CURSO 2014-2015

ANALISIS DE COINTEGRACION

Este análisis se llevará a cabo aplicando a la llamada relación de cointegración los siguientes dos instrumentos:

- 1. Contraste CRDW.
- 2. Contraste Dickey-Fuller sobre los residuos de la relación de cointegración.

ESPECIFICACION DE LA RELACIÓN DE COINTEGRACIÓN

Cuestiones generales:

- A) Las variables deben intervenir en la relación con el mismo orden de integración
- B) En todos los casos, cuando cualquiera de las variables posea tendencia determinista se procederá a eliminarla, de modo que las posibles relaciones de cointegración serán formuladas siempre con las variables libres de tendencia determinista.

ELIMINACION DE TENDENCIA DETERMINISTA

Suponiendo tendencia determinista lineal.

A) Creación de la variable tendencia.

Desde la barra de comandos principal:

Se crea una variable llamada time.

B) Se estima por MCO el modelo

$$Y_t = \alpha + \beta t + u_t$$

Desde la barra de comandos principal:

MODELO → MINIMOS CUADRADOS ORDINARIOS

C) Los residuos de este modelo son la variable Y_t libre de tendencia determinista:

$$\hat{u}_t = Y_t - (\hat{\alpha} + \hat{\beta} t) = Y_t^T$$

Guardar estos residuos.

Desde la barra de comandos del objeto Modelo:

GUARDAR → RESIDUOS

Es conveniente cambiar el nombre para indicar que es la variable *Y* libre de tendencia determinista.

ESCENARIOS POSIBLES SEGÚN EL ORDEN DE INTEGRACIÓN DE CADA UNA DE LAS VARIABLES.

- Escenario A: Ambas variables son I(1). La relación de cointegración será:
 - a.1) $y_{1t} = \alpha + \beta y_{2t} + \varepsilon_t$ si ninguna de las dos tiene elementos deterministas.
 - a.2) $\hat{u}_{1t} = \beta \ y_{2t} + \varepsilon_t$ si y_1 tiene elementos deterministas

 $y_{1t} = \alpha + \beta \ \hat{u}_{2t} + \varepsilon_t$ si y_2 tiene elementos deterministas

a.3) Si las dos variables tienen elementos deterministas, la relación de cointegración se concreta como:

$$\hat{u}_{1t} = \beta \ \hat{u}_{2t} + \varepsilon_t$$

 Escenario B: Las variables son una mezcla en el sentido de que, por ejemplo, una es I(2) y otra es I(1). La relación de cointegración será:

$$\Delta y_{1t} = \alpha + \beta y_{2t} + \varepsilon_t$$
 obien $y_{1t} = \alpha + \beta \Delta y_{2t} + \varepsilon_t$

Igual que en el escenario A, si alguna o las dos variables tienen elementos deterministas, se calcularían inicialmente las variables libres de ellos y la relación de cointegración sería la formulada en términos de estas variables transformadas.

Suponiendo que la variable y_{1t} es I(2) con tendencia determinista lineal y la variable y_{2t} es I(1), la relación de cointegración será:

$$\Delta \hat{u}_{1t} = \beta \ y_{2t} + u_t$$

• Escenario C: Ambas variables son I(2). En este caso, la relación de cointegración será, suponiendo que ninguna de las dos tienen elementos deterministas:

$$\Delta y_{1t} = \alpha + \beta \, \Delta y_{2t} + u_t$$

Si alguna de ellas presentase elementos deterministas, la relación de cointegración se formularía en términos de las variables libres de ellos.

CONTRASTE DE COINTEGRACIÓN

Sobre cualquiera de estas posibles relaciones de cointegración se trata de resolver el siguiente planteamiento:

H₀: Las variables no están cointegradas

H₁: Las variables están cointegradas

Contraste CRDW.

Es el valor del estadístico de Durbin –Watson que proporciona la salida de la estimación de la relación de cointegración.

Puntos críticos: cuadro 4.5 del Apartado 4.2.

Contraste Dickey-Fuller de los residuos de la relación de cointegración.

 H_0 : $I(1) \equiv Variables no cointegradas$

 $H_A:I(0) \equiv Variables cointegradas$

Puntos críticos: cuadro 4.5 del Apartado 4.2.

MODELOS ADMISIBLES

Notación:

y₁: variable dependiente

y₂: variable independiente o explicativa

Estructura de modelos admisibles:

VAR: si las variables no están cointegradas

MCE: si las variables están cointegradas

En todos los casos se obtendrán 4 modelos potencialmente admisibles consecuencia de la incorporación de un retardo temporal adicional. La incorporación del retardo se hará simultáneamente en ambas variables.

CASO 1: Ambas variables son I(0)

Si ninguna tiene elementos deterministas:

$$y_{1,t} = \alpha + \sum_{i=1}^{4} \beta_i \ y_{1,t-i} + \sum_{i=1}^{4} \phi_i \ y_{2,t-i} + \varepsilon_t$$

Si alguna de ellas o las dos tienen componente determinista se formulan los modelos anteriores en términos de las variables transformadas (\hat{u}_{1t} o/y \hat{u}_{2t}).

CASO 2: Una de las variables tiene solo tendencia estocástica

La variable y_1 es I(1):

$$\Delta y_{1,t} = \alpha + \sum_{i=1}^{4} \beta_i \Delta y_{1,t-i} + \sum_{i=1}^{4} \phi_i y_{2,t-i} + \varepsilon_t$$

La variable y_1 es I(2):

$$\Delta^2 y_{1,t} = \sum_{i=1}^4 \beta_i \Delta^2 y_{1,t-i} + \sum_{i=1}^4 \phi_i y_{2,t-i} + \varepsilon_t$$

Si la que es I(0) tiene elementos deterministas se formulan los modelos anteriores en términos de la variable transformada.

CASO 3: Ambas variables tienen tendencia estocástica y no están cointegradas

Si ambas son I(1):

$$\Delta y_{1,t} = \alpha + \sum_{i=1}^{4} \beta_i \Delta y_{1,t-i} + \sum_{i=1}^{4} \phi_i \Delta y_{2,t-i} + \varepsilon_t$$

Si ambas son I(2):

$$\Delta^{2} y_{1,t} = \sum_{i=1}^{4} \beta_{i} \Delta^{2} y_{1,t-i} + \sum_{i=1}^{4} \phi_{i} \Delta^{2} y_{2,t-i} + \varepsilon_{t}$$

Si y_1 es I(1) e y_2 es I(2):

$$\Delta y_{1,t} = \alpha + \sum_{i=1}^{4} \beta_i \Delta y_{1,t-i} + \sum_{i=1}^{4} \phi_i \Delta^2 y_{2,t-i} + \varepsilon_t$$

La posible existencia de elementos deterministas en alguna de ellas se ha eliminado ya al considerar las variables en diferencias.

ESTIMACION MODELOS VAR (CASO 1, CASO 2 Y CASO 3)

MODELO → MINIMOS CUADRADOS ORDINARIOS

Utilizando la opción retardos

CASO 4: Ambas variables tienen tendencia estocástica [I(1)] y están cointegradas

Modelo de mecanismo de corrección de error

Si las variables no tienen elementos deterministas:

$$\Delta y_{1, t} = \gamma_0 + \alpha (y_{I, t-1} - \beta y_{2, t-1}) + \sum_{i=1}^{4} \beta_i \Delta y_{1, t-i} + \sum_{i=1}^{4} \phi_i \Delta y_{2, t-i} + \varepsilon_t$$

Donde entre paréntesis se están representando los residuos de la relación de cointegración.

Si ambas variables tienen elementos deterministas:

$$\Delta \hat{u}_{1t} = \alpha (\hat{u}_{1,t-1} - \beta \hat{u}_{2,t-1}) + \sum_{i=1}^{4} \beta_i \Delta \hat{u}_{1,t-i} + \sum_{i=1}^{4} \phi_i \Delta \hat{u}_{2,t-i} + \varepsilon_t$$

ESTIMACION MECANISMO DE CORRECCION DE ERROR (CASO 4)

MODELO → SERIES TEMPORALES → VECM

Se formulan como variables endógenas las dos variables que han definido la relación de cointegración.

Asumiendo el caso de dos variables I(1) y ambas con tendencia determinista lineal, la relación de cointegración establecida habría sido:

$$\hat{u}_{1t} \equiv \beta \ \hat{u}_{2t} + \varepsilon_t$$

Las variables endógenas seleccionadas serían: $\hat{u}_1 \ y \ \hat{u}_2$.

Si las variables están cointegradas, el modelo objeto de estimación, suponiendo un retardo, será:

$$\Delta \hat{u}_{1t} = \alpha (\hat{u}_{1t-1} - \beta \hat{u}_{2t-1}) + \beta_1 \Delta \hat{u}_{1t-1} + \phi_1 \Delta \hat{u}_{2t-1} + \varepsilon_t$$

En lo que respecta a las opciones sobre los elementos deterministas se selecciona la opción adecuada atendiendo a la variable endógena de la ecuación objeto de estimación.

El resultado de la estimación es del siguiente tipo:

Donde:

Beta: estimación de los parámetros del mecanismo de corrección de error.

Alpha: estimación del parámetro de ajuste

En las ecuaciones aparecen las estimaciones de los parámetros que acompañan al resto de variables y vuelve a mostrarse la estimación del parámetro de ajuste.