概率论与数理统计

Somnia1337

1概率论基础知识

概率及性质

♥ 概率:

非负性: P(A) ≥ 0。

• 规范性: $P(\Omega) = 1$.

• 可列可加性:对两两互斥的可列个事件, $P(igcup_{i=1}^{\infty}A_i)=\sum\limits_{i=1}^{\infty}P(A_i)$ 。

🔔 概率:

• $P(A - B) = P(A\bar{B}) = P(A) - P(AB)_{\bullet}$

• $P(A \cup B) = P(A) + P(B) - P(AB)_{\bullet}$

等可能概型

古典概型

♥ 古典概型:

- 试验的可能结果有限。
- 每个可能结果出现的可能性相等。

古典概率: $P(A) = \frac{k}{n} = \frac{A + n + n + k}{\Omega + n + k}$.

砂 超几何概率:N 个球,其中 m 个为红球、其余为白球,取 n 球,其中恰有 k 个红球的概率为 $p_k = \frac{C_m^k C_{N-m}^{n-k}}{C_n^n}$ 。

几何概型

 \Diamond 几何概型:试验的所有可能结果等可能地出现在一个有界的欧式区域 Ω 内。

♥ 几何概率: $P(A) = \frac{m(A)}{m(\Omega)}$, 其中 m(A) 为 A 的度量 (长度 / 面积 / 体积) 。

条件概率

令条件概率:在 B 发生的条件下 A 发生的概率称为 B 发生条件下 A 发生的条件概率,简称 A 对 B 的条件概率,记为 $P(A|B) = \frac{P(AB)}{P(B)}$ 。

 \P 设 A_1, \dots, A_n 为 Ω 的一个完备事件组,B 为任一事件:

• 全概率公式: $P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$ •

贝叶斯公式: P(B) > 0 时,

$$P(A_i|B) = rac{P(A_i)P(B|A_i)}{P(B)} = rac{P(A_i)P(B|A_i)}{\sum\limits_{j=1}^{n}P(A_j)P(B|A_j)}$$

事件的独立性

 \triangle 独立: 若 0 < P(B) < 1,则 A 与 B相互独立 $\iff P(A|B) = P(A|\bar{B})$ 。

igoplus 独立试验: 将随机试验 E 重复进行 n 次,若各次试验的结果互不影响,称其为 n 重独立试验。

① 伯努利试验:对一个n 重独立试验,如果每次试验的可能结果只有"成功"/"失败",称其为n 重伯努利试验,称相应的数学模型为伯努利概型。

◆ 二项概率: 在 n 重伯努利试验中,设 A 在各次试验中发生的概率为 p,则 A 恰好发生 k 次的概率为 $P_n(k) = C_n^k p^k (1-p)^{n-k}$ 。

多项概率: 在 n 重独立试验中,每次试验的可能结果为 $A_1, \, \cdots, \, A_k$,且 $0 < p_i = P(A_i) < 1$, $\sum\limits_{i=1}^k p_i = 1$,则 $A_1, \, \cdots, \, A_k$ 各发生 $r_1, \, \cdots, \, r_k$ 次的概率为 $\frac{n!}{r_1! \cdots r_k!} p_1^{r_1} \cdots p_k^{r_k}$ 。

2 随机变量及其分布

随机变量

砂 随机变量:对一个试验的每个样本点 $\omega \in \Omega$, 规定一个实数 $X(\omega)$, 由此得到一个定义域为 Ω 的实值函数 $X = X(\omega)$, 称 X 为随机变量.

分布函数: $F(x) = P(X \leqslant x).$

- 🔔 分布函数: 非减,极限,右连续.
 - 对任意 $x_1 < x_2$, $F(x_1) \leq F(x_2)$, 即 F(x) 非递减.
 - $F(-\infty) = 0$, $F(+\infty) = 1$.
 - 对任意 x_0 , $F(x_0) = F(x_0 + 0)$, 即 F(x) 右连续.
 - 对任意 x_0 , $P(X=x_0)=F(x_0)-F(x_0-0)$.

离散型随机变量

- ◆ 离散型随机变量: 可能的取值数量为有限或可数无穷的随机变量.
- 概率分布: 离散型随机变量 X 可能的取值为 x_1, \dots, x_n , 称 X 取各值的概率 $p_k = P(X = x_k)$ 为 X 的概率分布(概率函数 / 分布律).概率分布可用表格 / 矩阵 / 图表表示.
 - 表格:

• 矩阵:

$$X \sim egin{pmatrix} x_1 & x_2 & \cdots & x_n \ p_1 & p_2 & \cdots & p_n \end{pmatrix}$$

- ▲ 概率分布:这2条性质为概率分布的特征.
 - 对任意 k, $p_k \geqslant 0$.
 - $ullet \sum_k p_k = 1.$
- **可列重伯努利试验**: 可一直重复下去的 n 重伯努利试验.在成功概率为 p 的可列重伯努利试验中,首次"成功"出现在第 k 次试验中的概率 $p_k = p(1-p)^{k-1}$.
- ♥ 常见离散型分布:
 - 几何分布: $X \sim G(p)$, $p_k = p(X=k) = p(1-p)^{k-1}$.
 - 超几何分布: $X \sim H(n,m,N)$, $p_k = P(X=k) = rac{C_m^k C_{N-m}^{n-k}}{C_N^n}$.
 - 二项分布: $X \sim B(n,p)$, $P_n(k) = P(X=k) = C_n^k p^k (1-p)^{n-k}$.

 - 最可能次数:
 - 若 (n+1)p 为整数, $k_0 = (n+1)p$ 及 (n+1)p-1.

- 若 (n+1)p 不为整数, $k_0 = [(n+1)p]$.
- 泊松分布: $X \sim P(\lambda)$, $P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}$.
 - $p \leqslant 0.1$, $n \geqslant 50$ 的二项分布可近似为 $\lambda = np$ 的泊松分布.

连续型随机变量

◆ 连续型随机变量: F(x) 为随机变量 X 的分布函数,如果存在一个非负函数 f(x),使得对任意实数 x,有

$$F(x) = \int_{-\infty}^x f(t) \mathrm{d}t$$

称 X 为连续型随机变量,称 f(x) 为 X 的概率密度函数 (密度函数 / 密度).

- 密度函数:这2条性质为密度函数的特征.
 - $f(x) \geqslant 0, x \in (-\infty, +\infty).$
 - $\int_{-\infty}^{+\infty} f(x) dx = 1$.
- lacklinet X 为连续型随机变量, F(x) 为分布函数, f(x) 为密度函数:
 - 对任意常数 a < b,有 $P(a < X \leqslant b) = \int_a^b f(x) dx$.
 - 对任意常数 C,有 P(X = C) = 0.
 - F(x) 连续.
 - 在 f(x) 的连续点,有 F'(x) = f(x).

♥ 常见连续型分布:

均匀分布: $X \sim U(a,b)$,

- 密度函数: $f(x) = \frac{1}{b-a}$, $a \leqslant x \leqslant b$.
- 分布函数: $F(x) = \frac{x-a}{b-a}, a \leqslant x \leqslant b.$

指数分布: $X \sim e(\lambda)$,

- 密度函数: $f(x) = \lambda e^{-\lambda x} (\lambda > 0), x > 0.$
- 分布函数: $F(x) = 1 e^{-\lambda x}, x > 0$.

 Γ 分布: $X \sim \Gamma(\alpha, \beta)$,

- Γ 函数: $\Gamma(\alpha) = \int_0^+ x^{\alpha-1} e^{-x} \mathrm{d}x$.
 - $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$.

•
$$\Gamma(1)=1$$
, $\Gamma(\frac{1}{2})=\sqrt{\pi}$.

• 对正整数 n, $\Gamma(n) = (n-1)!$.

• 密度函数: $f(x) = rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha-1} e^{-eta x}$.

3多维随机变量及其分布

二维随机变量

◆ 二维随机变量:设X,Y为定义在同一样本空间 Ω 上的两个随机变量,称(X,Y)为二维随机变量。

◆ 二维分布函数: 称 $F(x, y) = P(X \le x, Y \le y)$ 为 (X, Y) 的二维分布函数 / 联合分布函数。

▲ 二维分布函数:

- F(x, y) 分别关于 x, y 单调不减。
- F(x, y) 分别关于 x, y 右连续。
- $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0$, $F(+\infty, +\infty) = 1$
- 对任意 $x_1 < x_2$, $y_1 < y_2$,有 $F(x_2,\ y_2) F(x_2,\ y_1) F(x_1,\ y_2) + F(x_1,\ y_1) \geqslant 0$ 。

◆ 二维概率分布: 记 $p_{ij} = P(X = x_i, Y = y_j)$ 为 (X, Y) 的二维概率分布 / 联合概率分布。

🔔 二维概率分布:

- $ullet p_{ij}\geqslant 0$,
- $\sum p_{ij}=1$ •

◆ 二维连续型随机变量:

$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) \mathrm{d}u \mathrm{d}v$$

则称 (X, Y) 为二维连续型随机变量,称 f(x, y) 为 二维概率密度函数 / 联合密度函数。

🔔 二维密度函数:

- $f(x,\ y)\geqslant 0$, $(x,\ y)\in {f R}^2$,
- $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}x \mathrm{d}y = 1$
- lacklimet 二维连续型随机变量: (X, Y) 的密度函数为 f(x, y),
 - F(x, y) 连续,且在 f(x, y) 的连续点 (x, y) 有 $f(x, y) = \frac{\partial^2 F(x, y)}{\partial x \partial y}$ 。
 - 对平面上任意区域 $G\subset \mathbf{R}^2$,若 $f(x,\,y)$ 在 G 上可积,有 $P((X,\,Y)\in G)=\iint\limits_G f(x,\,y)\mathrm{d}x\mathrm{d}y$ 。
 - 对平面上任意一条曲线 L, 有 $P((X, Y) \in L) = 0$ 。

边缘分布

条件分布

二维随机变量函数的分布

- 卷积公式: Z = X + Y,
 - $f_Z(z)=\int_-^+f(x,z-x)\mathrm{d}x=\int_-^+f(z-y,y)\mathrm{d}y$ •
 - 如果 X 与 Y 独立, $f_Z(z)=\int_-^+ f_X(x)f_Y(z-x)\mathrm{d}x=\int_-^+ f_X(z-y)f_Y(y)\mathrm{d}y$ 。

4 随机变量的数字特征

X	E(X)	D(X)
B(n,p)	np	np(1-p)
$P(\lambda)$	λ	λ
$\Gamma(lpha,eta)$	$\frac{\alpha}{\beta}$	$rac{lpha}{eta^2}$
$e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
U(a,b)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$

数学期望

❤ 数学期望:

• 对离散型随机变量 X,概率分布 $P(X=x_k)=p_k$,如果级数 $\sum x_k p_k$ 绝对收敛,称其为 X 的数学期望。

• 对连续型随机变量 X,密度 f(x),如果反常积分 $\int_{-}^{+} x f(x) dx$ 绝对收敛,称其为 X 的数学期望。

▲ 数学期望:

- $E(X \pm Y) = E(X) \pm E(Y)$ (线性性,不依赖于独立性)。
- E(XY) = E(X)E(Y) (X和Y独立)。

方差

か 方差: 如果期望 $E[X - E(X)]^2$ 存在,称其为 X 的方差,计算式为 $D(X) = E(X^2) - [E(X)]^2$ 。

▲ 方差:

- $D(aX + b) = a^2 D(X)$.
 - eg. D(-2X+1)=4D(X).
- 如果 *X* 和 *Y* 独立,
 - $D(X \pm Y) = D(X) + D(Y)_{\circ}$
 - $D(XY) = D(X)D(Y) + [E(X)]^2D(Y) + [E(Y)]^2D(X)_{\bullet}$
- **♡** 变异系数: $\Re C_v = \frac{\sqrt{D(X)}}{|E(X)|}$ 为 X 的变异系数。

❤ 矩:

- 原点矩: 称 $m_k = E(X^k)$ 为 X 的 k 阶原点矩。

协方差

炒方差: 称 Cov(X,Y) = E[[X - E(X)][Y - E(Y)]] 为 (X,Y) 的协方差,计算式 Cov(X,Y) = E(XY) - E(X)E(Y)。

🔔 协方差:

- $Cov(X, X) = D(X)_{\bullet}$
- $Cov(aX, bY) = abCov(X, Y)_{\bullet}$
- $Cov(X \pm Y, Z) = Cov(X, Z) \pm Cov(Y, Z)_{\bullet}$
- $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)_{\circ}$
- Cov > 0 正线性相关,Cov < 0 负线性相关,Cov = 0 无线性相关。
 - X = Y 独立 \Longrightarrow Cov(X, Y) = 0.

少均值向量: 称向量 (E(X), E(Y)) 为 (X, Y) 的均值向量。

小方差阵:称矩阵 $\mathbf{V} = \begin{pmatrix} D(X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(X,Y) & D(Y) \end{pmatrix}$ 为 (X,Y) 的协方差阵。

相关系数

标准化随机变量: 称 $X^* = \frac{X - E(X)}{\sqrt{D(X)}}$ 为 X 的标准化随机变量。

标准化随机变量: $E(X^*) = 0$, $D(X^*) = 1$.

◆ 相关系数: 称 $R(X,Y)=\mathrm{Cov}(X^*,Y^*)$ 为 X 和 Y 的相关系数,计算式 $R(X,Y)=\frac{\mathrm{Cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$ 。

▲ 相关系数:

- $|R(X,Y)| \leq 1_{\bullet}$
- $|R(X,Y)|=1 \iff$ 存在常数 $a \neq 0$, b, 使 P(Y=aX+b)=1。
- R(X,Y)=1 完全正线性相关,R(X,Y)=-1 完全负线性相关,R(X,Y)=0 不相关。
 - 独立 → 不相关,但不相关是指没有线性相关关系,可能有其他相关关系。

5 正态分布与自然指数分布族

正态分布

- ▼ 标准正态分布: 记为 N(0,1),
 - 密度函数

$$\phi(x)=rac{1}{\sqrt{2\pi}}\mathrm{e}^{-rac{x^2}{2}}$$

• 分布函数

$$\Phi(x) = \int_{-\infty}^x rac{1}{\sqrt{2\pi}} \mathrm{e}^{-rac{t^2}{2}} \mathrm{d}t$$

lackbox 正态分布: 记为 $N(\mu,\sigma^2)$, 满足 $Z=rac{X-\mu}{\sigma}\sim N(0,1)$, 分布函数

$$F(x) = \Phi(\frac{x-\mu}{\sigma})$$

 3σ 原则:X 落在 $(\mu - 3\sigma, \mu + 3\sigma)$ 的概率为 0.9974,因此常将该区间作为 X 的实际取值区间。

- \triangle 正态分布: $X \sim (\mu, \sigma^2)$,
 - \bullet $\Phi(x)$
 - $\Phi(0) = \frac{1}{2}$
 - $\Phi(x) + \Phi(-x) = 1$
 - 无法表示为初等函数
 - \bullet $\phi(x)$
 - 关于 $x = \mu$ 对称
 - 顶点为 $\max\{f(x)\}=rac{1}{\sqrt{2\pi}}\sigma$
 - σ越小,分布越集中,曲线越"瘦高"
 - $E(X) = \mu$, $D(x) = \sigma^2$
 - $ullet Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$
- **① 正态分布的可加性**: n 个正态分布 $X_i \sim N(\mu_i, \sigma_i^2)$ 独立,有

$$Z = \sum C_i X_i \sim N(\sum C_i \mu_i, \sum C_i^2 \sigma_i^2)$$

推论: n 个变量 X_i 独立同分布于 $N(\mu, \sigma^2)$, 有

$$\overline{X} = rac{1}{n} \sum X_i \sim N(\mu, rac{\sigma^2}{n})$$

二维正态分布

▼ 二维正态分布: 设二维随机变量(X,Y)有密度函数

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}}e^{-\frac{1}{2(1-r^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} - 2r\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}\right]}$$

- ,称 (X,Y) 服从二维正态分布,记为 $(X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;r)$ 。
- 二维正态分布:
 - 如果 $(X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;r)$,
 - ullet $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$
 - X与Y独立 $\iff r=0$
 - (X,Y) 服从二维正态分布 \iff X 与 Y 的任意非零线性组合 Z=aX+bY 服从一维正态分布

6极限定理

大数律

♥ 切比雪夫不等式:

$$P(|X-E(X)|<\epsilon)\geqslant 1-rac{D(X)}{\epsilon^2}$$

- 大数律: 随机变量序列 $\{X_n\}$ 中, $E(X_n)=\mu_n$, $D(X_n)=\sigma^2$,如果 $n\to\infty$ 时有 $\sigma^2\to 0$,则 $X_n-\mu_n\stackrel{P}{\to} 0$ 。
- **① 切比雪夫大数律**: 对独立随机变量序列 $\{X_k\}$, 如果 $E(X_k)$, $D(X_k)$ 存在且存在常数 C 使 $D(X_k) < C$, 则

$$rac{1}{n}\sum_{k=1}^n X_k - rac{1}{n}\sum_{k=1}^n E(X_k) \stackrel{P}{
ightarrow} 0$$

lacktriangle 辛钦大数律(独立同分布大数律):对独立同分布随机变量序列 $\{X_k\}$, $E(X_k)=\mu$, $D(X_k)=\sigma^2$,则

$$\overline{X} \stackrel{P}{ o} \mu$$

① 伯努利大数律: 在 n 次伯努利试验中,事件 A 发生的频率为 $f_n(A) = \frac{n_A}{n}$,发生的概率为 p = P(A),则

$$f_n(A)\stackrel{P}{ o} p=P(A)$$

中心极限定理

① 独立同分布的中心极限定理: n 充分大时, n 个独立同分布的随机变量之和近似服从正态分布,即

$$\sum_{k=1}^n X_k \stackrel{.}{\sim} N(n\mu, n\sigma^2)$$

或

$$rac{1}{n}\sum_{k=1}^n X_k \stackrel{.}{\sim} N(\mu,rac{\sigma^2}{n})$$

lacktriangledown 二项分布的中心极限定理: n 充分大时, n 个独立同分布的二项分布之和近似于正态分布, 即

7数理统计的基础知识

χ^2 分布, t 分布, F 分布

 \checkmark χ^2 分布: X_1, \dots, X_n 独立同服从 N(0,1), 称

$$\chi^2 = \sum_{i=1}^n X_i^2$$

服从自由度为 n 的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$.

*χ*² 分布:

- $\chi^2(n)$ 等同于 $\Gamma(\frac{n}{2},\frac{1}{2})$.
 - $ullet \chi^2 \sim \chi^2(n) \Rightarrow E(\chi^2) = n$, $\ D(\chi^2) = 2n$.
- 可加性: $\chi^2(n_1) + \chi^2(n_2) \sim \chi^2(n_1 + n_2)$ (独立) .
- t 分布: $X \sim N(0,1), Y \sim \chi^2(n), X 与 Y 独立,称$

$$t=rac{X}{\sqrt{Y/N}}$$

服从自由度为 n 的 t 分布,记为 $t \sim t(n)$.

▲ t 分布:

- n=1 时 E(t) 不存在, $n\geqslant 2$ 时 E(t)=0.
- n 充分大 (≥ 45) 时, t(n) 近似于 N(0,1).
- $ullet X \sim N(0,1)
 ightarrow -X \sim N(0,1) \Rightarrow t \sim t(n)
 ightarrow -t \sim t(n).$
- igoplus F 分布: $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$, X 与 Y 独立, 称

$$F=rac{X/n}{Y/m}$$

服从自由度为 (n,m) 的 F 分布,记为 $F \sim F(n,m)$.

igap F 分布: $F \sim F(n,m)
ightarrow rac{1}{F} \sim F(m,n).$

p 分位点: $0 ,称满足 <math>F(a_p) = P(X \leqslant a_p) = p$ 的 a_p 为 X 的 p 分位点,称 $a_{\frac{1}{2}}$ 为中位数.

₱ p 分位点:

•
$$N(0,1)$$
: $u_p = -u_{1-p}$.

• $\chi^2(n)$:

n ≤ 45 时, 查表.

•
$$n>45$$
 时, $\chi^2_p(n)pprox rac{1}{2}(u_p+\sqrt{2n-1})^2.$

• t(n):

•
$$t_p = -t_{1-p}$$
.

•
$$n>45$$
 时, $t_p \approx u_p$.

•
$$F(n,m)$$
: $F_p(n,m) = \frac{1}{F_{1-p}(m,n)}$.

统计量

♥ 统计量:不含未知参数的样本函数.

常用统计量:

• 均值:

$$\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$$

• 方差:

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

• 标准差:

$$S=\sqrt{S^2}$$

• k 阶原点矩:

$$A_k = rac{1}{n} \sum_{i=1}^n X_i^k$$

• k 阶中心矩:

$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$

均值 \overline{X} 为 1 阶原点矩 A_1 ,方差 S^2 不是 2 阶中心矩 B_2 .

抽样分布定理

一个正态总体

$$\overline{X} \sim N(\mu, rac{\sigma^2}{n})$$

$$rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

$$rac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

$$rac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

- \overline{X} 与 S^2 独立.
- $lacksymbol{V}$ X_i 来自任意总体 X, $E(X)=\mu$, $D(X)=\sigma^2$, 且 n 充分大:

$$rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

$$rac{\overline{X} - \mu}{S/\sqrt{n}} \sim N(0,1)$$

两个正态总体

 $lacksymbol{\bullet}$ 两个总体 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$:

$$oldsymbol{U} = rac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

$$T = rac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中

$$S_w^2 = rac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}$$

$$F = rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$$

8参数估计

一个总体 X 的分布函数往往含有未知参数或未知参数向量 θ ,从而可记总体分布函数为 $F(x,\theta)$ 。

解决实际问题时需要了解未知参数或未知参数向量 θ ,因此可以利用样本提供的信息,对 θ 有一个基本的估计,这就是参数的估计问题。

参数的估计问题分为点估计和区间估计两大类。

点估计

igoplus 点估计: X 的分布函数为 $F(x,\theta)$,抽取样本 X_1,\cdots,X_n ,其观测值为 x_1,\cdots,x_n ,构造某个统计量,用其观测值 $\hat{\theta}(x_1,\cdots,x_n)$ 估计 θ ,称 $\hat{\theta}(x_1,\cdots,x_n)$ 为 θ 的点估计值,称 $\hat{\theta}(X_1,\cdots,X_n)$ 为 θ 的点估计量,点估计值或点估计量称为 θ 的点估计,均可简记为 $\hat{\theta}$ 。

点估计分为矩估计、极大似然估计。

\$\Phi\$ ½估计: X 的分布函数为 $F(x,\theta)$, m = E(X) 一般为 θ 的函数,反解出 $\theta = g(m)$,用样本均值 \overline{X} 代替,得到 $\hat{\theta} = g(\overline{x})$ 称为 θ 的矩估计值。

● 矩估计: X 服从任何分布,记 $\mu = E(X)$, $\sigma^2 = D(X)$,有:

- $\hat{\mu} = \overline{X}$
- $\hat{\sigma}^2=B_2$

♥ 似然函数:

• 离散型: $L(\theta) = \Pi p(x_i, \theta)$

• 连续型: $L(\theta) = \Pi f(x_i, \theta)$

W大似然估计: 如果存在 θ 的一个取值 $\hat{\theta}(x_1,\cdots,x_n)=\theta$, 使得 $L(\hat{\theta})=\max\{L(\theta)\}$, 称 $\hat{\theta}$ 为 θ 的极大似然估计值,由 $\frac{\mathrm{d}(\ln L(\theta))}{\mathrm{d}\theta}=0$ 求解。

估计量的评选标准

~ 无偏估计量: 如果 θ 的估计量 $\hat{\theta}$ 满足 $E(\hat{\theta}) = \theta$, 称 $\hat{\theta}$ 为无偏估计量。

● 无偏估计量: X 服从任何分布,

- $\mu = E(X)$, 样本均值 \overline{X} 为 μ 的无偏估计量。
- $m_k = E(X^k)$, 样本 k 阶矩 A_k 为 m_k 的无偏估计量。
- $\sigma^2 = D(X)$, 样本方差 S^2 为 σ^2 的无偏估计量。

少 线性无偏估计: $\forall (a_i)$, 如果 $\sum a_i = 1$, 称 $\hat{\mu} = \sum a_i X_i$ 为 μ 的线性无偏估计。样本均值 \overline{X} 是最有效的线性无偏估计。

区间估计

令 置信区间: X 的分布函数为 $F(x,\theta)$, $\hat{\theta}_1$, $\hat{\theta}_2$ 为统计量, 如果对给定概率 $1-\alpha$, 有 $P(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1-\alpha$, 称区间 $(\hat{\theta}_1,\hat{\theta}_2)$ 为 θ 的置信度为 $1-\alpha$ 的置信区间。

 α 越小,置信度越高,区间越宽(误差越大)。

ullet 一个正态总体下参数的置信区间: $X \sim N(\mu, \sigma^2)$,

估计	己知	置信区间 $(1-\alpha)$
μ	σ_0	$(\overline{X}-u_{1-rac{lpha}{2}}rac{\sigma_0}{\sqrt{n}},\overline{X}+u_{1-rac{lpha}{2}}rac{\sigma_0}{\sqrt{n}})$
	s	$(\overline{X}-t_{1-rac{lpha}{2}}(n-1)rac{S}{\sqrt{n}},\overline{X}+t_{1-rac{lpha}{2}}(n-1)rac{S}{\sqrt{n}})$
σ^2	s	$(rac{(n-1)S^2}{\chi^2_{1-rac{lpha}{2}}(n-1)},rac{(n-1)S^2}{\chi^2_{rac{lpha}{2}}(n-1)})$

单侧置信限:

• μ 的置信度为 $1-\alpha$ 的单侧置信下限为 $\overline{X}-t_{1-\alpha}(n-1)\frac{S}{\sqrt{n}}$.

• σ^2 的置信度为 $1-\alpha$ 的单侧置信上限为 $\frac{(n-1)S^2}{\chi^2_{\alpha}(n-1)}$.

9假设检验

假设检验

♥ 假设检验 (显著性检验):

原假设: H₀。

• 备择假设: H₁。

• 显著性水平: 很小的正数 α 。

• 检验统计量: 服从已知分布的量, $U/t/\chi^2$ 。

• 临界值: 小概率事件发生的临界分位点。

• 拒绝域: 小概率事件发生时检验统计量的值域。

正态总体下的假设检验

• σ^2 已知,检验 μ : $U=rac{\overline{X}-\mu_0}{\sigma_0/\sqrt{n}}\sim N(0,1)$

H_0	H_1	拒绝域
$\mu=\mu_0$	$\mu eq \mu_0$	$ U >u_{1-rac{lpha}{2}}$
$\mu\leqslant\mu_0$	$\mu>\mu_0$	$U>u_{1-lpha}$
$\mu\geqslant\mu_0$	$\mu < \mu_0$	$U<-u_{1-lpha}$

• σ^2 未知,检验 μ : $t=rac{\overline{X}-\mu_0}{S/\sqrt{n}}\sim t(n-1)$

H_0	H_1	拒绝域
$\mu=\mu_0$	$\mu eq \mu_0$	$ t >t_{1-rac{lpha}{2}}(n-1)$
$\mu\leqslant\mu_0$	$\mu>\mu_0$	$t>t_{1-\alpha}(n-1)$
$\mu\geqslant\mu_0$	$\mu < \mu_0$	$t<-t_{1-\alpha}(n-1)$

• μ 未知,检验 σ^2 : $\chi^2=rac{(n-1)S^2}{\sigma_0^2}\sim \chi^2(n-1)$

H_0	H_1	拒绝域
$\sigma^2=\sigma_0^2$	$\sigma^2 eq \sigma_0^2$	$\chi^2<\chi^2_{rac{lpha}{2}}(n-1),\chi^2>\chi^2_{1-rac{lpha}{2}}(n-1)$
$\sigma^2\leqslant\sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\chi^2>\chi^2_{1-\alpha}(n-1)$

H_0	H_1	拒绝域
$\sigma^2\geqslant\sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_lpha(n-1)$