教材习题解答

第一章

常用逻辑用语

§ 1 命题

【练习(第5页)】

1. (1) 逆命题: "若 x = 0,则 $xy = 0(x, y \in \mathbb{R})$ ";

否命题:"若 $xy \neq 0$,则 $x \neq 0$ ($x,y \in \mathbf{R}$)";

逆否命题:"若 $x \neq 0$,则 $xy \neq 0$ ($x,y \in \mathbf{R}$)"

逆命题、否命题是真命题,逆否命题是假命题。

(2) 逆命题: "若 $a^2 = ab$,则 a = b";

否命题:"若 $a \neq b$,则 $a^2 \neq ab$ ";

逆否命题:"若 $a^2 \neq ab$,则 $a \neq b$ "。

逆命题、否命题是假命题,逆否命题是真命题。

(3) 逆命题: "若方程 $x^2 + x - q = 0$ 有实数解,则 $q \ge -\frac{1}{4}$ ";

否命题:"若 $q < -\frac{1}{4}$,则方程 $x^2 + x - q = 0$ 没有实数解";

逆否命题:"若方程 $x^2 + x - q = 0$ 没有实数解,则 $q < -\frac{1}{4}$ "。

逆命题、否命题是真命题,逆否命题也是真命题。

(4)逆命题:"若一个数的平方是正数,则这个数是负数"; 否命题:"若一个数不是负数,则这个数的平方不是正数"; 逆否命题:"若一个数的平方不是正数,则这个数不是负数"。 逆命题、否命题是假命题,逆否命题是真命题。

(5) 逆命题: "若一个四边形的四条边相等,则这个四边形是正方形"; 否命题: "若一个四边形不是正方形,则这个四边形的四条边不相等"; 逆否命题: "若一个四边形的四条边不相等,则这个四边形不是正方形"。 逆命题、否命题是假命题,逆否命题是真命题。

2. 逆命题: "若 a + c < b + c,则 a < b"; 否命题: "若 $a \ge b$,则 $a + c \ge b + c$ ";

逆否命题:"若 $a+c \ge b+c$,则 $a \ge b$ "

原命题、逆命题、否命题、逆否命题都是真命题。

【习题1-1(第5页)】

1. (1) 逆命题: "若 a 是无理数,则 a -2 是无理数"; 否命题: "若 a -2 不是无理数,则 a 不是无理数";

逆否命题:"若 a 不是无理数,则 a-2 不是无理数"。

逆命题、否命题、逆否命题都是真命题。

(2)逆命题:"若一个四边形的两条对角线相等,则这个四边形是矩形";

否命题:"若一个四边形不是矩形,则这个四边形的两条对角线不相等";

逆否命题:"若一个四边形的两条对角线不相等,则这个四边形不是矩形"。

逆命题、否命题是假命题,逆否命题是真命题。

- 2. (1) 真命题。(2) 假命题。
- 3. 逆命题:"若 $a \neq b$,则 a > b",假命题。
- 4. 否命题:"若一个四边形不是正方形,则这个四边形不是平行四边形"; 逆否命题:"若一个四边形不是平行四边形,则这个四边形不是正方 形"。

否命题是假命题,逆否命题是真命题。

§2 充分条件与必要条件

【练习(第8页)】

- 1. (1) 充分不必要 (2) 必要不充分 (3) 充要 (4) 充分不必要 (5) 必要不充分
- 2. 略。

【练习(第9页)】

(1)必要不充分 (2)充要 (3)充要 (4)充要 (5)充分不必要

【习题1-2(第10页)】

- 1. (1) 充分不必要 (2) 充分不必要 (3) 既不充分也不必要 (4) 充 要 (5) 充要 (6) 必要不充分 (7) 充分不必要
 - (8)必要不充分 (9)充分不必要 (10)必要不充分
- 2. (1) 正确 (2) 正确 (3) 正确
- 3. (1) *a* < −1(答案不唯一) (2)∃平面 γ,使 γ ⊥α,γ ⊥β (3) *b* ≥ 0 4. № .

§3 全称量词与存在量词

【练习(第12页)】

- (2)是全称命题。含有全称量词"每一个"。
- (3)是特称命题。含有存在量词"有一个"。
- (4)是全称命题。省略了全称量词"所有的",意思为:"所有的末位数字是0或5的整数,都能被5整除。"
- (5)是全称命题。省略了全称量词"所有的",意思为:"所有的棱柱都是多而体。"
- (6)是全称命题。含有全称量词"所有的"。

【练习(第14页)】

- (1)命题的否定为:"三个数 -3,2.5,√2都是自然数"。
- (2)命题的否定为:"存在实数 x_0 ,使得 $2x_0+4<0$ "。

【习题1-3(第14页)】

- 1. (1)全称命题。因为含有全称量词"一切"。
 - (2)特称命题。因为含有存在量词"有些"。
 - (3)全称命题。省略了全称量词"所有的",原意为:"所有的菱形都 是正方形。"
 - (4)全称命题。因为含有全称量词"任何"。
 - (5)特称命题。因为含有存在量词"至少有一个"。
 - (6)特称命题。因为含有存在量词"存在"。
- 2. (3) 假命题。因为只有内角为直角的菱形才是正方形。 其否定为:"有些菱形不是正方形"。
 - (6) 是假命题。因为 $x^2 + 2x + 2 = (x+1)^2 + 1 > 0$, 所以不存在实数 x, 使得 $x^2 + 2x + 2 \le 0$ 。

其否定为:"对任何实数 x,都有 $x^2 + 2x + 2 > 0$ "。

3.(1)原命题:二次方程都有实数解。

逆命题:有实数解的方程都是二次方程。

否命题:非二次方程没有实数解。

逆否命题:没有实数解的方程都不是二次方程。

- (2)上述命题均为假命题。
- (3)原命题的否定:存在一个二次方程,它没有实数解。

逆命题的否定:存在一个有实数解的方程,不是二次方程。

否命题的否定:存在一个非二次方程,该方程有实数解。

逆否命题的否定:存在一个没有实数解的方程,该方程是二次方程。

- 4. (1)全称命题。其否定为:"我们班至少有一个同学的身高不超过 1.85 m。"
 - (2)全称命题。其否定为:"我们组至少有一个女生。"
 - (3)特称命题。其否定为:"学生会中高二年级的学生一个也没有。"
- 5. 略。

§4 逻辑联结词"且""或""非"

【练习(第17页)】

日常生活中有很多和逻辑联结词有关的命题,如:

- (1)"小刚的数学和英语成绩都很好"就是一个"p且q"形式的命题。
- (2)"这些文学作品或者艺术上有缺点,或者政治上有错误"就是一个"p或q"形式的命题。

【习题1-4(第18页)】

- 1.(1)且 (2)或 (3)且
- 2. (1) "p 或 q"形式的命题: "24 是 8 的倍数或 24 是 6 的倍数", 真命题; "p 且 q"形式的命题: "24 是 8 的倍数且 24 是 6 的倍数", 真命题; "p p"形式的命题: "24 不是 8 的倍数". 假命题。
- (2) "p 或 q"形式的命题: "矩形的对角线相等或互相平分", 真命题; "p 且 q"形式的命题: "矩形的对角线相等且互相平分", 真命题; "非 p"形式的命题: "矩形的对角线不相等", 假命题。
- (3)"p 或 q"形式的命题:"正方形的四条边相等或四个角相等",真命题;"p 且 q"形式的命题:"正方形的四条边相等且四个角相等",真命题;"非 p"形式的命题:"正方形的四条边不相等",假命题。
- (4)"p 或 q"形式的命题:" π 是无理数或 π 是有理数",真命题;"p 且 q"形式的命题:" π 是无理数且 π 是有理数",假命题;"# p"形式的命题:"# 不是无理数",假命题。

【复习题一(A组)(第21页)】

- 1. (1) 充分不必要条件 (2) 必要不充分条件 (3) 充要条件 (4) 必要不充分条件
- 2. A 3. C 4. B
- 5. "a,b 都不等于0"的必要条件是(2); "a,b 都等于0"的充要条件是(5)(6)。
- 6. (1)的否定:1 994 和 2 000 不都是 5 的倍数;
 - (2)的否定:存在一个整数,不是奇数;
 - (3)的否定:没有实数 a,能使 $a^2 + 1 = 0$ 成立;
 - (4)的否定:存在一个不是等差数列的数列;
 - (5)的否定:存在一个没有一项为"1"的数列;
 - (6)的否定:存在一个有理数不是实数。
- 7. "且"命题: " $\sqrt{2}$ 属于集合 \mathbb{Q} , 也属于集合 \mathbb{R} "。

此命题是"p且q"的形式,其中p:" $\sqrt{2}$ 属于集合 \mathbf{Q} ",q:" $\sqrt{2}$ 属于集合 \mathbf{R} ",因为p为假命题,q为真命题,所以 $p \land q$ 是假命题,故原命题是假命题。

"或"命题:"1 是偶数或奇数"。

此命题是"p 或 q"的形式,其中p:"1 是偶数",q:"1 是奇数",因为p 为假命题,q 为真命题,所以 $p \lor q$ 是真命题,故原命题是真命题。

"非"命题: "不等式 $(x+2)^2 \le 0$ 没有实数解"。此命题为"¬p"的形式,其中p: "不等式 $(x+2)^2 \le 0$ 有实数解",因为 x = -2 是该不等式的一个解,所以p 是真命题,即¬p 是假命题,所以原命题是假命题。

【复习题一(B组)(第21页)】

1. "充分性"证明:

 $\therefore a+b+c=0, \therefore c=-a-b_{\circ}$

则方程 $ax^2 + bx + c = 0$,即为 $ax^2 + bx - a - b = 0$ 。

化简,得: $a(x^2-1)+b(x-1)=0$,

 $\mathbb{R}[x] : (x-1)(ax+a+b) = 0_{\circ}$

所以,方程 $ax^2 + bx + c = 0$ 有一解为 1。

"必要性"证明:

x = 1 是方程 $ax^2 + bx + c = 0$ 的一个解,

 $\therefore a \cdot 1^2 + b \cdot 1 + c = 0, \therefore a + b + c = 0_{\circ}$

综上所述,"关于 x 的方程 $ax^2 + bx + c = 0$ 有一解为 1"的充要条件是 "a + b + c = 0"。

逆命题:"若 a + b 是偶数,则 a,b 都是偶数"。为假命题。
 否命题:"若 a,b 不都是偶数,则 a + b 不是偶数"。为假命题。
 逆否命题:"若 a + b 不是偶数,则 a,b 不都是偶数"。为真命题。

第二章

空间向量与立体几何

§1 从平面向量到空间向量

【练习(第27页)】

- 1. (1) 相等的向量要求方向相同,模的大小相同,如: $\overrightarrow{BB'}$, $\overrightarrow{CC'}$, $\overrightarrow{DD'}$ 。
 - (2)相反的向量要求方向相反,模的大小相同,如: $\overrightarrow{B'B}$, $\overrightarrow{C'C}$, $\overrightarrow{D'D}$, $\overrightarrow{A'A}$.
 - (3)平行的向量要求方向相同或相反,如: \overrightarrow{AC} , $\overrightarrow{A'C'}$, \overrightarrow{CA} , $\overrightarrow{C'A'}$, \overrightarrow{EA} , \overrightarrow{EC} , \overrightarrow{CE} 。

- 2. (1):: *AA*′⊥平面 *ABCD*, ∴ 以向量*AA*′为法向量的一个平 面为平面 *ABCD*。
- (2)连接 *B'D*, ∵ *B'D*⊥平面 *ACD'*, ∴ 平面 *ACD'*的一个法向量为*B'D*。 【习题 2 -1(A 组)(第 27 页)】
- 1. 平面的法向量与平面中任意一个向量的夹角为90°。
- 2. (1) $\mbox{th}: \overrightarrow{BC}, \overrightarrow{B'C'}, \overrightarrow{A'D'}$
 - (2)如: \overrightarrow{CB} , $\overrightarrow{C'B'}$, $\overrightarrow{D'A'}$, \overrightarrow{DA}
 - $(3) \ \ \ \ \ \ \overrightarrow{A'B}, \overrightarrow{D'C}, \overrightarrow{BA'}, \overrightarrow{CD'}, \overrightarrow{FE}_{\circ}$
- 3. 只要与直线平行的向量即为它的一个方向向量,则直线 AD 的一个方向向量为 \overrightarrow{AD} ,直线 BC 的一个方向向量为 \overrightarrow{BC} ,直线 B'C'的一个方向向量为 $\overrightarrow{B'C'}$ 。
- 4. 平面 ABCD 的法向量可以是 $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, $\overrightarrow{CC'}$, $\overrightarrow{DD'}$, 或 $\overrightarrow{A'A}$, $\overrightarrow{B'B}$, $\overrightarrow{C'C}$. $\overrightarrow{D'D}$.

平面 A'B'C'D'的法向量可以是 $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, $\overrightarrow{CC'}$, $\overrightarrow{DD'}$, 或 $\overrightarrow{A'A}$, $\overrightarrow{B'B}$, $\overrightarrow{C'C}$, $\overrightarrow{D'D}$.

平面 A'B'BA 的法向量可以是 $\overrightarrow{A'D'}$, $\overrightarrow{B'C'}$, \overrightarrow{AD} , \overrightarrow{BC} , 或 $\overrightarrow{D'A'}$, $\overrightarrow{C'B'}$, \overrightarrow{DA} , \overrightarrow{CB} .

平面 C'D'DC 的法向量可以是 $\overrightarrow{A'D'}$, $\overrightarrow{B'C'}$, \overrightarrow{AD} , \overrightarrow{BC} , 或 $\overrightarrow{D'A'}$, $\overrightarrow{C'B'}$, \overrightarrow{DA} , \overrightarrow{CB} .

【习题 2-1(B组)(第28页)】

1. 由题图易得:(1) $\overrightarrow{AA'}$ $\bot \overrightarrow{AB}$, $\overrightarrow{AA'}$ $\bot \overrightarrow{AD}$, \overrightarrow{AD} $\bot \overrightarrow{AB}$,所以 $\langle \overrightarrow{AA'}$, $\overrightarrow{AB} \rangle = \frac{\pi}{2}$,

$$\langle \overrightarrow{AA'}, \overrightarrow{AD} \rangle = \frac{\pi}{2}, \langle \overrightarrow{AD}, \overrightarrow{AB} \rangle = \frac{\pi}{2}$$

 $(2)\overrightarrow{AD'}$, $\overrightarrow{BC'}$ 二者为相等向量,则 $\langle \overrightarrow{AD'},\overrightarrow{BC'}\rangle = 0$;

 $\overrightarrow{AA'}$, $\overrightarrow{C'C}$ = \overrightarrow{A} 为相反向量, 则 $\langle \overrightarrow{AA'}$, $\overrightarrow{C'C} \rangle = \pi$.

2. $\langle \overrightarrow{AA'}, \overrightarrow{CC'} \rangle = 0, \langle \overrightarrow{AB}, \overrightarrow{C'D'} \rangle = \pi, \langle \overrightarrow{BA'}, \overrightarrow{D'C} \rangle = \pi_0$

§2 空间向量的运算

【练习(第31页)】

1. 向量加法的运算律有交换律:a + b = b + a;

结合律:a + (b + c) = (a + b) + c。

向量的数乘运算满足下列运算律:

设λ,μ为实数,则

① $(\lambda + \mu)a = \lambda a + \mu a;$ ② $\lambda(\mu a) = (\lambda \mu)a;$ ③ $\lambda(a + b) = \lambda a + \lambda b($ 分配律)。

向量的数量积满足下列运算律:

① $a \cdot b = b \cdot a$ (交换律);②分配律: $a(b+c) = a \cdot b + a \cdot c$;③实数对向量的结合律: $\lambda(a \cdot b) = (\lambda a) \cdot b = a \cdot (\lambda b)$ 。

- 2. 证明:若 a = 0,则 2a b 与 a 共线; 当 $a \neq 0$ 时, $a \neq a$ 共线, $b = \lambda a (a \neq 0)$, $2a b = 2a \lambda a = (2 \lambda)a$,即2a b 与 a 共线。
- 3. (1) $\overrightarrow{A'C} = \overrightarrow{A'A} + \overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{AB} + \overrightarrow{A'A} = a + b c$;

$$(2)\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AD'} = \frac{1}{2}(\overrightarrow{AA'} + \overrightarrow{AD}) = \frac{1}{2}(\boldsymbol{b} + \boldsymbol{c});$$

(3)连接 D'C,则 $EF = \frac{1}{2}D'C$,

$$\therefore \overrightarrow{EF} = \frac{1}{2} \overrightarrow{D'C} = \frac{1}{2} \overrightarrow{A'B} = \frac{1}{2} (\overrightarrow{A'A} + \overrightarrow{AB}) = \frac{1}{2} (\boldsymbol{a} - \boldsymbol{c})_{\circ}$$

 $4. a \cdot b$ 是一个数; $(a \cdot b)a$ 是一个向量。

【习题 2-2(A组)(第31页)】

- 1. $(1)(a \cdot b)a$ 与 a 共线; 当 $a \cdot b$ = 0 时, $(a \cdot b)a$ 与 b 共线, 当 $a \cdot b \neq$ 0 时, $(a \cdot b)a$ 与 b 不共线。
- $(2)(a \cdot b)c$ 与 c 共线; 当 $a \cdot b$ = 0 时, $(a \cdot b)c$ 与 a, $(a \cdot b)c$ 与 b 共线; 当 $a \cdot b \neq 0$ 时, 若 c 与 a, c 与 b 不共线, 则 $(a \cdot b)c$ 与 a, $(a \cdot b)c$ 与 b 不共线, 若 c 与 a, c 与 b 共线, 则 $(a \cdot b)c$ 与 a, $(a \cdot b)c$ 与 b 共线。
- $(3)(a \cdot b)c = a(b \cdot c)$ 不一定成立。
- 2. : $|\boldsymbol{a}| = |\boldsymbol{b}| = |\boldsymbol{c}| = 1$, $\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{b} \cdot \boldsymbol{c} = \boldsymbol{c} \cdot \boldsymbol{a} = 0$,
 - $\therefore (2a 2b + 4c) \cdot (-a 3b + 2c) = -2|a|^2 6a \cdot b + 4a \cdot c + 2a \cdot b +$

 $6|\mathbf{b}|^2 - 4\mathbf{b} \cdot \mathbf{c} - 4\mathbf{a} \cdot \mathbf{c} - 12\mathbf{b} \cdot \mathbf{c} + 8|\mathbf{c}|^2 = -2 + 6 + 8 = 12$

- 3. : $(a + 2b 2c) \cdot (-3a + 2b + c) = -3|a|^2 + 2a \cdot b + a \cdot c 6a \cdot b + 4|b|^2 + 2b \cdot c + 6a \cdot c 4b \cdot c 2|c|^2 = -3|a|^2 4a \cdot b + 7a \cdot c + 4|b|^2 2b \cdot c 2|c|^2,$
 - $\therefore |a| = |b| = |c| = 1, \langle a, b \rangle = \frac{\pi}{3}, \langle b, c \rangle = \frac{\pi}{2}, \langle c, a \rangle = \frac{\pi}{4},$
 - $\therefore \boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \frac{\pi}{3} = \frac{1}{2}, \boldsymbol{b} \cdot \boldsymbol{c} = 0, \boldsymbol{a} \cdot \boldsymbol{c} = \frac{\sqrt{2}}{2}.$
 - $\therefore (a+2b-2c) \cdot (-3a+2b+c) = -3-4 \times \frac{1}{2} + 7 \times \frac{\sqrt{2}}{2} + 4 2 = -1-2 + \frac{7\sqrt{2}}{2} = -3 + \frac{7\sqrt{2}}{2}.$
- 4. 连接 AF,
 - :: *M*,*N* 分别是 *BC*,*BD* 的中点,

$$\therefore MN = \frac{1}{2}CD, \therefore \overrightarrow{MN} = \frac{1}{2}\overrightarrow{CD} = \frac{1}{2}(\overrightarrow{AD} - \overrightarrow{AC})$$

$$\overrightarrow{XEF} = \overrightarrow{EA} + \overrightarrow{AF} = \frac{1}{2} \overrightarrow{BA} + \frac{1}{2} (\overrightarrow{AD} + \overrightarrow{AC}) = \frac{1}{2} (\overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{AC}) \; ,$$

$$\therefore \overrightarrow{MN} \cdot \overrightarrow{EF} = \frac{1}{2} \left(\overrightarrow{AD} - \overrightarrow{AC} \right) \cdot \frac{1}{2} \left(\overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{AC} \right) = \frac{1}{4} \left(\overrightarrow{AD} \cdot \overrightarrow{BA} + \overrightarrow{AC} \right)$$

$$|\overrightarrow{AD}|^2 + \overrightarrow{AD} \cdot \overrightarrow{AC} - \overrightarrow{AC} \cdot \overrightarrow{BA} - \overrightarrow{AC} \cdot \overrightarrow{AD} - |\overrightarrow{AC}|^2$$

- $\therefore AD \perp AB, AD \perp AC, AB \perp AC, AB = AC = AD = 1,$
- $\overrightarrow{AD} \cdot \overrightarrow{AB} = 0$, $\overrightarrow{AD} \cdot \overrightarrow{AC} = 0$, $\overrightarrow{AC} \cdot \overrightarrow{AB} = 0$, $|\overrightarrow{AD}| = |\overrightarrow{AC}|$
- $\overrightarrow{MN} \cdot \overrightarrow{EF} = 0 \dots \overrightarrow{EF} + \overrightarrow{MN}$

【习题 2-2(B组)(第32页)】

取 A'D'的中点 M',连接 M'M,则 M,O,M'三点共线,且 $M'M/\!\!/D'C$ 。

$$\therefore \overrightarrow{OM} = \frac{1}{2} \overrightarrow{M'M} = \frac{1}{2} \overrightarrow{D'C} = \frac{1}{2} \overrightarrow{A'B} = \frac{1}{2} (\overrightarrow{AB} - \overrightarrow{AA'})$$
$$= \frac{1}{2} (a - c)_{\circ}$$

同理:
$$\overrightarrow{ON} = \frac{1}{2}\overrightarrow{BC'} = \frac{1}{2}\overrightarrow{AD'} = \frac{1}{2}(\boldsymbol{b} + \boldsymbol{c})$$
,

$$\overrightarrow{OT} = \frac{1}{2}\overrightarrow{CA} = -\frac{1}{2}\overrightarrow{AC} = -\frac{1}{2}\boldsymbol{a} - \frac{1}{2}\boldsymbol{b}_{\circ}$$

§3 向量的坐标表示和空间向量基本定理

【练习(第34页)】

$$1. \overrightarrow{BF} = \frac{1}{2} \overrightarrow{BA'} = \frac{1}{2} (\overrightarrow{BA} + \overrightarrow{BB'}) = \frac{1}{2} (-a + c) = -\frac{1}{2} a + \frac{1}{2} c_{\circ}$$

- $2. : e_1, e_2, e_3$ 两两垂直,
 - $\therefore \mathbf{e}_1 \cdot \mathbf{e}_2 = 0, \mathbf{e}_1 \cdot \mathbf{e}_3 = 0, \mathbf{e}_2 \cdot \mathbf{e}_3 = 0$
 - : $a = 2e_1 + 3e_2 4e_3$,
 - $\therefore \mathbf{a} \cdot \mathbf{e}_1 = (2\mathbf{e}_1 + 3\mathbf{e}_2 4\mathbf{e}_3) \cdot \mathbf{e}_1 = 2|\mathbf{e}_1|^2 + 3\mathbf{e}_2 \cdot \mathbf{e}_1 4\mathbf{e}_3 \cdot \mathbf{e}_1 = 2, \mathbf{a} \cdot \mathbf{e}_2 = (2\mathbf{e}_1 + 3\mathbf{e}_2 4\mathbf{e}_3) \cdot \mathbf{e}_2 = 2\mathbf{e}_1 \cdot \mathbf{e}_2 + 3|\mathbf{e}_2|^2 4\mathbf{e}_3 \cdot \mathbf{e}_2 = 3, \mathbf{a} \cdot \mathbf{e}_3 = (2\mathbf{e}_1 + 3\mathbf{e}_2 4\mathbf{e}_3) \cdot \mathbf{e}_3 = 2\mathbf{e}_1 \cdot \mathbf{e}_3 + 3\mathbf{e}_2 \cdot \mathbf{e}_3 4|\mathbf{e}_3|^2 = -4_\circ$

【练习(第36页)】

- 1. $\overrightarrow{A'C} = \overrightarrow{A'A} + \overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{AB} \overrightarrow{DD'} + \overrightarrow{B'C'}$
- 2. $\overrightarrow{BD'} = \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{AA'} = -\overrightarrow{A'B'} + \overrightarrow{CC'} + \overrightarrow{AD}$

【练习(第38页)】

- 1. i = (1,0,0), j = (0,1,0), k = (0,0,1)
- 2. 点 P 的坐标为(-1,2,3),点 P 的位置如图所示。
- 3. (1):: $\mathbf{a} \cdot \mathbf{b} = (1, -2, 3) \cdot (1, 2, 1) = 1 4 + 3 = 0$,:: $\mathbf{a} = \mathbf{b} = \mathbf{a}$

第2 题图 $\frac{3}{2} + \frac{2}{3} + \frac{8}{3} \neq 0$, : a = b 不垂直。又 6b =

- $\frac{1}{2} + \frac{1}{3} + \frac{1}{3} \neq 0$, $\therefore a = b \land \pm 1$. (-3,2,4), $\therefore a = 6b$, $\therefore a = b \land \mp 7$.
- (3): $\mathbf{a} \cdot \mathbf{b} = (0, -3, 3) \cdot (0, 1, -1) = 0 3 3 \neq 0, \therefore \mathbf{a} 与 \mathbf{b}$ 不垂直。 又 $-3\mathbf{b} = (0, -3, 3), \therefore \mathbf{a} = -3\mathbf{b}, \therefore \mathbf{a} \to \mathbf{b}$ 平行。
- (4)a 与 b 既不垂直,也不平行。

- 4. : $\mathbf{a} = (x, y, z)$, : $|\mathbf{a}| = \sqrt{x^2 + y^2 + z^2}$,
 - x : y : z = 5 : (-2) : 4
 - 设 x = 5k, y = -2k, z = 4k,
 - $|a| = \sqrt{25k^2 + 4k^2 + 16k^2} = \sqrt{45}|k|$
 - $\therefore \boldsymbol{a}_0 = \frac{\boldsymbol{a}}{|\boldsymbol{a}|} = \frac{(5k, -2k, 4k)}{3\sqrt{5}|k|}$
 - $\stackrel{\text{\tiny Δ}}{=} k > 0 \text{ BT}, \boldsymbol{a}_0 = \frac{1}{3\sqrt{5}}(5, -2, 4) = \left(\frac{\sqrt{5}}{3}, \frac{-2\sqrt{5}}{15}, \frac{4\sqrt{5}}{15}\right) d$
 - $\stackrel{\text{def}}{=} k < 0 \text{ ft}, \boldsymbol{a}_0 = \left(-\frac{\sqrt{5}}{3}, \frac{2\sqrt{5}}{15}, -\frac{4\sqrt{5}}{15} \right)$
- 5. i = (1,0,0), j = (0,1,0), k = (0,0,1), $i \cdot j = (1,0,0) \cdot (0,1,0)$ 0) =0, $j \cdot k = (0,1,0) \cdot (0,0,1) = 0$, $k \cdot i = (0,0,1) \cdot (1,0,0) = 0$
 - $0, i \cdot i = (1,0,0) \cdot (1,0,0) = 1, j \cdot j = (0,1,0) \cdot (0,1,0) = 1, k \cdot k = (0,0,1) \cdot (0,0,1) = 1_{\circ}$

【习题 2-3(A组)(第38页)】

- 1. $\triangle a = (1,2,-2), b = (1,0,1)$ $\triangle a = (1,0,1)$
- (1)2a = (2,4,-4); a-2b = (1,2,-2)-2(1,0,1) = (1,2,-2)-
- (2,0,2) = (-1,2,-4); 2a + b = (2,4,-4) + (1,0,1) = (3,4,-3)
- $(2)(a-2b) \cdot (2a+b) = (-1,2,-4) \cdot (3,4,-3) = -3+8+12=17$
- 2. : a = (-1,2,3), : $|a| = \sqrt{1+4+9} = \sqrt{14}$
 - :. 与 a 平行的单位向量为 $a_0 = \pm \frac{a}{|a|} = \pm \frac{1}{\sqrt{14}}(-1,2,3)$,
 - $\therefore \boldsymbol{a}_0 = \left(\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}\right) \text{ if } \boldsymbol{a}_0 = \left(-\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right) \ .$
- 3. $\overrightarrow{AC'} = \overrightarrow{OC'} \overrightarrow{OA} = (1,1,1) (0,0,0) = (1,1,1),$
 - $\overrightarrow{BD'} = \overrightarrow{OD'} \overrightarrow{OB} = (0,1,1) (1,0,0) = (-1,1,1),$
 - $\overrightarrow{AD'} = \overrightarrow{OD'} \overrightarrow{OA} = (0,1,1) (0,0,0) = (0,1,1)_{\circ}$
- $4. \ \mathcal{U} \mathbf{a} = \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \lambda_3 \mathbf{e}_3,$

$$\therefore \begin{cases} 3 = 2\lambda_{1} + \lambda_{2}, \\ 4 = -\lambda_{1} + \lambda_{2} + 3\lambda_{3}, \\ 5 = \lambda_{1} - \lambda_{2} + 3\lambda_{3}, \end{cases} \begin{cases} \lambda_{1} = \frac{7}{6}, \\ \lambda_{2} = \frac{2}{3}, \\ \lambda_{3} = \frac{3}{2}. \end{cases}$$

- $\therefore \mathbf{a} = \frac{7}{6} \mathbf{e}_1 + \frac{2}{3} \mathbf{e}_2 + \frac{3}{2} \mathbf{e}_{3}$
- 5. (1): $\mathbf{a} = (1, -3, 2), \mathbf{b} = (1, 1, -1),$
 - $|a| = \sqrt{14}, |b| = \sqrt{3}, |-3a| = 3\sqrt{14}$
 - $\mathbb{Z} 2a b = (2, -6, 4) (1, 1, -1) = (1, -7, 5),$
 - $\therefore |2\boldsymbol{a} \boldsymbol{b}| = \sqrt{1 + 49 + 25} = \sqrt{75} = 5\sqrt{3}_{\circ}$
 - $(2)\cos\langle a,b\rangle = \frac{a \cdot b}{|a||b|} = \frac{1-3-2}{\sqrt{14} \times \sqrt{3}} = \frac{-4}{\sqrt{42}} = -\frac{2\sqrt{42}}{21}$
- 6. 由题图可知 A(0,0,0), B(1,0,0), C(1,2,0), D(0,2,0), D'(0,2,3), C'(1,2,3)。
 - $(1)\overrightarrow{AC'} = \overrightarrow{OC'} \overrightarrow{OA} = (1,2,3), \overrightarrow{BD'} = \overrightarrow{OD'} \overrightarrow{OB} = (0,2,3) (1,0,0) = (-1,1)$
 - $(2,3), \overrightarrow{AD'} = (0,2,3)_{\circ}$
 - $(2)\overrightarrow{AC'} + 2\overrightarrow{BD'} = (1,2,3) + 2(-1,2,3) = (-1,6,9), \overrightarrow{AC'} + \overrightarrow{BD'} (-1,6,9), \overrightarrow{AC'} + (-1,2,3)$
 - $2\overrightarrow{AD'} = (1,2,3) + (-1,2,3) (0,4,6) = (0,0,0)$
- 7. 由题图易知 $A\left(-\frac{1}{2},0,0\right), C\left(0,\frac{\sqrt{3}}{2},0\right), C_1\left(0,\frac{\sqrt{3}}{2},2\right),$
 - $B\left(\frac{1}{2},0,0\right)_{\circ} :: \overrightarrow{AC_{1}} = \left(0,\frac{\sqrt{3}}{2},2\right) \left(-\frac{1}{2},0,0\right) = \left(\frac{1}{2},\frac{\sqrt{3}}{2},2\right),$
 - $\overrightarrow{BC} = \left(0, \frac{\sqrt{3}}{2}, 0\right) \left(\frac{1}{2}, 0, 0\right) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right), \ \overrightarrow{\cdot AC_1} \cdot \overrightarrow{BC} =$
 - $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 2\right) \cdot \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right) = -\frac{1}{4} + \frac{3}{4} = \frac{1}{2}$
- 8. $\overrightarrow{EF} = \overrightarrow{EA'} + \overrightarrow{A'D'} + \overrightarrow{D'F} = \frac{1}{2}\overrightarrow{AA'} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}$

【习题 2-3(B组)(第39页)】

- 1. : A(0,0,0), A'(0,0,1), C(1,1,0), C'(1,1,1),
 - $\overrightarrow{A'C} = (1,1,-1), \overrightarrow{AC'} = (1,1,1), \overrightarrow{A'C} \cdot \overrightarrow{AC'} = 1$
- 2. 以 A 为坐标原点,AD,AB,AA'所在的直线分别为 x轴,y 轴,z 轴建立如图所示的空间直角坐标系,可 D'得:A(0,0,0),A'(0,0,4),B'(0,2,4),C(2,2,0),
- $C'(2,2,4), D'(2,0,4), \text{ } \exists \overrightarrow{B'C} = (2,0,-4),$

 $\overrightarrow{A'D'} = (2,0,0), \overrightarrow{AC'} = (2,2,4)$

- $(1) \mid \overrightarrow{B'C} \mid = \sqrt{4+0+16} = 2\sqrt{5}, \mid \overrightarrow{A'D'} \mid = 2, \overrightarrow{B'C}$
- $\overrightarrow{A'D'} = (2,0,-4) \cdot (2,0,0) = 4+0+0=4$

第2题图

所以
$$\cos\langle \overrightarrow{B'C}, \overrightarrow{A'D'} \rangle = \frac{\overrightarrow{B'C} \cdot \overrightarrow{A'D'}}{|\overrightarrow{B'C}| |\overrightarrow{A'D'}|} = \frac{4}{2\sqrt{5} \times 2} = \frac{\sqrt{5}}{5}$$

- $(2) |\overrightarrow{AC'}| = \sqrt{4 + 4 + 16} = 2\sqrt{6}$
- 3. $\overrightarrow{A'C} = \overrightarrow{A'A} + \overrightarrow{AC} = \overrightarrow{A'A} + \overrightarrow{AD'} + \overrightarrow{D'C} = \overrightarrow{D'D} + \overrightarrow{AD'} + \overrightarrow{D'C'} + \overrightarrow{C'C} = \overrightarrow{D'D} + \overrightarrow{AD'} + \overrightarrow{AD'}$ $\overrightarrow{D'C'} + \overrightarrow{D'D} = \overrightarrow{AD'} + \overrightarrow{D'C'} - 2 \overrightarrow{DD'}$

§4 用向量讨论垂直与平行

【练习(第41页)】

- 1. (1): $s_1 = (1, -1, 1), s_2 = (-1, 2, 3),$
 - $: s_1 \cdot s_2 = -1 2 + 3 = 0, : l_1 \perp l_2$
 - (2): $s_1 = (1, -2, 0), s_2 = (-1, 2, 0),$
 - $\therefore \mathbf{s}_1 = -\mathbf{s}_2, \therefore l_1 // l_2$
- 2. (1): $n_1 = (1,2,3), n_2 = (-1,-2,-3),$
 - $\therefore \mathbf{n}_1 = -\mathbf{n}_2, \therefore \mathbb{P} \mathbf{m} \pi_1 // \mathbb{P} \mathbf{m} \pi_2$
 - (2): $n_1 = (2,2,-3), n_2 = (-1,-2,-2),$
 - $\therefore \mathbf{n}_1 \cdot \mathbf{n}_2 = -2 4 + 6 = 0, \therefore \text{ Pm } \pi_1 \perp \text{ Pm } \pi_2 = -2 4 + 6 = 0, \dots$
- 3. (1): s = (-1,1,1), n = (1,4,-3),
 - $\therefore s \cdot n = -1 + 4 3 = 0$, \therefore 直线 l // 平面 π_{\circ}
 - (2): s = (-1,3,2), n = (2,-6,-4),
 - $\therefore s = -\frac{1}{2}n, \therefore$ 直线 $l \perp$ 平面 π_{\circ}

【习题 2-4(A组)(第42页)】

1. 已知:直线 b 是平面 π 外的一条直线,直线 a 是平面 π 内的一条直

线,直线 c 是 b 在平面 π 上的投影,且 $a \perp b$,求

- 证明:如图所示,过b上任一点作平面 π 的垂线 n,设直线 a,b,c,n 的方向向量分别是 a,b,c,

- 由于b,c,n共面,由平面向量基本定理,存在实数 λ,μ ,使 $c = \lambda b + \mu n$ 。
- $\therefore a \cdot c = a \cdot (\lambda b) + a \cdot (\mu n) = \lambda (a \cdot b) + \mu (a \cdot n)_{\circ}$
- $a \perp b$, $n \perp a$, $a \cdot b = 0$, $a \cdot n = 0$
- $\therefore \mathbf{a} \cdot \mathbf{c} = 0, \therefore a \perp c_{\circ}$
- 2. : D(0,0,0), B(1,1,0), B'(1,1,1), C(0,1,0), A'(1,0,1), A(1,0,1)
 - 又 G 是 AA'上的点,设 GA = t,则 G(1,0,t)。
 - 又E,F分别是BC,BB'的中点、

$$\therefore E\left(\frac{1}{2},1,0\right), F\left(1,1,\frac{1}{2}\right),$$

$$\therefore \overrightarrow{EF} = \left(\frac{1}{2}, 0, \frac{1}{2}\right), \overrightarrow{DG} = (1, 0, t)_{\circ}$$

- $\therefore DG/\!/EF, \therefore \overrightarrow{EF} = \lambda \overrightarrow{DG}_{\circ} \therefore \left(\frac{1}{2}, 0, \frac{1}{2}\right) = (\lambda, 0, \lambda t)_{\circ}$
- $\therefore \begin{cases} \lambda = \frac{1}{2}, \\ \therefore t = 1_{\circ} : : \le G = A'$ 重合时 $EF //DG_{\circ}$ $\lambda t = \frac{1}{2}, \end{cases}$
- $3. : \triangle ABC \Rightarrow BC = 1, \angle BAC = 30^{\circ}, \angle ACB = 90^{\circ},$
 - $\therefore AC = \sqrt{3}$.
 - $C'(0,0,\sqrt{6}),A(\sqrt{3},0,0),B(0,1,0),B'(0,1,\sqrt{6}),A'(\sqrt{3},0,\sqrt{6})$
 - $: M \in CC'$ 的中点,: $M\left(0,0,\frac{\sqrt{6}}{2}\right)$

- $\therefore \overrightarrow{AB'} = (-\sqrt{3}, 1, \sqrt{6}), \overrightarrow{A'M} = (-\sqrt{3}, 0, -\frac{\sqrt{6}}{2}),$
- $\therefore \overrightarrow{AB'} \cdot \overrightarrow{A'M} = \sqrt{3} \times \sqrt{3} \frac{\sqrt{6}}{2} \times \sqrt{6} = 0, \therefore AB' \perp A'M_{\odot}$
- 4. 由坐标系可知 $A\left(\frac{\sqrt{2}}{2},0,0\right)$, $C(0,\sqrt{2},0)$, D'(0,0,1), $B\left(\frac{\sqrt{2}}{2},\sqrt{2},0\right)$,
 - $C'(0,\sqrt{2},1), B'(\frac{\sqrt{2}}{2},\sqrt{2},1), A'(\frac{\sqrt{2}}{2},0,1)$
 - $: E \not\in D'C'$ 的中点,... $E\left(0,\frac{\sqrt{2}}{2},1\right)$ 。
 - $\overrightarrow{A'E} = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right), \overrightarrow{AE} = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right),$
 - 设平面 AA'E 的一个法向量为 $n_1 = (x_1, y_1, z_1)$,

- $\Rightarrow x_1 = 1, \forall y_1 = 1, z_1 = 0, \therefore n_1 = (1, 1, 0)$
- $\nabla \overrightarrow{BB'} = (0,0,1), \overrightarrow{B'E} = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0\right)_{\circ}$

设平面 BB'E 的一个法向量为 $\mathbf{n}_2 = (x_2, y_2, z_2)$,

则
$$\begin{cases} \mathbf{n}_2 \cdot \overrightarrow{BB'} = 0, \\ \mathbf{n}_2 \cdot \overrightarrow{B'E} = 0, \end{cases} \therefore \begin{cases} z_2 = 0, \\ x_2 + y_2 = 0. \end{cases}$$

- $n_1 \cdot n_2 = (1,1,0) \cdot (1,-1,0) = 0, \therefore n_1 \perp n_2,$
- ∴ 平面 AA'E⊥平面 BB'E。
- 5. 略。(提示:依照教材的例题进行证明即可)。

【习题 2-4(B组)(第42页)】

如图所示,记 $\overrightarrow{AB} = a,\overrightarrow{AC} = c,\overrightarrow{AD} = b$,

 $\mathbb{D}|\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} = \mathbf{c} - \mathbf{a}_{\odot}$

- $\overrightarrow{CD} = \overrightarrow{AD} \overrightarrow{AC} = \mathbf{b} \mathbf{c}, \overrightarrow{DB} = \overrightarrow{AB} \overrightarrow{AD} = \mathbf{a} \mathbf{b},$
- 由 $AB \perp CD$, $DB \perp AC$ 知 a(b-c) = 0, $(a-b) \cdot c =$
- $0, : a \cdot b = a \cdot c, a \cdot c = b \cdot c,$
- $\therefore a \cdot b = b \cdot c,$
- $\therefore \overrightarrow{AD} \cdot \overrightarrow{BC} = b(c a) = b \cdot c a \cdot b = 0,$
- 第1题图

 $\therefore DA \perp BC$

§5 夹角的计算

【练习(第45页)】

1. : $s_1 = (1, -1, 1), s_2 = (-1, 2, 0),$

$$\therefore \cos \langle s_1, s_2 \rangle = \frac{s_1 \cdot s_2}{|s_1| \cdot |s_2|} = \frac{-1 - 2}{\sqrt{3} \times \sqrt{5}} = -\frac{\sqrt{15}}{5}.$$

故 $\langle s_1, s_2 \rangle > 90^\circ$, ... $l_1 与 l_2$ 的夹角为 $\pi - \langle s_1, s_2 \rangle$ 。

- $\therefore l_1 与 l_2$ 的夹角的余弦值为 $\frac{\sqrt{15}}{5}$
- 2. : $n_1 = (1,2,3), n_2 = (-1,0,2),$

$$\therefore \cos \langle \mathbf{n}_1, \mathbf{n}_2 \rangle = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|} = \frac{-1 + 6}{\sqrt{14} \times \sqrt{5}} = \frac{\sqrt{70}}{14}$$

:. 两个平面夹角的余弦值为 $\frac{\sqrt{70}}{14}$

【练习(第46页)】

- : s = (-1, 1, 1), n = (1, 2, -3),
- $\therefore \cos\langle s, n \rangle = \frac{-1 + 2 3}{\sqrt{3} \times \sqrt{14}} = -\frac{\sqrt{42}}{21} < 0$

设直线与平面的夹角为 θ ,则 $\sin \theta = \frac{\sqrt{42}}{21}$,

 $\therefore \cos \theta = \frac{\sqrt{399}}{21}$

- 1. 由坐标系可知 A'(0,0,1), B(1,0,0), D'(0,1,1), D(0,1,0),
 - $C(1,1,0), E(0,\frac{1}{2},1)_{\circ}$

$$\therefore \overrightarrow{A'B} = (1,0,-1), \overrightarrow{CE} = (-1,-\frac{1}{2},1)_{\circ}$$

$$\therefore \cos\langle \overrightarrow{A'B}, \overrightarrow{CE} \rangle = \frac{-2}{\sqrt{2} \times \sqrt{1 + \frac{1}{4} + 1}} = -\frac{2\sqrt{2}}{3},$$

故直线 A'B 与直线 CE 夹角的余弦值为 $\frac{2\sqrt{2}}{3}$ 。

- 2. 由坐标系知 D(0,4,0), D'(0,4,2), B(2,0,0), C'(2,4,2), A'(0,0,2)。
 - $\therefore \overrightarrow{AC'} = (2,4,2), \overrightarrow{AD} = (0,4,0)_{\circ}$
 - $:: A'A \perp$ 平面 $ABD, :: \overrightarrow{A'A}$ 为平面 ABD 的法向量。

设平面 AC'D 的一个法向量为 $\mathbf{n}_1 = (x, y, z)$,

则
$$\left\{ \overrightarrow{AC'} \cdot \mathbf{n}_1 = 0, \atop \overrightarrow{AD} \cdot \mathbf{n}_1 = 0, \atop \mathbf{n}_1 = 0, \atop \mathbf{n}_1 = 0, \right\} \left\{ x + 2y + z = 0, \atop y = 0, \atop \mathbf{n}_1 = 0, \atop \mathbf{n$$

 \diamondsuit x = 1, \bigvee z = -1, ∴ n_1 = (1,0, -1) \circ

 $\nabla : \overrightarrow{A'A} = (0,0,-2),$

$$\therefore \cos \langle \overrightarrow{A'A}, \boldsymbol{n}_1 \rangle = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2},$$

- :平面 AC'D 与平面 ABD 的夹角的余弦值为 $\frac{\sqrt{2}}{2}$ 。
- 3. 由坐标系可知 B(1,0,0), D(0,2,0), D'(0,2,2), B'(1,0,2), C(1,2,0), $\therefore \overrightarrow{B'C} = (0,2,-2)$.

设平面 B'BDD'的法向量为 $\mathbf{n}_1 = (x, y, z)$ 。

$$\overline{XB'D'} = (-1,2,0), \overline{BB'} = (0,0,2),$$

则
$$\left\{\begin{matrix} \boldsymbol{n}_1 \cdot \overrightarrow{B'D'} = 0, \\ \boldsymbol{n}_1 \cdot \overrightarrow{BB'} = 0, \end{matrix}\right. \therefore \left\{\begin{matrix} 2y - x = 0, \\ z = 0, \end{matrix}\right.$$

 \Leftrightarrow x = 2, \bigvee y = 1, ∴ \mathbf{n}_1 = (2,1,0) \circ

$$\therefore \cos \langle \overrightarrow{B'C}, \mathbf{n}_1 \rangle = \frac{\overrightarrow{B'C} \cdot \mathbf{n}_1}{|\overrightarrow{B'C}| \cdot |\mathbf{n}_1|} = \frac{2}{\sqrt{8} \times \sqrt{5}} = \frac{\sqrt{10}}{10}$$

设 B'C 与平面 B'BDD'的夹角为 θ ,则 $\sin \theta = \frac{\sqrt{10}}{10}$ 。

4. 由坐标系可知,S(0,0,1),B(1,0,0), $D\left(0,\frac{1}{2},0\right)$,C(1,1,0)。由

题意易知 $DA \perp$ 平面 SAB, ... $\overrightarrow{DA} \left(0, -\frac{1}{2}, 0 \right)$ 为平面 SAB 的一个法向量,设平面 SCD 的一个法向量为 $\mathbf{n}_1 = (x, y, z)$ 。

$$\overrightarrow{SC} = (1,1,-1), \overrightarrow{SD} = (0,\frac{1}{2},-1),$$

$$\therefore \begin{cases} \mathbf{n}_1 \cdot \overrightarrow{SC} = 0, \\ \mathbf{n}_1 \cdot \overrightarrow{SD} = 0, \end{cases} \cdot \begin{cases} x + y - z = 0, \\ \frac{y}{2} - z = 0, \end{cases}$$

 \Rightarrow y = 2, \emptyset z = 1, x = -1, ∴ \mathbf{n}_1 = (-1,2,1) \circ

$$\therefore \cos \langle \overrightarrow{DA}, \pmb{n}_1 \rangle = \frac{\overrightarrow{DA} \cdot \pmb{n}_1}{|\overrightarrow{DA}| \cdot |\pmb{n}_1|} = \frac{-1}{\frac{1}{2} \times \sqrt{6}} = -\frac{\sqrt{6}}{3}.$$

- :. 平面 SAB 与平面 SCD 夹角的余弦值为 $\frac{\sqrt{6}}{3}$ 。
- 5. 由坐标系知:A'(0,0,1),B(2,0,0),D(0,2,0),C'(2,2,1)。

$$\overrightarrow{A'B} = (2,0,-1), \overrightarrow{C'D} = (-2,0,-1),$$

$$\therefore \cos\langle \overrightarrow{A'B}, \overrightarrow{C'D} \rangle = \frac{-4+1}{\sqrt{5} \times \sqrt{5}} = -\frac{3}{5},$$

 $\therefore A'B 与 C'D$ 夹角的余弦值为 $\frac{3}{5}$ 。

§6 距离的计算

【练习(第50页)】

- $1. : \overrightarrow{OA} = (1, -1, 2), \mathbf{n} = (0, 2, 1), \underline{\square} \overrightarrow{OA} \cdot \mathbf{n} = (1, -1, 2) \cdot (0, 2, 2, 2)$
- 1) =0-2+2=0, $\overrightarrow{OA} \perp \mathbf{n}$ 。故点 A 到直线 l 的距离为 $d = |\overrightarrow{OA}| = \sqrt{1+1+4} = \sqrt{6}$ 。
- 2. \overrightarrow{OM} = (-1,1,-2), n = (1,-2,2), \therefore 点 M 到平面 π 的距离为

$$d = |\overrightarrow{OM}| \cdot |\cos \theta| = |\overrightarrow{OM}| \cdot \frac{|\overrightarrow{OM} \cdot \boldsymbol{n}|}{|\overrightarrow{OM}| \cdot |\boldsymbol{n}|} = \frac{7}{3}$$

【习题 2-6(A组)(第50页)】

1. : B(1,0,0), D(0,1,0), $B_1(1,0,1)$, A(0,0,0)

$$\therefore x = \frac{1}{3}, y = 0, z = \frac{1}{3}, \therefore M\left(\frac{1}{3}, 0, \frac{1}{3}\right)_{\circ}$$

设
$$N(x_1, y_1, z_1)$$
, $\therefore \overrightarrow{BN} = \frac{1}{3} \overrightarrow{BD}$,

$$\therefore (x_1 - 1, y_1, z_1) = \frac{1}{2} (-1, 1, 0),$$

$$x_1 = \frac{2}{2}, y_1 = \frac{1}{2}, z_1 = 0$$

$$\therefore N\left(\frac{2}{3}, \frac{1}{3}, 0\right), \therefore \overrightarrow{MN} = \left(\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}\right)_{\circ}$$

∴
$$|\overrightarrow{MN}| = \frac{\sqrt{3}}{3}$$
, 即 MN 的长为 $\frac{\sqrt{3}}{3}$.

- 2. 由坐标系可知 B(0,1,0) ,D(2,0,0) , $A_1(0,0,3)$,C(2,1,0) ,A(0,0,0) , $C_1(2,1,3)$ 。
 - ∵ *M* 是 *AD* 的中点,∴ *M*(1,0,0)。

$$\therefore \overrightarrow{A_1C_1} = (2,1,0), \overrightarrow{A_1M} = (1,0,-3),$$

又
$$\overrightarrow{A_1M}$$
在 $\overrightarrow{A_1C_1}$ 上的投影的大小为 $\frac{|\overrightarrow{A_1M}\cdot\overrightarrow{A_1C_1}|}{|\overrightarrow{A_1C_1}|} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$

 \therefore 点 M 到 A_1C_1 的距离为

$$d = \sqrt{|\overrightarrow{A_1M}|^2 - \frac{4}{5}} = \sqrt{10 - \frac{4}{5}} = \frac{\sqrt{46}}{\sqrt{5}} = \frac{\sqrt{230}}{5}$$

3. : A(1,2,0), B(-2,0,1), C(0,2,2),

$$\overrightarrow{AB} = (-3, -2, 1), \overrightarrow{AC} = (-1, 0, 2)_{\circ}$$

设平面 π 的一个法向量为 $\mathbf{n}_1 = (x_1, y_1, z_1)$ 。

$$\text{III} \left\{ \overrightarrow{\overrightarrow{AB}} \cdot \boldsymbol{n}_1 = 0, \\ \overrightarrow{AC} \cdot \boldsymbol{n}_1 = 0, \\ \text{III} \right\} \left\{ 3x_1 + 2y_1 - z_1 = 0, \\ -x_1 + 2z_1 = 0, \\ \right\}$$

$$\Leftrightarrow z_1 = 1, \text{ MJ } x_1 = 2, y_1 = -\frac{5}{2}, \therefore n_1 = (2, -\frac{5}{2}, 1)_{\circ}$$

$$\vec{AM} = (-2,0,3), \vec{AM}$$
在 n_1 上的投影的大小为 $\frac{|\overrightarrow{AM} \cdot n_1|}{|n_1|} = \frac{2\sqrt{5}}{15}$

即点 M 到平面 π 的距离为 $\frac{2\sqrt{5}}{15}$ 。

【习题 2-6(B组)(第51页)】

由坐标系可知 B(1,0,0) ,D(0,2,0) ,A'(0,0,2) ,B'(1,0,2) ,D'(0,2,2) ,C(1,2,0) ,

又 E, F 分别是 DD'和 BB'的中点,

- E(0,2,1), F(1,0,1),
- $\therefore \overrightarrow{CE} = (-1,0,1), \overrightarrow{A'F} = (1,0,-1)_{\circ}$
- $: \overrightarrow{CE} = -\overrightarrow{A'F}, : \overrightarrow{CE} = \overrightarrow{A'F}$ 共线且无公共点,
- · CE // A' F

点 F 到 CE 的距离就是两平行线的距离,设为 d。

- $\overrightarrow{CF} = (0, -2, 1),$
- $\therefore \overrightarrow{CF}$ 在 \overrightarrow{CE} 上的投影的大小为 $\frac{|\overrightarrow{CF} \cdot \overrightarrow{CE}|}{|\overrightarrow{CF}|} = \frac{\sqrt{2}}{2}$ 。
- :. 所求距离 $d = \sqrt{|\overrightarrow{CF}|^2 \frac{1}{2}} = \sqrt{5 \frac{1}{2}} = \frac{3\sqrt{2}}{2}$.

【复习题二(A组)(第56页)】

- 1. 略。 2. 略。
- 3. (1) $|a+b| = \sqrt{(a+b)^2} = \sqrt{|a|^2 + 2a \cdot b + |b|^2} = \sqrt{2}$
 - $(2)(a+b) \cdot (a-b+c) = (a+b) \cdot (a-b) + c \cdot (a+b) = |a|^2 |b|^2 + a \cdot c + b \cdot c = 0$
 - $(3)\frac{(a-b+c)\cdot(a+b)}{|a+b|}=0$
 - $(4)\cos\langle (a+b), (a-b+c)\rangle = 0_{\circ}$

- 4. $(a + b \sqrt{2}c) \cdot (a + b + \sqrt{2}c) = (a + b)^2 2|c|^2 = |a|^2 + |b|^2 2|c|^2 + 2a \cdot b_0$
 - $|a| = |b| = |c| = 1, \langle a,b \rangle = \frac{\pi}{2}, \therefore a \cdot b = 0$
 - $\therefore (a+b-\sqrt{2}c) \cdot (a+b+\sqrt{2}c) = 0_{\circ}$
 - $\therefore a+b-\sqrt{2}c$ 垂直于 $a+b+\sqrt{2}c$
- 5. (1): a = (0, -1, 1), b = (2, 2, 1),
 - $|a| = \sqrt{2}, |b| = 3, |-3a| = 3\sqrt{2}$
 - $\therefore 2a b = (0, -2, 2) (2, 2, 1) = (-2, -4, 1),$
 - $|2a b| = \sqrt{4 + 16 + 1} = \sqrt{21}$
 - $(2)\cos\langle a,b\rangle = \frac{a\cdot b}{|a||b|} = \frac{-1}{\sqrt{2}\times 3} = -\frac{\sqrt{2}}{6}$
 - (3) : 2a b = (-2, -4, 1), -3a = (0, 3, -3), ∴ 2a b 在 -3a 上的
 - 投影为 $\frac{3 \times (-4) + (-3) \times 1}{3\sqrt{2}} = -\frac{5\sqrt{2}}{2}$ 。
- 6. $(1)\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA} = (1,0,1) (1,1,-1) = (0,-1,2)$
 - $\overrightarrow{AC} = \overrightarrow{OC} \overrightarrow{OA} = (0,1,2) (1,1,-1) = (-1,0,3)$
- $\overrightarrow{AD} = \overrightarrow{OD} \overrightarrow{OA} = (-1,2,1) (1,1,-1) = (-2,1,2)$
- $(2)2\overrightarrow{AB} \overrightarrow{AC} + \overrightarrow{AD} = 2(0, -1, 2) (-1, 0, 3) + (-2, 1, 2) = (-1, -1, 3)$
- (3): \overrightarrow{AB} \overrightarrow{AC} + \overrightarrow{AD} = (0, -1, 2) (-1, 0, 3) + (-2, 1, 2) = (-1, 0, 1),
- $|\overrightarrow{AB} \overrightarrow{AC} + \overrightarrow{AD}| = \sqrt{(-1)^2 + 0 + 1^2} = \sqrt{2}$
- 7. 设 P(x,y,z) ,则有 $\overrightarrow{AP} = (x-1,y-2,z-3)$,过点 A 的直线 l 平行于 x 轴,不妨设直线的方向向量为s = (1,0,0),所以 $\overrightarrow{AP} // s$,又知 $|\overrightarrow{AP}| = 1$,∴ x-1=1 , y-2=0 , z-3=0 ⇒ x=2 , y=2 , z=3 , 或 x-1=-1 , y-2=0 , z-3=0 ⇒ z=0 , z=3 。则有z=3 则有z=3 则有z=3
- 8. $\[\] P(x \ y, z), \[\] A(-2, 1, 1), B(1, 0, -3), \] \overrightarrow{AP} = -\overrightarrow{AB}, \]$
 - $(x+2,y-1,z-1) = -(3,-1,-4)_{\circ}$
- x + 2 = -3, y 1 = 1, z 1 = 4
- $\therefore x = -5, y = 2, z = 5$ 。 \therefore 点 P 的坐标为(-5,2,5)。
- 9. (1): P(1,2,3), A(-1,1,1), B(1,-1,1),
 - $\overrightarrow{AP} = (2,1,2), \overrightarrow{AB} = (2,-2,0)$
 - :: 不存在实数 λ 使 $\overrightarrow{AP} = \lambda \overrightarrow{AB}$,
 - :. 点 P 不在直线 AB 上。
 - (2): P(1, -2, -1), A(-1, -4, 1), B(2, 1, 2)
 - $\overrightarrow{AP} = (2,2,-2), \overrightarrow{AB} = (3,5,1)_{\circ}$
 - : 不存在实数 λ 使 $\overrightarrow{AP} = \lambda \overrightarrow{AB}$,
 - :. 点 P 不在直线 AB 上。
- 10.: D(2,0,0), B(0,3,0), C'(0,0,2), E,F 分别是 C'D,C'B 的中点,
 - $\therefore E(1,0,1), F(0,\frac{3}{2},1)$ 。设 *EF* 的中点为 *M*,则 $M(\frac{1}{2},\frac{3}{4},1)$ 。
- 11. :: A'(0,0,1), D'(1,0,1), B(0,1,0), C(1,1,0)。 设平面 BCD'A'的

 一个法向量是 $\mathbf{n} = (x,y,z)$ 。 $:: \overline{A'D'} = (1,0,0), \overline{A'B} = (0,1,-1),$
 - $\therefore \begin{cases} \mathbf{n} \cdot \overrightarrow{A'D'} = 0, \\ \mathbf{n} \cdot \overrightarrow{A'B} = 0, \end{cases} \therefore \begin{cases} x = 0, \\ y z = 0, \end{cases} \Leftrightarrow y = 1, \quad \mathbb{M} \quad z = 1, \quad \mathbb{H} \quad \mathbf{E} \subset \mathbf{B} \subset \mathbf{C}'\mathbf{A}'$
- 一个法向量是 n = (0,1,1)。
- 12. 设平面 π 的法向量为 n = (x, y, z),则
 - $\begin{cases} \boldsymbol{n} \cdot \boldsymbol{s}_1 = 0, \\ \boldsymbol{n} \cdot \boldsymbol{s}_2 = 0, \end{cases} \therefore \begin{cases} x y + 2z = 0, \\ y + z = 0. \end{cases}$
 - 令 y = 1, 得 z = -1, 代入 x y + 2z = 0, 得 x = 3。
 - $\therefore \mathbf{n} = (3,1,-1)$ 是平面 π 的一个法向量。
- 13. 设过直线 l 和点 A(1,2,3) 的平面的法向量为 $\boldsymbol{n}=(x,y,z)$,
 - $\overrightarrow{AP_0} = (0, -2, -4), s = (2, 1, 1),$
 - $\therefore \begin{cases} \mathbf{n} \cdot \overrightarrow{AP_0} = 0, \\ \mathbf{n} \cdot \mathbf{s} = 0, \end{cases} \therefore \begin{cases} 2y + 4z = 0, \\ 2x + y + z = 0, \end{cases} \Leftrightarrow x = 1, \quad ||y| = -4, \quad z = 2.$

- :. 过直线 l 和点 A(1,2,3) 的平面的一个法向量为 n = (1,-4,2)。
- 14. B(1,0,0), D(0,1,0), C(1,1,0), B'(1,0,1), A'(0,0,1), 设平面 A'B'CD的一个法向量为 $\mathbf{n} = (x,y,z)$ 。
 - $\therefore \overrightarrow{A'B'} = (1,0,0), \overrightarrow{A'C} = (1,1,-1),$
 - $\therefore \begin{cases} \overline{A'B'} \cdot \mathbf{n} = 0, \\ \overline{A'C} \cdot \mathbf{n} = 0, \end{cases} \cdot \begin{cases} x = 0, \\ x + y z = 0. \end{cases}$
 - \diamondsuit y = 1, ⋈ z = 1 ⋄ ∴ n = (0,1,1) ⋄
 - $\overrightarrow{AB} = (1,0,0), \overrightarrow{AB} \cdot \mathbf{n} = 0, AB \nsubseteq \overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{n}} = A'B'CD,$
 - ∴ AB // 平面 A'B'CD。
 - $\overrightarrow{BC} = (0,1,0)$,又 \overrightarrow{BC} 在 n 上的射影长为 $\left| \overrightarrow{BC} \cdot n \right| = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
 - $\therefore AB$ 与平面 A'B'CD 之间的距离为 $\frac{\sqrt{2}}{2}$ 。
- 15. :: 在等腰 Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, AB = 2, $\therefore AC = BC = \sqrt{2}$.
 - $A(\sqrt{2},0,0), B(0,\sqrt{2},0), C_1(0,0,2), A_1(\sqrt{2},0,2)$
 - :D,E 分别是 CC_1,A_1B 的中点,
 - $\therefore D(0,0,1), E\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right) \circ$
 - 设平面 ADE 的一个法向量为 n = (x, y, z)。
 - $\overrightarrow{AD} = (-\sqrt{2}, 0, 1), \overrightarrow{AE} = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1),$
 - $\therefore \left\{ \overrightarrow{AD} \cdot \mathbf{n} = 0, \atop \overrightarrow{AE} \cdot \mathbf{n} = 0, \right\} \cdot \left\{ \begin{cases} z \sqrt{2}x = 0, \\ -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y + z = 0. \end{cases} \right\}$

 - $\overrightarrow{A_1A} = (0,0,-2)$
 - $\therefore \overrightarrow{A_1 A}$ 在 n 上的射影长为 $\left| \frac{\overrightarrow{A_1 A} \cdot n}{|n|} \right| = \frac{2\sqrt{2}}{2} = \sqrt{2}$
 - $\therefore A_1$ 到平面 AED 的距离为√2
- 16. : B'(2,0,2), C(2,2,0), D(0,2,0), A'(0,0,2), D'(0,2,2), C'(2,0)
 - $(2,2), \therefore E(0,1,2), H(0,2,1), G(2,2,1), F(2,1,2)_{\circ}$
 - 设平面 A'B'CD 的一个法向量为 $\mathbf{n}_1 = (x_1, y_1, z_1)$ 。
 - $\therefore \overrightarrow{A'B'} = (2,0,0), \overrightarrow{A'C} = (2,2,-2),$
 - $\therefore \begin{cases} x_1 = 0, \\ x_1 + y_1 z_1 = 0. \end{cases}$

 - 设平面 *EFGH* 的一个法向量为 $\mathbf{n}_2 = (x_2, y_2, z_3)$ 。
 - $\overrightarrow{EF} = (2,0,0), \overrightarrow{EG} = (2,1,-1),$

 - ∴ $\mathbf{n}_2 = \mathbf{n}_1$,∴ 平面 A'B'CD// 平面 $EFGH_{\odot}$
 - $\therefore \overrightarrow{EA'} = (0, -1, 0),$
 - $\therefore \overrightarrow{EA'}$ 在 n_1 上的射影长为 $\left| \frac{\overrightarrow{EA'} \cdot n_1}{|n_1|} \right| = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
 - \therefore 平面 *EFGH* 与平面 A'B'CD 之间的距离为 $\frac{\sqrt{2}}{2}$
- 17. 如图所示,以 A 为坐标原点,建立空间直角坐标系,则 A'(0,0,1), B(1,0,0), C(1,1,0), C'(1,1,1)。
 - ∵ 点 *E* 在 *CC*′上,∴ 设 *E*(1,1,*z*)。
 - $\therefore 2\overrightarrow{CE} = \overrightarrow{EC'}, \therefore 2(0,0,z) = (0,0,1-z)_{\circ}$
 - $\therefore 2z = 1 z, \therefore z = \frac{1}{3} \circ \therefore E\left(1, 1, \frac{1}{3}\right) \circ$
 - $: \overrightarrow{A'B} = (1,0,-1),$ 又 F 在 C'D'上,
 - ∴ $\[\[\] \mathcal{F}(x,1,1) \]$, $\[\] \overrightarrow{EF} = \left(x-1,0,\frac{2}{3} \right)_{\circ}$
 - $\therefore A'B/\!/EF, \therefore \overrightarrow{A'B} = \lambda \left(x-1,0,\frac{2}{3}\right) = (1,0,-1)_{\circ}$

第17题图

$$\therefore \begin{cases} \frac{2}{3}\lambda = -1, \\ \lambda(x-1) = 1, \end{cases} \therefore \begin{cases} \lambda = -\frac{3}{2}, \\ x = \frac{1}{3}, \end{cases} \therefore F\left(\frac{1}{3}, 1, 1\right)_{\circ}$$

$$\therefore \overrightarrow{EF} = \left(-\frac{2}{3}, 0, \frac{2}{3}\right)_{\circ}$$

又 ::
$$\overrightarrow{A'F} = \left(\frac{1}{3}, 1, 0\right), ... \overrightarrow{A'F}$$
在 \overrightarrow{EF} 上的射影长为 $\left|\frac{\overrightarrow{A'F} \cdot \overrightarrow{EF}}{|\overrightarrow{EF}|}\right| =$

$$\frac{\frac{2}{9}}{\frac{2}{3}\sqrt{2}} = \frac{\sqrt{2}}{6}$$

∴ 直线
$$EF = A'B$$
 的距离 $d = \sqrt{|\overrightarrow{A'F}|^2 - \frac{1}{18}} = \frac{\sqrt{38}}{6}$

18. (1): B(1,0,0), B'(1,0,1), C(1,1,0), C'(1,1,1), D'(0,1,1), E, F 分别是棱 C'D'和 B'C'的中点,

$$\therefore E\left(\frac{1}{2},1,1\right), F\left(1,\frac{1}{2},1\right)_{\circ}$$

设平面 BEB'的一个法向量是 n = (x, y, z)

$$\overrightarrow{B'E} = \left(-\frac{1}{2},1,0\right), \overrightarrow{BB'} = (0,0,1),$$

$$\therefore \begin{cases} y - \frac{1}{2}x = 0, \\ z = 0, \end{cases} \Leftrightarrow x = 2, \text{ My } y = 1, \therefore n = (2, 1, 0).$$

$$\overrightarrow{AF} = \left(1, \frac{1}{2}, 1\right), \therefore \cos\langle \overrightarrow{AF}, n \rangle = \frac{n \cdot \overrightarrow{AF}}{|n| |\overrightarrow{AF}|} = \frac{\frac{5}{2}}{\sqrt{5} \times \frac{3}{2}} = \frac{\sqrt{5}}{3}$$

- $\therefore AF$ 与平面 BEB'所成角的余弦值为 $\frac{2}{3}$ 。
- (2): $\overrightarrow{AB'} = (1,0,1)$,
- $\therefore \overrightarrow{AB'}$ 在 n 上的射影长为 $\left| \frac{\overrightarrow{AB'} \cdot n}{|n|} \right| = \frac{2\sqrt{5}}{5}$
- \therefore 点 A 到平面 BEB'的距离为 $\frac{2\sqrt{5}}{5}$ 。

【复习题二(B组)(第57页)】

1. 假设它们平行于同一个平面,设此平面的一个法向量为 $\mathbf{n} = (x, y, z)$,则

$$\begin{cases} \boldsymbol{n} \cdot \boldsymbol{a} = 0, \\ \boldsymbol{n} \cdot \boldsymbol{b} = 0, \dots \end{cases} \begin{cases} x + 2y + 3z = 0, \\ -2x + z = 0, & \therefore x = y = z = 0, \\ 2x - y + 2z = 0, \end{cases}$$

- :. 此平面的法向量不存在,故向量a,b,c不可能平行于同一个平面。
- 如图所示, ·· MM'⊥平面 ABCD, 在平面 ABCD 内过点 M'作M'E⊥AB, 则由三垂线定理知 ME⊥AB.

 \therefore \angle MEM'是平面 ABM 与平面 ABCD 所成二面角的平面角 θ 。

$$\because \cos \theta = \frac{M'E}{ME}, \therefore ME \cdot \cos \theta = M'E_{\circ}$$

第2题图

$$\therefore \frac{1}{2}AB \cdot ME \cdot \cos \theta = \frac{1}{2}AB \cdot M'E_{c}$$

 $\therefore S_{\triangle ABM} \cdot \cos \theta = S_{\triangle ABM'}$

第三章

圆锥曲线与方程

§ 1 椭圆

【练习1(第64页)】

- 1. 略
- 2. 不是,:: $|PF_1| + |PF_2| = |F_1F_2|$,:: 动点 P 的轨迹是线段。
- 3. 以两定点所在的直线为 x 轴,两定点连线的中点为原点建立平面直角坐标系,两定点分别为 $F_1(-3,0)$, $F_2(3,0)$ 。 $: |MF_1| + |MF_2| =$
 - 10, $\therefore a = 5$, c = 3, b = 4。 \therefore 动点 M 的轨迹方程是 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 。草图略。
- 4. 圆、椭圆、线段。

【练习2(第66页)】

- 1. 14
- 2. $(1)\frac{x^2}{5} + y^2 = 1$ 。 $(2)\frac{y^2}{25} + \frac{x^2}{9} = 1$ 。 草图略。
- 3. 方法—:: $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的焦点坐标为 $F_1(-4,0)$, $F_2(4,0)$, $\therefore |PF_1| + 1$

$$|PF_2| = \sqrt{(2\sqrt{5} + 4)^2 + (2\sqrt{3} - 0)^2} + \sqrt{(2\sqrt{5} - 4)^2 + (2\sqrt{3} - 0)^2} = \sqrt{48 + 16\sqrt{5}} + \sqrt{48 - 16\sqrt{5}} = 4\sqrt{3 + \sqrt{5}} + 4\sqrt{3 - \sqrt{5}} = \sqrt{48 + 16\sqrt{5}} = \sqrt{48 + 16\sqrt{5}}$$

$$4\sqrt{\frac{6+2\sqrt{5}}{2}} + 4\sqrt{\frac{6-2\sqrt{5}}{2}} = \frac{4}{\sqrt{2}}(\sqrt{5}+1+\sqrt{5}-1) = 4\sqrt{10}$$

$$\therefore a = 2\sqrt{10}, \therefore b^2 = 24$$
。 ∴ 椭圆的方程为 $\frac{x^2}{40} + \frac{y^2}{24} = 1$ 。

方法二::
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 的焦点坐标为 $F_1(-4,0)$, $F_2(4,0)$, $\therefore c = 4$ 。

设所求椭圆的长半轴长为 a,则 $b^2 = a^2 - 16$ 。

:. 椭圆的方程可设为
$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - 16} = 1$$

将点
$$P(2\sqrt{5},2\sqrt{3})$$
 代入方程得 $\frac{20}{a^2} + \frac{12}{a^2 - 16} = 1$ 。

解得
$$a^2 = 40$$
 或 $a^2 = 8$ (舍去)。

:. 椭圆的方程为
$$\frac{x^2}{40} + \frac{y^2}{24} = 1$$
。

【练习(第69页)

- 1. 焦点坐标为 F_1 (-2,0), F_2 (2,0), 顶点坐标为 A_1 (- $\sqrt{10}$,0), A_2 ($\sqrt{10}$,0), B_1 (0, $-\sqrt{6}$), B_2 (0, $\sqrt{6}$)。
- 2. (1): $e = \frac{1}{3}$, a = 6, c = 2, $b = 4\sqrt{2}$
 - ∴ 椭圆方程为 $\frac{x^2}{36} + \frac{y^2}{32} = 1$ 或 $\frac{y^2}{36} + \frac{x^2}{32} = 1$ 。草图略。
 - (2): $c = 3, e = \frac{3}{5}, \therefore a = 5, \therefore b = 4$
 - :: 焦点在 y 轴上,:: 椭圆方程为 $\frac{y^2}{25} + \frac{x^2}{16} = 1$ 。草图略。
 - (3): a = 3b, 若焦点在 x 轴上, 设椭圆方程为 $\frac{x^2}{9h^2} + \frac{y^2}{h^2} = 1$, 将点P(3,
 - 0)代入椭圆方程得 $b^2 = 1$,
 - :. 椭圆方程为 $\frac{x^2}{9} + y^2 = 1$ 。

若焦点在 y 轴上,则 $\frac{y^2}{9h^2} + \frac{x^2}{h^2} = 1$,易得 $b^2 = 9$ 。

- :. 椭圆方程为 $\frac{y^2}{81} + \frac{x^2}{9} = 1$ 。
- ∴ 椭圆方程为 $\frac{x^2}{9} + y^2 = 1$ 或 $\frac{y^2}{81} + \frac{x^2}{9} = 1$ 。草图略。

$$(4) :: \begin{cases} a+c=10, \\ a-c=4. \end{cases} : a=7, c=3_{\circ} :: b=\sqrt{40_{\circ}}$$

:. 椭圆的标准方程为 $\frac{x^2}{49} + \frac{y^2}{40} = 1$ 或 $\frac{y^2}{49} + \frac{x^2}{40} = 1$ 。草图略。

【习题 3-1(A组)(第69页)】

1. 以两点所在的直线为 x 轴,两定点连线的中点为原点建立平面直角坐标系,由已知得点 M 的坐标满足椭圆方程,则 a=5 ,c=3 , \ldots b=4 \ldots 椭圆

方程为
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
。草图略。 (若以两定点所在直线为 y 轴,两定点连

线的中点为原点,则椭圆方程为 $\frac{y^2}{25} + \frac{x^2}{16} = 1$

- 2. : $F_1(-10,0)$, $F_2(10,0)$, ... c = 10 $\nearrow a = 12$, ... $b^2 = 44$,
 - :. 椭圆方程为 $\frac{x^2}{144} + \frac{y^2}{44} = 1$ 。草图略。
- 3. (1): a = 10, $e = \frac{3}{5}$, c = 6 b = 8
 - 又:: 焦点在 x 轴上,:: 椭圆方程为 $\frac{x^2}{100} + \frac{y^2}{64} = 1$ 。草图略。
 - (2): c = 3, $e = \frac{1}{2}$, a = 6. $b = \sqrt{27}$

- 又:: 焦点在 y 轴上,:: 椭圆方程为 $\frac{y^2}{36} + \frac{x^2}{27} = 1$ 。草图略。
- (3)设 a = 2b, 当焦点在 x 轴上时, $\frac{x^2}{4b^2} + \frac{y^2}{b^2} = 1$,
- 将 P(3,0)代入可得 $b^2 = \frac{9}{4}$,
- ∴ 椭圆方程为 $\frac{x^2}{9} + \frac{4y^2}{9} = 1$ 。
- 当焦点在 y 轴上时, $\frac{y^2}{4b^2} + \frac{x^2}{b^2} = 1$,
- 将 P(3,0) 代入可得 $b^2 = 9$,
- ∴ 椭圆方程为 $\frac{y^2}{36} + \frac{x^2}{9} = 1_{\circ}$
- :. 椭圆的标准方程为 $\frac{x^2}{9} + \frac{y^2}{\frac{9}{4}} = 1$ 或 $\frac{y^2}{36} + \frac{x^2}{9} = 1$ 。草图略。
- 4. 设椭圆方程为 $mx^2 + ny^2 = 1(m > 0, n > 0)$ 。

- :. 所求椭圆的标准方程为 $\frac{x^2}{5} + \frac{y^2}{15} = 1$ 。草图略。
- 5. :: |AB|, |BC|, |AC|成等差数列,
 - $\therefore 2|BC| = |AB| + |AC|_{\circ}$
 - B(0,-2),C(0,2),...|BC|=4
 - |AB| + |AC| = 8
 - :. 顶点 A 的轨迹是以 B, C 为焦点, 且长轴长为 B 的椭圆。
 - a = 4, c = 2 $b^2 = 16 4 = 12$
 - ∴ 顶点 A 的轨迹方程为 $\frac{y^2}{16} + \frac{x^2}{12} = 1(x \neq 0)$ 。
- 6. : % M(2,y), $\% \land \frac{x^2}{16} + \frac{y^2}{25} = 1$, $\therefore \frac{4}{16} + \frac{y^2}{25} = 1$,
 - $\therefore y = \pm \frac{5}{2} \sqrt{3}_{\circ} \therefore M \text{ 的纵坐标为 } \pm \frac{5}{2} \sqrt{3}_{\circ}$

当
$$M$$
 的坐标为 $\left(2,\frac{5\sqrt{3}}{2}\right)$ 时, M 到上焦点的距离为 $\sqrt{4+\left(\frac{5\sqrt{3}}{2}-3\right)^2}=5-\frac{3\sqrt{3}}{2}$;

- 又 2a = 10,所以 M 到下焦点的距离为 $5 + \frac{3\sqrt{3}}{2}$
- 当 M 的坐标为 $\left(2, -\frac{5\sqrt{3}}{2}\right)$ 时,M 到上焦点的距离为 $5+\frac{3\sqrt{3}}{2}$,到下焦
- 点的距离为 $5-\frac{3\sqrt{3}}{2}$ 。
- 7. (1): $x^2 + 4y^2 = 16$, $\frac{x^2}{16} + \frac{y^2}{4} = 1_{\circ}$
 - : a = 4, b = 2, 即长轴长为 8, 短轴长为 4。
 - $\therefore a = 4, b = 2, c = 2\sqrt{3}, \therefore e = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$

 - (2): $9x^2 + y^2 = 81$, $\frac{x^2}{9} + \frac{y^2}{81} = 1$
 - a = 9, b = 3 $c = \sqrt{81 9} = 6\sqrt{2}$
 - ∴ 长轴长为 18,短轴长为 6。∴ $e = \frac{6\sqrt{2}}{\Omega} = \frac{2\sqrt{2}}{2}$ 。
 - $:: F_1(0, -6\sqrt{2}), F_2(0, 6\sqrt{2}), A_1(0, -9), A_2(0, 9), B_1(-3, 0),$ $B_2(3, 0)$ 。草图略。
- 8. 设 C(x,y),则 $k_{AC} = \frac{y}{x+6}, k_{BC} = \frac{y}{x-6}$
 - $k_{AC} \cdot k_{BC} = -\frac{4}{9}, \frac{y^2}{x^2 36} = -\frac{4}{9}$
 - $\therefore \frac{x^2}{36} + \frac{y^2}{16} = 1(y \neq 0)$ 。草图略。

- 9. 设卫星轨道的长半轴长为 a, 短半轴长为 b, 半焦距为 c, 则 a + c = 6 370 + 2 384 = 8 754, a c = 6 370 + 439 = 6 809。
 - 解之得: a=7781.5。
 - $\nabla b^2 = a^2 c^2 = (a+c)(a-c) = 8754 \times 6809$
 - ∴ 卫星运行轨道的轨迹方程为 $\frac{x^2}{7.781.5^2} + \frac{y^2}{59.605.986} = 1$

$$\mathbb{E}[1]\frac{x^2}{60\ 551\ 742} + \frac{y^2}{59\ 605\ 986} = 1_{\circ}$$

【习题 3-1(B组)(第70页)】

- 1. (1) $y = \frac{2}{3}\sqrt{9-x^2}$, 化简得 $\frac{y^2}{4} = 1 \frac{x^2}{9}$
 - ∴ $\frac{x^2}{0} + \frac{y^2}{4} = 1(y \ge 0)$ 。 图略。
 - $(2)x = \frac{2}{3}\sqrt{9-y^2}$,化简得 $\frac{x^2}{4} + \frac{y^2}{9} = 1(x \ge 0)$ 。图略。
- 2. $\frac{x^2}{12^2} + \frac{y^2}{12^2} = 1$, $c = \sqrt{13^2 12^2} = 5_{\circ}$
 - $F_1(-5,0), F_2(5,0)$
 - 设M(x,y), $\therefore \frac{|MF_1|}{|MF_2|} = \frac{2}{3}$
 - ∴ $\frac{\sqrt{(x+5)^2+y^2}}{\sqrt{(x-5)^2+y^2}} = \frac{2}{3}$, 整理得 $x^2 + 26x + y^2 + 25 = 0$
 - 即 $(x+13)^2 + y^2 = 144$ 。此即为点 M 满足的方程,草图略。
- 3. : $a = 1.50 \times 10^8$, e = 0.02,
 - $\therefore c = ae = 1.50 \times 10^8 \times 0.02 = 3 \times 10^6$
 - $\therefore a + c = 1.53 \times 10^8, a c = 1.47 \times 10^8$
 - :: 地球到太阳的最远距离为 1. 53 × 10^8 km, 最近距离为 1. 47 × 10^8 km.

§2 抛物线

【练习1(第73页)】

- 1. : 焦点到准线的距离为3,且焦点在 x 轴正半轴上,
 - :. 抛物线的标准方程为 $y^2 = 6x$ 。
- 2. $y^2 = 12x$ $y^2 = 8x$
- 3. B

【练习2(第74页)】

- 1. (1) $y^2 = -12x_0$ (2) $y^2 = 2x_0$
- 2. (1) $y^2 = 2 \times 4\sqrt{3}x$, $p = 4\sqrt{3}$
 - :. 焦点坐标为 $(2\sqrt{3},0)$,准线方程为 $x = -2\sqrt{3}$ 。
 - $(2)x^2 = 2 \times 8y$, p = 8
 - ∴ 焦点坐标为(0,4),准线方程为 y = -4。
 - $(3)2y^2 + 5x = 0$, $\therefore y^2 = -\frac{5}{2}x = -2 \times \frac{5}{4}x_0$
 - $\therefore p = \frac{5}{4}$ 。 \therefore 焦点坐标为 $\left(-\frac{5}{8},0\right)$,准线方程为 $x = \frac{5}{8}$ 。
 - $(4)x^2 + 8y = 0$, $\therefore x^2 = -8y = -2 \times 4y_{\circ}$ $\therefore p = 4_{\circ}$
 - :. 焦点坐标为(0, -2),准线方程为y = 2。
- $3. \left(0, \frac{1}{4a}\right) \quad y = -\frac{1}{4a}$
- 4. : 动点 M 到定点 F(3,0) 的距离比 M 到直线 x = -1 的距离大 2, ... 动点 M 到定点 F(3,0) 的距离和 M 到直线 x = -3 的距离相等。...
 - $\frac{p}{2}$ = 3, $\therefore p$ = 6。 \therefore 抛物线标准方程为 y^2 = 12x。草图略。

【练习(第76页)】

- 1. D
- 2. (1)设抛物线方程为 $y^2 = 2px$,
 - $\therefore 16 = 2p \times 4, \therefore p = 2, \therefore y^2 = 4x_0$
 - $(2) : \frac{p}{2} = 5, : p = 10$
 - 又焦点为 F(0,5),: 抛物线方程为 $x^2 = 20y$ 。
 - $(3) : \frac{p}{2} = -8, : p = -16_{\circ}$
 - 又准线为y=8,:. 抛物线方程为 $x^2=-32y$ 。

3. x 的系数越大抛物线开口越大(草图略)。

【习题3-2(A组)(第76页)】

- 1. 点 *M* 的轨迹是以 F(3,0) 为焦点,x = -3 为准线的抛物线,它的方程 是 $y^2 = 12x_{\circ}$ (草图略)。
- 2. (1): 焦点到准线的距离为 6,: p = 6。又焦点在 x 轴上,: 抛物线方程为 $y^2 = 12x$ 或 $y^2 = -12x$ 。
 - (2): 准线方程为 $x = -\frac{5}{2}$, $\therefore p = 5$ 。 \therefore 抛物线方程为 $y^2 = 10x$ 。
- 3. 焦点为(2,0)的抛物线方程为 $y^2 = 8x$,焦点为(0,2)的抛物线方程为 $x^2 = 8x$ 。
- 4. (1)焦点坐标为 $\left(0, -\frac{1}{2}\right)$,准线方程为 $y = \frac{1}{2}$ 。
 - (2) $4x^2 3y = 0$ 变形为 $x^2 = \frac{3}{4}y = 2 \times \frac{3}{8}y_0$
 - :. 焦点坐标为 $\left(0, \frac{3}{16}\right)$,准线方程为 $y = -\frac{3}{16}$
 - (3) $2y^2 = -\sqrt{3}x$ 变形为 $y^2 = -\frac{\sqrt{3}}{2}x = -2 \times \frac{\sqrt{3}}{4}x_{\circ}$
 - :: 焦点坐标为 $\left(-\frac{\sqrt{3}}{8},0\right)$,准线方程为 $x = \frac{\sqrt{3}}{8}$ 。
 - $(4)y^2 6\sqrt{2}x = 0$ 变形为 $y^2 = 6\sqrt{2}x = 2 \times 3\sqrt{2}x$,
 - :. 焦点坐标为 $\left(\frac{3\sqrt{2}}{2},0\right)$,准线方程为 $x=-\frac{3\sqrt{2}}{2}$
- 5. : 点 M 到定点 F(2,0) 的距离比它到直线 x = -3 的距离小 1, : 点 M 到定点 F(2,0) 的距离和它到直线 x = -2 的距离相等。: 点 M 的 轨迹是以 F(2,0) 为焦点,x = -2 为准线的抛物线。: 其方程是 $y^2 = 8x$ 。
- 6. (1): 准线方程是 y = 2, $\therefore \frac{p}{2} = 2$, $\therefore p = 4$ 。
 - ∴ 抛物线方程是 $x^2 = -8y$ 。草图略。
 - (2): 顶点与焦点的距离是 8,:: $\frac{p}{2}$ = 8,:: p = 16。
 - :. 抛物线方程是 $y^2 = 32x$ 或 $y^2 = -32x$ 。草图略。
 - (3)设抛物线方程为 $x^2 = 2py$ 。将 P(-6, -3) 代入得 $36 = 2p \times (-3)$, p = -6。抛物线方程为 $x^2 = -12y$ 。草图略。
 - (4): 焦点在 3x 4y 12 = 0 上,对称轴是 x 轴,: 令 y = 0 得x = 4。 当焦点为(4,0)时,方程为 $y^2 = 16x$ 。草图略。
- 7. 设 $M(x_0, y_0)$, $y^2 = 2px$ 的准线方程是 $x = -\frac{p}{2}$,
 - \therefore 点 M 到准线的距离是 $x_0 + \frac{p}{2}$ 。
 - $\nabla |MF| = 2p$, $\therefore 2p = x_0 + \frac{p}{2}$, $\therefore x_0 = \frac{3}{2}p_0$
 - 将 $x_0 = \frac{3}{2}p$ 代入 $y^2 = 2px$ 得 $y_0 = \pm \sqrt{3}p_0$
 - $\therefore M\left(\frac{3}{2}p,\sqrt{3}p\right) \overrightarrow{\otimes} M\left(\frac{3}{2}p,-\sqrt{3}p\right)_{\circ}$
- 8. 设抛物线方程为 $x^2 = 2py(p > 0)$, $\therefore B\left(\frac{7}{2}, \frac{7}{10}\right)$,
 - $\therefore \frac{49}{4} = 2p \times \frac{7}{10}, \therefore p = \frac{35}{4}$
 - :. 抛物线的方程为 $x^2 = \frac{35}{2}y_0$
- 9. 以拱桥的顶点为原点,过拱桥顶点垂直于水面的直线为y 轴建立直角坐标系,设其方程为 $x^2 = -2py(p>0)$ 。
 - 易知点(2,-2)在抛物线上,
 - $\therefore 4 = -2p \times (-2), \therefore p = 1_{\circ} \therefore x^2 = -2y_{\circ}$
 - $\stackrel{\text{def}}{=} y = -3$ 时, $x^2 = -2 \times (-3)$, ∴ $x = \pm \sqrt{6}$
 - ∴ 水面下降 1 m 后,水面宽为 2√6 m。
- 10. 方法一:由对称性可设正三角形一个顶点的坐标为 $A(x_0, y_0)$,则另一个顶点坐标为 $B(x_0, -y_0)$ 。
 - 由|OA| = |OB| = |AB|知 $2y_0 = \sqrt{x_0^2 + y_0^2}$,
 - $\nabla y_0^2 = 2px_0$, $\therefore y_0 = \pm 2\sqrt{3}p_0$

- ∴ 正三角形的边长为 $2|y_0| = 4\sqrt{3}p_0$
- 方法二:设正三角形一条边所在的直线方程为 $y = \frac{\sqrt{3}}{3}x$ 。代人 $y^2 =$
- $2px \neq \frac{1}{3}x^2 = 2px$, $\therefore x = 6p$, $\therefore y = 2\sqrt{3}p$
- :. 正三角形边长为 $\sqrt{36p^2 + 12p^2} = 4\sqrt{3}p_{\odot}$

【习题3-2(B组)(第77页)】

- 1. $\because \frac{x^2}{25} + \frac{y^2}{9} = 1$, $\therefore a = 5$, b = 3, c = 4。 \therefore 左焦点为(-4,0)。 \therefore 以(-4,0)为焦点,原点为中心的抛物线方程是 $y^2 = -16x$ 。
- 2. B 3. B
- 4. 设抛物线的方程为 $y^2 = 2px(p > 0)$,设直线方程为y = t。

由
$$\begin{cases} y^2 = 2px, \\ y = t, \end{cases}$$
 得 $x = \frac{t^2}{2p}$

:. 与抛物线的轴平行的直线和抛物线只有一个交点。

§3 双曲线

【练习(第80页)】

- 1. $(1)\frac{x^2}{9} \frac{y^2}{16} = 1_{\circ}$
 - $(2)\frac{y^2}{64} \frac{x^2}{36} = 1_{\circ}$
 - (3): c=5,且焦点为(0,-5),(0,5),
 - ∴ 设其方程为 $\frac{y^2}{a^2} \frac{x^2}{25 a^2} = 1$ 。
 - 又双曲线过点 $\left(2, \frac{3}{2}\sqrt{5}\right)$, $\therefore \frac{45}{4a^2} \frac{4}{25 a^2} = 1_{\circ}$
 - 解之得 $a^2 = 9$ 或 $a^2 = \frac{125}{4}$ (舍去)。
 - :. 所求双曲线方程为 $\frac{y^2}{9} \frac{x^2}{16} = 1$ 。
- 2. $\frac{x^2}{25} + \frac{y^2}{9} = 1 + a^2 = 25, b^2 = 9, \therefore F_1(-4,0), F_2(4,0)$
 - $\nabla x^2 15y^2 = 15$, $\oplus \frac{x^2}{15} y^2 = 1$, $\therefore F_1'(-4,0)$, $F_2'(4,0)$
 - ∴ 椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 与双曲线 $x^2 15y^2 = 15$ 有相同的焦点。

【练习(第82页)】

- 1. (1): $\frac{y^2}{4} \frac{x^2}{4} = 1$,: $2a = 4,2b = 4,2c = 4\sqrt{2}$, $e = \sqrt{2}$
 - $(2) : \frac{x^2}{9} \frac{y^2}{81} = 1$,
 - $\therefore 2a = 6, 2b = 18, 2c = 6\sqrt{10}, e = \frac{3\sqrt{10}}{3} = \sqrt{10}$
 - $(3) : \frac{x^2}{16} \frac{y^2}{25} = 1, \therefore 2a = 8, 2b = 10, 2c = 2\sqrt{41}, e = \frac{\sqrt{41}}{4}c$
 - (4): $\frac{y^2}{25} \frac{x^2}{9} = 1$, $\therefore 2a = 10, 2b = 6, 2c = 2\sqrt{34}$, $e = \frac{\sqrt{34}}{5}$
- 2. $\therefore \frac{x^2}{9} \frac{y^2}{16} = 1 \Leftrightarrow a = 3, c = 5, \therefore e_1 = \frac{5}{3};$
 - $\sqrt{\frac{y^2}{16} \frac{x^2}{9}} = 1 \Leftrightarrow a = 4, c = 5, \therefore e_2 = \frac{5}{4}$
 - $\therefore \frac{1}{e_1^2} + \frac{1}{e_2^2} = \frac{3^2}{5^2} + \frac{4^2}{5^2} = 1,$
 - 即两双曲线的离心率满足 $e_1^{-2} + e_2^{-2} = 1$ 。

【习题3-3(A组)(第83页)】

- 1. $(1)F_1(-5,0), F_2(5,0)_{\circ}$
 - $(2) F_1(-3\sqrt{5},0), F_2(3\sqrt{5},0)$
 - $(3)F_1(0,-4),F_2(0,4)_{\circ}$
 - $(4)F_1(0,-5),F_2(0,5)$
- 2. : $F_1(-4,0)$, $F_2(4,0)$, $\exists ||PF_1| |PF_2|| = 6$,
 - $\therefore 2a = 6, \therefore a = 3, c = 4_{\circ} \therefore b^2 = 16 9 = 7_{\circ}$
- :. 曲线方程为 $\frac{x^2}{0} \frac{y^2}{7} = 1$ 。草图略。
- 3. : $F_1(0, -5)$, $F_2(0, 5)$, $∃ | |PF_1| |PF_2| | = 6$,

- $\therefore 2a = 6, \therefore a = 3, c = 5_{\circ} \therefore b^2 = 16_{\circ}$
- :. 曲线方程为 $\frac{y^2}{9} \frac{x^2}{16} = 1$ 。草图略。
- 4. 设双曲线方程为 $mx^2 + ny^2 = 1(mn < 0)$,

$$\therefore \begin{cases} 9m + 32n = 1, \\ \frac{81}{16}m + 25n = 1, \end{cases}$$
 $\neq \begin{cases} m = -\frac{1}{9}, \\ n = \frac{1}{16}, \end{cases}$

- :. 双曲线的方程为 $\frac{y^2}{16} \frac{x^2}{9} = 1$ 。
- 5. (1) $\frac{x^2}{16} \frac{y^2}{9} = 1$ 中, 2a = 8, 2b = 6, 2c = 10, $e = \frac{5}{4}$ 。草图略。

$$(2)5x^2 - 20y^2 = 100$$
, $\mathbb{H}\frac{x^2}{20} - \frac{y^2}{5} = 1 + 2a = 4\sqrt{5}$, $2b = 2\sqrt{5}$, $2c = 10$,

$$\therefore e = \frac{\sqrt{5}}{2}$$
。草图略。

- $(3)x^2 y^2 = 1$ 中 $2a = 2, 2b = 2, 2c = 2\sqrt{2}, \therefore e = \sqrt{2}_{\circ}$ 草图略。
- (4) $16x^2 9y^2 = -144$, $\mathbb{H} \frac{y^2}{16} \frac{x^2}{9} = 1 + 2a = 8, 2b = 6, 2c = 10$, ∴ $e = \frac{1}{2}$

 $\frac{5}{4}$ 。草图略。

- 6. $\because \frac{x^2}{16} + \frac{y^2}{9} = 1$ 短轴的两个顶点为 $F_1(0,3)$, $F_2(0,-3)$,
 - : 双曲线的标准方程可设为 $\frac{y^2}{a^2} \frac{x^2}{9 a^2} = 1$ 。

将
$$A(4,-5)$$
代入得 $\frac{25}{a^2} - \frac{16}{9-a^2} = 1$,解得 $a^2 = 5$ 或 $a^2 = 45$ (舍去)。

- :. 所求双曲线方程为 $\frac{y^2}{5} \frac{x^2}{4} = 1$ 。
- 7. 以 AB 所在的直线为 x 轴, AB 的垂直平分线为 y 轴建立直角坐标系可知 A(-700,0), B(700,0), 设爆炸点 P(x,y), 则 $||PA|-|PB||=3\times340=1020$ 。
 - $\therefore 1020 < |AB|$,
 - \therefore 点 P 在以 A,B 为焦点的双曲线上。
 - :. c = 700, $a = 510_{\circ}$:. $b^2 = c^2 a^2 = 229 900_{\circ}$
 - :. 点 P 的轨迹方程为 $\frac{x^2}{260\ 100} \frac{y^2}{229\ 900} = 1$ 。

【习题3-3(B组)(第83页)】

$$\therefore \frac{y^2}{5} - \frac{x^2}{m} = 1, \therefore a = \sqrt{5}, c = \sqrt{5 + m}$$

$$\therefore 1 < \sqrt{\frac{5+m}{5}} < 2_{\circ} \therefore 0 < m < 15_{\circ}$$

§4 曲线与方程

【思考交流(第86页)】

- (1)由题意知 $\frac{\sqrt{(x-5)^2+y^2}}{\left|x-\frac{16}{5}\right|} = \frac{5}{4}$,
- $\mathbb{E}[14 \sqrt{(x-5)^2 + y^2}] = |5x 16|$
- 将上式两边平方并化简,得 $\frac{x^2}{16} \frac{y^2}{9} = 1$,

即该曲线的方程为 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 。

- (2)与例2的相同之处是:到定点的距离与到定直线的距离之比是常
- 数。其中例2的轨迹是椭圆,该比值为 $\frac{1}{2}$;本题的轨迹是双曲线,该比

值是 5/4。

【练习(第86页)】

- 1. 以抛物线标准方程的解为坐标的点都在抛物线上, 抛物线上点的坐标都是这个标准方程的解; 以双曲线标准方程的解为坐标的点都在双曲线上, 双曲线上点的坐标都是这个标准方程的解。
- 2. 点 A(1,3), B(-1,-1) 在方程 $y = x^2 + 2x$ 的曲线上; 点 C(2,2) 不在 方程 $y = x^2 + 2x$ 的曲线上。
- 3. $:: k_{AB} = \frac{2}{1 (-1)} = 1$, 又 AB 的中点为 M(0,1),

∴ 点 P 满足的方程是 y-1 = -(x-0), 即 x+y-1=0。

【练习(第87页)】

- 1. 由题意知 $\frac{|MF|}{|x-8|}$ =2,即 $\frac{\sqrt{(x-2)^2+y^2}}{|x-8|}$ =2,
 - 化简整理,得 $3x^2 60x y^2 + 252 = 0$

$$\text{th} \begin{cases}
\frac{x^2}{25} + \frac{y^2}{16} = 1, \\
(x+3)^2 + y^2 = 9,
\end{cases} \begin{cases}
x = -\frac{10}{3}, \\
y = \frac{4\sqrt{5}}{3},
\end{cases} \begin{cases}
x = -\frac{10}{3}, \\
y = -\frac{4\sqrt{5}}{3},
\end{cases}$$

:. 点 P 到直线 $x = -\frac{25}{3}$ 的距离是 $-\frac{10}{3} + \frac{25}{3} = 5$ 。

【练习(第89页)】

- 1. 点 A(-1,-1), C(2,3) 不在方程 $x^2 + xy + y^2 = 1$ 的曲线上, 点 B(1,-1) 在方程 $x^2 + xy + y^2 = 1$ 的曲线上。
- 2. 由 $\begin{cases} x y = 0, \\ 2x^2 + y^2 = 2, \end{cases}$ 得 $\begin{cases} x_1 = \frac{\sqrt{6}}{3}, \\ y_1 = \frac{\sqrt{6}}{3}, \\ y_2 = -\frac{\sqrt{6}}{3}, \end{cases}$ ∴ 弦 长 为

$$\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=\sqrt{\left(\frac{2\sqrt{6}}{3}\right)^{2}+\left(\frac{2\sqrt{6}}{3}\right)^{2}}=\frac{4\sqrt{3}}{3}.$$

【习题 3-4(A组)(第89页)】

- 1. 设 M(x,y),则 $|xy| = 1, :: xy = \pm 1$ 。
 - :. 点 *M* 满足的方程为 $y = \frac{1}{x}$ 或 $y = -\frac{1}{x}$ 。
- 2. 设 P(x,y),则 $|PA|^2 + |PB|^2 = 64$,即 $(x+4)^2 + y^2 + (x-4)^2 + y^2 = 64$ 。∴ $x^2 + y^2 = 16$,故点 P 满足的方程为 $x^2 + y^2 = 16$ 。
- 3. 由 $\begin{cases} 3x 2y = 0, \\ 4x^2 + y^2 = 25, \end{cases}$ 得 $\begin{cases} x = 2, \\ y = 3, \end{cases}$ 或 $\begin{cases} x = -2, \\ y = -3, \end{cases}$ 立直线与曲线的交点坐标为 (2,3), (-2,-3)
- 4. 设圆心 C(x,y)。:: 圆心到定点 F(0,2) 的距离与它到定直线 y = -2 的距离相等,: 圆心 C 的轨迹是以 F 为焦点, y = -2 为准线的抛物线。:: 抛物线的方程为 $x^2 = 8y$ 。
- 5. $\because y^2 = 4x$, ∴ 焦点坐标为 F(1,0)。 ∴ 直线方程为y = x 1,代入 $y^2 = 4x$ 得交点坐标为 $(3 + 2\sqrt{2}, 2 + 2\sqrt{2})$ 和 $(3 2\sqrt{2}, 2 2\sqrt{2})$ 。 ∴ $|AB| = \sqrt{32 + 32} = 8$ 。
- 6. 设 $y^2 = 2px(p > 0)$ 的焦点为 $F\left(\frac{p}{2}, 0\right)$, 当直线斜率不存在时, 直线方

程为 $x = \frac{p}{2}$,代入 $y^2 = 2px$ 得 $y = \pm p$, $\therefore y_1 y_2 = -p^2$; 当直线斜率存在

时,设斜率为 $k(k \neq 0)$,则直线方程为 $y = k\left(x - \frac{p}{2}\right)$,即 $x = \frac{y}{k}$ +

 $\frac{p}{2}$,将其代人 $y^2 = 2px$,消去 x 得 $ky^2 - 2py - p^2k = 0$ 。由根与系数的关系知 $y_1y_2 = -p^2$ 。综上可得: $y_1y_2 = -p^2$ 。

7. 设 $A(x_1, y_1)$, $B(x_2, y_2)$, 由弦长公式知

$$|AB| = \sqrt{1 + k^2} |x_1 - x_2|_{\circ}$$

直线 x-2y+2=0 可化为 $y=\frac{1}{2}x+1$,代入 $x^2+4y^2=4$ 得 x^2+

$$4\left(\frac{1}{4}x^2 + x + 1\right) = 4_{\circ}$$

- $\therefore 2x^2 + 4x = 0, \therefore x_1 = 0, x_2 = -2$
- $\therefore |AB| = 2 \times \sqrt{1 + \frac{1}{4}} = \sqrt{5}_{\circ}$
- 8. 当斜率不存在时,直线方程为x=0,此时只有一个公共点;当斜率存在时,设斜率为k,则直线方程为y-2=kx,即y=kx+2,将其代入 $y=x^2+1$ 得 $x^2+1-kx-2=0$,即 $x^2-kx-1=0$ 。
 - $\therefore \Delta = k^2 + 4 > 0$, \therefore 当斜率存在时, 过点 P(0,2) 的直线与抛物线 $y = x^2 + 1$ 有两个公共点。

综上,当过点 P(0,2) 的直线的斜率不存在时,直线与抛物线只有一个公共点;当斜率存在时,过点 P(0,2) 的直线与抛物线有两个公共点。

【习题3-4(B组)(第90页)】

- - : 直线 y = kx 1 与双曲线没有公共点,

$$\therefore \begin{cases} 1 - k^2 \neq 0, \\ \Delta = 4k^2 - 4(1 - k^2)(-5) < 0, \end{cases}$$

$$\therefore k^2 > \frac{5}{4}$$
, $\mathbb{E}[k > \frac{\sqrt{5}}{2}] \stackrel{\text{def}}{\otimes} k < -\frac{\sqrt{5}}{2}$

- 2. 设点 B 的坐标为 (x_1,y_1) , AB 的中点为 C(x,y), 因为 A(0,-1), 所以 $\begin{cases} y_1 = 2y+1, \\ x_1 = 2x, \end{cases}$ 所以 $2y+1=2(2x)^2+1$, 经化简得 $y=4x^2$ 。
- 3. 因为两条曲线的交点为 $P(x_0,y_0)$,所以 $f_1(x_0,y_0)=0$, $f_2(x_0,y_0)=0$,所以 $f_1(x_0,y_0)+\lambda f_2(x_0,y_0)=0$,所以方程 $f_1(x,y)+\lambda f_2(x,y)=0$ 的曲线经过点 P_0
- 4. 设 A(0,a) , B(b,0) , P(x,y) , 因为点 P 分线段 AB 所成的比为1:2, $\text{所以} \begin{cases} b=3x, \\ a=\frac{3}{2}y, \end{cases} \text{因为} |AB|=2$, 所以 $a^2+b^2=4$, 所以点 P 满足的方程

$$\frac{y}{4}y^2 + 9x^2 = 4$$
, $\mathbb{E}\left[\frac{y^2}{\frac{16}{9}} + \frac{x^2}{\frac{4}{9}} = 1\right]$

【复习题三(A组)(第96页)】

- 1. (1)将 $x^2 + 4y^2 = 16$ 变形得 $\frac{x^2}{16} + \frac{y^2}{4} = 1$,所以 a = 4, b = 2, $c^2 = a^2 b^2 = 12$,从而 $c = 2\sqrt{3}$ 。长轴长2a = 8,短轴长2b = 4,焦点坐标为(±2 $\sqrt{3}$,0),离心率 $e = \frac{c}{a} = \frac{\sqrt{3}}{2}$,顶点坐标为(±4,0)和(0,±2)。草图略。
 - (2)将 $9x^2 + y^2 = 81$ 变形得 $\frac{x^2}{9} + \frac{y^2}{81} = 1$,所以 a = 9, b = 3, $c^2 = a^2 b^2 = 72$,从而 $c = 6\sqrt{2}$ 。长轴长2a = 18,短轴长2b = 6,焦点坐标为(0, $\pm 6\sqrt{2}$),离心率 $e = \frac{c}{a} = \frac{2\sqrt{2}}{3}$,顶点坐标为(± 3 ,0)和(0, ± 9)。草图略。
- 2. (1) 当 m < 2 时, 5 m > 2 m > 0, 方程 $\frac{x^2}{5 m} + \frac{y^2}{2 m} = 1$ 表示焦点在 x 轴上的椭圆。
 - (2) 当 2 < m < 5 时, 5 m > 0, 2 m < 0, 方程 $\frac{x^2}{5 m} + \frac{y^2}{2 m} = 1$ 可以变形 为 $\frac{x^2}{5 m} \frac{y^2}{m 2} = 1$, 表示焦点在 x 轴上的双曲线。
- 3. 当 $\alpha = 0$ 时,方程 $x^2 + y^2 \cos \alpha = 1$ 即为 $x^2 + y^2 = 1$,表示单位圆; 当 $\alpha \in \left(0, \frac{\pi}{2}\right)$ 时,方程 $x^2 + y^2 \cos \alpha = 1$ 表示焦点在 y 轴上的椭圆; 当 $\alpha = \frac{\pi}{2}$ 时,方程 $x^2 + y^2 \cos \alpha = 1$ 即为 $x^2 = 1$, $x = \pm 1$,表示两条直线;

当 $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ 时,方程 $x^2 + y^2 \cos \alpha = 1$ 表示焦点在x 轴上的双曲线; 当 $\alpha = \pi$ 时,方程 $x^2 + y^2 \cos \alpha = 1$ 即为 $x^2 - y^2 = 1$,表示焦点在x 轴上的等轴双曲线。

- 4. 设动圆圆心 C 的坐标为(x,y),半径为 r,因为动圆与直线 x+5=0 相切,所 以 有 |x+5|=r。 又 因 为 圆 经 过 点 F(5,0),所 以 $\sqrt{(x-5)^2+y^2}=r$,从而有 $\sqrt{(x-5)^2+y^2}=|x+5|$,整理得 $y^2=20x$ 。 图略。
- 6. 由抛物线方程 $y^2 = 4x$ 知,焦点坐标为 F(1,0),所以过点 F 垂直于 x 轴的直线的方程为 x = 1,由 $\begin{cases} x = 1 \\ y^2 = 4x \end{cases}$ 解得 A(1,2),B(1,-2),所以 以 F 为圆心 AB 为直径的圆的方程为 $(x-1)^2 + y^2 = 4$ 。
- 7. 因为 $\angle F_1 P F_2 = 90^\circ$,所以 $|PF_1|^2 + |PF_2|^2 = |F_1 F_2|^2 = 4c^2 = 20$,由双曲线的定义知 $|PF_1| |PF_2| = 2a = 4$,所以 $|PF_1| \cdot |PF_2| = 2$,故 $S_{\triangle P F_1 F_2} = \frac{1}{2} |PF_1| \cdot |PF_2| = 1$ 。
- 8. (代点作差法)设以 P(2,-1) 为中点的弦为 AB,设 $A(x_1,y_1)$, $B(x_2,y_2)$ 。因为 $\frac{x_1^2}{16}+\frac{y_1^2}{4}=1$, 两式相减得 $\frac{(x_1-x_2)(x_1+x_2)}{16}+\frac{(y_1-y_2)(y_1+y_2)}{4}=0$,因为点 P(2,-1) 为弦 AB 的中点,所以 $x_1+x_2=4$, $y_1+y_2=-2$,代人上式得 $\frac{y_1-y_2}{x_1-x_2}=\frac{1}{2}$,即直线 AB 的斜率为 $\frac{1}{2}$,所以所求直线的方程为 $y-(-1)=\frac{1}{2}(x-2)$,化简得 x-2y-4=0。
- 9. 不妨设圆经过双曲线的右焦点(5,0)和右顶点(3,0),那么圆心的坐标为 $M(4,y_0)$,因为圆心在双曲线上,所以 $\frac{16}{9} \frac{y_0^2}{16} = 1$,解得 $y_0^2 = \frac{112}{9}$,所以圆心到双曲线中心的距离 $|MO| = \sqrt{16 + \frac{112}{9}} = \sqrt{\frac{256}{9}} = \frac{16}{3}$ 。

【复习题三(B组)(第96页)】

- 1. 由双曲线 $\frac{x^2}{9k^2} \frac{y^2}{4k^2} = 1$ 知 $a = 3 \mid k \mid$, 圆 $x^2 + y^2 = 1$ 的半径为 1, 数形结合观察图像可知,当 $a = 3 \mid k \mid$ > 1 时, 双曲线与圆没有公共点,所以 $\mid k \mid > \frac{1}{3}$, 即 $k > \frac{1}{3}$ 或 $k < -\frac{1}{3}$ 。
- 2. 由椭圆 $\frac{x^2}{9} + \frac{y^2}{25} = 1$ 知 a = 5, b = 3, c = 4, 焦点为 $(0, \pm 4)$,离心率为 $e_1 = \frac{4}{5}$,所以双曲线的离心率为 $e_2 = 2$,由双曲线的焦点为 $(0, \pm 4)$, 知 c' = 4,所以 $a' = 2, b'^2 = 12$,故双曲线的方程为 $\frac{y^2}{4} \frac{x^2}{12} = 1$ 。
- 3. 双曲线 $\frac{(x-8)^2}{16} \frac{y^2}{9} = 1$ 的中心为(8,0), a = 4, b = 3, c = 5, 左焦点为(3,0), 左顶点为(4,0), 所以椭圆的右焦点为(3,0), 右顶点为(4,0), 所以在椭圆中有 a c = 1。又椭圆焦点到相应准线的距离为 $p = \frac{a^2}{c} c = 2.25$, 解得 a = 5, c = 4, 所以椭圆的中心为(-1,0), 且 $b^2 = a^2 c^2 = 9$, 故椭圆的方程为 $\frac{(x+1)^2}{25} + \frac{y^2}{9} = 1$ 。