CIFAR-10 based Similarity Analysis Evaluation Assignment

Submitted by: Hassan Rasheed

Position: Machine Learning Engineer

Contents

Implementation Details:	3
Flow of the Implementation:	4
Data is loaded from Keras Datasets:	4
The required classes are filtered:	4
Positive and Negative pairs are created for the dataset:	4
Network is defined:	5
Model Summary	5
Model Training:	5
Training Results:	6
Testing with Image Input:	6
Implementations can be accessed:	7
At Google Colab:	7
On GitHub:	7
Through the Google Drive:	7
References	7

Implementation Details:

Model: The model used is SqueezeNet (Forrest N. landola, 2017) in the form of a Siamese Neural Network (Gregory Koch, 2015).

Platform: Google Colaboratory has been used to train and test the model. (The code is also hosted there)

Dataset Used: CIFAR-10

Classes: Automobile, Dog, Horse

DL Frameworks: Keras, Tensorflow

```
import keras, tensorflow as tf
```

Metric Used to Evaluate Distances between the output embeddings: Euclidean Distance

```
def euclidean_distance(vects):
    x,y = vects
    sum_square = K.sum(K.square(x-y), axis=1, keepdims=True)
    return K.sqrt(K.maximum(sum_square, K.epsilon()))
```

Loss Function: Contrastive Loss

```
def contrastive_loss(y_true, y_pred):
    margin = 1
    square_pred = K.square(y_pred)
    margin_square = K.square(K.maximum(margin - y_pred, 0))
    return K.mean(y_true * square_pred + (1-y_true) * margin_square)
```

Flow of the Implementation:

Data is loaded from Keras Datasets:

```
(x_traino, y_traino), (x_testo, y_testo) = cifar10.load_data()
```

```
The required classes are filtered:
```

```
for i in range (len(y traino)):
    if y_traino[i] == 1:
      y_{traino[i]} = 0
      x train.append(x traino[i])
      y_train.append(y_traino[i])
    if y traino[i] == 5:
      y_{traino[i]} = 1
      x_train.append(x_traino[i])
      y train.append(y traino[i])
    if y_traino[i] == 7:
      y traino[i] = 2
      x_train.append(x_traino[i])
      y_train.append(y_traino[i])
for i in range (len(y_testo)):
    if y testo[i] == 1:
     y_testo[i] = 0
      x_test.append(x_testo[i])
      y test.append(y testo[i])
    if y_testo[i] == 5:
      y testo[i] = 1
      x_test.append(x_testo[i])
      y_test.append(y_testo[i])
    if y_testo[i] == 7:
      y_testo[i] = 2
      x_test.append(x_testo[i])
      y_test.append(y_testo[i])
```

Positive and Negative pairs are created for the dataset:

```
digit_indices = [np.where(y_train == i)[0] for i in range(num_classes)]
tr_pairs, tr_y = create_pairs(x_train, digit_indices)

digit_indices = [np.where(y_test == i)[0] for i in range(num_classes)]
te_pairs, te_y = create_pairs(x_test, digit_indices)
```

Network is defined:

```
# network definition
    base network = create base network(input shape)
    input a = Input(shape=input shape, name='input a')
    input b = Input(shape=input shape, name='input b')
    # because we re-use the same instance `base_network`,
    # the weights of the network
    # will be shared across the two branches
    processed_a = base_network(input_a)
    processed_b = base_network(input_b)
    distance = Lambda(euclidean_distance,
                      output_shape=eucl_dist_output_shape)([processed_a, processed_b])
    model = Model([input_a, input_b], distance)
```

Model Summary

model.summary()

Model: "model 1"

Layer (type)	Output Shape	Param #	Connected to
input_a (InputLayer)	[(None, 32, 32, 3)]	0	=======================================
input_b (InputLayer)	[(None, 32, 32, 3)]	0	
model (Model)	(None, 10)	378914	input_a[0][0] input_b[0][0]
lambda (Lambda)	(None, 1)	0	model[1][0] model[2][0]
Total params: 378,914 Trainable params: 378,350 Non-trainable params: 564			

Model Training:

```
# train
 rms = RMSprop()
 model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])
 checkpointer = ModelCheckpoint(filepath='model.hfs5', save_best_only=True)
 history = model.fit([tr_pairs[:, 0], tr_pairs[:, 1]],
                     tr_y, batch_size=128, epochs=epochs,
                     validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y),
                     callbacks=[checkpointer])
```

Training Results:

Accuracy on the training set is 99.54% Accuracy on the test set is 89.08%

Loss is 0.0075 after the 100th Epoch.

Testing with Image Input:

After navigating to the project root directory enter the command in the following format to get similar images from the test dataset.

python script.py --image_path <image_path> --data_path <data_path>
or

python script.py -i <image_path> -d <data_path>

Implementations can be accessed:

At Google Colab:

https://drive.google.com/drive/folders/1k9Jyc1tbysPUT41bW5sD-jqfvP7Yu1hR?usp=sharing

On GitHub:

https://github.com/hassanrasheedk/cifar10-similarity-analysis

Through the Google Drive:

https://drive.google.com/drive/folders/1dzVhjYVNRClUNgVk9SrF6mbq2w9AmDX7?usp=sharing

References

Forrest N. landola, S. H. (2017). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. *International Conference on Learning Representations*.

Gregory Koch, R. Z. (2015). Siamese Neural Networks for One-shot Image Recognition. *International Conference on Machine Learning*. Lille.

Keras CIFAR: https://keras.io/api/datasets/cifar10/

CIFAR-10: https://www.cs.toronto.edu/~kriz/cifar.html