Prof. Jose J. Camata
Prof. Marcelo Caniato
Prof. Barbara Quintela
camata@ice.ufjf.br
marcelo.caniato@ice.ufjf.br
barbara@ice.ufjf.br

Tópicos

- 1. Introdução
- 2. Conceito de balanceamento
- 3. Árvore AVL
- 4. Rotações
- 5. Exemplos

Introdução

- Árvores são estruturas interessantes por dois motivos
 - Relação de hierarquia
 - Velocidade na busca

Para árvores criadas a partir de uma entrada de dados aleatória, a busca é O(logn)

Podemos garantir O(logn) em todos os casos?

Introdução

- O pior caso é a busca não sucedida, que é O(h), em que h é a altura da árvore
 - Exemplo: buscar 8 na árvore abaixo

Introdução

- O pior caso é a busca não sucedida, que é O(h), em que h é a altura da árvore
 - Exemplo: buscar 8 na árvore abaixo

E se a árvore tiver esta forma?

E se a árvore tiver esta forma?

Como podemos

Todos os nós da árvore foram visitados!

Balanceamento

- A ideia é manter a altura da árvore em O(logn)
 - Uma árvore que mantém essa propriedade para todas as suas subárvores é chamada de árvore balanceada
- Vimos que o desbalanceamento surge da ordem de entrada dos dados
 - Deseja-se balancear a árvore à medida que novos valores são inseridos
 - Precisa ser eficiente

Balanceamento

> Possibilidades de balanceamento

Balanceamento global

- Usar um vetor auxiliar
 - Realiza um percurso in-ordem
 - Armazena no vetor
 - Reinsere na árvore via busca binária
- Algoritmo DSW

Balanceamento local

- Aplicar rotinas de balanceamento após inserções e remoções
- > Exs.: AVL, vermelho-preto etc.

Iremos focar nestas estruturas

- Criada por Adelson-Velskii e Landis
- A diferença de altura entre as subárvores de qualquer nó é de no máximo 1 (+1 ou -1)
- > Cada nó possui um fator de balanceamento, dado por:

$$f_b = h_d - h_e$$

- Rebalanceamento realizado sempre que um nó fica com fator +2 ou
 -2
 - Isto ocorre após uma inserção ou remoção
 - Correção feita através de rotações nas subárvores afetadas

→ Ponteiro para NULL

Ponteiro para

* NULL

Árvore AVL

→ Ponteiro para NULL

→ Ponteiro para NULL

ROTAÇÃO SIMPLES À ESQUERDA

- 1. q = p dir
- 2. p->dir = q->esq
- 3. $q \rightarrow esq = p$

ROTAÇÃO SIMPLES À ESQUERDA

- 1. q = p->dir
- 2. p->dir = q->esq
- 3. $q\rightarrow esq = p$

ROTAÇÃO SIMPLES À ESQUERDA

- 1. q = p->dir
- 2. p->dir = q->esq
- 3. $q\rightarrow esq = p$

ROTAÇÃO SIMPLES À ESQUERDA

- 1. $q = p \rightarrow dir$
- 2. p->dir = q->esq
- 3. $q \rightarrow esq = p$

ROTAÇÃO DUPLA À ESQUERDA

- 1. $q = p \rightarrow dir$
- 2. $r = q \rightarrow esq$
- 3. p->dir = r->esq
- 4. $q\rightarrow esq = r\rightarrow dir$
- 5. $r\rightarrow esq = p$
- 6. r->dir = q

ROTAÇÃO DUPLA À ESQUERDA

- 1. q = p->dir
- 2. $r = q \rightarrow esq$
- 3. p->dir = r->esq
- 4. $q\rightarrow esq = r\rightarrow dir$
- 5. r->esq = p
- 6. r->dir = q

ROTAÇÃO DUPLA À ESQUERDA

Entrada: nó P

- 1. $q = p \rightarrow dir$
- 2. $r = q \rightarrow esq$
- 3. p->dir = r->esq
- 4. $q\rightarrow esq = r\rightarrow dir$
- 5. $r\rightarrow esq = p$
- 6. r->dir = q

Poderíamos ter também uma configuração invertida aqui (h = h-1 e h = h)

ROTAÇÃO DUPLA À ESQUERDA

- 1. $q = p \rightarrow dir$
- 2. $r = q \rightarrow esq$
- 3. p->dir = r->esq
- 4. $q\rightarrow esq = r\rightarrow dir$
- 5. $r\rightarrow esq = p$
- 6. r->dir = q

ROTAÇÃO DUPLA À ESQUERDA

- 1. $q = p \rightarrow dir$
- 2. $r = q \rightarrow esq$
- 3. p->dir = r->esq
- 4. $q\rightarrow esq = r\rightarrow dir$
- 5. $r\rightarrow esq = p$
- 6. r->dir = q

ROTAÇÃO DUPLA À ESQUERDA

- 1. $q = p \rightarrow dir$
- 2. $r = q \rightarrow esq$
- 3. p->dir = r->esq
- 4. $q\rightarrow esq = r\rightarrow dir$
- 5. $r\rightarrow esq = p$
- 6. r->dir = q

ROTAÇÃO DUPLA À ESQUERDA

- 1. $q = p \rightarrow dir$
- 2. $r = q \rightarrow esq$
- 3. p->dir = r->esq
- 4. $q\rightarrow esq = r\rightarrow dir$
- 5. r->esq = p
- 6. r->dir = q

A rotação dupla também pode ser vista como uma combinação de duas simples

ROTAÇÃO DUPLA À ESQUERDA

- 1. rotSimplesDir(q)
 - 1.1. $r = q \rightarrow esq$
 - 1.2. $q\rightarrow esq = r\rightarrow dir$
 - 1.3. r->dir = q
- 2. rotSimplesEsq(p)
 - 2.1. r = p->dir
 - 2.2. p->dir = r->esq
 - 2.3. $r\rightarrow esq = p$

ROTAÇÃO DUPLA À ESQUERDA

Entrada: nó P

rotSimplesDir(q)

1.1.
$$r = q \rightarrow esq$$

1.2.
$$q\rightarrow esq = r\rightarrow dir$$

1.3.
$$r - dir = q$$

2. rotSimplesEsq(p)

2.1.
$$r = p->dir$$

2.2.
$$p->dir = r->esq$$

2.3.
$$r - > esq = p$$

ROTAÇÃO DUPLA À ESQUERDA

Entrada: nó P

rotSimplesDir(q)

1.1.
$$r = q \rightarrow esq$$

1.2.
$$q\rightarrow esq = r\rightarrow dir$$

1.3.
$$r - dir = q$$

2. rotSimplesEsq(p)

2.1.
$$r = p->dir$$

2.2.
$$p->dir = r->esq$$

2.3.
$$r \rightarrow esq = p$$

ROTAÇÃO DUPLA À ESQUERDA

Entrada: nó P

- 1. rotSimplesDir(q)
 - 1.1. $r = q \rightarrow esq$
 - 1.2. $q\rightarrow esq = r\rightarrow dir$
 - 1.3. $r\rightarrow dir = q$
- 2. rotSimplesEsq(p)
 - 2.1. r = p->dir
 - 2.2. p->dir = r->esq
 - 2.3. $r \rightarrow esq = p$

Obs.: o ajuste do ponteiro direito de P, antes ligado a Q, deve ser feito retornando R ao fim da função, tal que

$$P$$
->dir = R

ROTAÇÃO DUPLA À ESQUERDA

- rotSimplesDir(q)
 - 1.1. $r = q \rightarrow esq$
 - 1.2. $q\rightarrow esq = r\rightarrow dir$
 - 1.3. r dir = q
- 2. rotSimplesEsq(p)
 - 2.1. r = p->dir
 - 2.2. p->dir = r->esq
 - 2.3. $r \rightarrow esq = p$

Rotações

ROTAÇÃO DUPLA À ESQUERDA

Entrada: nó P

- rotSimplesDir(q)
 - 1.1. $r = q \rightarrow esq$
 - 1.2. $q\rightarrow esq = r\rightarrow dir$
 - 1.3. r->dir = q
- 2. rotSimplesEsq(p)
 - 2.1. r = p->dir
 - 2.2. p->dir = r->esq
 - 2.3. $r \rightarrow esq = p$

Rotações

ROTAÇÃO DUPLA À ESQUERDA

Entrada: nó P

- rotSimplesDir(q)
 - 1.1. $r = q \rightarrow esq$
 - 1.2. $q \rightarrow esq = r \rightarrow dir$
 - 1.3. r->dir = q
- 2. rotSimplesEsq(p)
 - 2.1. r = p->dir
 - 2.2. p->dir = r->esq
 - 2.3. r->esq = p

Obs.: o ajuste do ponteiro do pai de R, antes ligado a P, deve ser feito retornando R ao fim da função, tal que pai->(esq | dir) = R

Rotações

- Como saber qual rotação aplicar?
 - Analisando os fatores de balanceamento dos nós envolvidos
 - Rotação simples à esquerda
 - f(P) = +2
 - f(Q) = +1 ou 0
 - Rotação simples à direita
 - f(P) = -2
 - f(Q) = -1 ou 0
 - Rotação dupla à esquerda
 - f(P) = +2
 - f(Q) = -1
 - Rotação dupla à direita
 - f(P) = -2
 - f(Q) = +1

UMA IMPLEMENTAÇÃO EM C++ NoAVL* rotSimplesEsq(NoAVL* p) { NoAVL *q = p->dir; p->dir = q->esq; q->esq = p; return q; }

─ Ponteiro para NULL

☐ Inserir 40

Procedimento de inserção é o mesmo da árvore binária de busca

─■ Ponteiro para NULL

⇒ Inserir 40

 Encontra a posição de inserção

Inserção em AVL

—■ Ponteiro para NULL

- Encontra a posição de inserção
- 2. Insere novo nó

Inserção em AVL

— Ponteiro para NULL

⇒ Inserir 40

- Encontra a posição de inserção
- 2. Insere novo nó
- Retorna atualizando os fatores

Inserção em AVL

— Ponteiro para NULL

⇒ Inserir 40

- Encontra a posição de inserção
- 2. Insere novo nó
- 3. Retorna atualizando os fatores
- 4. Nó desbalanceado detectado

Inserção em AVL

─■ Ponteiro para NULL

⇒ Inserir 40

- Encontra a posição de inserção
- Insere novo nó
- Retorna atualizando
- os fatores
- Nó desbalanceado detectado
- Aplica rotação

O processo se encerra após a rotação

Inserção em AVL

Note que não é necessário atualizar os demais fatores de balanceamento após a rotação, pois a altura da árvore antes da inserção e após o balanceamento é a mesma

─■ Ponteiro para NULL

Remover 18

Procedimento de remoção é o mesmo da árvore binária de busca

─ Ponteiro para NULL

Remover 18

 Encontra a posição de remoção

—■ Ponteiro para NULL

Remover 18

- Encontra a posição de remoção
- 2. Remove nó (nó folha)

—■ Ponteiro para NULL

Remover 18

- Encontra a posição de remoção
- Remove nó (caso nó folha)
- 3. Retorna atualizando os fatores
- 4. Nó desbalanceado detectado

—■ Ponteiro para NULL

Remover 18

- Encontra a posição de remoção
- Remove nó (caso nó folha)
- 3. Retorna atualizando os fatores
- 4. Nó desbalanceado detectado
- 5. Aplica rotação

→ Ponteiro para NULL

- Encontra a posição de remoção
- Remove nó (caso nó folha)
- Retorna atualizando os fatores
- 4. Nó desbalanceado detectado
- 5. Aplica rotação

Na remoção, no entanto, o rebalanceamento **não termina** após a rotação

Suponha que quiséssemos remover o 18 na árvore original, antes da inserção do 40. Note que a altura da árvore após a rotação diminui, o que impacta os fatores de balanceamento de todos os nós no caminho de 18 até a raiz.

ANTES

DEPOIS

Árvore AVL

- Assim, a inserção em AVL requer no máximo 1 rotação (simples ou dupla) para balancear a árvore e até O(logn) atualizações de fatores
- > Já a remoção pode, no pior caso, gerar O(logn) rotações
- Aplicável em situações em que poucas inserções e remoções são esperadas
 - o Árvores vermelho-preto são mais eficientes em inserções e remoções

Exercício

Exercício 1:

Monte a árvore AVL (passo-a-passo) para as seguintes inserções de chaves 41, 38, 31, 12, 19, 8, 27, 49 (nesta ordem), indicando a cada passo qual elemento foi inserido e qual rotação foi realizada.

Exercício 2:

Construa a árvore AVL resultante da inserção das seguintes chaves na ordem especificada:

12, 70, 80, 43, 41, 60, 82, 90, 99, 11, 64

- SZWARCFITER, Jayme Luiz; MARKENZON, Lilian. Estruturas de Dados e Seus Algoritmos, cap. 5. LTC Editora, 1994.
- DROZDEK, Adam. Data Structures and Algorithms in C++, Fourth Edition, cap. 10. Cengage Learning, 2013.
- SOUZA, Jairo F. Notas de aula de Estrutura de Dados II. 2016.
 Disponível em: http://www.ufjf.br/jairo_souza/ensino/material/ed2/

