Fauna de Operadores Lineales:

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

19 de abril de 2021

Agenda: Fauna de Operadores Lineales:

- Espacio nulo e imagen de un operador
- Operadores biyectivos, inversos y adjuntos
- 3 El detalle de los adjuntos
- 4 Hermíticos y Unitarios
- Funciones de Operadores
- O Diferenciación de operadores
- Ejercicio

Espacio nulo e imagen de un operador

• $|v\rangle \in \mathbf{V}_1 / \mathbb{A} |v\rangle = |0\rangle$, se denomina espacio nulo, núcleo o *kernel* (núcleo en alemán) de la transformación \mathbb{A} y lo denotaremos como $\mathbb{R} (\mathbb{A})$, es decir $\mathbb{R} (\mathbb{A}) = \{|v\rangle \in \mathbf{V}_1 \ \land \ \mathbb{A} |v\rangle = |0\rangle\}$.

Espacio nulo e imagen de un operador

- $|v\rangle \in \mathbf{V}_1 / \mathbb{A} |v\rangle = |0\rangle$, se denomina espacio nulo, núcleo o *kernel* (núcleo en alemán) de la transformación \mathbb{A} y lo denotaremos como $\mathbb{R} (\mathbb{A})$, es decir $\mathbb{R} (\mathbb{A}) = \{|v\rangle \in \mathbf{V}_1 \ \land \ \mathbb{A} |v\rangle = |0\rangle\}$.
- Definiremos la imagen (rango o recorrido) de \mathbb{A} , a $\mathbb{A}\{\mathbf{V}\} = \{|v'\rangle \in \mathbf{V}_2 \quad \land \quad \mathbb{A}|v\rangle = |v'\rangle\}$,

Espacio nulo e imagen de un operador

- $|v\rangle \in \mathbf{V}_1 / \mathbb{A} |v\rangle = |0\rangle$, se denomina espacio nulo, núcleo o *kernel* (núcleo en alemán) de la transformación \mathbb{A} y lo denotaremos como $\mathbb{R} (\mathbb{A})$, es decir $\mathbb{R} (\mathbb{A}) = \{|v\rangle \in \mathbf{V}_1 \ \land \ \mathbb{A} |v\rangle = |0\rangle\}$.
- Definiremos la imagen (rango o recorrido) de \mathbb{A} , a $\mathbb{A}\{\mathbf{V}\} = \{|v'\rangle \in \mathbf{V}_2 \quad \land \quad \mathbb{A}|v\rangle = |v'\rangle\}$,
- Si \mathbf{V} es de dimensión n: dim $[\aleph(\mathbb{A})]$ + dim $[\mathbb{A}\{\mathbf{V}\}]$ = dim $[\mathbf{V}]$,

Operadores biyectivos, inversos y adjuntos

• Operadores biyectivos: Se dice que $\mathbb{A}: \mathbf{V}_1 \rightarrow \mathbf{V}_2$ es biyectiva (uno a uno o biunívoco) si dados $|v_1\rangle, |v_2\rangle \in \mathbf{V}_1, \ \land \ |v'\rangle \in \mathbf{V}_2$, se tiene que: $\mathbb{A} |v_1\rangle = |v'\rangle \ \land \ \mathbb{A} |v_2\rangle = |v'\rangle \ \Rightarrow \ |v_1\rangle = |v_2\rangle$, es decir, será biyectiva si \mathbb{A} transforma vectores distintos de \mathbf{V}_1 en vectores distintos de \mathbf{V}_2 .

Operadores biyectivos, inversos y adjuntos

- Operadores biyectivos: Se dice que $\mathbb{A}: \mathbf{V}_1 \rightarrow \mathbf{V}_2$ es biyectiva (uno a uno o biunívoco) si dados $|v_1\rangle, |v_2\rangle \in \mathbf{V}_1, \ \land \ |v'\rangle \in \mathbf{V}_2$, se tiene que: $\mathbb{A} |v_1\rangle = |v'\rangle \ \land \ \mathbb{A} |v_2\rangle = |v'\rangle \ \Rightarrow \ |v_1\rangle = |v_2\rangle$, es decir, será biyectiva si \mathbb{A} transforma vectores distintos de \mathbf{V}_1 en vectores distintos de \mathbf{V}_2 .
- Operadores Inversos: Las transformaciones lineales biyectivas posibilitan definir inversa. Diremos que A⁻¹: V₂→V₁ es el inverso de A, si A⁻¹A = I = AA⁻¹.
- Operadores adjuntos: Si $\mathbb{A}: \mathbf{V} \to \mathbf{W}$ de tal forma que $\mathbb{A}|\nu\rangle = |\nu'\rangle$, Definiremos $\mathbb{A}^{\dagger}: \mathbf{V}^{*} \to \mathbf{W}^{*}$, de tal forma que $\langle \nu'| = \langle \nu| \, \mathbb{A}^{\dagger}$, donde \mathbf{V}^{*} y \mathbf{W}^{*} son los duales de \mathbf{V} y \mathbf{W} , respectivamente. Entonces \mathbb{A}^{\dagger} es el adjunto de \mathbb{A} . Es decir:

$$|v\rangle \iff \langle v| \implies |v'\rangle = \mathbb{A}|v\rangle \iff \langle v'| = \langle v|\,\mathbb{A}^{\dagger}.$$

• Entonces, a partir de la definición de producto interno tendremos: $\langle \tilde{x} | y \rangle = \langle y | \tilde{x} \rangle^* \quad \forall \quad |\tilde{x}\rangle = \mathbb{A} |x\rangle, |y\rangle \in \mathbf{V} \Rightarrow \langle x | \mathbb{A}^{\dagger} | y \rangle = \langle y | \mathbb{A} | x \rangle^* \quad \forall \quad |x\rangle, |y\rangle \in \mathbf{V}.$

El detalle de los adjuntos

• Esta última relación $\langle x|\,\mathbb{A}^\dagger\,|y\rangle = \langle y|\,\mathbb{A}\,|x\rangle^* \quad \forall \ |x\rangle\,, |y\rangle \in \mathbf{V}\,,$ nos permite asociar \mathbb{A}^\dagger con \mathbb{A} ,

El detalle de los adjuntos

- Esta última relación $\langle x| \mathbb{A}^{\dagger} |y\rangle = \langle y| \mathbb{A} |x\rangle^* \quad \forall |x\rangle, |y\rangle \in \mathbf{V}$, nos permite asociar \mathbb{A}^{\dagger} con \mathbb{A} ,
- y además deducir las propiedades de los adjuntos: $(\mathbb{A}^{\dagger})^{\dagger} = \mathbb{A}$, $(\lambda \mathbb{A})^{\dagger} = \lambda^* \mathbb{A}^{\dagger}$, $(\mathbb{A} + \mathbb{B})^{\dagger} = \mathbb{A}^{\dagger} + \mathbb{B}^{\dagger}$, $(\mathbb{A} \mathbb{B})^{\dagger} = \mathbb{B}^{\dagger} \mathbb{A}^{\dagger}$ y consecuentemente, $[\mathbb{A}, \mathbb{B}]^{\dagger} = -[\mathbb{A}^{\dagger}, \mathbb{B}^{\dagger}] = [\mathbb{B}^{\dagger}, \mathbb{A}^{\dagger}]$.

El detalle de los adjuntos

- Esta última relación $\langle x|\,\mathbb{A}^\dagger\,|y\rangle = \langle y|\,\mathbb{A}\,|x\rangle^* \quad \forall \,|x\rangle\,,|y\rangle \in \mathbf{V}\,$, nos permite asociar \mathbb{A}^\dagger con \mathbb{A} ,
- y además deducir las propiedades de los adjuntos: $(\mathbb{A}^{\dagger})^{\dagger} = \mathbb{A}$, $(\lambda \mathbb{A})^{\dagger} = \lambda^* \mathbb{A}^{\dagger}$, $(\mathbb{A} + \mathbb{B})^{\dagger} = \mathbb{A}^{\dagger} + \mathbb{B}^{\dagger}$, $(\mathbb{A} \mathbb{B})^{\dagger} = \mathbb{B}^{\dagger} \mathbb{A}^{\dagger}$ y consecuentemente, $[\mathbb{A}, \mathbb{B}]^{\dagger} = -[\mathbb{A}^{\dagger}, \mathbb{B}^{\dagger}] = [\mathbb{B}^{\dagger}, \mathbb{A}^{\dagger}]$.
- En conclusión, para obtener el adjunto de una expresión se debe proceder de la siguiente manera:
 - Cambiar constantes por sus complejas conjugadas $\lambda \leftrightarrows \lambda^*$.
 - Cambiar los *kets* por sus *bras* asociados y viceversa (*bras* por *kets*): $|v\rangle \leftrightarrows \langle v|$.
 - Cambiar operadores lineales por sus adjuntos $\mathbb{A}^{\dagger} \leftrightarrows \mathbb{A}$.
 - Invertir el orden de los factores: $(|v\rangle \langle w|)^{\dagger} = |w\rangle \langle v|$.

Operadores Hermíticos y Unitarios

• Operadores Hermíticos: Un operador será hermítico (o autoadjunto) si: $\mathbb{A}^{\dagger} = \mathbb{A}$, esto implica $\langle x | \mathbb{A}^{\dagger} | y \rangle \equiv \langle x | \mathbb{A} | y \rangle = \langle y | \mathbb{A} | x \rangle^*$. Estos operadores juegan el rol de los números reales en el sentido de que son "iguales a su propio complejo conjugado".

Operadores Hermíticos y Unitarios

- Operadores Hermíticos: Un operador será hermítico (o autoadjunto) si: $\mathbb{A}^{\dagger} = \mathbb{A}$, esto implica $\langle x | \mathbb{A}^{\dagger} | y \rangle \equiv \langle x | \mathbb{A} | y \rangle = \langle y | \mathbb{A} | x \rangle^*$. Estos operadores juegan el rol de los números reales en el sentido de que son "iguales a su propio complejo conjugado".
- **Operadores Unitarios:** Un operador será unitario si su inversa es igual a su adjunto: $\mathbb{U}^{-1} = \mathbb{U}^{\dagger} \Rightarrow \mathbb{U}^{\dagger}\mathbb{U} = \mathbb{U}\mathbb{U}^{\dagger} = \mathbb{I}$. Podemos decir varias cosas:
 - Las transformaciones unitarias dejan invariante al producto interno: $\langle \tilde{y} \mid \tilde{x} \rangle = \langle y \mid \mathbb{U}^{\dagger} \mathbb{U} \mid x \rangle = \langle y \mid x \rangle$
 - El producto de dos operadores unitarios también es unitario: $(\mathbb{U}\mathbb{V})^{\dagger}\,(\mathbb{U}\mathbb{V}) = \mathbb{V}^{\dagger}\,\underline{\mathbb{U}}^{\dagger}\mathbb{U}\,\mathbb{V} = \mathbb{V}^{\dagger}\mathbb{V} = \mathbb{I}$

Operadores Hermíticos y Unitarios

- Operadores Hermíticos: Un operador será hermítico (o autoadjunto) si: $\mathbb{A}^{\dagger} = \mathbb{A}$, esto implica $\langle x | \mathbb{A}^{\dagger} | y \rangle \equiv \langle x | \mathbb{A} | y \rangle = \langle y | \mathbb{A} | x \rangle^*$. Estos operadores juegan el rol de los números reales en el sentido de que son "iguales a su propio complejo conjugado".
- Operadores Unitarios: Un operador será unitario si su inversa es igual a su adjunto: $\mathbb{U}^{-1} = \mathbb{U}^{\dagger} \Rightarrow \mathbb{U}^{\dagger}\mathbb{U} = \mathbb{U}\mathbb{U}^{\dagger} = \mathbb{I}$. Podemos decir varias cosas:
 - Las transformaciones unitarias dejan invariante al producto interno: $\langle \tilde{y} \mid \tilde{x} \rangle = \langle y \mid \mathbb{U}^{\dagger} \mathbb{U} \mid x \rangle = \langle y \mid x \rangle$
 - El producto de dos operadores unitarios también es unitario: $(\mathbb{U}\mathbb{V})^{\dagger}\,(\mathbb{U}\mathbb{V}) = \mathbb{V}^{\dagger}\,\underbrace{\mathbb{U}^{\dagger}\mathbb{U}}_{\mathbb{T}}\mathbb{V} = \mathbb{V}^{\dagger}\mathbb{V} = \mathbb{I}$
 - Los operadores unitarios aplican una base ortogonal en otra: $\langle \tilde{\mathbf{e}}^i | \tilde{\mathbf{e}}_j \rangle = \langle \tilde{\mathbf{e}}^i | \mathbb{U} | \mathbf{e}_j \rangle = \langle \mathbf{e}^i | \mathbb{U}^\dagger \mathbb{U} | \mathbf{e}_j \rangle = \langle \mathbf{e}^i | \mathbf{e}_j \rangle = \delta_i^i$.

Para funciones de operadores lineales, procedemos por analogía,

• Un polinomio es: $P_n(x) = a_0 + a_1x + \cdots + a_nx^n = a_ix^i$

Para funciones de operadores lineales, procedemos por analogía,

- Un polinomio es: $P_n(x) = a_0 + a_1x + \cdots + a_nx^n = a_ix^i$
- Entonces un "polinomio de operadores" será $P_n(\mathbb{A}) | v \rangle = [a_0 + a_1 \mathbb{A} + \dots + a_n \mathbb{A}^n] | v \rangle = [a_i \mathbb{A}^i] | v \rangle, \ \forall \ | v \rangle \in \mathbf{V}_1$

Para funciones de operadores lineales, procedemos por analogía,

- Un polinomio es: $P_n(x) = a_0 + a_1x + \cdots + a_nx^n = a_ix^i$
- Entonces un "polinomio de operadores" será $P_n(\mathbb{A}) |v\rangle = [a_0 + a_1 \mathbb{A} + \dots + a_n \mathbb{A}^n] |v\rangle = [a_i \mathbb{A}^i] |v\rangle, \ \forall \ |v\rangle \in \mathbf{V}_1$
- "Desarrollamos por Taylor" la función como una serie de potencias del operador:

$$F(\mathbb{A})|v\rangle = \left[\sum_{n=0}^{\infty} f^{(n)}(0) \frac{\mathbb{A}^n}{n!}\right]|v\rangle$$

y podemos expresar la exponencial de un operador \mathbb{A} , como

$$e^{\mathbb{A}}|v\rangle = \left[\sum_{n=0}^{\infty} \frac{\mathbb{A}^n}{n!}\right]|v\rangle = \left[\mathbb{I} + \mathbb{A} + \dots + \frac{\mathbb{A}^n}{n!} \dots\right]|v\rangle.$$

• como $[\mathbb{A}, \mathbb{B}] \neq 0 \Rightarrow e^{\mathbb{A}} e^{\mathbb{B}} \neq e^{\mathbb{B}} e^{\mathbb{A}} \neq e^{\mathbb{A}+\mathbb{B}}$, sólo en el caso en que $[\mathbb{A}, \mathbb{B}] = 0$ se tiene $e^{\mathbb{A}+\mathbb{B}} |v\rangle = \left[\sum_{n=0}^{\infty} \frac{(\mathbb{A}+\mathbb{B})^n}{n!}\right] |v\rangle$,

Para funciones de operadores lineales, procedemos por analogía,

- Un polinomio es: $P_n(x) = a_0 + a_1x + \cdots + a_nx^n = a_ix^i$
- Entonces un "polinomio de operadores" será $P_n(\mathbb{A}) |v\rangle = [a_0 + a_1 \mathbb{A} + \dots + a_n \mathbb{A}^n] |v\rangle = [a_i \mathbb{A}^i] |v\rangle, \ \forall \ |v\rangle \in \mathbf{V}_1$
- "Desarrollamos por Taylor" la función como una serie de potencias del operador:

$$F(\mathbb{A})|v\rangle = \left[\sum_{n=0}^{\infty} f^{(n)}(0) \frac{\mathbb{A}^n}{n!}\right]|v\rangle$$

y podemos expresar la exponencial de un operador A, como

$$e^{\mathbb{A}}|v\rangle = \left[\sum_{n=0}^{\infty} \frac{\mathbb{A}^n}{n!}\right]|v\rangle = \left[\mathbb{I} + \mathbb{A} + \dots + \frac{\mathbb{A}^n}{n!} \dots\right]|v\rangle$$
.

- como $[\mathbb{A}, \mathbb{B}] \neq 0 \Rightarrow e^{\mathbb{A}} e^{\mathbb{B}} \neq e^{\mathbb{B}} e^{\mathbb{A}} \neq e^{\mathbb{A}+\mathbb{B}}$, sólo en el caso en que $[\mathbb{A}, \mathbb{B}] = 0$ se tiene $e^{\mathbb{A}+\mathbb{B}} |v\rangle = \left[\sum_{n=0}^{\infty} \frac{(\mathbb{A}+\mathbb{B})^n}{n!}\right] |v\rangle$,
- $\bullet \ \ \mathsf{En \ general} \ e^{\mathbb{A}} e^{\mathbb{B}} = e^{\mathbb{A} + \mathbb{B}} e^{\frac{1}{2}[\mathbb{A},\mathbb{B}]} \, .$

• Si $\mathbb{A}(t)$, depende de una variable arbitraria t, entonces

$$\frac{\mathrm{d}\mathbb{A}(t)}{\mathrm{d}t} = \lim_{\Delta t \to 0} \frac{\mathbb{A}\left(t + \Delta t\right) - \mathbb{A}(t)}{\Delta t}.$$

• Si $\mathbb{A}(t)$, depende de una variable arbitraria t, entonces

$$\frac{\mathrm{d}\mathbb{A}(t)}{\mathrm{d}t} = \lim_{\Delta t \to 0} \frac{\mathbb{A}(t + \Delta t) - \mathbb{A}(t)}{\Delta t}.$$

• Para el caso inmediato $\mathbb{A}(t) = \mathbb{A}t$, tendremos

$$\frac{\mathrm{d}e^{\mathbb{A}t}}{\mathrm{d}t}|v\rangle = \frac{\mathrm{d}}{\mathrm{d}t}\left[\sum_{n=0}^{\infty} \frac{(\mathbb{A}t)^n}{n!}\right]|v\rangle = \left[\sum_{n=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(\mathbb{A}t)^n}{n!}\right)\right]|v\rangle$$

$$\frac{\mathrm{d}e^{\mathbb{A}t}}{\mathrm{d}t}|v\rangle = \left[\sum_{n=0}^{\infty} \frac{nt^{n-1}\mathbb{A}^n}{n!}\right]|v\rangle = \underbrace{\left[\sum_{n=0}^{\infty} \frac{t^{n-1}\mathbb{A}^{n-1}}{(n-1)!}\right]}_{e^{\mathbb{A}t}} \mathbb{A}|v\rangle$$

• Si $\mathbb{A}(t)$, depende de una variable arbitraria t, entonces

$$\frac{\mathrm{d}\mathbb{A}(t)}{\mathrm{d}t} = \lim_{\Delta t \to 0} \frac{\mathbb{A}(t + \Delta t) - \mathbb{A}(t)}{\Delta t}.$$

• Para el caso inmediato $\mathbb{A}(t) = \mathbb{A}t$, tendremos

$$\frac{\mathrm{d}e^{\mathbb{A}t}}{\mathrm{d}t}|v\rangle = \frac{\mathrm{d}}{\mathrm{d}t}\left[\sum_{n=0}^{\infty} \frac{(\mathbb{A}t)^{n}}{n!}\right]|v\rangle = \left[\sum_{n=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(\mathbb{A}t)^{n}}{n!}\right)\right]|v\rangle$$

$$\frac{\mathrm{d}e^{\mathbb{A}t}}{\mathrm{d}t}|v\rangle = \left[\sum_{n=0}^{\infty} \frac{nt^{n-1}\mathbb{A}^{n}}{n!}\right]|v\rangle = \underbrace{\left[\sum_{n=0}^{\infty} \frac{t^{n-1}\mathbb{A}^{n-1}}{(n-1)!}\right]}_{\mathbb{A}}\mathbb{A}|v\rangle$$

• Es fácil demostrar que $[F(\mathbb{A}), \mathbb{A}] = 0$ $\left(\sum_{n=0}^{\infty} f^{(n)}(0) \frac{\mathbb{A}^n}{n!}\right) \mathbb{A} \equiv \mathbb{A}\left(\sum_{n=0}^{\infty} f^{(n)}(0) \frac{\mathbb{A}^n}{n!}\right)$

• Si $\mathbb{A}(t)$, depende de una variable arbitraria t, entonces

$$rac{\mathrm{d}\mathbb{A}(t)}{\mathrm{d}t} = \lim_{\Delta t o 0} rac{\mathbb{A}\left(t + \Delta t
ight) - \mathbb{A}(t)}{\Delta t} \,.$$

• Para el caso inmediato $\mathbb{A}(t) = \mathbb{A}t$, tendremos

$$\frac{\mathrm{d}e^{\mathbb{A}t}}{\mathrm{d}t}|v\rangle = \frac{\mathrm{d}}{\mathrm{d}t}\left[\sum_{n=0}^{\infty} \frac{(\mathbb{A}t)^n}{n!}\right]|v\rangle = \left[\sum_{n=0}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(\mathbb{A}t)^n}{n!}\right)\right]|v\rangle$$

$$\frac{\mathrm{d}e^{\mathbb{A}t}}{\mathrm{d}t}|v\rangle = \left[\sum_{n=0}^{\infty} \frac{nt^{n-1}\mathbb{A}^n}{n!}\right]|v\rangle = \underbrace{\left[\sum_{n=0}^{\infty} \frac{t^{n-1}\mathbb{A}^{n-1}}{(n-1)!}\right]}_{\mathbb{A}t} \mathbb{A}|v\rangle$$

- Es fácil demostrar que $[F(\mathbb{A}), \mathbb{A}] = 0$ $\left(\sum_{n=0}^{\infty} f^{(n)}(0) \frac{\mathbb{A}^n}{n!}\right) \mathbb{A} \equiv \mathbb{A}\left(\sum_{n=0}^{\infty} f^{(n)}(0) \frac{\mathbb{A}^n}{n!}\right)$
- Pero $[\mathbb{A}, F(\mathbb{B})] \stackrel{?}{=} [\mathbb{A}, \mathbb{B}] \frac{\mathrm{d}F(\mathbb{B})}{\mathrm{d}\mathbb{B}}$.

$$[\mathbb{A}, F(\mathbb{B})] \stackrel{?}{=} [\mathbb{A}, \mathbb{B}] \frac{\mathrm{d}F(\mathbb{B})}{\mathrm{d}\mathbb{B}},$$

• Probamos primero que: si $[\mathbb{A}, \mathbb{C}] = [\mathbb{B}, \mathbb{C}] = 0$, con $\mathbb{C} = [\mathbb{A}, \mathbb{B}] \Rightarrow [\mathbb{A}, \mathbb{B}^n] = \mathbb{A}\mathbb{B}^n - \mathbb{B}^n \mathbb{A} = n[\mathbb{A}, \mathbb{B}]\mathbb{B}^{n-1}$. Entonces

$$AB^{n} - B^{n}A = \underbrace{ABB \cdots B}_{n} - \underbrace{BB \cdots B}_{n}A$$

$$AB^{n} - B^{n}A = (C + BA) \underbrace{BB \cdots B}_{n-1} - \underbrace{BB \cdots B}_{n}A$$

$$AB^{n} - B^{n}A = CB^{n-1} + B(C + BA) \underbrace{BB \cdots B}_{n-2} - \underbrace{BB \cdots B}_{n}A$$

$$AB^{n} - B^{n}A = 2CB^{n-1} + B^{2}(C + BA) \underbrace{BB \cdots B}_{n-3} - \underbrace{BB \cdots B}_{n}A$$

$$[\mathbb{A}, F(\mathbb{B})] \stackrel{?}{=} [\mathbb{A}, \mathbb{B}] \frac{\mathrm{d}F(\mathbb{B})}{\mathrm{d}\mathbb{B}},$$

• Probamos primero que: si $[\mathbb{A}, \mathbb{C}] = [\mathbb{B}, \mathbb{C}] = 0$, con $\mathbb{C} = [\mathbb{A}, \mathbb{B}] \Rightarrow [\mathbb{A}, \mathbb{B}^n] = \mathbb{A}\mathbb{B}^n - \mathbb{B}^n \mathbb{A} = n[\mathbb{A}, \mathbb{B}] \mathbb{B}^{n-1}$. Entonces

$$AB^{n} - B^{n}A = \underbrace{ABB \cdots B}_{n} - \underbrace{BB \cdots B}_{n}A$$

$$AB^{n} - B^{n}A = (\mathbb{C} + \mathbb{B}A) \underbrace{BB \cdots B}_{n-1} - \underbrace{BB \cdots B}_{n}A$$

$$AB^{n} - B^{n}A = \mathbb{C}B^{n-1} + \mathbb{B}(\mathbb{C} + \mathbb{B}A) \underbrace{BB \cdots B}_{n-2} - \underbrace{BB \cdots B}_{n}A$$

$$AB^{n} - B^{n}A = 2\mathbb{C}B^{n-1} + \mathbb{B}^{2}(\mathbb{C} + \mathbb{B}A) \underbrace{BB \cdots B}_{n-2} - \underbrace{BB \cdots B}_{n}A$$

$$\mathbb{A}\mathbb{B}^{n} - \mathbb{B}^{n}\mathbb{A} = 2\mathbb{C}\mathbb{B}^{n-1} + \mathbb{B}^{2}(\mathbb{C} + \mathbb{B}\mathbb{A})\underbrace{\mathbb{B}\mathbb{B} \cdots \mathbb{B}}_{n-3} - \underbrace{\mathbb{B}\mathbb{B} \cdots \mathbb{B}}_{n}\mathbb{A}$$

$$\mathbb{A}\mathbb{B}^{n} - \mathbb{B}^{n}\mathbb{A} = n\mathbb{C}\mathbb{B}^{n-1} = n[\mathbb{A}, \mathbb{B}]\mathbb{B}^{n-1}$$

• Con lo cual
$$[\mathbb{A}, F(\mathbb{B})] = \left[\mathbb{A}, \sum_{n=0}^{\infty} f_n \frac{\mathbb{B}^n}{n!}\right]$$
, es decir

$$[\mathbb{A}, F(\mathbb{B})] = [\mathbb{A}, \mathbb{B}] \sum_{n=0}^{\infty} f_n \frac{n \mathbb{B}^{n-1}}{n!} = [\mathbb{A}, \mathbb{B}] \frac{\mathrm{d}F(\mathbb{B})}{\mathrm{d}\mathbb{B}}$$

Ejercicio

Considere los siguientes operadores: $\mathbb{A}=\mathbb{A}^{\dagger}$ hermítico, $\mathbb{K}=-\mathbb{K}^{\dagger}$ antihermítico; $\mathbb{U}^{-1}=\mathbb{U}^{\dagger}$ unitario, \mathbb{P} y \mathbb{Q} dos operadores genéricos. Pruebe las siguientes afirmaciones:

- En general:

 - ullet Si $[\mathbb{P},\mathbb{Q}]=0$, entonces $\mathbb{P}(\mathbb{Q})^{-1}=(\mathbb{Q})^{-1}\mathbb{P}$
- ② Si $\mathbb A$ es hermítico entonces $\tilde{\mathbb A}=\mathbb U^{-1}\mathbb A\mathbb U$ también será un operador hermítico.
- **1** Dados dos operadores \mathbb{A} y \mathbb{B} , hermíticos, su composición \mathbb{AB} , será hermítica si y sólo si \mathbb{A} y \mathbb{B} conmuntan.