

Optimisation et parallelisation OpenMP d'addition et produit de deux matrices denses

Rapport de Burreau d'étude

Prénom Nom et Alicia Perrin

Institut National des Sciences Appliquées de Toulouse

24 octobre 2025

Résumé Dans ce rapport, nous allons tester plusieurs méthodes différentes afin d'optimiser des calculs matriciels
(somme, produit scalaire, produit matricielle). A COMPLETER

Table des matières

1	Compilation reliant les librairies OpenMP et BLAS	2
2	Modifier l'accès à la mémoire pour additionner deux matrices	3
3	Parallelisation OpenMP	4
4	Utiliser les blocs du cache	5

Compilation reliant les librairies OpenMP et BLAS

Ecrire qu'est-ce qu'on fait...

Figure 1.1 – Performances BLAS 1, 2, 3 sans optimisation Openblas

Figure 1.2 – Performances BLAS 1, 2, 3 avec optimisation Openblas

Ecrire ce qu'on en conclut...

Modifier l'accès à la mémoire pour additionner deux matrices

Figure 2.1 – Différences de performances en fonction de l'ordre d'accès à la mémoire

Parallelisation OpenMP

FIGURE 3.1 – Trouver titre

FIGURE 3.2 – Trouver titre

Utiliser les blocs du cache

Bibliographie

