PSZB17-210 - Seminar_4

Zoltan Kekecs

October 6, 2020

4. Ora - Adatexploracio

Az ora celja az adatexploracios modszerek elsajatitasa.

Package-ek betoltese

A kovetkező package-ekre lesz szuksegunk

```
if (!require("gridExtra")) install.packages("gridExtra")
library(gridExtra) # for grid.arrange
if (!require("psych")) install.packages("psych")
library(psych) # for describe
if (!require("tidyverse")) install.packages("tidyverse")
library(tidyverse) # for dplyr and ggplot2
```

Adatok betoltese

Beolvassuk a WHO altal 2020.09.28-an feltoltott COVID-19 adatokat a read_csv() funkcioval, es elmentjuk egy COVID_adat nevu objektumba. A **read_csv()** funkcio a tidyverse resze, es egybol tibble formatumban menti el az adatainkat.

```
COVID_adat <- read_csv("https://raw.githubusercontent.com/owid/covid-19-
data/master/public/data/owid-covid-data.csv")</pre>
```

Adatok attekintese

Mindig erdemes azzal kezdeni, hogy **megismerkedunk az adat** szerkezetevel es tartalmaval.

A **tibble objektum** meghivasaval kapthatunk nemi informaciot az adattabla szerkezeterol. Lathatjuk hany sor es hany oszlop van az adattablaban, es lathatjuk milyen class-ba tartoznak (chr, dbl ...)

```
COVID_adat
## # A tibble: 48,379 x 41
      iso code continent location date
##
                                              total cases new cases
new_cases_smoot~
      <chr>
                                   <date>
                                                     \langle dh1 \rangle
                                                               <dhl>
               <chr>
                         <chr>
<dbl>
## 1 AFG
               Asia
                         Afghani~ 2019-12-31
```

```
NA
               Asia
                         Afghani~ 2020-01-01
## 2 AFG
                                                        0
                                                                  0
NA
                         Afghani~ 2020-01-02
## 3 AFG
               Asia
                                                        0
                                                                  0
NA
## 4 AFG
               Asia
                         Afghani~ 2020-01-03
                                                                  0
                                                        0
NA
                         Afghani~ 2020-01-04
                                                        0
                                                                  0
##
   5 AFG
               Asia
NA
## 6 AFG
               Asia
                         Afghani~ 2020-01-05
                                                        0
                                                                  0
NA
## 7 AFG
                         Afghani~ 2020-01-06
                                                                  0
               Asia
                                                        0
0
## 8 AFG
               Asia
                         Afghani~ 2020-01-07
                                                        0
                                                                  0
0
## 9 AFG
                         Afghani~ 2020-01-08
                                                                  0
               Asia
0
## 10 AFG
                         Afghani~ 2020-01-09
               Asia
                                                        0
                                                                  0
## # ... with 48,369 more rows, and 34 more variables: total deaths <dbl>,
       new deaths <dbl>, new deaths smoothed <dbl>, total cases per million
## #
<dbl>,
## #
       new_cases_per_million <dbl>, new_cases_smoothed_per_million <dbl>,
## #
       total deaths per million <dbl>, new deaths per million <dbl>,
       new deaths smoothed per million <dbl>, new tests <lgl>, total tests
## #
<lgl>,
## #
       total tests per thousand <lgl>, new tests per thousand <lgl>,
## #
       new tests smoothed <lgl>, new tests smoothed per thousand <lgl>,
## #
       tests_per_case <lgl>, positive_rate <lgl>, tests_units <lgl>,
## #
       stringency index <dbl>, population <dbl>, population density <dbl>,
## #
       median_age <dbl>, aged_65_older <dbl>, aged_70_older <dbl>,
## #
       gdp_per_capita <dbl>, extreme_poverty <dbl>, cardiovasc_death_rate
<dbl>,
       diabetes prevalence <dbl>, female smokers <dbl>, male smokers <dbl>,
## #
## #
       handwashing facilities <dbl>, hospital beds per thousand <dbl>,
## #
       life expectancy <dbl>, human development index <dbl>
```

Leiro statisztikak

Ha az egyes valtozok **leiro statisztikaira** (descriptive statistics) vagyunk kivancsiak, kerhetjuk ezt a mar tanult modon.

Peldaul lekerhetjuk a valtozo alapveto legalacsonyabb es legmagasabb erteket, atlagat, medianjat, a kvartiliseket, es hogy hany hianyzo adat van (ha van) a **summary()** funkcioval (miutan a select funkcioval kivalasztottuk, melyik valtozora vagyunk kivancsiak)

```
COVID_adat %>%
  select(total_cases) %>%
  summary()
```

```
##
   total cases
## Min.
                 0
## 1st Qu.:
                66
## Median :
              1118
## Mean : 110301
## 3rd Qu.:
             12229
## Max.
        :35523518
## NA's
        :614
```

Vagy megkapthatjuk ugyanezt az osszes valtozora, ha ugyanezt az egesz adattablara futtatjuk le. Persze a karakter osztalyba tartozo valtozoknal mindezeknek a leiro statisztikaknak nincs ertelme, ott csak a class informaciot kaptjuk az output-ban.

```
COVID_adat %>%
  summary()
```

Gyakorlas

- Hany regisztralt eset volt osszesen Magyarorszagon a tegnapi napig (total_cases)?
- Mi volt a legmagasabb uj eset-szam Magyarorszagon (new_cases)?

Megtobb leiro statisztika

A **Psych** package segitsegevel a **describe()** funkcio megtobb hasznos informaciot adhat. Ez a funkcio elsosorban szam-valtozok leirasara szolgal, es karakter tipusu kategorikus valtozok eseten sok warning message-et ad, ezert erdemes a funciot csak a szam-valtozokra lefuttatni (ezt alabb a select() funkcioval erem el.)

```
COVID adat %>%
  select(-date, -iso_code, -continent, -location, -contains("tests"), -
positive_rate) %>%
  describe()
##
                                                                       sd
                                    vars
                                                       mean
                                              n
median
## total_cases
                                       1 47765
                                                  110300.98
                                                              1140970.15
1118.00
## new_cases
                                       2 47548
                                                    1494.22
                                                                 13508.82
11.00
## new cases smoothed
                                       3 46766
                                                    1482.07
                                                                 13323.14
15.71
                                       4 47765
                                                    4304.99
                                                                 39955.23
## total_deaths
22.00
## new deaths
                                       5 47548
                                                      43.85
                                                                   368.45
0.00
## new deaths smoothed
                                       6 46766
                                                      43.94
                                                                   358.58
```

<pre>## total_cases_per_million 305.83</pre>	7 47484	2049.94	4286.88	
## new_cases_per_million	8 47484	25.83	78.06	
<pre>1.65 ## new_cases_smoothed_per_million</pre>	9 46701	25.40	59.46	
<pre>3.10 ## total_deaths_per_million</pre>	10 47484	60.40	146.73	
5.37	44 47404			
<pre>## new_deaths_per_million 0.00</pre>	11 47484			
<pre>## new_deaths_smoothed_per_million 0.02</pre>	12 46701	0.57	1.89	
<pre>## stringency_index 62.96</pre>	13 40223	57.28	27.23	
## population 8654618.00	14 48098	87995367.45	611197259.64	
<pre>## population_density 88.12</pre>	15 45892	359.80	1651.54	
## median_age	16 43121	31.30	9.03	
31.40 ## aged_65_older	17 42478	9.25	6.32	
6.98 ## aged_70_older	18 42897	5.85	4.31	
## gdp_per_capita	19 42560	20856.09	20410.24	
14048.88 ## extreme_poverty	20 28396	12.17	19.26	
<pre>2.00 ## cardiovasc_death_rate</pre>	21 43129	251.70	117.50	
238.34	22 44654	0.05	4 15	
<pre>## diabetes_prevalence 7.11</pre>	22 44654	8.05	4.15	
<pre>## female_smokers 6.40</pre>	23 33755	10.80	10.48	
<pre>## male_smokers 31.40</pre>	24 33326	32.64	13.42	
## handwashing_facilities	25 20226	52.40	31.61	
<pre>55.18 ## hospital_beds_per_thousand</pre>	26 38941	3.11	2.52	
<pre>2.50 ## life_expectancy</pre>	27 47489	74.01	7.38	
75.40 ## human_development_index	28 41608	0.72	0.15	
0.75				
## max	trimme	d mad	d min	
## total_cases 3.552352e+07	8265.70	9 1653.16	0.00	
## new_cases 3.227800e+05	103.6	5 16.33	L -8261.00	

## new_cases_smoothed	107.59	23.30	-552.00	
2.978010e+05 ## total_deaths	191.06	32.62	0.00	
1.042398e+06	131.00	32.02	0.00	
## new_deaths	1.87	0.00	-1918.00	
1.049100e+04				
<pre>## new_deaths_smoothed 7.456710e+03</pre>	2.05	0.21	-232.14	
<pre>## total_cases_per_million 4.397409e+04</pre>	1029.55	453.18	0.00	
<pre>## new_cases_per_million 4.944380e+03</pre>	9.91	2.45	-2212.55	
<pre>## new_cases_smoothed_per_million 8.829200e+02</pre>	11.32	4.60	-269.98	
## total_deaths_per_million 1.237550e+03	22.50	7.96	0.00	
## new_deaths_per_million	0.13	0.00	-67.90	
2.153800e+02 ## new_deaths_smoothed_per_million	0.18	0.03	-9.68	
6.314000e+01 ## stringency_index	59.43	27.46	0.00	
1.000000e+02 ## population	15635615.65	12405280.40	809.00	
7.794799e+09 ## population_density	124.52	94.65	0.14	
1.934750e+04 ## median_age	31.33	12.16	15.10	
4.820000e+01				
<pre>## aged_65_older 2.705000e+01</pre>	8.67	5.93	1.14	
## aged_70_older	5.36	3.90	0.53	
1.849000e+01 ## gdp_per_capita	17657.19	15797.71	661.24	
1.169356e+05				
## extreme_poverty 7.760000e+01	7.72	2.67	0.10	
<pre>## cardiovasc_death_rate 7.244200e+02</pre>	240.59	121.87	79.37	
## diabetes_prevalence	7.63	3.68	0.99	
2.336000e+01 ## female_smokers	9.47	8.01	0.10	
4.400000e+01	24 00	14 20	7 70	
## male_smokers 7.810000e+01	31.98	14.38	7.70	
<pre>## handwashing_facilities 9.900000e+01</pre>	52.93	45.28	1.19	
<pre>## hospital_beds_per_thousand 1.380000e+01</pre>	2.72	1.93	0.10	
## life_expectancy 8.675000e+01	74.70	7.09	53.28	
3.3.30000.02				

<pre>## human_development_index 9.500000e-01</pre>	0.73		0.16	0.35
##	range	skew	kurtosis	se
## total_cases	3.552352e+07	20.75	498.06	5220.59
## new_cases	3.310410e+05	16.55	311.18	61.95
## new_cases_smoothed	2.983530e+05	16.42	304.20	61.61
## total_deaths	1.042398e+06	17.95	366.10	182.82
## new_deaths	1.240900e+04	14.64	244.95	1.69
## new_deaths_smoothed	7.688860e+03	13.87	210.20	1.66
<pre>## total_cases_per_million</pre>	4.397409e+04	4.21	24.09	19.67
<pre>## new_cases_per_million</pre>	7.156920e+03	12.89	497.46	0.36
<pre>## new_cases_smoothed_per_million</pre>	1.152900e+03	5.13	39.84	0.28
<pre>## total_deaths_per_million</pre>	1.237550e+03	4.14	21.22	0.67
<pre>## new_deaths_per_million</pre>	2.832800e+02	30.50	1620.05	0.01
<pre>## new_deaths_smoothed_per_million</pre>	7.282000e+01	9.64	153.04	0.01
<pre>## stringency_index</pre>	1.000000e+02	-0.59	-0.65	0.14
## population	7.794798e+09	11.83	144.95	2786877.56
## population_density	1.934736e+04	9.96	106.86	7.71
## median_age	3.310000e+01	-0.02	-1.22	0.04
## aged_65_older	2.591000e+01	0.65	-0.86	0.03
## aged_70_older	1.797000e+01	0.79	-0.54	0.02
<pre>## gdp_per_capita</pre>	1.162744e+05	1.65	3.47	98.93
## extreme_poverty	7.750000e+01	1.80	2.29	0.11
<pre>## cardiovasc_death_rate</pre>	6.450500e+02	0.91	0.86	0.57
<pre>## diabetes_prevalence</pre>	2.237000e+01	1.09	1.42	0.02
## female_smokers	4.390000e+01	0.89	-0.30	0.06
## male_smokers	7.040000e+01	0.55	0.33	0.07
<pre>## handwashing_facilities</pre>	9.781000e+01	-0.13	-1.45	0.22
<pre>## hospital_beds_per_thousand</pre>	1.370000e+01	1.77	3.95	0.01
## life_expectancy	3.347000e+01	-0.75	-0.12	
<pre>## human_development_index</pre>	6.000000e-01	-0.49	-0.75	0.00

 Mi az egy millio fore eso uj esetek (new_cases_per_million) ferdesegi mutatoja (skew/skewness)?

 Hany valid (nem NA) adat szerepel az adatbazisban az egy fore eso gdp-rol (gdp_per_capita)?

Faktorok

Nehany karaktervaltozonak csak **korlatozott mennyisegu eleme** lehet, mint peldaul a continent (North America, Asia, Africa, Europe, South America, Oceania). Ezeket megjelolhetjuk faktor (factor) osztalyu valtozokent, es akkor az R tobb informaciot fog adni rola.

A **levels()** funkcio megmutatja mik a faktorunk szintjei, de lathato ez akkor is ha csak meghivjuk a valtozot magat.

A **table()** funkcio pedig tablazatot keszit arrol, hogy az egyes csoportokban hany megfigyeles talalhato

Amikor kilistazzuk a faktor valtozot, akkor is kiirja az R a lista aljara, hogy milyen faktorszintek vannak. (Alabb csinalunk egy COVID_adat_tegnap valtozot, amivel csak a tegnapi adatokat nezzuk, hogy kisebb legyen az adattabla amivel dolgozunk.)

```
COVID adat <- COVID adat %>%
              mutate(continent = factor(continent),
                     location = factor(location))
levels(COVID_adat$continent)
## [1] "Africa"
                       "Asia"
                                       "Europe"
                                                        "North America"
## [5] "Oceania"
                       "South America"
table(COVID adat$continent)
##
##
          Africa
                          Asia
                                      Europe North America
                                                                  Oceania
           11327
                         11546
                                       12677
                                                       7577
                                                                     1807
##
## South America
##
            2883
COVID_adat_tegnap = COVID_adat %>%
  filter(date == "2020-09-28")
COVID adat tegnap$continent
                                     Africa
                                                                  Africa
##
     [1] Asia
                       Europe
                                                   Europe
##
     [6] North America North America South America Asia
                                                                  North
America
                                                   North America Asia
## [11] Oceania
                       Europe
                                     Asia
## [16] Asia
                       North America Europe
                                                                  North
                                                   Europe
America
                       North America Asia
                                                   South America North
## [21] Africa
America
## [26] Europe
                       Africa
                                     South America North America Asia
##
    [31] Europe
                       Africa
                                     Africa
                                                   Asia
                                                                  Africa
## [36] North America Africa
                                     North America Africa
                                                                  Africa
## [41] South America Asia
                                     South America Africa
                                                                  Africa
## [46] North America Africa
                                                   North America North
                                     Europe
America
## [51] Europe
                       Europe
                                     Africa
                                                   Europe
                                                                  Africa
## [56] North America North America South America Africa
                                                                  North
America
## [61] Africa
                       Africa
                                     Europe
                                                   Africa
                                                                  Europe
## [66] South America Oceania
                                     Europe
                                                   Europe
                                                                  Oceania
```

## [71] Afrid ## [76] Euro ## [81] Nort America		rica rope rope		Europe North America Africa	Africa Oceania South
=	h America Nor	rth America	Furone	Europe	Asia
## [91] Asia	Asi		Asia	Europe	Europe
## [96] Asia		rope	North America	•	Europe
## [101] Asia	Asi	•	Africa	Europe	Asia
## [106] Asia	Asi		Europe	Asia	Africa
## [111] Afri	_	rica	Europe	Europe	Europe
## [116] Euro		rica	Africa	Asia	Asia
## [121] Afri		rope	Africa	Africa	North
America		•			
## [126] Euro	pe Eur	rope	Asia	Europe	North
America				·	
## [131] Afri	ca Afr	rica	Asia	Africa	Asia
## [136] Euro	pe Oce	eania	Oceania	North America	Africa
## [141] Afri	ca Oce	eania	Europe	Asia	Asia
## [146] Asia	Nor	rth America	Oceania	South America	South
America					
## [151] Asia	Eur	rope	Europe	North America	Asia
## [156] Euro	pe Eur	rope	Africa	North America	North
America					
## [161] Nort	h America Eur	rope	Africa	Asia	Africa
## [166] Euro	pe Afr	rica	Africa	Asia	North
America					
## [171] Euro		rope	Africa	Africa	Asia
## [176] Afri	ca Eur	rope	Asia	Africa	South
America					
## [181] Afri		rope	•	Asia	Asia
## [186] Asia		rica	Asia	Asia	Africa
## [191] Nort			Asia	North America	
## [196] Euro	pe Asi	ia	Europe	North America	North
America					
## [201] Sout			Europe	South America	
## [206] Afri	ca Asi	La	Africa	Africa	<na></na>
## [211] <na></na>					
## Levels: Af	rica Asia Eur	rope North A	America Oceania	South America	

Igy mar a fenti **summary()** funkcio is kiadja az **egyes faktorszintekrol** hogy hanyan tartoznak oda.

```
COVID_adat_tegnap %>%
    select(continent) %>%
    summary()

##     continent
## Africa :55
## Asia :46
## Europe :51
```

```
## North America:36
## Oceania : 8
## South America:13
## NA's : 2
```

Van, hogy szeretnenk **kizarni** bizonyos **faktorszinteket** az elemzesbol. Pl. ha valamelyik faktor szintbol nagyon keves megfigyeles van, mondjuk Oceaniat, mondjuk mert ugy gondoljuk hogy az tulsagosan "elszigetelt" a vilag tobbi reszetol, oket lehet hogy szeretnenk kizarni a kesobbi elemzesekbol hogy egyszerusitsuk az eredmenyeink ertelmezeset. Ezt a mar korabban tanult **filter()** funkcio segitsegevel konnyeden megtehetjuk, azonban arra figyelnunk kell, hogy az R megjegyzi a faktorszinteket, es azt azt kovetoen is a **valtozohoz rendelve tartja**, miutan mar az adott faktorszintbol nincs egy megifgyeles sem az adattablaban.

```
COVID adat tegnap %>%
 filter(continent != "Oceania") %>%
 select(total cases, continent) %>%
 summary()
##
    total cases
                           continent
## Min. :
              3 Africa
                                :55
## 1st Qu.:
             1743
                                :46
                   Asia
## Median : 9682
                    Europe
## Mean : 165022
                    North America:36
## 3rd Ou.: 72691
                   Oceania : 0
## Max. :7115046
                   South America:13
```

Igy ezeket a szinteket ejthetjuk a **droplevels()** funkcioval.

```
COVID adat tegnap noOceania = COVID adat tegnap %>%
 filter(continent != "Oceania") %>%
 mutate(continent = droplevels(continent))
COVID_adat_tegnap_noOceania %>%
 select(continent) %>%
 summary()
##
           continent
## Africa
               :55
## Asia
                :46
## Europe
                :51
## North America:36
## South America:13
```

Elofordul, hogy egy **numerikus valtozot akarunk atalakitani faktorra**, pl. elkepzelheto hogy ossze akarjuk hasonlitani azokat az orszagokat ahol 5000 alatti a gdp_per_capita azokkal akinel e feletti, hogy hogyan kulonboznek a COVID adatok.

```
COVID_adat_tegnap %>%
  select(gdp_per_capita, continent) %>%
  drop_na() %>%
  group_by(continent) %>%
  summarize(mean_gdp = mean(gdp_per_capita))
## # A tibble: 6 x 2
##
     continent
                   mean_gdp
     <fct>
                      <dbl>
##
## 1 Africa
                      5444.
## 2 Asia
                     22185.
                     33361.
## 3 Europe
## 4 North America
                     21655.
## 5 Oceania
                     23315.
## 6 South America
                     13841.
COVID_adat_tegnap %>%
  select(gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
  aes(x = gdp_per_capita) +
  geom_density() +
  geom_vline(xintercept = 5000, linetype="dashed",
                color = "red", size=1.5)
```


Folytonos valtozok atkodolasa kategorikus valtozova

Ilyenkor hasznalhatjuk a **mutate()** es **case_when()** funkciok kombinaciojat hogy csinaljunk egy uj valtozot. Ebbe a kodba beleepitettem a **factor()** funkciot is, hogy azonnal meghatarozzuk, hogy ez az uj valtozo egy faktor, es nem egy egyszeru karaktervektor. A factor() funkcio nelkul is lefut a kod, de akkor meg kellene egy kulon sor ahol megadjuk hogy ez egy faktorvaltozo.

```
COVID adat = COVID adat %>%
  mutate(gdp_per_capita_kat = factor(
                                       case when(gdp per capita < 5000 ~</pre>
"small",
                                                  gdp per capita >= 5000 &
gdp per capita < 10000 ~ "medium",
                                                  gdp_per_capita > 10000 ~
"large")))
levels(COVID_adat$gdp_per_capita_kat)
## [1] "large" "medium" "small"
# ugyanez a COVID adat tegnap -al
COVID adat tegnap = COVID adat tegnap %>%
  mutate(gdp per capita kat = factor(
                                       case_when(gdp_per_capita < 5000 ~</pre>
"small",
                                                  gdp_per_capita >= 5000 &
gdp per capita < 10000 ~ "medium",
                                                  gdp per capita > 10000 ~
"large")))
```

Kategorikus valtozo ujrakodolasa

Hasonlo eset ha kategorikus valtozokat szeretnenk atkodolni. Mondjuk ha szeretnenk a deli felteket az eszaki feltekevel osszehasonlitani. Ezt a **recode()** funkcioval lehet megoldani.

```
"Oceania" = "South",

"South America" = "South",

"Africa" = "South",

"Asia" = "North",

"Europe" = "North",

"North America" = "North")))
```

Faktorszintek sorrendje, ordinalis valtozok

Amikor van ertelme a **sorrendisegnek** a faktorszintek kozott, **ordinalis valtozokrol** beszelunk (vagyis az egyik faktorszint alacsonyabb, vagy kisebb "erteku" mint a masik). Arra figyelnunk kell, hogy amikor faktorokat hozunk letre, az R automatikusan a faktorszintek neveinek **ABC sorrendje** alapjan rakja oket sorba, es az abrakon is igy szemlelteti majd oket.

```
COVID_adat_tegnap %>%
   ggplot() +
   aes(x = gdp_per_capita_kat) +
   geom_bar()
```


Ilyenkor erdemes meghatarozni a faktorszintek sorrendjet (**order**). Ezt legegyszerubben a factor() funkcion belul tehetjuk meg, az **ordered = T** beallitasaval, es a **levels =** resznel a szintek sorrendjenek meghatarozasaval.

```
COVID_adat_tegnap = COVID_adat_tegnap %>%
mutate(gdp_per_capita_kat = factor(gdp_per_capita_kat, ordered = T, levels =
c(
```

```
"small",
"medium",
"large")))
```

Igy mar az R minden funkcioja tudni fogja, hogy egy ordinalis valtozorol van szo, ahol fontos a sorrend, es tudni fogja a sorrendet is.

```
COVID_adat_tegnap %>%
   ggplot() +
   aes(x = gdp_per_capita_kat) +
   geom_bar()
```


Gyakorlas

- szurd az adatokat ugy hogy csak a 2020-09-28-ai adatokkal dolgozzunk csak.
- csinalj egy uj kategorikus valtozot (nevezzuk ezt new_cases_per_million_kat-nak) a mutate() funkcio hasznalataval amiben azok az orszagok ahol a new_cases_per_million valtozo 20 alatt van "small", ahol 20 vagy a felett van "large" kategoriaba keruljenek.
- figyelj oda hogy faktorkent jelold meg ezt az uj valtozot (Ezt lehet az elozo lepesben a mutate() funkcion belul, vagy egy kulon lepesben, de mindenkeppen a factor() vagy az as.factor() funkciokat erdemes hozza hasznalni)
- mentsd el ezt a valtozot az eredeti adatobjektumban ugy hogy kesobb is lehessen vele dolgozni

- keszits egy tablazatot arrol, hogy hanyan esnek a *new_cases_per_million_kat* egyes kategoriaiba.
- Add meg a faktorszintek helyes sorrendjet: small, large (Ird felul a new_cases_per_million_kat korabbi valtozatat ezzel a valtozattal ahol a szintek mar helyes sorrendben vannak, vagy ezt a sorrendezest is bele vonhatod az eredeti funkcioba, amivel a valtozot generaltad)
- Ellenorizd, hogy valoban helyes sorrendben szerepelnek-e a faktor szintjei.

Exploracio vizualizacion keresztul

Egyes valtozok vizualizacioja

Az egyes valtozok **abrak** (plot) segitsegevel is megvizsgalhatok. A **kategorikus** valtozokat gyakran oszlopdiagrammal (**geom_bar**) abrazoljuk,

Mig a **numerikus** valtozokat inkabb **dotplot**, **histogram**, vagy **density plot** segitsegevel szoktuk abrazolni.

Az egyes valtozok vizualizacioja es a leiro statisztikak atvizsgalasa elengedhetetlen hogy azonositsuk az esetleges adatbeviteli **hibakat es egyeb nemvart furcsasagokat** az adataink kozott.

MINDING ellenorizd az adataidat ezekkel a modszerekkel mielott komolyabb adatelemzesbe kezdesz, hogy meggyozodj rola, hogy az adatok tisztak es megfelenek az elvarasaidnak.

```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = continent) +
  geom bar()
```



```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = total_deaths_per_million) +
  geom_dotplot(binwidth = 10)
## Warning: Removed 1 rows containing non-finite values (stat_bindot).
```



```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = total_deaths_per_million) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1 rows containing non-finite values (stat_bin).
```



```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = total_deaths_per_million) +
  geom_density()
## Warning: Removed 1 rows containing non-finite values (stat_density).
```


Szurd az adatokat ugy hogy csak a 2020-09-07-en jeletett adatokkal dolgozzunk

Hasznald a fent tanult modszereket, hogy **azonositsd az COVID_adat adattablaban levo hibakat** vagy nem vart furcsasagokat.

- A vizualizacion tul a View(), describe(), es summary() funciokat erdemes hasznalni az adatok elso attekintesere
- A numerikus (vagy eppen folytonos) valtozoknal vizsgald meg a minimum es maximum erteket es a hianyzo adatok mennyiseget, valamint az eloszlast.
- A kategorikus valtozoknal vizsgald meg az osszes faktorszintet es az egyes szintekhez tartozo megfigyelesek mennyiseget.

A hibakat a kovetkezokeppen javithatjuk.

A **mutate()** es a **replace()** funkciok hasznalataval **cserelhetunk ki** ertekeket mas ertekekre. Azt, hogy ilyenkor hianyzo adatra (NA), vagy egy masik, valoszinu ertekre kell megvaltoztatni az erteket, a szituaciotol fogg. Altalaban a biztosabb megoldas ha hianyzo adatnak jeloljuk a kerdeses erteket (NA), de ez sok adatveszteshez vezethet. Ha eleg valoszinu hogy mi a helyes valasz, beirhatjuk, DE **minden javitast fel kell tuntetni** a

kutatasi jelentesben (es a ZH soran is), hogy az olvaso szamara tiszta legyen, hogy itt egy adathelyettesites vagy kizaras tortent!

Mindig erdemes a javitott adatokat **uj adattablaba** elmenteni. A mi esetunkben az COVID_adat_corrected nevet adtuk a javitott objektumnak. Igy a nyers adataink megmaradnak, ami hasznos lehet kesobbi muveleteknel.

```
COVID_adat_corrected <- COVID_adat %>%
  mutate(new_cases = replace(new_cases, new_cases=="-8261", NA))
```

Erdemes **megbizonyosodni rola**, hogy az adatcsere sikeres volt. Alabb az adatok vizualizaciojaval gyozodunk meg errol, de az adatok megjelenitesevel, vagy a leiro statisztikak lekerdezesevel is megteheto ez, ha az informativ.

```
# hasznalhatnak meg az alabbiakat is arra,
# hogy megbizonyosodjunk abban, hogy sikeres volt a csere
# View(COVID_adat_corrected)
# describe(COVID adat corrected)
# summary(COVID adat corrected$szocmedia 3)
# COVID_adat_corrected$szocmedia_3
old plot <-
  COVID adat %>%
  filter(date == "2020-09-07", new cases < 1000) %>%
  ggplot()+
    aes(x = new cases) +
    geom_histogram()
new plot <-
  COVID_adat_corrected %>%
  filter(date == "2020-09-07", new_cases < 1000) %>%
  ggplot()+
    aes(x = new cases) +
    geom histogram()
grid.arrange(old plot, new plot, ncol=2)
```


Tobb valtozo kapcsolatanak felterkepezese

Tobb valtozo kapcsolatat is felterkepezhetjuk tablazatok es abrak segitsegevel.

Ket kategorikus (csoportosito) valtozo kapcsolatanak felterkepezese

Feltaro elemzes

Most vizsgaljuk meg azt, hogy 2020-09-28-an mi az osszefuggese a gdp kategorianak (*gdp_per_capita_kat*) a kontinenssel (*continent*) ahol az orszag elhelyezkedik.

A legegyszerubb modja ket csoportosito valtozo kapcsolatanak megvizsgalasara a ket valtozo **kereszt-tablazatanak (crosstab)** elkezsitese a **table()** funkcioval.

```
table(COVID_adat_tegnap$gdp_per_capita_kat, COVID_adat_tegnap$continent)
##
##
            Africa Asia Europe North America Oceania South America
##
     small
                 37
                                              2
                                             6
                                                                     3
##
     medium
                  6
                      12
                               3
                                                      1
##
     large
                 10
                      24
```

Sokszor ennel sokkal **szemleletesebb az abrak** (plot) hasznalata.

Erre az egyik lehetoseg a **stacked bar chart** (egymasra tornyozott oszlopdiagram, a **geom_bar()** geomot hasznaljuk) hasznalata. Itt az egyik valtozo kategoriai adjak meg hany oszlop lesz (ez a valtozo lesz az x tengelyen reprezentalva, igy ezt az "x =" reszen adhatjuk

meg), a masik valtozo az oszlopokat szinekkel szegmentalja, ezt pedig a "**fill =**" reszen adhatjuk meg.

```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = continent, fill = gdp_per_capita_kat) +
  geom_bar()
```


Ha az egyes faktorszinteken nagyon **kulonbozo mennyisegu megfigyeles** van, ez a megjelenites neha felrevezeto kovetkeztetesekhez vezethet, igy neha hasznosabb ha az oszlopok nem szamossagot (count), hanem **reszaranyt (proportion)** jelolnek. Ha ezt szeretnenk, ahelyett hogy uresen hagynank a geom_bar() funkciot, a kovetkezot adjuk meg: **geom_bar(position = "fill")**.

```
COVID_adat_tegnap %>%
ggplot() +
  aes(x = continent, fill = gdp_per_capita_kat) +
  geom_bar(position = "fill")
```


Hasznald a fent tanult modszereket, hogy megvizsgald a COVID_adat_tegnap adatbazisban a new_cases_per_million_kat es a continent valtozok kozotti osszefuggest. - hasznalj
geom_bar() geomot a megjeleniteshez - probald meg mind a szamossagot, mind a
reszaranyt kifejezo abrat megvizsgalni geom_bar(position = "fill") - milyen
kovetkeztetest tudsz levonni az abrakrol?

geom_bar() megjelenitesnel fontos hogy ha az egyes megfigyelesek **keves megfigyelesbol allnak**, az abra megteveszto lehet, mert az abra nem jelzi a megfigyelesek szamat es igy azt, hogy milyen biztosak lehetunk az eredmenyben. Ilyen esetekben az egyik kategoriat ki lehet venni az abrarol, vagy a **szamossagot es a reszaranyt abrazolo abrakat egymas mellet** lehet bemutatni, hogy igy kiegeszitsek egymast. Ehhez hasznalhatjuk a **grid.arrange()** funkciot.

```
szamossag_plot <-
COVID_adat_tegnap %>%
ggplot() +
   aes(x = continent, fill = gdp_per_capita_kat) +
   geom_bar()

reszarany_plot <-
COVID_adat_tegnap %>%
ggplot() +
   aes(x = continent, fill = gdp_per_capita_kat) +
   geom_bar(position = "fill") +
   ylab("proportion")

grid.arrange(szamossag_plot, reszarany_plot, nrow=2)
```


A theme(legend.position) es a guides() funciok hasznalataval kontrollalhatjuk hogy hol es hogyan jelenjen meg a **jelmagyarazat** az abran. Az abra **interpretalhatosaga** attol fuggoen is **valtozhat**, hogy melyik valtozot tesszuk az x-tengelyre es melyiket szinkent abrazolva. Az alabbi abrakon az egymillio fore vetitett uj esetek szamanak kapcsolatat nezzuk meg a gdp-vel. Mindket valtozo eseten a csoportositott valtozot (_kat) hasznaljuk.

```
barchart plot 3 <-
COVID adat tegnap %>%
  select(new_cases_per_million_kat, gdp_per_capita_kat) %>%
  drop na() %>%
ggplot() +
  aes(x = new_cases_per_million_kat, fill = gdp_per_capita_kat) +
  geom bar()
barchart_plot_4 <-</pre>
COVID_adat_tegnap %>%
  select(new_cases_per_million_kat, gdp_per_capita_kat) %>%
  drop na() %>%
ggplot() +
  aes(x = new_cases_per_million_kat, fill = gdp_per_capita_kat) +
  geom_bar(position = "fill") +
  ylab("proportion")
grid.arrange(barchart_plot_3, barchart_plot_4, ncol=2)
```



```
# a theme(legend.position) es a guides() funciok
# hasznalataval kontrollalhatjuk hogy hol es hogyan
# jelenjen meg a jelmagyarazat az abran
barchart_plot_3 <-</pre>
COVID_adat_tegnap %>%
  select(new_cases_per_million_kat, gdp_per_capita_kat) %>%
  drop na() %>%
ggplot() +
    aes(x = new cases per million kat, fill = gdp per capita kat) +
    geom bar() +
    theme(legend.position="bottom") +
    guides(fill = guide_legend(title.position = "bottom"))
barchart_plot_4 <-</pre>
COVID_adat_tegnap %>%
  select(new_cases_per_million_kat, gdp_per_capita_kat) %>%
  drop na() %>%
ggplot() +
  aes(x = new_cases_per_million_kat, fill = gdp_per_capita_kat) +
  geom_bar(position = "fill") +
  theme(legend.position="bottom") +
  guides(fill = guide_legend(title.position = "bottom")) +
  ylab("proportion")
```

grid.arrange(barchart_plot_3, barchart_plot_4, ncol=2)

Ujabb modja a barchart segitsegevel valo megjelenitesnek ha az oszlopok nem egymasra tornyozva, hanem **egymas mellett** jelennek meg, vagy ha a masodik valtozo szerint **kulon paneleken (facet)** jelennek meg.

```
barchart_plot_5 <-</pre>
COVID adat tegnap %>%
  select(new cases per million kat, gdp per capita kat) %>%
  drop_na() %>%
ggplot() +
  aes(x = gdp_per_capita_kat, fill = new_cases_per_million_kat) +
  geom_bar(position = "dodge")
barchart_plot_6 <-</pre>
COVID adat tegnap %>%
  select(new_cases_per_million_kat, gdp_per_capita_kat) %>%
  drop_na() %>%
ggplot() +
  aes(x = gdp_per_capita_kat) +
  geom_bar() +
  facet wrap(~ new cases per million kat)
grid.arrange(barchart_plot_5, barchart_plot_6, nrow=2)
```


Egy kategorikus es egy numerikus valtozo kapcsolata

Vizsgaljuk meg hogy hogyan alakul az egy fore juto GDP kontinensenkent. A GDP ebben az esetben egy folytonos valtozó (gdp_per_capita), es ennek az osszefuggeset szeretnenk megvizsgalni egy kategorikus valtozoval (continent).

Az exploraciot kezdhetjuk leiro statisztikak lekerdezesevel csoportonkent. Peldaul ha arra vagyunk kivancsiak, milyen a GDP atlaga es szorasa kontinensenkent, ezt megvizsgalhatjuk a **group_by()** es a **summarize()** segitsegevel.

```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop na() %>%
  group_by(continent) %>%
    summarize(mean = mean(gdp_per_capita),
              sd = sd(gdp_per_capita))
## # A tibble: 6 x 3
##
     continent
                     mean
                               sd
                    <dbl>
                           <dbl>
##
     <fct>
## 1 Africa
                    5444.
                           6183.
## 2 Asia
                   22185. 25406.
## 3 Europe
                   33361. 18030.
## 4 North America 21655. 15404.
## 5 Oceania
                   23315. 20097.
## 6 South America 13841.
                           5110.
```

A ket valtozo kapcsolatat megvizsgalhatjuk abrakkal is. Pl. hasznalhatjuk a

- **facet_wrap()** fuggvenyt egy **geom_histogram()** vagy **geom_dotplot()** -al kobinalva
- a **geom_boxplot()** -ot
- esetleg hasznalhatunk egy egymasra illesztett **geom_density()** plot-ot.
- talan ebben az esetben a legtisztabb kepet a **geom_violin()** mutatja, ami a geom_boxplot() es a geom_density() keverekenek tekintheto. Ezt kiegeszithetunk egy **geom_point()** -al, hogy pontosan latsszon, hany megfigyelesen alapulnak az abra adatai.

Mindig erdemes **tobb megkozelitest** is hasznalni az adat-exploracio kozben, hogy minel reszletesebb kepet kaphassunk, es csokkentsuk a valoszinuseget hogy egyik vagy masik megkozelites hianyossagai felrevezetnek minket.

```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
    aes(x = gdp_per_capita) +
    geom_histogram() +
    facet_wrap(~ continent)

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
```

```
drop_na() %>%
ggplot() +
   aes(x = gdp_per_capita) +
   geom_dotplot() +
   facet_wrap(~ continent)

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.
```



```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
   aes(x = continent, y = gdp_per_capita) +
    geom_boxplot()
```



```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
   aes(x = gdp_per_capita, fill = continent) +
    geom_density(alpha = 0.3)
```



```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
   aes(x = gdp_per_capita, fill = continent) +
    geom_density()+
  facet_wrap(~continent)
```



```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
   aes(x = continent, y = gdp_per_capita, fill = continent) +
   geom_violin() +
   geom_jitter(width = 0.1)
```


A fenti abran latszik, hogy Azsiaban a legtobb orszagban viszonylag alacsony a gdp, viszont van nehany **kiurgo ertek**, az atlagot felhuzza ebben a csoportban.

Ha szeretnenk **kizarni az elemzesunkbol** az extrem ertekekt, a **filter()** funkcio beekelesevel a pipe-ba megepithetjuk a fenti abrankat es tablazatokat ugy, hogy csak a 50000-nel alancsonyabb GDP-ju orszagok keruljenek az abrara.

```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop_na() %>%
  filter(gdp_per_capita < 50000) %>%
    ggplot() +
    aes(x = continent, y = gdp_per_capita) +
    geom_violin() +
    geom_jitter(width = 0.1)
```



```
COVID_adat_tegnap %>%
  select(continent, gdp_per_capita) %>%
  drop_na() %>%
  filter(gdp_per_capita < 50000) %>%
    group_by(continent) %>%
      summarize(mean = mean(gdp per capita),
                sd = sd(gdp_per_capita))
## # A tibble: 6 x 3
##
     continent
                               sd
                     mean
##
     <fct>
                    <dbl>
                           <dbl>
## 1 Africa
                    5444.
                           6183.
## 2 Asia
                   14591. 12710.
## 3 Europe
                   28661. 12390.
## 4 North America 19192. 13095.
## 5 Oceania
                   23315. 20097.
## 6 South America 13841.
                           5110.
```

Ha szeretnenk latni hogy a kisebb vagy nagyobb uj esetszammal jellemezheto orszagok (new_cases_per_million_kat) hogyan kulonboznek a GDP tekinteteben kontinensenkent akkor mar **harom valtozo** kapcsolatat kell abrazolnunk. Ehhez a facet_grid() funkciot lehet hasznalni, vagy kulonbozo esztetikai elemeket (aes()) lehet a kulonbozo valtozokhoz rendelni. (Az alabbi peldanal csak Europara es Eszak Amerikara korlatoztuk az adatbazist, hogy az abrak szemleletesebbek legyenek.)

Hasznald a fent tanult modszereket, hogy megvizsgald a **total_cases_per_million** es a **gdp_per_capita_kat** valtozok kozotti osszefuggest.

 hasznald a fenti geomokat, es keszits legalabb ket kulonbozo abrat mas-mas geomokkal

Ket numerikus valtozo kapcsolata

Ket numerikus valtozo kozotti kapcsolat jellemzesere altalaban a korrelacios egyutthatot szoktuk hasznalni (cor()). A **cor()** funkciot akar tobb mint ket valtozo paronkenti korrelaciojanak meghatarozasara is lehet hasznalni.

A **drop_na()** funkcioval kiejthetjuk azokat a megfigyeleseket, ahol a valtozok barmelyikeben hianyzo adat (NA) van. Ha ezt nem tesszuk meg, a cor() fuggveny NA eredmenyt adhna ha valamelyik valtozoban NA-val talalkozik.

```
COVID adat tegnap %>%
 select(new_cases_per_million, gdp_per_capita) %>%
 drop_na() %>%
      cor()
##
                        new_cases_per_million gdp_per_capita
                                    1.0000000
                                                   0.2495567
## new_cases_per_million
## gdp per capita
                                    0.2495567
                                                   1.0000000
COVID adat tegnap %>%
 select(new cases per million, gdp per capita, hospital beds per thousand)
%>%
 drop_na() %>%
      cor()
##
                             new_cases_per_million gdp_per_capita
## new cases per million
                                        1.00000000
                                                        0.2246956
## gdp_per_capita
                                         0.22469556
                                                        1.0000000
## hospital_beds_per_thousand
                                         0.04896543
                                                        0.2970931
                             hospital beds per thousand
## new cases per million
                                              0.04896543
## gdp per capita
                                              0.29709314
## hospital beds per thousand
                                              1.00000000
```

A numerikus valtozok kozotti kapcsolatot altalaban pont diagrammal szoktuk abrazolni (geom_point())

A **geom_smooth()** layer hozzaadasaval kaphatunk a pontok kozott meghuzodo trendrol egy kepet. A kek vonal az ugyevezett trendvonal, a szurke sav a konfidencia intervallum. Ezekrol kesobb meg reszletesebben beszelunk majd

```
COVID_adat_tegnap %>%
  select(hospital_beds_per_thousand, gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
   aes(x = hospital_beds_per_thousand, y = gdp_per_capita) +
    geom_point()
```



```
COVID_adat_tegnap %>%
  select(hospital_beds_per_thousand, gdp_per_capita) %>%
  drop_na() %>%
  ggplot() +
   aes(x = hospital_beds_per_thousand, y = gdp_per_capita) +
    geom_point() +
   geom_smooth()
```


Milyen eros a kapcsolat a aged_70_older es a gdp_per_capita kozott?

- hatarozd meg a korrelacios egyutthatot a valtozok kozott
- abrazold a valtozok kapcsolatat

Tobb folytonos valtozo kapcsolata megjelenitheto peldaul ugy, hogy az egyik valtozot egy szinskalahoz rendeljuk az alabbi modon.

```
COVID_adat_tegnap %>%
    select(hospital_beds_per_thousand, gdp_per_capita, aged_70_older) %>%
    drop_na() %>%
    ggplot() +
        aes(x = hospital_beds_per_thousand, y = gdp_per_capita, col =
    aged_70_older) +
        geom_point()+
    scale_colour_gradientn(colours=c("green","black"))
```

