1 Introduction

Identification : Observation pour déduire les caractéristiques du système et créer un modèle

Modélisation : Décrire le système sous forme d'équation pour créer un modèle

Types de modèles : Déterministes / stochastiques, dynamiques / statiques, temps continu / temps discret, paramètres ponctuels / distribués, change oriented / mu par événements discrets.

1.1 Formulation du problème

- Quel est le problème, pourquoi est-ce un problème
- Quelles sont les variables-clé ? variables ou paramètres ?
- Quel est l'horizon temporel et l'échelle de temps matrice $P^{-1}AP$ dans la base E ?
- Quel est le comportement passé / futur ?

2 Algèbre linéaire

2.1 Indépendance linéaire

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m = 0$$
 $\alpha_i \neq 0$

Pour déterminer si les vecteurs sont linéairement indépendants on construit la matrice ${\cal A}$

$$A = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

 $\det(A) \neq 0 \longrightarrow \text{lin\'eairement ind\'ependants}$

 $rang(A) = N_{colonnes} \longrightarrow linéairement indépendants$

2.2 Bases

Une base E^n est un ensemble de n vecteurs linéairement indépendants. Chaque vecteur est une somme de combinaison linéaire des vecteurs de base

$$x = \sum_{i=1}^{n} x_i u_i$$

2.2.1 Changement de base

base
$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 base $E = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$

La matrice P est constituée des vecteurs de la nouvelle base

$$P = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$$

base
$$U \longrightarrow \text{base } E$$
 $x_E = P^{-1}x_U$
base $E \longrightarrow \text{base } U$ $x_U = Px_E$

La matrice A dans la base U est équivalente à la matrice $P^{-1}AP$ dans la base E

2.2.2 Changement de base d'une matrice

$$B = P^{-1}AP$$

2.3 Valeurs propres

les valeurs propres λ sont les solutions de l'équation

$$\det\left(A - \lambda I\right) = \vec{0}$$

On cherche les solutions de l'équation

$$\boxed{Ax = \lambda x} \longleftrightarrow \boxed{(A - \lambda I)x = \vec{0}}$$

La multiplicité numérique d'une valeur propre est son exposant dans le polynôme caractéristique.

2.3.1 Vecteurs propres

On trouve les vecteurs propres \vec{x} avec

$$(A - \lambda_i I) \, \vec{x}_i = \vec{0}$$

Python valeurs_propres, vecteurs_propres = np.lin Les vecteurs propres sont linéairement indépendants

2.4 Matrice modale

C'est la matrice formée par les vecteurs propres d'une matrice

$$M = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$$

2.4.1 Diagonalisation de A

Les vecteurs propres de A constituent une nouvelle base. Λ est "l'opération" de Λ dans cette nouvelle base

$$\Lambda = M^{-1}AM$$

3 Stocks & Flows

- Capturer les hypothèses sur les causes du comportement dynamique d'un système
- Révélez nos "modèles mentaux"
- Implanter les éléments de rétroaction dans nos modèles

3.1 Diagrammes de boucles causales

Symbol	Interpreta tion	Mathematics	Examples
х — т	All else equal, if X increases (decreases), then Y increases (decreases) above what it would have been. In the case of accumulations, X adds to Y.	$\begin{aligned} \partial Y/\partial X > 0 \\ & & \text{In the case of} \\ & & \text{accumulations,} \\ Y = \int_{t_0}^t (X +) ds + Y_{t_0} \end{aligned}$	Product + Sales Quality + Results Herricon + Results Population
x Y	All else equal, if X increases (decreases), then Y decreases (increases) below what it would have been. In the case of accumulations, X subtracts from Y.	$\begin{split} \frac{\partial Y/\partial X < 0}{\text{In the case of}} \\ \text{accumulations,} \\ Y = \int_{t_0}^t (-X +) ds + Y_{l_0} \end{split}$	Product Sales Price Sales Frustration Results Deaths Population

Mettre des noms plutôt que des phrases et éviter les négations inutiles

3.1.1 Polarité de boucle

Multiplication de toutes les polarités.

3.1.2 A faire attention

- Si il y a une ambiguïté sur le signe de la flèche c'est qu'il manque une étape
- ullet Des noms plutôt que des phrases (X,Y)
- Les noms de variables doivent avoir un sens en cohérence la sensibilité
- Choisir les labels dont l'évolution est normalement espérée ou mesurée ; 0

3.2 Stocks

- CLD ne représentent pas l'accumulation, les Stocks oui
- Stocks = état du système (et nos décisions dépendent de l'état)
- E.G.: l'inventaire d'une entreprise, le # d'employés, le montant sur le compte de paiements

État d'un système

$$\operatorname{stock}(t) = \int_{t_0}^{t} \operatorname{in}(s) - \operatorname{out}(s)ds + \operatorname{stock}(t_0)$$

- Caractérisation de l'état d'un système
- Mémoire ou inertie
- Génération de retard

3.3 Flux (Flows)

Les flux changent les stocks

$$\frac{d\operatorname{stock}(t)}{dt} = \operatorname{in}(t) - \operatorname{out}(t)$$

- Les flux changent les stocks
- L'inventaire change avec les livraisons
- # d'employés ch ange avec les recrutements, licenciements et départs à la retraite
- Souvent, on a des problèmes à décider comment distinguer flux et taux (l'inflation?)

4 Équations aux différences

EDO vs Equation aux différences $\frac{dy(t)}{dt} = ay(t) \rightarrow y(t+1) = (a+1)y(t)$

4.0.1 Exemple équation aux différences

$$y(k+n) + a_{n-1}y(k+n-1) + \dots + a_0y(k) = 0$$
$$\lambda^{k+n} + a_{n-1}\lambda^{k+n-1} + \dots + a_0\lambda^k = 0$$
$$\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0\lambda = 0$$

4.0.2 Exemple EDO

$$\frac{dy}{dt} = ay \rightarrow y(t) = Ce^{at}$$

$$y(0) = Ce^{a \cdot 0} = Ce^{0} = C$$

$$y(t) = y(0)e^{at}$$

$$\frac{d^2y}{dt^2} + \omega^2 y = 0$$

$$my'' = -ky$$

$$\lambda^2 + \frac{k}{m} = 0 \rightarrow \lambda = \pm j\sqrt{\frac{k}{m}} = \pm j\omega$$

$$y(t) = C_1 e^{j\omega t} + C_2 e^{-j\omega t} = A\sin(\omega t) + B\cos(\omega t)$$

Modèles dynamiques

Rétroaction positive

Le stock accumule du inflow $S(t) = S(0)e^{gt}$

Le temps de doublement du stock est de 2S(0) = $S(0)e^{gt_d}$ on a donc $t_d = \frac{ln(2)}{g} = \frac{70}{100g}$

Rétroaction négative 5.2décroissance exponentielle

Le stock perd du outflow $S(t) = S(0)e^{-dt}$

Le temps de division par 2 du stock est de t_d = $ln(2)\tau = 0.70\tau$

Système non linéaires croissance en 5.4.1 Equation du modèle SI

L'équation du système est $\frac{dP}{dt}=b(\frac{P}{C})P-d(\frac{P}{C})P$ La croissance nette est une fonction de la population

 $P: \frac{dP}{dt} = g(P, C)P = g(1 - \frac{P}{C})P$

Modèle logistique : $g(1 - \frac{P}{C})$

Equation logistique : $P(t) = \frac{C}{1 + \left[\frac{C}{P(0)} - 1\right]e^{-gt}}$

Modèle SI et SIR 5.4

• S : susceptibles

• I : infectés

 \mathbf{et}

• R : rétablit

 $N = S + I \rightarrow \frac{dS}{dt} = -(ciS)\frac{I}{N} = -(I_R)$ IR = Infection Rate $\frac{dI}{dt} = ci \cdot I(1 - \frac{I}{N})$

Equation du modèle SIR

$$\frac{dS}{dt} = -(ciS)\frac{I}{N}$$

$$R_R = \frac{I}{d}$$

$$\frac{dI}{dt} = (ciS)\frac{I}{N} - \frac{I}{d}$$

$$\frac{dR}{dt} = \frac{I}{d}$$

$$N = S + I + R$$

Point de bascule $I_R > R_R \rightarrow ciS(\frac{I}{N}) > \frac{I}{d}$ ou $cid(\frac{S}{N} > 1)$

5.5Retard

Un retard est un processus dont la sortie correspond à l'entrée translatée dans le temps

6 Systèmes

6.1 Mouvement et trajectoire

6.2 Systèmes invariants

Un système est dit invariant si

- T est un groupe additif
- Pour tout $u \in \Omega$ et pour chaque $s \in T$ la fonction $u^s(\cdot)$ obtenue par translation $(u(t) = u^s(t+s))$ un sappartient également à Ω
- La fonction de translation à la propriété $\varphi(t,\tau,x,u(\cdot))=\varphi(t+s,\tau+s,x,u^s(\cdot))$
- La transformation de sortie ne dépend pas explicitement du temps $y(t) = \eta(x(t))$
- $\bullet\,$ Si $T=\mathbb{N}$ nous avons un système à temps discret
- $\bullet\,$ Si $T=\mathbb{R}$ nous avons un système à temps continu

6.3 Systèmes réguliers

- Si les ensembles U, X, et Y sont des espaces vectoriels de dimensions finies, le système est dit de dimensions finies
- Le 'circuit électrique' et les '2 bacs' sont deux exemples de systèmes de dimensions finies
- Si une norme est définie pour les espaces vectoriels, il est possible de mesurer la distance entre deux éléments et d'introduire la notion de régularité

Un système est regulier si

- U, X, Y, Γ, Ω sont des espaces normés
- φ est continue dans tous ses arguments et $\frac{d\varphi(t,\tau,x,u(\cdot))}{dt}$ est aussi continue en t partout où u() est continue
- η est continue dans tous ses arguments

Le mouvement d'un système régulier de dimension finie est la solution d'un équation différentielle de la forme: $\frac{dx(t)}{dt} = f(x(t), u(t), t)$ qui satisfait la condition initiale $x(\tau) = x$

Donc un système régulier est représenté par:

$$\begin{cases} \dot{x}(t) = f(x(t), u(t), t) \\ y(t) = g(x(t), t) \end{cases}$$
 (1)

6.4 Systèmes linéaires

Un système est dit linéaire si

- U, X, Y, Γ, Ω sont des espaces normés
- φ est linéaire en $X \times \Omega$ pour tout $t, \tau \in T$:
- η est linéaire en X pour tout t dans T $\eta(t) = C(t)x(t)$

Avec un système linéaire. le mouvement peut être décomposé en la somme des mouvements libre et forcé $x(t) \ = \ x(\tau) + \int_{\tau}^t \frac{u}{C(\xi)} d\xi \ = \ MouvementLibre + MouvementForce$

6.5 Système linéaires et réguliers

 $\bullet\,$ Si un système de dimensions finies est linéaire et régulier, alors son état x satisfait:

$$\frac{dx(t)}{dt} = f(x(t), u(t), t)$$
(1)

- Comme φ , solution de (1), est linéaire en x et u f(x(t),u(t),t)=A(t)x(t)+B(t)u(t)
- Alors, un système linéaire est décrit par:

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) \\ y(t) = C(t)x(t) \end{cases}$$
 (2)

7 Équilibre, Stabilité, Oscillations

7.1 Équilibre

En équilibre un état ne change pas. Sa dérivée est donc par conséquent nulle

7.1.1 Temps discret

Si le système est homogène alors $\bar{x}=A\bar{x}$ si \bar{x} est un vecteur propre A avec une valeur propre de A unité, alors tout vecteur propre \bar{x} est point d'équilibre, sinon seulement l'origine est un équilibre

Si le système est non-homogène alors $\bar{x} = A\bar{x} + b$ ou $\bar{x} = (I - A)^{-1}b$ si I n'est pas une valeur propre, alors il y a l'équilibre différent de 0

7.1.2 Temps continu

Si le système est homogène: $A\bar{x}=0$ Si A est non singulière, 0 est le seul équilibre, sinon il peut y en avoir d'autres

Si le système est non-homogène à entrée constante: $A\bar{x}+b=0$ ou $\bar{x}=-A^{-1}b$ si A est non singulière il y a une solution unique

- En général, 0 est un point d'équilibre pour les systèmes à temps discret et continus
- I est valeur propre critique pour les systèmes discrets, 0 est valeur propre critique pour les systèmes continus

7.2 Stabilité

Un point d'équilibre est stable si, quand il est perturbé, il tend à retourner à sa position initial, ou si au minimum il ne diverge pas.

$$x(t+1)-\bar{x}=Ax(t)+b-A\bar{x}-b\ z(t+1)=Az(t)z(t)=x(t)-\bar{x}$$

On peut déterminer la stabilité du système avec ces pôles en boucles fermé.

Temps discret 7.2.1

7.2.2Temps continu

Oscillations

Les valeurs propres nous parlent de la stabilité d'un système

Elles nous parlent également de son comportement Les valeurs propres peuvent s'écrire $\lambda = \mu + i\omega$ si $\omega \neq 0$ alors il y aura des oscillations

A chaque λ il existe un $e^{\lambda} = e^{\mu}(\cos(\omega t) + j\sin(\omega t))$

Système non-linéaire

Nous ne pouvons pas utilisé les outils d'analyse classique

• temps discret : x(t+1) = f(x(t),t)

• temps continu : $\dot{x}(t) = f(x(t), t)$

Si le système est LTI alors f n'a pas de dépendance 8.4 Lyapunov direct en temps

8.1 Équilibre

On les obtient en résolvant

- $\bar{x} = f(\bar{x}, t)$ (cas discret)
- $0 = f(\bar{x}, t)$ (cas continu)

Mais les choses ne sont pas si simples pour les sys. NL

- Résoudre les équations n'est pas trivial
- Les systèmes peuvent avoir 1, aucun, de nombreux points d'équilibre.

Lyapunov indirect

La méthode consiste à étudier le système dans le voisinage d'un point équilibre

Si la zone est suffisamment petite alors le système NL peut être approché par un développement en série de Taylor au 1er ordre (linéaire)

$$f(\bar{x} + \delta x(t)) = f(\bar{x}) + \left[\frac{\partial f}{\partial x}\right]_{\bar{x}} \delta x(t)$$

Le Jacobien

$$F_{J} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \dots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \dots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \dots & \frac{\partial f_{n}}{\partial x_{n}} \end{pmatrix}$$

Linéarisation avec le Jacobien

8.3.1 Temps discret

$$\delta \bar{x}(t) = F_J \delta x(t)$$

8.3.2 Temps continu

$$\delta \bar{x}(t) = F_J \delta x(t)$$

S'il existe une fonction de Lyapunov V(x) dans une boule $S(\bar{x}, R_0)$ de centre \bar{x} , alors le point d'équilibre \bar{x} est stable. Si, de plus, V(x) est strictement négatif en tout point (sauf \bar{x}), alors la stabilité est asymptotique.

Pas dans l'examen trop complexe sur papier.

Concept de contrôlecommande

Exemple du train 9.1

- Système: le train
- Variable contrôlée: la vitesse (suivi de trajectoire)
- Trajectoire désirée: fixée en temps réel par le conducteur
- Perturbations: variations de charges (passagers) et de profil (déclivité de la route, ...)
- Variable manipulée: couple aux roues

9.2La loi de commande

- La loi de commande peut être
 - continue
 - discrète (on/off)
 - basée sur les évènements
- La loi de commande peut être implantée
 - manuellement
 - automatique
 - analogique
 - digitale

Système de contrôle

- (manipulée), pour atteindre la valeur désirée pour la variable contrôlée
- Il y a deux classes principales de stratégie de contrôle

feedforward (anticipation) ou open-loop (boucle ouverte)

feedback (rétroaction) ou closed-loop (boucle fermée)

• Parfois les deux sont implantées simultanément (FB/FF)

FF traite le rejet de perturbation et/ou l'anticipation du chat de consigne

FB cible le suivi de trajectoire

FB/FF très fréquent en chemical engineering

Commande 9.4

• Boucle Ouverte

La loi de commande est déterminée indépendamment de la valeur de la variable contrôlée

• Boucle Fermée

La commande dépend de la valeur de la grandeur contrôlée

Contrôlabilité

Si l'ensemble des états que l'on peut atteindre en partant de zéro est l'espace d'états entier, alors le système est dit complètement contrôlable. (On peut aller partout)

10.1 Définition

• Le contrôleur adapte la variable de commande Le système $\dot{x}(t) = Ax(t) + Bu(t)$ est complètement contrôlable si pour x(0) = 0 et pour tout état x^* , il existe un temps fini t^* et une entrée continue par morceaux u(t) dans $[0, t^*]$ telle que $x(t^*) = x^*$

10.2 Théorème

Un système à temps continu (discret) est complètement contrôlable si, est seulement si, la matrice de contrôlabilité: $M = [B, AB, A^2B, ..., A^{n-1}B]$ est de rang n (rang plein)

10.3 Forme canonique contrôlabilité

Une équation différentielle d'ordre n peut être remappée en un système de n équations du premier ordre

$$\frac{d^n y}{dt^n} + a_1 \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_n y = u$$

On pose y=x1

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = x_3$$

$$\vdots$$

$$\dot{x}_{n-1} = x_n$$

$$\dot{x}_n = -a_1 x_n - \ldots - a_n x_1 + u$$

On a donc

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}$$

$$b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, c = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Le système (A,b,c) a des propriétés intéressantes, La dernière ligne est composée des coefficients du polynôme caractéristique

$$\Delta_A(\lambda) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n$$

Tout système complètement contrôlable est équivalent à un système sous forme canonique de contrôlabilité

10.4 Transformation

Il est possible de mettre tout système complètement contrôlable sous sa forme canonique par une simple transformation x = Mz avec $M = [b|Ab|...|A^{n-1}b]$

On obtient $\bar{A} = M^{-1}AM$ qui est la forme canonique compagnon de contrôlabilité

10.5Rétroaction

10.5.1 Contrôle en boucle ouverte

- la fonction d'entrée est déterminée par un process externe
- exemple: un feu de circulation à cycle fixe

10.5.2 Contrôle en boucle fermée

- la commande est déterminée par le comportement du système
- exemple: un thermostat
- La boucle fermée est plus facile à réaliser
- La boucle fermée requiert du temps de calcul

10.5.3 Théorème

Soit (A, B) un système complètement contrôlable. Alors, pour tout choix d'un polynôme $p(\lambda)$ d'ordre n $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + ... + a_0$, il existe une matrice réelle K telle que le polynôme caractéristique de est A + BK est $p(\lambda)$