Algorithm 1: Item Batch Activeness

```
Insert:
```

Input: An item a, current time t_{cur}

for i = 1 to k do

$$l_i[a] = H_i[a]\%n;$$

 $cc[l_i[a]] = 2^s - 1;$

Return;

Query:

Input: An item a, current time t_{cur}

Output: Whether the item a showed up within the past time window

for i = 1 to k do

$$l_i[a] = H_i[a]\%n;$$

if $cc[l_i[a]] = 0$ **then**
Return $False;$

Return True;

Refresh: ptr = 0;

Algorithm 2: Item Batch Cardinality

Insert:

Input: An item a, current time t_{cur}

for i = 1 to k do

$$l_i[a] = H_i[a]\%n;$$

 $cc[l_i[a]] = 2^s - 1;$

Return;

Query:

Output: the cardinality of item batch

$$u = 0;$$

for i = 1 to n do

if
$$cc[i] = 0$$
 then $u = u + 1$;

Return $-nln\frac{u}{n}$;

Refresh:

$$ptr = 0;$$

Algorithm 3: Item Batch Time Span

Insert:

Input: An item a, current time t_{cur}

for i = 1 to k do

$$l_i[a] = H_i[a]\%n;$$

 $cc[l_i[a]] = 2^s - 1;$
if $sc[l_i[a]] = 0$ **then**
 $\lfloor sc[l_i[a]] = t_{cur}$

Return;

Query:

Input: An item a, current time t_{cur}

Output: the time span of item batch B_a

$$t_{begin} = 0;$$

for i = 1 to k do

Return $t_{cur} - t_{begin}$;

Refresh:

$$ptr = 0;$$

Algorithm 4: Item Batch Size

```
Insert:
```

Input: An item a, current time t_{cur}

for
$$i = 1$$
 to k do

$$l_i[a] = H_i[a]\%n;$$

 $cc[l_i[a]] = 2^s - 1;$
 $sc[l_i[a]] = sc[l_i[a]] + 1;$

Return;

Query:

Input: An item a

Output: the size of item batch B_a , current time t_{cur}

$$size = Infinity;$$

for
$$i = 1$$
 to k do

$$l_i[a] = H_i[a]\%n;$$

$$t_{begin} = min\{size, sc[l_i[a]]\}$$

Return size;

Refresh:

$$ptr = 0;$$

$$\mathbf{if} \ cc[ptr] > 0 \ \mathbf{then}$$

$$\begin{vmatrix} cc[ptr] = cc[ptr] - 1; \\ \mathbf{if} \ cc[ptr] = 0 \ \mathbf{then} \\ \\ sc[ptr] = 0; \\ ptr = (ptr + 1)\%n; \\ \text{wait}(\frac{T}{2^{s} - 2}); \end{aligned}$$