

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN ANAK USIA DINI, PENDIDIKAN DASAR DAN PENDIDIKAN MENENGAH DIREKTORAT SEKOLAH MENENGAH ATAS

Modul Pembelajaran SMA

LARUTAN PENYANGGA KIMIA KELAS XI

PENYUSUN Novitalia Ablinda Sari, S.T SMA Negeri 5 Palembang

DAFTAR ISI

PENYUSUN	2
DAFTAR ISI	3
GLOSARIUM	4
PETA KONSEP	5
PENDAHULUAN	6
A. Identitas Modul	6
B. Kompetensi Dasar	6
C. Deskripsi Singkat Materi	6
D. Petunjuk Penggunaan Modul	6
E. Materi Pembelajaran	6
KEGIATAN PEMBELAJARAN 1	7
PENGERTIAN, JENIS DAN PRINSIP KERJA LARUTAN PENYANGGA	7
A. Tujuan Pembelajaran	7
B. Uraian Materi	7
C. Rangkuman	11
D. Tugas Mandiri	11
E. Latihan Soal	12
F. Penilaian Diri	14
KEGIATAN PEMBELAJARAN 2	15
PERHITUNGAN pH DAN PERAN LARUTAN PENYANGGA	15
A. Tujuan Pembelajaran	15
B. Uraian Materi	15
C. Rangkuman	22
D. Tugas Mandiri	23
E. Latihan Soal	23
F. Penilaian Diri	26
EVALUASI	27
DAFTAR PIISTAKA	31

GLOSARIUM

Alkalosis : suatu keadaan yang disebabkan oleh proses penurunan konsentrasi

ion hidrogen di dalam plasma darah

Anion : ion bermuatan negatif.

Asam konjugasi : basa yang telah menerima proton / ion H+

Asam lemah : senyawa asam yang dalam larutannya hanya sedikit terionisasi

menjadi ion-ionnya.

Basa konjugasi : Suatu asam yang telah melepaskan satu proton / ioh H+

Basa lemah : senyawa basa yang dalam larutannya hanya sedikit terionisasi

menjadi ion-ionnya.

Kation : ion yang bermuatan positif.

Larutan Buffer : larutan yang mampu mempertahan pH .

PETA KONSEP

PENDAHULUAN

A. Identitas Modul

Mata Pelajaran : KIMIA Kelas : XI

Alokasi Waktu : 8 Jam Pelajaran

Judul Modul : LARUTAN PENYANGGA

B. Kompetensi Dasar

3.12 Menjelaskan prinsip kerja, perhitungan *p*H, dan peran larutan penyangga dalam tubuh makhluk hidup

4.12 Membuat larutan penyangga dengan pH tertentu

C. Deskripsi Singkat Materi

Modul ini berisikan materi pokok Larutan Penyangga. Sedangkan materi pembelajaran yang terbagi 2 yaitu:

- Pengertian, jenis dan prinsip kerja larutan penyangga.
 Larutan penyangga merupakan larutan yang bisa mempertahankan pH meskipun ditambahkan asam atau basa kuat juga pengenceran. Jenis larutan penyangga ada 2 yakni larutan penyangga yang bersifat asam dan larutan penyangga yang bersifat basa. Prinsip kerja larutan penyangga juga dipaparkan pada modul ini.
- 2 Penghitungan pH dan peran larutan penyangga dalam kehidupan sehari-hari. pH pada larutan penyangga dilakukan penghitungan dengan rumus yang telah ditentukan berdasarkan jenis larutan penyangga. Larutan penyangga sangat banyak manfaatnya dalam kehidupan sehari-hari yang juga dibahas pada modul ini.

D. Petunjuk Penggunaan Modul

Agar modul dapat digunakan secara maksimal maka kalian diharapkan melakukan langkah-langkah sebagai berikut:

- 1. Prasyarat pada materi ini adalah pemahaman mengenai kosep asam dan basa serta garam juga penghitungan pH-nya
- 2. Bacalah modul ini secara berurutan dan berusahalah untuk memahami isinya karena materi ini akan menjadi prasyarat pada materi selanjutnya.
- 3. Pahami tujuan yang tercantum dalam setiap kegiatan pembelajaran
- 4. Pelajari uraian materi secara sistematis dan mendalam dalam setiap kegiatan pembelajaran.
- 5. Lakukan uji kompetensi/latihan soal di setiap akhir kegiatan pembelajaran untuk mengetahui tingkat penguasaan materi.
- 6. Diskusikan dengan guru atau teman jika mengalami kesulitan dalam memahami materi. Lanjutkan pada modul berikutnya jika sudah mencapai ketuntasan yang diharapkan.

E. Materi Pembelajaran

Modul ini terbagi menjadi **2** kegiatan pembelajaran dan di dalamnya terdapat uraian materi, contoh soal, soal latihan dan soal evaluasi.

Pertama : Pengertian, Jenis dan Prinsip Kerja Larutan Penyangga

Kedua : Perhitungan pH dan Peran Larutan Penyangga

KEGIATAN PEMBELAJARAN 1 PENGERTIAN, JENIS DAN PRINSIP KERJA LARUTAN PENYANGGA

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 1 ini kalian diharapkan mampu:

- 1. menjelaskan pengertian larutan penyangga
- 2. Menjelaskan jenis-jenis larutan penyangga
- 3. Menjelaskan cara pembuatan larutan penyangga
- 4. Menjelaskan prinsip kerja larutan penyangga.

B. Uraian Materi

1. Pengertian Larutan Penyangga

Kalian sudah paham konsep asam dan basa pada materi sebelumnya. Nah, bisakah kalian bayangkan bila tubuh manusia dimasuki zat yang mengandung asam atau basa? Tentu saja jika tubuh manusia pH-nya tiba-tiba naik atau turun drastis akibat masuknya larutan asam atau basa maka akan sangat berbahaya hingga menyebabkan kematian. Sehingga, tubuh manusia harus selalu tetap dijaga keseimbangan keasamannya atau pH-nya. Untuk menjaga keseimbangan asam tersebut maka tubuh manusia harus memiliki sifat sebagai larutan penyangga atau buffer. Dengan adanya sifat larutan penyangga, maka tubuh manusia dapat mempertahankan pH walaupun menerima berbagai penambahan zat yang mengandung asam atau basa.

Tubuh manusia harus bisa mempertahankan derajat keasamannya (pH) agar bisa menjalankan fungsinya serta tidak membahayakan kesehatan. Diantaranya adalah pada reaksi pemecahan protein di dalam asam lambung oleh enzim peptidase yang akan berjalan dengan baik jika cairan lambung mempunyai pH=3. Oksigen dapat terikat dengan baik oleh butir-butir darah merah jika pH darah sekitar 6,1-7. Untuk menjaga agar pH larutan tersebut berada pada kisaran angka tertentu (tetap) maka diperlukan suatu sistem yang dapat mempertahankan nilai pH, yakni larutan penyangga. Larutan penyangga ,memiliki peran yang sangat penting dalam rekasi-reaksi kompleks yang terjadi dalam tubuh manusia. Tuhan Yang Maha Esa telah memberikan larutan penyangga dalam tubuh manusia sehingga kita patut bersyukur.

Dari pemaparan diatas, maka kita bisa menarik kesimpulan pengertian dari larutan penyangga. Larutan penyangga atau buffer adalah larutan yang dapat mempertahankan pH tertentu terhadap usaha mengubah pH, seperti penambahan asam, basa, ataupun pengenceran. Dengan kata lain pH larutan penyangga tidak akan berubah secara siknifikan walaupun pada larutan tersebut ditambahkan sedikit asam kuat, basa kuat atau larutan tersebut diencerkan.

Gambar 1.1

Darah mampu mempertahankan pH karena mengandung larutan penyangga dari Oksihemoglobin (HHbO₂) dan deoksihemoglobin / asam hemoglobin (HHb)

2. Jenis Larutan Penyangga

Jenis larutan penyangga ditentukan oleh komponen penyusunnya yakni asam atau basa lemah dan asam atau basa konjugasinya (garam). Berikut ini jenis-jenis larutan penyangga:

a. Larutan Penyangga Asam

Larutan penyangga bersifat asam apabila terdiri dari campuran asam lemah dengan basa konjugasinya . Contohnya adalah CH_3COOH dengan CH_3COON a atau CH_3COO . Basa konjugasi CH_3COO ini dapat diperoleh dari larutan garamnya yaitu dari kation logam dari masing-masing anionnya misalnya CH_3COON a, CH_3COOK , $(CH_3COO)_2M$ g, HCO_3K , dan lainnya

Contoh asam lemah dan basa konjugasinya adalah:

b. Larutan Penyangga Basa

Larutan penyangga bersifat basa apabila terdiri dari campuran basa lemah dengan asam konjugasinya ,contohnya adalah NH₄OH dengan NH₄+ atau NH₄Cl. Asam konjugasi NH₄+ ini dapat diperoleh dari larutan garamnya yaitu dari anion logam dari masing-masing kationnya misalnya NH₄Cl, NH₄Br, NH₄NO₃, NH₄I, dan lainnya.

Contoh basa lemah dan asam konjugasinya adalah:

C6H5NH2 - C6H5NH3Cl

3. Pembuatan Larutan Penyangga

Pembuatan larutan penyangga terdiri dari dua acara yaitu secara langsung dan tidak langsung. Pembuatan secara langsung dilakukan dengan:

- a. mencampurkan asam lemah (HA) dengan garam basa konjugasinya (LA, yang dapat terionisasi menghasilkan ion A-)
- b. mencampurkan basa lemah (B) dengan garam asam konjugasinya (BHX, yang dapat terionisasi menghasilkan ion BH+)

Contoh: CH₃COONa + CH₃COOH NH₄Cl +NH₄OH

pembuatan larutan penyangga secara tidak langsung dilakukan dengan:

- a. mencampurkan suatu asam lemah dalam jumlah berlebih dengan suatu basa kuat sehingga bereaksi menghasilkan garam basa konjugasi dari asam lemah tersebut.
- b. mencampurkan suatu basa lemah dalam jumlah berlebih dengan suatu asam kuat sehingga bereaksi menghasilkan garam asam konjugasi dari basa lemah tersebut.

Contoh:

 $CH_3COOH + NaOH \Rightarrow CH_3COONa + H_2O$ $NH_4OH + HCl \Rightarrow NH_4Cl + H_2O$

4. Prinsip Kerja Larutan Penyangga

Larutan penyangga bekerja sesuai konsepnya bahwa larutan ini dapat mempertahankan pH awal larutan meskipun ke dalam larutan ditambahkan asam kuat maupun basa kuat atau air dalam jumlah tertentu. Bagaimana prinsip kerja larutan penyangga?

Perhatikan gambar berikut ini!

Gambar 1.2 Prinsip kerja larutan penyangga

Larutan penyangga mengandung komponen asam dan basa lemah, dengan asam dan basa konjugasinya, sehingga dapat mengikat baik ion H⁺ ataupun ion OH⁻. Sehingga penambahan sedikit asam kuat atau basa kuat serta sedikit pengenceran tidak bisa mengubah pH-nya secara signifikan.

a. Larutan Penyangga Asam

Larutan penyangga asam merupakan campuran asam lemah dengan garamnya (basa konjugasi), contohnya larutan penyangga yang mengandung CH₃COOH dan CH₃COO- yang mengalami kesetimbangan akan terbentuk larutan penyangga yang bersifat asam.

Dalam larutan tersebut, terdapat kesetimbangan kimia:

 $CH_3COOH_{(aq)} \rightleftharpoons CH_3COO_{(aq)} + H_{(aq)}$

Prinsip kerja larutan penyangga asam sebagai berikut:

1) Pada Penambahan Asam

Pada penambahan asam, ion H+ dari asam akan menambah konsentrasi H+ pada larutan dan menyebabkan kesetimbangan bergeser ke kiri. Sehingga reaksi mengarah pada pembentukan CH_3COOH . Artinya, ion H+ yang ditambahkan akan bereaksi dengan ion CH_3COO - membentuk molekul CH_3COOH . Dengan kata lain, asam yang ditambahkan akan dinetralisasi oleh komponen basa konjugasi (CH_3COO-) .

$$CH_3COO^-$$
 (aq) + H^+ (aq) $\rightleftarrows CH_3COOH$ (aq)

Oleh karena itu, pada kesetimbangan baru tidak terjadi perubahan konsentrasi ion H+, sehingga pH dapat dipertahankan.

2) Pada Penambahan Basa

Bila yang ditambahkan adalah suatu basa, ion OH- dari basa akan bereaksi dengan ion H^+ dan membentuk air. Sehingga dapat menyebabkan keseimbangan bergeser ke kanan dan konsentrasi Ion H^+ tetap dipertahankan. Selain itu, penambahan basa juga menyebabkan berkurangnya komponen asam (CH_3COOH). Berkurangnya komponen asam inilah yang menyebabkan reaksi bergeser ke kanan. Dengan kata lain, basa yang ditambahkan akan dinetralisasi oleh komponen asam lemah (CH_3COOH). Basa yang akan ditambahkan tersebut bereaksi dengan asam CH_3COOH dan membentuk Ion CH_3COO - dan air.

$$CH_3COOH_{(aq)} + OH_{(aq)} \rightleftarrows CH_3COO_{(aq)} + H_2O_{(l)}$$

Oleh karena itu, pada kesetimbangan baru tidak terjadi perubahan konsentrasi ion H⁺, sehingga pH dapat dipertahankan.

3) Pengenceran

Pada penambahan air (pengenceran), derajat ionisasi asam lemah CH_3COOH akan bertambah besar, yang berarti jumlah ion H^+ dari ionisasi CH_3COOH juga bertambah. Akan tetapi, karena volume larutan juga bertambah, pengaruh penambahan konsentrasi H^+ menjadi tidak berarti. Dengan demikian, nilai pH larutan tidak mengalami perubahan.

b. Larutan Penyangga Basa

Pada campuran basa lemah dan garamnya (asam konjugasi) contohnya pada $\rm NH_3$ dan $\rm NH_{4^+}$ yang mengalami kesetimbangan. akan terbentuk larutan penyangga yang bersifat basa.

Dalam larutan tersebut, terdapat kesetimbangan kimia:

$$NH_4OH_{(aq)} \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$$

Prinsip kerja larutan penyangga basa sebagai berikut:

1) Pada penambahan asam

Bila yang ditambahkan suatu asam, maka Ion H⁺ dari asam akan mengikat Ion OH⁻.

Hal itu akan dapat menyebabkan keseimbangan dan akan bergeser ke kanan, sehingga konsentrasi Ion OH- dapat dipertahankan. Suatu sisi penambahan ini dapat menyebabkan sehingga berkurangnya komponen basa (NH₃), bukannya Ion OH-.

Asam yang ditambahkan akan bereaksi dengan basa NH3 akan membentuk Ion NH4+.

$$NH_{3 (aq)} + H^{+}_{(aq)} \rightleftarrows NH_{4}^{+}_{(aq)}$$

Oleh karena itu, pada kesetimbangan baru tidak terjadi perubahan konsentrasi ion OH-, sehingga pH dapat dipertahankan.

2) Pada penambahan basa

Bila yang ditambahkan adalah suatu basa, maka keseimbangan bergeser ke kiri, sehingga konsentrasi ion OH- dapat dipertahankan.

Basa yang ditambahkan itu bereaksi dengan komponen asam (NH_4 +), membentuk komponen basa (NH_3) & air.

$$NH_{4^{+}(aq)} + OH_{(aq)} \rightleftharpoons NH_{3(aq)} + H_{2}O_{(l)}$$

Oleh karena itu, pada kesetimbangan baru tidak terjadi perubahan konsentrasi ion OH-, sehingga pH dapat dipertahankan.

3) Pengenceran

Pada penambahan air (pengenceran), derajat ionisasi basa lemah akan bertambah besar, yang berarti jumlah OH- dari ionisasi NH₃ bertambah. Akan tetapi, karena volume larutan juga bertambah, pengaruh penambahan konsentrasi OH- menjadi tidak berarti. Dengan demikian, nilai pH larutan tidak mengalami perubahan.

C. Rangkuman

Larutan penyangga atau Buffer adalah larutan yang dapat mempertahankan pH tertentu terhadap usaha mengubah pH, seperti penambahan asam, basa, ataupun pengenceran.

Larutan Penyangga dibagi menjadi 2 jenis, yakni :

- 1. Larutan penyangga bersifat asam apabila terdiri dari campuran asam lemah dengan basa konjugasinya.
- 2. Larutan penyangga bersifat basa apabila terdiri dari campuran basa lemah dengan asam konjugasinya.

Pada prinsip kerja larutan penyangga, larutan ini mengandung komponen asam dan basa lemah, dengan asam dan basa konjugasinya, sehingga dapat mengikat baik ion H⁺ ataupun ion OH⁻. Maka, penambahan sedikit asam kuat atau basa kuat tidak bisa mengubah pH-nya secara signifikan.

D. Tugas Mandiri

Setelah mempelajari pengertian, jenis dan prinsip kerja larutan penyangga pada modul ini. Maka buatlah tugas mandiri dengan pertanyaan sebagai berikut :

- 1. Suatu larutan penyangga mengandung pasangan larutan H_2CO_3 dan HCO_3 . Jelaskan apa yang akan terjadi jika ke dalam sistem larutan penyangga tersebut ditambahkan:
 - a) Larutan HBr
 - b) Larutan KOH
- 2. Seorang atlet diduga mengalami alkalosis. Bagaimana solusinya agar pH darah atlet tersebut menjadi normal kembali? Terangkan mekanisme kerja komponen larutan penyangga dalam tubuh!

E. Latihan Soal

- 1 Jelaskan pengertian dari larutan penyangga!
- 2 Pasangan komponen HF dan F- merupakan larutan penyangga karena mengandung asam lemah dan basa konjugasinya. Jelaskan prinsip kerja larutan penyangga tersebut apabila terdapat penambahan asam kuat (HCl) maupun basa kuat (NaOH)!
- 3 Diberikan campuran dari beberapa larutan sebagai berikut:
 - 1. 200 mL CH₃COOH 0,1 M dan 200 mL NaOH 0,1 M
 - 2. 200 mL CH₃COOH 0,2 M dan 200 mL NaOH 0,1 M
 - 3. 200 mL NH₄OH 0,1 M dan 200 mL HCl 0,1 M
 - 4. 200 mL NH₄OH 0,1 M dan 200 mL HCl 0,05 M

Campuran yang membentuk larutan penyangga adalah...

- 4 Tentukan keasaman larutan penyangga berikut ini!
 - a. Campuran antara campuran dari larutan CH_3COOH (asam lemah) dan larutan CH_3COONa (basa konjugasi)
 - b. Campuran antara campuran dari larutan NaOH berlebih dengan CH₃COOH

Kunci Jawaban Dan Pembahasan

1 Larutan penyangga adalah larutan yang mampu mempertahankan pH meskipun ada penAbambahan asam atau basa kuat juga pada pengenceran

(skor = 20)

2 Jika ke adalam larutan ditambahkan asam kuat (HCl) maka asam kuat ini akan dinetralkan oleh basa konjugasi dari larutan penyangga tersebut dengan menurut reaksi:

 F^- + HCl \rightleftharpoons HF + Cl- (skor = 15)

Jika ke dalam larutan tersebut ditambahkan basa kuat maka basa kuat akan dinetralkan oleh asam lemah larutan penyangga tersebut menurut reaksi

 $HF + NaOH \rightleftharpoons NaF + H_2O$

(skor = 15)

3 Untuk menentukan larutan penyangga adalah campuran antara asam atau basa lemah dangan asam atau basa konjugasinya (garam)

Maka asam atau basa lemah harus berlebih dari pada asam atau basa kuat

NaOH = basa kuat CH₃COOH = asam lemah NH₄OH = basa lemah HCl = asam kuat

Untuk membandingkan jumlah senyawa maka carilah masing-masing mol dengan rumus

mol = Molaritas x Volume

Dari perhitungan maka percobaan 2 dan 4 yang merupakan larutan penyangga Pada percobaan 2 menghasilkan sisa CH₃COOH (asam lemah)

Percobaan 4 menghasilkan sisa NH₄OH (basa lemah)

(skor = 30)

- 4 a. Larutan penyangga bersifat asam karena CH_3COOH (asam lemah) dan lautan CH_3COONa (basa konjugasi/garam) (skor = 10)
 - b. Campuran tersebut bukan merupakan larutan penyangga karena yang berlebihan adalah NaOH yang merupakan basa kuat

(skor = 10)

Pedoman Penskoran

Cocokkanlah jawaban anda dengan kunci jawaban. Hitunglah jawaban yang benar dengan skor yang telah terlampir, lalu perhatikan interval skor berikut

90 - 100 = baik sekali 80 - 89 = baik 70 - 79 = cukup < 70 = kurang

Apabila mencapai tingkat penguasaan 80 atau lebih, anda dapat meneruskan dengan Kegiatan Belajar 2, Bagus!

Jika masih di bawah 80, anda harus mengulangi materi Kegiatan Belajar 1, terutama bagian yang belum dikuasai, Tetap Semangat!

F. Penilaian Diri

Jawablah pertanyaan-pertanyaan berikut dengan jujur dan bertanggungjawab!

No	Pertanyaan	Jawaban	
		Ya	Tidak
1	Apakah anda mampu menjelaskan		
	pengertian larutan penyangga?		
2	Apakah anda mampu menjelaskan		
	jenis larutan penyangga asam serta		
	komposisi campurannya?		
3	Apakah anda mampu menjelaskan		
	jenis larutan penyangga basa serta		
	komposisi campurannya?		
4	Apakah anda mampu menjelaskan		
	jenis larutan penyangga yang		
	berasal dari pencampuran asam		
	atau basa yang berlebih?		
5	Apakah anda mampu menjelaskan		
	cara pembuatan larutan penyangga		
	baik dengan cara langsung dan		
	tidak langsung?		
6	Apakah anda mampu menjelaskan		
	prinsip kerja larutan penyangga?		

Apabila jawaban kalian pada ketiga pertanyaan diatas "ya", maka kalian sudah memahami pengertian, jenis-jenis serta prinsip kerja larutan penyangga. Silahkan lanjutkan mempelajari materi larutan penyangga pada kegiatan pembelajaran kedua. Namun, apabila kalian masih menjawab "tidak atau belum", maka silahkan pelajari lagi ya, kegiatan pembelajaran yang pertama .

Tetap Semangat!

KEGIATAN PEMBELAJARAN 2 PERHITUNGAN pH DAN PERAN LARUTAN PENYANGGA

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 2 ini kalian diharapkan mampu:

- 1. Menghitung pH larutan penyangga
- 2. Menjelaskan peran larutan penyangga dalam kehidupan sehari-hari.

B. Uraian Materi

1. Perhitungan pH Larutan Penyangga

Untuk melakukan penghitungan pH larutan penyangga maka kita harus memahami dulu larutan penyangga tersebut bersifat asam atau basa. Berikut ini klasifikasi larutan penyangga dan rumus penghitungan pH-nya

a) Larutan penyangga asam

Larutan penyangga bersifat asam apabila terdiri dari campuran asam lemah dengan basa konjugasinya . Contohnya adalah:

CH₃COOH dengan CH₃COONa. atau CH₃COO-

Basa konjugasi CH_3COO^- ini dapat diperoleh dari larutan garamnya yaitu dari kation logam dari masing-masing anionnya misalnya CH_3COONa , CH_3COOK , $(CH_3COO)_2Mg$, HCO_3K , dan lainnya

Perumusan larutan penyangga yang bersifat asam adalah sebagai berikut:

$$[H^+] = K_a \cdot \frac{n_a}{n_{bk}}$$

$$pH = -log[H+]$$

Keterangan:

K_a = tetapan ionisasi asam lemah

n_a = Jumlah mol asam lemah

n_{bk}= Jumlah mol basa konjugasinya

b) Larutan penyangga basa

Larutan penyangga bersifat basa apabila terdiri dari campuran basa lemah dengan asam konjugasinya, contohnya adalah NH_4OH dengan NH_4^+ atau NH_4Cl .

Asam konjugasi NH_4^+ ini dapat diperoleh dari larutan garamnya yaitu dari anion logam dari masing-masing kationnya misalnya NH_4Cl , NH_4Br , NH_4NO_3 , NH_4I , dan lainnya

Perumusan larutan penyangga yang bersifat basa adalah sebagai berikut:

$$[OH^-] = K_b \cdot \frac{n_b}{n_{ak}}$$

$$pOH = -log[OH-]$$

 $pH = 14 - pOH$

Keterangan:

K_a = tetapan ionisasi asam lemah

n_b = Jumlah mol basa lemah

n_{ak}= Jumlah mol asam konjugasinya

Langkah-langkah Menghitung pH Larutan Penyangga

- 1. Tentukanlah mol asam atau basa lemah
- 2. Tentukanlah mol asam atau basa konjugasi (garam)
- 3. Hitunglah ion H+ atau ion OH-
- 4. Hitunglah pH

Contoh Soal 1

Suatu larutan terdiri dari campuran antara $\,$ NH $_3$ dengan kosentrasi 0,1 M sebanyak 50 mL dan 100 mL larutan NH $_4$ Cl 0,5 M. Tentukanlah

- a. Apakah larutan tersebut merupakan larutan penyangga?
- b. Apabila larutan tersebut termasuk larutan penyangga maka tentukanlah harga pH-nya? ($Kb = 10^{-5}$)

Pembahasan:

Diketahui:

Iawab:

- a. Untuk menentukan apakah sebuah larutan merupakan larutan penyangga, maka kita harus memahami dulu pengertian larutan penyangga, yakni campuran antara asam atau basa lemah dengan asam atau basa konjugasinya. Pada soal tersebut NH₃ merupakan basa lemah dan NH₄Cl merupakan asam konjugasinya. Sehingga larutan pada soal di atas termasuk **larutan penyangga**
- b. Untuk menghitung pH larutan penyangga, maka mengikuti langkahlangkah perhitungan sebagai berikut:
 - 1. Menentukan mol basa lemah mol NH₃ (n_b) = 50 mL × 0,1 mmol/mL = 5 mmol
 - 2. Menentukan mol asam konjugasi mol NH₄Cl (n_{ak}) = 100 mL × 0,5 mmol/mL = 50 mmol

3. Menghitung ion (OH⁻)
$$[OH^-] = K_b \cdot \frac{n_b}{n_{ak}}$$

$$[OH^-] = 10^{-5} x \frac{5}{50}$$

$$[OH^-] = 10^{-5} x 10^{-1}$$

$$[OH^-] = 10^{-5} x 10^{-1}$$

$$[OH^-] = 10^{-6}$$

4. Menghitung pH pOH = -log [OH-] pOH = -log [10-6]

Contoh Soal 2

Suatu larutan terdiri dari campuran antara 50 mL CH₃COOH 0,1 M dan 50 mL larutan CH₃COONa 0,1 M. Tentukanlah

- a. Apakah larutan tersebut merupakan larutan penyangga?
- b. Apabila larutan tersebut termasuk larutan penyangga maka tentukanlah harga pH-nya? (Ka $CH_3COOH=1.8 \times 10^{-5}$)

Pembahasan:

Diketahui:

Konsentrasi CH_3COOH = $M CH_3COOH$ = 0.1 MVolume CH_3COOH = $V CH_3COOH$ = 50 mLKonsentrasi $NaCH_3COO$ = $M NaCH_3COO$ = 0.1 MVolume $NaCH_3COO$ = $V NaCH_3COO$ = 50 mL

Jawab:

- a. Untuk menentukan apakah sebuah larutan merupakan larutan penyangga, maka kita harus memahami dulu pengertian larutan penyangga, yakni campuran antara asam atau basa lemah dengan asam atau basa konjugasinya. Pada soal tersebut CH₃COOH merupakan asa lemah dan NaCH₃COO merupakan basa konjugasinya. Sehingga larutan pada soal di atas termasuk **larutan penyangga**
- b. Untuk menghitung pH larutan penyangga, maka mengikuti langkahlangkah perhitungan sebagai berikut:
 - 1. Menentukan mol asam lemah mol $CH_3COOH(n_a) = 50 \text{ mL} \times 0.1 \text{ mmol/mL} = 5 \text{ mmol}$
 - 2. Menentukan mol basa konjugasinya mol NaCH₃COO $(n_{bk}) = 50 \text{ mL} \times 0.1 \text{ mmol/mL} = 5 \text{ mmol}$
 - 3. Menghitung ion (H⁺)

Rumus perhitungan untuk campuran antara asam lemah dan basa konjugasinya

$$[OH^{-}] = 10^{-5} x \frac{5}{5} = [OH^{-}] = 1,8x10^{-5} x0,1$$
$$[OH^{-}] = 1,8x10^{-5} x10^{-1} = [OH^{-}] = 1,8x10^{-6}$$

4. Menghitung pH

Dari tabel logaritma, log 1,8 = 0,255272505 Maka pH = 5 - 0,2552 pH = 4,7448 atau 4,75

Contoh Soal 3

Tentukanlah pH dari campuran 200 mL larutan HNO_2 0,15 M dengan 150 mL larutan KOH 0,1 M. Berapa pH campuran larutan tersebut... (Ka = 10^{-5})

Pembahasan:

Soal nomor 1 dan 2 berbeda dengan nomor 3. Hal ini dikarenakan hanya diberikan data asam dan basa. Sedangkan larutan penyangga syaratnya adalah adanya asam atau basa lemah dan asam atau basa konjugasi (garam) . Untuk itu reaksikanlah terlebih dahulu asam dan basa pada soal tersebut

```
Diketahui:
```

Volume (V)

V NaOH = 50 mL

 $V CH_3COOH = 50 mL$

Konsentrasi/Molaritas (M)

M NaOH = 0.1 M

M CH3COOH = 0.2 M

Ditanya: pH hasil campuran...?

Jawab:

 $n HNO2 = V \times M = 200 mL \times 0.15 M = 30 mmol$

 $n KOH = V \times M = 150 mL \times 0.1 M = 15 mmol$

Reaksi 15 mmol 15 mmol 15 mmol 15 mmol

Setimbang 15 mmol

15 mmol 15 mmol

Reaksi di atas menunjukkan pada keadaan setimbang, dihasilkan HNO_2 sebanyak 15 mmol, KNO_2 sebanyak 15 mmol dan H_2O sebanyak 15 mmol

Maka, karena yang tersisa adalah HNO_2 yang merupakan asam lemah dan KNO_2 sebagai basa konjugasinya atau garam, sehingga reaksi tersebut bisa membentuk larutan penyangga.

Setelah itu lakukan perhitungan pH pada larutan penyangga dengan langkahlangkah yang sama seperti pada nomor 1 dan 2, sebagai berikut:

- 1. Menentukan mol asam lemah (dilihat dari zat sisa pada akhir reaksi) $mol\ HNO_2(n_a) = 15\ mmol$
- 2. Menentukan mol basa konjugasi (garam) mol KNO_2 (n_{bk}) = 15 mmol
- 3. Menghitung ion (H+)

$$[\mathrm{H}^+] = K_{\mathrm{a}} \cdot \frac{n_a}{n_{bk}}$$

$$\left[H^{+}\right] = 10^{-5} \left[\frac{15}{15}\right]$$

$$[H^+] = 10^{-5} x1$$

$$[H^+] = 10^{-5}$$

Contoh Soal 4

Sebanyak 200 ml larutan penyangga mangandung NH_3 dan NH_4Cl masingmasing 0,05 M.

- 1. Tentukan pH larutan tersebut
- 2. Tentukan pH larutan setelah ditambah 2 ml HCl 0,05 M
- 3. Tentukan pH larutan setelah ditambah 2 ml NaOH 0,05 M (Kb $NH_3 = 1 . 10^{-5}$)

Pembahasan:

1. Menentukan pH Larutan

mmol NH₃ = M . V = 0,05 . 200 = 10 mmol mmol NH₄Cl = M . V = 0,05 . 200 = 10 mmol NH₄Cl
$$\rightarrow$$
 NH₄+ Cl- (garam) (asam konjugasi)

10 mmol 10 mmol

$$[OH^{-}] = Kb$$
. $\frac{mol \, b \, asa \, lemah}{mol \, a \, sam \, k \, onjugasi}$

$$[OH^{-}] = 10^{-5}$$
. $\frac{10 \text{ mmo } l}{10 \text{ mmo } l}$
 $[OH^{-}] = 10^{-5}$ $\frac{10 \text{ mmo } l}{10 \text{ mmo } l}$
 $pOH = -\log [OH^{-}]$
 $pOH = -\log 10^{-5}$

pOH = 5

pH = 14 - pOH

pH = 14 - 5

pH = 9

Jadi, pH larutan penyangga tersebut adalah 9.

2. Menentukan pH larutan setelah ditambah 2 ml HCl 0,05 M

$$\begin{array}{ccc} mmol~HCl = M~.~V = 0,05~.~2 = 0,1~mmol\\ HCl & \rightarrow & H^+ & + & Cl^-\\ 0,1~mmol & 0,1~mmol \end{array}$$

$$[OH-] = Kb \cdot \underbrace{mol b asalemah}_{mol a sam k on jugasi}$$
 $[OH-] = 10^{-5} \cdot \underbrace{9,9mmol}_{10.1 \text{ surrol}}$

 $[OH-] = 10^{-5} \cdot 0.9802$

```
pOH = - log 10<sup>-5</sup>. 0,9802
pOH = - log 10<sup>-5</sup> - log 0,9802
pOH = 5 - (-0,0087)
pOH = 5,0087
pH = 14 - pOH
pH = 14 - 5,0087
pH = 8,9913
```

Jadi, pH larutan penyangga setelah ditambah larutan HCl tersebut adalah 8,9913.

3. Menentukan pH larutan setelah ditambah 2 ml NaOH 0,05 M

[OH-] = Kb.
$$\frac{mol \, b \, asa \, lemah}{mol \, asam \, konjugasi}$$
[OH-] = 10^{-5} .
$$\frac{10,1 \, mmo \, l}{9,9 \, mmo \, l}$$
[OH-] = 10^{-5} . $1,0202$
pOH = $-\log 10^{-5}$. $1,0202$
pOH = $-\log 10^{-5}$. $1,0202$
pOH = $5 - \log 1,0202$
pOH = $5 - \log 1,0202$
pOH = $4,9913$
pH = $14 - pOH$
pH = $14 - 4,9913$
pH = $9,0087$

Jadi, pH larutan penyangga setelah ditambah larutan NaOH tersebut adalah 9,0087.

Dari perhitungan-perhitungan di atas, terbukti bahwa dengan ditambahkannya sedikit asam atau basa ke dalam larutan penyangga, pH relatif konstan.

2. Peran Larutan Penyangga dalam kehidupan sehari-hari

a. Larutan penyangga dalam tubuh makhluk hidup

Berfungsi sebagai penyeimbang pH tubuh, larutan penyangga terdapat pada cairan intrasel dan cairan ekstrasel. Contoh larutan penyangga dalam tubuh makhluk hidup yaitu darah (intrasel) dan air liur (ekstrasel). Selain itu, larutan penyangga dalam tubuh makhluk hidup dibagi menjadi 3 macam, yaitu:

1) Larutan penyangga fosfat Larutan penyangga fosfat adalah larutan penyangga yang terdapat pada cairan seluruh tubuh makhluk hidup dan tersusun atas H₂PO₄- dan HPO₄²-.

Ketika pH tubuh naik, reaksi larutan penyangga fosfat adalah sebagai berikut:

 $H_2PO_{4^-(aq)} + OH_{(aq)} \Rightarrow HPO_{4^{2^-(aq)}} + H_2O_{(l)}$

sedangkan ketika pH tubuh turun, reaksi larutan penyangga fosfat adalah sebagai berikut:

$$HPO_4^{2-}(aq) + H^{+}(aq) \rightleftharpoons H_2PO_4^{-}(aq)$$

2) Larutan penyangga karbonat

Larutan penyangga karbonat adalah larutan penyangga yang terdapat pada darah dan tersusun atas $\rm H_2CO_3$ dan $\rm HCO_3$ -.

Pada saat pH tubuh naik, reaksi larutan penyangga karbonat adalah sebagai berikut:

$$H_2CO_{3(aq)} + OH_{(aq)} \rightleftharpoons HCO_{3(aq)} + H_2O_{(l)}$$

sedangkan ketika pH tubuh turun, reaksi larutan penyangga karbonat adalah sebagai berikut:

$$HCO_{3^{-}(aq)} + H^{+}_{(aq)} \qquad \rightleftarrows \qquad \qquad H_{2}CO_{3(aq)}$$

3) Larutan penyangga hemoglobin

Larutan penyangga hemoglobin adalah larutan penyangga yang terdapat pada darah dan tersusun atas HHb dan HbO₂. Reaksi larutan penyangga hemoglobin adalah sebagai berikut:

$$HHb(aq) + O_2(aq)$$
 \rightleftharpoons $HbO_2(aq) + H^+(aq)$

Tanpa adanya peranan larutan penyangga dalam tubuh makhluk hidup, makhluk hidup dapat mengalami asidosis dan alkalosis yang menyebabkan kerusakan pada jaringan dan organ. Asidosis adalah penurunan pH darah yang disebabkan oleh metabolisme tubuh yang terlalu tinggi karena adanya penyakit diabetes melitus, diare, penyakit ginjal, dan protein berlebih. Sedangkan alkalosis adalah peningkatan pH darah yang disebabkan karena kekurangan oksigen.

b. Menjaga keseimbangan pH tanaman.

Suatu metode penanaman dengan media selain tanah, biasanya ikerjakan dalam kamar kaca dengan menggunakan mendium air yang berisi zat hara, disebut dengan hidroponik . Setiap tanaman memiliki pH tertentu agar dapat tumbuh dengan baik. Oleh karena itu dibutuhkan larutan penyangga agar pH dapat dijaga.

c. Larutan penyangga pada obat-obatan

Asam asetilsalisilat merupakan komponen utama dari tablet aspirin, merupakan obat penghilang rasa nyeri. Adanya asam pada aspirin dapat menyebabkan perubahan pH pada perut. Perubahan pH ini mengakibakan pembentukan hormon, untuk merangsang penggumpalan darah, terhambat; sehingga pendarahan tidak dapat dihindarkan. Oleh karena itu, pada aspirin ditambahkan MgO yang dapat mentransfer kelebihan asam.

d. Dalam industri farmasi

Dalam industri farmasi, larutan penyangga berperan dalam pembuatan obatobatan, agar zat aktif obat tersebut mempunyai pH tertentu Larutan penyanggayang umum digunakan dalam industri farmasi adalah larutan asam basa konjugasi senyawa fosfat.

e. Dalam mikrobiologi industri

Dalam mikrobiologi industri digunakan sebagai pengatur pH medium pertumbuhan mikroorganisme.

f. Biologi

Dalam bidang biologi digunakan untuk mengoptimalkan kerja enzim.

g. Analisis Kimia

Digunakan untuk analisis kualitatif dan kuantitatif, pemisahan senyawa dan unsur, serta reaksi kimia dengan pH terkontrol.

C. Rangkuman

1. Larutan penyangga bersifat asam apabila terdiri dari campuran asam lemah dengan asam konjugasinya . Untuk menghitung larutan penyangga yang bersifat asam adalah dengan menggunakan rumus sebagai berikut :

$$[\mathrm{H}^+] = K_\mathrm{a} \cdot \frac{n_a}{n_{bk}}$$

Keterangan:

K_a = tetapan ionisasi asam lemah

na= Jumlah mol asam lemah

n_{bk}= Jumlah mol basa konjugasi

2. Larutan penyangga bersifat basa apabila terdiri dari campuran basa lemah dengan asam konjugasinya . Untuk menghitung larutan penyangga yang bersifat basa adalah dengan menggunakan rumus sebagai berikut :

$$[OH^-] = K_b \cdot \frac{n_b}{n_{ak}}$$

$$pOH = -log[OH -]$$

Keterangan:

Ka = tetapan ionisasi asam lemah

n_b = Jumlah mol basa lemah

n_{ak} = Jumlah mol asam konjugasinya

- 3. Peran Larutan Penyangga dalam kehidupan sehari-hari, yakni:
- a. Larutan penyangga dalam tubuh makhluk hidup berfungsi sebagai penyeimbang pH tubuh, larutan penyangga terdapat pada cairan intrasel dan cairan ekstrasel. Larutan penyangga dalam tubuh makhluk hidup dibagi menjadi 3 macam, yaitu:
 - 1. Larutan Penyangga Fosfat
 - 2. Larutan Penyangga Karbonat
 - 3. Larutan Penyangga Hemoglobin
- b. Menjaga keseimbangan pH tanaman.
- c. Larutan penyangga pada obat-obatan
- d. Dalam industri farmasi
- e. Dalam mikrobiologi industry

- f. Dalam Ilmu Biologi
- g. Dalam Analisis Kimia

D. Tugas Mandiri

Setelah kalian memahami pengertian dan prinsip kerja larutan penyangga serta telah melakukan penghitungan pH larutan penyangga, maka carilah informasi dan jawablah pertanyaan berikut ini!

- 1. Sebutkan jenis larutan penyangga yang dalam bidang industri dan jelaskan prinsip kerjanya!
- 2. Sebutkan jenis larutan penyangga yang dalam bidang kedokteran dan obat- obatan dan jelaskan prinsip kerjanya!
- 3. Bagaimanakah bila larutan penyangga dalam air liur tidak ada? Pergunakanlah sumber belajar yang ada di sekitarmu!

E. Latihan Soal

- 1 Campuran yang terdiri dari 100 mL HCN 0,1 M (Ka = 2×10^{-5}) dan 100 mL KCN 0,2 M akan memiliki pH sebesar....
- 2 Sebanyak 100 mL larutan mengandung HCOOH dan HCOONa masing-masing 0,1 M, ($Ka=10^{-5}$)
 - a. Hitung pH larutan awal
 - b. Hitung pH setelah ditambah 1 mL HCl 0,1 M (tulis reaksi yang terjadi)
 - c. Hitung pH setelah ditambah 1 mL NaOH 0,1 M (tulis reaksi yang terjadi)
- 3 Untuk membuat larutan penyangga dengan pH= 9, maka kedalam 40 mL larutan NH₃ 0,5 M (Kb=10⁻⁵) harus ditambahkan larutan HCL 02 M sebanyak?

Kunci Jawaban Dan Pembahasan

- 1. Menghitung pH larutan penyangga, mengikuti langkah-langkah sebagai berikut :
 - a. Menentukan mol asam lemah

$$mol HCN (n_a) = 100 ml \times 0.1 mmol/ml = 10 mmol$$
 (skor=5)

- b. Menentukan mol basa konjugasi mol KCN $(n_{bk}) = 100 \text{ ml} \times 0.2 \text{ mmol/ml} = 20 \text{ mmol}$ (skor=5)
- c. Menghitung ion (H⁺) (karena merupakan campuran antara asam lemah dan basa konjugasinya)

$$[H^{+}] = K_{a} \cdot \frac{n_{a}}{n_{bk}}$$

$$[H^{+}] = 2x10^{-5} \left[\frac{10}{20} \right]$$

$$[H^{+}] = 2x10^{-5} x0,5$$

$$[H^{+}] = 1x10^{-5}$$
(skor=10)

2. a.
$$[H^{+}] = 10^{-5} \left[\frac{10}{10} \right]$$

 $[H^{+}] = 10^{-5} \times 1 = [H^{+}] = 10^{-5}$
 $pH = -\log [H^{+}]$
 $pH = -\log [10^{-5}]$
 $pH = 5 \text{ (pH awal)}$ (skor=10)

b. Penambahan 1 ml HCl 0,1 M akan dinetralkan oleh basa konjugasinya atau garam HCOONa

$$[H^{+}] = 10^{-5} \left[\frac{10,1}{9,9} \right] = [H^{+}] = 10^{-5} x1,02$$

$$pH = -\log [H^{+}]$$

$$pH = -\log [10^{-5} x 1,02]$$

$$pH = 5 - \log 1,02$$
(skor=20)

c. Penambahan 1 ml NaOH 0,1 M akan dinetralkan oleh asam HCOOH

3.
$$pH = 9$$

 $pOH = 5$
 $[OH^{-}] = 10^{-5}$
 $40 \text{ mL NH}_3 0,5 \text{ (Kb} = 10^{-5})$
 $HCl 0,2 \text{ M, V ... ?}$
 $[OH^{-}] = Kb \left[\frac{n_{al} - n_{ak}}{n_{ak}} \right]$
 $[10^{-5}] = 10^{-5} \left[\frac{(0,5x40) - (0,2xV)}{(0,2xV)} \right]$
 $0,2 \text{ V} = 20 - 0,2 \text{ V}$
 $0,4 \text{ V} = 20$
 $[V] - \left[\frac{20}{10} \right]$

Pedoman Penskoran

V = 50 mL

Cocokkanlah jawaban anda dengan kunci jawaban. Hitunglah jawaban yang benar dengan skor yang telah terlampir, lalu perhatikan interval skor berikut:

(skor20)

Apabila mencapai tingkat penguasaan 80 atau lebih, anda dapat meneruskan dengan mengerjakan Evaluasi, Bagus!

Jika masih di bawah 80, anda harus mengulangi materi Kegiatan Belajar 2, terutama bagian yang belum dikuasai, Tetap Semangat!

F. Penilaian Diri

Jawablah pertanyaan-pertanyaan berikut dengan jujur dan bertanggungjawab!

No	Pertanyaan	Jawaban	
	i ei tanyaan	Ya	Tidak
1	Apakah anda bisa menghitung pH larutan penyangga asam ?		
2	Apakah anda bisa menghitung pH larutan penyangga basa ?		
3	Apakah anda bisa menghitung pH larutan penyangga asam/basa setelah ditambahkan sedikit asam/basa atau diencerkan?		
4	Apakah anda bisa menjelaskan peranan larutan penyangga dalam tubuh makhluk hidup?		
5	Apakah anda bisa menjelaskan peranan larutan penyangga dalam industri?		

Apabila jawaban kalian pada ketiga pertanyaan diatas "ya", maka kalian sudah memahami cara kerja dan perhitungan pH larutan penyangga, silahkan melanjutkan materi pelajaran kimia berikutnya. Namun, apabila kalian masih menjawab tidak atau belum, maka silahkan pelajari lagi ya kegiatan pembelajaran yang pertama .

EVALUASI

Jawablah pertanyaan berikut ini!

- 1. Pernyataan yang benar tentang larutan penyangga adalah
 - A. mempertahankan pH sistem agar tetap
 - B. memiliki komponen asam dan basa yang selalu berupa pasangan konjugasi
 - C. mampu mengatasi penambahan asam dan basa dalam jumlah banyak
 - D. memiliki kapasitas tertentu
 - E. pengenceran tidak mengubah konsentrasi ion H+ dan OH-
- 2. Campuran larutan di bawah ini yang dapat membentuk campuran penyangga adalah

•••

- A. larutan HCl dengan larutan NH₄Cl
- B. larutan CH₃COOH dengan larutan C₆H₅COOK
- C. larutan CH₃COOH dengan larutan C₂H₅ONa
- D. larutan Ca(OH)₂ dengan larutan CaCl₂
- E. larutan HCOOH dengan larutan HCOONa
- 3. Perhatikan data uji pH beberapa larutan!

Larutan	pH Awal	pH setelah penambahan	
		sedikit asam	sedikit basa
P	3,0	1,0	4,0
Q	5,0	4,9	5,1
R	8,0	7,9	8,1
S	9,0	8,5	10,5
T	10,0	8,5	11,5

Larutan yang merupakan larutan penyangga adalah

- A. P dan Q
- B. O dan R
- C. R dan S
- D. R dan T
- E. S dan T
- 4. Perhatikan data percobaan berikut.

Larutan	pH Awal	pH dengan penambahan sedikit	
		Basa	Asam
I	5,60	6,00	5,00
II	5,40	5,42	5,38
III	5,20	5,25	5,18
IV	8,20	8,80	7,80
V	9,20	9,60	8,70

Larutan yang mempunyai sifat penyangga adalah

- A. Larutan I
- B. Larutan II
- C. Larutan III
- D. Larutan IV
- E. Larutan V
- 5. Pasangan larutan berikut ini yang menghasilkan larutan penyangga adalah
 - A. 100 mL NH₄OH 0,2 M + 100 mL HCl 0,1 M
 - B. 100 mL NH₄OH 0,2 M + 100 mL HCl 0,3 M
 - C. 100 mL NaOH 0,2 M + 100 mL CH₃COOH 0,2 M
 - D. 100 mL NaOH 0,2 M + 100 mL HCN 0,1 M
 - E. 100 mL NaOH 0,2 M + 100 mL HCN 0,2 M
- 6. Pada kondisi normal, pH dari darah manusia dan jaringan harus dijaga antara
 - A. 3 4
 - B. 7,35 7,45
 - C. 5,56 5,68
 - D. 8,55 8,65
 - E. 1 2
- 7. Bacalah wacana berikut ini.
 - pH normal darah manusia adalah dirancang selalu relatif tetap, yaitu 7,4 ± 0,05. Komponen utama bufer darah adalah H2CO3 dan HCO3- dengan perbandingan 1:20, yang merupakan salah satu hasil metabolisme pernafasan.
 - $CO_2(g)$ \rightleftharpoons $CO_2(aq)$
 - $CO_2(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq)$
 - $H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O+(aq) + HCO_3$

Pada kasus alkalosis atau kelebihan basa yang disebabkan kekurangan CO_2 terlarut, pH darah naik hingga mencapai 7,8. Jika dibiarkan akan menyebabkan kerusakan sistem syaraf. Salah satu upaya mengembalikan pH normal darah adalah dengan pemberian masker gas oksigen didukung infus larutan bufer bikarbonat pH 6,7 selama selang waktu tertentu. (Ka $H2CO3 = 4,3 \times 10^{-7}$).

Berdasarkan wacana tersebut, pemberian larutan bikarbonat pH 6,7 bertujuan untuk

....

- A. menaikkan pH darah dengan menggeser kesetimbangan ke arah kiri
- B. menaikkan pH darah dengan menggeser kesetimbangan ke arah kanan
- C. menaikan pH darah tanpa menggeser arah kesetimbangan
- D. menurunkan pH darah dengan menggeser kesetimbangan ke arah kiri
- E. menurunkan pH darah dengan menggeser kesetimbangan ke arah kanan
- 8. Larutan buffer dapat di buat dengan mencampurkan larutan larutan....
 - A. asam sulfat dan natrium sulfat
 - B. natrium hidroksida dan natrium nitrat
 - C. ammonium hidroksida dan ammonium clorida
 - D. asam asetat dan ammonium asetat
 - E. asam sianida dan kalium sianida
- 9. Campuran yang terdiri dari 100 mL HF 0,1 M (Ka = 2×10 -5) dan 100 mL NaF 0,2 M akan memiliki pH sebesar....
 - A. 5

- B. 5+log 9
- C. 9-log 5
- D. 9
- E. $9 + \log 5$
- 9. Berikut ini beberapa jenis ion/senyawa.
 - $1.H_2CO_3$
 - $2.H_2SO_4\\$
 - 3.H₂PO₄-
 - 4.HCO₃-
 - 5.HPO₄²-

Pasangan ion/senyawa yang berguna sebagai penyangga pada ekstrasel adalah

- A. (1) dan (2)
- B. (1) dan (4)
- C. (2) dan (3)
- D. (2) dan (5)
- E. (3) dan (4)

KUNCI JAWABAN

No	Jawaban	
1	A	
2	E	
3	В	
4	В	
5	A	
6	В	
7	D	
8	С	
9	A	
10	В	

Pedoman Penilaian

1 soal memiliki skor = 10 Jumlah Skor Maksimal = 100

Jumlah Skor Perolehan = jumlah benar x 10

Pedoman Penskoran

Cocokkanlah jawaban Anda dengan Kunci Jawaban yang terdapat di bagian akhir modul ini. Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Kegiatan Belajar 1 dan 2.

Nilai =
$$\frac{Jumlahskorperolehan}{Jumlahskormaksimal} \times 100 \%$$

Konversi tingkat penguasaan:

90 - 100% = baik sekali 80 - 89% = baik 70 - 79% = cukup < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan pada materi berikutnya . Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Larutan Penyangga pada Kegiatan Belajar 1 dan 2, terutama bagian yang belum dikuasai.

"Bermimpilah setinggi langit, jika engkau jatuh, engkau akan jatuh di antara bintang-bintang." (Soekarno)

DAFTAR PUSTAKA

Ningsih, Sri Rahayu. 2013. KIMIA SMA XI Sekolah Menangah Atas. Bumi Aksara. Jakarta.

Sudarmo,, Unggul dkk. 2014. KIMIA SMA XI Sekolah Menangah Atas. Penerbit Erlangga. Jakarta.

Sulami, Emi,dkk. 2009. Buku Panduan Pendidik Kimia Untuk SMAMA Kelas XI. Intan Pariwara. Klaten.

Sutresna, Nana. 2013. KIMIA SMA XI Sekolah Menangah Atas. Grafindo. Jakarta.

Thahjadarmawan., Elizabeth . 2018. Gagas Kimia Jilid 2. Rexaqila Media. Yogyakarta.

https://chemistrahmah.com/cara-pembuatan-larutan-buffer.html