Thresholding Bandits with Augmented UCB

Subhojyoti Mukherjee K.P. Naveen Nandan Sudarsanam Balaraman Ravindran

IIT Madras

August 13, 2017

Overview

- Problem Definition
- Contribution
- Previous Works
- 4 AugUCB
- Theoretical Analysis
- 6 Experiments
- Conclusion

• **Primary aim:** Identify all the arms whose mean of the reward distribution (r_i) is above a particular threshold τ given as input.

- **Primary aim:** Identify all the arms whose mean of the reward distribution (r_i) is above a particular threshold τ given as input.
- Condition: This has to be achieved within T timesteps of exploration and this is termed as a fixed-budget problem.

• We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$

- We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}$.
- S_{τ}^{c} denote the complement of S_{τ} , i.e., $S_{\tau}^{c} = \{i \in A : r_{i} < \tau\}$.

- We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$
- S_{τ}^{c} denote the complement of S_{τ} , i.e., $S_{\tau}^{c} = \{i \in \mathcal{A} : r_{i} < \tau\}$.
- Let \hat{S}_{τ} denote the recommendation of a learning algorithm after T time units of exploration, while \hat{S}_{τ}^{c} denotes its complement.

- We define the set $S_{\tau} = \{i \in \mathcal{A} : r_i \geq \tau\}.$
- S_{τ}^{c} denote the complement of S_{τ} , i.e., $S_{\tau}^{c} = \{i \in \mathcal{A} : r_{i} < \tau\}$.
- Let \hat{S}_{τ} denote the recommendation of a learning algorithm after T time units of exploration, while \hat{S}_{τ}^{c} denotes its complement.
- The goal of the learning agent is to minimize the expected loss:

$$\mathbb{E}[\mathcal{L}(T)] = \mathbb{P}\big(\underbrace{\{\mathcal{S}_{\tau} \cap \hat{\mathcal{S}}_{\tau}^{\textit{C}} \neq \emptyset\}}_{\text{Rejected good arms}} \ \cup \underbrace{\{\hat{\mathcal{S}}_{\tau} \cap \mathcal{S}_{\tau}^{\textit{C}} \neq \emptyset\}}_{\text{Accepted bad arms}}\big)$$

Challenges in the TBP Settings

 Closer the true mean of reward distribution of the arms' to the threshold ⇒ harder the problem.

Challenges in the TBP Settings

- Closer the true mean of reward distribution of the arms' to the threshold ⇒ harder the problem.
- Lesser the budget ⇒ harder the problem.

Challenges in the TBP Settings

- Closer the true mean of reward distribution of the arms' to the threshold ⇒ harder the problem.
- Lesser the budget ⇒ harder the problem.
- Higher the variance of reward distribution of the arms' ⇒ harder the problem.

 We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.

- We propose the Augmented UCB (AugUCB) [Mukherjee et al. (2017)] algorithm for the fixed-budget TBP setting.
- AugUCB takes into account the empirical variances of the arms along with mean estimates.
- It is the first variance-based arm elimination algorithm for the considered TBP settings.
- It addresses an open problem discussed in Auer and Ortner (2010) of designing an algorithm that can eliminate arms based on variance estimates.
- We also define a new problem complexity which uses empirical variance estimates along with arm's mean for giving the theoretical bound.

• The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.

- The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.
- This algorithm uses only mean estimation to find the S_{τ} .

- The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.
- This algorithm uses only mean estimation to find the S_{τ} .
- Theoretically they proved this algorithm to be almost optimal when only mean estimation is used as a metric of comparison.

- The Anytime Parameter Free (APT) [Locatelli et al. (2016)] algorithm was proposed for TBP setting in ICML 2016.
- This algorithm uses only mean estimation to find the S_{τ} .
- Theoretically they proved this algorithm to be almost optimal when only mean estimation is used as a metric of comparison.
- Empirically it outperformed other state-of-the-art algorithms which were modified to perform in the TBP setting.

APT Algorithm

Algorithm 1 APT

Input: Time horizon T, threshold τ , tolerance factor $\epsilon \geq 0$ Pull each arm once

for
$$t = K + 1, ..., T$$
 do
Pull arm $j \in \arg\min_{i \in A} \left\{ (|\hat{r}_i - \tau| + \epsilon) \sqrt{n_i} \right\}$ and observe the re-

ward for arm j.

end for

Output: $\hat{S}_{\tau} = \{i : \hat{r}_i \geq \tau\}.$

Intuition of APT

AugUCB algorithm

AugUCB algorithm (Intuition, Arm pulling)

- Like UCB-Imp, AugUCB also divides the time budget *T* into rounds.
- At every timestep we pull arm j s.t. $j \in \arg\min_{i \in B_m} \left\{ |\hat{r}_i \tau| 2s_i \right\}$ (like APT).

AugUCB algorithm (Intuition, Arm Elimination)

- We eliminate an arm when we are sure that \hat{r}_i is close to r_i with high probability and hence identify it as good or bad arm.
- It's risky to eliminate an arm when \hat{r}_i is inside *Margin*.
- Confidence interval s_i will make sure arm i is not eliminated while inside Margin with a high probability.

AugUCB algorithm (Intuition, Arm Elimination)

- Now we see that \hat{r}_i has moved close to its true estimate r_i .
- We eliminate i and re-allocate the remaining budget to pull arms close to the threshold

AugUCB parameter initialization

Parameter initialization

AugUCB arm pull

ullet We pull the arm that minimizes $j\in rg \min_{i\in B_m}\left\{|\hat{r}_i- au|-2s_i
ight\}$

- ullet We pull the arm that minimizes $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
 ight\}$
- We define the confidence interval $s_i = \sqrt{\frac{\rho \psi_m(\hat{v}_i+1) \log(T \epsilon_m)}{4n_i}}$.

- ullet We pull the arm that minimizes $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
 ight\}$
- We define the confidence interval $s_i = \sqrt{rac{
 ho\psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$.
- s_i decreases with more n_i and ψ_m and ρ ensures that it decreases at a correct rate.

- ullet We pull the arm that minimizes $j\in rg\min_{i\in B_m}\left\{|\hat{ au}_i- au|-2s_i
 ight\}$
- We define the confidence interval $s_i = \sqrt{rac{
 ho\psi_m(\hat{v}_i+1)\log(T\epsilon_m)}{4n_i}}$.
- s_i decreases with more n_i and ψ_m and ρ ensures that it decreases at a correct rate.
- Note that \hat{v}_i estimated variance in s_i makes the algorithm pull the arm which shows more variance.

AugUCB arm elimination

Arm elimination

• Arm elimination condition is checked at every timestep.

Arm elimination

- Arm elimination condition is checked at every timestep.
- It identifies the arm whose estimates lies close to their true mean and thus help in identifying the good or bad arms.

Arm elimination

- Arm elimination condition is checked at every timestep.
- It identifies the arm whose estimates lies close to their true mean and thus help in identifying the good or bad arms.
- It eliminates the arms which have been identified as good or bad arms (with a high probability) and re-allocates the remaining budget for surviving arms.

• Increase the allocated pulls ℓ_m for each surviving arms.

- Increase the allocated pulls ℓ_m for each surviving arms.
- Proportionally reduce the exploration factor ψ_m for next round.

- Increase the allocated pulls ℓ_m for each surviving arms.
- Proportionally reduce the exploration factor ψ_m for next round.
- Recalculate the length of next round on the number of surviving arms.

• We have defined $\Delta_i = |r_i - \tau|$.

- We have defined $\Delta_i = |r_i \tau|$.
- We define $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$ and $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$ where $\Delta_{(i)}$ is an increasing ordering of Δ_i .

- We have defined $\Delta_i = |r_i \tau|$.
- We define $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$ and $H_2 = \min_{i \in \mathcal{A}} \frac{i}{\Delta_{(i)}^2}$ where $\Delta_{(i)}$ is an increasing ordering of Δ_i .
- From Audibert and Bubeck (2010) the relationship between H₁ and H₂ can be derived as,

$$H_2 \leq H_1 \leq \log(2K)H_2$$

• For a variance aware algorithm we define $H_{\sigma,1}$ (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

• For a variance aware algorithm we define $H_{\sigma,1}$ (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

• Finally, analogous to H_2 , we introduce $H_{\sigma,2}$, such that $H_{\sigma,2} = \max_{i \in \mathcal{A}} \frac{i}{\tilde{\Delta}_{(i)}^2}$, where $\tilde{\Delta}_i^2 = \frac{\Delta_i^2}{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}$, $(\tilde{\Delta}_{(i)})$ is an increasing ordering of $(\tilde{\Delta}_i)$.

• For a variance aware algorithm we define $H_{\sigma,1}$ (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

- Finally, analogous to H_2 , we introduce $H_{\sigma,2}$, such that $H_{\sigma,2} = \max_{i \in \mathcal{A}} \frac{i}{\tilde{\Delta}_{(i)}^2}$, where $\tilde{\Delta}_i^2 = \frac{\Delta_i^2}{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}$, $(\tilde{\Delta}_{(i)})$ is an increasing ordering of $(\tilde{\Delta}_i)$.
- From Audibert and Bubeck (2010), we can show that

$$H_{\sigma,2} \leq H_{\sigma,1} \leq \log(2K)H_{\sigma,2}$$
.

• For a variance aware algorithm we define $H_{\sigma,1}$ (as in Gabillon et al. (2011)) that incorporates reward variances into its expression as:

$$H_{\sigma,1} = \sum_{i=1}^K rac{\sigma_i + \sqrt{\sigma_i^2 + (16/3)\Delta_i}}{\Delta_i^2}.$$

- Finally, analogous to H_2 , we introduce $H_{\sigma,2}$, such that $H_{\sigma,2}=\max_{i\in\mathcal{A}}\frac{i}{\tilde{\Delta}_{(i)}^2}$, where $\tilde{\Delta}_i^2=\frac{\Delta_i^2}{\sigma_i+\sqrt{\sigma_i^2+(16/3)\Delta_i}}$, $(\tilde{\Delta}_{(i)})$ is an increasing ordering of $(\tilde{\Delta}_i)$.
- From Audibert and Bubeck (2010), we can show that

$$H_{\sigma,2} \leq H_{\sigma,1} \leq \log(2K)H_{\sigma,2}$$
.

• Note that H_1 , H_2 and $H_{\sigma,1}$, $H_{\sigma,2}$ are not directly comparable to each other except in a special case when variances and gaps (Δ_i) are very low we can say that $H_{\sigma,1} < H_1$.

Expected Loss of AugUCB

Theorem

For $K \ge 4$ and $\rho = 1/3$, the expected loss of the AugUCB algorithm is given by,

$$\mathbb{E}[\mathcal{L}(T)] \leq 2KT \exp\bigg(-\frac{T}{4096\log(K\log K)H_{\sigma,2}}\bigg).$$

Table: AugUCB vs. State of the art

Algorithm	Upper Bound on Expected Loss		Oracle
AugUCB	exp ($\left(-\frac{T}{4096\log(K\log K)H_{\sigma,2}} + \log\left(2KT\right)\right)$	No
UCBEV	exp ($\left(-\frac{1}{512}\frac{T-2K}{H_{\sigma,1}}+\log\left(6KT\right)\right)$	Yes
APT	exp ($\left(-\frac{T}{64H_1} + 2\log((\log(T) + 1)K)\right)$	No
UCBE	exp ($\left(-\frac{T-K}{18H_1}-2\log(\log(T)K)\right)$	Yes

Sketch of the proof

Finally, experiment!!!

• We compare with APT, AugUCB, UCBE, UCBEV, UA.

Finally, experiment!!!

- We compare with APT, AugUCB, UCBE, UCBEV, UA.
- Note that UCBE and UCBEV require access to H_1 and $H_{\sigma,1}$ as input and hence not implementable in real life.
- By access we mean that an oracle supplies them the H_1 or $H_{\sigma,1}$. They do not have access to individual means and variances.

Finally, experiment!!!

- We compare with APT, AugUCB, UCBE, UCBEV, UA.
- Note that UCBE and UCBEV require access to H_1 and $H_{\sigma,1}$ as input and hence not implementable in real life.
- By access we mean that an oracle supplies them the H_1 or $H_{\sigma,1}$. They do not have access to individual means and variances.
- APT, AugUCB, UA do not require access to H_1 or $H_{\sigma,1}$.

Experimental Setup

• This setup involves Gaussian reward distributions with K=100, T=10000 and $\tau=0.5$ with the reward means set in two groups.

Experimental Setup

- This setup involves Gaussian reward distributions with K=100, T=10000 and $\tau=0.5$ with the reward means set in two groups.
- The first 10 arms partitioned into two groups; the respective means are $r_{1:5} = 0.45$, $r_{6:10} = 0.55$.

Experimental Setup

- This setup involves Gaussian reward distributions with K=100, T=10000 and $\tau=0.5$ with the reward means set in two groups.
- The first 10 arms partitioned into two groups; the respective means are $r_{1:5} = 0.45$, $r_{6:10} = 0.55$.
- The means of arms i = 11 : 100 are chosen same as $r_{11:100} = 0.4$.
- Variances are set as $\sigma_{1:5}^2 = 0.3$ and $\sigma_{6:10}^2 = 0.8$; $\sigma_{11:100}^2$ are independently and uniformly chosen in the interval [0.2, 0.3].

Experimental Results

(b) Expt-2: Two Group Setting (Advance)

Experimental Results

(c) Expt-1: Arithmetic Progression (Gaussian)

(d) Expt-2: Geometric Progression (Gaussian)

Conclusion

 We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.

Conclusion

- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.
- Further studies are required to establish a lower bound on the expected loss of AugUCB.

Conclusion

- We proposed the AugUCB algorithm for the fixed budget TBP which uses variance estimation and arm elimination to give an improved theoretical and experimental guarantees than APT.
- Further studies are required to establish a lower bound on the expected loss of AugUCB.
- A more detailed analysis of the non-uniform arm selection and parameter selection is also required.

Thank You