

Modelo de Turing para la formación de patrones Esteban Quiroz y Camilo Rojas

{equiroz,carojas}@dim.uchile.cl

Conter for Mathematical Modeling

1. Preliminares

• El modelo de Turing para formación de patrones se basa en las llamadas **e**cuaciones de reacción-difusión. Turing propuso que los patrones se forman cuando la difusión causa inestabilidad en un sistema que sin ésta, sería estable. Este tipo de inestabilidades, se llama **inestabilidad de Turing**.

• En este contexto, entenderemos por patrones a soluciones estables, que se mantienen en el tiempo y son heterogéneas espacialmente de dichas ecuaciones.

2. Ecuaciones de reacción-difusión

Modelo: En estas ecuaciones, dos agentes u y v interactúan entre sí, donde cada uno sigue una ecuación de la forma

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + f(u, v)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + g(u, v)$$

Modelo de Gierer-Meinhardt

Es un sistema de reacción-difusión que describe la interacción entre un activador y un inhibidor. A continuación se puede ver una versión del modelo

$$\frac{\partial u}{\partial t} = \rho \frac{u^2}{v(1+ku^2)} - \mu u + D_u \nabla^2 u + \rho \rho_0$$

$$\frac{\partial v}{\partial t} = \rho' u^2 - \nu v + D_v \nabla^2 v + \rho' \rho_1$$

Anexo

■ Este proyecto se desarrolló durante el curso de **Análisis numérico de Ecua- ciones en Derivadas Parciales** dictado por el profesor Axel Osses el primer semestre del año 2017

Referencias

- [1] H. Meinhardt Models of Biological pattern formation 1982
- [2] Y. Kimura, P. Trinh *The Mathematics of Patterns: The modeling and analysis of reaction-diffusion equations* 2014

3. Condiciones de existencia de patrones

Para que puedan existir estas inestabilidades, deben cumplirse algunas condiciones. Llamando f_k a la derivada parcial de f respecto a k en el punto (u_0,v_0)

- Debe existir (u_0, v_0) tal que $f(u_0, v_0) = g(u_0, v_0) = 0$
- Debe cumplirse $f_u + g_v < 0$
- Debe satisfacerse $f_u g_v f_v g_u > 0$
- Debe cumplirse $D_u g_v + D_v f_u > 2\sqrt{D_u D_v (f_u g_v g_u f_v)}$

Modelo de Gierer-Meinhardt

• Si se intenta buscar un estado de equilibrio (u_0,v_0) para el modelo sin difusión, se obtiene que $v_0=\frac{\rho'(u_0^2+\rho_1)}{\nu}$ y que u_0 es una raíz de un polinomio polinomio de grado 5. Como no esperamos analíticamente encontrar estas raíces, tomamos k=0 y nos queda

$$\mu x^3 - \rho \left(\frac{\nu}{\rho'} + \rho_0\right) x^2 + \rho_1 x - \rho \rho_0 \rho_1$$

- Si además, elegimos $\rho_1=0$, tendremos $u_0=\frac{\rho}{\mu}\left(\frac{\nu}{\rho'}+\rho_0\right)$, $v_0=\frac{\rho^2(\nu+\rho_0\rho')^2}{\mu^2\rho'\nu}$
- Evaluando los puntos anteriores y recordando las condiciones para las inestabilidades de Turing, obtenemos distintas condiciones para las constantes de este modelo, por ejemplo

$$\bullet \frac{2\nu\mu}{\nu + \rho\rho'} - (\mu + \nu) < 0$$

$$\bullet \ \nu + \frac{1}{\nu + \rho_0 \rho'} > 1$$

•
$$D_v \left(\frac{2\mu\nu}{\nu + \rho_0 \rho'} \right) - \nu D_u > 2\sqrt{D_u D_v \frac{2\nu\mu}{\nu + \rho\rho'} \left(\nu + \frac{1}{\nu + \rho\rho'} - 1 \right)}$$

4. Diferencias finitas

- Se aplican diferencias finitas a las ecuaciones de la forma $\frac{\partial v}{\partial t} = D_u \nabla^2 u + f(u,v)$
- Llamando $c_x = D_u \frac{\Delta t}{\Delta x^2}$, $c_y = D_u \frac{\Delta t}{\Delta x^2}$ se tiene:
 - Para dimensión 1

$$u_j^n = u_j^{n+1}(1 + 2c_x) - c_x \cdot u_{j-1}^{n+1} - c_x \cdot u_{j+1}^{n+1} - f(u_j^n, v_j^n) \Delta t$$

Para dimensión 2

$$u_{j,k}^n = u_{j,k}^{n+1}(1 + 2c_x + 2c_y) - c_x(u_{j+1,k}^{n+1} + u_{j-1,k}^{n+1}) - c_y(u_{j,k+1}^{n+1} + u_{j,k-1}^{n+1}) - f\Delta t$$

• En ambos casos, escribimos $u^n = A_u u^{n+1} - f(u^n, v^n) \Delta t$, es decir,

$$u^{n+1} = A_u^{-1}(u^n + f(u^n, v^n)\Delta t)$$

ullet Para v se aplica el mismo método y finalmente se imponen condiciones de borde periódicas.

5. Implementación del método de diferencias finitas

Se implementa el método para una y dos dimensiones. El principal parámetro que se considero para observar como cambian las soluciones es el tamao del dominio.

• Se considera una ecuación de reacción-difusión sencilla en una dimensión que modela el crecimiento de una población de fitoplancton en un tubo aislado.

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + Kc$$

$$c(x,0) = c_0$$

$$c(0,t) = c(L,t) = 0 \quad \forall t$$

- Con un cambio de variable $c(x,t)=f(x,t)e^{Kt}$, se puede simplificar la ecuación.
- Finalmente, se obtiene $c(x,t) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right) e^{(K-n^2\pi^2D/L^2)t}$.
- La población decrece si $L < \pi \sqrt{\frac{D}{K}}$ y crece en el caso contrario.

Resultados en 1D

Para estudiar el comportamiento de la ecuación, se busca la solución a partir de condiciones iniciales constantes en espacio para el inhibidor y una distribución normal para el activador.

Patrones generados en 1D para dos dominios. A la izquierda observamos la solución en el caso de un dominio ancho, donde se forma el patrón, mientras que a la derecha el dominio es demasiado estrecho para permitirlo.

Resultados en 2D

Se estudia de la misma forma el comportamiento de la ecuación en 2D, lo que permite apreciar por qué no hay animales con el cuerpo a rayas y la cola moteada, a pesar de que si ocurre al reves como en el caso de la gineta.

Patrones generados en 2D para dos dominios. A la izquierda observamos la solución en el caso de un dominio angosto, donde se forma un patrón sólo con dos lineas, mientras que a la derecha el dominio es lo suficientemente ancho para permitir la formación de circulos.