Finding edges

- Could take derivative
- Find high responses
- Sobel filters!
- But...
- Edges go both ways
- Want to find extrema

2nd derivative!

- Crosses zero at extrema

Laplacian (2nd derivative)!

- Crosses zero at extrema
- Recall:

$$-f''(x) = \lim_{h o 0} rac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

- Laplacian:

$$-\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- Again, have to

- Laplacian:
$$-\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplacian:
$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

Laplacian:
$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

Laplacian:
$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

- Laplacian:

$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

- $-\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$ Negative Laplacian, -4 in middle
- Positive Laplacian --->

0	1	0
1	-4	1
0	1	0

Laplacians also sensitive to noise

- Again, use gaussian smoothing
- Can just use one kernel since convs commute
- Laplacian of Gaussian, LoG
- Can get good approx. with 5x5 9x9 kernels

Difference of Gaussian (DoG)

- Gaussian is a low pass filter
- Strongly reduce components with frequency f $< \sigma$
- (g*I) low frequency components
- I (g*I) high frequency components
- $g(\sigma 1)*I$ $g(\sigma 2)*I$
 - Components in between these frequencies
- $g(\sigma 1)*I g(\sigma 2)*I = [g(\sigma 1) g(\sigma 2)]*I$

$$\sigma = 2$$
 $\sigma = 1$

DoGs

