AFL*: a simple approach to fuzzing stateful systems

PhD Workgroup - 30th of April, Leiden University

Cristian Daniele, Radboud University - Netherlands

Cristian Daniele - AFL*
Slide 1/16

About me

- Third-year PhD at Radboud University, Netherlands
- Doing research in fuzzing (mostly stateful fuzzing)
- Interested in <u>state-model learning</u>

Contact me!:)

Conclusions

	LightFTP				<u>Pure-ftdb</u>			
	<u>Edge</u>	<u>State</u>	Execution per	Messages	<u>Code</u>	<u>State</u>	Execution per	Messages
	coverage	coverage	<u>second</u>	<u>sent</u>	coverage	coverage	<u>second</u>	<u>sent</u>
AFL*	25,28%	100%	~ 63k	25k	18,72%	100%	~ 31k	1.5 million
AFLNet	0,44%	80%%	~ 9	400	0,78%	100%	~ 27	1.700

Comparison between AFLNet and AFL*

Cristian Daniele - AFL*
Slide 3/16

Stateless fuzzing

System Under Test (e.g., image converter)

Stateful fuzzing

System Under Test (e.g., FTP protocol)

Cristian Daniele - AFL*
Slide 5/16

A few stateful fuzzers (not too many)

Seven relevant categories for fuzzer of stateful systems:

- 1. Evolutionary fuzzers
- 2. Grammar-Based fuzzers
- 3. Evolutionary Grammar-Based Fuzzers
- 4. Grammar Learner Fuzzers

Fuzzers for Stateful Systems: Survey and Research Directions

- 5. Evolutionary Grammar-Learner Fuzzers
- 6. Machine Learning-Based Fuzzers
- 7. Man-in-the-middle Based Fuzzers

Cristian Daniele - AFL*
Slide 6/16

Initial idea: LearnFuzz


```
Start: dict = init_dictionary()
Loop A: currentStateModel= StateLearner(dict)
        async(alert = NewEdgeReporter(stateModel,olderStateModels[]))
Loop B: stateToFuzz = StateSelector(currentStateModel,bitmap)
Loop C: messageToFuzz = MessageSelector(stateToFuzz,dict)
        systemFeedback=StatelessFuzzer(messageToFuzz)
        if(systemFeedback.newBranch==true){
                updateGeneralBitmap()
        if(systemFeedback.newResponse==true){
                AddMessageDictionary()
        nextStep=FeedbackHandler(systemFeedback)
        switch(nextStep) {
                case "improve state model":
                        goto Loop C
                        break
                case "pick new state":
                        goto Loop B
                        break
                case "pick new message":
                        goto Loop A
                        break
```

Baseline: AFL*!

Cristian Daniele - AFL*
Slide 8/16

Easy but effective!

C.2: Mutating single messages and traces

C.3: Sending mutated messages over a TCP/IP socket

Preeny

Cristian Daniele - AFL*

Slide 9/16

But how many states can AFL* cover...?

All of them!

	<u>Ligh</u>	<u>tFTP</u>	<u>Pure-ftdb</u>		
	AFL*	<u>AFLNet</u>	AFL*	<u>AFLNet</u>	
State 1	14903	167	7390	304	
State 2	5099	84	2460	210	
State 3	3161	160	1328	463	
State 4	2227	0	1031	150	

Comparison state coverage between AFLNet and AFL* on LightFTP

Biggest impact on performance?

Overriding network calls?

AFL* mode	Execution per seconds
With network calls	20
Without network calls	193
With long traces	44k

Comparison AFL* modes

On the (in)Efficiency of Fuzzing Network
Protocols

Sending long traces?

Since I already have the state models...

Differential testing!

bftpd

LightFTP

Pure-FTPd

ProFTPd

Active or passive learning?

LightFTP state model inferred via passive learning*

* Jermo Vanoort's work

Cristian Daniele - AFL*
Slide 15/16

Take away slide

- 1. Stateful fuzzing is challenging!
- 2. Persistent mode originally devised to fuzz state**less** systems is extremely useful to the fuzz stateful ones
- 3. Different implementations of the same protocol might have different state models
- 4. Not clear why active and passive learners generate different state models

For questions, ideas or suggestions, contact me!

Contact me!:)

Cristian Daniele - AFL*
Slide 16/16