This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

16/14/97

* また、ソルビトール1モルに対して22モルを 越えた割合でPーエチルベンズアルテヒドを加え た場合には、下記の化学構造式を有するトリス (Pーエチルベンジリデン)ソルピトールが高割 5 合で合有されてくるため、

仕込み割合が低過ぎる場合と同様に純度の高い ピス(Pーエチルベンジリヂン)ソルピトールが 得られ難くなり収率も低下する。従つて、ソルビ トール1モルに対してPーエチルペンズアルデヒ ドの使用割合は1.6~2.2モル、好ましくは1.8~ 25 2.0モルである。また、本発明に用いる水と共沸 する有機溶媒としては、ソルビトールおよびPー エチルベンズアルデヒドと反応性を有しない溶 媒、たとえばベンゼン、トルエン、キシレン、シ エタン、1,2ージクロルプロパン、1ークロル .ブタン、1ークロルー2ーメチルプロパン、1. 2-ジメトキシエタン、クロルベンゼン、イソブ ロピルエーテルなどから選択できるが、ピス(P つ高収率で得るために、好ましくはペンセン、シ クロヘキサンが良い。

本発明の方法に用いられる酸触媒としては、通 常用いられる硫酸、塩酸、燐酸などの無機酸また をソルビトールに対して0.1~5 重量%添加す る。また、本発明の方法に使用するPH7.1~9.0の 微アルカリ性の水溶液とは、水に微量のアルカリ 性物質を溶解させたものであり、使用するアルカ

リ性物質としては、通常用いられる水酸化ナトリ ウム、水酸化カリウム、水酸化カルシウム、重炭 敗ナトリウム、重炭酸カリウム、炭酸ナトリウ ム、炭酸カリウムなどから選択できる。

本発明の方法において、ソルビトールとPーェ チルベンズアルデヒドとの脱水縮合反応は、生成 する縮合水を水と共沸する有根溶媒で濃流させな がら反応系外に誘導し、所定量の生成水を反応系 外に留去させるまで行なう。生成水を留去させた クロヘキサン、クロロホルム、1, 2 - ジクロル 30 時点でPH7.1~9.0の微アルカリ性の水溶液を反応 に使用した散触媒を中和し、反応液がPH7.0~8.0 になるように加える。その添加量は、反応に用い た水と共沸する有機溶媒をすべて共沸混合物とし て留去させ得るに足る量である。この際、反応液 ーエチルベンジリデン)ソルビトールを高純度か 35 をPH7.0~9.0に保つのは、酸性またはPHが9.0を越 えたアリカリ性になった状態で共沸混合物を留虫 するまで加熱すると、ピス(Pーエチルペンジリ デン)ソルビトールの加水分解が超ることが避け られず、ビス(Pーエチルベンジリデン)ソルビ はPートルエンスルフオン酸などの公知の酸触媒 40 トールの収率が低くなるとともにピス(Pーエチ ルベンジリデン)ソルビトールの純度が低くなる ためである。かくして、水と共沸する有機溶媒が ほとんど留出した時点で、有機溶媒と混合してゲ ル状態であつたビス(Pーエチルペンジリデン)

特公 昭 61-17834

ソルビトールが粉末化して水に浮遊した状態とな り、これを通常の沪過により粉末固体を分離すれ ば白色の高純度のピス(Pーエチルベンジリデ ン)ソルビトールを高収率で得ることができる。

次に、実施例により本発明を詳述するが、例中 5 をベースとした収率85モル%)。 に示す部はすべて重量部を表わす。

実施例 1

かきまぜの良いカイ型かきまぜ機、温度計およ び上部に還流冷却器を備えた液々分離機を付した (Q2モル)、Pーエチルベンズアルデヒド53.7部 (0.40モル)、ベンゼン720副およびPートルエン スルフオン酸0.38部を加えた。強くかきまぜなが ら湯浴で加熱して遺流温度まで加熱を強め、6時 た。ついで、遺流冷却器および液々分離器を取り はずし、リービッヒ型の冷却器を付したのち、意 **皮酸ソーダ1.0部を水500部に溶解させた水溶液を** 反応器に加えたのち加熱を続けてベンゼンと水を 7.5~8.0であつた。 ペンゼンがほぼ完全に留出す る直前に粉末化した固体が、浮遊した。次いで、 反応液を沪過し、乾燥して白色のビス(Pーエチ

ルベンジリデン)ソルビトール71部を得た。融点 215~218℃、元素分析値はC;69.65重量%(計 算值69.54重量%)、H:7.37重量%(計算值7.29 重量%)であつた(P-エチルペンズアルデヒド

奥施例 2

実施例1に使用したペンゼン720mlのかわりに シクロヘキサン800al、Pートルエンスルフオン 酸0.38部のかわりに濃硫酸0.30部を用いる以外は 2ℓ容の反応フラスコに、ソルビトール3&3部 10 実施例1と全く同様にして脱水縮合の反応を行つ たのち、炭酸ソーダ1.0部を水500部に溶解させた 水溶液を反応器に加え、加熱を続けてシクロヘキ サンと水を共沸させて留出させた。

このときの水層液の別は&0~&5であつた。シ 間反応を続け、生成した水を液々分離器に集め 15 クロヘキサンがほぼ完全に留出する直前に粉末化 した固体が遊離して浮遊した。次いで、反応液を 炉過し、乾燥して白色のビス(Pーエチルベンジ リデン)ソルビトール69部を得た。融点213~219 ℃、元素分析值C;69.77重量%(計算值69.54重 共沸させて留出させた。このときの水層液のPHは 20 量%)、H:7.43重量%(計算値7.29重量%)で あつた(Pーエチルベンズアルデヒドをベースと した収率83モル%)。