ΛΥΣΗ

α) Το ρ καθορίζει τη μέγιστη τιμή της συνάρτησης f, που είναι ίση με ρ και την ελάχιστη τιμή της, που είναι ίση με $-\rho$. Άρα $\rho=2$.

Το ω καθορίζει την περίοδο της συνάρτησης g, που είναι ίση με $\frac{2\pi}{\omega}$.

Άρα
$$\frac{2\pi}{\omega} = \pi \Leftrightarrow \omega = 2$$
.

β)

i. Για τη συνάρτηση $f(x) = 2\eta \mu x$, με $x \in [0, \pi]$, είναι:

x	0	$\frac{\pi}{2}$	π
$f(x) = 2\eta \mu x$	0	2	0

Για τη συνάρτηση $g(x) = \eta \mu(2x)$, με $x \in [0, \pi]$, είναι:

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
2 <i>x</i>	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$g(x) = \eta \mu(2x)$	0	1	0	-1	0

Οι γραφικές παραστάσεις των δύο συναρτήσεων, είναι:

ii. Η ζητούμενη ανισότητα γράφεται ισοδύναμα

$$2\eta\mu\frac{5\pi}{9}>\eta\mu\frac{10\pi}{9} \Leftrightarrow 2\eta\mu\frac{5\pi}{9}>\eta\mu\left(2\cdot\frac{5\pi}{9}\right) \Leftrightarrow f\left(\frac{5\pi}{9}\right)>g\left(\frac{5\pi}{9}\right)$$
 Eiva: $\frac{\pi}{2}<\frac{5\pi}{9}<\pi$.

Επομένως, από τις γραφικές παραστάσεις των δύο συναρτήσεων προκύπτει ότι

$$f\left(\frac{5\pi}{9}\right) > 0$$
 και $g\left(\frac{5\pi}{9}\right) < 0$.