

Estrutura da Matéria 2018-2 – Prof. Célio Aula 5 – Spin

Momento de dipolo magnético

O momento magnético aparece do movimento de cargas que possuem momento angular.

$$I = \frac{q}{\tau} = \frac{w}{2\pi}q$$

- *I* corrente elétrica;
- τ período de translação;
- q carga elétrica;
- ullet w frequência angular.

$$\vec{m} = I\vec{A} = IA\mathbf{n} = I\pi R^2\mathbf{n}$$
 .

 \vec{m} é útil para definirmos a energia de interação entre uma carga em movimento e um campo magnético \vec{B} :

$$E = -\vec{m} \cdot \vec{B} = -mB\cos\theta$$

Momento magnético x Momento angular

$$ec{L} = ec{R} imes ec{p} = m_q ec{R} imes ec{v}$$

$$= m_q R v \sin \theta = m_q R v$$

$$v = \frac{2\pi R}{\tau}$$

$$L = m_q R \frac{2\pi R}{\tau} = 2m_q \frac{\pi R^2}{\tau} \frac{q}{q}$$

$$= 2\frac{m_q}{q} \pi R^2 \frac{q}{\tau}$$

$$= 2\frac{m_q}{q} A I = 2\frac{m_q}{q} m$$

$$\Rightarrow m = \frac{q}{2m_q} L = gL$$

$$ec{m} = g \vec{L}$$

Spin

1922 (Stern & Gerlach) \rightarrow tentaram medir \vec{m} de elétrons em átomos de prata.

$$B(z) \Rightarrow E(z) = -mB(z)\cos\theta$$
.

Variação de E implica em força magnética sobre o dipolo.

Como todos os ângulos são possíveis (em princípio) espera-se uma distribuição contínua no anteparo.

Resultado: só se observam $\theta = 0, \pi!!!$

1927 (Phipps & Taylor) — repetiram o experimento com átomos de hidrogênio, mas de tal modo que $\vec{L}=0.$

Esperado: $\vec{m} = g\vec{L} = 0 \Rightarrow \vec{F} = 0$.

Resultado: os átomos ainda se aglomeram em duas posições no anteparo!

Explicação: os átomos possuem momento magnético intrínseco:

 $\vec{M}_s = g_s \vec{S}$ em analogia a $\vec{m} = g \vec{L}$.

Experimento de Stern-Gerlach

Spin

O que se mede é \vec{S} ao longo da direção do campo magnético, S_z .

$$S_z = m_s \hbar$$
,

onde $m_s = -S, -S + 1, \dots, S - 1, S$. Geralmente se omite o \hbar .

Exemplos:

$$S = 3/2 \Rightarrow m_s = -3/2, -1/2, +1/2, +3/2.$$

$$S = 2 \Rightarrow m_s = -2, -1, 0, +1, +2.$$

O elétron do hidrogênio possui $S=1/2 \Rightarrow S_z=\frac{1}{2}\hbar$ ou $S_z=-\frac{1}{2}\hbar,\ m_s=-1/2,+1/2.$

São auto-valores que tem auto-funções associadas.

Energia magnética

$$E_{+1/2}=-\vec{M}_s\cdot\vec{B}=-g_s\vec{S}\cdot B=-rac{1}{2}\hbar g_s B$$

$$E_{-1/2}=+rac{1}{2}\hbar g_s B$$

Dado um S qualquer, haverá 2S+1 níveis de energia e um igual número de direções possíveis de \vec{S} em relação à direção do campo.

 \vec{L} também é quantizado.

$$L_z = m_l \hbar, \ l = 0, 1, 2, ..., \ m_l = -l, -l+1, ... l-1, l$$

Tomando uma partícula de spin 1/2:

 $S = \frac{1}{2}\hbar \Rightarrow$ auto-estado possíveis são +1/2 e -1/2, que representamos por auto-funções ϕ_+, ϕ_- .

Se uma medido do spin for $+1/2\hbar$, quer dizer que logo após a medida ser realizada a função de onda era $\psi = \phi_+$.

Estados

Para 2 elétrons: $\psi(x_1) = e^{ik_1x_1}$, $\psi(x_2) = e^{ik_2x_2}$. k está associado à energia $E = \frac{\hbar^2 k^2}{2m}$.

Podemos representar os estados quânticos por $a \in b$.

Ex.: $\psi_a(x_1)$ é a função de onda do elétron 1 no estado a.

Temos 4 possibilidades: $\psi_a(x_1)$, $\psi_b(x_1)$, $\psi_a(x_2)$, $\psi_b(x_2)$.

Para os estados de spin temos:

$$\phi_{+}(1), \, \phi_{-}(1), \, \phi_{+}(2), \, \phi_{-}(2).$$

Complemento: Simetrias e Paridade

Funções simétricas permanecem com o mesmo valor sob uma troca de sinal na variável. Funções antissimétricas trocam de sinal sob a mesma operação.

Complemento: Simetrias e Paridade

Uma função de duas variáveis é dita simétrica se ela não trocar de sinal sob um intercâmbio das variáveis:

Ex.:
$$f(x,y) = x^2 + y^2$$
 é simétrica pois $f(x,y) = f(y,x)$;

Mas $g(x,y)=x^2-y^2$ é anti-simétrica pois $g(y,x)=y^2-x^2=-(x^2-y^2)=-g(x,y).$

O produto de uma função simétrica por uma anti-simétrica é outra função anti-simétrica:

$$h(x,y) = f(x,y)g(x,y)$$

 $h(y,x) = f(y,x)g(y,x) = f(x,y)[-g(x,y)] = -f(x,y)g(x,y) = -h(x,y)$

Nem toda função tem sua paridade definida, ou seja, é simétrica ou antisimétrica. Ex.: $u(x,y) = x^2 - y^2 + 3$.

Princípio de Exclusão de Pauli

- Funções de onda totais de elétrons (ou férmions de uma maneira geral) são antisimétricas;
- Uma versão quântica da ideia de que dois corpos não podem ocupar o mesmo lugar no espaço;
- Se aplica a partículas de spin semi-interio.

$$\psi_{\text{total}} = \psi_{\text{espacial}} \times \phi_{\text{de spin}}$$

Funções de onda genéricas

$$\psi_S(x_1,x_2) = \psi_a(x_1)\psi_b(x_2) + \psi_a(x_2)\psi_b(x_1)$$
 \longrightarrow Simétrica $\psi_A(x_1,x_2) = \psi_a(x_1)\psi_b(x_2) - \psi_a(x_2)\psi_b(x_1)$ \longrightarrow Anti-simétrica

$$\phi_S^{(1)} = \phi_+(1)\phi_+(2)$$

$$\phi_S^{(2)} = \phi_-(1)\phi_-(2)$$

$$\phi_S^{(3)} = \phi_+(1)\phi_-(2) + \phi_+(2)\phi_-(1)$$

$$\phi_A = \phi_+(1)\phi_-(2) - \phi_+(2)\phi_-(1)$$
Anti-simétrica

O princípio da exclusão diz que $\psi_{\text{total}} = \psi_A \phi_S$ ou $\psi_{\text{total}} = \psi_S \phi_A$.

Supondo
$$\phi = \phi_S \Rightarrow \psi = \psi_A$$
. Mas, $\psi_A(x_1, x_1) = 0!$

Isso quer dizer que se temos dois elétrons (férmions) com o mesmo spin, eles não podem ocupar o mesmo estado.

Orbitais Atômicos

- As funções de onda de elétrons em átomos são chamadas de orbitais atômicos;
- Orbital, pois é menos definido que uma órbita;
 Considera a natureza de onda do elétron;
- Essas funções são solução da equação de Schödinger;
- Como é um problema em 3 dimensões com simetria esférica é conveniente trabalhar em coordenadas esféricas:

Coordenada Esféricas

Range of variables

Cartesian

$$X, y, z: -\infty \rightarrow +\infty$$

Spherical

$$r: 0 \rightarrow +\infty$$

$$\theta: 0 \to \pi$$

$$\phi: 0 \rightarrow 2\pi$$

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\psi(x,y,z) \to \psi(r,\theta,\phi)$$

$$\psi(r, \theta, \phi) = R(r)Y(\theta, \phi)$$

Harmônicos Esféricos

- São a parte angular da função de onda. Constituídos por uma família de funções que aparece constantemente em problemas de física. Ex.:
 - Representação de campos (gravitacionais, magnéticos) com simetria esférica;
 - Modelagem da Radiação Cósmica de Fundo;
 - Configuração eletrônica dos orbitais atômicos (nosso caso!)
 - Computação gráfica etc.

Funções do Onda do Hidrogênio

TABLE 1.2 Hydrogen Wavefunctions (Atomic Orbitals), $\psi = RY$

(a) Radial wavefunctions, $R_{nl}(r)$			(b) Angular wavefunctions, $Y_{lm_l}(\theta, \phi)$		
n	l	$R_{nl}(r)$	l	"m _l "*	$Y_{lm_l}(oldsymbol{ heta},\!oldsymbol{\Phi})$
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\phi$
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$		у	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\sin\phi$
3	0	$\frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$		z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
	1	$\frac{2}{27\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\cos2\phi$
	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$		yz	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\sin\phi$
				zx	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\cos\phi$
				$x^2 - y^2$	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\sin2\varphi$
				z^2	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$

Note: In each case, $a_0 = 4\pi\epsilon_0^2/m_e^2$, or close to 52.9 pm; for hydrogen itself, Z = 1. *In all cases except $m_l = 0$, the orbitals are sums and differences of orbitals with specific values of m_l .

Números Quânticos

- A função de onda está associada a três números quânticos, por sua vez associados a cada coordenada:
 - $-n \rightarrow$ Associado à energia e ao tamanho do orbital. (n=1,2,3,...);
 - $-1 \rightarrow$ Associado ao momento angular (l=0,1,2,n-1);
 - $-m_1$ → Associado à orientação do orbital (número quântico magnético), (m_1 =-1,-1+1,...,l-1,l)

Momento Angular Quantizado

Bibliografia

- Ivan S. Oliveira, Física Moderna para iniciados, interessados e aficionados, vol. 1, cap. 3, ed. Livraria da Física (2005).
- Atkins e Jones, Princípios de Química, cap. 1, ed. Bookman (2012).