PARTIEL 2 MERCREDI 15 MAI 2024 DURÉE : 3 HEURES.

Toutes les réponses doivent être rigoureusement justifiées. Les documents, calculatrices et objets connectés ne sont pas autorisés.

Exercice 1 - Dans \mathbb{R}^3 on note $e=(e_1,e_2,e_3)$ la base canonique. On considère la forme quadratique sur \mathbb{R}^3 définie pour tout vecteur $u=(x,y,z)\in\mathbb{R}^3$ par

$$q(u) = x^2 + 2y^2 + az^2 + 2xy + 2xz + 2yz,$$

où a est un paramètre réel.

- 1. Donner la forme polaire de q. Donner la matrice M de q dans la base e.
- 2. A l'aide de l'algorithme de Gauss, exprimer q comme une combinaison linéaire de carrés de formes linéaires de \mathbb{R}^3 linéairement indépendantes.
- 3. Donner la signature et le rang de q en fonction du paramètre a.
- 4. Pour a > 1, donner une base q-orthogonale $\mathcal{B} = (u_1, u_2, u_3)$ de \mathbb{R}^3 .
- 5. On suppose a = 1.
 - (a) Donner une base du novau de q.
 - (b) Donner un sous-espace vectoriel F de \mathbb{R}^3 tel que dim F + dim $F^{\perp} > 3$, où $F^{\perp} \subset \mathbb{R}^3$ est le sous espace vectoriel orthogonal à F relativement à f.

Exercice 2 - Pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [0, +\infty[$ on pose :

$$f_n(x) = \frac{e^{-(n+1)x}}{n(n+1)}.$$

(1) Démontrer que la série de fonctions $\sum_{n\geq 1} f_n$ est normalement convergente sur $[0,+\infty[$.

On posera $s(x) = \sum_{n \ge 1} f_n(x)$, pour tout $x \in [0, +\infty[$.

- (2) Montrer que la fonction s est continue sur $[0, +\infty[$.
- (3) La série dérivée $\sum_{n\geq 1} f'_n$ est-elle normalement convergente sur $[0,+\infty[$?
- (4) Démontrer que pour tout réel b > 0, la série $\sum_{n \geq 1} f'_n$ est normalement convergente sur $[b, +\infty[$.
- (5) Démontrer que s est dérivable sur $]0, +\infty[$ et est décroissante sur $[0, +\infty[$.
- (6) Calculer $\lim_{x\to+\infty} s(x)$.

Exercice 3 - Calculer le rayon de convergence des séries entières suivantes :

a)
$$\sum_{n\geq 1} \left(2\cos\frac{1}{n}\right)^n x^n$$
, b) $\sum_{n\geq 0} \frac{(3n)!}{(n!)^3} x^n$, c) $\sum_{n\geq 0} 2^n x^{2n}$.

Exercice 4 - On considère la série entière

$$\sum_{n\geq 2} \frac{(-1)^n}{n(n-1)} x^n.$$

- (1) Montrer que le rayon de convergence de cette série est R=1. On notera s sa somme.
- (2) Etudier la convergence de la série lorsque x = 1 et x = -1.
- (3) Que vaut s(0)? s'(0)?
- (4) Calculer s'' sur]-1,1[.
- (5) En utilisant les deux questions précédentes montrer que

$$s(x) = (1+x)\ln(1+x) - x, \qquad x \in]-1,1[.$$

- (6) Que vaut la limite de s(x) lorsque $x \to (-1)^+$?
- (7) En déduire la valeur de la somme de la série lorsque x = -1.

Exercice 5 - On considère la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto f(x,y) = xy - \frac{1}{2}(x+y)^4.$$

- (1) Déterminer tous les points critiques de f.
- (2) Déterminer, pour chacun de ces points critiques, si c'est un minimum local, un maximum local ou bien ni l'un ni l'autre.

Exercice 6 - Soit $F: \mathbb{R} \longrightarrow \mathbb{R}$, la fonction définie pour tout $x \in \mathbb{R}$ par :

$$F(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{1+t^2} dt.$$

- (1) Montrer que la fonction F est de classe C^1 .
- (2) Calculer F(0).
- (3) Montrer que l'on a $\lim_{x \to +\infty} F(x) = 0$.
- (4) Montrer qu'il existe $a \in \mathbb{R}$ tel que :

$$F(x) = a - \left(\int_0^x e^{-u^2} du\right)^2$$

pour tout $x \in \mathbb{R}$.

Indication : On pourra considérer la fonction $G: x \mapsto G(x) = \int_0^x e^{-u^2} du$, ainsi que sa dérivée.

- (5) Montrer que $a = \frac{\pi}{4}$.
- (6) En déduire l'égalité :

$$\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}.$$