

Research and Future Directions

Da-Cheng Juan

Image Semantic Embedding

Spectrum of semantic similarity

Category-level (coarse-grained)

Fine-grained level

Instance level (ultra fine-grained)

Image embedding:

A dense representation capturing semantics

Image Semantic Embedding

Spectrum of semantic similarity

Fine-grained level

Instance level (ultra fine-grained)

bridge

steel red bridge

Image Semantic Embedding

Spectrum of semantic similarity

Fine-grained level

Instance level (ultra fine-grained)

bridge

steel red bridge

golden gate bridge

Learning Image Semantic Embedding

 Embedding to capture semantics in images

- Core of image search
 - By textural queries
 - By image queries

Neural Architecture

Neural Architecture

Neural Architecture

Qualitative Results

Query Top Ranked Results Image Model 1 Model 2 By NSL

Graph Agreement Models

Challenges

- Too few labeled samples
 - overfitting to training data
- Graphs can be noisy
 - edges not relevant to classification task
 - embeddings can be noisy

Graph Agreement Models

Adds confident predictions to training dataset

Provides regularization for training the classification model

Agreement Model

Learn neighbor agreement

Loss function:

$$\mathcal{L}_g = \sum_{i \in L, j \in L, ij \in E} \ell(g(x_i, x_j, w_{ij}), \mathbb{1}_{y_i = y_j})$$

L = labeled nodes set E = edges set $x_i = \text{features for node } i$ $f(x_i) = \text{predicted label distribution for node } i$ $\ell = \text{loss function (e.g. cross entropy)}$

Agreement Model

[Source: Otilia, et al., NeurlPS'19]

Classification: use neighbor agreement

Loss function:

$$\mathcal{L}_f = \sum_{i \in L} \ell(f(x_i), y_i) + \lambda \sum_{\substack{(i,j) \in E \\ i \in L \\ j \in U}} g(x_i, x_j) \ell(f(x_i), f(x_j))$$

agreement

L = labeled nodes set

U =unlabeled nodes set

E = edges set

 $x_i = \text{features for node } i$

 $y_i = \text{true label distribution for node } i$

 $f(x_i)$ = predicted label distribution for node i

 $g(x_i, x_j)$ = predicted probability that nodes i and j have similar labels

 $\ell(p_1, p_2) = \text{distance between label distributions } p_1 \text{ and } p_2$

 $\lambda = \text{regularization parameter}$

Classification Model

[Source: Otilia, et al., NeurlPS'19]

Graph Agreement Models

Beyond Graph Regularization: GNNs

- Graph regularization incorporates information about a node's neighbors through a distance function.
- Graph Neural Nets (GNNs) aggregate the information among neighbors to form new representations.

Aggregate Neighbors Representation

GNNs use graph relationships to embed nodes, edges, and the graph itself. This framework lets us do computation over arbitrary graphs.

GNNs with GraphNets

- We leverage <u>Graph Nets</u> to generalize graph regularization to Graph Neural Networks (GNNs)
- We're able to express these higher-level relationships between neighbors and more distant nodes.

Graph Neural Network: GCNs

- With Graph Nets it's easy to implement a Graph Convolutional Network (GCN), which can be a drop-in replacement for GraphRegularizationModel.
- node_model and edge_models are Keras layers.

```
class GraphConvolutionalNodeClassifier(NodeGraphModel):
 """Classifies nodes with a simple Graph Convolutional Network."""
def __init__(self, seq_length, num_classes, **kwargs):
  # ...
def graph_call(self, graph, **kwargs):
  # Encode features.
  graph = graph_nets.modules.GraphIndependent(
       node_model_fn=lambda: self._dense_features)(graph)
  # Graph convolutions.
  graph = graph_nets.modules.CommNet(
       edge_model_fn=lambda: self._edge_model1.
       node_encoder_model_fn=lambda: self._node_encoder_model1,
       node_model_fn=lambda: self._node_model1)(graph)
  return graph_nets.modules.CommNet(
       edge_model_fn=lambda: self._edge_model2,
       node_encoder_model_fn=lambda: self._node_encoder_model2.
       node_model_fn=lambda: self._node_model2)(graph)
```

GNN in NSL: https://github.com/tensorflow/neural-structured-learning/tree/master/research/gnn-survey

Summary

Recap

Training with structured signals is useful!

- Less labeled data required
- Robust model

Neural Structured Learning provides:

- → APIs for building Keras models
- ➡ TF libraries, tools, and tutorials for learning with structured signals
- → Works for all kinds of neural nets: feedforward, convolutional, or recurrent

Open Source & Research Collaboration

If you are interested in NSL, discussion & contributions are highly welcome!

Thank You - Questions?

Web: tensorflow.org/neural structured learning

Repo: github.com/tensorflow/neural-structured-learning

Survey: cutt.ly/nsl2020

