CS 6505 - Homework 4

Caitlin Beecham (Worked with Jennifer, Rosy, James)

2

By Savitch's theorem, NSPACE $(n^2) \subset \text{SPACE}(O(n^4))$. Now, claim: $O(n^4) \leq o(n^5)$. Why? Well, say $g(n) = O(n^4)$. That means that there exists $c, m \in \mathbb{R}$ such that $g(n) \leq c * n^4$ for all $n \geq m$. Now, say $h(n) = o(n^5)$. That means that for all c > 0, there exists $c = m^2 = m^2$. So, we know that $c = m^2 = m^2$. Is it true that $c = m^2 = m^2$. (ARGUMENT *) Take arbitrary $c = m^2 = m^2$. We want to find $c = m^2 = m^2$. Then, $c = m^2 = m^2$. Then, $c = m^2 = m^2$. Then, $c = m^2 = m^2$. Then also $c = m^2 = m^2$. Now, I claim $c = m^2 = m^2$. This also holds for $c = m^2 = m^2$. So, $c = m^2 = m^2$. This implies that $c = m^2 = m^2$. Space $c = m^2 = m^2$. Now, I claim $c = m^2 = m^2$. There exists $c = m^2 = m^2$. Then $c = m^2 = m^2$ in the exist $c = m^2 = m^2$. Then $c = m^2 = m^2$ in the exist $c = m^2 = m^2$. Then $c = m^2 = m^2$ in the exist $c = m^2 = m^2$. Space $c = m^2 = m^2$ in the exist $c = m^2 = m^2$ in the exist $c = m^2 = m^2$. Space $c = m^2 = m^2$ in the exist $c = m^2 = m^2$. Then $c = m^2 = m^2$ in the exist $c = m^2 = m^2$ in the exist $c = m^2 = m^2$. Then $c = m^2 = m^2$ in the exist $c = m^2 = m^2$ in the exist $c = m^2 = m^2$. Then $c = m^2 = m^2$ in the exist $c = m^2$ in the exist c

Construct the TM B as follows: Let L_B be language accepted by following Turing Machine B. On input x:

- 1. Mark $n^5 \log_2(|Q| * |\Gamma|^{(n^5)} * (n^5 + n))$ space on the tape.
- 2. Keep counter for number of steps taken by B.
- 3. If $x \neq \langle M \rangle, 1^n$, reject.
- 4. If M is not valid turing machine, reject.
- 5. Run M on x
 - (a) If space used exceeds $n^5 log_2(|Q| * |\Gamma|^{(n^5)} * (n^5 + n))$, reject. (STEP A)
 - (b) If time used exceeds $|Q| * |\Gamma|^{(n^5)} * (n^5 + n)$, reject.
 - (c) Else
 - i. If M accepts, reject.
 - ii. If M rejects, accept.

Now, by the way we have constructed this Turing Machine it will use at most n^5 space. (We allow it to use at most $n^5 - log_2(|Q| * |\Gamma|^{(n^5)} * (n^5 + n))$ space for the actual simulation of M and $\log(|Q| * |\Gamma|^{(n^5)} * (n^5 + n))$ space for the counter, which when added give s(n)). Now, assume we have a Turing Machine C which decides the same language as B in $O(n^4)$ space. So, we run B on $\langle C \rangle$, 1^n for sufficiently large n. I claim for sufficiently large n that C uses less than $n^5 - log_2(|Q| * |\Gamma|^{(n^5)} * (n^5 + n))$ space. We note that $n^5 - log_2(K_1 * K_2^{(n^5)} * (n^5 + n)) = n^5 - log_2(K_1 * 2^{(log_2(K_2))(n^5)} * (n^5 + n)) = n^5 - (log_2(K_1) + (n^5) * log_2(K_2) + log_2(n^5 + n))$ and for sufficiently large n, $(log_2(K_1) + (n^5) * log_2(K_2) + log_2(n^5 + n)) < = \frac{1}{2}n^5$ since $(log_2(K_1) + (n^5) * log_2(K_2) + log_2(n^5 + n)) < = \frac{1}{2}n^5$ for sufficiently large n implies that $\frac{1}{2}n^5 \le n^5 - (log_2(K_1) + (n^5) * log_2(K_2) + log_2(n^5 + n))$ for such n. So, if C uses less than $\frac{1}{2}n^5$ space it will use less than $n^5 - (log_2(K_1) + (n^5) * log_2(K_2) + log_2(n^5 + n))$ space for large n. Now, $O(n^4) \le \frac{1}{2}n^5$ by (ARGUMENT *) given earlier, which means $O(n^4)$ is less than $n^5 - (log_2(K_1) + (n^5) * log_2(K_2) + log_2(n^5 + n))$ for large n. This means that for large enough n, C will use less than the space allotted to it as it is simulated within B. B will do the opposite of what C does since it is not rejected for taking too much space (it is not rejected as part of (STEP A)). This is a contradiction. So the language L_B is decidable by B, but not decidable by any Turing Machine C in SPACE($O(n^4)$). Since C is not in SPACE($O(n^4)$) it is also not in NSPACE($O(n^5)$) but not in NSPACE($O(n^5)$).