# Part 1: Solving Problems with <u>Search</u>

[Aknowledgment: Some Slides adapted from Dan Klein and Pieter Abbeel]

http://ai.berkeley.edu.]



Tesla on autopilot crashes into \*parked\* Fire truck at 65mph

# Search, continued



# Uniform Cost Search (Review)

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)





#### UCS Search (Reminder)

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)





#### UCS over Maze with Deep/Shallow Water



#### UCS ... in 1 line ©

#### def BFS(problem):

"""Search the shallowest nodes in the search tree first."""
return tree search (problem,

util.PriorityQueueWithFunction(Node.getCost))



http://www.mathcs.emory.edu/~eugene/cs425/p1/docs/util.html



#### One Queue to rule them all...

- All these search algorithms are the same except for fringe strategies
  - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
  - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stack and queues
  - Python Hint: can make one general graph search implementation that takes a variable **Fringe** object as a parameter
  - Use utils.pm for Stack, Queue,
     PriorityQueue classes.





# Priority Queue Refresher

 A priority queue is a data structure in which you can insert and retrieve (key, value) pairs with the following operations:

| pq.push(key, value) | inserts (key, value) into the queue.                                  |
|---------------------|-----------------------------------------------------------------------|
|                     | returns the key with the lowest value, and removes it from the queue. |

- You can decrease a key's priority by pushing it again
- Unlike a regular queue, insertions aren't constant time, usually O(log n)
- We'll need priority queues for cost-sensitive search methods

#### Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
  - Processes all nodes with cost less than cheapest solution!
  - If that solution costs  $C^*$  and arcs cost at least  $\varepsilon$ , then the "effective depth" is roughly  $C^*/\varepsilon$
  - Takes time  $O(b^{C*/\varepsilon})$  (exponential in effective depth)
- How much space does the fringe take?
  - Has roughly size of the last tier, so  $O(b^{C*/\varepsilon})$
- Is it complete?
  - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
  - Yes! (Proof soon via A\* algorithm)



# Performance Comparison

| Algorith | m                   | Complete | Optimal | Time                  | Space                   |
|----------|---------------------|----------|---------|-----------------------|-------------------------|
| DFS      | w/ Path<br>Checking | Y        | N       | O(bm)                 | O(bm)                   |
| BFS      |                     | Y        | Y*      | O(bd)                 | O(bd)                   |
| UCS      |                     | Y*       | Y       | $O(b^{C^*/\epsilon})$ | $O(b^{C^{*/\epsilon}})$ |



#### **Uniform Cost Issues**

- Remember: UCS explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
  - Explores options in every "direction"
  - No information about goal location
- We'll fix that next!





#### Uniform Cost: Pac-Man

- Cost of 1 for each action
- Explores all of the states, but one



#### Search Heuristics

- Any estimate of how close a state is to a goal
- Designed for a particular search problem



 Examples: Manhattan distance, Euclidean distance https://qiao.github.io/PathFinding.js/visual/

# **Example: Heuristic Function**



| Straight-line distant<br>to Bucharest | ice |
|---------------------------------------|-----|
|                                       |     |
| Arad                                  | 366 |
| Bucharest                             | 0   |
| Craiova                               | 160 |
| Dobreta                               | 242 |
| Eforie                                | 161 |
| Fagaras                               | 178 |
| Giurgiu                               | 77  |
| Hirsova                               | 151 |
| Iasi                                  | 226 |
| Lugoj                                 | 244 |
| Mehadia                               | 241 |
| Neamt                                 | 234 |
| Oradea                                | 380 |
| Pitesti                               | 98  |
| Rimnicu Vilcea                        | 193 |
| Sibiu                                 | 253 |
| Timisoara                             | 329 |
| Urziceni                              | 80  |
| Vaslui                                | 199 |
| Zerind                                | 374 |
|                                       |     |

h(x)

# **Example: Heuristic Function**



| Straight-line distan | ice |
|----------------------|-----|
| to Bucharest         |     |
| Arad                 | 366 |
| Bucharest            | 0   |
| Craiova              | 160 |
| Dobreta              | 242 |
| Eforie               | 161 |
| Fagaras              | 178 |
| Giurgiu              | 77  |
| Hirsova              | 151 |
| Iasi                 | 226 |
| Lugoj                | 244 |
| Mehadia              | 241 |
| Neamt                | 234 |
| Oradea               | 380 |
| Pitesti              | 98  |
| Rimnicu Vilcea       | 193 |
| Sibiu                | 253 |
| Timisoara            | 329 |
| Urziceni             | 80  |
| Vaslui               | 199 |
| Zerind               | 374 |
|                      |     |

h(x)

#### **Greedy Search**

Expand the node that seems closest...



What can go wrong?





#### **Exercise: Greedy Search**

• Greedy orders PQ by goal proximity, or heuristic cost h(n)



What is the greedy solution?

#### Greedy ... in 3 lines ©

```
def heuristic(Node n):
    return 42
```

#### Greedy Search (analysis sketch)

- Strategy: expand a node that you think is closest to a goal state
  - Heuristic: estimate of distance to nearest goal for each state



- A common case:
  - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS



#### Video of Demo Contours Greedy (Empty)



#### Video of Demo Contours Greedy (Pacman Small Maze)



# A\* Search



#### Can we Combine UCS and Greedy?

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)



#### UCS + Greedy = A\*

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)





 $A^*$  Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager













#### A\*... in 3 lines ©

```
def BFS(problem):
   """Search the shallowest nodes in the search tree first."""
   return astar search (problem,
               util.PriorityQueueWithFunction(fcost))
    def heuristic(Node n):
          return ....
    def fcost(Node n):
```

return heuristic(Node n) + n.getCost()

#### When should A\* terminate?

• Should we stop when we enqueue a goal? h=2



#### Exercise: A\* solution for this graph?



#### Idea: Admissibility



Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe



Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

#### Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where  $h^*(n)$  is the true cost to a nearest goal

Examples:



 Coming up with admissible heuristics is most of what's involved in using A\* in practice.

# Optimality of A\* Tree Search

#### Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

#### Claim:

A will exit the fringe before B



# Optimality of A\* Tree Search: Blocking

#### Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
  - 1. f(n) is less or equal to f(A)



$$f(n) = g(n) + h(n)$$
$$f(n) \le g(A)$$
$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

# Optimality of A\* Tree Search: Blocking

#### Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
  - 1. f(n) is less or equal to f(A)
  - 2. f(A) is less than f(B)



$$g(A) < g(B)$$
$$f(A) < f(B)$$

B is suboptimal h = 0 at a goal

# Optimality of A\* Tree Search: Blocking

#### Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
  - 1. f(n) is less or equal to f(A)
  - 2. f(A) is less than f(B)
  - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A\* search is optimal



$$f(n) \le f(A) < f(B)$$

# Properties of A\*

**Uniform-Cost** 







### UCS vs A\* Contours

 Uniform-cost expands equally in all "directions"



 A\* expands mainly toward the goal, but does hedge its bets to ensure optimality



# Video of Demo Contours (Empty) -- UCS



# Video of Demo Contours (Empty) -Greedy



# Video of Demo Contours (Empty) – A\*



# Video of Demo Contours (Pacman Small Maze) – A\*



# Which Algorithm (1)?



# Which Algorithm (2)



# Which Algorithm (3)



# Which Algorithm (4)?



# Which Algorithm (5)



## Comparison: Summary







Greedy

**Uniform Cost** 

**A**\*

# A\* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- •



# **Creating Admissible Heuristics**

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available





Inadmissible heuristics can be useful too!

# Example: 8 Puzzle



**Start State** 





**Goal State** 

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

## 8 Puzzle I

- Heuristic:
- Is it admissible?
- h(start) =
- h(goal) =





**Start State** 

**Goal State** 

## 8 Puzzle: Tiles heuristic

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a relaxed-problem heuristic







**Start State** 

**Goal State** 

|       | Average nodes expanded when the optimal path has |         |                   |  |
|-------|--------------------------------------------------|---------|-------------------|--|
|       | 4 steps                                          | 8 steps | 12 steps          |  |
| UCS   | 112                                              | 6,300   | $3.6 \times 10^6$ |  |
| TILES | 13                                               | 39      | 227               |  |

Statistics from Andrew Moore

### 8 Puzzle II: Manhattan heuristic

- <u>Relaxation</u>: easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance from correct location







**Goal State** 

- Is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

|           | Average nodes expanded when the optimal path has |         |          |  |
|-----------|--------------------------------------------------|---------|----------|--|
|           | 4 steps                                          | 8 steps | 12 steps |  |
| TILES     | 13                                               | 39      | 227      |  |
| MANHATTAN | 12                                               | 25      | 73       |  |

### 8 Puzzle III: Oracle heuristic

- How about using the actual cost as a heuristic?
  - Would it be admissible?
  - Would we save on nodes expanded?
  - What's wrong with it?







- With A\*: a trade-off between quality of estimate and work per node
  - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

# Recap: Problem Relaxation

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then  $h_1(n)$  gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then  $h_2(n)$  gives the shortest solution

# Designing heuristics (cont'd)

### E.g., for the 8-puzzle:

- $h_1(n)$  = number of misplaced tiles
- $h_2(n)$  = total Manhattan distance

(i.e., no. of squares from desired location of each tile)







Goal State

• 
$$h_1(S) = \hat{s}$$

### Heuristics: cont'd

### E.g., for the 8-puzzle:

- $h_1(n)$  = number of misplaced tiles
- $h_2(n)$  = total Manhattan distance

(i.e., no. of squares from desired location of each tile)







Which is "better"

– h1 or h2?

• 
$$h_1(S) = ? 8$$

• 
$$\underline{h_2(S)} = ? 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

### Idea: Heuristic dominance

If h₂(n) ≥ h₁(n) for all n (both admissible, i.e., < true cost)</li>
 then h₂ dominates h₁

 $h_2$  is better for search

- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes  $A^*(h_1) = 227$  nodes  $A^*(h_2) = 73$  nodes
- d=24 IDS = too many nodes  $A^*(h_1) = 39,135$  nodes  $A^*(h_2) = 1,641$  nodes

## **Example: Heuristics for Chess**

- To select next move, must evaluate expected benefit of successor position:
  - Value of the pieces (count value of your pieces value of opponents pieces)
  - Space: threatened/controlled space by you space controlled by opponent
  - Pawn structure
  - **—** ...
- Examples:
  - https://www.quora.com/What-are-some-heuristics-forquickly-evaluating-chess-positions
  - https://chessprogramming.wikispaces.com/Killer+Heuristic

## Example: Heuristics for Motion Planning

- Robot motion: many moving (body) parts
- What's the most efficient way to accomplish goal?

https://www.youtube.com/watch?v=dSwDZmvtGZY

# **Designing Heuristics**

- A good heuristic is:
  - ✓ Admissible (optimistic)
  - Consistent (non-decreasing)
  - √ "Accurate"

# Trivial Heuristics, Dominance

• Dominance:  $h_a \ge h_c$  if

$$\forall n: h_a(n) \geq h_c(n)$$

Max of admissible heuristics is admissible:

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
  - Bottom of lattice is the zero heuristic (what does this give us?)
  - Top of lattice is the exact heuristic



# A\* Graph Search Gone Wrong?



Search tree



## **Consistency** of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
  - Admissibility: heuristic cost ≤ actual cost to goal
     h(A) ≤ actual cost from A to G
  - Consistency: heuristic "arc" cost ≤ actual cost for each arc
     h(A) h(C) ≤ cost(A to C)
- Consequences of consistency:
  - The f value along a path never decreasesh(A) ≤ cost(A to C) + h(C)
  - A\* graph search is optimal

# Optimality of A\* Graph Search

- Sketch of proof: consider what A\* does with a consistent heuristic:
  - Fact 1: In tree search, A\* expands nodes in increasing total f value (f-contours)
  - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
  - Result: A\* graph search is optimal



# Optimality (2): Tree vs. Graph Search

#### Tree search:

- A\* is optimal if heuristic is admissible
- UCS is a special case (h = 0)

#### Graph search:

- A\* optimal if heuristic is consistent
- UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems



# A\*: Summary



## A\*: Summary

- A\* uses both backward costs and (estimates of) forward costs
- A\* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems



## Project 1: Due Friday, Feb 9

- Read FAQ on Canvas before posting questions:
- Questions 1-4: if you develop a <u>correct</u> solution for DFS, the rest will be easy modifications
- Run autograder after \*every\* question. Until you perfectly pass all the test cases, assume your code has bugs.
- Example (incomplete!) implementations: <a href="https://github.com/aimacode/aima-python/blob/master/search.py">https://github.com/aimacode/aima-python/blob/master/search.py</a>

# Tips for Project 1 (cont'd)

• Problems 5-8 <u>depend on code in 1-4</u>. Get that right (and tested) first, before moving on!

- P5/Corners problem: must visit all corners in \*single\* path
  - Implications for search tree, state info to update

 Heuristics for p6-8: start simple. For extra credit, think back to graph traversal algorithms from cs323.

## Project 1 final hints

- Use Discussions, read FAQ before posting questions
- Suggestion: use Node class or similar. Easier to do Questions 5-8.
- Questions 5-8: more fun/creative. Leave enough time, start early.
- Most importantly: Don't Panic! Eat the elephant one question at a time.