Mid-Semester Examination, October-2016 Algorithm Design-II (CSE 4131)

Semester: 5th Branch: CSE, CSIT Full mark: 30 Time: 120 Mins.

Subject Learning Outcome	*Taxonomy Level	Ques, No.	Marks
(i) understand the network flow problem and apply it to real-world problems.	L3	2(a), 2(b), 2(c)	2+2+2
(ii) use a greedy approach to solve an appropriate problem and prove if the greedy rule chosen leads to an optimal solution.	L3, L4, L5,	3(a), 3(b), 3(c)	2+2+2
(iii) use recursive backtracking to solve an appropriate problem and identify errors in incorrect implementations.	L3, L4, L5	4(a), 4(b), 4(c)	2+2+2
(iv) describe various heuristic problem solving methods.			
(v) use dynamic programming to solve an appropriate or provide a recursive solution using memoization.	L3, L4, L5	5(a), 5(b), 5(c)	2+2+2
(vi) — distinguish between computationally tractable and intractable problems. — define and relate class—P, class—NP and class NP-complete. — given a problem in NP, define an appropriate certificate and the verification algorithm.			
(vii) understand the concept of approximation ratio (with emphasis on constant-factor approximation)			
(viii) identify and apply an appropriate algorithmic approach to solve a problem.			
(ix) given a numerical problem, explain the challenges to solve it.			

^{*}Bloom's taxonomy levels: Knowledge (L1), Comprehension (L2), Application (L3), Analysis (L4), Evaluation (L5), Creation (L6)

Answer all five questions.

All questions carry equal marks. All bits of each question carry equal marks.

Q1.(a) //Computation of the sum, S, of the first n natural numbers ($n \ge 1$).

```
sum1(n)
i \leftarrow 1
S \leftarrow 1
while i < n do
i \leftarrow i + 1
S \leftarrow S + i
endwhile
```

The precondition is $P = \{n \ge 1\}$ and the postcondition is $Q = \{S = 1 + 2 + ... + n\}$. Since the sum will be computed by successively adding the current term, i, an adequate loop invariant could be S = 1 + 2 + ... + i.

The following (sum 2(n)) is another version of this above (sum 1(n)) algorithm.

```
sum2(n)
S \leftarrow 0
i \leftarrow 1
while i \leq n \text{ do}
S \leftarrow S + i
i \leftarrow i + 1
endwhile
return S
```

Check the correctness of sum2(n) by identifying a loop invariant, which may be a modified form of that is used in sum1(n).

- (b) Assume that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. Find the approximate maximum input size of a problem that can be solved in 6 minutes?
- (c) Give a suitable matching between the algorithm and data structures given below.
 - 1) Breadth First Search

1) Stack

2) Depth First Search

- 2) Queue3) Union Find
- 3) Prim's Minimum Spanning Tree4) Kruskal' Minimum Spanning Tree
- 4) Priority Queue
- Q2. Consider the network flow problem with the following edge capacities, c(u,v) for edge (u,v): c(s,2)=2, c(s,3)=13, c(2,5)=12, c(2,4)=10, c(3,4)=5, c(3,7)=6, c(4,5)=1, c(4,6)=1, c(6,5)=2, c(6,7)=3, c(5,t)=6, c(7,t)=2

2

2

Mid-Semester Examination, October-2016 Algorithm Design-II (CSE 4131)

- (a) Draw the flow network.
- (b) Run the Ford-Fulkerson algorithm to find the maximum flow. Show each residual graph.
- (c) Show the minimum cut.
- Q3.(a) $C1 = \{a = 00, b = 01, c = 10, d = 11\}$, $C2 = \{a = 0, b = 110, c = 10, d = 111\}$, $C3 = \{a = 1, b = 110, c = 10, d = 111\}$. Given an encoded message, decoding is the process of turning it back into the original message. A message is uniquely decodable

(vis-a-vis a particular code) if it can only be decoded in one way.
(i) using C1 decode 010011, using C2 decode 1100111 and using C3 decode 1101111.

- (ii) show that every message encoded using C1 and C2 are uniquely decodable(decipherable), but not C3.
- (b) Using Greedy-choice-property find an optimal solution to the knapsack instance n = 7, m = 15, (p1, p2, p3, p4, p5, p6, p7) = (10, 25, 15, 7, 6, 18, 3), and (w1, w2, w3, w4, w5, w6, w7) = (2, 3, 5, 7, 1, 4, 1).
- (c) Find the maximum size set of mutually compatible activities for the following table using a suitable greedy choice property. Also find the number of element comparisons in this computation and state greedy-choice-property used.

Activity	1	2	3	4	5	6	7	8	9
Start time	9	3	6	11	2	0	12	7	4
Finish time	12	5	9	14	4	3	16	10	8

- Q4. (a) "Backtracking ensures correctness by enumerating all possibilities. It ensures efficiency by never visiting a state more than once." True or False. Justify your answer constructing state-space-diagram for 3-Queen problem.
 - (b) Identify the implicit and explicit constraints in backtracking formulation of Sudoku problem.
 - (c) A derangement is a permutation p of $\{1,2,...,n\}$ such that no item is in its proper position, i.e., $p_i \neq i$ for all $1 \leq i \leq n$. Write an efficient backtracking formulation that constructs all the derangements of n items.
- Q5. (a) Explain how caching reduces recomputing the same subproblem by constructing the computation tree for computing 5th Fibonacci number recursively.
 - (b) Consider the following partially-filled table for Longest Increasing Subsequence(LIS) problem. Fill the blank cells using dynamic programming.

i	1	2	3	4	5	6	7	8	9
A[i]	2	4	3	5	1	7	6	9	8
LIS[i]									
All possible Optimal- subsequence(s)									

(c) In what aspect(s) dynamic programming is better in comparison to exhaustive search techniques?

2

2

2

2

2

2