Предел последовательности

pudgeandmath

11.10.22

Понятие предела последовательности

Определение 1 Пусть $\{a_n\}_{n=1}^{\infty}$ – произвольная посл-ть; $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ и $a \in \mathbb{R}$. a есть предел посл-ти $\{a_n\}_{n=1}^{\infty}$, при $n \to \infty$ ($\lim_{n \to \infty} a_n = a$), если $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} \colon |a_n - a| < \varepsilon$.

- Если предел существует, то посл-ть называется сходящейся.
- Посл-ть называется <u>расходящейся</u>, если она не имеет предела (конечного).
- Неравенство $|a_n-a|<\varepsilon$ означает, что все члены посл-ти $\{a_n\}_{n=1}^\infty,$ начиная с номера $N(\varepsilon)+1,$ находятся в ε -окрестности числа a.

Свойства предела последовательности

1. Постоянная посл-ть сходится:

$$(\forall n \in \mathbb{N}: a_n = a) \implies \left(\lim_{n \to \infty} a_n = a\right)$$

2. Единственность предела:

$$\left(\lim_{n\to\infty} a_n = a'\right) \wedge \left(\lim_{n\to\infty} = a''\right) \implies (a' = a'')$$

3. Ограниченность сходящейся последовательности:

$$\left(\lim_{n\to\infty} \{a_n\}_{n=1}^{\infty} = a \in \mathbb{R}\right) \implies (\{a_n\}_{n\in\mathbb{N}} - \text{ограничена})$$

Предельный переход и отношение неравенства

1. Пусть $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$ – произв. посл-ти:

$$\left(\lim_{n \to \infty} a_n = a\right) \wedge \left(\lim_{n \to \infty} b_n = b \wedge (a < b) \implies (\exists N \in \mathbb{N} \forall n \ge N \colon a_n < b_n)\right)$$

2. Пусть $\{a_n\}_{n\in\mathbb{N}}$ и $\{b_n\}_{n\in\mathbb{N}}$ – произвольные посл-ти:

$$\left(\lim_{n\to\infty} a_n = a\right) \wedge \left(\lim_{n\to\infty} b_n = b\right) \wedge (\exists n_0 \in \mathbb{N} \, \forall n \ge n_0 \colon a_n \ge b_n) \implies (a \ge b)$$

Бесконечно малая и бесконечно большая посл-ти

Определение 2 Говорят, что посл-ть $\{\alpha_n\}_{n=1}^{\infty} \subset \mathbb{R}$ является бесконечно малой посл-тью, если $\alpha \to 0$ при $n \to \infty$ ($\lim_{n \to \infty} \alpha_n = 0$).

$$\forall \varepsilon > 0 \,\exists N = N(\varepsilon) \in \mathbb{N} \,\forall n \geq \mathbb{N} : |\alpha_n < \varepsilon|$$