Lecture 26: 80x86 Evolution 2

Seyed-Hosein Attarzadeh-Niaki

Slides from Dezső Sima

Microprocessors and Assembly

-

Review

- 80186, 80286, and 80386 CPUs
- Real and Protected modes
- Segmented memory
- Memory paging
- Flat memory

Microprocessors and Assembly

2

Outline

Overview of the evolution of Intel's Pentium 4 and Core 2 families

Evolution of desktop and laptop processors

Evolution of HEDs (High-End desktops)

Evolution of high-end 4S/8S servers

Intel's cancellation of 4 GHz Pentium 4 devices and subsequently the Pentium 4 line

 In Oct. 2004 Intel's CEO (Chief Executing Officer) admitted that the Pentium 4 family would not achieve 4 GHz.

Figure: In Oct. 2004 Crag Barrett, Intel's then-CEO on his knees to apologize for not achieving the 4GHz mark in front of an audience of 7000 informatics professional at the IT Expo in Orlando

1.1 Overview of the evolution of Intel's Pentium 4 and Core 2 families

Changing Intel's design paradigm to cope with raising dissipation about 2003

In 2003 Intel shifted the focus of their processor development from the pure performance goal to the aspect of performance per watt, as stated in a slide from 4/2006, see below.

Figure 1.3: Intel's plan to develop their manufacturing technology and processor lines revealed at a shareholder's meeting back in 4/2006

1.1 Overview of the evolution of Intel's Pentium 4 and Core 2 families

Remark: A further change of the design paradigm for designing the mobile processors

With the advent of mobile devices (about 2006) a new design paradigm arose for those devices.

Mobile devices require long operating hours i.e. low power consumption, this is contrast to the design paradigm of traditional processors, as indicated below.

Traditional processors

High performance/power
(e.g. GFLOPS/Watt)

Low power
(Watt)
(Number of operating hours)

Introducing a two-phase development model (Tick-Tock model) for the Core 2 family

The two-phase model reduces the complexity of the development, as

- the Tick phase focuses on the reduction of the feature size whereas
- the Tock phase focuses on enhancing the microarchitecture.

1.2 Evolution of desktop and laptop processors (3)												
Max. number of cores, Number of memory channels, Platform topology, Speeding up the memory rate,												
Designation of the platform	Platform topology	Processor	Technology	Max. no. of cores (n _c)	Year of introduction	Processor socket	мсн/рсн	Highest mem./ speed	No. of mem. channels			
Anchor Creek		Pentium D	90 nm	2x1	5/2005	LGA 775	945-955	DD2-667	2			
Bridge Creek	Off-die	Core 2	65 nm	2C	6/2006	LGA 775	945-975	DDR2-800	2			
Salt Creek	MC	Core 2 Quad	65 nm	2x2C	6/2007	LGA 775	3 Series (Bearlake)	DDR3-1067	2			
Boulder Creek		Penryn	45 nm	2x2C	6/2008	LGA 775	4 Series (Eaglelake)	DDR3-1067	2			
	On-die MC	2. G. Nehalem (Lynnfield)	45 nm	4C	9/2009	LGA 1156	5 Series (Ibex Peak)	DDR3-1333	2			
Kings Creek			Westmere (Clarkdale)	32 nm	2C+G	1/2010	LGA 1156	5 Series (Ibex Peak)	DDR3-1333	2		
Sugar Bay		Sandy Bridge	32 nm	2C/4C+G	1/2011	LGA 1155	6 series (Cougar Point)	DDR3-1333	2			
Maho Bay		Ivy Bridge	22 nm	4C+G	4/2012	LGA 1155	7 series (Panther Point)	DDR3-1600	2			
Shark Bay		Haswell	22 nm	4C+G	6/2013	LGA 1155	8 Series (Lynx Point)	DDR3-1600				
		Haswell refresh	22 nm	4C+G	5/2014	LGA 1150	9 Series (Wild Cat Point)	DDR3-1666	2			
		Broadwell	14 nm	4C+G	6/2015	LGA 1150	9 Series (Wild Cat Point)	DDR3-1866				
		Skylake	14 nm	4C+G	10/2015	LGA 1151	100 Series (Sunrise Point)	DDR4-2133	2			
		Kaby Lake	14 nm	4C+G	8/2016	LGA 1151	200 Series	DDR4-2400	2			
		Coffee Lake	14 nm	6C+G	10/2017	LGA 1151	300 Series	DDR4-2666	2			

Key features of the evolution of Intel's Core-based mainstream DT platforms

- Their core count rose soon (already in 2007) to 4 and remain at this figure.
- Two memory channels are used to connect memory.
- Memory is connected up to the Penryn via the MCH thereafter immediately via the processor.
- In a 10 year period memory speed rose about three to four times.

		1.2 Evolut	ion of desk	ctop and I	aptop	processor	'S		
Evolution of I	main features	of Intel's grap	hics families (ba	ased on [174]) -1				
Intel Core generation	Graphics generation	Models	Graphics Technology level	No. of graphics slices	No. of EUs	eDRAM	OpenGL version	DirectX version	OpenCL version
Westmere	5 th (Ironlake)	HD			12		2.1	10.1	n.a.
Sandy Bridge	6th	HD 2000 HD 3000	GT1 GT2	1 (2x3 EU) 1 (4x3 EU)	6 12		3.1/3.3	10.1	n.a.
		HD 3000	GT1	1 (4x3 EU)	6		4.0	11.0	
Ivy Bridge	7th	HD 4000	GT2	1 (2x8 EU)	16				1.2
	7.5th	HD 4200- HD 4700	GT2	1 (2x10 EU)	20		4.3	11.1	
Haswell		HD 5000 Iris 5100	GT3	2	40				1.2
		Iris Pro 5200				128 MB			
		HD 5300- HD 5600	GT2	1 (3x8 EU)	23/24	_	4.3	11.2	
Broadwell	8th	HD 6000 Iris 6100	GT3	2	47/48				2.0
		Iris Pro 6200	GT3e	2	48	128 MB			
		HD 510	GT1	1 (3x4 EU)	12		4.4		
		HD 515	GT1.5	1 (3x6 EU)	18				
Skylake	9th	HD 520	GT2	1 (3x8 EU)	24			12	2.0
Skylake	5.11	HD 535	GT3	2	48				
		HD 540	GT3e	2	48	64 MB			
		HD 580	GT4e	3	72	64/128 MB			

1.2 Evolution of desktop and laptop processors

Evolution of main features of Intel's graphics families

Intel Core generation	Graphics generation	Models	Graphics Technology level	No. of graphics slices	No. of EUs	eDRAM	OpenGL version	DirectX version	OpenCL version
Westmere	5 th (Ironlake)	HD			12		2.1	10.1	n.a.
Sandy Bridge	6th	HD 2000	GT1	1 (2x3 EU)	6		3.1/3.3	10.1	
Salidy Bridge	otti	HD 3000	GT2	1 (4x3 EU)	12		3.1/3.3		n.a.
Ivy Bridge	7th	HD 2500	GT1	1 (6 EU)	6		4.0	11.0	1.2
ivy bridge	701	HD 4000	GT2	1 (2x8 EU)	16		4.0		1.2
		HD 4200- HD 4700	GT2	1 (2x10 EU)	20				
Haswell	7.5th	HD 5000 Iris 5100	HD 5000		4.3	11.1	1.2		
		Iris Pro 5200				128 MB			
		HD 5300- HD 5600	GT2	1 (3x8 EU)	23/24				
Broadwell	8th	HD 6000 Iris 6100	GT3	2	47/48	4.3		11.2	2.0
		Iris Pro 6200	GT3e	2	48	128 MB			
		HD 510	GT1	1 (3x4 EU)	12		4.4		
		HD 515	GT1.5	1 (3x6 EU)	18				
Skylake	9th	HD 520	GT2	1 (3x8 EU)	24			12	2.0
Saylake	5411	HD 535	GT3	2	48				2.0
		HD 540	GT3e	2	48	64 MB			
		HD 580	GT4e	3	72	64/128 MB			

Key features of the evolution of Intel's integrated graphics families

- Intel's graphics implementations are subdivided into
 - graphics generations (5th to 9th) and
 - graphics technology levels (GT1-GT4).

Graphics generations are bound to the basic architectures.

The graphics technology levels indicate the number of graphics slices (replicable sets of graphics EUs) within each graphics generation.

- The number of graphics EUs is increasing more or less according to Moore's rule (from 12 in 2010 to 72 in 2015).
- With the Haswell basic architecture graphics became eDRAM support (first 64 MB then 128 MB)
- There is continuous support of newer versions of graphics APIs and of OpenCL.

Number of PCI	e lanes	, no. of c	ores							
Processor	Techn.	Date of intro.	No. of cores up to	Memory attachment	Mem. speed up to	PCIe lanes	No. of mem. channels	МСН	TDP	Processor socket
Core 2 Extreme X6800	65 nm	7/2006	2C			DDR3-1066 32 PCIe 2.0 on the X38	2	X38	65 W	LGA 775
Core 2 Extreme QX 6xxx	65 nm	11/2006	2x2C		DDR3-1066				130 W	LGA 775
Core 2 Extreme QX 9650 (Penryn)	45 nm	11/2007	2x2C	Via MCH					130 W	LGA 775
Core 2 Extreme QX 9770 (Penryn)	45 nm	3/2008	2x2C		DDR3-1600	32 PCIe 2.0 on the X48	2	X48	136 W	LGA 775
1. G. Nehalem EE	45 nm	11/2008	4C			36 PCIe 2.0	-	X58	130 W	LGA 1366
Westmere EE	32 nm	3/2010	6C			on the X58	3	(Tylersburg)	130 W	LGA 1366
Sandy Bridge E	32 nm	11/2011	6C		DDR3-1600	40 PCIe 2.0 on-die	4	X79 (Patsburg)	130 W/ 150 W	LGA 2011
Ivy Bridge E	22 nm	9/2013	6C	On-die	DDR3-1866		4		130 W	LGA 2011
Haswell E	14 nm	8/2014	8C	MC	DDR4-2133	40 PCIe 3.0 on-die	4	X99 (Wellsburg)	140 W	LGA 2011-3
Broadwell E	14 nm	5/2016	10C		DDR4-2400		4	X99 (Wellsburg)	140 W	LGA_2011-3
Skylake X	14 nm	6/2017	18C		DDR4-2666	44 PCI-3.0 on-die	4	X299 (Basin Falls)	140 W	LGA-2066
(Kaby Lake X)	14 nm	6/2017	4C		DDR4-2666	16 PCIe 3.0 on-die	4	X299 (Basin Falls)	112 W	LGA-2066
The above HED models and lines are unlocked.										

Key features of Intel's HED lines to support multiple (up to 4) discrete graphics cards:

- · They typically provide vs. mainstream desktops
 - more PCIe lanes (either on the PCH or on the die)
 - · more cores and
 - more memory channels (to appropriately service more processing resources)
- They are equipped with a large number of PCIe lanes (typically 32 to 44) to connect
 multiple discrete graphics cards vs. 16 typical in desktops,
- they do not provide integrated graphics, as it is assumed that the installation is intended to provide high quality graphics by attaching discrete graphics cards,
- they have more cores than desktops than graphics offers more parallelism than typical desktop workloads,
- HEDs have a higher TDP of 130 to 150 W vs. 65 to 95 W typical for DT processors.

		Covo	Core					
	Core	Techn.	Intro.	High-end 4S/8S server processor lines	count	Chipset	Proc. socket	
	Pentium 4 MP Prescott	90 nm	3/2005	90 nm Pentium 4 MP (Potomac)	1C	E8500 + ICH5		
Truland MP	Pentium 4 Presc.	90 nm	11/2005	7000 (Paxville MP)	2x1C	E8501 +	LGA 604	
	Pentium 4 Presc.	65 nm	8/2006	7100 (Tulsa)	2x1C	ICH5		
Caneland	Core2	65 nm	9/2007	7200 (Tigerton DC) 7300 (Tigerton QC)	2C 2x2C	E7300 (Clarksboro)		
	Penryn	45 nm	9/2008	7400 (Dunnington)	6C	+ 631x/632x ESB	LGA 604	
	Nehalem	45 nm	3/2010	7500 (Beckton/ Nehalem-EX)	8C	7500 +	LGA 1567	
Boxboro-EX	Westmere	Westmere 32 nm 4/2011 E7-8800 (Westmere-EX				ICH10	LGA 1567	
	Sandy Bidge	32 nm						
	Ivy Bridge	22 nm	2/2014	E7-8800 v2 (Ivy Bridge-EX)	15C			
Brickland	Haswell	22 nm	5/2015	E7-8800 v3 (Haswell-EX)	18C (Patsburg J)		LGA 2011-1	
	Broadwell	14 nm	6/2016	E7-8800 v4 (Broadwell-EX)	24C			
Purley	Skylake	14 nm	7/2017	Platinum 8100 (Skylake-SP)	28C	C620 (Lewisburg)	LGA 3647	

The rate of rising mem. transfer rates in Intel's high-end 4S/8S server processors

- As the above Figure shows, in the course of the evolution of high-end 4S/8S servers memory transfer rate has initially been doubled roughly every four years.
- But after DDR3 memory emerged the growth rate of memory transfer rate slowed down
 to doubling rougly every eight years due to the higher complexity of this technology.
- Note that in the considered time interval memory transfer rate has always been risen
 at a slower rate than core count, approximately at the half rate than the core count.
 - Thus the per core memory bandwidth will decrease since the memory bandwidth amounts
 to the product of the transfer rate and the width of the memory interface (assuming that
 no other changes become effective).
 - In other words, in the course of processor evolution a memory bandwidth gap arises that needs to be removed by implementing appropriately more memory channels.
 - Thus removing the memory bandwidth gap more memory channels are needed, this is the
 driving force of the evolution of server memory subsystems.
 - Since it is not at all a straightforward task to raise the number of memory channels, one of the focal points of server evolution is how to resolve the memory bandwidth gap by enhancing the memory subsystem.

Overview of Intel's x86 ISA extensions Process Technology Instruction Set Extensions **MMX** MultiMedia eXtensions Pentium III 1996 350nm Jan 1997 P55C(MMX Pentium) 56 instructions 1997 Streaming SIMD Extensions 1998 70 instructions Katmai(Pentium III) 1999 Pentium 4 2000 180nm Dec 2000 Willamette (Pentium 4) 144 instructions 2001 2002 130nm Northwood (Pentium 4) 2003 Prescott (Pentium 4) 2004 Feb 2004 13 instructions Intel 64 (Clackamas) 2005 Core 2 2006 1.5 Year Jul 2006 65nm Merom (Core2) 32 instructions 2007 1 Year 47 instructions Penrvn O4 2007 2008 45nm Nehalem 1 Year 2H 2008 7 instructions 2009 Westmere Advanced Encryption Standard 2010 6 instructions 2H 2009-2010 32_{nm} Advanced Vector Extension Sandy Bridge Year? 2011 2010 Fused Multiply-Add instr. 22nm Ivy Bridge 2012

.