Example 4

AB is the diameter of circle O.C is a point on the circumference of circle O.AD is perpendicular to the tangent line drawn through C. Show that AC is the angle bisector of $\angle DAB$.

Solution: Method 1:

Connect CB. Since AB is the diameter, $\angle ACB = 90^{\circ}$. Since $AD \perp DC$, $\angle ADC = 90^{\circ}$. $\angle ACD = \angle ABC$ (they face the same arc AC). Thus $\triangle ACD \sim \triangle ABC$. So $\angle DAB = \angle CAB$. AC is the angle bisector of $\angle DAB$.

Method 2: Connect CB. Since AB is the diameter, $\angle ACB = 90^{\circ}$. So $\angle 3 + \angle 4 = 90^{\circ}$. $\angle 3 = 90^{\circ} - \angle 4$. Since $AD \perp DC$, $\angle 1 + \angle 4 = 90^{\circ}$. $\angle 1 = 90^{\circ} - \angle 4$. $\angle 1 = \angle 3$.

 $\angle 3 = \angle 2$ (they face the same arc AC). Thus $\angle 1 = \angle 2$. AC is the angle bisector of $\angle DAB$.