Portion Size Effect for Children at High and Low Familial Risk for Obesity (Food and Brain Study)

Contents

1	Demographics	2
2	Meal Liking	4
3	Portion Size Effect	5
	3.1 Total Intake	. 5
	3.2 Intake by Food	. 5
	3.3 Base Model - Test Quadratic Effect	. 6
	3.4 Risk Status x Portion Size (linear effect)	. 8
	3.5 Exploratory Analyses: Effect of BMI	
4	Exploratory Analyses: Individual Foods	16
	4.1 Chicken Nuggets	. 16
	4.2 Mac and Cheese	. 19
	4.3 Grapes	. 23
	4.4 Broccoli	. 27
5	Exploratory Analyses: Mediated Moderation	31
	5.1 Grams	. 31
	5.2 kcal	

1 Demographics

Table 1: Demographics

	Risk	Groups	Overall
Characteristic	Low Risk, N = 51	High Risk, N = 36	N = 87
Sex			
Male	29 (57%)	16 (44%)	45 (52%)
Female	22 (43%)	20 (56%)	42 (48%)
Age, yr	7.8(0.7)	7.7(0.5)	7.8(0.6)
Ethnicity			
Not Hispanic/Lantinx	51 (100%)	36 (100%)	87 (100%)
Race	, ,	, ,	` ′
0	48 (94%)	36 (100%)	84 (97%)
2	3 (5.9%)	0 (0%)	3 (3.4%)
Income			
< \$51,000	4 (8.0%)	7 (21%)	11 (13%)
>\$100,000	24 (48%)	7 (21%)	31 (37%)
\$51,000 - \$100,000	22 (44%)	20 (59%)	42 (50%)
Unknown	1	$\stackrel{\backprime}{2}$	3
BMI %tile	41.2(24.1)	$56.1\ (24.3)$	47.4 (25.2)
Mother's Education			
> Bachelor Degree	22 (44%)	5 (14%)	27 (31%)
AA/Technical Degree	3 (6.0%)	6 (17%)	9 (10%)
Bachelor Degree	22 (44%)	19 (53%)	41 (48%)
High School/GED	3 (6.0%)	6 (17%)	9 (10%)
Unknown	1	0	1
Father's Education			
> Bachelor Degree	28 (55%)	3(9.4%)	31 (37%)
AA/Technical Degree	3(5.9%)	11 (34%)	14 (17%)
Bachelor Degree	14(27%)	12 (38%)	26 (31%)
High School/GED	6 (12%)	5 (16%)	11 (13%)
Other/NA	0 (0%)	1 (3.1%)	1 (1.2%)
Unknown	0	4	4

¹ n (%); Mean (SD)

Age - t-test

Welch Two Sample t-test

data: age_yr by risk_status_mom

t = 0.45466, df = 82.635, p-value = 0.6505

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-0.1990168 0.3169580

sample estimates:

mean in group Low Risk mean in group High Risk 7.806471 7.747500

##BMI Percentile - t-test

Welch Two Sample t-test

data: bmi_percentile by risk_status_mom t = -2.8331, df = 75.193, p-value = 0.005914

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-25.46063 -4.43813

sample estimates:

Low Risk High Risk 24.14348 24.30838

Sex - χ^2

Pearson's Chi-squared test with Yates' continuity correction

data: r01_intake\$sex and r01_intake\$risk_status_mom
X-squared = 0.85345, df = 1, p-value = 0.3556

Income - χ^2

Pearson's Chi-squared test

data: r01_intake\$income and r01_intake\$risk_status_mom
X-squared = 7.459, df = 2, p-value = 0.024

Mom Education - Fisher test

Fisher's Exact Test for Count Data

data: r01_intake\$mom_ed and r01_intake\$risk_status_mom

p-value = 0.008671

alternative hypothesis: two.sided

2 Meal Liking

Table 2: Regression Table: Portion Size for Liking

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	3.431	0.795	84.097	4.314	0.000
preFF	-0.002	0.001	308.792	-2.359	0.019
bmi	0.022	0.051	82.858	0.434	0.665
sexFemale	0.120	0.126	82.513	0.948	0.346
meal_order	0.015	0.014	256.591	1.065	0.288
$risk_status_momHigh\ Risk$	0.031	0.135	82.992	0.228	0.821
ps_prop	0.039	0.043	256.698	0.904	0.367

3 Portion Size Effect

Note - Portion Size was coded in ps_prop as the proportion increase in amount served: Portion Size 1=0, Portion Size 2=0.33, Portion Size 3=0.66, and Portion Size 4=0.99. This means that a 1 unit increase is equal to a 100% increase in amount served – the difference between Portion Size 1 and Portion Size 4.

3.1 Total Intake

Table 3: Intake by Portion Size

	Risk	Groups	Overall
Characteristic	Low Risk, N = 51	High Risk, N = 36	N = 87
ps1_total_g	407.3 (168.6)	408.9 (165.6)	408.0 (166.4)
ps1_total_kcal	473.1 (200.7)	493.7 (197.2)	481.7 (198.4)
ps1_avg_vas	3.8(0.6)	3.9(0.6)	3.8(0.6)
$ps2_total_g$	467.8 (176.9)	402.7 (173.8)	440.9 (177.6)
$ps2_total_kcal$	543.3 (220.4)	508.7 (273.5)	529.0 (242.8)
ps2_avg_vas	3.8 (0.6)	3.8 (0.7)	3.8(0.6)
$ps3_total_g$	490.1 (193.3)	432.7 (189.3)	466.3 (192.7)
$ps3_total_kcal$	602.0 (276.9)	530.2 (287.2)	572.3 (281.8)
ps3_avg_vas	3.8(0.6)	3.8(0.7)	3.8(0.6)
$ps4_total_g$	496.1 (190.9)	425.3 (168.4)	466.8 (184.3)
ps4_total_kcal	619.1 (247.2)	568.9 (253.5)	598.3 (249.6)
ps4_avg_vas	3.8 (0.7)	3.9 (0.6)	3.9 (0.6)

¹ Mean (SD)

3.2 Intake by Food

Table 4: High Risk: Intake by Portion Size

Characteristic	PS-1 , $N = 36$	PS-2 , $N = 36$	PS-3 , $N = 36$	PS-4 , $N = 36$
chnug_grams	64.8 (45.8)	73.6 (80.0)	77.1 (62.2)	85.6 (65.3)
chnug_kcal	162.1 (114.6)	184.0 (200.1)	192.7 (155.6)	214.1 (163.2)
mac_grams	133.0 (106.3)	132.8 (112.4)	136.1 (132.4)	142.5 (125.3)
mac_kcal	226.1 (180.8)	225.7 (191.1)	231.4 (225.1)	242.2 (213.1)
$grape_grams$	84.1 (65.6)	93.4 (76.2)	96.3 (88.7)	104.5 (91.4)
grape_kcal	58.4 (45.6)	64.9 (53.0)	66.9 (61.7)	72.6 (63.5)
$broc_grams$	32.7(53.7)	23.1(29.3)	24.6 (38.1)	23.9(37.6)
broc_kcal	32.8(53.9)	23.1(29.4)	24.7(38.2)	24.0(37.7)
mac_vas	4.2(0.8)	3.9(1.1)	3.9(1.1)	4.0(1.0)
chnug_vas	4.3 (1.0)	4.2 (1.0)	4.1 (1.2)	4.3 (0.9)
broc_vas	2.9 (1.7)	2.8 (1.5)	2.8 (1.5)	2.9 (1.6)
grape_vas	4.2 (0.8)	$4.4\ (0.9)$	$4.4\ (0.9)$	$4.4\ (0.8)$

¹ Mean (SD)

Table 5: Low Risk: Intake by Portion Size

Characteristic	PS-1 , $N = 51$	PS-2 , $N = 51$	PS-3 , $N = 51$	PS-4 , $N = 51$
chnug_grams	68.8 (41.8)	83.0 (52.4)	99.3 (82.0)	105.4 (68.0)
chnug_kcal	172.0 (104.6)	207.5 (131.0)	248.3 (205.0)	263.5 (170.0)
mac_grams	115.9 (91.0)	130.4 (102.9)	140.5 (115.8)	132.4 (107.8)
mac_kcal	197.1 (154.8)	221.7(175.0)	238.8 (196.8)	225.0 (183.2)
$grape_grams$	95.6 (81.7)	104.7 (86.7)	104.0 (93.4)	$117.1\ (104.3)$
grape_kcal	66.5 (56.7)	72.7 (60.3)	72.3 (64.9)	81.4 (72.5)
$broc_grams$	27.4 (40.9)	29.7(54.7)	29.8 (54.9)	36.3 (65.9)
broc_kcal	27.5(41.0)	29.8 (54.8)	29.9(55.1)	36.4(66.1)
mac_vas	3.6(1.0)	3.7(1.0)	3.8(1.1)	3.7(1.0)
chnug_vas	4.1 (0.9)	4.3(0.7)	4.2(0.7)	4.2(0.9)
broc_vas	3.2 (1.2)	3.1 (1.1)	3.2 (1.2)	3.3 (1.3)
grape_vas	4.2 (0.9)	4.2 (1.0)	4.1 (1.1)	4.1 (1.0)

¹ Mean (SD)

3.3 Base Model - Test Quadratic Effect

All intake models are currently controlling for: pre-meal Freddy Fullness, child BMI, average VAS liking rating for the meal foods conducted at each meal, and meal order.

3.3.1 Grams

Table 6: Regression Table: Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	69.979	294.510	86.112	0.238	0.813
preFF	-0.352	0.222	319.570	-1.587	0.114
bmi	21.336	13.113	81.536	1.627	0.108
sexFemale	-21.747	34.013	81.658	-0.639	0.524
age_yr	-14.244	27.915	81.170	-0.510	0.611
avg_vas	38.489	15.707	335.359	2.450	0.015
$meal_order$	-5.292	4.221	254.527	-1.254	0.211
ps_prop	149.249	44.562	254.288	3.349	0.001
ps_prop2	-93.578	43.356	254.614	-2.158	0.032

^{*}To calculate effect of portion size by 0.33 proportion increase need to first get total quadratic effect. The β coefficient for a quadratic effect is half the change in the linear slope for a unit increase, so total change in linear slope = 2 x ps_prop2. Since a 1 unit increase = 100% increase in portion, can then multiply the total effect by 0.33. Therefore, change in linear slope for each 33% increase in amount served = (ps_prop2)

x 2) x 0.33. To calculate where the slope switches from positive to negative, need to find the vertex = $-ps_prop/(ps_prop2 \times 2)$

3.3.2 kcal

Data: intake_long

Models:

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + (1 | sub)

kcal_psquad_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + ps_prop2 + (1 | s

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

kcal_ps_mod 10 4586.3 4624.8 -2283.1 4566.3

kcal_psquad_mod 11 4587.4 4629.7 -2282.7 4565.4 0.8767 1 0.3491

Table 7: Regression Table: Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	82.682	376.104	87.003	0.220	0.827
preFF	-0.927	0.331	334.493	-2.802	0.005
$_{ m bmi}$	36.020	16.657	81.813	2.162	0.034
sexFemale	-27.770	43.211	81.940	-0.643	0.522
age_yr	-45.184	35.442	81.348	-1.275	0.206
avg_vas	56.091	22.702	313.574	2.471	0.014
$meal_order$	8.113	6.462	255.941	1.255	0.210
ps_prop	115.698	19.643	255.951	5.890	0.000

3.4 Risk Status x Portion Size (linear effect)

3.4.1 Grams

Adding an interaction between Risk Status and Portion Size significantly improved model fit.

```
Data: intake_long
Models:
grams_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + ps_prop2 + (1 |
grams_psxrisk_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom *
                        npar
                               AIC
                                      BIC logLik deviance Chisq Df
grams_psquad_mod
                          11 4320.8 4363.1 -2149.4
                        13 4313.4 4363.4 -2143.7
                                                    4287.4 11.364 2
grams_psxrisk_psquad_mod
                        Pr(>Chisq)
grams_psquad_mod
grams_psxrisk_psquad_mod
                          0.003407 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Table 8: Regression Table: Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-8.158	291.590	85.545	-0.028	0.978
preFF	-0.359	0.220	317.295	-1.631	0.104
bmi	29.423	13.533	81.163	2.174	0.033
sexFemale	-13.429	33.683	81.062	-0.399	0.691
age_yr	-19.036	27.536	80.540	-0.691	0.491
avg_vas	38.192	15.499	332.829	2.464	0.014
meal_order	-5.085	4.172	253.870	-1.219	0.224
risk_status_momHigh Risk	-36.791	37.928	102.594	-0.970	0.334
ps_prop	177.939	45.317	253.648	3.927	0.000
ps_prop2	-94.175	42.839	253.948	-2.198	0.029
$risk_status_momHigh~Risk:ps_prop$	-68.591	25.560	253.653	-2.684	0.008

Figure 1: Grams Consumed: Risk Status x Portion Size

Table 9: Estimated Simple Slopes: Risk Status x Linear Portion Size for Grams

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	_,,,,,,,,	-0.0-0	254.483 254.427	0.0_0	0.000 0.019

Table 10: Estimated Marginal Means: Risk Status x Portion Size for Grams

	Low Risk	High Risk
0	412.815	397.896
0.33	460.033	423.267
0.66	489.099	424.511
0.99	499.366	420.439

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 0.4547, df = 78.28, p-value = 0.6506

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-50.39785 80.23597 sample estimates:

mean in group Low Risk mean in group High Risk 412.8149 397.8959

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.1154, df = 76.943, p-value = 0.2682

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-28.87265 102.40452

sample estimates:

mean in group Low Risk mean in group High Risk 460.0330 423.2671

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.9385, df = 76.389, p-value = 0.05625

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-1.765298 130.942013

sample estimates:

mean in group Low Risk mean in group High Risk 489.0993 424.5110

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 2.3874, df = 76.56, p-value = 0.01943

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

13.0908 144.7642

sample estimates:

mean in group Low Risk mean in group High Risk 499.3660 420.4385

3.4.1.1 No Plate Cleaners

Table 11: Regression Table: No Plate Cleaners - Risk x Portion Size for grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-27.371	284.472	83.398	-0.096	0.924
preFF	-0.338	0.217	310.780	-1.555	0.121
bmi	23.134	13.446	78.905	1.721	0.089
sexFemale	-1.257	33.070	78.944	-0.038	0.970
age_yr	-4.757	27.314	78.389	-0.174	0.862
avg_vas	36.727	15.410	322.728	2.383	0.018
$meal_order$	-5.674	4.167	247.756	-1.362	0.175
risk_status_momHigh Risk	-35.327	37.548	100.295	-0.941	0.349
ps_prop	167.020	45.276	247.682	3.689	0.000
ps_prop2	-80.431	42.819	248.090	-1.878	0.061
$risk_status_momHigh~Risk:ps_prop$	-66.268	25.561	247.649	-2.593	0.010

3.4.2 kcal

Adding an interaction between Risk Status and Portion Size (linear effect) significantly improved model fit.

```
Data: intake_long Models:
```

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + (1 | sub)

kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

kcal_ps_mod 10 4586.3 4624.8 -2283.1 4566.3

kcal_psxrisk_mod 12 4583.5 4629.7 -2279.7 4559.5 6.8203 2 0.03304 *

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Table 12: Regression Table: Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	6.666	376.832	86.417	0.018	0.986
preFF	-0.929	0.330	331.755	-2.813	0.005
bmi	43.500	17.403	81.520	2.500	0.014
sexFemale	-19.988	43.310	81.360	-0.462	0.646
age_yr	-49.668	35.383	80.718	-1.404	0.164
avg_vas	55.632	22.557	311.420	2.466	0.014
meal_order	8.377	6.417	255.257	1.306	0.193
risk_status_momHigh Risk	-23.081	49.994	112.969	-0.462	0.645
ps_prop	150.649	25.364	255.082	5.940	0.000
risk_status_momHigh Risk:ps_prop	-85.275	39.577	255.180	-2.155	0.032

Table 13: Estimated Simple Slopes: Risk Status x Linear Portion Size for kcal

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk			$255.575 \\ 255.846$	0.000	$0.000 \\ 0.033$

Table 14: Estimated Marginal Means: Risk Status x Portion Size for kcal

	Low Risk	High Risk
0	484.344	491.669
0.33	533.787	512.962
0.66	587.434	527.885
0.99	632.002	571.722

Welch Two Sample t-test

data: $kcal_pred_rxps$ by $risk_status_mom$ t = -0.16856, df = 72.4, p-value = 0.8666

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-93.94789 79.29763

sample estimates:

mean in group Low Risk mean in group High Risk
484.3436 491.6688

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 0.49462, df = 73.75, p-value = 0.6223

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-63.07247 104.72293

sample estimates:

mean in group Low Risk mean in group High Risk 533.7869 512.9616

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.3305, df = 70.935, p-value = 0.1876

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-29.69283 148.78887

sample estimates:

mean in group Low Risk mean in group High Risk 587.4335 527.8855

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.3929, df = 73.814, p-value = 0.1678

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-25.9537 146.5141

sample estimates:

mean in group Low Risk mean in group High Risk 632.0019 571.7217

3.4.2.1 No Plate Cleaners

Table 15: Regression Table: No Plate Cleaners - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-13.363	371.018	84.269	-0.036	0.971
preFF	-0.919	0.327	324.155	-2.812	0.005
bmi	36.553	17.452	79.296	2.094	0.039
sexFemale	-6.264	42.925	79.320	-0.146	0.884
age_yr	-33.671	35.429	78.643	-0.950	0.345
avg_vas	53.859	22.444	300.161	2.400	0.017
meal_order	6.138	6.414	249.184	0.957	0.340
risk_status_momHigh Risk	-18.711	49.910	110.124	-0.375	0.708
ps_prop	154.406	25.306	249.183	6.102	0.000
$risk_status_momHigh~Risk:ps_prop$	-89.388	39.596	249.266	-2.257	0.025

3.5 Exploratory Analyses: Effect of BMI

After controlling for age and sex, there was a difference in BMI by Risk Status such that the High Risk group had BMI that was 0.73 higher on average.

Table 16: Regression Table: BMI and Risk Status

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	13.991	1.740	8.038	0.000
age_yr	0.186	0.223	0.833	0.407
sexFemale	0.002	0.273	0.009	0.993
$risk_status_momHigh Risk$	0.798	0.276	2.889	0.005

Since BMI was associated with both total grams and kcal intake, I tested if adding a BMI x Poriton Size interaction improved the model.

3.5.1 Grams

Adding a BMI x Portion Size interaction did not improve the model for grams

```
Data: intake_long
Models:
grams_psxrisk_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom *
grams_psxrisk_psxbmi_psquad_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_statu
                                npar
                                        AIC
                                               BIC logLik deviance Chisq Df
grams_psxrisk_psquad_mod
                                  13 4313.4 4363.4 -2143.7
                                                             4287.4
grams_psxrisk_psxbmi_psquad_mod
                                  14 4315.3 4369.2 -2143.6
                                                             4287.3 0.1126 1
                                Pr(>Chisq)
grams_psxrisk_psquad_mod
grams_psxrisk_psxbmi_psquad_mod
                                    0.7372
```

3.5.2 kcal

Adding a BMI x Portion Size interaction did not improve the model for kcal.

Data: intake_long Models: kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop + (1 | sub) kcal_psxrisk_psxbmi_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop + bmi * ps_prop + ps_prop + (1 | sub) npar AIC BIC logLik deviance Chisq Df kcal_psxrisk_mod 12 4583.5 4629.7 -2279.7 4559.5 kcal_psxrisk_psxbmi_mod 14 4585.0 4638.9 -2278.5 4557.0 2.4714 2 Pr(>Chisq) kcal_psxrisk_mod kcal_psxrisk_psxbmi_mod 0.2906

4 Exploratory Analyses: Individual Foods

4.1 Chicken Nuggets

4.1.1 Grams

4.1.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_chnug_ps_mod: chnug_grams ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop + (1 |
grams_chnug_ps_psquad_mod: chnug_grams ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop
                                        BIC logLik deviance Chisq Df
                                 AIC
                            10 3698.4 3736.9 -1839.2
grams_chnug_ps_mod
                                                       3678.4
grams_chnug_ps_psquad_mod
                            11 3700.0 3742.4 -1839.0
                                                       3678.0 0.3988 1
                         Pr(>Chisq)
grams_chnug_ps_mod
grams_chnug_ps_psquad_mod
                              0.5277
```

Table 17: Chicken Nugget - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(>\! t)$
(Intercept)	-39.029	80.261	80.113	-0.486	0.628
preFF	-0.262	0.092	327.863	-2.850	0.005
bmi	4.134	3.527	73.987	1.172	0.245
sexFemale	-13.300	9.121	73.619	-1.458	0.149
age_yr	-5.589	7.527	74.165	-0.743	0.460
chnug_vas	22.448	4.014	261.379	5.593	0.000
$meal_order$	2.851	1.974	248.470	1.444	0.150
ps_prop	29.577	5.987	247.692	4.940	0.000

Table 18: Chicken Nugget - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-60.852	79.889	79.553	-0.762	0.448
preFF	-0.253	0.092	326.546	-2.749	0.006
bmi	6.165	3.660	73.630	1.685	0.096
sexFemale	-11.159	9.078	72.973	-1.229	0.223
age_yr	-6.784	7.457	73.350	-0.910	0.366
chnug_vas	22.604	3.982	256.405	5.677	0.000
meal_order	2.906	1.967	247.645	1.478	0.141
ps_prop	38.041	7.759	246.488	4.903	0.000
risk_status_momHigh Risk	-7.384	11.383	138.735	-0.649	0.518
ps_prop:risk_status_momHigh Risk	-20.661	12.110	247.070	-1.706	0.089

4.1.1.2 Risk x Portion Size

4.1.2 kcal

4.1.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_chnug_ps_mod: chnug_kcal ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop + (1 | su
kcal_chnug_ps_psquad_mod: chnug_kcal ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop +
                        npar
                                AIC
                                      BIC logLik deviance Chisq Df
                          10 4334.3 4372.8 -2157.2
kcal_chnug_ps_mod
kcal_chnug_ps_psquad_mod
                         11 4335.9 4378.3 -2157.0
                                                     4313.9 0.3988 1
                        Pr(>Chisq)
kcal_chnug_ps_mod
kcal_chnug_ps_psquad_mod
                            0.5277
```

Table 19: Chicken - Nugget Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept) preFF bmi sexFemale age yr	-97.574	200.652	80.113	-0.486	0.628
	-0.656	0.230	327.863	-2.850	0.005
	10.335	8.817	73.987	1.172	0.245
	-33.249	22.804	73.619	-1.458	0.149
	-13.973	18.818	74.165	-0.743	0.460
chnug_vas	56.120	10.034	261.379	5.593	$0.000 \\ 0.150 \\ 0.000$
meal_order	7.128	4.935	248.470	1.444	
ps_prop	73.943	14.968	247.692	4.940	

Table 20: Chicken - Nugget Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-152.129	199.723	79.553	-0.762	0.448
preFF	-0.633	0.230	326.546	-2.749	0.006
bmi	15.414	9.150	73.630	1.685	0.096
sexFemale	-27.899	22.695	72.973	-1.229	0.223
age_yr	-16.960	18.643	73.350	-0.910	0.366
chnug_vas	56.511	9.955	256.405	5.677	0.000
$meal_order$	7.265	4.917	247.645	1.478	0.141
ps_prop	95.103	19.398	246.488	4.903	0.000
risk_status_momHigh Risk	-18.459	28.457	138.735	-0.649	0.518
ps_prop:risk_status_momHigh Risk	-51.652	30.274	247.070	-1.706	0.089

4.1.2.2 Risk x Portion Size

4.2 Mac and Cheese

4.2.1 Grams

4.2.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 21: Mac and Cheese - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	21.479	169.412	79.873	0.127	0.899
preFF	-0.119	0.118	308.228	-1.010	0.313
$_{ m bmi}$	14.922	7.684	79.676	1.942	0.056
sexFemale	6.093	19.888	79.250	0.306	0.760
age_yr	-27.888	16.328	78.808	-1.708	0.092
mac_vas	20.867	4.632	328.485	4.505	0.000
$meal_order$	2.572	2.210	252.192	1.164	0.246
ps_prop	15.280	6.722	252.305	2.273	0.024

Table 22: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	8.007	171.336	78.902	0.047	0.963
preFF	-0.116	0.119	305.245	-0.978	0.329
bmi	16.490	8.093	78.574	2.038	0.045
sexFemale	7.687	20.115	78.136	0.382	0.703
age_yr	-28.799	16.452	77.705	-1.751	0.084
mac_vas	20.822	4.666	326.930	4.463	0.000
meal_order	2.583	2.215	251.056	1.166	0.245
ps_prop	16.748	8.769	251.271	1.910	0.057
risk_status_momHigh Risk	-11.796	22.437	95.481	-0.526	0.600
ps_prop:risk_status_momHigh Risk	-3.581	13.742	252.168	-0.261	0.795

4.2.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 23: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	8.319	171.256	78.968	0.049	0.961
preFF	-0.114	0.118	306.057	-0.964	0.336
bmi	16.486	8.089	78.649	2.038	0.045
sexFemale	7.666	20.106	78.209	0.381	0.704
age_yr	-28.792	16.444	77.781	-1.751	0.084
mac_vas	20.922	4.638	327.544	4.511	0.000
meal_order	2.571	2.211	252.125	1.163	0.246
ps_prop	15.284	6.723	252.238	2.273	0.024
$risk_status_momHigh Risk$	-13.594	21.337	78.464	-0.637	0.526

4.2.2 kcal

4.2.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Data: intake_long

Models:

kcal_mac_ps_mod 10 4262.5 4301.0 -2121.3 4242.5

kcal_mac_ps_psquad_mod 11 4263.4 4305.7 -2120.7 4241.4 1.1733 1 0.2787

Table 24: Mac and Cheese - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	36.514	288.000	79.873	0.127	0.899
preFF	-0.202	0.200	308.228	-1.010	0.313
bmi	25.368	13.063	79.676	1.942	0.056
sexFemale	10.358	33.810	79.250	0.306	0.760
age_yr	-47.409	27.758	78.808	-1.708	0.092
mac_vas	35.474	7.875	328.485	4.505	0.000
$meal_order$	4.373	3.758	252.192	1.164	0.246
ps_prop	25.977	11.428	252.305	2.273	0.024

Table 25: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	13.612	291.271	78.902	0.047	0.963
preFF	-0.197	0.202	305.245	-0.978	0.329
bmi	28.033	13.758	78.574	2.038	0.045
sexFemale	13.068	34.196	78.136	0.382	0.703
age_yr	-48.959	27.968	77.705	-1.751	0.084
mac_vas	35.398	7.932	326.930	4.463	0.000
$meal_order$	4.390	3.765	251.056	1.166	0.245
ps_prop	28.471	14.907	251.271	1.910	0.057
risk_status_momHigh Risk	-20.053	38.143	95.481	-0.526	0.600
ps_prop:risk_status_momHigh Risk	-6.088	23.362	252.168	-0.261	0.795

4.2.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 26: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	14.142	291.135	78.968	0.049	0.961
preFF	-0.194	0.201	306.057	-0.964	0.336
bmi	28.027	13.752	78.649	2.038	0.045
sexFemale	13.033	34.180	78.209	0.381	0.704
age_yr	-48.946	27.956	77.781	-1.751	0.084
mac_vas	35.568	7.884	327.544	4.511	0.000
$meal_order$	4.370	3.758	252.125	1.163	0.246
ps_prop	25.982	11.429	252.238	2.273	0.024
risk_status_momHigh Risk	-23.111	36.273	78.464	-0.637	0.526

4.3 Grapes

4.3.1 Grams

4.3.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 27: Grapes - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	20.060	140.883	79.443	0.142	0.887
preFF	-0.055	0.099	309.040	-0.558	0.577
$_{ m bmi}$	-8.481	6.358	77.913	-1.334	0.186
sexFemale	-11.591	16.487	77.998	-0.703	0.484
age_yr	24.251	13.541	77.656	1.791	0.077
grape_vas	8.917	4.058	327.228	2.197	0.029
$meal_order$	-5.270	1.853	250.981	-2.844	0.005
ps_prop	17.578	5.637	251.125	3.118	0.002

Table 28: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	16.090	142.768	78.715	0.113	0.911
preFF	-0.055	0.099	305.695	-0.553	0.581
bmi	-8.104	6.711	77.125	-1.207	0.231
sexFemale	-11.219	16.700	77.000	-0.672	0.504
age_yr	24.023	13.666	76.701	1.758	0.083
grape_vas	9.005	4.090	325.276	2.202	0.028
meal_order	-5.261	1.857	249.962	-2.833	0.005
ps_prop	18.756	7.350	250.084	2.552	0.011
risk_status_momHigh Risk	-1.895	18.622	94.163	-0.102	0.919
ps_prop:risk_status_momHigh Risk	-2.880	11.520	250.924	-0.250	0.803

4.3.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 29: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	16.999	142.831	78.708	0.119	0.906
preFF	-0.053	0.099	306.626	-0.540	0.590
bmi	-8.096	6.716	77.192	-1.206	0.232
sexFemale	-11.197	16.712	77.069	-0.670	0.505
age_yr	24.031	13.675	76.772	1.757	0.083
grape_vas	8.875	4.066	325.831	2.183	0.030
meal_order	-5.270	1.853	251.032	-2.844	0.005
ps_prop	17.582	5.636	251.175	3.119	0.002
$risk_status_momHigh~Risk$	-3.304	17.755	77.602	-0.186	0.853

4.3.2 kcal

4.3.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_grape_ps_mod: grape_kcal ~ preFF + bmi + sex + age_yr + grape_vas + meal_order + ps_prop + (1 | su
npar
                        AIC
                              BIC logLik deviance Chisq Df
                    10 3517.5 3556.0 -1748.8
kcal_grape_ps_mod
                    11 3519.5 3561.9 -1748.8
                                         3497.5 0.0116 1
kcal_grape_ps_psquad_mod
                   Pr(>Chisq)
kcal_grape_ps_mod
kcal_grape_ps_psquad_mod
                      0.9143
```

Table 30: Grapes - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	13.942	97.914	79.443	0.142	0.887
preFF	-0.038	0.069	309.040	-0.558	0.577
$_{ m bmi}$	-5.894	4.419	77.913	-1.334	0.186
sexFemale	-8.056	11.458	77.998	-0.703	0.484
age_yr	16.854	9.411	77.656	1.791	0.077
$grape_vas$	6.197	2.820	327.228	2.197	0.029
$meal_order$	-3.662	1.288	250.981	-2.844	0.005
ps_prop	12.217	3.918	251.125	3.118	0.002

Table 31: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	11.183	99.224	78.714	0.113	0.911
preFF	-0.038	0.069	305.695	-0.553	0.581
bmi	-5.632	4.664	77.125	-1.207	0.231
sexFemale	-7.797	11.607	77.000	-0.672	0.504
age_yr	16.696	9.498	76.701	1.758	0.083
grape_vas	6.259	2.843	325.276	2.202	0.028
$meal_order$	-3.657	1.291	249.962	-2.833	0.005
ps_prop	13.035	5.108	250.084	2.552	0.011
$risk_status_momHigh Risk$	-1.317	12.942	94.163	-0.102	0.919
ps_prop:risk_status_momHigh Risk	-2.002	8.007	250.924	-0.250	0.803

4.3.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 32: Grapes - Risk x Portion Size for kcal

Estimate	Std. Error	df	t value	$\Pr(> t)$
11.815	99.268	78.708	0.119	0.906
-0.037	0.069	306.626	-0.540	0.590
-5.627	4.668	77.192	-1.206	0.232
-7.782	11.615	77.069	-0.670	0.505
16.702	9.504	76.772	1.757	0.083
6.168	2.826	325.831	2.183	0.030
-3.663	1.288	251.032	-2.844	0.005
12.219	3.917	251.175	3.119	0.002
-2.296	12.340	77.602	-0.186	0.853
	11.815 -0.037 -5.627 -7.782 16.702 6.168 -3.663 12.219	11.815 99.268 -0.037 0.069 -5.627 4.668 -7.782 11.615 16.702 9.504 6.168 2.826 -3.663 1.288 12.219 3.917	11.815 99.268 78.708 -0.037 0.069 306.626 -5.627 4.668 77.192 -7.782 11.615 77.069 16.702 9.504 76.772 6.168 2.826 325.831 -3.663 1.288 251.032 12.219 3.917 251.175	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4.4 Broccoli

4.4.1 Grams

4.4.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 33: Broccoli - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept) preFF bmi sexFemale age yr	-69.293	78.980	74.016	-0.877	0.383
	0.008	0.065	325.835	0.115	0.908
	-1.197	3.568	73.022	-0.335	0.738
	9.263	9.232	72.748	1.003	0.319
	14.109	7.587	72.556	1.860	0.067
broc_vas	1.575	2.299	287.640	0.685	0.494
meal_order	-1.192	1.265	245.875	-0.943	0.347
ps_prop	1.272	3.851	246.653	0.330	0.741

Table 34: brocs - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-74.837	80.171	73.097	-0.933	0.354
preFF	0.002	0.065	321.475	0.026	0.979
bmi	-0.769	3.775	72.258	-0.204	0.839
sexFemale	9.807	9.388	72.057	1.045	0.300
age_yr	13.854	7.679	71.684	1.804	0.075
broc_vas	1.284	2.303	290.493	0.557	0.578
$meal_order$	-1.139	1.256	244.972	-0.907	0.365
ps_prop	7.698	4.972	245.505	1.548	0.123
risk_status_momHigh Risk	3.597	10.702	96.483	0.336	0.738
ps_prop:risk_status_momHigh Risk	-15.622	7.754	245.222	-2.015	0.045

4.4.1.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 35: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli grams

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	7.698 -7.924			1.548 -1.329	$0.123 \\ 0.185$
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Ris	sk 15.622	7.754	255.637	2.015	0.045

4.4.2 kcal

4.4.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_broc_ps_mod: broc_kcal ~ preFF + bmi + sex + broc_vas + age_yr + meal_order + ps_prop + (1 | sub)
kcal_broc_ps_psquad_mod: broc_kcal ~ preFF + bmi + sex + age_yr + broc_vas + meal_order + ps_prop + ps_
                       npar
                               AIC
                                      BIC logLik deviance Chisq Df
kcal_broc_ps_mod
                         10 3472.3 3510.8 -1726.1
                                                    3452.3
kcal_broc_ps_psquad_mod
                         11 3473.4 3515.7 -1725.7
                                                    3451.4 0.8771 1
                       Pr(>Chisq)
kcal_broc_ps_mod
kcal_broc_ps_psquad_mod
                            0.349
```

Table 36: Broccoli - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-69.501	79.217	74.016	-0.877	0.383
preFF	0.008	0.066	325.835	0.115	0.908
bmi	-1.200	3.578	73.022	-0.335	0.738
sexFemale	9.291	9.260	72.748	1.003	0.319
$broc_vas$	1.580	2.306	287.640	0.685	0.494
age_yr	14.151	7.609	72.556	1.860	0.067
$meal_order$	-1.196	1.268	245.875	-0.943	0.347
ps_prop	1.276	3.863	246.653	0.330	0.741

Table 37: brocs - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-75.061	80.411	73.097	-0.933	0.354
preFF	0.002	0.066	321.475	0.026	0.979
bmi	-0.771	3.786	72.258	-0.204	0.839
sexFemale	9.836	9.417	72.057	1.045	0.300
age_yr	13.896	7.702	71.684	1.804	0.075
broc_vas	1.287	2.310	290.493	0.557	0.578
$meal_order$	-1.143	1.260	244.972	-0.907	0.365
ps_prop	7.721	4.987	245.505	1.548	0.123
risk_status_momHigh Risk	3.608	10.734	96.483	0.336	0.738
ps_prop:risk_status_momHigh Risk	-15.669	7.777	245.222	-2.015	0.045

4.4.2.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 38: Estimated Simple Slopes: Risk Status $\mathbf x$ Portion Size for Broccoli kcal

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	7.721 -7.948	4.987 5.982	255.898 255.841	1.548 -1.329	0.123 0.185
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Ri	sk 15.669	7.778	255.637	2.015	0.045

5 Exploratory Analyses: Mediated Moderation

Since broccoli was the only food showing a Risk Status x Portion Size interaction, I tested whether broccoli intake mediates the overall Risk x Potion Size interaction using a mediated moderation model.

5.1 Grams

lavaan 0.6--12 ended normally after 129 iterations

Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	25	
	Used	Total
Number of observations	347	348
Number of clusters [sub]	87	
Model Test User Model:		
	Standard	Robust
Test Statistic	11.320	6.339
Degrees of freedom	4	4
P-value (Chi-square)	0.023	0.175
Scaling correction factor		1.786
Yuan-Bentler correction (Mplus variant)		
Information	Observed	

Parameter Estimates:

Standard errors	Robust.cluster
Information	Expected
Information saturated (h1) model	Structured

Regressions:

		Estimate	Std.Err	z-value	P(> z)
grams ~					
sub		-0.545	0.380	-1.435	0.151
preFF		-1.054	0.362	-2.915	0.004
bmi		23.583	13.339	1.768	0.077
sex		-47.693	32.057	-1.488	0.137
age_yr		-40.283	23.458	-1.717	0.086
avg_vas		54.770	27.048	2.025	0.043
meal_order		-3.967	4.385	-0.905	0.366
rsk_stts_m		-23.527	36.713	-0.641	0.522
ps_prop		194.259	49.455	3.928	0.000
psxrisk_nt	(c)	-54.711	24.613	-2.223	0.026
ps_prop2		-120.734	45.962	-2.627	0.009
broc_grams ~					
preFF		-0.076	0.073	-1.039	0.299
bmi		-0.485	2.506	-0.194	0.846
sex		6.686	8.179	0.817	0.414
age_yr		13.164	8.379	1.571	0.116
broc_vas		11.982	2.827	4.239	0.000

meal_order	-1.307	1.450	-0.901	0.367		
rsk_stts_m	7.764	8.311	0.934	0.350		
ps_prop	6.438	5.651	1.139	0.255		
psxrisk_nt (a) -14.814	7.546	-1.963	0.050		
grams ~						
broc_grams (b) 1.225	0.219	5.581	0.000		
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)		
.grams	292.741	310.231	0.944	0.345		
.broc_grams	-117.609	69.190	-1.700	0.089		
Variances:						
	Estimate	Std.Err	z-value	P(> z)		
.grams	23394.295	2522.011	9.276	0.000		
.broc_grams	2037.629	708.750	2.875	0.004		
Defined Parameters:						
	Estimate	Std.Err	z-value	P(> z)		
ab	-18.140	9.640	-1.882	0.060		
total	-72.851	26.360	-2.764	0.006		

There was a significant level indirect effect (p = 0.036) indicating that broccoli intake mediated the interaction between risk status and portion size for gram intake.

ML

5.2 kcal

Estimator

lavaan 0.6-12 ended normally after 128 iterations

Estimator	ML	
Optimization method	NLMINB	
Number of model parameters	24	
	Used	Total
Number of observations	347	348
Number of clusters [sub]	87	
Model Test User Model:		
	Standard	Robust
Test Statistic	12.712	5.603
Degrees of freedom	3	3
P-value (Chi-square)	0.005	0.133
Scaling correction factor		2.269
Yuan-Bentler correction (Mplus variant)		
Information	Observed	

${\tt Parameter} \ {\tt Estimates:}$

Standard errors Robust.cluster
Information Expected
Information saturated (h1) model Structured

Regressions:				
	Estimate	Std.Err	z-value	P(> z)
kcal ~				
sub	-0.436	0.555	-0.787	0.431
preFF	-1.587	0.457	-3.472	0.001
bmi	38.455	17.680	2.175	0.030
sex	-52.490	45.031	-1.166	0.244
age_yr	-69.696	32.658	-2.134	0.033
avg_vas	70.695	31.737	2.228	0.026
meal_order	9.693	6.847	1.416	0.157
rsk_stts_m	-12.563	48.047	-0.261	0.794
ps_prop	140.291	22.029	6.369	0.000
psxrisk_nt (c)	-65.833	38.434	-1.713	0.087
broc_kcal ~				
preFF	-0.076	0.073	-1.039	0.299
bmi	-0.487	2.514	-0.194	0.846
sex	6.706	8.204	0.817	0.414
age_yr	13.203	8.404	1.571	0.116
broc_vas	12.018	2.835	4.239	0.000
meal_order	-1.311	1.454	-0.902	0.367
rsk_stts_m	7.787	8.336	0.934	0.350
ps_prop	6.457	5.668	1.139	0.255
<pre>psxrisk_nt (a)</pre>	-14.859	7.568	-1.963	0.050
kcal ~				
broc_kcal (b)	1.278	0.346	3.693	0.000
Intercepts:				
•	Estimate	Std.Err	z-value	P(> z)
.kcal	276.735	433.580	0.638	0.523
.broc_kcal	-117.962	69.397	-1.700	0.089
Variances:		~	_	56.1.13
	Estimate	Std.Err	z-value	P(> z)
.kcal	45344.719		8.057	0.000
.broc_kcal	2049.873	713.009	2.875	0.004
Defined Parameters	:			
	Estimate	Std.Err	z-value	P(> z)
ab	-18.991	10.414	-1.824	0.068
total	-84.824	39.521	-2.146	0.032

There was a significant level indirect effect (p = 0.048) indicating that broccoli intake mediated the interaction between risk status and portion size for kcal intake.