

Indexing Protected Deep Face Templates by Frequent Binary Patterns

D. Osorio-Roig et al

Biometrics Security and Privacy Group, IdiapResearch Institute da/sec-Biometrics and Security Research Group, Hochschule Darmstadt

Introduction

In the context of face biometrics, researches have mainly focused on cancelable biometrics for identification systems. Some observations can be analysed:

- computational costs in these schemes, which apply a typical exhaustive search-based identification, tend to grow linearly with the number of enrolled subjects.
- most of the cancelable schemes introduce the randomness to fulfill BTP requirements defined by the ISO/IEC 24745 standard (i.e. renewability, unlinkability, irreversibility) yielding binary representations-based features.
- i. Explore whether the most frequent binary patterns over cancelable templates could be most stable and sufficient for indexing.
- ii. First proposal of search space-reducing *Workload Reduction* scheme for deep face templates protected by well-known cancelable biometric schemes.
- iii. Experimental results showcase that the proposed scheme is agnostic w.r.t the applied cancelable schemes.

Proposed Scheme

• Frequent binary pattern extraction: a set **P** of binary patterns are extracted from N bits; subsequently, frequent patterns are defined to their corresponding number of occurrences in N.

Computational Workload Reduction

 $\mathcal{W} = \sum_{i=1}^{Z} |l_i|$

Experimental Setup

Cancelable schemes

- BioHashing
- IoM with Uniformly Random Permutation (IoM-URP)
- IoM with Gaussian Random Projection (IoM-GRP)
- Original face embeddings are used as baseline (unprotected system)

Identification experiments

- Closed-set scenario (sub-sampling of 10 rounds)
- Open-set scenario (10-folds cross-validation)
- Normal and stolen-token scenarios
- Baseline workload of an identification system is considered to be an exhaustive search, i.e. a biometric probe is compared against all references enrolled in the database.
- Experiments are conducted on LFW database containing 1,680 in enrolment

Metrics

- **Biometric performance**: for closed-set scenario, the hit-rate(H-R); for open-set scenario, the detection error trade-off (DET) curves.
- Computational workload: penetration rate (P-R) and the necessary number of comparisons per identification transaction.

Experimental Results

Closed-set scenario evaluation

- It can be perceived that the curves can be maintained at almost 100% H-R up to a certain length of the frequent pattern depending on the cancellable scheme.
- P-R can be reduced to approximately half (i.e. P-R < 52%) of the baseline workload, while maintaining a high H-R.

Open-set scenario evaluation

Stolen-token Scenario

- Evaluating the effect of the parameter *z* over challenging scenarios.
- A fixed length of frequent pattern, i.e. K = 4, and z ranging in [1,16].
- Biometric performance improves as the maximum number of visited bins corresponding to the most frequent binary patterns from the probe (z) increase.

BTP approach	Normal-scenario			Stolen-token-scenario		
	FNIR@FPIR=1.0%	\mathbf{z}	P-R(%)	FNIR@FPIR=1.0%	${f z}$	P-R(%)
Unprotected baseline	19.76	11	66.08	19.76	11	66.08
BioHashing	23.30	11	66.27	23.14	11	66.44
IoM-GRP	19.57	11	66.28	20.37	11	66.61
IoM-URP	22.33	5	87.90	29.99	5	88.59

- Summary of the best results over open-set evaluation for normal and stolen-token scenarios, respectively.
- For a FNIR@FPIR = 1.0%, the system achieves a rejection rate for genuine identification transactions of less than 24%, while reducing to approximately 66% of the workload over open-set scenarios.

Future work

• Extend the proposed system to multi-biometrics where frequent binary patterns will be extracted from multiple biometric characteristics.

Participate in the survey "Protecting your data in biometric systems"

