Sparse Gaussian graphical models for biological network inference

From gene expression to genomic network

Julien Chiquet

Bioinformatics Summer School in Port-Royal, July the 21st, 2016

UMR 518 AgroParisTech/INRA

http://julien.cremeriefamily.info/bioinfo_ips2.html

Outline

Motivations

Network and data modeling

Statistical dependence Gaussian Graphical models

Network Inference

Inducing sparsity for edge selection Limitations and extensions of sparse GGM

Outline

Motivations

Network and data modeling

Network Inference

3

Automatic reconstruction of biological networks (1) Regulatory networks

E. coli regulatory network

Relationships between genes and their products

- highly structured
- always incomplete

Automatic reconstruction of biological networks (2) Protein-Protein interaction networks

Figure: Yeast PPI network

5

Automatic reconstruction of biological networks (3) Association networks

Figure: Co-occurence network between bacterial lineages of Caulerpa

A challenging problem

- 1. Nodes are fixed
 - restricted to a set of interest
- 2. Edges (interactions) are inferred
 - based upon statistical concepts

Main statistical challenges

- 1. (Ultra) High dimensionality $(n < p, n \ll p)$
- 2. Heterogeneity/structure of the data

Exploratory research

By pointing important actors (genes, OTU), it may assist the biologist in

- 1. formulating a hypothesis for further experiments,
- 2. unraveling main tendencies at play in complex systems.

Outline

Motivations

Network and data modeling

Statistical dependence Gaussian Graphical models

Network Inference

Canonical model settings

Biological microarrays in comparable conditions

Notations

- 1. a set $\mathcal{P} = \{1, \dots, p\}$ of p variables: these are typically the genes (could be proteins);
- 2. a sample $\mathcal{N}=\{1,\ldots,n\}$ of individuals associated to the variables: these are typically the microarray (could be sequence counts).

Basic statistical model

This can be view as

- \blacktriangleright a random vector X in \mathbb{R}^p , whose jth entry is the jth variable,
- ightharpoonup a n-size sample (X^1,\ldots,X^n) , such as X^i is the ith microarrays,
 - could be independent identically distributed copies (steady-state)
 - could be dependent in a certain way (time-course data)
- \triangleright assume a parametric probability distribution for X (Gaussian).

Canonical model settings

Biological microarrays in comparable conditions

Notations

- 1. a set $\mathcal{P} = \{1, \dots, p\}$ of p variables: these are typically the genes (could be proteins);
- 2. a sample $\mathcal{N} = \{1, \dots, n\}$ of individuals associated to the variables: these are typically the microarray (could be sequence counts).

Basic statistical model

This can be view as

- ▶ a <u>random vector</u> X in \mathbb{R}^p , whose jth entry is the jth variable,
- ▶ a *n*-size sample $(X^1, ..., X^n)$, such as X^i is the *i*th microarrays,
 - could be independent identically distributed copies (steady-state)
 - could be dependent in a certain way (time-course data)
- ightharpoonup assume a parametric probability distribution for X (Gaussian).

Canonical model settings

Biological microarrays in comparable conditions

Notations

1. a set $\mathcal{P} = \{1, \dots, p\}$ of p variables:

these are typically the genes (could be proteins):

The data

Stacking (X^1,\ldots,X^n) , we met the usual individual/variable table ${\bf X}$

$$\mathbf{X} = \begin{pmatrix} x_1^1 & x_1^2 & x_1^3 & \dots & x_1^p \\ \vdots & & & & \\ x_n^1 & x_n^2 & x_1^2 & \dots & x_n^p \end{pmatrix}$$

- a 10^{-3} is the 0th filleroalrays,
 - could be independent identically distributed copies (steady-state)
 - could be dependent in a certain way (time-course data)
- lacktriangle assume a parametric probability distribution for X (Gaussian).

Outline

Motivations

Network and data modeling Statistical dependence Gaussian Graphical models

Network Inference

Modeling relationship between variables (1) Independence

Definition (Independence of events)

Two events A and B are independent if and only if

$$\mathbb{P}(A, B) = \mathbb{P}(A)\mathbb{P}(B),$$

which is usually denoted by $A \perp \!\!\! \perp B$. Equivalently,

- $A \perp \!\!\!\perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A),$
- $A \perp \!\!\! \perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A|B^c)$

Example (class vs party)

Table: Joint probability (left) vs. conditional probability (right)

11

Modeling relationship between variables (1) Independence

Definition (Independence of events)

Two events A and B are independent if and only if

$$\mathbb{P}(A, B) = \mathbb{P}(A)\mathbb{P}(B),$$

which is usually denoted by $A \perp \!\!\! \perp B$. Equivalently,

- $A \perp \!\!\! \perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A),$
- $A \perp \!\!\! \perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A|B^c)$

Example (class vs party)

	part		party		
class	Labour	Tory	class	Labour	Tory
working	0.42	0.28	working	0.60	0.40
bourgeoisie	0.06	0.24	bourgeoisie	0.20	0.80

Table: Joint probability (left) vs. conditional probability (right)

Conditional independence

Generalizing to more than two events requires strong assumptions (mutual independence). Better handle with

Definition (Conditional independence of events)

Two events A and B are conditionally independent if and only if

$$\mathbb{P}(A, B | C) = \mathbb{P}(A | C) \mathbb{P}(B | C),$$

which is usually denoted by $A \perp \!\!\! \perp B \mid C$

Example (Does QI depends on weight?)

Consider the events A = "having low QI", B = "having low weight"

Conditional independence

Generalizing to more than two events requires strong assumptions (mutual independence). Better handle with

Definition (Conditional independence of events)

Two events A and B are conditionally independent if and only if

$$\mathbb{P}(A, B | C) = \mathbb{P}(A | C)\mathbb{P}(B | C),$$

which is usually denoted by $A \perp \!\!\! \perp B \mid C$

Example (Does QI depends on weight?)

Consider the events A = "having low QI", B = "having low weight"

Conditional independence

Generalizing to more than two events requires strong assumptions (mutual independence). Better handle with

Definition (Conditional independence of events)

Two events A and B are conditionally independent if and only if

$$\mathbb{P}(A, B|C) = \mathbb{P}(A|C)\mathbb{P}(B|C),$$

which is usually denoted by $A \perp\!\!\!\perp B \!\mid\! C$

Example (Does QI depends on weight?)

Consider the events A= "having low QI", B= "having low weight". Estimating $\mathbb{P}(A,B)$, $\mathbb{P}(A)$ and $\mathbb{P}(B)$ in a sample would lead to

$$\mathbb{P}(A,B) \neq \mathbb{P}(A)\mathbb{P}(B)$$

¹stupidly

Conditional independence

Generalizing to more than two events requires strong assumptions (mutual independence). Better handle with

Definition (Conditional independence of events)

Two events A and B are conditionally independent if and only if

$$\mathbb{P}(A, B|C) = \mathbb{P}(A|C)\mathbb{P}(B|C),$$

which is usually denoted by $A \perp \!\!\! \perp B \mid C$

Example (Does QI depends on weight?)

Consider the events A= "having low QI", B= "having low weight". But in fact, introducing C= "having a given age",

$$\mathbb{P}(A, B|C) = \mathbb{P}(A|C)\mathbb{P}(B|C)$$

Outline

Motivations

Network and data modeling Statistical dependence Gaussian Graphical models

Network Inference

Graphical models

Definition

A graphical model gives a graphical (intuitive) representation of the dependence structure of a probability distribution, by linking

- 1. a random vector (or a set of random variables.) $X = \{X_1, \dots, X_p\}$ with distribution \mathbb{P} ,
- 2. a graph $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ where
 - $ightharpoonup \mathcal{P} = \{1, \dots, p\}$ is the set of nodes associated to each variable,
 - lacksquare $\mathcal E$ is a set of edges describing the dependence relationship of $X\sim \mathbb P.$

Definition

The conditional independence graph of a random vector X is the undirected graph $\mathcal{G}=\{\mathcal{P},\mathcal{E}\}$ with the set of node $\mathcal{P}=\{1,\ldots,p\}$ and where

$$(i,j) \notin \mathcal{E} \Leftrightarrow X_i \perp \!\!\!\perp X_j | \mathcal{P} \setminus \{i,j\}.$$

Graphical models

Definition

A graphical model gives a graphical (intuitive) representation of the dependence structure of a probability distribution, by linking

- 1. a random vector (or a set of random variables.) $X = \{X_1, \dots, X_p\}$ with distribution \mathbb{P} .
- 2. a graph $\mathcal{G} = (\mathcal{P}, \mathcal{E})$ where
 - $ightharpoonup \mathcal{P} = \{1, \dots, p\}$ is the set of nodes associated to each variable,
 - lacksquare $\mathcal E$ is a set of edges describing the dependence relationship of $X\sim \mathbb P.$

Definition

The conditional independence graph of a random vector X is the undirected graph $\mathcal{G}=\{\mathcal{P},\mathcal{E}\}$ with the set of node $\mathcal{P}=\{1,\ldots,p\}$ and where

$$(i,j) \notin \mathcal{E} \Leftrightarrow X_i \perp \!\!\! \perp X_j | \mathcal{P} \setminus \{i,j\}.$$

The Gaussian case

The data

Assuming $f_X(\mathbf{X})$ multivariate Gaussian

Greatly simplifies the inference:

- naturally links independence and conditional independence to the covariance and partial covariance,
- gives a straightforward interpretation to the graphical modeling previously considered.

Why Gaussianity helps?

Case of 2 variables or size-2 random vector

Let X, Y be two real random variables.

Definitions

$$\operatorname{cov}(X, Y) = \mathbb{E}\Big[\big(X - \mathbb{E}(X)\big)\big(Y - \mathbb{E}(Y)\big)\Big] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

$$\rho_{XY} = \operatorname{cor}(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}.$$

Proposition

- $\qquad \qquad \mathbf{cov}(X+Y,Z) = \mathbf{cov}(X,Z) + \mathbf{cov}(X,Z),$
- $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + \operatorname{cov}(X,Y).$
- $X \perp \!\!\! \perp Y \Rightarrow \operatorname{cov}(X, Y) = 0.$
- $ightharpoonup X \perp \!\!\! \perp Y \Leftrightarrow \operatorname{cov}(X,Y) = 0$ when X,Y are Gaussian

Why Gaussianity helps?

Case of 2 variables or size-2 random vector

Let X, Y be two real random variables.

Definitions

$$cov(X, Y) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)\left(Y - \mathbb{E}(Y)\right)\right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

$$\rho_{XY} = cor(X, Y) = \frac{cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}.$$

Proposition

- $cov(X, X) = Var(X) = \mathbb{E}[(X \mathbb{E}X)(Y \mathbb{E}Y)],$
- cov(X + Y, Z) = cov(X, Z) + cov(X, Z),
- $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + \operatorname{cov}(X,Y).$
- $X \perp Y \Rightarrow cov(X, Y) = 0.$
- $ightharpoonup X \perp\!\!\!\!\perp Y \Leftrightarrow \operatorname{cov}(X,Y) = 0$ when X,Y are Gaussian.

The bivariate Gaussian distribution

The Covariance Matrix

Let

$$X \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}),$$

with unit variance and $\rho_{XY}=0$

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

The shape of the 2-D distribution evolves accordingly.

The bivariate Gaussian distribution

The Covariance Matrix

Let

$$X \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}),$$

with unit variance and $\rho_{XY}=0.9$

$$\mathbf{\Sigma} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}.$$

The shape of the 2-D distribution evolves accordingly.

Generalization: multivariate Gaussian vector

Now need partial covariance and partial correlation

Let X, Y, Z be real random variables.

Definitions

$$cov(X, Y|Z) = cov(X, Y) - cov(X, Z)cov(Y, Z)/Var(Z).$$

$$\rho_{XY|Z} = \frac{\rho_{XY} - \rho_{XZ}\rho_{YZ}}{\sqrt{1 - \rho_{XZ}^2}\sqrt{1 - \rho_{YZ}^2}}.$$

 \leadsto Give the interaction between X and Y once removed the effect of Z.

Proposition

When X, Y, Z are jointly Gaussian, then

$$cov(X, Y|Z) = 0 \Leftrightarrow cor(X, Y|Z) = 0 \Leftrightarrow X \perp\!\!\!\perp Y|Z$$

Generalization: multivariate Gaussian vector

Now need partial covariance and partial correlation

Let X, Y, Z be real random variables.

Definitions

$$cov(X, Y|Z) = cov(X, Y) - cov(X, Z)cov(Y, Z)/Var(Z).$$

$$\rho_{XY|Z} = \frac{\rho_{XY} - \rho_{XZ}\rho_{YZ}}{\sqrt{1 - \rho_{XZ}^2}\sqrt{1 - \rho_{YZ}^2}}.$$

 \leadsto Give the interaction between X and Y once removed the effect of Z.

Proposition

When X, Y, Z are jointly Gaussian, then

$$cov(X, Y|Z) = 0 \Leftrightarrow cor(X, Y|Z) = 0 \Leftrightarrow X \perp\!\!\!\perp Y|Z.$$

Gaussian Graphical Model: canonical settings

Biological experiments in comparable Gaussian conditions

Profiles of a set $\mathcal{P} = \{1, \dots, p\}$ of genes is described by $X \in \mathbb{R}^p$ such as

- 1. $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Theta} = \boldsymbol{\Sigma}^{-1}$ the precision matrix.
- 2. a sample (X^1, \dots, X^n) of exp. stacked in an $n \times p$ data matrix \mathbf{X} .

Conditional independence structure

$$(i,j) \notin \mathcal{E} \Leftrightarrow X_i \perp \!\!\! \perp X_j | X_{\setminus \{i,j\}} \Leftrightarrow \Theta_{ij} = 0.$$

Graphical interpretation

$$\mathcal{G} = (\mathcal{P}, \mathcal{E})$$
 X_1
 X_2
 X_3
 X_5
 X_7

Outline

Motivations

Network and data modeling

Network Inference

Inducing sparsity for edge selection Limitations and extensions of sparse GGM

Outline

Motivations

Network and data modeling

Network Inference

Inducing sparsity for edge selection

Limitations and extensions of sparse GGM

Inference: maximum likelihood estimator

The natural approach for parametric statistics

Let X be a random vector with distribution defined by $f_X(x; \Theta)$, where Θ are the model parameters.

Maximum likelihood estimator

$$\hat{\boldsymbol{\Theta}} = \operatorname*{arg\;max}_{\boldsymbol{\Theta}} \ell(\boldsymbol{\Theta}; \mathbf{X})$$

where ℓ is the log likelihood, a function of the parameters:

$$\ell(\mathbf{\Theta}; \mathbf{X}) = \log \prod_{i=1}^{n} f_X(\mathbf{x}_i; \mathbf{\Theta}),$$

where \mathbf{x}_i is the *i*th row of \mathbf{X} .

Remarks

- This a convex optimization problem,
- We just need to detect non zero coefficients in Θ

The multivariate Gaussian log-likelihood

Let $S = n^{-1}X^{\mathsf{T}}X$ be the empirical variance-covariance matrix: S is a sufficient statistic of Θ .

The log-likelihood

$$\ell(\mathbf{\Theta}; \mathbf{S}) = \frac{n}{2} \log \det(\mathbf{\Theta}) - \frac{n}{2} \operatorname{Trace}(\mathbf{S}\mathbf{\Theta}) + \frac{n}{2} \log(2\pi).$$

- \longrightarrow The MLE = \mathbf{S}^{-1} of $\mathbf{\Theta}$ is not defined for n < p and never sparse.
- → The need for regularization is huge.

A Geometric View of Shrinkage

Constrained Optimization

We basically want to solve a problem of the form

$$\underset{\theta_1,\theta_2}{\operatorname{maximize}}\,\ell(\theta_1,\theta_2;\mathbf{X})$$

where ℓ is typically a concave likelihood function.

A Geometric View of Shrinkage

Constrained Optimization

$$\begin{cases} \underset{\theta_1,\theta_2}{\text{maximize}} & \ell(\theta_1,\theta_2; \mathbf{X}) \\ \text{s.t.} & \Omega(\theta_1,\theta_2) \leq c \end{cases},$$

where Ω defines a domain that constrains $\boldsymbol{\beta}$.

How shall we define Ω ?

A Geometric View of Shrinkage Constrained Optimization

$$\theta$$

$$\begin{cases} \underset{\theta_1,\theta_2}{\text{maximize}} & \ell(\theta_1,\theta_2;\mathbf{X}) \\ \text{s.t.} & \Omega(\theta_1,\theta_2) \leq c \end{cases} ,$$

where Ω defines a domain that constrains β .

How shall we define Ω ?

The Lasso

Least Absolute Shrinkage and Selection Operator

Idea

Suggest an admissible set that induces sparsity (force several entries to exactly zero in $\hat{\beta}$).

Lasso as a regularization problem

The Lasso estimate of β is the solution to

$$\hat{\boldsymbol{\theta}}^{\mathsf{lasso}} = \mathop{\arg\min}_{\boldsymbol{\theta}} - \ell(\boldsymbol{\theta}), \quad \mathsf{s.t.} \ \sum_{j=1}^p |\theta_j| \leq s,$$

where s is a shrinkage factor.

$$\sum_{i=1}^n (y_i - x_i^1 heta_1 - x_i^2 heta_2)^2,$$
 no constraints

$$\sum_{i=1}^{n} (y_i - x_i^1 \theta_1 - x_i^2 \theta_2)^2, \quad \text{s.t. } |\theta_1| + |\theta_2| < 0.75$$

$$\sum_{i=1}^{n} (y_i - x_i^1 \theta_1 - x_i^2 \theta_2)^2, \quad \text{s.t. } |\theta_1| + |\theta_2| < 0.66$$

$$\sum_{i=1}^{n} (y_i - x_i^1 \theta_1 - x_i^2 \theta_2)^2, \quad \text{s.t. } |\theta_1| + |\theta_2| < 0.4$$

$$\sum_{i=1}^{n} (y_i - x_i^1 \theta_1 - x_i^2 \theta_2)^2, \quad \text{s.t. } |\theta_1| + |\theta_2| < 0.2$$

$$\sum_{i=1}^{n} (y_i - x_i^1 \theta_1 - x_i^2 \theta_2)^2, \quad \text{s.t. } |\theta_1| + |\theta_2| < 0.0743$$

Application to GGM

A penalized likelihood approach

$$\hat{\boldsymbol{\Theta}}_{\lambda} = \operatorname*{max}_{\boldsymbol{\Theta} \in \mathbb{S}_{+}} \ell(\boldsymbol{\Theta}; \mathbf{X}) - \lambda \mathrm{pen}_{\ell_{1}}(\boldsymbol{\Theta})$$

where

- \blacktriangleright ℓ is the model log-likelihood,
- ▶ pen_{ℓ_1} is a penalty function tuned by $\lambda > 0$.
 - 1. regularization (needed when $n \ll p$),
 - 2. selection (sparsity induced by the ℓ_1 -norm),
- solved in R-packages glasso, quic, huge.

The plasmodium data I

```
library(Matrix)
load("plasmodium_expression.Rdata")
dim(Y)
## [1] 3490
             46
head(Y)[, 1:5]
##
                  TP1
                         TP2
                                TP3
                                       TP4
                                               TP5
  MAI.13P1.100 0.4510 0.6532 1.0760 0.5515 0.4238
  MAL13P1.102 1.5320 1.8920 0.8803 1.0300 0.9328
  MAL13P1.103 0.5218 0.5213 0.5328 0.3719 0.3258
## MAI.13P1.105 0.5515 0.5527 0.8627 0.4541 0.4299
  MAL13P1.107 0.5630 0.4463 1.0760 0.4035 0.2082
## MAI.13P1.112 0.5390 0.5393 0.5642 0.5326 0.4469
image(Matrix(cor(Y)))
```

The plasmodium data II

Covariance structure between the conditions I Sparse Estimation

```
library(huge)
huge.out <- huge(as.matrix(Y), method="glasso", cov.output=TRUE)</pre>
## Conducting the graphical lasso (glasso) with lossless screening....in progress:
Conducting the graphical lasso (glasso) with lossless screening....in progress:9%
Conducting the graphical lasso (glasso) with lossless screening....in progress:19%
Conducting the graphical lasso (glasso) with lossless screening....in progress:30%
Conducting the graphical lasso (glasso) with lossless screening....in progress: 40%
Conducting the graphical lasso (glasso) with lossless screening....in progress:50%
Conducting the graphical lasso (glasso) with lossless screening....in progress:60%
Conducting the graphical lasso (glasso) with lossless screening....in progress:70%
Conducting the graphical lasso (glasso) with lossless screening....in progress:80%
Conducting the graphical lasso (glasso)....done.
sel.out <- huge.select(huge.out)</pre>
## Conducting extended Bayesian information criterion (ebic) selection....done
image(sel.out$opt.cov)
```

Covariance structure between the conditions II Sparse Estimation

Covariance structure between the conditions I

Sparse Estimation of the inverse covariance

```
sum(abs(sel.out$opt.icov) != 0)
## [1] 760

ncol(sel.out$opt.icov) ** 2
## [1] 2116
image(sel.out$opt.icov)
```

Covariance structure between the conditions II Sparse Estimation of the inverse covariance

Covariance structure between the conditions I Associated network

plot(huge.out)

Covariance structure between the conditions II Associated network

Network between the genes I

Sparse Estimation

```
library(huge)
genes.subset <- order(apply(Y,1,var))[1:500]</pre>
huge.out <- huge(as.matrix(t(Y[genes.subset, ])), method="glasso", cov.output=TRUE;
## Conducting the graphical lasso (glasso) with lossless screening....in progress:
Conducting the graphical lasso (glasso) with lossless screening....in progress:9%
Conducting the graphical lasso (glasso) with lossless screening....in progress:19%
Conducting the graphical lasso (glasso) with lossless screening....in progress:30%
Conducting the graphical lasso (glasso) with lossless screening....in progress:40%
Conducting the graphical lasso (glasso) with lossless screening....in progress:50%
Conducting the graphical lasso (glasso) with lossless screening....in progress:60%
Conducting the graphical lasso (glasso) with lossless screening....in progress:70%
Conducting the graphical lasso (glasso) with lossless screening....in progress:80%
Conducting the graphical lasso (glasso)....done.
plot(huge.out)
```

Network between the genes II Sparse Estimation

Regularization Parameter

arsity vs. Regularizat lambda = 0.774 lambda = 0.599 lambda = 0.464

Network between the genes I

Inverse covariance

```
library(huge)
huge.out$df

## [1] 0.0 776.0 3368.0 5790.0 6851.5 7416.5 8128.0 9159.0

## [9] 10515.0 12172.5

image(Matrix(huge.out$icov[[3]][1:100, 1:100]))
```

Network between the genes II Inverse covariance

Network between the genes I

```
library(huge)
huge.out$df

## [1]    0.0    776.0    3368.0    5790.0    6851.5    7416.5    8128.0    9159.0
## [9] 10515.0 12172.5

image(Matrix(huge.out$cov[[3]][1:100, 1:100]))
```

Network between the genes II Covariance

Outline

Motivations

Network and data modeling

Network Inference

Inducing sparsity for edge selection

Limitations and extensions of sparse GGM

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{j \in \mathcal{P}}(\text{degree}_j)$. Consistency for an appropriate λ and

- ▶ $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- ▶ $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

(Irrepresentability) conditions are not strictly comparable. . .

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with \emph{d} -sparse models: useless when

$$\frac{d \log(p/d)}{n} \ge 1/2,$$
 (e.g., $n = 50, p = 200, d \ge 8$).

Good news! when n is small, we don't need to solve huge problems because they can't but fail.

Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote $d = \max_{j \in \mathcal{P}}(\text{degree}_j)$. Consistency for an appropriate λ and

- ▶ $n \approx \mathcal{O}(d^2 \log(p))$ for the graphical Lasso and Clime.
- ▶ $n \approx \mathcal{O}(d \log(p))$ for neighborhood selection (sharp).

(Irrepresentability) conditions are not strictly comparable. . .

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with d-sparse models: useless when

$$\frac{d \log(p/d)}{n} \ge 1/2, \qquad \text{(e.g., } n = 50, p = 200, d \ge 8\text{)}.$$

Good news! when n is small, we don't need to solve huge problems because they can't but fail.

Model selection

Cross-validation

Optimal in terms of prediction, not in terms of selection

Information based criteria

- ▶ GGMSelect (Girault *et al*, '12) selects among a family of candidates.
- Adapt IC to sparse high dimensional problems, e.g.

$$\mathsf{EBIC}_{\gamma}(\widehat{\boldsymbol{\Theta}}_{\lambda}) = -2\mathsf{loglik}(\widehat{\boldsymbol{\Theta}}_{\lambda}; \mathbf{X}) + |\mathcal{E}_{\lambda}|(\mathsf{log}(n) + 4\gamma \log(p)),$$

Resampling/subsampling

Keep edges frequently selected on an range of λ after sub-samplings

- Stability Selection (Meinshausen and Bühlman, 2010, Bach 2008)
- Stability approach to Regularization Selection (StaRS) (Liu, 2010).

Limitations towards biological network inference

- Sparse GGM
 - + very solid statistical and computational framework
- ▶ DREAM 5 benchmark, 2012 (+ personal experiences).
 - + competitive to other inference methods
 - performances remain questionable on real data, as for other methods

Ideas

Strengthen the inference by

- accounting for biological features
 - 1. structure of the network (organization of biological mechanisms)
 - 2. sample heterogeneity (structure of the population)
 - 3. horizontal integration (use multiple data and platforms)
- accounting for data features (especially NGS)
 - extend to non strictly normal distribution
 - → deal with a very large number of actors

Network inference for count data

Data transformation

Consider $\mathbf{X} = (X^1, \dots, X^n)$ some count data with size $n \times p$.

Simple transformation

Often surprisingly efficients

- ▶ log transformation log(1 + X)
- ightharpoonup compute S_n by means of Spearman's correlation

Non paranormal transformation (Liu et al 2009)

The random vector X has non-paranormal distribution if there exist

$$f(X) = f(X_1, \dots, X_p) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Theta}^{-1}).$$

- lacksquare Distribution of X is a Gaussian copula if f is monotone differentiable
- $ightharpoonup X_i \perp \!\!\! \perp X_j | X_{\setminus i,j} \text{ iff } \Theta_{ij} = 0.$

Network inference for count data

Poisson graphical models

Poisson graphical Lasso (Allen et al, 2012)

Assuming that $X_j | X_k \sim \mathcal{P}(\exp(\beta_j + \sum_{j \neq k} \beta_k X_k))$

$$\hat{\boldsymbol{\beta}} \arg \min_{\hat{\boldsymbol{\beta}} \in \mathbb{R}^p} \left\{ -\sum_{i=1}^n \sum_{k \neq j} X_{ij} X_{ik} \beta_k - \exp\{X_{ik} \beta_k\} \right\} + \lambda \|\boldsymbol{\beta}\|_1.$$

- Other extensions in Yang et al, 2014 (truncated Poisson).
- + Better performance than GGM...
- ...on simulated Poisson data
- Computationally less efficient

Dealing with the growing number of feature

Problem

The number of OTU p may be huge in metagenomics studies

- ightharpoonup Statistical limitation (depends on d, n)
- Computational limitation (depends on your time but max. 1e6)

How should we limit the size of the problem?

- Screening (discarding of irrelevant variables)
- Clustering (aggregation of similar actors)
- → How does this affect the inferred networks?

Conclusion

Sparse Gaussian Graphical Model

Well established framework with a vast, growing literature

- 1. Nice modeling tool (conditional dependencies),
- 2. Good theoretical framework (which I have not much talked about),
- 3. Powerful algorithms
 - ▶ that scale the dimension (large p large n)
 - that allow resampling/parallelization (for robustness)

→ Great tool for covariance estimation/selection in a reasonably high dimensional settings.

Still...

- an interaction is not even well defined
- ▶ ~→ carefull with interpreatation of the networks
- metagenomics data do have some specificities
- ► ~ adaptation needed