Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (Национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий Кафедра теоретической и экспериментальной физики геосистем

Направление подготовки: 03.03.01 Прикладные математика и физика (бакалавриат) **Направленность(профиль) подготовки:** Физика и механика космических и природных систем

Пространственно-временное распределение полного электронного содержания в различных геофизических условиях

(бакалаврская работа)

	Студент:
	Скачков Алексей Павлович
	Научный руководитель:
	Ряховский Илья Александрович
Москва	

2020

Аннотация

Цели и задачи

Полученные результаты

Содержание

Bı	Введение			5
1	Teo	Теоретические сведения		
	1.1	Испол	ьзование GPS в исследовании ионосферы	6
	1.2	Общи	е сведения о GPS	6
	1.3	Интер	есующие виды измерений в GPS	7
	1.4	Геоме	грические положения, используемые для GPS зондирования	10
	1.5	б Принципы расчета ПЭС по данным GPS приемников		12
		1.5.1	Определение ПЭС по двухчастотным фазовым измере-	
			ниям псевдодальности	12
		1.5.2	Определение ПЭС по кодовым измерениям псевдодаль-	
			НОСТИ	13
		1.5.3	Преобразование наклонного ПЭС в вертикальное	14

Используемые обозначения

Введение

Актуальность темы

Исследование ионосферы является достаточно важным направлением, так как от ее состояния зависит множество факторов, влияющих на нашу повседневную жизнь. Знание о состоянии ионосферы может помогать идентифицировать различные события техногенного и естественного характеров. В современной действительности стало ясно, что различные ионосферные процессы влияют на погодные и климатические условия. Не стоит забывать и о современных средствах связи, навигации и локации, которые напрямую зависят от состояния ионосферы.

Объект исследования

Основные параметры, характеризующие ионосферу: локальная электронная концентрация N_e , температура ионов и электронов и полное электронное содержание.

Объектом исследования данной работы является полное электронное содержание (ПЭС или ТЕС в англоязычной литературе). ПЭС представляет собой количество электронов в столбе единичного сечения. В рамках данной работы предлагается получение пространственно-временного распределения полного электронного содержания во время высокой солнечной активности.

Значимость исследования

1 Теоретические сведения

1.1 Использование GPS в исследовании ионосферы

Существует множество различных методов, применяемых для исследования состояния ионосферы, такие как вертикальное, наклонное, вертикальное наклонное, внешнее зондирования, некогерентное рассеяние и многие другие. Появление глобальной навигационной системы и создание огромной сети GPS станций стали началом новой эры дистанционного исследования ионосферы. Большое количество станций и непрерывная доступность спутников позволяют производить своевременный мониторинг ионосферы в различных участках планеты.

1.2 Общие сведения о GPS

GPS (Global Positioning System) представляет из себя спутниковую систему навигации, которая обеспечивает измерение расстояния между спутником и приемником, а так же времени. На основе этих данных определяется местоположение объекта в пространстве.

Систему GPS можно разделить на три основные составляющие:

- Космический сегмент
- Сегмент управления
- Сегмент потребителей

Космический сегмент состоит из 32 спутников (один из которых находится на этапе развертки)¹, которые размещены на шести круговых орбитах. Высота орбит составляет 20200 км. Наклонение орбит также являет общим и равно 55°. Каждая орбита разнесена друг относительно друга на 60° по долготе. Спутники оборудованы специальным устройством, которое хранит

¹на момент Февраля 2019 года [1]

системное время аппарата. Временные шкалы всех спутников согласованы между собой и синхронизируются системой единого времени.

Спутники непрерывно передают сигналы на двух частотах: $f_1=1575.42~{\rm M}\Gamma$ ц и $f_2=1227.60~{\rm M}\Gamma$ ц. Передаваемые сигналы модулируются псевдослучайными последовательностями (PRN - Pseudorandom Noise) двух типов С/А-код и Р-код.

C/A-код является открытым кодом, который, в основном, используется в гражданских целях. Он имеет длину повторения 1 мс и частоту следования импульсов $1.023~\mathrm{M}\Gamma$ ц.

Р-код - это защищенный код. Частота следования имеет значение 10.23 МГц и длину в 267 суток. Сигналы, модулированные Р-кодом, передаются на двух частотах f_1 и f_2 , в то время как С/А-код только на f_1 .

Вместе с PRN-кодами также отправляются навигационные сообщения, которые содержат данные о положении спутника, метки времени, частотновременные поправки, сведения о работоспособности оборудования и др.

Сегмент управления осуществляет слежение за орбитальными аппаратами и управление ими. Главная станция находится в Колорадо-Спрингс, штат Колорадо. Станции слежения выполняют измерения траекторий по сигналам спутников и после корректируют поведение каждого спутника.

Сегмент потребителей состоит из устройств разной степени сложности, от военного оборудования до гражданских мобильных устройств. GPS-приемники производят выбор рабочего созвездия (набора из не менее 4 видимых спутников), поиск, слежение и декодировку входящего сигнала, обработку измеряемых радионавигационных параметров и служебной информации, расчет координат и скорости потребителя.

1.3 Интересующие виды измерений в GPS

Основная величина, которая измеряется в спутниковых системах позиционирования, является «псевдодальность», через которую определяют координаты GPS-приемника.

$$D' = \sqrt{(x - x_S)^2 + (y - y_S)^2 + (z - z_S)^2} + c\tau_R + \sigma_D, \tag{1}$$

где D' - «псевдодальнось» между приемником и спутником; x_S, y_S, z_S - координаты спутника; x,y,z - координаты приемника; c - скорость света; τ_R - отклонение часов приемника от системного времени GPS; σ_D - погрешность измерения. Псевдодальность отличается от действительного расстояния $D=\sqrt{(x-x_S)^2+(y-y_S)^2+(z-z_S)^2}$ наличием ошибок измерений. Зная значения псевдодальности для 4 спутников, можно вычислить координаты приемника и значение τ_R . Нахождение данных величин возможно в любой момент времени, так как в поле зрения приемника всегда оказывается минимум 5 спутников. В современных устройствах для вычисления положения в пространстве используется метод взвешенных наименьших квадратов. Для определения псевдодальности измеряются такие параметры, как время распространения сигнала и набег фазы несущей радиоволны на трассе «спутник – приемник». В зависимости от выбранного параметра различают кодовые и фазовые измерения псевдодальности.

Кодовые измерения псевдодальности. $D' = c\tau$. В данном случае измеряется время задержки между моментом излучения и момента получения сигнала, т.е. время распространения сигнала. Для измерения задержки, с помощью корреляционного анализа, определяется сдвиг выбранного кода, посланного спутником, относительно кода, генерируемого приемным устройством. Таким образом, двухчастотный приемник имеет возможность измерять псевдодальность тремя способами: с помощью C/A-кода на частоте f_1 и по P-коду на частотах f_1 и f_2^2 . Точность определения псевдодальности по кодовым измерениям составляет 1% от длины кода, что позволяет делать измерение по C/A-коду с погрешностью в 3 метра, а по P-коду с погрешностью 0.3 метра.

Фазовые измерения псевдодальности. $D' = \lambda \Delta \varphi + \lambda N$. Для получения пседодальности в этом случае измеряется разность фаз $\Delta \varphi$ двух несущих радиоволн: принятой приемником и сгенерированной в самом приемнике;

 $^{^2}$ измерение по C/A-коду обозначается как C1, а для P-кода соответственно P1 и P2

 $\lambda = c/f$ – длина волны несущей частоты. Для фазовых измерений на частотах f_1 и f_2 приняты обозначения L1 и L2 соответственно. Полное число циклов фазы N остается неизвестной величиной. Этому дали название «фазовой неоднозначностью измерений». Для ее устранения существует ряд способов, одним из которых является комбинирование кодовых и фазовых измерений. Погрешность измеренной разности фаз $\Delta \varphi$ имеет точность до 0.01 периода. Тогда псевдодальность может быть определена с точностью до 1-2 мм.

Погрешности измерений. На точность измерений влияет множество факторов, которые представлены в таблице 1 [2], [3].

Источник погрешности	Вносимая погрешность	
Геометрическое расположение НИСЗ	PDOP	
Неточности расчетов орбит НИСЗ и времени	0.5 - 3 M	
Случайные отклонения опбит и часов	0.5 - 3 M	
Шумы приемника	1.5 — 3 м	
Задержка сигнала в ионосфере	2 – 10 м	
Задержка сигнала в тропосфере	1 - 2 M	
Многолучевость распространения		
(в результате отражений от крупных объектов	1-2 м	
вблизи приемника)		
Меры по искусственному снижению точности	до 30 м	
(с Мая 2000 года не используется)	до 50 м	
Прочие источники	1 м	

Таблица 1: Составляющие погрешности навигационных определений

Наиболее важным фактором для получения хорошей точности является геометрия рабочего созвездия спутников. Для характеристики взаимного расположения приемника и спутника вводится коэффициент PDOP (Position Dilution of Precision)³. На данный коэффициент умножается все другие ошиб-

³Величина PDOP обратно пропорциональна объему фигуры, образованной пересечение лучей «спутник – приемник» со сферой единичного радиуса, центр которой совмещен с приемником.

ки.

Вторым по значимости фактором, снижающим точность, является ионосферная задержка радиосигнала. Именно из-за этого эффекта GPS может использоваться для исследования состояния ионосферы.

Для снижения ионосферной и тропосферной погрешностей измерений используются математические модели, комбинирование данных, сглаживание данных и режим DGPS⁴.

Комбинация кодовых и фазовых измерений и использование их в алгоритмах сглаживания данных позволяют эффективно фильтровать погрешности, связанные с геометрией рабочего созвездия, шумами приемника, случайными отклонениями орбит часов и многолучевостью.

1.4 Геометрические положения, используемые для GPS зондирования

Для расчета полного электронного содержания необходимо знать направление на спутник. На рисунке 1, можно увидеть схематическое представление геометрии системы «Земля – спутник».

Для вычисления координат α_S , θ_S , которые являются, соответственно, азимутом и углом места (элевация), используется метод расчета на основе геодезических координат спутника и точки наблюдения. С достаточной для практических целей точностью азимут и угол места могут быть вычислены с помощью формул [5]:

⁴суть метода заключается в том, что измерения производятся двумя приемниками, один из которых неподвижен (для него известно истинное положение). Неподвижный приемник сравнивает свое истинное положение с положением, полученным с GPS, и отправляет поправочные коэффициенты второму приемнику.

Рис. 1: Геометрия системы «Земля – спутник»: O – центр Земли; S – спутник; B – пункт наблюдения; P – ионосферная точка; P_I – подионосферная точка; P_S – подспутниковая точка; h_{\max} – высота максимума слоя F2 ионосферы. [4]

$$\alpha_S = \arccos\left(\frac{\sin\Phi_S - \sin\Phi\cos\psi_S}{\sin\sigma\cos\Phi}\right);$$

$$\theta_S = \arctan\left(\frac{\cos\Psi_S - R_E/R_S}{\sin\Psi_S}\right);$$
(2)

 $\Psi_S = \arccos\left(\sin\Phi\sin\Phi_S + \cos\Phi\cos\Phi_S\cos\left(\Lambda_S - \Lambda\right)\right),\,$

где R_S – радиус орбиты спутника; R_E – радиус Земли; Φ , Λ – геодезические широта и долгота точки наблюдения; Φ_S , Λ_S – геодезические широта и долгота спутника; Ψ_S – центральный угол между точкой наблюдения и спутником.

Для вычисления координат ионосферной и подионосферной точек используются следующие выражения:

$$\phi_P = \arcsin\left(\sin\phi_B\cos\psi_P + \cos\phi_B\sin\Psi_P\cos\alpha_S\right);$$

$$l_P = l_B + \arcsin\left(\sin\Psi_P\sin\alpha_S\sec\phi_P\right);$$

$$\Psi_P = \frac{\pi}{2} - \theta_S - \arcsin\left(\frac{R_E}{R_E + h_{\max}}\cos\theta_S\right),$$
(3)

где ϕ_B, l_B — географические координаты точки наблюдения; α_S, θ_S — азимут и угол места луча «приемник — спутник»; Ψ_P — центральный угол между точкой наблюдения и ионосферной точкой; ϕ_P, l_P — широта и долгота ионосферной точки

1.5 Принципы расчета ПЭС по данным GPS приемников

1.5.1 Определение ПЭС по двухчастотным фазовым измерениям псевдодальности

При распространении сигнала вдоль луча «приемник – спутник» возникает набег фазы, который определяется формулой [6]:

$$\varphi_{1,2} = \frac{2\pi f_{1,2}}{c} \int_{0}^{D} n_{1,2} ds + \varphi_{0}, \tag{4}$$

где f_1 и f_2 – рабочие частоты GPS; $\varphi_{1,2}$ – набег фазы для частот f_1, f_2 ; φ_0 некоторая неизвестная начальная фаза; $n_{1,2}$ – коэффициент преломления в ионосфере для сигналов f_1, f_2 ; D – расстояние между приемником и передатчиком.

При пренебрежении влиянием соударений и магнитного поля Земли, ко-эффициент преломления будет иметь вид [6], [7]:

$$n_{1,2} \approx 1 - \frac{40.308N_e}{f_{1,2}^2},\tag{5}$$

где N_e – локальная электронная концентрация.

Тогда выражение для набега фазы примет вид:

$$\varphi_{1,2} = \frac{2\pi f_{1,2}}{c} D - 40.308 \frac{2\pi}{c f_{1,2}} \int_{S_{hot}}^{S_{top}} N_e ds + \varphi_0, \tag{6}$$

где S_{bot} и S_{top} – высота нижней и верхней границы ионосферы, соответственно. В этом равенстве величина $I=\int\limits_{S_{bot}}^{S_{top}}N_eds$ называется полным электронным содержанием.

Учитывая, что длина волны $\lambda = c/f$, а $L = \varphi/2\pi$ – число оборотов фазы, то уравнение можно записать как:

$$L_{1,2}\lambda_{1,2} = D - \frac{40.308}{f_{1,2}^2}I + \varphi_0. \tag{7}$$

Из последнего выражения можно получить формулу для определения ПЭС:

$$I = \frac{1}{40.308} \frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \left[(L_1 \lambda_1 - L_2 \lambda_2) + \text{const}_{1,2} + \sigma L \right], \tag{8}$$

где $L_1\lambda_1$ и $L_2\lambda_2$ – приращения фазового пути радиосигнала, вызванные задержкой фазы в ионосфере; L_1 и L_2 – фазовые измерения GPS-приемника на соответствующих частотах; const_{1,2} – неоднозначность фазовых измерений; σL – ошибка измерения фазы.

Измерения фазы, получаемые с помощью GPS, имеют достаточно высокую точность, так как ошибка в определении ПЭС при 30-секундных интервалах усреднения не превышает $10^{14} \mathrm{M}^{-2}$ (или 0.01 TECU).

Единица измерения, принятая для описания ПЭС, является ТЕСИ (Total Electron Content Unit). Ее значение равно $10^{16} \rm m^2$.

1.5.2 Определение ПЭС по кодовым измерениям псевдодальности

Сейчас будет рассмотрен метод определения ПЭС по данным кодовых задержек. Групповой путь радиоволны определяется формулой [6]:

$$P_{1,2} = c\tau_{1,2} = \int_{0}^{D} n'_{1,2} ds, \tag{9}$$

где $P_{1,2}$ – групповой путь для соответствующих частот; $\tau_{1,2}$ – время распространения сигналов; $n'_{1,2}=n_{1,2}+f_{1,2}\frac{\partial n_{1,2}}{\partial f_{1,2}}$ – групповой показатель преломления в ионосфере для соответствующих сигналов. Учитывая выражение (5):

$$n'_{1,2} \approx 1 + \frac{40.308N_e}{f_{1,2}^2}. (10)$$

Используя две предыдущие формулы, можно получить формулу для определения ПЭС, аналогичную фазовым измерениям:

$$I = \frac{1}{40.308} \frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \left[(P_2 - P_1) + \sigma P \right], \tag{11}$$

где σP – ошибка измерения по псевдодальности по P-коду.

Стоит заметить, что ПЭС, вычисленный по формуле (11), также содержит некоторую аддитивную константу, которая зависит от станции и спутника, которая, вероятнее всего, связана с частотно-зависимыми задержками в аппаратуре [8]. Кроме того, такие данные сильно зашумлены по сравнению с фазовыми измерениями. Рисунок 2 демонстрирует различную зашумленность ПЭС. Из-за высокого уровня шума в данных, определенных по кодовым задержкам, делает практически невозможным выделение вариаций ПЭС, обусловленными неоднородностями электронной концентрации в ионосфере. Таким образом, в ионосферных исследованиях предпочитают использовать ПЭС, измеренный фазовым методом.

1.5.3 Преобразование наклонного ПЭС в вертикальное

Измеренная по выше описанным формулам величина ПЭС пропорциональная расстоянию между спутником и приемником. В основном при исследовании ионосферных возмущений требуется некоторая нормировка амплитуда вариации ПЭС. С этой целью преобразуют полученные значения «наклонного» ПЭС в эквивалентное «вертикальное», соответствующее углу места $\theta_S = 90^\circ$

Учитывая модель сферичной Земли, формула преобразования имеет вид [9]:

Рис. 2: Зашумленность ПЭС, вычисленного по данным измерений группового (кривые «FFMJ», «LEIJ» и «РТВВ») и фазового (кривая «Phase») запаздывания сигналов GPS [8].

$$I_V = I \cos \left[\arcsin \left(\frac{R_E}{R_E + h_{\text{max}}} \cos \theta_s \right) \right],$$
 (12)

где I_V – вертикальное значение ПЭС.

Список литературы

- [1] GPSgov. Space Segment. 2020. URL: www.gps.gov/systems/gps/space/.
- [2] Collins J. Hofmann-Wellenhof B. Lichtenegger H. Global Positioning System: Theory and Practice. 1992.
- [3] Шебшаевич В.М. и др. Дифференциальный режим сетевой спутниковой радионавигационной системы. 1989.
- [4] Перевалова Н.П. Афраймович Э.Л. *GPS-мониторинг верхней атмосферы* Земли. 2006.
- [5] Котяшкин С.И. Определение ионосферной задержки сигналов в одночастотной аппаратуре потребителей спутниковой системы навигации. 1989.
- [6] Дэвис К. Радиоволны в ионосфере. 1973.
- [7] Ратклифф Дж.А. Магнитно-ионная теория и ее приложения к ионосфере. 1962.
- [8] Кожарин М.А. Куницын В.Е. Детектирование и исследование временно-го развития крупных ионосферных структур с помощью данных навигационных спунтиков систем GPS/ГЛОНАСС. 2004.
- [9] Klobuchar J.A. Ionospheric time-delay algorithm for single-frequency GPS users. 1986.