A VIRTUAL TEST BED FOR PEBB-BASED SHIP POWER SYSTEMS

ANNUAL TECHNICAL REPORT

Report # VTB9706001 June 1997

Submitted

by

Roger Dougal, *Project Director* on behalf of the project team

ONR Grant N00014-96-1-0926

DISTRIBUTION STATEMENT A

Approved for public release Dismbunon Unumred

Volume II

19970714 116

University of South Carolina

Dept. of Electrical and Computer Engineering Columbia, SC 29208

DIEC QUALICY INSPECTED I

PREFACE

This technical report is primarily a compilation of presentations made at the annual project review meeting held on June 3-4, 1997 at the University of South Carolina. Additionally, this report includes an introduction to the project, and copies of papers that were written under the sponsorship of this grant during the past year.

Any questions regarding the content of this report or specifics of the project can be addressed to

Dr. Roger A. Dougal VTB Project Director Dept of Electrical and Computer Engineering University of South Carolina Columbia, SC 29208

phone: (803) 777-7890 fax: (803) 777-8045 email: dougal@ece.sc.edu

INDEX

INTRODUCTION

PRESENTATIONS FROM ANNUAL REVIEW MEETING

Introduction

VTB Implementation

Overview of VTB Architecture

Component Librarian

Main VTB Program

Translators and Solver Input Language

Numerical methods in VTB

Assessment of status vis-a-vis original plans

Applications

Modeling of advanced PEBB switching devices (SiC GTO)

Parasitic impedance extraction and application to PEBB power module

Modelling of parasitic effects on ARCP performance

AC motor speed control using ACSL/Modeler

Georgia Tech Reports

Introduction to GT work

Network solver - algebraic companion methods

Approximate model of transmission lines near permeable materials

Rigorous transient modeling of permeable material transmission lines

Modeling and control of pulse modulated circuits and systems

Taganrog State University Reports

Circuit and system modeling

Movement separation method with Jordan canonical models

Control algorithms for complex and distributed power systems

Purdue/Univ. Missouri Reports

Real-time system modeling (synchronous machine models)

High frequency modeling and EMC of power electronic circuits and drives

Focus Groups

Charge to focus groups

Reports of focus groups

Plans for Future

Volume III

Publication Index

3

Volume II

Volume I

PUBLICATIONS INDEX

- "A time domain model for flicker analysis", A.P. Sakis Meliopoulos and G. J. Cokkinides, IPST '97, October 1997.
- "Wavelet-based transient analysis", A.P. Sakis Meliopoulos and Chien-Hsing Lee, 29th North American Power Symposium, Oct 13-14, 1997.
- "An efficient and accurate method of incorporating magnetic saturation in the physical-variable models of synchronous machines" S. D. Pekarek and E.A. Walters,
- "A fast and efficient multi-rate technique for detailed simulation of AC/DC power systems", S. D. Pekarek, O. Wasynczuk, H.J. Hegner,
- "Digital tracking control for PWM systems with unacceptable zeros", M. Al-Numay and D. Taylor, submitted to IEEE Trans. on Circuits and Systems special issue on Simulation, Theory, and Design of Switched-analog Networks.
- "Adaptive control of DC motor drives with converter nonlinearities" W. Khan and D. Taylor, submitted to Intern. Journal of Control
- "Adaptive control of DC motor drives with inverter nonlinearities" W. Khan and D. Taylor, submitted to Intern. Journal of Control
- "Modeling and control of digital PWM systems using averaging" M. Al-Numay and D. Taylor, submitted to IEEE Trans. on Control Systems Technology
- "Polymer current limiters for low-voltage power distribution systems", M. H. McKinney, C.W. Brice, and R.A. Dougal, IEEE Conf on Industrial and Commercial Power Systems, May 1997, Philadelphia, PA.
- "Global Asymptotic stability of indirect field-oriented speed control of induction motors", L. Gokdere, M. A. Simaan, and C. W. Brice, submitted to Automatica
- "A passivity-based controller for saturated induction motors" L. Gokdere, M. A. Simaan, and C. W. Brice, submitted to IEEE Trans on Control Sys Tech
- "Incorporation of magnetic saturation effects into passivity-based control of induction motors", L. Gokdere, M. A. Simaan, and C. W. Brice, submitted to IEEE Trans. on Industrial Electronics
- "A comparison of passivity-based and input-output linearization controllers for induction motors" L. Gokdere, M. A. Simaan, and C. W. Brice, accepted for presentation at IEEE Emerging Technologies and Factory Automation Conf., Sept. 9-12, 1997, Los Angeles, CA.
- "Speed estimators for indirect field-oriented control of induction motors" L. Gokdere, M.A. Simaan, and C.W. Brice, accepted for IEEE Emerging Tech and Factory Automation Conf., Sept. 9-12, 1997, Los Angeles, CA.
- "A passivity-based controller for high-performance motion control of induction motors", L. Gokdere, M. A. Simaan, and C. W. Brice, accepted for presentation at IEEE Power Electronics Specialists Conf, June 22-2- St. Louis, MO.

INTRODUCTION

The Power Electronic Building Block (PEBB) will enable the Navy to meet DOD and Navy goals of reduced manning, reduced cost, increased effectiveness and enhanced survivability by allowing radically new architectures for shipboard power systems. Since these new architectures cannot be based on historic design precedents and time-and-field-tested design rules, extensive prototyping and testing are necessary. These prototypes are used to validate the designs and to define the operational envelope, in both intact and damaged conditions. The use of virtual prototypes, rather than hardware prototypes, allows the US Navy to maintain its technological superiority by exploiting its dominant position with respect to information technologies.

The Virtual Test Bed (VTB) provides a unique capability for virtual prototyping of PEBB devices and of PEBB-based electric power systems by integrating into a single simulation environment models that have been produced in a variety of simulation languages by a diversified and multi-technical design team.

Those who develop new pieces of the shipboard power system often (and for good reasons) use different software tools for different modeling tasks. Since a system is composed of many such entities, and the system must be tested as a whole, one encounters the need to compute the performance of a system described by a heterogeneous collection of models. The primary objective of the VTB project is to create the virtual prototyping environment that accepts this heterogeneous collection of models and integrates them into a single simulation so that a design engineer can evaluate and understand the dynamic performance of the entire system. The VTB

- allows closer collaboration amongst experts in different fields
- allows each expert to use the best design tools and best design practices within their own area of expertise
- allows integration of more aspects of the design, including physical configuration, electrical configuration, thermal configuration, etc., into a single virtual prototype
- eliminates the need for manual translations of models while exploring system response
- allows more rapid exploration of a larger design space to yield more optimal designs
- provides more advanced visualizations of system performance to help build an intuitive understanding of the influence of controllable parameters

The approach chosen for creating the VTB's mixed-language virtual prototyping environment involves translation of the source models into the VTB internal language. This provides a flexible, powerful, robust, and extensible means for integrating models into a unified simulation environment. In addition to developing the model translation technologies, the VTB project also advances other technologies associated with virtual prototyping, including user interfaces, model libraries, execution environments, and visualization tools. These technical advances allow the VTB to fully support development and application of the PEBB.

A secondary objective of the VTB project is to develop a base library of models that can be used in the Virtual Test Bed. These models should execute rapidly, be constructed in such a way that they can be connected to other models, and yet can be written in a variety of modeling/simulation languages. Particularly important to the study of PEBB-based power systems is an accurate model of a PEBB.

The third and final objective of this project is to support development and applications of PEBBs by using existing modeling tools and existing components of the VTB for virtual prototyping of the PEBB before the VTB is fully developed.

The presentation materials that follow describe a majority of the technical work that was performed under the auspices of this grant during the past year. Time constraints during the meeting prevented the presentation of all aspects of all work that was performed, but this report provides a fair cross section and a useful summary.

Somewhat arbitrarily, the report is organized according to the presentation scheme that was used at the annual review meeting. That is, items are arranged according to the site at which work was done, rather than by topic.

Virtual Test Bed

First Year Final Report June 3-4, 1997

End of First Year Presentations

Faculty

George J. Cokkinides Elias N. Glytsis A. P. Sakis Meliopoulos Andrew F. Peterson David G. Taylor

Graduate Research Assistants Mohammed Al-Numay Milad Adel Badawi Douglas Fulcher Chien-Hsing Lee Song Li Charles Thorpe Karim Wassef

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA 30332-0250

Virtual Test Bed

Podium Presentations

Network Solver

Approximate Analysis of Permeable Material Power Lines

Rigorous Transient Modelling of Permeable Material Transmission Lines

Modeling and Control of Pulse Modulated Circuits & Systems

Wavelet Based Transient Analysis

Poster Presentations

Analog and Digital Tracking Control of PWM Systems

Adaptive Feedforward Control of PWM Power Converters

Six Pulse Converter Model

Network Solver

Approximate Analysis of Permeable Material Power Lines

Rigorous Transient Modelling of Permeable Material Power Lines

Wavelet Based Transient Analysis

Summary of Activities

Research Activity	Individuals Involved
Transient Modeling of Permeable Material Transmission Lines	Peterson, Prof. Karim Wassef, GRA
Modeling of Permeable Material Conduit Systems Using Quasi-Static Methods	Glytsis, Prof. Meliopoulos, Prof. Douglas Fulcher, GRA
Sampled Data Methods Modeling and Control of Pulse Modulated Circuits and Systems	Taylor, Prof. Mohammed Al-Numay, GRA Song Li, GRA
Network Solver PEBB and Component Modeling Transient Network Analysis via Wavelet Transforms	Meliopoulos, Prof. Lee, Chien-Hsing, GRA Charles Thorpe, GRA Milad Adel Badawi, GRA

Virtual Test Bed

Network Solver

Faculty George J. Cokkinides A. P. Sakis Meliopoulos

Properties of Network Solver

Virtual Test Bed Application

VTB Concept Requirements

Real Time Animation and Visualization Dynamic Range (System Stiffness) Parameter Changes in Real Time Universal Model of Components

VTB Practice Requirements

Convergence Simultaneous Solution

Network Solver Organizational

Network Solver Technologies

Indirect Methods

Coordinate Method (Gauss) Annealing

Direct Methods

First Order

Resistive Companion Form Method of Characteristics Difference Equations

Second Order

Algebraic Companion Form

Universal Model of Components

Model Equations:

$$\begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} f_1(\dot{\mathbf{v}}, \dot{\mathbf{y}}, \mathbf{v}, \mathbf{y}, \mathbf{u}) \\ f_2(\dot{\mathbf{v}}, \dot{\mathbf{y}}, \mathbf{v}, \mathbf{y}, \mathbf{u}) \end{bmatrix}$$

where: i : vector of interface through variables,

v : vector of interface across variables,

y: vector of device internal state variables

u : vector of independent controls.

Above Equations are integrated to provide:

Algebraic Companion Equations:

$$\begin{bmatrix} i(t) \\ 0 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} v(t) \\ y(t) \end{bmatrix} + \frac{1}{2} \operatorname{diag}(v(t), y(t)) \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} v(t) \\ y(t) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \operatorname{diag}(v(t), y(t)) \begin{bmatrix} v(t) \\ y(t) \end{bmatrix} + \begin{bmatrix} b_1(t-h) \\ b_2(t-h) \end{bmatrix}$$

where.

 $b_1(t-h)$, $b_2(t-h)$ are past history functions.

Linear Differential Equation Based Model Algebraic Companion Model Translation

Consider a two terminal device with interface variables u and v, specifically:

y is an "across" variable.

u is a "through" variable.

Equation derived from physical laws is:

$$a_0 y + a_1 y^{(1)} + ... + a_n y^{(n)} = c_0 u + c_1 u^{(1)} + ...$$

Algebraic Companion Form Modeling

Linear Differential Équation Based Model Translation (continued)

Convert to Canonical Form:

$$\dot{x} = Ax + Bu$$

where:

$x_1 = y - b_0 u$	$b_0 = c_0$
$x_2 = \dot{x}_1 - b_1 u$	$b_1 = c_1 - a_1 b_0$
$x_3 = \dot{x}_2 - b_2 u$	$b_2 = c_2 - a_1 b_1 - a_2 b_0$

Algebraic Companion Form Modeling

Linear Differential Equation Based Model Translation (continued)

Numerical Integration of Canonical Form (example: trapezoidal rule) yields:

$$x_{k+1} - x_k = \frac{h}{2} \{ A(x_{k+1} + x_k) + B(u_{k+1} + u_k) \}$$

rearrange to:

$$x_{k+1} = Du_{k+1} + Cx_k + Du_k$$

then:

- Identify resistive companion form conductance $m{g}$ by setting past history variables to zero, $m{u}=$ 1 and solving for y.
- ullet Derive past history equation by removing ($oldsymbol{arkappa}$ u) term from above equation.

Algebraic Companion Model

Universal Nonlinear Differential Equation Translation

Identify interface nodes between set of linear and nonlinear components.

Network. Furthermore, the nonlinear network Assume Linear Network has *I* internal states, and $m{m}$ interface nodes to the Nonlinear has n internal states.

Universal Nonlinear Differential Equation Translation (continued)

Linear Network ACM Equations:

$$\begin{bmatrix} i(t) \\ 0 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} \nu(t) \\ y_L(t) \end{bmatrix} + \begin{bmatrix} B_1(t-h) \\ B_2(t-h) \end{bmatrix}$$

Nonlinear Network ACM Equations:

$$\begin{bmatrix} i(t) \\ 0 \end{bmatrix} = \begin{bmatrix} A_3(v(t), y_N(t)) \\ A_4(v(t), y_N(t)) \end{bmatrix} + \begin{bmatrix} B_3(t-h) \\ B_4(t-h) \end{bmatrix}$$

where A_3 , A_4 are nonlinear functions.

Universal Nonlinear Differential Equation Translation

Elimination of the second block row of the Linear Network ACM Equations yields:

$$i(t) = D \cdot v(t) + E(t - h)$$

equation yields an equation of the form: Substitution in the nonlinear network

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} A_3'(v(t), y_N(t)) \\ A_4(v(t), y_N(t)) \end{bmatrix} + \begin{bmatrix} B_3'(t-h) \\ B_4(t-h) \end{bmatrix}$$

Note that the dimension of the resulting system in only m+n.

Universal Nonlinear Differential Equation Solution - Newton's Method

Nonlinear equations are approximated by the following quadratic form:

$$\begin{bmatrix} i(t) \\ 0 \end{bmatrix} = Ax(t) + \frac{1}{2} \left\langle x(t) \right\rangle Bx(t) + \frac{1}{2} C \left\langle x(t) \right\rangle x(t) + D(t-h)$$

where the notation $\langle x(t)
angle \$ represents a diagonal matrix whose diagonal entries are the entries of the vector x(t), and:

$$x(t) = \begin{bmatrix} \nu(t) \\ y(t) \end{bmatrix}$$

Universal Nonlinear Differential Equation Solution

eliminated, resulting in the following equation for Jsing Kirchoff's current law, the currents are the entire nonlinear network:

$$0 = Ax(t) + \frac{1}{2} \left\langle x(t) \right\rangle Bx(t) + \frac{1}{2} C \left\langle x(t) \right\rangle x(t) + D(t-h)$$

This equation system is solved using Newton's method:

$$x_{k+1} = x_k - \left\{ A + \frac{1}{2} \left\langle B x_k \mathbf{1} \right\rangle + \frac{1}{2} \left\langle x_k \right\rangle B + C \left\langle x_k \right\rangle \right\}^{-1} E_k$$

where:

E is the mismatch of the previous iteration 1 is a vector with all entries equal to 1. k is the Newton's iteration count.

Universal Model of Components Procedural Models – Example

Controller: EquiDistant Control

Turn-ON: EquiDistant Control

Turn-OFF: Zero Current Crossing

Universal Model of ComponentsProcedural Models – Example

If in OFF-State and Turn-On Condition is Met

Switch to Model 1

If in ON-State and Zero Current Crossing Occurred

Switch to Model 2

End

Network Solver – Virtual TestBed Interface

Implementation Issues

Unified Model Representation

Algebraic Companion Form Quadratic Convergence

Support of Other Forms

Resistive Companion Non-Parametric Forms

(Matrix Topology vs Network Topology) **Block Matrix Based Sparsity Methods** Proven Minimization of Multiply Adds

Dynamic Range (System Stiffness)

Issues

Simultaneous Solution versus Decomposition

Analytic Approach

Hybrid Approach
Adaptive Averaging PEBB Model – Independent Time
Step

Network Solver – Animation/Visualization Engine Interface

Network Solver

Animation/Visualization Engine Interface **Network Solver** Example

Network Solver Passes the Following Information

Speed, Torque Angle, Mechanical Power, Other Phase Voltages Across Variables: Internal States:

Animation/Visualization Engine Produces:

Animation - System Stiffness **Demonstration**

Future Work

Alternate Network Solvers

Periodic Steady State – Network Solver Wavelet Based Approach Small Signal Stability Analysis

SIL Compliance

Completion of Model Library

Animation and Visualization

Reliability Analysis

Approximate Analysis of Permeable Material Transmission Lines

E. N. Glytsis and A. P. Meliopoulos

School of Electrical and Computer
Engineering
Georgia Institute of Technology
Atlanta, Georgia

OUTLINE

- Importance of Modeling of Permeable Materials
- Model Description
- Example Cases
- Summary and Future Work

Importance of Modeling Permeable Materials

- Existence of Permeable Materials in a Ship Environment
- Nonlinear Effects on Transmission Lines
- Magnetic Field Shielding
- Dependence of Series Impedance on Electric Load
- Modeling is Necessary
 - Safe and Stable Electric Power System
 - Accurate Control of Electrical Equipment

Model Description

Transmission Line Equations

$$\frac{\hat{o}[v]}{\hat{o}z} = [r][i] + [\ell] \frac{\hat{o}[i]}{\hat{o}t}$$

$$\frac{\hat{o}[i]}{\hat{o}z} = [c] \frac{\hat{o}[v]}{\hat{o}t}$$

Lumped Element Equivalent Circuit

$$[v] = \Delta z[r][i] + \Delta z[\ell] \frac{\hat{o}[i]}{\hat{o}t} = [R][i] + [L] \frac{\hat{o}[i]}{\hat{o}t}$$

$$[i] = \Delta z[c] \frac{\hat{\sigma}[v]}{\hat{\sigma}t} = [C] \frac{\hat{\sigma}[v]}{\hat{\sigma}t}$$

Method of Conductor Subdivision

- Subdivide Conductors Into Segments
- Calculate Geometric Mean Radii
- Calculate Geometric Mean Distances
- Transmission Line Equations

$$\tilde{\mathbf{V}}_{i} = \sum_{j} (\mathbf{r}_{ij} + \mathbf{x}_{ij}) \tilde{\mathbf{I}}_{j}$$

- Combine Segment Equations to Calculate [R] and [L] Matrices
- Self-Consistency (iterative)

Example Case Copper 3/0 - GRC 2"

Resistance and Reactance Table

Electric Current	R for 100 ft	X=0L for 100ft
(Amp)	(mOhms)	(mOhms)
600	24.5232	17.6632
700	23,2944	16.8022
800	22,2744	16.1369
900	21.3782	15.5949
1000	20.5686	15.1151
1100	19.8437	14.6607
1200	19.2060	14.2217
1300	18.6524	13.7980
1400	18.1744	13.3930

Example Case Copper 3/0 - GRC 2"

Magnetic Field

Relative Permeability

Example Case Copper 3/0 - GRC 2"

Magnetic Field Density

Summary

- Importance of Modeling Transmission Lines in the Presence of Permeable Materials
- Model Description Based on Conductor Subdivision and GMR, GMD
- Example Cases

Future Work

- Calculation of Capacitance Matrix
- Interface Transmission Line Model with Network Solver
- Improvement in the Calculation of Magnetic Field
- Comparison of the Model with the Rigorous Model Based on Finite Element Method

Virtual Test bed Project

RIGOROUS TRANSIENT MODELING OF PERMEABLE MATERIAL TRANSMISSION LINES

Karim N. Wassef

Dr. Andrew F. Peterson

Georgia Institute of Technology

School of Electric and Computer Engineering

Introduction

• Why pursue this study?

The need to simulate signal propagation in transmission lines between the various components of the Network Solver.

• What is expected of the model?

The model should be capable of modeling currents and voltages propagating through any geometry (expected to consist of multiple conductors in a permeable steel conduit)

• *How* is this done?

This will be achieved using a combination of the Finite Element and Transmission Line Matrix methods in a Time Domain formulation.

Contents

The Transmission Line Matrix Method

Time Domain Formulation

The Need for Parameter Matrices: [R], [L], [C]

• The Finite Element Method

Magnetic Vector Potential Formulation

Obtaining the Parameter Matrices: [R], [L], [C]

- Graphical User Interface
- Computational Requirements and Results

3φ copper lines in conductive permeable steel conduit.

Verification

Analytical (Coaxial Line)

• Future Work

The Transmission Line Matrix

The basic equations:

$$\frac{\partial}{\partial z}\vec{V} = -\vec{R}\vec{I} - \vec{L}\frac{\partial}{\partial t}\vec{I}$$
$$\frac{\partial}{\partial z}\vec{I} = -\vec{G}\vec{V} - \vec{C}\frac{\partial}{\partial t}\vec{V}$$

- {V} Voltage in each of the conductors
- {I} Current in each of the conductors
- [R] Line Resistance
- [L] Self and Mutual Inductance
- [C] Self and Mutual Capacitance
- [G] Line Trans-conductance

All terms are **per unit length** and vary as a function of both **location and time**. The formulation uses **a Finite Differencing** Scheme (in both time and space).

The TLM Matrices

 $\Phi = ?$ 1 2

[L]: per-unit-length Inductance Matrix:

$$L_{ij} = \frac{\phi_{j0}}{I_i} \Big|_{I_1 = I_2 = I_3 \dots = I_{i-1} = I_{i+1} = \dots = I_n = 0}$$

[R]: per-unit-length Resistance Matrix:

$$R_i = \frac{1}{\sigma_i A_i}$$

[C]: per-unit-length Capacitance Matrix:

$$[C] = [P]^{-1}$$

$$P_{ij} = \frac{V_i}{Q_j}\Big|_{Q_1 = Q_2 = Q_3 \dots = Q_{i-1} = Q_{i+1} = \dots = Q_n = 0}$$

The Finite Element Method

The equation to be solved:

$$\nabla \cdot \left(\frac{1}{\mu} \nabla A\right) = \vec{J}_s - \sigma \frac{\partial \vec{A}}{\partial t}$$

where A is the magnetic vector potential and Js is the forced current density. The material properties are:

σ: conductivity

μ: permeability

The magnetic field vector B and flux Φ can be determined as functions of A:

$$\frac{\phi_{12}}{I} = A_2 - A_1$$

Illustration: Copper Lines in a Steel Conduit

Conduit:(Steel)

Relative Magnetic permeability $\mu_r = 1000$

Conductivity $\sigma = 8.3334E+06 \text{ S/m}$

Conductors: (Copper)

Relative Magnetic permeability $\mu_r = 1$

Conductivity $\sigma = 5.9595E+07 \text{ S/m}$

Excitation: (Current)

Number of Conductors: 3

Amplitude: 1 Amp

Frequency: 50 kHz

Phase: 3 Phase

Illustration: Mesh and Magnetic Field Vector Snapshot

Analytical Verification

Coaxial line:

$$\frac{L}{\ell} = \frac{\mu_o}{2\pi} \left\{ \ln\left(\frac{c}{a}\right) + \frac{b^2}{c^2 - b^2} \ln\left(\frac{c}{b}\right) \right\}$$

For a=50, b=100, c=110 mm.

Analytical: $L/\ell = 2.4846 \times 10^{-7} \, H/\ell$

Finite Element: $L/\ell = 2.4768 \times 10^{-7} H/\ell$

Future Work

• Alternative Vector Formulation.

Adaptive Gridding Algorithms.

• Model Parameter Interpolation.

• Methods for rapid solution of nonlinear equations.

Verification: Mesh and Magnetic Field Vector Snapshot

Graphical User Interface

• Mesh

• Magnetic Vector Potential (A)

• Magnetic Flux Lines (A contour)

• Magnetic Flux Density (|B|)

• Vector Magnetic Flux Density (B)

Computational Requirements

- Approximate number of unknowns:
 - ~ 2000 nodes (3500 elements)
- Matrix density:
 - ~ 0.004 (highly sparse)
- Number of iterations / time step:

n+1 (n is number of conductors)

Number of spatial iterations:

$$m = \frac{\ell}{10\lambda_{\min}}$$

(ℓ is length of the transmission line)

Modulated Circuits and Systems Modeling and Control of Pulse

David G. Taylor June 1997

Outline

- Relation of Work to VTB Project
- New Modeling Results
- New Control Design Results
- Future Work Planned

Relation of Work to VTB Project

- Pulse Modulated Circuits and Systems
- Power Electronic Building Block (PEBB)
- Power Converter
- Motor Drive
- Common Features
- High-Power Digital Switches
- Digital Signal Processor

Relation of Work to VTB Project

- Modeling
- Topology depends on switch positions
- Direct simulation is time consuming
- Simple averaging may not be accurate
- Sampled-data method has advantages
- Provides cycle-to-cycle response
- Exploits symbolic or numerical off-line solution
- Leads to fast and accurate on-line simulation

Relation of Work to VTB Project

- Control Design
- Improve performance of existing systems
- Optimally program future PEBB systems
- Challenges
- Nonlinearities
- Unstable zeros
- Unknown parameters
- Computational efficiency

Single-Switch Subsystem

u = source vector, x = state vector, y = output vector

• Pulse Modulation Scheme

T =switch period, NT =control period, d =duty ratio

Boost Converter

$$A_1 = \begin{cases} 2 & R_L \\ i & L \end{cases} = \begin{cases} 3 & 0 \\ 0 & i & \frac{1}{(R + R_C)C} \end{cases}$$

$$B_1 = \frac{1}{0} \#$$

$$C_1 = 0 \frac{R}{R + R_C},$$

$$z = \frac{2}{4} i \frac{RR_L + RR_C + R_L R_C}{\frac{(R + R_C)L}{R}} i \frac{R}{\frac{1}{(R + R_C)L}} \frac{3}{3}$$

$$B_2 = \frac{1}{1} \#$$

$$C_2 = \frac{RR_C}{R + R_C} \frac{R}{R + R}$$

One-Cycle-Average Output

$$y^{\alpha}(t) := \frac{1}{NT} \sum_{t_i NT}^{L_t} y(\xi) d\xi$$

Large-Signal Sampled-Data Model

$$x_{k+1} = A(d_k)x_k + B(d_k)u_k$$

 $y_{k+1} = C(d_k)x_k + D(d_k)u_k$

Boost Converter Simulation Data

- Simulations
- direct integration
- traditional SD model
- new SD model

- Control of Non-Minimum-Phase Systems
- Unstable zeros are common after discretization
- Output redefinition eliminates unstable zeros
- Nonlinear control design without adaptation
- Mohammed Al-Numay (see poster)
- Linear control design with adaptation
- Song Li (see poster)

- Adaptive Control of AC Motor Drives
- Input nonlinearities
- deadtime, on/off delay, voltage drop
- Output nonlinearities
- friction, backlash
- Parameters of inverter/motor/load unknown
- Adaptive input-output linearizing controller
- Globally stable with asymptotic tracking

Inverter Distortion

Control System

New Control Design Results

Adaptive Speed Control

Future Work Planned

- Development of VTB Device Models
- nonlinear components
- uncontrolled switches
- wider range of devices
- Development of PEBB Controllers
- nonlinear adaptive control
- nonlinear repetitive control
- wider range of applications

Future Work Planned

Rapid Prototyping

The city of Taganrog

- Population close to 300'000.
- Founded in 1698.
- Two Universities.
- Biggest in the Europe Boiler Factory.
- Second in the country Harvester Combine Company.
 - •Two Aircraft Companies.
- Steel mill.
- Several electronic companies.

Taganrog State University of Radio Engineering

- Was chartered in 1952.
- Five colleges
- College of Radio Engineering.
- College of Automation and Computer Engineering.
- College of Electronics and Manufacturing Engineering.
- College of Economics, Management and Law.
- College of Natural Sciences.
- Total Enrolment near 5000.
- About 600 faculty members and over 2500 staff members and research assistants.

USC Subcontract N 97-389

Parsers for circuit & system description languages

Circuit & System models

Thermodynamical (Hamiltonial) models

> of the System & Partitioned

Partition

System Models

Jordan canonical models

Partitioned System Models VTB Philosophy:

submodels of a system are integrated into a single simulation platform; the individual parts of this model can be modeled by different tools or can be presented by real components.

Therefore, the models of power system components can be presented as numerical (mathematical) models and hardware (real device) models

Two approach: each model is integrated direct approach: each model is integrated and dissolved; modular approach: every model lives independently and exchanges with others at input-output level

of a direct and modular approach (numerical aspects only) Advantages and Limitations

Modular approach

- •Well worked-up •Ineffective for large Accurate
 - Robust
- decomposition No instability caused by
- systems
- Timestep must be identical for all models
- Parallel processing hardly possible
- No hardware models
- Real time simulation is hardly possible

- •Læge system
 - •Parallel processing simulation possible easily possible
- independently chosen Hardware models •Timestep may be
- •Real time simulation easily possible available

tightly coupled.)

(Unfortunately, as a rule, the parts in power system are tightly coupled convergence problems for Stability or systems.

> if both can be used, the modular way is preferable Conclusion: modular approach is more promising;

- How strong are convergence problems in modular approach?
- Inconvergence completely destroys the simulation process
- When system is tightly-coupled?
- In low power circuit analysis
- •Partitioning is made across signal flow paths with energy transmitting (bipolar technology)
 •Partitioning is made across feedback paths
 •Partitioning is made across power supply and ground bus

- In power system simulation

- •Always, if energy is flowing between the parts separated
- Between neighboring parts (local feedback, acts instantly)
 - •Feedback loop embraces several parts separated (global feedback, delayed)

tightly coupled. The use of modular approach may cause instability Conclusion: Unfortunately, as a rule, the parts in power system are or non-convergence.

We are going to solve this problem.

What are ways to improve the convergence while solving the (mathematical approaches) decomposed system?

Polynomial acceleration methods

- Good for symmetrizable problems only
 Require estimati
- •Require estimation of relaxation parameters that is not possible

Conjugate gradient (direction) methods

•Based on the residual calculation, that is incompatible with black-box philosophy of the modular approach

Multigrid methods

- Also require residual calculation
- *A system must have regular (meshwise) structure, that is impractical in our case

Conclusion: Unfortunately, we cannot apply these methods to improve the performance of modular approach

approach? Or, how to improve the convergence of decomposition-Then, how to make tight coupling compatible with modular based simulation?

Neutralizing global feedback

- Time windowing: good, if delay is large enough;
- Step-size refinement: good, but needs some non-trivial algorithms;
- •Ordering parts according to a signal-flow graph: very effective if signal flow graph is unidirectional, otherwise the convergence problem cannot be eliminated

We propose: multicycle concurrent and iterative approach (next reports);

Neutralizing local feedback

- Lumping tightly coupled parts together, this way kills all benefits of modular approach;
- Overlapping partitioning: improves convergence by the expense of complication the parts. The partitioning procedure is non-trivial

We propose: modified and generalized coupling approach;

- •When modular approach is used, the solution process is always relaxation-based, in contrast to the direct approach, where the comprehensive model is solved simultaneously.
- •In the relaxation-based analysis of dynamic systems the solution process always develops in two spaces: in the time space and in the relaxation space.
- •The first kind of progress produces the time increment, while the second is responsible for the parts' interaction and updates the resulting iterates.
- discrete or continuous, we can classify relaxation techniques in the Assuming that both these types of development may be either form of a diagram (see next slide).

Decomposition-Based Methods for Dynamic System Analysis

- advantageous, since they require that all models should be discretized •In VTB applications, the discrete-time methods, ITA and TA are not very identically, therefore, a severe synchronism is needed.
- •The two approaches are promising: Waveform Relaxation and Concurrent Relaxation. They can incorporate both software and hardware models. They do not require internal synchronism in the solution process.
- •WR is an iterative approach. Solution is reached after the system has speed (general clock mechanism is not needed). In the case of tight repeatedly been recalculated (resimulated) several times. This is a limitation. But, instead, WR allows simulation of every part with its own coupling WR iterations may diverge or converge very slowly.
- •CR is a one-sweep simulation approach. This is an advantage. However, it requires that all processes operate in a common time space, concurrently. In case of tight coupling CR process may become unstable.

Mathematical Model Representation

$$\begin{split} &F_A[X_A(t),X_B(t),X_C(t)]{=}0\\ &F_B[X_A(t),X_B(t),X_C(t)]{=}0\\ &F_C[X_A(t),X_B(t),X_C(t)]{=}0 \end{split}$$

Original system consisting of parts A,B,C with state variables X_A,X_B,X_C

$$\begin{split} &F_A[X_A^{\ i+l}(t),X_B^{\ i}(t),X_C^{\ i}(t)]{=}0\\ &F_B[X_A^{\ i}(t),X_B^{\ i+l}(t),X_C^{\ i}(t)]{=}0\\ &F_C[X_A^{\ i}(t),X_B^{\ i}(t),X_C^{\ i+l}(t)]{=}0 \end{split}$$

Decomposition by waveform relaxation method, *i* - iteration count

$$\begin{split} &F_A[X_A(t), X_B(t{-}\tau), X_C(t{-}\tau)]{=}0 \\ &F_B[X_A(t{-}\tau), X_B(t), X_C(t{-}\tau)]{=}0 \\ &F_C[X_A(t{-}\tau), X_B(t{-}\tau), X_C(t)]{=}0 \end{split}$$

Decomposition by concurrent relaxation, t - interaction delay

Modified coupling and Waveform Relaxation Method (all iterates are time-dependent functions)

Basic coupling

Modified coupling

- Modified coupling is an approach to suppress an influence of the local feedback emerging in a decomposed circuit and thus to improve the convergence.
- •The suppressing is deeper when the conductance y^* is closer to the input conductance of a corresponding adjacent part.
- •Modified coupling can be used selectively, to suppress feedback in the particular parts separated.
- •It is a very flexible approach, however, it requires some (at least approximate) information about the conductances.

acoustical system by waveform relaxation with two simulators: Modular approach: Simulation of tightly-coupled electro-ANSYS (Swanson An. Inc.) and ELDO (ANACAD)

Exact solution

Basic coupling (divergence)

Modified coupling (convergence)

CONTROG STATE UNIVERSAL CONTROL STATE UNIVERSAL CONTROL 1952

Virtual Test Bed

Simulation of the electro-acoustical system has been performed as follows:

- •First, we used 3-dimensional finite-element model of the ultrasonic element (in ANSYS, Solid5 model) to find its charge response on the unit voltage step.
- •From this response we have derived a rough (simplified) equivalent circuit for the ultrasonic element. It contains a capacitor and an inductor connected in
- •Then this rough model was used as an element y* while simulating the whole system. The electrical part together with the element y^* was simulated by Eldo, the circuit analyzer, while the ultrasonic elements - by ANSYS.
- 3-dimensional ANSYS model and perform the whole analysis in Eldo only. If •It was also proved that we cannot use this rough model instead of the detailed we do so, the results are completely different from the exact solution.
- ·Without using the modified coupling approach the resulting WR iterations diverge. Therefore, in a given situation the modified coupling approach has no alternative.

Generalized coupling and the Concurrent Relaxation Method

Basic coupling

The generalized coupling can be considered as an extension of the modified coupling approach. The differences are:

- •generalized coupling allows any type of coupling feedback between two extremities: $y^*=0$ (I-coupling, negative local feedback) and $y^*=\sim (V\text{-coupling, positive local feedback})$.
- •y* may be not constant but to dynamically follow the input conductance of the neighboring part.
- •y* can be determined by analyzing time functions I(t), V(t) in a circuit simulator.

mechanical system by concurrent relaxation: software model of the Controlling Circuit (Spice) and the hardware model of the Motor Modular approach: Simulation of tightly-coupled electro-

Basic coupling (system is unstable)

Generalized coupling (system is stable)

- processor card and a CAN-bus. The two processors could •In the above experiment we used PC with an additional exchange data via a special section of RAM.
- •The general PC clock was used to provide synchronism.
- •The main processor (PC) run the Spice-like circuit simulator with software model of the controlling circuit and dynamically adjusted coupling element y^* in it.
- •The card processor operated concurrently: it received codes of the input voltage via RAM and controlled the actuator.
- •It was found experimentally that the system is quite stable if 1/v*=20 Ohm.
- •However, we didn't use any software model of the motor&load.

Conclusion:

- and generalized coupling) capable to improve the performance • We proposed two easily realized methods (modified coupling of modular approach when applied to tightly coupled systems.
- In the case of iterative analysis (Waveform Relaxation method) these approaches ensure the *convergence of* iterations;
- In the case of concurrent one sweep simulation they ensure the overall stability of the simulation system.
- These methods are effective in the case of strong local couplings.
- The next steps: development of multicycle methods and implementation of damped relaxation to fight against the strong global feedback as well.

Thermodynamical models

- real time scale. However, such a detailed analysis often is not needed. It is sufficient to find some coarse, general (macroscopic) parameters problem grows worse if the numerical simulation has to be done in a considerable consumption of software and hardware resources. The The detailed analysis of a complicated electrical circuit requires and characteristics of a circuit.
- The generalized approach to analysis of complicated systems requires the generalized approach to setting of system's models.
- The idea of such models might be taken from Statistical Mechanics or Thermodynamic. The mathematical description of an electrical circuit is similar to that of motive force of mechanical system, consisting of interacting particles.

Electro-mechanicaly analogies energy - power

Mechanical polysystem

Generalized coordinates - q Mechanical impulses - p Hamilton Function (Energy) $H(p,q) = \sum_{i} \frac{p_i^2}{2m_i} = \sum_{i} \frac{p_i}{2} \frac{dq_i}{dt_i}$ Hamilton equation (Movements equation) Main equations

$$\frac{dq_i}{dt} = \frac{\partial}{\partial} \frac{H}{p_i} = f_i(q, p);$$

Conjugate equations

$$\frac{dp_i}{dt} = -\frac{\partial}{\partial} \frac{H}{q_i} = \varphi_i(q, p);$$

The system state probability dencity is function of energy w(q, p) = w(H(q, p))

Temperature (Energy) T

• Electrical circuits

Inductances currents i and voltages on capacitances u Magnetic flux F and elelectrical charge Q

Hamilton Function, (Reactive B_{Lk}^{power}) $H(\Phi_L, Q_C; i_L, u_C) = \sum_k \Phi_{Lk} \frac{d^{Lk}}{dt} + \sum_l Q_{Cl} \frac{du_{Cl}}{dt}$

Hamilton equation (circuit state variables)

Main equations

$$\begin{split} \frac{du_{Cm}}{dt} &= \frac{\partial}{\partial} \frac{H}{Q_{Cm}} = f_{Cm}(u_C, i_L; Q_C, \Phi_L); \\ \frac{di_{Ln}}{dt} &= \frac{\partial}{\partial} \frac{H}{\Phi_{Ln}} = f_{Ln}(u_C, i_L; Q_C, \Phi_L); \end{split}$$

Conjugate equations

$$\begin{split} \frac{dQ_{cm}}{dt} &= -\frac{\partial}{\partial} \frac{H}{u_{cm}} = \varphi_{cm}(u_c, i_L; Q_c, \Phi_L); \\ \frac{d\Phi_{Ln}}{dt} &= -\frac{\partial}{\partial} \frac{H}{i_{Ln}} = \varphi_{Ln}(u_c, i_L; Q_c, \Phi_L) \end{split}$$

The circuit state probability dencity is function of power

$$w(u_c,i_l;Q_c,\Phi_L)=w(H(u_c,i_l;Q_c,\Phi_L))$$

Analogue Temperature (Power)

• Circuit Equations

$$\frac{du_{Cm}}{dt} = f_{Cm}(u_C, i_L; z); \qquad \frac{di_{Ln}}{dt} = f_{Ln}(u_C, i_L; z);$$

 $y_k = f_k(u_c, i_L; z); z_k - influences, y_k - respondes$

Hamilton Function

$$H(Q_c, \Phi_L, u_c, i_L; z) = \sum_m (Q_{Cm} f_{Cm}) + \sum_n (\Phi_{Ln} f_{Ln});$$

Hamilton Equation

$$\frac{du_{C_m}}{dt} = \frac{\partial}{\partial} \frac{H}{Q_{C_m}}; \quad \frac{di_{L_m}}{dt} = \frac{\partial}{\partial} \frac{H}{\Phi_{L_n}}; \quad \frac{dQ_{C_m}}{dt} = -\frac{\partial}{\partial} \frac{H}{u_{C_m}}; \quad \frac{d\Phi_{L_n}}{dt} = -\frac{\partial}{\partial} \frac{H}{i_{L_n}};$$

Distribution Function

Normalizing

$$w(H(Q_{c}, \Phi_{L}, u_{c}, i_{L}; z)) = \frac{1}{\Lambda} \exp(-\frac{m}{m} \frac{\sum (Q_{cm} f_{cm}) + \sum (\Phi_{Ln} f_{Ln}) - \sum y_{k} z_{k}}{\theta}}{\sum_{\Gamma} w \cdot d\Gamma = 1; \qquad \Lambda = \int_{\Gamma} \exp(-\frac{m}{m} \frac{(Q_{cm} f_{cm}) + \sum (\Phi_{Ln} f_{Ln}) - \sum y_{k} z_{k}}{\theta}}{\sum_{\Gamma} (Q_{cm} du_{cm} d\Phi_{Ln} di_{Ln})};$$

$$d\Gamma = \frac{dQ_{cm} du_{cm} d\Phi_{Ln} di_{Ln}}{(kT)^{M_{c}} (kT)^{M_{c}}};$$

• Analog of Liuvill equation for w

$$\frac{dw}{dt} = \frac{\hat{o}}{\partial} \frac{w}{t} - \left\{ H, w \right\} = \frac{\hat{o}}{\partial} \frac{w}{t} - \sum_{k,l} (\frac{\hat{o}}{\partial} \frac{H}{\Phi_{Lk}} \cdot \frac{\hat{o}}{\partial} \frac{w}{i_{lk}} + \frac{\hat{o}}{\partial} \frac{H}{U_{Cl}} \cdot \frac{\hat{o}}{\partial} \frac{w}{u_{Cl}} - \frac{\hat{o}}{\partial} \frac{H}{i_{Lk}} \cdot \frac{\hat{o}}{\partial} \frac{w}{u_{Cl}} - \frac{\hat{o}}{\partial} \frac{H}{u_{Cl}} \cdot \frac{\hat{o}}{\partial} \frac{w}{u_{Cl}})$$

- Circuits entropy
- information quantity Circuits

$$S = \int_{\Gamma} w(\Phi_L, i_L, Q_C, u_C; z, t) \ln(w(\Phi_L, i_L, Q_C, u_C; z, t)) d\Gamma =$$

$$= \ln \Lambda - ((\sum_k \overline{y_k} \cdot z_k) / \theta) + \overline{H} / \theta$$

$$I = S_m - S = -\int_{\Gamma} (w(\ln \prod_k w_{Lk} \prod_l w_{Cl}) - \ln w) d\Gamma,$$
where $S_m = -\int_{\Gamma} w(\ln \prod_k w_{Lk} \prod_l w_{Cl}) d\Gamma$ - M - entropy

(multiplicity entropy);

$$\begin{aligned} w_{Lk}, w_{c_I} - 1 - partial \ distribution \ function: \\ w_{Lk} = \int_{\Gamma} w \cdot \frac{kTd\Gamma}{d\Phi_{Lk}di_{Lk}}, \qquad w_{c_I} = \int_{\Gamma} w \cdot \frac{kTd\Gamma}{dQ_{c_I}du_{c_I}} \end{aligned}$$

- Average values of responses
- Responses deviation

$$\frac{y_k}{y_k^2} = \int_{\mathcal{Z}_k} z_k w d\Gamma = \frac{\hat{\sigma}}{\hat{\sigma}} \frac{(\ln \Lambda)}{(z_k / \theta)};$$
$$\frac{1}{y_k^2} = \frac{\hat{\sigma}}{\hat{\sigma}} \frac{y_k}{(z_k / \theta)};$$

- Intercorrelation
- consumed power Reactive and

$$\overline{y_k y_l} - \overline{y_k y_l} = \frac{\partial}{\partial} \overline{\frac{y_k}{(z_l / \theta)}} = \frac{\partial}{\partial} \overline{\frac{y_l}{(z_k / \theta)}}$$

$$\overline{H} = -\frac{\partial}{\partial} \frac{(\ln \Lambda)}{(1/\theta)}; \quad \overline{H^2 - \overline{H}^2} = \frac{\partial}{\partial} \frac{(H)}{(1/\theta)}; \quad P_0 = \overline{H} + \sum_k \overline{y_k} \cdot z_k$$

Linear circuit.

a) Matrixes circuits equations $\frac{d|x|}{dt} = [s] \cdot |x| + [R] \cdot |z|$; $|y| = [F] \cdot |x| + [Q] \cdot |z|$

b) Statistical weight

 $[F'] = [F] \cdot [S]^{-1}, \quad [F''] = [F'] \cdot [R]; \quad [g_{S'}] - \text{ matrix, having } g_{S'kl} = \sum_i M^{\, !_{R^i}} \cdot M^{\, !_{R^i}}, \quad [M'] = [M]^{-1}$ $+ \sum_{i=1}^{M} \ln(\frac{1}{\theta}(\rho_{i0} - \sum_{k=1}^{N_{z}} Z_{k0} F^{|_{xi}}) \delta_{dx_{i}/dt}) \\ + \sum_{i=1}^{M} \ln(\frac{1}{\theta(\rho_{i0} - \sum_{k=1}^{N_{z}} Z_{k0} F^{|_{xi}}) \delta_{dx_{i}/dt}}), \text{ where } F^{|_{xi}}, F^{|_{xi}} - \text{ elements of matrixes } [F^{|}], [F^{|}]$ $\ln \Lambda = \ln(\frac{4\theta}{kT}\sqrt{\det\!\left[g_{g_{l}}\right]})^{M} + \frac{1}{\theta}(\sum_{k=1}^{N_{z}}Z_{k0}\sum_{l=1}^{N_{z}}(Q_{kl} - F^{\parallel}_{kl})Z_{10}) - \sigma\!(T - T_{c}) +$

c) Information quantity

$$I = S_m - S = \ln \frac{(\sqrt{\det[g_{S'}]})^{M-1}}{\prod_{i=1}^{M} \sqrt{[g_{iS'}]}}, \text{ where } [g_{iS'}] - \text{diagonal minor of matrix } [g_{S'}]$$

Nonlinear circuit: semiconductor chip with p-n-junctions a) Circuit equations:

 $Enttl\sigma ps_{J} \cdot |_{t_{p-n}} + [\alpha] \cdot |_{t_{p-n}} + ([Y] + ([Y] + [sC]) \cdot |U|; \qquad |_{t_{p-n}}| = [I_s] \cdot (\exp([\phi_T]^{-1} \cdot (|U| - [R] \cdot |I|)) - |I|),$ where | - means vector of variables images, [] - means matrix of parameters

$$\ln \Lambda = \ln(\frac{2\theta}{kT}\sqrt{\left[g_{S^I}\right]}) + \frac{1}{\theta}(\sum_k I_k \sum_l (R_{kl}I_l + E^T_{kl}U_{pnl}(I) + \alpha(T - T_c)) + \sum_k \frac{C_k \cdot \delta_{uk}\delta_{lk}}{\Delta_k} \cdot sh \frac{\Delta_k}{\theta},$$
 where $\Delta_k = \frac{\delta_{lk}}{\theta}(U_{pnk} - \sum_l I_l \frac{F^{lk}_{lk}}{C_k})$

$$S = \ln \Lambda - \sum_k I_k U_k + \sigma (T - T_c) = \sum_{i=1}^M \ln(\frac{2\tau_s \delta_{ul} \delta_{il}}{kT_c} \cdot \frac{sh \Delta_1}{\Delta_1}), \text{ where } \tau_s^M = \sqrt{\left[g_{S^i}\right]}$$

$$I = S_m - S = \ln \frac{(\sqrt{\det \left[g_{S'}\right]})^{M-1}}{\prod_{i=1}^{M} \sqrt{\left[g_{iS'}\right]}}, \text{ where } \left[g_{iS'}\right] - \text{diagonal minor of matrix } \left[g_{S'}\right]$$

Analogs of thermodynamical equalities

Entropy $S = \ln \Lambda - \frac{P_{el}}{\theta} - \frac{P_{ot}}{\theta}$, where $P_{el} = \sum_{k=1}^{N} I_k \overline{U}_k$ - electrical pouer; P_{ot} - environment pouer

a)
$$P_{\text{ot}} = 0$$
, $\Delta P_{\text{el}} = \frac{P_{\text{el}}}{\theta} \cdot \Delta \theta - \theta \cdot \Delta S$; $\Delta P_{\text{el}} = P_{\text{el}2} - P_{\text{el}1}$, $\Delta \theta = \theta_2 - \theta_1$, $\Delta S = S_2 - S_1$

•

$$\begin{split} \frac{\Delta \theta}{\theta} &= \frac{\Delta P_{el}}{\theta}, \quad \text{a. f.} \quad \frac{\theta_2}{\theta_1} = \frac{P_{el2}}{P_{el1}}, \\ \theta &= \text{const.} \quad \Delta S = -\frac{\Delta P_{el}}{\theta}, \text{then, } S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P}{2}}} = \frac{P_{el1}}{P_{el1}}, \\ P_{el} &= \text{const.} \quad \Delta S = \frac{P_{el1}}{\theta}, \text{then, } S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P}{2}}} = \frac{P_{el1}}{\theta}, \\ P_{el} &= \text{const.} \quad \Delta S = \frac{P_{el1}}{\theta}, \text{then, } S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P}{2}}} = \frac{P_{el2}}{\delta}, \\ P_{el} &= \text{const.} \quad \Delta S = \frac{P_{el1}}{\theta}, \text{then, } S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P-D}{2}}} S_{2^{\frac{P}{2}}} S_{2^{\frac{P}{$$

Conclusion

- Proposed EHM method allows to find any "external" (macroscopic, thermodynamical, operating) parameters characterizing the circuit's mode of operation.
- The field of application of EHM is express-analysis of electronic control systems.
- Using of EHM doesn't require solution of circuits differential equations.
- By means of such models we can determinate electrical state of power average values and deviation of responses on electrical signals and system, i.e. power fluctuations, entropy, information efficiency, nonelectrical influences and intercorrelation of responses.
- types of excitations from environment during operation (destabilizing It is possible to take into account not only electrical but also other factors) that allows to estimate their influence on the circuit operation.

The movements separation method in modeling of power systems

Jordan canonical models

A processes in power and electrical systems can be described in form of matrix differential equation in Couchy form:

Given transfer matrix may be interpreted as model of parallel-cascade structure, which consists from separated independent submodels, having its own time constant $\tau_i = -\frac{1}{\text{Re}(\lambda_i)}$, where λ_i - i-s eigenvalue of matrix A.

By means of such model, electrical processes having the different speeds should be located in different part of the considering system.

That why method, based on transformation of initial mathematical model to Jordan canonical form we call as **movements separation method** or method of decomposition in the time domain.

The structure of circuits with separated movements

1. The case of single-input - single-output circuit:

2. The case of multipoles circuit:

Partial transfer functions which corresponds to all possible types of Jordan cells

From structure of system matrix in the Jordan basis followed, that type of any partial transfer function is determine by type and multiplicity of correspondent eigenvalue of the Jordan cell. Hence, for obtaining the such set of primitive circuits is necessary to investigate all cases of types and eigenvalues multiplicity of system matrix Λ .

1. Simple eigenvalue:

$$K_{i}(p) = \overrightarrow{C}'_{i} \cdot \Theta_{i}^{-1} \cdot \overrightarrow{B}'_{i} = \frac{c'_{i} \cdot b'_{i}}{(p - \lambda_{i})}$$

3. Simple eigenvalue of algebraic multiplicity:

$$K_{i}(p) = \sum_{m=1}^{r_{i}} \sum_{k=1}^{r_{i}-m+1} \frac{b'_{k}c'_{k+m-1}}{(p - \lambda_{i})^{m}}$$

5. Simple eigenvalue of geometric multiplicity:

$$K_{i}(p) = \sum_{j=1}^{r_{i}} k_{j}(p)$$

$$k_{j}(p) = C_{j}'\Theta_{j}^{-1}B_{r_{i}}' = \frac{c_{j}' \cdot b_{r_{i}}'}{p - \lambda_{i}}$$

2. Complex-conjugate pair eigenvalues:

$$K_i(p) = \frac{a_1 p + a_0}{p^2 + b_1 p + b_0}$$

4. Complex-conjugate pair eigenvalues of algebraic multiplicity:

$$K_i(p) = \sum_{m=1}^{r_i} \sum_{k=1}^{r_i-m+1} \frac{a_{0mk} p + a_{1mk}}{(p^2 + b_1 p + b_0)^m},$$

6. Complex-conjugate pair eigenvalues of geometric multiplicity:

$$K_{i}(p) = \sum_{j=1}^{l_{i}} k_{j}(p)$$

$$k_i(p) = \frac{a_1 p + a_0}{p^2 + b_1 p + b_0}$$

Realizations of all possible types of Jordan cells:

2. Complex-conjugate pair of eigenvalues.

3-4. Simle eigenvalue or complex-conjugate pair of algebraic multiplicity^{I_i}.

 $\bf 5$ - $\bf 6$. Simle eigenvalue or complex-conjugate pair of geometric multiplicity, .

Reduction of circuits with separated movements

1. Reduction in the time domain:

In the Jordan basis system eigenvalues are separated. Due to any eigenvalue determine the speed of partial transient process the movements separation method open the way to system reduction in time domain by removing parts with the smallest eigenvalues.

2. Simultaneously reduction in time and frequency domains:

In the Moore basis system singularvalues are separated. As any singularvalue determine energetic contribution to the system dynamic behavior then we can reduce system simultaneously in time and frequency domains by removing parts with the smallest singularvalues.

By means of (2.73-2.80) relations between Jordan and Moore basises we can accomplish flexible reduction, not only in the time domain, but also in time and frequency domains simultaneously

Controllability and observability of circuits with separated movements

Controllable if \vec{B} , $\vec{A}\vec{B}$, ..., $\vec{A}^{N+1}\vec{B}$ are linear independent.

Observable if \vec{C}^T , $\vec{A}^T \vec{C}^T$, ..., $[\vec{A}^T]^{N_T} \vec{C}^T$ are linear independent.

$$\begin{bmatrix} \operatorname{Det} \left[\bar{B}' \right] \Lambda \bar{B}' & \Lambda^2 \bar{B}' & \cdots & \Lambda^{N+1} \bar{B}' \right] \neq 0 \\ \operatorname{Det} \left[\bar{C}' \right] \bar{C}' \Lambda^T \right] \bar{C}' \left[\Lambda^T \right]^2 & \cdots & \bar{C}' \left[\Lambda^T \right]^{N+1} \right] \neq 0$$

System matrix have a simple spectra.

Controllability and observability are defined by control lability and observability coefficients respectively.

System matrixincludes eigenvalues of algebraic multiplicity

Controllability and observability of circuit depends only from it part which doesn't include eigenvalues of algebraic multipli-

System matrix includes eigenvalues of geometric multiplicity

Circuit is uncontrollable and unobservable independently of controllability and observability coefficients.

Conclusions

- •1. Transformation of operator with given input-output map for power systems and its components to Jordan form is equivalent to construction of system with such structure that processes having the different speeds should be located in different parts of that system. In this case we have system with time and space-separated movements. Processes in different parts of the such system are independent one from another.
- •2. Mathematician model of any electrical network in Jordan form can be constructed in form of parallel-sequential structure. In the general case this structure can be composed from six base primitive circuits which are determining by type and multiplicity of correspondent eigenvalues of mathematician model. With help of such structure the tasks of modeling and synthesis can be solved by determination number, type and parameters of primitive circuits.
- •3. Space and time model decomposition gives possibility of effective using analysis methods, based on movements separation (direct integration methods, adaptive algorithms) as well as algorithms, based on space decomposition of the system (relaxation methods, iterative algorithms of type Gauss-Jacobi and Gauss-Zeidel).
- •4. Jordan canonical models are very effective in setting the hierarhial families of circuit and system models. They are effective for making model reduction in the time domain.
- •5. For simultaneous reduction in the time and frequency domains great results might be received by transformation the Jordan models into Moore basis.
- •6. The general features (controllability and observability) of circuits with such models have been investigated.
- •7. The circuit synthesis method based on Jordan canonical models have been developed.
- •8. Suggested model is an invariant for a set of power (or electrical) systems having similar input-output characteristics and can be used as abstract class for models derivation in CAD systems.

Electrical circuits synthesis algorithm, based on the movements separation

Pseudocode of the algorithm:

```
CStateEquations StateEquations, JordanEq;
StateEquations = CalculateStateEquations(AFCArray /* TransientFunArray */);
JordanEq = TransformToJordan(StateEquations);
if (JordanBasis())
  CListOfEigenValues eig = JordanEq.GetEigenValues();
  CListOfControl ControlVector;
  CListOfObserve ObserveVector;
  CJordanBlocksList JordanBlocks = NULL;
  eig.First();
  int n_Multiplicity;
  for (int i = 0; i < eig.GetLength(); i++)
   if (eig.GetType() == TYPE_REAL)
      Multiplicity = eig[i].GetMultiplicity();
      JordanBlocks.Add(GiveRealBlock(eig[i], ControlVector[i],
                                  ObserveVector[i], n_Multiplicity));
     i += n_Multiplicity - 1;
   else // Complex pair of eigenvalues
      Multiplicity = eig[i].GetMultiplicity();
     JordanBlocks.Add(GiveComplexBlock(eig[i], ControlVector[i],
                                  ObserveVector[i], n_Multiplicity));
     i += 2*n_Multiplicity - 1;
 ConnectJordanBlocks(&JordanBlocks);
else
 switch (BASIS)
   case PARALLEL:
     CalculateParallelRealization(JordanEq);
     break;
   case CASCADE:
     CalculateSequentialRealization(JordanEq);
     break:
   case MOORE:
     CalculateMooreRealization(JordanEq);
     break;
   case FENCES:
     CalculateFencesRealization(JordanEq);
     break;
   default:
     break;
```


An example of circuit realized by it transfer matrix

An example of circuit with separated movements which equivalent to shown on previous slide

Relations between the movements separation method and other circuit synthesis methods.

Control algorithms for complex & distributed power systems

Controllability and Special Motion Modes

Concept of Power

Optimum Control

System Objects

Invariant Relations in the Power Saving Control Theory and the Minimum Power Dissipation Principle

> Methods for Synthesizing Power Objects Multiple Criteria Control Strategies

Synergetic Approach
to the Problem of
Interconnective Control of
Power System Objects

Theoretical Foundations for Developing New Strategies of Power System Objects Multicriterial Control

Concept of Power System Objects Optimum Control

Power system control should provide the realization of three basic requirements to its regimes:

- · reliability and stability of the consumers power supply
- guaranteeing normative quality of produced power;
- a general economy of power system operation.

Power Objects Dynamic Peculiarities

- multi-connectivity
- non-linearity
- multi-dimensionality

The concept of power, substance and information controlled interaction allows to formulate the following basic directions for detecting new multicriterial control strategies of power system object:

- development of an applied theory for optimal power saving control based on the synergetic approach and minimum power dissipation principle;
- development of an applied synthesis methods and implementation of multi-criterial control laws opimal by totality of power consumption, performance and accuracy criteria;
- development of applied synergetic methods for synthesizing and implementing power saving control laws providing best accordance of power object natural properties and requirements to its technological processes.

Theoretical Foundations of Power Systems Objects Optimum Control

The technological process in a power object is described by the system of non-linear differential equations:

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{u})$$

It is required to find the admissable control u transfering power object from a certain initial state $\mathbf{x}(0)$ to a final one $\mathbf{x}(T)$ and minimizing a quality criterion in the form of the functional on motion trajectories

$$I = \int_{0}^{T} f_0(\mathbf{x}, \mathbf{u}) dt$$

Generalized functional is specified for the following quality criteria

minimizing fuel or substance expenditure

$$I_1 = \int_1^T \sum_{i=1}^m c_k |u_k| dt$$
$$0 k = 1$$

minimizing power expenditure

$$I_2 = \int_{0}^{T} \sum_{k \in \mathbb{Z}} c_k^2 u_k^2 dt$$

$$0.k = 1$$

expenditure along with a high accuracy of control

$$I_3 = \iint_0^T \left(\sum_{k=1}^m a_k^2 x_k^2 + c_k^2 u_k^2 \right) dt$$

minimizing transfent processes time

$$I_4=\int\!1dt$$

Hamilton's functions

For I_1 and I_2

$$H_1 = f_0(\mathbf{u})\psi_0 + f(\mathbf{x}, \mathbf{u})\psi$$

$$\psi(t) = -\left(\frac{\partial f(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}}\right) + \psi(t) = 0$$

$$I_2 = f_0(\mathbf{x}, \mathbf{u}) \psi_0 + f(\mathbf{x}, \mathbf{u}) \psi$$

$$H_2 = f_0(\mathbf{x}, \mathbf{u}) \psi_0 + f(\mathbf{x}, \mathbf{u}) \psi$$
$$\psi(t) = -\left(\frac{\partial f_0(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}} + \frac{\partial f(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}}\right) \psi$$

Controllability and Special Motion Modes

$$\dot{\mathbf{x}}(t) = A(\mathbf{x}) + B(\mathbf{x})\mathbf{u}$$

The condition of special modes' appearing (\psi

$$(\Psi, B(\mathbf{x})) = \mathbf{u}_{max}$$

if we differentiate n times with respect to the time we get the n-equation system

$$(B_2(\mathbf{x},\mathbf{u}), B_3(\mathbf{x},\mathbf{u}), ..., B_n(\mathbf{x},\mathbf{u}), B_{n+1}(\mathbf{x},\mathbf{u}))^T \psi = 0$$
 (*)

where the vectors $B_j(\mathbf{x}, \mathbf{u})$,

j=2, 3, ..., n, n+1 are determined from the

recurrent relation

$$B_{j}(\mathbf{x}, \mathbf{u}) = \frac{\partial B_{j-1}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}} (A(\mathbf{x}) + B(\mathbf{x}))\mathbf{u} - \left(\frac{\partial A(\mathbf{x})}{\partial \mathbf{x}} + \frac{\partial B(\mathbf{x})\mathbf{u}}{\partial \mathbf{x}}\right) B_{j-1}(\mathbf{x}, \mathbf{u})$$

We will now compose the matrix D_n of the size $n \times n$, whose columns are the vectors

$$B_j(\mathbf{x},\mathbf{u}), \quad j=2, \ 3, \ \dots, \ n, \ n+1$$
 , that is
$$D_n = \begin{pmatrix} B_2 & B_3 & \dots & B_n & B_{n+1} \end{pmatrix}$$

Then the equation system (*) is reduced to the following equation:

$$D_n^T \psi = 0$$

That is for the equality to be true it is necessary that the matrix $D_{\eta}\,$ be degenerate

$$\det D_n = F(\mathbf{x}, \mathbf{u}) = 0$$

Invariant Relations in the Power Saving Control Theory and the Minimum Power Dissipation Principle

processes interconnectivity and interactivity properties from the dissipation principle realization and, consequently, the minimum It turns out that when a vector control of power objects is used, It should be emphasized that when developing the PSCT an important problem of researching the power object control the certain invariant relations providing the minimum power power and fuel waste minimization's point of view arises. power waste in the system, must be established among the controlling actions.

General mathematical power object model

$$\begin{cases} \dot{x}_{j}(t) = f_{j}(x_{1}, \dots, x_{n}, u_{1}, \dots, u_{n}), & j = 1, \dots, r, \\ \dot{x}_{k}(t) = f_{k}(x_{1}, \dots, x_{n}), & k = r + 1, \dots, n, \end{cases}$$

power object from a certain initial state $\mathbf{x}(x_{10},\dots,x_{n0})$ to the given final $\mathbf{x}(x_{1T},...,x_{nT})$ with a minimum value of optimizing functional is stated: The problem of determining a control vector $\mathbf{u}(u_1,...,u_m)$ transferring the

$$I = \Phi(x_1, \dots, x_n)$$

The object's initial differential equation system should be expanded by adding a coordinate to it

$$x_{n+1} = I_i = \int_{\Omega} f_0(x_1, \dots, x_n, u_1, \dots, u_m) dt.$$

CANNOG STATE UNIVERSITY OF 1952 RADIO ENGINEERING

Virtual Test Bed

Taking $arPhi = x_{n+1}$, an equivalent Mayer's problem can be formulated: among the admissible controls U_1, \dots, U_m find such ones that provide the minimum to the

functional

$$\Phi = x_{n+1}(T),$$

and the variables x_i must meet the following boundary conditions:

when t=0: x_{10} , ..., x_{n0} , $x_{n+1,0} = 0$,

when t=T: x_1T , ..., x_nT , x_{n+1} , T - arbitrary values.

Hamiltonian looks as follows:

$$H_3 = \sum_{j=1}^r \psi_j f_j(x_1, \dots, x_n, u_1, \dots, u_m) + \sum_{k=r+1}^n \psi_k f_k(x_1, \dots, x_n).$$

Then the optimum controls are determined from the conditions of the function $\,H_{
m 3}$

maximum, that is r

hat is
$$\sum_{j=1}^{r} \psi_{j} \frac{\partial f_{j}(x_{1}, \dots, x_{n}, u_{1}, \dots, u_{m})}{\partial u_{\mu}} = 0, \quad \mu = 1, 2, \dots, m.$$

Church Church Control of the Control

Virtual Test Bed

The following conditions are true for motion trajectories when $|m| \geq r$

$$D\left(\frac{f_1,\dots,f_r}{u_1,\dots u_{r-1},u_r}\right) = 0, \quad D\left(\frac{f_1,\dots,f_r}{u_1,\dots u_{r-1},u_{r+1}}\right) = 0, \quad D\left(\frac{f_1,\dots,f_r}{u_1,\dots u_{r-1},u_m}\right) = 0,$$

For m=r

$$D = \begin{vmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_2}{\partial u_1} & \cdots & \frac{\partial f_r}{\partial u_1} \\ \frac{\partial f_1}{\partial u_2} & \frac{\partial f_2}{\partial u_2} & \cdots & \frac{\partial f_r}{\partial u_2} \\ \vdots & \vdots & \ddots & \frac{\partial f_r}{\partial u_2} & \cdots & \frac{\partial f_r}{\partial u_2} \\ \frac{\partial f_1}{\partial u_r} & \frac{\partial f_2}{\partial u_r} & \cdots & \frac{\partial f_r}{\partial u_r} \end{vmatrix} = 0.$$

For the simplest marginal case m=r=2 we have:

$$\frac{\partial f_1}{\partial u_1} \cdot \frac{\partial f_2}{\partial u_2} = \frac{\partial f_1}{\partial u_2} \cdot \frac{\partial f_2}{\partial u_1}$$

The controls can be limited or belong to the certain given boundary surfaces

$$\varphi_S(x_1,...x_n, u_1,...,u_m) = 0, S = 1,...,q.$$

Then the necessary conditions for the maximum of hamiltonian look as follows

$$D\left(\frac{f_1,\dots,f_r,-\Phi_1,\dots,\Phi_q}{u_1,\dots u_r+q}\right) = 0, \quad D\left(\frac{f_1,\dots,f_r,-\Phi_1,\dots,\Phi_q}{u_1,\dots u_r+q-1,u_r+q+1}\right) = 0, \quad \dots, \quad D\left(\frac{f_1,\dots,f_r,-\Phi_1,\dots,\Phi_q}{u_1,\dots u_r+q-1,u_m}\right) = 0,$$

Those relations are certain additional connections' equations whose attachment exceeded invariant relations. If the relations are not true than it means that to the object equations decreases the control vector's dimensionality by the equations in the object is equal to r-I. The other equations are tied by the value (m-r-q+1). From which it follows that the number of freely selected the control is not optimal in the sense of power waste.

Basic Porblems of Power Systems Objects Control

important conclusions and single out the following key scientific directions for solving Considered basic conditions and fundamental problems allow to come to a number of the power system object multicriterial power saving control problem.

- Developing the Garanteed Quality Princilpe and Forming Power Saving Control
- Developing Methods for Synthesis of Control Laws Optimum by Minimum Power Expenditure Criterion.
- the Combination of Minimum Power Expenditure and Speed Performance Criteria. • Developing Methods for Synthesis of Power Saving Control Laws Suboptimum by
- Developing Methods for Synthesizing Power Saving Control Laws Suboptimum by the Combination of Minimum Power Expenditure, Speed Performance and Accuracy Criteria.
- Developing Synergetic Methods for Synthesizing Power Saving Laws of Multi-connected Control of Power Systems' Non-linear Objects.

Researching Power System Mathematical Models

Dynamic Properties of Power Systems and Basic Requirements to Electro-mechanical Processes Optimal strategies of todays EPS control must solve two fundamental problems:

EPS synchronous dynamic stability providing the biggest domain of

damping EPS's electro-mechanical providing the required quality of transients

Fundamental requirements for the autonomous EPS

Providing reliable operation Providing an electrical regimes for a smooth supply to electriffed mechanisms in normal and emergency of electrical power

voltage and frequency power of good quality means a constant

Providing an economical operation of generators and electrical power receivers

motor current DCM with mixed excitation Power System Objects Direct current motor noitatioxə DCM with independent noibalioxa Danogmos diiw MDA DCM with series excitation DCM with shunt excitation Turbogenerator **anidauT** Synchronous generator

Turbogenerator

Synchronous generator

$$\dot{x}_1(t) = x_2,$$

$$\dot{x}_2(t) = a_0 - a_1 \sin x_1 - (a_2 + a_3 \sin x_1)x_3 - cx_3^2 - m_l(x_2, t),$$

$$\dot{x}_3(t) = -kx_3 + a_4x_2 \sin x_1 + ku_1$$

an SG rotor rotation angle relatively to synchronic rotation axis;

- sliding; x3 - an SG EMP deviation;

Š

U₁ - an SG excitement voltage deviation;

- an effect proportional to turbine mechanical power; a_0 $m_l(x_2,t)$ - external disturbance at SG, reflecting the asynchronic and synchronic engines and other loads impact;

a;,k - positive constants.

Control optimum by speed performance will be piecewise constant for the whole phase space

$$u_{1opt}(t) = u_{1max} sign \psi_3(t)$$
 $u_{opt} = u_{max}, if \psi_3(t) > 0;$ $u_{opt} = u_{min}, if \psi_3(t) < 0.$

 $S = a_2 + a_3 \sin x_1 + 2a_4 x_4 = 0$ For special manifold

special control looks as follows

$$ku_{1sn} = 0.5k\frac{a_2}{a_4} + 0.5\frac{a_3}{a_4}k\sin x_1 - \left(a_3\sin x_1 + 0.5\frac{a_3}{a_4}\cos x_1\right)x_2$$

Quantitative methods for searching of switching line are based on a jointly integrating equations of the system and conjugated system in a reverse time

Phase portrait of the system when U_m is equal to 0,8

Turbine

$$\dot{x}_1(t) = x_2$$

$$\dot{x}_2(t) = a_0 x_4 - a_1 \sin x_1 - m(x_2)$$

$$\dot{x}_4(t) = -a_6 x_4 - a_7 x_2 + u_2$$

 \mathcal{X}_1 - an electrical angle of SG rotation relativly to rotation synchronous axle;

 χ_2 -sliding;

X4- turbine rotation (power) frequency (speed);

 $m(x_2)$ - an external load;

 u_2 - a controlling influence at the input of speed regulator $u_{2\,min} \le u_2 \le u_{2\,max}$.

$$u_2 = u_{2max}, \qquad \psi_4 > 0;$$

$$u_2 = u_{2min}$$
, if $\psi_4 < 0$

Turbogenerator

$$\dot{x}_1(t) = x_2,$$

$$\dot{x}_2(t) = a_0 x_4 - a_1 \sin x_1 - (a_2 + a_3 \sin x_1) x_3 - a_4 x_3^2 - m_l(x_2),$$

$$\dot{x}_3(t) = -k_1 x_3 + a_5 x_2 \sin x_1 + k_1 u_1,$$

$$\dot{x}_4(t) = -a_6 x_4 - a_7 x_2 + u_2,$$

 $x_1 - an$ SG rotor rotation angle relatively to synchronous rotation axis;

x2 - sliding;

 $X_{\mathcal{F}}$ an SG EPS deviation;

x4 - rotation frequency proportional to turbine mechanical power;

U₁ - SG excitement voltage deviation;

42 - frequency regulator input control effect;

 $a_5=1/T_{fr}, a_6=1/\sigma; T_{fr}, \sigma$ - time constants and frequency regulator statics coefficient.

Control optimum by speed performance $u_1 = u_{max}$, if $\psi_3(t) > 0$; $u_1 = u_{1min}$, if $\psi_3(t) < 0$;

 $u_2 = u_{max}$, if $\psi_4(t) > 0$; $u_2 = u_{2min}$, if $\psi_4(t) < 0$

Direct current motors

DCM with shunt excitation

$$\dot{x}_1(t) = x_2;$$

 $\dot{x}_2(t) = (x_4 x_3 - 14(x_1, x_2, t))a_{21};$
 $\dot{x}_3(t) = (u_1 - x_4 x_2 - a_{31}x_3)a_{32};$
 $\dot{x}_4(t) = (u_1 - f_1(x_4))a_{41};$
 $\dot{x}_1 + shaft rotation angle;$
 $\dot{x}_2 + rotation frequency;$

 $\mathsf{M}(x_1,x_2,t)$ - torque of load.

X4 - flux;

X3 - current of rotor circuit;

Control optimum by speed performance will be piecewise constant

$$u_1(t) = u_{1max} \operatorname{sign}(a_{32} \Psi_3(t) + a_{41} \Psi_4(t)).$$

For special manifold

$$\frac{a_{21}}{a_{31}a_{41}}x_4^3 - 2x_4 + 2x_2x_4 = 0$$

special control

$$u_{1} = \frac{3\frac{a_{21}}{a_{31}}x_{4}^{3} - 2x_{4}a_{41} + 2a_{41}x_{2}x_{4} + 2\frac{a_{21}}{a_{31}}x_{4}^{3}x_{2}}{5\frac{a_{21}}{a_{31}}x_{4}^{2} + 2a_{41}x_{2} - 2a_{41}}$$

DCM with series excitation

$$\dot{x}_1(t) = x_2 \ ;$$

$$\dot{x}_2(t) = (x_3 x_4 - \mu(x_1, x_2, t))a_{21}$$
;

$$\dot{x}_3(t) = (u_1 - a_{31}x_3 + a_{33}f_1(x_4) - x_4x_2)a_{32}$$

$$\dot{x}_4(t) = (x_3 - f_1(x_4))a_{41}$$
;

Control optimum by speed performance will be piecewise constant

$$u_1(t) = u_{1max} \operatorname{sign}(\Psi_3(t))$$
.

For special manifold

$$x_4 = 0$$

special control

$$u_1 = 0$$

DCM with independent excitation

$$\dot{x}_1(t) = x_2;$$

$$\dot{x}_2(t) = (x_4 x_3 - \mu(x_1, x_2, t))a_{21};$$

$$\dot{x}_3(t) = (u_1 - x_4 x_2 - a_{31} x_3)a_{32};$$

$$\dot{x}_4(t) = (u_2 - f_1(x_4))a_{41};$$

Control optimum by speed performance will be piecewise constant

$$u_1(t) = u_{1max} \, sign(\Psi_3(t));$$

 $u_2(t) = u_{1max} \, sign(\Psi_4(t)).$

CANTOG STATE UNIVERSE OF TT 1952 "INC

Asynchronous Electrical Motor

$$\dot{x}_1(t) = x_2;$$

$$\mathcal{X}_1$$
 - shaft rotation angle;

$$\dot{x}_2(t) = a_1 x_4 x_5 - a_2 m_l;$$

$$x_2$$
 - rotation frequency;

$$\dot{x}_3(t) = -a_3 \frac{x_5}{x_4};$$

$$\dot{x}_4(t) = -a_4 x_4 + a_3 x_6;$$

$$x_4$$
 - rotor flux linkage;

$$\dot{x}_5(t) = -a_5 x_5 - a_6 x_6 - a_7 x_4 x_2 + b u_1; \quad x_5 - stator \ current \ projection \ to \ the \ axis \ x;$$

$$\dot{x}_6(t) = -a_5 x_6 + a_6 x_5 + a_8 x_4 + b u_2, \quad x_6 - stator \ current \ projection \ to \ the \ axis \ y$$

$$x_5$$
 - stator curent projection to the axis x; x_6 - stator current projection to the axis y;

$$U_1$$
 - stator voltage projection to the axis x ;

$$U_2$$
 - stator voltage projection to the axis y.

Control optimum by speed performance will be piecewise constant

$$u_{1opt}(t) = U_{1max} sign \Psi_5;$$

$$u_{2opt}(t) = U_{2max} sign \Psi_6.$$

Controllability by Separate Control Channels

Controllability by the channel U_1

$$\dot{x}_2(t) = a_1 x_4 x_5 - a_2 m_l;$$

$$\dot{x}_4(t) = -a_4 x_4 + a_3 x_6;$$

 $\dot{x}_5(t) = -a_5 x_5 - a_6 x_6 - a_7 x_4 x_2 + b u_1;$

$$\dot{x}_6(t) = -a_5 x_6 + a_6 x_5 + a_8 x_4;$$

Special manifold
$$F_1(x_4, x_5, x_6) = (a_3 + a_4)(a_3x_6 - a_4x_4) - a_3a_6x_5 = 0.$$

Special control

$$u_1 = \frac{\left((a_3 + a_4) \left(a_3 a_8 + a_4^2 \right) + a_3 a_4 a_6 a_7 x_2 \right) x_4 - a_3 \left(\left(a_3^2 + 2 a_3 a_4 + a_4^2 + a_6^2 \right) x_6 - \left(a_3 + a_4 + a_5 \right) a_6 x_5 \right)}{a_3 a_5 b_4}$$

Controllability by the channel U_2

$$\dot{x}_{2}(t) = a_{1}x_{4}x_{5} - a_{2}m_{l};$$

$$\dot{x}_{4}(t) = -a_{4}x_{4} + a_{3}x_{6};$$

$$\dot{x}_{5}(t) = -a_{5}x_{5} - a_{6}x_{6} - a_{7}x_{4}x_{2};$$

$$\dot{x}_{6}(t) = -a_{5}x_{6} + a_{6}x_{5} + a_{8}x_{4} + bu_{2};$$

Special manifold

$$F_2(x_2, x_4, x_5, x_6) = a_1 a_3 a_6 a_7 x_4^2 x_5 - a_1 a_6^2 a_7 x_4^3 - a_2 a_3^2 a_7 m_l x_5 + a_2 a_3 a_6 a_7 m_l x_4 +$$

$$+ 2 a_3^2 a_5 a_7 x_2 x_5 + 2 a_3^2 a_6 a_7 x_2 x_6 + 2 a_3 a_4 a_5 a_6 x_5 + 2 a_3 a_4 a_6^2 x_4 - 2 a_3 a_4 a_6 a_7 x_2 x_4 - 2 a_3 a_5^2 a_6 x_5 -$$

$$- 2 a_3 a_5 a_6^2 x_6 - 2 a_4^2 a_6^2 x_4 + 2 a_4 a_5 a_6^2 x_4 = 0;$$

Carried out research of an AM's controllability separately by the channels u_1 and u_2 allow us to come to an important conclusion: when AM one-channel control is used particular manifolds limiting its controllability appear in its phase space.

Considering the Limitations in an Alternating Current Motor Drive Optimal by Speed Performance

The equations system describing AM is complemented by an equation describing thermal processes in the motor

$$\dot{x}(t) = -a_9 x_7 + b_9 (x_5^2 + x_6^2)$$

For the phase space domain in which the coordinate x₇ has not attained its boundary value that is $x_7 < x_{7m}$, the control is determined from the Hamilton's maximum principle

$$u_1 = u_{1m} sign(\Psi_5),$$

$$u_2 = u_{2m} sign(\Psi_6)$$
.

For special manifold

$$K(t) = x_7 - x_{7m} = 0,$$

$$u_1 = \frac{1}{h}(a_5x_5 + a_6x_6 + a_7x_2x_4),$$

$$u_2 = \frac{1}{h}(a_5x_6 + a_6x_5 + a_8x_4).$$

Conclusions and Recommendations Suggested after Researching Models of Power Systems Objects

character and form of optimal controls in the function of time but also to receive optimal control strategies of power system's objects allows not only to reveal the The application of the maximum principle to a problem of the search for new the corresponding equations for their quantitative calculation.

In the case of the limitation which is popular in practice, an optimal control is piecewise constant with the pieces of relay and continuous (singular) control.

according to the maximum principle, to solve the corresponding boundary problem For a quantitative calculation of optimal control strategies it is necessary, of object's differential equations and equations conjugated to them. The development of applied problem-oriented methods for solving boundary problems of modelling strategies of vessel power systems' objects optimal control is required in order to consider the pecularities of power systems' non-linear objects.

CONTROG STATE UNIVERSAL

Virtual Test Bed

non-linear objects, to find degenerate regimes of their motion and also to determine The application of position generality conditions (PGC) of the maximum principle allows to reveal the domains of controllability (attainability) of power systems' the singular controls.

The basic confusion on directed current motor drives: one should use an interconnected dual-channel control - by anchore circuit and excitement circuit which will allow to design a new class of highly efficient optimal motor drives.

optimal dual-channel control of alternating current motor drives will be some kind of channel control whose application will allow to create a new class of highly dynamic optimal directed current motor drives. The development of a theory and methods for For alternating current motor: the most effective is the use of interconnected dualthrust and know-how in the field of motor drives

CONTROC STATE UNITY AND A 1952 CONGINEERING

Virtual Test Bed

connected with the nature of flowing physical processes and structure of those The developed methods application of qualitative research of power systems' non-linear objects control allows to reveal new most important regularites

particular manifolds-invariants we can then point out the ways of improving dynamic elevating other most important indicators of power systems' controllable objects. Having found, as the result of applying the methods of qualitative research, the characteristics, the methods for expanding properties of controllability and for

The developed in the first section qualitative methods and received by using them regularities allow to reveal marginal, theoretically achievable indicators of vessel results of investigating optimal dynamic processes and their fundamental power systems' controllable objects.

Theory and Methods for Synthesizing Power Objects Multiple Criteria Control Strategies

We consider controlled power objects whose behavior is described by non-linear differential equations in the form of

$$\dot{x}_i(t) = f_i(x_1, x_2, ..., x_n) + \sum_{p=1}^r b_{ip} u_p(t) + c_i M_i(t),$$

$$i = 1, n;$$
 $p = 1...r.$

Let a vector quality criterion in N-dimensional Euclid's space have the form

$$\overline{J} = (J_1, J_2, \dots, J_n),$$

where

$$J_l = \int\limits_{t_0}^{t_k} F_l\left(x_1,\ldots,x_n,u_1,\ldots,u_r,t\right) dt - l - \text{th scalar quality criterion } \left(l = \overline{1,N}\right).$$

CANTOG STATE UNIVERSE

Virtual Test Bed

In the space E^N vector coordinates of maximally admissible concessions by scalar criteria are given

$$\overline{\delta} = \left(\delta_1, \delta_2, \dots, \delta_N\right)$$

The system's G_{l} conditions space will be presented by unifying not intersected domains G_{l} , l=1,N

$$G = G_1 U G_2 U ... U G_N$$

For the power object described by the mathematical model it is necessary to synthesize a control law

$$u_p^0 = u_{pl}(x_1, ..., x_n, M_1, ..., M_m); \ p = \overline{1, r} \ ; \ l = \overline{1, N} \ ,$$

nates origin, G_1 , and external, G_2 , which can be related to the regimes of For a wide class of power systems one can practically restrict himself to two domains of the conditions space: an internal one containing coordismall (G_1) and big (G_2) deviations of power system's motion from the defined one.

Power object's behavior in the domain G_I can be described by the linearized system of differential equations

$$\dot{x}_i \ge (t) = \sum_{j=1}^n a_{ij} x_j(t) + \sum_{p=1}^r b_{ip} u_p(t) + c_i M_i(t),$$

where

$$a_{ij} = \frac{\partial f_i(x_1, \dots, x_n)}{\partial x_j}; \quad i = \overline{1, n} \; ; \quad j = \overline{1, n} \; .$$

Mapping the Quality of Functioning Dynamic Systems in a Criteria Space

N-dimensional vector-function $J(\mathbf{u})$ of quality criteria of a technical system We will associate each variant of the control strategy $\mathbf{u}(\mathbf{x}) \in \mathbf{U}^r$ with the operation:

$$\mathbf{J}(\mathbf{u}) = \{J_1(\mathbf{u}), J_2(\mathbf{u}), ..., J_N(\mathbf{u})\}$$

$$J_l(\mathbf{u}) = \int\limits_{t_0}^{t_k} F_l(\mathbf{x}, \mathbf{u}, t) dt, \qquad l = \overline{1, N}$$

We will call the control strategy $\mathbf{u}^{(1)}(\mathbf{x}) \in \mathbf{U}^r$ strictly more preferable to the control

strategy $\mathbf{u}^{(2)}(\mathbf{x}) \in \mathbf{U}^r$ [designating this fact in the form of $\mathbf{u}^{(1)}(\mathbf{x}) > \mathbf{u}^{(2)}(\mathbf{x})$] if

$$\mathbf{J}(\mathbf{x}, \mathbf{u}^{(1)}, t) \leq \mathbf{J}(\mathbf{x}, \mathbf{u}^{(2)}, t)$$

that is among the systems of equalities and inequalities

$$J_l(\mathbf{x}, \mathbf{u}^{(1)}, t) \le J_l(\mathbf{x}, \mathbf{u}^{(2)}, t), \quad l = \overline{1, N}$$

at least one strict inequality can always be found. If

$$\mathbf{J}(\mathbf{x}, \mathbf{u}^{(1)}, t) = \mathbf{J}(\mathbf{x}, \mathbf{u}^{(2)}, t)$$

than considered control strategies are identical to $|\mathbf{u}^{(1)}(\mathbf{x}) \sim \mathbf{u}^{(2)}(\mathbf{x})|$

For the introduced relations a property of transitivity holds true:

if
$$\mathbf{u}^{(1)}(\mathbf{x}) > \mathbf{u}^{(2)}(\mathbf{x})$$
 and $\mathbf{u}^{(2)}(\mathbf{x}) > \mathbf{u}^{(3)}(\mathbf{x})$ then $\mathbf{u}^{(1)}(\mathbf{x}) > \mathbf{u}^{(3)}(\mathbf{x})$

if
$$\mathbf{u}^{(1)}(\mathbf{x}) \sim \mathbf{u}^{(2)}(\mathbf{x})$$
 and $\mathbf{u}^{(2)}(\mathbf{x}) \sim \mathbf{u}^{(3)}(\mathbf{x})$ then $\mathbf{u}^{(1)}(\mathbf{x}) \sim \mathbf{u}^{(3)}(\mathbf{x})$

strategies the subset P (called an unimprovable surface) is a continuous hyper-surface For dynamic systems when considering the class of piece-wise continuous control of the dimension N-1:

$$\Phi(J_1, J_2, ... J_N) = 0$$

Let us assume that the optimal control strategy has been synthesized by known methods for each l=1,...,N.

$$\mathbf{u}^{(l)} = \mathbf{u}^{(l)}(x_1, ..., x_n, M_1, ..., M_m), l = \overline{1, N}$$

The scalar functional $J_l(\mathbf{u}^{(l)})$ is equal to a minimal value on the system's trajectory passing given boundary points in the domain \mathbf{G}_l :

$$\{\mathbf{x}(t_{l-1}), \mathbf{x}(t_l)\} \in \mathbf{G}_l$$

problems of synthesizing the strategies in conditions space domains which represents Then the set of admissible control strategies {u} is fully determined by solving the a separate and difficult problem especially for non-linear power objects of a higher order and can be written in the following form:

$$\{\mathbf{u}^{(1)}(\mathbf{x}) \quad \text{for} \quad t \in [t_0, t_1], \quad \mathbf{x} \in \mathbf{G}_1;$$
$$\{\mathbf{u}\} = \begin{cases} \mathbf{u}^{(2)}(\mathbf{x}) & \text{for} \quad t \in [t_1, t_2], \quad \mathbf{x} \in \mathbf{G}_2; \\ \dots & \dots & \dots \\ \mathbf{u}^{(N)}(\mathbf{x}) & \text{for} \quad t \in [t_{N-1}, t_k], \quad \mathbf{x} \in \mathbf{G}_N. \end{cases}$$

Methods for Synthesizing Control Systems Optimal by Speed Performance and Quadratic Quality Criterion

Methods for structural combining control laws

Linear synthesizing function

$$\mu_1(x_1,...,x_n) = \sum_{i=1}^n \gamma_i x_i = 0;$$

$$u^{(1)}(\mathbf{x}) = u_{max} sign\mu_1(x_1, ..., x_n).$$

Non-linear synthesizing function

$$\mu_2(x_1,...,x_n) = \varphi(x_1,...,x_n) = 0;$$

 $u^{(2)}(\mathbf{x}) = u_{max} sign\mu_2(x_1,...,x_n),$

We introduce to consideration the function:

$$\Phi(x_1,...,x_n) = \begin{cases} 0, & \text{if } \mathbf{x} \in \mathbf{G}_1; \\ \varphi(x_1,...,x_n) - \sum_{i=1}^n \gamma_i x_i, & \text{if } \mathbf{x} \in \mathbf{G}_2. \end{cases}$$

positioning a function of one variable, we present the function $\Phi(x_1,...,x_n)$ for Using methods for approximating equations of switching hyper-surface by superthe domain G in the following form:

$$\Phi(x_1, ..., x_n) = \sum_{i=1}^n \left[g_i(x_i) - \gamma_i x_i \right] + \Theta\left[g_{ij}(x_i) \right],$$

The generalized law of optimal by quality criterion control will be written in the

$$u^{0} = u_{max} sign \left\{ \sum_{i=1}^{n} \gamma_{i} x_{i} + \sum_{i=1}^{n} \Phi_{i}(x_{i}) + \Theta[g_{ij}(x_{i})] \right\},\,$$

Analyzing Systems' Motion Processes When Optimizing by Speed Performance and Quadratic Criteria

The generalized synthesizing function takes the form:

$$\mu(x_1, x_2) = x_1 - \gamma_2 x_2 - \Phi_2(x_2)$$

The generalized control law can be written in the form

$$u^{0} = u_{max} sign\mu(x_{1}, x_{2});$$

$$\mu(x_{1}, x_{2}) = (x_{1} + S) - \gamma_{2}x_{2} - \Phi_{2}(x_{2}) =$$

$$= x_{1} - \gamma_{2}x_{2} - [\Phi_{2}(x_{2}) - S].$$

Then the domain G_1 will be determined by the following set:

$$\mathbf{G}_1 = \{(x_1, x_2) : x_1 \in [-\gamma_2 R, \gamma_2 R] \cup x_2 \in [-R, R] \}.$$

CONTROC STATE UNIVERSITY PADIO ENGINEERING

Virtual Test Bed

device with the following characteristic: The non-linear link φ is a comparing

$$\varphi^* = \begin{cases} \varphi, & \text{if } |x_2| > R; \\ 0, & \text{if } |x_2| \le R. \end{cases}$$

Example of synthesis.

optimal by speed performance and quadratic equations of motion have the following form: We will consider an example of synthesizing criteria control system of the object whose

$$\dot{x}_2(t) = -\frac{1}{T_1} \left[k_1 k_2 u(t) + x_2(t) + \frac{A}{k_2^2} x_2^3(t) \right];$$
 In the domain G₁ a control law should be realized:

 $\dot{x}_1(t) = x_2(t),$

 $|u(t)| \le u_{max}.$

where
$$x_1(t) = Q(t) - \varphi_1(t)$$

$$\sum \mu(k_1,k_2) \left(\frac{\mu(k_1,k_2)}{T_1P+1} \right) \left(\frac{k_1}{T_1P+1} \right) \left(\frac{k_2}{P} \right) \left(\frac{k_1}{P} \right) \left(\frac{k_2}{P} \right) \left(\frac{k_1}{P} \right) \left(\frac{k_2}{P} \right$$

$$u^{(1)}(x_1, x_2) = u_{max} sign(x_1 - \gamma_{12} x_2).$$

Systems with Limitations on Fuel-Power Resources Methods for Synthesizing Multiple Criteria Control

Necessary conditions of optimality in the problem of minimizing fuel consumption

The quantitative estimation of fuel in the system during the time of a transient process $T=t_k$ - t_0 is reflected by the criterion

$$J_3 = \int_{0}^{T} \sum_{k=0}^{N} |u_k(t)| dt$$

system is limited by the given vector of admissible concessions with respect to the According to the guaranteed quality principle, the time of transition process in the particular criteria. Then

$$T_f - t \le \delta_2 J_2^0(x_1, ..., x_n)$$

We will consider as an example a non-linear power object of the second order with one controlling action

$$\dot{x}_1(t) = x_2;$$

 $\dot{x}_2(t) = f(x_1, x_2) + u(t).$

Hamiltonian for the system has the following form:

$$H = \psi_1(t)x_2(t) + \psi_2(t)f(x_1, x_2) + \psi_2(t)u(t) + |u(t)|$$

The control minimizing the hamiltonian H under the limitations to $|u(t)| \le u_{max}$ is equal to

$$u(t) = 0$$
, if $|\psi_2(t)| < u_{max}$
 $u(t) = -u_{max} sign \psi_2(t)$, if $|\psi_2(t)| > u_{max}$
 $0 \le u(t) \le u_{max}$, if $|\psi_2(t)| = -u_{max}$

$$-u_{max} \le u(t) \le 0$$
, if $\psi_2(t) \le u_{max}$

Additional variables $\psi_1(t)$ and $\psi_2(t)$ meet the equations system $\dot{\psi}_2(t) = -\psi_1 - \psi_2 \frac{\partial f(x_1, x_2)}{\partial x_2}$ $\dot{\psi}_1(t) = -\psi_2 \frac{\tilde{of}(x_1, x_2)}{\partial x_1}; \quad .$

CANAGE STATE UNIVERSITY OF 1952

Virtual Test Bed

For different initial conditions and limited time of the transient process only six control sequences can be optimal:

$$\{-u_{max}\}, \{+u_{max}\}, \{+u_{max}\}, \{-u_{max}\}, \{-u_$$

Optimal control law for given T_f is uniquely defined by equations of the curves $F_1(x_2)$ and $F_2(x_2)$

which divide the phase surface into four domains:

$$\mathbf{H}_1 = \{(x_1, x_2) : x_1 \ge F_2(x_2) \bigcup x_1 > F_1(x_2) \};$$

$$\mathbf{H}_2 = \{(x_1, x_2) : x_1 < F_2(x_2) \bigcup x_1 \ge F_1(x_2) \};$$

$$\mathbf{H}_3 = \{(x_1, x_2) : x_1 \le F_2(x_2) \bigcup x_1 < F_1(x_2) \};$$

$$\mathbf{H}_4 = \{(x_1, x_2) : x_1 > F_2(x_2) \bigcup x_1 \le F_1(x_2) \};$$

Fig. 1.19

The optimal control as a function of the condition (x_1, x_2) is determined by the equations for $(x_1, x_2) \in \mathbf{H}_2 \cup \mathbf{H}_{4}$. $u_0 = -u_{max}$ for $(x_1, x_2) \in \mathbf{H}_1$; for $(x_1, x_2) \in \mathbf{H}_3$; $u_0 = u_{max}$ $n_0 = 0$

Synergetic Approach to the Problem of Interconnective Control of Power System Objects

Concept of Cybernetic Self-organization by N. Viner ("A Phenomenon of Shrinking Frequencies"):

are parallely connected to collecting buses and current from them goes to an external supposed to and the generator revolving too slowly takes lesser than its normal load. ... In such a system the generator aspiring to revolve too quickly, and consequently, As the result, the generators' frequencies are coming closer. Generating system, on frequencies in comparatively narrow strips. Let us assume that generators' outputs "Let us consider a number of alternating current generators whose frequencies are the whole, acts as if under the control of a hidden generator that is more accurate than the regulators of separate generators and represents a combination of those regulated by the regulators assigned to primary motors. Those regulators hold load which, in the general case, is subject to more or less random fluctuations. to have an excessively high frequency takes a larger part of the load than it is regulators along with an electrical interaction among them...

So, we see that a non-linear interaction creating an attraction of the frequencies can give birth to a self-organizing system."

Accordant Control of Groups of Power Systems' Turbo-generators The Problem of Synthesizing Interconnected Systems of an

where b - the i-th SG rotor turning angle relatively to the synchronous rotation angle; $\begin{aligned} & T_{i}(t) = P_{Ti} - E_{i}UY_{ij}\sin\delta_{i} - \sum_{l=1}^{n} E_{i}E_{j}Y_{ij}\sin\delta_{ij} + M_{I}(t) \\ & T_{il}\dot{E}_{i}(t) = u_{1i} - E_{i} \end{aligned}$ $\dot{\delta}_i(t) = S_i,$

 $T_{di}\dot{E}_i(t) = u_{1i} - E_i$

 $T_{pi}\dot{P}_{T}(t) = \mu_{i} - P_{Ti}$

 $T_{\mu i}\dot{\mu}_i(\tau) = \mu_i - k_i S_i + \mu_{2i}, \quad \delta_{ij} = \delta_i - \delta_j$

 $E_i = F_i(E_i, \delta_i, \alpha_i), \quad E_i = \varphi_i(\delta_i, \alpha_i)$

i-th SG following a transiting reactance; U - voltage at the EPS buses; i, j = 1, 2, ..., n

 E_i - electrical moving power of the

reactance;

i-th SG following a synchronous

 E_t - electrical moving power of the

 $^{P_{T_t}}$ - a mechanical power of the i-th

 S_t - sliding;

turbine (motor);

 Y_{ii} - a mutual conductivity of the i-th and j-th system' branches;

 μ - a position of the executing device regulating supply of a power bearer to the i-th turbine;

*u*ii - a voltage at the excitation winding of the i-th SG;

 u_{2i} - control at the input of the i-th turbine speed regulator,

 $M_{t}(t)$ - a disturbance influencing the i-th turbo-generator.

The Statement of a Problem of EPS Vector Accordant Control

maximum domain asymptotic stability of the EPS and a marginal speed performance in $u_{2i}(\delta_i,\delta_{ij},P_{Ti},E_i,\mu_i)$ of speed (power) of the corresponding turbines guaranteeing a It is necessary to synthesize a central coordinating regulator with the control channels $u_{1i}(\partial_i, \partial_{ij}, P_{Ti}, E_i, \mu_i)$ of excitation of the corresponding SGs and control channels equilibrium and also providing the desired damping properties of the EPS in the the regimes of big deviations of the EPS (peak and emergency regimes) from regime of small deviations.

Besides that, the regulator must provide an "absorption" (selective invariantness) of synergetic approach allows not only to meet the presented above requirements to the the disturbances $M_i(t)$ and also provide limitations to the turbo-generator. The regulator but also to satisfy to 2n (according to the number of controls) desired relations (accordance conditions) among the variables of the EPS:

$$\psi_{1k}(\delta_i, S_i, P_{Ti}, E_i, \mu_i) = 0$$

$$\psi_{2k}(\delta_i, S_i, P_{Ti}, E_i, \mu_i) = 0$$

$$k = 1, 2, ..., n$$

Particular Problems of Power Systems Turbo-generators Control

Synthesizing coordinating regulators of turbines' speed (power);

$$\hat{\delta}_i(t) = S_i,$$

$$H_t \dot{S}_i(t) = P_{Ti} - P_t \sin \delta_i - \sum_{\substack{j=1\\j \neq i}}^n P_{ij} \sin \delta_{ij} + M_t(t)$$

$$T_{di}\dot{P}_{T}(t) = \mu_{i} - P_{Ti}$$

 $T_{u}\dot{H}(t) = H - k_{i}S_{i} + \mu_{2}, i = 1,2,..,n$

Synthesizing coordinating regulators of the SG group excitation:

$$\begin{split} & \hat{Q}(t) = S_i, \\ & H_i \hat{S}_i(t) = P_{Ti0} - E_i U Y_{ij} \sin \delta_i - \sum_{j=1}^n E_i E_j Y_{ij} \sin \delta_{ij} + M_i(t), \\ & = \sum_{j \neq i} E_j E_j Y_{ij} \sin \delta_{ij} + M_i(t), \end{split}$$

$$T_{di}\dot{E}_i(\tau)=u_{1i}-E_i$$

$$i = 1, 2, \dots, n$$

Examples of Synergetic Synthesis of Multiconnected Control Systems of Electro-mechanical Objects

Turbo-generator Control

 $\dot{x}_1(t) = x_2 ,$

$$x_1$$
- a deviation of SG rotor turning angle with respect to the synchronous axis, x_2 - sliding,

 x_3 - a deviation of the generator's

 x_4 - a deviation of the turbine

mechanical power,

synchronous EMP,

$$\dot{x}_2(t) = a_0 \cdot x_4 - a_1 \cdot \sin(x_1) - (a_2 + a_3 \cdot \sin(x_1)) \cdot x_3 - a_4 \cdot x_3^2 + w_1 ,$$

$$\dot{x}_3(t) = -k \cdot x_3 + a_5 \cdot x_2 \cdot \sin(x_1) + k \cdot x_5 ,$$

$$\dot{x}_4(t) = -a_6 \cdot x_4 + a_8 \cdot x_6 ,$$

$$\dot{x}_5(t) = -a_{10} \cdot x_5 + a_{10} \cdot U_1 ,$$

$$\dot{x}_5(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_6(t) = -a_{11} \cdot x_6 + a_{12} \cdot x_2 + a_{11} \cdot U_2 ,$$

$$\dot{x}_{11} \cdot t_{11} \cdot$$

x₅ - a deviation of exciting device

voltage,

 w_1, w_2 - variables of disturbance model condition, U₁ - excitation regulator controlling influence, x_6 - an alternation of server-motor's position, U_2 - power regulator controlling influence ω_0 - disturbance frequency,

The expressions for the controls are ommitted here due to their cumbersomeness.

Chart of Transients of the Conditions Variables

Asynchronous Motor's Turning Angle Control

$$\dot{y}_1(t) = -x_2$$

$$\dot{x}_2(t) = -a_1 y_3 x_5 + a_1 g_3 x_5 - a_2 m_1$$

$$\dot{y}_3(t) = a_4 y_3 - a_3 x_4 - a_4 g_3$$

$$y_{3}(t) - u_{4}y_{3} - u_{3}x_{4} - u_{4}g_{3}$$

$$\dot{x}_{4}(t) = b_{1}u_{1} - a_{6}x_{3} + a_{6}g_{3} + x_{5}x_{2} + a_{5}x_{4} + \frac{a_{3}x_{5}^{2}}{g_{3} - y_{3}}$$

$$\dot{x}_{5}(t) = a_{5}x_{5} - \frac{a_{3}x_{4}x_{5}}{g_{3} - y_{3}} - x_{2}x_{4} + \frac{a_{6}x_{2}(g_{3} - y_{3})}{a_{4}} + b_{1}u_{2}$$

y₁ - a deviation with respect to the rotation angle,

 x_2 - rotation frequency,

y₃ - deviation with respect to rotor fluzlinkage,

the axis X and Yof rotating coordiantes x₄,x₅ - projection of the stator's current to system,

the axis X and Yof rotating coordiantes u₁,u₂ - projections of the stator's voltage to system,

Presented

at

VTB Annual Meeting

University of South Carolina

by

P. C. Krause, S. D. Pekarek, and O. Wasynczuk Purdue University

June 3, 1997

- 1) Synchronous Machine Models
- a) Coupled-Circuit Physical-Variable Model
 - b) Park's Model
- c) Voltage-Behind-Reactance Physical-Variable Model
- Comparison of Simulation Efficiency \widehat{S}
- a) Computational Requirements
- b) Eigenstructure
- 3) Magnetic Saturation
- 4) Multi-rate Simulation
- 5) Future Research

COUPLED-CIRCUIT MODEL

$$\mathbf{v}_{abcs} = r_{\mathbf{s}} \mathbf{i}_{abcs} + p[\mathbf{L}_{abcs}(\theta_r) \mathbf{i}_{abcs}] + p[\mathbf{L}_{sr}(\theta_r) \mathbf{i}_{qdr}]$$
$$\mathbf{v}_{qdr} = \mathbf{r}_{r} \mathbf{i}_{qdr} + p[\mathbf{L}_{r} \mathbf{i}_{qdr}] + p[\mathbf{L}_{rS}(\theta_r) \mathbf{i}_{abcs}]$$

$$\mathbf{L}_{abcs}(\theta_r) = \begin{vmatrix} L_S(2\theta_r) & L_M\left(2\theta_r - \frac{2\pi}{3}\right) L_M\left(2\theta_r + \frac{2\pi}{3}\right) \\ L_M\left(2\theta_r - \frac{2\pi}{3}\right) & L_S\left(2\theta_r - \frac{4\pi}{3}\right) & L_M(2\theta_r) \end{vmatrix}$$

$$L_{AM}\left(2\theta_r + \frac{2\pi}{3}\right) & L_{M}\left(2\theta_r + \frac{4\pi}{3}\right) & L_S\left(2\theta_r + \frac{4\pi}{3}\right) \end{vmatrix}$$

COUPLED-CIRCUIT MODEL

Number of nodes - 20 Number of branches - 24

PARK'S CIRCUIT

VOLTAGE-BEHIND-REACTANCE MODEL

$$v_{qs}^{r} = r_{q}^{''} r_{q}^{r} + \omega_{r} L_{d}^{''} r_{d}^{r} + p L_{q}^{''} r_{q}^{r} + v_{q}^{''}$$

$$v_{ds}^{r} = r_{d}^{''} r_{q}^{r} - \omega_{r} L_{q}^{''} r_{q}^{r} + p L_{d}^{''} r_{d}^{r} + v_{d}^{''}$$

Transforming to Physical Variables

$$\mathbf{v}_{abcs} = \mathbf{r}_s''(\theta_r)\mathbf{i}_{abcs} + p[\mathbf{L}_{abcs}''(\theta_r)\mathbf{i}_{abcs}] + \mathbf{v}_{abcs}''$$

$$p\lambda_{kq\mu} = \frac{r_{kqu}}{L_{kqu}}(\lambda_q'' + L_{mq}^{''} i_{qs}^{r} - \lambda_{kq\mu}); \; \mu = 1, ..., m$$

Coupling between stator and rotor represented as back emf

Stator and rotor equations in partitioned form

VOLTAGE-BEHIND-REACTANCE MODEL

Number of nodes - 6 Number of branches - 10

RESPONSE TO STEP-CHANGE IN LOAD

Voltage-Behind-Reactance Model - 12 s

Coupled-Circuit Model - 212 s

COMPARISON OF EIGENVALUES

System Eigenvalues using CC and VBR Models

									1
VBR	-33+9j	-33-9j	-52	-205	-370	-798	-1,176	-13,315	-214,489
၁၁	1,056	326	-46	-279	-802	-1,377	-4,718	-13,442	-218,060

Average integration interval 300% larger using VBR model

EIGENSTRUCTURE

Currents as state variables

$$p\mathbf{i}_{x} = \mathbf{A}_{I}^{(\theta_{f})} \mathbf{i}_{x} + \mathbf{B}_{I}^{(\theta_{f})} \mathbf{e}_{br}$$

where

$$\mathbf{A}_I^{(\boldsymbol{\theta}_{r})} = -\mathbf{L}_{x}^{-1}(\boldsymbol{\theta}_{r})[\mathbf{r}_{x} + p\mathbf{L}_{x}(\boldsymbol{\theta}_{r})]$$

$$\mathbf{B}_i(\boldsymbol{\theta}_r) = -\mathbf{L}_x^{-1}(\boldsymbol{\theta}_r)\mathbf{B}_b\mathbf{e}_{br}$$

Flux linkages as state variables

$$p\lambda_{_{X}} = \mathbf{A}_{\!\lambda}(\boldsymbol{\theta}_{_{I}}) \; \lambda_{_{X}} + \mathbf{B}_{\!\lambda}\mathbf{e}_{b_{I}}$$

where $\mathbf{A}_{\lambda}(\theta_{r}) = -\mathbf{r}_{x} \mathbf{L}_{x}^{-1}(\theta_{r})$ $\mathbf{B}_{\lambda} = -\mathbf{B}_{b}$

SYNCHRONOUS MACHINE TEMPLATE

b10 2 V ₩ 90 91 照 兴 n5 **MULTI-RATE SIMULATION** b8 | - 6q i_{qs}^r \vec{I}_{ds}^r I_{qs}^{r} \sqrt{as} $V_{CS}^{"}$ Sample/ Rotor State Model **POP** $p_{J_{\Lambda}}$

RESPONSE TO STEP-CHANGE IN LOAD

Multi-Rate

CPU Time (133-Mhz Pentium PC) Single-Rate - 12 s Multi-Rate - 4 s

VOLTAGE-BEHIND-REACTANCE MODEL (SATURATION INCLUDED)

VOLTAGE-BEHIND-REACTANCE MODEL (SATURATION INCLUDED)

$$\mathbf{v}_{abcs} = r_{s}\mathbf{i}_{abcs} + \mathbf{L}_{abcs}''(\theta_{r'} \lambda_{md})p\mathbf{i}_{abcs} + \omega_{r\overline{\partial}\theta_{r}} \mathbf{L}_{abcs}''(\theta_{r'} \lambda_{md})\mathbf{i}_{abcs} + \mathbf{v}_{abcs}''$$

$$p\lambda_j = v_j - r_j i_j \qquad j = kq1, ..., kqm - 1, ..., fd$$

$$p\lambda_{md} = L_{md}(\lambda_{md}) \left[p_I^{r}_{ds} + p_{LIfd}^{\lambda_{fd}} + \sum_{j=1}^{n} \frac{p\lambda_{kdj}}{L_{Ikdj}} \right]$$

VOLTAGE-BEHIND-REACTANCE MODEL (SATURATION INCLUDED)

Number of branches - 10 Number of nodes - 6

RESPONSE TO STEP-CHANGE IN LOAD

Coupling Block SABER MODEL V_{qs}^{r} $L_{IS} \stackrel{}{\omega_{I}} \stackrel{}{\lambda_{dS}}$ $\Gamma_{\mathcal{S}}$ L_{mq} Ffd Lifd L_{Ikd1} L_{Ikq1} Γ_{kd1} Γ_{kq1} pf_{Λ}

RESPONSE TO STEP-CHANGE IN LOAD (EXPANDED)

STATE-SPACE VERSUS CIRCUIT-BASED SIMULATION

CPU TIMES OF VARIOUS MODELS

Computer	CC Model	VBR Model VBR Model (saturation neglected)	VBR Model (saturation included)	Multi-Rate Simulation	Multi-Rate Saber Simulation Simulation	
133-Mhz Pentium	212 sec	12 sec	12 sec	4 sec		
Sun Sparc 10		11.3 sec			41-180 sec	

0.2-sec study

FUTURE RESEARCH

- 1) Speed/accuracy trade-off of neglecting subtransient saliency
- Semi-analytical (basis function) solution of fast stator/network dynamics (S
- 3) Optimized variable-time-step algorithms for the solution of switched-network systems
- 4) Computational requirements of state-model versus circuitbased approaches
- 5) Model partitioning in parallel computing platforms

High Frequency Modeling and Circuits and Motor Drives EMC of Power Electronic

S.D. Sudhoff, J.L Drewniak, J.L. Tichenor University of Missouri - Rolla

Traditional Detailed Simulation

- Uses
- ◆ Approximate Steady State System Waveforms
- ◆ Evaluate System Wide Transient Performance
- Assumptions
- ◆ Idealized Switching Elements (On/Off)
- ◆ Neglect All Circuit Parasitics
- ♦ Neglect All High Order Effects

Need For High Frequency Analysis

- Semiconductor Switching Stress
- Common Mode Currents
- EMI With Control Circuitry
- I Electric Insulation Breakdown at Machine **Terminals**
- Mechanical Failure of Bearings Due to Fluting
- Loss Analysis

H.F. Simulation Approach

- Dual Mode Simulation
- ◆ Standard Detailed Simulation
- ◆ High Frequency Simulation
- ◆ Seamless Integration of Simulation Modes
- H.F. Models
- ◆ Wide Bandwidth Electric Machine Models
- ◆ Behavioral Semiconductor Models
- ◆ Good Parasitic Models

Uses For Proposed Environment

- Loss Evaluation
- Snubber Design
- EMC Design
- Verification of Controller Robustness in Presence of Noise
- Switching Algorithm Evaluation

- Common ModeCurrent Analysis
- Anticipate Likelihood of Bearing Currents
- Everything Standard
 Detailed Simulation is
 Used For

Work To Date

- Machine Models
- → High Frequency Characterization of Standard 3-Phase Induction Motor
- Mounted Permanent Magnet Synchronous Mathematical Model of 3-Phase Surface ◆ High Bandwidth Characterization and Machine (SM-PMSM)
- ◆ Dual Mode Simulation of SM-PMSM
- Semiconductor Device Modeling
- ◆ New Behavioral IGBT Model

Induction Motor Structure

Induction Motor Capacitances

IM Capacitance Values (5 Hp)

 C_{ws} - 1.01 nF

 $C_{sr} - 1.1 \text{ nF}$ $C_{ww} - 153 \text{ pF}$ $C_{wr} - 15 \text{ pF}$

[M Q- and D-Axis Impedance

IM Common Mode Impedance

Model Requirements /Approach

- Must Incorporate Capacitive Effects
- Must Be Compatible With Standard Model
- Should Recognize Distributed Nature of HF Machine Model

Magnet Synchronous Machine Surface Mounted Permanent

H.F. Machine Variable Model

Wide Bandwidth QD Model

Common Mode Impedance

Sample Drive System

Standard and HF Simulation Mode

Eigenvalues vs. Mode

Low Frequency Mode (1000 rpm):

➤-223 +/- j209.4

High Frequency Mode (1000 rpm):

➤-223 +/- j209.4

➤-5.37e6 +/- j4.69e7

➤-1.59e7 +/- j7.34e7

➤-1.59e7 +/- j7.34e7

Initial Hardware Comparison

Model Discrepancies

- Amplitude Correct
- Frequency Different
- Actual Response Richer

Semiconductor Modeling

- Basic Approaches:
- ▶ Physics Based Models
- Behavioral Models

New Behavioral IGBT Model

Conductance Profiles

Capacitance Profile

Validation Test Set Up

Turn-On Waveforms

Turn Off Waveforms

Work For Next Time

- Behavioral Diode Model
- Complete Dual Mode Simulation of SM-PMSM Drive
- Extend Analytical Approach to Induction Motor

Focus Groups

Computational performance

Model standards

Visualization tools

Evolution of simulation technology

Focus Group Objectives

Obtain at least one concrete result that can be reported back to this body after lunch Establish framework for addressing pertinent e.g. Come together as a publication task force? questions in a public forum

Computational Performance

Oleg Wasynczuk

- What levels of performance should the VTB target?
- What are reasonable expectations of the problem size, the degree of detail that will be sought, and the time that an engineer is willing to wait for an answer?
- Benchmarks based on experience with existing tools are usetul.

Model Standards

Charles Brice

- What standards should exist or are necessary to ensure that models are interoperative?
- How many restrictions can be imposed without becoming too burdensome?
- Are such standards compatible with other existing standards?
- How many lines will be needed in the "Backplane" definition to use a typical model?

Visualization Tools

Sakis Meliopoulos

- What specific visualization options should be provided?
- What should be the default data presentation format?
- graph), regardless of the data being plotted, or should Should there be a standard visual display (e.g. line Should this key be defined at the same time as the the type of display be keyed to the type of data? backplane variables are defined?

Evolution of Simulation Technology

George Cokkinides

- Where is the commercial simulation market headed?
- How will VTB compare with commercial tools (e.g. ACSL/spice)?
- What effect, if any, will DoD HLA have on engineering tools?
- What provisions should VTB make w/r to DoD HLA?

Computational Performance
Oleg Wasynczuk

Model Standards Charles Brice Evolution of Simulation Technology George Cokkinides

Visualization Tools
Sakis Meliopoulos

Focus Group Reports

VTB Annual Review

June 1997

SOUTHCAROLINA Computational Performance

- Members Oleg Wasynczuk, Peter Lamm, Ralph Young, Elias Glytsis
- Agree to disagree on formal framework for establishing evaluation
- Computational Performance secondary to modeling detail
- Multiple "computing engines" suggested for different issues to be addressed
- (1) EMI/EMC component-level
- Circuit protection, communication performance
- (3) Global Ship control
- Does not appear feasible/justifiable to have one engine for all I

- Members George Cokkinides, Steve Pekarek, Thurman R. Harper, Myles Hurwitz, Gene Dadin, Ronda Henning, Chieng Lee, Eugene Solodovnik, Tichenor
- Ī
- Keep track of HLA evolution
- www.dmso.mil/advisor
- Mixed Model Support
- ACSL/SPICE
- SABER
- MATHCAD/SIMULINK
- **Design Orientation**
- parametric analysis
- optimization
- cost analysis
- Tasks
- Monitor COTS trends
- Monitor DOD Standards
- Intellectual Property Issues
- Recommended Reading:
- "WHAT WILL BE," M. DERTOUZOS (Harper-Collins)
- middleware...?

Visualization Tools

- Members:- Sakis Meliopoulos, Robert Pettus, Song Li, Karim Wassef, Chris King, Milad Badawi, Mike Sechrest
- Tools
- Open GL
- JAVA 3D
- Programmer Imagination
- Desirable Results
- Structure by which application users can specify animation & visualization needs
- A. Equivalent of animation & visualization BLADES
- 3. Default A & V BLADE(S)

manodino)

- Recommendation
- Create a Visualization Working Group from the VTB/PEBB community to address A & V issues.

Model Standards

- Members
- Charles Brice, Louise Miles, Levent Gokdere, Anatoly Koleshikov, Joe Borraccini, Jeff Mayer, Vadim Popov
- Fundamental Question: What standards should be established to ensure that models are interoperative?
- Is there a fundamental reason why circuit-based models can not be coupled to differential equation based models?
- It is an issue of methodology. Both types are converted to some kind of difference equation, so it should be possible to connect them.

UNIVERSITY OF

SOUTHCAROLINA Model Standards (cont)

- topology of the mathematical equations near the connection terminals? Should there be restrictions on the topology of the circuit or on the
- There must be restrictions of various sorts. The next slide indicates some of the issues that we discussed
- Both circuits and equations will need restrictions. We will form a group to focus on this issue over the next few months.
- Possible chaotic behavior of some systems may cause problems at interconnections.
- Some problems may not have easy solutions
- Backplane definition already includes reasonable physical variables. Should these include polyphase types?
- Should we impose a general restriction that all variables at terminals represent measurable quantities?
- Should all models have a topological basis?
- We should not overlook symbolic solutions of differential equations.
- System control may impose or relax some restrictions. For example a control system may improve the response of an otherwise chaotic system.

UNIVERSITY OF SOUTHCAROLINA Model Standards (cont)

- How many restrictions can be imposed without becoming too burdensome?
- This is difficult to answer now. We may gain knowledge by getting user input later.
- Are such standards compatible with other existing standards (ACSL, Spice, Saber)?
- We need to think about general standards for VTB models. We do not have specific answers to this question.

- Members: David Taylor, Scott Sudhoff
- details, other than slow-stepping through transitions, when waveforms Problem statement: Are there efficient ways of computing waveform are repetitive in nature
- Will collaborate on techniques for efficient/fast computing

Plans for next year

VTB Annual Review June 1997

Program Objectives

- Integrate the team's efforts
- Develop closer relationships between team members
- Develop plans for migration of new technologies into the VTB software

- Finish SPICE translator
- Begin Saber translator
- Test modular model space concept
- Develop multithreaded solution methods
- Begin work on code generator for high performance
- Integrate user feedback into VTB features

- Fully integrate solver into main program
- Develop component library, including
- building component database
- developing distributed database manager

- Develop good models of PEBB, including controller
- Develop efficient/fast method of handling repetitive waveforms
- Develop models of advanced devices (e.g. SiC)
- Assist Harris in PEBB design/development