Sommersemester 2018

Einführung in die Computergraphik Übungsblatt 10

Praktische Aufgabe (5 Punkte)

Bildverarbeitung im Deferred Renderer

In dieser Übung erweitern wir unseren Deferred Renderer um Glättungs-Passes.

Lest euch die zugehörige Übung durch und ladet euch das WebGL Playground Projekt. Stellen an denen Code ergänzt werden soll sind mit "// TASK" und einer Aufgabenbeschreibung versehen. Folgende Aufgaben sind zu bearbeiten:

- 1. (1 Punkt) Implementiere einen Box-Kernel der Größe 7 in der entsprechenden Funktion im JavaScript-Code.
- 2. (1 Punkt) Implementiere analog einen Gauss-Kernel der Größe 7. Wähle das σ geeignet, d.h. die Werte an den Rändern des Kernels sollten gegen 0 gehen.
- 3. (3 Punkte) Implementiere die Faltung im Fragment Shader des Smoothing Pass Shader-Programms. Weitere Informationen stehen im Shader-Code.

Hinweis: Lade vor dem Öffnen der JSON bitte das Modell "teapot.obj" aus dem Assets-Verzeichnis des WebGL-Playground.

Das Ergebnis könnte dann in etwa so aussehen:

Figure 1: Ausgabe nach der Glättung

Theoretische Aufgabe (5 Punkte)

- a) Zeigen Sie die Affininvarianz einer Bézier-Kurve $p(t) = \sum_{i=0}^n b_i B_i^n(t)$ mit $t \in [0,1]$, wobei $b_i \in \mathbb{R}^d$ die Kontrollpunkte und $B_i^n(t)$ die Bernstein-Polynome vom Grad n sind.
- b) Gegeben seien die beiden quadratischen Bézierkurven q und p mit den Kontrollpunkten $b_{q0}=(0,1)^T, b_{q1}=(2,3)^T, b_{q2}=(6,-2)^T$ bzw. $b_{p0}=(6,-2)^T, b_{p1}=(8,-4.5)^T, b_{p2}=(10,1.5)^T$. Überprüfen Sie, ob die aus der Konkatenation der beiden Kurven resultierende Kurve an der Verbindungsstelle G^1 -stetig ist. Überprüfen Sie auch, ob die aus der Konkatenation der beiden Kurven resultierende Kurve an der Verbindungsstelle C^1 -stetig ist.