

第五讲

微程序设计技术(一)

-- 微指令控制字段的编译方法

- 一、学习内容
- 1. 构建一个模型计算机机,通过模型机的所具 有的

部件和控制信号,设计出具体的微指令格式:

- 2. 微指令的三种控制方法;
- 3. 微程序设计技术;

学习重点:

- 1. 微指令三种控制方法
- 2. 掌握微程序设计方法

- 1. 进行微程序设计时,应考虑以下因素:
 - 有利于缩短微指令字长
 - 有利于减少控制存储器的容量
 - 有利于微程序的执行速度
 - 有利于对微指令的修改
 - 有利于微程序设计的灵活性

1 微指令的编译法

- 微指令下址字段设计方法
- 3 微指令格式的类型

- 微程序控存和动态微程序设计
- 5 毫微程序设计

1. 模型机的结构

模型机特点;

- 1.模型机以总线结构构建;
- 2. 总线宽度为8位二进制;
- 3.数据和指令都通过总线传输;
- 4. 总线以分时复用的形式传输数据和指令,每一时刻只能有一个8位的二进制数据或指令进行传输 (即:每一时刻只能有一个部件输出数据):
- 5. 每个部件有相应的控制信号(微命令)控制其数据输入或输出;
- 6.ALU部件可以实现8bit的加/减,+1,带进位加/减,逻辑运算和移位操作等各种运算(CPU采用74LS181,移位寄存器采用74LS299);
- 7. 设指令译码控制信号为 J1#~ J5 #(低电平有效)
- 8. 中断控制

2. 模型机控制信号(微命令表)

序 号≠	控制信号₽	功能₽	序 号→ 控制信号→		功能↩		
1€	PC-B#⊄	指令地址(程序计数器)送总 线√	15₽	ALU-B # ₽	运算器 ALV 内容送总线₽		
24³	B−AR€	总线内容打入地址寄存器₽	16↩	Ci↔	ALU 进位输入₽		
34□	PC+1₽	程序计数器内容加一↩	17€	B-RO€	总线内容打入 RO 寄存器₽		
44□	B-PC€	总线内容打入程序计数器₽	18↩	B-R1 €	总线内容打入 R1 寄存器₽		
542	B-IR€	总线内容打入指令寄存器₽	1947	B-R2€	总线内容打入 R2 寄存器₽		
64□	M-W# ←	存储器写₽	20↩	B-R3 (B-SP) €	总线内容打入 R3 寄存器₽		
7€	M-R# ↔	存储器读₽	21€	RO-B # €	RO 寄存器内容送总线√		
84□	S₃€³	S₁- S₁选择 ALV16 种运算之一₽	22€	R1−B# 4º	R1 寄存器内容送总线↩		
94⊃	S₂₽	同上↩	23€	R2-B # €	R2 寄存器内容送总线↩		
10€	S₁₽	同上↩	24¢ R3-B# (SP-B#)¢		R4 寄存器内容送总线₽		
11€	S₁₽	同上↩					
12€	M←³	M 为"1"选择 ALV 做逻辑运算, M 为"0"选择 ALV 做算数运算↔		14.44	长人汉亚特州		
13€	B-DA1 ←	Z 总线内容打入暂存器 DA1₽	5 J1#		指令译码控制		
14↔	B-DA2€	总线内容打入暂存器 DA2↩					

1、微指令的编译法

①直接控制法

- I. 在微指令的控制字段中,每一位代表一个微命令(控制信号),这就是直接控制法。
 - a) 在设计微指令时,如果要发出某个微命令则将 控制字段中对应位置有效,这样就可以打开或 关闭某个控制门
 - b) 如果是编码控制则置相应编码值。

II. 优点: 无需译码, 执行速度

快; 微程序较短。

III. 缺点: 微指令的控制字段

太长

②全译码方式

- ❖控制字段的编码方法:将所有的控制信号进行编码,作为控制字段。在执行微指令时,译码产生各个微命令。
 - ✓每条微指令只能发送1~2个微命令。
- ❖优点:微指令字长很短。
- ❖缺点:并行操作能力弱,微程序很长,执行速度慢
- *一般用于垂直微指令格式。

③字段直接编译法

I. 控制字段的编码方法: 将控制字段分成

有利于实现并有利于实现并有以提高信息。 个位的利用率, 缩短微指令字

- II. 优》 / 表行操作能力较强,字长\ [18]
- III. 字、直接编译法的基本分段原则 / £:
 - ✓相斥性微命令分在同一字段内,相容性微命令分在不同字段内。

③字段直接编译法

- ✓ 相斥性微命令:指在同一个微周期中不可能同时出现的微命令。
- ✓ 相容性微命令:指在同一个微周期中可以同时 出现的微命令

用字段直接编译法,重新设计微指令

7 字 段

OTB

1.24个控制信号中,将总线数据送目的部件的7个 控制信号组成1个字段(BTO)编码和译码,将 部件数据送总线的 4 个控制信号组成 1 个字段 (OTB) 编码和译码

2. 11 个控制信号: 从	<u> 直接控制的 11</u>	位缩短到了
直接译码的6位。	编码+译	ВТО

3. 去掉了 B-R1、 **B-R2**

D2	-B#			000			
•		00 /	/ 一片	001	B-DA1	ALU-B#	
4. 似指令	令字长从	28 1火	循 为	010	B-DA2	PC-B#	
				011	B-IR	R0-B#	
				100	B-AR	M-R#	
M ₁₆ ~M ₁₄	M ₁₃ ~M ₁₁	$M_{13} \sim M_{11} \qquad M_{10} \qquad N_{10}$		101	B-R0		
вто	BTO OTB PC+1		S ₃	110	M-W#		
		,		111	B-PC#		

字段直接编译法设计的微程序

微地址	微指令发出的微操作信号	判别测试字 段(J1#)	下址字段
000	M0: PC-B#,B-AR,PC+1	1	001
001	M1: M-R#,B-IR,J1#	0	×××
010	JMP•M2: PC-B#,B-AR,PC+1	1	011
011	JMP•M3: M-R#, B-PC#,PC+1	1	000
100	ADD•M3 : M-R#, B-DA1	1	101
101	ADD•M4: R0-B#,B-DA2	1	111
110	ADD•M2: PC-B#,B-AR,PC+1	1	100
111	ADD•M5: $S_3S_2S_1S_0MC_i=100101$, ALU-B#,B-R0	1	000

字段直接编译法设计的微程序

沙丘	M ₁₆ ~M ₁₄	M ₁₃ ~M ₁₁	M ₁₀	M ₉	M ₈	M ₇	M ₆	M ₅	M ₄	M_3	M ₂ ~M ₀
微地址	вто	ОТВ	PC+1	S ₃	S ₂	S ₁	S ₀	M	Ci	J1#	下址
00H	100	010	1	0	0	0	0	0	0	1	001
01 H	011	100	0	0	0	0	0	0	0	0	***
02 H	100	010	1	0	0	0	0	0	0	1	011
03H	111	100	1	0	0	0	0	0	0	1	000
04H	001	100	0	0	0	0	0	0	0	1	101
05H	010	011	0	0	0	0	0	0	0	1	111
06H	100	010	1	0	0	0	0	0	0	1	100
07H	101	001	0	1 (0	0	1	0	1	1	000