Decision Tree Learning (Part 2)

Mark Craven and David Page Computer Sciences 760 Spring 2019

Stopping criteria

We should form a leaf when

- · all of the given subset of instances are of the same class
- · we've exhausted all of the candidate splits

Is there a reason to stop earlier, or to prune back the tree?

How can we assess the accuracy of a tree?

- Can we just calculate the fraction of training examples that are correctly classified?
- Consider a problem domain in which instances are assigned labels at random with P(Y = T) = 0.5
 - How accurate would a learned decision tree be on previously unseen instances?
 - How accurate would it be on its training set?

How can we assess the accuracy of a tree?

- to get an unbiased estimate of a learned model's accuracy, we must use a set of instances that are heldaside during learning
- · this is called a test set

Overfitting

- consider error of model h over
 - training data: $error_D(h)$
 - entire distribution of data: error(h)
- model $h \in H$ overfits the training data if there is an alternative model $h' \in H$ such that

```
error(h) > error(h')

error_D(h) < error_D(h')
```

Overfitting

- the concept of overfitting is not specific to decision trees
- overfitting avoidance is one of the principal challenges in machine learning!

Overfitting with noisy data

suppose

- the target concept is $Y = X_1 \wedge X_2$
- there is noise in some feature values
- we're given the following training set

X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅		Y			
T	T	T	T	Т		T			
T	T	F	F	Т		T			
T	, F	T	T	F		T			
T	F	F	T	F		F			
Т (F	T	F	F		F			
F	Т	Т	F	Т	•••	F			
noisy value									

Overfitting visualized

consider a problem with

- 2 continuous features
- 3 classes
- some noisy training instances

Overfitting with noise-free data

suppose

- the target concept is $Y = X_1 \wedge X_2$
- $P(X_3 = T) = 0.5$ for both classes
- P(Y = T) = 0.67
- we're given the following training set

X_I	X_2	X_3	<i>X</i> ₄	X_5	•••	Y
Т	T	T	T	Т	•••	Т
Т	T	T	F	Т	•••	Т
Т	T	T	Т	F	•••	Т
Т	F	F	Т	F	•••	F
F	T	F	F	Т	•••	F

60%

67%

 because the training set is a limited sample, there might be (combinations of) features that are correlated with the target concept by chance

Т

Avoiding overfitting in DT learning

two general strategies to avoid overfitting

- early stopping: stop if further splitting not justified by a statistical test
 - Quinlan's original approach in ID3
- 2. post-pruning: grow a large tree, then prune back some nodes
 - more robust to myopia of greedy tree learning

Pruning in C4.5

- 1. split given data into training and *tuning* (*validation*) sets
- 2. grow a complete tree
- 3. do until further pruning is harmful
 - evaluate impact on tuning-set accuracy of pruning each node
 - greedily remove the one that most improves tuning-set accuracy

Tuning sets

- a tuning set (a.k.a. validation set) is a subset of the training set that is held aside
 - not used for primary training process (e.g. tree growing)
 - but used to select among models (e.g. trees pruned to varying degrees)

Regression trees

- in a regression tree, leaves have functions that predict numeric values instead of class labels
- · the form of these functions depends on the method
 - CART uses constants
 - some methods use linear functions (model trees)

Regression trees in CART

CART does least squares regression which tries to minimize

$$\sum_{i=1}^{|\mathcal{D}|} \left(y^{(i)} - \hat{y}^{(i)}\right)^2 = \sum_{L \in \text{leaves}} \sum_{i \in L} \left(y^{(i)} - \hat{y}^{(i)}\right)^2$$
 target value for i^{th} value predicted by tree for i^{th} training training instance (average value of y for

training instances reaching the leaf)

 at each internal node, CART chooses the split that most reduces this quantity

Comments on decision tree learning

- · widely used approach
- · many variations
- fast in practice
- provides humanly comprehensible models when trees are not too big
- insensitive to monotone transformations of numeric features
- standard methods learn axis-parallel hypotheses*
- standard methods not suited to on-line setting
- usually not among most accurate learning methods

^{*} although variants exist that are exceptions to this