

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY(A) DEPARTMENT OF INFORMATION TECHNOLOGY

An Industry Oriented Mini Project (IT653PC)

On

HYBRID APPROACH FOR NETWORK INTRUSION DETECTION SYSTEM USING MACHINE LEARNING

BY

Patloori Durga-22261A1246

Suragani Revathi-22261A1253

Batch ID-IT-25-12

Internal Supervisor

Mrs.U.Chaitanya

IOMP Supervisor

Mrs.Ch.Sudha

OUTLINE

- ABSTRACT
- INTRODUCTION
- EXISTING SYSTEM
- PROPOSED SYSTEM
- APPLICATIONS
- REQUIREMENTS
- LITERATURE SURVEY
- PROBLEM STATEMENT
- OBJECTIVES
- MODULES DESCRIPTION
- ALGORITHM
- DESIGN ARCHITECTURE
- UML DIAGRAMS
- TEST CASES
- RESULTS
- CONCLUSION
- FUTURE SCOPE
- REFERENCES

ABSTRACT

- IDS is essential for detecting malicious activities and securing networks.
- Signature-based IDS effectively detects known threats but struggles with anomalies and novel attacks.
- Machine learning classifiers improve detection but have difficulty identifying rare attacks like R2L and U2R due to their similarity
 to
 normal
 behavior.
- The Double Layered Hybrid Approach (DLHA) integrates enhanced BLSTM to improve attack detection.
- PCA extracts key features, while BLSTM enhances temporal and sequential pattern recognition for rare attack detection.
- Layer 1 uses Naive Bayes for detecting DoS and Probe attacks; Layer 2 combines SVM and BLSTM to differentiate R2L and U2R from normal instances.

INTRODUCTION

- Intrusion Detection Systems (IDS) help secure networks by detecting and mitigating cyber threats.
- Signature-based IDS fails to detect new and anomalous threats.
- Machine learning improves detection but struggles with rare attacks like R2L and U2R due to imbalanced data.
- The Double Layered Hybrid Approach (DLHA) integrates BLSTM for better anomaly detection.
- Naïve Bayes classifies DoS and Probe attacks, while SVM and BLSTM differentiate R2L and U2R attacks from normal traffic.
- BLSTM enhances the learning of attack patterns, making IDS more effective against evolving cyber threats.

IDENTIFYING ATTACKS

DoS Attacks (Denial of Service)-

Back,land,neptune,pod,smurf,teardrop,apache2,udp storm,processtable,worm.

Probe Attacks (Probing and Scanning)-

Satan,ipsweep,nmap,portsweep,mscan,saint.

R2L (Remote-to-Local)-

ftp_write, guess_passwd, imap, multihop, etc.

U2R (User-to-Root)-

buffer_overflow, rootkit, loadmodule, perl, etc.

EXISTING SYSTEM:

Limited Detection of Evolving Threats

- Signature-based IDS fails to detect new and evolving attacks, while anomaly-based IDS has high false positives.
- ML models struggle with imbalanced datasets, leading to poor detection of rare attacks like R2L and U2R.

 Limitation: Ineffective against zero-day attacks and misclassifies rare threats.

High Computational Cost & Real-Time Inefficiency

- Deep learning models (CNN, LSTM, Hybrid Approaches) improve accuracy but require high processing power.
- Manual feature selection reduces adaptability, making real-time intrusion detection difficult. Limitation: Slow scalability challenges, processing, and high consumption. resource

PROPOSED SYSTEM

Optimized Feature Selection & Real-Time Efficiency

- Principal Component Analysis (PCA) extracts key features, improving detection speed and reducing noise.
- The system balances accuracy and computational efficiency, making it scalable for real-time intrusion detection. Benefit: Faster processing, adaptability to new threats, and efficient real-time performance.

Improved Rare Attack Detection with Hybrid Approach

- A two-layer classification model:
- Layer 1: Naive Bayes efficiently detects DoS and Probe attacks.
- Layer 2: SVM + BLSTM accurately identifies rare R2L and U2R attacks by learning sequential attack patterns. Benefit: Higher accuracy in detecting both common and rare attacks with reduced false positives.

APPLICATIONS

- Enterprise Network Security
- Cloud Security & Data Centers
- Government & Defense Networks
- Banking & Financial Institutions
- Healthcare Systems & IoT Security
- Smart Cities & Critical Infrastructure
- Educational Institutions & Research Labs

REQUIREMENTS

SOFTWARE:

Operating System: Windows 10/11

Programming Language: Python 3.x

Libraries and Frameworks:TensorFlow / PyTorch (for BLSTM),Scikit-learn (for PCA, SVM, and Naïve Bayes),NumPy & Pandas (for data handling),Matplotlib & Seaborn (for visualization)

Development Environment:VsCode

Additional Tools:NSL-KDD (data set)

HARDWARE:

• **Processor** - Intel Core i5/i7/i9

• **RAM** - Minimum: 8GB

• Storage - Minimum: 256GB SSD

LITERATURE SURVEY

S.NO	AUTHOR NAMES,YEAR OF PUBLICATION	JOURNAL OR CONFERENCE NAME AND PUBLISHER NAME	METHODOLOGY/ ALGORITHM / TECHNIQUES USED	MERITS	DEMERITS	RESEARCH GAPS
1.	Muhammad Sajid et al. (2024)	Journal of Cloud Computing, Springer	Developed a Hybrid Machine and Deep Learning Approach integrating CNN, LSTM, and ensemble learning	Enhanced anomaly detection with a focus on cloud based environments	CNN struggles with sequential dependencies in network traffic	Requires improvement in feature selection techniques for better performance
2.	Security and Communication Networks (2024)	Security and Communication Networks, Hindawi	fommunication Supervised Ensemble Communication Stacking Model a		Overfitting issue due to ensemble complexity	Needs validation on real - world datasets for better generalization

3.	S. Shi, D. Han, & M. Cui (2023)	Connection Science, Taylor & Francis	Introduced a Multimodal Hybrid Parallel IDS using ML and DL models for feature extraction and classification	improved performance in handling high dimensional network traffic data	High computational cost	Needs lightweight IDS solutions for real time deployment
4.	R. Jalili, S. Imani, & M. R. Aminzadeh (2021)	Proceedings of ACM SIN Conference, ACM Digital Library	Proposed a CNN LSTM-based approach for anomaly detection in Software Defined Networks (SDNs)	Effective in detecting unknown attacks and reducing false positives	High training time and resource consumption	Needs optimization techniques to improve efficiency
5.	M. Mohammadi, A. Navaras, & M. H. Amini (2021)	IEEE Xplore, IEEE	Proposed a Double Layered Hybrid Approach (DLHA) using Naïve Bayes, SVM for network intrusion detection	Effective in detecting DoS and Probe attacks with high accuracy	Struggles with class imbalance in R2L and U2R attacks	Requires further optimization for real time attack detection

PROBLEM STATEMENT

- Traditional IDS fail to detect rare and evolving attacks like R2L and U2R, resulting in high false negatives due to limited adaptability and reliance on signature-based methods.
- Existing machine learning approaches face challenges with data imbalance, while deep learning models are resource-intensive—highlighting the need for a hybrid, efficient, and accurate IDS for real-time cybersecurity.

OBJECTIVES

- Enhance Intrusion Detection Accuracy
- Optimize Feature Selection
- Reduce False Positives & Improve Adaptability

MODULES DESCRIPTION

Data Preprocessing & Feature Selection

• Uses PCA to extract relevant features and reduce noise.

Layer 1: Naive Bayes Classification

• Detects DoS and Probe attacks as an initial filtering step.

Layer 2: SVM + BLSTM for Rare Attack Detection

- SVM separates normal traffic from anomalies.
- BLSTM captures sequential attack patterns, improving R2L and U2R detection.

Intrusion Detection & Classification

• Labels traffic as normal or attack, minimizing false positives.

Performance Evaluation & Real-Time Implementation

• Measures accuracy, precision, recall, and F1-score for real-time security.

ALGORITHM

- 1. Data Preprocessing & Feature Selection
- 2. Layer 1 Initial Classification (Naïve Bayes)
- 3. Layer 2 Rare Attack Detection (SVM + BLSTM)
- 4. Intrusion Detection & Classification
- 5. Performance Evaluation & Real-Time Implementation

DESIGN ARCHITECTURE

UML DIAGRAMS

USE CASE DIAGRAM:

CLASS DIAGRAM:

ACTIVITY DIAGRAM:

SEQUENCE DIAGRAM:

COMPONENT DIAGRAM:

DEPLOYMENT DIAGRAM:

TEST CASES:

Test Case ID	Model	Data Source	What's Tested	Pass Criteria
TC1	Naive Bayes (Layer 1)	30% hold-out split of X_pca/y from training set (X_test1, y_test1)	Layer 1 classification performance	Model returns predictions
TC2	SVM (Layer 2)	30% hold-out split of the correctly classified subset (X_test2, y_test2)	Layer 2 (SVM) classification on "easy" cases	No errors in prediction pipeline
TC3	BLSTM (Layer 2)	30% hold-out split of the same "easy" subset, used as validation during training	BLSTM training & validation accuracy	Loss decreases, accuracy improves per epoch

TC4	Naive Bayes (Test Data)	Entire external test file (KDDTest+.txt) preprocessed → X_test_all, y_test_all	Final NB performance on unseen data	Passes and gives confusion matrix
TC5	SVM (Test Data)	Same external test set (X_test_all, y_test_all)	Final SVM performance on unseen data	Passes and gives confusion matrix
TC6	BLSTM (Test Data)	Same external test set reshaped for BLSTM	Final BLSTM performance on unseen data	Passes and gives confusion matrix

RESULTS:

7 wrong_fragment

125972 non-null int64 125972 non-null int64

PROBLEMS 111 OUTPUT DEBUG CONS	SOLE TERMINAL PORTS	□ powershell
• (myenv) PS C:\Users\cyber\OneDri	valDaskton\TOMD1> nuthon n2 mu	
	nsorflow/core/util/port.cc:153] oneDNN custom operations are on. You may	see slightly different numerical results due to floating-noin
	it computation orders. To turn them off, set the environment variable `TF	
	nsorflow/core/util/port.cc:153] oneDNN custom operations are on. You may	
	t computation orders. To turn them off, set the environment variable `TF	
	.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.00.5 150 25 0.17 0.03	
0 0 udp other SF 146	0 0 0 0 0 0 0 0 0 0.000 255 1 0.000 0.600	0.880 0.000 0.000 0.000 0.000 0.000 normal 15
1 0 tcp private S0 0	0 0 0 0 0 0 0 0 0 0.000 255 26 0.100 0.050	0.800 0.800 1.800 1.800 0.800 0.800 neptune 19
2 0 tcp http SF 232 81	.53 0 0 0 0 0 1 0 0.000 30 255 1.000 0.000	0.030 0.040 0.030 0.010 0.000 0.010 normal 21
	20 0 0 0 0 0 1 0 0.090 255 255 1.000 0.000	
4 0 tcp private REJ 0	0 0 0 0 0 0 0 0 0 0.000 255 19 0.070 0.070	0.000 0.000 0.000 0.000 1.000 1.000 neptune 21
[5 rows x 43 columns]		1111
	ce flag src_bytes dst_host_srv_serror_rate dst_host_rerror_rate	
0 0 udp oth		0.000 normal 15
1 0 tcp priva 2 0 tcp ht		0.000 neptune 19 0.010 normal 21
2 0 tcp ht 3 0 tcp ht		0.000 normal 21
4 0 tcp priva		1.000 nortune 21
4 0 ttp pi i va	LE NLJ 0 0.000 1.000	1.000 Reptune 21
[5 rows x 43 columns]		
<pre><class 'pandas.core.frame.datafr<="" pre=""></class></pre>	ame'>	
RangeIndex: 125972 entries, 0 to		
Data columns (total 43 columns):		
# Column `	Non-Null Count Dtype	
0 duration	125972 non-null int64	
1 protocol_type	125972 non-null object	
2 service	125972 non-null object	
3 flag	125972 non-null object	
4 src_bytes	125972 non-null int64	
5 dst_bytes	125972 non-null int64	
6 land	125972 non-null int64	

PROB	LEMS 111 OUTPUT	DEBUG CONSOLE	TERMINAL	PORTS
8	urgent	125	972 non-nul	l int64
9	hot	125	972 non-nul	l int64
10	num failed logins	125	972 non-nul	l int64
11	logged_in	125	972 non-nul	l int64
12	num_compromised	125	972 non-nul	l int64
13	root_shell	125	972 non-nul	l int64
14	su_attempted	125	972 non-nul	l int64
15	num_root	125	972 non-nul	l int64
16	num_file_creation	s 125	972 non-nul	l int64
17	num_shells	125	972 non-nul	l int64
18	num_access_files	125	972 non-nul	l int64
19	num_outbound_cmds	125	972 non-nul	l int64
20	is_host_login	125	972 non-nul	l int64
21	is_guest_login	125	972 non-nul	1 int64
22	count	125	972 non-nul	l int64
23	srv_count	125	972 non-nul	l int64
24	serror_rate	125	972 non-nul	1 float64
25	srv_serror_rate	125	972 non-nul	l float64
26	rerror_rate	125	972 non-nul	1 float64
27	srv_rerror_rate	125	972 non-nul	l float64
28	same_srv_rate	125	972 non-nul	l float64
29	diff_srv_rate	125	972 non-nul	1 float64
30	srv_diff_host_rat	e 125	972 non-nul	l float64
31	dst_host_count	125	972 non-nul	l int64
32	dst_host_srv_coun	t 125	972 non-nul	l int64
33	dst_host_same_srv		972 non-nul	
34	dst_host_diff_srv		972 non-nul	
35	dst_host_same_src		972 non-nul	l float64
36	dst_host_srv_diff	host_rate 125	972 non-nul	l float64
37	dst_host_serror_r	ate 125	972 non-nul	l float64
38	dst_host_srv_serr	or_rate 125	972 non-nul	l float64
39	dst_host_rerror_r		972 non-nul	
40	dst_host_srv_rerr		972 non-nul	
41	attack		972 non-nul	
42	level	125	972 non-nul	l int64

42 level 125972 non-null int64

dtypes: float64(15), int64(24), object(4)

memory usage: 41.3+ MB

Non

None								
A 11 (10 10 10 10 10 10 10 10 10 10 10 10 10 1	count	mean	std	min	25%	50%	75%	max
duration	125972.000	287.147	2604.526	0.000	0.000	0.000	0.000	42908.000
src_bytes	125972.000	45567.101	5870354.481	0.000	0.000	44.000	276.000	1379963888.000
dst_bytes	125972.000	19779.271	4021285.112	0.000	0.000	0.000	516.000	1309937401.000
land	125972.000	0.000	0.014	0.000	0.000	0.000	0.000	1.000
wrong_fragment	125972.000	0.023	0.254	0.000	0.000	0.000	0.000	3.000
urgent	125972.000	0.000	0.014	0.000	0.000	0.000	0.000	3.000
hot	125972.000	0.204	2.150	0.000	0.000	0.000	0.000	77.000
num_failed_logins	125972.000	0.001	0.045	0.000	0.000	0.000	0.000	5.000
logged_in	125972.000	0.396	0.489	0.000	0.000	0.000	1.000	1.000
num_compromised	125972.000	0.279	23.942	0.000	0.000	0.000	0.000	7479.000
root_shell	125972.000	0.001	0.037	0.000	0.000	0.000	0.000	1.000
su_attempted	125972.000	0.001	0.045	0.000	0.000	0.000	0.000	2.000
num_root	125972.000	0.302	24.400	0.000	0.000	0.000	0.000	7468.000
num_file_creations	125972.000	0.013	0.484	0.000	0.000	0.000	0.000	43.000
num_shells	125972.000	0.000	0.022	0.000	0.000	0.000	0.000	2.000
num_access_files	125972.000	0.004	0.099	0.000	0.000	0.000	0.000	9.000
num_outbound_cmds	125972.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
is_host_login	125972.000	0.000	0.003	0.000	0.000	0.000	0.000	1.000
is_guest_login	125972.000	0.009	0.097	0.000	0.000	0.000	0.000	1.000
count	125972.000	84.108	114.509	0.000	2.000	14.000	143.000	511.000
srv_count	125972.000	27.738	72.636	0.000	2.000	8.000	18.000	511.000
serror_rate	125972.000	0.284	0.446	0.000	0.000	0.000	1.000	1.000
srv_serror_rate	125972.000	0.282	0.447	0.000	0.000	0.000	1.000	1.000
rerror_rate	125972.000	0.120	0.320	0.000	0.000	0.000	0.000	1.000
srv_rerror_rate	125972.000	0.121	0.324	0.000	0.000	0.000	0.000	1.000
same_srv_rate	125972.000	0.661	0.440	0.000	0.090	1.000	1.000	1.000
diff_srv_rate	125972.000	0.063	0.180	0.000	0.000	0.000	0.060	1.000
srv_diff_host_rate	125972.000	0.097	0.260	0.000	0.000	0.000	0.000	1.000
dst_host_count	125972.000	182.149	99.207	0.000	82.000	255.000	255.000	255.000
dst host srv count	125972.000	115.654	110.703	0.000	10.000	63.000	255.000	255.000

dst host srv count	125972.000	115.654
dst host same srv rate	125972.000	0.521
dst host diff srv rate	125972.000	0.083
dst_host_same_src_port_rate	125972.000	0.148
dst_host_srv_diff_host_rate	125972.000	0.033
dst host serror rate	125972.000	
dst host srv serror rate	125972.000	0.278
dst host rerror rate	125972.000	0.119
dst host srv rerror rate	125972.000	0.120
level	125972.000	19.504
duration	0	
protocol_type	0	
service	0	
flag	0	
src_bytes	0	
dst_bytes	0	
land	0	
wrong_fragment	0	
urgent	0	
hot	0	
num_failed_logins	0	
logged_in	0	
num_compromised	0	
root_shell	0	
su_attempted	0	
num_root	0	
num_file_creations	0	
num_shells	0	
num_access_files	0	
num_outbound_cmds	0	
is_host_login	0	
is_guest_login	0	
count	0	
srv_count	0	
serror_rate	0	

110.703 0.000 10.000 63.000 255.000

0.449 0.000 0.050 0.510 1.000

0.189 0.000 0.000 0.020 0.070

0.309 0.000 0.000 0.000 0.060

0.113 0.000 0.000 0.000 0.020

0.445 0.000 0.000 0.000 1.000

0.446 0.000 0.000 0.000 1.000

0.307 0.000 0.000 0.000 0.000

0.319 0.000 0.000 0.000 0.000

2.292 0.000 18.000 20.000 21.000

255.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

21.000

```
PROBLEMS 111 OUTPUT DEBUG CONSOLE TERMINAL PORTS
dst host same srv rate
                             0
                                                                                                         Value Counts:
dst host diff srv rate
                                                                                                         service
dst host same src port rate
                                                                                                         http
                                                                                                                    40338
dst host srv diff host rate
                                                                                                         private
                                                                                                                    21853
dst host serror rate
                                                                                                         domain u
                                                                                                                     9043
dst host srv serror rate
                                                                                                         smtp
dst host rerror rate
                                                                                                         ftp data
                                                                                                                     6859
dst host srv rerror rate
attack
                                                                                                         tftp u
level
                                                                                                         http 8001
dtype: int64
                                                                                                         aol
Column: protocol type
                                                                                                         harvest
                                                                                                        http 2784
Unique Values (3): ['udp' 'tcp' 'icmp']
                                                                                                         Name: count, Length: 70, dtype: int64
Value Counts:
protocol type
                                                                                                         Column: flag
tcp 102688
udp 14993
                                                                                                         Unique Values (11): ['SF' 'S0' 'REJ' 'RSTR' 'SH' 'RSTO' 'S1' 'RSTOS0' 'S3' 'S2' 'OTH']
icmp 8291
Name: count, dtype: int64
                                                                                                         Value Counts:
                                                                                                         flag
____________
                                                                                                                  74944
                                                                                                                  34851
Column: service
                                                                                                         REJ
Unique Values (70): ['other' 'private' 'http' 'remote job' 'ftp data' 'name' 'netbios ns'
                                                                                                         RSTR
                                                                                                                   2421
 'eco i' 'mtp' 'telnet' 'finger' 'domain u' 'supdup' 'uucp path' 'Z39 50'
                                                                                                                  1562
                                                                                                         RSTO
 'smtp' 'csnet ns' 'uucp' 'netbios dgm' 'urp i' 'auth' 'domain' 'ftp'
                                                                                                                   365
 'bgp' 'ldap' 'ecr i' 'gopher' 'vmnet' 'systat' 'http 443' 'efs' 'whois'
                                                                                                         SH
 'imap4' 'iso tsap' 'echo' 'klogin' 'link' 'sunrpc' 'login' 'kshell'
 'sql net' 'time' 'hostnames' 'exec' 'ntp u' 'discard' 'nntp' 'courier'
                                                                                                         RSTOSØ.
                                                                                                                    103
 'ctf' 'ssh' 'daytime' 'shell' 'netstat' 'pop 3' 'nnsp' 'IRC' 'pop 2'
                                                                                                                    49
 'printer' 'tim i' 'pm dump' 'red i' 'netbios ssn' 'rje' 'X11' 'urh i'
                                                                                                                     46
                                                                                                         Name: count, dtype: int64
 'http 8001' 'aol' 'http 2784' 'tftp u' 'harvest']
```

```
Column: attack
Unique Values (23): ['normal' 'neptune' 'warezclient' 'ipsweep' 'portsweep' 'teardrop' 'nmap'
 'satan' 'smurf' 'pod' 'back' 'guess_passwd' 'ftp_write' 'multihop'
 'rootkit' 'buffer_overflow' 'imap' 'warezmaster' 'phf' 'land'
 'loadmodule' 'spy' 'perl']
Value Counts:
attack
normal
                 67342
neptune
                 41214
satan
                  3633
ipsweep
                  3599
portsweep
                  2931
smurf
                  2646
nmap
                  1493
back
                   956
teardrop
                   892
warezclient
                   890
pod
                   201
guess passwd
buffer overflow
                    30
warezmaster
                    20
land
                    18
imap
                    11
rootkit
                    10
loadmodule
ftp write
multihop
phf
perl
spy
Name: count, dtype: int64
```

• Featur	res (X)															
	ion sr	c_bytes	dst_bytes	land	wrong_fragment	urgent	hot	num_failed_logins	flag_RSTOS0	flag_RSTR	flag_S0	flag_S1	flag_S2	flag_S3	flag_SF	fla
g_SH												- 1				
0 alse		146						0	False	False	False	False	False	False	True	
1	0	0	0	0	0	0	0	a	False	False	True	False	False	False	False	
alse									1 0130	10130	II uc	10150	1 0130	1 0130	10130	
			8153						False	False	False	False	False	False	True	
alse																
		199	420						False	False	False	False	False	False	True	
alse										- 1	- 1	- 1	- 1			
4 alse								0	False	False	False	False	False	False	False	
uisc																
[5 rows)	x 124 c	olumns]														
Encode			coded):													
[1011	000	0 0 0]														
• Origin	nal Lab	ala (.).														
0 uou		ers (A):														
	dos															
2 norr																
3 norr	mal															
	dos															
Name: lab	bel, dt	ype: obj	ect													
▲ Lahal		NTC 4														

1 -> normal

Total number				
Total number	of Probe att			
	precision	recall	f1-score	support
dos	0.95	0.42	0.58	13941
normal	0.68	0.95	0.79	20014
probe	0.40	0.32	0.36	3526
r2l	0.39	0.95	0.55	291
u2r	0.11	0.40	0.17	20
accuracy			0.70	37792
macro avg	0.51	0.61	0.49	37792
weighted avg	0.75	0.70	0.67	37792
	precision	recall	f1-score	support
dos	0.99	1.00	1.00	1765
normal	1.00	1.00	1.00	5707
probe	1.00	0.97	0.99	350
r2l	0.94	0.96	0.95	79
u2r	1.00	1.00	1.00	1
accuracy			1.00	7902
macro avg	0.99	0.99	0.99	7902
weighted avg	1.00	1.00	1.00	7902
0 0				

2025-06-12 23:27:50.824513: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to us critical operations.

To enable the following instructions: SSE3 SSE4.1 SSE4.2 AVX AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow wi Epoch 1/10

289/289 4s 5ms/step - accuracy: 0.8468 - loss: 1.1221 - val_accuracy: 0.9984 - val_loss: 0.0148

Epoch 2/10

289/289 1s 5ms/step - accuracy: 0.9986 - loss: 0.0109 - val_accuracy: 0.9991 - val_loss: 0.0046

Epoch 3/10

289/289	4s 5ms/step - ac	ccuracy: 0.8468 - loss: 1.1221 - val accuracy: 0.9984 - val loss: 0.0148
Epoch 2/10		
289/289	1s 5ms/step - ac	ccuracy: 0.9986 - loss: 0.0109 - val_accuracy: 0.9991 - val_loss: 0.0046
Epoch 3/10		
289/289	1s 4ms/step - ac	ccuracy: 0.9997 - loss: 0.0030 - val_accuracy: 0.9990 - val_loss: 0.0033
Epoch 4/10		
289/289	- 1s 4ms/step - ac	ccuracy: 0.9996 - loss: 0.0017 - val_accuracy: 0.9987 - val_loss: 0.0030
Epoch 5/10		
289/289	- 1s 4ms/step - ac	ccuracy: 0.9997 - loss: 9.2889e-04 - val_accuracy: 0.9991 - val_loss: 0.0029
Epoch 6/10		
289/289	- 1s 5ms/step - ac	ccuracy: 0.9999 - loss: 0.0011 - val_accuracy: 0.9989 - val_loss: 0.0030
Epoch 7/10		
	- 1s 4ms/step - ac	ccuracy: 0.9998 - loss: 7.0879e-04 - val_accuracy: 0.9989 - val_loss: 0.0029
Epoch 8/10		
	- 1s 4ms/step - ac	ccuracy: 0.9999 - loss: 4.6672e-04 - val_accuracy: 0.9985 - val_loss: 0.0043
Epoch 9/10		
	- 1s 4ms/step - ac	ccuracy: 0.9996 - loss: 6.2580e-04 - val_accuracy: 0.9992 - val_loss: 0.0023
Epoch 10/10		
289/289		ccuracy: 0.9999 - loss: 3.7507e-04 - val_accuracy: 0.9992 - val_loss: 0.0022
247/247	■ 1s 2ms/step	
1-0.00		
✓ Total number of R2L attac		
✓ Total number of U2R attac		
precision r	recall f1-score	support
dos 1.00	1.00 1.00	1765
normal 1.00	1.00 1.00	5707
probe 1.00	1.00 1.00	350
r2l 0.97	0.96 0.97	79
u2r 1.00	1.00 1.00	1
uzi 1.00	1.00 1.00	
accuracy	1.00	7902

weighted avg

1.00

1.00

1.00

7902

Conclusion:

- Enhanced Detection Accuracy: The proposed Double Layered Hybrid Approach (DLHA), combining Naive Bayes, SVM, and BLSTM, significantly improves detection accuracy for both frequent (DoS, Probe) and rare (R2L, U2R) attack types compared to traditional methods.
- Effective Use of PCA and BLSTM: The use of Principal Component Analysis (PCA) for dimensionality reduction and BLSTM for temporal pattern recognition enables the system to handle complex, sequential network traffic more efficiently.
- **Robust and Scalable Solution**: DLHA provides a robust, scalable, and adaptable framework for real-time intrusion detection, making it suitable for modern dynamic network environments facing evolving cyber threats.

FUTURE SCOPE:

- **Real-time detection** Upgrade to monitor live network traffic.
- **System integration** Connect with firewalls and SIEM tools.
- Adaptive learning Enable the model to learn from new attacks.
- **IoT deployment** Optimize for use in smart and edge devices.
- Multi-source analysis Use logs and external data for better accuracy.

REFERENCES

- [1] M. Mohammadi, A. Navaras, & M. H. Amini (2021). Double Layered Hybrid Approach for Network Intrusion Detection System. *IEEE Xplore*. DOI: 10.1109/ICICT52614.2021.9562534.
- [2] S. Shi, D. Han, & M. Cui (2023). A Multimodal Hybrid Parallel Network Intrusion Detection Model. *Connection Science, Taylor & Francis.* 35(1), 2227780. DOI: 10.1080/09540091.2023.2227780
- [3] Muhammad Sajid, Kaleem Razzaq Malik, Ahmad Almogren, Tauqeer Safdar Malik, Ali Haider Khan, Jawad Tanveer, & Ateeq Ur Rehman (2024). Enhancing Intrusion Detection: A Hybrid Machine and Deep Learning Approach. *Journal Cloud Computing, Springer*. Volume 13, Article number: 123. DOI: 10.1186/s13677-024-00685-x.
- [4] R. Jalili, S. Imani, & M. R. Aminzadeh (2021). A Hybrid CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs. Proceedings of the 10th ACM International Conference on Security of Information and Networks, ACM Digital Library. DOI: 10.1145/3465481.3469190.
- [5] Network Intrusion Detection and Prevention System Using Hybrid Machine Learning with Supervised Ensemble Stacking Model. (2024). *Security and Communication Networks, Hindawi*. DOI: 10.1155/2024/5775671.

Thank you