

Ein Verfahren zur passwortlosen Authentifizierung

Mirko Oleszuk

Institut für Informatik Heinrich-Heine-Universität Düsseldorf

19. Dezember 2013

10. : phrim

Einleitung

• Passwörter sind ...!

- Passwörter sind ...!
 - kurz, einfach und werden mehrmals verwendet

- Passwörter sind …!
 - · kurz, einfach und werden mehrmals verwendet
- sich viele Passwörter merken ist nicht komfortabel

- Passwörter sind ...!
 - kurz, einfach und werden mehrmals verwendet
- sich viele Passwörter merken ist nicht komfortabel
- Passwörter werden (manchmal) im Klartext gespeichert

- Passwörter sind ...!
 - kurz, einfach und werden mehrmals verwendet
- sich viele Passwörter merken ist nicht komfortabel
- Passwörter werden (manchmal) im Klartext gespeichert
- ⇒ Wir brauchen eine Lösung ohne Passwörter!

- Passwörter sind ...!
 - kurz, einfach und werden mehrmals verwendet
- sich viele Passwörter merken ist nicht komfortabel
- Passwörter werden (manchmal) im Klartext gespeichert
- ⇒ Wir brauchen eine Lösung ohne Passwörter!
 - kostenlos, einfach, sicher

Das RSA-Kryptosystem

- jeder Benutzer besitzt ein Schlüsselpaar
 - öffentlicher Schlüssel
 - privater Schlüssel

Das RSA-Kryptosystem

- jeder Benutzer besitzt ein Schlüsselpaar
 - öffentlicher Schlüssel
 - privater Schlüssel

Verschlüsselung:

Klartext Öffentlicher Schlüssel Geheimtext

Das RSA-Kryptosystem

- jeder Benutzer besitzt ein Schlüsselpaar
 - öffentlicher Schlüssel
 - privater Schlüssel

Verschlüsselung:

Klartext Öffentlicher Schlüssel Geheimtext

Entschlüsselung:

Geheimtext — privater Schlüssel Klartext

Das RSA-Kryptosystem

- jeder Benutzer besitzt ein Schlüsselpaar
 - öffentlicher Schlüssel
 - privater Schlüssel

Verschlüsselung:

Klartext Öffentlicher Schlüssel Geheimtext

Entschlüsselung:

asymmetrisch

Das RSA-Kryptosystem

- jeder Benutzer besitzt ein Schlüsselpaar
 - öffentlicher Schlüssel
 - privater Schlüssel

Signieren:

Klartext privater Schlüssel "Geheimtext" (signierter Klartext)

Verifizierung:

"Geheimtext" Öffentlicher Schlüssel Klartext

Das RSA-Kryptosystem

- jeder Benutzer besitzt ein Schlüsselpaar
 - öffentlicher Schlüssel
 - privater Schlüssel

Signieren:

Klartext privater Schlüssel "Geheimtext" (signierter Klartext)

Verifizierung:

asymmetrisch ≡ Public-Key-Kryptographie

Überblick & Vorbereitung

Idee:

• signierte Daten identifizieren den Benutzer eindeutig

Überblick & Vorbereitung

Idee:

• signierte Daten identifizieren den Benutzer eindeutig

Der Client

- kennt seinen privaten Schlüssel
- kennt seinen Benutzernamen

Überblick & Vorbereitung

Idee:

signierte Daten identifizieren den Benutzer eindeutig

Der Client

- kennt seinen privaten Schlüssel
- kennt seinen Benutzernamen

Der Server

- kennt den öffentlichen Schlüssel des Clients
- und dieser ist mit dem Benutzerkonto assoziiert

PKWL 2.0 - Proof-of-Work-System

PKWL 2.0 - Proof-of-Work-System

Demo

- Sicherheit per Design
 - Proof-of-Work-System
 - RSA-Kryptosystem

- Sicherheit per Design
 - Proof-of-Work-System
 - RSA-Kryptosystem
- Performance
 - 2048 Bit-Schlüssellänge ca. 13 Sekunden

- Sicherheit per Design
 - Proof-of-Work-System
 - RSA-Kryptosystem
- Performance
 - 2048 Bit-Schlüssellänge ca. 13 Sekunden
- Komfort
 - keine Konfiguration beim Server und Client nötig
 - vollständige Bedienung über die graphische Oberfläche
 - im Alltag: Zwei Mausklicks für die Authentifizierung

Fazit

• Passwörter gehören der Vergangenheit an

- Passwörter gehören der Vergangenheit an
- PKWL bietet Sicherheit, Performance und Komfort

- Passwörter gehören der Vergangenheit an
- PKWL bietet Sicherheit, Performance und Komfort
- passwortlose Authentifizierung funktioniert!

- Passwörter gehören der Vergangenheit an
- PKWL bietet Sicherheit, Performance und Komfort
- passwortlose Authentifizierung funktioniert!
- Ausblick in die Zukunft

- Passwörter gehören der Vergangenheit an
- PKWL bietet Sicherheit, Performance und Komfort
- passwortlose Authentifizierung funktioniert!
- Ausblick in die Zukunft
 - dynamische Zeit-Anpassung des Proof-of-Work-Systems

- Passwörter gehören der Vergangenheit an
- PKWL bietet Sicherheit, Performance und Komfort
- passwortlose Authentifizierung funktioniert!
- Ausblick in die Zukunft
 - dynamische Zeit-Anpassung des Proof-of-Work-Systems
 - automatische Authentifizierung im Hintergrund

- Passwörter gehören der Vergangenheit an
- PKWL bietet Sicherheit, Performance und Komfort
- passwortlose Authentifizierung funktioniert!
- Ausblick in die Zukunft
 - dynamische Zeit-Anpassung des Proof-of-Work-Systems
 - automatische Authentifizierung im Hintergrund
 - W3C plant eine Web Cryptography API

Fragen?

• Source-Code: https://github.com/mirkoole/PKWL