# Towards Declarative Safety Rules for Perception Specification Architectures

Johann Thor Mogensen Ingibergsson MMMI, University of Southern Denmark joint work with Ulrik Pagh Schultz and Dirk Kraft

### Field Robots

- Why field robots?
  - Dangerous work.
  - Decreasing workforce.
  - Ecological Concerns.
- SAFE Project.









# Context: Safety Certification within Agriculture



- Why certification? Liability!
  - Robot causes damage due to manufacturing defects.
  - Robot causes damage simply by acting or reacting.

## How to Certify Field Robots?

- No standard is available.
- Other Industries? Avionics?
- Interpretation for agriculture and field robots.





# How is Certification Done within Software for Field Robots?

Issues with current standards.

**Issue:** Research is solution driven.

Issue: 20 papers in non-developmentrelated, suggesting apporaches are



[Source: Ingibergsson, Kuhrmann & Schultz, PROFES2015] 5

## How to Certify Field Robots?

- Issues with current standards.
  - Issue: Use of standards is limited.
  - Issue: Loose connection between development practices and standards.



| Simulation | Formal<br>implementation<br>verification | Mathematical<br>modeling and<br>algorithms | System<br>architecture and<br>reuse | Misc | Behavior<br>modeling | Formal<br>specification<br>deriving<br>implementation | Not SW dev-<br>related |                                                                |
|------------|------------------------------------------|--------------------------------------------|-------------------------------------|------|----------------------|-------------------------------------------------------|------------------------|----------------------------------------------------------------|
| 0          | 1                                        | 1                                          | 1                                   | 0    | 0                    | 1                                                     | 1                      | IEC 61508                                                      |
| 0          | 0                                        | 0                                          | 1                                   | 0    | 0                    | 0                                                     | 2                      | ISO 13482                                                      |
| 0          | 0                                        | 0                                          | 0                                   | 1    | 0                    | 0                                                     | 0                      | ISO 26262                                                      |
| 0          | 0                                        | 0                                          | 0                                   | 0    | 0                    | 0                                                     | 0                      | ISO 10218                                                      |
| 0          | 0                                        | 0                                          | 0                                   | 0    | 0                    | 1                                                     | 0                      | IEC 61499                                                      |
| 0          | 3                                        | 2                                          | 0                                   | 0    | 1                    | 0                                                     | 2                      | Guranteeing safety - Not necessarily using a Standard approach |
| 4          | 1                                        | 0                                          | 2                                   | 1    | 9                    | 2                                                     | 15                     | Non-Standard Approach                                          |
| 0          | 0                                        | 0                                          | 0                                   | 0    | 0                    | 1                                                     | 0                      | No standards available                                         |

# Certifying Field Robots

### **Based on Interpretation**

- ISO 13482
  - Risk assessment
- ISO 13849
  - Functional safety Mechanics.
- ISO/DIS 18497
  - Performance
- ISO 25119
  - Functional safety electronics.
- IEC 61496
  - Electro-Sensitive Protective Equipment (EPSE).

| Safety functions of robots                           | PL |
|------------------------------------------------------|----|
| Emergency Stop                                       | d  |
| Protective Stop                                      | e  |
| Limits to workspace (incl. forbidden area avoidance) | e  |
| safety-related speed control                         | e  |
| Hazardous collision avoidance                        | e  |
| Stability Control (incl. overload protection)        | d  |

| PL Definition :<br>Average probability of dangerous failure per hour 1/h | PL |
|--------------------------------------------------------------------------|----|
| $\geq 10^{-5} \ to \ < 10^{-4}$                                          | a  |
| $\geq 3 \times 10^{-6} \ to < 10^{-5}$                                   | b  |
| $\geq 10^{-6} \ to \ < 3 \times 10^{-6}$                                 | С  |
| $\geq 10^{-7} \ to \ < 10^{-6}$                                          | d  |
| $\geq 10^{-8} \ to \ < 10^{-7}$                                          | e  |





# Implications of Standards on Development of Field Robots in Practice?











# Functional Safety vs Performance



### ISO 26262-1:2011 <sup>®</sup>

Road vehicles -- Functional safety -- Part 1: Vocabulary

Preview ISO 26262-1:2011

#### **Abstract**

ISO 26262 does not address the nominal performance of E/E systems, even if dedicated functional performance standards exist for these systems (e.g. active and passive safety systems, brake systems, Adaptive Cruise Control)

ISO 25119-4:2010(en) Tractors and machinery for agriculture and forestry

#### Introduction

ISO 25119 sets out an approach to the design and assessment, for all safety life cycle activities, of safety-relevant systems comprising electrical and/or electronic and/or programmable electronic components (E/E/PES) on tractors used in agriculture and forestry, and on self-propelled ride-on machines and mounted, semi-mounted and trailed machines used in agriculture. It is also applicable to municipal equipment. It covers the possible hazards caused by the functional behaviour of E/E/PES safety-related systems, as distinct from hazards arising from the E/E/PES equipment itself (electric shock, fire, nominal performance level of E/E/PES dedicated to active and passive safety, etc.).

### Example: Simple Vision Pipeline



### Vision Pipeline Described with RPSL





# How to Introduce Functional Safety

### **Based on Interpretation**

- ISO 25119 Functional safety electronics.
  - Develop software and hardware according to the standard.
  - Software could be subjected to Misra, to create a foundation across standards.

- IEC 61496 Electro-Sensitive Protective Equipmen (EPSE).
  - Fault: Shall force the system to a safe-state, i.e. full stop.
  - Multiple Faults: Shall not influence the above reaction.
  - Periodic tests: Ascertain functionality.



# **DSL Proposal**

```
h=Bayer2Mono Left.output.histogram;
length (nonempty (h.bins)) / length (h.bins) > 0.1;
max(h) - min(h) > 1000p;
length(PointCloud 3D.output.inArea
  (Camera Left Landmark))>900 3D points;
```

## **DSL** Test images





(a) Left lens, covered.



(b) right lens, overexposed.



(c) Left lens, partial cover (d) right lens, partial cover

### Conclusion

### **Contributions**

- Analysis of safety standards in the agricultural domain.
- Language concept for extending RPSL with safety annotations.

### **Future work**

- Code generation for safety-critical hardware.
- Systematic evaluation of language design for the safety domain.
- Evaluation by safety experts.