	7.800	10.900	10.200	9.100	9.800	12.500	10.800	8,900	12,500	10.136	10.037	7.800	1.468	11		NNO3UR	1010	INF REAL	MG/L	AS N	1.700	2,100	1.900	1.700	1.400	0.900	0.500	0.400	0.500	1.500	1.200
	143.51	ALKT	ALK	AS CACO3	227.0	228.0	168.0	214.0	212.0	206.0	212.0	220.0	228.0	235.0	235.0	214.2	213.4	168.0	18.1	11		NNO2UR	0014	INF BEAC	MG/L	AS N	0.010<	0.020	0.020	0.020	0.010	0.020	0.010	0.010<	0.010	0.020	0.010<
	LONG: 081 01 43.51	FGPROJ	PROJECT	SUB-PROJ CODE	0101	0103	0103	0101	0101	0101	0103	0101	0101	0101								NNHTUR	NH3-N	IINE BEAC	HG/L	AS N	900.0	0.007	0.011	0.028	0.008	0.029	0.035	0.015	0.016	0.016	0.00
	LAT: 44 08 02.72	FWSADP	SAMPLE	DEPTH М	0.30	0.30	0.30	0.30	0.50	0.30	0.30	0.30	0.30	0.30	0.30	0.30		0.30		11		FWTEMP		WATER	TEMP	DEG.C	1.0	1.0	3.5	5.0	13.0	22.0	21.0	18.0	13.0	11.2	3.5
	LAT: 44	T-NAME:		SAMPLE	38812	38831	38850	38869	28907	38926	38945	38964	38983	39002	MAXIMUM	SITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	38812	38831	38850	38869	38888	38907	38926	38945	38964	38983	39002
		*=INTERIM TEST-NAME:	111	YYMNDD LMT	900115 1410				900522 1555			900917 1357	901015 1359	901119 1342		AR	9		STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	0	900115 1410	900219 1400		900417 1155		900618 1355	900716 1420				901119 1542

	HANOVER
RIVER	OF
RI	SOUTH
EEN	
SAUGEEN	I 7TH. AVE
H	71
SOUTH	AT
SITE:	POINT:
B.O.W./	SAMPLE

0DE: 02 002 1260	CE: 96.880	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.027 0.018 0.017 0.009 0.006	
STORET CODE: 02 003	DISTANCE:	PPO4UR	PO4 UNF.REAC MG/L AS P	0.008 0.005 0.002 5	
	0.1	PHNOL	PHENOLS UNF-REAC UG/L PHENOL	6.500 2.143 1.000 7	
	REGION: 01	Н	H	8,33 8,20 8,20 8,06 0,09	
(ES DN RIVER	4886550.0 4	PBUT	LEAD UNF,TOT. MG/L AS PB	0.006 0.005 <a 0.005<a 0.005<a 0.005</a </a </a 	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERN STREAM: SAUGEEN RIVER	U T M: 17 0497700.0 4886550.0 4	NNTKUR	TOTAL TOTAL UNF.REAC MG/L AS N	0.740 0.498 0.484 0.370 0.132	
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	NNO3UR	NO3-N UNF.REAC MG/L AS N	2.100 1.255 1.091 0.400 0.601	
	01 43.51	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.020 0.016 0.010	ZINC UNF.TOT #6/L AS ZN 0.0013 0.0013 0.002 0.0015 0.002 0.0016 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.0
HANOVER	LONG: 081 01 43.51	NNHTUR	TOTAL TOTAL UNF.REAC MG/L AS N	0.035 0.016 0.014 0.006 0.010	TURB 1TY FTU 2.10 4.20 4.20 3.15 2.97 2.10 1.48
VE SOUTH OF	LAT: 44 08 02.72	FWTEMP	WATER TEMP DEG.C	22.0 10.2 6.6 1.0 7.9	RSP RESIDUE PARTIC. HG/L 5.00 19.4 6.4 18.6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 6.4 117.9
SAHLLE POINT: AT 7TH.AVE SOUTH OF HANOVER Station Type: River	LAT: 40	EST-NAME:	SAMPLE	HAXIHUH ARITH HEAN GEON HEAN HINIHUH STD DEV (GEON *)	HOUR SAMPLE LHT NUMBER 1410 38812 1350 38851 1350 38869 1355 38869 1355 38967 1420 38946 1357 38964 1357 38964 1357 38964 1359 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 38964 1357 1860 883 1542 59002
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LHT	ARITH HEAN GEON HEAN HININUH STD DEV (EGON #) # SAMP IN STATISTICS Z SAMP (EXCLUDED)	SAMPLE SAMPLE DATE HOUR SAMPLE YAMIDD LHT NUMBER 900215 1410 38812 900219 1550 38850 900219 1550 38850 900512 1555 38965 900512 1555 38965 900115 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1557 38965 901015 1560 88174 MEAN FRITH MEAN STD DEV (EGDM %)

B.O.W./ SITE: SOUTH SAUGEEN RIVER SAMPLE POINT: PROTON TWP,CONC 8 2.3 KM E OF STATION TYPE: RIVER

GREY CO RD 14

STATION ID: 08-0123-047-02

STORET CODE:

<u>ш</u>		FWSTRC	STREAM COND.	~~~~~~~	PSAMF PSEUDOMN AERUG. MF CNT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STORET CODE:		FSMF	STREPCUS NF CNT /100ML	10< 32 8 40 48 110 312 60 60 8 8 312 77	PHOSPHOR UNF.TOT. MG/L AS P	0.018 0.017 0.051 0.058 0.016 0.004 0.034 0.035 6.035
	01	FCMF	COLIFORM MF CNT /100ML	10AID 12 24 60 320 448 40 112 12 448 448 448 448 448 448 448 448 448 44	PP04UR P04 UNF.REAC MG/L AS P	0.006 0.001 0.001 0.003 0.017 0.004 0.030 0.002 0.000 0.009
	REGION: 01	CUUT	COPPER UNF.TOT. MG/L AS CU	0.0042 0.0005 4 0.0007 7 0.0010 7 0.0020 7 0.0020 9 0.0030 9 0.0042 9 0.0019 9 0.0013 9 0.0005	표	7.62 7.93 7.93 7.93 7.94 8.08 8.08 7.85 7.85 7.85 7.85 7.85 7.66
	881400.0 4	COND25	CONDUCT. 25C UMHO/CM AT 25 C	450.0 385.0 385.0 425.0 426.0 424.0 424.0 502.0 502.0 502.0	LEAD UNF.TOT. MG/L AS PB	0.005 ch 0.005 ch
	U T M: 17 0539100.0 4881400.0 4	CLIDUR	CHLORIDE UNF.REAC MG/L AS CL	7.500 5.100 7.300 6.200 4.700 7.200 7.200 10.400 6.140 6.140 6.140 6.140 7.700 10.400	NNTKUR K'DAHL N TOTAL UNF.REAC HG/L AS N	0.500 0.570 0.740 0.740 1.200 1.1000 1.140 0.320 0.320 0.320 0.304
	U T M: 17	8005	S DAY TOT.DEM. MG/L AS O	0.01 0.08 0.08 0.50 0.74 1.87 1.43 3.56 0.02 1.42 1.42 0.050	NNO3UR NO3-N UNF.REAC MG/L AS N	0.400 0.200 0.200 0.100 0.100 0.100 0.100 1.100 1.100 0.450
	30 41.81	ALKT	ALK TOTAL MG/L AS CACO3	205.0 1138.0 181.0 181.0 231.0 251.0 222.0 222.0 222.0 221.0 215.5 215.5 1138.0	NNO2UR NO2-N UNF.REAC MG/L AS N	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
	LONG: 080 30 41.81	FGPROJ	PROJECT SUB-PROJ CODE	0101 0103 0101 0101 0101 0101 0101 0101	NNHTUR NH3-N TOTAL UNF.REAC MG/L AS N	0.002 0.005 0.005 0.009 0.085 0.024 0.014 0.014 0.012 0.025
	LAT: 44 05 12.05	FWSADP	SAMPLE DEPTH M	0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	MATER TEMP DEG.C	1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.0 1.0 1.0
. KIVER	LAT: 44	ST-NAME:	SAMPLE	6 1000 38816 0 1000 38854 8 1000 38853 3 1000 38892 9 1000 38916 6 0925 38968 6 0925 38968 0 0931 3906 MAXIMUM ARITH HEAN GEOM HEAN ECOM # HEAN GEOM # HEAN HEAN ECOM # HEAN HEAN HEAN HEAN HEAN HEAN HEAN HEAN	SI-NAME: SAMPLE NUMBER	1000 38816 1000 38854 1000 38872 1000 3891 1136 38949 0930 38949 0931 38966 0931 38966 0931 8987 0941 MAXIMUM ARITH MEAN GEOM WAN MINIMUM STD DEV (GEOM *) MP IN STATISTICS
SINITON HILE: MINEN		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900116 1000 38816 900320 1000 38854 900543 1000 38873 900513 1000 38871 900716 38871 900716 38876 900718 0930 38986 901016 0925 38987 901016 0925 38987 901016 0925 38987 901120 0931 39006 #MAXIMUM ARITHUM HEAM FEAT HEAM HINIMUM STATISTICS X SAMP (EXCLUDED)	*=INIEKIM IE: SAMPLE DATE HOUR YYMMDD LMT	900116 1000 38816 900220 1000 38879 900522 1000 38879 900523 1000 38892 900519 1000 38970 90020 1136 38930 90020 1136 38949 901016 0920 38969 901010 0931 38969 901120 0931 39006 901120 PERIT HEAN FRITH HEAN STD DEV (GEOM *) * SAMP IN STATISTICS

B.O.W./ SITE: SOUTH SAUGEEN RIVER SAMPLE POINT: PROTON TWP,CONC 8 2.3 KM E OF STATION TYPE: RIVER

GREY CO RD 14

STATION ID: 08-0123-047-02

STORET CODE:

0.1	
REGION:	
~	
·	
0	
4881400.	
0	
0539100	
17	
Ξ.	
-	
\supset	
.81	
30 41.81	
30	
080	
LONG:	
0.2	
12	
05	
55	
LAT:	

ZNUT	ZINC	UNF. TOT.	MG/L	AS ZN	0.0061	0.0014 <t< td=""><td>0.0014<t< td=""><td>0.0030</td><td>0.0010<t< td=""><td>0,0040</td><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0061</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0014 <t< td=""><td>0.0030</td><td>0.0010<t< td=""><td>0,0040</td><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0061</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0030	0.0010 <t< td=""><td>0,0040</td><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0061</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0,0040	0.0010 <t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>0.0061</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0010<t< td=""><td>0.0061</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0061</td><td>0.0022<a< td=""><td>0.0017<a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<></td></a<></td></t<>	0.0061	0.0022 <a< td=""><td>0.0017<a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<></td></a<>	0.0017 <a< td=""><td>0.0010</td><td>0.0018<a< td=""><td>6</td><td></td></a<></td></a<>	0.0010	0.0018 <a< td=""><td>6</td><td></td></a<>	6	
RSP		RESIDUE	PARTIC.	HG/L						5.0<	10.3		3.4	10.3	6.8		3.4		2	7.7
TEST-NAME:			SAMPLE	NUMBER	38816	38854	38873	38892	38911	38949	38968	38987	39006	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	(GEOM *)	IN STATISTICS	APPROPRIEST AND A
			HOUR	LMT	1000	1000	1000	1000	1000	1136	0930	0925	0931		4			STD DEV	IN S	" CALLE
*=INTERIM		SAMPLE	DATE	YYMINDD	900116	900320	900418	900523	900619	900820	900918	901016	901120					S	# SAMP	1.

SAMPLE POINT: AT EGREMONT-PROTON TOWN, GREY CO .O.W./ SITE: SOUTH SAUGEEN RIVER STATION TYPE: RIVER

STATION ID: 08-0123-048-02

STORET CODE:

SOAID MG/L AS P /100ML CNT PHOSPHOR FECAL STREPCUS UNF. TOT. 60A 3* 0.014 91 96 12 48 16 0.014 20 ¢ 34 24 0.024 MG/L AS P FECAL CNT PP04UR UNF . REAC COLIFORM 0.001< /100ML >01 4× 24 24 72 70A 8 20 4 80 180 52 0.007 32 0.005 0.0013<A 0.0005 0.0010<A 0.0008<T 0.0006<T 0.0005<W 0,0010<T 0.0030 0.0015<A 0.0020<T 표 COPPER AS CU UNF. TOT. 0.0030 7.57 7.98 7.95 8.32 8.23 8.12 7.86 H REGION: 01 UMHO/CM AT 25 C 0.005<W 0.005<W MG/L AS PB 25C LEAD 0.005<W UNF. TOT. 0.005<W 0.005<W COND25 CONDUCT 479.0 391.0 441.0 0.995 471.0 455.0 479.0 439.9 438.7 380.0 33.8 463.0 AS CL NNTKUR MG/L AS N UNF . REAC MG/L K'DAHL N JNF . REAC CLIDUR CHLORIDE U T M: 17 0533550.0 4875700.0 0.500 0.780 0.920 0.870 0.710 0.750 0.750 0.520 8.100 4.300 6.000 6.500 8.300 7.300 6.200 8.300 6.710 6.595 4.300 1.249 TOTAL 7.600 5.500 MG/L AS N MG/L AS 0 5 DAY UNF. REAC NNO3UR N03-N TOT . DEM. 0.100< 0.30 0.84 0.600 0.400 1.00 0.49 2.08 96.1 1.08 0.100 MG/L AS N AS AS MG/L 0.001<W 0.001<A N02-N UNF . REAC ARSENIC NNO2UR UNF. TOT. 0.010< 0.010 0.010 0.020 ASUT 0.001 0.001 MG/L AS N ALK TOTAL MG/L AS CACO3 NNHTUR NH3-N TOTAL UNF. REAC 52.67 183.0 189.0 225.0 251.0 213.0 248.0 214.0 251.0 217.2 216.1 183.0 23.2 0.028 0.009 222.0 0.032 ALKT 34 LONG: 080 DEG.C WATER TEMP FGPROJ SUB-PROJ CODE FWTEMP PRO.JECT 1.0 1.0 1.0 2.0 12.0 18.0 21.0 21.0 10.0 8.0 3.0 0103 0101 0103 0103 0101 0101 0101 0101 0101 0101 0101 08.29 SAMPLE DEPTH M STREAM COND. **FWSTRC** FWSADP 0.30 0.30 02 44 SAMPLE 38836 38855 38874 SAMPLE 38950 38969 38931 38855 38874 38931 39007 GEOM MEAN MINIMUM 38893 38912 38817 38836 38893 38912 38988 MAXIMUM ARITH MEAN STD DEV (GEOM *) SAMP IN STATISTICS LAT: % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 1020 1020 1025 0950 1025 1020 HOUR 1012 1012 1020 1025 1025 1022 HOUR 1152 LMT *=INTERIM 900820 901120 YYMMDD 900116 900220 900320 900418 900523 900619 900716 YYMMDD 900220 900418 900018 900116 900320 900523 900619 900716 901016 SAMPLE SAMPLE DATE DATE

0.016 0.017 0.012

0.001<

0.005<W

0.005<W

0.005<W

0.100<

0.010<

38950 38968

9560

901016

0980

1152

900820 900918 CONTD

STORET CODE:

STATION ID: 08-0123-048-02

B.O.W./ SITE: SOUTH SAUGEEN RIVER SAMPLE POINT: AT EGREMONT-PROTON TOWN,GREY CO STATION TYPE: RIVER

	IR PPUT	IG UNF.TOT.		0.024	0.015	0.015	0.008	0.005	D D																						
	PPO4UR	PO4 UNF.REAC MG/L	AS P	0.007	0.006		0.005	c	09																						
01	ЬН		Н	8.32	7.92	7.92	7.46	0.27	0.1																						
REGION: 01	PBUT	LEAD UNF.TOT. MG/L	AS PB	0.005	0.005 <a< td=""><td>0.005<a< td=""><td>0.005</td><td>0.000<a< td=""><td>T</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.005</td><td>0.000<a< td=""><td>T</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.000 <a< td=""><td>T</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	T																						
1875700.0 4	NNTKUR	TOTAL UNF.REAC	AS N	0.920	0.701	0.687	0.500	0.149	T-																						
U T M: 17 0533550.0 4875700.0 4	NNOSUR	NO3-N UNF.REAC	AS N	0 600	0.360		0.100		37																						
U T M: 17	NNOZUR	NO2-N UNF.REAC	AS N	0.00	0.013		0.010	,	25																						
34 52.67	NUHTUR	TOTAL TOTAL UNF.REAC	AS N	0.020	0.013	0.010	0.003	0.011	80	ZNUT	71816	UNF. TOT.	MG/L	AS ZN	0.0030	0.0014 <t< td=""><td>D.0019<t< td=""><td></td><td>0.0020<t< td=""><td>0.0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>D.0010<t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	D.0019 <t< td=""><td></td><td>0.0020<t< td=""><td>0.0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>D.0010<t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		0.0020 <t< td=""><td>0.0010<t< td=""><td></td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>D.0010<t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td></td><td>0.0020<t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>D.0010<t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<>		0.0020 <t< td=""><td>0.0010<t< td=""><td>0.0010<t< td=""><td>D.0010<t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0010<t< td=""><td>D.0010<t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>D.0010<t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<></td></t<>	D.0010 <t< td=""><td>0.0030</td><td>U.0016<a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<></td></t<>	0.0030	U.0016 <a< td=""><td>0.0015<a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<></td></a<>	0.0015 <a< td=""><td>0.0010</td><td>0.0007<a< td=""><td>6</td></a<></td></a<>	0.0010	0.0007 <a< td=""><td>6</td></a<>	6
LAT: 44 02 08.29 LONG: 080 34 52.67	FWTEMP	WATER	DEG.C	0 10	8.4	4.8	1.0	7.4	11	RSP		RESIDUE	PARTIC.	MG/L		5.0<		>0.6				5.0<	9.5			9.4	4.6		4.6		1
02 08.29	FWSTRC	STREAM	COND.							PSAMF	PSEUDONIN	AERUG.	CNT	/100ML	>4>	>4>	> 5	>5	>4>	>5	>4>		>4>	>4>	>5						
LAT: 44	ST-NAME:	A I I I	NUMBER	MANTHIM	ABITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	AMP IN STATISTICS .: SAMP (EXCLUDED)	ST-NAME:			SAMPLE	NUMBER	38817	38836	38855	38874	38893	38912	38931	38950	38969	38988	39007	MAXIMUM	ARITH MEAN	GEOM MEAN	HINIHUM	STD DEV (GEOM *)	AMP IN STATISTICS
	*=INTERIM TEST-NAME:	SAMPLE	0		4			STD DEV	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	YYMMDD LMT	900116 1025	900220 1022	900320 1012	900418 1020	900523 1020	900619 1025	900716	900820 1152	900918 0950	901016 0944	901120 0946		V			STD DEV	# SAMP IN STATISTICS

61	E: 02 002 1260	DISTANCE: 132.364	FSMF	FECAL	SIREPCUS	CNT	/100ML	40AID	4	16	55	28	70A		55	164	24	;	164	0 6	200	* *	ň o		1	1044	PHOSPHOR	UNF. TOT.	AS P	0.015	0.015		0.019		0.013		0.012	0.008
STATION ID: 08-0123-049-02	STORET CODE:	DISTANCE	FCMF	FECAL	COLIFORM	CNT	/100ML	10AID	16	12	55	36	99		36	88	20	ć	26	9 6	10	***	6		0112000	NO FORT	P04	UNF.REAC	AS P	0.001<		,,,,,	>700.0			0.001<		0.001<
ATION ID: 0		10	DO	DYCO! VED	OXYGEN	MG/L	AS 0	12.0	12.0	12.5	12.0	11.0	8.0	10.0	10.0	10.0	11.5		10.0	10.8	0.0	4.	10		90	E			Hd	7.95	8.10	0 10	0.10 8 20	8.78	8.36	8.23	8.25	8.17
ST		REGION: 01	CUUT	CODDED	UNF. TOT.	T/9W	AS CO		0.0011 <t< td=""><td></td><td>0.0018<t< td=""><td>0.0020<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0030</td><td>0200</td><td>0.0030</td><td>0.0020<4</td><td>0.0011</td><td>0.0007<a< td=""><td>7</td><td></td><td>DBIIT</td><td></td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td></td><td>0.005<w< td=""><td></td><td>D.011<t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<>		0.0018 <t< td=""><td>0.0020<t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0030</td><td>0200</td><td>0.0030</td><td>0.0020<4</td><td>0.0011</td><td>0.0007<a< td=""><td>7</td><td></td><td>DBIIT</td><td></td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td></td><td>0.005<w< td=""><td></td><td>D.011<t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0020 <t< td=""><td></td><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0030</td><td>0200</td><td>0.0030</td><td>0.0020<4</td><td>0.0011</td><td>0.0007<a< td=""><td>7</td><td></td><td>DBIIT</td><td></td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td></td><td>0.005<w< td=""><td></td><td>D.011<t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></a<></td></t<></td></t<></td></t<>		0.0020 <t< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0030</td><td>0200</td><td>0.0030</td><td>0.0020<4</td><td>0.0011</td><td>0.0007<a< td=""><td>7</td><td></td><td>DBIIT</td><td></td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td></td><td>0.005<w< td=""><td></td><td>D.011<t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></a<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0030</td><td>0.0030</td><td>0200</td><td>0.0030</td><td>0.0020<4</td><td>0.0011</td><td>0.0007<a< td=""><td>7</td><td></td><td>DBIIT</td><td></td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td></td><td>0.005<w< td=""><td></td><td>D.011<t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></a<></td></t<>	0.0030	0.0030	0200	0.0030	0.0020<4	0.0011	0.0007 <a< td=""><td>7</td><td></td><td>DBIIT</td><td></td><td>LEAD</td><td>UNF. TOT.</td><td>AS PB</td><td></td><td>0.005<w< td=""><td></td><td>D.011<t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<></td></w<></td></a<>	7		DBIIT		LEAD	UNF. TOT.	AS PB		0.005 <w< td=""><td></td><td>D.011<t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<></td></w<>		D.011 <t< td=""><td>4</td><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<></td></t<>	4	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""><td>0.005<w< td=""></w<></td></w<></td></w<>	0.005 <w< td=""><td>0.005<w< td=""></w<></td></w<>	0.005 <w< td=""></w<>
	N S	866750.0 4	COND25	LUNDICT	250	OMHO/CM	A1 25 C	488.0	0.995		432.0	441.0	480.0	466.0	498.0	473.0	450.0	0 809	466.0	465.5	432.0	21.8	6		NNTKIIB	K'DAHL N	TOTAL	UNF . REAC	AS N	0.480	0.500	0 550	0.690		0.460		0.730	0.540
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN	U T M: 17 0518350.0 4866750.0 4	CLIDUR	CHIORIDE	UNF. REAC	MG/L	43 CF	10.000	009.6		10.300	9.200	17.100	17.800	19.300	9.300	8,000	19. 300	12,289	11,657	8,000	4.415	6		NNOSUR		NO3-N	UNF . KEAC	AS N	1.300		1.200	0.600			1.700	000	0.800
	MAJOR BASIN: GREAT L MINOR BASIN: LAKE HU TERM STREAM: SAUGEEN	U T M: 17	8005	BOD 5 DAY	TOT.DEM.	MG/L	2	0.50	69.0	6	0.89	1.60	1.23		1.04	1.28	0.44	1.86	0.99	0.89	0.44	0.47	80		NNO2UR		NO2-N	MG/I	AS N	0.010<		0.020	0.020			0.030	010	0.010
NT FOREST		46 16,68	ALKT	ALK	TOTAL	AS CACOZ	200	222.0	214.0	000	200.0	0.420	100 0	198.0	252.0	224.0	225.0	232.0	217.2	216.9	198.0	11.6	6		NNHTUR	NH3-N	TOTAL	MG/L	AS N	0.019		0.034	0.010			600.0	010	0.017
SAUGEEN RIVER MINTO TWP.RD. 5-6. S.W. OF MOUNT FOREST		LONG: 080 46 16.68	FGPROJ		PROJECT	CODE		0101	0103	0101	0101	0101	0101	0103	0101	1010	1010								FWTEMP		WATED	TEMP	DEG.C	1.0	0.0	3.0	18.0	21.0	15.0	0	0 ×	2
RIVER P.RD. 5-6.		LAT: 43 57 20.14	FWSADP		SAMPLE			0.30	0.30	0.50	0.00	200	0.20	0.50	0.50	0.50	0.30	0.30	0.30		0.30		10		FWSTRC			STREAM	COND.	9	و و	9	9	9	9 ,	9 4	9)
	RIVER	LAT: 4	ST-NAME:		CAMDIC	NUMBER		38818	38837	2887	28912	28022	78951	TC402	20000	20000	29008	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMOM	STD DEV (GEOM *)	TATISTICS	(XCLUDED)	ST-NAME:			SAMPLE	NUMBER	38818	38856	38875	38913	38932	38951	28989	39008	
B.O.W./ SITE:	STATION TYPE:		*=INTERIM TEST-NAME:		SAMPLE DATE HOUD	Ω		900116 1051	900220 1045	900418 1035	900619 1050	900716	900820 1245	900018 1016	901016 1016	201010 1013	5101 071106		A	•			# SAMP IN STATISTICS	% SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	УУМИВВ СМТ		900320 1035	900418 1035	900619 1050	900716	900820 1245	901016 1015	901120 1015	

	: 02 002 1260	132.364	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.019	0.013	0.004	9																			
STATION ID: 08-0123-049-02	STORET CODE: 02 000 12	DISTANCE: 132.364	PP04UR	PO4 UNF.REAC MG/L AS P																							
10N ID: 08		_	ЬН	PH	8.38	8.21	0.13	6																			
STAT		REGION: 01	PBUT	LEAD UNF.TOT. MG/L AS PB	0.011	0.006 <a< td=""><td>0.002<a< td=""><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.002 <a< td=""><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>	9																			
	SE	9 0.052998	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L AS N	0.730	0.556	0.105	, ,																			
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUGEEN	U T M: 17 0518350.0 4866750.0 4	NNO3UR	NO3-N UNF.REAC MG/L AS N	1.700	1.066	0.439	r.																			
	MAJOR BASIN: GREAT L/ MINOR BASIN: LAKE HUR TERM STREAM: SAUGEEN	U T M: 17	NNO2UR	NOZ-N UNF.REAC MG/L AS N	0.030	010	0.0	4	20																		
NT FOREST		46 16.68	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.034	0.016	0.010	S		ZNUT	ZINC	UNF. TOT.	AS ZN		D.0010 <t< td=""><td></td><td></td><td>0.0010<1</td><td>0.0010<t< td=""><td>0.0010<t< td=""><td>U.0010<t< td=""><td>0.0010<t< td=""><td>0.0010</td><td>0.0010<a< td=""><td>0.0010<a< td=""><td>0.0000<a< td=""><td>9</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<></td></t<>			0.0010<1	0.0010 <t< td=""><td>0.0010<t< td=""><td>U.0010<t< td=""><td>0.0010<t< td=""><td>0.0010</td><td>0.0010<a< td=""><td>0.0010<a< td=""><td>0.0000<a< td=""><td>9</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>U.0010<t< td=""><td>0.0010<t< td=""><td>0.0010</td><td>0.0010<a< td=""><td>0.0010<a< td=""><td>0.0000<a< td=""><td>9</td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	U.0010 <t< td=""><td>0.0010<t< td=""><td>0.0010</td><td>0.0010<a< td=""><td>0.0010<a< td=""><td>0.0000<a< td=""><td>9</td></a<></td></a<></td></a<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0010</td><td>0.0010<a< td=""><td>0.0010<a< td=""><td>0.0000<a< td=""><td>9</td></a<></td></a<></td></a<></td></t<>	0.0010	0.0010 <a< td=""><td>0.0010<a< td=""><td>0.0000<a< td=""><td>9</td></a<></td></a<></td></a<>	0.0010 <a< td=""><td>0.0000<a< td=""><td>9</td></a<></td></a<>	0.0000 <a< td=""><td>9</td></a<>	9
W. OF MOI		LONG: 080	FWTEMP	WATER TEMP DEG.C	21.0	4.2	8.0	6		RSP		RESIDUE	MG/L		>0.6		>0'5		5.0<								
IVER		LAT: 43 57 20.14 LONG: 080 46 16.68	FWSTRC	STREAM COND.						PSAMF	AERUG.	# 15	/100ML	>5		>4	>4	V 1	,	>4	>4>	>4					
SAUGEEN R	RIVER	LAT: 43	ST-NAME:	SAMPLE	MAXIMUM	GEOM HEAN	STD DEV (GEOM *)	TATISTICS	A SAMP (EXCLUDED)	TEST-MAME:		CAMBIE	NUMBER	38818	38837	38856	38875	28913	38951	38970	38989	39008	MAXIMUM	ARITH MEAN	GEOM MEAN	STD DEV (GEOM *)	AMP IN STATISTICS % SAMP (EXCLUDED)
B.O.W./ SITE: SAUGEEN RIVER SAMPLE DOTAT: MAYO TWO PD. 5-6. S.W. OF MOUNT FOREST	STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	c		STD DEV	# SAMP IN STATISTICS	SAMP I	*=INTERIM TE		SAMPLE	0	900116 1051	900220 1045			900619 1050	900820 1245	900918 1016	901016 1015	901120 1015		4		STD DEV	# SAMP IN STATISTICS % SAMP (EXCLUDED)

B.O.W./ SITE: SAUBLE RIVER

SAMPLE POINT: AT BRI STATION TYPE: RIVER	T BRIDGE	LOW GAUGE	AT BRIDGE FIRST CONCESSION NORTH OF TARA RIVER FLOW GAUGE MOE O2FA101	RTH OF TARA	MAJOR BASIN: MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON FERM STREAM: SAUBLE RIVER	CES DN TVER			STORET CODE:	E: 02 002 1410
	LAT: 44	28 46.08	LONG: 081 09	09 57.75	U T M: 17	U T M: 17 0486795.0 4924925.0	4924925.0 4	REGION: 01	10	DISTANCE:	: 44.899
*=INTERIM TEST-NAME	NAME:	FWSADP	FGPR03	ALKT	BODS	CLIDUR	COND25	CUUT	DO	FCMF	FSMF
SAMPLE		SAMPLE	PROJECT	ALK	5 DAY TOT.DEM.	CHLORIDE UNF.REAC	CONDUCT.	COPPER UNF, TOT.	DISOLVED	COLIFORM	STREPCUS
	SAMPLE	DEPTH	SUB-PROJ	MG/L	MG/L	MG/L	UMHO/CM	MG/L	MG/L	CNT	CNT
үүмирр смт	NUMBER	Σ	CODE	AS CACO3	AS 0	AS CL	AT 25 C	AS CU	AS 0	/100ML	/100ML
	30557	0.30	0101	174.0	0.74	10.600	450.0	0.0016 <t< td=""><td>11.0</td><td>44</td><td>52</td></t<>	11.0	44	52
-	30568	0.30	0101	237.0	0.89	13.200	526.0	0.0009 <t< td=""><td>14.0</td><td>12</td><td>20</td></t<>	14.0	12	20
	40455	0.30	0101	206.0	0.80	9.300	451.0	0.0018 <t< td=""><td>14.5</td><td>308</td><td>216</td></t<>	14.5	308	216
	99604	0.30	0101	225.0	0.35	11.300	476.0	0.0007 <t< td=""><td>1</td><td>æ ;</td><td>4</td></t<>	1	æ ;	4
900529 1140	28504	0.30	0101	232.0	1.52	9.100	0.676	0.0020 <t< td=""><td>ບ ພໍ່ກໍ</td><td>68</td><td>4</td></t<>	ບ ພໍ່ກໍ	68	4
	40509	02.00	0101	220.0	1.09	9.500	4/4.0	0.0020<1	11.5	SUAID	30AID
	40518	0.30	0101	373.0	0.40	13.200	450.0	0.0020<1	11.5	20410	100
	40536	0.30	0101	219.0	0.68	15.300	492,0	0.0020 <t< td=""><td>11.0</td><td>160</td><td>110</td></t<>	11.0	160	110
	40547	0.30	0101	252.0	0.01<	11.300	550.0	0.0030		BOAID	ZOAID
901127 1215	40563	0.30	1010	201.0	> 0 0 0 0	9.700	440.0	0.0040	11.0	1200	1700
Ĩ	MAXIMUM	0.30		373.0	1.52	15.300	550.0	0,0040	14.5	1200	1700
ARIT	ARITH MEAN	0.30		234.5	0.81	11.091	476.2	0.0020 <a< td=""><td>11.6</td><td>179</td><td>275</td></a<>	11.6	179	275
GEO	GEOM MEAN			230.3		10,935	475.1	0.0018 <a< td=""><td>11.5</td><td>59</td><td></td></a<>	11.5	59	
Ξ.	MINIMUM	0.30		174.0	0.35	9.100	0.055	0.0007	9.5	89	4
STD DEV (GEOM *)	EOM *)	1		20.7		2.030	34.9	0.0009 <a< td=""><td>1.6</td><td>***</td><td></td></a<>	1.6	***	
# SAMP IN STATISTICS	ISTICS	11		11	6 1	11	11	11	6	11	eo t
											17
*=INTERIM TEST-NAME:	NAME:	FWSTRC	FWTEMP	NNHTUR	NNO2UR	NNOSUR	NNTKUR	PBUT	Н	PP04UR	PPUT
				N-SHN			K'DAHL N			1	
SAMDIF			WATED	INE DEAD	NOZ-N	NOS-N	ING DEAC	LEAU		P04	PHOSPHOR
HOUR	SAMPLE	STREAM	TEMP	MG/L	MG/L	MG/L	MG/L	MG/1		ONF . KEAL	. 101. MG/1
	NUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	Н	AS P	AS P
-	30557	4	1.0	0.002	0.010	3.200	0.750	0.005 <w< td=""><td>7.73</td><td>0.021</td><td>0.039</td></w<>	7.73	0.021	0.039
	30568	4	1.0	0.020	0.020	2,300	0.550	0.005 <w< td=""><td>7.89</td><td>0.001</td><td>0.016</td></w<>	7.89	0.001	0.016
	40455	9	2.0	900.0	0.010	1.600	0.530	0.005 <w< td=""><td>8.18</td><td>0.001<</td><td>0.015</td></w<>	8.18	0.001<	0.015
	99505			0.038	0.020	1.200	0.590	0.005 <w< td=""><td>8.38</td><td>0.008</td><td>0.017</td></w<>	8.38	0.008	0.017
	40482	ın.	15.0	0.009	0.010	0.500	0.530	0.005 <w< td=""><td>8.22</td><td>0.001<</td><td>0.022</td></w<>	8.22	0.001<	0.022
	40493	9 (19.0	690.0	0.030	0.400	0.620	0.005 <w< td=""><td>8.23</td><td>0.013</td><td>0.035</td></w<>	8.23	0.013	0.035
	40209	6	23.0	0.064	0.020	0.100	0.570	0.005 <w< td=""><td>8.31</td><td>0.009</td><td>0.026</td></w<>	8.31	0.009	0.026
900827 1440	40518	6 6	26.0	0.032	0.010	0.100	0.570	0.005 <w< td=""><td>8.26</td><td>0.001<</td><td>0.024</td></w<>	8.26	0.001<	0.024
901025 1105	40556	20 00	15.0	0.021	0.010	0.200	0.490	0.005 <w< td=""><td>8.15</td><td>0.010</td><td>0.040</td></w<>	8.15	0.010	0.040
	40562	, N	9 00	920 0	020	1 100	0.800	0.000	7 07		0.040
		3	,	3	2	2	01.0	10000	14.21	7/0.0	0.112

(CONID)

B.O.W./ SITE: SAUBLE RIVER SAMPLE POINT: AT BRIDGE FIL	B.O.W./ SITE: SAUBLE RIVER SAMPLE POINT: AT BRIDGE FIRST CONCESSION NORTH OF TARA	CESSION NO	RTH OF TARA				STA	ATION ID: 06	STATION ID: 08-0135-002-02	
	STATION TYPE: RIVER FLOW GAUGE MOE O2FA101	MOE OZFA10	-	MAJOR BASIN MINOR BASIN TERM STREAN	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUBLE RIVER	(ES DN IVER			STORET CODE: 02 000	: 02 002 1410
3	LAT: 44 28 46.08 LONG: 081 09 57.75	LONG: 081	09 57.75	U T M: 17	U T M: 17 0486795.0 4924925.0 4	4924925.0 4	REGION: 01	01	DISTANCE:	44.899
	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR	NNO3UR	NNTKUR K'DAHI N	PBUT	PH	PP04UR	PPUT
	-	WATER	TOTAL UNF.REAC	NO2-N UNF.REAC	NO3-N UNF. REAC	TOTAL UNF. REAC	LEAD UNF.TOT.		PO4 UNF.REAC	PHOSPHOR UNF.TOT.
NUMBER	COND.	DEG.C	AS N	AS N	MG/L AS N	MG/L AS N	MG/L AS PB	ЬН	MG/L AS P	MG/L AS P
MAXIMUM		26.0	0.069	0.030	3.200	0.940	0,005	8.38	0.071	0.172
ARITH MEAN		11.8	0.029	0.017	1.178	0.638	0.005 <a< td=""><td>8.12</td><td>0.019</td><td>0.041</td></a<>	8.12	0.019	0.041
MINIMUM		1.0	0.020	0.015	0.100	0.624	0.005 <a< td=""><td>8.12</td><td>0 001</td><td>0.030</td></a<>	8.12	0 001	0.030
STD DEV (GEOM *)		0.6	0.023	0.008		0.151	0.000 <a< td=""><td>0.20</td><td>1000</td><td>0.045</td></a<>	0.20	1000	0.045
# SAMP IN STATISTICS % SAMP (EXCLUDED)		10	10	10	9	11	11	11	30	11
*=INTERIM TEST-NAME:	PSAMF PSEUDOMN AFRUG.	RSP	TURB	ZNUT						
CAHOLE	HF.	RESIDUE	THEORETT	UNF. TOT.						
NUMBER	/100ML	MG/L	FTU	AS ZN						
30557	>5	5.0<		0.0024 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
30568	12	5.0<	1.79	0.0008 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
40455	V 7	5.0		0.0005 <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td></w<>						
40482	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20.0		0.0005 <w< td=""><td></td><td></td><td></td><td></td><td></td><td></td></w<>						
40493	>4	7.2	3.60	0.0310						
60205	>4	5.0<		0.0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
40518	>5	6.2	1,19	0,0020 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
40536	>4	3.9		0.0010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
40547	>4	1		0.0020 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
40563	360	55.9		0.0110						
MAXIMUM	36	55.9	3,60	0.0310						
ARITH MEAN	24	18.3	2.19	0.0048 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td></a<>						
GEON MEAN		,	1.97	0.0017 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td></a<>						
STD DEV (GEOM *)	77	5.9	1.19	0.0005						
# SAMP IN STATISTICS	2	4	i i	11						
% SAMP (EXCLUDED)	18	09		6						

STORET CODE: 02 STATION ID: 08-0135-003-02 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON B.O.W./ SITE: SAUBLE RIVER SAMPLE POINT: AT SAUBLE FALLS STATION TYPE: RIVER FLOW GAUGE FED 02FA001

002 1410	3.219	FWSTRC	STREAM COND.	Ა ᲡᲡ ᲡᲡᲡᲡᲡᲡᲡᲡ		PSAMF PSEUDOMN AERUG. MF CNT /100ML	4444	33333 3
OON	DISTANCE:	FSMF	FECAL STREPCUS MF CNT /100ML	72 16 46 47 46 106 20AID 1006 30AID 40	72 27 4 4	PHOSPHOR UNF.TOT. MG/L AS P	0.028 0.009 0.012 0.022	0.013 0.014 0.019 0.011 0.021 0.021
	10	FEUT	IRON UNF.TOT. MG/L AS FE	0.110 0.059 <t 0.081<t 0.058<t 0.099<t 0.130 0.100<t 0.120 0.120</t </t </t </t </t 	0.130 0.098 <a 0.095<a 0.058 0.026<a< td=""><td>PPO4UR PO4 UNF.REAC MG/L AS P</td><td>0.004 0.002 0.001<</td><td>0.001< 0.004 0.005 0.001< 0.001< 0.001</td></a<></a </a 	PPO4UR PO4 UNF.REAC MG/L AS P	0.004 0.002 0.001<	0.001< 0.004 0.005 0.001< 0.001< 0.001
	REGION: 01	FCMF	COLIFORM MF CNT /100ML	32 4< 4 4 100 100 100 100 100 100 100 100 100	90 31 4 6 8	на	7.71 7.88 8.04 8.28	8.13 8.18 8.08 8.13 8.05 8.06
	9966850.0 4	CUUT	COPPER UNF.TOT. MG/L AS CU	0.0012 <t 0.0011<t 0.0007<t 0.0008<t 0.0010<t 0.0020<t 0.0020<t 0.0020<t 0.0020<t< td=""><td>0.0030 0.0014<a 0.0013<a 0.0007 0.0007<a< td=""><td>LEAD UNF.TOT. MG/L AS PB</td><td>0.005<w 0.005<w 0.005<w< td=""><td>0.0050W 0.0050W 0.0050W 0.0050W 0.0050W 0.0050W</td></w<></w </w </td></a<></a </a </td></t<></t </t </t </t </t </t </t </t 	0.0030 0.0014 <a 0.0013<a 0.0007 0.0007<a< td=""><td>LEAD UNF.TOT. MG/L AS PB</td><td>0.005<w 0.005<w 0.005<w< td=""><td>0.0050W 0.0050W 0.0050W 0.0050W 0.0050W 0.0050W</td></w<></w </w </td></a<></a </a 	LEAD UNF.TOT. MG/L AS PB	0.005 <w 0.005<w 0.005<w< td=""><td>0.0050W 0.0050W 0.0050W 0.0050W 0.0050W 0.0050W</td></w<></w </w 	0.0050W 0.0050W 0.0050W 0.0050W 0.0050W 0.0050W
MINOR BASIN: LAKE HURON TERM STREAM: SAUBLE RIVER	U T M: 17 0479745.0 4946850.0 4	COND25	CONDUCT. 25C UMHO/CM AT 25 C	408.0 441.0 336.0 408.0 405.0 409.0 427.0 455.0	455.0 414.9 413.7 336.0 31.5	NNTKUR K*DAHL N TOTAL UNF.REAC MG/L AS N	0.670 0.370 0.410 0.440	0.560 0.530 0.580 0.520 0.440 0.670
MINOR BASIN TERM STREAM	U T M: 17	CLIDUR	CHLORIDE UNF.REAC MG/L AS CL	11.700 11.500 7.900 9.400 9.800 10.800 13.000 13.000 10.000	13.000 10.364 10.268 7.900 1.467	NNO3UR NO3-N UNF.REAC MG/L AS N	0.170 0.900 0.400 0.400	0.300 0.100< 0.100 0.100 0.700 0.500
	15 19.99	ALKT	ALK TOTAL MG/L AS CACO3	157.0 198.0 148.0 191.0 202.0 202.0 383.0 216.0 209.0	383.0 209.4 203.2 148.0 61.4	NO2UR NO2-N- UNF.REAC MG/L AS N	0.010 0.010 0.010<	0.010 0.020 0.020 0.010 0.010 0.020
	LONG: 081 15 19,99	FGPROJ	PROJECT SUB-PROJ CODE	0101 0101 0101 0101 0101 0101 0101 010		NNHTUR NH3-N TOTAL UNF.REAC MG/L AS N	0.019 0.021 0.026	0.024 0.039 0.024 0.010 0.019
	LAT: 44 40 36.06	FWSADP	SAMPLE DEPTH M	0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.30 0.30 0.30	FWTEMP WATER TEMP DEG.C	0.11	17.1 20.22 12.20 12.0 12.0 12.0 13.0
	LAT: 4	ST-NAME:	SAMPLE	30556 30567 40454 40465 40481 40492 40517 40517 40546	MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) AMP IN STATISTICS Z SAMP (EXCLUDED)	EST-NAME: SAMPLE NUMBER	30556 30567 40454 40465	40481 40492 40508 40517 40535 40546
		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900123 1100 900227 1509 900227 1509 900623 1500 900625 1345 900627 1405 900027 1405 900027 1405 901022 1355	HAXIMUM ARITH NEAN GEOW MEAN HINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME: SAMPLE DATE HOUR SAMPL YYMMDD LMT NUMBE	900123 1100 900227 1509 900327 1045 900423 1500	900625 1105 900625 1345 900724 1405 900925 1020 901022 1355 901127 1110

1990 WATER QUALITY DATA REGION 1

CNT /100ML 3.219 PSEUDOMN PSAMF AERUG. 1410 STORET CODE: DISTANCE: STATION ID: 08-0135-003-02 MG/L AS P PHOSPHOR UNF. TOT. 0.006 0.028 PPUT 0.015 HG/L AS P PP04UR P04 UNF. REAC 0.010 0.001 7 REGION: 01 PH 8.28 8.06 8.06 7.71 0.15 HH U T M: 17 0479745.0 4946850.0 4 MG/L 0.005<A 0.005 0.000<A LEAD 0.005<A UNF. TOT. AS PB PBUT 0.005 TERM STREAM: SAUBLE RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON AS M NNTKUR UNF . REAC MG/L K'DAHL N 0.670 0.521 0.512 0.370 0.099 TOTAL AS N N-20N MG/L NNO3UR UNF. REAC 0.900 0.100 9 MG/L AS N ZINC 0.0005 0.0089<A NNO2UR N02-N UNF. REAC 0.0005<W MG/L 0.0014<T 0.0005<W 0.0045<A 0.0019<A UNF. TOT. AS ZN 0.0021<T 0.0019<T 0.0020<T 0,0010<T 0.0010<T 0.0020<T LONG: 081 15 19,99 0.020 0.010 0.0310 0,000.0 0.0310 ZNUT 6 18 FLOW GAUGE FED 02FA001 HG/L NNHTUR NH3-N TOTAL UNF . REAC AS N FTU TURB'ITY 0.039 0.016 1.84 2.50 TURB 2.00 1.88 2.50 2.04 1.84 0.30 LAT: 44 40 36.06 WATER TEMP DEG.C FWTEMP RESIDUE PARTIC. MG/L 50.0 11.3 11.3 11.3 12.3 12.3 13.3 14.3 15.0 16.0 6.1 1.0 8.5 22.0 SAMPLE POINT: AT SAUBLE FALLS 3.7 RSP B.O.W./ SITE: SAUBLE RIVER GEOM MEAN SAMPLE 30567 40454 40465 40481 40492 40517 40546 40562 HAXIMUM # SAMP IN STATISTICS NUMBER MINIMUM STD DEV (GEOM *) SAMPLE 30556 40508 40535 MAXIMUM ARITH MEAN GEOM MEAN HINIMUM % SAMP (EXCLUDED) STATION TYPE: RIVER *=INTERIM TEST-NAME: TEST-NAME: 1500 1020 1100 1509 HOUR HOUR 1045 1105 1035 1405 LMT YYMMDD LMT *=INTERIH SAMPLE YYMMDD 900123 SAMPLE 900227 900327 900423 900529 900625 901127 900724 900827 300925 901022 DATE DATE

9 6

SAMP IN STATISTICS 7. SAMP (EXCLUDED)

STD DEV (GEOM *)

STATION ID: 08-0135-004-02

B.O.W./ SITE: ALBEMARBLE BROOK

SAMPLE POINT: AT HIGHWAY NO 6 NEAR MAR MOE SW AS STATION TYPE: RIVER FLOW GAUGE MOE 02FA102

20AID 60AID 40AID FECAL CNT COLIFORM 生 BQ/L DISTANCE: 25.105 /100ML >00 >4 >4 10 CODINE 4 2 11131 0.3< FCMF 4 60 1410 STORET CODE: 02 0.0005 0.0006<A BQ/L COPPER MG/L AS CU 0.0009<T 0.0007<T 0.0005<W 0.0010<T 0.0010<T 0.0020<T 0.0020<T 0,0020<T 0.0020<T 0.0020<T 0.0014<A 0.0013<A HYDROG-3 TRITIUM UNF. TOT. ю CUUT 0.0020 CESIUM BQ/L GROSS BETA CT JOSSIGN BQ/L 0.04< GBCP REGION: 01 BQ/L CESIUM FILTERED 80/L GROSS 0.3< BETA CT CS134 0:08 GBCF U T M: 17 0482700.0 4964350.0 4 250 COND25 UMHO/CM AT 25 C ALPHA CT UNDISSOL BQ/L CONDUCT. GROSS 322.0 400.0 291.0 395.0 402.0 417.0 429.0 460.0 389.0 0.04< 440.0 291.0 384.3 GACP TERM STREAM: SAUBLE RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON MG/L CLIDUR CHLORIDE UNF . REAC AS CL GROSS FILTERED BQ/L ALPHA CT > 0 0 0 5.000 2.500 5.100 3.300 1.800 3.100 3.300 4.100 3.300 3.400 3.573 3.434 1.005 GACF 1,800 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001<W 0.001 0.001<A 0.001 0.000<A 10 DEG.C ARSENIC MG/L 0.001<W 0.001<W 0.001<A TEMP UNF. TOT. MATER 1.0 14.5 118.0 12.0 12.0 9.5 5.5 ASUT MG/L AS CACO3 ALK STREAM FWSTRC COND. LONG: 081 13 07.91 ALKT 148.0 143.0 185.0 210.0 227.0 230.0 228.0 228.0 213.0 230.0 197.6 143.0 30.0 30AID 70AID CODE FGPROJ SUB-PROJ CNT STREPCUS /100ML PROJECT FECAL >00 0101 0101 0101 0101 0101 0101 0101 LAT: 44 50 03.49 DEPTH SAMPLE MG/L AS FE 0.040<T IRON 0.047<T 0,095<T D.060<T UNF. TOT. 0.071<T 0.029<T 0.140 0.130 0.30 0.30 0.30 FEUT 0.150 SAMPLE 30566 59505 40480 40516 40545 40480 40545 30566 40516 30555 40491 MAXIMUM # SAMP IN STATISTICS 30555 40453 59505 40507 40534 40453 40507 40534 ARITH MEAN GEOM MEAN MINIMUM % SAMP (EXCLUDED) SAMPLE TUMBER 40491 STD DEV (GEOM *) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 0160 1330 1220 HOUR 1430 1015 1400 1030 1220 0855 1235 HOUR 1430 1015 1400 1030 1330 0855 LMT LMT YYMMDD 900123 900423 900529 900625 900724 900925 901022 901127 CYMMDD 900327 900423 900529 900625 900724 900925 901022 SAMPLE 900227 900327 900827 SAMPLE 900123 900227 900827 DATE DATE

(CONTD)

B.O.W./ SITE: ALBEMARBLE BROOK SAMPLE POINT: AT HIGHWAY NO 6 MEAR MAR MOE. SW A3 STATION TYPE: RIVER FLOW GAUGE MOE O2FA102

25,105 IODINE BQ/L 11131 1410 STORET CODE: STATION ID: 08-0135-004-02 DISTANCE: HYDROG-3 TRITIUM HH3 BETA CT GROSS UNDISSOL B0/1 REGION: 01 GROSS BETA CT FILTERED BO/L 0.08 0.08 GBCF U T M: 17 0482700.0 4964350.0 4 GROSS B0/L ALPHA CT UNDISSOL GACP TERM STREAM: SAUBLE RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON GROSS FILTERED B0/L ALPHA CT GACF TEMP MATER DEG.C **FWTEMP** 10.6 6.6 1.0 8.2 STREAM FWSTRC COMD. LONG: 081 13 07.91 FECAL STREPCUS F CNT /100ML 290 62 FSMF LAT: 44 50 03.49 IRON MG/L 0.082<A UNF. TOT. AS FE 0.072<A FEUT 0.150 SAMPLE MAXIMUM ARITH MEAN GEOM MEAN *=INTERIM TEST-NAME: HOUR YYMMDD LHT SAMPLE DATE

0.08

0.044<A

STD DEV (GEOM *)

0.029

HIMINUM

CNT PSEUDOMN /100ML >4 ¥ 4 4 AERUG. >4 >4 PSAMF MG/L ۵. PHOSPHOR UNF. TOT. AS 0.008 0.007 600.0 0.008 900.0 0.015 PPUT 900.0 0.010 0.009 900.0 0.008 0.007 0.015 0.008 AS P P04 MG/L PP04UR UNF. REAC 0,001< 0.001< 0.001< 0,001< 0,001< 0.001< 0.005 900.0 0.004 0.005 0.001 0.007 0.007 0.001 LO PH 8.04 8.31 8.20 8.36 8.19 8.07 8.36 8.13 8.13 7.82 0.17 7.88 PH 0.005<A 0.005<A 0.005 0.000<A 0.005<W LEAD 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W 0.005<W MG/L AS PB 0.005<W 0.005<W UNF. TOT. PBUT 0.005 AS N K'DAHL N UNF. REAC MG/L NNTKUR 0.310 0.365 0.354 0.240 0.097 0.240 0.470 0.410 0.320 0.520 TOTAL 0.290 0.380 0.500 0,280 0.300 0.520 AS N N-20N MG/L NNO3UR UNF. REAC 0.100< 0.100< 0.100< 0.100< 0,100< 0.500 0.100 0.100 0.500 0.200 0.240 0.100 10 AS N MG/L NN02UR N02-N UNF. REAC 0.010 0.010< 0.010< 0.010 0.020 0.010 0.010 0.020 0.010 0.010 27 AS N NH3-N TOTAL NNHTUR UNF. REAC MG/L 0.001< 0,010 900.0 0.012 36 0.005 0.014 0,009 0.003 0.011 0.014 0,003 0.013 0,003 0.011 0 6 0.003<A 0.003<A 0.002 0.001<A AS NI 0.002<W 0.002<W 0.002<W 0.002<W 0.002<W MICKEL UNF. TOT. 0.004<T 0.004<T 0,003<T 0.003<T 0,003<T MG/L NIUT 0.004 40464 40545 30566 40516 40534 SANP IN STATISTICS SAMPLE NUMBER 30555 40453 40491 40507 40561 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) % SAMP (EXCLUDED) # SAMP IN STATISTICS % SAMP (EXCLUDED) TEST-NAME: HOUR 1015 1400 1030 1220 0160 1330 0855 0925 1430 LMT *=INTERIM YYMMDD 900123 900423 900529 900625 900724 900925 SAMPLE 300327 900827 DATE *

CONTDI

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: ALBEMARBLE BROOK SAMPLE POINT: AT HIGHWAY NO 6 NEAR MAR MOE SW A3 STATION TYPE: RIVER FLOW GAUGE MOE 02FA102

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: SAUBLE RIVER

U T M: 17 0482700.0 4964350.0 4

LAT: 44 50 03.49 LONG: 081 13 07.91

UNF.TOT. MG/L AS ZN

TURB'ITY

MG/L RESIDUE PARTIC.

> SAMPLE NUMBER

HOUR

DATE

SAMPLE

YYMMDD LMT 900123

0.0006<T 0.0005<W 0.0005<W 0.005 <W 0.0020<T 0.0010<T 0.0010<T 0.0010<T

1.60

30555 30566 40453 40464

> 1430 1015 1400

900227 900327 900423 900529 900625 900724 900827 900925 901022

0925

0.0310

1.40

40491 40516 40534 40545 40561

> 0160 1330 0855 1235

1030 1220 1.64 97.0

ZINC

ZNUT

TURB

RSP

*=INTERIM TEST-NAME:

0.0310 0.005 <A

3.9 2.0

MAXIMUM ARITH MEAN

901127

GEOM MEAN MINIMUM STD DEV (GEOM *)

0,000.0

0.002 <A

0.0005 0.009 <A 10

1.29 0.76 0.41

3

SAMP IN STATISTICS

STATION ID: 08-0135-004-02

STORET CODE: 02

DISTANCE: 25.105 1410

REGION: 01

STATION ID: 08-0143-001-02

	BAY
	STOKES
	HUOL
R	UPSTR, FROM 1
STOKES RIVER	2ND.BRIDGE
SITE:	POINT:
B.O.W./	SAMPLE

STATION TYPE: RIVER	IVER	2		200	MAJOR BASIN MINOR BASIN TERM STREAK	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: STOKES RIVER	ES IN VER			STORET CODE: 02 003	: 02 002 1530
	LAT: 45	LAT: 45 00 09.78	LONG: 081 21 56.65	21 56.65	U T M: 17	U T M: 17 0471175.0 4983100.0 4	983100.0 4	REGION: 01		DISTANCE:	1.127
*=INTERIM TEST-NAME:	VAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSMF FECAL	FWSTRC	FWTEMP	NHTUR NH3-N	NNO2UR
SAMPLE	CAMBIE	SAMPLE	PROJECT STD_DDG3	CHLORIDE UNF.REAC	CONDUCT. 25C	COLIFORM MF	STREPCUS	100	WATER	TOTAL UNF.REAC	NO2-N UNF.REAC
D LHT	NUMBER	H	CODE	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG.C	AS N	MG/L AS N
_	30553	0.30	0101	7,000	351.0	4	20	9	1.0	0.032	0.010
	30564	0.30	0101	5.700	372.0	>4	20	9	1.0	0.042	0.010
900527 0940	40462	0.50	0101	5.800	222.0	42	3 3	9 7	10.0	0.001<	0.010<
_	40478	0.30	0101	3.400	341.0	204	12	9	15.0	0.008	0.010
900625 1245	40489	0.30	1010	5.800	394.0	270	10<	8	19.0	0.039	0,030
_	40505	0.30	1010	6,100	412.0	100AID	100<	9	20.5	0.060	0.010
	40514	0.30	0101	4.500	440.0	10AID	SOAID	9	23.5	0.098	0.030
900925 0920	40552	0.30	0101	14.200	422.0	BOAID	130	9 ,	12.0	0.064	0.010<
	40559	0.30	0101	000.7	260.0	173	SUALD	٥	υ. υ.	0.028	0.020
	40004	0.50	1010	9.800	340.0	152	156	9	5.0	0.003	0.010
H	MAXIMUM	0.30		14.200	0.099	270	156		23.5	0.098	0.030
ARIT	ARITH MEAN	0.30		6.436	366.3	92	58		10.6	0.039	0.016
GEOL	GEOM MEAN	02 0		5.987	363.3		*		4.6		
STD DEV (GEOM *)	EOM *)	9		2,890	48.0	7	7		8.2	0.003	0.010
# SAMP IN STATISTICS	ISTICS	11		11	11	10	8		11	10	10
% SAMP (EXCLUDED)	LUDED)					6	27			6	27
*=INTERIM TEST-NAME:	AAME:	NNOSUR	NNTKUR K TDAHI N	н	PPO4UR	PPUT	PSAME	RSP			
		N03-N	TOTAL		P04	PHOSPHOR	AERUG.				
E	_	UNF. REAC	UNF . REAC		UNF. REAC	UNF. TOT.	MF	RESIDUE			
HOUR	SAMPLE	MG/L	NG/L		HG/L	MG/L	CNT	PARTIC.			
YYHHOD LMT	NUMBER	AS N	AS N	Н	AS P	AS P	/100ML	MG/L			
900123 0955	30553	0.400	0.700	7.12	0.008	0.027	>4	5.0<			
900227 1356	30564	0.100	0.560	7.22	0.003	0,016	>5	3.0			
900327 0940	40451	0.100<	0.460	7.55	0,001<	0.016	>4	5.0<			
	40462	0.300	0.620	7.86	0.002	0,046	>4>	30.7			
	40478	0.100<	0.800	7.73	0.001<	0.039	>5	20.8			
	40489	0.100<	0.920	8.14	0.005	0,060	>4	21.5			
_	40505	0.100<	1.100	7.95	0.010	0.070	10<	22.0			
	40514	0.100<	1.160	7.95	0.000	0.066	>4	14.4			
900925 0920	40552	0.100	1.100	7.85	0.001<	0.055	> 5	26.9			
	40569	0.100	0.570	7.66	0.003	0.030	× 3	8.9			
	1	2)	20		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	0.0			

258		02 002 1530	1.127								
	STATION ID: 08-0143-001-02	STORET CODE:	DISTANCE:								
	STATION ID:		REGION: 01	RSP		RESIDUE PARTIC.	MG/L	30.7	17.2	3.0	9 18
EGION I		(ES ON IVER	4983100.0 4	PSAME	AERUG.	CNT	/100ML	ব	4	4	90
1990 WAIER QUALITY DATA REGION I		MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: STOKES RIVER	U T M: 17 0471175.0 4983100.0 4	PPUT	PHOSPHOR	UNF.TOT. MG/L	AS P	0.070	0.040	0.016	11
U WAIER WUA		MAJOR BASI MINOR BASI TERM STREA	U T M: 17	PP04UR	P04	UNF.REAC MG/L	AS P	0.010	900.0	0,002	8 27
199	TOKES BAY		21 56.65	Н			H	8.14	7.68	7.12	11
	STOKES RIVER 2ND-BRIDGE UPSIR-FROM MOUTH STOKES RAV		LONG: 081 21 56.65	NNTKUR K TOAHI N	TOTAL	UNF.REAC MG/L	AS N	1.160	0.808	0.460	11
	SIVER DGE UPSTR.FI		LAT: 45 00 09.78	NNO3UR	N-20N	UNF.REAC MG/L	AS N	0.400	0.200	0.100	45
	B.O.W./ SITE: STOKES RIVER SAMPLE POINT: 2ND.BRIDGE UP	E: RIVER	LAT: 4	TEST-NAME:		SAMPLE	NUMBER	MAXIMUM	GEOM MEAN	STD DEV (GEOM *)	# SAMP IN STATISTICS % SAMP (EXCLUDED)
	B.O.W./ SITE: SAMPLE POINT:	STATION TYPE:		*=INTERIM T	. !	SAMPLE DATE HOUR	YYMMDD LMT			STD DE	# SAMP IN

STATION ID: 08-0143-002-02

MG/L AS N NO2-N JNF. REAC 6.276 NN02UR 0.010 0.010< 0.030 0.010< 0.020 0.020 0.030 0.010 0.010 7 02 STORET CODE: DISTANCE: NNHTUR NH3-N MG/L Z TOTAL JNF . REAC AS 0.055 0.047 0.047 0.029 0.011 0.016 0.005 0.019 0.021 REGION: 01 DIST: 002 TEMP MATER DEG.C FWTEMP 26.5 111.7 7.5 1.0 8.6 1.0 12.0 13.5 20.0 19.5 26.5 12.5 8.5 **FWSTRC** STREAM COND. RESIDUE MG/L PARTIC. 5.0< 5,0< 12.0 13.6 20.8 19.7 11.8 11.1 7.0 69.2 RSP 0 0 0 10 10 0 0 10 0 M 16 250 300AID 4 SOOAID CNT STREPCUS CHT PSEUDOMN U T M: 17 0473525.0 4986900.0 /100ML /100ML PSAMF AERUG 4 230 220 500 1500 289 100 TERM STREAM: STOKES RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON 400AID MG/L AS P COLIFORM /100ML PHOSPHOR JNF. TOT. 7 340 0.050 352 0.050 0.014 0,058 0.035 0.022 061 200 2200 600 PPUT 0.028 090.0 MG/L AS P 25C JMHO/CM P04 COND25 AT 25 C UNF. REAC PP04UR 0.009 0.001< 0.012 0.001< CONDUCT, 0.001< 340.0 298.0 327.0 384.0 404.0 338.0 404.0 335.7 252.0 0.010 0.002 0.004 CLIDUR MG/L AS CL CHLORIDE JNF . REAC LONG: 081 20 10.03 7.65 8.15 7.79 8.04 7.94 8.25 8.03 7.66 5.700 4.900 1.500 9.200 5.000 6.000 5.700 4.690 4.203 1.500 2.194 10 9.200 ā MG/L AS N UNF. REAC FGPROJ NNTKUR K'DAHL N STATION TYPE: RIVER FLOW GAUGE FED. 02FA002 PROJECT SUB-PROJ CODE 0.720 0.470 0.750 0.960 1.060 1,000 0101 0.560 0101 TOTAL 1.060 0101 0101 0101 0101 1010 1010 0101 LAT: 45 02 13.25 DEPTH MG/L AS N SAMPLE **FWSADP** NN03UR N03-N UNF. REAC 0.100< 0.100< 0.100< 0.100< 0.100< 0.100< 0.100 0.30 0.30 0.300 SAMPLE 40544 40490 40452 40463 40506 59505 62505 40515 30554 06505 40515 40560 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS SAMPLE NUMBER 30554 40533 40479 40533 STD DEV (GEOM *) 40452 % SAMP (EXCLUDED) TEST-NAME: *=INTERIM TEST-NAME: 901022 1315 1300 330 0960 1330 0935 HOUR 9560 1005 1300 1305 0935 9560 1005 1305 HOUR 900123 1015 1015 YYHINDD LMT *=INTERIM YYMMDD 900123 900529 900625 900925 900327 900423 900529 900625 900724 900724 900827 900827 901022 SAMPLE 900327 900423 SAMPLE DATE DATE

1990 WATER QUALITY DATA REGION 1

STATION ID: 08-0143-002-02		STORET CODE:
		MAJOR BASIN: GREAT LAKES
B.O.W./ SITE: STOKES RIVER	SAMPLE POINT: AT HIGHWAY NO.6	STATION TYPE: RIVER FLOW GAUGE FED, 02FA002

	. 0	6.276													
	5: 02 002 1530														
	STORET CODE:	REGION: 01 DIST: 002 DISTANCE:													
	STORE	DIS													
		: 002													
		DIST													
		: 01													
		REGION	RSP		RESIDUE	PARTIC.	MG/L	69.2	20.6		7.0		60	20	
		4	. 2		<u>.</u>	_	_								
	KES ON IVER	U T M: 17 0473525.0 4986900.0 4	PSAMF	AERUG	¥	CNI	/100ML	12	12		12		1	06	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE HURON TERM STREAM: STOKES RIVER	3525.0	PPUT	HOSPHOR	JNF. TOT.	MG/L	AS P	.148	0.049	040	.014	0.038			
	N L G	. 047		PH	2			0	0	0	0	0	10		
	MAJOR BASIN: MINOR BASIN: TERM STREAM:	M: 17	PP04UR	P04	UNF. REAC	MG/L	AS P	44	12		01				
	MAJOR MINOR TERM	1	dd		UNF.			0.044	0.0		0.001		7	30	
		03					H	LC LC	м	M	و	~			
		10.	H.					8.2	7.8	7.83	7.1	0.3	10		
	61	81 20	~ z		ပ .	_	z								
	2FA00	NG: 0	NNTKUR K'DAHL N	TOTAL	UNF . REAC	MG/L	AS N	1.060	0.840	.813	.470	0.211			
	ED.0	107	- ×	F	5			-	0	0	0	0	10		
0	UGE F	LAT: 45 02 13.25 LONG: 081 20 10.03	NNOSUR	N03-N	UNF . REAC	MG/L	AS N	0.300	0.225		0.100				
2	MO MO	5 02	ž	-	ONE.			0.3	0.2		0.		4	09	
0.7	ER FL	AT: 4	 		L	SAMPLE	UMBER	MAXIMUM	MEAN	MEAN	MINIMUM	(* -	FICS	DED)	
	: RIV	_	TEST-NAME:			NA S	2	MAX	ARITH MEAN	GEOM MEAN	MIN	(GEO	FATIS	CXCLU	
2	TYPE				2	HUUK	LMT		A	_		STD DEV (GEOM *)	IN S	% SAMP (EXCLUDED)	
COLUMN TENTON	STATION TYPE: RIVER FLOM GAUGE FED.O2FA002		*=INTERIM				00					STE	SAMP IN STATISTICS	% SA	
2	STA		NI=*		SAMPLE	DAIE	YYMMDD						**		

STATION ID: 10-0001-002-02

SAMPLE MANUAL FISEADE FORBAD ALKT BODA CHIDNE CHEL NO. CHIDNE CHIDNE CHEL NO. CHIDNE CHIDN	STATION T	SAMPLE POINT: AT WINDSON SUBURBAN KOAD 40 STATION TYPE: RIVER	OK SUBURBAR	ROAD 40		MAJOR BASIN: MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE.ERIE TERN STREAM: TURKEY CREEK	(ES EEK			STORET CODE:	: 02 003 2740
FH9ABP FGPR03 ALKT BODE CLIDUR COOD CONDUCT CHROPIL COOPER DISC CHROPIL COOPER DISC CHROPIL CHROPIL COOPER DISC CHROPIL COOPER CHROPIL CHROPIL CHROPIL CHROPIL COOPER CHROPIL CHROPI		LAT: 4	2 14 53.82		94.40	U T M: 17	0329400.0 4	4679200.0 4	REGION:	0.1	DISTANCE:	3.862
Part	*=INTERIM	TEST-NAME:	FWSADP	FGPROJ	ALKT	8005	CLIDUR	COD	COND25	CRUT	CUUT	00
E DEPTH SUB-PROJ HG/L <	SAMPLE		SAMPLE	PROJECT	ALK	5 DAY	CHLORIDE UNF.REAC	CHEM. OX DEMAND	CONDUCT.	CHROMIUM UNF. TOT.		DISOLVED
0.30 0.101 152.0 5.02 406.000 30 180.0 0.0047 0.0056 3 0.30 0.101 135.0 2.55 0.000 30 155.0 0.0046 0.0066 3 0.30 0.101 135.0 1.56 141.00 1.56 141.00 <td></td> <td></td> <td>рертн М</td> <td>SUB-PROJ CODE</td> <td>MG/L AS CACO3</td> <td>MG/L AS 0</td> <td>MG/L AS CL</td> <td>MG/L AS 0</td> <td>UMHO/CM AT 25 C</td> <td>MG/L AS CR</td> <td>MG/L AS CU</td> <td>MG/L AS 0</td>			рертн М	SUB-PROJ CODE	MG/L AS CACO3	MG/L AS 0	MG/L AS CL	MG/L AS 0	UMHO/CM AT 25 C	MG/L AS CR	MG/L AS CU	MG/L AS 0
0 0.30 0.10 1.99.0 2.55.000 1550.00 0.0046 0.0066 3.50 0 0.30 0.10 1.99.0 2.55.000 1.55.000 1.50 0.002 0.			0.30	0101	152.0	5.02	406.000	30	180.0	0.0067	0.0072	4.0
8 0.32 0.101 199,0 2.56 178,000 1065,0 0.0038 0.0120 2 0.32 0.101 203,0 6.84 147,000 977,0 0.0030 0.0060 6 0.32 0.101 207,0 1.56 146,1000 977,0 0.0030 0.0060 6 0.30 0.101 114,0 10.0 79,900 560.0 0.0000			0.30	0101	193.0	4.57	255.000		1360.0	0.0000	9900.0	3.0
6 0.30 0.101 207.0 6.56 1.5.00 977.0 0.0020 1.000 1.5.00 0.005 1.5.00 0.005 0			0.30	0101	199.0	2.85	178.000	2	1085.0	0.0038	0.0120	,
Color Colo			0.30	0101	203.0	6.84	147.000		977.0	0.0030	0.0050	14.0
Color Colo			0.30	0101	207.0	11.8	115.000		840.0			7.0
8 0.30 0.101 176.0 6.88 87.0 0.1300 0.330 9 0.30 0.101 176.0 6.88 87.00 0.100 0.1300 9 0.30 0.101 199.0 2.60 99.200 96.00 0.0010 0.000 9 0.30 0.101 265.0 1.96 95.200 96.00 0.0010 0.000 0.000 10 0.30 0.101 269.0 1.96 95.200 30 96.00 0.0010	_		0.30	0101	114.0	10.0	79.900		589.0	0.0020 <t< td=""><td>0.0100</td><td>20.0</td></t<>	0.0100	20.0
0.30 0.101 194.0 2.60 59.500 745.0 0.00040 0.00090	_		0.30	0101	176.0		118.000		870.0	0.100	0.130	4.0
5 G. 350 01011 265.0 5.92.200 698.0 0.0010 7 6 0.350 0101 265.0 5.92.200 59.200 698.0 0.0010 7 0.0040 8 0 0.30 0101 265.0 1.96 95.300 30 136.0 0.0100 7 0.0040 30 H 0.30 195.6 5.5 150.050 30 136.0 0.010 7 0.0040 30 H 0.30 134.0 1.56.050 30 135.0 0.010 0.010 0.010 0.010 20 0.009 20 0.009 20 0.009 20 0.009 20 0.009 <td>_</td> <td></td> <td>0.30</td> <td>0101</td> <td>174.0</td> <td>6.88</td> <td>87.600</td> <td></td> <td>745.0</td> <td>0.0040</td> <td>0.0000</td> <td>4.0</td>	_		0.30	0101	174.0	6.88	87.600		745.0	0.0040	0.0000	4.0
Name	- '		0.30	0101	199.0	2.60	59.200		698.0	0.0010 <t< td=""><td>0.0040</td><td>80 I</td></t<>	0.0040	80 I
H 0.30			0.30	0101	265.0	5.92	98,600		946.0	0.0010 <t< td=""><td>0.0000</td><td>0.0</td></t<>	0.0000	0.0
H 0.30 269.0 11.8 406.000 30 1360.0 0.100 0.130 25 269.0 11.8 406.000 30 356.8 0.012 <			0.50	1010	269.0	1.96	95,300		951.0	0.0010<	0.0040	5.5
N		MAXINUM	0.30		269.0	11.8	406.000	30	1360.0	0.100	0.130	20.0
No. 30 191.2 4.5 12.081 30 781.5 0.003 < 4 0.009 19.009		ARITH MEAN	0.30		195.6	5.5	150.050	30	852.8	0.012 <a< td=""><td>0.018</td><td>7.4</td></a<>	0.018	7.4
H		GEOM MEAN			191.2	4.5	129,881		781.5	0.003 <a< td=""><td>600.0</td><td>6.1</td></a<>	600.0	6.1
FCHF FSHF FWSTRC FWTEMP NIUT NINHTUR NINOZUR NINTKUR PEFFECAL FECAL NITKUR NITKUR FECAL NITKUR	6	MUNIMUM STORY	0.50		114.0	1.56	59.200	30	180.0	0.0010	0.0040	0 I
FCHF FSHF FMSTRC FWTEMP NIUT NINHTUR NINOZUR NINTKUR PE	A CAMP T	DEV (GEOM R)	10		12.5	2.0	10,489		13	0.029 <a< td=""><td>0.05/</td><td>2.5</td></a<>	0.05/	2.5
FCHF FSHF FMSTRC FWTEHP NIUT NNHHUDR NNOCUR NNTKUR PREACT FECAL FECAL FECAL NICKEL NICKEL NOCUR	% SAM	P (EXCLUDED)	77		75	1	77	-	77	1	11	11
FECAL FECAL FECAL HIGHEN HIGH	*=INTERIM	TEST-NAME:	FCMF	FSMF	FWSTRC	FWTEMP	NIUT	NNHTUR	NNO2UR	NNOSUR	NNTKUR	PBUT
COLIDORH STREEDUS NUMBER			FECAL	FECAL				NH3-N			K'DAHL N	
HOUR SAMPLE CHI CHI STREAM TERM TOWN. NOT. THE ACT ONT. HEAD ONT. HE ADDRESS ONT. HEAD	T I GAME		COLIFORM	STREPCUS		-	NICKEL	TOTAL	N02-N	N-20N	TOTAL	LEAD
100 100	J		THE	THA	CTDEAM	TEMP	UNI TOL	ONF . REAC	UNF . REAC	UNF . KEAC	UNF. REAC	UNF. IOI.
1025 30846 15000 2200 6 1.0 0.008 7 0.020 3.500 2.300 1020 30660 27000 2100 6 2.0 0.005 7 0.20 1.770 1.490 3.000 1105 40726 1500 9.0 0.005 7 0.20 0.100 2.00 0.880 1101 40726 1500 900AD 6 6.0 0.005 7 0.270 1.400 0.880 1101 40764 11000 100AID 6 18.0 0.010 0.270 2.400 1.500 1101 40764 11000 100AID 6 18.0 0.009 0.270 2.400 1.500 1101 40776 25000 500 0.009 0.680 1.500 4.200 1102 40800 8000AID 3100 6 18.0 0.013 0.270 1.400 0.230 1155 4081 8200 </td <td>D</td> <td></td> <td>/100HL</td> <td>/100ML</td> <td>COND.</td> <td>DEG.C</td> <td>AS NI</td> <td>AS N</td> <td>AS N</td> <td>AS N</td> <td>AS N</td> <td>AS PB</td>	D		/100HL	/100ML	COND.	DEG.C	AS NI	AS N	AS N	AS N	AS N	AS PB
1020 30860 27000 2100 6 2.0 0.005 <t< th=""> 0.020 1.270 1.400 3.000 1100 40728 1500 6 9.0 0.005<t< td=""> 0.422 0.110 2.700 0.880 1140 40740 12000 1900 6 0.005<t< td=""> 0.422 0.110 2.700 0.750 1140 40752 15000 1900 6 13.0 0.010 0.170 2.700 0.750 1101 40764 11000 100AID 6 18.0 0.010 0.270 2.400 1.500 1101 40764 25000 100AID 6 23.0 0.004 0.130 0.270 2.400 1.500 1101 40764 2500 10.018 0.018 0.264 0.270 1.400 0.230 1104 40800 800AID 50 6 18.0 0.018 0.284 0.190 4.00 1155 4081 8200</t<><td></td><td></td><td>15000</td><td>2200</td><td>9</td><td>1.0</td><td>0.008<t< td=""><td>0.001</td><td>0.020</td><td>3.500</td><td>2.300</td><td>1>600°0</td></t<></td></t<></t<>			15000	2200	9	1.0	0.008 <t< td=""><td>0.001</td><td>0.020</td><td>3.500</td><td>2.300</td><td>1>600°0</td></t<>	0.001	0.020	3.500	2.300	1>600°0
1100 40728 1500 570 6 9 0 0 0.005<7 0 0.422 0 0.110 2 0.200 0 0.880 1 0.552 0 0.755 0 0.755 0 0.755 0 0.755 0 0.755 0 0.755 0 0.755 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005<7 0 0.005 0 0.755 0			27000	2100	9	2.0	0.005 <t< td=""><td>0.020</td><td>1.270</td><td>1,400</td><td>3.000</td><td>0.007<t< td=""></t<></td></t<>	0.020	1.270	1,400	3.000	0.007 <t< td=""></t<>
1140 40754 12000 1900 6 6.0 0.003<7 0.001< 0.170 2.700 0.750 0	,		1500>	029	9	0.6	0.005 <t< td=""><td>0.422</td><td>0.110</td><td>2.200</td><td>0.880</td><td>0.005<w< td=""></w<></td></t<>	0.422	0.110	2.200	0.880	0.005 <w< td=""></w<>
1140 40752 15000 900AID 6 13.0 0.010 0.270 0.270 2.400 1.500 1010 40764 11000 100AID 6 23.0 0.009 7 1.900 0.580 1.200 4.200 1110 4078 25000 6 23.0 0.009 7 1.900 0.680 1.200 4.200 1110 4078 32000 500 6 18.0 0.018 0.964 0.270 1.400 0.230 1055 40800 8000AID 3100 6 18.0 0.013 0.228 0.190 1.600 1.340 1155 40815 8200 3 11.5 0.009 0.370 2.100 1.100 1155 40840 10000 1300 6 5.0 0.010 1.300 0.130 0.700 3.440 1125 40840 10000 1100 6 5.0 0.008 1.300 0.100 <	,		12000	1900	9	0.9	0.003 <t< td=""><td>0.001<</td><td>0.170</td><td>2.700</td><td>0.750</td><td>0.005<w< td=""></w<></td></t<>	0.001<	0.170	2.700	0.750	0.005 <w< td=""></w<>
1010 90/64 11000 100A10 6 18.0 0.009<7 1.900 0.330 0.700 4.200 1100 90/70 1.200 0.230 0.700 4.200 1110 90/70 8 2200 6 18.0 0.018 0.964 0.270 1.900 0.230 0.230 0.230 0.230 1.200 1.200 1.200 0.230 1.200 0.230 1.200 0.230 1.200 0.230 1.200 0.230 1.200 0.230 1.200 0.230 1.200 0.230 1.200 1.200 1.200 1.200 0.230 0.230 0.200 1.300 1.200 1.200 0.230 0.230 0.230 0.230 1.200 1.200 0.230 0.2			15000	900AID	9	13.0	0.010 <t< td=""><td>0.220</td><td>0.270</td><td>2.400</td><td>1.500</td><td>0,009<t< td=""></t<></td></t<>	0.220	0.270	2.400	1.500	0,009 <t< td=""></t<>
1100 40776 25000 6 25.0 0.009<1 1.990 0.680 1.200 0.230 1.000 1.009 1.00	7 '		11000	IOUAID	9 ,	18.0			0.330	0.700	4.200	
1455 40818 20000 1300 6 18.0 0,013 0,288 0,190 1,600 1,340 1,400 1,500 1			22000	001	9	23.0	0.009<1	1.900	0.680	1.200	0	0.011 <t< td=""></t<>
1255 40828 20000 1300 6 5.0 0.008<7 1.350 0.100 1.100 2.100 1.100 1.125 40840 10000 1100 6 4.0 0.008<7 1.350 0.100 1.100 2.100 1.100 2.100 1.100			8000010	2	D 4	10.0	0.010	0.3994	0.270	1.400	0.230	0.025
1505 40828 20000 1300 6 5.0 0.010<7 2.600 0.130 0.700 3.440 1125 40840 10000 1100 6 4.0 0.008<7 1.300 0.100 1.100 2.100			77000		9 10	11.5	0.009 <t< td=""><td>0.300</td><td>0.130</td><td>2 100</td><td>1 100</td><td>0.009×1</td></t<>	0.300	0.130	2 100	1 100	0.009×1
1125 40840 10000 1100 6 4.0 0,008<7 1.300 0.100 1.100 2.100			20000	1300	9	2.0	D.010 <t< td=""><td>2.600</td><td>0.130</td><td>0 200</td><td>2 440</td><td>M>5000</td></t<>	2.600	0.130	0 200	2 440	M>5000
	-		10000	1100	9	4.0	0.008 <t< td=""><td>1.300</td><td>0.100</td><td>1,100</td><td>2,100</td><td>0.005<w< td=""></w<></td></t<>	1.300	0.100	1,100	2,100	0.005 <w< td=""></w<>

(CONTD)

STATION ID: 10-0001-002-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: TURKEY CREEK SAMPLE POINT: AT WINDSOR SUBURBAN ROAD 40 STATION TYPE: RIVER

STORET CODE: 02 MAJOR BASIN: GREAT LAKES

2740	3.862	PBUT	LEAD	MG/L	AS PB		0.025	0.008 <a< th=""><th>0.005</th><th>0.006<a< th=""><th>11</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></a<></th></a<>	0.005	0.006 <a< th=""><th>11</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></a<>	11																								
	DISTANCE:	NNTKUR K'DAHL N	TOTAL	UNF. KEAC	AS N	000	1.895	1.472	0.230	1.238	11	ZNUT	Cierr	LINE TOT	MG/L	AS ZN	0.0640	0.0510	0.0270	0.0170	0.0260		0.0550		0.0480	0.0350	0.0220	0.0260	0.0640	0.0371	0.0340	0.0170	0.0161	10	
	01	NNO3UR	N03-N	MG/L	AS N	4	1.750	1.563	0.700	0.848	12	ZNUT	71110	TOT TOT	UG/L	AS ZN								0.78					0.78	0.78		0.78		1	
	REGION: 01	NNO2UR	NO2-N	MG/L	AS N	1 270	0.326	0.209	0.020	0.343	12	TURB			TURB'ITY	FTU				30.00				68.00					68.00	49.00	45.17	30.00	26.87	2	
EEK	679200.0 4	NNHTUR NH3-N	TOTAL	MG/L	AS N	007 6	0.795		0.001		10	RSP		RESTRUE	PARTIC.	MG/L	34.4	9.5	10.9	285.0	28.7	54.9	16.4	77.8	72.6	32.6	8.4	6.6	285.0	50.9	27.4	8.4	77.3	12	
MINOR BASIN: LAKE ERIE TERM STREAM: TURKEY CREEK	U T M: 17 0329400.0 4679200.0 4	NIUT	NICKEL	HG/L	AS NI	810 0	0.009 <a< td=""><td>0.008<a< td=""><td>0.003</td><td>0.004<a< td=""><td>1</td><td>PSAME</td><td>AFBIG</td><td>MF.</td><td>CNT</td><td>/100ML</td><td></td><td></td><td>84C</td><td>80</td><td>84C</td><td>180</td><td>2600</td><td>290</td><td>059</td><td>260</td><td>130</td><td>60AID</td><td>640</td><td>207</td><td>158</td><td>09</td><td>5*</td><td>10</td><td></td></a<></td></a<></td></a<>	0.008 <a< td=""><td>0.003</td><td>0.004<a< td=""><td>1</td><td>PSAME</td><td>AFBIG</td><td>MF.</td><td>CNT</td><td>/100ML</td><td></td><td></td><td>84C</td><td>80</td><td>84C</td><td>180</td><td>2600</td><td>290</td><td>059</td><td>260</td><td>130</td><td>60AID</td><td>640</td><td>207</td><td>158</td><td>09</td><td>5*</td><td>10</td><td></td></a<></td></a<>	0.003	0.004 <a< td=""><td>1</td><td>PSAME</td><td>AFBIG</td><td>MF.</td><td>CNT</td><td>/100ML</td><td></td><td></td><td>84C</td><td>80</td><td>84C</td><td>180</td><td>2600</td><td>290</td><td>059</td><td>260</td><td>130</td><td>60AID</td><td>640</td><td>207</td><td>158</td><td>09</td><td>5*</td><td>10</td><td></td></a<>	1	PSAME	AFBIG	MF.	CNT	/100ML			84C	80	84C	180	2600	290	059	260	130	60AID	640	207	158	09	5*	10	
MINOR BASIN TERM STREAM	U T M: 17	FWTEMP	WATED	TEMP	DEG.C	2% 0	10.7	7.7	1.0	7.3	12	PPUT	рипориль	UNF. TOT.	MG/L	AS P	0.370	0.042	0.175	0.370	0.290	0.650	0.650	0.390	0.284	0.210	0.590	0.330	0.650	0.363	0.301	0.042	0.189	12	
	94.40 90	FWSTRC		STREAM	COND.							PP04UR	200	UNF . REAC	MG/L	AS P	0.238	0.024	0.117	0.210	0.170	0.525	0.240	0.142	0.112	0.270	0.340	0.260	0.525	0.221	0.180	0.024	0.128	12	
	LONG: 083 04 04,46	FSMF	STREPCUS	CNT	/100ML	8200	2006	1229	100	* *	11	PHNOL	PHEMOIS	UNF-REAC	1/9n	PHENOL		4.000	1.500	2.000	2.000		4.000	1.000		10.000		1.000<	10.000	3.500		1.000		12	
	LAT: 42 14 53.82	FCMF	COLIFORM	CNT	/100ML	32000	17500		8000	•	6	PSI				H	7.66	7.67	7.60	7.68	7.76	7.61	7.19	7.80	7.71	7,68	7.87	7.80	7.87	7.67	7.67	7.19	0.17	12	
	LAT: 4	EST-NAME:		SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMOM	STD DEV (GEOM *)	% SAMP (EXCLUDED)	EST-NAME:			SAMPLE	NUMBER	30848	30860	40728	40740	40752	49205	40776	40788	40800	40815	40828	40840	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMOM	STD DEV (GEOM *)	% SAMP (EXCLUDED)	
		*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	YYMNDD LMT					STD DE	* SAMP IN STALLSTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		SAMPLE		YYMMDD LMT												901211 1125					STD DE	# SAMP IN STATISTICS % SAMP (EXCLUDED)	

SAMPLE POINT: HWY.18 2 MILES SOUTH OF RIVER CANARD

B.O.W./ SITE: CANARD RIVER

STATION ID: 10-0002-001-02

1990 WATER QUALITY DATA REGION 1

	02 003 2700	0.805			
٥.					
STATION ID: 10-0002-001-02	STORET CODE:	DISTANCE:			
TION		01			•
STA		REGION: 01	TURB	TURB'ITY FTU	245.00 169.00 150.95 93.00 2
	ES VER	670400.0 4	RSP	RESIDUE PARTIC. MG/L	148.0 79.0 68.8 19.6 39.2
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: CANARD RIVER	U T M: 17 0326710.0 4670400.0 4	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.570 0.283 0.251 0.080 0.132
	MAJOR BASIN MINOR BASIN TERM STREAN	U T M: 17	PP04UR	PO4 UNF.REAC MG/L AS P	0.184 0.090 0.074 0.013 0.052
CANARD		05 52.32	Н	Н	8.13 7.84 7.84 7.39 0.22
H OF RIVER		LONG: 083	NNTKUR K . DAH! N	TOTAL UNF.REAC MG/L AS N	3.700 1.767 1.615 0.620 0.775
IIVER MILES SOUT		LAT: 42 10 06.56 LONG: 083 05 52.32	NNOSUR	NO3-N UNF.REAC MG/L AS N	7.100 3.700 0.100
CANARD F	RIVER	LAT: 4	T-NAME:	SAMPLE NUMBER	MAXIMUM ARITH MEAN GEOM MEAN MINIMUM V (GEOM *) STATISTICS (EXCLUDED)
B.O.W./ SITE: CANARD RIVER SAMPLE POINT: HWY.18 2 MILES SOUTH OF RIVER CANARD	STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	MAXIMUM ARITH HEAN GEON HEAN HINHUM STD DEV (GEOH *) * SAMP (EXCLUDED) Z SAMP (EXCLUDED)

STATION ID: 10-0002-002-02

(CONTD)

STATION ID: 10-0002-002-02

B.O.W./ SITE: CANARD RIVER

SAMPLE POINT: 2 MILES SOUTH OF LUKERVILLE STATION TYPE: RIVER FLOW GAUGE FED 026HG

MG/L AS P 12.070 PHOSPHOR UNF. TOT. PPUT 0.645 2700 STORET CODE: DISTANCE: UNF.REAC MG/L AS P P04 PP04UR 0.324 0.125 0.091 0.010 0.092 H 7.90 7.66 7.65 7.29 0.21 H REGION: 01 AS PB LEAD HG/L UNF. TOT. PBUT 0.021 U T M: 17 0333250.0 4669200.0 4 MG/L AS N UNF . REAC K'DAHL N NNTKUR TOTAL TERM STREAM: CANARD RIVER MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N N03-N UNF . REAC NNOSUR 8.400 N02-N AS N NNO2UR UNF. REAC MG/L 0.330 0.112 0.084 0.020 0.091 NH3-N TOTAL MG/L AS N UNF. REAC NNHTUR LAT: 42 09 32.79 LONG: 083 01 06.23 0.483 FLOW GAUGE FED 02GH002 TEMP DEG.C FWTEMP MATER 20.0 9.1 5.7 1.0 7.3 **FWSTRC** STREAM COMD. SAMPLE MAXIMUM ARITH MEAN GEOM MEAN *=INTERIM TEST-NAME: HOUR **УУМИВВ ЦИТ** SAMPLE DATE

0.235 0.088 0.160

0.007<A 0.006<A 0.005 0.005

1.746 0.571

1.868 0.100 2.579

0.192 0.103 0.001 0.163

MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS 7. SAMP (EXCLUDED) SADA

ZNUT	ZINC UNF.TOT. MG/L AS ZN	0.0200 0.0070 0.0170	0.0570	0.0060 0.0220 0.0350 0.0140 0.0010 <t< th=""><th>0.0250</th><th>0.0212<a 0.0146<a< th=""><th>0.0010</th><th>11</th></a<></a </th></t<>	0.0250	0.0212 <a 0.0146<a< th=""><th>0.0010</th><th>11</th></a<></a 	0.0010	11
TURB	TURB'ITY FTU		700.0	205.0	700.0	452.5	205.0	2 2
RSP	RESIDUE PARTIC. MG/L	29.2	213.0 144.0 211.0	84.9 16.7	68.7	92.4	11.7	12
PSAMF PSEUDOMN	AERUG. MF CMT /100ML	16C 4 10<	10C 40 8	376 16 208C 4<	376	2/9	4	6
INTERIM TEST-NAME:	SAMPLE	30846 30858 40726	40758 40750 40762	4074 40786 40817 40817	40842 MAXIMUM	GEOM MEAN	STD DEV (GEDM *)	SAMP IN STATISTICS
IM TE	HOUR	1000 0945 1020	1000 1100 0940	1040 1040 1000 1330 1550	1210		TD DEV	P IN
=INTER	AMPLE ATE YMMDD	00110 00214 00313	00411 00514 00613	00814 00911 01011	01211		C.	# SAM

25

SAMP IN STATISTICS ... SAMP (EXCLUDED)

SAMPLE POINT: AT MALDEN TWP. CONC. 2-3 B.O.W./ SITE: BIG CREEK

MG/L AS N 7.911 TOTAL FTU NHHTUR NH3-N UNF. REAC FURB'ITY 0.176 0.319 2620 0.015 0.517 0.123 0.062 0.147 0.581 0.092 TURB 112.00 0.074 0.001 0.196 60.00 STORET CODE: STATION ID: 16-0001-002-02 DISTANCE: TEMP WATER FWTEMP DEG.C MG/L RESIDUE PARTIC. 1.0 12.0 4.0 13.0 13.0 18.0 20.0 221.0 19.0 6.5 21.0 25.3 24.4 95.3 165.0 171.0 66.9 66.9 66.9 STREAM COND. FWSTRC RESIDUE FILTERED MG/L 940.0 509.1 569.0 682.0 514.7 523.0 335.0 797.3 0.890 RSF 9 REGION: 01 SOAID SOOAID 40AID FECAL CNT STREPCUS /100ML 100< PSEUDOMN CNT /100ML 100< AERUG, 890 PSAMF >5 <000 >4 990 4< 009 130 FSMF 110 7400 1685 40 10 16 0 8 40AID J 200AID 70AID LOAID 100AID LOAID MG/L AS P COLIFORM U T M: 17 0327750.0 4661400.0 FECAL /100ML PHOSPHOR >00 <009 UNF. TOT. 200 260 0061 4300 FCMF 0.086 0.046 0.168 0.166 0.292 0.195 0.190 0.510 0.280 0.043 809 10 10 PPUT MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BIG CREEK DISOLVED MG/L AS 0 MG/L AS P OXYGEN P04 PP04UR REAC 10.0 7.0 8.0 14.0 2.0 4.0 7.0 9.0 14.0 8.0 7.0 2.0 3.7 0.062 0.076 0.046 0.026 0.460 4.0 0.127 0.012 0.022 00 UNF. COND25 25C UMHO/CM AT 25 C PH CONDUCT 85.2 137.0 748.0 741.0 875.0 1010.0 805.0 2450.0 2450.0 496.0 1154.0 9450.0 653.6 85.2 678.6 12 8.906 8.03 7.66 7.72 7.54 7.84 7.57 7.87 8.02 Hd TOTAL UNF.REAC HG/L MG/L CLIDUR CHLORIDE UNF. REAC NNTKUR K'DAHL N AS N AS CL LAT: 42 05 15.76 LONG: 083 04 57.46 131.000 136.000 43.000 39.200 241.338 12 0.980 1.320 7.850 65,800 75.300 88.900 633.000 399,000 170,000 764.000 146.102 0.980 230.267 MG/L AS N FGPROJ PROJECT SUB-PROJ CODE NNO3UR N03-N UNF . REAC 5.500 4.700 5,900 0.400 0101 0101 0101 0101 0101 0101 0101 8.900 14,900 0.300 2.900 1010 0101 3.200 1.600 2.300 SAMPLE FWSADP N02-N MG/L z NNO2UR UNF. REAC 0.30 0.30 0.30 0.30 0.30 0.30 0.30 AS 0.30 0.30 0.110 0.230 0.030 0.070 0.160 0.30 0.080 0.040 40749 40785 SAMPLE NUMBER 30845 40725 40737 40797 40818 40831 40725 65205 19205 40773 40785 40797 40818 40831 40761 40773 MAXIMUM ARITH MEAN GEOM MEAN 30857 40737 50857 40843 HIMIMUM SID DEV (GEOM *) SAMP IN STATISTICS SAMPLE NUMBER 30845 % SAMP (EXCLUDED) *=INTERIM TEST-NAME: STATION TYPE: RIVER TEST-NAME: 0930 9960 1055 1000 1020 0940 1610 1000 1000 1020 0560 1410 1610 1225 HOUR 1000 HOUR 0930 1055 YMMDD LMT *=INTERIM LHI 901119 900110 900214 900313 9007009 301011 /YPH1DD 900110 900214 900814 901119 SAMPLE 900411 900514 900613 900814 116006 900313 900514 900613 900709 SAMPLE 300411 900911 901011 DATE DATE 82

STATION ID: 16-0001-002-02

	TWP.CONC.2-3	
BIG CREEK	AT MALDEN	RIVER
B.O.W./ SITE: BIG	SAMPLE POINT:	STATION TYPE:

	11			ΤY	2								
: 02 003 2620	7.911	TURB		TURB'I	FTU	0	112.00	86.00	81.98	60.00	36.77	~	ı
STORET CODE:	DISTANCE:	RSP	RESIDUE		MG/L		0.661	4.68	70.1	24.4	61.1	12	
	01	RSF	RESIDUE	FILTERED	MG/L	0 0000	20000	0.797	661.1	322.0	500.0	12	
	REGION: 01	PSAMF PSEUDOMN	AERUG.	CNT	/100ML	100	007	7		0		ın	54
KES E K	4661400.0 4	PPUT	PHOSPHOR UNF.TOT.	MG/L	AS P	9	2000	0.556	0.171	0.043	0.257	12	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BIG CREEK	U T M: 17 0327750.0 4661400.0 4	PP04UR	PO4 UNF.REAC	MG/L	AS P	0 460	200	10000	0.041	0.005	0.125	12	
MAJOR BAS MINOR BAS TERM STRE	U T M: 1	E			H	60.8	7 7 2	2 1	7.77	7.44	0.23	12	
	04 57,46	NNTKUR K'DAHL N	TOTAL UNF.REAC	MG/L	AS N	7.850	2 027	2000	1.615	0.740	1,920	12	
	LAT: 42 05 15.76 LONG: 083 04 57.46	NNOSUR	NO3-N UNF.REAC	MG/L	AS N	14.900	4 600	0000		0.300		11	100
	2 05 15.76	NNO2UR	NO2-N UNF.REAC	HG/L	AS N	0.360	0.132	3 0	0.000	0.020	0.108	12	
STATION TYPE: RIVER	LAT: 4	TEST-NAME:		HOUR SAMPLE		MAXIMUM	APITH MEAN	1000	GEOM MEAN	MINIMOM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
STATION		*=INTERIM	SAMPLE	DATE HO	үүинрр см						STD	# SAMP	% SA

STATION ID: 16-0018-002-02

SAMPLE POINT:

AT HIGHWAY NO. 18 B.O.W./ SITE: CEDAR CREEK STATION TYPE: RIVER

SOAID SOUAID 100AID TOOAID 100AID /100ML AS P 4.828 STREPCUS MG/L FECAL PHOSPHOR 100 500> UNF. TOT. 2400 FSMF 2800 290 5900 10 990.0 0.430 0.120 1212 30 0.222 0.395 0.224 0.048 PPUT 0.660 0.320 STORET CODE: DISTANCE: 70AID SOUAID SOAID 90AID 600AID FECAL MG/L AS P /100ML P04 UNF . REAC 100< PP04UR 1500 1200 1500> 100 320 0.070 FCMF 1500 0.340 0.316 0.200 601 18 0.053 0.123 0.025 0.108 HG/L DISOLVED OXYGEN PH 4.0 11.0 7.0 11.0 8.0 9.0 10.5 11.0 AS 8.0 11.0 8.0 7.3 2.0 3.0 7.65 7.98 7.56 7.56 7.56 7.56 7.58 7.75 7.82 7.94 7.94 8.00 HH 01 REGION: 0.0056<A 0.0020 0.0041<A 0.0110 0.0023<T 0.0066 COPPER MG/L AS CU LEAD MG/L AS PB 0.007<T 0.020<T 0.009<T 0.005<W 0.005<W 0.005<W 0.0067<A M>500'0 T>700. 0.005<W 0.0020<T UNF. TOT. UNF. TOT. 0.021<T 0.0150 0.0050 CUUT 0.0050 0.0030 0.0070 0.0150 PBUT 0 4 MG/L UMHO/CM 0348350.0 4654800.0 COND25 CONDUCT. NNTKUR K'DAHL N UNF . REAC AS N 424.0 876.0 627.0 380.0 494.0 494.0 724.0 509.0 509.0 51.0 AT 25 904.0 633.3 601.1 334.0 204.5 2.500 0.960 1.440 2.950 3.250 1.100 1.220 2.500 1.440 1.750 0.680 TOTAL MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: CEDAR CREEK CLIDUR UNF . REAC MG/L C MG/L AS N CHLORIDE NNOSUR N03-N UNF. REAC 11.100 3.800 0.100< 47.800 71.400 23.700 16.500 36.500 35.594 16.500 14.275 30.200 26.600 49.100 43.000 6.000 6.100 7.200 10.200 2,400 2.700 AS 37,967 54.400 U T M: 17 5 DAY TOT.DEM. MG/L AS 0 MG/L AS N BOD N02-N UNF . REAC NNO2UR 3.34 3.01 1.28 1.62 3.36 BODS 3.36 3.32 3.92 1.56 0.180 0.050 0.100 0.290 0.370 0.140 0.310 0.070 0.010 0.000 TOTAL CAC03 ALK MG/L NH3-N AS N MG/L LONG: 082 49 55.14 MNHTUR TOTAL UNF. REAC 36.8 206.0 126.0 14.4 101.0 242.0 207.0 96.9 139.0 82.6 270.0 270.0 145.2 113.6 14.4 82.9 ALKT 0.189 0.002 0.047 0.094 0.354 0.588 0.087 035 FGPR0J SUB-PROJ CODE TEMP DEG.C PROJECT FWTEMP MATER 1.0 3.0 14.0 4.0 13.0 13.0 19.0 19.0 0101 0101 0101 0101 0101 0101 0101 0101 01 57.17 DEPTH FWSADP SAMPLE COND. **FWSTRC** STREAM 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 LAT: 42 GEOM MEAN 30844 40736 40748 40760 96205 40819 40820 SAMPLE NUMBER 30856 40772 40784 30844 30856 40724 40748 40760 40784 40819 40820 40724 MAXIMUM SAMP IN STATISTICS HUMBER 40832 40832 MINIMUM STD DEV (GEOM *) SAMPLE 96205 % SAMP (EXCLUDED) 40772 *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 0910 0920 1030 0935 0855 0060 1435 1030 0905 0920 0855 0930 1100 HOUR 1100 HOUR 0920 0935 1435 LMT LINT YYIIIDD 901119 901211 00110 900214 900313 900514 900613 900709 900814 900911 901011 900110 900214 900313 901119 SAMPLE 115006 SAMPLE CYTHIDD 115006 900514 900613 900709 900814 301211 900911 301011 DATE DATE 41

STORET CODE:

STATION ID: 16-0018-002-02

B.O.W./ SITE: CEDAR CREEK

SAMPLE POINT: AT HIGHWAY NO. 18 STATION TYPE: RIVER

MG/L AS P PHOSPHOR 4.828 UNF. TOT. 2460 PPUT DISTANCE: PO4 UNF.REAC MG/L AS P PP04UR Ξ REGION: 01 LEAD UNF.TOT. MG/L PBUT U T M: 17 0348350.0 4654800.0 4 TOTAL UNF.REAC MG/L AS N NNTKUR K'DAHL N MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: CEDAR CREEK UNF.REAC MG/L AS N NNO3UR N03-N .REAC MG/L NNO2UR N02-N UNF. NNHTUR UNF.REAC MG/L AS N NH3-N TOTAL LONG: 082 49 55.14 WATER FWTEMP LAT: 42 01 57.17 STREAM COND. FWSTRC SAMPLE *=INTERIM TEST-NAME: HOUR SAMPLE DATE

11.100 1,700 118 0.370 0.167 0.109 0.010 0.133 ZMIT 0.588 0.129 0.054 0.002 0.174 TIIDD 19.0 10.4 7.2 1.0 7.3 000 PSAME ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) MAXIMUM *=INTERIM TEST-NAMF:

0.660 0.276 0.204 0.048 0.206

0.340 0.120 0.074 0.008 0.112

8.05 7.77 7.77 7.28 0.23

0.021 0.009<A 0.007<A 0.005 0.006<A

3.250 1.726 1.538 0.680 0.861

표

AS PB

z

AS

DEG.C

YYMMDD LMT

SAMPLE DATE HOUR SAMPLE THE HOUR SAMPLE OCCUPATION THE HOUR SAMPLE THE RESIDUE THE RESIDUE THE RESIDUE THE RESIDUE THE PARTIC. TURB TITY TYNIMDD LHT NUMBER /100HL 900214 0905 30854 4< 13.6 900214 0905 40724 4< 58.7 900514 1030 40736 10C 368.0 900514 1030 40760 4< 40.3 900814 0930 9325 40772 4< 46.6 900814 0930 9325 40772 4< 46.6 900814 0930 9325 40784 600> 55 56.3 900111 11325 40819 40AID 77.2 901111 1100 40820 4< 31.5	IONZ	ZINC UNF. TOT.	MG/L	AS ZN	0.0410	0.0056	0.0180	0.0710	0.0340		0.0100	0.0030	0.0130	0.0170	0.0050	0.0100	
HOUR SAMPLE CHT LMT NUMBER /100ML 0910 30844 520C 0905 30856 4< 0920 40724 4< 0920 40778 10C 1030 40778 10C 1030 40778 10C 1030 40778 4< 0935 40779 4< 0935 40779 4< 0936 40784 600> 11100 40820 4< 0800 40784 600>	LOKB		TURB'ITY	FTU				680.00				145.00					
HOUR SAMPLE LMT NUMBER 0910 30844 0905 30856 0920 40736 1030 40746 0855 40772 0930 40772 0930 40784 11100 40820 0930 40832	200	RESIDUE	PARTIC.	MG/L	15.2	13.6	58.7	385.0	203.0	40.3	9.95	55.4	56.3	77.2	8.6	31.5	
HOUR S LMT NO 0910 0920 0920 0920 0935 0935 1100 0900 0900	PSEUDOMN	AERUG.	CNT	/100ML	520C	>4	>4	100		>4	>4	<009	56	40AID	>4	>+	
SAMPLE DATE VYHMDD LHT 900110 0910 900214 0905 900514 1030 900514 1030 900514 1030 900514 1030 900514 1030 900514 1030 900519 1030	COL-INAME:		SAMPLE	NUMBER	30844	30856	40724	40736	40748	40760	40772	40784	96205	40819	40820	40832	
SAMPLE DATE VYHMDD 900110 900214 900513 900514 900613 900614 900814 900814	=		HOUR	LMT	0160	9060	0920	0360	1030	0855	0935	0560	0060	1435	1100	0800	
		SAMPLE	DATE	YYMMDD	900110	900214	900313	900411	900514	900613	602006	900814	116006	901011	901119	901211	

0.0207 0.0207 0.0137 0.0030 0.0205

680.00 412.50 314.01 145.00 378.30

385.0 82.7 47.5 9.8 108.0

520 157 10

MAXIMUM ARITH MEAN GEOM MEAN

MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)

	: 02 003 2320	3.058	FWTEMP		WATER	TEMP DEG.C	r.	0.0	11.0	10.0	13.0	21.5	20.0	21.0	11.5	5.0	3.0	0 36	12.0	8.1	1.0	8.4	12	Tipp	OND		21100111	FTU								9.80			
STATION ID: 16-0027-001-02	STORET CODE:	DISTANCE	FWSTRC			COND.	6	. 9	9	9	6	6 4	o Le	2	м	9	9							Deb	100		RESIDUE		59.3	7.3	13.9	75.5	31.9	93.7	23.5	9.5	27.7	11.7	
TION ID: 16-		01	FSMF	FECAL	H E	/100ML	13800	SOOAID	140	1200	1000	SOUAID	999	430	1500>	SOOAID	380	13800	1797		140		11	DSAME	PSEUDOMN	AERUG.	TRU	/100ML	52C	16	12	20	20	72C	36	16	25	32	80
STA		REGION: 01	FCMF	FECAL	HF.	/100ML	0009	SOOAID	60AID	1500	2100	100	1500>	1900	4200	3700	2900	0009	2151		09		11	PDIIT		PHOSPHOR	MG/1	AS P	1.420	0.166	0.107	0.160	0.153	0.590	0.855	0.390	0.540	0.098	
	ES RIVER	654325.0 4	00	DISOLVED	OXYGEN	AS 0	6.0	12.0		10.0	0.11		10.0	4.0	9.0	11.0	15.0	15.0	9.8	9.2	4.0	3.2	5	PPO4UR		PO4	MG/I	AS P	0.606	0.125	0.000	0.062	0.000	0.420	0.570	0.280	0.120	0.070	
	GREAT LAKI LAKE ERIE STURGEON I	U T M: 17 0370450.0 4654325.0	COND25	CONDUCT.	250	AT 25 C	681.0	941.0	0.906	883.0	0.55.0	860.0	833.0	895.0	845.0	0.606		941.0	865.6	862.8	681.0	9.69	1	ЬН				Hd	7.70	8.28	8.07	7.54	7.96	8.18	8.52	0.40	7 71	8.35	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: STURGEON RIVER	U T M: 17	CLIDUR	CHLORIDE	UNF . REAC	AS CL	58.200	69.200	68.600	55.000	75 700	58,000	65.100	81.500	56.200	63.300		81.500	64.136	63.594	53.000	8.931	1	NNTKUR	K'DAHL N	IME BEAL	MG/L	AS N	4.500	0,660	0.780	1.080	1.070	1.880	1.050	1 210	1.200	0.690	
MINGTON		33 54.02	ALKT	ALK	TOTAL MG/I	AS CACO3	151.0	229.0	212.0	223.0	225.0	223.0	198.0	204.0	213.0	249.0		249.0	212.7	211.3	151.0	24.6	1	NNOSUR	MOZ-M	UNF. RFAC	HG/L	AS N	7.600	11.500	12.300	12.200	12.900	12,100	10 200	9.700	14.800	7.100	
STURGEON RIVER AT CO.RD.20 4 MILES S-E OF LEAMINGTON	FLOW GAUGE FED 026H001	LONG: 082 33	FGPROJ		SUB-PROJ	CODE	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101							NHOZUR	M-COM	UNF. REAC	HG/L	AS N	0.270	0.130	0.070	0.200	0.110	0.340	0.510	0.110	0,080	0.080	
RIVER	LOW GAUGE	LAT: 42 01 56.00	FWSADP		DEPTH	Σ	0.30	0.30	0.30	0.30	0,30	0.30	0.30	0.30	0.30	0.30	0.50	0.30	0.30	9	0.30	12	2	NNHTUR	NH3-N TOTAL	UNF . REAC	MG/L	AS N	0.035	0.001	0.067	0.004	0.144	0.166	0.041	0.103	0.021	0.083	
		LAT: 42	ST-NAME:		SAMPLE	NUMBER	30855	30867	40735	40759	40771	40783	40795	40807	40808	12804	40833	MAXIMUM	ARITH MEAN	GEOM MEAN	SIN DEV (CEOM X)	TATISTICS	% SAMP (EXCLUDED)	TEST-NAME:			SAMPLE	NUMBER	30855	30867	40755	/4/04	40/29	T//05	40795	40807	40808	40821	40833
B.O.W./ SITE: SAMPLE POINT:	STATION TYPE:		*=INTERIM TEST-NAME:	n in in	DATE HOUR	ҮҮММДД ГМТ			900515 1545			_			_	901119 1140			A		CID DEV	# SAMP IN STATISTICS	% SAMP (*=INTERIM TE		SAMPLE		YYMNDD LNT		900214 1345		, .	0161 4100				901011 0920		901211 0835

1990 WATER QUALITY DATA REGION 1

2/7		: 02 003 2320	3.058	TURB	TURB'ITY FTU	9.80	08.0	3 4	1
	STATION ID: 16-0027-001-02	STORET CODE:	DISTANCE:	RSP	RESIDUE PARTIC. 1 MG/L	93.7	27.1	29.8	
	TION ID: 16		01	PSAME	AERUG. AERUG. CNT /100ML	34	28	2*	
	STA		REGION: 01	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	1.420	0.277	0.410	
		ES RIVER	654325.0 4	PP04UR	PO4 UNF.REAC MG/L AS P	0.606	0.158	0.209	
		MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: STURGEON RIVER	U T M: 17 0370450.0 4654325.0 4	E	, HA	8.40	8.05	0.29	
		MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	NNTKUR K DAHI N	TOTAL UNF.REAC MG/L AS N	4.500	1.145	1.095	
	AMINGTON		33 54.02	NNO3UR	NO3-N UNF.REAC MG/L AS N	14.800	10.979 7.100	2.346	
	STURGEON RIVER AT CO.RD.20 4 MILES S-E OF LEAMINGTON	FLOW GAUGE FED 02GH001	LAT: 42 01 56.00 LONG: 082 33 54.02	NNO2UR	NO2-N UNF.REAC MG/L AS N	0.340	0.139	0.100	
	A RIVER	FLOW GAUGE	2 01 56.00	NNHTUR NH3-N	TOTAL UNF.REAC MG/L AS N	0.166	0.037	0.055	
	B.O.W./ SITE: STURGEON RIVER SAMPLE POINT: AT CO.RD.20 4	RIVER	LAT: 4	EST-NAME:	SAMPLE	MAXINUM ARITH MEAN	GEOM MEAN	STD DEV (GEOM *)	% SAMP (EXCLUDED)
	B.O.W./ SITE: SAMPLE POINT:	STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT			STD DE	Z SAMP

STATION ID: 16-0032-001-02

B.O.W./ SITE: HUDDY CREEK SAMPLE POINT: AT FIRST BRIDGE ABOVE LAKE ERIE STATION TYPE: RIVER

: 02 003 2280	0.322	FWSTRC		STREAM COND.	9	0	9	9 (9 4	,		9	9	6 9)							RSP		RESTRUE	PARTIC.	MG/L	60.3	63.7	57.9	170.0	84.8	7.86	60.4	33.5	105.0	0 0	
STORET CODE:	DISTANCE:	FSMF	STREPCUS	CNT /100ML	2100	1000	20AID	1000	100<	230	152	8700		200AID	0020	1600		20	,	0,7		PSAMF	PSEUDOMN	ME	CNT	/100ML	134C	>5	8	24C	52	>4	>5	C	900	>7	100
	01	FCMF	COLIFORM	CNT /100ML	. 1000	100AID	160	1000	100<	36	100	1700	4300	100AID	0200	965		36	,	11	5	PPUT	gondaond	UNF. TOT.	MG/L	AS P	0.370	0.204	0.235	0.635	0.410	0.296	0.252	0.250	0.350	0.202	
	REGION: 01	00	DISOLVED	MG/L AS 0	4.0	10.0		10.0	10.0	7.0		5.0	0.6	7.5	0 01	0.7	7.6	6.0	2.2	7		PP04UR	900	UNF. REAC	MG/L	AS P	0.158	0.035	0.091	0.282	0.248	0.069	0.075	0.100	0.126	0.049	
E ES	658000.0 4	COND25	CONDUCT. 25C	UMHO/CM AT 25 C	434.0	445.0	434.0	567.0	319.0	351.0	338.0	403.0	389.0	467.0	0 299	296.4	393.7	319.0	47.8	11		PH				Н	7.36	7.79	7.78	7.58	7.57	7.65	7.65	7 45	7.44	7.60	
GREAT LAKI LAKE ERIE MUDDY CREI	U T M: 17 0378750.0 4658000.0 4	CLIDUR	CHLORIDE UNF.REAC	MG/L AS CL	36.900	33.700	30.600	26.500	20,500	29.500	25.500	41.900	24.100	28.400	41 900	29.673	29.134	20.500	6.041	11		NNTKUR	K'DAHL N	UNF . REAC	MG/L	AS N	2.150	1.500	1.160	2.750	2.380	1.580	1.440	2 660	2.050	1.330	1.330
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: MUDDY CREEK	U T M: 17	80D5 80D	5 DAY TOT.DEM.	AS O	3.96	1.60	3.74	5.56	2.26	7.84		8.84	4.92	4.52	28.86	4.79	4.25	1.60	2.36	10		NNO3UR	N-Z-N	UNF . REAC	MG/L	AS N	7.400	2.400	4.100	006.9	6.200	0.700	1.200	0.200	6.100	0.900	
	27 55.92	ALKT	ALK TOTAL	AS CACO3	58.6	104.0	90.3	86.6	9,46	100.0	107.0	81.0	90.3	161.0	161.0	94.1	6.06	58.6	27.1	11		NNO2UR	N-20N	UNF . REAC	MG/L	AS N	0.100	0.350	0.060	0.220	0.210	0.130	0.210	0.070	0.160	0.050	
	LONG: 082 27 55.92	FGPROJ	PROJECT	SUB-PROJ	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101								NNHTUR	TOTA!	UNF. REAC	1/9W	AS N	0.324	0.001	0.091	0.070	9.646	0.351	0.096	192 0	0.037	0.245	
	LAT: 42 03 59.88	FWSADP	SAMPLE	DEPTH	0.30	0.30	0.30	0.50	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0,30		0.30	C	77		FWTEMP		WATER	TEMP	DEG.C	1.0	2.0	11.0	3.0	13.0	20.0	25.0	21.0	12.0	7.0	3.0
RIVER	LAT: 42	TEST-NAME:		NUMBER	30854	30866	40734	40758	40770	40782	40794	40806	40809	40825	МАХТИЛИ	ARITH MEAN	GEOM MEAN	MINIMUM	(GEOM *)	XCLUDED)		T-NAME:			SAMPLE	NUMBER	30854	30866	40734	95205	40758	40770	40/82	40806	40809	40822	40834
STATION TYPE: RIVER		*=INTERIM TEST	SAMPLE	YYMMDD LMT		-	900313 1255	900411 1400		900709 1310				901211 0900		AR	19		STD DEV (GEOM *)	% SAMP (EXCLUDED)		*=INTERIM TEST-NAME:		SAMPLE		YYHINDD LHT		-	_			_ ,	900/09 1510			901119 1200	901211 0900

(CONTD)

×	
CREEK	
~	
73	
-	
~	
므	
⊇	
MUDDY	
SITE:	
ш	
-	
\vdash	
co	
••	
- 7	
-	
~	
B.O.W.	
0	

	. 02 003 2280	0.322	RSP	RESIDUE PARTIC.	MG/L	208.0	86.5	67.1	8.9	58.1	11	
STATION ID: 16-0032-001-02	STORET CODE:	DISTANCE:	PSAMF PSEUDOMN AFRIIG	CNT	/100ML	134	58		80		9	45
ATION ID: 1		01	PPUT	UNF.TOT. MG/L	AS P	0.640	0.349	0.322	0.202	0.158	11	
ST		REGION: 01	PPO4UR	UNF.REAC MG/L	AS P	0.282	0.127	0.106	0.035	0.079	11	
	EK	658000.0 4	Æ		Hd	7.79	7.58	7.58	7.36	0.14	11	
	AAJOR BASIN: GREAT LAKES AINOR BASIN: LAKE ERIE TERM STREAM: MUDDY CREEK	U T M: 17 0378750.0 4658000.0 4	NNTKUR K'DAHL N TOTAL	UNF.REAC MG/L	AS N	2.750	1.785	1.714	1.160	0.542	12	
	MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	NN03UR	UNF.REAC MG/L	AS N	7.400	3.673	2,543	0.500	2.668	11	
Įų,		27 55.92	NNO2UR	UNF.REAC MG/L	AS N	0.350	0.170	0.142	0.050	0.100	11	
IVE LAKE ER]	RIVER	LONG: 082 27 55.92	NNHTUR NH3-N TOTAL	UNF.REAC MG/L	AS N	9,990	0.242	0.118	0.001	0.201	11	
EEK BRIDGE ABO		LAT: 42 03 59.88	FWTEMP	WATER	DEG.C	25.0	10.7	7.1	1.0	8.4	11	
E: MUDDY CREEK		LAT: 42	TEST-NAME:	SAMPLE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MININIM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: SAMPLE POINT:	STATION TYPE:		*=INTERIM T	SAMPLE DATE HOUR	үүмирр смт					STD DE	W SAMP IN	7. SAMP

TURB'ITY FTU 31.00

SAMPLE 40794

SAMPLE DATE HOUR YYMMDD LMT

900814 1325

31.00 31.00

HAXIMUM
ARITH MEAN
GEOM HEAN
MINIMUM
STD DEV (GEON *)
SAMP IN STATISTICS
% SAMP (EXCLUDED)

TURB

*=INTERIM TEST-NAME:

STATION ID: 16-0044-001-02

B.O.W./ SITE: JOHN CLARK DRAIN SAMPLE POINT: BISNETT RD,1.1 KILO W.OF KENT CO.RD.11 STATION TYPE: RIVER

Carter C		JERM STREAM: RONDEAU BAY	I KUNDEAU B					0044
HOUR SAMPLE DEPTH SU HOUR SAMPLE PETH SU HOUR SAMPLE DEPTH SU LITT MUMBER HOUR SAMPLE DEPTH SU LITT MUMBER 0.30 0.30 39755 0.30 39765 0.30 39767 0.30 39767 0.30 39767 0.30 39767 0.30 39767 0.30 4 1240 39964 0.30 4 1240 39964 0.30 4 1240 39964 0.30 4 1240 39976 0.30 4 1240 39976 1.30 4 1240 39776 1.30 4 1240 39776 1.30 4 1240 39776 1.30 6 1244 39776 1.30 6 1244 39776 1.30 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 2.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 11215 39781 1.30 0 0 0 0 11215 39781 1.30 0 0 0 0 11215 39781 1.30 0 0 0 0 11215 39781 1.20 0 0 0 0 0 0 11215 39781 1.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LONG: 081 57 56.02	U T M: 17	U T M: 17 0420400,0 4682550,0 4	682550.0 4	REGION: 01	10	DISTANCE:	3.360
HOUR SAMPLE DEPTH SUB-	FGPROJ CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	MNHTUR	MANOSHB
HOUR SAMPLE DEPTH SUB- 12 1244 39705 0.30 0.10 2 1244 39705 0.30 0.10 8 1315 39755 0.30 0.10 8 1315 3976 0.30 0.10 8 1315 3976 0.30 0.10 8 1315 39707 0.30 0.10 8 1240 39707 0.30 0.10 1240 39844 0.30 0.10 1240 39849 0.30 0.10 1240 39869 0.30 0.10 1240 39707 0.30 0.10 1240 39707 0.30 0.10 1240 39705 24.000 0.8 1244 39705 24.000 0.8 1246 39705 24.000 0.8 1246 39705 1.30 0.0 1246 39706 1.30 0.0 1250 3991 15.30 0.0 1250 3991 15.30 0.0			FECAL	FECAL			NH3-N	
HOUR SAMPLE DEFILE 1846 1244 39705 0.30 01 1245 39735 0.30 01 1246 39735 0.30 01 1246 39736 0.30 01 1250 39797 0.30 01 1250 39928 0.30 01 1250 39928 0.30 01 1250 39929 0.30 01 1250 39929 0.30 01 1250 39929 0.30 01 1260 39929 0.30 01 1270 59828 0.30 01 1280 39929 0.30 01 1280 39929 0.30 01 1280 39929 0.30 01 1280 39929 0.30 01 1280 39929 0.30 0.30 12846 39705 24.000 0.80 12846 39705 24.000 0.80 12850 39971 2.300 0.90 12850 39971 2.300 0.90 12850 39971 2.300 0.90 12850 39971 2.300 0.90		CONDUCT.	COLIFORM	STREPCUS			TOTAL	NO2-N
1244 39705 0.30 0.10	ONL	252	AF.	NF.		WATER	UNF. REAC	UNF . REAC
2 1244 39705 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30 0.3		UMH0/CM	CNT	CNT	STREAM	TEMP	T/9W	MG/L
1246 39705 0.30 0.00 1245 39735 0.30 0.01 1246 39735 0.30 0.01 1259 39766 0.30 0.01 1250 39727 0.30 0.01 1250 39917 0.30 0.01 1240 39928 0.30 0.01 1240 39988 0.30 0.01 1240 39989 0.30 0.01 1240 39969 0.30 0.01 1240 39969 0.30 0.01 1240 39969 0.30 0.30 1240 39705 2.4.000 0.80 1244 39705 2.4.000 0.80 1245 39705 2.300 0.90 1259 39701 2.300 0.90 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 39701 3.3001 3.3001 1250 3001 3001 3.3001 1250 3001 3001 3001 1250 3001 3001 3001 1250 3001 3001 3001 1250 3001 3001 3001 1250 3001 3001 3001 1250 3001 3001 3001 1250 3001 3001 3001 3001 1250 3001 3001 3001 3001 1250 3001 3001 3001 3001 3001 1250 3001 3001 3001 3001 3001 1250 3001 3001 3001 3001 3001 3001 1250 3001 3001 3001 3001	CODE AS CL	AT 25 C	/100HL	/100ML	COND.	DEG.C	AS N	AS N
1246 39735 0.30 0.01	01 47,700	879.0	10410	GOOATD	4	2	0.00	97.0
39551 0.30 01 8 1315 39756 0.30 01 8 1315 39766 0.30 01 3 1330 39797 0.30 01 3 1330 39972 0.30 01 3 1330 39972 0.30 01 2 1249 39828 0.30 01 2 1249 39829 0.30 01 2 1249 39829 0.30 01 2 1249 39829 0.30 01 8 1247 39725 19.30 0.30 8 1244 39725 1.300 0.30 8 1244 39725 1.300 0.30 8 1245 39725 1.300 0.30 8 1246 39751 2.300 0.30 8 1246 39751 2.300 0.30 8 1246 39751 2.300 0.30 8 1246 39751 2.300 0.30 8 1245 3972 1.300 0.30 8 1259 3972 1.300 0.30		827.0	10<	TOATE	0 4	0.0	0.07	0.150
8 1315 3976 0 0.30 0.01 5 1259 39701 0.30 0.01 7 1230 39702 0.30 0.01 7 1230 39812 0.30 0.01 7 1240 39828 0.30 0.01 6 1247 39829 0.30 0.01 6 1247 39859 0.30 0.01 6 1247 39859 0.30 0.01 8 1247 39859 0.30 0.01 8 1247 3975 0 0.30 8 1244 39705 24.000 0.80 8 1244 39705 24.000 0.80 8 1245 39751 12.300 0.90 8 1259 39761 12.300 0.90 8 1250 39761 12.300 0.90 8 1250 39761 12.300 0.90		804.0	>5	7	. 4	18.0	0000	0.040
1259 39781 0.30 0.15		715.0	200	208	0 4	10.0	0.022	0.040
1330 3997 0.30 0.01		722.0	600>	600>	D 4	10.0	0.045	0.090
1220 39912 0.30 0.00 1240 59828 0.30 0.01 1247 39629 0.30 0.01 1247 39629 0.30 0.01 1247 39629 0.30 0.01 1247 39629 0.30 0.01 1248 1248 1248 10 1248 1248 1248 1248 1248 1248 39705 24.000 0.80 1249 39705 2.300 0.80 1245 39705 2.300 0.80 1259 39701 12.300 0.80 1250 39701 39701 30.3001 1250 39701 30.3001 1250 39701 30.3001 30.3001 1250 39701 30.3001 1250 39701 30.3001 30.3001 1250 39701 30.3001 1250 39701 30.3001 30.3001 1250 39701 30.3001 1250 30.3001 30.3001 30.3001 1250 30.3001 30.3001 1250 30.3001 30.3001 30.3001 1250 30.3001 30.3001 30.3001 1250 30.3001 30.3001 30.3001 1250 30.3001 30.3001 30.3001 1250 30.3001 30.3001 30.		673 0	GOOATH	6000	0 4	0.22	6/0.0	0.090
1240 39828 0.30 0.00	_	725.0	1200	CIMOOO	0	0.62	0.010	0.030
E 1249 39844 0.30 01 6 1247 39859 0.30 01 6 EALTH HEAN 0.30 030 030 030 030 030 030 030 030 03		0.000	170	0007	٥,	25.0	0.002	0.260
STATE STAT		0.000	150	9/0	9	16.0	0.028	0.050
AND THE STATE OF T		0.699	TOOAID	2600	9	14.0	0.016	0.180
RATHUH NO.30 GEOWH HEAN 0.30 STD DEV (GEON #) HITHIUNH 0.30 STD DEV (GEON #) SAMP IN STATISTICS 10 SAMP (EXCLUDED) UNT. REGC UNT. HOUR SAMPLE AS N LHT NUMBER AS N 1244 39755 24.000 0.8 1245 39755 19.300 0.9 1259 39761 15.300 0.9 1250 39761 15.00 0.9 1250 39761 15.00 0.9	46.000	883.0	BOAID	110	9	0.6	0.034	0.110
STD DEV (ECRN *) STD DEV (ECRN *) MP IN STATISTICS 10 SAMP [EXCLUDED] RIM TEST-NAME: NN03UR NN NO3-N TOT UNF. REAC UNF. LHT NUMBER AS N 1244 39705 24.000 0.8 1245 39751 9.500 0.9 1245 39751 9.500 0.9 1259 39761 15.300 0.9 1250 39971 5.300 0.9 1250 39971 5.300 0.9	56,400	885.0	1200	2800		25.0	0.070	070
STD DEV (GEON #) STD DEV (GEON #) AMP IN STATISTICS 10 SAMP (EXCLUDED) SAMP (EXCLUDED) HOS-N TO	46,600	798.8	303	789		15.6	0.073	0.500
STD DEV (GEON *) STD DEV (GEON *) SAMP (EXCLUDED) SAMP (EXCLUDED) FRIM TEST-MAME: NNO3UR NN K'DA NO3-M NO3-	46.432	795.0				11.2	0.030	D. 104
STD DEV (GECN *) AMP IN STATISTICS 10 SANN (EXCLUDED) RIM TEST-NAME: NN03UR K'DA NO3-N TOT UNF.REAC UNF. HOUR SANPLE AS N LHT NUMBER AS N 1244 39705 24.000 0.8 1245 3975 19.500 0.8 1246 3975 19.500 0.8 1259 3976 18.000 1.1 1250 39971 4.700 0.9	41.900	673.0	10	4		1 1	0.000	0.000
SAMP (EXCLUDED)	4.291	80.9				2 0	0.002	0.000
RAMP (EXCLUDED) RAME: NNO3UR NN R.DA NO3-N ND3-N TOT UNF. REAC UNF. HOUR SAMPLE AS N 1244 39751 9.300 0.8 1245 39751 2.300 0.8 1245 39751 0.300 0.8 1259 39751 0.000 0.8 1259 39751 0.000 0.8 1259 39751 0.000 0.8	10	10	7	6		10:01	10.000	10.074
HOUR SAMPLE NMO3UR NNO			30	10		2	2	0
HOUR SAHPLE HG/L UNF. REAC REAC REAC REAC REAC REAC REAC REAC	TKUR PH	PP04UR	PPUT	PSANF	RSP	TURB		
HOUR SAMPLE MG/L UNF. REAC UNF. L117 NUMBER AS M L245 39755 19.500 0.8 1246 39754 19.500 0.7 1259 39761 15.300 0.9 13.00 399761 15.300 0.9 13.00 39977 4.700 0.6 12.300 39912 9.900 0.9		200	nonnonn	PSEUDUMN				
HOUR SAMPLE MG/L AS N 1244 39705 24.000 0.8 1245 39705 12.300 0.8 1240 39751 9.300 0.9 12.30 39761 15.300 0.9 12.30 39701 15.300 0.9 12.30 39901 9.900 0.9	FAC	IINE DEAC	INE TOT	AERUG.	Pro voice			
1244 39705 24.000 0.8 1245 39735 19.500 0.8 1246 39735 19.500 0.8 1240 39751 2.300 0.7 1315 39766 18.000 1.1 1559 39791 4.700 0.6 1230 39812 9.900 0.0	MG/L	MG/I	MG/1	THE	DADITO	THE PARTY		
1244 39705 24.000 1245 39735 12.500 1240 39751 2.300 1315 39786 18.000 1359 39781 4.5.300 1350 39797 4.700	AS N PH	AS P	AS P	/100ML	MG/L	FTU		
1245 39735 19.500 1240 39731 2.300 1315 39766 18.000 1259 39797 4.700 1230 39812 9.900	7.98	0.044	0.092		34.2			
1246 39751 2.300 1315 39766 18.000 1259 39781 15.300 1330 39797 4.700		0.010	0.060		58.1			
1315 3976 18,000 1259 39781 15,300 1330 39797 4,700 1230 39812 9,900		0.010	0.053		34.7	22 00		
1259 39781 15.300 1330 39797 4.700 1230 39812 9.900	8.08	0.001<	0.101		20 2			
1230 39797 4,700 1230 39812 9,900		0.049	0.066		100			
1230 39812 9.900		0.013	0.035		26.6			
		960.0	0.173		58.2			
1240 39828 19.000		0.033	0.062		6.49			
1249 39844 15.200	7.72	0.027	0.000	>4	36.1			
901126 1247 39859 15.900 0.570		0.014	0.038		70.8			

	02 003 0044	3,360									
STATION ID: 16-0044-001-02	STORET CODE: 02 003	DISTANCE:									
TION ID: 16		01	TURB	VIII GOILL	FTU	22.00	22.00	22,00		1	
STA		REGION: 01	RSP	RESIDUE	MG/L	70.8	67.0	26.6		6	10
	(ES SAY	U T M: 17 0420400.0 4682550.0 4	PSEUDOMN ATERIO	MF MF	/100ML						
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERN STREAM: RONDEAU BAY	0420400.0 4	PPUT	UNF. TOT.	AS P	0.173	0.077	0.069	0.040	10	
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	PP04UR	UNF. REAC	AS P	0.094	0,033	0.010		6	10
	CO. RO. LI	57 56.02	Н		н	8.63	8.06	8.06	0.25	10	
1	BISNEII RD,1.1 KILU M.UF KENI CO.KU.1.1 RIVER	LAT: 42 17 34,93 LONG: 081 57 56.02	NNTKUR K'DAHL N	UNF.REAC	AS N	1.180	0.862	0.841	0.201	10	
RK DRAIN	KU, I.I KILO	2 17 34.93	NNO3UR	UNF.REAC	AS N	24.000	14.380	12.027	6.805	10	
E: JOHN CLA	E: RIVER	LAT: 4	EST-NAME:	2	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: JOHN CLARK DRAIN	STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE	YYMMDD LMT				STD DE	# SAMP IN	7. SAMP

B.O.W./ SITE: INDIAN CREEK SAMPLE POINT: 1 KM SOUTH OF GUILDS STATION TYPE: RIVER

STORET CODE: STATION ID: 16-0050-002-02 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: RONDEAU BAY

STATION TYPE: RIVER	RIVER				MAJOR BASI MINOR BASI TERM STREAM	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: RONDEAU BAY	KES E 3AY			STORET CODE:	5: 02 003 0050	
	LAT: 4	LAT: 42 20 15.46	LONG: 081 54 33.08	54 33.08	U T M: 17	U T M: 17 0425100.0 4687450.0 4	4687450.0 4	REGION: 01	10	DISTANCE:		
*=INTERIM TEST-NAME:	ST-NAME:	FWSADP	FGPROJ	CLIDUR	COND25	FCMF	FSMF	FWSTRC	FWTEMP	NNHTUR	NNO2UR	
SAMPLE		SAMPLE	PROJECT	CHLORIDE	CONDUCT.	COLIFORM	STREPCUS			NH3-N TOTAL	N02-N	
DATE HOUR	SAMPLE	DEPTH	SUB-PROJ	MG/L	UMHO/CM	CNT	CNT	STREAM	MATER	UNF.REAC	UNF.REAC	
YYMMDD LMT	NUMBER	=	CODE	AS CL	AT 25 C	/100ML	/100ML	COND.	DEG.C	AS N	AS N	
900122 1300	39706	0.30	1010	32.300	816.0	110	290	9	0.5	0.033	0.060	
900226 1350	39/21	0.30	0101	37.500	729.0	210	10AID	4 9	0.5	0.047	0.020	
	29/36	0.30	0101	45.800	784.0	10AID	20AID	9	8.0	0.025	0,040	
	26762	0.50	0101	55.600	756.0	32	55	9	18.0	0.026	0.060	
	29782	20.00	0101	50.200	734.0	<009	124	9	19.0	0.016	0.050	
	3979B	02.00	0101	46.100	0.42/	2900	<009	9	23.0	0.052	0.090	
	39813	0.30	0101	55.100	777	SOUAID	1900	9	25.0	0.011	0.040	
	39829	0.30	0101	50 000	0.000	1500	610	9 ,	25.0	0.001	0.350	
901022 1253	39845	0.30	0101	49 400	0.000	0650	510	9 '	15.0	0.073	0.070	
901126 1252	39860	0.30	0101	41.000	886.0	100	2500	9 ,	14.0	0.009	0.140	
			4	0000	0.4.00	700	/UAID	9	0.6	0.042	0.110	
	MAXIMUM	0.30		55,100	884.0	8300	2500		0 36	0 0		
A	ARITH HEAN	0.30		44.764	773.6	1385	638		16.3	0.075	0.350	
	GEOM HEAN			43.969	771.3				9 9	0.030	260.0	
orto priv	MINIMUM	0.30		30.200	0.929	10	10		0.5		0.007	
# CAND IN CTATECTION	SID DEV (GEUIT R)			8.456	63.3				8.9		0.093	
% SAMP (% SAMP (EXCLUDED)	11		11	11	10	10		11		11	
							6					
*=INTERIM TEST-NAME:	ST-NAME:	NNOSUR	NNTKUR K'DAHI N	Н	PP04UR	PPUT	RSP	TURB				
SAMPLE		NO3-N	TOTAL		P04	PHOSPHOR						
DATE HOUR	SAMPLE	MG / I	ONT . KEAL		UNF . KEAC	UNF. TOT.	RESIDUE					
Q	NUMBER	AS N	AS N	Н	AS P	MG/L AS P	PARTIC. MG/L	TURB'ITY FTU				
900122 1300	39706	13.600	0.920	8.03	0 0 0 0	0000	0					
900226 1330	39721	19.500	0.560	7 73	0000	00000	10.1					
-	39736	17,000	0.620	8.19	0.020	0.005	1.5.1					
-	39752	14.900	0.680	8.05	0.015	0.032	17.0					
_	39767	10,300	1.200	8.14	0.001<	0.043	17.6	0.11				
_	39782	15.400	0.960	8.51	0.049	0.074	7.7					
	39798	4.700	0.540	8.04	0.012	0.033	23.5					
	39813	10.000	0.850	7.78	0.087	0.149	31.9					
900924 1255	39829	12.700	0.790	8.05	0.025	0.051	60.1					
901022 1253	39845	13.000	0.810	7.91	0.037	0.076	9.65					
2521 921106	39860	16.000	0.610	8.19	0.013	0.043	84.2					

STATION ID: 16-0050-002-02

3.680

DISTANCE:

STORET CODE: 02 003 0050

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: INDIAN CREEK SAMPLE POINT: 1 KM SOUTH OF GUILDS STATION TYPE: RIVER

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: RONDEAU BAY

REGION: 01	TURB		TURB'ITY	FTU	11.0	11.0		11.0		-
U T M: 17 0425100.0 4687450.0 4	RSP		PARTIC.		84.2	31.6	25.2	7.5	23.5	11
0425100.0	PPUT	PHOSPHOR	MG/L	AS P	0.149	090.0	0.054	0.032	0.033	11
U T M: 17	PP04UR	P04	UNF . KEAL	AS P	0.087	0.029		0.005		10
LAT: 42 20 15.46 LONG: 081 54 33.08	Н			Н	8.51	90.8	8.05	7.73	0.21	11
LONG: 081	NNTKUR	TOTAL	UNF . REAC	AS N	1,200	0.776	0.754	0.540	0.201	11
12 20 15.46	NNO3UR	N03-N			19.500	13.373	12.646	4.700	4.009	11
LAT: 4	TEST-NAME:		CAMDIE	NUMBER	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	EV (GEOM *)	STATISTICS
	*=INTERIM TEST-NAME:	1	SAMPLE	YYMINDD LMT					STD D	# SAMP IN

% SAMP (EXCLUDED)

STATION ID: 16-0051-001-02

B.O.W./ SITE: COLEMAN DRAIN SAMPLE POINT: KENT CO.RO.11, 1.8 KILO WEST OF HWV51, STATION TYPE: RIVER

LAT: 42 20 22.70 INTERIM TEST-NAME: FWSADP WHOLE ITE HOUR SAMPLE DO122 1315 0326 0326 0327 030625 1340 0328 0328 0329 0328 0329	FGPR03 CLTDUI FGPR03 CLTDUI PR0JECT UNF. REA SUB-PR03 MG/ CODE 32.900 0101 43.900 0101 43.900 0101 43.900 0101 42.600 0101 42.400 0101 52.600 0101 52.600	CLIDUR CHLORIDE UNF.REAC MG/L AS CL 32.900 43.900 28.500	CONDUCT. 25C UMHO/CM AT 25 C	U T M: 17 0427300.0 4687650.0 4	687650.0 4	REGION: 01	01	DISTANCE	
SAMPLE SAMPLE NUMBER 39707 0 39722 0 39753 0 39768 0 39768 0 39814 0 59844 0 5	FGPR03 PR03ECT SUB-PR03 C0DE 0101 0101 0101 0101 0101 0101	CLIDUR CHLORIDE UNF.REAC MG/L AS CL AS CL 43.900 28.500	CONDUCT, 25C UMHO/CM AT 25 C					10000	1.600
HOUR SAMPLE LIT NUMBER 1315 39707 0 1318 3972 0 1326 3972 0 1326 39753 0 1320 39768 0 1337 39768 0 1337 39814 0 1311 39810 0 1311 39811 0	PROJECT SUB-PROJ CODE 0101 0101 0101 0101 0101 0101	CHLORIDE UNF.REAC MG/L AS CL 32.900 43.900 28.500	25C UMHD/CM AT 25 C	FCMF	FSMF	FWSTRC	FWTEMP	NHTUR NH3-N	MMOZUR
HOUR SAMPLE LIT NUMBER 11315 33707 0 11346 33722 0 11348 33753 0 11340 33768 0 11340 33914 0 11312 33930 0 11312 33931 0 11312 33961 0 11312 33961 0	SUB-PROJ CODE 0101 0101 0101 0101 0101 0101	MG/L AS CL 32.900 43.900 28.500	UMHO/CM AT 25 C	COLIFORM	STREPCUS		WATER	UNF.REAC	NO2-N UNF.REAC
1315 39707 0.30 1345 39722 0.30 1328 39737 0.30 1320 39753 0.30 1370 39768 0.30 1370 39768 0.30 1371 3983 0.30 1312 39836 0.30 1315 39846 0.30 1315 39841 0.30	0101 0101 0101 0101 0101 0101	32.900 43.900 28.500	2 0 110	CHT	CNT	STREAM	TEMP	HG/L	MG/L
1315 39707 1346 39737 1320 39737 1320 39753 1337 39783 1337 3983 1315 39846 1315 39861 1315 39861	0101 0101 0101 0101 0101 0101	32.900 43.900 28.500	0 310	/ TOOME	/ TOUML	COND.	DEG.C	AS N	AS N
1345 39722 1318 39722 1320 39753 1337 39768 1337 39814 1312 39846 1312 39846 1312 39846	0101 0101 0101 0101 0101	43.900	0.010	220	200		0.5	0.035	0,040
1318 39737 1320 39768 1340 39768 1337 39783 1300 39814 1312 39846 1312 39846 1312 39846	0101 0101 0101 0101 0101	28.500	0.907	1500>	. 019	5 9	0.5	0.034	0.060
1320 39753 1340 39768 1350 39814 1312 39816 1312 39816 1312 39861 1312 39861	0101 0101 0101 0101		747.0	10<	20AID	9	7.0	0.007	0.020
1340 39766 1337 3983 1300 39814 1312 39830 1315 39846 1312 39861	0101 0101 0101 0101	49.600	756.0	116	48	9	19.0	0.032	0.050
1337 39783 1310 39814 1312 39830 1315 39846 1312 39861	0101 0101 0101	45.400	716.0	204	172	9	18.0	0.055	0.000
1300 39814 1312 39830 1315 39846 1312 39861	0101	46.000	725.0	<009	<009	9	22.0	0.097	0.000
1312 39830 1315 39846 1312 39861 HAXTMIM	0101	52,600	738.0	1500>	260	9	25.0	0.004	0.390
1315 39846 1312 39861 MAXIMIM		29,600	855.0	410	1500>	9	16.0	0.024	0.040
1312 39861 MAXTMIM	0101	48.200	837.0		1500	9	14.0	0.007	0.180
	0101	36.900	858.0	110	50	9	8.0	990.0	0,020
		52.600	858.0	410	1500		25.0	0.097	0.390
ARITH MEAN 0.30		41.060	775.3	212	420		13.0	0.036	0.098
GEOM MEAN		40.202	773.3				7.5	0.024	0.064
MINIMUM 0.30		28.500	0.907	110	20		0.5	0.004	0.020
STD DEV (GEOM *)		8.591	59.6				8.6	0.030	0.113
# SAMP IN STATISTICS 10		10	10	10	8		10	10	10
% SAMP (EXCLUDED)				55	20				
*=INTERIM TEST-NAME: NNO3UR	NNTKUR	ЬН	PP04UR	PPUT	PSAMF	RSP	TURB		
	K'DAHL N				PSEUDOMN				
	TOTAL		P04	PHOSPHOR	AERUG.				
E UNF.	UNF . REAC		UNF. REAC	UNF. TOT.	MF	RESIDUE			
DATE HOUR SAMPLE MG/L	MG/L		MG/L	MG/L	CNI	PARTIC.	TURB'ITY		
YYPRIDD LMT NUMBER AS N	AS N	Н	AS P	AS P	/100HL	MG/L	FTU		
900122 1315 39707 13.500	0.980	8.05	0.032	960.0		54.7			
900226 1345 39722 14,400	5.300	7.61	0.000	1.510		121.0			
900326 1318 39737 11.900	0.640	8.20	0.004	0.019		7.0			
900423 1320 39753 14.500	0.700	8.04	0.017	0.047		28.0	11.60		
900528 1340 39768 18.300	1.140	8.15	0.001<	0.054		21.4			
900625 1337 39783 15.300	1.060	8.61	0.053	0.078		5.0<			
9000827 1300 39814 10.000	1,000	7.79	0.085	0.147	>4	32.2			
900924 1312 39830 11.700	1.200	8.15	0.021	990.0		98.8			
39846 1	0.870	7.91	0.035	0.077		64.1			
901126 1312 39861 9.400	1,000	8.16	0.007	0.044		65.1			

1990 WATER QUALITY DATA REGION 1

	02 003 0051	1,600													
STATION ID: 16-0051-001-02	STORET CODE: 02 00:	DISTANCE:													
ATION ID: 16		01	TURB			TURB'ITY	FTU	,	11.60	11.60		11.60		1	
ST		REGION: 01	RSP		RESIDUE	PARTIC.	HG/L		121.0	54.7		7.0		6	10
	(ES	U T M: 17 0427300,0 4687650.0 4	PSAMF PSEUDOMN	AERUG.	MF	CNT	/100ML								
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: RONDEAU BAY	0427300.0 4	PPUT	PHOSPHOR	UNF. TOT.	MG/L	AS P	1	1.510	0.214	0.084	0.019	0.457	10	
	MAJOR BASIN MINOR BASIN TERM STREAN	U T M: 17	PP04UR	P04	UNF. REAC	HG/L	AS P	0	0.090	0.038		0.004		6	10
n ninces	TO HATELY	52 57.05	Н				PH		8.61	8.07	8.06	7.61	0.27	10	
TOUR OLLA	NILO WEST	LAT: 42 20 22.70 LONG: 081 52 57.05	NNTKUR K'DAHL N	TOTAL	UNF . REAC	MG/L	AS N	9	5.300	1.389	1.114	0,640	1.386	10	
DRAIN	KD.11, 1.8	2 20 22.70	NNOSUR	N03-N	UNF. REAC	MG/L	AS N		18.300	13.180	12.946	9.400	2.633	10	
8.0.W./ SITE: COLEMAN DRAIN	H: KENI CO.	LAT: 4	TEST-NAME:			SAMPLE	NUMBER		MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	# SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SIT	STATION TYPE: RIVER		*=INTERIM TEST-NAME:		SAMPLE	DATE HOUR	ҮҮМИДД СМТ						STD DI	# SAMP IN	% SAMP

STATION ID: 16-0063-001-02

60AID MG/L AS P FECAL STREPCUS PHOSPHOR 8.047 /100ML <009 UNF. TOT 0.040 0.017 0.020 0.046 FSMF <00059 0.030 420 140 20 240 250 930 250 PPUT 0.099 1970 530 20 18 0.078 0.144 02 STORET CODE: DISTANCE: 10AID MG/L P04 FECAL PP04UR UNF. REAC COLIFORM /100ML 1500> <009 1330 AS 840 450 5500 0.001 0.005 0.007 0.008 0.075 0.013 FCMF 0001 5500 1157 10 8 0.040 MG/L AS 0 Hd DISOLVED OXYGEN 14.0 10.0 15.0 9.0 10.5 9.5 7.5 111.0 5.0 15.0 10.2 9.8 5.0 7.84 8.36 8.23 8.02 8.36 7.78 8.26 8.00 7.99 8 PH REGION: 01 0.005<W 0.0040 0.0020<T AS CU 0.0019<T AS PB 0.005<W 0.005<W 0.005<W COPPER 0.0031<A LEAD MG/L 0.005<W 0.005<W 0.005<W 0.007<T 0.005<W UNF. TOT. MG/L D.0025<T 0.0019<T 0,0018<T 0.0029<A 0.0011<A JNF. TOT. M>500 0.0040 0.0018 CUUT 0,0040 0,0040 0.0050 PBUT J HG/L K'DAHL N JNF . REAC AS N 25C AT 25 C NNTKUR TERM STREAM: SIXTEEN MILE CREEK COND25 UMHO/CM 0444450.0 4711500.0 CONDUCT 639.0 605.0 662.0 654.0 746.0 645.0 721.0 723.0 655.0 746.0 1.120 0.670 0.770 602.0 49.4 10 663.6 0.630 0.560 TOTAL 0.930 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE UNF.REAC MG/L MG/L z CLIDUR CHLORIDE AS CL NNOSUR N03-N JNF . REAC 41.600 47.900 49.500 47.300 59.400 49.200 53.400 39.500 AS 006.9 59.400 5.928 5.200 5.100 5.100 53.800 48.315 39.500 6.300 5.300 2.800 0000.9 44.800 U T M: 17 5 DAY AS N BOD MG/L NNO2UR N02-N JNF . REAC MG/L TOT . DEM. 2.36 1.28 1.20 0.04< AS 0.020 0.020 0.090 BODS 1.68 1.53 0.040 0.040 1.08 1.43 2.36 1.42 0.78 0.000 MG/L AS N NH3-N ALK TOTAL MG/L TOTAL 0.001< AS CACO3 NNHTUR UNF. REAC LONG: 081 40 35.94 168.0 175.0 180.0 203.0 196.0 185.0 222.0 195.9 195.1 168.0 18.7 0.320 0.004 0.014 0.065 0.065 ALKT 0.008 DEG.C SUB-PROJ TEMP FGPROJ PROJECT CODE FWTEMP WATER 1.0 2.0 5.0 14.0 16.0 18.0 220.0 10.0 5.0 0103 0103 0101 0103 0103 1010 0103 LAT: 42 33 20,99 SAMPLE FWSADP = STREAM FWSTRC COND. 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 9999999999 39819 39727 39742 39758 39788 39802 39835 39758 39773 TUMBER 39868 39712 39742 39802 39865 39851 SAMPLE NUMBER 39727 39835 39851 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS SAMPLE 39712 % SAMP (EXCLUDED) TEST-NAME: TEST-NAME: STATION TYPE: RIVER 1530 1330 0940 0060 0855 1530 1430 1330 0930 0830 0060 0060 HOUR 0830 HOUR 0845 1105 0845 THIT LHT *= INTERIM *=INTERIM 901023 YYHHDD SAMPLE YYMIIDD 900123 900226 900423 900529 900626 900724 900828 900925 901023 SAMPLE 900123 900226 900327 900423 900529 300626 900724 900828 900925 900327 DATE

STATION ID: 16-0063-001-02

B.O.W./ SITE: SIXTEEN MILE CREEK SAMPLE POINT: AT BACK STREET, ROD STATION TYPE: RIVER

	GREAT LAKES	
	BASIN:	BASIN:
	MAJOR	MINOR
_		
RODNE		
STREET,		
AT BACK :	RIVER	
POINT:	N TYPE:	

STORET CODE: 02 003 1970	DISTANCE: 8.047	PH PPO4UR PPUT	PO4 PHOS UNF.REAC UNF.	PH AS P AS P	8.36 0.075 0.144	0.020		0.001	10 10 10																		
	REGION: 01	PBUT	LEAD UNF.TOT. MG/L	AS PB	0.007		Y.	0.005																			
ES ILE CREEK	711500.0 4	NNTKUR K'DAHL N	TOTAL UNF.REAC MG/L	AS N	1.400	0.833	0.803	0.550	10																		
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: SIXTEEN MILE CREEK	U T M: 17 0444450.0 4711500.0 4	NNO3UR	NO3-N UNF.REAC MG/L	AS N	7.100	5.430	5.276	1.252	10																		
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	NNO2UR	NO2-N UNF.REAC MG/L	AS	0.340	0.075	0.047	0.000	10	ZNUT	ZINC	UNF. TOT.	MG/L AS ZN	0.0075	0,0069	0.0035	0.0017 <t< td=""><td>0.0070</td><td>0.0050</td><td>0.0030</td><td>0.00.0</td><td>0.0180</td><td>0.0330</td><td>0.0330</td><td></td><td>0.0089<a< td=""><td>0.0089<a 0.0062<a< td=""></a<></a </td></a<></td></t<>	0.0070	0.0050	0.0030	0.00.0	0.0180	0.0330	0.0330		0.0089 <a< td=""><td>0.0089<a 0.0062<a< td=""></a<></a </td></a<>	0.0089 <a 0.0062<a< td=""></a<></a
	40 35.94	NNHTUR NH3-N	TOTAL UNF.REAC MG/L	A	0.320	0.050	200		10	TURB			TURB'ITY FTU				9.00							9.00		9.00	00.6
	LONG: 081 40 35,94	FWTEMP	WATER TEMP	DEG.C	20.0	10.8	6.1	9.9	11	RSP		RESIDUE	PARTIC. MG/L	15.1	18.0	5.0<	9.6	15.5	18.0	29.2	30.3		25.8	30.3		20.2	20.2
4 1	LAT: 42 33 20.99	FWSTRC	STREAM	COND.						PSAME	AFRIG.	MF	/100ML	4	>4	>4	>4	æ ·	16	252		72	>4	252		09	09
RIVER	LAT: 42	ST-NAME:	SAMPLE	MONBER	MAXIMUM	ARITH MEAN	MINIMIM	STD DEV (GEOM *)	ATISTICS EXCLUDED)				SAMPLE	39712	39727	39742	39758	39773	29/88	39819	39835	39851	39866	MAXIMUM	TANK THE PARTY	CEOM MEAN	GEOM MEAN
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR	THE COLUMN		AR	5	STD DEV	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIM TEST-NAME:		Lis	DATE HOUR YYMMDD LMT	900123 0845	900226 1530			900529 0940	900626 0930				901127 0900		24	AK	AN G

STATION ID: 16-0066-001-02

40AID 20AID MG/L AS P CNT STREPCUS PHOSPHOR UNF. TOT. 5.793 FECAL /100ML 6* 520 160 1250 1822 20 0.048 960.0 0.156 0.047 0.117 560 009 FSMF 90 300 PPUT 0.145 STORET CODE: DISTANCE: GOAID MG/L COLIFORM PP04UR UNF . REAC FECAL CEL /100ML 51000> <009 0.051 0.026 0.020 0.005 0.078 0.020 0.075 0.037 310 240 650 810 170 900 FCMF 006 0.026 0 MG/L Hd DISOLVED OXYGEN AS 112.0 115.0 110.5 10.5 10.5 10.5 10.5 11.4 11.3 9.5 11.8 8.42 8 H REGION: 01 0.0021 0.0010<A 0.005 W>200.0 W>200.0 W>200.0 W>200.0 0.005<W 0.005<W 0.005<W MG/L MG/L AS PB 0.005<W AS CU 0.0037<A 0.0036<A LEAD COPPER 0.0021<T UNF. TOT. UNF. TOT. 0.0040 CUUT 0.0060 PBUT 0.0036 0.0029 0,0038 0,0040 0.0030 0,0000 0,0060 U T M: 17 0450950.0 4713950.0 4 MG/L AS N 25C K'DAHL N JNF . REAC COND25 CONDUCT. UMHO/CM AT 25 C NNTKUR 703.0 536.0 570.0 607.0 656.0 490.0 677.0 610.0 703.0 608.3 605.2 490.0 64.1 1.310 626.0 608.0 2.500 0.950 1.670 0.820 1.020 1.090 TOTAL 0.870 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BROCK CREEK MG/L MG/L AS N CLIDUR UNF . REAC AS CL NHOSUR N-20N JNF . REAC CHLORIDE 41.200 30.200 35.700 39.500 36.065 28.200 4.658 9.300 8.800 32.300 41.800 36.350 12.800 3.700 4.500 6.500 7.300 AS 0 AS N HG/L 5 DAY NNO2UR N02-N UNF . REAC MG/L OT . DEM . 2.96 0.90 3.14 0.35 0.35 0.040 0.040 0.080 0.000 0.520 8005 0.090 MG/L AS N TOTAL ALK MG/L NNHTUR NH3-N UNF. REAC CACOS FOTAL 51.69 174.0 143.0 156.0 168.0 195.0 214.0 177.8 176.1 143.0 26.4 0.008 149.0 214.0 164.0 214.0 0.014 0.262 0.314 0.006 0.019 0.044 10 AS LONG: 081 35 FGPR03 CODE MATER TEMP DEG.C PROJECT SUB-PROJ FWTEMP 1.0 2.0 6.0 17.0 13.0 17.0 18.0 221.0 10.0 0101 0103 0103 0103 0103 0103 0101 0103 0103 0103 LAT: 42 34 42.00 SAMPLE 1 FWSADP FWSTRC STREAM COND 0.30 0.30 0.30 0.30 0.30 10 39789 39820 SAMPLE 39728 39743 39759 39774 39789 39836 SAMPLE 39713 39728 39743 39759 39803 39836 39852 ARITH MEAN 39803 39820 39852 39867 MAXIMUM GEOM MEAN MININUM # SAMP IN STATISTICS 39713 STD DEV (GEOM *) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: STATION TYPE: RIVER TEST-NAME: 0915 0920 0915 1350 1015 HOUR 1445 1350 1015 0060 0950 1130 0925 0915 1500 1445 0060 1130 HOUR LMI *=INTERIH YYIIIIDD 900226 YYHHDD 900123 900123 900423 900529 900626 900724 900828 900925 901023 SAMPLE 900226 900327 900423 900529 900626 900724 900828 900925 901023 SAMPLE 900327 DATE

STATION ID: 16-0066-001-02

B.O.W./ SITE: BROCK CREEK SAMPLE STATION TOPIN: RIVER STATION TYPE: RIVER

02 003 1940	5.793	UT	TOT.	AS P	26	93	45	43																				
DE: 02		PPUT	UNF. TOT.		0.156	0.093	0.0	0.043																				
STORET CODE: 02 003 1940	DISTANCE:	PP04UR	UNF.REAC	AS P	0.078	0.034	0.005	0.026																				
		Н		Н	8.42	8.08	7.82	10																				
	10 :																											
	REGION: 01	PBUT	UNF.TOT.	AS PB	0.005	0.005 <a< td=""><td>0.005</td><td>0.000<a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<></td></a<>	0.005	0.000 <a< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></a<>																				
(ES	4713950.0 4	K'DAHL N	UNF. REAC	AS N	2.500	1.200	0.650	10																				
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BROCK CREEK	U T M: 17 0450950.0 4713950.0 4	NNO3UR	UNF.REAC	AS N	12.800	7.324	3.700	10																				
MAJOR BASI MINOR BASI TERM STREA	U T M: 17	NNO2UR	UNF.REAC	AS N	0.520	0.076	0.030	6	ZNUT	ZINC	UNF. TOT.	AS ZN	0000	0.0098	0.0043	0.0059	0.0080	0.0040	0.0050	0.0120	0.0160	0.0330	0.0330	0.0100	0.0080	0.0040	11	:
	35 51.69	NHTUR NH3-N	UNF.REAC	AS N	0.314	0.021	0.004	10	TURB			TURB'ITY FTU				22.00							22.00	22.00		22.00	-	•
	LAT: 42 34 42.00 LONG: 081 35 51.69	FWTEMP	MATER	DEG.C	21.0	8.8	1.0	11	RSP		RESIDUE	PARTIC. MG/L	10.6	20.1	5.3	36.2	27.7	12.4	100	8.7		52.3	52.3	23.9	18.9	5.3		
	34 42.00	FWSTRC	STREAM	COND.					PSAMF	AERUG.	AF.	/100ML	٥	4	. φ	12	4	4,	100	28	>4	4	28	6		4	0	18
STATION TYPE: RIVER	LAT: 42	*=INTERIM TEST-NAME:	SAMPLE	NUMBER	MAXIMUM	GEOM MEAN	MINIMUM CID DEV CCEOM *1	# SAMP IN STATISTICS	*=INTERIM TEST-NAME:		1	SAMPLE	21202	39728	39743	39759	39774	39789	20002	39836	39852	39867	MAXIMUM	ARITH MEAN	GEOM MEAN	STD DEV (GEOM *)	# SAMP IN STATISTICS	% SAMP (EXCLUDED)
TYP		T H	HOUR	E			n ne	AMP	T HI		9	LMT	100	1500	1445	1350	1100	1015	0000	1130	0915	0925				ים חי	Z	SAMP
STATIO		*=INTER	SAMPLE DATE P	УУИМВВ СМТ			5	# SAM	*=INTER		111	YYMMDD 1	900122		900327		900529 1	900626 1				901127				S	# SAME	~

STATION ID: 16-0072-001-02

This continue that the part of the part	SAMPLE POINT: CONC. KD. / DUNNICH IMP.S-W OF DUTTON	. CONC. KD.	DOWNICH	IMP.S-W OF	DUTTON							
SAMPLE PROJECT TOTAL LONG SALE S	STATION TYPE	: RIVER				MAJOR BASIN MINOR BASIN TERM STREAM	N: GREAT LAN N: LAKE ERIE 4: TYRCONNEL	KES E LL CREEK			STORET CODE	E: 02 003 1860
Feeth Feet		LAT: 4	2 37 56.74		29 24.99	U T M: 17	0.0086290	4719900.0 4	REGION:	01	DISTANCE	
CONDIGE COND	*=INTERIM TE	ST-NAME:	FWSADP	FGPROJ	ALKT	8005	CLIDUR	COND25	CUUT	DO	FCMF	FSMF
SAHPLE PROJECT TOTAL T					AIK	BOD PAV	Cuioning	Compries			FECAL	FECAL
PACKED P	ш		SAMPLE	PROJECT	TOTAL	TOT. DEM.	UNF. REAC	250	UNF. TOT.	DISOLVED	COLIFORM	STREPCUS
Name		SAMPLE	DEPTH	SUB-PROJ	MG/L	MG/L	MG/L	UMHO/CM	MG/L	MG/L	CNT	CNT
1.0 1.0		NUMBER	=	CODE	AS CACO3	AS 0	AS CL	AT 25 C	AS CU	AS 0	/100ML	/100ML
1.0 1.0		39714	0.30	0101	192.0	0.98	86.500	874.0	0.00%	12.0	007	
0.30 0.101 208.0 0.80 55.900 726.0 0.0035 16.55 20010 0.003 0.00	-	39744	0.30	0103	196.0	1.38	52.500	723.0	0.0026 <t< td=""><td>10.0</td><td>700</td><td>1000</td></t<>	10.0	700	1000
5 0.30 0.101 2.02.0 1.72 52.700 721.0 0.0050 9.0 6.00 6.00 9.0 9.0 <td>_</td> <td>39760</td> <td>0.30</td> <td>0101</td> <td>208.0</td> <td>0.80</td> <td>55.900</td> <td>726.0</td> <td>0.0035</td> <td>16.5</td> <td>SOATA</td> <td>TOAID</td>	_	39760	0.30	0101	208.0	0.80	55.900	726.0	0.0035	16.5	SOATA	TOAID
0.30 0.103 262.0 0.94 56.400 663.0 0.0050 9.5 690 69		39775	0.30	0101	202.0	1.72	52.700	721.0		0,0	COOL	TOAID
4 0.30 0101 4 0.30 0103 119.0 4.52 118.000 669.0 0.0050 6.5 28000 3200 3 0.30 0103 293.0 1.36 66.300 669.0 0.0050 4.5 28000 3200 3 0.30 0103 220.0 1.36 66.300 688.0 0.0050 4.5 2400 2200 4 0.30 0.103 220.0 1.36 66.300 688.0 0.0050 4.5 2400 3300 4 0.30 210.7 4.52 118.000 930.0 0.0066 4.5 2400 3300 3300 1 0.30 1.20 0.04 50.600 669.0 0.0064 4.5 20 20 1 0.30 1.20 0.04 50.600 669.0 0.0064 4.5 20 20 1 0.30 1.20 0.04 50.600 669.0 0.0064		39790	0.30	0103	262.0	96.0	56.400	863.0	0.0050	0 1	7009	101
1 0.30		39804	0.30	0101					0.0050) c	0000	2000
7 0.30 0103 293.0 1.38 72.30 930.0 0.0050 10.5 20041D 350 8 0.30 0103 220.0 1.36 66.300 688.0 0.0050 4.5 2400AID 3500 8 0.30 0103 220.0 1.36 66.300 688.0 0.0050 4.5 2400AID 3500 8 0.30 210.7 1.52 67.911 788.0 0.0066 10.5 26000 3300 8 0.30 200.7 1.52 67.911 788.0 0.0046 9.9 2.0046 4.5 2.0000 3300		39821	0.30	0103	119.0	4.52	118.000	0 699	0.0030	0.0	0022	2000
1.0 2.0		39837	0.30	0103	293.0	1.38	72 300	020	0,000	0.0	28000	25000
No. 30 0.103 204.0 0.04 50.600 698.0 0.0005 4.52 2400 330		39853	0.30	0103	220.0	1.96	66 300	888	0.0000	10.0	COUNTE	SOUAID
HATER HATER HATER LEMP LOSO 1.000 1.000 1.000 1.000 3.500		39868	0.30	0103	204.0	0 0	50.500	0.000	0.0050	. t	2400	840
H 0.30 293.0 4.52 118.000 930.0 0.0070 19.5 28000 35.5 28000 35.5 28000 35.5 35.5 28000 35.5							000.00	0.060	0.0060	10.5	3300	3400
No.30 1.050 1.050 1.050 1.050 1.050 1.000464 10.7 1.050 1.050 1.000464 10.7 1.050		MAXIMUM	0.30		293.0	4.52	118.000	930.0	0.0070	7 61	28000	22000
HATER HATER UNF.REAC	4	RITH MEAN	0.30		210.7	1.52	67.911	788.0	0 0048 <a< td=""><td>10.0</td><td>00000</td><td>22000</td></a<>	10.0	00000	22000
No.30		GEOM MEAN			205.3	0.98	65.302	782.6	0.0046<4	6.6	4000	4569
FHSTRC FWTEMP NNHTUR NNO2UR NNO3UR NNTKUR PBUT PH PPD4UR PPD4UR PPD 10		HINIMUM	0.30		119.0	0.04	50,600	0.699	0.0024	7.7	00	00+
FHSTRC FMTEMP NNHTUR NNOZUR NNOZUR NNTKUR PBUT PH PPD4UR PPD4UR PPD4UR PBUT PH PPD4UR P	STD DEV	(GEOM *)			48.2	1.26	22.141	7.86	0.0015<	. 4	0.7	17×
FWSTRC FWIEHP NNHTUR NNOZUR NNO3UR NNTKUR PBUT PH PPD4UR P	# SAMP IN S	TATISTICS	10		6	6	6	6	6	10	6	¥ 0 4
FWSTRC FWTEMP NNHTUR NNOZUR NNOZUR NNUSUR NNUSUR NNUSUR NNUSUR NNUSUR NNUSUR NNUSUR NNUSUR NNUSUR NNOZUR NUSUR	Z SAMP (EXCLUDED)								1	.20	24
Hater Hate	*=INTERIM TE	ST-NAME:	FWSTRC	FWTFMD	NNHTHD	GISCOMM	MINIOZIII	THE PERSON NAMED IN	1	1		
HOUR SAMPLE STREAM TEMP OF AS NO.2-N NO.2-N TOTAL LEAD POS					NH3-N	NOSONI	MUSONIN	MAINING K	PBUI	Ы	PP04UR	PPUT
HOUR SAMPLE STREAH TEMP MY.REAC UNF.REAC UNF.REA					TOTAL	NO2-N	NDX-N	TOTAL	CAN			
HOUR SAMPLE STREAM TEMP MG/L HG/L HG/L HG/L HG/L HG/L HG/L HG/L H	SAMPLE			WATER	UNF . REAC	UNF. REAC	INF REAL	IME DEAC	INE TOT		504	PHOSPHOR
LHT NUMBER COND. DEG.C AS N AS N AS N AS N AS DEG.C PUBLICATION OF THE PROPERTY OF THE PROPERT		SAMPLE	STREAM	TEMP	MG/L	MG/L	MG/L	MG/I	MG/1		UNF . REAC	UNF. TOT.
1015 39714 6 1.0 0.082 0.050 8.500 1.350 0.005c44 7.92 0.056 0.056 1.550 0.005c44 0.056		NUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB	НН	AS P	AS P
150 3974 6 4.0 0.262 0.030 5.100 1.300 0.005-M 8.32 0.056 150 39775 6 16.0 0.540 0.109 0.109 1.300 0.005-M 8.32 0.056 100 39775 6 16.0 0.008 0.090 1.050 1.050 0.008-T 8.10 0.008 100 3981 6 20.0 0.006 0.120 2.000 1.400 0.005-M 8.39 0.011 130 3982 6 22.0 0.066 0.120 2.000 1.400 0.005-M 8.18 0.031 130 3985 6 9.0 0.004 0.100 8.400 1.300 0.005-M 8.02 0.035 1015 3986 6 9.0 0.018 0.050 4.400 1.900 0.005-M 7.86 0.126 1016 3987 6 0.018 0.050 4.400 1.900 0.005-M 7.86 0.126 1017 3988 6 9.0 0.018 0.050 4.400 1.900 0.005-M 7.86 0.126 1018 3988 6 9.0 0.018 0.050 4.400 1.900 0.005-M 7.86 0.126 1018 39888 398888 39888 3988888 3988888 3988888 3988888 3988888 3988888 39888888 39888888 398888888 39888888 39888888 3988888888 398888888888		39714	9	1.0	0.082	0.050	8.500	1.350	0 0050	7 03	0	
1500 39760 6 16.0 0.540 1.670 5.100 3.780 0.008 7.80 0.008 0.0		39744	9	4.0	0.262	0.030	5,100	1.300	0 005<	8 73	0.000	0.100
1200 39775 6 15.0 0.008 0.090 6.000 1.050 0.005 8.00 0.008 1.050 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.008 1.050 0.005 8.00 0.005 8		39760	9	16.0	0.540	1.670	5,100	3.780	T>800.0	8 15	0000	0.098
1105 39790 6 18.0 0.005 0.190 14.300 1.320 0.005<8 8.39 0.011 1000 39824 6 20.0 1330 39837 6 14.0 0.005 0.040 8.200 1.460 0.005<8 8.18 1030 39858 6 9.0 0.004 0.100< 8.400 1.300 0.005<8 8.05 1015 39868 6 9.0 0.018 0.050 4.400 1.900 0.005<8 7.86 0.126		39775	9	15.0	0.008	0.090	6.000	1.050		01.8	00000	0.030
1000 39804 6 20.0 0.066 0.120 2.000 1.460 0.00554 0.37 0.011 0.105 39821 6 22.0 0.006 0.120 2.000 1.460 0.00554 8.18 0.035 0.0		39790	9	18.0	0.005	0.190	14.300	1 320	0 00E/W	9000	0000	0.024
1030 39921 6 22.0 0.066 0.120 2.000 1,460 0.00647 7.52 0.135 1330 39937 6 14.0 0.002 0.040 8.200 1,180 0.005<44 8.18 0.039 1030 39853 6 9.0 0.004 0.100< 8.400 1.300 0.005<44 8.02 0.030 1015 39868 6 9.0 0.018 0.050 4.400 1,900 0.005<44 7.86 0.126		39804	9	20.0					0.005 <w< td=""><td>6:00</td><td>0.011</td><td>0.064</td></w<>	6:00	0.011	0.064
1330 39837 6 14.0 0.002 0.040 8.200 1.180 0.00554 8.18 0.0359 1030 39853 6 9.0 0.004 0.100< 8.400 1.300 0.00554 8.02 0.030 1015 39868 6 9.0 0.018 0.050 4.400 1.900 0.00554 7.86 0.126		39821	9	22.0	990.0	0.120	2.000	1 660	1/5000	-		
1030 33853 6 9.0 0.004 0.1006 8.400 1.300 0.00554 8.02 0.1059 1.1015 35868 6 9.0 0.018 0.050 4.400 1.900 0.00554 7.86 0.126	-	39837	9	14.0	0.005	0.040	8 200	1 100	0.000	24.7	0.135	0.290
1015 39868 6 9.0 0.018 0.050 4.400 1.900 0.005 <h 0.126<="" 7.86="" td=""><td></td><td>39853</td><td>9</td><td>9.0</td><td>0.004</td><td>0.100<</td><td>8 600</td><td>1 700</td><td>W>500.0</td><td>8.18</td><td>0.039</td><td>0.044</td></h>		39853	9	9.0	0.004	0.100<	8 600	1 700	W>500.0	8.18	0.039	0.044
1.300 0.005 <w .86="" 0.126<="" td=""><td></td><td>39868</td><td>9</td><td>0.6</td><td>0.018</td><td>0 020</td><td>004.0</td><td>1.300</td><td>W>500.0</td><td>8.02</td><td>0.030</td><td>0.084</td></w>		39868	9	0.6	0.018	0 020	004.0	1.300	W>500.0	8.02	0.030	0.084
					040	0.00	4.400	1.900	U.005 <w< td=""><td>7.86</td><td>0.126</td><td>0.345</td></w<>	7.86	0.126	0.345

STATION ID: 16-0072-001-02

DUTTON DRAIN	CONC.RD.7 DUNWICH TWP.S-W OF DUTTON
B.O.W./ SITE: 1	SAMPLE POINT:

SAMPLE POINT: CONC.RD.7 DUNMICH IMP.S-W OF DUTTON STATION TYPE: RIVER	F: CONC.RD.	7 DUNMICH	WP.S-W OF	NOLLON	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE	GREAT LA	KES			STC	STORET CODE: 02	: 02 003
					TERM STREAM: TYRCONNELL CREEK	: TYRCONNE	LL CREEK					1860
	LAT: 4:	LAT: 42 37 56.74	LONG: 081 29 24.99	29 24.99	U T M: 17	0459800.0	U T M: 17 0459800.0 4719900.0 4	REGION: 01	01	ı	DISTANCE:	8.851
*=INTERIM TEST-NAME:	ST-NAME:	FWSTRC	FWTEMP	NNHTUR NH3-N	NNO2UR	NNOSUR	NNTKUR K'DAHL N	PBUT	Н		PP04UR	PPUT
L				TOTAL	N02-N	N03-N	TOTAL	LEAD			P04	PHOSPHOR
DATE HOUR	SAMPLE	STREAM	TEMP	UNF . KEAC	MG/L	MG/L	UNF . KEAC	MG/L		NO.	UNF.REAC	UNF.TOT.
УУМИВВ СМТ	NUMBER	COND.	DEG.C	AS N	AS N	AS N	AS N	AS PB		Н	AS P	AS P
	MAXIMUM		22.0	0.540	1.670	14.300	3.780	0.008	8.39		0.135	0.365
-4	ARITH MEAN		12.8	0.110	0.280	6.889	1.627	0.005<4	8.04		052	0.120
	GEOM MEAN		6.6	0.025		6.089	1.503	0.005 <a< td=""><td>8.04</td><td></td><td>0.033</td><td>0.101</td></a<>	8.04		0.033	0.101
	MINIMUM		1.0	0.002	0.030	2.000	1.050	0.005	7.52		.008	0.044
STD DEV	STD DEV (GEOM *)		6.9	0.181		3.514	0.841	0.001 <a< td=""><td>0.26</td><td></td><td>.048</td><td>0,109</td></a<>	0.26		.048	0,109
# SAMP IN STATISTICS	STATISTICS		10	6	ю	6	6	6	6			6
% SAMP	% SAMP (EXCLUDED)				11							
*=INTERIM TEST-NAME:	ST-NAME:	PSAMF	RSP	TURB	ZNUT							
		PSEUDOMN										
SAMOLE		AERUG.	DECTRIE		ZINC							
DATE HOUR	SAMPLE	LNJ	PARTIC	THERITY	MG/1							
0	NUMBER	/100ML	HG/L	FTU	AS ZN							
900123 1015	21797	*	19 6		0 0130							
	39744	> 3	13.4		0.00.0							
	39760	4	21.2	7.50	0.0051							
900529 1200	39775	>4	23.5									
900626 1105	39790	4	24.9		0.0000							
900724 1000	39804	4			0.0000							
900828 1030	39821	140	99.1		0.0240							
900925 1330	39837	>4	6.95		0.0000							
901023 1030	39853	48			0.0200							
901127 1015	39868	269	135.0		0.0500							
	MAXIMUM	140	135.0	7.50	0.0500							
	ARTTH MEAN	49	67.9	7 50	0 0157							
	GEOM MEAN	ì	34.6	200	0.0137							
	MINIMIM	4	13.4	7.50	0.0050	٠						
STD DEV	STD DEV (GEOM *)		44.8		0.0145							
# SAMP IN STATISTICS	STATISTICS	7	00									
% SAMP	% SAMP (EXCLUDED)	30	,	•								

DISTANCE: CUUT COPPER UNF.TOT. MG/L AS CU	DISTANCE: CUUT COPPER DI UNF. TOT. HG/L AS CU 0.0140 0.0120 0.0090 0.0060	CUUT DO COPPER DISO UNF. TOT. DO COPPER DISO UNF. TOT. DO CO. 0.0120 0.0020 0.0050 0.0	CUUT DE COPPER DISSTANCE: 36 COPPER DISSTANCE: 36 O.0140 9 O.0120 9 O.0050 0 O.00	CUUT COPPER DI UNF. TOT. HG/L AS CU 0.0120 0.0020 0.0030 0.0096 0.0096 0.0096 0.0096 0.0096 0.0097 0
CRUT CHROMIUM UNF.TOT. MG/L AS CR	СRUT СНВОИЛИН UNF. 10T. НG/L AS CR 0.0250 0.0170 0.0140 0.0060	CRUT UNF.TOT. UNF.TOT. AS CR 0.0250 0.0170 0.0140 0.0110 0.0131 0.0060	CRUT CHROHIUM UNF.10T. AS CR 0.0250 0.0170 0.0140 0.0050 0.0110 0.0146 0.01146 0.0131 0.0060 0.0171 5 UNF.REAC HACLAS AS A	CRUT UNF. 170T. MF. TOT. MG. CR 0.0250 0.0170 0.0140 0.0131 0.0060 0.0131 0.0060 0.0131 NNAD2UR NNACUR NO2-N HG/L AS N 0.050 0.050 0.050 0.050
COND25 CONDUCT. 25C UMHO/CM AT 25 C	CONDUCT. 25C UNHO/CH AT 25 C 746.0 766.0 764.0 764.0 764.0	COND25 CONDUCT. 25C UNH0/CH AT 25 C 746.0 764.0 764.0 764.0 764.0 764.0 764.0 764.0 764.0 765.0 665.0 665.0 665.0	CONDUCT. 25C UNHO/CH AT 25 C 746.0 764.0 764.0 764.0 764.0 764.0 766.0 766.0 769.0 760.0 645.0	CONDUCT. 25C UNHOCH AT 25 C 746.0 766.0 766.0 766.0 766.0 766.0 665.0 665.0 665.0 665.0 67
5	25 25 26 60 60 60 60 60 60 60 60 60 60 60 60 60	20 25 06 60 60 60 60 60 60 60 60 60 60 60 60	25 25 20 25 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	25 22 32 32 32 32 28 28 28 28 28 30 30 30 30 30 30 30 30 30 30 30 30 30
	ਜ		i i i i i i i i i i i i i i i i i i i	ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ
AS O	MG/L AS 0 2.16 2.20 0.60 1.42 1.03	MG/L AS 0 2.24 2.20 2.20 0.60 1.42 1.03 2.36 1.43 1.13 0.24	MG/L AS 0 0.24 2.26 2.26 1.60 1.03 2.36 1.13 1.13 0.84 7 FWSTRC FWSTRC COND.	00000000000000000000000000000000000000
4	167.0 167.0 167.0 159.0 179.0 191.0	167.0 167.0 167.0 159.0 179.0 191.0 219.0 219.0 219.0 219.0	167.0 167.0 167.0 159.0 179.0 219.0	167.0 167.0 167.0 159.0 191.0 219.0 219.0 177.5 159.0 20.7 7 7 7 7 100ML 200ML 200ML 200ML 200ML 200ML 200ML 100ML
TOTO	0101 0101 0101 0101 0101 0101	0101 0101 0101 0101 0101 0101	0101 0101 0101 0101 0101 0101 0101 FEUT FEUT RROM UNF.TOT. AS FE	01.01 01.01 01.01 01.01 01.01 01.01 IRON UNF .TOT. HS/L AS FE 0530 0630
0.30	0.30	0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
37919	37929 37929 37949 37959 37969	0 1335 37929 0 1335 37939 6 1320 37949 0 1200 37969 0 1200 37969 0 1200 37979 0 120		
900327 1340		1335 1335 1320 1200 1320 1320 1320 1320 1320	1330 1230 1200 1200 1320 1320 1320 1320	200000 B T T T T T T T T T T T T T T T T

(CONTD)

STATION ID: 16-0087-004-02

1990 WATER QUALITY DATA REGION 1

B.O.W./ SITE: DODD CREEK SAMPLE POINT: FIRST CONCESSION NORTH OF HIGHWAY 3 STATION TYPE: RIVER FLOW GAUGE MOE OZGGLO4 MAJOR BASIN

36.370 1660 STORET CODE: DISTANCE: REGION: 01 UNF.TOT. MG/L AS ZN ZINC 0.0320 0.0220 0.0150 0.0222 ZNUT 0.0260 0.0160 0.0320 0.0150 0.0071 U T M: 17 0477275.0 4740275.0 4 19.4 RESIDUE PARTIC. MG/L 0.5 22.1 6.7 21.0 55.6 55.6 25.0 6.7 RSP TERM STREAM: KETTLE CREEK MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE PSAMF CNT /100ML >4 >4 AERUG 4 40 13 4 MG/L AS P PHOSPHOR UNF. TOT. 0.142 0.545 0.465 0.235 0.545 0.353 0.323 0.148 PPUT UNF.REAC MG/L AS P P04 PP04UR LAT: 42 48 59.87 LONG: 081 16 40.70 0.270 0.491 0.460 0.161 0.135 0.281 0.237 0.162 0,086 0.491 H 8.25 7.94 0.23 7.94 8.57 8.41 8.20 8.20 8.42 8.57 Hd 0.006<A LEAD MG/L AS PB 0.005<W 0.005<W 0.005<W 0.006<A 0,001<A UNF. TOT. 0.007<T 0.008<T PBUT 0.008 37929 37939 37949 37969 37979 37919 # SAMP IN STATISTICS % SAMP (EXCLUDED) NUMBER 37909 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) SAMPLE *=INTERIM TEST-NAME: 900724 1200 901030 1200 1300 1320 HOUR 1340 900123 1500 900530 1335 **УУМИВВ ЕМТ** 900327 900430 90006 SAMPLE DATE

STATION ID: 16-0087-006-02

7.403 STREAM FWSTRC COND. RESIDUE MG/L PARTIC. 1660 18.7 25.0 60.09 0.09 34.6 29.9 12.3 18.7 STORET CODE: DISTANCE: 40AID SOAID 730 10< 10< 8 STREPCUS PSEUDOMN CNT FECAL /100ML AERUG. /100HL >4 >4 > 5 PSAMF 2009 040 FSMF 1040 374 28 4 009 302 90AID 40AID MG/L AS P COLIFORM /100ML PHOSPHOR 10< 10< JNF. TOT 0.130 0.145 160 580 184 PPUT 0.140 0.095 0.062 0.040 6 0.068 0.102 0.145REGION: 01 MG/L AS 0 MG/L AS P DISOLVED OXYGEN P04 PP04UR UNF. REAC 10.0 9.5 9.5 9.0 10.0 9.4 9.4 9.0 7 0.050 0.034 0.010 0.085 0.022 0.023 0.085 0.026 COND25 25C UMHO/CM AT 25 C E 0483800.0 4728150.0 CONDUCT. 619.0 593.0 686.0 726.0 593.0 48.8 726.0 648.2 646.7 7.98 8.28 8.37 8.09 9 PH TERM STREAM: KETTLE CREEK MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE AS CL MG/L AS N CLIDUR CHLORIDE UNF. REAC MG/L NNTKUR K'DAHL N UNF. REAC 33.900 35.600 35.400 38.102 1.250 0.840 14.793 TOTAL 0.840 69,800 39.800 1.000 0,945 0.933 69.800 31,000 0,960 0.780 U T M: 17 MG/L BOD AS 0 MG/L AS N 5 DAY FOT . DEM. NNO3UR N03-N UNF. REAC 8008 1.28 1.28 1.28 4,500 3.400 4.750 4.326 2.632 0.000 3.000 4.200 3.400 0.000 TOTAL MG/L ALK AS CACO3 MG/L AS N NNO2UR NO2-N UNF . REAC 52,12 ALKT 175.0 175.0 175.0 0.060 0.080 175.0 0.058 0.062 0.023 0.000 LONG: 081 11 CODE MG/L AS N FGPR03 SUB-PROJ NH3-N UNF. REAC PROJECT NNHTUR TOTAL 0.326 0.116 9/0.0 0.071 960.0 0101 0101 0101 0101 0101 1010 0.130 0.125 0.071 0,122 0.141 LAT: 42 42 27.38 SAMPLE 2 TEMP FWTEMP WATER DEG.C 18.0 17.0 24.0 12.0 0.30 0.30 0.30 0.30 0.30 0.30 24.0 14.0 10.1 1.0 7.8 6 1.0 0.30 SAMPLE 37927 37957 37967 37908 SAMP IN STATISTICS 37927 37937 37957 37977 37917 MAXIMUM ARITH MEAN GEOM MEAN HINIHUM STD DEV (GEOM *) % SAMP (EXCLUDED) SAMPLE NUMBER 37908 37917 37967 MAXIMUM ARITH HEAN GEOM MEAN MINIMUM STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED) *=INTERIM TEST-NAME: TEST-NAME: 1120 HOUR 1235 1135 1140 1140 1150 HOUR 1430 1235 1150 1120 901128 1145 LMT LMT *=INTERIM YYHHDD 900724 901030 900123 900123 900327 900430 900530 YYMMDD 900430 900530 901030 SAMPLE SAMPLE 900724 DATE DATE **

7.403

STATION ID: 16-0087-006-02	STORET CODE: 02 003 1660	
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: KETTLE CREEK	
B.O.W./ SITE: BEAVER CREEK SAMPLE POINT: AT POND OUTLET COMMUNITY OF UNION	STATION TYPE: RIVER	1 AT: (2) (2) 77 70 1 ANIC: 000 41 FO 62 11 11 11 11 11 11

DISTANCE: REGION: 01 U T M: 17 0483800.0 4728150.0 4 LAT: 42 42 27.38 LONG: 081 11 52.12

TURB'ITY FTU 22.00 SAMPLE 37908 *=INTERIM TEST-NAME: SAMPLE DATE HOUR YYMMDD LMT 900123 1430

22.00 22.00 22.00 MAXIMUM
ARITH MEAN
GEOM MEAN
MINIMUM
STD DEV (GEOM *)
SAMP IN STATISTICS
% SAMP (EXCLUDED) STATION ID: 16-0087-007-02

B.O.W./ SITE: KETTLE CREEK

	003 1660	44.417																		
STATION ID: 16-0087-007-02	STORET CODE: 02 003 164	DISTANCE: 44.417																		
STATION II		REGION: 01																		
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: KETTLE CREEK	U T M: 17 0491500.0 4746650.0 4	ZNUT	ZINC UNF.TOT.	MG/L AS ZN	0.0070	0,0056	0.0023 <t< td=""><td>0.0050</td><td>0.0000</td><td>0.0070</td><td>0,0080</td><td>0.0100</td><td>0.0100</td><td>0,0067<a< td=""><td>0.0062<a< td=""><td>0,0023</td><td>0.0024<a< td=""><td>80</td><td></td></a<></td></a<></td></a<></td></t<>	0.0050	0.0000	0.0070	0,0080	0.0100	0.0100	0,0067 <a< td=""><td>0.0062<a< td=""><td>0,0023</td><td>0.0024<a< td=""><td>80</td><td></td></a<></td></a<></td></a<>	0.0062 <a< td=""><td>0,0023</td><td>0.0024<a< td=""><td>80</td><td></td></a<></td></a<>	0,0023	0.0024 <a< td=""><td>80</td><td></td></a<>	80	
: BELMONT		06 14,65	TURB		TURB'ITY FTU	19.30		13.60	20.00	82.00	50.00		116.00	116.00	50.15	36.83	13.60	41.35	39	
JTH WEST OF		LONG: 081	RSP	RESIDUE	PARTIC. MG/L	19.6	20.3	21.0	52.9	98.3	55.6		2.42	98.3	48.8	40.5	19.6	30.5	7	
REEK NCESSION SOL		LAT: 42 52 27.59 LONG: 081 06 14.65	PSAMF PSEUDOMN	AEROG.	/100ML	>4	>4	>4	>4	40	89	>4		80	9		4		2	7.1
: KETTLE C	: RIVER	LAT: 4	ST-NAME:		SAMPLE	37902	37912	37922	37932	37942	37952	37962	37972	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	EXCLUDED)
B.O.W./ SITE: KETTLE CREEK SAMPLE POINT: FIRST CONCESSION SOUTH WEST OF BELMONT	STATION TYPE: RIVER		*=INTERIM TEST-NAME:		YYMMDD LMT	900123 1030	900327 0920	900430 1000	900530 0930	900626 0940	900723 1300	901030 0945	901128 0925		Ā	_		STD DEV	# SAMP IN STATISTICS	% SAMP (EXCLUDED)

KETTLE CREEK

B.O.W./ SITE:

STATION ID: 16-0087-010-02

STATION ID: 16-0087-010-02

1990 WATER QUALITY DATA REGION 1

		LAKES	
		GREAT	
		MAJOR BASIN: GREAT LAKES	
		_	
	STANLEY	STATION TYPE: RIVER FLOW GAUGE MOE 02GC111	
	PORT	MOE	
	ABOVE	GAUGE	
CREEK	BRIDGE	FLOW	
KETTLE	FIRST	RIVER	
SITE:	POINT:	TYPE:	
B.O.W./ SITE: KETTLE CREEK	SAMPLE POINT: FIRST BRIDGE ABOVE PORT STANLEY	STATION	

02 003 1660	4.828																		
STORET CODE: 02 003 166	DISTANCE:																		
	REGION: 01																		
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERN STREAM: KETTLE CREEK	U T M: 17 0482175.0 4726500.0 4	ZNUT	UNF.TOT. MG/L	AS ZN		0.0074	0.0042	0.0000	0.0030	0.0070	0.0030		0.0000	9900	0.0051	0.0030	0.0025		
MAJO MINO TERM	L 0	7				0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	9	
	3 03.37	RSP	RESIDUE PARTIC.	MG/L	29.4	18.0	48.3	27.1	99.66	54.3	100.0	115.0	115.0	61.4	50.6	18.0	38.0	8	
SARILE POINT: FIRST BRIDGE ABOVE PORT STANLEY STATION TYPE: RIVER FLOW GAUGE MOE O2GC111	LONG: 081 13 03.37	RSF	RESIDUE FILTERED	MG/L	476.6	0.595	436.0	528.9	404.0	0.904	497.0	458.0	528.9	458.8	457.0	404.0	43.1	100	
LOW GAUGE	LAT: 42 41 33.75	PIPCBT	PCB	NG/L		37916 NO DATAIIC		20 <w< td=""><td>20<w< td=""><td></td><td></td><td>37976 NO DATAIIC</td><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>2</td><td></td></a<></td></a<></td></a<></td></w<></td></w<>	20 <w< td=""><td></td><td></td><td>37976 NO DATAIIC</td><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>2</td><td></td></a<></td></a<></td></a<></td></w<>			37976 NO DATAIIC	20	20 <a< td=""><td>20<a< td=""><td>20</td><td>0<a< td=""><td>2</td><td></td></a<></td></a<></td></a<>	20 <a< td=""><td>20</td><td>0<a< td=""><td>2</td><td></td></a<></td></a<>	20	0 <a< td=""><td>2</td><td></td></a<>	2	
E: RIVER F	LAT: 42	EST-NAME:	SAMPLE	NUMBER	37906	37916	37926	37936	37946	37956	37966	37976	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR		900123 1345		900430 1120	900530 1110	900626 1135	900724 1050		901128 1130					STD DE	# SAMP IN STATISTICS	% SAMP

B.O.W./ SITE: KETTLE CREEK SAMPLE POINT: AT ELGIN COUNTY ROAD 45 STATION TYPE: RIVER

STATION ID: 16-0087-012-02

0.000<A CMT LEAD AS PB 0.005<W W>500.0 W>500.0 0.005<W 0.005<W 0.005<W 0.005<W 17,059 COLIFORM MG/L 0.005<A 0.005<A FECAL /100ML UNF. TOT. <0001 250 4900 0,005 1660 065 390 4600 FCMF 1500 4900 1794 250 12 PBUT 002 STORET CODE: DISTANCE: MG/L AS 0 MG/L AS N DISOLVED OXYGEN NNTKUR K'DAHL N UNF . REAC 9.0 9.5 9.0 9.2 1.020 1.050 1.650 0.920 0.650 0.650 .650 1.054 TOTAL 1.050 1.021 00 UNF.REAC MG/L AS N COPPER MG/L AS CU NNOSUR N-20M UNF. TOT. 0.0050 0,000,0 0,000,0 0.0030 7.100 5.100 5.700 6.310 3.400 2.310 7 CUUT 0.0032 0,000,0 0,000,0 0.800 0,0050 10.800 6.657 REGION: 01 MG/L MG/L CHROMIUM AS CR NNO2UR N02-N UNF. REAC JNF. TOT. 090.0 0.110 AS 0.210 0.119 0.030 0.100 CRUT 0.0070 0.0070 0.0070 0.0070 090.0 0.089 U T M: 17 0482550.0 4731350.0 4 MG/L 25C JMH0/CM Z COND25 AT 25 C NNHTUR NH3-N UNF. REAC TOTAL CONDUCT 574.0 702.0 673.0 0.707 0.469 672.4 574.0 61.5 616.0 758.0 758.0 0.037 0.007 0.036 0.007 0.163 0,068 0.059 0.043 0.051 TERM STREAM: KETTLE CREEK MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L CLIDUR CHLORIDE UNF. REAC AS CL MG/L D.006<A NICKEL AS NI 0,006<T UNF. TOT. 37,100 61.400 53.800 10.605 58,000 40.000 39.900 61,400 50,014 49.014 37,100 NIUT 900.0 900.0 BOD MG/L TEMP 5 DAY OT . DEM . FWTEMP MATER DEG.C AS 5008 1.48 2.96 2.60 3.74 3.74 2.39 18.0 17.0 19.0 24.0 12.0 24.0 14.7 11.0 1.0 7.3 1.23 1.05 1.0 MG/L CACO3 TOTAL FWSTRC STREAM COND. LAT: 42 44 11.02 LONG: 081 12 47.42 191.0 148.0 300.0 300.0 212.8 207.1 148.0 55.5 ALKT AS 9 LOAID ZOOAID 20AID FGPROJ SUB-PROJ PROJECT CODE FECAL STREPCUS /100HL 10< 009 0101 320 220 860 860 10 0101 0103 FSMF 319 1010 0101 0101 Σ MG/L SAMPLE DEPTH IRON **FWSADP** AS FE UNF. TOT. 0.30 0.30 0.30 1.000 FEUT 1.000 1.000 1.000 37918 37948 37938 37968 37938 SAMPLE NUMBER 37907 37928 37958 37968 37978 HAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS SAMPLE HUMBER 37907 37918 37928 37948 37958 37978 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM # SAMP IN STATISTICS STD DEV (GEOM *) STD DEV (GEOM *) % SAMP (EXCLUDED) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: K=INTERIM TEST-NAME: 1410 1150 1135 1330 1210 1150 1330 HOUR 1230 1150 1410 230 1150 HOUR 1400 LMT YYMMDD LMT 901128 YYMINDD 900123 900430 900530 9000656 900724 901030 900123 900430 900724 901030 900530 900626 SAMPLE 900327 SAMPLE 900327 DATE DATE

D

STORET CODE: 02

STATION ID: 16-0087-012-02

MAJOR BASIN: GREAT LAKES

B.O.W./ SITE: KETTLE CREEK SAMPLE POINT: AT ELGIN COUNTY ROAD 45 STATION TYPE: RIVER

003 1660	17.059																				
	DISTANCE:																				
	10																				
	REGION: 01	ZNUT	ZINC UNF.TOT.	MG/L	AS ZN		0.0110	0.0049	0.0000	0.0020 <t< td=""><td>0.0030</td><td>0.0020<t< td=""><td>0.0020<t< td=""><td>0.0110</td><td>0.0046<a< td=""><td>0.0037<a< td=""><td>0.0020</td><td>0,0034<a< td=""><td>7</td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0030	0.0020 <t< td=""><td>0.0020<t< td=""><td>0.0110</td><td>0.0046<a< td=""><td>0.0037<a< td=""><td>0.0020</td><td>0,0034<a< td=""><td>7</td><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0020 <t< td=""><td>0.0110</td><td>0.0046<a< td=""><td>0.0037<a< td=""><td>0.0020</td><td>0,0034<a< td=""><td>7</td><td></td><td></td></a<></td></a<></td></a<></td></t<>	0.0110	0.0046 <a< td=""><td>0.0037<a< td=""><td>0.0020</td><td>0,0034<a< td=""><td>7</td><td></td><td></td></a<></td></a<></td></a<>	0.0037 <a< td=""><td>0.0020</td><td>0,0034<a< td=""><td>7</td><td></td><td></td></a<></td></a<>	0.0020	0,0034 <a< td=""><td>7</td><td></td><td></td></a<>	7		
EEK	731350.0 4	TURB		TURB'ITY	FTU		21.00	20.00	18.30	90.00			78.00	90.00	45.46	35.19	18.30	35.45	ın		
MINOR BASIN: LAKE ERIE TERM STREAM: KETTLE CREEK	U T M: 17 0482550.0 4731350.0 4	RSP	RESIDUE	PARTIC.	MG/L	26.5	17.5	24.2	20.8	90.08		39.5	105.0	105.0	44.8	35.9	17.5	34.2	7		
MINOR BASIN TERM STREAM	U T M: 17	PSAMF PSEUDOMN	AERUG. MF	CNT	/100ML	20	12	>4	4	68	72		400	72	36		4		9	14	
	12 47.42	PPUT	PHOSPHOR UNF. TOT.	MG/L	AS P	0.140	0.082	0.094	0.125	0.280		0.101	0.540	0.540	0.195	0.154	0.082	0.166	7		
	LONG: 081 12 47.42	PP04UR	PO4 UNF.REAC	MG/L	AS P	0.064	0.047	0.038	0.056	0.118		0.056	0.057	0.118	0.062	0.059	0.038	0.026	7		
	LAT: 42 44 11.02	Н			H	7.82	8.12	8.19	8.12	8,17		8.24	8.17	8.24	8.12	8.12	7.82	0.14	7		
	LAT: 42	ST-NAME:		SAMPLE	NUMBER	37907	37918	37928	37938	37948	37958	37968	37978	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)	
		*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	УУМИВВ СМТ	900123 1410	900327 1400	900430 1230	900530 1150	900626 1150	900724 1135	901030 1330	901128 1210		7			STD DE	# SAMP IN STATISTICS	% SAMP	

STATION ID: 16-0087-015-02	STORET CODE: 02 003 1660	DISTANCE: 29.933																		
STATION ID:		REGION: 01																		
	MAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERIE TERH STREAM: KETTLE CREEK	U T M: 17 0486000.0 4739700.0 4	ZNUT	ZINC UNF.TOT. MG/L	AS ZN	0.0050								0.0050	0,0050		0.0050		-	
	I HUMAS	10 16.44	RSP	RESIDUE PARTIC.	MG/L	21.4	19.9	92.2	71.7	57.5	41.6	76.8	108.0	108.0	61.1	52.3	19.9	32.1	80	
1	NORIH OF	LONG: 081 10 16.44	PSAMF	AERUG. MF	/100ML	10AID		>4	>4	>4	>4	>4	120	12	11		10		2	7.1
EEK	ROAD NO 31	LAT: 42 48 41.98	PPUT	PHOSPHOR UNF.TOT.	AS P	0.140	0.052	0.148	0.134	0.205	0.146	0.029	0.244	0.244	0.137	0.115	0.029	0.071	80	
E: KETTLE CR	F: AT COUNTY	LAT: 48	EST-NAME:	0 2 2	NUMBER	37901	37911	37921	37931	37941	37951	37961	37971	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
B.O.W./ SITE: KETTLE CREEK	SAMPLE POINT: AT COUNTY ROAD NO 51 NORTH OF SI THOWAS STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE	-	900123 1000	900327 0900	900430 1420	900530 0900	900626 0900	900723 1230	901030 0930	901128 0900					STD DE	# SAMP IN	% SAMP

CODE: 02 003 1660	NCE: 21.564	00	R DISOLVED OXYGEN L MG/L U AS 0	10.0	0.6	9.5		บ o	0.6	10.0	6.6	4.6	9.0	0.80	R NNTKUR		UNF	N AS N	1.020	0.900	0.960	1.400	2.300	2.350	1.060	2.350	1.381	1.286	0.900	0.601
STORET CODE:	DISTANCE:	CUUT	COPPER UNF.TOT. MG/L AS CU	0 0033	0.0040	0.0030	0.0060	0.0060	0.0030	0.0060	0.0045	0.0043	0.0030	7	NNO3UR	N-20N	UNF. REAC	AS N	9.900	6.200	4.000	0000.9	13.900	4.500	3,600	13.900	6.600	5.944	3,600	3.555
	01	CRUT	CHROMIUM UNF.TOT. MG/L AS CR	0.0042	0.0010 <t< td=""><td>0.0010<t< td=""><td>0.0020<t< td=""><td>0.002021</td><td>0.0020<t< td=""><td>0,0042</td><td>0.0018<a< td=""><td>0.0015<a< td=""><td>0.0005</td><td>7</td><td>NNO2UR</td><td>N02-N</td><td>UNF. REAC</td><td>AS N</td><td>0.040</td><td>0.050</td><td>090.0</td><td>0.050</td><td>0.210</td><td>0.040</td><td>0.310</td><td>0.310</td><td>660.0</td><td>0.068</td><td>0.030</td><td>0.103</td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	0.0010 <t< td=""><td>0.0020<t< td=""><td>0.002021</td><td>0.0020<t< td=""><td>0,0042</td><td>0.0018<a< td=""><td>0.0015<a< td=""><td>0.0005</td><td>7</td><td>NNO2UR</td><td>N02-N</td><td>UNF. REAC</td><td>AS N</td><td>0.040</td><td>0.050</td><td>090.0</td><td>0.050</td><td>0.210</td><td>0.040</td><td>0.310</td><td>0.310</td><td>660.0</td><td>0.068</td><td>0.030</td><td>0.103</td></a<></td></a<></td></t<></td></t<></td></t<>	0.0020 <t< td=""><td>0.002021</td><td>0.0020<t< td=""><td>0,0042</td><td>0.0018<a< td=""><td>0.0015<a< td=""><td>0.0005</td><td>7</td><td>NNO2UR</td><td>N02-N</td><td>UNF. REAC</td><td>AS N</td><td>0.040</td><td>0.050</td><td>090.0</td><td>0.050</td><td>0.210</td><td>0.040</td><td>0.310</td><td>0.310</td><td>660.0</td><td>0.068</td><td>0.030</td><td>0.103</td></a<></td></a<></td></t<></td></t<>	0.002021	0.0020 <t< td=""><td>0,0042</td><td>0.0018<a< td=""><td>0.0015<a< td=""><td>0.0005</td><td>7</td><td>NNO2UR</td><td>N02-N</td><td>UNF. REAC</td><td>AS N</td><td>0.040</td><td>0.050</td><td>090.0</td><td>0.050</td><td>0.210</td><td>0.040</td><td>0.310</td><td>0.310</td><td>660.0</td><td>0.068</td><td>0.030</td><td>0.103</td></a<></td></a<></td></t<>	0,0042	0.0018 <a< td=""><td>0.0015<a< td=""><td>0.0005</td><td>7</td><td>NNO2UR</td><td>N02-N</td><td>UNF. REAC</td><td>AS N</td><td>0.040</td><td>0.050</td><td>090.0</td><td>0.050</td><td>0.210</td><td>0.040</td><td>0.310</td><td>0.310</td><td>660.0</td><td>0.068</td><td>0.030</td><td>0.103</td></a<></td></a<>	0.0015 <a< td=""><td>0.0005</td><td>7</td><td>NNO2UR</td><td>N02-N</td><td>UNF. REAC</td><td>AS N</td><td>0.040</td><td>0.050</td><td>090.0</td><td>0.050</td><td>0.210</td><td>0.040</td><td>0.310</td><td>0.310</td><td>660.0</td><td>0.068</td><td>0.030</td><td>0.103</td></a<>	0.0005	7	NNO2UR	N02-N	UNF. REAC	AS N	0.040	0.050	090.0	0.050	0.210	0.040	0.310	0.310	660.0	0.068	0.030	0.103
	REGION: 01	COND25	CONDUCT. 25C UMHO/CM AT 25 C	680.0	627.0	565.0	710.0	751.0	0.499	751.0	659.1	0.000	0.000	ο . 	NNHTUR NH3-N	TOTAL	UNF . REAC	AS N	0.118	0.048	0.037	0.085	0.174	0.007	0.047	0.174	0.068	0.048	0.007	0.055
ES	735975.0 4	COD	CHEM. 0X DEMAND MG/L AS 0	25			110	n		45	32	200	1.9	чм	NIUT	NICKEL	UNF.TOT.	AS NI		0.004 <t< td=""><td>U.003<t< td=""><td>1>900°0</td><td>1>600°0</td><td>D.009<t< td=""><td>0.006<t< td=""><td>0.000</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.003</td><td>0.002<a< td=""></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></t<>	U.003 <t< td=""><td>1>900°0</td><td>1>600°0</td><td>D.009<t< td=""><td>0.006<t< td=""><td>0.000</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.003</td><td>0.002<a< td=""></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	1>900°0	1>600°0	D.009 <t< td=""><td>0.006<t< td=""><td>0.000</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.003</td><td>0.002<a< td=""></a<></td></a<></td></a<></td></t<></td></t<>	0.006 <t< td=""><td>0.000</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.003</td><td>0.002<a< td=""></a<></td></a<></td></a<></td></t<>	0.000	0.006 <a< td=""><td>0.006<a< td=""><td>0.003</td><td>0.002<a< td=""></a<></td></a<></td></a<>	0.006 <a< td=""><td>0.003</td><td>0.002<a< td=""></a<></td></a<>	0.003	0.002 <a< td=""></a<>
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: KETTLE CREEK	U T M: 17 0482500.0 4735975.0	CLIDUR	CHLORIDE UNF.REAC MG/L AS CL	61.400	48.400	46.000	51.500	37.900	34.100	61.400	49.012	36 100	907.45	8	FWTEMP		WATER	DEG.C	1.0		19.0	18.0	19.0	23.0	12.0	23.0	14.9	11.2	1.0	7.3
MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	BODS	5 DAY TOT.DEM. MG/L AS O	0.60	2.64	2.85	1.58	1.37	3.92	3.96	2.32	00.2	1.22	8	FWSTRC		CIDEAM	COND.	9	9	9	9	9	9	9 9					
2	12 50.14	ALKT	ALK TOTAL MG/L AS CACO3	173.0	186.0	143.0	197.0	312.0	243.0	312.0	203.4	163.0	52.2	100	FSMF FECAL	STREPCUS	THU	/100ML	250	>5	10<	52	<009	400AID	1500>	950	413		52	
0.026C002	LONG: 081 12 50.14	FGPROJ	PROJECT SUB-PROJ CODE	0101	0101	0101	0101	0101	0101						FEUT	IRON	UNF. TOT.	AS FE		0.420	0.480	0.450	1.000	0.810	1.000	1.000	0.601 <a< td=""><td>0.449<a< td=""><td>0.050</td><td>0.350<a< td=""></a<></td></a<></td></a<>	0.449 <a< td=""><td>0.050</td><td>0.350<a< td=""></a<></td></a<>	0.050	0.350 <a< td=""></a<>
RIVER FLOW GAUGE FED.02GC002	LAT: 42 46 40.96	FWSADP	SAMPLE DEPTH	0.30	0.30	0.30	0.50	0.30	0.30	0.30	0.30	0.30		8	FCMF	COLIFORM	CNT	/100ML	720	40AID	BOAID	140	1450	400AID	1300	1450	290		040	
	LAT: 42	ST-NAME:	SAMPLE NUMBER	37900	37920	37930	37940	37960	37970	MAXIMUM	ARITH MEAN	MINIMIM	STD DEV (GEOM *)	AMP IN STATISTICS % SAMP (EXCLUDED)	ST-NAME:		SAMPLE	NUMBER	37900	37910	37920	37930	37940	3/950	37970	MAXIMUM	ARITH MEAN	GEOM MEAN	HINIHUM	STD DEV (GEOM *)
STATION TYPE:		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900123 1525			900626 0915				A		STD DEV	# SAMP IN STATISTICS % SAMP (EXCLUDED)	*=INTERIH TEST-NAME:		DATE HOUR	Q		_				900/23 1215	901128 1340		A	1		STD DEV (GEOM *)

STATION ID: 16-0087-016-02

1990 WATER QUALITY DATA REGION 1

SAMPLE POINT: AT ELGIN CO.ROAD NO.16 ST.THOMAS B.O.W./ SITE: KETTLE CREEK

STATION TYPE: RIVER FLOW GAUGE FED. 02GC002

21.564 1660 02 STORET CODE: DISTANCE: REGION: 01 0.0041<A MG/L 0.0064<A 0.0050<A ZINC UNF. TOT. AS ZN 0,0010<T 0,000.0 0.0010 ZNUT 9.000.0 0.000.0 0.0100 0.0130 0.0130 0.0036 U T M: 17 0482500.0 4735975.0 4 RESIDUE MG/L 2.0 PARTIC. 29.8 73.2 25.4 64.2 63.9 61.7 83.5 83.5 57.4 25.4 7 TERM STREAM: KETTLE CREEK MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE PSEUDOMN 불 CNT /100ML AERUG. >4 40C 16 372 372 90 4 37 MG/L AS P PHOSPHOR UNF. TOT 0.095 0.195 0.127 0.120 0.086 0.048 0.102 0.195 0.086 PPUT MG/L AS P PP04UR P04 UNF. REAC LONG: 081 12 50.14 0.029 0.007 0.020 8 0.059 0.037 0.012 0.007 0.028 0.047 0.034 0.061 0.036 0.061 PH 8.13 8.39 8.30 8.30 8.00 7.96 8.17 8.14 7.96 0.15 H LAT: 42 46 40.96 0.005<A 0.005 0.000<A 7 LEAD MG/L 0.005<W 0.005<W 0.005<A 0.005<W 0.005<W 0.005<W UNF. TOT. AS PB 0.005<W 0.005<W 0.005 PBUT 37910 37940 37950 37960 ARITH MEAN SAMPLE NUMBER GEOM MEAN # SAMP IN STATISTICS % SAMP (EXCLUDED) 37900 37920 37930 MAXIMUM MINIMUM STD DEV (GEOM *) *=INTERIM TEST-NAME: 1215 0830 1430 0915 HOUR 1150 901030 1300 901128 1340 900123 1525 LMT YYMINDD 900430 900530 900723 900327 900626 SAMPLE DATE

B.O.W./ SITE: CATFISH CREEK

STATION ID: 16-0097-003-02

1990 WATER QUALITY DATA REGION 1

205	: 02 003 1570	150									
STATION ID: 16-0097-003-02	STORET CODE:	DISTANCE:									
STATION ID		REGION: 01									
	CES E CREEK	U T M: 17 0496250.0 4727550.0 4	ZNUT	ZINC UNF.TOT. MG/L AS ZN	0.0064	0.0005 <w< td=""><td>0.0020<t< td=""><td>0.0005<w< td=""><td>0.0020<t 0.0350</t </td><td>0.0350 0.0076<a 0.0029<a< td=""><td>0.0124<a 7</a </td></a<></a </td></w<></td></t<></td></w<>	0.0020 <t< td=""><td>0.0005<w< td=""><td>0.0020<t 0.0350</t </td><td>0.0350 0.0076<a 0.0029<a< td=""><td>0.0124<a 7</a </td></a<></a </td></w<></td></t<>	0.0005 <w< td=""><td>0.0020<t 0.0350</t </td><td>0.0350 0.0076<a 0.0029<a< td=""><td>0.0124<a 7</a </td></a<></a </td></w<>	0.0020 <t 0.0350</t 	0.0350 0.0076 <a 0.0029<a< td=""><td>0.0124<a 7</a </td></a<></a 	0.0124 <a 7</a
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: CATFISH CREEK	0496250.0	RSP	RESIDUE PARTIC. MG/L	20.4	16.0	11.9	43.7	64.0	123.0	39.1
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	RSF	RESIDUE FILTERED MG/L	485.6	402.0	528.1	398.0	456.0 396.0	528.1 441.4 439.3	46.9 9.90
SPARTA		02 44.83	PSAME	AERUG. MF CNT /100ML	4 4	¥ 3	, 4 , 4	> 5	4 4	44 4	, 1 87
CREEK ROAD 2 MILES EAST OF SPARTA	FLOW GAUGE FED 02GC018	LONG: 081 02 44.83	PPUT	PHOSPHOR UNF.TOT. MG/L AS P	0.115	0.140	0.180	0.126	0.037	0.365 0.132 0.102 0.037	0.107
CREEK ROAD 2 MILE	FLOW GAUGE	LAT: 42 42 08.51	PP04UR	PO4 UNF.REAC MG/L AS P	0.064	0.013	0.050	0.022	0.112	0.112 0.038 0.026 0.007	0.036 8
E: CATFISH		LAT: 4	EST-NAME:	SAMPLE	37905	37925	37945	37955	37975	MAXIMUM ARITH MEAN GEOM MEAN MINIMUM	STD DEV (GEOM *) SAMP IN STATISTICS % SAMP (EXCLUDED)
B.O.W./ SITE: CATFISH CREEK SAMPLE POINT: AT CONC ROAD	STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT		900530 1050	900626 1110	900724 1030	901128 1110		STD DEV (GEOM *) # SAMP IN STATISTICS % SAMP (EXCLUDED)

. . .

STATION ID: 16-0097-005-02

40AID MG/L AS P F CMT PHOSPHOR 24,944 FECAL STREPCUS /100ML UNF. TOT. <0091 16 0.120 0.115 0.175 0.310 0.045 0.315 0.180 0.149 0.045 180 130 095 140 1138 12 0.107 1570 FSMF 000 000 PPUT 0.275 0.315 STORET CODE: DISTANCE: GOAID MG/L AS P P04 UNF. REAC COLIFORN /100ML PPOGUR FECAL <0001 0.188 0.053 0.012 0.129 0.012 210 260 340 0.072 0.054 FCMF 1130 1350 160 1350 559 09 0,088 0.080 990.0 0.084 Hd DISOLVED OXYGEN AS 8.12 8.21 8.01 8.28 8.21 8.19 7.90 8.28 9.2 8.11 7.90 REGION: 01 0.005 0.000<A 8 HG/L LEAD AS PB 0.005<W 0.005<W 0.005<W 0.005<W COPPER 0.005<W 0.005<W 0.005<W 0.005<W 0.005<A 0.005<A AS CU UNF. TOT. MG/L UNF. TOT. 0.0029 0.0050 0.0030 0.0040 0,0040 0.0050 0.0037 0,0029 PBUT 0.005 CUUT 0.0034 0,0036 0.0007 U T M: 17 0496475.0 4735675.0 4 COND25 25C JMH0/CM AT 25 C NNTKUR K'DAHL N UNF . REAC MG/L CONDUCT AS 756.0 795.0 708.0 727.0 714.0 773.0 795.0 728.7 727.5 654.0 TOTAL 0.690 3.650 0.720 1.350 0.680 0.680 3.650 1.157 966.0 0,960 9 TERM STREAM: CATFISH CREEK HAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE MG/L AS N AS CL N-20N CLIDUR CHLORIDE UNF. REAC MG/L NNOSUR UNF. REAC 6.200 6.500 5.886 3.800 2.246 8 37.000 6.700 3.800 3.800 6.200 36.800 67.000 000 34.300 11.010 11,000 52.600 37.000 42.700 44.100 43.937 42.898 11.000 67. MG/L AS N BOD 0 N02-N UNF. REAC MG/L MNO2UR 5 DAY TOT DEM. AS 8.14 1.47 0.60 4.92 0.74 0.080 0.250 0.100 0.070 0.040 0.109 960.0 0.066 8005 1.69 0.140 0,040 CAC03 HG/L z MG/L TOTAL NNHTUR NH3-N TOTAL UNF. REAC 02 35.12 190.0 210.0 1195.0 219.0 225.0 237.0 280.0 280.0 223.1 221.7 190.0 0.017 0.100< 0,145 0.028 0.119 0.081 0.382 ALKT 28.1 0,060 0.017 0.382 35 9 LONG: 081 MATER TEMP FGPRO.3 SUB-PROJ CODE PROJECT FWTEMP DEG.C 18.0 19.0 24.0 12.0 24.0 11.0 1.0 0101 1010 0101 1010 0103 0101 1010 46 31,92 DEPTH FWSADP SAMPLE FWSTRC STREAM COND 0.30 0.30 0.30 0.30 0.30 LAT: 42 SAMPLE 37923 37933 37953 37963 37973 37913 37923 37933 37943 37963 37973 MAXIMUM ARITH MEAN GEON NEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS NUMBER SAMP IN STATISTICS % SAMP (EXCLUDED) SAMPLE 37903 37913 37943 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) NUMBER 37953 % SAMP (EXCLUDED) 37903 TEST-NAME: *=INTERIM TEST-NAME: 1020 1335 1020 0960 1015 1020 HOUR 0955 0960 1015 1045 HOUR 1135 9560 1020 LIIT LMI *=INTERIM YYIIIIDD 900123 900430 900530 900626 901030 YYMMDD 900123 900430 900530 900626 901030 900327 900723 SAMPLE 900327 900723 SAMPLE DATE DATE C2 81

STATION ID: 16-0097-005-02

1990 WATER QUALITY DATA REGION 1

	ORWELL	ELOW CAHEF MOF 02GC110
	. OF	DF
	3 WEST	MICE
CREEK	AY NO	FINE
CATFISH	AT HIGHW	DIVED
B.O.W./ SITE:	SAMPLE POINT: AT HIGHWAY NO 3 WEST OF ORWELL	STATION TVDE

	10
	REGION: 01
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: CAFISH CREEK	U T M: 17 0496475.0 4735675.0 4
AMPLE POINT: AT HIGHWAY NO 3 WEST OF ORWELL TATION TYPE: RIVER FLOW GAUGE MOE O2GC110	LAT: 42 46 31.92 LONG: 081 02 35.12 U T M: 17 0496475.0 4735675.0 4
AMPLE POINT: TATION TYPE:	

STORET CODE: 02 003 1570	DISTANCE: 24.944																	
	REGION: 01																	
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERN STREAM: CATFISH CREEK	U T M: 17 0496475.0 4735675.0 4	ZNUT	UNF.TOT. MG/L	0.0058	0.0032	0.0014 <t< td=""><td>0.0050</td><td>0.0020<t< td=""><td>0.0005<w< td=""><td>0.0010<t< td=""><td>0.0070</td><td>0.0070</td><td>0.0032<a< td=""><td>0.0023<a< td=""><td>0.0005</td><td>0.0024<a< td=""><td>8</td><td></td></a<></td></a<></td></a<></td></t<></td></w<></td></t<></td></t<>	0.0050	0.0020 <t< td=""><td>0.0005<w< td=""><td>0.0010<t< td=""><td>0.0070</td><td>0.0070</td><td>0.0032<a< td=""><td>0.0023<a< td=""><td>0.0005</td><td>0.0024<a< td=""><td>8</td><td></td></a<></td></a<></td></a<></td></t<></td></w<></td></t<>	0.0005 <w< td=""><td>0.0010<t< td=""><td>0.0070</td><td>0.0070</td><td>0.0032<a< td=""><td>0.0023<a< td=""><td>0.0005</td><td>0.0024<a< td=""><td>8</td><td></td></a<></td></a<></td></a<></td></t<></td></w<>	0.0010 <t< td=""><td>0.0070</td><td>0.0070</td><td>0.0032<a< td=""><td>0.0023<a< td=""><td>0.0005</td><td>0.0024<a< td=""><td>8</td><td></td></a<></td></a<></td></a<></td></t<>	0.0070	0.0070	0.0032 <a< td=""><td>0.0023<a< td=""><td>0.0005</td><td>0.0024<a< td=""><td>8</td><td></td></a<></td></a<></td></a<>	0.0023 <a< td=""><td>0.0005</td><td>0.0024<a< td=""><td>8</td><td></td></a<></td></a<>	0.0005	0.0024 <a< td=""><td>8</td><td></td></a<>	8	
	35.12	TURB	TURB'ITY	20.00	15.00	17.40	24.00	30.00	104.00		53.00	104.00	37.63	29.77	15.00	31,93	7	
OF ORWELL OE 02GC110	LONG: 081 02 35.12	RSP	RESIDUE PARTIC.	MG/L	22.5	19.9	27.9	34.3	102.0	19.8	73.9	102.0	40.5	33.3	19.8	30.6	89	
Y NO 3 WEST LOW GAUGE M	LAT: 42 46 31.92	PSEUDOMN AERUG.	CNT	/100ML	1 10	>4	>4>	>4>	>4	>4>	12C	12	11		89		м	62
F AT HIGHWA	LAT: 42		SAMPLE	NUMBER	37913	37923	37933	37943	37953	37963	37973	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	STATISTICS	% SAMP (EXCLUDED)
SAMPLE POINT: AT HIGHWAY NO 3 WEST OF ORWELL STATION TYPE: RIVER FLOW GAUGE MOE 02GC110		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR	YYMMDD LMT	9001227 0955	900430 1020	900530 0950	900626 1015	900723 1335	901030 1020	901128 1045		7			STD DE	# SAMP IN STATISTICS	% SAMP

STATION ID: 16-0097-006-02

34.761

	40 GLENCOLIN
	0 NO 40 G
	ROAD
CREEK	ELGIN COUNTY
ATFISH (ELGIN
CA	AT
SITE	POINT:
B.O.W./	SAMPLE

STORET CODE: 02 003 1570 MAJOR BASIN: GREAT LAKES STATION TYPE: RIVER

	DISTANCE:																			
	REGION: 01																			
MINOR BASIN: LAKE ERIE TERM STREAM: CATFISH CREEK	U T H: 17 0505600.0 4737600.0 4	ZNUT	UNF.TOT.	MG/L	AS ZN	0.0053	0.0047	0.0005 <w< td=""><td>0.0020<t< td=""><td>0.0030</td><td>0.0010<t< td=""><td>0.0030</td><td>0.0020<t< td=""><td>0.0053</td><td>0.0027<a< td=""><td>0.0021<a< td=""><td>0.0005</td><td>0.0017<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<></td></w<>	0.0020 <t< td=""><td>0.0030</td><td>0.0010<t< td=""><td>0.0030</td><td>0.0020<t< td=""><td>0.0053</td><td>0.0027<a< td=""><td>0.0021<a< td=""><td>0.0005</td><td>0.0017<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<></td></t<>	0.0030	0.0010 <t< td=""><td>0.0030</td><td>0.0020<t< td=""><td>0.0053</td><td>0.0027<a< td=""><td>0.0021<a< td=""><td>0.0005</td><td>0.0017<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></t<></td></t<>	0.0030	0.0020 <t< td=""><td>0.0053</td><td>0.0027<a< td=""><td>0.0021<a< td=""><td>0.0005</td><td>0.0017<a< td=""><td></td><td></td></a<></td></a<></td></a<></td></t<>	0.0053	0.0027 <a< td=""><td>0.0021<a< td=""><td>0.0005</td><td>0.0017<a< td=""><td></td><td></td></a<></td></a<></td></a<>	0.0021 <a< td=""><td>0.0005</td><td>0.0017<a< td=""><td></td><td></td></a<></td></a<>	0.0005	0.0017 <a< td=""><td></td><td></td></a<>		
	55 53.50	TURB		TURB'ITY	FTU	16.00	13.90	14.50	13.40	22.00	15.00		65.00	65.00	22.83	19.10	13.40	18.82	7	
	LONG: 080 55 53.50	RSP	RESIDUE	PARTIC.	MG/L	21.5	15.5	31.9	17.6	32.0	27.4	37.5	57.2	57.2	30.1	27.8	15.5	13.3	8	
	LAT: 42 47 34.29	PSAMF PSEUDOMN AERUG.	AN I	CNT	/100ML	>4	>4	>4>		>4	æ	>4	>4	80	æ		æ		1	85
	LAT: 48	EST-NAME:		SAMPLE	NUMBER	37904	37914	37924	37934	37944	37954	37964	37974	MAXIMUM	ARITH MEAN	GEOM MEAN	MINITION	STD DEV (GEOM *)	SAMP IN STATISTICS	% SAMP (EXCLUDED)
		*=INTERIM TEST-NAME:		DATE HOUR	YYMMDD LMT	900123 1155	900327 1030	900430 1030	900530 1020	900626 1035	900724 1000	901030 1040	901128 1000					STD DE	# SAMP IN	% SAMP

STATION ID: 16-0109-004-02

STREAM PSEUDOMN CNT 44.095 COND. AERUG. /100ML 4 >5 PSAME 30 3 2 9 1390 9 M 9 9 9 STORET CODE: DISTANCE: AS P MG/L PHOSPHOR CNT STREPCUS /100ML FECAL JNF. TOT. 1500> 0.260 0.107 0.042 0.115 0.042 0.084 210 290 300 300 20 FSMF 100 PPUT 0.079 0.088 0.260 960.0 20AID 40AID 60AID P04 AS P ¥ CNT UNF. REAC MG/L FECAL COLIFORM /100ML PP04UR 1500> 0.001< 0.059 330 0.042 0.059 0.018 330 113 20 20 0.026 3 0.052 0.039 FCMF 9 REGION: 01 0.0005 0.0019<A 0.0005<W 0.0036<A Hd COPPER AS CU 0.0029<A MG/L UNF. TOT. 0.0040 8.11 8.25 8.24 8.24 8.03 8.33 8.20 8.20 8.03 CUUT 0.0033 0,0060 0.0030 0,0060 8.33 표 0.011<A 0.007<A 0.005 0.014<A 6 LEAD 25C 0.005<W 0.005<W 0.005<W COND25 UMHO/CM AT 25 C UNF. TOT. MG/L AS PB 0.005<W 0.005<W U T M: 17 0517825.0 4738100.0 CONDUCT 631.0 603.0 587.0 606.0 721.0 721.0 644.8 642.5 587.0 60.7 0.039 0.039 PBUT TERM STREAM: BIG OTTER CREEK 9 MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE AS CL MG/L AS N NNTKUR K'DAHL N UNF. REAC CLIDUR CHLORIDE UNF. REAC MG/L 37.500 33.833 27.700 0.760 0.730 1.340 0.912 0.889 0.730 32.900 27.700 37.500 0.840 1.340 0.890 37.100 TOTAL MG/L AS N MG/L 5 DAY 0 NNO3UR N03-N UNF. REAC rot. DEM. AS 2.800 8.700 6.200 8.700 1.58 3.52 2.56 1.23 0.94 1.30 0.29 2.405 1.69 8005 8,200 7.900 6.282 MG/L AS N MG/L TOTAL ALK N02-N JNF . REAC AS CACO3 NNO2UR 264.0 223.0 221.2 196.0 31.4 LONG: 080 46 55,32 200.0 205.0 196.0 211.0 262.0 0.020 0.090 0.240 0.020 0.067 0.080 ALKT 0.240 AS N TOTAL MG/L SUB-PROJ FGPROJ CODE NNHTUR NH3-N UNF . REAC PROJECT 0.001< 0.001< 0.007 0.017 0.114 0101 0103 0101 0.114 0101 0101 0,007 M 0 LAT: 42 47 49.82 DEPTH DEG.C Σ TEMP FWSADP SAMPLE FWTEMP MATER 11.0 12.0 10.0 12.0 8.5 6.0 1.0 5.1 0.30 1.0 36510 36513 SAMPLE 36501 36504 36507 36507 GEOM MEAN SAMP IN STATISTICS SAMPLE NUMBER 36510 36516 MAXIMUM ARITH MEAN GEOM MEAN MINIMUM STD DEV (GEOM *) SAMP IN STATISTICS 36504 36516 MAXIMUM ARITH MEAN MININUM STD DEV (GEOM *) % SAMP (EXCLUDED) % SAMP (EXCLUDED) *=INTERIM TEST-NAME: *=INTERIM TEST-NAME: 900920 1120 901016 1110 901115 1105 1020 1120 1205 1110 1130 HOUR HOUR 1020 901115 1105 LMI LMT YYMINDD 900920 901016 YYIIIIDD 9002006 900209 900517 SAMPLE 900417 900517 SAMPLE 900417 DATE DATE ŧŧ

44.095

02 003 1390

1990 WATER QUALITY DATA REGION 1

STATION ID: 16-0109-004-02	STORET CODE:	DISTANCE:				
STATION ID:		REGION: 01				
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE FERM STREAM: BIG OTTER CREEK	U T M: 17 0517825.0 4738100.0 4	ZNUT	UNF.TOT. MG/L AS ZN	0.0150	0.0070 0.0190 0.0170
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	TURB	TURB'ITY FTU	14.10	24.00
	6	46 55.32	RST	RESIDUE TOTAL MG/L	410.0	
N LINE	FED 02GC01	LONG: 080	RSP	RESIDUE PARTIC. MG/L	11.5	23.8 105.0 63.2
R CREEK BAYHAM TOW	FLOW GAUGE	LAT: 42 47 49.82 LONG: 080 46 55.32	RSF	RESIDUE FILTERED MG/L	398,5	
E: BIG OTTE	E: RIVER	LAT: 4	EST-NAME:	SAMPLE	36501	36510 36513 36513
B.O.W./ SITE: BIG OTTER CREEK SAMPLE POINT: 9TH LINE BAYHAM TOWN LINE	STATION TYPE: RIVER FLOW GAUGE FED 02GC010		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR YYMMDD LMT	900205 1130 900417 1205 900517 1020	

0.0280 0.0148 0.0119 0.0030 0.0089

24.00 19.05 18.40 7.00 2

148.0 61.3 40.4 11.5 55.4

HAXIMUH
ARITH MEAN
GEOM MEAN
HINIMUH
STD DEV (GEON *)
\$\$ SAMP IN STATISTICS
\$\$ SAMP (EXCLUDED)

410.0 410.0 410.0

398.5 398.5 398.5

O.W./ SITE: BIG OTTER CREEK

STATION ID: 16-0109-005-02

STATION ID: 16-0109-005-02

B.O.W./ SITE: BIG OTTER CREEK SAMPLE POINT: AT HIGHWAY 19 SOUTHERN BRIDGE VIENNA

DOS 003 1390	7.081	РІВИСВ	200	BETA	NG/L	1 < W	1 <w< th=""><th>1<w< th=""><th></th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<a< th=""><th>1<a< th=""><th>-</th><th>0<a< th=""><th>un</th><th></th><th>P1HEPE</th><th>CHLOR</th><th>EPOXIDE</th><th>NG/L</th><th>1 < W</th><th>1 < W</th><th>1 < 1</th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<></th></a<></th></a<></th></a<></th></w<></th></w<></th></w<></th></w<>	1 <w< th=""><th></th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<a< th=""><th>1<a< th=""><th>-</th><th>0<a< th=""><th>un</th><th></th><th>P1HEPE</th><th>CHLOR</th><th>EPOXIDE</th><th>NG/L</th><th>1 < W</th><th>1 < W</th><th>1 < 1</th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<></th></a<></th></a<></th></a<></th></w<></th></w<></th></w<>		1 <w< th=""><th>1<w< th=""><th>1</th><th>1<a< th=""><th>1<a< th=""><th>-</th><th>0<a< th=""><th>un</th><th></th><th>P1HEPE</th><th>CHLOR</th><th>EPOXIDE</th><th>NG/L</th><th>1 < W</th><th>1 < W</th><th>1 < 1</th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<></th></a<></th></a<></th></a<></th></w<></th></w<>	1 <w< th=""><th>1</th><th>1<a< th=""><th>1<a< th=""><th>-</th><th>0<a< th=""><th>un</th><th></th><th>P1HEPE</th><th>CHLOR</th><th>EPOXIDE</th><th>NG/L</th><th>1 < W</th><th>1 < W</th><th>1 < 1</th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<></th></a<></th></a<></th></a<></th></w<>	1	1 <a< th=""><th>1<a< th=""><th>-</th><th>0<a< th=""><th>un</th><th></th><th>P1HEPE</th><th>CHLOR</th><th>EPOXIDE</th><th>NG/L</th><th>1 < W</th><th>1 < W</th><th>1 < 1</th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<></th></a<></th></a<></th></a<>	1 <a< th=""><th>-</th><th>0<a< th=""><th>un</th><th></th><th>P1HEPE</th><th>CHLOR</th><th>EPOXIDE</th><th>NG/L</th><th>1 < W</th><th>1 < W</th><th>1 < 1</th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<></th></a<></th></a<>	-	0 <a< th=""><th>un</th><th></th><th>P1HEPE</th><th>CHLOR</th><th>EPOXIDE</th><th>NG/L</th><th>1 < W</th><th>1 < W</th><th>1 < 1</th><th>1<w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<></th></a<>	un		P1HEPE	CHLOR	EPOXIDE	NG/L	1 < W	1 < W	1 < 1	1 <w< th=""><th>1<w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<></th></w<>	1 <w< th=""><th>1</th><th>1<4</th><th>1<a< th=""><th>-</th><th>A>0</th><th>in.</th></a<></th></w<>	1	1<4	1 <a< th=""><th>-</th><th>A>0</th><th>in.</th></a<>	-	A>0	in.
STORET CODE:	DISTANCE:	PIBHCA	STIG	ALPHA	NG/L	1 <w< td=""><td>1<w< td=""><td>1<w< td=""><td></td><td>1<7</td><td>1<w< td=""><td>1</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0 < A</td><td>ın</td><td></td><td>PIEND2</td><td>ENDOSULP</td><td>II</td><td>NG/L</td><td>55<k< td=""><td>N>2</td><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td>1<w< td=""><td></td><td>1<7</td><td>1<w< td=""><td>1</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0 < A</td><td>ın</td><td></td><td>PIEND2</td><td>ENDOSULP</td><td>II</td><td>NG/L</td><td>55<k< td=""><td>N>2</td><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></a<></td></a<></td></w<></td></w<></td></w<>	1 <w< td=""><td></td><td>1<7</td><td>1<w< td=""><td>1</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0 < A</td><td>ın</td><td></td><td>PIEND2</td><td>ENDOSULP</td><td>II</td><td>NG/L</td><td>55<k< td=""><td>N>2</td><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></a<></td></a<></td></w<></td></w<>		1<7	1 <w< td=""><td>1</td><td>1<a< td=""><td>1<a< td=""><td>-</td><td>0 < A</td><td>ın</td><td></td><td>PIEND2</td><td>ENDOSULP</td><td>II</td><td>NG/L</td><td>55<k< td=""><td>N>2</td><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></a<></td></a<></td></w<>	1	1 <a< td=""><td>1<a< td=""><td>-</td><td>0 < A</td><td>ın</td><td></td><td>PIEND2</td><td>ENDOSULP</td><td>II</td><td>NG/L</td><td>55<k< td=""><td>N>2</td><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></a<></td></a<>	1 <a< td=""><td>-</td><td>0 < A</td><td>ın</td><td></td><td>PIEND2</td><td>ENDOSULP</td><td>II</td><td>NG/L</td><td>55<k< td=""><td>N>2</td><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<></td></a<>	-	0 < A	ın		PIEND2	ENDOSULP	II	NG/L	55 <k< td=""><td>N>2</td><td>2<w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></k<>	N>2	2 <w< td=""><td>5<w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	5 <w< td=""><td>5<w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<></td></w<>	5 <w< td=""><td>ru</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<></td></w<>	ru	5 <a< td=""><td>5<a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<></td></a<>	5 <a< td=""><td>ın</td><td>0<a< td=""><td>IA.</td></a<></td></a<>	ın	0 <a< td=""><td>IA.</td></a<>	IA.
	01	PIALDR		ALDRIN	NG/L	1<₩	1 <w< td=""><td>1<w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>រោ</td><td></td><td>PIENDI</td><td>ENDOSULP</td><td>H</td><td>NG/L</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	1 <w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>រោ</td><td></td><td>PIENDI</td><td>ENDOSULP</td><td>H</td><td>NG/L</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>		1 < W	1 < W	1	1 <a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>រោ</td><td></td><td>PIENDI</td><td>ENDOSULP</td><td>H</td><td>NG/L</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	1 <a< td=""><td>1</td><td>0<a< td=""><td>រោ</td><td></td><td>PIENDI</td><td>ENDOSULP</td><td>H</td><td>NG/L</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	1	0 <a< td=""><td>រោ</td><td></td><td>PIENDI</td><td>ENDOSULP</td><td>H</td><td>NG/L</td><td>2 < W</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<>	រោ		PIENDI	ENDOSULP	H	NG/L	2 < W	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<></td></w<>	2 <w< td=""><td>N</td><td>2<a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<></td></w<>	N	2 <a< td=""><td>2<a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<></td></a<>	2 <a< td=""><td>72</td><td>0 < A</td><td>ın</td></a<>	72	0 < A	ın
	REGION: 01	PSAMF PSEUDOMN	AERUG.	CNT	/100ML	>4	>4>	20AID		>4	4	20	12		4		23	09	PIENDS	ENDOSULP	SULPHATE	NG/L	M>5	5 <w< td=""><td>5<w< td=""><td>5<f< td=""><td>5<w< td=""><td>un</td><td>5<a< td=""><td>S<a< td=""><td>LTI</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></f<></td></w<></td></w<>	5 <w< td=""><td>5<f< td=""><td>5<w< td=""><td>un</td><td>5<a< td=""><td>S<a< td=""><td>LTI</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></f<></td></w<>	5 <f< td=""><td>5<w< td=""><td>un</td><td>5<a< td=""><td>S<a< td=""><td>LTI</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></f<>	5 <w< td=""><td>un</td><td>5<a< td=""><td>S<a< td=""><td>LTI</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<>	un	5 <a< td=""><td>S<a< td=""><td>LTI</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<>	S <a< td=""><td>LTI</td><td>0<a< td=""><td>ın</td></a<></td></a<>	LTI	0 <a< td=""><td>ın</td></a<>	ın
CREEK	724700.0 4	PPUT	PHOSPHOR	MG/L	AS P	0.125	980.0	0.590	0.102	0.156	0.070	0.590	0.188	0.139	0.070	0.199	9		PlendR		ENDRIN	NG/L	¥>5	2 <w< td=""><td>3<×E</td><td>3<₩</td><td>5<w< td=""><td>ĸ</td><td>5<a< td=""><td>5<a< td=""><td>រេ</td><td>0<a< td=""><td>ro.</td></a<></td></a<></td></a<></td></w<></td></w<>	3<×E	3<₩	5 <w< td=""><td>ĸ</td><td>5<a< td=""><td>5<a< td=""><td>រេ</td><td>0<a< td=""><td>ro.</td></a<></td></a<></td></a<></td></w<>	ĸ	5 <a< td=""><td>5<a< td=""><td>រេ</td><td>0<a< td=""><td>ro.</td></a<></td></a<></td></a<>	5 <a< td=""><td>រេ</td><td>0<a< td=""><td>ro.</td></a<></td></a<>	រេ	0 <a< td=""><td>ro.</td></a<>	ro.
GREAT LAKES LAKE ERIE BIG OTTER C	U T M: 17 0516940.0 4724700.0 4	PP04UR	PO4	MG/L	AS P	0.049	0.004	0.075	0.033	0.042	0.008	0.075	0.035	0.023	0.004	0.027	9		Plombt	DMDT	MTHXYLLR	NG/L	5 <w< td=""><td>M>5</td><td>2×W</td><td>5<w< td=""><td>5<w< td=""><td>r2</td><td>5<a< td=""><td>5<a< td=""><td>Ŋ</td><td>0<a ,<="" td=""><td>ហ</td></td></a<></td></a<></td></w<></td></w<></td></w<>	M>5	2×W	5 <w< td=""><td>5<w< td=""><td>r2</td><td>5<a< td=""><td>5<a< td=""><td>Ŋ</td><td>0<a ,<="" td=""><td>ហ</td></td></a<></td></a<></td></w<></td></w<>	5 <w< td=""><td>r2</td><td>5<a< td=""><td>5<a< td=""><td>Ŋ</td><td>0<a ,<="" td=""><td>ហ</td></td></a<></td></a<></td></w<>	r2	5 <a< td=""><td>5<a< td=""><td>Ŋ</td><td>0<a ,<="" td=""><td>ហ</td></td></a<></td></a<>	5 <a< td=""><td>Ŋ</td><td>0<a ,<="" td=""><td>ហ</td></td></a<>	Ŋ	0 <a ,<="" td=""><td>ហ</td>	ហ
MAJOR BASIN: GREAT LAKES HINOR BASIN: LAKE ERIE TERM STREAM: BIG OTTER CREEK	U T M: 17	Hd			PN	8.01	8.24	8.01	8.27	8.23	8.21	8.27	8.16	8.16	8.01	0.12	9		PIDIEL		DIELDRIN	NG/L	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0 < A</td><td>Ŋ</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0 < A</td><td>Ŋ</td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0 < A</td><td>Ŋ</td></a<></td></a<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0 < A</td><td>Ŋ</td></a<></td></a<></td></w<></td></w<>	2 <w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0 < A</td><td>Ŋ</td></a<></td></a<></td></w<>	2	2 <a< td=""><td>2<a< td=""><td>2</td><td>0 < A</td><td>Ŋ</td></a<></td></a<>	2 <a< td=""><td>2</td><td>0 < A</td><td>Ŋ</td></a<>	2	0 < A	Ŋ
	47 35.72	PBUT	LEAD UNF.TOT.	HG/L	AS PB	0.005 <w< td=""><td>0.005<w< td=""><td>0.013<t< td=""><td>0.005<w< td=""><td>M>500.0</td><td>0.005<w< td=""><td>0.013</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.005</td><td>0.003<a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></t<></td></w<></td></w<>	0.005 <w< td=""><td>0.013<t< td=""><td>0.005<w< td=""><td>M>500.0</td><td>0.005<w< td=""><td>0.013</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.005</td><td>0.003<a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></t<></td></w<>	0.013 <t< td=""><td>0.005<w< td=""><td>M>500.0</td><td>0.005<w< td=""><td>0.013</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.005</td><td>0.003<a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<></td></t<>	0.005 <w< td=""><td>M>500.0</td><td>0.005<w< td=""><td>0.013</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.005</td><td>0.003<a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	M>500.0	0.005 <w< td=""><td>0.013</td><td>0.006<a< td=""><td>0.006<a< td=""><td>0.005</td><td>0.003<a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	0.013	0.006 <a< td=""><td>0.006<a< td=""><td>0.005</td><td>0.003<a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<></td></a<>	0.006 <a< td=""><td>0.005</td><td>0.003<a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<></td></a<>	0.005	0.003 <a< td=""><td>9</td><td></td><td>PICHLG</td><td>CHLRDANE</td><td>GAMMA</td><td>NG/L</td><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<></td></a<>	9		PICHLG	CHLRDANE	GAMMA	NG/L	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	2 <w< td=""><td>2<w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<></td></w<>	2 <w< td=""><td>2 < W</td><td>N</td><td>2<a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<></td></w<>	2 < W	N	2 <a< td=""><td>2<a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<></td></a<>	2 <a< td=""><td>63</td><td>0<a< td=""><td>in.</td></a<></td></a<>	63	0 <a< td=""><td>in.</td></a<>	in.
FLOW GAUGE FED 02GC004	LONG: 080 47 35.72	NNTKUR K'DAHL N	TOTAL UNF.REAC	MG/L	AS N	0.910	0.700	2.100	0.640	1.040	0.760	2.100	1.025	0.937	0.640	0.546	9		PICHLA	CHLRDANE	ALPHA	NG/L	2 < W	2 <w< td=""><td>2<w< td=""><td>2<k< td=""><td>2<w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>N</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></k<></td></w<></td></w<>	2 <w< td=""><td>2<k< td=""><td>2<w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>N</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></k<></td></w<>	2 <k< td=""><td>2<w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>N</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<></td></k<>	2 <w< td=""><td>2</td><td>2<a< td=""><td>2<a< td=""><td>N</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<></td></w<>	2	2 <a< td=""><td>2<a< td=""><td>N</td><td>0<a< td=""><td>ın</td></a<></td></a<></td></a<>	2 <a< td=""><td>N</td><td>0<a< td=""><td>ın</td></a<></td></a<>	N	0 <a< td=""><td>ın</td></a<>	ın
LOW GAUGE	LAT: 42 40 35.47	NNO3UR	NO3-N UNF.REAC	HG/L	AS N	6.200	4.000	006.9	2.800	7.500	2.400	7.300	5.433	5.161	2.800	1.744	10		РІВНСС	ВНС	GAMMA	NG/L	1 <w< td=""><td>1<w< td=""><td>1<f< td=""><td>1<1</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>iñ</td></a<></td></a<></td></a<></td></f<></td></w<></td></w<>	1 <w< td=""><td>1<f< td=""><td>1<1</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>iñ</td></a<></td></a<></td></a<></td></f<></td></w<>	1 <f< td=""><td>1<1</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>iñ</td></a<></td></a<></td></a<></td></f<>	1<1	1 < W	1	1 <a< td=""><td>1<a< td=""><td>1</td><td>0<a< td=""><td>iñ</td></a<></td></a<></td></a<>	1 <a< td=""><td>1</td><td>0<a< td=""><td>iñ</td></a<></td></a<>	1	0 <a< td=""><td>iñ</td></a<>	iñ
	LAT: 42	ST-NAME:		SAMPLE	NUMBER	36500	36503	36506	36509	26512	36515	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	TATISTICS	SAMP (EXCLUDED)	ST-NAME:		SAMPLE	NUMBER	36500	36503	36506	36512	36515	MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	STD DEV (GEOM *)	AMP IN STATISTICS
STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE	DATE HOUR	YYMMDD LMT	900205 1110	900417 1140	900517 0950	900920 1055	001010	901115 1040		A			STD DEV	# SAMP IN STATISTICS	SAMP (*=INTERIM TEST-NAME:	ш	DATE HOUR	YYMMDD LMI	900205 1110	900417 1140	900517 0950		901115 1040		⋖			STD DEV	# SAMP IN STATISTICS

311	2	E: 02 003 1390	180'2 :	RSF	RESIDUE	FILTERED MG/L		286.6	4.000				286 4	286 6	1.000	386.4		1		X2T236	TDCUIODO	TOLUENE	NG/L	2	3	30		5 <w< th=""><th>5<w< th=""><th>и</th><th>4/4</th><th>4 1 1</th><th>u d d</th><th>0 0</th><th>0 × A</th></w<></th></w<>	5 <w< th=""><th>и</th><th>4/4</th><th>4 1 1</th><th>u d d</th><th>0 0</th><th>0 × A</th></w<>	и	4/4	4 1 1	u d d	0 0	0 × A
	STATION ID: 16-0109-005-02	STORET CODE:	DISTANCE:	P1T0X		I OXAPHEN NG/L	E00/19	M>000	500 <w< td=""><td></td><td>N>005</td><td>M>005</td><td>200</td><td>FOOG</td><td>500<a< td=""><td>500</td><td>0<a< td=""><td>S</td><td></td><td>XZPNCB</td><td>CHIODO</td><td>BENZENE</td><td>NG/L</td><td>3/4</td><td>3 1</td><td>1<w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>-</td><td>1<4</td><td>* < \ -</td><td>4 -</td><td>4/0</td><td>A VOI</td></w<></td></w<></td></w<></td></a<></td></a<></td></w<>		N>005	M>005	200	FOOG	500 <a< td=""><td>500</td><td>0<a< td=""><td>S</td><td></td><td>XZPNCB</td><td>CHIODO</td><td>BENZENE</td><td>NG/L</td><td>3/4</td><td>3 1</td><td>1<w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>-</td><td>1<4</td><td>* < \ -</td><td>4 -</td><td>4/0</td><td>A VOI</td></w<></td></w<></td></w<></td></a<></td></a<>	500	0 <a< td=""><td>S</td><td></td><td>XZPNCB</td><td>CHIODO</td><td>BENZENE</td><td>NG/L</td><td>3/4</td><td>3 1</td><td>1<w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>-</td><td>1<4</td><td>* < \ -</td><td>4 -</td><td>4/0</td><td>A VOI</td></w<></td></w<></td></w<></td></a<>	S		XZPNCB	CHIODO	BENZENE	NG/L	3/4	3 1	1 <w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>-</td><td>1<4</td><td>* < \ -</td><td>4 -</td><td>4/0</td><td>A VOI</td></w<></td></w<></td></w<>		1 <w< td=""><td>1<w< td=""><td>-</td><td>1<4</td><td>* < \ -</td><td>4 -</td><td>4/0</td><td>A VOI</td></w<></td></w<>	1 <w< td=""><td>-</td><td>1<4</td><td>* < \ -</td><td>4 -</td><td>4/0</td><td>A VOI</td></w<>	-	1<4	* < \ -	4 -	4/0	A VOI
	TION ID: 10		0.1	PIPPDT	1 1	NG/L	77 3	3	3 × 50		2 <w< td=""><td>34>50</td><td>Li</td><td>5<a< td=""><td>5 × 5</td><td>5</td><td>0<a< td=""><td>ις.</td><td></td><td>X20CST</td><td>OCTUNIOR</td><td>STYRENE</td><td>NG/L</td><td>3</td><td>1 < W</td><td>1 < W</td><td></td><td>1<1</td><td>1 < K</td><td>1</td><td>1<∆</td><td>1<4</td><td>r, 4</td><td>D<a< td=""><td>X/O LI</td></a<></td></a<></td></a<></td></w<>	34>50	Li	5 <a< td=""><td>5 × 5</td><td>5</td><td>0<a< td=""><td>ις.</td><td></td><td>X20CST</td><td>OCTUNIOR</td><td>STYRENE</td><td>NG/L</td><td>3</td><td>1 < W</td><td>1 < W</td><td></td><td>1<1</td><td>1 < K</td><td>1</td><td>1<∆</td><td>1<4</td><td>r, 4</td><td>D<a< td=""><td>X/O LI</td></a<></td></a<></td></a<>	5 × 5	5	0 <a< td=""><td>ις.</td><td></td><td>X20CST</td><td>OCTUNIOR</td><td>STYRENE</td><td>NG/L</td><td>3</td><td>1 < W</td><td>1 < W</td><td></td><td>1<1</td><td>1 < K</td><td>1</td><td>1<∆</td><td>1<4</td><td>r, 4</td><td>D<a< td=""><td>X/O LI</td></a<></td></a<>	ις.		X20CST	OCTUNIOR	STYRENE	NG/L	3	1 < W	1 < W		1<1	1 < K	1	1<∆	1<4	r, 4	D <a< td=""><td>X/O LI</td></a<>	X/O LI
	STA		REGION: 01	PIPPDE	6	NG/L	1 < W	1 <w< td=""><td>1<w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>1</td><td>1<4</td><td>1<a< td=""><td>1</td><td>0<a< td=""><td>ιΩ</td><td></td><td>XZHCE</td><td></td><td>HCE</td><td>NG/L</td><td>1 < 12</td><td>1 < W</td><td>1<w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	1 <w< td=""><td></td><td>1<w< td=""><td>1<w< td=""><td>1</td><td>1<4</td><td>1<a< td=""><td>1</td><td>0<a< td=""><td>ιΩ</td><td></td><td>XZHCE</td><td></td><td>HCE</td><td>NG/L</td><td>1 < 12</td><td>1 < W</td><td>1<w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<></td></w<></td></a<></td></a<></td></w<></td></w<></td></w<>		1 <w< td=""><td>1<w< td=""><td>1</td><td>1<4</td><td>1<a< td=""><td>1</td><td>0<a< td=""><td>ιΩ</td><td></td><td>XZHCE</td><td></td><td>HCE</td><td>NG/L</td><td>1 < 12</td><td>1 < W</td><td>1<w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<></td></w<></td></a<></td></a<></td></w<></td></w<>	1 <w< td=""><td>1</td><td>1<4</td><td>1<a< td=""><td>1</td><td>0<a< td=""><td>ιΩ</td><td></td><td>XZHCE</td><td></td><td>HCE</td><td>NG/L</td><td>1 < 12</td><td>1 < W</td><td>1<w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<></td></w<></td></a<></td></a<></td></w<>	1	1<4	1 <a< td=""><td>1</td><td>0<a< td=""><td>ιΩ</td><td></td><td>XZHCE</td><td></td><td>HCE</td><td>NG/L</td><td>1 < 12</td><td>1 < W</td><td>1<w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<></td></w<></td></a<></td></a<>	1	0 <a< td=""><td>ιΩ</td><td></td><td>XZHCE</td><td></td><td>HCE</td><td>NG/L</td><td>1 < 12</td><td>1 < W</td><td>1<w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<></td></w<></td></a<>	ιΩ		XZHCE		HCE	NG/L	1 < 12	1 < W	1 <w< td=""><td></td><td>1 < W</td><td>1 < W</td><td>1</td><td>1<a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<></td></w<>		1 < W	1 < W	1	1 <a< td=""><td>1<4</td><td></td><td>0<4</td><td>, L</td></a<>	1<4		0<4	, L
GION 1		CREEK	724700.0 4	PIPPDD	0	NG/L	33	3×K	5 <f< td=""><td></td><td>34 > 5</td><td>5<w< td=""><td>ın</td><td>5<a< td=""><td>5<a< td=""><td>គោ</td><td>0<a< td=""><td>Ŋ</td><td>dollar</td><td>AZHUB</td><td></td><td>HCB</td><td>NG/L</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>;</td><td>M>I</td><td>M>1</td><td>-</td><td>1 < A</td><td>1 < A</td><td>:</td><td>0 < A</td><td>ı,</td></a<></td></a<></td></a<></td></w<></td></f<>		34 > 5	5 <w< td=""><td>ın</td><td>5<a< td=""><td>5<a< td=""><td>គោ</td><td>0<a< td=""><td>Ŋ</td><td>dollar</td><td>AZHUB</td><td></td><td>HCB</td><td>NG/L</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>;</td><td>M>I</td><td>M>1</td><td>-</td><td>1 < A</td><td>1 < A</td><td>:</td><td>0 < A</td><td>ı,</td></a<></td></a<></td></a<></td></w<>	ın	5 <a< td=""><td>5<a< td=""><td>គោ</td><td>0<a< td=""><td>Ŋ</td><td>dollar</td><td>AZHUB</td><td></td><td>HCB</td><td>NG/L</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>;</td><td>M>I</td><td>M>1</td><td>-</td><td>1 < A</td><td>1 < A</td><td>:</td><td>0 < A</td><td>ı,</td></a<></td></a<></td></a<>	5 <a< td=""><td>គោ</td><td>0<a< td=""><td>Ŋ</td><td>dollar</td><td>AZHUB</td><td></td><td>HCB</td><td>NG/L</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>;</td><td>M>I</td><td>M>1</td><td>-</td><td>1 < A</td><td>1 < A</td><td>:</td><td>0 < A</td><td>ı,</td></a<></td></a<>	គោ	0 <a< td=""><td>Ŋ</td><td>dollar</td><td>AZHUB</td><td></td><td>HCB</td><td>NG/L</td><td>1 < W</td><td>1 < W</td><td>1 < W</td><td>;</td><td>M>I</td><td>M>1</td><td>-</td><td>1 < A</td><td>1 < A</td><td>:</td><td>0 < A</td><td>ı,</td></a<>	Ŋ	dollar	AZHUB		HCB	NG/L	1 < W	1 < W	1 < W	;	M>I	M>1	-	1 < A	1 < A	:	0 < A	ı,
ITY DATA RE		MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BIG OTTER CREEK	U T M: 17 0516940.0 4724700.0 4	PIPCBT	PCB	NG/L	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20<w< td=""><td>20 < W</td><td>M>02</td><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>30</td><td>V1020</td><td>HEXACHLO</td><td>ROCYCLOP</td><td>ENTADIEN</td><td>NG/L</td><td></td><td></td><td></td><td></td><td>X > 0</td><td>N V A</td><td>ស</td><td>5<a< td=""><td>5<a< td=""><td></td><td>0 < A</td><td>2</td></a<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20<w< td=""><td>20 < W</td><td>M>02</td><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>30</td><td>V1020</td><td>HEXACHLO</td><td>ROCYCLOP</td><td>ENTADIEN</td><td>NG/L</td><td></td><td></td><td></td><td></td><td>X > 0</td><td>N V A</td><td>ស</td><td>5<a< td=""><td>5<a< td=""><td></td><td>0 < A</td><td>2</td></a<></td></a<></td></a<></td></a<></td></w<></td></w<></td></w<>	20 <w< td=""><td>20<w< td=""><td>20 < W</td><td>M>02</td><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>30</td><td>V1020</td><td>HEXACHLO</td><td>ROCYCLOP</td><td>ENTADIEN</td><td>NG/L</td><td></td><td></td><td></td><td></td><td>X > 0</td><td>N V A</td><td>ស</td><td>5<a< td=""><td>5<a< td=""><td></td><td>0 < A</td><td>2</td></a<></td></a<></td></a<></td></a<></td></w<></td></w<>	20 <w< td=""><td>20 < W</td><td>M>02</td><td>20</td><td>20<a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>30</td><td>V1020</td><td>HEXACHLO</td><td>ROCYCLOP</td><td>ENTADIEN</td><td>NG/L</td><td></td><td></td><td></td><td></td><td>X > 0</td><td>N V A</td><td>ស</td><td>5<a< td=""><td>5<a< td=""><td></td><td>0 < A</td><td>2</td></a<></td></a<></td></a<></td></a<></td></w<>	20 < W	M>02	20	20 <a< td=""><td>20<a< td=""><td>20</td><td>0 < A</td><td>30</td><td>V1020</td><td>HEXACHLO</td><td>ROCYCLOP</td><td>ENTADIEN</td><td>NG/L</td><td></td><td></td><td></td><td></td><td>X > 0</td><td>N V A</td><td>ស</td><td>5<a< td=""><td>5<a< td=""><td></td><td>0 < A</td><td>2</td></a<></td></a<></td></a<></td></a<>	20 <a< td=""><td>20</td><td>0 < A</td><td>30</td><td>V1020</td><td>HEXACHLO</td><td>ROCYCLOP</td><td>ENTADIEN</td><td>NG/L</td><td></td><td></td><td></td><td></td><td>X > 0</td><td>N V A</td><td>ស</td><td>5<a< td=""><td>5<a< td=""><td></td><td>0 < A</td><td>2</td></a<></td></a<></td></a<>	20	0 < A	30	V1020	HEXACHLO	ROCYCLOP	ENTADIEN	NG/L					X > 0	N V A	ស	5 <a< td=""><td>5<a< td=""><td></td><td>0 < A</td><td>2</td></a<></td></a<>	5 <a< td=""><td></td><td>0 < A</td><td>2</td></a<>		0 < A	2
1990 WATER QUALITY DATA REGION 1		MAJOR BASIN: MINOR BASIN: TERM STREAM:	U T M: 17	P10PDT	Tun-do	NG/L	55 × 55	2 <w< td=""><td>5<w< td=""><td>1</td><td>X > 1</td><td>M V</td><td>τU</td><td>5<a< td=""><td>5<a< td=""><td>Ŋ</td><td>0<a< td=""><td>ın</td><td>VIHCED</td><td>ATHERD</td><td>HXCHLORO</td><td>BUTADINE</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>17.1</td><td>MV .</td><td>M</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<></td></w<>	5 <w< td=""><td>1</td><td>X > 1</td><td>M V</td><td>τU</td><td>5<a< td=""><td>5<a< td=""><td>Ŋ</td><td>0<a< td=""><td>ın</td><td>VIHCED</td><td>ATHERD</td><td>HXCHLORO</td><td>BUTADINE</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>17.1</td><td>MV .</td><td>M</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<></td></w<></td></w<></td></a<></td></a<></td></a<></td></w<>	1	X > 1	M V	τU	5 <a< td=""><td>5<a< td=""><td>Ŋ</td><td>0<a< td=""><td>ın</td><td>VIHCED</td><td>ATHERD</td><td>HXCHLORO</td><td>BUTADINE</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>17.1</td><td>MV .</td><td>M</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<></td></w<></td></w<></td></a<></td></a<></td></a<>	5 <a< td=""><td>Ŋ</td><td>0<a< td=""><td>ın</td><td>VIHCED</td><td>ATHERD</td><td>HXCHLORO</td><td>BUTADINE</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>17.1</td><td>MV .</td><td>M</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<></td></w<></td></w<></td></a<></td></a<>	Ŋ	0 <a< td=""><td>ın</td><td>VIHCED</td><td>ATHERD</td><td>HXCHLORO</td><td>BUTADINE</td><td>NG/L</td><td>1 < W</td><td>1<w< td=""><td>1<w< td=""><td>17.1</td><td>MV .</td><td>M</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<></td></w<></td></w<></td></a<>	ın	VIHCED	ATHERD	HXCHLORO	BUTADINE	NG/L	1 < W	1 <w< td=""><td>1<w< td=""><td>17.1</td><td>MV .</td><td>M</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<></td></w<></td></w<>	1 <w< td=""><td>17.1</td><td>MV .</td><td>M</td><td>1</td><td>1<a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<></td></w<>	17.1	MV .	M	1	1 <a< td=""><td>1<a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<></td></a<>	1 <a< td=""><td>1</td><td>0 < A</td><td>I.O.</td></a<>	1	0 < A	I.O.
1990	VIENNA		47 35.72	PIOCHL	OXCHI ANE	NG/L	2 < W	2 <w< td=""><td>2<w< td=""><td></td><td>X 3 X</td><td>MSZ</td><td>63</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0<a< td=""><td>LIT</td><td>THIRE</td><td>QUO</td><td></td><td>TURB'ITY</td><td>FTU</td><td>35.00</td><td></td><td></td><td>38.00</td><td></td><td></td><td>38.00</td><td>36.50</td><td>36.47</td><td>35.00</td><td>2.12</td><td>2</td></a<></td></a<></td></a<></td></w<></td></w<>	2 <w< td=""><td></td><td>X 3 X</td><td>MSZ</td><td>63</td><td>2<a< td=""><td>2<a< td=""><td>2</td><td>0<a< td=""><td>LIT</td><td>THIRE</td><td>QUO</td><td></td><td>TURB'ITY</td><td>FTU</td><td>35.00</td><td></td><td></td><td>38.00</td><td></td><td></td><td>38.00</td><td>36.50</td><td>36.47</td><td>35.00</td><td>2.12</td><td>2</td></a<></td></a<></td></a<></td></w<>		X 3 X	MSZ	63	2 <a< td=""><td>2<a< td=""><td>2</td><td>0<a< td=""><td>LIT</td><td>THIRE</td><td>QUO</td><td></td><td>TURB'ITY</td><td>FTU</td><td>35.00</td><td></td><td></td><td>38.00</td><td></td><td></td><td>38.00</td><td>36.50</td><td>36.47</td><td>35.00</td><td>2.12</td><td>2</td></a<></td></a<></td></a<>	2 <a< td=""><td>2</td><td>0<a< td=""><td>LIT</td><td>THIRE</td><td>QUO</td><td></td><td>TURB'ITY</td><td>FTU</td><td>35.00</td><td></td><td></td><td>38.00</td><td></td><td></td><td>38.00</td><td>36.50</td><td>36.47</td><td>35.00</td><td>2.12</td><td>2</td></a<></td></a<>	2	0 <a< td=""><td>LIT</td><td>THIRE</td><td>QUO</td><td></td><td>TURB'ITY</td><td>FTU</td><td>35.00</td><td></td><td></td><td>38.00</td><td></td><td></td><td>38.00</td><td>36.50</td><td>36.47</td><td>35.00</td><td>2.12</td><td>2</td></a<>	LIT	THIRE	QUO		TURB'ITY	FTU	35.00			38.00			38.00	36.50	36.47	35.00	2.12	2
	BIG OTTER CREEK AT HIGHWAY 19 SOUTHERN BRIDGE VIENNA	FLOW GAUGE FED 02GC004	LONG: 080 47 35.72	PIMIRX	MIREX	NG/L	5 <w< td=""><td>5<w< td=""><td>N>5</td><td>2</td><td>V 1</td><td>r n</td><td>in</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0 < A</td><td>in</td><td>RST</td><td></td><td>RESIDUE</td><td>TOTAL</td><td>MG/L</td><td></td><td>0.555</td><td></td><td></td><td></td><td></td><td>0.555</td><td>0.444</td><td></td><td>0.555</td><td></td><td>1</td></a<></td></a<></td></w<></td></w<>	5 <w< td=""><td>N>5</td><td>2</td><td>V 1</td><td>r n</td><td>in</td><td>5<a< td=""><td>5<a< td=""><td>ın</td><td>0 < A</td><td>in</td><td>RST</td><td></td><td>RESIDUE</td><td>TOTAL</td><td>MG/L</td><td></td><td>0.555</td><td></td><td></td><td></td><td></td><td>0.555</td><td>0.444</td><td></td><td>0.555</td><td></td><td>1</td></a<></td></a<></td></w<>	N>5	2	V 1	r n	in	5 <a< td=""><td>5<a< td=""><td>ın</td><td>0 < A</td><td>in</td><td>RST</td><td></td><td>RESIDUE</td><td>TOTAL</td><td>MG/L</td><td></td><td>0.555</td><td></td><td></td><td></td><td></td><td>0.555</td><td>0.444</td><td></td><td>0.555</td><td></td><td>1</td></a<></td></a<>	5 <a< td=""><td>ın</td><td>0 < A</td><td>in</td><td>RST</td><td></td><td>RESIDUE</td><td>TOTAL</td><td>MG/L</td><td></td><td>0.555</td><td></td><td></td><td></td><td></td><td>0.555</td><td>0.444</td><td></td><td>0.555</td><td></td><td>1</td></a<>	ın	0 < A	in	RST		RESIDUE	TOTAL	MG/L		0.555					0.555	0.444		0.555		1
	R CREEK AY 19 SOUTH	FLOW GAUGE	LAT: 42 40 35,47	PIHEPT	HEPACHOR	NG/L	1 <w< td=""><td>1<1</td><td>3 < 12</td><td>1</td><td>37.7</td><td>H . T</td><td>=</td><td>1<4</td><td>1<a< td=""><td></td><td>0 < A</td><td>ď</td><td>RSP</td><td></td><td>RESIDUE</td><td>PARTIC.</td><td>1/8/L</td><td>39.9</td><td>57.6</td><td>390.0</td><td>0 1 10</td><td>7.60</td><td></td><td>390.0</td><td>111.2</td><td>74.4</td><td>39.9</td><td>137.5</td><td>9</td></a<></td></w<>	1<1	3 < 12	1	37.7	H . T	=	1<4	1 <a< td=""><td></td><td>0 < A</td><td>ď</td><td>RSP</td><td></td><td>RESIDUE</td><td>PARTIC.</td><td>1/8/L</td><td>39.9</td><td>57.6</td><td>390.0</td><td>0 1 10</td><td>7.60</td><td></td><td>390.0</td><td>111.2</td><td>74.4</td><td>39.9</td><td>137.5</td><td>9</td></a<>		0 < A	ď	RSP		RESIDUE	PARTIC.	1/8/L	39.9	57.6	390.0	0 1 10	7.60		390.0	111.2	74.4	39.9	137.5	9
	E: BIG OTTE T: AT HIGHW		LAT: 4	TEST-NAME:	SAMPLE	NUMBER	36500	36503	36506	36509	36515		MAXIMUM	ARITH MEAN	GEOM MEAN	MINIMUM	SID DEV (GEOM *)	% SAMP (EXCLUDED)	TEST-NAME:			SAMPLE	NUMBER	36500	36503	36506	36512	36515		MAXIMUM	MALIH MEAN	GEOM MEAN	MINIHUM	SID DEV (GEOM *)	AMP IN STATISTICS
	B.O.W./ SITE: BIG OTTER CREEK SAMPLE POINT: AT HIGHWAY 19 S	STATION TYPE:		*=INTERIM TE	SAMPLE DATE HOUR	YYMNDD LMT			900517 0950	901016 1050	901115 1040			•		24.0	* CAMP THE	% SAMP IN	*=INTERIM TE		ш	DATE HOUR	THIND LINE			900517 0950 900920 105E		901115 1040			ď		4	SID DEV	# SAMP IN STATISTICS

1990 WATER QUALITY DATA REGION 1

	BIG OTTER CREEK AT HIGHWAY 19 SOUTHERN BRIDGE VIENNA	HERN BRIDGE	VIENNA				ST/	ATION ID: 1	STATION ID: 16-0109-005-02	
STATION TYPE: RIVER	R FLOW GAUGE	FLOW GAUGE FED 02GC004		MAJOR BASIN: MINOR BASIN: TERM STREAM:	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BIG OTTER CREEK	CREEK			STORET CODE: 02 003	02 003 1390
LA	LAT: 42 40 35.47	LONG: 080 47 35.72	47 35.72	U T M: 17	U T M: 17 0516940.0 4724700.0 4	724700.0 4	REGION: 01	10	DISTANCE:	7.081
*=INTERIM TEST-NAME: SAMPLE DATE HOUR SAMPL YYMNDD LMT NUMBE	NAME: X2T245 2,4,5 TRCHLORO SAMPLE TOLUENE NUMBER NG/L	X2T26A 2,6,A TRCHLORO TOLUENE NG/L	X2123 1,2,3 TRCHLORO BENZENE NG/L	X21234 1,2,3,4 TECHLORO BENZENE NG/L	X21235 1,2,3,5 TECHLORO BENZENE NG/L	X2124 1,2,4 TRCHLORG BENZENE NG/L	X21245 1,2,4,5 TECHLORO BENZENE NG/L	X2135 1,3,5 TRCHLORO BENZENE NG/L	ZNUT ZINC UNF.TOT. MG/L AS.ZN	
900205 1110 36 900417 1140 36 900517 0950 36 900320 1055 36 901016 1050 36	36500 5 <w 36503 5<w 36506 5<w 36509 5<w 36512 5<w< td=""><td>3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.</td><td>333 33 000 000</td><td>E E E E E</td><td>1</td><td>**** *** *****************************</td><td>***************************************</td><td>333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>0.0200 0.0006<t 0.0400 0.0220 0.0170</t </td><td></td></w<></w </w </w </w 	3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	333 33 000 000	E E E E E	1	**** *** *****************************	***************************************	333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.0200 0.0006 <t 0.0400 0.0220 0.0170</t 	
MAXIMUM ARITH MEAN GEOM MEAN HINIMUM STD DEV (GEOM *) SAMP IN STATISTICS Z. SAMP (FXCLUDEN)	MUM 55 CA EAN 55 CA EAN 55 CA MUM 55 CA EN 55 CA	12 (N	11 10 10 10 10 10 10 10 10 10 10 10 10 1	11 11 11 11 11 11 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 (12 (12 (12 (12 (12 (12 (12 (12 (12 (0.0400 0.0229 <a 0.0138<a 0.0006 0.0146<a< td=""><td></td></a<></a </a 	

20-200-601	STORET CODE: 02 003 1390	DISTANCE: 78.373		FECAL STREPCUS MF	CNT STREAM	•	600>			110	0	312		110		4	20	DDIIT	PS	AER	UNF.TOT. MF	AS P /100ML					>5 TOTO		0.158 12	0.096 12	0.089	0.048 12	0.040	
STATION ID: 16-0109-007-02	S	01		FECAL COLIFORM ST MF	CNT /100ML	٩	<009	400	260	40AID	000	176)	4		4	20	PPO411R			UNF.REAC UN	AS P				0.024							017	
STA		REGION: 01	CUUT	COPPER UNF.TOT.	MG/L AS CU	0.0042	0.0040	0.0020 <t< td=""><td>0.0040</td><td>0.0050</td><td>0.0050</td><td>0.0038<4</td><td>0.0037<a< td=""><td>0.0020</td><td>0.0011<a< td=""><td>ro</td><td></td><td>ЬН</td><td></td><td></td><td></td><td>Н</td><td>7 96</td><td>700</td><td>46.7</td><td>8 05</td><td>8.15</td><td></td><td>8.15</td><td>8.03</td><td>8.03</td><td>7.94</td><td>0.09</td><td>LE</td></a<></td></a<></td></t<>	0.0040	0.0050	0.0050	0.0038<4	0.0037 <a< td=""><td>0.0020</td><td>0.0011<a< td=""><td>ro</td><td></td><td>ЬН</td><td></td><td></td><td></td><td>Н</td><td>7 96</td><td>700</td><td>46.7</td><td>8 05</td><td>8.15</td><td></td><td>8.15</td><td>8.03</td><td>8.03</td><td>7.94</td><td>0.09</td><td>LE</td></a<></td></a<>	0.0020	0.0011 <a< td=""><td>ro</td><td></td><td>ЬН</td><td></td><td></td><td></td><td>Н</td><td>7 96</td><td>700</td><td>46.7</td><td>8 05</td><td>8.15</td><td></td><td>8.15</td><td>8.03</td><td>8.03</td><td>7.94</td><td>0.09</td><td>LE</td></a<>	ro		ЬН				Н	7 96	700	46.7	8 05	8.15		8.15	8.03	8.03	7.94	0.09	LE
	CES CREEK	756950.0 4	COND25	CONDUCT. 25C	UMHO/CM AT 25 C	0.099	590.0	587.0	709.0	709.0	709.0	651.0	648.7	587.0	60.5	NT)		PBUT		INE TOT	. HG/1	AS PB	W-200	M/2000	M/200.0	0.005 <w< td=""><td>0.005<w< td=""><td></td><td>0.005</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.002</td><td>U.000<a< td=""><td>T.</td></a<></td></a<></td></a<></td></w<></td></w<>	0.005 <w< td=""><td></td><td>0.005</td><td>0.005<a< td=""><td>0.005<a< td=""><td>0.002</td><td>U.000<a< td=""><td>T.</td></a<></td></a<></td></a<></td></w<>		0.005	0.005 <a< td=""><td>0.005<a< td=""><td>0.002</td><td>U.000<a< td=""><td>T.</td></a<></td></a<></td></a<>	0.005 <a< td=""><td>0.002</td><td>U.000<a< td=""><td>T.</td></a<></td></a<>	0.002	U.000 <a< td=""><td>T.</td></a<>	T.
	MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BIG OTTER CREEK	U T M: 17 0537300.0 4756950.0 4	CLIBUR	CHLORIDE UNF.REAC	MG/L AS CL	36.800	28.100	25.600	33.300	30.300	36.800	30,820	30.573	25,600	4.383	ı.n		NNTKUR	K'DAHL N	TINE BEAC	MG/L	AS N	0.820	1.400	0.770	0.870	0.770	9	004.1	0.926	106.0 0.770	0.770	007.0	n
	MAJOR BASIN MINOR BASIN TERM STREAM	U T M: 17	8005	5 DAY TOT.DEM.	AS O	1.38	2.56	2.16	1.18	0.00	2.56	1.63	1.51	0.88	0.70	ın		NNO3UR	14 7014	UNF. RFAC	MG/L	AS N	6,600	7.900	2.100	7.000	5.000	1	000.	027.6	2,500	2 280	007	5
C		32 33.51	ALKT	ALK	AS CACO3	208.0	197.0	224.0	248.0	0.003	268.0	229.0	227.5	197.0	0.62	л		NNO2UR	W. COM	UNF. REAC	MG/L	AS N	0.030	0.370	0,040	0.100	0.110	0 220	0.00	0.130	0200	0.030		
PE BASE LINE	FLOW GAUGE FED 02GC017	LONG: 080 32 33.51	FGPROJ	PROJECT	CODE	0101	0103	0101	0101	4040								NNHTUR	NH3-N TOTAL	UNF. REAC	MG/L	AS N	0.085	0.001<	0.011	0.003	0.009	0 085	0 0 27	2000	0.003		4	
R CREEK	FLOW GAUGE	LAT: 42 57 58.39	FWSADP	SAMPLE	M	0.30	0.30	0.30	0.30		0.30	0.30		0.30		n		FWTEMP		WATER	TEMP	DEG.C	1.0	12.0	12.0	10.0		12.0	2 4	6.2	1.0	M.	*	
B.O.W./ SITE: BIG OTTER CREEK SAMPLE POINT: AT NORMICH RD.6 F.OF RASE IINE DD	E: RIVER	LAT: 4	EST-NAME:	II ONA S	NUMBER	36502	36508	26511	36517		MAXIMUM	ARITH MEAN	GEOR MEAN	STD DEV (GEOM *)	STATISTICS	SAMP (EXCLINED)		EST-NAME:			SAMPLE	NUMBER	36502	36508	36511	36514	36517	MAXIMUM	ARITH MEAN	GEOM MEAN	HIMINUM	STD DEV (GEOM *)	SAMP IN STATISTICS	the state of the s
B.O.W./ SIT	STATION TYPE: RIVER		*=INTERIM TEST-NAME:	SAMPLE DATE HOUR	0		900517 1215	901016 1150						STD DE	# SAMP IN STATISTICS	Z SAMP		*=INTERIM TEST-NAME:		ш		YYMNDD LMT		900517 1215	900920 1215		901115 1210		4			STD DEV	# SAMP IN S	

78.373

DISTANCE:

REGION: 01

1390

STORET CODE:

STATION ID: 16-0109-007-02

1990 WATER QUALITY DATA REGION 1

	BD.	
	LINE	2000
	BASE	200 0
	E.0F	20 20
CREEK	RD.6	DEL CALL
B.O.W./ SITE: BIG OTTER CREEK	SAMPLE POINT: AT NORWICH RD.6 E.OF BASE LINE	, L1 /
BIG	AT N	DIVE
SITE:	POINT:	TVDE
3.0.W./	SAMPLE	TATTON
-	0,	•

STATION TYPE: RIVER FLOW GAUGE FED 02GC017

MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: BIG OTTER CREEK

U T M: 17 0537300.0 4756950.0 4 ZNUT MG/L AS ZN UNF. TOT. LONG: 080 32 33.51 0.0140 0.0140 0.0040 0.0190 0.0190 0.0132 0.0117 0.0040 0.0055 TURB'ITY FTU TURB 9.40 13.20 13.20 11.30 11.14 9.40 2.69 LAT: 42 57 58.39 RESIDUE PARTIC. MG/L 8.9 37.8 18.5 20.6 83.7 83.7 33.9 25.5 8.9 29.7 RSP SAMPLE 36502 36514 36511 STD DEV (GEOM *)
SAMP IN STATISTICS
% SAMP (EXCLUDED) MAXIMUM ARITH MEAN GEOM MEAN MINIMUM *=INTERIM TEST-NAME: 900205 1240 900517 1215 900920 1215 901016 1150 901115 1210 HOUR **УУММОВ СМТ** SAMPLE

Decided Deci	COD	COD	AT FIRST CONG ROAD SOUTH OF NEW DUNDEE RIVER FLOW GAUGE FED 02CA030 MINOR BASIN: GREAT LAKES RIVER TERM STREAM: GRAND RIVER
CAUR CLIDUR COD CONDES DO CALCIUM CHLORIDE CHEM.ON AS CA AS CL. AS O AT 25 C AS O 1109.00 56.40 14.6 818 12.60 1111.00 53.50 10.2 808 14.40 45.10 23.60 32.0 36.1 12.80 99.70 42.50 17.6 90 10.20 117.00 74.90 32.0 9.7 730 11.05 117.00 74.90 32.0 9.7 730 11.05 117.00 74.90 32.0 9.1 12.09 117.00 74.90 32.0 9.1 11.87 96.13 47.59 14.6<4 720 47.59 14.6<4 720 47.59 14.6<4 720 47.59 14.6<4 720 47.59 14.6<4 720 47.59 14.6<4 720 47.59 14.6<4 720 47.59 14.6<4 720 47.59 17.6 4 7.6 5 11.70 FWSTRC FWTEMP IONCAL KKUR HGNESIH NATER ION UNF.REAC FILERAC COND. DEG.C CALC. AS K B660 8 4.5 1.7580 26.100 8 4.5 1.7580 26.100 8 4.5 1.7580 26.100 8 19.2 0.000 NAF 2.270 26.100 8 19.2 0.000 NAF 2.270 26.100 8 19.2 0.000 NAF 3.107 27.900 8 19.2 0.000 NAF 3.107 27.900 8 10.7 1.494 3.107 27.91 10.7 1.494 3.107 27.91 10.7 1.494 3.107 27.91 10.7 1.494 3.107 27.91 10.7 1.494 3.107 27.900 8 8 2.950 8.660 10.7 1.76 4.558 2.100 10.7 1.494 3.107 27.900 8 8 2.950 8.660 10.7 1.494 3.107 27.900 8 9 9.0000 NAF 3.107 27.900 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	CAUR CLIDUR COD CONDES DO CALCIUM CHLORIDE CHEM OX COMDUCT. DISOLVED UNF.REAC UNF.REAC DEMAND COD TYGEN BOX.L AS CL. AS CL. AS D AT 25 C AS D 110.00 53.30 10.2 808 14.40 45.10 23.60 32.0 36.1 12.80 97.20 42.50 17.6 99.2 11.05 117.00 44.20 17.6 704 9.20 117.00 74.90 32.0 52.1 11.87 96.13 47.59 12.74 720 11.07 117.00 74.90 32.0 951 14.67 117.00 74.90 32.0 951 14.67 96.13 47.59 14.66 11.77 45.10 23.60 32.6 9.7 11.87 92.97 47.59 12.74 720 11.77 92.97 47.59 12.74 720 11.77 96.13 47.59 12.74 720 11.77 45.10 23.60 4.60 10.4 721 11.87 92.97 47.59 12.74 720 11.77 92.97 47.59 12.74 720 11.77 45.10 74.90 9.7 951 14.40 96.13 47.59 12.74 720 11.77 45.10 74.90 9.7 951 14.60 82.60 32.60 951 11.77 45.10 0.40 11.77 46.10 0.40 11.77 47.10 0.000 NAF 2.250 26.100 88 3.9 0.2367 2.950 26.100 89 2.20 30.400 10.7 1.464 3.107 24.918 89 2.20 0.000 NAF 2.20 26.200 89 2.20 0.000 NAF 3.000 26.753 10.7 1.464 3.107 24.918 89 2.20 0.000 NAF 3.000 26.269 90 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	CAUR CLIDUR COD COND25 DO CALCIUM CHLORIDE CHEM ON CONDUCT. DISOLVED UNF. REAC UNF. REAC DEHAND COD TO CONDUCT. DISOLVED AS CA AS CL. AS D. AT 25 C AS D. 10.02 808 14.40 45.10 53.30 10.2 808 14.40 45.10 53.50 32.0 36.1 12.80 96.40 45.50 10.7 690 10.20 77.10 41.40 21.7 690 10.20 77.10 41.40 21.7 690 11.05 117.00 46.60 10.4 792 11.05 117.00 74.90 32.0 951 11.87 95.13 75 9 14.66 721 11.87 95.13 75 99.70 41.20 41.20 117.00 74.90 32.0 951 11.87 95.13 75 99.20 117.00 74.90 32.0 951 11.87 95.13 75 99.20 117.00 74.90 9.7 991 11.87 95.13 75 99.20 117.00 74.90 32.00 951 11.87 95.13 75 99.20 117.00 74.90 9.7 991 11.87 95.13 75 99.20 11.70 23.60 4.4 20 4.4 20 45.10 23.60 4.4 20 46.20 6.4 20 951 11.87 99.20 99.20 99.20 11.70 74.90 9.7 991 11.87 99.20 7.80 860 80.20 8.20 8.20 8.20 10.72 4.53 8.20 8.20 10.73 6.50 860 80.73 1.73 8.70 8.60 80.80 8.20 8.20 10.73 1.73 8.70 8.60 80.80 8.20 8.20 10.73 1.74 84 3.107 24.918 80.90 9.90 9.90 9.90 9.80 60.80 9.70 9.70 9.70 10.7 1.484 3.107 24.918 80.90 9.70 9.70 9.70 10.7 1.484 3.107 24.918 80.90 9.70 0.000 NAF 3.000 8.20 80.90 9.70 0.60 9673 6.269	LAT: 43 20 34.91 LONG: 080 31 54.49 U T M
CALCTUM CHLORIDE CHEM. OX COMDUCT. DISOLVED UNF. REAC DEMAND 25C OXYGEN HG/L HG/L AS CL AS CL AS O AT 25 C AS O 1109.00 55.30 . 10.2 808 14.40 45.10 23.60 32.0 361 12.80 99.70 44.20 10.7 633 11.10 99.70 44.20 10.7 633 11.10 99.70 44.20 10.7 633 11.10 99.70 44.20 10.7 633 11.10 99.70 44.20 32.0 361 12.80 117.00 74.90 32.0 951 11.87 96.13 47.59 12.7<4 721 11.87 96.13 47.59 12.7<4 721 11.87 96.13 47.59 12.7<4 721 11.87 92.52 13.75 8.2<4 163 1.63 92.52 13.75 8.2<4 163 1.63 93.90 0000 NAF REAC FILLERAC FILLERAC COND. B 3.9 3.9 0.2367 2.950 26.100 8 3.9 0.2367 2.950 26.100 8 3.9 0.2367 2.950 26.100 8 3.9 0.000 NAF 2.250 26.100 8 10.7 1.76 4.538 2.10 27.90 8 10.7 1.76 4.538 2.10 27.90 8 10.7 1.76 4.538 2.10 27.90 8 10.7 1.76 4.538 2.10 27.91 19.2 0.000 NAF 3.107 24.918 10.7 1.404 3.107 24.918 10.7 1.404 3.107 24.918 10.7 1.404 3.107 24.918 10.7 1.404 3.107 24.918 10.7 1.404 3.107 2.27 9.205 9.207 9.2	CALCTUM CHLORIDE CHEM. OX CONDUCT. DISOLVED UNF. REAC DEMAND 25C OXYGEN HG/L HG/L AS CL AS O AT 25 C AS O 111.00 55.30 10.2 808 14.40 45.10 23.60 32.0 361 12.80 97.90 44.20 41.40 21.7 633 11.10 97.90 44.20 21.7 633 11.10 97.90 44.20 17.6 773 11.00 97.90 44.20 9.7 951 12.09 117.00 74.90 32.0 951 14.40 96.13 77.90 46.60 10.4 792 11.87 95.17 64.90 9.7 951 11.87 95.18 47.59 12.7<4 700 11.77 95.19 23.60 32.0 951 14.40 95.17 64.90 9.7 951 11.87 95.19 46.75 12.7<4 700 11.77 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 95.10 23.60 9.7 951 11.87 97.90 44.5 1.9550 2.550 8.600 97.90 NAF 2.270 26.100 97.90 NAF 2.270 26.100 97.90 NAF 2.270 26.100 97.90 NAF 2.270 26.100 97.90 9.7 9.9 9.9 9.9 9.9 9.0	CALCTUM CHLORIDE CHEM OX COMDUCT. DISOLVED UNF. REAC DEMAND 25C OXYGEN MG/L HG/L AS CL AS O AT 25 C AS O 1109.00 55.30 . 14.6 818 12.60 45.10 55.30 . 10.2 808 14.40 45.10 55.30 . 10.7 890 112.00 99.70 44.20 10.7 633 111.10 99.70 44.20 10.7 633 111.10 99.70 44.20 10.7 633 111.10 99.70 44.20 10.7 633 111.10 99.70 44.20 10.7 633 111.10 99.70 44.20 10.4 792 11.05 117.00 74.90 32.0 951 14.40 96.13 47.59 12.7 47 720 11.07 45.10 23.60 9.7 951 11.87 45.10 23.60 4.4 46.77 720 11.77 45.10 4.50 9.7 951 11.87 45.10 23.60 4.4 46.7 720 11.77 45.10 74.90 9.7 951 11.87 45.10 8.2 6.00 8 4.5 7.5 12.7 4 77 11.7 00 74.90 9.7 951 11.87 45.10 0.7 99.0 11.7 00 74.90 9.7 951 11.87 45.10 0.7 951 11.87 46.10 9.7 9.7 951 11.87 46.10 9.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 951 11.87 46.10 0.7 9.7 90 0.7 900 NAF 3.0400 10.7 1.7 94 5.10 0.873 6.269 6.8 9.9 9.9 9.9 9.859 6.0 0.0 0.0 NAF 3.00 0.873 6.269 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.873 6.269 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	FWSADP FGPROJ ALKT BOD5
UNF. FRAC UNF. REAC DEHAND 25C OXYGEN HG/L HG/L AS CL	UNF. FRAC UNF. REAC DEHAND 25C OXYGEN HBC/L AS CL AS CL AS O AT 25 C AS O 1109.00 55.30 10.2 808 14.40 55.30 10.2 808 14.40 55.30 10.2 808 14.40 55.30 10.2 808 14.40 55.30 10.2 808 14.40 55.30 10.2 80.8 11.10 65.30 10.2 80.8 11.10 65.30 10.2 80.8 11.10 65.30 10.2 80.8 11.10 65.30 10.2 80.8 11.10 65.30 10.4 6.60 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.65 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 11.87 92.0 9.7 95.1 10.2 9.7 90.0 NAF 2.50 26.1 00.0 10.7 1.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.0 9.0 9	UNF. FRAC UNF. REAC DEHAND 25C OXYGEN HG/L AS CL AS CL AS O T 25 C OXYGEN HG/L AS CL AS O T 25 C OXYGEN HG/L AS CL AS O T 25 C	ALK 5
109,00 56,40 14,6 818 12,60 111,00 53,30 10,2 808 14,40 15,10 53,60 32,0 36,1 12,80 95,10 41,40 10,7 633 11,10 97,70 42,20 17,6 704 9,20 97,70 46,60 10,4 792 11,00 112,00 74,90 32,0 951 14,40 12,00 74,90 32,0 951 14,40 13,00 74,90 32,0 951 11,87 45,10 23,60 4,4 361 9,20 45,10 23,60 4,4 361 9,20 45,10 23,60 4,4 361 9,20 45,10 23,60 4,4 361 9,20 46,10 23,60 4,4 361 9,20 47,5 11,75 8,20 2,950 25,600 8 3,9 1,7380 5,260 26,100 8 4,3 1,7380 5,260 26,700 8 8 4,5 1,955 3,110 27,900 9 9 9 9,20 2,135 10,7 11,9 1,734 2,110 27,900 10,7 1,484 3,107 24,918 10,7 1,484 3,107 24,918 10,7 1,484 3,107 24,918 10,7 1,484 3,107 24,918 10,7 1,484 3,107 24,918 10,7 1,484 3,107 24,918 10,7 1,484 3,107 2,200 10,7 1,484 3,	AS CA AS CL. AS O ATTACOL TO THE COLOR OF TH	AS CA. AS CL. AS O ATTOCH MACHESIA 1109.00 55.30 10.2 808 14.40 95.10 55.30 10.2 808 14.40 97.10 41.40 10.7 633 11.10 77.10 41.40 10.7 633 11.10 99.70 46.60 10.4 772 11.05 117.00 46.60 10.4 772 11.05 117.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 11.07 45.10 23.60 32.0 951 11.07 45.10 23.60 44.4 770 11.07 45.10 23.60 44.4 700 11.77 A 92.37 12.74 70 11.77 A 92.15 13.75 8.24 361 9.20 FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP SALANCE HGS 1.05 8 4.3 1.9550 2.500 25.00 8 5.9 0.000 NAF 3.00 2.790 8 19.2 0.000 NAF 3.00 2.790 8 19.2 0.000 NAF 3.00 2.790 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 2.209 6 3.9 0.000 NAF 3.00 2.209 6 3.9 0.000 NAF 3.000 2.209 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 6 5.0 0.000 NAF 3.000 2.209 6 6.3 0.000 2.209	DEPTH SUB-PROJ MG/L TOTAL TOT.DEM.
1109.00 56.40 14.6 818 12.60 111.00 53.30 10.2 808 14.40 96.40 45.40 10.7 690 11.20 97.10 41.40 21.7 633 11.10 97.30 46.20 4.44 772 11.05 117.00 46.60 10.4 772 11.05 117.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 14.40 45.10 23.60 4.4 721 11.87 45.10 23.60 4.4 721 11.87 45.10 23.60 4.4 351 9.20 97.30 13.75 8.24 163 1.63 97.30 13.75 8.24 163 1.63 97.30 13.75 8.24 163 1.63 97.30 13.75 8.24 163 1.63 97.30 13.75 8.24 163 1.63 97.30 13.75 1.9550 2.500 98 3.9 1.9550 2.500 99 19.2 0.000 NAF 2.270 26.100 90 10.7 17.6 4.536 2.510 90 10.7 1.484 3.100 2.790 90 10.7 1.484 3.107 24.918 90 10.7 1.484 3.107 24.918 90 10.7 1.484 3.107 24.918 90 90 90 90 90 90 90	111.00 55.40 14.6 818 12.60 111.00 55.30 10.2 808 14.40 96.40 45.40 10.7 693 11.10 97.70 44.20 10.7 693 11.10 97.70 44.20 17.6 351 11.05 117.00 46.60 10.4 773 11.05 117.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 11.09 45.10 23.60 4.4 77 720 11.07 45.12 12.74 720 11.07 45.12 12.75 99 99 99.7 991 FWSTRC FWTEMP IONCAL KKUR HGURE HGUR DEG.C CALC. AS K G 8 3.9 0.2367 2.950 25.600 8 4.5 1.9550 2.510 26.100 8 4.5 1.9550 2.510 26.100 8 4.5 1.9550 2.510 26.100 8 8 4.5 1.9550 2.510 26.100 8 8 19.2 1.7380 2.520 26.100 8 8 19.2 1.7380 2.520 26.100 8 8 19.2 1.7380 2.520 26.100 8 8 19.2 2.52 2.510 26.100 8 8 19.2 2.52 2.510 26.100 8 8 19.2 3.585 3.110 27.900 8 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 19.2 4.586 3.107 24.918 8 10.000 0.000 0.007 2.270 8.860 8 9.9 9.000 0.007 2.270 8.860 8 9.9 0.000 0.007 2.270 8.860 8 9.9 0.000 0.007 2.270 8.860 8 9.9 0.000 0.007 2.270 8.860 8 9.9 0.000 0.007 2.270 8.860 8 9.9 0.000 0.007 2.270 8.860 8 9.9 0.000 0.007 2.270 8.860	1109.00 56.40 14.6 818 12.60 111.00 53.30 10.2 808 14.40 96.40 45.40 10.7 690 10.20 77.10 41.40 21.7 633 11.10 97.30 46.20 4.44 779 11.05 117.00 46.60 10.4 779 11.05 117.00 74.90 9.7 779 11.05 117.00 74.90 9.7 772 11.05 45.10 23.60 9.7 721 14.40 45.10 23.60 4.4 721 11.87 45.10 23.60 4.4 721 11.87 45.10 23.60 9.7 9.5 11.63 9	CODE AS CACO3
111.00 53.30 10.2 808 14.40 96.40 32.0 351 12.80 96.40 32.0 351 12.80 96.40 32.0 351 12.80 96.70 44.20 10.7 633 11.10 11.00 46.20 44.47 732 11.10 97.30 46.20 44.47 732 11.10 97.30 46.60 10.4 732 11.10 97.30 46.60 10.4 732 11.05 11.05 112.00 74.90 32.0 951 12.09 11.00 74.90 32.0 951 12.09 11.00 74.90 32.0 951 11.07 45.10 23.60 44.4 721 11.07 92.0 11.77 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.07 99.47 721 11.00 99.47 721	111.00 55.30 10.2 808 14.40 95.10 23.60 32.0 808 14.40 95.10 41.40 21.7 693 11.10 97.70 44.20 10.7 693 11.10 97.70 44.20 10.4 772 11.05 112.00 46.60 10.4 772 11.05 112.00 74.90 32.0 951 12.09 112.00 74.90 32.0 951 11.07 45.12 45.73 12.74 701 11.07 45.10 23.60 4.4 701 11.07 45.10 23.60 4.4 701 11.07 45.10 23.60 4.4 824 163 11.63 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	111.00 53.30 10.2 808 14.40 96.40 96.40 32.0 351 12.80 96.40 32.0 351 12.80 96.40 32.0 351 12.80 96.70 44.20 10.7 633 11.10 97.30 44.20 44.20 44.47 7792 11.05 11.05 11.20 46.60 10.4 7792 13.40 112.00 74.90 9.7 7792 13.40 112.00 74.90 9.7 7792 13.40 112.00 74.90 9.7 7792 13.40 112.00 74.90 9.7 7792 13.40 112.00 74.90 9.7 7792 13.40 11.77 45.73 12.74 7792 13.40 11.77 45.10 47.40 9.7 9.7 11.05 11.05 11.07 45.10 74.40 9.7 12.74 7721 11.07 11.07 45.10 77.9 9.2 16.40 11.77 9.7 9.7 11.07	0101 243.6
45.10 23.60 32.0 361 12.80 45.10 44.40 10.7 633 11.00 77.10 44.40 10.7 633 11.10 97.70 42.50 17.6 704 9.20 112.00 46.60 10.4 792 11.00 112.00 74.90 32.0 951 14.40 45.10 23.60 4.4 701 11.87 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 5 13.75 9.20 26.100 6 4.5 1.9550 2.370 26.100 7 17.6 4.536 2.100 8 4.5 1.9550 2.500 9 9 9 9 10.7 17.6 4.536 2.100 10.7 17.6 4.536 2.100 10.7 17.84 3.100 27.900 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 10.7 1.484 3.100 2.270 3.400 10.7 1.484 3.100 2.270 3.400 10.7 1.484 3.100 2.270 3.400 10.7 1.484 3.100 2.270 3.400 10.7 1.484 3.100 2.270 3.400 10.7 1.484 3.100 2.270 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7 1.484 3.100 3.400 10.7	45.10 23.60 32.0 361 12.80 77.10 41.40 10.7 633 11.02 77.10 41.40 10.7 633 11.02 77.10 42.50 17.6 734 9.20 77.10 44.20 44.47 732 11.01 74.90 32.0 9.7 951 12.09 74.90 32.0 951 14.40 75.50 47.59 32.0 951 14.40 75.50 47.59 47.64 700 11.77 45.10 23.60 4.4 700 11.77 45.10 23.60 4.4 361 11.87 45.10 23.60 4.4 361 11.87 45.10 23.60 4.4 361 11.87 45.10 23.60 4.4 361 11.87 45.10 23.60 4.4 361 11.87 45.10 23.60 4.4 361 11.87 45.10 23.60 33.70 26.100 8	45.10 23.60 32.0 361 12.80 95.40 44.40 10.7 635 10.20 77.10 44.40 21.7 635 11.10 97.70 42.50 17.6 704 9.20 97.70 46.60 10.4 732 11.10 117.00 46.60 10.4 792 13.40 117.00 74.90 32.0 951 14.40 45.10 23.60 4.4 701 11.87 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 5 13.75 8.2<4 163 1.63 9 9 9 9 10.20 1.7380 2.950 25.600 10.20 1.7380 2.820 26.100 10.20 1.7380 2.820 26.100 11.60 11.60 2.820 2.820 11.60 11.60 2.820 2.820 11.60 11.60 2.820 2.820 11.60 11.60 2.820 2.820 11.60 11.60 2.820 2.820 11.60 11.60 2.820 2.820 11.60 11.60 2.820 2.820 11.60 11.60 2.820 3.850 11.60 11.60 2.820 3.850 11.60 10.7 1.484 3.107 2.4918 11.60 10.7 1.484 3.107 2.820 11.60 2.820 2.820 2.820 11.60 2.820 2.820 2.820 11.60 2.820 2.820 2.820 11.60 2.820 2.820 2.820 11.60 2.820 2.820 11.60 2.820 2.820 2.820 11.60	0101 254.1
77.10 45.40 10.7 690 10.20 77.10 46.20 17.6 704 9.20 99.70 46.20 17.6 704 9.20 112.00 46.60 10.4 722 13.40 112.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 11.87 45.13 47.59 14.6<4 721 11.87 45.13 47.59 14.6<4 721 11.87 45.13 75 8.2<4 163 1.63 9 9.70 47.59 11.87 45.10 23.60 4.4 361 9.20 11.77 45.10 11.87 45.10 23.60 4.4 361 9.20 11.77 45.10 11.87 45.10 23.60 4.4 361 9.20 11.77 45.10 11.87 45.10 11.30 11.30 11.87 45.10 11.30 11.30 11.87 45.10 11.30 11.30 11.30 11.80 11.20 11.30 11.484 13.107 12.4918 11.30 1	77.10 45.40 10.7 690 10.20 77.10 44.40 10.7 690 10.20 97.70 44.20 17.6 704 9.20 97.70 44.20 17.6 704 9.20 112.00 46.60 10.4 792 11.05 112.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 11.07 49.13 47.59 14.6<4 721 11.67 49.13 47.59 14.6<4 721 11.67 49.25 13.75 8.2<4 163 11.07 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2<4 163 11.77 49.20 13.75 8.2 4.5 1.9550 2.50 8.8 4.5 1.9550 2.50 8.8 8 4.5 1.9550 2.50 8.8 8 19.2 0.000 NAF 2.270 26.100 8 11.9 2 1.7380 2.510 26.800 8 19.2 0.000 NAF 2.750 27.800 8 11.9 2 4.538 2.820 27.800 8 11.9 2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8 3.000 2.270 8.860 6 3.9 0.000 2.270 8.860 6 3.9 0.000 2.270 8.860 6 3.9 0.000 2.270 8.860 6 3.9 0.000 2.270 8.860 6 3.9 0.000 2.270 8.860 6 3.9 0.000 2.270 8.860 6 3.9 0.000 2.270 8.860 6 5.9 0.000 87 3.027 8.269	77.10 45.40 10.7 690 10.20 77.10 44.40 10.7 690 10.20 97.70 44.20 17.6 704 9.20 97.70 44.20 17.6 704 9.20 117.00 46.60 10.4 792 11.05 117.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 11.87 12.00 74.90 32.0 951 11.87 12.20 74.90 32.0 951 11.87 12.20 74.90 32.0 951 11.87 12.20 74.90 32.0 951 11.87 12.20 74.59 14.6<4 721 11.87 12.20 9 99.7 951 12.09 12.2.52 13.75 8.2<4 751 11.87 12.20 9 99.7 951 11.87 12.20 13.75 8.2<4 751 11.87 12.20 13.75 8.2<4 751 11.87 13.75 8.2<4 751 11.87 13.75 8.2<4 751 11.87 13.75 8.2<4 751 11.87 13.75 8.2<4 751 11.87 13.75 8.2<4 751 11.87 13.75 8.2<4 751 11.87 13.75 8.2<4 751 11.87 14.6 19.2 13.75 8.2<4 751 11.87 14.6 19.2 13.75 8.2<4 751 11.87 14.6 19.2 13.75 8.2<4 8.6 19.2 13.75 8.2 11.77 11.87 11	0101 116.2
77.10 41.40 21.7 633 11.10 97.70 44.20 21.7 633 11.10 97.70 44.20 4.4c7 730 9.20 97.90 44.20 10.4 732 11.05 112.00 46.60 10.4 772 11.05 112.00 74.90 9.7 9.7 11.05 112.00 74.90 9.7 9.1 12.09 112.00 74.90 32.0 951 11.09 4 92.97 45.73 12.7<4 701 11.77 45.10 23.60 4.4 700 11.77 45.10 23.60 4.4 361 9.20 13.75 8.2<4 163 9.2 14.64 9.2 15.75 13.75 8.2<4 163 11.63 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	77.10 41.40 21.7 633 11.10 97.70 44.20 21.7 633 11.10 97.70 44.20 17.6 97.70 44.20 17.6 97.90 44.20 10.4 117.00 46.60 10.4 77.90 32.0 951 12.09 11.7.00 74.90 32.0 951 11.05 45.10 23.60 4.4 701 11.77 45.73 12.74 701 11.77 45.73 12.74 701 11.77 45.73 12.74 701 11.77 9.20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	77.10 41.40 21.7 633 11.10 97.70 44.20 21.7 633 11.10 97.70 44.20 4.4c7 704 9.20 97.90 44.20 10.4 792 13.40 112.00 74.90 9.7 991 12.09 117.00 74.90 32.0 951 11.09 4 92.97 45.73 12.74 700 11.77 4 92.97 45.73 12.74 700 11.77 4 92.97 45.73 12.74 700 11.77 4 92.97 45.73 12.74 700 11.77 4 92.97 45.73 12.74 700 11.77 9	0101 188.1
THE NOTE OF TABLE TO THE STREAM TEMP TO TABLE THE STREAM TEMP TO TABLE TO THE STREAM TEMP TO TABLE THE STREAM TO TAB	THE STREAM TEMP TONCAL KKUR HGUR STREAM TEMP TONCAL AS K OF SO OF	THE STREAM TEMP TOWN AS STATE OF STATE	0101 204.1
THE STREAM HATER TOWN AS A STORE STATE OF STATE	FWSTRC FWTEMP IONCAL KKUR HGUR STREAM TEMP BALANCE AS KORD STREAM TEMP BALANCE AS STREAM AS HG STREAM TEMP BALANCE AS STREAM AS HG STREAM TEMP BALANCE AS KORD STREAM TEMP BALANCE AS STREAM AS HG STREAM TEMP BALANCE AS STREAM AS HORD STREAM TEMP BALANCE AS STREAM TO STREAM AS HORD	FWSTRC FWTEMP IONCAL KKUR HGUR 11.05 **STREAM TEMP BALLANCE HGC/LOO NAF 2.550 **STREAM TEMP BALLANCE HGC/LOO NAF 2.560 **STREAM TEMP STANCE HGC/LOO NAF 2.560 **STREAM STANCE HGC/LOO NAF 2.500 **STANCE HGC/LOO NAF 2.500 **STREAM STANCE HGC/LOO NAF 2.500 **STANCE HGC/LOO	0101 235.3
TIZ.00 46.60 10.4 792 13.40 112.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 11.07 45.10 23.60 4.4 361 9.20 22.52 13.75 8.2<4 163 1.63 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TIZ.00 46.60 10.4 792 13.40 112.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 12.09 4.5 92.97 45.73 12.74 700 11.77 45.10 23.60 4.4 361 9.20 45.10 23.60 4.4 361 9.20 FWSTRC FWTEMP IONCAL KKUR HGUR HOTASSIM HAGNESIM COMD. DEG.C CALC. AS K AS HGC B 3.9 0.2367 2.5100 B 4.5 1.9550 3.370 26.100 B 3.9 0.2367 2.510 26.800 B 19.2 4.53 2.510 26.800 B 19.2 4.53 3.10 27.900 B 11.9 0.7234 2.820 26.800 B 11.9 0.7234 2.820 26.800 B 11.9 0.7234 2.820 26.800 B 11.9 0.7234 2.820 27.800 B 11.9 0.7234 2.820 23.753 B 11.9 0.7234 2.820 2.820 B 11.9 0.7234 2.820 2.820 B 11.9 0.7234 2.820 2.820 B 11.9 0.700 8.830 B 11.	TIZ.00 46.60 10.4 792 13.40 112.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 12.09 117.00 74.90 32.0 951 11.07 45.10 23.60 4.4 361 9.20 22.52 13.75 8.2<4 163 9.20 FWSTRC FWTEMP IONCAL KKUR HGGUR TEMP BALANCE HIGT HGLESIM STREAM TEMP BALANCE HIGL HGL COHD. COHD. 23.9 26.50 8 4.5 1.9550 2.500 8.600 8 8 4.5 1.9550 2.500 8.600 8 19.2 0.000 NAF 2.270 26.100 8 19.2 0.000 NAF 3.040 119.2 4.538 5.260 30.400 10.7 14.84 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 2.270 8.650 6.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0101 243.0
112.00 74.90 9.7 951 12.09 117.00 74.90 32.0 951 14.40 24 95.13 47.59 14.6 <a 1.63="" 11.87="" 13.75="" 163="" 22.52="" 23.60="" 361="" 4.4="" 45.10="" 721="" 8.2<a="" 9="" 9<="" td=""><td>112.00 74.90 9.7 951 12.09 117.00 74.90 32.0 951 14.40 28.13 47.59 14.6<a 0.000="" 0.7234="" 0.873="" 1.484="" 1.63="" 1.9550="" 10.000="" 10.7="" 11.87="" 11.9="" 12.7<a="" 13.75="" 163="" 19.2="" 2.20="" 2.270="" 2.350="" 2.3570="" 2.820="" 22.52="" 24.918="" 26.100="" 26.700="" 27.800="" 3.007="" 3.107="" 30.400="" 4.5="" 45.13="" 6.269<="" 701="" 721="" 73="" 75="" 8.2<a="" 8.860="" 9.20="" a="" b="" haghesih="" hater="" hgur="" ioncal="" kkur="" naf="" potassih="" td=""><td>112.00 74.90 9.7 951 12.09 117.00 74.90 32.0 951 14.40 24 92.97 47.59 12.7<4 701 11.87 45.10 23.60 4.4 361 11.87 22.52 13.75 8.2<4 163 1.63 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>0101 269.2</td></td>	112.00 74.90 9.7 951 12.09 117.00 74.90 32.0 951 14.40 28.13 47.59 14.6 <a 0.000="" 0.7234="" 0.873="" 1.484="" 1.63="" 1.9550="" 10.000="" 10.7="" 11.87="" 11.9="" 12.7<a="" 13.75="" 163="" 19.2="" 2.20="" 2.270="" 2.350="" 2.3570="" 2.820="" 22.52="" 24.918="" 26.100="" 26.700="" 27.800="" 3.007="" 3.107="" 30.400="" 4.5="" 45.13="" 6.269<="" 701="" 721="" 73="" 75="" 8.2<a="" 8.860="" 9.20="" a="" b="" haghesih="" hater="" hgur="" ioncal="" kkur="" naf="" potassih="" td=""><td>112.00 74.90 9.7 951 12.09 117.00 74.90 32.0 951 14.40 24 92.97 47.59 12.7<4 701 11.87 45.10 23.60 4.4 361 11.87 22.52 13.75 8.2<4 163 1.63 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>0101 269.2</td>	112.00 74.90 9.7 951 12.09 117.00 74.90 32.0 951 14.40 24 92.97 47.59 12.7<4 701 11.87 45.10 23.60 4.4 361 11.87 22.52 13.75 8.2<4 163 1.63 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0101 269.2
A 96.13	A 96.13	A 96.13	0.30 0101 268.4 1.1
## 96.13 47.59 14.6 <a ##="" 0.000="" 10.9550="" 10ncal="" 11.77="" 11.9550="" 12.7<a="" 13.75="" 14.90="" 17.54="" 19.2="" 2.270="" 2.588="" 22.52="" 26.100="" 26.700="" 3.040="" 3.370="" 30.400="" 4.538="" 45.73="" 5.260="" 57reah="" 64.5="" 7.9="" 720="" 721="" 760="" 8="" 8.2<a="" 8<="" 9="" 92.97="" hgur="" kkur="" naf="" td=""><td>## STREAM TEMP IONCAL KKUR HGUR ## 55.75 12.7<4 72.0 ## 52.52 13.75 8.2<4 75.1 11.77 ## STREAM TEMP NONCAL KKUR HGUR ## 5778AM TEMP BALANCE FU.REAC FU.REAC ## 5778AM TEMP BALANCE FU.REAC FU.REAC ## 5778AM TEMP BALANCE AS K AS HG ## 5778AM TEMP BALANCE AS HG ## 5778AM TEMP BALANCE AS HG ## 64.5 11.9550 3.370 26.100 ## 64.5 11.9550 3.370 26.100 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9560 3.300 ## 64.5 11.9560 3.300 ## 64.5 11.9560 3.300 ## 64.5 11.9560 3.300 ## 11.9 2 4.538 5.260 30.400 ## 64.5 11.9 4.538 5.260 30.400 ## 66.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>## STREAM TEMP IONCAL KKUR HGUR ## STREAM TEMP BALANCE HGZ, AS MSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</td><td></td>	## STREAM TEMP IONCAL KKUR HGUR ## 55.75 12.7<4 72.0 ## 52.52 13.75 8.2<4 75.1 11.77 ## STREAM TEMP NONCAL KKUR HGUR ## 5778AM TEMP BALANCE FU.REAC FU.REAC ## 5778AM TEMP BALANCE FU.REAC FU.REAC ## 5778AM TEMP BALANCE AS K AS HG ## 5778AM TEMP BALANCE AS HG ## 5778AM TEMP BALANCE AS HG ## 64.5 11.9550 3.370 26.100 ## 64.5 11.9550 3.370 26.100 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9550 3.300 ## 64.5 11.9560 3.300 ## 64.5 11.9560 3.300 ## 64.5 11.9560 3.300 ## 64.5 11.9560 3.300 ## 11.9 2 4.538 5.260 30.400 ## 64.5 11.9 4.538 5.260 30.400 ## 66.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	## STREAM TEMP IONCAL KKUR HGUR ## STREAM TEMP BALANCE HGZ, AS MSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
## STREAM WATER IONCAL KKUR HGGUR ## 52.97	## STREAM TEMP IONCAL KKUR HGUR ## STREAM TEMP IONCAL CALC. ## STREAM TEMP	## STREAM HATER IONCAL KKUR HGUR ## STREAM HATER IONO NAF. REAC FILL REAC HGLD ## STREAM TEMP BALANCE HGLL HGLD ## STREAM TEMP BALANCE HGLL HGLD ## STREAM TEMP BALANCE HGLL AS K AS HG ## STREAM TEMP BALANCE HGLL HGLD ## STREAM TEMP BALANCE HGLL AS K AS HG ## STREAM TEMP BALANCE HGLL AS K AS HG ## STREAM TEMP BALANCE HGLL HGLL ## STREAM TEMP BALANCE HGLL ## STREAM HGHESIM HGGLE ## STREAM TEMP BALANCE HGLL ## STREAM T	224.7
FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR COND. DEG.C CALC. AS K AS MG 8 3.9 0.2367 2.950 25.600 5 4.3 1.9550 2.950 25.600 8 4.5 1.9550 2.950 25.600 7 17.6 4.538 2.510 26.700 8 8 15.7380 2.510 26.700 8 11.9 0.7254 2.820 26.800 10.7 4.538 2.510 26.700 8 8 2.556 800 10.7 4.548 3.107 24.918 10.7 1.484 3.107 24.918 8 9 9 9 8 6.265 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC TEMP BALANCE HGS.L COND. DEG.C CALC. AS K AS HG 8 4.5 1.9550 3.370 26.100 3 4.5 1.9550 2.250 26.00 5 19.2 0.000 NAF 2.270 26.100 7 17.6 4.536 2.510 26.00 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 8 7.9 0.000 NAF 3.107 27.900 8 8 7.9 0.000 NAF 3.107 27.900 8 8 9.9 0.000 RG 3.0400 10.7 1.484 3.107 27.918 8 9.9 0.000 RG 2.270 8.860 6 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR TEMP BALANCE FILEFACT B 4.5 1.9550 2.950 25.000 8 3.9 0.2367 2.950 26.700 8 4.3 1.7380 5.260 26.700 8 19.2 0.000 NAF 2.270 26.700 8 11.9 0.7234 2.820 27.800 8 8 2.95 0.500 NAF 3.107 24.918 10.7 14.84 3.107 24.918 10.7 14.84 3.107 24.918 10.7 14.84 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918	
FWSTRC FWTEMP IONCAL KKUR HGUR POTASSIM HAGHESIM NATER ION UNF.REAC FIL.REAC COHD. DEG.C CALC. AS K AS HG 8 3.9 0.2357 2.950 26.100 3 4.5 1.9550 3.370 26.100 3 4.5 1.7360 5.260 6.700 5 19.2 0.000 NAF 2.270 26.700 7 17.6 4.538 2.510 27.900 8 8 7.9 0.000 NAF 3.010 27.900 8 8 8.2 3.585 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.6 4.538 5.260 30.400 10.7 17.8 4.538 5.260 30.400 10.8 5.270 5.270 8.860	FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR H STREAM TEMP BALANCE TI.REAC FU.REAC COHD. DEG.C CALC. AS K AS HG 8 4.5 1.9550 3.370 26.100 8 4.5 1.9550 2.950 25.600 8 19.2 0.000 NAF 2.270 26.700 18.5 13.7380 5.260 26.000 7 17.6 4.538 2.510 26.800 8 11.9 2 4.538 2.510 26.800 8 11.9 2 4.538 5.260 30.400 10.7 14.84 3.107 24.918 8 7.9 0.000 NAF 3.027 24.918 8 9 0.000 2.270 8.860 6 3 9	FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR FWSTRC FWTEMP IONCAL KKUR HGUR TEMP BALANCE FULREAC B	
FWSTRC FWTEMP IONCAL KKUR HGUR NATER ION UNF.REAC FIL.REAC COHD. COHD. TEMP BALANCE HGAL B 4.5 1.9550 3.370 26.100 B 3.9 10.2367 2.950 26.600 B 19.2 0.000 NAF 2.270 26.100 C 17.6 4.536 2.510 26.700 C 17.6 4.536 2.510 26.700 C 17.8 8 1.9550 2.370 26.700 C 17.8 9 0.000 NAF 3.040 C 19.2 4.536 2.510 26.800 C 19.2 4.536 2.510 26.800 C 19.2 4.536 2.510 26.800 C 2.3 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	FWSTRC FWTEMP IONCAL KKUR HGUR HWATER ION UNF.REAC FIL.REAC COND. BEG.C CALC. AS K AS HG/L B 4.5 1.9550 3.370 26.100 B 3.9 0.2367 2.950 25.600 B 19.2 0.000 NAF 2.270 26.700 B 11.9 0.7384 2.820 27.900 B 11.9 0.7384 3.107 27.900 B 11.9 0.7484 3.107 24.918 B 3.020 2.3.753 B 9.9 0.000 NAF 3.020 23.753 B 9.9 0.000 S.2.70 8.860	FWSTRC FWTEMP IONCAL KKUR HGUR HATER ION UNF.REAC FIL.REAC COND. COND. DEG.C CALC. AS K AS HG 8 4.5 1.9550 3.370 26.100 8 3.9 0.2367 2.950 26.600 8 19.2 0.000 NAF 2.270 26.100 8 11.9 0.7234 2.270 26.700 8 11.9 0.7234 2.270 26.700 8 8 2.5 18.5 3.110 27.900 8 8 2.5 18.5 3.110 27.900 10.7 1.484 3.107 27.910 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 27.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918 10.7 1.484 3.107 24.918	6
HATER IONCAL KKUR HGUR HATER ION IONCAL KKUR HAGHESIH HATER ION UNF.REAC FIL.REAC HG/L	FWSTRC FWTEMP IONCAL KKUR HGUR HATER ION UNF.REAC FIL.REAC COHD. DEG.C CALC. AS K AS HG R 4.5 1.9550 3.370 26.100 R 4.3 1.7380 5.260 25.600 S 19.2 0.000 NAF 2.270 26.100 R 11.9 0.5739 2.630 26.700 R 11.9 0.7334 2.830 2.4100 R 11.9 0.7334 2.830 24.100 R 11.9 0.7334 2.830 27.800 R 11.9 0.7334 2.830 27.800 R 11.9 0.7334 2.830 27.900 R 11.9 0.7334 2.830 27.900 R 2 3.855 3.110 27.900 R 2 3.855 3.110 27.900 R 3 0.000 NAF 2.270 26.100 R 3 0.000 NAF 2.270 27.900 R 3 0.000 NAF 2.270 27.918	HATER IONCAL KKUR HGUR HATER ION UNF.REAC FIL.REAC COHD. DEG.C CALC. AS K AS HG B 4.5 1.9550 3.370 26.100 B 7.9 1.7360 5.260 8.860 B 19.2 0.000 NAF 2.270 26.700 B 17.6 4.53 2.270 26.700 B 17.6 4.53 2.270 26.700 B 17.6 4.53 2.270 26.700 B 19.2 0.000 NAF 3.040 C 19.2 4.536 5.260 30.400 B 19.2 4.538 5.260 30.400 III. 9 0.7234 2.820 26.800 B 8.2 3.180 27.900 B 9.2 3.685 3.110 27.900 C 19.2 4.538 5.260 30.400 III. 7 1.484 3.107 24.918 B 9.000 2.270 8.860 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
FWSTRC FWTEMP IONCAL KKUR HGURR HAGNESIH WATER ION UNF.REAT FL. REACL COUD. DEG.C CALC. AS K AS HG 8 4.5 1.9550 2.950 25.600 8 4.3 1.7380 5.260 25.600 5 19.2 0.000 NAF 2.270 26.700 6 8 8.5 18.5 15.738 2.820 26.700 8 11.9 0.7234 2.820 27.800 8 8 8.2 3.585 3.110 27.900 8 8 8 2.5 8 2.5 8 2.5 8 0 10.7 17.6 4.538 5.260 27.800 8 8 8 2.5 8 2.5 8 2.5 8 0 10.7 17.8 3.000 NAF 3.0400 10.7 14.84 3.107 24.918 8 9 0.000 PAF 3.007 24.918 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	FWSTRC FWTEMP IONCAL KKUR HGUR HGATESIH NATER ION UNF.REAT HGALESIH COND. DEG.C CALC. AS K AS MG 8 4.5 1.9550 3.370 26.100 3 4.3 1.7360 5.260 8.660 5 19.2 0.000 NAF 2.270 26.700 7 17.6 4.538 2.630 24.100 7 17.6 4.538 2.630 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 11.9 0.7234 2.820 27.800 8 10.7 17.6 4.538 2.820 27.800 8 2 3.655 2.820 27.800 8 10.7 1.484 3.107 24.918 8 9.9 0.000 NAF 3.020 23.753 6 5.8 0.000 NAF 3.020 23.753 8 6.2 6.9 0.000 NAF 3.020 23.753 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	FWSTRC FWTEMP IONCAL KKUR HGURESIH WATER ION UNF.REAC FIL. REACL D COND. DEG.C CALC. AS K AS HG 8 3.9 1.9550 2.550 25.00 8 13.9 0.000 NAF 2.270 26.100 8 13.5 0.000 NAF 2.270 26.700 11.9 0.7234 2.820 27.800 8 8 2.59 2.50 26.700 11.9 0.7234 2.820 27.800 8 8 2.59 2.50 26.700 11.9 0.7234 2.820 27.800 8 8 2.59 2.50 27.800 8 8 2.59 2.50 27.800 10.7 17.6 4.538 2.510 27.800 10.7 14.84 3.107 24.918 10.7 14.84 3.107 24.918 10.7 14.84 3.107 24.918 6.3 9 9 9 8 2.50	
H STREAM TEMP ION UNF.REGY HG/L COND. DEG.C CALC. AS K AS HG/L B 4.5 1.9550 3.370 26.100 3 4.3 1.7360 5.260 8.660 5 19.2 0.000 NAF 2.270 26.700 7 17.6 4.538 2.820 27.900 8 8 7.9 0.7354 2.820 27.900 8 8 8 7.9 0.000 NAF 3.000 27.900 10.7 4.458 3.100 27.900 10.7 1.484 3.107 24.918 8 9 0.000 OAF 3.00 30.400 10.7 1.484 3.107 24.918 8 9 0.000 OAF 3.00 30.400 10.7 1.484 3.107 24.918 8 9 0.000 OAF 3.00 30.400 10.7 1.484 3.107 24.918 8 9 0.000 OAF 3.00 30.400 10.7 1.484 3.107 24.918	HATER TON UNF.REAC FIL.REAC TONDO. NO. 100. NO.	H STREAM TEHP BALANCE HG/L FREAL TON UNF.REA HG/RSIM HAGNESIM HAGNESIM HG/L FREAL TON UNF.REA HG/L FREAL TON UNF.REA HG/L FREAL HG/L	FCMF FEUT FSMF FWPH
H STREAM TEHP BALANCE THON UNF.REAC FIL.REAC LOND. DEG.C CALC. AS K AS HG/L COND. DEG.C C	H STREAM TEMP BALANCE TO UNF.REAC FIL.REAC D. COND. DEG.C CALC. AS K AS HG COND.	H STREAM TEHP BALANCE NOTASSIM HAGNESIM HAGNESIM DEG.C CALC. AS K AS HGC COND. DEG.C CALC. AS K AS HGC COND. DEG.C CALC. AS K AS HGC S. 1.9550 S.370 26.100 S. 18.5 1.9550 S.260 25.600 S. 19.5 10.000 NAF 2.270 26.100 S. 18.5 11.5 17.6 4.538 2.510 26.800 S. 11.9 17.6 4.538 2.510 27.800 S. 11.9 17.6 4.538 2.510 27.800 S. 11.9 17.9 2.820 2.7.800 S. 11.9 17.9 2.820 27.800 S. 11.9 17.9 2.820 27.800 S. 11.9 17.9 2.838 2.510 27.800 S. 2.838 2.510 27.838 2.510 27.800 S. 2.838 2.510 27.800 S. 2.838 2.510 27.800 S. 2.838 2.510 2.270 S. 2.838 2.338 2.3	FECAL
HATER 10N UNF.REAC FIL.REAC CALC. D COND. BEC. CALC. AS K AS HG A	HATER ION UNF.REAC FIL.REAC D COHD. DEG.C CALC. AS K AS HG 8 4.5 1.9550 3.370 26.100 8 3.9 0.2367 2.950 26.100 8 19.2 0.000 NAF 2.270 26.100 7 17.6 4.538 2.510 26.700 8 8 7.9 0.5799 2.630 24.100 7 17.6 4.538 2.510 27.900 8 8 7.9 0.000 NAF 3.040 10.7 1.484 3.107 24.918 8.9 0.000 NAF 3.020 30.400 10.7 1.484 3.107 24.918 8.9 0.000 RAF 3.020 23.753 3.9 0.000 RAF 3.020 23.753 3.9 0.000 RAF 3.020 23.753 3.9 0.000 RAF 3.020 23.753 3.9 0.000 RAF 3.020 23.753	H STREAM TEHP BALANCE NG/L HG/L HG/L D.D COND. DEG.C CALC. AS K AS HG/L HG/L HG/L AS K AS HG/L HG/L HG/L AS K AS HG/L HG/L AS K AS HG/L HG/L AS K AS HG/L AS H	
H STREAM TEMP BALANCE HIGH AS HG COND. DEG.C CALC. AS K AS HG COND. DEG.C CALC.	H STREAM TEMP BALANCE HIGH AS HG COND. DEG.C CALC. AS K AS HG COND. DEG.C CALC. DEG.C DEG.C CALC. DEG.C DEG.C CALC. DEG.C DEG.C CALC. DEG.C	H STREAM TEHP BALANCE NGAL AS K AS HG CALC. D CALC. AS K AS HG CALC. BS K CALC. BS	MF UNF. TOT. MF
B 4.5 1.9550 3.370 26.100 8 3.9 0.2367 2.950 26.100 8 1.9 2 0.000 NAF 2.970 26.700 17.6 4.536 2.920 26.700 17.6 4.536 2.920 26.700 8 11.9 0.534 2.920 26.800 8 8.2 3.98 2.510 26.800 8 8.2 3.585 3.110 27.900 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8 9 0.000 NAF 3.020 2.3.753 3.9 0.000 2.2.70 8.860 6.3 9 9 9 9 7.5 6.269	B 4.5 1.9550 3.370 26.100 B 3.9 0.2367 2.950 25.600 B 19.2 0.000 NAF 2.270 26.700 B 11.9 0.7 1.536 2.950 24.100 B 11.9 0.733 2.950 24.100 B 11.9 0.734 2.820 27.900 B 2.565 2.950 24.100 B 3.565 3.10 27.900 B 3.660 30.400	DEG.C CALC. RISK AND HOLD COND. AND HOLD COND	CNT MG/L CNT
8 4.5 1.9550 3.370 26.100 3.9 0.2367 2.950 25.600 8 19.2 0.000 NAF 2.270 26.700 18.5 18.5 16.5799 2.630 24.100 8 11.9 0.534 2.820 24.100 8 8.2 3.585 3.110 27.900 19.2 4.538 5.260 30.400 10.7 14.84 3.107 24.918 8 9 0.000 NAF 3.020 24.918 8 9 0.000 P. 3 0.000 9 0.873 9 9 9 9 2.50	8 4.5 1.9550 3.370 26.100 3.9 0.2367 2.950 25.600 8 19.2 0.000 NAF 2.270 26.700 18.5 1.7380 2.620 26.700 18.5 0.000 NAF 2.270 26.700 8 0.7234 2.630 24.100 8 0.7234 2.630 27.900 8 11.9 0.7234 2.820 27.900 19.2 4.536 5.260 30.400 10.7 1.484 3.107 24.918 8.9 0.000 NAF 3.020 23.753 6.3 0.000 2.270 8.860	8 4.5 1.9550 3.370 26.100 3.9 0.2367 2.950 25.600 3.9 0.2367 2.950 25.600 8 19.2 1.7380 2.520 26.700 18.5 0.5799 2.510 26.700 8 11.9 0.7234 2.820 27.800 8 8.2 3.585 3.110 27.900 7.9 0.000 NAF 3.040 30.400 10.7 1.484 3.107 24.918 8.9 0.000 2.270 8.660 6.3 9 9 9 7 9 6.269	/100ML
8 3.9 0.2367 2.950 25.00 8 19.2 0.7380 5.260 8.660 5 18.5 11.5780 2.620 24.100 7 17.6 4.538 2.510 26.700 8 8.2 3.585 3.110 27.900 7.9 0.000 NAF 3.020 27.800 19.2 4.538 5.260 30.400 10.7 14.84 3.107 24.918 8 9 0.000 2.270 8.600 6.3 9 9 9 7.5 6.269	8 3.9 0.2367 2.950 25.600 8 19.2 1.7380 5.260 8.860 19.2 1.5739 2.520 26.700 8 11.9 0.7234 2.630 24.100 8 2.510 26.800 8 3.585 3.110 27.900 19.2 4.585 3.110 27.900 19.2 4.585 3.110 27.900 19.2 4.585 3.110 27.900 10.7 1.484 3.107 24.918 8.9 0.000 AF 3.020 23.753 8.9 0.000 6.73 6.269 9.9 9.73 6.269	8 3.9 0.2367 2.950 25.600 8 19.2 1.7380 5.260 8.660 18.5 11.5380 5.260 24.100 7 17.6 4.538 2.510 26.700 8 11.9 0.7234 2.820 27.800 8 2.510 26.700 10.7 1.484 3.10 27.900 10.7 1.484 3.107 24.918 8 3.9 0.000 NAF 3.040 30.400 10.7 1.484 3.107 24.918 8 3.9 0.000 2.270 8.660 6.3 9 9 9 7 9 6.269	0.170
3 4.3 1.7380 5.260 6.860 5 19.2 0.000 NAF 2.270 26.700 7 17.6 4.538 2.510 26.700 8 8.2 3.585 3.110 27.900 8 7.9 0.000 NAF 3.040 10.7 1.484 3.107 24.918 8 9.9 0.000 2.270 8.860 6.3 9 9 9 6.75	3 4.3 1.7380 5.260 8.860 8 19.2 0.000 NAF 2.270 26.700 7 17.6 4.538 2.810 26.800 11.9 0.7234 2.820 27.800 8 2 5.885 3.110 27.900 8 7.9 0.000 NAF 3.040 30.400 10.7 1.484 3.107 24.918 8.9 0.000 2.270 8.860 6.3 9 9 9 7 9.269	3 4.3 1.7380 5.260 6.860 8 19.2 0.000 NAF 2.270 26.700 1 18.2 0.734 2.820 2.780 8 11.9 0.7234 2.820 27.800 8 8.2 3.585 3.110 27.800 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8 9 0.000 2.270 8.660 6.3 9 9 9 7.5 6.269	
8 19.2 1.799 2.630 26.700 5 18.5 10.5799 2.630 26.100 8 11.6 4.538 2.510 26.800 8 12.9 3.586 3.110 27.900 8 2.586 3.110 27.900 8 2.586 3.110 27.900 19.2 4.586 5.260 30.400 10.7 1.484 3.107 24.918 8 9 0.000 0.673 6.269 9 9 9 9 9 9	8 19.2 0.000 NAF 2.270 26.700 18.5 18.5 0.5799 2.650 24.100 7 11.9 0.7234 2.650 24.100 8 11.9 0.7234 2.820 27.800 8 2.550 26.800 27.800 8 2.550 27.900 8 2.550 27.900 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8.9 0.000 2.270 8.860 6.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 19.2 0.000 NAF 2.270 26.700 18.5 11.5 12.59 26.50 24.100 8 11.9 0.7234 2.650 27.900 8 2.510 26.800 8 2.565 2.510 26.800 8 2.565 2.510 27.900 19.2 4.536 5.260 30.400 10.7 1.484 3.107 27.910 10.7 1.484 3.107 24.918 8 9 0.000 2.270 8.660 6 3 9 9 9 7 9 9	
5 18.5 0.00 NAF 2.620 24.100 17.6 4.536 2.630 24.100 26.800 8 8.2 3.682 3.110 27.900 8 8 8.2 3.682 3.110 27.900 10.7 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8 9 0.00 0.873 6.269 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 13.5 0.000 NAF 2.620 24.100 17.6 4.536 2.510 26.800 8 8.2 3.585 3.110 27.900 8 7.9 0.000 NAF 3.0400 10.7 4.536 5.260 30.400 10.7 1.484 3.107 24.118 8.9 1.000 2.270 8.860 6.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 18.5 0.5799 2.620 24.100 7 17.6 4.536 2.510 26.800 8 11.9 0.534 2.520 24.100 8 8.2 3.585 3.110 27.900 7.9 0.000 NAF 3.040 30.400 10.7 1.484 3.107 24.918 8.9 0.000 2.270 8.660 6.3 9 9 9 7 9	420
7 17.6 4.579 2.650 26.400 8 11.9 0.734 2.820 27.900 8 8.2 3.586 2.820 27.900 8 7.9 0.000 NAF 3.040 30.400 10.7 1.484 3.107 24.18 8.9 0.000 2.270 8.860 6.3 9 9.973 6.269	7 17.6 4.579 2.101 24.80 24.80 8 11.9 0.7234 2.820 27.800 26.50 8 8.2 3.585 3.110 27.900 25.00 8 7.9 0.000 NAF 3.040 30.400 29.40 19.2 4.536 5.260 30.400 39.40 10.7 1.484 3.107 24.918 26.91 8.9 0.000 2.270 8.860 12.66 6.3 9 9 9 9 9 9 7.50 7.50 N.T.R.	7 17.6 4.579 2.950 24,400 24,80 8 11.9 0.7234 2.820 27,800 26,51 8 8.2 3.585 3.110 27,900 25,01 8 7.9 0.000 NAF 3.040 30,400 25,01 19.2 4.536 5.260 30,400 39,40 10.7 1.484 3.107 24,918 26,91 8.9 3.020 2.3753 25,81 8.9 0.000 2.270 8.860 12.66 6.3 0.833 6.269 7.55	1160
8 11.0 0.7234 2.510 25.800 8 8.2 3.585 3.110 27.900 8 7.9 0.000 NAF 3.040 30.400 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8.9 0.000 2.270 8.660 6.3 0.607 6.269	11.0 1.734 2.510 26.500 26.55 8 12.0 27.346 2.510 26.500 26.55 8 2 3.585 3.110 27.900 25.00 19.2 4.538 5.260 30.400 25.00 10.7 1.484 3.107 24.918 26.91 8.9 3.000 2.270 8.860 12.66 6.3 9 9 9 9 7.57	11.0	213
8 8.2 3.585 5.420 27.800 8 7.9 0.000 NAF 3.040 27.900 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8.9 3.000 2.3.753 5.9 0.000 2.270 8.860 6.3 9 9.873 6.269	8	8 4.2 5.7554 5.250 27.800 25.00 8 7.9 0.000 NAF 3.040 25.00 19.2 4.538 5.250 30.400 39.40 10.7 1.484 3.107 24.918 26.91 8.9 0.000 2.270 8.860 12.66 6.3 9 9.873 6.269 7.55	0.180
8 7.9 0.000 NAF 3.110 57.900 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8.9 0.000 2.270 23.753 6.3 0.860	8 7.9 5.565 5.110 27.900 25.00 18.00	8 7.9 0.000 NAF 3.410 27.900 25.00 19.2 4.538 5.260 30.400 39.40 10.7 1.484 3.107 24.918 26.91 8.9 3.020 23.753 25.91 6.3 0.000 2.270 8.860 12.66 6.3 9 9 9 7.55	800
8 7.9 0.000 NAF 3.040 30.400 19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8.9 3.020 2.3.753 3.9 0.000 2.270 8.860 6.3 9 9 9 9	8 7.9 0.000 NAF 3.040 30.400 39.40 19.2 4.538 5.260 30.400 39.40 10.7 1.484 3.107 24.918 26.91 8.9 3.020 23.753 25.81 3.9 0.000 2.270 8.860 12.60 6.3 9 9 9 9	8 7.9 0.000 NAF 3.040 30.400 39.40 19.2 4.538 5.260 30.400 39.40 10.7 1.484 3.107 24.918 26.91 3.9 0.000 2.270 8.860 12.66 6.3 0.873 6.269 7.59 9 9 7.59	02 007.0
19.2 4.538 5.260 30.400 10.7 1.484 3.107 24.918 8.9 3.000 23.753 5.9 0.000 2.270 8.860 6.3 9 9 9 9	19.2 4.538 5.260 30.400 39.40 10.7 1.484 3.107 24.918 26.91 8.9 3.020 23.753 25.81 3.9 0.000 2.270 8.860 12.60 6.3 9 9 9 9	19.2 4.538 5.260 30.400 39.46 10.7 1.484 3.107 24.918 26.91 8.9 3.020 23.753 25.63 3.9 0.000 2.200 23.753 25.63 6.3 9 9.873 6.269 7.56 9.9 9 0.007 (C.ONTD)	
19.7 1.484 3.107 24.918 8.9 3.020 23.753 5.9 0.000 2.270 8.860 6.3 0.873 6.269	10.7 1.484 5.160 50.400	10.7 1.484 3.107 24,910 39,40 10.7 1.484 3.107 24,910 26,91 8.9 3.020 23,753 25,81 6.3 0.000 2.270 8,860 12.60 6.3 9 9 9 9 9 7.55	520 II. 680 E20 a z
10.7 1.994 5.107 24.918 8.9 0.000 2.270 8.860 6.3 0.873 6.269 9 9 9	10.7 1.484 5.107 24,918 26,93 8.9 3.00 2.3753 25,63 6.3 0.000 2.2775 25,63 6.3 0.007 6.269 7.55 9 9 9 9 9 9	1.97 1.989 2.107 24.918 26.93 1.9 3.000 23.753 25.31 1.9 0.000 2.270 8.860 12.65 1.0 0.873 6.269 7.55 9 9 9 9 9 0.01 D	300 900 0
8.9 5.270 23.753 5.9 0.000 2.270 8.860 6.3 0.873 6.269 9 9 9 9	8.9 8.020 23.753 25.63 3.9 0.000 2.270 8.860 12.66 6.3 9 9 9 7.55	3.9 0.000 2.300 23.753 25.83 (6.3 0.000 0.873 6.269 7.56 (6.3 9 9.873 6.269 7.56 (6.0 0.873 6.269 7.56 (6.0 0.873 6.269 7.56 (6.0 0.873 6.269 7.56 (6.0 0.873 6.269 7.56 6.26 6.26 6.26 6.26 6.26 6.26 6.26 6	100
5.9 0.000 2.270 8.860 6.3 0.873 6.269 9 9 9 9	5.9 0.000 2.270 8.860 12.66 6.3 0.873 6.269 7.56	3.9 0.000 2.270 8.860 12.66 6.3 0.873 6.269 7.55 9 9 9 9 6.200 7.55	061
6.3 0.873 6.269 9 9 9 9	6.3 0.873 6.269 7.56 9 9 9 8	6.3 0.873 6.269 7.59 9 9 9 0.873 (CONTD	
6 6	8 6 6 6	9 9 9 8 (CONTD	0.174
	200	(C O N T D	3 9 4 9
	4 4 0	ONTD	25

STATION ID: 16-0184-038-02

B.O.W./ SITE: ALDER CREEK SAMPLE POINT: AT FIRST CONC ROAD SOUTH OF NEW DUNDEE STATION TYPE: RIVER FINDS

00E: 02 003 0150	DISTANCE: 179,920	RESIDUE FILTERED MG/L	552.0 508.0 237.0CR0 441.0CR0 458.0CR0 474.0CR0 515.0 645.0	645.0 472.0 457.8 237.0 111.4
STORET CODE: 02 00:	DISTAN	PSEUDOMN AERUG. MF CNT	2 2 2 2	2
	01	PHOSPHOR UNF.TOT. MG/L AS P	0.067 0.069 0.490 0.055 0.123 0.078 0.026	0.490 0.109 0.069 0.146 9
	REGION: 01	PPO4FR PO4 FIL.REAC MG/L AS P	0.0300 0.0235 0.0230 0.0015 <t 0.0025 0.0045 0.0045 0.0030</t 	0.2030 0.0334 <a 0.0089<a 0.0015 9.0648<a< td=""></a<></a </a
83 84	798800.0 4	PHNOL PHENOLS UNF-REAC UG/L PHENOL	1,0 4,2 0,2 <w 0,2<w 1,6<t 0,4<t< td=""><td>4.2 1.0<a 0.7<a 9.2 9</a </a </td></t<></t </w </w 	4.2 1.0 <a 0.7<a 9.2 9</a </a
GREAT LAKI LAKE ERIE GRAND RIVI	537950.0 4	Н	8.23 8.13 8.13 8.28 8.32 8.32 8.26 8.30	8.32 8.22 8.22 9.01 9.00
MAJOR BASIN: GREAT LAKES MINOR BASIN: LAKE ERIE TERM STREAM: GRAND RIVER	U T M: 17 0537950.0 4798800.0 4	NNTKUR K'DAHL N TOTAL UNF.REAC MG/L AS N	0.700 0.630 2.420 0.660 1.160 0.820 0.600 0.560	2,420 0,872 0,741 0,520 0,624 9
W DUNDEE	31 54.49	NO2-N NO2-N FIL.REAC MG/L AS N	0.0510 0.0330 0.0750 0.0800 0.0530 0.0470 0.0400 0.0350	0.0800 0.0513 0.0492 0.0164 9
SOUTH OF NE FED 02GA030	LONG: 080 31 54.49	NNOTFR NO2+NO3N FIL.REAC MG/L AS N	5,480 6,150 2,850 2,500 2,030 2,030 4,780 4,460	6,150 3,631 1,400 1,642 9,000 1,642 SSD4UR SULPHATE UNF RES 98,61 98,61 120,33 80,83 96,71 96,71 96,71 96,71 96,71 96,71 96,71 96,71 96,71 96,71 96,71 96,71 96,71 97,85 80,62 80,62 80,63
CONC ROAD	LAT: 43 20 34.91	NNHTFR NH3-N TOTAL FIL.REAC MG/L AS N	0.192 0.090 0.960 0.002 0.030 0.036 0.024 0.024 0.002	0.960 0.167 <a 0.037<a 0.307<a 9 8.1 6.1 11.0 11.0 11.0 11.0 11.0 11.0 11.</a </a </a
RIVER	LAT: 4	SST-NAME: SAMPLE NUMBER	35514 35555 3557 35618 35659 35719 3570 35801	RAZIMUM ARITH MEAN GEON MEAN MINHUM STD DEV (GEON %) Z SAMP IN STATISTICS Z SAMP (EXCLUDED) ERIM TEST-NAME: ** E HOUR SAMPLE NUMBER 19 1355 35514 1005 35518 1100
SAMPLE POINT: AT FIRST CONC ROAD SOUTH OF NEW DUNDEE STATION TYPE: RIVER FLOW GAUGE FED 026A030		*=INTERIM TEST-NAME: SAMPLE DATE HOUR SAMPL YYMMDD LHT NUMBE	900109 1355 900220 1420 900313 1310 900614 1005 900724 1010 900630 1005 901031 0920 901031 0920	## ARITH HEAN GEOM HEAN BY BEEN GEOM HEAN HININHUM STD DEV (GEOM *) # SAMP IN STATISTICS Z SAMP (EXCLUDED) #=INTERIM TEST-NAME: SAMPLE DATE HOUR SAMPLE YYNINDD LMT NUMBER 900109 1355 35514 90020 1420 35555 90031 1310 35557 900614 1005 355618 90074 1010 355618 90074 1010 355618 90074 1010 355619 900830 1005 3570 900830 1005 3570 900830 1005 3570 901120 1150 35609 91120 1150 35609 HAXIHUM STD DEV (GEOM HEAN MININUM MININUM STD DEV (GEOM HEAN MININUM MININUM STD DEV (GEOM HEAN MININUM MININUM MININUM STD DEV (GEOM HEAN MININUM

PAGE NO.	145	149	151	153	139	141	143	147	134	155	157	159	161	12	15	16	17	18	14	24	267	307	309	313
C.O.H. INDEX	4 F-01	4 H-01	4 I-01	4 3-01	4 C-01	4 D-01	4 E-01	4 6-01	4 B-01	4 K-01	4 F-01	4 M-01	4 A-02	2 E-01	2 6-01	2 H-01	2 I-01	2 J-01	2 F-01	3 C-01	6 A-01	6 H-02	6 I-02	6 3-02
LOCATION	120,698 08-0022-011-02	0.805 08-0022-013-02	134.377 08-0022-016-02	136.630 08-0022-017-02	10.300 08-0022-002-02	139,204 08-0022-007-02	109,915 08-0022-010-02	19,955 08-0022-012-02	12,069 08-0021-002-02	21.243 08-0040-006-02	14,162 08-0040-008-02	45.382 08-0040-009-02	48,430 08-0040-011-02	0.161 03-0036-001-02	56,969 03-0036-006-02	59,061 03-0036-007-02	58.257 03-0036-008-02	37.175 03-0036-009-02	44.417 03-0036-005-02	9,978 04-0007-002-02	7.911 16-0001-002-02	44,095 16-0109-004-02	7.081 16-0109-005-02	78.373 16-0109-007-02
DISTANCE	120.698 0	0.805 0	134.377 0	136.630 0	10.300 0	139.204 0	109.915	19.955 0	12.069 0	21.243 0	14.162 0	45.382 0	48.430 0	0.161 0	56,969 0	59.061 0	58.257 0	37.175 0	44.417 0	9.978 0	7.911	44.095 1	7.081 1	78.373 1
SAMPLE POINT DESCRIPTION	AT TOWNLINE DNSTR.FROM CENTRALIA BASE	AT HIGHWAY 21 GRAND BEND	AT FIRST CONC.WEST OF HIGHWAY 4 EXETER	AT MORRISON DAM EAST OF EXETER	NEAR BRICK YARD, THEDFORD	AT CONCESSION ROAD 2, WEST OF HENSALL	AT BRIDGE, TWP LINE WEST OF LUCAN	RD.BETWEEN LOTS 15216 WEST OF PARKHILL	AT LAMPTON CO.ROAD NO.18	FIRST CONCESSION DOWNSTREAM FROM CLINTON	AT HURON COUNTY ROAD 31 NORTH OF VARNA	AT FIRST CONCESSION WEST OF SEAFORTH	HWY 8,SEAFORTH	UPSTREAM FROM GEORGIAN BAY	AT GREY COUNTY ROAD NO 2 FEVERSHAM	AT COUNTY ROAD NO.10 OSPREY TOWNSHIP	AT COUNTY ROAD NO.8 OSPREY TOWNSHIP	AT COUNTY ROAD NO.30 SOUTH OF KIMBERLEY	1ST.BRIDGE DNSTR.FROM HWY.10 FLESHERTON	AT FIRST ROAD SOUTH OF HIGHWAY 401	AT MALDEN TWP.CONC.2-3	9TH LINE BAYHAM TOWN LINE	AT HIGHWAY 19 SOUTHERN BRIDGE VIENNA	AT NORWICH RD.6 E.OF BASE LINE RD.
STREAM	AUSABLE RIVER	AUSABLE RIVER	AUSABLE RIVER	AUSABLE RIVER	DECKER CREEK	HENSALL CREEK	LITTLE AUSABLE RIVER	PARKHILL CREEK	THE CUT AUSABLE RIVER	BAYFIELD RIVER	BAYFIELD RIVER	BAYFIELD RIVER	SILVER CREEK	BEAVER RIVER	BEAVER RIVER	BEAVER RIVER	BEAVER RIVER	BEAVER RIVER	BOYNE RIVER	BELLE RIVER	BIG CREEK	BIG OTTER CREEK	BIG OTTER CREEK	BIG OTTER CREEK
RIVER BASIN	AUSABLE RIVER								AUSABLE RIVER CUT	BAYFIELD RIVER				BEAVER RIVER						BELLE RIVER	BIG CREEK	BIG OTTER CREEK		

ņ	
c	
c	

C.O.M. PAGE INDEX NO.	2 0-01	28	5 B-01 263	5 C-01 265	6 E-02 301	6 F-02 303	6 6-02 305	6 B-01 269	6 K-02 315	4 A-01 132	6 L-01 289	6 K-01 287	6 M-01 291	6 A-02 293	6 B-02 295	6 C-02 297	6 D-02 299	3 A-01 20	4 D-03 194	4 B-03 190	4 C-03 192	4 B-02 163	4 3-02 179	4 6-02 173	
LOCATION DISTANCE CODE	12,713 03-0030-002-02	5.793 16-0066-001-02	0.805 10-0002-001-02	12.070 10-0002-002-02	5.150 16-0097-003-02	24.944 16-0097-005-02	34,761 16-0097-006-02	4.828 16-0018-002-02	179.920 16-0184-038-02	8.529 08-0010-001-02	7.403 16-0087-006-02	36.370 16-0087-004-02	44.417 16-0087-007-02	4.828 16-0087-010-02	17.059 16-0087-012-02	29.933 16-0087-015-02	21.564 16-0087-016-02	0.161 04-0001-001-02	1.931 08-0113-001-02	1.287 08-0076-001-02	25.749 08-0076-002-02	51.015 08-0056-002-02	131.802 08-0056-020-02	153.688 08-0056-010-02	
SAMPLE POINT DESCRIPTION	AT CONC ROAD 8 AND 9 SOUTH OF OXMEAD	AT MIDDLE ST.3MILES S.OF WEST LORNE	HWY.18 2 MILES SOUTH OF RIVER CANARD	2 MILES SOUTH OF LUKERVILLE	AT CONC ROAD 2 MILES EAST OF SPARTA	AT HIGHWAY NO 3 WEST OF ORWELL	AT ELGIN COUNTY ROAD NO 40 GLENCOLIN	AT HIGHWAY NO. 18	AT FIRST CONC ROAD SOUTH OF NEW DUNDEE	AT PLYMPTON TWP.RD.NO.14 DNSTR.OF FOREST	AT POND OUTLET COMMUNITY OF UNION	FIRST CONCESSION NORTH OF HIGHWAY 3	FIRST CONCESSION SOUTH WEST OF BELMONT	FIRST BRIDGE ABOVE PORT STANLEY	AT ELGIN COUNTY ROAD 45	AT COUNTY ROAD NO 31 NORTH OF ST THOMAS	AT ELGIN CO.ROAD NO.16 ST.THOMAS	AT RIVERSIDE DRIVE WINDSOR	AT INVERHURON PROVINCIAL PARK MOE SWAI	HIGHWAY 21, PORT ALBERT	CANNING STREET, VILLAGE OF LUCKNOW	AT SIDE ROAD, WEST OF BLYTH	DOWNSTREAM FROM HENFRYN	AT SIDE RD.3-4 1MI.WEST OF MILVERTON	
STREAM	BIGHEAD RIVER	BROCK CREEK	CANARD RIVER	CANARD RIVER	CATFISH CREEK	CATFISH CREEK	CATFISH CREEK	CEDAR CREEK	ALDER CREEK	HICKORY CREEK	BEAVER CREEK	DODD CREEK	KETTLE CREEK	KETTLE CREEK	KETTLE CREEK	KETTLE CREEK	KETTLE CREEK	LITTLE RIVER	LITTLE SAUBLE RIVER	LUCKNOW RIVER	LUCKNOW RIVER	BLYTH BROOK	BOYLE DRAIN	DRAINAGE DITCH	
RIVER BASIN	BIGHEAD RIVER	BROCK CREEK	CANARD RIVER		CATFISH CREEK			CEDAR CREEK	GRAND RIVER	HICKORY CREEK	KETTLE CREEK							LITTLE RIVER	LITTLE SAUBLE RIVER	LUCKNOW RIVER		MAITLAND RIVER			

C.O.M. PAGE INDEX NO.	4 E-02 169	4 A-03 188	4 C-02 165	4 D-02 167	4 K-02 181	4 F-02 171	4 H-02 175	4 L-02 184	4 M-02 186	4 1-02 177	6 D-01 273	2 A-01 1	3 B-01 22	6 G-01 279	6 F-01 277	6 E-01 275	3 D-01 26	4 A-05 254	4 L-04 250	4 M-04 252	4 K-04 248	4 K-03 210	4 L-03 212	
DISTANCE CODE 1	131,963 08-0056-006-02	0.000 08-0056-035-02	77.246 08-0056-003-02	100,420 08-0056-004-02	2,736 08-0056-023-83	140.975 08-0056-009-02	147.090 08-0056-013-02	127,135 08-0056-026-02	104.283 08-0056-031-02	43,451 08-0056-015-02	0.322 16-0032-001-02	1.609 03-0015-002-02	3,380 04-0005-003-02	1.600 16-0051-001-02	3.680 16-0050-002-02	3.360 16-0044-001-02	9.978 04-0010-002-02	25,105 08-0135-004-02	44.899 08-0135-002-02	3.219 08-0135-003-02	132,364 08-0123-049-02	55.360 08-0123-009-02	87.868 08-0123-010-02	
SAMPLE POINT DESCRIPTION DI	HWY.23 3 MILES S-W OF PALMERSTON 13	GREY TWP, CONC II,2.5 KM.EAST OF JAMES- TOWN	HWY 86 2 MILES N-W OF WINGHAM	ONE MILE NORTH EAST OF WROXETER	AT HIGHWAY 21 GODERICH	HAMLET OF TROWBRIDGE	HIGHWAY 23, DOWNSTREAM FROM LISTOWEL	0.7 MILES OF ETHEL 12	AT COUNTY ROAD NO.16 WEST OF BRUSSELS	HIGHWAY 4, LONDESBOROUGH	AT FIRST BRIDGE ABOVE LAKE ERIE	AT 14TH STREET BRIDGE OWEN SOUND	AT ESSEX COUNTY ROAD 42 SOUTH OF PUCE	KENT CO.RD.11, 1.8 KILO WEST OF HWY51,	1 KM SOUTH OF GUILDS	BISNETT RD,1.1 KILO W.OF KENT CO.RD.11	1 MILE EAST OF EXIT 6 ON HIGHWAY 401	AT HIGHWAY NO 6 NEAR MAR MOE SW A3	AT BRIDGE FIRST CONCESSION NORTH OF TARA	AT SAUBLE FALLS	MINIO TWP.RD. 5-6, S.W. OF MOUNT FOREST 13	AT ELDERSLIE TOWNSHIP ROAD 25 AND 26	AT BRUCE COUNTY ROAD 16 NORTH OF MILDMAY 8	
STREAM	LITTLE MAITLAND RIVER	LITTLE MAITLAMD RIVER	MAITLAND RIVER	MAITLAND RIVER	MAITLAND RIVER	MIDDLE MAITLAND RIVER	MIDDLE MAITLAND RIVER	MIDDLE MAITLAND RIVER	MIDDLE MAITLAND RIVER	SOUTH MAITLAND RIVER	MUDDY CREEK	POTTAWATOMI RIVER	PUCE RIVER	COLEMAN DRAIN	INDIAN CREEK	JOHN CLARK DRAIN	RUSCOM RIVER	ALBEMARBLE BROOK	SAUBLE RIVER	SAUBLE RIVER	SAUGEEN RIVER	NORTH SAUGEEN RIVER	OTTER CREEK	
BASIN	MAITLAND RIVER										MUDDY CREEK	POTTAMATOMI RIVER	PUCE RIVER	RONDEAU BAY			RUSCOM RIVER	SAUBLE RIVER			SAUGEEN	SAUGEER RIVER		

PAGE NO.	234	240	204	196	198	202	208	214	218	230	236	242	544	246	200	232	238	281	257	259	271	116	122
C.O.M.	4 D-04	4 G-04	4 I-03	4 E-03	4 F-03	4 H-03	4 3-03	4 M-03	4 A-04	4 B-04	4 E-04	4 H-04	4 I-04	4 3-04	4 G-03	4 C-04	4 F-04	6 H-01	4 8-05	4 C-05	6 C-01	3 C-04	3 F-04 122
LOCATION DISTANCE CODE	56,165 08-0123-042-02	60,671 08-0123-045-02	143.389 08-0123-006-02	76.603 08-0123-002-02	94.627 08-0123-003-02	125.847 08-0123-005-02	35.083 08-0123-007-02	131.158 08-0123-015-02	11.909 08-0123-030-82	63.889 08-0123-038-02	27.358 08-0123-043-02	96.880 08-0123-046-02	0.000 08-0123-047-02	0.000 08-0123-048-02	99,938 08-0123-004-02	39,589 08-0123-039-02	67.591 08-0123-044-02	8.047 16-0063-001-02	1.127 08-0143-001-02	6.276 08-0143-002-02	3.058 16-0027-001-02	62,441 04-0027-004-02	34.278 04-0027-008-02
SAMPLE POINT DESCRIPTION	AT CONCESSION ROAD 12 AND 13 BRANT TWP.	AT 10TH CONC BRANT TOWNSHIP	AT CONCESSION ROAD SOUTHWEST OF MARKDALE	YONGE STREET, TOWN OF WALKERTON	HIGHWAY 4, HANOVER	HIGHWAY 4, TOWN OF DURHAM	AT TOWNSHIP ROAD, DOWNSTREAM OF PAISLEY	DURHAM CONSERVATION AREA	BRUCE CO ROAD 3, NORTH OF BURGOYNE SR-6	AT CONC. ROAD 2.5 MILES EAST OF CARGILL	AT CONC. ROAD 4 AND 5 SAUGEEN TOWNSHIP	AT 7TH.AVE SOUTH OF HANOVER	PROTON TWP,CONC 8 2.3 KM E OF GREY CO RD 14	AT EGREMONI-PROTON TOWN, GREY CO	DOWNSTREAM FROM DAM, WEST OF TEESWATER	AT COUNTY ROAD 1	AT CHEPSTOW	AT BACK STREET, RODNEY	2ND.BRIDGE UPSTR.FROM MOUTH STOKES BAY	AT HIGHWAY NO.6	AT CO.RD.20 4 MILES S-E OF LEAMINGTON	AT FIRST CONCESSION WEST OF PETROLIA	AT TOWNSHIP LINE N-E OF AVONRY STP
STREAM	PEARL CREEK	PEARL CREEK	ROCKY SAUGEEN RIVER	SAUGEEN RIVER	SAUGEEN RIVER	SAUGEEN RIVER	SAUGEEN RIVER	SAUGEEN RIVER	SAUGEEN RIVER	SAUGEEN RIVER	SAUGEEN RIVER	SOUTH SAUGEEN RIVER	SOUTH SAUGEEN RIVER	SOUTH SAUGEEN RIVER	TEESWATER RIVER	TEESWATER RIVER	TEESWATER RIVER	SIXTEEN MILE CREEK	STOKES RIVER	STOKES RIVER	STURGEON RIVER	BEAR CREEK	BEAR CREEK
RIVER	SAUGEEN RIVER																	SIXTEEN MILE CREEK	STOKES RIVER		STURGEON RIVER	SYDENHAM RIVER	

NO.	130	124	126	м	112	118	120	128	ĸ	41	51	84	104	47	53	102	65	78	61	106	37	45	65	29
				B-01	B-04 1	D-04 1	E-04 1		01	H-01		A-03			A-02				D-02					
INDEX	3 3-04	3 6-04	3 H-04	2 B-	3 B-	3 D-	3 E-	3 I-04	2 C-01	-H	3 M-01	3 A-	3 K-03	3 K-01	3 A-	3 3-03	3 L-01	3 K-02	3 D-	3 1-03	3 F-01	3 3-01	3 F-02	3 6-02
	-014-02	-009-02	-011-02	-003-02	-001-83	-006-02	-007-02	-012-02	-002-02	-025-02	-033-02	-052-02	-072-02	-029-02	-037-02	-069-02	-031-02	-049-02	-041-02	-073-02	-015-02	-027-02	-043-02	-044-02
	0.000 04-0027-014-02	49,406 04-0027-009-02	04-0027-	7.403 03-0016-003-02	4.506 04-0027-001-83	22.530 04-0027-006-02	04-0027	97.041 04-0027-012-02	0.483 03-0017-002-02	04-0013	16.737 04-0013-033-02	04-0013	04-0013-	04-0013	04-0013	04-0013	45.382 04-0013-031-02	50.693 04-0013-049-02	04-0013-	04-0013-	04-0013-	04-0013-	04-0013-	04-0013-
	0.000	49.406	117.157 04-0027-011-02	7.403	4.506	22.530	130.675 04-0027-007-02	97.041	0.483	278.570 04-0013-025-02	16.737	224.819 04-0013-052-02	257.256 04-0013-072-02	196.013 04-0013-029-02	208.726 04-0013-037-02	250.085 04-0013-069-02	45.382	50,693	239.786 04-0013-041-02	116.192 04-0013-073-02	254,752 04-0013-015-02	217.416 04-0013-027-02	243.326 04-0013-043-02	279.374 04-0013-044-02
	NEXT BRIDGE UPSTR AT FED GAUGE	AT COUNTY ROAD 9 WEST OF OIL SPRINGS	FIRST CONCESSION SOUTH OF WATFORD	AT CONCESSION 18 ABOVE INGLIS FALLS	AT HIGHWAY 40 WALLACEBURG	AT DOWN MILLS ROAD UPSTREAM OF DRESDEN	1ST.CONC SOUTH OF HWY.22 STRATHROY	1ST.CONC.NORTH OF ALVINSTON	AT THOMPSON MEMORIAL FOOTBRIDGE LEITH	AT LORNE AVE STRATFORD	CONC.10 W.TILBURY TWP.W.OF STRANGFIELD	AT COUNTY ROAD NO.32 SOUTH OF DORCHESTER	AT EAST OXFORD TWP.RD.NO.5	IST.CONC.DOWNSTREAM OF LAMBERT	AT WELLINGTON ROAD	AT CONC. RD. NO. 3 WEST OXFORD TWP.	AT CONCESSION ROAD 22 HARWICH TWP	AT HARWICH-HOWARD TOWNLINE	AT 2ND.CONC.RD.SOUTH OF THAMESFORD	AT MOSA-EKFRID TWP.LINE SOUTH OF HWY.2	AT PARK STREET BRIDGE, ST MARYS	AT MIDDLESEX COUNTY ROAD 42 LONDON	AT HIGHWAY 7	AT CONCESSION ROAD 2 SOUTH OF MITCHELL
	BEAR CREEK	BLACK CREEK	BROWN CREEK	SYDENHAM RIVER	SYDENHAM RIVER	SYDENHAM RIVER	SYDENHAM RIVER	SYDENHAM RIVER	TELFER CREEK	AVON RIVER	BIG CREEK	BIG SWAMP DRAIN	CEDER CREEK	DINGMAN CREEK	DINGMAN CREEK	FOLDENS CREEK	LOCK DRAIN	MC GREGOR CREEK	MIDDLE THAMES RIVER	NEWBIGGIN CREEK	NORTH THAMES RIVER	NORTH THAMES RIVER	NORTH THAMES RIVER	NORTH THAMES RIVER
	SYDENHAM RIVER								TELFER CREEK	THAMES RIVER					_									

RIVER	STREAM	SAMPLE POINT DESCRIPTION	LOCATION DISTANCE CODE	C.O.M. P	PAGE NO.
THAMES RIVER	NORTH THAMES RIVER	1.4 MILES DOWNSTREAM OF ST MARYS	251.051 04-0013-045-02	3 H-02	69
	NORTH THAMES RIVER	AT MIDDLESEX COUNTY ROAD 28	229.003 04-0013-050-02	3 L-02	80
	NORTH THAMES RIVER	2 MILES UPSTREAM FROM ST.MARY'S	258.775 04-0013-067-02	3 H-03	86
	REYNOLD'S CREEK	AT C/A AREA SOUTH OF HIGHWAY 401	237.533 04-0013-068-02	3 I-03	100
	SHARON CREEK	AT SHARON RESERVOIR OUTLET	172.517 04-0013-065-02	3 F-03	96
	THAMES RIVER	AT BRIDGE COUNTY RD 34 PRAIRIE SIDING	14.484 04-0013-007-82	3 E-01	28
	THAMES RIVER	AT DUNDAS STREET WOODSTOCK	258.132 04-0013-016-02	3 6-01	39
	THAMES RIVER	AT COUNTY ROAD 48 WOODSTOCK	261.028 04-0013-038-02	3 B-02	57
	THAMES RIVER	AT PEMBERTON STREET INGERSOLL	245.257 04-0013-039-02	3 C-02	59
	THAMES RIVER	AT FIRST BRIDGE DOWNSTREAM OF INGERSOLL	239.786 04-0013-042-02	3 E-02	63
	THAMES RIVER	AT COUNTY ROAD 16 KOMOKA	184.748 04-0013-047-02	3 3-02	73
	THAMES RIVER	AT MIDDLESEX COUNTY ROAD 4	215.002 04-0013-051-02	3 M-02	82
	THAMES RIVER	AT HIGHWAY 59 SOUTH OF TAVISTOCK	298.847 04-0013-055-02	3 B-03	98
	THAMES RIVER	AT COUNTY ROAD NO 15 NEAR KENT BRIDGE	49.084 04-0013-058-02	3 C-03	88
	THAMES RIVER	AT MIDDLESEX CO.ROAD NO.45	112,455 04-0013-075-02	3 M-03	108
	THAMES RIVER	OXFORD CO.RD. 4, INNERKIP	273.733 04-0013-080-02	3 A-04	110
	TILBURY CREEK	1 MILE SOUTHWEST OF TILBURY STATION	7.725 04-0013-026-02	3 1-01	43
	TILBURY CREEK	AT HIGHWAY 2 WEST OF TILBURY	9.012 04-0013-046-02	3 1-02	11
	TROUT CREEK	AT PERTH COUNTY ROAD NO 28 ST.:MARY'S	258,936 04-0013-064-02	3 E-03	95
	TROUT CREEK	AT WEST ZORRA TWP.CONC.ROAD 2-3	269.880 04-0013-066-02	3 6-03	96
	TURKEY CREEK	AT COUNTY RD 19 SOUTH OF SOUTHWOLD	163.344 04-0013-061-02	3 D-03	06
TURKEY CREEK	TURKEY CREEK	AT WINDSOR SUBURBAN ROAD 40	3.862 10-0001-002-02	5 A-01	261
TYRCONNELL CREEK	DUTTON DRAIN	CONC.RD.7 DUNWICH TWP.S-W OF DUTTON	8.851 16-0072-001-02	6 3-01	285

