Names	IDs
Hassan Ali Hassan Ibrahim	19015603
Ahmed Hesham Abdel-Razzak	19015378
Abdelrahman Ibrahim Abdelhalim Saad	19015880

Assignment 2 Clustering

Problem Statement

It's required to implement different cluster algorithms and test them using Kdd_cub data, the required algorithms were:

- 1. K-means algorithm: with only 10% which contains about 400,000 record with different K values [7, 15, 23, 31, 45] and validate the model using another test data
- 2. Spectral clustering algorithm (normalized cut): with only 0.15% and with k = 11
- 3. New algorithm that wasn't introduced: with 10% of the data and then show how it works and how it differs from the first 2 algorithms

After finishing training and testing the algorithms all the models should be validated using:

- 1. Precision
- 2. Recall
- 3. F1-score
- 4. Conditional Entropy

Used Cluster algorithm:

1. KNN algorithm

ALGORITHM 13.1. K-means Algorithm

```
K-MEANS (\mathbf{D}, k, \epsilon):

1 t = 0

2 Randomly initialize k centroids: \mu_1^t, \mu_2^t, \dots, \mu_k^t \in \mathbb{R}^d

3 repeat

4 | t \leftarrow t + 1

5 | C_j \leftarrow \emptyset for all j = 1, \cdots, k

// Cluster Assignment Step

6 | foreach \mathbf{x}_j \in \mathbf{D} do

7 | \int_{\mathbf{x}_j} \mathbf{x}_j \leftarrow \arg\min_i \left\{ \|\mathbf{x}_j - \mu_i^{t-1}\|^2 \right\} // Assign \mathbf{x}_j to closest centroid

8 | C_{j^*} \leftarrow C_{j^*} \cup \{\mathbf{x}_j\}

// Centroid Update Step

9 | foreach i = 1 to k do

10 | \mu_i^t \leftarrow \frac{1}{|C_i|} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j

11 until \sum_{i=1}^k \|\mu_i^t - \mu_i^{t-1}\|^2 \le \epsilon
```

2. Spectral cluster

Normalized Cut Algorithm

ALGORITHM 16.1. Spectral Clustering Algorithm

```
SPECTRAL CLUSTERING (D, k):

1 Compute the similarity matrix \mathbf{A} \in \mathbb{R}^{n \times n}

2 if ratio cut then \mathbf{B} \leftarrow \mathbf{L}

3 else if normalized cut then \mathbf{B} \leftarrow \mathbf{L}^s or \mathbf{L}^a

4 Solve \mathbf{B}\mathbf{u}_i = \lambda_i \mathbf{u}_i for i = n, \dots, n - k + 1, where \lambda_n \leq \lambda_{n-1} \leq \dots \leq \lambda_{n-k+1}

5 \mathbf{U} \leftarrow (\mathbf{u}_n \quad \mathbf{u}_{n-1} \quad \dots \quad \mathbf{u}_{n-k+1})

6 \mathbf{Y} \leftarrow normalize rows of \mathbf{U} using Eq. (16.19)

7 \mathcal{C} \leftarrow \{C_1, \dots, C_k\} via K-means on \mathbf{Y}
```

3. New algorithm(GMM)

```
% Point Cloud
K % Number of Pro-

\pi % Weight of Pro-

\mu %Mean of Probo-

\Sigma %Covariance of

Input: P = \{p_1, ..., p_N\}, K
                  % Number of Probability Distribution
                  % Weight of Probability Distribution
                  %Mean of Probability Distribution
                  %Covariance of Probability Distribution
Parameter Initialization \pi, \mu, \Sigma
for t=1:T
                                       %E-step
      for n=1:N
             for k = 1: K
                  \gamma(z_{nk}) = \frac{\pi_k N(p_n | \mu_k, \Sigma_k)}{\sum_{i=1}^{K} \pi_i N(p_n | \mu_i, \Sigma_i)};
            end
      end
      for k = 1: K %M-step
          \mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) p_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})};
\sum_{n=1}^{N} \gamma(z_{nk}) (p_{n} - \mu_{k}) (p_{n} - \mu_{k})^{T}
\sum_{k=1}^{N} \gamma(z_{nk}) (p_{n} - \mu_{k}) (p_{n} - \mu_{k})^{T};
            \pi_{k} = \frac{1}{N} \sum_{k=1}^{N} \gamma(z_{nk});
      end
end
Output : \pi = {\pi_1, ..., \pi_K}, \ \mu = {\mu_1, ..., \mu_K}, \ \Sigma = {\Sigma_1, ..., \Sigma_K}
```

Data Used:

1. Knn algorithm:

The data Used: KDD_cub_10_percent: the data consistent of 494021 record and 42 features(including the target)
The data contains 4 features (including the target) are Strings which will be decoded before building the model

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 494021 entries, 0 to 494020
Data columns (total 42 columns):
                                                                                                                       Non-Null Count
 # Column
               duration
protocol_type
  0 duration
                                                                                                                     494021 non-null int64
                                                                                                                      494021 non-null object
                                                                                                                     494021 non-null object
                service
                                                                                                                     494021 non-null
                flag
                src_bytes
dst_bytes
                                                                                                                     494021 non-null int64
                                                                                                                      494021 non-null
                                                                                                                                                                                   int64
                land
                                                                                                                     494021 non-null
                wrong_fragment
                                                                                                                     494021 non-null
   8
                urgent
                                                                                                                     494021 non-null
                                                                                                                     494021 non-null
                hot
 9 hot 494021 non-null
10 num_failed_logins 494021 non-null
11 logged_in 494021 non-null
12 num_compromised 494021 non-null
13 root_shell 494021 non-null
14 su_attempted 494021 non-null
15 num_root 494021 non-null
16 num_file_creations 494021 non-null
17 num_shells 494021 non-null
18 num_access_files 494021 non-null
18 num_access_files 494021 non-null
19 num_outbound_cmds 494021 non-null
20 is_host_login 494021 non-null
21 is_guest_login 494021 non-null
22 count 494021 non-null
23 srv_count 494021 non-null
              num failed logins
                                                                                                                                                                                   int64
                                                                                                                                                                                    int64
 21 13_90-_
22 count
23 srv_count
24 serror_rate
25 srv_serror_rate
26 rerror_rate
27 srv_rerror_rate
28 same_srv_rate
29 diff_srv_rate
30 srv_diff_host_rate
31 dst_host_count
494021 non-null
  33 dst host same srv rate 494021 non-null 494021 non-null 494021 non-null 494021 non-null
                                                                                                                                                                                    float64
   35 dst_host_same_src_port_rate 494021 non-null float64
   36 dst_host_srv_diff_host_rate 494021 non-null
                                                                                                                                                                                    float64

      37
      dst host serror_rate
      494021 non-null

      38
      dst host srv_serror_rate
      494021 non-null

      39
      dst host rerror_rate
      494021 non-null

      40
      dst host srv_rerror_rate
      494021 non-null

      40
      dst host srv_rerror_rate
      494021 non-null

   37 dst_host_serror_rate
                                                                                                                      494021 non-null
                                                                                                                                                                                    float64
                                                                                                                                                                                   float64
                                                                                                                      494021 non-null object
dtypes: float64(15), int64(23), object(4)
memory usage: 158.3+ MB
```

2. Spectral & GMM Algorithm

```
Specteral clustering

[65] np.random.seed(42)

[66] def prepareData(df):
    train_data_spectral, test_data_spectral = train_test_split(df, train_size = 0.0015, random_state = 42, stratify=df['target'])
    train_data_spectral = encoder(train_data_spectral)
    train_spectral_labels = train_data_spectral['target']
    train_data_spectral = train_data_spectral.drop(['target'], axis=1)
    return train_data_spectral, train_spectral_labels
```

data:

duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment	urgent	hot	 dst_host_count	dst_host_srv_count	dst_host_same_srv_rate d
0												1.00
0		36								255		0.02
0				279	296					255	255	1.00
0		19		305	502						255	1.00
0				1032						255	255	1.00
0				520						255	255	1.00
0		12		1032						255	255	1.00
0				207	2592					55	255	1.00
0		12		1032						255	255	1.00
0											149	1.00
< 41 column	ıs											

Labels:

Model:

1. Knn algorithm

```
def KNN_model_train(df, clusters, sigma):
  rows = df.shape[0] #numper of samples ot cluser it
 centroids = []
 #get random values to represents the initial centroids
 for i in range(clusters):
   centroids.append(df.iloc[random.randint(0, rows)])
 error = 100
                     # the error between old and new centroids
                     # save the cluster after each loop
 c = []
                     # number of iteration needd to finish the cluster
 l = 0
 #iterate until the error between the old and new centroids < sigma
 while(error > sigma):
   c = [] #save the cluster of each point
   #calculate the error between the points and each centriod
   for i in range(rows):
     err = []
     for j in range(clusters):
       err.append(euclidean(df.iloc[i], centroids[j]))
     c.append(np.argmin(err)) #add the right cluster to the list
   df['cluster'] = c # save the new cluster at the data
   new_centroids = df.groupby('cluster').mean() # calculate the new centroids
   #get the error bewteen the old and enw centroids
    for i in range(new_centroids.shape[0]):
     temp = euclidean(centroids[i], new_centroids.iloc[i])
     if(i != 0):
       error = max(temp, error)
     else:
       error = temp
     centroids[i] = new_centroids.iloc[i] #update centroids
    #remove the old clusters to starn next iteration
   df.drop(columns = ['cluster'], inplace = True)
   print(f"l = {l}, Error = {error}")
    l+=1
  #save the last version of clusters
 df['cluster'] = c
  #return the data clustered, and centroids to use them in test
  return df, centroids
```

2. Spectral

```
def NormalizedCut(train_data_spectral):
  # Construct similarity matrix
  W = pairwise_distances(np.array(train_data_spectral), metric="euclidean"
  W = np.exp(-0.5 * W**2)
  # Construct degree matrix
  D = np.diag(np.sum(np.array(W), axis=1))
  # laplacian matrix
  L = D - W
  #normalized asymmetric laplacian matrix
  L = np.linalg.inv(D) @ (L)
  e, v = np.linalg.eigh(L)
  #sort eigenvectors corresponding to eigen values
  idx = e.argsort()[::1]
  w = e[idx]
  v = v[:,idx]
  #select eigen vectors required
  U = getVectors(11, v)
  U = U.T
  # normalize eigenvectors
  Y = np.zeros(np.shape(U))
  for i in range (0, np.shape(U)[0]):
    nor = np.linalg.norm(U[i])
    if (nor == 0):
      Y[i] = U[i]
      continue
    Y[i] = (1 / nor) * U[i]
```

3. GMM

```
class GaussianMixture:
   def init (self, num clusters, max iterations=20):
       """Initialize num clusters(K) and max iterations for the model"""
       self.num clusters = num clusters
       self.max_iterations = max_iterations
   def fit(self, X):
       """Initialize parameters and run E and M step storing log-likelihood value after every iteration"""
       self.pi = np.ones(self.num clusters)/self.num clusters
       self.mu = np.random.randint(min(X[:, 0]), max(X[:, 0]), size=(self.num_clusters, len(X[0])))
       self.cov = np.zeros((self.num\_clusters, len(X[\emptyset]), len(X[\emptyset])))
       for n in range(len(self.cov)):
            np.fill_diagonal(self.cov[n], 5)
       # reg cov is used for numerical stability i.e. to check singularity issues in covariance matrix
       self.reg_cov = 1e-6*np.identity(len(X[0]))
       x,y = np.meshgrid(np.sort(X[:,0]), np.sort(X[:,1]))
       self.XY = np.array([x.flatten(), y.flatten()]).T
       for m, c in zip(self.mu, self.cov):
           c += self.reg_cov
           multi_normal = multivariate_normal(mean=m, cov=c)
        self.log_likelihoods = []
```

```
for iters in range(self.max_iterations):
   self.ric = np.zeros((len(X), len(self.mu)))
   for pic, muc, covc, r in zip(self.pi, self.mu, self.cov, range(len(self.ric[0]))):
        covc += self.reg_cov
        mn = multivariate_normal(mean=muc, cov=covc)
        self.ric[:, r] = pic*mn.pdf(X)
   for r in range(len(self.ric)):
        self.ric[r, :] = self.ric[r, :] / np.sum(self.ric[r, :])
    # M-step
   self.mc = np.sum(self.ric, axis=0)
   self.pi = self.mc/np.sum(self.mc)
   self.mu = np.dot(self.ric.T, X) / self.mc.reshape(self.num_clusters,1)
   self.cov = []
   for r in range(len(self.pi)):
    covc = 1/self.mc[r] * (np.dot( (self.ric[:, r].reshape(len(X), 1)*(X-self.mu[r]) ).T, X - self.mu[r]) + self.reg_cov)
        self.cov.append(covc)
   self.cov = np.asarray(self.cov)
    likelihood_sum = np.sum([self.pi[r]*multivariate_normal(self.mu[r], self.cov[r] + self.reg_cov).pdf(X) for r in range(len(self.pi))])
    self.log_likelihoods.append(np.sum(np.log(likelihood_sum)))
```

Validation:

1. Knn algorithm

```
[235] def percision(df, c):
    perc = 0
    c_perc = []
    n_t = df.shape[0]

for i in range(c):
    cluster = df[df['cluster'] == i]
    n = cluster.shape[0]
    max_k = max(cluster.value_counts())
    prc = ((max_k / n)* (n/n_t))
    perc += prc
    c_perc.append(prc)

return c_perc, perc
```

```
def recall(df, c):
    rec = 0
    c_rec = []
    n_t = df.shape[0]

for i in range(c):
    cluster = df[df['cluster'] == i]
    cluster_size = cluster.shape[0]
    max_k = max(cluster['target'].value_counts())
    max_label = cluster['target'].value_counts().idxmax()
    total = df[df['target'] == max_label].shape[0]

    recall = max_k / total
    rec += recall * (cluster_size / n_t)
    c_rec.append(recall)

return c_rec, rec
```

```
[237] def F1_score(percision, recall, c):
       f1 = 0
       for i in range(c):
         perc_i = percision[i]
         rec_i = recall[i]
         f = (2 * perc_i * rec_i) / (perc_i + rec_i)
         f1 += f
       return f1/c
def Conditional_Entropy(df, c):
  H_t_c = 0
  n_t = df.shape[0]
  for i in range(c):
    cluster = df[df['cluster'] == i]
    n_i = cluster.shape[0]
    labels = cluster['target'].value_counts()
    H c i = 0
    for j in labels:
     H_c_i -= (j/n_i)*log(j/n_i)
    H_t_c += (n_i/n_t) * H_c_i
  return H_t_c
```

2. Spectral / New algorithm

```
print("number of detected anomalies = ", (1 - score) * np.size(train_spectral_labels))

number of detected anomalies = 3298.7130732207265
```

Precision

```
def Precision(labels_pred, train_spectral_labels, K):
  labels_pred = labels_pred.tolist()
  labels_true = np.array(train_spectral_labels)
  purity = 0
  out_arr = np.argsort(labels_pred)
  cb = 0;
  for j in range(0, K):
    cj = labels_pred.count(j) + cb
    true_labels_in_clusterj = []
    for i in range(cb, cj):
      true_labels_in_clusterj.append(labels_true[out_arr[i]])
    cb = cj
    set_true_labels_in_clusterj = [*set(true_labels_in_clusterj)]
    cmr , element = count_max_repeated(set_true_labels_in_clusterj, true_labels_in_clusterj)
    purity += cmr / np.size(labels_true)
    true_labels_in_clusterj = []
  return purity
```

Recall

```
def Recall(labels_pred, train_spectral_labels, K):
  labels pred = labels pred.tolist()
  labels true = np.array(train spectral labels)
  recall = 0
  out_arr = np.argsort(labels_pred)
  cb = 0;
  for j in range(0, K):
    cj = labels_pred.count(j) + cb
                                               #count of datarows in cluster j
     true_labels_in_clusterj = []
                                               #store the true labels of datarows in cluster j
     for i in range(cb, cj):
      true_labels_in_clusterj.append(labels_true[out_arr[i]])
    cb = cj
    set_true_labels_in_clusterj = [*set(true_labels_in_clusterj)]
     cmr, element = count_max_repeated(set_true_labels_in_clusterj, true_labels_in_clusterj)
     recallj = cmr / labels_true.tolist().count(element)
     recall += recallj * (np.size(true_labels_in_clusterj) / np.size(labels_true))
    true_labels_in_clusterj = []
  return recall
```

F1 score

```
[105] def F1_score(labels_pred, train_spectral_labels):
        labels_pred = labels_pred.tolist()
        labels_true = np.array(train_spectral_labels)
        co = 0;
        out_arr = np.argsort(labels_pred)
        for j in range(0, 11):
         cj = labels_pred.count(j) + cb
          true_labels_in_clusterj = []
          for i in range(cb, cj):
           true_labels_in_clusterj.append(labels_true[out_arr[i]])
          cb = cj
          set_true_labels_in_clusterj = [*set(true_labels_in_clusterj)]
          cmr, element = count_max_repeated(set_true_labels_in_clusterj, true_labels_in_clusterj)
          pj = cmr / np.size(true_labels_in_clusterj)
          recallj = cmr / labels_true.tolist().count(element)
          fj = (2 * pj * recallj) / (pj + recallj)
          true_labels_in_clusterj = []
        return f
```

Conditional Entropy

```
[106] def Conditional_Entropy(labels_pred, train_spectral_labels):
       labels_pred = labels_pred.tolist()
       labels_true = np.array(train_spectral_labels)
       co = 0;
       out_arr = np.argsort(labels_pred)
       for j in range(0, 11):
         cj = labels_pred.count(j) + cb
                                               #count of datarows in cluster j
         true_labels_in_clusterj = []
                                               #store the true labels of datarows in cluster j
         for i in range(cb, cj):
           true_labels_in_clusterj.append(labels_true[out_arr[i]])
         cb = cj
         set_true_labels_in_clusterj = [*set(true_labels_in_clusterj)]
         for element in set_true_labels_in_clusterj:
           x1 = true_labels_in_clusterj.count(element)
           y1 = np.size(true_labels_in_clusterj)
           h = (x1 / y1) * math.log((x1 / y1))
         H += ((np.size(true_labels_in_clusterj) / np.size(labels_true)) * h)
         h = 0
         true_labels_in_clusterj = []
       return H
```

Validation Output:

1) K-means outputs

algorithm	k	Precision	Recall	F1-score	Condition al entropy	Train Iterations
KNN	7	0.71	0.99	0.14	0.75	full(33)
	15	0.76	0.96	0.072	0.66	70
	23	0.81	0.56	0.05	0.58	70
	15	0.74	0.73	0.07	0.67	30
	23	0.86	0.55	0.055	0.44	30
	31	0.90	0.41	0.04	0.3	30
	45	0.92	0.28	0.03	0.22	30
Spectral Clustering	11	0.89	0.55	0.32	0.34	
GMM	11	0.9	0.92	0.39	0.24	

[40] F1_score(y_pred, train_spectral_labels, 11) #f1_score(test_spectral_labels, y_pred, average='weighted')