K-means clustering

Use the *k*-means algorithm and Euclidean distance to clustering the following eight samples into three clusters. The distance matrix based on the Euclidean distance is given below.

Suppose that the initial seeds (center of each cluster) are A1, A4 and A7 (as shown in the figure). Run the k-means algorithm for 1 epoch, at the end of this epoch show

- The new clusters (i.e. the samples belonging to each cluster)
- The center of the new clusters

ID	x_1	x_2
A1	2	10
A2	2	5
A3	8	4
A4	5	8
A5	7	5
A6	6	4
A7	1	2
A8	4	9

	A1	A2	A3	A4	A5	A6	A7	A8
A 1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	√ 52	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	√52	$\sqrt{2}$
A5					0	$\sqrt{2}$	√45	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	√58
A8								0

Solutions: new clusters

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	√52	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	√58
A8								0

	Center of Cluster3 A7	Center of cluster2 A4	Center of Cluster1 A1	Samples
→ A1 ∈ cluster1	$\sqrt{65}$	$\sqrt{13}$	0	A1
→ A2 ∈ cluster3	$\sqrt{10}$	$\sqrt{18}$	$\sqrt{25}$	A2
→ A3 ∈ cluster2	$\sqrt{53}$	$\sqrt{25}$	$\sqrt{36}$	A3
→ A4 ∈ cluster2	$\sqrt{52}$	0	$\sqrt{13}$	A4
→ A5 ∈ cluster2	$\sqrt{45}$	$\sqrt{13}$	$\sqrt{50}$	A5
→ A6 ∈ cluster2	$\sqrt{29}$	$\sqrt{17}$	$\sqrt{52}$	A6
→ A7 ∈ cluster3	0	$\sqrt{52}$	$\sqrt{65}$	A7
→ A8 ∈ cluster2	$\sqrt{58}$	$\sqrt{2}$	$\sqrt{5}$	A8

Solutions: new clusters

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	√37	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	√52	$\sqrt{2}$
A5					0	$\sqrt{2}$	√45	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	√58
A8								0

Samples	Center of Cluster1 A1	Center of cluster2 A4	Center of Cluster3 A7	
A1	0	$\sqrt{13}$	$\sqrt{65}$	→ A1 ∈ cluster1
A2	$\sqrt{25}$	$\sqrt{18}$	$\sqrt{10}$	→ A2 ∈ cluster3
A3	$\sqrt{36}$	$\sqrt{25}$	$\sqrt{53}$	→ A3 ∈ cluster2
A4	$\sqrt{13}$	0	$\sqrt{52}$	→ A4 ∈ cluster2
A5	$\sqrt{50}$	$\sqrt{13}$	$\sqrt{45}$	→ A5 ∈ cluster2
A6	$\sqrt{52}$	$\sqrt{17}$	$\sqrt{29}$	→ A6 ∈ cluster2
A7	$\sqrt{65}$	$\sqrt{52}$	0	→ A7 ∈ cluster3
A8	$\sqrt{5}$	$\sqrt{2}$	$\sqrt{58}$	→ A8 ∈ cluster2

Solutions: new cluster centers

New cluster centers:

- Cluster 1: A1=(2,10)
 - \triangleright New cluster center: C1 = (2, 10)
- Cluster 2: A8=(4,9); A4=(5,8); A5=(7,5); A6=(6,4); A3=(8,4)
 - > New cluster center:

$$C2 = ((4+5+7+6+8)/5, (9+8+5+4+4)/5) = (6, 6)$$

- Cluster3: A2(2,5); A7(1,2)
 - ➤ New cluster center:

$$C2 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)$$

ID	x_1	x_2
A1	2	10
A2	2	5
А3	8	4
A4	5	8
A5	7	5
A6	6	4
A7	1	2
A8	4	9

