На правах рукописи

Банкевич Сергей Викторович

О монотонности интегральных функционалов при перестановках

Специальность 01.01.02— «Дифференциальные уравнения, динамические системы и оптимальное управление»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: доктор физико-математических наук, профессор Назаров Александр Ильич

Оглавление

	C ^r	гр.
Введе	ние	4
Глава	1. О неравенстве Пойа-Сегё с весом для монотонной	
	перестановки в случае ограниченного роста	
	интегранта по производной	6
1.1	Обозначения	6
1.2	Условия, необходимые для выполнения неравенства (1.2)	7
1.3	Доказательство неравенства (1.2) для кусочно линейных функций	10
1.4	О расширении класса функций, для которых выполняется	
	неравенство (1.2)	14
1.5	Переход к соболевским функциям	17
Глава	2. О неравенстве Пойа-Сегё для монотонной	
	перестановки и симметризации в общем случае при	
	n=1	20
2.1	Обозначения	20
2.2	Доказательство неравенства (1.2) для монотонных весов	20
2.3	Свойства весовой функции	24
2.4	Доказательство неравенства (1.2) для произвольных весов	26
2.5	Доказательство неравенства (1.2) для функций, закреплённых	
	на левом конце	33
2.6	Условия, необходимые для выполнения неравенства (2.1)	34
2.7	Доказательство неравенства (2.1)	36
Глава	3. Монотонность функционалов с переменным	
	показателем суммирования	37
3.1	Обозначения	37
3.2	Необходимые условия	37
3.3	Доказательство неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$	39
3.4	Некоторые достаточные условия	43
3.5	Численные оценки функции $B(w,q)$	44

						С	тр
3.6	Многомерный аналог неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$						47
Списо	к литературы						51

Введение

bigl, bigr

Свои работы отдельно. Тезисы тоже считаются.

Во введении кроме исторической части ещё изложение результатов.

пройти по всем ссылкам и посмотреть, что все факты правильно называются: предложение вместо леммы

проверить орфографию

Make use of \norm, \abs, \meas, \set and other commands

fix discontinuity in graphs

introduce a section with formulations of external assertions, если нельзя их всех сделать в тексте, как сейчас во многих случаях сделано

широкую библиографию по эффекту Лаврентьева. Посмотреть кроме письма ещё в ВGH

Пусть $\Omega = \omega \times [-1,1]$, где ω — ограниченная область в \mathbb{R}^{n-1} с липшицевой границей. Обозначим $x=(x_1,\ldots,x_{n-1},y)=(x',y)$.

Напомним теорему о послойном представлении измеримой неотрицательной функции u, заданной на Ω (см. [1, Теорема 1.13]). Положим $\mathcal{A}_t(x') := \{y \in [-1,1]: u(x',y) > t\}$. Тогда имеет место равенство

$$u(x',y) = \int_0^\infty \mathcal{X} \{ \mathcal{A}_t(x') \}(y) dt,$$

где $\mathcal{X}\{A\}$ — характеристическая функция множества A.

Определим симметричную перестановку измеримого множества $E\subset [-1,1]$ и симметричную перестановку (симметризацию по Штейнеру) неотрицательной функции $u\in W^1_1(\Omega)$:

$$E^* := \left[-\frac{|E|}{2}, \frac{|E|}{2} \right]; \qquad u^*(x', y) = \int_0^\infty \mathcal{X}\{(\mathcal{A}_t(x'))^*\}(y)dt.$$

В тех же условиях определим монотонную перестановку множества E и функции $u \in W^1_1(\Omega)$:

$$\overline{E} := [1 - \text{meas } E, 1]; \qquad \overline{u}(x', y) = \int_{0}^{\infty} \mathcal{X}\{\overline{\mathcal{A}_{t}(x')}\}(y)dt.$$

Возьмём выпуклую чётную функцию F и рассмотрим функционал

$$I(u) = \int_{\Omega} F(\|\nabla u\|) dx. \tag{1}$$

Для такого функционала хорошо известно классическое неравенство Пойа-Сегё: $I(u^*) \leqslant I(u)$.

fix B данной диссертации мы рассматриваем обобщения неравенства Пойа-Сегё на более общие классы функционалов. В первой и второй главах мы рассматриваем взвешенные аналоги классического функционала.

Определим множество \mathfrak{F} непрерывных функций $F: \boldsymbol{\omega} \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ (здесь и далее $\mathbb{R}_+ = [0, \infty)$), выпуклых и строго возрастающих по третьему аргументу, удовлетворяющих $F(\cdot, \cdot, 0) \equiv 0$.

Рассмотрим функционал:

$$J(u) = \int_{\Omega} F(x', u(x), ||\mathcal{D}u||) dx, \tag{2}$$

где $F \in \mathfrak{F}, \|\cdot\|$ — некоторая норма в \mathbb{R}^n , симметричная по последней координате, то есть удовлетворяющая $\|(x',y)\| = \|(x',-y)\|$,

$$\mathcal{D}u = (a_1(x', u(x))D_1u, \ldots, a_{n-1}(x', u(x))D_{n-1}u, a(x, u(x))D_nu)$$

— градиент u с весом (обратите внимание, что только вес при $D_n u$ зависит от y), $a(\cdot,\cdot): \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ и $a_i(\cdot,\cdot): \omega \times \mathbb{R}_+ \to \mathbb{R}_+$ — непрерывные функции. Здесь и далее индекс i пробегает от 1 до n-1. Очевидно, что при $a_i=a\equiv 1$ выполнено $J\equiv I$.

fix В первой главе мы рассматриваем аналог неравенства Пойа-Сегё для монотонной перестановки с функционалом (2):

$$J(\overline{u}) \leqslant J(u) \tag{3}$$

Мы устанавливаем необходимые для выполнения неравенства условия на весовую функцию *а*. Также мы доказываем неравенство при необходимых условиях и дополнительном ограничении на рост интегранта по производной.

Во второй главе мы снимаем требование ограничения роста, и также доказываем аналогичный результат для симметричной перестановки:

$$J(u^*) \leqslant J(u), \tag{4}$$

тем самым закрывая пробел в работе [2].

оставить здесь только мотивацию/историю

Глава 1. О неравенстве Пойа-Сегё с весом для монотонной перестановки в случае ограниченного роста интегранта по производной

1.1 Обозначения

Пусть $\Omega = \omega \times [-1,1]$, где ω — ограниченная область в \mathbb{R}^{n-1} с липшицевой границей. Обозначим $x=(x_1,\ldots,x_{n-1},y)=(x',y).$

Напомним теорему о послойном представлении измеримой неотрицательной функции u, заданной на Ω (см. [1, Теорема 1.13]). Положим $\mathcal{A}_t(x') := \{y \in [-1,1]: u(x',y) > t\}$. Тогда имеет место равенство

$$u(x',y) = \int_0^\infty \mathcal{X} \{ \mathcal{A}_t(x') \}(y) dt,$$

где $\mathcal{X}\{A\}$ — характеристическая функция множества A.

Определим симметричную перестановку измеримого множества $E \subset [-1,1]$ и симметричную перестановку (симметризацию по Штейнеру) неотрицательной функции $u \in W^1_1(\Omega)$:

$$E^* := \left[-\frac{|E|}{2}, \frac{|E|}{2} \right]; \qquad u^*(x', y) = \int_0^\infty \mathcal{X}\{(\mathcal{A}_t(x'))^*\}(y)dt.$$

В тех же условиях определим монотонную перестановку множества E и функции $u \in W^1_1(\Omega)$:

$$\overline{E} := [1 - \text{meas } E, 1]; \qquad \overline{u}(x', y) = \int_{0}^{\infty} \mathcal{X}\{\overline{\mathcal{A}_{t}(x')}\}(y)dt.$$

Определим множество \mathfrak{F} непрерывных функций $F: \boldsymbol{\omega} \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ (здесь и далее $\mathbb{R}_+ = [0, \infty)$), выпуклых и строго возрастающих по третьему аргументу, удовлетворяющих $F(\cdot, \cdot, 0) \equiv 0$.

Рассмотрим функционал:

$$J(u) = \int_{\Omega} F(x', u(x), ||\mathcal{D}u||) dx,$$
(1.1)

где $F \in \mathfrak{F}, \|\cdot\|$ — некоторая норма в \mathbb{R}^n , симметричная по последней координате, то есть удовлетворяющая $\|(x',y)\| = \|(x',-y)\|$,

$$\mathcal{D}u = (a_1(x', u(x))D_1u, \dots, a_{n-1}(x', u(x))D_{n-1}u, a(x, u(x))D_nu)$$

— градиент u с весом (обратите внимание, что только вес при $D_n u$ зависит от y), $a(\cdot,\cdot): \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ и $a_i(\cdot,\cdot): \omega \times \mathbb{R}_+ \to \mathbb{R}_+$ — непрерывные функции. Здесь и далее индекс i пробегает от 1 до n-1.

В этой главе мы рассматриваем следующее неравенство:

$$J(\overline{u}) \leqslant J(u) \tag{1.2}$$

Мы устанавливаем необходимые для выполнения неравенства условия на весовую функцию *а*. Также мы доказываем неравенство при необходимых условиях и дополнительном ограничении на рост интегранта по производной.

1.2 Условия, необходимые для выполнения неравенства (1.2)

Теорема 1. 1. Если неравенство (1.2) выполняется для некоторой $F \in \mathfrak{F}$ и произвольной кусочно линейной u, то вес а чётен по y, то есть $a(x',y,v) \equiv a(x',-y,v)$.

ii) Если неравенство (1.2) выполняется для произвольной $F \in \mathfrak{F}$ и произвольной кусочно линейной u, то вес а удовлетворяет неравенству

$$a(x', s, v) + a(x', t, v) \geqslant a(x', 1 - t + s, v), \qquad \forall x' \in \omega, \ -1 \leqslant s \leqslant t \leqslant 1, \ v \in \mathbb{R}_+.$$

$$(1.3)$$

Доказательство. Ясно, что достаточно доказать утверждения теоремы для каждого x' в отдельности. Поэтому далее в этом доказательстве мы по сути рассматриваем одномерный случай $u=u(y),\ a=a(y,u),\ J(u)=\int\limits_{1}^{1}F(u(y),|a(y,u(y))u'(y)|)\,dy.$

і) Предположим, что $a(y,v)\not\equiv a(-y,v)$. Тогда найдутся такие $y_0\in(-1,1)$ и $v_0\in\mathbb{R}_+$, что

$$a(y_0, v_0) < a(-y_0, v_0).$$

Поэтому существует $\varepsilon > 0$ такое, что

$$a(y,v) < a(-y,v)$$
, для всех $y_0 - \varepsilon \leqslant y \leqslant y_0$, $v_0 \leqslant v \leqslant v_0 + \varepsilon$,

и можно взять следующую функцию:

$$\begin{cases} u_1(y) = v_0 + \varepsilon, & y \in [-1, y_0 - \varepsilon] \\ u_1(y) = v_0 + y_0 - y, & y \in (y_0 - \varepsilon, y_0) \\ u_1(y) = v_0, & y \in [y_0, 1] \end{cases}$$

Тогда $\overline{u_1}(y) = u_1(-y)$ и

$$J(u_{1}) - J(\overline{u_{1}})$$

$$= \int_{y_{0}-\varepsilon}^{y_{0}} F(v_{0} + y_{0} - y, a(y, v_{0} + y_{0} - y)) dy - \int_{-y_{0}}^{-y_{0}+\varepsilon} F(v_{0} + y_{0} + y, a(y, v_{0} + y_{0} + y)) dy$$

$$= \int_{y_{0}-\varepsilon}^{y_{0}} (F(v_{0} + y_{0} - y, a(y, v_{0} + y_{0} - y)) - F(v_{0} + y_{0} - y, a(-y, v_{0} + y_{0} - y))) dy < 0,$$

что противоречит предположениям теоремы. Утверждение (i) доказано.

іі) Предположим, что условие (1.3) не выполняется. Тогда в силу непрерывности функции a найдутся такие $-1\leqslant s\leqslant t\leqslant 1,\ \epsilon,\delta>0$ и $v_0\in\mathbb{R}_+,$ что для любых $0\leqslant y\leqslant \epsilon$ и $v_0\leqslant v\leqslant v_0+\epsilon$ справедливо неравенство

$$a(s+y,v) + a(t-y,v) + \delta < a(1-t+s+2y,v).$$

Рассмотрим функцию u_2 (см. рис. 1):

$$\begin{cases} u_{2}(y) = v_{0}, & y \in [-1, s] \cup [t, 1] \\ u_{2}(y) = v_{0} + y - s, & y \in [s, s + \varepsilon] \\ u_{2}(y) = v_{0} + \varepsilon, & y \in [s + \varepsilon, t - \varepsilon] \\ u_{2}(y) = v_{0} + t - y, & y \in [t - \varepsilon, t] \end{cases}$$

$$(1.4)$$

Тогда

$$\begin{cases} \overline{u_2}(y) = v_0, & y \in [-1, 1 - t + s] \\ \overline{u_2}(y) = v_0 + \frac{y - (1 - t + s)}{2}, & y \in [1 - t + s, 1 - t + s + 2\varepsilon] \\ \overline{u_2}(y) = v_0 + \varepsilon, & y \in [1 - t + s + 2\varepsilon, 1] \end{cases}$$

(см. рис. 2).

Имеем

$$J(a, \overline{u_2}) = \int_0^{2\varepsilon} F(u_2(1 - t + s + z), \frac{a(1 - t + s + z, u_2(1 - t + s + z))}{2}) dz$$

$$= \int_0^{\varepsilon} 2F(v_0 + y, \frac{a(1 - t + s + 2y, v_0 + y)}{2}) dy$$

$$0 \le J(a, u_2) - J(a, \overline{u_2}) = \int_0^{\varepsilon} \left(F(v_0 + y, a(s + y, v_0 + y)) + F(v_0 + y, a(t - y, v_0 + y))\right)$$

$$- 2F(v_0 + y, \frac{a(1 - t + s + 2y, v_0 + y)}{2})) dy$$

$$< \int_0^{\varepsilon} \left(F(v_0 + y, a(s + y, v_0 + y)) + F(v_0 + y, a(t - y, v_0 + y))\right)$$

$$- 2F(v_0 + y, \frac{a(s + y, v_0 + y) + a(t - y, v_0 + y) + \delta}{2})) dy =: \Delta J.$$

Рассмотрим теперь функцию $F(v,p)=p^{\alpha}$. Очевидно, что при $\alpha=1$ выполнено неравенство

$$\frac{F(v,p) + F(v,q)}{2} - F\left(v, \frac{p+q}{2} + \frac{\delta}{2}\right) < 0.$$
 (1.5)

Нас интересуют p, q, лежащие на компакте [0, A], где

$$A = \max_{(y,v)} a(y,v), \qquad (y,v) \in [-1,1] \times u_2([-1,1]).$$

Значит найдётся и $\alpha > 1$ такое, что неравенство (1.5) будет выполняться. Например, подходит любое $1 < \alpha < (\log_2 \frac{2A}{A+\delta})^{-1}$.

Тем самым, мы подобрали строго выпуклую по второму аргументу функцию F, для которой $\Delta J \leqslant 0$. Это противоречие доказывает утверждение (ii).

Замечание 1. Пусть $a(x',\cdot,v)$ чётна. Тогда условие (1.3) эквивалентно субаддитивности функции $a(x',1-\cdot,v)$. В частности, если неотрицательная функция а чётна и вогнута по у, она удовлетворяет (1.3).

Теорема 2. Если неравенство (1.2) выполняется для произвольной $F \in \mathfrak{F}$ и произвольной кусочно линейной u, закреплённой на левом конце: u(-1) = 0, то вес а удовлетворяет неравенству (1.3).

Доказательство. Будем следовать схеме доказательства пункта 2 теоремы 1. Мы ставим дополнительное ограничение s>-1 (ввиду непрерывности весовой функции от этого требования легко потом избавиться). Также в качестве функции u_3 берём функцию, возрастающую от нуля на отрезке [-1,s], а на отрезке [s,1] совпадающую с u_2 из теоремы 1. Тогда функция $\overline{u_3}$ на отрезке [-1,s] совпадает с u_3 , а на отрезке [s,1] совпадает с $\overline{u_2}$. Тем самым, $J(u_3)-J(u_2)=J(\overline{u_3})-J(\overline{u_2})$, и рассуждения теоремы 1 начиная с вычисления ΔJ полностью повторяются.

1.3 Доказательство неравенства (1.2) для кусочно линейных функций

Лемма 1. Пусть а удовлетворяет (1.3).

і) Для любых $x' \in \omega$, $-1 \leqslant t_1 \leqslant t_2 \leqslant \ldots \leqslant t_n \leqslant 1$, $v \in \mathbb{R}_+$ выполнены следующие неравенства

$$\sum_{k=1}^{n} a(x', t_k, v) \geqslant a(x', 1 - \sum_{k=1}^{n} (-1)^k t_k, v), \qquad \qquad \text{для чётных } n,$$

$$\sum_{k=1}^{n} a(x', t_k, v) \geqslant a(x', -\sum_{k=1}^{n} (-1)^k t_k, v), \qquad \qquad \text{для нечётных } n.$$

ii) Предположим дополнительно, что функция а чётна. Тогда для всех $x' \in \mathbf{w}, -1 \leqslant t_1 \leqslant t_2 \leqslant \ldots \leqslant t_n \leqslant 1, \ v \in \mathbb{R}_+$ также выполнены следующие неравенства

$$\sum_{k=1}^n a(t_k,v)\geqslant a(x',-1+\sum_{k=1}^n (-1)^k t_k,v), \qquad \qquad \text{ для чётных } n,$$

$$\sum_{k=1}^n a(t_k,v)\geqslant a(x',\sum_{k=1}^n (-1)^k t_k,v), \qquad \qquad \text{ для нечётных } n.$$

Доказательство. і) Будем доказывать по индукции. Для n=1 утверждение тривиально. Пусть теперь n чётное. Тогда, по предположению индукции,

$$\sum_{k=1}^{n-1} a(x', t_k, v) \geqslant a(x', -\sum_{k=1}^{n-1} (-1)^k t_k, v).$$

Значит

$$\sum_{k=1}^{n-1} a(x', t_k, v) + a(x', t_n, v) \ge a(x', -\sum_{k=1}^{n-1} (-1)^k t_k, v) + a(x', t_n, v)$$

$$\ge a(x', 1 - \sum_{k=1}^{n} (-1)^k t_k, v).$$

В случае нечётного n воспользуемся предположением индукции в следующем виде:

$$\sum_{k=2}^{n} a(x', t_k, v) \geqslant a(x', 1 + \sum_{k=2}^{n} (-1)^k t_k, v).$$

Тогда

$$a(x', t_1, v) + \sum_{k=2}^{n} a(x', t_k, v) \ge a(x', t_1, v) + a(x', 1 + \sum_{k=2}^{n} (-1)^k t_k, v)$$

$$\ge a(x', t_1 - \sum_{k=2}^{n} (-1)^k t_k, v) = a(x', -\sum_{k=1}^{n} (-1)^k t_k, v).$$

іі) Доказательство этой части очевидно.

Лемма 2. Пусть функция $a(x', \cdot, u)$ чётна и удовлетворяет условию (1.3). Тогда, если u — неотрицательная кусочно линейная функция, то $J(u) \geqslant J(\overline{u})$.

Доказательство. Пусть функция u имеет изломы на множестве C ($\partial\Omega\subset C\subset\Omega$). Возьмём

$$U := \{ (x', u(x', y)) : x' \in \omega, y \in (-1, 1), (x', y) \notin C \}.$$

Тогда открытое множество U разбивается в объединение конечного числа связных открытых множеств G_j . Обозначим m_j число прообразов значения $(x',u_0)\in G_j$, то есть число решений уравнения $u(x',y)=u_0$ (очевидно, это число постоянно для $(x',u_0)\in G_j$). Легко видеть, что эти прообразы являются линейными функциями (x',u_0) : $y=y_k^j(x',u_0), k=1,\ldots,m_j$, и $D_ny_k^j(x',u(x',y))=\frac{1}{D_nu(x',y)}$. Мы будем считать, что $y_1^j(x',u_0)< y_2^j(x',u_0)<\cdots< y_{m_j}^j(x',u_0)$.

Уравнение $\overline{u}(x_0',\overline{y})=u_0$ задаёт \overline{y} как функцию $(x_0',u_0)\in G_j$. Её можно выразить через y_k^j (в частности, \overline{y} кусочно линейна):

$$u(x'_0, -1) < u_0$$
 m_j чётно $\overline{y} = 1 - \sum_{k=1}^{m_j} (-1)^k y_k^j$ m_j нечётно $\overline{y} = -\sum_{k=1}^{m_j} (-1)^k y_k^j$ $u(x'_0, -1) > u_0$ m_j чётно $\overline{y} = -1 + \sum_{k=1}^{m_j} (-1)^k y_k^j$ m_j нечётно $\overline{y} = \sum_{k=1}^{m_j} (-1)^k y_k^j$

Отсюда ясно, что

$$D_n \overline{y}(x', u(x', y)) = \frac{1}{D_n \overline{u}(x', y)} = \sum_{k=1}^{m_j} |D_n y_k^j(x', u(x', y))|$$

и $D_i\overline{u}(x',y)=\pm\sum_{k=1}^{m_j}(-1)^kD_iy_k^j(x',u(x',y))$, где знак перед правой частью зависит только от j.

Тогда

$$J(u) = \sum_{j=1}^{N} \int_{G_{j}} F(x', u(x), ||a_{i}(x', u(x))D_{i}u(x), a(x, u(x))D_{n}u(x)||) dx$$

$$= \sum_{j=1}^{N} \int_{u(G_{j})} \sum_{k=1}^{m_{j}} F\left(x', u, \frac{||a_{i}(x', u)D_{i}y_{k}^{j}(x', u), a(x', y_{k}^{j}(x', u), u)||}{|D_{n}y_{k}^{j}(x', u)|}\right) |D_{n}y_{k}^{j}(x', u)| dx'du,$$

$$(1.7)$$

$$J(\overline{u}) = \sum_{j=1}^{N} \int_{G_{j}} F(x', \overline{u}, ||a_{i}(x', \overline{u}(x))D_{i}\overline{u}(x), a(x, \overline{u}(x))D_{n}\overline{u}(x)||) dx$$

$$= \sum_{j=1}^{N} \int_{u(G_{j})} F\left(x', \overline{u}, \frac{||a_{i}(x', \overline{u})D_{i}\overline{y}(x', \overline{u}), a(x', \overline{y}(x', \overline{u}), \overline{u})||}{\sum_{k=1}^{m_{j}} |D_{n}y_{k}^{j}(x', \overline{u})|}\right) \times \sum_{k=1}^{m_{j}} |D_{n}y_{k}^{j}(x', \overline{u})| dx' d\overline{u}. \quad (1.8)$$

Зафиксируем j, x' и u и обозначим $b_k = |D_n y_k^j|, c_{ki} = D_i y_k^j, \bar{c}_i = D_i \bar{y},$ $y_k = y_k^j(x',u), \bar{y} = \bar{y}(x',u), m = m_j$. Тогда справедлива следующая цепочка неравенств:

$$\sum_{k=1}^{m} b_{k} F\left(\frac{\|a_{i}c_{ki}, a(y_{k})\|}{b_{k}}\right) \stackrel{a}{\geqslant} F\left(\frac{\sum_{k=1}^{m} \|a_{i}c_{ki}, a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$\stackrel{b}{=} F\left(\frac{\sum_{k=1}^{m} \|(-1)^{k} a_{i}c_{ki}, a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k} \stackrel{c}{\geqslant} F\left(\frac{\|\sum_{k=1}^{m} ((-1)^{k} a_{i}c_{ki}, a(y_{k}))\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$= F\left(\frac{\|\sum_{k=1}^{m} (-1)^{k} a_{i}c_{ki}, \sum_{k=1}^{m} a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k} \stackrel{d}{\geqslant} F\left(\frac{\|\sum_{k=1}^{m} (-1)^{k} a_{i}c_{ki}, a(\overline{y})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$\stackrel{e}{=} F\left(\frac{\|\pm a_{i} \sum_{k=1}^{m} (-1)^{k} c_{ki}, a(\overline{y})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k} \quad (1.9)$$

Здесь в переходе (a) применено неравенство Йенсена, в переходах (b) и (e) использована чётность нормы, в (c) использовано неравенство треугольника, в (d) — лемма 1 и чётность веса a по y.

Из (1.9) видно, что подынтегральное выражение в (1.7) не меньше подынтегрального выражения в (1.8). Тем самым, доказательство завершено.

Лемма 3. Пусть функция $a(x',\cdot,u)$ удовлетворяет условию (1.3). Тогда, если u — неотрицательная кусочно линейная функция, удовлетворяющая $u(\cdot,-1)\equiv 0,\ mo\ J(u)\geqslant J(\overline{u}).$

Доказательство. Заметим, что в доказательстве леммы 2 мы используем чётность веса только в переходе (d) цепочки неравенств (1.9). Поскольку при $u(\cdot,-1)\equiv 0$ всегда выполнено $u(x_0',-1)< u_0$, с учётом соотношений (1.6) лемма 1 как раз обеспечивает требуемые для перехода (d) неравенства.

1.4 О расширении класса функций, для которых выполняется неравенство (1.2)

проверить ещё раз, что всё ок в многомерном случае кое-где вместо 2 вылезет $|\Omega|$

Следующее утверждение более-менее стандартно. Однако, множество $\{u: J(u) < \infty\}$ даже не является выпуклым подмножеством $W_1^1(\Omega)$. Поэтому здесь мы приводим полное доказательство для удобства читателя. это ок фраза для диссертации вообще?

Лемма 4. Пусть функция а непрерывна. Тогда функционал J(u) слабо полунепрерывен снизу в $W_1^1(\Omega)$.

Доказательство. Пусть $u_m \to u$ в $W_1^1(\Omega)$. Обозначим $A = \underline{\lim} J(u_m) \geqslant 0$. Наша задача — доказать $J(u) \leqslant A$. Если $A = \infty$, то утверждение тривиально, поэтому можно считать $A < \infty$. Переходя к подпоследовательности, добиваемся $A = \lim J(u_m)$. Из слабой сходимости $u_m \to u$ заключаем, что найдётся R_0 такое, что $\|u_m\|_{W_1^1(\Omega)} \leqslant R_0$. Более того, переходя к подпроследовательности, можно считать, что $u_m \to u$ в $L_1(\Omega)$ и $u_m(x) \to u(x)$ почти всюду. Тогда по теореме Егорова для любого ε найдётся множество G_ε^1 такое, что $|G_\varepsilon^1| < \varepsilon$ и $u_m \rightrightarrows u$ в $\Omega \setminus G_\varepsilon^1$.

Из равномерной сходимости u_m следует существование такого K, что для каждого m>K неравенство $|u_m|\leqslant |u|+\varepsilon$ выполнено для аргументов из $\Omega\setminus G^1_\varepsilon$. Возьмём $G^2_\varepsilon=\{x\in\Omega\setminus G^1_\varepsilon:|u(x)|\geqslant \frac{R_0+\varepsilon}{\varepsilon}\}$. Тогда

$$R_0 \geqslant \int_{\Omega} |u(x)| \, dx \geqslant \int_{G_{\varepsilon}^2} |u(x)| \, dx \geqslant \int_{G_{\varepsilon}^2} \frac{R_0 + \varepsilon}{\varepsilon} \, dx = |G_{\varepsilon}^2| \frac{R_0 + \varepsilon}{\varepsilon}.$$

То есть $|G_{\varepsilon}^2| \leqslant \varepsilon \frac{R_0}{R_0 + \varepsilon} < \varepsilon$. Тем самым, последовательность u_m равномерно сходится и равномерно ограничена вне множества $G_{\varepsilon} := G_{\varepsilon}^1 \cup G_{\varepsilon}^2$.

Из непрерывности F и a следует, что для произвольных ε и R найдётся такое $N(\varepsilon,R)$, что если $x\in\Omega\setminus G_{\varepsilon},\,|M|\leqslant R$ и $m>N(\varepsilon,R)$, то

$$|F(u_m(x), a(x, u_m(x))M) - F(u(x), a(x, u(x))M)| < \varepsilon.$$

Рассмотрим множества $E_{m,\varepsilon} := \{x \in \Omega : |u'_m(x)| \geqslant \frac{R_0}{\varepsilon}\}$. Имеем

$$R_0 \geqslant \int_{\Omega} |u'_m(x)| \, dx \geqslant \int_{E_{m,\varepsilon}} |u'_m(x)| \, dx \geqslant \int_{E_{m,\varepsilon}} \frac{R_0}{\varepsilon} \, dx = \frac{R_0}{\varepsilon} |E_{m,\varepsilon}|.$$

Поэтому $|E_{m,\varepsilon}| \leqslant \varepsilon$.

Теперь можно ввести $L_{m,\varepsilon} := \Omega \setminus (E_{m,\varepsilon} \cup G_{\varepsilon})$. Тогда $|L_{m,\varepsilon}| \geqslant 2 - 3\varepsilon$.

Зафиксируем $R:=\frac{R_0}{\varepsilon},\ N(\varepsilon):=N(\varepsilon,\frac{R_0}{\varepsilon})$. Для любых $\varepsilon>0,\ x\in L_{m,\varepsilon}$ и $m>N(\varepsilon)$ получим

$$\left| F(u_m(x), a(x, u_m(x))|u'_m(x)|) - F(u(x), a(x, u(x))|u'_m(x)|) \right| < \varepsilon,$$

откуда

$$\int_{L_m \, \varepsilon} \left| F(u_m(x), a(x, u_m(x)) | u'_m(x) |) - F(u(x), a(x, u(x)) | u'_m(x) |) \right| dx < 2\varepsilon. \quad (1.10)$$

Возьмём $\varepsilon_j = \frac{\varepsilon}{2^j} \ (j \geqslant 1), \ m_j = N(\varepsilon_j) + j \to \infty$ и $L_\varepsilon = \bigcap L_{m_j,\varepsilon_j}$. Тогда $\sum \varepsilon_j = \varepsilon$ и, тем самым, $|\Omega \setminus L_\varepsilon| < 3\varepsilon$. Поскольку из (1.10) следует

$$\int_{L_{\varepsilon}} \left| F\left(u_{m_{j}}(x), a(x, u_{m_{j}}(x)) | u'_{m_{j}}(x)|\right) - F\left(u(x), a(x, u(x)) | u'_{m_{j}}(x)|\right) \right| dx < 2\varepsilon_{j},$$

мы получаем

$$A = \lim J(u_{m_j}) = \lim \int_{\Omega} F(u_{m_j}(x), a(x, u_{m_j}(x)) | u'_{m_j}(x) |) dx$$

$$\geqslant \underline{\lim} \int_{\Omega} \chi_{L_{\varepsilon}}(x) F(u(x), a(x, u(x)) | u'_{m_j}(x) |) dx =: \underline{\lim} J_{\varepsilon}(u'_{m_j}).$$

Наш новый функционал

$$J_{\varepsilon}(v) = \int_{\Omega} \chi_{L_{\varepsilon}}(x) F(u(x), a(x, u(x))|v(x)|) dx$$

выпуклый. Вновь переходя к подпоследовательности u_k , можно считать, что $\underline{\lim} J_{\varepsilon}(u'_{m_j}) = \lim J_{\varepsilon}(u'_k)$. Так как $u'_k \to u'$ в L_1 , то можно подобрать последовательность выпуклых комбинаций u'_k , которые будут сходиться к u' сильно (см. [3, Теорема 3.13]). А именно: найдутся $\alpha_{k,l} \geqslant 0$ для $k \in \mathbb{N}, l \leqslant k$ такие, что

 $\sum_{l=1}^{k} \alpha_{k,l} = 1$ для каждого k и $w_k := \sum_{l=1}^{k} \alpha_{k,l} u'_l \to u'$ в L_1 . Кроме того, очевидно, можно потребовать, чтобы минимальный индекс l ненулевого коэффициента $\alpha_{k,l}$ стремился к бесконечности по k. Тогда

$$\lim J_{\varepsilon}(u'_k) = \lim \sum_{l=1}^k \alpha_{k,l} J_{\varepsilon}(u'_l).$$

В силу выпуклости J_{ε} имеем

$$\sum_{l=1}^k \alpha_{k,l} J_{\varepsilon}(u'_l) \geqslant J_{\varepsilon}(w_k).$$

Наконец, поскольку $w_k \to u'$ в $L_1(\Omega)$, переходя к подпоследовательности, можем считать, что $w_k(x) \to u'(x)$ почти всюду. Кроме того, так как для $x \in L_{\varepsilon}$ выполнено $|u_j'(x)| < \frac{R_0}{\varepsilon}$, то и $|w_k(x)| < \frac{R_0}{\varepsilon}$. Значит,

$$F(u(x), a(x, u(x))|w_k(x)|) \leqslant \max_{(x,M)} F(u(x), a(x, u(x))M) < \infty,$$

где максимум берется по компактному множеству $(x, M) \in \Omega \times [-\frac{R_0}{\varepsilon}, \frac{R_0}{\varepsilon}]$. оно не компактно Поэтому применима теорема Лебега, и мы получаем $\lim J_{\varepsilon}(w_k) = J_{\varepsilon}(u')$. Таким образом,

$$A\geqslant \lim J_{\varepsilon}(u_k')=\lim \sum_{l=1}^k lpha_{k,l}J_{\varepsilon}(u_l')\geqslant \underline{\lim}\, J_{\varepsilon}(w_k)=J_{\varepsilon}(u').$$

Ввиду произвольности $\varepsilon > 0$ имеем $A \geqslant J(u)$.

Теорема 3. Пусть $B \subset A \subset W_1^1(\Omega)$. Предположим, что для каждого $u \in A$ найдётся последовательность $u_k \in B$ такая, что $u_k \to u$ в $W_1^1(\Omega)$ и $J(u_k) \to J(u)$. Тогда

- і) Если $\forall v \in B$ выполнено $J(v^*) \leqslant J(v)$, то $\forall u \in A$ будет выполнено $J(u^*) \leqslant J(u)$.
- іі) Если $\forall v \in B$ выполнено $J(\overline{v}) \leqslant J(v)$, то $\forall u \in A$ будет выполнено $J(\overline{u}) \leqslant J(u)$.

Доказательство. і) Возьмём некоторую $u \in A$ и для нее найдем приближающую последовательность $\{u_k\} \subset B$. По условию $J(u_k^*) \leqslant J(u_k) \to J(u)$. В [2, теорема 1] показано, что

$$u_k \to u \text{ B } W_1^1(\Omega) \implies u_k^* \to u^* \text{ in } W_1^1(\Omega).$$

Из леммы 4 получаем

$$J(\overline{u}) \leq \underline{\lim} J(\overline{u_k}) \leq \lim J(u_k) = J(u).$$

ii) Поскольку $\overline{u_k}(x)=u_k^*(\frac{x-1}{2})$ и $\overline{u}(x)=u^*(\frac{x-1}{2})$, имеем

$$u_k \to u \text{ B } W_1^1(\Omega) \implies \overline{u_k} \to \overline{u} \text{ in } W_1^1(\Omega).$$

Тем самым, рассуждения из доказательства предыдущего пункта могут быть дословно повторены.

Это утверждение совпадает с первой частью следующей теоремы, но более подробно объяснено. Вставить формулировку теоремы, на которую ссылаемся, и перенести в следующий пункт

Следствие 1. Пусть вес а непрерывен, и неравенство (1.2) верно для неотрицательных кусочно линейных функций и. Тогда оно верно для всех неотрицательных липшицевых функций.

Доказательство. Не нужно ли тут что-то от границы Ω ? Ввиду теоремы 1 из $\S6.6$ [4], любая липшицева функция u может быть приближены последовательностью $u_k \in C^1(\overline{\Omega})$ в следующем смысле:

$$u_k \rightrightarrows u, \qquad u'_k \to u' \text{ II.B.}, \qquad |u'_k| \leqslant const.$$

Тогда по теореме Лебега $u_k \to u$ в $W_1^1(\Omega)$ и $J(u_k) \to J(u)$. В свою очередь, u_k могут быть аналогичным образом приближены кусочно линейными функциями. Применив лемму 2 и теорему 3, получаем требуемое.

1.5 Переход к соболевским функциям

Теорема 4. Пусть функция $a(x',\cdot,u)$ чётна и удовлетворяет условию (1.3). Тогда

- **i)** Неравенство (1.2) верно для произвольной неотрицательной $u \in Lip(\Omega)$.
- **ii)** Предположим, что $\partial \omega \in Lip$ и для любых $x' \in \omega, z \in \mathbb{R}_+, p \in \mathbb{R}$ функция F удовлетворяет неравенству

$$F(x', z, p) \le C(1 + |z|^{q^*} + |p|^q),$$

где $\frac{1}{q^*} = \frac{1}{q} - \frac{1}{n}$, если q < n, либо q^* любое в противном случае. Если $q \leqslant n$, то дополнительно предположим, что веса а и a_i ограничены. Тогда неравенство (1.2) верно для произвольной неотрицательной $u \in W^1_q(\Omega)$.

Доказательство. і) Мы можем приблизить липшицевы u кусочно линейными функциями u_k вместе с производными почти всюду. Поскольку u_k равномерно ограничены вместе с производными, то и $F(x', u_k(x), \|\mathcal{D}u_k\|)$ равномерно ограничены. Тогда мы можем воспользоваться теоремой Лебега, получив $u_k \to u$ в $W_1^1(\Omega)$ и $J(u_k) \to J(u)$. Воспользовавшись теоремой 3, получаем требуемое.

ii) Рассмотрим произвольную $u \in W_q^1(\Omega)$. Для нее можно построить последовательность кусочно линейных функций u_k , приближающих её в $W_q^1(\Omega)$. Действительно, поскольку $\partial\Omega \in Lip$, u можно продолжить финитным образом на внутренность большого шара в \mathbb{R}^n и приблизить гладкими финитными функциями. Далее шар триангулируется, и значения функции линейно интерполируются. Очевидно, в процессе все функции остаются неотрицательными.

Тогда, ввиду теоремы 3, достаточно добиться $J(u_k) \to J(u)$. Доказательство этой сходимости можно свести к теореме Красносельского о непрерывности оператора Немыцкого (см. [5, гл. 5, §17]). Однако для удобства читателя мы приводим здесь рассуждение целиком.

Покажем, что веса $a_i(x',u(x))$ и a(x,u(x)) ограничены. Если $q\leqslant n$, то это выполнено по предположению теоремы. Если же нет, то $W_q^1(\Omega)$ вкладывается в $C(\overline{\Omega})$, тем самым, $u_k(x)$ равномерно ограничены, а значит, и $a_i(x',u_k(x))$ и $a(x,u_k(x))$ равномерно ограничены. Поэтому $\|\mathcal{D}u_k(x)\|\leqslant C_1|\nabla u_k(x)|$. То есть,

$$F(x', u_k(x), ||\mathcal{D}u_k(x)||) \le C_2(1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q).$$

Рассмотрим множества A_m , состоящие из $x \in \Omega$, для которых при всех $k \geqslant m$ выполнено $1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q \leqslant 2(1 + |u(x)|^{q^*} + |\nabla u(x)|^q)$. Очевидно, что $A_m \subset A_{m+1}$. Переходя к подпоследовательности, можем считать, что $u_k \to u$ и $\nabla u_k \to \nabla u$ почти всюду. А значит $|A_m| \to |\Omega|$. Тогда

$$\mathcal{X}\{A_k\}F(x', u_k(x), \|\mathcal{D}u_k(x)\|) \leq 2(1 + |u(x)|^{q^*} + |\nabla u(x)|^q),$$

$$\mathcal{X}\{A_k\}F(x', u_k(x), \|\mathcal{D}u_k(x)\|) \to F(x', u(x), \|\mathcal{D}u(x)\|)$$

почти всюду. По теореме вложения $\|u_k\|_{q^*} \leqslant C_3 \|u_k\|_{W_q^1}$. Тем самым, мы нашли суммируемую мажоранту и получаем $\int_{A_k} \mathcal{X}\{A_k\} F(x',u_k(x),\|\mathcal{D}u_k(x)\|) dx \to J(u)$ по теореме Лебега .

Теперь оценим остаток:

$$\int_{\Omega \setminus A_k} F(x', u_k(x), \|\mathcal{D}u_k(x)\|) dx \leq \int_{\Omega \setminus A_k} C_2 (1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q) dx
\leq C_4 \Big(\int_{\Omega \setminus A_k} (1 + |u(x)|^{q^*} + |\nabla u(x)|^q) dx + \int_{\Omega \setminus A_k} (1 + |u(x) - u_k(x)|^{q^*} + |\nabla (u - u_k)(x)|^q) \Big) dx.$$

Первое слагаемое стремится к нулю по абсолютной непрерывности интеграла. Для второго слагаемого выполнено

$$\int_{\Omega \setminus A_k} (1 + |u(x) - u_k(x)|^{q^*} + |\nabla (u - u_k)(x)|^q) dx$$

$$\leq (|\Omega \setminus A_m(k)| + ||u - u_k||_{W_q^1}^{q^*} + ||u - u_k||_{W_q^1}^q) \to 0.$$

Тем самым, сходимость $J(u_k) \to J(u)$ доказана.

Теорема 5. Пусть функция $a(x',\cdot,u)$ удовлетворяет условию (1.3). Тогда

- і) Неравенство (1.2) верно для произвольной неотрицательной $u \in Lip(\Omega)$, удовлетворяющей $u(\cdot, -1) \equiv 0$.
- **ii)** Предположим, что $\partial \omega \in Lip\ u\ для\ любых\ x' \in \omega, z \in \mathbb{R}_+, p \in \mathbb{R}$ функция $F\ удовлетворяет\ неравенству$

$$F(x', z, p) \le C(1 + |z|^{q^*} + |p|^q),$$

 $z\partial e \ \frac{1}{q^*} = \frac{1}{q} - \frac{1}{n}, \ ecnu \ q < n, \ nuбо \ q^*$ любое в противном случае. Если $q \leqslant n, \ mo$ дополнительно предположим, что веса а $u \ a_i$ ограничены. Тогда неравенство (1.2) верно для произвольной неотрицательной $u \in W^1_q(\Omega), \ y$ довлетворяющей $u(\cdot, -1) \equiv 0.$

Доказательство теоремы дословно повторяет доказательство теоремы 4.

Глава 2. О неравенстве Пойа-Сегё для монотонной перестановки и симметризации в общем случае при n=1

2.1 Обозначения

В этой главе мы рассматриваем одномерный случай задачи из первой главы. Тем самым, пропадают весовые коэффициенты a_i , вес $a=a(x,v):[-1,1]\times\mathbb{R}_+\to\mathbb{R}_+$, \mathfrak{F} — множество непрерывных функций $F:\mathbb{R}_+\times\mathbb{R}_+\to\mathbb{R}_+$ выпуклых и строго возрастающих по второму аргументу, удовлетворяющих $F(\cdot,0)\equiv 0$. Рассматриваемый функционал имеет вид:

$$J(a, u) = \int_{-1}^{1} F(u(x), a(x, u(x))|u'(x)|) dx.$$

Также мы будем использовать обозначение

$$J(B, a, u) = \int_{B} F(u(x), a(x, u(x))|u'(x)|) dx.$$

Мы снимаем требование ограничения роста, стоящее в теореме 4, и также доказываем аналогичный результат для симметричной перестановки, устанавливая необходимые и достаточные условия:

$$J(u^*) \leqslant J(u). \tag{2.1}$$

Мы продолжаем ссылаться на условие (1.3), однако оно приобретает следующий вид:

$$a(s, v) + a(t, v) \ge a(1 - t + s, v), \quad \forall s, t : -1 \le s \le t \le 1, v \in \mathbb{R}_+.$$
 (2.2)

2.2 Доказательство неравенства (1.2) для монотонных весов

В этом параграфе мы получим неравенство (1.2) при дополнительном условии монотонности весовой функции при $x \in [-1,0]$ и при $x \in [0,1]$.

Лемма 5. Пусть a — непрерывная функция, $a(\cdot, u)$ возрастает на [-1, 0] u убывает на [0, 1] для всех $u \geqslant 0$. Тогда для любой функции $u \in W^1_1(-1, 1)$, $u \geqslant 0$, найдётся последовательность $\{u_k\} \subset Lip[-1, 1]$, удовлетворяющая

$$u_k \to u \ e \ W_1^1(-1,1) \quad u \quad J(a,u_k) \to J(a,u).$$
 (2.3)

Для доказательства мы модифицируем схему из [6, Теорема 2.4]. Частично доказательство совпадает с [6], но для удобства читателя мы приводим здесь его полностью.

Нам потребуется следующее вспомогательное утверждение.

Предложение 1. [6, лемма 2.7]. Пусть $\varphi_h : [-1,1] \to \mathbb{R}$ — последовательность липшицевых функций, удовлетворяющих условиям: $\varphi'_h \geqslant 1$ для почти всех x и всех h, $\varphi_h(x) \to x$ для почти каждого x. Тогда для любой $f \in L_1(\mathbb{R})$ выполнено $f(\varphi_h) \to f$ в $L_1(\mathbb{R})$.

Доказательство леммы 5. Можно считать, что $J(a, u) < \infty$.

Мы докажем утверждение для функционала

$$J_1(u) = \int_0^1 F(u(x), a(x, u(x))|u'(x)|) dx.$$

Вторая часть с интегрированием по [-1,0] сводится к J_1 заменой переменной.

Для $h \in \mathbb{N}$ покроем множество $\{x \in [0,1]: |u'(x)| > h\}$ открытым множеством A_h . Не умаляя общности, можно считать, что $A_{h+1} \subset A_h$ и $|A_h| \to 0$ при $h \to \infty$.

Обозначим v_h неотрицательную непрерывную функцию, заданную на [0,1], совпадающую с u на множестве $[0,1]\setminus A_h$, и линейную на интервалах, составляющих A_h . Тогда $v_h\to u$ в $W_1^1(-1,1)$. Теперь изменим v_h так, чтобы сделать их липшицевыми.

Представим $A_h = \bigcup_k \Omega_{h,k}$, где $\Omega_{h,k} = (b_{h,k}^-, b_{h,k}^+)$. Обозначим

$$\alpha_{h,k} := |\Omega_{h,k}|, \quad \beta_{h,k} := v_h(b_{h,k}^+) - v_h(b_{h,k}^-) = u(b_{h,k}^+) - u(b_{h,k}^-).$$

Тогда $v_h' = \frac{\beta_{h,k}}{\alpha_{h,k}}$ в $\Omega_{h,k}$. Заметим, что

$$\sum_{k} |\beta_{h,k}| \leqslant \int_{A_h} |u'| \, dx \leqslant ||u'||_{L_1(-1,1)} < \infty,$$

а значит, $\sum_k |\beta_{h,k}| \to 0$ при $h \to 0$ по теореме Лебега.

Определим функцию $\phi_h \in W^1_1(0,1)$ следующим образом:

Заметим, что $\int_0^1 |\varphi_h'| \, dx \leqslant 1 + \sum_k |\beta_{h,k}| < \infty$.

Покажем, что $\phi'_h \to 1$ в $L_1(0,1)$:

$$\int |\varphi_h' - 1| \, dx = \sum_k \left(\max\left(\frac{|\beta_{h,k}|}{\alpha_{h,k}}, 1\right) - 1 \right) \alpha_{h,k} \leqslant \sum_k |\beta_{h,k}| \to 0.$$

Отсюда следует, что ϕ_h удовлетворяет условиям предложения 1.

Рассмотрим теперь $\varphi_h^{-1}:[0,1]\to [0,1]$ — ограничение обратной к φ_h функции на [0,1]. Тогда $0\leqslant (\varphi_h^{-1})'\leqslant 1$ и

$$\begin{split} \phi_h^{-1}(0) &= 0 \\ (\phi_h^{-1})' &= 1 \\ (\phi_h^{-1})' &= \min\Bigl(\frac{\alpha_{h,k}}{|\beta_{h,k}|}, 1\Bigr) \quad \text{B } [0,1] \setminus \phi_h(\Omega_{h,k}). \end{split}$$

Возьмём $u_h = v_h(\varphi_h^{-1})$. Заметим, что $u_h(0) = u(0)$, и

$$u'_{h} = v'_{h}(\varphi_{h}^{-1}) \cdot (\varphi_{h}^{-1})' = u'(\varphi_{h}^{-1})$$

$$u'_{h} = v'_{h}(\varphi_{h}^{-1}) \cdot (\varphi_{h}^{-1})' = \operatorname{sign} \beta_{h,k} \cdot \min \left(1, \frac{|\beta_{h,k}|}{\alpha_{h,k}}\right)$$

$$\operatorname{B} [0,1] \setminus \varphi_{h}(A_{h}),$$

$$\operatorname{B} [0,1] \cap \varphi_{h}(\Omega_{h,k}).$$

Тем самым, u_h липшицева, поскольку u' ограничена в $[0,1] \setminus A_h$.

Покажем, что $u_h \to u$ в $W^1_1(0,1)$. Для этого достаточно оценить

$$||u'_h - u'||_{L_1} \leqslant \int_{[0,1]\setminus\varphi_h(A_h)} |u'_h - u'| + \int_{[0,1]\cap\varphi_h(A_h)} |u'_h| + \int_{[0,1]\cap\varphi_h(A_h)} |u'| =: P_h^1 + P_h^2 + P_h^3.$$

$$P_h^1 = \int_{[0,1]\setminus\varphi_h(A_h)} |u'(\varphi_h^{-1}) - u'| \, dx = \int_{\varphi_h^{-1}([0,1])\setminus A_h} |u' - u'(\varphi_h)| \, dz \leqslant \int_{[0,1]} |u' - u'(\varphi_h)| \, dz.$$

В силу предложения 1, $P_h^1 \to 0$. Далее,

$$P_h^2 \leqslant |\varphi_h(A_h)| = \sum_k |\varphi_h(\Omega_{h,k})| = \sum_k \max(|\beta_{h,k}|, \alpha_{h,k}) \leqslant \sum_k \alpha_{h,k} + \sum_k |\beta_{h,k}| \to 0.$$

Наконец, $P_h^3 \to 0$ по абсолютной непрерывности интеграла, и утверждение доказано.

Осталось показать, что $J_2(u_h) \to J_2(u)$.

$$J_{1}(u_{h}) = \int_{[0,1]\backslash \varphi_{h}(A_{h})} F(u_{h}(x), a(x, u_{h}(x))|u'_{h}(x)|) dx$$

$$+ \int_{[0,1]\cap \varphi_{h}(A_{h})} F(u_{h}(x), a(x, u_{h}(x))|u'_{h}(x)|) dx =: \hat{P}_{h}^{1} + \hat{P}_{h}^{2}.$$

Поскольку $u \in W^1_1(0,1)$, имеем $u \in L_\infty([0,1])$. Обозначим $\|u\|_\infty = r$, тогда $\|u_h\|_\infty < 2r$ при достаточно больших h. Кроме того, $|u_h'| \leqslant 1$ почти всюду в $\varphi_h(A_h)$. Тогда $\hat{P}_h^2 \leqslant M_F |\varphi_h(A_h)| \to 0$, где

$$M_F = \max_{[-2r,2r]\times[-M_a,M_a]} F; \quad M_a = \max_{[0,1]\times[-2r,2r]} a.$$

Далее,

$$\hat{P}_{h}^{1} = \int_{[0,1]\backslash\varphi_{h}(A_{h})} F(u(\varphi_{h}^{-1}(x)), a(x, u(\varphi_{h}^{-1}(x))|u'(\varphi_{h}^{-1}(x))(\varphi_{h}^{-1})'|)) dx$$

$$= \int_{\varphi_{h}^{-1}([0,1])\backslash A_{h}} F(u(z), a(\varphi_{h}(z), u(z))|u'(z)|) dz$$

$$= \int_{[0,1]} F(u(z), a(\varphi_{h}(z), u(z))|u'(z)|) \chi_{\varphi_{h}^{-1}([0,1])\backslash A_{h}} dz.$$

Последнее равенство, вообще говоря, не имеет смысла, так как $\varphi_h(z)$ может принимать значения вне [0,1]. Определим a(z,u)=a(1,u) при z>1, теперь выражение корректно. Заметим, что $\chi_{\varphi_h^{-1}([0,1])\backslash A_h}$ возрастают, так как множества $\varphi_h^{-1}([0,1])$ возрастают и A_h убывают, то есть $\varphi_{h_1}^{-1}([0,1]) \subset \varphi_{h_2}^{-1}([0,1])$ и $A_{h_1} \supset A_{h_2}$ при $h_1 \leqslant h_2$. На отрезке [0,1] (и даже $\varphi_h([0,1])$) функция a убывает, а также $\varphi_h(z)$ убывает по h, значит $a(\varphi_h(z))$ будет расти по h. В таком случае можно применить теорему о монотонной сходимости и получить

$$\hat{P}_h^1 \to \int_{[0,1]} F(u(z), a(z, u(z))|u'(z)|) dz.$$

Замечание 2. Очевидно, что те же рассуждения с закреплением функции u на левом конце можно провести на любом интервале $[x_0, x_1]$, где вес а убывает по x. То есть можно получить последовательность $\{u_h\}$, удовлетворяющую

$$u_h(x_0) = u(x_0); u_h \to u \in W_1^1(x_0, x_1);$$

$$\int_{x_0}^{x_1} F(u_h(x), a(x, u_h(x))|u_h'(x)|) \to \int_{x_0}^{x_1} F(u(x), a(x, u(x))|u'(x)|).$$

Aналогично, если а возрастает по x, можно аппроксимировать и c закреплением на правом конце.

Следствие 2. Пусть функция а непрерывна, чётна, убывает на [0,1] и удовлетворяет неравенству (1.3). Тогда для любой $u \in W^1_1(-1,1)$ выполнено $J(a,u^*) \leq J(a,u)$.

2.3 Свойства весовой функции

Здесь мы получаем несколько следствий из условия (1.3) на вес. Для удобства в пределах этого параграфа мы опускаем второй параметр веса: a(x,v)=a(x); очевидно, что все полученные свойства буду выполняться для любых v.

- **Лемма 6. i)** Пусть функция а удовлетворяет условию (1.3). Если найдётся такое $x_0 \in [-1,1]$, что $a(x_0) = 0$, то либо $a \equiv 0$ на $[x_0,1]$, либо множество нулей функции а периодично на $[x_0,1]$, причем период нацело делит $1-x_0$.
- іі) Пусть функция а удовлетворяет условию (1.3) и чётна. Если найдётся такое $x_0 \in [-1,1]$, что $a(x_0) = 0$, то либо $a \equiv 0$, либо функция а периодична на отрезке [-1,1], причем период нацело делит $1-x_0$.

Доказательство. і) Прежде всего, заметим, что если для некоторых $s\leqslant t$ выполнено a(s)=a(t)=0, то неравенство (1.3) влечёт

$$0 = a(s) + a(t) \ge a(1 - (t - s)) \ge 0,$$

то есть a(1-(t-s))=0. Подставив $s=t=x_0$, получаем a(1)=0.

Точно так же, если $s \le 1 - t$ и a(s) = a(1 - t) = 0, то a(s + t) = 0.

Тем самым, множество нулей функции a симметрично на отрезке $[x_0, 1]$, и если $a(s) = a(s + \Delta) = 0$ ($\Delta \ge 0$), то $a(s + k\Delta) = 0$, для $s + k\Delta \le 1$. Отсюда следует, что множество корней либо периодично на отрезке $[x_0, 1]$, либо совпадает ним.

ii) Периодичность нулей функции a следует из её чётности и из первой части утверждения леммы. Обозначим расстояние между соседними нулями за Δ .

Тогда для $-1\leqslant x\leqslant 1-\Delta$ выполнено

$$a(x) = a(x) + a(1 - \Delta) \geqslant a(x + \Delta).$$

C другой стороны, $-1 \leqslant -(x+\Delta) \leqslant 1-\Delta$, и

$$a(x + \Delta) = a(-(x + \Delta)) + a(1 - \Delta) \geqslant a(-x) = a(x).$$

Тем самым, $a(x) = a(x + \Delta)$.

Лемма 7. Пусть функции a_1 и a_2 удовлетворяют неравенству (1.3). Тогда функции $\max(a_1(x), a_2(x))$ и $a_1(x) + a_2(x)$ тоже ему удовлетворяет.

Доказательство. Положим $a(x) = \max(a_1(x), a_2(x))$. Тогда

$$a(1-t+s) = \max(a_1(1-t+s), a_2(1-t+s)) \leqslant \max(a_1(s) + a_1(t), a_2(s) + a_2(t))$$

$$\leqslant \max(a_1(s), a_2(s)) + \max(a_1(t), a_2(t)) = a(s) + a(t).$$

Утверждение для второй функции очевидно.

Лемма 8. Пусть функция а удовлетворяет неравенству (1.3), $k \in \mathbb{N}$. Тогда кусочно линейная функция a_k , интерполирующая функцию а по узлам $(-1+\frac{2i}{k})$, $i=0,1,\ldots,k$, тоже удовлетворяет неравенству (1.3).

Доказательство. 1. Пусть $s=-1+\frac{2i}{k},\,t=-1+\frac{2j}{k}$. Тогда неравенство выполняется для a_k , потому что оно выполняется для a, а в этих точках они совпадают.

2. Пусть теперь $s = -1 + \frac{2i}{k}$, и $t \in [-1 + \frac{2j}{k}, -1 + \frac{2(j+1)}{k}]$.

Рассмотрим линейную функцию $h_1(t)=a_k(1-t+s)-a_k(t)-a_k(s)$. Из части 1 следует $h_1(-1+\frac{2j}{k})\leqslant 0$ и $h_1(-1+\frac{2(j+1)}{k})\leqslant 0$. Значит, поскольку h_1

линейна, $h_1(t) \leqslant 0$. Тем самым, неравенство выполняется для любого $s = -1 + \frac{2i}{k}$ и $t \in [-1, 1]$.

3. Пусть s и t удовлетворяют соотношению $1 - t + s = \frac{2j}{k}$.

Рассмотрим функцию $h_2(y)=a_k(\frac{2j}{k})-a_k(s+y)-a_k(t+y)$. Если взять y_0 такое, что $s+y_0$ — один из узлов, то $t+y_0$ — тоже узел. Следовательно $h_2(y_0)=a(\frac{2j}{k})-a(s+y_0)-a(t+y_0)\leqslant 0$. Поскольку h_2 линейна между подобными y_0 , получаем $h_2(y)\leqslant 0$ для всех допустимых y.

4. Наконец, для произвольного $t \in [-1,1]$ рассмотрим $h_3(s) = a_k(1-t+s) - a_k(t) - a_k(s)$. Заметим, что если s или 1-t+s являются узлами, то из частей 2 и 3 следует $h_3(s) \leqslant 0$. Поскольку h_3 линейна между такими s, имеем $h_3(s) \leqslant 0$ для всех допустимых s, что завершает доказательство.

2.4 Доказательство неравенства (1.2) для произвольных весов

В этом параграфе мы избавимся от условия монотонности веса по x. Будем это делать в несколько этапов.

Для начала отметим, что все свойства функции a интересуют нас лишь в окрестности графиков функций u, \overline{u} . Более того, мы будем добиваться того, чтобы свойства веса нас не интересовали в окрестности графика \overline{u} .

Мы вводим несколько ограничений на весовую функцию. Каждое следующее, будучи добавленным к предыдущим, задаёт более узкий класс весов.

- $(H1) \ a(x,v)$ чётна по x и удовлетворяет неравенству (1.3), а также $J(a,u) < \infty$.
- (H2) На множестве $v \in [\min u(x), \max u(x)]$, для которых $a(\cdot, v) \not\equiv 0$, количество нулей функций $a(\cdot, v)$ ограничено константой, не зависящей от v.
- (H3) Если $a(x_0,u(x_0))=0$ для некоторого x_0 , то $a(\cdot,u(x_0))\equiv 0$. Кроме того, выполнено $\lim_{k\to\infty}D_k(a,U(a))=0$, где

$$U(a) := \{ v \in [\min u(x), \max u(x)] : a(\cdot, v) \not\equiv 0 \},\$$

$$D_k(a, U) := \sup_{v \in U} \frac{\max_{|x_1 - x_2| \leq \frac{2}{k}} |a(x_1, v) - a(x_2, v)|}{\min_{\text{dist}(x, u^{-1}(v)) \leq \frac{2}{k}} a(x, v)}.$$
 (2.4)

- (H4) Найдётся такое чётное k, что $a(\cdot,v)$ линейны для каждого v на участках $[-1+\frac{2i}{k},-1+\frac{2(i+1)}{k}].$
- (H5) Множество $v \in \mathbb{R}$, для которых $a(\cdot, v)$ имеет участки постоянства, отличается от множества $v \in \mathbb{R}$ таких, что $a(\cdot, v) \equiv 0$, лишь на множество меры 0.
- (H6) Отрезок [-1,1] можно разбить на конечное число промежутков, на каждом из которых в v-окрестности графика u(x) вес a не меняет монотонности по x.
- (H7) Пусть $x_1 < x_2 < x_3$, и на $[x_1, x_2]$ вес $a(\cdot, v)$ в v-окрестности графика функции u убывает, а на $[x_2, x_3]$ возрастает. Тогда в некоторой окрестности точки $u(x_2)$ имеем $a(\cdot, v) \equiv 0$.

Вес, удовлетворяющий условию (H1), мы будем называть допустимым для заданной функции u(x).

Теперь мы можем сформулировать основное утверждение главы.

Теорема 6. Пусть $F \in \mathfrak{F}$, функция $u \in W_1^1(-1,1)$ неотрицательна, и весовая функция $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$ непрерывна и допустима для u. Тогда справедливо неравенство (1.2).

Мы докажем неравенство (1.2) при условиях (H1)-(H7), а затем будем постепенно избавляться от них.

Для доказательства нам потребуются следующие факты.

Предложение 2. [1, теорема 6.19] Для любой $u \in W_1^1(-1,1)$ и произвольного множества $A \subset \mathbb{R}$ нулевой меры выполнено u'(x) = 0 для почти всех $x \in u^{-1}(A)$.

- **Лемма 9.** Пусть $u \in W_1^1(-1,1)$ неотрицательна. И пусть замкнутое множество $W \subset \mathbb{R}_+$ таково, что множество всех $v \in W$, для которых $a(\cdot,v) \not\equiv 0$, имеет меру ноль. Тогда найдётся возрастающая последовательность весов \mathfrak{b}_ℓ такая, что
 - 1) $\mathfrak{b}_{\ell}(\cdot,v) \Longrightarrow a(\cdot,v)$ для почти всех v;
- 2) $\mathfrak{b}_{\ell}(\cdot,v)\equiv 0$ для кажедого v в некоторой (зависящей от ℓ) окрестности W :
 - 3) $J(\mathfrak{b}_{\ell}, u) \to J(a, u) \ u \ J(\mathfrak{b}_{\ell}, \overline{u}) \to J(a, \overline{u}).$

Замечание 3. *Если а допустимы для и, то и* \mathfrak{b}_{ℓ} *тоже.*

Доказательство. Возьмём $\rho(d) := \min(1, \max(0, d)),$

$$\mathfrak{b}_{\ell}(x,v) := a(x,v) \cdot \rho(\ell \operatorname{dist}(v,W) - 1) \leqslant a(x,v).$$

Вес \mathfrak{b}_{ℓ} равен нулю в $\left(\frac{1}{\ell}\right)$ -окрестности W. Кроме того, $\mathfrak{b}_{\ell} \equiv a$ вне $\left(\frac{2}{\ell}\right)$ -окрестности W, а также $\mathfrak{b}_{\ell}(x,v)$ возрастает по ℓ . Тем самым тем самым или это ещё один очевидный факт?, $\mathfrak{b}_{\ell}(\cdot,v) \rightrightarrows a(\cdot,v)$ для почти всех v. По теореме о монотонной сходимости имеем $J(u^{-1}(\mathbb{R}_+ \setminus W),\mathfrak{b}_{\ell},u) \nearrow J(u^{-1}(\mathbb{R}_+ \setminus W),a,u)$.

Разобьем множество W на два: $W_1:=\{v\in W:a(\cdot,v)\equiv 0\}$ и $W_2=W\backslash W_1.$ Тогда

$$J(u^{-1}(W_1), \mathfrak{b}_{\ell}, u) = J(u^{-1}(W_1), a, u),$$

$$J(u^{-1}(W_2), \mathfrak{b}_{\ell}, u) = \int_{x \in u^{-1}(W_2)} F(u(x), \mathfrak{b}_{\ell}(x, u(x)) | u'(x) |) dx.$$

При этом, по предложению 2, почти всюду на $u^{-1}(W_2)$ выполнено u'(x) = 0. То есть

$$J(u^{-1}(W_2), \mathfrak{b}_{\ell}, u) = \int_{x \in u^{-1}(W_2)} F(u(x), 0) dx = 0.$$

Аналогично $J(u^{-1}(W_2), a, u) = 0$, откуда $J(\mathfrak{b}_{\ell}, u) \to J(a, u)$. Вторая часть пункта 3) доказывается так же.

Перейдем к доказательству теоремы 6.

Шаг 1. Пусть $u \in W_1^1(-1,1)$, u вес а удовлетворяет условиям (H1) – (H7). Тогда выполняется неравенство (1.2).

Разобьем отрезок [-1,1] на отрезки $\Delta_k = [\hat{x}_k, \hat{x}_{k+1}]$, состоящие из двух частей. В левой части каждого отрезка вес a будет возрастать по x в окрестности графика u(x), в правой же будет убывать. Согласно замечанию 2 на каждом таком отрезке можно повторить схему из леммы 5, приближая функцию u липшицевыми функциями u_n . Это даёт $J(\Delta_k, a, u_n) \to J(\Delta_k, a, u)$.

Однако при такой аппроксимации функции u_n могут иметь разрывы в точках \hat{x}_k .

Заметим теперь, что согласно условию (H7) можно выбрать точки \hat{x}_k так, что $a \equiv 0$ в (x,v)-окрестности точек $(\hat{x}_k,u(\hat{x}_k))$.

Изменим теперь функции u_n в окрестности точек \hat{x}_k на линейные, сделав u_n непрерывными на [-1,1]. В силу вышесказанного, интегралов $J(\Delta_k,a,u_n)$ это не изменит, и мы получаем $J(a,u_n) \to J(a,u)$ и $u_n \to u$ в $W_1^1(-1,1)$.

По теореме 3 получаем (1.2).

Шаг 2. Пусть вес а удовлетворяет условиям (H1) - (H6). Тогда выполняется неравенство (1.2).

Применим лемму 9. В качестве множества W возьмем множество всех v, при которых происходит переход графика u(x) из промежутка, в котором вес убывает по x, в промежуток, в котором вес возрастает. Очевидно, получившиеся функции \mathfrak{b}_{ℓ} удовлетворяют (H1)-(H7). Из шага 1 имеем $J(\mathfrak{b}_{\ell},\overline{u})\leqslant J(\mathfrak{b}_{\ell},u)$. Переходя к пределу, получаем требуемое неравенство (1.2).

Шаг 3. Пусть вес а удовлетворяет условиям (H1) - (H5). Тогда выполняется неравенство (1.2).

Рассмотрим абсциссы точек излома функции a и ординаты, для которых a имеет участки постоянства. Эти абсциссы и ординаты определяют деление прямоугольника $[-1,1] \times [\min u(x), \max u(x)]$ на более мелкие, внутри которых вес a не меняет монотонности. Однако, количество мелких прямоугольников может оказаться бесконечным. Кроме того, если функция пересекает горизонтальную границу прямоугольника, монотонность в v-окрестности точки пересечения может меняться.

Возьмем множество W точек v, для которых вес a имеет участки постоянства по x. В соответствии с (H5) множество $v \in W$, для которых $a(\cdot,v) \not\equiv 0$, имеет нулевую меру.

Применив лемму 9, построим последовательность весов \mathfrak{b}_{ℓ} . У каждого из них количество участков монотонности конечно, поскольку между соседними по v участками строгой монотонности присутствует полоса нулевых значений веса шириной по крайней мере $\frac{2}{k}$.

Тем самым, вес \mathfrak{b}_{ℓ} может менять монотонность вдоль графика u либо в точках $x=-1+\frac{2i}{k}$, либо в тех местах, где график пересекает полосу нулевых значений веса. Ясно, что таких пересечений может быть лишь конечное число, поскольку $\int |u'|$ увеличивается как минимум на $\frac{2}{\ell}$ во время такого перехода, а $u' \in L_1(-1,1)$.

Мы получили, что \mathfrak{b}_ℓ удовлетворяют (H1)-(H6). Из шага 2 имеем $J(\mathfrak{b}_\ell,\overline{u})\leqslant J(\mathfrak{b}_\ell,u)$. Переходя к пределу, получаем (1.2).

Шаг 4. Пусть вес а удовлетворяет условиям (H1) - (H3). Тогда выполняется неравенство (1.2). Предположим, что функция a удовлетворяет (H1)-(H3), в частности $J(a,u)<\infty.$

Зафиксируем произвольное четное k. По точкам $a(-1+\frac{2i}{k},v)$ для каждого v построим кусочно линейную по x интерполяцию. Получившаяся функция $a_k(x,v)$ непрерывна, четна по x и по лемме 8 удовлетворяет неравенству (1.3). Кроме того, $a_k \to a$ при $k \to \infty$, причем сходимость равномерная на компактах. Однако неравенство $a_k(x,u(x)) \leqslant a(x,u(x))$ не обязано выполняться, и потому веса a_k могут не быть допустимыми для u.

Возьмем $\mathfrak{c}_k := (1 - D_k(a_k, U(a_k)))a_k$, где D_k определены в (2.4). Числа $D_k(a_k, U(a_k))$ положительны и стремятся к нулю, поэтому $\mathfrak{c}_k \to a$ при $k \to \infty$. Покажем, что $\mathfrak{c}_k(x, u(x)) \leqslant a(x, u(x))$. Возьмем некоторое число $x \in [-1 + \frac{2i}{k}, -1 + \frac{2(i+1)}{k}] =: [x_i, x_{i+1}]$. Тогда $\mathfrak{c}_k(x, u(x)) \leqslant \max(\mathfrak{c}_k(x_i, u(x)), \mathfrak{c}_k(x_{i+1}, u(x)))$, поскольку \mathfrak{c}_k кусочно линейны по x. Далее,

$$\mathbf{c}_{k}(x_{i}, u(x)) = (1 - D_{k}(a_{k}, U(a_{k}))) \cdot a(x_{i}, u(x))$$

$$\leq a(x_{i}, u(x)) - \frac{a(x_{i}, u(x)) - a(x, u(x))}{a(x_{i}, u(x))} \cdot a(x_{i}, u(x)) = a(x, u(x)).$$

Аналогично, $\mathfrak{c}_k(x_{i+1},u(x)) \leqslant a(x,u(x))$. Тем самым, $\mathfrak{c}_k(x,u(x)) \leqslant a(x,u(x))$ для любого x, и \mathfrak{c}_k являются допустимыми для u. То есть функции \mathfrak{c}_k удовлетворяют (H1)-(H4).

При заданном $k \in \mathbb{N}$, будем приближать функцию $\mathfrak{c}_k =: \mathfrak{c}$ весами, удовлетворяющими (H1)-(H5). Рассмотрим вспомогательную функцию $\Lambda(x)=1-|x|$, удовлетворяющую условию (1.3).

Возьмем

$$t(v) := D_k(\mathfrak{c}, U(\mathfrak{c})) \cdot \max\{\tau \geqslant 0 : \forall x \in u^{-1}(v) \quad \tau \Lambda(x) \leqslant \mathfrak{c}(x, u(x))\}.$$

Функция t зависит от k, но мы будем опускать это в записи.

Ясно, что максимальное τ равно нулю только если $c(\cdot,v)\equiv 0$, иначе нарушается условие (H3). Функция t может не быть непрерывной. Однако, несложно видеть, что она полунепрерывна снизу. Возьмем теперь

$$\tilde{t}(v) := \inf_{w \in u([-1,1])} \{t(w) + |v - w|\}.$$

Очевидно, что $\tilde{t}\leqslant t$, и множества нулей функций t и \tilde{t} совпадают.

Покажем, что \tilde{t} непрерывна (и даже липшицева). Зафиксируем некоторое v_1 . Тогда найдутся сколь угодно малое $\varepsilon > 0$ и $w_1 \in u([-1,1])$, удовлетворяющие

 $\tilde{t}(v_1) = t(w_1) + |v_1 - w_1| - \varepsilon$. Для любого v_2 имеем $\tilde{t}(v_2) \leqslant t(w_1) + |v_2 - w_1|$. И, тем самым, $\tilde{t}(v_2) - \tilde{t}(v_1) \leqslant |v_1 - v_2| + \varepsilon$. В силу произвольности v_1 , v_2 и ε , получаем, что \tilde{t} непрерывна.

При $\alpha \in [0,1]$ функция $\mathfrak{d}_{\alpha}(x,v) := \mathfrak{c}(x,v) + \alpha \Lambda(x) \tilde{t}(v)$ чётна по x, удовлетворяет неравенству (1.3) согласно лемме 7, и не превосходит a(x,v) по построению функции \tilde{t} . Таким образом, \mathfrak{d}_{α} — допустимый вес. И теперь очевидно, что \mathfrak{d}_{α} удовлетворяет условиям (H1) - (H4).

Покажем, что для почти всех $\alpha \in [0,1]$ выполнено следующее условие. \mathfrak{d}_{α} не имеет горизонтальных участков, за исключением v, для которых $\mathfrak{d}_{\alpha}(\cdot,v) \equiv 0$, и множества меры ноль. Введём обозначение для множества α , «плохих» на участке $[x_i, x_{i+1}]$:

$$A_i := \left\{ \alpha \in [0, 1] : \right.$$

meas
$$\{v \in [\min u, \max u] : \frac{\mathfrak{c}(x_{i+1}, v) - \mathfrak{c}(x_i, v))}{\frac{2}{k}} + \alpha \chi_i \tilde{t}(v) = 0\} > 0\},$$

где $\chi_i=1$ если $[x_i,x_{i+1}]\subset [0,1],$ и $\chi_i=-1,$ если $[x_i,x_{i+1}]\subset [-1,0].$

Рассмотрим функцию

$$h_i(v) = \frac{\mathfrak{c}(x_{i+1}, v) - \mathfrak{c}(x_i, v)}{\tilde{t}(v)}$$
 при $\tilde{t}(v) \neq 0$ при $\tilde{t}(v) = 0$.

Тогда $\operatorname{card}(A_i) = \operatorname{card}(\{\alpha \in [0,1] : \operatorname{meas}\{v \in [\min u, \max u] : h_i(v) \pm \frac{2}{k}\alpha = 0\} > 0\})$. Значит $\operatorname{card}(A_i) \leqslant \aleph_0$, а также $\operatorname{card}(\cup_i A_i) \leqslant \aleph_0$. Тем самым, найдётся последовательность весов $\mathfrak{d}_{\alpha_i} \searrow \mathfrak{c}$, удовлетворяющих (H1) - (H5).

Из шага 3 имеем $J(\mathfrak{d}_{\alpha_j},\overline{u})\leqslant J(\mathfrak{d}_{\alpha_j},u)$. Переходя к пределу, получаем $J(\mathfrak{c},\overline{u})\leqslant J(\mathfrak{c},u)$.

Далее, при $x \in [-1, 1]$ имеем

$$F(u(x), \mathfrak{c}_k(x, u(x))|u'(x)|) \to F(u(x), a(x, u(x))|u'(x)|)$$
(2.5)

при $k \to \infty$. Кроме того, F(u(x), a(x, u(x))|u'(x)|) является суммируемой мажорантой для левой части соотношения (2.5). По теореме Лебега о мажорируемой сходимости, получаем $J(\mathfrak{c}_k, u) \to J(a, u)$. Поскольку $J(\mathfrak{c}_k, \overline{u}) \leqslant J(\mathfrak{c}_k, u)$, теорема 3 даёт неравенство (1.2).

Шаг 5. Пусть вес а удовлетворяет лишь условию (H1). Тогда выполняется неравенство (1.2).

Будем строить приближение для a весами, удовлетворяющими (H1)-(H2). Воспользуемся леммой 9 с множеством $W=\{v\in\mathbb{R}_+:a(\cdot,v)\equiv 0\}.$ Введём обозначение

$$Z_a(v) := \{x \in [-1, 1] : a(x, v) = 0\}.$$

Заметим, что множества $Z_{\mathfrak{b}_{\ell}}(v)$ совпадают либо с $Z_a(v)$, либо с [-1,1].

Покажем, что \mathfrak{b}_{ℓ} удовлетворяет (H2). Действительно, в противном случае найдётся последовательность v_m , для которой $m < \operatorname{card}(Z_{\mathfrak{b}_{\ell}})(v_m) < \infty$. После перехода к подпоследовательности имеем $v_m \to v_0$. Из части 2 леммы 6 следует, что множества $Z_{\mathfrak{b}_{\ell}}(v_m) = Z_a(v_m)$ периодические с периодом не более $\frac{2}{m-1}$. Возьмем некоторый $x \in [-1,1]$. Для каждого m найдётся x_m такой, что $|x-x_m| \leqslant \frac{1}{m-1}$ и $a(x_m,v_m)=0$. Но $a(x_m,v_m)\to a(x,v_0)$. Тем самым, $a(x,v_0)=0$. Отсюда $Z_a(v_0)=[-1,1]$. Но это означает, что для любого v, для которого $|v-v_0| \leqslant \frac{1}{\ell}$, выполнено $\mathfrak{b}_{\ell}(\cdot,v)\equiv 0$, что противоречит $\operatorname{card}(Z_{\mathfrak{b}_{\ell}})(v_m)<\infty$.

Зафиксируем теперь $\ell \in \mathbb{N}$, обозначим $\mathfrak{b}_{\ell} =: \mathfrak{b}$ и приблизим функцию \mathfrak{b} весами, удовлетворяющими (H1)-(H3). Из (H2) следует, что найдётся множество $T \subset [-1,1]$ состоящее из конечного числа элементов, такое, что если $x \notin T$ и $\mathfrak{b}(x,v) = 0$ для некоторого v, то $\mathfrak{b}(\cdot,v) \equiv 0$.

Вновь воспользуемся леммой 9 с множеством $W = u(T) \cup \overline{u}(T)$. Полученные при помощи леммы веса \mathfrak{c}_j удовлетворяют (H1) - (H2), поскольку отличаются от \mathfrak{b} лишь домножением на непрерывный множитель, меньший единицы и зависящий только от v.

Из непрерывности u следует, что для достаточно больших k найдутся j=j(k) такие, что

$$u\Big(\Big\{x\in[-1,1]:dist(x,T)\leqslant\frac{4}{k}\Big\}\Big)\subset\Big\{v\in\mathbb{R}_{+}:dist(v,u(T))\leqslant\frac{1}{2j}\Big\},$$

и $j(k)\to\infty$ при $k\to\infty$. Отсюда $\min_{dist(x,u^{-1}(v))\leqslant \frac{2}{k}}c_j(x,v)>0$ для всех $v\in U(c_j)$. Более того, при $v\in U(c_j)$

$$\frac{\max\limits_{\substack{|x_{i}-x_{i+1}|\leqslant\frac{2}{k}}}|\mathfrak{c}_{j}(x_{i},v)-\mathfrak{c}_{j}(x_{i+1},v)|}{\min\limits_{\substack{\text{dist}(x,u^{-1}(v))\leqslant\frac{2}{k}}}\mathfrak{c}_{j}(x,v)}=\frac{\max\limits_{\substack{|x_{i}-x_{i+1}|\leqslant\frac{2}{k}}}|\mathfrak{b}(x_{i},v)-\mathfrak{b}(x_{i+1},v)|}{\min\limits_{\substack{\text{dist}(x,u^{-1}(v))\leqslant\frac{2}{k}}}\mathfrak{b}(x,v)}.$$

При этом, знаменатель второй дроби при $v \in U(\mathfrak{c}_j)$ отделен от нуля. Тем самым, $D_k(\mathfrak{c}_j, U(\mathfrak{c}_j))$ ограничена.

Поскольку D_k не меняется при домножении первого аргумента на коэффициент, не зависящий от x, и $U(\mathfrak{c}_i) \nearrow U(\mathfrak{b})$, имеем

$$D_k(\mathfrak{c}_j, U(\mathfrak{c}_j)) = D_k(\mathfrak{b}, U(\mathfrak{c}_j)) \leqslant D_k(\mathfrak{b}, U(\mathfrak{b})) \to 0$$

при $k \to \infty$.

Таким образом, веса $\mathfrak{c}_{j(k)}$ удовлетворяют (H1)-(H3). Из шага 4 имеем $J(\mathfrak{c}_{j(k)},\overline{u})\leqslant J(\mathfrak{c}_{j(k)},u)$. Переходя к пределу, получаем $J(\mathfrak{b}_{\ell},\overline{u})\leqslant J(\mathfrak{b}_{\ell},u)$, а затем и неравенство (1.2).

Тем самым, теорема 6 доказана.

2.5 Доказательство неравенства (1.2) для функций, закреплённых на левом конце

Рассмотрим теперь случай, когда функция u удовлетворяет дополнительному условию u(-1) = 0.

Теорема 7. Пусть $F \in \mathfrak{F}$, функция $u \in W_1^1(-1,1)$ неотрицательна, u(-1) = 0, весовая функция $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$ непрерывна и удовлетворяет неравенству (1.3). Тогда справедливо неравенство (1.2).

Доказательство. Мы следуем схеме доказательства теоремы 6, но вместо (H1) и (H7) накладываем следующие условия на вес:

(H1') a(x,v) удовлетворяет неравенству (1.3), а также $J(a,u) < \infty$.

(H7') Выполнено условие (H7), и $a(\cdot,v)\equiv 0$ в некоторой v-окрестности нуля.

Шаг 1. Пусть $u \in W_1^1(-1,1)$, выполнено u(-1) = 0, u вес а удовлетворяет условиям (H1'), (H2) - (H6), (H7'). Тогда выполняется неравенство (1.2) holds.

Для доказательства будем приближать функцию u так же, как и в первом шаге доказательства теоремы 6, с заменой u в некоторой окрестности точки x=-1 на линейную так, чтобы $u_n(-1)=0$.

Шаг 2. Пусть вес а удовлетворяет условиям (H1'), (H2) - (H6). Тогда выполняется неравенство (1.2).

Для доказательства добавим в множество W из второго шага доказательства теоремы 6 точку 0 и повторим рассуждение.

Дальнейшие шаги проходят без изменений.

2.6 Условия, необходимые для выполнения неравенства (2.1)

Нам потребуется вспомогательная

Лемма 10. Если для функции $a \in C([-1,1] \times \mathbb{R}_+)$ выполнено соотношение

$$\forall s, t \in [-1, 1], \forall v \in \mathbb{R}_+ \quad a(s, v) + a(t, v) \geqslant a\left(\frac{s - t}{2}, v\right) + a\left(\frac{t - s}{2}, v\right), \quad (2.6)$$

то она чётна и выпукла по первому аргументу.

Доказательство. Предположим для начала, что $a(\cdot,v)\in C^1([-1,1])$ при каждом v. Зафиксируем произвольные $s\in [-1,1]$ и $v\in \mathbb{R}_+$ и рассмотрим функцию

$$b(x) := a(s, v) + a(x, v) - a(\frac{s - x}{2}, v) - a(\frac{x - s}{2}, v) \geqslant 0.$$

x = -s является точкой минимума функции b, поскольку b(-s) = 0. Значит,

$$b'(-s) = a'_x(-s, v) + \frac{1}{2}a'_x(s, v) - \frac{1}{2}a'_x(-s, v) = 0,$$

то есть $a_x'(s,v)=-a_x'(-s,v).$ Тем самым, функция $a(\cdot,v)$ четна.

Рассмотрим теперь случай произвольной непрерывной a.

Продолжим a(x,v):=a(-1,v) при x<-1 и a(x,v):=a(1,v) при x>1. Рассмотрим усреднение функции:

$$a_{\rho}(x,v) = \int_{\mathbb{R}} \omega_{\rho}(z) a(x-z,v) dz = \int_{\mathbb{R}} \omega_{\rho}(z) a(x+z,v) dz,$$

где $\omega_{
ho}(z)$ — усредняющее ядро с радиусом ho. Тогда для $-1+
ho\leqslant s,t\leqslant 1ho$

$$a_{\rho}(s,v) + a_{\rho}(t,v) - a_{\rho}(\frac{s-t}{2},v) - a_{\rho}(\frac{t-s}{2},v) = \int_{\mathbb{R}} \omega_{\rho}(z) \left(a(s-z,v) + a(t+z,v) - a(\frac{s-t}{2}-z,v) - a(\frac{t-s}{2}+z,v) \right) dz \ge 0.$$

Значит функция $a_{\rho}(\cdot,v)$ чётна на $[-1+\rho,1-\rho]$. Переходя к пределу при $\rho\to 0,$ получаем, что функция $a(\cdot,v)$ чётна.

Наконец, для любых s, t и v имеем

$$a(s,v) + a(t,v) = a(s,v) + a(-t,v) \ge 2a(\frac{s+t}{2},v).$$

Теорема 8. Если неравенство (2.1) выполняется для произвольной $F \in \mathfrak{F}$ и произвольной кусочно линейной u, то вес a — чётная u выпуклая по первому аргументу функция.

Доказательство. Докажем, что в условиях теоремы выполнено неравенство (2.6). Если это так, то ввиду леммы 10 утверждение теоремы будет следовать.

Предположим, что неравенство (2.6) не выполнено. Тогда найдутся $-1 \leqslant s < t \leqslant 1$, $\varepsilon, \delta > 0$ ($2\varepsilon < t - s$) и $v_0 \in \mathbb{R}_+$, такие, что для любого $0 \leqslant z \leqslant \varepsilon$ и любого $v_0 \leqslant v \leqslant v_0 + \varepsilon$ выполнено

$$a(s+z,v+z) + a(t-z,v+z) + 2\delta < a\left(\frac{s-t}{2} + z,v+z\right) + a\left(\frac{t-s}{2} - z,v+z\right). \tag{2.7}$$

Рассмотрим функцию u_2 , введенную в (1.4). Тогда

$$\begin{cases} u_2^*(x) = v_0, & x \in [-1, \frac{s-t}{2}] \cup [\frac{t-s}{2}, 1] \\ u_2^*(x) = v_0 + x - \frac{s-t}{2}, & x \in [\frac{s-t}{2}, \frac{s-t}{2} + \varepsilon] \\ u_2^*(x) = v_0 + \varepsilon, & x \in [\frac{s-t}{2} + \varepsilon, \frac{t-s}{2} - \varepsilon] \\ u_2^*(x) = v_0 + \frac{t-s}{2} - x, & x \in [\frac{t-s}{2} - \varepsilon, \frac{t-s}{2}]. \end{cases}$$

Отсюда получаем

$$0 \leqslant J(a, u_2) - J(a, \overline{u_2})$$

$$= \int_0^{\varepsilon} F(u_2(s+z), \frac{a(s+z, u_2(s+z))}{\varepsilon}) dz + \int_0^{\varepsilon} F(u_2(t-z), \frac{a(t-z, u_2(t-z))}{\varepsilon}) dz$$

$$- \int_0^{\varepsilon} F(u_2^*(\frac{s-t}{2} + z), \frac{a(\frac{s-t}{2} + z, u_2^*(\frac{s-t}{2} + z))}{\varepsilon}) dz$$

$$- \int_0^{\varepsilon} F(u_2^*(\frac{t-s}{2} - z), \frac{a(\frac{t-s}{2} - z, u_2^*(\frac{t-s}{2} - z))}{\varepsilon}) dz =: \Delta J.$$

Возьмем $F(v,p):=f(p):=p+\pmb{\gamma}p^2$, где $\pmb{\gamma}>0$. Тогда

$$\Delta J = \int_0^{\varepsilon} \left(f\left(\frac{a(s+z, v_0+z)}{\varepsilon}\right) + f\left(\frac{a(t-z, v_0+z)}{\varepsilon}\right) - f\left(\frac{a\left(\frac{s-t}{2}+z, v_0+z\right)}{\varepsilon}\right) - f\left(\frac{a\left(\frac{t-s}{2}-z, v_0+z\right)}{\varepsilon}\right) \right) dz.$$

Обозначим

$$A = \max_{(x,v)} a(x,v), \qquad (x,v) \in [-1,1] \times u_2([-1,1]).$$

Если взять $\gamma:=\frac{\delta/\varepsilon}{(A/\varepsilon)^2}>0$, то для $p\leqslant \frac{A}{\varepsilon}$ имеем $p\leqslant f(p)\leqslant p+\frac{\delta}{\varepsilon}$, и

$$\Delta J \leqslant \frac{1}{\varepsilon} \int_0^{\varepsilon} \left(a(s+z, v_0 + z) + a(t-z, v_0 + z) + 2\delta - a(\frac{s-t}{2} + z, v_0 + z) - a(\frac{t-s}{2} - z, v_0 + z) \right) dz < 0$$

(последнее неравенство следует из <math>(2.7)).

Тем самым, мы пришли к противоречию, что завершает доказательство.

2.7 Доказательство неравенства (2.1)

Теорема 9. Пусть $F \in \mathfrak{F}$, функция $u \in W_1^1(-1,1)$ неотрицательна, и непрерывная весовая функция $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$ чётна и выпукла по первому аргументу. Тогда справедливо неравенство (2.1).

Доказательство. Для липшицевых функций u утверждение теоремы доказано в [2]. Таким образом, необходимо лишь перейти к W_1^1 -функциям.

Структура выпуклого по x веса гораздо проще структуры веса, который мы рассматривали для случая монотонной перестановки. Выпуклый вес убывает при x < 0 и возрастает при x > 0 независимо от v. Тем самым, мы сразу входим в условия (H6) из теоремы 6. Чтобы войти в условия (H7), применим лемму 9 с множеством $W = \{u(0)\}$. Это дает нам возможность сразу воспользоваться шагом 1 доказательства, получив неравенство (2.1) в общем виде. Заметим, что шаг 1 использует лишь условия (H1), (H6), (H7), так что нет нужды проверять остальные.

Глава 3. Монотонность функционалов с переменным показателем суммирования

3.1 Обозначения

В этой главе мы рассматриваем обобщения неравенства (2.1) на случай функционалов с переменным показателем суммирования в интегранте:

$$\mathcal{J}(u) = \int_{-1}^{1} |u'(x)|^{p(x)} dx, \qquad \mathcal{I}(u) = \int_{-1}^{1} (1 + |u'(x)|^2)^{\frac{p(x)}{2}} dx.$$

Здесь $p(x) \geqslant 1$ — непрерывная функция на отрезке $[-1,1],\ u\in \stackrel{o}{W}_1^1$ $(-1,1),\ u\geqslant 0.$

Мы используем обозначение $f_{\pm} = \max(\pm f, 0)$.

3.2 Необходимые условия

Теорема 10. Пусть $\mathcal{J}(u^*) \leqslant \mathcal{J}(u)$ выполнено для любой кусочно линейной функции $u \geqslant 0$. Тогда $p(x) \equiv const$.

Доказательство. Рассмотрим $x_0 \in (-1,1)$. Для любых $\alpha > 0$ и $\epsilon > 0$, удовлетворяющих $[x_0 - \epsilon, x_0 + \epsilon] \subset [-1,1]$ определим

$$u_{\alpha,\varepsilon}(x) = \alpha(\varepsilon - |x - x_0|)_+.$$

Тогда $u_{\alpha,\varepsilon}^*(x) = \alpha(\varepsilon - |x|)_+$, и

$$\mathcal{J}(u_{\alpha,\varepsilon}) = \int_{x_0-\varepsilon}^{x_0+\varepsilon} \alpha^{p(x)} dx, \qquad \mathcal{J}(u_{\alpha,\varepsilon}^*) = \int_{-\varepsilon}^{\varepsilon} \alpha^{p(x)} dx.$$

Возьмём неравенство

$$\frac{\mathcal{J}(u_{\alpha,\varepsilon}^*)}{2\varepsilon} \leqslant \frac{\mathcal{J}(u_{\alpha,\varepsilon})}{2\varepsilon},$$

и перейдём к пределу при $\varepsilon \to 0$. Поскольку p непрерывна, мы получим $\alpha^{p(0)} \leqslant \alpha^{p(x_0)}$. При $\alpha > 1$ и $\alpha < 1$ это даёт $p(0) \leqslant p(x_0)$ и $p(0) \geqslant p(x_0)$ соответственно.

Теорема 11. Если неравенство $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$ выполняется для всех кусочно линейных $u \geqslant 0$, то р чётна и выпукла. Более того, выпукла следующая функция:

$$K(s,x) = s(1+s^{-2})^{\frac{p(x)}{2}}, \quad s > 0, \ x \in [-1,1].$$

Доказательство. Возьмём две точки $-1 < x_1 < x_2 < 1$ и рассмотрим финитную кусочно линейную функцию с ненулевой производной лишь в окрестностях x_1 и x_2 . А именно, для произвольных s,t>0 и достаточно малого $\varepsilon>0$

$$\begin{cases} u_{\varepsilon}(x) = 0, & x \in [-1, x_1 - s\varepsilon] \cup [x_2 + s\varepsilon, 1] \\ u_{\varepsilon}(x) = \varepsilon + \frac{x - x_1}{s}, & x \in [x_1 - s\varepsilon, x_1 + s\varepsilon] \\ u_{\varepsilon}(x) = 2\varepsilon, & x \in [x_1 + s\varepsilon, x_2 + s\varepsilon] \\ u_{\varepsilon}(x) = \varepsilon + \frac{x_2 - x}{t}, & x \in [x_2 - t\varepsilon, x_2 + t\varepsilon]. \end{cases}$$

Тогда

$$\begin{cases} u_{\varepsilon}^*(x) = 0, & x \in [-1, \frac{x_1 - x_2}{2} - \frac{s + t}{2}\varepsilon] \cup [\frac{x_2 - x_1}{2} + \frac{s + t}{2}\varepsilon, 1] \\ u_{\varepsilon}^*(x) = \varepsilon + \frac{2x - (x_2 - x_1)}{s + t}, & x \in [\frac{x_1 - x_2}{2} - \frac{s + t}{2}\varepsilon, \frac{x_1 - x_2}{2} + \frac{s + t}{2}\varepsilon] \\ u_{\varepsilon}^*(x) = 2\varepsilon, & x \in [\frac{x_1 - x_2}{2} + \frac{s + t}{2}\varepsilon, \frac{x_2 - x_1}{2} - \frac{s + t}{2}\varepsilon] \\ u_{\varepsilon}^*(x) = \varepsilon + \frac{(x_2 - x_1) - 2x}{s + t}, & x \in [\frac{x_2 - x_1}{2} - \frac{s + t}{2}\varepsilon, \frac{x_2 - x_1}{2} + \frac{s + t}{2}\varepsilon]. \end{cases}$$

Множества, на которых $u'_{\varepsilon}=0$ и $u_{\varepsilon}^{*'}=0$ имеют одинаковую меру. Поэтому неравенство $\mathcal{I}(u_{\varepsilon}^*)\leqslant \mathcal{I}(u_{\varepsilon})$ эквивалентно следующему:

$$\int_{x_{1}-s\varepsilon}^{x_{1}+s\varepsilon} \left(1+\frac{1}{s^{2}}\right)^{\frac{p(x)}{2}} dx + \int_{x_{2}-t\varepsilon}^{x_{2}+t\varepsilon} \left(1+\frac{1}{t^{2}}\right)^{\frac{p(x)}{2}} dx$$

$$\geqslant \int_{\frac{x_{1}-x_{2}}{2}-\frac{s+t}{2}\varepsilon}^{\frac{x_{1}-x_{2}}{2}+\frac{s+t}{2}\varepsilon} \left(1+\frac{1}{\left(\frac{s+t}{2}\right)^{2}}\right)^{\frac{p(x)}{2}} dx + \int_{\frac{x_{2}-x_{1}}{2}-\frac{s+t}{2}\varepsilon}^{\frac{x_{2}-x_{1}}{2}+\frac{s+t}{2}\varepsilon} \left(1+\frac{1}{\left(\frac{s+t}{2}\right)^{2}}\right)^{\frac{p(x)}{2}} dx.$$

Разделим это неравенство на 2ε и устремим $\varepsilon \to 0$, получив в пределе

$$s\left(1+\frac{1}{s^{2}}\right)^{\frac{p(x_{1})}{2}}+t\left(1+\frac{1}{t^{2}}\right)^{\frac{p(x_{2})}{2}}$$

$$\geqslant \frac{s+t}{2}\left(1+\frac{1}{\left(\frac{s+t}{2}\right)^{2}}\right)^{\frac{p(\frac{x_{1}-x_{2}}{2})}{2}}+\frac{s+t}{2}\left(1+\frac{1}{\left(\frac{s+t}{2}\right)^{2}}\right)^{\frac{p(\frac{x_{2}-x_{1}}{2})}{2}}. (3.1)$$

Для начала, положим s=t в неравенстве (3.1). Получаем

$$\left(1 + \frac{1}{s^2}\right)^{\frac{p(x_1)}{2}} + \left(1 + \frac{1}{s^2}\right)^{\frac{p(x_2)}{2}} \geqslant \left(1 + \frac{1}{s^2}\right)^{\frac{p(\frac{x_2 - x_1}{2})}{2}} + \left(1 + \frac{1}{s^2}\right)^{\frac{p(\frac{x_1 - x_2}{2})}{2}}.$$
 (3.2)

Обозначим $\sigma := \frac{1}{s^2}$ и применим разложение по Тейлору к неравенству (3.2) в точке $\sigma = 0$:

$$\sigma p(x_1) + \sigma p(x_2) \geqslant \sigma p(\frac{x_2 - x_1}{2}) + \sigma p(\frac{x_1 - x_2}{2}) + r(\sigma),$$

где $r(\sigma)=o(\sigma)$ при $\sigma\to 0$. Таким образом, для любых $x_1,x_2\in [-1,1]$ имеем

$$p(x_1) + p(x_2) \ge p(\frac{x_2 - x_1}{2}) + p(\frac{x_1 - x_2}{2}).$$

По лемме 10 получаем, что p чётна и выпукла.

Теперь подставим $-x_2$ вместо x_2 в (3.1). Поскольку p чётна, получаем $K(s,x_1)+K(t,x_2)\geqslant 2K(\frac{s+t}{2},\frac{x_1+x_2}{2}).$

3.3 Доказательство неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$

В этом параграфе мы показываем, что необходимые условия, установленные в теореме 11, являются также и достаточными.

Лемма 11. Пусть m — чётное положительное число, $s_k > 0$ (k = 1 ... m), $-1 \le x_1 \le ... \le x_m \le 1$. Тогда, если K(s,x) чётна по x и выпукла по совокупности аргументов, то

$$\sum_{k=1}^{m} K(s_k, x_k) \geqslant 2K\left(\frac{1}{2}\sum_{k=1}^{m} s_k, \frac{1}{2}\sum_{k=1}^{m} (-1)^k x_k\right). \tag{3.3}$$

Доказательство. Заметим, что неравенство (3.3) равносильно такому же неравенству для функции M(s,x)=K(s,x)-s. Также заметим, что M убывает по s, поскольку M выпукла по s и

$$M_s(s,x) = (1 + \frac{1}{s^2})^{\frac{p(x)}{2} - 1} (1 + \frac{1}{s^2} - \frac{p(x)}{s^2}) - 1 \to 0$$
 при $s \to \infty$.

Тогда

$$\sum_{k=1}^{m} M(s_k, x_k) \geqslant M(s_1, x_1) + M(s_m, x_m) \stackrel{a}{\geqslant} 2M(\frac{s_1 + s_m}{2}, \frac{x_m - x_1}{2}) \geqslant$$

$$\stackrel{b}{\geqslant} 2M(\frac{1}{2} \sum_{k=1}^{m} s_k, \frac{x_m - x_1}{2}) \stackrel{c}{\geqslant} 2M(\frac{1}{2} \sum_{k=1}^{m} s_k, \frac{1}{2} \sum_{k=1}^{m} (-1)^k x_k).$$

Неравенство (а) следует из того, что M чётна по x и выпукла, (b) — из убывания M по s, (c) — из возрастания M по x при $x\geqslant 0$.

Лемма 12. Пусть функция K(s,x) чётна по x и выпукла по совокупности аргументов. Тогда $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$ для любой кусочно линейной функции $u \in W_1^1$ [-1,1].

Доказательство. Обозначим $L \subset [-1,1]$ множество точек излома функции u (включая концы отрезка). Возьмём $U = u([-1,1]) \setminus u(L)$, образ функции u без образов точек излома. Это множество представляется в виде объединения конечного числа непересекающихся интервалов $U = \cup_j U_j$. Заметим, что для каждого j множество $u^{-1}(U_j)$ разбивается на чётное число интервалов (обозначим это количество m_j), на каждом из которых функция u совпадает с некоторой линейной функцией y_k^j , $k=1,\ldots,m_j$. Для удобства считаем, что носители y_k^j для каждого j идут по порядку, то есть $\sup dom(y_k^j) \leqslant \inf dom(y_{k+1}^j)$. Обозначим $b_k^j = |y_k^j(x)|$. Также обозначим

$$Z = \max\{x \in (-1,1)|u'(x) = 0\} = \max\{x \in (-1,1)|u^{*'}(x) = 0\}.$$

Тогда

$$\mathcal{I}(u) - Z = \sum_{j} \int_{u^{-1}(U_j)} (1 + u'^2(x))^{\frac{p(x)}{2}} dx = \sum_{j} \sum_{k} \int_{dom(y_k^j)} (1 + y_k^{j'^2}(x))^{\frac{p(x)}{2}} dx =$$

$$= \sum_{j} \int_{U_j} \sum_{k} \frac{1}{b_k^j} (1 + b_k^{j^2})^{\frac{p((y_k^j)^{-1}(y))}{2}} dy = \sum_{j} \int_{U_j} \sum_{k} K\left(\frac{1}{b_k^j}, (y_k^j)^{-1}(y)\right) dy.$$

Любая точка $y \in U$ имеет два прообраза относительно функции u^* , поэтому на множестве U можно определить $(u^*)^{-1}: U \to [0,1]$. Для каждого j можно выразить $(u^*)^{-1}$ и модуль её производной на участке U_j следующим образом:

$$(u^*)^{-1}(y) = \frac{1}{2} \sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y);$$

$$|((u^*)^{-1})'(y)| = \frac{1}{|u^{*'}((u^*)^{-1}(y))|} = \frac{1}{2} \sum_{k=1}^{m_j} \frac{1}{b_k^j} =: \frac{1}{b_j^*}.$$

Ввиду чётности u^* имеем

$$\mathcal{I}(u^*) - Z = 2 \int_{(u^*)^{-1}(U)} (1 + u^{*\prime 2}(x))^{\frac{p(x)}{2}} dx =$$

$$= 2 \int_{U} |((u^*)^{-1})'(y)| \cdot \left(1 + \frac{1}{((u^*)^{-1})'(y)^2}\right)^{\frac{p((u^*)^{-1}(y))}{2}} dy =$$

$$= 2 \sum_{j} \int_{U_j} \frac{1}{b_j^*} (1 + b_j^{*2})^{\frac{1}{2}p\left(\frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right)} dy =$$

$$= 2 \sum_{j} \int_{U_k} K\left(\frac{1}{2}\sum_{k=1}^{m_j} \frac{1}{b_k^j}, \frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right) dy.$$

Зафиксируем j и y. Тогда для доказательства леммы достаточно выполнения

$$\sum_{k=1}^{m_j} K\left(\frac{1}{b_k^j}, (y_k^j)^{-1}(y)\right) \geqslant 2K\left(\frac{1}{2}\sum_{k=1}^{m_j} \frac{1}{b_k^j}, \frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right).$$

Но это неравенство обеспечивается леммой 11.

Теперь можно доказать неравенство для функций u общего вида.

Теорема 12. Пусть р чётна, а K выпукла по совокупности переменных. Тогда для любой функции $u \in W^1_1$ [-1,1] выполнено $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$.

Доказательство. Без потери общности предполагаем, что $I(u) < \infty$. Поскольку p(x) ограничена, существует последовательность кусочно постоянных функций v_n , сходящаяся к u' в пространстве Орлича $L^{p(x)}$ (см. [7, Теорема 1.4.1]). Обозначим u_n первообразные v_n , удовлетворяющие $u_n(-1) = 0$.

Легко видеть, что $u_n \rightrightarrows u$, а значит $\varepsilon_n := -\inf u_n \to 0$. Определим δ_n через соотношение:

$$\int_{-1}^{-1+\delta_n} (v_n)_- = \varepsilon_n \tag{3.4}$$

и возьмём

$$\tilde{v}_n = (v_n)_+ - (v_n)_- \cdot \chi_{[-1+\delta_n,1]}.$$

Мы утверждаем, что $\|\tilde{v}_n - v_n\|_{L^{p(x)}(-1,1)} \to 0$. Действительно, ввиду (3.4) мера множества

$$\mathcal{A}_n = \{ x \in [-1, -1 + \delta_n] : (v_n)_- \geqslant \sqrt{\varepsilon_n} \}$$

стремится к 0 при $n \to \infty$. Поскольку $v_n \to u'$ в $L^{p(x)}$, имеем

$$||(v_n)_-||_{L^{p(x)}(\mathcal{A}_n)} \leqslant ||u'||_{L^{p(x)}(\mathcal{A}_n)} + ||v_n - u'||_{L^{p(x)}(\mathcal{A}_n)} \to 0.$$

Поскольку

$$\|(v_n)_-\|_{L^{p(x)}([-1,-1+\delta_n]\setminus\mathcal{A}_n)}\to 0,$$

имеем

$$\|\tilde{v}_n - v_n\|_{L^{p(x)}(-1,1)} = \|(v_n)_-\|_{L^{p(x)}(-1,-1+\delta_n)} \to 0,$$

как и заявлено.

тут $\tilde{u}_n(+1)=0$?? Обозначим \tilde{u}_n первообразную \tilde{v}_n Ю удовлетворяющую $\tilde{u}_n(-1)=0$. По построению $\tilde{u}_n\geqslant 0$. Положим $\tilde{\varepsilon}_n=\tilde{u}_n(1)\to 0$, определим $\tilde{\delta}_n$ через соотношение

$$\int_{1-\tilde{\delta}_n}^1 (\tilde{v}_n)_+ = \tilde{\varepsilon}_n$$

и обозначим

$$\hat{v}_n = (\tilde{v}_n)_+ \cdot \chi_{[-1,1-\tilde{\delta}_n]} - (\tilde{v}_n)_-.$$

Используя те же рассуждения, получаем $\|\hat{v}_n - \tilde{v}_n\|_{L^{p(x)}(-1,1)} \to 0$.

Обозначим \hat{u}_n первообразную \hat{v}_n , удовлетворяющую $\hat{u}_n(-1)=0$. По построению $\hat{u}_n\geqslant 0,\,\hat{u}_n(1)=0$ и $\hat{u}'_n\to u'$ в $L^{p(x)}(-1,1)$.

Из вложения $L^{p(x)}[-1,1] \mapsto L^1(-1,1)$ следует $\hat{u}_n \to u$ в $\overset{o}{W}_1^1$ (-1,1). Далее, поскольку $|\sqrt{1+x^2}-\sqrt{1+y^2}| \leqslant |x-y|$ для любых x и y, из сходимости $\hat{u}'_n \to u'$ в $L^{p(x)}$ следует $\mathcal{I}(\hat{u}_n) \to \mathcal{I}(u)$.

По [2, Theorem 1] из сходимости $\hat{u}_n \to u$ в W_1^1 (-1,1) следует слабая сходимость $\hat{u}_n^* \to u^*$ в W_1^1 (-1,1). Кроме того, функционал $\mathcal I$ секвенциально слабо полунепрерывен снизу по теореме Тонелли (см., напр., [8, Теорема 3.5]). Поэтому

$$\mathcal{I}(u^*) \leqslant \liminf_n \mathcal{I}(\hat{u}_n^*) \leqslant \lim_n \mathcal{I}(\hat{u}_n) = \mathcal{I}(u).$$

3.4 Некоторые достаточные условия

Условие выпуклости функции K на самом деле есть некоторое условие на функцию p. Вычисление показывает, что всегда $\partial_{ss}^2 K > 0$, а также если p выпукла, то и $\partial_{xx}^2 K \geqslant 0$. Поэтому выпуклость K равносильна выполнению неравенства $\det(K'') \geqslant 0$ в смысле мер.

Прямое вычисление приводит к

$$\det(K'') = \frac{(1+w)^{q-1}}{4} \times \Big(w(wq+1)(q+1)\ln(1+w)(q'^2\ln(1+w)+2q'') - q'^2((1-qw)\ln(1+w)-2w)^2 \Big),$$

где
$$q = q(x) = p(x) - 1$$
 и $w = w(s) = \frac{1}{s^2}$.

То есть мы имеем следующее неравенство на функцию q:

$$qq'' \geqslant q'^2 \mathcal{B}(q), \tag{3.5}$$

где
$$\mathcal{B}(q) \equiv \sup_{w>0} B(w,q)$$
 и

$$B(w,q) = \frac{q(4w - (w+3)\ln(w+1)) - \frac{w-1}{w}\ln(w+1) + 4\frac{w}{\ln(w+1)} - 4}{2(qw+1)} \cdot \frac{q}{q+1}.$$

Следующее утверждение проверяется прямым счётом.

Лемма 13. Пусть $q \ge 0$ — непрерывная функция на [-1,1]. Тогда неравенство $qq'' \ge q'^2 \mathcal{M}$ в смысле распределений при $\mathcal{M} \in (0,1)$ равносильно выпуклости функции $q^{1-\mathcal{M}}$.

Отсюда простые достаточные условия:

Теорема 13. Пусть $p(x) \geqslant 1 -$ чётная непрерывная функция на [-1, 1].

- і) Если функция $(p(x)-1)^{0.37}$ выпукла, то неравенство $\mathcal{I}(u^*)\leqslant \mathcal{I}(u)$ выполнено для любой неотрицательной $u\in \stackrel{\circ}{W}^1_1$ (-1,1).
- **ii)** Если $p(x) \le 2.36$ для всех $x \in [-1,1]$ и функция $\sqrt{p(x)-1}$ выпукла, то неравенство $\mathcal{I}(u^*) \le \mathcal{I}(u)$ выполнено для любой неотрицательной $u \in \overset{\circ}{W}^1_1$ (-1,1).

Доказательство. Следующие неравенства доказаны в следующем параграфе:

$$\sup_{q\geqslant 0} \mathcal{B}(q) = \limsup_{q\to +\infty} \mathcal{B}(q) \leqslant 0.63; \tag{3.6}$$

$$\sup_{0 \leqslant q \leqslant 1.36} \mathcal{B}(q) \leqslant 0.5. \tag{3.7}$$

По лемме 13 неравенство (3.5) следует для обоих пунктов теоремы. Применение теоремы 12 завершает доказательство.

3.5 Численные оценки функции B(w,q)

Для доказательства неравенства (3.6) мы делим положительный квадрант $(w,q) \in \mathbb{R}_+ \times \mathbb{R}_+$ на пять участков, см. рис. 3.1:

$$R_1 = [0, 6] \times [0, 1], \quad R_2 = [0, 1] \times [1, \infty], \quad R_3 = [1, 4] \times [1, \infty],$$

 $R_4 = [6, \infty] \times [0, 1], \quad R_5 = [4, \infty] \times [1, \infty].$

На каждом из участков мы доказываем неравенство численно-аналитическим методом.

Для $(w,q) \in R_1$ мы строим кусочно постоянную функцию $B_1(w,q)$, оценивающую B(w,q) сверху. Для этого для мы делим R_1 на прямоугольники

$$Q \equiv \{w_0 \leqslant w \leqslant w_1; \quad q_0 \leqslant q \leqslant q_1\} \subset R_1$$

Рисунок 3.1 - K доказательству неравенства (3.6)

и находим постоянное значение B_1 на каждом из них, заменяя члены формулы для B(w,q) их экстремальными значениями в этом прямоугольнике:

$$B(w,q) = \frac{q(4w - (w+3)\ln(w+1)) - (1 - \frac{1}{w})\ln(w+1) + 4\frac{w}{\ln(w+1)} - 4}{2(qw+1)} \cdot \frac{q}{q+1}$$

$$\leq \frac{[4q_1w_1] - [q_0(w_0+3)\ln(w_0+1)] - [\ln(w_0+1)] + [\frac{\ln(w_0+1)}{w_0}] + [4\frac{w_1}{\ln(w_1+1)}] - 4}{[2(q_0w_0+1)]} \times [\frac{q_1}{q_1+1}] =: B_1|_Q.$$

Здесь мы используем монотонность каждой из функций, заключённых в квадратные скобки, в R_1 по обеим переменным.

Для $(w,q) \in R_2$ мы полагаем $r=\frac{1}{q}$ и строим кусочно постоянную функцию $B_2(w,r)$, оценивающую $B(w,\frac{1}{r})$ сверху.

Аналогично, для $(w,q) \in R_4$ мы полагаем $v = \frac{1}{w}$ и строим кусочно постоянную функцию $B_4(v,q)$, оценивающую $B(\frac{1}{v},q)$ сверху.

Наконец, для $(w,q) \in R_5$ мы используем обозначения $v = \frac{1}{w}$, $r = \frac{1}{q}$ и строим кусочно постоянную функцию $B_5(w,r)$, оценивающую $B(\frac{1}{v},\frac{1}{r})$ сверху.

Оценочные функции B_1, B_2, B_4, B_5 были вычислены на достаточно мелких разбиениях на прямоугольники с 15 значащими цифрами. Были получены следующие результаты.

Участок	Шаг разбиения по w/v	Шаг разбиения по q/r	Неравенство
R_1	$6 \cdot 10^{-2}$	10^{-1}	$B_1 \leqslant 0.51$
R_2	10^{-2}	10^{-2}	$B_2 \leqslant 0.617$
R_4	$2 \cdot 10^{-2}$	10^{-1}	$B_4 \leqslant 0.50$
R_5	$2 \cdot 10^{-3}$	10^{-2}	$B_5 \leqslant 0.605$

Во всех случаях было получено $B(w,q) \leq 0.62$.

Анализ B(w,q) в R_3 приходится производить более аккуратно. Мы снова берём $r=\frac{1}{q}$ и утверждаем, что $B(w,\frac{1}{r})$ убывает по r. Для доказательства мы строим кусочно постоянную функцию $B_3(w,r)$, оценивающую $\partial_r B(w,\frac{1}{r})$ сверху. Эта функция была вычислена на достаточно мелком разбиении с 15 значащими цифрами. Был получен следующий результат.

Участок	Шаг разбиения по w	Шаг разбиения по r	Неравенство
R_3	$5 \cdot 10^{-3}$	10^{-3}	$B_3 \leqslant -0.08$

Тем самым, мы получаем, что $B(w,\frac{1}{r})$ достигает максимума в R_3 при r=0. Для нахождения максимума мы берём

$$B(w, \infty) = 2 - \frac{1}{2}(\ln(w+1) + 3\frac{\ln(w+1)}{w})$$

и утверждаем, что $B(w,\infty)$ вогнута при $w \in [1,4]$. Чтобы доказать это, мы строим кусочно постоянную функцию $B_{\infty}(w)$, оценивающую $\partial_{ww}^2 B(w,\infty)$ сверху. Эта функция была вычислена на достаточно мелком разбиении с 15 значащими цифрами. Был получен следующий результат.

Участок	Шаг разбиения	Неравенство	
$1\leqslant w\leqslant 4$	$3\cdot 10^{-3}$	$B_{\infty} \leqslant -0.13$	

Тем самым, точка максимума единственна. С использованием стандартных численных методов было получено, что максимум достигается при $w \approx 1.816960565240$, $\max B(w,\infty) \approx 0.627178211634$. Неравенство (3.6) доказано.

Для доказательства неравенства (3.7) мы делим $(w,q) \in \mathbb{R}_+ \times [0,1.36]$ на четыре участка, см. рис. 3.2:

$$R_6 = [0,3] \times [0,1.36], \quad R_7 = [3,5] \times [0,1.3],$$

 $R_8 = [3,5] \times [1.3,1.36], \quad R_9 = [5,\infty] \times [0,1.36].$

Рисунок 3.2 - K доказательству неравенства (3.7)

На этих участках мы используем кусочно постоянные функции B_1 и B_4 , введённые ранее. Значения функций были вычислены при достаточно мелком разбиении с 15 значащими цифрами. В R_8 потребовался шаг разбиения меньше 10^{-5} , поэтому мы повторили вычисления с 18 значащими цифрами. Был получен следующий результат.

Участок	Шаг разбиения по $w(v)$	Шаг разбиения по q	Неравенство
R_6	$3 \cdot 10^{-3}$	$1.36 \cdot 10^{-3}$	$B_1 \leqslant 0.498$
R_7	$2 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	$B_1 \leqslant 0.498$
R_8	$2 \cdot 10^{-4}$	$6 \cdot 10^{-6}$	$B_1 \leqslant 0.49996$
R_9	$2 \cdot 10^{-3}$	$1.36 \cdot 10^{-2}$	$B_4 \leqslant 0.4992$

Доказательство завершено.

3.6 Многомерный аналог неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$

В этом параграфе функция $u\in \stackrel{\circ}{W_1^1}(\Omega)$, где $\Omega=\omega\times[-1,1]$. Как и в первой главе, мы используем обозначения x=(x',y), где $x'\in\omega,\,y\in[-1,1]$.

Введём многомерный аналог функционала \mathcal{I} :

$$\widehat{\mathcal{I}}(u) = \int_{\Omega} (1 + |\nabla u(x)|^2)^{\frac{p(x)}{2}} dx.$$

Теорема 14. Если $\widehat{\mathcal{I}}(u^*) \leqslant \widehat{\mathcal{I}}(u)$ для любой неотрицательной функции $u \in W_1^1$ (Ω) , то p(x',y) не зависит от y.

Доказательство. Для начала, мы докажем, что, аналогично теореме 11, p должна быть чётной и выпуклой по y, а функция

$$\mathcal{K}_{x'}(c,d,y) = c\left(1 + \frac{1+d^2}{c^2}\right)^{\frac{p(x',y)}{2}}$$

должна быть выпуклой по совокупности аргументов на $[-1,1] \times \mathbb{R} \times \mathbb{R}_+$.

Действительно, рассмотрим две точки

$$x_1 = (x'_0, y_1), x_2 = (x'_0, y_2),$$
 где $x'_0 \in \omega, -1 < y_1 < y_2 < 1.$

Зададим функцию $u \in W_1^1(\Omega)$ с ненулевым градиентом только в окрестностях x_1, x_2 и в окрестности боковой границы цилиндра с осью $[x_1, x_2]$ следующим образом

$$u(x) = \min\left(\left(\frac{y - y_1}{c_1} + (x' - x_0') \cdot \mathbf{b}_1'\right)_+, \left(\frac{y_2 - y}{c_2} + (x' - x_0') \cdot \mathbf{b}_2'\right)_+, \delta\left(w - |x' - x_0'|\right)_+, h\right).$$

Здесь параметры $c_1, c_2 > 0$ — обратные производные по y в «основаниях» цилиндра, $\mathbf{b}'_1, \mathbf{b}'_2 \in \mathbb{R}^{n-1}$ — градиенты по x' в «основаниях» цилиндра, $\delta > 0$ — модуль градиента на боковой поверхности цилиндра, w > 0 — радиус цилиндра, а h > 0 — максимальное значение функции.

Зафиксировав $y_1, y_2, c_1, c_2, \mathbf{b}'_1, \mathbf{b}'_2$, мы выбираем h и δ как функции малого параметра w. Мы требуем $\varkappa \equiv \frac{h}{\delta} := \frac{w}{2} \ (\varkappa -$ ширина бокового слоя с ненулевой производной).

Левое основание носителя u задаётся системой

$$\frac{y - y_1}{c_1} + (x' - x_0') \cdot \mathbf{b}_1' = 0; \qquad |x' - x_0'| \leqslant w.$$

То есть это (n-1)-мерный вытянутый эллипсоид вращения с большой полуосью $\sqrt{w^2+c_1^2w^2|\mathbf{b}_1'|^2}$ и радиусом w. Значит $\nabla u=(\mathbf{b}_1',\frac{1}{c_1})$ на множестве A_1 , которое является усечённым конусом с этим эллипсоидом в основании. Прямое вычисление показывает

$$\operatorname{meas} A_1 = C_1 \delta c_1 w^n$$

(здесь и далее C с индексом или без — некоторые константы, зависящие только от n).

Аналогично $\nabla u = (\mathbf{b}_2', -\frac{1}{c_2})$ на множестве A_2 , meas $A_2 = C_1 \delta c_2 w^n$.

После симметризации на «основаниях» $\nabla u^* = (\frac{c_1\mathbf{b}_1' + c_2\mathbf{b}_2'}{c_1 + c_2}, \pm \frac{2}{c_1 + c_2})$. Тем самым, множества A_1 и A_2 переходят в A_1' и A_2' , и выполнено

meas
$$A'_1 = \text{meas } A'_2 = C_1 \delta \frac{c_1 + c_2}{2} w^n$$
.

Далее обозначим за A_{δ} боковой слой с ненулевым градиентом. Прямая оценка даёт

meas
$$A_{\delta} \leq C((y_2 - y_1)w^{n-1} + (c_1|\mathbf{b}'_1| + c_2|\mathbf{b}'_2|)w^n).$$

Также обозначим

$$Z = \max\{x \in \Omega \mid \nabla u(x) = 0\} = \max\{x \in \Omega \mid \nabla u^*(x) = 0\}.$$

При $\frac{1}{c_1}=\frac{1}{c_2}=w^2,\;\delta=w^4$ и $\mathbf{b}_1'=\mathbf{b}_2'=0$ из предположений теоремы следует

$$0 \leqslant (\widehat{\mathcal{I}}(u) - Z) - (\widehat{\mathcal{I}}(u^*) - Z) \leqslant ((1 + w^4)^{\frac{p(\bar{x}_1)}{2}} - 1) \cdot \operatorname{meas} A_1$$

$$+ ((1 + w^4)^{\frac{p(\bar{x}_2)}{2}} - 1) \cdot \operatorname{meas} A_2 + ((1 + w^8)^{\frac{P}{2}} - 1) \cdot \operatorname{meas} A_\delta$$

$$- ((1 + w^4)^{\frac{p(\hat{x}_1)}{2}} - 1 + (1 + w^4)^{\frac{p(\hat{x}_2)}{2}} - 1) \cdot \operatorname{meas} A'_1$$

$$\leqslant w^4 (\frac{p(\bar{x}_1)}{2} + \frac{p(\bar{x}_2)}{2} + o(w)) C_1 w^{n+2} + w^8 (\frac{P}{2} + o(w)) (y_2 - y_1) C w^{n-1}$$

$$- w^4 (\frac{p(\hat{x}_1)}{2} + \frac{p(\hat{x}_2)}{2} + o(w)) C_1 w^{n+2}.$$

Здесь $P = \max p(x', y), \, \bar{x}_1 \in A_1, \, \bar{x}_2 \in A_2, \, \hat{x}_1 \in A'_1, \, \hat{x}_2 \in A'_2.$

Мы переходим к пределу при $w \to 0$ и получаем

$$0 \leqslant p(x_0', y_1) + p(x_0', y_2) - p(x_0', \frac{y_1 - y_2}{2}) - p(x_0', \frac{y_2 - y_1}{2}).$$

Применив лемму 10, получаем, что p чётна и выпукла по y.

Теперь зафиксируем произвольные положительные c_1, c_2, d_1 и d_2 , положим $\mathbf{b}_1' = \frac{d_1}{c_1} \mathbf{e}, \ \mathbf{b}_2' = \frac{d_2}{c_2} \mathbf{e}$ (здесь \mathbf{e} — некоторый единичный вектор в гиперплоскости x') и возьмём $\delta = w^2$. Тогда получаем

$$0 \leqslant (\widehat{\mathcal{I}}(u) - Z) - (\widehat{\mathcal{I}}(u^*) - Z) \leqslant \left(\frac{1}{c_1} \mathcal{K}_{\bar{x}_1'}(c_1, d_1, \bar{y}_1) - 1\right) \cdot \operatorname{meas} A_1$$

$$+ \left(\frac{1}{c_2} \mathcal{K}_{\bar{x}_2'}(c_2, d_2, \bar{y}_2) - 1\right) \cdot \operatorname{meas} A_2 + \left((1 + w^4)^{\frac{P}{2}} - 1\right) \cdot \operatorname{meas} A_\delta$$

$$- \left(\frac{2}{c_1 + c_2} \mathcal{K}_{\hat{x}_1'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_1) - 1\right) \cdot \operatorname{meas} A_1'$$

$$- \left(\frac{2}{c_1 + c_2} \mathcal{K}_{\hat{x}_2'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_2) - 1\right) \cdot \operatorname{meas} A_2'$$

$$\leqslant \left(\mathcal{K}_{\bar{x}_1'}(c_1, d_1, \bar{y}_1) + \mathcal{K}_{\bar{x}_2'}(c_2, d_2, \bar{y}_2)\right) C_1 w^{n+2} + \left(\frac{P}{2} + o(w)\right) C(y_2 - y_1) w^{n+3}$$

$$- \left(\mathcal{K}_{\hat{x}_1'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_1) + \mathcal{K}_{\hat{x}_2'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_2)\right) C_1 w^{n+2}.$$

Здесь $P = \max p(x',y), (\bar{x}_1',\bar{y}_1) \in A_1, (\bar{x}_2',\bar{y}_2) \in A_2, (\hat{x}_1',\hat{y}_1) \in A_1', (\hat{x}_2',\hat{y}_2) \in A_2'.$ Мы переходим к пределу при $w \to 0$ и получаем

$$\mathcal{K}_{x_0'}(c_1, d_1, y_1) + \mathcal{K}_{x_0'}(c_2, d_2, y_2)
\geqslant \mathcal{K}_{x_0'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \frac{y_1 - y_2}{2}) + \mathcal{K}_{x_0'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \frac{y_2 - y_1}{2}).$$

Отсюда следует, что $\mathcal{K}_{x_0'}$ выпукла, поскольку она чётна по y.

Наконец, заметим (здесь мы опускаем для краткости x' в записи $\mathcal{K}_{x'}$), что

$$\mathcal{K}(c,d,y) = K(\frac{c}{\sqrt{1+d^2}},y) \cdot \sqrt{1+d^2},$$

где функция K введена в теореме 11. Прямое вычисление показывает, что

$$\det(\mathcal{K}''(c,d,y)) = \frac{1}{(1+d^2)^{\frac{3}{2}}} \cdot \left[(\partial_{yy}^2 K \partial_{ss}^2 K - (\partial_{sy}^2 K)^2)(K - s\partial_s K) - \partial_{ss}^2 K (\partial_y K)^2 d^2 \right]$$

(здесь $s=\frac{c}{\sqrt{1+d^2}}$). То есть если $\partial_y K\not\equiv 0$, можно выбрать достаточно большое d, чтобы получить $\det(\mathcal{K}''(c,d,y))<0$ и, тем самым, противоречие.

Список литературы

- 1. *Либ*, Э. Анализ / Э. Либ, М. Лосс. Новосибирск : Научная книга, 1998. 276 с.
- 2. Brock, F. Weighted Dirichlet-type inequalities for Steiner symmetrization / F. Brock // Calc. Var. and PDEs. 1999. Vol. 8, no. 1. P. 15—25.
- 3. Рудин, У. Функциональный анализ / У. Рудин. М. : Мир, 1975. 444 с.
- 4. 9ванс, Л. Теория меры и тонкие свойства функций / Л. Эванс, Р. Ф. Гариепи. Новосибирск : Научная книга, 2002.-216 с.
- 5. Интегральные операторы в пространствах суммируемых функций / М. А. Красносельский [и др.]. М. : Наука, 1966. 500 с.
- 6. Alberti, G. Non-occurrence of gap for one-dimensional autonomous functionals / G. Alberti, F. Serra Cassano // Proceedings of "Calc. Var., Homogen. and Cont. Mech." / ed. by G. Bouchitté, G. Buttazzo, P. Suquet. Singapore, 1994. P. 1—17.
- 7. *Шарапудинов*, *И. И.* Некоторые вопросы теории приближений в пространствах Лебега с переменным показателем / И. И. Шарапудинов. Владикавказ : ЮМИ ВНЦ РАН и РСО-А, 2012. 267 с. (Итоги науки. Юг России. Математическая монография ; 5).
- 8. *Буттацио*, Д. Одномерные вариационные задачи. Введение / Д. Буттацио, М. Джаквинта, С. Гильдебрандт. Новосибирск : Научная книга, 2002. 246 с.