

☆☆☆☆ Email: support@willar.com

M 1602

液晶显示模块使用手册

假如真子http://www.willar.com

☆☆☆ Email: support@willar.com

一. 基本特征

1. 显示特性

- 单 5V 电源电压,低功耗、长寿命、高可靠性
- 内置 192 种字符(160 个 5×7 点阵字符和 32 个 5×10 点阵字符)
- 具有 64 个字节的自定义字符 RAM,可自定义 8 个 5×8 点阵字符或四个 5×11 点阵字符
- 显示方式: STN、半透、正显
- 驱动方式: 1/16DUTY, 1/5BIAS
- 视角方向:6点
- 背光方式:底部 LED
- 通讯方式: 4位或8位并口可选
- 标准的接口特性,适配 MC51 和 M6800 系列 MPU 的操作时序。

2. 物理特性

外型尺寸	80*36*14	单位
可视范围	64.6(W) X 16.0(H)	mm
显示容量	16字符二行	
点尺寸	0.55 X 0.75	mm
点间距	0.08	mm

3. 外型尺寸图

4. 结构块图

☆☆☆☆ Email: support@willar.com

二 电气参数:

1 极限参数

项	目	符号	最小值	最大值	单位	注 释
电源电压	逻辑	Vdd	0	7.0	V	
电你 电压	LCD 驱动	Vdd – Vee	0	6.5	V	
输入电压		Vi	0	Vdd	V	
操作温度		Тор	0	50	$^{\circ}\!\mathbb{C}$	
储存温度		Tstg	-20	70	$^{\circ}$	
湿度		\nearrow	_	90	%RH	

说明:倘若在超过上述极限参数的条件下长期使用,极易永久性地损坏本模块,因而建议用户在下列表中的电性能参数范围内,使用本模块。

2 电气参数 (Vcc=5v±5%,Ta=+25℃)

项	项目		条件	最小值	典型值	最大值	单 位
电源电	逻辑	Vdd		4.5	5.0	5.5	
	LCD 驱动	Vdd-Vee		0	_	5.0	V
输入电	高电平	Vih		0.7Vdd		Vdd	
柳八电	低电平	Vil		-0.3	_	0.55	
输出电	高电平	Voh	-Ioh=1mA	0.75Vdd	_	_	
柳山电	低电平	Vol	Iol=1mA	_		0.2Vdd	
步	页 率	fosc	Rf=91k $\Omega \pm 2\%$	190	270	350	KHz
	工作电流	IDD	VDD=5.0V		2.0	2.4	mA

☆☆☆☆ Email: support@willar.com

LCD 驱动电压	X7.1.1 X7	0	<i>5</i> 0	<i>5</i> 0	17
(推荐电压)	Vdd-Vee	Ü	5.0	5.0	V

三 接口定义:

管脚号	符号	功能	
1	Vss	电源地 (GND)	
2	Vdd	电源电压(+5V)	
3	VO	LCD 驱动电压(可调)	
4	RS	寄存器选择输入端,输入 MPU 选择模块内部寄存器类RS=0,当 MPU 进行写模块操作,指向指令寄存器;当 MPU 进行读模块操作,指向地址计数器;RS=1,无论 MPU 读操作还是写操作,均指向数据寄	
5	R/W	读写控制输入端,输入 MPU 选择读/写模块操作信号: R/W=0 读操作; R/W=1 写操作	
6	Е	使能信号输入端,输入 MPU 读/写模块操作使能信号: 读操作时,高电平有效;写操作时,下降沿有效	
7	DB0	数据输入/输出口,MPU 与模块之间的数据传送通道	
8	DB1	数据输入/输出口, MPU 与模块之间的数据传送通道	
9	DB2	数据输入/输出口, MPU 与模块之间的数据传送通道	
10	DB3	数据输入/输出口, MPU 与模块之间的数据传送通道	4 位方式通讯时,不
11	DB4	数据输入/输出口, MPU与模块之间的数据传送通道	使用 DB0-DB3
12	DB5	数据输入/输出口,MPU与模块之间的数据传送通道	
13	DB6	数据输入/输出口,MPU与模块之间的数据传送通道	
14	DB7	数据输入/输出口、MPU 与模块之间的数据传送通道	
15	A	背光的正端+5V	
16	K	背光的负端 0V	

四 操作时序图

1 写操作时序

☆☆☆☆ Email: support@willar.com

项目	符号	条件	最小值	最大值	单位
E周期	tcycE		1,000		
E 脉宽(高电平)	PWEN	~0	450		
E上升/下降时间	tEr,tEf	$Vdd=5V\pm5\%$		25	
地址设置时间(RS, R/WtoE)	tas	Vss=0V	140		ns
地址保持时间	tan	Ta=25 °C	10		
数据设置时间	tosw		195	320	
数据保持时间	tH		10		

2. 读操作时序

☆☆☆☆ Email: support@willar.com

				~~	
项目	符号	条件	最小值	最大值	单位
E周期	tcycE		1,000		
E 脉宽(高电平)	PWEN		450		
E上升/下降时间	tEr,tEf	Vdd=5V±5%		25	
地址设置时间(RS, R/WtoE)	tas	Vss=0V	140		ns
地址保持时间	tah	Ta=25°C	10		
数据延迟时间	tddr			320	
数据保持时间	tdhr	5	20		

五 模块显示特性详解:

- 本模块适宜与 4 位或者 8 位 MPU 接口,接口由使能信号 E 控制;标志位 BF 为模块内部工作状态标志, MPU 访问模块时,首先应判断状态标志位 BF;在电源 Vdd=+5V 情况下,模块与 MPU 通讯速度可以达到 2MHz;
- 本模块提供 5X8 点阵或者 5X7 点阵、带光标显示的字符结构的显示模式,用户通过指令设置可以方便地进行选择:
- 本模块提供了显示数据缓冲区 DDRAM、字符发生器 CGROM 和字符发生器 CGRAM;用户可以使用 CGRAM 来存储自己定义的最多 8 个 5X8 点阵的图形字符的字模数据;
- 本模块字符在 LCD 显示屏上的显示位置与该字符的字符代码在显示缓冲区 DDRAM 内的存储地址一对应;
- 本模块通过指令设置来选择占空比(duty)周期,选择参数如下:
 - □ 单行 5X8 点阵字符带光标显示: 1/8
 - □ 单行 5X10 点阵字符带光标显示: 1/11
 - □ 双行 5X8 点阵字符带光标显示: 1/16
- 本模块提供了较为丰富的指令设置:
 - □ 清显示;光标回原点;显示开/关;光标开/关;显示字符闪烁;光标移位;显示移位 通过选择相应的指令设置,用户可以实现多种字符显示样式;
- 本模块提供了内部上电自动复位电路,当外加电源电压超过+4.5v 时,自动对模块进行初始化操作,将模块设置为默认的显示工作状态;

☆☆☆
 Email: support@willar.com

● 本模块采用低功耗 CMOS 设计

1 软硬件注解

1-1 模块组件内部结构

模块组件内部主要由 LCD 显示屏(LCD panel)、控制器(controller)、列驱动器(segment driver)和偏压产生电路构成。

LCD 显示屏为 common 和 segment 交叉形成的点阵,以 5×8 点阵的字符结构模式和设置的显示字符数目,选择适宜的行数,分单屏、双屏或者多屏显示规定的字符。对于双屏或者多屏显示结构的 LCD,每一显示屏结构部分,均由各自独立的使能信号 E 控制。

列驱动器与控制器配套使用,它接收来自控制器的振荡、帧同步输出、串行输出的数据和移位及锁存脉冲,产生列 segment 交流扫描驱动信号。

控制器接收来自 MPU 的指令和数据,控制着整个模块的工作,由 CGROM、CGRAM 和 DDRAM 等字符存储区域、以及与 MPU 和列驱动器的 I/O 接口、指令寄存和译码机构、地址计数器等部分组成。在控制器的控制下,模块通过数据总线 DB0~DB7 和 E、R/W、RS 三个输入控制端与 MPU 接口。这三根控制线按照规定的时序相互协调作用,使控制器通过数据总线 DB 接收 MPU 发送来的指令和数据,从 CGROM中找到欲显示字符的字符码,送入 DDRAM,在 LCD 显示屏上与 DDRAM 存储单元对应的规定位置显示出该字符。控制器还可以根据 MPU 的指令,实现字符的显示、闪烁和移位等显示效果。

控制器主要由指令寄存器 IR、数据寄存器 DR、忙标志 BF、地址计数器 AC、DDRAM、CGROM、CGRAM 以及时序发生电路组成:

● 指令寄存器(IR)和数据寄存器(DR)

本模块内部具有两个 8 位寄存器: 指令寄存器 (IR) 和地址寄存器 (DR)。用户可以通过 RS 和 R/W 输入信号的组合选择指定的寄存器,进行相应的操作。下表中列出了组合选择方式。

Е	RS	R/W	说明
1	0	1	分别将状态标志 BF 和地址计数器 (AC) 内容读到 DB7 和
	O		DB6~DB0
1→0		0	将 DB0-DB7 的指令代码写入指令寄存器中
1		1	将数据寄存器内的数据读到 DB0~DB7, 模块的内部操作自
1	1	1	动将 DDRAM 或者 CGRAM 中的数据送入数据寄存器中
1→0	1		将 DB0~DB7 的数据写入数据寄存器中,模块的内部操作
1 70			自动将数据写到 DDRAM 或者 CGRAM 中

指令寄存器 IR, 内部存储 DDRAM 和 CGRAM 中的数据显示的指令代码和地址信息,只能由 MPU 对 其执行写操作:

数据寄存器 DR, 内部暂时存储 MPU 与模块内部 DDRAM 和 CGRAM 之间的传送数据,内部操作使 DR 与 DDRAM 或者 CGRAM 之间的数据传送自动进行:

● 忙标志位 BF

忙标志 BF=1 时,表明模块正在进行内部操作,此时不接受任何外部指令和数据。当 RS=0、R/W=1 以及 E 为高电平时, BF 输出到 DB7。每次操作之前最好先进行状态字检测,只有在确认 BF=0 之后, MPU

☆☆☆☆ Email: support@willar.com

Display ⊢ Position

Display

才能访问模块;

● 地址计数器 (AC)

AC 地址计数器是 DDRAM 或者 CGRAM 的地址指针。随着 IR 中指令码的写入,指令码中携带的地址信息自动送入 AC 中,并行做出 AC 作为 DDRAM 的地址指针还是 CGRAM 的地址指针的选择。

AC 具有自动加 1 或者减 1 的功能。当 DR 与 DDRAM 或者 CGRAM 之间完成一次数据传送后,AC 自动会加 1 或减 1。在 RS=0、R/W=1 且 E 为高电平时,AC 的内容送到 DB6~DB0:

<u> </u>	53位		低4位			
AC6	AC5	AC4	AC3	AC2	AC1	AC0

● 显示数据寄存器(DDRAM)

DDRAM 存储显示字符的字符码,其容量的大小决定着模块最多可显示的字符数目。DDRAM 地址与 LCD 显示屏上的显示位置的对应关系如下:

执行显示移位操作时,对应的 DDRAM 地址也发生移位,以每行 16 个字符的显示为例,移位前后的地址对应关系如下:

								Display
		1	2	3	 14	15	16	← Position
DD RAM	Line 1	00H	01H	02H	 0DH	0EH	0FH	
	Line 2	40H	41H	42H	 4DH	4EH	4FH	

左移一位

For left shift:				
	_	-		

		1	2	3	 14	15	16	•
DD RAM	Line 1	01H	02H	03H	 0EH	0FH	10H	
Addr.	Line 2	41H	42H	43H	 4EH	4FH	50H	

右移一位

For right shift:

		1	2	3	 14	15	16	← Position
DD RAM	Line 1	27H	00H	01H	 0CH	0DH	0EH	
	Line 2	67H	40H	41H	 4CH	4DH	4EH	

在 CGROM 中,模块已经以 8 位二进制数的形式,生成了 5X8 点阵的字符字模组字符字模(一个字符对应一组字模)。字符字模是与显示字符点阵相对应的 8X8 矩阵位图数据(与点阵行相对应的矩阵行的高三位为"0"),同时每一组字符字模都有一个由其在 CGROM 中存放地址的高八位数据组成的字符码对应。

☆☆☆
 Email: support@willar.com

就单屏结构的模块而言,字符码地址范围为 00H~FFH,其中 00H~07H 字符码与用户在 CGRAM 中生成的自定义图形字符的字模组相对应;至于双屏或者多屏结构的模块,由于各显示屏结构部分的工作分别由独立的使能信号 E 控制,因而各结构部分间字符的发生互不影响,每一显示屏结构部分的字符码地址范围为 00H~FFH,其中 00H~07H 字符码与用户在 CGRAM 中生成的自定义图形字符的字模组相对应。

● 字符发生器 RAM

在 CGRAM 中,用户可以生成自定义图形字符的字模组。就单屏结构的模块而言,可以生成 5×8 点阵的字符字模 8 组,相对应的字符码从 CGROM 的 00H~07H 范围内选择;至于双屏或者多屏结构的模块,由于各显示屏结构部分的工作分别由独立的使能信号 E 控制,因而各结构部分间字符的发生互不影响,对于每一显示屏结构部分,可以生成 5×8 点阵的字符字模 8 组,相对应的字符码从本结构部分中 CGROM 的 00H~07H 范围内选择。

5X8 点阵字符的 CGROM 地址、字符字模和字符码三者之间的关系示意图例如下:

CGROM Ad	dre	SS					D	ata	ì		
A11 A10 A9 A8 A7 A6 A5 A				A1	A0	<u> 4</u>	<u>_3</u>	02	□1	0	
			0	0	0		U	0	0	0	
)	0	0	1		0	0	0	0	
)	0	1	0	[]	0	1/	1	0	
)	0	1	1	1/	1/	0	0	1	
)	1	0	0	1	0	0	0	1/	
)	1	0	1	1	0	0	0	1	
)	1	1	0	1/	17	/1//	/1/	0	Cymaan maaitian
0 1 1 0 0 0 1)	1	1	1	0	0	0	0	0	Cursor position
	1		0	0	0	0	0	0	0	0	光 标 位 置
	1		0	0	1	0	0	0	0	0	
	1	-	0	1	0	0	0	0	0	0	
	1		0	1	1	0	0	0	0	0	
	1		1	0	0	0	0	0	0	0	
	1		1	0	1	0	0	0	0	0	
	1		1	1	0	0	0	0	0	0	
	1		1	1	1	0	0	0	0	0	

Character code 字符码 Line position 行地址

注释:

- → 高八位 CGROM 地址 A11~A4 组合形成字符码;
- ◇ 低四位 CGROM 地址 A3~A0 定义字模数据存储行地址;
 - ◆ 数据 O4~O0 为字符字模数据;
- ❖ 必须将高三位数据 O5~O7 赋值为 0;
- ◆ 对应数据1的位置为显示位(黑);
- ◆ 对于 5X8 点阵字体,第九行以下(包括第九行)数据应赋值为 0;

☆☆☆☆ Email: support@willar.com

用户自定义 5X8 点阵字符的 CGRAM 地址、字符码和字符字模间关系示意图例如下:

Character code	CGRAM address	Character patterns
字符码	CGRAM地址	字符字模
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0
高 低	高 低	高低
0 0 0 0 * 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 * 0 0 1	0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1	* * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 1	* * *
0 0 0 0 * 1 1 1	1 1 1 0 1 1	* * *

注释:

- ◆ 字符码 0~2 位与 CGRAM 地址 3~5 位对应;
- ◆ CGRAM 地址 0~2 位生成字模数据行位置。第八行是光标位置,因此构成字符字模数据时,在设置光标显示的情况下,应赋值为 0;如果赋值为 1,不论光标显示与否,第八行均处于显示状态;
 - ◆ 字符字模数据 0~4 位的赋值状态构成了自定义字符的位图数据;
- ◆ 从图中可以看出,字符码 3 位的赋值状态并不影响用户自定义字符在 CGROM 中的字符码,用户自定义字符码的范围为 00H~07H 或者 08H~0FH,也就是说字符码 00H 与 08H 对应同一组用户自定义字符字模。
 - ◆ CGRAM 数据为 1 时,处于显示状态;

2 指令表

指令名称	指 令 码 RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1	说 明	执行周期 FCP=250KHZ
清 屏	LLLLLLLLH	清除屏幕,置 AC 为零	1. 64ms
)		设 DDRAM 地址为零,显示	1 64
返回		回原位,DDRAMM 内容不变	1. 64ms

☆☆☆☆ Email: support@willar.com

输入方式 设置	L L L L L L H I/DS	设光标移动方向并指定整体显示 是否移动	40us
显示开关 控制	L L L L L L H DCB	调整体显示开关(D), 光标开关(C) 及光标位的字符闪耀(B)	40us
移位	L L L L H S/C R/L	移动光标或整体显示,同时不改 变 DD RAM 内容	40us
功能设置	LLLLHDLNF	投接口数据位数(DL)显示行数 (L)及字形(F)	40us
CG RAM 地址设置	L L L H ACG	设 CG RAM 地址,设置后 DD RAM 数据被发送和接收	40us
DD RAM - 地址设置	L L H ADD	设 DD RAM 地址,设置后 DD RAM 数据被发送和接收	40us
读忙信号 (BF) 及地址高 数器	L H BL AC	读忙信号位(BF)判断内部操作 正在执行并读地址计数器内容	Ous
写数据 CG/DD RAM	H L 写数据	写数据到 CG 或 DD RAM	40us Tadd=6ns
读数据 由CG/DD RAM	H H 读数据	写数据到 CG 或 DD RAM	40us Tadd=6ns
E. S.	I/D 1: 增量方式, 0: 减量方式 S 1: 移位 S/C1, 显示移位, 0: 光标移位 R/L1: 右移, 0: 左移 D L1: 8位, 0: 4位 N 1: 2行, 0: 1行 F 1: 5×10。0: 5×7	DD RAM 显示数据 RAM CG RAM 字符生成 RAM AC:用于 DD 和 CG RAM 地址的地址计数器	执行周期随主 频而改变 例如: 当 fcp 或 Fosc 为 270KHZ 40us×250/270
	BF 1:内部操作,0:接收指令 RS : 寄存器选择 R/W : 读/写		=37us

☆☆☆☆ Email: support@willar.com

由于 MPU 可以直接访问模块内部的 IR 和 DR,作为缓冲区域,IR 和 DR 在模块进行内部操作之前,可以暂存来自 MPU 的控制信息。这样就给用户在 MPU 和外围控制设备的选择上,增加了余地。模块的内部操作由来自 MPU 的 RS、R/W、E 以及数据信号 DB 决定,这些信号的组合形成了模块的指令。

本模块向用户提供了11条指令,大致可以分为四大类:

- ◆ 模块功能设置,诸如:显示格式、数据长度等;
- ♦ 设置内部 RAM 地址;
- ◆ 完成内部 RAM 数据传送;
- ◇ 完成其他功能:

一般情况下,内部 RAM 的数据传送的功能使用最为频繁,因此,RAM 中的地址指针所具备的自动加一或减一功能,在一定程度上减轻了 MPU 编程负担。此外,由于数据移位指令与写显示数据可同时进行,这样用户就能以最少系统开发时间,达到最高的编程效率。

这里值得一提的是,在每次访问模块之前,MPU 应首先检测忙标志 BF,确认 BF=0 店,访问过程才能进行。

● Clear display 清显示

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	θ	0	0	1	

清显示指令将空位字符码 20H 送入全部 DDRAM 地址中,使 DDRAM 中的内容全部清除,显示消失; 地址计数器 AC=0,自动增 1 模式;显示归位,光标或者闪烁回到原点(显示屏左上角);但并不改变移位设置模式;

● Return home 归位

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0 🔿	0/2	0	0	0	0	0	1	*

归位指令置地址计数器 AC=0;将光标及光标所在位的字符回原点;但 DDRAM 中的内容并不改变;

● Entry mode set 设置输入模式

指令码:

RS R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0 0	0	0	0	0	0	1	I/D	S

I/D:字符码写入或者读出 DDRAM 后 DDRAM 地址指针 AC 变化方向标志:

I/D=1,完成一个字符码传送后,AC 自动加1;

I/D=0,完成一个字符码传送后,AC 自动减 1;

S: 显示移位标志:

S=1,将全部显示向右(I/D=0)或者向左(I/D=1)移位;

S=0, 显示不发生移位;

S=1 时,显示移位时,光标似乎并不移位;此外,读 DDRAM 操作以及对 CGRAM 的访问,不发生显示移位;

☆☆☆☆ Email: support@willar.com

● Display on/off control 显示开/关控制

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	C	В

D: 显示开/关控制标志: D=1, 开显示; D=0, 关显示;

关显示后,显示数据仍保持在 DDRAM 中,立即开显示可以再现:

C: 光标显示控制标志: C=1, 光标显示; C=0, 光标不显示;

不显示光标并不影响模块其它显示功能;显示 5X8 点阵字符时,光标在第八行显示,显示 5X10 点阵字符时,光标在第十一行显示;

B: 闪烁显示控制标志: B=1, 光标所指位置上, 交替显示全黑点阵和显示字符, 产生闪烁效果, Fosc=250kHz时, 闪烁频率为 0.4ms 左右; 通过设置, 光标可以与其所指位置的字符一起闪烁;

● Cursor or display shift 光标或显示移位

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	*	*

光标或显示移位指令可使光标或显示在没有读写显示数据的情况下,向左或向右移动;运用此指令可以实现显示的查找或替换;在双行显示方式下,第一行和第二行会同时移位;当移位越过第一行第四十位时,光标会从第一行跳到第二行,但显示数据只在本行内水平移位,第二行的显示决不会移进第一行;倘若仅执行移位操作,地址计数器 AC 的内容不会发生改变;

S/C	R/L	说明
0	0	光标向左移动,AC 自动减 1
0	1	光标向右移动,AC 自动加 1
1	0	光标和显示一起向左移动
1		光标和显示一起向右移动

● Function set 功能设置

指令码:

RS R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0 0	0	0	1	DL	N	F	*	*

功能设置指令设置模块数据接口宽度和 LCD 显示屏显示方式,即 MPU 与模块接口数据总线为 4 位或者是 8 位、LCD 显示行数和显示字符点阵规格;所以建议用户最好在执行其它指令设置(读忙标志指令除外)之前,在程序的开始,进行功能设置指令的执行;

DL: 数据接口宽度标志: DL=1,8 位数据总线 DB7~DB0; DL=0,4 位数据总线 DB7~DB4, DB3~DB0 不用,使用此方式传送数据,需分两次进行;

N: 显示行数标志:

F: 显示字符点阵字体标志;

				1			
N	F	显示行数	字符点阵字体	驱动路数	备	注	

☆☆☆☆ Email: support@willar.com

0	0	1	5X8	1/8	
0	1	1	5X10	1/11	
1	*	2	5X8	1/16	模块不能双行显示 5X10 点阵字符字体

● Set CGRAM address CGRAM 地址设置

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	ACG5	ACG4	ACG3	ACG2	ACG1	ACG0

● Set DDRAM address DDRAM 地址设置

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0

DDRAM 地址设置指令设置 DDRAM 地址指针,它将 DDRAM 存储显示字符的字符码的首地址 ADD6~ADD0 送入 AC中,于是显示字符的字符码就可以写入 DDRAM 中或者从 DDRAM 中读出;值得一提的是:在 LCD 显示屏一行显示方式下,DDRAM 的地址范围为:00H~4FH;两行显示方式下,DDRAM 的地址范围为:第一行 00H~27H,第二行 40H~67H;

● Read busy flag and address 读忙标志 BF和AC

指令码:

RS	R/W	DB7 DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF AC6	AC5	AC4	AC3	AC2	AC1	AC0

当 RS=0 和 R/W=1 时,在 E 信号高电平的作用下,BF 和 AC6~AC0 被读到数据总线 DB7~DB0 的相应位;BF:内部操作忙标志,BF=1,表示模块正在进行内部操作,此时模块不接收任何外部指令和数据,直到BF=0 为止;

AC6~AC0: 地址计数器 AC 内的当前内容,由于地址计数器 AC 被 CGROM、CGRAM 和 DDRAM 的公用指针,因此当前 AC 内容所指区域由前一条指令操作区域决定;同时,只有 BF=0 时,送到 DB7~DB0 的数据 AC6~AC0 才有效;

Write data to CGRAM or DDRAM 写数据到 CGRAM 或 DDRAM

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D7	D6	D5	D4	D3	D2	D1	D0

写数据到 CGRAM 或 DDRAM 指令,是将用户自定义字符的字模数据写到已经设置好的 CGRAM 的地址中,或者是将欲显示字符的字符码写到 DDRAM 中; 欲写入的数据 D7~D0 首先暂存在 DR 中,再由模块的内部操作自动写入地址指针所指定的 CGRAM 单元或者 DDRAM 单元中;

☆☆☆☆ Email: support@willar.com

● Read data from CGRAM or DDRAM 从 CGRAM 或 DDRAM 中读数据

指令码:

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

从 CGRAM 或 DDRAM 中读数据指令,是从地址计数器 AC 指定的 CGRAM 或者 DDRAM 单元中,读出数据 D7~D0;读出的数据 D7~D0 暂存在 DR 中,再由模块的内部操作送到数据总线 DB7~DB0 上:需要注意的是,在读数据之前,应先通过地址计数器 AC 正确指定读取单元的地址:

4 内部复位电路初始化

1602 模块设有内部复位电路,上电后,当电源电压超过+4.5v 时,自动对模块进行初始化。此期间,忙标志 BF=1,直到初始化结束后,忙标志 BF 才为 0。初始化大约持续 10ms 左右。

上电复位初始化,对模块进行了下列指令的操作:

- 清显示:
- □ 功能设置:

DL=1: 8位数据接口;

N=0: 一行显示;

F=0: 5X8 点阵字符字体;

- 显示开/关控制:
 - D=0: 关显示:
 - C=0: 不显示光标;
 - B=0: 关闪烁;
- 输入模式设置:

I/D=1: AC 自动加 1;

S=0: 不移位:

需要说明的是,倘若供电电源达不到要求,模块内部复位电路非正常操作,上电复位初始化就会失败。此时,建议用户通过指令设置对模块进行初始化。

5 MPU 接口

本模块可以利用总线模式,直接与 4 位或 8 位 MPU 接口。在控制信号 E 高电平或下降沿的作用下,模块通过区分控制信号 RS 和 R/W 的组合形式,来区分数据总线 DB7~DB0 上传送的指令和数据。数据总线 DB7~DB0 是 MPU 访问模块和与模块之间信息交换的数据通道。

下面举出一个本模块应用实例。

☆☆☆☆ Email: support@willar.com

应用电路:

应用程序

①检测忙标志 BF

BF: CLR A

CLR RS

SETB R/W

MOVX A, @R0

JB ACC.7, BF

RET

②写数据到指令寄存器 IR

R1: 暂存指令码

WI: CLR R/W

CLR RS

MOV A, R1

MOVX @R0, A

RET

④延时 65ms

DELAY: MOV R7, #0FFH

LOOP0: MOV R6, #0FFH

DJNZ R6, \$

DJNZ R7, LOOP0

RET

⑤写自定义字符字模数据到 CGRAM

WCG: MOV DPTR, #TAB

MOV R1, #40H

LCALL BF

LCALL WI

MOV R4, #40H

③写数据到数据寄存器 DR

R2: 暂存字符码或字符字模数据

WD: SETB RS

CLR R/W

MOV A, R2

MOVX @R0, A

RET

; 字符字模数据传送计数指针

☆☆☆ Email: support@willar.com

LOOP4: CLR A

MOVC A, @A+DPTR

MOV R2, A

LCALL BF

LCALL WD

INC DPTR

DJNZ R4, LOOP4

RET

⑥指令初始化模块:

INI: MOV R3, #03H

MOV R1, #38H

;功能设置: 8位数据,1/16DUTY,5X8字体

LCALL WI

DJNZ R3, INI

MOV R1, #01H

;清显示

LCALL BF

LCALL WI

MOV R1, #06H

;输入方式设置: AC 自动加1

LCALL BF

LCALL WI

MOV R1, #0CH

; 开显示

LCALL BF

LCALL WI

RET

⑦自定义字符

字模数据组

TAB

DB 1FH, 00H, 00H, 00H, 00H, 00H, 00H

DB 00H, 1FH, 00H, 00H, 00H, 00H, 00H

DB 00H, 00H, 1FH, 00H, 00H, 00H, 00H, 00H

DB 00H, 00H, 00H, 1FH, 00H, 00H, 00H, 00H DB 00H, 00H, 00H, 00H, 1FH, 00H, 00H, 00H

DB 00H, 00H, 00H, 00H, 1FH, 00H, 00H

DB 00H, 00H, 00H, 00H, 00H, 1FH, 00H

DB 00H, 00H, 00H, 00H, 00H, 00H, 1FH

☆☆☆☆ Email: support@willar.com

自定义字符字模构成位图示意

⑧写显示字符的字符码到 DDRAM:

WDD: MOV DPTR, #0300H

MOV R5, #11H

LOOP2: MOV R1, #80H

LCALL BF

LCALL WI

MOV R3, #29H

LOOP1: CLR A

MOVC A, @A+DPTR

MOV R2, A

LCALL BF

LCALL WD

DJNZ R4, LOOP1

MOV R1, #0C00H

; 显示第二行和第四行

; 共显示 16 个字符

: 每个字符显示 40 次

, 显示第一行和第三行

LCALL BF

LCALL WI

LOOP3: CLR A

MOVC A, @A+DPTR

MOV R2, A

LCALL BF

LCALL WD

DJNZ R4, LOOP3

RET

☆☆☆☆ Email: support@willar.com

⑨显示字符的字符码表:

ORG 0300H

DB 00H, 01H, 02H, 03H, 04H, 05H, 06H, 07H DB 06H, 05H, 04H, 03H, 02H, 01H, 00H, 38H

⑩显示主程序:

START:RS EQU P1.3

R/W EQU P1.4

ORG 0000H

LCALL INI

LCALL WCG

LCALL WDD

LCALL DELAY

LCALL DELAY

LJMP START

- 19 -

☆☆☆☆ Email: support@willar.com

● 显示程序流程图

☆☆☆☆ Email: support@willar.com

6 可靠性项目

, 1 1 1 L L L L L L L								
项目	条件	标 准						
1) 高温操作	60°C 96hrs							
2) 低温操作	-20°C 96hrs	外观无变化,对比度与初始值不会相差 ±10%。 总电流消耗不会超过初始值的 2 倍。.						
3) 湿度	40°C, 90%RH, 96hrs							
4) 高温	70°C 96hrs							
5) 低温	-30°C 96hrs	外观无变化,对比度与初始值不会相差 ±20%。						
6) 热冲击	25°C→30°C→25°C→70°C 5(min) 30(min) 5(min) 30(min) 5 cycle, 55~60%RH	总电流消耗不会超过初始值的 2 倍。						
7) 振动	10~55~10hz amplitude: 1.5mm 2hrs for each direction	外观和性能无变化。 总电流消耗不会超过初始值的 2 倍。						

附录: 1.模块供电电路

使用前可按上图接好电源线,然后调整 V0 端,这时屏幕上应出现 1/2 屏的全显示底影。可简单判断为功能正常,否则你的模块可能存在故障!

☆☆☆☆ Email: support@willar.com

2. 字符码与字符字模之间的对应关系表

Higher 4 bits Lower 4 bit	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
××××0000	CG RAM (1)		G	ā		`				-5	19353 19353 19353		
××××0001	(2)	=	1		Q	-3			T			8 S	
××××0010	(3)				R	Ь	F -		-1"		×		
××××0011	(4)	#	***************************************			C	BESTERS B. STERS B. S	100	Ż			:	60
××××0100	(5)	\$	4			d		٠.		I.			
××××0101	(6)		-	2022						7		C	
××××0110	(7)	Č:	6		Ų	f.	Ų	82222	1	NNIS RONNIS	22/22/2 22/22/2 22/22/2		
××××0111	(8)	7	7	G		9	Į,,l			X	855	9	
××××1000	(1)	Ç	8		X	h	X	- "	7	edge offs		.,,	**************************************
××××1001	(2))		I	Y	3	-			_		- I	
××××1010	(3)	*		J	- Annual Control	j	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8888		13	l _e s		
××××1011	(4)	-	7	K		k						X	
××××1100	(5)	7	<								ņ	4.	
××××1101	(6)	833333	N. 150			m			,	^,	335 S	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
××××1110	(7)		>		e***	h		1000 1000 1000 1000 1000 1000 1000 100	t		8,%	F	
××××1111	(8)		- S	0	BRANK	O		111	.,	*:			