POSL: A Parallel-Oriented Solver Language

THESIS FOR THE DEGREE OF DOCTOR OF COMPUTER SCIENCE

Alejandro Reyes Amaro

Doctoral School STIM

 $\label{eq:Academic advisors:}$ Eric Monfroy 1 , Florian Richoux 2

¹Department of Informatics Faculty of Science University of Nantes France ²Department of Informatics Faculty of Science University of Nantes France

Submitted: dd/mm/2016

Assessment committee:

Prof. (1)

Institution (1)

Prof. (2)

Institution (2)

Prof. (3)

Institution (3)

Copyright © 2016 by Alejandro Reyes Amaro (ale.uh.cu@gmail.com)

Contents

I	Pre	sentation	1				
II	PC	OSL: Parallel Oriented Solver Language	3				
1	A Parallel-Oriented Language for Modeling Meta-Heuristic-Based Solvers						
	1.1	Introduction	6				
		1.1.1 Precedents	7				
		1.1.2 POSL	7				
	1.2	Modeling the target benchmark	8				
	1.3	First stage: creating POSL's modules	11				
		1.3.1 Computation module	11				
		1.3.2 Communication modules	13				
1.4 Second stage: assembling POSL's modules							
	1.5	Third stage: creating POSL solvers	26				
	1.6	Forth stage: connecting the solvers	27				
		1.6.1 Solver namespace expansion	31				
	1.7	Summarize	32				
2	Bibli	iography	33				

Part I

PRESENTATION

Part II

POSL: PARALLEL

ORI-

ENTED

SOLVER LANGUAGE

A Parallel-Oriented Language for Modeling Meta-Heuristic-Based Solvers

In this chapter POSL is introduced as the main contribution of this thesis, and a new way to solve CSPs. Its characteristics and advantages are summarized, and a general procedure to be followed is described, in order to build parallel solvers using POSL, followed by a detailed description of each of the single steps.

Contents

1.1	Introduction
	1.1.1 Precedents
	1.1.2 POSL
1.2	Modeling the target benchmark
1.3	First stage: creating POSL's modules
	1.3.1 Computation module
	1.3.2 Communication modules
1.4	Second stage: assembling POSL's modules
1.5	Third stage: creating POSL solvers
1.6	Forth stage: connecting the solvers
	1.6.1 Solver namespace expansion
1.7	Summarize

1.1 Introduction

Meta-heuristic methods, despite showing very good results solving Constraint Satisfaction Problems, they are frequently not enough for solve them, when they are applied to problem instances with extremely large search spaces. Most of these methods are sensible to their large number of parameters. For that reason, a first direction of this thesis was tackling the one of the weakest points of meta-heuristic methods: the parameters. In Chapter ?? a performed study applying Paramilles to Adaptive Search in order to find a general parameter settings was presented. This experiment did not produce encouraging results, and for that reason it was decided to abandon the idea as the main direction of the thesis. However, I believe that it can be an idea to be considered as a future work.

With the development of parallelism, opening new ways to tackle constrained problems, the accessibility to this technology to a broad public has also increased. It is available through multi-core personal computers, Xeon Phi cards and GPU video cards. For that reason it was decided focusing completely on the parallel approach. In Chapter ?? it was presented a study in which the problem-subdivision approach was applied to the resolution of *K-Medoids Problem*. The main goal of this work was generalizing the proposed ideas to similar problems. It was only a theoretical study because it was realised in parallel with what would latter be the main scientific contribution of this thesis.

After analyzing all weak point of the most important previews works, another issue arises, frequently undervalued: the codding time, that is always long when codding parallel programs. This was the main motivation to start searching techniques for implementing parallel solution strategies with or without communication in a fast and easy way. The main goal was creating a tool providing:

- 1. An simple way to create *flexible* solvers, i.e., solvers ables to be modified with a few effort.
- 2. Fast and simple mechanisms to connect solvers, ables to exchange information.
- 3. A way to create numerous and different parallel strategies designs, where different communicating and not communicating solvers can be combined, exploiting to the maximum computation resources.

1.1. Introduction 7

1.1.1 Precedents

During the development process, some inspired ideas were taken into account. HYPERION² [62] is a java framework for meta— and hyper—heuristics built providing generic templates for a variety of local search and evolutionary computation algorithms, allowing quick prototyping with the possibility of reusing source code. A similar idea was proposed by Fukunaga [7], introducing an evolutionary approach that uses a simple composition operator to automatically discover new local search heuristics for SAT and to visualize them as combinations of blocks. The goal of this thesis is to create a tool offering the same advantages, but providing also a mechanism to define communication protocols between solvers. It must also provide a way to create an abstract solver by combining simple functions that we call modules.

In [8] is presented a framework to facilitate the development of search procedures by using combinators to design features commonly found in search procedures as standard bricks and joining them. This approach can speed up the development and experimentation of search procedures when developing a specific solver based on local search. Martin et al. [9] propose an approach of using cooperating meta-heuristic based local search processes, using an asynchronous message passing protocol. The cooperation is based on the general strategies of pattern matching and reinforcement learning. The tool developed for this thesis, uses the combination of both ideas, where search process features can be combined and reused, and it is also possible to design communication strategies between solvers.

1.1.2 POSL

In this chapter is presented POSL, the main contribution of this thesis, as well as the different steps to build communicating parallel solvers with. It is proposed as a new way to implement solution algorithms to solve Constraint Satisfaction Problems, through local-search meta-heuristics using the multi-walk parallel approach. It is based on improving step by step an initial configuration, driven by a cost function provided by the user through the model. The implementation must follow the following stages.

1. The conceived *solution algorithm* to solve the target problem is decomposed it into small modules of computation, which are implemented as separated *functions*. We name them computation modules (see Figure 1.1a, blue shapes). At this point it is crucial to find a good decomposition of its *solution algorithm*, because it will have a significant impact in its future re-usage.

- 2. Deciding which information is interesting to *receive* from other solvers. This information is encapsulated into another kind of component called communication module, allowing data transmission between solvers (see Figure 1.1a, red shapes).
- 3. A third stage is to ensemble the modules through POSL's inner language to create independent solvers.
- 4. The parallel-oriented language based on operators provided by POSL (see Figure 1.1b, green shapes) allows the information exchange, and executing modules in parallel. In this stage the information that is interesting to be shared with other solvers is sent using operators. After that we can connect them using *communication operators*. This final entity is called a *solver set* (see Figure 1.1c).

Figure 1.1: Solver construction process using POSL

In the following sections all these steps are explained in details, but first, I explain how to model the target benchmark using POSL.

Modeling the target benchmark

Target problems are modeled in POSL using the C++ programing language, respecting some rules of the object-oriented design. First of all, the benchmark must inherit from the **Benchmark** class provided by POSL. This class does not have any method to be overridden or implemented, but receives in its constructor three objects, instances of classes the user must create. Those classes must inherit from **SolutionCostStrategy**, **RelativeCostStrategy** and **ShowStrategy**, respectively. In these classes the most important functionalities of the benchmark model are defined.

SolutionCostStrategy: In this class the strategy computing the *cost* of a configuration is implemented. This *cost function* must return an integer taking into account the problem constraints. Given a configuration s, the *cost function*, as a mandatory rule, must return 0 if and only if s is a solution of the problem, i.e., s fulfills all the problem constraints. Otherwise, it must return an integer describing "how long" is the given configuration from a solution. An example of *cost function* is the one returning the number of violated constraints. However, the more expressive the cost function is, the better the performance of POSL is, leading to the solution.

Let us take the example of the *4-Queens Problem*. This problem is about placing 4 queens on a 4×4 chess board so that none of them can hit any other in one move. A configuration for this benchmark is a vector of 4 integer indicating the row where a queens is placed on each column. So, the configuration $s_a = (1, 3, 1, 2)$ corresponds to the example in Figure 1.2a.

Now, let us suppose two different cost functions:

- 1. $f_1(s) = c$ if and only if c is the maximum number of queens hitting another.
- 2. $f_2(s) = c$ if and only if c is the sum of the number of queens that each queen hits.

Tacking these two functions into account, it is easy to see that $f_1(s_a)=3$ and $f_2(s_a)=4$. If we take the example in Figure 1.2b, the corresponding configuration is $s_b=(0,1,0,2)$ with $f_1(s_b)=3$ and $f_2(s_b)=6$. In this case, according to the *cost function* f_1 both configurations have the same opportunity of being selected, because they have the same cost. However, applying the *cost function* f_2 , the best configuration is s_b in which a solution can be obtained just moving the queen b3 to a3.

In that sense, f_2 is *more expressive* than f_1 .

Figure 1.2: 4-Queens examples

The method to be implemented in this class is:

int solutionCost(std::vector<int> & c) → Computes the cost of a given configuration c.

<u>RelativeCostStrategy</u>: In this class the user implements the strategy to compute the *cost* of a given configuration with respect to another, with the help of some stored information.

Coming back to the previews example, let us suppose that the current configuration is $s_a=(1,3,1,2)$ corresponding to the Figure 1.2a. Taking the *cost function* f_2 , the cost of this configurations is $f_2(s_a)=4$. If we want to compute the cost of $s_c=(1,3,0,2)$ (Figure 1.2c), knowing that the only change with respect to the current configuration is the queen in the column 3, we can use the following *relative cost function*:

$$rf(s_c) = c - 2 \cdot q + a$$
$$= 4 - 2 \cdot 2 + 0$$
$$= 0$$

where c is the current cost, q is the number of queens that the queen in column 3 hits (an information that can be stored), and a the number of queens that the queen in the column 3 hits in the new position (a3).

The methods to implement in this class are:

- void initializeCostData(std::vector<int> & c) → Initializes the information related to the cost (auxiliary data structures, the current configuration c, the current cost, etc.)
- void updateConfiguration(std::vector<int> & c) \rightarrow Updates the information related to the cost.
- int relativeSolutionCost(std::vector<int> & c) → Returns the relative cost of the configuration c with respect to the current configuration.
- int currentCost() \rightarrow Property that returns the cost of the current configuration.
- int costOnVariable(int variable_index) \rightarrow Returns a measure of the contribution of a variable to the total cost of a configuration.

ShowStrategy: This class represents the way a benchmark shows a configuration, in order to provide more information about the structure.

For example, a configuration of the instance 3–3–2 of the *Social Golfers Problem* (see bellow for more details about this benchmark) can be written as follows:

This text is, nevertheless, very difficult to be read if the instance is larger. Therefore, it is recommended that the user implements this class in order to give more details and to make

it easier to interpret the configuration. For example, for the same instance of the problem, a solution could be presented as follows:

```
Golfers: players-3, groups-3, weeks-2
6 8 7
1 3 5
4 9 2
--
7 2 3
4 8 1
5 6 9
--
```

The method to be implemented in this class is:

• std::string showSolution(std::shared_ptr<Solution> s) → Returns a string to be written in the standard output.

Once we have modeled the target benchmark, it can be solved using POSL. In the following sections we describe how to use this parallel-oriented language to solve *Constraint Satisfaction Problems*.

First stage: creating POSL's modules

There exist two types of basic modules in POSL: computation module and communication module. A computation module is basically a function and a communication module is also a function, but in contrast, the it can receive information from two different sources: through input parameters or from outside, i.e., by communicating with a module from another solver.

1.3.1 Computation module

A computation module is the most basic and abstract way to define a piece of computation. It is a function which receives an instance of a POSL data type as input, then executes an internal algorithm, and returns an instance of a POSL data type as output. The input and output types will characterize the computation module signature. It can be dynamically replaced by (or combined with) other computation modules, since they can be transmitted to other solvers working in parallel. They are joined through operators defined in Section 1.4.

Figure 1.3: An example of a computation module computing a neighborhood

Definition 1 (Computation Module) A computation module Cm is a mapping defined by:

$$Cm: I \to O$$
 (1.1)

where I and O, for instance, can be independently a set of configurations, a set of sets of configurations, a set of values of some data type, etc.

Consider a local search meta-heuristic solver. One of its computation modules can be the function returning the set of configurations composing the neighborhood of a given configuration:

$$Cm_{neighborhood}: I_1 \times I_2 \times \cdots \times I_n \to 2^{I_1 \times I_2 \times \cdots \times I_n}$$

where I_i represents the definition domains of each variable of the input configuration.

Figure 1.3 shows an example of computation module: which receives a configuration S and then computes the set \mathcal{V} of its neighbor configurations $\{S^1, S^2, \dots, S^m\}$.

1.3.1.1 Creating new computation modules

To create new computation modules we use C++ programing language. POSL provides a hierarchy of data types to work with (See annexes) and some abstract classes to inherit from, depending on the type of computation module the user wants to create. These abstract classes represent *abstract* computation module and define a type of action to be executed. In the following we present the most important ones:

• ACM_FirstConfigurationGeneration → Represents computation modules generating a first configuration. The user must implement the method execute(ComputationData) which returns a pointer to a Solution, that is, an object containing all the information concerning a partial solution (configuration, variable domains, etc.)

- ACM_NeighborhoodFunction → Represent computation modules creating a neighborhood of a given configuration. The user must implement the method execute(Solution) which returns a pointer to an object Neighborhood, containing a set of configurations which constitute the neighborhood of a given configuration, according to certain criteria. These configurations are efficiently stored in term of space.
- ACM_SelectionFunction → Represents computation modules selecting a configuration from a neighborhood. The user must implement the method execute(Neighborhood) which returns a pointer to an object DecisionPair, containing two solutions: the current and the selected one.
- ACM_DecisionFunction → Represents computation modules deciding which of the
 two solutions will be the current configuration for the next iteration. The user must
 implement the method execute(DecisionPair) which returns a pointer to an object
 Solution.

1.3.2 Communication modules

A communication module is the component managing the information reception in the communication between solvers (I talk about information transmission in Section 1.4). They can interact with computation modules through operators (see Figure 1.4).

A communication module can receive two types of information from an external solver: data or computation modules. It is important to notice that by sending/receiving computation modules, I mean sending/receiving the required information to identify and being able to instantiate the computation module. For instance, an integer identifier.

In order to distinguish from the two types of communication modules, I will call *data communication module* the communication module responsible for the data reception (Figure 1.4a), and *object communication module* the one responsible for the reception and instantiation of computation modules (Figure 1.4b).

Definition 2 (Data Communication Module) A Data Communication Module Ch is a module that produces a mapping defined as follows:

$$Ch: I \times \{D \cup \{NULL\}\} \to D \cup \{NULL\}$$

$$\tag{1.2}$$

No matter what the input I is, it returns the information D coming from an external solver.

Figure 1.4: Communication module

Definition 3 (Object Communication Module) If we denote by \mathbb{M} the space of all the computation modules defined by Definition 1.1, then an object communication module Ch is a module that produces and executes a computation module coming from an external solver as follows:

$$Ch: I \times \{ \mathbb{M} \cup \{NULL\} \} \to O \cup \{NULL\}$$
 (1.3)

It returns the output O of the execution of the computation module coming from an external solver, using I as the input.

Users can implement new computation and connection modules but POSL already contains many useful modules for solving a broad range of problems.

Due to the fact that communication modules receive information coming from outside without having control on them, it is necessary to define the *NULL* information, in order to denote the absence of information. If a Data Communication Module receives information, it is returned automatically. If a Object Communication Module receives a computation module, it is instantiated and executed with the communication module's input and its result is returned. In both cases, if no available information exists (no communications performed), the communication module returns the *NULL* object.

Second stage: assembling POSL's modules

Modules mentioned above are grouped according its signature. An *abstract module* is a module that represents all modules with the same signature. For example, the module showed in Figure 1.3 is a computation module based on an abstract module that receives a configuration and returns a neighborhood.

In this stage an *abstract solver* is coded using POSL. It takes abstract modules as *parameters* and combines them through operators. Through the abstract solver, we can also decide

which information to send to other solvers.

The abstract solver is the solver's backbone. It joins the computation modules and the communication modules coherently. It is independent from the computation modules and communication modules used in the solver. It means that modules can be changed or modified during the execution, respecting the algorithm structure. Each time we combine some of them using POSL's operators, we are creating a *compound module*. Here we formally define the concept of *module* and *compound module*.

Definition 4 Denoted by the letter \mathcal{M} , a module is:

- 1. a computation module; or
- 2. a communication module; or
- 3. $[OP \mathcal{M}]$, which is the composition of a module \mathcal{M} to be executed sequentially, returning an output depending on the nature of the unary operator OP; or
- 4. $[\mathcal{M}_1 \ OP \ \mathcal{M}_2]$, which is the composition of two modules \mathcal{M}_1 and \mathcal{M}_2 to be executed sequentially, returning an output depending on the nature of the binary operator OP; or
- 5. $[M_1 \ OP \ M_2]_p$, which is the composition of two modules M_1 and M_2 to be executed, returning an output depending on the nature of the binary operator OP. These two modules will be executed in parallel if and only if OP supports parallelism, or it throws an exception otherwise.

I denote by \mathbb{M} the space of the modules, and I call compound modules to the composition of modules described in 4. and/or 5..

For a better understanding of Definition 4, Figure 1.5 shows graphically the structure of a compound module.

Figure 1.5: A compound module made of two modules M_1 and M_2

As mentioned before, the abstract solver is independent from the computation modules and communication modules used in the solver. It means that one abstract solver can be used to construct many different solvers, by implementing it using different modules. This is the reason why the abstract solver is defined only using abstract modules. Formally, we define an abstract solver as follows:

Definition 5 (Abstract Solver) An Abstract Solver AS is a triple $(\mathbf{M}, \mathcal{L}^m, \mathcal{L}^c)$, where: \mathbf{M} is a compound module (also called root compound module), \mathcal{L}^m a list of abstract computation modules appearing in \mathcal{M} , and \mathcal{L}^c a list of communication modules appearing in \mathcal{M} .

Compound modules, and in particular the *root* compound module, can be defined also as a context-free grammar as follows:

Definition 6 A compound module's grammar is the set $G_{POSL} = (\mathbf{V}, \Sigma, \mathbf{S}, \mathbf{R})$, where:

1.
$$\mathbf{V} = \{CM, OP\}$$
 is the set of variables,

$$2. \ \Sigma = \left\{\alpha, \beta, be, [,], \llbracket, \rrbracket_p, (\![,]\!]^m, [\![]\!]^o, (\![\to]\!], (\![\to]\!],$$

3.
$$S = \{CM\}$$
 is the set of start variables,

4. and
$$\mathbf{R} =$$

is a set of rules

In the following I explain some of the concepts in Definition 6:

- \bullet The variables CM and OP correspond to a compound module and an *operator*, respectively.
- The terminals α and β represent a computation module and a communication module, respectively.
- \bullet The terminal be is a boolean expression.
- The terminals $[\]$, $[\]$ _p are symbols for grouping and defining the way the involved compound modules are executed. Depending on the nature of the operator, this can be either sequentially or in parallel:

- 1. [OP]: The involved operator will always executed sequentially.
- 2. $[\![OP]\!]_p$: The involved operator will be executed in parallel if and only if OP supports parallelism. Otherwise, an exception is thrown.
- The terminals $(.)^m$, $(.)^o$, are operators to send information to other solvers (explained bellow).
- All other terminals are POSL operators that are detailed later.

In the following we define POSL operators. In order to group modules, like in Definition 4(4.) and 4(5.), we will use |OP| as generic grouper. In order to help the reader to easily understand how to use operators, I use an example of a solver that I build step by step, while presenting the definitions.

POSL creates solvers based on local search meta-heuristics algorithms. These algorithms have a common structure: 1. They start by initializing some data structures (e.g., a *tabu list* for *Tabu Search*, a *temperature* for *Simulated Annealing*, etc.). 2. An initial configuration s is generated. 3. A new configuration s' is selected from the neighborhood $\mathcal{V}(s)$. 4. If s' is a solution for the problem P, then the process stops, and s' is returned. If not, the data structures are updated, and s' is accepted or not for the next iteration, depending on a certain criterion.

Abstract computation modules composing local search meta-heuristics are:

The list of modules to be used in the examples have been presented. Now I present POSL operators.

* * *

Definition 7 (\rightarrow) Sequential Execution Operator. Let

1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and

2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{I}_1 \subseteq \mathcal{D}_2$. Then the operation $\left| \mathcal{M}_1 \middle\mapsto \mathcal{M}_2 \right|$ defines the compound module \mathcal{M}_{seq} as the result of executing \mathcal{M}_1 followed by executing \mathcal{M}_2 :

$$\mathcal{M}_{seg}:\mathcal{D}_1 o\mathcal{I}_2$$

This is an example of an operator that does not support the execution of its involved compound modules in parallel, because the input of the second compound module is the output of the first one.

Coming back to the example, I can use defined abstract computation modules to create a compound module that perform only one iteration of a local search, using the Sequential Execution operator. I create a compound module to execute sequentially I and V (see Figure 1.6a), then I create an other compound module to execute sequentially the compound module already created and S (see Figure 1.6b), and finally this compound module and the computation module A are executed sequentially (see Figure 1.6c). The compound module presented in Figure 1.6c can be coded as follows:

$$\left[\left[\left[I \longleftrightarrow V\right] \longleftrightarrow S\right] \longleftrightarrow A\right]$$

In the figure, each rectangle is a compound module.

Figure 1.6: Using sequential execution operator

* * *

The following operator is very useful to execute modules sequentially creating bifurcations, subject to some boolean condition:

Definition 8 ? Conditional Execution Operator Let

1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and

2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \cap \mathcal{D}_2 \neq \emptyset$. Then the operation $\left| \mathcal{M}_1 \right|_{< cond >} \mathcal{M}_2 \left| \right|$ defines the compound module \mathcal{M}_{cond} as result of the sequential execution of \mathcal{M}_1 if < cond > is true or \mathcal{M}_2 , otherwise:

$$\mathcal{M}_{cond}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

This operator can be used in the example if I want to execute two different selection computation modules (S_1 and S_2) depending on certain criterion (see Figure 1.7):

$$\left[\left[\left[I \bigodot V\right] \bigodot \left[S_1 \bigodot S_2\right]\right] \bigodot A\right]$$

In examples I remove the clause < cond > for simplification.

Figure 1.7: Using conditional execution operator

* * *

We can execute modules sequentially creating also cycles.

Definition 9 \circlearrowleft **Operator Cyclic Execution Operator** Let $\mathcal{M}: \mathcal{D} \to \mathcal{I}$ be a module, where $\mathcal{I} \subseteq \mathcal{D}$. Then, the operation $|\circlearrowleft_{< cond>} \mathcal{M}|$ defines the compound module \mathcal{M}_{cyc} repeating sequentially the execution of \mathcal{M} while < cond> remains **true**:

$$\mathcal{M}_{cuc}:\mathcal{D} o\mathcal{I}$$

Using this operator I can model a local search algorithm, by executing the abstract computation module I and then the other computation modules (V, S and A) cyclically, until finding a solution (i.e, a configuration with cost equals to zero) (see Figure 1.8):

$$\left[I \longleftrightarrow \left[\circlearrowleft \left[\left[V \longleftrightarrow S \right] \longleftrightarrow A \right] \right] \right]$$

In the examples, I remove the clause < cond > for simplification.

Figure 1.8: Using cyclic execution operator

Definition 10 (Operator Random Choice) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subset \mathcal{D}_2$, and a real value $\rho \in (0,1)$. Then the operation $|\mathcal{M}_1 \rho \mathcal{M}_2|$ defines the compound module \mathcal{M}_{rho} executing \mathcal{M}_1 with probability ρ , or executing \mathcal{M}_2 with probability $(1-\rho)$:

$$\mathcal{M}_{rho}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

In the example I can create a compound module to execute two *abstract* computation modules A_1 and A_2 following certain probability ρ using the **random choice** operator as follows (see Figure 1.9):

$$\left[I \longleftrightarrow \left[\circlearrowleft \left[\left[V \longleftrightarrow S\right] \longleftrightarrow \left[A_1 \circlearrowleft A_2\right]\right]\right]\right]$$

Figure 1.9: Using random execution operator

The following operator is very useful if the user needs to use a communication module inside an abstract solver. As explained before, if a communication module does not receive any information from another solver, it returns *NULL*. This may cause the undesired termination of the solver if this case is not considered correctly. Next, I introduce the operator **Operator Not** *NULL* **Execution** and illustrate how to use it in practice with an example.

Definition 11 (Operator Not NULL Execution) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$. Then, the operation $|\mathcal{M}_1 \bigcup \mathcal{M}_2|$ defines the compound module \mathcal{M}_{non} that executes \mathcal{M}_1 and returns its output if it is not NULL, or executes \mathcal{M}_2 and returns its output otherwise:

$$\mathcal{M}_{non}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

Let us make consider a slightly more complex example: When applying the acceptance criterion, suppose that we want to receive a configuration from other solver to combine the computation module A with a communication module:

 $Communication \ module-1: \ \ C.M.$: Receiving a configuration.

Figure 1.10 shows how to combine a communication module with the computation module A through the operator \bigcirc . Here, the computation module A will be executed as long as the communication module remains NULL, i.e., there is no information coming from outside. This behavior is represented in Figure 1.10a by the orange lines. If some data has been received through the communication module, the later is executed instead of the module A, represented in Figure 1.10b by blue lines. The code can be written as follows:

$$\left[I \ \ \, \bigoplus \ \, \left[\circlearrowleft \left[\left[V \ \ \, \bigoplus \ \, S\right] \ \ \, \bigoplus \ \, \left[A \ \ \, \bigvee \ \, C.M.\right]\right]\right]\right]$$

(a) The solver executes the computation module $\bf A$ if no information is received through the connection module

(b) The solver uses the information coming from an external solver

Figure 1.10: Two different behaviors within the same solver

This is *short-circuit* operator. It means that if the first argument (module) does not return *NULL*, the second will not be executed. POSL provides another operator with the same functionality but not *short-circuit*:

Definition 12 (Operator BOTH Execution) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$. Then the operation $|\mathcal{M}_1 \cap \mathcal{M}_2|$ defines the compound module \mathcal{M}_{both} that executes both \mathcal{M}_1 and \mathcal{M}_2 , then returns the output of \mathcal{M}_1 if it is not NULL, or the output of \mathcal{M}_2 otherwise:

$$\mathcal{M}_{both}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

221. A Parallel-Oriented Language for Modeling Meta-Heuristic-Based Solvers

In the following definitions, the concepts of *cooperative parallelism* and *competitive parallelism* are implicitly included. We say that cooperative parallelism exists when two or more processes are running separately, they are independent, and the general result will be some combination of the results of all the involved processes (e.g. Definitions 13 and 14). On the other hand, competitive parallelism arise when the general result is the result of the process ending first (e.g. Definition 15).

Definition 13 (Operator Minimum) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$. Let also o_1 and o_2 be the outputs of \mathcal{M}_1 and \mathcal{M}_2 , respectively. Assume that there exists some order criteria between them. Then the operation $\left|\mathcal{M}_1(m)\mathcal{M}_2\right|$ defines the compound module \mathcal{M}_{min} that executes \mathcal{M}_1 and returns $\min \{o_1, o_2\}$:

$$\mathcal{M}_{min}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

Similarly we define the operator **Maximum**:

Definition 14 (Operator Maximum) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$. Let also o_1 and o_2 be the outputs of \mathcal{M}_1 and \mathcal{M}_2 , respectively. Assume that there exists some order criteria between them. Then the operation $\left|\mathcal{M}_1(M)\mathcal{M}_2\right|$ defines the compound module \mathcal{M}_{max} that executes \mathcal{M}_1 and returns $\max\{o_1,o_2\}$:

$$\mathcal{M}_{max}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

Comming back to the previews example, the **minimum** operator can be applied to obtain a more interesting behavior in the solver: When applying the acceptance criteria, suppose that we want to receive a configuration from other solver, to compare it with ours and select the one with the lowest cost. We can do that by applying the operator m to combine the computation module A with a communication module C.M. (see Figure 1.11):

$$\left[I \ \, \bigoplus \ \, \left[\circlearrowleft \left[\left[V \ \, \bigoplus S\right] \ \, \bigoplus \ \, \left[\!\!\left[A \ \, \left[m \ \, C.M.\right]\!\!\right]_p\right]\right]\right]$$

Notice that in this example, I can use the grouper $[\![.]\!]_p$ since the minimum operator supports parallelism.

Figure 1.11: Using minimum operator

Definition 15 (Operator Race) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$ and $\mathcal{I}_1 \subset \mathcal{I}_2$. Then the operation $\left|\mathcal{M}_1 \bigcup \mathcal{M}_2\right|$ defines the compound module \mathcal{M}_{race} that executes both modules \mathcal{M}_1 and \mathcal{M}_2 , and returns the output of the module ending first:

$$\mathcal{M}_{race}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

Sometimes nighborhood functions are slow depending on the configuration. In that case two neighborhood computation modules can be executed and take into account the output of the module ending first (see Figure 1.12):

$$\left[I \longleftrightarrow \left[\circlearrowleft \left[\left[\left[V_1 \bigcup V_2\right]\right]_p \longleftrightarrow S\right] \longleftrightarrow \left[A \textcircled{m} C.M.\right]_p\right]\right]\right]$$

Figure 1.12: Using race operator

Some others operators can be useful when dealing with sets.

Definition 16 (Operator Union) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$. Let also V_1 and V_2 be the outputs of \mathcal{M}_1 and \mathcal{M}_2 , respectively. Then the operation $|\mathcal{M}_1 \cup \mathcal{M}_2|$ defines the compound module \mathcal{M}_{\cup} that executes both modules \mathcal{M}_1 and \mathcal{M}_2 , and returns $V_1 \cup V_2$:

$$\mathcal{M}_{\cup}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

Similarly we define the operators **Intersection** and **Subtraction**:

Definition 17 (Operator Intersection) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$. Let also V_1 and V_2 be the outputs of \mathcal{M}_1 and \mathcal{M}_2 , respectively. Then the operation $\left|\mathcal{M}_1 \bigcap \mathcal{M}_2\right|$ defines the compound module \mathcal{M}_{\cap} that executes both modules \mathcal{M}_1 and \mathcal{M}_2 , and returns $V_1 \cap V_2$:

$$\mathcal{M}_{\cap}: \mathcal{D}_1 \cap \mathcal{D}_2 \to \mathcal{I}_1 \cup \mathcal{I}_2$$

Definition 18 (Operator Subtraction) Let

- 1. $\mathcal{M}_1: \mathcal{D}_1 \to \mathcal{I}_1$ and
- 2. $\mathcal{M}_2: \mathcal{D}_2 \to \mathcal{I}_2$,

be modules, where $\mathcal{D}_1 \subseteq \mathcal{D}_2$. Let also V_1 and V_2 be the outputs of \mathcal{M}_1 and \mathcal{M}_2 , respectively. Then the operation $\left|\mathcal{M}_1 \bigcirc \mathcal{M}_2\right|$ defines the compound module \mathcal{M}_- that executes both modules \mathcal{M}_1 and \mathcal{M}_2 , and returns $V_1 - V_2$:

$$\mathcal{M}_{-}:\mathcal{D}_{1}\cap\mathcal{D}_{2}\to\mathcal{I}_{1}\cup\mathcal{I}_{2}$$

Now, I define the operators which allows to send information to other solvers. Two types of information can be sent: i) the output of the computation module and send its output, or ii) the computation module itself. This utility is very useful in terms of sharing behaviors between solvers.

Definition 19 (Sending Data Operator) Let $\mathcal{M}: \mathcal{D} \to \mathcal{I}$ be a module. Then the operation $|(\mathcal{M})^{\circ}|$ defines the compound module \mathcal{M}_{sendD} that executes the module \mathcal{M} and sends its output outside:

$$\mathcal{M}_{sendD}: \mathcal{D} o \mathcal{I}$$

Similarly we define the operator **Send Module**:

Definition 20 (Sending Module Operator) Let $\mathcal{M}: \mathcal{D} \to \mathcal{I}$ be a module. Then the operation $|(\mathcal{M})^m|$ defines the compound module \mathcal{M}_{sendM} that executes the module \mathcal{M} , then returns its output and sends the module itself outside:

$$\mathcal{M}_{sendM}: \mathcal{D}
ightarrow \mathcal{I}$$

In the following example, I use one of the compound modules already presented in the previews examples, using a communication module to receive a configuration (see Figure 1.13a):

$$\left[I \ \, \bigoplus \ \, \left[\circlearrowleft \left[\left[V \ \, \bigoplus S\right] \ \, \bigoplus \ \, \left[\!\!\left[A \ \, \left[m \ \, C.M.\right]\!\!\right]_p\right]\right]\right]$$

I also build another, as its complement: sending the accepted configuration to outside, using the sending data operator (see Figure 1.13b):

$$\left[I \longleftrightarrow \left[\circlearrowleft \left[\left[V \longleftrightarrow S\right] \longleftrightarrow (\!\!(A)\!\!)^o\right]\right]\right]$$

In the Section 1.6 I explain how to connect solvers to each other.

Figure 1.13: Sender and receiver behaviors

Once all desired abstract modules are linked together with operators, we obtain the *root* compound module, an important part of an abstract solver. To implement a concrete solver from an abstract solver, one must instantiate each abstract module with a concrete one respecting the required signature. From the same abstract solver, one can implement many different concrete solvers simply by instantiating abstract modules with different concrete modules.

An abstract solver is defined as follows: after declaring the **abstract solver**'s name, the first line defines the list of abstract computation modules, the second one the list of abstract communication modules, then the algorithm of the solver is defined as the solver's body (the root compound module), between **begin** and **end**.

An abstract solver can be declared through the simple regular expression:

abstract solver name computation: L^m (communication: L^c)? begin \mathcal{M} end

where:

1.5

- name is the identifier of the abstract solver,
- L^m is the list of abstract computation modules,
- L^c is the list of abstract communication modules, and
- \mathcal{M} is the root compound module.

For instance, Algorithm 1 illustrates the abstract solver corresponding to Figure 1.1b.

Algorithm 1: POSL pseudo-code for the abstract solver presented in Figure 1.1b

```
abstract solver as\_01 computation : I, V, S, A connection: C.M.
begin
I \hspace{0.2cm} \longleftrightarrow \hspace{0.2cm} [\circlearrowleft (\operatorname{ITR} \hspace{0.1cm} \% \hspace{0.1cm} K_1) \\ \hspace{0.2cm} \left[V \hspace{0.1cm} \longleftrightarrow \hspace{0.1cm} S \hspace{0.1cm} \longleftrightarrow \hspace{0.1cm} \left[C.M. \hspace{0.1cm} (\hspace{0.1cm} M)^{o}\right]\right]
end
```

Third stage: creating POSL solvers

With computation and communication modules composing an abstract solver, one can create solvers by instantiating modules. This is simply done by specifying that a given solver must implements a given abstract solver, followed by the list of computation then communication modules. These modules must match signatures required by the abstract solver.

In the following example, I describe some concrete computation modules that can be used to implement the abstract solver declared in Algorithm 1:

sen the classical module, selecting the configuration with the lowest global cost, i.e., the one which is likely the closest to a solution.

I use also the following concrete communication module:

 $\boxed{ Communication \ module-1 } \ CM_{last}$ returns the last configuration arrived, if at the time of its execution, there is more than one configuration waiting to be received.

These modules are used and explained in details in the Chapter ?? of this document. Algorithm 2 implements Algorithm 1 by instantiating its modules.

Algorithm 2: An instantiation of the abstract solver presented in Algorithm 1

solver solver_01 implements as_01 computation : $I_{rand}, V_{1ch}, S_{best}, A_{alw}$

connection: CM_{last}

1.6

Forth stage: connecting the solvers

We call solver set to the pool of (concrete) solvers that we plan to use in parallel to solve a problem. Once we have our solvers set, the last stage is to connect the solvers to each other. Up to this point, solvers are disconnected, but they are ready to establish the communication. POSL provides a platform to the user such that cooperative strategies can be easily defined.

In the following we present two important concepts necessary to formalize the *communication* operators.

Definition 21 (Communication Jack) Let S be a solver. Then the operation $S \cdot \mathcal{M}$ opens an outgoing connection from the solver S, sending to the outside either a) the output of \mathcal{M} , if it is affected by a sending data operator as presented in Definition 19, or b) \mathcal{M} itself, if it is affected by a sending module operator as presented in Definition 20.

Definition 22 (Communication Outlet) Let S be a solver. Then, the operation $S \cdot \mathcal{CM}$ opens an ingoing connection to the solver S, receiving from the outside either a) the output of some computation module, if \mathcal{CM} is a data communication module, or b) a computation module, if \mathcal{CM} is an object communication module.

The communication is established by following the following rules guideline:

- 1. Each time a solver sends any kind of information by using a *sending* operator, it creates a *communication jack*.
- 2. Each time a solver defines a communication module, it creates a communication outlet.
- 3. Solvers can be connected to each other by linking communication jacks to communication outlets.

Following, we define the *connection operators* that POSL provides.

Definition 23 (Connection Operator One-to-One) Let

- 1. $\mathcal{J} = [S_0 \cdot \mathcal{M}_0, S_1 \cdot \mathcal{M}_1, \dots, S_{N-1} \cdot \mathcal{M}_{N-1}]$ be the list of communication jacks, and
- 2. $\mathcal{O} = [\mathcal{Z}_0 \cdot \mathcal{CM}_0, \mathcal{Z}_1 \cdot \mathcal{CM}_1, \dots, \mathcal{Z}_{N-1} \cdot \mathcal{CM}_{N-1}]$ be the list of communication outlets

Then the operation

$$\mathcal{J} \left(\rightarrow \right) \mathcal{O}$$

connects each communication jack $S_i \cdot M_i \in \mathcal{J}$ with the corresponding communication outlet $Z_i \cdot \mathcal{CM}_i \in \mathcal{O}, \ \forall 0 \leq i \leq N-1 \ (see Figure 1.14a).$

Definition 24 (Connection Operator One-to-N) Let

- 1. $\mathcal{J} = [S_0 \cdot \mathcal{M}_0, S_1 \cdot \mathcal{M}_1, \dots, S_{N-1} \cdot \mathcal{M}_{N-1}]$ be the list of communication jacks, and
- 2. $\mathcal{O} = [\mathcal{Z}_0 \cdot \mathcal{CM}_0, \mathcal{Z}_1 \cdot \mathcal{CM}_1, \dots, \mathcal{Z}_{M-1} \cdot \mathcal{CM}_{M-1}]$ be the list of communication outlets

Then the operation

$$\mathcal{J} \stackrel{(\leadsto)}{(\leadsto)} \mathcal{O}$$

connects each communication jack $S_i \cdot \mathcal{M}_i \in \mathcal{J}$ with every communication outlet $Z_j \cdot \mathcal{CM}_j \in \mathcal{O}$, $\forall 0 \leq i \leq N-1$ and $0 \leq j \leq M-1$ (see Figure 1.14b).

Definition 25 (Connection Operator Ring) Let

- 1. $\mathcal{J} = [S_0 \cdot \mathcal{M}_0, S_1 \cdot \mathcal{M}_1, \dots, S_{N-1} \cdot \mathcal{M}_{N-1}]$ be the list of communication jacks, and
- 2. $\mathcal{O} = [\mathcal{S}_0 \cdot \mathcal{CM}_0, \mathcal{S}_1 \cdot \mathcal{CM}_1, \dots, \mathcal{S}_{N-1} \cdot \mathcal{CM}_{N-1}]$ be the list of communication outlets

Then the operation

$$\mathcal{J} \mathrel{\bigoplus} \mathcal{O}$$

connects each communication jack $S_i \cdot \mathcal{M}_i \in \mathcal{J}$ with the corresponding communication outlet $\mathcal{Z}_{(i+1)\%N} \cdot \mathcal{CM}_{(i+1)\%N} \in \mathcal{O}, \ \forall 0 \leq i \leq N-1 \ (\text{see Figure 1.14c}).$

Figure 1.14: Graphic representation of communication operators

POSL also allows to declare non-communicating solvers to be executed in parallel, declaring only the list of solver names:

$$[S_0, S_1, \ldots, S_{N-1}]$$

When we apply a connection operator $\widehat{\text{op}}$ between a communication jacks list \mathcal{J} and a communication outlets list \mathcal{O} , internally we are assigning an abstract computation unit (typically a thread) to each solver that we declare in each list. This assignment receives the name of Solver Scheduling. Before running the solver set, this abstract unit of computation is just an integer $\tau \in [0..N]$ identifying uniquely each of the solvers. When the solver set is launched, the solver with the identifier τ runs into the computation unit τ . This identifier assignation remains independent of the real availability of resources of computation. It just takes into account the user declaration. This means that, if the user declares 30 solvers (15 senders and 15 receivers) and the solver set is launched using 20 cores, only the first 20 solvers will be executed, and in consequence, there will be 10 solvers sending information to nowhere. Users should take this into account when declaring the solver set.

The connection process depends on the applied connection operator. In each case the goal is to assign, to the sending operator $(\langle . \rangle)^o$ or $(\langle . \rangle)^m$ inside the abstract solver, the identifier of the solver (or solvers, depending on the connection operator) where the information will be

sent. Algorithm 3 presents the connection process.

Algorithm 3: Scheduling and connection main algorithm

```
 \begin{array}{c|c} \textbf{input} & : \mathcal{J} \text{ list of communication jacks,} \\ & \mathcal{O} \text{ list of communication outlets} \\ \textbf{1} & \textbf{while } no \ available \ jacks \ or \ outlets \ \textbf{do} \\ \textbf{2} & | S_{jack} \leftarrow \texttt{GetNext}(\mathcal{J}) \\ \textbf{3} & | R_{oulet} \leftarrow \texttt{GetNext}(\mathcal{O}) \\ \textbf{4} & | S \leftarrow \texttt{GetSolverFromConnector}(S_{jack}) \\ \textbf{5} & | R \leftarrow \texttt{GetSolverFromConnector}(R_{oulet}) \\ \textbf{6} & | Schedule(S) \\ \textbf{7} & | R_{id} \leftarrow \texttt{Schedule}(R) \\ \textbf{8} & | \texttt{Connect}(\texttt{root}(S), S_{jack}, R_{id}) \\ \textbf{9} & \textbf{end} \\ \end{array}
```

In Algorithm 3:

- GetNext(...) returns the next available solver-jack (or solver-outlet) in the list, depending on the connection operator, e.g., for the connection operator One-to-N, each communication jack in \mathcal{J} must be connected with each communication outlet in \mathcal{O} .
- GetSolverFromConnector(...) returns the solver name given a connector declaration.
- Schedule(...) schedules a solver and returns its identifier.
- Root(...) returns the *root* compound module of a solver.
- Connect(...) searches the computation module S_{jack} recursively inside the root compound module of S and places the identifier R_{id} into its list of destination solvers.

Let us suppose that we have declared two solvers S and Z, both implementing the abstract solver in Algorithm 1, so they can be either sender or receiver. The following code connects them using the operator 1 to N:

$$[S\cdot A] \ \longleftrightarrow \ [Z\cdot C.M.]$$

If the operator 1 to $\bf N$ is used with only with one solver in each list, the operation is equivalent to applying the operator 1 to 1. However, to obtain a communication strategy like the one showed in Figure 1.14b, six solvers (three senders and three receivers) have to be declared to be able to apply the following operation:

$$[S_1 \cdot A, S_2 \cdot A, S_3 \cdot A] \overset{}{\longleftrightarrow} [Z_1 \cdot C.M., Z_2 \cdot C.M., Z_3 \cdot C.M.]$$

 ${
m POSL}$ provides a mechanism to make this easier, through ${\it namespace expansions}.$

1.6.1 Solver namespace expansion

One of the goals of POSL is to provide a way to declare sets of solvers to be executed in parallel fast and easily. For that reason, POSL provides two forms of namespace expansion, in order to create sets of solvers using already declared ones:

Solver name expansion - Uses an integer K to denote how many times the solver name S will appear in the declaration. $[\ldots S_i \cdot \mathcal{M}(K), \ldots]$ expands as $[\ldots S_i \cdot \mathcal{M}, S_i^2 \cdot \mathcal{M}, \ldots S_i^K \cdot \mathcal{M} \ldots]$

and all new solvers S_i^j , $j \in [2..K]$ are created using the same solver declaration of solver S_i .

Connection declaration expansion - Uses an integer K to denote how many times the connection will be repeated in the declaration. Let a) $[S_1 \cdot \mathcal{M}_1, \dots, S_N \cdot \mathcal{M}_N]$ and b) $[\mathcal{R}_1 \cdot \mathcal{C}\mathcal{M}_1, \dots, \mathcal{R}_M \cdot \mathcal{C}\mathcal{M}_M]$ be the list of communication jacks and communication outlets, respectively, and c) (op) a connection operator. Then

$$[S_1 \cdot \mathcal{M}_1, \dots, S_N \cdot \mathcal{M}_N]$$
 (op) $[R_1 \cdot \mathcal{CM}_1, \dots, R_M \cdot \mathcal{CM}_M]$ K

expands as

$$[\mathcal{S}_{1} \cdot \mathcal{M}_{1}, \dots, \mathcal{S}_{N} \cdot \mathcal{M}_{N}] \underbrace{op} [\mathcal{R}_{1} \cdot \mathcal{C}\mathcal{M}_{1}, \dots, \mathcal{R}_{N} \cdot \mathcal{C}\mathcal{M}_{N}]$$

$$[\mathcal{S}_{1}^{2} \cdot \mathcal{M}_{1}, \dots, \mathcal{S}_{N}^{2} \cdot \mathcal{M}_{N}] \underbrace{op} [\mathcal{R}_{1}^{2} \cdot \mathcal{C}\mathcal{M}_{1}, \dots, \mathcal{R}_{N}^{2} \cdot \mathcal{C}\mathcal{M}_{N}]$$

$$\dots$$

$$[\mathcal{S}_{1}^{K} \cdot \mathcal{M}_{1}, \dots, \mathcal{S}_{N}^{K} \cdot \mathcal{M}_{N}] \underbrace{op} [\mathcal{R}_{1}^{K} \cdot \mathcal{C}\mathcal{M}_{1}, \dots, \mathcal{R}_{N}^{K} \cdot \mathcal{C}\mathcal{M}_{N}]$$

and all new solvers S_i^k , $i \in [1..N]$ and R_j^k , $j \in [1..M]$, $k \in [2..K]$, are created using the same solver declaration of solvers S_i and R_j , respectively.

Now, suppose that I have created solvers S and Z mentioned in the previews example. As a communication strategy, I want to connect them through the operator 1 to N, using S as sender and Z as receiver. Then, using **namespace expansions**, I need to declare how many solvers I want to connect. Algorithm 4 shows the desired communication strategy. Notice in this example that the connection operation is affected also by the number 2 at the end of the line, as connection declaration expansion. In that sense, and supposing that 12 units of computation are available, a solver set working on parallel following the topology described in Figure 1.15 can be obtained.

Algorithm 4: A communication strategy

1 $[S \cdot A(3)] (\rightarrow) [Z \cdot C.M.(3)] 2;$

Figure 1.15: An example of connection strategy for 12 units of computation

Summarize

In this chapter POSL have been formally presented, as a Parallel–Oriented Solver Language to build meta-heuristic-based solver to solve *Constraint Satisfaction Problems*. This language provides a set of computation modules useful to solve a wide range of constrained problems. It is also possible to create new ones, through the low-level framework in C++ programming language. POSL also provides a set of communication modules, essential features to share information between solvers.

One of the most important advantages of POSL is the possibility of creating abstract solvers using an operator-based language, that remains independent from used computation and communication modules. That is the reason why it is possible to create many different solvers using the same solution strategy (the abstract solver) by instantiating it with different modules (computation and communication modules). It is also possible to create different communication strategies by using *connection operators* that POSL provides.

In the next chapter, a detailed study of various communicating and non-communicating strategies is presented, using some *Constraint Satisfaction Problems* as benchmarks. In this study, is showed the efficacy of POSL to analyze quickly and easily these strategies.

Bibliography

- [1] Vangelis Th Paschos, editor. Applications of combinatorial optimization. John Wiley & Sons, 2013.
- [2] Francisco Barahona, Martin Groetschel, Michael Juenger, and Gerhard Reinelt. Application of Combinatorial Optimization To Statistical Physics and Circuit Layout Design. *Operations Research*, 36(3):493 513, 1988.
- [3] Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography. Annals of Operations research, 63(5):511–623, 1996.
- [4] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on optimization metaheuristics. *Information Sciences*, 237:82–117, jul 2013.
- [5] Daniel Diaz, Florian Richoux, Philippe Codognet, Yves Caniou, and Salvador Abreu. Constraint-Based Local Search for the Costas Array Problem. In *Learning and Intelligent Optimization*, pages 378–383. Springer, 2012.
- [6] Danny Munera, Daniel Diaz, Salvador Abreu, and Philippe Codognet. A Parametric Framework for Cooperative Parallel Local Search. In *Evolutionary Computation in Combinatorial Optimisation*, volume 8600 of *LNCS*, pages 13–24. Springer, 2014.
- [7] Alex S Fukunaga. Automated discovery of local search heuristics for satisfiability testing. *Evolutionary computation*, 16(1):31–61, 2008.
- [8] Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, and Christophe Ponsard. Combining Neighborhoods into Local Search Strategies. In 11th MetaHeuristics International Conference, Agadir, 2015. Springer.
- [9] Simon Martin, Djamila Ouelhadj, Patrick Beullens, Ender Ozcan, Angel A Juan, and Edmund K Burke. A Multi-Agent Based Cooperative Approach To Scheduling and Routing. European Journal of Operational Research, 2016.
- [10] Mahuna Akplogan, Jérôme Dury, Simon de Givry, Gauthier Quesnel, Alexandre Joannon, Arnauld Reynaud, Jacques Eric Bergez, and Frédérick Garcia. A Weighted CSP approach for solving spatio-temporal planning problem in farming systems. In 11th Workshop on Preferences and Soft Constraints Soft 2011., Perugia, Italy, 2011.
- [11] Louise K. Sibbesen. Mathematical models and heuristic solutions for container positioning problems in port terminals. Doctor of philosophy, Technical University of Danemark, 2008.
- [12] Wolfgang Espelage and Egon Wanke. The combinatorial complexity of masterkeying. *Mathematical Methods of Operations Research*, 52(2):325–348, 2000.
- [13] Barbara M Smith. Modelling for Constraint Programming. Lecture Notes for the First International Summer School on Constraint Programming, 2005.

34 2 Bibliography

[14] Ignasi Abío and Peter J Stuckey. Encoding Linear Constraints into SAT. In Barry O'Sullivan, editor, Principles and Practice of Constraint Programming, pages 75–91. Springer, 2014.

- [15] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-Carlo Tree Search: A New Framework for Game AI. AIIDE, pages 216–217, 2008.
- [16] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree search methods. *IEEE Transactions on Computational Intelligence and AI in Games*, 4(1):1–49, 2012.
- [17] Christian Bessiere. Constraint Propagation. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, *Handbook of Constraint Programming*, chapter 3, pages 29–84. Elsevier, 1st edition, 2006.
- [18] Daniel Chazan and Willard Miranker. Chaotic relaxation. *Linear Algebra and its Applications*, 2(2):199–222, 1969.
- [19] Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invariant assertions: mathematical foundations. In *ACM Symposium on Artificial Intelligence and Programming Languages*, volume 12, pages 1–12, Rochester, NY, 1977.
- [20] Krzysztof R. Apt. From Chaotic Iteration to Constraint Propagation. In 24th International Colloquium on Automata, Languages and Programming (ICALP'97), pages 36–55, 1997.
- [21] Éric Monfroy and Jean-Hugues Réty. Chaotic Iteration for Distributed Constraint Propagation. In ACM symposium on Applied computing SAC '99, pages 19–24, 1999.
- [22] Éric Monfroy. A coordination-based chaotic iteration algorithm for constraint propagation. In *Proceedings* of The 15th ACM Symposium on Applied Computing, SAC 2000, pages 262–269. ACM Press, 2000.
- [23] Peter Zoeteweij. Coordination-based distributed constraint solving in DICE. In *Proceedings of the 18th ACM Symposium on Applied Computing (SAC 2003)*, pages 360–366, New York, 2003. ACM Press.
- [24] Farhad Arbab. Coordination of Massively Concurrent Activities. Technical report, Amsterdam, 1995.
- [25] Laurent Granvilliers and Éric Monfroy. Implementing Constraint Propagation by Composition of Reductions. In Logic Programming, pages 300–314. Springer Berlin Heidelberg, 2001.
- [26] Eric Freeman, Elisabeth Freeman, Kathy Sierra, and Bert Bates. The Iterator and Composite Patterns. Well-Managed Collections. In *Head First Design Patterns*, chapter 9, pages 315–384. O'Relliy, 1st edition, 2004.
- [27] Eric Freeman, Elisabeth Freeman, Kathy Sierra, and Bert Bates. The Observer Pattern. Keeping your Objects in the know. In *Head First Design Patterns*, chapter 2, pages 37–78. O'Relliy, 1st edition, 2004.
- [28] Eric Freeman, Elisabeth Freeman, Kathy Sierra, and Bert Bates. Introduction to Design Patterns. In *Head First Design Patterns*, chapter 1, pages 1–36. O'Relliy, 1st edition, 2004.
- [29] Charles Prud'homme, Xavier Lorca, Rémi Douence, and Narendra Jussien. Propagation engine prototyping with a domain specific language. *Constraints*, 19(1):57–76, sep 2013.
- [30] Ian P. Gent, Chris Jefferson, and Ian Miguel. Watched Literals for Constraint Propagation in Minion. Lecture Notes in Computer Science, 4204:182–197, 2006.
- [31] Mikael Z. Lagerkvist and Christian Schulte. Advisors for Incremental Propagation. Lecture Notes in Computer Science, 4741:409–422, 2007.

2 Bibliography 35

[32] Narendra Jussien, Hadrien Prud'homme, Charles Cambazard, Guillaume Rochart, and François Laburthe. Choco: an Open Source Java Constraint Programming Library. In *CPAIOR'08 Workshop on Open-Source Software for Integer and Contraint Programming (OSSICP'08)*, Paris, France, 2008.

- [33] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and Guido Tack. MiniZinc: Towards A Standard CP Modelling Language. In *Principles and Practice of Constraint Programming*, pages 529–543. Springer, 2007.
- [34] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: overview and conceptual comparison. *ACM Computing Surveys (CSUR)*, 35(3):268–308, 2003.
- [35] Alexander G. Nikolaev and Sheldon H. Jacobson. Simulated Annealing. In Michel Gendreau and Jean-Yves Potvin, editors, *Handbook of Metaheuristics*, volume 146, chapter 1, pages 1–39. Springer, 2nd edition, 2010.
- [36] Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Vergados. A simulated annealing approach to the travelling tournament problem. *Journal of Scheduling*, 2(9):177—193, 2006.
- [37] Michel Gendreau and Jean-Yves Potvin. Tabu Search. In Michel Gendreau and Jean-Yves Potvin, editors, *Handbook of Metaheuristics*, volume 146, chapter 2, pages 41–59. Springer, 2nd edition, 2010.
- [38] Iván Dotú and Pascal Van Hentenryck. Scheduling Social Tournaments Locally. AI Commun, 20(3):151— -162, 2007.
- [39] Christos Voudouris, Edward P.K. Tsang, and Abdullah Alsheddy. Guided Local Search. In Michel Gendreau and Jean-Yves Potvin, editors, *Handbook of Metaheuristics*, volume 146, chapter 11, pages 321–361. Springer, 2 edition, 2010.
- [40] Patrick Mills and Edward Tsang. Guided local search for solving SAT and weighted MAX-SAT problems. Journal of Automated Reasoning, 24(1):205–223, 2000.
- [41] Pierre Hansen, Nenad Mladenovie, Jack Brimberg, and Jose A. Moreno Perez. Variable neighborhood Search. In Michel Gendreau and Jean-Yves Potvin, editors, *Handbook of Metaheuristics*, volume 146, chapter 3, pages 61–86. Springer, 2010.
- [42] Noureddine Bouhmala, Karina Hjelmervik, and Kjell Ivar Overgaard. A generalized variable neighborhood search for combinatorial optimization problems. In *The 3rd International Conference on Variable Neighborhood Search (VNS'14)*, volume 47, pages 45–52. Elsevier, 2015.
- [43] Edmund K. Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. *European Journal of Operational Research*, 203(2):484–493, 2010.
- [44] Thomas A. Feo and Mauricio G.C. Resende. Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization, (6):109–134, 1995.
- [45] Mauricio G.C Resende. Greedy randomized adaptive search procedures. In *Encyclopedia of optimization*, pages 1460–1469. Springer, 2009.
- [46] Philippe Galinier and Jin-Kao Hao. A General Approach for Constraint Solving by Local Search. Journal of Mathematical Modelling and Algorithms, 3(1):73–88, 2004.
- [47] Philippe Codognet and Daniel Diaz. Yet Another Local Search Method for Constraint Solving. In Stochastic Algorithms: Foundations and Applications, pages 73–90. Springer Verlag, 2001.

36 2 Bibliography

[48] Yves Caniou, Philippe Codognet, Florian Richoux, Daniel Diaz, and Salvador Abreu. Large-Scale Parallelism for Constraint-Based Local Search: The Costas Array Case Study. *Constraints*, 20(1):30–56, 2014.

- [49] Danny Munera, Daniel Diaz, Salvador Abreu, Francesca Rossi, and Philippe Codognet. Solving Hard Stable Matching Problems via Local Search and Cooperative Parallelization. In 29th AAAI Conference on Artificial Intelligence, Austin, TX, 2015.
- [50] Kazuo Iwama, David Manlove, Shuichi Miyazaki, and Yasufumi Morita. Stable marriage with incomplete lists and ties. In ICALP, volume 99, pages 443–452. Springer, 1999.
- [51] David Gale and Lloyd S. Shapley. College Admissions and the Stability of Marriage. *The American Mathematical Monthly*, 69(1):9–15, 1962.
- [52] Laurent Michel and Pascal Van Hentenryck. A constraint-based architecture for local search. ACM SIGPLAN Notices, 37(11):83–100, 2002.
- [53] Dynamic Decision Technologies Inc. Dynadec. Comet Tutorial. 2010.
- [54] Laurent Michel and Pascal Van Hentenryck. The comet programming language and system. In *Principles and Practice of Constraint Programming*, pages 881–881. Springer Berlin Heidelberg, 2005.
- [55] Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer, Frédéric Lardeux, and Michèle Sebag. Adaptive Operator Selection and Management in Evolutionary Algorithms. In *Autonomous Search*, pages 161–189. Springer Berlin Heidelberg, 2012.
- [56] Colin R. Reeves. Genetic Algorithms. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics, volume 146, chapter 5, pages 109–139. Springer, 2010.
- [57] Marco Dorigo and Thomas Stützle. Ant colony optimization: overview and recent advances. In *Handbook of Metaheuristics*, volume 146, chapter 8, pages 227–263. Springer, 2nd edition, 2010.
- [58] Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: Recent Developments. In Adaptive and multilevel metaheuristics, pages 3–29. Springer, 2008.
- [59] Patricia Ryser-Welch and Julian F. Miller. A Review of Hyper-Heuristic Frameworks. In Proceedings of the Evo20 Workshop, AISB, 2014.
- [60] Kevin Leyton-Brown, Eugene Nudelman, and Galen Andrew. A portfolio approach to algorithm selection. In *IJCAI*, pages 1542–1543, 2003.
- [61] Horst Samulowitz, Chandra Reddy, Ashish Sabharwal, and Meinolf Sellmann. Snappy: A simple algorithm portfolio. In *Theory and Applications of Satisfiability Testing - SAT 2013*, volume 7962 LNCS, pages 422–428. Springer, 2013.
- [62] Alexander E.I. Brownlee, Jerry Swan, Ender Özcan, and Andrew J. Parkes. Hyperion 2. A toolkit for {meta-, hyper-} heuristic research. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO Comp '14, pages 1133–1140, Vancouver, BC, 2014. ACM.
- [63] Enrique Urra, Daniel Cabrera-Paniagua, and Claudio Cubillos. Towards an Object-Oriented Pattern Proposal for Heuristic Structures of Diverse Abstraction Levels. XXI Jornadas Chilenas de Computación 2013, 2013.
- [64] Laura Dioşan and Mihai Oltean. Evolutionary design of Evolutionary Algorithms. Genetic Programming and Evolvable Machines, 10(3):263–306, 2009.

2 Bibliography 37

[65] John N. Hooker. Toward Unification of Exact and Heuristic Optimization Methods. *International Transactions in Operational Research*, 22(1):19–48, 2015.

- [66] El-Ghazali Talbi. Combining metaheuristics with mathematical programming, constraint programming and machine learning. 4 or, 11(2):101–150, 2013.
- [67] Éric Monfroy, Frédéric Saubion, and Tony Lambert. Hybrid CSP Solving. In *Frontiers of Combining Systems*, pages 138–167. Springer Berlin Heidelberg, 2005.
- [68] Éric Monfroy, Frédéric Saubion, and Tony Lambert. On Hybridization of Local Search and Constraint Propagation. In *Logic Programming*, pages 299–313. Springer Berlin Heidelberg, 2004.
- [69] Jerry Swan and Nathan Burles. Templar a framework for template-method hyper-heuristics. In Genetic Programming, volume 9025 of LNCS, pages 205–216. Springer International Publishing, 2015.
- [70] Sébastien Cahon, Nordine Melab, and El-Ghazali Talbi. ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. *Journal of Heuristics*, 10(3):357–380, 2004.
- [71] Youssef Hamadi, Éric Monfroy, and Frédéric Saubion. An Introduction to Autonomous Search. In *Autonomous Search*, pages 1–11. Springer Berlin Heidelberg, 2012.
- [72] Roberto Amadini and Peter J Stuckey. Sequential Time Splitting and Bounds Communication for a Portfolio of Optimization Solvers. In Barry O'Sullivan, editor, *Principles and Practice of Constraint Programming*, volume 1, pages 108–124. Springer, 2014.
- [73] Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Features for Building CSP Portfolio Solvers. arXiv:1308.0227, 2013.
- [74] Christophe Lecoutre. XML Representation of Constraint Networks. Format XCSP 2.1. Constraint Networks: Techniques and Algorithms, pages 541–545, 2009.
- [75] Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. Modeling and Programming with Gecode. 2013.
- [76] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel Computing. In *Introduction to Parallel Computing*, chapter 1, pages 1–9. Addison Wesley, 2nd edition, 2003.
- [77] Shekhar Borkar. Thousand core chips: a technology perspective. In *Proceedings of the 44th annual Design Automation Conference*, DAC '07, pages 746–749, New York, 2007. ACM.
- [78] Mark D. Hill and Michael R. Marty. Amdahl's Law in the multicore era. *IEEE Computer*, (7):33–38, 2008.
- [79] Peter Sanders. Engineering Parallel Algorithms: The Multicore Transformation. Ubiquity, 2014(July):1– 11, 2014.
- [80] Javier Diaz, Camelia Muñoz-Caro, and Alfonso Niño. A survey of parallel programming models and tools in the multi and many-core era. *IEEE Transactions on Parallel and Distributed Systems*, 23(8):1369–1386, 2012.
- [81] Joel Falcou. Parallel programming with skeletons. Computing in Science and Engineering, 11(3):58–63, 2009.
- [82] Ian P Gent, Chris Jefferson, Ian Miguel, Neil C A Moore, Peter Nightingale, Patrick Prosser, and Chris Unsworth. A Preliminary Review of Literature on Parallel Constraint Solving. In Proceedings PMCS 2011 Workshop on Parallel Methods for Constraint Solving, 2011.

38 2 Bibliography

[83] Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Embarrassingly Parallel Search. In *Principles and Practice of Constraint Programming*, pages 596–610. Springer, 2013.

- [84] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. Evaluation of a simple, scalable, parallel best-first search strategy. *Artificial Intelligence*, 195:222–248, 2013.
- [85] Yuu Jinnai and Alex Fukunaga. Abstract Zobrist Hashing: An Efficient Work Distribution Method for Parallel Best-First Search. 30th AAAI Conference on Artificial Intelligence (AAAI-16).
- [86] Alejandro Arbelaez and Luis Quesada. Parallelising the k-Medoids Clustering Problem Using Space-Partitioning. In Sixth Annual Symposium on Combinatorial Search, pages 20–28, 2013.
- [87] Hue-Ling Chen and Ye-In Chang. Neighbor-finding based on space-filling curves. *Information Systems*, 30(3):205–226, may 2005.
- [88] Pavel Berkhin. Survey Of Clustering Data Mining Techniques. Technical report, Accrue Software, Inc., 2002.
- [89] Farhad Arbab and Éric Monfroy. Distributed Splitting of Constraint Satisfaction Problems. In Coordination Languages and Models, pages 115–132. Springer, 2000.
- [90] Mark D. Hill. What is Scalability? ACM SIGARCH Computer Architecture News, 18:18-21, 1990.
- [91] Danny Munera, Daniel Diaz, and Salvador Abreu. Solving the Quadratic Assignment Problem with Cooperative Parallel Extremal Optimization. In *Evolutionary Computation in Combinatorial Optimization*, pages 251–266. Springer, 2016.
- [92] Stefan Boettcher and Allon Percus. Nature's way of optimizing. Artificial Intelligence, 119(1):275–286, 2000.
- [93] Daisuke Ishii, Kazuki Yoshizoe, and Toyotaro Suzumura. Scalable Parallel Numerical CSP Solver. In Principles and Practice of Constraint Programming, pages 398–406, 2014.
- [94] Charlotte Truchet, Alejandro Arbelaez, Florian Richoux, and Philippe Codognet. Estimating Parallel Runtimes for Randomized Algorithms in Constraint Solving. *Journal of Heuristics*, pages 1–36, 2015.
- [95] Youssef Hamadi, Said Jaddour, and Lakhdar Sais. Control-Based Clause Sharing in Parallel SAT Solving. In Autonomous Search, pages 245–267. Springer Berlin Heidelberg, 2012.
- [96] Stephan Frank, Petra Hofstedt, and Pierre R. Mai. Meta-S: A Strategy-Oriented Meta-Solver Framework. In Florida AI Research Society (FLAIRS) Conference, pages 177–181, 2003.
- [97] Youssef Hamadi, Cedric Piette, Said Jabbour, and Lakhdar Sais. Deterministic Parallel DPLL system description. Journal on Satisfiability, Boolean Modeling and Computation, 7:127–132, 2011.
- [98] Andre A. Cire, Sendar Kadioglu, and Meinolf Sellmann. Parallel Restarted Search. In Twenty-Eighth AAAI Conference on Artificial Intelligence, pages 842–848, 2011.
- [99] Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversification and Intensification in Parallel SAT Solving. *Principles and Practice of Constraint Programming*, pages 252–265, 2010.
- [100] M Yasuhara, T Miyamoto, K Mori, S Kitamura, and Y Izui. Multi-Objective Embarrassingly Parallel Search. In IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pages 853–857, Singapore, 2015. IEEE.

2 Bibliography 39

[101] Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Improvement of the Embarrassingly Parallel Search for Data Centers. In Barry O'Sullivan, editor, *Principles and Practice of Constraint Programming*, pages 622–635, Lyon, 2014. Springer.

- [102] Prakash R. Kotecha, Mani Bhushan, and Ravindra D. Gudi. Efficient optimization strategies with constraint programming. AIChE Journal, 56(2):387–404, 2010.
- [103] Peter Zoeteweij and Farhad Arbab. A Component-Based Parallel Constraint Solver. In Coordination Models and Languages, pages 307–322. Springer, 2004.
- [104] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. Scalable, Parallel Best-First Search for Optimal Sequential Planning. *In ICAPS-09*, pages 201–208, 2009.
- [105] Claudia Schmegner and Michael I. Baron. Principles of optimal sequential planning. Sequential Analysis, 23(1):11–32, 2004.
- [106] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Programming Using the Message-Passing Paradigm. In *Introduction to Parallel Computing*, chapter 6, pages 233–278. Addison Wesley, second edition, 2003.
- [107] Brice Pajot and Éric Monfroy. Separating Search and Strategy in Solver Cooperations. In Perspectives of System Informatics, pages 401–414. Springer Berlin Heidelberg, 2003.
- [108] Mauro Birattari, Mark Zlochin, and Marroo Dorigo. Towards a Theory of Practice in Metaheuristics Design. A machine learning perspective. RAIRO-Theoretical Informatics and Applications, 40(2):353–369, 2006.
- [109] Agoston E Eiben and Selmar K Smit. Evolutionary algorithm parameters and methods to tune them. In Autonomous Search, pages 15–36. Springer Berlin Heidelberg, 2011.
- [110] Maria-Cristina Riff and Elizabeth Montero. A new algorithm for reducing metaheuristic design effort. *IEEE Congress on Evolutionary Computation*, pages 3283–3290, jun 2013.
- [111] Holger H. Hoos. Automated algorithm configuration and parameter tuning. In *Autonomous Search*, pages 37–71. Springer Berlin Heidelberg, 2012.
- [112] Frank Hutter, Holger H Hoos, and Kevin Leyton-brown. Paramills: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.
- [113] Frank Hutter. Updated Quick start guide for ParamILS, version 2.3. Technical report, Department of Computer Science University of British Columbia, Vancouver, Canada, 2008.
- [114] Volker Nannen and Agoston E. Eiben. Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters. *IJCAI*, 7, 2007.
- [115] S. K. Smit and A. E. Eiben. Beating the 'world champion' evolutionary algorithm via REVAC tuning. IEEE Congress on Evolutionary Computation, pages 1–8, jul 2010.
- [116] E. Yeguas, M.V. Luzón, R. Pavón, R. Laza, G. Arroyo, and F. Díaz. Automatic parameter tuning for Evolutionary Algorithms using a Bayesian Case-Based Reasoning system. Applied Soft Computing, 18:185–195, may 2014.
- [117] Agoston E. Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary algorithms. *IEEE Transactions on Evolutionary Computation*, 3(2):124–141, 1999.
- [118] Junhong Liu and Jouni Lampinen. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Computing, 9(6):448–462, 2005.

40 2 Bibliography

[119] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. Differential evolution algorithm with strategy adaptation for global numerical optimization. *IEEE Transactions on Evolutionary Computation*, 13(2):398–417, 2009.

- [120] Vicky Ling Huang, Shuguang Z Zhao, Rammohan Mallipeddi, and Ponnuthurai N Suganthan. Multiobjective optimization using self-adaptive differential evolution algorithm. *IEEE Congress on Evolu*tionary Computation, pages 190–194, 2009.
- [121] Martin Drozdik, Hernan Aguirre, Youhei Akimoto, and Kiyoshi Tanaka. Comparison of Parameter Control Mechanisms in Multi-objective Differential Evolution. In *Learning and Intelligent Optimization*, pages 89–103. Springer, 2015.
- [122] Jeff Clune, Sherri Goings, Erik D. Goodman, and William Punch. Investigations in Meta-GAs: Panaceas or Pipe Dreams? In *GECOO'05: Proceedings of the 2005 Workshop on Genetic an Evolutionary Computation*, pages 235–241, 2005.
- [123] Emmanuel Paradis. R for Beginners. Technical report, Institut des Sciences de l'Evolution, Université Montpellier II, 2005.
- [124] Scott Rickard. Open Problems in Costas Arrays. In IMA International Conference on Mathematics in Signal Processing at The Royal Agricultural College, Circuiter, UK., 2006.
- [125] Alejandro Reyes-amaro, Éric Monfroy, and Florian Richoux. POSL: A Parallel-Oriented metaheuristic-based Solver Language. In *Recent developments of metaheuristics*, to appear. Springer.
- [126] Frédéric Lardeux, Éric Monfroy, Broderick Crawford, and Ricardo Soto. Set Constraint Model and Automated Encoding into SAT: Application to the Social Golfer Problem. Annals of Operations Research, 235(1):423–452, 2014.
- [127] Jordan Bell and Brett Stevens. A survey of known results and research areas for n-queens. *Discrete Mathematics*, 309(1):1–31, 2009.
- [128] Rok Sosic and Jun Gu. Effcient Local Search with Conflict Minimization: A Case Study of the N-Queens Problem. *IEEE Transactions on Knowledge and Data Engineering*, 6:661–668, 1994.
- [129] Konstantinos Drakakis. A review of Costas arrays. Journal of Applied Mathematics, 2006:32 pages, 2006.
- [130] Stephen W. Soliday, Abdollah. Homaifar, and Gary L. Lebby. Genetic algorithm approach to the search for Golomb Rulers. In *International Conference on Genetic Algorithms*, volume 1, pages 528–535, Pittsburg, 1995.
- [131] Alejandro Reyes-Amaro, Éric Monfroy, and Florian Richoux. A Parallel-Oriented Language for Modeling Constraint-Based Solvers. In Proceedings of the 11th edition of the Metaheuristics International Conference (MIC 2015). Springer, 2015.