Real Analysis Qualifying Exam September 19, 1996

Let (X, M, μ) be a measure space.

- **1.** Let 0 < a < 1. Prove that there exists a compact set $K \subset [0,1] \setminus \mathbb{Q}$ such that $\lambda(K) = a$, where λ is Lebesgue measure on \mathbb{R} .
- **2.** Let f be a real-valued function on X such that $\{x: f(x) > a\}$ is measurable for each $a \in \mathbb{R}$. Prove that $f^{-1}(E)$ is measurable for each Borel set $E \subset \mathbb{R}$.
- **3.** Let Y be a topological space and let $\varphi: X \to Y$ be measurable. Define $\nu(E) := \mu(\varphi^{-1}(E))$ for each $E \in \mathcal{B}_Y$ (the Borel subsets of Y). Prove:
 - a) ν is a Borel measure on Y.
 - b) Let $f: Y \to \mathbb{C}$ be Borel measurable. Then $f \in L^1(\nu)$ if and only if $f \circ \varphi \in L^1(\mu)$, in which case

$$\int_{V} f d\nu = \int_{V} f \circ \varphi d\mu.$$

- **4.** Prove the completeness of $L^P(\mu)$ for $1 \le p < \infty$.
- **5.** Let $0 and <math>f_n, f \in L^P(\mu)$. Suppose $||f_n||_P \to ||f||_P$ and $f_n \to fa.e$. Prove that $||f_n f||_P \to 0$.

Hint:
$$|f_n - f|^P \le 2^P (|f_n|^P + |f|^P)$$
.

6. Let $f: X \times [0,1] \to \mathbb{C}$. State (nontrivial) conditions on f that guarantee

(*)
$$\frac{d}{dt} \int f(x,t) d\mu(x) = \int \frac{\partial f}{\partial t}(x,t) d\mu(x) \qquad \forall t \in (0,1)$$

and then prove (*).

7. Let f and g be Borel functions on \mathbb{R}^+ such that

$$\int_0^\infty (|f(x)| + |g(x)|) \frac{dx}{x} < \infty.$$

Define

$$(f * g)(x) = \int_0^\infty f(y)g(x/y)\frac{dy}{y}$$

for x > 0 whenever the integral in the right-hand side exists.

Prove: (i) $|f*g| < \infty$ Lebesgue-almost everywhere, (ii) f*g is Borel measurable, and

(iii)
$$\int_0^\infty |(f*g)(x)| \frac{dx}{x} \le \int_0^\infty |f(x)| \frac{dx}{x} \cdot \int_0^\infty |g(y)| \frac{dy}{y}.$$

8. Let f be a 2π -periodic differentiable function on \mathbb{R} with $\int_0^{2\pi} |f'(t)|^2 dt < \infty$. Prove that

$$\sum_{n=-\infty}^{\infty} n^2 |\widehat{f}(n)|^2 < \infty.$$