Evaluating Human Development Against Renewable Energy Usage

Lars Arienti, Selin Bayraktaroglu, Valentina Herrero, Heather Tzou, Nisha Nanda

Research Plan:

This project evaluated the Human Development Index (HDI) against renewable energy share of total energy consumption (RE%) with the goal of understanding whether countries with higher HDI use more or less renewable energy than countries with a lower HDI.

We hypothesized that countries that were highly developed would be more advanced in their technological efforts and would have greater financial resources. Renewable energy is still a developing technology and has high costs so we theorized that countries with high HDI would be able to afford the renewable energy.

Given these same advanced technological and fiscal resources, we hypothesized countries with higher HDI will have faster development in the last decade, while underdeveloped countries will see a decline in renewable energy share as their power consumption requirements increase.

Research Questions

Do countries with a higher HDI consume more renewable energy (relative to other countries)?

Alternate Hypothesis: There is a positive correlation between HDI and Renewable Energy Consumption

Null Hypothesis: There is no correlation between HDI and Renewable Energy Consumption Do different HDI levels affect renewable energy consumption?

Alternate Hypothesis: There is a difference in renewable energy consumption by HDI levels

Null Hypothesis: There is no difference in renewable energy consumption by HDI levels

Do different HDI levels affect which countries are most effective at increasing renewable energy share; developed or developing countries?

Alternate Hypothesis: Developed countries will have the greatest increases in renewable energy share in the past decade. Underdeveloped countries will see a decline in renewable energy share as their power consumption requirements increase

Null Hypothesis: There is a correlation between the development of a country and renewable energy share in the last decade

Sources:

- Human Development Index
- Environmental Sustainability,
 Dimension: Renewable Energy
 - Our World in Data
 - United Nations

Datasets were sourced from the Human Development Index to serve as an indicator of a country's development. The HDI score was aligned with each country's renewable energy use percentage (of total energy usage).

Data Cleanup & Exploration

- 1. The exploration and cleanup process
- 2. Insights while exploring data

3. Problems that arose after exploring the data

1. Reading the first dataset "Human Development Index"


```
# Replace nan's with zero:
humanDevIndex=humanDevIndex.fillna(0)

# Rename column "Country" to match with other dataset, which will help with 'merge'
humanDevIndex=humanDevIndex.rename(columns={"Country":"Country Name"})

# Changing the number format to 'float'
humanDevIndex=humanDevIndex.iloc[:,0:28]
humanDevIndex.iloc[:,2:28]=humanDevIndex.iloc[:,2:28].astype(float)
for i in range(2,28):
humanDevIndex.iloc[:,i]=humanDevIndex.iloc[:,i].map("{:.2f}".format)
```

	HDI Rank (2018)	Country Name	1990	1991	1992	1993	1994	1995	1996	1997	 2006	2007	2008
0	170	Afghanistan	0.30	0.30	0.31	0.31	0.30	0.33	0.33	0.34	 0.42	0.43	0.44
1	69	Albania	0.64	0.62	0.61	0.61	0.62	0.63	0.64	0.64	 0.71	0.72	0.72
2	82	Algeria	0.58	0.58	0.59	0.59	0.60	0.60	0.61	0.62	 0.70	0.71	0.71
3	36	Andorra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 0.83	0.83	0.83
4	149	Angola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 0.47	0.48	0.49

2. Reading the second dataset "Renewable Energy Consumption"

Reading "Energy Consumption" Data
energyCons=pd.read_csv("Resources/TheWorldBank/EnergyConsumption.csv")
energyCons.head()

	Series Name	Series Code	Country Name	Country Code	1990 [YR1990]	1991 [YR1991]	1992 [YR1992]	1993 [YR1993]
0	Renewable energy consumption (% of total final	EG.FEC.RNEW.ZS	Afghanistan	AFG	15.924532	17.036444	26.521629	30.585667
1	Renewable energy consumption (% of total final	EG.FEC.RNEW.ZS	Albania	ALB	25.518088	32.998174	46.813329	51.152042
2	Renewable energy consumption (% of total final	EG.FEC.RNEW.ZS	Algeria	DZA	0.177228	0.323692	0.289771	0.476342
3	Renewable energy consumption (% of total final	EG.FEC.RNEW.ZS	American Samoa	ASM	0.000000	0.000000	0.000000	0.000000
4	Renewable energy consumption (% of total final	EG.FEC.RNEW.ZS	Andorra	AND	14.273550	14.273550	14.308754	13.918955

	Country Name	Country Code	1990	1991	1992	1993	1994	1995	1996	1997	 2006	2007	2008	2009
0	Afghanistan	AFG	15.92	17.04	26.52	30.59	32.80	35.08	37.95	41.43	 37.14	33.86	21.34	17.81
1	Albania	ALB	25.52	33.00	46.81	51.15	51.46	50.61	51.64	55.95	 31.71	32.10	35.91	37.22
2	Algeria	DZA	0.18	0.32	0.29	0.48	0.40	0.42	0.39	0.47	 0.41	0.41	0.30	0.31
3	American Samoa	ASM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 0.00	0.00	0.00	0.00
4	Andorra	AND	14.27	14.27	14.31	13.92	14.56	14.48	14.10	14.19	 17.49	16.94	17.42	17.52

3. Merging two datasets

```
# Merging two datasets
# Columns with HDI: Human Development Index
# Columns with RE: Renewable Energy Consumption Rate
merged_df=pd.merge(humanDevIndex,energyCons,on="Country Name",how='outer',suffixes=("_HDI","_RE"))
merged_df=merged_df.dropna(how='any')
merged_df.head()
```

	HDI Rank (2018)	Country Name	1990_HDI	1991_HDI	1992_HDI	1993_HDI	1994_HDI	1995_HDI	1996_HDI	1997_HDI	 2006_RE	2007_RE	2008_RE	2009_RE	2010_
0	170.0	Afghanistan	0.30	0.30	0.31	0.31	0.30	0.33	0.33	0.34	 37.14	33.86	21.34	17.81	14
1	69.0	Albania	0.64	0.62	0.61	0.61	0.62	0.63	0.64	0.64	 31.71	32.10	35.91	37.22	37
2	82.0	Algeria	0.58	0.58	0.59	0.59	0.60	0.60	0.61	0.62	 0.41	0.41	0.30	0.31	0
3	36.0	Andorra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 17.49	16.94	17.42	17.52	19
4	149.0	Angola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 65.02	61.60	58.11	55.75	54

4. Cleaning merged dataset

```
# Drop NAs and remove column "Country Code"
merged df=merged df.dropna(how='any')
del merged df["Country Code"]
# Remove the row with an error
merged df=merged df.drop([33],axis=0)
# Make sure all of the numbers are in float format
merged df.iloc[:,2:52]=merged df.iloc[:,2:52].astype(float)
# Show the columns
merged df.columns
Index(['HDI Rank (2018)', 'Country Name', '1990_HDI', '1991_HDI', '1992_HDI',
       '1993_HDI', '1994_HDI', '1995_HDI', '1996_HDI', '1997_HDI', '1998_HDI',
       '1999_HDI', '2000_HDI', '2001_HDI', '2002_HDI', '2003_HDI', '2004_HDI',
       '2005 HDI', '2006_HDI', '2007_HDI', '2008_HDI', '2009_HDI', '2010_HDI',
       '2011_HDI', '2012_HDI', '2013_HDI', '2014_HDI', '2015_HDI', '1990_RE',
       '1991_RE', '1992_RE', '1993_RE', '1994_RE', '1995_RE', '1996_RE',
       '1997 RE', '1998 RE', '1999 RE', '2000 RE', '2001 RE', '2002 RE',
       '2003 RE', '2004 RE', '2005 RE', '2006 RE', '2007 RE', '2008 RE',
       '2009 RE', '2010_RE', '2011_RE', '2012_RE', '2013_RE', '2014_RE',
       '2015 RE'],
      dtype='object')
```

5. Adding extra columns: Avg HDI, Avg RE Consumption, Total RE Consumption

```
# Create two new columns, which calculates avg HDI index and energy consumption for each countries

merged_df["Avg HDI"]=merged_df.iloc[:,2:27].mean(axis=1)

merged_df["Avg Energy Consumption"]=merged_df.iloc[:,28:52].mean(axis=1)

merged_df["Total Energy Consumption"]=merged_df.iloc[:,28:52].sum(axis=1)

merged_df.head()
```

	HDI Rank (2018)	Country Name	1990_HDI	1991_HDI	1992_HDI	1993_HDI	1994_HDI	1995_HDI	1996_HDI	1997_HDI	 2015_RE	Avg HDI	Avg Energy Consumption	Total Energy Consumption
0	170.0	Afghanistan	0.30	0.30	0.31	0.31	0.30	0.33	0.33	0.34	 18.42	0.3836	32.726250	785.43
1	69.0	Albania	0.64	0.62	0.61	0.61	0.62	0.63	0.64	0.64	 38.62	0.6856	40.551667	973.24
2	82.0	Algeria	0.58	0.58	0.59	0.59	0.60	0.60	0.61	0.62	 0.06	0.6652	0.377500	9.06
3	36.0	Andorra	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 19.75	0.4924	16.119167	386.86
4	149.0	Angola	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	 49.57	0.3020	66.917083	1606.01

2. Insights While Exploring Data

Segmenting data to understand RE consumption trend better

Development	Avg Energy Consumption	Median Energy Consumption	Var Energy Consumption	Std Energy Consumption
Low Human Development	1226	1283.89	626874.991004	791.754375
Medium Human Development	757	750.95	264173.052221	513.977677
High Human Development	331	243.71	99370.795217	315.231336
Very High Human Development	331	177.11	157914.497661	397.384571
	Avg Energy Consumption	Median Energy Consumption	Var Energy Consumption	Std Energy Consumption
Total:	795.84	570.67	513872.300163	716.848868

```
# Grouping HDIs into 4 groups: Low, Medium, High and Very High Human Development:
    # HDI of Less than 0.550 for Low human development,
    # 0.550-0.699 for medium human development,
    # 0.700-0.799 for high human development
    # and 0.800 or greater for very high human development.

# Creating a column "Development" to segment countries by their development level:
# Creating bins and Labels for each segments
bins=[0,0.549,0.699,0.799,1]
labels=["Low Human Development", "Medium Human Development", "High Human Development", "Very High Human Development"]
merged_df["Development"]=pd.cut(merged_df["Avg HDI"], bins, labels=labels)
```


3. Problems after exploring the data

We were almost losing 27 countries (including USA) because of using dropna before merging datasets

BEFORE:

Used dropna before merging

Number of countries in the merged dataset
merged_df["Country Name"].count()

127

We were losing 27 countries as a result of excessive dropping

AFTER:

- Filled na's with zeros before merging
- Used dropna after merging

```
# Number of countries in the merged dataset
merged_df["Country Name"].count()
```

164

Data Analysis: Looking at the Relationship between HDI and Renewable Energy Consumption

Correlation coefficient: \approx -0.589 p-value \approx 1.428e-15

```
# Creating a scatter plot to see the relationship betweeen HDI and Renewable Energy Consumption:
# Creating labels and titles
plt.title("HDI vs. Renewable Energy Consumption (Average)")
plt.xlabel("Average Human Development Index (HDI)")
plt.ylabel(r"Average Renewable Energy Consumption" + "\n" + "(% of total final energy consumptio
# Creating x and y axis
x values = merged df["Avg HDI"]
y values = merged df["Avg Energy Consumption"]
# Regression analysis
(slope, intercept, rvalue, pvalue, stderr) = linregress(x values, y values)
regress values = x values * slope + intercept
line eg = "v = " + str(round(slope, 2)) + "x + " + str(round(intercept, 2))
plt.scatter(x values, y values)
plt.plot(x values, regress values, "r--")
plt.annotate(line eq. (0.20, 22), fontsize = 10, color = "black")
plt.savefig("Final Images/firstgraph.png")
print(f"Correlation coefficient: {rvalue} \n")
print(f"P-value: {pvalue} \n")
```

Data Analysis: Looking at the Relationship between **HDI** and Renewable **Energy Consumption by HDI levels**

- Low Human Development: HDI < 0.550
- **Medium Human Development:** $0.550 \le HDI \le 0.699$
- **High Human Development**: $0.700 \le HDI \le 0.799$
- Very High Human Development: $HDI \le 0.800$

Correlation coefficient: ≈ -0.200

Correlation coefficient: ≈ -0.160

Correlation coefficient: ≈ -0.065

Correlation coefficient: ≈ 0.505

ANOVA Test on the Different HDI Groups (Low, Medium, High, & Very High Human Development)

F_onewayresult(statistic \approx 26.654, **p-value** \approx **7.666e-14**

```
# Creating a boxplot for each segment:
merged_df.boxplot("Avg Energy Consumption", by="Development", figsize = (20,10))
group1 = merged_df.loc[merged_df["Development"]=="Low Human Development"]["Avg Energy Consumption"]
group2 = merged_df.loc[merged_df["Development"]=="Medium Human Development"]["Avg Energy Consumption"]
group3 = merged_df.loc[merged_df["Development"]=="High Human Development"]["Avg Energy Consumption"]
group4 = merged_df.loc[merged_df["Development"]=="Very High Human Development"]["Avg Energy Consumption"]
# Perform ANOVA to test the validity of the null hypothesis which states a commonly accepted cla im about a population.
stats.f_oneway(group1,group2,group3,group4)
```

Well that's a bummer...

It seems like high HDI countries use LESS renewable energy than lower HDI countries. Let's see if this is a growing trend or a fading trend.

How will we answer this question?

Compare the HDI of a country to RE% over time.

To ensure that we look at time periods where renewable energy sources, such as solar panels, are readily available, we will drop some of our older data to examine this trend.

Specifically, compare the avg RE% for 2004-2009 to avg RE% for 2010-2015 and the avg HDI from 2004-2015

https://en.wikipedia.org/wiki/Growth_of_photovoltaics

Before we show you the results, ask yourself:

Will developed countries tend to use more or less renewable energy over time?

...What about less developed and developing countries?

Who can afford to purchase for renewable energy production?

Grid parity (or socket **parity**) occurs when an alternative energy source can generate power at a levelized cost of electricity (LCOE) that is less than or equal to the price of power from the electricity **grid**.

Ultimately, this is an economic problem, as higher electricity costs incentivize the development of private alternative energy sources.

Insights from Data

- High HDI and Very High HDI associated with lower renewable energy consumption
- Increase in HDI is correlated with higher growth over time of RE% share

Inferences Drawn

- Underdeveloped countries rely on alternative energy sources as their power consumption needs increase
- More developed countries see an increase in renewable energy share as they've acquired the technology and resources to grow

Future Trends

 Renewable energy shares are going to be prominent within highly developing countries

Post Mortem

Complications Along the Way

- Normalizing and merging datasets
 - Organizing data into groups to reduce workload and draw clearer conclusions
 - Narrowing the scope of our study

Future Questions

- → What type of renewable energy sources are used most commonly compared against HDI levels?
- → How do HDI levels compare to that of fossil fuel consumption?
- → Do higher HDI countries have a higher diversity in energy sources?

Resources

HDI dataset: http://hdr.undp.org/en/data

RE Consumption dataset: https://data.worldbank.org/indicator/eg.fec.rnew.zs

Grouping HDI: http://hdr.undp.org/en/content/human-development-report-2019-readers-guide

Questions?