ENGR 5022 Engineering Analysis

Homework Chapter 3 March 23, 2013

Salvatore Giorgi salvatore.giorgi@temple.edu

1. Eigenvalue Problem

Exercise 1.1. Show that the eigenvectors of a symmetric matrix are orthogonal.

Proof:

Exercise 1.2. Consider the matrix in the controllable canonical form

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 & 1 \\ -c_0 & -c_1 & -c_2 & \dots & -c_{n-2} & -c_{n-1} \end{bmatrix}.$$

Show that the characteristic equation of this matrix is

$$\lambda^{n} + c_{n-1}\lambda^{n-1} + \dots + c_{1}\lambda_{1} = 0.$$

Proof:

Exercise 1.3. Consider the matric in the observable canonical form

$$A = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & 0 & \dots & 0 & -c_1 \\ \vdots & \vdots & \vdots & \ddots & 0 & -c_{n-2} \\ 0 & 0 & 0 & \dots & 1 & -c_{n-1} \end{bmatrix}.$$

Show that the characteristic equation of this matrix is

$$\lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda_1 = 0.$$

Proof:

Exercise 1.4. Consider the matrix

$$M = \begin{bmatrix} A & \mathbf{0} \\ -\mathbf{0} & -A' \end{bmatrix}$$

where A and Q are square matrices. This matrix is known as the Hamiltonian matrix in control system theory. Show that the eigenvalues of M are symmetrically located with respect to the imaginary axis

Proof:	
Exercise 1.5.	
Proof:	
Exercise 1.6.	
Proof:	
Exercise 1.7. Given the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 2 \end{bmatrix}.$	
Using Cayley-Hamilton theorem, find the matrix $\mathbf{B} = \sqrt{\mathbf{A}}$. Also compute the eigenmatrices \mathbf{A} and \mathbf{B} and verify that $\lambda_{\mathbf{B}} = \sqrt{\lambda_{\mathbf{A}}}$.	values of the
Proof:	
Exercise 1.8. For the matrix given above, find the function $\mathbf{B} = \sin(\mathbf{A})$. Also verify the	$ut \lambda_{\mathbf{B}} = \sin(\lambda_{\mathbf{A}})$
Proof:	
Exercise 1.9. Compute the matrix exponential e^{A} for the following matrices:	
$\begin{bmatrix} 2 & -1 & 0 \\ 2 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	
Proof:	
Exercise 1.10. Using the Cayley Hamilton theorem compute the inverse of the follow	ing matrices:

$$\begin{bmatrix} 2 & -1 & 0 \\ 2 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Proof:

Exercise 1.11. Show that the eigenvalues of the matrices A and A' are identical but the eigenvectors are different. Find a relation between the two sets of eigenvectors.

Proof:

Exercise 1.12. Supposed T is a transformation matrix that diagonalizes the matrix A, i.e. $D = T^{-1}AT$. Show that $A^k = TD^kT^{-1}$. Note that in this method the computation of matrix power becomes relatively simple since D^k is easily computed. Note: The same concept holds for any other matrix function as well.

Proof:

Exercise 1.13. Find the eigenvalues and eigenvectors of the matrix A^n where n is arbitrary

$$\begin{bmatrix} 2 & -1 & 0 \\ 2 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$

Proof:

Exercise 1.14. Show that if λ is an eigenvalue of A then $f(\lambda)$ is an eigenvalue of the matrix f(A), where f is analytic function of its argument. Hint: Use Cayley-Hamilton theorem and the basic definition of eigenvalue problem.

Proof:

Exercise 1.15. Show that for a matrix A with eigenvalues λ_i , i = 1, 2, ..., n, show that

$$|\pmb{A}| = \prod_{i=1}^n \lambda_i$$

$$Tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

Proof:

Exercise 1.16. Suppose A is an $n \times n$ matrix whose eigenvalues are not necessarily distinct. Show that the set of eigenvectors and generalized eigenvectors form a basis for the space \mathbb{R}^n .

Proof:

Exercise 1.17. Find the eigenvalues an eigenvectors for the following matrices:

$$\begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix}, \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix}$$

Proof:

Exercise 1.18. Suppose A be a block diagonal matrix given by

$$A = \begin{bmatrix} \mathbf{M}_1 & 0 & 0 \\ 0 & \mathbf{M}_2 & 0 \\ 0 & 0 & \mathbf{M}_3 \end{bmatrix}$$

where the diagonal blocks are squ M_1 , M_2 , and M_3	uare matrices. Show that the eigenvalues of $oldsymbol{A}$ are those matrices
Proof:	
Exercise 1.19.	
Proof:	
Exercise 1.20. Show that the transformation.	unsfer function of a system is invariant under similarity trans-
Proof:	
Exercise 1.21. Let λ be an eigenthe matrix \mathbf{A}^{ϕ} , where ϕ is not negligible.	avalue of the matrix A . Then show that λ^{ϕ} is an eigenvalue of ecessarily an integer.
Proof:	