Summative Assessment 1 September – AS Level

MM:45	Time: 60 minutes
Name:	Class:

(a) (i) Algorithms may be expressed using four basic constructs. One construct is sequence.
 Complete the following table for two other constructs.

Construct Pseudocode example				

[4]

(ii) Simple algorithms usually consist of input, process and output.

Complete the table by placing ticks (' \checkmark ') in the relevant boxes.

Pseudocode statement	Input	Process	Output
Temp ← SensorValue * Factor			
WRITEFILE "LogFile.txt", TextLine			
WRITEFILE "LogFile.txt", MyName & MyIDNumber			
READFILE "AddressBook.txt", NextLine			

(b) Program variables have values as follows:

Variable	Value
Title	"101 tricks with spaghetti"
Version	'C'
Author	"Eric Peapod"
PackSize	4
WeightEach	6.2
Paperback	TRUE

(i) Evaluate each expression in the following table. If an expression is invalid, write ERROR.

For the built-in functions list, refer to the Appendix on page 9

Expression	Evaluates to
MID(Title, 5, 3) & RIGHT(Author, 3)	
INT(WeightEach * PackSize)	
PackSize >= 4 AND WeightEach < 6.2	
LEFT (Author, ASC (Version) - 65)	
RIGHT(Title, (LENGTH(Author) - 6))	

(ii) Programming languages support different data types.

Give an appropriate data type for the following variables from part (b).

Variable	Data type
Title	
Version	
PackSize	
WeightEach	
Paperback	

[5]

Toni has a large collection of jazz CDs that are stored in different places. She wants to record where the CDs are stored. She decides to write a program to do this.

The program must store the data in a file, ${\tt MyMusic}.$

(a) (i)	Why is a file needed?				
		[1]			
(ii)	MyMusic is a	text file with the data for each CD as one line of text.			
	Data for a typical CD are:				
	Title: Artist: Location:	Kind of Green Miles Coltrane Rack1-5			
	The line will b	e formed by concatenating the three data items.			
	For the example above, the line stored will be:				
	Kind of GreenMiles ColtraneRack1-5				
	Describe a pr	Describe a problem that might occur when organising the data in this way.			
	Describe a po	ossible solution.			
		[4]			

(b) Toni must input the data into the file for all of her CDs.

A procedure, InputData, is needed to do this.

Toni designs the procedure and chooses the following identifiers:

Identifier	Data type
CDTitle	STRING
CDArtist	STRING
CDLocation	STRING

The procedure repeatedly performs the following steps:

- input a CD title (A rogue value of "##" is to be used to end the input)
- input the artist
- input the location
- create the text line
- · write the text line to the file

When the rogue value is encountered the file is closed.

Write program code for the procedure InputData.

Visual Basic and Pascal: You should include declaration statements for variables. Python: You should show a comment statement for each variable used with its data type.

Programming language
def inputdata():
[8]

Q.3 The data shown in Figure is a list of surnames of 20 motor car policyholders with the number of claims they have each made in the last five years.

	PolicyHolder		NoOfClaims		
1	Wilcox	1	1		
2	Adams	2	0		
3	Pollard	3	0		
4	Williams	4	0		
5	Searle	5	3		
6	Kelly	6	0		
7	Lewis	7	1		
8	Franks	8	5		
9	Patel	9	1		
10	Li Che	10	0		
			•••		
			•••		
19	Wilkinson	19	3		
20	Veale	20	0		
(a) Write pseudocode declaration statements for the PolicyHolder and NoOfClaims data structure above. [2]					
2					
(b) A new task is to design and write code to establish if there are any policyholders who have made five or more claims. The program will output a 'yes' or 'no' message only. Write the programcode for this task (Hint: Use a loop structure to initiate the loop, and then end the loop when some condition is met.)					

4 A program is to be written to calculate the discount given on purchases.

A purchase may qualify for a discount depending on the amount spent. The purchase price (Purchase), the discount rate (DiscountRate) and amount paid (Paid) is calculated as shown in the following pseudocode algorithm.

```
INPUT Purchase

IF Purchase > 1000
    THEN
        DiscountRate ← 0.10

ELSE
        IF Purchase > 500
            THEN
                 DiscountRate ← 0.05
        ELSE
                 DiscountRate ← 0
        ENDIF

Paid ← Purchase * (1 - DiscountRate)
OUTPUT Paid
```

The algorithm is also to be documented with a program flowchart.

Complete the flowchart by:

- filling in the flowchart boxes
- labelling, where appropriate, lines of the flowchart

Appendix

Built-in functions (pseudocode)

Each function returns an error if the function call is not properly formed.

Example: MID ("ABCDEFGH", 2, 3) returns "BCD"

LENGTH (ThisString : STRING) RETURNS INTEGER returns the integer value representing the length of ThisString

Example: LENGTH ("Happy Days") returns 10

LEFT (This String : STRING, x : INTEGER) RETURNS STRING returns leftmost x characters from This String

Example: LEFT ("ABCDEFGH", 3) returns "ABC"

RIGHT (This String : STRING, x : INTEGER) RETURNS STRING returns rightmost x characters from This String

Example: RIGHT ("ABCDEFGH", 3) returns "FGH"

INT (x : REAL) RETURNS INTEGER returns the integer part of \mathbf{x}

Example: INT (27.5415) returns 27

ASC (ThisChar: CHAR) RETURNS INTEGER returns the ASCII value of character ThisChar

Example: ASC ('A') returns 65

RAND (x: INTEGER) RETURNS REAL returns a real number in the range 0 to x (x not inclusive).

Example: RAND (87) could return 35.43

Operators (pseudocode)

Operator	Description		
&	Concatenates (joins) two strings Example: "summer" & " " & "Pudding" produces "summer Pudding"		
AND	Performs a logical AND on two Boolean values Example: TRUE AND FALSE produces FALSE		
OR	Performs a logical or on two Boolean values Example: TRUE OR FALSE produces TRUE		

Mark Scheme

1(a)(i)	Construct: Assignment Pseudocode example: Answer ← " Construct: Selection Pseudocode example: IF X = 3 TH Construct: Repetition / Iteration Pseudocode example: FOR N ← 1 One mark for construct One mark for pseudocode example Maximum 4 marks	EN OUTPU	r "HELLO"		4
1(a)(ii)	Pseudocode statement	Input	Process	Output	4
	Temp ← SensorValue * Factor		~		
	WRITEFILE "LogFile.txt", TextLine			✓	
	WRITEFILE "LogFile.txt", MyName & MyIDNumber		✓	✓	
	READFILE "AddressBook.txt", NextLine	✓	(✓)		
	One mark per correct row	•		'	
1(b)(i)	Expression		Eva	aluates to	5
	MID(Title, 5, 3) & RIGHT(Au	ithor, 3)		tripod"	
	INT (WeightEach * PackSize)			24	
	PackSize >= 4 AND WeightEad	ch < 6.2	ı	FALSE	
	LEFT (Author, ASC (Version) - 65) "Er"				
	RIGHT(Title, (LEN(Author) - 6)) "hetti"				
	Quotes must be present Must be capital E in row 4	-,,			

1(b)(ii)

Variable	Data type
Tile	STRING
Version	CHAR
PackSize	INTEGER
WeightEach	REAL
Paperback	BOOLEAN

One mark per data type

Q.2

- (a) (i) So that the data / information is saved after the program is run / when the computer is switched off
 - So the data / information can be accessed next time the program is run
 - So the data information can be "permanently stored"

(ii) Problem:

- When retrieving / searching for / editing (text relating to a particular CD)
- Can't tell where the artist name stops and the title begins (or any similar explanation or example)

Solution 1:

- Use of a separator character// or by example
- Where the separator character does not occur in the original strings

Solution 2:

- Use a fixed number of characters for each data item
- Data items are padded with e.g. <Space> character where needed

Solution 3:

- Convert original data items to CamelCase
- ...and add a Space separator

Mark as follows:

Two marks for description of problem

Two marks for description of solution

5

4

Max 1

(b) 'Pseudocode' solution included here for development and clarification of mark scheme.

Programming language solutions appear in the Appendix.

```
PROCEDURE InputData()
DECLARE CDTitle : STRING
DECLARE CDArtist : STRING
DECLARE CDLocation : STRING
DECLARE FileData: STRING
OPENFILE "MyMusic" FOR WRITE
OUTPUT "Input CD Title"
INPUT CDTitle
WHILE CDTitle <> "##"
     OUPUT "Input CD Artist"
     INPUT CDArtist
     OUPUT "Input CD Location"
     INPUT CDLocation
     FileData = CDTitle & ':' & CDArtist & ':' &
           CDLocation
     WRITEFILE "MyMusic.txt", FileData
     OUTPUT "Input CD Title"
     INPUT CDTitle
ENDWHILE
CLOSEFILE ("MyMusic.txt ")
ENDPROCEDURE
```

One mark for each of the following:

- Procedure heading and ending
- Declaration of CDTitle, CDArtist and CDLocation
- Open file for writing (Allow MyMusic or MyMusic.txt)
- Working conditional loop structure including test for rogue value (including initial input of CDTitle)
- Input of three data values (CDTitle, CDArtist and CDLocation) inside a
 loop
- String concatenation of three variables inside a loop
- Write three variables in single line to file inside a loop
- Close file
- Use of string separator

Solutions may repeatedly OPEN - WRITE - CLOSE within the loop. In this case the first OPEN could be in WRITE or APPEND mode with all others in APPEND.

Max 8

```
def InputData() :
      #CDTitle String (or CDTitle = "")
      #CDArtist String (or CDArtist = "")
      #CDLocation String (or CDLocation = "")
      FileHandle = open("MyMusic", "w")
      CDTitle = input("Input CD Title: ")
      while CDTitle != "##" :
            CDArtist = input("Input CD Artist: ")
            CDLocation = input("Input CD location: ")
            FileHandle.write(CDTitle + ":" + CDArtist + ":" + CDLocation)
            CDTitle = input("Input CD Title: ")
      FileHandle.close()
Q,3
  All statements must have
  correct identifier name
  correct data type (String / Text // Integer / Byte / Word / Int / ShortInt / Short as appropriate);
  In addition, either array must have
  brackets to indicate an 'array'
  19/20 to indicate a range;
  MAX 2
```

b)

```
(b)
   Intialisation of counter or Boolean variable
        P := 1 / P := 0 / For P := 1 to 20 // IsFound := False ;
   Looping
        LOOP UNTIL // DO WHILE // WHILE DO // REPEAT UNTIL and used at the beginning/end
        of a code block as appropriate;
   Some loop condition is met
         (P = 20/21) OR IsFound = TRUE / P = 20/21 // IsFound = TRUE / IsFound;
   IF with use of the array
           IF NoOfClaims[P];
   Selection condition
        >4/>=5;
    Loop counter incremented
        P = P+1
   Final output
         Correct logic followed with OUTPUT 'Yes'
         A. multiple times
   Final output
        Correct logic followed with OUTPUT 'No'
         R. Multiple times
```

R. 'Prose' scores 0

Q.4

[MAX 6]