MATH 570, Homework 7

Colin Roberts
October 13, 2017

Solutions

Problem 1. Suppose $f,g: S^n \to S^n$ are continuous maps such that $f(x) \neq -g(x)$ for any $x \in S^n$. Prove that f and g are homotopic.

Hint: As an easier case, what if we instead had $f,g: S^n \to \mathbb{R}^{n+1} \setminus \{\vec{0}\}$ with the line segment from f(x) to g(x) not passing through the origin for all $x \in S^n$? Can you modify a proof of this easier case to handle the problem above where $f,g: S^n \to S^n$ with $f(x) \neq -g(x)$?

:

Proof. Consider the hint. We have, since no line segment between f(x) and g(x) will pass through 0, that there is a straight line homotopy between f(x) and g(x). In order to make this work for $f,g: S^n \to S^n$ instead of $f,g: S^n \to \mathbb{R} \setminus \{0\}$ we have the homotopy given by

$$H(x,t) = \frac{(1-t)f(x) + tg(x)}{\|(1-t)f(x) + tg(x)\|}.$$

Note that $H(\cdot,0) = f$ and $H(\cdot,1) = g$. This is a continuous homotopy since the denominator is never zero, and the numerator is addition of continuous functions.

Problem 2. Let *X* be a topological space and let *g* be a path in *X* from *p* to *q*. Let $\Phi_g: \pi_1(X, p) \to \pi_1(X, q)$ denote the group isomorphism defined in Theorem 7.13.

If $h: X \to Y$ is continuous, then show that the following diagram commutes:

$$\pi_1(X,p) \xrightarrow{h_*} \pi_1(Y,h(p))$$

$$\downarrow^{\Phi_g} \qquad \qquad \downarrow^{\Phi_{h\circ g}}$$

$$\pi_1(X,q) \xrightarrow{h_*} \pi_1(Y,h(q))$$

:

Proof. To show that this diagram commutes we need to show that for $[f] \in \pi_1(X, p)$ that $\phi_{h \circ g} \circ h_*[f] = \phi_g \circ h_*[f]$. First we show that $\overline{h \circ g} = h \circ \overline{g}$. We have

$$\overline{h \circ g}(t) = h \circ g(1 - t)$$
$$= h \circ \overline{g}(t).$$

Then

$$\begin{split} \phi_{h\circ g} \circ h_*[f] &= \phi_{h\circ g}[h\circ f] \\ &= \overline{[(h\circ g]\cdot (h\circ f)\cdot (h\circ g)]} \\ &= [(h\circ \overline{g})\cdot (h\circ f)\cdot (h\circ g)] \\ &= [h\circ (\overline{g}\cdot f\cdot g)] \\ &= h_*[\overline{g}\cdot f\cdot g] \\ &= h_*\circ [\overline{g}][f][g] \\ &= h_*\circ \phi_g[f]. \end{split}$$

Thus the diagram commutes.

Problem 3. Let X be a path-connected topological space, and let $p, q \in X$. Show that $\pi_1(X, p)$ is abelian if and only if for any two paths g, g' from p to q in X, we have $\Phi_g = \Phi_{g'}$ (as isomorphisms from $\pi_1(X, p)$ to $\pi_1(X, q)$).

Proof. First, suppose that $\pi_1(X, p)$ is abelian. Denote the constant path in $\pi_1(X, p)$ by $[C_p]$. Then for $[f] \in \pi_1(X, p)$ we have

$$\begin{split} \Phi_g[f] &= [\overline{g}][f][g] \\ &= [\overline{g}][g][f] \\ &= [C_p][f] \\ &= [\overline{g'}][g'][f] \\ &= [\overline{g'}][f][g'] \\ &= \Phi_{g'}[f]. \end{split}$$

So we have that $\Phi_g=\Phi_{g'}$. For the converse, suppose that we have $\Phi_g=\Phi_{g'}$. Then

$$\Phi_g[f] = [\overline{g}][f][g]$$

$$= \Phi_{C_p}[f] \qquad \text{since the above is just homotopy equivalent to this}$$

$$\Longrightarrow [f] = [\overline{g}][f][g].$$

Which implies that $\pi_1(X, p)$ is abelian.

Problem 4. Let $F: C \to D$ be a (covariant) functor from category C to category D. Prove that if $X, Y \in \text{Obj}(C)$ are isomorphic objects in C, then F(X), F(Y) are isomorphic objects in D.

:

Proof. The following diagram will prove useful (at least in my visualization):

Since X and Y are isomorphic in Obj(C) we have that $\varphi \colon X \to Y$ is an isomorphism with inverse φ^{-1} . Then we have that $F(Id_X) = F(\varphi^{-1} \circ \varphi) = F(\varphi^{-1}) \circ F(\varphi) = Id_{F(X)}$. This means that $F(\varphi)$ is an isomorphism $F(\varphi) \colon F(X) \to F(Y)$ with inverse $F(\varphi^{-1})$ and we have that F(X) and F(Y) are isomorphic objects in Obj(D).

Problem 5. Let *X* be a toplogical space. Prove that the following statements are equivalent:

- (i) X is compact.
- (ii) For every collection $\{C_{\alpha}\}_{{\alpha}\in A}$ of closed subsets of X with $\bigcap_{{\alpha}\in A}C_{\alpha}=\emptyset$, there is a finite subcollection $\{C_{\alpha_1},\ldots,C_{\alpha_n}\}$ with $C_{\alpha_1}\cap\ldots\cap C_{\alpha_n}=\emptyset$.

:

Proof. To show equivalence we prove that (i) implies (ii) and (ii) implies (i).

For the first implication, suppose that X is compact. Then let $\{C_{\alpha}\}_{\alpha \in A}$ be a collection of closed subsets so that $\bigcap_{\alpha} C_{\alpha} = \emptyset$. Then we have that $X \setminus (\bigcap_{\alpha} C_{\alpha}) = \bigcup_{\alpha} X \setminus C_{\alpha} = X$. Thus we have that $\bigcup_{\alpha} X \setminus C_{\alpha}$ is an open cover of X and by compactness we have that there exists a finite subcover. Put $\bigcup_{i=1}^{n} X \setminus C_{\alpha_i}$ as our finite subcover and note that $X \setminus (\bigcup_{i=1}^{n} X \setminus C_{\alpha_i}) = \bigcap_{i=1}^{n} C_{\alpha_i} = \emptyset$.

as our finite subcover and note that $X \setminus (\bigcup_{i=1}^n X \setminus C_{\alpha_i}) = \bigcap_{i=1}^n C_{\alpha_i} = \emptyset$. For the second implication, suppose that for every collection of closed subsets $\{C_\alpha\}_{\alpha \in A}$ satisfying $\bigcap_{\alpha} C_\alpha = \emptyset$ we have $\bigcap_{i=1}^n C_{\alpha_i} = \emptyset$. Note that $\bigcup_{\alpha} X \setminus C_\alpha$ is an arbitrary open cover and $X \setminus (\bigcap_{i=1}^n C_{\alpha_i}) = \bigcup_{i=1}^n X \setminus C_{\alpha_i}$ is a finite subcover. So X is compact.