Отчёт по лабораторной работе №1

Дисциплина: Операционные системы

Долгаев Евгений НММбд-01-24

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Домашнее задание	13
5	Ответы на контрольные вопросы	16
6	Выводы	17
Список литературы		18

Список таблиц

Список иллюстраций

3.1	Создание образа виртуального диска	./
3.2	Запуск виртуальной машины	7
3.3	ВООТ-меню	8
3.4	Графический режим	8
3.5	Установочный лаунчер	9
3.6	Процесс установки	9
3.7	Вход в ОС	10
3.8	Установка tmux	10
3.9	Отключение SELinux	11
	Создание конфигурационного файла	11
	Роль супер-пользователя	11
3.12	Изменение конфигурационного файла	11
3.13	Установка pandoc	12
3.14	Установка latex	12
11	Поможнико по пому	14
	Домашнее задание	_
4.2	Домашнее задание	14
4.3	Домашнее задание	15

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1) Выполнение лабораторной работы
 - 1. Установка Linux на qemu
 - 2. Обновления
 - 3. Повышение комфорта работы
 - 4. Отключение SELinux
 - 5. Настройка раскладки клавиатуры
 - 6. Установка программного обеспечения для создания документации
- 2) Домашнее задание
- 3) Ответы на контрольные вопросы

3 Выполнение лабораторной работы

Предлагается несколько вариантов установки ОС Linux на основе следующих программных эмуляторов:

- gemu;
- virtualbox.

Я выбрал установку на qemu. Для начала запустим терминал и перейдём в каталог /var/tmp:

```
cd /var/tmp
```

Создим каталог с именем пользователя. Для этого можно использовать команду:

```
mkdir /var/tmp/`id -un`
```

Далее создадим образ виртуального диска (60GB, формат qcow2) и запустим виртуальную машину(рис. 3.1, 3.2):

```
esdolgaev@esdolgaev:/var/tmp/esdolgaev$ qemu-img create -f qcow2 fedora-sway.qcow2 60G
Formatting 'fedora-sway.qcow2', fmt=qcow2 cluster_size=65536 extended_l2=off compression_ty
pe=zlib size=64424509440 lazy_refcounts=off refcount_bits=16
```

Рис. 3.1: Создание образа виртуального диска

```
esdolgaev@esdolgaev:/var/tmp/esdolgaev$ qemu-system-x86_64 -boot menu=on -m 2048 -cpu max -
smp 4 \
-cdrom Fedora-Sway-Live-x86_64-41-1.4.iso \
-drive file=fedora-sway.qcow2,format=qcow2,if=virtio,aio=native,cache=none \
-bios /usr/share/ovmf/OVMF.fd \
-enable-kvm -machine q35 -device intel-iommu \
-device virtio-balloon \
-chardev qemu-vdagent,id=vdagent0,name=vdagent,clipboard=on,mouse=off \
-display default,show-cursor=on \
-vga none -device virtio-gpu-pci
```

Рис. 3.2: Запуск виртуальной машины

В появившемся окне выберем Start Fedora-Sway-Live 41. Открется графический режим, после чего нужно будет нажать сочетание клавиш Win+D и запустить установочный лаунчер (рис. 3.3, 3.4).

Рис. 3.3: ВООТ-меню

Рис. 3.4: Графический режим

В установочном лаунчере нужно провести небольшую первоначальную настройку ОС Linux и запустить сам процесс установки операционной системы (рис. 3.5, 3.6).

Рис. 3.5: Установочный лаунчер

Рис. 3.6: Процесс установки

После всего вышесказанного виртуальная машина перезагрузится. Далее нужно войти в ОС под заданной при установке учётной записью (рис. 3.7).

Рис. 3.7: Вход в ОС

Теперь нужно установить все необходимое для работы в системе. Обновим все пакеты с помощью:

sudo dnf -y update

И установим программу для удобства работы в консоли (рис. 3.8):

```
[root@esdolgaev ~]# dnf -y install tmux mc
Обновление и загрузка репозиториев:
```

Рис. 3.8: Установка tmux

Отключим систему безопасности SELinux. Для этого в файле /etc/selinux/config замените значение (рис. 3.9)

SELINUX=enforcing

на значение

SELINUX=permissive

```
SELINUXTYPE= can take one of these three values:

# SELINUXTYPE= can take one of these three values:

# targeted - Targeted processes are protected,

# minimum - Modification of targeted policy. Only selected processes are protected.

# mls - Multi Level Security protection,

SELINUXTYPE=targeted
```

Рис. 3.9: Отключение SELinux

Перейдём к настройке раскладки клавиатуры. Создадим конфигурационный файл ~/.config/sway/config.d/95-system-keyboard-config.conf (рис. 3.10):

```
esdolgaev@esdolgaev:-/.config/sway$ #kdir -p -/.config/sway/config.d
esdolgaev@esdolgaev:-/.config/sway$ touch -/.config/sway/config.d/95-system-keyboard-config.conf
esdolgaev@esdolgaev:-/.config/sway$
```

Рис. 3.10: Создание конфигурационного файла

В него нужно будет записать следующую строку:

exec_always /usr/libexec/sway-systemd/locale1-xkb-config -oneshot

Переключимся на роль супер-пользователя (рис. 3.11) и отредактируем конфигурационный файл /etc/X11/xorg.conf.d/00-keyboard.conf так, как показано на картинке (рис. 3.12):

```
esdolgaev@esdolgaev:~/.config/sway$ sudo -1
[sudo] пароль для esdolgaev:
root@esdolgaev:~#
```

Рис. 3.11: Роль супер-пользователя

```
Section "InputClass"

Identifier "system-keyboard"

MatchIsKeyboard "on"

Option "XkbLayout" "us.ru"

Option "XkbVariant" "winkeys"

Option "XkbCptions" "grp:alt_shift_toggle.compose:ralt.terminate:ctrl_alt_bkSp"
EndSection
```

Рис. 3.12: Изменение конфигурационного файла

Перезагрузим виртуальную машину.

Установим pandoc и latex с помощью менеджера пакетов (рис. 3.13, 3.14). Для этого введём команду:

" sudo dnf -y install pandoc "

И

sudo dnf -y install texlive-scheme-full

Рис. 3.13: Установка pandoc

Рис. 3.14: Установка latex

4 Домашнее задание

В домашнем задании требовалось найти следующую информацию:

- Версия ядра Linux (Linux version).
- Частота процессора (Detected Mhz processor).
- Модель процессора (CPU0).
- Объём доступной оперативной памяти (Memory available).
- Тип обнаруженного гипервизора (Hypervisor detected).
- Тип файловой системы корневого раздела.
- Последовательность монтирования файловых систем.

с помощью команды:

```
dmesg | grep -i "то, что ищем"
```

Вся информация представлена на скриншотах (рис. 4.1, 4.2, 4.3):

```
| C. 000000| Linux variable Linux va
```

Рис. 4.1: Домашнее задание

```
Initial function of the search of the search
```

Рис. 4.2: Домашнее задание

```
Received Injury of Green g | grep -1 "Hypervisor"

8. RECEIVED | Hypervisor Greeched: KEM

**Combined Departs -2 dress g | grep -1 "Hypervisor"

8. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

8. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, linear)

2. RTA-200 | Mount-cache hash table entries: 4806 (order: 3, 32768 bytes, l
```

Рис. 4.3: Домашнее задание

5 Ответы на контрольные вопросы

- 1) Имя, пароль и домашний каталог
- 2) Команды терминала

```
1. --help:mv --help
```

2. cd:cd ~/work

3. ls:ls work

4. du:du dir1

5. mkdir/rm:mkdir dir1/rm dir1

6. chmod:chmod a+x /dir1/1.sh

7. tail .bash_history

- 3) Файловая система— это структура, используемая операционной системой для организации и управления файлами на устройстве хранения, например на жестком диске. FAT— одна из старейших и простейших файловых систем. Первоначально она была разработана для MS-DOS и до сих пор используется во многих съемных устройствах хранения. Две основные версии этой системы— FAT16 и FAT32. FAT использует таблицу размещения файлов для отслеживания расположения файлов на диске.
- 4) Можно определить, какие файловые системы уже подмонтированы в ОС, используя команду mount . -v отображает список смонтированных файловых систем в подробном режиме.
- 5) Команда kill это наиболее часто используемый инструмент для уничтожения процессов в Linux.

6 Выводы

В ходе выполнения лабораторной работы я приобрёл практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы