CS 4501: Optimization - Assignment 3

Your name and email

Use Projected Gradient Descent (PGD) to minimize f(x) starting from a given x_0 for n iterations.

$$x_{n+1} = P_C (x_n - \alpha_n \nabla f(x_n)).$$

Task 1

Projection to a centered ball $(x \in \mathbb{R}^N, r > 0)$

$$C = \{x | ||x||_2 \le r\}$$

Proof. If $||x||_2 \le r$, then objectively we have

$$P_C(x) = x$$
.

Now suppose $||x||_2 > r$. Then we have $P_C(x) = y$, where y is the solution for the following optimization problem.

$$\min_{y} \quad \|x - y\|_{2}^{2}$$

subject to
$$\|y\|_{2}^{2} \le r^{2}$$

The Lagrangian of this optimization problem is

$$L(y, \lambda) \doteq ||x - y||_2^2 + \lambda(||y||_2^2 - r^2)$$

where $x \in \mathbb{R}^N, y \in \mathbb{R}^N, \lambda \in \mathbb{R}$. Then we need to find (y_*, λ_*) such that

$$\nabla_y L(y_*, \lambda_*) = 0,$$

$$\nabla_\lambda L(y_*, \lambda_*) = 0.$$

Then this y_* is the solution to the optimization problem, i.e.,

$$P_C(x) = \begin{cases} x, & ||x||_2 \le r, \\ y_*, & ||x||_2 > r \end{cases}.$$

(SZ: Please compute y_* here)

Task 2

Projection to a noncentered ball $(x \in \mathbb{R}^N, c \in \mathbb{R}^N, r > 0)$

$$C = \{x | ||x - c||_2 \le r\}.$$

We have

$$P_C(x) = \begin{cases} x, & \|x - c\|_2 \le r \\ c + \frac{r}{\|x - c\|_2} (x - c), & \text{otherwise} \end{cases}.$$

(SZ: No proof is required.)

Task 3

Projection to column space $(A \in \mathbb{R}^{N \times M} \text{ has full column rank but not necessarily square})$

$$C = \{x | \exists y \in \mathbb{R}^M \text{ such that } Ay = x\}.$$

Proof. (SZ: Please compute the analytical expression of $P_C(x)$ here)

Notes

- 1. Third-party packages, excluding numpy, are not allowed.
- 2. The proof of Task 1 is 4 points. The proof of Task 3 is 2 points. The points for implementation are documented in the python script.