Exercises 06: Bayesian Optimization

Kevin Heubacher (15329079), Akshay Chikhalkar (15489036), John Paul Semakula (15487087)

22.11.2022

1 Problem

With this exercise, we aim to make the algorithm more efficient so that it requires fewer steps to find an optimal degree of polynomial features. Bayesian optimization is a sequential design strategy for the global optimization of blackbox functions that does not assume any functional forms. It is usually employed to optimize expensive-to-evaluate functions.

2 Formalization

The process of optimization is based on a real-valued objective function defined on a domain X; $f: X \mapsto \mathbb{R}$. Optimization aims to systematically search for the point x^* in the domain X to find the global maximum or minimum value f^* : $f^* = \max f(x) = f(x^*)$.

3 Algorithm

```
Algorithm 1: Sequential Optimization

Input: Initial sample set S
Output: Sample set S

1 repeat
2 | x \leftarrow Policy(\mathbf{S});  /* Choose next point based on EI */
3 | y \leftarrow Observe(x);  /* Observe f(x) */
4 | \mathbf{S} \leftarrow \mathbf{S} \cup \{(x,y)\};  /* Join S with new sample */
5 until termination criterion reached;
6 return S
```

4 Results

We have taken 2 different values of x_min and x_max .

Figure 1: Bar plots from unoptimised code section

The unoptimised $(x_min = 1, x_max = 20)$ script takes 18 steps and the optimised script $(x_min = 1, x_max = 20)$ with termination criterion MSE = 0.01) takes 4 steps to perform Bayesian Optimization.

(a) $x_min = 1$, $x_max = 20$, MSE = 0.01 (b) $x_min = 1$, $x_max = 30$, MSE = 0.35

(a) $x_min = 1$, $x_max = 20$, MSE = 0.01 (b) $x_min = 1$, $x_max = 30$, MSE = 0.35

(c) $x_min = 1$, $x_max = 20$, MSE = 0.35

5 Conclusion

By applying the exit termination criterion we are able to minimise the number of iterations to find a low mean square value. This results in a reduction in processing costs.