Hierarchical Clustering

> library(swirl)		
Hi! Type swirl() when you	u are ready to begin.	
> swirl()		
Welcome to swirl! Please		efore, use the same name as you did then. If you are new
What shall I call you? Step	hen	
Please choose a course, o	or type 0 to exit swirl.	
1: Data Analysis		
2: Exploratory Data Analys	is	
3: Getting and Cleaning Da	ta	
4: Mathematical Biostatist	ics Boot Camp	
5: Open Intro		
6: R Programming		
7: Regression Models		
8: Statistical Inference		
9: Take me to the swirl cou	urse repository!	
Selection: 2		
Please choose a lesson, c	or type 0 to return to course m	enu.
1: Principles of Analytic G	raphs 2: Exploratory Graphs	3: Graphics Devices in R
4: Plotting Systems	5: Base Plotting System	6: Lattice Plotting System

10: GGPlot2 Extras	11: Hierarchical Clustering	12: K Means Clustering
13: Dimension Reduction	14: Clustering Example	15: CaseStudy
Selection: 11		
1		0%
Hierarchical Clustering (S	Slides for this and other Data 9	Science courses may be found at github
		•
	•	. If you care to use them, they must be downloaded as a zi
file and viewed locally. Th	is lesson corresponds to 04_E	xploratoryAnalysis/hierarchicalClustering.)
==		2%
l In this lesson we'll learn a	hout hierarchical clustering, a	simple way of quickly examining and displaying
		useful in the early stages of analysis when you're trying
	•	pattern or relationship between different factors or
		creates a hierarchy of clusters.
T Variables. As the hame sug	ggests merarchical clustering (creates a fileral city of clusters.
l===		3%
ı		1 5/4
Clustering organizes data	points that are close into grou	ups. So obvious questions are "How do we define close?",
"How do we group things"	?", and "How do we interpret	the grouping?" Cluster analysis is a very important topic in
data analysis.		

9: GGPlot2 Part2

7: Working with Colors 8: GGPlot2 Part1

••		
====	5%	
	lking about, consider these random points we generated. We'll use them in this lesson. We'll do this in several steps, but first we have to clarify	n to
	6%	
(http://en.wikipedia.org/wiki/Hiera its own cluster, and pairs of clusters closest two points and put them to	erative, or bottom-up, approach. From Wikipedia rchical_clustering), we learn that in this method, "each observation starts are merged as one moves up the hierarchy." This means that we'll find the tether in one cluster, then find the next closest pair in the updated picturess until we reach a reasonable stopping place.	he
======	8%	
on your problem. Again, Wikipedia	s a lot of flexibility in this field and how you perform your analysis dependently one can decide to stop clustering either when the clusters are to serion) or when there is a sufficiently small number of clusters (number	
========	10%	

First, how do we define close? This is the most imp	ortant step and there are several possibilities depending on
the questions you're trying to answer and the data	you have. Distance or similarity are usually the metrics used
	1.4404
=========	11%
In the given plot which pair points would you first o	cluster? Use distance as the metric.
1: 7 and 8	
2: 5 and 6	
3: 10 and 12	
4: 1 and 4	
Selection: 2	
You are really on a roll!	
======================================	13%
It's pretty obvious that out of the 4 choices, the pa	ir 5 and 6 were the closest together. However, there are
several ways to measure distance or similarity. Euc	lidean distance and correlation similarity are continuous
measures, while Manhattan distance is a binary me	easure. In this lesson we'll just briefly discuss the first and
last of these. It's important that you use a measure	e of distance that fits your problem.
============	15%
•	•
Euclidean distance is what you learned about in hig	gh school algebra. Given two points on a plane, (x1,y1) and
(x2,y2), the Euclidean distance is the square root or	f the sums of the squares of the distances between the two

\mid x-coordinates (x1-x2) and the two y-coordinates (y1-y	(2). You probably recognize this as an application of the
Pythagorean theorem which yields the length of the l	hypotenuse of a right triangle.
===========	16%
It shouldn't be hard to believe that this generalizes to	more than two dimensions as shown in the formula at the
bottom of the picture shown here.	
======================================	18%
Euclidean distance is distance "as the crow flies". Mai	ny applications, however, can't realistically use
crow-flying distance. Cars, for instance, have to follow	v roads.
=============	19%
l la this and the same of the state of the s	and following and beginning to the single state of the single stat
	nce (also known as a taxicab metric). This picture, copied
from http://en.wikipedia.org/wiki/Taxicab_geometry	, snows what this means.
•••	
=============	21%
•	1 ==
You want to travel from the point at the lower left to	the one on the top right. The shortest distance is the
Euclidean (the green line), but you're limited to the g	rid, so you have to follow a path similar to those shown in
red, blue, or yellow. These all have the same length (2	12) which is the number of small gray segments covered by

their paths.	
======================================	23%
More formally, Manhattan distance is the sum of the absol	ute values of the distances between each coordinate, so
the distance between the points (x1,y1) and (x2,y2) is x1->	(2 + y1-y2 . As with Euclidean distance, this too
generalizes to more than 2 dimensions.	
. .	
======================================	24%
Now we'll go back to our random points. You might have no	oticed that these points don't really look randomly
positioned, and in fact, they're not. They were actually gen	erated as 3 distinct clusters. We've put the
coordinates of these points in a data frame for you, called	dataFrame.
======================================	26%
We'll use this dataFrame to demonstrate an agglomerative	(bottom-up) technique of hierarchical clustering and
create a dendrogram. This is an abstract picture (or graph)	which shows how the 12 points in our dataset cluster
together. Two clusters (initially, these are points) that are c	close are connected with a line, We'll use Euclidean
distance as our metric of closeness.	
1======	l 27%

Run the R command dist with the argument dataFrame to compute the distances between all pairs of these points. By
default dist uses Euclidean distance as its metric, but other metrics such as Manhattan, are available. Just use
the default.
> dist(dataFrame)
1 2 3 4 5 6 7 8 9 10
2 0.34120511
3 0.57493739 0.24102750
4 0.26381786 0.52578819 0.71861759
5 1.69424700 1.35818182 1.11952883 1.80666768
6 1.65812902 1.31960442 1.08338841 1.78081321 0.08150268
7 1.49823399 1.16620981 0.92568723 1.60131659 0.21110433 0.21666557
8 1.99149025 1.69093111 1.45648906 2.02849490 0.61704200 0.69791931 0.65062566
9 2.13629539 1.83167669 1.67835968 2.35675598 1.18349654 1.11500116 1.28582631 1.76460709
10 2.06419586 1.76999236 1.63109790 2.29239480 1.23847877 1.16550201 1.32063059 1.83517785 0.14090406
11 2.14702468 1.85183204 1.71074417 2.37461984 1.28153948 1.21077373 1.37369662 1.86999431 0.11624471 0.08317570
12 2.05664233 1.74662555 1.58658782 2.27232243 1.07700974 1.00777231 1.17740375 1.66223814 0.10848966 0.1912864
11
2
3
4
5
6
7
8
9
10
11
12 0.20802789
Great job!

======================================	29%
You see that the output is a lower triangular matrix with rows num	bered from 2 to 12 and columns numbered from 1
to 11. Entry (i,j) indicates the distance between points i and j. Clear	ly you need only a lower triangular matrix
since the distance between points i and j equals that between j and	d i.
	31%
From the output of dist, what is the minimum distance between tw	vo points?
4 0 0045	
1: 0.0815	
2: 0.08317 3: 0.1085	
4: -0.0700	
1. 0.0700	
Selection: 1	
You are doing so well!	
	32%
So 0.0815 (units are unspecified) between points 5 and 6 is the sho	ortest distance. We can put these points in a
single cluster and look for another close pair of points.	
	1
	34%

Looking at the picture, what would be another good pair of points to put in another	cluster given that 5 and 6 are
already clustered?	
1: 7 and 8	
2: 1 and 4	
3: 7 and the cluster containing 5 ad 6	
4: 10 and 11	
Selection: 4	
You got it!	
======================================	35%
So 10 and 11 are another pair of points that would be in a second cluster. We'll star	t creating our dendrogram
now. Here're the original plot and two beginning pieces of the dendrogram.	
	37%
We can keep going like this in the obvious way and pair up individual points, but as	luck would have it, R
provides a simple function which you can call which creates a dendrogram for you.	It's called hclust() and takes
as an argument the pairwise distance matrix which we looked at before. We've stor	ed this matrix for you in a
variable called distxy. Run hclust now with distxy as its argument and put the result	in the variable hc.
> hclust(distxy)	
Call:	
hclust(d = distxy)	

Distance : euclidean		
Number of objects: 12		
Not quite! Try again. Or,	type info() for more options.	
Type hc <- hclust(distxy)	at the command prompt.	
> hc <- hclust(distxy)		
That's correct!		
		39%
You're probably curious	and want to see hc.	
===========		40%
Call the R function plot v	vith one argument, hc.	
> plot(hc)		
You're the best!		
		42%
Nice plot, right? R's plot	conveniently labeled everything for you. The	points we saw are the leaves at the botton
	s connected as are 10 and 11. Margover, we	

Cluster method : complete

Keep up the great work!	
	47%
How many clusters are there with a cut at this distance?	
> 5	
[1] 5	
Excellent work!	
	48%
We see that by cutting at .4 we have 5 clusters, indicating that this distance is small en	nough to break up ou
original grouping of points. If we drew a horizontal line at .05, how many clusters wou	ıld we get
> 12	
[1] 12	
You got it!	
	50%
	30%
Try it now (draw a horizontal line at .05) and make the line green.	
> abline(h=0.05, col="green")	
Excellent job!	
======================================	52%

So the number of clusters in your data depends on where you draw the line! (We said there's a lot	of flexibility
here.) Now that we've seen the practice, let's go back to some "theory". Notice that the two origin	nal groupings, 5
through 8, and 9 through 12, are connected with a horizontal line near the top of the display. You'	re probably
wondering how distances between clusters of points are measured.	
	
	53%
There are several ways to do this. We'll just mention two. The first is called complete linkage and i	t says that
if you're trying to measure a distance between two clusters, take the greatest distance between the	ne pairs of
points in those two clusters. Obviously such pairs contain one point from each cluster.	
	55%
So if we were measuring the distance between the two clusters of points (1 through 4) and (5 thro	ough 8), using
complete linkage as the metric we would use the distance between points 4 and 8 as the measure	since this is the
largest distance between the pairs of those groups.	
	56%
The distance between the two clusters of points (9 through 12) and (5 through 8), using complete	linkage as the
metric, is the distance between points 11 and 8 since this is the largest distance between the pairs	of those
groups.	

...

	58%
As luck would have it, the distance between the two clusters of points (9 through 12) and (1 thro	ugh 4), using
complete linkage as the metric, is the distance between points 11 and 4.	
======================================	60%
We've created the dataframe dFsm for you containing these 3 points, 4, 8, and 11. Run dist on dI	-sm to see what the
smallest distance between these 3 points is.	
> dist(dFsm)	
1 2	
2 2.028495	
3 2.374620 1.869994	
Nice work!	
	61%
We see that the smallest distance is between points 2 and 3 in this reduced set, (these are actua	lly points 8 and
11 in the original set), indicating that the two clusters these points represent ((5 through 8) and (9 through 12)
respectively) would be joined (at a distance of 1.869) before being connected with the third clust	ter (1 through
4). This is consistent with the dendrogram we plotted.	
	63%

The second way to measure a distance between two clusters that we'll just mention is called average li	nkage. First
you compute an "average" point in each cluster (think of it as the cluster's center of gravity). You do th	is by
computing the mean (average) x and y coordinates of the points in the cluster.	
======================================	65%
Then you compute the distances between each cluster average to compute the intercluster distance.	
1	1.660/
	66%
Now look at the hierarchical cluster we created before, hc.	
> hc	
Call:	
hclust(d = distxy)	
Cluster method : complete	
Distance : euclidean	
Number of objects: 12	
Great job!	
======================================	68%
Which type of linkage did hclust() use to agglomerate clusters?	
I writer type of intrage and hereally use to agglotherate clusters:	

1: average
2: complete
Selection: 2
You're the best!
======================================
In our simple set of data, the average and complete linkages aren't that different, but in more complicated
datasets the type of linkage you use could affect how your data clusters. It is a good idea to experiment with
different methods of linkage to see the varying ways your data groups. This will help you determine the best way
to continue with your analysis.

======================================
The last method of visualizing data we'll mention in this lesson concerns heat maps. Wikipedia
(http://en.wikipedia.org/wiki/Heat_map) tells us a heat map is "a graphical representation of data where the
individual values contained in a matrix are represented as colors Heat maps originated in 2D displays of the
values in a data matrix. Larger values were represented by small dark gray or black squares (pixels) and smaller
values by lighter squares."

,
======================================
You've probably seen many examples of heat maps, for instance weather radar and displays of ocean salinity. From
Wikipedia (http://en.wikipedia.org/wiki/Heat_map) we learn that heat maps are often used in molecular biology "to

represent the level of expression of many genes across a number of comparable samples (e.g. cells in different
states, samples from different patients) as they are obtained from DNA microarrays."

======================================
We won't say too much on this topic, but a very nice concise tutorial on creating heatmaps in R exists at
http://sebastianraschka.com/Articles/heatmaps_in_r.html#clustering. Here's an image from the tutorial to start you
thinking about the topic. It shows a sample heat map with a dendrogram on the left edge mapping the relationship
between the rows. The legend at the top shows how colors relate to values.
======================================
R provides a handy function to produce heat maps. It's called heatmap. We've put the point data we've been using
throughout this lesson in a matrix. Call heatmap now with 2 arguments. The first is dataMatrix and the second is
col set equal to cm.colors(25). This last is optional, but we like the colors better than the default ones.
> heatmap(dataMatrix, col = cm.colors(25))
That's correct!
======================================
We see an interesting display of sorts. This is a very simple heat map - simple because the data isn't very
complex. The rows and columns are grouped together as shown by colors. The top rows (labeled 5, 6, and 7) seem to
be in the same group (same colors) while 8 is next to them but colored differently. This matches the dendrogram
shown on the left edge. Similarly, 9, 12, 11, and 10 are grouped together (row-wise) along with 3 and 2. These are
followed by 1 and 4 which are in a separate group. Column data is treated independently of rows but is also

grouped.	
	
	79%
We've subsetted some vehicle data from mtcars, the Motor Trend Car Road Tests which is part of the package	
datasets. The data is in the matrix mt and contains 6 factors of 11 cars. Run heatmap now with mt as its only	
argument.	
> heatmap(mt	
•	
.	
+)	
That's a job well done!	
	819
This looks slightly more interesting than the heatmap for the point data. It shows a little better how the rows	
and columns are treated (clustered and colored) independently of one another. To understand the disparity in color	
(between the left 4 columns and the right 2) look at mt now.	
> my	
Error: object 'my' not found	
> mt	
mpg cyl disp hp drat wt Dodge Challenger 15.5 8 318.0 150 2.76 3.520	
AMC Javelin 15.2 8 304.0 150 3.15 3.435	
Camaro Z28 13.3 8 350.0 245 3.73 3.840	

Pontiac Firebird 19.2 8 400.0 175 3.08 3.845

Fiat X1-9 27.3 4 79.0 66 4.08 1.935 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 Lotus Europa 30.4 4 95.1 113 3.77 1.513 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 Maserati Bora 15.0 8 301.0 335 3.54 3.570 Volvo 142E 21.4 4 121.0 109 4.11 2.780 | Perseverance, that's the answer. | 82% |-----| See how four of the columns are all relatively small numbers and only two (disp and hp) are large? That explains the big difference in color columns. Now to understand the grouping of the rows call plot with one argument, the | dendrogram object denmt we've created for you. > plot(denmt) | Keep up the great work! | 84% We see that this dendrogram is the one displayed at the side of the heat map. How was this created? Recall that we generalized the distance formula for more than 2 dimensions. We've created a distance matrix for you, distmt. Look at it now. > distmt Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa AMC Javelin 14.00890 Camaro Z28 100.27404 105.57041 Pontiac Firebird 85.80733 99.28330 86.22779

Fiat X1-9	253.64640 240.51305 325.11191	339.12867		
Porsche 914-2	206.63309 193.29419 276.87318	292.15588 48.29642		
Lotus Europa	226.48724 212.74240 287.59666	311.37656 49.78046	33.75246	
Ford Pantera L	118.69012 123.31494 19.20778	101.66275 336.65679	288.56998 297.51961	
Ferrari Dino	174.86264 161.03078 216.72821	255.01117 127.67016	87.81135 80.33743	
Maserati Bora	185.78176 185.02489 102.48902	188.19917 349.02042	303.85577 303.20992	
Volvo 142E	201.35337 187.68535 266.49555	286.74036 60.40302	18.60543 27.74042	
Ford P	antera L Ferrari Dino Maserati Bora			
AMC Javelin				
Camaro Z28				
Pontiac Firebird				
Fiat X1-9				
Porsche 914-2				
Lotus Europa				
Ford Pantera L				
Ferrari Dino	224.44761			
Maserati Bora	86.84620 223.52346			
Volvo 142E	277.43923 70.27895 289.02233			
You are quite {	good my friend!			
=======		===========		85%
See how these	distances match those in the dendrogra	m? So hclust really work	s! Let's review now.	
=======		=======================================		87%
·				·
l What is the pu	rpose of hierarchical clustering?			
,				

1: Give an idea of the relationships between variables or observations	
2: Inspire other researchers	
3: None of the others	
4: Present a finished picture	
Selection: 1	
You are doing so well!	
======================================	89%
True or False? When you're doing hierarchical clustering there are strict rules that you MUST follow.	
1: False	
2: True	
Selection: 1	
Excellent work!	
	90
True or False? There's only one way to measure distance.	
1: True	
2: False	
Selection: 2	
Keep up the great work!	

	9
True or False? Complete linkage is a method of computing distances between clusters.	
1: False	
2: True	
Selection: 2	
You got it!	
True or False? Average linkage uses the maximum distance between points of two clusters as the distance between	
those clusters.	
1: True	
2: False	
Selection: 2	
You got it!	
l=====================================	= I
	'
True or False? The number of clusters you derive from your data depends on the distance at which you choose to cut	
it.	
1: False	
2: True	

Selection: 2
All that hard work is paying off!
True or False? Once you decide basics, such as defining a distance metric and linkage method, hierarchical
clustering is deterministic.
1: True
2: False
Selection: 2
Give it another try.
Once you pick your algorithm, all you have to do is apply it.
1: True
2: False
Selection: 1
You got it!
======================================
Congratulations! We hope this lesson didn't fluster you or get you too heated!

| Would you like to receive credit for completing this course on Coursera.org?

1: No

2: Yes

Plots

In general:

$$\sqrt{(A_1-A_2)^2+(B_1-B_2)^2+\dots+(Z_1-Z_2)^2}$$

http://rafalab.jhsph.edu/688/lec/lecture5-clustering.pdf

Cluster Dendrogram

distxy hclust (*, "complete")

