621207

Boomes VANDERHASSHEH 1 Prof. hon. Université Shuxales (Albed VANDER MASSHER)

Professour à l'Université de Briss

**DIRECTION':
Mountag VANDER MASSHEM
Consell on prayets

ETAT DE LA TECHNIQUE:

R. PIBEOLET, Ingénieur A. I. Br.

AL DE BRABANTER, Ing. Tech. Chim. I.A.C.

E. FELTGEN, Ingénieur A. I. Lg.

E. BUMOULING. Ingénieur A. I. Lg.

E. FOBE, Ing. Tech. Chim. A. I. T. G.

J. KEUTERICKK, Ing. Tech. Chim. L. M. G.

B. DESMECHT, Ingénieur A. I. Ms.

M. ACOURT. MODRET.

MARQUES - MODELES QUESTIONS SPECIALES: F. GASPAR, Licencié en Philosophie et Latines

DB/MR.

RECOMMANDEE.

VANDER HAEGHEN

BREVETS - MARQUES - MODELES

. Rédection de

"L'INGÉNIEUR-CONSEIL "

REVUE DE IDROIT HITTELLECTUEL FONDER EN 1935

ENTHERMENDE COMMERCIALE

PATENTAGEN BRUKELLES

(SEGE 18, rue des tradale

10 septembre 1962

MINISTERE DES AFFAIRES ECONOMIQUES. ET DE L'ENERGIE.

19, rue de la Loi,

BRUXELLES.

621.207

Mossiaurs

Objet: Demande de brevet belge au nom de : CITIES SER-VICE RESEARCH AND DEVELOPMENT Cy. déposée le 8/8/1962. sous le numéro 496.288 N/Réf. B. 32.818.

Nous nous permettons de vous signaler que les erreurs suivantes figurent dans le texte déposé à l'appui de la demande susdite :

- page 15 , ligne 3; il faut lire " oléate " au lieu de "oléate"
- page 16 , ligne 23, il faut lire " cadmium " au lieu de
 - * galium *.

Le conclusion de seuse recharche implique la alegrate e sauf estée la responsabilisé du Conseil en bravese pe perte que sus la réalis for dopuments algunille. III. Ch. Cana. Br. Bolg. - 16-3-1921 Benques: BAHQUE DE LA SOC. GEN. DE SELGIGIJE, Brussline.
Compte 93.468

BANQUE DE BRUXELLES, Bruxelles. Compte 386

Compté Chèques Pisteux (fr. 1800)

VANDER HAEGHEN

Veuillez avoir l'obligeance de nous renvoyer dûment certifié conforme le duplicate de la présente cue vous trouverez sous ce pli.

Nous vous saurions gré de vouloir blen vara ser la présente su docsier du brevet et d'en délivrer une copie aux personnes qui vous demanderaient une co de du brevet.

Hous vous remettons ci-joint un timbre fiscal de Prs. 15, en a issent de la texe dus pour les régue larisations de l'espèce.

Veuillez agréez, Lesaieura, nos salutations

distinguées (

rettre cette ficative forite, some neuton emple de atherit, dus dossier se 621.207. RELATIONS

18-9-1962

- 5 - Wes 11 - \$10 - 64

Bosrpes YANDER HARBHEM & Proto-hon, Université Bratishe MINDAN SERNAY DOWN Pocteur en Drott Ingénieur à l'Lo. et A. I. M. Professeur à l'Université de Bruxalles

MIHRIAN PICHAY TOTAL Consell on brayets

BREVETS ETAT DE LA TECHNIQUE: R. FIGEGLET, Ingénieur A. I. Br. M. DR BRASANYSA, Ing. Tech. Chiro. I.M.C. & FEETGEN, Inclineur A. I. La. & BUMOULIN, Inginiaus A. I. Ly. & FORE, Ing. Tech. Chim. A. 1. T. G. A' KEUTERICKK, Ing. Tech. Chim. I. M. C. R. BISMICHY, ingénieur A. I. Ma:

MARQUES : MODELES : Licencié en Philosophie et Lettres M. EÝRARÐ Docteur en Droft

VANDER HAEGHEN

BREVETS - MARQUES - MODELES

Rédoction de

" L'ingénieur-conseil " REVUE DE DROIT INTELLECTUEL FONDEE EN 1914 BRUKELES 18) 42, evenue TEL. (02) 27,13.00 Adresse. This prechique: PATENTAGEN BRUXELLE LIEGE 19, rue des traffois THE (04) 82,42,24"

RECOMMANDER

20 mars 1963

MINISTERE DES APPAIRES EUONOMIQUES ET DE L'ENERGIE

STAVICE A LEFADERLIE ndustrifle of Commercials 27 III 1953

19, rue de la Loi BRUXELLES

Mossieurs,

Demande de brevet belge nº 496 288 déposée le 8 août 1962 au nom de CITIES SERVICE RESEARCH AND DEVELOPMENT COMPANY N/Ref.: B.32.818 DB/GDB

Nous nous permettons de vous l'erreur suivante figure dans les spécifications de la demande sous rubriques

- page 27, ligne 8 à partir du bas, dans la formule. le symbole "P" doit être remplacé par le symbole "Z".

Veuillez evoir l'obligeance de nous renyoyer dûment certifié conforme le duplicata de la présente que vous trouverez sous de pli.

Nous vous saurions gré de vouloir bien verser la présente au dossier du brevet et d'en délivrer une copie aux personnes qui vous demanderaient une copie du brevet.

Nous vous remettons ci-joint un timbre fiscal de fra. 15, - en paiement de la taxe due pour les régularisations de l'espèce.

Veuillez agréer, Messieurs, nos salutations distin-

La confesson de soute corberche, implique la réserge « seuf ergout La responsabilité du Caprell en brevets ne parte que cur la chalité der dietemente eignelen. C.f. Ch. Lien, Be, Belg. - 16-3-1720-

guées.

BANQUE DE LA SCC. GEN. DE BELGIQUE, Britiselles Compte 93.468 BANQUE DE BRUXELLES, Bruxelles, Compte 386

Compte Chiques Postous Nº 18001

· Agent agen

ROYAUME DE BELGIQUE 621207

N° 621.207

Classification interrioricale

COTT

Brevet mis en lecture 14

MINISTÈRE DES AFFAIRES ÉCONOMIQUES ET DE L'ÉNERGIE

BREVET D'INVENTION

La Ministra des Affaires Economiques et de l'Energie.

Vu la loi du 24 mai 1854 sur les brevets d'invention;

Vu la Convention d'Union pour la Protection de la Propriété Industrielle;

Vu le procès-verbal dressé le

8 août

196 2

15 ± 30

mgreffe du Gouvernement provincial du Brabant;

ARRÊTE:

Article 1. - It est deliver a la Sté dite: CITIES SERVICE RESEARCH AND DEVELOPMENT COMPANY,

Sixty Wall Tower, 70 Pine Street, New-York 5, May. (State-Unio d'Amérique),

repripar les Bureaux Vander Haeghen à Bruxelles, un breves d'invention pour : Procédé de préparation de complexes tétrakts (triorganophosphite) de nickel,

qu'elle déclare avoir l'ait l'objet d'une demande de bravet déposée aux Etats-Unis d'Amérique le 8 août 1961 au nom de MM.R.P.Clark, C.D.Storrs et G.G.McAlister dont elle est l'ayant droit.

Article 2. — Ce brevet lui est délivré sans examen préclable, à ses risques et pétils, sans garantie soit de la réalité, de la nouveauté ou du mérite de l'invention, soit de l'exactitude de la description, et sons préjudice du droit des tiers.

Au présent terêté demeurera joint un des doubles de la spécification de l'invention (mémoire descriptif et éventuellement dessins) signés par l'intéressé et déposés à l'apput de sa demande de brevet.

Bruxelles, le 8 fevrior 196 3.

PAR DÉLÉGATION SPÉCIALE :

Le Directour Général.

J. HAMELS

r. E. Hayvaart & Fits - 55 000

621207

Case 3753 & B.32. 618

DESCRIPTION

jointe à une demande de

BREVET BELGE

déposée par la société dite

CITIES SERVICE RESEARCH AND DEVELOPMENT COMPANY

syant pour objet : P PROCEDE DE PREPARATION DE COMPLEXES TETRAKIS
(TRIORGANOPHOSPHITE) DE NICKEL ".

Qualification proposée :BREVET D'INVENTION.

Priorité d'une demande de brevet déposée aux Etats-Unis d'Amérique le 8 soût 1961 sous le n° 129.968, aux nous de Reginald Francis CLARK, Charles Dean STORRS et Charles Gene McALISTER.

DP/WA

Les complexes ou composés résultants sont utiles en tant que catalyseurs pour des réactions organiques, telles que la polymérisation ou l'oligomérisation d'oléfines et ils sont particulièrement utiles pour préparer des cyclooligomères de diolésines conjuguées à chaîne ouverte. Les produits cycliques peuvent comprendre de 8 à 20 atomes de carbone dans. Le cycle, une double liaison C = C de chaque molécule de dioléfine y étant incorporée. On peut également produire des composés cycliques à chaînes latérales L'utilisation des composés selon la présente invention présente une valeur particulière pour catalyser la réaction de 1,3-butadiène de manière à donner du 1,5-cyclooctadiène, du 1,5,9-cyclododécatriène et dans une certaine mesure divers isomères cis, trans, et cis-trans de ces composés. Dans certains cas, les composés de nickel selon la présente invention peuvent être thermiquement décomposés pour donner du nickel finement divisé ou des revêtements de nickel métallique.

Les composés de nickel obtenus par le procédé selon la présente invention et des méthodes d'utilisation de ces composés sont révélés en partie dans le demande de brevet halge antérieure n° 487.040 déposés le 28 novembre 1961.

La houvelle méthode de préparation de tels composés par le procédé révélé dans le présent mémoire possède un certain nembre d'avantages par rapport aux méthodes antérieures. Les méthodes précédentes nécessitaient souvent l'emploi de composés de nickel coûteux et unécoxiques, comme mutière de départ. Donc, une méthode implique l'utilisation de nickel bis(cyclopeutadiényle) et de composés organométalliques analogues que l'on ne peut actuellement trouver dans le commerce à des prix raisonnables. Une autre matière de départ connue est le nickel carbonyle qui est dangereux à manipuler.

invention, évitent ces problèmes et fournissent une autre méthode de préparation des complexes en question. La demanderesse à découvert à présent que des composés di- et trivablents de nickel qui ne sont pas culteux et qui dans la plupart des cas pauvent être objenus dens le commerce à un prix raisonnable et qui sont d'une maxipulation relativement sûre, sont utiles pour la préparation des composés de coordination en question. Cependant, des formes d'exécution moins proférées selon la présente invention englobent, de manière avantageuse, l'utilisation des composés organs-nickel di- et trivalents, servant de matières de départ, ce qui a pour avantage qu'une plus petite quantité du composé de prosphore, d'arsenic ou d'antimoine est nécessaire et/ou que des conditions moins sé-

la méthode d'utilisation de certaire de ces composés comp

vention est effectuée en faisant réagir un mélange d'un triorganophosphite servant de la lange d'un dihalogénure de nickel,
et d'un agent réducteur externe tel que de l'aluminium trialwyle. On peut utiliser un solvant organique additionnel,
mais cette utilisation n'est pas essentielle. Comme autres
ligands que les triorganophosphites, on peut citer les triorganoarsénites, les triorganoantimonites, et d'une manière moins
préférée, les triorganoarsines, les triorganophosphines et les
triorganostibines. De même, des organophosphines ditertiaires,
aussi bien que les stibines et les arsines analogues, se sont
révélées utiles, tout comme les mélanges de ces divers ligands.

Au lieu de l'halogénure de nickel, d'autres composés de nickel divalents et trivalents, comprenant d'autres sels d'acides inorganiques et d'autres composés inorganiques de nickel, se sont révélés utiles, comme le sont également des sels de nickel d'acides organiques carboxyliques, des chélates de nickel et des composés de coordination de mickel non-chélatés, dans lesquels l'atome de nickel est lié à l'oxygène, l'azote ou le soufre, ainsi que d'autres composés analogues.

Variante d'une méthode impliquant la mise en réaction de composés organométalliques tels que le nickel bis(méthylévolopenta-diényle) avec des ligands analogues à ceux de cette demande.

Cette méthode peut être modifiée en utilisant un agent réducteur externe selon la présente invention, ce qui permet d'éviter l'utilisation d'un excès du ligand lui-même ou de réduire ledit excès.

Au lieu d'aluminium tristkyle nomme agent réducteurs anaicexterne, on peut utiliser d'autres agents réducteurs anaicgues du type "Ziegler", des agents réducteurs métalliques.

plus électro-positifs que le nickel, des triorgamphosphites
et des ligants analogués ayant une plus faible affinité pour
le nickel que le ligand qui doit être complexé avec lui, de
l'hydrazine et des hydrazines substituées, de l'hydrogene, des
hydrures de métal carbonyle et d'autres agents réducteurs. En
général, on peut utiliser tout agent réducteur externe qui
ne complexe pas le nickel de manière plus puissante que ne le
fait le ligand désiré, qui ne donné pas de réactions secondaires sérieuss avec le nickel ou le ligand et qui ne détruit
pas le ligand et le produit.

plus en détail dans les exemples suivants qui illustrent des modes de réalisation de la réaction. Saut spécification contraire, on utilise la température et la pression ambiante et toutes les parties données sont des parties en poids.

EXEMPLE 1.

pans un flacon de 500 ml, on a placé 5 g de NiBr2 et 100 ml de cyclohexane anhydre. Ce mélange a été chauffé à 65°0 et on y a ajouté 30 g de phosphite de triphényle et ensuite on a ajouté 50 ml d'aluminium triéthyle à 10 % en poids dans du cyclehexane. Ce mélange a été chauffé à 55°C pendant l heure, après quoi on a ajouté 10 cc d'alcool pour détruire tout aluminium triéthyle présent. Après refroidissement et élimination du solvant, le résidu a été dissous dans du tétrahydrofurane (THF) et filtré. Le THF a été chassé sous vide et 100 ml d'alcool méthylique ont été ajoutés ce qui a provo-

que la formation d'un précipité blanc. La filtration a donné 6,5 g de tétrakis (triphénylphosphite) de nickel - P.F. 146-8°C, le rendemant étant de 21,8 %.

EXEMPLE 2.

Un mélange de 5 g d'acétonyle acétate de nickel,

de 100 ml de benzène et de 28 g de tri(2-chloroéthyle)phosphite, a été agité sous atmosphère d'argon. A ce mélange, en a
ajouté, goutte à goutte, 30 ml d'aluminium triéthyle à 10 %

dans du benzène et l'agitation a été poursuivie pendant 1 heure. A ce moment, on a sjouté 150 ml d'alcool méthylique, ce
qui a fait précipiter 19,2 g (rendement 75,2 %) d'un solide
blanc qui était du tétrakis / tri(2-chloroéthyl) phosphite.

de nickel, point de fusion 138-140*0.

EXEMPLE 3.

Un mélange de 5 g de chlorurs de nickel anhydre, de 100 g de phosphite de triphényle et de 3 g de poudre de fer a été agité pendant lé heures à 200°C, tout en maintenant audessus du mélange une atmosphère inerts. Aucun solvant étranger n'a été utilisé. Le mélange réactionnel a été refroidi jusqu'à la température ambianté et on a ajouté 150 ml d'alcool méthylique, ce qui a fait précipiter 20 g d'un solide de que leur foncée. Le solide a été dissous dans du tétrahydrofurane, filtré afin d'éliminer la matière insoluble, par exemple, le fer, et de l'alcool méthylique a été ajouté de manière à précipiter un solide blanc qui était du tétrakis(triphénylphosphite) de nickel d'un point de fusion de 146-148°C. Le rendement était approximativement de 39 %

EXEMPLE 4.

Un mélange de 5 g de chlorure de nickel anhydre de 100 g de phosphite de triphényle et de 20 g de triéthylamine a été introduit dans un autoclave ("Magne-Dash")de 500 ml. Après l'addition du mélange, la tête de l'autoclave a été mise en place et l'autoclave a été mis sous vide afin d'élimines l'air. L'opération a été effectuée à 130°C à l'aide d'une pression d'hydrogène de 119 kg par cm manométriques, la durée de la réaction étant de 1,5 heure. Après refroidissement jusqu'à température ambiante, l'hydrogène a été chassé et la tâte de l'autoplave a été enlevée. Ensuite on a ajouté 200 ml d'acétone a' mélange réactionnel et un solide foncé à précipité. Le solide soncé a été dissous dans du benzène chaud, filtré de manière à éliminer la matière insoluble, et de l'alcool méthylique a été ajouté, ce qui a fait précipiter 2,1 g d'un solide blanc qui était du tétrakis (triphénylphosphite) de nickel, point de fusion 146-148°C.

EXEMPLE 5.

multanément 33,0 g de phosphite de triphényle et 5,5 g de phosphite de triisopropyle, ce dernier servant d'agent réducteur externe. Le mélange résultant a été agité à 130-140°0 pendant 1,5 heures, puis il a été refroidi jusqu'à 30°C, tout en poursuivant l'agitation et on a alors ajouté 100 ml de ne heptane afin de précipiter le produit. Le produit a alors été lavé avec de l'alcool methylique, en abandonnant un résidu fonstitué de 4,4 g de tétrakis(triphényiphosphite) de nidkel, avec un rendement de 12,8 %, sous forme d'une poudre blanche très fine.

EXEMPLE 6.

contenent 6 % de mickel et de 10 g de n-heptane, on a sjouté un total de 33 g de phesphite de triphényle et de 20 ml d'aluminium triééhyle dans du décahydronaphtalène, contenant un total de 1,8 g d'aluminium triéthyle, sous atmosphère inerte. Ces ingrédients ont alors été agités pendant environ 3 heures entre 25 et 35°C et la température a finalement été portée à 65-75°C pendant une heure supplémentaire. On a laissé le mélange se refroidir lentement jusqu'à température ambiante et on a ajouté en agitant 100 ml de n-haptane et ensuite 50 ml d'alcool isopropylique. Le tétrakis (triphénylphosphite) de nickel précipité a été éliminé par filtration, bien lavé à l'aide d'alcool méthylique, séché à l'air et on a trouvé qu'il pesait 5,8 g et que le rendement était de 17 %

Dans les exemples donnés dans le tableau suivant, on a utilisé le même mode opératoire que pour les exemples pré-

TABLEAU I.

EXECPLE	7	80	6	OT			
Composé de nickel et quantité	ETBIE F B F	acétyl acéto- nate de nie ckel	acetyl aceto- nate de ni- okel	acétyl acéto- nate de ni- okel	acétyl acéto nate de ni- ckel	scétyl scéto- naté de ni ckel	E432 5 8
Composé ré- ducteur et quantité	aluminium triéthyle 0,6 g	Aluminium triéthyle 1,8 g	aluminium triéthyle 5&	aluminium triéthyle 5 g	aluminium triethyle 3 g	aluminium triéthyle 3 &	Bromure de phényl-magné- sium 10 ml solurion 3m
Ligand et quantité	phosphite de tr£phényle 20 &	phosphite de triphényle 30 g	tri(p-métho- xyphényl- phosphite) 55 &	phosphite de triphényle 28 g	phosphite de triphényle 41 g	phosphite de triphényle 30 &	phosphits de triphényle 40.8
Solvent et quentité	cyclohexane 25 cc	toluène 100 cc	Denzène 100 oc	benzène 100 cc	benzène 100 cc	benzène 100 cc	éther éthylique
Température Remps, min.	60°	25° 60	50.	80° 50	50.	5 B •	62120

₹.

Overtité de							
produtt	2,5	15,1	22	50	78	97	2,1
Rendements. %	8,4 %	59.5 K	₹ 99	80 %	72 72 \$	¥ 0€	* H. *
F. Y. • C	146-8•	146-8	134-8	146-8•	196-8•	liquide	146-8*
Identité du	•	•	•	• •	•	•	
produtt	tétrakis	tétrakia	tétrakis (tri-	tétrakis	tétrekis	tétrakta	tétrakie
	(triphényl-	(tripbény)-	p-méthoxyphé-	(triphényl-	(tridécyl-	(diphényl-	tripheny.
•	phosphite)	phosphite)	nylphosphite)	phosphite)	phosphite)	décylphos-	phosphite)
	de nickel	de nickel	de nickel	de nickel	de nickel	phite)	de nickel
	-		•			Total and the	

TATE OF THE PERSON OF THE PERS

...

the contract of the contract o

Les composés de nickel tétrasubstitués, trimubstitués et disubstitués, préparés selon la présente invention, possèrdent les formules suivantes:

Ť

 $[RO_{B}]_{3}^{2}$ Ni

II

(ROa) 32 72 N1 (ZR''2) 2R'

III

[R'(R''2Z)2J2N1

dans lesquelles R, R' et R'' sont des radioaux organiques tels que définis ci-dessous, "a" est un ou zero, et 2 est du phosphore, de l'arsenic ou de l'antimoine. On suppose que, dans ces complexes, le nickel possède une valence égale à est attaché aux ligates par des liaisons de coordination. Le ligand est de préférence un triorganophosphite, bien qu'il puisse être, de manière appropriée, une triorganophosphine, un triorganoarsénite, une triorganoarsine, un triorganoantimonite ou une triorganoatibine. Le ligant pout contenir deux atomes de phosphore, d'arsénic ou d'antimoine, comme dans les deux dernières des trois formules données cidessus, et quant au reste, il est analogue au ligant préféré. Comme exemples de ce type de ligand, on peut citer l'orthophém nyl enebisdimethylarsine, l'orthophenylensbisdimethylphosphine la propylènebisdiméthylphosphine, et l'orthophénylènebisdimé thylstibine. Ces ligands sont préparés, de manière appropriée. par les méthodes de Chatt et all, décrites dans le brevet des Etats-Unis d'Amérique nº 2.922.819.

Les ligants phosphinés, arainés, stibinés, phosphités, aradnités et antimonités des formulés données ci-dessus peuvent comprendre, comme radical R, une grande variété de radicaux organiques, de préférence des radicaux hydrocarbonnés et des radicaux hydrocarbonnés et adicaux hydrocarbonnés substitués. Comme exemples de radicaux aloyle à chaîne ouverte, comportant de préférence moins d'environ 20 atomes de carbone, en tont que radical R, on peut citer les radicaux méthyle, éthyle, propyle, butyle, hexyle, dodécyle, isocotyle, isobutyle et isopentyle. Comme radicaux cycloalwoyle appropriés, on peut citer les radicaux cyclopentyle, cyclocotyle et anahogues. Comme radicaux aryle représentatifs, on peut citer les radicaux phényle, biphényle, a-naphtyle et 8- naphtyle.

Des radicaux alcoyle substitué, cycloalcoyle substitué et aryle substitué sont utiles, comme radical R, dans les formules données ci-dessus. Par conséquent, des radicaux hydrocarbonés substitués par des halogènes et des radicaux substitués par un groupement acyle sont appropriés. De manière similaire, des radicaux alcoyl aryle et aryl alcoyle sont engobés par la définition de R, telle qu'elle utilisée dans le présent mémoire. Des halogènes appropriéss sont le chlore, le fluor, le brome et l'icde.

comme exemples de radicaux substitués par des halogènes, on peut citer les radicaux p-chlorophényle, 2-chloroéthyle, m-(trifluorométhyl)phényle, bromocyclohexyle et analogues.

Des radicaux alcoylaryle représentatifs sont les radicaux m-tolyle, p-tolyle, o-tolyle et 3,5-xylyle. Comme radicaux

radicaux benzyle et benzohydrile. D'autres radicaux hydrocarbonés substitués englobent les radicaux p-méthoxyphényle et
p-acétophényle. Les radicaux homologues connus constituent
d'autres variantes utiles. De même, des composés hétérocycliques à structure hydrocarbonés prédominante peuvent être considérés comme étant des hydrocarbures substitués en ce qui
concerne la présente invention.

Les radioaux R peuvent être identiques ou différents. Comme exemples de composés dans lesquels les radicaux sont les mêmes, on peut citer le tétrakis (triphénylphosphite) de nickel, le tétrakis(tri-p-tolyl-phosphite) de nickel, la tétmkis(triphénylphosphine) de nickel, le tétrakis(tricyclohexylphosphite) de nickel et des composés analogues compris dans Les formules susindiquées. Comme exemples de catalyseurs préparés de manière à ce que le radical R varie dans un catalyseur donné, on peut citer le tris(triphénylphosphite) triéthylphosphite de nickel. Des changements analogues peuvent être faits lorsque des composés phosphinés sont utilisés et les composés phosphinés et phosphités peuvent être liés au Niº. Des composés tétrasubstitués comparables, mais uniquement dans les cas des arsines, des arsénites, des stibines, et/cu des antimonites, peuvent être utilisés, sans sortir du cadre de l'invention, à la place des phosphines et desphosphites.

Les radicaux R' sont de préférence des radicaux arylène et, de manière moins désirable, des radicaux alcoylène et, les radicaux R" sont de préférence des radicaux alcoyle. En général, les radicaux n' et R" sont analogues aux radicaux R.

Comme radicaux appropriés comme radical. R', on peut citer les radicaux phénylène, tolylène, naphtylène et des produits de substitution de ces composés, les radicaux o-arylène étant cependant préférés, ou des radicaux alcoylène tels que éthylène et propylèse. Les radicaux R' sont, de manière appropriée, les rédicaux éthyles, methyle, propyle, butyle ou alcoyle substitué tel que chloroéthyle.

Le composé de nickel utile comme matière de départ,
peut contenir du nickel dont la valence va de

2 à 3. De préférence, le nickel est bivalent. Un agent réducteur externe peut également être utilisé avec certains composés de nickel utilisés comme matières de départ, tels que
des composés organonickel englobant ceux dans lesquels le
nickel a une valence positive de 2 et 3, la définition de
l'expression "organonickel" étant telle que le nickel suit lié
à au moins un atome de carbone qui est à son tour lié à au
moins un hydrogène et/ou à au moins un autre atome de carbone.
En tant qu'exemple de composés de ca type on peut citer le
bis(méthyloyolopentadiényl©nickel.

Comme composés de nickel bivalent préférés appropriés comme matière de départ, on peut citer le chlorure de nickel, le bromure de nickel, l'iodure de nickel, le cyamure de nickel, le moncoxyde de nickel, le carbonate de nickel, le fluorure de nickel, le sulfate de nickel et le monosulfure de nickel, recomportant de préférence A'eau de cristallication ou d'hyère tation. L'utilisation de composés de nickel trivalents, par exemple du sesquioxyde de nickel ou (Ni203), et de l'hydroxyde nickellique Zii(OH)3 Test avantageuse. De même, on peut utiliser des complexes de Werner, tels que Ni(NH3)6Cl2.

Comme sels d'acide carboxyliques de nickel bivalent utiles, on peut citer l'acétate de nickel, le propionate de nickel, le caprilate de nickel, le cléate de nickel, le lactate de nickel, le citrate de nickel, le benzoate de nickel, le salichlate de nickel et le naphténate de nickel. Sont également appropriés, le pétrole sulfanate de nickel, le 2-éthylhexylsulfate de nickel, lé dilaurylphosphate de nickel, l'éthylxanthate de nickel, le diméthyldithiocarbamate de nickel, le phényldithiocarbamate de nickel, le dithiocarbanilate de nickel, le bis(p-octylphényl)sulfure de nickel, l'acétylacétonate de nickel, l'éthylènediamine-bis-acétylacétonate de nickel, la nickeldimethylglyoxime et la nickelphtalocyanine. Les sels d'acides carboxyliques et les chélates de nickel donnent d'excellents résultats, les composes inorganiques de nickel étant cependant préférés du point de vue du coût. D'autres composés de nickel appropriés et deutrem classes de composés de nickel sont cités dans "Nickel Extivatives of Organic Compounds", ICD-1, Novembre 1957, publié par la International Nickel Co., New York, N.Y. Il faut noter to les dérivés de nickel cités immédiatement ci-dessus et upparaissant dans cette pubilication ne sont pas des composés organo-nickel dans lesquels le hickel est attaché directement à au moins un atome de carbone organique, par des liaisons ioniques ou des liaisons ioniques et de coordination mais que ces deux classes de composés sont utiles. Dans les composés organonickels appropriés comme matières de départ, le nickel peut être bivalent ou trivalent. Comme exemples de tels composés on peut citer le nickel (cyclopentadiènyle) le nickel bis(cyclopentadienyle), le nickel bis(indényle), et le nickel bis (acrylonitrile).

Les agents réducteurs externes sont des composés réducteurs ou des matières conductrices autres que le ligand, bien
qu'ils peuvent être du même type général, par exemple, dans
le cas où le phosphite de triisopropyle est utilisé en tant
qu'agent récucteur externe, pour la préparation de tétrakis
(triphénylphosphites) de nickel à partir de naphténate de
nickel et de phosphite de triphényle. Généralement, l'agent
réducteur externe peut être classifié comme étant tel qu'il
forme des complexes avec le nickel, s'il le fait,
moins forts que, ne le rait le ligand choisi, qu'il ne donne
pas de réactions secondaires marquées avec le ligané ou avec
le nickel et qu'il ne détruit pas le ligand et le produit.

Comme agents réducteurs préférés, on peut citer ceux du type utilisé dens la préparation de catalyseurs de polymérisation du type (Ziegler*, c'est-à-dire, un composé de certains métaux non transitoires choisis dans le groupe formé par des composés comprenant les hydrures de métal, des composés organo-métalliques, des hydrures organométalliques et des hal ogénures arganométalliques. Le métal non transitoire est chois parmi les métaux des groupes périodiques IA, IIA, IE IIIA, et IVA. Le groupe particulièrement préféré est constitue par l'aluminium, le lithium, le sodium, le potassium, le magnésium, le calcium, le baryum, le zinc, le gallium, le mercure, l'étain et le plomb. Ces éléments ont un poids atomique qui n'est pas supérieur à environ 208 et possèdent une valence maximum de +4. Spécifiquement, on préfère le groupe IIIA et plus particulièrement l'aluminium.

Dans le présent mémbire, on se féfère à la table périodique des éléments apparaissant dans "Fundamental Chemistry" deuxième édition, par H.G. DEMING: John Wiley and Sons. Cette table est réimprimée dans Langes Hadbook of Chemistry
Beptième édition, Handbook Publisher's, Inc., Sandusky, Ohio,
1949, aux pages 58 et 59. Ceci constitue la "table longue" ou
"table de Norh".

Le composé de métal non transitoire (parfois aussi appelé composé de métal représentatif) utile comme agent réducteur pour la préparation du catalyseur possède la formule caractéristique (R:::) M(I), dans laquelle "M" est un métal non transitoire tel que défini ci-dessus, R** est un radical hydrocarboné ou de l'hydrogène, "X" est un radical hal ogénure et "a" et "b" sont des nombres dont la somme est égale à la valence du métal, avec la réserve que "a" est tou-jours égal ou supérieur à 1. Lorsque "a" est supérieur à 1, et que "b" est égal à zéro, R** peut représenter des radicaux hydrocarbonés et l'hydrogène, comme dans les hydrures organo-métalliques. Lorsque Reet exclusivement de l'hydrogène, "b" est égal à zéro. Différents radicaux hydrocarbonés et différonts halogènes peuvent être attachés au même atome de metal. Des complexes ayant des atomes de différents métaux sont également appropriés. Dans le présent mémoire et les revendications qui le terminent, l'expression " agent réducteur du type Zieglen" désigne les agents réducteurs préférés tels que définis ci-dessus, dont des exemples spécifiques suivent.

Comme exemples de composés dans lesquels R'' est exclusivement un radical hydrocarboné, on peut citer l'aluminium triéthyle, l'aluminium tributyle, l'aluminium triisobutyle, l'aluminium diéthyl-isobutyle, l'aluminium trihexyle,
l'aluminium tridodécyle, l'aluminium triphényle, l'aluminium
éthyl dibenzyle, l'aluminium triheptyle et l'aluminum tricyclo-

hexyle. Comme autres exemples de radicaux R**! appropriés, on peut citer les radicaux méthyle, amyle, propyle, isopropyle, acyle et tolyle. De préférence, le radical R'!' organo ou hydrocarboné est du radical alcoyle à chaîne droite ou ramifiée, bien qu'il puisse être également un radical alcoylène, cyploalcoyle, aryl alcoyle ou alcoyleryle. Les radicaux R'!! peuvent être analogues pour les composés qui ont également un hydrogène ou des halogènes attachés à l'atome de métal, les hydrures organo-métalliques et les halogénures organo-métalliques. Des composés organo-métalliques analogues des métaux autres que l'aluminium sont utiles et comme exemples de tels composés on peut citer le lithium éthyle, le sodium allyle, le sodium phényle, le potassium butyle, le calcium diéthyle, le rinc dibutyle, le sodium aluminium tétraéthyle et le plomb tétraéthyle.

peut citer les hydrures représentatifs suivants: LiH, NaH, KH, NgH2, BaH2, ZnH2, CdH2, HgH, HgH2, AlH3, SnH2, SnH4, PdH2, PbH4 et des hydrures mixtes des hydrures cités ci-dessus, tels que LiAlH4. Comme exemples a'hydrures organo-métalliques, on peut citer C2H5NgH, (C2H5)2AlH, CH3AlH2, et des composés analogues dens lesquels "R" a la signification donnée ci-dessus.

Comme halogénures organo-métalliques de la fomule (H''') M(X) donnée ci-dessus, on peut citer, à titre d'exemple C₆H₅HgBr et d'autres réactifs de Grignard, (C₂H₅)₂AlCl, C₂H₅PbCl, (C₂H₅) PbCl, C₂H₁PbCl₃, et des composés analogues utilisant les substitumes hydrocarbonés et les métaux non

transisoires suggérés ci-dessus. Comme halogènes utiles, on peut citer le chlore, le brome, le fluore et l'iode.

En plus ou au lieu de l'agent réducteur du type "Ziegler" défini ci-dessus, on peut en employer d'autres, par exemple, des agents réducteurs métalliques plus électropositifs
que le nickel. Comme exemples de tels agents réducteurs métalliques on peut citer le zinc, l'aluminium, le magnésium, le
fer et le sodium, des alliages de ces éléments, tels que les
alliages de zinc et d'aluminium et les alliages ou mélanges
avec des hydrures mentionnés précédemment. Comme exemples de
ces derniers, on peut citer un mélange ou alliage d'aluminium
métallique et d'hydrure d'aluminium.

Des phosphines organiques et des phosphites organiques ayant une affinité moindre pour le niekel que le ligand désiré sont également utiles comme agent réducteur externe, blan que le coût puisse freiner l'utilisation de tels composés.

L'éthoxyde de sodium ou l'éthoxyde de pétassium et des agents réducteurs analogues sont utiles dans certains cas; par exemple lorsque les phosphines constituent les ligands qui doivent être complexés au nickel. Four d'autres ligands; tels que les briorganophosphines, une transestérification peut s'opérer, et par conséquent les alcoclates de métaux alcalins, bien que pouvant être utilisés comme agent réducteur même avec les phosphites, ne sont pas préférés avec de tels ligands.

L'hydrazine et les hydrazines substituées, telles que la méthylhydrazine, l'éthylhydrazine, l'éthylhydrazine, l'éthylhydrazine, la propylhydrazine, et la phénylhydrazine sont des agents réducteurs appropriés, tout comme l'hydrogène et les hydrares de métal carbonyle, tels que Fe(00)4H2, et Co(CO)4H qui

cependant, se décomposmit des températures relativement bas-

La quantité d'agent mé ducteur dépend de sa nature et de la nature du composé de nickel utilisé comme matière de départ. La quantité d'agent réducteur utilisés dans chaque cas n'est pas particulièrement orttique, mais cette diantité ne sera pas inférieure à celle cui est négassaire pour réduise comme dans le le nickel jusqu'à la valence zéro, par exemple chlorure de nickel. Si une matière est présente qui pourrait réagir avec l'agent réducteur ou former avec celui-ci un complexe, il sera utile d'en utiliser upércès pour satisfaire ce be-soin.

Des solvents sont bénéfiques dans partains cas. Capandant, ils seront inertes vis-à-vis du ligand, de l'agent réducteur et du complexe de nickel disubstitué, trisubstitué ou
tétrasubstitué. Le ligand l'ui-même, tel que le phosphite de
triphényle, peut servir de solvant. Des hydrocambures tels que
le benzène, le naphta de pétrôle, l'hexane, le méthylcyclohexane, le xylène, le décahydronaphtalène et le toluène sont
utiles, comme le sont également le tétrahydrofurane et l'éther éthylique. L'eau et l'éthanol ou d'autres alocols peuvent réagir avec l'aluminium triéthyle par exemple et ne sont
pas appropriés dans la plupart des cas.

Les proportions relatives du ligand et du composé de nickel dans le mélange réactionnel seront telles qu'approximativement 4 moles de phosphore, d'arsenic et/ou d'antimoine par mole de nickel soient présentes. Le rapport du phosphore, de l'arsenic et/ou de l'antimoine au nickel dans le mélange réactionnel peut être inférieur à 4 mais, dans ce cas, on

détient une quantité moindre du produit désiré. Un excès de ligand est utile, bien que dans ce cas, l'avantage économique atteint par l'utilisation d'un agent réducteur externe soit diminué. Le rapport molaire du phosphore, de l'arsenic et/ou de l'antimoine au composé de nickel est de préférence compris entre environ 4 pour 1 et environ 20 pour 1.

La température à laquelle le ligand, le composé de nickel et l'agent réducteur externe, sans ou avec solvant additionnel, sont soumis, varient largement et dépendent en partie des réactifs spécifiques utilisés. Dans certains cas, une élémation échelonnée de la température est bénésique. En général, des températures d'environ -80°0 à environ 250°C sont appropriées. Les températures appropriées sont comprises entre environ 25°C et environ 100°C. La durée de réaction dépend dans une large mesure de la température et peut varier, d'environ 0,1 heure à environ 20 heures ou plus encore si désiré. Les pressions dépendent partiellement du composé de nickel et aussi des autres constituants du mélange réactionnel. Loraque des sous-produits volatils sont obtenus, des pressions réduites, aussifaibles qu'environ 20 mm, se sont révélées utiles dans certains cas. Des sous-produits corrosifs ou délétères peuvent être contrôlés par l'incorporation d'un réactif approprié dans le mélange. Par exemple, lorsque du chlorure d'hydrogène se forme en tent que sous-produit, de la triéthylamine ou de la pyridine est utile pour neutraliser ce produit. Lorsqu'on ajoute de telles matières, il faut faire attention à la drasticité des conditions réductrices. Pour des conditions sévères, on préfère la pyridine à la triéthylamine. Lorsqu'un constituent du mélange réactionnel est très volatil , comme c'est le cas lorsqu'on utilise de l

l'hydrogène gazeux comme agent réducter, des pressions élevées, de l'ordre de 140 kg/cm² manométiques sont permissibles Ordinairement, la température et la pression ambiante sont Satisfaisantes.

Lorsqu'on prépare les complexes à nickel, les résotifs peuvent être ajoutés dans p'importe quel ordre. La facilité ou la nature des matières peut fire adopter un ordre
particulier, comme lorsqu'une réactio vigoureuse estécontrolée par l'addition graduelle ou discoltinue d'un constituant
Dans l'exemple 2, l'aluminium trialcoite servant d'agent réducteur a été ajouté graduellement aux autres résotifs, avec
de bons résultats. Des matières gazeuser sont additionnées,
de manière appropriée, aux autres ingrépients. Lorsque différents ligands sont associés à la même molécule de nickel,
de tels ligands peuvent être ajoutés séparément ou ensembles
au mélange réactionnel. Une agitation vigoureuse est souvent
bénéfique.

Une atmosphère inerte ou non oxydanté est utilisée

dans la plupart des cas, l'argon ; l'azote et l'hélium étant

appropriés. Bien sûr, lorsque l'agent réducteur est un gaz ou

une vapeur, telle que l'hydrogène; la zone de réaction est

purgée de l'air qu'elle contient et l'hydrogène joue le rôle

d'atmosphère non oxydante. Bien que le mélange réactionnel

brut est actif en tant que catalyseur et peut être préparé

dans le réacteur dans lequel il doit être utilisé comme

catalyseur ; il est préférable d'isoler la matière active

principale, par exemple en la lavant par de l'alcool et de

l'acétone. Une recristallisation dans du benzène ou du tétrahydrofurane est parfois utile.

L'utilité des composés préparés par la méthode selon la présente invention est reprise en détails ci-dessous.

La concentration de catalyseurs des formules données ci-dessus dans la résction de cycloolégomérisation est comprise, de manière appropriée, entre 0,001 % à 10 % en poids du monomère dicléfinique conjugué et la quantité préférée est comprise entre 0,05 % et 4 % en poids. Des quantités exéédentaires de catalyseur ne sont pas proportionnellement bénéfiques. D'excellents résultats ont été obtenus à des concentrations de catalyseur de 0,5 %, 1,0 % et 1,5 % pour le tétrakis (triphénylphosphite) de nickel.

Comme inhibiteur de polymérisation qui pauvent être présents, si on le désire, on peut citer le phénoit, le catéchol, le p- tert.-butyl catéchol, le résorcinol, l'hydroquinone et d'autres composés connus. Les Mhibiteurs de polymérisation peuvent être éliminés de la dioléfine ou leur quantité peut être réduite, à l'aide par exemple d'hydroxyde de potassium, préalablement à la réaction. Si de tels inhibiteurs sont présents et ne sont pas éliminés, les quantités de ces inhibiteurs peuvent être comprises entre environ 0,001 % et 4 %, par rapport au poids de la diolétine conjugués à chaîne ouverte. Il n'est pas rare de trouver que des quantités de cet ordre ont été ajoutées à des matières telles que le butadiène pour les stabiliser su cours du stockage, et des quantités de p-tert.-butyl catéchol dans du butadiène, comprises entre environ 3 ppm (parties par million) et 100 ppm ont été utilisées. Des pressions comprises entre environ 1,4 kg/cm2 manométriques et environ 70 kg par cm2 manométriques peuvent être appliquées, ces pressions dépendant habituellement de la

rence, entre environ 40°C et 250°C, la température préférée étant comprise entre environ 90°C et 180°C. Une agitation vigoureuse est recommandable, particulièrement à des températures élevées. La durée de réaction dépend en grande partie de la température; des durées appropriées sont comprises entre 0,05 et 25 heures et ces durées sont de préférence comprises entre environ 0;2 et 10 heures.

La réaction peut être exécutée de manière discontinue. ou continue, avec ou sans solvant. Le remélange du mélange réactionnel agec des réactifs nouvellement introduits est avantageur. Comme solvants appropriés, on paut citer les hy drocarbures paraffiniques, cycloparaffiniques, oléfiniques, cyclooléfiniques et aromatiques, comprenant le benzène, le toluène, le naphta de pétrole, l'hexane, l'heptane, l'isoodtane, le cyclohexane, le cyclopentane, le cyclooctadiène et des matières analogues. D'autres solvants connus pour leur utilité dans des réactions analogues tels que le tétrahydrofurane, sont facultatifs. Il est de loin préférable; que le monomère dioléfinique, le catalyseur et les produits de la réaction soient les seulem matières qui soient présentes dans la zone réactionnelle en des quantités substantielles. Dans certains cas, le datalyseur est, de préférence, dissous: dans un solvant, tel que le tétrahydrofurane ou le benzène avant son introduction dans la zone de réaction.

De monomère utile, suivant la présente invention, est une diolétine conjuguée à chaîne ouverte. La diolétine préférée est choisie dans le groupe formé par le 1,3-butadiène et les 1,3-butadiènes mono substitués. Comme telles 1,3-dioléfines

mono substituées, en peut citer le 2-methyl-1,3-butadiène (1soprène), le 1,3-pentadiène (pipérylène) et le 2-chlore-1,3butadiène (chicroprène). Comme autre d'oléfines conjuguées à
chaîne ouverte appropriées, on peut citer le 2,3-dichloro-1,3butadiène, les phényldioléfines et le 2,3-diméthyl-1,3-butadiène. Les diciéfines conjuguées à chaîne ouverte substituées
par des Malogènes, na possèdent, de préférence, pas plus d'un
atome d'hydrogène substitué par un atome d'halogène dans chaque molicule dicléfizique. Des dérivés halogènés mixtes, tels
que les chloro-bromo-1,3-butadiènes peuvent être utilisés.

D'autres composés qui forment des cyclocléfines ayant au moine
8 atomes de carbone dans le cycle peuvent également être utilisés, par exemple lo 2,4-hexadiène.

#.

La dioléfine doit être relativement pure, bien qu'elle puese comprendre des quantités relativement petites d'impuretés présentes de manière inhérente, telles que l'eau, des monooléfines, des 1,2-oléfines, des composés carbonylés et des acétylènes. Normalement, ces matières apparaissent en des quantités comprises entre environ 10 ppm (parties par millign) et 600 ppm. Des quantités exidentaires de certaines impuretés entrent en réaction avec le catalyseur ou sont préjudiciables. pour d'autres raisons et, si elles ne sont pas climinées, elles provoquent, per exemple, un gaspillage de catalyseur. La quantité d'eau dons le monomère dioléfinique peut être réduite par congellation, pur voie chimique où par l'utilisation d'agents de dessication ou dagents de déshydratation, tels que le sulfate de calcium (par exemple la "Dri-érite"), le carbure de calicum, le gel de silice, l'oxyde de calcium ou d'autres aubstances connues des techniquens. Une teneur

eau aussi faible que 5 ppm est facilement atteints blen que de bons résultats sount obtenus avec des quantités plus importantes, telles que 100 ppm. Des sels ferreux, des thiosulfites, des sulfites ou d'autres matières beuvent être utilisées pour réduire les composés peroxydes.

EXCUPLE 14.

Un autoclave a été changé d'environ 100 g de butadiène et de 1,5 g de tétrakis (tri-p-méthoxyphénylphosphite) de nieckel dissous dans du benzone. Le réacteur a été scellé, puis il a été chauffé jusqu'è une température d'environ 125°0 pendant 45 minutes. 59 % du butadiène introduit ont été convertis en produits. L'analyse approximative du produit était la suivante: 80 % de 1,5-cyclocotadiène, 9 % de vinyloyalohement et 3 % de 1,5-cyclocotadiène, 9 % de vinyloyalohement et 3 % de 1,5,9-cyclocotadiène (CDT), le reste étant des matières ayant un point d'ébulition supérieur à calui du CDT.

L'exemple ci-dessus illustre une des utilités des composés catalytiquement préparés par le procédé décrit dans le présent mémoire. La demande de brevet belge n° 487.040 dé posés le 28 nombmbre 1961 donne également des exemples analogues. L'utilisation, comme catalysour, du complexe bis(ortho-phénylènebisdiméthylphosphine) de nickel.

Ni 2-06H (Phs.) 2-2 d'une compenient ion de mickel.

réaction de trois heures à une température de 150°C et d'une pression de 28 kilogrammes par centimètre carré monométriques est appropriée pour former des oligomères de butadiène. Les catalyseurs peuvent être utilisés en combinaison avec un activateur, tel que l'acétylène, l'isobutylène eu la cyclocctadiène. D'autres conditions appropriées ont été données cideseus. Des conditions analogues sont utiles pour les complates trisubstitués, tels que bis(triphénylphosphite)-orthophénylènebisdiméthylphosphine de nickel, \(\begin{align*} (0.6\text{H}_50)_3\text{PMe}_2 \end{align*}_2\text{PMe}_2 \end{align*}_2\text{PMe}_2\text{PMe}_2 \end{align*}_2\text{PMe}_2\text{PMe}_2\text{PMe}_2\text{PMe}_2\t

Les sumposés de nickel selon la présente invention sont également utiles pour l'obtention de revêtemente métalliques sur, par exemple, des surfaces siliceuses, telles que le verre re. En appliquant un mince revêtement du composé sur le verre et en décomposant thermiquement le complexe, sous vide ou dans une atmosphère non oxydante, on obtient des revêtements contenant du nickel métallique.

REVENDICATIONS.

l.- Procédé de préparation de complexes de formule

\[\left(RO_8)_3^P \sum_4 \text{Ni} dans laquelle R représente un radical organique et "a" représente zéro ou l'unité, caractérisé en ce qu'on fait réagir un composé de nickel dans lequel l'atome de nickel a la valence positive de 2 à 3, avec un ligand de formule

\[\text{(RO_8)_3^Z} \text{, dans laquelle les symboles R et "a" ont la signification donnée ci-dessus, en présence d'un agent réducteur étranger additionnel qui ne détruit pas le ligand et ledits complexes.

2.- Procédé selon la revendication l, caractérisé en ce que, dans le dit composé de nickel, l'atome de nickel a une valence égale à + 2.

3.- Procédé suivant l'une ou l'autre des revendications 1 et 2, caractérisé en ce que ledit agent réducteur est constitué par un composé organo-métallique, un halogénure organo-métallique, un hydrure de metallique, un hydrure de metal, le métal de ces composés étant un métal non-transitoire ayant un poïds atomique inférieur à 208 et étant incapable de posséder un état de valence supérieur à +4, un agent réducteur métallique plus électropositif que le nickel, l'hydrazine ou par une hydrazine aubstituée.

4.- Procédé selon l'une ou l'autre des revendioations 1, 2 et 3, caractérisé en ce que l'agent réducteur est constitué par un agent réducteur du type Ziegler.

5.- Procédé suivant l'une ou l'autre des revendications 1. 2 et 3, caractérisé en ce que l'agent réducteur est constitué par un métal plus électropositif que le nickel.

6.- Procédé suivent l'une ou l'autre des revendications 1, 2 et 3, caractérisé en ce que l'agent réducteur est constitué par un composé d'hydrazine.

7.- Procédé suivant l'une l'une où l'autre des revendications I, 2 et 3, caractérisé en ce que l'agent réducteur est constitué par de l'hydrogène libre.

8.- Procédé suivant l'une ou l'autre des révendications 1 à 7, caractérisé en ce que "a" représente zéro.

9.- Procédé suivant l'une ou l'autre des révendications
1 à 8, caractérisé en ce que le composé de nickel est un sel
de nickel d'un acide inorganique.

10.- Procédé suivant l'une où l'autre des revendications l à 8, caractérisé en ce que le composé de nickel est un dihalogénure de nickel.

11.- Procédé survant l'une ou l'autre des revendications 1 à 8, caractérisé en ce que le composé de nickel est un sel d'un acide carboxylique.

12.- Procédé suivant l'une ou l'autre des revendications l à 8, caractérisé en ce que le composé de fickel ést un chélate organique.

[(RO)] 3P_7 Ni dans laquelle B est un radical organique et "a" représente zéro ou l'unité, tel que décrit ci-dessus, notamment dans l'un quelconque des exemples précédents.

14. - Complexe de formule (RO), P.7.Ni, dans laquelle R raprésente un radical organique et "a" représenté
zéro ou l'unité, lorsqu'il est préparé par le procédé auton
l'une ou l'autre des revendications 1 à 50.

15.- Complexe de formule (RO), 3P.7, Ni dans laquelle R représente un radical organique et *a* représente zero
ou l'unité, préparé par le procédé suivant la revendication

16.- Complexe de formule [RO] 2.7 Ni. dans laquelle R représente un radical organique et "a" représente zéro
ou l'unité, tel que décrit ci-dessus, notamment dans l'un
quelconque des exemples précédents.

BRUXTIE, le la land Aphil

P. 1 Steel Level Consul Recent

P. 1 A. VAN LE HAECHEN

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

□ OTHER: _____