BAB 2

METABOLISME SEL

Standar Kompetensi:

 memahami pentingnya proses metabolisme pada organisme

Kompetensi Dasar:

- mendeskripsikan fungsi enzim dalam proses metabolisme
- mendeskripsikan proses katabolisme dan anabolisme karbohidrat
- menjelaskan keterkaitan antara proses metabolisme karbohidrat dengan metabolisme lemak dan protein

Integrasi Nilai

- Religius
- Jujur
- Disiplin
- Rasa ingin tahu
- Kreatif

- Kerja keras
- Komunikatif
- Peduli sosial
- Kewirausahaan

Apakah Metabolisme Itu?

Metabolisme: keseluruhan reaksi kimia yang berlangsung di dalam tubuh organisme.

Katabolisme: proses pemecahan atau penguraian senyawa kompleks menjadi senyawa lebih sederhana. Prosesnya membebaskan energi, sehingga disebut reaksi eksorgenik

Molekul yang Terlibat dalam Metabolisme

ATP: molekul nukleotida berenergi tinggi yang tersusun atas gula pentosa, basa nitrogen, dan mengikat tiga gugus fosfat.

Molekul yang Terlibat dalam Metabolisme

Enzim (holoenzim)

Apoenzim: protein

Sifat-Sifat Enzim

- 1. katalisator: zat yang mampu mempercepat reaksi kimia, tetapi tidak ikut bereaksi.
- 2. suatu protein, memungkinkan luasnya permukaan enzim sehingga bidang aktivitasnya besar.
- 3. bersifat khusus/khas: enzim tidak dapat bekerja pada semua zat, tetapi hanya mampu bekerja pada zat tertentu (substrat).
- 4. tidak tahan panas, enzim akan bekerja aktif pada suhu normal 30–37°C

Faktor-Faktor yang Memengaruhi Enzim

- 1. suhu, enzim dapat rusak pada suhu yang terlalu tinggi dan kerja enzim dapat dihambat jika suhu terlalu rendah
- 2. pH, aktivitas enzim dapat dipengaruhi oleh konsentrasi pH atau ion H+ larutan
- 3. konsentrasi enzim
- 4. pengaruh hasil akhir, kerja enzim akan dihambat oleh banyaknya hasil akhir yang diperoleh
- 5. zat penghambat
- 6. konsentrasi substrat

Kerja Enzim

Teori kunci-gembok (lock and key hypothesis)

Cara Kerjanya

Substrat selalu memiliki bentuk yang sesuai dengan situs aktif.

Kerja Enzim

Teori ketepatan induksi (inducedfit)

Cara Kerjanya

Substrat tidak selalu memiliki bentuk yang sesuai dengan situs aktif. Jadi, substrat menginduksi situs aktif dari enzim.

Respirasi Seluler

Respirasi: proses pembebasan energi yang tersimpan dalam zat sumber energi melalui proses reaksi kimia yang kompleks menggunakan oksigen.

Jika zat sumber energinya glukosa, maka reaksi kimia sederhananya:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6H_2O + 6CO_2 + Energi$$

Respirasi Seluler

Rangkaian respirasi seluler:

- 1. glikolisis
- 2. daur Krebs
- 3. transpor elektron

Glikolisis

Proses pengubahan molekul molekul glukosa yang mempunyai 6 atom C menjadi asam piruvat yang mempunyai 3 atom C.

Tempat berlangsungnya: disitosol (sitoplasma sel)

Hasil akhir:

- 1. 2 molekul asam piruvat
- 2. 2 molekul NADH (sumber elektron)
- 3. 2 molekul ATP untuk setiap molekul glukosa.

Glikolisis

Proses glikolisis adalah sebagai berikut.

- Pemindahan gugus fosfat dari ATP ke atom karbon nomor 6 dari glukosa sehingga terbentuk senyawa glukosa 6 fosfat.
- Glukosa 6 fosfat dikatalisis oleh enzim menjadi senyawa fruktosa 6 fosfat. ATP lainnya memindahkan gugus P kedua kalinya kepada atom karbon nomor 1 sehingga dihasilkan senyawa fruktosa 1,6 bifosfat.
- Pemecahan secara enzimatik dari fruktosa 1,6 bifosfat menjadi 2 senyawa beratom C tiga buah, yaitu dihidroksiasetonfosfat dan 3-fosfogliseraldehid atau PGAL.

Daur Krebs

pembongkaran asam piruvat secara aerob menjadi CO₂ dan H₂O serta energi kimia

Tempat berlangsungnya: dimatriks mitokondria

Hasil Akhir: 2 molekul NADH, 2 molekul FADH₂, 2 molekul ATP, dan 2 molekul CO₂.

Sebelum masuk daur Krebs, piruvat diubah menjadi suatu asetilkoenzim A (asetil KoA) melalui reaksi transisi dalam matriks.

Daur Krebs

Transpor Elektron

Tempat berlangsungnya: dikrista mitokondria

Hasil akhir: 32-34 ATP

Reaksinya diawali: NADH dan FADH, hasil dari daur Krebs, memberikan ion H⁺ dan elektron pada sistem transpor.

Molekul lain yang ikut berperan:

- 1. molekul oksigen,
- 2. senyawa Q (Ubiquinone),
- 3. enzim sitokrom b
- 4. enzim sitokrom c1
- 5. enzim sitokrom c
- 6. enzim sitokrom a
- 7. enzim sitokrom a3

Respirasi Anaerob atau Fermentasi

Fermentasi Asam Laktat

Respirasi Anaerob atau Fermentasi

Fermentasi Alkohol

Respirasi Anaerob atau Fermentasi

Fermentasi Asam Cuka

- · Fermentasi yang berlangsung dalam keadaan aerob.
- Dari proses fermentasi asam cuka, energi yang dihasilkan lima kali lebih besar daripada energi yang dihasilkan oleh ermentasi alkohol.

Persamaan reaksi kimia fermentasi asam cuka

$$CH_3CH_2OH + O_2$$
 $\xrightarrow{Bakteri asam cuka}$
 $CH_3COOH + H_2O + 116 kal$
Etanol

Asam cuka

Keterkaitan antara Anabolisme dengan Katabolisme

Dapatkah Anda menjelaskannya???