Precalculus

Me. I am Him.

11/28/2022

CONTENTS

CIIAI I LIIC		I LACENOLDERI	I AGE I
CHAPTER		Placeholder2	PAGE 2
CHAPTER		Placeholder3	Page 3
	3.1	Properties of functions and Complex Zeros 3.1 - Completing the square — 3	3
		0.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	
CHAPTER	2	4	Page 5
	4.1	4: Composite Functions — 5 • — 5 • Exponential Functions — 5	5
	4.2		8
	4.3		8
	4.4	Logarithmic Functions Natural Logarithm — 9	8
	4.5	Properties of Logarithms	11
	4.6		13
	4.7	Interest	14
	4.8	Exponential Growth and Decay	17

List of Figures

	$f(x) = 2^x$	
4.2	$f(x) = \left(\frac{1}{2}\right)^2$. 6
4.3	$f(x) = 2^{-x} - 3$. 7
4.4	$\log_{10} x$. 10
4.5	$\log_2 x$. 13

Placeholder1

Placeholder2

Placeholder3

3.1 Properties of functions and Complex Zeros

3.1.1 3.1 - Completing the square

Note:-

x-Intercept

Standard: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, otherwise known as the quadratic formula. If the inside of the quadratic is < 0, there are no x-intercepts. If the inside of the quadratic is = 0, there is exactly one x-intercept. If the inside of the quadratic is > 0, there are exactly two x-intercepts.

Vertex: Plug in 0 for y and solve

4

4: Composite Functions 4.1

4.1.1

11/28/2022 - Didn't really do much. Just reviewed what $f \cdot g$ or f(g(x)) was.

4.1.2

4.1.3**Exponential Functions**

Are You Prepared? 4.1.1

- $4^3 = 8$
- $8^{\frac{2}{3}} = 4$ $3^{-2} = \frac{1}{9}$

Note:-

In a^n , a is known as the base whereas n is known as the exponent, index, or power.

Note:-

Law of Exponents:

(1)
$$a^m \cdot a^n = a^{m+n}$$
 Example: $3^2 \cdot 3^5 = 3^{2+5} = 3^7 = 2187$

(2)
$$(a^m)^n = a^{mn}$$
 Example: $(2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64$

(3)
$$(ab)^m = a^m b^m$$
 Example: $(5x)^3$

(4)
$$1^n = 1$$
 Example: $1^{1001} = 1$

(5)
$$a^{-n} = \frac{1}{a^n}$$
 Example: $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$

(6)
$$a^0 = 1$$
 Example: $7^0 = 1$

(7)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$
 Example: $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \left(\sqrt[3]{8}\right)^2 = 2^2 = 4$

Definition 4.1.1: Exponential Function

A function of the form $f(x) = a^x$ where x is a positive real number (a>0) and $a \ne 1$. The domain of f is \mathbb{R}

Example 4.1.1 (2: Graph the exponential function: $f(x) = 2^x$)

Note:-

Properties of the Exponential Function: $f(x) = a^x$, where a > 1

- 1. The domain is the set of all real numbers. The range is the set of all positive real numbers.
- 2. There are no x-intercepts. The y-intercept is 1.
- 3. The x-axis (y=0) is a horizontal asymptote as $x \to -\infty$
- 4. The function is an increasing function and is one-to-one.
- 5. The graph of f contains the points (0,1),(1,a), and (-1,1/a).
- 6. The graph of f is smooth and continuous, with no corners or gaps.

Example 4.1.2 (3: Graph the exponential function: $f(x) = (\frac{1}{2})^2$)

Note:-

Properties of Exponential Function: $f(x) = a^x$, where 0 < x < 1.

- 1. The domain is the set of all real numbers; the range is the set of positive real numbers.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to \infty$.

4. The function is a decreasing function and is one-to-one.

5. The graph of f contains the points (0, 1), (1, a), and (-1, 1/a).

6. The graph of f is smooth and continuous, with no corners or gaps.

Example 4.1.3 (Graph $f(x) = 2^{-x} - 3$ and determine the domain, range, and horizontal asymptote of f.)

- Domain: $x|x \in \mathbb{R}$ or $[-\infty, \infty]$

- Range: y|y>-3 or $[-3,\infty]$

- Horizontal Asymptote: y = -3

Example 4.1.4 (Explain the transformation of g(x) from $f(x) = e^x$)

$$g(x) = -e^{x-3}$$

•
$$g(x) = 3e^{-x} - 5$$

Example 4.1.5 (6: Solve $3^{x+1} = 81$)

- $3^{x+1} = 3^4$
- $\bullet \ x + 1 = 4$
- $\bullet x = 3$

Example 4.1.6 (7: Solve $e^{-x^2} = \left(e^{x^2} \cdot \frac{1}{e^3}\right)$)

- $\bullet \ e^{-x^2} = e^{2x} \cdot e^{-3}$
- $e^{-x^2} = e^{2x-3}$
- $\bullet -x^2 = 2x 3$
- $\bullet \ x^2 + 2x 3$
- $\bullet (x+3)(x-1) = 0$
- x = -3, 1

Example 4.1.7 (8: Between 9 AM and 10 PM cars arrive at burger king's drive-thru at the rate of 12 cars per hour (0.2 cars per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 9 PM)

$$F(t) = 1 - e^{-2t}$$

- (a) 63%
- (b) 99.7%
- (c) graph
- (d) other thing
- 4.2
- 4.3

4.4 Logarithmic Functions

Definition 4.4.1: Logarithmic Function:

The opposite to an exponential function. The logarithmic function to the base a, where a>0 and $a\neq 0$, is denoted and defined by $y=\log_x x$ if and only if $x=a^y$

Note:-

You can remember the format by thinking log-base-answer-exponent.

Example 4.4.1 (2: Change each exponential expression to an equivalent expression involving a logarithm.)

 $1. 1.2^3 \rightarrow$

Example 4.4.2 (3: Change each logarithmic expression to an equivalent expression involving an exponent.)

1.
$$\log_a 4 = 5 \to a^5 = 4$$

2.
$$\log_h e = -3 \to b^{-3} = e$$

3.
$$\log_3 5 = c \rightarrow 3^c = 5$$

Theorem 4.4.1

Get that exponential theorem from slides

Example 4.4.3 (4: Find he exact value of:)

1.
$$\log_2 16 = x \to x = 4$$

- 2. $\log_3 \frac{1}{27} = x \rightarrow x = -3$ Convert to exponential then use the rules of exponents.
- 3. $\log_4 2 = x \to x = \frac{1}{2}$

Theorem 4.4.2 Determine the Domain of a logarithmic function:

- Domain of the logarithmic function = range of the exponential function = $(0, \infty)$

- Range of the logarithmic function = domain of the exponential function = $(-\infty, \infty)$

Example 4.4.4 (5: Find the domain of each logarithmic function:)

1.
$$f(x) = \log_2(x+3) \rightarrow x+3 > 0$$

•
$$x > -3 \text{ or } (-3, \infty)$$

2.
$$g(x) = \log_b(\frac{1+x}{1-x}) \to \frac{1+x}{1-x} > 0$$

• $x \neq 1, -1$. Now use a number line to find out where it applies. In this case it is -1 < x < 1 or (-1, 1) or $x \mid x \neq 1, -1$

3.
$$h(x) = \log_{\frac{1}{2}}|x| \to |x| > 0$$

• **Domain** = \mathbb{R} where $x \neq 0$, or All Real Numbers where $x \neq 0$, or $x \mid x \neq 0$

4.4.1 Natural Logarithm

Theorem 4.4.3 If the base of a logarithmic function is the number e, then we have the natural logarithm function. That is,

1.
$$y = \ln x$$
 if and only if $x = ey$

2.
$$y = \ln x$$
 and $y = ex$ are inverse functions

Theorem 4.4.4 Common Logarithm Function

If the base of a logarithmic function is the number 10, then we have the common logarithm function. If the base a of the logarithmic function is not indicated, it is understood to be 10. That is,

• $y = log_x$ if and only if $x = 10^y$

Example 4.4.5 (6 & 7: Determine the domain, range, and vertical asymptote of each logarithmic function. List any transformations.)

a.
$$f(x) = \ln(x) \to g(x) = -\ln(x+2)$$

• Domain: x > -2

• Range: $(-\infty, \infty)$

• Vertical Asymptote: $x \neq -2$

Note:-

The negtive applied to the natural log, seen in the equation $-\ln(x+2)$, is causing it to reflect over the x-axis.

b.
$$f(x) = \log(x) \to g(x) = 3\log(-x) - 1$$

Theorem 4.4.5 Equations that contain logarithms are called logarithmic equations. Be sure to check each solution in the original equation and discard any extraneous solutions. Remember in logaM, a and M are positive and $a \neq 1$.

9

1. Change the logarithmic equation to an exponential equation and solve for x

- 2. If the exponential equation has base e, change it to the natural logarithm function
- 3. If the exponential equation has base 10, change it to the common logarithm function

Example 4.4.6 (8: Solve for x)

1.
$$\log_3(4x - 7) = 2$$

•
$$3^2 = 4x - 7$$

•
$$9 = 4x - 7$$

$$\bullet$$
 $x = 4$

2.
$$\log_{x}(64) = 2$$

•
$$x^2 = 64$$

•
$$x = \sqrt[2]{64}$$

• x = 8 Note: -8 does not work as a solution as base values for a logarithm must be greater than

Example 4.4.7 (8.5: Solve for x. Give the exact solution then use your calculator to give the approximate solution.)

1.
$$e^{2x} = 5$$

•
$$\log_e 5 = 2x$$

•
$$\ln 5 = 2x$$

$$\bullet \ \ \frac{\ln 5}{2} = x$$

Example 4.4.8 (Additional Example:)

1.
$$10^{x^2+2x+1} = 50$$

•
$$\log(50) = x^2 + 2x + 1$$

$$\bullet \ \pm \sqrt{\log(50)} = \sqrt{(x+1)^2}$$

$$\bullet \ \pm \sqrt{\log(50)} = x + 1$$

$$\bullet \ \ x = \pm \sqrt{\log(50)} + 1$$

- **Example 4.4.9** (10: The concentration of alcohol in a person's blood is measurable. Recent medical research suggests that the risk R (given as a percent) of having an accident while driving a car can be modeled by the equation $6e^{kx}$ where x is the variable concentration of alcohol n the blood and k is a constant.
 - 1. Suppose that a concentration in the blood of 0.04 results in a 10% risk (R=10) of an accident. Find the constant k in the equation. Graph $R = 6e^{kx}$ using the k value.
 - do stuff so that k=20.62. She literally used her calc
 - 2. Using the value of k, what is the risk if the concentration is 0.17?
 - uhhhh she didn't do this.
 - 3. Using the same value of k, what concentration of alcohol corresponds to a risk of 100%?
 - didn't do this one either. apparently D is the most important.
 - 4. If the law asserts that anyone with a risk of having an accident of 20% or more should not have driving privileges, at what concentration of alcohol in the blood should a driver be arrested and charged with a DUI?
 - $20 = 6e^{12.77x}$
 - $\frac{10}{3} = e^{12.77x}$
 - $\ln\left(\frac{10}{3}\right) = 12.77x$
 - x = 0.94

)

4.5 Properties of Logarithms

Note:-

Properties of logarithms:

- 1. Identity $\rightarrow \log_a 1 = 0$ or $\log_a a = 1$
- 2. Inverse $\rightarrow \log_b b^x = x$ or $b^{\log_b(x)}x$
- 3. Product $\rightarrow \log_a xy = \log = \log_a x + \log_a y$
- 4. Quotient $\rightarrow \log_a \frac{x}{y} = \log_a \log_a y$
- 5. Equality $\rightarrow \log_b a = \log_b c \Rightarrow a = c$
- 6. Change of Base Formula $\rightarrow \log_a b = \frac{\log_c b}{\log_c b}$

Example 4.5.1 (1: Use properties of logarithms to find the exact value of each expression. Do not use a calculator.)

- 1. $\ln e^{\sqrt{2}}$
 - $\log_e e^{\sqrt{2}}$
 - $\sqrt{2} \times \log_e e$
 - $\sqrt{2} \times \ln e$
- 2. $\log_8 16 \log_8 2$

- $\log_8 \frac{16}{2}$
- log₈ 8
- 1

Example 4.5.2 (3: Write the expression as a sum of logarithms. Express all powers as factors.)

1.
$$\log_a \left(x \sqrt{x^2 + 1} \right)$$

- $\log_a x + \log_a \sqrt{x^2 + 1}$
- $\log_a x + \log_a (x^2 + 1)^{\frac{1}{2}}$
- $\log_a x + \frac{1}{2} \log_a (x^2 + 1)$

Example 4.5.3 (4: Write the expression as a difference in logarithms. Express all powrs as factors.)

1.
$$\ln\left(\frac{x^2}{(x-1)^3}\right)$$

- $\ln(x^2) \ln(x-1)^3$
- $2 \ln(x) 3 \ln(x 1)$

Example 4.5.4 (6: Write each of the following as a single logarithm.)

- $1. \log_a 7 + 4 \log_a 3$
 - $\log_a 7 + \log_a 3^4$
 - $\log_a(7 \times 3^4)$
 - log_a 567
- 2. $\frac{2}{3} \ln 8 \ln(3^4 8)$
 - $\ln 8^{\frac{2}{3}} \ln(3^4 8)$
 - $\ln\left(\frac{8^{\frac{2}{3}}}{3^4-8}\right)$
 - $\ln\left(\frac{4}{7^3}\right)$
- 3. $\log_a x + \log_a 9 + \log_a (x^2 + 1) \log_a 5$
 - blah

Example 4.5.5 (7: Approximate the following. Round answers to four decimal places.)

- $1. \log_2 27$
 - $\frac{\log_{10}27}{\log_{10}2}$ Note: 10 is the common base, thus it can be omitted.
 - Another answer could be, $\frac{\ln 27}{\ln 2}$

Example 4.5.6 (9: Use a graphing utility to graph the following)

 $1. \ \ y = \log_2 x$

Figure 4.5: $\log_2 x$

4.6

Example 4.6.1 (1: Solve.)

- 1. $2\log_5 x = \log_5 9$
 - $x^2 = 9$
 - Ergo, $x = \pm 3$

Example 4.6.2 (2: Solve.)

- 1. $\log_4(x+3) + \log_4(2-x) = 1$
 - $\log_4(x+3)(2-x) = 1$
 - $4^1 = (x+3)(2-x)$
 - $4 = x^2 x + 6$
 - $x^2 + x 2$
 - (x+2)(x-1)
 - x = -2, 1

4.7 Interest

Definition 4.7.1: Interest Formulas

♦ Note:- ♦

I = amount of interest, A = final amount, P = principal, r = interest rate (as a decimal),

t = time (in years), n = number of times compounded per year)

Formulas:

1. Simple Interest:

$$I = Prt$$

or

$$A = P + I = P + Prt = P(1 + rt)$$

2. Compound Interest:

$$A = P(1 + \frac{r}{n})^{nt}$$

3. Continuous Compounding:

$$A = Pe^{rt}$$

Example 4.7.1 (1: A credit union pays interest of 8% per annum compounded quarterly on a certain savings plan. If \$100 is deposited in such a plan and the interest is left to accumulate, how much will be in the account after a year?)

1. $A = P(1+\frac{r}{n})^{nt}$

2. A = $100(1+\frac{0.08}{4})^{4*\cdot 1}$

3. A = \$108.24

Example 4.7.2 (2 & 3: Determine the final amount you invest \$1000 at an annual rate of 10% for 5 years, compounding at the amounts shown below.)

1. $A = P(1 + \frac{r}{n})^{nt}$

2. P = \$1000

3. r = 0.1

4. t = 5

• Annually:

-\$1610.51

• Semiannually

 $-\ \$1628.89$

• Quarterly

-\$1638.12

• Monthly

-\$1645.31

• Daily

-\$1648.61

• Continuously

- New Formula: Pe^{rt}

-\$1648.72

Note:-

Calculate Effective rates of return:

The effective rate of interest is the equivalent annual simple rate of interest that would yield the same amount of compounding after 1 year.

To find the effective rate of interest:

- 1. Using the appropriate formula, find the final amount A.
- 2. Subtract the principal P from the final amount A to get the interest earned I.
- 3. Using the simple interest formula, I = Prt, plug in values and solve for r.

Example 4.7.3 (4: On January 2, 2004, \$2000 is placed in an Individual Retirement Account (IRA) that will pay interest of 7% per annum compounded continuously.)

a. What will the IRA be worth on January 1, 2024?:

$$Pe = {}^{rt} = 2000e^{0.07 \cdot 20} = \$8110.40$$

b. Effective Rate of Interest?: (use the last note for guidance)

$$A = Pe^{rt} = 2000e^{0.07 \cdot 1} = 2145.02$$

$$2145.02 - 2000 = 145.02 = I$$

$$I = Prt = 145.02 = 2000r \rightarrow r = 0.07251 or 7.25\%$$

Definition 4.7.2: Determine the Present Value of a Lump Sum of Money

Present Value Formulas are the compound interest and continuous compounding formulas solved for the principal P. So,

$$P = A(1 + \frac{r}{n})^{-nt}$$
 or

$$Ae^{-rt}$$

Example 4.7.4 (5: A zero-coupon (non-interest bearing) bond can be redeemed in 10 years for \$1000. How much should you be willing to pay for it now if you want a return of:)

1. 8% compounded monthly?

•

$$P = 1000(1 + \frac{0.08}{12})^{-12 \cdot 10}$$

•

\$450.52

2. 7% compounded continuously?

•

$$P = 1000e^{-0.07 \cdot 10}$$

• blah, its higher.

Note:-

To determine the time required to double or triple lump sums of money, if we want to double P, A will be equal to 2p. Triple is the same thing.

Example 4.7.5 (6: What rate of interest compounded annually should you seek if you want to double your investment in 5 years?)

$$A = P(1 + \frac{r}{n})^{nt}$$

$$2p = P(1 + \frac{r}{1})^{1 \cdot 5}$$

Divide by P

$$2 = (1 + \frac{r}{1})^{1 \cdot 5}$$

5th Root

$$\sqrt[5]{2} = 1 + r$$

ANS:

$$r = \sqrt[5]{2} - 1$$

Or:

$$r = 14.9\%$$

Example 4.7.6 (7:)

1. How long will it take for an investment to double in value if it earns 5% interest compounded continuously?

$$A = Pe^{rt}$$

$$2P = Pe^{0.05t}$$

$$2 = e^{0.05t}$$

$$ln(2) = 0.05t$$

$$t = \frac{\ln(2)}{0.05}$$

$$t = 13.86$$

2. How long will it take to triple in value?

$$3P = Pe^{0.05t}$$

$$t = 21.97$$

4.8 Exponential Growth and Decay

Definition 4.8.1: Exponential Growth and Decay follow one formula

Many natural phenomena have been found to follow the law that an amount A varies with the time t according to

$$A(t) = A_0 e^{kt}$$

Where A_0 is the initial amount at t = 0 and k is a constant not equal to zero.

If k > 0, then A increases over time (growth).

If k < 0, then A decreases over time (decay).

Example 4.8.1 (1: The population of a midwestern city follows the exponential law. The population decreased from 900,000 to 800,000 from 2003 to 2005.)

k: Figure out k first.

(a)

$$t = 2 \rightarrow A(t) = A_0 e^{kt}$$

(b)

$$800,000 = 900,000e^{2k}$$

(c) Divide by 900,000.

$$\frac{8}{9} = e^{2k}$$

(d) Convert to a log.

$$ln\frac{9}{8} = 2k$$

(e) Divide by two.

$$\frac{\ln\frac{8}{9}}{2} = k$$

(f)

$$k = \frac{\ln \frac{8}{9}}{2}$$

(g)

$$k = 0.05...$$

a. What will the population be in 2007?

(a)

$$A(4) = 900,000e^{\frac{\ln\frac{8}{9}}{2}\cdot 4}$$

(b)

b. When will the population be half its original amount?

(a)

$$450,000 = 900,000e^{\frac{\ln\frac{8}{9}}{2} \cdot t}$$

(b)

$$\frac{1}{2} = e^{\frac{\ln\frac{8}{9}}{2} \cdot t}$$

$$\ln\frac{1}{2} = \frac{\ln\frac{8}{9}}{2} \cdot t$$

$$t = \frac{\ln \frac{1}{2}}{\frac{\ln \frac{8}{9}}{2}}$$

c. When will the population reach 300,000?

$$\frac{1}{3} = e^{\frac{\ln\frac{8}{9}}{2} \cdot t}$$

$$t = 18.65 or 19 years$$

Example 4.8.2 (2: A colony of bacteria grows according to the law of unhibited growth according to the function $N(t) = 100e^{0.045t}$, where N is measured in grams and t is in days.)

1. Determine the initial amount of bacteria.

$$N(0) = 100e^{0.045(0)}$$

2. What is the growth rate of the bacteria?

(a)

$$4.5\%$$

3. Graph the function using your calculator

- (a) Insert Image here later
- 4. What is the population after 5 days?

$$N(5) = 100e^{0.045(5)}$$

$$N(5) = 125.2$$

5. How long will it take for the population to reach 140 grams?

$$N(t) = 140 \rightarrow 140 = 100e^{0.045(t)}$$

$$t = \frac{\ln\frac{7}{5}}{0.045} = 7.5$$

6. What is the doubling time for the population?

$$N(t) = 200 \rightarrow 200 = 100e^{0.045(t)}$$

$$t = \frac{\ln 2}{0.045} = 15.4$$

Thanks for reading

