```
In [2]:
```

```
import pandas as pd
import numpy as np
```

In [3]:

```
#Load the data with pandas
df = pd.read_csv('../gapminder.csv', low_memory=False)
df.head()
```

Out[3]:

	country	incomeperperson	alcconsumption	armedforcesrate	breastcancerper100th	co2emissions	femaleemployra
0	Afghanistan		.03	.5696534	26.8	75944000	25.60000038146
1	Albania	1914.99655094922	7.29	1.0247361	57.4	223747333.333333	42.09999847412
2	Algeria	2231.99333515006	.69	2.306817	23.5	2932108666.66667	31.70000076293
3	Andorra	21943.3398976022	10.17				
4	Angola	1381.00426770244	5.57	1.4613288	23.1	248358000	69.40000152587
4							Þ

In [4]:

```
# Convert columns from strings to numeric
columns = ['incomeperperson', 'alcconsumption', 'armedforcesrate', 'breastcancerper100th
', 'co2emissions', 'femaleemployrate', 'hivrate', 'internetuserate', 'lifeexpectancy', '
oilperperson', 'polityscore', 'relectricperperson', 'suicideper100th', 'employrate', 'urb
anrate']
data = df[columns].apply(pd.to_numeric, errors='coerce')
data['country'] = df['country']
data
```

Out[4]:

	incomeperperson	alcconsumption	armedforcesrate	breastcancerper100th	co2emissions	femaleemployrate	hivrate	inte
0	NaN	0.03	0.569653	26.8	7.594400e+07	25.600000	NaN	
1	1914.996551	7.29	1.024736	57.4	2.237473e+08	42.099998	NaN	
2	2231.993335	0.69	2.306817	23.5	2.932109e+09	31.700001	0.1	
3	21943.339898	10.17	NaN	NaN	NaN	NaN	NaN	
4	1381.004268	5.57	1.461329	23.1	2.483580e+08	69.400002	2.0	
	•••							
208	722.807559	3.91	1.085367	16.2	1.425435e+09	67.599998	0.4	
209	NaN	NaN	5.936085	NaN	1.424133e+07	11.300000	NaN	
210	610.357367	0.20	2.316235	35.1	2.348647e+08	20.299999	NaN	
211	432.226337	3.56	0.341335	13.0	1.320257e+08	53.500000	13.5	
212	320.771890	4.96	1.032785	19.0	5.902197e+08	58.099998	14.3	

213 rows × 16 columns

<u>, </u>
--

Null Values

```
#Remove null values
data= data.replace(0, np.NaN)
data = data.dropna()
```

Limit Data

```
In [23]:
```

```
#Countries with lowest incomes
lowestData = data[data['incomeperperson'] < 749]</pre>
```

```
In [24]:
```

```
#Countries with the hieghest incomes
highestData = data[data['incomeperperson'] > 9379]
```

Calculate frequencies

```
In [26]:
```

```
print("Values for incomeperperson:")
incomeperperson_freq = pd.concat(dict(counts = data["incomeperperson"].value_counts(sort = False, bins=10, dropna=False), percentages = data["incomeperperson"].value_counts(sort=False, bins=10, dropna=False, normalize=True)), axis=1)
print(incomeperperson_freq)
```

Values for incomeperperson:

```
counts percentages
(518.648, 4499.492]
                         22
                                0.392857
(4499.492, 8440.921]
                                0.160714
(8440.921, 12382.35]
                                0.053571
                          3
(12382.35, 16323.779]
                               0.053571
                         2
(16323.779, 20265.208]
                              0.035714
                         1
(20265.208, 24206.637]
                              0.017857
                         8
(24206.637, 28148.066]
                               0.142857
(28148.066, 32089.495]
                         1
                              0.017857
                         3
(32089.495, 36030.924]
                              0.053571
(36030.924, 39972.353]
                               0.071429
```

In [32]:

```
print("Values for lifeexpectancy:")
lifeexpectancy_freq = pd.concat(dict(counts = data["lifeexpectancy"].value_counts(sort=F
alse, bins=10, dropna=False), percentages = data["lifeexpectancy"].value_counts(sort=False, bins=10, dropna=False, normalize=True)), axis=1)
print(lifeexpectancy_freq)
```

Values for lifeexpectancy:

```
counts percentages
(52.765, 55.857] 1 0.017857
(55.857, 58.916]
                   0
                         0.000000
(58.916, 61.976]
                   0
                         0.000000
                   0 0.000000
3 0.053571
8 0.142857
(61.976, 65.036]
(65.036, 68.095]
(68.095, 71.155]
(71.155, 74.215]
                   12
                        0.214286
(74.215, 77.275]
                         0.125000
(77.275, 80.334]
                   9
                         0.160714
(80.334, 83.394] 16 0.285714
```

In [34]:

```
print("Values for internetuserate:")
internetuserate_freq = pd.concat(dict(counts = data["internetuserate"].value_counts(sort = False, bins=10, dropna=False), percentages = data["internetuserate"].value_counts(sort=False, bins=10, dropna=False, normalize=True)), axis=1)
print(internetuserate_freq)
```

```
values for internetuserate:
               counts percentages
(3.609, 12.658]
                 5 0.089286
(12.658, 21.616]
                         0.071429
(21.616, 30.573]
                    3
                         0.053571
(30.573, 39.531)
                    7
                         0.125000
(39.531, 48.489]
                         0.160714
(48.489, 57.447)
                    3
                         0.053571
(57.447, 66.404]
                   4
                         0.071429
(66.404, 75.362]
                   5
                         0.089286
(75.362, 84.32]
                         0.178571
                   10
(84.32, 93.278]
                   6
                         0.107143
In [35]:
```

```
print("Values for breastcancerper100th:")
breastcancerper100th_freq = pd.concat(dict(counts = data["breastcancerper100th"].value_c
ounts(sort=False, bins=10, dropna=False), percentages = data["breastcancerper100th"].val
ue_counts(sort=False, bins=10, dropna=False, normalize=True)), axis=1)
print(breastcancerper100th_freq)
```

Values for breastcancerper100th:

		counts	percentages
(16.514999999999997,	25.05]	11	0.196429
(25.05, 33.5]		7	0.125000
(33.5, 41.95]		7	0.125000
(41.95, 50.4]		9	0.160714
(50.4, 58.85]		4	0.071429
(58.85, 67.3]		1	0.017857
(67.3, 75.75]		5	0.089286
(75.75, 84.2]		3	0.053571
(84.2, 92.65]		8	0.142857
(92.65, 101.1]		1	0.017857

New Categorical Variables

```
In [39]:
```

```
In [ ]:
```