UGC/MATH Dec 2018 104

Harsha, CS20BTECH11028

IITH

April 18, 2021

Question

Problem UGC/MATH Dec 2018 104

Let X_1, X_2, \cdots be i.i.d. N(0,1) random variables.Let $S_n = X_1^2 + X_2^2 + \cdots + X_n^2 . \forall n \geq 1.$ Which of the following statements are correct?

Some definitions

Definition (Almost sure convergence)

A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge **almost** surely or with probability 1 to X if

$$\Pr(\omega|X_n(\omega)\to X(\omega))=1$$
 (1)

Notation:

$$X_n \xrightarrow{a.s} X$$
 (2)

Some definitions

Definition (Convergence in probability)

A sequence of random variables $\{X_n\}_{n\in\mathbb{N}}$ is said to converge in probability to X if

$$\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0, \forall \epsilon > 0$$
(3)

Notation:

$$X_n \xrightarrow{i.p} X$$
 (4)

Some theorems

Theorem (Central limit theorem)

The Central limit theorem states that the distribution of the sample approximates a normal distribution as the sample size becomes larger, given that all the samples are equal in size, regardless of the distribution of the individual samples.

Theorem (Weak law of large numbers)

Let X_1, X_2, \cdots be i.i.d random variables with same expectation(μ) and finite variance(σ^2).Let $S_n = X_1 + X_2 + \cdots + X_n$, Then as $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{i.p} \mu, \tag{5}$$

in probability

∢ロト < 個ト < 重ト < 重ト < 重 り < 0</p>

Some theorems

Theorem (Strong law of large numbers)

Let X_1, X_2, \cdots be i.i.d random variables with same expectation(μ) and finite variance(σ^2).Let $S_n = X_1 + X_2 + \cdots + X_n$, Then as $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{a.s} \mu,$$
 (6)

almost surely.

Solution

We know that a random variable following normal distribution with mean μ and variance σ^2 is

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{7}$$

Given X_1, X_2, \cdots follow normal distribution with mean 0 and variance 1.Hence pdf of X_1, X_2, \cdots will be

$$f_{X_i}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, i \in \{1, 2, \dots\}$$
 (8)

Since E(X) is 0, We can write

$$E(X_i^2) = Var(X_i), \forall i \in \{1, 2, \dots\}$$
(9)

$$=1 \tag{10}$$

4□▶ 4₫▶ 4½▶ 4½▶ ½ ∽Q

Option A

As X_1, X_2, \cdots are i.i.d random variables therefore X_1^2, X_2^2, \cdots are also identical and independent.

$$E\left(\frac{S_n - n}{\sqrt{2}}\right) = E\left(\frac{\sum_{i=1}^n (X_i^2 - 1)}{\sqrt{2}}\right) \tag{11}$$

$$=\frac{\sum_{i=1}^{n}E(X_{i}^{2}-1)}{\sqrt{2}}\tag{12}$$

$$E(X_i^2 - 1) = \int_{-\infty}^{\infty} (x^2 - 1) f_{X_i}(x) dx$$
 (13)

$$= Var(X) - \int_{-\infty}^{\infty} f_{X_i}(x) dx$$
 (14)

$$=0 (15)$$

$$\implies E\left(\frac{S_n - n}{\sqrt{2}}\right) = 0 \tag{16}$$

Now consider,

$$Var\left(\frac{S_n - n}{\sqrt{2}}\right) = Var\left(\frac{\sum_{i=1}^n (X_i^2 - 1)}{\sqrt{2}}\right)$$

$$= \frac{\sum_{i=1}^n Var(X_i^2 - 1)}{\sqrt{2}}$$
(18)

$$Var(X_i^2 - 1) = \int_{-\infty}^{\infty} (x^2 - 1)^2 f_{X_i}(x) dx$$
 (19)

$$= \int_{-\infty}^{\infty} (x^4 + 1 - 2x^2) f_{X_i}(x) dx$$
 (20)

$$= \int_{-\infty}^{\infty} (x^4) f_{X_i}(x) dx + 1 - 2 Var(X)$$
 (21)

$$= \int_{-\infty}^{\infty} (x^4) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx - 1$$
 (22)

On simplifying we get,

$$Var(X_i^2 - 1) = 2$$
 (23)

$$Var\left(\frac{S_n - n}{\sqrt{2}}\right) = n\sqrt{2} \tag{24}$$

Hence from Central limit theorem as $n \to \infty$

$$\left(\frac{S_n - n}{\sqrt{2}}\right) \sim N(0, n\sqrt{2}) \tag{25}$$

Hence **Option A** is false.

Option B

Given,

$$S_n = X_1^2 + X_2^2 + \dots + X_n^2 . \forall n \ge 1$$
 (26)

Hence from theorem of Weak law of large numbers we can write

$$\frac{S_n}{n} \xrightarrow{i.p} E(X^2) \tag{27}$$

$$\implies \frac{S_n}{n} \xrightarrow{i.p} Var(X) \tag{28}$$

$$\implies \frac{S_n}{n} \xrightarrow{i.p} 1 \tag{29}$$

From definition of convergence in probability we can write,

$$\implies \Pr\left(\left|\frac{S_n}{n} - 1\right| > \epsilon\right) \to 0, \forall \epsilon > 0 \tag{30}$$

Hence Option B is false .

Option C

Given,

$$S_n = X_1^2 + X_2^2 + \dots + X_n^2, \forall n \ge 1$$
 (31)

Hence from theorem of Strong law of large numbers we can write

$$\frac{S_n}{n} \xrightarrow{i.p} Var(X) \tag{32}$$

$$\implies \frac{S_n}{n} \xrightarrow{a.s} 1 \tag{33}$$

almost surely. From definition of convergence with probability we can write,

$$\frac{S_n}{n} \xrightarrow{w.p.1} 1 \tag{34}$$

Hence Option C is true.

Option D

$$E\left(\frac{S_n - n}{\sqrt{n}}\right) = E\left(\frac{\sum_{i=1}^n (X_i^2 - 1)}{\sqrt{n}}\right) \tag{35}$$

$$=\frac{\sum_{i=1}^{n}E(X_{i}^{2}-1)}{\sqrt{n}}$$
 (36)

From (15),

$$E\left(\frac{S_n - n}{\sqrt{n}}\right) = 0\tag{37}$$

$$Var\left(\frac{S_n - n}{\sqrt{n}}\right) = Var\left(\frac{\sum_{i=1}^n (X_i^2 - 1)}{\sqrt{n}}\right)$$
(38)

$$=\frac{\sum_{i=1}^{n} Var(X_{i}^{2}-1)}{\sqrt{n}}.$$
 (39)

From (23).

$$Var\left(\frac{S_n - n}{\sqrt{n}}\right) = 2\sqrt{n} \tag{40}$$

From Central limit theorem we can write,

$$\left(\frac{S_n-n}{\sqrt{n}}\right) \sim N(0,2\sqrt{n}) \tag{41}$$

$$\Pr\left(S_n \le n + \sqrt{n}x\right) = \Pr\left(\frac{S_n - n}{\sqrt{n}} \le x\right) \tag{42}$$

$$\Pr\left(\frac{S_n - n}{\sqrt{n}} \le x\right) \to \Pr(Y \le x) \tag{43}$$

where $Y \sim N(0, 2\sqrt{n})$ as $n \to \infty$ Hence **Option D** is false.