STATS 415: Exploring Data, Part 1

Prof. Liza Levina

Department of Statistics, University of Michigan

Data

- Collection of data objects and their attributes
- Data object: aka observation, record, data point, sample point, case, entity, instance
- Attribute is a property or characteristic of an object: aka variable, characteristic, feature, predictor
- · A collection of attributes describes a data object

Example: tax returns

ID	Refund	Marital Status	Taxable Income	• • •
1	Yes	Single	125K	• • •
2	No	Married	100K	• • •
3	No	Single	70K	
4	Yes	Married	120K	
5	No	Divorced	95K	
:				
<u>:</u>				

Possible operations with variables

- Distinctness: =,≠
- Order: <,>
- Addition: +,-
- Multiplication: *,/

Different types of variable possess different properties

Types of Variables

- Categorical, or nominal
 - · Property: distinctness
 - Examples: ID numbers, eye color, zip code
- Ordinal
 - · Property: distinctness, order
 - Examples: pain on a scale 1-10, t-shirt size (XS, S, M, L, XL)
- Interval: has values in equal intervals
 - Property: distinctness, order, addition
 - Examples: calendar dates
- Ratio
 can say three days later but doesn't make sense to say three times later
 - Property: distinctness, order, addition, multiplication
 - Examples: distance, speed, weight

Discrete and Continuous Variables

- Discrete variable
 - Has only a finite or countably infinite set of values
 - Examples: zip codes, particle counts, set of words in a collection of documents
 - Often represented as integer variables
 - Binary variables are a special case of discrete variables
- Continuous variable
 - Has real numbers as variable values
 - · Examples: temperature, height, weight
 - Continuous variables are typically represented as floating-point variables

Types of Data Sets

Data matrix: n observations (rows), p variables (columns)

- Record data
- Document data
- Graph data
- Spatial data
- Temporal or sequential data

Record Data

- Data that consists of a collection of records, each of which consists of a fixed set of variables
- Data matrix conversion: simply arrange records in rows

ID	Refund	Marital Status	Taxable Income
1	Yes	Single	125K
2	No	Married	100K
3	No	Single	70K
4	Yes	Married	120K
5	No	Divorced	95K

Document/Text Data

- Term: words, usually stripped of endings and common "stop words" (e.g. go, going, goes → go, no "the", "and", etc)
- Variables: terms
- Observations: documents
- Value of the variable: the number of times the corresponding term occurs in the document (often normalized)

	team	coach	play	ball	game
Document1	3	0	5	0	2
Document2	0	7	0	2	1
Document3	0	1	0	0	1

Transaction Data

- A special type of record data
- Each record (transaction) involves a set of items
- Example: a grocery store purchase constitutes a transaction, and the individual products purchased are the items.

ID	Items	Bread	Coke	e Milk	Beer	Diaper
1	Bread, Coke, Milk	1	1	1	0	0
2	Bread, Coke, Milk Beer, Bread	1	0	0	1	0
3	Beer, Coke, Diapers, Milk	0	1	1	1	1
4	Beer, Bread, Diapers, Milk	10111				
5	Coke, Diapers, Milk		0 1 1	0 1		

How would you represent this as a data matrix?

Graph Data

- Consists of objects (nodes) and connections between them (edges)
 - Internet (the Web, social networks)
 - Computer / mobile / electric grid networks
 - Transportation
 - Ecosystems (predator / prey networks)

Edges can be directed, undirected, have weights and/or signs

Graph data: adjacency matrix

If n is the number of nodes, the adjacency matrix is $n \times n$

Ordered Data

- Spatial data (e.g. temperature at various weather stations in the US)
- Temporal data (time series): (e.g. stock prices over a year)
- Functional data (e.g. spectral measurements at different wavelengths)
- Sequential data (e.g. human genome)

Ordered data examples

Sequential

Data Quality

Possible problems:

- noise and outliers
- · missing values
- sampling not representative of the target population

Noise

- Perturbation of original data values due to recording errors, interference, etc
- Example: distortion of a person's voice on a bad phone line

Outliers

 Outliers are data points "considerably different" from most of the other data points

Outliers

- Different statistical methods have different levels of sensitivity to outliers – robust methods are less sensitive
- Sometimes outliers are obvious errors and can be removed
- Sometimes removing outliers might make you miss out on a Nobel prize...
- "Big data" tends to have more outliers than "small data"; a difficult problem.

Missing Values

Reasons for missing values

- Information is not collected (e.g., people decline to give their weight; equipment malfunction)
- Variables may not be applicable to all cases (e.g., annual income is not applicable to children)
- Records combined from multiple studies which measured different sets of variables
- The Big Question of missing values: is the missing status correlated with the value of the variable?

Handling missing values

- Eliminate data points with missing values
- Eliminate variables with a lot of missing values entirely
- Estimate (impute) missing values

Sampling distortion

A mismatch between the sample and the population of interest.

- Selection bias
- Response bias
- Convenience samples
- Hard to reach populations

Exploratory Data Analysis (EDA)

Preliminary exploration of the data to better understand its characteristics

- Helping to select the right tool for preprocessing or analysis
- Making use of humans' abilities to recognize patterns
- The term Exploratory Data Analysis (EDA) was coined by statistician John Tukey in a seminal book
- EDA is not data snooping, when done properly... but it can be hard to keep them separate.

Techniques Used in Data Exploration

- In EDA, as originally defined by Tukey, the focus was on visualization
- In our discussion of data exploration, we focus on
 - Summary statistics
 - Visualization

Summary Statistics

- Summary statistics are numbers that summarize properties of the data.
 - · Location or center: e.g., mean, median
 - Frequency: e.g. mode
 - Spread: e.g. standard deviation
- Most summary statistics can be calculated in a single pass through the data.

Frequency and Mode

- The frequency of a variable value is the percentage of time the value occurs in the data set.
 - Example: for the variable "gender" in the population of the US, the value "female" occurs about 50% of the time.
- The mode of a variable is the most frequent variable value.
- The notions of frequency and mode are typically used with categorical data.

Location: Mean and Median

 The mean is the most common measure of the location of a set of points

$$\mathsf{mean}(x) = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- However, the mean is sensitive to outliers.
- The more robust median or a trimmed mean are also commonly used

$$\mathrm{median}(x) = m(x) = \left\{ \begin{array}{ll} x_{(\frac{n+1}{2})} & \text{if } n \text{ is odd} \\ \frac{1}{2} \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) & \text{if } n \text{ is even} \end{array} \right.$$

• Trimmed mean: drop the largest and the smallest x% of data points (e.g. 5% or 10%), average the rest

Percentiles

- For ordinal or continuous data
- Given an ordinal or continuous variable x and a number q between 0 and 100, the qth percentile is the smallest value x_q such that q% of the observed values of x are $\leq x_q$.
- The median is the 50th percentile

Measures of spread: Range and Variance

Range is the difference between the max and min

$$range(x) = max(x) - min(x)$$

 The variance and standard deviation are the most common measures of spread of a set of points

$$Var(x) = s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
$$SD(x) = s_x = \sqrt{Var(x)}$$

 However, variance depends on the mean and is also sensitive to outliers

More robust measures of spread:

Mean Absolute Deviation

$$AAD(x) = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Median Absolute Deviation

$$MAD(x) = median(|x_1 - m(x)|, \dots, |x_n - m(x)|)$$

• Inter-Quartile Range

$$IQR(x) = x_{75\%} - x_{25\%}$$

Multivariate Summary Statistics

Location: compute the mean or median separately for each variable

$$\bar{x} = (\bar{x}_1, \dots, \bar{x}_p)$$

Spread: covariance matrix

Cov_jj'
$$\frac{1}{\text{Cov}(x_j, x_{j'})} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ij'} - \bar{x}_{j'})$$

$$\frac{1}{\text{Cov}} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ij'} - \bar{x}_{j'})$$

$$\frac{1}{\text{Cov}} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ij'} - \bar{x}_{j'})$$

Correlation matrix

$$\operatorname{Cor}(x_j, x_{j'}) = \frac{\operatorname{Cov}(x_j, x_{j'})}{\operatorname{SD}(x_j) \operatorname{SD}(x_{j'})} \quad \text{-1} <= \operatorname{Cor} <= 1$$

$$X \sim N(0,1) y = x^2 Cor(x,y) = 0$$

Other Measures

 Skewness: measures the degree to which symmetrically distributed around the mean

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{\left(\sum_{i=1}^{n} (x_i - \bar{x})^2\right)^{3/2}}$$

 Some characteristics are not easy to measure quantitatively: e.g. whether a distribution is unimodal or multi-modal