#### **CHARGES AND THEIR INTEGRALS**

#### 1. Charges with values in extended real line

**Definition 1.1.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu: \Sigma \to \overline{\mathbb{R}}$  be a function. Suppose that  $\mu(\emptyset) = 0$  and

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

for every pair of disjoint sets  $A, B \in \Sigma$ . Then  $\mu$  is a charge on  $\Sigma$ .

**Fact 1.2.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Suppose that  $\mu: \Sigma \to \overline{\mathbb{R}}$  is a charge. Then the image of  $\mu$  is not a superset of  $\{-\infty, +\infty\}$ .

*Proof.* Left for the reader as an exercise.

**Example 1.3.** For each  $n \in \mathbb{N}_+$  we denote the subset of  $\mathbb{N}$  consisting of consecutive numbers from 0 to n-1 by [n]. Let  $A \subseteq \mathbb{N}$  be a subset. We define the upper density of A and the lower density of A as the following numbers respectively

$$\overline{d}(A) = \limsup_{n \to +\infty} \frac{|A \cap [n]|}{n}, \underline{d}(A) = \liminf_{n \to +\infty} \frac{|A \cap [n]|}{n}$$

If  $\overline{d}(A) = \underline{d}(A)$  for some  $A \subseteq \mathbb{N}$ , then we denote their value by d(A) and the density of A. We set

$$\Sigma = \{ A \subseteq \mathbb{N} \mid d(A) \text{ exists } \}$$

Then  $\Sigma$  is an algebra of subsets of  $\mathbb{N}$ . Moreover, d is a real and nonnegative charge on  $\Sigma$ .

**Example 1.4.** For the notion of ultrafilter we refer to [Monygham, 2022]. Let X be a set and let  $\mathcal{F}$  be an ultrafilter of subsets of X Consider a function given by formula

$$\mu(A) = \begin{cases} 1 & \text{if } A \in \mathcal{F} \\ 0 & \text{otherwise} \end{cases}$$

for every  $A \subseteq X$ . Then  $\mu$  is a  $\{0,1\}$ -valued charge on the algebra of all subsets of X.

**Example 1.5.** Let  $\{a_n\}_{n\in\mathbb{N}}$  be a sequence of real numbers such that the series

$$\sum_{n\in\mathbb{N}}a_n$$

is convergent. Let  $\Sigma$  be an algebra of all finite and cofinite subsets in  $\mathbb{N}$ . We define

$$\mu(A) = \sum_{n \in A} a_n$$

for every  $A \in \Sigma$ . Then  $\mu : \Sigma \to \overline{\mathbb{R}}$  is a charge.

**Definition 1.6.** Let *X* be a set and let Σ be an algebra of its subsets. Let  $\mu$  be a charge on Σ. If  $\mu(A) \in \mathbb{R}$  for every  $A \in \Sigma$ , then  $\mu$  is a real charge on Σ.

**Definition 1.7.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu$  be a charge on  $\Sigma$ . If  $\mu(A) \in [0, +\infty]$  for every  $A \in \Sigma$ , then  $\mu$  is a nonnegative charge on  $\Sigma$ .

**Definition 1.8.** Let *X* be a set and let Σ be an algebra of its subsets. Let  $\mu$  be a charge on Σ. If there exists  $\kappa \in \mathbb{R}$  such that  $\mu(A) \ge \kappa$  for every  $A \in \Sigma$ , then  $\mu$  is bounded from below.

**Definition 1.9.** Let *X* be a set and let Σ be an algebra of its subsets. Let  $\mu$  be a charge on Σ. If there exists  $\kappa \in \mathbb{R}$  such that  $\mu(A) \leq \kappa$  for every  $A \in \Sigma$ , then  $\mu$  is bounded from above.

**Definition 1.10.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu$  be a charge on  $\Sigma$ . If  $\mu$  is bounded from below and from above, then  $\mu$  is bounded.

**Example 1.11.** Charges defined in Examples 1.3 and 1.4 are real, bounded and nonnegative.

**Example 1.12.** Consider a sequence  $\{a_n\}_{n\in\mathbb{N}}$  such that the series

$$\sum_{n\in\mathbb{N}}a_n$$

is convergent, but not absolutely convergent. Then the charge defined by  $\{a_n\}_{n\in\mathbb{N}}$  as in Example 1.5 is real but not bounded from below or above.

Now we prove important Jordan decomposition for charges. Our approach closely follows Stanisław Saks [Saks, 1937].

**Theorem 1.13** (Jordan decomposition). Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu: \Sigma \to \overline{\mathbb{R}}$  be a charge. For every  $A \in \Sigma$  set

$$\mu_{+}(A) = \sup \{\mu(B) \mid B \in \Sigma \text{ and } B \subseteq A\}, \ \mu_{-}(A) = \sup \{-\mu(B) \mid B \in \Sigma \text{ and } B \subseteq A\}$$

Then the following assertions hold.

- **(1)**  $\mu_+$  and  $\mu_-$  are nonnegative charges on  $\Sigma$ .
- **(2)** For every  $A \in \Sigma$  set

$$|\mu|(A) = \sup \left\{ \sum_{P \in \mathbb{P}} |\mu(P)| \, \middle| \, \mathbb{P} \text{ is a finite partition of $A$ onto sets in $\Sigma$} \right\}$$

*Then*  $|\mu|$  *is a nonnegative charge on*  $\Sigma$  *and* 

$$|\mu|(A) = \mu_+(A) + \mu_-(A)$$

*for every*  $A \in \Sigma$ *.* 

**(3)** If  $\mu$  is bounded from below, then  $\mu_{-}$  is a bounded charge and

$$u(A) = u_{+}(A) - u_{-}(A)$$

for every  $A \in \Sigma$ .

**(4)** If  $\mu$  is bounded from above, then  $\mu_+$  is a bounded charge and

$$\mu(A) = \mu_{+}(A) - \mu_{-}(A)$$

for every  $A \in \Sigma$ .

*Proof.* We left for the reader the proof of **(1)**.

Fix  $A \in \Sigma$ . Let  $\mathbb{P}$  be a finite partition of A onto a sets in  $\Sigma$ . Consider families

$$\mathbb{P}_{+} = \{ P \in \mathbb{P} \mid \mu(P) > 0 \}, \, \mathbb{P}_{-} = \{ P \in \mathbb{P} \mid \mu(P) \leq 0 \}$$

Clearly  $\mathbb{P} = \mathbb{P}_+ \cup \mathbb{P}_-$  and  $\mathbb{P}_+ \cap \mathbb{P}_- = \emptyset$ . Moreover, we have

$$\sum_{P\in\mathbb{P}} |\mu(P)| = \sum_{P\in\mathbb{P}_+} \mu(P) - \sum_{P\in\mathbb{P}_-} \mu(P) = \mu\left(\bigcup_{P\in\mathbb{P}_+} P\right) - \mu\left(\bigcup_{P\in\mathbb{P}_-} P\right) \le \mu_+(A) + \mu_-(A)$$

and thus  $|\mu|(A) \leq \mu_+(A) + \mu_-(A)$  for every  $A \in \Sigma$ .

Again fix arbitrary  $A \in \Sigma$ . There exists a sequence  $\{B_n\}_{n \in \mathbb{N}}$  of subsets of A contained in  $\Sigma$  such that  $\mu(B_n) \geq 0$  for every  $n \in \mathbb{N}$  and  $\{\mu(B_n)\}_{n \in \mathbb{N}}$  is convergent to  $\mu_+(A)$ . Similarly there exists

a sequence  $\{C_n\}_{n\in\mathbb{N}}$  of subsets of A contained in  $\Sigma$  such that  $\mu(C_n)<0$  for every  $n\in\mathbb{N}$  and  $\{\mu(C_n)\}_{n\in\mathbb{N}}$  is convergent to  $-\mu_-(A)$ . For each  $n\in\mathbb{N}$  we define

$$S_n = \{B_n \setminus C_n, B_n \cap C_n, C_n \setminus B_n, A \setminus (B_n \cup C_n)\}$$

and

$$\tilde{\mathcal{B}}_n = \bigcup \left\{ S \in \mathcal{S}_n \, \middle| \, \mu(S) > 0 \right\}, \, \tilde{C}_n = \bigcup \left\{ S \in \mathcal{S}_n \, \middle| \, \mu(S) \leq 0 \right\}$$

Then  $A = \tilde{B}_n \cup \tilde{C}_n$ ,  $\tilde{B}_n \cap \tilde{C}_n = \emptyset$ ,  $\mu(\tilde{B}_n) \ge \mu(B_n)$ ,  $\mu(\tilde{C}_n) \le \mu(C_n)$  for every  $n \in \mathbb{N}$ . It follows from inequalities that  $\{\mu(\tilde{B}_n)\}_{n \in \mathbb{N}}$  is convergent to  $\mu_+(A)$  and  $\{\mu(\tilde{C}_n)\}_{n \in \mathbb{N}}$  is convergent to  $-\mu_-(A)$ .

Now we have

$$\mu_{+}(A) + \mu_{-}(A) = \lim_{n \to +\infty} \left( \mu(\tilde{B}_n) - \mu(\tilde{C}_n) \right) = \lim_{n \to +\infty} \left( |\mu(\tilde{B}_n)| + |\mu(\tilde{C}_n)| \right) \le |\mu|(A)$$

Hence  $\mu_+(A) + \mu_-(A) \le |\mu|(A)$  for every  $A \in \Sigma$ . This completes the proof of (2).

Now in order to prove (3) assume that  $\mu$  is bounded from below. Then clearly  $\mu_-$  is bounded. Fix  $A \in \Sigma$ . As above there exist sequences  $\{\tilde{B}_n\}_{n \in \mathbb{N}}$  and  $\{\tilde{C}_n\}_{n \in \mathbb{N}}$  of subsets of A contained in  $\Sigma$  such that  $A = \tilde{B}_n \cup \tilde{C}_n$ ,  $\tilde{B}_n \cap \tilde{C}_n = \emptyset$  and

$$\mu_{+}(A) = \lim_{n \to +\infty} \mu(\tilde{B}_n), \ \mu_{-}(A) = \lim_{n \to +\infty} \mu(\tilde{C}_n)$$

Using the fact that  $\mu_{-}(A) \in \mathbb{R}$  we derive

$$\mu(A) = \lim_{n \to +\infty} \left( \mu(\tilde{B}_n) + \mu(\tilde{C}_n) \right) = \mu_+(A) - \mu_-(A)$$

Since  $A \in \Sigma$  is arbitrary, we deduced (3).

The proof of (4) is analogical to the proof of (3) and is omited.

**Example 1.14.** If  $\mu$  is the charge from Example 1.12, then for every cofinite  $A \subseteq \mathbb{N}$  we have  $\mu_+(A) = +\infty$  and  $\mu_-(A) = +\infty$ . Thus  $\mu_+ - \mu_-$  is undefined.

### 2. $\sigma$ -ADDITIVE CHARGES AND SIGNED MEASURES

**Definition 2.1.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu : \Sigma \to \overline{\mathbb{R}}$  be a charge. Suppose that for every sequence  $\{A_n\}_{n\in\mathbb{N}}$  of pairwise disjoint sets in  $\Sigma$  such that

$$\bigcup_{n\in\mathbb{N}}A_n\in\Sigma$$

the equality

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

holds. Then  $\mu$  is a  $\sigma$ -additive charge on  $\Sigma$ 

For the sake of giving a counterexample we first prove the following result.

**Proposition 2.2.** Let  $\Sigma$  be an algebra of subsets of  $\mathbb N$  which contains each finite subset of  $\mathbb N$  and a family  $\{d \cdot \mathbb N\}_{d \in \mathbb N_+}$ . Suppose that  $\mu$  is a charge on  $\Sigma$  such that

$$\mu(d \cdot \mathbb{N}) = \frac{1}{d}$$

for every  $d \in \mathbb{N}_+$ . Then  $\mu$  is not  $\sigma$ -additive.

*Proof.* Suppose that  $\mu$  is a charge on  $\Sigma$  such that

$$\mu(d \cdot \mathbb{N}) = \frac{1}{d}$$

for every  $d \in \mathbb{N}_+$ . Assume that  $d_1, ..., d_s \in \mathbb{N}_+$  are pairwise coprime. Then inclusion-exclusion principle implies that

$$\mu\left(\bigcup_{k=1}^{s} d_k \cdot \mathbb{N}\right) = 1 - \prod_{i=1}^{s} \left(1 - \frac{1}{d_i}\right)$$

Let  $\mathbb P$  be the set of all primes. For each  $n \in \mathbb N_+$  let  $\nu_p(n) \in \mathbb N$  be the exponent of  $p \in \mathbb P$  in prime factorization of n. Fix now a sequence  $\alpha = \{\alpha_p\}_{p \in \mathbb P}$  of elements in  $\mathbb N_+$  such that  $\alpha_p = 1$  for all but finitely many  $p \in \mathbb P$ . Consider the set

$$\Gamma_{\alpha} = \{ n \in \mathbb{N}_+ \mid \nu_p(n) \ge \alpha_p \text{ for some } p \in \mathbb{P} \}$$

Clearly  $\Gamma_{\alpha}$  is cofinite and

$$\Gamma_{lpha} = igcup_{p \in \mathbb{P}} p^{lpha_p} \cdot \mathbb{N}$$

If  $\mu$  is  $\sigma$ -additive, then

$$\mu(\Gamma_{\alpha}) = \lim_{N \to +\infty} \mu\left(\bigcup_{p < N} p^{\alpha_p} \cdot \mathbb{N}\right) = 1 - \lim_{N \to +\infty} \prod_{p < N} \left(1 - \frac{1}{p^{\alpha_p}}\right) = 1$$

Now for fixed  $n \in \mathbb{N} \cap (1, +\infty)$  we pick  $\alpha = \{\alpha_p\}_{p \in \mathbb{P}}$  and  $\beta = \{\beta_p\}_{p \in \mathbb{P}}$  such that

$$\alpha_p = \begin{cases} \nu_p(n) & \text{if } \nu_p(n) > 0 \\ 1 & \text{otherwise} \end{cases}$$

for each  $p \in \mathbb{P}$  and

$$\beta_p = \begin{cases} \nu_p(n) + 1 & \text{if } \nu_p(n) > 0\\ 1 & \text{otherwise} \end{cases}$$

Then  $\mu(\Gamma_{\alpha}) = \mu(\Gamma_{\beta}) = 1$  and hence  $\mu(\{n\}) = \mu(\Gamma_{\alpha} \setminus \Gamma_{\beta}) = 0$ . This holds for all  $n \in \mathbb{N} \cap (1, +\infty)$ . Moreover, by  $\sigma$ -additivity it follows that

$$\mu(\{0\}) = \mu\left(\bigcap_{n \in \mathbb{N}} 2^n \cdot \mathbb{N}\right) = \lim_{n \to +\infty} \mu(2^n \cdot \mathbb{N}) = \lim_{n \to +\infty} \frac{1}{2^n} = 0$$

and hence

$$\mu(2\cdot\mathbb{N}) = \sum_{n\in\mathbb{N}} \mu(\{2\cdot n\}) = 0$$

This contradicts the fact that  $\mu(2 \cdot \mathbb{N}) \neq 0$ .

**Example 2.3.** Let d be the density charge defined in Example 1.3. Then Proposition 2.2 implies that d is not  $\sigma$ -additive.

**Proposition 2.4.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu: \Sigma \to \overline{\mathbb{R}}$  be a  $\sigma$ -additive charge. Then  $\mu_+, \mu_-$  and  $|\mu|$  are  $\sigma$ -additive charges.

*Proof.* Suppose that  $\{A_n\}_{n\in\mathbb{N}}$  is a sequence of pairwise disjoint subsets in  $\Sigma$  such that

$$A = \bigcup_{n \in \mathbb{N}} A_n \in \Sigma$$

Let  $B \in \Sigma$  be a subset of A. Since  $\mu$  is  $\sigma$ -additive, we derive

$$\mu(B) = \sum_{n \in \mathbb{N}} \mu(A_n \cap B) \le \sum_{n \in \mathbb{N}} \mu_+(A_n)$$

Thus  $\mu_+(A) \leq \sum_{n \in \mathbb{N}} \mu_+(A_n)$ . On the other hand pick a family  $\{B_n\}_{n \in \mathbb{N}}$  of sets in  $\Sigma$  such that  $B_n \subseteq A_n$  and  $\mu(B_n) \geq 0$  for each  $n \in \mathbb{N}$ . Then

$$\sum_{n \in \mathbb{N}} \mu(B_n) = \lim_{N \to +\infty} \sum_{n \le N} \mu(B_n) = \lim_{N \to +\infty} \mu\left(\bigcup_{n \le N} B_n\right) \le \mu^+(A)$$

and hence  $\sum_{n\in\mathbb{N}} \mu_+(A_n) \leq \mu_+(A)$ . This proves that  $\mu_+$  is  $\sigma$ -additive.

Since  $(-\mu)_+ = \mu_-$  and  $-\mu$  is  $\sigma$ -additive, we derive that  $\mu_-$  is  $\sigma$ -additive by the case considered above.

According to Theorem 1.13 we have  $|\mu| = \mu_+ + \mu_-$ . Hence also  $|\mu|$  is  $\sigma$ -additive.

**Definition 2.5.** Let X be a set and let  $\Sigma$  be a  $\sigma$ -algebra of its subsets. Let  $\mu : \Sigma \to \overline{\mathbb{R}}$  be a  $\sigma$ -additive charge. Then  $\mu$  is a signed measure on  $\Sigma$ .

**Example 2.6.** Measures are defined in [Monygham, 2019]. Note that each measure is a nonnegative, signed measure.

The following notion plays central role in studying structure of signed measures.

**Definition 2.7.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu : \Sigma \to \overline{\mathbb{R}}$  be a charge. *A positive set for*  $\mu$  is a set  $P \in \Sigma$  such that

$$\mu(A \cap P) \ge 0$$
,  $\mu(A \setminus P) \le 0$ 

for every  $A \in \Sigma$ .

**Example 2.8.** The charge in Example 1.12 does not have positive sets.

The following important result shows the existence of positive sets for signed measures.

**Theorem 2.9** (Hahn). Let X be a set and let  $\Sigma$  be a  $\sigma$ -algebra of its subsets. Let  $\mu: \Sigma \to \overline{\mathbb{R}}$  be a signed measure. Then there exists a positive set for  $\mu$ .

The proof proceeds by constructing approximations for a positive set.

**Lemma 2.9.1.** Let X be a set and let  $\Sigma$  be a  $\sigma$ -algebra of its subsets. Let  $\mu: \Sigma \to \overline{\mathbb{R}}$  be a signed measure. Suppose that  $\mu(A) \geq 0$  for some  $A \in \Sigma$ . Then for each  $\epsilon > 0$  there exists a subset  $Q_{\epsilon}$  of A such that the following assertions hold.

- **(1)**  $Q_{\epsilon} \in \Sigma$  and  $\mu(Q_{\epsilon}) \geq \mu(A)$ .
- **(2)** If  $B \in \Sigma$  and  $B \subseteq Q_{\epsilon}$ , then  $\mu(B) \ge -\epsilon$ .

*Proof of the lemma.* Let  $\mathfrak{F}$  be a family of all sets in  $\Sigma$  contained in A. For any two sets  $F_1, F_2 \in \mathfrak{F}$  we define

$$F_1 \sqsubseteq_{\epsilon} F_2$$

if and only if  $F_2 \subseteq F_1$  and  $\mu(F_1 \setminus F_2) < -\epsilon$ . Clearly  $\sqsubseteq_{\epsilon}$  is transitive and antireflexive. Suppose that  $\{F_n\}_{n \in \mathbb{N}}$  is a sequence of sets in  $\mathfrak{F}$  which is a chain with respect to  $\sqsubseteq_{\epsilon}$ . Then

$$\bigcup_{n\in\mathbb{N}}\left(F_n\setminus F_{n+1}\right)\in\mathfrak{F}$$

and

$$\mu\left(\bigcup_{n\in\mathbb{N}}\left(F_{n}\setminus F_{n+1}\right)\right)=\sum_{n\in\mathbb{N}}\mu\left(F_{n}\setminus F_{n+1}\right)<-\sum_{n\in\mathbb{N}}\varepsilon$$

This contradicts the fact that  $\mu(A) \geq 0$ . Hence there are no infinite chains in  $\mathfrak F$  with respect to  $\sqsubseteq_{\varepsilon}$ . Thus there exists  $Q_{\varepsilon} \in \mathfrak F$  which is maximal with respect to  $\sqsubseteq_{\varepsilon}$  and is contained in a chain with respect to  $\sqsubseteq_{\varepsilon}$  which starts with A. Then  $Q_{\varepsilon}$  satisfies assertions.

**Lemma 2.9.2.** Let X be a set and let  $\Sigma$  be a  $\sigma$ -algebra of its subsets. Let  $\mu: \Sigma \to \overline{\mathbb{R}}$  be a signed measure. Suppose that  $\mu(A) > 0$  for some  $A \in \Sigma$ . Then there exists a subset Q of A such that the following assertions hold.

- (1)  $Q \in \Sigma$  and  $\mu(Q) \ge \mu(A)$ .
- **(2)** If  $B \in \Sigma$  and  $B \subseteq Q$ , then  $\mu(B) \ge 0$ .

*Proof of the lemma.* We define a sequence  $\{Q_n\}_{n\in\mathbb{N}}$  of sets in  $\Sigma$  which are contained in A. We set  $Q_0=A$  and if  $Q_n$  is defined for some  $n\in\mathbb{N}$ , then we pick  $Q_{n+1}\subseteq Q_n$  such that  $\mu(Q_n)\leq \mu(Q_{n+1})$  and

$$\mu\left(B\right) \geq -\frac{1}{n+1}$$

for every  $B \in \Sigma$  and  $B \subseteq Q_{n+1}$ . This construction is possible due to Lemma 2.9.1. Define

$$Q = \bigcap_{n \in \mathbb{N}} Q_n$$

Then  $Q \in \Sigma$  and  $Q \subseteq A$ . Since  $\{\mu(Q_n)\}_{n \in \mathbb{N}}$  is nondecreasing and  $Q_0 = A$ , we derive

$$\mu(A) \le \lim_{n \to +\infty} \mu(Q_n) = \mu(Q)$$

Now if  $B \in \Sigma$  and  $B \subseteq Q$ , then

$$\mu(B) \ge -\frac{1}{n+1}$$

for every  $n \in \mathbb{N}$ . Thus  $\mu(B) \geq 0$ . This proves that Q satisfies assertions.

*Proof of the theorem.* By Fact 1.2 and changing  $\mu$  to  $-\mu$  if necessary, we may assume that there is no set  $A \in \Sigma$  such that  $\mu(A) = +\infty$ . Consider the family

$$\mathcal{P} = \{ Q \in \Sigma \mid \mu(B) \ge 0 \text{ for each } B \subseteq Q \text{ such that } B \in \Sigma \}$$

Denote by  $\alpha$  the least upper bound of  $\mu(Q)$  for  $Q \in \mathcal{P}$ . There exists a sequence  $\{Q_n\}_{n \in \mathbb{N}}$  such that

$$\lim_{n\to+\infty}\mu(Q_n)=\alpha$$

Define

$$P = \bigcup_{n \in \mathbb{N}} Q_n$$

Then  $P \in \mathcal{P}$  and  $\mu(P) = \alpha$ . Since by assumption  $\mu(P)$  is finite, we derive that  $\alpha \in \mathbb{R}$ . Assume that there exists a set  $A \in \Sigma$  such that  $\mu(A) > 0$  and  $A \subseteq X \setminus P$ . Then by Lemma 2.9.2 there exists  $Q \in \mathcal{P}$  such that  $Q \subseteq A$  and  $\mu(A) \leq \mu(Q)$ . Then  $Q \cup P \in \mathcal{P}$  and

$$\alpha = \mu(P) < \mu(P) + \mu(Q) = \mu(Q \cup P) \le \alpha$$

This is a contradiction. Hence P is a positive set for  $\mu$ .

**Corollary 2.10.** Let X be a set and let  $\Sigma$  be a  $\sigma$ -algebra of its subsets. Let  $\mu: \Sigma \to \overline{\mathbb{R}}$  be a signed measure. Then  $\mu$  is either bounded from below or from above.

*Proof.* Indeed, let  $P \in \Sigma$  be a positive set of  $\mu$ . Then  $\mu_+(X) = \mu(P)$ ,  $\mu_-(X) = \mu(X \setminus P)$  and both cannot be infinite by Fact 1.2.

#### 3. Complex charges and spaces of bounded charges

**Definition 3.1.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu: \Sigma \to \mathbb{C}$  be a function. Suppose that  $\mu(\emptyset) = 0$  and

$$\mu(A \cup B) = \mu(A) + \mu(B)$$

for every pair of disjoint sets  $A, B \in \Sigma$ . Then  $\mu$  is a complex charge on  $\Sigma$ .

**Remark 3.2.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Each real charge on  $\Sigma$  is a complex on  $\Sigma$ .

**Definition 3.3.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu : \Sigma \to \mathbb{C}$  be a charge. Suppose that for every sequence  $\{A_n\}_{n\in\mathbb{N}}$  of pairwise disjoint sets in  $\Sigma$  such that

$$\bigcup_{n\in\mathbb{N}}A_n\in\Sigma$$

the equality

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$$

holds. Then  $\mu$  is a  $\sigma$ -additive complex charge on  $\Sigma$ .

**Definition 3.4.** Let *X* be a set and let Σ be a  $\sigma$ -algebra of its subsets. Let  $\mu : \Sigma \to \mathbb{C}$  be a charge. If  $\mu$  is  $\sigma$ -additive, then  $\mu$  is a complex measure on Σ.

**Fact 3.5.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu: \Sigma \to \mathbb{C}$  be a charge. For every  $A \in \Sigma$  we define

$$|\mu|(A) = \sup \left\{ \sum_{P \in \mathbb{P}} |\mu(P)| \mid \mathbb{P} \text{ is a finite partition of } A \text{ onto sets in } \Sigma \right\}$$

*Then*  $|\mu|$  *is a nonnegative charge on*  $\Sigma$ *.* 

Moreover, if  $\mu$  is  $\sigma$ -additive, then also  $|\mu|$  is  $\sigma$ -additive.

*Proof.* The fact that  $|\mu|$  is a charge is left for the reader as an exercise.

Assume now that  $\mu$  is  $\sigma$ -additive. Suppose that  $\{A_n\}_{n\in\mathbb{N}}$  is a sequence of pairwise disjoint subsets in  $\Sigma$  such that

$$A=\bigcup_{n\in\mathbb{N}}A_n\in\Sigma$$

Pick a finite partition  $\mathbb{P}$  of A onto sets in  $\Sigma$ . Since  $\mu$  is  $\sigma$ -additive, we derive that

$$\sum_{P \in \mathbb{P}} |\mu(P)| = \sum_{P \in \mathbb{P}} \left| \sum_{n \in \mathbb{N}} \mu(A_n \cap P) \right| \le$$

$$\le \sum_{P \in \mathbb{P}} \sum_{n \in \mathbb{N}} |\mu(A_n \cap P)| = \sum_{n \in \mathbb{N}} \sum_{P \in \mathbb{P}} |\mu(A_n \cap P)| \le \sum_{n \in \mathbb{N}} |\mu|(A_n)$$

This proves that  $|\mu|(A) \leq \sum_{n \in \mathbb{N}} |\mu|(A_n)$ . On the other hand for each  $n \in \mathbb{N}$  pick a finite partition  $\mathbb{P}_n$  of  $A_n$  onto a sets in  $\Sigma$ . Then

$$\begin{split} \sum_{n \in \mathbb{N}} \sum_{P \in \mathbb{P}_n} |\mu(P)| &= \lim_{N \to +\infty} \sum_{n \le N} \sum_{P \in \mathbb{P}_n} |\mu(P)| \le \\ &\leq \limsup_{N \to +\infty} \left( \sum_{n \le N} \sum_{P \in \mathbb{P}_n} |\mu(P)| + \left| \mu \left( A \setminus \bigcup_{n \le N} A_n \right) \right| \right) \le |\mu|(A) \end{split}$$

Hence  $\sum_{n\in\mathbb{N}} |\mu|(A_n) \leq |\mu|(A)$ . This completes the proof of  $\sigma$ -additivity of  $\mu$ .

**Theorem 3.6.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu: \Sigma \to \mathbb{C}$  be a charge. Then the following assertions are equivalent.

(i) There exists  $\kappa \in \mathbb{R}_+$  such that

$$|\mu(A)| \leq \kappa$$

*for every*  $A \in \Sigma$ *.* 

(ii)  $|\mu|$  is a bounded charge.

*Proof.* Assume that there exists  $\kappa \in \mathbb{R}_+$  such that  $|\mu(A)| \leq \kappa$  for every  $A \in \Sigma$ . For each  $A \in \Sigma$  write

$$\mu(A) = \mu_r(A) + \sqrt{-1} \cdot \mu_i(A)$$

where  $\mu_r(A)$ ,  $\mu_i(A) \in \mathbb{R}$ . Then  $\mu_r$ ,  $\mu_i : \Sigma \to \mathbb{R}$  are real charges and  $|\mu_r(A)|$ ,  $|\mu_i(A)| \le \kappa$  for every  $A \in \Sigma$ . Part (2) of Theorem 1.13 implies that  $|\mu_r|$ ,  $|\mu_i|$  are bounded. Note that

$$|\mu|(A) \le |\mu_r|(A) + |\mu_i|(A)$$

for every  $A \in \Sigma$ . Hence  $|\mu|$  is bounded. This proves that (i)  $\Rightarrow$  (ii).

Suppose now that  $|\mu|$  is a bounded charge. Then there exists  $\kappa \in \mathbb{R}_+$  such that  $|\mu|(A) \leq \kappa$  for every  $A \in \Sigma$ . Since  $|\mu|(A) \leq |\mu|(A)$  for every  $A \in \Sigma$ , we deduce that  $|\mu(A)| \leq \kappa$  for each  $A \in \Sigma$ . This completes the proof of (ii)  $\Rightarrow$  (i).

**Definition 3.7.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu : \Sigma \to \mathbb{C}$  be a charge. If  $|\mu|$  is bounded, then  $\mu$  is a bounded complex charge on  $\Sigma$ .

**Definition 3.8.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Let  $\mu: \Sigma \to \mathbb{C}$  be a charge. We define

$$\|\mu\| = |\mu|(X)$$

Then  $\|\mu\|$  is the total variation of  $\mu$ .

**Theorem 3.9.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Consider the set

$$ba(\Sigma, \mathbb{C}) = \{ \mu : \Sigma \to \mathbb{C} \mid \mu \text{ is a bounded charge on } \Sigma \}$$

Then the following assertions hold.

- (1)  $ba(\Sigma, \mathbb{C})$  is a  $\mathbb{C}$ -linear space with respect to canonical operations of addition of charges and multiplication by complex scalars.
- **(2)** *Then*

$$ba(\Sigma, \mathbb{C}) \ni \mu \mapsto ||\mu|| \in [0, +\infty)$$

is a norm.

- **(3)** Let  $\{\mu_n\}_{n\in\mathbb{N}}$  be a Cauchy sequence with respect to  $\|-\|$ . Then  $\{\mu_n\}_{n\in\mathbb{N}}$  is convergent to some  $\mu \in ba(\Sigma, \mathbb{C})$ . Moreover, if  $\{\mu_n\}_{n\in\mathbb{N}}$  are  $\sigma$ -additive, then  $\mu$  is  $\sigma$ -additive.
- **(4)** Let  $ba(\Sigma, \mathbb{R})$  be an  $\mathbb{R}$ -linear subspace of  $ba(\Sigma, \mathbb{C})$  that consists of real bounded charges. Then  $ba(\Sigma, \mathbb{R})$  is closed with respect to  $\|-\|$ .

*Proof.* Proofs of (1) and (2) are left for the reader.

Let  $\{\mu_n\}_{n\in\mathbb{N}}$  be a Cauchy sequence with respect to  $\|-\|$ . For every  $A\in\Sigma$  and each  $n,m\in\mathbb{N}$  we have

$$|\mu_n(A) - \mu_m(A)| \le ||\mu_n - \mu_m||$$

Since  $\mathbb C$  with the usual absolute value is complete, we derive that there exists  $\mu(A) \in \mathbb C$  such that  $\{\mu_n(A)\}_{n \in \mathbb N}$  converges to  $\mu(A)$ . Now pick at most countable family  $\mathcal F$  of pairwise disjoint sets in  $\Sigma$  such that

$$\bigcup_{F\in\mathcal{F}}F\in\Sigma$$

Suppose also that

$$\mu_n(A) = \sum_{F \in \mathcal{F}} \mu_n(F)$$

for every  $n \in \mathbb{N}$ . We define a measure u on the power set of  $\mathcal{F}$  by formula

$$u(Z) = |Z|$$

for every  $Z \subseteq \mathcal{F}$ . Let  $L^1(u, \mathbb{C})$  is a space of complex valued functions defined on  $\mathcal{F}$  which are integrable with respect to u. In particular,  $L^1(u, \mathbb{C})$  is a Banach space over  $\mathbb{C}$  with norm

$$||f||_1 = \int_{\mathcal{F}} f \, du = \sum_{F \in \mathcal{F}} |f(F)|$$

and integral

$$\int_{\mathcal{F}} f \, du = \sum_{F \in \mathcal{F}} f(F)$$

For the details we refer to [Monygham, 2019]. Since  $\|\mu_n\|$  is finite for each  $n \in \mathbb{N}$  by Theorem 3.6, we derive that the function  $\mathcal{F} \ni F \mapsto \mu_n(F) \in \mathbb{C}$ , which we denote by  $f_n$ , is an element of  $L^1(u,\mathbb{C})$  for every  $n \in \mathbb{N}$ . Moreover, the distance of  $f_n$  and  $f_m$  in  $L^1(u,\mathbb{C})$  is bounded by  $\|\mu_n - \mu_m\|$  for all pairs  $n, m \in \mathbb{N}$ . Hence the sequence  $\{f_n\}_{n \in \mathbb{N}}$  is convergent in  $L^1(u,\mathbb{C})$ . It is also pointwise convergent to a function  $\mathcal{F} \ni F \mapsto \mu(F) \in \mathbb{C}$ , which we denote by f. By general results in [Monygham, 2019] we deduce that f is a limit of  $\{f_n\}_{n \in \mathbb{N}}$  in  $L^1(\mu,\mathbb{C})$  and from considerations above we have inequality

$$||f - f_n||_1 = \lim_{m \to +\infty} ||f_m - f_n||_1 \le \limsup_{m \to +\infty} ||\mu_n - \mu_m||$$

Let us note some consequences of this fact.

• From the convergence of integrals with respect to *u* we deduce

$$\mu\left(\bigcup_{F\in\mathcal{F}}F\right) = \lim_{n\to+\infty}\mu_n(\bigcup_{F\in\mathcal{F}}F) = \lim_{n\to+\infty}\sum_{F\in\mathcal{F}}\mu_n(F) = \sum_{F\in\mathcal{F}}\mu(F)$$

• The convergence in  $\|-\|_1$  implies that

$$\sum_{F \in \mathcal{F}} |\mu(F)| = \lim_{n \to +\infty} \sum_{F \in \mathcal{F}} |\mu_n(F)| \le \sup_{n \in \mathbb{N}} ||\mu_n||$$

• From the inequality above we derive that

$$\sum_{F \in \mathcal{F}} |(\mu - \mu_n)(F)| = \|f - f_n\|_1 \le \limsup_{m \to +\infty} \|\mu_m - \mu_n\|$$

Note that these assertions hold for every family  $\mathcal F$  which satisfies the conditions specified above. Hence from the first assertion it follows that  $\mu$  is a charge and if  $\{\mu_n\}_{n\in\mathbb N}$  are  $\sigma$ -additive, then also  $\mu$  is  $\sigma$ -additive. Next the second statement shows that  $\mu$  is bounded. From the last assertion we deduce that  $\mu$  is a limit of  $\{\mu_n\}_{n\in\mathbb N}$  with respect to  $\|-\|$ . This completes the proof of (3).

The proof of (4) follows from the investigation of the proof of (3) above. The details are left for the reader.  $\Box$ 

**Corollary 3.10.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. Consider the set

$$bca(\Sigma, \mathbb{C}) = \{ \mu : \Sigma \to \mathbb{C} \mid \mu \text{ is a bounded and } \sigma\text{-additive charge on } \Sigma \}$$

Then  $bca(\Sigma, \mathbb{C})$  is a  $\mathbb{C}$ -linear subspace of  $ba(\Sigma, \mathbb{C})$  closed with respect to total variation norm.

*Proof.* Closedness follows from Theorem 3.9. The fact that  $bca(\Sigma, \mathbb{C})$  is  $\mathbb{C}$ -linear subspace of  $ba(\Sigma, \mathbb{C})$  is left as an exercise for the reader.

**Remark 3.11.** Let X be a set and let  $\Sigma$  be an algebra of its subsets. We have the following diagram of Banach spaces and their inclusions.



In the diagram  $cba(\Sigma, \mathbb{R})$  is the intersection of  $ba(\Sigma, \mathbb{R})$  and  $bca(\Sigma, \mathbb{C})$  i.e. a Banach space over  $\mathbb{R}$  of all real, bounded and  $\sigma$ -additive charges on  $\Sigma$ .

## 4. Space of essentially bounded functions

In this section we extend the notion of Lebesgue space to  $p = +\infty$ . We fix a Banach space Y with norm ||-|| over a field  $\mathbb K$  with absolute value |-|.

**Definition 4.1.** Let  $f: X \to Y$  be a strongly measurable function on a space  $(X, \Sigma, \mu)$  with measure. Then

$$||f||_{\infty} = \sup \left\{ r \in \mathbb{R}_+ \cup \{0\} \mid \mu\left(\{x \in X \mid ||f(x)|| \ge r\}\right) > 0 \right\}$$

is the essential supremum of f with respect to  $\mu$ .

**Proposition 4.2.** *Let*  $(X, \Sigma, \mu)$  *be a space with measure. Then* 

**(1)** If  $\alpha \in \mathbb{K}$  and  $f: X \to Y$  is a strongly measurable function on  $(X, \Sigma)$ , then

$$\|\alpha \cdot f\|_{\infty} = |\alpha| \cdot \|f\|_{\infty}$$

**(2)** If  $f, g: X \to Y$  are strongly measurable functions on  $(X, \Sigma)$ , then

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

*Proof.* Fix  $\alpha \in \mathbb{K} \setminus \{0\}$  and  $f: X \to Y$  be a strongly measurable function on  $(X, \Sigma)$ . Then

$$\{x \in X \mid ||(\alpha \cdot f)(x)|| \ge r\} = \left\{x \in X \mid ||f(x)|| \ge \frac{r}{|\alpha|}\right\}$$

for every  $r \in \mathbb{R}_+ \cup \{0\}$ . Hence

$$\|\alpha \cdot f\|_{\infty} = \sup \left\{ r \in \mathbb{R}_{+} \cup \{0\} \ \middle| \ \mu \left( \left\{ x \in X \ \middle| \ \|(\alpha \cdot f)(x)\| \ge r \right\} \right) > 0 \right\} =$$

$$= \sup \left\{ r \in \mathbb{R}_{+} \cup \{0\} \ \middle| \ \mu \left( \left\{ x \in X \ \middle| \ \|f(x)\| \ge \frac{r}{|\alpha|} \right\} \right) > 0 \right\} =$$

$$= |\alpha| \cdot \sup \left\{ r \in \mathbb{R}_{+} \cup \{0\} \ \middle| \ \mu \left( \left\{ x \in X \ \middle| \ \|f(x)\| \ge r \right\} \right) > 0 \right\} = |\alpha| \cdot \|f\|_{\infty}$$

It follows that

$$\|\alpha \cdot f\|_{\infty} = |\alpha| \cdot \|f\|_{\infty}$$

for every  $\alpha \in \mathbb{K} \setminus \{0\}$ . For  $\alpha = 0$  this also holds for trivial reasons. Hence (1) is proved.

Suppose that  $f,g:X\to Y$  are strongly measurable functions on  $(X,\Sigma)$ . Assume that  $r\in\mathbb{R}_+$  is such that

$$||f||_{\infty} + ||g||_{\infty} < r$$

We may pick  $r_f, r_g \in \mathbb{R}_+$  such that  $r_f + r_g = r$  and  $||f||_{\infty} < r_f$  and  $||g||_{\infty} < r_g$ . Then

$$\{x \in X \mid ||(f+g)(x)|| \ge r\} \subseteq \{x \in X \mid ||f(x)|| + ||g(x)|| \ge r_f + r_g\} \subseteq$$

$$\subseteq \{x \in X \mid ||f(x)|| \ge r_f\} \cup \{x \in X \mid ||g(x)|| \ge r_g\}$$

Since  $||f||_{\infty} < r_f$  and  $||g||_{\infty} < r_g$ , we deduce that

$$\mu\left(\left\{x \in X \,\middle|\, \|f(x)\| \ge r_f\right\}\right) = \mu\left(\left\{x \in X \,\middle|\, \|g(x)\| \ge r_g\right\}\right) = 0$$

This implies that

$$\mu(\{x \in X \mid ||(f+g)(x)|| \ge r\}) = 0$$

and thus  $||f + g||_{\infty} < r$ . This proves that

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

if right hand side is finite. Clearly the inequality holds if the right hand side is infinite. This completes the proof of (2).  $\Box$ 

**Definition 4.3.** Let  $f: X \to Y$  be a strongly measurable function on a space  $(X, \Sigma, \mu)$  with measure. If

$$||f||_{\infty} \in \mathbb{R}$$

then f is essentially bounded with respect to  $\mu$  or shortly  $\mu$ -essentially bounded.

**Definition 4.4.** Let  $(X, \Sigma, \mu)$  be a space with measure. Then the set of all *Y*-valued and  $\mu$ -essentially bounded functions is denoted by  $L^{\infty}(\mu, Y)$  and is called *the Lebesgue space of*  $\mu$ -essentially bounded functions for *Y*.

**Corollary 4.5.** Let  $(X, \Sigma, \mu)$  be a space with measure. Then  $L^{\infty}(\mu, Y)$  is a  $\mathbb{K}$ -vector subspace of the  $\mathbb{K}$ -vector space of all strongly measurable functions on  $(X, \Sigma)$  and

$$||-||_{\infty}: L^{\infty}(\mu, Y) \to \mathbb{R}_+ \cup \{0\}$$

is a seminorm.

*Proof.* This follows immediately from Proposition 4.2.

**Theorem 4.6** (Riesz). Let  $(X, \Sigma, \mu)$  be a space with measure and let  $\{f_n : X \to Y\}_{n \in \mathbb{N}}$  be a Cauchy sequence of elements of  $L^{\infty}(\mu, Y)$ . Then  $\{f_n\}_{n \in \mathbb{N}}$  converges in  $L^{\infty}(\mu, Y)$ .

*Proof.* Consider an increasing sequence  $\{n_k\}_{k\in\mathbb{N}}$  of natural numbers such that

$$||f_n - f_m||_{\infty} \le 2^{-k}$$

for every  $n, m \ge n_k$  and for every  $k \in \mathbb{N}$ . For every  $k \in \mathbb{N}$  sets

$$A_k = \bigcup_{n=n_k}^{+\infty} \bigcup_{m=n_k}^{+\infty} \{ x \in X \mid ||f_n(x) - f_m(x)|| > 2^{-k} \}$$

and

$$B_k = \{x \in X \mid ||f_k(x)|| > ||f_k||_{\infty} \}$$

are in  $\Sigma$  and have measure  $\mu$  equal to zero. Hence

$$A = \bigcup_{k \in \mathbb{N}} \left( A_k \cup B_k \right)$$

have measure  $\mu$  equal to zero. Now  $\{f_{n|X\setminus A}\}_{n\in\mathbb{N}}$  is a sequence of bounded functions which is Cauchy with respect to uniform norm. Since Y is complete with respect to  $\|-\|$ , sequence  $\{f_{n|X\setminus A}\}_{n\in\mathbb{N}}$  converges uniformly to some function  $X\setminus A\to Y$ . We extend this function to a function  $f:X\to Y$  by setting it equal to zero on A. Note that f is strongly measurable by

Proposition ??. Moreover,  $\{f_{n|X\setminus A}\}_{n\in\mathbb{N}}$  converges uniformly to  $f_{|X\setminus A}$ . Thus  $f_{X\setminus A}$  is bounded and hence  $f\in L^\infty(\mu,Y)$ . For the same reason f is a limit of  $\{f_n\}_{n\in\mathbb{N}}$  in  $L^\infty(\mu,Y)$ .

# 5. Integration with respect to charges

## REFERENCES

[Monygham, 2019] Monygham (2019). Integration. *github repository: "Monygham/Pedo-mellon-a-minno"*. [Monygham, 2022] Monygham (2022). Filters in topology. *github repository: "Monygham/Pedo-mellon-a-minno"*. [Saks, 1937] Saks, S. (1937). Theory of the integral.