Hands-on GraphLab

(Hands-on Massive Data Processing Platform Series)

Pili Hu

Initium Media 端傳媒 June 26, 2015

bit.ly/hkosc15-graphlab

Preparation & Prerequisites

Prerequisites: (for hands-on)

- Python required
- Python pandas is a plus
- Python networkx is a plus

Preparation:

- GraphLab https://dato.com/download/
- IPython Notebook:
 - https://github.com/initiummedia/hkosc2015-workshop

Sample Commands

virtualenv venv

source venv/bin/activate

pip install --upgrade --no-cache-dir https://get.dato.com/GraphLab-Create/1.4.1/e-hkosc15@hupili.net/64CA-557D-92A5-F7D8-91A9-CC38-C9C3-BBB9/GraphLab-Create-License.tar.gz

pip install -r requirements.txt

ipython notebook

(better to apply your own GraphLab Create trial license)

This Workshop (Series) Is About

- Hands-on three massive data processing platforms:
 - Hadoop
 - Spark
 - GraphLab
- Get the basic programming concept of the framework
- Get a feel of command-line/ shell of the framework

This Workshop (Series) Is NOT About

- How to install/ configure a cluster
- Rigorous performance evaluation
- Mathematical principle behind the frameworks
- Architecture of the platform from an implementation perspective

Expected Take-aways

- Demythify "Big Data Platforms"
- Benefit of framework:

Dealing with small == dealing with big

Show-off to your friends:

Yeah, I got my hands-on XXX!

Choices of Platforms

- Hadoop: 1st widely adopted platform by industry; popularised MapReduce
- Spark: A lot optimisation over Hadoop to reach hundreds times acceleration; current de facto standard
- GraphLab: Cutting edge framework to implement Machine Learning algorithms; New programming concept -- Vertex Program
- Storm: widely adopted Streaming platform

Agenda of the GraphLab Hands-on Session

- Overview
- Some examples
 - Recommender
 - Pagerank
- Hands-on time

Mis-conception

Wrong: GraphLab is to process graph

(it can; but not designed for...)

Correct: GraphLab models computation flow over a graph structure

(your problem might not look like a graph but computation flow might be abstracted as a graph -- Recommender System)

Computation Flow on Graph

Computation Flow on Graph

Comparison to Hadoop

Structure of Computation

http://www.slideshare.net/SessionsEvents/joey-gonzalez-graph-lab-m-lconf-2013

GraphLab

- GraphLab 1.0:
 - Initial model
 - C++ API
- GraphLab 2.0 (PowerGraph):
 - Deal with skewed data
 - GAS: Gather -- Apply -- Scatter
- GraphChi:
 - Disk based version
- GraphLab Create:
 - Rich ML libs; Python integration
 - A startup effort

- **♥1** Possibility
- √2 Scalability
- **V3** Usability

Data Structures

- graphlab.SArray → pandas.Series
- graphlab.SFrame → pandas.DataFrame
- graphlab.SGraph

S: Server-side

Algorithms on Graphs

Most are already in GraphLab Create Lib

- Collaborative Filtering
 Graph Analytics
 - Alternating Least Squares
 - Stochastic Gradient Descent
 - Tensor Factorization
 - SVD
- Structured Prediction
 - Loopy Belief Propagation
 - Max-Product Linear Programs
 - Gibbs Sampling
- Semi-supervised ML
 - Graph SSL
 - CoEM

- - PageRank
 - Shortest Path
 - Triangle-Counting
 - Graph Coloring
 - K-core Decomposition
 - Personalized PageRank
- Classification
 - Neural Networks
 - Lasso

General Usage

- Represent your data in SXXX structure
- Pick algorithm and run it

```
(where is graph;)
(well, you don't see the computation layer, ...)
```

A practical view of GraphLab:

Ready for production/ easy to use Machine learning toolkits

Example: Recommender

Recommending Products

Low-Rank Matrix Factorization:

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

8

Example: Recommender

One example input:

	score					
item_id	а	b	С	d	е	
user_id						
1	1	5	NaN	1	NaN	
2	2	5	NaN	NaN	2	
3	NaN	1	2	5	5	
4	4	NaN	2	5	NaN	

Example: Recommender

One example result:

	score							
item_id	а	b	O	d	е			
user_id								
1	1.000000	5.000000	-0.896185	1.000000	1.035765			
2	2.000000	5.000000	-0.213599	1.425343	2.000000			
3	3.471785	1.000000	2.000000	5.000000	5.000000			
4	4.000000	0.199973	2.000000	5.000000	3.736209			

Example: Pagerank

Futher

- GraphLab C++ API:
 - 2014 offering of ENGG4030 @ CUHK
 - http://project.hupili.net/engg4030/t11-graphlab/
 - Write Vertex Program
 - Write GAS model
 - Different implementations of PageRank is provided in that tutorial
- Introduction to Graph Analysis in Python
 - April 22, 2015 @ General Assembly
 - https://drive.google.com/folderview?
 id=0B8i0lKkzNhjsaFo2bkdtam52NGs&usp=sharing

Q/A & Hands-on

Contact me:

http://hupili.net

bit.ly/hkosc15-graphlab

WE ARE HIRING