

L1 Informatique

Institut National
Universitaire
Champollion

Architecture de base

Nicolas GARRIC

Architecture, Système, Réseaux

Contenu et évaluation

- 3 domaines abordés (Cours -TD -TP):
 - Architecture des ordinateurs
 - Systèmes d'exploitation
 - Réseaux

- Évaluation : 3 contrôles continus dans le semestre
 - CC1,CC3: sur table, questions de cours + exercices
 - CC2 : sur machine (bash)

Un ordinateur personnel (PC)

Des ordinateurs portables

Des smartphones

Des tablettes

Un supercalculateur

Des objets connectés

Un ordinateur?

Loi de Moore

 Le processeur est composé de portes logiques (ET, OU NOT) qui sont composées de transistors

Intel Core i7/Xeon= 2 milliards de transistors

Architecture de Von Neumann

Le modèle d'un ordinateur contient :

- Une mémoire qui contient des informations (des données et des instructions)
- Une unité arithmétique et logique qui fait des calculs sur des données
- Une unité de contrôle
 - interprète les instructions et les exécute
- Un dispositif d'entrées/sorties pour interagir avec l'utilisateur

Structure générale

BUS

- Un BUS est un ensemble de lignes capables de transmettre des informations (adresses, données ou commandes) entre différents organes de l'ordinateur.
- En général il y a plusieurs bus de tailles différentes:
 - ◆ Le bus système ou FSB (Front Side Bus) : relie la CPU et la mémoire RAM
 - ◆ Les bus E/S : relient la carte mère aux composants externes. Exemples : les bus PCI, USB, SATA (pour disques durs et lecteurs de CDROM et DVD)

Bus: schéma

Chipset

- Contrôleur : c'est un module qui gère la circulation des données sur un bus. La méthode utilisée est un protocole ;
 - ◆ le contrôleur EIDE qui gère le disque dur utilise le protocole ATA/100

Chipset (Chip = puce, Set = ensemble): il est constitué de l'ensemble des contrôleurs de la carte mère.

Pont Nord et Pont sud

 Le pont Nord : c'est le contrôleur gérant l'échange des données entre le processeur, la mémoire et la carte graphique

 Le pont Sud : c'est le contrôleur gérant l'échange avec les autres entrées/sorties, plus lentes

Entrées / Sorties

- Ce sont toutes les parties de l'ordinateur qui permettent de communiquer avec l'extérieur
 - Clavier (Entrée/Sortie) / Souris (Entrée)
 - ◆ Imprimante (Sortie) via le bus usb.
 - ◆ Disque dur (Entrée/Sortie) via le port SATA
 - Écran (Sortie) via une carte vidéo et le port PCI Express
 - Réseau (Entrée/Sortie) via une carte Ethernet et le bus PCIExpress par exemple
- Les chipset modernes intègrent cartes son, vidéo, modem et réseau dans le pont Sud

Intérieur d'un PC

Carte mère

Unité centrale : schéma

Unité centrale : fonctionnement

- L'unité de commande lit une instruction en mémoire
- L'unité de commande décode et exécute l'instruction :
 - ◆ En faisant un calcul dans l'UAL.
 - ◆ En transmettant des données vers la mémoire ou les Entrées/Sorties.
- L'unité de commande donne la cadence avec l'horloge (environ 1GHz)

Détail de l'unité centrale

Détail de l'unité centrale (2)

- PC (Compteur de programme) ou CO (Compteur Ordinal) : contient l'adresse de l'instruction suivante à exécuter
- RI (Registre Instruction) : contient le code de l'instruction en cours d'exécution
- Banc de registres : ensemble de registres d'accès très rapide. Il y a des registres à usage généraux et certains dédiés à certaines manipulations (flottants, multimédia,...)
- UAL (Unité Arithmétique et Logique) : effectue des calculs à partir d'opérandes provenant des registres ou de la mémoire centrale. Positionne le registre d'état (RE)

Détail de l'unité centrale (3)

- **RE** (registre d'état) : contient des informations concernant les opérations déjà effectuées : retenues, débordements,... Ces informations sont des **drapeaux** (flags)
- Décodeur d'instructions : décode l'instruction contenue dans le Registre d'instructions
- Séquenceur : en fonction de l'instruction à exécuter le séquenceur émet un certain nombre de signaux de contrôles vers les composants du chemin de données.

Unité centrale : assembleur

- Les instructions lues par l'unité de commande sont en code machine (binaire).
- La traduction du code machine en langage intelligible est le langage assembleur
- Exemple :
 - ◆ Instruction assembleur = Load R1, #1
 - ◆ Code machine = 110010101001010010111111

Unité centrale : assembleur

- Il existe autant d'assembleurs que de types de processeurs :
 - ◆ Assembleur x86 : pour les processeurs intel et compatibles c'est à dire les PCs
 - ◆ Assembleur ARM : pour les smartphones, les tablettes, ...
 - ◆ Assembleur PIC : pour votre frigo, ...
- On programme peu en assembleur : on compile des langages de haut niveau (C, Java, Python, ...)
- Assembleur = interface entre hardware et software

Information manipulée

- Un ordinateur transfère et manipule des informations :
 - Des données : nombres, caractères, images, ...
 - ◆ Des instructions : add, mul, load, ...
 - Des adresses : localisent les informations
- Il stocke ces informations :
 - Dans les registres du processeur
 - ◆ Dans la mémoire centrale
 - ◆ Dans la mémoire de masse (disque dur, ...)

Bit, octet et compagnie

- L'information est binaire et son unité élémentaire est le bit : 0 ou 1
- Lorsque l'on regroupe 8 bits on obtient 1 octet (byte)
- L'octet est la mesure de base de la capacité de stockage informatique
- 1Koctet (Ko) = 1024 octets (=2^10 octets)
- 1Mo = 1024 Ko = 2^20 octets
- 1Go = 2^30 octets
- 1 To = 2^4 0 octets

Binaire, décimal, hexadécimal

- Un octet contient donc 8 bits à 0 ou 1. Pour décrire son contenu, on peut utiliser :
 - Le binaire : 01000011
 - Le décimal : 67
 - L'héxadécimal (base 16) : 43
- Un octet peut représenter tous types de données : nombres (entiers, réels, ...), caractères,
- L'octet précédent peut représenter l'entier 67 ou le caractère 'B' ou autre chose

Les registres du processeur

- Il y a peu de registres (environ 16 à 64)
- Ils sont volatils (pas d'alimentation = pas de stockage)
- Temps d'accès = 1 ns (soit 1 cycle d'horloge)
- Leur taille est adaptée aux données manipulées :
 - Registres entiers: 4 ou 8 octets
 - Registres flottants: 8 ou 16 octets

Mémoire centrale (vive) : RAM

- RAM (Random Access Memory)
 - * Elle est volatile
 - * Temps d'accès = 10 ns (soit 10 cycles d'horloge)
 - * Débit 1 Go/s
 - * Capacité quelques Go
 - ◆ Elle est reliée au processeur par le FSB (Front Side Bus).
 - ◆ Différents types : SD RAM, DDR RAM, RAMbus

Notion d'adresse mémoire

- Unité d'accès à la mémoire = un octet
- Les octets sont numérotés → adresses
 - une adresse **pointe** sur un octet
- Adresse codée en binaire
 - mémoire de 16 octets → adresse sur bits
 - mémoire de 1KO (1024 octets) → adresse sur bits
 - quelle taille de mémoire pour une adresse sur 32 bits ?

Mémoire cache

- Cache L1:
 - Temps d'accès ≈ 1 cycle d'horloge
 - Capacité ≈ 32 Ko
- Cache L2:
 - Temps d'accès ≈ 2 cycles d'horloge
 - Capacité ≈ 512 Ko

Fonctionnement du cache

- L'Unité de Commande cherche les données dans le cache L1, puis dans le cache L2, puis dans la RAM.
- Il faut mettre dans les caches les données les plus utilisées
- Avec une bonne stratégie, on trouve dans le cache les données que l'on cherche dans 90% des cas.

Mémoire fixe : CDROM et DVD

- L'information est stockée dans une spirale de micro cuvettes qui réfléchissent plus ou moins la lumière
- Lecture grâce à un laser.
- Capacité ≈ 650 Mo
- Débit ≈ 150 Ko/s
- DVD : idem mais deux couches et un laser plus fin

Mémoire fixe : Disque magnétique

 Éléments magnétiques déposés sur des disques empilés qui tournent.

Les éléments magnétiques s'orientent grâce à une tête de lecture/écriture grâce à l'induction électromagnétique

Mémoire fixe : Disque magnétique

- Capacité de stockage = plusieurs To
- Faible coût
- Temps de latence important (5 ms), à cause du déplacement de la tête de lecture

Mémoire fixe : Disque SSD (Solid-state Drive)

- Capacité de stockage = plusieurs To
- Stockage à base de portes NAND
- Temps de latence très réduit (0,1ms)
- Coût plus élevé que le disque magnétique
- Nombre maximal de réécritures limité

Mémoire fixe: ROM

- ROM = Read Only Memory (ou mémoire morte)
- Faible capacité et non modifiable
- La ROM est utilisée pour le BIOS (Basic Input Output System) :
 - BIOS : programme lancé au démarrage qui vérifie l'état de marche des différents composants et lance le système d'exploitation (Windows, Linux, ...)

Mémoire flash

- Technologie dérivée de la ROM, mais réinscriptible
- Vitesse élevée, Capacité en forte augmentation
- Nombreuses applications :
 - Clés USB
 - Cartes SD
 - •

