EHB222 ELEKTRONIĞE GİRİŞ (25154-20910-20907-20909) EHB222 ELEKTRONIĞE GİRİŞ (11483-11359-11360-11443)

Bora DÖKEN, Hacer ATAR YILDIZ, İbrahim ÇATALKAYA, İnci ÇİLESİZ

1. Zamanla değişen giriş kaynakları $x_1(t)$ ve $x_2(t)$ olmak üzere;

$$y(t) = 2x_1(t) - 3x_2(t) + 2V$$

çıkışını elde etmek için bir işlemsel kuvvetlendirici devresi tasarlayınız. (25 puan)

- 2. Yandaki devrede tüm tranzistörler eştir. Tranzistör parametreleri: $V_T = 25$ mV, $|V_{BE}| = 0.7V$ $h_{FE} = h_{fe} = 300$ ve $V_A = 100$ V.
- a) I_{CQ2}=1mA olacak şekilde akım aynasını tasarlayınız. **(5 puan)**
- b) Q₁ tranzistörü için Early etkisini ihmal ederek baz, emiter ve kollektördeki DC gerilimleri bulunuz. **(10 puan)**
- c) Q_1 tranzistörü için Early etkisini dikkate alarak g_m, r_{π}, r_o ve gerilim kazancını bulunuz. **(10 puan)**

- 3. Yandaki devrede tüm tranzistörler eştir. Tranzistör parametreleri: h_{FE} = h_{fe} = β = 200, I_S =10 fA ve V_T = 26 mV.
- a) $A_{dd}=(V_{01}-V_{02})/(V_1-V_2)$ fark kazancı ifadesini bulunuz. (A_{dd} olduğuna dikkat ediniz) (15 puan)
- b) V_{DD} =5V, V_{SS} =-5V, IB=2mA, R_{C} =2k Ω and R_{L} =3k Ω değerleri için fark kazancı (A_{dd}) değerini hesaplayınız. **(10 puan)**
- c) Çıkışlardan herhangi birine ortak emetörlü bir kuvvetlendirici katını nasıl bağlarsınız? Devrenin tamamını çiziniz. (5 puan)

4. Yandaki devrede MOSFET ler eşleniktir ve paremetreleri;

$$\begin{split} k_p' &= \mu_p C_{ox}, \, k_n' = \mu_n C_{ox}, \, |V_T| = 0,5 \, V \text{ ve } k_p' \left(\frac{W}{L}\right)_2 = \\ k_n' \left(\frac{W}{L}\right)_1 &= 1 mA/V^2. \, \text{R} = 1 \text{M}\Omega. \end{split}$$

- a) G ve D açık devre iken, I_{D1} ve I_{D2} savak akımları nedir? (5 puan)
- b) r₀= ∞ için, kuvvetlendiricinin G'den D'ye gerilim kazancı nedir? (İpucu: Tranzistörlerin küçük işaret eşdeğer modellerini yerine koyunuz.) (7,5 puan)
- c) Sonlu r_0 değeri için ($|V_A|=20~V$), G'den D'ye gerilim kazancı ve G den görülen giriş direnci nedir? (7,5 puan)
- d) G noktasına bir bağlama kondansatörü üzerinden 20 K Ω iç dirence sahip bir v_{sig} işaret kaynağı bağlandığında v_d/v_{sig} gerilim kazancını bulunuz. **(5 puan)**
- e) Çıkış işaretinin hangi aralığında Q1 ve Q2 tranzistörleri doyma (satürasyon) bölgesinde kalmaya devam eder? **(5 puan)**