Funcions.

Producte cartesià.

Donats dos conjunts X (inicial) i Y (final), definim el seu producte cartesià $X\times Y$ com el conjunt dels parells ordenats (x,y) tals que $x\in X$ i $y\in Y$.

Exemple 1.

Donats $X = \{1, 2, 3\}$ i $Y = \{a, b, c, d\}$, tenim

$$X \times Y = \{(1, a), (1, b), (1, c), (1, d), (2, a), (2, b), (2, c), (2, d), (3, a), (3, b), (3, c), (3, d)\}$$

Correspondències.

Una correspondència o relació entre dos conjunts $X,\,Y$ és un subconjunt del producte cartesià de $X\times Y$

Exemple 2.

A partir dels conjunts de l'exemple 1 podem considerar la correspondència $R:\,X\to Y$

$$R = \{(1, b), (1, c), (1, d), (3, a)(3, b)\}\$$

Diem que l'element 1 té $imatges \{a, b, c\}$ i que les imatges de 3 són $\{a, b\}$. El domini de la relació R és el subconjunt del conjunt X de partida tal que els seus elements tenen imatge. En el nostre cas $Dom(R) = \{1, 3\}$. Anomenem imatge o recorregut al subconjunt del conjunt Y d'arribada tal que els seus elements estan relacionats amb algun dels de partida. En aquest exemple $Im(R) = \{a, b, c, d\} = Y$.

Donada una correspondència $R:A\to B$ entre dos conjunts definim la correspondència inversa $R^{-1}:B\to A$ com la relació entre A i B amb el sentit de les fletxes canviat. Es deixa com exercici representar R^{-1} per l'exemple 2.

Aplicacions.

Hi ha un tipus de correspondències que tenen un interés especial. Són aquelles en les que tot element del conjunt de partida té una i només una, imatge. Aquestes correspondències s'anomenen *aplicacions* o funcions.

Tipus d'aplicacions.

- Diem que una aplicació $F: X \to Y$ és **injectiva** si $f(a) = f(b) \Rightarrow a = b \quad \forall \ a,b \in X$
- Diem que una aplicació $F: X \to Y$ és **exhaustiva** o **suprajectiva** si $\forall y \in Y, \exists x \in X \text{ tal que } f(x) = y$
- Diem que una aplicació és **bijectiva** si és injectiva i exhaustiva alhora.

Exemple 2.

Considerem els conjunts $A = \{1, 2, 3, 4, 5\}$ i $B = \{a, b, c, d\}$. A partir d'ells podem considerar les aplicacions

$$f = \{(1, a), (2, a), (3, b)\}$$

$$g = \{(1, a), (2, b), (3, c)\}$$

$$h = \{(1, a), (2, a), (3, b), (4, c), (5, d)\}$$

$$j = \{(1, a), (2, b), (3, c), (4, d)\}$$

Es comprova que f no és injectiva ni exhaustiva, g és injectiva però no exhaustiva, g no és injectiva però si exhaustiva i j és injectiva i exhaustiva.

Aplicació inversa.

Sigui f una aplicació, si la correspondència f^{-1} també és aplicació, direm que f té inversa. No és difícil imaginar quina és la condició perquè una aplicació tingui inversa.

Donada f aplicació, la condició necessària i suficient perquè existeixi la seva inversa f^{-1} , és que f sigui injectiva.

Sovint els conjunts de partida i arribada tindran un nombre infinit d'elements. Llavors la representació d'una aplicació amb diagrames, com la de l'exemple 2 no és pràctica. El que farem llavors és representar l'aplicació amb uns eixos cartesians. El conjunt de partida el representarem amb un eix

horitzontal i el d'arribada amb un eix vertical. Cadascuna de les *fletxes* que teniem al diagrama quedarà representada per un punt.

Per exemple, la funció

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = x^2 + 2x + 1$

es pot representar

Funcions reals de variable real.

A partir d'ara només considerarem funcions reals de variable real.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = f(x)$$

La variable x s'anomena variable independent i la variable y variable dependent.

Al tema següent es discutirà quin és el domini de les funcions elementals. Ara considerem característiques típiques de les funcions que cal conèixer.

• Monotonia (creixement/decreixement).

Una funció f(x) és *creixent* en un interval si al augmentar la x augmenta la y. Una funció és *decreixent* en un interval si al augmentar la x la y disminueix.

Aquesta funció és creixent a l'interval $(0, \infty)$ i decreixent a $(-\infty, 0)$

• Curvatura (concavitat/convexitat).

Una funció f(x) és còncava en un punt si la recta tangent a la gràfica de f(x) en aquest punt està per sota de la gràfica, si està per sobre llavors es diu convexa.

Aquesta funció és convexa en l'interval $(-\infty,0)$ i còncava en $(0,\infty)$

• Extrems relatius (màxims/mínims).

Una funció f(x) té un $m \grave{a} xim$ en un punt si canvia de decreixent a creixent (mirant d'esquerra a dreta les x), i té un $m \acute{n} im$ si canvia de decreixent a creixent.

Aquesta funció té un màxim relatiu a x=-2 i un mínim absolut x=0

Simetries.

Es diu que una funció f(x) és parella si f(-x) = f(x) i diem que es senar si f(-x) = -f(x). Les funcions parelles tenen simetria respecte l'eix OY i les funcions senars tenen simetria respecte l'origen de coordenades.

Les funcions $f(x) = x^2$ i $g(x) = x^3$ són parella i senar respectivament i tenen les simetries esperades.

• Periodicitat.

Es diu que una funció f(x) és periòdica de període T si es compleix

$$f(x+T) = f(x)$$

• Transformacions de funcions.

Cal conèixer les següents transformacions aplicables a funcions i quin és el seu efecte sobre la gràfica.

$$y = f(x) + k$$

$$f(x) = x^3 - 2x^2 - x + 2$$

$$f(x) + 3 = x^3 - 2x^2 - x + 2 + 3$$

$$y = f(x+k)$$

$$f(x) = x^3 - 2x^2 - x + 2$$

$$f(x-2) = x^3 - 8x^2 - 19x - 12$$

$$y = -f(x)$$

$$f(x) = x^3 - 2x^2 - x + 2$$

$$f(-x) = -x^3 + 2x^2 + x - 2$$

$$y = f(-x)$$

• Operacions amb funcions.

Definim les següents operacions entre funcions reals de variable real

1. Suma/resta de funcions

$$(f \pm g)(x) = f(x) \pm g(x)$$

2. Producte

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

3. Quocient

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

4. Composició de funcions

$$(f \circ g)(x) = f(g(x))$$

• Funció inversa

Donada una funció f(x) definim la seva inversa com la funció $f^{-1}(x)$ tal que

$$(f^{-1} \circ f)(x) = x$$

Per trobar la inversa d'una funció, aïllem primer la variable x per obtenir $x = f^{-1}(y)$ (expressió útil per calcular antiimatges si cal) i després fem el canvi $x \leftrightarrow y$.

Exemple

Volem trobar la inversa de

$$f(x) = 3x - 2$$

escrivim la funció com

$$y = 3x - 2$$

Aïllem la x

$$x = \frac{y+2}{3} = f^{-1}(y)$$

i ara fem $x \leftrightarrow y$

$$y = \frac{x+2}{3} = f^{-1}(x)$$