ARTIX UltraScale+ SoM Module ACAU15 User Manual

Table of Contents

Table of Contents	2
1. ACAU15 Core Board Introduction	3
2. FPGA Chip	
3. Active Differential Crystal Oscillator	4
4. DDR4	
5. QSPI Flash	g
6. LED Light	10
7. Power Supply	10
8. Expansion Port	11
9 Size Dimension	17

1. ACAU15 Core Board Introduction

ACAU15 (core board model, the same below) FPGA core board, adopt ARTIX chip, it is based on XCAU15P-2FFVB676I of XILINX company ARTIX UltraScale+ Family. This high-performance core board developed by this chip has the characteristics of high speed, high bandwidth, high capacity, and is suitable for use in high-speed data communication, video image processing, high-speed data acquisition, and other fields.

This core board uses one Micron's DDR4 Chip MT40A512M16LY-062EIT, with a 16 bit data bus bandwidth and a total capacity of 8Gb; The maximum operating speed of DDR4 SDRAM can reach 1200MHz (data rate 2400Mbps). In addition, a 256MBit QSPI FLASH is also integrated on the core board for starting storage configurations and system files.

This core board extends to 72 IO ports with level standard 3.3V, 102 IO ports with level standard 1.8V, and 12 pairs of GTH high-speed RX/TX differential signals. For users who require a lot of IO, this core board will be a good choice. Moreover, the routing between the FPGA chip and the interface has been processed with equal length and differential processing, and the core board size is only 45 * 55 (mm), which is very suitable for secondary development.

ACAU15 Front view

2. FPGA Chip

The FPGA development board uses Xilinx's ARTIX UltraScale+ FPGA chip, model number XCAU15P-2FFVB676I. The speed class is 2 and the temperature class is industrial. This model is a FFVB676 package with 676 pins. The chip naming rules for Xilinx ARTIX UltraScale+ FPGA are shown in Figure 2-1 below:

Figure 4: UltraScale+ FPGA Ordering Information

The main parameters of the FPGA chip XCAU15P are as follows:

Name	Specific parameters		
Logic Cells	170100		
CLB LUTs	77760		
CLB flip-flops	155520		
Block RAM (kb)	5223		
DSP Slices	576		
CMTs	3		
GTH 16.3Gb/s Transceiver	12		
Speed Grade	-2		
Temperature Grade	Industrial		

3. Active Differential Crystal Oscillator

The core board ACAU15 is equipped with two active differential crystal oscillators from Sitime Corporation, one is at 200MHz and model SiT9121AI-2B1-33E200.00000, used for the system master clock of FPGA and for generating DDR4 control clock; The other

one is at 156.25MHz, model SiT9121AI-2B1-33E156.250000, used for the reference clock input of the GTH transceiver.

3.1 200Mhz differential clock

In Figure 3-1, G1 is the system clock source for 200M active differential crystal oscillator circuit we mentioned above for the development board. The crystal oscillator output is connected to the BANK65 global clock pin MRCC (T24 and U24) of the FPGA. This 200Mhz differential clock can be used to drive the user logic circuit inside of the FPGA. Users can generate clocks of different frequencies by configuring the PLLs and DCMs inside of the FPGA.

Figure 3-1 200M Active differential crystal oscillator

System Clock pin assignments:

Signal Name	FPGA Pin		
SYS_CLK_P	T24		
SYS_CLK_N	U24		

3.2 156.25 Mhz differential clock

In Figure 3-2, G2 is the 156.25M active differential crystal oscillator circuit, where the clock serves as a reference input clock for the GTH module inside of the FPGA. Crystal oscillator output connected to BANK225 clock pin MGTREFCLK1P of FPGA GTH_ 225 (T7) and MGTREFCLK1N_ 225 (T6).

Figure 3-2 156.25Mhz Active differential crystal oscillator

System Clock pin assignments:

Signal Name	FPGA Pin		
GTH_CLK0_P	Т7		
GTH_CLK0_N	T6		

4. DDR4

The ACAU15 core board is equipped with Micron's 8Gbit DDR4 chip, model MT40A512M16LY-062EIT. The bus width of DDR is a total of 16 bits. The maximum operating speed of DDR4 SDRAM can reach 1200MHz (data rate 2400Mbps). The DDR4 storage system is directly connected to the memory interface of the FPGA's BANK 66. The specific configuration of DDR4 SDRAM is shown in Table 4-1.

Table 2-4-1 DDR3 SDRAM Configuration

Bit No.	Chip Model	Capacity	Manufacturer	
U2	MT40A512M16LY-062EIT	512M x 16bit	micron	

The hardware design of DDR4 requires strict consideration of signal integrity. When designing the circuit and PCB, we have fully considered matching resistance/terminal resistance, line impedance control, and line length control to ensure the high-speed and stable operation of DDR4.

The hardware connection method between FPGA and DDR4 DRAM is shown in Figure 4-1:

Figure 4-1 DDR4 DRAM Schematic

DDR4 DRAM pin assignments:

Signal Name	FPGA Pin Name	FPGA Pin No.
PL_DDR4_A0	IO_L13N_T2L_N1_GC_QBC_66	G25
PL_DDR4_A1	IO_L8N_T1L_N3_AD5N_66	M26
PL_DDR4_A2	IO_L10N_T1U_N7_QBC_AD4N_66	L25
PL_DDR4_A3	IO_L19N_T3L_N1_DBC_AD9N_66	E26
PL_DDR4_A4	IO_L8P_T1L_N2_AD5P_66	M25
PL_DDR4_A5	IO_T3U_N12_66	F22
PL_DDR4_A6	IO_L17P_T2U_N8_AD10P_66	H26
PL_DDR4_A7	IO_L16P_T2U_N6_QBC_AD3P_66	F24
PL_DDR4_A8	IO_L17N_T2U_N9_AD10N_66	G26
PL_DDR4_A9	IO_L12P_T1U_N10_GC_66	J23
PL_DDR4_A10	IO_L15P_T2L_N4_AD11P_66	J25
PL_DDR4_A11	IO_L12N_T1U_N11_GC_66	J24
PL_DDR4_A12	IO_L16N_T2U_N7_QBC_AD3N_66	F25
PL_DDR4_A13	IO_L14N_T2L_N3_GC_66	H24
PL_DDR4_ACT_B	IO_L9P_T1L_N4_AD12P_66	K25
PL_DDR4_BA0	IO_L15N_T2L_N5_AD11N_66	J26
PL_DDR4_BA1	IO_T2U_N12_66	G22
PL_DDR4_BG0	IO_L7P_T1L_N0_QBC_AD13P_66	L22

PL_DDR4_CAS_B	IO_L18N_T2U_N11_AD2N_66	H22
PL_DDR4_CKE	IO_L7N_T1L_N1_QBC_AD13N_66	L23
PL_DDR4_CLK_N	IO_L11N_T1U_N9_GC_66	K23
PL_DDR4_CLK_P	IO_L11P_T1U_N8_GC_66	K22
PL_DDR4_CS_B	IO_L14P_T2L_N2_GC_66	H23
PL_DDR4_PAR	IO_L10P_T1U_N6_QBC_AD4P_66	L24
PL_DDR4_RAS_B	IO_L18P_T2U_N10_AD2P_66	H21
PL_DDR4_OTD	IO_T1U_N12_66	M24
PL_DDR4_WE_B	IO_L9N_T1L_N5_AD12N_66	K26
PL_DDR4_DM0	IO_L19P_T3L_N0_DBC_AD9P_66	E25
PL_DDR4_DM1	IO_L1P_T0L_N0_DBC_66	L18
PL_DDR4_DQ0	IO_L20P_T3L_N2_AD1P_66	F23
PL_DDR4_DQ1	IO_L21N_T3L_N5_AD8N_66	D25
PL_DDR4_DQ2	IO_L20N_T3L_N3_AD1N_66	E23
PL_DDR4_DQ3	IO_L24N_T3U_N11_66	B26
PL_DDR4_DQ4	IO_L21P_T3L_N4_AD8P_66	D24
PL_DDR4_DQ5	IO_L23P_T3U_N8_66	D26
PL_DDR4_DQ6	IO_L24P_T3U_N10_66	B25
PL_DDR4_DQ7	IO_L23N_T3U_N9_66	C26
PL_DDR4_DQ8	IO_L2P_T0L_N2_66	M20
PL_DDR4_DQ9	IO_L3N_T0L_N5_AD15N_66	J20
PL_DDR4_DQ10	IO_L3P_T0L_N4_AD15P_66	J19
PL_DDR4_DQ11	IO_L2N_T0L_N3_66	M21
PL_DDR4_DQ12	IO_L6P_T0U_N10_AD6P_66	L20
PL_DDR4_DQ13	IO_L5N_T0U_N9_AD14N_66	J21
PL_DDR4_DQ14	IO_L6N_T0U_N11_AD6N_66	K20
PL_DDR4_DQ15	IO_L5P_T0U_N8_AD14P_66	K21
PL_DDR4_DQS0_N	IO_L22N_T3U_N7_DBC_AD0N_66	C24
PL_DDR4_DQS0_P	IO_L22P_T3U_N6_DBC_AD0P_66	D23
PL_DDR4_DQS1_N	IO_L4N_T0U_N7_DBC_AD7N_66	L19
PL_DDR4_DQS1_P	IO_L4P_T0U_N6_DBC_AD7P_66	M19
PL_DDR4_RST	IO_L13P_T2L_N0_GC_QBC_66	G24
1 [DDI(4 [(3)	10_L131_12L_110_GC_QDC_00	024

5. QSPI Flash

A 256Mbit QSPI FLASH chip with the model MT25QU256ABA1EW9-0SIT is used on the core board, which uses the 1.8V CMOS voltage standard. Due to its non-volatile nature, QSPI FLASH can serve as the boot image for FPGA systems in use. These images mainly include FPGA bit files, soft core application code, and other user data files.

The specific models and related parameters of SPI FLASH are shown in the table below:

Position	Model Capacity		Factory	
U35	MT25QU256ABA1EW9-0SIT	256M Bit	Micron	

Table 5-1 QSPI FLASH Specification

QSPI FLASH is connected to the dedicated pins of BANKO on the FPGA chip, The clock pin is connected to the CCLKO of BANKO, and other data and chip selection signals are connected to the D00-D03 and FCS pins of BANKO, respectively. Figure 5-1 is a schematic diagram of the connection between QSPI Flash and FPGA chips.

Figure 5-1 QSPI Flash Schematic

QSPI Flash pin assignments:

Signal Name	FPGA Pin Name	FPGA Pin No.
QSPI_CLK	CCLK_0	Y11
QSPI_CS	RDWR_FCS_B_0	AA12
QSPI_DQ0	D00_MOSI_0	AD11
QSPI_DQ1	D01_DIN_0	AC12
QSPI_DQ2	D02_0	AC11
QSPI_DQ3	D03_0	AE11

6. LED Light

There is one red LED on the ACAU15 core board, which is the power indicator light (PWR). When the core board is powered on, the power indicator light will light up; The schematic diagram of LED light hardware connection is shown in Figure 6-1:

Figure 6-1 Schematic diagram of LED light hardware connection

7. Power Supply

The power supply voltage range of the ACAU15 core board is+5V~+17V (typical value+12V), which is supplied to the core board by connecting the Carrier Board. On the core board, the TPS54821RHL DCDC power chip provides core power of 0.85V for XCAU15P. In addition, the power supplies for BANK64, BANK65, and BANK66 are generated using the DCDC chip ETA1471. Users can replace the resistor to change the IO level to 1.2V (note that these BANK power supplies cannot exceed 1.8V), and the IO levels for BANK84, 85, and 86 are 3.3V. The power supply of the GTH transceiver is generated by the LDO chip.

As the power supply of Artix UltraScale+FPGA requires a power on sequence, we have designed the circuit according to the power supply requirements of the chip. The sequence of the power is like: VCCINT (1.0V) -> VCCBRAM (1.0V) -> (1.5V, 3.3V, VCCIO) and 1.0V -> MGTAVCC -> MGTAVTT, ensuring the normal operation of the chip.

8. Expansion Port

The back of the core board has a total of 4 high-speed expansion ports, connected to the carrier board using 4 80Pin inter board connectors. The IO ports of the FPGA are connected to these 4 expansion ports through differential cabling. The PIN pin spacing of the connector is 0.5mm, and it is configured with the motherboard connector to achieve high-speed data communication.

Expansion Port CON1

The 80 Pin connector CON1 is used to connect the VCCIN power supply (+12V) of the carrier board, ground, and regular IO of the FPGA. It should be noted that CON1 has 52 pins connected to the IO port of BANK64, and the voltage standard is 1.8V. The pin allocation of the CON1 expansion port is shown in Figure 2-8-1:

Figure 2-8-1: Expansion CON1Pin Assignment

CON1	Signal Name	FPGA	Level	CON1	Signal	FPGA	Level
Pin	_	Pin No.	standard	Pin	Name	Pin No.	standard
PIN1	VCCIN	-	12V	PIN2	VCCIN	-	12V
PIN3	VCCIN	-	12V	PIN4	VCCIN	-	12V
PIN5	VCCIN	-	12V	PIN6	VCCIN	-	12V
PIN7	VCCIN	-	12V	PIN8	VCCIN	-	12V
PIN9	GND	-	GND	PIN10	GND	-	GND
PIN11	B64_T0U	AF23	1.8V	PIN12	B64_L4_N	AD26	1.8V
PIN13	B64_T1U	AF20	1.8V	PIN14	B64_L4_P	AC26	1.8V
PIN15	B64_T2U	AE18	1.8V	PIN16	B64_L2_N	AB26	1.8V
PIN17	B64_T3U	AC16	1.8V	PIN18	B64_L2_P	AB25	1.8V
PIN19	GND	-	GND	PIN20	GND	-	GND
PIN21	B64_L10_N	AB22	1.8V	PIN22	B64_L1_N	AE26	1.8V
PIN23	B64_L10_P	AA22	1.8V	PIN24	B64_L1_P	AE25	1.8V
PIN25	B64_L8_N	AE23	1.8V	PIN26	B64_L3_N	AF25	1.8V
PIN27	B64_L8_P	AD23	1.8V	PIN28	B64_L3_P	AF24	1.8V
PIN29	GND	-	GND	PIN30	GND	-	GND
PIN31	B64_L7_N	AF22	1.8V	PIN32	B64_L6_N	AC24	1.8V
PIN33	B64_L7_P	AE22	1.8V	PIN34	B64_L6_P	AB24	1.8V
PIN35	B64_L9_N	AC23	1.8V	PIN36	B64_L5_N	AD25	1.8V
PIN37	B64_L9_P	AC22	1.8V	PIN38	B64_L5_P	AD24	1.8V
PIN39	GND	-	GND	PIN40	GND	-	GND
PIN41	B64_L12_N	AC21	1.8V	PIN42	B64_L11_N	AE21	1.8V
PIN43	B64_L12_P	AB21	1.8V	PIN44	B64_L11_P	AD21	1.8V
PIN45	B64_L14_N	AD19	1.8V	PIN46	B64_L13_N	AE20	1.8V
PIN47	B64_L14_P	AC19	1.8V	PIN48	B64_L13_P	AD20	1.8V
PIN49	GND	-	GND	PIN50	GND	-	GND
PIN51	B64_L19_N	Y21	1.8V	PIN52	B64_L21_N	AB20	1.8V
PIN53	B64_L19_P	Y20	1.8V	PIN54	B64_L21_P	AA20	1.8V
PIN55	B64_L20_N	AB19	1.8V	PIN56	B64_L24_N	AA18	1.8V
PIN57	B64_L20_P	AA19	1.8V	PIN58	B64_L24_P	Y18	1.8V
PIN59	GND	-	GND	PIN60	GND	-	GND
PIN61	B64_L23_N	AA17	1.8V	PIN62	B64_L15_N	AF19	1.8V
PIN63	B64_L23_P	Y17	1.8V	PIN64	B64_L15_P	AF18	1.8V
PIN65	B64_L18_N	AE16	1.8V	PIN66	B64_L17_N	AF17	1.8V
PIN67	B64_L18_P	AD16	1.8V	PIN68	B64_L17_P	AE17	1.8V

PIN69	GND	-	GND	PIN70	GND	-	GND
PIN71	FPGA_DONE	AB11	1.8V	PIN72	B64_L16_N	AD18	1.8V
PIN73	PROGRAM_B	AB9	1.8V	PIN74	B64_L16_P	AC18	1.8V
PIN75	INIT_B	W10	1.8V	PIN76	B64_L22_N	AC17	1.8V
PIN77	NC	-	Null	PIN78	B64_L22_P	AB17	1.8V
PIN79	NC	-	Null	PIN80	NC	-	Null

Expansion port CON2

The connector CON2 of 80Pin is used to expand the IO of BANK65 and BANK84, as well as 4-way JTAG signals in FPGA. The voltage standard of BANK84 is 3.3V, while the voltage standard of BANK65 is 1.8V. The pin allocation of the CON2 expansion port is shown in Figure 2-8-2:

Figure 2-8-2: Expansion CON2 Pin Assignment

CON2	Signal	FPGA	Level	CON2	Signal	FPGA	Level
Pin	Name	Pin No.	standard	Pin	Name	Pin No.	standard
PIN1	B65_L22_N	P23	1.8V	PIN2	B65_T2U	N26	1.8V
PIN3	B65_L22_P	N23	1.8V	PIN4	B65_T1U	AA23	1.8V
PIN5	B65_L18_N	R26	1.8V	PIN6	B65_T0U	W21	1.8V
PIN7	B65_L18_P	R25	1.8V	PIN8	B65_T3U	T19	1.8V
PIN9	GND	-	GND	PIN10	GND	-	GND
PIN11	B65_L14_N	U25	1.8V	PIN12	B65_L24_N	N22	1.8V
PIN13	B65_L14_P	T25	1.8V	PIN14	B65_L24_P	N21	1.8V
PIN15	B65_L17_N	P26	1.8V	PIN16	B65_L15_N	P24	1.8V
PIN17	B65_L17_P	P25	1.8V	PIN18	B65_L15_P	N24	1.8V
PIN19	GND	-	GND	PIN20	GND	-	GND
PIN21	B65_L16_N	V26	1.8V	PIN22	B65_L19_N	R23	1.8V
PIN23	B65_L16_P	U26	1.8V	PIN24	B65_L19_P	R22	1.8V
PIN25	B65_L10_N	W26	1.8V	PIN26	B65_L5_N	T23	1.8V
PIN27	B65_L10_P	W25	1.8V	PIN28	B65_L5_P	T22	1.8V
PIN29	GND	-	GND	PIN30	GND	-	GND
PIN31	B65_L11_N	W23	1.8V	PIN32	B65_L12_N	W24	1.8V
PIN33	B65_L11_P	V23	1.8V	PIN34	B65_L12_P	V24	1.8V
PIN35	B65_L2_N	U22	1.8V	PIN36	B65_L8_N	Y26	1.8V
PIN37	B65_L2_P	U21	1.8V	PIN38	B65_L8_P	Y25	1.8V
PIN39	GND	-	GND	PIN40	GND	-	GND
PIN41	B65_L23_N	P19	1.8V	PIN42	B65_L21_N	R21	1.8V
PIN43	B65_L23_P	N19	1.8V	PIN44	B65_L21_P	R20	1.8V
PIN45	B65_L3_N	U20	1.8V	PIN46	B65_L4_N	V22	1.8V

PIN47	B65_L3_P	T20	1.8V	PIN48	B65_L4_P	V21	1.8V
PIN49	GND	-	GND	PIN50	GND	-	GND
PIN51	B65_L20_N	P21	1.8V	PIN52	B65_L9_N	AA25	1.8V
PIN53	B65_L20_P	P20	1.8V	PIN54	B65_L9_P	AA24	1.8V
PIN55	B65_L6_N	W20	1.8V	PIN56	B65_L7_N	Y23	1.8V
PIN57	B65_L6_P	W19	1.8V	PIN58	B65_L7_P	Y22	1.8V
PIN59	GND	-	GND	PIN60	GND	-	GND
PIN61	B65_L1_N	V19	1.8V	PIN62	B84_L2_N	AF13	3.3V
PIN63	B65_L1_P	U19	1.8V	PIN64	B84_L2_P	AE13	3.3V
PIN65	B84_L6_N	AB16	3.3V	PIN66	B84_L1_N	AF15	3.3V
PIN67	B84_L6_P	AB15	3.3V	PIN68	B84_L1_P	AF14	3.3V
PIN69	GND	-	GND	PIN70	GND	-	GND
PIN71	FPGA_TCK	AE12	1.8V	PIN72	B84_L3_N	AE15	3.3V
PIN73	FPGA_TDI	AB12	1.8V	PIN74	B84_L3_P	AD15	3.3V
PIN75	FPGA_TMS	AB10	1.8V	PIN76	B84_L4_N	AD14	3.3V
PIN77	FPGA_TDO	Y10	1.8V	PIN78	B84_L4_P	AD13	3.3V
PIN79	NC	-	Null	PIN80	NC	-	Null

Expansion port CON3

The 80Pin connector CON3 is used to extend the regular IO of BANK84, BANK85, and BANK86 in FPGA. The voltage standards for BANK84, BANK85, and BANK86 are all 3.3V. The pin allocation of the CON3 expansion port is shown in Figure 2-8-3:

Figure 2-8-3: Expansion CON3 Pin Assignment

CON3	Signal	FPGA	Level	CON3	Signal	FPGA	Level
Pin	Name	Pin No.	standard	Pin	Name	Pin No.	standard
PIN1	B84_L8_N	AB14	3.3V	PIN2	B84_L5_N	AC14	3.3V
PIN3	B84_L8_P	AA14	3.3V	PIN4	B84_L5_P	AC13	3.3V
PIN5	B84_L12_N	W13	3.3V	PIN6	B84_L11_N	AA13	3.3V
PIN7	B84_L12_P	W12	3.3V	PIN8	B84_L11_P	Y13	3.3V
PIN9	GND	-	GND	PIN10	GND	-	GND
PIN11	B84_L7_N	AA15	3.3V	PIN12	B84_L9_N	Y16	3.3V
PIN13	B84_L7_P	Y15	3.3V	PIN14	B84_L9_P	W16	3.3V
PIN15	B84_L10_N	W15	3.3V	PIN16	NC		Null
PIN17	B84_L10_P	W14	3.3V	PIN18	NC		Null
PIN19	GND	-	GND	PIN20	GND	-	GND
PIN21	B85_L1_N	К9	3.3V	PIN22	B85_L3_N	Н9	3.3V
PIN23	B85_L1_P	K10	3.3V	PIN24	B85_L3_P	J9	3.3V

PIN25	B85_L2_N	J10	3.3V	PIN26	B85_L6_N	F9	3.3V
PIN27	B85_L2_P	J11	3.3V	PIN28	B85_L6_P	F10	3.3V
PIN29	GND	-	GND	PIN30	GND	-	GND
PIN31	B85_L4_N	G11	3.3V	PIN32	B85_L5_N	G9	3.3V
PIN33	B85_L4_P	H11	3.3V	PIN34	B85_L5_P	G10	3.3V
PIN35	B85_L11_N	A10	3.3V	PIN36	B85_L9_N	С9	3.3V
PIN37	B85_L11_P	B10	3.3V	PIN38	B85_L9_P	D9	3.3V
PIN39	GND	-	GND	PIN40	GND	-	GND
PIN41	B85_L8_N	D10	3.3V	PIN42	B85_L10_N	A9	3.3V
PIN43	B85_L8_P	D11	3.3V	PIN44	B85_L10_P	В9	3.3V
PIN45	B85_L7_N	E10	3.3V	PIN46	B85_L12_N	B11	3.3V
PIN47	B85_L7_P	E11	3.3V	PIN48	B85_L12_P	C11	3.3V
PIN49	GND	-	GND	PIN50	GND	-	GND
PIN51	B86_L2_N	H13	3.3V	PIN52	B86_L1_N	H12	3.3V
PIN53	B86_L2_P	J13	3.3V	PIN54	B86_L1_P	J12	3.3V
PIN55	B86_L4_N	J14	3.3V	PIN56	B86_L5_N	F12	3.3V
PIN57	B86_L4_P	J15	3.3V	PIN58	B86_L5_P	G12	3.3V
PIN59	GND	-	GND	PIN60	GND	-	GND
PIN61	B86_L9_N	C13	3.3V	PIN62	B86_L3_N	G14	3.3V
PIN63	B86_L9_P	C14	3.3V	PIN64	B86_L3_P	H14	3.3V
PIN65	B86_L8_N	D13	3.3V	PIN66	B86_L7_N	E12	3.3V
PIN67	B86_L8_P	D14	3.3V	PIN68	B86_L7_P	E13	3.3V
PIN69	GND	-	GND	PIN70	GND	-	GND
PIN71	B86_L11_N	A12	3.3V	PIN72	B86_L10_N	B12	3.3V
PIN73	B86_L11_P	A13	3.3V	PIN74	B86_L10_P	C12	3.3V
PIN75	B86_L6_N	F13	3.3V	PIN76	B86_L12_N	A14	3.3V
PIN77	B86_L6_P	F14	3.3V	PIN78	B86_L12_P	B14	3.3V
PIN79	NC	-	Null	PIN80	NC	-	Null

Expansion port CON4

The 80Pin connector CON4 is used to extend the transceiver interfaces of BANK224, BANK225, and BANK226 in FPGA. The pin allocation of the CON4 expansion port is shown in Figure 2-8-4:

Figure 2-8-4: Expansion CON4 Pin Assignment

CON4	Signal	FPGA	Level	CON4	Signal Name	FPGA	Level
Pin	Name	Pin No.	standard	Pin		Pin No.	standard
PIN1	224_TX0_N	AF6	1.2V	PIN2	224_RX0_N	AF1	1.2V

PIN3	224_TX0_P	AF7	1.2V	PIN4	224_RX0_P	AF2	1.2V
PIN5	GND	-	GND	PIN6	GND	-	GND
PIN7	224_TX1_N	AE8	1.2V	PIN8	224_RX1_N	AE3	1.2V
PIN9	224_TX1_P	AE9	1.2V	PIN10	224_RX1_P	AE4	1.2V
PIN11	GND	-	GND	PIN12	GND	-	GND
PIN13	224_TX2_N	AD6	1.2V	PIN14	224_RX2_N	AD1	1.2V
PIN15	224_TX2_P	AD7	1.2V	PIN16	224_RX2_P	AD2	1.2V
PIN17	GND	-	GND	PIN18	GND	-	GND
PIN19	224_TX3_N	AC4	1.2V	PIN20	224_RX3_N	AB1	1.2V
PIN21	224_TX3_P	AC5	1.2V	PIN22	224_RX3_P	AB2	1.2V
PIN23	GND	-	GND	PIN24	GND	-	GND
PIN25	225_CLK0_N	V6	1.2V	PIN26	224_CLK0_N	AB6	1.2V
PIN27	225_CLK0_P	V7	1.2V	PIN28	224_CLK0_P	AB7	1.2V
PIN29	GND	-	GND	PIN30	GND	-	GND
PIN31	225_TX0_N	AA4	1.2V	PIN32	225_RX0_N	Y1	1.2V
PIN33	225_TX0_P	AA5	1.2V	PIN34	225_RX0_P	Y2	1.2V
PIN35	GND	-	GND	PIN36	GND	-	GND
PIN37	225_TX1_N	W4	1.2V	PIN38	225_RX1_N	V1	1.2V
PIN39	225_TX1_P	W5	1.2V	PIN40	225_RX1_P	V2	1.2V
PIN41	GND	-	GND	PIN42	GND	-	GND
PIN43	225_TX2_N	U4	1.2V	PIN44	225_RX2_N	T1	1.2V
PIN45	225_TX2_P	U5	1.2V	PIN46	225_RX2_P	T2	1.2V
PIN47	GND	-	GND	PIN48	GND	-	GND
PIN49	225_TX3_N	R4	1.2V	PIN50	225_RX3_N	P1	1.2V
PIN51	225_TX3_P	R5	1.2V	PIN52	225_RX3_P	P2	1.2V
PIN53	GND	-	GND	PIN54	GND	-	GND
PIN55	226_TX0_N	N4	1.2V	PIN56	226_RX0_N	M1	1.2V
PIN57	226_TX0_P	N5	1.2V	PIN58	226_RX0_P	M2	1.2V
PIN59	GND	-	GND	PIN60	GND	-	GND
PIN61	226_TX1_N	L4	1.2V	PIN62	226_RX1_N	K1	1.2V
PIN63	226_TX1_P	L5	1.2V	PIN64	226_RX1_P	K2	1.2V
PIN65	GND	-	GND	PIN66	GND	-	GND
PIN67	226_TX2_N	J4	1.2V	PIN68	226_RX2_N	H1	1.2V
PIN69	226_TX2_P	J5	1.2V	PIN70	226_RX2_P	H2	1.2V
PIN71	GND	-	GND	PIN72	GND	-	GND
PIN73	226_TX3_N	G4	1.2V	PIN74	226_RX3_N	F1	1.2V
PIN75	226_TX3_P	G5	1.2V	PIN76	226_RX3_P	F2	1.2V

PIN77	GND	-	GND	PIN78	GND	-	GND
PIN79	226_CLK0_P	P7	1.2V	PIN80	226_CLK0_N	P6	1.2V

9. Size Dimension

Top View