Department of Engineering Mathematics

EMAT20920: Numerical Methods in MATLAB

COURSEWORK ASSESSMENT Jake Bowhay (UP19056)

All figures in this report have been saved using saveFigPDF function as it automatically resizes the paper to the correct size.

Question 1: Root-finding

(a) To find how many solutions each equation has in the given domain I will rearrange all the equations to be equal to zero and then looks for the zeros of the rearranged equations. As a corollary to the intermediate value theorem, if a function is continuous and changes sign in a bracket then that bracket must contain a zero. So I will plot each of the rearranged equation and I look for appropriate brackets. I will use the pltFunc function to plot the functions as it removes values outside a defined limit which prevents MATLAB plotting discontinuous functions as continuous. The limits can then be changed using the property explorer to give a more useful plot.

```
% Check xLim is the correct dimensions
assert(isequal(size(domain), [1 2]), "domain must be a 1x2 vector")

%% Generate values to plot
x = linspace(domain(1), domain(2));
y = f(x);

% Remove large values of y to prevent MATLAB plotting discontinuous
% functions as continuous
y(abs(y)>discontLim) = NaN;

%% Plot function and line x = 0
plot(x, y, [min(x) max(x)], [0 0], "g-", "LineWidth", 2);
xlabel("x");
ylabel("f(x)");
xlim(domain);
title("Plot of f(x)");
grid on;
end
```

(i) Rearranging $x^4 = e^{-x} \cos(x)$ gives $f(x) = x^4 - e^{-x} \cos(x)$. $f = @(x) x^4 - \exp(-x).*\cos(x)$; pltFunc(f, [-2*pi 2*pi], inf);

The second zoomed in plot shows there are two zeros in the given domain. The first zero can be bracketed by the interval [-1.5, -1] as f(-1.5) = 4.7455 and f(-1) = -0.4687 so since the function is continuous and there is a change of sign this bracket must contain a zero. Like wise the second root can be bracketed by the interval [0.5, 1] as f(0.5) = -0.4698 and f(1) = 0.8012.

(ii) Setting
$$f(x) = \frac{x^3}{\sin(x)} - 1$$
.
 $f = @(x) (x.^3)./\sin(x) - 1$;
 $pltFunc(f, [-2*pi 2*pi], 500)$;

The second plot show there are two roots. The first root can be bracketed by the interval [-1, -0.5] as f(-1) = 0.1884 and f(-0.5) = -0.7393 and f(x) is continuous in this bracket. Likewise, the second root can be bracketed by the interval [0.5, 1] as f(0.5) = -0.7393 and f(1) = 0.1884.

(iii) Rearranging
$$\cot(x) = \frac{25}{25x-1}$$
 gives $f(x) = \cot(x) - \frac{25}{25x-1}$.
f = @(x) $\cot(x)$ - 25./(25*x - 1);
pltFunc(f, [-2*pi 2*pi], 30);

The plot shows that the equation has three solutions. The first can be bracketed by the interval [-5, -4] as f(-5) = 0.4942 and f(-4) = -0.6162. The second solution can be bracketed by the interval [-1, -0.1] as f(-1) = 0.3194 and f(-0.1) = -2.8238. The third solution can be bracketed by the interval [4, 5] as f(4) = 0.6112 and f(5) = -0.4974. f(x) is continuous in each of the bracketing intervals.

(iv) Rearranging
$$4e^{-x^2/5} = \cos(5x) + 2$$
 gives $f(x) = 4e^{-x^2/5} - \cos(5x) - 2$.
f = @(x) 4*exp(-x.^2/5) - cos(5*x) - 2;
pltFunc(f, [-2*pi 2*pi], inf);

The second plot shows that the equation has 6 solutions. The bracketing intervals are shown in the table below.

[a,b]	f(a)	f(b)
[-2.5, -2]	-1.8518	0.6364
[-1.5, -1.25]	0.2039	-0.0730
[-1.25, -1]	-0.0730	0.9913
[1, 1.25]	0.9913	-0.0730
[1.25, 1.5]	-0.0730	0.2039
[2, 2.5]	0.6364	-1.8518

(b) The bisection method is used by calling the the bisectRoot function.

```
function [sol, i, err] = bisectRoot(f, a, b, tol)
   %bisectRoot Use the bisection method to find roots of the function f
   % bracketed within the intervals [a, b].
   %Inputs:
   \% \hspace{0.4cm} f = function handle to function whose root is to be found
   \% a = 1*n array containing all the lower ends of the brackets
   % where n is the number of roots
   \% b = 1*n array containing all the lower ends of the brackets
   % where n is the number of roots
   % tol = absolute error tolerance with which to find the root;
   \% Iteration terminates when the root is known to within +/- tol
   %
   %Outputs:
   % sol = 1*n array of of roots
   \% i = 1*n array of the number of iterations required to find the nth
   %
      err =
   %
   %Usage:
   % [r, i, err] = bisect(@(x) x.^2 - 4, 1, 3, 5e-9) \rightarrow returns the
   % approximation to root of x^2 - 4 = 0 within [1, 3], the number of
   \% iterations required to find the root and the final absolute error
   % check if all intervals are correctly defined
   assert(isequal(size(a), size(b)),...
       "Must be an equal number of upper and lower bounds");
```

```
% check whether f changes sign
   assert(all(sign(f(a)) ~= sign(f(b))),...
       'f(a) and f(b) should have opposite sign');
   % intialise variables
   % iteration counter
   i = zeros(size(a));
   % current solution estimate
   sol = (a + b)/2;
   % previous solution estimate
   sol_old = Inf;
   % absolute error
   err = Inf;
   withinTol = zeros(size(a));
   % bisection algorithm:
   \% at each iteration, find the half-interval that contains a sign change
   % and relabel the endpoints appropriately
   while any(~withinTol)
      i(~withinTol) = i(~withinTol) + 1;
       sol_old = sol;
       mid = (a + b)/2;
       % mid point is a root
       exactRoot = f(mid) == 0;
       sol(exactRoot) = mid(exactRoot);
       err(exactRoot) = 0;
       withinTol(exactRoot) = true;
       \ensuremath{\text{\%}} solution is in first half of interval and mid point not a root
       firstHalf = (sign(f(a)) ~= sign(f(mid))) & ~exactRoot;
       b(firstHalf) = mid(firstHalf);
       \ensuremath{\text{\%}} solution is in second half of interval and mid point not a root
       secondHalf = (sign(f(a)) == sign(f(mid))) & ~exactRoot;
       a(secondHalf) = mid(secondHalf);
       \% update solutions and errors values that aren't within tolerance
       sol(~withinTol) = (a(~withinTol) + b(~withinTol))/2;
       err(~withinTol) = abs(sol(~withinTol) - sol_old(~withinTol));
       withinTol(err < tol) = true;</pre>
   end
end
```

```
(i) Solutions to f(x) = x^4 - e^{-x}\cos(x) = 0 x \in [-2\pi, 2\pi].

f = @(x) x^4 - \exp(-x).*\cos(x);

a = [-1.5 0.5];

b = [-1 1];

[r, i, err] = bisectRoot(f, a, b, [5e-8 5e-9])
```

Note the two different tolerances since one root is an order of magnitude larger so requires one less decimal place of accuracy to be accurate to 8 significant figures.

[a,b]	Root	# Iterations
[-1.5, -1]	-1.0843597	23
[0.5, 1]	0.76221107	26

(ii) Solutions to $f(x) = \frac{x^3}{\sin(x)} - 1 = 0$ $x \in [-2\pi, 2\pi]$.

```
f = @(x) (x.^3)./sin(x) - 1;
a = [-1 0.5];
b = [-0.5 1];
[r, i, err] = bisectRoot(f, a, b, 5e-9)
```

$$\begin{array}{c|cccc} [a,b] & \text{Root} & \# \text{ Iterations} \\ \hline [-1,-0.5] & -0.92862631 & 26 \\ \hline [0.5,1] & 0.92862631 & 26 \\ \end{array}$$

(iii) Solutions to $f(x) = \cot(x) - \frac{25}{25x-1} = 0$ $x \in [-2\pi, 2\pi]$.

```
f = @(x) cot(x) - 25./(25*x - 1);

a = [-5 -1 4];

b = [-4 -0.1 5];

[r, i, err] = bisectRoot(f, a, b, [5e-8 5e-9 5e-8])
```

$$[a,b]$$
Root# Iterations $[-5,-4]$ -4.4953722 24 $[-1,-0.1]$ -0.47773376 27 $[4,5]$ 4.4914097 24

(iv) Solutions to
$$f(x) = 4e^{-x^2/5} - \cos(5x) - 2 = 0$$
 $x \in [-2\pi, 2\pi]$.
 $f = @(x) 4*exp(-x.^2/5) - \cos(5*x) - 2;$
 $a = [-2.5 -1.5 -1.25 \ 1 \ 1.25 \ 2];$
 $b = [-2 -1.25 -1 \ 1.25 \ 1.5 \ 2.5];$
 $[r, i, err] = bisectRoot(f, a, b, 5e-8)$

[a,b]	Root	# Iterations
[-2.5, -2]	-2.1222382	23
[-1.5, -1.25]	-1.4255432	22
[-1.25, -1]	-1.2145933	22
[1, 1.25]	1.2145933	22
[1.25, 1.5]	1.4255432	22
[2, 2.5]	2.1222382	23

(c) The iterative scheme we asked to implement is called Steffensen's method. This is implemented in the steffensenRoot function.

```
function [r, n, err] = steffensenRoot(f, x0, tol, nMax)
    %steffensenRoot uses Steffensen's method to find roots of f(x)
    % based on an initial guess x0
    %
    %Inputs:
    % f = function handle to function whose root is to be found
    % x0 = initial guess of the root to begin iteration at
    % tol = absolute error tolerance with which to find the root
    % iteration terminates when the root is known to within +/- tol
    % nMax = the maximum number of iteration to quit after. Prevents an
    % infinite loop if the iterations do not converge
    %
```

```
% err = 1*n vector of the absolute error after each interation
   %Usage:
   % [r, n, err] = steffensenRoot(@(x) exp(-x) -x, 0, 5e-9, 50) ->
   % returns the approximate roo of x^-x -x = 0 after n iterations and
   % err the absolute error after each iteration
   % set initial guess as first root
   xn = x0;
   %iteration counter
   n = 0;
   % preallocate error array
   err = Inf(1, nMax);
   while all(err > tol) && n < nMax</pre>
      n = n + 1;
      x01d = xn;
      % Calculate f(xn) to avoid repeat computation
      fn = f(xn);
      % Calculate next interation
      xn = xn - fn*(f(xn + fn)/fn - 1)^-1;
      err(n) = abs(xn - x0ld);
   end
   % remove any unused preallocated element in error array
   err(isinf(err)) = [];
   % check if solution converged
   assert(err(end) < tol, "No convergence")</pre>
   r = xn;
end
The following uses this function to find the root of e^{-x} - x = 0 and calculate the convergence.
f = 0(x) exp(-x) - x;
[r, n, e] = steffensenRoot(f, 0, 5e-13, 50)
%% Generate plot of convergence
```

%Outputs:

% r = the approximate root of f(x)=0% n = the number of interations

After 5 iterations the root x = 0.567143290410 is accurate to 12 decimal places.

loglog(e(1:end-1),e(2:end), "bx-", "LineWidth", 2);

title("Convergence of Steffensen's Method")

polyfit(log(e(1:end-1)), log(e(2:end)), 1)

xlabel('\Delta_{n-1}');
ylabel('\Delta_{n}');

%% Find order of congerence

grid on;

The graph shows a straight which shows error $\propto \Delta_{n-1}^q$, where q is the gradient of the line. Using the MATLAB function polyfit the gradient of the above graph as 1.8 which is close to 2 so Steffensen's method is second order.

(d) The first step in creating a cobweb plot is to implement a fixed point iteration scheme.

```
function xn = fixedPointRoot(g, x0, nMax)
   % fixedPointRoot Iteration to find solutions of x = g(x)
   %Inputs:
   % g = function handle to find the solutions of <math>x = g(x)
      x0 = first term of the iteration
   % nMax = the maximum number of iteration to quit after
   %Output:
   % xn = the iteraterative sequence
   %Usage:
   % xn = fixedPointRoot(@(x) cos(x), 0.75, 100) \rightarrow looks for a
   \% root of the equation x - cos(x) = 0, starting with an inital guess
      of 0.75.
   % number of iterations
   % preallocated sequence array and set initial guess as first term
   xn = NaN(1, nMax);
   xn(1) = x0;
   % set initial error
   err = Inf;
   % iterate x -> g(x)
   while n < nMax
       n = n + 1;
       xn(n + 1) = g(xn(n));
       err = abs(xn(n + 1) - xn(n));
   end
   % remove any unused elements of the preallocated array
   xn(isnan(xn)) = [];
```

```
fprintf('\nAfter %d steps root is %-20.14g\n', n, xn(end));
   fprintf('Final absolute error is %g\n\n', err);
function cobwebDiagram(g, x0, nMax, a, b)
   \coloredge{Model} %cobwebDiagram Creates cobweb diagram for x = g(x) in interval [a,b]
   %Inputs:
   % g = function handle for g(x)
   % x0 = initial guess to start iteration
   % nMax = number of iterations to complete
   % a = lower end of interval [a,b] to plot cobweb diagram over
   % b = upper end of interval [a,b] to plot cobweb diagram over
   %
   %Usage:
   % cobwebDiagram(@(x) (x.^5 + 3)/5, 1, 10, 0, 1.5) \rightarrow produces a
   % cobweb diagram of x = (x^5 + 3)/5 based on an initial guess of 10
   \% and 10 iterations. This is shown over the interval [0,1.5].
   %% get fixed point iteration sequence
   xn = fixedPointRoot(g, x0, nMax);
   %% generate cobweb diagram
   % get values for the line y = x and y = g(x)
   x = linspace(a, b);
   y = g(x);
   y(isinf(y)) = NaN;
   % set up figure
   hold on;
   grid on;
   set(gca, "DefaultLineLineWidth", 2);
   title("Cobweb plot for fixed point iteration");
   xlabel("x");
   ylabel("y")
   xlim([a b])
   ylim([min(x(1), y(1)) max(x(end), y(end))]);
   % plot lines y = x and y = g(x)
   plot(x, x, "r-", "DisplayName", "y = x");
   plot(x, y, "k-", "DisplayName", "y = g(x)");
   legend("AutoUpdate", "off");
   % plot the steps
   plot([xn(1) xn(1)], [0 xn(2)], 'm-');
   for i=1:length(xn) - 2
       plot([xn(i) xn(i + 1)], [xn(i + 1) xn(i + 1)], 'm-');
       plot([xn(i + 1) xn(i + 1)], [xn(i + 1) xn(i + 2)], 'm-');
end
```

Question 2: Numerical integration and differentiation

(a) (i) The first expression is Simpson's 3/8 rule and the second is Milne's rule.

```
Simpson's 3/8 rule can be implemented as follows. function quad = simpson38(f, a, b)
```

```
EMAT20920 2020-21 9 Coursework Assessment
```

And similarly Milne's rule can be implemented.