NAME: ARYAN SIRDESAI ROLL No.: TACO20175 Lab Assignment 2: Data Wrangling II

Problem Statement: Create an "Academic performance" dataset of students and perform the following operations using Python.

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non□linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

```
In [1]: import pandas as pd
import numpy as np
import scipy
import scipy.stats as stats
import matplotlib.pyplot as plt
import seaborn as sns
```

Getting dataset - Student Performance

```
In [2]: df = pd.read_csv("StudentsPerformance.csv")
In [3]: df
```

Out[3]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74.0
1	female	group C	some college	standard	completed	69.0	90.0	88.0
2	female	group B	master's degree	standard	none	90.0	95.0	93.0
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	NaN
4	male	group C	some college	standard	none	76.0	78.0	75.0
•••								
995	female	group E	master's degree	standard	completed	88.0	99.0	95.0
996	male	group C	high school	free/reduced	none	62.0	55.0	55.0
997	female	group C	high school	free/reduced	completed	59.0	71.0	65.0
998	female	group D	some college	standard	completed	68.0	78.0	77.0
999	female	group D	some college	free/reduced	none	77.0	86.0	86.0

1000 rows × 8 columns

```
df.shape
In [4]:
       (1000, 8)
Out[4]:
       df.columns
In [5]:
       Out[5]:
             'writing score'],
            dtype='object')
In [6]:
       df.dtypes
                                  object
       gender
Out[6]:
       race/ethnicity
                                  object
       parental level of education
                                  object
       lunch
                                  object
       test preparation course
                                  object
       math score
                                 float64
                                 float64
       reading score
       writing score
                                 float64
       dtype: object
       df.isnull().sum()
In [7]:
```

```
0
         gender
Out[7]:
         race/ethnicity
                                         0
         parental level of education
                                         0
         lunch
                                         0
         test preparation course
                                         0
         math score
                                         6
         reading score
                                         6
         writing score
                                         3
         dtype: int64
In [8]:
         df['math score'].fillna(value=df['math score'].mean(),inplace=True)
         df['writing score'].fillna(value=df['writing score'].mean(),inplace=True)
         df['reading score'].fillna(value=df['reading score'].mean(),inplace=True)
         df.isnull().sum()
Out[8]: gender
         race/ethnicity
                                         0
         parental level of education
                                         0
         lunch
                                         0
                                         0
         test preparation course
         math score
                                         0
         reading score
                                         0
         writing score
                                         0
         dtype: int64
In [9]: outliers = []
         def detect(df):
             threshold = 3
             mean = np.mean(df)
             std = np.std(df)
             for d in df:
                 z_score = (d-mean)/std
                 if np.abs(z_score) > threshold:
                     outliers.append(d)
             return outliers
In [10]: var='math score'
         # var='reading score'
         # var='writing score'
In [11]:
         z_scores=detect(df[var])
In [12]: outliers=df[df[var].isin(z_scores)]
In [13]: outliers
```

Out[13]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
7	7 male	group B	some college	free/reduced	none	120.0	43.0	39.0
17	7 female	group B	some high school	free/reduced	none	18.0	32.0	28.0
39	m ale	group B	associate's degree	free/reduced	none	10.0	56.0	57.0
59	9 female	group C	some high school	free/reduced	none	0.0	17.0	10.0
113	3 female	group D	some college	standard	none	1.0	58.0	54.0
139) male	group D	some college	standard	completed	200.0	61.0	69.0
980) female	group B	high school	free/reduced	none	8.0	24.0	23.0

In [14]: dfs = df[~df.index.isin(outliers.index)]

In [15]: #df2=df[var].drop(df[var][df[var].isin(z_scores)])

In [16]: dfs

Out[16]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74.000000
1	female	group C	some college	standard	completed	69.0	90.0	88.000000
2	female	group B	master's degree	standard	none	90.0	95.0	93.000000
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	68.402207
4	male	group C	some college	standard	none	76.0	78.0	75.000000
•••								
995	female	group E	master's degree	standard	completed	88.0	99.0	95.000000
996	male	group C	high school	free/reduced	none	62.0	55.0	55.000000
997	female	group C	high school	free/reduced	completed	59.0	71.0	65.000000
998	female	group D	some college	standard	completed	68.0	78.0	77.000000
999	female	group D	some college	free/reduced	none	77.0	86.0	86.000000

993 rows × 8 columns

```
In [17]: dfs.skew(axis =0)
         /var/folders/q4/v4fv5t6d4kndspky2m0bvynw0000gn/T/ipykernel_5412/4029879126.py:1: F
         utureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_
         only=None') is deprecated; in a future version this will raise TypeError. Select
         only valid columns before calling the reduction.
           dfs.skew(axis =0)
         math score
                         -0.156469
Out[17]:
         reading score
                          6.006394
                          3.999959
         writing score
         dtype: float64
In [18]: dfs.hist(alpha=0.5, figsize=(16, 10))
         array([[<AxesSubplot:title={'center':'math score'}>,
Out[18]:
                 <AxesSubplot:title={'center':'reading score'}>],
                [<AxesSubplot:title={'center':'writing score'}>, <AxesSubplot:>]],
               dtype=object)
```



```
In [19]: sns.kdeplot(dfs['writing score'])
```

Out[19]: <AxesSubplot:xlabel='writing score', ylabel='Density'>


```
In [20]: a = np.log(dfs['writing score'])
    a.skew(axis=0)
    sns.kdeplot(a)
```

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/pandas/core/arraylike.py:36
4: RuntimeWarning: divide by zero encountered in log
 result = getattr(ufunc, method)(*inputs, **kwargs)

Out[20]: <AxesSubplot:xlabel='writing score', ylabel='Density'>


```
In [21]: plt.figure(figsize=(14,8))
   plt.subplot(1,2,1) ## means 1 row , 2 columns and 1st plot
   dfs['writing score'].hist(bins=30)

plt.subplot(1,2,2)
   stats.probplot(dfs['writing score'], dist="norm", plot=plt)
   plt.show()
```



```
In [22]: plt.figure(figsize=(14,8))
    plt.subplot(1,2,1) ## means 1 row , 2 columns and 1st plot
    # dfs['writing log'].hist(bins=30)

a[np.isfinite(a)].hist(bins=30)

plt.subplot(1,2,2)
    stats.probplot(a, dist="norm", plot=plt)
    plt.show()
```

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/numpy/lib/function_base.py:
2487: RuntimeWarning: invalid value encountered in subtract
 X -= avg[:, None]


```
In [23]: plt.figure(figsize=(14,8))
  plt.subplot(1,2,1) ## means 1 row , 2 columns and 1st plot
  dfs['math score'].hist(bins=30)

plt.subplot(1,2,2)
  stats.probplot(dfs['math score'], dist="norm", plot=plt)
  plt.show()
```



```
In [24]: sns.kdeplot(dfs['math score'])
```

Out[24]: <AxesSubplot:xlabel='math score', ylabel='Density'>


```
In [25]: m = np.log(dfs['math score'])
    m.skew(axis=0)
    sns.kdeplot(m)
```

Out[25]: <AxesSubplot:xlabel='math score', ylabel='Density'>


```
In [26]: plt.figure(figsize=(14,8))
    plt.subplot(1,2,1) ## means 1 row , 2 columns and 1st plot
    # dfs['writing log'].hist(bins=30)

m[np.isfinite(m)].hist(bins=30)

plt.subplot(1,2,2)
    stats.probplot(a, dist="norm", plot=plt)
    plt.show()
```

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/numpy/lib/function_base.py:
2487: RuntimeWarning: invalid value encountered in subtract
 X -= avg[:, None]

