

CURSO INTENSIVO 2022

ITA - 2022 Matemática

Prof. Victor So

Sumário

INTRODUÇÃO	4
1. RELAÇÕES	5
1.1. Par Ordenado	5
1.1.1. Definição	5
1.1.2. Teorema	5
1.2. Produto Cartesiano	ϵ
1.2.1. Definição	ϵ
1.2.2. Propriedades	7
1.3. Relação Binária	7
1.3.1. Definição	7
1.3.2. Domínio e Imagem	7
1.3.3. Classificação das Relações	8
1.3.4. Relação Inversa 1.3.5. Relação Composta	9
2. FUNÇÕES	15
2.1. Definição	16
2.1.1. Domínio, Contradomínio e Imagem	17
2.1.2. Imagem de um conjunto através de uma função	18
2.1.3. Gráfico	18
2.2. Funções Elementares	19
3. FUNÇÃO AFIM	20
3.1. Definição	20
3.1.1. Função Constante	20
3.1.2. Função Identidade	21
3.1.3. Função Linear	21
3.2. Coeficientes da Função Afim	22
3.3. Gráfico	22
3.3.1. Imagem	22
3.3.2. Esboço	22
3.4. Monotonicidade	24
3.4.1. Crescente	24
3.4.3. Decrescente	24
3.4.5. Constante	24
3.4.2. Estritamente crescente	24
3.4.4. Estritamente decrescente	24
3.4.5. Monotonicidade da Função Afim	24
3.5. Sinal de uma função	25
3.5.1. Sinal da função afim	26
3.5.2. Função Mista	27
4. INEQUAÇÕES	28

4.1. Inequações Simultaneas	28	
4.2. Inequações-Produto	29	
4.3. Inequações-quociente	32	
5. FUNÇÃO COMPOSTA E FUNÇÃO INVERSA	36	
5.1. Classificação das Funções	36	
5.1.1. Função Injetora	36	
5.1.2. Função Sobrejetora	37	
5.1.3. Função Bijetora	37	
5.2. Paridade	37	
5.2.1. Função Par	37	
5.2.2. Função Ímpar	37	
5.3. Função Composta	38	
5.3.1. Teorema	39	
5.3.2. Propriedades	39	
5.4. Função Inversa	40	
5.4.1. Definição	40	
5.4.2. Teorema	41	
5.4.3. Propriedades	41	
6. LISTA DE QUESTÕES	43	
7. GABARITO	48	
8. LISTA DE QUESTÕES RESOLVIDAS E COMENTADAS	48	

Introdução

Nessa aula iniciaremos o estudo das funções. Estudaremos conceitos de relações, par ordenado, produto cartesiano, funções e suas classificações, função composta e inversa.

Esse assunto costuma cair bastante nas provas. Ela será dividida em várias aulas para conseguirmos abordar todas as funções relevantes para a prova.

É muito importante que você entenda cada conceito e resolva muitos exercícios para fixação, elas o ajudarão a resolver os exercícios da sua prova!

Se você for um aluno com boa base nesse assunto, vá direto para a lista de questões e caso tenha alguma dúvida entre em contato conosco através do fórum de dúvidas do Estratégia ou se preferir:

Como se trata de um **curso intensivo**, o nosso objetivo é que você consiga estudar todas as principais questões que podem ser cobradas na prova e, por isso, teremos menos questões e nossa teoria será mais objetiva. Caso queira um material mais aprofundado e com mais questões, recomendo o nosso material do **curso extensivo**.

1. Relações

Antes de iniciarmos nosso estudo de funções, vamos estudar Relações. Esse assunto será importante para fundamentar nosso entendimento sobre funções. Então, vamos lá!

1.1. Par Ordenado

Na Matemática, temos situações onde a ordem dos elementos é importante para definir a solução de um problema. Por exemplo:

Encontrar $x, y \in \mathbb{R}$ que satisfaça as equações:

$$\begin{cases} x + y = 1 \\ x - y = 1 \end{cases}$$

Ao resolver essas equações, encontramos x=1 e y=0 como solução. Então, se representássemos essa solução usando conjuntos, diríamos que $\{1,0\}$ é solução do sistema. Mas, veja que $\{1,0\}=\{0,1\}$, então x=0 e y=1 também seria solução do sistema acima. Sabemos que isso não é verdade. Por isso, usamos o conceito de par ordenado para solucionar esse problema.

Nesse caso, usando o conceito de par ordenado para definir a solução, escrevemos:

$$(x, y) = (1, 0)$$

Para definir um par ordenado, usamos os parênteses "()" no lugar das chaves "{ }". Como a ordem dos elementos importa, temos:

$$(1,0) \neq (0,1)$$

1.1.1. Definição

A definição de par ordenado, segundo o matemático Kuratowski, é dada por:

$$(x, y) = \{\{x\}, \{x, y\}\}$$

Podemos usar essa definição para representar mais variáveis:

$$(x, y, z) = \{\{x\}, \{x, y\}, \{x, y, z\}\}$$

Nesse caso, chamamos (x, y, z) de tripla ordenada.

$$(x_1, x_2, \dots, x_n) = \{ \{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_n\} \}$$

 $(x_1, x_2, ..., x_n)$ é dita de n-upla ordenada.

1.1.2. Teorema

$$(a,b)=(c,d) \Leftrightarrow a=c \ e \ b=d$$

Demonstração:

Usando a definição de Kuratowski, temos:

$$(a,b) = (c,d)$$

 $\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}$

Pela igualdade, podemos escrever:

$$\{a\} = \{c\}$$

$$\{a, b\} = \{c, d\}$$
ou
$$\{a\} = \{c, d\}$$

$$\{a, b\} = \{c\}$$

Resolvendo os sistemas:

$$\begin{cases} \{a\} = \{c\} \\ \{a,b\} = \{c,d\} \\ \{a\} = \{c\} \Rightarrow a = c \end{cases}$$

$$\{a,b\} = \{c,d\} \Rightarrow b = d \text{ já que } a = c$$

Nesse caso, a = c e b = d.

$$\begin{cases}
\{a\} = \{c, d\} \\
\{a, b\} = \{c\} \\
\{a\} = \{c, d\} \Rightarrow a = c = d \\
\{a, b\} = \{c\} \Rightarrow a = b = c \\
\Rightarrow a = b = c = d
\end{cases}$$

Nesse caso, todos os elementos são iguais e a=c e b=d também é válido. Com isso, concluímos:

$$(a,b) = (c,d) \Leftrightarrow a = c e b = d$$

1.2. Produto Cartesiano

Os pares ordenados podem ser representados em um plano cartesiano ortogonal. Esse plano foi criado pelo matemático René Descartes para mostrar alguns pontos no espaço. Podemos entendê-lo como um mapa, onde as coordenadas nela representadas nos levam a algum ponto do mapa.

O plano cartesiano é um sistema de coordenadas (x, y). Veja o exemplo:

O eixo x é chamado de eixo das abcissas (também pode ser chamado de 0x) e o eixo y é chamado de eixo das ordenadas (ou 0y). Ambos são perpendiculares entre si (possuem ângulo de 90° no ponto de intersecção). O encontro entre esses eixos é o ponto (0,0) (ou ponto 0), esse ponto é chamado de origem do sistema.

Agora que sabemos o que é um plano cartesiano, vamos entender o conceito de produto cartesiano.

1.2.1. Definição

Se A e B são dois conjuntos não vazios, o produto cartesiano entre eles é representado pela notação:

$$A x B = \{(x, y) | x \in A e y \in B\}$$

 $A \times B$ lê-se "A cartesiano B".

 $A \times B$ é um conjunto cujos elementos são pares ordenados da forma (x, y).

Exemplo:

Seja
$$A = \{2, 3\}$$
 e $B = \{0, 1, 2\}$.

1)
$$A \times B = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\}$$

2)
$$B \times A = \{(0,2), (0,3), (1,2), (1,3), (2,2), (2,3)\}$$

Perceba que no produto cartesiano devemos escrever todas as combinações possíveis entre os elementos dos conjuntos envolvidos. Desse modo, podemos escrever a seguinte relação:

$$n(A \times B) = n(A) \cdot n(B)$$

O produto cartesiano não se resume a apenas 2 conjuntos, podemos estendê-lo para n conjuntos:

$$A_1 \times A_2 \times A_3 \times ... \times A_n = \{(x_1, x_2, x_3, ..., x_n) | x_1 \in A_1 \land x_2 \in A_2 \land x_3 \in A_3 \land ... \land x_n \in A_n\}$$

O número de elementos desse conjunto é dado por:

$$n(A_1 \times A_2 \times ... \times A_n) = n(A_1) \cdot n(A_2) \cdot ... \cdot n(A_n)$$

Vamos ver um exemplo de produto cartesiano com 3 conjuntos:

Seja
$$A = \{1, 2\}, B = \{2, 3\}, C = \{3, 4\}.$$

$$A \times B \times C = \{(1,2,3), (1,2,4), (1,3,3), (1,3,4), (2,2,3), (2,2,4), (2,3,3), (2,3,4)\}$$

1.2.2. Propriedades

- **P1)** $A \times \emptyset = \emptyset$
- **P2)** $A \times B \neq B \times A$, com $A \neq B$ e não vazios
- **P3)** $A^2 = A x A$
- **P4)** $A x (B \cup C) = (A x B) \cup (A x C)$
- **P5)** $A x (B \cap C) = (A x B) \cap (A x C)$

1.3. Relação Binária

1.3.1. Definição

Uma relação binária R de A em B é dada por:

$$R = \{(x, y) \in A \times B | p(x, y)\}$$

p(x, y) representa um critério de relacionamento entre $x \in A$ e $y \in B$.

Perceba que R é um subconjunto do conjunto A x B e seus elementos (x, y) possuem a propriedade p(x, y). Assim, podemos afirmar $R \subset A$ x B.

Para essa relação R de A em B:

A é o conjunto de partida da relação R.

B é o conjunto de chegada ou contradomínio da relação R.

Se $(a, b) \in A \times B$ e p(a, b) é verdadeira, podemos usar a notação:

$$a R b \text{ ou } R(a) = b$$

Se $(c,d) \in A \times B$ e p(c,d) é falsa:

$$c R d ou R(c) \neq d$$

Chamamos de conjunto solução de uma relação o seguinte conjunto:

$$S = \{(a, b) \in A \times B | p(a, b) \notin V\}$$

O conjunto S possui todos os elementos que satisfazem a propriedade da relação.

1.3.2. Domínio e Imagem

Vamos ver o que é o domínio e a imagem de uma relação.

Seja R uma relação de A em B com $x \in A$ e $y \in B$.

Domínio de R é o conjunto formado por todos os primeiros elementos dos pares ordenados de R. Sua notação é dada por:

$$D_R = \{a \in A | (a, y) \in R\}$$

Imagem de R é o conjunto de todos os segundos elementos dos pares ordenados de R:

Vejamos uma representação genérica de uma relação R de A em B no plano cartesiano. Seja $R \subset A \times B$:

Note que $D_R \subset A$ e $Im_R \subset B$.

1.3.3. Classificação das Relações

Seja $R \subset A^2$.

1) Reflexiva

R é reflexiva em A^2 quando $\forall a \in A$, temos $(a, a) \in R$

Exemplo:

Sejam A = [0, 2] e $R_1, R_2 \subset A^2$ representados no plano cartesiano:

 ${\it R}_1$ é reflexiva e ${\it R}_2$ não é reflexiva.

Para ser reflexiva, os elementos do conjunto devem conter a reta y=x. Apenas R_1 satisfaz essa condição.

2) Simétrica

R é simétrica em A^2 quando para $(a,b) \in R$, temos $(b,a) \in R$

Vejamos uma representação gráfica de um R simétrico em A^2 . Sejam A = [0, 2] e $R \subset A^2$:

3) Antissimétrica

R é antissimétrica em A^2 quando $(a, b) \in R$ e $(b, a) \in R$, temos a = bVejamos uma representação gráfica de um R antissimétrica em A^2 . Sejam A = [0, 2] e $R \subset A^2$:

4) Transitiva

R é transitiva em A^2 quando $(a,b) \in R$ e $(b,c) \in R$, temos $(a,c) \in R$

Das 4 classificações acima, podemos ter mais duas:

R é uma relação de equivalência $\Leftrightarrow R$ é reflexiva, simétrica e transitiva R é uma relação de ordem $\Leftrightarrow R$ é reflexiva, antissimétrica e transitiva Uma relação específica é a relação identidade. Ela é dada por:

Relação identidade =
$$\{(x, y) \in A^2 | x = y\}$$

1.3.4. Relação Inversa

Seja $R \subset A \times B$, a relação inversa de R é denotada por R^{-1} e definida por:

$$R^{-1} = \{(b,a) \in \mathcal{B} \ x \ A | (a,b) \in R\}$$

A relação inversa \mathbb{R}^{-1} é obtida invertendo-se a ordem dos pares ordenados da relação \mathbb{R} . Exemplo:

Sejam $A=\{x\in\mathbb{R}|1\leq x\leq 2\}$ e $B=\{y\in\mathbb{R}|2\leq y\leq 4\}$. Vamos representar no plano cartesiano as relações $R=\{(x,y)\in A\;x\;B|y=2x\}$ e sua inversa R^{-1} :

Perceba que os gráficos de R e R^{-1} são simétricos em relação à reta y=x. Se usarmos a definição de R ser simétrica, temos:

R é simétrica se $(a,b) \in R$, temos $(b,a) \in R$

Mas da definição de inversa de R:

$$(a,b) \in R \Rightarrow (b,a) \in R^{-1}$$

Como R é simétrica, (b, a) também pertence a R:

$$(b,a) \in R \Rightarrow (a,b) \in R^{-1}$$

Assim, todos os elementos de R também pertencem a R^{-1} . Disso, concluímos:

R é simétrica $\Leftrightarrow R = R^{-1}$

1.3.5. Relação Composta

Seja $R \in A \times B$ e $T \in B \times C$. Se $a \in A, b \in B, c \in C$, temos:

$$a R b \Rightarrow R(a) = b$$

$$b T c \Rightarrow T(b) = c$$

Uma relação composta de R com T é dada por:

$$R(a) = b \ e \ T(b) = c \Rightarrow T(R(a)) = c$$

T(R(a)) pode ser reescrita como ToR(a), essa é a notação usual para representar uma relação composta de R com T.

Veja a definição da relação composta:

$$ToR = \{(a,c) \in A \ x \ C | \exists b \in B \ tal \ que \ (a,b) \in R \ e \ (b,c) \in T\}$$

Podemos ver a representação das relações através do diagrama de flechas:

Um erro muito comum nos alunos ao ver a nomenclatura ToR de A em C é inverter a ordem das relações devido a T estar escrito antes de R.

Para solucionar esse problema, devemos entender que ToR = T(R(x)). Assim, entenderemos que x nos levará a R(x) e com R(x) encontraremos T(R(x)).

Ou, se a questão envolver diagrama de flechas, basta lembrar que na relação composta as relações iniciam da direita à esquerda:

Exemplo:

Sejam os conjuntos $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, d\}$ e $C = \{1, 2, a, b\}$. Encontre a relação composta ToR, sendo as relações R e T representadas pelo diagrama abaixo:

As informações representadas pelo diagrama de flechas podem ser extraídas da seguinte maneira:

Devemos analisar os elementos indicados pelas flechas. Os elementos que possuem flechas saindo deles serão os primeiros elementos de um par ordenado e os elementos indicados por estas flechas serão os segundos elementos desse par ordenado.

Para R:

Veja que o elemento 1 possui uma flecha saindo dela e ela chega em a e b. Dessa forma, podemos escrever:

$$(1, a), (1, b) \in R$$

Analogamente para os outros elementos:

$$(3, c), (5, d) \in R$$

Assim, o conjunto R é dado por:

$$R = \{(1, a), (1, b), (3, c), (5, d)\}$$

Para *T*:

$$T = \{(a, 1), (c, 2), (c, a), (d, a), (d, b)\}$$

Para a relação composta *ToR*:

ToR é uma relação que leva elementos do conjunto A a elementos do conjunto C. Para encontrar quais são os pares ordenados dessa relação, devemos analisar o caminho que as flechas percorrem.

O elemento 1 do conjunto A chega no elemento a do conjunto B. Esse elemento a chega no elemento 1 do conjunto C. Então, o elemento 1 do conjunto A chega no eleme

O elemento 1 do conjunto A também chega no elemento b do conjunto B. Porém, esse b não chega em nenhum elemento do conjunto C. Então, esse caminho não retorna nenhum elemento da relação composta.

Do mesmo modo para os outros elementos:

$$3 \rightarrow c \rightarrow 2 \Rightarrow (3,2) \in ToR$$

 $3 \rightarrow c \rightarrow a \Rightarrow (3,a) \in ToR$
 $5 \rightarrow d \rightarrow a \Rightarrow (5,a) \in ToR$
 $5 \rightarrow d \rightarrow b \Rightarrow (5,b) \in ToR$

A relação composta é dada por:

- **1.** Considere a relação $R = \{(x, y) \in \mathbb{N}^2 | x + 2y = 12 \}$. Determinar:
- a) R
- b) Domínio, imagem e R^{-1}
- c) RoR
- d) $R^{-1}oR$

Resolução:

a) R

Os pares ordenados são formados por números naturais. Vamos analisar a propriedade da relação:

$$x + 2y = 12$$

$$2y = 12 - x$$

$$y = 6 - \frac{x}{2}$$

O elemento y deve ser natural, então da propriedade acima, x deve ser múltiplo de 2 para y não ser fracionário. Encontrando os pares ordenados:

$$x = 0 \rightarrow y = 6$$

$$x = 2 \rightarrow y = 5$$

$$x = 4 \rightarrow y = 4$$

$$x = 6 \rightarrow y = 3$$

$$x=8\to y=2$$

$$x = 10 \rightarrow y = 1$$

$$x = 12 \rightarrow y = 0$$
$$x = 14 \rightarrow y = -1 \notin \mathbb{N}$$

Apenas os pares ordenados naturais devem ser considerados na relação R. Portanto:

$$R = \{(0,6), (2,5), (4,4), (6,3), (8,2), (10,1), (12,0)\}$$

b) Domínio, imagem e R^{-1}

O domínio é dado por todos os primeiros elementos dos pares ordenados de R:

$$D_R = \{0, 2, 4, 6, 8, 10, 12\}$$

A imagem é dada por todos os segundos elementos dos pares ordenados de R:

$$Im_R = \{6, 5, 4, 3, 2, 1, 0\}$$

Para encontrar R^{-1} , devemos inverter a ordem dos pares ordenados de R:

$$R^{-1} = \{(6,0), (5,2), (4,4), (3,6), (2,8), (1,10), (0,12)\}$$

c) RoR

Pelo diagrama de flechas:

De acordo com o diagrama:

$$12 \to 0 \to 6 \Rightarrow (12,6) \in RoR$$

$$8 \to 2 \to 5 \Rightarrow (8,5) \in RoR$$

$$4 \to 4 \to 4 \Rightarrow (4,4) \in RoR$$

$$0 \to 6 \to 3 \Rightarrow (0,3) \in RoR$$

$$RoR = \{(12,6), (8,5), (4,4), (0,3)\}$$

d) $R^{-1}oR$

Sabendo que:

$$R = \{(0,6), (2,5), (4,4), (6,3), (8,2), (10,1), (12,0)\}$$

$$R^{-1} = \{(6,0), (5,2), (4,4), (3,6), (2,8), (1,10), (0,12)\}$$

O diagrama de flechas de $R^{-1}oR$ é dado por:

Analisando o diagrama, temos:

$$R^{-1}oR = \{(12,12), (10,10), (8,8), (6,6), (4,4), (2,2), (0,0)\}$$

Perceba que essa relação composta é a relação identidade.

Podemos encontrar a relação composta sem o uso do diagrama da seguinte forma:

Para $R^{-1}oR$, devemos analisar os elementos de R e R^{-1} . Associamos a imagem de R com o domínio de R^{-1} :

$$R = \{(0,6), (2,5), (4,4), (6,3), (8,2), (10,1), (12,0)\}$$

$$R^{-1} = \{(6,0), (5,2), (4,4), (3,6), (2,8), (1,10), (0,12)\}$$

Assim, o domínio de $R^{-1} o R$ será o domínio de R com a imagem de R^{-1} dos elementos associados:

$$(0,6) \to (6,0) \Rightarrow (0,0)$$

$$(2,5) \to (5,2) \Rightarrow (2,2)$$

$$\vdots$$

$$(12,0) \to (0,12) \Rightarrow (12,12)$$

$$\therefore R^{-1}oR = \{(0,0), (2,2), (4,4), (6,6), (8,8), (10,10), (12,12)\}$$

2. Funções

Após o estudo das Relações, podemos proceder com o assunto de Funções. Uma função f equivale a uma relação com algumas restrições. Veremos nesse capítulo quais condições devem ser

satisfeitas para uma relação ser considerada função. Por se tratar de uma relação, podemos aproveitar as definições e propriedades estudadas no capítulo anterior para fundamentar o entendimento desse tema.

2.1. Definição

Dados dois conjuntos A e B. Uma função $f: A \to B$ (função de A em B) é uma relação binária que relaciona elementos do conjunto A em elementos do conjunto B.

Veja:

Esse é um exemplo que relaciona os números $\{1, 2, 3\}$ à sua paridade $\{par, impar\}$. A definição formal de função é dada por:

$$f: A \to B \Leftrightarrow \forall x \in A, \exists y \in B \text{ tal que } f(x) = y$$

f transforma $x \in A$ em $y \in B$.

Então, dessa definição temos que satisfazer duas condições para uma relação ser função:

- I) Todo elemento x pertencente a A deve ser relacionado a algum elemento y pertencente a B.
- II) Um x, elemento de A, não pode se relacionar a mais de um y, elemento de B.

2.1.1. Domínio, Contradomínio e Imagem

Seja a função $f: A \rightarrow B$ representada pelo diagrama de flechas abaixo:

O domínio da função f é o conjunto A e ela é denotada por:

$$D_f = A = \{1, 2, 3, 4, 5\}$$

O contradomínio de f é o conjunto B e ela pode ser escrita como:

$$CD_f = B = \{a, b, c, d, e\}$$

A imagem de f é o conjunto formado pelos elementos $y \in B$, tal que $\forall x \in A, f(x) = y$. Ela pode ser escrita dessa forma:

$$Im_f = \{a, b, c\}$$

Perceba que em uma função f de A em B, o conjunto A sempre será o domínio de f.

2.1.2. Imagem de um conjunto através de uma função

Podemos representar a imagem de um conjunto através da função.

Usando o diagrama de flechas acima, temos:

$$f(A) = Im_f = \{a, b, c\}$$

f(A) é a imagem da função f.

2.1.3. Gráfico

A representação gráfica de uma função f de $A \subset \mathbb{R}$ em \mathbb{R} pode ser feita através do plano cartesiano. Para esboçar seu gráfico, consideramos que f gera pares ordenados da forma (x,y) tal que y=f(x), com $x\in A$ e $y\in \mathbb{R}$.

Vamos ver alguns exemplos de funções f no plano cartesiano:

A relação f de A em $\mathbb R$ representada acima, com A=[0,3], é função. As retas verticais que passam pela relação f possuem apenas 1 ponto de encontro na relação (pontos representados em azul). Isso satisfaz a condição de definição de função. Os elementos de A=[0,3] representados no eixo x correspondem a um único valor em $\mathbb R$, representado no eixo y.

A relação f de A em $\mathbb R$ representada acima, com A=[1,3], não é função. Pois há retas verticais que encontram o gráfico de f em 2 pontos. Isso viola a condição de $x\in A$ possuir apenas um correspondente em $y\in \mathbb R$.

Assim, para verificarmos se uma relação f de A em B é função através da representação cartesiana, devemos verificar se as retas paralelas ao eixo y encontram o gráfico de f em apenas um só ponto.

2.2. Funções Elementares

Abaixo estão as principais funções que podem ser cobradas no vestibular:

1) Função Afim

$$f: \mathbb{R} \to \mathbb{R} \text{ e } f(x) = ax + b, a, b \in \mathbb{R}$$

2) Função Racional

$$f: \mathbb{R} - \left\{-\frac{d}{c}\right\} \to \mathbb{R} \text{ e } f(x) = \frac{ax+b}{cx+d}$$

3) Função Quadrática

$$f: \mathbb{R} \to \mathbb{R} \text{ e } f(x) = ax^2 + bx + c; a \neq 0$$

4) Função Modular

$$f: \mathbb{R} \to \mathbb{R} \text{ e } f(x) = |x|$$

5) Função Exponencial

$$f: \mathbb{R} \to \mathbb{R} \text{ e } f(x) = a^x; a > 0 \text{ e } a \neq 1$$

6) Função Logarítmica

$$f: \mathbb{R}_+^* \to \mathbb{R} \text{ e } f(x) = \log_a x$$
; $a > 0 \text{ e } a \neq 1$

7) Função Máximo Inteiro

$$f: \mathbb{R} \to \mathbb{R} \text{ e } f(x) = |x|$$

8) Função Trigonométrica

$$f: A \to B \ e \ f(x) = senx \ ou \ f(x) = cosx \ ou \ f(x) = tgx$$

9) Cosseno hiperbólico em x

10) Seno hiperbólico em x

$$f: \mathbb{R} \to \mathbb{R} \text{ e } f(x) = \frac{e^x - e^{-x}}{2}$$

11) Tangente hiperbólico em x

$$f: \mathbb{R} \to \mathbb{R} \text{ e } f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

As funções afim, racional, quadrática, modular, exponencial, logarítmica, máximo inteiro e trigonométrica são os principais tipos de funções que veremos. Para cada uma dessas funções, teremos capítulos específicos abordando todos os assuntos cobrados na prova.

3. Função Afim

Vamos iniciar o estudo da nossa primeira função: a função afim.

3.1. Definição

A função afim é uma função cuja definição é dada por:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = ax + b, a, b \in \mathbb{R}$$

Dependendo dos valores de a,b da definição acima, podemos ter casos específicos de função. Vamos ver quais são eles.

3.1.1. Função Constante

Uma função f de \mathbb{R} em \mathbb{R} é chamada de constante quando cada elemento $x \in \mathbb{R}$ corresponde a um mesmo elemento $c \in \mathbb{R}$. Essa função é definida por:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = b, b \in \mathbb{R}$$

Esta função é um caso específico, onde a=0 e $b\in\mathbb{R}$. A transformação f de \mathbb{R} em \mathbb{R} associa para cada $x\in\mathbb{R}$ um mesmo valor $b\in\mathbb{R}$.

Graficamente, ela será uma reta horizontal ao eixo x:

A imagem de f é $Im_f = \{b\}$.

3.1.2. Função Identidade

A função identidade f é a relação $f: \mathbb{R} \to \mathbb{R}$ que associa x ao próprio x. Sua definição é dada por:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x$$

Graficamente:

Nesse caso, a imagem de f é $Im_f = \mathbb{R}$.

3.1.3. Função Linear

A função linear é uma função afim com o coeficiente b=0. Ela é definida por:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = ax, a \neq 0$$

Graficamente:

Esta reta passa pela origem do sistema e possui imagem $Im_f=\mathbb{R}.$

Excluindo a função constante, todas as outras funções afins são consideradas funções de primeiro grau devido à dependência delas com a variável x. A função constante não possui essa dependência e por isso não pode receber essa classificação.

3.2. Coeficientes da Função Afim

Dada a função afim:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = ax + b, a, b \in \mathbb{R}$$

a, b são chamados de coeficientes da função e x é a sua variável.

a é denominado de coeficiente angular e b é o coeficiente linear.

Exemplos:

$$f_1: \mathbb{R} \to \mathbb{R}, f_1(x) = 2x + 1$$

 $f_1\colon \mathbb{R}\to \mathbb{R}, f_1(x)=2x+1$ O coeficiente angular de f_1 é 2 e seu coeficiente linear é 1.

$$f_2: \mathbb{R} \to \mathbb{R}, f_2(x) = -x - 10$$

O coeficiente angular de f_2 é -1 e seu coeficiente linear é -10.

3.3. Gráfico

No estudo das funções, a sua representação gráfica nos permite extrair informações importantes. Por exemplo, podemos usá-la para resolver inequações e também estudar o sinal da função. Antes de aprendermos a esboçar uma função, estudaremos como encontrar sua imagem e sua raiz.

3.3.1. Imagem

Para encontrarmos o conjunto imagem de uma função f, devemos analisar o domínio de f e ver o que acontece com a variável y = f(x) quando analisamos o seu domínio. Veja:

Vamos encontrar o conjunto imagem da função:

$$f:[0,10] \to \mathbb{R}, f(x) = 3x + 2$$

Substituindo f(x) = y e isolando x:

$$y = 3x + 2 \Rightarrow x = \frac{y - 2}{3}$$

Como $D_f = [0,10]$, temos:

$$0 < x < 10$$
$$0 < \frac{y - 2}{3} < 10$$

Multiplicando as desigualdades acima por 3:

$$0 < y - 2 < 30$$

Somando 2 nas desigualdades:

$$0 + 2 < y - 2 + 2 < 30 + 2$$

 $2 < y < 32$

Dessa forma, concluímos:

$$D_f = [0, 10] \Rightarrow Im_f = [2, 32]$$

3.3.2. Esboço

Como construímos o gráfico de uma função?

Uma função f de \mathbb{R} em \mathbb{R} retorna pares ordenados da forma (x, y), onde x pertence ao domínio de f e y pertence à imagem de f. Para representar uma função dada no plano cartesiano, devemos verificar a forma da função e encontrar alguns pares ordenados.

Vamos desenhar o gráfico da seguinte função dada por:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$$

Devemos encontrar os principais pares ordenados da função. Para o caso da função afim, podemos encontrar os pontos onde f(x) = 0 (raiz da função) e x = 0.

$$f(x) = 0 \Rightarrow 2x + 1 = 0 \Rightarrow x = -1/2$$
$$\Rightarrow \left(-\frac{1}{2}, 0\right)$$
$$x = 0 \Rightarrow f(0) = 2 \cdot 0 + 1 = 1$$
$$\Rightarrow (0,1)$$

Sabemos que o gráfico da função afim é uma reta e temos 2 pontos do gráfico. Para esboçar o gráfico, devemos representar os 2 pontos no plano cartesiano e traçar uma reta que passa por eles. Representando os 2 pontos:

Traçando a reta, obtemos:

3.4. Monotonicidade

Podemos classificar as funções de acordo com seu comportamento em determinado intervalo. Vamos ver as possibilidades abaixo:

3.4.1. Crescente

$$f: A \to B \ e \ I \subset A$$
 $f: A \to B \ e \ crescente \ em \ I \Leftrightarrow \forall x_1, x_2 \in I \ e \ x_1 > x_2, temos \ f(x_1) \ge f(x_2)$

3.4.3. Decrescente

$$f: A \to B \ e \ I \subset A$$
 $f: A \to B \ e \ A \to B \ e \ A$
 $f: A \to B \ e \ A$

3.4.5. Constante

$$f: A \rightarrow B \ e \ I \subset A$$
 $f: A \rightarrow B \ e \ constante \ em \ I \Leftrightarrow \forall x_1, x_2 \in I, temos \ f(x_1) = f(x_2)$

3.4.2. Estritamente crescente

$$f: A \to B \ e \ I \subset A$$
 $f: A \to B \ e \ estritamente crescente em $I \Leftrightarrow \forall x_1, x_2 \in I \ e \ x_1 > x_2, temos \ f(x_1) > f(x_2)$$

3.4.4. Estritamente decrescente

$$f: A \to B \ e \ I \subset A$$

$$f: A \to B \ \'e \ estritamente \ decrescente \ em \ I \Leftrightarrow \forall x_1, x_2 \in I \ e \ x_1 > x_2, temos \ f(x_1) < f(x_2)$$

3.4.5. Monotonicidade da Função Afim

Seja
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = ax + b$, $a \neq 0$.

Vamos analisar a monotonicidade da função afim não constante. Tomando $x_1, x_2 \in \mathbb{R}$, temos:

$$f(x_1) = ax_1 + b$$

$$f(x_2) = ax_2 + b$$

Subtraindo as duas equações:

$$f(x_2) - f(x_1) = a(x_2 - x_1)$$

$$\Rightarrow a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Vamos analisar o sinal do coeficiente angular a para f crescente e decrescente:

1) *f* crescente

Sendo f(x) = ax + b, uma função crescente, podemos escrever:

$$x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$$

Das desigualdades acima:

$$x_2 > x_1 \Rightarrow x_2 - x_1 > 0$$

 $f(x_2) > f(x_1) \Rightarrow f(x_2) - f(x_1) > 0$

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$$

Se o coeficiente angular é dado por:

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$$

Assim, concluímos:

$$f \in crescente \Rightarrow a > 0$$

2) f decrescente

Sendo f(x) = ax + b, uma função decrescente, podemos escrever:

$$x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$$

Analogamente, chegamos a:

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0$$

\(\therefore\) \(f \text{ decrescente} \(\pi \alpha < \mathbf{0}\)

$$f(x) = ax + b$$

$$a < 0$$

$$f \text{ crescente}$$

$$f \text{ decrescente}$$

3.5. Sinal de uma função

Esse assunto é bastante cobrado nas questões de inequação nas provas. Vamos aprender os conceitos fundamentais e ver sua aplicabilidade para cada tipo de inequação.

Estudar o sinal de uma função significa encontrar os valores de $x \in D_f$ para f(x) < 0, f(x) =0, f(x) > 0. Podemos fazer isso analiticamente ou graficamente. Quando f está representado no plano cartesiano, podemos encontrar o sinal da função analisando o sinal das ordenadas dos pontos de f. Vamos ver um exemplo:

Analisando o gráfico, conseguimos ver quais os valores de x resultam em f(x) < 0, f(x) = 0 e f(x) > 0. Tomando o eixo das abcissas como referência, vemos que a curva y = f(x) é positiva quando ela estiver acima do eixo e é negativa quando ela estiver abaixo do eixo.

Observando o gráfico acima, podemos ver que não importa a forma da curva y = f(x), precisamos apenas observar se a curva está acima ou abaixo do eixo das abcissas e tomar como base para análise as raízes de f (pontos onde y = f(x) = 0).

Simplificando o gráfico, obtemos:

Dessa forma, concluímos:

$$f(x) = 0 \Rightarrow x \in \{-2, 1, 4, 8\}$$

$$f(x) > 0 \Rightarrow x < -2 \text{ ou } 1 < x < 4 \text{ ou } x > 8$$

$$f(x) < 0 \Rightarrow -2 < x < 1 \text{ ou } 4 < x < 8$$

3.5.1. Sinal da função afim

Seja f uma função afim. Então ela é dada por:

$$f(x) = ax + b$$

Sabemos que a raiz de f é:

$$x = -\frac{b}{a}$$

Lembrando que f é crescente para a>0 e decrescente para a<0. Vamos analisar o sinal de f para cada um desses casos.

a)
$$a > 0$$

Devemos verificar quais valores de x resultam em f(x) > 0 e f(x) < 0:

$$f(x) > 0 \Rightarrow ax + b > 0 \Rightarrow ax > -b \Rightarrow x > -\frac{b}{a}$$

 $f(x) < 0 \Rightarrow ax + b < 0 \Rightarrow ax < -b \Rightarrow x < -\frac{b}{a}$

Dessa forma, concluímos:

$$f(x) > 0 \Rightarrow x > -\frac{b}{a}$$

 $f(x) < 0 \Rightarrow x < -\frac{b}{a}$

Representando no eixo x:

b) a < 0

Analiticamente:

Nesse caso, devemos nos atentar para o sinal de desigualdade. Veja:

$$f(x) > 0 \Rightarrow ax + b > 0 \Rightarrow ax > -b \Rightarrow x < -\frac{b}{a}$$

 $f(x) < 0 \Rightarrow ax + b < 0 \Rightarrow ax < -b \Rightarrow x > -\frac{b}{a}$

Perceba que o sinal de desigualdade deve ser invertido quando isolamos x já que a < 0. Concluímos:

$$f(x) > 0 \Rightarrow x < -\frac{b}{a}$$

 $f(x) < 0 \Rightarrow x > -\frac{b}{a}$

Representando o resultado no eixo x:

3.5.2. Função Mista

Função mista também é conhecida como função determinada por intervalos. Como o nome diz, ela é uma função composta por diferentes funções de acordo com o intervalo estabelecido. Veja um exemplo:

$$f(x) = \begin{cases} -x - 2, & x < 1 \\ x - 2, & 1 \le x < 3 \\ -x + 4, & x \ge 3 \end{cases}$$

O gráfico dessa função é dado por:

Para cada intervalo determinado, f assume diferentes funções. O exemplo acima é uma função mista de funções afins. Perceba que no ponto x=1, a reta -x-2 possui um círculo aberto na sua extremidade direita (onde x=1). Isso indica que x=1 não é elemento dessa reta. Na reta x-2, 1 é elemento da função e por isso o círculo é fechado nesse ponto.

4. Inequações

Outro assunto muito recorrente nas provas. Vamos estudar esse tema para todas as funções que são cobradas e aprender como resolvê-las. Para essa aula, veremos primeiramente inequações envolvendo funções de primeiro grau. Antes de começar, vejamos quais os possíveis casos de inequações.

4.1. Inequações Simultâneas

Sejam $f, g, h: A \to \mathbb{R}$, três funções na variável x. As inequações simultâneas são da forma:

Para resolver esse tipo de inequação, devemos separá-lo em duas inequações:

$$f(x) < g(x)$$

Se S_1 é a solução de f(x) < g(x) e S_2 é a solução de g(x) < h(x), a solução da inequação será dada por:

$$S = S_1 \cap S_2$$

Exemplo:

Resolva a seguinte inequação definida em \mathbb{R} :

$$x-3 < -x+3 < 2x+4$$

Temos inequações simultâneas. Vamos dividi-las em duas inequações e resolvê-las:

I)
$$x - 3 < -x + 3$$

II)
$$-x + 3 < 2x + 4$$

Resolvendo analiticamente:

I)
$$x - 3 < -x + 3$$

$$2x < 6 \Rightarrow x < 3$$
$$S_1 = \{x \in \mathbb{R} | x < 3\}$$

II)
$$-x + 3 < 2x + 4$$

$$-1 < 3x \Rightarrow -\frac{1}{3} < x \Rightarrow x > -\frac{1}{3}$$

$$S_2 = \left\{x \in \mathbb{R} \middle| x > -\frac{1}{3}\right\}$$
 A solução é dada pela intersecção das duas soluções:

$$S = S_1 \cap S_2 = \left\{ x \in \mathbb{R} \left| -\frac{1}{3} < x < 3 \right\} \right\}$$

Representando as soluções no eixo x, podemos visualizar melhor o resultado:

4.2. Inequações-Produto

Sejam $f, g: A \to \mathbb{R}$, duas funções na variável x. Podemos ter 4 casos de inequações-produto, veja:

$$f(x) \cdot g(x) < 0$$

$$f(x) \cdot g(x) \le 0$$

$$f(x) \cdot g(x) > 0$$

$$f(x) \cdot g(x) \ge 0$$

A resolução de cada uma dessas inequações segue a mesma ideia. Vamos resolver a inequação $f(x) \cdot g(x) > 0$.

Quando resolvemos inequações-produto, devemos nos atentar ao sinal de cada função envolvida. No caso, o produto das duas funções deve resultar em um número positivo. Para isso acontecer, as duas devem possuir o mesmo sinal. As possibilidades são:

I)
$$f(x) > 0$$
 e $g(x) > 0$

Ou

II)
$$f(x) < 0$$
 e $g(x) < 0$

A solução será dada pela união da solução desses dois casos. Sendo S_1 , a solução do caso (I) e S_2 , a solução do caso (II), a solução será dada por:

$$S=S_1\cup S_2$$

Vamos ver um exemplo:

Resolva a seguinte inequação definida em \mathbb{R} :

(x-1)(x+1) > 0

Vamos resolver algebricamente:

I)
$$x - 1 > 0$$
 e $x + 1 > 0$

$$x - 1 > 0 \Rightarrow x > 1$$
$$x + 1 > 0 \Rightarrow x > -1$$

Assim, fazendo a intersecção das duas soluções, obtemos:

$$S_1 = \{x \in \mathbb{R} | x > 1\}$$

II)
$$x - 1 < 0$$
 e $x + 1 < 0$

$$x-1<0\Rightarrow x<1$$

$$x + 1 < 0 \Rightarrow x < -1$$

$$S_2 = \{x \in \mathbb{R} | x < -1\}$$

Portanto, a solução é dada pela união dessas duas soluções:

$$S = S_1 \cup S_2 = \{x \in \mathbb{R} | x > 1 \text{ ou } x < -1\}$$

Representando no eixo x:

Além do método acima, existe um modo de resolver diretamente a inequação-produto apenas com o estudo do sinal das funções envolvidas. Veja:

$$(x-1)(x+1) > 0$$

Vamos estudar o sinal de cada função:

$$x - 1 = 0 \Rightarrow x = 1$$

f(x) = x - 1 é uma função crescente, então representando o seu sinal no eixo x, temos:

Não é necessário desenhar a reta no eixo x para encontrar o sinal da função. Isso é feito apenas para lembrar que quando temos uma função crescente, os números à direita da raiz da função resultam em números positivos e à esquerda resultam em negativos. Então, vamos tentar memorizar esse fato para acelerar a nossa velocidade de resolução de exercícios. Com isso, a reta no eixo x pode ser reescrita da seguinte forma:

Perceba que acima do eixo x, representamos os valores de x e abaixo do eixo representamos os valores que x-1 assume para os valores de x.

Para a outra função:

$$x + 1 = 0 \Rightarrow x = -1$$

g(x) = x + 1 é uma função crescente, logo:

Juntando os dois eixos com seus respectivos sinais, obtemos o sinal do produto (x-1)(x+1):

Além do método acima, podemos resolver a inequação de forma mais rápida usando o método da multiplicidade das raízes das funções envolvidas. Vamos ver sua aplicabilidade nesse exemplo:

$$(x-1)(x+1) > 0$$

Devemos encontrar as raízes das funções envolvidas x - 1 e x + 1:

$$x - 1 = 0 \Rightarrow x = 1$$
$$x + 1 = 0 \Rightarrow x = -1$$

Representamos as raízes na reta x levando em consideração se as raízes pertencem à solução. No caso, ± 1 não pertencem à solução devido ao sinal da desigualdade, logo representamos essas raízes com o círculo aberto:

Para descobrir o sinal no intervalo x, devemos arbitrar um valor para x e encontrar o sinal resultante. Vamos ver o que ocorre quando x=0:

$$x = 0 \Rightarrow (x - 1)(x + 1) = (0 - 1)(0 + 1) = (-1)(1) = -1$$

O sinal resultante é negativo (-1) e o número 0 está entre -1 e 1. Dessa forma, todos os números entre -1 e 1 são negativos:

Para encontrar o sinal do resto do intervalo, devemos verificar a multiplicidade das raízes da função. Se a multiplicidade da raiz for ímpar, o sinal do intervalo ao passar pela raiz é trocado. Se a multiplicidade for par, o sinal do intervalo é mantido.

No exemplo, a multiplicidade da raiz 1 é ímpar (multiplicidade 1), portanto o intervalo do lado direito da raiz 1 possui sinal oposto ao lado esquerdo:

Da mesma forma para a raiz -1, por possuir multiplicidade ímpar, trocamos seu sinal no lado esquerdo da raiz:

Com o eixo completo, basta encontrar os valores que interessam:

Disso, resulta:

$$S = \{x \in \mathbb{R} | -1 < x < 1\}$$

O método acima acelera a resolução das questões. Recomendo praticar esse método para aumentar sua velocidade. As resoluções das questões dessa aula serão feitas pelo método do quadro de sinais para melhor visualização do resultado.

4.3. Inequações-quociente

Sejam $f, g: A \to \mathbb{R}$, duas funções na variável x. As possibilidades de inequações-quociente são:

$$\frac{f(x)}{g(x)} > 0$$

$$\frac{f(x)}{g(x)} < 0$$

$$\frac{f(x)}{g(x)} \ge 0$$

$$\frac{f(x)}{g(x)} \le 0$$

Para resolver esse tipo de inequação, seguimos a mesma ideia usada para as inequações-produto construindo o quadro de sinais das funções envolvidas. A diferença é que devemos nos atentar à função do denominador, esta deverá ser diferente de zero como condição de existência.

$$\frac{3x+9}{x-1} \ge 2$$

Ao vermos uma inequação com a forma acima, podemos ficar tentados a fazer a regra do cruzado para simplificar a inequação e erroneamente obteríamos:

$$(3x + 9) \ge 2(x - 1)$$

$$(3x + 9) - 2(x - 1) \ge 0$$

$$3x + 9 - 2x + 2 \ge 0$$

$$x + 11 \ge 0$$

Fazendo desse modo, perdemos o denominador e consequentemente encontramos um resultado incorreto.

2. Resolva as seguintes inequações definidas em \mathbb{R} :

a)
$$-2 < x + 1 < 5$$

b)
$$(2x + 1)(x + 5) \ge 0$$

c)
$$(x + 3)(-2x + 4)(x - 1) > 0$$

d)
$$\frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} < 0$$

Resolução:

a)
$$-2 < x + 1 < 5$$

$$-2 < x + 1 \Rightarrow x + 1 > -2 \Rightarrow x > -3$$
$$x + 1 < 5 \Rightarrow x < 4$$

A solução é dada pela intersecção das duas acima:

$$S = \{x \in \mathbb{R} | -3 < x < 4\}$$

b)
$$(2x + 1)(x + 5) \ge 0$$

Inequação-produto, vamos resolver pelo estudo do sinal:

2x + 1 é crescente:

$$x + 5 = 0 \Rightarrow x = -5$$

x + 5 é crescente:

Juntando o estudo do sinal das duas funções, obtemos o quadro de sinais abaixo:

$$S = \left\{ x \in \mathbb{R} \middle| x \le -5 \text{ ou } x \ge -\frac{1}{2} \right\}$$

c)
$$(x + 3)(-2x + 4)(x - 1) > 0$$

$$x + 3 = 0 \Rightarrow x = -3$$

x + 3 é crescente

$$-2x + 4 = 0 \Rightarrow x = 2$$

-2x + 4 é decrescente

$$x - 1 = 0 \Rightarrow x = 1$$

$$x-1$$
 é crescente

Estudo do sinal:

		_	3	L	$\frac{1}{2}$ x
	x + 3	_	+	+	+
	-2x + 4	+	+	+	_
	x-1	_	_	+	+
(x+3)(-2x+	-4)(x-1)	+	_	+	_

$$S = \{x \in \mathbb{R} | x < -3 \text{ ou } 1 < x < 2\}$$

d)
$$\frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} < 0$$

Condição de existência:

$$x - 1 \neq 0 \Rightarrow x \neq 1$$

$$x - 2 \neq 0 \Rightarrow x \neq 2$$

$$x - 3 \neq 0 \Rightarrow x \neq 3$$

Resolvendo a inequação:

$$\frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} < 0$$

$$\frac{(x-2)(x-3) + 2(x-1)(x-3) - 3(x-1)(x-2)}{(x-1)(x-2)(x-3)} < 0$$

$$\frac{x^2 - 5x + 6 + 2(x^2 - 4x + 3) - 3(x^2 - 3x + 2)}{(x-1)(x-2)(x-3)} < 0$$

$$\frac{x^2 - 5x + 6 + 2x^2 - 8x + 6 - 3x^2 + 9x - 6}{(x-1)(x-2)(x-3)} < 0$$

$$\frac{-4x + 6}{(x-1)(x-2)(x-3)} < 0$$

Estudo do sinal:

$$-4x + 6 = 0 \Rightarrow x = \frac{3}{2}$$

-4x + 6 é decrescente

$$x - 1 = 0 \Rightarrow x = 1$$

$$x - 2 = 0 \Rightarrow x = 2$$

$$x - 3 = 0 \Rightarrow x = 3$$

x-1, x-2, x-3 são crescentes

5. Função Composta e Função Inversa

Vamos entender os principais conceitos desse tema e ver como ele pode ser cobrado na prova.

5.1. Classificação das Funções

5.1.1. Função Injetora

A definição de função injetora é dada por:

$$f: A \rightarrow B$$

$$f \in injetora \Leftrightarrow \forall x_1, x_2 \in A, temos \ x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Também podemos usar:

$$f: A \to B$$

$$f \in injetora \Leftrightarrow \forall x_1, x_2 \in A, temos \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

 $f \in injetora \Leftrightarrow \forall x_1, x_2 \in A, temos \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ Para uma função ser injetora, devemos ter todos os elementos do conjunto A associados a elementos distintos em B.

Note que funções estritamente crescentes ou estritamente decrescentes são sempre injetoras!

5.1.2. Função Sobrejetora

A definição de função sobrejetora é dada por:

$$f: A \rightarrow B$$

 $f \in sobrejetora \Leftrightarrow \forall y \in B, \exists x \in A \ tal \ que \ f(x) = y$

Essa definição diz que dada a equação f(x)=y, devemos ter pelo menos uma solução em $x\in$

A. Também podemos usar:

$$f \colon A o B$$

 $f \in sobrejetora \Leftrightarrow Im_f = B$

Para uma função ser sobrejetora, a imagem da função deve ser equivalente ao seu contradomínio.

5.1.3. Função Bijetora

$$f: A \rightarrow B$$

 $f \in bijetora \Leftrightarrow f \in injetora e f \in sobrejetora$

A condição de uma função ser bijetora é satisfazer as condições de ser injetora e sobrejetora ao mesmo tempo.

5.2. Paridade

5.2.1. Função Par

$$f: A \to B$$

$$f \in par \Leftrightarrow \forall x \in A \ e - x \in A, temos \ f(-x) = f(x)$$

Graficamente, f deve ser simétrica em relação ao eixo y. Vejamos alguns exemplos:

5.2.2. Função Ímpar

$$f: A \to B$$

$$f \in impar \Leftrightarrow \forall x \in A \ e - x \in A, temos \ f(-x) = -f(x)$$

O gráfico de uma função ímpar é simétrico em relação à origem do plano cartesiano.

Qualquer função pode ser escrita como a soma de uma função par e uma função ímpar! Para dada função $f: A \to B$, temos:

$$f(x) = \frac{f(x) + f(-x) - f(-x) + f(x)}{2}$$

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{P(x)} + \underbrace{\frac{f(x) - f(-x)}{2}}_{I(x)}$$

Note que

$$P(x) = \frac{f(x) + f(-x)}{2} \Rightarrow P(-x) = \frac{f(x) + f(-x)}{2} \therefore P(x) = P(-x)$$

$$I(x) = \frac{f(x) - f(-x)}{2} \Rightarrow I(-x) = \frac{f(-x) - f(x)}{2} \therefore I(-x) = -I(x)$$

P é a função par e I é a função ímpar!

5.3. Função Composta

Vimos no capítulo de Relações, o conceito de relação composta. Vamos relembrar: Sendo $R \in A \times B$ e $T \in B \times C$, a relação composta de T em R é:

$$ToR = \{(a, c) \in A \times C | \exists b \in B \text{ tal que } (a, b) \in R \text{ e } (b, c) \in T\}$$

Diagrama de flechas:

Podemos aplicar o mesmo conceito de relação composta às funções. Vamos ver uma definição de função composta.

Uma função composta genérica de $f:A\to B$ e $g:B'\to C$, com $f(A)\subset B'$, é dada por $h:A\to C$ tal que:

$$h(x) = g(f(x)) = gof(x)$$

Seja $f: A \to B \in g: B' \to C$, com $f(A) \subset B'$.

$$\forall x \in A, \exists y \in B \text{ tal que } f(x) = y$$

Se $f(A) \subset B'$, então $y \in f(A)$ implica $y \in B'$.

$$\forall y \in B', \exists z \in C \text{ tal que } g(y) = z$$

Unindo os resultados acima, temos:

$$\forall x \in A, \exists z \in C \text{ tal que } g(f(x)) = z$$

Sendo $h: A \to C$ com h(x) = g(f(x)) = gof(x), h é chamada de composta de f com g. Exemplos:

Sejam as funções $f, g: \mathbb{R} \to \mathbb{R}$ tal que:

$$f(x) = x + 3$$
$$g(x) = x^2$$

A composta *gof* é dada por:

$$gof(x) = g(f(x)) = g(x+3) = (x+3)^2 = x^2 + 6x + 9$$

Para a composta *fog*:

$$f \circ g(x) = f(g(x)) = f(x^2) = x^2 + 3$$

Como $gof \neq fog$, podemos afirmar que essa operação é não comutativa.

Também podemos fazer a composta *f o f* :

$$fof(x) = f(f(x)) = f(x) + 3 = (x + 3) + 3 = x + 6$$

5.3.1. Teorema

Sejam as funções $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$, temos:

$$(hog)of = ho(gof)$$

Diz-se que essa operação é associativa.

5.3.2. Propriedades

P1)
$$\begin{cases} f: A \rightarrow B \ injetora \\ g: B \rightarrow C \ injetora \Rightarrow gof \ \'e \ injetora \\ gof: A \rightarrow C \end{cases}$$

$$\begin{cases} f: A \rightarrow B \ sobrejetora \\ g: B \rightarrow C \ sobrejetora \Rightarrow gof \ \'e \ sobrejetora \\ gof: A \rightarrow C \end{cases}$$

$$\begin{cases} f: A \rightarrow B \ bijetora \\ g: B \rightarrow C \ bijetora \Rightarrow gof \ \'e \ bijetora \\ gof: A \rightarrow C \end{cases}$$

$$\begin{cases} f: A \rightarrow B \\ g: B \rightarrow C \end{cases} \Rightarrow f \ \'e \ injetora \ e \ g \ \'e \ função \\ gof: A \rightarrow C \ injetora \end{cases}$$

$$\begin{cases} f: A \rightarrow B \\ g: B \rightarrow C \end{cases} \Rightarrow g \ \'e \ sobrejetora \\ gof: A \rightarrow C \ sobrejetora \end{cases}$$

$$\begin{cases} f: A \rightarrow B \\ g: B \rightarrow C \end{cases} \Rightarrow g \ \'e \ sobrejetora \\ gof: A \rightarrow C \ sobrejetora \end{cases}$$

$$\begin{cases} f: A \rightarrow B \\ g: B \rightarrow C \end{cases} \Rightarrow f \ \'e \ injetora \ e \ g \ \'e \ sobrejetora \\ gof: A \rightarrow C \ bijetora \end{cases}$$

$$\begin{cases} f: A \rightarrow B \\ g: B \rightarrow C \end{cases} \Rightarrow f \ \'e \ injetora \ e \ g \ \'e \ sobrejetora \\ gof: A \rightarrow C \ bijetora \end{cases}$$

5.4. Função Inversa

5.4.1. Definição

Uma função $f:A\to B$ é inversível se, e somente se, sua relação inversa $f^{-1}:B\to A$ for também uma função.

Definimos a função inversa de f como f^{-1} .

Vejamos um exemplo usando diagrama:

f não é inversível, pois ao fazer a inversa, o conjunto B torna-se o domínio de f^{-1} e como condição de função, todos os elementos de B devem ser associados a algum elemento de A. Pelo diagrama, sabemos que isso não é satisfeito.

Vejamos um exemplo de função inversível:

Pelo diagrama, podemos ver que g e g^{-1} são funções. Logo, g é inversível.

 f^{-1} é uma relação inversa de f. Vimos no capítulo de relação inversa que os pares ordenados da relação inversa podem ser obtidos invertendo-se os pares ordenados da própria relação. A nossa relação em análise é a função f, com isso, podemos escrever:

$$(x,y) \in f \Leftrightarrow (y,x) \in f^{-1}$$

Os pares ordenados de f^{-1} são obtidos trocando-se a ordem dos pares. Usando a propriedade acima, vamos ver o que acontece quando aplicamos a inversa em f^{-1} :

$$(y,x) \in f^{-1} \Leftrightarrow (x,y) \in (f^{-1})^{-1}$$
$$(x,y) \in f \Leftrightarrow (y,x) \in f^{-1} \Leftrightarrow (x,y) \in (f^{-1})^{-1}$$

O resultado acima nos mostra que $f=(f^{-1})^{-1}$, isto é, a inversa da inversa de f é a própria função f.

5.4.2. Teorema

Uma função $f: A \rightarrow B$ é inversível se, e somente se, f for bijetora.

5.4.3. Propriedades

Considerando $f: A \rightarrow B \ e \ g: B \rightarrow C$ funções bijetoras, temos:

P1) $f \circ f^{-1}(y) = y \Rightarrow f \circ f^{-1} = I_B e f^{-1} \circ f(x) = x \Rightarrow f^{-1} \circ f = I_A$ (I_X é a função identidade (f(x) = x) do conjunto X)

P2) A inversa de f é única

P3) $(f: A \to B \text{ inversivel e monotônica}) \Rightarrow (f^{-1}: B \to A \text{ \'e de mesma monotonicidade de } f)$

P4)
$$(gof)^{-1} = f^{-1}og^{-1}$$

3. Determine a função inversa das funções abaixo:

a)
$$f: \mathbb{R} \to \mathbb{R}$$
 e $f(x) = 3x + 1$

b)
$$f: A \to B \ e \ f(x) = \frac{3x+2}{x-4}$$

Resolução:

a)
$$f: \mathbb{R} \to \mathbb{R}$$
 e $f(x) = 3x + 1$

Antes de encontrar a inversa de uma função, devemos verificar se ela é inversível. Para isso, basta provar que ela é bijetora.

Para provar que f é injetora, podemos usar dois métodos:

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Οι

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Vamos demonstrar pelos dois métodos:

$$1) x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

$$x_1 \neq x_2 \Rightarrow 3x_1 \neq 3x_2 \Rightarrow 3x_1 + 1 \neq 3x_2 + 1 \Rightarrow f(x_1) \neq f(x_2)$$

$$II) f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

$$f(x_1) = f(x_2) \Rightarrow 3x_1 + 1 = 3x_2 + 1 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2$$

Portanto, provamos que f é injetora.

*Observações: Para usar o método (I), devemos partir de $x_1 \neq x_2$ e manipulá-lo para chegar até $f(x_1) \neq f(x_2)$. Para o método (II), devemos partir de $f(x_1) = f(x_2)$ e provar que $x_1 = x_2$.

Agora, devemos provar que f é sobrejetora. Também podemos provar por dois caminhos diferentes:

$$f:A \to B$$

$$\forall y \in B, \exists x \in A \text{ tal que } f(x) = y$$
 Ou
$$Im_f = B$$

Vamos provar pelos dois métodos:

I)
$$\forall y \in B, \exists x \in A \text{ tal que } f(x) = y$$

Para provar desse modo, primeiro fazemos f(x) = y e isolamos x:

$$f(x) = y \Rightarrow y = 3x + 1$$
$$x = \frac{y-1}{3}$$

Agora, temos que mostrar que existe solução em $x \in A$. No caso, $A = \mathbb{R}$ e $B = \mathbb{R}$. Como $x \in \mathbb{R}$, temos que qualquer $y \in \mathbb{R}$ satisfaz a equação. Logo, f é sobrejetora.

II)
$$Im_f = B$$

Basta provar que a imagem de f é o contradomínio.

Sendo
$$f: \mathbb{R} \to \mathbb{R}$$
 e $f(x) = 3x + 1$:

Como $x \in \mathbb{R}$, temos $3x + 1 \in \mathbb{R}$. Logo, $Im_f = \mathbb{R}$.

Disso resulta que f é bijetora e possui inversa.

Para encontrar a inversa da função f, basta fazer $x=f^{-1}(y)$ e substituir na equação de x em função de y:

$$x = \frac{y-1}{3}$$
$$f^{-1}(y) = \frac{y-1}{3}$$

b)
$$f: A \to B \ e \ f(x) = \frac{3x+2}{x-4}$$

Essa função possui condição de existência. O denominador deve ser diferente de zero:

$$x - 4 \neq 0 \Rightarrow x \neq 4$$

Vamos definir $A = \mathbb{R} - \{4\}$.

Antes de encontrar a inversa, devemos provar que f é bijetora.

 $\forall y \in B, f(x) = y$:

$$\frac{3x+2}{x-4} = y$$

$$3x + 2 = yx - 4y$$

$$2 + 4y = yx - 3x$$

$$2 + 4y = x(y - 3)$$

$$x = \frac{2+4y}{y-3}$$

x possui solução em $\mathbb{R} - \{4\}$ se $y - 3 \neq 0$:

$$y - 3 \neq 0 \Rightarrow y \neq 3$$

Então, devemos definir $B = \mathbb{R} - \{3\}$ para x ter solução e f ser sobrejetora.

A inversa de f é dada por:

$$x = \frac{2+4y}{y-3}$$
$$f^{-1}(y) = \frac{2+4y}{y-3}$$

Gabarito: a)
$$f^{-1}(y) = \frac{y-1}{3}$$
 b) $f^{-1}(y) = \frac{2+4y}{y-3}$

6. Lista de Questões

4. (ITA/2018)

Considere as funções $f,g:\mathbb{R}\to\mathbb{R}$ dadas por f(x)=ax+b e g(x)=cx+d, com $a,b,c,d\in\mathbb{R}$, $a\neq 0$ e $c\neq 0$. Se $f^{-1}og^{-1}=g^{-1}of^{-1}$, então uma relação entre as constantes a,b,c e d é dada por

- a) b + ad = d + bc
- b) d + ba = c + db

- c) a + db = b + cd
- d) b + ac = d + ba
- e) c + da = b + cd

5. (ITA/2017/Modificada)

Sejam X e Y dois conjuntos finitos com $X \subset Y$ e $X \neq Y$. Considere as seguintes afirmações:

- I. Existe uma bijeção $f: X \to Y$.
- II. Existe uma função injetora $g: Y \to X$.

Classifique-as.

6. (ITA/2014)

Considere as funções apenas $f, g: \mathbb{Z} \to \mathbb{R}, f(x) = ax + m, g(x) = bx + n$, em que a, b, m e n são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:

- I. Se A = B, então a = b e m = n;
- II. Se $A = \mathbb{Z}$, então a = 1;
- III. Se $a, b, m, n \in \mathbb{Z}$, com a = b e m = -n, então A = B,
- É (são) verdadeira(s)
- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) apenas I e II.
- e) nenhuma.

7. (ITA/2014/Modificada)

Classifique a afirmação:

Sejam $a, b, c \in \mathbb{R}$, com a < b < c. Se $f: [a, c] \to [a, b]$ é sobrejetora, então f não é injetora.

8. (ITA/2013)

Considere as funções $f, g, f + g: \mathbb{R} \to \mathbb{R}$. Das afirmações:

- I. Se f e g são injetoras, f + g é injetora;
- II. Se f e g são sobrejetoras, f + g é sobrejetora;
- III. Se f e g não são injetoras, f + g não é injetora;
- IV. Se f e g não são sobrejetoras, f + g não é sobrejetora;
- É (são) verdadeira(s)
- a) nenhuma.

- b) apenas I e II.
- c) apenas I e III.
- d) apenas III e IV.
- e) todas.

9. (ITA/2010)

Seja $f: \mathbb{R} \to \mathbb{R}$ bijetora e impar. Mostre que a função inversa $f^{-1}: \mathbb{R} \to \mathbb{R}$ também é impar.

10. (ITA/2010)

Sejam $f, g: \mathbb{R} \to \mathbb{R}$ tais que f é par e g é impar. Das seguintes afirmações:

I. $f \cdot g$ é impar,

II. f o g é par,

III. $g \circ f$ é impar,

É (são) verdadeira(s)

- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) apenas I e II.
- e) todas.

11. (ITA/2006)

Seja $f:[0,1) \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 2x, & 0 \le x < \frac{1}{2} \\ 2x - 1, & \frac{1}{2} \le x < 1 \end{cases}$$

Seja $g: \left(-\frac{1}{2}, \frac{1}{2}\right) \to \mathbb{R}$ dada por

$$g(x) = \begin{cases} f\left(x + \frac{1}{2}\right), & -\frac{1}{2} < x < 0\\ 1 - f\left(x + \frac{1}{2}\right), & 0 \le x < \frac{1}{2} \end{cases}$$

Com f definida acima. Justificando a resposta, determine se g é par, ímpar ou nem par nem ímpar.

12. (ITA/2005)

Seja $D: \mathbb{R} - \{1\}$ e $f: D \to D$ uma função dada por

Considere as afirmações:

- I. f é injetiva e sobrejetiva.
- II. f é injetiva, mas não sobrejetiva.
- III. $f(x) + f\left(\frac{1}{x}\right) = 0$, para todo $x \in D, x \neq 0$.
- IV. f(x)f(-x) = 1, para todo $x \in D$.

Então, são verdadeiras

- a) apenas I e III.
- b) apenas I e IV.
- c) apenas II e III.
- d) apenas I, III e IV.
- e) apenas II, III e IV.

13. (IME/2019)

Definimos a função $f: \mathbb{N} \to \mathbb{N}$ da seguinte forma:

$$\begin{cases} f(0) = 0 \\ f(1) = 1 \\ f(2n) = f(n), \ n \ge 1 \\ f(2n+1) = n^2, \ n \ge 1 \end{cases}$$

Definimos a função $g: \mathbb{N} \to \mathbb{N}$ da seguinte forma: g(n) = f(n)f(n+1).

Podemos afirmar que:

- a) g é uma função sobrejetora.
- b) g é uma função injetora.
- c) f é uma função sobrejetora.
- d) *f* é uma função injetora.
- e) g(2018) tem mais do que 4 divisores positivos.

14. (IME/2018)

Considere as alternativas:

- I. O inverso de um irracional é sempre irracional.
- II. Seja a função $f: A \to B$ e X e Y dois subconjuntos quaisquer de A, então $f(X \cap Y) = f(X) \cap f(Y)$.
- III. Seja a função $f: A \to B$ e X e Y dois subconjuntos quaisquer de A, então $f(X \cup Y) = f(X) \cup f(Y)$.
- IV. Dados dois conjuntos A e B não vazios, então $A \cap B = A$ se, e somente se, $B \subset A$.
- Obs.: $f(\mathbb{Z})$ é a imagem de f no domínio \mathbb{Z} .

São corretas:

- a) I, apenas.
- b) I e III, apenas.
- c) II e IV, apenas.
- d) I e IV, apenas.
- e) II e III, apenas.

15. (IME/2018)

Seja f(x) uma função definida no conjunto dos números reais, de forma que f(1) = 5 e para qualquer x pertencente aos números reais $f(x+4) \ge f(x) + 4$ e $f(x+1) \le f(x) + 1$.

Se g(x) = f(x) + 2 - x, o valor de g(2017) é:

- a) 2
- b) 6
- c) 13
- d) 2021
- e) 2023

16. (IME/2017)

O sistema de inequações abaixo admite k soluções inteiras.

$$\begin{cases} \frac{x^2 - 2x - 14}{x} > 3\\ x \le 12 \end{cases}$$

Pode-se afirmar que:

- a) $0 \le k < 2$
- b) $2 \le k < 4$
- c) $4 \le k < 6$
- d) $6 \le k < 8$
- e) $k \ge 8$

17. (IME/2016)

Sejam as funções f_n , para $n \in \{0, 1, 2, 3, ...\}$, tais que: $f_0(x) = \frac{1}{1-x}$ e $f_n(x) = f_0(f_{n-1}(x))$, para $n \ge 1$. Calcule $f_{2016}(2016)$.

18. (IME/2010)

Sejam as funções $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R}$. A alternativa que apresenta a condição necessária para que se f(g(x)) = f(h(x)), então g(x) = h(x) é

a)
$$f(x) = x$$

- b) f(f(x)) = f(x)
- c) f é bijetora
- d) f é sobrejetora
- e) f é injetora

7. Gabarito

- 4. a
- 5. I. F II. F
- 6. e
- 7. Falsa.
- 8. a
- 9. Demonstração
- 10. d
- 11. *g* é par
- 12. a
- 13. e
- 14. b
- 15. b
- 16. d
- 17. $f_{2016}(2016) = -\frac{1}{2015}$
- 18. e

8. Lista de Questões Resolvidas e Comentadas

4. (ITA/2018)

Considere as funções $f,g:\mathbb{R}\to\mathbb{R}$ dadas por f(x)=ax+b e g(x)=cx+d, com $a,b,c,d\in\mathbb{R}$, $a\neq 0$ e $c\neq 0$. Se $f^{-1}og^{-1}=g^{-1}of^{-1}$, então uma relação entre as constantes a,b,c e d é dada por

- a) b + ad = d + bc
- b) d + ba = c + db
- c) a + db = b + cd
- d) b + ac = d + ba

e)
$$c + da = b + cd$$

Comentários

Vamos encontrar as inversas f^{-1} e g^{-1} :

$$f(x) = ax + b$$

$$y = f(x) \Rightarrow y = ax + b$$

$$x = \frac{y - b}{a}$$

$$\Rightarrow f^{-1}(y) = \frac{y - b}{a}$$

$$g(x) = cx + d$$

$$y = g(x) \Rightarrow y = cx + d$$

$$x = \frac{y - d}{c}$$

$$\Rightarrow g^{-1}(y) = \frac{y - d}{c}$$

Encontrando as compostas:

$$f^{-1}og^{-1}(x) = f^{-1}[g^{-1}(x)] = \frac{g^{-1}(x) - b}{a} = \frac{\left(\frac{x - d}{c}\right) - b}{a} = \frac{x - d - bc}{ac}$$

$$\Rightarrow f^{-1}og^{-1}(x) = \frac{x - d - bc}{ac}$$

$$g^{-1}of^{-1}(x) = g^{-1}[f^{-1}(x)] = \frac{f^{-1}(x) - d}{c} = \frac{\left(\frac{x - b}{a}\right) - d}{c} = \frac{x - b - ad}{ac}$$

$$\Rightarrow g^{-1}of^{-1}(x) = \frac{x - b - ad}{ac}$$

A relação entre as constantes será dada por:

$$f^{-1}og^{-1}(x) = g^{-1}of^{-1}(x)$$

$$\frac{x - d - bc}{ac} = \frac{x - b - ad}{ac}$$

$$\frac{x - d - bc}{ac} = \frac{x - b - ad}{ac}$$

$$-d - bc = -b - ad$$

$$\Rightarrow b + ad = d + bc$$

Gabarito: "a".

5. (ITA/2017/Modificada)

Sejam X e Y dois conjuntos finitos com $X \subset Y$ e $X \neq Y$. Considere as seguintes afirmações:

- I. Existe uma bijeção $f: X \to Y$.
- II. Existe uma função injetora $g: Y \to X$.

Classifique-as.

Comentários

Se X e Y são dois conjuntos finitos, $X \subset Y$ e $X \neq Y$: n(X) < n(Y).

I. n(X) < n(Y). Então uma função de X em Y implica que $Im(f) \neq Y$, já que o número de elementos do domínio X é menor que o número de elementos do contradomínio Y. E pela definição de função, um $x \in X$ não pode ser transformada em dois valores $y \in Y$. Logo, f não é sobrejetora. Consequentemente, f não é bijetora.

Falsa.

II. Da definição de função, $g: Y \to X$ implica que todos os elementos do domínio Y devem ser transformados nos elementos pertencentes ao contradomínio X (não obrigatoriamente todos). Então, teremos obrigatoriamente $\exists y_1, y_2 \in Y$, tal que $g(y_1) = g(y_2)$. g não é injetora.

Falsa.

Gabarito: I. F II. F

6. (ITA/2014)

Considere as funções apenas $f, g: \mathbb{Z} \to \mathbb{R}$, f(x) = ax + m, g(x) = bx + n, em que a, b, m e n são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:

- I. Se A = B, então a = b e m = n;
- II. Se $A = \mathbb{Z}$, então a = 1;
- III. Se $a, b, m, n \in \mathbb{Z}$, com a = b e m = -n, então A = B,

É (são) verdadeira(s)

- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) apenas I e II.
- e) nenhuma.

Comentários

I. Suponha f(x)=x e g(x)=-x+1. O domínio das funções f e g é o conjunto $\mathbb Z$ e a imagem de f é $A=\mathbb Z$ e de g é $B=\mathbb Z$.

$$A = B$$

$$a = 1 \neq -1 = b$$

$$m = 0 \neq 1 = n$$

∴Falsa.

II. Se tomarmos f(x) = -x, temos $A = \mathbb{Z}$ e a = -1.

∴Falsa.

III. Vamos tomar f(x) = 3x + 1 e g(x) = 3x - 1.

 $3, \pm 1 \in \mathbb{Z}$ e satisfaz a condição a = b e m = -n.

$$f(3) = 3 \cdot 3 + 1 = 10$$

Se A = B, então devemos ter um $x \in \mathbb{Z}$, tal que g(x) = 10.

$$g(x) = 3x - 1 = 10$$
$$x = \frac{11}{3} \notin \mathbb{Z}$$

Não temos $x \in \mathbb{Z}$, tal que $10 \in B$. Logo, $A \neq B$. Falsa.

Gabarito: "e".

7. (ITA/2014/Modificada)

Classifique a afirmação:

Sejam $a, b, c \in \mathbb{R}$, com a < b < c. Se $f: [a, c] \to [a, b]$ é sobrejetora, então f não é injetora.

Comentários

Essa questão é um exemplo de como o ITA gosta de generalizar resultados. Normalmente, afirmações assim são falsas.

Com o tempo, ganharemos experiência e não precisaremos gastar tempo para encontrar uma função que sirva de contra-exemplo. Veja o gráfico da função f abaixo:

Podemos usar a função $f(x) = \alpha x + \beta$, tal que α e β seja os coeficientes do gráfico da função acima. Essa reta é sobrejetora em [a,b] e injetora. Logo a afirmação é falsa.

Poderíamos resolver também analiticamente. Vamos tentar encontrar um contra-exemplo que seja sobrejetora e injetora. A função mais simples que podemos usar é a função de primeiro grau.

Seja $f(x) = \alpha x + \beta$, encontrando $\alpha \in \beta$ tal que $f: [a, c] \rightarrow [a, b]$:

$$f(a) = \alpha a + \beta = a (I)$$

$$f(c) = \alpha c + \beta = b \ (II)$$

$$(II) - (I)$$
:

$$\alpha(c-a) = b - a \Rightarrow \alpha = \frac{b-a}{c-a}$$

$$f(x) = \frac{(b-a)}{c-a}x + \beta$$

Substituindo x = a e sabendo que f(a) = a:

$$f(a) = \frac{(b-a)}{c-a}a + \beta = a$$

$$\beta = a - \frac{(b-a)}{c-a}a = a\left(1 - \frac{(b-a)}{c-a}\right) = \frac{a(c-b)}{c-a}$$

$$\Rightarrow f(x) = \frac{(b-a)}{c-a}a + \frac{a(c-b)}{c-a}$$

 $f: [a, c] \rightarrow [a, b]$ é uma função bijetora.

∴Afirmação falsa.

Gabarito: Falsa.

8. (ITA/2013)

Considere as funções f, g, f + g: $\mathbb{R} \to \mathbb{R}$. Das afirmações:

- I. Se f e g são injetoras, f + g é injetora;
- II. Se f e g são sobrejetoras, f + g é sobrejetora;
- III. Se f e g não são injetoras, f + g não é injetora;
- IV. Se f e g não são sobrejetoras, f + g não é sobrejetora;

É (são) verdadeira(s)

- a) nenhuma.
- b) apenas I e II.
- c) apenas I e III.
- d) apenas III e IV.
- e) todas.

Comentários

I. Vamos supor f(x) = x e g(x) = -x, ambas são funções injetoras em \mathbb{R} . Se h = f + g:

$$h(x) = f(x) + g(x) = x - x = 0$$
$$h(x) = 0$$

h não é uma função injetora.

- ∴Falsa.
- II. Usando o contra-exemplo da I, temos:

$$f(x) = x$$
$$g(x) = -x$$
$$h(x) = f(x) + g(x) = 0$$

f e g são sobrejetoras em \mathbb{R} , mas h=f+g não é sobrejetora $(Im(h)=\{0\}\neq\mathbb{R})$.

∴Falsa.

III. Vamos supor $f(x) = (x+1)^2 = x^2 + 2x + 1$ e $g(x) = -(x-1)^2 = -x^2 + 2x - 1$. Ambas não são injetoras em \mathbb{R} . Se h = f + g:

$$h(x) = f(x) + g(x) = (x^2 + 2x + 1) + (-x^2 + 2x - 1) = 4x$$
$$h(x) = 4x$$

h é injetora.

∴Falsa.

IV. Usando o mesmo contra-exemplo da III:

$$f(x) = x^{2} + 2x + 1$$
$$g(x) = -x^{2} + 2x - 1$$
$$h(x) = f(x) + g(x) = 4x$$

f e g não são sobrejetoras em \mathbb{R} e h é sobrejetora em \mathbb{R} .

∴Falsa.

Gabarito: "a".

9. (ITA/2010)

Seja $f: \mathbb{R} \to \mathbb{R}$ bijetora e impar. Mostre que a função inversa $f^{-1}: \mathbb{R} \to \mathbb{R}$ também é impar.

Comentários

Vamos provar por absurdo.

Supondo que f^{-1} não seja ímpar, então $\exists y \in \mathbb{R}$, tal que $f^{-1}(-y) \neq -f^{-1}(y)$.

Definindo $a = f^{-1}(-y)$ e $b = f^{-1}(y)$, $a, b \in \mathbb{R}$, temos:

$$f^{-1}(-y) \neq -f^{-1}(y)$$
$$a \neq -b$$

Da condição de injetora:

$$f(a) \neq f(-b)$$

Como f é ímpar:

$$f(-b) = -f(b)$$

Dessa forma, encontramos:

$$f(a) \neq -f(b)$$

Substituindo $a = f^{-1}(-y)$ e $b = f^{-1}(y)$:

$$f(f^{-1}(-y)) \neq -f(f^{-1}(y))$$

Usando as propriedades da inversa:

$$-y \neq -(y)$$

$$-y \neq -y$$

∴ Absurdo!

Portanto, f^{-1} também é ímpar.

Gabarito: Demonstração.

10. (ITA/2010)

Sejam $f, g: \mathbb{R} \to \mathbb{R}$ tais que f é par e g é impar. Das seguintes afirmações:

I. $f \cdot g$ é impar,

II. f o g é par,

III. $g \circ f$ é impar,

É (são) verdadeira(s)

- a) apenas I.
- b) apenas II.
- c) apenas III.
- d) apenas I e II.
- e) todas.

Comentários

I. $f \cdot g$ é impar

Vamos definir h(x) = f(x)g(x). Desse modo:

$$h(-x) = f(-x)g(-x)$$

$$f \in \operatorname{par} \Rightarrow f(x) = f(-x)$$

$$g \in \operatorname{impar} \Rightarrow g(-x) - g(x)$$

$$h(-x) = f(x)[-g(x)] = -f(x)g(x) = -h(x)$$

$$\therefore h \in \operatorname{impar} \Rightarrow f \cdot g \in \operatorname{impar}$$

Verdadeira.

II. $f \circ g$ é par

Definindo $H(x) = (f \circ g)(x) = f[g(x)]$. Temos:

$$H(-x) = f[g(-x)]$$

$$g \text{ impar } \Rightarrow g(-x) = -g(x)$$

$$f \text{ par } \Rightarrow f(-x) = f(x)$$

$$H(-x) = f[-g(x)] = f[g(x)] = H(x)$$

$$\therefore H \text{ é par } \Rightarrow f \text{ o } g \text{ é par}$$

Verdadeira.

III. $g \circ f$ é ímpar

Definindo $s(x) = (g \ o \ f)(x) = g[f(x)]$. Temos:

$$s(-x) = g[f(-x)] = g[f(x)] = s(x)$$

 $\therefore s \in par \Rightarrow g \circ f \in par$

Falsa.

Gabarito: "d".

11. (ITA/2006)

Seja $f:[0,1) \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 2x, & 0 \le x < \frac{1}{2} \\ 2x - 1, & \frac{1}{2} \le x < 1 \end{cases}$$

Seja $g: \left(-\frac{1}{2}, \frac{1}{2}\right) \to \mathbb{R}$ dada por

$$g(x) = \begin{cases} f\left(x + \frac{1}{2}\right), & -\frac{1}{2} < x < 0\\ 1 - f\left(x + \frac{1}{2}\right), & 0 \le x < \frac{1}{2} \end{cases}$$

Com f definida acima. Justificando a resposta, determine se g é par, impar ou nem par nem impar.

Comentários

Precisamos verificar a paridade da função g.

g está definido em dois intervalos distintos.

Supondo -1/2 < x < 0:

$$g(x) = f\left(x + \frac{1}{2}\right)$$
$$-\frac{1}{2} < x < 0$$

Usando as propriedades da desigualdade:

$$-\frac{1}{2} + \frac{1}{2} < x + \frac{1}{2} < 0 + \frac{1}{2}$$
$$0 < x + \frac{1}{2} < \frac{1}{2}$$

Dessa forma:

$$f\left(x + \frac{1}{2}\right) = 2\left(x + \frac{1}{2}\right), 0 < x + \frac{1}{2} < \frac{1}{2}$$
$$g(x) = 2x + 1, -\frac{1}{2} < x < 0$$

Para $0 \le x < 1/2$:

$$g(x) = 1 - f\left(x + \frac{1}{2}\right)$$
$$0 \le x < \frac{1}{2} \Rightarrow \frac{1}{2} \le x + \frac{1}{2} < 1$$
$$f\left(x + \frac{1}{2}\right) = 2\left(x + \frac{1}{2}\right) - 1, \frac{1}{2} \le x + \frac{1}{2} < 1$$

$$g(x) = 1 - \left[2\left(x + \frac{1}{2}\right) - 1\right] = 1 - 2x$$

$$g(x) = 1 - 2x, 0 \le x < \frac{1}{2}$$

$$g(x) = \begin{cases} 1 + 2x, & -\frac{1}{2} < x < 0 \\ 1 - 2x, & 0 \le x < \frac{1}{2} \end{cases}$$

Representando a função g no plano cartesiano:

$$g(x) = g(-x)$$
, logo g é par.

Gabarito: g é par

12. (ITA/2005)

Seja $D \colon \mathbb{R} - \{1\}$ e $f \colon D \to D$ uma função dada por

$$f(x) = \frac{x+1}{x-1}$$

Considere as afirmações:

I. f é injetiva e sobrejetiva.

II. f é injetiva, mas não sobrejetiva.

III. $f(x) + f\left(\frac{1}{x}\right) = 0$, para todo $x \in D, x \neq 0$.

IV. f(x)f(-x) = 1, para todo $x \in D$.

Então, são verdadeiras

- a) apenas I e III.
- b) apenas I e IV.
- c) apenas II e III.
- d) apenas I, III e IV.
- e) apenas II, III e IV.

Comentários

I. Vamos verificar se f é injetora.

 $\forall x_1, x_2 \in D$:

$$f(x_1) = f(x_2)$$

$$\frac{x_1 + 1}{x_1 - 1} = \frac{x_2 + 1}{x_2 - 1}$$

$$(x_1 + 1)(x_2 - 1) = (x_2 + 1)(x_1 - 1)$$

$$x_1x_2 - x_1 + x_2 - 1 = x_1x_2 - x_2 + x_1 - 1$$

$$x_1x_2 - x_1 + x_2 - 1 = x_1x_2 - x_2 + x_1 - 1$$

$$2x_2 = 2x_1$$

$$x_2 = x_1$$

$$\therefore f \in \text{injetora}$$

Agora, verificamos se f é sobrejetora.

 $y \in \mathbb{R}$ e y = f(x), temos:

$$y = \frac{x+1}{x-1}$$

$$y(x-1) = x+1$$

$$yx - y = x+1$$

$$yx - x = y+1$$

$$x(y-1) = y+1$$

$$x = \frac{y+1}{y-1}$$

Analisando a condição de existência:

$$y - 1 \neq 0 \Rightarrow y \neq 1$$

Logo, temos:

$$Im(f) = \mathbb{R} - \{1\} = D$$

 $\therefore f \in \text{sobrejetora}$

Portanto, afirmação verdadeira.

II. Como visto na I, f é injetiva e sobrejetiva. Afrmação falsa.

III. Vamos calcular $f(x) + f\left(\frac{1}{x}\right)$ para $x \neq 0$ e $\forall x \in D$:

$$f(x) + f\left(\frac{1}{x}\right) = \frac{x+1}{x-1} + \frac{\frac{1}{x}+1}{\frac{1}{x}-1} = \frac{x+1}{x-1} + \frac{1+x}{1-x} = \frac{x+1}{x-1} + \frac{x+1}{(-1)(x-1)} = 0$$

∴Afirmação verdadeira.

IV.
$$f(x)f(-x) = 1, \forall x \in D$$
.

Temos uma pegadinha nessa afirmação. Se não nos atentássemos a esse detalhe acabaríamos marcando como verdadeira. Veja:

$$f(x)f(-x) = \frac{(x+1)(-x+1)}{(x-1)(-x-1)} = \frac{-x^2+1}{-x^2+1} = 1$$

Mas, x está definida no conjunto $D=\mathbb{R}-\{1\}$. Se tomarmos $x=-1\in D$, temos $f(-x)=f\left(-(-1)\right)=f(1)$ e sabemos que $1\notin D$. Logo, f(-x) não está definida para todo $x\in D$.

∴Falsa.

Gabarito: "a".

13. (IME/2019)

Definimos a função $f: \mathbb{N} \to \mathbb{N}$ da seguinte forma:

$$\begin{cases}
f(0) = 0 \\
f(1) = 1 \\
f(2n) = f(n), n \ge 1 \\
f(2n+1) = n^2, n \ge 1
\end{cases}$$

Definimos a função $g: \mathbb{N} \to \mathbb{N}$ da seguinte forma: g(n) = f(n)f(n+1).

Podemos afirmar que:

- a) *g* é uma função sobrejetora.
- b) *g* é uma função injetora.
- c) f é uma função sobrejetora.
- d) f é uma função injetora.
- e) g(2018) tem mais do que 4 divisores positivos.

Comentários

Para questões de funções desse tipo, devemos testar os valores e verificar as alternativas. Vamos encontrar a imagem de f e g.

Para f, temos:

n			2			5	6
f(n)	0	1	1	1	1	4	1

Já podemos afirmar que f não é injetora, pois f(1)=f(2). Também não é sobrejetora, pois f assume apenas valores quadrados perfeitos.

Para g:

<i>n</i>	g(n)
0	f(0)f(1) = 0
1	f(1)f(2) = 1
2	f(2)f(3) = 1
3	f(3)f(4) = 1
4	f(4)f(5) = 4

g também não é injetora nem sobrejetora pelos mesmos motivos de f.

Portanto, a única alternativa que resta é a "e". Veja:

$$g(2018) = f(2018)f(2019) = f(1009)f(2019) = 504^2 \cdot 1009^2 = (2^3 \cdot 3^2 \cdot 7^1)^2 \cdot 1009^2$$

 $g(2018) = 2^6 \cdot 3^4 \cdot 7^2 \cdot 1009^2$

O número de divisores positivos de g é:

$$(6+1)(4+1)(2+1)(2+1) = 7 \cdot 5 \cdot 3 \cdot 3 = 315$$
 divisores positivos

*Observação: Na hora da prova, você poderia testar diretamente a única alternativa que trata de valores numéricos. Assim, você não perderia tempo testando as demais. Sempre tente ganhar tempo na prova!

Gabarito: "e".

14. (IME/2018)

Considere as alternativas:

- I. O inverso de um irracional é sempre irracional.
- II. Seja a função $f: A \to B$ e X e Y dois subconjuntos quaisquer de A, então $f(X \cap Y) = f(X) \cap f(Y)$.
- III. Seja a função $f: A \to B$ e X e Y dois subconjuntos quaisquer de A, então $f(X \cup Y) = f(X) \cup f(Y)$.
- IV. Dados dois conjuntos A e B não vazios, então $A \cap B = A$ se, e somente se, $B \subset A$.

Obs.: $f(\mathbb{Z})$ é a imagem de f no domínio \mathbb{Z} .

São corretas:

- a) I, apenas.
- b) I e III, apenas.
- c) II e IV, apenas.
- d) I e IV, apenas.
- e) II e III, apenas.

Comentários

I. Vamos provar por absurdo.

Supondo que $x \in \mathbb{I}$ e $1/x \in \mathbb{Q}$. Se 1/x é racional, podemos escrever:

$$\frac{1}{x} = \frac{a}{b}, a, b \in \mathbb{Z}^*$$
$$x = \frac{b}{a} \in \mathbb{Q}$$

Da hipótese inicial $x \in \mathbb{I}$. Absurdo!

Logo, o inverso de um irracional é sempre irracional.

∴Verdadeira.

II.
$$X, Y \subset A$$
, $f(X \cap Y) = f(X) \cap f(Y)$.

Vamos encontrar um contra-exemplo.

Seja
$$A = \{2, 3, 4\}, B = \{1, 2, 3\} X = \{2, 3\}, Y = \{3, 4\}.$$

Representando $f: A \rightarrow B$ no diagrama de flechas:

$$X \cap Y = \{3\} \Rightarrow f(X \cap Y) = \{2\}$$
$$f(X) = \{1, 2\} e f(Y) = \{1, 2\} \Rightarrow f(X) \cap f(Y) = \{1, 2\} \neq f(X \cap Y)$$

∴Falsa.

III. Podemos provar usando a definição do conjunto união e a propriedade anti-simétrica dos subconjuntos.

(Propriedade anti-simétrica dos subconjuntos: $A \subset B \land B \subset A \Leftrightarrow A = B$)

Demonstração:

Para $a \in (X \cup Y)$, existe $b \in f(X \cup Y)$, tal que f(a) = b.

Da relação $a \in (X \cup Y)$, temos $a \in X$ ou $a \in Y$.

Se $a \in X$, temos $b \in f(X)$. Mas se $a \in Y$, temos $b \in f(Y)$. Dessa forma, podemos afirmar:

$$b \in f(X) \cup f(Y)$$

Disso, concluímos:

$$\Rightarrow f(X \cup Y) \subset f(X) \cup f(Y)$$

Agora, vamos provar que $f(X) \cup f(Y) \subset f(X \cup Y)$.

Seja $b \in f(X) \cup f(Y)$. Então, da definição de conjunto união: $b \in f(X)$ ou $b \in f(Y)$.

Para $b \in f(X)$, podemos encontrar um $a \in X$ tal que b = f(a). Analogamente para $b \in f(Y)$, podemos encontrar $a \in Y$ que satisfaça b = f(a). Então $\exists a \in X \cup Y$, tal que b = f(a).

Dessa forma: $b \in f(X \cup Y)$.

$$\Rightarrow f(X) \cup f(Y) \subset f(X \cup Y)$$

Da propriedade anti-simétrica:

$$f(X \cup Y) = f(X) \cup f(Y)$$

∴Verdadeira.

IV.
$$A \cap B = A \Leftrightarrow B \subset A$$

Contra-exemplo:

$$A = \{a, b\}$$

$$B = \{a, b, c\}$$

$$A \cap B = \{a, b\} = A$$

$$B \not\subset A$$

∴Falsa.

Gabarito: "b".

15. (IME/2018)

Seja f(x) uma função definida no conjunto dos números reais, de forma que f(1) = 5 e para qualquer x pertencente aos números reais $f(x+4) \ge f(x) + 4$ e $f(x+1) \le f(x) + 1$.

Se g(x) = f(x) + 2 - x, o valor de g(2017) é:

- a) 2
- b) 6
- c) 13
- d) 2021
- e) 2023

Comentários

Precisamos encontrar o valor de g(2017) = f(2017) + 2 - 2017. Para isso, temos que encontrar o valor de f(2017).

Do enunciado:

$$\begin{cases} f(1) = 5 \\ f(x+4) \ge f(x) + 4 \\ f(x+1) \le f(x) + 1 \end{cases}$$

Vamos analisar $f(x+1) \le f(x)+1$. Podemos manipular x da função e encontrar as relações de desigualdade:

$$f(x+1) \le f(x) + 1$$
$$f(x+2) \le f(x+1) + 1$$
$$f(x+3) \le f(x+2) + 1$$
$$f(x+4) \le f(x+3) + 1$$

Somando as inequações, obtemos:

$$f(x+4) + f(x+3) + f(x+2) + f(x+1) \le f(x+3) + f(x+2) + f(x+1) + f(x) + 4$$
$$f(x+4) \le f(x) + 4$$

Dessa forma, temos a seguinte relação:

$$f(x) + 4 \le f(x+4) \le f(x) + 4$$

 $\Rightarrow f(x+4) = f(x) + 4$

f(2017) é dado por:

$$f(2017) = f(2013) + 4$$

$$f(2013) = f(2009) + 4$$
$$f(2009) = f(2005) + 4$$
$$\vdots$$

$$f(2017) = f(2017 - 4) + 4 = f(2017 - 2 \cdot 4) + 2 \cdot 4 = f(2017 - 3 \cdot 4) + 3 \cdot 4 = \cdots$$

Temos um padrão. Perceba que $f(2017) = f(2017 - n \cdot 4) + n \cdot 4$

Vamos encontrar n. Dividindo 2017 por 4:

$$2017 = 504 \cdot 4 + 1 \Rightarrow 2017 - 504 \cdot 4 = 1$$

Assim:

$$f(2017) = f(2017 - 504 \cdot 4) + 504 \cdot 4$$
$$f(2017) = f(1) + 504 \cdot 4 = 5 + 504 \cdot 4 = 2021$$

g(2017) é dado por:

$$g(2017) = f(2017) + 2 - 2017$$
$$g(2017) = 2021 + 2 - 2017 = 6$$
$$\Rightarrow g(2017) = 6$$

Gabarito: "b".

16. (IME/2017)

O sistema de inequações abaixo admite k soluções inteiras.

$$\begin{cases} \frac{x^2 - 2x - 14}{x} > 3\\ x < 12 \end{cases}$$

Pode-se afirmar que:

- a) $0 \le k < 2$
- b) $2 \le k < 4$
- c) $4 \le k < 6$
- d) $6 \le k < 8$
- e) $k \ge 8$

Comentários

Devemos encontrar as soluções inteiras que satisfazem ao sistema. Vamos analisar a primeira inequação:

$$\frac{x^2 - 2x - 14}{x} > 3$$

$$\frac{x^2 - 2x - 14}{x} - 3 > 0$$

$$\frac{x^2 - 2x - 14 - 3x}{x} > 0$$

$$\frac{x^2 - 5x - 14}{x} > 0$$

Devemos ter $x \neq 0$ como condição de existência.

Construindo o quadro de sinais, obtemos:

Dessa inequação, encontramos $x \in]-2,0[\cup]7,+\infty[$.

Da segunda inequação, temos: $x \le 12$.

Juntando as duas condições, encontramos as raízes inteiras:

$$x \in A$$

$$A = \{-1, 8, 9, 10, 11, 12\}$$

$$k = n(A) = 6$$

$$6 \le k < 8$$

Gabarito: "d".

17. (IME/2016)

Sejam as funções f_n , para $n \in \{0, 1, 2, 3, ...\}$, tais que: $f_0(x) = \frac{1}{1-x}$ e $f_n(x) = f_0(f_{n-1}(x))$, para $n \ge 1$. Calcule $f_{2016}(2016)$.

Comentários

Vamos tentar encontrar um padrão nas formas de f, sabendo que $f_n(x) = f_0(f_{n-1}(x))$.

Para n=1:

$$f_1(x) = f_0(f_0(x))$$

$$f_1(x) = \frac{1}{1 - f_0(x)} = \frac{1}{1 - \left(\frac{1}{1 - x}\right)} = \frac{1 - x}{1 - x - 1} = \frac{1 - x}{-x} = \frac{x - 1}{x}$$

Para n=2:

$$f_2(x) = f_0(f_1(x))$$

$$f_2(x) = \frac{1}{1 - f_1(x)} = \frac{1}{1 - \left(\frac{x - 1}{x}\right)} = \frac{x}{x - x + 1} = x$$

63

Para n = 3:

$$f_3(x) = f_0(f_2(x))$$

 $f_3(x) = \frac{1}{1 - x}$

Perceba que a função f_3 é igual a f_0 . Se continuarmos a calcular f para os próximos valores de n, as funções se repetirão:

$$f_0 = f_3 = f_6 = \cdots$$

 $f_1 = f_4 = f_7 = \cdots$
 $f_2 = f_5 = f_8 = \cdots$

Então, sendo $k \in \mathbb{Z}$, f é dado por:

$$f_{3k}(x) = \frac{1}{1 - x}$$

$$f_{3k+1}(x) = \frac{x - 1}{x}$$

$$f_{3k+2}(x) = x$$

Precisamos calcular $f_{2016}(2016)$. Para isso, vamos descobrir qual a forma de f para n=2016. Dividindo 2016 por 3:

$$2016 = 672 \cdot 3$$

2016 é múltiplo de 3, logo f_{2016} possui a forma de f_{3k} . Então $f_{2016}(2016)$ é dado por:

$$f_{2016}(2016) = \frac{1}{1 - 2016} = -\frac{1}{2015}$$

Gabarito:
$$f_{2016}(2016) = -\frac{1}{2015}$$

18. (IME/2010)

Sejam as funções $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R}$. A alternativa que apresenta a condição necessária para que se f(g(x)) = f(h(x)), então g(x) = h(x) é

- a) f(x) = x
- b) f(f(x)) = f(x)
- c) f é bijetora
- d) f é sobrejetora
- e) f é injetora

Comentários

Vamos verificar a condição para que a seguinte afirmação seja verdadeira:

$$f(g(x)) = f(h(x)) \Rightarrow g(x) = h(x)$$

Se $g: \mathbb{R} \to \mathbb{R}$ e $h: \mathbb{R} \to \mathbb{R}$, então:

$$\forall a, b \in \mathbb{R}, \exists x \in \mathbb{R} \text{ tal que } g(x) = a \text{ e } h(x) = b$$

$$f(g(x)) = f(h(x)) \Rightarrow f(a) = f(b) \Rightarrow a = b \Rightarrow g(x) = h(x)$$

A condição encontrada $f(a)=f(b)\Rightarrow a=b, \forall a,b\in\mathbb{R}$ é exatamente a condição de ser função injetora.

 $\mathsf{Logo}, f \not\in \mathsf{injetora}.$

Gabarito: "e".