# Beispielsammlung

Komplettiert die Vorlesung Baudynamik

Dr. Stephan Gollob & Pascal Gitz

Mittwoch, 2. August 2023

# Inhaltsverzeichnis

| Vo  | prwort                                                                | 3                     |
|-----|-----------------------------------------------------------------------|-----------------------|
| I.  | Rayleigh - Quotient                                                   | 4                     |
| 1.  | Beispiel: Kragarm mit 2 Punktmassen  1.1. Aufgabenstellung            |                       |
| 2.  | Beispiel: Kargarm mit 1 Punktmasse  2.1. Aufgabenstellung             | 9<br>10               |
| 3.  | Beispiel: Einfacher Balken mit konstanter Masse 3.1. Aufgabenstellung |                       |
| II. | Einmassenschwinger                                                    | 19                    |
| 4.  | Beispiel: Logarithmisches Dekrement 4.1. Aufgabenstellung             |                       |
| 5.  | Beispiel: Impulssatz 5.1. Aufgabenstellung                            |                       |
| 6.  | Beispiel: Dynamischer Vergrösserungsfaktor  6.1. Aufgabenstellung     |                       |
| 7.  | Beispiel: Gesamtantwort ohne Dämpfung 7.1. Aufgabenstellung           | <b>40</b><br>40<br>42 |

|      | Beispiel: Gesamtantwort mit Dämpfung  8.1. Aufgabenstellung                                     |                       |
|------|-------------------------------------------------------------------------------------------------|-----------------------|
| 9.   | 8.2. Musterlösung                                                                               | <b>58</b>             |
| III. | Mehrmassenschwinger                                                                             | 65                    |
|      | Beispiel: Eigenvektoren und Nachgiebigkeitsmatrix 10.1. Aufgabenstellung                        |                       |
|      | Beispiel: Eigenvektoren mit direkt bestimmter Steifigkeitsmatrix         11.1. Aufgabenstellung |                       |
|      | Beispiel: Balken ohne Tilger  12.1. Aufgabenstellung                                            |                       |
|      | Beispiel: Balken mit Tilger  13.1. Aufgabenstellung                                             |                       |
|      | Beispiel: Antwortspektrenverfahren an einem Rahmen  14.1. Aufgabenstellung                      |                       |
|      | Beispiel: Antwortspektrenverfahren an einem zweistöckigen Gebäude 15.1. Aufgabenstellung        |                       |
|      | <b>Beispiel: Antwortspektrenverfahren an einem dreistöckigen Gebäude</b> 16.1. Musterlösung     | <b>122</b> . 123      |
| IV.  | Ersatzkraftverfahren                                                                            | 127                   |
|      | Beispiel: Schubmittelpunkt und Stockwerksquerkraft  17.1. Aufgabenstellung                      | 128<br>. 128<br>. 130 |

Literatur 137

### Vorwort

Die folgenden Beispiele umfassen die wesentlichen Aspekte der im Rahmen der Vorlesung Baudynamik vorgestellten Theorie. Anhand von numerischen Beispielen werden die Grundlagen der Baudynamik vertieft behandelt.

#### **To-Dos**

- Bilder mit CAD zeichnen
- Gleichung nummerieren (ja/nein)?

# Teil I. Rayleigh - Quotient

# 1. Beispiel: Kragarm mit 2 Punktmassen

#### 1.1. Aufgabenstellung

Das in Abbildung 1.1 dargestellte System stellt einen Kragarm mit verteilter Masse und 2 Punktmassen dar. Eine mögliche Formfunktion ist rechts daneben gezeigt.



Abbildung 1.1.: Kragarm mit verteilter Masse und zwei Punktmassen

#### Gesucht:

ullet Grundfrequenz (1. Eigenfrequenz  $\omega_n$ ) des Systems, berechnet mit dem Rayleigh-Quotienten.

#### Gegeben:

- Randbedingungen für den Spezialfall: m=0 und  $M_1=M_2=M$
- Formfunktion:

$$\psi(x) = 1 - \cos(\frac{\pi x}{2L})$$

#### 1.2. Musterlösung

#### 1.2.1. Grundfrequenz

Mithilfe der in der Vorlesung hergeleiteten Bewegungsgleichung kann anhand der Formfunktion  $\psi$  die erste Eigenkreisfrequenz ermittelt werden. ERKLÄRUNG DES RAYLEIGH-QUOTIENTS.

$$u'' \int_0^L m\psi^2 dx + u \int_0^L (EI(\psi'')^2) dx = f(x, t)$$
 (1.1)

Durch Substitution resultiert die bekannte Bewegungsgleichung:

$$m^{\star}u'' + k^{\star}u = f(x,t) \text{ mit } k^{\star} = \int_{0}^{L} (EI(\psi'')^{2}) dx \text{ und } m^{\star} = \int_{0}^{L} m\psi^{2} dx \qquad (1.2)$$

Aus der Bewegungsgleichung kann die Eigenkreisfrequenz ermittelt werden:

$$\omega_1 = \sqrt{\frac{k^*}{m^*}} \tag{1.3}$$

#### 1.2.1.1. Berechnung der Masse

Die Masse in Gleichung 1.3 kann mittels der Lösung des Integrals in Gleichung 1.2 bestimmt werden. Dabei sind die Punktmassen mittels der entsprechenden Deformation an den Stellen L und  $\frac{L}{2}$  zu berücksichtigen, sowie die verteilte Masse über die gesamte Länge.

$$m^{\star} = M_1 \psi(x = L/2)^2 + M_2 \psi(x = L)^2 + \int_0^L m \psi^2 dx \tag{1.4}$$

$$\psi(x)^2 = \left(1 - \cos\left(\frac{\pi x}{2L}\right)\right)^2 \tag{1.5}$$

$$m^{\star} = M_1 \left( 1 - \frac{\sqrt{2}}{2} \right)^2 + M_2 + m \left( -\frac{4L}{\pi} + \frac{3L}{2} \right) \tag{1.6}$$

#### 1.2.1.2. Berechnung der Steifigkeit

Die Steifigkeit in Gleichung 1.3 kann mittels der Lösung des Integrals in Gleichung 1.2 bestimmt werden. Zur Ermittlung der Steifigkeit  $k^*$  muss zuerst der Ansatz zweimal nach x abgeleitet werden.

$$\psi(x) = 1 - \cos\left(\frac{\pi x}{2L}\right) \tag{1.7}$$

$$\frac{d}{dx}\psi(x) = \frac{\pi \sin\left(\frac{\pi x}{2L}\right)}{2L} \tag{1.8}$$

$$\frac{d^2}{dx^2}\psi(x) = \frac{\pi^2 \cos\left(\frac{\pi x}{2L}\right)}{4L^2} \tag{1.9}$$

Durch das Einsetzen der zweiten Ableitung in den Anteil für  $k^*$  aus Gleichung 1.2 resultiert die Steifigkeit zu:

$$k^{\star} = (\frac{\pi}{2L})^4 \int_0^L (EI(\cos(\frac{\pi x}{2L})^2)) dx \tag{1.10}$$

Durch die Lösung des Integrals folgt:

$$k^* = \frac{\pi^4 EI}{32L^3} \tag{1.11}$$

#### 1.2.1.3. Berechnung der Grundfrequenz

Durch das Einsetzen der berechneten Werte resultiert die Eigenkreisfrequenz in Gleichung 1.3 zu:

$$\omega_{1} = \sqrt{\frac{\pi^{4}EI}{32L^{3}\left(M_{1}\left(1 - \frac{\sqrt{2}}{2}\right)^{2} + M_{2} + m\left(-\frac{4L}{\pi} + \frac{3L}{2}\right)\right)}}$$
(1.12)

#### 1.2.1.4. Auswertung des Spezialfalls

Mit Hilfe der Randbedingungen für den Spezialfall aus der Aufgabenstellung resultiert die Grundfrequenz zu:

$$\omega_1 = \frac{\sqrt{2}\pi^2 \sqrt{\frac{EI}{M(1 - \frac{\sqrt{2}}{2})^2 + M}}}{8L^{\frac{3}{2}}}$$
(1.13)

$$\omega_{1} = \frac{1.67\sqrt{\frac{EI}{M}}}{L^{\frac{3}{2}}} \tag{1.14}$$

Die exakte erste Eigenfrequenz eines Zweimassenschwingers mit konstanter Steifigkeit und gleichen Massen, mit enstsprechenden Randbedingungen gemäss der Aufgabenstellung, ist:

$$\omega_1 \simeq \sqrt{\frac{3.007 \frac{EI}{L^3}}{1.102M}} = 1.652 \sqrt{\frac{EI}{ML^3}} = \frac{1.652 \sqrt{\frac{EI}{M}}}{L^{\frac{3}{2}}}$$
(1.15)

Die Berechnung mit Hilfe des Rayleigh-Quotienten stellt also eine (sehr) gute Abschätzung der ersten Eigenfrequenz dar.

# 2. Beispiel: Kargarm mit 1 Punktmasse

#### 2.1. Aufgabenstellung

Das in Abbildung 2.1 dargestellte System stellt einen Kragarm mit verteilter Masse und einer Punktmasse dar. Eine mögliche Formfunktion ist rechts daneben gezeigt.



Abbildung 2.1.: Kragarm mit verteilter Masse und einer Punktmasse

#### Gesucht:

ullet Grundfrequenz (1. Eigenfrequenz  $\omega_n$ ) des Systems in Abbildung 2.1, berechnet mit dem Rayleigh-Quotienten.

#### Gegeben:

- ullet Ausgewertet für den Spezialfall: m=0 und M=M
- Formfunktion:

$$\psi(x) = 1 - \cos(\frac{\pi x}{2L})$$

#### 2.2. Musterlösung

Das Vorgehen entspricht dem Vorgehen in Kapitel 1.2.

#### 2.2.1. Grundfrequenz

#### 2.2.1.1. Berechnung der Masse

Die Masse in Gleichung 1.3 kann mittels der Lösung des Integrals in Gleichung 1.2 bestimmt werden. Dabei ist die Punktmasse mittels der entsprechenden Deformation an der Stelle L zu berücksichtigen, sowie die verteilte Masse über die gesamte Länge.

$$m^* = M\psi(x = L)^2 + \int_0^L m\psi^2 dx$$
 (2.1)

$$\psi(x)^2 = \left(1 - \cos\left(\frac{\pi x}{2L}\right)\right)^2 \tag{2.2}$$

$$m^* = M + m\left(-\frac{4L}{\pi} + \frac{3L}{2}\right) \tag{2.3}$$

#### 2.2.1.2. Berechnung der Steifigkeit

Die Steifigkeit in Gleichung 1.3 kann mittels der Lösung des Integrals in Gleichung 1.2 bestimmt werden. Zur Ermittlung der Steifigkeit  $k^*$  muss zuerst der Ansatz zweimal nach x abgeleitet werden.

$$\psi(x) = 1 - \cos\left(\frac{\pi x}{2L}\right) \tag{2.4}$$

$$\frac{d}{dx}\psi(x) = \frac{\pi \sin\left(\frac{\pi x}{2L}\right)}{2L} \tag{2.5}$$

$$\frac{d^2}{dx^2}\psi(x) = \frac{\pi^2 \cos\left(\frac{\pi x}{2L}\right)}{4L^2} \tag{2.6}$$

Durch das Einsetzen der zweiten Ableitung in den Anteil für  $k^*$  aus Gleichung 1.2 resultiert die Steifigkeit zu:

$$k^{\star} = (\frac{\pi}{2L})^4 \int_0^L (EI(\cos(\frac{\pi x}{2L})^2)) dx \tag{2.7}$$

Durch die Lösung des Integrals folgt:

$$k^* = \frac{\pi^4 EI}{32L^3} \tag{2.8}$$

#### 2.2.1.3. Berechnung der Grundfrequenz

Durch das Einsetzen der berechneten Werte resultiert die Eigenkreisfrequenz in Gleichung 1.3 zu:

$$\omega_{1} = \sqrt{\frac{\pi^{4}EI}{32L^{3}\left(M + m\left(-\frac{4L}{\pi} + \frac{3L}{2}\right)\right)}}$$
 (2.9)

#### 2.2.1.4. Auswertung des Spezialfalls

Mit Hilfe der Randbedingungen für den Spezialfall aus der Aufgabenstellung resultiert die Grundfrequenz zu:

$$\omega_1 = \frac{\sqrt{2}\pi^2 \sqrt{\frac{EI}{M}}}{8L^{\frac{3}{2}}} \tag{2.10}$$

$$\omega_1 = \frac{1.74\sqrt{\frac{EI}{M}}}{L^{\frac{3}{2}}} \tag{2.11}$$

# 3. Beispiel: Einfacher Balken mit konstanter Masse

#### 3.1. Aufgabenstellung

Das System in Abbildung 3.1 zeigt einen einfachen Balken mit einer konstanten Streckenlast belastet.





Abbildung 3.1.: Statisches System des einfachen Balkens

#### Gesucht:

 $\bullet\,$  Eigenkreisfrequenz  $\omega_1$  mit Hilfe der analytischen Formfunktion Gleichung 3.1

$$\Psi(x) = \sin \frac{\pi x}{L} \tag{3.1}$$

 $\bullet\;$  Eigenkreisfrequenz  $\omega_1$  mit Hilfe der Biegelinie

#### Gegeben:

ullet Länge des Balkens L

$$\omega_1 = \pi^2 \cdot \sqrt{\frac{E \cdot I}{m_{const} \cdot L^4}} \tag{3.2}$$

#### 3.2. Musterlösung

#### 3.2.1. Analytische Formfunktion

Als Formfunktion wird eine Sinus-Funktion gewählt. Dabei ist sicherzustellen, dass die Formfunktion normiert ist. Das heisst, der maximale Wert der Funktion ist 1. Dazu sind die kinematischen Randbedingungen einzuhalten. Entsprechend des Systems in Abbildung 3.1 muss die Verformung bei den Lagern null sein. Die gewählte Formfunktion bedingt keine weitere Anpassung zur Normierung.

$$\Psi(x) = \sin\left(\frac{\pi x}{L}\right) \tag{3.3}$$



Abbildung 3.2.: Frei gewählte Formfunktion

#### 3.2.1.1. Rayleigh - Quotient

Der Rayleigh-Quotient ist eine Energiebetrachtung. Er setzt die potentielle, maximale Energie  $E_{pot,max}$  zur kinetischen, maximalen Energie  $E_{kin,max}$  ins Verhältnis. Daraus lässt sich die Kreisfrequenz  $\omega_n$  herauslösen. Die Lösung der Integrale wird hier mit einer Mathematik-Software durchgeführt. Die einzelnen Teilschritte werden nicht aufgeführt.

$$E_{pot,max} = E_{kin,max} \tag{3.4}$$

$$\omega_1^2 = \frac{\int_0^L EI[u''(x)]^2 dx}{\int_0^L m_{const.}[u(x)]^2 dx}$$
(3.5)

Dies lässt sich mit entsprechender Formfunktion schreiben:

$$\omega_1^2 = \frac{\int_0^L EI[\Psi''(x)]^2 dx}{\int_0^L m_{const.} [\Psi(x)]^2 dx}$$
(3.6)

Durch die Ermittlung der zweiten Ableitung der Formfunktion:

$$\psi(x) = \sin\left(\frac{\pi x}{L}\right) \tag{3.7}$$

$$\frac{d}{dx}\psi(x) = \frac{\pi\cos\left(\frac{\pi x}{L}\right)}{L} \tag{3.8}$$

$$\frac{d^2}{dx^2}\psi(x) = -\frac{\pi^2 \sin\left(\frac{\pi x}{L}\right)}{L^2} \tag{3.9}$$

Diese eingesetzt in die Gleichung 3.6:

$$\omega_1 = \frac{\pi^2 \sqrt{\frac{EI}{m_{const}}}}{L^2} \tag{3.10}$$

Dies entspricht der exakten Lösung Gleichung 3.2! Grund dafür ist, dass die gewählte Formfunktion mit der dynamischen Deformation übereinstimmt.

#### 3.2.2. Formfunktion aus Biegelinie

Die Biegelinie für das System in Abbildung 3.1 ist folgend beschrieben. Beachte dabei dass die Deformation nach "unten" positiv definiert ist. Die Funktion kann aus Hilfswerken entnommen werden.

$$w(x) = \begin{cases} \frac{FL^2x(\frac{3}{4} - \frac{x^2}{L^2})}{12EI} & \text{for } x \le \frac{L}{2} \\ \frac{F(x(3L^2 - 4x^2) - (L - 2x)^3)}{48EI} & \text{otherwise} \end{cases}$$
(3.11)



Abbildung 3.3.: Formfunktion aus Biegelinie abgeleitet

#### 3.2.2.1. Normierung

Es ist ersichtlich, dass die Formfunktion noch eine Normierung benötigt. Dazu wird der Maximalwert zu 1 gesetzt. Die Randbedingungen sind bereits erfüllt.

$$w_{norm}(x) = \frac{48EI\left(\begin{cases} \frac{FL^{2}x\left(\frac{3}{4} - \frac{x^{2}}{L^{2}}\right)}{12EI} & \text{for } x \leq \frac{L}{2} \\ \frac{F\left(x(3L^{2} - 4x^{2}) - (L - 2x)^{3}\right)}{48EI} & \text{otherwise} \end{cases}}{FL^{3}}$$
(3.12)



Abbildung 3.4.: Normierte Formfunktion aus Biegelinie abgeleitet

#### 3.2.2.2. Rayleigh - Quotient

Durch das Einsetzen der bestimmten Formfunktion aus der Biegelinie in Gleichung 3.6 kann die Eigenkreisfrequenz ermittelt werden.

$$\omega_{1biege} = \frac{9.94 \left(\frac{EI}{m_{const}}\right)^{0.5}}{L^2} \tag{3.13}$$

#### 3.2.3. Vergleich beider Lösungen

Ein Vergleich der Eigenkreisfrequenz aus der Biegeform mit der exakten Lösung aus Gleichung 3.2 zeigt eine minimale Abweichung.

Abweichung = 
$$0.72\%$$
 (3.14)



Abbildung 3.5.: Überlagerung beider Funktionen

# Teil II. Einmassenschwinger

### 4. Beispiel: Logarithmisches Dekrement

#### 4.1. Aufgabenstellung

Das in Abbildung 4.1 dargestellte System zeigt ein Rahmentragwerk. Dieses wird anhand eines Einmassenschwingers approximiert.



Abbildung 4.1.: Am Riegel ausgelenktes System

#### Gesucht:

- ullet Laterale bzw. horizontale Steifigkeit k des Rahmens
- Die Dämpfungsrate  $\zeta$  und die Dämpfungskonstante c
- Die Amplitude der Auslenkung des Rahmens nach 10 Schwingzyklen

#### Gegeben:

- Dehnsteifigkeit der Stützen und des Riegels  $EA = \infty$
- Biegesteifigkeit des Riegels  $EI = \infty$
- Gesamtmasse M = 1941kg

Um die Systemeigenschaften des Riegels zu untersuchen, wird eine Kopfverschiebung bzw. Auslenkung des Rahmens von  $u=20\mathrm{mm}$  aufgebracht. Danach wird die Halterung schlagartig gelöst und der Rahmen kann frei schwingen. Die angebrachte Messeinrichtung registriert eine max. Kopfverschiebung nach dem ersten Zurückschwingen von  $u=15\mathrm{mm}$  nach  $T=0.2\mathrm{s}$ .

#### 4.2. Musterlösung

Das Verhalten des Systems in Abbildung 4.1 wird versucht mittels der Theorie des Einmassenschwingers zu ermitteln. Es handelt sich um eine gedämpfte freie Schwingung.

Tabelle 4.1.: Verwendete Parameter

| Parameter                                                                                                                                       |                                                                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| $egin{aligned} EA_{riegel} &= \infty \ EI_{riegel} &= \infty \ m &= rac{1941 \mathrm{Ns}^2}{\mathrm{m}} \ u_1 &= 15 \mathrm{mm} \end{aligned}$ | $\begin{split} EA_{stuetze} &= \infty \\ T_D &= 0.2 \mathrm{s} \\ u_0 &= 20 \mathrm{mm} \end{split}$ |  |  |  |

#### 4.2.1. Horizontale Steifigkeit

#### 4.2.1.1. Logarithmisches Dekrement

Da keine Angaben über die Profile der Stützen gemacht werden, kann mittels des logarithmischen Dekrements die Eigenkreisfrequenz bestimmt werden. Anhand der Eigenkreisfrequenz lässt sich die Steifigkeit ableiten.



Abbildung 4.2.: Beispiel eines logarithmischen Dekrements

$$\delta = \log \left( \frac{u_0}{u_1} \right)$$

$$\delta = 0.288$$

#### 4.2.1.2. Dämpfungsrate

Anhand des logarithmischen Dekrements kann die Dämpfungsrate bestimmt werden.



Abbildung 4.3.: Dämpfungsrate anhand des logarithmischen Dekrements

Für kleine Dämpfungsraten kann folgende Gleichung verwendet werden:

$$\zeta \simeq \frac{\delta}{2\pi}$$

Die exakte Lösung bestimmt sich folgender massen:

$$\zeta = \frac{\delta}{\sqrt{\delta^2 + 4\pi^2}}$$
 
$$\zeta = \frac{\log\left(\frac{u_0}{u_1}\right)}{\sqrt{\log\left(\frac{u_0}{u_1}\right)^2 + 4\pi^2}}$$

$$\zeta = 0.0457$$

#### 4.2.1.3. Eigenkreisfrequenz

Aus der Aufgabenstellung ist die gedämpfte Periode von  $T_D=0.2s$  bekannt. Anhand dieser lässt sich die *gedämpfte Eigenkreisfrequenz*  $\omega_D$  bestimmen und unter Berücksichtigung der Dämpfungsrate  $\zeta$  kann die *Eigenkreisfrequenz*  $\omega_n$  bestimmt werden.

$$\omega_D = \frac{2\pi}{T_D}$$
 
$$\omega_D = \frac{31.42}{\rm s}$$
 
$$\omega_n = \frac{\omega_D}{\sqrt{1-\zeta^2}}$$
 
$$\omega_n = \frac{31.45}{\rm s}$$

#### 4.2.1.4. Steifigkeit

Wir kennen die Beziehung zwischen Eigenkreisfrequenz und Steifigkeit:

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$k = m\omega_n^2$$

$$k = \frac{1.92 \cdot 10^6 \text{N}}{\text{m}}$$

#### 4.2.2. Dämpfungskonstante

Anhand der Dämpfungsrate  $\zeta$  lässt sich leicht die Dämpfungskonstante bestimmen:

$$\zeta = \frac{c}{2\omega_n m} \tag{4.1}$$

$$c = \frac{5.58 \cdot 10^3 \text{Ns}}{\text{m}}$$

#### 4.2.3. Amplitude nach 10 Schwingzyklen

Das Verhalten der Amplitude ist in Abbildung 4.2 dargestellt.

$$\delta = \ln(\frac{u_0}{u_1}) \tag{4.2}$$

 $\delta$  ist ein konstanter Wert und kann auf 10 Zyklen erweitert werden.

$$u_1 = u_0 e^{-\delta}$$

$$u_{10} = u_0 e^{-10\delta}$$

$$u_{10}=1.126\mathrm{mm}$$

# 5. Beispiel: Impulssatz

#### 5.1. Aufgabenstellung

Abbildung 5.1 zeigt das System eines Stahlrahmens. Dieser wird durch eine kurzzeitig einwirkende Stossbelastung F(t) in Höhe des Rahmenriegels beansprucht.



Abbildung 5.1.: System des Stahlramens mit kurzzeitig einwirkender Stossbelastung

#### Gesucht:

- Der Maximalwert der zu erwartenden Riegelauslenkung (näherungsweise)
- Darstellung des zeitlichen Verlaufs u(t) in einem Diagramm
- $\bullet$  Nachweis der Elastizität des Systems anhand der Rückstellkraft (Spannungsnachweis mit Fliessspannung  $f_y$  als Grenze)

#### Gegeben:

- Dehnsteifigkeit der Stützen und des Riegels  $EA = \infty$
- Biegesteifigkeit des Riegels  $EI = \infty$
- Gesamtmasse M = 5t

- $\bullet$  Stützen aus HEB 240 (s 355, Streckgrenze  $f_y=355\mathrm{N/mm^2})$   $\bullet$   $E\cdot I_{y,Stuetze}=2.1\cdot 10^8\mathrm{kN/m^2}\cdot 11260\cdot 10^{-8}\mathrm{m^4}=23646\mathrm{kNm^2}$   $\bullet$   $W_{el,y}=938\cdot 10^3\mathrm{mm^3}(\mathrm{HEB}\,240)$   $\bullet$  Lastfunktion gemäss Abbildung 5.2



Abbildung 5.2.: Lastfunktion der kurzzeitig einwirkenden Stossbelastung

#### 5.2. Musterlösung

Tabelle 5.1.: Verwendete Parameter

| Parameter                                                                                  |                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| $EA_{riegel} = \infty$ $EI_{riegel} = \infty$ $E = 1000000N$                               | $EA_{stuetze} = \infty$<br>$EI_{stuetze} = 23646000.0 \text{m}^2 \text{N}$<br>$H = 2000 \text{m}^2 \text{m}$ |  |  |  |
| $F_{max} = 1000000N$<br>$W_{ely} = 938000 \text{mm}^3$<br>$m = \frac{5000 \text{Ns}^2}{4}$ | $H=3000$ mm $f_y=rac{355 \mathrm{N}}{\mathrm{mm}^2} \ t_1=0.003 \mathrm{s}$                                 |  |  |  |
| $t_2 = 0.006$ s                                                                            | $u_0^{'} = 0.0$                                                                                              |  |  |  |

#### 5.2.1. Horizontale Steifigkeit

Für entsprechende Anwendungsfälle gibt es fertige Lösungen zur Bestimmung der Steifigkeit. Gemäss Abbildung 5.1 ist die Stütze am Fuss- und Kopfpunkt eingespannt. Somit resultiert die Steifigkeit zu:

$$k_{Stuetze} = \frac{12EI_{Stuetze}}{H^3} \tag{5.1}$$

Diese gilt für eine einzelne Stütze. Angewendet auf das Beispiel folgt die Systemsteifigkeit zu:

$$k = \frac{24EI_{stuetze}}{H^3}$$

$$k = \frac{2.1 \cdot 10^7 \text{N}}{\text{m}}$$

#### 5.2.2. Eigenkreisfrequenz

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$\omega_n = 2\sqrt{6}\sqrt{\frac{EI_{stuetze}}{H^3m}}$$

$$\omega_n = \frac{64.8}{\text{s}}$$

#### 5.2.3. Bewegungsgleichung

Die Bewegungsgleichung für einen ungedämpften Einmassenschwinger ist die folgende:

$$mu(t)'' + ku(t) = F(t)$$

#### 5.2.3.1. Approximation der Lösung

Es handelt sich um eine inhomogene Differentialgleichung 2.Ordnung. Auf die exakte Lösung der Gleichung wird nicht eingegangen. Es wird versucht die bemessungsrelevanten Parameter näherungsweise zu bestimmen. Dies lässt sich mit dem Impulssatz approximieren.

$$F\Delta t = m\Delta v$$

Dieser besagt, dass die einwirkende Kraft F im betrachteten Zeitabschnitt  $\Delta t$  der Masse m multipliziert mit der Geschwindigkeitsänderung  $\Delta v$  des Objekts entspricht. Für eine kurze Anregung, wie im Beispiel der Fall ist, kann die Anfangsgeschwindigkeit wie folgt bestimmt werden:

$$v_0 = \frac{I}{m}$$

$$I = \int_0^{t_2} F(t) \, dt$$

$$I = 3000.0 \text{Ns}$$

$$v_0 = \frac{3000.0 \mathrm{Ns}}{m}$$

$$v_0 = \frac{0.6 \mathrm{m}}{\mathrm{s}}$$

Durch die Impuls-Betrachtung vereinfacht sich die Bewegungsgleichung zu:

$$mu(t)'' + ku(t) = 0 (5.2)$$

Mit der Anfangsgeschwindigkeit als Randbedingung.

$$u'(t=0) = v_0$$

und der Startauslenkung:

$$u(t=0) = u_0 = 0$$

Kann mittels der folgenden Ansatzfunktion die homogene Differentialgleichung gelöst werden:

$$u(t) = A_1 \cos(\omega_n t) + A_2 \sin(\omega_n t) \tag{5.3}$$

$$u(t) = 0.00925 \sin \left( \frac{64.8362038781832t}{\mathrm{s}} \right) \mathrm{m}$$



Abbildung 5.3.: Zeitlicher Verlauf der Auslenkung

#### 5.2.4. Rückstellkraft

Anhand der maximalen Amplitude lässt sich die maximale Rückstellkraft für den gesamten Rahmen bestimmen.

$$F_R = ku = kA$$
 
$$u_{max} = A$$

$$A=0.00925\mathrm{m}$$

$$F_R=1.95\cdot 10^5 \mathrm{N}$$

#### 5.2.4.1. Spannungsnachweis

Die Rückstellkraft wirkt im Zentrum der Masse und bewirkt das maximale Biegemoment bei den Fusspunkten.



Abbildung 5.4.: Biegemomentenverlauf durch die statische Ersatzkraft

$$M_{max} = \frac{F_R H}{4}$$

$$M_{max}=1.46\cdot 10^5 \mathrm{mN}$$

$$\sigma_{max} = \frac{M_{max}}{W_{ely}}$$

$$\sigma_{max} = \frac{156.0 \mathrm{N}}{\mathrm{mm}^2}$$

$$Nachweis = \frac{156.0 \mathrm{N}}{\mathrm{mm}^2} < f_y$$

# 6. Beispiel: Dynamischer Vergrösserungsfaktor

#### 6.1. Aufgabenstellung

Das System in Abbildung 6.1 zeigt einen Biegeträger, gelagert als einfacher Balken mit einer Auskragung. Dieser wird am Kragarm mit der dynamischen Last F(t) in vertikaler Richtung beansprucht.



Abbildung 6.1.: Statisches System des Biegeträgers

#### Gesucht:

- ullet Eigenkreisfrequenz  $\omega$
- Dynamischer Vergrösserungsfaktor  $V(\omega)$
- ullet Maximale dynamische Amplitude im stationären Fall  $u_{max}$

#### Gegeben:

- Biegeträger ist masselos
- Punktmasse m = 1t
- Dämpfungsrate  $\zeta = 0.005$
- Biegesteifigkeit  $E \cdot I = 30000 \text{kNm}^2$

 $\bullet\;$  Es sind lediglich Biegeverformungen zu betrachten  $G\cdot A=\infty$ 

$$F(t) = F_0 \cdot \cos(\omega \cdot t) = 50 \text{kN} \cdot \cos(62.8 \cdot t) \tag{6.1} \label{eq:6.1}$$

# 6.2. Musterlösung

Tabelle 6.1.: Verwendete Parameter

| Parameter                               |                                    |  |
|-----------------------------------------|------------------------------------|--|
| $EI = 30000000 \text{m}^2 \text{N}$     | $F_0 = 50000$ N                    |  |
| $l_1=3000\mathrm{mm}$                   | $l_2=2000\mathrm{mm}$              |  |
| $m = \frac{1000 \text{Ns}^2}{\text{m}}$ | $\omega = \frac{62.8}{\mathrm{s}}$ |  |
| $\zeta = 0.00\overline{5}$              |                                    |  |

#### 6.2.1. Eigenkreisfrequenz

Die Eigenkreisfrequenz lässt sich aus der folgenden Gleichung bestimmen:

$$\omega_n = \sqrt{\frac{k}{m}}$$

#### 6.2.1.1. Steifigkeit des Systems

Die Steifigkeit des Systems lässt sich anhand der statischen Deformation bestimmen. Sie entspricht dem Verhältnis zwischen Einwirkung und der daraus resultierenden Verformung.

$$k = \frac{F}{u}$$

Händisch lässt sich die Deformation mittels realem und virtuellem Kräftezustand, anhand der Arbeitsgleichung bestimmen. Dargestellt in Abbildung 6.2. Die Ermittlung der Steifigkeit bedingt lediglich das Verhältnis zwischen Einwirkung und Deformation, folglich darf Betrag der realen Kraft frei gewählt werden.



Abbildung 6.2.: Realer und virtueller Kräftezustand

Um lediglich Biegeverformungen zu berücksichtigen, kann die Verformung nach folgender Gleichung bestimmt werden.

$$u = \frac{1}{EI_y} \cdot \int_0^{l_1 + l_2} M_y \bar{M}_y \, dx$$

$$u = \frac{4000 \, (l_1 + l_2) \, \mathrm{m}^2 \mathrm{N}}{3EI}$$

$$u = 0.222$$
mm

$$k=\frac{3EI}{4\left(l_{1}+l_{2}\right)\mathrm{m}^{2}}$$

$$k = \frac{4500\text{N}}{\text{mm}}$$

#### 6.2.1.2. Eigenkreisfrequenz

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$\omega_n = \frac{\sqrt{3}\sqrt{\frac{EI}{m(l_1+l_2)}}}{2\mathsf{m}}$$

$$\omega_n = \frac{67.1}{\text{s}}$$

# 6.2.2. Vergrösserungsfaktor

Der Vergrösserungsfaktor beschreibt das Verhältnis zwischen der maximalen statischen Amplitude und der maximalen dynamischen Amplitude:

$$V(\omega) = \frac{u_{max}}{u_0}$$

Dieser lässt sich mit der Dämpfungsrate  $\zeta$ , Anregungsfrequenz  $\omega$  und der Eigenfrequenz  $\omega_n$  beschreiben.



Abbildung 6.3.: Einfluss der Dämpfung und der Anregungsfrequenz auf den Vergrösserungsfaktor

$$V(\omega) = \frac{1}{\sqrt{\frac{4\omega^2\zeta^2}{\omega_n^2} + \left(-\frac{\omega^2}{\omega_n^2} + 1\right)^2}}$$

$$V(\omega) = 8.07$$

#### 6.2.3. Statische Amplitude

Die Einwirkung lässt sich aus der Anregungsfunktion Gleichung 6.1 bestimmen für t=0. Mit der bekannten Systemsteifigkeit bestimmt sich die Deformation.

$$u_{stat} = \frac{F_0}{k}$$
 
$$u_{stat} = \frac{4F_0\left(l_1 + l_2\right)\text{m}^2}{3EI}$$
 
$$u_{stat} = 11.11\text{mm}$$

#### 6.2.3.1. Stationäre Amplitude

Durch die Vergrösserung der statischen Deformation mit dem Vergrösserungsfaktor resultiert die maximale Amplitude der stationären Lösung.

$$\begin{split} u_{dyn} &= u_{stat}V(\omega) \\ u_{dyn} &= \frac{4F_0 \left( l_1 + l_2 \right) \text{m}^2}{3EI \sqrt{\frac{16m\omega^2 \zeta^2 (l_1 + l_2) \text{m}^2}{3EI} + \left( -\frac{4m\omega^2 (l_1 + l_2) \text{m}^2}{3EI} + 1 \right)^2}} \\ u_{dyn} &= 89.6 \text{mm} \end{split}$$

Der Nachweis der Gebrauchstauglichkeit wäre damit sicherlich nicht erfüllt. Das Beispiel soll aufzeigen, wenn die Erregerfrequenz im Bereich der Eigenfrequenz zu liegen kommt, es zu grossen Amplifikationen der Verformungen bzw. zu Resonanzeffekten kommen kann.

Da meist die Masse und die Erregung (z.B. Maschine) gegeben ist, kann man zum Beispiel ein Dämpfungselement einbauen, was jedoch keinen wesentlichen Einfluss auf das Frequenzverhältnis hat. Dadurch werden jedoch die Amplituden begrenzt.

Eine weitere Möglichkeit wäre die Biegesteifigkeit  $E\cdot I$  zu erhöhen. Das System wird steifer und die Eigenfrequenz grösser. Man spricht in dem Fall von einer Hochabstimmung.



Abbildung 6.4.: Gesamtantwort des Systems

In der Abbildung 6.4 ist die Gesamtantwort des Systems dargestellt. Wenn Dämpfung im System vorhanden ist, dann verschwindet die transiente bzw. homogene Lösung u(t) und das System schwingt mit der stationären Lösung bzw. partikulären Lösung u(t) in der Anregungsfrequenz. Die Anregung zwingt dem System seine Schwingung auf. In der Praxis sind die Anlaufphasen zu beachten, solange die der transiente Teil noch nicht abgeklungen ist. Dort sind die Amplituden grösser und es gilt zu untersuchen, ob diese kurzfristige Überschreitung Konsequenzen (z.B. zul. Verformungen oder Bauteilspannungen) für das Tragsystem hat.

# 7. Beispiel: Gesamtantwort ohne Dämpfung

# 7.1. Aufgabenstellung

Das System in Abbildung 7.1 zeigt ein Stabwerk, welches durch eine Werkzeugmaschine angeregt wird.



Abbildung 7.1.: Statisches System des Stabwerks

#### Gesucht:

- Eigenkreisfrequenz  $\omega_n$
- Dynamischer Vergrösserungsfaktor  $V(\omega)$
- Stationäre Antwort  $u_p(t)$  mit dem dynamischen Vergrösserungsfaktor  $V(\omega)$
- Gesamtantwort u(t) mit den Anfangsbedingungen u(t=0)=0 und u'(t=0)=0
- Festigkeitsnachweis der Diagonalen

#### Gegeben:

- $\bullet\,$  Gesamtmasse inkl. rotierende Massen  $m_{tot}=5t$
- Rotierende Massen in Werkzeugmaschine  $m_1 = 0.2t$
- Drehzahl Werkzeugmaschine  $n=150/{\rm min}$
- ullet Exzentrizität der rotierenden Massen  $e=0.1\mathrm{m}$

- Dämpfungsrate  $\zeta=0$  Punktmasse m=1t• Dämpfungsrate  $\zeta=0.005$  Alle Stäbe ausser Diagonalen  $E\cdot A=\infty$
- Alle Stäbe S355

# 7.2. Musterlösung

Tabelle 7.1.: Verwendete Parameter

| Parameter                                                                                                   |                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $B = 6000 \text{mm}$ $H = 4000 \text{mm}$ $e = 0.1 \text{m}$ $m_1 = \frac{200 \text{Ns}^2}{150^{\text{m}}}$ | $E=rac{210000	ext{N}}{	ext{mm}^2} \ \mathcal{O}_{Diag}=12	ext{mm} \ f_{yd}=rac{338	ext{N}}{	ext{mm}^2} \ m_{tot}=rac{5000	ext{Ns}^2}{	ext{m}}$ |
| $n = \frac{150}{\text{minute}}$                                                                             | $\zeta = 0.0$                                                                                                                                     |

# 7.2.1. Systemsteifigkeit

Zur Ermittlung der Eigenkreisfrequenz wird die Steifigkeit des gesamten Systems benötigt.



Abbildung 7.2.: Verformungszustand des Systems für die Einheitskraft

Das System wird mit einer Einheitskraft belastet. Aufgrund der Eigenschaften der Pendelstäbe (lediglich Normalkräfte) und deren unendlich grossen Dehnsteifigkeit, spielt lediglich die

Verformung der Diagonalen eine Rolle. Dazu gilt, dass die Diagonalen nur Zugkräfte aufnehmen können. Das bedeutet, dass letztlich ein Stab aktiv ist für die beschrieben Situation in Abbildung 8.2.

Dazu muss die Normalkraft in der Diagonalen bestimmt werden.

$$\alpha = \operatorname{atan}\left(\frac{H}{B}\right)$$

$$\alpha = 0.588$$

$$Z_{Diag} = 1000 \sqrt{1 + \frac{H^2}{B^2}} N$$

$$Z_{Diag} = 1.2 \cdot 10^3 \mathrm{N}$$

Mittels der Arbeitsgleichung lässt sich die Verformung bestimmen. Für die Integration zweier Normalkraftverläufe gilt die folgende Beziehung:

$$u = \frac{1}{EA_{Diag}} \int_0^{l_{Diag}} N_x \bar{N_x} \, dx$$

Länge der Diagonalen:

$$l_{Diag} = B\sqrt{1 + \frac{H^2}{B^2}}$$

$$l_{Diag} = 7.21 \mathrm{m}$$

Querschnittsfläche der Diagonalen:

$$A_{Diag} = \frac{\pi \oslash_{Diag}^2}{4}$$

$$A_{Diag}=113.0\mathrm{mm}^2$$

Deformation der Diagonalen

$$u_k = \frac{4000B\left(1 + \frac{H^2}{B^2}\right)^{\frac{3}{2}} \mathrm{N}}{\pi E \oslash_{Diag}^2}$$

$$u_k=0.439\mathrm{mm}$$

Steifigkeit des Systems:

$$k = \frac{F}{u_k}$$

$$k = \frac{2.28 \cdot 10^3 \text{N}}{\text{mm}}$$

#### 7.2.2. Eigenkreisfrequenz

Aus der Systemsteifigkeit lässt sich leicht die Eigenkreisfrequenz bestimmen:

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$\omega_n = \frac{\sqrt{\pi} \sqrt{\frac{E \mathcal{O}_{Diag}^2}{B m_{tot} \left(1 + \frac{H^2}{B^2}\right)^{\frac{3}{2}}}}}{2}$$

$$\omega_n = \frac{21.4}{\rm s}$$

# 7.2.3. Dynamischer Vergrösserungsfaktor

#### 7.2.3.1. Anregungsfunktion

Zur Bestimmung des dynamischen Vergrösserungsfaktor wird die stationäre Verformung benötigt. Diese lässt sich aus der Anfangskraft der Anregungsfunktion ermitteln. Dazu wird diese Funktion benötigt. Wir wissen die Drehzahl n und die Exzentrizität e sowie deren Masse  $m_1$ .

$$f = n$$

$$f = \frac{2.5}{\text{s}}$$

$$\omega = 2\pi f$$

$$\omega = \frac{15.7}{8}$$

Nun fehlt lediglich die Anfangskraft  $F_0$ . Die Fliehkraft F der 2 gegenläufig rotierenden Massen bewirken eine addierende Fliehkraft in horizontaler Richtung zu:

$$F_0 = 2(m_1 \cdot e \cdot \omega^2)$$

$$F_0 = \frac{50\pi^2 e m_1}{\mathrm{s}^2}$$

$$F_0 = 9.87 \cdot 10^3 \text{N}$$

#### 7.2.3.2. Statische Deformation

Die statische Deformation lässt sich nun leicht anhand der ermittelten Systemsteifigkeit herleiten.

$$u_0 = \frac{F_0}{k}$$

$$u_0=4.33\mathrm{mm}$$

#### 7.2.3.3. Vergrösserungsfaktor

$$V(\omega) = \frac{1}{\sqrt{\frac{4\omega^2\zeta^2}{\omega_n^2} + \left(-\frac{\omega^2}{\omega_n^2} + 1\right)^2}}$$

$$V(\omega)=2.18$$

#### 7.2.4. Stationäre Antwort

Es handelt sich um einen ungedämpften Einmassenschwinger mit einer harmonischen Anregungsfunktion. Die Bewegungsgleichung ist die folgende:

$$mu''(t) + ku(t) = F(t)$$

Dies ist eine inhomogene Differentialgleichung 2. Ordnung. Die Lösung dieser lässt sich in einen partikulären Anteil und in einen homogenen Anteil aufteilen. Der partikuläre Anteil entspricht der stationären Antwort. Der homogene Anteil nennt sich transienter Anteil. Wäre eine Dämpfung im System vorhanden, so startet der Schwungvorgang aus einer Kombination beider Teile. Aufgrund der Dämpfung verschwindet der stationäre Anteil und das System wird schlussendlich nur noch durch den transienten Anteil deformiert.

Anhand des Vergrösserungsfaktor kann die stationäre dynamische Antwort des Systems mit der folgenden Beziehung ermittelt werden.

$$u_p = V(\omega)u_0 \cdot \cos\left(\omega t\right)$$

$$u_p = 9.43\cos\left(\frac{5\pi t}{\mathrm{s}}\right)\mathrm{mm}$$

#### 7.2.5. Gesamtantwort

Für die Gesamtantwort wird nun noch der homogene Anteil benötigt. Dazu ist die folgende Differentialgleichung zu lösen.

$$mu''(t) + ku(t) = 0$$

Als Ansatzfunktion dient die folgende Gleichung:

$$u_h = A_1 \cos{(\omega_n t)} + A_2 \sin{(\omega_n t)}$$

Die Randbedingungen sind in der Aufgabenstellung definiert und sind die folgenden:

$$u(t = 0) = 0$$

$$u'(t=0) = 0$$

Vorsicht, die Randbedingungen gelten für die gesamte Lösung:

$$u(t) = u_h(t) + u_p(t)$$



Abbildung 7.3.: Antworten des Systems ohne Dämpfung

# 7.2.6. Festigkeitsnachweis

Aufgrund der maximalen Auslenkung, kann die maximale Normalkraft auf der Diagonalen bestimmt werden.

#### 7.2.6.1. Maximale Auslenkung

Aus dem Plot in Abbildung 7.3 ist die maximale Auslenkung ersichtlich. Die Ermittlung des Zeitpunkts bei einer maximalen Auslenkung wird hier numerisch gelöst.

$$t_{max} = 2.8 \mathrm{s}$$

$$u_{max}=0.0188\mathrm{m}$$

#### 7.2.6.2. Maximale Einwirkung

Aufgrund der maximalen Amplitude verlängert sich die Diagonale um  $\Delta l=u_{max}$ . Die Dehnung des Stabs ist somit die  $\frac{\Delta l}{l_{Diag}}$ . Bei linear elastischem Materialverhalten gilt die folgende Beziehung:

$$\sigma = \varepsilon E$$
 
$$\varepsilon = 0.00314$$
 
$$\sigma = \frac{659.0 \text{N}}{\text{mm}^2}$$
 
$$f_{yd} = \frac{338 \text{N}}{\text{mm}^2}$$
 
$$Nachweis = \frac{\sigma}{f_{yd}}$$

$$Nachweis = 1.95$$

Die Diagonale würde plastifizieren, so dass die linearen Annahmen für die Berechnung der Systemantwort nicht angewendet werden dürfen.

# 8. Beispiel: Gesamtantwort mit Dämpfung

# 8.1. Aufgabenstellung

Das System in Abbildung 8.1 entspricht dem System in Abbildung 7.1. Ergänzt wurde dies mit einem Dämpfungselement.



Abbildung 8.1.: Statisches System

#### Gesucht:

- ullet Dynamischer Vergrösserungsfaktor  $V(\omega)$
- Stationäre Amplitude
- Festigkeitsnachweis der Diagonalen

#### Gegeben:

- $\bullet\,$  Gesamtmasse inkl. rotierende Massen  $m_{tot}=5t$
- Rotierende Massen in Werkzeugmaschine  $m_1 = 0.2t$
- Drehzahl Werkzeugmaschine  $n=150/\mathrm{min}$
- ullet Exzentrizität der rotierenden Massen  $e=0.1\mathrm{m}$
- Dämpfungsrate  $\zeta = 0$

- Punktmasse m=1t Dämpfungsrate  $\zeta=0.005$  Alle Stäbe ausser Diagonalen  $E\cdot A=\infty$  Alle Stäbe S355

# 8.2. Musterlösung

Tabelle 8.1.: Verwendete Parameter

| Parameter                                                                     |                                                                                                       |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| B = 6000mm<br>H = 4000mm<br>e = 0.1m                                          | $E=rac{210000	ext{N}}{	ext{mm}^2}$ $\oslash_{Diag}=12	ext{mm}$ $f_{ud}=rac{338	ext{N}}{	ext{mm}^2}$ |
| $m_1 = \frac{200 \text{Ns}^2}{\text{minute}}$ $n = \frac{150}{\text{minute}}$ | $f_{yd} = rac{338	ext{N}}{	ext{mm}^2}$ $m_{tot} = rac{5000	ext{Ns}^2}{	ext{m}}$ $\zeta = 0.2$       |

# 8.2.1. Systemsteifigkeit

Zur Ermittlung der Eigenkreisfrequenz wird die Steifigkeit des gesamten Systems benötigt.



Abbildung 8.2.: Verformungszustand des Systems für die Einheitskraft

Das System wird mit einer Einheitskraft belastet. Aufgrund der Eigenschaften der Pendelstäbe (lediglich Normalkräfte) und deren unendlich grossen Dehnsteifigkeit, spielt lediglich die

Verformung der Diagonalen eine Rolle. Dazu gilt, dass die Diagonalen nur Zugkräfte aufnehmen können. Das bedeutet, dass letztlich ein Stab aktiv ist für die beschrieben Situation in Abbildung 8.2.

Dazu muss die Normalkraft in der Diagonalen bestimmt werden.

$$\alpha = \operatorname{atan}\left(\frac{H}{B}\right)$$

$$\alpha = 0.588$$

$$Z_{Diag} = 1000 \sqrt{1 + \frac{H^2}{B^2}} N$$

$$Z_{Diag} = 1.2 \cdot 10^3 \mathrm{N}$$

Mittels der Arbeitsgleichung lässt sich die Verformung bestimmen. Für die Integration zweier Normalkraftverläufe gilt die folgende Beziehung:

$$u = \frac{1}{EA_{Diag}} \int_0^{l_{Diag}} N_x \bar{N_x} \, dx$$

Länge der Diagonalen:

$$l_{Diag} = B\sqrt{1 + \frac{H^2}{B^2}}$$

$$l_{Diag}=7.21\mathrm{m}$$

Querschnittsfläche der Diagonalen:

$$A_{Diag} = \frac{\pi \oslash_{Diag}^2}{4}$$

$$A_{Diag}=113.0\mathrm{mm}^2$$

Deformation der Diagonalen

$$u_k = \frac{4000B\left(1 + \frac{H^2}{B^2}\right)^{\frac{3}{2}} \mathrm{N}}{\pi E \oslash_{Diag}^2}$$

$$u_k=0.439\mathrm{mm}$$

Steifigkeit des Systems:

$$k = \frac{F}{u_k}$$

$$k = \frac{2.28 \cdot 10^3 \text{N}}{\text{mm}}$$

#### 8.2.2. Eigenkreisfrequenz

Aus der Systemsteifigkeit lässt sich leicht die Eigenkreisfrequenz bestimmen:

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$\omega_n = \frac{\sqrt{\pi} \sqrt{\frac{E \mathcal{O}_{Diag}^2}{B m_{tot} \left(1 + \frac{H^2}{B^2}\right)^{\frac{3}{2}}}}}{2}$$

$$\omega_n = \frac{21.4}{\mathrm{s}}$$

#### 8.2.3. Dynamischer Vergrösserungsfaktor

#### 8.2.3.1. Anregungsfunktion

Zur Bestimmung des dynamischen Vergrösserungsfaktor wird die stationäre Verformung benötigt. Diese lässt sich aus der Anfangskraft der Anregungsfunktion ermitteln. Dazu wird diese Funktion benötigt. Wir wissen die Drehzahl n und die Exzentrizität e sowie deren Masse  $m_1$ .

$$f = n$$

$$f = \frac{2.5}{s}$$

$$\omega = 2\pi f$$

$$\omega = \frac{15.7}{\text{s}}$$

Nun fehlt lediglich die Anfangskraft  $F_0$ . Die Fliehkraft F der 2 gegenläufig rotierenden Massen bewirken eine addierende Fliehkraft in horizontaler Richtung zu:

$$F_0 = 2(m_1 \cdot e \cdot \omega^2)$$

$$F_0 = \frac{50\pi^2 e m_1}{{\rm s}^2}$$

$$F_0 = 9.87 \cdot 10^3 \text{N}$$

#### 8.2.3.2. Statische Deformation

Die statische Deformation lässt sich nun leicht anhand der ermittelten Systemsteifigkeit herleiten.

$$u_0 = 4.33 \mathrm{mm}$$

#### 8.2.3.3. Vergrösserungsfaktor

$$V(\omega) = \frac{1}{\sqrt{\frac{4\omega^2\zeta^2}{\omega_n^2} + \left(-\frac{\omega^2}{\omega_n^2} + 1\right)^2}}$$

$$V(\omega) = 1.83$$

#### 8.2.4. Stationäre Antwort

Es handelt sich um einen gedämpften Einmassenschwinger mit einer harmonischen Anregungsfunktion. Die Bewegungsgleichung ist die folgende:

$$mu''(t) + cu'(t) + ku(t) = F(t)$$

Dies ist eine inhomogene Differentialgleichung 2. Ordnung. Die Lösung dieser lässt sich in einen partikulären Anteil und in einen homogenen Anteil aufteilen. Der partikuläre Anteil entspricht der stationären Antwort. Der homogene Anteil nennt sich transienter Anteil.

Anhand des Vergrösserungsfaktor kann die stationäre dynamische Antwort des Systems mit der folgenden Beziehung ermittelt werden.

$$u_p = V(\omega)u_0 * \cos(\omega t)$$

$$u_p = 0.00793 \cos\left(\frac{5\pi t}{\mathrm{s}}\right) \mathrm{m}$$

#### 8.2.5. Gesamtantwort

Für die Gesamtantwort wird nun noch der homogene Anteil benötigt. Dazu ist die folgende Differentialgleichung zu lösen.

$$mu''(t) + cu'(t) + ku(t) = 0$$

Als Ansatzfunktion dient die folgende Gleichung:

$$u_h = e^{-\zeta \omega_n t} (A_1 \cos{(\omega_d t)} + A_2 \sin{(\omega_d t)})$$

Die Randbedingungen sind in der Aufgabenstellung definiert und sind die folgenden:

$$u(t = 0) = 0$$

$$u'(t=0) = 0$$

Vorsicht, die Randbedingungen gelten für die gesamte Lösung:

$$u(t) = u_h(t) + u_p(t)$$

#### 8.2.5.1. Gedämpfte Eigenkreisfrequenz

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

$$\omega_d = \frac{20.9}{\rm s}$$



Abbildung 8.3.: Gesamtantwort des Systems

#### 8.2.6. Festigkeitsnachweis

Aufgrund der maximalen Auslenkung, kann die maximale Normalkraft auf der Diagonalen bestimmt werden.

#### 8.2.6.1. Maximale Auslenkung

Aus dem Plot in Abbildung 8.3 ist die maximale Auslenkung ersichtlich. Die Ermittlung des Zeitpunkts bei einer maximalen Auslenkung wird hier numerisch gelöst.

$$t_{max} = 0.41s$$

$$u_{max}=0.00855\mathrm{m}$$

#### 8.2.6.2. Maximale Einwirkung

Aufgrund der maximalen Amplitude verlängert sich die Diagonale um  $\Delta l=u_{max}$ . Die Dehnung des Stabs ist somit die  $\frac{\Delta l}{l_{Diag}}$ . Bei linear elastischem Materialverhalten gilt die folgende Beziehung:

$$\sigma = \varepsilon E$$
 
$$\varepsilon = 0.00142$$
 
$$\sigma = \frac{299.0 \text{N}}{\text{mm}^2}$$
 
$$f_{yd} = \frac{338 \text{N}}{\text{mm}^2}$$
 
$$Nachweis = \frac{\sigma}{f_{yd}}$$

Die Diagonale bleibt im elastichen Bereich, so dass die linearen Annahmen gültig sind. Der Festigkeitsnachweis für die Diagonale ist erfüllt. Im Weiteren wäre der Grenzustand der Tragfähigkeit *Ermüdung* zu prüfen.

Nachweis = 0.885

# 9. Beispiel: Fourier-Transformation

# 9.1. Aufgabenstellung

Nachfolgend ist ein unterspannter Träger gezeigt, der durch eine periodische Rechteckanregung dynamisch beansprucht wird.



Abbildung 9.1.: Statisches System

#### Gesucht:

- Eigenkreisfrequenz  $\omega_n$
- Stationäre Amplitude der Verschiebung
- Staionäre Amplitude der Beschleunigung

#### Gegeben:

- ullet Elastizitätsmodul  $E=200000{
  m N/mm^2}$
- ullet Biegestab  $I=2\cdot 10^8 \mathrm{mm}^4$  und  $\stackrel{'}{E}\cdot A=\infty$
- Fachwerkstäbe  $A = 3000 \text{mm}^2$
- Einzelmasse m = 1000 kg
- Kraftamplitude A = 1kN
- Rechteckanregung in Abbildung 9.2



Abbildung 9.2.: Rechteckige Anregungsfunktion

# 9.2. Musterlösung

Tabelle 9.1.: Verwendete Parameter

| Parameter                                       |                                                                                                                        |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $A = 1000N$ $E = \frac{200000N}{mm^2}$ $h = 2m$ | $\begin{split} A_{Fachwerk} &= 3000 \text{mm}^2 \\ I_{Balken} &= 200000000 \text{mm}^4 \\ l &= 5 \text{m} \end{split}$ |
| $m = \frac{1000 \text{Ns}^2}{\text{m}}$         | $\zeta = 0.0$                                                                                                          |

#### 9.2.1. Erregerfunktion

Die periodische Erregerfunktion wird mit einer Fourier-Reihenentwicklung approximiert um eine periodisch, harmonische Funktion zu generieren.

Die Reihenentwicklung folgt folgender Funktion:

$$F(t) = A_0 + \sum_{n=1}^{\infty} (a_n \cdot \cos{(n\omega t)} + b_n \cdot \sin{(n\omega t)})$$

Die Aufgabenstellung fordert lediglich die ersten drei Teile der Reihe.

$$F(t) = A_0 + \sum_{n=1}^{3} (a_n \cdot \cos{(n\omega t)} + b_n \cdot \sin{(n\omega t)})$$

Nach Bestimmung der Konstanten folgt die Gleichung zu:

$$\begin{split} F(t) &= \frac{4A}{\pi} \cdot \left[ \sin(\omega t) + \frac{1}{3} \sin(3\omega t) + \frac{1}{5} \sin(5\omega t) \right] \\ f_{Anregung} &= \frac{1}{s} \\ \omega &= \frac{6.28}{s} \\ F(t) &= \frac{4A \left( \sin\left(\frac{2\pi t}{s}\right) + \frac{\sin\left(\frac{6\pi t}{s}\right)}{3} + \frac{\sin\left(\frac{10\pi t}{s}\right)}{5} \right)}{\pi} \end{split}$$



# 9.2.2. Systemsteifigkeit

Anhand der Arbeitsgleichung wird die Deformation bestimmt und daraus die Steifigkeit des Systems. Auf die Bestimmung der Schnittgrössen wird nicht eingegangen. Es handelt sich um ein statisch unbestimmtes System.



Abbildung 9.3.: Schnittgrössen des unterspannten Balkens

Da der Balken dehnstarr ist und die Unterspannung aus Pendelstäben zusammengesetzt ist, sind Anteile aus Normalkraft aus den Pendelstäben und lediglich Anteile aus Biegung im Balken für die Deformation zuständig.

$$u_k = 0.0335 \mathrm{mm}$$

$$k = \frac{2.98 \cdot 10^7 \text{N}}{\text{m}}$$

#### 9.2.3. Eigenkreisfrequenz

Aus der Systemsteifigkeit lässt sich leicht die Eigenkreisfrequenz bestimmen:

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$\omega_n = \frac{173.0}{\rm s}$$

#### 9.2.4. Stationäre Amplitude der Verschiebung

Die statische Durchbiegung lässt sich anhand der Systemsteifigkeit und der Anfangskraft der Anregungsfunktion bestimmen. Mittels des Vergrösserungsfaktors lässt sich schlussendlich die stationäre maximale Amplitude bestimmen. Der Vergrösserungsfaktor ist abhängig von der Anregungsfrequenz, welche wir mit der Fourier-Reihenentwicklung approximiert haben. Wir haben folglich "3 verschiedene" Anregungsfrequenzen mit der entsprechenden Gewichtung.

$$\begin{split} V(\omega) &= \frac{1}{5\sqrt{\frac{100\omega^2\zeta^2}{\omega_n^2} + \left(-\frac{25\omega^2}{\omega_n^2} + 1\right)^2}} + \frac{1}{3\sqrt{\frac{36\omega^2\zeta^2}{\omega_n^2} + \left(-\frac{9\omega^2}{\omega_n^2} + 1\right)^2}} + \frac{1}{\sqrt{\frac{4\omega^2\zeta^2}{\omega_n^2} + \left(-\frac{\omega^2}{\omega_n^2} + 1\right)^2}} \\ V(\omega) &= 1.55 \end{split}$$
 
$$u_0 = 0.0427 \mathrm{mm}$$

Der Vergrösserungsfaktor ist erwartungsgemäss niedrig, da sich die Eigenkreisfrequenz deutlich von der Anregungsfrequenz abgrenzt.

 $u_{stat} = 0.066 \mathrm{mm}$ 

#### 9.2.5. Stationäre Amplitude der Beschleunigung

Die Beschleunigung lässt sich ebenfalls anhand des Vergrösserungsfaktors bestimmen. Dies Entspricht dem Vorgehen nach Michael Baur.

$$V_a(\omega) = 0.00205$$

$$\frac{d^2}{dt^2}u_{max} = \frac{0.0026\mathrm{m}}{\mathrm{s}^2}$$

Meines Erachtens müsste der Vergrösserungsfaktor für die Beschleunigung ebenfalls mit sämtlichen, gewichteten Anregungsfrequenzen der approximierten Anregungsfunktion bestimmt werden.

$$V_a(\omega) = 0.00614$$

$$\frac{d^2}{dt^2}u_{max} = \frac{0.00781\text{m}}{\text{s}^2}$$

# Teil III. Mehrmassenschwinger

# 10. Beispiel: Eigenvektoren und Nachgiebigkeitsmatrix

# 10.1. Aufgabenstellung

Das System in Abbildung 14.1 zeigt einen Rahmen, welcher als Zweimassenschwinger modelliert werden kann.



Abbildung 10.1.: Statisches System des 2-Massenschwingers

#### Gesucht:

- ullet Eigenkreisfrequenz  $\omega$
- Eigenformen Normierung auf

$$\phi_1^T = \begin{bmatrix} 1 & \end{bmatrix}$$

$$\phi_2^T = \begin{bmatrix} 1 & \end{bmatrix}$$

• Skizze der Eigenformen

# Gegeben:

- Biegesteifigkeit aller Stäbe  $E\cdot I=20\cdot 10^{12}\mathrm{Nmm}^2$  Dehnsteifigkeit aller Stäbe  $E\cdot A=\infty$  Einzelmassen  $m_1=1000\mathrm{kg}$  und  $m_2=1000\mathrm{kg}$  Länge  $l=4000\mathrm{mm}$

# 10.2. Musterlösung

Tabelle 10.1.: Verwendete Parameter

| Parameter                                 |                                           |
|-------------------------------------------|-------------------------------------------|
| EI = 2000000000000000mm <sup>2</sup> N    | l=4m                                      |
| $m_1 = \frac{1000 \text{Ns}^2}{\text{m}}$ | $m_2 = \frac{1000 \text{Ns}^2}{\text{m}}$ |

# 10.2.1. Nachgiebigkeitsmatrix D

Die Steifigkeitsmatrix lässt sich durch Invertierung der Nachgiebigkeitsmatrix beschreiben. Die Nachgiebigkeitsmatrix  $\mathbf{D}$  beschreibt die Deformation an einem Massenpunkt. Die Einträge der  $\mathbf{D}$  - Matrix beschreiben die Deformationen für unterschiedliche Laststellungen.

$$\mathbf{K} = \mathbf{D}^{-1}$$



Abbildung 10.2.: Balken mit 2 Einzelmassen

Für einen 2-Massenschwinger, wie in Abbildung 10.2, hat die Nachgiebigkeitsmatrix folgende Form:

$$\mathbf{D} = \frac{1}{EI} \cdot \begin{bmatrix} \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22} \end{bmatrix}$$

wobei gilt:

 $\delta_{ab}$  : a ist die Lastsituation, b ist die Masse.

#### 10.2.1.1. Anwendung



Abbildung 10.3.: Schnittgrössen für beide Lastfälle zur Bestimmung der Deformation

$$\delta_{ab} = \frac{1}{EI} \int_0^l M_a \bar{M}_b \, dx$$

Es werden 2 Laststellungen betrachtet, jeweils an einem Massenpunkt. Dabei ist Beachtung der Einheit der Einwirkung zu schenken. Diese wird einheitslos angesetzt.

$$\delta_{11} = \frac{2l^3}{3EI}$$
 
$$\delta_{12} = \frac{5l^3}{6EI}$$
 
$$\delta_{21} = \frac{5l^3}{6EI}$$
 
$$\delta_{22} = \frac{5l^3}{3EI}$$
 
$$D = \begin{bmatrix} \frac{2l^3}{3EI} & \frac{5l^3}{6EI} \\ \frac{5l^3}{6EI} & \frac{5l^3}{3EI} \end{bmatrix}$$

$$K = \begin{bmatrix} \frac{4EI}{l^3} & -\frac{2EI}{l^3} \\ -\frac{2EI}{l^3} & \frac{8EI}{5l^3} \end{bmatrix}$$

#### 10.2.2. Eigenvektoren

Die Bewegungsgleichung für einen ungedämpften, frei schwingenden Mehrmassenschwinger lässt sich folgender massen aufstellen:

$$\mathbf{M}\mathbf{u}''(\mathbf{t}) + \mathbf{K}\mathbf{u}(\mathbf{t}) = 0$$

Die Modale Analyse entkoppelt die Gleichungen um diese unabhängig von einander zu lösen.

#### 10.2.2.1. Massenmatrix M

$$M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$$

#### 10.2.2.2. Eigenkreisfrequenzen

Bei einem Mehrmassenschwinger gibt es entsprechend den Freiheitsgraden Eigenkreisfrequenzen  $\omega_n$ . Diese lassen sich anhand Gleichung 10.1 bestimmen:

$$\det\left[\mathbf{K} - \omega_n^2 \mathbf{M}\right] = 0 \tag{10.1}$$

$$\omega_1 = \frac{12.1}{\mathrm{s}}$$

$$\omega_2 = \frac{40.0}{\rm s}$$

#### 10.2.2.3. Eigenvektoren □

$$\begin{split} \phi_n &= \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \end{bmatrix} \\ [\mathbf{K} - \omega_n^2 \mathbf{M}] \cdot \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \end{bmatrix} = 0 \end{split}$$

Dazu ist die entsprechende Normierung aus der Aufgabenstellung zu berücksichtigen.

$$\begin{bmatrix} -\frac{2EI\phi_{21}}{l^3} + \phi_{11} \cdot \begin{pmatrix} \frac{4EI}{l^3} - m_1 \cdot \begin{pmatrix} \frac{4EI}{5l^3m_2} + \frac{2EI}{l^3m_1} - \frac{2EI\sqrt{4m_1^2 + 5m_1m_2 + 25m_2^2}}{5l^3m_1m_2} \end{pmatrix} \\ -\frac{2EI\phi_{11}}{l^3} + \phi_{21} \cdot \begin{pmatrix} \frac{8EI}{5l^3} - m_2 \cdot \begin{pmatrix} \frac{4EI}{5l^3m_2} + \frac{2EI}{l^3m_1} - \frac{2EI\sqrt{4m_1^2 + 5m_1m_2 + 25m_2^2}}{5l^3m_1m_2} \end{pmatrix} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\phi_1 = \begin{bmatrix} 1.0 \\ 1.77 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{2EI\phi_{22}}{l^3} + \phi_{12} \cdot \begin{pmatrix} \frac{4EI}{l^3} - m_1 \cdot \begin{pmatrix} \frac{4EI}{5l^3m_2} + \frac{2EI}{l^3m_1} + \frac{2EI\sqrt{4m_1^2 + 5m_1m_2 + 25m_2^2}}{5l^3m_1m_2} \\ -\frac{2EI\phi_{12}}{l^3} + \phi_{22} \cdot \begin{pmatrix} \frac{8EI}{5l^3} - m_2 \cdot \begin{pmatrix} \frac{4EI}{5l^3m_2} + \frac{2EI}{l^3m_1} + \frac{2EI\sqrt{4m_1^2 + 5m_1m_2 + 25m_2^2}}{5l^3m_1m_2} \end{pmatrix} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 
$$\phi_2 = \begin{bmatrix} 1.0 \\ -0.566 \end{bmatrix}$$

#### 10.2.2.4. Orthogonalitätsbedingung

Zur effektiven Entkoppelung der Gleichungen muss die Orthogonalitätsbedingung eingehalten sein. Durch die Orthogonalität der Vektoren  $\phi_1$  und  $\phi_2$  kann mittels einem Einmassenschwingers sämtliches Verhalten von  $\phi_1$  beschrieben werden und mittels einem zweiten Einmassenschwinger sämtliches Verhalten von  $\phi_2$ . Ist die Orthogonalität nicht gegeben, so müsste der erste Einmassenschwinger Anteile aus  $\phi_1$  und  $\phi_2$  beschreiben.

Dies gilt es für die Massenmatrix zu kontrollieren:

$$\phi_1^T \mathbf{M} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_1 = 0$$

Sowohl auch für die Steifigkeitsmatrix:

$$\phi_1^T \mathbf{K} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_1 = 0$$

Angewendet auf die Aufgabe:

$$\phi_1^T M \phi_1 = \left[\frac{4.12 \cdot 10^3 \mathrm{Ns}^2}{\mathrm{m}}\right]$$

$$\phi_2^T M \phi_2 = \left[ \frac{1.32 \cdot 10^3 \mathrm{Ns}^2}{\mathrm{m}} \right]$$

$$\phi_2^T M \phi_1 = [0]$$

$$\phi_1^T M \phi_2 = [0]$$

Für die Steifigkeitsmatrix:

$$\phi_1^T K \phi_1 = \left[\frac{6.02 \cdot 10^5 \mathrm{N}}{\mathrm{m}}\right]$$

$$\phi_2^T K \phi_2 = \left[\frac{2.12 \cdot 10^6 \mathrm{N}}{\mathrm{m}}\right]$$

$$\phi_2^T K \phi_1 = [0]$$

$$\phi_1^T K \phi_2 = [0]$$

# 10.2.3. Eigenformen



Abbildung 10.4.: Die beiden Eigenformen skizziert

# 11. Beispiel: Eigenvektoren mit direkt bestimmter Steifigkeitsmatrix

# 11.1. Aufgabenstellung

Das System in Abbildung 11.1 zeigt ein Rahmentragwerk, welches als Zweimassenschwinger modelliert werden kann.



Abbildung 11.1.: Statisches System des Rahmentragwerks

#### Gesucht:

- ullet Eigenkreisfrequenz  $\omega$
- Eigenformen Normierung auf

$$\phi_1^T = \begin{bmatrix} 1 \end{bmatrix}$$

$$\phi_2^T = \begin{bmatrix} & 1 \end{bmatrix}$$

• Skizze der Eigenformen

# Gegeben:

- Elastizitätsmodul der Stützen  $E=30000 {\rm N}/mm^2$  Flächenträgheitsmoment der Stützen  $I=2\cdot 10^9 {\rm mm}^4$  Dehnsteifigkeit aller Stäbe  $E\cdot A=\infty$
- Einzelmassen  $m=20000 \mathrm{kg}$

# 11.2. Musterlösung

Tabelle 11.1.: Verwendete Parameter

| Parameter                                      |                                             |
|------------------------------------------------|---------------------------------------------|
| $E = \frac{30000\text{N}}{\text{mm}^2}$        | H = 3.2m                                    |
| I = 20000000000mm <sup>4</sup>                 | l=4m                                        |
| $m_1 = \frac{40000 \mathrm{Ns}^2}{\mathrm{m}}$ | $m_2=rac{20000 \mathrm{Ns}^2}{\mathrm{m}}$ |

#### 11.2.1. Eigenkreisfrequenzen

#### 11.2.1.1. Steifigkeitsmatrix K

Zur Bestimmung der Steifigkeitsmatrix ist das System an jedem Freiheitsgrad auszulenken, wie in Abbildung 14.2 dargestellt ist.



Abbildung 11.2.: Auslenkung der Freiheitsgrade zur Bestimmung der Steifigkeit

Wichtig dabei sind die Richtungen der Kräfte. Als Denkstütze gilt folgendes:

- Der Auslenkung um u wirkt die Federkraft entgegen, welche ku entspricht.
- $\bullet\,$  Zusätzlich wirkt die Trägheitskraft der Auslenkung entgegen, welche mu'' entspricht.

- Nach der Betrachtung des ausgelenkten Punkts, kann mittels *Actio-Reactio-*Prinzip das "*Stockwerk*" ins Gleichgewicht gebracht werden.
- Vorzeichen sind gegen der Bewegungsrichtig positiv.

#### 11.2.1.2. Horizontale Steifigkeit

Für entsprechende Anwendungsfälle gibt es fertige Lösungen zur Bestimmung der Steifigkeit. Gemäss Abbildung 11.1 ist die Stütze am Fuss- und Kopfpunkt eingespannt. Somit resultiert die Steifigkeit zu:

$$k_{Stuetze} = \frac{12EI_{Stuetze}}{H^3}$$

Diese gilt für eine einzelne Stütze.

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

$$K = \begin{bmatrix} \frac{1.31836 \cdot 10^{8} \text{N}}{\text{m}} & -\frac{4.39453 \cdot 10^{7} \text{N}}{\text{m}} \\ -\frac{4.39453 \cdot 10^{7} \text{N}}{\text{m}} & \frac{4.39453 \cdot 10^{7} \text{N}}{\text{m}} \end{bmatrix}$$

#### 11.2.2. Eigenvektoren

#### 11.2.2.1. Massenmatrix M

Die Massenmatrix folgt dem gleichen Aufbau wie die Steifigkeitsmatrix. Es gelten die gleichen Vorzeichenregelungen.

$$M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$$

$$M = \begin{bmatrix} \frac{40000\text{Ns}^2}{\text{m}} & 0\\ 0 & \frac{20000\text{Ns}^2}{\text{m}} \end{bmatrix}$$

#### 11.2.2.2. Eigenkreisfrequenzen

Bei einem Mehrmassenschwinger gibt es entsprechend den Freiheitsgraden Eigenkreisfrequenzen  $\omega_n$ . Diese lassen sich anhand folgender Gleichung bestimmen:

$$\det\left[\mathbf{K}-\omega_{n}^{2}\mathbf{M}\right]=0$$
 
$$\omega_{1}=\frac{33.1}{\mathrm{s}}$$
 
$$\omega_{2}=\frac{66.3}{\mathrm{s}}$$

#### 11.2.2.3. Eigenvektoren $\phi$

$$\begin{bmatrix} \frac{-k_2m_2\phi_{21} + \frac{\phi_{11}\left(-k_2m_1 + m_2(k_1 + k_2) + \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{m_2} \\ \frac{m_2}{-k_2m_1\phi_{11} + \frac{\phi_{21}\left(k_2m_1 - m_2(k_1 + k_2) + \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{m_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\phi_1 = \begin{bmatrix} 0.5 \\ 1.0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{-k_2m_2\phi_{22} + \frac{\phi_{12}\left(-k_2m_1 + m_2(k_1 + k_2) - \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{m_2} \\ \frac{m_2}{-k_2m_1\phi_{12} + \frac{\phi_{22}\left(k_2m_1 - m_2(k_1 + k_2) - \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{m_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\phi_2 = \begin{bmatrix} -1.0 \\ 1.0 \end{bmatrix}$$

#### 11.2.2.4. Orthogonalitätsbedingung

Zur Entkoppelung der Gleichungen muss die Orthogonalitätsbedingung eingehalten sein. Dies gilt es für die Massenmatrix zu kontrollieren:

$$\phi_1^T \mathbf{M} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_1 = 0$$

Sowohl auch für die Steifigkeitsmatrix:

$$\phi_1^T \mathbf{K} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_1 = 0$$

Angewendet auf die Aufgabe:

$$\phi_1^T M \phi_1 = \left[\frac{3.0 \cdot 10^4 \mathrm{Ns}^2}{\mathrm{m}}\right]$$

$$\phi_2^T M \phi_2 = \left[\frac{6.0 \cdot 10^4 \mathrm{Ns}^2}{\mathrm{m}}\right]$$

$$\phi_2^T M \phi_1 = [0]$$

$$\phi_1^T M \phi_2 = \begin{bmatrix} 0 \end{bmatrix}$$

Für die Steifigkeitsmatrix:

$$\phi_1^T K \phi_1 = \left[ \frac{3.3 \cdot 10^7 \text{N}}{\text{m}} \right]$$

$$\phi_2^T K \phi_2 = \left[\frac{2.64 \cdot 10^8 \mathrm{N}}{\mathrm{m}}\right]$$

$$\phi_2^T K \phi_1 = \left[0\right]$$

$$\phi_1^T K \phi_2 = \begin{bmatrix} 0 \end{bmatrix}$$

# 11.2.3. Eigenformen



Abbildung 11.3.: Die beiden Eigenformen skizziert

# 12. Beispiel: Balken ohne Tilger

# 12.1. Aufgabenstellung

Ein einfacher Balken mit einer Einzelmasse, welcher in dieser Aufgabe ohne Tilger ausgestattet ist, ist in Abbildung 12.1 dargestellt. Die Masse erfährt eine dynamische Einwirkung durch die Funktion F(t). Das Beispiel wird in Kapitel 13 weitergeführt.



Abbildung 12.1.: Statisches System des Balkens ohne Tilger

#### Gesucht:

- Maximale dynamische Verformung mittels stationärer Lösung
- Maximale dynamische Beschleunigung mittels stationärer Lösung

#### Gegeben:

- Biegestab  $E = 200000 \text{N}/mm^2$
- Flächenträgheitsmoment des Stabs  $I = 2 \cdot 10^8 \text{mm}^4$
- Punktmasse  $m_H = 2000 \text{kg}$

$$F(t) = F_0 \cdot \sin(\omega \cdot t) = 0.8 \text{kN} \cdot (12.6 \frac{\text{rad}}{\text{s}} \cdot t)$$

# 12.2. Musterlösung

Tabelle 12.1.: Verwendete Parameter

| Parameter                                 |                                |  |
|-------------------------------------------|--------------------------------|--|
| $E = \frac{200000N}{mm^2}$                | $F_0 = 800.0$ N                |  |
| $I = 200000000 \text{mm}^4$               | l=5m                           |  |
| $m_H = \frac{2000 \text{Ns}^2}{\text{m}}$ | $\omega=rac{12.6}{	extsf{s}}$ |  |
| $\phi_{11} = 1$                           | $\phi_{12} = 1$                |  |
| $\zeta = 0.0$                             |                                |  |

#### 12.2.1. Steifigkeit k

$$k_H = \frac{6EI}{l^3}$$

$$k_H = \frac{1.92 \cdot 10^6 \mathrm{N}}{\mathrm{m}}$$

### 12.2.2. Eigenkreisfrequenz $\omega$

$$\omega_n = \sqrt{6} \sqrt{\frac{EI}{l^3 m_H}}$$
 
$$\omega_n = \frac{31.0}{\rm s}$$

# 12.2.3. Vergrösserungsfaktor $V(\omega)$

$$V(\omega) = \frac{1}{\sqrt{\frac{4\omega^2\zeta^2}{\omega_n^2} + \left(-\frac{\omega^2}{\omega_n^2} + 1\right)^2}}$$
$$V(\omega) = 1.2$$

# 12.2.4. Stationäre Lösung

#### 12.2.4.1. Statische Deformation

$$u_0 = \frac{F_0}{k_H}$$

$$u_0 = \frac{F_0 l^3}{6EI}$$

$$u_0=0.4167\mathrm{mm}$$

#### 12.2.4.2. Stationäre maximale Deformation

$$u_{stat}=u_0V(\omega)$$

$$u_{stat} = \frac{F_0 l^3}{6EI\sqrt{\left(1 - \frac{l^3 m_H \omega^2}{6EI}\right)^2 + \frac{2 l^3 m_H \omega^2 \zeta^2}{3EI}}}$$

$$u_{stat} = 0.499 \mathrm{mm}$$

#### 12.2.4.3. Stationäre maximale Beschleunigung

$$V_a(\omega) = \frac{V_\omega \omega^2}{\omega_n^2}$$

$$V_a(\omega)=0.198$$

$$\frac{d^2}{dt^2}u_{stat} = \frac{0.0793\mathrm{m}}{\mathrm{s}^2}$$

# 13. Beispiel: Balken mit Tilger

## 13.1. Aufgabenstellung

Ein einfacher Balken mit einer Einzelmasse, welcher in dieser Aufgabe mit Tilger ausgestattet ist, ist in Abbildung 13.1 dargestellt. Die Masse erfährt eine dynamische Einwirkung durch die Funktion F(t).



Abbildung 13.1.: Statisches System des Balkens mit Tilger

#### Gesucht:

- Maximale dynamische Verformung mittels stationärer Lösung
- Maximale dynamische Beschleunigung mittels stationärer Lösung

#### Gegeben:

- Biegestab  $E = 200000 \text{N} / mm^2$
- $\bullet$  Flächenträgheitsmoment des Stabs  $I=2\cdot 10^8 \mathrm{mm}^4$
- $\bullet \ \ {\rm Punktmasse} \ m_H = 2000 {\rm kg}$
- Tilgermasse  $m_T = 150 \text{kg}$

• Eigenformen - Normierung auf

$$\phi_1^T = \begin{bmatrix} 1 & \end{bmatrix}$$
$$\phi_2^T = \begin{bmatrix} 1 & \end{bmatrix}$$

$$F(t) = F_0 \cdot \sin(\omega \cdot t) = 0.8 \text{kN} \cdot (12.6 \frac{\text{rad}}{\text{s}} \cdot t)$$

# 13.2. Musterlösung

Tabelle 13.1.: Verwendete Parameter

| Parameter                                                                                                                                                 |                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E = \frac{200000\text{N}}{\text{mm}^2}$ $I = 200000000\text{mm}^4$ $l = 5\text{m}$ $m_T = \frac{100\text{Ns}^2}{\text{m}}$ $\phi_{11} = 1$ $\zeta = 0.0$ | $F_0 = 800.0 \text{N}$ $k_T = \frac{90000 \text{N}}{\text{m}}$ $m_H = \frac{2000 \text{Ns}^2}{\text{m}}$ $\omega = \frac{12.6}{\text{s}}$ $\phi_{12} = 1$ |

#### 13.2.1. Bemerkung Tilgerauslegung

Die Auslegung des Tilgers kann folgender massen geschehen:

- $\bullet\,$  Tilgermasse 5% von der Masse des Hauptträgers.
- Optimale Frequenz bestimmen:

$$f_{T,opt} = \frac{f_H}{1 + \frac{m_T}{m_H}}$$

• Daraus die optimale Steifigkeit bestimmen:

$$k_{T,opt} = (2\pi f_{T,opt})^2$$

#### 13.2.2. Steifigkeitsmatrix K

Verschiebung FHG  $u_{_{\! H}} \rightarrow$  FHG  $u_{_{\! T}}$  ist blockiert

Verschiebung FHG  $u_{_{\! T}} \rightarrow$  FHG  $u_{_{\! H}}$  ist blockiert



Abbildung 13.2.: Verformungen an den beiden Freiheitsgraden

Wichtig dabei sind die Richtungen der Kräfte. Als Denkstütze gilt folgendes:

- Der Auslenkung um u wirkt die Federkraft entgegen, welche ku entspricht.
- Zusätzlich wirkt die Trägheitskraft der Auslenkung entgegen, welche mu'' entspricht.
- Nach der Betrachtung des ausgelenkten Punkts, kann mittels Actio-Reactio-Prinzip das "Stockwerk" ins Gleichgewicht gebracht werden.
- Vorzeichen sind gegen der Bewegungsrichtig positiv.

$$K = \begin{bmatrix} k_H + k_T & -k_T \\ -k_T & k_T \end{bmatrix}$$

$$K = \begin{bmatrix} \frac{2010000\text{N}}{-\frac{90000\text{N}}{\text{m}}} & -\frac{90000\text{N}}{-\frac{90000\text{N}}{\text{m}}} \end{bmatrix}$$

#### 13.2.3. Eigenvektoren

#### 13.2.3.1. Massenmatrix M

Die Massenmatrix folgt dem gleichen Aufbau der Steifigkeitsmatrix. Es gelten die gleichen Vorzeichenregelungen. Die Einträge beziehen sich auf Abbildung 13.2.

$$M = \begin{bmatrix} m_H & 0 \\ 0 & m_T \end{bmatrix}$$

$$M = \begin{bmatrix} \frac{2000\text{Ns}^2}{\text{m}} & 0\\ 0 & \frac{100\text{Ns}^2}{\text{m}} \end{bmatrix}$$

#### 13.2.3.2. Eigenkreisfrequenzen

Bei einem Mehrmassenschwinger gibt es entsprechend den Freiheitsgraden Eigenkreisfrequenzen  $\omega_n$ . Diese lassen sich anhand folgender Gleichung bestimmen:

$$\det\left[\mathbf{K}-\omega_{n}^{2}\mathbf{M}\right]=0$$
 
$$\omega_{1}=\frac{27.3}{\mathrm{s}}$$
 
$$\omega_{2}=\frac{34.1}{\mathrm{s}}$$

#### 13.2.3.3. Eigenvektoren □

$$\begin{split} \phi_n &= \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \end{bmatrix} \\ [\mathbf{K} - \omega_n^2 \mathbf{M}] \cdot \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \end{bmatrix} = 0 \end{split}$$

Dazu ist die entsprechende Normierung aus der Aufgabenstellung zu berücksichtigen.

$$\begin{bmatrix} \frac{-k_T m_T \phi_{21} + \frac{\phi_{11} \left(-k_T m_H + m_T (k_H + k_T) + \sqrt{k_H^2 m_T^2 - 2k_H k_T m_H m_T + 2k_H k_T m_T^2 + k_T^2 m_H^2 + 2k_T^2 m_H m_T + k_T^2 m_T^2}}{2} \\ \frac{m_T}{-k_T m_H \phi_{11} + \frac{\phi_{21} \left(k_T m_H - m_T (k_H + k_T) + \sqrt{k_H^2 m_T^2 - 2k_H k_T m_H m_T + 2k_H k_T m_T^2 + k_T^2 m_H^2 + 2k_T^2 m_H m_T + k_T^2 m_T^2}}}{m_H} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\phi_1 = \begin{bmatrix} 1.0 \\ 5.79 \end{bmatrix}$$

$$\begin{bmatrix} \frac{-k_T m_T \phi_{22} + \frac{\phi_{12} \left(-k_T m_H + m_T (k_H + k_T) - \sqrt{k_H^2 m_T^2 - 2k_H k_T m_H m_T + 2k_H k_T m_T^2 + k_T^2 m_H^2 + 2k_T^2 m_H m_T + k_T^2 m_T^2}\right)}{m_T} \\ \frac{m_T}{-k_T m_H \phi_{12} + \frac{\phi_{22} \left(k_T m_H - m_T (k_H + k_T) - \sqrt{k_H^2 m_T^2 - 2k_H k_T m_H m_T + 2k_H k_T m_T^2 + k_T^2 m_H^2 + 2k_T^2 m_H m_T + k_T^2 m_T^2}}\right)}{m_H} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\phi_2 = \begin{bmatrix} 1.0 \\ -3.46 \end{bmatrix}$$

#### 13.2.3.4. Orthogonalitätsbedingung

Zur effektiven Entkoppelung der Gleichungen muss die Orthogonalitätsbedingung eingehalten sein. Dies gilt es für die Massenmatrix zu kontrollieren:

$$\phi_1^T \mathbf{M} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_1 = 0$$

Sowohl auch für die Steifigkeitsmatrix:

$$\phi_1^T \mathbf{K} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_1 = 0$$

Angewendet auf die Aufgabe:

$$\phi_1^T M \phi_1 = \left[\frac{5.35 \cdot 10^3 \mathrm{Ns}^2}{\mathrm{m}}\right]$$

$$\phi_2^T M \phi_2 = \left[\frac{3.19 \cdot 10^3 \mathrm{Ns}^2}{\mathrm{m}}\right]$$

$$\phi_2^T M \phi_1 = \left[\frac{3.051758 \cdot 10^{-5} \mathrm{Ns}^2}{\mathrm{m}}\right]$$

$$\phi_1^T M \phi_2 = \left[\frac{3.051758 \cdot 10^{-5} \mathrm{Ns}^2}{\mathrm{m}}\right]$$

Es ist eine kleine numerische Differenz zu erkennen.

$$\phi_1^T K \phi_1 = \left[ \frac{3.98 \cdot 10^6 \mathrm{N}}{\mathrm{m}} \right]$$

$$\phi_2^T K \phi_2 = \left[\frac{3.71 \cdot 10^6 \mathrm{N}}{\mathrm{m}}\right]$$

$$\phi_2^T K \phi_1 = [0]$$

$$\phi_1^T K \phi_2 = [0]$$

#### 13.2.4. Modale Analyse

Die Bewegungsgleichung für einen ungedämpften, periodisch, harmonisch angeregten Mehrmassenschwinger lässt sich folgend beschreiben:

$$Mu''(t) + Ku = F(t)$$

Die Matrix-Gleichung beschreibt ein System aus Differentialgleichungen. Die Modale Analyse zielt darauf ab, diese zu entkoppeln. Bezogen auf den Mehrmassenschwinger heisst eine Entkoppelung, dass diese in Einmassenschwinger aufgeteilt werden. Dies wird nun schrittweise durchgeführt.

#### 13.2.4.1. Modal- und Spektralmatrix

Mittels der Modal- und Spektralmatrix können die generalisierten Grössen ermittelt werden. Diese sind die eigenschaften der einzelnen Einmassenschwinger. Die generalisierten Werte besitzen keine physikalischen Werte, sie sind abhängig von der Wahl der Eigenvektoren, welche bekanntlich von der Normierung abhängen.

Aufgrund der Bewegungsgleichung können die generalisierten Grössen bestimmt werden, es gilt:

$$\Phi^T M \Phi u''(t) + \Phi^T K \Phi u(t) = \Phi^T F(t)$$

$$M^*u''(t)+K^*u(t)=F^*(t)$$

Alle N-Eigenwerte und alle N-Eigenvektoren können kompakt mit Matrizen ausgedrückt werden:

 $Modal matrix = \Phi$ 

$$\Phi = \begin{bmatrix} 1.0 & 1.0 \\ 5.788 & -3.455 \end{bmatrix}$$

 $Spektral matrix = \Omega^2$ 

$$\Omega^2 = \begin{bmatrix} \frac{744.5}{s^2} & 0\\ 0 & \frac{1160.0}{s^2} \end{bmatrix}$$

#### 13.2.4.2. Generalisierte Grössen

$$M^{\star} = \begin{bmatrix} \frac{5350.6\text{Ns}^2}{\text{m}} & 0\\ 0 & \frac{3193.8\text{Ns}^2}{\text{m}} \end{bmatrix}$$

$$K^{\star} = \begin{bmatrix} \frac{3.9837 \cdot 10^{6} \text{N}}{\text{m}} & 0\\ 0 & \frac{3.7063 \cdot 10^{6} \text{N}}{\text{m}} \end{bmatrix}$$

$$F(t) = \begin{bmatrix} 800.0 \sin\left(\frac{12.6t}{\text{s}}\right) \text{N} \\ 0 \end{bmatrix}$$

$$F(t)^* = \begin{bmatrix} 800.0 \sin\left(\frac{12.6t}{s}\right) N \\ 800.0 \sin\left(\frac{12.6t}{s}\right) N \end{bmatrix}$$

#### 13.2.4.3. Kontrolle der modalen Transformation

$$\omega_1 = \frac{27.3}{\text{s}}$$

$$\omega_{1modal} = \frac{27.3}{\mathrm{s}}$$

$$\omega_2 = \frac{34.07}{\rm s}$$

$$\omega_{2modal} = \frac{34.07}{\rm s}$$

#### 13.2.5. Stationäre Antwort

Die stationäre Antwort wird mittels des Vergrösserungsfaktors bestimmt.

Die entkoppelte Differentialgleichung ist nun die folgende:

$$m_1^{\star}q_1''(t) + k_1^{\star}q_1(t) = F_1^{\star}(t) = F_1^{\star}\sin(\omega t)$$

$$m_2^{\star}q_2''(t) + k_2^{\star}q_2(t) = F_2^{\star}(t) = F_2^{\star}\sin(\omega t)$$

Lösen lässt sich dies mit dem bekannten Ansatz:

$$q_n(t) = A_n \sin(\omega t) + B_n \cos(\omega)$$

Hier wird jedoch mit dem Vorgehen des Vergrösserungsfaktors verfahren:

#### **13.2.5.1. Verformung**

$$V_1(\omega) = \frac{1}{\sqrt{\frac{4\omega^2\zeta^2}{\omega_1^2} + \left(-\frac{\omega^2}{\omega_1^2} + 1\right)^2}}$$

$$V_1(\omega) = 1.27$$

$$q_{1stat}=0.201\mathrm{mm}$$

$$q_{1max}=0.255\mathrm{mm}$$

$$V_2(\omega) = \frac{1}{\sqrt{\frac{4\omega^2\zeta^2}{\omega_2^2} + \left(-\frac{\omega^2}{\omega_2^2} + 1\right)^2}}$$

$$V_2(\omega) = 1.16$$

$$q_{2stat}=0.216\mathrm{mm}$$

$$q_{2max}=0.25\mathrm{mm}$$

#### 13.2.5.1.1. Effektive Deformation

Die effektiven Grössen resultieren durch Multiplikation mit dem Eigenvektor. Für die erste Eigenkreisfrequenz:

$$u_{1stat} = \phi_1 q_{1max}$$

$$\begin{bmatrix} u_{11stat} \\ u_{21stat} \end{bmatrix} = \begin{bmatrix} 0.255 \mathrm{mm} \\ 1.48 \mathrm{mm} \end{bmatrix}$$

Sowie für die zweite Eigenkreisfrequenz:

$$u_{2stat} = \phi_2 q_{2max}$$

$$\begin{bmatrix} u_{12stat} \\ u_{22stat} \end{bmatrix} = \begin{bmatrix} 0.25 \mathrm{mm} \\ -0.864 \mathrm{mm} \end{bmatrix}$$

Durch Addition der beiden Verformungen:

$$u_{stat} = u_{1stat} + u_{2stat}$$

$$\begin{bmatrix} u_{1max} \\ u_{2max} \end{bmatrix} = \begin{bmatrix} 0.505 \mathrm{mm} \\ 0.613 \mathrm{mm} \end{bmatrix}$$

#### 13.2.5.2. Beschleunigung

$$V_{a1\omega} = \frac{V_{1\omega}\omega^2}{\omega_1^2}$$

$$V_{a1}(\omega) = 0.271$$

$$\frac{d^2}{dt^2}q_{max} = \frac{0.0405\mathrm{m}}{\mathrm{s}^2}$$

$$V_{a2}(\omega) = 0.158$$

$$\frac{d^2}{dt^2}q_{max} = \frac{0.0397\mathrm{m}}{\mathrm{s}^2}$$

# 13.2.5.2.1. Effektive Beschleunigung

Gleiches Vorgehen wie bei der Deformation.

$$\begin{bmatrix} \frac{d^2}{dt^2} u_{1max} \\ \frac{d^2}{dt^2} u_{2max} \end{bmatrix} = \begin{bmatrix} \frac{0.0802\text{m}}{\text{s}^2} \\ \frac{0.0975\text{m}}{\text{s}^2} \end{bmatrix}$$

# 14. Beispiel: Antwortspektrenverfahren an einem Rahmen

# 14.1. Aufgabenstellung

Dies ist eine Weiterführung des bereits bekannten Rahmentragwerks aus Kapitel 11.



Abbildung 14.1.: Statisches System des Rahmentragwerks

#### Gesucht:

- ullet Eigenkreisfrequenz  $\omega$
- Eigenformen Normierung auf

$$\phi_1^T = \begin{bmatrix} & 1 \end{bmatrix}$$

$$\phi_2^T = \begin{bmatrix} & 1 \end{bmatrix}$$

- Skizze der Eigenformen
- Statische Ersatzkräfte mit elastischem Antwortspektrum aus (Schweizerischer Ingenieur- und Architektenverein (SIA), 2020) Abs. 16.2.3 auf Stockwerksebene. Überlagerung mit der SRSS-Methode.

## Gegeben:

- Flächenträgheitsmoment der Stützen  $I=2\cdot 10^9 \mathrm{mm}^4$
- ullet Dehnsteifigkeit aller Stäbe  $E\cdot A=\infty$
- Einzelmassen  $m = 20000 \mathrm{kg}$
- Baugrundklasse B
- Erdbebenzone Z2

# 14.2. Musterlösung

Bei dieser Musterlösung bin ich nicht ganz sattelfest, müssen wir zusammen besprechen Stephan

Tabelle 14.1.: Verwendete Parameter

| Parameter                                                                                                     |                                                                                                  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $E = \frac{30000\text{N}}{\text{mm}^2}$ $I = 2000000000\text{mm}^4$ $m_2 = \frac{20000\text{Ns}^2}{\text{m}}$ | $\begin{split} H &= 3.2 \mathrm{m} \\ m_1 &= \frac{40000 \mathrm{Ns}^2}{\mathrm{m}} \end{split}$ |

#### 14.2.1. Steifigkeitsmatrix K

Zur Bestimmung der Steifigkeitsmatrix ist das System an jedem Freiheitsgrad auszulenken, wie in Abbildung 14.2 dargestellt ist.



Abbildung 14.2.: Auslenkung der Freiheitsgrade zur Bestimmung der Steifigkeit

Wichtig dabei sind die Richtungen der Kräfte. Als Denkstütze gilt folgendes: - Der Auslenkung um u wirkt die Federkraft entgegen, welche ku entspricht. - Zusätzlich wirkt die Trägheitskraft der Auslenkung entgegen, welche mu'' entspricht. - Nach der Betrachtung des ausgelenkten

Punkts, kann mittels *Actio-Reactio-*Prinzip das "*Stockwerk*" ins Gleichgewicht gebracht werden. - Vorzeichen sind gegen der Bewegungsrichtig positiv.

#### 14.2.1.1. Horizontale Steifigkeit

Die horizontale Steifigkeit des Systems lässt sich mittels der Formel für Rahmen bestimmen.

$$k_{Sttze} = \frac{12EI_{Sttze}}{H^3}$$

Diese gilt für eine einzelne Stütze.

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

$$K = \begin{bmatrix} \frac{1.31836 \cdot 10^8 \text{N}}{\text{m}} & -\frac{4.39453 \cdot 10^7 \text{N}}{\text{m}} \\ -\frac{4.39453 \cdot 10^7 \text{N}}{\text{m}} & \frac{4.39453 \cdot 10^7 \text{N}}{\text{m}} \end{bmatrix}$$

#### 14.2.2. Eigenvektoren

#### 14.2.2.1. Massenmatrix M

Die Massenmatrix folgt dem gleichen Aufbau wie die Steifigkeitsmatrix. Es gelten die gleichen Vorzeichenregelungen.

$$M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$$

$$M = \begin{bmatrix} \frac{40000\text{Ns}^2}{\text{m}} & 0\\ 0 & \frac{20000\text{Ns}^2}{\text{m}} \end{bmatrix}$$

#### 14.2.2.2. Eigenkreisfrequenzen

Bei einem Mehrmassenschwinger gibt es entsprechend den Freiheitsgraden Eigenkreisfrequenzen  $\omega_n$ . Diese lassen sich anhand folgender Gleichung bestimmen:

$$\det\left[\mathbf{K}-\omega_{n}^{2}\mathbf{M}\right]=0$$
 
$$\omega_{1}=\frac{33.1}{\mathrm{s}}$$
 
$$\omega_{2}=\frac{66.3}{\mathrm{s}}$$

#### 14.2.2.3. Eigenvektoren $\phi$

$$\begin{bmatrix} \frac{-k_2m_2\phi_{21} + \frac{\phi_{11}\left(-k_2m_1 + m_2(k_1 + k_2) + \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{m_2} \\ \frac{m_2}{-k_2m_1\phi_{11} + \frac{\phi_{21}\left(k_2m_1 - m_2(k_1 + k_2) + \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{m_1}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\phi_1 = \begin{bmatrix} 0.5 \\ 1.0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{-k_2m_2\phi_{22} + \frac{\phi_{12}\left(-k_2m_1 + m_2(k_1 + k_2) - \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{2} \\ \frac{m_2}{-k_2m_1\phi_{12} + \frac{\phi_{22}\left(k_2m_1 - m_2(k_1 + k_2) - \sqrt{k_1^2m_2^2 - 2k_1k_2m_1m_2 + 2k_1k_2m_2^2 + k_2^2m_1^2 + 2k_2^2m_1m_2 + k_2^2m_2^2}\right)}{m_1} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\phi_2 = \begin{bmatrix} -1.0 \\ 1.0 \end{bmatrix}$$

#### 14.2.2.4. Orthogonalitätsbedingung

Zur effektiven Entkoppelung der Gleichungen muss die Orthogonalitätsbedingung eingehalten sein. Dies gilt es für die Massenmatrix zu kontrollieren:

Dies gilt es für die Massenmatrix zu kontrollieren:

$$\phi_1^T \mathbf{M} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{M} \phi_1 = 0$$

Sowohl auch für die Steifigkeitsmatrix:

$$\phi_1^T \mathbf{K} \phi_1 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_2 \neq 0$$

$$\phi_2^T \mathbf{K} \phi_1 = 0$$

Angewendet auf die Aufgabe:

$$\phi_1^T M \phi_1 = \left[ \frac{3.0 \cdot 10^4 \text{Ns}^2}{\text{m}} \right]$$

$$\phi_2^T M \phi_2 = \left[\frac{6.0 \cdot 10^4 \mathrm{Ns}^2}{\mathrm{m}}\right]$$

$$\phi_2^T M \phi_1 = [0]$$

$$\phi_1^T M \phi_2 = [0]$$

Für die Steifigkeitsmatrix:

$$\phi_1^T K \phi_1 = \left[ \frac{3.3 \cdot 10^7 \mathrm{N}}{\mathrm{m}} \right]$$

$$\phi_2^T K \phi_2 = \left[\frac{2.64 \cdot 10^8 \mathrm{N}}{\mathrm{m}}\right]$$
 
$$\phi_2^T K \phi_1 = \left[0\right]$$
 
$$\phi_1^T K \phi_2 = \left[0\right]$$

#### 14.2.2.5. Eigenformen



Abbildung 14.3.: Die beiden Eigenformen skizziert

# 14.2.3. Modale Analyse

Die Bewegungsgleichung für einen ungedämpften, frei schwingenden Mehrmassenschwinger lässt sich folgend beschreiben:

$$Mu''(t) + Ku = 0$$

Die Matrix-Gleichung beschreibt ein System aus Differentialgleichungen. Die Modale Analyse zielt darauf ab, diese zu entkoppeln. Bezogen auf den Mehrmassenschwinger heisst eine Entkoppelung, dass diese in Einmassenschwinger aufgeteilt werden. Dies wird nun schrittweise durchgeführt.

#### 14.2.3.1. Modal- und Spektralmatrix

Mittels der Modal- und Spektralmatrix können die generalisierten Grössen ermittelt werden. Diese sind die eigenschaften der einzelnen Einmassenschwinger. Die generalisierten Werte besitzen keine physikalischen Werte, sie sind abhängig von der Wahl der Eigenvektoren, welche bekanntlich von der Normierung abhängen.

Aufgrund der Bewegungsgleichung können die generalisierten Grössen bestimmt werden, es gilt:

$$\Box^T M \Box u''(t) + \Box^T K \Box u(t) = 0$$

$$M^*u''(t) + K^*u(t) = 0$$

Alle N-Eigenwerte und alle N-Eigenvektoren können kompakt mit Matrizen ausgedrückt werden:

 $Modalmatrix = \Phi$ 

$$\Phi = \begin{bmatrix} 0.5 & -1.0 \\ 1.0 & 1.0 \end{bmatrix}$$

 $Spektralmatrix = \Omega^2$ 

$$\Omega^2 = \begin{bmatrix} \frac{1099.0}{s^2} & 0\\ 0 & \frac{4395.0}{s^2} \end{bmatrix}$$

#### 14.2.3.2. Generalisierte Grössen

$$M^{\star} = \begin{bmatrix} \frac{30000.0\text{Ns}^2}{\text{m}} & 0\\ 0 & \frac{60000.0\text{Ns}^2}{\text{m}} \end{bmatrix}$$

$$K^{\star} = \begin{bmatrix} \frac{3.2959 \cdot 10^{7} \text{N}}{\text{m}} & 0\\ 0 & \frac{2.6367 \cdot 10^{8} \text{N}}{\text{m}} \end{bmatrix}$$

#### 14.2.3.3. Kontrolle der modalen Transformation

$$\omega_1 = \frac{33.1}{s}$$

$$\omega_{1modal} = \frac{33.1}{8}$$

$$\omega_2 = \frac{66.29}{\text{S}}$$

$$\omega_{2modal} = \frac{66.29}{\text{s}}$$

#### 14.2.3.4. Partizipationsfaktor $\Gamma$

Die Verteilung des Partizipationsfaktor gibt einen direkten Hinweis, welcher Eigenmode an der Gesamtanwort den grössten Einfluss (beteiligt bzw. partizipiert) hat.

$$\Gamma_n = \frac{\Phi_n^T \mathbf{M} \mathbf{1}}{\Phi_n^T \mathbf{M} \Phi_n}$$

In allgemeiner Form lautet der Partizipationsfaktor:

$$\Gamma_n = \frac{\Phi_n^T \mathbf{M} \mathbf{r}^{\star}}{\Phi_n^T \mathbf{M} \Phi_n}$$

 $\mathbf{r}^{\star}$ beschreibt die Starrkörperverschiebung infolge der Erdbebenanregung  $u_g$ am Fusspunktb des Gesamtsystems.

$$\mathbf{r}^{\star} = \begin{bmatrix} FHG_1 \\ FHG_2 \end{bmatrix} = \begin{bmatrix} \cos(0) \\ \cos(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \mathbf{1}$$

$$\Gamma_1 = \frac{m_1 \phi_{11} + m_2 \phi_{21}}{m_1 \phi_{11}^2 + m_2 \phi_{21}^2}$$

$$\Gamma_1 = 1.33$$

$$\Gamma_2 = \frac{m_1\phi_{12} + m_2\phi_{22}}{m_1\phi_{12}^2 + m_2\phi_{22}^2}$$

$$\Gamma_2 = -0.333$$

$$\Gamma_n^2 = \begin{bmatrix} 1.78\\ 0.111 \end{bmatrix}$$

#### 14.2.3.5. Effektive Modale Massen

Durch Multiplikation der Modalen Massen mit dem Partizipationsfaktor resultieren die effektiven Modalen Massen.

$$m_{1eff} = \frac{5.33 \cdot 10^4 \mathrm{Ns}^2}{\mathrm{m}}$$

$$m_{2eff} = \frac{6.67 \cdot 10^3 \mathrm{Ns}^2}{\mathrm{m}}$$

$$m_{tot} = \frac{6.0 \cdot 10^4 \mathrm{Ns}^2}{\mathrm{m}}$$

#### 14.2.3.6. Modale Höhen

$$h_1 = \frac{H m_1 \phi_{11} + H m_2 \phi_{12}}{m_1 \phi_{11} + m_2 \phi_{12}}$$

False

$$h_2 = \frac{H m_1 \phi_{21} + H m_2 \phi_{22}}{m_1 \phi_{21} + m_2 \phi_{22}}$$

$$h_2 = 3.2 {\rm m}$$

#### 14.2.4. Elastisches Antwortspektrum

Dem Vorgehen nach (Schweizerischer Ingenieur- und Architektenverein (SIA), 2020) Abs. 16.2.3.1 entsprechend, werden folgende Parameter definiert:

- Baugrundklasse B
- Erdbebenzone Z2
- $a_{qd} = 1.0 \, \text{m/s}^2$

## 14.2.4.1. Grundschwingzeit

Die Grundschwingzeit kann anhand der bereits ermittelten Eigenkreisfrequenzen ermittelt werden.

$$T_1 = 0.19s$$

$$T_2 = 0.0948s$$

#### 14.2.4.2. Elastisches Antwortspektrum

$$S_e = 2.5 Sa_{qd}\eta$$

$$S_{e1} = \frac{3.0 \mathrm{m}}{\mathrm{s}^2}$$

$$S_e = 2.5 Sa_{gd}\eta$$

$$S_{e2} = \frac{3.0\text{m}}{\text{s}^2}$$

#### 14.2.4.3. Bemessungsspektrum

Es wird lediglich auf charakteristischem Niveau die Kräfte bestimmt

#### 14.2.4.4. Einwirkungen

$$\begin{split} f_{11} &= S_{e1} \gamma_1 m_{1eff} \phi_{11} \\ f_{21} &= S_{e1} \gamma_1 m_{2eff} \phi_{21} \\ f_{12} &= S_{e2} \gamma_2 m_{1eff} \phi_{12} \\ f_{22} &= S_{e2} \gamma_2 m_{2eff} \phi_{22} \\ \end{split}$$
 
$$f_{jn} = \begin{bmatrix} 1.07 \cdot 10^5 \text{N} & 5.33 \cdot 10^4 \text{N} \\ 5.33 \cdot 10^4 \text{N} & -6.67 \cdot 10^3 \text{N} \end{bmatrix}$$

#### 14.2.4.5. Deformation

$$\begin{split} u_{11} &= \frac{S_{e1}\gamma_1\phi_{11}}{\omega_1^2} \\ u_{21} &= \frac{S_{e1}\gamma_1\phi_{21}}{\omega_1^2} \\ u_{12} &= \frac{S_{e2}\gamma_2\phi_{12}}{\omega_2^2} \\ u_{22} &= \frac{S_{e2}\gamma_2\phi_{22}}{\omega_2^2} \\ u_{jn} &= \begin{bmatrix} 1.82\text{mm} & 0.228\text{mm} \\ 0.228\text{mm} & -0.228\text{mm} \end{bmatrix} \end{split}$$

### 14.2.5. Überlagerung der EMS

Um die Entkoppelung rückzuführen gilt es die erhaltenen Resultate zu überlagern. Dabei gibt es unterschiedliche Ansätze. Bei weit auseinander liegenden Eigenfrequenzen kann die SRSS-Überlagerung verwendet werden.

$$V_{b2max} = \sqrt{\sum_{n=1}^2 f_{j,n}^2}$$

$$V_{b1max} = \sqrt{f_{11}^2 + f_{12}^2}$$

$$V_{b1max} = 1.19 \cdot 10^5 \text{N}$$

$$V_{b2max} = \sqrt{f_{21}^2 + f_{22}^2}$$

$$V_{b2max} = 2.75 \cdot 10^4 \text{N}$$

Deformationen:

$$u_{bn} = \sqrt{\sum_{n=1}^2 u_{j,n}^2}$$

$$u_{b1} = \sqrt{u_{11}^2 + u_{12}^2}$$

$$u_{b1}=1.83\mathrm{mm}$$

$$u_{b2} = \sqrt{u_{21}^2 + u_{22}^2}$$

$$u_{b2}=3.65\mathrm{mm}$$

Skizze mit Schnittgrössen ergänzen

### 15. Beispiel: Antwortspektrenverfahren an einem zweistöckigen Gebäude

### 15.1. Aufgabenstellung



Abbildung 15.1.: Statisches System des zweistöckigen Gebäudes



Abbildung 15.2.: Antwortspektren nach SIA261:2020

### Gesucht:

- Eigenfrequenzen  $\omega_n$
- Darstellung der Eigenformen
- Modal- und Spektralmatrix
- Maximale Gesamtverformung mittels SRSS-Kombinationsregel aus dem Antwortspektrum der Pseudobeschleunigung (Kurve E in Abbildung 15.2)
- Resultierende Schnittgrössen

### Gegeben:

- Biegesteifigkeit Stützen  $EI_{(d)}=1.0\cdot 10^6 {\rm Nmm}^2$  Massen  $m_1=2.1{\rm t}$  und  $m_2=4.8{\rm t}$  Stockwerkshöhen  $H_1=3.81{\rm m}$  und  $H_2=3{\rm m}$

Korrekte Angaben zur Ermittlung des Antwortspektrums

### 15.2. Musterlösung

Tabelle 15.1.: Verwendete Parameter

| Parameter                                 |                                          |
|-------------------------------------------|------------------------------------------|
| $EI_{ac} = 550000.0 \text{m}^2 \text{N}$  | $EI_d = 250000.0 \text{m}^2 \text{N}$    |
| $H_1 = 3.81 \text{m}$                     | $H_2=3\mathrm{m}$                        |
| $m_1 = \frac{2100 \text{Ns}^2}{\text{m}}$ | $m_2^2 = rac{4800 	ext{Ns}^2}{	ext{m}}$ |



Abbildung 15.3.: Modellierung als Zweimassenschwinger

### 15.2.1. Massenmatrix M

$$M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$$

$$M = \begin{bmatrix} \frac{2100 \text{Ns}^2}{\text{m}} & 0\\ 0 & \frac{4800 \text{Ns}^2}{\text{m}} \end{bmatrix}$$

### 15.2.2. Steifigkeitsmatrix K

### 15.2.2.1. Steifigkeit der Stockwerke

Die Steifigkeit des Systems in Abbildung 15.3 entspricht der Geschosssteifigkeit. Dazu sind die Steifigkeiten der Stützen zu addieren.

$$k_1 = \frac{24EI_{ac}}{H_1^3}$$

$$k_1 = \frac{2.39 \cdot 10^5 \text{N}}{\text{m}}$$

$$k_2 = \frac{12EI_{ac}}{H_2^3} + \frac{12EI_d}{H_2^3}$$

$$k_2 = \frac{3.56 \cdot 10^5 \text{N}}{\text{m}}$$

Abgefüllt in die Steifigkeitsmatrix

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}$$

$$K = \begin{bmatrix} \frac{12EI_{ac}}{H_2^3} + \frac{24EI_{ac}}{H_1^3} + \frac{12EI_d}{H_2^3} & -\frac{12EI_{ac}}{H_2^3} - \frac{12EI_d}{H_2^3} \\ -\frac{12EI_{ac}}{H_2^3} - \frac{12EI_d}{H_2^3} & \frac{12EI_{ac}}{H_2^3} + \frac{12EI_d}{H_2^3} \end{bmatrix}$$

$$K = \begin{bmatrix} \frac{5.94 \cdot 10^5 \text{N}}{\text{m}} & -\frac{3.56 \cdot 10^5 \text{N}}{\text{m}} \\ -\frac{3.56 \cdot 10^5 \text{N}}{\text{m}} & \frac{3.56 \cdot 10^5 \text{N}}{\text{m}} \end{bmatrix}$$

### 15.2.3. Eigenvektoren

### 15.2.3.1. Eigenkreisfrequenzen

Bei einem Mehrmassenschwinger gibt es entsprechend den Freiheitsgraden Eigenkreisfrequenzen  $\omega_n$ . Diese lassen sich anhand folgender Gleichung bestimmen:

$$\det\left[\mathbf{K} - \omega_n^2 \mathbf{M}\right] = 0$$

$$\omega_1 = \frac{5.04}{\rm s}$$

$$\omega_2 = \frac{18.2}{\rm s}$$

### 15.2.3.2. Eigenvektoren $\phi$

Durch das Einsetzen der bestimmten Eigenkreisfrequenzen lassen sich die Eigenvektoren bestimmen. Beide Einträge des Eigenvektors sind voneinander abhängig und lassen sich dem entsprechen beliebig definieren. Grundsätzlich wird der maximale Eigenwert zu 1 gesetzt.

$$\mathbf{K} - \omega_n^2 \mathbf{M} \phi_n = 0$$

$$\phi_1 = \begin{bmatrix} 0.657 \\ 1.0 \end{bmatrix}$$

$$\phi_2 = \begin{bmatrix} 1.0 \\ -0.288 \end{bmatrix}$$

### 15.2.3.3. Darstellung der Eigenvektoren

Die Darstellung der Eigenvektoren besteht aus der Biegedeformation mit den Eigenvektoren entsprechenden Kopfauslenkungen. Für den Fall einer beidseitigen Einspannung und einer Verschiebung an den Knoten, entspricht die Deformation der Gleichung 15.1.

$$w(x) = \Delta_A + (\Delta_B - \Delta_A)(3\xi^2 - 2\xi^3) \tag{15.1}$$

mit

$$\xi = \frac{x}{l}$$

wobei x die Laufvariable ist und l die Stablänge, oder in diesem Fall die Stockwerkshöhe. Für den ersten Eigenvektor

$$\begin{split} w(x) &= \Delta_A + (-\Delta_A + \Delta_B) \left(\frac{3x^2}{l^2} - \frac{2x^3}{l^3}\right) \\ w(x) &= \Delta_A + (-\Delta_A + \Delta_B) \left(\frac{44.0 \left(0.26x - 1.0\right)^2}{l^2} - \frac{1.1 \cdot 10^2 \left(0.26x - 1.0\right)^3}{l^3}\right) \\ w &= \begin{cases} -0.024x^3 + 0.14x^2 & \text{for } x \leq 3.81 \\ -1.4 \left(0.26x - 1.0\right)^3 + 1.7 \left(0.26x - 1.0\right)^2 + 0.66 & \text{for } x \geq 3.81 \end{cases} \end{split}$$

Für den zweiten Eigenvektor. (Es bedingt eine Verschiebung der Laufvariable x um die  $H_1$ )

$$\begin{split} w(x) &= \Delta_A + \left(-\Delta_A + \Delta_B\right) \left(\frac{3x^2}{l^2} - \frac{2x^3}{l^3}\right) \\ w(x) &= \Delta_A + \left(-\Delta_A + \Delta_B\right) \left(\frac{44.0 \left(0.26x - 1.0\right)^2}{l^2} - \frac{1.1 \cdot 10^2 \left(0.26x - 1.0\right)^3}{l^3}\right) \\ w &= \begin{cases} -0.036x^3 + 0.21x^2 & \text{for } x \leq 3.81 \\ 5.3 \left(0.26x - 1.0\right)^3 - 6.2 \left(0.26x - 1.0\right)^2 + 1.0 & \text{for } x \geq 3.81 \end{cases} \end{split}$$



Abbildung 15.4.: Deformation des Mehrmassenschwingers anhand der Eigenvektoren

### 15.2.4. Modale Analyse

Die Modale Analyse zielt darauf ab, den Zweimassenschwinger zu entkoppeln. Dazu wird in einem ersten Schritt die Orthogonalitätsbedingung kontrolliert. Diese muss erfüllt sein um eine Entkoppelung durchzuführen.

### 15.2.4.1. Orthogonalitätsbedingung

Angewendet auf die Massenmatrix: Es zeigen sich kleine numerische Unreinheiten, welche vernachlässigt werden können.

$$\phi_1^T M \phi_1 = \left[ \frac{5.71 \cdot 10^3 \text{Ns}^2}{\text{m}} \right]$$

$$\phi_2^T M \phi_2 = \left[ \frac{2.5 \cdot 10^3 \mathrm{Ns}^2}{\mathrm{m}} \right]$$

$$\phi_2^T M \phi_1 = \left[ \frac{1.59 \cdot 10^{-12} \mathrm{Ns}^2}{\mathrm{m}} \right]$$

$$\phi_1^T M \phi_2 = \left[\frac{1.59 \cdot 10^{-12} \mathrm{Ns}^2}{\mathrm{m}}\right]$$

Für die Steifigkeitsmatrix:

$$\phi_1^T K \phi_1 = \left[ \frac{1.45 \cdot 10^5 \mathrm{N}}{\mathrm{m}} \right]$$

$$\phi_2^T K \phi_2 = \left[ \frac{8.28 \cdot 10^5 \mathrm{N}}{\mathrm{m}} \right]$$

$$\phi_2^T K \phi_1 = \begin{bmatrix} \frac{9.459 \cdot 10^{-11} \text{N}}{\text{m}} \end{bmatrix}$$

$$\phi_1^T K \phi_2 = \left[\frac{9.459 \cdot 10^{-11} \mathrm{N}}{\mathrm{m}}\right]$$

### 15.2.4.2. Modal- und Spektralmatrix

Mittels der Modal- und Spektralmatrix lassen sich die generalisierten Grössen effizient ermitteln.

$$Modalmatrix = \Phi$$

$$\Phi = \begin{bmatrix} 0.6573 & 1.0 \\ 1.0 & -0.2876 \end{bmatrix}$$

 $Spektralmatrix = \Omega^2$ 

$$\Omega^2 = \begin{bmatrix} \frac{25.38}{s^2} & 0\\ 0 & \frac{331.7}{s^2} \end{bmatrix}$$

#### 15.2.4.3. Generalisierte Grössen

$$M^{\star} = \begin{bmatrix} \frac{5707.3\text{Ns}^2}{\text{m}} & \frac{1.5916 \cdot 10^{-12} \text{Ns}^2}{\text{m}} \\ \frac{1.5916 \cdot 10^{-12} \text{Ns}^2}{\text{m}} & \frac{2497.0\text{Ns}^2}{\text{m}} \end{bmatrix}$$

$$K^{\star} = \begin{bmatrix} \frac{1.4487 \cdot 10^{5} \text{N}}{9.4587 \cdot 10^{-11} \text{N}} & \frac{9.4587 \cdot 10^{-11} \text{N}}{\text{m}} \\ \frac{9.4587 \cdot 10^{-11} \text{N}}{\text{m}} & \frac{8.2813 \cdot 10^{5} \text{N}}{\text{m}} \end{bmatrix}$$

#### 15.2.4.4. Kontrolle der modalen Transformation

Die Eigenkreisfrequenzen ändern sich durch die Transformation nicht.

$$\omega_1 = \frac{5.04}{8}$$

$$\omega_{1modal} = \frac{5.04}{8}$$

$$\omega_2 = \frac{18.21}{\text{s}}$$

$$\omega_{2modal} = \frac{18.21}{\mathrm{s}}$$

### **15.2.4.5.** Partizipationsfaktor $\Gamma$

Die Verteilung des Partizipationsfaktor gibt einen direkten Hinweis, welcher Eigenmode an der Gesamtanwort den grössten Einfluss (beteiligt bzw. partizipiert) hat.

$$\Gamma_n = \frac{\Phi_n^T \mathbf{M} \mathbf{1}}{\Phi_n^T \mathbf{M} \Phi_n}$$

In allgemeiner Form lautet der Partizipationsfaktor:

$$\Gamma_n = \frac{\Phi_n^T \mathbf{M} \mathbf{r}^*}{\Phi_n^T \mathbf{M} \Phi_n} \tag{15.2}$$

 $\mathbf{r}^{\star}$ beschreibt die Starrkörperverschiebung infolge der Erdbebenanregung  $u_g$ am Fusspunkt des Gesamtsystems.

$$\mathbf{r}^{\star} = \begin{bmatrix} FHG_1 \\ FHG_2 \end{bmatrix} = \begin{bmatrix} \cos(0) \\ \cos(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \mathbf{1}$$

Die Partizipationsmatrix lässt sich direkt durch folgende Gleichung ermitteln:

$$\Gamma = M^{\star - 1} \cdot \Phi^T \cdot M \cdot 1 \tag{15.3}$$

Gelöst mit Gleichung 15.3:

$$\Gamma = \begin{bmatrix} 1.08 \\ 0.288 \end{bmatrix}$$

Gelöst mit Gleichung 15.2:

$$\Gamma_1 = \frac{m_1 \phi_{11} + m_2 \phi_{21}}{m_1 \phi_{11}^2 + m_2 \phi_{21}^2}$$

$$\Gamma_1 = 1.08$$

$$m_1 \phi_{12} + m_2 \phi_{22}$$

$$\Gamma_2 = \frac{m_1\phi_{12} + m_2\phi_{22}}{m_1\phi_{12}^2 + m_2\phi_{22}^2}$$

$$\Gamma_2=0.288$$

$$\Gamma_n^2 = \begin{bmatrix} 1.17 \\ 0.0831 \end{bmatrix}$$

### 15.2.5. Elastisches Antwortspektrum

Aus der Aufgabenstellung darf nach (Schweizerischer Ingenieur- und Architektenverein (SIA), 2020) Abs. 16.2.3.1 Kurve E gewählt werden.

### 15.2.5.1. Grundschwingzeit

Die Grundschwingzeit kann anhand der bereits ermittelten Eigenkreisfrequenzen ermittelt werden.

$$T_1 = 1.25s$$

$$T_2 = 0.345$$
s

### 15.2.5.2. Elastisches Antwortspektrum

$$S_e = \frac{2.5 ST_C a_{gd} \eta}{T}$$

$$S_{e1}=\frac{0.852\mathrm{m}}{\mathrm{s}^2}$$

$$S_e = \frac{2.5 S T_C a_{gd} \eta}{T}$$

$$S_{e2}=\frac{3.08\mathrm{m}}{\mathrm{s}^2}$$

### 15.2.6. Maximale Deformation

Die maximale Deformation resultiert aus der Beschleunigung  $S_e$  und der Eigenkreisfrequenz  $\omega_n^2$ . Für die Modalen EMS gilt es diese anhand der Partizipationsfaktoren zu gewichten. Zur effektiven Bestimmung der Auslenkung sind die Resultate der EMS mittels SRSS-Regel zu überlagern.

$$q_{1max} = \frac{\Gamma_1 S_{e1}}{\omega_1^2}$$

$$q_{1max}=0.0364\mathrm{m}$$

$$q_{2max} = \frac{\Gamma_2 S_{e2}}{\omega_2^2}$$

$$q_{2max}=0.00268\mathrm{m}$$

Um die Entkoppelung rückzuführen gilt es die erhaltenen Resultate zu überlagern. Dabei gibt es unterschiedliche Ansätze. Bei weit auseinander liegenden Eigenfrequenzen kann die SRSS-Überlagerung verwendet werden.

$$u_{max} = \sqrt{\sum_{n=1}^{2} (q_n \cdot \phi_n)^2}$$

$$u_{max} = \begin{bmatrix} 0.024 \text{m} \\ 0.0364 \text{m} \end{bmatrix}$$



Abbildung 15.5.: Maximale Deformation des Mehrmassenschwingers

### 15.2.7. Maximale Schnittkräfte

### 15.2.7.1. Querkräfte

Die Einwirkungen resultieren aus der Masse multipliziert mit der Beschleunigung aus dem Antwortspektrum. Dazu sind in einem ersten Schritt die beiden entkoppelten EMS von einander getrennt zu betrachten. Die Überlagerung erfolgt erst bei den ermittelten Querkräften.

$$M_1 = \Gamma \cdot M \cdot \phi_1$$

$$F_{1max} = M_1 \cdot S_{e1}$$

Aus dem ersten EMS folgt:

**False** 

$$F_{1max} = \begin{bmatrix} 1273.7N \\ 4429.2N \end{bmatrix}$$

$$V_1 = \begin{bmatrix} 5702.9N \\ 4429.2N \end{bmatrix}$$

Aus dem zweiten EMS folglich:

$$M_2 = \begin{bmatrix} \frac{605.23 \text{Ns}^2}{\text{m}} \\ -\frac{397.83 \text{Ns}^2}{\text{m}} \end{bmatrix}$$

$$F_{2max} = \begin{bmatrix} 1864.2N \\ -1225.4N \end{bmatrix}$$

$$V_2 = \begin{bmatrix} 638.82\mathrm{N} \\ -1225.4\mathrm{N} \end{bmatrix}$$

Maximale Querkraft aus Überlagerung beider EMS mittels SRSS-Regel.

$$V_{max} = \sqrt{V_1^2 + V_2^2}$$

$$V_{max} = \begin{bmatrix} 5.74 \cdot 10^3 \text{N} \\ 4.6 \cdot 10^3 \text{N} \end{bmatrix}$$

### 15.2.7.2. Biegemomente

Die Biegemomente lassen sich abschliessend anhand der Querkräfte bestimmen.

### 15.2.7.3. Normalkräfte

Die Normalkräfte resultieren aus den Punktmassen.



Abbildung 15.6.: Maximale Schnittgrössen

## 16. Beispiel: Antwortspektrenverfahren an einem dreistöckigen Gebäude



Abbildung 16.1.: Dreigeschossiges Gebäude

### 16.1. Musterlösung



Abbildung 16.2.: Gebäude modelliert als Mehrmassenschwinger

Tabelle 16.1.: Verwendete Parameter

| Parameter                                                           |                                          |
|---------------------------------------------------------------------|------------------------------------------|
| $EI_1 = 2100000.0 \text{m}^2 \text{N}$                              | $EI_2 = 2100000.0 \text{m}^2 \text{N}$   |
| $EI_3 = 1500000.0 \text{m}^2 \text{N}$<br>$H_2 = 4.25 \text{m}$     | $H_1=4.5\mathrm{m} \ H_3=4.25\mathrm{m}$ |
| $m_1 = \frac{12000 \text{Ns}^2}{\frac{\text{m}}{2000 \text{Ns}^2}}$ | $m_2 = \frac{12000 { m Ns}^2}{{ m m}}$   |
| $m_1 = \frac{m}{m}$ $m_3 = \frac{8000 \text{Ns}^2}{\text{m}}$       |                                          |

### 16.1.1. Massenmatrix ${\cal M}$



Abbildung 16.3.: System an jeder Punktmasse ausgelenkt

$$M = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix}$$

$$M = \begin{bmatrix} \frac{12000\text{Ns}^2}{\text{m}} & 0 & 0\\ 0 & \frac{12000\text{Ns}^2}{\text{m}} & 0\\ 0 & 0 & \frac{8000\text{Ns}^2}{\text{m}} \end{bmatrix}$$

### 16.1.2. Steifigkeitsmatrix K

### 16.1.2.1. Steifigkeit der Stockwerke

$$k_1 = \frac{24EI_1}{H_1^3}$$
 
$$k_1 = \frac{5.53 \cdot 10^5 \mathrm{N}}{\mathrm{m}}$$
 
$$k_2 = \frac{24EI_2}{H_2^3}$$
 
$$k_2 = \frac{6.57 \cdot 10^5 \mathrm{N}}{\mathrm{m}}$$
 
$$k_3 = \frac{24EI_3}{H_3^3}$$
 
$$k_3 = \frac{4.69 \cdot 10^5 \mathrm{N}}{\mathrm{m}}$$

Abgefüllt in die Steifigkeitsmatrix

$$K = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix}$$
 
$$K = \begin{bmatrix} \frac{24EI_1}{H_1^3} + \frac{24EI_2}{H_2^3} & -\frac{24EI_2}{H_2^3} & 0 \\ -\frac{24EI_2}{H_2^3} & \frac{24EI_2}{H_2^3} + \frac{24EI_3}{H_3^3} & -\frac{24EI_3}{H_3^3} \\ 0 & -\frac{24EI_3}{H_3^3} & \frac{24EI_3}{H_3^3} \end{bmatrix}$$

$$K = \begin{bmatrix} \frac{1.21 \cdot 10^{6} \text{N}}{\text{m}} & -\frac{6.57 \cdot 10^{5} \text{N}}{\text{m}} & 0\\ -\frac{6.57 \cdot 10^{5} \text{N}}{\text{m}} & \frac{1.13 \cdot 10^{6} \text{N}}{\text{m}} & -\frac{4.69 \cdot 10^{5} \text{N}}{\text{m}}\\ 0 & -\frac{4.69 \cdot 10^{5} \text{N}}{\text{m}} & \frac{4.69 \cdot 10^{5} \text{N}}{\text{m}} \end{bmatrix}$$

### 16.1.3. Eigenvektoren

### 16.1.3.1. Eigenkreisfrequenzen

Bei einem Mehrmassenschwinger gibt es entsprechend den Freiheitsgraden Eigenkreisfrequenzen  $\omega_n$ . Diese lassen sich anhand folgender Gleichung bestimmen:

$$\det \left[ \mathbf{K} - \omega_n^2 \mathbf{M} \right] = 0 \tag{16.1}$$
 
$$\omega_1 = \frac{3.4}{\mathrm{s}}$$
 
$$\omega_2 = \frac{8.84}{\mathrm{s}}$$
 
$$\omega_3 = \frac{12.8}{\mathrm{s}}$$



Abbildung 16.4.: Nullstellen der Gleichung 16.1

### 16.1.3.2. Eigenvektoren $\phi$

Durch das Einsetzen der bestimmten Eigenkreisfrequenzen lassen sich die Eigenvektoren bestimmen. Die Einträge des Eigenvektors sind voneinander abhängig und lassen sich dem entsprechen beliebig definieren. Grundsätzlich wird der maximale Eigenwert zu 1 gesetzt.

$$\mathbf{K} - \omega_n^2 \mathbf{M} \phi_n = 0$$

$$\{\phi_{11}:0.0,\;\phi_{21}:0.0,\;\phi_{31}:0.0\}$$

False

ShapeError: Matrix size mismatch: (3, 3) \* (2, 1).

# Teil IV. Ersatzkraftverfahren

### 17. Beispiel: Schubmittelpunkt und Stockwerksquerkraft

### 17.1. Aufgabenstellung



Abbildung 17.1.: Grundriss und Schnitt des Gebäudes mit dem entsprechenden statischen System



Modellierung-Annahmen - Stahlbeton

- die Decken sind gelenkig an die Tragwände angeschlossen.
   die Deckenscheiben wirken in Ihrer Ebene als starre Scheiben.
   die Wandscheiben bzw. Tragwände sind in den Kellerkasten eingespannt, so dass die Modellierung als Kragarm erfolgt.
   die Massen der Decken werden im Aufriss als Punktmassen am Kragarm abgebildet. (Massen der Wände pro Geschoss je zur Hälfte der Geschossmasse zuordnen)
   die Stützen tragen nur zum vertikalen Lastabtrag bei. Deren Steifigkeit kann vernachlässigt werden.

NB: Bei der Modellierung sind je nach Konstruktion (Stahlbeton, Mauerwerk, Holzbau, Stahlbau) die Materialeigenschaften und das Querschnittsverhalten bei zyklischer Beanspruchung zu beachten.

### Erdbebenparameter

Baugrundklasse B, Verhaltensbeiwert  $\gamma_{\text{t}} = 1.0$  , Erdbebenzone Z2 (a $_{\text{pd}} = 1 \text{m/s}^2$ ) nichtduktile Bemessung Stahlbeton Verhaltensbeiwert q=2 und infolge gerissenem Zustand erfolgt eine 50%-ige Abminderung der Biegesteifigkeit EI

Abbildung 17.2.: Modellierung als Mehrmassenschwinger

### 17.2. Musterlösung

Tabelle 17.1.: Verwendete Parameter

| Parameter                      |                         |
|--------------------------------|-------------------------|
| $E = \frac{30000000000N}{m^2}$ | d = 0.3m                |
| $l_{w1} = 4 \text{m}$          | $l_{w2} = 3 \mathrm{m}$ |
| $l_{w3} = 5 \text{m}$          | $l_{w4} = 3 \mathrm{m}$ |
| $l_x = 4 \text{m}$             | $l_y=5\mathrm{m}$       |

### 17.2.1. Schubmittelpunkt

Für die Berechnung des Schubmittelpunktes C wird zunächst angenommen dass sich die Wandscheiben **parallel** in y- bzw. z-Richtungen verschieben. Es findet somit **keine Verdrehung** statt. Die gleichen Verschiebung wird durch die starre Deckenscheibe gewährleistet. Die Wandscheiben können als Biegestäbe (Kragarme) mit der Biegesteifigkeit EI in die jeweilige y- bzw. z-Richtung betrachtet werden. Jede Wandscheibe erfährt bei einer parallelen Verschiebung der starren Deckenscheibe in die jeweilge Richtung die gleiche Kopfverformung (parallel geschaltete Federn).

### 17.2.1.1. Abstand vom Koordinatennullpunkt

$$x_1 = -4.0 \text{m}$$

$$x_2 = 4.5 \mathrm{m}$$

$$x_3 = -6.0 \text{m}$$

$$x_4=10.0\mathrm{m}$$

$$y_1 = 7.5 \text{m}$$

$$y_2=-7.5\mathrm{m}$$

$$y_3 = 0$$

$$y_4=6.0\mathrm{m}$$

### 17.2.1.2. Wandlängen

Wandlängen in X-Richtung

$$l_{x1}=4.0\mathrm{m}$$

$$l_{x2}=3.0\mathrm{m}$$

$$l_{x3}=0.3\mathrm{m}$$

$$l_{x4}=0.3\mathrm{m}$$

Wandlängen in Y-Richtung

$$l_{y1}=0.3\mathrm{m}$$

$$l_{y2}=0.3\mathrm{m}$$

$$l_{y3}=5.0\mathrm{m}$$

$$l_{y4}=3.0\mathrm{m}$$

### 17.2.1.3. Trägheitsmoment

Lediglich die Eigenträgheitsmomente sind beschrieben.

$$I_{x1} = 0.009 \mathrm{m}^4$$

$$I_{x2}=0.00675 \mathrm{m}^4$$

$$I_{x3} = 3.125 \mathrm{m}^4$$

$$I_{x4} = 0.675 \mathrm{m}^4$$

$$I_{y1} = 1.6 \mathrm{m}^4$$

$$I_{y2} = 0.675 \mathrm{m}^4$$

$$I_{y3} = 0.01125 \text{m}^4$$

$$I_{y4}=0.00675 \mathrm{m}^4$$

$$I_{xersatz} = 3.81575 \mathrm{m}^4$$

$$I_{yersatz} = 2.293 \mathrm{m}^4$$

$$EI_{xersatz} = 114472500000.0 \mathrm{m}^2 \mathrm{N}$$

$$EI_{yersatz}=68790000000.0\mathrm{m}^2\mathrm{N}$$

### 17.2.1.4. Abstände des Schubmittelpunkts zum Massenschwerpunkt

$$\begin{aligned} y_c &= \frac{\sum_{i=1}^n EI_{y,i}y_i}{\sum_{i=1}^n EI_{y,i}} \\ x_c &= \frac{\sum_{i=1}^n EI_{x,i}x_i}{\sum_{i=1}^n EI_{x,i}} \\ y_c &= 3.04 \text{m} \end{aligned}$$

$$x_c=-3.15\mathrm{m}$$



Abbildung 17.3.: Grundriss mit Schubmittelpunkt

### 17.2.2. Stockwerkquerkraft

Als Annahme dient eine Stockwerkquerkraft von  $100~\rm kN$  in Y-Richtung. Verschoben in den Schubmittelpunkt resultiert eine Querkraft und ein Torsionsmoment T.

Des Weiteren wird das Koordinatensystem auf den Schubmittelpunkt geschoben.

$$V_{ytot} = 1.0 \cdot 10^5 \text{N}$$

$$T_{yc}=3.15\cdot 10^5 \mathrm{mN}$$

### 17.2.2.1. Wandkoordinaten zum Schubmittelpunkt

$$x_1 = -0.854$$
m

$$x_2=7.65\mathrm{m}$$

$$x_3 = -2.85 \mathrm{m}$$

$$x_4=13.1\mathrm{m}$$

$$y_1 = 4.46 \text{m}$$

$$y_2=-10.5\mathrm{m}$$

$$y_3 = -3.04 \text{m}$$

$$y_4 = 2.96 \text{m}$$

### 17.2.2.2. Wandquerkraft

Die Kräfte wirken jeweils parallel zur Wandebene.

$$V_{y1} = 226.0 \mathrm{N}$$

$$V_{y2} = 242.0$$
N

$$V_{y3} = 7.07 \cdot 10^4 \text{N}$$

$$V_{y4} = 2.89 \cdot 10^4 \text{N}$$



Abbildung 17.4.: Resultierende Querkräfte in den einzelnen Wänden

### 17.2.2.3. Bemerkung zur Norm

Nach Norm (Schweizerischer Ingenieur- und Architektenverein (SIA), 2020) 16.5.3.4 ist die Exzentrizität (Schubmittelpunkt zu Massenschwerpunkt) anhand der Gebäudeabmessungen zu erhöhen.

$$e_{d,sup} = 1.5 \cdot e + 0.05 \cdot b$$

$$e_{d,inf} = 0.5 \cdot e - 0.05 \cdot b$$

b Gebäudebreite in der entsprechenden Kraftrichtung

e Exzentrizität

Aus den entstehenden 4 Lastfällen ist der ungünstigste massgebend.

$$e_{dxsup}=5.72\mathrm{m}$$

$$e_{dxinf}=0.573\mathrm{m}$$

### Literatur

Schweizerischer Ingenieur- und Architektenverein (SIA). (2020). Norm SIA 261:2020 Einwirkungen auf Tragwerke (136. S.).