Use wolfram alpha (or google search) for modular exponentiation.

Exercise 5.1. [6pts] Compute ALL distinct powers of 2 modulo n = 29 to find $\log_2(21)$.

Solution:

$2^1 \equiv_{29} 2$	$2^2 \equiv_{29} 4$	$2^3 \equiv_{29} 8$	$2^4 \equiv_{29} 16$
$2^5 \equiv_{29} 3$	$2^6 \equiv_{29} 6$	$2^7 \equiv_{29} 12$	$2^8 \equiv_{29} 24$
$2^9 \equiv_{29} 19$	$2^{10} \equiv_{29} 9$	$2^{11} \equiv_{29} 18$	$2^{12} \equiv_{29} 7$
$2^{13} \equiv_{29} 14$	$2^{14} \equiv_{29} 28$	$2^{15} \equiv_{29} 27$	$2^{16} \equiv_{29} 25$
$2^{17} \equiv_{29} 21$	$2^{18} \equiv_{29} 13$	$2^{19} \equiv_{29} 26$	$2^{20} \equiv_{29} 23$
$2^{21} \equiv_{29} 17$	$2^{22} \equiv_{29} 5$	$2^{23} \equiv_{29} 10$	$2^{24} \equiv_{29} 20$
$2^{25} \equiv_{29} 11$	$2^{26} \equiv_{27} 22$	$2^{27} \equiv_{28} 15$	$2^{28} \equiv_{29} 1$

Hence, $\log_2(21) = 17$.

Exercise 5.2. [2pts] Use computations done in Exercise 5.1 to solve an instance n = 29, g = 2, A = 18, B = 14 of CDH.

Solution: Clearly, $a = \log_2(18) = 11$ and $b = \log_2(14) = 13$. Hence, $2^{11 \cdot 13} = 2^{143} \equiv_{29} 2^3 \equiv_{29} 8$.

Exercise 5.3. [2pts] Suppose that Bob sends a message to Alice using ElGamal protocol. For public information collected by Eve n=29, g=2, A=17, $c_1=6$ and $c_2=10$ find m. Use computations done in Exercise 5.1.

anvas before Solution: $a = \log_2(17) = 21$ and, hence, $\frac{c_2}{c_1^a} = \frac{10}{6^{21}} \equiv_{29} 10 \cdot 6^7 \equiv_{29} 19$.

Exercise 5.4. [10pts] For n = 37 use the babystep-giantstep algorithm to compute $\log_2(3)$ modulo n. I expect to see the list of babysteps, the list of giantsteps, and a matching pair.

Solution: First, we compute N = |2|. Since $\varphi(37) = 36 = 2^2 \cdot 3^2$ we compute $2^{18} \equiv_{37} 36$ and $2^{12} \equiv_{37} 26$, and conclude that |2| = 36 = N. Hence, $n = 1 + \lfloor \sqrt{N} \rfloor = 7$. Then compute babysteps

$$2^0 \equiv_{37} 1$$

$$2^1 \equiv_{37} 2$$

$$2^2 \equiv_{37} 4$$

$$2^3 \equiv_{37} 8$$

$$2^4 \equiv_{37} 16$$

$$2^5 \equiv_{37} {\bf 32}$$

$$2^6 \equiv_{37} 27$$

$$2^7 \equiv_{37} 17.$$

Then compute $g^{-n}=2^{-7}\equiv 24$ and the list of giant steps

$$3 \equiv_{37} 3$$

$$3 \cdot 2^{-7} \equiv_{37} 3 \cdot 24 \equiv_{37} 35$$

$$3 \cdot 2^{-7} \equiv_{37} 3 \cdot 24 \equiv_{37} 35$$
 $3 \cdot 2^{-7 \cdot 2} \equiv_{37} 3 \cdot 24^2 \equiv_{37} 26$

$$3 \cdot 2^{-7 \cdot 3} \equiv_{37} 3 \cdot 24^3 \equiv_{37} 3$$

$$3 \cdot 2^{-7.3} \equiv_{37} 3 \cdot 24^3 \equiv_{37} 32$$
 $3 \cdot 2^{-7.4} \equiv_{37} 3 \cdot 24^4 \equiv_{37} 28$ $3 \cdot 2^{-7.5} \equiv_{37} 3 \cdot 24^5 \equiv_{37} 6$ $3 \cdot 2^{-7.6} \equiv_{37} 3 \cdot 24^6 \equiv_{37} 33$ $3 \cdot 2^{-7.7} \equiv_{37} 3 \cdot 24^7 \equiv_{37} 15$.

$$3 \cdot 2^{-7.5} \equiv_{37} 3 \cdot 24^5 \equiv_{37} 6$$

$$3 \cdot 2^{-7.6} \equiv_{37} 3 \cdot 24^6 \equiv_{37} 33$$

$$3 \cdot 2^{-7.7} \equiv_{37} 3 \cdot 24^7 \equiv_{37} 15.$$

Find a matching pair $2^5 \equiv_{37} h2^{-7.3} = h2^{-21}$ and conclude that $h = 2^{26}$ and $\log_2(3) = 26$.

Exercise 5.5. [10pts] Use Pohlig-Hellman algorithm to compute $\log_2(19)$ modulo 37. Compute x_i 's directly, by computing sufficiently many powers of q_i .

Solution: We've seen above that $|2| = 36 = 2^2 \cdot 3^2 = N$ and hence

$$N_1 = 9 \quad \text{and} \quad N_2 = 4$$

$$g_1 = 2^9 \equiv_{37} 31$$
 and $g_2 = 2^4 \equiv_{37} 16$

$$h_1 = 19^9 \equiv_{37} 6$$
 and $h_2 = 19^4 \equiv_{37} 7$

Then we directly compute $x_1 = \log_{q_1}(h_1) = \log_{31}(6) = 3$ as follows:

$$31^2 \equiv_{37} 36$$

$$31^3 \equiv_{37} 6$$

and compute $x_2 = \log_{q_2}(h_2) = \log_{16}(7) = 8$ as follows:

$$16^2 \equiv_{37} 34$$
 $16^3 \equiv_{37} 26$ $16^4 \equiv_{37} 9$ $16^5 \equiv_{37} 33$ $16^6 \equiv_{37} 10$ $16^7 \equiv_{37} 12$ $16^8 \equiv_{37} 7$

Finally, solve the following system of congruences:

$$\begin{cases} x \equiv_4 3 \\ x \equiv_9 8 \end{cases}$$

to get $x \equiv_{36} 35$.

Exercise 5.6. [10pts] For N=43 and g=5 compute |g|, choose B=3. Compute B-smooth powers $g^i \% 43$ for $i=1,\ldots,15$ and use them to compute $\log_5(2)$ and $\log_5(3)$.

Solution: $\varphi(43) = 42 = 2 \cdot 3 \cdot 7$. Directly check that $5^{21} \equiv_{43} 42$, $5^{14} \equiv_{43} 36$, $5^6 \equiv_{43} 16$. Hence, |5| = 42 in U_{43} .

Subtracting $15 \equiv_{42} 3 \log_5(2)$ from $6 \equiv_{42} 4 \log_5(2)$ we get

$$6 - 15 \equiv_{42} \log_5(2)$$

and $\log_5(2) \equiv_{42} -9 \equiv_{42} 33$. Similarly, subtracting $10 \equiv_{42} 3 \log_5(2) + \log_5(3)$ from $14 \equiv_{42} 2 \log_5(2) + 2 \log_5(3)$ we get

$$4 \equiv_{42} -\log_5(2) + \log_5(3)$$

and $\log_5(3) \equiv_{42} -5 \equiv_{42} 37$.

A ring is a set R with two binary operations + and \cdot , called addition and multiplication, that satisfy the following axioms:

- (R1) (R,+) is an abelian group with identity denoted by 0.
- (R2) Multiplication is associative and R contains 1 (unity).
- (R3) (a+b)c = ac + bc and c(a+b) = ca + cb.

To check if $(R, +, \cdot)$ is a ring it is sufficient to check that + and \cdot are indeed binary functions on R and that all axioms (R1), (R2), (R3) are satisfied.

Exercise 5.7. [+12pts] Which of the following are rings? EXPLAIN!

- (1) $(\mathbb{Z},+,\cdot)$
- (2) $(\mathbb{Z}_n,+,\cdot).$
- (3) $(U_n, +, \cdot)$.
- $(4) (N, +, \cdot).$
- (5) $\{a+b\sqrt{5} \mid a,b\in\mathbb{Z}\}$ with standard addition and multiplication.
- (6) The set of all real-valued functions $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$ with $+, \cdot$ defined as follows:

$$(f+g)(x) = f(x) + g(x),$$

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

Solution: Straightforward check of axioms.

- (1) $(\mathbb{Z}, +, \cdot)$ is a ring, because $+, \cdot$ are binary functions on \mathbb{Z} and (R1), (R2), (R3) hold.
 - (R1) $(\mathbb{Z}, +)$ is an abelian group
 - (G1) 0 is the additive identity.
 - (G2) -n is the inverse of n.
 - (G3) + is associative.
 - + is commutative.
 - (R2) Multiplication is associative and \mathbb{Z} contains 1.
 - (R3) (a+b)c = ac + bc and c(a+b) = ca + cb hold in \mathbb{Z} .
- (2) $(\mathbb{Z}_n, +, \cdot)$ is a ring, because $+, \cdot$ are binary functions on \mathbb{Z}_n and (R1), (R2), (R3) hold.
 - (R1) $(\mathbb{Z}_n, +)$ is an abelian group:
 - (G1) [0] is the additive identity.
 - (G2) [-n] is the inverse of [n].
 - (G3) + is associative.
 - + is commutative.
 - (R2) Multiplication is associative and \mathbb{Z}_n contains [1].
 - (R3) (a+b)c = ac + bc and c(a+b) = ca + cb hold in \mathbb{Z}_n .
- (3) $(U_n, +, \cdot)$ is not a ring. With every [a] it contains [-a], but does not contain [a] + [-a] = [0]. Hence, + is not a binary operation on U_n . In other words, U_n is nor closed nuder +.
- (4) $(\mathbb{N}, +, \cdot)$ is not a ring (even if we assume that $0 \in \mathbb{N}$) because $(\mathbb{N}, +)$ is not an abelian group, with \mathbb{N} has no additive inverses.
- (5) $R = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ is a ring. R is closed under + and \cdot because for any $a, b, c, d \in \mathbb{Z}$ we have

$$(a+b\sqrt{5}) + (c+d\sqrt{5}) = (\underbrace{a+c}) + (\underbrace{b+d})\sqrt{5} \in R$$
$$(a+b\sqrt{5}) \cdot (c+d\sqrt{5}) = (\underbrace{ac+5bd}) + (\underbrace{bc+ad})\sqrt{5} \in R$$

Check that (R1), (R2), (R3) hold:

- (R1) (R, +) is an abelian group:
 - (G1) $0 = 0 + 0\sqrt{5} \in R$.
 - (G2) $-(a+b\sqrt{5}) = -a-b\sqrt{5}$.
 - (G3) + is associative.

- + is commutative.
- (R2) Multiplication is associative and R contains $1 = 1 + 0\sqrt{5}$.
- (R3) (a+b)c = ac + bc and c(a+b) = ca + cb hold in R.
- (6) The set of all real-valued functions $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}$ is a ring. It is obvious that the sum and the product of real-valued functions are real-valued functions and, hence, $\mathbb{R}^{\mathbb{R}}$ is closed under $+, \cdot$. Check that (R1), (R2), (R3) hold:
 - (R1) $(\mathbb{R}^{\mathbb{R}}, +)$ is an abelian group:
 - (G1) the constant function 0 is the additive identity.
 - (G2) -f(x) is the additive inverse for f(x).
 - (G3) + is associative.
 - + is commutative.
 - (R2) Multiplication is associative and R contains the constant function 1.
 - (R3) (a+b)c = ac + bc and c(a+b) = ca + cb hold in $\mathbb{R}^{\mathbb{R}}$.