非线性方程解法

- ▶ 局部收敛的阶
- 对分区间套法
- **)** 迭代法
- ▶ Newton法
- > 弦位法
- ▶ 非线性方程组Newton法和拟Newton法
- ▶最速下降法

非线性方程求解

- Arr 求非线性函数方程f(x) = 0根(求非线性函数f(x)零点) ξ
- 解法
 - 。 迭代法:给出一个近似解序列
 - 。收敛判据可用误差,相对误差或函数值接近零否
- 局部收敛
 - 。在准确解附近给出一个收敛的近似解序列 $\{x_n\}$
 - 。 p阶收敛: $∃x_n → ξ$ 并且存在p ≥ 1, c > 0, 使

$$\lim_{n\to\infty} \frac{|x_{n+1}-\xi|}{|x_n-\xi|^p} = c$$

- 线性收敛p = 1(c < 1)
- 超线性收敛p > 1

对分区间套法

- ▶ 根据
 - 函数f(x)在[a,b]连续, f(a)f(b) < 0则在[a,b]内有根
- 解法
 - 。 迭代:取其中点为近似根,记为 x_0 ,其误差限 $\frac{b-a}{2}$.若误差符合要求或其函数值接近零 x_0 便可接受.
 - 。 否则取a,b中函数值与 x_0 的函数值异号者跟 x_0 构成新的求根区间,记为[a_1 , b_1].
 - 重复以上做法得新近似根 x_1 ,...这样不断将区间分半,得到一系列区间[a_n , b_n],和近似根(区间中点) x_n ,n=1,2,3,...
 - x_n 误差为 $\frac{b-a}{2^{n+1}}$,区间 $[a_n,b_n]$ 长的一半, $x_n \to \xi$.
 - 。有根区间以 $\frac{1}{2}$ 的比率缩小,我们也称它是线性收敛的.

对分区间套法算例

▶ 例1.求 $f(x) = x^3 - x - 1$ 在[1,1.5]的零点.f(1) < 0, f(1.5) > 0.

n	x_n	$f(x_n)$	有根区间	误差限
0	1.25	-	[1.25,1.5]	0.5/2
1	1.375	+	[1.25,1.375]	$0.5/2^2$
2	1.3125	-	[1.3125,1.375]	$0.5/2^3$
3	1.34375	+	[1.3125,1.34375]	$0.5/2^4$
4	1.3281	+	[1.3125,1.3281]	$0.5/2^5$
5	1.3203	-	[1.3203,1.3281]	$0.5/2^6$
6	1.3242			$0.5/2^{7}$

• $x_6 = 1.3242$,误差限0.00390625(真值 $\xi = 1.3247$...,误差 $e^* = -0.0005$...).有四位有效数字.实际上 x_5 就有四位有效数字了.

迭代法

▶ 尝试迭代计算: n = 0,1,2,...

$$x_{n+1} = \frac{x_n + \frac{2}{x_n}}{2}, \quad x_0 = 1$$

$$x_{n+1} = 3x_n - 21x_n^2 + 49x_n^3$$
, $x_0 = 0.1$

- ight
 angle 求非线性连续函数f(x)零点 ξ
 - 化成 $\xi = \phi(\xi), x = \phi(x)$
 - 。迭代
 - 取初始近似 x_0
 - 计算

$$x_{n+1} = \phi(x_n), n = 0,1,2,...$$

直到
$$|x_{n+1} - x_n| \le \epsilon$$
 或 $\left(\frac{|x_{n+1} - x_n|}{x_{n+1}} \le \epsilon\right)$

• $\exists x_n \to \xi$,则 $\xi = \phi(\xi)$, $\phi(x)$ 的不动点.故亦称不动点迭代法

迭代法算例

- M2 求 $f(x) = x^3 + 2x^2 + 10x + 20$ 在[1,1.5]的零点.
 - 取 $x_0 = 1$,迭代公式为 $x_{n+1} = 2 \frac{x_n^3 + 2x_n^2}{10}$,则算得 1.7,0.9307,1.74614,0.857796,…发散.
 - 。 取 $x_0 = 1$, 迭代公式为 $x_{n+1} = \frac{20}{x_n^2 + 2x_n + 10}$,计算结果如表,收敛于根 $\xi = 1.368\,808\,107\,821\,\cdots$

n	\mathcal{X}_n	n	\mathcal{X}_n	n	\mathcal{X}_n	n	\mathcal{X}_n
1	1.538 461 538	8	1.368 241 023	15	1.368 810 032	22	1.368 808 101
2	1.295 019 157	9	1.369 059 812	16	1.368 807 254	23	1.368 808 111
3	1.401 825 309	10	1.368 696 397	17	1.368 808 487	24	1.368 808 107
4	1.354 209 390	11	1.368 857 689	18	1.368 807 940	25	1.368 808 108
5	1.375 298 092	12	1.368 786 103	19	1.368 808 182		
6	1 365 929 788	13	1.368 817 874	20	1.368 808 075		
7	1.370 086 005	14	1.368 803 773	21	1.368 808 123		

迭代法几何解释

L何解释

• $x = \phi(x)$ 的不动点 ξ 是y = x和 $y = \phi(x)$ 两条曲线的交点.迭代从 x_0 出发向上到达 $y = \phi(x)$ 上点 $(x_0, \phi(x_0))$, 由此点再沿水平线到达y = x上点 $(\phi(x_0), \phi(x_0))$,其横坐标即 x_1 .如此做下去得一条阶梯形或环形折线,或向交点接近(收敛),或远离交点而去(不收敛).

迭代法收敛性

不动点原理

若对任何x,y都有| $\phi(x)$ – $\phi(y)$ | $\leq L|x-y|$,L < 1则迭代 $x_{n+1} = \phi(x_n)$ 收敛,极限 ξ 惟一,是 $\phi(x)$ 的不动点,并且有估计:

$$|x_n - \xi| \le \frac{L^n}{1 - L} |x_1 - x_0|$$

- 。 加于 $\phi(x)$ 的条件称Lipshitz条件(L称Lipshitz常数)它 强于连续性.实践中常用 $|\phi'(x)| \le L < 1$,从画图看出的规律.
- 。 这儿 $\phi(x)$ 定义在($-\infty$, ∞). 换成 ϕ : [a,b] → [a,b],定理 亦成立.
- 。 得到误差估计照例偏于保守.可在计算时用估计式:

$$|x_{n+1} - \xi| \le \frac{L}{1 - L} |x_{n+1} - x_n|$$

迭代法收敛性

- **局部收敛性**
- ト 定理: 若 $\phi(\alpha) = \alpha$, $\phi'(x)$ 在 α 附近连续, $|\phi'(x)| < 1$,则 迭代法 $x_{n+1} = \phi(x_n)$ 局部收敛。即存在r > 0,在区间 $(\alpha r, \alpha + r)$ 中任取 x_0 ,迭代法收敛到 α 。
- ▶ 定理: 若 $\phi(\alpha) = \alpha$, $\phi'(x)$ 在 α 附近p阶连续可导,且 $\phi'(\alpha) = \phi''(\alpha) = \cdots = \phi^{(p-1)}(\alpha) = 0$, $\phi^{(p)}(\alpha) \neq 0$, 则 迭代法 $x_{n+1} = \phi(x_n)$ p阶局部收敛。

收敛性判定

- 讨论例2中迭代的收敛性
 - $\phi(x) = 2 \frac{x^3 + 2x^2}{10}, \phi'(1.5) = -1.275, \phi'(1.3) = -1.027$ 在[1.3,1.5]有| $\phi'(x)$ | > 1,不收敛.
 - $\phi(x) = \frac{20}{x^2 + 2x + 10}$ 在[1,2]有0 < $|\phi'(x)|$ < 1,局部收敛. 实际上 ϕ : [1,2] \rightarrow [1,2].

收敛性改进

- 可以改进迭代法收敛性乃至变发散为收敛
- 松弛法

$$\omega_n = (1 + \lambda_n)^{-1}$$

$$x_{n+1} = (1 - \omega)x_n + \omega_n \phi(x_n),$$

Aitken法

$$\circ \quad u_{n+1} = \phi(x_n)$$

$$v_{n+1} = \phi(u_{n+1})$$

松弛法算例

n	\mathcal{X}_n	$\varphi(x_n)$	λ_n	Q_n
0	1	1.538 461 538 461 539	0.473 372 781 065 088 7	0.678 714 859 437 751 0
1	1.365 461 847 389 558	1.370 293 834 882 256	0.444 163 999 685 426 5	0.692 442 132 761 808 2
2	1.368 807 719 114 480	1.368 808 280 340 511	0.443 828 367 622 074 7	0.692 603 097 726 192 0
3	1.368 808 107 821 367	1.368 808 107 821 375	0.443 828 328 574 875 3	0.692 603 116 457 097 1
4	1.368 808 107 821 373	1.368 808 107 821 373		

Aitken方法算例

▶ 例3 (续). 同例2,取 $x_0 = 1$, $\phi(x) = 2 - \frac{(x^3 + 2x^2)}{10}$.

(2)
(2) n+1
000 000 003
257 766 407
625 768 061
046 859 809
107 821 372
2

n	\mathcal{X}_n	$\mathcal{X}_{n+1}^{(1)}$	$\mathcal{X}_{n+1}^{(2)}$
0	1	1.538 461 538 461 539	1.295 019 157 088 122
1	1.370 813 882 687 234	1.367 918 090 298 850	1.369 203 162 587 276
2	1.368 808 169 944 811	1.368 808 080 249 231	1.368 808 120 058 670
3	1.368 808 107 821 373	1.368 808 107 821 373	1.368 808 107 821 373

Newton法

- > 方法
 - 。取初始近似 x_0
 - 迭代 *n* = 0,1,2,...
 - $\cdot x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$

直到
$$|x_{n+1}-x_n| \le \epsilon$$
和(或) $\left|\frac{x_{n+1}-x_n}{x_{n+1}}\right| \le \epsilon_1$, $|f(x_{n+1})| \le \epsilon_2$

- ▶ 导出
 - 。'以线性函数代非线性函数'
 - 在初始近似 x_n 作Taylor展开

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{f''(\eta)(x - x_n)^2}{2}$$

- 线性部分零点 x_{n+1}
- 。'以直代曲'
 - 由 $(x_n, f(x_n))$ 作f(x)的切线
 - 交x轴于 x_{n+1} .因此Newton法也叫切线法

Newton法算例

▶ 例4. 例2,取 $x_0 = 1$ 用Newton法.结果见下表左栏.

$$x_{n+1} = x_n - (x_n^3 + 2x_n^2 + 10x_n - 20)/(3x_n^2 + 4x_n + 10)$$

n	Newton 法	弦位法	抛物线法
0	1	1	1
1	1.411 764 705 882 353	1.500 000 000 000 000	1.500 000 000 000 000
2	1.369 336 470 588 235	1.354 430 379 746 836	1.250 000 000 000 000
3	1.368 808 188 617 532	1.368 270 259 654 687	1.368 535 857 721 367
4	1.368 808 107 821 375	1.368 810 350 393 887	1.368 807 906 820 780
5	1.368 808 107 821 373	1.368 808 107 472 217	1.368 808 107 821 681
6	1.368 808 107 821 373	1.368 808 107 821 372	1.368 808 107 821 373
7		1.368 808 107 821 373	1.368 808 107 821 373

Newton法收敛性

定理

Newton迭代法在f(x) = 0单根 ξ 附近是二阶收敛的,并且有 $|x_{n+1} - \xi| \approx \left| \frac{f''(\xi)}{2f'(\xi)} \right| |x_n - \xi|^2$

- 注
 - Newton迭代法也可视为不动点迭代法 $\phi(x) = x \frac{f(x)}{f'(x)}$
 - 单根的假设是必要的.例如,求 $(x-1)^2 = 0$ 的二重根1.Newton迭代是线性收敛的:

$$x_{n+1} - 1 = \frac{x_n - 1}{2}$$

• 由 $0 = f(\xi) = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(\eta)(\xi - x_n)^2}{2}$ 得 $x_{n+1} - \xi = \frac{f''(\eta)}{2f'(x_n)}(\xi - x_n)^2$ 据此可推出在 ξ 附近取 x_0 ,误差越来越小,是二阶收敛的。由 $\varphi(\xi) = \xi, \varphi'(\xi) = 0, \varphi''(\xi) \neq 0$ 亦可得二阶收敛性.

Newton法变形

- **L**个方法
 - 。 简化Newton法.
 - 为减少计算导数的化费,可只求f'(x₀)以后所有导数不另求。
 这相当于第一次作切线,以后作其平行线.当然,这样收敛要慢些.还可以取折衷方案,隔几步计算一下导数
 - 用差商代导数(弦位法)
 - $x_{n+1} = x_n \frac{f(x_n)(x_n x_{n-1})}{f(x_n) f(x_{n-1})}$ 它免除了计算导数

综合除法

> 多项式的情况计算可应用综合除法

30 = q(2) = f'(2)

弦位法

- 方法(也叫割线法)
 - \circ 取初始近似 x_0, x_1

•
$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

直到 $|x_{n+1} - x_n| \le \epsilon$ 和(或)

$$\left|\frac{x_{n+1}-x_n}{x_{n+1}}\right| \le \epsilon_1|_1, \qquad |f(x_{n+1})| \le \epsilon_2|_1$$

- 导出
 - 。 '以线性函数代非线性函数'

$$f(x) = f(x_n) + f[x_n, x_{n-1}](x - x_n) + \frac{f''(\eta)(x - x_n)(x - x_{n-1})}{2}$$

- 取线性插值函数零点 x_{n+1} '以直代曲'
- 作弦交x轴于 x_{n+1} .

弦位法收敛性

定理

弦位法在f(x) = 0单根 ξ 附近是 $p = \frac{\sqrt{5}+1}{2}$ 阶收敛的,并且有 $|x_{n+1} - \xi| \approx \left| \frac{f''(\xi)}{2f'(\xi)} \right|^{2p-1} |x_n - \xi|^p$

- 》 例5. 同例2,弦位法 $.x_0 = 1, x_1 = 1.5$, 计算结果见Newton法算例.
- 注:
 - 。 弦位法较Newton法收敛慢,但每步不必计算导数,总计算量也有可能低于Newton法.因此,弦位法颇具竞争力.
 - 变形:试位法、保证收敛、取二初始值、其上函数值变号、算出新值后、取代与之函数值同号的旧值再算新值。与对分区间套法一样每次迭代所用二值都分居于根的两侧。是线性收敛的

非线性方程组Newton法

▶ 二元情况方程

$$\begin{cases} f_1(x, y) = 0 \\ f_2(x, y) = 0 \end{cases}$$

- > 方法
 - 。 取初值 x_0, y_0
 - · 迭代 n = 0,1,2,...
 - 解方程组求 Δx , Δy

$$\begin{cases} \frac{\partial f_1}{\partial x} \Big|_n \Delta x + \frac{\partial f_1}{\partial y} \Big|_n \Delta y = -f_1 \Big|_n \\ \frac{\partial f_2}{\partial x} \Big|_n \Delta x + \frac{\partial f_2}{\partial y} \Delta y = -f_2 \Big|_n \end{cases}$$

• 计算

$$x_{n+1} = x_n + \Delta x, y_{n+1} = y_n + \Delta y$$

直至改变量合乎要求

▶ 导出:Taylor公式线性化

算例

用Newton法解方程组,取初始近似 $(1,1)^T$,

$$\begin{cases} f_1(x,y) = x^2 + y^2 - 5 = 0 \\ f_2(x,y) = (x+1)y - (3x+1) = 0 \end{cases} J = \begin{bmatrix} 2x & 2y \\ y - 3 & x + 1 \end{bmatrix}$$

$$\text{推确解}(1,2)^T$$

n	x y	$f_1(x, y)$ $f_2(x, y)$		J
0	1.000 000 000	-3.000 000 000	2.000 000 000	2.000 000 000
	1.000 000 000	-2.000 000 000	-2.000 000 000	2.000 000 000
1	1.250 000 000	1.625 000 000	2.500 000 000	4.500 000 000
	2.250 000 000	0.312 500 000	-0.750 000 000	2.250 000 000
2	1.000 000 000	0.111 882 716 0	2.000 000 000	4.055 555 556
	2.027 777 778	0.055 555 555 56	-0.972 222 222 2	2.000 000 000
3	1.000 194 288	7.664 046 324 8×10 ⁻⁴	2.000 388 576	4.000 188 891
	2.000 094 446	-5.378 537 450×10 ⁻⁶	-0.999 905 554 5	2.000 194 288
4	1.000 000 002 2.000 000 010	4.666 482 223×10 ⁻⁸ 1.834 736 629×10 ⁻⁸		

非线性方程组Newton法

一般情况方程

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

- > 方法
- ▶ 给出初始近似 $x^{(0)}$ = $\left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}\right)^T$
- → 计算I^(k), f^(k)
- $MJ^{(k)}\Delta x = -f^{(k)} 求 \Delta x$
- **)** 计算新近似 $x^{(k+1)} = x^{(k)} + \Delta x$
- ▶ 直到 $\|\Delta x\| \leq \varepsilon$

股情况为程
$$\begin{cases}
f_1(x_1, x_2, \dots, x_n) = 0 \\
f_2(x_1, x_2, \dots, x_n) = 0 \\
\dots \\
f_n(x_1, x_2, \dots, x_n) = 0
\end{cases}$$
法
$$\exists 初始近似x^{(0)} = \\
f_{(0)}, x_2^{(0)}, \dots, x_n^{(0)}
\end{cases}$$

$$x = 0,1, \dots$$

$$x = \int_{I(k)}^{Ax_1} f_{(k)} f_{(k)}$$