清华大学本科生考试试题专用纸

考试课程:	复变函数引论(A	A 卷) (闭卷考试)	考试时间: 2	007年6月24日上午	8:00-10:00
系别	班级	学号	姓名	考试教室	/五教
试卷说明: 1、试题分 <u>判断是非题、填空题、分析与计算题、证明题</u> 四大部分,满分 70 分。 2、 判断题、填空题答在试卷上,其余题目都要答在专用答题纸上,且注明题号 。					
一、判断是非题(请在每个题前方括号内打√或×,每题2分,5小题共10分)					
[] 1、		7非孤立奇点,则在	z=0 的任意空心	♪领域 0 < z < δ (δ >	- 0) 内有
[] 2、若 $f(z)$ 在双连通区域 D 中连续且沿 D 中任何一条可求长简单闭曲线的积分为 0 ,那么 $f(z)$ 在 D 中解析。					
[] 3、如果 ∞ 为 $f(z)$ 的一级极点,那么 $Res[f(z),\infty] \neq 0$.					
[] 4、 $\tan(z^2+1)$ 可以在圆环域 $0< z <\frac{1}{2}$ 中展开成 Laurent 级数。					
[] 5、如果幂级数 $\sum_{n=0}^{+\infty} c_n z^n$ 在其收敛圆的圆周上一点 z_0 (\neq 0) 处条件收敛,那么它在收敛圆的圆周上任一点处条件收敛。					
二、填空题(5小题,除第1小题每个空2分外,其余每个空3分,共18分)					
1、 $my^3 + nx^2y + i(x^3 + lxy^2)$ 为 \mathbb{C} 上解析函数, 则 $l = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$					
$m = \underline{\hspace{1cm}}$		$n = \underline{\hspace{1cm}}$	•		
$2, i^{(1+i)} = $				o	
3、设 C 为正向圆周 $ z =4$,则积分 $\oint_C \frac{\sin(\pi z)}{z(z+1)(z-1)^2} dz =$					
4 、级数 $\sum_{n=-\infty}^{5} \frac{n+(-3)^n}{n^4+e^n} (z-2)^{n-3}$ 的收敛圆环域为					
5、设 $f(z) = \frac{1}{z} - z^5 \sin \frac{1}{z^2}$,则 $Res[f(z), \infty] = $ 。					

三、分析与计算题(4题,共29分,注意:每题要有完整的分析与计算过程,只写答案没有过程不给分)

1、(7 分) 设 C 为正向圆周 |z|=2,计算积分

$$I = \oint_C (\frac{5}{z} + \tan z) dz.$$

2、(6分) 计算实积分

$$I = \int_{-\infty}^{+\infty} \frac{\sin(2x)dx}{x^2 - 4x + 8}.$$

3、(6分) 求函数

$$f(z) = \frac{z}{(1 - z^2)^2}$$

在圆环域 $1 < |z| < +\infty$ 内的 Laurent 展开式。**注意:要完整地写出级数中各项系数的显式表达式即通项**。

4、(10分)找出函数

$$f(z) = \frac{1}{z} - \frac{1}{\sin z} + \frac{\sin(\pi z)}{(z-2)^4}$$

在扩充复平面 $\mathbb{C} \cup \{\infty\}$ 上的所有奇点并进行分类(**须说明理由,如果是极点,必须指出其级数**),并且算出 f(z) 在所有孤立奇点处的留数。

四、证明题 (2题, 共13分)

1、(8 分) 假设函数 f(z) = u + iv 在区域 D 内解析,并且 |f(z)| 在 D 内是一个常数,求证: f(z) 在区域 D 上是一个常数函数。

2、(5 分) 如果幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R(R>0), 求证: 幂级数

$$\sum_{n=0}^{\infty} (|a_n| + |b_n|) z^n$$

的收敛半径也为 R, 这里 $a_n = Re(c_n)$, $b_n = Im(c_n)$.