Tentamen i FYSIK FÖR INGENJÖRER för I2 (tif085)

Lärare.

Åke Fäldt tel 070 567 9080

Hjälpmedel:

Physics Handbook, Beta, SMT, TEFYMA eller motsvarande gymnasietabell. Valfri kalkylator (tömd på för kursen relevant information) samt ett A4-blad med

anteckningar. På sidan 3 av tentatesen finns tabeller som kan användas.

Granskning: preliminärt tisdagen den 17 januari kl 17.00-18.00 i Linsen.

1. En stor sten som väger 164,0 N är upphängd i den nedre änden av en tunn men stark tråd som är 3,00 m lång. Stenens densitet är 3500 kg/m³. Den övre änden av tråden är fixerad. När stenen befinner sig i luft är grundfrekvensen för den stående våg som förekommer i tråden 42,0 Hz. Om man sänker ner själva stenen (men bara den) i en vätska ändras grundtonens frekvens till 30,0 Hz. Använd Arkimedes princip (lyftkraften är lika med den undanträngda vätskans tyngd) och bestäm vätskans densitet (2 p)

En speciell värmemaskin producerar en nettoeffekt i form av arbete som uppgår till 5,00 kW. Den har en verkningsgrad som är 25 %. Under en cykel ger den ifrån sig 8000 J spillvärme. Hur mycket energi i form av värme tar den upp under en cykel och hur lång tid tar varje cykel? (2 p)

2. En stillastående vändkorsliknande horisontell anordning består av två smala pinnar som har satts ihop såsom figuren visar. Var och en av pinnarna har längden 0,800 m och massan 0,350 kg. En liten kula med massan m = 4,00 g skjuts mot vändkorset med farten 150 m/s och träffar och borrar sig in i vändkorset på det ställe som visas i figuren. Bestäm hur lång tid det tar för vändkorset med den inborrade kulan att rotera ett varv.

3. En uniform och homogen balk med massan M = 1,00 kg och längden 1 = 5,00 m bär upp två massor $m_1 = 2,00 \text{ kg}$ och $m_2 = 5,00 \text{ kg}$. Balken vilar på två triangulära stöd såsom figuren visar. Sträckan d är 0,75 m. För vilket värde x får man balans samtidigt som normalkraften i punkten O är lika med noll? (4 p)

4. Ett prov som består av 0,730 kg vatten i flytande form och en isklump placeras i ett isolerat kärl som innehåller en anordning som ser till att värme överförs från vattnet till isen med en konstant energimängd per sekund P ända tills termisk jämvikt har uppnåtts, d v s att is och vatten har samma temperatur 0 grader Celsius. Figuren visar temperaturen för isen och vattnet som funktion av tiden (mätt i minuter). Vad är värdet på P? Hur mycket is finns initialt i behållaren? Hur mycket is finns i behållaren när termisk jämvikt har uppnåtts? (4 p)

5. Ett litet block med massan m vilar ursprungligen på den lite skrovliga sluttande sidan av en kilformad kropp med massan M. Kilen befinner sig på ett friktionslöst horisontellt underlag. Den statiska friktionskoefficienten mellan det lilla blocket och kilen är 0,40. Om en kraft F appliceras såsom figuren visar, hur stor kan denna då högsta vara för att blocket inte ska röra sig uppför den sluttande ytan. M = 3,0 kg och m = 0,25 kg. Kilvinkeln är 20 grader. (4 p)

6. Monokromatiskt ljus får infalla under rät vinkel och belysa sex smala spalter. Den ena figuren på nästa sida visar de sex smala spalterna i stark uppförstoring och den andra hela försöksuppställningen. Man observerar då en intensitetsfördelning på en bildskärm som är belägen på avståndet L från spalterna. Avståndet d är flera storleksordningar mindre än L. Rakt fram mitt i nollte ordningens principalmaximum finns en punkt som vi kallar O. I en viss punkt P på skärmen gäller att d sin θ = λ/2. Det finns möjlighet att blockera spalter med en stoppanordning. Om alla spalter utom en blockeras uppmäts intensiteten I₀ i punkten O och I₁ i punkten P. Hur stor är intensiteten i punkten O uttryckt i I₀ om alla spalterna är öppna? Hur stor är den maximala intensiteten i punkten P uttryckt i I₁ och vilka spalter ska blockeras för att uppnå denna?

Ange i ruta 7 på tentaomslaget hur många skrivningspoäng du har med dig från gruppduggorna. (alltså <u>inte</u> hur många bonuspoäng dessa ger)

Ange i ruta 8 hur många poäng du har sammanlagt på de fyra inlämningsuppgiftsomgångarna.

Figur Uppgift 6.

TABLE 19-2 Latent Heats (at 1 atm)

Substance	Melting Point (°C)	Heat of Fusion		Boiling Point	Heat of Vaporization	
		kcal/kg [†]	kJ/kg	(°C)	kcal/kg [†]	kJ/kg
Oxygen	-218.8	3.3	14	-183	51	210
Nitrogen	-210.0	6.1	26	-195.8	48	200
Ethyl alcohol	-114	25	104	78	204	850
Ammonia	-77.8	8.0	33	-33.4	33	137
Water	0	79.7	333	100	539	2260
Lead	327	5.9	25	1750	208	870
Silver	961	21	88	2193	558	2300
Iron	1808	69.1	289	3023	1520	6340
Tungsten	3410	44	184	5900	1150	4800

Some Specific Heats and Molar Specific Heats at Room Temperature

	Specifi	Molar Specific Heat		
Substance	cal g·K	J kg·K	J mol·K	
Elemental Solids				
Lead	0.0305	128	26.5	
Tungsten	0.0321	134	24.8	
Silver	0.0564	236	25.5	
Copper	0.0923	386	24.5	
Aluminum	0.215	900	24.4	
Other Solids				
Brass	0.092	380		
Granite	0.19	790		
Glass	0.20	840		
Ice (-10°C)	0.530	2220		
Liquids				
Mercury	0.033	140		
Ethyl				
alcohol	0.58	2430		
Seawater	0.93	3900		
Water	1.00	4190		

coso - psino g = 28,5N = 28N

=) F = (m+N) 3/NO+D 0020

L: OH = P. At. = 0,183 hs = Mtot = 8,00 kg

