Database Management System (DBMS) Lecture-14

Dharmendra Kumar September 7, 2020

Relational Model

Relational data model represents the database as a collection of relations. A relation is nothing but a table of values. Every row in the table represents a collection of related data values. These rows in the table denote a real-world entity or relationship.

Some concepts related with relational data model

Relation: A relation is a table with columns and rows.

Field: A column in a table is called the field of a relation.

Tuple: It is nothing but a single row of a table, which contains a single record.

Relation schema: A relation schema represents the name of the relation with its attributes. If A_1, A_2, \ldots, A_n are attributes then $R = (A_1, A_2, \ldots, A_n)$ is a relation schema.

Example: A relation schema student with their attributes are like the followings:-

student = (rollNo, name, branch, contactNo).

Some concepts related with relational data model(Cont.)

Relation Instance: Relation instance is a finite set of tuples in the RDBMS system. Relation instances never have duplicate tuples.

Attribute domain: The set of all possible values of a relation is said to be domain of an attribute.

Degree: The total number of attributes exist in the relation is called the degree of the relation.

Cardinality: Total number of rows present in the table.

Atomic values: A value is said to be atomic if it is not divisible.

Note: Domain of an attribute is said to be atomic if all its possible values are atomic i.e. not divisible.

Integrity Constraints

- Integrity constraints are a set of rules. It is used to maintain the quality of information.
- Integrity constraints ensure that the data insertion, updating, and other processes have to be performed in such a way that data integrity is not affected.
- Thus, integrity constraint is used to guard against accidental damage to the database.

Types of Integrity Constraint

- 1. Domain Constraints
- 2. Entity Integrity Constraints
- 3. Referential Integrity Constraints
- 4. Key Constraints

Domain Constraints

- Domain constraints can be defined as the definition of a valid set of values for an attribute.
- The data type of domain includes string, character, integer, time, date, currency, etc. The value of the attribute must be available in the corresponding domain.

Example: Consider the following table

ID	NAME	SEMENSTER	AGE
1000	Tom	1 st	17
1001	Johnson	2 nd	24
1002	Leonardo	5 th	21
1003	Kate	3 rd	19
1004	Morgan	8 th	A

Not allowed. Because AGE is an integer attribute

Entity integrity constraints

- The entity integrity constraint states that primary key value can't be null.
- This is because the primary key value is used to identify individual rows in relation and if the primary key has a null value, then we can't identify those rows.
- A table can contain a null value other than the primary key field.

Example: Consider the following table

EMPLOYEE

EMP_ID	EMP_NAME	SALARY
123	Jack	30000
142	Harry	60000
164	John	20000
	Jackson	27000

Not allowed as primary key can't contain a NULL value

Referential Integrity Constraints

- A referential integrity constraint is specified between two tables.
- In the Referential integrity constraints, if a foreign key in Table 1 refers to the Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null or be available in Table 2.

Example: Consider the following table

Key constraints

- Keys in the entity set is used to identify an entity within its entity set uniquely.
- An entity set can have multiple keys, but out of which one key will be the primary key. A primary key can contain a unique and null value in the relational table.

Example: Consider the following table

ID	NAME	SEMENSTER	AGE
1000	Tom	1 st	17
1001	Johnson	2 nd	24
1002	Leonardo	5 th	21
1003	Kate	3rd	19
1002	Morgan	8 th	22

Not allowed. Because all row must be unique

Foreign key

- Consider R and S are two tables. An attribute A of table R is said to be foreign key of R if A is the primary key in S.
- A foreign key is a column (or combination of columns) in a table whose values must match values of a column in some other table.
- FOREIGN KEY constraints enforce referential integrity, which essentially says that if column value A refers to column value B, then column value B must exist.

Example: Consider two tables Employee(<u>ID</u>, Name, Dept-ID) and Department(Dept-ID, Dept-name).

Here, attribute Dept-ID in Employee table is a foreign key because Dept-ID in Department table is a primary key.