

Analyzing Cryptocurrencies on HBase

For Finance, Forensics, and Fraud.

April 2017

Agenda

- 1. What is Ripple?
- 2. Difference from Bitcoin
- 3. HBase Infrastructure
- 4. Demo
- 5. Q + A

What is Ripple?

∢ripple

OUR VISION

The Internet of Value:

Enable the world to move money like information moves today.

₹ripple

OUR MISSION

Make cross-border payments truly efficient for banks and their customers.

Bitcoin Blockchain vs Ripple Consensus Ledger

A Tale of Two Different Technologies

Bitcoin Blockchain (BTC)

- 8 years old
- Native Digital Asset BTC
- \$20+ Billion Market Cap
- Inflationary (increasing supply)
- Validation by Proof-of-Work (Mining)
- Confirmation by Chain of Blocks (10 mins)
- No Scripting
- No Decentralized Exchange
- Hash Tree Data Structure

Ripple Consensus Ledger (XRP)

- 4 years old
- Native Digital Asset XRP
- \$5+ Billion Market Cap
- Deflationary (fixed supply)
- Validation by Consensus (No-Mining)
- Confirmation by Last Ledger Closed (5 secs)
- Automated Scripting
- Decentralized Exchange
- Hash Tree Data Structure

Reporting Needs

Enable a real time transaction visualization showing trends and patterns of financial information.

Relieve the application network the burden of expensive queries of static data

Give traders and market makers aggregated information as it happens

Of course, make it scalable

Our Stack

How we designed a high speed reporting system

Our Data Pipeline

How we get data in hbase

Our Stats

Some key stats

Our Cluster

- 5 node hbase cluster
 - Active replication to 3 node backup cluster
- 2x 2.4GHz Intel Xeon-Haswell (E5-2620-V3-HexCore)
- 8x 16GB (128 GB RAM)
- 6 4 TB HDD

Metrics

- Peak so far 1.2 million operations per second
- Approximately 60 purpose built tables
- Co-Processors (none yet)
- Data ingestion averaging 100ms from application commit to population of all tables
- Data retrieval under 30ms

Our Tables

How we designed a high speed reporting system

- Purpose built tables based on known query patterns and paths
- Data is pre-aggregated to certain levels to allow for fast retrieval
- Multiple "Look Up" tables to help translate keys

prod_exchanges	prod_exchanges
prod_fee_stats	crod fee state
prod_gateways	prod_gateways
prod_lesuer_balance_snapshot	prod_leaver_balance_snapshot
prod_ledgers	prod_tedgers
prod_b_econort_memos	prod_lu_scoount_momos
prod is account offers by sequence	prod_lu_account_dflors_by_sequence
prod_h_cocount_trencestions	profit_econf_barastins
prod_li_effected_assourt_transactions	prod_b_afforted_eccount_transactions prod_bu_afforted_eccount_transactions
prod_k_calaway	prod_lu_ledgesa_by_index
prod_b_lodgess_by_index	prod_buledgess_by_time
pmd_li_ledgess_by_time	prod_lo_instructions_by_time
prod_k_transactions_by_time	prod_manifects_by_master_losy.
prod manifests by master key.	prod_manrests_by_varcaror
prod_manifests_by_validator	prod_momos
prod_memos	prof_nehort_fees
prod_network_fees	prod_noce_eate
	prod_noces

Our Key Structure and Data

How we designed a high speed reporting system

Query Based Design

- Queries go after a subject and have a strict condition set
- Keys are designed around the condition set
- Mostly date driven before grain

Data

- 1 ledger can hold over 1000 transactions
- Each transaction serves a purpose to the ledger
- Data Consistency
- Bonus I get a data warehouse with Impala

charts.ripple.com

URL

https://charts.ripple.com https://data.ripple.com

Our stuff is open sourced

Github Repo

Storm ETL ingestion - https://github.com/ripple/rippled-historical-database Ripple Charts - https://github.com/ripple/ripplecharts-frontend

