TABLE 4 Some Straight-Chain Alkyl Groups			
Alkane	Name	Alkyl group	Name
CH ₄	methane	-CH ₃	methyl
CH ₃ -CH ₃	ethane	−CH ₂ −CH ₃	ethyl
CH ₃ -CH ₂ -CH ₃	propane	-CH ₂ -CH ₂ -CH ₃	propyl
CH ₃ -CH ₂ -CH ₂ -CH ₃	butane	-CH ₂ -CH ₂ -CH ₂ -CH ₃	butyl
CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃	pentane	$-CH_2-CH_2-CH_2-CH_2-CH_3$	pentyl

Branched-Chain Alkane Nomenclature

The naming of branched-chain alkanes also follows a systematic method. The hydrocarbon branches of alkanes are alkyl groups. **Alkyl groups** are groups of atoms that are formed when one hydrogen atom is removed from an alkane molecule. Alkyl groups are named by replacing the suffix -ane of the parent alkane with the suffix -yl. Some examples are shown in **Table 4.** Alkyl group names are used when naming branched-chain alkanes. We will only present the method for naming simple branched-chain alkanes with only straight-chain alkyl groups. Consider the following molecule.

To name this molecule, locate the parent hydrocarbon. The parent hydrocarbon is the longest continuous chain that contains the most straight-chain branches. In this molecule, there are two chains that are eight carbon atoms long. The parent hydrocarbon is the chain that contains the most straight-chain branches. Do not be tricked by the way the molecule is drawn. The longest chain may be shown bent.

NOT