Problemas de Álgebra Comutativa: (Hoja n°1, 16 de Febrero 2021).

Nota: Todos los anillos son conmutativos unitarios y los homomorfismos de anillos conservan el 1.

- **1.** Sea A un anillo, $u \in A$ una unidad y $x \in A$ un elemento nilpotente. Demostrar que u + x es una unidad.
- **2.** Sea A un anillo y supongamos que A es isomorfo a un producto de anillos $\phi: A \cong A_1 \times A_2$.
 - (i) Sea $\mathfrak{a} \subset A$ un ideal de A. Demostrar que $\mathfrak{a} \cong \mathfrak{a}' \times \mathfrak{a}''$ vía ϕ .
 - (ii) Sea \mathfrak{p} un ideal primo de A. Demostrar que vía ϕ , $\mathfrak{p} \cong \mathfrak{p}' \times A''$ ó $\mathfrak{p} \cong A' \times \mathfrak{p}''$ para ciertos ideales primos \mathfrak{p}' de A y \mathfrak{p}'' de A'' respectivamente.
- **3.** Sea \mathfrak{a} un ideal de A. Demostrar que $\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(A)\mathfrak{a} \subset \mathfrak{p}} \mathfrak{p}$
- **4.** Sea A un anillo A[X] el anillo de polinomios en una indeterminada. Sea $f = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in A$. Demostrar que f es unidad en A[X] si y sólo si a_0 es unidad y a_i nilpotentes para $i = 1, \ldots, n$.
- 5. Sea A un DIP,
 - (1) Si \mathfrak{a} un ideal de A distinto del $\langle 0 \rangle$, demostrar que son equivalentes: (i) \mathfrak{a} es un ideal primo.
 - (ii) \mathfrak{a} es un ideal maximal. (iii) Existe $f \in A$ irreducible tal que $\mathfrak{a} = \langle f \rangle$
 - (2) Sean $a, b \in A \setminus 0_A$ no unidades y sean $d \in A$ y $m \in A$ tales que, $\langle a \rangle + \langle b \rangle = \langle d \rangle$ y
 - $\langle a \rangle \cap \langle b \rangle = \langle m \rangle$. Demostrar que $d = \operatorname{mcd}(a, b)$ y $m = \operatorname{mcm}(a, b)$.
- 6. (i) Sea A un anillo. Demostrar que existe una biyección entre :
 - -Las descomposiciones $\Phi: A \to A_1 \times \ldots \times A_n$, donde los A_i son anillos y Φ es isomorfismo de anillos.
 - –Los subconjuntos de idempotentes ortogonales: $\{(e_1,\ldots,e_r):r\in\mathbb{N};\sum_{i=1}^re_i=1;e_ie_j=\delta_{ij}e_i\}$
 - (ii) Demostrar que dada una descomposición como en (i) los A_i se identifican con ideales de A (no con subanillos). ¿ Qué descomposición se corresponde con el sistema de idempotentes $\{0_A, 1_A\}$?
- 7. Encontrar un sistema de idempotentes ortogonales distinto del trivial ($\{0_A, 1_A\}$), y una descomposición asociada (ejerc. anterior) para los siguientes anillos :
 - (i) $A = \mathbb{Z}/\langle n.m \rangle$, con mcd(n, m) = 1
 - (ii) $A = \mathbb{Q}[X]/\langle x^2(x-1)\rangle$
 - (iii) $A = K[X]/\langle f.g \rangle$, con $f, g \in K[X]$, K es un cuerpo y $\operatorname{mcd}(f, g) = 1$
- **8.** (i) Sea $A = \mathbb{R}[x,y]/\langle x^2 + y^2 1 \rangle$ y el ideal de A, $\mathfrak{a} = \langle x-1,y \rangle/\langle x^2 + y^2 1 \rangle$. Demostrar que \mathfrak{a} no es un ideal principal.
 - (ii) Sea $B = \mathbb{C}[x,y]/\langle x^2 + y^2 1 \rangle$ y el ideal de B, $\mathfrak{b} = \langle x-1,y \rangle/\langle x^2 + y^2 1 \rangle$. Demostrar que \mathfrak{b} es un ideal principal.
- 9. Sea A un anillo \mathfrak{a} un ideal de A y A[X] el anillo de polinomios sobre A. Denotemos $\mathfrak{a}[X] = \{a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 : a_i \in \mathfrak{a}\}$. Demostrar que $\mathfrak{a}[X]$ es el extendido del ideal \mathfrak{a} vía el homomorfismo $A \to A[X]$. Sea \mathfrak{p} un ideal primo de A. ¿Es $\mathfrak{p}[X]$ un ideal primo de A[X]?
- **10.** Sea A un anillo, M un A-módulo y $\mathfrak a$ un ideal contenido en $Anul(M) := \{a \in A : \forall x \in M : ax = 0_M\}$. Demostrar que M tiene estructura de $A/\mathfrak a$ -módulo.

- 11. Sea A un anillo y \mathfrak{a} ideal de A
 - (i) Supóngase que $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ son ideales primos de A tal que $\mathfrak{a} \subset \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \mathfrak{p}_3$. Demostrar que $\mathfrak{a} \subset \mathfrak{p}_1$. ó $\mathfrak{a} \subset \mathfrak{p}_2$, ó $\mathfrak{a} \subset \mathfrak{p}_3$. (Nota: Para r=2 no es necesario que \mathfrak{p}_1 y \mathfrak{p}_2 sean ideales primos.)
 - (ii) Supóngase que \mathfrak{p}_i , i=1..r son ideales primos de A tal que

$$\mathfrak{a} \subset \bigcup_{i=1..r} \mathfrak{p}_i$$

Demostrar que $\mathfrak{a} \subset \mathfrak{p}_i$ para algún i.

- 12. Sea $\phi: \mathbb{C}[X,Y,Z] \to \mathbb{C}[t]$ el homomorfismo de anillos $X \mapsto t^2; Y \mapsto t^3; Z \mapsto t^4$.
- **13.** Sea A un anillo y $R := A[X_1, \ldots, X_n]$. Sean $a_i \in A$ e I el ideal de R, $I = \langle X_1 a_1, \ldots, X_n a_n \rangle$. Demostrar que $A/I \cong A$ y que si A es un cuerpo, I es maximal.
- 14. Hacer el ejercicio 14 del primer capítulo del Atiyah MacDonald
- 15. Sea K un cuerpo y $A = K[x_1, \ldots, x_n]$ una K-álgebra finitamente generada. Demostrar que las siguientes afirmaciones son equivalentes:
 - (i) A es un K-espacio vectorial de dimensión finita.
 - (ii) $\forall i=1,\ldots,n$ existe un polinomio en una variable $f_i(T)\in K[T]\setminus\{0\}$ tal que $f_i(x_i)=0_A$
- **16.** Sea A un anillo un ideal \mathfrak{q} se dice que es un ideal *primario* si $\forall x, y \in A$ tal que $x.y \in \mathfrak{q}$ y $x \notin \mathfrak{q}$, existe $n \in \mathbb{N}$ tal que $y^n \in \mathfrak{q}$.
 - Si $A := \mathbb{Z}$ y p un número primo demostrar que el ideal $\langle p^r \rangle$ es un ideal primario para todo $r \in \mathbb{N}_{\geq 1}$.
 - (ii) Probar que para todo anillo A, y para todo ideal primario \mathfrak{q} , su raíz $\sqrt{\mathfrak{q}}$ es un ideal primo.
 - (iii) Probar que si $\mathfrak a$ es un ideal de A y $\sqrt{\mathfrak a}$ es un ideal maximal, entonces $\mathfrak a$ es un ideal primario.
 - (iv) Sea $A = \mathbb{Q}[X, Y, Z]/\langle X^2 ZY^2 \rangle$ y sea $\mathfrak{p} : \langle X, Z \rangle/\langle X^2 ZY^2 \rangle$ y $\mathfrak{q} : \mathfrak{p}^2 = \langle X^2, Z^2, XZ \rangle/\langle X^2 ZY^2 \rangle$. Demostrar que \mathfrak{p} es un ideal primo y $\sqrt{\mathfrak{q}} = \mathfrak{p}$. '? Es \mathfrak{q} un ideal primario?
- 17. Sea A un anillo y $f \in A[T]$, $f = a_n T^n + a_{n-1} T^{n-1} + \cdots + a_1 T + a_0$ Decimos que f es un polinomio primitivo si $c(f) := \langle a_0, \ldots, a_n \rangle$ coincide con A (ie. contiene a 1). Demostrar que el producto de polinomios primitivos es un polinomio primitivo.
- 18. Sea A un anillo M un A- módulo. Se define en $A \times M$ una multiplicación del modo siguiente, usando de manera obvia alternativamente la multiplicación en A y el producto externo de elementos de A por elementos de M:

$$(a, e), (b, f) \in A \times M; (a, e) * (b, f) := (ab, af + be)$$

- (i) Demostrar que $A \times M$ con la suma obvia y ese producto constituye una A-álgebra, siendo $1_{A \times M} = (1_A, 0_M)$. ¿Es el homomorfismo de anillos $A \to A \times M$; $a \mapsto (a, 0_M)$ inyectivo?
- 19. Hacer los ejercicios 16 y 17 del primer capítulo del Atiyah Macdonald
- **20.** Sea A un anillo $\mathfrak{a}_i, i = 1..r$ ideales tales que para todo $i \neq j$, $\mathfrak{a}_i + \mathfrak{a}_j = A$ (i) Llamando $\mathfrak{b}_i = \bigcap_{j \neq i} \mathfrak{a}_j$, demostrar que $\mathfrak{b}_i + \mathfrak{a}_i = A$, i = 1..r (ii) Demostrar que la aplicación $A \to \prod_{i=1..r} A/\mathfrak{a}_i$, es suprayectiva y su núcleo es $\bigcap_{j=1..r} \mathfrak{a}_j$. (iii) ¿Cuál es, en el sentido del Ejercicio $\mathfrak{6}$, el conjunto de idempotentes que descibe esta descomposición?
- **21.** Sea $\mathbb{Z} \to \mathbb{Z}[i]$. (i) Estudiar la extensión de ideales. (ii) Si $p \in \mathbb{Z}$ es un número primo y $\langle p \rangle^e =: \mathfrak{b}$, describir $\mathbb{Z}[i]/\mathfrak{b}$.