Department of Computer Science and Engineering

Midterm Examination Fall 2022

CSE 321: Operating Systems [Set A]

Duration: 1 Hour 10 Minutes **Total Marks:** 25

Answer the following questions. Figures in the right margin indicate marks.

1. CO1	a) State time-sharing system with an example.b) Mention the roles of the system call interface.	[3] [2]
2.	a) Distinguish between CPU scheduler and job scheduler.	[3]
CO2	b) Find the output of the following code snippet.	[4]

```
int main(){
      int id;
      static int x = 10;
      int y = 5;
      id = fork();
      if (id < 0){
            printf("fork failed\n");
      }
      else if(id == 0){
            printf("child started\n");
            printf("child finished\n");
      }
      else{
            wait(NULL);
            printf("parent started\n");
            x=x-2;
            y=y+5;
            printf("values of x: %d & y: %d\n",x,y);
            printf("parent finished\n");
      }
      x=x+5;
      y=y-5;
      printf("values of x: %d & y: %d\n",x,y);
      printf("terminating\n");
      return 0;
}
```

CO3

b) **Draw** a Gantt chart and illustrate the execution of the process using the [3+2+1] Round Robin scheduling algorithm (time quantum = 11 units). Calculate the average waiting time and number of context switching.

Processes	Arrival Time	Burst Time
P1	3	37
P2	12	17
P3	58	28
P4	59	21
P5	68	19

c) Consider the following set of processes with the length of the CPU-burst time given in milliseconds. **Draw** the Gantt Charts illustrating the execution of these processes using **preemptive priority** (the lowest number implies a higher priority). **Calculate** the **average turnaround time** for the below data set.

[3+2]

Processes	Priority	Arrival Time	Burst Time
P1	12	0	4
P2	8	1	2
P3	6	2	3
P4	2	3	5
P5	4	4	1
P6	1	5	4
P7	3	6	6