EEL 711 Minor Test II Semester I 2014-2015

Answer all questions (Marks: Q.1: 24, Q.2: 16)

Full Marks: 40

1. Let X_1, X_2, X_3 be i.i.d. $\mathcal{N}(1,1)$ random variables. The random vector $\underline{Y} = [Y_1 \ Y_2 \ Y_3]^T$ is given by

 $Y_i \triangleq \alpha X_i - \frac{X_1 + X_2 + X_3}{3} - (\alpha - 1), \quad i = 1, 2, 3,$

where α is a deterministic real constant.

- (a) Find K_Y , the covariance matrix of Y, in terms of α . [6]
- (b) Find the range of α for which \underline{K}_Y is positive definite. [4]
- (c) For $\alpha = 2$, the vector \underline{Y} is to be transformed to another random vector $\underline{V} = [V_1 \ V_2 \ V_3]^T$ such that $\underline{V} = \underline{AY} + \underline{b}$, \underline{A} is a lower triangular matrix, and

$$\Psi_{V_1,V_2,V_3}(j\omega_1,j\omega_2,j\omega_3) = \exp\left(j[3\omega_1 + 2\omega_2 + \omega_3] - 2\left[\omega_1^2 + \omega_2^2 + \omega_3^2\right]\right).$$

Find \underline{A} and \underline{b} .

- (d) For $\alpha = 1$, find the joint p.d.f. $f_{Y_1,Y_2,Y_3}(y_1, y_2, y_3)$. [4]
- 2. A complex-valued circular Gaussian random vector $\underline{Z} = [Z_1 \ Z_2]^T$ has a mean vector $\underline{\mu} = [j \ -1]^T$ and a correlation matrix \underline{R} , whose element in the kth row and lth column is given by

$$(\underline{R})_{k,l} = \frac{1}{2} + j^k (-j)^l, \quad k \neq l,$$

$$= 2, \quad k = l.$$

The covariance matrix of \underline{Z} is \underline{K} . Let $\underline{X} = [X_1 \ X_2]^T = \operatorname{Re}(\underline{Z})$ and $\underline{Y} = [Y_1 \ Y_2]^T = \operatorname{Im}(\underline{Z})$. The vector \underline{Z} is to be transformed to another random vector $\underline{W} = [W_1 \ W_2]^T$ using an affine transformation such that $\underline{W} = \underline{AZ} + \underline{b}$, and the c.f. of \underline{W} is given by

$$\Psi_{W_1,W_2}(j\nu_1,j\nu_2) = \exp\left\{-|\nu_1|^2 - |\nu_2|^2\right\}.$$

- (a) Find \underline{A} and \underline{b} using eigendecomposition. [8]
- (b) Calculate $\mathbf{E}[(X_1(X_2+1)(Y_1-1)Y_2] \text{ and } \mathbf{E}[X_1\text{Re}(W_1)].$ [8]