§ 4.2 积分的初等性质

4.2.1 积分的初等性质

4.2.2 复值可测函数的积分

4.2.1 积分的初等性质

以下设 $E \in \mathbb{R}^n$ 中的一给定的可测集.

定理 4.5 (积分的线性性) 若 $f,g \in L(E)$, c是常数,则 cf, $f+g \in L(E)$,并且

$$\int_{E} cf \, \mathrm{d}x = c \int_{E} f \, \mathrm{d}x,\tag{4.12}$$

$$\int_{E} (f+g) dx = \int_{E} f dx + \int_{E} g dx. \tag{4.13}$$

证 由于 $f \in L(E)$,故 $|f| \in L(E)$.由定理 4. 2,有

$$\int_{E} |cf| dx = \int_{E} |c||f| dx = |c| \int_{E} |f| dx < \infty.$$

这说明 $|cf| \in L(E)$, 从而 $cf \in L(E)$.

类似地由 $|f+g| \le |f| + |g|$ 推出 $f+g \in L(E)$.

当 $c \ge 0$ 时, $(cf)^+ = cf^+$, $(cf)^- = cf^-$.利用定理 4.2 得到

$$\int_{E} cf dx = \int_{E} (cf)^{+} dx - \int_{E} (cf)^{-} dx$$
$$= c \int_{E} f^{+} dx - c \int_{E} f^{-} dx = c \int_{E} f dx.$$

当c<0时, $(cf)^+=-cf^-$, $(cf)^-=-cf^+$.此时同样可证

(4.12)式成立. 再证明(4.13)式成立. 由于

$$(f+g)^{+}-(f+g)^{-}=f+g=f^{+}-f^{-}+g^{+}-g^{-}.$$

因此

$$(f+g)^{+}+f^{-}+g^{-}=f^{+}+g^{+}+(f+g)^{-}$$
.

上式两边积分并利用定理 4.2 得到

$$\int_{E} (f+g)^{+} dx + \int_{E} f^{-} dx + \int_{E} g^{-} dx$$

$$= \int_{E} f^{+} dx + \int_{E} g^{+} dx + \int_{E} (f+g)^{-} dx.$$

从上式得到

$$\int_{E} (f+g) dx = \int_{E} (f+g)^{+} dx - \int_{E} (f+g)^{-} dx$$

$$= \int_{E} f^{+} dx - \int_{E} f^{-} dx + \int_{E} g^{+} dx - \int_{E} g^{-} dx$$

$$= \int_{E} f dx + \int_{E} g dx.$$

因此(4.13)式成立. ■

推论 4.1 (积分对积分域的可加性)设 $f \in L(E)$, A_1 和 A_2 是E的互不相交的可测子集,并且 $E = A_1 \cup A_2$.则 $\int_E f \, \mathrm{d}x = \int_{A_1} f \, \mathrm{d}x + \int_{A_2} f \, \mathrm{d}x. \tag{4.14}$

证 设 f 在 E 上 可 积. 由 定 理 4.4 知 道 f 在 A_1 和 A_2 上 都 可 积. 由 于 $|f\chi_{A_1}| \le |f|$, $|f\chi_{A_2}| \le |f|$, 因此 $f\chi_{A_1}$, $f\chi_{A_2} \in L(E)$. 利用 定 理 4.5 得 到

$$\int_{A_{1}} f dx + \int_{A_{2}} f dx = \int_{E} f \chi_{A_{1}} + \int_{E} f \chi_{A_{2}} dx
= \int_{E} (f \chi_{A_{1}} + f \chi_{A_{2}}) dx = \int_{E} f dx.$$

故(4.14)式成立.■

定理 4.6 设 f,g 在 E 上的积分存在,则

(1) 若
$$f \le g$$
 a.e., 则 $\int_E f dx \le \int_E g dx$ (积分的单调性).

(2) 若
$$f = g$$
 a.e., 则 $\int_E f dx = \int_E g dx$.

$$\int_{A} f \, \mathrm{d}x \le \int_{B} f \, \mathrm{d}x.$$

证 (1). 若在E上, $f \le g$ a.e., 则

$$f^+ \le g^+ \text{ a.e.}, \ f^- \ge g^- \text{ a.e.}$$

利用定理 4.2 得到

$$\int_{E} f^{+} dx \leq \int_{E} g^{+} dx, \quad \int_{E} f^{-} dx \geq \int_{E} g^{-} dx.$$

于是

$$\int_{E} f dx = \int_{E} f^{+} dx - \int_{E} f^{-} dx$$

$$\leq \int_{E} g^{+} dx - \int_{E} g^{-} dx = \int_{E} g dx.$$

结论(1)得证.

- (2). 由结论(1)立即得到.
- (3). 设在 $E \perp f \geq 0$ a.e. 若 $A \subset B$. 则 $f \chi_A \leq f \chi_B$ a.e. 由结论(1)得到

$$\int_{A} f dx = \int_{E} f \chi_{A} dx \le \int_{E} f \chi_{B} dx = \int_{B} f dx.$$

注 由定理4.6(2)知道,在一个零测度集上改变一个函数的函数值,不改变该函数的可积性和积分值.因此,在讨论可测函数积分的性质的时候,可测函数所要满足的条件通常只需要几乎处处成立就可以了.

推论 4.2 (1). 若在 $E \perp f = 0$ a.e., 则 $\int_{E} f dx = 0$.

(2). 若m(E)=0,则对E上的任意可测函数f, $\int_{E} f dx=0$.

证 由定理 4.6(2)得到结论(1). 若 m(E)=0, 则对 E 上的

任意可测函数f,有f=0 a.e. 由结论(1)得到 $\int_E f dx = 0$.

推论 4.3 若 $f \in L(E)$,则 $\left| \int_{E} f dx \right| \leq \int_{E} |f| dx$.

证 由于 $-|f| \le f \le |f|$, 由定理 4.6 得到

$$-\int_{E} |f| dx \le \int_{E} f dx \le \int_{E} |f| dx$$

这表明 $\left|\int_{E} f dx\right| \leq \int_{E} |f| dx$.

例 1 设m(E)< ∞ , f是E上的有界可测函数, c<f(x)<d(x \in E). 对每个自然数n, 设

$$c = y_0 < y_1 < y_2 < \dots < y_n = d$$

是区间[c,d]的一个分割,令 $\lambda = \max_{1 \le i \le n} (y_i - y_{i-1})$. 则

$$\int_{E} f dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} y_{i-1} \cdot mE(y_{i-1} \le f < y_{i}). \tag{4.15}$$

$$\int_{E} f dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} y_{i-1} m E_{i}.$$

$$E_i = E(y_{i-1} \le f < y_i), i = 1, 2, \dots, n.$$

$$E_2 = E_2^1 \cup E_2^2, E_3 = E_3^1 \cup E_3^2$$

证 由于 f 是有限测度集上的有界可测函数. 根据定理 4.3, f 在 E 上可积. 令

$$E_i = E(y_{i-1} \le f < y_i), i = 1, 2, \dots, n.$$

则 E_1, \dots, E_n 互不相交, 并且 $E = \bigcup_{i=1}^n E_i$. 利用积分的单调性和对积分域的可加性得到

$$\sum_{i=1}^{n} y_{i-1} m(E_i) = \sum_{i=1}^{n} \int_{E_i} y_{i-1} dx \le \sum_{i=1}^{n} \int_{E_i} f dx = \int_{E} f dx.$$

类似可以得到 $\int_{E} f dx \leq \sum_{i=1}^{n} y_{i} m(E_{i}).$

$$\sum_{i=1}^{n} y_{i-1} m(E_i) \le \int_{E} f dx \le \sum_{i=1}^{n} y_{i} m(E_i).$$

既然 $m(E) < \infty$, 当 $\lambda \rightarrow 0$ 时, 有

$$0 \le \int_{E} f \, \mathrm{d}x - \sum_{i=1}^{n} y_{i-1} m(E_i) \le \sum_{i=1}^{n} y_{i} m(E_i) - \sum_{i=1}^{n} y_{i-1} m(E_i)$$

$$= \sum_{i=1}^{n} (y_i - y_{i-1}) m(E_i) \le \lambda m(E) \to 0.$$

这就证明了 $\int_{E} f dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} y_{i-1} m(E_i)$,即(4.15)式成立.

例 1 的结果可以与 Riemann 积分的定义作比较.

在继续讨论积分的性质之前,先证明一个有用的不等式.

引理4.2 (Chebyshev不等式)设f是E上的可测函数. 则对任意 $\lambda > 0$ 有

$$mE(|f| \ge \lambda) \le \frac{1}{\lambda} \int_{E} |f| dx.$$

证 当 $x \in E(|f| \ge \lambda)$ 时, $\frac{1}{\lambda}|f(x)| \ge 1$. 由定理 4.6 得到

$$mE(|f| \ge \lambda) = \int_{E(|f| \ge \lambda)} 1 dx \le \frac{1}{\lambda} \int_{E(|f| \ge \lambda)} |f| dx \le \frac{1}{\lambda} \int_{E} |f| dx.$$

引理证毕.■

定理 4.7 若 $f \in L(E)$,则 f 在 E 上几乎处处有限.

证 若 $f \in L(E)$,则 $|f| \in L(E)$. 令

$$A = E(|f| = \infty), A_k = E(|f| \ge k) (k = 1, 2, \cdots).$$

则 $A \subset A_k (k \ge 1)$. 利用由 Chebyshev 不等式得到

$$0 \le m(A) \le m(A_k) \le \frac{1}{k} \int_E |f| dx \to 0 \ (k \to \infty).$$

因此m(A) = 0. 这就证明了f在E上几乎处处有限.

定理 4.8 若在 $E \perp f \ge 0$ a.e., 并且 $\int_E f dx = 0$, 则 f = 0 a.e.

证 由于在 $E \perp f \geq 0$ a.e., 故mE(f < 0) = 0. 令

$$A = E(f > 0), A_k = E(f \ge \frac{1}{k}) (k = 1, 2, \dots).$$

则 $A = \bigcup_{k=1}^{\infty} A_k$. 利用 Chebyshev 不等式得到

$$0 \le m(A_k) \le k \int_E f \, \mathrm{d}x = 0.$$

因此 $m(A_k) = 0 (k \ge 1)$. 由测度的次可列可加性得到

$$m(A) = 0$$
. 这表明 $f = 0$ a.e.

定理 4.9 (积分的绝对连续性) 设 $f \in L(E)$,则对任意 $\varepsilon > 0$,存在相应的 $\delta > 0$,使得当 $A \subset E$ 并且 $m(A) < \delta$ 时, $\int_{\mathcal{A}} |f| dx < \varepsilon.$

证 设 $f \in L(E)$, 则 $|f| \in L(E)$. 设 $\{g_k\}$ 是 非 负 简 单 函 数 列 使 得 $g_k \uparrow |f|$. 由 积 分 的 定 义 ,

$$\lim_{k\to\infty}\int_E g_k dx = \int_E |f| dx < \infty.$$

于是对任意 $\varepsilon > 0$,存在自然数 k_0 使得

$$0 \leq \int_{E} (|f| - g_{k_0}) dx = \int_{E} |f| dx - \int_{E} g_{k_0} dx < \frac{\varepsilon}{2}.$$

$$\int_{E} (|f| - g_{k_0}) \mathrm{d}x < \frac{\varepsilon}{2}.$$

令
$$M = \max_{x \in E} g_{k_0}(x)$$
,则 $0 \le M < \infty$. 不妨设 $M > 0$.

再令
$$\delta = \frac{\varepsilon}{2M}$$
,则对任意可测集 $A \subset E$,当 $m(A) < \delta$ 时,

$$\int_{A} |f| dx = \int_{A} (|f| - g_{k_0}) dx + \int_{A} g_{k_0} dx$$

$$<\frac{\varepsilon}{2} + \int_A M dx = \frac{\varepsilon}{2} + Mm(A) < \varepsilon.$$

4.2.1 复值可测函数的积分

设E是 \mathbb{R}^n 中的可测集, f(x)是E上的复值函数, 则 f(x)可以分解为

$$f(x) = f_1(x) + i f_2(x), x \in E$$

其中 i 是虚数单位, f_1 和 f_2 是实值函数,分别称之为 f 的 g 的 g 和 g 都是可测的,则称 f 是可测的。若 f_1 和 f_2 都是可测的,则称 f 是可测的,并定义 f 在 f 上的积分为

$$\int_{E} f dx = \int_{E} f_{1} dx + i \int_{E} f_{2} dx.$$

E上的复值可积函数的全体记为L(E).

本节关于实值可测函数积分的性质,除去那些对复值可测函数的积分没有意义的以外,对复值可测函数的积分也是成立的. § 4.3 中的控制收敛定理对复值可测函数的积分也是成立的. 其证明的方法是对f的实部 f_1 和虚部 f_2 应用实值可测函数积分相应的的性质.

下面只举一个例子.读者可以自行叙述和证明其它相应的的结果.

定理 4.10 设 f 是 E 上的复值可测函数.则

(1)
$$f \in L(E)$$
 当且仅当 $|f| \in L(E)$.

(2) 若f可积,则
$$\left|\int_{E} f dx\right| \leq \int_{E} |f| dx$$
.

证 (1). 设 $f(x)=f_1(x)+if_2(x)$ 是 E 上 的 复 值 可 测 函 数 .

由于 f_1 和 f_2 都是可测的,故 $|f| = \sqrt{|f_1|^2 + |f_2|^2}$ 是可测的.

设 $f \in L(E)$,则 $f_1, f_2 \in L(E)$,于是 $|f_1|, |f_2| \in L(E)$.由于

$$|f| = \sqrt{|f_1|^2 + |f_2|^2} \le |f_1| + |f_2|,$$

于是 $|f| \in L(E)$.

反过来,设 $|f| \in L(E)$. 由于 $|f_1| \le |f|$, $|f_2| \le |f|$, 因此 $f_1, f_2 \in L(E)$,从而 $f \in L(E)$.

(2). 设
$$f$$
可积, $\int_{E} f dx = re^{i\theta}$. 注意到

$$\operatorname{Re}(e^{-i\theta}f) \leq |e^{-i\theta}f| = |f|,$$

我们有

$$\left| \int_{E} f \, dx \right| = r = e^{-i\theta} \int_{E} f \, dx = \int_{E} e^{-i\theta} f \, dx$$
$$= \int_{E} \operatorname{Re}(e^{-i\theta} f) \, dx \le \int_{E} |f| \, dx.$$

因此结论(2)得证.■

