CORRIGE DU 1er GROUPE SERIE G 2010

Exercice 1: (4 pts)

Soit X le nombre de biens B₁ fabriqués, soit Y le nombre de biens B₂ fabriqués, soit Z le nombre de biens B₃. D'où le tableau technologique :

	B1	В2	Вз	Contraintes
T ₁	2	3	3	180
T ₂	1	2	1	100
ТЗ	2	1	2	226
Profit	10	15	12	

On a le système d'inéquations :

$$\begin{cases} X, Y, Z \ge 0 \\ 2X + 3Y + 3Z \le 180 \\ X + 2Y + Z \le 100 \\ 2X + Y + 2Z \le 226 \end{cases} \Rightarrow \begin{cases} X, Y, Z, t_{1}, t_{2}, t_{3} \ge 0 \\ 2X + 3Y + 3Z + t_{1} = 180 \\ X + 2Y + Z + t_{2} = 100 \\ 2X + Y + 2Z + t_{3} = 226 \end{cases}$$

$$P = 10X + 15Y + 12Z$$

	X	Y	Z	t ₁	t2	t3	
t ₁	2	3	3	1	0	0	180
t2	1	2	1	0	1	0	100
t3	2	1	2	0	0	1	226
P	10	15	12	0	0	0	0

Ainsi en continuant, on a X = 60 et Y = 20. Donc il faut fabriquer 6à biens B₁ et 20 biens B₂ pour avoir un profit maximal de 900 milliers de francs.

Exercice 2: (3 pts)

DACI CICC	· (5 pts .	,							
Mois	Janv.	Fev.	Mars	Avril	Mai	Juin	Juillet	Aout	\sum
X	50	55	72	80	83	95	100	125	660
Y	800	820	880	950	960	1000	1100	1290	7800
XY	40000	45100	63360	76000	79680	95000	110000	161250	670390
_X 2	2500	3025	5184	6400	6889	9025	10000	15625	58648
_Y 2	640000	672400	774400	902500	921600	1000000	1210000	1664100	7785000

1°)
$$r = \frac{\sum XY - n\overline{XY}}{\sqrt{\sum X^2 - n\overline{X}^2} \sqrt{\sum Y^2 - n\overline{Y}^2}}$$
; $\overline{X} = 82.5$; $\overline{Y} = 975$; $r = 0.98$.

$$\frac{\sqrt{Z} \times -nx}{\sqrt{Z}} \times -nx} = \frac{\sqrt{X} \times -nx}}{\sqrt{X}} = a(X - \overline{X}) \text{ avec } a = \frac{\sum XY - n\overline{X}\overline{Y}}{\sum X^2 - n\overline{X}^2} \text{ donc } a = 6,41 \text{ et } y = 6,41x + 446,18.$$

3°) Pour septembre on a y = (125 + 125x20%)x6,41 + 446,18 = 1407,68 = 1408Pour octobre on a y = (150 = 150x20%)x6,41 + 446,18 = 1599,98 = 1600

Exercice 3: (3 pts)

1°)
$$V_{n+1} = U_{n+1} + 1 = -\frac{1}{3}(2U_n + 5) + 1 = -\frac{2}{3}(U_n + 1) = -\frac{2}{3}V_n$$
 donc V est une suite géométrique de raison $q = -\frac{2}{3}$ et de premier terme $V_{0=2}$.

2°)
$$V_n = V_0 q^n$$
 donc $V_n = 2(-\frac{2}{3})^n$ et $U_n = V_n - 1$ d'où $U_n = 2(-\frac{2}{3})^n - 1$

$$3^{\circ}) \quad \mathsf{S}_{n} = \mathsf{V}_{0} + \mathsf{V}_{1} + \dots + \mathsf{V}_{n} = \mathsf{V}_{0} \, \frac{1 - \mathsf{q}^{n+1}}{1 - \mathsf{q}} \quad d'o\check{\mathsf{u}} \quad \mathsf{S}_{n} = \frac{6}{5} \left(1 - \left(-\frac{2}{3} \right)^{n+1} \right) \quad \text{et} \quad \lim_{+\infty} \mathsf{S}_{n} = \frac{6}{5} \, .$$

Problème: (10 pts)

A)
$$g(x) = -x^2 - 2 + 2 \ln x$$

1°)
$$D_g =]0;+\infty[$$
; $g'(x) = -\frac{2(x^2-1)}{x}$ d'où g' est positif sur]0;1[et négatif sur]1;+\infty[.

$$2^{\circ}$$
) g(1) = -3 donc g(x) est négatif sur $[0;+\infty[$.

B)
$$f(x) = 2x + 4 + \frac{4 \ln x}{x}$$

1°)
$$\lim_{0^{+}} f = -\infty$$
 et $\lim_{+\infty} f = +\infty$

1°)
$$\lim_{t\to\infty} f = -\infty$$
 et $\lim_{t\to\infty} f = +\infty$
2°) $\lim_{t\to\infty} (f - y) = 0$ donc $y = 2x + 4$ est une asymptote oblique pour C.

$$f(x) - y = \frac{4 \ln x}{x}$$
 qui est positif si x>1 donc la courbe C est au dessus de l'asymptote D si x>1.

3°)
$$f'(x) = \frac{2x^2 + 4 - 4 \ln x}{x^2} = \frac{-2g(x)}{x^2} > 0$$

$$4^{\circ}$$
) f' est positif sur]0;+∞[d'où f est croissante sur]0;+∞[.

$$5^{\circ}$$
) T : y = 6x

6°)
$$J =]-\infty;+\infty[$$
 . $f(1) = 6$ et $\lim_{0^{+}} f = -\infty$ donc $\alpha \in]0;1[$

C) 1°)
$$\int_{1}^{e} \frac{\ln t}{t} dt = \left[\frac{1}{2} (\ln t)^{2}\right]_{1}^{e} = \frac{1}{2}$$

2°)
$$A = \int_{1}^{e} (f(x) - y) dx = \int_{1}^{e} \frac{4 \ln x}{x} dx = 4 \frac{1}{2} u.a = 0,5 cm^2$$

