§3.4 卡诺图化简逻辑函数

Simplification Using K-Maps

用公式法化简逻辑函数时,有时很难看出是否达到最简式。用卡诺图 (Karnaugh Map) 化简逻辑函数具有简单、直观、方便的特点,较容易判断出函数是否得到最简结果。

3.4.1 卡诺图 Karnaugh Map

卡诺图 (K-map)与真值表相似,可以给出输入所有可能组合所对应的输出值。与真值表不同的是卡诺图是由小格构成。每个小格代表一个二进制输入的组合。

n 个变量的卡诺图中有2n个小格,每个小格表示一个最小项。

2 变量卡诺图: F(A,B)

变量取值: 0→1

$$\left.\begin{array}{c} 0 \text{ for } \overline{A}, \overline{B} \\ 1 \text{ for } A, B \end{array}\right\}$$
最小项

变量(A,B) 位置确定,每小格代表的最小项就确定。

3 变量卡诺图: F(A,B,C)

FA	B 00	01	11	10
C_0	m_0	2	6	4
1	m_1	3	7	5

AB的排列顺序

排列方式要求:

保证相邻格之间只有

一个变量变化

几何相邻: 位置相邻

逻辑相邻: 只有一个变量变化

相邻格

卡诺图其他排列方式

每个小格有 n 个相邻格 相邻格与排列方式无关

4 变量卡诺图: F(A,B,C,D)

每个小格: 4 个相邻格

5变量卡诺图: F (A,B,C,D,E)

$$2^5 = 32$$
 cells

F AB	\boldsymbol{C}							
DE	000	001	011	010	110	111	101	100
00	0	4	12	8	24	28	20	16
01	1	5	13	9	25	29	21	17
11	3	7	15	11	27	31	23	19
10	2	6	14	10	26	30	22	18

相邻格包括对称位置

14: 6, 15, 10, 12, 30

8: 12, 9, 24, 0, 10

3.4.2 用卡诺图表示逻辑函数

Mapping a Logic Function

例 1: 将真值表转换成卡诺图

A	В	\boldsymbol{C}	$oldsymbol{F}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	BC	1
1	1	0	1
1	1	1	1

F, A	B			
	00	01	11	10
C_0	0	0	1	0
1	0	1	1	1

例 2: 用卡诺图表示标准与或式和标准或与式

$$F(X, Y, Z) = \sum m(0,4,6)$$

$$F(X,Y,Z) = \sum m(0,4,6)$$
 $F(X,Y,Z) = \prod M(1,2,3,5,7)$

F 何时为 1 (最小项) F 何时为 0 (最大项)

FX	<i>XY</i> 00	01	11	10
Z_0	1	0	1	1
1	0	00	0	0

等价

例3: 将与或式填入卡诺图

$$F(X,Y,Z) = XY + \overline{Y}Z + \overline{X}\overline{Z}$$

$$= XY(Z + \overline{Z}) + \overline{Y}Z(X + \overline{X}) + \overline{X}\overline{Z}(Y + \overline{Y})$$

$$= XYZ + XY\overline{Z} + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + \overline{X}Y\overline{Z}$$

$$= \sum m(0,1,2,5,6,7)$$

直接填 XY: 在 XY = 11 的两个格中填1

F X	Y 00	01	11	10
$\begin{bmatrix} Z \\ 0 \end{bmatrix}$	1	1	1	
1	1		1	1

3.4.3 卡诺图化简逻辑函数

K-Map Simplification

1. 求最简与或式

方法: 圈相邻格中的1, 合并最小项

圈 1: 根据下面规则将含有 1 的相邻格圈在一起

尽可能多地把相邻的矩形的 2ⁿ 个 1 圈在一起,消去变化了的变量,留下不变的变量,是 1 写原变量,是 0 写反变量,组成"与"项;每个圈中至少有一个别的圈没圈过的 1,所有的 1 都要圈;1 可以重复圈;圈之间为"或"的关系。

圈 1个1, 2个1, 4个1, 8个1, 16个1

例 1: 用卡诺图化简下列函数

$$F(A,B) = \sum (0,1,3)$$

解:

- ① 填卡诺图
- ② 圏 1
- ③ 将与项相加

$$F = \overline{A} + B$$

例 2: 化简函数

例 3:

$$F(A, B, C, D) = \overline{D} + AB$$

2. 求最简或与式

尽可能多的把相邻矩形中 2ⁿ个0 圈在一起,消去变化了的ⁿ 个变量,留下不变的变量,(是0 写原变量,是 1 写反变量)组成或项;每个圈中至少有一个别的圈没圈过的0,所有0 都要圈,0 可重复圈,圈之间为与的关系。

与或式和或与式可以互相转换

总结: 与或式圈 1

或与式圈 0

例 5 将下图化简成最简与或表达式

例 6 将下图化简成最简与或式

$$F = \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{AB}$$

$$= \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{BC}$$

$$= \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{BC}$$

最简式不是唯一的

例 7 分别将下式化简成最简与或式和最简或与式

解: 在卡诺图中直接填 0

最简或与式: 圈 0

$$F(A,B,C,D) = (\overline{B} + D)(\overline{A} + \overline{C})(\overline{A} + B + \overline{D})$$

最简与或式:圈1

$$F(A, B, C, D) = \overline{A} \cdot \overline{B} + \overline{A}D + B\overline{C}D + \overline{B} \cdot \overline{C} \cdot \overline{D}$$

例8化简

$$F(W,X,Y,Z) = \overline{\overline{WX}} + \overline{YZ} + (\overline{W} + Y)X\overline{Z} + (\overline{W} + Z)(\overline{W} + \overline{Y})$$

$$\overline{F} = WX + YZ + WXZ + XYZ + WZ + WY$$

$$\overline{W} + \overline{Z} + \overline{W} + \overline{Y}$$

直接在 F K-Map中填1, 圈0

$$\overline{F} = (\overline{W} + Y + Z)(W + \overline{X} + \overline{Y} + \overline{Z})$$

$$F = \overline{\overline{F}} = \overline{\overline{W} + Y + Z} + \overline{W + \overline{X} + \overline{Y} + \overline{Z}}$$

$$= \overline{W}\overline{Y}\overline{Z} + \overline{W}XYZ$$

例9 已知 F = ABC + AD + ABD + ABCD + ABCD W收 化简上式,并分别用最少的与非门和或非门实现

解: 填卡诺图

1) 用与非门实现

$$F = \overline{\overline{AD} + BD} + A\overline{BC}$$

$$= \overline{\overline{AD} \cdot BD} \cdot \overline{ABC}$$

与或 — 与非 - 与非

$$F = \overline{\overline{A}\overline{D}} \cdot \overline{\overline{B}\overline{D}} \cdot \overline{\overline{A}\overline{B}C}$$

与非 - 与非门

2) 或非门 🚞 0

化简:每个圈需一个门实现,各圈之间加一个门

$$F = \overline{A + D} + \overline{B} + \overline{D} + \overline{A} + B + C$$

3.4.4 具有随意项的逻辑函数的化简

Simplification of Logic Function with "Don't Care" Terms

实际逻辑电路中,有些变量(输入)组合不会出现或不允许出现,如 BCD 码中 1010~1111;这些组合对输出不产生任何影响(是 1 是 0 不影响输出),这种组合称"随意项" (Don't care)。

例:

用 A, B, C 分别表示电机的正转、反转和停止 三种状态:

随意项

卡诺图
真值表X或
$$\varphi$$
逻辑函数 $\sum d(x)$

d()括号中为最小项编号

化简时, 根据化简需要, <u>♥可作1或作0</u>;

但不能既当1同时又当0。

例 1: 用卡诺图化简函数

$$F(A,B,C,D) = \sum m(1,3,7,11,15) + d(0,2,5)$$

解:卡诺图

标脚标:
$$\Phi_1,\Phi_2,\Phi_3$$

采用
$$\Phi_3 = 1$$
, $\Phi_1 = \Phi_2 = 0$

$$F = CD + \overline{AD}$$

$$F = D(\overline{A} + C)$$

若采用
$$\Phi_1 = \Phi_2 = 1,$$
 $\Phi_3 = 0$

$$\Phi_3 = 0$$

$$F = \overline{A} \cdot \overline{B} + CD$$

是否可令: $\Phi_1 = \Phi_2 = \Phi_3 = 1$

例 2: Simplify the logic function with don't care terms:

$$G = \overline{AC} + \overline{AB}$$
, $AB+AC = 0$
 $AB = \Phi$ $AC = \Phi$

物理意义: 这两项在 函数中不起作用, 不 是数学上的等于0

$$G = B + \overline{A} \cdot \overline{C}$$

3.4.5 引入变量卡诺图 (VEM) Variable Entered Map

一般,变量超过5个时,采用引入变量卡诺图方法化简逻辑函数。将n 变量函数中一个变量作为引入变量,填入(n-1) 变量卡诺图中。

例 1: 用VEM方法化简下列逻辑函数

$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + AB\overline{C} + A\overline{B} \cdot \overline{C} + ABC$$
325

将变量 C 拿出作为引入变量,将函数填入2变量卡诺图中

当
$$A=0, B=0$$
 时, $F=\overline{C}$,
在 m_0 格填 \overline{C}

圈的原则与圈1相同,合并 相同变量

$$F = \overline{B} \cdot \overline{C} + AB$$

例 2: $F(C,D,E) = C\overline{D} + C\overline{E} + \overline{C}E + \overline{D}E + CDE$

将 E 分出作 为引入变量 (一 般最后一个变量作 为引入变量)

$$F = E + C$$

例 3: 化简

$$F = A\overline{C} + A\overline{C} + \overline{B}C$$

$$F = A\overline{C} + A\overline{C} + A\overline{B}$$

例 4: 化简下面引入变量卡诺图 (VEM):

$$F = D + AB + \overline{A} \cdot \overline{C}$$

作业:

- 3.8 (1, 2, 3, 8, 9, 10, 11, 18, 19, 20)
- 3.11 (1, 3, 7) 3.20
- 3.12 (1, 3, 5) 3.21(1, 3, 5)
- 3.15(1, 3, 6) 3.22(1, 3, 5)
- 3.18(1, 3, 7) 3.23(2)
- 3.19 (1, 3) 3.24 (2)

2.3 题图2.3中的电路均为TTL门电路,试写出各电路输出 $Y_1 \sim Y_8$ 状态

解: $Y_1=0$, $Y_2=0$, $Y_3=$ Hi-Z, $Y_4=0$, $Y_5=0$, $Y_6=0$, $Y_7=0$, $Y_8=0$

2.13 按下列函数画出CMOS电路图。

2.17 写出题图2.17中NMOS 电路的逻辑表达式。

$$Y_2 = \overline{\overline{\overline{A} + B}} = \overline{A + B}$$

