Rajshahi University of Engineering and Technology

Course code: 1202

Course title: Circuits & Systems - II

Report Number: 01

Experiment Name: Study of the relation between phase voltage and line voltage in a wye connected 3 – φ balanced system.

Date of Submission: 04 June 2024

By

Md Ahnaf Abid Fahim

Roll: 2210022

Registration No: 1076 / 2022 – 2023

Department of Electrical & Computer Engineering, RUET

Submitted to

Oishi Jyoti

Assistant Professor

Department of ECE, RUET

Experiment 1

- **1.1 Name of the Experiment:** Study of the relation between phase voltage and line voltage in a wye connected 3ϕ balanced system.
- **1.2 Theory:** In a balanced $3-\varphi\ Y-Y$ system, if phase voltage of a phase is considered as , $V_{an}=V_p \ \angle 0^\circ \ \text{and} \ V_{bn}=V_p \ \angle -120^\circ$

Then, line – to – line voltage between phase "a" and "b" is,

$$V_{ab} = V_{an} + V_{nb} = V_{an}$$
 - V_{bn} ; which is:

$$V_{ab} = \sqrt{3} V_p \angle - 30^\circ$$

Now, if we consider the magnitude only, we get the relation between phase and line voltage as,

$$V_L = \sqrt{3}V_P \dots \dots (1)$$

1.3 Required Apparatus:

- 1. AC voltage source
- 2. Ammeter
- 3. Multimeter
- 4. Connecting wire
- 5. Clamp meter

1.4 Circuit Diagram:

Fig: Balanced $3 - \phi Y - Y$ system.

1.5 Calculation:

1. Reading 1:

Line voltage, $V_L = 41.7 \text{ V}$

Measured phase voltage, $V_{P(m)} = 23.5 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 24.07 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|24.07 - 23.5|}{24.07} \times 100\% = 2.43\%$$

2. Reading 2:

Line voltage, $V_L = 34.1 \text{ V}$

Measured phase voltage, $V_{P(m)} = 19 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 19.69 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|19.69 - 19|}{19.69} \times 100\% = 3.63\%$$

3. Reading 3:

Line voltage, $V_L = 55.5 \text{ V}$

Measured phase voltage, $V_{P(m)} = 31.4 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 32.04 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|32.04 - 31.4|}{32.04} \times 100\% = 2.05\%$$

4. Reading 4:

Line voltage, $V_L = 63.6 \text{ V}$

Measured phase voltage, $V_{P(m)} = 35.6 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 36.72 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)} \times 100\% = \frac{|36.72 - 35.6|}{36.72} \times 100\% = 3.41\%$$

5. Reading 5:

Line voltage, $V_L = 71.7 \text{ V}$

Measured phase voltage, $V_{P(m)} = 40.5 \text{ V}$

Calculated phase voltage, $V_{P(calc)} = 41.4 \text{ V}$

Error =
$$\frac{|VP(calc) - VP(m)|}{VP(calc)}$$
 X 100% = $\frac{|41.4 - 40.5|}{41.4}$ X 100% = 2.21%

$$\therefore \text{ Average error} = \frac{2.43 + 3.63 + 2.05 + 3.41 + 2.21}{5} = 2.746\%$$

1.6 Table for Studying Relation Between Line and Phase Voltage:

Serial	Line Voltage,	Measured	Calculated	Percentage	Line	Phase
No	$V_{L}(V)$	Phase	Phase	of	Current, I _L	Current, I _P
		Voltage, V _{P(m)}	Voltage, V _{P(calc)}	Error (%)	(A)	(A)
		(V)	(V)			
1	41.47	23.5	24.07	2.43	0.24	0.24
2	34.1	19	19.69	3.63	0.21	0.21
3	55.5	31.4	32.04	2.05	0.358	0.35
4	63.6	35.6	36.72	3.14	0.407	0.4
5	71.7	40.5	41.4	2.21	0.462	0.46

1.7 Result:

Average percentage of error: 2.746%

1.8 Discussion:

Performing the experiment above, we could prove the relation between phase and line voltage in a $3-\varphi$ balanced Y-Y system. After all the calculations, we figured our error margin was 2.746% which is negligible. This little error margin certifies that, the line voltage is $\sqrt{3}$ times that of phase voltage.

1.9 References:

1. Fundamentals of Electric Circuits by Charles K. Alexander and Mathew N. O. Sadiku.