

Asimov comparisons with different dcp values

Patrick Dunne - Imperial College London

Overview

- Asked to study three new Asimov points by OA
- ► All based on point 1/A but with different values of dcp (see below)
- ▶ 1M steps generated for each point woRC

Set	А	С	D	Е
$\sin^2(\theta_{12})$	0.304			
$\sin^2(\theta_{13})$	0.0217			
$\sin^2(\theta_{23})$	0.528			
Δm_{12}^2	7.35e-05			
Δm_{23}^2	0.002509			
δ_{CP}	-1.601	0	π	<u>pi</u> 2

CP conserving sets - appearance parameters

CP conserving sets - disappearance parameters

CP conserving sets - dcp

CP violating sets - appearance parameters

CP violating sets - disappearance parameters

CP violating sets - dcp

- ► Little difference between CP conserving asimovs
- ► CP violating Asimovs show tighter exclusions for -1.601 than pi by 2
- wRC being processed now