CO2008 - KIẾN TRÚC MÁY TÍNH

Khoa Khoa học và Kỹ thuật Máy tính Đại học Bách Khoa – Tp.HCM

9/2017

Bài thực hành số 6 KIẾN TRÚC MIPS: SINGLE CLOCK CYCLE

Mục tiêu

- Hiểu chức năng của các khối phần cứng.
- Hiểu nghiên lý hoạt động (lấy lệnh, giải mã, thực thi, lưu trữ) của máy tính single clock cycle.
- Tính toán thời gian chạy của từng lệnh trong máy tính single clock cycle.
- Tính toán được tần số (chu kỳ) của hệ thống.
 Bài thực hành chia làm 2 phần: phần ôn tập và phần bài tập. Phần ôn tập giúp sinh viên xem lại định dạng của các thông tin, ý nghĩa của các trường trong tập lệnh MIPS 32bit.

Yêu cầu

- Xem slide về single clock cycle.
- Xem trước plug-in (Tool/MIPS X-Ray) trong MARS để có thể tham khảo về MIPS single clock cycle.

Kiểu lệnh

R-type						
Op_6	Rs_5	Rt_5	Rd_5	$Shamt_5$	$Function_6$	
Kiểu I-type						
Op_6	Rs_5	Rt_5		$Immediate_{16}$		
Kiểu J-type						
Op_6	$Immediate_{26}$					

- Op (operation code) Mã lệnh, dùng để xác định kiểu lệnh, và lệnh thực thi (Kiểu R thì Op = 0).
- Rs, Rt, Rd (register): Trường xác định thanh ghi (trường thanh ghi 5 bit tương ứng với 32 thanh ghi).
- Shamt (shift amount): Xác định số bits dịch trong các lệnh dịch bit.
- Function: Xác định toán tử(operator hay còn gọi là lệnh) trong kiểu lệnh R.
- Immediate: Số trực tiếp, địa chỉ.

Bài tập và Thực hành

- Bài 1: Xác định chức năng, input, output của phần cứng trong hình 1 (PC, Instruction Memory, Register, ALU, Data Memory, Control, mux, Sign-Extend)
- Bài 2: Xác định ý nghĩa của các tín hiệu điều khiển sau:
 - RegDst.
 - RegWrite.
 - MemRead.
 - MemWrite.

Hình. 1: Kiến trúc máy tính single clock cycle

- MemtoReg.
- Branch.
- jump
- ALUSrc.

Bài 3: Xác định giá trị của các tín hiệu điều khiển.

```
lw $t1, 8($t2)
sw $t1, 8($t2)
add $t1, $t2, $t2
beq $t2, $t1, Label
sll $t1, %$t2, 5
j label
```

Bài 4: Xác định critical path, thời gian chu kỳ của hệ thống. Cho thời gian delay của các khối như bảng bên dưới:

Bảng. 1: Delay các khối phần cứng

Phần cứng	Delay
Mux	10ns
Add	10ns
Shift left	10ns
Instruction memory	150ns
Registers	100ns
Sign extend	10ns
ALU	100ns
Data memory	150ns

- (a) Xác định critical path (longest-latency Đường đi có độ trễ lâu nhất) và thời gian hoàn thành của các kiểu lệnh sau:
 - Load
 - Store

- ALU
- \bullet Branch
- Jump
- (b) Xác định thời gian cycle của hệ thống trên.

Gợi ý: máy tính single clock cycle thực thi 1 lệnh bất kỳ trong một chu kỳ đơn. Xác định thời gian chu kỳ sao cho trong 1 chu kỳ thì đảm bảo lệnh bất kỳ sẽ thực thi xong.

Bài tập TextBook

 $4.1, \, 4.2, \, 4.6, \, 4.7, \, 4.9$