High Dynamic Range Imaging

Semih Dinc Ogulcan Seyran

Fachbereich Computerwissenschaften Universität Salzburg

Übersicht

- Allgemein
- 2 Anwendungsgebiete
- Opposition of the state of t
- 4 Dynamikkompression
- 6 HDR Endgeräte
- 6 Methoden
- Formate

Allgemein

Allgemein

- Erzeugen von Bildern mit hohem Dynamikumfang
- Mehrere Methoden zur Erzeugung
- High Dynamic Range (HDR): Bilder mit hohem Dynamikumfang
- Standard Dynamic Range (SDR): Herkömmliche Bilder
- Low Dynamic Range (LDR): Bilder mit niedrigem Dynamikumfang

www.media.macphun.com

Anwendungsgebiete

Anwendungsgebiete

Computergrafiken

Berechnen von kontrastreichen 3D Szenen

Digitalfotografie

Detailreiche / Realitätsnahe Fotos

Virtuelle Realität

Anpassung an virtuelle Umgebung und individuelle Komprimierung

Überwachungssysteme

Extreme Lichtverhältnisse

Maschinelles Sehen

Erfassen von Bilddetails für maschinelle Verarbeitung

Medizin

Kleine Bildsensoren und geringe Helligkeit

Architektur

Abbild von Lichtverteilungen in Szenen

Dynamikumfang

Dynamikumfang

- Verhältnis zwischen der hellsten und dunkelsten Stelle
- Je größer der Dynamikumfang desto mehr Helligkeitsabstufungen sind verfügbar
- Niedriger Dynamikumfang sorgt f
 ür detailarme Bilder
- Begrenzter Dynamikumfang in Kameras
- Menschliches Auge um vielfaches h\u00f6heren Dynamikumfang
- Informationsverlust bei dunklen und hellen Stellen
- Lichtstopps bestimmen Dynamikumfang

www.littleowlpictures.de

Lichtstopp

Besagt wieviel Licht durchkommt

- +1 F-Stop halbiert die Menge an Licht -1 F-Stop verdoppelt die Menge an Licht
- Dynamikumfang berechnen

f/4

 $2^4 = 16$

Dynamikumfang 1: 16

www.en.wikipedia.org/wiki/User:Cbuckley

Kamera

f/17 -1 : 130 000

Menschliches Auge

+ f/20 - 1 : 1 000 000

Vergleich

Niedriger Dynamikumfang

Informationsverlust und Verfälschung von Farben in zu hellen und dunklen Bereichen

www.ai.googleblog.com

Hoher Dynamikumfang

Informationen erhalten, Strukturen erkennbar, Farben realitätsnahe dargestellt

www.ai.googleblog.com

Dynamikkompression

Dynamikkompression

- Komprimierung des
 Dynamikumfangs um HDR
 Inhalte auf herkömmlichen
 Endgeräten darzustellen
- Helligkeitsbereich vom Bild muss so komprimiert werden, dass es in den Helligkeitsbereich des Endgeräts passt
- Großes Spektrum an Kontrast und Dynamik geht verloren
- Mit guter Kompression sehen HDR Inhalte auch auf SDR Bildschirmen gut aus

www.redwav3d.com

Dynamikkompression bei Endgeräten

HDR Endgeräte

Allgemein

- In der Lage viel höhere Dynamikbereiche zu repräsentieren
- Um ein vielfaches hellere Darstellung (Nits)
- Je heller der Bildschirm desto mehr Dynamik kann er wiedergeben

Darstellungsspektrum

Methoden

HDR Kamera

- Leistungsfähige Sensoren
- Einsatz unter extremen Lichtbedingungen
- Nutzung spezieller Verfahren und Algorithmen

HDRC (High Dynamic Range CMOS)

Weiterentwicklung des CMOS Sensor Ähnelt Empfindlichkeit des menschlichen Auges

Belichtungsreihen

- Erstellen von mehreren Bildern mit unterschiedlichen Belichtungsstufen
- Zusammenfügen automatisch in Kamera oder nachträglich in Software

www.traumflieger.de

Software

Belichtungsreihen zusammenfügen in Software

- Gratis Software verfügbar
- Automatische Zusammenführung von Belichtungsreihen
- Farbeinstellungen
- Dynamikkompresion möglich
- Beispiel anhand easyHDR

Beispiel Belichtungsreihe

Unterbelichtet

www.hdrsoft.com

Normal belichtet

www.hdrsoft.com

Überbelichtet

www.hdrsoft.com

Resultat

Normal Belichtet

www.hdrsoft.com

Resultat (HDR)

www.hdrsoft.com

HDR Rendering

- Rendering unter Berücksichtigung der in der Natur vorkommenden großen Helligkeitsschwankungen
- Darstellung starker Kontraste ohne übermäßigen Detailverlust

Image-Based Lighting

Szene wird von einem HDR-Bild umhüllt und beleuchtet.

Sieht so aus als wären die Künstlichen Objekte in einer natürlichen Umgebung.

www.flickr.com : Miles Bader

Formate

Verlustbehaftete und Verlustfreie Kompression

Verlustbehaftete Kompression

- Meist f
 ür Video Material
- Wiederhergestelltes Bild ist eine ähnliche Wiedergabe des Originales, aber kein Duplikat
- Komprimiert eher die Bereiche, die vom menschlichen Auge schlechter wahrgenommen werden

Verlustfreie Kompression

- Wiederherstellung aller vorhandenen Daten vom Originalbild
- Eignet sich für Bilder, die große Mengen an wiederholt enthaltenen Informationen beinhaltet
- z.B.: Blauer Himmel
- Bekannte Verfahren z.B.: Huffman-Kodierung

Verbreitete Formate

Unterscheiden sich Hauptsächlich in Kodierung, Kompression und Farbund Helligkeitswerten Derzeit gibt es zwei große HDR-Formate in der Medienbranche

HDR10

- standartisiertes Format
- Farbtiefe 10 Bit
- Farb- und Helligkeitswerte in einem vordefinierten Bereich

Dolby-Vision

- Farbtiefe 12 Bit, abwärtskompatibel
- Farb- und Helligkeitswerte basierend auf das jeweilige Profil des Gerätes

Quellenverzeichnis I

In 2013 International Conference on Communication Systems and Network Technologies, pages 83–89, 2013.

Harold Davis.

Creating HDR Photos: The Complete Guide to High Dynamic Range Photography.

Amphoto Books, Danvers, MA, USA, 2012.

Michael Goesele, Wolfgang Heidrich, Bernd Höfflinger, Grzegorz Krawczyk, Karol Myszkowski, and Matthew Trentacoste. High dynamic range techniques in graphics: from acquisition to display.

In Ming Lin and Celine Loscos, editors, *Eurographics 2005 - Tutorials*. The Eurographics Association, 2005.

Quellenverzeichnis II

- Zhai Jiefu, Wang Zhe, and Zhang Dong-Qing.

 High dynamic range (hdr) image synthesis with user input, year=2011, publisher=Google Patents, note=US 2012/0288217 A1,.
 - Zhigang Li.
 Characteristics of Buoyancy Driven Natural Ventilation through
 Horizontal Openings: PhD Thesis definded public at Aalborg
 University (101106).
 PhD thesis, Denmark, 2007.
- Wolfgang Stuerzlinger Helge Seetzen Lorne Whitehead, Greg Ward. High dynamic range (hdr) image synthesis with user input, 2005.

Quellenverzeichnis III

- Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul Debevec.

 High Dynamic Range Imaging: Acquisition, Display, and Image-Based

 Lighting (The Morgan Kaufmann Series in Computer Graphics).

 Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.
- Markus Strobel and Dietmar Döttling.
 High dynamic range cmos (hdrc) imagers for safety systems.

 Advanced Optical Technologies, 2(2):147–157, 2013.
- J. Willis-Richards and T. Wallroth.
 Approaches to the modelling of hdr reservoirs: A review.

 Geothermics, 24(3):307–332, 1995.
 - Edward Zhang.

 Realistically Editing Indoor Scenes.

 PhD thesis, 2021.