

Bioacoustics

Client: Professor Maddie Schroth-Glanz

Team Members

Sophia Chung

Anagha Sikha Sucheen Sundaram

1. Introduction

Bioacoustics research helps with the advancement of

Passive Acoustic Monitoring along the Central Coast

- Insights into animal behavior
- Environmental impact assessment

Data

Hydrophone recordings (audio files)

- Monterey
 - 2–3 hours each
- Cal Poly Pier at Avila
 - 30 minutes each

Project Roadmap

Understand past team's work

Make changes to past model Pivot to new framework

2. Preprocessing

Short-Time Fourier Transform

Frequency analysis over time

Per-Channel Energy Normalization

Pre-PCEN Spectrogram

Post-PCEN Spectrogram

Intensity (dB)

Time (sec)

Intensity (dB)

Mel Conversion

Time (min)

Time (min)

3. Model

Variational Auto Encoder

VAE Ensemble

Structure

39 audio files →

10 VAE models

Training

2 hours of data per model

Deployment

Bounding box predictions

4. Postprocessing

Our model produces too many predictions!

predicted = 20 * annotated

Non-Maximum Suppression

Box Combination

Agglomerative Hierarchical Clustering

Box Combination

Intersection

5. Running & Results

AWS SageMaker

Code

39 audio files →
10 VAE models

Computational Power

Used fastest kernel

Cost

\$450 > majority of our budget

Metrics

Intersection over Union

	Number of Predicted Boxes	Accuracy	Precision	Recall	F1
Before Box Combination	503.64103	0.00076	0.00077	0.00675	0.00137
After Box Combination	177.64103	0.00214	0.00216	0.00651	0.00302

^{*}averages

6. New Frameworks

Convolutional Neural Network

Object Detection

Better for image-related tasks

Past Implementation

Blackbox model

huggingface 🙉

DETR

Aspects of CNN & VAE

Split

Training, Validation, Test Input

COCO format: [x_min, y_min, width, height]

7. Future Work

Continue Detection

- Continue huggingface adaptation
- Continue 2022 team's CNN model

Implement Classification

• Whale

• Human

Other
 ●

Thank you to

- Professor Schroth-Glanz for her guidance throughout this project
- Dr. Ventura and Dr. Glanz for their support
- Our classmates for working hard these past two quarters

