Mixed-Criticality Scheduling for Parallel Real-Time Tasks with Resource Reclamation

Qingqiang He¹, Nan Guan², Xu Jiang³

- 1 The Hong Kong Polytechnic University, China
- 2 City University of Hong Kong, China
- 3 Northeastern University, China

Summary

- federated scheduling of parallel real-time tasks
 - o each task is scheduled independently on a set of dedicated cores
 - o so we only need to consider the scheduling of one task on multi-cores
- target of our approach
 - o guarantee the deadline for hard real-time tasks
 - reclaim computing resources for soft real-time tasks
- the proposed approach
 - online monitor the execution of hard real-time tasks
 - o dynamically adjust the allocated number of cores for hard real-time tasks

The Parallel Real-Time Task

- for the scheduling
 - volume *vol(G)* : the total workload in this task
 - length *len(G)*: the workload in the longest path
 - o these parameters can be measured without knowing the structure of the DAG
- for the analysis
 - o the DAG task model

The longest path is
$$\lambda = (v_0, v_1, v_4, v_5)$$

$$len(G) = 6$$
 $vol(G) = 10$

The Scheduling

- work-conserving
- identical multi-core platform

3

work-conserving

not work-conserving

Motivation

Graham' bound in federated scheduling

$$R \le len(G) + \frac{vol(G) - len(G)}{m}$$
 $m = \left\lceil \frac{vol(G) - len(G)}{D - len(G)} \right\rceil$

- type 1 : analysis pessimism
 - assuming that vertices not in the longest path do not execute in parallel with the execution of the longest path.

analysis assumption

a possible schedule

Motivation

- type 2 : execution pessimism
 - o volume and length are based on the worst case execution time (WCET).
 - o the actual execution time of vertices can be far less than the WCET

 due to these two types of pessimism, the federated scheduling can waste a large amount of computing resources.

- online monitor the execution of hard real-time tasks
 - \circ the volume of the executed workload $w(t_i)$
 - \circ the length of time intervals during which at least one core is idle $\ l(t_i)$
- adjust the allocated number of cores for hard real-time tasks

Definition 1 (Allocation Vector). For a parallel real-time task (G, D, T), the allocation vector Φ is a set of time points $\{t_0, \dots, t_k\}$ $(k \ge 0)$ satisfying all of the following conditions.

- 1) $\forall i \in [0, k], \ 0 \le t_i < D$.
- 2) $\forall i, j \in [0, k] \text{ and } i < j, t_i < t_j.$

- online monitor the execution of hard real-time tasks
 - \circ the volume of the workload executed $w(t_i)$
 - \circ the length of time intervals during which at least one core is idle $\ l(t_i)$
- adjust the allocated number of cores for hard real-time tasks

$$m = \left\lceil \frac{vol(G) - len(G)}{D - len(G)} \right\rceil \qquad vol(G') = vol(G) - w(t_i)$$

$$len(G') = len(G) - l(t_i)$$

$$D' = D - t_i$$

$$t_1 \qquad \mathsf{D} \qquad m_i = \left\lceil \frac{vol(G') - len(G')}{D' - len(G')} \right\rceil$$

- the critical path
 - \circ the length of time intervals during which at least one core is idle $\,l(t_i)$
 - o the length of the remaining graph is bounded by

$$len(G') = len(G) - l(t_i)$$

- our approach dominates the original federated scheduling
 - o the adjusted number of cores cannot increase (Corollary 1)

- design principle for soft real-time tasks
 - how to determine the allocation vector
- monitor the execution satisfying both of the following conditions
 - o at least one core is idle
 - o more than one core are busy

An Example

$$len(G) = 6$$
 $vol(G) = 10$.

$$D = 7 \qquad m = \left\lceil \frac{vol(G) - len(G)}{D - len(G)} \right\rceil = 4$$

$$m \times D = 4 \times 7 = 28.$$

federated scheduling

allocation vector

$$\Phi = \{t_0 = 2, t_1 = 3\}$$

$$t_0 = 2$$
 $w(t_0) = 4$ $l(t_0) = 2$

$$vol(G') = vol(G) - w(t_i) = 6$$

$$len(G') = len(G) - l(t_i) = 4$$

$$D' = D - t_i = 5$$

$$\Phi = \{t_0 = 2, t_1 = 3\} \quad m_0 = \left\lceil \frac{vol(G') - len(G')}{D' - len(G')} \right\rceil = 2$$

$$vol(G') = vol(G) - w(t_i) = 6 \quad 4 \times 2 + 2 \times 1 + 1 \times 4 = 14$$

our approach

Conclusion

- the proposed approach
 - online monitor the execution of hard real-time tasks
 - o dynamically adjust the allocated number of cores for hard real-time tasks
- allocation vector as interface
 - o for hard real-time tasks, a schedulability test under the interface
 - o for soft real-time tasks, the design principle of how to determine the interface to reclaim computing resources
- using an example to illustrate the effectiveness of the proposed approach.

Thank you and Questions?