In this chapter we will introduce and justify the notion of a *polar*ization on a symplectic manifold, as well as give some examples and showing how it solves some of the issues with pre-quantization by adjusting the prequantum Hilbert space into a polarized prequantum Hilbert space and adjusting the prequantized operators into polarized prequantum operators; note that there is one final modification to be made after the polarization step, however, to remedy a final issue with the integrability of states.

Definition and Basic Results

We will hit the ground running with the definitions and proceed to justify it shortly after:

Definition 1. Let (M^{2n}, ω) be a symplectic manifold. A (complex) distribution P on M, i.e. a sub-bundle

$$P \hookrightarrow T^{\mathbb{C}}M \equiv TM \otimes_{\mathbb{R}} \mathbb{C}$$

of the (complexified) tangent bundle, is said to be a polarization of M if all of the following are hold:

- P is Lagrangian, i.e. it is an isotropic distribution of dimension n; recall that a distribution is said to be isotropic if the symplectic form ω_x on each tangent space T_xM vanishes on the subspace $P_x \hookrightarrow T_xM$ defined by the distribution, and that the maximal dimension of an isotropic distribution is half the dimension of the manifold.
- P is involutive, i.e. for X, Y vector fields in P, the commutator [X, Y] is a vector field in P. In the literature, this is usually written in shorthand as $[P, P] \subset P$.
- For all points $m \in M$, we have that $\dim(P_m \cap \overline{P}_m \cap TM)$ is constant, where the overline refers to complex conjugation.

Having defined the meaning of a polarization, we can now define a way of polarizing the prequantum Hilbert space and polarizing the operators obtained through prequantization.

Definition 2. Given a symplectic manifold (M^{2n}, Ω) with prequantum line bundle $(L \to M, \nabla)$ and prequantum Hilbert space¹

$$\mathcal{H}^{preq} := \{ \psi \in \Gamma(L) | \langle \psi, \psi \rangle < \infty \},$$

we define the polarized Hilbert space \mathcal{H}^P for P a choice of polarization on M as the Hilbert space of sections in \mathcal{H}^{preq} that respect the polarization, i.e.

$$\nabla_X \psi = 0 \quad \forall X \in \mathcal{X}(P),$$

^{1 (}Or more accurately, the metric completion of this space.)

where X is a vector field generated by P, i.e. the space of sections that remain fixed by parallel transport along any X in the polarization.

Further, we say that an observable $f \in C^{\infty}(M)$ is polarizable, or "respects the polarization", under the polarization P iff X_f the associated Hamiltonian vector field satisfies²

$$[X_f, P] = P.$$

When f is polarizable, its corresponding polarized operator $O_f: \mathcal{H}^P \to$ \mathcal{H}^P is the same³ as the prequantum operator O_f^{preq} .

We remark that the condition placed upon the smooth functions on M is necessary as not all observables respect the polarization, since

Justification and Intuition.

We now justify the reasons for defining polarizations and the polarized Hilbert space and operators as such.

First off, we analyze the intuition behind the three conditions needed to consider a distribution $P \hookrightarrow T^{\mathbb{C}}M$ to be a polarization:

- The requirement that *P* be *Lagrangian* comes from the need to find a "representation" or "choice" of configuration space inside of the phase space given by the symplectic manifold. Since the quantization procedure acts on symplectic manifolds, the question of a choice of configuration space is implicitly ignored; Lagrangian distributions, which are necessarily rank n when dim(M) = 2n, select a configuration space. The choice, however, is usually not unique.
- The *involutivity* of *P* comes from the Frobenius theorem, which states that involutivity is equivalent to integrability (see 4, pp. 494-505). Recall that an integrable distribution is
- Define the distribution $D = P \cap \overline{P} \cap TM$; we require that dim(D)be constant in our definition, though it is an excluded condition in other treatments. Perhaps the least obvious condition, the constant rank of D guarantees that

Examples: Real and Kähler Polarizations.

In this section we give a few examples to see what average, "runof-the-mill" polarizations look like, as well as shine a light on two very special classes of polarizations: real polarizations and Kähler polarizations.

² Here, this is shorthand for the fact that X_f keeps P fixed.

³ In other words, the primary purpose of a choice of polarization is to restrict the class of possible classical observables that may be meaningfully quantized - it does not change the definition of the quantization of a classical observable.

We now present two different polarizations of the same manifold, and show how the choice of a real polarization versus a Kähler polarization changes the representation. In our case, we have a cotangent bundle of a smooth manifold as our phase space; choosing certain real polarizations gives us the Schrödinger and momentum representations, whereas a particular Kähler polarization gives us the holomorphic, or Bargmann-Fock, representation.

Schrödinger and Momentum Representations.

We first present the two real polarizations on the cotangent bundle.

Bargmann-Fock Representation.

Now we show an example of a Kähler polarization.

Bargmann Representation of the Harmonic Oscillator.

As a bonus, we present an example with the Harmonic Oscillator

Remarks on Polarizations and the Polarized Hilbert Space.

We now make some remarks on interesting features of polarizations on a symplectic manifold.

Canonical Polarizations

A natural question to ask is whether there are situations where a choice of polarizations is either canonical in some sense or otherwise unique; a further question might be whether there are categories where we have a class of functors indexed by choices of polarization.

BKS Kernels

Another natural question is whether there are algebraic ways of comparing two different representations corresponding to two different polarizations on the same manifold.

History and References