

Module I. Fundamentals of Information Security

Chapter 2 Cryptographic Techniques

Web Security: *Principles & Applications*

School of Data & Computer Science, Sun Yat-sen University

2.3 Mathematical Foundations

■ Mathematical Foundations of Public-Key Cryptography

- ♦ Prime factorizations of integers
- ♦ Bézout's Theorem
- ♦ Linear Congruence
- ♦ The Extended_Euclidean Algorithm
- ♦ The Chinese Remainder Theorem
- \Leftrightarrow *Euler*'s φ function
- ♦ Euler's Theorem and the Corollary
- ♦ Fermat's Little Theorem
- ♦ Primitive Root and Discrete Logarithm

2.3.1 Prime Factorizations of Integers

2.3.1 Prime Factorizations of Integers

- □ Fundamental Theorem of Arithmetic (算术基本定理)
 - ◆ Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes when the prime factors are written in order of non-decreasing size. (Euclid, 300 BC)
- □ Greatest Common Divisor (最大公因数)
 - \Leftrightarrow Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the **greatest common divisor** (GCD) of a and b, often denoted as gcd(a, b).

2.3.2 The *Euclidean* Algorithm (欧几里德辗转相除法)

— Book VII. Fundamentals of number theory 几何原本·第VII卷

■ Lemma 0.

- \Rightarrow Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).
- \Rightarrow *Proof.*
 - Suppose d divides both a and b. Recall that if $d \mid a$ and $d \mid b$, then $d \mid a-bk$ for any integer k. It follows that d also divides a-bq=r. Hence, any common division of a and b is also a common division of a and a.
 - Suppose that d' divides both b and r, then d' also divides bq+r=a. Hence, any common divisor of b and r is also common divisor of a and b.
 - Consequently, gcd(a, b) = gcd(b, r).
 - ◆ Note: a = bq + r, $0 \le r < b$, aka $r = a \mod b$ if the quotient q ignored. r is the (least positive) remainder of the division.

■ Lemma 0.

 \Rightarrow Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

□ Remark.

 \Rightarrow Suppose a and b are positive integers, $a \ge b$. Let $r_0 = a$ and $r_1 = b$, we successively apply the division algorithm and the gcd is the last nonzero remainder

$$r_0 = r_1 q_1 + r_2,$$
 $0 < r_2 < r_1$
 $r_1 = r_2 q_2 + r_3,$ $0 < r_3 < r_2$
...
 $r_{n-2} = r_{n-1} q_{n-1} + r_n,$ $0 < r_n < r_{n-1}$
 $r_{n-1} = r_n q_n$
 $gcd(a, b) = gcd(r_0, r_1)$
 $= gcd(r_1, r_2)$
 $= ...$
 $= gcd(r_{n-2}, r_{n-1})$
 $= gcd(r_n, 0) = r_n$

■ Lemma 0.

 \Rightarrow Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

□ Remark.

 \diamond Suppose a and b are positive integers, $a \ge b$. Let $r_0 = a$ and $r_1 = b$, we successively apply the division algorithm and the gcd is the last nonzero remainder.

$$r_0 = r_1 q_1 + r_2, 0 < r_2 < r_1$$

 $r_1 = r_2 q_2 + r_3, 0 < r_3 < r_2$
...
 $r_{n-2} = r_{n-1} q_{n-1} + r_{n}, 0 < r_n < r_{n-1}$
 $r_{n-1} = r_n q_n$
 $\gcd(a, b) = \gcd(r_0, r_1)$
 $= \gcd(r_1, r_2)$
 $= \dots$
 $= \gcd(r_{n-2}, r_{n-1})$
 $= \gcd(r_{n-1}, r_n)$
 $= \gcd(r_n, 0) = r_n$

□ *Lemma* 0.

 \Rightarrow Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

□ *Example*.

- ♦ Find the GCD of 662 and 414.
- ♦ Compute as

$$662 = 414 \cdot 1 + 248$$

$$414 = 248 \cdot 1 + 166$$

$$166 = 82 \cdot 2 + 2$$

$$82 = 2.41$$

☐ Lemma 0.

 \Rightarrow Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

□ *Example*.

- ♦ Find the GCD of 662 and 414.
- ♦ Compute as

$$662 = 414 \cdot 1 + 248$$

$$414 = 248 \cdot 1 + 166$$

$$82 = 2.41$$

So,
$$gcd(662,414) = 2$$

☐ The Euclidean Algorithm

```
procedure gcd(a, b: positive integers)
begin
    x := a;
    y := b;
    while (y≠0)
    begin
        r := x mod y;
        x := y;
        y := r;
    end; {gcd(a, b)=x}
end;
```

 \Leftrightarrow The time complexity (for **mod** operation) is $O(log_b^b)$, where $a \ge b$.

☐ The Euclidean Algorithm

```
function Euclid(a, b: positive integers): positive integer
begin
  if b=0
  then
    return (a)
  else
    return (Euclid(b, a mod b);
end;
```

- ♦ Another recursive form of Euclidean Algorithm.
- ♦ Think about it.

2.3.3 Bézout's Theorem (Étienne Bézout, 1779)

- □ *Theorem* 1.
 - \Rightarrow If a and b are positive integers, then there exits integers s and t such that gcd(a, b) = sa + tb.
- □ Remark.
 - \Rightarrow a and b are positive. s and t can be any integers.
 - ♦ The equation gcd(a, b) = sa + tb is called **Bézout's identity** (贝祖恒等式). The integers s and t are called **Bézout coefficients** of a and b (贝祖系数).
 - ♦ Proof omitted.
- □ Example.
 - \Rightarrow gcd(252, 198) = 18.
 - \Rightarrow By working backward through the divisions of *The Euclidean Algorithm*, we get s = 4, t = -5 such that

$$18 = 4.252 + (-5).198.$$

♦ Ref. to Section 2.3.5: The Extended_Euclidean Algorithm

☐ Lemma 1.

- \Rightarrow If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.
- \Rightarrow *Proof*.
 - By *Theorem.*1, there exits integers s and t such that sa + tb = 1, or sac + tbc = c.
 - Since $a \mid sac$ and $a \mid tbc$.
 - Then $a \mid c$.

☐ *Lemma 1.*

 \Rightarrow If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

☐ Lemma 2.

- \Rightarrow If p is a prime and $p \mid a_1 a_2 \dots a_n$, where each a_i is an integer, then $p \mid a_i$ for some i.
- *♦ Proof.*
 - If $gcd(p, a_1) = 1$ then by Lemma.1 it should be $p | a_2 a_3 ... a_n$. and if $gcd(p, a_2) = 1$, by Lemma.1 again, it should be $p | a_3 ... a_n$.

until an i ($i \le n$) found such that $gcd(p, a_i) \ne 1$.

- In this case $p \mid a_i$ for p is a prime.
- ◆ The existence of such an *i* is assured, or $gcd(p, a_1a_2 ... a_n) = 1$, a contradiction.

- ☐ *Lemma 1.*
 - \Rightarrow If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.
- ☐ Lemma 2.
 - \Rightarrow If p is a prime and $p \mid a_1 a_2 \dots a_n$, where each a_i is an integer, then $p \mid a_i$ for some i.
- **□** *Lemma* 3.
 - ♦ The uniqueness of the prime factorization of a positive integer.
 - *♦ Proof.*

- □ *Lemma* 1.
 - \Rightarrow If a, b and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.
- ☐ Theorem 2.

 - \Rightarrow *Proof.*
 - $ac \equiv bc \pmod{m}$ means $m \mid (ac bc)$. That is $m \mid (a b)c$.
 - Now gcd(c, m) = 1. By Lemma.1, we have $m \mid (a b)$.

That is

 $a \equiv b \pmod{m}$.

☐ Remark.

- \Leftrightarrow Let m be a positive integer, and a, b be integers. The following descriptions are equivalent:
 - $a \equiv b \pmod{m}$.
 - a b = km for some integer k.
 - $m \mid (a b)$.
 - $a \mod m = b \mod m$.

- 2.3.4 Linear Congruence (线性同余式/线性同余方程/模线性方程)
- □ *Definition* 1.
 - ♦ A congruence of the form

$$ax \equiv b \pmod{m}$$
.

where m is a positive integer as the moduli, a and b are integers, and x is a variable, is called a *linear congruence*. (线性同余式)

- □ Question.
 - ♦ How to find all integers x that satisfy the congruence?
- □ *Definition* 2.
 - \diamond For integer a and moduli m, if there is an integer y such that the linear congruence

$$ya \equiv 1 \pmod{m}$$
,

holds, then y is said to be an *inverse* of a modulo m. (a 的模 m 逆元)

- □ Remark.
 - \diamond Acquiescently, m is a positive integer as the moduli of the congruence.
 - \Rightarrow $ya \equiv 1 \pmod{m}$ means (ya 1) = km for some integer k.

☐ Theorem 3.

♦ If a and m are relatively prime integers, a>0 and m>1, then an inverse of a modulo m exits. Furthermore, this inverse is unique modulo m. (模 m 逆元存在与唯一性定理)

□ Remark.

- \Rightarrow If the condition gcd(a, m) = 1, m > 1 holds, then
 - there is a unique positive integer, less than m, denoted by a^{-1} , that is an inverse of a modulo m, and any other inverse of a modulo m is congruence to a^{-1} modulo m.
- ↑ Theorem.3 is proved by the method of existence proof, applying the Extended_Euclidean Algorithm, finding such an inverse of a modulo m.

□ *Theorem* 3.

 \Rightarrow If *a* and *m* are relatively prime integers, *a*>0 and *m*>1, then an inverse of *a* modulo *m* exits. Furthermore, this inverse is unique modulo *m*.

□ *Example.*

- \Rightarrow Find an inverse of 3 modulo 7.
- \diamond Solution.
- \Rightarrow gcd(3, 7) = 1. Then by *Theorem.*3, the inverse of 3 modulo 7 exits.
- \Rightarrow We use the *Euclidean Algorithm* (or *Extended_Euclidean Algorithm*) to find gcd(3, 7). It ends at 7 = 2.3+1.
- \Rightarrow As the example following *Theorem.*1, by working backward through the divisions of the *Euclidean Algorithm*, we get -2·3+1·7 = 1.
 - Now a = 3, m = 7 and gcd(a, m) = 1.
 - By Theorem.1, there exists integer s and t such that sa + tm = gcd(a, m) = 1 or (sa 1) = -tm.
 - ◆ By *Definition*.2, *s* is an inverse of *a* modulo *m*.
- \diamond So -2 is an inverse of 3 modulo 7.
- Every integers congruent to -2 modulo 7 is an inverse of 3 modulo 7, such as 5, -9, 12, and so on.

\Box Theorem 3.

 \Leftrightarrow If *a* and *m* are relatively prime integers, *a*>0 and *m*>1, then an inverse of *a* modulo *m* exits. Furthermore, this inverse is unique modulo *m*.

□ Example.

- \Rightarrow Find the solutions of $3x \equiv 4 \pmod{7}$.
- **♦** Solution.
- \Leftrightarrow We already know -2 is an inverse of 3 modulo 7: -2·3 \equiv 1 (mod 7).
- \Rightarrow The congruence $3x \equiv 4 \pmod{7}$ means $3x \pmod{7} = 4 \pmod{7}$.
- ♦ Multiplying both sides of the equation by -2 shows that

```
-2.3x \mod 7 = -2.4 \mod 7.
```

- ♦ But $-2.3x \mod 7 = [(-2.3 \mod 7) \cdot (x \mod 7)] \mod 7$ = $[1\cdot(x \mod 7)] \mod 7 = x \mod 7$.
- ♦ Therefore

$$x \mod 7 = -2.4 \mod 7 = -8 \mod 7 = 6 \mod 7 = ...$$

- \Rightarrow That is $x \equiv 6 \pmod{7}$.
- Arr The solution are all the x such that $x \equiv 6 \pmod{7}$: 6, 13, 20, . . ., and -1, -8, -15, . . .

□ Remark.

♦ How to working backward through the divisions of the Euclidean Algorithm? By the Algorithm we have the sequence of

$$a_0 = b_0 q_1 + b_1$$

 $b_0 = b_1 q_2 + b_2$
 $b_1 = b_2 q_3 + b_3$
...
 $b_{k-1} = b_k q_{k+1} + b_{k+1}$
 $b_k = b_{k+1} q_{k+2} + \gcd(a_0, b_0)$
 $b_{k+1} = b_{k+2} q_{k+3}$.

 \Leftrightarrow gcd(a_0 , b_0) is the last non-zero remainder.

⇒ Then
$$gcd(a_0, b_0) = f(b_k, b_{k+1}, q_{k+2}) = f^{(1)}(b_{k-1}, b_k, q_{k+1}, q_{k+2})$$

= $f^{(2)}(b_{k-2}, b_{k-1}, q_k, q_{k+1}, q_{k+2}) = \dots$
= $f^{(k+1)}(a_0, b_0, q_1, q_2, q_3, \dots, q_{k+2})$

□ Example.

♦ To find gcd(287, 91), by *Euclidean Algorithm* we have the sequence of $287 = 91 \cdot 3 + 14$ $91 = 14 \cdot 6 + 7$ $14 = 7 \cdot 2 + 0$

$$a_0 = 287$$
, $b_0 = 91$,
 $a_0 = b_0 q_1 + b_1$
 $b_0 = b_1 q_2 + b_2$
 $b_1 = b_2 q_3$, here $gcd(a_0, b_0) = b_2 (= 7)$

♦ Then

$$\gcd(a_0, b_0) = b_2 = b_0 - b_1 q_2 = b_0 - (a_0 - b_0 q_1) q_2$$
$$= -a_0 q_2 + b_0 (1 + q_1 q_2)$$
$$= -6a_0 + 19b_0$$

- □ Example.
 - → Find an inverse of 101 modulo 4620.
 - \diamond Solution.
 - → To find gcd(101, 4620), by Euclidean Algorithm we have the sequence of

□ Example.

- → Find an inverse of 101 modulo 4620.
- \diamond Solution.
- ♦ Now gcd(101, 4620) = 1. We can find the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing gcd(101, 4620) = 1 in terms of each successive pair of remainders.

```
1 = 3 - 1.2
= 3 - 1.(23 - 7.3) = -1.23 + 8.3
= -1.23 + 8.(26 - 1.23) = 8.26 - 9.23
= 8.26 - 9.(75 - 2.26) = -9.75 + 26.26
= -9.75 + 26.(101 - 1.75) = 26.101 - 35.75
= 26.101 - 35.(4620 - 45.101)
= -35.4620 + 1601.101.
```

□ Example.

- → Find an inverse of 101 modulo 4620.
- \diamond Solution.
- ♦ Now gcd(101, 4620) = 1. We can find the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing gcd(101, 4620) = 1 in terms of each successive pair of remainders.

```
1 = 3 - 1.2
= 3 - 1.(23 - 7.3) = -1.23 + 8.3
= -1.23 + 8.(26 - 1.23) = 8.26 - 9.23
= 8.26 - 9.(75 - 2.26) = -9.75 + 26.26
= -9.75 + 26.(101 - 1.75) = 26.101 - 35.75
= 26.101 - 35.(4620 - 45.101)
= -35.4620 + 1601.101.
```


□ Example.

- → Find an inverse of 101 modulo 4620.
- \diamond Solution.
- ♦ Now gcd(101, 4620) = 1. We can find the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing gcd(101, 4620) = 1 in terms of each successive pair of remainders.

```
1 = 3 - 1.2
= 3 - 1.(23 - 7.3) = -1.23 + 8.3
= -1.23 + 8.(26 - 1.23) = 8.26 - 9.23
= 8.26 - 9.(75 - 2.26) = -9.75 + 26.26
= -9.75 + 26.(101 - 1.75) = 26.101 - 35.75
= 26.101 - 35.(4620 - 45.101)
= -35.4620 + 1601.101.
```

□ Example.

- → Find an inverse of 101 modulo 4620.
- \diamond Solution.
- ♦ Now gcd(101, 4620) = 1. We can find the Bézout coefficients for 101 and 4620 by working backwards through these steps, expressing gcd(101, 4620) = 1 in terms of each successive pair of remainders.

```
1 = 3 - 1.2
= 3 - 1.(23 - 7.3) = -1.23 + 8.3
= -1.23 + 8.(26 - 1.23) = 8.26 + 9.23
= 8.26 - 9.(75 - 2.26) = -9.75 + 26.26
= -9.75 + 26.(101 - 1.75) = 26.101 - 35.75
= 26.101 - 35.(4620 - 45.101)
= -35.4620 + 1601.101.
```

2.3.5 The Extended Euclidean Algorithm (扩展欧几里德算法)

□ Remark.

```
\Leftrightarrow Let ax + by = \gcd(a, b), a \ge b > 0.
                                                           (Theorem.1)
\Rightarrow How to find x, y, and gcd(a, b)?
                                                          (Diophantus equation)
\Leftrightarrow Let a' = b, b' = a \mod b. By Bézout's Theorem we have
               gcd(a', b') = a'x' + b'y' or
               gcd(b, a \mod b) = bx' + (a \mod b)y'.
\Rightarrow By Lemma 0, we know that
               gcd(a, b) = gcd(b, a \mod b) = gcd(a', b').
\Rightarrow Then gcd(a, b) = gcd(a', b')
               = a'x' + b'y'
               = bx' + (a \mod b)y'
                =bx'+(a-(a\operatorname{div}b)b)y'
                = ay' + b(x' - (a \operatorname{div} b)y')
    So x = y', and y = x'- (a div b)y' is a solution to the equation
                ax + by = \gcd(a', b') = \gcd(a, b).
```

□ Remark.

```
\Leftrightarrow Let a'' = b', b'' = a' \mod b' we also have
                    gcd(a'', b'') = a'y'' + b'(x'' - (a' div b')y'').
     So x' = y'', and y' = x'' - (a' \operatorname{div} b')y'' is a solution to the equation
                     a'x' + b'y' = \gcd(a'', b'') = \gcd(a', b') = \gcd(a, b).
\Leftrightarrow Let a^{(3)} = b'', b^{(3)} = a'' \mod b'' we also have
                    gcd(a^{(3)}, b^{(3)}) = a''v^{(3)} + b''(x^{(3)} - (a'' \operatorname{div} b'')v^{(3)}).
     So x'' = y^{(3)}, and y'' = x^{(3)} - (a'' \operatorname{div} b'')y^{(3)}.
\Leftrightarrow Let a^{(k+1)} = b^{(k)}, b^{(k+1)} = a^{(k)} \mod b^{(k)} we have
                    \gcd(a^{(k+1)},b^{(k+1)})=a^{(k)}v^{(k+1)}+b^{(k)}(x^{(k+1)}-(a^{(k)}\operatorname{div}b^{(k)})v^{(k+1)}).
     So x^{(k)} = y^{(k+1)}, and y^{(k)} = x^{(k+1)} - (a^{(k)} \operatorname{div} b^{(k)}) v^{(k+1)}.
\Leftrightarrow Continue this process until b^{(k+1)} = a^{(k)} \mod b^{(k)} = 0 obtained.
\Rightarrow Then gcd(a, b) = gcd(a', b') = gcd(a'', b'')
                                   = \gcd(a^{(k+1)}, b^{(k+1)})
                                   = \gcd(a^{(k+1)}, 0)
                                   = a^{(k+1)} (=b^{(k)}).
```

□ Remark.

♦ Since we have

$$\gcd(a,b)=a^{(k+1)}.$$

♦ Then The equation

$$a^{(k+1)}x^{(k+1)} + b^{(k+1)}y^{(k+1)} = \gcd(a, b).$$

has a solution

$$x^{(k+1)} = 1$$
, $y^{(k+1)} = 0$.

• in fact, $y^{(k+1)}$ can take any positive integer because $b^{(k+1)}=0$.

□ Remark.

♦ Since we have

$$\gcd(a,b)=a^{(k+1)}.$$

♦ Then The equation

$$a^{(k+1)}x^{(k+1)} + b^{(k+1)}y^{(k+1)} = \gcd(a, b).$$

has a solution

$$x^{(k+1)} = 1$$
, $y^{(k+1)} = 0$.

- in fact, $y^{(k+1)}$ can take any positive integer because $b^{(k+1)}=0$.
- \Leftrightarrow If we have put every $a^{(i)}$ and $b^{(i)}$ in the process on record, by working backward,

$$x^{(k)} = y^{(k+1)}$$
, and $y^{(k)} = x^{(k+1)} - (a^{(k)} \operatorname{div} b^{(k)})y^{(k+1)}$.

we can finally find x and y.

☐ The Extended_Euclidean Algorithm.

```
ADT triple {
  x, y, d: longint;
} ee;
triple function Extended_Euclid(a, b: positive integers)
begin
  if b=0 then
     return(1, 0, a);
  ee :=Extended_Euclid (b, a mod b);
  x := ee.y;
  y := ee.x - (a \operatorname{div} b)^* ee.y;
  return (x, y, ee.d);
end;
```

□ Example.

- → Find gcd(662, 414).
- **♦** *Solution.*
- ♦ Construct a forward procedure

$$a^{(k+1)} = b^{(k)},$$
 $b^{(k+1)} = a^{(k)} \mod b^{(k)}.$
until $k = 5$, $b^{(5)} = 0$.

♦ We get

$$gcd(a, b) = a^{(5)} = b^{(4)} = 2.$$

	k	а	b
	0	662	414
	1	414	248
	2	248	166
\	3	166	82
	4	82	2
	5	2	0

□ Example.

- → Find gcd(662, 414).
- **♦** *Solution.*
- ♦ Construct a forward procedure

$$a^{(k+1)} = b^{(k)},$$
 $b^{(k+1)} = a^{(k)} \mod b^{(k)}.$
until $k = 5$, $b^{(5)} = 0$.

♦ We get $gcd(a, b) = a^{(5)} = b^{(4)} = 2.$

 \Rightarrow Take $x^{(5)}=1$, $y^{(5)}=0$.

	k	а	b	X	y
	0	662	414		
	1	414	248		
	2	248	166		
	3	166	82		
	4	82	2		
	5	2	0	1	0

□ Example.

- → Find gcd(662, 414).
- \diamond Solution.
- ♦ Construct a forward procedure

$$a^{(k+1)} = b^{(k)},$$
 $b^{(k+1)} = a^{(k)} \mod b^{(k)}.$
until $k = 5$, $b^{(5)} = 0$.

♦ We get $gcd(a, b) = a^{(5)} = b^{(4)} = 2.$

- \Rightarrow Take $x^{(5)}=1$, $y^{(5)}=0$.
- ♦ Construct a backward process

$$x^{(k)} = y^{(k+1)},$$

 $y^{(k)} = x^{(k+1)} - (a^{(k)} \text{ div } b^{(k)})y^{(k+1)}.$

 \Rightarrow Now the *Diophantus* equation $662x + 414y = \gcd(662, 414)$

has a solution of

$$x = -5, y = 8.$$

7	k	а	b	X	y
	0	662	414	-5	8
	1	414	248	3	-5
	2	248	166	-2	3
	3	166	82	1	-2
	4	82	2	0	1
	5	2	0	1	0

2.3.6 The Chinese Remainder Theorem

2.3.6 The Chinese Remainder Theorem (中国剩余定理)

- □ Remark.
 - ♦ In 4ST century, the Chinese mathematician Sun-Tsu ask: There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; when divided by 7, the remainder is 2. What will be the number of things?
 - ◆ 《孙子算经》[魏晋南北朝]: 有物不知其数,三分之余二,五分 之余三,七分之余二,此物几何?
 - ◆ 《数书九章》大衍求一术
 - 。 求解一次同余式组, [南宋]秦九韶 1247。
 - ◆ The notion of congruence was first introduced and used by *Carolus Fridericus Gauss* in his *Disquisitiones Arithmeticae* (算术探究) of 1801. This puzzle can be: What are the solutions of the systems of congruence

```
x \equiv 2 \pmod{3}
```

 $x \equiv 3 \pmod{5}$

 $x \equiv 2 \pmod{7}$.

☐ Theorem 4.

♦ Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers and a_1 , $a_2, ..., a_n$ arbitrary integers. Then the congruence system $x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$

 $x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$ \dots $x \equiv a_n \pmod{m_n},$ system **S**.

has a unique solution modulo m, $m = m_1 m_2 \dots m_n$.

 \Rightarrow That is, there is a solution x with $0 \le x \le m$ to the system, and all other solutions to the system are congruent modulo m to this solution.

☐ Theorem 4.

- \Rightarrow *Proof.*
 - ◆ Let $M_k = m/m_k$ for k=1, 2, ..., n. That is, M_k is the product of the moduli except for m_k , and $(M_s \mod m_k) = 0$ for $s \neq k$.
 - Now we have

$$gcd(M_k, m_k) = 1 \text{ for } k=1, 2, ..., n$$

because m_1, m_2, \ldots, m_n are pairwaise relatively prime integers.

• From *Theorem.3*, there is an integer y_k , an inverse of M_k modulo m_k , such that

$$M_k y_k \equiv 1 \pmod{m_k}, k = 1, 2, ..., n.$$

Now form the sum

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \ldots + a_n M_n y_n$$

Then x is a simultaneous solution by showing

$$x \mod m_k = (a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_n M_n y_n) \mod m_k$$

= $a_k M_k y_k \mod m_k = a_k \mod m_k$, $k = 1, 2, ..., n$.

That is

$$x \equiv a_k \pmod{m_k}, k = 1, 2, ..., n.$$

☐ Theorem 4.

- \Rightarrow *Proof.*
 - ◆ Let x_1 and x_2 , $x_1 > x_2$, be two different solutions of the congruence system:

$$x \equiv a_k \pmod{m_k}, k = 1, 2, ..., n.$$

Then

$$x_1 - a_i = s_i m_i$$
, for some integer s_i , $i = 1, 2, ..., n$, and $x_2 - a_i = t_i m_i$, for some integer t_i , $i = 1, 2, ..., n$.

- **♦** Thus $x_1 x_2 = (s_i t_i) m_i$, i = 1, 2, ..., n.

 In another word, $x_1 x_2 \equiv 0 \pmod{m_i}$, i = 1, 2, ..., n. and m_i is a factor of $x_1 x_2$, i = 1, 2, ..., n.
- In another hand, m_1, m_2, \ldots, m_n are pairwaise relatively prime integers. Hence $m = m_1 m_2 \ldots m_n$ is also a factor of $x_1 x_2$.
- ♦ This means $x_1 x_2 \ge m$.
- ◆ Therefore, there is only one solution modulo *m*.

□ Example.

→ Find the solutions of the systems of congruence system

```
x \equiv 2 \pmod{3}

x \equiv 3 \pmod{5}

x \equiv 2 \pmod{7}.
```

- \diamond Solution.
- ♦ Let m = 3.5.7 = 105, then $M_1 = 5.7 = 35, y_1 = 2 \text{ (an inverse of } M_1 \text{ modulo 3)}.$ $M_2 = 3.7 = 21, y_2 = 1 \text{ (an inverse of } M_2 \text{ modulo 5)}.$ $M_3 = 3.5 = 15, y_3 = 1 \text{ (an inverse of } M_3 \text{ modulo 7)}.$
- ♦ A solution is

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3 = 233 \equiv 23 \pmod{105}.$$

 \Leftrightarrow The numbers of things to Sun-Tsu's example is 23 + k·105, k = 0, 1, 2, ...

□ Remark.

- \Leftrightarrow Let m_1, m_2, \ldots, m_n ($m_i \ge 2, i=1, 2, \ldots, n$) be pairwaise relatively prime positive integers and $m = m_1 m_2 \ldots m_n$.
- \Leftrightarrow Applying the *Chinese Remainder Theorem* we construct the relation $R: (a_1, a_2, \ldots, a_n) \to x$,

from Cartesian product $A_1 \times A_2 \times ... \times A_n$ to M.

Here $A_i = \{0, 1, ..., m_i - 1\}$, $M = \{0, 1, ..., m - 1\}$, and $x \in M$ is a solution to the system: $x \equiv a_i \pmod{m_i}$, i = 1, 2, ..., n.

- \diamond We show that **R** is a bijection.
 - (1) By the *Chinese Remainder Theorem*, x is determined uniquely from any given (a_1, a_2, \ldots, a_n) , thus R has its functionality.
 - (2) If x is the image of two n-tuple (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) in R. Think that x is a solution to the system $x \equiv a_i \pmod{m_i}$ and also a solution to $x \equiv b_i \pmod{m_i}$, $i=1, 2, \ldots, n$. Then

 $a_{i} \mod m_{i} = b_{i} \mod m_{i}, i=1, 2, ..., n.$

Considering $a_i < m_i$ and $b_i < m_i$ for any i, it has to be

$$a_i = b_i$$
, $i=1, 2, ..., n$

This means **R** is one-to-one.

□ Remark.

- \Leftrightarrow Let m_1, m_2, \ldots, m_n ($m_i \ge 2, i=1, 2, \ldots, n$) be pairwaise relatively prime positive integers and $m = m_1 m_2 \ldots m_n$.
- ♦ Applying the Chinese Remainder Theorem we construct the relation

$$R: (a_1, a_2, \ldots, a_n) \rightarrow X,$$

from Cartesian product $A_1 \times A_2 \times ... \times A_n$ to M.

Here $A_i = \{0, 1, ..., m_i - 1\}$, $M = \{0, 1, ..., m - 1\}$, and $x \in M$ is a solution to the system: $x \equiv a_i \pmod{m_i}$, i = 1, 2, ..., n.

- \diamond We show that **R** is a bijection.
 - (3) Any integer $x \in M$ can be uniquely represented by the n-tuple in the Cartesian product $A_1 \times A_2 \times ... \times A_n$

$$(a_1, a_2, \ldots, a_n), a_i = x \mod m_i, i=1, 2, \ldots, n.$$

It is easy to find that x is a solution of the system

$$x \equiv a_i \pmod{m_i}, i=1, 2, \ldots, n.$$

This means the constructed n-tuple (a_1, a_2, \ldots, a_n) is the preimage of x in relation R and R is onto.

□ Example.

- \Leftrightarrow Let m_1, m_2, \ldots, m_n ($m_i \ge 2, i=1, 2, \ldots, n$) be pairwaise relatively prime positive integers and $m = m_1 m_2 \ldots m_n$.
- ♦ Any integer $x \in M = \{0, 1, ..., m-1\}$ can be uniquely represented by the n-tuple:

$$(a_1, a_2, \ldots, a_n), a_i = x \mod m_i, i=1, 2, \ldots, n.$$

- \Leftrightarrow Keeping (m_1, m_2, \ldots, m_n) in secret, it is very difficult to decrypt x from (a_1, a_2, \ldots, a_n) .
- \Leftrightarrow As in Sun-Tsu's example, $(m_1, m_2, m_3) = (3, 5, 7)$ is the secret key. The number x=23 is represented by $(a_1, a_2, a_3) = (2, 3, 2)$:

```
a_1 = x \mod m_1 = 23 \mod 3 = 2
```

$$a_2 = x \mod m_2 = 23 \mod 5 = 3$$

$$a_3 = x \mod m_3 = 23 \mod 7 = 2$$

<u>2.3.7 Euler's φ function</u> (Euler's Totient function, 欧拉 φ 函数)

- □ *Definition*.
 - \Rightarrow For a positive integer m, consider the ring $Z_m = \{0, \dots, m-1\}$. Euler's φ function $\varphi(m)$ is the number of integers in Z_m which are coprime to m.
 - Denoting the collection of all the integers coprime to m in Z_m as Z_m' , then $\varphi(m) = |Z_m'|$.
 - ◆ Z_m :由 Z的所有模 m 剩余类构成的集合,容易证明是一个环。
 - ◆ Z_{m} ' is called the reduced residue system of m (m 的既约剩余系).
 - $\varphi(m)$ is the number of positive integers less than and prime to m.

□ Example.

- $\Rightarrow \varphi(8) = 4.$
 - 1, 3, 5, 7 are coprime to 8. Then $Z_8' = \{1, 3, 5, 7\}$.
- \Leftrightarrow Conventionally, $\varphi(1) = 1$.

☐ Lemma 4.

- \Leftrightarrow Let $m = p^k$, p is prime and k is positive. Then $\varphi(m) = \varphi(p^k) = p^k p^{k-1}$.
- \Rightarrow *Proof.*
 - ◆ An integer n is coprime to $m = p^k$ (p is prime) if and only if it contains no p as its factor. Integers in Z_m containing p as factor are 1p, 2p, 3p, ..., $p^{(k-1)}p$.
 - Remove them from Z_m , $m p^{k-1} = p^k p^{k-1}$ number of integers are left witch are coprime to m.

□ Example.

$$\Leftrightarrow \varphi(8) = \varphi(2^3) = 2^3 - 2^2 = 4.$$

□ Remark

- \Leftrightarrow When k=1, The equation becomes $\varphi(p) = p 1$.
- ♦ The equation can be the form of

$$\varphi(p^k) = p^k - p^{k-1} = p^k (1-1/p).$$

□ *Lemma 5.*

- $\Leftrightarrow \varphi(p) = p-1$ if p is prime. (p \neq 1 because 1 is not prime)
- \Rightarrow *Proof.*
 - For prime p is coprime to any positive integer less then p, that is $Z_p' = \{1, 2, ..., p-1\}.$

□ Example.

$$\Leftrightarrow Z_{11}' = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}. \ \varphi(11) = 10.$$

□ Lemma 6.

- \Rightarrow Let m = pq, p and q are positive integers and are *relatively prime*. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q)$.
- \Rightarrow *Proof.*
 - See next slide.

□ Example.

♦ A misunderstanding:

$$\varphi(56) = \varphi(8 \times 7) = \varphi(8) \times \varphi(7) = (8-1) \times (7-1) = 42.$$

- \Rightarrow Let m = pq, p and q are positive integers and are *relatively prime*. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q)$.
- \Leftrightarrow *Proof.*
- (1) Let $a \in Z_p$, $b \in Z_q$, $x \in Z_{pq}$. Applying the *Chinese Remainder Theorem*, the relation $R: (a, b) \to x$ from $Z_p \times Z_q$ to Z_{pq} is a bijection. Here x is the unique solution of the congruence system (modulo pq):

$$x \equiv a \pmod{p}, x \equiv b \pmod{q}.$$

- See slide 41: Remark.
- (2) We prove that "gcd(p, a) = 1 and gcd(q, b) = 1" \Leftrightarrow "gcd(pq, x) = 1". \Leftarrow Let gcd(pq, x) = 1.
 - From $x \equiv a \pmod{p}$ we have x = k'p + a for some integer k'.
 - By Lemma 0 we get gcd(x, p) = gcd(p, a).
 - Suppose that gcd(p, a) = k, then a = a'k, p = p'k for some a' and p'. Then x = k'p + a = k'p'k + a'k = k(k'p' + a').

- \Rightarrow Let m = pq, p and q are positive integers and are *relatively prime*. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q)$.
- \Leftrightarrow *Proof.*
- (1) Let $a \in Z_p$, $b \in Z_q$, $x \in Z_{pq}$. Applying the *Chinese Remainder Theorem*, the relation $R: (a, b) \to x$ from $Z_p \times Z_q$ to Z_{pq} is a bijection. Here x is the unique solution of the congruence system (modulo pq):

$$x \equiv a \pmod{p}, x \equiv b \pmod{q}.$$

- See *slide 41*: *Remark*.
- (2) We prove that "gcd(p, a) = 1 and gcd(q, b) = 1" \Leftrightarrow "gcd(pq, x) = 1". \Leftarrow Let gcd(pq, x) = 1.
 - From $x \equiv a \pmod{p}$ we have x = k'p + a for some integer k'.
 - By Lemma 0 we get gcd(x, p) = gcd(p, a).
 - Suppose that gcd(p, a) = k, then a = a'k, p = p'k for some a' and p'. Then x = k'p + a = k'p'k + a'k = k(k'p' + a').

- \Rightarrow Let m = pq, p and q are positive integers and are *relatively prime*. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q)$.
- \Leftrightarrow *Proof.*
- (1) Let $a \in Z_p$, $b \in Z_q$, $x \in Z_{pq}$. Applying the *Chinese Remainder Theorem*, the relation $R: (a, b) \to x$ from $Z_p \times Z_q$ to Z_{pq} is a bijection. Here x is the unique solution of the congruence system (modulo pq):

$$x \equiv a \pmod{p}, x \equiv b \pmod{q}$$
.

- See slide 41: Remark.
- (2) We prove that "gcd(p, a) = 1 and gcd(q, b) = 1" \Leftrightarrow "gcd(pq, x) = 1". \Leftarrow Let gcd(pq, x) = 1.
 - From $x \equiv a \pmod{p}$ we have x = k'p + a for some integer k'.
 - By Lemma 0 we get gcd(x, p) = gcd(p, a).
 - Suppose that gcd(p, a) = k, then a = a'k, p = p'k for some a' and p'. Then x = k'p + a = k'p'k + a'k = k(k'p' + a').
 - ◆ That is, k is a common divisor of p and x. But gcd(pq, x) = 1. So it has to be k = 1, and hence gcd(p, a) = 1.
 - In the same way, we can prove that gcd(q, b) = 1.

- \Rightarrow Let m = pq, p and q are positive integers and are *relatively prime*. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q)$.
- \Rightarrow *Proof.*
- (1) Let $a \in Z_p$, $b \in Z_q$, $x \in Z_{pq}$. Applying the *Chinese Remainder Theorem*, the relation $R: (a, b) \to x$ from $Z_p \times Z_q$ to Z_{pq} is a bijection. Here x is the unique solution of the congruence system (modulo pq):

$$x \equiv a \pmod{p}, x \equiv b \pmod{q}$$
.

- (2) We prove that "gcd(p, a) = 1 and gcd(q, b) = 1" \Leftrightarrow "gcd(pq, x) = 1". \Rightarrow Let gcd(p, a) = 1 and gcd(q, b) = 1.
 - From x = k'p + a for some integer k', we get gcd(x, p) = gcd(p, a) = 1.
 - From x = k''q+b for some integer k'', we get gcd(x, q) = gcd(q, b) = 1.
 - Suppose that gcd(pq, x) = k, then k|pq and k|x.
 - In another hand, p and q are relatively prime. It has to be either k|p or k|q.
 - From k|x, k|p and gcd(x, p) = 1 we have k = 1.
 - From k|x, k|q and gcd(x, q) = 1 we also have k = 1.
 - Thus gcd(pq, x) = k = 1.

□ *Lemma 6.*

- \Rightarrow Let m = pq, p and q are positive integers and are *relatively prime*. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q)$.
- \Leftrightarrow *Proof.*
- (1) Let $a \in Z_p$, $b \in Z_q$, $x \in Z_{pq}$. Applying the *Chinese Remainder Theorem*, the relation $R: (a, b) \to x$ from $Z_p \times Z_q$ to Z_{pq} is a bijection. Here x is the unique solution of the congruence system (modulo pq):

$$x \equiv a \pmod{p}, x \equiv b \pmod{q}.$$

- (2) We prove that gcd(p, a) = 1 and $gcd(q, b) = 1 \Leftrightarrow gcd(pq, x) = 1$.
- (3) From (1) and (2), let $a \in Z_p'$, $b \in Z_q'$, then any $c \in Z_{pq}'$ can be uniquely represent as an ordered pair (a, b). The relation

$$R':(a,b)\to c$$

from $Z_p' \times Z_q'$ to Z_{pq}' is also a bijection. The number of c, say $|Z_{pq}'|$, is the same as $|Z_p'| \times |Z_p'|$. That is $\varphi(pq) = \varphi(p) \varphi(q)$.

☐ Lemma 7.

 \Rightarrow Let m = pq, p and q are primes, $p \neq q$. Then $\varphi(m) = \varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1)$.

☐ Lemma 8.

♦ Let $m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ where p_i are primes and $k_i > 0$ for $i = 1 \dots r$, $p_s \neq p_t$ for $1 \le s < t \le r$. Then

$$\varphi(m) = \varphi(p_1^{k_1}) \varphi(p_2^{k_2}) \dots \varphi(p_r^{k_r})
= p_1^{k_1} [1 - (1/p_1)] p_2^{k_2} [1 - (1/p_2)] \dots p_r^{k_r} [1 - (1/p_r)]
= m [1 - (1/p_1)] [1 - (1/p_2)] \dots [1 - (1/p_r)].$$

□ Example.

$$\Leftrightarrow \varphi(1323) = \varphi(3^3 \times 7^2) = 1323 \times (1-1/3) \times (1-1/7) = 756.$$

2.3.8 Euler's Theorem (欧拉定理)

- ☐ Theorem 5.
 - ♦ Let a and m be integers, m > 0 such that gcd(a, m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.
- □ Remark.
 - \diamond The existence of *inverse* of *a* modulo *m*.
 - ◆ As defined in *Definition*.2, for a moduli *m*, if there is an integer *y* such that

```
ya \equiv 1 \pmod{m},
```

y is said to be an *inverse* of a modulo m.

- Now $a^{\varphi(m)} = a^{\varphi(m)-1} \times a \equiv 1 \pmod{m}$. Thus $a^{\varphi(m)-1}$ is an inverse of a modulo m.

☐ Theorem 5.

- ♦ Let a and m be integers, m > 0 such that gcd(a, m) = 1. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$.
- \Leftrightarrow *Proof.*
 - (1) Let $Z_{\mathbf{m}}' = \{x_1, x_2, ..., x_{\varphi(\mathbf{m})}\}$ be the reduced residue system of m, and let $S = \{ax_1 \mod m, ax_2 \mod m, ..., ax_{\varphi(\mathbf{m})} \mod m\}$, we prove that $Z_{\mathbf{m}}' = S$.
 - For any i, $1 \le i \le \varphi(m)$, α and x_i are all coprime to m, and then αx_i are also coprime to m. Therefore

$$ax_i \mod m \in Z_m'$$
.

For any x_i , $x_j \in Z_m'$, $x_i \neq x_j$ we get $ax_i \mod m \neq ax_j \mod m$.

Otherwise $ax_i \equiv ax_j \pmod{m}$. Now gcd(a, m)=1. By $B\acute{e}zout's$ Theorem.2,

$$x_i \equiv x_i \pmod{m}$$

and hence $x_i = x_j$, because x_i , $x_j < m$, a contradiction.

• It is not depending on the necessity that $ax_i \mod m = x_i$.

\square Theorem 5. \Leftrightarrow Let α and m be integers, m > 0 such that $gcd(\alpha, m) = 1$. Then $a^{\varphi(m)} \equiv 1 \pmod{m}$. \diamond Proof. (2) Construct $(a^{\varphi(m)} x_1 x_2 \dots x_{\varphi(m)}) \mod m$ $= [(ax_1) (ax_2) ... (ax_{\varrho(m)})] \mod m$ $= [(ax_1 \bmod m) (ax_2 \bmod m) \dots (ax_{\varrho(m)} \bmod m)] (\bmod m)$ $= (x_1 x_2 \dots x_{o(m)}) \mod m$. But x_i ($i = 1... \varphi(m)$) are coprime to m, and so is $x_1 x_2 ... x_{\varphi(m)}$. By Bézout's Theorem.2, from $(\boldsymbol{a}^{\varphi(m)} \boldsymbol{x}_1 \boldsymbol{x}_2 \dots \boldsymbol{x}_{\varphi(m)}) \mod \boldsymbol{m} = (\boldsymbol{x}_1 \boldsymbol{x}_2 \dots \boldsymbol{x}_{\varphi(m)}) \mod \boldsymbol{m},$ we have $a^{\varphi(m)} \mod m = 1 \mod m$.

- That is, $a^{\varphi(m)} \equiv 1 \mod m$.
- Remark.
 - Bézout's Theorem.2 aka the Cancellation Law
 - If gcd(c,p) = 1, then $ac \equiv bc \pmod{p} \Rightarrow a \equiv b \pmod{p}$.

□ Corollary.

 \Leftrightarrow Let p and q be primes satisfied N=pq. n is any integer with 0 < n < N, k is a positive integer. Then

```
n^{k\varphi(N)+1} \equiv n \pmod{N}.
```

- *♦ Proof.*
 - If gcd(n, N)=1, the proof is ended by virtue of *Euler's Theorem*.
 - ◆ Otherwise, without loss of generality, let gcd(n, N)=p. Then n=cp with some positive integer c, 0<c<q. It follows that gcd(c, q)=1 because q is prime. Thus gcd(cp, q)=1 because p is prime too.
 - That is gcd(n, q)=1.
 - By *Euler's Theorem*, $n^{\varphi(q)} \equiv 1 \pmod{q}$.
 - By the rules of Modular Arithmetic, $[n^{\varphi(q)}]^{k\varphi(p)} \equiv 1 \pmod{q}$. That is $n^{k\varphi(N)} \equiv 1 \pmod{q}$,

```
because \varphi(N) = \varphi(pq) = \varphi(p)\varphi(q).
```

- Therefore, there is some integer s such that $n^{k\varphi(N)} 1 = sq$.
- Multiplying each side by n=cp, we have $n^{k\varphi(N)+1} n = sqn = sqcp = scqp = scN$.
- That is, $n^{k\varphi(N)+1} \equiv n \pmod{N}$.

2.3.9 Fermat's Little Theorem

2.3.9 Fermat's Little Theorem (费马小定理, 1640)

- ☐ Theorem 6.
 - ♦ If p is a *prime* number and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.
 - \Rightarrow Further more, if a is positive, *Fermat's Little Theorem* is equivalent to $a^p \equiv a \pmod{p}$.
 - → Theorem 6 can be proved directly from Theorem 5.
- □ Example.

$$\Rightarrow a = 13, p = 7, a^p = 13^7 = 62748517, a^{p-1} = 13^6 = 4826809$$

$$a^p - a = 62748517 - 13 = 62748504 = 8964072 \times 7$$

$$a^{p-1} = 4826809 = 689544 \times 7 + 1 = qp + 1$$

$$\Rightarrow a = 14, p = 7, a^p = 14^7 = 105413504, a^{p-1} = 14^6 = 7529536$$

$$a^p - a = 105413504 - 14 = 105413490 = 15059070 \times 7$$

$$a^{p-1} = 7529536 = 1075648 \times 7 = qp, Theorem.6 failed.$$

10.1 Primitive Root (原根/素根)

- □ *Definition*.
 - \Leftrightarrow Let a and n be positive integers, a < n, gcd(a, n) = 1. Consider the sequence

$$a, a^2, a^3, ...$$

If *m* is the least positive integer such that

$$a^m \equiv 1 \pmod{n}$$
.

then m is said to be the order of a modulo n (a 关于模 n 的阶/指数/生成周期), noted m = ord n or n or n = ord n or n .

→ By Euler's Theorem,

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

that is, $m = \operatorname{ord}_n a$ exists and $m \le \varphi(n)$.

10.1 Primitive Root

□ *Property* 1.

```
\Rightarrow If m = \text{ord}_n a, k > 0 such that a^k \equiv 1 \pmod{n}.
then m \mid k.
```

◇ 证明: 假设结论不成立,即有 k = qm + r, 0 < r < m. 则 $1 \equiv a^k$ $= q^m + r$ $= (a^m)^q a^r$ $\equiv a^r \pmod{n}$.

这里 0 < r < m,与 $m = \operatorname{ord}_{n} a$ 矛盾。

♦ *Property* 1 表明,如果 k 是素数,则只能 m = k,即 ord a = k;如果 k 不是素数,则 ord a 存在于 k 的因子中。

10.1 Primitive Root

- ☐ *Property* 2.
 - ◆ 若 $m = \text{ord}_n a$, 则 {1, a, a^2 , ..., a^{m-1} } 中的各个元素模 n 两两不同余。
 - ◇ 证明: 假设结论不成立,不妨设有 j, k, $0 \le j < k \le m$ -1, 使得 $a^j \equiv a^k \pmod{n}$.

由 gcd(a, n)=1 得 $gcd(a^{j}, n)=1$ 。上式两边消去 a^{j} ,得 $1 \equiv a^{k-j} \pmod{n}$.

这里 0 < k - j < m, 与 $m = \operatorname{ord}_n a$ 矛盾。

◆ 注意到: $a^{m+j} \mod n = a^m a^j \mod n$ = $[(a^m \mod n) (a^j \mod n)] \mod n$ = $a^j \mod n$.

故 a 关于模 m 的幂序列

$$a, a^2, a^3, \dots, a^{m-1}, a^m, a^{m+1}, a^{m+2}, \dots$$

的周期是*m*,即 *a*, *a*², *a*³, ..., *a*^{m-1}, *a*^m, *a*, *a*², *a*³, ...

10.1 Primitive Root

- □ *Definition*.
 - ♦ Let a and n be positive integers, a < n, gcd(a, n) = 1. If $m = ord_n a$ and $m = \phi(n)$, then a is said to be a primitive root of n. (a 称为 n 的一个原根或素根)
 - Euler's Theorem: Let a and n be integers, n > 0 such that gcd(a, n) = 1. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$.
 - 给定模底 n,对于任何 $a \in Z_n'$ 都有 $\gcd(a, n) = 1$,于是由 Euler's Theorem 有 $a^{\varphi(n)} \equiv 1 \pmod{n}$ 。若 $\varphi(n)$ 是素数,由 Property 1 有 $ord_n a = \varphi(n)$, $a \in n$ 的原根。否则如果对 $\varphi(n)$ 的任一个因子 q , $a^q \equiv 1 \pmod{n}$ 都不成立,则 $ord_n a = \varphi(n)$, $a \in n$ 的原根。
 - ◆ 原根的存在性 (证略): 一个正整数可能有很多个原根,也可能 没有原根。可以证明: 正整数 n 存在原根当且仅当 n = 2, 4, p^t 或 2 p^t (其中 p 是奇素数,t 是正整数)。
 - 素数 p 存在原根;素数 p 的原根数目是 $\varphi(p-1)$ 。

10.1 Primitive Root

- □ 例:
 - ♦ n = 8 不存在原根。
 - $Z_8' = \{1, 3, 5, 7\}, \varphi(8) = 4$. But ord₈1 = ord₈3 = ord₈5 = ord₈7 = 2.
- □ Remark.
 - ◆ 如果取 n 为素数 p, a 是 p 的一个原根,则 $\varphi(p) = p-1$ 是 a 关于模 p 的阶, $a^{p-1} \equiv 1 \pmod{n}$ 。类似 Property 2 可以证明: $\{a, a^2, ..., a^{p-1}\}$ 中的各个元素模 p 两两不同余,从而构成了 p 的非0剩余类,即与 $\{1, 2, ..., p-1\}$ 模 p 等价。

10.1 Primitive Root

□ 例:

♦ 设模底为素数 p = 23,求其最小原根。

◆ 解:

- ◆ 目前没有求原根的一般方法,只能参照性质测试可能性,寻找满足条件 $a^{\varphi(p)} = a^{p-1} = a^{22} \equiv 1$ (mod 23) 的最小的 a。
- ◆ 素分解 $\varphi(p)=22=2*11$,这是两个可能的模 p 的阶。
- ◆ 对 *a* = 2, 3, ..., 22 (=*p*-1) 逐一测试:
 - 对于某一个 a,如果有 $a^2 \equiv 1 \pmod{23}$ 或者 $a^{11} \equiv 1 \pmod{23}$ 的情况出现,则有 $\operatorname{ord}_p a \leq 2$ 或者 $\operatorname{ord}_p a \leq 11$,因而 $\operatorname{ord}_p a \neq \varphi(p)$,此时可以排除 a 是23的原根的可能性,转向测试下一个 a。
 - 否则再测试此 α 是否能够满足 $\alpha^{\varphi(p)} \equiv 1$ (mod 23)。
- ◆ 本例最后得到的最小原根是5。

10.2 Discrete Logarithm (离散对数)

- □ *Definition.*
 - ◇ 设有正整数 a 和 n, a < n, gcd(a, n) = 1。若 a 是模 n 的一个原根,则对任意整数 b, gcd(b, n) = 1,存在唯一的整数 i, $1 \le i \le n 1$,使得 $b \equiv a^i \pmod{n}$.

i 称为 *b* 以 *a* 为基底的模 *n* 的指数 (离散对数),记作 *ind_{a,n}* (*b*)。

- ◆ 模 n 经常被取为素数 p。
- □ 离散对数的性质:
 - (1) $ind_{a,p}(1) = 0$, $ind_{a,p}(a) = 1$.
 - (2) $ind_{q,p}(xy) \equiv [ind_{q,p}(x) + ind_{q,p}(y)] \pmod{\varphi(p)}$.
 - (3) $ind_{q,p}(\mathbf{x}^r) \equiv [r \times ind_{q,p}(\mathbf{x})] \pmod{\varphi(p)}$.
 - ◆ 性质(1)直接由定义得到;性质(3)可以由性质(2)直接证明。
 - ◇ 下面给出性质 (2) 的详细证明。

10.2 Discrete Logarithm

□ 离散对数的性质:

```
(2) ind_{a,p}(xy) \equiv [ind_{a,p}(x) + ind_{a,p}(y)] \pmod{\varphi(p)}. 

令 证明
```

- \bullet 设 $i = ind_{a,p}(x)$, $j = ind_{a,p}(y)$, $k = ind_{a,p}(xy)$. 由定义得: $x \equiv a^i \pmod{p}$, $y \equiv a^j \pmod{p}$, $xy \equiv a^k \pmod{p}$.
- ◆ 由模算术运算规则:

```
xy \bmod p = [(x \bmod p) (y \bmod p)] (\bmod p)
= [(a^i \bmod p) (a^j \bmod p)] (\bmod p)
= a^{i+j} \bmod p
```

- ◆ 因此: $a^{i+j} \mod p = a^k \pmod p$, 或 $a^{i+j} \equiv a^k \pmod p$.
- ◆ 考察模 p 的周期序列

1,
$$a$$
, a^2 , a^3 , ..., a^{p-1} , a^p , a^{p+1} , a^{p+2} , ...

10.2 Discrete Logarithm

□ 离散对数的性质:

```
(2) ind_{a,p}(xy) \equiv [ind_{a,p}(x) + ind_{a,p}(y)] \pmod{\varphi(p)}.
```

→ 证明. (continued)

由定义, a 是模 p 的一个原根。因此周期序列

 1, a, a², a³, ..., ap⁻¹, ap, ap⁻¹, ap², ap⁻², ...
 的周期是 φ(p), 且同一周期内的各个元素模 p 两两不同余(参见 a 关于模 n 的阶的定义部分的性质2)。

- ◆ 由于 $a^{i+j} \equiv a^k \pmod{p}$, a^{i+j} 和 a^k 在上述周期序列中的间隔必须是周期 $\varphi(p)$ 的整数倍,即存在整数 d,使得 $(i+j) k = d\varphi(p)$.
- ◆ 即: $k \equiv (i + j) \mod \varphi(p)$.
- ◆ 亦即: $ind_{a,p}(xy) \equiv [ind_{a,p}(x) + ind_{a,p}(y)] \mod \varphi(p)$.
- ◆ 性质 (2) 得证。

10.2 Discrete Logarithm

- □ 离散对数的计算:
 - 対于 $C^d \equiv M \pmod{p}$, or $M \equiv C^d \pmod{p}$.
 - ◆ 已知 C, p。由 d 求 M 是容易的,只需要进行一次求幂运算。由 M 求 d 则需要指数级计算。如果 p 取得足够大,就能实现足够的安全强度。

□ 例:

- → 求解离散对数 ind_{3.17}(15).
- - (1) 验证3是模17的一个素根;
 - (2) 逐一测试 *x* = 1, 2, 3, ..., 16, 得到 *x*=6 时, 3⁶ ≡ 15 (mod 17). 成立。