Analyse I

David Wiedemann

\mathbf{m} 11	1		•
Table	CAC	mati	IDTOS
$\pm anne$	ucs	TITCHU	ICI CE

1	Intr	roduction	4
	1.1	Buts du Cours	4
2	Defi	inir $\mathbb R$	5
	2.1	Exemple d'utilisation	7
3	Suit	es et limites	12
	3.1	Convergence	12
4	Lim	sup et liminf	17
	4.1	Suites de Cauchy	21
5	Seri	es	22
		5.0.1 $$ Un calcul naif (avec la série harmonique alternée) $$	28
\mathbf{L}_{i}	ist o	of Theorems	
	1	Theorème (env400)	4
	2	Lemme (Lemme)	4
	3	Axiom (Nombres Reels)	5
	4	Lemme (Theorem name)	6
	5	Proposition (Annulation de l'element neutre)	6
	6	Corollaire (x fois moins 1 egale -x) $\dots \dots \dots$	6
	7	Axiom (Nombres Reels II)	7
	1	Definition (valeur absolue)	7
	8	Proposition (Inegalite du triangle)	7
	2	Definition (Bornes)	8
	9	Axiom (Axiome de completude)	8
	3	Definition (Supremum)	8
	14	Proposition	9
	15	Corollaire (Propriete archimedienne)	9
	16	Theorème (La racine de deux existe)	9

18	Proposition (\mathbb{Q} est dense dans \mathbb{R})
19	Lemme
20	Proposition (Densite des irrationnels)
4	Definition (Suite)
5	Definition (Convergence de suites)
23	Lemme (Unicite de la limite)
6	Definition
25	Lemme
27	Proposition
28	Lemme
30	Proposition (Inversion d'une limite)
31	Corollaire
32	Lemme
34	Proposition
35	Proposition
37	Lemme (Deux gendarmes)
7	Definition (Limsup et liminf)
38	Theorème
39	Theorème (Premiere regle de d'Alembert)
8	Definition (Sous-suite)
44	Proposition
45	Theorème (Bolzano-Weierstrass)
9	Definition (Point d'accumulation)
10	Definition (Suites de Cauchy)
48	Lemme
49	Theorème (Convergence des suites de Caucjy)
50	Lemme
11	Definition (Serie)
53	Corollaire
54	Corollaire
55	Corollaire
56	Corollaire (Critere de Cauchy pour les séries)
58	Proposition
59	Proposition (Serie Geometrique)
60	Proposition (Série Harmonique)
61	Proposition (Critère de Comparaison)
63	Corollaire
12	Definition (Séries Alternées)
64	Theorème
13	Definition
68	Lommo 20

69	Theorème	29
71	Theorème	30

Lecture 1: Introduction

Mon 14 Sep

1 Introduction

1.1 Buts du Cours

Officiel:

Suites, series, fonctions, derivees, integrales, ...

Secrets:

Apprendre le raisonnement rigoureux

Creativite

Esprit Critique

Ne croyez rien tant que c'est pas prouve

On construit sur ce qu'on a fait, on recommence pas toujours a 0, par rapport a d'autres domaines(lettres par exemple)

Theorème 1 (env. -400)

Il n'existe aucin nombre (fraction) x tel que $x^2 = 2$.

Ca contredit pythagore nn?

On va demontrer le theoreme. ¹

Lemme 2 (Lemme)

Soit $n \in \mathbb{N}$ Alors n pair $\iff n^2$ pair.

Preuve

 \Rightarrow Si n pair \Rightarrow n² pair.

Hyp. $n = 2m (m \in \mathbb{N})$

Donc $n^2 = 4m^2$, pair.

Par l'absurde, n impair. $n = 2k + 1(k \in \mathbb{N})$.

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

impair. Donc si n est impair, alors n^2 est forcement impair. Absurde.

Preuve

Supposons par l'absurde $\exists x \ t.q. \ x^2 = 2 \ et \ x = \frac{a}{b}(a, b \in \mathbb{Z}, b \neq 0).$

On peut supposer a et b non tous pairs.(sinon reduire).

$$x^2 = 2 \Rightarrow \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2 \Rightarrow a^2$$

^{1.} On demontre d'abord un lemme

pair.

Lemme : a pair, i.e. $a = 2n(n \in \mathbb{N})$.

$$a^2 = 4n^2 = 2b^2 \Rightarrow 2n^2 = b^2, i.e.b^2$$
 pair.

Lemme: b pair.

Donc a et b sont les deux pairs, on a une contradiction.

En conclusion, le theoreme est bel et bien vrai, et contredit donc pythagore. Donc les fractions (\mathbb{Q}) ne suffisent pas a decrire/mesurer les longueurs geometriques. Il faut les nombres reels, on les comprends seulement vraiment depuis 2 siecles

C'est important de chercher ce genre d'erreurs.

Prochain but : definir les nombres reels (\mathbb{R}) . L'interaction entre les fractions et les nombres reels.

$2\quad \text{Definir } \mathbb{R}$

On commence avec la definition axiomatique des nombres reels.

Axiom 3 (Nombres Reels)

 \mathbb{R} est un corps, en d'autres termes :

Ils sont munis de deux operations : plus et fois.

- Associativite $x + (y + z) = (x + y) + z(x, y, z \in \mathbb{R})^2$
- Commutativite x + y = y + x.
- Il existe un element neutre 0 t.q. $0 + x = x, x \in \mathbb{R}$.
- Distributivite x(yz) = (xy)z
- Il existe un element inverse, unique $-x \in \mathbb{R}$ t.q. x + (-x) = 0

Remarque : Il existe beaucoup d'autres corps que $\mathbb{R},$ par exemple $\mathbb{Q},\mathbb{C},$ $\{0,1,2\}\mod 3$

Attention: $\{0, 1, 2, 3\} \mod 4$ n'est pas un corps! Presque tous marchent, ils satisfont 8 des 9 axiomes.

 $^{2.\} L'associativite n'est pas forcement vraie$ (octonions)

^{3.} Il y a aucune difference entre les regles pour l'addition que pour la multiplication.

Lemme 4 (Theorem name)

 $\forall x \exists ! y \ t.q. \ x + y = 0.$

Preuve

Supposons x + y = 0 = x + y'

A voir : y = y'.

y = y + 0 = y + (x + y') = (y + x) + y'= (x + y) + y' = 0 + y' = y'

CQFD.

Exercice

Demontrer que 0 est unique.

Proposition 5 (Annulation de l'element neutre)

 $0 \cdot x = 0$

Preuve

 $x = x \cdot 1 = x(1+0) = x \cdot 1 + x \cdot 0 = x + x \cdot 0$

 $0 = x + (-x) = x + (-x) + x \cdot 0$

 $\Rightarrow 0 = x \cdot 0$

Corollaire 6 (x fois moins 1 egale -x)

 $x + x \cdot (-1) = 0$

Preuve

A voir : $x \cdot (-1)$ satisfait les proprietes de -x.

Or

 $x + x(-1) = x(1-1) = x \cdot 0 = 0.$

Exercice

Montrer que $\forall x : -(-x) = x$ et que ceci implique (-a)(-b) = ab.

Rien de tout ca n'a quelque chose a voir avec \mathbb{R} .

Il nous faut plus d'axiomes!!

4. a - b = a + (-b)

Axiom 7 (Nombres Reels II)

 \mathbb{R} est un corps ordonne. Ce qui revient a dire que les assertions suivantes sont verifiees.

- $\ x \leq y \ et \ y \leq z \ impliquent \ x \leq z$
- $-(x \le y e t y \le x) \Rightarrow x = y$
- pour tout couple de nombres reels x et y: ou bien $x \leq y$ ou bien $x \geq y$.

Exemple de corps ordonnnes :

 $(1) \mathbb{R}, (2) \mathbb{Q}, (3) \{0, 1, 2\} \mod 3$ n'est pas un corps ordonne.

Exercice

$$x \le y \iff -x \ge -y$$
 Exercice

$$x \le y$$
 et $z \ge 0 \Rightarrow xz \le yz$

$$x \le y$$
 et $z \le 0 \Rightarrow xz \ge yz$.

Il nous manque encore un axiome, et c'est le dernier : pour mercredi!

Lecture 2: Cours Mercredi

Wed 16 Sep

2.1 Exemple d'utilisation

Definition 1 (valeur absolue)

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Proposition 8 (Inegalite du triangle)

Elle dit que

$$\forall x, y : |x + y| \le |x| + |y|$$

Preuve

 $Cas\ x,y\geq 0\ :\ alors\ x+y\geq 0$

$$\iff x + y \le x + y$$

Ce qui est toujours vrai.

 $Cas \ x \geq 0 \ et \ y < 0.$

 $Si \ x + y \ge 0$, alors

$$\iff |x+y| \le x - y$$

$$\iff x + y \le x - y$$

$$y \le -y$$

c'est vrai car y < 0.

 $Si \ x + y < 0, \ alors$

$$\iff -x - y \le x - y$$

 $Donc - x \le x \ vrai \ car \ x \ge 0$.

Definition 2 (Bornes)

 $Terminologie: Soit \ A \subseteq E \ , \ E \ corps \ ordonne.$

— Une borne superieure (majorant) pour A et un nombre b tq

$$a \le b \forall a \in A$$
.

— Une borne inferieure (minorant) pour A et un nombre b tq

$$a \ge b \forall a \in A$$
.

On dira que l'ensemble A est borne si il admet une borne.

Axiom 9 (Axiome de completude)

$$\forall A\subseteq \mathbb{R}\neq\emptyset$$

et majoree $\exists s \in \mathbb{R} \ t.q$

- 1. s est un majorant pour A.
- 2. \forall majorant b de A, $b \geq s$.

Cet axiome finis la partie axiomatique du cours.

Remarque

- 1. $\forall s' < s \exists a \in A : a > s'$.
- 2. s est unique.

Definition 3 (Supremum)

Ce s s'appelle le supremum de A, note sup(A).

Remarque

 \exists (pour A minore et $\neq \emptyset$) une borne inferieure plus grande que toutes les autres, notee inf(A) (infimum).

$$\inf(A) = -\sup(-A)$$

Remarque

 $Si \sup(A) \in A$, on l'appelle le maximum.

Remarque

 $Si \inf(A) \in A$, on l'appelle le minimum.

Proposition 14

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n \ge x.$

Preuve

Par l'absurde,

Alors

$$\exists x \in \mathbb{R} \forall n \in \mathbb{N} : n < x$$

 $\Rightarrow \mathbb{N} \ borne \ et \neq \emptyset \Rightarrow \exists s = \sup(\mathbb{N})$

$$s - \frac{1}{2} < s \Rightarrow \exists n \in \mathbb{N} : n > s - \frac{1}{2}$$

 $n+1 \in \mathbb{N} \ et \ n+1 > s - \frac{1}{2} + 1 = s + \frac{1}{2}$

 $donc \ n+1 > s \ absurde.$

Corollaire 15 (Propriete archimedienne)

1. $\forall x \forall y > 0 \exists n \in \mathbb{N} : ny > x$.

2. $\forall \epsilon > 0 \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon$

Preuve

Pour 2, appliquer la proposition a $x = \frac{1}{\epsilon} \exists n \in \mathbb{N} : n > x = \frac{1}{\epsilon}$

Alors

$$\Rightarrow \epsilon > \frac{1}{n}$$

Pour montrer le 1.

Considerer $\frac{x}{y}$

On peut maintenant montrer que la racine de deux existe.

Theorème 16 (La racine de deux existe)

$$\exists x \in \mathbb{R} : x^2 = 2$$

Preuve

$$A := \{y | y^2 < 2\}$$

Clairement $A \neq \emptyset$ car $1 \in A$. De plus, A est majore : 2 est une borne. (si $y > 2, y^2 > 4 > 2 \Rightarrow y \notin A$).

 $Donc \exists x = \sup(A)$

 $Supposons \ (\ par \ l'absurde) \ que \ x^2 < 2$

Soit $0 < \epsilon < 1, \frac{2-x^2}{4x}$.

Clairement, par hypothese $2-x^2>0$ et idem pour 4x car $x\geq 1$. Soit $y=x+\epsilon$, alors

$$y^2 = x^2 + 2\epsilon x + \epsilon^2 < x^2 + \frac{2 - x^2}{2} + \frac{2 - x^2}{2} = 2$$

 $\Rightarrow y \in A \ \textit{Mais} \ y = x + \epsilon > x. \ \textit{Absurde car} \ x = \sup(A). \ \textit{Donc} \ x^2 \geq 2.$ Deuxiemement, supposons (absurde) $x^2 > 2$.

Soit $0 < \epsilon < \frac{x^2 - 2}{2x} > 0$.

Posons $b = x - \epsilon$.

$$b < x \Rightarrow \exists y \in A : y > b$$

$$\Rightarrow y^2 > b^2 = x^2 - 2\epsilon x + \epsilon^2 > x^2 - \underbrace{2\epsilon x}_{< x^2 - 2}$$

$$> x^2 - (x^2 - 2) = 2.$$

 $Conclusion: y^2 > 2 \ contredit \ y \in a.$

$$Donc \ x^2 = 2.$$

Remarque

 $Preuve\ similaire\ :$

$$\forall y > 0 \exists ! x > 0 : x^2 = y$$

Proposition 18 (\mathbb{Q} est dense dans \mathbb{R})

$$\forall x < y \in \mathbb{R} \exists z \in \mathbb{Q} : x < z < y$$

Lemme 19

$$\forall x \exists n \in \mathbb{Z} : |n - x| \le \frac{1}{2}$$

Ou encore:

$$\forall x \exists [x] \in \mathbb{Z} tq$$

$$\begin{cases} [x] \le x \\ [x] + 1 > x \end{cases}$$

Preuve

$$\exists n \in \mathbb{Z} : n > x(Archimede).$$

$$Soit [x] = \inf\{n \in \mathbb{Z} : n > x\} - 1$$

Preuve (Preuve de la densite)

Archimede : $\exists q \in \mathbb{N} : q > \frac{1}{y-x}$.

Donc

$$qy - qx > 1.$$

$$\Rightarrow \exists p \in \mathbb{Z} : qx$$

 $par\ exemple\ :$

$$p = [qy]$$

 $si \ qy \notin \mathbb{Z} \ ou \ bien$

$$p = qy - 1$$

 $si\ qy\in\mathbb{Z}$

Lecture 3: Suites

Wed 23 Sep

0,999

0, 9

0.99

0.999

0.9999

:

Proposition 20 (Densite des irrationnels)

 $\mathbb{R} \setminus \mathbb{Q}$, les irrationnels sont dense dans \mathbb{R} .

Preuve

Soit x < y (dans \mathbb{R}).

Cherche $z \notin \mathbb{Q} \ tq \ x < z < y$.

$$\exists \frac{p}{q} \in \mathbb{Q} tqx < \frac{p}{q} < y$$

Propr. $archimedienne \Rightarrow \exists n \in \mathbb{N} :$

$$\underbrace{\frac{p}{q} + \sqrt{2}\frac{\sqrt{2}}{n}}_{:=z} < y$$

car

$$\exists n: \frac{1}{n} < \underbrace{y - \frac{1}{q}}_{>0} / \sqrt{2}$$

Il reste a voir que : $z = \frac{p}{q} + \sqrt{2}/n \notin \mathbb{Q}$

$$\sqrt{2} = n(z - \frac{p}{q})$$

$$z \in \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{Q} \not z$$

3 Suites et limites

Definition 4 (Suite)

Une suite $(x_n)_{n=1}^{\infty}$ dans \mathbb{R} est une application (= fonction) $\mathbb{N} \to \mathbb{R}$

Remarque

Suite $(x_n) \neq ensemble \{x_n\}$ Il arrive qu'on indice x_n par une partie de \mathbb{N} . Mais suite = suite infinie

Exemple

$$x_n = \frac{1}{n}(n = 1, 2, ...)$$

 $x_n = (-1)^n; x_n = n!; F_n : 0, 1, 1, 2, 3, 5, 8, 13$
 $3, 3.1, 3.14, 3.141, 3.1415$

3.1 Convergence

Definition 5 (Convergence de suites)

L'expression $\lim_{n\to+\infty} x_n = l$ signifie :

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 : |x_n - l| < \epsilon$$

On dit alors que (x_n) converge (vers l). Sinon, (x_n) diverge.

Lemme 23 (Unicite de la limite)

Si (x_n) converge, il existe un unique $l \in \mathbb{R}$ $tq \lim_{n \to +\infty} x_n = l$

Preuve

Supposons l, l' limites. Si $l \neq l'$, alors |l - l'| > 0 Donc $\exists n_0 \forall n > n_0 : |x_n - l| < \frac{|l - l'|}{2}$

De meme $\exists n_1 \forall n > n_1 : |x_n - l'| < \frac{|l - l'|}{2}$ Soit $n > n_0, n_1$ Alors :

$$|l - l'| = |l - x_n + x_n - l'| \le \underbrace{|l - x_n|}_{<|l - l'|/2} + \underbrace{|x_n - l'|}_{|x_n - l'|}$$

Donc

$$|l-l'|<2\cdot\frac{|l-l'|}{2}$$

₹ □

Exemple

1. Si (x_n) est constante $(\exists a \forall n : x_n = a)$ alors

$$\lim_{n\to +\infty}\frac{1}{n}=0$$

2. $\lim_{n\to+\infty} \frac{1}{n} = 0$ (Archimede)

Definition 6

Terminologie:

 (x_n) est bornee, majoree, minoree, rationnelle, ... etc si l'ensemble $\{x_n\}$ l'est.

La suite (x_n) est croissante si $x_n \leq x_{n+1} \forall n$ Idem decroissante Dans les deux cas, on dit que la suite (x_n) est monotone

Lemme 25

Toute suite convergente est bornee.

Preuve

Posons $\epsilon = 7$.

$$\exists N \in \mathbb{N} \forall n > N : |x_n - l| < 7$$

Soit $B_1 \ge |x_1|, |x_2|, \dots, |x_N|$

Posons $B = max(B_1, |l| + 7)$ Alors $|x_n| \le B \forall n$.

Attention la reciproque n'est pas vraie!!

Exemple

 $x_n = (-1)^n$ definit une suite bornee non convergente.

Preuve

Supposons $\lim_{n\to+\infty} (-1)^n = l$.

Posons $\epsilon = \frac{1}{10} \ alors \ \exists n_0 \forall n > n_0 : |(-1)^n - l| < \frac{1}{10}$

 $n > n_0$ pair $\Rightarrow |1 - l| < \frac{1}{10}$

 $n > n_0 \ impair \Rightarrow |-1 - l| < \frac{1}{10}$

 $ceci\ implique$

$$\Rightarrow |1 - (-1)| \le |1 - l| + |-1 - l| < \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$$

Proposition 27

Supposons $\lim_{n\to+\infty} x_n = l$ et $\lim_{n\to+\infty} x'_n = l'$

Alors 1.: $\lim_{n\to+\infty} (x_n + x'_n) = l + l'$, et 2.: $\lim_{n\to+\infty} x_n \cdot x'_n = l \cdot l'$

Preuve

1:

Soit $\epsilon > 0$ Cherche n_0 tq $\forall n > n_0 : |x_n + x'_n - (l + l')| < \epsilon$.

Appliquons les deux hypothese a $\frac{\epsilon}{2}$: $\exists N \forall n > N : |x_n - l| < \frac{\epsilon}{2}$ et $\frac{\epsilon}{2}$: $\exists N' \forall n > N' : |x'_n - l| < \frac{\epsilon}{2}$ Posons $n_0 = \max(N, N')$ Si $n > n_0$, alors

$$|x_n + x'_n - (l + l')| \le |x_n - l| + |x'_n - l'| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

2:

Par le lemme, $\exists B \ tq. \ |x_n|, |x'_n| < B \forall n.$ Soit $\epsilon > 0$. Appliquons les hypotheses a $\frac{\epsilon}{2B}$.

$$\exists N \forall n > N : |x_n - l| < \frac{\epsilon}{2B}$$

 $Si \ n > n_0 := \max(N, N') :$

$$|x_n x_n' - ll'| \le |x_n x_n' - x_n l'| + |x_n l' - ll'|$$

$$= \underbrace{|x_n|}_{\leq B} \cdot \underbrace{|x_n' - l'|}_{\leq \frac{\epsilon}{2B}} + \underbrace{|l'|}_{\leq B} \cdot \underbrace{|x_n - l|}_{\leq \frac{\epsilon}{2B}} < \epsilon$$

Mon 28 Sep

Lemme 28

On a utilise : lemme Si $x_n \leq B \forall n$ et $\lim_{n \to +\infty} x_n = l$ alors $l \leq B$

Preuve

 $Par\ l'absurde:$

Si l > B, posons $\epsilon = l - B > 0$

 $\exists n_0 \forall n > n_0 : |x_n - l| < \epsilon$ en particulier $x_n > l - \epsilon = B \not$

Lecture 4: lundi

Remarque

- $\lim_{n\to+\infty} |x_n| = |\lim_{n\to+\infty} x_n|$, ce qui est sous-entendu ici est que la limite existe.
- $-(x_n)_{n=1}^{\infty}$ convergence et limite sont inchangees si on modifie un nombre fini de termes.

En particulier $(x_n)_{n=17}^{\infty}$, rien ne change.

- $-x_n \to l \ (n \to \infty), equivalent \ a \lim_{n \to +\infty} x_n = l$
- On dit que (x_n) converge vers $+\infty$ et on note $\lim_{n\to+\infty} x_n = +\infty$, si (x_n) diverge de la facon suivante :

$$\forall R \in \mathbb{R}, \exists n_0 \forall n > n_0 : x_n > R$$

La definition est la meme si x_n converge vers $-\infty$

Proposition 30 (Inversion d'une limite)

Supposons que (x_n) converge vers $l \neq 0$, alors $\lim_{n \to +\infty} \frac{1}{x_n} = \frac{1}{l}$

Corollaire 31

 $Si(x_n)$ converge vers l et

 $Si(y_n)$ converge vers $m \neq 0$ alors

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \frac{l}{m}$$

$$Car \ \frac{x_n}{y_n} = x_n \cdot \frac{1}{y_n}$$

Lemme 32

Sous les hypotheses de la proposition,

$$\exists n_0 \forall n \ge n_0 : x_n \ne 0$$

Preuve

Appliquons la convergence a $\epsilon = \frac{|l|}{2}$ (car $l \neq 0$)

$$|x_n - l| < \epsilon \Rightarrow x_n \neq 0$$

Preuve

Preuve de la proposition

Soit $\epsilon > 0$.

 $On\ veut\ estimer$

$$\left| \frac{1}{x_n} - \frac{1}{l} \right| = \underbrace{\frac{|l - x_n|}{|x_n - l|}}_{\geq \frac{|l|}{2}|l|} < ?\epsilon$$

pour n comme dans le lemme. On veut donc

$$|l - x_n| < \epsilon \frac{|l|^2}{2}$$

Donc $\exists n_1 \forall n \geq n_1$, on a bien $|l - x_n| < \epsilon$

Exemple

On peut a present calculer

$$\lim_{n \to +\infty} \frac{a_0 + a_1 n + a_2 n^2 + \ldots + a_d n^d}{b_0 + \ldots + b_f n^f}$$

$$a_d \neq 0, b_f \neq 0$$

$$Si \ d > f \ alors \ lim = \pm \infty$$

$$Si \ d < f \ alors \ lim = 0$$

$$Si\ d = f$$
, $alors\ lim = \frac{a_d}{b_f}$

Justification

La suite peut s'ecrire

$$\frac{a_d + a^{d-1} \frac{1}{n} + \ldots + a_0 \frac{1}{n^{d-1}}}{b_0 \frac{1}{n^d + \ldots + b_f n^{f-d}}}$$

$$Si\ f = d, \rightarrow \frac{a_d}{b_f}$$

$$Si \ f > d, \rightarrow 0$$

Si $f < d, \rightarrow \pm \infty$, selon signe de $\frac{a_d}{b_f}$

Proposition 34

Soit $a \in \mathbb{R}$ avec |a| < 1, alors

$$\lim_{n \to +\infty} a^n = 0$$

Proposition 35

 $Si(x_n)$ est monotone et bornee, alors elle converge.

Preuve

Soit (x_n) croissante. Affirmation, $x_n \to s := \sup\{x_n : n \in \mathbb{N}\}\$

Soit $\epsilon > 0$, $\exists n : x_n > s - \epsilon$ (def. de sup)

 $\forall n \ge n_0 : s - \epsilon < x_{n_0} \le x_n \le s \Rightarrow |x_n - s| < \epsilon$

Idem, si elle etait decroissante.

Preuve

Remarque: $(x_n) \to 0 \iff (|x_n| \to 0).$

$$\dots |x_n - 0| < \epsilon$$

Donc on va traiter le cas a > 0, alors $(a^n)_{n=1}^{\infty}$ est decroissante.

Bornee (par zero et 1) \Rightarrow elle admet une limite l.

 $Or \lim_{n \to +\infty} a^n = \lim_{\substack{n \to +\infty \ a \cdot \lim_{n \to +\infty} a^n}} a^{n+1} \quad Donc \ l = al. \ Si \ l \neq 0, \ 1 = a \ absurde, \ donc \ l$

nul.

Exemple

 $Def(x_n)en \ posant \ x_{n+1} = 2 + \frac{1}{x_n}$

Observons que $x_n \ge 2 > 0 \forall n$

 $Si(x_n)$ converge, alors

$$l = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} (2 + \frac{1}{x_n}) = 2 + \frac{1}{l}$$

Donc

$$l^2 - 2l - 1 = 0 \Rightarrow 1 + \sqrt{1+1} = l$$

Or $l \ge 2 \Rightarrow l = 1 + \sqrt{2}$ si l existe.

A present, estimons $|x_n - l|$:

$$\left| x_n - 1 - \sqrt{2} \right| = \left| 2 + \frac{1}{x_{n-1}} = \left(2 + \frac{1}{l} \right) \right| = \frac{|l - x_{n-1}|}{x_{n-1}l} \le \frac{|x_{n-1} - l|}{4}$$

$$\le \dots \le \frac{|x_{n-2} - l|}{4^2} \le \frac{|2 - l|}{4^n} \to 0$$

 $car \frac{1}{4^n} \to 0$

Lemme 37 (Deux gendarmes)

Soit $(x_n), (y_n), (z_n)$ trois suites avec

$$\lim_{n \to +\infty} x_n = l = \lim_{n \to +\infty} z_n$$

 $si \ x_n \le y_n \le z_n \forall n, \ alors$

$$\lim_{n \to +\infty} y_n = l$$

Preuve

repose sur le fait que

$$|x_n - l|, |z_n - l| < \epsilon \Rightarrow l - \epsilon < x_n \le y_n \le z_n < l + \epsilon$$

montre $|y_n - l| < \epsilon$

4 Limsup et liminf

Definition 7 (Limsup et liminf)

Soit (x_n) une suite quelconque.

On definit la limite superieure par :

$$\limsup_{n \to \infty} x_n := \inf_n \sup \{x_k, k \ge n\}$$

Attention: Ici on convient que

$$\sup(A) = +\infty$$

 $si\ A\ non\ majore$

$$\inf(A) = -\infty$$

 $si\ A\ non\ minore$

On definit la limite superieure par :

$$\liminf_{n \to \infty} x_n := \sup_n \inf \{x_k, k \ge n\}$$

Notez : $z_n := \sup \{x_k : k \ge n\}$

Cela definit une suite decroissante et donc (z_n) converge vers son inf. Conclusion : $\limsup_{n\to\infty} x_n = \lim_{n\to+\infty} z + n = \lim_{n\to+\infty} \sup_{k\geq n} x_k$

Lecture 5: mercredi 30

Wed 30 Sep

Theorème 38

 (x_n) converge \iff $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$ Dans ce cas, la limite prend cette meme valeur.

Preuve

⇐ :

Soit $z_n = \sup \{x_p : p \ge n\},\$

$$y_n = \inf \left\{ x_p : p \ge n \right\}$$

Rappel: $(z_n) \to LS$ et $(y_n) \to LI$

Or, $y_n \le x_n \le z_n$. Donc par les 2 gendammes

$$\Rightarrow (x_n) \to LS = LI$$

 \Rightarrow :

 $Hypothese: \lim_{n\to+\infty} x_n = l.$

 $A \ voir : LS = LI = l.$

Montrons par exemple que

$$\lim_{n \to +\infty} z_n = l$$

 $(i.e.\ LS = l)$

Soit $\epsilon > 0$.

$$\exists N \forall n \ge N : |x_n - l| < \frac{\epsilon}{2}$$

$$et \ \forall n \ge N : |z_n - LS| < \frac{\epsilon}{4}$$

Def. de $z_N \Rightarrow \exists p \geq N : |x_p| > z_N - \frac{\epsilon}{4}$

A present

$$|LS - l| \leq \underbrace{|LS - z_N|}_{<\frac{\epsilon}{4}} + \underbrace{|z_n - x_p|}_{<\frac{\epsilon}{4}} + \underbrace{|x_p - l|}_{<\frac{\epsilon}{2}}$$

avec $p \ge N$ et $N \ge N$ Donc $\forall \epsilon > 0$:

$$|LS - l| < \epsilon$$

 $Donc\ LS = l$

Theorème 39 (Premiere regle de d'Alembert)

Supposons $x_n \neq 0 \forall n$

Supposons que $\rho = \lim_{n \to +\infty} \left| \frac{x_{n+1}}{x_n} \right|$ existe Si $\rho < 1$, alors $\lim_{n \to +\infty} x_n = 0$

Si $\rho > 1$, alors (x_n) diverge.

Remarque

Si $\rho = 1$, on ne peut rien concluer

Exemple

$$-x_n = n$$
 diverge, mais $\lim_{n \to +\infty} \frac{n+1}{n} = 1$

$$-x_n = \frac{1}{n}$$
 converge mais $\lim_{n \to +\infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1$

Preuve

Supposons $\rho < 1$.

A voir: $x_n \to 0$.

Soit $\rho < r < 1$. Convergence pour $\epsilon = r - \rho$: $\left| \left| \frac{x_{n+1}}{x_n} \right| - \rho \right| < r - \rho$

$$\exists n_0 \forall n \ge n_0 : \left| \frac{x_{n+1}}{x_n} \right| < r$$

i.e. $|x_{n+1}| < r |x_n|$ de meme $|x_{n+2}| < r |x_{n+1}| < r^2 |x_n|$

Conclusion $\forall m \geq n_0 : |x_m| < r^{m-n_0} |x_{n_0}|$

Donc

$$\forall m \geq n_0 : |x_m| < r^m |x_{n_0}| r^{-n_0}$$

Onn sait que $\lim_{m\to+\infty} r^m = 0$ donc

$$0 \le |x_m| \le r^m c$$

avec c constante Cas $\rho > 1$.

On va montrer que $|x_n|$ est non bornee.

Soit $1 < r < \rho$.

$$\exists n_0 \forall n \geq n_0 : |x_{n+1}/x_n| > r$$

Donc

$$|x_{n+1}| > r |x_n|$$

 $comme\ avant$:

$$x_m > r^{m-n_0} \left| x_{n_0} \right| \qquad \qquad \Box$$

Remarque

Si r > 1, alors $\lim_{n \to +\infty} r^n = +\infty$ r^n est croissante donc il suffit de montrer que la suite est non bornee.

Si elle etait bornee, soit $l = \lim_{n \to +\infty} r^n \in \mathbb{R}$

Mais
$$l = \lim_{n \to +\infty} r^{n+1} = rl$$

Donc $l \neq 0 \Rightarrow 1 = r$ absurde.

Definition 8 (Sous-suite)

Soit $(x_n)_{n=1}^{\infty}$ une suite.

Une sous-suite de (x_n) est une suite de la forme $(x_{n_k})_{k=1}^{\infty}$, ou $(n_k)_{k=1}^{\infty}$ est une suite strictement croissante de N.

Exemple

 $Si(x_n)$ est une suite, considerer:

$$x_2, x_3, x_5, x_7, x_{11}, x_{13}, \dots$$

 $Ici, n_k = 2, 3, 5, 7, 11, \dots$

Proposition 44

 $Si \ x_n$ converge, alors toute sous-suite converge vers la meme limite.

Preuve

Soit $l = \lim_{n \to +\infty} x_n$. Soit $(x_{n_k})_{k=1}^{\infty}$ une sous-suite et $\epsilon > 0$.

$$A \ voir: \exists k_0 \forall k > k_0: |x_{n_k} - l| < \epsilon$$

$$Or \ \exists n_0 \forall n > n_0 : |x_n - l| < \epsilon.$$

Donc il suffit de choisir k_0 tq $n_{k_0} \ge n_0$.

(puisque la suite (n_k) est croissante.)

Theorème 45 (Bolzano-Weierstrass)

Toute suite bornee admet une sous-suite convergente

Preuve

On va construire une sous-suite qui converge vers $s := \limsup_{n \to \infty} x_n$ Ici, (x_n) est la suite en question et on pose

$$z_n = \sup \{x_p : p \ge n\}$$

Par recurrence, n_1 quelconque.

Supposons n_{k-1} construit et construisons n_k :

$$\exists N \forall n \ge N : |z_n - s| < \frac{1}{k}$$

Choisissons un $n \ge N$, $n_{k-1} + 1$

$$\exists p \ge n \ t.q. \ x_p > z_n - \frac{1}{k}$$

On definit $n_k = p$ ($n_k > n_{k-1}$)

$$Or, \underbrace{|x_{n_k} - s|}_{<\frac{1}{k}} \le \underbrace{|x_{n_k} - z_n|}_{<\frac{1}{k}} + \underbrace{|z_n - s|}_{<\frac{1}{k}}$$

$$One (x \rightarrow s(k \rightarrow \infty))$$

Definition 9 (Point d'accumulation)

x est un point d'accumulation de la suite x_n s'il existe une sous-suite qui $converge\ vers\ x.$

Exemple

$$x = \limsup_{n \to \infty} x_n$$

$$x = \liminf_{n \to \infty} x_n$$

4.1 Suites de Cauchy

Definition 10 (Suites de Cauchy)

La suite (x_n) est dire de Cauchy si

$$\forall \epsilon > 0 \exists N \forall n, n' \ge N : |x_n - x_{n'}| < \epsilon$$

Attention:

Il ne suffit pas de comparer x_n et x_{n+k} pour k fixe.

Exemple

$$x_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$

Cauchy
$$\iff \forall \epsilon > 0 \exists N \forall n \geq N \forall k \in \mathbb{N} : |x_n - x_{n+k}| < \epsilon$$

Lemme 48

 $Si(x_n)$ converge, elle est de Cauchy.

Preuve

Soit $\epsilon > 0$, soit l la limite.

Hypothese:

$$avec \ \frac{\epsilon}{2} : \exists N \forall n \ge N : |x_n - l| < \frac{\epsilon}{2}$$

$$Si \ n, n' \geq N$$

$$|x_n - x_{n'}| \le |x_n - l| + |x_{n'} - l| < \epsilon$$

Theorème 49 (Convergence des suites de Caucjy)

Toute suite de Cauchy converge

Preuve

Soit (x_n) de Cauchy.

Lemme 50

 (x_n) est bornee.

Preuve

Soit $\epsilon = 10$

$$\forall N \forall n, n' \ge N : |x_n - x_{n'}| < 10$$

 $Donc |(x_n)|$ est bornee par

$$\max(|x_N| + 10, |x_1|, |x_2|, \dots, |x_{N-1}|)$$

 $Appliquer\ Bolzano\text{-}Weierstrass$

$$\exists sous\text{-}suite (x_{n_k})$$

qui converge, soit l sa limite. A voir (x_n) converge vers l. soit $\epsilon > 0 \exists k_0 \forall k \geq k_0 |x_{n_k} - l| < \frac{\epsilon}{2}$

$$\exists N \forall n, n' \ge N : |x_n - x_{n'}| < \frac{\epsilon}{2}$$

 $Si \ n \geq N, n_{k_0} \ alors$

$$|x_n - l| \le |x_n - x_{n_k}| + |x_{n_k} - l| < \epsilon$$

Mon 05 Oct

Lecture 6: lundi

Remarque

Ecriture decimale: 3.1415... ou encore 0.333... veut dire

$$3 + \frac{1}{10} + \frac{4}{100} + \frac{1}{1000} + \frac{5}{10000} + \dots$$

une somme infinie de fractions. La difference entre le n ieme terme et le n^\prime ieme terme :

$$\leq 10^{-n} \to 0 \Rightarrow Cauchy$$

Cette limite est une "somme infinie".

5 Series

But : definir les "sommes infinies" .

$$\rightarrow \left\{ \begin{array}{l} \text{Existe?} \\ \text{Valeur?} \end{array} \right.$$

Exemple

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots$$

ou encore

$$\exp(x) = \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 + \dots$$

ou

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

Definition 11 (Serie)

Le symbole $\sum_{n=0}^{\infty} x_n$ représente

$$x_0 + x_1 + x_2 + \dots$$
 et est défini par

$$\sum_{n=0}^{\infty} x_n = \lim_{n \to +\infty} \sum_{k=0}^{\infty} x_k$$

On appelle

$$\sum_{n=0}^{\infty} x_n$$

une série et on dit qu'elle converge/diverge lorsque la suite $s_n := x_0 + \ldots + x_n$ le fait.

Corollaire 53

 $Si \sum_{n=0}^{\infty} x_n \ et \sum_{n=0}^{\infty} y_n \ existent, \ alors$

$$\sum_{n=0}^{\infty} (x_n + y_n) = \sum_{n=0}^{\infty} x_n + \sum_{n=0}^{\infty} y_n$$

Preuve

$$\sum_{n=0}^{\infty} x_n = \lim_{n \to +\infty} s_n, s_n = \sum_{k=0}^{n} x_k$$

$$\sum_{n=0}^{\infty} y_n = \lim_{n \to +\infty} t_n, t_n = \sum_{k=0}^{n} y_k$$

Alors

$$\sum_{n=0}^{\infty} (x_n + y_n) = \lim_{n \to +\infty} u_n, \ où$$

$$u_n = (x_0 + y_0) + \ldots + (x_n + y_n) = s_n + t_n$$

 $Donc\ la\ limite$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (s_n + t_n) = \sum_{n=0}^{\infty} x_n + \sum_{n=0}^{\infty} y_n$$

Corollaire 54

Pour $a \in \mathbb{R}$, $\sum_{n=0}^{\infty} ax_n = a \sum_{n=0}^{\infty} x_n$, si

$$\sum_{n=0}^{\infty} x_n$$

existe.

 $Sans\ preuve.$

Corollaire 55

$$\sum_{n=n_0}^{ify} x_n \text{ existe si } \sum_{n=0}^{\infty} x_n$$

existe et vaut

$$\sum_{n=0}^{\infty} x_n - (x_0 + x_1 + \ldots + x_{n_0-1})$$

n

Corollaire 56 (Critere de Cauchy pour les séries)

$$\sum_{n=0}^{\infty} x_n converge \iff \forall \epsilon > 0 \exists N \forall n > N : \left| \sum_{p=N}^{n} x_p \right| < \epsilon$$

(Dans ce cas,
$$\left|\sum_{n=N}^{\infty} x_n\right| \le \epsilon$$
)

Preuve

Appliquer Cauchy à la suite s_n :

$$\exists n_0 \forall n, n' > n_0 : |s_n - s_{n'}| < \epsilon$$

Alors

$$\left| \sum_{p=n'+1}^{n} x_p \right| < \epsilon$$

Exemple

Ecriture decimale,

Proposition 58

Si

$$\sum_{n=0}^{\infty} x_n$$

converge, alors

$$\lim_{n \to +\infty} x_n = 0$$

Preuve

Appliquer Cauchy à $\left|\underbrace{s_n - s_{n-1}}_{=x_n}\right|$

Attention, la réciproque est FAUSSE.

 ${\it 2\ Exemples}$

Proposition 59 (Serie Geometrique)

Soit $r \in \mathbb{R}$ avec |r| < 1, alors

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

Preuve

Soit

$$s_n = r^0 + r^1 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$$

Or

$$\lim_{n \to +\infty} r^{n+1} = 0$$

Donc $s_n \to \frac{1}{1-r}$.

$$\frac{1}{2} + \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{1}{2}^n = \frac{1}{1 - \frac{1}{2}} - 1 = 1$$

Proposition 60 (Série Harmonique)

$$\sum_{n=1}^{\infty} \frac{1}{n} \ diverge \ (\ vers \ + \infty)$$

Preuve

Consid'erons

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n} + \underbrace{\frac{1}{2^n + 1} + \dots + \frac{1}{2^{n+1}}}_{2^{n+1} - 2^n = 2^n \text{ termes.}} + \dots$$

Tous ces termes sont $\geq \frac{1}{2^{n+1}}$

 $Cette\ somme\ est$:

$$s_{2^{n+1}} - s_{2^n} \ge 2^n \frac{1}{2^{n+1}} = \frac{1}{2}$$

Contradit Cauchy pour $\epsilon = \frac{1}{2}$.

Astuce utile:

$$\sum_{n=1}^{\infty} \frac{1}{n-1} - \frac{1}{n} = 1$$

Preuve

$$s_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} = 1 - \frac{1}{n}$$

Donc ca converge.

C'est une série téléscopique

Proposition 61 (Critère de Comparaison)

Supposons $0 \le x_n \le y_n$.

Si

$$\sum_{n=0}^{\infty} y_n \ converge, \ alors \ \sum_{n=0}^{\infty} x_n \ aussi \ .$$

Preuve

$$s_n = x_0 + \ldots + x_n$$

est croissante. Donc converge \iff (s_n) bornée.

Mais $y_0 + \ldots + y_n$ converge \Rightarrow bornée et $s_n \leq y_0 + \ldots + y_n \Rightarrow (s_n)$ bornée \square

Remarque

De plus,

$$\sum_{n=0}^{\infty} x_n \le \sum_{n=0}^{\infty} y_n$$

Si, par contre,

$$\sum_{n=0}^{\infty} x_n \ diverge \ \Rightarrow \sum_{n=0}^{\infty} y_n \ diverge$$

Corollaire 63

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converge.

Preuve

$$\forall n \ge 2 : \frac{1}{n^2} \le \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$$

Or

$$\sum_{n=2}^{\infty} \frac{1}{n-1} - \frac{1}{n} \ converge.$$

Donc, par comparaison, $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converge

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} \ converge \ .$$

Lecture 7: mercredi

Wed 07 Oct

Definition 12 (Séries Alternées)

 (x_n) est alternée si $x_n \cdot x_{n+1} \leq 0 \forall n$

Theorème 64

Soit (x_n) alternée, $|x_n|$ décroissante, et

$$\lim_{n \to +\infty} x_n = 0$$

Alors

$$\sum_{n=0}^{\infty} x_n \ converge.$$

Exemple

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converge. (s'erie harmonique altern\'ee) 5

Preuve

On utilise cauchy.

Soit $n, m \in \mathbb{N}$.

$$\underbrace{x_n + x_{n+1}}_{\geq 0} + x_{n+2} + \dots + x_{n+m-1} + x_{n+m}$$

 $Cas x_n \geq 0$:

 $Cas\ où\ n\ pair$

$$0 \le \sum_{p=n}^{n_m} x_p \le x_n$$

 $Si\ m\ impair:$

idem

Que n soit pair ou impair

$$\left| \sum_{p=n}^{n+m} x_p \right| \le |x_n|$$

Or, soit $\epsilon > 0$

$$\lim_{n \to +\infty} x_n = 0 \Rightarrow$$

 $\exists N \forall n > N | |x_n| \le \epsilon.$

 $Donc \; \forall n > N, m |$

$$|x_n + \ldots + x_{n+m}| < \epsilon$$

^{5.} En fait la série converge vers $-\log 2$

5.0.1 Un calcul naif (avec la série harmonique alternée)

Soit $S = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, existe par le théorème.

Note : S < 0.

$$s_n = \underbrace{-1 + \frac{1}{2}}_{=-\frac{1}{2}} \underbrace{-\frac{1}{3} + \frac{1}{4}}_{<0} - \dots + \frac{(-1)^n}{n}$$

 $s_n < -\frac{1}{n}, \forall n \text{ pair } \Rightarrow S \leq -\frac{1}{2}$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \dots$$

à chaque terme x_n , on associe x_{2n}

$$= -\frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \frac{1}{8} - \frac{1}{10} + \dots$$
$$= \frac{1}{2}(-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots) = \frac{1}{2}S$$

Donc $S = \frac{1}{2}S \Rightarrow S = 0$ Faux!

Conclusion:

On ne peut pas permuter (en général) les termes d'une série convergente (somme infinie)

Definition 13

On dit que la somme de

$$\sum_{n=0}^{\infty} x_n$$

 $converge\ absolument\ si$

$$\sum_{n=0}^{\infty} |x_n|$$

converge.

Note: la valeur

$$\sum_{n=0}^{\infty} |x_n|$$

ne nous intéresse pas

Remarque

Si $x_n \ge 0 \forall n$, aucune différence entre "convergence" et "convergence absolue".

Exemple

— La série harmonique alternée converge, mais pas absolument.

Lemme 68

Convergence absolue implique la convergence.

 $\forall n: 0 \le x_n + |x_n| \le 2|x_n|$

 $Donc\ convergence\ absolue \Rightarrow$

$$\sum (x_n + |x_n|)$$

converge.

 $Or - \sum_{n=0}^{\infty} |x_n| \ converge \ .$

Somme des deux sommes ci-dessus, implique que

$$\sum_{n=0}^{\infty} x_n$$

Theorème 69

Si

$$\sum_{n=0}^{\infty} x_n$$

converge absolument, alors toute permutation converge vers la même somme.

Exemple

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Clarification:

Soit σ une permutation de \mathbb{N} , i.e. bijection.

La nouvelle série sera

$$\sum_{n=0}^{\infty} y_n \ pour \ y_n = x_{\sigma(n)}$$

Notons $s_n = x_0 + \ldots + x_n$ et

$$t_n = y_0 + \ldots + y_n = x_{\sigma(0)} + \ldots + x_{\sigma(n)}$$

Le théorème dit : si $\sum_{n=0}^{\infty} |x_n|$ existe, alors $\lim s_n = \lim t_n$.

Preuve

1er cas "facile".

Supposons $x_n \ge 0 \forall n$.

Alors
$$\sum_{n=0}^{\infty} x_n = \sup \{s_n | n \in \mathbb{N}\}$$

On va montrer que $\sup_{n \to \infty} s_n \ge \sup_{n \to \infty} t_n$ et que $\sup_n s_n \le \sup_n t_n$

$$\underbrace{\frac{n}{=:s}}$$
 $\underbrace{\frac{n}{=:t}}$

Pour $s \geq t$:

Soit $\epsilon > 0$. Or , par déf, $\exists nt_n > t - \epsilon$

ie

$$y_0 + \ldots + y_n > t - \epsilon$$

ie

$$x_{\sigma(0)} + \ldots + x_{\sigma(n)} > t - \epsilon$$

Soit $m = \max_{i=0,\dots,n} \sigma(i)$, alors

$$s_m \ge t - \epsilon$$

donc

$$s = \sup s_n > t - \epsilon$$

 $vrai \ \forall \epsilon > 0 \Rightarrow s \geq t$

En considérant σ^{-1} , on obtien de même $t \ge s \Rightarrow s = t$, donc le théorème vrai $SI \ x_n \ge 0$.

 $2\grave{e}me\ cas: x_n \leq 0 \forall n,\ idem$

 $Cas\ g\'en\'eral$:

Posons $x_n = x'_{nxn}$, ou $x'_n = \max(x_n, 0)$ et $x''_n = \min(x_n, 0)$, alors

$$x_{\sigma(n)} = x'_{\sigma(n)} + x''_{\sigma(n)}$$

On conclut en appliquant le cas (1) a x_n' et (2) ou x_n''

Theorème 71

Supposons que

$$\sum_{n=0}^{\infty} x_n$$

 $converge,\ mais\ pas\ absolument.$

 $\forall l \in \mathbb{R} \exists permutation \sigma t.q.$

$$\sum_{n=0}^{\infty} x_{\sigma(n)} = l.$$