Lineare Algebra II

Frühjahrssemester 2012

Inhaltsverzeichnis

1	Vek	torräume und Basen	3
	1.1	Definitionen, Eigenschaften, Beispiele	3
	1.2	Geordnete Mengen	
2	Eigenvektoren		
	2.1	Homomorphismen und Matrizen	11
	2.2	Endomorphismen und Eigenvektoren	17
	2.3	Das charakteristische Polynom	23
	2.4	Diagonalisierbarkeit	33
3	Orthogonale Matrizen und Drehungen		
	3.1	Die Orthogonale Gruppe	44
	3.2	Euklidische Bewegungen	49
4	Lösung von Differentialgleichungen		
	4.1	Systeme von Differentialgleichungen	58
	4.2	Die Exponentialbildung von Matrizen	63
5	Bilin	nearform	73
	5.1	Definition, Eigenschaften und Beispiele	76
	5.2	Symmetrische Bilinearform	81
	5.3	Euklidische Räume	90
	5.4	Hermitesche Formen	93
	5.5	Der Spektralsatz	02
	5.6	Kegelschnitte und Quadriken	
	5.7	Der Spektralsatz für normale Endomorphismen	17
	5.8		21

1 Vektorräume und Basen

Themen

- Wiederholung der Hauptideen
- Geordnete Mengen und das Zornsche Lemma
- Satz: Jeder Vektorraum hat eine Basis

1.1 Definitionen, Eigenschaften, Beispiele

Zur Erinnerung... Ein **Vektorraum** V über einem Körper K ist eine Menge zusammen mit zwei Verknüpfungen:

- $+: V \times V \to V$ (Addition)
- $: K \times V \to V$ (skalare Multiplikation)

wobei

- \bullet V mit + ist eine abelsche Gruppe
- für $\alpha, \beta \in K$ und $v, w \in V$:

$$(\alpha +_K \beta) \cdot v = \alpha \cdot v + \beta \cdot v \tag{1.1}$$

$$\alpha \cdot (v + w) = \alpha \cdot v + \alpha \cdot w \tag{1.2}$$

$$(\alpha \cdot \beta) \cdot v = \alpha \cdot (\beta \cdot v) \tag{1.3}$$

$$1 \cdot v = v \tag{1.4}$$

Beispiele

(i) Der Standardraum K^n über K besteht aus der Menge aller Spaltenvektoren

$$K^{n} = \left\{ \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \right\} \tag{1.5}$$

mit komponentenweisen Addition und skalarer Multiplikation.

(ii) Mat(m, n; K) mit Matrixaddition und skalarer Multiplikation.

(iii) Alt(n; K), die Menge aller $n \times n$ -Matrizen A über K mit $A^t = -A$ (schiefsymmetrische Matrizen) ist ein Unterraum von Mat(n; K).

$$0 \in Alt(n; K) \tag{1.6}$$

$$A^t = -A, B^t = -B \tag{1.7}$$

$$\Rightarrow (\lambda A)^t = \lambda A^t = -(\lambda A) \tag{1.8}$$

$$\Rightarrow (A+B)^t = A^t + B^t \tag{1.9}$$

$$= -A - B = -(A + B) \tag{1.10}$$

- (iv) \mathbb{C} ist ein Vektorraum über \mathbb{R} ; auch $Mat(m, n; \mathbb{C})$ (als eine Menge) über \mathbb{R} .
- (v) Abb(M, K) die Menge aller Abbildungen von $M \neq \emptyset$ nach K mit Verknüpfungen definiert durch:

$$(\phi + \chi)(x) = \phi(x) + \chi(x) \tag{1.11}$$

$$(\lambda\phi)(x) = \lambda\phi(x) \tag{1.12}$$

ist ein Vektorraum über K.

- (vi) $Abb(\mathbb{R}, \mathbb{R})$ hat Unterräume:
 - $Pol \mathbb{R} := \{ \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n : \alpha_0, \dots, \alpha_n \in \mathbb{R} \}$
 - $-C(\mathbb{R}) := \{ \phi \in Abb(\mathbb{R}, \mathbb{R}) : \phi \text{ ist stetig} \}$
- (vii) $Abb(\mathbb{N}, \mathbb{R})$, der Vektorraum aller reellen Folgen \mathcal{F} , hat Unterräume:
 - $-\mathcal{F}_b := \{a \in \mathcal{F} : a \text{ ist beschränkt}\}$
 - $-\mathcal{F}_k := \{a \in \mathcal{F} : a \text{ ist konvergent}\}$

Zur Erinnerung... Sei E eine Teilmenge eines Vektorraums V über K.

 \bullet E heisst Erzeugendensystem von V, wenn

$$V = Span E \tag{1.13}$$

$$(Span \emptyset = \{0\}) \tag{1.14}$$

V heisst **endlich erzeugt**, wenn es ein endliches Erzeugendensystem von V gibt.

• E heisst **linear unabhängig** (andernfalls linear abhängig), wenn für alle n verschiedenen Elemente $v_1, ..., v_n$ von V gilt:

$$\alpha_1 v_1 + \dots \alpha_n v_n = 0 \tag{1.15}$$

$$\Rightarrow \alpha_1 = \dots = \alpha_n = 0 \tag{1.16}$$

$$(\alpha_1, ..., \alpha_n \in K) \tag{1.17}$$

 \bullet E heisst eine **Basis** von V, wenn E ein linear unabhängiges Erzeugendensystem ist.

Sei nun V ein **endlich erzeugter** Vektorraum über K:

- Falls V ein Erzeugendensystem von n Elementen hat, dann sind je n+1 Elemente von V linear abhängig¹.
- ullet Jede linear unabhängige Teilmenge von V kann zu einer (endlichen) Basis ergänzt werden.

Idee Seien $v_1, ..., v_n$ verschiedene linear unabhängige Elemente von V. Ist $\{v_1, ..., v_n\}$ kein Erzeugendensystem, dann gibt es

$$v_{n+1} \in V \setminus Span\{v_1, ..., v_n\} \tag{1.18}$$

wobei $\{v_1,...,v_n\}$ linear unabhängig ist.

Daraus folgt, dass V eine endliche Basis hat und je zwei Basen von V gleich viele Elemente haben: die **Dimension**, $\dim V$, von V^2 .

Beispiele

(i) Die **Standardbasis** von K^n ist $\{e_1, ..., e_n\}$ mit

$$e_{i} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow 1 \text{ in der } i\text{-ten Zeile}$$

$$(1.19)$$

und $\dim K^n = n$

(ii) Die Standardbasis von Mat(m, n; K) ist

$$\{E_{ij}: 1 \le i \le m, 1 \le j \le n\}$$
 (1.20)

mit $E_{ij} = (e_{kl})$ wobei

$$e_{kl} = \begin{cases} 1 & k = i, l = j \\ 0 & \text{andernfalls} \end{cases}$$
 (1.21)

dim Mat(m, n; K) = mn

¹Lemma 3.3.2, lineare Algebra I

²Satz 3.4.2, lineare Algebra I

(iii)

$$Alt(3; \mathbb{R}) = \left\{ \begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix} : \alpha, \beta, \gamma \in \mathbb{R} \right\}$$
 (1.22)

Man beachte, dass

$$\begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix} = \alpha(E_{12} - E_{21}) + \beta(E_{13} - E_{31}) + \gamma(E_{23} - E_{32})$$
(1.23)

und

$$\alpha(E_{12} - E_{21}) + \beta(E_{13} - E_{31}) + \gamma(E_{23} - E_{32}) = 0 \tag{1.24}$$

$$\Rightarrow \alpha = \beta = \gamma = 0 \tag{1.25}$$

Also ist $\{E_{12}-E_{21}, E_{13}-E_{31}, E_{23}-E_{32}\}$ eine Basis von $Alt(3; \mathbb{R})$ und $dim \, Alt(3; \mathbb{R}) = 3$.

(iv) $\{1, i\}$ ist eine Basis von $\mathbb C$ über $\mathbb R$ (auch $\{1+i, 1-i\}, \{7-3i, 5+2i\}$) und $\dim \mathbb C = 2$. $Mat(2; \mathbb C)$ **über** $\mathbb R$ hat eine Basis:

$$\{E_{11}, E_{12}, E_{21}, E_{22}, iE_{11}, iE_{12}, iE_{21}, iE_{22}\}$$
 und (1.26)

$$dim \, Mat(2, \mathbb{C}) = 8 \tag{1.27}$$

Beobachtung $Pol \mathbb{R}$ (auch $C(\mathbb{R}), \mathcal{F}, ...$) ist **nicht** endlich erzeugt: für jedes endliche $E \subseteq Pol \mathbb{R}$ git es $n \in N$ wobei $x^n \notin Span E$

$$\{1, x, x^2, x^3, \dots\} \tag{1.28}$$

Frage: Hat jeder Vektorraum eine Basis?

Antwort: Ja! Aber wir müssen das so genannte "Zornsche Lemma" (äquivalent zum "Auswahlaxiom") **annehmen**³.

1.2 Geordnete Mengen

Eine **Halbordnung** (auch **Partialordnung** oder **Teilordnung**) einer Menge X ist eine binäre Relation

$$\langle \subseteq R \times R$$
 (1.29)

(man schreibt $x \leq y$ statt $(x, y) \in \leq$) so dass für alle $x, y, z \in X$ gilt

³Dieses ist nicht "bewiesen". Gemäss Gödel ist dieses widerspruchsfrei mit den Grundsätzen der bestehenden Mathematik, das Gleiche gilt aber auch für die Umkehrung des Lemmas.

- (i) $x \le x$ (Reflexivität)
- (ii) $x \le y$ und $y \le z \Rightarrow x \le z$ (Transitivität)
- (iii) $x \le y$ und $y \le x \Rightarrow x = y$ (Antisymmetrie)

X mit \leq heisst eine **halbgeordnete Menge**. Falls auch für alle $x, y \in X$ gilt:

(iv) $x \leq y$ oder $y \leq x$ heisst \leq eine **Totalordnung** und X mit \leq eine totalgeordnete Menge.

Beispiele

- (i) Sei " \leq " die kleiner-gleich Relation: Dann sind \mathbb{N} mit \leq , \mathbb{R} mit \leq usw. totalgeordnete Mengen.
- (ii) Sei Y eine Menge von Mengen. Dann gilt für alle $A, B, C \in Y$: $A \subseteq A, A \subseteq B$ und $B \subseteq C \Rightarrow A \subseteq C$. Mit $A \subseteq B$ und $B \subseteq A \Rightarrow A = B$. Also ist Y mit \leq eine halbgeordnete Menge (nicht notwendigerweise totalgeordnet).
- (iii) ℕ mit Teilbarkeit —

$$x|y \text{ gdw } y \text{ ist teilbar durch } x$$
 (1.30)

ist eine halbgeordnete (nicht totalgeordnete) Menge.

Beobachtung Man kann eine endliche halbgeordnete Menge durch einen sogenanntes "Hasse Diagramm" darstellen.

z.B.
$$P(\{a, b, c\})$$
 mit \subseteq :

Die Teiler von 36 mit $\big|:$

Vorlesung vom 24.02.2012

Beispiele

- (i) Eine Menge W von Wörtern mit der alphabetischen / lexikographischen Ordnung (Totalordnung) ("Apfel" < "Bär" < "braun" < ...)
- (ii) Die Unterräume eines Vektorraums mit \subseteq

$$X = \{a, b, c, d\} \tag{1.31}$$

$$\subseteq = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (c, d), (d, d)\}$$

$$(1.32)$$

Sei X mit \subseteq eine halbgeordnete Menge.

- $a \in X$ ist eine **obere Schranke** für $Y \subseteq X$ wenn $b \le a \, \forall \, b \in Y$
- $a \in X$ ist ein maximales Element, wenn es kein $b \in X$ mit $b \neq a$ und $a \leq b$ gibt

Beispiel

• $P(\{a,b,c\}) \setminus \{a,b,c\},\subseteq$:

 $\{a,b\}$, $\{a,c\}$ und $\{b,c\}$ sind maximale Elemente.

• Untere Schranken und minimale Elemente sind analog definiert. (X, \subseteq) heisst induktiv, wenn jede totalgeordnete Teilmenge Y von X eine obere Schranke in X hat. (Ist X endlich, dann ist (X, \subseteq) immer induktiv. Aber z.B. (\mathbb{N}, \subseteq) ist nicht induktiv.)

Das Zornsche Lemma

Eine induktive halbgeordnete Menge hat ein maximales Element.

Satz 1.2.1 Jeder Vektorraum V hat eine Basis.

Beweis Sei X die Menge aller linear unabhängiger Teilmengen von V. Wir zeigen, dass (X, \subseteq) **induktiv** ist. Sei Y eine totalgeordnete Menge von X. Wir behaupten, dass

$$B = \bigcup_{A \in Y} A \tag{1.33}$$

linear unabhängig ist und deshalb eine obere Schranke von Y in X. Man betrachtet $\alpha_1v_1+\ldots+\alpha_nv_n=0$ mit $\alpha_1,\ldots,\alpha_n\in K$ und $v_1,\ldots,v_n\in B$ d.h. für $i=1,\ldots,n:v_i\in A_i$ für ein $A_i\in Y$. Man darf auch annehmen: $A_1\subseteq A_2\subseteq\ldots\subseteq A_n$, da Y totalgeordnet ist. Also ist $v_i\in A_n$ für $i=1,\ldots,n$ und weil A_n linear unabhängig ist, folgt $\alpha_1=\ldots=\alpha_n=0$, d.h. B ist linear unabhängig. Nach dem Zornschen Lemma erhält man ein maximales Element M von X. Nach Definition von X ist M linear unabhängig.

Ist M ein Erzeugendensystem von V?

Sei $v \in V$. Ist $v \notin Span M$, dann ist $M \cup \{v\}$ linear unabhängig. Dies steht im Widerspruch zur Maximalität von M. Also Span M = V und M ist eine Basis von V.

Bemerkung Das Zornsche Lemma ist äquivalent zu:

 \bullet dem **Auswahlaxiom**: "Für jede Menge von nichtleeren Mengen X gibt es eine Funktion

$$f: X \to \cup X \tag{1.34}$$

wobei $Y \in X \Rightarrow f(Y) \in Y$." Beispiel: $X = \{\{a\}, \{b, c\}, \{a, b, c\}, \mathbb{N}\}$ $f(\{a\}) = a, f(\{a, b, c\},) = b, f(\{b, c\}) = b, f(\mathbb{N}) = 73$

• dem Wohlordnungssatz: "Für jede Menge X gibt es eine 'Wohlordnung' \subseteq , d.h. eine Totalordnung von X, wobei jede nichtleere Teilmenge von X ein kleinstes Element bezüglich \subseteq hat."

Beispiel: (\mathbb{N}, \leq) ist eine wohlgeordnete Menge, aber nicht (\mathbb{Z}, \leq) (kein kleinstes Element) oder (\mathbb{R}, \leq) : $0 < 1 < -1 < 2 < -2 < \dots$ (hat \mathbb{R} eine Wohlordnung?)

2 Eigenvektoren

2.1 Homomorphismen und Matrizen

Zur Erinnerung: Seien V und W Vektorräume über demselben Körper K. Eine Abbildung $f: V \to W$ heisst **Homomorphismus** (lineare Abbildung), wenn

(1)
$$f(x+y) = f(x) + f(y) \ x, y \in V$$

(2)
$$f(\alpha x) = \alpha f(x) \ x \in V, \alpha \in K$$

Daraus folgt (durch Induktion):

$$f\left(\sum_{i=1}^{n} \alpha_i v_i\right) = \sum_{i=1}^{n} \alpha_i f(v_i)$$
(2.1)

Man definiert auch: Kern $f := \{v \in V : f(v) = 0\}$, Bild $f := \{f(v) : v \in V\}$ und zeigt¹, dass wenn V endlich erzeugt ist, gilt:

$$\dim Kern f + \dim Bild f = \dim V \tag{2.2}$$

Beispiele

(i) Sei $A \in Mat(m, n; K)$. Dann ist $h_A : K^n \to K^m, x \mapsto Ax$ ein Homomorphismus

$$h_A(\alpha x + \beta y) = A(\alpha x + \beta y) \tag{2.3}$$

$$= \alpha Ax + \beta Ay \tag{2.4}$$

$$= \alpha h_A(x) + \beta h_A(y) \tag{2.5}$$

- (ii) Der transponierte Operator $f: Mat(m, n; K) \to Mat(m, n; K), A \mapsto A^T$ ist ein Homomorphismus, eigentlich ein Isomorphismus.
- (iii) Die Abbildung

$$f: \mathbb{C}[0,1] \to \mathbb{R} \ (\mathbb{C}[0,1] = \{ \phi \in Abb([0,1],\mathbb{R}), \phi \text{ stetig.} \})$$
 (2.6)

$$\phi \mapsto \int_0^1 \phi(x) dx \tag{2.7}$$

$$\int_0^1 (\alpha \phi + \beta \chi)(x) dx = \alpha \int_0^1 \phi(x) dx + \beta \int_0^1 \chi(x) dx$$
 (2.8)

¹Lineare Algebra 1, Satz 4.2.5

Man kann Homomorphismen zwischen endlich erzeugten Vektorräumen **mit Matrizen** darstellen, z.B.

$$f: \mathbb{R}^3 \to \mathbb{R}^2, \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \mapsto \begin{pmatrix} \alpha + 2\beta \\ -\alpha + \beta - 3\gamma \end{pmatrix}$$
 (2.9)

ist bezüglich der Standardbasen durch Linksmultiplikation mit der Matrix

$$\begin{pmatrix}
1 & 2 & 0 \\
-1 & 1 & -3
\end{pmatrix}$$
(2.10)

gegeben.

Beachten Sie, dass

$$f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\-1 \end{pmatrix} = 1 \begin{pmatrix} 1\\0 \end{pmatrix} + (-1) \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (2.11)

$$f\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (2.12)

$$f\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\-3 \end{pmatrix} = 0 \begin{pmatrix} 1\\0 \end{pmatrix} + (-3) \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (2.13)

Für einen Homomorphismus $f: K^n \to K^m$ betrachtet man $f(e_j) = \sum_{i=1}^m \alpha_{ij} e_i, j = 1...n$ und erhält f(x) = Ax mit $A = (\alpha_{ij})$.

Sei nun V ein endlich erzeugter Vektorraum über K und $B = (v_1, ..., v_n)$ eine geordnete Basis von V. Man definiert

$$q_B: V \to K^n \tag{2.14}$$

$$v \mapsto \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \tag{2.15}$$

mit $v=(\alpha_1v_1+...+\alpha_nv_n)$ ein Isomorphismus von V in K^n . Sei auch W ein endlich erzeugter Vektorraum über K und $C=(w_1,...,w_m)$ eine geordnete Basis von W. Für ein Homomorphismus $f:V\to W$ betrachtet man

$$f(v_j) = \sum_{i=1}^{m} \alpha_{ij} w_i, j = 1...n$$
 (2.16)

d.h.
$$q_C(f(v_j)) = \begin{pmatrix} \alpha_{ij} \\ \vdots \\ \alpha_{mj} \end{pmatrix}$$
 (2.17)

und erhält

$$\mathcal{M}_{C}^{B}(f) = (\alpha_{ij}) = (q_{C}(f(v_{1}))), ..., q_{C}(f(v_{n}))$$
(2.18)

die Matrix von f bezüglich der Basen B und C.

$$V \xrightarrow{f} W$$

$$q_B^{-1} \downarrow q_B \qquad \qquad \downarrow q_C$$

$$K^n \xrightarrow{\hat{f}} K^m$$

$$\hat{f} = q_C \circ f \circ q_B^{-1} \tag{2.19}$$

Man beobachtet:

$$\mathcal{M}_{C}^{B}(f)(q_{B}(v)) = (q_{C} \circ f \circ q_{B}^{-1})(q_{B}(v)) = q_{C}(f(v))$$
(2.20)

Beispiel: \mathbb{C} über \mathbb{R} hat eine geordnete Basis B=(1+i,1-i). $P_2=\{\alpha+\beta x+\gamma x^2:\alpha,\beta,\gamma\in\mathbb{R}\}$ hat eine geordnete Basis $C=(1+x^2,x,2x^2+1)$. Wir betrachten $f:\mathbb{C}\to P_2, a+bi\mapsto a+(a+b)x+bx^2$

$$f(1+i) = 1 + 2x + x^2 (2.21)$$

$$= 1(1+x^2) + 2(x) + 0(2x^2+1)$$
(2.22)

$$f(1-i) = 1 - x^2 (2.23)$$

$$= 3(1+x^2) + 0(x) + (-2)(2x^2 + 1)$$
(2.24)

Also

$$q_C(f(1+i)) = \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$
 (2.25)

$$q_C(f(1-i)) = \begin{pmatrix} 3\\0\\-2 \end{pmatrix} \text{ und } \mathcal{M}_C^B(f) = \begin{pmatrix} 1 & 3\\2 & 0\\0 & -2 \end{pmatrix}$$
 (2.26)

Zum Beispiel:

$$q_B(5+i) = \begin{pmatrix} 3\\2 \end{pmatrix} \tag{2.27}$$

$$q_C(f(5+i)) = \begin{pmatrix} 1 & 3 \\ 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \\ -4 \end{pmatrix}$$
 (2.28)

$$f(5+i) = 5 + 6x + x^2 = 9(1+x^2) + 6(x) + (-4)(2x^2 + 1)$$
(2.29)

Vorlesung vom 27.02.2012

2.1 Homomorphismen und Matrizen

Sei V ein Vektorraum über K und $B = (b_1, ..., b_n)$ eine (geordnete) Basis von V. **Frage:** Wie beschreibt/findet man alle anderen Basen von V?

Sei $c_1, ..., c_n$ verschiedene Elemente von V mit

$$c_i = \sum_{j=1}^n \alpha_{ji} b_j \ (i = 1...n)$$
 (2.30)

d.h.
$$q_B(c_i) = \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{ni} \end{pmatrix}$$
 (2.31)

Dann ist $C = (c_1, ..., c_n)$ eine **Basis**

- gdw $c_1, ..., c_n$ linear unabhängig sind
- gdw $A = (\alpha_{ij}) = (q_B(c_1)...q_B(c_n)) \in GL(n;K)$, d.h. A ist **invertierbar**²

Aist die Übergangsmatrix T^C_B von Cnach B, und A^{-1} ist die Übergangsmatrix von Bnach C.

Man beobachtet, dass für i = 1...n

$$q_{B}(c_{i}) = \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{ni} \end{pmatrix} = \begin{pmatrix} \alpha_{1i} & \cdots & \cdots & \alpha_{1n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \alpha_{ni} & \cdots & \cdots & \alpha_{nn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-te Stelle}$$
 (2.32)

 $= Aq_C(c_i) \tag{2.33}$

und deshalb, für alle $v \in V$

$$q_B(v) = Aq_C(v), q_c(v) = A^{-1}q_B(v)$$
 (2.34)

Beispiel: B = (1 + x, 1 - x) ist eine Basis von $P_1 = \{\alpha x + \beta : \alpha, \beta \in \mathbb{R}\}$

$$A = \begin{pmatrix} 3 & 2 \\ 2 & -1 \end{pmatrix} \in GL(2; \mathbb{R}) \tag{2.35}$$

 $^{^2 {\}rm Lineare~Algebra~1,~Lemma~5.4.1}$

Also ist (c_1, c_2) eine Basis von P_1 mit

$$q_B(c_1) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, q_B(c_2) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 (2.36)

$$c_1 = 3(1+x) + 2(1-x) = x+5$$
 (2.37)

$$c_2 = 2(1+x) - 1(1-x) = 3x + 1 (2.38)$$

Betrachten Sie nun endlich erzeugte Vektorräume

- \bullet V mit Basis B
- \bullet W mit Basis C

und einen Homomorphismus

$$f: V \to W \tag{2.39}$$

Dann gilt für **andere Basen** B' von V und C' von W:

$$q_B' = h_{T_{R'}^B} \circ q_B \tag{2.40}$$

$$q_C' = h_{T_{C'}^C} \circ q_C \tag{2.41}$$

$$h_{\mathcal{M}_C^B(f)} = q_C \circ f \circ q_B^{-1} \tag{2.42}$$

$$h_{\mathcal{M}_{C}^{B}(f)} = q_{C} \circ f \circ q_{B}^{-1}$$

$$[h_{\mathcal{M}_{C'}^{B'}(f)}] = q_{C'} \circ f \circ (q_{B'})^{-1}$$
(2.42)

$$V \xrightarrow{f} W$$

$$q_B^{-1} \downarrow q_B \qquad \downarrow q_C$$

$$K^n \xrightarrow{\hat{f}} K^m \xrightarrow{q_C \circ f \circ q_B^{-1}} K^m$$

$$= (h_{T_{C'}^C} \circ q_C) \circ f \circ (h_{T_{B'}^B} \circ q_B)^{-1}$$
 (2.44)

$$=h_{T_{C'}^{C}}\circ (q_{C}\circ f\circ q_{B}^{-1})\circ (h_{T_{B'}^{B}})^{-1} \tag{2.45}$$

$$=h_{T_{C'}^{C}}\circ h_{\mathcal{M}_{C}^{B}(f)}\circ (h_{T_{P'}^{B}})^{-1}$$
(2.46)

und
$$\mathcal{M}_{C'}^{B'}(f) = T_{C'}^C, \mathcal{M}_C^B(f)(T_{B'}^B)^{-1}$$
 (2.47)

Deshalb ist A die Matrix von f bezüglich anderen Basen \mathbf{gdw}

$$A = Q\mathcal{M}_C^B(f)P^{-1} \tag{2.48}$$

für **beliebige** invertierbare Matrizen P und Q.

Frage: Wie findet man die 'beste Matrix-Darstellung' von f?

Antwort: Man verwendet elementare Spalten- und Zeilenumformungen .

Beispiel \mathbb{R}^3 mit Basis

$$B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (2.49)

 \mathbb{C} über \mathbb{R} mit Basis C = (1, i).

$$f: \mathbb{R}^3 \to \mathbb{C}, \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \mapsto (\alpha + \beta) + (\beta + \gamma)i$$
 (2.50)

$$\mathcal{M}_C^B(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \tag{2.51}$$

Wir suchen eine Darstellung:

$$Q\mathcal{M}_C^B(f)P^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 (2.52)

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} Z_1 \to Z_1 - Z_2 \longrightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} \tag{2.53}$$

$$S_3 \to S_3 + S_1 \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} S_3 \to S_3 - S_2 \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 (2.54)

$$Q = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} (= T_{C'}^C), Q^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 (2.55)

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} (= (T_{B'}^B)^{-1} = T_B^{B'})$$
(2.56)

Wir definieren:

$$B' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
 (2.57)

$$C' = (1, 1+i) \tag{2.58}$$

und beobachten, dass

$$f(\begin{pmatrix} 1\\0\\0 \end{pmatrix}) = 1(1) + 0(1+i) = 1$$
 (2.59)

$$f(\begin{pmatrix} 0\\1\\0 \end{pmatrix}) = 0(1) + 1(1+i) = 1+i$$
 (2.60)

$$f(\begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}) = 0(1) + 0(1+i) = 0$$
 (2.61)

d.h.
$$\mathcal{M}_{C'}^{B'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 (2.62)

Bemerkung

(a) Zu jeder $A\in Mat(m,n;K)$ gibt es Produkte $Q\in GL(n;K)$ und $P^{-1}\in GL(n;K)$ von Elementarmatrizen mit

$$QAP^{-1} = \begin{pmatrix} E^{(r)} & 0\\ 0 & 0 \end{pmatrix}, r = \operatorname{Rang} A \tag{2.63}$$

3

(b) Sei $f:V\to W$ ein Homomorphismus zwischen den endlich erzeugten Vektorräumen V und W. Man kann Basen B und C finden, so dass

$$\mathcal{M}_C^B(f) = \begin{pmatrix} E^{(r)} & 0\\ 0 & 0 \end{pmatrix}, r = \text{Rang } f.$$
 (2.64)

2.2 Endomorphismen und Eigenvektoren

Sei V ein endlich erzeugter Vektorraum. Wir betrachten nun ${f Endomorphismen}$

$$f: V \to V \tag{2.65}$$

und suchen Matrixdarstellungen bezüglich einer einzigen Basis B_i d.h.

$$\mathcal{M}_B(f) := \mathcal{M}_B^B(f) \tag{2.66}$$

Beobachtung Sei $A \in Mat(n; K)$ die Matrixdarstellung von $f: V \to V$ bezüglich einer Basis B von V, d.h. $A = \mathcal{M}_B(f)$. Dann ist $A' \in Mat(n; K)$ die Matrixdarstellung von f bezüglich einer anderen Basis gdw

$$A' = PAP^{-1} (2.67)$$

für eine beliebige invertierbare Matrix $P \in GL(n; K)$

³Lineare Algebra 1, Satz 5.3.9

Anmerkung Man sucht $P \in GL(n; K)$ so dass PAP^{-1} 'einfach' - vielleicht diagonal - ist. Aber wir haben jetzt nur noch eine Basis und damit auch nur eine Matrix P zur Verfügung.

Man probiert vielleicht Elementarmatrizen $P_1, ..., P_k$ zu finden mit $P_1, ..., P_k = P_1$.

$$PAP^{-1} = P_1, ..., P_k A P_k^{-1}, ..., P_1^{-1}$$
(2.68)

Sei $f:V\to V$ ein Endomorphismus eines Vektorraums. Ein Unterraum W von V heisst **f-invariant**, wenn

$$f(W) \subseteq W \tag{2.69}$$

In diesem Fal ist $f: W \to W$ die **Beschränkung von** f **auf** W, auch ein Endomorphismus.

Beispiel

$$f: \mathbb{R}^3 \to \mathbb{R}^3 \tag{2.70}$$

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \mapsto \begin{pmatrix} 2\alpha - \beta - \gamma \\ \alpha + \beta \\ \alpha + \gamma \end{pmatrix} \tag{2.71}$$

$$W = Span\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\} \tag{2.72}$$

$$f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 2\\1\\1 \end{pmatrix} = 1 \begin{pmatrix} 1\\0\\0 \end{pmatrix} + 1 \begin{pmatrix} 1\\1\\1 \end{pmatrix} \in W$$
 (2.73)

$$f\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\2\\2 \end{pmatrix} = -2 \begin{pmatrix} 1\\0\\0 \end{pmatrix} + 2 \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 (2.74)

Also ist $f(W) \subseteq W$ und W ist f-invariant.

Sei $f:V\to V$ ein Endomorphismus eines Vektorraums und

$$(w_1, ..., w_k)$$
 (2.75)

eine Basis eines f-invarianten Unterraums W von V. Sei nun

$$B = (w_1, ..., w_k, v_1, ..., v_{n-k}) (2.76)$$

eine Basis von V. Dann hat $\mathcal{M}_{B}(f)$ die Form

$$\begin{pmatrix} A_1 & D \\ 0 & A_2 \end{pmatrix} \tag{2.77}$$

wobei $A \in Mat(k; K)$ die Matrixdarstellung von $f: W \to W$ bezüglich $(w_1, ..., w_k)$ ist.

Beispiel (siehe oben)

 \mathbb{R}^3 hat eine Basis:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}) \text{ und } \mathcal{M}_B(f) = \begin{pmatrix} 1 & -2 & -1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 (2.78)

Wenn $V=W_1\oplus W_2$ ($V=W_1+W_2$ und $W_1\cap W_2=\{0\}$) und W_1,W_2 f-invariante Unterräume sind, erhält man eine Basis von V:

$$B = (\underbrace{w_1, ..., w_k}_{\text{Basis von } W_1}, \underbrace{v_1, ..., v_{n-k}}_{\text{Basis von } W_2})$$

$$(2.79)$$

und $\mathcal{M}_B(f)$ hat die Form

$$\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \tag{2.80}$$

ldee Für einen Endomorphismus $f:V\to V$ suchen wir 1-dimensionale f-invariante Unterräume. Sei $f:V\to V$ ein Endomorphismus eines Vektorraums V über K. Wenn

$$f(v) = \alpha v \text{ mit } 0 \neq v \in V, \alpha \in K$$
 (2.81)

heisst v ein **Eigenvektor** und ein **Eigenwert** (der zum Eigenvektor v gehört) von f.

Vorlesung vom 05.03.2012

2.2 Endomorphismen und Eigenvektoren

Beispiel Betrachte den Endomorphismus

$$f_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} r \cdot cos(\alpha) \\ r \cdot sin(\alpha) \end{pmatrix} \mapsto \begin{pmatrix} r \cdot cos(\alpha + \theta) \\ r \cdot sin(\alpha + \theta) \end{pmatrix}$$
 (2.82)

$$\theta \in [0, 2\pi] \tag{2.83}$$

eine **Drehung** der Ebene um einen Winkel θ .

$$f_{\theta}\begin{pmatrix} 1\\0 \end{pmatrix} = f_{\theta}\begin{pmatrix} 1\cos(0)\\1\sin(0) \end{pmatrix} = \begin{pmatrix} \cos(\theta)\\\sin(\theta) \end{pmatrix}$$
 (2.84)

$$f_{\theta}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = f_{\theta}\begin{pmatrix} 1\cos(\frac{\pi}{2}) \\ 1\sin(\frac{\pi}{2}) \end{pmatrix} = \begin{pmatrix} \cos(\theta + \frac{\pi}{2}) \\ \sin(\theta + \frac{\pi}{2}) \end{pmatrix} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$
(2.85)

Die Matrixdarstellung von f_{θ} bezüglich der Standardbasis $\mathcal{B}=(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix})$ ist

$$\mathcal{M}_B(f_\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$
 (2.87)

Betrachte nun auch

$$g_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} r \cdot cos(\alpha) \\ r \cdot sin(\alpha) \end{pmatrix} \mapsto \begin{pmatrix} r \cdot cos(\theta - \alpha) \\ r \cdot sin(\theta - \alpha) \end{pmatrix}$$
 (2.88)

$$\theta \in [0, 2\pi] \tag{2.89}$$

(2.86)

$$g_{\theta}\begin{pmatrix} 1\\0 \end{pmatrix} = g_{\theta}\begin{pmatrix} 1\cos(0)\\1\sin(0) \end{pmatrix} = \begin{pmatrix} \cos(\theta)\\\sin(\theta) \end{pmatrix} = f_{\theta}\begin{pmatrix} 1\\0 \end{pmatrix}$$
 (2.90)

$$g_{\theta}\begin{pmatrix} 0 \\ 1 \end{pmatrix}) = g_{\theta}\begin{pmatrix} 1\cos(\frac{\pi}{2}) \\ 1\sin(\frac{\pi}{2}) \end{pmatrix}) = \begin{pmatrix} \cos(\theta - \frac{\pi}{2}) \\ \sin(\theta - \frac{\pi}{2}) \end{pmatrix} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$
(2.91)

(2.92)

 g_{θ} ist eine **Spiegelung** an der Gerade mit dem Winkel $\frac{\theta}{2}$

$$\mathcal{M}_B(g_\theta) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$
 (2.93)

Beachte, dass

$$g_{\theta}\begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) \end{pmatrix}) = \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) \end{pmatrix}$$
 (2.94)

$$g_{\theta}\begin{pmatrix} \cos(\frac{\theta+\pi}{2})\\ \sin(\frac{\theta+\pi}{2}) \end{pmatrix}) = -\begin{pmatrix} \cos(\frac{\theta+\pi}{2})\\ \sin(\frac{\theta+\pi}{2}) \end{pmatrix}$$
 (2.95)

(2.96)

d.h.

$$Span\left\{ \begin{pmatrix} cos(\frac{\theta}{2}) \\ sin(\frac{\theta}{2}) \end{pmatrix} \right\}$$
 und (2.97)

$$Span\left\{ \begin{pmatrix} cos(\frac{\pi+\theta}{2})\\ sin(\frac{\pi+\theta}{2}) \end{pmatrix} \right\} \text{ und}$$
 (2.98)

(2.99)

sind g_{θ} -invariant.

Man erhält eine **Basis**:

$$C = \left(\begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) \end{pmatrix}, \begin{pmatrix} \cos(\frac{\theta+\pi}{2}) \\ \sin(\frac{\theta+\pi}{2}) \end{pmatrix} \right)$$
 (2.100)

$$\operatorname{mit} \mathcal{M}_C(g_{\theta}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{2.101}$$

Beobachten Sie jedoch, dass

$$f_{\theta}(v) = \alpha v \text{ für } \alpha \in \mathbb{R}, 0 \neq v \in \mathbb{R}^2$$
 (2.102)

nur wenn
$$\theta = 0, \theta = 2\pi$$
 oder $\theta = \pi$ (2.103)

Sei $f:V\to V$ ein Endomorphismus eines Vektorraums V über K. Wenn

$$f(v) = \alpha v \text{ mit } 0 \neq v \in V, \alpha \in K$$
 (2.104)

heisst v ein **Eigenvektor** und α ein **Eigenwert** (der zum Eigenvektor v gehört) von f. Beachte, dass für $0 \neq v \in V$ gilt:

$$v$$
 ist ein Eigenvektor von $V \Leftrightarrow Span\{v\}$ ist f -invariant (2.105)

$$\Leftarrow f(v) \in Span\{v\} \Rightarrow f(v) = \alpha v$$

$$\Rightarrow f(v) = \alpha v \Rightarrow f(\beta v) = \beta f(v) = \beta \alpha v \in Span\{v\}$$

Für $A \in Mat(n; K)$ ist v ein **Eigenvektor** und α ein **Eigenwert** von A, wenn $Av = \alpha v$ mit $0 \neq v \in K^n$ und $\alpha \in K$.

Beispiel

$$A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \in Mat(2; \mathbb{R}) \tag{2.106}$$

$$A \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{2.107}$$

$$A \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -6 \\ -4 \end{pmatrix} = (-2) \begin{pmatrix} 3 \\ 2 \end{pmatrix} \tag{2.108}$$

Also ist $\binom{2}{1}$ ein Eigenvektor zum Eigenwert 1 und $\binom{3}{2}$ ein Eigenvektor zum Eigenwert -2 von A.

Daraus folgt, dass

• $Span\{\binom{2}{1}\}$ und $Span\{\binom{3}{2}\}$ h_A -invarant sind

•
$$\mathbb{R}^2 = Span\{\binom{2}{1}\} \oplus Span\{\binom{3}{2}\}$$
 und $B = \left(\binom{2}{1}, \binom{3}{2}\right)$ eine Basis von \mathbb{R}^2 ist

_

$$\mathcal{M}_B(h_A) = \begin{pmatrix} 1 & 0\\ 0 & -2 \end{pmatrix} \tag{2.109}$$

$$= \underbrace{\begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}}_{P-1}$$
(2.110)

$$P = T_B^C, P^{-1} = T_C^B \text{ mit } C = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)$$
 (2.111)

Eine Matrix $A \in Mat(n; K)$ ist **ähnlich** zu einer Matrix $B \in Mat(n; K)$ wenn es eine Matrix $P \in GL(n; K)$ mit $B = PAP^{-1}$ gibt.

Sei $A \in Mat(n; K)$ die Matrixdarstellung eines Endomorphismus $f: V \to V$ bezüglich einer Basis. Wir haben schon gesehen, dass $B \in Mat(n; K)$ die Matrixdarstellung bezüglich einer anderen Basis ist **gdw** B ähnlich zu A ist.

Lemma 2.2.1 Ähnliche Matrizen haben dieselben Eigenwerte.

Beweis Seien $A, B \in Mat(n; K)$ mit $B = PAP^{-1}, P \in GL(n; K)$. Wenn $Av = \alpha v$ für $0 \neq v \in V$ und $\alpha \in K$ gilt $Pv \neq 0$ und

$$B(Pv) = (PAP^{-1})(Pv) = P(Av) = P(\alpha v) = \alpha(Pv)$$
 (2.112)

Bemerkung Für einen Endomorphismus $f: V \to V$ und eine Basis $B = (v_1, ..., v_n)$ von V:

• v_i ist ein Eigenvektor von f zum Eigenwert α **gdw** die i-te Spalte von

$$\mathcal{M}_B(f) = (q_B(f(v_1)), ..., q_B(f(v_n)))$$
(2.113)

 αe_i ist.

- $\mathcal{M}_B(f)$ ist eine **Diagonalmatrix gdw** $v_1,...,v_n$ Eigenvektoren sind
- $\mathcal{M}_B(f)$ ist ähnlich zu einer Diagonalmatrix **gdw** es eine Basis $(w_1, ..., w_n)$ von V gibt, die aus Eigenvektoren besteht.

2.3 Das charakteristische Polynom

Sei $f: V \to V$ ein Endomorphismus eines Vektorraums V über K.

Frage: Wie findet man die Eigenvektoren von f?

Man bestimmt zuerst die **Eigenwerte** von f (nicht immer einfach!). Dann kann man das System $f(V) = \alpha v$ für ein bestimmtes $\alpha \in K$ lösen.

Beachte nun, dass für $0 \neq v \in V$ und $\alpha \in K$:

$$f(v) = \alpha v \Leftrightarrow f(v) - \alpha v = 0 \tag{2.114}$$

$$\Leftrightarrow (f - \alpha Id)v = 0 \tag{2.115}$$

$$\Leftrightarrow v \in Kern(f - \alpha Id) \tag{2.116}$$

(2.117)

wobei $Id: V \to V, w \mapsto w$ der Identische Endomorphismus ist, und $f - \alpha Id: V \to V, x \mapsto f(x) - \alpha x$ auch ein Endomorphismus ist. Man braucht

$$Kern(f - \alpha Id) \neq \{0\} \tag{2.118}$$

Lemma 2.3.1 Sei $f: V \to V$ ein Endomorphismus eines **endlich**-dimensionalen Vektorraums. Dann sind äquivalent:

- (i) $Kern f \neq \{0\}$
- (ii) $Bild f \neq V$
- (iii) Det A = 0 für jede Matrixdarstellung A von f
- (iv) 0 ist ein Eigenwert von f

In diesem Fall heisst f singulär, andernfalls nichtsingulär.

Beweis

- (i) \Leftrightarrow (ii) Nach der Dimensionsformel
- (ii) \Leftrightarrow (iii) $Bild f \neq V$ \mathbf{gdw} A ist nicht invertierbar \mathbf{gdw} det A = 0
- (i) \Leftrightarrow (iv) $Kern f \neq \{0\}$ **gdw** f(v) = 0 für ein $0 \neq v \in V$ **gdw** 0 ist ein Eigenwert von f.

Korollar 2.3.2 Sei $f: V \to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums V über K. Dann sind äquivalent für jedes $\alpha \in K$:

- (i) α ist ein Eigenwert von f
- (ii) $f \alpha Id$ ist **singulär**.

Beispiel

$$f: \mathbb{R}^2 \to \mathbb{R}^2, x \mapsto Ax \tag{2.119}$$

mit
$$A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$$
 (2.120)

 α ist ein Eigenwert von f (von A)

- gdw $Kern(f \alpha Id) \neq 0$
- $\mathbf{gdw} \ det(A \alpha E) = 0$
- gdw

$$\det \begin{pmatrix} 10 - \alpha & -18 \\ 6 & -11 - \alpha \end{pmatrix} = 0 \tag{2.121}$$

• **gdw** $(10 - \alpha)(-11 - \alpha) - (-18)(6) = 0$

•
$$\mathbf{gdw} \ \alpha^2 + \alpha - 2 = 0$$

• **gdw**
$$(\alpha + 2)(\alpha - 1) = 0$$

• gdw
$$\alpha = -2$$
 oder $\alpha = 1$

Wir lösen das Gleichungssystem

$$(A - (-2)E)x = 0 (2.122)$$

$$\begin{pmatrix} 12 & -18 \\ 6 & -9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{2.123}$$

$$\left\{ \begin{pmatrix} 3\lambda \\ 2\lambda \end{pmatrix} : \lambda \neq 0 \right\} \text{ sind Eigenvektoren zum Eigenwert -2}$$
 (2.124)

 $\alpha=1$ Aufgabe.

Vorlesung vom 09.03.2012

Ergänzung zum Beispiel

$$(A - (1)E)x = 0 (2.125)$$

$$\begin{pmatrix} 9 & -18 \\ 6 & -12 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{2.126}$$

$$\left\{ \begin{pmatrix} 2\lambda \\ 1\lambda \end{pmatrix} : \lambda \neq 0 \right\} \text{ sind Eigenvektoren zum Eigenwert 1}$$
 (2.127)

Zur Erinnerung: Sei $f: V \to V$ ein Endomorphismus eines Vektorraums V über K, und sei $A \in Mat(n; K)$ eine Matrixdarstellung von f.

Anmerkung Ähnliche Matrizen $(B = PAP^{-1} \text{ für } P \in GL(n; K))$ stellen denselben Endomorphismus dar, und haben dieselben Eigenwerte (Lemma 2.2).

Dann gilt: $\alpha \in K$ ist ein Eigenwert von f ist äquivalent mit:

$$\Leftrightarrow \alpha \in K$$
 ist ein Eigenwert von A, d.h. $Ax = \alpha x$ für ein $0 \neq x \in K^n$ (2.128)

$$\Leftrightarrow (A - \alpha E)x = 0 \text{ für ein } 0 \neq x \in K^n$$
 (2.129)

$$\Leftrightarrow Kern(A - \alpha E) \neq \{0\} \tag{2.130}$$

$$\Leftrightarrow \det(A - \alpha E) = 0 \tag{2.131}$$

Beispiel

$$A = \begin{pmatrix} -2 & -2 \\ -5 & 1 \end{pmatrix} \in Mat(2; \mathbb{R}) \tag{2.132}$$

$$\alpha \in \mathbb{R}$$
 ist ein Eigenwert von $A \Leftrightarrow \begin{vmatrix} -2 - \alpha & -2 \\ -5 & 1 - \alpha \end{vmatrix}$ (2.133)

$$\Leftrightarrow (-2 - \alpha)(1 - \alpha) - (-5)(-2) = 0 \tag{2.134}$$

$$\Leftrightarrow \alpha^2 + \alpha - 12 = 0 \tag{2.135}$$

$$\Leftrightarrow (\alpha + 4)(\alpha - 3) = 0 \tag{2.136}$$

$$\Leftrightarrow \alpha = -4 \text{ oder } \alpha = 3 \tag{2.137}$$

Eigenvektoren von A:

• $\alpha = -4$:

$$Ax = -4x \tag{2.138}$$

$$\Leftrightarrow (A - (-4) \cdot E)x = 0 \tag{2.139}$$

$$\left(\begin{pmatrix} -2 & -2 \\ -5 & 1 \end{pmatrix} - \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix} \right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(2.140)

$$\begin{pmatrix} 2 & -2 \\ -5 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.141}$$

$$\Rightarrow x_1 = x_2 \tag{2.142}$$

• Eigenvektoren für -4:

$$\left\{ \begin{pmatrix} \lambda \\ \lambda \end{pmatrix} : \lambda \neq 0 \right\} \tag{2.143}$$

• $\alpha = 3$:

$$\Leftrightarrow (A - (3)E) \cdot x = 0 \tag{2.144}$$

$$\begin{pmatrix} -5 & -2 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.145}$$

$$\Rightarrow x_1 = -\frac{2}{5}x_2\tag{2.146}$$

• Eigenvektoren für 3:

$$\left\{ \begin{pmatrix} -2\lambda \\ 5\lambda \end{pmatrix} : \lambda \neq 0 \right\} \tag{2.147}$$

Man beachte auch, dass

$$\left(\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} -2\\5 \end{pmatrix} \right) \tag{2.148}$$

eine Basis von \mathbb{R}^2 ist, und

$$\begin{pmatrix} -4 & 0 \\ 0 & 3 \end{pmatrix} = PAP^{-1} \tag{2.149}$$

 $_{
m mit}$

$$p^{-1} = \begin{pmatrix} 1 & -2 \\ 1 & 5 \end{pmatrix}, p = \frac{1}{7} \begin{pmatrix} 5 & 2 \\ -1 & 1 \end{pmatrix}$$
 (2.150)

Man sagt A ist diagonalisierbar.

Für $A \in Mat(n; K)$ sucht man $\alpha \in K$ so, dass $det(A - \alpha E) = 0$ die Eigenwerte von A sind. Man betrachtet das charakteristische Polynom von A:

$$P_A(t) = \det(tE - A) \tag{2.151}$$

aus dem Polynomring über K.

$$K[t] = \{B_0 + B_1 t + \dots + B_m t^m : B_0, \dots, B_m \in K\}$$
(2.152)

Man braucht hier $n \times n$ Matrizen über einem Ring und verwendet für $A = (\alpha_{ij})$:

$$detA := \sum_{\pi \in S_n} (\epsilon(\pi)_{\alpha, \pi(1), \dots, \pi(n)})$$
 (2.153)

wobei $\epsilon(\pi) = det(e\pi(1), ..., e\pi(n))$

Beispiel

$$\det \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21} \tag{2.154}$$

Dann gilt: α ist ein Eigenwert von A

- gdw. $det(A \alpha E) = 0$
- gdw. $det(\alpha E A) = 0$
- gdw. $P_A(\alpha) = 0$ (" α ist die Nullstelle von P_A ")

Bemerkungen

(1) Die Eigenwerte einer oberen oder unteren Dreiecksmatrix sind ihre Diagonaleinträge,

z.B. für
$$A = (\alpha_{ij}) = \begin{pmatrix} \alpha_{11} & \cdots \\ 0 & \ddots \\ 0 & \cdots & \alpha_{nn} \end{pmatrix}$$

$$P_{A}(t) = \begin{vmatrix} t - \alpha_{11} & \cdots \\ 0 & \ddots \\ 0 & \cdots & t - \alpha_{nn} \end{vmatrix} = (t - \alpha_{11})(t - \alpha_{22})...(t - \alpha_{nn})$$
 (2.155)

und die Eigenwerte von A sind $\alpha_{11}, ..., \alpha_{nn}$

(2) Beachte, dass für $A \in Mat(2; K)$:

$$P_A(t) = \det(tE - A) = \begin{vmatrix} t - \alpha_{11} & \alpha_{12} \\ \alpha_{21} & t - \alpha_{22} \end{vmatrix} = (t - \alpha_{11})(t - \alpha_{22}) - \alpha_{21}\alpha_{12}$$
 (2.157)
$$= t^2 - (\alpha_{11} + \alpha_{22})t + (\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21})$$
 (2.158)

Für $K = \mathbb{R}$ gibt es Eigenwerte gdw.

$$(\alpha_{11} + \alpha_{22})^2 - 4(\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21}) = (\alpha_{11} - \alpha_{22})^2 + 4\alpha_{12}\alpha_{21} \ge 0$$
 (2.159)

z.B. wenn $\alpha_{12}, \alpha_{21} \geq 0$.

Für $K = \mathbb{C}$ gibt es immer Eigenwerte.

(3) Sei $f: V \to V$ ein Endomorphismus eines Vektorraums, und sei A eine Matrixdarstellung. Dann sind die Eigenwerte von f die Eigenwerte von A, d.h. die Nullstellen von $P_A(t)$.

Satz 2.3.3 Alle Matrizen, die einen Endomorphismus $f: V \to V$ bezüglich verschiedener Basen darstellen, haben dasselbe charakteristische Polynom.

Beweis

Sei $A \in Mat(n; K)$ eine Darstellung von f bbezüglich einer Basis, wenn $B \in Mat(n; K)$ eine Darstellung vo f ist bezüglich einer anderen Basis, dann gilt:

$$B = PAP^{-1} \text{ für ein } P \in GL(n; K)$$
(2.160)

Daraus folgt

$$tE - B = tE - PAP^{-1} = P(tE)P^{-1} - PAP = P(tE - A)P^{-1}$$
(2.161)

und deshalb

$$P_B(t) = \det(tE - B) \tag{2.162}$$

$$= det(P(tE - A)P^{-1}) (2.163)$$

$$= \det P \cdot \det(tE - A) \cdot \det(P^{-1}) \tag{2.164}$$

$$= \det P \cdot \det(tE - A) \cdot (\det P)^{-1} \tag{2.165}$$

$$= det(tE - A) \tag{2.166}$$

$$=P_A(t) (2.167)$$

Beachten wir nun, dass für $A \in Mat(n; K)$

 $P_{A}(t) = \begin{vmatrix} t - \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & t - \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & & & \vdots \\ \alpha_{n1} & \cdots & \cdots & t - \alpha_{nn} \end{vmatrix}$ (2.168)

$$= (t - \alpha_{11})(t - \alpha_{22}) \cdot \dots \cdot (t - \alpha_{nn}) + q(t)$$
 (2.169)

wobei für $(tE - A) = (B_{ij})$:

$$q(t) = \sum_{\pi \in S_n \setminus \{Id\}} (\epsilon(\pi) B_{1,\pi(1)}, ..., B_{n,\pi(n)})$$
(2.170)

ein Polynom vom Grad höchstens n-2 ist. Beachte auch, dass

$$(t - \alpha_{11})...(t - \alpha_{nn}) = t^n - (\alpha_{11} + ... + \alpha_{nn})t^{n-1} + r(t)$$
(2.171)

wobei r(t) ein Polynom vom Grad höchstens n-2 ist.

Man definiert:

$$Spur A = \alpha_{11} + \dots + \alpha_{nn} \tag{2.172}$$

und beobachtet, dass $P_A(t) = t^n - (Spur A) \cdot t^{n-1} + ("ubrige Terme") + (-1)^n$. Nach Satz 2.3.3 folgt, dass für $P \in GL(n; K)$:

$$Spur(PAP^{-1}) = Spur A (2.173)$$

da die Koeffizienten des charakteristischen Polynoms für ähnliche Matrizen gleich sind.

Beispiel Betrachte für $\theta \in [0, 2\pi]$

$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \in Mat(2; \mathbb{R}) \tag{2.174}$$

die Matrixdarstellung einer Spiegelung an der Geraden mit dem Winkel $\frac{\theta}{2}$ bezüglich der Standardbasis.

$$P_A(t) = \begin{vmatrix} t - \cos \theta & \sin \theta \\ \sin \theta & t + \cos \theta \end{vmatrix}$$
 (2.175)

$$= (t - \cos \theta)(t + \cos \theta) - \sin^2 \theta \tag{2.176}$$

$$=t^2\cos^2(\theta) - \sin^2(\theta) \tag{2.177}$$

$$= t^2 - 1 (2.178)$$

$$= (t-1)(t+1) (2.179)$$

• Eigenwert 1

$$\begin{pmatrix} 1 - \cos \theta & \sin \theta \\ \sin \theta & 1 + \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.180}$$

(2.181)

• Eigenvektoren

$$\left\{\lambda \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \end{pmatrix} : \lambda \neq 0\right\} \tag{2.182}$$

• Eigenwert -1

$$\begin{pmatrix} -1 - \cos \theta & \sin \theta \\ \sin \theta & -1 + \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (2.183)

(2.184)

• Eigenvektoren

$$\left\{\lambda \begin{pmatrix} \cos\frac{\theta+\pi}{2} \\ \sin\frac{\theta+\pi}{2} \end{pmatrix} : \lambda \neq 0\right\} \tag{2.185}$$

Betrachte nun für $\theta \in [0, 2\pi)$:

$$B = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in Mat(2; \mathbb{R})$$
 (2.186)

die Matrixdarstellung einer Drehung der Ebene um einen Winkel θ bezüglich der Standardbasis.

$$P_B(t) = \begin{vmatrix} t - \cos \theta & -\sin \theta \\ \sin \theta & t + \cos \theta \end{vmatrix}$$
 (2.187)

$$= (t - \cos \theta) + \sin^2 \theta \tag{2.188}$$

$$= t^2 - (2\cos\theta)t + 1 \tag{2.189}$$

B hat Eigenwerte (in \mathbb{R}) nur wenn

$$4\cos^2\theta - 4 \ge 0\tag{2.190}$$

d.h. $\cos^2 \theta = 1$ gilt, was bedeutet, dass $\theta = 0$ oder $\theta = \pi$.

Aber man kann auch $B \in Mat(2,\mathbb{C})$ betrachten und dann hat B immer zwei komplexe Eigenwerte

$$\frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2} = \cos\theta \pm i\sin\theta \tag{2.191}$$

Sätze ohne Beweis (Siehe Algebra I)

- (1) Sei K ein Körper, und sei p(t) ein Polynom vom Grad n mit Koeffizienten in K. Dann hat p höchstens n Nullstellen in K.
- (2) Jedes Polynom positiven Grades mit komplexen Koeffizienten hat mind. eine komplexe Nullstelle (Fundamentalsatz der Algebra).

Korollar 2.3.4 Sei $f: V \to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums V über K.

- (a) Hat V Dimension n, so hat f höchstens n Eigenwerte.
- (b) Wenn $K = \mathbb{R}$ und $V \neq \{0\}$, dann hat f mindestens einen Eigenwert und daher auch einen Eigenvektor.

Frage Für einen Endomorphismus $f: V \to V$: Wann kann man eine Basis von Eigenvektoren von F finden?

Beispiel Die Matrix

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \in Mat(2; \mathbb{R}) \tag{2.192}$$

hat einen Eigenwert von 4 und Eigenvektoren für 4 in $Span\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\} \setminus \{\begin{pmatrix} 0 \\ 0 \end{pmatrix}\}$. Also ist $\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$ eine basis von Eigenvektoren von A.

Auf der anderen Seite hat die Matrix

$$B = \begin{pmatrix} 4 & 0 \\ 1 & 4 \end{pmatrix} \in Mat(2; \mathbb{R}) \tag{2.193}$$

auch einen Eigenwert von 4 und Eigenvektoren für 4 in $Span\{\begin{pmatrix} 0\\1 \end{pmatrix}\}\setminus \{\begin{pmatrix} 0\\0 \end{pmatrix}\}$. Also hat man keine Basis von Eigenvektoren von B.

Vorlesung vom 12.03.2012

2.4 Diagonalisierbarkeit

Beispiel

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ -1 & 5 & -2 \end{pmatrix} \in Mat(3, \mathbb{C})$$
 (2.194)

$$p_A(t) = det(tE - A) = \begin{vmatrix} t - 1 & 0 & 0 \\ 0 & t - 2 & 1 \\ 1 & -5 & t + 2 \end{vmatrix}$$
 (2.195)

$$= (t-1)((t-2)(t+2) - (1)(-5))$$
(2.196)

$$= (t-1)(t^2+1) (2.197)$$

$$= (t-1)(t-i)(t+i)$$
 (2.198)

• Eigenwert 1:

$$(1E - A)x = 0 (2.199)$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ 1 & -5 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_2 = x_3, x_1 = 2x_2 \tag{2.200}$$

• Eigenvektoren:

$$Span\left\{ \begin{pmatrix} 2\\1\\1 \end{pmatrix} \right\} / \left\{ \begin{pmatrix} 0\\0\\0 \end{pmatrix} \right\} \tag{2.201}$$

• Eigenwert i:

$$(iE - A)x = 0 (2.202)$$

$$\begin{pmatrix} i-1 & 0 & 0 \\ 0 & i-2 & 1 \\ 0 & -5 & i+2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = 0, x_3 = (2-i)x_2$$
 (2.203)

• Eigenvektoren:

$$Span\left\{ \begin{pmatrix} 0\\1\\2-i \end{pmatrix} \right\} / \left\{ \begin{pmatrix} 0\\0\\0 \end{pmatrix} \right\} \tag{2.204}$$

• Eigenwert -i:

$$(-iE - A)x = 0$$
 (2.205)

$$\begin{pmatrix} -i-1 & 0 & 0 \\ 0 & -i-2 & 1 \\ 0 & -5 & -i+2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = 0, x_3 = (i+2)x_2$$
 (2.206)

• Eigenvektoren:

$$Span\left\{ \begin{pmatrix} 0\\1\\i+2 \end{pmatrix} \right\} / \left\{ \begin{pmatrix} 0\\0\\0 \end{pmatrix} \right\} \tag{2.207}$$

Dann ist

$$\left\{ \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2-i \end{pmatrix}, \begin{pmatrix} 0\\1\\i+2 \end{pmatrix} \right\} \tag{2.208}$$

eine Basis und

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix} = PAP^{-1} \tag{2.209}$$

wobei

$$P^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 - i & i + 2 \end{pmatrix} \tag{2.210}$$

$$P = -\frac{i}{4} \begin{pmatrix} 2i & 0 & 0\\ -1 - i & 4 + 2i & -2\\ 1 - i & -4 + 2i & 2 \end{pmatrix}$$
 (2.211)

Satz 2.4.1 (a) Jede $A \in Mat(n, \mathbb{C})$ ist ähnlich zu einer oberen Dreiecksmatrix.

(b) Sei $f: V \to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums über \mathbb{C} . Dann gibt es eine Basis B von V, so dass $\mathcal{M}_B(f)$ obere Dreiecksform hat.

Beweis (b) folgt direkt aus (a). Wir zeigen (a) durch Induktion nach n.

• Induktionsanfang: n = 1, klar

• Induktionsschritt: Wir nehmen an, dass die Behauptung für n gilt. Wir betrachten $A \in Mat(n+1,\mathbb{C})$. Nach Korollar 2.3.4 hat A mindestens einen Eigenwert α und Eigenvektor v zu α . Wir setzen v zu einer Basis $B = (v, v_1, ..., v_n)$ von \mathbb{C}^{n+1} fort. Wir erhalten

$$B = PAP^{-1} = \begin{pmatrix} \alpha & \star & \cdots & \star \\ \hline 0 & & & \\ \vdots & & B' & \\ 0 & & & \end{pmatrix}$$
 (2.212)

mit $P \in GL(n+1,\mathbb{C})$ und $B' \in Mat(n;\mathbb{C})$.

Nach Induktionsannahme gibt es $Q \in GL(n; \mathbb{C})$, so dass $QB'Q^{-1} \in Mat(n; \mathbb{C})$ obere Dreiecksform hat.

Sei

$$Q' = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & Q & \\ 0 & & & \end{pmatrix} \in GL(n+1, \mathbb{C})$$
 (2.213)

Dann hat

$$(Q'P)A(Q'P)^{-1} = Q'PAP^{-1}(Q')^{-1}$$
(2.214)

$$= \begin{pmatrix} \alpha & \star & \cdots & \star \\ 0 & & & \\ \vdots & & QB'Q^{-1} & \\ 0 & & & \end{pmatrix}$$
 (2.215)

obere Dreiecksform und ist zu A ähnlich (da $Q'P \in GL(n+1,\mathbb{C})$).

- Satz 2.4.2 (a) Jede Matrix $A \in Mat(n; K)$ deren charakteristisches Polynom in K in Linearform zerfällt $(p_A(t) = (t \alpha_1)(t \alpha_2)...(t \alpha_n))$, ist ähnlich zu einer oberen Dreiecksmatrix.
 - (b) Sei $f: V \to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums V über K, und nehmen wir an, dass das charakteristische Polynom von f in Linearfaktoren zerfällt. Dann gibt es eine Basis B von V, so dass $\mathcal{M}_B(f)$ obere Dreiecksform hat.

Beweis Ähnlich wie der Beweis von Satz 2.4.1.

Satz 2.4.3 Seien $v_1, ..., v_n \in V$ Eigenvektoren eines Endomorphismus $f: V \to V$ zu paarweise verschiedenen Eigenwerten $\alpha_1, ..., \alpha_n$. Dann sind $v_1, ..., v_n$ linear unabhängig.

Beweis Induktion über n.

- Induktionsanfang: $n = 1, 0 \neq v \in V$ ist linear unabhängig.
- Induktionsschritt: Wir nehmen an, dass die Behauptung für n gilt. Wir betrachten (1) $\beta_1 v_1 + ... + \beta_{n+1} v_{n+1} = 0$ (zu zeigen: $\beta_1 = ... = \beta_{n+1} = 0$) und beachten, dass (2)

$$f(\beta_1 v_1 + \dots + \beta_{n+1} v_{n+1}) = \beta_1 f(v_1) + \dots + \beta_{n+1} f(v_{n+1})$$
(2.216)

$$= \beta_1 \alpha_1 v_1 + \dots + \beta_{n+1} \alpha_{n+1} v_{n+1} \tag{2.217}$$

$$= f(0) = 0 (2.218)$$

Daraus folgt $(\alpha_{n+1}x(1) - (2))$

$$\beta_1(\alpha_{n+1} - \alpha_1)v_1 + \dots + \beta_n(\alpha_{n+1} - \alpha_n)v_n = 0$$
 (2.219)

Nach Induktionsannahme

$$\beta_1(\alpha_{n+1} - \alpha_1) = \dots = \beta_n(\alpha_{n+1} - \alpha_n) = 0 \tag{2.220}$$

Da $\alpha_{n+1} \neq \alpha_i$ für i = 1...n

$$\beta_1 = \dots = \beta_n = 0 \tag{2.221}$$

und wir erhalten (in (1))

$$\beta_{n+1}v_{n+1} = 0 \tag{2.222}$$

Aber $v_{n+1} \neq 0$ und deshalb auch $\beta_{n+1} = 0$.

Zur Erinnerung: Für einen Endomorphismus $f: V \to V$ und ene Basis $B = (v_1, ..., v_n)$ von V:

$$\mathcal{M}_B(f)$$
 ist diagonal $\Leftrightarrow v_1, ..., v_n$ sind Eigenvektoren von f (2.223)

$$\mathcal{M}_B(f) = (q_B(f(v_1))...q_B(f(v_n)))$$
 (2.224)

Korollar 2.4.4 Sei $f: V \to V$ ein Endomorphismus eines Vektorraums V über K mit dim V = n, und seien $v_1, ..., v_n \in V$ Eigenvektoren zu paarweise verschiedenen Eigenwerten $\alpha_1, ..., \alpha_n$. Dann gilt:

- (i) $(v_1,...,v_n)$ ist eine Basis von V (gemäss Satz 2.4.3)
- (ii) $\mathcal{M}_B(f)$ ist diagonal
- (iii) $p_A(t) = (t \alpha_1)...(t \alpha_n)$ für jede Matrixdarstellung A von f.

Beispiel

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \in Mat(3; \mathbb{C})$$
 (2.225)

$$p_A(t) = \begin{vmatrix} t - 3 & -2 & -4 \\ -2 & t & -2 \\ -4 & -2 & t - 3 \end{vmatrix}$$
 (2.226)

$$= t^3 - 6t^2 - 15t - 8 (2.227)$$

$$= (t+1)^2(t-8) (2.228)$$

• Eigenwert -1:

$$(-1E - A)x = 0 (2.229)$$

$$\begin{pmatrix} -4 & -2 & -4 \\ -2 & -1 & -2 \\ -4 & -2 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_2 = -2x_1 - 2x_3 \tag{2.230}$$

• Eigenvektoren

$$\left\{ \begin{pmatrix} \alpha \\ -2\alpha - 2\beta \\ \beta \end{pmatrix} : \alpha, \beta \in \mathbb{C} \right\} / \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$
 (2.231)

$$= Span\left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} \right\} / \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} \tag{2.232}$$

• Eigenwert 8

$$(8E - A)x = 0 (2.233)$$

$$\begin{pmatrix} 5 & -2 & -4 \\ -2 & 8 & -2 \\ -4 & -2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = 2x_2, x_3 = 2x_2$$
 (2.234)

• Eigenvektoren

$$Span\left\{ \begin{pmatrix} 2\\1\\2 \end{pmatrix} \right\} / \left\{ \begin{pmatrix} 0\\0\\0 \end{pmatrix} \right\} \tag{2.235}$$

Dann ist

$$B = \left\{ \begin{pmatrix} 2\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\0 \end{pmatrix}, \begin{pmatrix} 0\\-2\\1 \end{pmatrix} \right\} \tag{2.236}$$

eine Basis von \mathbb{C}^3 die aus Eigenvektoren von A besteht, und

$$\mathcal{M}_B(h_A) = \begin{pmatrix} 8 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = PAP^{-1}$$
 (2.237)

mit
$$P^{-1} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -2 & -2 \\ 2 & 0 & 1 \end{pmatrix}, P = \frac{1}{9} \begin{pmatrix} 2 & 1 & 2 \\ 5 & -2 & -4 \\ -4 & -2 & 5 \end{pmatrix}$$
 (2.238)

Satz 2.4.5 Sei $A \in Mat(n; K)$ und sei $B = (v_1, ..., v_n)$ eine Basis von K^n die aus Eigenvektoren von A besteht. Dann ist PAP^{-1} diagonal mit

$$P^{-1} = (v_1, ..., v_n) \in GL(n; K)$$
(2.239)

Beweis Eigenvektoren von A sind Eigenvektoren von $h_A: K^n \to K^n$. Also ist

$$\mathcal{M}_B(h_A) \tag{2.240}$$

diagonal. Aber auch für die Standardbasis $C = (c_1, ..., c_n)$ von K^n :

$$\mathcal{M}_B(h_A) = T_B^C \mathcal{M}_C(h_A) T_C^B \tag{2.241}$$

$$\mathcal{M}_C(h_A) = A \tag{2.242}$$

$$T_C^B = (v_1, ..., v_n) (2.243)$$

$$T_B^C = (T_C^B)^{-1} (2.244)$$

(2.245)

Frage: Wie überprüft man, ob ein Endomorphismus $f: V \to V$ eines endlich-dimensionalen Vektorraums V über K diagonalisierbar ist?

Idee: Man findet vielleicht (für \mathbb{C} immer) ein charakteristisches Polynom für f:

$$(t - \alpha_1)^{r_1} \dots (t - \alpha_k)^{r_k} \tag{2.246}$$

mit paarweise verschiedenen Eigenwerten $\alpha_1, ..., \alpha_k \in K, k \leq \dim V$ und $r_1, ..., r_k \geq 1$. Wenn $k = \dim V$, dann ist f (wie vorher) diagonalisierbar. Andernfalls braucht man für i = 1...k r_i linear unabhängige Eigenvektoren zum Eigenwert α_i .

Sei $f: V \to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums V über K und sei p(t) das charakteristische Polynom von f (d.h. $p_A(t)$ für eine Matrixdarstellung von f).

Für einen Eigenwert $\alpha \in K$ von f definieren wir:

• die algebraische Vielfachheit von α

$$\mu(p(t), \alpha) = \max\{r \in \mathbb{N} : p(t) = (t - \alpha)^r g \text{ mit } g \in K[t]\}$$
(2.247)

 \bullet den Eigenraum von fbezüglich α

$$Eig(f;\alpha) = \{v \in V : f(v) = \alpha v\}$$
(2.248)

• die geometrische Vielfachheit von α

$$dim(Eig(f;\alpha)) \tag{2.249}$$

Bemerkungen

- $Eig(f;\alpha) \setminus \{0\}$ ist die Menge der zu α gehörigen Eigenvektoren von f
- Sei $(v_1,...,v_5)$ eine Basis von $Eig(f;\alpha)$ und ergänze sie zu einer

Vorlesung vom 19.03.2012

2.4 Diagonalisierbarkeit

Zur Erinnerung Sei $f: V \to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums V über K, und sei p(t) das charakteristische Polynom von f.

Für einen Eigenwert $\alpha \in K$ von f definiert man

• die algebraische Vielfachheit von α

$$\mu(p(t), \alpha) = \max\{n \in N : p(t) = (t - \alpha)^n g(t) \text{ mit } g(t) \in K(t)\}$$
 (2.250)

• den **Eigenraum** von f bezüglich α :

$$Eig(f;\alpha) = \{v \in V : f(v) = \alpha v\}$$
(2.251)

• die geometrische Vielfachheit von α

$$dim(Eig(f;\alpha)) \tag{2.252}$$

Man definiert auch für $A \in Mat(n, K)$ und einen Eigenwert α von A:

$$Eig(A; \alpha) = Eig(h_A, \alpha)$$
 (2.253)

Bemerkung (Korollar 2.4.4)

Wenn $f \dim V$ Eigenwerte mit algebraischer Vielfachheit 1 hat, dann ist f diagonalisierbar.

Beispiel

$$A = \begin{pmatrix} 5 & -2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \in Mat(4; \mathbb{R})$$
 (2.254)

$$A = \begin{pmatrix} 5 & -2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \in Mat(4; \mathbb{R})$$

$$p_{A}(t) = \begin{vmatrix} t - 5 & 2 & 0 & 0 \\ -2 & t - 1 & 0 & 0 \\ 0 & 0 & t - 2 & 0 \\ 0 & 0 & 0 & t - 2 \end{vmatrix}$$

$$(2.254)$$

$$= ((t-5)(t-1) - (-2)(2))(t-2)^{2}$$
(2.256)

$$= (t^2 - 6t + 9)(t - 2)^2 (2.257)$$

$$= (t-3)^2(t-2)^2 (2.258)$$

$$\mu(p_A(t);3) = 2 \tag{2.259}$$

$$\mu(p_A(t); 2) = 2 \tag{2.260}$$

• Eigenwert 2

$$(2E - A)x = 0 \Rightarrow x_1 = x_2 = 0 \tag{2.261}$$

$$Eig(A;2) = Span \left\{ \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$$
 (2.262)

$$dim(Eig(A;2)) = 2 (2.263)$$

• Eigenwert 3

$$(3E - A)x = 0 (2.264)$$

$$\begin{pmatrix} -2 & 2 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = x_2, x_3 = x_4 = 0$$
 (2.265)

$$Eig(A;3) = Span\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \right\}$$
 (2.266)

$$dim(Eig(A;3)) = 1 (2.267)$$

Man hat 'nicht genug' linear unabhängige Eigenvektoren⁴, um eine Basis von \mathbb{R}^4 zu bilden, A ist **nicht** diagonalisierbar.

Beachte auch, dass

$$Eig(A;3) \cap Eig(A;2) = \{0\}$$
 (2.268)

$$\underbrace{Eig(A;3) \oplus Eig(A;2)}_{dim3} \neq \mathbb{R}^4$$
 (2.269)

Zur Erinnerung Sei V ein Vektorraum über K mit Unterräumen $W_1, ..., W_K$. Wenn für

$$w_1 \in W_1, ..., w_k \in W_K \tag{2.270}$$

$$w_1 + \dots + w_k = 0 \to w_1 = \dots = w_k = 0$$
 (2.271)

(2.272)

dann heisst $W_1 + ... + W_K$ die **direkte Summe** von $W_1, ... W_K$, geschrieben:

$$W_{+} \oplus \ldots \oplus W_{K} \tag{2.273}$$

Äquivalente Formulierung⁵:

$$W_i \cap (W_1 + \dots + W_{i-1} + W_{i+1} + \dots + W_K) = \{0\} \text{ für } i = 1...k$$
 (2.274)

⁴diagonalisierbar = Wir haben eine Basis von Eigenvektoren.

⁵Lineare Algebra 1: Satz 4.3.2

Bemerkung

$$dim(W_1 \oplus ... \oplus W_K) = dim(W_1) + ... + dim(W_K)$$
 (2.275)

Satz 2.4.6 Sei $f: V \to V$ ein Endomorphismus eines endlich-dimensionalen Vektorraums V über K mit charakteristischem Polynom p(t) und paarweise verschiedenen Eigenwerten $\alpha_1, ..., \alpha_k \in K$. Dann sind äquivalent:

(2) p(t) zerfällt in Linearfaktoren, d.h.

$$p(t) = (t - \alpha_1)^{r_1} \dots (t - \alpha_k)^{r_k}$$
(2.276)

und $dim(Eig(f; \alpha_i)) = r_i = \mu(p(t); \alpha_i)$ für i = 1...k.

(3)
$$V = Eig(f; \alpha_1) \oplus ... \oplus Eig(f; \alpha_k)$$

Beweis

• $(1) \Rightarrow (2)$ Wenn f diagonalisierbar ist, gibt es eine Basis von Eigenvektoren von f.

$$(v_{1,1}, ..., v_{1,s_1}, v_{2,1}, ..., v_{2,s_2}, ..., v_{k,1}, ..., v_{k,s_k})$$

$$(2.277)$$

mit
$$v_{1,1}, ..., v_{i,s_i} \in Eig(f; \alpha_i)$$
 für $\alpha = 1...k$ (2.278)

Setzen wir

$$r_i = \mu(p(t); \alpha_i) \tag{2.279}$$

so gilt für i = 1...k

$$s_i < \dim(Eig(f; \alpha_i)) < r_i \tag{2.280}$$

und

$$r_1 + \dots + r_k \le \dim V \tag{2.281}$$

$$= s_1 + \dots + s_k$$
 (2.282)

$$\leq r_1 + \dots r_k \tag{2.283}$$

$$\Rightarrow p(t) = (t - \alpha_i)^{r_1} ... (t - \alpha_k)^{r_k}$$
 (2.284)

• $(2) \Rightarrow (3)$ Sei

$$W = Eig(f; \alpha_1) + ...1Eig(f; \alpha_k)$$
(2.285)

Nach Satz 2.4.3 sind $w_1, ..., w_k$ (alle $\neq 0$) für $w_i \in Eig(f; \alpha_i)$ linear unabhängig. Aber dann gilt für $w_i \in Eig(f; \alpha_i)$

$$w_1 + \dots + w_k = 0 \Rightarrow w_1 = \dots = w_k = 0$$
 (2.286)

$$\Rightarrow W = Eig(f; \alpha_1) \oplus ... \oplus Eig(f; \alpha_k)$$
 (2.287)

Aber auch

$$dim W = (dim(Eig(f; \alpha_1)) + ... + dim(Eig(f; \alpha_k)))$$
(2.288)

$$= \mu(p(t); \alpha_1) + \dots + \mu(p(t); \alpha_k) \text{ (nach (2))}$$
(2.289)

$$= \dim V \tag{2.290}$$

• $(3) \Rightarrow (1)$ Sei

$$B_i = (v_{i,1}, ..., v_{i,s_i}) (2.291)$$

eine Basis von $Eig(f; \alpha_i)$ für i = 1...k. Also ist

$$(v_{1,1}, ..., v_{1,s_1}, ..., v_{k,1}, ... v_{k,s_k}) (2.292)$$

eine Basis von V die aus Eigenvektoren von f besteht, d.h. f ist diagonalisierbar. \square

Man erhält ein **Verfahren** für die Diagonalisierung eines Endomorphismus $f:V\to V$ eines endlich-dimensionalen Vektorraums V über K:

- (1) Mit Hilfe einer Basis B von V und der Matrix $A = \mathcal{M}_B(f)$ berechnet man das charakteristische Polynom p(t).
- (2) Man sucht eine Zerlegung von p(t) in Linearfaktoren.
- (3) Für jeden Eigenwert α von f bestimmt man durch Lösung eines linearen Gleichungssystems eine Basis von $Eig(f;\alpha)$. Dann kann man überprüfen, ob

$$dim(Eig(f;\alpha)) = \mu(p(t);\alpha) \tag{2.293}$$

gilt. Genau dann, wenn dies für alle Eigenwerte α der Fall ist, ist f diagonalisierbar und man kann eine Basis von Eigenvektoren bilden.

3 Orthogonale Matrizen und Drehungen

3.1 Die Orthogonale Gruppe

Wir haben schon gesehen, dass

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in Mat(2; \mathbb{R}), \theta \in [0, 2\pi)$$
(3.1)

die Matrixdarstellung einer Drehung von \mathbb{R}^2 um den Winkel θ bezüglich der Standardbasis (e_1,e_2) ist.

Man sieht auch, dass

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos\theta & -\sin\theta \\
0 & \sin\theta & \cos\theta
\end{pmatrix}$$
(3.2)

die Matrixdarstellung einer räumlichen Drehung um den Winkel θ um den Vektor

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \tag{3.3}$$

bezüglich der Standardbasis ist.

Frage Wie beschreibt man alle diese 'Drehmatrizen'?

$$A \in Mat(n; \mathbb{R}) \tag{3.4}$$

heisst orthogonal, wenn

$$A^t = A^{-1}$$
, d.h. $A^t A = E$ (3.5)

Beachte, dass

$$A^t A = E, B^t B = E \Rightarrow (AB)^t (AB) \tag{3.6}$$

$$=B^t A^t A B \tag{3.7}$$

$$=B^t E B \tag{3.8}$$

$$=E \tag{3.9}$$

Also bilden die orthogonalen $n \times n$ Matrizen eine **Untergruppe** von $GL(n; \mathbb{R})$,

$$O(n; \mathbb{R}) = \{ A \in GL(n; \mathbb{R}) : A^t A = E \}$$
(3.10)

die sogenannte orthogonale Gruppe. Beachte nun, dass

$$A \in O(n; \mathbb{R}) \Rightarrow det(A^t A) = det E$$
 (3.11)

$$\Rightarrow (\det A)(\det A^t) = 1 \tag{3.12}$$

$$\Rightarrow (\det A)^2 = 1 \tag{3.13}$$

$$\Rightarrow \det A = 1 \text{ oder } \det A = -1 \tag{3.14}$$

Auch

$$det A = 1, det B = 1 \Rightarrow det(AB) = 1 \tag{3.15}$$

Man definert die Untergruppe von $O(n; \mathbb{R})$

$$SO(n; \mathbb{R}) = \{ A \in O(n; \mathbb{R}) : \det A = 1 \}$$

$$(3.16)$$

die spezielle orthogonale Gruppe. Zudem gilt

$$Mat(n; \mathbb{R}) \subseteq GL(n; \mathbb{R}) \subseteq O(n; \mathbb{R}) \subseteq SO(n; \mathbb{R})$$
 (3.17)

Behauptung Eine Matrix A beschreibt eine Drehung von \mathbb{R}^2 oder \mathbb{R}^3 gdw $A \in SO(2; \mathbb{R})$ oder $A \in SO(3; \mathbb{R})$.

Das Skalarprodukt von Spaltenvektoren $x, y \in \mathbb{R}^n$ ist wie folgt definiert:

$$(x \cdot y) = x^t y \tag{3.18}$$

$$= x_1 y_1 + \dots + x_n y_n \tag{3.19}$$

Die Länge |x| von $x \in \mathbb{R}^n$ ist fixiert durch

$$|x|^{2} = (x \cdot x)$$

$$= x_{1}^{2} + \dots + x_{n}^{2}$$
(3.20)
$$(3.21)$$

Ein Vektor mit Länge 1 heisst **Einheitsvektor**.

Für ein Dreieck in \mathbb{R}^n der Form

gilt der Kosinussatz:

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \theta \tag{3.22}$$

Man erhält

$$|x - y|^2 = |x|^2 + |y|^2 - 2|x||y|\cos\theta$$
(3.23)

$$\Rightarrow (x-y) \cdot (x-y) = (x \cdot x) + (y \cdot y) - 2(x \cdot y) \tag{3.24}$$

$$= (x \cdot x) + (y \cdot y) - 2|x||y|\cos\theta \tag{3.25}$$

$$\Rightarrow (x - y) = |x||y|\cos\theta \tag{3.26}$$

Beachte, dass

$$\theta = \frac{\pi}{2} \Rightarrow (x \cdot y) = 0 \tag{3.27}$$

 $x,y\in\mathbb{R}^n$ heissen (zueinander) orthogonale Vektoren, wenn

$$(x \cdot y) = 0 \tag{3.28}$$

Satz 3.1.1 Sei $A \in Mat(n; \mathbb{R})$ Dann sind äquivalent:

- (1) A ist orthogonal
- (2) $\forall x, y \in \mathbb{R}^n : (Ax \cdot Ay) = (x \cdot y)$
- (3) Die Spalten von A sind paarweise orthogonale Einheitsvektoren.

Beweis

• $(1) \Rightarrow (2)$

$$A^t A = E \Rightarrow (x \cdot y) = x^t y \tag{3.29}$$

$$= x^t A^t A y \tag{3.30}$$

$$= (Ax)^t Ay (3.31)$$

$$= (Ax \cdot Ay) \tag{3.32}$$

• (2) \Rightarrow (1) Nehmen wir an, dass für alle $x, y \in \mathbb{R}^n$

$$x^t y = x^t A^t A y (3.33)$$

Dann gilt für $x, y \in \mathbb{R}$:

$$x^t B y = 0 \text{ mit } B = E - A^t A \tag{3.34}$$

Insbesondere gilt für $i, j \in \{1, ..., n\}$

$$e_i^t B e_j = b_{ij} = 0$$
 (3.35)

Also B = 0 und $A^t A = E$

• (2) \Leftrightarrow (3) Sei $A = (a_1, ..., a_n)$ und beachte, dass der Eintrag der Matrix $A^t A$ an der Stelle (i, j) $(a_i \cdot a_j)$ ist. Deshalb:

$$A^{t}A = E \text{ gdw}$$
 (i) $(a_{i} \cdot a_{i}) = 1 \text{ für } i = 1...n$ (3.36)

$$(ii) (a_i \cdot a_j) = 0 \text{ für } i \neq j \tag{3.37}$$

gdw
$$(i) a_i$$
 ist ein Einheitsvektor $i = 1...n$ (3.38)

 $(ii) a_i, a_j (i \neq j) \text{ sind orthogonal}$ (3.39)

Vorlesung vom 23.03.2012

Zur Erinnerung: Wir betrachten

• die orthogonale Gruppe

$$O(n; \mathbb{R}) = \{ A \in GL(n; \mathbb{R}) : A^t A = E \}$$
(3.40)

• die spezielle orthogonale Gruppe

$$SO(n; \mathbb{R}) = \{ A \in O(n; \mathbb{R}) : \det A = 1 \}$$

$$(3.41)$$

Beispiel

$$A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{3.42}$$

Eine Drehung von \mathbb{R}^2 .

Behauptung Eine Matrix A beschreibt eine Drehung von \mathbb{R}^2 oder \mathbb{R}^3 gdw $A \in SO(2; \mathbb{R})$ oder $A \in SO(3; \mathbb{R})$.

Bemerkung zu Satz 3.1.1 Für $A \in Mat(n; \mathbb{R})$ sind äquivalent:

- (1) A ist **orthogonal**
- (2) $((Ax) \cdot (Ay)) = (x \cdot y) \forall x, y \in \mathbb{R}^n$
- (3) Die Spalten von A sind paarweise orthogonale Einheitsvektoren, d.h.

$$f \ddot{u} r A = (a_1, ..., a_n), a_i \cdot a_i = 1 \tag{3.44}$$

$$a_i \cdot a_j = 0, i \neq j \tag{3.45}$$

Definition Eine **orthonormale Basis** von \mathbb{R}^n ist eine Basis von \mathbb{R}^n , die aus paarweise orthogonalen Einheitsvektoren besteht (d.h. Spalten einer orthogonalen Matrix)

Beispiel

$$\left(\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right)$$
(3.46)

ist eine Orthonormalbasis von \mathbb{R}^2 , aber nicht:

$$\left(\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \tag{3.47}$$

3.2 Euklidische Bewegungen

Eine (euklidische) Bewegung oder Isometrie von \mathbb{R}^n ist eine 'abstandstreue' Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$, d.h. $\forall x, y \in \mathbb{R}^n$:

$$|f(x) - f(y)| = |x - y| \tag{3.48}$$

Beispiel Für jedes

$$a = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{R}^n \tag{3.49}$$

ist die Translation $t_a: \mathbb{R}^n \to \mathbb{R}^n$ mit

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} x_1 + \alpha_1 \\ \vdots \\ x_n + \alpha_n \end{pmatrix} \tag{3.50}$$

eine Bewegung, da

$$|t_a(x) - t_a(y)| = |\begin{pmatrix} x_1 + \alpha_1 \\ \vdots \\ x_n + \alpha_n \end{pmatrix} - \begin{pmatrix} y_1 + \alpha_1 \\ \vdots \\ y_n + \alpha_n \end{pmatrix}| = |x - y|$$
(3.51)

Bemerkung Die Zusammensetzung von zwei Bewegungen und die Umkehrabbildung einer Bewegung sind auch Bewegungen. Also bilden die euklidischen Bewegungen von \mathbb{R}^n eine Gruppe

$$B(n; \mathbb{R}) \tag{3.52}$$

die Bewegungsgruppe oder Isometriegruppe.

Satz 3.2.1 Für eine Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ sind äquivalent:

- (1) f ist eine euklidische Bewegung, die den Nullpunkt fest lässt, d.h. f(0) = 0.
- (2) $\forall x, y \in \mathbb{R}^n$ gilt:

$$\underbrace{(f(x)f(y))}_{Skalar} = \underbrace{(x \cdot y)}_{Skalar} \tag{3.53}$$

(3) f ist durch Multiplikation mit einer orthogonalen Matrix gegeben.

Beweis

• (1) \Rightarrow (2) Nehmen wir an, dass f eine Bewegung mit f(0) = 0 ist. Dann gilt für $x, y \in \mathbb{R}^n$:

$$(f(x) - f(y)) \cdot (f(x) - f(y)) = ((x - y)(x - y)) \tag{3.54}$$

Insbesondere gilt für y = 0

$$f(y) = 0 \tag{3.55}$$

$$(f(x) \cdot f(x)) = (x \cdot x) \tag{3.56}$$

Wir erhalten

$$(f(x) \cdot f(x)) + (f(y) \cdot f(y)) - 2(f(x) \cdot f(y)) = (x \cdot x) + (y \cdot y) - 2(x \cdot y)$$
 (3.57)

und deshalb

$$(f(x) \cdot f(y)) = (x \cdot y) \tag{3.58}$$

• (2) \Rightarrow (3) Zuerst bemerken wir, dass für eine Abbildung $g: \mathbb{R}^n \to \mathbb{R}^n$ sind äquivalent:

(i)
$$g(e_i) = e_i$$
 für $1, ..., n$ und $(g(x) \cdot g(y)) = (x \cdot y)$

$$\forall x, y \in \mathbb{R}^n \tag{3.59}$$

(ii) g ist die identische Abbildung g(x) = x für $x \in \mathbb{R}^n$

Nehmen wir jetzt an, dass $\forall x, y \in \mathbb{R}^n$

$$(f(x) \cdot f(y)) = (x \cdot y) \tag{3.60}$$

Dann ist $(f(e_1),...,f(e_n))$ eine **Orthonormalbasis**, da

$$(f(e_i) \cdot f(e_i)) = (e_i \cdot e_i) = 1$$
 (3.61)

$$(f(e_i) \cdot f(e_j)) = (e_i \cdot e_j) = 0, i \neq j$$
 (3.62)

Also nach Satz 3.1.1:

$$A = (f(e_1), ..., f(e_n)) \in O(n; \mathbb{R})$$
(3.63)

Zu zeigen: f(x) = Ax für $x \in \mathbb{R}^n$.

Wir haben $A^{-1} \in O(n; \mathbb{R})$ und nach Satz 3.1.1

$$\forall x, y \in \mathbb{R}^n (A^{-1}x \cdot A^{-1}y) = (x \cdot y) \tag{3.64}$$

Aber dann auch $\forall x, y \in \mathbb{R}^n$:

$$((h_{A^{-1}})(x) \cdot (h_{A^{-1}} \circ f)(x)) = (x \cdot y) \tag{3.65}$$

und für i = 1...n

$$(h_{A^{-1}} \circ f)(e_i) = A^{-1}(f(e_i)) = e_i \tag{3.66}$$

Daraus folgt, dass (nach der vorigen Bemerkung) $h_{A^{-1}} \circ f$ die identische Abbildung ist und $f(x) = Ax \forall x \in \mathbb{R}^n$.

• (3) \Rightarrow (1) Ist f ein Endomorphismus dessen Matrix A orthogonal ist, dann gilt $\forall x,y \in \mathbb{R}^n$:

$$|f(x) - f(y)| = |f(x - y)| \tag{3.67}$$

$$=|A(x-y)|\tag{3.68}$$

$$=\sqrt{A(x-y)\cdot A(x-y)}\tag{3.69}$$

$$= \sqrt{(x-y)(x-y)} \text{ (Satz 3.1.1)}$$
 (3.70)

$$=|x-y|\tag{3.71}$$

Also ist eine euklidische Bewegung $f(0) = A \cdot 0 = 0$

Korollar 3.2.2 Eine euklidische Bewegung f, die den Nullpunkt fest lässt, ist ein Endomorphismus. Man nennt f einen orthogonalen Endomorphismus.

Frage Wie bildet/beschreibt man eine euklidische Bewegung?

Satz 3.2.3 Jede euklidische Bewegung f ist die Zusammensetzung eines orthogonalen Endomorphismus und einer Translation, d.h.

$$f(x) = Ax + b (3.72)$$

 $f\ddot{u}r \ ein \ A \in O(n; \mathbb{R}) \ und \ b \in \mathbb{R}^n.$

Beweis Sei b = f(0). Dann gilt:

$$(t_{-b} \oplus f)(0) = t_{-b}(f(0)) = 0 \tag{3.73}$$

Nach Satz 3.2.1 gibt es $A \in O(n; \mathbb{R})$ mit $(t_{-b} \oplus f)(x) = Ax$ Also

$$f(x) = Ax + b (3.74)$$

Lemma 3.2.4 *Jedes* $A \in SO(3; \mathbb{R})$ *hat einen Eigenwert 1.*

Beweis Wir brauchen det(A - E) = 0. Beachte dass

$$det(A - E) = det A^{t} \cdot det(A - E) = det(A^{t}(A - E))$$
(3.75)

$$= \det(A^t A - A^t E) \tag{3.76}$$

$$= det(E - A^t) (3.77)$$

$$= det(E - A)^t (3.78)$$

$$= det(E - A) \tag{3.79}$$

$$= det((-1)A - E) \tag{3.80}$$

$$= -det(A - E) \tag{3.81}$$

$$=0 (3.82)$$

Satz 3.2.5 Eine Matrix A beschreibt eine Drehung von \mathbb{R}^2 oder \mathbb{R}^3 gdw $A \in SO(2; \mathbb{R})$ oder $A \in SO(3; \mathbb{R})$.

Beweis

- \Rightarrow Sei d eine Drehung von \mathbb{R}^2 oder \mathbb{R}^3 . Dann ist d eine euklidische Bewegung und nach Satz 3.2.1 gibt es $A \in O(n; \mathbb{R})$ (mit n = 2 oder n = 3) mit d(x) = Ax. Weiter gilt $\det A = 1$, weil $\det A$ stetig vom Drehwinkel abhängt und für den Drehwinkel 0 (identische Abbildung) $\det A = 1$. Also $A \in SO(n; \mathbb{R})$.
- \Leftarrow Sei nun $A \in SO(2; \mathbb{R})$ Zu zeigen:

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \text{ für ein } \theta \in [0, 2\pi)$$
 (3.83)

Wir haben

$$A = (Ae_1, Ae_2) \in SO(2; \mathbb{R}) \tag{3.84}$$

und Ae_1, Ae_2 sind orthogonale Einheitsvektoren.

Es gibt also eine Drehung mit Matrixdarstellung $D \in SO(2; \mathbb{R})$, so dass $De_1 = Ae_1$. Wir zeigen D = A.

Wir haben

$$(D^{-1}A)e_1 = e_1 \text{ und } D^{-1}A \in SO(2; \mathbb{R})$$
 (3.85)

Also

$$D^{-1}A = \begin{pmatrix} 1 & \alpha \\ 0 & \beta \end{pmatrix} \tag{3.86}$$

mit

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = 0 \tag{3.87}$$

$$\left| \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right| = 1 \tag{3.88}$$

$$|\binom{\alpha}{\beta}| = 1 \tag{3.88}$$

$$\det \begin{pmatrix} 1 & \alpha \\ 0 & \beta \end{pmatrix} = 1 \tag{3.89}$$

Daraus folgt, dass $\alpha=0, \beta=1$ und $D^{-1}A=E,$ d.h. D=A.

Vorlesung vom 26.03.2012

3.2 Euklidische Bewegungen

Satz 3.2.5

Eine Matrix A beschreibt eine Drehung von \mathbb{R}^2 oder \mathbb{R}^3 gdw $A \in SO(2;\mathbb{R})$ oder $A \in SO(3;\mathbb{R})$.

Beweis Zu zeigen:

$$A \in SO(3; \mathbb{R}) \Rightarrow A$$
 beschreibt eine Drehung von \mathbb{R}^3 (3.90)

Zur Erinnerung...

Eine Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ heisst euklidische Bewegung (Isometrie), wenn für alle $x, y \in \mathbb{R}^n$

$$|f(y) \cdot f(y)| = |x - y| \tag{3.91}$$

Wir haben gesehen, dass immer

$$f(x) = Ax + b(x \in \mathbb{R}^n) \tag{3.92}$$

für ein $A \in O(n; \mathbb{R})$ und $b \in \mathbb{R}^n$ (Satz 3.2.3).

Beispiel Betrachte

$$A = \frac{1}{25} \begin{pmatrix} 9 & 12 & -20 \\ -20 & 15 & 0 \\ 12 & 16 & 15 \end{pmatrix} \in Mat(3; \mathbb{R})$$
 (3.93)

und beachte, dass

$$A^t A = E, \det A = 1 \tag{3.94}$$

d.h. $A \in SO(3; \mathbb{R})$.

Man berechnet

$$p_A(t) = \det(tE - A) \tag{3.95}$$

$$=t^3 - \frac{39t^2}{25} + \frac{39}{25} - 1\tag{3.96}$$

$$= (t-1)(t^2 - \frac{14}{25}t + 1) \tag{3.97}$$

d.h. A hat einen **Eigenwert 1** (eigentlich wie **jede** Matrix in $SO(3; \mathbb{R})$, Lemma 3.2.4).

Man erhält

$$A \begin{pmatrix} -1\\2\\2 \end{pmatrix} = \begin{pmatrix} -1\\2\\2 \end{pmatrix} \tag{3.98}$$

$$Eig(A;1) = Span\left\{ \begin{pmatrix} -1\\2\\2 \end{pmatrix} \right\}$$
 (3.99)

die sogenannte 'Drehachse' von A. Sei

$$v_1 = \begin{pmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \text{ und } (v_1, v_2, v_3)$$
 (3.100)

eine Orthonormalbasis von \mathbb{R}^3 . Dann gilt:

$$PAP^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & B \\ 0 & & \end{pmatrix} \tag{3.101}$$

mit

$$P^{-1} = (v_1, v_2, v_3) \in O(3; \mathbb{R}) \tag{3.102}$$

$$P \in O(3; \mathbb{R}) \tag{3.103}$$

$$\det PAP^{-1} = \det A = 1 \tag{3.104}$$

$$\Rightarrow PAP^{-1} \in SO(3; \mathbb{R}) \tag{3.105}$$

$$\Rightarrow B \in SO(2; \mathbb{R}) \tag{3.106}$$

Daraus folgt, dass für ein $\theta \in [0, 2\pi)$

$$B = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{3.107}$$

d.h. h_A wirkt auf der Ebene $Span\{v_2, v_3\}$ senkrecht zu v_1 , wie eine Drehung um den Winkel θ .

Beachte auch¹, dass

$$Spur A = Spur(PAP^{-1}) (3.108)$$

$$\Rightarrow \frac{39}{25} = 1 + 2\cos\theta \tag{3.109}$$

$$\Rightarrow \theta = \cos^{-1}\frac{2}{25} \tag{3.110}$$

Sei $A \in SO(3; \mathbb{R})$. Wir brauchen

 $^{^1}Spur=$ Summe der Diagonaleinträge

- (i) h_A ist eine euklidische Bewegung, die den Nullpunkt fest lässt.
- (ii) h_A lässt einen Vektor $v \neq 0$ fest.
- (iii) h_A wirkt auf der Ebene senkrecht zu v wie eine Drehung.

Beweis

- (i): Gilt nach Satz 3.2.1.
- (ii) + (iii): Nach Lemma 3.2.4 gibt es $0 \neq v_1 \in \mathbb{R}^3$ mit $h_A(v_1) = Av_1 = v_1$. Wir können auch annehmen, dass v_1 ein Einheitsvektor ist und $v_2, v_3 \in \mathbb{R}^3$ finden, so dass

$$\mathcal{B} = (v_1, v_2, v_3) \tag{3.111}$$

eine **Orthonormalbasis** ist (die Ebene $Span\{v_2, v_3\}$ ist zu v_1 senkrecht). Wir erhalten

$$\mathcal{M}_B(h_A) = PAP^{-1}\text{mit }P^{-1} = (v_1, v_2, v_3) \in O(3; \mathbb{R})$$
 (3.112)

$$P \in O(3; \mathbb{R}) \tag{3.113}$$

$$det(\mathcal{M}_B(h_A)) = det A = 1 \tag{3.114}$$

Also $\mathcal{M}_B(h_A) = PAP^{-1} \in SO(3; \mathbb{R})$ und hat die Formel

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & B \\
0 &
\end{pmatrix}$$
(3.115)

Man beachte, dass

$$B^t B = E, \det B = 1$$
 (3.116)

d.h. $B \in SO(2; \mathbb{R})$ ist die Matrixdarstellung einer Drehung der Ebene $Span\{v_2, v_3\}$.

Bemerkungen

• Jedes $A \in SO(3; \mathbb{R})$ (die eine Drehung von \mathbb{R} beschreibt) ist ein Produkt von

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_1 & -\sin \theta_1 \\
0 & \sin \theta_1 & \cos \theta_1
\end{pmatrix}, \begin{pmatrix}
\cos \theta_2 & 0 & -\sin \theta_2 \\
0 & 1 & 0 \\
\sin \theta_2 & 0 & \cos \theta_2
\end{pmatrix}, \begin{pmatrix}
\cos \theta_3 & -\sin \theta_3 & 0 \\
\sin \theta_3 & \cos \theta_3 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
(3.117)

• $A \in O(2; \mathbb{R})$ oder $A \in O(3; \mathbb{R})$ mit $\det A = -1$ beschreibt eine Spiegelung oder die Komposition von Spiegelungen und Drehungen.

• Man nennt $SO(2;\mathbb{R})$ und $SO(3;\mathbb{R})$ **Drehgruppen**. Für n>3 ist die Situation komplizierter, z.B.

$$\begin{pmatrix}
\cos \theta_1 & -\sin \theta_1 & 0 & 0 \\
\sin \theta_1 & \cos \theta_1 & 0 & 0 \\
0 & 0 & \cos \theta_2 & -\sin \theta_2 \\
0 & 0 & \sin \theta_2 & \cos \theta_2
\end{pmatrix} \in SO(4; \mathbb{R})$$
(3.118)

ist die Zusammensetzung einer Drehung der ersten beiden Koordinaten um den Winkel θ_1 und einer Drehung der letzten beiden Koordinaten um den Winkel θ_2 , aber keine Drehung von \mathbb{R}^4 .

Lösung von Differentialgleichungen

4.1 Systeme von Differentialgleichungen

Betrachte die lineare Differentialgleichung (erster Ordung):

$$\frac{dx}{dt} = ax(a \in \mathbb{R}) \tag{4.1}$$

Zur Erinnerung:

$$x'(t) = \frac{dx}{dt} = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$
 (4.2)

Die Lösungen haben die Form

$$x(t) = ce^{at}(c \in \mathbb{R})$$
(4.3)

Beachte, dass für x'(t) = ax(t):

$$\frac{d}{dt}\left(e^{-at}x(t)\right) = -ae^{-at}x(t) + e^{-at}x'(t) \tag{4.4}$$

$$=0 (4.5)$$

$$\Rightarrow e^{-at}x(t) = c \in \mathbb{R} \text{ (konstant)}$$
 (4.6)

$$\Rightarrow e^{-at}x(t) = c \in \mathbb{R} \text{ (konstant)}$$

$$\Rightarrow x(t) = ce^{at}$$

$$(4.6)$$

Wie löst man ein **System** von **Differentialgleichungen** der Form

$$x'_{1}(t) = \alpha_{11}x_{1}(t) + \dots + \alpha_{1n}x_{n}(t)$$

$$\vdots \qquad \star$$

$$x'_{n}(t) = \alpha_{n1}x_{1}(t) + \dots + \alpha_{nn}x_{n}(t)$$

$$(4.8)$$

mit unbekannten Funktionen $x_i(t)$ über \mathbb{R} (oder \mathbb{C}) und $a_{ij} \in \mathbb{R}$ (oder \mathbb{C})?

Wir verwenden

• vektorwertige Funktionen

$$x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \tag{4.9}$$

• matrixwertige Funktionen

$$A(t) = \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \cdots & \vdots \\ a_{m1}(t) & \cdots & a_{mn}(t) \end{pmatrix}$$

$$(4.10)$$

mit Operationen aus der Analysis komponentenweise definiert:

$$\lim_{t \to t_0} x(t) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \tag{4.11}$$

wobei
$$\alpha_i = \lim_{t \to t_0} x_i(t)$$
 (4.12)

$$\frac{dx}{dt} = x'(t) = \begin{pmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{pmatrix}$$
(4.13)

$$= \lim_{h \to 0} \frac{x(t+h) - x(t)}{h} \tag{4.14}$$

$$= \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$

$$\frac{dA}{dt} = A'(t) = \begin{pmatrix} a'_{11}(t) & \cdots & a'_{1n}(t) \\ \vdots & \ddots & \vdots \\ a'_{n1}(t) & \cdots & a'_{nn}(t) \end{pmatrix}$$
(4.14)

Wir schreiben statt \star

$$\frac{dx}{dt} = Ax \text{ mit } A \in Mat(n; \mathbb{R}) \text{ oder } Mat(n; \mathbb{C})$$
(4.16)

(oder:
$$x'(t) = Ax(t)$$
) (4.17)

Beispiele

(i)

$$x_1'(t) = 5x_1(t) (4.18)$$

$$x_2'(t) = -3x_2(t) (4.19)$$

$$\frac{dx}{dt} = \begin{pmatrix} 5 & 0\\ 0 & -3 \end{pmatrix} x(t) \tag{4.20}$$

Lösungen

$$x_1(t) = c_1 e^{5t} (4.21)$$

$$x_2(t) = c_2 e^{-3t} (4.22)$$

(4.23)

(ii)

$$x_1'(t) = 3x_1(t) - x_2(t) (4.24)$$

$$x_2'(t) = -2x_1(t) + 2x_2(t) (4.25)$$

$$\frac{dx}{dt} = Ax(t) \text{ mit } A = \begin{pmatrix} 3 & -1 \\ -2 & 2 \end{pmatrix}$$
 (4.26)

$$P_A(r) = \begin{vmatrix} r - 3 & 1\\ 2 & r - 2 \end{vmatrix} \tag{4.27}$$

$$= (r-3)(r-2) - (1)(2) \tag{4.28}$$

$$= r^2 - 5r + 4 \tag{4.29}$$

$$= (r-4)(r-1) (4.30)$$

$$Eig(A;4) = Span\left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \tag{4.31}$$

$$Eig(A;1) = Span\left\{ \begin{pmatrix} 1\\2 \end{pmatrix} \right\} \tag{4.32}$$

Beachte, dass

$$x(t) = e^{4t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} e^{4t} \\ -e^{4t} \end{pmatrix} \tag{4.33}$$

und
$$x(t) = e^{1t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} e^t \\ 2e^t \end{pmatrix}$$
 (4.34)

(4.35)

sind Lösungen und deshalb auch alle Linearkombinationen:

$$x(t) = \begin{pmatrix} c_1 e^{4t} + c_2 e^t \\ -c_1 e^{4t} + 2c_2 e^t \end{pmatrix}$$
(4.36)

Satz 4.1.1 Sei $A \in Mat(n; \mathbb{R})$ und $P \in GL(n; \mathbb{R})$, so dass PAP^{-1} Diagonalform mit Diagonaleinträgen $\alpha_1, ..., \alpha_n$ hat. Die allgemeine Lösung des Systems

 $ist \ dann$

$$x = P^{-1}y (4.38)$$

wobei

$$y_i = c_i e^{\alpha_i t} \text{ für } i = 1...n(c_i \text{ Konstanten})$$
 (4.39)

Beweis Man setzt für beliebiges

$$x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \tag{4.40}$$

$$y(t) = Px(t) \tag{4.41}$$

d.h.
$$x(t) = P^{-1}y(t)$$
 (4.42)

$$\text{und } \frac{dx}{dt} = P^{-1} \frac{dy}{dt} \tag{4.43}$$

Daraus folgt, dass

$$\frac{dx}{dt} = Ax \Leftrightarrow P^{-1}\frac{dy}{dt} = AP^{-1}y(t) \tag{4.44}$$

$$\Leftrightarrow \frac{dy}{dt} = \underbrace{PAP^{-1}}_{\text{diagonal}} y(t) \tag{4.45}$$

$$\Leftrightarrow y_i = c_i e^{\alpha_i t}$$
 für Konstanten $c_i, i = 1...n$ (4.46)

Beispiel

$$\frac{dx}{dt} = Ax \text{ mit } A = \begin{pmatrix} 2 & -1\\ 5 & -2 \end{pmatrix} \tag{4.47}$$

$$p_A(r) = r^2 + 1 (4.48)$$

Eigenwerte: i, -i

$$Eig(A; i) = Span\left\{ \begin{pmatrix} 1\\ 2-i \end{pmatrix} \right\} \tag{4.49}$$

$$Eig(A; -i) = Span\left\{ \begin{pmatrix} 1\\ 2+i \end{pmatrix} \right\} \tag{4.50}$$

$$PAP^{-1} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \text{ mit } P^{-1} = \begin{pmatrix} 1 & 1 \\ 2-i & 2+i \end{pmatrix}$$
 (4.51)

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2-i & 2+i \end{pmatrix} \begin{pmatrix} c_1 e^{it} \\ c_2 e^{-it} \end{pmatrix}$$
(4.52)

$$= \begin{pmatrix} c_1 e^{it} + c_2 e^{-it} \\ (2-i)c_1 e^{it} + (2+i)c_2 e^{-it} \end{pmatrix}$$
(4.53)

Wir haben **alle** (**komplexe**) Lösungen bestimmt, aber oft braucht man nur die **reellen Lösungen**. Man verwendet

$$e^{iv} = \cos v + i \cdot \sin v \tag{4.54}$$

und beachte, dass

$$x(t) = u(t) + i \cdot v(t) \tag{4.55}$$

(4.56)

(u(t),v(t) sind reelle Funktionen) eine Lösung von $\frac{dx}{dt}=Ax$ ist gdwu(t)und v(t) Lösungen sind.

Wir haben hier

$$c_1 \begin{pmatrix} e^{it} \\ (2-i)e^{it} \end{pmatrix} + c_2 \begin{pmatrix} e^{-it} \\ (2+i)e^{-it} \end{pmatrix}$$

$$(4.57)$$

$$= (c_1 + c_2) \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} + (c_1 - c_2) \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} i \tag{4.58}$$

Reelle Lösungen sind

$$k_1 \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} + k_2 \begin{pmatrix} \sin t \\ 2\sin t - \cos t \end{pmatrix} \tag{4.59}$$

Vorlesung vom 02.04.2012

4.2 Die Exponentialbildung von Matrizen

Zur Erinnerung (Satz 4.1.1)

Sei $A \in Mat(n; \mathbb{R})$ und $P \in GL(n; \mathbb{R})$ mit

$$PAP^{-1} = \begin{pmatrix} \alpha_1 & 0 \\ & \ddots \\ 0 & \alpha_n \end{pmatrix} \tag{4.60}$$

Die allgemeine Lösung des Systems

$$\alpha_1 t \frac{dx}{dt} = Ax \tag{4.61}$$

ist dann

$$x = \begin{pmatrix} c_1 e^{\alpha_1 t} \\ \vdots \\ c_n e^{\alpha_n t} \end{pmatrix} c_1, ..., c_n \text{ Konstanten}$$

$$(4.62)$$

oder

$$Span\{P^{-1}\begin{pmatrix}e^{\alpha_1 t}\\0\\\vdots\\0\end{pmatrix},...,P^{-1}\begin{pmatrix}0\\\vdots\\0\\e^{\alpha_n t}\end{pmatrix}\}$$
(4.63)

= Span der **Spalten** von
$$P^{-1}$$
 $\begin{pmatrix} e^{\alpha_1 t} & 0 \\ & \ddots \\ 0 & e^{\alpha_n t} \end{pmatrix}$ (4.64)

Frage Wie löst man das $\frac{dx}{dt} = Ax$, wenn A nicht diagonalisierbar ist?

Beispiele

(i)

$$x_1'(t) = 20x_1(t) - 30x_2(t) (4.65)$$

$$x_2'(t) = 9x_1(t) - 13x_2(t) \tag{4.66}$$

$$\frac{dx}{dt} = Ax(t) \text{ mit } A = \begin{pmatrix} 20 & -30\\ 9 & -13 \end{pmatrix}$$
 (4.67)

$$p_A(r) = \begin{vmatrix} r - 20 & 30 \\ -9 & r + 13 \end{vmatrix} \tag{4.68}$$

$$= (r - 20)(r + 13) - (-9)(30) \tag{4.69}$$

$$= r^2 - 7r + 10 = (r - 5)(r - 2) \tag{4.70}$$

Eigenwerte: 5, 2

$$Eig(A;5) = Span\left\{ {2 \choose 1} \right\} \tag{4.71}$$

$$Eig(A;2) = Span\left\{ {5 \choose 3} \right\} \tag{4.72}$$

$$PAP^{-1} = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \text{ mit } P^{-1} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 (4.73)

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 e^{5t} \\ c_2 e^{2t} \end{pmatrix}$$
 (4.74)

$$= \begin{pmatrix} 2c_1e^{5t} + 5c_2e^{2t} \\ c_1e^{5t} + 3c_2e^{2t} \end{pmatrix}$$
 (4.75)

oder
$$Span\left\{ \begin{pmatrix} 2e^{5t} \\ e^{5t} \end{pmatrix}, \begin{pmatrix} 5e^{2t} \\ 3e^{2t} \end{pmatrix} \right\}$$
 (4.76)

(ii)

$$x_1'(t) = 3x_1(t) + x_2(t) (4.77)$$

$$x_2'(t) = 3x_2(t) (4.78)$$

$$\frac{dx}{dt} = Ax(t) \text{ mit } A = \begin{pmatrix} 3 & 1\\ 0 & 3 \end{pmatrix}$$
 (4.79)

Nicht diagonalisierbar.

Beachte jedoch, dass

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} e^{3t} \\ 0 \end{pmatrix} \text{ und } \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} te^{3t} \\ e^{3t} \end{pmatrix}$$
 (4.80)

Lösungen sind und deshalb auch alle Linearkombinationen

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} c_1 e^{3t} + c_2 t e^{3t} \\ c_2 e^{3t} \end{pmatrix}$$
 (4.81)

$$e^{A} (4.82)$$

Man definiert die gewöhnliche Exponentialfunktion $e^x(x \in \mathbb{C})$ wie folgt:

$$e^{x} = \sum_{i=0}^{\infty} \frac{x^{i}}{i!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$
 (4.83)

Für $A \in Mat(n; \mathbb{C})$ definiert man analog:

$$e^{A} = \sum_{i=0}^{\infty} \frac{1}{i!} A = E + A + \frac{1}{2!} A^{2} + \frac{1}{3!} A^{3} + \dots \in Mat(n; \mathbb{C})$$
 (4.84)

Behauptung (Beweis später)

Die Exponentialfunktion e^A konvergiert für jedes $A \in Mat(n; \mathbb{C})$ absolut.

Bemerkungen

(1) Im Allgemeinen ist es nicht einfach die Einträge der Matrix e^A zu Berechnen, aber für **Diagonalmatrizen** gilt:

$$e^{\begin{pmatrix} \alpha_{1} & 0 \\ & \ddots & \\ 0 & & \alpha_{n} \end{pmatrix}} = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \alpha_{1} & 0 \\ & \ddots & \\ 0 & \alpha_{n} \end{pmatrix}$$

$$+ \frac{1}{2!} \begin{pmatrix} \alpha_{1}^{2} & 0 \\ & \ddots & \\ 0 & \alpha_{n}^{2} \end{pmatrix} + \frac{1}{3!} \begin{pmatrix} \alpha_{1}^{3} & 0 \\ & \ddots & \\ 0 & & \alpha_{n}^{3} \end{pmatrix} + \dots$$

$$= \begin{pmatrix} 1 + \alpha_{1} + \frac{\alpha_{1}^{2}}{2!} + \frac{\alpha_{1}^{3}}{3!} + \dots & 0 \\ & & \ddots & \\ & 0 & & 1 + \alpha_{n} + \frac{\alpha_{n}^{2}}{2!} + \frac{\alpha_{n}^{3}}{3!} + \dots \end{pmatrix}$$

$$= \begin{pmatrix} e^{\alpha_{1}} & 0 \\ & \ddots & \\ 0 & & e^{\alpha_{n}} \end{pmatrix}$$

$$(4.85)$$

(2) Betrachte nun, dass für $A \in Mat(n; \mathbb{C})$ und $P \in GL(n; \mathbb{C})$:

$$e^{PAP^{-1}} = E + (PAP^{-1}) + \frac{1}{2!}(PAP^{-1})^2 + \frac{1}{3!}(PAP^{-1})^3 + \dots$$
 (4.89)

$$= P(E)P^{-1} + P(A)P^{-1} + P(\frac{1}{2!}A^2)P^{-1} + P(\frac{1}{3!}A^3)P^{-1} + \dots$$
 (4.90)

$$= Pe^{A}P^{-1} (4.91)$$

Im Besonderen, wenn

$$D = PAP^{-1} \tag{4.92}$$

diagonal ist, berechnet man relativ leicht

$$e^A = P^{-1}e^D P (4.93)$$

Beispiel

$$A = \begin{pmatrix} 20 & -30 \\ 9 & -13 \end{pmatrix} \tag{4.94}$$

$$PAP^{-1} = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \text{ mit } P^{-1} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 (4.95)

$$e^{A} = P^{-1}e^{\begin{pmatrix} 5 & 0\\ 0 & 2 \end{pmatrix}}P \tag{4.96}$$

$$= \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} e^5 & 0 \\ 0 & e^5 \end{pmatrix} \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \tag{4.97}$$

$$= \begin{pmatrix} 6e^5 - 5e^2 & -10e^5 + 10e^2 \\ 3e^5 - 3e^2 & -5e^5 + 6e^2 \end{pmatrix}$$
 (4.98)

Behauptung (Beweis später)

Sei $A \in Mat(n; \mathbb{C})$. Die Spalten von e^{tA} bilden eine Basis für den Vektorraum der Lösungen von

Beispiel

$$\frac{dx}{dt} = \begin{pmatrix} 20 & -30\\ 9 & -13 \end{pmatrix} x \tag{4.100}$$

Man berechnet

$$e^{tA} = P^{-1}e^{\begin{pmatrix} 5t & 0\\ 0 & 2t \end{pmatrix}}P (4.101)$$

$$= \begin{pmatrix} 6e^{5t} - 5e^{2t} & -10e^{5t} + 10e^{2t} \\ 3e^{5t} - 3e^{2t} & -5e^{5t} + 6e^{2t} \end{pmatrix}$$
(4.102)

Die Lösungen sind in

$$Span\left\{ \begin{pmatrix} 6e^{5t} - 5e^{2t} \\ 3e^{5t} - 3e^{2t} \end{pmatrix}, \begin{pmatrix} -10e^{5t} + 10e^{2t} \\ -5e^{5t} + 6e^{2t} \end{pmatrix} \right\}$$
(4.103)

Verglichen mit

$$Span\left\{ \begin{pmatrix} 2e^{5t} \\ e^{5t} \end{pmatrix}, \begin{pmatrix} 5e^{2t} \\ 3e^{2t} \end{pmatrix} \right\} \tag{4.104}$$

Sei $A \in Mat(n; \mathbb{C})$. Wir schreiben $(A)_{ij}$ für den Eintrag an der Stelle (i, j) und definieren die **Norm**:

$$||A|| = \max\{|(A)_{ij}| : | \le i, j \le n|\}$$

$$(4.105)$$

$$= (|(A)_{ij}| \le ||A|| i, j) \tag{4.106}$$

Lemma 4.2.1 Für $A, B \in Mat(n; \mathbb{C})$

- (i) $||AB|| \le n||A|| ||B||$
- (ii) $||A^k|| \le n^{k-1} ||A||^k$ für alle k > 0.

Beweis

(i) Beachte, dass

$$|(AB)_{ij}| = |\sum_{r=1}^{n} (A)_{ir}(B)_{rj}|$$
(4.107)

$$\leq \sum_{r=1}^{n} |(A)_{ir}| \, |(B)_{rj}| \tag{4.108}$$

$$\leq n||A||\,||B||\tag{4.109}$$

Satz 4.2.2 Die Exponentialreihe

$$e^A = E + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots$$
 (4.110)

konvergiert für alle $A \in Mat(n; \mathbb{C})$ absolut.

Beweis

Wir zeigen, dass die Absolutbeträge der Einträge $(e^A)_{ij}$ jeweils eine **beschränkte** und daher konvergente Reihe bilden:

$$|(e^{A})_{ij}| \le |(E)_{ij}| + |(A)_{ij}| + |\frac{1}{2!}(A)_{ij}| + |\frac{1}{3!}(A^{3})_{ij}| + \dots$$
(4.111)

$$\leq 1 + ||A|| + \frac{1}{2!}n||A||^2 + \frac{1}{3!}n^2||A||^3 + \dots \text{ (Lemma 4.2.1)}$$
 (4.112)

$$=1+\frac{1}{n}(n||A||+\frac{1}{2!}(n||A||))^2+\frac{1}{3!}(n||A||)^3+\dots)$$
 (4.113)

$$=1+\frac{1}{n}(e^{n||A||}-1) \tag{4.114}$$

Satz 4.2.3 Die Zuordnung $t \mapsto e^{tA}$ definiert eine differenzierbare Funktion Funktion von t, und ihre Ableitung ist Ae^{tA} .

Beweis

$$\frac{d}{dt}(e^{tA}) = \lim_{h \to 0} \frac{e^{(t+h)A} - e^{tA}}{h} \tag{4.115}$$

Es genügt zu zeigen, dass für

$$R(t,h) = \frac{e^{(t+h)A} - e^{tA}}{h} - Ae^{tA}$$
 (4.116)

folgendes gilt:

$$\lim_{h \to 0} R(t, h) = 0 \tag{4.117}$$

Beachte, dass

$$R(t,h) = \frac{1}{h} \left(\sum_{k=0}^{\infty} \frac{1}{k!} ((t-h)^k A^k - t^k A^k) \right) - \sum_{k=1}^{\infty} \frac{1}{(k-1)!} t^{(k-1)} A^k$$
 (4.118)

$$= \sum_{k=2}^{infty} \frac{1}{k!} \frac{1}{h} ((t+h)^k - t^k - kht^{k-1}) A^k$$
(4.119)

Betrachte auch die Taylorentwicklung fer Funktion $f(x) = x^k$ um t in zwei Termen mit Restglied:

$$(t+h)^k = f(t+h) (4.120)$$

$$= f(t) + hf'(t) + h^2 f''(t + \theta_k h) \text{ mit } \theta_k \in (0, 1]$$
(4.121)

$$= t^{k} + hkt^{k-1} + h^{2}k(k-1)(t+\theta_{k}h)^{k-2}$$
(4.122)

Man erhält

$$R(t,h) = h \sum_{k=2}^{\infty} \frac{1}{(k-2)!} (t + \theta_k h)^{k-2} A^k$$
(4.123)

$$|R(t,h)_{ij}| \le |h| \sum_{k=0}^{\infty} \frac{1}{k!} (|t| + |h|)^k ||A^{k+2}||$$
(4.124)

$$\leq ||h|| \sum_{k=0}^{\infty} \frac{1}{k!} (|t| + |h|)^k n^{k+1} ||A||^{k+2} \text{ (nach Lemma 4.2.1)}$$
(4.125)

$$=|h|n||A||^2e^{|t|+|h|n||A||} (4.126)$$

Daraus folgt

$$\lim_{h \to 0} R(t, h) = 0 \tag{4.127}$$

 $A, B \in Mat(n; \mathbb{C})$ heissen **vertauschbar**, wenn AB = BA. In diesem Fall gilt

$$e^{A+B} = e^A \cdot e^B$$
 (Beweis später) (4.128)

Daraus folgt, dass für jedes

$$A \in Mat(n; \mathbb{C}) \tag{4.129}$$

gilt:

$$e^A \cdot e^{-A} = e^{A+(-A)} \text{ (da } A(-1) = (-A)A)$$
 (4.130)

$$=e^0 (4.131)$$

$$=E \tag{4.132}$$

d.h. e^A ist invertierbar mit Inverse e^{-A} .

Beispiel

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{4.133}$$

Beachte, dass

$$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \tag{4.134}$$

und deshalb

$$e^{tA} = e^{\begin{pmatrix} 3t & 0 \\ 0 & 3t \end{pmatrix} + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}}$$

$$(4.135)$$

$$= e^{\begin{pmatrix} 3t & 0 \\ 0 & 3t \end{pmatrix}} \cdot e^{\begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}}$$

$$(4.136)$$

$$= \begin{pmatrix} e^{3t} & 0\\ 0 & e^{3t} \end{pmatrix} \begin{pmatrix} 1 & t\\ 0 & 1 \end{pmatrix} \tag{4.137}$$

$$= \begin{pmatrix} e^{3t} & 0 \\ 0 & e^{3t} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} e^{3t} & te^{3t} \\ 0 & e^{3t} \end{pmatrix}$$

$$(4.138)$$

Die Lösungen des Systems $\frac{dx}{dt}$ sind in

$$Span\left\{ \begin{pmatrix} e^{3t} \\ 0 \end{pmatrix}, \begin{pmatrix} te^{3t} \\ e^{3t} \end{pmatrix} \right\} \tag{4.139}$$

Vorlesung vom 16.04.2012

Zur Erinnerung: Für $A \in Mat(n; \mathbb{C})$:

$$e^A = \sum_{i=0}^{\infty} \frac{1}{i!} \cdot A^i = E + A + \frac{A^2}{2!} + \dots$$
 (4.140)

Diese Reihe konvergiert absolut.

Siehe an dieser Stelle den Satz 4.2.6.

Beispiel

(i)

$$x'(t) = A \cdot x(t) \text{ mit} \tag{4.141}$$

$$A = \begin{pmatrix} -3 & 0\\ 0 & 2 \end{pmatrix} \in Mat(2; \mathbb{C}) \tag{4.142}$$

$$\Rightarrow x'(t) = -3x_1(t) \tag{4.143}$$

$$x_2'(t) = 2x_2(t) (4.144)$$

$$e^{tA} = e^{\begin{pmatrix} -3t & 0\\ 0 & 2t \end{pmatrix}} = \begin{pmatrix} e^{-3t} & 0\\ 0 & e^{2t} \end{pmatrix}$$
(4.145)

Lösungen:

$$Span\left\{ \begin{pmatrix} e^{-3t} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ e^{2t} \end{pmatrix} \right\}$$
 (4.146)

das heisst

$$x_1(t) = \alpha \cdot e^{-3t} \tag{4.147}$$

$$x_2(t) = \beta \cdot e^{2t}, \alpha, \beta \in \mathbb{C} \tag{4.148}$$

(ii)

$$x'(t) = B \cdot x(t) \text{ mit} \tag{4.149}$$

$$B = \begin{pmatrix} -18 & 10 \\ -30 & 17 \end{pmatrix}, PBP^{-1} = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix} \text{ mit } P = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$
 (4.150)

$$e^{tB} = e^{-1 \begin{pmatrix} 3t & 0 \\ -3 & 2 \end{pmatrix} P} \tag{4.151}$$

$$= P^{-1} \cdot e^{\begin{pmatrix} -3t & 0 \\ 0 & 2t \end{pmatrix}} \cdot P = P^{-1} \begin{pmatrix} e^{-3t} & 0 \\ 0 & e^{2t} \end{pmatrix} P$$
 (4.152)

$$= \begin{pmatrix} 4e^{-3t} - 3e^{2t} & -2e^{-3t} - e^{2t} \\ 6e^{-3t} - 6e^{2t} & -3e^{-3t} + 4e^{2t} \end{pmatrix}$$

$$(4.153)$$

Lösungen:

$$Span\left\{ \begin{pmatrix} 4e^{-3t} - 3e^{2t} \\ 6e^{-3t} - 6e^{2t} \end{pmatrix}, \begin{pmatrix} -2e^{-3t} - e^{2t} \\ -3e^{-3t} + 4e^{2t} \end{pmatrix} \right\}$$
 (4.154)

Zur Erinnerung (n=1):

$$\frac{dx}{dt} = a \cdot x(t) \Leftrightarrow \frac{d}{dt} \left(e^{-at} \cdot x(t) \right) \tag{4.155}$$

$$= -a \cdot e^{-at} \cdot x(t) + e^{-at} \cdot a \cdot x(t)$$
(4.156)

$$=0 (4.157)$$

$$\Leftrightarrow e^{-at}x(t) = c \in \mathbb{C} \tag{4.158}$$

$$\Leftrightarrow x(t) = c \cdot e^{at} \tag{4.159}$$

Lemma 4.2.4 Seien A(t) und B(t) dfb. $m \times n$ und $n \times p$ matrixwertige Funktionen von t. Dann ist $A(t) \cdot B(t)$ eine dfb. $m \times p$ matrixwertige Funktion mit

$$\frac{d}{dt}(A(t)B(t)) = \frac{dA}{dt} \cdot B + A \cdot \frac{dB}{dt}$$
(4.160)

Beweis Aufgabe.

 $A, B \in Mat(n; \mathbb{C})$ heissen **vertauschbar**, wenn AB = BA. Zum Beispiel: A und e^{tA} sind vertauschbar.

Lemma 4.2.5 Wenn $A, B \in Mat(n; \mathbb{C})$ vertauschbar sind, gilt $e^{A+B} = e^A \cdot e^B$

Beweis Beachte zuerst, dass für $A \in Mat(n; \mathbb{C})$:

$$\frac{d}{dt} \left(e^{tA} \cdot e^{-tA} \right) = A \cdot e^{tA} \cdot e^{-tA} - e^{tA} \cdot A \cdot e^{-tA}$$
 (Lemma 4.2.4) (4.161)

$$= 0 (4.162)$$

Also ist $e^{tA} \cdot e^{-tA}$ konstant. Aber auch $e^{0A} \cdot e^{-0A} = e^0 = E(t=0)$ und deshalb $e^{tA} \cdot e^{-tA} = E$ d.h. e^{-tA} ist die Inferse von e^{tA} .

Beachte nun, dass für $A, B \in Mat(n; \mathbb{C})$ vertauschbar.

$$\frac{d}{dt} \left(e^{t(A+B)} \cdot e^{-tB} \cdot e^{-tA} \right) \text{ (Lemma 4.2.4)} \quad (4.163)$$

$$= (A+B) \cdot e^{t(A+B)} \cdot e^{-tB} \cdot e^{-tA} \cdot e^{t(A+B)} \left(-B \cdot e^{-tB} \cdot e^{-tA} - e^{-tB} \cdot A \cdot e^{-tA} \right)$$
(4.164)

Aber da A,B vertauschbar sind, gilt dies auch für A,e^{tB} . Man erhält

$$\frac{d}{dt}\left(e^{(A+B)} \cdot e^{-tB} \cdot e^{-tA}\right) = 0 \tag{4.165}$$

das heisst, die Funktion ist konstant.

Daraus folgt:

$$e^{t(A+B)} \cdot e^{-tB} \cdot e^{-tA} = E$$
 (4.166)

und

$$e^{t(A+B)} = e^{tA} \cdot e^{tB} \tag{4.167}$$

$$e^{(A+B)} = e^A \cdot e^B (t=1) \tag{4.168}$$

Satz 4.2.6 Sei $A \in Mat(n; \mathbb{C})$. Die Spalten von e^{tA} bilden eine Basis für den Vektorraum der Lösungen von $\frac{dx}{dt} = Ax$.

Beweis Sei x(t) eine beliebige Lösung von $\frac{dx}{dt} = Ax$. Dann gilt nach Lemma 4.2.4:

$$\frac{d}{dt}\left(e^{-tA}\cdot x(t)\right) = -Ae^{-tA}\cdot x(t) + e^{-tA}\cdot A\cdot x(t) \tag{4.169}$$

Aber A und e^{tA} sind vertauschbar und deshalb

$$\frac{d}{dt}\left(e^{-tA}\cdot x(t)\right) = 0\tag{4.170}$$

Daraus folgt, dass

$$e^{-tA}x(t) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} c_1, ..., c_n \in \mathbb{C}$$

$$(4.171)$$

$$x(t) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \cdot e^{tA} \tag{4.172}$$

d.h. x(t) ist eine Linearkombinationen der Spalten von e^{tA} . Die Spalten von e^{tA} sind linear unabhängig, weil e^{tA} invertierbar ist (Lemma 4.2.5).

5 Bilinearform

Sei V ein Vektorraum über K. Eine Abbildung $f: V \times V \to K$ heisst **bilinear** oder eine Bilinearform von V, wenn f in jedem Argument linear ist, d.h. $\forall x, y, z \in V$ und $\alpha, \beta \in K$:

$$f(\alpha x + By, z) = \alpha f(x, z) + B \cdot f(y, z) \tag{5.1}$$

$$f(z, \alpha x + By) = \alpha f(z, x) + B \cdot f(z, y) \tag{5.2}$$

Man schreibt oft

$$<,>: V \times V \to K$$
 (5.3)

und

$$\langle x, y \rangle$$
 (5.4)

statt f(x,y).

Eine Bilinearform f von V heisst

- symmetrisch, wenn $\langle x, y \rangle = \langle y, x \rangle$
- schiefsymmetrisch, wenn $\langle x, y \rangle = -\langle y, x \rangle \forall x, y \in V$

Man brauchte in diesen Fällen nur Linearität in einem Argument.

Beispiel

(i) Das Skalarprodukt

$$\cdot: K^n \times K^n \to K \tag{5.5}$$

$$\langle x, y \rangle = x^t y (= x \cdot y) \tag{5.6}$$

ist bilinear und symmetrisch.

(ii) Für ein beliebiges $A \in Mat(n; K)$ ist

$$f_A: K^n \times K^n \to K \tag{5.7}$$

$$\langle x, y \rangle = x^t A y (= f_A(x y))$$
 (5.8)

bilinear (Aufg.) und symmetrisch gd
wAist symmetrisch $(A=A^t). \ f_A$ ist symmetrisch

 $- \Rightarrow$ für $1 \le i, j \le n$

$$\alpha_{ij} = e_i^t A e_j = \langle e_i, e_j \rangle = \langle e_j, e_i \rangle \tag{5.9}$$

$$= e_i^t A e_i = \alpha_{ji} \tag{5.10}$$

$$d.h. A = A^t (5.11)$$

 $- \Rightarrow$

$$A = A^t \Leftarrow \langle x, y \rangle = x^t A y \in Mat(1; K)$$
 (5.12)

$$= (x^t A y)^t (5.13)$$

$$= y^t A^t (x^t)^t (5.14)$$

$$= y^t A x (5.15)$$

$$= \langle y, x \rangle \tag{5.16}$$

 f_A ist schiefsymmetrisch gdw A ist schiefsymmetrisch $(A^t = -A)$ (Aufgabe)

(iii) Für $A, B \in Mat(m, n; K)$ definiert

$$\langle A, B \rangle = Spur(A^t B)$$
 (5.17)

eine symmetrische Bilinearform von Mat(m, n; K) (Aufgabe)

(iv) Für konvergente relle Folgen:

$$(a) = (a_n : n \in \mathbb{N}) \tag{5.18}$$

$$(b) = (b_n : n \in \mathbb{N}) \tag{5.19}$$

definiert

$$\langle (a), (b) \rangle = \lim_{n \to \infty} (a_n b_n) \tag{5.20}$$

eine symmetrische Bilinearform von $T_{\rm konvergent}$

(v) Auf dem Vektorraum $Pol \mathbb{R}$ der reellen Polynome definiert

$$<\phi(x),\chi(x)> = \sum_{i=0}^{\infty} (\phi^{(i)}(0) \cdot \chi^{(i)}(0))$$
 (5.21)

mit $\phi^{(i)}=$ i-te Ableitung einer symmetrischen Bilinearform.

Sei <,> eine Bilinearform von einem Vektorraum V über K, und sei $B=(v_1,...,v_n)$ eine Basis von V.

Dann heisst $A = (\alpha_{ij})$ mit $\alpha_{ij}0 < v_i, v_j >, 1 \le i, j \le n$ die Matrix der Bilinearform bezüglich B.

Beachte, dass für beliebige $x, y \in V$ mit

$$q_B(x) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}, q_B(y) = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$$
 (5.22)

gilt:

$$\langle x, y \rangle = \langle \sum_{i=1}^{n} \lambda_i v_i, \sum_{j=1}^{n} \mu_j v_j \rangle$$
 (5.23)

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i u_j < v_i, v_j >$$
 (5.24)

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}\lambda_{i}u_{j}\cdot\alpha_{ij}$$
(5.25)

$$= (q_B(x))^t A q_B(y) (5.26)$$

Anmerkung Wenn man V über die Basis B mit K^n identifiziert, erhält man

$$\langle x, y \rangle = x^t A y \tag{5.27}$$

Sei nun B' eine andere Basis von V und A' die Matrix der Bilinearform bezüglich B'. Dann gilt für $x,y\in V$:

$$\langle x, y \rangle = (q_{B'}(x))^t A' q_B(y)$$
 (5.28)

Aber auch

$$q_{B'} = h_{T_{B'}^B} \circ q_B (5.29)$$

und deshalb für $x,y\in V$

$$(q_B(x))^t A q_B(y) = \langle x, y \rangle$$
 (5.30)

$$q_B(x)^t (T_{B'}^B)^t A'(T_{B'}^B) q_B(y) = \langle x, y \rangle$$
(5.31)

Daraus folgt:

$$(T_{B'}^B)^t A'(T_{B'}^B) = A (5.32)$$

oder für $Q = ((T_{B'}^B)^t)^{-1}$

$$A' = QAQ^t (5.33)$$

Da jede invertierbare Matrix $Q \in GL(n; K)$ eine Übergangsmatrix ist, gilt:

Vorlesung vom 20.04.2012

5.1 Definition, Eigenschaften und Beispiele

Satz 5.1.1 Sei $A \in Mat(n; K)$ die Matrix einer Bilinearform bezüglich einer Basis. Die Matrizen A', die dieselbe Linearform bezüglich anderen Basen beschreiben, sind diejenigen der Formel

$$A' = QAQ^t \text{ für ein } Q \in GL(n; K)$$
(5.34)

Eine Bilinearform von einem Vektorraum V über K ist eine Abbildung $f: V \times V \to K$, die linear in jedem Argument ist.

Beispiel Für $A \in Mat(n; K)$

$$f_A: K^n \times K^n \to K \tag{5.35}$$

$$\langle x, y \rangle = x^t A y \tag{5.36}$$

Die Matrix einer Bilinearform von V über K bezüglich einer Basis $B = (v_1, ..., v_n)$ ist $A = (\alpha_{ij})$ mit $\alpha_{ij} = \langle v_i, v_j \rangle$. Man erhält für

$$x, y \in V : \langle x, y \rangle = q_B(x)^t A q_B(y)$$
 (5.37)

Bemerkungen

• $A \in Mat(n; K)$ ist die Matrix des Skalarprodukts bezüglich einer Basis gdw $A = QQ^t$ für ein $Q \in GL(n; K)$.

Zum Beispiel

$$A = \begin{pmatrix} 10 & 1 \\ 1 & 5 \end{pmatrix} = \underbrace{\begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}}_{O} \underbrace{\begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix}}_{O^t}$$
 (5.38)

ist die Matrix des Skalarprodukts über \mathbb{R}^2 bezüglich der Basis

$$B = \left(\begin{pmatrix} -1\\3 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right) \tag{5.39}$$

$$\begin{pmatrix}
\alpha_{11} = \begin{pmatrix} -1 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix} = 10 & \alpha_{12} = \begin{pmatrix} -1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 1 \\
\alpha_{21} = \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix} = 1 & \alpha_{22} = \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 5
\end{pmatrix} (5.40)$$

Beachte, dass A symmetrisch ist

$$\begin{pmatrix} \alpha & \beta \end{pmatrix} A \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha & \beta \end{pmatrix} QQ^t \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \tag{5.41}$$

$$= (-\alpha + 2\beta)^2 + (3\alpha + \beta)^2$$
 (5.42)

$$> 0 \tag{5.43}$$

• Die Matrix des Skalarprodukts bezüglich einer orthonormalen Basis ist die Einheitsmatrix

$$A = QQ^t = E (5.44)$$

Frage Wie charakterisiert man die (reellen) Matrizen, die (bezüglich einer geeigneten Basis) das Skalarprodukt repräsentiert? D.h. $A \in Mat(n; K)$ mit $A = P^t P, P \in GL(n; K)$ Eine reelle symmetrische Matrix $A \in Mat(n; \mathbb{Q})$ heisst **positiv definit**, wenn

$$x^t A x > 0 \,\forall x \in \mathbb{R}^n \setminus \{0\} \tag{5.45}$$

Beispiel Jede Diagonalmatrix

$$\begin{pmatrix} \alpha_{11} & 0 \\ & \ddots \\ 0 & \alpha_{nn} \end{pmatrix} \tag{5.46}$$

mit $\alpha_{ii} > 0$ für i = 1...n ist positiv definit.

Man beachtet auch: A, B positiv definit $\Rightarrow A + B$ positiv definit.

Lemma 5.1.2 Für eine symmetrische Matrix $A \in Mat(n; \mathbb{R})$ und $P \in GL(n; \mathbb{R})$ sind äquivalent:

- (i) A ist positiv definit
- (ii) P^tAP ist positiv definit

Beweis

• $(1) \Rightarrow (2)$: Sei $A \in Mat(n; \mathbb{R})$. Für $P \in GL(n; \mathbb{R})$ und $x \in \mathbb{R}^n \setminus \{0\}$ gilt:

$$(P^t A P)^t = P^t A P (5.47)$$

$$Px \neq 0$$
 P invertierbar (5.48)

$$x^{t}(P^{t}AP)x = (Px)^{t}A(Px) > 0 (5.49)$$

das heisst P^tAP ist symmetrisch und positiv definit.

• $(2) \Rightarrow (1) : \text{Nach } (1) \Rightarrow (2) :$ $P^tAP \text{ positiv definit } \Rightarrow (P^{-1})^t P^t A P P^{-1} = A \text{ positiv definit.}$ **Satz 5.1.3** Für $A \in Mat(n; \mathbb{R})$ sind äquivalent:

- (1) A repräsentiert bezüglich einer geeigneten Basis von \mathbb{R}^n das Skalarprodukt
- (2) $A = P^t P \text{ für ein } P \in GL(n; \mathbb{R})$
- (3) A ist symmetrisch und positiv definit

Sei nun <,> eine symmetrische Bilinearform von einem endlich-dimensionalen Vektorraum V über \mathbb{R} . Zwei Vektoren $v, w \in V$ sind orthogonal bezüglich <,>, wenn

$$\langle v, w \rangle = 0 \tag{5.50}$$

oft geschrieben $v \perp w$.

Eine Basis $B = (v_1, ..., v_n)$ von V heisst **Orthonormalbasis** bezüglich <,> wenn für $1 \le i, j \le n$:

$$\langle v_i, v_j \rangle = \begin{cases} 1 & i = j \\ 0 & \text{andernfalls} \end{cases}$$
 (5.51)

Daraus folgt für eine Basis B von V:

B ist eine Orthonormalbasis \Leftrightarrow die Matrix von <, > bezüglich B ist die Einheitsmatrix (5.52)

Frage Wann und wie findet man eine Orthonormalbasis von V?

Satz 5.1.4 Sei <, > eine positiv definite, symmetrische Bilinearform eines endlichdimensionalen Vektorrams V über \mathbb{R} . Dann gibt es eine Orthonormalbasis für Vbezüglich <, >.

Beispiel Sei <, > das Skalarprodukt < $x,y>=(x,y)=x^ty$ und betrachte den Unterraum von \mathbb{R}^3

$$V = \left\{ \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \in \mathbb{R}^3 : 2\alpha - \beta + 3\gamma = 0 \right\} = Span\{v_1, v_2\}$$
 (5.53)

 $_{
m mit}$

$$v_1 = \begin{pmatrix} 1\\2\\0 \end{pmatrix} \tag{5.54}$$

und

$$v_2 = \begin{pmatrix} 0\\3\\1 \end{pmatrix} \tag{5.55}$$

Man setzt zuerst

$$u_1 = \frac{v_1}{|v_1|} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}$$
 (Einheitsvektor) (5.56)

$$|v_1| = \sqrt{\langle v_1, v_1 \rangle} = \sqrt{5} \tag{5.57}$$

Sei nun

$$v_2' = v_2 - \langle v_2, u_1 \rangle \cdot u_1 = \begin{pmatrix} -\frac{6}{5} \\ \frac{3}{5} \\ 1 \end{pmatrix}$$
 (5.58)

und beachte, dass

$$\langle u_1, v_2' \rangle = \langle u_1, v_2 - \langle v_2, u_1 \rangle \rangle$$
 (5.59)

$$= \langle u_1, v_2 \rangle - \langle v_2, u_1 \rangle \langle u_1, u_1 \rangle$$
 (5.60)

$$=0 (5.61)$$

Man setzt

$$u_2 = \frac{v_2'}{|v_2'|} = \frac{5}{\sqrt{10}} \begin{pmatrix} -\frac{6}{5} \\ \frac{3}{5} \\ 1 \end{pmatrix}$$
 (Einheitsvektor) (5.62)

Eine Orthonormalbasis ist

$$(u_1 \quad u_2) = \left(\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{6}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \\ \frac{5}{\sqrt{10}} \end{pmatrix} \right)$$
 (5.63)

Beweis Wir beschreiben das Gram-Schmidtsche Orthogonalisierungsverfahren, mit dem man aus einer beliebigen Basis $B = (v_1, ..., v_n)$ eine Orthonormalbasis (bezüglich einer positiv definiten symmetrischen Bilinearform <,>) konstruieren kann.

• Anfang: Beachte, dass $v_1 \neq 0$ und deshalb $\langle v_1, v_1 \rangle > 0$ und man kann v_1 durch den Einheitsvektor

$$w_1 = \frac{1}{\sqrt{\langle v_1, v_1 \rangle}} \tag{5.64}$$

in B ersetzen.

- Induktiver Schritt: Nehmen wir an:
 - $-w_1,...,w_{k-1}$ sind orthonormal
 - $-(w_1,...,w_{k-1},v_k,...,v_n)$ ist eine Basis von V

Man setzt

$$\alpha_i = \langle v_k, w_i \rangle i = 1...k - 1$$
 (5.65)

$$w = v_k - \alpha_1 w_1 - \alpha_2 w_2 - \dots - \alpha_{k-1} w_{k-1}$$
 (5.66)

und beachte, dass für i = 1...k - 1

$$\langle w, w_i \rangle = \langle v_k, w_i \rangle - \alpha_1 \langle w_1, w_i \rangle - \dots - \alpha_{k-1} \langle w_{k-1}, w_i \rangle$$
 (5.67)

$$= \langle v_k, w_i \rangle - \alpha_i \langle w_i, w_i \rangle \tag{5.68}$$

$$= \langle v_k, w_i \rangle - \langle v_k, w_i \rangle$$
 (5.69)

$$=0 (5.70)$$

Man ersetzt v_k durch den Einheitsvektor $w_k = \frac{1}{\sqrt{\langle w, w \rangle}} w$.

Beweis (Satz 5.1.3)

- $(1) \Leftrightarrow (2)$ Folgt direkt aus Satz 5.1.1
- $(2) \Leftrightarrow (3)$

$$A = P^t P, P \in GL(n; \mathbb{R}) \tag{5.71}$$

$$\Rightarrow A^t = (P^t P)^t = P^t P = A \tag{5.72}$$

$$\Rightarrow A = P^t E P$$
 ist positiv definit (Lemma 5.1.2) (5.73)

• (3) \Leftrightarrow (2) Sei $A \in Mat(n; \mathbb{R})$ symmetrisch und positiv definit. Dann existiert nach Satz 5.1.4 eine Orthonormalbasis B von \mathbb{R}^n bezüglich der Bilinearform $\langle x, y \rangle = x^t Ay$.

Die Matrix $A' \in Mat(n; \mathbb{R})$ von <,> bezüglich B ist die Einheitsmatrix E. Aber auch

$$P^t A' P = A \text{ für } P \in GL(n; \mathbb{N})$$
 (5.74)

$$\Rightarrow P^t P = A \tag{5.75}$$

Frage Aber wie überprüft man, ob eine symmetrische Matrix $A \in Mat(n; \mathbb{R})$ positiv definit ist?

Sei $A_i \in Mat(i; \mathbb{R})$ für i = 1...n die obere linke $i \times i$ Teilmatrix von

$$A = (\alpha_{ij}), \text{ d.h.} \tag{5.76}$$

$$A_1 = (\alpha_{11}) \tag{5.77}$$

$$A_2 = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \tag{5.78}$$

$$\vdots (5.79)$$

$$A_n = A (5.80)$$

 $Det(A_i)$ für i = 1...n heissen **Hauptminoren** von A.

Satz 5.1.5 Für $A \in Mat(n; \mathbb{R})$ sind äquivalent:

- (1) A ist positiv definit.
- (2) Alle Hauptminoren von A sind positiv.

Beispiel n=2

$$\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \in Mat(2; \mathbb{R}) \tag{5.81}$$

ist positiv definit gdw $\alpha > 0$ und $\alpha \gamma - \beta^2 > 0$.

5.2 Symmetrische Bilinearform

Wir betrachen nun symmetrische Bilinearformen die nicht immer positiv definit sind.

Beispiel Betrachte die symmetrischen Bilinearformen auf \mathbb{R}^2 :

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = \alpha x_1 y_1 + \beta x_2 y_2 \, (\alpha, \beta \in \mathbb{R}) \tag{5.82}$$

Die Matrizen bezüglich

$$\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right)$$
(5.83)

sind

$$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \text{ d.h.}$$
 (5.84)

$$\langle x, y \rangle = x^t \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} y$$
 (5.85)

<,>ist positiv definit gd
w $\alpha>0,\beta>0$ und in diesem Fall hat \mathbb{R}^2 eine Orthonormal
basis bezüglich <,>

$$\left(\begin{pmatrix} \frac{1}{\sqrt{\alpha}} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{1}{\sqrt{\beta}} \end{pmatrix} \right)$$
(5.86)

Vorlesung vom 23.04.2012

5.2 Symmetrische Bilinearformen

Rückblick

Sei <, > eine positiv definite symmetrische Bilinearformen auf einem endlich-dimensionalem Vektorraum V über \mathbb{R} . Dann gibt es eine **Orthonormalbasis** für V (Satz 5.1.4).

Für $A \in Mat(n; \mathbb{R})$ sind äquivalent:

- (i) A repräsentiert (bezüglich einer Basis von \mathbb{R}^n) das Skalarprodukt
- (ii) $A = P^t P$ für ein $P \in GL(n; \mathbb{R})$
- (iii) A ist symmetrisch und positiv definit (Satz 5.1.3)

Wir betrachen nun symmetrische Bilinearformen die nicht immer positiv definit sind. Beispiel Betrachte die symmetrischen Bilinearformen auf \mathbb{R}^2 :

$$\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle = \alpha x, y_1 + \beta x_2 y_2(\alpha, \beta \in \mathbb{R})$$
 (5.87)

Die Matrizen bezüglich

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{5.88}$$

sind

$$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \tag{5.89}$$

d.h.

$$\langle x, y \rangle = x^t \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} y$$
 (5.90)

<,> ist **positiv definit** gdw. $\alpha>0,\beta>0$ und in diesem Fall hat \mathbb{R}^2 eine Orthonormalbasis bezüglich <,>

$$\left(\begin{pmatrix} \frac{1}{\sqrt{\alpha}} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{1}{\sqrt{\beta}} \end{pmatrix}\right) \tag{5.91}$$

die Matrix von <, > bezüglich dieser Basis ist

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{5.92}$$

Wenn $\alpha < 0, \beta < 0$ gilt:

$$\langle x, x \rangle \langle 0 \text{ für alle } x \in \mathbb{R}^2 \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$$
 (5.93)

und <, > 'negativ definit'.

Es gibt eine Orthogonalbasis:

$$\left(\begin{pmatrix} \frac{1}{\sqrt{-\alpha}} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{1}{\sqrt{-\beta}} \end{pmatrix}\right) \tag{5.94}$$

und die entsprechende Matrix ist

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \tag{5.95}$$

Ähnlicherweise ist $\alpha > 0, \beta < 0$, dann erhält man eine Orthogonalbasis:

$$\left(\begin{pmatrix} \frac{1}{\sqrt{\alpha}} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{1}{\sqrt{-\beta}} \end{pmatrix} \right) \tag{5.96}$$

und die entsprechende Matrix ist

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{5.97}$$

Sei nun <,> eine symmetrische Bilinearform auf einen endlich dimensionalen Vektorraum V über \mathbb{R} . Eine Basis $B=(v_1,...,v_n)$ von V ist eine Orthogonalbasis bezüglich <,> wenn für $1 \leq i,j \leq n$ gilt:

$$\langle v_i, v_i \rangle = 0 \text{ für } i \neq j$$
 (5.98)

oder man schreibt

$$v_i \perp v_j \tag{5.99}$$

Daraus folgt, dass für eine Basis B von V

B ist eine Orthogonalbasis \Leftrightarrow die Matrix von <,> bezüglich B ist diagonal

- Satz 5.2.1 (a) Sei <, > eine symmetrische Bilinearform auf einem endlich dimensionalen Vektorraum V über \mathbb{R} . Dann existiert eine Orthogonalbasis $B = (v_1, ..., v_n)$ mit < $v_i, v_i > \in \{-1, 0, 1\}$ für i = 1...n
 - (b) Sei $A \in Mat(n; \mathbb{R})$ symmetrisch. Dann existiert $Q \in GL(n; \mathbb{R})$, so dass QAQ^t

diagonal ist mit Diagonaleinträgen in $\{-1,0,1\}$.

Idee für (a) Man findet $v \in V$ mit

$$\langle v, v \rangle \neq 0 \tag{5.100}$$

und dann einen Unterraum W von V mit

$$V = Span\{v\} \oplus W \tag{5.101}$$

$$\langle x, y \rangle = 0$$
 für alle $x \in Span\{v\}, y \in W$ (5.102)

Die Behauptung folgt durch Induktion nach $\dim V$.

Sei <,> eine symmetrische Bilinearform von V. Ein $0 \neq v \in V$ heisst **isotrop**, wenn < v, v >= 0, andernfalls **anisotrop**

Lemma 5.2.2 Wenn eine symmetrische Bilinearform <,> von einem Vektorraum V über \mathbb{R} nicht identisch Null ist, gibt es $v \in V$ mit $< v, v > \neq 0$.

Beweis Wir nehmen an, dass es $v, w \in V$ gibt mit $\langle v, w \rangle \neq 0, \langle v, v \rangle = 0, \langle w, w \rangle = 0$. Daraus folgt

$$< v + w, v + w > = < v, v > + < w, w > + < v, w > + < w, v >$$
 (5.103)

$$= 2 < v, w > \neq 0 \tag{5.104}$$

Sei <,> eine symmetrische Bilinearform auf V. Ist W ein Unterraum von V, heisst

$$W^{t} = \{ v \in V : \langle v, w \rangle = 0 \text{ für alle } w \in W \}$$
 (5.105)

das **orthogonale Komplement von** W (bezüglich <,>), ein Unterraum von V. Insbesondere heisst V^t das **Radikal** von <,>, und <,> heisst **nicht-entartet**, wenn, $V^t = \{0\}$.

Lemma 5.2.3 Sei A die Matrix einer symmetrischen Bilinearform von V bezüglich eine Basis B

(a)
$$V^t = \{v \in V | A_{q_B}(v) = 0\}$$

 $(b) <,> ist\ nicht-entartet\ gdw.\ A\ ist\ invertierbar$

Beweis

(a) Für $v \in V$:

$$A_{q_B}(v) = 0 \Rightarrow q_B(w)^t A_{q_B}(v) = 0 \text{ für alle } w \in V$$
 (5.106)

$$\Rightarrow < w, v >= 0 \text{ für alle } w \in V$$
 (5.107)

$$\Rightarrow v \in V^t \tag{5.108}$$

$$A_{q_B}(v) \neq 0 \Rightarrow q_B(w)^t A_{q_B}(v) \neq 0 \text{ für ein } w \in V \text{ mit}$$
 (5.109)

$$q_B(w) = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\Rightarrow v \in V^t$$

$$(5.110)$$

(b) folgt direkt aus (a)

Lemma 5.2.4 Sei <, > eine symmetrische Bilinearform auf einem endlich-dimensionalen Vektorraum V über \mathbb{R} .

(a) Ist $w \in V$ anisotrop, $d.h. < w, w > \neq 0$, dann gilt:

$$V = Span\{w\} \oplus (Span\{w\})^{\perp}$$
 (5.112)

(b) Ist W ein Untarraum von V und die Einschränkung von <, > auf W nichtentartet, d.h. $\{w \in W | < w, w' >= 0 \text{ für alle } w' \in W \} = 0$, dann gilt $v = W \oplus W^{\perp}$

Beweis

(a) Wir brauchen:

$$Span\{w\} \cap (Span\{w\})^{\perp} = \{0\}$$
 (5.113)

$$V = Span\{w\} + (Span\{w\})^{\perp}$$

$$(5.114)$$

$$v \in Span\{w\} \cap (Span\{w\})^{\perp} \tag{5.115}$$

$$\Rightarrow v = \alpha w \text{ für ein } \alpha \in \mathbb{R}$$
 (5.116)

$$\langle v, w \rangle = 0 \tag{5.117}$$

$$\langle v, w \rangle = \alpha \langle w, w \rangle \tag{5.118}$$

$$\Rightarrow \alpha = 0 (\langle w, w \rangle \neq 0) \tag{5.119}$$

$$v = 0 \tag{5.120}$$

Für $v \in V$ gilt:

$$v = \underbrace{\frac{\langle v, w \rangle}{\langle w, w \rangle}}_{\in Span\{w\}} + \underbrace{\left(v - \frac{\langle v, w \rangle}{\langle w, w \rangle}\right)}_{\in (Span\{w\})^{\perp}}$$
(5.121)

$$<\alpha w, v - \frac{< v, w >}{< w, w >} w > = \alpha(< w, v > -\frac{< v, w >}{< w, w >} < w, w >)$$
 (5.122)

$$=0$$
 (5.123)

(b) folgt aus a durch Induktion nach $\dim W$

Beweis (Satz 5.2.1)

- (a) Induktion nach $\dim V$
 - Induktionsanfang dim V = 0, (,) ist eine Orthogonalbasis.
 - Induktionsschritt

Wenn <,> identisch Null ist die Matrix bezüglich jeder Basis die (diagonale) Nullmatrix. Andernfalls gibt es nach Lemma 5.2.2 $v_1 \in V$ mit $< v_1, v_1 > \neq 0$, und daraus folgt nach Lemma 5.2.4

$$V = Span\{v_1\} \oplus (Span\{v_1\})^{\perp}$$

$$(5.124)$$

Nach Induktionsannahme existiert eine Orthogonalbasis $(v_2, ..., v_n)$ für $(Span\{v_1\})^{\perp}$. Da auch $\langle v_1, v_i \rangle = 0$ für $i = 2...n(v_i \in (Span\{v_1\})^{\perp})$ ist $(v_1, ..., v_n)$ eine Orthogonalbasis von V.

Man ersetzt v_i durch

$$w_i = \frac{v_i}{\sqrt{\langle v_i, v_i \rangle}} \text{ für } \langle v_i, v_i \rangle > 0$$
 (5.125)

$$w_i = v_i \text{ für } \langle v_i, v_i \rangle = 0$$
 (5.126)

$$w_i = \frac{v_i}{\sqrt{-\langle v_i, v_i \rangle}} \text{ für } \langle v_i, v_i \rangle \langle 0$$
 (5.127)

und $(w_1, ..., w_n)$ ist eine Orthogonalbasis für V mit $< w_i, w_i > \in \{-1, 0, 1\}$ für i = 1...n.

(b) folgt direkt aus (a)
$$\Box$$

Bemerkung Man kann die Orthogonalbasis in Satz 5.2.1 so permutieren, dass die v_i mit $\langle v_i, v_i \rangle = 1$ zuerst kommen, dann die v_i mit $\langle v_i, v_i \rangle = -1$ und zuletzt die v_i mit

 $\langle v_i, v_i \rangle = 0$. D.h. die Matrix der Bilinearform \langle , \rangle bezüglich dieser Basis hat die Form

$$\star \begin{pmatrix} E_p & 0 \\ -E_q & \\ 0 & 0s \end{pmatrix} \tag{5.128}$$

$$p + q + s = n \tag{5.129}$$

 E_p, E_q sind $p \times p, q \times q$ Einheitsmatrizen, 0s ist die $s \times s$ Nullmatrix.

Satz 5.2.5 Die Zahlen p,q,s, welche in \star vorkommen, sind durch die Bilinearform <,> festgelegt, d.h. sie hängen nicht von der Wahl der Orthogonalbasis ab. Man nennt das Zahlenpaar die **Signatur** der Bilinearform.

Beweis Sei $(v_1, ..., v_n)$ eine Orthogonalbasis von V mit n = p + q + s und

$$\langle v_i, v_i \rangle = \begin{cases} 1 & 1 \le i \le p \\ -1 & p+1 \le i \le p+q \\ 0 & p+q+1 \le i \le n \end{cases}$$
 (5.130)

Wir zeigen zuerst, dass

$$V^{\perp} = Span\{v_{p+q+1}, ..., v_{p+q+s}\}$$
(5.131)

Daraus folgt, dass $s=\dim V^\perp$ durch <,> eindeutig bestimmt ist. Beachte, dass

$$w = \alpha_1 v_1 + \dots + \alpha_n v_n \in V^{\perp} \tag{5.132}$$

$$\text{gdw } \langle w, v_i \rangle = 0 \text{ für } i = 1...n$$
 (5.133)

gdw
$$\alpha_i < v_i, v_i >= 0$$
 für $i = 1...n$ (5.134)

gdw
$$w = \alpha_{p+q+1}v_{p+q+1} + \dots + \alpha_n v_n$$
 (5.135)

d.h.

$$V^{\perp} = Span\{v_{p+q+1}, ..., v_n\}$$
 (5.136)

Sei nun $(v'_1,...,v'_n)$ auch eine Orthogonalbasis von V mit

$$n = p' + q' + s' \tag{5.137}$$

und

$$\langle v_i, v_i \rangle = \begin{cases} 1 & 1 \le i \le p' \\ -1 & p' + 1 \le i \le p' + q' \\ 0 & p' + q' + 1 \le i \le n \end{cases}$$
 (5.138)

Es genügt zu zeigen, dass

$$v_1, ..., v_p, v'_{p'+1}, ..., v'_n$$
 (5.139)

linear unabhängig sind (Aufgabe).

Daraus folgt, dass
$$p_1 + (n - p') \le \dim V = n, p \le p'$$
.
Ähnlicherweise $p' \le p$, also $p' = p$ und $q' = q$.

Vorlesung vom 30.04.2012

5.2 Symmetrische Bilinearformen

Rückblick und Vorschau

Ist $A \in Mat(n; \mathbb{R})$ symmetrisch, dann gibt es $P \in GL(n; \mathbb{R})$, so dass für geeignete $p, q, s \in \mathbb{N}$ gilt

$$PAP^{t} = \begin{pmatrix} E_{p} & 0 \\ -E_{q} & 0 \\ 0 & 0 \end{pmatrix} \text{ Satz 5.2.1}$$
 (5.140)

Zudem sind p, q, s durch A eindeutig festgelegt (Satz 5.2.5).

Wir werden später in der Vorlesung sehen, dass es eine **orthogonale** Matrix $P \in O(n; \mathbb{R})$ (d.h. $P^{-1} = P^t$) gibt, so dass PAP^t diagonal ist. Daraus folgt, dass p,q,s die Anzahl von je den **positiven**, **negativen** und **nullwertigen Eigenwerten** darstellen (bezüglich algebraischer Vielfachheit). Wenn auch A **positiv definit** ist ($x^tAx > 0$ für $x \neq 0$) gilt p = n, q = s = 0.

Wiederholung Satz 5.1.5:

Für $A \in Mat(n; R)$ symmetrisch sind äquivalent:

- 1. A ist positiv definit
- 2. Alle Hauptminoren von A sind positiv ($\det A_i > 0$ für i = 1...n, wobei A_i die obere linke $i \times i$ Teilmatrix von A ist)

Beweis

• (1) \Rightarrow (2). Sei A positiv definit. Nach Satz 5.1.3 ist $A=P^tP$ für ein $P\in GL(n;\mathbb{R})$. Daraus folgt:

$$\det A_n = \det A \tag{5.141}$$

$$= \det P^t P \tag{5.142}$$

$$= \det P^t \det P \tag{5.143}$$

$$= (\det P)^2 \tag{5.144}$$

$$>0\tag{5.145}$$

Ähnlicherweise da A_i auch positiv definit ist, gilt $\det A_i > 0$.

- $(2) \Rightarrow (1)$ Induktion nach n.
 - Induktionsanfang n=1

$$A = (\alpha) \tag{5.146}$$

$$\det A = \alpha > 0 \tag{5.147}$$

$$\Rightarrow x^t A x = \alpha x^t x > 0 (x \neq 0) \tag{5.148}$$

- Induktionsschritt Nach Induktionsannahme ist A_{n-1} positiv definit (Zu zeigen: A_n ist positiv definit). Nach Satz 5.1.3 gibt es $Q' \in GL(n-1;\mathbb{R})$ mit

$$Q'A_{n-1}Q'^t = E_{n-1} (5.149)$$

Dann gilt:

$$QAQ^t = \begin{pmatrix} E_{n-1} & * \\ & * \end{pmatrix} \tag{5.150}$$

$$Q = \frac{\begin{pmatrix} Q' \mid 0 \\ 0 \mid 1 \end{pmatrix}}{(5.151)}$$

(5.152)

Durch elementare Zeilenumformungen erhält man

$$A' = \underbrace{PAP^t}_{\text{symmetrisch}} = \left(\frac{E_{n-1} \mid 0}{0 \mid \alpha}\right) \text{ mit } P = L_1, ..., L_k Q \in GL(n; \mathbb{R})$$
 (5.153)

(weil A' symmetrisch ist).

Daraus folgt, dass

$$\det A > 0 \Rightarrow \det A' = \det P \det A \det P^t \tag{5.154}$$

$$= (\det P)^2 \det A \tag{5.155}$$

$$> 0 \Rightarrow \alpha > 0 \tag{5.156}$$

und A' ist positiv definit. Nach Lemma 5.1.2 ist A auch positiv definit.

5.3 Euklidische Räume

Ein endlich-dimensionaler Vektorraum V über $\mathbb R$ zusammen mit einer positiv definiten symmetrischen Bilinearform <,> heisst **euklidischer Vektorraum**. Man beachet, dass für $v\in V$

$$v = 0 \text{ gdw } \langle v, v \rangle = 0$$
 (5.157)

und definiert

$$|v| = \sqrt{\langle v, v \rangle} \tag{5.158}$$

die **Länge** von v und auch

$$d(x,y) = |x - y|, \ x, y \in v \tag{5.159}$$

 $\operatorname{der} \mathbf{Abstand} \text{ von } x \text{ nach } y.$

Ziel Wir möchten den **Winkel** zwischen $v \neq 0$ und $\neq 0 \in V$ messen.

Methode Für v, w linear abhängig ist der Winkel 0. Andernfalls betrachtet man den Unterraum

$$W = Span\{v, w\}(dim W = 2)$$

$$(5.160)$$

Die Einschränkung der Bilinearform auf W ist auch positiv definit. Also hat W eine Orthonormalbasis

$$B = (w_1, w_2) \tag{5.161}$$

Beachte, dass für $x, y \in \mathbb{R}^2$ gilt

$$(x \cdot y) = |x| |y| \cos \theta \tag{5.162}$$

wobei θ der Winkel zwischen x und y ist.

Insbesondere

$$(q_B(v) \cdot q_B(w)) = |q_B(v)| |q_B(w)| \cos \theta$$
 (5.163)

(5.164)

und man erhält

$$\langle v, w \rangle = |v| |w| \cos \theta \tag{5.165}$$

$$\cos \theta = \frac{\langle v, w \rangle}{|v| |w|} \tag{5.166}$$

Man definiert den Winkel θ zwischen v und w als Winkel zwischen $q_B(v)$ und $q_B(w)$ - bis auf das Vorzeichen \pm — eindeutig festgelegt.

Man erhält die Schwarzsche Ungleichung

$$|\langle v, w \rangle| \le |v||w|$$
 (5.167)

und die Dreiecksungleichung

$$|v + w| \le |v| + |w| \tag{5.168}$$

(Aufgabe)

Beachte nun, dass für einen Unterraum W die Einschränkung von <,> auf W nichtentartet ist, und deshalb gilt nach Lemma 5.2.4

$$V = W \oplus W^{\perp} \tag{5.169}$$

$$(W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \text{ für alle } w \in W \})$$
 (5.170)

Also hat jedes $v \in V$ eine **eindeutige** Darstellung der Form

$$v = w + w' \text{ mit } w \in W, \langle w, w' \rangle = 0$$
 (5.171)

Man definiert

$$\Pi: V \to Q, v \mapsto w \tag{5.172}$$

die orthogonale Projektion von V auf W.

Sei nun $(w_1, ..., w_k)$ eine Orthonormalbasis von W. Dann gilt für jedes $v \in V$:

$$\Pi(v) = \langle v, w_1 \rangle w_1 + \dots + \langle v, w_k \rangle w_k \tag{5.173}$$

(die geometrische Bedeutung des Gram-Schmidt-Verfahrens). Es genügt zu zeigen, dass

$$v = \underbrace{w}_{\in W} + \underbrace{(v - w)}_{\in W^{\perp}} \text{ mit } w = \langle v, w_1 \rangle w_1 + \dots + \langle v, w_k \rangle w_k$$
 (5.174)

Für i = 1...k:

$$\langle v - w, w_i \rangle = \langle v, w_i \rangle - \langle w, w_i \rangle$$
 (5.175)

$$= \langle v, w_i \rangle - \langle v, w_i \rangle \langle w_i, w_i \rangle$$
 (5.176)

$$=0 (5.177)$$

Also $v - w \in W^{\perp}$.

Insbesondere erhält man für eine Orthonormalbasis $B = (v_1, ..., v_n)$ von V und $v \in V$

$$v = \langle v, v_1 \rangle v_1 + \dots + \langle v, v_n \rangle v_n, q_B(v) = \begin{pmatrix} \langle v, v_1 \rangle \\ \vdots \\ \langle v, v_n \rangle \end{pmatrix}$$
 (5.178)

Beispiel Betrachte den Unterraum von \mathbb{R}^3

$$W = \left\{ \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \in \mathbb{R}^3 : 2\alpha - \beta + 3\gamma = 0 \right\}$$
 (5.179)

Man findet eine Orthonormalbasis (siehe vorheriges Beispiel) bezüglich des Skalarprodukts:

$$B = (u_1, u_2) \text{ mit } u_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} -\frac{6}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \\ \frac{5}{\sqrt{10}} \end{pmatrix}$$
 (5.180)

Für

$$v = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} \tag{5.181}$$

berechnet man:

$$\Pi(v) = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 \tag{5.182}$$

$$= \begin{pmatrix} 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix} u_1 + \begin{pmatrix} 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} \frac{6}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \\ \frac{5}{\sqrt{10}} \end{pmatrix} u_2$$
 (5.183)

$$= -\frac{1}{\sqrt{5}}u_1 - \frac{4}{\sqrt{10}}u_2 \tag{5.184}$$

$$= \begin{pmatrix} \frac{1}{7} \\ \frac{-4}{7} \\ \frac{-2}{7} \end{pmatrix} \in W \tag{5.185}$$

$$v - \Pi(v) = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} - \begin{pmatrix} \frac{1}{7} \\ \frac{-4}{7} \\ \frac{-2}{7} \end{pmatrix} = \begin{pmatrix} \frac{20}{7} \\ \frac{-10}{7} \\ \frac{30}{7} \end{pmatrix} \in W^{\perp}$$
 (5.186)

5.4 Hermitesche Formen

Ziel: Wie suchen nun ähnliche Begriffe - wie Symmetrie, Länge, Positivität, Orthogonalität usw. - und Charakterisierungen für Vektorräume über \mathbb{C} . Zuerst wie definiert man die **Länge** eines Vektors?

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n \text{ mit } x_j = \alpha_j + \beta_j \cdot i, \alpha_j, \beta_j \in \mathbb{R}, j = 1...n$$
 (5.187)

Man verwendet oft

$$|x| = \sqrt{\alpha_1^2 + \beta_1^2 + \dots + \alpha_n^2 + \beta_n^2}$$
 (5.188)

$$=\sqrt{\overline{x_1}x_1 + \dots + \overline{x_n}x_n} \tag{5.189}$$

wobei
$$\overline{\alpha + \beta i} = \alpha - \beta i$$
 (5.190)

Man braucht deshalb statt dem übelichen Skalarprodukt

$$\langle x, y \rangle = x^{-1}y$$
 (5.191)

$$= \overline{x}_1 y_1 + \dots + \overline{x}_n y_n \tag{5.192}$$

Beachte, dass für diese Definition für alle $x \in \mathbb{C} \setminus \{0\}$

$$\langle x, x \rangle \in \mathbb{R}^+ = \{ \alpha \in \mathbb{R} | \alpha > 0 \} \text{ (Positivität)}$$
 (5.193)

Sei V ein Vektorraum über \mathbb{C} . Eine Abbildung $<,>:V\times V\to\mathbb{C}, (v,w)\mapsto < v,w>$ heisst **hermitesche Form** auf V, wenn für alle $x,y,z\in V,\alpha\in\mathbb{C}$ gilt:

$$<\alpha x, y> = \overline{\alpha} < x, y>$$
 (5.194)

$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$
 (5.195)

$$\langle x, y \rangle = \overline{\langle y, x \rangle} \tag{5.196}$$

Daraus folgt auch

$$\langle x, \alpha y \rangle = \overline{\langle \alpha y, x \rangle}$$
 (5.197)

$$= \overline{\alpha} < y, x > \tag{5.198}$$

$$= \alpha \overline{\langle y, x \rangle} \tag{5.199}$$

$$= \alpha < x, y > \tag{5.200}$$

$$\langle x, y+z \rangle = \overline{\langle y+z, x \rangle} \tag{5.201}$$

$$= \overline{\langle y, x \rangle} + \overline{\langle z, x \rangle} \tag{5.202}$$

$$= \langle x, y \rangle + \langle x, z \rangle$$
 (5.203)

Vorlesung vom 04.05.2012

Hermitesche Formen

Beispiele

(i) Das hermitesche Standardprodukt auf \mathbb{C}^n ist

$$\langle x, y \rangle = \overline{x^t}y = \overline{x_1}y_1 + \dots + \overline{x_n}y_n \in \mathbb{R}$$
 (5.204)

$$(\langle x, y \rangle \in \mathbb{R}^+ \text{ für } x \neq 0) \tag{5.205}$$

- (ii) Sei C[a,b] die Menge aller komplexwertigen stetigen Funktionen $f:[a,b]\to\mathbb{C}$. Dann ist $< f,g>=\int_a^b f(x)\overline{g(x)}dx$ eine hermitesche Form auf C[a,b].
- (iii) Sei V der Vektorraum aller Folgen $(x_i), i \in \mathbb{N}$ von komplexen Zahlen, so dass $\lim_{n\to\infty} (\sum_{i=0}^n |x_i|^2)$ existiert. Dann ist

$$\langle (x_i), (y_i) \rangle (i \in \mathbb{N}) = \sum_{i=0}^{\infty} x_i \overline{y_i}$$
 (5.206)

eine hermitesche Form auf V.

Sei nun V ein endlich-dimensionaler Vektorraum über \mathbb{C} . Analog zur Matrix einer Bilinearform definiert man die Matrix einer hermiteschen Form auf V bezüglich einer Basis $B = (v_1, ..., v_n)$ von V:

$$A = (\alpha_{ij}) \text{ mit } \alpha_{ij} = \langle v_i, v_j \rangle, 1 \le i, j \le n$$
 (5.207)

Daraus folgt, dass $\forall v, w \in V$:

$$\langle v, w \rangle = (\overline{q_B(v)^t}) A q_B(w)$$
 (5.208)

Man erhält für $1 < i, j \le n$

$$\alpha_{ij} = \langle v_i, v_j \rangle = \overline{\langle v_j, v_i \rangle} = \overline{\alpha_{ji}}$$
 (5.209)

Sei nun $A \in Mat(n; \mathbb{C})$. Man definiert

$$A^* = \overline{A}^t \text{ für } A = (\alpha_{ij}), \overline{A} = \overline{\alpha_{ij}}$$
 (5.210)

als die Adjungierte von A (im Gegensatz zu einer vorherigen Definition.)

A heisst **hermitesch**, wenn $A = A^*$

Beispiel

$$\begin{pmatrix} 5 & i & 1+2i \\ -i & -1 & 3 \\ 1-2i & 3 & 2 \end{pmatrix}$$
 (5.211)

ist hermitesch.

Bemerkungen

• Die Diagonaleinträge einer hermiteschen Matrix $A = (\alpha_{ij})$ sind reell

$$\alpha_{ii} = \overline{\alpha_{ii}} \Rightarrow \alpha_{ii} \in \mathbb{R} \tag{5.212}$$

 \bullet Wenn A die Matrix einer hermiteschen Form <,> bezüglich einer Basis B ist, gilt

$$\langle v, w \rangle = q_B(v)^* A q_B(w)$$
 (5.213)

und $A = A^*$ ist hermitesch

• Für $A \in Mat(n; \mathbb{R})$ gilt

$$A^* = \overline{A^t} = A^t \text{ d.h.} \tag{5.214}$$

$$A \text{ ist hermitesch} \Leftrightarrow A \text{ ist symmetrisch}$$
 (5.215)

• Für $A, B \in Mat(n, \mathbb{C})$ gilt

$$(A+B)^* = A^* + B^* \tag{5.216}$$

$$(AB)^* = B^*A^* (5.217)$$

$$(A^*)^{-1} = (A^{-1})^* (5.218)$$

$$A^{**} = A \text{ (Beweis Aufgabe)} \tag{5.219}$$

Satz 5.4.1 Sei A die Matrix einer hermiteschen Form <, > auf einem Vektorraum bezüglich einer Basis B. Die Matrizen A', die <, > bezüglich anderen Basen B' beschreiben, sind diejenigen von der Form

$$A' = QAQ^* \tag{5.220}$$

 $f\ddot{u}r\ ein\ Q\in GL(n;\mathbb{C})$

Beweis Für $x, y \in V$ gilt

$$\langle x, y \rangle = (q_B(x))^* A(q_B(y))$$
 (5.221)

$$= (q_{B'}(x))^* A'(q_{B'}(y))$$
(5.222)

Aber auch

$$q_{B'} = h_{T_{D'}^B} \circ q_B \tag{5.223}$$

und deshalb

$$(q_B(x))^* A(q_B(y))$$
 (5.224)

$$= (q_B(x))^* (T_{B'}^B) A'(T_{B'}^B) q_B(y)$$
(5.225)

Daraus folgt: Man wählt $x = v_i, y = v_j$ für $B = (v_1, ..., v_n)$

$$A = (T_{B'}^B)A'(T_{B'}^B) (5.226)$$

oder für

$$Q = ((T_{B'}^B)^*)^{-1} = ((T_{B'}^B)^{-1})^*$$
(5.227)

$$A' = QAQ^* \tag{5.228}$$

Bemerkungen

1. $A \in Mat(n; \mathbb{C})$ ist die Matrix des hermiteschen Standardskalarprodukts bezüglich einer Basis gdw. $A = QQ^*$ für ein $Q \in GL(n; \mathbb{C})$. Zum Beispiel

$$A = \begin{pmatrix} 6 & 1+2i \\ 1-2i & 3 \end{pmatrix} = \begin{pmatrix} 2+i & 1 \\ 1-i & i \end{pmatrix} \begin{pmatrix} 2-i & 1+i \\ 1 & -i \end{pmatrix}$$
 (5.229)

ist die Matrix des hermiteschen Standardskalarprodukts bezüglich der Basis

$$B = \left(\begin{pmatrix} 2-i \\ 1 \end{pmatrix}, \begin{pmatrix} 1+i \\ -i \end{pmatrix} \right) \tag{5.230}$$

Beachte, dass A hermitesch ist $(A=A^*)$ und $x^*Ax \in R^+$ für $0 \neq x \in \mathbb{C}^n$

2. Sei $B=(v_1,...,v_n)$ eine Basis von V und sei <,> eine hermitesche Form auf V mit

$$\langle v_i, v_j \rangle = \begin{cases} 1 & i = j \\ 0 & \text{andernfalls} \end{cases}$$
 (5.231)

Dann ist die Matrix von <, > bezüglich B die Einheitsmatrix und < $v_i, v_j >= q_B(v_i)^*q_B(v_j)$, d.h. $P^*P = E$ mit $P = (q_B(v_1)...q_B(v_n))$

Eine Matrix $P = Mat(n; \mathbb{C})$ heisst unitär, wenn $P^*P = E$, d.h. $P^* = P^{-1}$.

Beispiel

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 0 \\ -i & i & 0 \\ 0 & 0 & \sqrt{2}i \end{pmatrix} \tag{5.232}$$

ist unitär.

Bemerkungen

- (1) $P = Mat(n; \mathbb{R})$ ist unitär gdw $P^*P = P^tP = E$ gdw. P orthogonal ist.
- (2) Die unitären $n \times n$ Matrizen bilden die sogenannte **unitäre Gruppe**:

$$V(n; \mathbb{C}) = \{ P \in GL(n; \mathbb{C}) : P^*P = E \}$$
 (5.233)

Man definiert auch (wie für reelle Matrizen):

• Eine hermitesche Form <,> auf V ist positiv definit, wenn

$$\langle v, v \rangle \in \mathbb{R}^+ \, \forall 0 \neq v \in V$$
 (5.234)

 $A \in Mat(n; \mathbb{C})$ ist positiv definit, wenn $x^*Ax \in \mathbb{R}^+ \forall x \in \mathbb{C}^n$

• Eine Basis $B = (v_1, ..., v_n)$ heisst Orthonormalbasis bezüglich einer hermiteschen Form <,>, wenn

$$\langle v_i, v_j \rangle = \begin{cases} 1 & i = j \\ 0 & \text{andernfalls} \end{cases}$$
 (5.235)

Satz 5.4.2 Sei <, > eine hermitesche Form auf einem endlich-dimensionalen Vektorraum V über \mathbb{C} . Es gibt eine Orthonormalbasis für V gdw <, > ist positiv definit.

Beweis (Aufgabe)

Satz 5.4.3 Sei <,> eine hermitesche Form auf einen endlich-dimensionalen Vektorraum V über $\mathbb C$ und sei W ein Unterraum von V. Wenn die Einschränkung von <,> auf W nicht entartet ist, d.h. $\{w \in W | < w, w' >= 0 \forall w' \in W'\} = \{0\}$ gilt $v = W \oplus W^{\perp}$ $(W^{\perp} = \{v \in V | < v, w >= 0 \forall w \in W\})$

Beweis (Aufgabe)

Vorschau Für $A \in Mat(n; \mathbb{C})$ hermitesch, sind die Eigenvektoren zu verschiedenen Eigenwerten von A zueinander orthogonal, dann existiert eine unitäre Matrix U, so dass $U^*AU(=U^{-1}AU)$ eine **reelle Diagonalmatrix**.

Beispiele

(i) Die Matrix

$$A = \begin{pmatrix} 1 & 1-i \\ 1+i & 0 \end{pmatrix} \in Mat(2; \mathbb{C})$$
 (5.236)

ist hermitesch.

$$det(tE - A) = \begin{vmatrix} t - 1 & i - 1 \\ -1 - i & t \end{vmatrix} = t^2 - t - 2 = (t - 2)(t + 1)$$
 (5.237)

Eigenwerte: $2, -1 \in \mathbb{R}$

Eigenwert 2:

$$\begin{pmatrix} 1 & i-1 \\ -1-i & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = (1-i)x_2 \tag{5.238}$$

$$Eig(A;2) = Span\left\{ \begin{pmatrix} 1-i\\1 \end{pmatrix} \right\}$$
 (5.239)

Eigenwert -1:

$$\begin{pmatrix} -2 & i-1 \\ -1-i & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow 2x_1 = (i-1)x_2 \tag{5.240}$$

$$Eig(A; -1) = Span\left\{ \begin{pmatrix} 1 - i \\ -2 \end{pmatrix} \right\}$$
 (5.241)

Beachte, dass

$$\begin{pmatrix} 1-i \\ 1 \end{pmatrix}^* \begin{pmatrix} 1-i \\ -2 \end{pmatrix} = \begin{pmatrix} 1+i & 1 \end{pmatrix} \begin{pmatrix} 1-i \\ -2 \end{pmatrix} = 0$$
 (5.242)

Dann gilt

$$U^*AU = \begin{pmatrix} 2 & 0\\ 0 & -1 \end{pmatrix} \tag{5.243}$$

 $_{
m mit}$

$$U = \begin{pmatrix} \frac{1-i}{\sqrt{3}} & \frac{1-i}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{pmatrix}$$
 (5.244)

unitär.

(ii)

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in Mat(3; \mathbb{R})$$
 (5.245)

ist hermitesch, d.h. symmetrisch.

$$det(tE - A) = \begin{vmatrix} t & -1 & -1 \\ -1 & t & -1 \\ -1 & -1 & t \end{vmatrix} = t^3 - 3t - 2 = (t+1)^2(t-2)$$
 (5.246)

Eigenwerte: -1, 2

Eigenwert -1:

$$Eig(A; -1) = Span\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$
 (5.248)

Beachte, dass

$$\begin{pmatrix} -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \neq 0 \tag{5.249}$$

Mit dem Gram-Schmidtschen Verfahren erhält man:

$$u_{1} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

$$w = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \left(-\frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{2}} \quad 0 \right) \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} u_{1} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{pmatrix}$$

$$(5.251)$$

$$u_2 = \frac{w}{|w|} = \begin{pmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}$$
 (5.252)

$$Eig(A, -1) = Span\{u_1, u_2\}$$
(5.253)

Eigenwert 2:

$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = x_2 = x_3 \tag{5.254}$$

$$Eig(A;2) = Span\left\{ \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \right\}$$
 (5.255)

Man erhält:

$$U^*AU = \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 2 \end{pmatrix}$$
 (5.256)

 $_{
m mit}$

$$U = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
 (5.257)

unitär, d.h. orthogonal.

Vorlesung vom 07.05.2012

5.5 Der Spektralsatz

Definition Ein hermitescher Raum ist ein \mathbb{C} -Vektorraum V $(dim V < \infty)$ mit einer positiv definiten hermiteschen From <,>

Bemerkung Nach Wahl einer Orthogonalbasis wird V isomorph zu \mathbb{C}^n mit hermiteschen Standardprodukt.

Wir wollen nur Basiswechsel zulassen, welche die herm. Form invariant lassen, d.h. dir durch unitäre $(PP^* = E)$ Übergangsmatrizen gegeben sind. Wir wollen den Endomorphismus $f: V \to V$ studieren.

Sei B eine Orthogonalbasis von V, M sei die Matrix von f bezüglich B.

Basiswechsel
$$\rightsquigarrow M' = PMP^{-1}$$
 (5.258)

$$\underbrace{=}_{P^{-1}=P^*} PMP^* \tag{5.259}$$

Satz 5.5.1 Sei $f: V \to V$ ein Endomorphismus. M sei die Matrix von f bezüglich der Orthogonalbasis B von F.

(a)

$$M \ hermitesch \Leftrightarrow f \ hermitesch, \ d.h.$$
 (5.260)

$$\forall v, w \in V : < f(v), w > = < v, f(w) > \tag{5.261}$$

(b)

$$M \ unit \ddot{a}r \Leftrightarrow f \ unit \ddot{a}r, \ d.h.$$
 (5.262)

$$\forall v, w \in V : < v, w > = < f(v), f(w) > \tag{5.263}$$

Beweis x, y-Koordinatenvektoren von v, w, also

$$v = BX, w = BY, \langle v, w \rangle = X^*Y, f(v) = BMX, f(w) = BMY$$
 (5.264)

(a)

$$\langle f(v), w \rangle = (MX)^*Y = X^*M^*Y, \langle v, f(w) \rangle = X^*MY$$
 (5.265)

$$M \text{ hermitesch } (M^* = M) \Rightarrow f \text{ hermitesch}$$
 (5.266)

$$f \text{ hermitesch } \Rightarrow \forall e_i, e_j \in B : \underbrace{e_i^* M^* e_j}_{J^*} = e_j^* M e_j$$
 (5.267)

$$\langle e_i, M^* e_j \rangle = (M)^*_{ij} \Rightarrow M \text{ hermitesch}$$
 (5.268)

(b)

$$\langle v, w \rangle = X^*Y, \langle f(v), f(w) \rangle = (MX)^*MY = X^*M^*MY$$
 (5.269)

Analog zu (a):
$$f$$
 hermitesch $\Leftrightarrow M^*M = E$, also M unitär. (5.270)

Satz 5.5.2 Sei $f: V \to V$ ein hermitescher Endomorphismus.

- (a) Die Eigenwerte von f sind reell.
- (b) Die Eigenvektoren zu unterschiedlichen Eigenwerten sind orthogonal zueinander.

Beweis $v, w \in V$ sind Eigenvektoren zu den Eigenwerten λ_v, λ_w

(a)

$$\langle f(v), v \rangle = \langle \lambda_v v, v \rangle = \overline{\lambda_v} \langle v, v \rangle$$
 (5.271)

$$f \text{ hermitesch } \rightarrow ||$$
 (5.272)

$$\langle v, f(v) \rangle = \langle v, \lambda_v v \rangle = \lambda_v \langle v, v \rangle$$
 (5.273)

$$\Rightarrow (\lambda_v - \overline{\lambda_v}) \underbrace{\langle v, v \rangle}_{\neq 0} = 0 \tag{5.274}$$

$$\Rightarrow \lambda_v = \overline{\lambda_v} \in \mathbb{R} \tag{5.275}$$

(b) Sei $\lambda_v \neq \lambda_w$

$$\langle f(v), w \rangle = \langle \lambda_v v, w \rangle = \lambda_v \langle v, w \rangle \tag{5.276}$$

$$f \text{ hermitesch } \rightarrow ||$$
 (5.277)

$$\langle v, f(w) \rangle = \langle v, \lambda_w w \rangle = \lambda_w \langle v, w \rangle$$
 (5.278)

$$\Rightarrow \underbrace{(\lambda_v - \lambda_w)}_{\neq 0} < v, w > = 0 \tag{5.279}$$

$$\Rightarrow \langle v, w \rangle = 0$$
, also $v \perp w$ (5.280)

Satz 5.5.3 Spektralsatz für hermitesche Matrizen

- (a) Sei $f: V \to V$ ein hermitescher Endomorphismus. Dann gibt es eine Orthogonalbasis von V aus Eigenvektoren von f zu reellen Eigenwerten.
- (b) Sei M eine hermitesche Matrix. Dann gibt es eine unitäre Matrix P so dass $PMP^* = diagonal mit reellen Einträgen.$

Beweis (a) und (b) sind äquivalent: M ist Matrix von f bezüglich einer Orthogonalbasis, P ist Übergangsmatrix bei Basiswechsel zu B' aus Eigenvektoren, PMP^* Matrix von f bezüglich B' (diagonal mit Eigenwerten auf Diagonale).

Beweis der Aussage: Induktion über $\dim V = n$

• n=1 $f(v) = aV(a \in \mathbb{R}) \forall v \in V$. Sei V auf Länge 1 normiert, $\langle v, v \rangle = 1$

$$\rightsquigarrow \{v\} \tag{5.281}$$

Orthonormalbasis von V aus Eigenvektoren von f zu reellem Eigenwert $a \in \mathbb{R}$

• $n-1 \to n$ Wähle $v \in V$ von f, auf Länge 1 normiert, $\langle v, v \rangle = 1$. Ergänze zu Orthogonalbasis B (Gram-Schmidt), M sei Matrix von f bezüglich B.

$$M = \begin{vmatrix} a & * & \cdots & * \\ 0 & & & \\ \vdots & \tilde{M} & & \\ 0 & & & \end{vmatrix}$$
 (5.282)

$$f(v) = av (5.283)$$

$$M = M^* \Rightarrow a \in \mathbb{R} \tag{5.284}$$

$$*\cdots * = 0\cdots 0 \tag{5.285}$$

$$\tilde{M}^* = \tilde{M} \tag{5.286}$$

Beweis: Da (a) & (b) äquivalent, folgt aus der Induktionshypothese, dass

$$\exists \tilde{p} \in U(n-1, \mathbb{C}) \tag{5.287}$$

so dass

$$\tilde{P}\tilde{M}\tilde{P}^* = D \tag{5.288}$$

diagonal mit reellen Einträgen.

$$P := \begin{vmatrix} 1 & * & \cdots & * \\ \hline 0 & & & \\ \vdots & \tilde{P} & & \\ 0 & & & \end{vmatrix} \Rightarrow PMP^* = \begin{vmatrix} a & * & \cdots & * \\ \hline 0 & & & \\ \vdots & \tilde{D} & & \\ 0 & & & \end{vmatrix}$$
 (5.289)

diagonal mit reellen Einträgen.

Bemerkung Wir wissen, dass die Übergangsmatrix gegeben ist durch

$$P = [B']^{-1} = [B']^* \text{ (da } P \text{ unitär)}$$
 (5.290)

wobei B' neue Basis. Hier: B' Orthonormalbasis aus Eigenvektor von f. Orthonormalbasis heisst: Basisvektoren sind auf Länge 1 normiert, und Basisvektoren müssen orthogonal sein zueinander. Achtung: Eigenvektoren zu unterschiedlichen Eigenwerten sind orthogonal zueinander (Satz 5.5.2). Bei mehrfachen Eigenwerten muss man zugehörige Eigenvektoren orthogonal wählen (Gram-Schmidt).

Beispiel

$$M = \begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix} \tag{5.291}$$

hermitesch. Finde P unitär so dass $PMP^* =$ diagonal. Eigenwerte:

$$\det\begin{pmatrix} 2-\lambda & i\\ -i & 2-\lambda \end{pmatrix} = (2-\lambda)^2 - 1 = 0 \tag{5.292}$$

$$\Leftrightarrow (2 - \lambda)^2 = 1 \tag{5.293}$$

$$\Leftrightarrow 2 - \lambda = \pm 1 \tag{5.294}$$

$$\Leftrightarrow \lambda_1 = 1, \lambda_2 = 3 \tag{5.295}$$

Eigenvektoren:

$$\lambda_1 = 1: \begin{vmatrix} 1 & i \\ -i & 1 \end{vmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 \rightarrow normierter Eigenvektor $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$ (5.296)

$$\lambda_2 = 3: \begin{vmatrix} -1 & i \\ -i & -1 \end{vmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 \rightarrow normierter Eigenvektor $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$ (5.297)

$$\Rightarrow P = [B']^* = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 & i \\ -i & 1 \end{vmatrix}^* = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 & -i \\ 1 & i \end{vmatrix}$$
 (5.298)

Kontrolle:

$$PMP^* = \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix}^* \tag{5.299}$$

Durch Einschränkung auf reelle Vektorräume kann man Ergebniss für hermitesche Matrizen auf relle symmetrische Matrizen übertragen

$$M$$
 reelle symmetrische Matrix (5.300)

$$M = M^t \Rightarrow M^* = M \text{ (also } M \text{ hermitesch)}$$
 (5.301)

Sei V ein euklidischer Raum (= \mathbb{R} -Vektorraum mit einer positiv definiten symmetrischen Bilinearform <,>). Wir betrachten den Endomorphismus $f:V\to V$.

Satz 5.5.4 Sei M die Matrix von f bezüglich einer Orthogonalbasis.

(a) M symmetrisch \Leftrightarrow f symmetrisch, d.h.

$$\forall v, w \in V : < f(v), w > = < v, f(w) >$$
 (5.302)

(b) M orthogonal \Leftrightarrow f orthogonal, d.h.

$$\forall v, w \in V : < v, w > = < f(v), f(w) > \tag{5.303}$$

Satz 5.5.5 Sei M eine reelle symmetrische Matrix.

- (a) Die Eigenwerte von M sind reell.
- (b) Die Eigenvektoren zu unterschiedlichen Eigenwerten sind orthogonal zueinander.

Satz 5.5.6 Spektralsatz (reeller Fall)

- (a) Sei $f: V \to V$ ein symmetrischer Endomorphismus eines euklidischen Raums V. Dann gibt es eine Orthogonalbasis von V aus Eigenvektoren von f zu rellen Eigenwerten.
- (b) Sei M eine relle symmetrische Matrix. Dann gibt es P orthogonal so dass

$$PMP^t = diagonal \ mit \ rellen \ Einträgen$$
 (5.304)

Vorlesung vom 14.05.2012

5.5 Der Spektralsatz

Rückblick: Für jede **hermitesche** Matrix $A \in Mat(n; \mathbb{C})$ (d.h. $A = A^* = A^t$) gibt es eine **unitäre** Matrix $P \in Mat(n; \mathbb{C})$ (d.h. $P^*P = E$), so dass P^*AP ($P^{-1}AP$) **diagonal** ist. Es gibt insbesondere für jede **symmetrische** Matrix $A \in Mat(n; \mathbb{R})$ eine **orthogonale** Matrix $P \in Mat(n; \mathbb{R})$, so dass P^tAP diagonal ist.

Bemerkung Sei $A \in Mat(2; \mathbb{C})$ hermitesch, d.h.

$$A = \begin{pmatrix} \alpha & \beta \\ \overline{\beta} & \delta \end{pmatrix} \text{ mit } \alpha, \delta \in \mathbb{R}, \beta \in \mathbb{C}$$
 (5.305)

Dann hat

$$p_A(t) = t^2 - (\alpha + \delta)t + (\alpha\delta - \beta\overline{\beta})$$
 (5.306)

eine **doppelte** Nullstelle gdw

$$(\alpha + \delta) - 4(\alpha \delta - \beta \overline{\beta}) \tag{5.307}$$

$$= (\alpha + \delta)^2 + 4(\beta \overline{\beta}) \tag{5.308}$$

$$=0 (5.309)$$

Aber $(\alpha - \delta)^2 \ge 0$ und $\beta \overline{\beta} \ge 0$. Also hat $p_A(t)$ eine doppelte Nullstelle gdw $\alpha = \delta$ und $\beta = 0$, d.h.

$$A = \alpha E \, (\alpha \in \mathbb{R}) \tag{5.310}$$

Beispiel Sei

$$A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix} \in Mat(3; \mathbb{R})$$
 (5.311)

Dann ist A symmetrisch und

$$det(tE - A) = \begin{vmatrix} t - 5 & -4 & -2 \\ -4 & t - 5 & -2 \\ -2 & -2 & t - 2 \end{vmatrix}$$
 (5.312)

$$= (t-1)^2(t-10) (5.313)$$

Eigenwerte $1(2\times), 10$

• Eigenwert 1:

$$\begin{pmatrix} -4 & -4 & -2 & -4 & -4 & -2 \\ -2 & -2 & -1 & & \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_3 = -2x_1 - 2x_2$$
 (5.314)

$$Eig(A;1) = Span\left\{ \begin{pmatrix} 1\\0\\-2 \end{pmatrix}, \begin{pmatrix} 0\\1\\-2 \end{pmatrix} \right\}$$
 (5.315)

Beachte, dass

$$\begin{pmatrix} 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \neq 0 \tag{5.316}$$

Mit dem Gram-Schmidtschen Verfahren erhält man

$$u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\0\\-2 \end{pmatrix} \tag{5.317}$$

$$w = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} - \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} u_1 \tag{5.318}$$

$$=\frac{1}{5} \begin{pmatrix} -4\\5\\-2 \end{pmatrix} \tag{5.319}$$

$$u_2 = \frac{1}{3\sqrt{5}} \begin{pmatrix} -4\\5\\-2 \end{pmatrix} \left(\frac{w}{|w|}\right) \tag{5.320}$$

• Eigenwert 10:

$$Eig(A; 10) = Span\{\frac{1}{\sqrt{5}} \begin{pmatrix} 2\\2\\1 \end{pmatrix}\}$$
 (5.321)

Beachte, dass

$$\frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 2 & 1 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = 0 \tag{5.322}$$

$$\frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 2 & 1 \end{pmatrix} \frac{1}{3\sqrt{5}} \begin{pmatrix} -4\\5\\-2 \end{pmatrix} = 0 \tag{5.323}$$

Eigenvektoren zu verschiedenen Eigenwerten einer **hermiteschen** Matrix sind immer **orthogonal**.

Man erhält

$$P^{t}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{pmatrix} \tag{5.324}$$

mit
$$P = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -\frac{4}{3} & 2\\ 0 & \frac{5}{3} & 2\\ -2 & -\frac{2}{3} & 1 \end{pmatrix}$$
 (5.325)

5.6 Kegelschnitte und Quadriken

Abbildung 5.1: Diverse Kegelschnitte (Grafik: www.duden.de)

Ziel: Wir möchten sogenannte "Kegelschnitte" über \mathbb{R}^2 mit Hilfe unserer Resultate für Bilinearformen **beschreiben**.

Beispiel Man beschreibt die "quadratische Form"

$$q(x_1, x_2) = 5x_1^2 - 2x_1x_2 + 5x_2^2 (5.326)$$

durch eine symmetrische Matrix

d.h.

$$q(x_1, x_2) = x^t A x \left(x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) \tag{5.328}$$

Die Lösungsmenge der quadratischen Gleichung

$$q(x_1, x_2) = 4 (5.329)$$

ist ein Kegelschnitt, nämlich eine Ellipse.

Frage: Wie erkennt man die Form¹ eines Kegelschnitts?

¹Ellipse, Hyperbel, Parabel

Ein **Kegelschnitt** ist die Lösungsmenge über \mathbb{R}^2 einer quadratischen Gleichung der Form:

$$\alpha_{11}x_1^2 + 2\alpha_{12}x_1x_2 + \alpha_{22}x_2^2 + \beta_1x_1 + \beta_2x_2 + \gamma = 0$$
(5.330)

Der Anteil dieses Kegelschnitts

$$q(x_1, x_2) = \alpha_{11}x_1^2 + 2\alpha_{12}x_1x_2 + \alpha_{22}x_2^2$$
(5.331)

quadratische Form.

Man schreibt in Matrixnotation

$$x^t A x + B x + \gamma = 0 (5.332)$$

mit
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, A = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{12} & \alpha_{22} \end{pmatrix}, B = \begin{pmatrix} \beta_1 & \beta_2 \end{pmatrix}$$
 (5.333)

Zur Erinnerung (Satz 3.2.3)

Jede **euklidische Bewegung** $f: \mathbb{R}^n \to \mathbb{R}^n$ (eine "abstandstreue" Abbildung) ist die Zusammensetzung eines orthogonalen Endomorphismus und einer Translation, d.h.

$$f(x) = Ax + b \tag{5.334}$$

für ein $A \in O(n; \mathbb{R})$ und $b \in \mathbb{R}^n$

Wir zeigen, dass entweder

$$x^t A x + B x + \gamma = 0 \tag{5.335}$$

einen **entarteten** Kegelschnitt beschreibt, d.h. ein Paar von Geraden, eine Gerade, ein Punkt, oder die leere Menge, **oder** es eine **euklidische Bewegung**

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \tag{5.336}$$

gibt, so dass

$$f(x)^{t}Af(x) + Bf(x) + \gamma = 0$$
 (5.337)

eine der folgenden Typen hat:

(i) Ellipse

$$\lambda y_1^2 + \mu y_2^2 - 1 = 0 \,(\lambda, \mu > 0) \tag{5.338}$$

(ii) Hyperbel

$$\lambda y_1^2 - \mu y_2^2 - 1 = 0 \,(\lambda, \mu > 0) \tag{5.339}$$

(iii) Parabel

$$\lambda y_1^2 - y_2 = 0 \,(\lambda > 0) \tag{5.340}$$

Man braucht zuerst eine **orthogonale** Koordinatentransformation (Drehung, Spiegelung usw.) und eine **Translation**.

Beispiel Betrachte

$$5x_1^2 - 2x_1x_2 + 5x_2^2 - 4 = 0 (5.341)$$

$$x^t A x - 4 = 0 (5.342)$$

$$mit A = \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} \tag{5.343}$$

Man erhält

$$p_A(t) = (t-6)(t-4) (5.344)$$

$$Eig(A;6) = Span\left\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}\right\} \tag{5.345}$$

$$Eig(A;4) = Span\left\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}\right\} \tag{5.346}$$

Also

$$P^t A P = \begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix} \tag{5.347}$$

mit

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \tag{5.348}$$

Man setzt

$$y = P^{t}x \left(P^{t} \text{ orthogonal}\right) \tag{5.349}$$

und erhält

$$x = Py \tag{5.350}$$

$$(Py)^t A(Py) - 4 = 0 (5.351)$$

$$y^{t}(P^{t}AP)y - 4 = 0 (5.352)$$

das heisst

$$6y_1^2 + 4y_2^2 - 4 = 0 (5.353)$$

oder
$$\frac{3}{2}y_1^2 + y_2^2 - 1 = 0$$
 (5.354)

$$\Rightarrow$$
 Ellipse (5.355)

Betrachte nun

$$x^t A x + B x - 4 = 0 (5.356)$$

$$mit B = \begin{pmatrix} -\sqrt{2} & \sqrt{2} \end{pmatrix} \tag{5.357}$$

Man erhält

$$y^{t}(P^{t}AP)y + BPy - 4 = 0 (5.358)$$

das heisst

$$6y_1^2 + 4y_2^2 - 2y_1 - 4 = 0 (5.359)$$

Man setzt

$$z = y + \begin{pmatrix} -\frac{1}{6} \\ 0 \end{pmatrix} \tag{5.360}$$

und erhält

$$6(z_1 + \frac{1}{6}) + 4z_2^2 - 2(z_1 + \frac{1}{6}) - 4 (5.361)$$

$$=6z_1^2 14z_2^2 - \frac{25}{6} = 0 (5.362)$$

d.h.
$$\frac{36}{25}z_1^2 + \frac{24}{25}z_2^2 - 1 = 0$$
 (5.363)

$$\Rightarrow$$
 Ellipse (5.364)

Wir untersuchen nun die allgemeine Gleichung

$$x^t A x + B x + \gamma = 0 (5.365)$$

mit
$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{12} & \alpha_{22} \end{pmatrix}, B = (\beta_1, \beta_2)$$
 (5.366)

Nach dem **Spektralsatz** (5.5.6) gibt es eine **orthogonale** Matrix $P \in Mat(2; \mathbb{R})$. sp dass P^tAP diagonal ist. Man setzt

$$y = P^t x (5.367)$$

und erhält

$$(Py)^t A(Py) + B(Py) + \gamma = 0 (5.368)$$

$$(Py)^{t}A(Py) + B(Py) + \gamma = 0$$

$$y^{t}(\underbrace{P^{t}AP}_{Diag.-Mat.})y + (BP)y + \gamma = 0$$

$$(5.368)$$

$$(5.369)$$

Also nehmen wir jetzt an, dass A diagonal ist, d.h.

$$\alpha_{11}x_1^2 + \alpha_{22}x_2^2 + \beta_1x_1 + \beta_2x_2 + \gamma = 0 (5.370)$$

Wenn $\alpha_{11} \neq 0, \alpha_{22} \neq 0$, setzt man für i = 1, 2:

$$z_i = x_i + \frac{\beta_i}{2\alpha_{ii}} \tag{5.371}$$

und erhält für ein $\gamma' \in \mathbb{R}$

$$\alpha_{11}z_1^2 + \alpha_{22}z_2^2 - \gamma' = 0 (5.372)$$

Ist $\gamma' = 0$, so definiert die Gleichung ein Paar von Geraden oder einen Punkt, d.h. der Kegelschnitt ist **entartet**.

Ist $\gamma' \neq 0$,, erhält man

$$\frac{\alpha_{11}z_1^2}{\gamma'} + \frac{\alpha_{22}z_2^2}{\gamma'} - 1 = 0 (5.373)$$

$$-z_1^2 - z_2^2 - 1 = 0 (5.374)$$

Wenn $\frac{\alpha_{11}}{\gamma'}, \frac{\alpha_{22}}{\gamma'} < 0$, dann ist der Kegelschnitt **leer** und entartet. Für $\frac{\alpha_{11}}{\gamma'}, \frac{\alpha_{22}}{\gamma'} > 0$ erhält man eine **Ellipse**, andernfalls eine **Hyperbel**.

Falls $\alpha_{22}=0, \beta_2\neq 0, \alpha_{11}\neq 0$ definiert man

$$z_1 = x_1 + \frac{\beta_1}{2\alpha_{11}} \tag{5.375}$$

$$z_2 = x_2 + \frac{\gamma + \frac{\beta_1^2}{4\alpha_{11}^2}}{\beta_2} \tag{5.376}$$

und erhält

$$\alpha_{11}z_1^2 + \beta_2 z_2 = 0 (5.377)$$

und dann

$$-\frac{\alpha_{11}}{\beta_2}z_1^2 - z_2 = 0 (5.378)$$

Schliesslich kann man, falls $\frac{-\alpha_{11}}{\beta_1}<0$ durch eine Spiegelung das Vorzeichen ändern. Man erhält eine **Parabel**.

Der Fall $\alpha_{11} = 0, \beta_1 \neq 0, \alpha_{22} \neq 0$ ist sehr ähnlich. Die übrigen Fälle definieren entartete Kegelschnitte (Aufgabe).

Vorlesung vom 18.05.2012

Beispiele

(i) Betrachte

$$x^t A x - 6 = 0 (5.379)$$

mit

$$A = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix} \tag{5.380}$$

d.h.

$$x_1^2 - 4x_1x_2 + 3x_2^2 - 6 = 0 (5.381)$$

Man erhält:

$$p_A(t) = \begin{pmatrix} t - 1 & 2\\ 2 & t - 3 \end{pmatrix} \tag{5.382}$$

$$= (t-1)(t-3) - 4 (5.383)$$

$$= t^2 - 4t - 1 \tag{5.384}$$

$$= (t - (2 + \sqrt{5}))(t - (2 - \sqrt{5}))$$
 (5.385)

$$Eig(A, 2 + \sqrt{5}):$$
 (5.386)

$$= Span\left\{\frac{1}{\sqrt{10 - 2\sqrt{5}}} \begin{pmatrix} 1 - \sqrt{5} \\ 2 \end{pmatrix}\right\} \tag{5.387}$$

$$Eig(A, 2 - \sqrt{5}):$$
 (5.388)

$$= Span\left\{\frac{1}{\sqrt{10 - 2\sqrt{5}}} \begin{pmatrix} 2\\ 1 - \sqrt{5} \end{pmatrix}\right\} \tag{5.389}$$

Also

$$P^{t}AP = \begin{pmatrix} 2 + \sqrt{5} & 0\\ 0 & 2 - \sqrt{5} \end{pmatrix} \tag{5.390}$$

mit

$$P = \frac{1}{\sqrt{10 - 2\sqrt{5}}} \begin{pmatrix} 1 - \sqrt{5} & 2\\ 2 & -1 + \sqrt{5} \end{pmatrix}$$
 (5.391)

Man erhält für $y = P^t x$:

$$(2+\sqrt{5})y_1^2 + (2-\sqrt{5})y_2^2 - 6 = 0 (5.392)$$

$$\frac{2+\sqrt{5}}{6}y_1^2 + \frac{2-\sqrt{5}}{6}y_2^2 - 1 = 0 (5.393)$$

(5.394)

den Kegelschnitt einer Hyperbel.

(ii) Betrachte

$$x^{t}Ax - 4 = 0 \text{ mit } A = \begin{pmatrix} -5 & 1\\ 1 & -5 \end{pmatrix}$$
 (5.395)

Man erhält (siehe oben)

$$P^{t}AP = \begin{pmatrix} -6 & 0\\ 0 & -4 \end{pmatrix} \text{ mit } P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix}$$
 (5.396)

Man setzt $y = P^t x$ und erhält:

$$-6y_1^2 - 4y_2^2 - 4 = 0 (5.397)$$

$$6y_1^2 + 4y_2^2 + 4 = 0 (5.398)$$

entartet.

Betrachte nun

$$x^{t}Ax + Bx - 4 = 0 \text{ mit } A = \begin{pmatrix} -5 & 1\\ 1 & -5 \end{pmatrix}, B = \begin{pmatrix} 12 & -12 \end{pmatrix}$$
 (5.399)

Man erhält für $\leq P^t x$

$$-6y_1^2 + 4y_2^2 + 12\sqrt{2}y_1 - 4 = 0 (5.400)$$

und dann für

$$z_1 = y_1 + \frac{12\sqrt{2}}{-6 \cdot 2} = y_1 - \sqrt{2} \tag{5.401}$$

$$z_2 = y_2 (5.402)$$

$$-6(z_1 + \sqrt{2})^2 + 4z_2^2 + 12\sqrt{2}(z_1 + \sqrt{2}) - 4 = 0$$
 (5.403)

$$-6z_1^2 - 4z_2^2 + 8 = 0 (5.404)$$

d.h. eine Ellipse.

$$\frac{3z_1^2}{2} + \frac{1}{2}z_2^2 - 1 = 0 (5.405)$$

Eine Quadrik ist die Lösungsmenge über \mathbb{R}^n einer quadratischen Gleichung der Form

$$\sum_{i=1}^{n} \alpha_{ii} x_i^2 + \sum_{1 \le i, j \le n}^{n} 2\alpha_{ij} x_i x_j + \sum_{i=1}^{n} \beta_i x^i + y = 0$$
 (5.406)

oder in Matrixform:

$$x^t A x + B x + \gamma = 0 (5.407)$$

mit
$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{12} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \alpha_{1n} & \cdots & \cdots & \alpha_{nn} \end{pmatrix}, B = \begin{pmatrix} \beta_1 & \cdots & \beta_n \end{pmatrix}$$
 (5.408)

Nach einer geeigneten orthogonalen Transfomration P wird die Quadrik durch eine Gleichung

$$y^{t}(P^{t}AP)y + BPy + Y = 0 (5.409)$$

beschrieben, wobei P^tAP diagonal ist.

Durch Translationen eliminiert man die Terme $\beta_i x_i$. In \mathbb{R}^3 ist eine Quadrik entweder **entartet** oder es gibt eine euklidische Bewegung $f: \mathbb{R}^3 \to \mathbb{R}^3$, so dass

$$f(x)^{t}Af(x) + Bf(x) + \gamma = 0$$
 (5.410)

eine der folgenden Typen hat:

- (i) Ellipsoide: $\alpha_{11}x_1^2 + \alpha_{22}x_2^2 + \alpha_{33}x_3^2 1 = 0$
- (ii) **Einschalige Hyperboloide**: $\alpha_{11}x_1^2 + \alpha_{22}x_2^2 \alpha_{33}x_3^2 1 = 0$
- (iii) **Zweischalige Hyperboloide**: $\alpha_{11}x_1^2 \alpha_{22}x_2^2 \alpha_{33}x_3^2 1 = 0$
- (iv) Elliptische Paraboloide: $\alpha_{11}x_1^2 + \alpha_{22}x_2^2 x_3 1 = 0$
- (v) Hyperbolische Paraboloide: $\alpha_{11}x_1^2 \alpha_{22}x_2^2 x_3 1 = 0$

wobei $\alpha_{11}, \alpha_{22}, \alpha_{33} > 0$ sind.

Beispiel

$$5x_1^2 + 5x_2^2 + 2x_3^2 + 8x_1x_2 + 4x_1x_3 + 4x_2x_3 + x_1 - 2x_3 - 1 = 0 (5.411)$$

$$x^{t}Ax + Bx - 1 = 0 \text{ mit } A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & -2 \end{pmatrix}$$
 (5.412)

Dann (siehe oben)

$$P^{t}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{pmatrix} \text{ mit } P = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -\frac{4}{3} & 2 \\ 0 & \frac{5}{3} & 2 \\ -2 & -\frac{2}{3} & 1 \end{pmatrix}$$
 (5.413)

Man erhält für $y = P^t x$

$$y_1^2 y_2^2 + y_3^2 + \sqrt{5}y_1 - 1 = 0 (5.414)$$

und dann gilt für

$$z_1 = y_1 + \frac{\sqrt{5}}{2}.z_2 = y_2, z_3 = y_3 \tag{5.415}$$

$$z_1^2 + z_2^2 + 10z_3^2 - \frac{9}{4} = 0 (5.416)$$

oder

$$\frac{4}{9}z_1^2 + \frac{4}{9}z_2^2 + \frac{40}{9}z_3^2 - 1 = 0 (5.417)$$

 \rightarrow Ellipsoid.

Bemerkung Man kann oft den Typ einer Quadrik ohne komplizierte Berechnungen bestimmen.

Beispiel: Für einen nicht entarteten Kegelschnitt, beschrieben durch

$$x^t A x + B x + \gamma = 0 ag{5.418}$$

erhält man

- eine Ellipse gdw. det A > 0
- eine **Hyperbel** gdw. det A < 0
- eine **Parabel** gdw. det A = 0

Zudem kann mit Koordinatenwechsel evtl. nicht orthogonal bestimmt werden, ob ein Kegelschnitt entartet ist.

5.7 Der Spektralsatz für normale Endomorphismen

Zur Erinnerung: Für jede hermitesche Matrix $A \in Mat(n; \mathbb{C}), (A = A^*)$ gibt es eine unitäre Matrix P, so dass P^*AP diagonal ist.

Frage: Welche (anderen) Matrizen haben diese Eigenschaft? Eine Matrix $A \in Mat(n; \mathbb{C})$ heisst **normal**, wenn A und A^* vertauschbar sind, d.h. $A^*A = AA^*$.

Bemerkung Jede hermitesche Matrix $A \in Mat(n; \mathbb{C})$ ist normal.

$$AA^* = A^2 = A^*A \tag{5.419}$$

auch jede schiefsymmetrische Matrix $(A^* = -A)$

$$AA^* = -A^2 = A^*A \tag{5.420}$$

und jede unitäre Matrix

$$AA^* = E = A^*A (5.421)$$

Es gibt auch andere Beispiele, z.B.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, AA^* = A^*A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 (5.422)

Lemma 5.7.1 Sei $P \in Mat(n;\mathbb{C})$ unitär. Dann ist $A \in Mat(n;\mathbb{C})$ normal gdw. P^*AP^* normal ist

Beweis

" \Rightarrow " $A \leftarrow Mat(n; \mathbb{C})$ unitär.

$$\Rightarrow AA^* = A^*A \tag{5.423}$$

$$\Rightarrow (P^*AP)(P^*AP)^* \tag{5.424}$$

$$= (P^*AP)(P^*A^*P) \tag{5.425}$$

$$= P^*AA^*P \tag{5.426}$$

$$= P^*A^*P = (P^*AP)^*(P^*AP)$$
 (5.427)

" \Leftarrow " P*AP normal.

$$\Rightarrow P^{**}P^*AP^*P^*$$
 ist normal (nach " \Rightarrow ") (5.428)

$$\Rightarrow A \text{ ist normal}$$
 (5.429)

Ein Endomorphismus $f:V\to V$ eines **hermiteschen Raumes** V (endlich-dimensional über $\mathbb C$ mit einer positiv definiten hermiteschen Form) heisst **normal**, wenn die zugehörige Matrix bezüglich einer (und damit jeder) Orthonormalbasis normal ist.

Satz 5.7.2 $A \in Mat(n; \mathbb{C})$ ist normal qdw. es ein unitäre Matrix $P \in Mat(n; \mathbb{C})$ gibt, so dass P^*AP diagonal ist.

Beweis

" \Rightarrow " Jede **Diagonalmatrix** ist normal. Also ist P^*AP^* diagonal, dann ist A nach Lemma 5.7.1 auch normal.

" \Leftarrow " Sei $A \in Mat(n; \mathbb{C})$ normal. Man wählt einen Eigenvektor v = v, und normiert ihn auf Länge 1, so dass $\langle v, v \rangle = 1$ gilt.

Dann ergänzt man (v_1) zu einer Orthonormalbasis von \mathbb{C}^n . Man erhält ein unitäres $P \in Mat(n; \mathbb{C})$ und $B \in Mat(n-1; \mathbb{C})$, so dass

$$P^*AP = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}$$
 und (5.430)

$$P^*AP = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ 0 & & & \\ \vdots & & B \end{pmatrix} \text{ und}$$

$$(5.430)$$

$$(P^*AP)^* = \begin{pmatrix} \overline{\alpha_{11}} & 0 & \cdots & 0 \\ \overline{\alpha_{12}} & & & \\ \vdots & & B^* \end{pmatrix}$$

$$(5.431)$$

 P^*AP ist **normal** (Lemma 5.7.1) und deshalb sind die oberen linken Einträge von $(P^*AP)(P^*AP)^*$ und $(P^*AP)^*(P^*AP)$ gleich das heisst

$$\alpha_{11}\overline{\alpha_{11}} = \alpha_{11}\overline{\alpha_{11}} + \alpha_{12}\overline{\alpha_{12}} + \dots + \alpha_{1n}\overline{\alpha_{1n}}$$
 (5.432)

Daraus folgt

$$\alpha_{12}\overline{\alpha_{12}} + \dots + \alpha_{1n}\overline{\alpha_{1n}} = 0 \tag{5.433}$$

und (da $\alpha_{1i}\overline{\alpha_{1i}} \in \mathbb{R}$ und ≥ 0)

$$\alpha_{12} = \alpha_{13} = \dots = \alpha_{1n} = 0 \tag{5.434}$$

d.h.

$$P^*AP = \begin{pmatrix} \alpha_{11} & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}$$
 (5.435)

B ist auch normal und die Behauptung folgt durch Induktion nach n.

Beispiel

$$A = \begin{pmatrix} 3 & 2 \\ -2 & 3 \end{pmatrix} \tag{5.436}$$

ist normal.

$$det(tE - A) = \begin{vmatrix} t - 3 & -2 \\ 2 & t - 3 \end{vmatrix}$$
 (5.437)

$$= (t-3)^2 + 4 \tag{5.438}$$

$$= (t - (3+2i))(t - (3-2i))$$
(5.439)

Eigenwerte: 3 + 2i, 3 - 2i.

$$Eig(A; 3+2i) = Span\left\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}\right\}$$
 (5.440)

$$Eig(A; 3-2i) = Span\left\{\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -i \end{pmatrix}\right\}$$
 (5.441)

$$P^*AP = \begin{pmatrix} 3+2i & 0\\ 0 & 3-2i \end{pmatrix} \text{ mit } P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ i & -i \end{pmatrix} \text{ unitär}$$
 (5.442)

Korollar 5.7.3 Jede konjugierte Klasse in der unitären Gruppe enthält eine Diagonalmatrix, dass heisst für eine unitäre Matrix $P \in Mat(n; \mathbb{C})$ existiert Q unitär, so dass Q^*PQ unitär und diagonal ist.

Beispiel

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \text{ ist unitär}$$
 (5.443)

Man erhält

$$Q^*PQ = \frac{1}{\sqrt{2}} \begin{pmatrix} 1+i & 0\\ 0 & 1-i \end{pmatrix}$$
 (5.444)

unitär mit

$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \tag{5.445}$$

Vorlesung vom 21.05.2012

5.8 Andere Darstellungen

Alternierende und schiefsymmetrische Bilinearformen

Eine Bilinearform <,> auf einem Vektorraum über V heisst **alternierend**, wenn $\forall v \in V$ gilt:

$$\langle v, v \rangle = 0 \tag{5.446}$$

Daraus folgt, dass $\forall v, w \in V$ gilt:

$$0 = \langle v + w, v + w \rangle = \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle \tag{5.447}$$

$$= \langle v, w \rangle + \langle w, v \rangle$$
 (5.448)

und deshalb

$$< v, w > = - < w, v >$$
 (5.449)

d.h. <, > ist schiefsymmetrisch.

Ist $1+1\neq 0$ in Km dann gilt auch die andere Richtung:

$$<,>$$
 ist schiefsymmetrisch $\Rightarrow \forall v \in V : < v, v > = - < v, v >$ (5.450)

$$\Rightarrow (1+1) < v, v >= 0 \tag{5.451}$$

$$\Rightarrow \langle v, v \rangle = 0 \tag{5.452}$$

d.h. <, > ist alternierend.

Eine Matrix

$$A = (\alpha_{ij}) \in Mat(n; K) \tag{5.453}$$

von einer alternierenden Bilinearform <,> bezüglich einer Basis auf einem endlich-dimensionalen Vektorraum V über K hat die Eigenschaft

$$\alpha_{ij} = \begin{cases} -\alpha_{ji} & \text{wenn } i \neq j \\ 0 & \text{wenn } i = j \end{cases}$$
 (5.454)

und deshalb auch

$$A^t = -A (5.455)$$

d.h. A ist schiefsymmetrisch.

Wenn $1+1\neq 0$ und $A^t=-A$, dann hat A auch diese Eigenschaft, aber für $1+1\neq 0$ gilt diese Richtung nicht. Zum Beispiel:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^t = -\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \tag{5.456}$$

Jede reelle schiefsymmetrische Matrix $A \in Mat(n; \mathbb{R})$ ist **normal**, also

$$AA^* = AA^t = -A^2 = A^t A = A^* A (5.457)$$

und deshalb nach dem Spektralsatz unitär diagonalisierbar über \mathbb{R} . Beispiel:

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in Mat(2; \mathbb{R}) \tag{5.458}$$

$$P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ mit } P = \frac{1}{\sqrt{2}} \begin{pmatrix} i & i \\ -1 & 1 \end{pmatrix}$$
 (5.459)

Beachte nun, dass wenn $A \in Mat(n; \mathbb{C})$ schiefsymetrisch ist und $1 + 1 \neq 0 \in K$, gilt:

$$A \text{ invertierbar } \Rightarrow n \text{ gerade}$$
 (5.460)

$$(\det A \neq 0) \tag{5.461}$$

$$n \text{ ungerade } \Rightarrow \det A = \det(-A^t)$$
 (5.462)

$$= det(-A) \tag{5.463}$$

$$= (-1)^n \det A \tag{5.464}$$

$$= -\det A \tag{5.465}$$

$$\Rightarrow (1+1)\det A = 0 \tag{5.466}$$

$$\Rightarrow \det A = 0 \tag{5.467}$$

Beachte auch, dass

A invertierbar und schiefsymmetrisch
$$\Rightarrow (A^{-1})^t = (A^t)^{-1}$$
 (5.468)

$$= -A^{-1} \text{ (d.h. } A^{-1} \text{ schiefsymmetrisch)}$$
 (5.469)

Satz 5.8.1 (a) Sei V ein Vektorraum der Dimension n über K, und sei <,> eine nicht-entartete alternierende Bilinearform auf V. Dann ist n eine gerade Zahl, und es gibt eine Basis von V bezüglich der die Matrix von <,> die folgende Form hat:

$$J_{2m} = \begin{pmatrix} 0m & Em \\ -Em & 0m \end{pmatrix} \text{ mit } m = \frac{n}{2}$$
 (5.470)

(b) Sei $A \in Mat(n; \mathbb{C})$ invertierbar und alternierend. Dann ist n gerade und es gibt ein invertierbares Produkt $P \in Mat(n; K)$ so dass $P^tAP = J_{2m}$ mit $m = \frac{n}{2}$.

Beweis Man zeigt:

- <, > ist nicht-entartet gdw. eine zugehörige Matrix bezüglich einer Basis invertierbar ist.
- $V = W \oplus W^{\perp}$, wenn <, > auf einem Unterraum W von V nicht-entartet ist.
- Wenn <, > nicht identisch Null ist, dann gibt es einen Unterraum W, so dass <, > auf W bezüglich einer geeigneten Basis durch die Matrix

$$\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \tag{5.471}$$

beschrieben ist.

Bemerkung Ein Vektorraum mit einer nicht-entarteten alternierenden Bilinearform heisst symplektrischer Raum.