Burs 11

Fie $f \in C^2([a,b])$.

bonform Formulei lui Touglor en rest Lagrange, pentru vrice h>0 (nu foarte mare), aven:

 $f(x-h) = f(x) - f'(x)h + f''(x) \frac{h^2}{2}, \quad c \in (x-h, x) \Rightarrow$ $\Rightarrow f'(x) = \frac{f(x) - f(x-h)}{h} + f''(x) \frac{h}{2} \Rightarrow$

 $\Rightarrow f'(x) = \frac{f(x) - f(x - h)}{h} + O(h) \Rightarrow f'(x) \approx \frac{f(x) - f(x - h)}{h} \tag{1}$

Définitie. Relatia (1) s.n. formula de aproximare prin diferente finite regressive pentre f'(x).

Depositie. the loc extimatea evolui de trunchiere: $e_{\mathbf{t}} = |f'(\mathbf{x}) - f(\mathbf{x}) - f(\mathbf{x} - \mathbf{h})| = |f''(\mathbf{c})| \frac{h}{2} \leq M \frac{h}{2}, \text{ unole}$

 $M = \max |f''(t)|.$ te[x-h,x]

Fie fe C'([a,b]).

bonforn Formulei lui Taylor en rest Lagrange, penteu vice

ho (m fore mare), arem: $f(x+h) = f(x) + f'(x)h + f''(x) \frac{h}{2} + f'''(c_1) \cdot \frac{h^3}{6}, c_1 \in (x, x+h)$ $f(x-h) = f(x) - f'(x)h + f''(x) \cdot \frac{h^2}{2} - f'''(x_2) \cdot \frac{h^3}{6}, \quad \xi_2 \in (x-h,x)$ Din prima relatie o readem pe sea de-a doua ji obti-nem: $f(x+h)-f(x-h)=f'(x)\cdot 2h+[f''(x_2)]+f''(x_2)]\frac{h^3}{c}$ $\Rightarrow f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \left[f''(x_1) + f'''(x_2)\right] \cdot \frac{h^2}{12} = 1$ $\Rightarrow f(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2) \Rightarrow$ $\Rightarrow f'(x) \approx \frac{f(x+h)-f(x-h)}{2h} \qquad (2)$ Def: Relatia (2) s.n. formula de aproximare prin diferente finite centrale pentru f(x).

Propositie. the loc estimarea erosii de trunchiere: $|x_1 - y_1| = |x_1| + |x_2| + |x_3| + |x$

$$\leq M \frac{h^2}{2} = O(h^2)$$
, unde $M = \max \{f^{(3)}(t)\} + \max \{f^{(3)}(t)\}$.
 $t \max \{f^{(3)}(t)\}$.
 $t \in [x-h, x]$

Fie fec4([a,b]).

bonform Formulei lui Touylor ou rest dagrange, pentru vice h>0 (me fourte more), avem: f(x+h)=f(x)+f'(x)h+f''(x)+f''(

$$f(x+h) = f(x) + f'(x)h + f''(x) \frac{h^2}{2} + f'''(x) \frac{h^3}{6} + f^{(4)}(c_1) \frac{h^4}{24}$$

$$c_1 \in (x, x+h).$$

$$f(x-h) = f(x) - f'(x)h + f''(x) \frac{h^2}{2} - f'''(x) \frac{h^3}{6} + f^{(4)}(x_2) \frac{h^4}{24},$$

€2€(X-h,x).

touran aceste relatie is obtinem:

$$f(x+h)+f(x-h)=2f(x)+f'(x)h^{2}+[f^{(4)}(x_{1})+f^{(4)}(x_{2})]\frac{h^{4}}{24}$$

$$= \int_{0}^{1} f(x) = \frac{f(x+h)+f(x-h)-2f(x)}{h^{2}} - \left[f^{(4)}(x_{1})+f^{(4)}(x_{2})\right] \frac{h^{2}}{24}$$

$$=$$
 $\int_{1}^{1}(x)=\frac{\int_{1}^{1}(x+h)-2f(x)+\int_{1}^{2}(x-h)}{h^{2}}+O(h^{2})=$

 $\Rightarrow f''(\bar{x}) \approx \frac{f(\bar{x}+h)-2f(\bar{x})+f(\bar{x}-h)}{h^2}$ (3) Det: Belatia 13) s.n. formula de aproximere prin diffiente finite centrale pentru f"(x). Depositie. The loc estimatea eroii de trunchiere: $e_1 = \left| \int_{0.2}^{1} (x) - \frac{f(x+h)-2f(x)+f(x-h)}{h^2} \right| =$ = $\int_{0}^{(4)} (c_1) + \int_{0}^{(4)} (c_2) \cdot \frac{h^2}{24} \leq M \frac{h^2}{24} = O(h^2)$, unde $M = \max_{x \in [x,x+h]} |f^{(4)}(x)| + \max_{x \in [x-h,x]} |f^{(4)}(x)|.$

Metoda de extraplare Richardson

Tie f: $[a,b] \rightarrow \mathbb{R}$ derivolvilà.

Presupernem sà avem à formulà de aproximare pentru f'(x) de forma $f'(x) = \oint_{I}(x,h) + O(h)$.

bu ajutoul functiei Φ_1 se pootle construi recurent un ju de functii $(\Phi_n)_{n\geq 1}$ $\alpha.\overline{x}$, $\forall n\in H^*$, $\Phi_n(x,h)$ aproximente $\mathcal{E}(x)$ su ordinal $O(h^n)$.

Inter simplitation scrietie von smite x ca argument al function Φ_n .

then $f'(x) = \int_{1}(h) + dh = \int_{1}(h) + a_{1}h + a_{2}h^{2} + \dots$ (1) Polatia (1) are los pentre vice h>0. Scrien accostà relatie pentre h. Obtinem: $f'(x) = \int_{1}^{1} (\frac{h}{z}) + a_{1} \cdot \frac{h}{z} + a_{2} \cdot \frac{h'}{z^{2}} + ... (2)$ Inmultim relatia (2) eu 2¹ ji scadem relatia (1). trem: $2!f(x)-f(x) = 2!f_1(x)-f_1(h)+a_2(x-1)h+$ $+ ... \Rightarrow f'(x) = \frac{1}{2^{\frac{1}{2}-1}} \left[2^{\frac{1}{2}} \int_{1}^{1} (h_{2}) - \int_{1}^{1} (h_{1}) dh \right] + h_{2} h^{2} + h_{3} h^{3}_{1} = \frac{1}{2} (h_{1})$ $= \int_{1}^{1}(x) = \frac{1}{2^{\frac{1}{2}-1}} \left[(2^{\frac{1}{2}-1}+1) \hat{\Phi}_{1}(\frac{h}{2}) - \hat{\Phi}_{1}(h) \right] + b_{2}h^{2} + b_{3}h^{3} = \int_{1}^{1}(\frac{h}{2}) + \frac{1}{2^{\frac{1}{2}-1}} \left[\hat{\Phi}_{1}(\frac{h}{2}) - \hat{\Phi}_{1}(h) \right] + b_{2}h^{2} + b_{3}h^{3} + \dots$ $\oint_{\mathcal{L}} (h)$

Relatia (3) are los pentru vice h>0, Grien aceastà relatie pentru &.

 $f_1(x) = \int_2^2 (h) + b_2 h^2 + b_3 h^3 + ... = \int_2^2 (h) + 0h^2$ (3)

Threm
$$f'(x) = \overline{\Phi}_2(\frac{h}{2}) + b_2 \frac{h^2}{2^2} + b_3 \frac{h^3}{2^3} + \dots$$
 (4)

Efectuam surmationea operatie: z^2 , (4)-(3) (Inmultim relation (4) su z^2 si scadem relation (3)).

Obtinem: $2^2 f'(x) - f'(x) = 2^2 \overline{\Phi}_2(\frac{h}{2}) - \overline{\Phi}_2(h) + \frac{1}{2} + b_3(\frac{1}{2} - 1) h^3 + \dots \Rightarrow f'(x) = \frac{1}{2^2 - 1} \left[2^2 \overline{\Phi}_2(\frac{h}{2}) - \overline{\Phi}_2(h) \right] + c_3 h^3 + c_4 h^4 + \dots = \overline{\Phi}_3(h)$
 $= \Phi_2(\frac{h}{2}) + \frac{1}{2^2 - 1} \left[\Phi_2(\frac{h}{2}) - \overline{\Phi}_2(h) \right] + c_3 h^3 + c_4 h^4 + \dots = \overline{\Phi}_3(h) + c_1 h^3$

In addition assum $f'(x) = \overline{\Phi}_3(h) + c_3 h^3 + c_4 h^4 + \dots = \overline{\Phi}_3(h) + c_1 h^3$

Muduliar assum $f'(x) = \overline{\Phi}_n(h) + d_n h^n + d_{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_n h^{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_n h^{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_n h^{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_n h^{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_n h^{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_n h^{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^n + d_n h^{n+1} h^{n+1} + \dots = \overline{\Phi}_n(h) + d_n h^{n+1} + \dots = \overline{\Phi}_n(h) +$

Substitution of $f(x) = \bar{f}_n(h) + d_n h + d_{n+1} h^{n+1} + \dots = \bar{f}_n(h) + O(h^n)$, under $\bar{f}_n(h) = \frac{1}{2^{n-1}} \left[2^{n-1} \bar{f}_{n-1}(\frac{h}{2}) - \frac{1}{2^{n-1}} \right]$

$$-\oint_{N-1}(h) = \oint_{N-1}(\frac{h}{2}) + \frac{1}{2^{N-\frac{1}{2}}} \left[\oint_{N-1}(\frac{h}{2}) - \oint_{N-1}(h) \right].$$

For contini unterna not

2n	0(%)	$O(N_{\Sigma})$	0(/3)	0(h4)
h	$\Phi_1(\mathcal{W})$			
2	1(h)	$\Phi_2(h)$		
<u>&</u> 22	$\Phi_1(\frac{k}{2^2})$		\$\Phi_3(h)\gamma\$	
23		$\Phi_2(\frac{h}{2^3})$	$\Phi_3(\frac{h}{2})$	\$4(h)\s

Integrare numerica Formule de cuadratura

Fie $f: [a,b] \rightarrow \mathbb{R}$ integrabilà si fie $I(f) = \int_{a}^{b} f(x) dx$ (1)

Def: I.n. formulå de cuadratura a lui f \mathcal{D} formulå de aproximare a integralei (1) de forma $I_n(f) = \sum W_k f(x_k)$ (2), unde $w_k \in \mathbb{R}$ $\forall k = 1, n+1$

k=1

ji & + k=1,m+1 sunt a.2. a ≤ x1 < x2<... < xn+1 ≤ b.

Det: 1) Elementele Wig + k=1, n+1 din definiția precedentă s.n. coeficienții (sau ponderile) cuadraturii (2).

2) Elementile Xx X k=1, m+1 din definiția precedentă s.n. noduile suadraturii (2).

Def.: Marimea $l_{\chi}(f) = |I(f) - I_{\eta}(f)| s.n. errorea$ Eurodroturii (2).