Package 'penm'

September 29, 2022			
Type Package			
Title Build and Perturb Elastic Network Models			
Version 0.2.0.9000			
Author Julian Echave			
Maintainer Julian Echave < jechave@unsam.edu.ar>			
Description Functions to calculate ENM models, mutate ENMs by perturbing them, perform single-site mutional scans to calculate average mutation-response matrices, and perform double-site mutational scans to calculate compensation matrices.			
License MIT + file LICENSE			
Encoding UTF-8			
LazyData true			
RoxygenNote 7.2.0			
Suggests testthat			
Depends R (>= 2.10),			
Imports matrixStats, pracma, bio3d, dplyr, jefuns, magrittr, Matrix, purrr, stats, tibble, tidyr			
R topics documented: penm-package			
delta_motion_by_mode			

2 admrs

	delta_structure_by_site	7
	mrs_motion_by_mode	8
	mrs_motion_by_site	8
	mrs_structure_by_mode	9
	mrs_structure_by_site	10
	sdmrs	10
	set_enm	12
	smrs	12
Index		14

penm-package

penm: Build and Perturb Elastic Network Models

Description

Functions to calculate ENM models, mutate ENMs by perturbing them, perform single-site mutional scans to calculate average mutation-response matrices, and perform double-site mutational scans to calculate compensation matrices.

Details

The penm package includes functions to calculate various Elastic Network Models for proteins, perform normal mode analysis, and using Ifenm, obtain mutant proteins and the corresponding mutant ENMs. In addition, it has functions to scan the various average-responses w.r.t. single-site mutations and double-site mutations.

admrs

Calculate a double-mutational-scan matrix analytically

Description

Returns a compensation matrix: element (i,j) measures the degree of compensation of structural deformations produced by pairs of mutations at sites i and j. It uses analytical methods (closed formulas). Two measures are implemented: "mean_max" (default), the structural compensation maximized over mutations at j and averaged over mutations at i; "max_max" is the structural compensation maximized over mutations at i and j.

Usage

```
admrs(wt, mut_dl_sigma, mut_sd_min, option = "mean_max", response = "dr2")
```

Arguments

wt	is the (wild-type) protein to mutate (an object obtained using set_enm)
mut_dl_sigma	is the standard deviation of a normal distribution from which edge-length perturbations are picked (LFENM model).
mut_sd_min	is integer sequence-distance cutoff, only edges with $sdij \ge mut_sd_min$ are mutated
option	is either "mean_max" (default) or "max_max", depending on which compensation measure is desired.
response	is the response desired, which maybe either "dr2", "de2", or "df2"

amrs 3

Details

For details see doi:10.7717/peerj.11330

Value

A compensation matrix, rows are initially mutated site, j is compensation site

See Also

```
Other mutscan functions: amrs(), sdmrs(), smrs()
```

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
dmat <- admrs(wt, mut_dl_sigma = 0.3, mut_sd_min = 1, option = "max_max", response = "dr2")
## End(Not run)</pre>
```

amrs

Calculate a mutation-response matrix analitically

Description

Returns a mutation-response matrix It uses an analytical method (closed formulas). For details see doi:10.7717/peerj.11330

Usage

```
amrs(wt, mut_dl_sigma, mut_sd_min, option = "site", response = "dr2")
```

Arguments

wt is the (wild-type) protein to mutate (an object obtained using set_enm)
mut_dl_sigma is the standard deviation of a normal distribution from which edge-length per-

turbations are picked (LFENM model).

mut_sd_min is integer sequence-distance cutoff, only edges with sdij >= mut_sd_min are

mutated

option is either "site" (default) or "mode" response is either "dr2" (default), "de2", or "df2"

Details

A site-by-site response matrix has elements Mij that measure the response (e.g. deformation) of site i averaged over mutations at site j. A mode-by-site response matrix has elements Mnj that measure the response (e.g. deformation) along mode n averaged over mutations at site j.

It may calculate either site-by-site or mode-by site response matrices Three type of response may be calculated, "dr2" (dr2ij and dr2nj), "de2" (de2ij and de2nj), and "df2" (df2ij and df2nj).

4 delta_energy

Value

A response matrix, columns are mutated sites, rows are responses, of a given site or normal mode.

See Also

```
Other mutscan functions: admrs(), sdmrs(), smrs()
```

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
mrs_matrix <- amrs(wt, mut_dl_sigma = 0.3, mut_sd_min = 1, option = "site", resonse = "dr2")
## End(Not run)</pre>
```

delta_energy

Calculate energy differences between a mutant and wild type

Description

Calculate energy differences between a mutant and wild type

Usage

```
calculate_dvm(wt, mut)
calculate_dg_entropy(wt, mut, beta)
calculate_dvs(wt, mut, ideal = wt)
```

Arguments

mut

wt A protein object with xyz defined

Details

'calculate_dvm' calculates the minimum-energy difference between mut and wt 'calculate_dg_enetropy' calculates the entropic free energ difference between mut and wt 'calculate_dvs' calculates the ideal-conformation stress-energy difference between mut and wt

A second protein object with xyz defined

Value

A (scalar) energy difference between mutant and wild type.

delta_motion_by_mode 5

Description

Given two proteins, compare their conformational ensembles (fluctuation patterns), the proteins' cmat, and normal modes (Principal components) are assumed known.

Usage

```
delta_motion_dmsfn(wt, mut)
delta_motion_dhn(wt, mut)
delta_motion_rwsipn(wt, mut)
delta_motion_nhn(wt, mut)
```

Arguments

wt A protein object with enm defined

mut A second protein object with enm defined

Details

(This version works only for wt and mut with no indels)

'delta_motion_dmsfn' returns mode-dependent profile of changes of mean-square fluctuations $\delta\sigma_n^2$

'delta_motion_dhn' returns mode-dependent profile of entropy differences δH_n

'delta_motion_rwsipn' returns mode-dependent profile of rwsip similarity

'delta_motion_nhn' returns mode-dependent profile of mode conservation measure nH_n

Value

A vector (x_n) of size nmodes, where x_n is the property compared, for mode n.

Description

Given two proteins, compare their conformational ensembles (fluctuation patterns), the proteins' cmat, and normal modes (Principal components) are assumed known.

Usage

```
delta_motion_dmsfi(wt, mut)
delta_motion_dbhati(wt, mut)
delta_motion_rwsipi(wt, mut)
delta_motion_dhi(wt, mut)
```

Arguments

wt A protein object with enm defined

mut A second protein object with enm defined

Details

(This version works only for wt and mut with no indels)

'delta_motion_dmsfi' returns site-dependent profile of changes of mean-square fluctuations $\delta\sigma_i^2$

'delta_motion_dbhati' returns site-dependent profile of dbhat distances

'delta_motion_rwsipi' returns site-dependent profile of rwsip similarity

'delta_motion_dhi' returns site-dependent profile of dh similarity

Value

A vector (x_i) of size nsites, where x_i is the property compared, for site i.

```
delta_structure_by_mode
```

Compare two protein structures in nm representation

Description

(This version works only for wt and mut with no indels)

Usage

```
delta_structure_dr2n(wt, mut)
delta_structure_de2n(wt, mut)
delta_structure_df2n(wt, mut)
```

Arguments

wt A protein object with xyz and enm defined mut A second protein object with xyz defined

delta_structure_by_site

Details

```
'delta_structure_dr2n' calculates de square of the mode-contributions to \delta {\bf r}={\bf C}{\bf f} 'delta_structure_de2n' calculates de square of the mode-contributions to \delta {\bf e}={\bf C}^{1/2}{\bf f} 'delta_structure_df2n' calculates de square of the mode-contributions to the force vecgtor {\bf f}
```

Value

A vector with contributions of each normal mode to the given property

```
delta_structure_by_site
```

Calculate site-dependent profiles of structure differences between two proteins

7

Description

This version works only for wt and mut with no indels

Usage

```
delta_structure_dr2i(wt, mut)

delta_structure_de2i(wt, mut, kmat_sqrt)

delta_structure_df2i(wt, mut)

delta_structure_dvmi(wt, mut)

delta_structure_dvsi(wt, mut)

delta_structure_dvsi_same_topology(wt, mut)
```

Arguments

wt A protein object with xyz defined

mut A second protein object with xyz defined

Details

```
'delta_structure_dr2i' returns the square of structural difference vector Cf
```

'delta_structure_de2i' returns the square of deformation energy vector ${f C}^{1/2}{f f}$

'delta_structure_df2i' returns the square of force vector f

'delta_structure_dvmi' returns the difference of site-dependent minimum-energy contributions

'delta_structure_dvsi' returns the difference of site-dependent stress-energy contributions

'delta_structure_dvsi_same_topology' returns the difference of site-dependent stress-energy contributions, assumes no change in topology

Value

A vector (x_i) of size nsites, where x_i is the property compared, for site i.

8 mrs_motion_by_site

mrs_motion_by_mode

Calculate mode-by-site motion-response matrices

Description

Calculate mode-by-site motion-response matrices

Usage

```
mrs_motion_dmsfnj(mutants)
mrs_motion_dhnj(mutants)
mrs_motion_nhnj(mutants)
mrs_motion_rwsipnj(mutants)
```

Arguments

mutants

A tibble of single-point mutants generated using 'generate_mutants'

Details

'mrs_motion_dmsfnj()' calculates the change of msf along mode n averaged over mutations at site j.

'mrs_motion_dhnj()' calculates change of entropy contribution of mode n averaged over mutations at site j.

'mrs_motion_nhnj()' calculates conservation score nh for mode n averaged over mutations at site j. 'mrs_motion_rwsipnj()' calculates rwsip for mode n averaged over mutations at j

Value

a response matrix of the form R_{nj} (response mode is n, mutated site is j)

 ${\sf mrs_motion_by_site}$

Calculate site-dependent motion-response matrices

Description

Calculate site-dependent motion-response matrices

Usage

```
mrs_motion_dmsfij(mutants)
mrs_motion_dhij(mutants)
mrs_motion_rwsipij(mutants)
mrs_motion_dbhatij(mutants)
```

Arguments

mutants

A tibble of single-point mutants generated using 'generate_mutants'

Details

'mrs_motion_dmsfij()' calculates the change of msf of site i due to mutations at j, averaged over mutations at j

'mrs_motion_dhij()' calculates the change in entropy of site i due to mutations at j averaged over mutations at j

'mrs_motion_rwsipij()' calculates rwsip between mutant and wt site i distributions due to mutations at j, averaged over mutations at j

'mrs_motion_dbhatij()' calculates dbhat distance between wt and mut site i distributions, averaged over mutations at j.

Value

```
a response matrix of the form R_{ij} (response site is i, mutated site is j)
```

Description

Calculate mode-by-site structure-response matrices

Usage

```
mrs_structure_df2nj(mutants)
mrs_structure_de2nj(mutants)
mrs_structure_dr2nj(mutants)
```

Arguments

mutants

A tibble of single-point mutants generated using 'generate_mutants'

Details

```
'mrs_structure_df2nj()' calculates the force matrix f2(n, j) averaged over mutations at j 
'mrs_structure_de2nj()' calculates the energy matrix de2(n, j) averaged over mutations at j 
'mrs_structure_dr2nj()' calculates the structural-difference matrix dr2(n, j) averaged over mutations at j
```

Value

```
a response matrix of the form R_{nj} (response mode is n, mutated site is j)
```

10 sdmrs

mrs_structure_by_site Calculate site-by-site structure-response matrices

Description

Calculate site-by-site structure-response matrices

Usage

```
mrs_structure_df2ij(mutants)
mrs_structure_de2ij(mutants)
mrs_structure_dr2ij(mutants)
mrs_structure_dvsij(mutants)
```

Arguments

mutants

A tibble of single-point mutants generated using 'generate_mutants'

Details

```
'mrs_structure_df2ij()' calculates the force matrix df2(i, j) averaged over mutations at j 
'mrs_structure_de2ij()' calculates the energy-difference matrix de2(i, j) averaged over mutations at j 
'mrs_structure_dr2ij()' calculates the structural difference matrix dr2(i, j) averaged over mutations at j
```

'mrs_structure_dvsij()' calculates the stress-energy matrix dvs(i, j) averaged over mutations at j

Value

a response matrix of the form R_{ij} (response site is i, mutated site is j)

sdmrs

Calculate a double-mutational-scan matrix numerically (simulation-based)

Description

Returns a compensation matrix: element (i,j) measures the degree of compensation of structural deformations produced by pairs of mutations at sites i and j. It uses a simulation method (calculates responses for various instances of forces, then calculates means or maxima) Two measures are implemented: "mean_max" (default), the structural compensation maximized over mutations at j and averaged over mutations at i; "max_max" is the structural compensation maximized over mutations at i and j.

sdmrs 11

Usage

```
sdmrs(
  wt,
  nmut,
  mut_dl_sigma,
  mut_sd_min,
  option = "mean_max",
  response = "dr2",
  seed = 1024
)
```

Arguments

wt is the (wild-type) protein to mutate (an object obtained using set_enm)

nmut is the number of mutations per site to simulate

mut_dl_sigma is the standard deviation of a normal distribution from which edge-length per-

turbations are picked (LFENM model).

mut_sd_min is integer sequence-distance cutoff, only edges with sdij >= mut_sd_min are

mutated

option is either "mean_max" (default) or "max_max", depending on which compensa-

tion measure is desired.

response is the response desired, which maybe either "dr2", "de2", or "df2"

seed seed for random generation of mutations

Details

For details see doi:10.7717/peerj.11330

Value

A compensation matrix, rows are initially mutated site, j is compensation site

See Also

```
Other mutscan functions: admrs(), amrs(), smrs()
```

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
dmat <- sdmrs(wt, nmut = 10, mut_dl_sigma = 0.3, mut_sd_min = 1, option = "max_max", response = "dr2")
## End(Not run)</pre>
```

12 smrs

Description

'set_enm' set's up a 'prot' object containing information on ENM structure, parameters, and normal modes

Usage

```
set_enm(pdb, node, model, d_max, frustrated)
```

Arguments

pdb	pdb object obtained using bio3d::read.pdb
node	parameter specifying how network nodes should be built: "sc" (side chains) or "ca" (alpha carbons)
model	parameter specifying model type: "anm", "ming_wall", "hnm", "hnm0", "pfanm", "reach"
d_max	distance cutoff used to define enm contacts
frustrated	logical value indicating whether to include frustrations in calculation of kmat

Value

an object of class 'prot', which is a list 'lst(param, node, graph, eij, kmat, nma)'

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
set_enm(pdb, node = "sc", model = "anm", d_max = 12.5, frustrated = TRUE)
## End(Not run)</pre>
```

smrs

Calculate a mutation-response matrix numerically (simulation-based)

Description

Returns a mutation-response matrix It uses a simulation method (averages over perturbations). For details see doi:10.7717/peerj.11330

smrs 13

Usage

```
smrs(
  wt,
  nmut,
  mut_dl_sigma,
  mut_sd_min,
  option = "site",
  response = "dr2"
  seed = 1024
)
```

Arguments

wt is the (wild-type) protein to mutate (an object obtained using set_enm)

nmut is the number of mutations per site to simulate

mut_dl_sigma is the standard deviation of a normal distribution from which edge-length per-

turbations are picked (LFENM model).

mut_sd_min is integer sequence-distance cutoff, only edges with sdij >= mut_sd_min are

mutated

option is either "site" (default) or "mode" response is either "dr2" (default), "de2", or "df2"

seed is a seed for random-number generation of mutations

Details

A site-by-site response matrix has elements Mij that measure the response (e.g. deformation) of site i averaged over mutations at site j. A mode-by-site response matrix has elements Mnj that measure the response (e.g. deformation) along mode n averaged over mutations at site j.

It may calculate either site-by-site or mode-by site response matrices Three type of response may be calculated, "dr2" (dr2ij and dr2nj), "de2" (de2ij and de2nj), and "df2" (df2ij and df2nj).

Value

A response matrix, columns are mutated sites, rows are responses, of a given site or normal mode.

See Also

```
Other mutscan functions: admrs(), amrs(), sdmrs()
```

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
mrs_matrix <- smrs(wt, nmut = 10, mut_model = "lfenm", mut_dl_sigma = 0.3, mut_sd_min = 1, seed = 1024)
## End(Not run)</pre>
```

Index

k mutscan functions	delta_structure_dr2n
admrs, 2	(delta_structure_by_mode), 6
amrs, 3	delta_structure_dvmi
sdmrs, 10	<pre>(delta_structure_by_site), 7</pre>
smrs, 12	delta_structure_dvsi
	(delta_structure_by_site), 7
admrs, 2, 4, 11, 13	delta_structure_dvsi_same_topology
amrs, 3, 3, 11, 13	(delta_structure_by_site), 7
	mrs_motion_by_mode, 8
calculate_dg_entropy (delta_energy), 4	mrs_motion_by_site, 8
calculate_dvm(delta_energy),4	mrs_motion_dbhatij
calculate_dvs(delta_energy),4	(mrs_motion_by_site), 8
delta_energy,4	mrs_motion_dhij (mrs_motion_by_site), 8
delta_motion_by_mode, 5	mrs_motion_dhnj (mrs_motion_by_mode), 8
delta_motion_by_site, 5	mrs_motion_dmsfij(mrs_motion_by_site)
delta_motion_dbhati	8
<pre>(delta_motion_by_site), 5</pre>	mrs_motion_dmsfnj(mrs_motion_by_mode)
delta_motion_dhi	8
<pre>(delta_motion_by_site), 5</pre>	<pre>mrs_motion_nhnj (mrs_motion_by_mode), 8</pre>
delta_motion_dhn	mrs_motion_rwsipij
<pre>(delta_motion_by_mode), 5</pre>	(mrs_motion_by_site), 8
delta_motion_dmsfi	mrs_motion_rwsipnj
<pre>(delta_motion_by_site), 5</pre>	(mrs_motion_by_mode), 8
delta_motion_dmsfn	mrs_structure_by_mode, 9
<pre>(delta_motion_by_mode), 5</pre>	mrs_structure_by_site, 10
delta_motion_nhn	mrs_structure_de2ij
<pre>(delta_motion_by_mode), 5</pre>	(mrs_structure_by_site), 10
delta_motion_rwsipi	mrs_structure_de2nj
<pre>(delta_motion_by_site), 5</pre>	(mrs_structure_by_mode), 9
delta_motion_rwsipn	mrs_structure_df2ij
<pre>(delta_motion_by_mode), 5</pre>	(mrs_structure_by_site), 10
delta_structure_by_mode,6	mrs_structure_df2nj
delta_structure_by_site,7	(mrs_structure_by_mode), 9
delta_structure_de2i	mrs_structure_dr2ij
<pre>(delta_structure_by_site), 7</pre>	(mrs_structure_by_site), 10
delta_structure_de2n	mrs_structure_dr2nj
<pre>(delta_structure_by_mode), 6</pre>	(mrs_structure_by_mode), 9
delta_structure_df2i	mrs_structure_dvsij
<pre>(delta_structure_by_site), 7</pre>	(mrs_structure_by_site), 10
delta_structure_df2n	penm(penm-package), 2
<pre>(delta_structure_by_mode), 6</pre>	penm-package, 2
delta_structure_dr2i	periii package, 2
<pre>(delta_structure_by_site), 7</pre>	sdmrs, 3, 4, 10, 13

INDEX 15

```
set_enm, 12
smrs, 3, 4, 11, 12
```