

# 飞行力学 Flight Mechanics

Chen, Song (陈松)

School of General Engineering (SGE)

chensong@buaa.edu.cn; Office: D-1109

#### **Contents**

- Flight orbit
- Interplanetary trajectories
  - 1. Introduction of interplanetary flight
  - 2. Hohmann Transfers
  - 3. Gravity assist

#### Review

|                                         | Type of Trajectory | e   | <b>Energy Relation</b>            |     |
|-----------------------------------------|--------------------|-----|-----------------------------------|-----|
|                                         | Ellipse            | < 1 | $\frac{1}{2}mV^2 < \frac{GMm}{r}$ |     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Parabola           | = 1 | $\frac{1}{2}mV^2 = \frac{GMm}{r}$ |     |
|                                         | Hyperbola          | > 1 | $\frac{1}{2}mV^2 > \frac{GMm}{r}$ | esc |

escape orbit

#### Review





Figure 8.30 Hyperbolic trajectory.

#### Specific energy

$$H = -m\frac{k^2}{2a}$$

$$E = \frac{H}{m} = -\frac{k^2}{2a}$$

Ellipse orbit (a > 0), E < 0. Hyperbolic orbit (a < 0), E > 0.

#### **Parameters**

$$k^2 = GM = 3.986 \times 10^{14} \, m^3 / s^2$$

| symbol      | meaning                          | ellipse                    | hyperbola                        |
|-------------|----------------------------------|----------------------------|----------------------------------|
| а           | semi-major axis                  | > 0                        | < 0                              |
| e           | eccentricity                     | < 1                        | > 1                              |
| E           | (specific) energy                | < 0                        | > 0                              |
| $r(\theta)$ | radial distance                  | $a(1-e^2)/(1+e\cos\theta)$ |                                  |
| $r_{min}$   | minimum distance<br>(pericenter) | a(1-e)                     |                                  |
| $r_{max}$   | maximum distance<br>(apocenter)  | a(1+e)                     | ∞                                |
| V           | velocity                         | $\sqrt{2k^2/r - k^2/a}$    | $\sqrt{V_{es}^2 - V_{\infty}^2}$ |

#### **Definition**

The Two Line Elements or TLE format is the standard way to describe satellites in orbit above Earth. Understanding the TLE format allows users to make predictions about future or past satellite passes.

```
ISS (ZARYA)

1 25544U 98067A 20331.01187177 .00003392 00000-0 69526-4 0 9990

2 25544 51.6456 267.7478 0001965 82.1336 12.7330 15.49066632257107

SKCUBE

1 42789U 17036AA 19084.74586761 .00001246 00000-0 56588-4 0 9992

2 42789 97.3621 144.5852 0012165 160.6847 199.4853 15.22573301 97347
```

TLE data for most spacecraft can be downloaded from https://www.space-track.org/

#### Data format



Source: Two Line Elements (TLE) – Kaitlyn's Tech Logs

#### TLE of **Tiangong**

# 中国空间站轨道参数 发布日期: 2022-05-19 信息来源: 中国载人航天工程办公室 1 48274U 21035A 22139.00000000 .00028715 00000-0 34150-3 0 9992 2 48274 41.4712 36.3623 0002231 1.8855 335.0230 15.59814191 60213

Source: 中国空间站轨道参数 中国载人航天官方网站 (cmse.gov.cn)

Mean motion (revolutions/day)

### Trajectory of ISS



Drawn by Satellite Tool Kit (STK)

#### Orbit parameters of **Tiangong**

$$\tau = \frac{1}{n}[day] = \frac{86164}{15.598}[s] = 5524 \, s$$

$$a = \sqrt[3]{\frac{\tau^2}{4\pi^2}GM} = 6.754 \times 10^6 [m] = 6754 \text{ km}$$

$$h = a - r_{earth} = 6754 - 6378 [km] = 376 km$$

$$E = -\frac{GM}{2a} = -29.5 \text{ km}^2/\text{s}^2$$

### Specific energy comparison

| satellite             | altitude [km]                  | specific energy<br>[km²/s²] |
|-----------------------|--------------------------------|-----------------------------|
| NVISAT                | 800                            | -27.8                       |
| LAGEOS                | 5,900                          | -16.2                       |
| GEO                   | 35,900                         | -4.7                        |
| Moon                  | 384,000                        | -0.5                        |
| Tiangong              | 376                            | -29.5                       |
| in parking orbit      | 185                            | -30.4                       |
| Hohmann orbit to Mars | 185 (after 1 <sup>st</sup> ΔV) | +4.3                        |

### The Galaxy



#### The Galaxy

Source: NASA



The NASA's
Spitzer Space
Telescope

#### The blackhole of Galaxy



Source: 新华网

Blackhole at the Galaxy center (2022.05.13)

Source: internet



### Solar system



Source: WorldAtlas

### Solar system

| planet        | mean distance [AU] | eccentricity [-] | inclination [°] |
|---------------|--------------------|------------------|-----------------|
| Mercury (水星)  | 0.387              | 0.206            | 7.0             |
| Venus (金星)    | 0.723              | 0.007            | 3.4             |
| Earth (地球)    | 1.000              | 0.017            | 0.0             |
| Mars (火星)     | 1.524              | 0.093            | 1.9             |
| Jupiter (木星)  | 5.203              | 0.048            | 1.3             |
| Saturn (土星)   | 9.537              | 0.054            | 2.5             |
| Uranus (天王星)  | 19.191             | 0.047            | 0.8             |
| Neptune (海王星) | 30.069             | 0.009            | 1.8             |
| Pluto *       | 39.482             | 0.249            | 17.1            |

#### Solar system - conclusions

- Orbits of planets more or less circular (Except Mercury)
- Orbits of planets more or less coplanar
- 2-dimensional situation with circular orbit → good 1<sup>st</sup> order model
- Scale of interplanetary travel >> scale of earth-bound missions

#### Question

- How can we escape from earth gravity?
- How can we travel to other planets/asteroids in the most efficient way?
- How can we reach beyond 10 AU?

#### Two impulses maneuver

$$(\Delta V)^2 = V_1^2 + V_2^2 - 2 V_1 V_2 \cos \alpha$$

$$\alpha \Rightarrow 0$$

 $\Delta V_1$  = impulse at point 1

 $\Delta V_2$  = impulse at point 2

 $V_{pt}$  = velocity at periapsis on the transfer orbit

 $V_{at}$  = velocity at apoapsis on the transfer orbit

 $V_1$  = velocity at point 1 on orbit 1

 $V_2$  = velocity at point 2 on orbit 2



**Figure 8.29** Illustration of the Hohmann transfer orbit.

#### Advantages

• Minimum energy transfer

$$\Delta \boldsymbol{V}_1 = \boldsymbol{V}_{pt} - \boldsymbol{V}_1$$

$$\Delta V_2 = V_2 - V_{at}$$



#### Example 8.8

Consider the Space Shuttle in a low-earth circular orbit at an altitude of 200 km above sea level. The payload of the shuttle is a satellite to be boosted by means of a Hohmann transfer into geosynchronous circular orbit at an altitude of 35,700 km above sea level. Calculate the total impulse  $\Delta V$  required for this transfer.

$$\Delta \boldsymbol{V}_1 = \boldsymbol{V}_{pt} - \boldsymbol{V}_1$$

$$\Delta \boldsymbol{V}_2 = \boldsymbol{V}_2 - \boldsymbol{V}_{at}$$

#### Example 8.8

$$V_1 = \sqrt{\frac{2k^2}{r_1} - \frac{k^2}{a_1}}$$

$$r_1 = 6.4 \times 10^6 + 2 \times 10^5 = 6.6 \times 10^6 \text{ m}$$
  
 $r_2 = 3.57 \times 10^7 + 6.4 \times 10^6 = 4.21 \times 10^7 \text{ m}$ 

$$a = \frac{r_1 + r_2}{2} = 2.435 \times 10^7 \, m$$

$$V_1 = \sqrt{\frac{3.986 \times 10^{14}}{6.6 \times 10^6}} = 7771 \,\text{m/s}$$

$$V_{pt} = \sqrt{\frac{2k^2}{r_1} - \frac{k^2}{a_1}} = \sqrt{\frac{2(3.986 \times 10^{14})}{6.6 \times 10^6} - \frac{3.986 \times 10^{14}}{2.435 \times 10^7}}$$
$$= \sqrt{1.2079 \times 10^8 - 0.1637 \times 10^8} = 10,219 \text{ m/s}$$

$$\Delta \boldsymbol{V}_1 = \boldsymbol{V}_{pt} - \boldsymbol{V}_1$$



#### Example 8.8

$$V_2 = \sqrt{\frac{k^2}{r_2}} = \sqrt{\frac{3.986 \times 10^{14}}{4.21 \times 10^7}} = 3077 \,\text{m/s}$$

$$V_{at} = \sqrt{\frac{2k^2}{r_2} - \frac{k^2}{a}} = \sqrt{\frac{2(3.986 \times 10^{14})}{4.21 \times 10^7} - \frac{3.986 \times 10^{14}}{2.435 \times 10^7}}$$
$$= \sqrt{1.8936 \times 10^7 - 1.637 \times 10^7} = 1602 \,\text{m/s}$$

$$\Delta \boldsymbol{V}_1 = \Delta \boldsymbol{V}_1 + \Delta \boldsymbol{V}_2$$

The problem is solved!

$$V_1 = \sqrt{\frac{2k^2}{r_1} - \frac{k^2}{a_1}}$$



Example 8.8 – extra practice

Calculate the time from orbit 1 to orbit 2.



#### Example 8.8 – extra practice

The time of transit in the Hohmann orbit is one half the period of the full elliptic orbit. Kepler's third law gives:

$$\tau_H = \frac{\tau}{2} = \pi \sqrt{\frac{a^3}{k^2}} = \pi \sqrt{\frac{(r_1 + r_2)^3}{8GM}}$$



#### Hohmann transfer between orbits around Earth:

- Coplanar orbits
- Impulsive shots
- Transfer orbit touches tangentially
- Minimum energy



#### Hohmann transfer between orbits around Earth:

$$a = \frac{r_1 + r_2}{2}$$

$$\Delta \boldsymbol{V}_1 = \boldsymbol{V}_{pt} - \boldsymbol{V}_1 = \sqrt{GM_E \left(\frac{2}{r_1} - \frac{1}{a}\right)} - \sqrt{\frac{GM_E}{r_1}}$$

$$\Delta \boldsymbol{V}_2 = \boldsymbol{V}_2 - \boldsymbol{V}_{at} = \sqrt{\frac{GM_E}{r_2}} - \sqrt{GM_E\left(\frac{2}{r_2} - \frac{1}{a}\right)}$$

$$\tau_t = \frac{1}{2}\tau = \pi \sqrt[2]{\frac{a^3}{GM_E}}$$



#### Hohmann transfer between orbits around Sun:

$$a = \frac{1}{2} \left( r_{dep} + r_{arr} \right)$$

$$\mathbf{V}_{\infty,1} = \mathbf{V}_{pt} - \mathbf{V}_{dep} = \sqrt{GM_S \left(\frac{2}{r_{dep}} - \frac{1}{a}\right)} - \sqrt{\frac{GM_S}{r_{dep}}}$$

$$\mathbf{V}_{\infty,2} = \mathbf{V}_{tar} - \mathbf{V}_{at} = \sqrt{\frac{GM_S}{r_{tar}}} - \sqrt{GM_S\left(\frac{2}{r_{tar}} - \frac{1}{a}\right)}$$

$$\tau_t = \frac{1}{2}\tau = \pi \sqrt{\frac{a^3}{GM_S}}$$

Identical to the earth?



#### Interplanetary trajectory

Due to the three-body problem, the interplanetary trajectory is much more complicated. Hohmann transfer orbit does not have to be restricted followed.

#### three-body problem



Figure 8.31 Heliocentric transfer orbit.

#### Heliocentric velocities:

- V<sub>dep</sub>, V<sub>tar</sub> (planets)
- V<sub>1</sub>, V<sub>2</sub> (Spacecraft)
- V<sub>∞</sub> (relative)



Planetocentric velocities (Earth scale)

- V<sub>c</sub> (Parking orbit)
- V<sub>0</sub> (Hyperbola)
- ΔV (Maneuver)
- V<sub>∞</sub> (excess velocity)



### **Hohmann orbit**



#### Escape velocity and excess velocity

$$V = \sqrt{\frac{2k^2}{r} - \frac{k^2}{a}}$$

$$V = \sqrt{\frac{2k^2}{r}} = V_{es}$$
 Parabola orbit (a  $\rightarrow \infty$ )

$$V = \sqrt{\frac{2k^2}{r} \left[ \frac{k^2}{a} \right]}$$
 Excess velocity  $(r \to \infty)$ :  $V_{\infty} = \sqrt{-\frac{k^2}{a}}$ 

#### Example 8.9

The initial hyperbolic trajectory of the *Viking I* Mars Lander upon departure from the earth had a semimajor axis of  $-1.885 \times 10^4$  km. Calculate the hyperbolic excess velocity provided by the space vehicle's *Titan IIIE* launch vehicle.

#### Hohmann transfer between planets around sun

- Transfer starts in parking orbit around departure planet
- Planetocentric until leaving Sphere of influence (SoI)
- Relative velocity when crossing SoI: V<sub>∞</sub>
- $V_{\infty}$  achieved by maneuver  $\Delta V$  in parking orbit
- Similarly around target planet
- Succession of 3 two-body problems

Essential difference between around Earth and around Sun

- Earth missions:  $\Delta V$  directly changes velocity from  $V_{circle}$  to  $V_{per}$  (or  $V_{apo}$ ) of Hohmann transfer orbit
- Interplanetary missions:  $\Delta V$  changes velocity from  $V_{circle}$  to value (larger than)  $V_{escape},$  which results in  $V_{\infty}$

### Earth (185 km) $\rightarrow$ Mars (500 km)

#### Recipe (1-2):

| step | parameter                                                    | expression                                           | example                         |
|------|--------------------------------------------------------------|------------------------------------------------------|---------------------------------|
| 1    | V <sub>dep</sub> (heliocentric velocity of departure planet) | $V_{\rm dep} = \sqrt{(GM_{\rm S}/r_{\rm dep})}$      | 29.785 km/s                     |
| 2    | V <sub>tar</sub> (heliocentric velocity of target planet)    | $V_{tar} = \sqrt{(GM_S/r_{tar})}$                    | 24.130 km/s                     |
| 3    | V <sub>c0</sub> (circular velocity around departure planet)  | $V_{c0} = \sqrt{(GM_{dep}/r_0)}$                     | 7.793 km/s                      |
| 4    | Vc3 (circular velocity around target planet)                 | $V_{c3} = \sqrt{(GM_{tar}/r_3)}$                     | 3.315 km/s                      |
| 5    | atr (semi-major axis of transfer orbit)                      | $a_{tr} = (r_{dep} + r_{tar})/2$                     | $188.77 \times 10^6 \text{ km}$ |
| 6    | e <sub>tr</sub> (eccentricity of transfer orbit)             | $e_{tr} =  r_{tar} - r_{dep}  / (r_{tar} + r_{dep})$ | 0.208                           |
| 7    | V <sub>1</sub> (heliocentric velocity at departure position) | $V_1 = \sqrt{[GM_S(2/rdep-1/atr)]}$                  | 32.729 km/s                     |
| 8    | V <sub>2</sub> (heliocentric velocity at target position)    | $V_2 = \sqrt{\left[GM_S(2/r_{tar}-1/a_{tr})\right]}$ | 21.481 km/s                     |

### Earth (185 km) $\rightarrow$ Mars (500 km)

#### Recipe (2-2):

| step | parameter                                                                    | expression                                                                   | example     |
|------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|
| 9    | $V_{\infty,1}$ (excess velocity at departure planet)                         | $V_{\infty,1} =  V_1 - V_{dep} $                                             | 2.945 km/s  |
| 10   | $V_{\infty,2}$ (excess velocity at target planet)                            | $V_{\infty,2} =  V_2 - V_{tar} $                                             | 2.649 km/s  |
| 11   | V <sub>0</sub> (velocity in pericenter of hyperbola around departure planet) | $V_0 = \sqrt{(2GM_{dep}/r_0 + V_{\infty,1}^2)}$                              | 11.408 km/s |
| 12   | V <sub>3</sub> (velocity in pericenter of hyperbola around target planet)    | $V_3 = \sqrt{(2GM_{tar}/r_3 + V_{\infty,2}^2)}$                              | 5.385 km/s  |
| 13   | $\Delta V_0$ (maneuver in pericenter around departure planet)                | $\Delta V_0 =  V_0 - V_{c0} $                                                | 3.615 km/s  |
| 14   | $\Delta V_3$ (maneuver in pericenter around target planet)                   | $\Delta V_3 =  V_3 - V_{c3} $                                                | 2.070 km/s  |
| 15   | $\Delta V_{tot}$ (total velocity increase)                                   | $\Delta \mathbf{V}_{\text{tot}} = \Delta \mathbf{V}_0 + \Delta \mathbf{V}_3$ | 5.684 km/s  |
| 16   | T <sub>tr</sub> (transfer time)                                              | $T_{tr} = \pi \sqrt{(a_{tr}^3/GM_S)}$                                        | 0.709 year  |

Gravity-Assist (引力助推/引力弹弓)



#### **Gravity-Assist**



Gravity-Assist (引力助推/引力弹弓)

•

Sun Frame

**EXAMPLE ENCOUNTER** 



THE PATH OF VOYAGER 2 FROM ITS LAUNCH FROM EARTH IN 1977 THROUGH ITS ENCOUNTER WITH NEPTUNE 12 YEARS LATER



#### **Gravity-Assist**

VOYAGER 2 SPACECRAFT SPEED AS A FUNCTION DISTANCE FROM THE SUN



**Gravity-Assist** 



旅行者号探测器 -纪录片-哔哩哔哩

