

Automotive-grade N-channel 400 V, 0.050 Ω typ., 41 A, MDmesh™ DM6 Power MOSFET in a D2PAK package

Features

G(1) ○—	S(3)
	NG1D2TS3Z

Product status link
STB41N40DM6AG

Product summary				
Order code STB41N40DM6AG				
Marking	41N40DM6			
Package	D ² PAK			
Packing	Tape and reel			

Order code	V _{DS}	R _{DS(on)} max.	I _D
STB41N40DM6AG	400 V	0.065 Ω	41 A

- AEC-Q101 qualified
- Fast-recovery body diode
- Lower R_{DS(on)} per area vs previous generation
- Low gate charge, input capacitance and resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high-voltage N-channel Power MOSFET is part of the MDmesh™ DM6 fastrecovery diode series. Compared with the previous MDmesh fast generation, DM6 combines very low recovery charge (Q_{rr}), recovery time (t_{rr}) and excellent improvement in R_{DS(on)} per area with one of the most effective switching behaviors available in the market for the most demanding high-efficiency bridge topologies and ZVS phase-shift converters.

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
I _D	Drain current (continuous) at T _C = 25 °C	41	Α
טי	Drain current (continuous) at T _C = 100 °C	26	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	150	Α
P _{TOT}	Total dissipation at T _C = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	100	V/IIS
TJ	Operating junction temperature range	-55 to 150	°C
T _{stg}	Storage temperature range	-33 to 130	

^{1.} Pulse width limited by safe operating area

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	30	C/VV

^{1.} When mounted on an 1-inch² FR-4, 2 Oz copper board.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	6	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 100$ V)	760	mJ

DS12571 - Rev 1 page 2/14

^{2.} $I_{SD} \le 41$ A, $di/dt \le 800$ A/ μ s, $V_{DS\ peak} < V_{(BR)DSS}$, $V_{DD} = 320$ V

^{3.} $V_{DS} \le 320 \text{ V}$

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

Table 4. On-/off-states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	400			V
		V _{GS} = 0 V, V _{DS} = 400 V			1	μA
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 400 \text{ V},$ $T_C = 125 {}^{\circ}\text{C}^{(1)}$			100	μΑ
I _{GSS}	Gate body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±1	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 20.5 A		0.050	0.065	Ω

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2310	-	pF
C _{oss}	Output capacitance	$V_{DS} = 100 \text{ V, f} = 1 \text{ MHz, V}_{GS} = 0 \text{ V}$	-	151	-	pF
C _{rss}	Reverse transfer capacitance		-	10	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 320 V, V _{GS} = 0 V	-	450	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	1.3	-	Ω
Qg	Total gate charge	V _{DD} = 320 V, I _D = 41 A,	-	53	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	12	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14. Test circuit for gate charge behavior)	-	29	-	nC

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 200 V, I _D = 20.5 A,	-	18	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	10.3	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and	-	46	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	9.4	-	ns

DS12571 - Rev 1 page 3/14

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		41	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		150	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 41 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 41 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	103		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	0.44		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	8.5		Α
t _{rr}	Reverse recovery time	$I_{SD} = 41 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	180		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	1.5		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	17		Α

^{1.} Pulse width limited by safe operating area

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_{D} = 0 \text{ A}$	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

DS12571 - Rev 1 page 4/14

^{2.} Pulsed: pulse duration = 300 μs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 3. Output characteristics GADG020520181250OCH Ι_D (A) V_{GS} = 10 V 140 $V_{GS} = 9 V$ 120 V_{GS} = 8 V 100 $V_{GS} = 7 V$ 80 60 40 $V_{GS} = 6 V$ 20 $V_{GS} = 5 V$ 12 14 10 6 8

DS12571 - Rev 1 page 5/14

Figure 7. Capacitance variations GADG020520181252CVR (pF) 104 CISS 103 10² Coss CRSS 101 **10**º V_{DS} (V) 10-1 100 10¹ 10²

Figure 8. Normalized gate threshold voltage vs temperature

V_{GS(th)} (norm.)

1.1

0.9

I_D = 250 μA

0.7

0.6

-75 -25 25 75 125 T_j (°C)

DS12571 - Rev 1 page 6/14

3 Test circuits

Figure 13. Test circuit for resistive load switching times

Figure 14. Test circuit for gate charge behavior

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS12571 - Rev 1 page 7/14

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 D²PAK (TO-263) type A2 package information

Figure 19. D²PAK (TO-263) type A2 package outline

0079457_A2_24

DS12571 - Rev 1 page 8/14

Table 9. D²PAK (TO-263) type A2 package mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
А	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
С	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50	7.75	8.00		
D2	1.10	1.30	1.50		
Е	10.00		10.40		
E1	8.70	8.90	9.10		
E2	7.30	7.50	7.70		
е		2.54			
e1	4.88		5.28		
Н	15.00		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.40			
V2	0°		8°		

Figure 20. D²PAK (TO-263) recommended footprint (dimensions are in mm)

DS12571 - Rev 1 page 9/14

4.2 D²PAK packing information

Figure 21. D²PAK tape outline

AM08852v1

DS12571 - Rev 1 page 10/14

Figure 22. D²PAK reel outline

AM06038v1

Table 10. D²PAK tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.	Diiii.	Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity		1000
P2	1.9	2.1	Bulk quantity		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

DS12571 - Rev 1 page 11/14

Revision history

Table 11. Document revision history

Date	Version	Changes
17-May-2018	1	Initial release. The document status is production data.

DS12571 - Rev 1 page 12/14

Contents

1	Elec	trical ratings	2
2		trical characteristics	
		Electrical characteristics (curves)	
3	Test	circuits	7
4	Pacl	kage information	8
	4.1	D²PAK (TO-263) type A2 package information	8
	4.2	D²PAK packing information	9
Rev	ision	history	12

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12571 - Rev 1 page 14/14