A graph is a set of vertices and edges.

The following graph:

contains the vertices {A, B, C, D, E} and the edges {AE, DE, BE, CE, AD}. These edges are considered undirected.

Some terminology:

- Graphs can contain $paths B \rightarrow E \rightarrow A \rightarrow D$
- A graph may contain a **cycle** (a path which starts and ends at the same node.) i.e. $A \rightarrow E \rightarrow D \rightarrow A$.
- An acyclic graph contains no cycles.
- A graph is **connected** if there is a path from every node to every other node in the graph.

- A **disconnected** graph is comprised of connected components:

 $G = \{J, K, L, M, N\}$

- Graphs may be **complete** (where there is an edge between every node in the graph)

Graphs may be considered either:

Sparse - with relatively few edges

Dense - with relatively few edges missing.

Graphs may also be **directed** where the edge goes only one way:

Bipartite Graphs

A **bipartite graph** is an undirected graph in which the vertices can be partitioned into two subsets V1 and V2 where all edges go between the two sets. For the graph below

a bipartite partitioning is $V1 = \{1,4,5,6,7\}$ $V2 = \{2,3,8\}$

Graphs may also be weighted:

When graphs are weighted, we will use the following notation for an edge: $\{(A, B, 16)\}$. Note that whether the edge is directed or not depends on how it is **interpreted**. The edge

 $\{ (A,B,16) \}$ may be considered either directed or undirected.

Representation of Graphs:

There are two general approaches for representing a graph, an **adjacency list** and an **adjacency matrix**.

For the following undirected, unweighted graph:

Adjacency List

A: B, D, E

B: A, D, E

C: D

D: A, B, C

E: A, B

Adjacency Matrix

	A	В	С	D	E
Α		1		1	1
В	1			1	1
С				1	
D	1	1	1		
E	1	1			

Consider the following weighted, directed graph:

Adjacency Matrix

	Α	В	С	D	E
Α		6	7		2
В				4	
С					9
D					
E		3			

Adjacency List

$$A = (B, 6), (C, 7), (E, 2)$$

$$B = (D, 4)$$

$$C = (E, 9)$$

$$E = (B, 3)$$