

World Ocean Atlas

Oxygen (µmol/kg) at 200 m

- ✓ Los productores primarios (pp) anualmente generan la misma cantidad de oxígeno que todas las plantas terrestres.
- ✓ El total de los pp del océano representan solo 1/200 de las plantas.
- ✓ Por lo tanto los pp son alrededor de 200 veces mas productivos que las plantas en la tierra con respecto a su masa.

COUDS & WATER STORAGE IN RECAND SNOW PRECIPITATION RECANDS NOW PRECIPITATION LIATER HEATING OF ATMOSPHERE SOURCE ATTOR STORAGE WITH FREE ATMOSPHERE SOURCE ATTOR SOURCE ATTOR

Atmospheric N₂ Biological Industrial Denitrification of fixation fixation Denitrification Fixation Runoff NO2 ⇔Organic N NO₃ Ocean Organic N⇒NO₂ ____ NH_4 Inorganic I

Global Carbon Cycle

(a) NUTRIENT CYCLING

Ciclo biogeoquímico del Fósforo (P)

- Transformación de energía en fotofosforilación durante la fotosíntesis
- Ácidos nucleicos, fosfolípidos
- Esencial para el crecimiento puede almacenarse en gránulos de polifosfato
- Generalmente limita el crecimiento
- La única forma de P importante es el PO₄ (ortofosfato) → se recicla rápidamente, alta energía de formación.

Fuentes de Fósforo

Natural

 Rocas fosfatadas, que mediante la meteorización se descomponen y liberan los fosfatos. (abundante en regiones ricas en materia orgánica)

Artificial

- Excreciones del metabolismo animal. (humanos 1.0 7.6 g de P por día)
- Detergentes. El contenido de fósforo en detergentes varía 5 - 9 %.
- Fertilizantes agrícolas: Depende de los usos del suelo y la geología. Exportación de P mayor en bosques artificiales, pasturas y áreas agrícolas (cuencas sedimentarias).
- Precipitación seca (material particular). No es una fuente importante excepto en zonas industrializadas.

Procesos

- Mineralización: degradación de la materia orgánica por los microorganismos. Se favorece la degradación en un sustrato carbonado degradable y la presencia de nitrógeno.
- Solubilización: A través de bacterias autótrofas.
- Inmovilización: El fósforo inorgánico se transforma en fósforo orgánico a través de diferentes seres vivos (en el agua las algas llevan a cabo la absorción, en el suelo las bacteria se encargan de su fijación)

Ciclo del Nitrógeno

- Es un macronutriente esencial para todos los organismos vivientes (ácidos nucleicos y aminoácidos)
- Tiene muchos estados de oxidación.
- Nitratos, Nitritos y Amonio son las formas
 biodisponibles para los organismos NO₃⁻ , NO₂⁻

 NH_4^+

Balance del N en el océano

Codispoti et al. (2001)

Marine Reservoir: 6.3*105 Tg N

Sources: 287 Tg N/yr

Balance de nitrógeno oceánico

Oceanic Nitrogen Budget Estimates

N Budget Terms	1970	1979	1985	1997	2001
(Tg N y ⁻¹)	(Delwiche)	(Liu)	(Codispoti &	(Gruber &	(Codispoti
	200		Christensen)	Sarmiento)	et al.)
Inputs					
atmospheric	4.1	49	40	15	56
runoff	30	17	25	41	41
N ₂ -fixation	10	30	25	125	125
Total Inputs	44.1	96	90	181	222
Outputs					
pelagic denitrification	40	50	60	85	150
sedimentary denitrification	0	10	60	85	300
burial & other	0.2	36	38	19	32
Total Outputs	40.2	96	158	189	482

Georgia Tech Biological Oceanography

N = 25790

(Gruber & Sarmiento 1997)

 $N^* = N - 16 P$

N* Distribution Shows Interplay Between N2-Fixation and Denitrification

 $N^* = 0.87([NO_3] - 16[PO_4] + 2.9)$ (Gruber & Sarmiento 1997)

Trichodesmium:

Trichodesmium puffs (above) and tufts (right). Photos by Hans Paerl.

Trichodesmium blooms from aboard ship (left) and from space (below).

Major Biological Transformations of Nitrogen

(Inspired by Codispoti 2001and Liu 1979)

Georgia Tech Biological Oceanography

Ciclo del Nitrógeno en el océano

CO₂ atmospheric carbon dioxide

Ciclo del carbon en el océano

¿Por qué es importante?

- CO₂ es uno de los gases efecto invernadero más importantes
- El océano es uno de los más grandes sumideros de CO₂ proveniente de la quema de combustibles fósiles
 - Afecta la química del océano

Balance de Carbono Global

Fuentes

- Respiración
- Liberación oceánica,
- Combustibles fósiles
- Deforestación
- Metano

Sumideros

- Atmósfera
- Océano
- Vegetación terrestre
- Suelo
- Rocas

Por fuera del inventario

- Carbon: 2.8 Gt
- CO₂ fertilización
- N fertilización
- Regeneración
 Forestal

El ciclo del Carbono

- Las complejas reacciones por las que pasa el carbon se dan en:
 - Atmósfera
 - Tierra (biósfera y corteza terrestre)
 - Océanos
- Los intercambios de carbono se dan en el planteta en todas las escalas de tiempo
 - Ciclos de largo plazo (cientos a millones de años)
 - Ciclos de corto plazo (segundos a años)

Ciclos de corto plazo

Intercambio de Carbono (corto plazo)

✓ Suelos y Detritus:

Descomposición de la materia orgánica y liberación de carbono

Ciclo del carbono en el largo plazo

- ✓ El carbono se transporta lenta y continuamente en el sistema tierra
 - Entre atmósfera / océano / biosfera
 - Y la corteza terrestre (rocas como la caliza)
- ✓ Los principales componentes en el ciclo del carbono a largo plazo:
 - La meteorización química (" conversión de silicato a carbonato")
 - Vulcanismo / subducción
 - Enterramiento de carbono orgánico
 - La oxidación de carbono orgánico

¿Dónde se almacena la mayoría del carbono?

- ✓ La mayor parte del carbono esta "bloqueado" en la corteza de la tierra (es decir, rocas) como Carbonatos (que contiene carbono)
- ✓ La piedra caliza está compuesta principalmente de carbonato de calcio (CaCO₃)
- ✓ Los carbonatos se forman por un proceso geoquímico complejo: Conversión de Silicato-a-Carbonato

Conversión Silicato a Carbonato

1. Meteorización química

- CO_2 + Iluvia \rightarrow ácido carbónico
- ácido carbónico disuelve las rocas de silicato

2. Transporte

 Los productos en solución son transportados a los océanos por los rios

3. Formación

 En los océanos, el carbonato de calcio precipita y se acumula en el fondo ma

Cocolitóforos son criaturas planctónicas que toman carbonato de calcio disuelto en el agua y lo convierten en una sustancia sólida para construir sus conchas.

Los cambios en la meteorización química

El proceso es dependiente de la temperatura:

- la velocidad de evaporación

 más vapor de agua, más nubes, más lluvia
- A medida que el CO₂ aumenta en la atmósfera, el planeta se calienta. La evaporación aumenta, por lo tanto el flujo de carbono en las rocas aumenta, disminuyendo así el CO₂ de la atmósfera y baja la temperatura del planeta

Ciclo negativo

Subducción

Durante estos procesos, el calor y la presión extrema convierten las rocas carbonatadas en CO₂

oceanic plates are pushed under lighter continental plates.

Erupción Volcánicas

La erupcion inyecta en (Mt – megatons)

17 Mt SO₂,

42 Mt CO₂,

3 Mt Cl,

491 Mt H₂O

Erupción Pinatubo 1991 →
retrazo el crecimiento del CO₂
en la atmósfera → aumento
de la nubocidad →
enfriamiento → aumento de
la solubilidad en el océano

Mt. Pinatubo (June 15, 1991)

Flujo neto atmósfera – océano

Los flujos son regulados por la distribución de pCO_{2sw}, forzados por:

- Circulación océanica
- Actividad biológica del océano
- El incremento de la concentración de CO₂ en la atmósfera

Influencia de la circulación

- Regiones donde convergen corrientes cálidas y aguas frías normalmente corresponden con regiones de captura (N.O. Atlántico, Pacífico).
- Regiones que saturan las aguas profundas, donde el agua son lo suficentemente frias para descender. (N. Atlántico, Oceéano Sureste).
- En las regiones de surgencia tropical, donde aguas de la subsuperficie afloran en al superficie donde son calentadas rapidamente y liberan el Carbono almacenado (Pacífico Ecuatorial).

Corrientes termohalinas

- ✓ El Norte del Atlántico es una región de fuerte enfriamiento, asociado con la deriva del Atlántico Norte.
- ✓ Las guas frías capturan CO₂ y se hunden posteriormente.
- ✓ El agua aflora en otras partes del océano, sobre todo el Pacífico ecuatorial. Regiones de afloramiento son generalmente fuentes de CO_2 a la atmósfera las aguas profundas tiene altos niveles de CO_2 que cuando son calentadas en la superficie liberan CO_2 .
- ✓ Esta circulación controla la rapidez con que se lleva el agua del océano profundo a la superficie, y por lo tanto la rapidez con que el océano se equilibra a los cambios en la concentración de CO₂ en la atmósfera.

Influencia biológica

- ✓ El crecimiento plantónico fija dióxido de carbono del agua y entonces decrece ΣCO_2 , y en concesuencia pCO_2 .
- ✓ Especialmente notable en el Atlántico Norte, que cuenta con la más intensa floración de todas las regiones principales del océano.
- ✓ En el Pacífico ecuatorial, floraciones de plancton son restringidos por falta de hierro parte de la explicación a la alta pCO₂ allí.
- ✓ En el Atlántico ecuatorial, la surgencia es menos intensa y existe ás hierro disponible producido por el polvo atmosférico.