열전소자 COP 개선을 위한 연구

고재섭*, 김종찬**, 정수석***, 정동화*
*순천대학교 전기전자공학부 전기전공
**순천대학교 컴퓨터공학과
***(주)유엔파인

e-mail: kokos22@sunchon.ac.kr, wha777@sunchon.ac.kr

Study for the COP Improvement of Thermoelectric Element

Jae-Sub Ko*, Jong-Chan Kim**, Seong-Sun Jeong***, Dong-Hwa Chung*

*Dept of Electrical Engineering, Sunchon National University

**Dept of Computer Engineering, Sunchon National University

***U&Fine Incorporation

1. 연구 필요성 및 문제점

열전소자는 열을 전기에너지로 변환하거나, 전기에너지를 이용하여 열 에너지를 제어할 수 있는 소자이다. 이러한 열전소자는 입력되는 전압 및 전류에 따라 열을 흡수하는 성능이 달라진다[1-2]. 입력되는 전력에 대해 열을합수 하는 흡열 성능을 COP(Coefficient Of Performance)라고 한다. 열전소자를 이용하여 냉각장치를 구성하기 위해서는 높은 COP가 필요하다. 본 논문에서는 열전소자의연결에 따른 COP 특성을 분석하고 이를 개선하는 방법에대하여 제시한다.

2. 열전소자의 전압에 따른 특성

그림 1은 열전소자의 인가전압에 따라 소자에 흐르는 전류와의 관계를 나타내는 그래프이다. 열전소자에 13.1V의 전압을 인가하면 인가 순간 소자 양면의 온도차가 0℃이므로, 약 3.18A의 전류가 흐른다. 계속해서 13.1V전압을 인가하면, 소자는 흡열면에서 열을 흡수하여 방열면으로 열을 이동시키므로, 흡열면과 방열면 사이에 온도차가발생한다. 따라서 소자양면의 온도차가 점점 커져 60℃에이르게 되면 전류는 약 2.8A로 낮아진다.

그림 1 열전소자의 V-I 특성 곡선

그림 2는 열전소자에 흐르는 전류와 소자양면의 온도차에 따른 소자의 흡열성능지수(COP : Coefficient of Performance) 특성을 나타낸다. 3.2A의 전류가 흐르고 온도차 $\Delta T=0$ $^{\circ}$ 일 때 성능지수(COP)는 약 0.85를 나타

낸다. 하지만, 온도차가 서서히 증가하여 $\Delta T = 60\,^{\circ}$ 단된 경우 0.1 정도로 매우 낮아지는 것을 알 수 있다. 성능지수(COP)는 입력되는 전력에 대한 흡열량의 비율을 나타낸 것으로 열전소자를 이용한 제습 성능을 향상시키기위해 매우 중요한 요소이다. 따라서, 보통 인가전압보다낮은 전압을 인가하여 낮은 전류가 흐르도록 하고, 소자양면의 열 교환 능력을 높여 소자 양면 온도차를 작게 하면, 성능지수(COP)를 높일 수 있다].

그림 1. 열전소자의 COP-I 특성 곡선

3. 결론 및 향후 연구

본 논문은 열전소자의 COP 향상을 위한 방법을 제시하였다. 열전소자의 COP 성능은 열전소자를 이용한 냉각에 매우 중요한 요소이다. COP 가 높을수록 입력되는 전력에 대한 흡열 성능이 개선되어 보다 많은 냉각을 기대할수 있다. 따라서 열전소자의 흡열성능이 전압이 낮알 질수록 높아지는 특성을 이용하여 열전소자를 직렬로 연결하여 구성한다. 직렬로 연결한 열전소자는 단독 및 병렬로연결한 구성에 비하여 COP 성능이 개선되어 우수한 냉각성능을 나타냈다.

참고문헌

- [1] 최현화, "열전소자 특성도 읽는법", 해피코, 2010
- [2] 최현화, "열전냉각 시스템 설계에 필요한 정보", 해피 코, 2011