



# Steps of Database Design

- Requirement collection and a n a l y s i s @ database designers iteriew prospective database users to understand and document their data requirements
- □ Functional Requirement analysis ◎ DFD, Sequence Diagram
- Conceptual Design using HIGH LEVEL CONCEPTUAL MODEL® concise description of the data requirements of the users and includes detailed descriptions of entity, relation and constraints
- Logical Design and Data model mapping
- □ Physical Design 8/31/2020

**Entity- Relationship Modeling** 

ER Diagram

**EER Diagram** 

### Overview of Database Design

- What are the Entities and Relation?
- What information about these entities and relationship should we store?
- What are the integrity constraints or business rules that hold?
- □ A database schema represented pictorially...... ER

  Diagram
- □ Can map an ER model into a relational schema.......

8/31/2020

5

### **ER** Diagram

- > Originally proposed by Peter Chen (1976)
- > Views the real world as entities and relationships
- > Key component is the E-R Diagram
- Most common model used for designing relational databases



### **Entity**

- □ An entity is an object that exists and is distinguishable from other objects.... "thing" in the real world with independent existence
- Entity
  - May be an object with Physical existence a particular person, car, house, employee....
- May be an object with Conceptual existencea company, a job or a university course

8/31/2020

Entity contd..

- Each entity must be uniquely identifiable
- Each instance (occurrence) of an entity must be separate and distinctly identifiable from all other instances of that type of entity
- Entity sets do not need to be disjoint. [employee, customer of a bank, a person entity may an employee entity, a customer entity, both or neither]

8/31/2020

### **Attributes**

- The particular properties that describe entity
- Say "employee" entity e<sub>1</sub> has four attributes- name, address, age, phone\_no
- The values are
  - "John", "Houston", "35", "23509115"
- Attributes are the descriptive properties possessed by each member of the entity set
- A particular instance of an attribute is a value
- ❖ Domain- the set of permitted values of the attribute





### **Types of Attributes**

- Simple versus Composite
- Single Valued versus Multi valued
- \* Stored versus Derived
- Complex Attributes
- ❖ NULL Valued

8/31/2020











### Types of Attributes

contd..

### **Complex Attributes**

{AddressPhone({Phone(Area Code, Phone Number)},
Address( Street Address(Number, street, apartment number), City, State, Zip))}

Person with more than one residence and each residence having multiple phones

8/31/2020

19

### **Key Attributes**

### ■ Key

Value of this attribute helps to identify each tuple uniquely: no two tuples of an entity set are allowed to have exactly same values for all attributes

Super Key is a set of attributes that taken from attribute allow us to identify uniquely an entity in the entity set

Emp (eno, name, vid, address, dob, phone\_no)

8/31/2020





### Value Set (Domains) of Attributes

- Each simple attribute of an entity type is associated with a value set
- Range of ages of an employee is between 18 to

8/31/2020 23

### Relationship

□ A relationship is an association among several entities

Example:

| customer entity | relationship set | account entity |
|-----------------|------------------|----------------|
| <u>Hayes</u>    | depositor        | <u>A-102</u>   |





### Relationship Set



8/31/2020

27

### Relationship Set

- $\square$  A **relationship set** is a mathematical relation among  $n \ge$ 2 entities (possible non-distinct).
- If  $E_1, E_2 \dots E_n$  are entity sets, then a relationship set R is a subset of

$$\{(e_1,\,e_2,\,\ldots\,e_n)\mid e_1\ \in E_1,\,e_2\in\ E_2,\,\ldots,\,e_n\in\ E_n\}$$

where  $(e_1, e_2, ..., e_n)$  is a relationship. The entity sets  $E_1, E_2 ... E_n$  participate in the relationship set R.

Example:

(Hayes, A-102) ∈ depositor

8/31/2020





31

# Cardinality Number of relationship instances that an entity can participate Indicates maximum one relation Indicates many such relation STUDENT Attends/enroll SCHOOL

# Cardinality

One- to- One

8/31/2020

- One-to-Many
- Many-to-One
- Many-to-Many





### **Mapping Cardinality Constraints**

- Mapping cardinalities (or cardinality ratio) is the number of entities of an entity set associated with the entities of another entity via a relationship set.
- □ Most useful in describing binary relationship sets.
- □ For a binary relationship set the mapping cardinality must be one of the following types:
  - One to One (1:1)
  - One to many (1:N)
  - Many to one(N:1)
  - Many to Many (N:M)

8/31/2020

35

### **Mapping Cardinalities**



Note: Some elements in  $\boldsymbol{A}$  and  $\boldsymbol{B}$  may not be mapped to any elements in the other set

3/31/2020

## **Mapping Cardinalities**



Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set  $_{8/31/2020}$ 

37

### **Recursive Relation**

 Instances of entity may have relationships with other instances of the same entity



8/31/2020

### E-R Diagrams

- Representation of entity sets, relationship sets and their attributes by means of graph.
- > Rectangles represent entity sets.
- > Diamonds represent relationship sets.
- Lines link attributes to entity sets and entity sets to relationship sets.
- Ellipses represent attributes
  - Double ellipses represent multivalued attributes.
  - Dashed ellipses denote derived attributes.
- > Underline indicates primary key attributes.

8/31/2020 39

### Symbols Used in E-R Notation Attribute E **Entity Set** Multivalued Weak Entity Set Attribute Derived Attribute Relationship Set Identifying Total Participation Relationship Set for Weak of Entity Set **Entity Set** in Relationship Discriminating Attribute of Primary Key Weak Entity Set 8/31/2020

# Let us take an Example and Draw the ER Diagram

8/31/2020

41

### Steps of Drawing anER Diagram

- Identify Entities
- Find Relationship (Entity-Relationship Matrix)
- Draw Rough ERD
- · Fill in cardinality/ Optionality
- Identify Attributes
- Define Primary key
- Draw key based ERD
- Check Results

### Weak Entity

- An entity set that does not have a primary key is referred to as a weak entity set
- The existence of a weak entity set depends on the existence of a identifying entity s e t @ owner entity
- Regular entities that do have key attributes are sometimes called strong entity types
- A relationship that relates a weak entity type to its owner @ identifying relationship of the weak entity type
- A weak entity always has a total participation constraint (existence dependency)

8/31/2020 43



