Graphy Theory Week 11 - Week 12

Planar Ctruphy

Definition

A graph is said to be embeddable in the plane, or planar, if it can be drawn in the plane so that its edged intersect only at their ends

Example

Planar
Graph

Planar

Planar

Planar

Planar

Planar

Graph

Graph

Definition

Such a drawing of a planor
graph is called a planor
embedding of G. Sometimes
refer to a planor embedding of
planor graph as Plane Graph.

Faces

Definition

If G = (V, E) is a plane groph, then G divides the plane into connected regions which are called faces. There is always one unbounded face called the Infinite face.

The # of edges of a face's boundary is called the degree of face.

Theorem =

9 5 cleg (fi) = 18 (G)

Theorem =

For a maxtmal plane graph at least 3 ventex. Every Face's degree must be 3.

Euler's formula

Theoum: (Euler, 1753)

Gris Connected plane graph.

V- 2+ Y= 2.

个面类处

>: I heorem = G is connected plane graph, deg(f) > l> >. Then $2 \leq \frac{\ell}{\ell-2} (\sqrt{\ell-2})$ Proof: ユモ= キュ(f) > l·p=l(2+ eール) : 29, > l(2+q-v) i 29-14 > 1(2-ve) : 2(1-2) < l(V-2) $2. \quad 4 \leq \frac{1}{1-2}(v-2)$ -> le = l (v-w-1) (w>,1) Edge Subdivision:

Edge Contraction:

Dual Graph

Definition

Corresponding to each face for CT. there is a ventex F* of G*.

two ventices F* and g* are Joined by edge e* in CT* iff f and g are seperated by edge e in G

Example:

Theorem

In G*:

(1)
$$N^* = \varphi$$
 (47 $d_G(N_i^*) = deg(f_i)$
(27 $Q^* = Q$
(37 $Q^* = V$