Universidad Nacional Autónoma de México

Facultad de Ingeniería División de Ciencias Básicas Álgebra (1120)

Profesor(a): Rosalba Rodríguez Chávez
Semestre 2021-1

SERIE 2

Nombre: Aguilar Maya Daniel

Grupo: 28

SERIE TEMA 2 "NÚMEROS REALES" (PARES)

en nome				1														
a) 5+4	=	5+	34								+3						•	
												30						
	= (5+	3) 1						=	2	+ 2	K						
	-	5+	2*	+ JA					=	(2.	+2)*	4						
)						12	+1	4)	卡					
										6 6	- 1							
	=	(5	+ 11	(条(of				Ξ	((2	+1)	*)	4					
													4.1					
	= (1(5	+1.)4)4)) 4				2	((2*) ~)~	1				
	= (((5	*)	*)*)	*				2	((3)*) *		1				
	- (111) *)*)*		(12-	1		2 2	1 4)*							
	-/	116	,	, ,							-							
	= ((7)*)	*			(2+	3 =	5	}							-
	= (8)	F.				E			-	3							
		7		11/1														

b)
$$a \cdot b = b \cdot a$$

Dem $a \cdot b = (m-n)(p-q)$
 $= (mp + nq) - (mq + np)$
 $= (pm + qn) - (qm + pn)$
 $= (p - q)(m - n)$
 $a \cdot b = b \cdot a$

13 Determinor el elemento inverso atitivo para audquier número entero Por demostror Il XEZ . F. X+Q=O YGEZ Dem x+q=0 (Sumamos -a en ambos lados) * x + a + (-a) = 0 + (-a) (quitamos paréntesis) x+q-a=0-9 (propieded asociativa) x + (a-q) = 0-q(propieded neutro aditivo) x + (a-a) = -a (propiedad neutro multiplicativa) - x + (1.a - 1.a) = -a (factorizamos a) - x + (a(1-1)) = -ax + (a(0)) = -a(1-1=0) (para todo nen Z, n.O=O) x+0=-9 (neutro aditivo) -> x = -a 00 X=-GEN :]! -a ∈ Z . J. (-a) + a = 0 + a ∈ Z =

c)
$$9x^2 - 25 = 0$$
 $\Rightarrow 9x^2 = 25$
 $\Rightarrow x^2 = \frac{25}{9}$
 $\Rightarrow x = \pm \sqrt{\frac{25}{9}} = \pm \frac{5}{3}$

(a) Tiene solution en Q

$$\begin{array}{l} n=K & \left(1-\frac{1}{7}\right)\left(1-\frac{1}{7}\right)\left(1-\frac{1}{16}\right) \cdots \left[1-\frac{1}{(k+1)^2}\right] = \frac{k+2}{2(k+1)} \\ = \frac{1}{(k+1)+1} \left[1-\frac{1}{2}\right] \left(1-\frac{1}{2}\right) \left(1-\frac{1}{2}\right) \cdots \left[1-\frac{1}{(k+1)^2}\right] \left[1-\frac{1}{(k+1)+1}\right]^2 = \frac{(k+1)+2}{2((k+1)+1)} \left[1-\frac{1}{2(k+1)+1}\right]^2 \\ = \frac{1}{2(k+1)+1} \left[1-\frac{1}{2(k+1)+1}\right] \left[1-\frac{1}{2(k+1)+1}\right] \left[1-\frac{1}{2(k+1)+1}\right] = \frac{1}{2(k+2)} \left[1-\frac{1}{2(k+2)}\right] \\ = \frac{1}{2(k+2)} \left[1-\frac{1}{2(k+2)}\right] \left[1-\frac{1}{2(k+2)}\right] = \frac{1}{2(k+2)} \left[1-\frac{1}{2(k+2)}\right] \\ = \frac{1}{2(k+2)} \left[1-\frac{1}{2(k+2)}\right] = \frac{1}{2(k+2)} \left[1-\frac{1}{2(k+2)}\right] \\ = \frac{1}{2(k+$$

```
(28). Demostrar por medio de inducción maternática la validaz de la posposición:
  1.3 + 2.32 + 3.33 + ... + n(3") = (2n-1)3"+ +3 ; Vn EN
• n=1  1\cdot (3^1) = (2(1)-1)\frac{3}{4} + 3  3 = 9+3
        -> 3 = 32+3 -7 3=3 00 Si cumple para n=1
· n= K 1.3+2.32+3.33+...+ K(3K) = (2K-1)3K+1+3 - H.I.
· n= K+1 1.3+2.32+3.33+...+ K(3k)+ (K+1) 3K+1 = (2(K+1)-1) 3 +3 { Tesis
        1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + K(3^k) + (k+1)3^{k+1} = (2k+1)3^{k+2} + 3 7 Tesis
Partiendo de H. I. a Mille
1.3+2.32+3.33+...+ K(3k)=(2k-1)3k+1+3
Sumamos ambos lados (K+1) 3K+1 :
1 \cdot 3 + 2 \cdot 3^2 + 3 \cdot 3^3 + ... + k(3^k) + (k+1)3^{k+1} = (2k-1)3^{k+1} + 3 + (k+1)3^{k+1}
                                      = (2k-1) 3 k+1 + 3 + 4(k+1) 3 k+1
                             = (2K-1)3K+1+3+4(K+1)3K+1
                                  = 3KH ((2K-1)+4(K+1))+3
                                   = 3 K+1 (2K-1+4K+4)+3
                                    = 3 k+1 (6k+3)+3
                                    = 3 k+1 · 3(2k+1)+3
```

- 3 K+2 (2K+1)+3

= (2K+1) 3K+2+3 , K+1EW

(Válida VnEM)

30) Demostrar por inducción matemática la validez de la signiente proposición

$$\frac{4}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^n} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right), \forall n \in \mathbb{N}$$

Dem

 $\cdot n = 1$
 $\frac{1}{3} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right)$
 $\rightarrow 1 = \frac{1}{3} = \frac{1}{3} \left(\frac{2}{3} \right)$
 $\rightarrow 1 = 2$
 $\rightarrow 1 = 1$
 $\rightarrow 3 = 3$
 $\rightarrow 3 = 3$

38 Obtense of conjunts of values of
$$x \in \mathbb{R}$$
 que satisfacen la designal dad

 $\begin{vmatrix} 1 \\ 1 \\ x-4 \end{vmatrix} > 3$

2 Caso 1: $x-4>0$, $x>9$

2 Caso 1: $x-4>0$, $x>9$

2 Caso 1: $x-4>0$, $x>9$

2 1 $x-4$

3 1 $x-4$

4 1 $x-4$

5 1 $x-4$

6 Caso 2: $x-4<0$, $x-4$

6 Caso 2: $x-4<0$, $x-4$

7 1 $x-4$

7 1 $x-4$

8 2 1 $x-4$

9 1 $x-4$

9 1 $x-4$

2 $x-4$

2 $x-4$

3 $x-4$

1 $x-4$

2 $x-4$

3 $x-4$

1 $x-4$

2 $x-4$

3 $x-4$

1 $x-4$

3 $x-4$

3 $x-4$

1 $x-4$

3 $x-4$

3 $x-4$

3 $x-4$

4 $x-4$

3 $x-4$

4 $x-4$

5 $x-4$

6 $x-4$

6 $x-4$

7 $x-4$

8 $x-4$

9 $x-$

38) Obtener el conjunto de valores de
$$x \in \mathbb{R}$$
 que satisfacen la designal dad

 $1 \times -51 < 513 \times -51$
 $-7 \quad 1 \times -51 < 5 \quad con \quad x \neq \frac{5}{3}$
 $-7 \quad 1 \times -51 < 5 \quad con \quad x \neq \frac{5}{3}$

Designal dad

 $1 : \quad \frac{x-5}{3x-5} < 5$
 $2 : \quad \frac{x-5}{3x-5} < 5$
 $3 : \quad \frac{x-5}{3x-5} < 5$

40) Obtener, el conjunto de valores de $x \in \mathbb{R}$ que satisface la designal dad $\frac{3}{|x+1|} \le 4$ $\Rightarrow 3 \le 4|x+1|$ con $x \ne -1$ $\Rightarrow 1|x+1| > 3$ $\Rightarrow |x+1| > \frac{3}{4}$ $\Rightarrow x + 1 > \frac{3}{4}$ $\Rightarrow x > \frac{3}{4} - 1$ $\Rightarrow x > -\frac{1}{4}$ $\Rightarrow x = (-\frac{1}{4}, \infty)$ $\Rightarrow x \in (-\infty, -\frac{7}{4})$ $\Rightarrow x \in (-\infty, -\frac{7}{4})$

(42) Obtener el conjunto de valores de	XER que satisfacen la designal dad
	TAY TAY
$\begin{vmatrix} x-3 \\ x+1 \end{vmatrix} \le 2$	Car (1 x4170 xx-1
Designal ded 1: $\frac{x-3}{x+1} \le 2$	5-4-8-9
Caso 1: x+1 > 0, x >-1	Caso 2: x+1<0, x <-1
$\frac{x-3}{x+1} \leqslant 2$	x-3 ≤ 2 - 4x - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
-> x-3 ≤ 2(x+1)	$\rightarrow x-3 \geqslant 2(x+1)$
→ x-3 ≤ 2x+2	→ x-3≥2x+2
\rightarrow -3-2 \leq 2x -×	-3-2>2x-x
-> x > -5	→ × ≤ -5
→ x ∈(-1,∞)	→ x ∈ (-∞, -5]
. Designalded 1: Caro 1 U Co	250 2 200 0 0 5 5 10 - x 1 0 000
D1= (-00, -5]U(-	-1,∞)
• De signal ded 2: $\frac{x-3}{x+1} > -2$	A kentage in dispersion to track to (3)
Caso 1: x+170,x>-1	Casa 2: x+1 €0, x < -1
$\begin{array}{c} x-3 \\ x+1 \end{array} \geqslant -2$	x+3 > 2
-> x-3 > -2(x+1)	$-x \times -3 \le -2(x+1)$
-> x-3> -2x-2	-> x-3≤-2x-2
-> x+2x > -2+3	-> x + 2x ≤ -2 +3
3x ≥ 1	-> 3×≤1
- x > 1/3	→ × ≤ 1/3
→ x ∈ [1/3, ∞)	→ x ∈ (-∞, -1)
. Designalded 2: Caso 1 UC	so 2
Dz: (- 00, -1) U[1/3,00)
Como $\left \frac{x-3}{x+1}\right \le 2$, la solución es l	la intersección de las de riquel dades
1///-5 -1 1/3/	Dı
1////	Dz
Solución: D1 NDz = [(-0,-5]	U(-1, 00)] N [(-0, -1) U [1/3, 00)]
	-51U EY3, 00)